Victor Daniel Torres Solano - Lab 5

Packet tracer

Capa Nombre de la capa F		Función principal	Protocolos/	
			Dispositivos	
7	Capa de Aplicación	Proporciona servicios	HTTP, FTP,	
		de red directamente al	SMTP, DNS,	
		usuario final	Telnet	
6	Capa de	raduce, cifra y	SSL/TLS, JPEG,	
	Presentación	comprime los datos	MPEG, GIF	
5	Capa de Sesión	Establece, gestiona y	NetBIOS, RPC,	
		termina sesiones entre	PPTP	
		aplicaciones		
4	Capa de Transporte	Proporciona	TCP, UDP	
		transferencia de datos		
		confiable o no		
		confiable entre		
		sistemas		
3	Capa de Red	Determina la ruta y el	IP, ICMP, IPsec,	
		direccionamiento	Routers	
		lógico		
2	Capa de Enlace de	Proporciona	Ethernet, PPP,	
	Datos	transmisión libre de	Switches, MAC,	
		errores entre dos	ARP	
		dispositivos		
		conectados		
1	Capa Física	Transmite bits sin	Cables, Hubs,	
		estructura a través de	Señales	
		un medio físico	Eléctricas, USB,	
			Bluetooth	

Capa	Nombre de la capa	Dispositivo	
7	Capa de Aplicación	Computadora	
6	Capa de		
	Presentación		
5	Capa de Sesión		
4	Capa de Transporte	Firewall	
3	Capa de Red	Router	
2	Capa de Enlace de	Switch	
	Datos		
1	Capa Física		

No. de	Protocol	Capa OSI	Fuente	Destino	Puert
Paquet	0				o
е					
1462	TCP	Transport	35.186.224.45	192.168.0.10	56391
		е		0	
1463	DNS	Aplicacio	192.168.0.100	192.168.0.1	58660
		n			
1465	ICMP	Red	142.250.218.1	192.168.0.10	
			42	0	

Capa OSI	Capa TCP/IP	Protocolos/	
		Servicios ejemplares	
Capa de Aplicación	Capa de Aplicación	HTTP, FTP, SMTP,	
		DNS, Telnet	
Capa de Presentación	Capa de Aplicación	SSL/TLS, JPEG, MPEG	
Capa de Sesión	Capa de Aplicación	NetBIOS, RPC	
Capa de Transporte	Capa de Transporte	TCP, UDP	
Capa de Red	Capa de Internet	IP, ICMP, ARP, IGMP	
Capa de Enlace de	Capa de Acceso a la	Ethernet, PPP, Wi-Fi,	
Datos	Red	Token Ring	
Capa Física	Capa de Acceso a la	Cables, señales	
	Red	eléctricas, fibra	
		óptica	

¿Qué capa del modelo OSI se encarga de la entrega confiable de datos?

Rta/

La Capa 4: es la responsable de asegurar que los datos lleguen completos y en el orden correcto. El protocolo más común que se encarga de esta tarea es TCP (Protocolo de Control de Transmisión), que verifica si los datos fueron recibidos correctamente y los vuelve a enviar si hubo errores o pérdidas. También existe UDP, que no garantiza entrega confiable, pero es más rápido.

¿Qué dispositivos de red operan en la capa 2 del modelo OSI?

Los dispositivos que operan en la Capa 2: son principalmente los switches y las tarjetas de red (NIC). Esta capa se encarga de mover los datos entre dispositivos dentro de la misma red local (LAN) usando direcciones MAC. También maneja el control de acceso al medio y la detección de errores básicos.

¿Cómo puedes identificar la capa de transporte (Capa 4) al analizar un paquete en Wireshark?

RTA/

En Wireshark, puedes identificar la Capa 4 observando si el paquete usa los protocolos TCP o UDP. Estos aparecerán justo después del protocolo IP (que pertenece a la Capa 3). También puedes ver los números de puerto, que indican qué aplicación está enviando o recibiendo los datos (por ejemplo, puerto 80 para HTTP o 53 para DNS).

¿Cuáles son las diferencias clave entre los modelos OSI y TCP/IP?

- El modelo OSI tiene 7 capas, mientras que el modelo TCP/IP solo tiene 4 capas.
- En TCP/IP, las capas Aplicación, Presentación y Sesión del modelo OSI están combinadas en una sola capa llamada Capa de Aplicación.
- El modelo OSI es más teórico y se usa para entender cómo funciona la comunicación en redes, mientras que el modelo TCP/IP es el que se usa realmente en Internet y redes actuales.
- TCP/IP fue desarrollado antes y es más práctico y funcional, mientras que OSI es más detallado y educativo.