Supplementary Model Derivations

Anonymous ACL submission

A.3

equation

Uniqueness theorem for Poisson's

 $\nabla^2 \phi_1 = -\frac{\rho_f}{\varepsilon_0}$

 $\nabla^2 \phi_2 = -\frac{\rho_f}{\varepsilon_0}$

 $\nabla^2(\phi_2 - \phi_1) = \nabla^2\phi_2 - \nabla^2\phi_1$

 $\nabla^2(\phi_2 - \phi_1) = -\frac{\rho_f}{\varepsilon_0} - (-\frac{\rho_f}{\varepsilon_0})$

 $\nabla^2(\phi_2 - \phi_1) = 0$

 $\int_{S} \phi \nabla \phi \cdot d\mathbf{S} = \int_{V} (\nabla \phi)^{2} dV$

021

022

023

024

025

026

027

(13)

(14)

(15)

(16)

(17)

(25)

037

Abstract

This document contains derivations generated

by GPT-4 following the few-shot prompting

scheme discussed in the corresponding paper.

A S=0 (no premises removed)

0

A.1 Gauss' law: equivalence between

differential and integral forms

 $\oint_{\mathcal{S}} \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\varepsilon_0}$

 $\iint_{S} \mathbf{E} \cdot d\mathbf{A} = \iiint_{V} \nabla \cdot \mathbf{E} dV$

 $\rho = -\nabla \cdot \mathbf{P} + \nabla \cdot \mathbf{D}$

 $\rho = \nabla \cdot (\mathbf{D} - \mathbf{P})$

fff

001

002

003

004

006

007

800

019

020

009	$\frac{\mathcal{L}}{\varepsilon_0} = \iiint_V \nabla \cdot \mathbf{E} dV$	(3)			
010	$Q = \iiint_V \rho dV$	(4)	$\phi = \phi_2 - \phi_1$	(18)	028
	333 V		$ abla^2\phi=0$	(19)	029
011	$\frac{\iiint_V \rho dV}{\varepsilon_0} = \iiint_V \nabla \cdot \mathbf{E} dV$	(5)	A.4 Uniqueness theorem for Poisson's equation 2		030 031
012	$\iiint_V \nabla \cdot \mathbf{E} dV = \iiint_V \frac{\rho}{\varepsilon_0} dV$	(6)	Equation 2 $\nabla \cdot (\phi \nabla \phi) = (\nabla \phi)^2 + \phi \nabla^2 \phi$	(20)	031
013 014	A.2 Gauss' law: Equivalence of total an charge statements	d free	$\nabla^2 \phi = 0$	(21)	033
015	$ ho_b = - abla \cdot {f P}$	(7)	$\nabla \cdot (\phi \nabla \phi) = (\nabla \phi)^2$	(22)	034
016	$- ho_b = abla \cdot \mathbf{P}$	(8)	$\mathbf{v} \cdot (\psi \mathbf{v} \psi) = (\mathbf{v} \psi)$	(22)	034
017	$ ho_f = abla \cdot \mathbf{D}$	(9)	$\int_{V} \nabla \cdot (\phi \nabla \phi) dV = \int_{V} (\nabla \phi)^{2} dV$	(23)	035
018	$ ho = ho_b + ho_f$	(10)	ſ		
	7 D 7 D	(11)	$\int_{V} abla \cdot (\phi abla \phi) dV = \int_{S} \phi abla \phi \cdot d\mathbf{S}$	(24)	036

(1)

(2)

(11)

(12)

A.5 Uniqueness theorem for Poisson's equation 6

$$\frac{\partial \phi}{\partial r} = 0 \tag{26}$$

$$\int \frac{\partial \phi}{\partial r} dr = \int 0 dr \tag{27}$$

$$\int 0dr = C_1 \tag{28}$$

$$\int \frac{\partial \phi}{\partial r} dr = \phi + C_2 \tag{29}$$

$$\phi + C_2 = C_1 \tag{30}$$

$$\phi = C_1 - C_2 \tag{31}$$

A.6 Uniqueness theorem for Poisson's equation 7

$$\phi = C_1 - C_2 \tag{32}$$

$$C = C_1 - C_2 (33)$$

$$\phi = C \tag{34}$$

$$\phi = \phi_2 - \phi_1 \tag{35}$$

$$\phi_2 - \phi_1 = C \tag{36}$$

A.7 Poisson's equation: Newtonian gravity

$$\nabla \cdot \mathbf{g} = -4\pi G \rho \tag{37}$$

$$\mathbf{g} = -\nabla \phi \tag{38}$$

$$\nabla \cdot (-\nabla \phi) = -4\pi G \rho \tag{39}$$

$$-\nabla^2 \phi = -4\pi G \rho \tag{40}$$

$$\nabla^2 \phi = 4\pi G \rho \tag{41}$$

A.8 Poisson's equation: Gravitational potential from Poisson's equation 2

$$\int_{V} \nabla \cdot \nabla \phi dV = \int_{V} 4\pi G \rho dV \qquad (42)$$

$$m = \int_{V} \rho dV \tag{43}$$

$$4\pi Gm = \int_{V} 4\pi G\rho dV \tag{44}$$

$$\int_{V} \nabla \cdot \nabla \phi dV = \int_{S} \nabla \phi \cdot d\mathbf{S} \tag{45}$$

$$\int_{S} \nabla \phi \cdot d\mathbf{S} = 4\pi Gm \tag{46}$$

A.9 Poisson's equation: Gravitational potential from Poisson's equation 6

$$\int_{S} \frac{\partial \phi}{\partial r} dS = \int_{0}^{2\pi} \int_{0}^{\pi} \frac{\partial \phi}{\partial r} r^{2} \sin \theta d\theta d\varphi \qquad (47)$$

$$\int_0^{\pi} \sin \theta d\theta = 2 \tag{48}$$

$$\int_{0}^{2\pi} d\varphi = 2\pi \tag{49}$$

$$\int_{0}^{2\pi} \int_{0}^{\pi} \frac{\partial \phi}{\partial r} r^{2} \sin \theta d\theta d\varphi = \frac{\partial \phi}{\partial r} r^{2} \int_{0}^{2\pi} \int_{0}^{\pi} \sin \theta d\theta d\varphi \tag{50}$$

$$\frac{\partial \phi}{\partial r} r^2 \int_0^{2\pi} \int_0^{\pi} \sin \theta d\theta d\varphi = \frac{\partial \phi}{\partial r} r^2 \int_0^{2\pi} d\varphi \int_0^{\pi} \sin \theta d\theta$$
(51)

$$\frac{\partial \phi}{\partial r} r^2 \int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta d\theta = \frac{\partial \phi}{\partial r} r^2 (2\pi \cdot 2) \quad (52)$$

$$\frac{\partial \phi}{\partial r}r^2(2\pi \cdot 2) = 4\pi \frac{\partial \phi}{\partial r}r^2 \tag{53}$$

$$\int_{S} \frac{\partial \phi}{\partial r} dS = 4\pi \frac{\partial \phi}{\partial r} r^2 \tag{54}$$

Poisson's equation: Gravitational Poisson's equation: Electrostatic 076 095 potential from Poisson's equation 8 potential from Poisson's equation 077 096 $\nabla^2 \phi = -\frac{\rho_f}{\epsilon}$ (71) $\frac{\partial \phi}{\partial r} = \frac{Gm}{r^2}$ 097 (55)078 $\nabla^2 \phi = \nabla \cdot \nabla \phi$ (72)098 $\int_{-\infty}^{\infty} \frac{\partial \phi}{\partial r} dr = \phi(r) - \phi(\infty)$ (56) $\int_{\mathcal{M}} \nabla^2 \phi dV = \int_{\mathcal{M}} \nabla \cdot \nabla \phi dV$ (73)099 $\int_{-r}^{r} \frac{Gm}{r^2} dr = \frac{-Gm}{r}$ $\int_{\mathcal{M}} \nabla^2 \phi dV = -\frac{1}{\varepsilon} \int_{\mathcal{M}} \rho_f dV$ (57)(74)100 $\int_{\mathcal{U}} \nabla^2 \phi dV = -\frac{Q}{\varepsilon}$ (75) $\phi(\infty) = 0$ (58) $\int_{V} \nabla \cdot \nabla \phi dV = -\frac{Q}{\varepsilon}$ (76)102 $\phi(r) - \phi(\infty) = \frac{-Gm}{r}$ (59)A.13 Poisson's equation: Electrostatic 103 potential from Poisson's equation 2 104 $\phi(r) = \frac{-Gm}{r}$ $\int_{\mathcal{U}} \nabla \cdot \nabla \phi dV = -\frac{Q}{\varepsilon}$ (60)(77)105 $\int_{V} \nabla \cdot \nabla \phi dV = \int_{S} \nabla \phi \cdot d\mathbf{S}$ **A.11** Poisson's equation: Electrostatics 084 (78)106 $\nabla \cdot \mathbf{D} = \rho_f$ (61) $-\frac{Q}{\varepsilon} = \int_{\mathcal{C}} \nabla \phi \cdot d\mathbf{S}$ (79)107 $\mathbf{D} = \varepsilon \mathbf{E}$ $\nabla \phi \cdot d\mathbf{S} = \frac{\partial \phi}{\partial \mathbf{n}} dS$ 086 (62)(80)108 $\int_{S} \nabla \phi \cdot d\mathbf{S} = \int_{S} \frac{\partial \phi}{\partial r} dS$ $\nabla \cdot \varepsilon \mathbf{E} = \rho_f$ (81)109 (63)087 $\int_{\mathcal{S}} \frac{\partial \phi}{\partial r} dS = -\frac{Q}{\varepsilon}$ (82)110 $\mathbf{E} = -\nabla \phi$ (64)088 A.14 Poisson's equation: Electrostatic 111 potential from Poisson's equation 4 112 $\varepsilon(-\nabla\phi) = \rho_f$ (65) $\int_{-\tau}^{\tau} \frac{\partial \phi}{\partial r} dr = \int_{-\tau}^{\tau} \frac{Q}{4\pi \varepsilon r^2} dr$ (83)113 $\int_{-\infty}^{r} \frac{\partial \phi}{\partial r} dr = \phi(r) - \phi(\infty)$ $-\varepsilon\nabla\phi=\rho_f$ (66)090 (84)114 $\int_{-\frac{Q}{4\pi\varepsilon r^2}} dr = \frac{Q}{4\pi\varepsilon r}$ (85)115 $-\nabla \cdot \varepsilon \nabla \phi = \rho_f$ (67)091 $\phi(\infty) = 0$ (86)116 $\nabla \cdot \nabla \phi = \nabla^2 \phi$ (68) $\phi(r) - \phi(\infty) = \frac{Q}{4\pi cr}$ (87)117 $-\varepsilon \nabla^2 \phi = \rho_f$ (69) $\phi(r) - 0 = \frac{Q}{4\pi\varepsilon r}$ (88)118

(70)

 $\phi(r) = \frac{Q}{4\pi\varepsilon r}$

(89)

119

 $\nabla^2 \phi = -\frac{\rho_f}{\varepsilon}$

122	$\frac{d\mathbf{F}}{dV} = \frac{dq}{dV}(\mathbf{E} + \mathbf{v} \times \mathbf{B})$	(90)	$U = q \int_{\infty}^{r} \nabla \phi \cdot d\mathbf{r} \tag{109}$	147
123	$\mathbf{f} = \frac{d\mathbf{F}}{dV}$	(91)	$\int_{\infty}^{r} \nabla \phi \cdot d\mathbf{r} = \int_{\infty}^{r} \frac{\partial \phi}{\partial r} dr \tag{110}$	148
124	$\rho = \frac{dq}{dV}$	(92)	$\int_{\infty}^{r} \frac{\partial \phi}{\partial r} dr = \phi(r) - \phi(\infty) \tag{111}$	149
125	$\mathbf{f} = \rho(\mathbf{E} + \mathbf{v} \times \mathbf{B})$	(93)	$\phi(\infty) = 0 \tag{112}$	150
126	$\mathbf{f} = \rho \mathbf{E} + \rho \mathbf{v} \times \mathbf{B}$	(94)	$\phi(r) - \phi(\infty) = \phi(r) \tag{113}$	151
127 128	A.16 Lorentz force: continuous charge distribution 2	;		
129	$\mathbf{f} = ho \mathbf{E} + ho \mathbf{v} imes \mathbf{B}$	(95)	$q \int_{\infty}^{\prime} \nabla \phi \cdot d\mathbf{r} = q\phi(r) \tag{114}$	152
130	$\mathbf{J}= ho\mathbf{v}$	(96)	$U = q\phi(r) \tag{115}$	153
131	$\mathbf{f} = \rho \mathbf{E} + \mathbf{J} \times \mathbf{B}$	(97)	A.19 Laplace equation: Analytic functions (u)	154 155
132	$\mathbf{f} = \frac{d\mathbf{F}}{dV}$	(98)	$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \tag{116}$	156
133	$ ho \mathbf{E} + \mathbf{J} imes \mathbf{B} = rac{d\mathbf{F}}{dV}$	(99)	$\frac{\partial}{\partial x}(\frac{\partial u}{\partial x}) = \frac{\partial^2 u}{\partial x^2} \tag{117}$	157
134	$\mathbf{F}=\iiint rac{d\mathbf{F}}{dV}dV$	(100)	$\frac{\partial}{\partial x}(\frac{\partial v}{\partial y}) = \frac{\partial^2 v}{\partial x \partial y} \tag{118}$	158
135	$\mathbf{F} = \iiint (\rho \mathbf{E} + \mathbf{J} \times \mathbf{B}) dV$	(101)	$\frac{\partial}{\partial x}(\frac{\partial u}{\partial x}) = \frac{\partial}{\partial x}(\frac{\partial v}{\partial y}) \tag{119}$	159
136 137	A.17 Lorentz force: Lorentz force in te potentials	erms of	$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y} \tag{120}$	160
138	$\mathbf{E} = - abla \phi - rac{\partial \mathbf{A}}{\partial t}$	(102)	A.20 Laplace equation: Analytic functions (u) 2	161 162
139	$\mathbf{B} = \nabla \times \mathbf{A}$	(103)	$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \tag{121}$	163
140	$\mathbf{v} \times \mathbf{B} = \mathbf{v} \times (\nabla \times \mathbf{A})$	(104)	$\frac{\partial}{\partial y}(\frac{\partial v}{\partial x}) = \frac{\partial}{\partial y}(-\frac{\partial u}{\partial y}) \tag{122}$	164
141	$\mathbf{v} \times (\nabla \times \mathbf{A}) = \nabla (\mathbf{v} \cdot \mathbf{A}) - (\mathbf{v} \cdot \nabla) \mathbf{A}$	(105)	$\frac{\partial}{\partial y}(-\frac{\partial u}{\partial y}) = -\frac{\partial}{\partial y}(\frac{\partial u}{\partial y}) \tag{123}$	165
142	$\mathbf{E} + \mathbf{v} \times \mathbf{B} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t} + \nabla (\mathbf{v} \cdot \mathbf{A}) - (\mathbf{v} \cdot \mathbf{A})$	(106)	$-\frac{\partial}{\partial y}(\frac{\partial u}{\partial y}) = -\frac{\partial^2 u}{\partial y^2} \tag{124}$	166
143	$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$	(107)	$\frac{\partial^2 v}{\partial y \partial x} = \frac{\partial}{\partial y} (\frac{\partial v}{\partial x}) \tag{125}$	167

A.18 Lorentz force: Potential energy

derivation from scalar potential 3

145

146

(126)

168

A.15 Lorentz force: continuous charge

distribution

 $d\mathbf{F}$

120

121

 $\mathbf{F} = q(-\nabla\phi - \frac{\partial\mathbf{A}}{\partial t} + \nabla(\mathbf{v}\cdot\mathbf{A}) - (\mathbf{v}\cdot\nabla)\mathbf{A}) \quad (108)$

176		$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x^2}$	(132)		$\nabla^2 v = 0$	(149)	199
				A.25	Laplace equation: Electrostatics	;	200
177		$\nabla^2 u = 0$	(133)		$\mathbf{E} = (u, v)$	(150)	201
178	A.22	Laplace equation: Analytic fun	ections				
179		(v)			$ abla \cdot \mathbf{E} = ho$	(151)	202
180		$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$	(134)		$ abla = (rac{\partial}{\partial x}, rac{\partial}{\partial u})$	(152)	202
181		$\frac{\partial}{\partial x}(\frac{\partial v}{\partial x}) = \frac{\partial^2 v}{\partial x^2}$	(135)				203
182		$\frac{\partial}{\partial x}(\frac{\partial u}{\partial y}) = \frac{\partial^2 u}{\partial x \partial y}$	(136)		$\nabla \cdot \mathbf{E} = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}) \cdot (u, v)$	(153)	204
183		$\frac{\partial}{\partial x}(-\frac{\partial u}{\partial y}) = -\frac{\partial^2 u}{\partial x \partial y}$	(137)		$\nabla \cdot \mathbf{E} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$ $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \rho$	(154)	205
184		$\frac{\partial^2 v}{\partial x^2} = -\frac{\partial^2 u}{\partial x \partial y}$	(138)	A.26	Laplace equation: Electrostatics		207
185	A.23	Laplace equation: Analytic fun	ctions		$\frac{\partial \phi}{\partial x} = -u$	(156)	208
186		(v) 2			∂x	,	
187		$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$	(139)		$\frac{\partial \phi}{\partial y} = -v$	(157)	209
188		$\frac{\partial^2 v}{\partial y^2} = \frac{\partial}{\partial y} (\frac{\partial v}{\partial y})$	(140)		$\frac{\partial u}{\partial x} = \rho - \frac{\partial v}{\partial y}$	(158)	210
189		$\frac{\partial}{\partial y}(\frac{\partial u}{\partial x}) = \frac{\partial^2 u}{\partial y \partial x}$	(141)		$\frac{\partial^2 \phi}{\partial x^2} = -\frac{\partial u}{\partial x}$	(159)	211
190		$\frac{\partial^2 v}{\partial y^2} = \frac{\partial}{\partial y} (\frac{\partial u}{\partial x})$	(142)		$\frac{\partial^2 \phi}{\partial y^2} = -\frac{\partial v}{\partial y}$	(160)	212

Laplace equation: Analytic functions

 $\frac{\partial^2 v}{\partial x^2} = -\frac{\partial^2 u}{\partial x \partial y}$

 $\frac{\partial^2 v}{\partial y^2} = \frac{\partial^2 u}{\partial y \partial x}$

 $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$

 $\nabla^2 v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial u^2}$

 $\nabla^2 v = -\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y \partial x}$

 $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = -\rho$

(161)

(v) 3

(127)

(128)

(129)

(130)

(131)

192

193

194

195

196

197

198

(144)

(145)

(146)

(147)

(148)

169

170

171

172

173

174

175

191

Laplace equation: Analytic functions

 $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y}$

 $\frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial y \partial x}$

 $\frac{\partial^2 v}{\partial x \partial y} = \frac{\partial^2 v}{\partial y \partial x}$

 $\frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 u}{\partial x^2}$

 $\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$

(u) 3

(143)

Lorentz force: Potential energy $U = -q\mathbf{v} \cdot \mathbf{A}(r)$ (182)241 derivation from vector potential 221 **Lorentz force: Derivation of classical** 242 $\mathbf{F} = q(\nabla(\mathbf{v} \cdot \mathbf{A}) - \frac{d\mathbf{A}}{dt})$ (167)222 Lagrangian of EM field 243 $V = q\phi - q\dot{\mathbf{r}} \cdot \mathbf{A}$ (183)244 $\frac{d\mathbf{A}}{dt} = 0$ 223 (168) $T = \frac{m}{2}\dot{\mathbf{r}}\cdot\dot{\mathbf{r}}$ (184)245 $\mathbf{F} = q\nabla(\mathbf{v} \cdot \mathbf{A})$ L = T - V224 (169)(185) $L = \frac{m}{2}\dot{\mathbf{r}}\cdot\dot{\mathbf{r}} - (q\phi - q\dot{\mathbf{r}}\cdot\mathbf{A})$ (186)247 $U = -\int_{-r}^{r} \mathbf{F} \cdot d\mathbf{r}$ 225 (170) $L = \frac{m}{2}\dot{\mathbf{r}}\cdot\dot{\mathbf{r}} - q\phi + q\dot{\mathbf{r}}\cdot\mathbf{A}$ (187)248 $U = -q \int^r \nabla(\mathbf{v} \cdot \mathbf{A}) \cdot d\mathbf{r}$ (171) $L = \frac{m}{2}\dot{\mathbf{r}}\cdot\dot{\mathbf{r}} + q\dot{\mathbf{r}}\cdot\mathbf{A} - q\phi$ (188)249 A.29 **Lorentz force: Potential energy** A.32 Lorentz force: Derivation of classical 250 derivation from vector potential 3 Lagrangian of EM field 2 251 $\nabla (\mathbf{v} \cdot \mathbf{A}) \cdot \hat{\mathbf{r}} = \frac{\partial (\mathbf{v} \cdot \mathbf{A})}{\partial r}$ $L = \frac{m}{2}\dot{\mathbf{r}}\cdot\dot{\mathbf{r}} + q\dot{\mathbf{r}}\cdot\mathbf{A} - q\phi$ (189)(172)252 229 $\dot{\mathbf{r}} = (\dot{x}, \dot{y}, \dot{z})$ (190)253 $d\mathbf{r} = \hat{\mathbf{r}}dr$ (173)230 $\mathbf{A} = (A_x, A_y, A_z)$ (191)254 $\nabla (\mathbf{v} \cdot \mathbf{A}) \cdot d\mathbf{r} = \frac{\partial (\mathbf{v} \cdot \mathbf{A})}{\partial r} dr$ (174)231 $L = \frac{m}{2}(\dot{x}, \dot{y}, \dot{z}) \cdot (\dot{x}, \dot{y}, \dot{z}) + q(\dot{x}, \dot{y}, \dot{z}) \cdot \mathbf{A} - q\phi$ $U = -q \int_{0.0}^{r} \nabla (\mathbf{v} \cdot \mathbf{A}) \cdot d\mathbf{r}$ (192)255 (175)232

(162)

(163)

(164)

(165)

(166)

Lorentz force: Potential energy

derivation from vector potential 4

 $U = -q \int_{-r}^{r} \frac{\partial (\mathbf{v} \cdot \mathbf{A})}{\partial r} dr$

 $\int^{r} \frac{\partial (\mathbf{v} \cdot \mathbf{A})}{\partial r} dr = \mathbf{v} \cdot \mathbf{A}(r) - \mathbf{v} \cdot \mathbf{A}(\infty) \quad (178)$

 $\mathbf{A}(\infty) = 0$

 $U = -q(\mathbf{v} \cdot \mathbf{A}(r) - 0)$

 $L = \frac{m}{2}(\dot{x}, \dot{y}, \dot{z}) \cdot (\dot{x}, \dot{y}, \dot{z}) + q(\dot{x}, \dot{y}, \dot{z}) \cdot (A_x, A_y, A_z) - q\phi$

 $U = -a(\mathbf{v} \cdot \mathbf{A}(r) - \mathbf{v} \cdot \mathbf{A}(\infty))$

234

235

236

237

238

239

240

256

(177)

(179)

(180)

(181)

214

215

216

217

218

219

220

A.28

Laplace equation: Electrostatics 3

 $\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial u^2}$

 $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial u^2} = -\rho$

 $-\rho = 0$

 $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial u^2} = 0$

 $\nabla^2 \phi = 0$

 $U = -q \int^r \frac{\partial (\mathbf{v} \cdot \mathbf{A})}{\partial r} dr$

(176)

Lorentz force: Derivation of Lorentz force from classical Lagrangian (LHS) 4

force from classical Lagrangian (LHS) 4
$$dA_x = \frac{\partial A_x}{\partial t}dt + \frac{\partial A_x}{\partial x}dx + \frac{\partial A_x}{\partial y}dy + \frac{\partial A_x}{\partial z}dz$$
(194)

$$\frac{dx}{dt} = \dot{x} \tag{195}$$

$$\frac{dy}{dt} = \dot{y} \tag{196}$$

$$\frac{dz}{dt} = \dot{z} \tag{197}$$

$$dt = 1 (198)$$

$$dx = \dot{x}dt \tag{199}$$

$$dy = \dot{y}dt \tag{200}$$

$$dz = \dot{z}dt \tag{201}$$

$$dA_{x} = \frac{\partial A_{x}}{\partial t} + \frac{\partial A_{x}}{\partial x}\dot{x}dt + \frac{\partial A_{x}}{\partial y}\dot{y}dt + \frac{\partial A_{x}}{\partial z}\dot{z}dt$$
(202)

$$\frac{dA_x}{dt} = \frac{\partial A_x}{\partial t} + \frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_x}{\partial y}\dot{y} + \frac{\partial A_x}{\partial z}\dot{z} \quad (203)$$

A.34 Lorentz force: Derivation of Lorentz force from classical Lagrangian (LHS) 5

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} = m\frac{d}{dt}\dot{x} + q\frac{d}{dt}A_x \tag{204}$$

$$\frac{d}{dt}\dot{x} = \ddot{x} \tag{205}$$

$$m\frac{d}{dt}\dot{x} = m\ddot{x} \tag{206}$$

$$\frac{dA_x}{dt} = \frac{\partial A_x}{\partial t} + \frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_x}{\partial y}\dot{y} + \frac{\partial A_x}{\partial z}\dot{z} \quad (207)$$

$$q\frac{dA_x}{dt} = q(\frac{\partial A_x}{\partial t} + \frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_x}{\partial y}\dot{y} + \frac{\partial A_x}{\partial z}\dot{z})$$
(208)

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} = m\ddot{x} + q(\frac{\partial A_x}{\partial t} + \frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_x}{\partial y}\dot{y} + \frac{\partial A_x}{\partial z}\dot{z}) \tag{209}$$

Lorentz force: Derivation of Lorentz force from classical Lagrangian (RHS)

$$\frac{\partial L}{\partial x} = q \frac{\partial}{\partial x} (\dot{x}A_x + \dot{y}A_y + \dot{z}A_z) - q \frac{\partial}{\partial x} \phi \quad (210)$$
280

$$I = \frac{\partial}{\partial x}(\dot{x}A_x + \dot{y}A_y + \dot{z}A_z) \tag{211}$$

$$\frac{\partial}{\partial x}(\dot{x}A_x) + \frac{\partial}{\partial x}(\dot{y}A_y) + \frac{\partial}{\partial x}(\dot{z}A_z) = \frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_y}{\partial x}\dot{y} + \frac{\partial A_z}{\partial x}\dot{z}$$
282

$$q\frac{\partial}{\partial x}(\dot{x}A_x+\dot{y}A_y+\dot{z}A_z)=q(\frac{\partial A_x}{\partial x}\dot{x}+\frac{\partial A_y}{\partial x}\dot{y}+\frac{\partial A_z}{\partial x}\dot{z}) \tag{213}$$

$$\frac{\partial L}{\partial x} = q(\frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_y}{\partial x}\dot{y} + \frac{\partial A_z}{\partial x}\dot{z}) - q\frac{\partial}{\partial x}\phi \quad (214)$$

A.36 Lorentz force: Derivation of x component of electric field

$$\mathbf{E} = -\nabla\phi - \frac{\partial\mathbf{A}}{\partial t} \tag{215}$$

$$\nabla \phi = (\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}) \tag{216}$$

$$\mathbf{A} = (A_x, A_y, A_z) \tag{217}$$

$$\mathbf{E} = -((\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}) - \frac{\partial}{\partial t}(A_x, A_y, A_z)) \tag{218}$$

$$\mathbf{E} \cdot (1,0,0) = -((\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}) - \frac{\partial}{\partial t} (A_x, A_y, A_z)) \cdot (1,0,0)$$
(219)

Lorentz force: Derivation of Lorentz force from classical Lagrangian 4

$$(\dot{\mathbf{r}} \times (\nabla \times \mathbf{A}))_x = \dot{y}(\nabla \times \mathbf{A})_z - \dot{z}(\nabla \times \mathbf{A})_y$$
 (220)

$$(\nabla \times \mathbf{A})_y = \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \tag{221}$$

$$(\nabla \times \mathbf{A})_z = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \tag{222}$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} = m\ddot{x} + q(\frac{\partial A_x}{\partial t} + \frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_x}{\partial y}\dot{y} + \frac{\partial A_x}{\partial z}\dot{z}) \qquad \dot{y}(\nabla \times \mathbf{A})_z - \dot{z}(\nabla \times \mathbf{A})_y = \dot{y}(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}) - \dot{z}(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}) \tag{223}$$

$$F_x = qF_{xx} + q(\hat{y}(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}) + \hat{z}(\frac{\partial A_z}{\partial x} - \frac{\partial A_x}{\partial z})$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (222)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (225)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (225)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (225)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (225)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (225)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (226)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (226)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (227)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (227)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (228)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (229)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (239)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (239)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (249)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (239)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (249)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (239)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (239)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (249)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (239)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (239)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (239)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (239)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (239)$$

$$F_x = qF_x + q(\hat{y}(\nabla \times \mathbf{A}))_x \quad (239)$$

$$F_x = qF_x + q($$

Electromagnetic wave equation: The

320

(256)

(240)

345
$$\nabla \times (\nabla \times \mathbf{B}) = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2}$$
 (257)

$$-\nabla^2 \mathbf{B} = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2}$$
 (258)

$$\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} - \nabla^2 \mathbf{B} = 0 \tag{259}$$

A.43 Ampere's circuital law: Proof of equivalence 2

$$\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$$
 (260)

$$\nabla \times \frac{1}{\mu_0} \mathbf{B} = \nabla \times \mathbf{H} + \mathbf{J}_M \qquad (261)$$

$$\nabla \times \frac{1}{\mu_0} \mathbf{B} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}_M \tag{262}$$

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} \tag{263}$$

$$\frac{\partial \mathbf{D}}{\partial t} = \frac{\partial}{\partial t} \varepsilon_0 \mathbf{E} + \frac{\partial}{\partial t} \mathbf{P}$$
 (264)

$$\nabla \times \frac{1}{\mu_0} \mathbf{B} = \mathbf{J}_f + \frac{\partial}{\partial t} \varepsilon_0 \mathbf{E} + \frac{\partial}{\partial t} \mathbf{P} + \mathbf{J}_M \quad (265)$$

A.44 Ampere's circuital law: Proof of equivalence 4

$$\frac{1}{\mu_0}(\nabla \times \mathbf{B}) = \mathbf{J}_f + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}_P + \mathbf{J}_M \quad (266)$$

$$\mathbf{J}_b = \mathbf{J}_P + \mathbf{J}_M \tag{267}$$

$$\mathbf{J}_f + \mathbf{J}_b = \mathbf{J}_f + \mathbf{J}_P + \mathbf{J}_M \tag{268}$$

$$\mathbf{J} = \mathbf{J}_f + \mathbf{J}_b \tag{269}$$

$$\frac{1}{\mu_0}(\nabla \times \mathbf{B}) = \mathbf{J}_f + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}_b \qquad (270)$$

$$\frac{1}{\mu_0}(\nabla \times \mathbf{B}) = \mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
 (271)

A.45 Uncertainty principle: Kennard inequality proof part 1.1

$$\sigma_x^2 = \langle x^2 \rangle - \langle x \rangle^2 \tag{272}$$

$$\langle x \rangle = \int_{-\infty}^{\infty} x \cdot p(x) dx$$
 (273)

$$p(x) = |\psi(x)|^2 (274)$$

$$\langle x^2 \rangle = \int_{-\infty}^{\infty} x^2 \cdot p(x) dx$$
 (275)

$$\langle x \rangle = \int_{-\infty}^{\infty} x \cdot |\psi(x)|^2 dx$$
 (276)

$$\left\langle x^{2}\right\rangle =\int_{-\infty}^{\infty}x^{2}\cdot|\psi(x)|^{2}dx \tag{277}$$

$$\sigma_x^2 = \langle x^2 \rangle - \langle x \rangle^2 \tag{278}$$

$$\sigma_x^2 = \int_{-\infty}^{\infty} x^2 \cdot |\psi(x)|^2 dx - (\int_{-\infty}^{\infty} x \cdot |\psi(x)|^2 dx)^2$$
(279)

A.46 Uncertainty principle: Kennard inequality proof part 1.4

$$f^*(x) \cdot f(x) = x^2 \cdot (\psi^*(x) \cdot \psi(x))$$
 (280)

$$\psi^*(x) \cdot \psi(x) = |\psi(x)|^2$$
 (281)

$$x^2 \cdot |\psi(x)|^2 = x^2 \cdot f^*(x) \cdot f(x)$$
 (282)

$$\sigma_x^2 = \int_{-\infty}^{\infty} x^2 \cdot |\psi(x)|^2 dx \qquad (283)$$

$$\sigma_x^2 = \int_{-\infty}^{\infty} x^2 \cdot f^*(x) \cdot f(x) dx \qquad (284)$$

$$\langle f|f\rangle = \int_{-\infty}^{\infty} f^*(x) \cdot f(x) dx$$
 (285)

$$\sigma_x^2 = \langle f | f \rangle \tag{286}$$

Uncertainty principle: Kennard inequality proof part 2.2

$$\frac{dv}{dx} = e^{\frac{-ip\chi}{\hbar}} \tag{287}$$

$$uv(-\infty) = 0 \frac{\hbar}{-ip} e^{\frac{-ip(-\infty)}{\hbar}}$$
 (304)

$$uv(\infty) = 0 \tag{305}$$

(306)

$$v = \int \frac{dv}{d\chi} d\chi \tag{288}$$

$$\int d\chi \, d\chi \qquad (200)$$

$$= inv$$

$$b = \frac{-ip\chi}{\hbar} \tag{289}$$

$$(uv) \Big|^{\infty} = 0 \tag{307}$$

$$\frac{dv}{d\chi}=e^b$$
 (290) A.50 Uncertainty principle: Kennard inequality proof part 2.5

$$v = \int e^b d\chi \qquad (291) \qquad I = (uv) \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} v \frac{du}{d\chi} d\chi \qquad (308)$$

$$v = \frac{\hbar}{-ip}e^b + C$$
 (292) $(uv)\Big|_{-\infty}^{\infty} = 0$ (309)

A.48 Uncertainty principle: Kennard inequality proof part 2.3
$$I = -\int_{-\infty}^{\infty} v \frac{du}{d\chi} d\chi \qquad (310)$$

$$\frac{du}{d\chi} = \frac{d\psi(\chi)}{d\chi} \tag{311}$$

$$v = \frac{\hbar}{-ip} e^{\frac{-ip\chi}{\hbar}}$$

$$v = \frac{\sqrt{h}}{-ip} e^{\frac{-ip\chi}{\hbar}}$$
(312)

$$I = -\int_{-\infty}^{\infty} \frac{\hbar}{-ip} e^{\frac{-ip\chi}{\hbar}} \frac{d\psi(\chi)}{d\chi} d\chi \qquad (313)$$

$$I = \frac{\hbar}{ip} \int_{-\infty}^{\infty} \frac{d\psi(\chi)}{d\chi} e^{\frac{-ip\chi}{\hbar}} d\chi \tag{314}$$

Uncertainty principle: Kennard

$$u = \psi(\chi) \tag{293}$$

$$v = \frac{\hbar}{-ip}e^b \tag{294}$$

$$b = \frac{-ip\chi}{\hbar} \tag{295}$$

$$v = \frac{\hbar}{-ip} e^{\frac{-ip\chi}{\hbar}} \tag{296}$$

$$uv = \psi(\chi) \frac{\hbar}{-ip} e^{\frac{-ip\chi}{\hbar}}$$
 (297)

A.49 **Uncertainty principle: Kennard** inequality proof part 2.4

$$uv = \psi(\chi) \frac{\hbar}{-ip} e^{\frac{-ip\chi}{\hbar}}$$
 (298)

$$uv(\infty) = \psi(\infty) \frac{\hbar}{-ip} e^{\frac{-ip\infty}{\hbar}}$$
 (299)

$$uv(-\infty) = \psi(-\infty) \frac{\hbar}{-in} e^{\frac{-ip(-\infty)}{\hbar}}$$
 (300)

$$\psi(\infty) = 0 \tag{301}$$

$$\psi(-\infty) = 0 \tag{302}$$

$$uv(\infty) = 0 \frac{\hbar}{-ip} e^{\frac{-ip\infty}{\hbar}}$$
 (303)

421	$g(x) = \frac{\hbar}{2\pi i} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d\psi(\chi)}{d\chi} e^{i(x-\chi)b} d\chi$	(db) (315)	$\sigma_x^2 = \langle f f \rangle$	(332)	444
422	$\int_{-\infty}^{\infty} e^{i(x-\chi)b} db = 2\pi\delta(x-\chi)$	(316)	$\sigma_p^2 = \langle g g angle$	(333)	445
	$\frac{\hbar}{2\pi i} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d\psi(\chi)}{d\chi} 2\pi \delta(x-\chi) d\chi db = \frac{\hbar}{i}$	$\int^{\infty} \frac{dy}{y}$	$\frac{\psi(\chi)}{dx}\delta(x-\chi)d\chi$ $\langle f f\rangle\cdot\langle g g\rangle=\sigma_x^2\sigma_p^2$	(334)	446
423	$2\pi i J_{-\infty} J_{-\infty} a\chi$	(317)		(335)	447
424	$\int_{-\infty}^{\infty} \frac{d\psi(\chi)}{d\chi} 2\pi \delta(x - \chi) d\chi = 2\pi \frac{d\psi(x)}{dx}$	(318)	A.55 Uncertainty principle: Kennard inequality proof part 4.3		448
425	$\frac{\hbar}{i} \int_{-\infty}^{\infty} \frac{d\psi(\chi)}{d\chi} \delta(x - \chi) d\chi = \frac{\hbar}{i} 2\pi \frac{d\psi(x)}{dx}$	(319)	$ z ^2 = (\text{Re}(z))^2 + (\text{Im}(z))^2$	(336)	450
426	$g(x) = \frac{\hbar}{i} \left(\frac{d\psi(x)}{dx}\right)$	(320)	$(\text{Re}(z))^2 + (\text{Im}(z))^2 \ge (\text{Im}(z))^2$	(337)	451
427 428	A.52 Uncertainty principle: Kennard inequality proof part 3.2				
429	$\tilde{g}^*(p) \cdot \tilde{g}(p) = p^2 \varphi^*(p) \cdot \varphi(p)$	(321)	$\langle f a\rangle - \langle a f\rangle$		
430	$\varphi^*(p) \cdot \varphi(p) = \varphi(p) ^2$	(322)	$(\operatorname{Im}(z))^2 = \left(\frac{\langle f g\rangle - \langle g f\rangle}{2i}\right)^2$	(338)	452
431	$p^2 \varphi^*(p) \cdot \varphi(p) = p^2 \varphi(p) ^2$	(323)	$ z ^2 \ge (\operatorname{Im}(z))^2$	(339)	453
432	$\tilde{g}^*(p) \cdot \tilde{g}(p) = \tilde{g}(p) ^2$	(324)	/ f a \		
433	$ \tilde{g}(p) ^2 = p^2 \varphi(p) ^2$	(325)	$ z ^2 \ge \left(\frac{\langle f g\rangle - \langle g f\rangle}{2i}\right)^2$	(340)	454
434 435	A.53 Uncertainty principle: Kennard inequality proof part 3.3		A.56 Uncertainty principle: Kennard inequality proof part 4.4		455 456
436	$\sigma_p^2 = \int_{-\infty}^{\infty} p^2 \varphi(p) ^2 dp$	(326)	$\sigma_x^2\sigma_p^2 \geq raket{f g} ^2$	(341)	457
437	$ \tilde{g}(p) ^2 = p^2 \varphi(p) ^2$	(327)	$ z ^2 \ge \left(\frac{\langle f g\rangle - \langle g f\rangle}{2i}\right)^2$	(342)	458
438	$\int_{-\infty}^{\infty} \tilde{g}(p) ^2 dp = \int_{-\infty}^{\infty} p^2 \varphi(p) ^2 dp$	(328)	$z=\langle f g angle$	(343)	459
439	$\int_{-\infty}^{\infty} \tilde{g}(p) ^2 dp = \int_{-\infty}^{\infty} g(x) ^2 dx$	(329)	$ \langle f g\rangle ^2 = (\frac{\langle f g\rangle - \langle g f\rangle}{2i})^2$	(344)	460
440	$\langle g g\rangle = \int_{-\infty}^{\infty} g(x) ^2 dx$	(330)	$1\sqrt{3}\sqrt{3}$ $2i$	()	
441	$\sigma_p^2 = \langle g g \rangle$	(331)	$\sigma_x^2 \sigma_p^2 \ge (\frac{\langle f g \rangle - \langle g f \rangle}{2i})^2$	(345)	461

A.54 Uncertainty principle: Kennard

inequality proof part 4.1

442

443

461

A.51 Uncertainty principle: Kennard

inequality proof part 2.9

419

420

A.57 Uncertainty principle: Kennard inequality proof part 5.1

$$f(x) = x \cdot \psi(x) \tag{346}$$

$$g(x) = (-i\hbar \frac{d}{dx}) \cdot \psi(x) \tag{347}$$

$$\langle f|g\rangle = \int_{-\infty}^{\infty} f^*(x) \cdot g(x) dx$$
 (348)

$$\langle f|g\rangle = \int_{-\infty}^{\infty} (x \cdot \psi^*(x)) \cdot ((-i\hbar \frac{d}{dx}) \cdot \psi(x)) dx$$
(349)

$$\langle f|g\rangle = -i\hbar \int_{-\infty}^{\infty} x\psi^*(x) \frac{d\psi(x)}{dx} dx$$
 (350)

A.58 Uncertainty principle: Kennard inequality proof part 5.2

$$f(x) = x \cdot \psi(x) \tag{351}$$

$$g^*(x) = \psi^*(x) \cdot \left(-i\hbar \frac{d}{dx}\right) \tag{352}$$

$$\langle g|f\rangle = \int_{-\infty}^{\infty} g^*(x) \cdot f(x) dx$$
 (353)

$$\langle g|f\rangle = \int_{-\infty}^{\infty} \psi^*(x) \cdot (-i\hbar \frac{d}{dx}) \cdot (x \cdot \psi(x)) dx$$
(354)

$$\langle g|f\rangle = -i\hbar \int_{-\infty}^{\infty} \psi^*(x) \frac{d}{dx} (x\psi(x)) dx$$
 (355)

A.59 Uncertainty principle: Kennard inequality proof part 5.6

$$\langle f|g\rangle - \langle g|f\rangle = i\hbar \int_{-\infty}^{\infty} |\psi(x)|^2 dx$$
 (356)

$$p(x) = |\psi(x)|^2 (357)$$

$$\int_{-\infty}^{\infty} p(x)dx = \int_{-\infty}^{\infty} |\psi(x)|^2 dx \qquad (358)$$

$$i\hbar \int_{-\infty}^{\infty} |\psi(x)|^2 dx = i\hbar \int_{-\infty}^{\infty} p(x) dx \qquad (359)$$

$$\int_{-\infty}^{\infty} p(x)dx = 1 \tag{360}$$

A.60 Particle in a box: Wavefunction angular velocity as a function of particle mass from Schrödinger's equation 7

$$i\hbar \frac{\partial}{\partial t}\psi(x,t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}\psi(x,t) + V(x)\psi(x,t)$$
(361)

$$V(x) = 0 (362)$$

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t)+V(x)\psi(x,t)=-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t) \tag{363}$$

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = \hbar \omega \psi(x,t)$$
 (364)

$$\hbar\omega\psi(x,t) = i\hbar\frac{\partial\psi(x,t)}{\partial t}$$
 (365)

$$\hbar\omega\psi(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t) \tag{366}$$

$$\hbar\omega\psi(x,t) = -\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t) \tag{367}$$

A.61 Particle in a box: Wavefunction angular velocity as a function of particle mass from Schrödinger's equation 8

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi(x,t)}{\partial x^2} = \frac{\hbar^2 k^2}{2m}\psi(x,t)$$
 (368)

$$\frac{\hbar^2 k^2}{2m} = \frac{p^2}{2m\hbar}$$
 (369)

$$\hbar\omega\psi(x,t) = -\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t) \tag{370}$$

$$\hbar\omega = \frac{p^2}{2m} \tag{371}$$

$$\omega = \frac{p^2}{2m\hbar} \tag{372}$$

A.62 Quantum harmonic oscillator: Ladder operator method 4

$$aa^{\dagger} - a^{\dagger}a = \frac{i}{\hbar}(\hat{p}\hat{x} - \hat{x}\hat{p}) \tag{373}$$

$$[\hat{p}, \hat{x}] = \hat{p}\hat{x} - \hat{x}\hat{p} \tag{374}$$

$$[\hat{p}, \hat{x}] = -i\hbar \tag{375}$$

506	$-i \cdot i = 1$	(376)		Ladder operators for the quant harmonic oscillator part 3.1	um	531 532
507	$\left[a,a^{\dagger}\right]=aa^{\dagger}-a^{\dagger}a$	(377)		$a = \frac{1}{\sqrt{2}}(\frac{d}{dq} + q)$	(394)	533
508	$\left[a,a^{\dagger}\right]=\frac{i}{\hbar}[\hat{p},\hat{x}]$	(378)		$p = -i\frac{d}{dq}$	(395)	534
509	$\left[a,a^{\dagger}\right]=\frac{i}{\hbar}(-i\hbar)$	(379)		$-i \cdot i = 1$	(396)	535
510	$\left[a,a^{\dagger} ight]=1$	(380)		$\frac{d}{da} = -ip$	(397)	536
511	A.63 Creation and annihilation operator	ors:		aq		
512	Ladder operators for the quantum	n		1 ,	(200)	
513	harmonic oscillator part 1.6			$a = \frac{1}{\sqrt{2}}(-ip + q)$	(398)	537
514	$\hbar\omega(\frac{1}{2} + \frac{1}{\sqrt{2}}(-\frac{d^2}{dq^2} + q^2)\frac{1}{\sqrt{2}}(\frac{d^2}{dq^2} + q^2))\psi(q)$	$(381) = E\psi(q)$		$a = \frac{1}{\sqrt{2}}(ip + q)$	(399)	538
314			A.66	Creation and annihilation opera	ators•	539
	$1 \cdot d^2$		1.00	Ladder operators for the quant		540
515	$a = \frac{1}{\sqrt{2}} (\frac{d^2}{da^2} + q^2)$	(382)		harmonic oscillator part 3.2	um	
	V 2 · uq					541
516	$a^{\dagger} = \frac{1}{\sqrt{2}}(-\frac{d^2}{dq^2} + q^2)$	(383)		$a^{\dagger} = \frac{1}{\sqrt{2}}(-\frac{d}{dq} + q)$	(400)	542
517	$\hbar\omega(\frac{1}{2} + a^{\dagger}a)\psi(q) = E\psi(q)$	(384)		$p = -i\frac{d}{dq}$	(401)	543
518	$E = \hbar\omega(a^{\dagger}a + \frac{1}{2})$	(385)		$-i \cdot i = 1$	(402)	544
519	A.64 Creation and annihilation operato	ors:		d		
520	Ladder operators for the quantum			$-\frac{d}{da} = ip$	(403)	545
521	harmonic oscillator part 2	-		uq		
522	[q,p] = qp - pq	(386)		$a^{\dagger} = \frac{1}{\sqrt{2}}(-ip + q)$	(404)	546
	d	A	A.67	Creation and annihilation opera	ators:	547
523	$p = -i\frac{d}{da}$	(387)	1.07	Ladder operators for the quant		548
	aq			harmonic oscillator part 3.6	uiii	549
	$d \cdot d \cdot d \cdot d$	(200)		<u>-</u>	(40.5)	
524	$[q, p] = q(-i\frac{d}{dq}) - (-i\frac{d}{dq})q$	(388)		$aa^{\dagger} - a^{\dagger}a = i(pq - qp)$	(405)	550
	, ,					
525	$[q,p] = -iq\frac{d}{da} + i\frac{d}{da}q$	(389)		[p,q] = pq - qp	(406)	551
	$dq dq^{T}$	()			()	
526	$(\frac{d}{dq}q - q\frac{d}{dq}) = 1$	(390)		$aa^{\dagger} - a^{\dagger}a = i[p, q]$	(407)	552
527	$-iq\frac{d}{dq} + i\frac{d}{dq}q = i$	(391)		[p,q] = -i	(408)	553
528	[q,p]=i	(392)		$aa^{\dagger} - a^{\dagger}a = -i \cdot i$	(409)	554
529	[q,p]f(q) = if(q)	(393)		$-i \cdot i = 1$	(410)	555

A.65 Creation and annihilation operators:

(427)

 $\left[\hat{H}, \hat{x}(t)\right] = \hat{H}\hat{x}(t) - \hat{x}(t)\hat{H}$

595	$[\hat{x}_0, \hat{p}_0] = i\hbar$	(439)		$P_e(t) = \langle e, 0 \Psi(t) \rangle ^2$	(454)	614
	$\frac{1}{\omega m}[\hat{x}_0, \hat{p}_0]\sin(\omega t_2 - \omega t_1) = \frac{i\hbar}{\omega m}\sin(\omega t_2)$	$-\omega t_1$		$P_e(t) = \cos^2(\frac{\Omega t}{2})$	(455)	615
596		(440)	A.75	Vacuum Rabi Oscillations: group probability 2	nd state	616 617
597	$[\hat{x}(t_1), \hat{x}(t_2)] = \frac{i\hbar}{\omega m} \sin(\omega t_2 - \omega t_1)$	(441)	$P_g(t)$	• •		
598	A.73 Heisenberg picture: momentum commutator 3				(456)	618
599 600	$[\hat{p}(t_1), \hat{p}(t_2)] = m\omega \hat{p}_0 \hat{x}_0 \sin(\omega t_2 - \omega t_1) + r$	$m\omega\hat{x}_0\hat{p}_0$ si (442)	$\operatorname{in}(\omega t_1$	$-\omega t_2) \qquad \langle g, 1 e, 0\rangle = 0$	(457)	619
601	$\sin(\omega t_1 - \omega t_2) = -\sin(\omega t_2 - \omega t_1)$	(443)	$P_g(t)$	$= \cos\left(\frac{\Omega t}{2}\right)*0 - i\sin\left(\frac{\Omega t}{2}\right)\langle g, 1\rangle$	$ g,1\rangle ^2$ (458)	620
602	$m\omega\hat{x}_0\hat{p}_0\sin(\omega t_1 - \omega t_2) = -m\omega\hat{x}_0\hat{p}_0\sin(\omega t_1 - \omega t_2)$	$\omega t_2 - \omega t_1 \tag{444}$	P_{s}	$g(t) = -i\sin\left(\frac{\Omega t}{2}\right)\langle g, 1 g, 1\rangle ^2$	(459)	621
	$[\hat{p}(t_1), \hat{p}(t_2)] = m\omega \hat{p}_0 \hat{x}_0 \sin(\omega t_2 - \omega t_1) - r$	ກ/ປາຂົດກິດ ຮ່	in(wto	$\langle g, 1 g, 1\rangle = 1$	(460)	622
603		(445)	$m(\omega v_2)$	$P_g(t) = -i\sin\left(\frac{\Omega t}{2}\right) * 1 ^2$	(461)	623
604	$\hat{x}_0\hat{p}_0 - \hat{p}_0\hat{x}_0 = i\hbar$	(446)		$ -i ^2 = 1$	(462)	624
605	$m\omega(\hat{x}_0\hat{p}_0-\hat{p}_0\hat{x}_0)\sin(\omega t_2-\omega t_1)=i\hbar m\omega s$	$\sin(\omega t_2 - (447))$	$-\omega t_1)$	$P_g(t) = \sin\left(\frac{\Omega t}{2}\right) ^2$	(463)	625
606	$[\hat{p}(t_1), \hat{p}(t_2)] = i\hbar m\omega \sin(\omega t_2 - \omega t_1)$	(448)		$P_g(t) = \sin^2(\frac{\Omega t}{2})$	(464)	626
607	A.74 Vacuum Rabi Oscillations: excited	l state	A.76	Expectation value: integral expre		627
608	probability (O4)			$\left\langle \hat{X} ight angle _{\Psi}=\left\langle \Psi ightert \hat{X}\leftert \Psi ight angle$	(465)	628
609	$ \Psi(t)\rangle = \cos\left(\frac{\Omega t}{2}\right) e,0\rangle - i\sin\left(\frac{\Omega t}{2}\right) _{\Delta t}$	$g,1\rangle$ (449)		$\hat{X} = \mathbb{I}\hat{X}\mathbb{I}$	(466)	629
	$\langle e,0 \Psi(t)\rangle=\cos\!\left(\frac{\Omega t}{2}\right)\langle e,0 e,0\rangle-i\sin\!\left(\frac{\Omega t}{2}\right)$	$\frac{\Omega t}{2}$	$ a,1\rangle$	$\left\langle \hat{X}\right\rangle _{\Psi}=\left\langle \Psi\right \left\ \hat{X}\right\ \left \Psi\right\rangle$	(467)	630
610	$(0,0)^{2}(0)^{2} \qquad (2)^{2}(0,0)^{2}(0,0)$	(450)	IJ; ±/	$\mathbb{I} = \int \ket{x}ra{x}dx$	(468)	631

(438)

 $\langle e, 0|e, 0\rangle = 1$

 $\langle e,0|g,1\rangle=0$

 $\langle e, 0 | \Psi(t) \rangle = \cos\left(\frac{\Omega t}{2}\right)$

(451)

(452)

(453)

611

612

613

A.72 Heisenberg picture: position

commutator 4

commutator - $[\hat{x}(t_1), \hat{x}(t_2)] = \frac{1}{\omega m} (\hat{x}_0 \hat{p}_0 - \hat{p}_0 \hat{x}_0) \sin(\omega t_2 - \omega t_1)$ (437)

 $\hat{x}_0 \hat{p}_0 - \hat{p}_0 \hat{x}_0 = [\hat{x}_0, \hat{p}_0]$

591

592

593

594

632	$\left\langle \hat{X} \right\rangle_{\Psi} = \left\langle \Psi \right \left(\int \left x \right\rangle \left\langle x \right dx \right) \hat{X} \left(\int \left x' \right\rangle \left\langle x \right dx \right)$		79 Euler-lagrange equation: Full derivative of the perturbation Lagrangian with respect to ε 2 $\frac{dg_{\varepsilon}}{d\varepsilon} = \frac{d}{d\varepsilon}(\varepsilon \eta(x))$	(484)	649 650 651
633	$\left\langle \hat{X} \right\rangle_{\Psi} = \int \int \left\langle \Psi x \right\rangle \left\langle x \hat{X} x' \right\rangle \left\langle x' \Psi \right\rangle dx$	xdx' (470)	$\frac{d}{d\varepsilon}(\varepsilon\eta(x)) = \eta(x) + \varepsilon \frac{d\eta(x)}{d\varepsilon}$	(485)	653
634	A.77 Expectation value: integral expres $\left\langle \hat{X} \right\rangle_{\Psi} = \int \int \left\langle \Psi x \right\rangle \left\langle x \hat{X} x' \right\rangle \left\langle x' \Psi \right\rangle dx$		$\frac{d\eta(x)}{d\varepsilon} = 0$	(486)	654
635	`	(471)	$\eta(x) + \varepsilon \frac{d\eta(x)}{d\varepsilon} = \eta(x)$	(487)	655
636	$\hat{X} x' \rangle = x' x' \rangle$ $\langle \Psi x \rangle = \langle x \Psi \rangle^{\dagger}$	(472) (473)	$\frac{dg_{\varepsilon}}{d\varepsilon} = \eta(x)$	(488)	656
637	$\langle \Psi x \rangle = \langle x \Psi \rangle$	(4/3) A.	80 Euler-Lagrange equation: Deriv	vation	657
638	$\langle x x'\rangle=\delta(x-x')$	(474)	$J = \int_{a}^{b} L(x, f(x), f'(x))$	(489)	658
639	$\int \int \left\langle \Psi x \right\rangle \left\langle x x' \left x' \right\rangle \left\langle x' \middle \Psi \right\rangle dx dx' = \int \int dx dx' dx' dx' dx' dx' dx' dx' dx' dx' $	$\int \langle x \Psi \rangle^{\dagger} x' $ (475)	$g_{\varepsilon}(x) = f(x) + \varepsilon \eta(x)$ $x' \rangle \langle x' \Psi \rangle dx dx'$	(490)	659
	$\int \int \langle x \Psi\rangle^{\dagger} x' \delta(x-x') \langle x' \Psi\rangle dx dx' = \langle$	$\langle \hat{X} \rangle_{_{ m M}}$	$J_{\varepsilon} = \int_{a}^{b} L(x, g_{\varepsilon}(x), g'_{\varepsilon}(x)) dx$	(491)	660
640	J	(476)	$L_{\varepsilon} = L(x, g_{\varepsilon}(x), g'_{\varepsilon}(x))$	(492)	661
641	A.78 Expectation value: integral expres $\left\langle \hat{X} \right\rangle_{\Psi} = \int \int \left\langle x \Psi \right\rangle^{\dagger} x' \delta(x-x') \left\langle x' \Psi \right\rangle dx'$	dxdx'	$\frac{dJ_{\varepsilon}}{d\varepsilon} = \frac{d}{d\varepsilon} \int_{a}^{b} L_{\varepsilon} dx$	(493)	662
642		(477)	$\frac{dJ_{\varepsilon}}{d\varepsilon} = \int_{a}^{b} \frac{dL_{\varepsilon}}{d\varepsilon} dx$	(494)	663
	$\int \langle x \Psi\rangle^{\dagger} x' \delta(x-x') \langle x' \Psi\rangle dx' = \langle x \Psi\rangle^{\dagger} x'$	$x\langle x \Psi angle$ A.	81 Euler-Lagrange equation: Deriv	vation 4	664
643	J	(478)	$\frac{dv}{dx} = \eta'(x)$	(495)	665
644	$\langle x \Psi\rangle=\Psi(x)$	(479)	$v = \int \frac{dv}{dx} dx$	(496)	666
645	$\langle x \Psi\rangle^{\dagger} x \langle x \Psi\rangle = \Psi^{\dagger}(x)x\Psi(x)$	(480)	$\eta'(x) = \frac{d\eta(x)}{dx}$	(497)	667
646	$\Psi^{\dagger}(x)\Psi(x) = \Psi(x) ^2$	(481)	$\frac{dv}{dx} = \frac{d\eta(x)}{dx}$	(498)	668
647	$\Psi^{\dagger}(x)x\Psi(x) = x \Psi(x) ^2$	(482)	$v = \int \frac{d\eta(x)}{dx} dx$	(499)	669
648	$\left\langle \hat{X} \right\rangle_{\Psi} = \int x \Psi(x) ^2 dx$	(483)	$v = \eta(x)$	(500)	670

Euler-Lagrange equation: Derivation 5 Euler-Lagrange equation: Straight line 671 690 $u = \frac{\partial L}{\partial \, f'}$ $S = \int_{-b}^{b} ds$ (501)672 (518)691 $ds = \sqrt{dx^2 + dy^2}$ (519)692 $v = \eta(x)$ (502)673 dy = y'dx(520)693 n(a) = 0(503)674 $ds = \sqrt{dx^2 + (u'dx)^2}$ (521)694 $\eta(b) = 0$ (504)675 $ds = dx\sqrt{1 + u'^2}$ (522)695 $uv = \frac{\partial L}{\partial f'} \eta(x)$ (505) $S = \int^b \sqrt{1 + y'^2} dx$ (523) $uv\Big|^b = \frac{\partial L}{\partial f'}\eta(x)\Big|^b$ (506)677 A.85 **Euler-Lagrange equation: Straight line** 697 698 $\left. \frac{\partial L}{\partial f'} \eta(x) \right|^b = \frac{\partial L}{\partial f'} \left. \eta(x) \right|^b$ $\frac{dL}{du} - \frac{d}{dx}\frac{dL}{du'} = 0$ (507)(524)678 699 $\frac{dL}{du} = 0$ (525)700 $\left. \frac{\partial L}{\partial f'} \eta(x) \right|^b = \frac{\partial L}{\partial f'} (\eta(b) - \eta(a))$ (508)679 $\frac{dL}{du'} = y'(1+y'^2)^{-\frac{1}{2}}$ (526)701 $\frac{dL}{du} - \frac{d}{dx}y'(1+y'^2)^{-\frac{1}{2}} = 0$ $\frac{\partial L}{\partial f'}(\eta(b) - \eta(a)) = \frac{\partial L}{\partial f'}(0 - 0)$ (527)702 (509)680 $-\frac{d}{dx}y'(1+y'^2)^{-\frac{1}{2}}=0$ (528)703 $\frac{\partial L}{\partial f'}(0-0) = 0$ (510)681 $\int -\frac{d}{dx} (y'(1+y'^2)^{-\frac{1}{2}}) dx = \int 0 dx$ (529) $(uv)\Big|^b = 0$ 704 (511) $\int \frac{d}{dx} (y'(1+y'^2)^{-\frac{1}{2}}) dx = C$ **Euler-Lagrange equation: Derivation 6** (530)705 $I = \int_{-\infty}^{b} \frac{\partial L}{\partial f'} \eta'(x) dx$ (512)684 A.86 Euler-Lagrange equation: Straight line 706 $I = (uv) \Big|_{0}^{b} - \int_{0}^{b} v \frac{du}{dx} dx$ $\frac{dy}{dx} = C(1 - C^2)^{-1/2}$ (531)708 (513)685 $C(1 - C^2)^{-1/2} = A$ (532)709 $(uv)\Big|^b = 0$ (514)686 $\frac{dy}{dx} = A$ (533)710 $\frac{du}{dx} = \frac{d}{dx} \frac{\partial L}{\partial f'}$ (515)687 $\int \frac{dy}{dx} dx = \int A dx$ (534)711 $I = -\int^b v \frac{du}{dx} dx$ (516) $\int Adx = Ax + C$ (535)712

y = Ax + C

(536)

713

(517)

 $I = -\int^{b} \eta(x) \frac{d}{dx} \frac{\partial L}{\partial f'} dx$

714 A.87 Escape velocity
$$F = \frac{GMm}{r^2}$$
 (537) $\frac{dT}{dx} = \frac{x}{v_1(x^2 + a^2)^{\frac{1}{2}}} + \frac{x - t}{v_2((x-t)^2 + b^2)^{\frac{1}{2}}}$ (555) 726

716 $dW = Fdx$ (538) $\frac{x}{(x^2 + a^2)^{\frac{1}{2}}} = \sin \theta_1$ (556) 727

718 $W = \int_{r_0}^{\infty} dW$ (540) $\frac{dT}{dx} = \frac{\sin \theta_1}{v_1} - \frac{\sin \theta_2}{v_2}$ (557) 738

719 $W = \int_{r_0}^{\infty} \frac{GMm}{r^2} dr$ (541) $\frac{dT}{dx} = \frac{\sin \theta_1}{v_1} - \frac{\sin \theta_2}{v_2}$ (558) 740

720 A.88 Escape velocity 2 $\frac{\sin \theta_1}{r^2} - \frac{\sin \theta_2}{r^2}$ (542) $\frac{\sin \theta_1}{v_1} - \frac{\sin \theta_2}{v_2} = 0$ (560) 741

721 $W = \int_{r_0}^{\infty} \frac{GMm}{r^2} dr$ (542) $\frac{\sin \theta_1}{v_1} - \frac{\sin \theta_2}{v_2} = 0$ (561) 743

722 $F = \frac{GMm}{r^2}$ (543) $\frac{\sin \theta_1}{v_1} - \frac{\sin \theta_2}{v_2} = 0$ (561) 743

723 $F = mg$ (544) $\frac{\sin \theta_1}{v_1} - \frac{\sin \theta_2}{v_2} = 0$ (562) 744

724 $\frac{GMm}{r^2} - mg$ (545) $\frac{1}{v_1} - \frac{v_1}{v_2} - \frac{v_2}{v_2}$ (562) 745

725 $GMm = mgr^2$ (546) $\frac{1}{v_1} - \frac{v_2}{v_2} - \frac{v_2}{v_2}$ (565) 747

726 $M = mgr^2$ (547) $\frac{\sin \theta_1}{v_1} - \frac{\sin \theta_2}{v_2} = 0$ (561) 743

727 $W = mgr_0$ (548) $c\sin \theta_1 = n_1 \sin \theta_1 = c\sin \theta_2$ (565) 747

728 A.89 Escape velocity 3

729 $W = mgr_0$ (549) $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (567) 749

750 $M = \frac{1}{2}mv^2_{ssc}$ (550) $\frac{\partial^2 v_1(x,t)}{\partial t^2} - (-i\omega)\frac{\partial}{\partial t}(e^{-i\omega t}f(x))$ (568) 722

751 $W = mgr_0$ (549) $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (567) 749

752 $\frac{\partial^2 v_2(x,t)}{\partial t^2} - (-i\omega)\frac{\partial}{\partial t}(e^{-i\omega t}f(x))$ (568) 722

753 $M = W = E$ (551)

754 $M = E$ (551)

755 $M = \frac{1}{2}mv^2_{ssc}$ (552) $\frac{\partial^2 v_1(x,t)}{\partial t^2} - (-i\omega)\frac{\partial}{\partial t}(e^{-i\omega t}f(x)) - i\omega e^{-i\omega t}f(x)$ (569) 753

(554)

 $i \cdot i = -1$

(571)

755

 $v_{esc} = \sqrt{2gr_0}$

$$-\omega^{2}e^{-i\omega t}f(x) = e^{2\frac{\partial^{2}u(x,t)}{\partial x^{2}}} \qquad (574) \qquad u(x,t) = F(x-ct) + G(x+ct) \qquad (588) \qquad 776$$

$$759 \qquad A.93 \qquad Wave equation: plane wave eigenmodes \\ 4 \qquad u(x,t) = Ae^{-i(kx-\omega t)} + Be^{i(kx-\omega t)} \qquad (575) \qquad F_{H} = F_{x+2h} - F_{x} \qquad (589) \qquad 778$$

$$761 \qquad u(x,t) = Ae^{-i(kx-\omega t)} + Be^{i(kx-\omega t)} \qquad (575) \qquad F_{N} = ma(t) \qquad (590) \qquad 779$$

$$762 \qquad u(x,t) = \int_{-\infty}^{\infty} s(\omega)u(x,t)d\omega \qquad (576) \qquad F_{N} = F_{H} \qquad (591) \qquad 780$$

$$763 \qquad s_{+}(\omega) = As(\omega) \qquad (577) \qquad a(t) = \frac{\partial^{2}}{\partial t^{2}}u(x+h,t) \qquad (592) \qquad 781$$

$$764 \qquad s_{-}(\omega) = Bs(\omega) \qquad (578) \qquad ma(t) = F_{H} \qquad (593) \qquad 782$$

$$765 \qquad Ae^{-i(kx-\omega t)} = \int_{-\infty}^{\infty} s_{+}(\omega)e^{-i(kx-\omega t)}d\omega \qquad (579) \qquad m\frac{\partial^{2}}{\partial t^{2}}u(x+h,t) = F_{H} \qquad (594) \qquad 783$$

$$766 \qquad Be^{i(kx-\omega t)} = \int_{-\infty}^{\infty} s_{-}(\omega)e^{i(kx-\omega t)}d\omega \qquad (580) \qquad n\frac{\partial^{2}}{\partial t^{2}}u(x+h,t) = F_{x+2h} - F_{x} \qquad (595) \qquad 784$$

$$767 \qquad A.94 \qquad Wave equation: plane wave eigenmodes \qquad 5 \qquad m\frac{\partial^{2}}{\partial t^{2}}u(x+h,t) = F_{x+2h} - F_{x} \qquad (596) \qquad 786$$

$$768 \qquad A.94 \qquad Wave equation: plane wave eigenmodes \qquad 5 \qquad F_{x+2h} = ku(x+2h,t) - ku(x+h,t) \qquad (597) \qquad 787$$

$$768 \qquad A.94 \qquad Wave equation: plane wave eigenmodes \qquad 5 \qquad F_{x+2h} = ku(x+2h,t) - ku(x+h,t) + ku($$

(572)

(573)

 $-\omega^2 e^{-i\omega t} f(x) = -\omega^2 e^{-i\omega t} f(x)$

 $\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2}$

756

757

 $\int_{-\infty}^{\infty} s_{-}(\omega)e^{i(kx-\omega t)}d\omega = \int_{-\infty}^{\infty} s_{-}(\omega)e^{ik(x-ct)}d\omega$

 $\int_{-\infty}^{\infty} s_{-}(\omega)e^{ik(x-ct)}d\omega = G(x+ct)$

(586)

(587)

774

775

791

 $\int_{-\infty}^{\infty} s_{+}(\omega)e^{-ik(x-ct)}d\omega = F(x-ct) \quad (585) \qquad \frac{\partial^{2}}{\partial t^{2}}u(x+h,t) = \frac{k}{m}\left(u(x+2h,t)-2u(x+h,t)+u(x,t)\right)$

792	A.97 Wave equation: Hooke's law 3	B .5	S=1 (one premise removed)		811
793	$\frac{\partial^2}{\partial t^2}u(x+h,t) = \frac{k}{m} (u(x+2h,t) - 2u(x+h,t) + \frac{k}{m} (u(x+h,t) - 2u(x+h,t) + \frac{k}{m} (u($		Gauss' law: equivalence between differential and integral forms		812 813
794	$N = \frac{L}{h} \tag{60}$,	$\iint_{S} \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\varepsilon_0}$	(619)	814
795	$m = \frac{M}{N} \tag{66}$	04)	$\iint_{S} \mathbf{E} \cdot d\mathbf{A} = \iiint_{V} \nabla \cdot \mathbf{E} dV$	(620)	815
796	$k = KN \tag{60}$	05)	$\frac{Q}{\varepsilon_0} = \iiint_V \nabla \cdot \mathbf{E} dV$	(621)	816
797	$\frac{k}{m} = \frac{KN}{\frac{M}{N}} \tag{60}$	06)	$Q=\iiint_V \rho dV$	(622)	817
798	$\frac{k}{m} = \frac{KN^2}{M} \tag{60}$	07)	$\frac{\iiint_V \rho dV}{\varepsilon_0} = \iiint_V \nabla \cdot \mathbf{E} dV$	(623)	818
799	$\frac{k}{m} = \frac{K\frac{L^2}{h^2}}{M} \tag{60}$	08)	$\iiint_{V} \nabla \cdot \mathbf{E} dV = \iiint_{V} \frac{\rho}{\varepsilon_{0}} dV$	(624)	819
	-2	B.2	Gauss' law: Equivalence of total and charge statements	nd free	820 821
800	$\frac{\partial^2}{\partial t^2}u(x+h,t) = \frac{K\frac{L^2}{h^2}}{M}(u(x+2h,t)-2u(x+h,t))$ (60)	,	$ ho_b = - abla \cdot \mathbf{P}$	(625)	822
000		,	$- ho_b = abla \cdot \mathbf{P}$	(626)	823
801	$\frac{\partial^2}{\partial t^2}u(x+h,t) = \frac{KL^2}{Mh^2} (u(x+2h,t) - 2u(x+h,t)) $ (61)		$ ho_f = abla \cdot \mathbf{D}$	(627)	824
802	A.98 Wave equation: stress pulse in a bar 2	2		(620)	
803	$\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{KL^2}{M} \frac{\partial^2 u(x,t)}{\partial x^2} \tag{61}$	11)	$ ho = ho_f - ho_b$	(628)	825
804	$K = \frac{EA}{L} \tag{61}$	12)	$\rho = \nabla \cdot \mathbf{D} - \nabla \cdot \mathbf{P}$	(629)	826
	M		$\rho = \nabla \cdot (\mathbf{D} - \mathbf{P})$	(630)	827
805	$\rho = \frac{M}{V} \tag{61}$	B.3	Uniqueness theorem for Poisson's equation		828 829
806	V = AL (61	14)	$\nabla^2 \phi_1 = -\frac{\rho_f}{\varepsilon_0}$	(631)	830
807	$\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{EA}{L} \frac{L^2}{M} \frac{\partial^2 u(x,t)}{\partial x^2} \tag{61}$	15)	$\nabla^2 \phi_2 = -\frac{\rho_f}{\varepsilon_0}$	(632)	831
808	$\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{EAL}{M} \frac{\partial^2 u(x,t)}{\partial x^2} \tag{61}$	16)	$\nabla^2 \phi_1 + \nabla^2 \phi_2 = -\frac{\rho_f}{\varepsilon_0} + -\frac{\rho_f}{\varepsilon_0}$	(633)	832
809	$\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{E}{\frac{M}{AL}} \frac{\partial^2 u(x,t)}{\partial x^2} $ (61)	17)	$\nabla^2 \phi_1 + \nabla^2 \phi_2 = -2 \frac{\rho_f}{\varepsilon_0}$	(634)	833
810	$\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u(x,t)}{\partial x^2} \tag{61}$	18)	$\nabla^2(\phi_1 + \phi_2) = -2\frac{\rho_f}{\varepsilon_0}$	(635)	834

$$\nabla^2 \phi = -\frac{2^{Pf}}{c_0} \qquad (637) \qquad C - C_1 - C_2 \qquad (652) \qquad 857$$

$$\nabla^2 \phi = 0 \qquad (638) \qquad \phi_2 - C_1 - C_2 \qquad (653) \qquad 858$$

$$8.4 \qquad \text{Uniqueness theorem for Poisson's equation 2} \qquad \phi_1 - C_1 - C_2 \qquad (654) \qquad 859$$

$$\nabla \cdot (\phi \nabla \phi) = (\nabla \phi)^2 + \phi \nabla^2 \phi \qquad (639)$$

$$\nabla^2 \phi = 0 \qquad (640) \qquad \phi_2 - \phi_1 = C_1 - C_2 - (C_1 - C_2) \qquad (655) \qquad 860$$

$$\nabla^2 \phi = 0 \qquad (640) \qquad \phi_2 - \phi_1 = C \qquad (656) \qquad 861$$

$$\nabla \nabla \cdot (\phi \nabla \phi) = (\nabla \phi)^2 \qquad (642) \qquad \nabla \nabla \cdot (\phi - \nabla \phi) = (\nabla \phi)^2 \qquad (642) \qquad \nabla \cdot (\phi - \nabla \phi) = (\nabla \phi)^2 \qquad (643)$$

$$\nabla \cdot (\phi \nabla \phi) dV = \int_V (\nabla \phi)^2 dV \qquad (643) \qquad \nabla \cdot (-\nabla \phi) = -4\pi G\rho \qquad (657) \qquad 863$$

$$\nabla \cdot (\phi \nabla \phi) dV = \int_V (\nabla \phi)^2 dV \qquad (643) \qquad \nabla^2 \phi = 4\pi G\rho \qquad (660) \qquad 866$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (661) \qquad 867$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662) \qquad 70$$

$$\nabla^2 \phi = 4\pi G\rho \qquad (662$$

B.6

(636)

 $\nabla^2 \phi = \nabla^2 (\phi_1 + \phi_2)$

835

equation 7

Uniqueness theorem for Poisson's

 $\phi = C_1 - C_2$

854

855

856

(651)

Poisson's equation: Gravitational potential from Poisson's equation 6

$$\nabla \cdot (\varepsilon(-\nabla \phi)) = \rho_f \tag{685}$$

$$\int_{S} \frac{\partial \phi}{\partial r} dS = \int_{0}^{2\pi} \int_{0}^{\pi} \frac{\partial \phi}{\partial r} r^{2} \sin \theta d\theta d\varphi \quad (668)$$

$$\varepsilon \nabla \cdot (-\nabla \phi) = \rho_f \tag{686}$$

$$\int_0^{\pi} \sin \theta d\theta = 2 \tag{669}$$

$$-\varepsilon \nabla^2 \phi = \rho_f \tag{687}$$

$$\int_0^{2\pi} d\varphi = 2\pi \tag{670}$$

$$\nabla^2 \phi = -\frac{\rho_f}{\varepsilon} \tag{688}$$

$$\int_0^{2\pi} \int_0^{\pi} r^2 \sin\theta d\theta d\varphi = 2\pi \cdot 2 \cdot r^2 = 4\pi r^2$$
 (671)

Poisson's equation: Electrostatic potential from Poisson's equation

$$\int_{S} \frac{\partial \phi}{\partial r} dS = \int_{0}^{2\pi} \int_{0}^{\pi} \frac{\partial \phi}{\partial r} r^{2} \sin \theta d\theta d\varphi = \frac{\partial \phi}{\partial r} \int_{0}^{2\pi} \int_{0}^{\pi} r^{2} \sin \theta d\theta d\varphi = \frac{\partial \phi}{\partial r} \cdot 4\pi r^{2}$$
(689)
$$\int_{S} \frac{\partial \phi}{\partial r} dS = \int_{0}^{2\pi} \int_{0}^{\pi} \frac{\partial \phi}{\partial r} r^{2} \sin \theta d\theta d\varphi = \frac{\partial \phi}{\partial r} \int_{0}^{2\pi} r^{2} \sin \theta d\theta d\varphi = \frac{\partial \phi}{\partial r} \cdot 4\pi r^{2}$$
(690)

$$\int_{S} \frac{\partial \phi}{\partial r} dS = 4\pi \frac{\partial \phi}{\partial r} r^2 \tag{673}$$

$\int_{\mathcal{U}} \nabla^2 \phi dV = \int_{\mathcal{U}} \nabla \cdot \nabla \phi dV$ (691)

B.10 Poisson's equation: Gravitational potential from Poisson's equation 8

$$\frac{\partial \phi}{\partial r} = \frac{Gm}{r^2} \tag{674}$$

$$\int_{V} \nabla^{2} \phi dV = -\frac{1}{\varepsilon} \int_{V} \rho_{f} dV \qquad (692)$$

$$\int_{-\infty}^{r} \frac{\partial \phi}{\partial r} dr = \phi(r) - \phi(\infty) \tag{675}$$

$$\int_{V} \nabla \cdot \nabla \phi dV = -\frac{1}{\varepsilon} \int_{V} \rho_{f} dV \tag{693}$$

$$\int_{-\infty}^{r} \frac{Gm}{r^2} dr = \frac{-Gm}{r} \tag{676}$$

$$\int_{V} \nabla \cdot \nabla \phi dV = -\frac{Q}{\varepsilon} \tag{694}$$

$$\phi(r) - \phi(\infty) = \frac{-Gm}{r} \tag{677}$$

B.13 Poisson's equation: Electrostatic potential from Poisson's equation 2

$$\phi(r) = \frac{-Gm}{r} + \phi(\infty) \tag{678}$$

$$\int_{V} \nabla \cdot \nabla \phi dV = -\frac{Q}{\varepsilon} \tag{695}$$

$$\phi(\infty) = 0 \tag{679}$$

$$\int_{V} \nabla \cdot \nabla \phi dV = \int_{S} \nabla \phi \cdot d\mathbf{S} \tag{696}$$

$$\phi(r) = \frac{-Gm}{r} \tag{680}$$

$$-\frac{Q}{\varepsilon} = \int_{C} \nabla \phi \cdot d\mathbf{S} \tag{697}$$

B.11 Poisson's equation: Electrostatics

 $\mathbf{D} = \varepsilon \mathbf{E}$

$$\nabla \phi = \frac{\partial \phi}{\partial x} \tag{698}$$

$$\nabla \cdot \mathbf{D} = \rho_f \tag{681}$$

$$\int_{G} \nabla \phi \cdot d\mathbf{S} = \int_{G} \frac{\partial \phi}{\partial r} dS \tag{699}$$

$$\mathbf{D} = \varepsilon \mathbf{E} \tag{682}$$

$$J_S = J_S \partial r$$

$$\nabla \cdot (\varepsilon \mathbf{E}) = \rho_f \tag{683}$$

$$\int_{S} \frac{\partial \phi}{\partial r} dS = -\frac{Q}{\varepsilon} \tag{700}$$

$$\mathbf{E} = -\nabla\phi \tag{684}$$

$$\phi = -\mathbf{v}\,\psi$$
 (064)

$\int_{-\infty}^{\infty} \frac{\partial \phi}{\partial r} dr = \phi(r) - \phi(\infty)$ (702) $\mathbf{B} = \nabla \times \mathbf{A}$ 921 (720)945 $\int_{0}^{r} -\frac{Q}{4\pi\varepsilon r^2} dr = \frac{Q}{4\pi\varepsilon r}$ (703) $\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$ 922 (721)946 $\phi(r) - \phi(\infty) = \frac{Q}{4\pi\epsilon r}$ (704)923 $\mathbf{F} = q(-\nabla\phi - \frac{\partial\mathbf{A}}{\partial t} + \mathbf{v}\times\nabla\times\mathbf{A})$ (722)947 $\phi(r) = \frac{Q}{4\pi cr} + \phi(\infty)$ (705)924 $\mathbf{F} = q(-\nabla\phi - \frac{\partial \mathbf{A}}{\partial t} + \nabla(\mathbf{v} \cdot \mathbf{A}) - (\mathbf{v} \cdot \nabla)\mathbf{A})$ (723) 948 $assuming\phi(\infty) = 0, then\phi(r) = \frac{Q}{4\pi c r}$ (706) 925 **B.18 Lorentz force: Potential energy** 949 **B.15** Lorentz force: continuous charge 926 derivation from scalar potential 3 950 distribution 927 $U = q \int_{-\tau}^{\tau} \nabla \phi \cdot d\mathbf{r}$ $\frac{d\mathbf{F}}{dV} = \frac{dq}{dV}(\mathbf{E} + \mathbf{v} \times \mathbf{B})$ (724)951 (707) $\int_{-r}^{r} \nabla \phi \cdot d\mathbf{r} = \int_{-r}^{r} \frac{\partial \phi}{\partial r} dr$ $\mathbf{f} = \frac{d\mathbf{F}}{dV}$ (725)952 (708)929 $\mathbf{f} = \frac{dq}{dV} (\mathbf{E} + \mathbf{v} \times \mathbf{B})$ $\int_{-\infty}^{\infty} \frac{\partial \phi}{\partial r} dr = \phi(r) - \phi(\infty)$ (709)(726)930 953 $\rho = \frac{dq}{dV}$ $U = q(\phi(r) - \phi(\infty))$ (710)931 (727)954 $\mathbf{f} = \rho(\mathbf{E} + \mathbf{v} \times \mathbf{B})$ (711)932 $U = q\phi(r) - q\phi(\infty)$ (728)955 $\mathbf{f} = \rho \mathbf{E} + \rho \mathbf{v} \times \mathbf{B}$ (712)933 $U = a\phi(r)if\phi(\infty) = 0$ (729)956 Lorentz force: continuous charge **B.16** 934 **Laplace equation: Analytic functions** 957 935 distribution 2 (**u**) 958 $\mathbf{f} = \rho \mathbf{E} + \rho \mathbf{v} \times \mathbf{B}$ (713)936 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial u}$ (730)959 $J = \rho v$ (714)937 $\frac{\partial}{\partial u}(\frac{\partial u}{\partial x}) = \frac{\partial}{\partial u}(\frac{\partial v}{\partial u})$ (731)960 $f = \rho E + J \times B$ (715)938 $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 v}{\partial y^2}$ (732)961 $\frac{d\mathbf{F}}{dV} = \rho \mathbf{E} + \mathbf{J} \times \mathbf{B}$ 939 (716) $\frac{\partial}{\partial x}(\frac{\partial u}{\partial x}) = \frac{\partial}{\partial x}(\frac{\partial^2 u}{\partial x \partial u})$ $\mathbf{F} = \iiint \frac{d\mathbf{F}}{dV} dV$ (733)962 (717)940 $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y}$ $\mathbf{F} = \iiint (\rho \mathbf{E} + \mathbf{J} \times \mathbf{B}) dV$ (718)(734)941 963 23

(701)

Lorentz force: Lorentz force in terms of

 $\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}$

potentials

942

943

944

(719)

Poisson's equation: Electrostatic

 $\int_{-r}^{r} \frac{\partial \phi}{\partial r} dr = \int_{r}^{r} -\frac{Q}{4\pi \varepsilon r^{2}} dr$

potential from Poisson's equation 4

918

919

967		$\frac{\partial^2 v}{\partial y \partial x} = -\frac{\partial}{\partial y} (\frac{\partial u}{\partial y})$	(736)	$\frac{\partial^2 v}{\partial y^2} = \frac{\partial^2 u}{\partial y \partial x}$	(753)	992
968		$\frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y} (\frac{\partial u}{\partial y})$	(737)	$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$	(754)	993
969		$\frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial y \partial x}$	(738)	$-\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$	(755)	994
970	B.21	Laplace equation: Analytic fur	nctions			
971		(u) 3 $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y}$	(739)	$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$	(756)	995
973		$\frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial y \partial x}$	(740)	$ abla^2 v = 0$ B.25 Laplace equation: Electrostatic	(757)	996 997
						331
974		$\frac{\partial^2 v}{\partial x \partial y} = \frac{\partial^2 v}{\partial y \partial x}$	(741)	$\mathbf{E} = (u, v)$	(758)	998
975		$\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2}$	(742)	$\nabla \cdot \mathbf{E} = \rho$	(759)	999
976		$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$	(743)	$\nabla \cdot \mathbf{E} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$	(760)	1000
977		$\nabla^2 u = 0$	(744)	$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \rho$	(761)	1001
				·		
978	B.22	Laplace equation: Analytic fur	nctions	B.26 Laplace equation: Electrostatic	s 2	1002
978 979	B.22	Laplace equation: Analytic fun (v)	nctions	B.26 Laplace equation: Electrostatic	s 2	1002
	B.22		(745)	B.26 Laplace equation: Electrostatic $\frac{\partial \phi}{\partial x} = -u$	s 2 (762)	1002 1003
979	B.22	(v)		• •		
979 980	B.22	$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$	(745)	$\frac{\partial \phi}{\partial x} = -u$	(762)	1003
979 980 981	B.22 B.23	(v) $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ $\frac{\partial}{\partial x} (\frac{\partial v}{\partial x}) = \frac{\partial}{\partial x} (-\frac{\partial u}{\partial y})$	(745) (746) (747)	$\frac{\partial \phi}{\partial x} = -u$ $\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial (-u)}{\partial x}$ $\frac{\partial \phi}{\partial y} = -v$	(762) (763) (764)	1003
979 980 981 982		$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ $\frac{\partial}{\partial x} (\frac{\partial v}{\partial x}) = \frac{\partial}{\partial x} (-\frac{\partial u}{\partial y})$ $\frac{\partial^2 v}{\partial x^2} = -\frac{\partial^2 u}{\partial x \partial y}$	(745) (746) (747)	$\frac{\partial \phi}{\partial x} = -u$ $\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial (-u)}{\partial x}$ $\frac{\partial \phi}{\partial y} = -v$	(762) (763)	1003
979980981982983		$ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} $ $ \frac{\partial}{\partial x} (\frac{\partial v}{\partial x}) = \frac{\partial}{\partial x} (-\frac{\partial u}{\partial y}) $ $ \frac{\partial^2 v}{\partial x^2} = -\frac{\partial^2 u}{\partial x \partial y} $ Laplace equation: Analytic fun	(745) (746) (747)	$\frac{\partial \phi}{\partial x} = -u$ $\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial (-u)}{\partial x}$ $\frac{\partial \phi}{\partial y} = -v$ $\frac{\partial^2 \phi}{\partial y^2} = \frac{\partial (-v)}{\partial y}$	(762) (763) (764)	1003 1004 1005
979 980 981 982 983 984		$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ $\frac{\partial}{\partial x} (\frac{\partial v}{\partial x}) = \frac{\partial}{\partial x} (-\frac{\partial u}{\partial y})$ $\frac{\partial^2 v}{\partial x^2} = -\frac{\partial^2 u}{\partial x \partial y}$ Laplace equation: Analytic fun(v) 2	(745) (746) (747) nctions	$\frac{\partial \phi}{\partial x} = -u$ $\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial (-u)}{\partial x}$ $\frac{\partial \phi}{\partial y} = -v$	(762) (763) (764)	1003 1004 1005
979 980 981 982 983 984 985		$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ $\frac{\partial}{\partial x} (\frac{\partial v}{\partial x}) = \frac{\partial}{\partial x} (-\frac{\partial u}{\partial y})$ $\frac{\partial^2 v}{\partial x^2} = -\frac{\partial^2 u}{\partial x \partial y}$ Laplace equation: Analytic fun(v) 2 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$	(745) (746) (747) nctions (748)	$\frac{\partial \phi}{\partial x} = -u$ $\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial (-u)}{\partial x}$ $\frac{\partial \phi}{\partial y} = -v$ $\frac{\partial^2 \phi}{\partial y^2} = \frac{\partial (-v)}{\partial y}$	(762)(763)(764)(765)	1004 1005 1006
979 980 981 982 983 984 985		$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ $\frac{\partial}{\partial x} (\frac{\partial v}{\partial x}) = \frac{\partial}{\partial x} (-\frac{\partial u}{\partial y})$ $\frac{\partial^2 v}{\partial x^2} = -\frac{\partial^2 u}{\partial x \partial y}$ Laplace equation: Analytic function: (v) 2 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ $\frac{\partial^2 v}{\partial y^2} = \frac{\partial}{\partial y} (\frac{\partial v}{\partial y})$	(745) (746) (747) nctions (748) (749)	$\frac{\partial \phi}{\partial x} = -u$ $\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial (-u)}{\partial x}$ $\frac{\partial \phi}{\partial y} = -v$ $\frac{\partial^2 \phi}{\partial y^2} = \frac{\partial (-v)}{\partial y}$ $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \frac{\partial (-u)}{\partial x} + \frac{\partial (-v)}{\partial y}$	(762)(763)(764)(765)(766)	1003 1004 1005 1006
979 980 981 982 983 984 985		$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ $\frac{\partial}{\partial x} (\frac{\partial v}{\partial x}) = \frac{\partial}{\partial x} (-\frac{\partial u}{\partial y})$ $\frac{\partial^2 v}{\partial x^2} = -\frac{\partial^2 u}{\partial x \partial y}$ Laplace equation: Analytic function (v) 2 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ $\frac{\partial^2 v}{\partial y^2} = \frac{\partial}{\partial y} (\frac{\partial v}{\partial y})$ $\frac{\partial^2 v}{\partial y^2} = \frac{\partial}{\partial y} (\frac{\partial u}{\partial x})$	(745) (746) (747) netions (748) (749) (750)	$\frac{\partial \phi}{\partial x} = -u$ $\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial (-u)}{\partial x}$ $\frac{\partial \phi}{\partial y} = -v$ $\frac{\partial^2 \phi}{\partial y^2} = \frac{\partial (-v)}{\partial y}$ $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \frac{\partial (-u)}{\partial x} + \frac{\partial (-v)}{\partial y}$ $let \rho = \frac{\partial (-u)}{\partial x} + \frac{\partial (-v)}{\partial y}$ $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = -\rho$	(762)(763)(764)(765)(766)(767)	1003 1004 1005 1006

B.24 Laplace equation: Analytic functions

(v) 3

(735)

989

990

991

(752)

B.20 Laplace equation: Analytic functions

(u) 2

964

965

$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial u^2}$ (769)1011 $U = -q \int_{-r}^{r} \frac{\partial (\mathbf{v} \cdot \mathbf{A})}{\partial r} dr$ (784)1032 $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = -\rho$ (770)1012 $\int_{-r}^{r} \frac{\partial (\mathbf{v} \cdot \mathbf{A})}{\partial r} dr = \mathbf{v} \cdot \mathbf{A}(r) - \mathbf{v} \cdot \mathbf{A}(\infty) \quad (785)$ 1033 $-\rho = 0$ (771)1013 $U = -a(\mathbf{v} \cdot \mathbf{A}(r) - \mathbf{v} \cdot \mathbf{A}(\infty))$ (786)1034 $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$ (772)1014 $U = -q\mathbf{v} \cdot \mathbf{A}(r) + q\mathbf{v} \cdot \mathbf{A}(\infty)$ (787)1035 $\nabla^2 \phi = 0$ (773)1015 1016 **B.28 Lorentz force: Potential energy** $assuming \mathbf{v} \cdot \mathbf{A}(\infty) = 0, then U = -q \mathbf{v} \cdot \mathbf{A}(r)$ derivation from vector potential (788)1036 $\mathbf{F} = q(\nabla(\mathbf{v} \cdot \mathbf{A}) - \frac{d\mathbf{A}}{dt})$ (774)1018 **Lorentz force: Derivation of classical** 1037 Lagrangian of EM field $U = -\int_{-r}^{r} \mathbf{F} \cdot d\mathbf{r}$ $V = q\phi - q\dot{\mathbf{r}} \cdot \mathbf{A}$ (789)1039 (775)1019 $q\phi = V + q\dot{\mathbf{r}} \cdot \mathbf{A}$ (790)1040 $U = -q \int_{-\infty}^{r} (\nabla (\mathbf{v} \cdot \mathbf{A}) - \frac{d\mathbf{A}}{dt}) \cdot d\mathbf{r}$ 1020 (776) $T = \frac{m}{2} \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}$ (791)1041 L = T - V(792)1042 $U = -q \int_{-\pi}^{r} \nabla(\mathbf{v} \cdot \mathbf{A}) \cdot d\mathbf{r} + q \int_{-\pi}^{r} \frac{d\mathbf{A}}{dt} \cdot d\mathbf{r}$ (777) 1021 $L = \frac{m}{2}\dot{\mathbf{r}}\cdot\dot{\mathbf{r}} - (q\phi - q\dot{\mathbf{r}}\cdot\mathbf{A})$ (793)1043 $U = -q \int^r \nabla(\mathbf{v} \cdot \mathbf{A}) \cdot d\mathbf{r}$ (778)1022 $L = \frac{m}{2}\dot{\mathbf{r}} \cdot \dot{\mathbf{r}} + q\dot{\mathbf{r}} \cdot \mathbf{A} - q\phi$ (794)1044 **B.29 Lorentz force: Potential energy** 1023 **B.32 Lorentz force: Derivation of classical** 1045 derivation from vector potential 3 1024 Lagrangian of EM field 2 $\nabla (\mathbf{v} \cdot \mathbf{A}) \cdot \hat{\mathbf{r}} = \frac{\partial (\mathbf{v} \cdot \mathbf{A})}{\partial r}$ $L = \frac{m}{2}\dot{\mathbf{r}}\cdot\dot{\mathbf{r}} + q\dot{\mathbf{r}}\cdot\mathbf{A} - q\phi$ (795)1047 (779)1025 $\dot{\mathbf{r}} = (\dot{x}, \dot{y}, \dot{z})$ (796)1048 $d\mathbf{r} = \hat{\mathbf{r}}dr$ (780) $\frac{m}{2}\dot{\mathbf{r}}\cdot\dot{\mathbf{r}} = \frac{m}{2}(\dot{x},\dot{y},\dot{z})\cdot(\dot{x},\dot{y},\dot{z})$ (797)1049 $\int_{-\infty}^{r} \frac{\partial (\mathbf{v} \cdot \mathbf{A})}{\partial r} dr = \int_{-\infty}^{r} \nabla (\mathbf{v} \cdot \mathbf{A}) \cdot d\mathbf{r}$ (781)1027 $q\dot{\mathbf{r}}\cdot\mathbf{A}=q(\dot{x},\dot{y},\dot{z})\cdot(A_x,A_y,A_z)$ (798)1050 $U = -q \int^r \nabla (\mathbf{v} \cdot \mathbf{A}) \cdot d\mathbf{r}$ (782)1028

Lorentz force: Potential energy

derivation from vector potential 4

1030

1031

1051

Laplace equation: Electrostatics 3

1010

1029

 $U = -q \int_{-r}^{r} \frac{\partial (\mathbf{v} \cdot \mathbf{A})}{\partial r} dr$

 $L = \frac{m}{2}(\dot{x}, \dot{y}, \dot{z}) \cdot (\dot{x}, \dot{y}, \dot{z}) + q(\dot{x}, \dot{y}, \dot{z}) \cdot (A_x, A_y, A_z) - q\phi$

Lorentz force: Derivation of Lorentz force from classical Lagrangian (LHS) 4

$$dA_{x} = \frac{\partial A_{x}}{\partial t}dt + \frac{\partial A_{x}}{\partial x}dx + \frac{\partial A_{x}}{\partial y}dy + \frac{\partial A_{x}}{\partial z}dz$$
(800)

$$\frac{dx}{dt} = \dot{x} \tag{801}$$

$$\frac{dy}{dt} = \dot{y} \tag{802}$$

$$dx = \dot{x}dt \tag{803}$$

$$dy = \dot{y}dt \tag{804}$$

$$dA_{x} = \frac{\partial A_{x}}{\partial t}dt + \frac{\partial A_{x}}{\partial x}\dot{x}dt + \frac{\partial A_{x}}{\partial y}\dot{y}dt + \frac{\partial A_{x}}{\partial z}\dot{z}dt$$
(805)

$$\frac{dA_x}{dt} = \frac{\partial A_x}{\partial t} + \frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_x}{\partial y}\dot{y} + \frac{\partial A_x}{\partial z}\dot{z}$$
 (806)

Lorentz force: Derivation of Lorentz B.34 force from classical Lagrangian (LHS) 5

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} = m\frac{d}{dt}\dot{x} + q\frac{d}{dt}A_x \tag{807}$$

$$\frac{d}{dt}\dot{x} = \ddot{x} \tag{808}$$

$$m\frac{d}{dt}\dot{x} = m\ddot{x} \tag{809}$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} = m\ddot{x} + q\frac{d}{dt}A_x \tag{810}$$

$$\frac{d}{dt}A_x = \frac{\partial A_x}{\partial t} + \frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_x}{\partial y}\dot{y} + \frac{\partial A_x}{\partial z}\dot{z}$$
(811)

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} = m\ddot{x} + q\left(\frac{\partial A_x}{\partial t} + \frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_x}{\partial y}\dot{y} + \frac{\partial A_x}{\partial z}\dot{z}\right) \qquad F_x = qE_x + q\left(\dot{y}\left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) - \dot{z}\left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right)\right) \tag{827}$$

Lorentz force: Derivation of Lorentz force from classical Lagrangian (RHS) 2

$$\frac{\partial L}{\partial x} = q \frac{\partial}{\partial x} (\dot{x} A_x + \dot{y} A_y + \dot{z} A_z) - q \frac{\partial}{\partial x} \phi$$
 (813)

$$I = \frac{\partial}{\partial x}(\dot{x}A_x + \dot{y}A_y + \dot{z}A_z) \tag{814}$$

$$\frac{\partial}{\partial x}(\dot{x}A_x+\dot{y}A_y+\dot{z}A_z) = \frac{\partial A_x}{\partial x}\dot{x}+\frac{\partial A_y}{\partial x}\dot{y}+\frac{\partial A_z}{\partial x}\dot{z} \tag{815}$$

$$q\frac{\partial}{\partial x}(\dot{x}A_x+\dot{y}A_y+\dot{z}A_z)=q(\frac{\partial A_x}{\partial x}\dot{x}+\frac{\partial A_y}{\partial x}\dot{y}+\frac{\partial A_z}{\partial x}\dot{z}) \tag{816}$$

$$\frac{\partial L}{\partial x} = q(\frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_y}{\partial x}\dot{y} + \frac{\partial A_z}{\partial x}\dot{z}) - q\frac{\partial}{\partial x}\phi \quad (817)$$

Lorentz force: Derivation of x component of electric field

$$\mathbf{E} = -\nabla\phi - \frac{\partial\mathbf{A}}{\partial t} \tag{818}$$

$$\nabla \phi = (\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}) \tag{819}$$

$$\mathbf{E} = -((\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}) - \frac{\partial}{\partial t}(A_x, A_y, A_z)) \tag{820}$$

$$\mathbf{E} \cdot (1, 0, 0) = -((\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}) - \frac{\partial}{\partial t} (A_x, A_y, A_z)) \cdot (1, 0, 0)$$
(821)

B.37 Lorentz force: Derivation of Lorentz force from classical Lagrangian 4

$$(\dot{\mathbf{r}} \times (\nabla \times \mathbf{A}))_x = \dot{y}(\nabla \times \mathbf{A})_z - \dot{z}(\nabla \times \mathbf{A})_y$$
 (822)

$$(\nabla \times \mathbf{A})_y = \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}$$
 (823)

$$(\nabla \times \mathbf{A})_z = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}$$
 (824)

$$\dot{y}(\nabla \times \mathbf{A})_z - \dot{z}(\nabla \times \mathbf{A})_y = \dot{y}(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}) - \dot{z}(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x})$$
(825)

$$F_x = qE_x + q(\dot{\mathbf{r}} \times (\nabla \times \mathbf{A}))_x \tag{826}$$

$$F_x = qE_x + q(\dot{y}(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}) - \dot{z}(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x})) \tag{827}$$

$\nabla \times (\nabla \times \mathbf{B}) = \mu_0 \varepsilon_0 \frac{\partial}{\partial t} (\nabla \times \mathbf{E})$ (848)1121 $qE_x = q\mathbf{E} \cdot \hat{\mathbf{x}}$ (833)1097 $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $q(\dot{\mathbf{r}} \times \mathbf{B})_x = q(\dot{\mathbf{r}} \times \mathbf{B}) \cdot \hat{\mathbf{x}}$ (834)1098 (849)1122 $\mathbf{F} \cdot \hat{\mathbf{x}} = q\mathbf{E} \cdot \hat{\mathbf{x}} + q(\dot{\mathbf{r}} \times \mathbf{B}) \cdot \hat{\mathbf{x}}$ (835)1099 $\mu_0 \varepsilon_0 \frac{\partial}{\partial t} (\nabla \times \mathbf{E}) = -\mu_0 \varepsilon_0 \frac{\partial}{\partial t} \frac{\partial \mathbf{B}}{\partial t}$ (850)1123 **B.39** 1100 **Electromagnetic wave equation: The** origin of the electromagnetic wave 1101 equation in 2 1102 $\mu_0 \varepsilon_0 \frac{\partial}{\partial t} \frac{\partial \mathbf{B}}{\partial t} = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2}$ $\nabla\times(\nabla\times\mathbf{E}) = -\frac{\partial}{\partial t}(\nabla\times\mathbf{B})$ (851)1124 (836)1103 $\nabla \times \mathbf{B} = \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$ $\nabla \times (\nabla \times \mathbf{B}) = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2}$ 1104 (837)(852)1125 **B.42** Electromagnetic wave equation: The 1126 $-\frac{\partial}{\partial t}(\nabla \times \mathbf{B}) = -\frac{\partial}{\partial t}(\mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t})$ origin of the electromagnetic wave 1127 (838)1105 equation in 3 1128 $\nabla \times (\nabla \times \mathbf{B}) = \nabla(\nabla \cdot \mathbf{B}) - \nabla^2 \mathbf{B}$ (853)1129 $-\frac{\partial}{\partial t}(\mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}) = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$ (839)1106 $\nabla \cdot \mathbf{B} = 0$ (854)1130 $\nabla \times (\nabla \times \mathbf{E}) = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$ (840)1107 **Electromagnetic wave equation: The** 1108 $\nabla \times (\nabla \times \mathbf{B}) = \nabla(0) - \nabla^2 \mathbf{B}$ (855)1131 origin of the electromagnetic wave 1109 equation in 3 1110 $\nabla \times (\nabla \times \mathbf{E}) = \nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E}$ (841)1111 $\nabla \times (\nabla \times \mathbf{B}) = -\nabla^2 \mathbf{B}$ (856)1132

(828)

(829)

(830)

(831)

(832)

B.41

 $\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} = \nabla \times (\nabla \times \mathbf{E})$

 $\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} = -\nabla^2 \mathbf{E}$

 $\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} - \nabla^2 \mathbf{E} = 0$

Electromagnetic wave equation: The

origin of the electromagnetic wave

 $\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} = \nabla \times (\nabla \times \mathbf{B})$

 $\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} - \nabla^2 \mathbf{B} = 0$

(857)

(858)

1133

1134

equation in 2

(845)

(846)

(847)

1115

1116

1117

1118

1119

1120

B.38

1090

1091

1092

1093

1094

1095

1096

1112

1113

1114

Lorentz force: Derivation of Lorentz

force from classical Lagrangian 5

 $\mathbf{B} = \nabla \times \mathbf{A}$

 $F_x = qE_x + q(\dot{\mathbf{r}} \times \mathbf{B})_x$

 $F_x = \mathbf{F} \cdot \hat{\mathbf{x}}$

 $E_x = \mathbf{E} \cdot \hat{\mathbf{x}}$

 $\nabla \cdot \mathbf{E} = 0$

 $\nabla(\nabla \cdot \mathbf{E}) = \nabla(0)$

 $\nabla \times (\nabla \times \mathbf{E}) = -\nabla^2 \mathbf{E}$

 $F_x = qE_x + q(\dot{\mathbf{r}} \times (\nabla \times \mathbf{A}))_x$

(842)

(843)

(844)

$\sigma_x^2 = \int_0^\infty x^2 \cdot |\psi(x)|^2 dx$ **B.44** Ampere's circuital law: Proof of (881)1165 equivalence 4 $\frac{1}{u_0}(\nabla \times \mathbf{B}) = \mathbf{J}_f + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}_P + \mathbf{J}_M$ $\sigma_x^2 = \langle f | f \rangle$ (882)1166 **Uncertainty principle: Kennard B.47** 1167 $\mathbf{J}_b = \mathbf{J}_P + \mathbf{J}_M$ (866)inequality proof part 2.2 1168 $\frac{dv}{dy} = e^{\frac{-ip\chi}{\hbar}}$ (883)1169 $\frac{1}{\mu_0}(\nabla \times \mathbf{B}) = \mathbf{J}_f + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}_b$ (867) $v = \int e^{\frac{-ip\chi}{\hbar}} d\chi$ (884)1170 $\mathbf{J} = \mathbf{J}_f + \mathbf{J}_b$ (868) $v = \frac{\hbar}{-in} \int e^{\frac{-ip\chi}{\hbar}} d\chi$ 1148 (885)1171 $\frac{1}{\mu_0}(\nabla \times \mathbf{B}) = \mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$ $v = \frac{\hbar}{-in}e^{\frac{-ip\chi}{\hbar}} + C$ (869)1149 (886)1172 **Uncertainty principle: Kennard** $v = \frac{\hbar}{-ip}e^b + C$ inequality proof part 1.1 (887)1151 1173 $\sigma_r^2 = \langle x^2 \rangle - \langle x \rangle^2$ (870)1152 **B.48 Uncertainty principle: Kennard** 1174 inequality proof part 2.3 1175 $\langle x \rangle = \int_{-\infty}^{\infty} x \cdot p(x) dx$ (871)1153 $u = \psi(\chi)$ (888)1176 $p(x) = |\psi(x)|^2$ $v = -\frac{\hbar}{im}e^b$ (872)1154 (889)1177

(859)

(860)

(861)

(862)

 $\langle x^2 \rangle = \int_0^\infty x^2 \cdot |\psi(x)|^2 dx$

 $\sigma_r^2 = \langle x^2 \rangle - \langle x \rangle^2$

 $\sigma_x^2 = \int_0^\infty x^2 \cdot |\psi(x)|^2 dx - (\int_0^\infty x \cdot |\psi(x)|^2 dx)^2$

Uncertainty principle: Kennard

inequality proof part 1.4

 $f^*(x) \cdot f(x) = x^2 \cdot (\psi^*(x) \cdot \psi(x))$

 $x^2 \cdot (\psi^*(x) \cdot \psi(x)) = x^2 \cdot |\psi(x)|^2$

 $\int_{-\infty}^{\infty} f^*(x) \cdot f(x) dx = \int_{-\infty}^{\infty} x^2 \cdot |\psi(x)|^2 dx \quad (880)$

 $uv = \psi(\chi) \frac{\hbar}{-in} e^b$

 $uv = \psi(\chi) \frac{\hbar}{-in} e^{\frac{-ip\chi}{\hbar}}$

(875)

(876)

(878)

(879)

(890)

(891)

1178

1179

1157

1158

1159

1160

1161

1162

1163

1164

Ampere's circuital law: Proof of

 $\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$

 $\frac{\partial \mathbf{D}}{\partial t} = \frac{\partial}{\partial t} (\varepsilon_0 \mathbf{E} + \mathbf{P})$

 $\nabla \times \frac{1}{\mu_0} \mathbf{B} = \nabla \times \mathbf{H} + \mathbf{J}_M$

 $\nabla \times \frac{1}{u_0} \mathbf{B} = \mathbf{J}_f + \frac{\partial}{\partial t} (\varepsilon_0 \mathbf{E} + \mathbf{P}) + \mathbf{J}_M$ (863)

 $\nabla \times \frac{1}{u_0} \mathbf{B} = \mathbf{J}_f + \frac{\partial}{\partial t} \varepsilon_0 \mathbf{E} + \frac{\partial}{\partial t} \mathbf{P} + \mathbf{J}_M \quad (864)$

 $\langle x \rangle = \int_{-\infty}^{\infty} x \cdot |\psi(x)|^2 dx$

 $\left\langle x^2 \right\rangle = \int_{-\infty}^{\infty} x^2 \cdot p(x) dx$

 $\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial}{\partial t} (\varepsilon_0 \mathbf{E} + \mathbf{P})$

equivalence 2

1135

1139

1140

1141

1142

1155

1156

(873)

(874)

B.52 Uncertainty principle: Kennard 1206 inequality proof part 3.2 1207 $(uv)\Big|^{\infty} = 0 - uv(-\infty)$ $\tilde{g}^*(p) \cdot \tilde{g}(p) = p^2 \varphi^*(p) \cdot \varphi(p)$ (898)1188 (912)1208 $\varphi^*(p) \cdot \varphi(p) = |\varphi(p)|^2$ (913)1209 $(uv)\Big|^{\infty} = 0$ (899) $p^2 \varphi^*(p) \cdot \varphi(p) = p^2 |\varphi(p)|^2$ (914)1210 **B.50 Uncertainty principle: Kennard** 1190 inequality proof part 2.5 $\tilde{q}^*(p) \cdot \tilde{q}(p) = p^2 |\varphi(p)|^2$ 1191 (915)1211 $I = (uv) \Big|_{\infty} - \int_{-\infty}^{\infty} v \frac{du}{dx} dx$ (900)1192 $|\tilde{a}(p)|^2 = p^2 |\varphi(p)|^2$ (916)1212 **B.53 Uncertainty principle: Kennard** 1213 inequality proof part 3.3 $(uv)\Big|^{\infty} = 0$ 1214 (901)1193 $\sigma_p^2 = \int_{-\infty}^{\infty} p^2 |\varphi(p)|^2 dp$ (917)1215 $I = -\int_{-\infty}^{\infty} v \frac{du}{dx} d\chi$ $|\tilde{q}(p)|^2 = p^2 |\varphi(p)|^2$ (902)(918)1194 1216 $\int_{-\infty}^{\infty} |\tilde{g}(p)|^2 dp = \int_{-\infty}^{\infty} |g(x)|^2 dx$ $\frac{du}{d\chi} = \frac{d\psi(\chi)}{d\gamma}$ (919)1217 (903)1195 $\sigma_p^2 = \int_0^\infty |\tilde{g}(p)|^2 dp$ (920)1218 $I = -\int_{-\infty}^{\infty} v \frac{d\psi(\chi)}{d\chi} d\chi$ (904)1196 $\sigma_p^2 = \int_{-\infty}^{\infty} |g(x)|^2 dx$ (921)1219 $I = \frac{\hbar}{in} \int_{-\infty}^{\infty} \frac{d\psi(\chi)}{d\chi} e^{\frac{-ip\chi}{\hbar}} d\chi$ (905)1197

Uncertainty principle: Kennard

 $g(x) = \frac{\hbar}{2\pi i} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d\psi(\chi)}{d\nu} e^{i(x-\chi)b} d\chi db$

 $g(x) = \frac{\hbar}{2\pi i} \int_{-\infty}^{\infty} \frac{d\psi(\chi)}{d\chi} \int_{-\infty}^{\infty} e^{i(x-\chi)b} db d\chi$

inequality proof part 2.9

 $\int_{-\infty}^{\infty} e^{i(x-\chi)b} db = 2\pi\delta(x-\chi)$

 $g(x) = \frac{\hbar}{2\pi i} \int_{-\infty}^{\infty} \frac{d\psi(\chi)}{d\chi} 2\pi \delta(x - \chi) d\chi$

 $g(x) = \frac{\hbar}{i} \int_{-\infty}^{\infty} \frac{d\psi(\chi)}{d\chi} \delta(x - \chi) d\chi$

 $g(x) = \frac{\hbar}{i} \left(\frac{d\psi(x)}{dx} \right)$

 $\sigma_n^2 = \langle g|g\rangle$

1198

1199

1200

1201

1202

1203

1204

1205

(906)

(907)

(908)

(909)

(910)

(911)

(922)

1220

B.49

1180

1181

1182

1183

1184

1185

1186

1187

Uncertainty principle: Kennard

 $uv = \psi(\chi) \frac{\hbar}{-i\pi} e^{\frac{-ip\chi}{\hbar}}$

 $\psi(\infty) = 0$

 $uv(\infty) = \psi(\infty) \frac{\hbar}{-in} e^{\frac{-ip\infty}{\hbar}}$

 $uv(\infty) = 0 \frac{\hbar}{-in} e^{\frac{-ip\infty}{\hbar}}$

 $uv(\infty) = 0$

 $(uv)\Big|^{\infty} = uv(\infty) - uv(-\infty)$

(892)

(893)

(894)

(895)

(896)

(897)

inequality proof part 2.4

1223	$\sigma_x^2 = \langle f f angle$	(923)	$f(x) = x \cdot \psi(x)$	(937)	1243
1224	$\sigma_p^2 = \langle g g angle$	(924)	$g(x) = (-i\hbar \frac{d}{dx}) \cdot \psi(x)$	(938)	1244
	p (SIS)	,	$\langle f g\rangle = \int_{-\infty}^{\infty} f^*(x)g(x)dx$	(939)	1245
1225	$\sigma_x^2 \sigma_p^2 = \langle f f \rangle \langle g g \rangle$	(925)	$\int_{-\infty}^{\infty} (1+c)(1+c)$	\\ 7	
1226	$\sigma_x^2 \sigma_p^2 \ge raket{f g} ^2$	(926)	$\langle f g\rangle = \int_{-\infty}^{\infty} (x \cdot \psi^*(x))((-i\hbar \frac{d}{dx}) \cdot \psi(x))$	(940)	1246
1227 1228	B.55 Uncertainty principle: Kennard inequality proof part 4.3		$\langle f g\rangle = -i\hbar \int_{-\infty}^{\infty} x\psi^*(x) \frac{d\psi(x)}{dx} dx$	(941)	1247
1229	$ z ^2 = (\text{Re}(z))^2 + (\text{Im}(z))^2$	(927)	B.58 Uncertainty principle: Kennard inequality proof part 5.2		1248 1249
	(5. ()) 2. (7. ()) 2. (7. ()) 2	(2.2.0)	$f(x) = x \cdot \psi(x)$	(942)	1250
1230	$(\text{Re}(z))^2 + (\text{Im}(z))^2 \ge (\text{Im}(z))^2$	(928)	$g^*(x) = \psi^*(x) \cdot (-i\hbar \frac{d}{dx})$	(943)	1251
1231	$ z ^2 \ge (\operatorname{Im}(z))^2$	(929)	$\langle g f\rangle = \int_{-\infty}^{\infty} g^*(x)f(x)dx$	(944)	1252
1232	$letz = rac{\langle f g angle - \langle g f angle}{2i}$	(930)	$\langle g f\rangle = \int_{-\infty}^{\infty} \psi^*(x)(-i\hbar \frac{d}{dx})(x\psi(x))dx$	(945)	1253
1233	$ z ^2 = \left(\frac{\langle f g\rangle - \langle g f\rangle}{2i}\right)^2$	(931)	$\langle g f\rangle = -i\hbar \int_{-\infty}^{\infty} \psi^*(x) \frac{d}{dx} (x\psi(x)) dx$	(946)	1254
1234	$ z ^2 \ge \left(\frac{\langle f g\rangle - \langle g f\rangle}{2i}\right)^2$	(932)	B.59 Uncertainty principle: Kennard inequality proof part 5.6		1255 1256
1235 1236	B.56 Uncertainty principle: Kennard inequality proof part 4.4		$\langle f g\rangle - \langle g f\rangle = i\hbar \int_{-\infty}^{\infty} \psi(x) ^2 dx$	(947)	1257
1237	$\sigma_x^2 \sigma_p^2 \ge \left< f g \right> ^2$	(933)	$p(x) = \psi(x) ^2$	(948)	1258

B.57

Uncertainty principle: Kennard

 $f(x) = x \cdot \psi(x)$

inequality proof part 5.1

 $i\hbar \int_{-\infty}^{\infty} p(x)dx = i\hbar \int_{-\infty}^{\infty} |\psi(x)|^2 dx$

 $\int_{-\infty}^{\infty} p(x)dx = \frac{1}{i\hbar} (\langle f|g\rangle - \langle g|f\rangle)$

 $\int_{-\infty}^{\infty} p(x)dx = 1$

(949)

(950)

(951)

1259

1260

1261

1241

1242

B.54

1221

1222

1238

1239

Uncertainty principle: Kennard

 $|z|^2 \ge \left(\frac{\langle f|g\rangle - \langle g|f\rangle}{2i}\right)^2$

 $\sigma_x^2 \sigma_p^2 \ge |z|^2$

 $\sigma_x^2 \sigma_p^2 \ge (\frac{\langle f|g\rangle - \langle g|f\rangle}{2i})^2$

inequality proof part 4.1

(934)

(935)

(936)

1264	from Schrodinger's equation 7		16		
1265	$i\hbar \frac{\partial}{\partial t}\psi(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t) + V(x)\psi(x,t)$	$ \psi(x,t) \\ (952) $	$aa^{\dagger} - a^{\dagger}a = \frac{i}{\hbar}[\hat{p}, \hat{x}]$	(968)	1286
1266	V(x) = 0	(953)	$aa^{\dagger} - a^{\dagger}a = 1$	(969)	1287
1267	$i\hbar\frac{\partial}{\partial t}\psi(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t)$	(954)	$\left[a,a^{\dagger} ight]=1$	(970)	1288
1268	$\frac{\partial}{\partial t}\psi(x,t) = -\frac{i\hbar}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t)$	(955)	B.63 Creation and annihilation operator Ladder operators for the quantum harmonic oscillator part 1.6	l	1289 1290 1291
1269	$\hbar\omega\psi(x,t)=-\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t)$	(956)	$\hbar\omega(\frac{1}{2} + \frac{1}{\sqrt{2}}(-\frac{d^2}{dq^2} + q^2)\frac{1}{\sqrt{2}}(\frac{d^2}{dq^2} + q^2))\psi(q)$	$= E\psi(q)$ (971)	1292
1270 1271	B.61 Particle in a box: Wavefunction at velocity as a function of particle m	_	$a = \frac{1}{\sqrt{2}} \left(\frac{d^2}{dq^2} + q^2 \right)$	(972)	1293
1272	from Schrödinger's equation 8 $-\frac{\hbar^2}{2m}\frac{\partial^2\psi(x,t)}{\partial x^2} = \frac{\hbar^2k^2}{2m}\psi(x,t)$	(957)	$a^{\dagger} = \frac{1}{\sqrt{2}}(-\frac{d^2}{dq^2} + q^2)$	(973)	1294
1274	$\frac{\hbar^2 k^2}{2m} = \frac{p^2}{2m\hbar}$	(958)	$\hbar\omega(\frac{1}{2} + a^{\dagger}a)\psi(q) = E\psi(q)$	(974)	1295
1275	$\hbar\omega\psi(x,t) = -rac{\hbar}{2m}rac{\partial^2}{\partial x^2}\psi(x,t)$	(959)	$E = \hbar\omega(a^{\dagger}a + \frac{1}{2})$	(975)	1296
1276	$\hbar\omega = rac{p^2}{2m}$	(960)	B.64 Creation and annihilation operator Ladder operators for the quantum harmonic oscillator part 2		1297 1298 1299
1277	$\omega = rac{p^2}{2m\hbar}$	(961)	[q,p] = qp - pq	(976)	1300
1278 1279	B.62 Quantum harmonic oscillator: La operator method 4	ıdder	$p = -i\frac{d}{dq}$	(977)	1301
1280	$aa^{\dagger} - a^{\dagger}a = \frac{i}{\hbar}(\hat{p}\hat{x} - \hat{x}\hat{p})$	(962)	$[q, p] = q(-i\frac{d}{dq}) - (-i\frac{d}{dq})q$	(978)	1302
1281	$[\hat{p},\hat{x}]=\hat{p}\hat{x}-\hat{x}\hat{p}$ $[\hat{p},\hat{x}]=-i\hbar$	(963) (964)	$[q,p] = -iq\frac{d}{dq} + i\frac{d}{dq}q$	(979)	1303
1283	$[p,x] = -in$ $-i \cdot i = 1$	(965)	$[q,p]f(q) = -iq\frac{d}{dq}f(q) + i\frac{d}{dq}(qf(q))$	(980)	1304
1284	$rac{i}{\hbar}[\hat{p},\hat{x}]=rac{i}{\hbar}(-i\hbar)$	(966)	[q,p]f(q) = if(q)	(981)	1305
		3	1		

 $\frac{i}{\hbar}[\hat{p},\hat{x}] = 1$

(967)

1285

B.60 Particle in a box: Wavefunction angular

from Schrödinger's equation 7

velocity as a function of particle mass

1262

1263

1309		$a = \frac{1}{\sqrt{2}}(\frac{d}{dq} + q)$	(982)	$[H,a] = -\hbar\omega(aa^{\dagger} - a^{\dagger}a)a$	(999)	1335
1310		$p = -i\frac{d}{dq}$	(983)	$\left[a,a^{\dagger}\right]=aa^{\dagger}-a^{\dagger}a$	(1000)	1336
1311		$ip = -\frac{d}{dq}$	(984)	$-\hbar\omega(aa^{\dagger}-a^{\dagger}a)a = -\hbar\omega\Big[a,a^{\dagger}\Big]a$	(1001)	1337
1312		$a = \frac{1}{\sqrt{2}}(-\frac{d}{dq} + q)$	(985)		(1001)	.007
1313		$a = \frac{1}{\sqrt{2}}(ip + q)$	(986)	$-\hbar\omega\Big[a,a^{\dagger}\Big]a = -\hbar\omega a\Big[a,a^{\dagger}\Big]$	(1002)	1338
1314	B.66	Creation and annihilation opera	ators:			
1315 1316		Ladder operators for the quant harmonic oscillator part 3.2	um	$[H,a] = -\hbar\omega a \Big[a,a^\dagger\Big]$	(1003)	1339
1317		$a^{\dagger} = \frac{1}{\sqrt{2}}(-\frac{d}{dq} + q)$	(987)	$[H,a] = -\hbar\omega a$	(1004)	1340
1318		$p = -i\frac{d}{dq}$	(988)	B.69 Creation and annihilation opera Ladder operators for the quant		1341 1342
		. 1		harmonic oscillator part 5.2		1343
1319		$a^{\dagger} = \frac{1}{\sqrt{2}}(-ip + q)$	(989)	$\left[H,a^{\dagger}\right]=\hbar\omega a^{\dagger}(aa^{\dagger}-a^{\dagger}a)$	(1005)	1344
1320	B.67	Creation and annihilation opera				
1321		Ladder operators for the quant	um	$\left[a,a^{\dagger} ight]=aa^{\dagger}-a^{\dagger}a$	(1006)	1345
1322		harmonic oscillator part 3.6	(000)		(1000)	
1323		$aa^{\dagger} - a^{\dagger}a = i(pq - qp)$	(990)	$\left[a,a^{\dagger} ight]=1$	(1007)	1346
1324		[p,q] = pq - qp	(991)	B.70 Heisenberg picture: time evolut	ion 4	1347
1325		[p,q]=-i	(992)	$\frac{d}{dt}\hat{x}(t) = \frac{i}{\hbar}(\hat{H}e^{i\frac{\hat{H}t}{\hbar}}\hat{x}e^{-i\frac{\hat{H}t}{\hbar}} - e^{i\frac{\hat{H}t}{\hbar}}\hat{x}e^{-i\frac{\hat{H}t}{\hbar}}$	$-irac{\hat{H}t}{\hbar}\hat{H})$	
1326		$-i \cdot i = 1$	(993)		(1008)	1348
				$\hat{x}(t) = e^{i\frac{\hat{H}t}{\hbar}} \hat{x}e^{-i\frac{\hat{H}t}{\hbar}}$	(1009)	1349
1327		i(pq - qp) = i[p, q]	(994)			
1328		$i[p,q] = -i^2$	(995)	$\hat{H}\hat{x}(t) - \hat{x}(t)\hat{H} = \hat{H}e^{i\frac{\hat{H}t}{\hbar}}\hat{x}e^{-i\frac{\hat{H}t}{\hbar}} - e^{i\frac{\hat{H}t}{\hbar}}.$	$\hat{x}e^{-i\frac{\hat{H}t}{\hbar}}\hat{H}$ (1010)	1350
1329		$-i^2 = 1$	(996)		(1010)	1330
1330		$aa^{\dagger} - a^{\dagger}a = 1$	(997)	$\left[\hat{H}, \hat{x}(t)\right] = \hat{H}\hat{x}(t) - \hat{x}(t)\hat{H}$	(1011)	1351
ii				$\frac{d}{dt}\hat{x}(t) = \frac{i}{\hbar} \left[\hat{H}, \hat{x}(t) \right]$		

B.65 Creation and annihilation operators:

harmonic oscillator part 3.1

Ladder operators for the quantum

1306

1307

1308

B.68 Creation and annihilation operators:

harmonic oscillator part 4.2

Ladder operators for the quantum

1332

1333

Heisenberg picture: momentum 1353 evolution 4 1354 $[\hat{p}(t_1), \hat{p}(t_2)] = m\omega \hat{p}_0 \hat{x}_0 \sin(\omega t_2 - \omega t_1) - m\omega \hat{x}_0 \hat{p}_0 \sin(\omega t_2 - \omega t_1)$ (1013) $\hat{p}(t) = A\cos(\omega t) + B\sin(\omega t)$ (1027) $\frac{d}{dt}\cos(\omega t) = -\omega\sin(\omega t)$ (1014) $[\hat{p}(t_1), \hat{p}(t_2)] = (m\omega \hat{p}_0 \hat{x}_0 - m\omega \hat{x}_0 \hat{p}_0) \sin(\omega t_2 - \omega t_1)$ 1374 $\frac{d}{dt}\sin(\omega t) = \omega\cos(\omega t)$ (1015) $[\hat{p}(t_1), \hat{p}(t_2)] = i\hbar m\omega \sin(\omega t_2 - \omega t_1)$ 1375 **B.74** Vacuum Rabi Oscillations: excited state 1376 $\frac{d\hat{p}(t)}{dt} = \frac{d}{dt}(A\cos(\omega t)) + \frac{d}{dt}(B\sin(\omega t))$ (1016) 1358 probability 1377 $|\Psi(t)\rangle = \cos\left(\frac{\Omega t}{2}\right)|e,0\rangle - i\sin\left(\frac{\Omega t}{2}\right)|g,1\rangle$ $\frac{d\hat{p}(t)}{dt} = A\frac{d}{dt}\cos(\omega t) + B\frac{d}{dt}\sin(\omega t)$ 1378 1359 $\langle e, 0 | \Psi(t) \rangle = \cos\left(\frac{\Omega t}{2}\right) \langle e, 0 | e, 0 \rangle - i \sin\left(\frac{\Omega t}{2}\right) \langle e, 0 | g, 1 \rangle$ (1031) $\frac{d\hat{p}(t)}{dt} = -A\omega\sin(\omega t) + B\omega\cos(\omega t)$ 1379 1360 $\langle e, 0|e, 0\rangle = 1$ (1032)1380 **B.72** Heisenberg picture: position 1361 commutator 4 1362 $\langle e, 0|q, 1\rangle = 0$ $[\hat{x}(t_1), \hat{x}(t_2)] = \frac{1}{\omega m} (\hat{x}_0 \hat{p}_0 - \hat{p}_0 \hat{x}_0) \sin(\omega t_2 - \omega t_1)$ (1033)1381 1363 $\langle e, 0 | \Psi(t) \rangle = \cos\left(\frac{\Omega t}{2}\right)$ (1034)1382 $\hat{x}_0 \hat{p}_0 - \hat{p}_0 \hat{x}_0 = [\hat{x}_0, \hat{p}_0]$ (1020)1364 $P_e(t) = |\langle e, 0 | \Psi(t) \rangle|^2$ (1035)1383 $[\hat{x}(t_1), \hat{x}(t_2)] = \frac{1}{\omega_0} [\hat{x}_0, \hat{p}_0] \sin(\omega t_2 - \omega t_1)$ $P_e(t) = \cos^2(\frac{\Omega t}{2})$ (1036)1384 (1021)1365 **Vacuum Rabi Oscillations: ground state** 1385 $[\hat{x}_0, \hat{p}_0] = i\hbar$ (1022)1366 probability 2 1386 $P_g(t) = |\cos\left(\frac{\Omega t}{2}\right)\langle g, 1|e, 0\rangle - i\sin\left(\frac{\Omega t}{2}\right)\langle g, 1|g, 1\rangle|^2$ (1037) $[\hat{x}(t_1), \hat{x}(t_2)] = \frac{i\hbar}{\omega m} \sin(\omega t_2 - \omega t_1)$ 1387 (1023) $\langle q, 1|e, 0\rangle = 0$ (1038)1388 Heisenberg picture: momentum 1368 commutator 3 1369 $\langle g, 1|g, 1\rangle = 1$ (1039)1389 $[\hat{p}(t_1), \hat{p}(t_2)] = m\omega \hat{p}_0 \hat{x}_0 \sin(\omega t_2 - \omega t_1) + m\omega \hat{x}_0 \hat{p}_0 \sin(\omega t_1 - \omega t_2)$ 1370 $P_g(t) = |\cos\left(\frac{\Omega t}{2}\right) \cdot 0 - i\sin\left(\frac{\Omega t}{2}\right) \cdot 1|^2$ (1040) 1390 $\sin(\omega t_1 - \omega t_2) = -\sin(\omega t_2 - \omega t_1)$ (1025)1371

 $m\omega \hat{x}_0\hat{p}_0\sin(\omega t_1-\omega t_2)=-m\omega \hat{x}_0\hat{p}_0\sin(\omega t_2-\omega t_1)$

1372

 $P_g(t) = |-i\sin\left(\frac{\Omega t}{2}\right)|^2$

 $P_g(t) = \sin^2(\frac{\Omega t}{2})$

(1041)

(1042)

1391

$\frac{dg_{\varepsilon}}{d\varepsilon} = \eta(x)when\varepsilon = 0.$ $\hat{X} | x' \rangle = x' | x' \rangle$ (1049)(1065)1401 1421 **Euler-Lagrange equation: Derivation** 1422 $\langle x | \hat{X} | x' \rangle = x' \langle x | x' \rangle$ (1050)1402 $J = \int_{0}^{b} L(x, f(x), f'(x))$ (1066)1423 $\langle x | \hat{X} | x' \rangle = x' \delta(x - x')$ (1051) $g_{\varepsilon}(x) = f(x) + \varepsilon \eta(x)$ (1067)1424 $\langle \Psi | x \rangle = \langle x | \Psi \rangle^{\dagger}$ (1052)1404 $J_{\varepsilon} = \int_{-\infty}^{b} L(x, g_{\varepsilon}(x), g'_{\varepsilon}(x)) dx$ (1068)1425 $\langle \Psi | x \rangle \langle x | \hat{X} | x' \rangle = \langle x | \Psi \rangle^{\dagger} x' \delta(x - x') \quad (1053)$ 1405 $L_{\varepsilon}(x) = L(x, q_{\varepsilon}(x), q'_{\varepsilon}(x))$ (1069)1426 $\frac{dJ_{\varepsilon}}{d\varepsilon} = \frac{d}{d\varepsilon} \int_{-\infty}^{b} L_{\varepsilon}(x) dx$ $\left\langle \hat{X} \right\rangle_{\Psi} = \int \int \left\langle x | \Psi \right\rangle^{\dagger} x' \delta(x - x') \left\langle x' | \Psi \right\rangle dx dx'$ (1070)1427 (1054)1406 $\frac{dJ_{\varepsilon}}{d\varepsilon} = \int_{\varepsilon}^{b} \frac{dL_{\varepsilon}}{d\varepsilon} dx$ (1071)1428 **Expectation value: integral expression 3** 1407 $\left\langle \hat{X} \right\rangle_{\Psi} = \int \int \left\langle x | \Psi \right\rangle^{\dagger} x' \delta(x - x') \left\langle x' | \Psi \right\rangle dx dx'$ **Euler-Lagrange equation: Derivation 4** 1429 $\frac{dv}{dx} = \eta'(x)$ (1055)1408 (1072)1430 $v = \int \frac{dv}{dx} dx$ $\int \langle x|\Psi\rangle^{\dagger} x' \delta(x-x') \langle x'|\Psi\rangle dx' = \langle x|\Psi\rangle^{\dagger} x \langle x|\Psi\rangle$ (1073)(1056)1409 $v = \int \eta'(x) dx$ (1074)1432 $\left\langle \hat{X} \right\rangle_{\Psi} = \int \left\langle x | \Psi \right\rangle^{\dagger} x \left\langle x | \Psi \right\rangle dx$ (1057)1410 $v = \eta(x)$ (1075)1433

 $\langle x|\Psi\rangle = \Psi(x)$

 $\langle x|\Psi\rangle^{\dagger} = \Psi^*(x)$

 $\langle x|\Psi\rangle^{\dagger} x \langle x|\Psi\rangle = x|\Psi(x)|^2$

 $\left\langle \hat{X} \right\rangle_{\Psi} = \int x |\Psi(x)|^2 dx$

Euler-lagrange equation: Full

derivative of the perturbation

Lagrangian with respect to ε 2

 $\frac{d}{d\varepsilon}(\varepsilon\eta(x)) = \eta(x) + \varepsilon \frac{d\eta(x)}{d\varepsilon}$

 $\frac{dg_{\varepsilon}}{d\varepsilon} = \frac{d}{d\varepsilon}(\varepsilon \eta(x))$

 $\frac{dg_{\varepsilon}}{d\varepsilon} = \eta(x) + \varepsilon \frac{d\eta(x)}{d\varepsilon}$

(1058)

(1059)

(1060)

(1061)

(1062)

(1063)

(1064)

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

Expectation value: integral expression

 $\langle \Psi | \, \mathbb{I}\hat{X}\mathbb{I} \, | \Psi \rangle = \int \int \langle \Psi | x \rangle \, \langle x | \, \hat{X} \, \big| x' \big\rangle \, \big\langle x' \big| \Psi \big\rangle \, dx dx' \, \, \, \, \mathbf{B.79}$

(1043)

(1044)

(1045)

(1048)

 $\langle \hat{X} \rangle_{_{\mathcal{M}}} = \langle \Psi | \hat{X} | \Psi \rangle$

 $\hat{X} = \|\hat{X}\|$

 $\left\langle \hat{X} \right\rangle_{\Psi} = \int \int \left\langle \Psi | x \right\rangle \left\langle x | \hat{X} | x' \right\rangle \left\langle x' | \Psi \right\rangle dx dx'$

 $\left\langle \hat{X} \right\rangle_{\Psi} = \int \int \left\langle \Psi | x \right\rangle \left\langle x | \hat{X} | x' \right\rangle \left\langle x' | \Psi \right\rangle dx dx'$

Expectation value: integral expression 2

 $\left\langle \Psi\right|\hat{X}\left|\Psi\right\rangle =\left\langle \Psi\right|\left|\hat{X}\right|\left|\Psi\right\rangle$

1393

1394

1395

1396

1397

1398

1399

$\frac{d}{dx}(y'(1+y'^2)^{-\frac{1}{2}}) = C$ (1099) $\left(\frac{\partial L}{\partial f'}\eta(x)\right)\Big|^b = 0$ 1462 (1081)1440 **Euler-Lagrange equation: Derivation 6 B.83** 1441 $\int \frac{d}{dx} (y'(1+y'^2)^{-\frac{1}{2}}) dx = \int C dx$ (1100)1463 $I = \int_{-a}^{b} \frac{\partial L}{\partial f'} \eta'(x) dx$ (1082)1442 $I = (uv) \Big|_{b}^{b} - \int_{a}^{b} v \frac{du}{dx} dx$ $\int \frac{d}{dx} (y'(1+y'^2)^{-\frac{1}{2}}) dx = C$ (1083)(1101)1464 1443 **B.86** Euler-Lagrange equation: Straight line $(uv)\Big|^b = 0$ 1465 (1084) $\frac{dy}{dx} = C(1 - C^2)^{-1/2}$ (1102)1467 $I = -\int_{-\infty}^{b} v \frac{du}{dx} dx$ 1445 (1085) $C(1 - C^2)^{-1/2} = A$ (1103)1468 $\frac{\partial L}{\partial f'}\eta'(x) = v\frac{du}{dx}$ (1086)1446 $\frac{dy}{dx} = A$ (1104)1469 $\eta(x) = v$ (1087)1447 $\int dy = \int Adx$ $\frac{d}{dx}\frac{\partial L}{\partial f'} = \frac{du}{dx}$ (1105)1470 (1088)1448 $I = -\int^{b} \eta(x) \frac{d}{dx} \frac{\partial L}{\partial f'} dx$ y = Ax + C(1106)1471 (1089)**B.87 Escape velocity** 1472 **Euler-Lagrange equation: Straight line** 1450 $F = \frac{GMm}{r^2}$ (1107)1473 $S = \int^b ds$ (1090)1451 dW = Fdr(1108)1474 $ds = \sqrt{dx^2 + dy^2}$ (1091)1452 $dW = \frac{GMm}{r^2}dr$ $ds = dx\sqrt{1 + v'^2}$ (1109)1475 (1092)1453 $S = \int^b dx \sqrt{1 + y'^2}$ $W = \int dW$ (1110)(1093)1476

Euler-Lagrange equation: Straight line

 $\frac{dL}{du} - \frac{d}{dx}\frac{dL}{du'} = 0$

 $\frac{dL}{du} = 0$

 $-\frac{d}{dx}\frac{dL}{dv'} = 0$

 $\frac{dL}{du'} = C$

 $W = \int_{r_0}^{\infty} \frac{GMm}{r^2} dr$

(1111)

1477

3

(1076)

(1077)

(1078)

(1079)

(1080)

1456

1457

1458

1459

1460

1461

(1095)

(1096)

(1097)

(1098)

Euler-Lagrange equation: Derivation 5

 $u = \frac{\partial L}{\partial f'}$

 $v = \eta(x)$

n(a) = 0

 $uv = \frac{\partial L}{\partial f'} \eta(x)$

 $(uv)\Big|^b = \left(\frac{\partial L}{\partial f'}\eta(x)\right)\Big|^b$

 $S = \int^b \sqrt{(1 + y'^2)} dx$

1434

1436

1437

1439

1455

(1094)

B.88 Escape velocity 2

$$W = \int_{r_0}^{\infty} \frac{GMm}{r^2} dr \tag{1112}$$

$$F = \frac{GMm}{r^2} \tag{1113}$$

$$W = \int_{r_0}^{\infty} F dr \tag{1114}$$

$$W = Fr_0 \tag{1115}$$

$$W = mgr_0 (1116)$$

B.89 Escape velocity 3

$$W = mgr_0 (1117)$$

$$E = \frac{1}{2}mv_{esc}^2 \tag{1118}$$

$$2E = mv_{esc}^2 \tag{1119}$$

$$2mgr_0 = mv_{esc}^2 (1120)$$

$$v_{esc}^2 = 2gr_0 (1121)$$

$$v_{esc} = \sqrt{2gr_0} \tag{1122}$$

B.90 Snell's law: from Fermat's principle 2

$$\frac{dT}{dx} = \frac{x}{v_1(x^2 + a^2)^{\frac{1}{2}}} + \frac{x - l}{v_2((x - l)^2 + b^2)^{\frac{1}{2}}}$$
(1123)

$$\frac{x}{(x^2 + a^2)^{\frac{1}{2}}} = \sin \theta_1 \tag{1124}$$

$$\frac{l-x}{((x-l)^2+b^2)^{\frac{1}{2}}} = \sin\theta_2 \tag{1125}$$

$$\frac{dT}{dx} = \frac{\sin \theta_1}{v_1} - \frac{\sin \theta_2}{v_2} \tag{1126}$$

$$\frac{\sin \theta_1}{v_1} - \frac{\sin \theta_2}{v_2} = 0 \tag{1127}$$

B.91 Snell's law: from Fermat's principle 3

$$\frac{\sin \theta_1}{v_1} - \frac{\sin \theta_2}{v_2} = 0 \tag{1128}$$

$$\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2} \tag{1129}$$

$$\frac{1}{v_1} = \frac{n_1}{c} \tag{1130}$$

$$\frac{\sin \theta_1}{\frac{c}{n_1}} = \frac{\sin \theta_2}{v_2} \tag{1131}$$

$$n_1 \sin \theta_1 = v_2 \sin \theta_2 \tag{1132}$$

$$\frac{1}{v_2} = \frac{n_2}{c} \tag{1133}$$

$$n_1 \sin \theta_1 = \frac{c}{n_2} \sin \theta_2 \tag{1134}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2 \tag{1135}$$

B.92 Wave equation: plane wave eigenmodes 2

$$\frac{\partial^2 u(x,t)}{\partial t^2} = (-i\omega)\frac{\partial}{\partial t}(e^{-i\omega t}f(x))$$
 (1136)

$$i \cdot i = -1 \tag{1137}$$

$$-i\omega \cdot -i\omega = \omega^2 \tag{1138}$$

$$\omega^2 e^{-i\omega t} f(x) = \omega^2 e^{-i\omega t} f(x) \tag{1139}$$

$$-\omega^2 e^{-i\omega t} f(x) = -\omega^2 e^{-i\omega t} f(x) \qquad (1140)$$

$$-\omega^2 e^{-i\omega t} f(x) = c^2 \frac{\partial^2 u(x,t)}{\partial x^2}$$
 (1141)

B.93 Wave equation: plane wave eigenmodes 4 1514

$$u(x,t) = Ae^{-i(kx - \omega t)} + Be^{i(kx - \omega t)}$$
 (1142)

(1126)
$$u(x,t) = \int_{-\infty}^{\infty} s(\omega) (Ae^{-i(kx-\omega t)} + Be^{i(kx-\omega t)}) d\omega$$
(1143)

$$s_{+}(\omega) = As(\omega) \tag{1144}$$

 $\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u(x,t)}{\partial x^2}$

 $\frac{\partial^2}{\partial t^2} u(x+h,t) = \frac{k}{m} \left(u(x+2h,t) - 2u(x+h,t) + u(x,t) \right)$

(1175)

(1176)

1555

1556

1538

equation 2 1580 C.1 Gauss' law: equivalence between 1558 $\nabla \cdot (\phi \nabla \phi) = (\nabla \phi)^2 + \phi \nabla^2 \phi$ differential and integral forms (1192)1581 1559 $\oint_C \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\epsilon_0}$ (1177)1560 $\int_{V} \nabla \cdot (\phi \nabla \phi) dV = \int_{V} ((\nabla \phi)^{2} + \phi \nabla^{2} \phi) dV$ $Q = \iiint_V \rho dV$ (1178)1561 1582 $\frac{Q}{\varepsilon_0} = \frac{\iiint_V \rho dV}{\varepsilon_0}$ $\int_{V} \nabla \cdot (\phi \nabla \phi) dV = \int_{S} \phi \nabla \phi \cdot d\mathbf{S}$ (1179)1583 $\iint_{S} \mathbf{E} \cdot d\mathbf{A} = \iiint_{V} \frac{\rho}{\varepsilon_{0}} dV$ (1180)1563 $\int_{\mathcal{S}} \phi \nabla \phi \cdot d\mathbf{S} = \int_{V} ((\nabla \phi)^2 + \phi \nabla^2 \phi) dV \quad (1195)$ 1584 $\iiint_{V} \nabla \cdot \mathbf{E} dV = \iiint_{V} \frac{\rho}{\epsilon_{0}} dV$ (1181)1564 $\int_{S} \phi \nabla \phi \cdot d\mathbf{S} = \int_{V} (\nabla \phi)^{2} dV$ (1196)1585 C.2 Gauss' law: Equivalence of total and free 1565 charge statements 1566 Uniqueness theorem for Poisson's 1586 $\rho_b = -\nabla \cdot \mathbf{P}$ 1567 (1182)equation 6 1587 $\frac{\partial \phi}{\partial x} = 0$ (1197)1588 $\rho = -\rho_b$ (1183)1568 $\int \frac{\partial \phi}{\partial r} dr = \int 0 dr$ (1198)1589 $\rho = \nabla \cdot \mathbf{P}$ (1184) $\phi = C_1 r + C_2$ (1199)1590 $\rho = \nabla \cdot (\mathbf{D} - \mathbf{P})$ (1185)**Uniqueness theorem for Poisson's** $\phi = C_1 - C_2$ (1200)1591 equation $\nabla^2 \phi_1 = -\frac{\rho_f}{\varepsilon_0}$ (1186)Uniqueness theorem for Poisson's 1573 1592 equation 7 1593 $\phi = C_1 - C_2$ (1201)1594 $\rho_f = 0$ (1187)1574 $-\frac{\rho_f}{\varepsilon_0} = 0$ $\phi_1 = C_1$ (1202)1595 1575 (1188) $\phi_2 = C_2$ $\nabla^2 \phi_1 = 0$ (1203)1596 (1189)1576 $\phi_2 - \phi_1 = C_2 - C_1$ $\nabla^2 \phi = \nabla^2 \phi_1$ (1190)(1204)1597 1577 $\nabla^2 \phi = 0$ $\phi_2 - \phi_1 = C$ (1191)(1205)1578 1598

Uniqueness theorem for Poisson's

1579

S=2 (two premises removed)

C.7 Poisson's equation: Newtonian gravity

$$\nabla \cdot \mathbf{g} = -4\pi G \rho \tag{1206}$$

$$\mathbf{g} = -\nabla\phi \tag{1207}$$

$$\nabla \cdot (-\nabla \phi) = -4\pi G \rho \tag{1208}$$

$$-\nabla^2 \phi = -4\pi G\rho \tag{1209}$$

$$\nabla^2 \phi = 4\pi G \rho \tag{1210}$$

C.8 Poisson's equation: Gravitational potential from Poisson's equation 2

$$\int_{V} \nabla \cdot \nabla \phi dV = \int_{V} 4\pi G \rho dV \qquad (1211)$$

$$\nabla \cdot \nabla \phi = 4\pi G \rho \tag{1212}$$

$$\int_{V} \nabla \cdot \nabla \phi dV = \int_{S} \nabla \phi \cdot d\mathbf{S}$$
 (1213)

$$4\pi G \int_{V} \rho dV = 4\pi Gm \tag{1214}$$

$$\int_{S} \nabla \phi \cdot d\mathbf{S} = 4\pi G m \tag{1215}$$

C.9 Poisson's equation: Gravitational potential from Poisson's equation 6

$$\int_{S} \frac{\partial \phi}{\partial r} dS = \int_{0}^{2\pi} \int_{0}^{\pi} \frac{\partial \phi}{\partial r} r^{2} \sin \theta d\theta d\varphi \quad (1216)$$

$$\int_0^{\pi} \sin \theta d\theta = 2 \tag{1217}$$

$$\int_0^{2\pi} d\varphi = 2\pi \tag{1218}$$

$$\int_{0}^{2\pi} \int_{0}^{\pi} d\theta d\varphi = 4\pi \tag{1219}$$

$$\int_{S} \frac{\partial \phi}{\partial r} dS = 4\pi \frac{\partial \phi}{\partial r} r^2 \tag{1220}$$

C.10 Poisson's equation: Gravitational potential from Poisson's equation 8

$$\frac{\partial \phi}{\partial r} = \frac{Gm}{r^2} \tag{1221}$$

$$\int \frac{\partial \phi}{\partial r} dr = \int \frac{Gm}{r^2} dr \qquad (1222)$$

$$\phi(r) - \phi(c) = -Gm \int \frac{1}{r} dr \qquad (1223)$$

$$\phi(r) - \phi(c) = -Gm \ln |r| + C \qquad (1224)$$

$$\phi(r) = -Gm \ln|r| + C + \phi(c)$$
 (1225)

$$\phi(r) = \frac{-Gm}{r} + C, where C is the constant of integration.$$
(1226) 1626

C.11 Poisson's equation: Electrostatics

$$\nabla \cdot \mathbf{D} = \rho_f \tag{1227}$$

$$\mathbf{D} = \varepsilon \nabla \phi \tag{1228}$$

$$\nabla \cdot (\varepsilon \nabla \phi) = \rho_f \tag{1229}$$

$$\varepsilon \nabla^2 \phi = -\rho_f \tag{1230}$$

$$\nabla^2 \phi = -\frac{\rho_f}{\varepsilon} \tag{1231}$$

C.12 Poisson's equation: Electrostatic potential from Poisson's equation

$$\nabla^2 \phi = -\frac{\rho_f}{\varepsilon} \tag{1232}$$

$$\int_{V} \nabla^{2} \phi dV = -\frac{1}{\varepsilon} \int_{V} \rho_{f} dV \qquad (1233)$$

$$\int_{V} \nabla \cdot \nabla \phi dV = -\frac{1}{\varepsilon} \int_{V} \rho_{f} dV \qquad (1234)$$

$$\int_{V} \nabla \cdot \nabla \phi dV = -\frac{Q}{\varepsilon} \tag{1235}$$

 $\int_{\mathcal{C}} \nabla \phi \cdot d\mathbf{S} = -\frac{Q}{\varepsilon}$ (1239)1644 $\mathbf{F} = \iiint (\rho \mathbf{E} + \mathbf{J} \times \mathbf{B}) dV$ (1255)1666 $\int_{S} \frac{\partial \phi}{\partial r} dS = -\frac{Q}{S}$ Lorentz force: Lorentz force in terms of 1667 (1240)1645 potentials 1668 $\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}$ Poisson's equation: Electrostatic 1646 (1256)1669 potential from Poisson's equation 4 $\int_{-\infty}^{r} \frac{\partial \phi}{\partial r} dr = \int_{-\infty}^{r} -\frac{Q}{4\pi \varepsilon r^2} dr$ $q\mathbf{E} = q(-\nabla\phi - \frac{\partial\mathbf{A}}{\partial t})$ 1648 (1241)(1257)1670 $\frac{\partial \phi}{\partial r} = -\frac{Q}{4\pi \varepsilon r^2}$ $q\mathbf{E} + q\nabla(\mathbf{v} \cdot \mathbf{A}) = q(-\nabla\phi - \frac{\partial \mathbf{A}}{\partial t} + \nabla(\mathbf{v} \cdot \mathbf{A}))$ (1242)1649 1671 $\phi(r) - \phi(\infty) = -\frac{Q}{4\pi\varepsilon} \int_{-\infty}^{r} \frac{1}{r^2} dr$ $q\mathbf{E} + q\nabla(\mathbf{v}\cdot\mathbf{A}) - q(\mathbf{v}\cdot\nabla)\mathbf{A} = q(-\nabla\phi - \frac{\partial\mathbf{A}}{\partial t} + \nabla(\mathbf{v}\cdot\mathbf{A}) - (\mathbf{v}\cdot\nabla)\mathbf{A})$ (1259)
1672 (1243)1650 $\phi(r) - \phi(\infty) = \frac{Q}{4\pi\varepsilon} \left[\frac{1}{r}\right]^r$ (1244)1651 $\mathbf{F} = q(-\nabla\phi - \frac{\partial\mathbf{A}}{\partial t} + \nabla(\mathbf{v}\cdot\mathbf{A}) - (\mathbf{v}\cdot\nabla)\mathbf{A}) \quad (1260)$ 1673 $\phi(r) - \phi(\infty) = \frac{Q}{4\pi\varepsilon r}$ 1652 (1245)C.18 **Lorentz force: Potential energy** 1674 derivation from scalar potential 3 1675 $U = q \int_{-r}^{r} \nabla \phi \cdot d\mathbf{r}$ $\phi(r) = \frac{Q}{4\pi\epsilon r}$ (1261)(1246)1676 1653 **Lorentz force: continuous charge** $\nabla \phi = \frac{d\phi}{d\pi}$ 1654 (1262)1677 distribution 1655 $\frac{d\mathbf{F}}{d\mathbf{V}} = \frac{dq}{d\mathbf{V}}(\mathbf{E} + \mathbf{v} \times \mathbf{B})$ $U = q \int_{-r}^{r} \frac{d\phi}{dr} \cdot d\mathbf{r}$ (1247)1656 (1263)1678 $\frac{d\mathbf{F}}{d\mathbf{V}} = \rho(\mathbf{E} + \mathbf{v} \times \mathbf{B})$ $U = q[\phi(r) - \phi(\infty)]$ (1264)(1248)1679 1657 $U = a\phi(r) - a\phi(\infty)$ (1265) $\mathbf{F} = \rho V(\mathbf{E} + \mathbf{v} \times \mathbf{B})$

(1236)

(1237)

(1238)

Lorentz force: continuous charge

 $\mathbf{f} = \rho \mathbf{E} + \rho \mathbf{v} \times \mathbf{B}$

 $J = \rho v$

 $\mathbf{f} = \rho \mathbf{E} + \mathbf{J} \times \mathbf{B}$

 $\mathbf{F} = \iiint \mathbf{f} dV$

distribution 2

1660

1661

1662

1663

1664

1665

1681

(1251)

(1252)

(1253)

(1254)

Poisson's equation: Electrostatic

 $\int_{\mathbb{R}^2} \nabla \cdot \nabla \phi dV = -\frac{Q}{\epsilon}$

 $\nabla \cdot \nabla \phi = \nabla^2 \phi$

 $\int_{\mathcal{M}} \nabla^2 \phi dV = -\frac{Q}{\varepsilon}$

potential from Poisson's equation 2

1639

1640

1641

1642

1643

1658

1659

 $assuming \phi(\infty) = 0, then U = q\phi(r)$

(1249)

(1250)

 $\mathbf{f} = \rho \mathbf{E} + \rho \mathbf{v} \times \mathbf{B}$

1682 1683	C.19	Laplace equation: Analytic func	etions	C.23	Laplace equation: Analytic function (v) 2	ctions	1707 1708
1684		$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$	(1267)		$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$	(1284)	1709
1685		$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right)$	(1268)		$\frac{\partial}{\partial y}\frac{\partial u}{\partial x} = \frac{\partial}{\partial y}\frac{\partial v}{\partial y}$	(1285)	1710
1686		$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial y} \right)$	(1269)		$\frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 v}{\partial y^2}$	(1286)	1711
1687		$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y}$	(1270)	C.24	Laplace equation: Analytic function (v) 3	etions	1712 1713
1688 1689	C.20	Laplace equation: Analytic function (u) 2	etions		$\frac{\partial^2 v}{\partial x^2} = -\frac{\partial^2 u}{\partial x \partial y}$	(1287)	1714
1690		$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$	(1271)		$\frac{\partial^2 v}{\partial u^2} = \frac{\partial^2 u}{\partial x \partial y}$	(1288)	1715
1691		$\frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} \right) = \frac{\partial}{\partial y} \left(-\frac{\partial u}{\partial y} \right)$	(1272)		$\nabla^2 v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial u^2}$	(1289)	1716
1692		$\frac{\partial^2 v}{\partial y \partial x} = -\frac{\partial^2 u}{\partial y^2}$ $\frac{\partial^2 v}{\partial y^2} = \frac{\partial^2 v}{\partial y^2}$	(1273)		$\nabla^2 v = -\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial x \partial y}$	(1290)	1717
1693		$\frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial y \partial x}$	(1274)		$\nabla^2 v = 0$	(1291)	1718
1694 1695	C.21	Laplace equation: Analytic func (u) 3	etions	C.25	Laplace equation: Electrostatic		1719
1696		$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y}$	(1275)	0,20	$\mathbf{E} = (u, v)$	(1292)	1720
1697		$\frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 v}{\partial y \partial x}$	(1276)		$\frac{\partial \mathbf{E}}{\partial x} = \frac{\partial u}{\partial x}$	(1293)	1721
1698		$\frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial y \partial x} - \frac{\partial^2 v}{\partial x \partial y}$	(1277)		$rac{\partial \mathbf{E}}{\partial y} = rac{\partial v}{\partial y}$	(1294)	1722
1699		$\frac{\partial^2 u}{\partial u^2} - \frac{\partial^2 u}{\partial x^2} = 0$	(1278)		$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \rho$	(1295)	1723
		- <i>9</i>		C.26	Laplace equation: Electrostatic	s 2	1724
1700		$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$	(1279)		$\frac{\partial \phi}{\partial x} = -u$	(1296)	1725
1701	C 22	$\nabla^2 u = 0$	(1280)		$\frac{\partial^2 \phi}{\partial x^2} = -\frac{\partial u}{\partial x}$	(1297)	1726
1702 1703	C.22	Laplace equation: Analytic func (v)	ctions				
1704		$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$	(1281)		$\frac{\partial^2 \phi}{\partial y^2} = 0$	(1298)	1727
1705		$\frac{\partial^2 v}{\partial x^2} = -\frac{\partial}{\partial x} \frac{\partial u}{\partial y}$	(1282)		$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = -\frac{\partial u}{\partial x} + 0$	(1299)	1728
1706		$\frac{\partial^2 v}{\partial x^2} = -\frac{\partial^2 u}{\partial x \partial y}$	(1283)		$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = -\rho$	(1300)	1729

1737	derivation from vector potential	$L = \frac{m}{2}\dot{\mathbf{r}}\cdot\dot{\mathbf{r}} + q\dot{\mathbf{r}}\cdot\mathbf{A} - q\phi \tag{1322}$	1760
1738	$\mathbf{F} = q(\nabla(\mathbf{v} \cdot \mathbf{A}) - \frac{d\mathbf{A}}{dt}) \tag{1306}$	2	
		C.32 Lorentz force: Derivation of classical Lagrangian of EM field 2	1761 1762
1739	$\mathbf{F} = -\nabla U \tag{1307}$		
	$I = \int_{-r}^{r} \mathbf{F} \cdot \mathbf{I} $ (1209)	$L = \frac{m}{2}\dot{\mathbf{r}} \cdot \dot{\mathbf{r}} + q\dot{\mathbf{r}} \cdot \mathbf{A} - q\phi \tag{1323}$	1763
1740	$U = -\int_{\infty}^{T} \mathbf{F} \cdot d\mathbf{r} \tag{1308}$	$\dot{\mathbf{r}} = (\dot{x}, \dot{y}, \dot{z}) \tag{1324}$	1764
1741	$U = -q \int_{\infty}^{r} \nabla(\mathbf{v} \cdot \mathbf{A}) \cdot d\mathbf{r} $ (1309)	$\mathbf{I} = (x, y, z) \tag{1324}$	1704
1742	C.29 Lorentz force: Potential energy	$\mathbf{A} = (A_x, A_y, A_z) \tag{1325}$	1765
1743	derivation from vector potential 3		
1744	$\nabla(\mathbf{v}\cdot\mathbf{A})\cdot\hat{\mathbf{r}} = \frac{\partial(\mathbf{v}\cdot\mathbf{A})}{\partial r} $ (1310)	$\frac{m}{2}\dot{\mathbf{r}}\cdot\dot{\mathbf{r}} = \frac{m}{2}(\dot{x},\dot{y},\dot{z})\cdot(\dot{x},\dot{y},\dot{z}) $ (1326)	1766
	$-q \int_{-r}^{r} \nabla (\mathbf{v} \cdot \mathbf{A}) \cdot \hat{\mathbf{r}} dr = -q \int_{-r}^{r} \frac{\partial (\mathbf{v} \cdot \mathbf{A})}{\partial r} dr$		
1745	$\int_{\infty} \sqrt{(r-12)} \int_{\infty} dr \frac{\partial r}{\partial r} \frac{\partial r}{\partial r} $ (1311)	$q\dot{\mathbf{r}} \cdot \mathbf{A} = q(\dot{x}, \dot{y}, \dot{z}) \cdot (A_x, A_y, A_z) \tag{1327}$	1767
	$f^r \partial(\mathbf{y} \cdot \mathbf{A})$		
1746	$U = -q \int_{\infty}^{r} \frac{\partial (\mathbf{v} \cdot \mathbf{A})}{\partial r} dr \tag{1312}$		
1747	C.30 Lorentz force: Potential energy	$L = \frac{m}{2}(\dot{x}, \dot{y}, \dot{z}) \cdot (\dot{x}, \dot{y}, \dot{z}) + q(\dot{x}, \dot{y}, \dot{z}) \cdot (A_x, A_y, A_z) - q\phi$	
1748	derivation from vector potential 4	(1328)	1768
1749	$U = -q \int_{\infty}^{r} \frac{\partial (\mathbf{v} \cdot \mathbf{A})}{\partial r} dr \tag{1313}$	C.33 Lorentz force: Derivation of Lorentz force from classical Lagrangian (LHS) 4	1769 1770
1750	$\frac{\partial(\mathbf{v}\cdot\mathbf{A})}{\partial r} = \mathbf{v}\cdot\mathbf{A}'(r) \tag{1314}$	$dA_x = \frac{\partial A_x}{\partial t}dt + \frac{\partial A_x}{\partial x}dx + \frac{\partial A_x}{\partial y}dy + \frac{\partial A_x}{\partial z}dz$	
	$\int_{\mathbf{r}}^{r} \partial(\mathbf{v} \cdot \mathbf{A}) \int_{\mathbf{r}}^{r} \int_{\mathbf{A}}^{r} \int_{\mathbf{r}}^{r} \int_{\mathbf{A}}^{r} \int_{\mathbf{r}}^{r} \int_{\mathbf{A}}^{r} \int_{\mathbf{r}}^{r} \int$	(1329)	1771
	$-q \int_{\infty}^{r} \frac{\partial (\mathbf{v} \cdot \mathbf{A})}{\partial r} dr = -q \int_{\infty}^{r} \mathbf{v} \cdot \mathbf{A}'(r) dr$	$dA = \partial A = \partial A dx = \partial A dy = \partial A dz$	
1751	(1315)	$\frac{dA_x}{dt} = \frac{\partial A_x}{\partial t} + \frac{\partial A_x}{\partial x}\frac{dx}{dt} + \frac{\partial A_x}{\partial y}\frac{dy}{dt} + \frac{\partial A_x}{\partial z}\frac{dz}{dt}$	
1752	$-q \int_{-\infty}^{r} \mathbf{v} \cdot \mathbf{A}'(r) dr = -q \mathbf{v} \cdot \mathbf{A}(r) \qquad (1316)$	(1330)	1772
1753	$U = -q\mathbf{v} \cdot \mathbf{A}(r) \tag{1317}$	$\frac{dA_x}{dt} = \frac{\partial A_x}{\partial t} + \frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_x}{\partial y}\dot{y} + \frac{\partial A_x}{\partial z}\dot{z} $ (1331)	1773
	4	12	

Lorentz force: Derivation of classical

 $V = q\phi - q\dot{\mathbf{r}} \cdot \mathbf{A}$

 $q\phi = V + q\dot{\mathbf{r}} \cdot \mathbf{A}$

 $L = \frac{m}{2}\dot{\mathbf{r}} \cdot \dot{\mathbf{r}} - q\phi$

 $L = \frac{m}{2}\dot{\mathbf{r}} \cdot \dot{\mathbf{r}} - (V + q\dot{\mathbf{r}} \cdot \mathbf{A})$

Lagrangian of EM field

1754

1755

1756

1757

1758

1759

(1318)

(1319)

(1320)

(1321)

C.27 Laplace equation: Electrostatics 3

 $\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}$

 $\frac{\partial^2 \phi}{\partial x^2} = 0$

 $\frac{\partial^2 \phi}{\partial y^2} = 0$

 $\nabla^2 \phi = 0 + 0$

 $\nabla^2 \phi = 0$

C.28 Lorentz force: Potential energy

(1301)

(1302)

(1303)

(1304)

(1305)

1730

1731

1732

1733

1734

1736

1780 1781 1782	C.35 Lorentz force: Derivation of Lorentz force from classical Lagrangian (RHS)	$\mathbf{F} \cdot \hat{\mathbf{x}} = F_x \tag{1349}$	1802
1783	$\frac{\partial L}{\partial x} = q \frac{\partial}{\partial x} (\dot{x} A_x + \dot{y} A_y + \dot{z} A_z) - q \frac{\partial}{\partial x} \phi $ (1336)	$\mathbf{E} \cdot \hat{\mathbf{x}} = E_x \tag{1350}$	1803
1784	$\frac{\partial}{\partial x}(\dot{x}A_x + \dot{y}A_y + \dot{z}A_z) = \frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_y}{\partial x}\dot{y} + \frac{\partial A_z}{\partial x}\dot{z}$ (1337)	$\mathbf{B} = \nabla \times \mathbf{A} \tag{1351}$	1804
1785	$\frac{\partial L}{\partial x} = q(\frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_y}{\partial x}\dot{y} + \frac{\partial A_z}{\partial x}\dot{z}) - q\frac{\partial}{\partial x}\phi$ (1338)	$(\dot{\mathbf{r}} \times \mathbf{B}) \cdot \hat{\mathbf{x}} = (\dot{\mathbf{r}} \times (\nabla \times \mathbf{A}))_x$ (1352)	1805
1786 1787	C.36 Lorentz force: Derivation of x component of electric field	$q\mathbf{E} \cdot \hat{\mathbf{x}} + q(\dot{\mathbf{r}} \times \mathbf{B}) \cdot \hat{\mathbf{x}} = qE_x + q(\dot{\mathbf{r}} \times (\nabla \times \mathbf{A}))_x$ (1353)	1806
1788	$\mathbf{E} = -\nabla\phi - \frac{\partial\mathbf{A}}{\partial t} \tag{1339}$		
1789	$\nabla \phi = (\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}) \tag{1340}$	$\mathbf{F} \cdot \hat{\mathbf{x}} = q\mathbf{E} \cdot \hat{\mathbf{x}} + q(\dot{\mathbf{r}} \times \mathbf{B}) \cdot \hat{\mathbf{x}} $ (1354)	1807
1790	$\frac{\partial \mathbf{A}}{\partial t} = \frac{\partial}{\partial t} (A_x, A_y, A_z) \tag{1341}$	C.39 Electromagnetic wave equation: The origin of the electromagnetic wave equation in 2	1808 1809 1810
	$oxed{\Delta A}$, $\partial\phi$	$\nabla \times (\nabla \times \mathbf{E}) = -\frac{\partial}{\partial t} (\nabla \times \mathbf{B}) \qquad (1355)$	1811
1791	$-\nabla\phi - \frac{\partial \mathbf{A}}{\partial t} = -(\frac{\partial\phi}{\partial x}, \frac{\partial\phi}{\partial y}, \frac{\partial\phi}{\partial z}) + \frac{\partial}{\partial t}(A_x, A_y, A_z)$ (1342)	$\nabla \times \mathbf{B} = \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \tag{1356}$	1812
1792	$\mathbf{E} = -\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) + \frac{\partial}{\partial t}(A_x, A_y, A_z) (1343)$	$-\frac{\partial}{\partial t}(\nabla \times \mathbf{B}) = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} $ (1357)	1813

(1333)

Lorentz force: Derivation of Lorentz

force from classical Lagrangian 4

 $(\dot{\mathbf{r}} \times (\nabla \times \mathbf{A}))_x = \dot{y}(\nabla \times \mathbf{A})_z - \dot{z}(\nabla \times \mathbf{A})_y$ (1345)

 $F_x = qE_x + q(\dot{y}(\nabla \times \mathbf{A})_z - \dot{z}(\nabla \times \mathbf{A})_y)$ (1347)

force from classical Lagrangian 5

C.38 Lorentz force: Derivation of Lorentz

 $F_r = qE_r + q(\dot{\mathbf{r}} \times (\nabla \times \mathbf{A}))_r$

 $F_r = qE_r + q(\dot{\mathbf{r}} \times (\nabla \times \mathbf{A}))_r$

1794

1795

1796

1797

1798

1799

1800

1801

(1346)

(1348)

(1358)

1814

C.34 Lorentz force: Derivation of Lorentz

 $\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} = m\frac{d}{dt}\dot{x} + q\frac{d}{dt}A_x$

 $\frac{d}{dt}\dot{x} = \ddot{x}$

 $\frac{d}{dt}A_x = \frac{\partial A_x}{\partial t} + \frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_x}{\partial y}\dot{y} + \frac{\partial A_x}{\partial z}\dot{z} \quad (1334)$

 $\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} = m\ddot{x} + q(\frac{\partial A_x}{\partial t} + \frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_x}{\partial y}\dot{y} + \frac{\partial A_x}{\partial z}\dot{z})$

force from classical Lagrangian (LHS) 5

1774

1777

1793

 $\mathbf{E} \cdot (1,0,0) = -((\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}) - \frac{\partial}{\partial t} (A_x, A_y, A_z)) \cdot (1,0,0)$ $(1344) \qquad \nabla \times (\nabla \times \mathbf{E}) = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$

	2217		μ_0 . The second of t		
1822	$\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} - \nabla^2 \mathbf{E} = 0$	(1363)			
	Ot		$\mathbf{J}_M = \nabla \times \mathbf{M}$	(1378)	1845
1823	C.41 Electromagnetic wave equation:				
1824	origin of the electromagnetic wa	ve			
1825	equation in $\ 2$		$ abla imes rac{1}{\mu_0} \mathbf{B} = \mathbf{J}_f + rac{\partial}{\partial t} \varepsilon_0 \mathbf{E} + rac{\partial}{\partial t} \mathbf{P} + \mathbf{J}_M$	(1379)	1846
1826	$\nabla \times (\nabla \times \mathbf{B}) = \mu_0 \varepsilon_0 \frac{\partial}{\partial t} (\nabla \times \mathbf{E})$	(1364)	C.44 Ampere's circuital law: Proof of		1847
			equivalence 4		1848
1007	$ abla imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$	(1365)	-		1040
1827	$\mathbf{V} \wedge \mathbf{E} = -\frac{1}{\partial t}$	(1303)	$\frac{1}{\mu_0}(\nabla \times \mathbf{B}) = \mathbf{J}_f + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}_P + \mathbf{J}_M$	(1380)	1849
1828	$\mu_0 \varepsilon_0 \frac{\partial}{\partial t} (\nabla \times \mathbf{E}) = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2}$	(1366)	$\mathbf{J} = \mathbf{J}_f + \mathbf{J}_P + \mathbf{J}_M$	(1381)	1850
	∂t (∂t^2	(====)	$\frac{1}{\mu_0}(\nabla \times \mathbf{B}) = \mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$	(1382)	1851
	$\nabla \times (\nabla \times \mathbf{B}) = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2}$	(12(7)	C.45 Uncertainty principle: Kennard		1852
1829	$\mathbf{V} \times (\mathbf{V} \times \mathbf{B}) = -\mu_0 \varepsilon_0 \frac{\partial t^2}{\partial t^2}$	(1367)	inequality proof part 1.1		1853
1830	C.42 Electromagnetic wave equation:		$\sigma_x^2 = \langle x^2 \rangle - \langle x \rangle^2$	(1383)	1854
1831	origin of the electromagnetic wa	ve			
1832	equation in 3		$\langle x^2 \rangle = \int_{-\infty}^{\infty} x^2 \cdot \psi(x) ^2 dx$	(1384)	1855
1833	$\nabla \times (\nabla \times \mathbf{B}) = \nabla (\nabla \cdot \mathbf{B}) - \nabla^2 \mathbf{B}$	(1368)	$\langle x \rangle = \int_{-\infty}^{\infty} x^{-\epsilon} \psi(x) dx$	(1304)	1000
			$\langle x \rangle = \int_{-\infty}^{\infty} x \cdot \psi(x) ^2 dx$	(1385)	1856
1834	$\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} = \nabla \times (\nabla \times \mathbf{B})$	(1369)	$\int_{-\infty}^{\infty} u^{- \psi(u) } du$	(1303)	1000
	027		$\langle x \rangle^2 = \left(\int_{-\infty}^{\infty} x \cdot \psi(x) ^2 dx \right)^2$	(1386)	1857
1835	$\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} = \nabla (\nabla \cdot \mathbf{B}) - \nabla^2 \mathbf{B}$	(1370)			
	$\partial^2 {f B}$ = ${f F}^2 {f F}$	(1051)	$\sigma_x^2 = \int_{-\infty}^{\infty} x^2 \cdot \psi(x) ^2 dx - \left(\int_{-\infty}^{\infty} x \cdot \psi(x) ^2 dx\right)$	$ x ^2 dx$	

(1359)

(1360)

(1361)

(1362)

Ampere's circuital law: Proof of

 $\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$

 $\mathbf{H} = \frac{1}{\mu_0} \mathbf{B}$

 $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$

 $\nabla \times \frac{1}{\mu_0} \mathbf{B} = \mathbf{J}_f + \frac{\partial}{\partial t} \frac{1}{\mu_0} \mathbf{D}$

 $\frac{\partial}{\partial t} \frac{1}{\mu_0} \mathbf{D} = \frac{\partial}{\partial t} \varepsilon_0 \mathbf{E} + \frac{\partial}{\partial t} \mathbf{P}$

 $\nabla \times \frac{1}{\mu_0} \mathbf{B} = \mathbf{J}_f + \frac{\partial}{\partial t} \varepsilon_0 \mathbf{E} + \frac{\partial}{\partial t} \mathbf{P}$

equivalence 2

1837

1838

1839

1840

1841

1842

1843

1844

1858

(1372)

(1373)

(1374)

(1375)

(1376)

(1377)

1815

1818

1819

1820

1821

1836

Electromagnetic wave equation: The

origin of the electromagnetic wave

 $\nabla \times (\nabla \times \mathbf{E}) = \nabla(\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E}$

 $\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} = \nabla \times (\nabla \times \mathbf{E})$

 $\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} = \nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E}$

 $\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} - \nabla^2 \mathbf{E} = \nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} - \nabla^2 \mathbf{E}$

 $\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} - \nabla^2 \mathbf{B} = 0$

equation in 3

(1371)

C.46 Uncertainty principle: Kennard inequality proof part 1.4

$$f^*(x) \cdot f(x) = x^2 \cdot (\psi^*(x) \cdot \psi(x)) \qquad (1388)$$

$$\sigma_x^2 = \langle f|f\rangle \tag{1389}$$

$$\sigma_x^2 = \langle x^2 | x^2 \rangle \tag{1390}$$

$$\sigma_x^2 = \langle f^*(x) \cdot f(x) | f^*(x) \cdot f(x) \rangle \qquad (1391)$$

$$\sigma_x^2 = \left\langle x^2 \cdot (\psi^*(x) \cdot \psi(x)) \middle| x^2 \cdot (\psi^*(x) \cdot \psi(x)) \right\rangle$$
(1392)

$$\sigma_x^2 = \langle f | f \rangle \tag{1393}$$

C.47 Uncertainty principle: Kennard inequality proof part 2.2

$$\frac{dv}{d\chi} = e^{\frac{-ip\chi}{\hbar}} \tag{1394}$$

$$\int dv = \int e^{\frac{-ip\chi}{\hbar}} d\chi \tag{1395}$$

$$v = \frac{\hbar}{-ip} \int e^{\frac{-ip\chi}{\hbar}} d\chi \tag{1396}$$

$$v = \frac{\hbar}{-ip}e^b + C \tag{1397}$$

C.48 Uncertainty principle: Kennard inequality proof part 2.3

$$u = \psi(\chi) \tag{1398}$$

$$v = \frac{\hbar}{-ip} e^{\frac{-ip\chi}{\hbar}} \tag{1399}$$

$$uv = \psi(\chi) \frac{\hbar}{-ip} e^{\frac{-ip\chi}{\hbar}} \tag{1400}$$

C.49 Uncertainty principle: Kennard inequality proof part 2.4

$$uv = \psi(\chi) \frac{\hbar}{-ip} e^{\frac{-ip\chi}{\hbar}}$$
 (1401)

$$(uv)\Big|_{-ip}^{\infty} = \psi(\chi) \frac{\hbar}{-ip} e^{\frac{-ip\chi}{\hbar}} \Big|_{-ip}^{\infty}$$
 (1402)

$$(uv) \Big|_{-\infty}^{\infty} = 0$$
 (1403)

C.50 Uncertainty principle: Kennard inequality proof part 2.5

$$I = (uv)\Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} v \frac{du}{d\chi} d\chi \qquad (1404)$$

$$letu = \psi(\chi) \tag{1405}$$

$$v = e^{\frac{-ip\chi}{\hbar}} \tag{1406}$$

$$du = \frac{d\psi(\chi)}{d\chi}d\chi \tag{1407}$$

$$dv = \frac{-ip}{\hbar}e^{\frac{-ip\chi}{\hbar}}d\chi \tag{1408}$$

$$\int_{-\infty}^{\infty} v \frac{du}{d\chi} d\chi = \int_{-\infty}^{\infty} e^{\frac{-ip\chi}{\hbar}} \frac{d\psi(\chi)}{d\chi} d\chi \quad (1409)$$

$$(uv)\Big|_{-\infty}^{\infty} = \frac{\hbar}{ip} (uv)\Big|_{-\infty}^{\infty}$$
 (1410)

$$I = \frac{\hbar}{ip} \int_{-\infty}^{\infty} \frac{d\psi(\chi)}{d\chi} e^{\frac{-ip\chi}{\hbar}} d\chi$$
 (1411)

C.51 Uncertainty principle: Kennard inequality proof part 2.9

$$g(x) = \frac{\hbar}{2\pi i} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d\psi(\chi)}{d\chi} e^{i(x-\chi)b} d\chi db$$
(1412)

$$\frac{d\psi(\chi)}{d\chi} = \frac{d\psi(x)}{dx} \tag{1413}$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d\psi(x)}{dx} e^{i(x-\chi)b} d\chi db = \frac{d\psi(x)}{dx} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(x-\chi)b} d\chi db$$
1897

$$\frac{\hbar}{2\pi i} \frac{d\psi(x)}{dx} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(x-\chi)b} d\chi db = \frac{\hbar}{2\pi i} \frac{d\psi(x)}{dx}$$
(1415)

$$\frac{\hbar}{2\pi i} \frac{d\psi(x)}{dx} = \frac{\hbar}{i} \left(\frac{d\psi(x)}{dx}\right) \tag{1416}$$

$$g(x) = \frac{\hbar}{i} \left(\frac{d\psi(x)}{dx} \right) \tag{1417}$$

1901	inequality proof part 3.2		inequality proof part 4.4		1925
1903	$\tilde{g}^*(p) \cdot \tilde{g}(p) = p^2 \varphi^*(p) \cdot \varphi(p)$	(1418)	$\sigma_x^2 \sigma_p^2 \ge raket{f g} ^2$	(1433)	1926
1904	$ \tilde{g}(p) ^2 = \tilde{g}^*(p) \cdot \tilde{g}(p)$	(1419)	$ \langle f g\rangle = rac{\langle f g\rangle - \langle g f angle}{2i}$	(1434)	1927
1905	$ \tilde{g}(p) ^2 = p^2 \varphi^*(p) \cdot \varphi(p)$	(1420)	$\left(\frac{\langle f g\rangle - \langle g f\rangle}{2i}\right)^2 = \langle f g\rangle ^2$	(1435)	1928
1906	$ \tilde{g}(p) ^2 = p^2 \varphi(p) ^2$	(1421)	$\sigma_x^2\sigma_p^2\geq (rac{\langle f g angle-\langle g f angle}{2i})^2$ C.57 Uncertainty principle: Kennard	(1436)	1929 1930
1907	C.53 Uncertainty principle: Kennard		inequality proof part 5.1		1931
1908	inequality proof part 3.3		$\sigma_x^2 \sigma_p^2 \ge (\frac{\langle f g \rangle - \langle g f \rangle}{2i})^2$	(1437)	1932
1909	$\sigma_p^2 = \int_{-\infty}^{\infty} p^2 \varphi(p) ^2 dp$	(1422)	$\langle f g angle = \langle g f angle$	(1438)	1933
1910	$\langle g = \int_{-\infty}^{\infty} p^2 \varphi(p) ^2 dp$	(1423)	$\sigma_x^2 \sigma_p^2 \ge (\frac{\langle f g\rangle - \langle f g\rangle}{2i})^2$	(1439)	1934
1911	$ g\rangle = 1$	(1424)	$\sigma_x^2 \sigma_p^2 \ge 0$	(1440)	1935
1912	$\sigma_p^2 = \langle g g angle$	(1425)	$\langle f g\rangle = \langle g f\rangle$	(1441)	1936
1913 1914	C.54 Uncertainty principle: Kennard inequality proof part 4.1		$\langle f g\rangle = -i\hbar \int_{-\infty}^{\infty} x\psi^*(x) \frac{d\psi(x)}{dx} dx$	(1442)	1937
1915	$\sigma_x^2 = \langle f f angle$	(1426)	C.58 Uncertainty principle: Kennard inequality proof part 5.2		1938 1939
			$f(x) = x \cdot \psi(x)$	(1443)	1940
1916	$ \left\langle f g\right\rangle ^{2}=\sigma_{x}^{2}\sigma_{p}^{2}$	(1427)	$\langle g f\rangle = \langle g x\cdot\psi(x)\rangle$	(1444)	1941
1917	$\sigma_x^2\sigma_p^2 \geq raket{f g} ^2$	(1428)	$\langle g f\rangle = -i\hbar \int_{-\infty}^{\infty} \psi^*(x) \frac{d}{dx} (x\psi(x)) dx$	(1445)	1942
	C.55 Uncertainty principle: Kennard		$\langle g J/=-in\int_{-\infty}\psi(x)\frac{dx}{dx}(x\psi(x))dx$	(1443)	1342
1918			C 50 Uncontainty principle, Vannand		
1918 1919	inequality proof part 4.3		C.59 Uncertainty principle: Kennard		1943
	inequality proof part 4.3 $ z ^2 = (\text{Re}(z))^2 + (\text{Im}(z))^2$	(1429)	inequality proof part 5.6		1943 1944
1919		(1429)	~ ~ ~ ~	(1446)	
1919		(1429) (1430)	inequality proof part 5.6	(1446) (1447)	1944
1919 1920	$ z ^2 = (\text{Re}(z))^2 + (\text{Im}(z))^2$		inequality proof part 5.6 $\langle f g\rangle - \langle g f\rangle = i\hbar \int_{-\infty}^{\infty} \psi(x) ^2 dx$		1944 1945

C.56 Uncertainty principle: Kennard

C.52 Uncertainty principle: Kennard

1950	velocity as a function of particle mass	Ladder operators for the quantum	1973
1951	from Schrödinger's equation 7	harmonic oscillator part 1.6	1974
	\hbar^2 ∂^2	$1 1 d^2 2 1 d^2 2 \dots \qquad \qquad$	
	$i\hbar \frac{\partial}{\partial t} \psi(x,t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x,t) + V(x)\psi(x,t)$	$\hbar\omega(\frac{1}{2} + \frac{1}{\sqrt{2}}(-\frac{d^2}{dg^2} + q^2)\frac{1}{\sqrt{2}}(\frac{d^2}{dg^2} + q^2))\psi(q) = E\psi(q)$	
1952	(1450)	(1465)	1975
	$i\hbar \partial = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t) + V(x)\psi(x,t)$	$1 1 d^2 \qquad \dots$	
	$\frac{i\hbar}{\hbar}\frac{\partial}{\partial t}\psi(x,t) = \frac{-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t) + V(x)\psi(x,t)}{\hbar}$	$\hbar\omega(\frac{1}{2} + \frac{1}{2}(-\frac{d^2}{da^2} + q^2))\psi(q) = E\psi(q) (1466)$	1976
1953	(1451)	2 2 44	
		1 1 .	
	$\hbar \partial_{x} V(x,t) = \hbar \partial^{2} V(x)\psi(x,t)$	$\hbar\omega(\frac{1}{2} + \frac{1}{2}(a^{\dagger}a))\psi(q) = E\psi(q) \qquad (1467)$	1977
	$i\frac{\partial}{\partial t}\psi(x,t) = -\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t) + \frac{V(x)\psi(x,t)}{\hbar}$	2 2	
1954	(1452)	. 1	
		$E\psi(q) = \hbar\omega(a^{\dagger}a + \frac{1}{2})\psi(q) \tag{1468}$	1978
	$\hbar\omega\psi(x,t) = -\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t) + \frac{V(x)\psi(x,t)}{\hbar}$ (1453)	2	
1055	$1 m \varphi(x,t) = 2m \partial x^2 \varphi(x,t) + \hbar $	$E = \hbar\omega(a^{\dagger}a + \frac{1}{2}) \tag{1469}$	1070
1955	(1433)	$E = \hbar\omega(a^{\dagger}a + \frac{1}{2}) \tag{1469}$	1979
		C.64 Creation and annihilation operators:	1980
	$\hbar\omega\psi(x,t) = -\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t)ifV(x) = \hbar\omega.$	Ladder operators for the quantum	1981
1956	$2m \partial x^2 $ (1454)	harmonic oscillator part 2	1982
1930	(1434)	•	
1957	C.61 Particle in a box: Wavefunction angular	$[q, p] = qp - pq \tag{1470}$	1983
1958	velocity as a function of particle mass		
1959	from Schrödinger's equation 8	[q, p]f(q) = (qp - pq)f(q) (1471)	1984
	$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi(x,t)}{\partial x^2} = \frac{\hbar^2 k^2}{2m}\psi(x,t) $ (1455)		
1960	$-\frac{n}{2m}\frac{\partial \psi(x,t)}{\partial x^2} = \frac{n}{2m}\psi(x,t) \tag{1455}$	$\begin{bmatrix} a & a \end{bmatrix} f(a) & a & f(a) & a & f(a) & (1472) \end{bmatrix}$	1005
	22 / ()	[q, p]f(q) = qpf(q) - pqf(q) (1472)	1985
1961	$\frac{\partial^2 \psi(x,t)}{\partial x^2} = k^2 \psi(x,t) \tag{1456}$		
	∂x^2	$[q, p]f(q) = if(q) \tag{1473}$	1986
	$\frac{\partial^2 \psi(x,t)}{\partial x^2} = \frac{p^2}{\hbar^2} \psi(x,t) \tag{1457}$	C.65 Creation and annihilation operators:	1007
1962	$\frac{\partial \varphi(x,t)}{\partial x^2} = \frac{P}{\hbar^2} \psi(x,t) \tag{1457}$	C.65 Creation and annihilation operators: Ladder operators for the quantum	1987 1988
	$2^{2} + (1) = 2$	harmonic oscillator part 3.1	1989
1963	$\frac{\partial^2 \psi(x,t)}{\partial x^2} = \frac{p^2}{\hbar^2} \psi(x,t) \tag{1458}$. -	1303
	∂x^2 h^2	$a = \frac{1}{\sqrt{2}}(\frac{d}{dq} + q) \tag{1474}$	1990
	$\frac{\partial^2 \psi(x,t)}{\partial x^2} = \frac{p^2}{\hbar^2} \psi(x,t) \tag{1459}$	$\sqrt{2} \ aq$	
1964	$\frac{\partial \varphi(x,t)}{\partial x^2} = \frac{P}{\hbar^2} \psi(x,t) \tag{1459}$	$ip = \frac{d}{da} \tag{1475}$	1991
	2	dq = dq	1331
1965	$\omega = \frac{p^2}{2m\hbar} \tag{1460}$	1	
	$2m\hbar$	$a = \frac{1}{\sqrt{2}}(ip+q)$ (1476)	1992
1966	C.62 Quantum harmonic oscillator: Ladder	V Z	
1967	operator method 4	C.66 Creation and annihilation operators:	1993
1968	$Givenaa^{\dagger} - a^{\dagger}a = \frac{i}{\hbar}(\hat{p}\hat{x} - \hat{x}\hat{p}) \qquad (1461)$	Ladder operators for the quantum	1994
1300	$Givenua - u \ u = \frac{1}{\hbar}(px - xp) \tag{1401}$	harmonic oscillator part 3.2	1995
	[+] + + (1462)	$a^{\dagger} = \frac{1}{\sqrt{2}} \left(-\frac{d}{dq} + q \right) \tag{1477}$	1996
1969	$\left[a, a^{\dagger}\right] = aa^{\dagger} - a^{\dagger}a \tag{1462}$	$\sqrt{2}$ dq	
	4	d	
1970	$\frac{i}{\hbar}(\hat{p}\hat{x} - \hat{x}\hat{p}) = 1 \tag{1463}$	$-\frac{d}{dq} = -ip \tag{1478}$	1997
	n	1	
1971	$\left[a, a^{\dagger}\right] = 1 \tag{1464}$	$a^{\dagger} = \frac{1}{\sqrt{2}}(-ip+q)$ (1479)	1998
		$\sqrt{2}$	

C.63 Creation and annihilation operators:

1972

C.60 Particle in a box: Wavefunction angular

1999	C.67	Creation and annihilation open	rators:			
2000		Ladder operators for the quan	tum	$i_{(\hat{x},\hat{x},\hat{y})}$ $i_{(\hat{x},\hat{y},\hat{y})}$ $i_{(\hat{x},\hat{y},\hat{y})}$	(1.405)	
2001		harmonic oscillator part 3.6		$\frac{\imath}{\hbar}(\hat{H}\hat{x}(t) - \hat{x}(t)\hat{H}) = \frac{\imath}{\hbar} \Big[\hat{H}, \hat{x}(t)\Big]$	(1497)	2026
2002		$aa^{\dagger} - a^{\dagger}a = i(pq - qp)$	(1480)			
				$\frac{d}{dt}\hat{x}(t) = \frac{i}{\hbar} \left[\hat{H}, \hat{x}(t) \right]$	(1498)	2027
2003		pq - qp = 1	(1481)	$dt^{w(t)} = \hbar \left[\frac{11}{2}, w(t) \right]$	(11)0)	
		r 1 1r -	(-10-)	C.71 Heisenberg picture: momentum		2028
0004		:(:	(1402)	evolution 4		2029
2004		i(pq - qp) = i	(1482)	$\hat{p}(t) = A\cos(\omega t) + B\sin(\omega t)$	(1499)	2030
2005		$aa^{\dagger} - a^{\dagger}a = i$	(1483)	d		
		r 7		$\frac{d}{dt}A\cos(\omega t) = -A\omega\sin(\omega t)$	(1500)	2031
2006		$\left a,a^{\dagger}\right =1$	(1484)	$a\iota$		
000=	C (9	Cusation and annihilation and		$d_{R} = (\cdot, \cdot, \cdot)$	(1501)	0000
2007	C.68	Creation and annihilation oper Ladder operators for the quan		$\frac{d}{dt}B\sin(\omega t) = B\omega\cos(\omega t)$	(1501)	2032
2009		harmonic oscillator part 4.2	tuiii			
2010		$[H,a] = -\hbar\omega(aa^{\dagger} - a^{\dagger}a)a$	(1485)	$\frac{d\hat{p}(t)}{dt} = \frac{d}{dt}(A\cos(\omega t) + B\sin(\omega t))$	(1502)	0000
2010		$[\Pi, u] = -i\omega(uu^* - u^*u)u$	(1403)	$\frac{dt}{dt} = \frac{1}{dt} (A\cos(\omega t) + B\sin(\omega t))$	(1302)	2033
		$aa^{\dagger} - a^{\dagger}a = 1$	(1.406)			
2011		aa' - a'a = 1	(1486)	$d\hat{p}(t)$	(4.500)	
				$\frac{d\hat{p}(t)}{dt} = -A\omega\sin(\omega t) + B\omega\cos(\omega t)$	(1503)	2034
2012		$-\hbar\omega(1)a = -\hbar\omega a$	(1487)	C.72 Heisenberg picture: position		2035
				commutator 4		2036
2013		$[H,a] = -\hbar\omega a$	(1488)	$[\hat{x}(t_1), \hat{x}(t_2)] = \frac{1}{\omega m} (\hat{x}_0 \hat{p}_0 - \hat{p}_0 \hat{x}_0) \sin(\omega t_2)$	$a = (at_a)$	
2014	C.69	Creation and annihilation oper	rators	$[x(t_1), x(t_2)] = \frac{1}{\omega m} (x_0 p_0 - p_0 x_0) \sin(\omega t_2)$	(1504)	2027
2015	C.07	Ladder operators for the quan			(1304)	2037
2016		harmonic oscillator part 5.2		$\hat{x}_0\hat{p}_0-\hat{p}_0\hat{x}_0=i\hbar$	(1505)	2038
2017		$\left[H, a^{\dagger}\right] = \hbar \omega a^{\dagger} (a a^{\dagger} - a^{\dagger} a)$	(1489)			
2017		$[n,a^*] = n\omega a^*(aa^* - a^*a)$	(1409)			
		[+] + +	(1.400)	$\frac{1}{\omega m}(i\hbar)\sin(\omega t_2 - \omega t_1) = \frac{i\hbar}{\omega m}\sin(\omega t_2 - \omega t_2)$	$-\omega t_1)$	
2018		$\left[a,a^{\dagger} ight]=aa^{\dagger}-a^{\dagger}a$	(1490)	ωm	(1506)	2039
2019		$aa^{\dagger} - a^{\dagger}a = 1$	(1491)	$i\hbar$	(4.505)	
				$[\hat{x}(t_1), \hat{x}(t_2)] = \frac{i\hbar}{\omega m} \sin(\omega t_2 - \omega t_1)$	(1507)	2040
2020		$\left a,a^{\dagger}\right =1$	(1492)	C.73 Heisenberg picture: momentum		2041
	C 70	III	4: 4	commutator 3		2042
2021	C.70	Heisenberg picture: time evolu		$[\hat{p}(t_1), \hat{p}(t_2)] = m\omega \hat{p}_0 \hat{x}_0 \sin(\omega t_2 - \omega t_1) +$	$-m\omega\hat{x}_0\hat{p}_0\sin(\omega)$	
	$\frac{a}{dt}\hat{x}$	$r(t) = \frac{i}{\hbar} (\hat{H}e^{i\frac{\hat{H}t}{\hbar}} \hat{x}e^{-i\frac{\hat{H}t}{\hbar}} - e^{i\frac{\hat{H}t}{\hbar}} \hat{x}e^{-i\frac{\hat{H}t}{\hbar}})$	$^{-irac{Ht}{\hbar}}\hat{H})$	$[p(v_1),p(v_2)]$ $maxpoworm(av_2 av_1)$	(1508)	2043
2022	$a\iota$	n	(1493)		()	
		$\hat{A} \cdot \hat{H}t + \hat{H}t + \hat{A}$			^ ^ • (,
2023		$\hat{H}e^{i\frac{Ht}{\hbar}}\hat{x}e^{-i\frac{Ht}{\hbar}} = \hat{H}\hat{x}(t)$	(1494)	$[\hat{p}(t_1), \hat{p}(t_2)] = m\omega \hat{p}_0 \hat{x}_0 \sin(\omega t_2 - \omega t_1) -$		
		û, û.			(1509)	2044
2024		$e^{i\frac{Ht}{\hbar}}\hat{x}e^{-i\frac{Ht}{\hbar}}\hat{H} = \hat{x}(t)\hat{H}$	(1495)	$[\hat{p}(t_1),\hat{p}(t_2)]=0$	(1510)	2045
				μ (1//1 (2/) -	` '	-
		, , , , , , ,				
2025		$\hat{H}\hat{x}(t) - \hat{x}(t)\hat{H} = \left \hat{H}, \hat{x}(t)\right $	(1496)	$[\hat{p}(t_1), \hat{p}(t_2)] = i\hbar m\omega \sin(\omega t_2 - \omega t_1)$	(1511)	2046

$\langle \Psi(t) = \cos\left(\frac{\Omega t}{2}\right) \langle e, 0 + i \sin\left(\frac{\Omega t}{2}\right) \langle g, 1 \qquad \langle x \hat{X} x'\rangle = x'\delta(x - x') $ (15)	529) 20	:070
$P_e(t) = \langle e, 0 \Psi(t) \rangle ^2 \qquad (1514) \qquad \left\langle \hat{X} \right\rangle_{\Psi} = \int \int \langle x \Psi \rangle^{\dagger} x' \delta(x - x') \left\langle x' \Psi \right\rangle dx dx$	edx'	
$P_e(t) = \cos\left(\frac{\Omega t}{2}\right) ^2 \qquad (1515)$ C.78 Expectation value: integral expression		2071
$P_{e}(t) = \cos^{2}(\frac{\Omega t}{2}) \qquad (1516) \qquad \left\langle \hat{X} \right\rangle_{\Psi} = \int \int \left\langle x \Psi \right\rangle^{\dagger} x' \delta(x - x') \left\langle x' \Psi \right\rangle dx dx$		
2054 C.75 Vacuum Rabi Oscillations: ground state	, ,	2073
$P_g(t) = \cos\left(\frac{\Omega t}{2}\right)\langle g, 1 e, 0\rangle - i\sin\left(\frac{\Omega t}{2}\right)\langle g, 1 g, 1\rangle ^2$		075
$P_g(t) = \cos\left(\frac{\Omega t}{2}\right) ^2 \langle g, 1 e, 0\rangle^2 + \sin\left(\frac{\Omega t}{2}\right) ^2 \langle g, 1 g, 1\rangle^2 \langle g, 1 g, 1\rangle^2 \langle g, 1 \Psi\rangle^{\dagger} x' \delta(x-x') \langle x' \Psi\rangle dx dx' = \int_{(1518)}^{(1518)} x' \delta(x-x') \langle x' \Psi\rangle dx dx' = \int_{(1518)}^{(1518)} x' \delta(x-x') \langle x' \Psi\rangle dx dx' = \int_{(1518)}^{(1518)} x' \delta(x-x') \langle x' \Psi\rangle dx dx' = \int_{(1518)}^{(1518)} x' \delta(x-x') \langle x' \Psi\rangle dx dx' = \int_{(1518)}^{(1518)} x' \delta(x-x') \langle x' \Psi\rangle dx dx' = \int_{(1518)}^{(1518)} x' \delta(x-x') \langle x' \Psi\rangle dx dx' = \int_{(1518)}^{(1518)} x' \delta(x-x') \langle x' \Psi\rangle dx' dx' = \int_{(1518)}^{(1518)} x' \delta(x-x') \langle x' \Psi\rangle dx' dx' = \int_{(1518)}^{(1518)} x' \delta(x-x') \langle x' \Psi\rangle dx' dx' = \int_{(1518)}^{(1518)} x' \delta(x-x') \langle x' \Psi\rangle dx' dx' = \int_{(1518)}^{(1518)} x' \delta(x-x') \langle x' \Psi\rangle dx' dx' = \int_{(1518)}^{(1518)} x' \delta(x-x') \langle x' \Psi\rangle dx' dx' = \int_{(1518)}^{(1518)} x' \delta(x-x') \langle x' \Psi\rangle dx' dx' dx' = \int_{(1518)}^{(1518)} x' \delta(x-x') \langle x' \Psi\rangle dx' dx' dx' dx' dx' dx' dx' dx' dx' dx'$	$ \Psi(x) ^2 dx$ 534) 20	2076
$P_g(t) = \cos^2(\frac{3e}{2}) \langle g, 1 e, 0\rangle^2 + \sin^2(\frac{3e}{2}) \langle g, 1 g, 1\rangle^2 \qquad \qquad \downarrow $,	2077
2058 $(1519) \textbf{C.79} \textbf{Euler-lagrange equation: Full} \\ \textbf{derivative of the perturbation} \\ \textbf{2059} \qquad \langle g,1 e,0\rangle=0 \qquad (1520) \qquad \textbf{Lagrangian with respect to } \varepsilon \textbf{ 2}$	20	2078 2079 2080
$\langle g, 1 g, 1\rangle = 1 \qquad (1521) \qquad \frac{dg_{\varepsilon}}{d\varepsilon} = \frac{d}{d\varepsilon}(\varepsilon \eta(x)) \qquad (1521)$	536) 20	.081
$P_g(t) = \cos^2(\frac{\Omega t}{2}) * 0 + \sin^2(\frac{\Omega t}{2}) * 1 (1522)$ $\frac{d}{d\varepsilon}(\varepsilon \eta(x)) = \eta(x) (1522)$	537) 20	082
$\frac{dg_{\varepsilon}}{d\varepsilon} = \eta(x) \tag{15}$.083
2 C.00 Euler-Lagrange equation. Derivation	n 20	084
2063 C.76 Expectation value: integral expression $J = \int_{a}^{b} L(x, f(x), f'(x)) $ (15)	(20)	085

Expectation value: integral expression 2

 $\left\langle \hat{X} \right\rangle_{\Psi} = \int \int \left\langle \Psi | x \right\rangle \left\langle x | \hat{X} | x' \right\rangle \left\langle x' | \Psi \right\rangle dx dx'$

 $\langle \Psi | x \rangle = \langle x | \Psi \rangle^{\dagger}$

 $J_{\varepsilon} = \int_{a}^{b} L_{\varepsilon}(x, f(x), f'(x))$

 $\frac{dJ_{\varepsilon}}{d\varepsilon} = \frac{d}{d\varepsilon} \int_{a}^{b} L_{\varepsilon}(x, f(x), f'(x))$

 $\frac{dJ_{\varepsilon}}{d\varepsilon} = \int_{\varepsilon}^{b} \frac{dL_{\varepsilon}}{d\varepsilon} dx$

2067

2068

2069

(1528)

(1540)

(1541)

(1542)

2086

2087

Vacuum Rabi Oscillations: excited state

 $|\Psi(t)\rangle = \cos\left(\frac{\Omega t}{2}\right)|e,0\rangle - i\sin\left(\frac{\Omega t}{2}\right)|g,1\rangle$

 $\left\langle \hat{X} \right\rangle_{\Psi} = \left\langle \Psi \right| \hat{X} \left| \Psi \right\rangle$

 $\langle \Psi | \hat{X} | \Psi \rangle = \int \int \langle \Psi | x \rangle \langle x | \hat{X} | x' \rangle \langle x' | \Psi \rangle dx dx'$

 $\left\langle \hat{X} \right\rangle_{\Psi} = \int \int \left\langle \Psi | x \right\rangle \left\langle x | \hat{X} | x' \right\rangle \left\langle x' | \Psi \right\rangle dx dx'$

probability

2047

2048

2049

2065

2066

(1525)

(1526)

2100
$$I = \int_{a}^{b} \frac{\partial L}{\partial f'} \eta'(x) dx \qquad (1551) \qquad y = Cx + \int (1 - C^{2})^{-1/2} dx \qquad (1565) \qquad 2119$$
2101
$$\frac{d}{dx} \frac{\partial L}{\partial f'} = \frac{\partial^{2} L}{\partial f'^{2}} \frac{df'}{dx} \qquad (1552) \qquad y = Cx + \sqrt{1 - C^{2}} + B \qquad (1566) \qquad 2120$$
2102
$$\frac{\partial L}{\partial f'} \eta'(x) = -\eta(x) \frac{d}{dx} \frac{\partial L}{\partial f'} \qquad (1553)$$

$$y = Ax + CwhereA = C \qquad (1567) \qquad 2121$$
2103
$$I = -\int_{a}^{b} \eta(x) \frac{d}{dx} \frac{\partial L}{\partial f'} dx \qquad (1554) \qquad \mathbf{C.87} \quad \mathbf{Escape velocity}$$
2104
$$\mathbf{C.84} \quad \mathbf{Euler-Lagrange equation: Straight line} \qquad F = \frac{GMm}{r^{2}} \qquad (1569) \qquad 2124$$

(1555)

(1556)

(1557)

Euler-Lagrange equation: Derivation 4

 $\frac{dv}{dx} = \eta'(x)$

 $\int \frac{dv}{dx} dx = \int \eta'(x) dx$

 $v = \eta(x)$

 $u = \frac{\partial L}{\partial f'}$

 $uv = \frac{\partial L}{\partial f'} \cdot v$

 $(uv)\Big|^b = \left(\frac{\partial L}{\partial f'} \cdot v\right)\Big|^b$

 $(uv)\Big|^b = 0$

 $S = \int^b ds$

 $ds = \sqrt{(1 + y'^2)} dx$

 $S = \int^b \sqrt{(1 + y'^2)} dx$

Euler-Lagrange equation: Derivation 6

 $\int_{a}^{b} uvdx = \int_{a}^{b} \frac{\partial L}{\partial f'} \cdot vdx$

Euler-Lagrange equation: Derivation 5

2090

2092

2094

2095

2096

2097

2099

2105

2106

2107

Euler-Lagrange equation: Straight line

 $\frac{dL}{du} - \frac{d}{dx}\frac{dL}{dy'} = 0$

 $\frac{dL}{du} = \frac{d}{dx} \frac{dL}{du'}$

 $\frac{d}{dx}(y'(1+y'^2)^{-\frac{1}{2}}) = \frac{dL}{dx}$

 $\int \frac{d}{dx} (y'(1+y'^2)^{-\frac{1}{2}}) dx = \int \frac{dL}{du} dx$

 $\int \frac{d}{dx} (y'(1+y'^2)^{-\frac{1}{2}}) dx = C$

 $\int dy = \int C(1 - C^2)^{-1/2} dx$

 $y = Cx + \int (1 - C^2)^{-1/2} dx$

 $W = \int F dr$

 $W = \int \frac{GMm}{r^2} dr$

 $W = \int_{r_0}^{\infty} \frac{GMm}{r^2} dr$

C.86 Euler-Lagrange equation: Straight line

 $\frac{dy}{dx} = C(1 - C^2)^{-1/2}$

3

(1543)

(1544)

(1545)

(1546)

(1547)

(1548)

(1549)

(1550)

2108

2109

2110

2111

2112

2113

2114

2115

2117

2118

2119

2125

2126

2127

(1558)

(1559)

(1560)

(1562)

(1563)

(1564)

(1565)

(1570)

(1571)

(1572)

C.88 Escape velocity 2

$$W = \int_{r_0}^{\infty} \frac{GMm}{r^2} dr \tag{1573}$$

$$let u = r (1574)$$

$$dv = \frac{GMm}{r^2}dr \tag{1575}$$

$$du = dr (1576)$$

$$v = -\frac{GMm}{r} \tag{1577}$$

$$by integration by parts, \int u dv = uv - \int v du$$
(1578)

$$W = \left[-\frac{GMm}{r} \right]_{r_0}^{\infty} - \int_{r_0}^{\infty} -\frac{GMm}{r} dr \quad (1579)$$

$$W = \left[-\frac{GMm}{r} \right]_{r_0}^{\infty} + GMm \int_{r_0}^{\infty} \frac{1}{r} dr \quad (1580)$$

$$W = \left[-\frac{GMm}{r} \right]_{r_0}^{\infty} + GMm[\ln r]_{r_0}^{\infty} \quad (1581)$$

$$W = \left[-\frac{GMm}{r} \right]_{r_0}^{\infty} + GMm(\ln \infty - \ln r_0)$$
(1582)

$$W = \left[-\frac{GMm}{r} \right]_{r_0}^{\infty} + GMm \ln \left(\frac{\infty}{r_0} \right) \quad (1583)$$

$$W = \left[-\frac{GMm}{r} \right]_{r_0}^{\infty} \tag{1584}$$

$$W = -\frac{GMm}{\infty} + \frac{GMm}{r_0} \tag{1585}$$

$$W = 0 + \frac{GMm}{r_0}$$
 (1586)

$$W = \frac{GMm}{r_0} \tag{1587}$$

$$sinceGM = g, W = mgr_0. (1588)$$

C.89 Escape velocity 3

$$W = mgr_0 (1589)$$

$$v_{esc}^2 = 2W/m (1590)$$

$$v_{esc}^2 = 2mgr_0/m$$
 (1591)

$$v_{esc}^2 = 2gr_0 (1592)$$

$$v_{esc} = \sqrt{2gr_0}$$
 (1593) 2150

C.90 Snell's law: from Fermat's principle 2

$$\frac{dT}{dx} = \frac{x}{v_1(x^2 + a^2)^{\frac{1}{2}}} + \frac{x - l}{v_2((x - l)^2 + b^2)^{\frac{1}{2}}}$$
(1594)

$$\frac{dT}{dx} = \frac{\sin \theta_1}{v_1} + \frac{\sin \theta_2}{v_2} \tag{1595}$$

$$\frac{\sin \theta_1}{v_1} = \frac{x}{v_1(x^2 + a^2)^{\frac{1}{2}}} \tag{1596}$$

$$\frac{\sin \theta_2}{v_2} = \frac{x - l}{v_2((x - l)^2 + b^2)^{\frac{1}{2}}}$$
 (1597)

$$\frac{\sin \theta_1}{v_1} - \frac{\sin \theta_2}{v_2} = \frac{x}{v_1(x^2 + a^2)^{\frac{1}{2}}} - \frac{x - l}{v_2((x - l)^2 + b^2)^{\frac{1}{2}}}$$
(1598)

$$\frac{\sin \theta_1}{v_1} - \frac{\sin \theta_2}{v_2} = 0 \tag{1599}$$

C.91 Snell's law: from Fermat's principle 3

$$\frac{\sin \theta_1}{v_1} - \frac{\sin \theta_2}{v_2} = 0 \tag{1600}$$

$$\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2} \tag{1601}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
 (1602)

C.92 Wave equation: plane wave eigenmodes

$$\frac{\partial^2 u(x,t)}{\partial t^2} = (-i\omega)\frac{\partial}{\partial t}(e^{-i\omega t}f(x)) \qquad (1603)$$

$$\frac{\partial}{\partial t}(e^{-i\omega t}f(x)) = -i\omega e^{-i\omega t}f(x) \qquad (1604)$$

$$(-i\omega)\frac{\partial}{\partial t}(e^{-i\omega t}f(x)) = -\omega^2 e^{-i\omega t}f(x) \quad (1605)$$

$$-\omega^2 e^{-i\omega t} f(x) = c^2 \frac{\partial^2 u(x,t)}{\partial x^2}$$
 (1606)

C.93 Wave equation: plane wave eigenmodes

$$u(x,t) = Ae^{-i(kx-\omega t)} + Be^{i(kx-\omega t)}$$
 (1607)

$$s_{+}(\omega) = A \tag{1608}$$

$$s_{-}(\omega) = B \tag{1609}$$

$$\int_{-\infty}^{\infty} s_{+}(\omega)e^{-i(kx-\omega t)}d\omega = Ae^{-i(kx-\omega t)}$$
(1610)

$$\int_{-\infty}^{\infty} s_{-}(\omega)e^{i(kx-\omega t)}d\omega = Be^{i(kx-\omega t)} \quad (1611)$$

$$u(x,t) = \int_{-\infty}^{\infty} s_{+}(\omega)e^{-i(kx-\omega t)}d\omega + \int_{-\infty}^{\infty} s_{-}(\omega)e^{i(kx-\omega t)}d\omega$$
(1612)

C.94 Wave equation: plane wave eigenmodes

$$u(x,t) = \int_{-\infty}^{\infty} s_{+}(\omega)e^{-i(kx-\omega t)}d\omega + \int_{-\infty}^{\infty} s_{-}(\omega)e^{i(kx-\omega t)}d\omega$$
(1613)

$$letF(x-ct) = \int_{-\infty}^{\infty} s_{+}(\omega)e^{-i(kx-\omega t)}d\omega$$
 (1614)

$$letG(x+ct) = \int_{-\infty}^{\infty} s_{-}(\omega)e^{i(kx-\omega t)}d\omega \quad (1615)$$

$$u(x,t) = F(x-ct) + G(x+ct)$$
 (1616)

C.95 Wave equation: Hooke's law

$$F_H = F_{x+2h} - F_x {(1617)}$$

$$m\frac{\partial^2}{\partial t^2}u(x+h,t) = F_H \tag{1618}$$

2185
$$m\frac{\partial^2}{\partial t^2}u(x+h,t) = F_{x+2h} - F_x \qquad (1619)$$

C.96 Wave equation: Hooke's law 2

$$m\frac{\partial^2}{\partial t^2}u(x+h,t) = F_{x+2h} - F_x \qquad (1620)$$

$$F_{x+2h} - F_x = k(u(x+2h,t) - u(x+h,t))$$
(1621)

$$m\frac{\partial^2}{\partial t^2}u(x+h,t) = k\left(u(x+2h,t) - u(x+h,t)\right)$$
(1622)

$$\frac{\partial^2}{\partial t^2}u(x+h,t) = \frac{k}{m} (u(x+2h,t) - u(x+h,t))$$
(1623)

$$F_x = k(u(x+h,t) - u(x,t))$$
 (1624)

$$m\frac{\partial^2}{\partial t^2}u(x+h,t) = k\left(u(x+2h,t) - 2u(x+h,t) + u(x,t)\right)$$
(1625)

$$\frac{\partial^2}{\partial t^2}u(x+h,t) = \frac{k}{m} \left(u(x+2h,t) - 2u(x+h,t) + u(x,t) \right)$$
(1626)

C.97 Wave equation: Hooke's law 3

$$\frac{\partial^2}{\partial t^2}u(x+h,t) = \frac{k}{m} \left(u(x+2h,t) - 2u(x+h,t) + u(x,t) \right)$$
(1627)

$$\frac{KL^2}{Mh^2} = \frac{k}{m} \tag{1628}$$

$$\frac{\partial^2}{\partial t^2}u(x+h,t) = \frac{KL^2}{Mh^2} \left(u(x+2h,t) - 2u(x+h,t) + u(x,t) \right) \tag{1629}$$

C.98 Wave equation: stress pulse in a bar 2

$$Let KL^2 = E (1630)$$

$$M = \rho, then \frac{KL^2}{M} = \frac{E}{\rho}$$
 (1631)

$$\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{KL^2}{M} \frac{\partial^2 u(x,t)}{\partial x^2}$$
 (1632)

$$\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u(x,t)}{\partial x^2}$$
 (1633)