

JC662 U.S. PTO
12/02/99

EXPRESS MAIL LABEL	EJ845440857 US	DATE OF DEPOSIT: 12/2/99
I hereby certify that this correspondence is being deposited with the United States Postal Service using "Express Mail Post Office to Addressee" service under C. F. R. Section 1.10 on the date indicated below and is addressed to the addressee herein.		
By: <i>Auzville Jackson Jr.</i> Auzville Jackson, Jr.		

Please type a plus sign (+) inside this box →

Approved for use through 09/30/2000. OMB 0651-0032
Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 C.F.R. § 1.53(b)) Express Mail Label No. EJ845440857 US

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

1. * Fee Transmittal Form (e.g., PTO/SB/17)
(Submit an original and a duplicate for fee processing)
2. Specification [Total Pages 20]
 - Descriptive title of the Invention
 - Cross References to Related Applications
 - Statement Regarding Fed sponsored R & D
 - Reference to Microfiche Appendix
 - Background of the Invention
 - Brief Summary of the Invention
 - Brief Description of the Drawings (if filed)
 - Detailed Description
 - Claim(s)
 - Abstract of the Disclosure
3. Drawing(s) (35 U.S.C. 113) [Total Sheets 2]
4. Oath or Declaration [Total Pages 2]
 - a. Newly executed (original or copy)
 - b. Copy from a prior application (37 C.F.R. § 1.63(d))
(for continuation/divisional with Box 16 completed)
 - i. **DELETION OF INVENTOR(S)**
Signed statement attached deleting inventor(s) named in the prior application, see 37 C.F.R. §§ 1.63(d)(2) and 1.33(b).

***NOTE FOR ITEMS 1 & 13: IN ORDER TO BE ENTITLED TO PAY SMALL ENTITY FEES, A SMALL ENTITY STATEMENT IS REQUIRED (37 C.F.R. § 1.27), EXCEPT IF ONE FILED IN A PRIOR APPLICATION IS RELIED UPON (37 C.F.R. § 1.28).**

16. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment:
- Continuation Divisional Continuation-in-part (CIP) of prior application No: _____

Prior application information: Examiner _____

Group / Art Unit: _____

For CONTINUATION or DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied under Box 4b, is considered part of the disclosure of the accompanying continuation or divisional application and is hereby incorporated by reference. The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

17. CORRESPONDENCE ADDRESS

<input type="checkbox"/> Customer Number or Bar Code Label	(Insert Customer No. or Attach bar code label here)			or <input checked="" type="checkbox"/> Correspondence address below	
Name	AUZVILLE JACKSON, JR.				
Address	8652 Rio Grande Road				
City	Richmond	State	VA	Zip Code	23229
Country	USA	Telephone	804/740-6828	Fax	804/740-1881

Name (Pmt/Type)	AUZVILLE JACKSON, JR.	Registration No. (Attorney/Agent)	17,306
Signature	<i>Auzville Jackson Jr.</i>		Date 12/2/99

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

09/453729
12/02/99

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

CLAIMS	(1) FOR	(2) NUMBER FILED	(3) NUMBER EXTRA	(4) RATE	(5) CALCULATIONS
TOTAL CLAIMS (37 C.F.R. § 1.16(c) or (j))	-20* =			x \$ _____ =	\$ -
INDEPENDENT CLAIMS (37 C.F.R. § 1.16(b) or (i))	-3** =			x \$ _____ =	-
MULTIPLE DEPENDENT CLAIMS (if applicable) (37 C.F.R. § 1.16(d))				+ \$ _____ =	-
				BASIC FEE (37 C.F.R. § 1.16)	760
				Total of above Calculations =	760
Reduction by 50% for filing by small entity (Note 37 C.F.R. §§ 1.9, 1.27 & 1.28).					380
* Reissue claims in excess of 20 and over original patent. ** Reissue independent claims over original patent.				TOTAL =	380

6. Small entity status:

- a. A small entity statement is enclosed, if (b) and (c) do not apply.
- b. A small entity statement was filed in the prior nonprovisional application and such status is still proper and desired.
- c. Is no longer claimed.

7. The Commissioner is hereby authorized to credit overpayments or charge the following fees to Deposit Account No. _____:

- a. Fees required under 37 C.F.R. § 1.16.
- b. Fees required under 37 C.F.R. § 1.17.
- c. Fees required under 37 C.F.R. § 1.18.

8. A check in the amount of \$ 420 is enclosed.9. New Attorney Docket Number, if desired*[Prior application Attorney Docket Number will carryover to this CPA unless a new Attorney Docket Number has been provided herein.]*

10. a. Receipt For Facsimile Transmitted CPA (PTO/SB/29A)
b. Return Receipt Postcard (Should be specifically itemized, See MPEP 503)

11. Other:

NOTE: The prior application's correspondence address will carry over to this CPA
UNLESS a new correspondence address is provided below.

12. NEW CORRESPONDENCE ADDRESS

<input type="checkbox"/> Customer Number or Bar Code Label	(Insert Customer No. or Attach bar code label here)		or <input checked="" type="checkbox"/> New correspondence address below
Name	AUZVILLE JACKSON, JR.		
Address	8652 Rio Grande Road		
City	Richmond	State	VA
Country		Telephone	(804) 740-6828
		Zip Code	23229
		Fax	(804) 740-1881

13. SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT REQUIRED

Name (Print/Type)	AUZVILLE JACKSON, JR.
Signature	<i>Auzville Jackson Jr.</i>
Registration No. (Attorney/Agent)	17,306
Date	12/2/99

ATTORNEY DOCKET NO. 1368(Touchstone)

PATENT

Applicant or Patentee: **Darren Kenneth Rogers**

Serial or Patent No.:

Filed or Issued:

For: **Cellular Coal Products and Processes**

**VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY
STATUS (37 CFR 1.9(f) AND 1.27(c))--SMALL BUSINESS CONCERN**

I hereby declare that I am

the owner of the small business concern identified below:

an official of the small business concern empowered to act on behalf of the concern identified below:

NAME OF CONCERN: **Touchstone Research Laboratory, Ltd.**

ADDRESS OF CONCERN: **RD #1, Box 100B, The Millenium Centre
Triadelphia, West Virginia 26059**

I hereby declare that the above identified small business concern qualifies as a small business concern as defined in 13 CFR 121.3-18, and reproduced in 37 CFR 1.9(d), for purposes of paying reduced fees under Section 41(a) and (b) of Title 35, United States Code, in that the number of employees of the concern, including those of its affiliates, does not exceed 500 persons. For purposes of this statement, (1) the number of employees of the business concern is the average over the previous fiscal year of the concern of the persons employed on a full-time, part-time or temporary basis during each of the pay periods of the fiscal year, and (2) concerns are affiliates of each other when either, directly or indirectly, one concern controls or has the power to control the other, or a third-party or parties controls or has the power to control both.

I hereby declare that rights under contract or law have been conveyed, to and remain with the small business concern identified above with regard to the invention, entitled **Cellular Coal Products and Processes** by inventor(s) **Darren Kenneth Rogers** described in the specification filed herewith.

If the rights held by the above identified small business concern are not exclusive, each individual, concern or organization having rights to the invention is listed below* and no rights to the invention are held by any person, other than the inventor, who could not qualify as a small business concern under 37 CFR 1.9(d) or by any concern which would not qualify as a small business concern under 37 CFR 1.9(d) or a nonprofit organization under 37 CFR 1.9(e).

*NOTE: Separate verified statements are required from each named person, concern or organization having rights to the invention averring to their status as small entities. (37 CFR 1.27).

NAME: **None**

ADDRESS:

INDIVIDUAL SMALL BUSINESS CONCERN NONPROFIT ORGANIZATION

I acknowledge the duty to file, in this application or patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small business entity is no longer appropriate. (37 CFR 1.28(b)).

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

NAME OF PERSON SIGNING: Brian E. Joseph

TITLE OF PERSON OTHER THAN OWNER: President

ADDRESS OF PERSON SIGNING: RD #1, Box 100B, The Millenium Centre
Triadelphia, West Virginia 26059

SIGNATURE:

DATE: Nov 24, 1999

Cellular Coal Products and Processes

Field of the Invention

5 **The present invention relates to cellular coal products produced from coal powder and to their methods of production. Products utilizing the coal-based porous products are also described.**

Background of the Invention

10 **ASTM standards DD5515-97, "Standard Test Method for the Determination of Swelling Properties of Bituminous Coal" and D720-91 "Standard Test Method for Free Swelling Index of Coal" both define conditions for measuring the inherent property of coals to "swell" upon heating in an uncontrolled combustion situation.**

15 **Hence, the propensity of coal to swell is well known in the prior art. To the best of our knowledge, however, no one has attempted to take advantage of this property of coals to swell by controllably "swelling" a coal product to obtain a highly useful, low density, porous carbon product.**

20 **Similarly, very sophisticated processes have been developed for the production of cellular foamed carbon products. Such processes often involve the use of blowing agents and the application of very high pressures in the fabrication**

process, and many use highly sophisticated starting materials. These materials, while very lightweight and demonstrating superior strength, tend to be relatively costly, either due to the nature of their starting materials and/or the complexity of their fabrication processes.

5

There exists a wide and varied class of requirements for low-density materials in the construction, aerospace, transportation, metal processing and other industries for which low-density materials are constantly being developed. Many of these materials exhibit properties such as fire resistance that make them uniquely suited to their end use application. In many applications, however, the aforementioned relatively high cost, low-density materials cannot be used because the final application will simply not justify their relatively high cost.

10 Accordingly, it would be most desirable if a relatively low cost, low-density material demonstrating many of the desirable characteristics of the aforementioned products, such as fire resistance, were available.

CONFIDENTIAL - ATTORNEY'S EYES ONLY

Objects of the Invention

15 It is therefore an object of the present invention to provide a relatively low cost, low density product that is suited to application in the construction, aerospace, transportation, metal processing and other industries where such properties are desired.

It is another object of the present invention to provide a simple and low cost method for the production of such products.

5

Summary of the Invention

According to the present invention there are provided coal-based cellular or porous products having a density of preferably between about 0.1g/cm³ and about 10 0.8g/cm³ that are produced by the controlled heating of coal particulate preferably up to 1/4" in diameter in a "mold" and under a non-oxidizing atmosphere. The porous product thereby produced, preferably as a net shape or near net shape, can be machined, adhered and otherwise fabricated to produce a wide variety of low cost, low density products, or used in its preformed shape as a filter, heat or 15 electrical insulator etc. Such cellular products, without further treatment and/or the addition of strengthening additives have been shown to exhibit compressive strengths of up to about 4000 psi. Impregnation with appropriate materials or the incorporation of various strength improving additives can further increase the compressive, tensile and other properties of these cellular materials. Further 20 treatment by carbonization or graphitization yields cellular products that can be used as electrical or heat conductors.

Description of the Drawings

Figure 1 is a graph of showing the general relationship between gas evolution
5 and time/temperature at various operating pressures and temperatures for the
process of the present invention.

Figure 2 is a cross-sectional view of a “mold” containing powdered coal prior
to expansion in accordance with the process of the present invention.

10

Figure 3 is a cross-sectional view of the “mold” of Figure 2 subsequent to
expansion of the powdered coal in accordance with the process of the present
invention.

15

Figure 4 is a cross-sectional diagram of an extruder suitable for the
production of coal-based porous products in accordance with the present invention.

Detailed Description

20 According to the present invention, a preformed, low density, i.e., from about
0.1 to about $0.8\text{g}/\text{cm}^3$, and preferably from about 0.1 to about $0.6\text{g}/\text{cm}^3$, cellular
product is produced from powdered coal particulate preferably less than about 1/4”
in diameter by the controlled heating of the powdered coal in a “mold” under a non-

oxidizing atmosphere. The starting material coal may include bitumen, anthracite, or even lignite, or blends of these, but are preferably bituminous, agglomerating coals that have been comminuted to an appropriate particle size, preferably to a fine powder below about -60 to -80 mesh.

5

The cellular coal-based products described herein are semi-crystalline or more accurately turbostratically-ordered and largely isotropic i.e., demonstrating physical properties that are approximately equal in all directions. The cellular coal-based products of the present invention typically exhibit pore sizes on the order of less than 300 μ , although pore sizes of up to 500 μ are possible within the operating parameters of the process described. The thermal conductivities of the cellular coal-based products are generally less than about 1.0 W/m/ $^{\circ}$ K. Typically, the cellular coal-based products of the present invention demonstrate compressive strengths on the order of from about 2000 to about 6000 psi at densities of from about 0.4 to about 0.5g/cm³.

The production method of the present invention comprises: 1) heating a coal particulate of preferably small i.e., less than about 1/4" particle size in a "mold" and under a non-oxidizing atmosphere at a heat up rate of from about 1 to about 20 $^{\circ}$ C to a temperature of between about 300 and about 700 $^{\circ}$ C; 2) soaking at a temperature of between about 300 and 700 $^{\circ}$ C for from about 10 minutes up to about 12 hours to form a preform or finished product; and 3) controllably cooling the preform or finished product to a temperature below about 100 $^{\circ}$ C. The non-

oxidizing atmosphere may be provided by the introduction of inert or non-oxidizing gas into the "mold" at a pressure of from about 0 psi, i.e., free flowing gas, up to about 500 psi. The inert gas used may be any of the commonly used inert or non-oxidizing gases such as nitrogen, helium, argon, CO₂, etc.

5

It is generally not desirable that the reaction chamber be vented or leak during the heating and soaking operation. The pressure of the chamber and the increasing volatile content therein tends to retard further volatilization while the cellular product sinters at the indicated elevated temperatures. If the furnace is 10 vented or leaks during soaking, an insufficient amount of volatile matter may be present to permit inter-particle sintering of the coal particles thus resulting in the formation of a sintered powder as opposed to the desired cellular product. Thus, according to a preferred embodiment of the present process, venting or leakage of 15 non-oxidizing gas and generated volatiles is inhibited consistent with the production of an acceptable cellular product.

00000000000000000000000000000000

Additional more conventional blowing agents may be added to the particulate prior to expansion to enhance or otherwise modify the pore-forming operation.

20

The term "mold", as used herein is meant to define a mechanism for providing controlled dimensional forming of the expanding coal. Thus, any chamber into which the coal particulate is deposited prior to or during heating and

which, upon the coal powder attaining the appropriate expansion temperature, contains and shapes the expanding porous coal to some predetermined configuration such as: a flat sheet; a curved sheet; a shaped object; a building block; a rod; tube or any other desired solid shape can be considered a "mold" for 5 purposes of the instant invention.

As will be apparent to the skilled artisan familiar with pressurized gas release reactions, as the pressure in the reaction vessel, in this case the mold increases, from 0 psi to 500 psi, as imposed by the non-oxidizing gas, the reaction 10 time will increase and the density of the produced porous coal will increase as the size of the "bubbles" or pores produced in the expanded coal decreases. Similarly, a low soak temperature at, for example about 400°C will result in a larger pore or bubble size and consequently a less dense expanded coal than would be achieved 15 with a soak temperature of about 600°C. Further, the heat-up rate will also affect pore size, a faster heat-up rate resulting in a smaller pore size and consequently a denser expanded coal product than a slow heat-up rate. These phenomenon are, of course, due to the kinetics of the volatile release reactions which are affected, as just described, by the ambient pressure and temperature and the rate at which that 20 temperature is achieved. These process variables can be used to custom produce the expanded coals of the present invention in a wide variety of controlled densities, strengths etc. These results are graphically represented in the Figure where the X axis is gas release, the Y axis is time and the individual curves represent different

pressures of inert gas P_1 , P_2 , and P_3 , different heat-up rates HR_1 , HR_2 , and HR_3 , and $P_1 < P_2 < P_3$ and $HR_1 < HR_2 < HR_3$.

Cooling of the preform or product after soaking is not particularly critical

5 except as it may result in cracking of the preform or product as the result of the development of undesirable thermal stresses. Cooling rates less than 10°C/min to a temperature of about 100°C are typically used to prevent cracking due to thermal shock. Somewhat higher, but carefully controlled, cooling rates may however, be used to obtain a “sealed skin” on the open cell structure of the product as described

10 below. The rate of cooling below 100°C is in no way critical.

After expanding the coal particulate as just described, the porous coal product is an open celled material. Several techniques have been developed for “sealing” the surface of the open celled structure to improve its adhesive capabilities

15 for further fabrication and assembly of a number of parts. For example, a layer of a commercially available graphitic adhesive can be coated onto the surface and cured at elevated temperature or allowed to cure at room temperature to provide an adherent skin. Alternatively, the expansion operation can be modified by cooling the expanded coal product or preform rapidly, e.g., at a rate of 10°C/min or faster

20 after expansion. It has been discovered that this process modification results in the formation of a more dense skin on the preform or product which presents a closed pore surface to the outside of the preform or product. At these cooling rates, care must be exercised to avoid cracking of the preform or product.

After expanding, the porous coal-based preform or product is readily machineable, sawable and otherwise readily fabricated using conventional fabrication techniques.

5

Subsequent to production of the preform or product as just described, the preform or product may be subjected to carbonization and/or graphitization according to conventional processes to obtain particular properties desirable for specific applications of the type described hereinafter. Ozonation may also be 10 performed, if activation of the coal-based expanded product would be useful in a final product application such as in filtering of air. Additionally, a variety of additives and structural reinforcers may be added to the coal-based preforms or products either before or after expansion to enhance specific mechanical properties such as fracture strain, fracture toughness and impact resistance. For example, 15 particles, whiskers, fibers, plates, etc. of appropriate carbonaceous or ceramic composition can be incorporated into the porous coal-based preform or product to enhance its mechanical properties.

DRAFT - 06/22/2018

The open celled, coal-based preforms or products of the present invention 20 can additionally be impregnated with, for example, petroleum pitch, epoxy resins or other polymers using a vacuum assisted resin transfer type of process. The incorporation of such additives provides load transfer advantages similar to those

demonstrated in carbon composite materials. In effect a 3-D composite is produced that demonstrates enhanced impact resistance and load transfer properties.

The cooling step in the expansion process results in some relatively minimal shrinkage on the order of less than about 5% and generally in the range of from 5 about 2% to about 3%. This shrinkage must be accounted for in the production of near net shape preforms or final products of specific dimensions and is readily determinable through trial and error with the particular coal starting material being used. The shrinkage may be further minimized by the addition of some inert solid material such as coke particles, ceramic particles, ground waste from the coal 10 expansion process etc. as is common practice in ceramic fabrication.

Carbonization is conventionally performed by heating the preform or product under an appropriate inert gas at a heat-up rate of less than about 5°C per minute to a temperature of between about 800°C and about 1200°C and soaking for 15 about 1 hour or less. Appropriate inert gases are those described above that are tolerant of these high temperatures. The inert atmosphere is supplied at a pressure of from about 0 psi up to a few atmospheres. The carbonization process serves to remove all of the non-carbon elements present in the preform or product such as sulfur, oxygen, hydrogen, etc.

20

Graphitization, commonly involves heating the preform or product either before or after carbonization at heat-up rate of less than about 10°C per minute, preferably from about 1°C to about 5°C per minute, to a temperature of between

about 1700°C and about 3000°C in an atmosphere of helium or argon and soaking for a period of less than about one hour. Again, the inert gas may be supplied at a pressure ranging from about 0 psi up to a few atmospheres.

5 The porous coal-based preforms or products resulting from processing in accordance with the foregoing procedures can be used in a broad variety of product applications, some, but not all, of which will now be broadly described.

Perhaps the simplest products that could be fabricated using the coal-based
10 porous preforms or products of the present invention are various lightweight sheet products useful in the construction industry. Such products may involve the lamination of various facing materials to the surface of a planar sheet of the preform material using an appropriate adhesive. For example, a very light and relatively inexpensive wall board would simply have paper laminated to its opposing
15 planar surfaces, while a more sophisticated curtain wall product might have aluminum sheet, polymer or fiber-reinforced polymer sheets or even stainless steel sheet laminated thereto. A wide variety of such products that have lightweight, low cost and adequate strength can easily be envisioned for wallboard, structural wallboard, bulkheads, etc. The materials of the present invention exhibit sound
20 insulation and vibration resistance due to excellent sound and vibration damping properties, good thermal insulating properties (less than about 1 watt per meter K thermal conductivity).

Laminates of these materials may even be used to produce heating element incorporating members, since a graphitized core could serve as an electrical heating element when connected to an appropriate source of electrical energy.

5 Similar surface laminated porous preform core based products could also find use in the transportation industry where lighter and, especially fire retardant walls, bulkheads, containers, etc. are in constant demand. Such products would of course require that the expanded coal-based porous core be carbonized as described hereinabove prior to application of the exterior skins, if fire resistance or
10 retardancy is desired.

Yet another product application for the porous coal products of the present invention is as a replacement for the ceramic foam filters currently applied in the filtering of molten metal such as aluminum for the removal of contaminating
15 particulates also called inclusions. The current ceramic foam materials are relatively expensive and extremely friable. It is easily possible to produce a porous coal-based preform of the type described herein having an appropriate pore size and of the same size and shape as the ceramic foam filter using the above described fabrication process, to serve as a molten metal filter of this type. The cost of such a
20 more robust, i.e., less friable, filter would be considerably less than that of a comparable ceramic foam filter.

Yet other product applications for the materials of the present invention reside in the field of heat exchangers. In this application, the heat transfer properties of a graphitized porous coal-based material can be exploited to produce a heat exchanger capable of extracting heat from or adding heat to a fluid (gas or liquid) flowing through porous coal pores. In this case, the coal-based porous product is joined to an appropriate heat transfer mechanism such as an aluminum skin.

As already alluded to, the coal-based porous preforms and products of the present invention can be produced in any solid geometric shape. Such production is possible using any number of modified conventional processing techniques such as extrusion, injection molding, etc. In each of such instances, the process must, of course, be modified to accommodate the processing characteristics of the starting material coal. For example, in extruding such products, as described below, the coal powder starting material is fed by an auger into an expansion chamber where it is expanded and from which it is extruded while still viscous. Upon exiting the extrusion die, the material is cooled to provide a solid shape of the desired and precalculated dimensions. To improve the efficiency, i.e., cycle time of the process, the input material can be preheated to a temperature below the expansion point, e.g., below about 300°C, fed into the auger chamber where additional heat is imparted to the powder with final heating being achieved just before extrusion through the die.

Similar relatively minor process modifications can be envisioned to fabricate the carbon foams of the present invention in injection molding, casting and other similar conventional material fabrication processes.

5 **The following examples will serve to illustrate the practice of the invention.**

Examples

Example 1

10 **As shown in Figure 2, a layer 10 of comminuted bituminous coal ground to a particle size of about –60 mesh and about 2" deep is deposited in mold 12 equipped with a cover 16. Mold 12 is assembled from three individual pieces carbon or tool steel pieces, sides 12A and 12B and bottom 12C, all joined together by bolts 11 and lined with a ceramic glaze or spray applied ceramic lining 13. Cover 16 includes a**

15 **similar interior ceramic lining 15 and is attached to sides 12A and 12B with bolts 17 in the final assembly prior to heating. Gaskets 19 are preferably used to insure a tight fit of cover 16 onto sides 12A and 12B. Cover 16 is optionally equipped with a sintered vent plug 20 to permit purging of the interior of mold 12 with non-oxidizing gas. This configuration, incorporating valve 20 also permits pressurization, if**

20 **desired to control expansion speed and/ or pore size in the final product as described hereinabove. Nitrogen gas is repeatedly introduced through valve 20 to assure that all oxygen in mold 12 is purged (generally 2-4 such purges have been found satisfactory) and to provide a one atmosphere pressure of nitrogen inside of**

mold 12. Mold 12 is then heated at a rate of from about 1 to about 10°C/min up to a temperature of about between about 450 and 600°C and held at this temperature sufficient to devolatalize and sinter the cellular product (generally less than about one hour). This treatment results in the production of an open celled expanded coal

5 product 10A as shown in Figure 3. Mold 12 is then cooled to room temperature at a rate of less than about 10°C/min. to a temperature of 100°C; any remaining pressure is then vented through valve 15 and the sample removed from mold 12 by disassembly of mold 12 by disengagement of bolts 11. Expanded coal product 10A is thereby readily removed from mold 14 and is subsequently sawed to the desired

10 dimensions.

Product 10A has a density of between about 0.4 and about 0.6g/cm³ and demonstrates a compressive strength on the order of between about 2000 and 6000 psi. Thermal conductivity as determined by the guarded heat flow method is below

15 about 1.0 W/m/K.

Example 2

The application of the process of the present invention in an extrusion process is depicted in Figure 4. As shown in that figure, comminuted bituminous coal 22 of a particle size of about -80 mesh is introduced via hopper 24 into chamber 26 equipped with auger 28 that moves particulate coal 18 through chamber 26 and into expansion chamber 30. Chamber 26 is heated by means of a series of barrel heaters 32, 34 and 36 to impart a temperature of less than about 300°C to

particulate coal 18 as it approaches and enters expansion chamber 26. As is conventional practice in extrusion, chamber 26 is divided into a feed section, a compression section and a metering section each defined roughly by the location of barrel heaters 32, 34 and 36 and imparted by the tapered shape of auger 28.

- 5 Expansion chamber 30 is maintained under a non-oxidizing atmosphere and at a temperature of about 450°C by means of barrel heater 38. Particulate coal 18 expands within chamber 26 to form expanded coal product 40 and, while still viscous, expanded coal product 40 is extruded through a die 42 to form solid shaped product 44 upon cooling to room temperature. Solid shaped product 44
- 10 demonstrates properties similar to those obtained from the product described in Example 1.

At the point where particulate coal 22 exits chamber 26 and enters expansion chamber 30, chamber 26 is preferably equipped with a breaker plate 46 that serves 15 to break up any large agglomerates of particulate coal 22 that may have formed in transit within chamber 26.

Cellular coal-based extrudate 44 may have virtually any solid shape ranging from a large flat panel 4'X 8' as might be used as the core of the above-described 20 building panel to square shapes, rounds, channels and even tubular shapes if a bridge die is used in the extrusion process. Almost any shape that can be achieved with plastic or metal extrusion can be similarly obtained using the process of the present invention.

As the invention has been described, it will be apparent to those skilled in the
5 art that the same may be varied in many ways without departing from the spirit and
scope of the invention. Any and all such modifications are intended to be included
within the scope of the appended claims.

What is claimed is:

- 1) A semi-crystalline, largely isotropic, porous coal-based product produced from particulate coal of a small diameter, having a density of between about 0.1 and about 0.8g/cm₃ and a thermal conductivity below about 1W/m/^oK.
- 5
2) The porous coal-based product of claim 1 having a compressive strength below about 6000 psi.
- 10
3) The porous coal-based product of claim 1 that has been carbonized.
- 4) The porous coal-based product of claim 1 that has been graphitized.
- 15
5) A method for producing a porous coal-based product from coal comprising:
 - A) comminuting coal to a small particle size to form a ground coal;
 - B) placing said ground coal in a mold;
 - C) heating said ground coal in said mold under a non-oxidizing atmosphere to a temperature of between about 300°C and about 700°C and soaking at this temperature for a period of from about 10 minutes to about 12 hours to form a preform; and
- 20

5

- D) controllably cooling said preform.
- 6) The method of claim 5 wherein said inert atmosphere is applied at a pressure of from about 0 psi up to about 500psi.
- 7) The method of claim 5 wherein said temperature is achieved using a heat-up rate of between about 1°C to about 20°C per minute.
- 8) The method of claim 5 wherein said controlled is accomplished at a rate of less than about 10°C/min to a temperature of about 100°C.
- 9) The laminated sheet product of claim 8 wherein said material is selected from the group consisting of aluminum, steel, polymer sheet, inconel, titanium, refractory metals, fiber reinforced polymer sheet and paper.
- 10) The laminated sheet product of claim 8 wherein said sheet core has been carbonized.
- 11) The laminated sheet product of claim 8 wherein said sheet core is graphitized.

15

20

Abstract

According to the present invention there is provided a porous coal-based material having a density of between about 0.1g/cm³ and about 0.6g/cm³ that is produced by the controlled heating of small coal particulate in a “mold” and under a non-oxidizing atmosphere. The porous product thereby produced, preferably as a near net shape, can be machined, adhered and otherwise fabricated to produce a wide variety of low cost, low density products, or used in its preformed shape as a filter, heat or electrical insulator etc. Such porous products, without further treatment exhibit compressive strengths of up to about 6000 psi. Further treatment by carbonization or graphitization yields products that can be used as electrical or heat conductors. Methods for the production of these coal-based cellular products are also described.

15

20

FIG. 1

FIG. 2

FIG. 3

FIG. 4

**UNITED STATES
COMBINED DECLARATION AND POWER OF ATTORNEY**

As a below named inventor, I hereby declare that: My residence, post office address and citizenship are as stated below next to my name, I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled: **Cellular Coal Products and Processes**, the application of which is attached hereto.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose to the Office all information known to me which is material to the examination of this application as defined in §1.56. I hereby claim foreign priority benefits under Title 35, United States Code, § 119 of any foreign application(s) for patent or inventor's certificate having a filing date before that of the application(s) of which priority is claimed.

Prior Foreign Application(s)			Prior Claim	
(Number)	(Country)	(Day/Month/Year Filed)	[]	[]
			Yes	No
			[]	[]
			Yes	No

I hereby claim the benefit under Title 35, United States Code, § 120 of any United States application listed below and insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application(s) in the manner provided by the first paragraph of Title 35, United States Code, § 112. I acknowledge the duty to disclose to the Office all information known to me which is material to the examination of this application as defined in §1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application.

(Application Serial No) (Filing Date) (Status: patented, pending, abandoned)

(Application Serial No) (Filing Date) (Status: patented, pending, abandoned)

As a named inventor, I hereby appoint Auzville Jackson, Jr., Reg. No. 17,306, as my attorney to prosecute this application, and transact all business in the Patent and Trademark Office connected therewith and to act on my behalf before the competent International Authorities in connection with any and all international applications filed by me and of which I am the sole applicant and to receive payments on my behalf.

Send correspondence to: Auzville Jackson, Jr.

8652 Rio Grande Rd.
Richmond, VA 23229
(804)740-6828 / FAX (804) 740-1881

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full name of first inventor: Darren Kenneth Rogers

First Inventor's signature:

Date: 1 DECEMBER 1999

Address of First Inventor: 4 America Avenue
Wheeling, WV 26003

Citizenship of First Inventor: **United States of America**

Residence of First Inventor: 4 America Avenue
Wheeling, WV 26003