|     | Week 3 Discussion Worksheet Answers                                                                                                                                                                                                       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Week 3 Discussion Worksheet Answers Consider the following reaction Hz Poy(eq) + NaOH (eq) -> Naz Poy (eq) + HzO(e) a) Balance the chemical equation aboute.                                                                              |
|     | H3 POy(ag) + NaOH (ag) -> Na 3 POy (ag) + H2O(e)                                                                                                                                                                                          |
|     | a) Balance the chemical equation above.                                                                                                                                                                                                   |
|     |                                                                                                                                                                                                                                           |
|     | 1 Hz POy(eq)+ 3Na OH(aq) -> (Naz Poy(eq)+ 3Hz Ole)                                                                                                                                                                                        |
| ,   | b) How many grams of sodium phosphate will form when 50.0ml                                                                                                                                                                               |
|     | b) How many grams of sodium phosphate will form when 50.0ml of 0.280 M Hz POy solution are added to 80.0 ml of 0.370 M No 04 Solution?  (0.280 M) (0.050L) = 0.0140 mo Hz Poy x  mol Naz Poy x  163.9 g Naz Poy  mol Naz Poy  mol Naz Poy |
|     | (0.280 M) (8000 - 0.0140 mo Hz) Du - mol Naz Por 163.99 Naz Pou                                                                                                                                                                           |
|     | (0.050L) Timol Hz 70y Imol Na, 10y                                                                                                                                                                                                        |
|     | = 2.29 g Naz Poy                                                                                                                                                                                                                          |
|     | (0.370 M)(0.080 L) - 0.0296 mol NaOH x Imol Noz Poy                                                                                                                                                                                       |
|     | × 163.9 g Naz You = 1.62 g Naz You                                                                                                                                                                                                        |
|     | X 163.9 g Naz Poy = 1.62 g Naz Poy  Imol Naz Poy  Na OH LA and Az Poy is excess. Merefore only 1.62 g for  How many grams of hithium sufate must be used to prepare  500.0 ml of a 0.950 M sowhin?                                        |
| 2)  | Hone) Many a come of lithium Sixtate must be used to a source                                                                                                                                                                             |
| - 4 | 500.0 ml of a 0.950 M sowhin?                                                                                                                                                                                                             |
|     | n= MV- (0.950 M) (0.500 L) = 0.475 mol Liz soy                                                                                                                                                                                            |
|     | 1 mol Liz Soy = [52.2 g Liz Soy]  1.2 Lof water is added to 700.0 ml of a 6.0 m Libr  Solution. What is the new concentration?                                                                                                            |
| 2)  | Mol Liz Soy                                                                                                                                                                                                                               |
| )   | Solution What is the Man common ration?                                                                                                                                                                                                   |
|     | $M_{c} V_{c} = M_{r} V_{c}$                                                                                                                                                                                                               |
| 4.4 | (6.0 M) (0.700 L) = Mp (1.2 L+ 0.700L)                                                                                                                                                                                                    |
|     |                                                                                                                                                                                                                                           |
|     | Mo = 2.2 M LiBr                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                                           |

| 4) Make a lox PBS from 1.37 M Na C1, 27 mM K<br>100 mM NazHPOy, and 18 mM KH2 POy.<br>a) How much of each compound should be weighed<br>make a le solution of lox PBS?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CI.         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 100 and No HPO., and 18 mill KH2 POU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| a) How much of each compaind should be weighed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pet to      |
| make a 16 solution of 10x PB5?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1           |
| 1.37 M NeCl → 4 mole Nacl × 58.499 = 80.1 g Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ¢           |
| mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| 27 ml KCI -> 0.027 Mole KCI x 74.559 = 2.01 g x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CL          |
| (D) 44 1) 1100 - 0 100 105 (0 1) 1100 111 Gr. [MO]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11- (120)   |
| (00 m) Nez HDOy > 0.100 Mole North POy x 141.90g- 1149.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NazHPOy     |
| 18mM KH2POy -> 0.018 mole KH2POyx 136.099 - [2.45]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g KH, Poul  |
| mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 5) a) Make 0.5 M EDTA solution Using EDTA. Nez. 24, C<br>(MW = 372, 24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| (MW = 37 = 29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| (0.5M)(1L)= 0.5 moles. Then 372.24g x 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19/4-5      |
| Wale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | aues -      |
| 186.12 9 EDTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| h) Make 50% ? 70% Ethanol soloting france a 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | % Smel      |
| b) Make 50% ? 70% Ethanol solotion from a 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28 3 JOCK   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 70%: C, V, = C2 V2 => 90% V, = (0.52)(70%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| 1/- 289 11 900 04 0 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .5.11       |
| V = 389 ML 90% athanol. Fill with Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) 411 500mC |
| 50%: C, V, = (2 V2 =) 90% V, = (0.56)(50%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| = V = 278 ml 90% ethanol<br>Fill with H20 fill 500ml m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| Fill with Hzo fill 500ml m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ark         |
| () Malka alous ask holden parks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| C) Make various burger solutions.<br>Tris- EDTA Buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| (0.01 MTris) (1L) = 0.01 mde Tris x 121.49 - 1.21 Tris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| No. of the contract of the con |             |

|   | IMM EDTA -> 0.001 M EDTA x 372.24g = 10.37g EDTA                            |
|---|-----------------------------------------------------------------------------|
|   | (0.05% Tween) (11) = 0.5 ml Tween 20                                        |
| _ | Methanol Peroxide Solvtin<br>(100% NeOH) V, = (80% NeOH)(0.05L)             |
|   | => 40 ml of MeOH                                                            |
|   | (0.670 HzOz)(50mL)=3%V,                                                     |
|   | =) [10ml of 3% H2O2                                                         |
|   | No additional water is needed ?                                             |
|   | 5% Groat Servin in 2.5% w/v BSA blocking solution<br>Note w/v is g/ml-Hense |
|   | 2.5900/v = 2.5 J/m x25ml = 0.625 g BSA                                      |
|   | (5-96 Groat Server) (25 m l) = (100 % Server) V,                            |
|   | => [1.25 m2 Goat Serom                                                      |
|   | Need 25ml-1.25ml but shoold add water centil 25ml mark is realhed?          |
| ) | a) Write the chemical equation for CaClz(s) dissolving in                   |
|   | (allz cs) — (a (ag) + del (ag)                                              |
|   | b) Drawa molecular picture of Callz in solution.                            |
| 6 | 2 modernes of Callz: 2 Ca2+, 4C1-                                           |
|   | Xsaste = moles solvent                                                      |



C) Explain on a moleular cevel what happens to the vapor pressure of water when you add Calls.

Adding sowte changes IMFs present. Pove water only has H-Bonding ions = adding ionic - H-bonding interactions, which are stronger. Thus more energy required to go to the gas phase relative to pure water /burshy the cumount of Hr o in gas.

This is only true of your solute is nonvolutile?

7) You discover an unlaheled organic compand (made of C? H
only) in he band decide to use freezing point depression to
determine its molewlar weight you dissolve 6.95g of the
enthum in benzene (523.6 ml). The freezing point of the
solution is now 5.02°C. What is the molewlar weight of
the compound?

DJg = Kfm

|              | Hennefarth Is                                                                          |
|--------------|----------------------------------------------------------------------------------------|
|              |                                                                                        |
| a Total Care | 0.0980 miles unknown x/kg v 0.087659 Benzen x 523.6 ml Benzene                         |
| 7            | 6.0980 miles unknown x 1kg x 0.08765g Benzen x 523.6 ml Benzene<br>kg Benzene 1000g ml |
|              |                                                                                        |
|              | = 0.0450 mol Un moun.                                                                  |
|              | $MW = \frac{6.459}{0.0450} = 143g/med$                                                 |
|              | Coltrz decane has a NW of 142 g/mol soit is likely that.                               |
|              |                                                                                        |
| 199          |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
| 11-1-6-1     |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |
|              |                                                                                        |