(R)	L UNIV	
77		8
	OED A.O	

Math 4310

Homework 9

(Problem 3(c) corrected!)

Due 11/13/19

Please print out these pages. I encourage you to work with
your classmates on this homework. Please list your collaborators
on this cover sheet. (Your grade will not be affected.) Even if you
work in a group, you should write up your solutions yourself!
You should include all computational details, and proofs should
be carefully written with full details. As always, please write
neatly and legibly.

Please **staple** this cover sheet, your exercise solutions, and your glossary together, in that order, and hand in your homework in class.

 	/ 50

Collaborators: _____

Exercises.

1. In a triangle with sides of lengths α , b, and c, let d be the length of the line segment from the midpoint of the side with length c to the oppositive vertex. Show that $\alpha^2 + b^2 = \frac{1}{2}c^2 + 2d^2$.

Name: _

2. Apply the Gram-Schmidt process to find an orthonormal basis of the space $\mathbb{R}[x]_{\leq 2}$ of polynomials of degree at most 2, where the inner product is given by

$$\langle f, g \rangle = \int_0^1 f(x)g(x) dx.$$

3. Prove the Cauchy-Schwarz formula: if V is an inner product space (not necessarily of finite dimension), and **v** and **w** are elements of V, then

$$|\langle \mathbf{v}, \mathbf{w} \rangle| \le ||\mathbf{v}|| \, ||\mathbf{w}||.$$

(*Hint:* Consider the projection of \mathbf{w} onto the span of \mathbf{v} . Note that the length of the projection is no more than the length of \mathbf{w} (why?)).

Prove the following statements.

(a) Prove that for all positive real numbers a, b, c, d,

$$16 \le (a+b+c+d)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right).$$

(b) Prove that for all positive integers n and all real numbers a_1, \ldots, a_n , then

$$(a_1 + \ldots + a_n)^2 \le n(a_1^2 + \ldots + a_n^2).$$

(equivalently, the square of the average of a set of numbers is no more than the average of the squares of the numbers).

(c) Prove that for continuous functions f and g on the interval [0, 1], that

$$\left| \int_{0}^{1} f(x)g(x) dx \right|^{2} \le \left| \int_{0}^{1} f(x)^{2} dx \right| \left| \int_{0}^{1} g(x)^{2} dx \right|$$

- 4. Let $V = \mathbb{R}^n$. As usual, we think of each \mathbf{v} in \mathbb{R}^n as a column vector, that is, as a $n \times 1$ matrix. We also equate scalars and 1×1 matrices.
 - (a) Suppose that A is a symmetric $n \times n$ matrix, and we define

$$\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^{\mathsf{T}} A \mathbf{w},$$

show that this is an inner product if and only if A satisfies: for $\mathbf{x} \neq \mathbf{0} \in \mathbb{R}^n$ then $\mathbf{x}^T A \mathbf{x} > 0$ (such a symmetric matrix is called **positive definite**).

(b) Suppose that $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{R}^n . Show that there exists a positive definite matrix A such that

$$\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^{\mathsf{T}} A \mathbf{w},$$

(c) If

$$A = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix},$$

is the function defined by

$$\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^\mathsf{T} A \mathbf{w}$$

(for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$) an inner product on \mathbb{R}^2 ?

5. Recall that for a subspace $W \subset V$ of a real inner product space V,

$$W^{\perp} = \{ \mathbf{v} \in V \mid \langle \mathbf{v}, \mathbf{w} \rangle = 0, \text{ for all } \mathbf{w} \in W \}$$

Show that

(a)
$$V = W \oplus W^{\perp}$$

(b) If A is an $\mathfrak{m}\times\mathfrak{n}$ matrix, and $V=\mathbb{R}^n$ is equipped with the standard inner product, then

$$(ker\,A)^{\perp}=image(A^{T})$$

and therefore that

$$V = \ker A \oplus image(A^T)$$
.

Extended Glossary. There is no extended glossary this week.