§ 6.4 正态总体的参数检验

本节要讨论一个正态总体 $X\sim N(\mu,\sigma^2)$ 的参数检验,以及两个正态总体 $X\sim N(\mu_1,\sigma_1^2)$, $Y\sim N(\mu_2,\sigma_2^2)$ 的参数检验问题:

单个正态总体 $X \sim N(\mu, \sigma^2)$ 的参数检验:

检验方差 σ^2 δ 均值 $\mu=\mu_0$ 已知; 均值 μ 未知.

两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 的 参数检验:

检验
$$\sigma_1^2/\sigma_2^2$$
 \begin{cases} 均值 μ_1 , μ_2 已知; 均值 μ_1 , μ_2 未知.

其中m,n分别表示来自总体X,Y的样本容量.

一、单个正态总体均值的检验

设正态总体 $X \sim N(\mu, \sigma^2), X_1, X_2, \dots, X_n$.是来自X的简单随机样本, \bar{X}, S^2 是样本均值和样本方差,显著性水平为 α .

- 1.方差 σ^2 已知,关于 μ 的检验(\mathbf{u} 检验法)
- (1) 原假设与备择假设 $H_0: \mu = \mu_0 \Leftrightarrow H_1: \mu \neq \mu_0$.

(2) 检验统计量
$$U = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}^{H_0 \stackrel{\text{d.d.}}{\sim}} N(0,1)$$

(3) 对给定的显著性水平 α , 查N(0,1)表得到分位数 $\mu_{\alpha/2}$,使 $P\{|U|>u_{\alpha/2}\}=\alpha$,得拒绝域 $W=\{(x_1,x_2,\cdots,x_n):|U|>u_{\alpha/2}\}$

(4) 由样本观察值算出统计量的实测值

$$U = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

作出判断: $\dot{z}|U| > u_{\alpha/2}$,则拒绝 H_0 ,否则接受 H_0 .

上面的检验问题中,用统计量U来确定拒绝域,这种检验法称为u检验法。

例1 某切割机在正常工作时,切割每段金属棒的平均长度为10.5cm,标准差是0.15cm,今从一批产品中随机的抽取15段进行测量,其结果如下:

10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2

10.9 10.6 10.8 10.5 10.7 10.2 10.7

假定切割的长度服从正态分布,且标准差没有变化,试问该机工作是否正常? ($\alpha = 0.05$)

解: 因为 $X \sim N(\mu, \sigma^2)$, $\sigma=0.15$,

要检验假设 $H_0: \mu = 10.5$, $H_1: \mu \neq 10.5$ 一双侧检验

选取检验统计量
$$U = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$

 $\bar{X} = 10.48$, n = 15, $\alpha = 0.05$, 查表得 $u_{0.025} = 1.96$,

$$|U| = \left| \frac{10.48 - 10.5}{0.15 / \sqrt{15}} \right| = 0.516 < u_{0.025} = 1.96,$$

故接受 H_0 ,认为该机工作正常.

- 2.方差 σ^2 未知,关于 μ 的检验(t 检验法)
 - (1) 原假设与备择假设

$$H_0: \mu = \mu_0 \Leftrightarrow H_1: \mu \neq \mu_0.$$

(2) 检验统计量

$$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$$

(3) 对给定的显著性水平 α ,查t(n-1)表得到分位数 $t_{\alpha/2}(n-1)$,使 $P\{|T|>t_{\alpha/2}(n-1)\}=\alpha$,得拒绝域

$$W = \{(x_1, x_2, \dots, x_n) : |T| > t_{\alpha/2}(n-1)\}.$$

(4) 由样本观察值算出统计量的实测值

$$T = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$$

作出判断:若 $|T| > t_{\alpha/2}(n-1)$,则拒绝 H_0 ,否则接受 H_0 .

上面的检验问题中,用统计量T来确定拒绝域,这种检验法称为t检验法.

例2 如果在例1中只假定切割的长度服从正态分布,问该机切割的金属棒的平均长度有无显著变化?($\alpha = 0.05$)

解: 因为 $X \sim N(\mu, \sigma^2)$, σ^2 未知, 要检验假设

 $H_0: \mu = 10.5$, $H_1: \mu \neq 10.5$ 一双侧检验

选取检验统计量 $T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t(14)$

 $ar{X}=10.48,\ S=0.237,\ n=15,\ \alpha=0.05,$ 查表得 $t_{0.025}(14)=2.1448,$

$$|T| = \left| \frac{10.48 - 10.5}{0.237 / \sqrt{15}} \right| = 0.327 < t_{0.025} (14) = 2.1448,$$

故接受 H_0 ,认为该机工作正常.

单侧检验拒绝域的求解:

总体 $X \sim N(\mu, \sigma^2)$,方差 $\sigma^2 = \sigma_0^2$ 已知,关于 μ 的 右侧检验

(1)原假设与备择假设

$$H_0: \mu \leq \mu_0 \Leftrightarrow H_1: \mu > \mu_0$$
. 一右侧检验

(2)取
$$U = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$$
 作为检验统计量,

$$U \sim N(a,1)$$
.

其中
$$a = \frac{\mu - \mu_0}{\sigma / \sqrt{n}}$$
 $\begin{cases} \leq 0, & \text{ if } H_0 成立, \\ > 0, & \text{ if } H_1 成立. \end{cases}$

不难得知: H_0 的拒绝域是下列形式

$$W = \{(x_1, x_2, \dots, x_n): U > C\}$$

不难得知: H₀的拒绝域是下列形式

$$W = \{(x_1, x_2, \dots, x_n): U > C\}$$

选取C,使得 $P(U > C | \mu \le \mu_0) \le \alpha$,

$$\overrightarrow{\mathbb{M}} \qquad P(U > C \mid \mu \leq \mu_0) = P(U - a > C - a \mid \mu \leq \mu_0)$$

$$= 1 - \Phi(C - a) \leq 1 - \Phi(C).$$

$$W = \{(x_1, x_2, \dots, x_n) : U > u_\alpha\},\$$

上述也表明:单侧检验犯第一类错误的概率不超过 α .

单个正态总体 $X \square N(\mu, \sigma^2)$ 均值 μ 的检验(表1)

条件	检验问题	检验统计量	H ₀ 真时检验 统计量分布	拒绝域
σ^2	$H_0: \mu = \mu_0 \leftrightarrow H_1: \mu \neq \mu_0$		N(0,1)	$ U > u_{\alpha/2}$
己	$H_0: \mu \leq \mu_0 \leftrightarrow H_1: \mu > \mu_0$	$oxed{U = rac{ar{X} - \mu_0}{\sigma / \sqrt{n}}}$	N(a,1)	$U > u_{\alpha}$
知	$H_0: \mu \geq \mu_0 \leftrightarrow H_1: \mu < \mu_0$	0 / v n	U检验	$U < -\mu_{\alpha}$
σ^2	$H_0: \mu = \mu_0 \leftrightarrow H_1: \mu \neq \mu_0$	$ar{oldsymbol{v}}$	t(n-1)	$ T > t_{\alpha/2}$
未	$H_0: \mu \leq \mu_0 \leftrightarrow H_1: \mu > \mu_0$	$T = \frac{X - \mu_0}{S/\sqrt{n}}$	t检验	$T > t_{\alpha}$
<u>知</u>	$H_0: \mu \geq \mu_0 \leftrightarrow H_1: \mu < \mu_0$			$T < -t_{\alpha}$

从表中可以看出:对同一个参数的三种假设检验(双侧检验,右侧检验和左侧检验),选用的检验统计量是相同的,但拒绝域是不同的,双侧检验的拒绝域是统计量的取值偏大或偏小,右侧检验的拒绝域是统计量的取值偏大,左侧检验的拒绝域是统计量的取值偏小.

当 H_0 是简单假设时,第一类错误的概率一般就是显著性水平 α ,而 H_0 是复合假设时,第一类错误的概率不超过 α .

例3 某厂生产小型马达,说明书上写着:在正常负载下平均消耗电流不超过0.8安培.随机测试16台马达,平均消耗电流为0.92安培,标准差为0.32安培.设马达所消耗的电流服从正态分布,问根据此样本能否定厂方的断言? (α = 0.05)

解 根据题意待检假设可设为

$$H_0: \mu \leq 0.8 \Leftrightarrow H_1: \mu > 0.8$$
,一右侧检验

$$\sigma^2$$
未知,选检验统计量 $T = \frac{\bar{X} - \mu_0}{S / \sqrt{16}}$

拒绝域为 $W = \{T > t_{0.05}(15)=1.753\}$

将 $\overline{X} = 0.92$, S = 0.32 代入得 T = 1.5 < 1.753

落在拒绝域外,故接受 H_0 ,即不能否定厂方断言.

练习题

将例3中的假设检验变为

 $H_0: \mu \geq 0.8 \Leftrightarrow H_1: \mu < 0.8$

给出该检验的步骤,并将检验结果与例3进行比较.

二、单个正态总体方差的检验

- 1.均值 μ 已知,关于 σ^2 的检验(χ^2 检验法)
 - (1) 原假设及备择假设

$$H_0: \sigma^2 = \sigma_0^2 \Leftrightarrow H_1: \sigma^2 \neq \sigma_0^2$$

(2) 选取检验统计量

因为 μ 已知常数, $\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2$ 是总体方差 σ^2 的

无偏估计量,它是构造假设检验的合适统计量.而

$$\chi^2 = \frac{\sum_{i=1}^n (X_i - \mu)^2}{\sigma_0^2} \sim \chi^2(n).$$

(3)对给定的显著性水平 α ,可以在 $\chi^2(n)$ 分布表中查到分位点的值 $\chi^2_{1-\alpha/2}(n)$ 和 $\chi^2_{\alpha/2}(n)$,使

$$P\{\chi^2 < \chi^2_{1-\alpha/2}(n)$$
 或 $\chi^2 > \chi^2_{\alpha/2}(n)\} = \alpha$

得拒绝域为

$$W = \left\{ \chi^2 < \chi^2_{1-\alpha/2}(n)$$
 或 $\chi^2 > \chi^2_{\alpha/2}(n) \right\}$

(4)由样本观察值算出统计量的实测值

$$\chi^2 = \frac{\sum (x_i - \mu)^2}{\sigma_0^2}$$

2.均值 μ 未知,关于 σ^2 的检验(χ^2 检验法)

(1) 原假设及备择假设 $H_0: \sigma^2 = \sigma_0^2 \Leftrightarrow H_1: \sigma^2 \neq \sigma_0^2$

(2) 选取检验统计量
$$\chi^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sigma_0^2} \sim \chi^2 (n-1)$$

(3)对给定的显著性水平 α ,拒绝域为

$$W = \left\{ \chi^2 < \chi^2_{1-\alpha/2}(n-1) \stackrel{\text{deg}}{\to} \chi^2 > \chi^2_{\alpha/2}(n-1) \right\}$$

(4)由样本算出统计量的值 $\chi^2 = \frac{\sum (x_i - X)^2}{\sigma_0^2}$

作出判断: 若 $\chi^2 < \chi^2_{1-\alpha/2}(n-1)$ 或 $\chi^2 > \chi^2_{\alpha/2}(n-1)$, 则拒绝 H_0 , 否则接受 H_0 .

单个正态总体 $X \square N(\mu, \sigma^2)$ 方差 σ^2 的检验(表2)

条件	检验问题	检验统计量	H ₀ 真时检验 统计量分布	拒绝域
μ	$H_0: \sigma^2 = \sigma_0^2 \longleftrightarrow H_1: \sigma^2 \neq \sigma_0^2$	$\chi^2 =$	$\chi^2(n)$	$egin{aligned} \chi^2 &< \chi^2_{1-lpha/2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
己,	$H_0: \sigma^2 \leq \sigma_0^2 \leftrightarrow H_1: \sigma^2 > \sigma_0^2$	$\sum_{i=1}^{n} (x_i - \mu_0)^2$	χ^2 检验	$\chi^2 > \chi^2_{\alpha}$
知 	$H_0: \sigma^2 \ge \sigma_0^2 \longleftrightarrow H_1: \sigma^2 < \sigma_0^2$	σ_0^2	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\chi^2 < \chi^2_{1-\alpha}$
μ	$H_0: \sigma^2 = \sigma_0^2 \leftrightarrow H_1: \sigma^2 \neq \sigma_0^2$	$\chi^2 =$	$\chi^2(n-1)$	$egin{aligned} \chi^2 &< \chi^2_{1-lpha/2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
未	$H_0: \sigma^2 \leq \sigma_0^2 \leftrightarrow H_1: \sigma^2 > \sigma_0^2$	2	χ^2 检验	$\chi^2 > \chi^2_{\alpha}$
知 	$H_0: \sigma^2 \ge \sigma_0^2 \longleftrightarrow H_1: \sigma^2 < \sigma_0^2$	σ_0^2	\(\alpha\)\(\frac{1}{2\pi}\)\($\chi^2 < \chi^2_{1-\alpha}$

例4 自动包装机包装食盐,每袋食盐净重服从正态分布 $N(\mu,\sigma^2)$,包装机在正常工作时 $\sigma^2=25$,现随机抽取10袋,测得样本无偏方差 $S^2=28.4$,问包装机工作是否正常(这里指稳定性)?($\alpha=0.05$)

故不能拒绝 H_0 ,即认为包装机工作正常.

三、两个正态总体的检验

设两正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ (X_1, X_2, \dots, X_m) , (Y_1, Y_2, \dots, Y_n) 是来自X, Y的相互独立简单样本,样本值 (x_1, x_2, \dots, x_m) , (y_1, y_2, \dots, y_n) ,样本均值记为 \bar{X} 、 \bar{Y} , 样本方差记为 S_x^2 、 S_y^2 ,显著性水平 α .

两个正态总体的检验, 主要有均值差 $\mu_1 - \mu_2$, 全方差之比 σ_1^2/σ_2^2 的检验. 这些假设检验的步骤完全类似于一个正态总体的情况.

见表3.1,表3.2和表4.

两个正态总体均值之差($\mu_1 - \mu_2$)的检验(表3.1)

条件	检验问题	检验统计量	H ₀ 真时检验 统计量分布	拒绝域
σ_1^2	$egin{aligned} oldsymbol{H}_0: \mu_1 - \mu_2 &= \delta \Longleftrightarrow \ oldsymbol{H}_1: \mu_1 - \mu_2 &\neq \delta \end{aligned}$	$ar{X} - ar{Y} - \mathcal{S}$	N(0,1)	$ U > u_{lpha/2}$
$igg \sigma_2^2$ 日	$egin{aligned} oldsymbol{H}_0: \mu_1 - \mu_2 &\leq \delta \leftrightarrow \ oldsymbol{H}_1: \mu_1 - \mu_2 &> \delta \end{aligned}$	$U = \frac{1}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{m + n}}}$	N(a,1)	$U > u_{\alpha}$
」 知	$egin{aligned} oldsymbol{H}_0: \mu_1 - \mu_2 &\geq \delta &\longleftrightarrow \ oldsymbol{H}_1: \mu_1 - \mu_2 &< \delta \end{aligned}$]	U检验	$U < -u_{\alpha}$
$oxed{\sigma_1^2}$	$H_0: \mu_1 - \mu_2 = \delta \leftrightarrow$ $H_1: \mu_1 - \mu_2 \neq \delta$	$oxed{T-ar{X}-ar{Y}-\delta}$	t(m+n-2)	$ T > t_{\alpha/2}$
σ_{2}^{2}	$egin{aligned} m{H_0}: m{\mu_1} - m{\mu_2} &\leq m{\delta} \leftrightarrow \ m{H_1}: m{\mu_1} - m{\mu_2} &> m{\delta} \end{aligned}$	$S_{W}\sqrt{\frac{1}{m}+\frac{1}{n}}$	t 检验	$T > t_{\alpha}$
未 知	$egin{aligned} oldsymbol{H}_0: \mu_1 - \mu_2 &\geq \delta \leftrightarrow \ oldsymbol{H}_1: \mu_1 - \mu_2 &< \delta \end{aligned}$			$T < -t_{\alpha}$

两个正态总体均值之差($\mu_1 - \mu_2$)的检验(表3.2)

条件	检验问题	检验统计量	H ₀ 真时检验 统计量分布	拒绝域
$\left egin{array}{c} \sigma_1^2 \ \sigma_2^2 \ + 知 \end{array} ight $	$H_0: \mu_1 - \mu_2 = \delta \leftrightarrow$ $H_1: \mu_1 - \mu_2 \neq \delta$ $H_0: \mu_1 - \mu_2 \leq \delta \leftrightarrow$	$\left egin{array}{c} ar{X} - ar{Y} - oldsymbol{\delta} \end{array} \right $	近似 N(0,1)	$ U > u_{\alpha/2}$
m n 较大		$U = \frac{X - I - O}{\sqrt{\frac{S_x^2}{m} + \frac{S_y^2}{n}}}$	近似 N(a,1) U检验	$U > u_{\alpha}$ $U < -u_{\alpha}$
$\sigma_1^2 \sigma_2^2$	$H_1: \mu_1 - \mu_2 < \delta$ $H_0: \mu_1 - \mu_2 = \delta \leftrightarrow$ $H_1: \mu_1 - \mu_2 \neq \delta$	$\bar{X} - \bar{Y} - \delta$	近 似 t(k)	$\left T \right > t_{lpha/2}$
未知 m n	$egin{aligned} H_0: \mu_1 - \mu_2 &\leq \delta \leftrightarrow \ H_1: \mu_1 - \mu_2 &\geq \delta & \leftrightarrow \ H_0: \mu_1 - \mu_2 &\geq \delta \leftrightarrow \end{aligned}$	$T = \frac{X - I - O}{\sqrt{\frac{S_x^2}{m} + \frac{S_y^2}{n}}}$	t检 验	$T > t_{\alpha}$
较小	$H_0: \mu_1 - \mu_2 \geq \delta \Leftrightarrow$ $H_1: \mu_1 - \mu_2 < \delta$			$T < -t_{\alpha}$

两个正态总体方差之比 σ_1^2/σ_2^2 的检验 (表4)

条件	检验问题	检验统计量	H ₀ 真时检验 统计量分布	拒绝域
μ_1	$H_0: \sigma_1^2 = \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 \neq \sigma_2^2$	F-	F(m,n)	$F < F_{1-lpha/2}$ 或 $F > F_{lpha/2}$
$ig egin{array}{c} \mu_2 \ dash \end{array}$	$H_0: \sigma_1^2 \leq \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 > \sigma_2^2$	$\sum_{i=1}^{n} (x_i - \mu_1)^2 / m$	F检验	$F > F_{\alpha}$
知	$H_0: \sigma_1^2 \ge \sigma_2^2 \longleftrightarrow H_1: \sigma_1^2 < \sigma_2^2$	$\sum (y_i - \mu_2)^2 / n$		$F < F_{1-\alpha}$
μ_1	$H_0: \sigma_1^2 = \sigma_2^2 \longleftrightarrow H_1: \sigma_1^2 \neq \sigma_2^2$		F(m-1,n-1)	$F < F_{1-lpha/2}$ 或 $F > F_{lpha/2}$
μ_2	$H_0: \sigma_1^2 \leq \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 > \sigma_2^2$	$ F=S_x^2/S_y^2 $	F检验	$F > F_{\alpha}$
知	$ H_0: \sigma_1^2 \ge \sigma_2^2 \longleftrightarrow H_1: \sigma_1^2 < \sigma_2^2 $			$ F < F_{1-lpha} $

表3. 1中
$$s_w^2 = \frac{(m-1)s_x^2 + (n-1)s_y^2}{m+n-2}.$$

表3.2中 近似 t(k) 分布的自由度

$$k \approx \frac{(s_x^2 / m + s_y^2 / n)^2}{(s_x^2 / m)^2 / (m-1) + (s_y^2 / n)^2 / (n-1)}$$

一般取 k 为与上面最接近的正整数.

例5 分别测定两个品种的家兔停食18小时后正常血糖值,测定结果如下:设两品种家兔正常血糖值服从正态分布,且方差相等,问该两个品种家兔的正常血糖值有无差异?

品 种	n				Ш	糖值((mg/10)Om1 <u>í</u> ííí	()			
大耳白	11	57	120	101	137	119	117	104	73	53	68	118
青紫蓝	10	89	36	82	50	39	32	57	82	96	31	

1. 建立假设
$$H_0: \mu_1 = \mu_2 \Leftrightarrow H_1: \mu_1 \neq \mu_2$$

2. 选定检验统计量
$$T = \frac{\bar{X} - \bar{Y}}{S_W \sqrt{\frac{1}{m} + \frac{1}{n}}}$$

3. 显著性水平: $\alpha = 0.01$, 查表得 $t_{0.01}(19) = 2.861$ 检验的拒绝域为 $W = \{|T| > 2.861\}$

4. 计算
$$T$$
值 $\bar{X} = 97.0, S_x^2 = 847.2; \bar{Y} = 59.4,$

$$S_v^2 = 650.3$$
, $|T| = 3.133 > 2.861$, 拒绝原假设.

表明两品种家兔正常血糖值差异高度显著,这里表现为大耳白品种家兔的正常血糖值极显著高于青紫兰品种家兔的正常血糖值.

例6 假设机器A和B都生产钢管,要检验A和B生产的钢管内径的稳定程度.**设**它们生产的钢管内径分别为X和Y,且都服从正态分布 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$.?现从机器A和B生产的钢管中各抽出18根和13根,测得 S_1^2 =0.34, S_2^2 =0.29.

设两样本相互独立. 问是否能认为两台机器生产的钢管内径的稳定程度相同? (α =0.1).

解
$$H_0: \sigma_1^2 = \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 \neq \sigma_2^2$$
 $F = S_1^2 / S_2^2 \sim F(17,12).$ 查表得 $F_{0.05}(17,12) = 2.59,$
 $F_{0.95}(17,12) = \frac{1}{F_{0.05}(12,17)} = \frac{1}{2.38} = 0.42.$

拒绝域

$$W = \{F > 2.59$$
或 $F < 0.42\}$

由给定值算得
$$F = S_1^2 / S_2^2 = \frac{0.34}{0.29} = 1.17.$$

在拒绝域外,接受原假设,即认为内径的稳定程度相同.

例7 两个小麦品系进行对比试验,A品系共收获25个小区,平均产量为36.75kg,样本标准差 $S_1 = 2.77$ kg;B品系收获20个小区,平均产量为40.35kg,样本标准差 $S_2 = 1.56$ kg.问B品系是否值得推广?

解 第 I 步:由于方差未知,为了选择推断统计量,首先要进行方差齐性分析,即进行 F 检验.

(1) 假设
$$H_0: \sigma_1^2 = \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 \neq \sigma_2^2$$

(2) 检验统计量
$$F = S_x^2 / S_y^2 \sim F(24,19)$$

(3) 对显著性水平: $\alpha = 0.05$, 查F分布表得 $F_{0.975}(24,19) = 0.47, F_{0.025}(24,19) = 2.45$,

$$H_0$$
的拒绝域为 $W = \{F < 0.47$ 或 $F > 2.45\}$

(4) 计算: $F = S_x^2 / S_y^2 = 3.1529 > 2.45$,拒绝 H_0 . 即两总体方差不相等.

第II步: 检验均值是否相等,由于方差不等,所

以采用近似t检验,因为B品系必须优于A品系才值得推广,所以采用单侧检验.

(1) 假设 $H_0: \mu_1 = \mu_2 \leftrightarrow H_1: \mu_1 < \mu_2$.

(2) 检验统计量
$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{S_x^2/m + S_y^2/n}} \stackrel{H_0 \text{成立}}{\sim} t(k)$$

- (3) 对显著性水平: $\alpha = 0.05$, $\alpha = 0.01$,
- (4) 计算检验统计量: t = -5.499, $k \approx 39$

查t分布表得 $t_{0.05}(39) = 1.684$, $t_{0.01}(39) = 2.423$, $t = -5.499 < -t_{0.01}(39)$, 所以差异极显著,拒绝 H_0 , B品系平均产量明显高于A品系,值得推广.

四 假设检验与区间估计的联系

注: 枢轴变量 $H(\hat{\theta},\theta)$ 不是统计量,检验统计量为 $H(\hat{\theta},\theta_0)$

假设检验与置信区间对照

原假设 <i>H</i> ₀	备择假设 <i>H</i> ₁	检验统计量及其在 <i>H</i> ₀ 为真时的分布	接受域
μ $=\mu_0$	$\mu \neq \mu_0$	$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$ $(\sigma^2 $	$\left \frac{\overline{X} - \mu_0}{\sqrt{n}} \right \le u_{\frac{\alpha}{2}}$
待估	参数	枢轴量及其分布	置信区间
μ		$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$ $(\sigma^2 已知)$	$(\overline{x} - u_{\underline{\alpha}} \frac{\sigma}{\sqrt{n}}, \ \overline{x} + u_{\underline{\alpha}} \frac{\sigma}{\sqrt{n}})$

_	原假设 H_0	备择假设 <i>H</i> ₁	检验统计量及其在 H ₀ 为真时的分布	接受域
	$\mu = \mu_0$	$\mu \neq \mu_0$	$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim T(n-1)$ $(\sigma^2 + \pi)$	$\left \frac{\overline{X} - \mu_0}{\sqrt[S]{\sqrt{n}}} \right \le t_{\frac{\alpha}{2}}$
	待估	参数	枢轴量及其分布	置信区间
_	μ	l	$T = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim T(n-1)$ $(\sigma^2 + 5\Pi)$	$(\overline{x}-t_{\frac{\alpha}{2}}\frac{S}{\sqrt{n}},$ $\overline{x}+t_{\frac{\alpha}{2}}\frac{S}{\sqrt{n}})$

例5 新设计的某种化学天平,其测量误差服从正态分布,现要求99.7%的测量误差不超过0.1mg,即要求3 $\sigma \le 0.1$. 现拿它与标准天平相比,得10个误差数据,其样本方差 $s^2 = 0.0009$. 试问在 $\alpha = 0.05$ 的水平上能否认为满足设计要求?

 $\mathbf{H}_0: \sigma \leq 1/30; \ H_1: \sigma > 1/30.$

μ未知,故选检验统计量

$$\chi^2 = \frac{9S^2}{\sigma_0^2} \sim \chi^2(9).$$

拒绝域W: $\chi^2 = \frac{9S^2}{1/900} > \chi^2_{0.05}(9) = 16.919.$

现
$$\chi^2 = \frac{9s^2}{1/900} = 7.29 < 16.919.$$

故接受原假设,即认为满足设计要求.

 $与解: \sigma^2$ 的单侧置信区间为

$$(0, \frac{(n-1)s^2}{\chi_{1-\alpha}^2(n-1)}) = (0, \frac{0.0081}{3.325}) = (0, 0.0024)$$

$$\sigma^2 \leq \sigma_0^2 = \frac{1}{900} = 0.0011 < 0.0024.$$

则 H_0 成立,从而接受原假设,即认为满足设计要求。

	原假设H ₀	检验统计量	备择假设H ₁	拒绝域
1	$\mu \leq \mu_0$ $\mu \geq \mu_0$ $\mu = \mu_0$ $(\sigma^2 \Box \mathfrak{P})$	$\boldsymbol{U} = \frac{\overline{\boldsymbol{X}} - \mu_0}{\sigma / \sqrt{\boldsymbol{n}}}$	$\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$	$u \ge u_{\alpha}$ $u \le -u_{\alpha}$ $ u \ge u_{\alpha/2}$
2	$\mu \le \mu_0$ $\mu \ge \mu_0$ $\mu = \mu_0$ $(\sigma^2 未知)$	$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$	$\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$	$t \ge t_{\alpha}(n-1)$ $t \le -t_{\alpha}(n-1)$ $ t \ge t_{\alpha/2}(n-1)$
3	$egin{aligned} \mu_1 - \mu_2 & \leq \delta \ \mu_1 - \mu_2 & \geq \delta \ \mu_1 - \mu_2 & = \delta \ (\sigma_1^2, \sigma_2^2 已知) \end{aligned}$	$U = \frac{\overline{X} - \overline{Y} - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$\mu - \mu_0 > \delta$ $\mu - \mu_0 < \delta$ $\mu - \mu_0 \neq \delta$	$u \ge u_{\alpha}$ $u \le -u_{\alpha}$ $ u \ge u_{\alpha/2}$
4	$\mu_{1} - \mu_{2} \leq \delta$ $\mu_{1} - \mu_{2} \geq \delta$ $\mu_{1} - \mu_{2} = \delta$ $(\sigma_{1}^{2} = \sigma_{2}^{2} = \sigma^{2} 未知)$	$t = \frac{\overline{X - Y - \delta}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $S_w^2 = \frac{(n_1 - 1)S_1^{*2} + (n_2 - 2)S_2^{*2}}{n_1 + n_2 - 2}$	$\mu - \mu_0 > \delta$ $\mu - \mu_0 < \delta$ $\mu - \mu_0 \neq \delta$	$t \ge t_{\alpha}(n_1 + n_2 - 2)$ $t \le -t_{\alpha}(n_1 + n_2 - 2)$ $ t \ge t_{\alpha/2}(n_1 + n_2 - 1)$

	分布真	实情况
判断结论	θ∈Θ。 (H。成立)	$\theta \in \Theta_1$ $(H_1 成立)$
接受 H。	正确	第二类 错 误
拒绝 H。	第一类错误	正确