

Sommaire

Introduction

Vue d'ensemble du calcul sécurisé multipartite

Le projet

Présentation de nos choix et implémentations

Conclusion

Récapitulatif

Difficultés rencontrées

Retour d'experiences sur notre projet

Introduction

- Technique cryptographique avancée.
- Préserve la confidentialité des données
- Utilisé dans les domaines de la santé, la finance et la recherche

Les principaux défis et considérations ?

- Assurer la confidentialité, l'intégrité et la disponibilité
- Performance et efficacité des calculs
- Gestion des risques liés aux adversaires semi-honnêtes et malveillants

Analyse et implémentation

Phase 1: Analyse

- Compréhension du sujet
- Recherche de librairies adéquates pour le projet
- Analyse de ces librairies

Phase 2: It's time to code

- Implémentation des différents protocoles trouvées
- Implémentation du système de prédiction et d'entrainement

Fonctionnement

Etablissement de la connection TLS

- Négociation de la version TLS et des algorithmes de chiffrement
 - Authentification du serveur

- Échange de clés entre le serveur.
- Dérivation des clés symétriques

Fonctionnement

Transfert de fichiers (1)

- Calcul de hash SHA-256 pour chaque « chunk »
- Envoi du hash

- Vérification côté serveur
 - Renvoi du résultat

Fonctionnement

Transfert de fichiers (2)

- Calcul de hash HMAC côté client du fichier entier
- Envoi du hash

- Vérification côté serveur
 - Renvoi du résultat

Difficultés rencontrées

Rust

Apprentissage express du language

SMC

Compréhension fine du sujet

Réseau

Gestion efficace du réseau

Protocole

Implémentation des différents protocoles

Récapitulatif

- Utilisation du langage Rust et de la bibliothèque Tonic pour la communication gRPC
- Communication TLS sécurisée entre les parties
- Génération de certificats avec OpenSSL et utilisation de clés RSA de 2048 bits
- Vérification d'intégrité grâce à SHA-256 et protocole HMAC
- Recommandations futures :
 - Explorer d'autres modèles et algorithmes d'apprentissage automatique
 - Étudier d'autres bibliothèques et protocoles SMC
 - Étendre le projet pour un environnement totalement malveillant

MERCI!

Des questions?

Théo Le Bever

Marius André

Maxence Crouzy

Romain Nakusi

