3. Proof of Theorem 1

Theorem 1. Matrix K can be calculated recursively in the form of $K_{k+1} = \begin{bmatrix} G_{1,k+1} & \mathbf{0} \\ \mathbf{0} & G_{2,k+1} \end{bmatrix} K_k$, where $G_{1,k+1}$ and $G_{2,k+1}$ are adaptively determined.

Proof:

$$\mathbf{K}_{k+1} = \mathbf{B}_{k+1}^{-\frac{1}{2}} = (\alpha_{k+1}\mathbf{B}_k + (1 - \alpha_{k+1})\Delta\mathbf{B}_{k+1})^{-\frac{1}{2}}$$
 (S4)

As B is a block diagonal matrix with $B = \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix}$, K can be written in the form of $K = \begin{bmatrix} K_1 & 0 \\ 0 & K_2 \end{bmatrix}$. We mainly introduce the recursion of K_1 , and K_2 can be updated similarly.

$$K_{1,k+1} = \mathbf{B}_{1,k+1}^{-\frac{1}{2}}$$

$$= (\alpha_{k+1}\mathbf{B}_{1,k} + (1 - \alpha_{k+1})\Delta\mathbf{B}_{1,k+1})^{-\frac{1}{2}}$$

$$= \left(\left(\sqrt{\alpha_{k+1}}\mathbf{B}_{1,k}^{\frac{1}{2}}\right)\left(\mathbf{I} + \frac{1 - \alpha_{k+1}}{\alpha_{k+1}}\mathbf{B}_{1,k}^{-\frac{1}{2}}\Delta\mathbf{B}_{1,k+1}\left(\mathbf{B}_{1,k}^{-\frac{1}{2}}\right)^{T}\right)\left(\sqrt{\alpha_{k+1}}\mathbf{B}_{1,k}^{\frac{1}{2}}\right)^{T}\right)^{-\frac{1}{2}}$$

$$= \frac{1}{\sqrt{\alpha_{k+1}}}\left(\mathbf{I} + \frac{1 - \alpha_{k+1}}{\alpha_{k+1}}\mathbf{B}_{1,k}^{-\frac{1}{2}}\Delta\mathbf{B}_{1,k+1}\left(\mathbf{B}_{1,k}^{-\frac{1}{2}}\right)^{T}\right)^{-\frac{1}{2}}\mathbf{B}_{1,k}^{-\frac{1}{2}}$$

$$= \frac{1}{\sqrt{\alpha_{k+1}}}\left(\mathbf{I} + \frac{1 - \alpha_{k+1}}{\alpha_{k+1}}\mathbf{K}_{1,k}\Delta\mathbf{B}_{1,k+1}\mathbf{K}_{1,k}^{T}\right)^{-\frac{1}{2}}\mathbf{K}_{1,k}$$

$$= \frac{1}{\sqrt{\alpha_{k+1}}}\tilde{\mathbf{K}}_{1,k+1}^{-\frac{1}{2}}\mathbf{K}_{1,k}$$

$$= \frac{1}{\sqrt{\alpha_{k+1}}}\tilde{\mathbf{K}}_{1,k+1}^{-\frac{1}{2}}\mathbf{K}_{1,k}$$
(S5)

where $\tilde{K}_{1,k+1} = I + \frac{1-\alpha_{k+1}}{\alpha_{k+1}} K_{1,k} \Delta B_{1,k+1} K_{1,k}^T$. $\Delta B_{1,k+1}$ is symmetric and the rank is no more than 2. Thus, it can be reformulated into

$$\begin{split} \Delta \boldsymbol{B}_{1,k+1} = & \begin{bmatrix} \boldsymbol{q}_{1,k+1} & \boldsymbol{q}_{2,k+1} \end{bmatrix} \begin{bmatrix} \beta_{1,k+1} & \\ & \beta_{2,k+1} \end{bmatrix} \begin{bmatrix} \boldsymbol{q}_{1,k+1} & \boldsymbol{q}_{2,k+1} \end{bmatrix}^T \\ = & \boldsymbol{Q}_{1,k+1} \boldsymbol{\Xi}_{1,k+1} \boldsymbol{Q}_{1,k+1}^T \end{split}$$

where $\beta_{1,k+1}$ and $\beta_{2,k+1}$ are non-zero eigenvalues if $\operatorname{rank}(\Delta \boldsymbol{B}_{1,k+1}) = 2$. $\boldsymbol{q}_{1,k+1}$ and $\boldsymbol{q}_{2,k+1}$ are the eigenvectors. If the rank is 1, $\beta_{1,k+1}$ or $\beta_{2,k+1}$ is 0. Thus,

$$\tilde{K}_{1,k+1} = I + \frac{1 - \alpha_{k+1}}{\alpha_{k+1}} K_{1,k} Q_{1,k+1} \Xi_{1,k+1} Q_{1,k+1}^T K_{1,k}^T
= I + \frac{1 - \alpha_{k+1}}{\alpha_{k+1}} (K_{1,k} Q_{1,k+1}) \Xi_{1,k+1} (K_{1,k} Q_{1,k+1})^T
= I + \tilde{Q}_{1,k+1} \tilde{\Xi}_{1,k+1} \tilde{Q}_{1,k+1}^T$$
(S6)

where $\tilde{\boldsymbol{Q}}_{1,k+1} = \boldsymbol{K}_{1,k} \boldsymbol{Q}_{1,k+1} \in \mathbb{R}^{m_1 \times 2}$, $\tilde{\boldsymbol{\Xi}}_{1,k+1} = \frac{1-\alpha_{k+1}}{\alpha_{k+1}} \boldsymbol{\Xi}_{1,k+1}$ and $\operatorname{rank}(\tilde{\boldsymbol{\Xi}}_{1,k+1}) \leqslant 2$. As $\boldsymbol{B}_{1,k+1}$ is positive definite, $\boldsymbol{I} + \tilde{\boldsymbol{Q}}_{1,k+1} \tilde{\boldsymbol{\Xi}}_{1,k+1} \tilde{\boldsymbol{Q}}_{1,k+1}^T$ is also positive definite. For brevity, let $\tilde{\boldsymbol{Q}}_{1,k+1} = \begin{bmatrix} \tilde{\boldsymbol{q}}_{1,k+1} & \tilde{\boldsymbol{q}}_{2,k+1} \end{bmatrix}$, $\tilde{\boldsymbol{\Xi}}_{1,k+1} = \begin{bmatrix} \tilde{\boldsymbol{\beta}}_{1,k+1} & \tilde{\boldsymbol{g}}_{2,k+1} \end{bmatrix}$. We select the calculation way of $\tilde{\boldsymbol{K}}_{1,k+1}^{-\frac{1}{2}}$ based on the rank of $\tilde{\boldsymbol{\Xi}}_{1,k+1}$.

1) $\operatorname{rank}(\tilde{\boldsymbol{\Xi}}_{1,k+1}) = 1$.

Let $\beta_{1,k+1} \neq 0$ and $\beta_{2,k+1} = 0$, here $\tilde{\mathbf{\Xi}}_{1,k+1} = \tilde{\beta}_{1,k+1}$, $\tilde{\mathbf{Q}}_{1,k+1} = \tilde{\mathbf{q}}_{1,k+1}$. Then, according to [1]

$$\begin{split} \tilde{\boldsymbol{K}}_{1,k+1}^{-\frac{1}{2}} &= \left(\boldsymbol{I} + \tilde{\boldsymbol{Q}}_{1,k+1} \tilde{\boldsymbol{\Xi}}_{1,k+1} \tilde{\boldsymbol{Q}}_{1,k+1}^T \right)^{-\frac{1}{2}} \\ &= \left(\boldsymbol{I} + \tilde{\beta}_{1,k+1} \tilde{\boldsymbol{q}}_{1,k+1} \tilde{\boldsymbol{q}}_{1,k+1}^T \right)^{-\frac{1}{2}} \\ &= \boldsymbol{I} + \frac{\tilde{\boldsymbol{q}}_{1,k+1} \tilde{\boldsymbol{q}}_{1,k+1}^T}{\tilde{\boldsymbol{q}}_{1,k+1}^T \tilde{\boldsymbol{q}}_{1,k+1}} \left(\frac{1}{\sqrt{1 + \tilde{\beta}_{1,k+1} \tilde{\boldsymbol{q}}_{1,k+1}^T \tilde{\boldsymbol{q}}_{1,k+1}}} - 1 \right) \\ &= \boldsymbol{I} + \gamma_{1,k+1} \tilde{\boldsymbol{q}}_{1,k+1} \tilde{\boldsymbol{q}}_{1,k+1}^T \tilde{\boldsymbol{q}}_{1,k+1}^T \end{split}$$

where $\gamma_{1,k+1} = \frac{1}{\tilde{q}_{1,k+1}^T \tilde{q}_{1,k+1}} \left(\frac{1}{\sqrt{1 + \tilde{\beta}_{1,k+1}} \tilde{q}_{1,k+1}^T} - 1 \right)$. Thus, the recursion of K_1 is

$$\mathbf{K}_{1,k+1} = \frac{1}{\sqrt{\alpha_{k+1}}} \left(\mathbf{I} + \gamma_{1,k+1} \tilde{\mathbf{q}}_{1,k+1} \tilde{\mathbf{q}}_{1,k+1}^T \right) \mathbf{K}_{1,k}$$
 (S7)

Here, $G_{1,k+1} = \frac{1}{\sqrt{\alpha_{k+1}}} \left(I + \gamma_{1,k+1} \tilde{q}_{1,k+1} \tilde{q}_{1,k+1}^T \right)$. 2) $\operatorname{rank}(\tilde{\Xi}_{1,k+1}) = 2$.

The formula (S6) can be further reformulated into

$$I + \tilde{\boldsymbol{Q}}_{1,k+1} \tilde{\boldsymbol{\Xi}}_{1,k+1} \tilde{\boldsymbol{Q}}_{1,k+1}^T = I + \tilde{\beta}_{1,k+1} \tilde{\boldsymbol{q}}_{1,k+1} \tilde{\boldsymbol{q}}_{1,k+1}^T + \tilde{\beta}_{2,k+1} \tilde{\boldsymbol{q}}_{2,k+1} \tilde{\boldsymbol{q}}_{2,k+1}^T$$

$$= \check{\boldsymbol{Q}}_{1,k+1} \check{\boldsymbol{\Lambda}}_{1,k+1} \check{\boldsymbol{Q}}_{1,k+1}^T$$

where $\check{\boldsymbol{Q}}_{1,k+1}$ is the eigen matrix with $\check{\boldsymbol{Q}}_{1,k+1}^T\check{\boldsymbol{Q}}_{1,k+1}=\boldsymbol{I}$, $\check{\boldsymbol{\Lambda}}_{1,k+1}$ contains the eigenvalues. (S6) is realized by two successive rank-1 modification with first-order perturbation (FOP) [2]. Thus, (S5) is further calculated:

$$\boldsymbol{K}_{1,k+1} = \frac{1}{\sqrt{\alpha_{k+1}}} \check{\boldsymbol{\Lambda}}_{1,k+1}^{-\frac{1}{2}} \check{\boldsymbol{Q}}_{1,k+1}^T \boldsymbol{K}_{1,k}$$
 (S8)

Here, $G_{1,k+1} = \frac{1}{\sqrt{\alpha_{k+1}}} \check{\mathbf{\Lambda}}_{1,k+1}^{-\frac{1}{2}} \check{\mathbf{Q}}_{1,k+1}^T.$

In conclusion, $K_{1,k+1}$ can be calculated adaptively in the form of $K_{1,k+1} = G_{1,k+1}K_{1,k}$, where

$$G_{1,k+1} = \begin{cases} \frac{1}{\sqrt{\alpha_{k+1}}} \left(I + \gamma_{1,k+1} \tilde{q}_{1,k+1} \tilde{q}_{1,k+1}^T \right), & \operatorname{rank} \left(\Delta B_{1,k+1} \right) = 1\\ \frac{1}{\sqrt{\alpha_{k+1}}} \check{\mathbf{\Lambda}}_{1,k+1}^{-\frac{1}{2}} \check{\mathbf{Q}}_{1,k+1}^T, & \operatorname{rank} \left(\Delta B_{1,k+1} \right) = 2 \end{cases}$$

As $\operatorname{rank}(\Delta \boldsymbol{B}_{2,k+1}) \leq 2$ and $\boldsymbol{K}_{2,k+1} = \boldsymbol{G}_{2,k+1}\boldsymbol{K}_{2,k}, \ \boldsymbol{G}_{2,k+1}$ can be calculated recursively in the similar way. Thus, $\boldsymbol{K}_{k+1} = \begin{bmatrix} \boldsymbol{G}_{1,k+1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{G}_{2,k+1} \end{bmatrix} \boldsymbol{K}_k$, where $\boldsymbol{G}_{1,k+1}$ and $\boldsymbol{G}_{2,k+1}$ are determined adaptively.