HOMEWORK 2

DUE: THURSDAY, JUNE 1

1. In each of the following problems determine if the equation is linear or non-linear and separable or non-separable and solve the IVP with the given initial conditions

a)
$$y' + 2y = xe^{-x}$$
, $y(0) = 2$

b)
$$y' = \frac{3x^2}{3y^2 - 4}$$
, $y(1) = 0$

c)
$$xy' + 2y = 2$$
, $y(0) = y_0$

a)
$$y' + 2y = xe^{-x}$$
, $y(0) = 2$
b) $y' = \frac{3x^2}{3y^2 - 4}$, $y(1) = 0$
c) $xy' + 2y = 2$, $y(0) = y_0$
d) $y' = \frac{x^2}{y(1 + x^3)}$, $y(0) = 1$
e) $y' = x^2 + x^2y^2$, $y(0) = 1$

e)
$$y' = x^2 + x^2y^2$$
, $y(0) = 1$

2. Solve the two IVPs and determine their intervals of definition

a)
$$\frac{dy}{dt} = y^2, y(0) = 1$$

b)
$$y - y' = t$$
, $y(0) = 1$

3. Solve the two IVPs and find the coordinates of the first critical point (i.e. local max or min) of each of the solutions for t > 0.

a)
$$y' - y = 2\cos t$$
, $y(0) = -1$

b)
$$y' = 2\frac{\cos 2t}{(3+2y)}$$
, $y(0) = -1$ *

^{*}Hint for 3b): For finding the critical point, use the DE itself. Do not differentiate the answer again.