## 功率计量芯片 HLW8012 介绍与应用

## 一、引言

HLW8012 是深圳市合力为科技推出的单相电能计量芯片,可以测量有功功率、电量、电压有效值、电流有效值; SOP8 封装,体积小,广泛应用于智能家电、节能插座,智能路灯、智能 LED 灯等应用场合。本文主要内容: 1、HLW8012 介绍; 2、HLW8012 应用硬件电路; 3、HLW8012 脉冲软件测量; 4、HLW8012 应用场合及展望。

### 二、、HLW8012 介绍

#### 1、HLW8012 主要特性

- (1) 高频脉冲 CF, 指示有功功率, 在 1000:1 范围内达到±0.3%的精度
- (2) 高频脉冲 CF1, 指示电流或电压有效值, 使用 SEL 选择, 在 500:1 范围内达到±0.5%的精度
- (3) 内置晶振、2.43V 电压参考源及电源监控电路
- (4) 5V 单电源供电,工作电流小于 3mA

#### 2、HLW8012 引脚图



图 1 芯片引脚图

| 引脚序号 | 引脚名称     | 输入/输出 | 说明                          |
|------|----------|-------|-----------------------------|
| 1    | VDD      | 芯片电源  | 芯片电源                        |
| 2, 3 | V1P, V1N | 输入    | 电流差分信号输入端,最大差分输入信号为±43.75mV |
| 4    | V2P      | 输入    | 电压信号正输入端。最大输入信号±700mV       |
| 5    | GND      | 芯片地   | 芯片地                         |
| 6    | CF       | 输出    | 输出有功高频脉冲,占空比 50%            |
| 7,   | CF1      | 输出    | SEL=0,输出电流有效值,占空比 50%;      |
|      |          |       | SEL=1,输出电压有效值,占空比 50%;      |
| 8    | SEL      | 输入    | 配置有效值输出引脚,带下拉               |



#### ● 模拟信号输入

- (1) V1P, V1N 输入电流采样信号: 峰峰值 V<sub>P-P</sub>: ±43.75mV, 最大有效值: ±30.9mV。
- (2) V2P 输入电压采样信号: 峰峰值 V<sub>P-P</sub>: ±700mV, 最大有效值: ±495mV。

#### ● 数字信号输出

- (1) 高频脉冲 CF(PIN6): 指示功率,计算电能;输出占空比为 1:1 的方波。
- (2) 高频脉冲 CF1(PIN7): 指示电流或电压有效值, SEL 选择;输出占空比为 1:1 的方波。注: MCU 与 HLW8012 的接口不是使用协议进行读取,而是通过测量 CF、CF1 引脚输出高频脉冲的周期来计算功率、电流、电压值。

#### 3、芯片内部框图



图 2 芯片内部框图

HLW8012 内部带有 2 路 PGA 及 ADC, 对电流、电压采样信号进行模数转换, 得到数字信号, 芯片内部计算有功功率值、电流有效值、电压有效值, 经过频率转换模块, HLW8012 将有功功率值、电流有效值、电压有效值转换为方波脉冲输出(占空比 1:1), 各数值的大小与频率的大小成正比,与周期的大小成反比。

## 三、HLW8012 应用硬件设计

所有电能计量测量,电压、电流通道的采样方式有 2 种: 互感器采样方式、电阻采样方式。 互感器采样方式成本高,本文只介绍电阻采样方式。外围硬件主要包含几部分: 电源电源、功率计量电路、MCU 接口。

#### 1、电源电路

为了配合电阻采样方式(即从电网直接采样,非隔离),电源电路必须为非隔离电源,非隔离电源有 2 种方式: AC-DC 非隔离电源、阻容降压电源。两者的比较如下:



| 序 | 项目         | AC-DC 非隔离电源 | 阻容降压电源               |
|---|------------|-------------|----------------------|
| 1 | 驱动电流(5V 时) | 最大可达到 150mA | 约 35mA(电容为 0.68uF 时) |
| 2 | 体积         | 小           | 大                    |
| 3 | 成本         | 高           | 低                    |
| 4 | 可靠性        | 高           | 低                    |
| 5 | 输入电压影响驱动能力 | 基本不影响       | 电压下降,驱动能力下降          |
| 6 | 零负载功耗      | 基本为零        | 与驱动电流一致              |

用户可根据产品的不同要求,选用不同的电源电路。

#### (1) AC-DC 非隔离电源

下图是其中一种 AC-DC 非隔离电源, L 与 N 分别是交流电压的火线与零线,以零线作为地线。此设计得到电压为 5V,驱动电流大约在 50mA,可以根据产品需求增加一些元器以提高驱动能力。



图 3 AC-DC 非隔离电源

#### (2) 阻容降压电源

下图是低成本的阻容降压电源,以零线作为地线:



图 4 阻容降压电路

经安规电容 C1 降压,二极管整流后,采用 1N4738 将电源降压至 8.2V,再经过稳压芯片 78L05 将输出电源稳定在 5V,给 HLW8012 提供电源。选用 0.68uF 的安规电容,电源电路大约可以提供 20mA-30mA 的驱动电流;如果需要设计更小体积的系统,可以选用 0.47uF 的小体积的安规



电容,驱动电流约在 15mA。如果需要驱动继电器,建议使用更大的电容,比如 1uF。

#### 2、功率计量电路

HLW8012 集成内置振荡器、参考电源,外围电路非常简单,主要包括电流、电压的采样。 电流信号是通过康铜电阻对负载的工作电流进行采样,电压信号是通过电阻网络分压采样。

须注意康铜电阻的接法:一端与 GND 连接,另一端再与负载连接。



图 5 电能计量电路

#### 3、MCU 与 HLW8012 的接口

MCU 与 HLW8012 的接口有 2 种情况: MCU 与 HLW8012 直连、MCU 通过光耦与 HLW8012 连接

#### (1) MCU 与 HLW8012 直连



图 6 MCU 与 HLW8012 直连

若 MCU 与 HLW8012 的工作电源为同一个,且 MCU 其它控制不需要隔离措施,那么 MCU 可以与 HLW8012 的接口直连。HLW8012 高频脉冲引脚连接 MCU 的外部中断,SEL 连接普通 IO



#### 口。接口资源如下表:

| 序 | 测量参数             | MCU 与 HLW8012 连接            |
|---|------------------|-----------------------------|
| 1 | 功率,电量            | 1个IO口(1个外部中断)               |
| 2 | 功率, 电量 + 电流/电压   | 2个IO口(2个外部中断)               |
| 3 | 功率, 电量 + 电流 + 电压 | 3 个 IO 口 (2 个外部中断,1 个 GPIO) |

#### (2) MCU 通过光耦与 HLW8012 连接



图 7 MCU 通过光耦与 HLW8012 连接

若 MCU 工作电源为隔离电源,则与 HLW8012 的连接必须通过光耦隔离,MCU 的接口资源需要如上表。

## 四、HLW8012 脉冲软件测量

HLW8012 的脉冲输出图如下:



图 8 HLW8012 脉冲

#### 1、脉冲测量原理

测量 1 个脉冲周期的长短,就是测量相邻 2 个下降沿(或上升沿)的时间间隔 T。测量到周期之后就可以根据比例关系计算功率值、电压值、电流值。

#### 2、脉冲测量方法

为了提高测量精度,CF、CF1 与 MCU 外部中断 IO 相连,外部中断模式设置为下降沿触发中断,使用 MCU 外部中断来确定 2 次中断间隔,使用 MCU 定时器来测量相邻 2 次外部中断的时间间隔。



#### 3、软件流程图

脉冲测量的程序主要是在中断服务子程序中运行, 相关流程图如下:



图 9 外部中断服务子程序



图 10 定时中断服务子程序

周期测量结束的操作

# (1)保存脉冲时间 (2)保存脉冲个数 (1)清零脉冲时间 (2)清零脉冲个数

图 11 周期测量结束的操作

按照以上流程图,得到功率、电压、电流的脉冲周期之后,功率值、电压值、电流值计算都在大循环程序中运行。



## 五、HLW8012 应用展望

HLW8012 可以测量有功功率、电量、电压有效值、电流有效值,外围元器件少,SOP8 封装,适合于许多电能测量场合,尤其是体积要求小的产品。插座类如: 计量插座、WIFI 智能插座、电视脑智能节能插座、电脑智能节能插座等;智能采集器如:智能路灯采集终端。

随着智能家电的发展,内部集成的传感器越来越多,电能计量模块将会是最基本的"传感器"之一,它可以"感知"家电的真实状态:若没有功率,表示家电确认关闭,若有功率,表示家电仍在工作。电能计量模块可以统计耗电量,检测当前电压、电流是否正常,若出现异常状态,执行相应的处理措施。所以随着智能家电的发展,家电越来越智慧,电能计量的应用将会更加广泛。