

«Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

РАКУЛЬТЕТ <u>ИНФОРМ</u>	МАТИКА И СИСТЕМЫ УПРА	ВЛЕНИЯ
ХАФЕДРА <u>КОМПЬН</u>	ОТЕРНЫЕ СИСТЕМЫ И СЕТ	<u>ГИ (ИУ6)</u>
	Отчет	
	о рубежном контроле № 1	
	15 panyaya	
	15 вариант	
Дисциплина: <u>Электрот</u>	гехника	
Студент гр. ИУ		В. К. Залыгин
	(Подпись, дата)	(И.О. Фамилия)
П.,.,,		
Преподаватель	(Полпись дата)	(ИО Фамилия)

Задание

Для схемы и значений параметров своего варианта ДЗ1:

- 1. Рассчитать токи методом уравнений Кирхгофа
- 2. Рассчитать баланс активной мошности

Расчеты следует представить подробно со всеми промежуточными выкладками в рукописном виде. После аналитического вывода системы линейных алгебраических уравнений (СЛАУ) с действительными коэффициентами для каждого из методов решение СЛАУ можно выполнить в любом математическом пакете. Обозначения в формулах должны быть отмечены на чертеже схемы и объяснены в тексте.

Параметры к РК1 и Д31 ЭДС

	E 1	E2	Е3	E4	E5	E6	E7	E8
1	200j	200-200j	100cos(ωt+270°)	100sin(ωt+90°)	100cos(ωt-1 80°)	200+200j	-200-200j	200
2	200-200j	100cos(ωt+270°)	100sin(ωt+90°)	100cos(ωt-180°)	200+200j	-200-100j	200	200j
3	100cos(ωt+270°)	100sin(ωt+90°)	100sin(ωt-1800)	200+200j	-100-200j	200	200j	200-200j
4	100sin(ωt+90°)	100cos(ωt-180 ⁰)	200+200j	-200-200j	200	200j	200-200j	100cos(ωt+270°)
5	100cos(ωt-180 ⁰)	200+200j	-200-200j	200	200j	200-200j	100cos(ωt+270°)	100sin(ωt+90°)

Пассивные компоненты

Обозна- чения групп	Z1*	Z2*	Z3*	Z4*	Z5*	Z6*	Z 7*	Z8*
1	100 Ом	100 мГн	10 мкФ	200 Ом	200 мГн	20 мкФ	400 Ом	400 мГн
2	100 мГн	10 мкФ	200 Ом	200 мГн	20 мкФ	400 Ом	400 мГн	100 Ом
3	10 мкФ	200 Ом	200 мГн	20 мкФ	400 Ом	400 мГн	100 Ом	100 мГн
4	200 Ом	200 мГн	20 мкФ	400 Ом	400 мГн	100 Ом	100 мГн	10 мкФ
5	200 мГн	20 мкФ	400 Ом	400 мГн	100 Ом	100 мГн	10 мкФ	200 Ом

Рисунок 1 - схема

Решение

B	k uu	0	11 11		To	KU		6	Kos	69	r	no		-	- Wa	HOL		V.		20.0										-						
	,	1					17.	0	I	29 K	ОК	,	Kup	8	00	-		1 ap	0																	
	E UL	-	Z+	I	=	0		-	6	T,	20		-	0												-	-	-	-	-			-			
1	Í,	+ 7	- 4	T	=	0			8	T	7																-			+			+	+	-	-
-	100	100																																		
-	I,	1	4 +	I	5=	0		-	6	Z	4																									
0	I'm	2.	+ 1	7 =	,	7	170	I	3	ak	DH.	K	p	ega	1		G	5		-	Ť	-			ŕ			. 1	-		1 -	-	1			1
																		/		/	1				100										-100	
1	$I_3 \supseteq$	3	+ I	2 2	2	I,	2	=	E	+	E2		0	Sx	09	6	2		<		Te	120	(0)	+	I,	40	oj)	+	i,	. 1	-40	00 1	= 1	00.	- 10.	j
-	-																		1						-											
	In a																		-										I'a							
P	93.10	20CU	4	COD	TB,	270	786	м	6	Ka:	reg.	nú	-	TOL	1	I	-=	4	3	N	T	T	j	I;	+	17	zj	3	Sno	ше	u	cu.	cre	uy		
1	Iry	-	I	u +	Ī	1	=0								17.3			-								-			-		-	-		9		
					- 6	9							*	1	1.10	1 Ty	3	79	-Sy	ty	4x	Les	- 43	- 41	10	16,	1		1			1				
1	In	-	Iz.	e +	I32	=	0								1		1										1	1	Try		1	01				
	I_3	, -	$+I_s$	0 -	+ Z	64	=0							1		0											1	1	124	-	10	2	-			
			_ 8			4									0	0	0	0	0	0	1	-1	1	0	0	0		1	13704		10					
	Isx	t	I	* *	T	× 2	=0							1	0	0	0	0	0	0	0	0	1	0	1	1		1	Tsy	1	0					
	Iz	1+	I	+	I	=	0							1		200												70	Isy In	=	10	20		+		H
			0		0									1	-50	0	D	25	0	0	0	200	0	0	0	0	1		Zzx		-1	100				
1	I_{2x}	+	14)	+ +	Z	5× =	0	1 3						1	0	200.	0	0	-400 -400	0	0	0	-400	0	0	0	1		Z _×	1	10					
1	50 I	1xt	200	I_2	4 +	25	I,	× ·	- 10	20					0	0	0	-25	0	800	0	0	0	0	400	0	6		Iux Isx	1	0			-		ı
-	-			-												0													Iba		1-1	100/				
	-50							T.							010	roga		I	= ,	7/5		Τ	= 4	27						F	T	-				T
	200 1	2×	+40	OI	19-	400	o I	SX	-	100	2					0			2							epe	age	uk	Ť;					-jo	,25	1
	200]													-				Izy	=- 1	107		Lu	= 0,	02	-	>	0		1	1	, :	-0,	07	+ 10	202	
11		2																Isy	= 0	06			= 0							1	Y	-0	65	tio	20	
-	25]	1×	- 400	Is	9 -	800	Tox	=	0										= 9,0				7 -							In In	=	0,0	7 4	10	3	-
	251															1		0											1				-	-	-	
		y					-	1			,																					-				-
Pac	CHOT	pu.	u o	Jone	· su	ems	7	1		I,	11 11	0,6	5	+je	23		Pai	(M	Tp	ш	Mo	yno	LTY	:												
										73 X	-	00	77	10	25		F	9 0	ecto	2-	Kq.	2:	r' X	F. 3	_	70	-5	1-								
										14	=	0,6	5#	10.2	0		10	ULT-	=	2	- ^	C.L.	1,0	13	-2	K	1	10,	58	10	23) 01	1200	7)	+	
										I S	110	0,06	-0.	0,0	5												+1	-00	7-	90,	02	1-1	8-1	100	1)}	1
Ite	T: I	,=	0.64	-10	2,23						- 0	07-	1	303											-	1	84					-		0		
	I,	= 1	2,58	P	25											1	va .	not	ped	ите.	192	11										-				
	I,	=-	907	to	702											F	aKT.	=	1R	e5.	5/	7.1	2 2	13	= 2	Re	11	0,6	5-1	0,3	3)(960	5+	101	17-2	150
			965													1	+10	158	10	25	1:1	100)	1+1	1-9	7+	101	021	14	100	+1-	9,6	5+	10,	201	1-1-2	5.8
	i,	= 0	07	-10	03											-	1 1 7	.8	370	=	41,0	88														
	6			0													2				-		4	1,8	82	= 4	12	-	Sai	44	4 6	600)	100	econ		

Вывод

Был выполнен расчет токов в ветвях схемы методом уравнений Киргофа и метода комплексных амплитуд с помощью математического пакета Wolfram Alpha. Решение проверено путём вычисления активной мощности системы.