ບິດທີ 6 SWITCHING AND TELEPHONE Network

Figure: Switched network

Figure: ການແບ່ງປະເພດຂອງເຄືອຂ່າຍແບບສະວິດ

(Taxonomy of switched networks)

1. CIRCUIT-SWITCHED NETWORKS

circuit-switched network ປະກອບດ້ວຍການເຊື່ອມຕໍ່ ຂອງສະວິດຕ່າງໃນລະດັບກາຍຍະພາບ. ການເຊື່ອມຕໍ່ລະຫວ່າງສອງ ສະຖານີແມ່ນໄດ້ມີເສັ້ນທາງທີ່ສ້າງຂື້ນຈາກໜຶ່ງການເຊື່ອມໂຍງ ຫຼື ຫຼາຍກວ່າໜຶ່ງ. ເຖີງຢ່າງໃດກໍ່ຕາມການເຊື່ອມຕໍ່ແມ່ນໃຊ້ພູງໜຶ່ງຊ່ອງ ສັນຍານໃນແຕ່ລະການເຊື່ອມຕໍ່. ໂດຍທີ່ວໄປແຕ່ລະການເຊື່ອມໂຍງ ແມ່ນແບ່ງອອກເປັນ n ຊ່ອງສັນຍານໂດຍການໃຊ້ FDM ຫຼື TDM

1.1 Circuit Switching

Circuit Switching: Physical

Switching (Physical path connection)

ເຄືອຂ່າຍແບບ circuit-switched ແມ່ນໄດ້ຖືກສ້າງຂື້ນມາດ້ວຍການສ້າງການເຊື່ອມຕໍ່ ບັນດາສະວິດເຂົ້າດ້ວຍກັນໃນການເຊື່ອມໂຍງທາງກາຍຍະພາບ, ໃນແຕ່ລະການເຊື່ອມ ໂຍງໃດໜຶ່ງແມ່ນຖືກແບ່ງເປັນຫຼາຍຊ່ອງສັນຍານ ຫຼື *n* channels.

Figure: A circuit switch

Figure: A trivial circuit-switched network

Note

ໃນ circuit switching, ຕົ້ນທາງຕ້ອງການສຳຮອງເສັ້ນທາງ ໃນຊ່ວງເວລາທີ່ໃດໜຶ່ງມີການຈັດການຕາມຂັ້ນຕອນ; ຕົ້ນທາງກໍ່ຍັງ ເໜືອນເດີມໃນຊ່ວງເວລາຂອງການໂອນຍ້າຍຂໍ້ມູນ ຈົນກະທັ່ງສິ້ນສຸດ ຂັ້ນຕອນການເຊື່ອມຕໍ່

Figure: Delay in a circuit-switched network

Note

ການ Switching ໃນລະດັບທາງກາຍຍະພາບ (physical layer) ໂດຍຕາມປົກກະຕິຂອງເຄືອຂ່າຍໂທລະສັບ (Telephone) ແມ່ນໃຊ້ວິທີການ circuit-switching ເພື່ອເຮັດໃຫ້ການເຊື່ອມຕໍ່ເຖິງ ຈຸດໝາຍປາຍທາງຢ່າງຖືກຕ້ອງ.

Circuit Switching: Physical Switching (Hardware connection)

Spaced Division Switching

Crossbar Switch

Multi-stage Switch

Time Division Switching

TSI: Time-slot Interchange

SPACED-DIVISION SWITCHING

Figure: Crossbar switch

Example 1

ຕາມຕົວຢ່າງ ໃຫ້ພວກເຮົາ ໃຊ້ເຄືອຂ່າຍ circuit-switched ເພື່ອເຊື່ອມຕໍ່ ໂທລະສັບ 8 ເຄື່ອງເຂົ້າຫາກັນ ໃນພື້ນທີ່ນະໜາດນ້ອຍ. ການສື່ສານຜ່ານຊ່ອງສັນຍານສູງງ 4kHz. ແຕ່ລະການເຊື່ອມ ໂຍງພວກເຮົາ ໃຊ້ເທັກນິກແບບ FDM ເພື່ອເຊື່ອມຕໍ່ ໃຫ້ໄດ້ຫຼາຍທີ່ ສຸດຂອງສອງຊ່ອງສັນຍານສູງງ. ຂະໜາດແບນວິດຂອງແຕ່ລະການເຊື່ອມ ໂຍງແມ່ນ 8kHz

Figure 1 ແມ່ນສະແດງໃຫ້ເຫັນເໜດການຕ່າງໆ.
ໂທລະສັບ 1 ແມ່ນໄດ້ເຊື່ອມຕໍ່ກັບ ໂທລະສັບ7;
2 ຫາ 5; 3 ຫາ 8; ແລະ 4 ຫາ 6.

ແນ່ນອນບາງເທື່ອອາດຈະມີການປ່ຽນແປງເມື່ອມີການເຊື່ອມຕໍ່ໃໝ່ເກີດຂື້ນ. ສະວິດກໍ່ຈະທຳ ການຄວມຄຸມການເຊື່ອມຕໍ່.

Figure 1 Circuit-switched network used in Example 1

FDM#1: 2 to 5; 4 to 6.

FDM#2: 1 to 7; 3 to 8;

FDM -> 2 channels / device; 4KHz/channel

Example 2

ຕາມຕົວຢ່າງ ໃຫ້ພິຈາລະນາເຄືອຂ່າຍ circuit-switched ທີ່ເຊື່ອມຕໍ່ຄອມພິວເຕີ ໃນສອງຫ້ອງການຂອງບໍ້ລິສັດເອກະຊົນ. ການເຊື່ອມຕໍ່ແມ່ນ ໃຊ້ສາຍເສົ່າແບບ (T-1 leased line) ຈາກຜູ້ໃຫບໍລິການການສື່າສານ.

ມີສອງສະວິດໃນເຄືອຂ່າຍນີ້ 4 × 8 (4 inputs and 8 outputs)

ສຳລັບແຕ່ລະສະວິດ, 4 output ports ແມ່ນປະສານກັນຢູ່ໃນ input ports ເພື່ອໃຫ້ສື່ສານກັນໄດ້ດລະຫວ່າງເຄື່ອງຄອມພິວເຕີຢູ່ໃນຫ້ອງການດຸງວກັນ.

ອີກ 4 output ports ອື່ນແມ່ນເພື່ອໃຫ້ສື່ສານກັນລະຫວ່າງສອງຫ້ອງການ. ດັ່ງ Figure 2 ສະແດງໃຫ້ເຫັນເຫດການ.

Figure 2 Circuit-switched network ชี่ใส้ใบ Example 2

Multistage switch

Example 3

ຈົ່ງອອກແບບການສະວິດແບບ Mutlistage ທີ່ມີ three-stage, ກຳນິດ 200×200 switch (N=200) k=4 ແລະ n=20.

ບິດແກ້ Solution

ໃນ first stage ພວກເຮົາມີ N/n ຫຼື 10 crossbars, ຂະໜາດຂອງແຕ່ລະອັນ 20 × 4. (input x output)

ໃນ second stage, ພວກເຮົາມີ 4 crossbars, ຂະໜາດຂອງແຕ່ລະອັນ 10 × 10.

ໃນ third stage, ພວກເຮົາມີ 10 crossbars, ຂະໜາດຂອງແຕ່ລະອັນ 4 × 20.

ຈຳນວນທັງໝົດຂອງ crosspoints ແມ່ນ 2kN + k(N/n)², ຫຼື 2000 crosspoints. ນີ້ແມ່ນພູງ 5% ຂອງຕົວເລກຈຳນວນຂອງ crosspoints ໃນ single-stage switch (200 × 200 = 40,000).

Note

ໃນລະບົບສະວິດແບບ three-stage, ຈຳນວນທັງໝົດຂອງ crosspoints ແມ່ນໄດ້ ຈາກ crosspoint = 2kN + k(N/n)²

Figure: Switching path

TIME-DIVISION SWITCHING

Figure Time-division multiplexing, without and with a time-slot interchange

Figure Time-slot interchange

Figure TDM bus

Figure TST switch

2. Packet Switching

Packet Switching: Virtual Switching (Virtual path connection)

Packet Switching: Virtual Switching (Virtual path connection)

SVC: Switched Virtual Circuit

PVC: Permanent Virtual Circuit

- No physical reserved paths -> Virtual paths

2.1 DATAGRAM NETWORKS

ໃນການສື່ສານຂໍ້ມູນ, ພວກເຮົາຕ້ອງການສົ່ງຂໍ້ຄວາມຈາກລະບົບປາຍທາງ ໜຶ່ງຫາທາງອື່ນໆ. ຖ້າຫາກຂໍ້ມູນທີ່ຈະສົ່ງຜ່ານເຄືອຂ່າຍ packet-switched, ມັນ ຈຳເປັນຕ້ອງຖືກແບ່ງໃຫ້ເປັນ packets ທີ່ຕາຍຕົວ ຫຼື ສາມາດປ່ຽນແປງຂະໜາດໄດ້. ຂະໜາດຂອງແພັກເກັດຂໍ້ມູນແມ່ນຖືກກຳນົດໂດຍເຄືອຂ່າຍ ແລະ ຄວບຄຸມໂດຍໂປຣ ໂຕຄໍ (protocol).

Note

ຢູ່ໃນເຄືອຂ່າຍຂອງ packet-switched, ແມ່ນບໍ່ມີການກຳນົດແຫຼ່ງທີ່ມາຂອງຂໍ້ມູນ; ແຫຼ່ງທີ່ມາຂອງຂໍ້ມູນແມ່ນຖືກຈັດສັນໄວ້ຕາມຄວາມຕ້ອງການ.

26

Figure: ເຄືອຂ່າຍ datagram ກັບ 4 ສະວິດ

A datagram network with four switches (routers)

Figure: Routing table in a datagram network

Destination address	Output port	
1232 4150	1 2	
:	: 3	
9130		

switch ທີ່ຢູ່ໃນເຄືອຂ່າຍຂອງ datagram ແມ່ນໄດ້ໃຊ້ routing table ທີ່ສາມາດບົ່ງບອກທີ່ຢູ່ຂອງປາຍທາງ.

ທີ່ຢູ່ປາຍທາງຢູ່ໃນສ່ວນຫົວຂອງ ແພັກເກັດໃນເຄືອຂ່າຍ datagram ຍັງ ຄົງເໝືອນເດີມໃນລະຫວ່າງການເດີນທາງ ຂອງແພັກເກັດ

Figure: ເກີດການລ້າຊ້າໃນເຄືອຂ່າຍດາຕາແກຣມ

(Delay in a datagram network)

$$3T + 3\tau + w_1 + w_2$$

T = transmission time \mathcal{T} = propagation time

2.3 VIRTUAL-CIRCUIT NETWORKS

ໃນເຄືອຂ່າຍຂອງ virtual-circuit ແມ່ນໄດ້ປະສົມປະສານລະຫວ່າງ circuit-switched network ແລະ datagram network. ມັນໄດ້ມີຄຸນລັກສະນະ ຄ້າຍຄືຂອງທັງສອງເຄືອຂ່າຍ.

Figure Virtual-circuit network

Figure Virtual-circuit identifier: VCI

Figure Switch and tables in a virtual-circuit network

Figure ການໂອນຍ້າຍຂໍ້ມູນຈາກຕົ້ນທາງຫາປາຍທາງໃນເຄືອຂ່າຍ virtual-circuit

(Source-to-destination data transfer in a virtual-circuit network)

Figure Setup request in a virtual-circuit network

Figure Setup acknowledgment in a virtual-circuit network

Note

ຢູ່ໃນການສະວິດຂອງ virtual-circuit, ແພັກເກັດທັງໝົດຈະ ມີຄຸນສົມບັດສ່ວນຕົວຄ້າຍຄືກັນກັບແຫຼ່ງກຳເນີດຂໍ້ມູນ ແລະ ປາຍທາງ ທີ່ເດີນທາງໃນເສັ້ນທາງດຽວກັນ ແຕ່ວ່າແພັກເກັດອາດຈະມາຮອດ ປາຍທາງດ້ວຍຄວາມລ້າຊ້າທີ່ແຕກຕ່າງກັນ

Figure Delay in a virtual-circuit network

$$3T + 3\tau + setup\ delay + teardown\ delay$$

2.3 Message Switching

SWITCHING COMPARISON

	Circuit Switching	Packet Switching		Message
		Datagram	Virtual circuit	
Physical Path	Dedicated	No dedicated	No dedicated	No dedicated
Virtual Path	No	Yes, but not dedicated	Yes, and dedicated	Yes, but not dedicated
Data	Contineous transmission of data	Packet Transmission	Packet Transmission	Message Transmission
Data Storage	No	Packet	Packet	Message
Duration of connection	Path last for entire conversation	Route established for each packet	Route last for entire conversation	Route established for each message
Connection Setup	Yes	No	Yes	No