Computational Data Mining

Part 1: Course Introduction

Instructor: Fatemeh Mansoori

Reference Book

Main reference:

Elden, L., Matrix Methods in Data Mining and Pattern Recognition, SIAM, 2007

References book

Most of the this course and our slides are based on the book linear algebra and learning form data And Based on the course :

LINEAR ALGEBRA and Learning from Data GILBERT STRANG

Matrix Methods In Data Analysis, Signal Processing, And Machine Learning

Matrix Methods In Data Analysis

Linear Algebra

Four fundamental subspaces A=LU, A=QR, S=Q Λ Q T , A=U Σ V T Singular vectors and the SVD Columns times rows: A \approx CR or CMR

Probability and Statistics

Mean and variance Covariance and joint probability Markov chains Randomized linear algebra

Optimization

Convexity and sparsity Gradient descent and momentum Stochastic gradient descent LASSO and ℓ^1 versus ℓ^2

Deep Learning

Piecewise linear functions Convolutional neural nets Backpropagation Hyperparameters

Lectures of the course Matrix Methods in data analysis

Lecture 1: The Co	column Space of A	Contains All Vectors Ax
-------------------	-------------------	-------------------------

Lecture 2: Multiplying and Factoring Matrices

Lecture 3: Orthonormal Columns in Q Give Q'Q = I

Lecture 4: Eigenvalues and Eigenvectors

Lecture 5: Positive Definite and Semidefinite Matrices

Lecture 6: Singular Value Decomposition (SVD)

Lecture 7: Eckart-Young: The Closest Rank k Matrix to A

Lecture 8: Norms of Vectors and Matrices

Lecture 9: Four Ways to Solve Least Squares Problems

Lecture 10: Survey of Difficulties with Ax = b

Lecture 11: Minimizing ||x|| Subject to Ax = b

Lecture 12: Computing Eigenvalues and Singular Values

Lecture 13: Randomized Matrix Multiplication

Lecture 14: Low Rank Changes in A and Its Inverse

Lecture 15: Matrices A(t) Depending on t, Derivative = dA/dt

Lecture 16: Derivatives of Inverse and Singular Values

Lecture 17: Rapidly Decreasing Singular Values

Lecture 18: Counting Parameters in SVD, LU, QR, Saddle Points

Lecture 19: Saddle Points Continued, Maxmin Principle

Lecture 20: Definitions and Inequalities

Lecture 21: Minimizing a Function Step by Step	Lecture 33: Neural Nets and the Learning Function	
Lecture 22: Gradient Descent: Downhill to a Minimum	Lecture 34: Distance Matrices, Procrustes Problem	
Lecture 23: Accelerating Gradient Descent (Use Momentum)		
Lecture 24: Linear Programming and Two-Person Games	Lecture 35: Finding Clusters in Graphs	
Lecture 25: Stochastic Gradient Descent	Lecture 36: Alan Edelman and Julia Language	
Lecture 26: Structure of Neural Nets for Deep Learning		
Lecture 27: Backpropagation: Find Partial Derivatives		
Lecture 30: Completing a Rank-One Matrix, Circulants!		
Lecture 31: Eigenvectors of Circulant Matrices: Fourier Matrix		
Lecture 32: ImageNet is a Convolutional Neural Network (CNN), The C	onvolution Rule	

Homework

Project

Presentation

Midterm and Final Exam

Data mining and pattern recognition

- *The science of extracting useful information from large data sets
- *The act of taking in raw data and making an action based on the 'category' of the pattern

Vectors and matrices

Document 1: The $Google^{TM}$ matrix P is a model of the Internet.

Document 2: P_{ij} is nonzero if there is a **link** from **Web page** j to i.

Document 3: The Google matrix is used to rank all Web pages.

Document 4: The **ranking** is done by solving a **matrix eigenvalue**

problem.

Document 5: **England** dropped out of the top 10 in the **FIFA**

ranking.

Term	Doc 1	Doc 2	Doc 3	Doc 4	Doc 5		
eigenvalue	0	0	0	1	0	_	(0 0 0 1 0)
England	0	0	0	0	1		$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$
FIFA	0	0	0	0	1		$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
Google	1	0	1	0	0		$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$
Internet	1	0	0	0	0		$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$
link	0	1	0	0	0	A =	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$
matrix	1	0	1	1	0		$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$
page	0	1	1	0	0		$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \end{bmatrix}$
rank	0	0	1	1	1		$\begin{bmatrix} 0 & 0 & 1 & 1 & 1 \end{bmatrix}$
Web	0	1	1	0	0		$(0 \ 1 \ 1 \ 0 \ 0)$

$$q = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^{10}$$