Matematyka dyskretna (L) - cheatsheet Autor: Tomasz Woszczyński, strona nr 1

1 Wariacje

Liczba wariacji z powtórzeniami

Dla zbiorów A,B o odpowiednio m,nelementach liczba funkcji ze zbioru A w B wynosi n^m , czyli $|\{f: A \to B\} = n^m|$.

Liczba wariacji bez powtórzeń

Dla zbiorów A,B o odpowiednio elementach liczba funkcji różnowartościowych ze zbioru A w B wynosi $n(n-1)...(n-m+1) = \frac{n!}{(n-m)!}$.

Liczba podzbiorów

Zbiór A o n elementach ma $|\{B: B \subseteq A\} = 2^n|$ podzbiorów.

Para podzbiorów

Dla *U* będącego *n*-elementowym można wyznaczyć dwa jego podzbiory A, B takie, że $A \subseteq B$ na $|\{(A, B) : A \subseteq B \subseteq U\}| =$ $|\{f: U \to \{0,1,2\}\}| = 3^n$ sposobów.

Liczba permutacji

Zbiór *U* o *n* elementach można spermutować na n! sposobów.

Sufit, podłoga, część ułamkowa

Niech $x \in \mathbb{R}$, $n \in \mathbb{Z}$, wtedy: 1. $|x| = n \Leftrightarrow n \le x < n + 1$

 $2. \lceil x \rceil = n \Leftrightarrow n-1 < x \leq n$ 3. $\{x\} = x - |x|$

Własności sufitu i podłogi

Niech $x \in \mathbb{R}$, $n \in \mathbb{Z}$, wtedy: 1. |x+n|=n+|x|, ponieważ $|x| + n \le x + n < |x| + n + 1.$ Ponadto mamy:

 $2. \lceil x + n \rceil = n + \lceil x \rceil$

3. |-x| = -|x|

Podzbiory k-elementowe

Niech $|U| = \{1, 2, ..., n\}$ oraz $P_n^k =$ $\{A \subseteq U : |A| = k\}$. Wtedy $\frac{n!}{(n-k)!} = k! |P_n^k|$ czyli $|P_n^k| = \frac{n!}{(n-k)!k!} = \binom{n}{k}$.

Symbol Newtona

Dla $k, n \in \mathbb{N}$ takich, że $0 \le k \le n$ zachodzi: 1. $\binom{n}{k} = \binom{n}{n-k}$

2.
$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

Tożsamość absorpcyjna

Dla $k \ge 1$ zachodzi $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$.

Tożsamość Cauchy'ego

$$\binom{m+n}{r} = \sum_{i=0}^{r} \binom{m}{i} \binom{n}{r-i}$$

Tożsamość Pascala

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$

Kulki i szufladki

z *n* zer i k-1 jedynek, czyli $\binom{n+k-1}{k-1}$.

Dwumian Newtona

Dla $n \in \mathbb{N}$ mamy $(x+y)^n = \sum_{i=1}^n {n \choose i} x^i y^{n-i}$

Inna tożsamość (jaka?)

$$\binom{n}{k}\binom{k}{m} = \binom{n}{m}\binom{m-k}{n-k}$$

Zasada szufladkowa Dirichleta

Niech $k, s \in \mathbb{N}_+$. Jeśli wrzucimy k kulek do s szuflad (Dirichleta), a kulek jest więcej niż szuflad (k > s), to w którejś szufladzie będą przynajmniej dwie kulki. Innymi słowy, dla skończonych zbiorów A, B, jeśli |A| > |B|, to nie istnieje funkcja różnowartościowa z A w B. Dla $k > s \cdot i$ kulek oraz s szuflad będzie w jakiejś szufladzie i + 1 kulek.

2 Asymptotyka

Niech $f,g: \mathbb{N} \to \mathbb{R} \ge 0$, wtedy możemy mówić o takich funkcjach asymptotycznych:

Notacja dużego O

Mamy f(n) = O(g(n)) wtw, gdy $\exists (c > 0) \ \exists (n_0 \in \mathbb{N}) \ \forall (n \ge n_0) \ f(n) < cg(n).$ Ponadto dla $C, a, \alpha, \beta \in \mathbb{R}$ zachodzą takie własności:

1. $\forall (\alpha, \beta) \ \alpha \leq \beta \Rightarrow n^{\alpha} = O(n^{\beta}),$

2. $\forall (\alpha > 1) \ n^C = O(a^n)$

3. $\forall (\alpha > 0) (\ln n)^C = O(n^{\alpha}).$

Przydatna może okazać się reguła de l'Hospitala, wiec gdy f(n) i g(n) dążą do nieskończoności, to $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}.$

Notacja małego o

f(n) = o(g(n)) wtw, gdy $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.

Notacja duże Omega (Ω)

 $f(n) = \Omega(g(n))$ wtw, gdy $\exists (c > 0) \exists (n_0 \in \mathbb{N}) \forall (n \ge n_0) f(n) \ge cg(n).$

Notacja Theta (⊖)

 $f(n) = \Theta(g(n))$ wtw, gdy $f(n) = \Omega(g(n)) \wedge$ f(n) = O(g(n)).

Notacja małe Omega (ω)

 $f(n) = \omega(g(n))$ wtw, $gdy \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

3 Arytmetyka modularna

Funkcia modulo

Niech $n, d \in \mathbb{Z}$ i $d \neq 0$. Wtedy:

 $n \mod d = n - \left| \frac{n}{d} \right| \cdot d$. $n \mod d = r \text{ wtw, } \text{gdy } 0 \le r < d \land$

$\exists (k \in \mathbb{Z}) \ n = kd + r$ Przystawanie modulo

 $a \equiv_n b$ wtw, gdy $a \mod n = b \mod n$

Własności funkcii modulo

n kulek do *k* szuflad można wrzucić na 1. $a + b \equiv_n a \mod n + b \mod n$ tyle sposobów, ile jest ciągów złożonych 2. $a \cdot b \equiv_n (a \mod n) \cdot (b \mod n)$

Podzielność

Niech $n, d \in \mathbb{Z}$ i $d \neq 0$. Wtedy: 1. $d \mid n$ wtw, gdy $\exists (k \in \mathbb{Z}) \ n = kd$

2. $d \mid n$ wtw, gdy $n \mod d = 0$

3. $d \mid n$ wtw, gdy $n \equiv_d 0$

4. $d|n_1 \wedge d|n_2$ to $d|(n_1 + n_2)$

Największy wspólny dzielnik (NWD, gcd)

Niech $a, b \in \mathbb{N}$, wtedy $gcd(a, b) = max\{d \in \mathbb{N} : d|a \wedge d|b\}$

Własności NWD

Dla a > b względnie pierwszych $(a \perp b)$ i $0 \le m < n$: $\gcd(a^n - b^n, a^m - b^m) = a^{\gcd(m,n)}$ hgcd(m,n)

Algorytm Euklidesa

Dla $a \ge b > 0$ korzystamy z własności: 2. $d_{n+1} = n(d_n + d_{n+1})$ dla $d_0 = 1, d_1 = 0$. $gcd(a,b) = gcd(b,a \mod b)$ oraz gcd(a, 0) = a.

qcd(a, b): while b != 0: $c = a \mod b$ a = breturn a

Rozszerzony algorytm Euklidesa

Dla a > b > 0: $\exists (x, y \in \mathbb{Z}) \ xa + yb = \gcd(a, b)$

gcd(a, b): x = 1, y = 0, r = 0, s = 1while b != 0: $c = a \mod b$ $q = a \operatorname{div} b$

> y = sreturn a, x, y

Liczby względnie pierwsze

Niech $a,b \in \mathbb{Z}$, wtedy te liczby sa względnie pierwsze, gdy gcd(a, b) = 1.

Coś o liczbach pierwszych

1. Jeśli $2^n - 1$ jest liczbą pierwszą, to n jest liczba pierwsza.

2. Jeśli a^n-1 jest liczbą pierwszą, to a=2. 3. Jeśli $2^n + 1$ jest liczbą pierwszą, to n jest potegą liczby 2.

4 Wzór włączeń i wyłączeń

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{k=1}^{n} (-1)^{k-1} \sum_{I \subseteq \{1,\dots,n\}} \left| \bigcap_{i \in I} A_i \right|$$

5 Rekurencja, zależności rekurencyjne Liczby Fibonacciego

Niech $F_0 = 0, F_1 = 1$, wtedy $F_n = F_{n-1} +$ F_{n-2} dla n > 1.

Własności liczb Fibonacciego

Każde dwie kolejne liczby Fibonacciego są względnie pierwsze.

 $gcd(F_m, F_n) = F_{gcd(m,n)}$

Szereg harmoniczna

$$H_n = H_{n-1} + \frac{1}{n}$$

Podział płaszczyzny na obszary

$$p_n = \begin{cases} 1 & \text{dla } n = 0 \\ p_{n-1} + n & \text{dla } n \ge 1 \end{cases}$$

Liczba nieporządków n-elementowych

1.
$$d_n = n! \cdot \sum_{i=0}^{n} \frac{(-1)^i}{i!}$$

Operator przesuniecia E Mamy ciąg $\langle a_n \rangle = \langle a_0, a_1, \dots, a_n, \dots \rangle$.

Wtedy $\mathbf{E}\langle a_n \rangle = \langle a_{n+1} \rangle = \langle a_1, \dots, a_n, \dots \rangle$. Złożenie operatora przesunięcia

$$\mathbf{E}^2 \langle a_n \rangle = \mathbf{E} \left(\mathbf{E} \langle a_n \rangle \right) = \langle a_2, \dots, a_n, \dots \rangle$$

Operatory działające na ciągi

1.
$$\langle a_n \rangle + \langle b_n \rangle = \langle a_n + b_n \rangle = \langle a_0 + b_0, \dots \rangle$$

2. $c \langle a_n \rangle = \langle ca_n \rangle = \langle ca_0, ca_1, \dots \rangle$

Co anihiluje dane ciągi? $1. \langle \alpha \rangle \Longrightarrow \mathbf{E} - 1.$

2. $\langle \alpha a^i \rangle \Longrightarrow \mathbf{E} - a$.

3. $\langle \alpha a^i + \beta b^i \rangle \Longrightarrow (\mathbf{E} - a)(\mathbf{E} - b)$.

 $4. \left\langle \sum_{k=0}^{n} \alpha_k a_k^i \right\rangle \Longrightarrow \prod_{k=0}^{n} (\mathbf{E} - a_k).$

5. $\langle \alpha i + \beta \rangle \Longrightarrow (\mathbf{E} - 1)^2$. 6. $\langle (\alpha i + \beta) a^i \rangle \Longrightarrow (\mathbf{E} - a)^2$.

7. $\langle (\alpha i + \beta) a_i + \gamma b^i \rangle \Longrightarrow (\mathbf{E} - a)^2 (\mathbf{E} - b)$.

Dodatkowe własności anihilatorów

to $\mathbf{E}_A \mathbf{E}_B$ anihiluje $\langle a_i \rangle \pm \langle b_i \rangle$.

Jeśli \mathbf{E}_A anihiluje $\langle a_i \rangle$, to ten sam anihilator anihiluje również ciąg $c\langle a_n\rangle$ dla dowolnej stałej *c*. Jeśli \mathbf{E}_A anihiluje $\langle a_i \rangle$ i \mathbf{E}_B anihiluje $\langle b_i \rangle$,

Liczby Catalana

 C_n oznacza n-tą liczbę Catalana, wyraża się przez $C_n = \sum_{i=1}^{n} C_{i-1}C_{n-i}$ dla $C_0 = 0$.

Można je również przedstawić wzorami $C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!}$. Spełniają one

nawiasów, liczba dróg w układzie

zależność $C_n = \binom{2n}{n} - \binom{2n}{n+1}$ Liczby Catalana posiadają różne interpretacje kombinatoryczne, takie jak liczba poprawnych rozmieszczeń

drzew binarnych, liczba podziałów wielokata wypukłego na trójkaty.

Funkcie tworzace (OGF)

Dla ciągu $\langle a_n \rangle$ można utworzyć funkcję $\sum a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots = A(x)$, która jest funkcją tworzącą tego ciągu. Poniżej kilka typowych funkcji tworzących dla

1. $\frac{1}{1-r}$ dla ciągu $\langle 1 \rangle$, czyli $\frac{n}{1-r}$ dla $\langle n \rangle$.

2. $\frac{1}{1-2r}$ dla ciągu $\langle 2^n \rangle$.

3. $\frac{1}{(1-x)^2}$ dla ciągu $\langle 1, 2, 3, \ldots \rangle$.

4. $\frac{1}{1-x^2}$ dla ciągu (0,1,0,1,...).

Przesuniecie wyrazów w prawo o k

Aby z ciągu $\langle a_0, a_1, a_2, ... \rangle$ o OGF A(x) otrzymać ciąg $\langle 0, \dots, 0, a_0, a_1, \dots \rangle$, w którym pierwsze k wyrazów jest 0, należy pomnożyć funkcję tworzącą przez x^k , wiec mamy $x^k A(x)$.

Przesunięcie wyrazów w lewo o k miejsc Aby z takiego ciągu jak wyżej otrzymać ciąg $\langle a_k, a_{k+1}, \ldots \rangle$, należy wykonać takie

działanie:

$$A(x) - (a_0 x^0 + a_1 x^1 + ... + a_{k-1} x^{k-1})$$

Przerwy pomiędzy wyrazami

Funkcją tworząca takiego $\langle a_0, 0, a_1, 0, a_2, 0, ... \rangle$ jest $\sum a_i x^i =$ $a_0 + a_1 x^2 + a_2 x^4 + \dots = A(x^2)$. Dla ciągu o wyrazach co 3 miejsca byłoby to

$A(x^3)$, dla 4 to $A(x^4)$, dla n wiec $A(x^n)$. Co drugi wyraz ciągu (pochodne)

Funkcją tworzącą $\langle a_0, 0, a_2, 0, a_4, 0, \ldots \rangle$ jest $\frac{A(x)+A(-x)}{2}$, dla $\langle 0, a_1, 0, a_3, \ldots \rangle$ mamy A(x)-A(-x)

Funkcja tworzaca takiego ciagu $(0, a_1, 2a_2, 3a_3, 4a_4, ..., ia_i, ...)$ iest pochodna funkcji A(x) przesunięta o jedno miejsce w prawo, a więc xA'(x).

Wykorzystanie całek w OGF

Aby odnaleźć funkcję tworzącą ciągu $\langle 0, \frac{a_1}{1}, \frac{a_2}{2}, \dots, \frac{a_i}{i}, \dots \rangle$ należy scałkować funkcję tworzącą A(x) i przesunąć ją w

lewo:
$$\int_{0}^{1} \frac{A(x) - a_0}{x} dx = \sum_{i=0}^{\infty} \frac{a_i}{i} x^i.$$

Inne funkcje tworzące

 $1. \langle n^2 \rangle$ odpowiada OGF $\frac{x(1+x)}{(1-x)^3}$

współrzędnych w I ćwiartce, liczba 2. $\langle n^3 \rangle$ odpowiada OGF $x \frac{x^2+4x+1}{(1-x)^4}$

Matematyka dyskretna (L) - cheatsheet Autor: Tomasz Woszczyński, strona nr 2

3.
$$\langle \binom{n+k}{k} \rangle$$
 odpowiada OGF $\frac{1}{(1-x)^{n+1}}$.

Liczba podziałów liczby n

1. Dowolne składniki:
$$\prod\limits_{i=1}^{\infty} \frac{1}{1-x^i}$$

2. Różne składniki:
$$\prod_{i=1}^{\infty} (1+x^i)$$

3. Nieparzyste składniki:
$$\prod_{i=1}^{n} (1 + x^{2i-1})$$

4. Składniki mniejsze od
$$m$$
:
$$\prod_{i=1}^{m-1} \frac{1}{1-x^i}$$

5. Różne potęgi 2:
$$\prod_{i=1}^{\infty} (1 + x^{2^i})$$

Rekursja uniwersalna

Niech a, b, c beda dodatnimi stałymi rozwiązaniem równania rekurencyjnego

$$T(n) = \begin{cases} b & \text{dla } n = 1\\ aT(\frac{n}{c}) + bn & \text{dla } n > 1 \end{cases}$$

dla n będących potegą liczby c jest

$$T(n) = \begin{cases} O(n) & \text{dla } a < c \\ O(n \log n) & \text{dla } a = c \\ O\left(n^{\log_{c} a}\right) & \text{dla } a > c \end{cases}$$

6 Teoria grafów

Graf nieskierowany

Graf nieskierowany to para zbiorów (V, E), gdzie $E = \{\{u, v\} : u, v \in V\}$. V to zbiór wierzchołków, *E* to zbiór krawędzi.

"Patologie"w grafach

Petla to krawędź postaci $\{v,v\}$, a krawędzie równoległe to dwie lub więcej krawędzi łączących te same wierzchołki u, v (dla $u \neq v$).

Graf prosty

Graf G = (V, E) jest prosty, jeśli nie zawiera petli ani krawedzi równoległych.

Graf skierowany

Graf nieskierowany to para zbiorów (V, E), gdzie $E = \{(u, v) : u, v \in V\}$. V to zbiór wierzchołków, E to zbiór krawędzi skierowanych lub łuków.

Krawędź incydentna

Krawędź e jest incydentna do wierzchołka u, jeśli jeden z końców

Stopień wierzchołka

Stopień wierzchołka *u* oznaczany przez deg(u) to liczba krawedzi incydentnych do u. Każda petla incydentna do u dokłada się do stopnia *u* liczba 2.

Lemat o uściskach dłoni

Niech G = (V, E) będzie nieskierowanym grafem. Wtedy $\sum \deg(v) = 2|E|$.

Reprezentacje grafów

Graf można reprezentować za pomocą list sasiadów, macierzy sasiedztwa lub macierzy incydencji.

Izomorfizm grafów

Dwa grafy nieskierowane proste G =(V,E) i H=(V',E') sa izomorficzne wtw, gdy istnieje bijekcja $f: V \to V'$ taka, że $\forall (u, v \in V) \{u, v\} \in E \Leftrightarrow \{f(u), f(v)\} \in E'$.

Marszruta, ścieżka, droga, cykl

- 1. Marszruta o długości k to ciąg $\langle v_0, v_1, \dots, v_k \rangle$ taki, że $\forall (0 \le i < k) \ \{v_i, v_{i+1}\} \in E.$
- 2. Droga to marszruta, w której żadna krawędź nie występuje dwukrotnie.
- 3. Ścieżka to marszruta, w której żaden wierzchołek nie występuje dwukrotnie. 4. Cykl to marszruta, w której pierwszy wierzchołek jest taki sam jak ostatni, a poza tym, żaden wierzchołek nie występuje dwukrotnie.

u-v-marszruta to marszruta taka, że $v_0 = u$ i $v_k = v$, analogicznie definiujemy u - v-drogę i u - v-ścieżkę.

Marszruta/droga jest zamknięta, gdy $v_0 = v_k$. Zamknieta ścieżka to cykl.

Graf spójny

Nieskierowany graf G = (V, E) jest spójny, jeśli z każdego wierzchołka da się dojść do innego, tzn. dla każdego wierzchołka $u, v \in V$ istnieje uv-ścieżka.

Dopełnienie grafu

Dopełnienie grafu G oznaczamy przez \overline{G} , a definiujemy je jako graf $\overline{G} = (V, E')$ taki, że $\{u, v\} \in E'$ wtw, gdy $\{u, v\} \notin E$.

Podgraf

Podgrafem grafu G = (V, E) jest dowolny graf H = (V', E') taki, że $V' \subseteq V$ i $E' \subseteq E$. Podgraf jest właściwy, jeśli $G \neq H$.

Spójna składowa

Spójna składowa grafu *G* to dowolny podgraf spójny H = (V', E') grafu G, który jest maksymalny ze względu na zawieranie, tzn. taki, że nie istnieje podgraf spójny H', którego podgrafem właściwym jest H.

Drzewo i las

Graf G = (V, E) jest acykliczny, jeśli nie zawiera żadnego cyklu. Las jest acyklicznym grafem, a drzewo acyklicznym grafem spójnym. Drzewa są spójnymi składowymi lasu, a więc las składa sie z drzew.

Drzewo jest najmniejszym grafem spójnym, a więc jeśli chćemy zbudować

graf spójny *G* na zbiorze wierzchołków V, to G musi być drzewem.

Liść to wierzchołek o stopniu 1. Dowolne drzewo o $n \ge 2$ wierzchołkach zawiera przynajmniej 2 liście.

Most

Most to krawędź, której usunięcie zwiększa liczbę spójnych składowych grafu, ponadto żaden most nie leży na cvklu.

Charakteryzacja drzewa

Niech G =(V.E)będzie *n*-wierzchołkowym grafem nieskierowanym ($n \geq 1$). Wtedy wszystkie następujące stwierdzenia sa równoważne:

- 1. G jest spójny i acykliczny (G jest drzewem).
- 2. G jest spójny i ma n-1 krawędzi.
- 3. G jest acykliczny i ma n-1 krawędzi. 4. Dla każdego $u, v \in V$ w G jest tylko jedna u - v-ścieżka.
- 5. G jest spójny i każda krawędź jest
- 6. G nie ma cykli, ale dołożenie jakiejkolwiek krawędzi tworzy cykl.

Liczba liści w dowolnym drzewie

Niech t_i oznacza liczbę wierzchołków stopnia i w drzewie, wtedy

$$t_1 = \sum_{i=3}^{n} (i-2)t_i + 2$$
 oznacza liczbę liści

w drzewie. Nie zależy ona od t_2 , gdyż "przedłużenie"liścia kolejną krawędzią nie zmienia liczby liści w drzewie.

Wierzchołek centralny, promień grafu

Niech d(u,v) oznacza odległość wierzchołków *u, v*, czyli długość najkrótszej ścieżki łączącej je. Dla każdego wierzchołka v definiujemy $r(v) = \max\{d(v, u) : u \in V(G)\}.$ Wierzchołek w, dla którego r(w) = $\min\{r(v) : v \in V(G)\}$ nazywamy wierzchołkiem centralnym grafu G, a liczbę r(G) = r(w) promieniem grafu G.

Graf dwudzielny

Graf G = (V, E) jest dwudzielny wtw, gdy istnieje podział zbioru V na zbiory A i B taki, że dla każdej krawędzi $e \in E$ jeden koniec e należy do zbioru A, a drugi do zbioru B. Podział wierzchołków nie zawsze jest jednoznaczny! Graf G jest dwudzielny wtw, gdy nie zawiera cyklu o nieparzystej długości.

Lemat o zamknietej marszrucie

Każda zamknięta marszruta o nieparzystej długości zawiera cykl o nieparzystej długości.

Graf o minimalnym stopniu k

Niech G będzie grafem prostym, w Algorytm Prima polega na dobieraniu którym każdy wierzchołek ma stopień najlżejszych krawedzi do grafu T.

przynajmniej k. Wówczas G zawiera ścieżke o długości k. Jeśli $k \geq 2$, to G zawiera cykl o długości przynajmniej

Algorytmy przeszukiwania grafów Przeszukiwanie grafu w głąb

```
DFS(u):
 u.visited = true
    for each neighbour v of u:
      if not v.visited
        DFS(v)
```

Przeszukiwanie grafu wszerz

```
BFS(v):
 queue Q = \{\}
 Q.enqueue(v)
 v.visited = true
 while (Q != empty):
   u = 0.dequeue()
     for each neighbour w of u:
        if not w.visited:
          Q.enqueue(w)
          w.visited = true
```

Czas działania DFS oraz BFS to O(V + E).

Drzewo rozpinające

Niech G = (V, E) będzie grafem spójnym. Drzewo rozpinające grafu G to podgraf T = (V, E'), który jest drzewem. T zawiera wszystkie wierzchołki grafu G.

Las rozpinający

Niech G = (V, E) bedzie grafem niekoniecznie spójnym. Las rozpinający grafu G to podgraf F = (V, E'), który jest lasem, którego liczba spójnych składowych jest taka sama jak liczba spójnych składowych grafu G.

Minimalne drzewo rozpinające (MST)

Niech G = (V, E) będzie grafem spójnym o nieujemnych wagach na krawędziach, a graf T = (V, E') jego drzewem rozpinajacym. Wage definiuje funkcja $c: E \rightarrow$ \mathbb{R}_{+} . Wtedy wagą drzewa rozpinającego

rozpinającym (MST) grafu G jest drzewo rozpinające T o minimalnej wadze.

 $c(T) = \sum_{e} c(e)$. Minimalnym drzewem

Algorytmy na znajdowanie MST

Algorytm Kruskala polega dodawaniu kolejnych krawędzi w taki sposób, aby nie stworzyły one żadnego cyklu.

```
KRUSKAL:
  sort(E) wzgledem wagi
  T = \{\}
  for i in [1, m]:
    if (T + \{e(i)\}) nie tworzy
         zadnego cyklu):
      T = T + \{e(i)\}
```

```
U = \{1\} (dowolny wierzcholek G)
while (U != V):
  e = najlzejsza krawedz (u, v),
      taka ze u jest z U,
      a v iest z V-U
  T = T + \{(u, v)\}
  U = U + \{v\}
```

Algorytm Boruvki polega dodawaniu najlżejszych krawędzi do T, łaczeniu ich w superwierzchołki i wykonywaniu algorytmu od poczatku.

```
BORUVKA:
 T = V
  while (T != MST):
    wybierz najmniejsza krawedz
    z najmniejsza waga i dodaj
    ia do zbioru E'
    gdy jest wiecej niz jedna
    spojna skladowa, polacz
    wszystkie wierzcholki w
    superwierzcholki i wykonaj
    algorytm od poczatku
```

Wszystkie powyżej przedstawione algorytmy działają w czasie $O(|E| \cdot \log |V|)$.

Skojarzenie (matching)

Niech G = (V, E) będzie grafem spójnym. Skojarzenie grafu G to dowolny pozdbiór krawedzi $M \subseteq E$ taki, że żadne dwie krawędzie z M nie mają wspólnego

Największe skojarzenie

Skojarzenie największe grafu G to skojarzenie o maksymalnej liczbie krawedzi.

Wierzchołki skojarzone, wolne

Niech G = (V, E) bedzie grafem spójnym, a *M* jakimś skojarzeniem w G. Wierzchołek $v \in V$ jest skojarzony w M, jeśli jest końcem jakiejś krawędzi z M. Wierzchołek $v \in V$ jest wolny/nieskojarzony, jeśli żadna krawędź z *M* nie jest z nim incydentna.

Ścieżka alternująca

Ścieżka P w grafie G jest alternująca (względem M) jeśli krawędzie na P na przemian należą i nie należą do M.

Ścieżka powiekszająca

Ścieżka P w grafie G jest powiększająca (względem M), jeśli jest alternująca względem M i jej końce są nieskojarzone (w M).

Skojarzenie doskonałe/pełne

Skojarzenie doskonałe/pełne G to skojarzenie, w którym każdy wierzchołek z V jest skojarzony.

Matematyka dyskretna (L) - cheatsheet Autor: Tomasz Woszczyński, strona nr 3

Cykl alternujący

Cykl C w grafie G jest alternujący względem M jeśli krawędzie na C na przemian należą i nie należą do M.

Twierdzenie Berge'a

Skojarzenie M grafu G jest największe wtw, gdy G nie zawiera ścieżki powiększającej względem M.

Sąsiedztwo wierzchołków

Niech G = (V, E) będzie grafem a $W \subseteq V$ podzbiorem wierzchołków. Sąsiedztwo W oznaczane jako N(W) definiujemy jako zbiór

 $\{v \in V : \exists (w \in W) \{v, w\} \in E\}.$

Warunek Halla

Niech graf $G = (A \cup B, E)$ będzie grafem dwudzielnym.

Dla każdego $A' \subseteq A$ zachodzi $|N(A')| \ge |A'|$ oraz dla każdego $B' \subseteq B$ zachodzi $|N(B')| \ge |B'|$.

Skojarzenie doskonałe w grafie dwudzielnym

Graf dwudzielny *G* zwiera skojarzenie doskonałe wtw, gdy spełniony jest w nim warunek Halla.

Waga ścieżki, najlżejsza ścieżka

Waga ścieżki P to suma wag krawędzi leżących na P. Najlższejsza/najkrótsza (względem $c: E \to \mathbb{R}_+$) ścieżka z s do t to ta, która ma najmniejszą wagę.

ta, która ma najmniejszą wagę. Niech $S \subseteq V$, a s będzie ustalonym wierzchołkiem z V. Ścieżka P z s do v jest prawie S-owa/osiągalna bezpośrednio z S, jeśli wszystkie wierzchołki na P oprócz v są w S.

d(v) to waga najkrótszej ścieżki z s do v. t(v) to waga najkrótszej prawie S-owej ścieżki z s do v, a gdy taka ścieżka nie istnieje, to $t(v) = \infty$.

Algorytm Dijkstry

Algorytm Dijkstry służy do znajdowania wagi najkrótszych ścieżek.

```
DIJKSTRA:
    S = {s}
    d(s) = 0

for each neighbour v of s:
    t(v) = c(s, v)
    for other vertices:
    while (S != V):
        u = argmin{t(u): u not in S}
        S = S + {u}
        update all t(v):
        for each neighbour v
        (not in S) of vertex u:
        t(v) = min{t(v),
            d(u)+c(u,v)}
```

Pokrycie wierzchołkowe

Niech G = (V, E) będzie grafem. Pokrycie wierzchołkowe G to dowolny pozdbiór $V' \subseteq V$ taki, że każda krawędź z E ma przynajmniej jeden z końców w V'.

Najmniejsze pokrycie wierzchołkowe

Najmniejsze pokrycie wierzchołkowe grafu *G* to to spośród pokryć wierzchołkowych *G*, które zawiera najmniej wierzchołków.

Pokrycie wierzchołkowe a skojarzenie

Niech G = (V, E) będzie grafem. Niech M będzie jakimś skojarzeniem G, a W jakimś pokryciem wierzchołkowym. Wtedy $|M| \le |W|$.

Twierdzenie Koeniga

Niech G=(V,E) będzie grafem dwudzielnym, $M_{\rm max}$ największym skojarzeniem G, a $W_{\rm min}$ najmniejszym pokryciem wierzchołkowym. Wtedy $|M_{\rm max}|=|W_{\rm min}|$.