

MEPS-HC: Using the Longitudinal Files, pooling multiple years of data, and other analytic topics

Marc Zodet, MS

Overview

Longitudinal analysis using panel files

- Structure of the Longitudinal (Panel) files
- Available variables
- Types of analyses supported
- Survey design variables to use
- Using with other MEPS data files
- Extending the longitudinal period

Pooling multiple years of MEPS data

- Full-year consolidated files
- Longitudinal (Panel) files
- Use of price indices

Longitudinal analysis using panel files

Panel structure

Full-Year (FY) Consolidated file refresher

- Person-level files
- Comprised of two MEPS Panels
- Used to generate annual estimates for a given year
- Examine trends in those estimates over time
- Not useful for examining individual person-level changes over time

Longitudinal (Panel) files

- Person-level files
- Respondent data for two years in one file rather than split across two annualized FY files
- Useful for examining individual person-level changes over time

Panel structure

Example:

Panel 24 (2019–2020)

Available variables

Insurance coverage

- Monthly indicators (24 measures per person)
- Annual summary (2 measures per person)

Health status

- Each round (5 measures for perceived general/mental health)
- Rounds 1 & 3 (2 measures activities of daily living)
- Rounds 2 & 4 (2 measures hearing, vision, & disability)

Having a usual source of care

Rounds 2 & 4 (2 measures per person)

Use and expenditures

Annual (2 measures per person)

Available variables: case selection

Variable	Description
YEARIND	1=both years, 2=in Year 1 only, and 3=in Year 2 only
ALL5RDS	In-scope and data collected in all 5 rounds (0=no, 1=yes)
DIED	Died during the two-year survey period (0=no, 1=yes)
INST	Institutionalized for some time during the two-year survey period (0=no, 1=yes)
MILITARY	Active-duty military for some time during the two-year survey period (0=no, 1=yes)
ENTRSRVY	Entered survey after beginning of panel (mainly births; also includes persons who had no initial chance of selection who moved into a MEPS sample household) (0=no, 1=yes)
LEFTUS	Moved out of the country after beginning of panel (0=no, 1=yes)
OTHER	Not identified in any of the above analytic groups (0=no, 1=yes)

Types of analyses supported

- National estimates of person-level changes over 2-year period
- Examination of characteristics associated with changes over time

Examples later

Survey design variables to use

- As with FY files need to use survey design variables to derive estimates
 - Analytic weight to yield national estimates
 - Stratum and PSU to yield proper standard errors
- Stratum (VARSTR) and PSU (VARPSU) are same as on FY
- Longitudinal files utilize a different analytic weight than the FY: LONGWT

Survey design variables to use

- Why LONGWT?
 - Longitudinal files have only about half the records of FY
 - Persons in the Panel who did not participate in the survey for the entire period they were in-scope are excluded; LONGWT adjusted for this nonresponse/attrition
- LONGWT yields national estimates for persons in two consecutive years
- For Panel 24 (2019-2020) . . .

LONGWT > 0	All 5 Rounds	Participated for entire period in-scope (not all 5 rounds)
9,797	9,120 (93.1%)	677 (6.9%)

Estimates from the longitudinal files

Examples using Panel 24 (2019-20):

- Of those uninsured throughout 2019, an estimated 74.3% were also uninsured throughout 2020.
- An estimated 5.0% of the population had no insurance throughout 2019 / 2020.
- Of those with no expenses for health care in 2019, an estimated 42.8% had some expenses in 2020.

Using with other MEPS data files

Medical Conditions files

- Can be used to identify persons with specific conditions of interest
- Directly linkable to Longitudinal files via DUPERSID

Event-level files

- Payment amounts/sources already "rolled-up" on longitudinal files
- Other event characteristics can be obtained (e.g., number of officebased visits involving labs, prescribed medicines, etc.)
- Directly linkable to Longitudinal files via DUPERSID

More complex linking using CLNK and RXLK

MEPS data page under Appendix to MEPS Event files

IDs used to link MEPS files

- Longitudinal files (DUPERSID)
- Medical Conditions files (DUPERSID, CONDIDX)
- Event files (DUPERSID, EVNTIDX)
- CLNK (DUPERSID, CONDIDX, EVNTIDX)
- RXLK (DUPERSID, EVNTIDX, LINKIDX)

Example of generalized linking process

Examine healthcare utilization/expenditures for persons with asthma over a two-year period

- ID persons w/ asthma in Medical conditions files (2 years needed)
- If data on Longitudinal files is sufficient merge asthma indicators directly onto the file (DUPERSID)
- If need event-level info (e.g., expenditures for services related to asthma), merge CLNK (CONDIDX) then desired event-level data (EVNTIDX; 2 years)
- Prescribed medicine events are not directly linked to conditions;
 link PMED event file to RXLK file (LINKIDX) then linkable to conditions/other event files via CLNK (EVNTIDX/CONDIDX)

NOTES: With all file merges, be sure to only keep the Panel of interest.

See CLNK/RXLK doc for SAS and STATA programing examples.

Extending the longitudinal period: MEPS-NHIS

- MEPS-HC is a nationally representative subsample of responding households from the previous year's NHIS.
 - Prior-year NHIS data available for many MEPS respondents

MEPS/NHIS link file

- Crosswalk to merge MEPS full-year public use data to NHIS person-level public use data
- Crosswalk file not public use; available in AHRQ Data Center

Extending the longitudinal period: MEPS-NHIS

2018	2019	2020	
	MEPS Panel 23 Year 2		
NHIS 2018	MEPS Panel 24 Year 1	MEPS Panel 24 Year 2	
	NHIS 2019	MEPS Panel 25 Year 1	

Linked files, weighting, and estimation

- Linking MEPS-NHIS expands the analytic capabilities.
- Not all MEPS respondents link (birth, marriage, etc.)
 - NHIS now collects data only on a sample adult / sample child
 - MEPS can only link to NHIS sample adult / child
- Weighting adjustment for non-linkage is recommended
 - Necessary since NHIS move to sample adult / child
- Informational resources are available online:

2012 American Statistical Association proceedings paper (Chowdhury, Machlin, and Wun)

https://meps.ahrq.gov/mepsweb/data_stats/Pub_ProdResults_Details.jsp?pt=Conference+Proceedings&opt=3&id=1241

2013 Federal Committee on Statistical Methodology proceedings paper (Mirel and Machlin)

https://s3.amazonaws.com/sitesusa/wp-content/uploads/sites/242/2014/05/H2 Mirel 2013FCSM.pdf

Longitudinal files

Panel Number	Years	File Number	Number of Persons
24	2019-20	HC-225	9,797
23	2018-19	HC-217	14,067
22	2017-18	HC-210	15,541
21	2016-17	HC-202	15,617
20	2015-16	HC-193	17,017
19	2014-15	HC-183	15,898
18	2013-14	HC-172	16,714
17	2012-13	HC-164	17,293
16	2011-12	HC-156	18,512
15	2010-11	HC-148	14,541
14	2009-10	HC-139	16,221

Pooling multiple years of MEPS data

Reasons for pooling

- Increase sample size
- Reduce standard errors of estimates
- Enhance ability to analyze small subgroups

Example of pooling FY files 2018 & 2019

Example of pooling FY files 2019 & 2020

Things to be mindful of when pooling

- Persons in the common panel are included twice
- Although correlated, data for the same person usually differ from year to year
- Each year represents nationally representative sample for that year
- Pooling produces average estimates across the pooled years
- Lack of independence diminishes the gain in precision from pooling

Accounting for lack of independence

- MEPS panels are selected from the same sample PSUs and SSUs
 - Correlation is not only at the person level, but persons within a PSU (segment/block) are also correlated
- In multistage sampling, since PSU is the unit of sampling, specifying stratum (VARSTR) and PSU (VARPSU) in variance estimation is sufficient to account for all stages of correlation

https://meps.ahrq.gov/survey_comp/hc_clustering_faq.pdf

Example of pooled sample sizes

Adults 18-64 years old w/ diabetes, by insurance status

	Sample Size				
Year	Privately Insured	Publicly Insured	Uninsured (all year)		
2019	758	504	97		
2020	777	588	120		
2019-20 (Pooled)	1,535 person-years	1,092 person-years	217 person-years		

Example of pooled RSEs of mean annual expenditures

Adults 18-64 years old w/ diabetes, by insurance status

	Relative Standard Error (RSE) (Standard error ÷ Point estimate)			
Year	Privately Insured	Publicly Insured	Uninsured (all year)	
2019	8.3%	7.3%	26.4%	
2020	9.0%	9.6%	32.7%	
2019-20 (Pooled)	7.3%	6.8%	23.9%	

Caveat to computing standard errors from pooled files

- Variance structure not standardized for all years
- Pooled Estimation Linkage File (HC-036)
 - Contains standardized stratum and PSU
 - Stratum and PSU variables obtained from HC-036 for 1996-2020
 STRA9620, PSU9620
 - Documentation for HC-036 provides instructions on how to properly create pooled analysis file
- Need to be mindful of what years you intend to pool and understand which stratum and PSU variables to use

Caveat to computing standard errors from pooled files

1996 – 2001

- Stratum/PSU variables on annual files are <u>not standardized across range or with</u> <u>later years</u>
- Must always use standardized stratum/PSU identifiers from HC-036

$\cdot 2002 - 2018$

- Stratum/PSU variables on annual files are standardized across range, but <u>not with</u> <u>preceding years or 2019 and 2020</u>
- When pooling restricted to these years use stratum/PSU variables from annual files
- When pooling with any years prior to 2002 or with 2019/2020 use standardized stratum and PSU identifiers from Pooled Estimation Linkage File (HC-036)

2019, 2020

- Stratum and PSU variables on annual files are standardized between these two years, but <u>not with preceding years</u>
- When pooling 2019 and 2020 use stratum and PSU variables from annual files.
- When pooling either 2019/2020 with any preceding year, use HC-036

Steps for creating FY pooled files

- 1) Rename analytic and weight variables from different years to common names. For example,
 - Expenditures: TOTEXP19 & TOTEXP20 = TOTEXP
 - Weights: PERWT19F & PERWT20F = POOLWT
- 2) Concatenate annual files
- 3) Divide weight by number of years pooled to produce estimates for "an average year" during the period.
 - Keep original weight if estimating total for the period
- 4) Merge variance estimation variables from HC-036 onto file if necessary
 - see previous slide / documentation for guidance

Estimation from Pooled Files

- Produce estimates in analogous fashion as for individual years
- Estimates interpreted as "average annual" for pooled period

Example using 2019 & 2020 pooled data:

The average annual per capita health care expenses in 2019-20 was \$6,259

Note: Per capita expenses were \$6,252 in 2019 and \$6,266 in 2020

Steps for creating Panel pooled files

The objective is the same

- Increase sample size
- Improve precision of estimates (i.e., reduce standard errors)
- Enable the analysis of smaller subgroups

Process

- Generally, no need to rename variables from different Panel years
 caveat: some variables may not be present all years
- Append/concatenate/stack multiple panel files
- If including Panels 1-6 must use HC-036 Pooled Estimation File
- Standardize expenditure dollars to a reference year
- Decide if need to divide estimates by the number of Panels pooled.

Estimates from pooled Panel files

- When pooling multiple panels temporal comparisons can still be made (e.g., Y1 vs. Y2)
- Averages/proportions direct results/output fine
- Totals divide by number of panels pooled;
 - average annual
- All references should be relative to temporal constructs; not specific to particular year or range of years.

Estimates from pooled Panel files

Hypothetical pooling of five most recent panel files

– P24 (2019-20), P23 (2018-19), P22 (2017-18), P21 (2016-17),P20 (2015-16)

Possible statements

- During 2015 to 2019, when considering two consecutive years, of those uninsured throughout the first year, an estimated x% were also uninsured the subsequent year.
- During 2015 to 2019, when considering two consecutive years, there was an average annual increase/decrease in total healthcare expenditures of \$x from year one to year two

Use of price indices

Inflating expenditures

- Analyses involving multiple years
 - Typically adjust expenditures to most current MEPS data year (i.e., inflate previous year expenditures)
- CFACT guidelines on appropriate indices varies by:
 - Purpose of the analysis
 - Type of expenditure
- Resource page (updated bi-annually)

http://www.meps.ahrq.gov/mepsweb/about_meps/Price_Index.shtml

Guidance for choosing index

	Recommended Index				
Objective of analysis	GDP or PCE	СРІ	PHCE or PCE-Health Total	PHCE Component	CPI-M
Trends in expenditures	X				
Trends in out-of-pocket expenditures only		X			
Pooling total expenditures			X		
Pooling expenditures by type of service (e.g., prescription meds)				X	
Pooling out-of-pocket expenditures					X
Projecting total expenditures			X		
Projecting total expenditures by service type				X	
Projecting out-of-pocket expenditures					X
Trends with income measures		X			

Notes: CPI = Consumer Price Index; GDP = Gross Domestic Product;

PCE = Personal Consumption Expenditures; PHCE = Personal Health Care Expenditures

Example of inflating expenditures

Nominal total expenditures for the U.S. civilian noninstitutionalized population

– 2010: \$1,263 billion

– 2020: \$2,059 billion

Gross Domestic Product (GDP) to put in constant dollars

- Use yearly indices from resource page to determine inflation factor
- $-2020 \text{ index} / 2010 \text{ index} \rightarrow 113.740 / 96.164 = 1.1827711$

Inflation adjusted total expenditures

- 2010: \$1,494 billion

2020: \$2,059 billion (reference year)

 about \$564 billion more was spent on health care in 2020 than 2010, after accounting for inflation.

Thank you

marc.zodet@ahrq.hhs.gov