Economically-Efficient Data Stream Analysis

Roberto Oliveira Jr.
Orietador: Adriano Veloso
Co-orientados: Wagner Meira Jr.

DCC - UFMG - Brazil

Definição

 Seguência de dados possivelmente ilimitada, de alta velocidade onde os dados chegam em intervalos de tempos variados.

Motivação

 Permite o processamento de grandes volumes de dados

Problema

• Extrair automaticamente padrões e relações relevantes de dados continuamente criados

 Modelos de classificação são aplicados para distinguir entre rótulos pré-estabelecidos.

 As características dos dados podem mudar ao longo do tempo.

Mudanças de Conceito

 Mudança de Conceito é a alteração imprevisível da natureza dos dados ao longo do tempo.

Análise de Fluxos de Dados

 Mudança de Conceito é a alteração imprevisível da natureza dos dados ao longo do tempo.

 Fluxo de dados contém combinação destes padrões.

Classificação em Fluxo de Dados

- Classificação efetiva requer::
 - Atualização do modelo de classificação à medida que o fluxo evolui.
 - Considerar limitação de recursos: memória, tempo and dados rotulados.

Como lidar com mudanças de conceito?

Conclusões

- Modelos de classificação compostos por regras de associação.
 - $\{x \to y\}$, onde $x \in X$ e $y \in Y$
- Atualização eficiente à medida que o conjunto de treino evolui.
- Modelos são construidos sob demanda:
 - Para um dado $[x_i, *]$, regras $\{x \to y\}$ tal que $x \subseteq x_i$ são produzidas.
 - Previsão é realizada pela combinação destas regras.
- A cada instante é produzido um modelo $\mathcal{R}(x_i)$.

Lidando com Mudanças de Conceito

- Duas propriedades são necessárias para produzir modelos de classificação robustos a mudanças nos dados:
 - Adaptação:
 - Abilidade de adaptar às mudanças.
 - Memorização:
 - Capacidade de recuperar após mudanças.

Dealing with Drifts

- Otimizando ambas propriedades leva a um problema de conflito de objetivo.
 - Otimizar adaptação pode prejudicar memorização, e vice-versa.

Eficiência Econômica

Exemplo: Hotéis em Petrópolis.

Fronteira de Pareto - Pontos Dominantes

•
$$U_c(a) \geq U_c(b)$$
 e $U_d(a) \geq U_d(b)$

•
$$U_c(a) > U_c(b)$$
 ou $U_d(a) > U_d(b)$

Compensação — Princípio de Kaldor-Hicks

Região de Compensação:

- Utilidade total: $U(d_i) = U_m(d_i) + U_a(d_i)$
- Ponto base:

$$d^* = \{d_i \in \mathcal{P}_n | \forall d_j \in \mathcal{P}_n : U(d_i) \leq U(d_j)\}$$

Medidas de Utilidade

- Distância no espaço:
 - Similariade de cada instância de treino t_j em relação a nova instância t_n .
 - $U_s(t_j) = \frac{|\mathcal{R}(t_n) \cap \mathcal{R}(t_j)|}{|\mathcal{R}(t_n)|}$
- Distância no tempo:
 - Tempo de chegada de cada instância de treino t_j .
 - $U_t(t_j) = \frac{\gamma(t_j)}{\gamma(t_n)}$.
 - $\gamma(t_j)$ retorna o tempo em que a instância de treino t_j foi processada.
- Permutação aleatória das instâncias de treino:
 - $U_r(t_j) = \frac{\alpha(t_j)}{|\mathcal{D}_r|}$
 - $\alpha(t_i)$ retorna a posição de t_i na permutação.
 - \mathcal{D}_n é o conjunto de treino a cada momento n.

Espaço de Utilidade

- Coloque as instâncias de treino no espaço de utilidade.
- Selecione as instâncias na Região de Eficiência:
 - Pareto-Efficience Selective Sampling (PESS)
 - Kaldor-Hicks Selective Sampling (KHSS).

- Amostragem Ativa Aleatória
 - Estratégia ingênua.
 - Simples para integrar.
 - Controle de Esforço de Rotulação: β .

Data Stream tn Active Sampling Classification Prediction Model EESS Update Training Training Set Set

- Interleaved Test-Then-Train.
- 1% do conjunto de dados provido como conjunto de treino.
- Ambiente de avaliação: Massive Online Analysis (MOA) framework.
- Baselines:

Algoritmo	Adaptação	Memorização
AC (KDD 2011)	Aprendizado Ativo	Classificador base
HAT (JMLR 2011)	ADWIN	Conjunto de Árvores
ILAC (SIGIR 2011)	Projeção de dados	Conjunto de treino incremental

Avaliação

Análise de Fluxos de Dados

- Métricas:
 - Erro Quadrático Médio.
 - Esforço de Rotuação: 10%; 25%; 50%; 75% and 100%;
 - AC e EESS.
 - Tamanho do conjunto de treino.
 - RAM-Hours.
- Conjuntos de Dados:

	Padrão de Mudança de Conceito				
	Repentino	Incremental	Gradual	Recorrente	
Eleições Presidenciais 2010	-	X	Χ	-	
Pessoa do Ano 2015	-	X	Χ	-	
Copa do Mundo 2010 - Inglês	X	-	-	-	
Copa do Mundo 2010 - PT	X	-	-	-	
Tipo de Cobertura	X	-	Χ	Χ	
Filtragem de Spam	X	-	Χ	X	
Mão de Poker	-	-	Χ	Χ	

Evaluation

Tipo de cobertura de florestas

- Tipo de cobertura de florestas nos EUA.
- 581,102 instâncias com 54 variáveis e 7 classes:
- Mudanças de Conceito: Repentina, Gradual, Recorrent:

Tipo de cobertura de florestas

MSE and Esforço de Rotulação:

Tipo de cobertura de florestas

Tamanho do conjunto de treino e RAM-Hours

- Análise de Fluxos de Dados.
 - Limitação de recursos.
 Mudanas da Canasita
 - Mudanas de Conceito.

Conclusões

- Análise de Fluxos de Dados.
 - Limitação de recursos.
 - Mudanas de Conceito.
- Eficência e Precisão.
 - Modelo de classificação incremental.
 - Adaptação e Memorização.
 - Eficência de Pareto e princípio de compensação.
 - Medidas de utilidade simple de computar.
 - Nossos algoritmos se mostraram robustos em diferentes cenários.

Conclusões

- Análise de Fluxos de Dados.
 - Limitação de recursos.
 - Mudanas de Conceito.
- Eficência e Precisão.
 - Modelo de classificação incremental.
 - Adaptação e Memorização.
 - Eficência de Pareto e princípio de compensação.
 - Medidas de utilidade simple de computar.
 - Nossos algoritmos se mostraram robustos em diferentes cenários.
- Trabalho futuros:
 - Outras medidas de utilidade.
 - Aplidar o nosso método para reudção de esforço de rotulação.
 - Explorar outros modelos de classificação.

Thank you!

robertolojr@dcc.ufmg.br