Here, we let $\mathbb{N}^+ = \{1, 2, \dots\}$ and $\mathbb{R}^+ = [0, \infty)$.

Consider the following equation.

$$\nabla \times \psi = i \frac{\partial \psi}{\partial t} \tag{1}$$

with boundary value $\psi(\vec{x},0) = g(\vec{x})$ for $\psi: [-\pi,\pi]^3 \times \mathbb{R}^+ \to \mathbb{R}^3$ and $g: [-\pi,\pi]^3 \to \mathbb{R}^3$.

Let $\langle \cdot, \cdot \rangle_1$ be the inner product on $L_1([-\pi, \pi]^3, \mu_C)$ with μ_C the Lebesgue measure on \mathbb{C} . Then, define $\langle f, g \rangle = \vec{v}$ for a function $f \in (L_1([-\pi, \pi]^3, \mu_C))^3$ and $g \in L_1([-\pi, \pi]^3, \mu_C)$, where $\vec{v}_k = \langle f_k, g \rangle_2$.

Assume ψ is a solution, so that $\psi \in (L_1([-\pi,\pi]^3 \times \mathbb{R}^+, \mu_C^3 \times \mu_L))^3$ where μ_L is the Lebesgue measure

As each component of ψ is in $L_1([-\pi,\pi]^3 \times \mathbb{R}^+, \mu_C^3 \times \mu_L)$, we can write ψ as below.

$$\psi(\vec{x},t) = \sum_{\alpha \in \mathbb{Z}^3} \sum_{n=-\infty}^{\infty} e^{i(tn + (\alpha \cdot \vec{x}))} C_{n\alpha}$$

Now, we have the following.

$$i\frac{\partial \psi}{\partial t} = \nabla \times \psi$$

$$\implies \sum_{\alpha \in \mathbb{Z}^3} \sum_{n = -\infty}^{\infty} ine^{i(tn + (\alpha \cdot \vec{x}))} C_{n\alpha} = \sum_{\alpha \in \mathbb{Z}^3} \sum_{n = -\infty}^{\infty} \nabla \times (ie^{i(tn + (\alpha \cdot \vec{x}))} C_{n\alpha})$$

$$= \sum_{\alpha \in \mathbb{Z}^3} \sum_{n = -\infty}^{\infty} e^{i(tn + (\alpha \cdot \vec{x}))} [\alpha]_{\times} C_{n\alpha}$$

$$\implies inC_{n\alpha} = [\alpha]_{\times} C_{n\alpha}$$

Then, $C_{n\alpha}$ must be an eigenvector of $[\alpha]_{\times}$ with eigenvalue in.

Let $\phi_{-}(\alpha) = (\alpha_1 \alpha_2 + i\alpha_3 |\alpha|, \alpha_1^2 + \alpha_3^2, \alpha_2 \alpha_3 - i\alpha_1 |\alpha|)$ and $\phi_{+}(\alpha) = (\alpha_1 \alpha_2 - i\alpha_3 |\alpha|, \alpha_1^2 + \alpha_3^2, \alpha_2 \alpha_3 + i\alpha_1 |\alpha|).$ Then, $[\alpha]_{\times}$ has the 3 eigenvectors α and $\phi_{\pm}(\alpha)$ with corresponding eigenvalues $0, \pm i|\alpha|$.

Note that if $|\alpha| \notin \mathbb{N}^+$, then the only nonzero $C_{n\alpha}$ must be $C_{0\alpha}$.

With this, we can rewrite ψ 's Fourier Series as follows, with E_{α} the Eigenvector matrix of $[\alpha]_{\times}$ and $\lambda_{\alpha}, \Lambda_{\alpha} \in \mathbb{C}^3$ constants.

$$\psi(\vec{x},t) = \sum_{\alpha \in \mathbb{Z}^3} \sum_{n=-\infty}^{\infty} e^{i(tn + (\alpha \cdot \vec{x}))} C_{n\alpha}$$

$$= \sum_{\alpha \in \mathbb{Z}^{3} \wedge |\alpha| \in \mathbb{N}^{+}} e^{i(\alpha \cdot \vec{x})} \left((\lambda_{\alpha})_{1} \alpha + (\lambda_{\alpha})_{2} e^{-it|\alpha|} \phi_{-}(\alpha) + (\lambda_{\alpha})_{3} e^{it|\alpha|} \phi_{+}(\alpha) \right) + \sum_{\alpha \in \mathbb{Z}^{3} \wedge |\alpha| \notin \mathbb{N}^{+}} e^{i(\alpha \cdot \vec{x})} \alpha \Lambda_{\alpha}$$
(2)
$$\implies \psi(\vec{x}, 0) = \sum_{\alpha \in \mathbb{Z}^{3} \wedge |\alpha| \in \mathbb{N}^{+}} e^{i(\alpha \cdot \vec{x})} E_{\alpha} \lambda_{\alpha} + \sum_{\alpha \in \mathbb{Z}^{3} \wedge |\alpha| \notin \mathbb{N}^{+}} e^{i(\alpha \cdot \vec{x})} \alpha \Lambda_{\alpha}$$
(3)

$$\implies \psi(\vec{x}, 0) = \sum_{\alpha \in \mathbb{Z}^3 \land |\alpha| \in \mathbb{N}^+} e^{i(\alpha \cdot \vec{x})} E_{\alpha} \lambda_{\alpha} + \sum_{\alpha \in \mathbb{Z}^3 \land |\alpha| \notin \mathbb{N}^+} e^{i(\alpha \cdot \vec{x})} \alpha \Lambda_{\alpha}$$
(3)

Theorem 0.1 A solution ψ exists with boundary value g if and only if for all $\alpha \in \mathbb{Z}^3$ with $|\alpha| \notin \mathbb{N}^+$, we have that $\langle g, e^{i(\alpha \cdot \vec{x})} \rangle = \Lambda_{\alpha} \alpha$ for some constant Λ_{α} .

Proof of Sufficiency. We will construct such a ψ .

Define ψ as in (2). From (3), we see that for the boundary value condition $\psi(\vec{x},0)=q(\vec{x})$ to be satisfied we need $E_{\alpha}\lambda_{\alpha} = \langle g, e^{i(\alpha \cdot \vec{x})} \rangle$ for α with $|\alpha| \in \mathbb{N}^+$, so define $\lambda_{\alpha} = E_{\alpha}^{-1} \langle g, e^{i(\alpha \cdot \vec{x})} \rangle$. By hypothesis, we already have that $\langle g, e^{i(\alpha \cdot \vec{x})} \rangle = \Lambda_{\alpha} \alpha$ if $|\alpha| \notin \mathbb{N}^+$. We must verify that ψ is a solution.

$$\begin{split} \nabla\times\psi &= \sum_{\alpha\in\mathbb{Z}^3\wedge|\alpha|\in\mathbb{N}^+} \nabla\times\left(e^{i(\alpha\cdot\vec{x})}\left((\lambda_\alpha)_1\alpha + (\lambda_\alpha)_2e^{-it|\alpha|}\phi_-(\alpha) + (\lambda_\alpha)_3e^{it|\alpha|}\phi_+(\alpha)\right)\right) + \sum_{\alpha\in\mathbb{Z}^3\wedge|\alpha|\notin\mathbb{N}^+} \nabla\times\left(e^{i(\alpha\cdot\vec{x})}\alpha\Lambda_\alpha\right) \\ &= \sum_{\alpha\in\mathbb{Z}^3\wedge|\alpha|\in\mathbb{N}^+} \left(\nabla e^{i(\alpha\cdot\vec{x})}\right) \times \left((\lambda_\alpha)_1\alpha + (\lambda_\alpha)_2e^{-it|\alpha|}\phi_-(\alpha) + (\lambda_\alpha)_3e^{it|\alpha|}\phi_+(\alpha)\right) + \sum_{\alpha\in\mathbb{Z}^3\wedge|\alpha|\notin\mathbb{N}^+} \left(\nabla e^{i(\alpha\cdot\vec{x})}\times\alpha\Lambda_\alpha\right) \\ &= \sum_{\alpha\in\mathbb{Z}^3\wedge|\alpha|\in\mathbb{N}^+} ie^{i(\alpha\cdot\vec{x})}[\alpha]_\times \left((\lambda_\alpha)_1\alpha + (\lambda_\alpha)_2e^{-it|\alpha|}\phi_-(\alpha) + (\lambda_\alpha)_3e^{it|\alpha|}\phi_+(\alpha)\right) + \sum_{\alpha\in\mathbb{Z}^3\wedge|\alpha|\notin\mathbb{N}^+} ie^{i(\alpha\cdot\vec{x})}(\alpha\times\alpha)\Lambda_\alpha \\ &= i\sum_{\alpha\in\mathbb{Z}^3\wedge|\alpha|\in\mathbb{N}^+} e^{i(\alpha\cdot\vec{x})} \left(-i|\alpha|(\lambda_\alpha)_2e^{-it|\alpha|}\phi_-(\alpha) + i|\alpha|(\lambda_\alpha)_3e^{it|\alpha|}\phi_+(\alpha)\right) \end{split}$$

We do the same for $i\frac{\partial \psi}{\partial t}$.

$$i\frac{\partial \psi}{\partial t} = i \sum_{\alpha \in \mathbb{Z}^3 \wedge |\alpha| \in \mathbb{N}^+} \frac{\partial}{\partial t} \left(e^{i(\alpha \cdot \vec{x})} \left((\lambda_{\alpha})_1 \alpha + (\lambda_{\alpha})_2 e^{-it|\alpha|} \phi_{-}(\alpha) + (\lambda_{\alpha})_3 e^{it|\alpha|} \phi_{+}(\alpha) \right) \right) + i \sum_{\alpha \in \mathbb{Z}^3 \wedge |\alpha| \notin \mathbb{N}^+} \frac{\partial}{\partial t} (e^{i(\alpha \cdot \vec{x})} \alpha \Lambda_{\alpha})$$

$$= i \sum_{\alpha \in \mathbb{Z}^3 \wedge |\alpha| \in \mathbb{N}^+} \left(e^{i(\alpha \cdot \vec{x})} \left(-i|\alpha| (\lambda_{\alpha})_2 e^{-it|\alpha|} \phi_{-}(\alpha) + i|\alpha| (\lambda_{\alpha})_3 e^{it|\alpha|} \phi_{+}(\alpha) \right) \right)$$

So, we have verified that $i\frac{\partial \psi}{\partial t} = \nabla \times \psi$. Note that this ψ is guaranteed to converge because $|\psi| \leq |g|$ from the Fourier Series, and since $g \in L_1$ we have that ψ is then too.

Proof of Necessity. If there were some α with $|\alpha| \notin \mathbb{N}^+$ but $\langle g, e^{i(\alpha \cdot \vec{x})} \rangle \neq \Lambda_{\alpha} \alpha$ for any constant Λ_{α} , then we have that the boundary value condition could not possibly hold since any solution ψ must satisfy (3).