Exemplo: Delta de Dirac

Sejam $t_0 \in \mathbb{R}$, d>0 e as funções $\delta_{t_0,d}:\mathbb{R} \to \mathbb{R}$ definidas por

$$\delta_{t_0,d}(t) = \frac{1}{2d} \left(H_{t_0-d}(t) - H_{t_0+d}(t) \right) = \left\{ \begin{array}{ll} 0 & \text{se } t < t_0 - d \text{ ou } t \geqslant t_0 + d \\ \frac{1}{2d} & \text{se } t_0 - d \leqslant t < t_0 + d \end{array} \right.$$

Para quaisquer valores de t_0 e d estas funções satisfazem

- $\bullet \int_{-\infty}^{+\infty} \delta_{t_0,d}(t) dt = 1;$
- ullet Se $f:\mathbb{R}
 ightarrow \mathbb{R}$ é uma função contínua

$$\int_{-\infty}^{+\infty} \delta_{t_0,d}(t) f(t) dt = f(t_*)$$

onde $t_0 - d < t_* < t_0 + d$;

• Supondo $t_0 \geqslant 0$ e d suficientemente pequeno

$$\mathcal{L}\left[\delta_{t_0,d}(t)\right](s) = \frac{\operatorname{senh}(sd)}{sd}e^{-st_0}.$$

Definição

Para cada $t \in \mathbb{R}$ define-se a passagem ao limite

$$\delta(t) \stackrel{\text{def}}{=} \lim_{t_0, d \to 0} \delta_{t_0, d}(t)$$

como uma função generalizada designada por delta de Dirac ou impulso unitário. Para qualquer $t_0 \in \mathbb{R}$ tem-se ainda

$$\delta(t - t_0) = \lim_{d \to 0} \delta_{t_0, d}(t).$$

Resulta da definição que

- $\bullet \int_{-\infty}^{+\infty} \delta(t) dt = 1;$
- Se $t_0 \in \mathbb{R}$ e $f: \mathbb{R} \to \mathbb{R}$ é uma função contínua então

$$\int_{-\infty}^{+\infty} \delta(t - t_0) f(t) dt = f(t_0);$$

• Supondo $t_0\geqslant 0$ e $t\in [0,+\infty[$ tem-se

$$\mathcal{L}\left[\delta(t-t_0)\right](s) = e^{-st_0}, \quad \forall s \in \mathbb{R};$$

e em particular

$$\mathcal{L}\left[\delta(t)\right](s) = 1, \quad \forall s \in \mathbb{R}.$$

Mais propriedades da transformada de Laplace

 ${\color{red} \bullet}{\color{black} \bullet}$ Sejam $c\geqslant 0$ e $f:[0,+\infty[\rightarrow\mathbb{R}$ uma função contínua. Então

$$\mathcal{L}\left[\delta(t-c)f(t)\right](s) = f(c)e^{-cs}.$$

Exemplos

- Calcule $\mathcal{L}\left[\delta(t-\pi)\,t\cos\left(t\right)\right](s)$;
- Resposta: $-\pi e^{-s\pi}$.
- $\bullet \ \ \mathsf{Calcule} \ \mathcal{L}^{-1} \left[\frac{s^2}{s^2 + 1} \right] (t);$
- Resposta: $\delta(t) \operatorname{sen} t$.

Exemplo: Resolva o problema de valores iniciais

- $y'' + 2y' + 2y = \delta(t \pi),$ y(0) = 1, y'(0) = 0;
- $\qquad \text{Resposta: } y(t) = e^{-t} \left(\cos t + \sin t \right) H(t-\pi) e^{-(t-\pi)} \mathrm{sen} \, t.$

Definição: Produto de convolução

Sejam $f,g:[0,+\infty[\to \mathbb{R}$ funções seccionalmente contínuas. Então

$$h(t) = \int_0^t f(u)g(t-u) \, du$$

define uma função, definida para $t\in [0,+\infty[$, designada por convolução de f e g e denotada por f*g.

Algumas propridades simples são:

- Comutatividade f * g = g * f;
- Associatividade (f * g) * h = f * (g * h);
- Distributividade (f+g)*h=f*h+g*h;
- Elemento unidade $\delta * f = f * \delta = f$;

Mostra-se ainda:

Teorema da convolução

Se $f,g\in\mathcal{E}_a$ para algum $a\in\mathbb{R}$ então $f*g\in\mathcal{E}_a$. Além disso, se $F(s)=\mathcal{L}[f](s)$ e $G(s)=\mathcal{L}[g](s)$ então

$$\mathcal{L}[f*g](s) = F(s)G(s) \qquad \text{ para } s > a.$$

Exemplo

Use o teorema de convolução para calcular

$$\mathcal{L}^{-1}\left[\frac{1}{(s-1)(s+1)^2}\right](t).$$

Resposta: $-\frac{1}{2}te^{-t} - \frac{1}{4}e^{-t} + \frac{1}{4}e^{t}$.

Superfícies em \mathbb{R}^3

Definição

Um conjunto $M\subset\mathbb{R}^3$ diz-se uma superfície se para qualquer ponto $P\in S$ existir uma bola B(P) tal que o conjunto $M\cap B(P)$ pode ser descrito de uma das três maneiras seguintes:

① Como um conjunto de nível de uma função $F:\mathbb{R}^3 \to \mathbb{R}$ na classe C^1 num aberto U, tal que $\nabla F(P) \neq 0$ para qualquer $P \in M \cap B(P)$:

$$M \cap B(P) = \{(x, y, z) : F(x, y, z) = c\}.$$

onde $c \in \mathbb{R}$ é uma constante real. Ajustando F pode sempre usar-se c=0.

Num ponto $P\in M\cap B(P)$ o vector $\nabla F(P)$ é um vector normal à superfície M no ponto P e os vectores tangentes à superfície M no ponto P obtêm-se como soluções da equação

$$\nabla F(P) \cdot \vec{t} = 0.$$

Exemplos

 \bullet A esfera em \mathbb{R}^3 de centro na origem e raio R>0 é definida por

$$S_R = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = R^2\}$$

que é um conjunto de nível da função $F(x,y,z)=x^2+y^2+z^2.$

 \bullet Um cilindro em \mathbb{R}^3 com o eixo dos zz como eixo de simetria e raio R>0 é definido por

$$C_r = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = R^2\}$$

que é um conjunto de nível da função $F(x,y,z)=x^2+y^2.$

• Um parabolóide em \mathbb{R}^3 com o eixo dos zz como eixo de simetria e vértice em $\alpha \mathbf{k}$ é definido por

$$P_{\alpha} = \{(x, y, z) \in \mathbb{R}^3 : z - x^2 - y^2 = \alpha\}$$

que é um conjunto de nível da função $F(x,y,z)=z-x^2-y^2. \label{eq:final_final_final}$

② Como a imagem de uma parametrização $g:U\subset\mathbb{R}^2\to\mathbb{R}^3$, que é uma função g(u,v) na classe $C^1(U)$ (i. e. existem e são contínuas, no interior de U, as derivadas parciais de g).

Para algum (u,v) no interior de U, considere-se o ponto $P=g(u,v)\in M$ e os vectores

$$\vec{t_1} = \frac{\partial g}{\partial u}$$
 e $\vec{t_2} = \frac{\partial g}{\partial v}$.

Então

- O ponto $P \in M$ diz-se regular se $\vec{t_1} \times \vec{t_2}$ é um vector não-nulo;
- Se $P \in M$ é regular, $\vec{t_1}$ e $\vec{t_2}$ são vectores tangentes à superfície M no ponto P;
- Se $P \in M$ é regular, $\vec{t_1} \times \vec{t_2}$ é um vector normal à superfície M no ponto P.

Revisão: Produto externo em \mathbb{R}^3

Dados dois vectores $\vec{a}, \vec{b} \in \mathbb{R}^3$ com $\vec{a}=(a_1,a_2,a_3)$ e $\vec{b}=(b_1,b_2,b_3)$ define-se o vector produto externo de \vec{a} e \vec{b} por

$$\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

onde $\mathbf{i}, \mathbf{j}, \mathbf{k}$ designam os vectores da base canónica de $\mathbb{R}^3.$

Algumas propriedades:

- $\bullet \ \mathbf{i} \times \mathbf{j} = \mathbf{k}; \quad \mathbf{j} \times \mathbf{k} = \mathbf{i}; \quad \mathbf{k} \times \mathbf{i} = \mathbf{j};$
- $\bullet \ \vec{b} \times \vec{a} = -\vec{a} \times \vec{b};$
- $\vec{a} \times \vec{b}$ é ortogonal a \vec{a} e a \vec{b} ;
- $\|\vec{a} \times \vec{b}\| = \sqrt{\det \Delta^t \Delta}$ em que Δ é a matriz cujas colunas são \vec{a} e \vec{b} .

Exemplos

ullet Usando coordenadas esféricas define-se a parametrização para S_R

$$g(\theta,\phi)=(R\cos\theta\sin\phi,R\sin\theta\sin\phi,R\cos\phi)$$
 onde $\theta\in[0,2\pi]$ e $\phi\in[0,\pi].$

ullet Usando coordenadas cilíndricas define-se a parametrização para C_R

$$g(\theta, z) = (R\cos\theta, R\sin\theta, z)$$

onde $\theta \in [0,2\pi]$ e $z \in \mathbb{R}.$

3 Como o gráfico de uma função $f:U\subset\mathbb{R}^2\to\mathbb{R}$ na classe $C^1(U)$. Por exemplo

$$M \cap B(P) = \{(x, y, z) : z = f(x, y), (x, y) \in U\}.$$

Neste caso tem-se para um ponto regular $P = (x, y, z) \in M$

$$\vec{t_1} = \left(1, 0, \frac{\partial f}{\partial x}\right) \quad \text{e} \quad \vec{t_2} = \left(0, 1, \frac{\partial f}{\partial y}\right)$$

são vectores tangentes à superfície M no ponto P e

$$\vec{t_1} \times \vec{t_2} = \left(-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1\right)$$

é um vector normal à superfície M no ponto P.

Obtém-se outros exemplos com x=f(y,z) ou y=f(x,z).

Exemplo

O parabolóide P_{α} define-se como o gráfico da função

$$f(x,y) = \alpha + x^2 + y^2 \qquad \text{ onde } (x,y) \in \mathbb{R}^2$$

i. e.

$$P_{\alpha} = \{(x, y, f(x, y)) \in \mathbb{R}^3 : (x, y) \in \mathbb{R}^2\}.$$

Definição: Espaço tangente e espaço normal

Sejam $M\subset\mathbb{R}^3$ uma superfície, $P\in M$ um ponto regular. Então

- O espaço tangente a M no ponto P, denotado por T_PM , é o espaço vectorial, de dimensão 2, gerado pelos vectores tangentes a M no ponto P;
- O espaço normal a M no ponto P, é o complemento ortogonal $(T_PM)^{\perp}$ i. e. o espaço vectorial de dimensão 1 gerado pelo vector normal a M no ponto P.

Definição: Plano tangente e recta normal

Sejam $M\subset\mathbb{R}^3$ uma superfície, $P\in M$ um ponto regular. Suponhamos $\vec{t_1}$ e $\vec{t_2}$ geram T_PM e $\vec{n}\in (T_PM)^\perp$, então

ullet O plano tangente a M em P é o conjunto dos pontos $T\in\mathbb{R}^3$ dados por

$$\vec{n} \cdot (T - P) = 0$$
 (equação cartesiana)

ou

$$T=P+lpha ec{t_1}+eta ec{t_2} \qquad lpha,eta \in \mathbb{R} \qquad ext{(equação vectorial)}$$

ullet A recta normal a M em P é o conjunto dos pontos $N\in\mathbb{R}^3$ dados por

$$\begin{cases} \vec{t_1} \cdot (N-P) = 0 \\ \vec{t_2} \cdot (N-P) = 0 \end{cases}$$
 (equações cartesianas)

ou

$$N=P+\lambda \vec{n}$$
 $\lambda \in \mathbb{R}$ (equação vectorial)