Outline

Nonregular languages, the Pumping Lemma, and Context-free grammars 204213 Theory of Computation

Jittat Fakcharoenphol

Kasetsart University

July 19, 2021

Outline

- Review
- 2 Applications
- Nonregular Languages
- 4 Proof of the pumping lemm
- **5** Context-free grammars

Short review: NFA and DFA

 For a deterministic finite automaton, given its current state and an input symbol from the alphabet, the next state is determined.

Short review: NFA and DFA

- For a deterministic finite automaton, given its current state and an input symbol from the alphabet, the next state is determined.
- For a **nondeterministic** finite automaton, given its current state and an input symbol from the alphabet, there can be many possible states (or none).

Given an NFA $N=(Q,\Sigma,\delta,q_0,F)$, we shall construct an equivalence DFA $M=(Q',\Sigma,\delta',q_0',F')$ that recognizes the same language.

• Note that both automata take the same alphabet Σ .

- Note that both automata take the same alphabet Σ .
- Let $Q' = \mathcal{P}(Q)$.

- Note that both automata take the same alphabet Σ .
- Let $Q' = \mathcal{P}(Q)$.
- Define δ' so that M correctly simulates many copies of N.

- Note that both automata take the same alphabet Σ .
- Let $Q' = \mathcal{P}(Q)$.
- Define δ' so that M correctly simulates many copies of N.
- Carefully handle ε .

- Note that both automata take the same alphabet Σ .
- Let $Q' = \mathcal{P}(Q)$.
- Define δ' so that M correctly simulates many copies of N.
- Carefully handle ε .
- M accepts any state $R \in Q'$ such that $R \cap F \neq \emptyset$.

Definition [regular expression]

• An inductive definition of regular expressions.

Definition [regular expression]

- An inductive definition of regular expressions.
- R is a regular expression if R is
 - **1** a for some $a \in \Sigma$,
 - $\mathbf{2}$ ε ,
 - **3** Ø,
 - $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions,
 - $(R_1 \circ R_2)$ where R_1 and R_2 are regular expressions, and

Theorem 1

A language is regular iff some regular expression describes it.

Theorem 1

A language is regular iff some regular expression describes it.

There are two directions to prove the theorem:

 If a language is described by a regular expression, then it is regular.

Theorem 1

A language is regular iff some regular expression describes it.

There are two directions to prove the theorem:

 If a language is described by a regular expression, then it is regular. Proved last time

Theorem 1

A language is regular iff some regular expression describes it.

There are two directions to prove the theorem:

 If a language is described by a regular expression, then it is regular. Proved last time by considering how regular expressions can be constructed.

Theorem 1

A language is regular iff some regular expression describes it.

There are two directions to prove the theorem:

- If a language is described by a regular expression, then it is regular. Proved last time by considering how regular expressions can be constructed.

Theorem 1

A language is regular iff some regular expression describes it.

There are two directions to prove the theorem:

- If a language is described by a regular expression, then it is regular. Proved last time by considering how regular expressions can be constructed.
- If a language is regular, then it can be described by a regular expression. Quick overview last time. Recap today.

The second part

Theorem 2

Any regular language can be described with a regular expression.

• What do we know?

The second part

Theorem 2

Any regular language can be described with a regular expression.

- What do we know?
 - A is a regular language.

The second part

Theorem 2

Any regular language can be described with a regular expression.

- What do we know?
 - A is a regular language.
- What does that mean? μλομίος (DFA, NPA equivalent πίμ)
 - There is a $\overrightarrow{DFA}M$ that recognizes A.

Practice: M_1

Consider the following DFA M_1 .

We would like to find a regular expression describing the language reconized by M_1 .

Practice: M_1

Consider the following DFA M_1 .

We would like to find a regular expression describing the language reconized by M_1 .

In this case, we can work out one to be $0^*11^*0\{0,1\}^*$.

Practice: M_1

Consider the following DFA M_1 .

We would like to find a regular expression describing the language reconized by M_1 .

In this case, we can work out one to be $0*11*0\{0,1\}^*$.

However, we would like to do this for any DFA. If we can show that this is possible, then we are done.

"Baby step"

- Instead of trying to convert the whole DFA to a regular expression in one step, we will try to make some progress.
- If we can always make some progress, we surely get to the finish line for sure. How? Think about induction.
- But what kind of progress?
 - It maybe better to start by asking what kind of finishing line that we want.

Goal

Simplest FA for Regular Expression construction:

 DFA (or even NFA) with two states: one start state and one accept state.

Goal

Simplest FA for Regular Expression construction:

 DFA (or even NFA) with two states: one start state and one accept state.

But how could we get there?

After thinking a bit it is quite straight-forward.

- Try to reduce the number of states.
- Each step decreases the number of states by one.

Note: Power-up required

Outline

- To accommodate the state reduction procedure, we have to allow transition edges with regular expressions.
- This is fine: we shall define the generalized nondeterministic finite automata.
- A generalized nondeterministic finite automata are nondeterministic finite automata where we allow regular expressions as labels on transition arrows.
- A GNFA can move to a new state only if it can read a block of input symbols that is described by the regular expression on the arrow.
- For everything to actually work out, we need a GNFA to be in a special form. But we leave the detail out for this course.

• If a GNFA G has 2 states, the conversion is straight-forward.

- If a GNFA *G* has 2 states, the conversion is straight-forward.
- If a GNFA G has more than 2 states:
 - Pick one state $q_{rip} \notin \{q_{start}, q_{accept}\}$.

- If a GNFA *G* has 2 states, the conversion is straight-forward.
- If a GNFA G has more than 2 states:
 - Pick one state $q_{rip} \notin \{q_{start}, q_{accept}\}$. (There should be one, why?)

- If a GNFA *G* has 2 states, the conversion is straight-forward.
- If a GNFA G has more than 2 states:
 - Pick one state $q_{rip} \notin \{q_{start}, q_{accept}\}$. (There should be one, why?)
 - Build an equivalent G' by removing q_{rip}
 - Repeat.

Removing q_{rip}

Removing q_{rip}

Traffic light control

Extracting string constants

```
#include <stdio.h>
main()
{
   int a, b;
   scanf("%d %d",&a,&b);
   printf("Hello! \"welcome\" %d\n",a+b);
}
```

What is the limit of DFA/NFA/RegEx?

• They all have the same power. (Why?)

- They all have the same power. (Why?)
- Are there any languages these machines can't recognize?

- They all have the same power. (Why?)
- Are there any languages these machines can't recognize?
 - Yes. We'll see one now:

$$B = \{0^n 1^n | n \ge 0\}.$$

- They all have the same power. (Why?)
- Are there any languages these machines can't recognize?
 - Yes. We'll see one now:

$$B = \{0^n 1^n | n \ge 0\}.$$

• Really? I don't believe it until I (or you) have proved it.

- They all have the same power. (Why?)
- Are there any languages these machines can't recognize?
 - Yes. We'll see one now:

$$B=\{0^n1^n|n\geq 0\}.$$

- Really? I don't believe it until I (or you) have proved it.
- Some intuition: any DFA M recognizing B seems to have to remember the number of 0, but since M has finite state it will remember incorrectly when n is very large.

- They all have the same power. (Why?)
- Are there any languages these machines can't recognize?
 - Yes. We'll see one now:

$$B=\{0^n1^n|n\geq 0\}.$$

- Really? I don't believe it until I (or you) have proved it.
- Some intuition: any DFA M recognizing B seems to have to remember the number of 0, but since M has finite state it will remember incorrectly when n is very large.
- Again, that's **not** a proof.

How about these languages?

How about these languages?

• $C = \{w | w \text{ has an equal number of 0's and 1's } \}$.

How about these languages?

- $C = \{w | w \text{ has an equal number of 0's and 1's } \}$.
- $D = \{w | w \text{ has an equal number of occurrences of 01 and 10 as substrings } \}$

How about these languages?

- $C = \{w | w \text{ has an equal number of 0's and 1's } \}$.
- $D = \{w | w \text{ has an equal number of occurrences of 01 and 10 as substrings } \}$

Interestingly, both seems to require remembering the lengths which can be really long.

How about these languages?

- $C = \{w | w \text{ has an equal number of 0's and 1's } \}$.
- $D = \{w | w \text{ has an equal number of occurrences of 01 and 10 as substrings } \}$

Interestingly, both seems to require remembering the lengths which can be really long.

Solution:

How about these languages?

- $C = \{w | w \text{ has an equal number of 0's and 1's } \}$.
- $D = \{w | w \text{ has an equal number of occurrences of 01 and 10 as substrings } \}$

Interestingly, both seems to require remembering the lengths which can be really long.

Solution: *C* is not regular,

How about these languages?

- $C = \{w | w \text{ has an equal number of 0's and 1's } \}$.
- $D = \{w | w \text{ has an equal number of occurrences of 01 and 10 as substrings } \}$

Interestingly, both seems to require remembering the lengths which can be really long.

Solution: *C* is not regular, but *D* is!

Main tool: the pumping lemma

- The pumping lemma:
 - For any regular language, there is a string length, called the pumping length, such that

Main tool: the pumping lemma

• The pumping lemma:

For any regular language, there is a string length, called the pumping length, such that for any string as long as the pumping length can be "pumped".

Main tool: the pumping lemma

- The pumping lemma:
 - For any regular language, there is a string length, called the pumping length, such that for any string as long as the pumping length can be "pumped".
- "pumped" the string contains a section that can be repeated any number of times while the resulting string remains in the language.

Theorem [Pumping Lemma]

Theorem 3 (Pumping lemma)

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s maybe divided into three pieces s = xyz, satisfying the following conditions:

- for each $i \geq 0$, $\sqrt{y^i}z \in A$, $|a_i| = 0$
- |y| > 0, and
- $|xy| \le p. \rightarrow \text{en Windom } p$

• Let B be the language $\{0^n1^n|n \ge 0\}$. We prove that B is not regular using the pumping lemma. We'll prove by contradiction.

- Let B be the language $\{0^n1^n|n \ge 0\}$. We prove that B is not regular using the pumping lemma. We'll prove by contradiction.
- Assume that *B* is regular.

- Let B be the language $\{0^n1^n|n \ge 0\}$. We prove that B is not regular using the pumping lemma. We'll prove by contradiction.
- Assume that B is regular. From the pumping lemma, we know that there exists a pumping length p.

- Let B be the language $\{0^n1^n|n \ge 0\}$. We prove that B is not regular using the pumping lemma. We'll prove by contradiction.
- Assume that B is regular. From the pumping lemma, we know that there exists a pumping length p.
- Let $s = 0^p 1^p$. We know that $s \in B$,

- Let B be the language $\{0^n1^n|n \ge 0\}$. We prove that B is not regular using the pumping lemma. We'll prove by contradiction.
- Assume that B is regular. From the pumping lemma, we know that there exists a pumping length p.
- Let $s = 0^p 1^p$. We know that $s \in B$, and $|s| \ge p$.

- Let B be the language $\{0^n1^n|n \ge 0\}$. We prove that B is not regular using the pumping lemma. We'll prove by contradiction.
- Assume that B is regular. From the pumping lemma, we know that there exists a pumping length p.
- Let $s = 0^p 1^p$. We know that $s \in B$, and $|s| \ge p$.
- Now applying the pumping lemma, we have that s can be split into s = xyz, and for any i, xy^iz is also in B.

• We know that $xyz \in B$ and $xy^iz \in B$. (That is, we can pump y)

- We know that $xyz \in B$ and $xy^iz \in B$. (That is, we can pump y)
- But what is y?

- We know that $xyz \in B$ and $xy^iz \in B$. (That is, we can pump y)
- But what is y? Let's try all possibilities.

- We know that $xyz \in B$ and $xy^iz \in B$. (That is, we can pump y)
- But what is y? Let's try all possibilities.
- Case 1: If $y = 0^k$ for some k > 0, we have that xy^2z will have more 0 than 1; thus this case is impossible.

- We know that $xyz \in B$ and $xy^iz \in B$. (That is, we can pump y)
- But what is y? Let's try all possibilities.
- Case 1: If $y = 0^k$ for some k > 0, we have that xy^2z will have more 0 than 1; thus this case is impossible.
- Case 2: $y = 1^k$ for some k > 0. Again for the same reason, this case is impossible.

- We know that $xyz \in B$ and $xy^iz \in B$. (That is, we can pump y)
- But what is y? Let's try all possibilities.
- Case 1: If $y = 0^k$ for some k > 0, we have that xy^2z will have more 0 than 1; thus this case is impossible.
- Case 2: $y = 1^k$ for some k > 0. Again for the same reason, this case is impossible.
- Case 3: $y = 0^j 1^k$ for some j > 0 and k > 0. Note that in this case we'll have that $xy^2z = x0^j 1^k 0^j 1^k z \in B$, which is, again, not possible.

- We know that $xyz \in B$ and $xy^iz \in B$. (That is, we can pump y)
- But what is *y*? Let's try all possibilities.
- Case 1: If $y = 0^k$ for some k > 0, we have that xy^2z will have more 0 than 1; thus this case is impossible.
- Case 2: $y = 1^k$ for some k > 0. Again for the same reason, this case is impossible.
- Case 3: $y = 0^j 1^k$ for some j > 0 and k > 0. Note that in this case we'll have that $xy^2z = x0^j 1^k 0^j 1^k z \in B$, which is, again, not possible.
- For any cases, we have reached the contradiction.

- We know that $xyz \in B$ and $xy^iz \in B$. (That is, we can pump y)
- But what is y? Let's try all possibilities.
- Case 1: If $y = 0^k$ for some k > 0, we have that xy^2z will have more 0 than 1; thus this case is impossible.
- Case 2: $y = 1^k$ for some k > 0. Again for the same reason, this case is impossible.
- Case 3: $y = 0^j 1^k$ for some j > 0 and k > 0. Note that in this case we'll have that $xy^2z = x0^j 1^k 0^j 1^k z \in B$, which is, again, not possible.
- For any cases, we have reached the contradiction.
- Thus, B is not regular.

The general way to proceed:

Assume the language is regular.

- Assume the language is regular.
- Take the pumping length p.

- Assume the language is regular.
- Take the pumping length p.
- Find some string s, of length at least p, such that after pumped s will not be in the language.

- Assume the language is regular.
- Take the pumping length p.
- Find some string s, of length at least p, such that after pumped s will not be in the language.
- Get the desired contradiction.

- Assume the language is regular.
- Take the pumping length p.
- Find some string s, of length at least p, such that after pumped s will not be in the language.
- Get the desired contradiction.
- Happy!

Practice: Language C

• Let $C = \{w | w \text{ has an equal number of 0's and 1's } \}$

$$S = xyz$$
 $|xy| \leq p$

Practice: Language C

- Let $C = \{w | w \text{ has an equal number of 0's and 1's } \}$
- **Hint:** don't forget condition 3. *

Practice: Language F

Outline

hi s= of of 1 of the pump lemma = P

Practice: Language F

- Let $F = \{ww | w \in \{0, 1\}^*\}.$
- **Hint:** choose the right $s \in F$.

Ju S = 010 ks sef

 $|y| \gg t$ $|xy| \leq p$

ex H= 20h, m; n7m4

Proving the pumping lemma: idea (1)

• Since A is regular, we know that there exists $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes A.

Proving the pumping lemma: idea (1)

- Since A is regular, we know that there exists $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes A.
- Think about what happens when M accepts a really long string.

Proving the pumping lemma: idea (1)

- Since A is regular, we know that there exists $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes A.
- Think about what happens when M accepts a really long string.
- Since Q is finite, when taking a really long string, you'll see some state on the sequence of states from q_0 to some accept state (remember?) repeats.

Proving the pumping lemma: idea (2)

• Let
$$p = |Q|$$
. = gluou state

• Let p = |Q|. Consider a string $s \in A$ such that $|s| \ge p$.

- Let p = |Q|. Consider a string $s \in A$ such that $|s| \ge p$.
- Since s is accepted by M there is a path of length |s| from q_0 to some state $q_f \in F$

- Let p = |Q|. Consider a string $s \in A$ such that $|s| \ge p$.
- Since s is accepted by M there is a path of length |s| from q_0 to some state $q_f \in F$ (Why? recall the definition.)

- Let p = |Q|. Consider a string $s \in A$ such that $|s| \ge p$.
- Since s is accepted by M there is a path of length |s| from q_0 to some state $q_f \in F$ (Why? recall the definition.)
- Consider the first p + 1 states visited by this path (including the start state).

- Let p = |Q|. Consider a string $s \in A$ such that $|s| \ge p$.
- Since s is accepted by M there is a path of length |s| from q_0 to some state $q_f \in F$ (Why? recall the definition.)
- Consider the first p + 1 states visited by this path (including the start state). (Why do we have visited at least p + 1 state?)

- Let p = |Q|. Consider a string $s \in A$ such that $|s| \ge p$.
- Since s is accepted by M there is a path of length |s| from q_0 to some state $q_f \in F$ (Why? recall the definition.)
- Consider the first p + 1 states visited by this path (including the start state). (Why do we have visited at least p + 1 state?)
- Since M has p states, but we visited p + 1 states,

- Let p = |Q|. Consider a string $s \in A$ such that $|s| \ge p$.
- Since s is accepted by M there is a path of length |s| from q_0 to some state $q_f \in F$ (Why? recall the definition.)
- Consider the first p + 1 states visited by this path (including the start state). (Why do we have visited at least p + 1 state?)
- Since M has p states, but we visited p+1 states, we should have visited some state twice.

- Let p = |Q|. Consider a string $s \in A$ such that $|s| \ge p$.
- Since s is accepted by M there is a path of length |s| from q_0 to some state $q_f \in F$ (Why? recall the definition.)
- Consider the first p + 1 states visited by this path (including the start state). (Why do we have visited at least p + 1 state?)
- Since M has p states, but we visited p + 1 states, we should have visited some state twice.
- (Now you try to fill the rest.)

Quick recap: Regular languages

These sets of languages are equal:

- a set of languages recognized by deterministic finite automata,
- a set of languages recognized by nondeterministic finite automata, and
- a set of languages described by regular expressions

Quick recap: Regular languages

These sets of languages are equal:

- a set of languages recognized by deterministic finite automata,
- a set of languages recognized by nondeterministic finite automata, and
- a set of languages described by regular expressions

They are **regular languages**.

There are languages which are not regular. Today we will give you an example of languages which can be "described" by a more powerful mechanism.

Grammar G_1

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Grammar G_1

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Start with A

Grammar G_1

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Start with $A \Rightarrow 0A1$ (rule 1)

Grammar G_1

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Start with $A \Rightarrow 0A1$ (rule 1) $\Rightarrow 00A11$ (rule 1)

Grammar G_1

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Start with $A \Rightarrow 0A1$ (rule 1) $\Rightarrow 00A11$ (rule 1) $\Rightarrow 00B11$ (rule 2)

Grammar G_1

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Start with $A \Rightarrow 0A1$ (rule 1) $\Rightarrow 00A11$ (rule 1) $\Rightarrow 00B11$ (rule 2) $\Rightarrow 00\#11$ (rule 3).

Start with $A \Rightarrow 0A1$ (rule 1) $\Rightarrow 00A11$ (rule 1) $\Rightarrow 00B11$ (rule 2) $\Rightarrow 00\#11$ (rule 3).

This sequence of substitution is called a derivation.

From previous example, you may notice that the grammar has

From previous example, you may notice that the grammar has

• a set of substitution rules (or production rules),

From previous example, you may notice that the grammar has

- a set of substitution rules (or production rules),
- variables (symbols appearing on the left-hand side of the arrow),

From previous example, you may notice that the grammar has

- a set of substitution rules (or production rules),
- variables (symbols appearing on the left-hand side of the arrow), and
- terminals (other symbols).

From previous example, you may notice that the grammar has

- a set of substitution rules (or production rules),
- variables (symbols appearing on the left-hand side of the arrow), and
- terminals (other symbols).

To obtain a derivation, we also need a start variable.

From previous example, you may notice that the grammar has

- a set of substitution rules (or production rules), ()
- variables (symbols appearing on the left-hand side of the arrow), and ทั่งเป็น (มาทั่ง ปัจจุก การครับได้)
- terminals (other symbols).

To obtain a derivation, we also need a start variable. (If not specified otherwise, it is the left-hand side of the top rule.)

From the start variable

• The grammar G_1 generates the string 000#111.

From the start variable

- The grammar G_1 generates the string 000#111.
- How to use the grammar to generate a string:

From the start variable

- The grammar G_1 generates the string 000#111.
- How to use the grammar to generate a string:
 - Begin with start variable.

From the start variable

- The grammar G_1 generates the string 000#111.
- How to use the grammar to generate a string:
 - Begin with start variable.
 - Find a variable in the string and a rule that starts with that variable. Replace the variable with the right-hand side of the rule.

From the start variable

- The grammar G_1 generates the string 000#111.
- How to use the grammar to generate a string:
 - Begin with start variable.
 - Find a variable in the string and a rule that starts with that variable. Replace the variable with the right-hand side of the rule.
 - Repeat.

A parse tree

 A grammar describes a language by generating each string of the language.

- A grammar describes a language by generating each string of the language.
- For a grammar G, let L(G) denote the language of G.

- A grammar describes a language by generating each string of the language.
- For a grammar G, let L(G) denote the language of G.
- $L(G_1) =$

- A grammar describes a language by generating each string of the language.
- For a grammar G, let L(G) denote the language of G.
- $L(G_1) = \{0^n \# 1^n | n \ge 0\}$

A context-free language

A language described by some context-free grammar is called a context-free language.

More example

Outline

Grammar G₂

```
S \rightarrow NP VP
   NP \rightarrow CN|CN|PP
   VP \rightarrow CV|CV|PP
   PP \rightarrow PREP CN
   CN \rightarrow ART N
   CV \rightarrow V|V|NP
 ART \rightarrow a|the
     N \rightarrow \text{boy}|\text{girl}|\text{flower}
     V 	o touches|likes|sees
PREP \rightarrow with
```

Small English grammar

Outline

- Examples of strings in $L(G_2)$ are:
 - a boy sees

Small English grammar

- Examples of strings in $L(G_2)$ are:
 - a boy sees
 - the boy sees a flower

Small English grammar

- Examples of strings in $L(G_2)$ are:
 - a boy sees
 - the boy sees a flower
 - a girl with a flower likes the boy

Derivation

• Show the derivation of string "a boy sees".

Derivation

- Show the derivation of string "a boy sees".
- Try to generate more strings from G_2 and find their parse trees.

Definition [context-free grammar]

Definition

A context-free grammar is a 4-tuple (V, Σ, R, S) , where ไปตบไม่ได้ แล้ว

- 1 V is a finite set called the variables,
- \circ Σ is a finite set, disjoint from V, called the **terminals**,
- R is a finite set of rules, with each rule being a variable and a string of variables and terminals, and
- $S \in V$ is the start variable.

- Let u, v, and w be strings of variables and terminals, and $A \rightarrow w$ be a rule of the grammar.
- We say that uAv yields uwv,
 ให้ผลังผ่า

- Let u, v, and w be strings of variables and terminals, and $A \rightarrow w$ be a rule of the grammar.
- We say that uAv yields uwv, denoted by $uAv \Rightarrow uwv$.

- Let u, v, and w be strings of variables and terminals, and $A \rightarrow w$ be a rule of the grammar.
- We say that uAv yields uwv, denoted by $uAv \Rightarrow uwv$.
- We say that *u* derives *v*,

- Let u, v, and w be strings of variables and terminals, and $A \rightarrow w$ be a rule of the grammar.
- We say that uAv yields uwv, denoted by $uAv \Rightarrow uwv$.
- We say that u derives v, written as $u \stackrel{*}{\Rightarrow} v$,

- Let u, v, and w be strings of variables and terminals, and $A \rightarrow w$ be a rule of the grammar.
- We say that uAv yields uwv, denoted by $uAv \Rightarrow uwv$.
- We say that u derives v, written as $u \stackrel{*}{\Rightarrow} v$,
 - if u = v, or

- Let u, v, and w be strings of variables and terminals, and $A \rightarrow w$ be a rule of the grammar.
- We say that uAv yields uwv, denoted by $uAv \Rightarrow uwv$.
- We say that u derives v, written as $u \stackrel{*}{\Rightarrow} v$,
 - if u = v, or
 - if a sequence u_1, u_2, \ldots, u_k exists for $k \geq 0$ and

$$u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_k \Rightarrow v$$
.

$$G_3=(\{S\},\{a,b\},R,S), ext{ where } R ext{ is}$$
 $S o aSb|SS|arepsilon.$

Practice

Find a CFG that describes the following language

$$\{a^ib^jc^k \mid i,j,k \geq 0 \text{ and } i=j \text{ or } j=k\}$$

$$G'_4 = (V, \Sigma, R, EXPR)$$
, where $V = \{EXPR\}$,

$$G_4' = (V, \Sigma, R, EXPR)$$
, where

- $V = \{EXPR\},$
- $\Sigma = \{a, +, \times, (,)\},$

$$G_4' = (V, \Sigma, R, EXPR)$$
, where

- $V = \{EXPR\},$
- $\bullet \ \Sigma = \{a,+,\times,(,)\},$
- the rules are

$$EXPR \rightarrow EXPR + EXPR \mid EXPR \times EXPR \mid (EXPR) \mid a$$

Generate some string from G'_4 .

Ambiguity

Find a parse tree for $a + a \times a$ in grammar G'_4 .

$$G_4 = (V, \Sigma, R, EXPR)$$
, where $V = \{EXPR, TERM, FACTOR\}$,

$$G_4 = (V, \Sigma, R, EXPR)$$
, where

- $V = \{EXPR, TERM, FACTOR\},$
- $\Sigma = \{a, +, \times, (,)\},$

$$G_4 = (V, \Sigma, R, EXPR)$$
, where

- $V = \{EXPR, TERM, FACTOR\},$
- $\Sigma = \{a, +, \times, (,)\},$
- the rules are

$$EXPR \rightarrow EXPR + TERM|TERM$$
 $TERM \rightarrow TERM \times FACTOR|FACTOR$
 $FACTOR \rightarrow (EXPR)|a$