SOLUTIONS TO PS4

CHEN

Problem 1. Solution. a) Denote $u_1 = (0, -i, 1)$ and $u_2 = (1 + i, 2, 1)$. Then, let

$$v_{1} = u_{1}$$

$$= (0, -i, 1)$$

$$v_{2} = u_{2} - \frac{\langle u_{2}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1}$$

$$= (1 + i, 2, 1) - \frac{\langle (1 + i, 2, 1), (0, -i, 1) \rangle}{\langle (0, -i, 1), (0, i, 1) \rangle} (0, -i, 1)$$

$$= (1 + i, 1 + \frac{i}{2}, \frac{1}{2} - i),$$

so an orthonormal basis for W is $\{w_1, w_2\} = \{\frac{v_1}{|v_1|}, \frac{v_2}{|v_2|}\} = \{\frac{1}{\sqrt{2}}(0, -i, 1), \frac{\sqrt{2}}{3}(1 + i, 1)\}$ $i, 1 + \frac{i}{2}, \frac{1}{2} - i)$.

b) We will try to find the matrix of the projection with respect to the standard basis of C^3 and the above orthonormal basis of W. Compute

$$\operatorname{Proj}_W(1,0,0) = <(1,0,0), w_1 > w_1 + <(1,0,0), w_2 > w_2 = \frac{\sqrt{2}}{3}(1-i)w_2;$$

$$\operatorname{Proj}_{W}(1,0,0) = <(1,0,0), w_{1} > w_{1} + <(1,0,0), w_{2} > w_{2} = \frac{\sqrt{2}}{3}(1-i)w_{2};$$

$$\operatorname{Proj}_{W}(0,1,0) = <(0,1,0), w_{1} > w_{1} + <(0,1,0), w_{2} > w_{2} = \frac{1}{\sqrt{2}}iw_{1} + \frac{\sqrt{2}}{3}(1-\frac{i}{2})w_{2};$$

$$\operatorname{Proj}_{W}(0,0,1) = <(0,0,1), w_{1} > w_{1} + <(0,0,1), w_{2} > w_{2} = \frac{1}{\sqrt{2}}w_{1} + \frac{\sqrt{2}}{3}(\frac{1}{2}+i)w_{2};$$

So the matrix is
$$\left[\begin{array}{ccc} \frac{\sqrt{2}}{3}(1-i)w_2 & \frac{1}{\sqrt{2}}iw_1 + \frac{\sqrt{2}}{3}(1-\frac{i}{2})w_2 & \frac{1}{\sqrt{2}}w_1 + \frac{\sqrt{2}}{3}(\frac{1}{2}+i)w_2 \end{array}\right]$$

Note that $\frac{\sqrt{2}}{3}(1-i)w_2$, $\frac{1}{\sqrt{2}}iw_1 + \frac{\sqrt{2}}{3}(1-\frac{i}{2})w_2$ and $\frac{1}{\sqrt{2}}w_1 + \frac{\sqrt{2}}{3}(\frac{1}{2}+i)w_2$ are column

Problem 2. Solution.

Proof. For any $p(x), r(x), q(x) \in \mathbf{P}_n(\mathbb{C}), a, b \in \mathbb{C}$

1)
$$< (ap(x) + br(x), q(x) > = \sum_{i=0}^{n} (ap(x_i) + br(x_i)) \overline{q(x_i)}$$

 $= \sum_{i=0}^{n} ap(x_i) \overline{q(x_i)} + \sum_{i=0}^{n} br(x_i) \overline{q(x_i)} = a < p(x), q(x) > +b < r(x), q(x$

2)
$$\langle p(x), q(x) \rangle = \sum_{i=0}^{n} p(x_i) \overline{q(x_i)} = \sum_{i=0}^{n} \overline{p(x_i)} \overline{q(x_i)} = \overline{\langle q(x), p(x) \rangle}.$$

3)
$$\langle p(x), p(x) \rangle = \sum_{i=0}^{n} p(x_i) \overline{p(x_i)} = \sum_{i=0}^{n} |p(x_i)|^2 \ge 0,$$

2 CHEN

and the equality is achieved when $|p(x_i)|^2 = 0$ for $i = 0, \dots, n$, which is equivalent to $p(x_i) = 0$ for $i = 0, \dots, n$, namely, p(x) has n + 1 distinct roots, then by the fundamental theorem of algebra, we have that p(x) = 0.

Problem 3. The question is still wrong.

The reason is as follows.

 $<3x^{2}-2x-1,cx^{2}+x-1>=0$ implies c=0, while $<3x^{2}-2x-1,sx^{2}+cx-9>=$ 0 implies c = -7.

Problem 4. Solution.

Take the standard basis $\{1, x, x^2\}$. Now let

$$v_{1} = 1$$

$$v_{2} = x - \frac{\langle x, 1 \rangle}{\langle 1, 1 \rangle} = x - i$$

$$v_{3} = x^{2} - \frac{\langle x^{2}, 1 \rangle}{\langle 1, 1 \rangle} - \frac{\langle x^{2}, x - i \rangle}{\langle x - i, x - i \rangle} (x - i) = x^{2} - 2ix - \frac{1}{3},$$

so an orthonormal basis for $\mathbf{P}_n(\mathbb{C})$ is

$$\left\{\frac{v_1}{|v_1|}, \frac{v_2}{|v_2|}, \frac{v_3}{|v_3|}\right\} = \left\{\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}(x-i), \frac{\sqrt{3}}{\sqrt{2}}x^2 - 2ix - \frac{1}{3}\right\}.$$

Problem 5. Solution.

 $(i) \Rightarrow (ii)$ by definition.

 $(ii) \Rightarrow (iii)$ Since $\mathbf{0} = \mathbf{0} + \mathbf{0}$, by the uniqueness in (ii), we see $w_1 = w_2 = \mathbf{0}$.

 $(iii) \Rightarrow (iv)$ Denote $\alpha_1 = \{e_1, \dots, e_k\}$, and $\alpha_2 = \{f_1, \dots, f_l\}$, all we need to prove is that the vectors $e_1, \dots, e_k, f_1, \dots, f_l$ are linear independent. If not, we can find numbers $a_i, i = 1, \dots, k$ and $b_j, j = 1, \dots, l$ (among a_i and b_j at least one of the numbers doesn't equal to 0), such that

$$\sum_{i=1}^{k} a_i e_i + \sum_{j=1}^{k} b_j f_j = \mathbf{0},$$

by (iii)we have

$$\sum_{i=1}^{k} a_i e_i = \sum_{j=1}^{k} b_j f_j = \mathbf{0}.$$

Since $\alpha_1 = \{e_1, \dots, e_k\}$ $(\alpha_2 = \{f_1, \dots, f_l\})$ is a basis of W_1 (W_2) , so $a_i = 0, i = 1, \dots, k$, and $b_j = 0, j = 1, \dots, l$ which is a contradiction. So $e_1, \dots, e_k, f_1, \dots, f_l$ are linear independent.

(iv)
$$\Rightarrow$$
 (i) We use the same notations as above. Since $\alpha_1 \cup \alpha_2$ is a basis for V , so for any vector $v \in V$, we can find numbers $a_i, i = 1, \dots, k$ and $b_j, j = 1, \dots, l$ so that $v = \sum_{i=1}^k a_i e_i + \sum_{j=1}^k b_j f_j$, with $\sum_{i=1}^k a_i e_i \in W_1$ and $\sum_{j=1}^k b_j f_j \in W_2$.

Now suppose $u \in W_1 \cap W_2$, we can find numbers $\tilde{a}_i, i = 1, \dots, k$ and $\tilde{b}_j, j = 1, \dots, k$ $1, \dots, l$ so that

$$u = \sum_{i=1}^{k} \tilde{a}_i e_i = \sum_{j=1}^{k} \tilde{b}_j f_j,$$

the second equality implies

$$\sum_{i=1}^{k} \tilde{a}_{i} e_{i} - \sum_{j=1}^{k} \tilde{b}_{j} f_{j} = 0.$$

Now by the linear independence of the vectors $e_1, \dots, e_k, f_1, \dots, f_l$, we have $\tilde{a}_i = 0, i = 1, \dots, k$, and $\tilde{b}_j = 0, j = 1, \dots, l$, namely, $u = \mathbf{0}$. So $W_1 \cap W_2 = \{\mathbf{0}\}$.

Problem 6. Solution.

Proof. For any $A \in M_{n \times n}(R)$, let $A_1 = \frac{A+A^T}{2}$, $A_2 = \frac{A-A^T}{2}$. Notice that $A_1^T = \frac{(A+A^T)^T}{2} = A_1$, so $A_1 \in W_1$. Similarly one can check that $A_2 \in W_2$. Now we need only to prove $W_1 \cap W_2 = \{\mathbf{0}\}$.

Suppose $B \in W_1 \cap W_2$, we have $B = B^T = -B^T$, which means $B^T = \mathbf{0}$.

Problem 7. Solution.

Proof. \Rightarrow Since T is diagonalizable, by definition, we have a basis $\{e_1, \dots, e_n\}$ so that each of them is an eigenvector of T. Since T has only two distinct eigenvalues λ_1 and λ_2 , we have that e_i either belongs to E_{λ_1} or belongs to E_{λ_2} , for all i. This means $E_{\lambda_1} + E_{\lambda_2} = V$. Then one needs only to show that $E_{\lambda_1} \cap E_{\lambda_2} = \{\mathbf{0}\}$.

Assume $\mathbf{0} \neq v \in E_{\lambda_1} \cap E_{\lambda_2}$, we have $Tv = \lambda_1 v = \lambda_2 v$, since $\lambda_1 \neq \lambda_2$, this implies $v = \mathbf{0}$, which is a contradiction. So $E_{\lambda_1} \cap E_{\lambda_2} = \{\mathbf{0}\}.$

 \Leftarrow Denote $\{e_1, \dots, e_k\}$ as a basis of E_{λ_1} and $\{f_1, \dots, f_l\}$ as a basis of E_{λ_2} . All we need to check is that $\{e_1, \dots, e_k, f_1, \dots, f_l\}$ forms a basis of V. And the only thing needs to be checked is that they are linearly independent. If not, we can find numbers $a_i, i = 1, \dots, k$ and $b_j, j = 1, \dots, l$ (among a_i and b_j at least one of the numbers doesnt equal to 0), so that

(0.1)
$$\sum_{i=1}^{k} a_i e_i + \sum_{j=1}^{k} b_j f_j = \mathbf{0}.$$

Then.

$$\mathbf{0} = T \left(\sum_{i=1}^k a_i e_i + \sum_{j=1}^k b_j f_j \right)$$

$$= \lambda_1 \sum_{i=1}^{k} a_i e_i + \lambda_2 \sum_{j=1}^{k} b_j f_j.$$

Since λ_1 and λ_2 are distinct, by (0.1) and (0.3), we can solve

$$\sum_{i=1}^{k} a_i e_i = \sum_{j=1}^{k} b_j f_j = \mathbf{0},$$

which implies $a_i = 0, i = 1, \dots, k$, and $b_j = 0, j = 1, \dots, l$. This is a contradiction, so $e_1, \dots, e_k, f_1, \dots, f_l$ are linearly independent.

Department of Mathematics, University of Toronto, Toronto, Ontario Canada M5S $2\mathrm{E}4$

 $Current\ address$: Department of Mathematics, University of Toronto, Toronto, Ontario Canada M
5S 2E4