Comparison Tables: BBOB 2015 Testbed in 20-D

The BBOBies

July 16, 2015

Abstract

This document provides tabular results of the workshop on Black-Box Optimization Benchmarking held at GECCO 2015, see http://coco.gforge.inria.fr/doku.php?id=bbob-2015. Overall, 18 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 20. Only three of them have been tested on the optional instances in dimension 40. A description of the used objective functions can be found in [7, 5]. The experimental set-up is described in [6].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm in BBOB-2009 (see [2]) if an algorithm from BBOB-2009 reached the given target function value. The ERT value is given otherwise (ERT $_{\rm best}$ is noted as infinite). See [6] for details on how ERT is obtained. Bold entries in the table correspond to values below 3 or the top-three best values. Table 1 gives an overview on all algorithms submitted to the noise-free testbed at GECCO 2015.

Table 1: Names and references of all algorithms submitted for the noise-free testbed

testbed algorithm short	paper	reference
name	pupor	rotoronoo
BSifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
BSif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
BSqi	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
- 20	Box Optimization of Separable Continuous Functions	[0]
BSrr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
CMA-CSA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-MSR	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-TPA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
GP1-CMAES	SBenchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
GP5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
IPOPCMAv3p61	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
LHD-10xDefault- MATSuMoT	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
LHD-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RAND-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RF1-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
RF5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
Sifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Sif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Srr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-Box Optimization of Separable Continuous Functions	[9]

Table 2: 20-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f1	43	43	43	43	43	43	43	15/15
BSifeg	1.9(0.2)	2.3 (0.1)	2.5 (0.2)	2.5 (0.3)	2.5 (0.2)	2.5 (0.2)	2.5 (0.3)	15/15
BSif	1.9(0.1)	2.3 (0.1)	2.5 (0.2)	15/15				
BSqi	1.9(0.1)	2.3 (0.1)	2.5 (0.2)	2.5 (0.2)	2.5 (0.3)	2.5 (0.3)	2.5 (0.2)	15/15
BSrr	1.9(0.1)	2.3 (0.1)	2.5 (0.3)	2.5 (0.2)	2.5 (0.3)	2.5 (0.2)	2.5 (0.3)	15/15
CMA-CSA	7.7(2)	14(1)	20(0.9)	26(2)	32(3)	45(3)	57(5)	15/15
CMA-MSR	9.2(1)	16(0.9)	23(2)	30(3)	38(3)	53(4)	68(4)	15/15
CMA-TPA	6.4(1)	11(1.0)	15(0.5)	19(0.8)	24(3)	32(2)	41(3)	15/15
GP1-CMAES	5.1(0.6)	9.2(0.8)	14(2)	17(2)	21(3)	32(3)	48(5)	15/15
GP5-CMAES	2.8 (0.2)	3.9(0.4)	5.2(0.3)	6.7(0.6)	7.9(0.7)	54(34)	567(570)	3/15
IPOPCMAv3p	8.6(2)	15(2)	21(2)	27(2)	34(2)	46(1)	58(2)	15/15
LHD-10xDef	10(0.1)	11(0.3)	14(0.8)	15(1)	17(2)	∞	∞ 1000	0/15
LHD-2xDefa	4.5(1)	38(51)	78(169)	343(390)	∞	∞	∞ 1000	0/15
RAND-2xDef	4.2(0.6)	20(16)	26(32)	63(63)	346(192)	∞	∞ 1000	0/15
RF1-CMAES	6.9(1)	12(1)	18(3)	24(4)	30(3)	43(5)	61(12)	15/15
RF5-CMAES	6.8(2)	69(110)	1669(873)	∞	∞	∞	$\infty 5006$	0/15
Sifeg	2.1 (0.1)	2.8 (0.1)	4.1(0.3)	5.6(0.4)	6.7(0.7)	8.7(0.8)	10(0.8)	15/15
Sif	2.1 (0.1)	2.8 (0.1)	4.3(0.3)	6.0(0.8)	7.4(1)	8.8(0.6)	10(0.5)	15/15
Srr	2.1 (0.1)	2.8 (0.1)	3.6(0.1)	4.4(0.2)	5.1(0.1)	6.7(0.1)	8.3(0.1)	15/15

Table 3: 20-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f2	385	386	387	388	390	391	393	15/15
BSifeg	0.66 (0.1)↓	4 0.74(0.1)	$_{4}0.80$ $_{(0.1)}$	4 0.90(0.0)	20.94 (0.1)	1.0(0.1)	1.1(0.1)	15/15
BSif	0.70 (0.2)↓	4 0.79(0.1)	4 0.80(0.1)	4 0.90 (0.1)	0.94 (0.1)	1.00(0.0)	1.1(0.1)	15/15
BSqi	0.40 (0.0)*	4 0.44 (0.0) *	4 0.47 (0.1)*	$^{4}_{4}$ 0.52 (0.0) $^{\star}_{1}$	4 0.57(0.0) *	4_4 0.69 (0.1) ${}^{\star}_1$	4_4 0.85 (0.1)*	15/15
BSrr	0.59(0.1)	4 0.65(0.1)	4 0.69 (0.1)	4 0.79 (0.1)	4 0.87(0.1)	3 1.0 (0.1)	1.1(0.1)	15/15
CMA-CSA	23(2)			30(1)	31(1)	32(2)	33(1)	15/15
CMA-MSR	27(3)	32(2)	35(4)	36(1)	37(2)	38(0.9)	39(2)	15/15
CMA-TPA	25(1)	30(4)	33(2)	35(2)	36(1)	37(1)	37(2)	15/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	46(65)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	0.83 (0.1)↓	41.0 (0.2)	1.2(0.2)	1.2(0.1)	1.4(0.3)	1.4(0.2)	1.6(0.3)	15/15
Sif	0.96 (0.1)	1.1(0.2)	1.2(0.2)	1.2(0.1)	1.3(0.2)	1.4(0.2)	1.6(0.2)	15/15
Srr	0.69(0.0) _↓	4 0.78(0.1)	$_{4}0.88$ $_{(0.1)}$	0.95 (0.1)	1.1(0.1)	1.2(0.1)	1.4(0.1)	15/15

೮

Table 4: 20-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

Cacii tiiis vait	ac aiviac	a by ann	1101011.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f3	5066	7626	7635	7637	7643	7646	7651	15/15
BSifeg	0.14(0.0)	L4 0.18 (0.0)	$_{\downarrow 4}$ 0.22 (0.1)	$_{\downarrow 4}$ 0.22 (0.1)	$_{\downarrow 4}$ 0.22 (0.1)	$_{\downarrow 4}$ 0.22 (0.1)	$\downarrow 4$ 0.22 (0.1) \downarrow	15/15
BSif	0.14(0.0)	0.18 (0.0)	$\downarrow 4$ 0.22 (0.1)	$\downarrow 4$ 0.22 (0.1)	$\downarrow 4$ 0.22 (0.1)	$\downarrow 4$ 0.22 (0.1)	$\downarrow 4$ 0.22 (0.1) \downarrow	15/15
BSqi	0.14(0.0)		$\downarrow 4$ 0.20 (0.1)	$\downarrow 4$ 0.20 (0.0)	$\downarrow 4$ 0.20 (0.1)	$\downarrow 4$ 0.20 (0.0)	140.20(0.0)	15/15
BSrr	0.14(0.0)	0.16 (0.0)	$\downarrow 4$ 0.19 (0.1)	$\downarrow 4$ 0.20 (0.0)	$\downarrow 4$ 0.20 (0.1)	$\downarrow 4$ 0.21 (0.1)	$\downarrow 4$ 0.21 (0.0)	15/15
CMA-CSA	10(7)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
CMA-MSR	6.4(5)	38(19)	70(58)	73(72)	76(37)	81(58)	86(94)	15/15
CMA-TPA	8.8(6)	1756(1991)	∞	∞	∞	∞	$\infty~2e6$	0/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 5034	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	0.15(0.0)	4 0.17 (0.0)	$\downarrow 40.23(0.1)$	$\downarrow 40.23(0.0)$	$\downarrow 40.23(0.0)$	$\downarrow 40.24(0.0)$	$\downarrow 40.24(0.0) \downarrow$	45/15
Sif	0.16(0.0)						↓4 0.24 (0.0)↓	
Srr	0.12(0.0)	$0.15_{(0.0)}$	$_{\downarrow 4}^{}$ 0.19 (0.0)	$_{\downarrow 4}^{\cdot}$ 0.20 (0.1)	$_{\downarrow 4}^{\bullet}$ 0.21 (0.0)	$_{\downarrow 4}^{\cdot}$ 0.22 (0.0)	$\downarrow 4$ 0.23 (0.0)	15/15

Table 5: 20-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f4	4722	7628	7666	7686	7700	7758	1.4e5	9/15
BSifeg	0.21(0.1)	4 0.35 (0.1)	40.40(0.0)	40.40(0.1)	40.40(0.1)	40.40(0.1)	40.02(3e-3)	15/15
BSif	0.22(0.1)	4 0.36 (0.0)	40.42(0.1)	40.42(0.1)	40.42(0.1)	40.42(0.1)	40.02(3e-3)	15/15
BSqi	0.21(0.0)	4 0.30 (0.0)	[40.34(0.1)]	$_{4}$ 0.34 (0.1) $_{\downarrow}$	$_{4}$ 0.34 (0.1) $_{\downarrow}$	$_{4}$ 0.35 (0.1) $_{\downarrow}$	40.02(3e-3)	45/15
BSrr	0.18(0.0)	4 0.29 (0.0)	40.31(0.1)	4 0.32 (0.0)	40.34(0.1)	4 0.37 (0.0)	40.03(5e-3)	15/15
CMA-CSA	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
CMA-MSR	5792(2066)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
CMA-TPA	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	∞ 5046	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 5022	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	0.21(0.0)	4 0.35 (0.0)	4 0.52 (0.1)	4 0.70 (0.1)	0.79 (0.1)	0.94 (0.2)	0.05(0.0)	15/15
Sif	0.22(0.0)	4 0.35 (0.1)	[40.52(0.1)]	4 0.72 (0.1)	0.81(0.1)	0.95 (0.2)	0.05(8e-3)	15/15
Srr	0.19(0.0)	4 0.30 (0.0)	40.46(0.1)	4 0.60 (0.0)	0.72 (0.0)	0.86 (0.1)	$\boldsymbol{0.05} (4\text{e-}3)$	15/15

Table 6: 20-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f5	41	41	41	41	41	41	41	15/15
BSifeg	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSif	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSqi	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSrr	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
CMA-CSA	4.9(0.8)	5.8(1)	6.0(1)	6.0(1)	6.0(1)	6.0(1)	6.0(0.7)	15/15
CMA-MSR	5.0(1)	5.5(2)	5.6(1)	5.6(0.5)	5.6(1)	5.6(2)	5.6(2)	15/15
CMA-TPA	4.3(0.7)	4.9(0.9)	4.9(1)	4.9(0.9)	4.9(1)	4.9(1)	4.9(1)	15/15
GP1-CMAES	12(8)	69(109)	91(112)	92(83)	92(129)	92(100)	92(68)	11/15
GP5-CMAES	3.3(0.7)	4.4(1)	4.7(2)	4.7(1)	4.8(0.8)	4.8(1)	4.8(2)	15/15
IPOPCMAv3p	16(6)	31(16)	34(19)	36(17)	36(14)	36(14)	36(13)	15/15
LHD-10xDef	11(0.3)	11(0.4)	11(0.2)	11(0.2)	11(0.2)	11(0.2)	11(0.2)	15/15
LHD-2xDefa	2.7 (0.1)	2.9 (0.1)	3.0(0.2)	3.0 (0.1)	3.0(0.2)	3.0(0.1)	3.0(0.2)	15/15
RAND-2xDef	2.7 (0.1)	2.9 (0.2)	3.0(0.2)	3.0(0.2)	3.0(0.2)	3.4(0.2)	3.4(2)	15/15
RF1-CMAES	22(8)	44(21)	48(24)	50(23)	50(29)	50(20)	50(23)	15/15
RF5-CMAES	42(38)	97(96)	169(298)	226(188)	265(140)	265(308)	265(261)	6/15
Sifeg	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
Sif	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
Srr	1.5 (0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15

 \neg

Table 7: 20-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f6	1296	2343	3413	4255	5220	6728	8409	15/15
BSifeg	962(1827)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	750(899)	∞	∞	∞	∞	∞	$\infty~2e5$	0/7
BSrr	812(984)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	1.6(0.3)	1.3(0.2)	1.1(0.2)	1.1(0.1)	1.1(0.2)	1.1(0.1)	1.1(0.1)	15/15
CMA-MSR	1.5(0.8)	1.9(0.7)	2.4(2)	3.9(3)	5.7 (7)	11 (7)	13 (2)	15/15
CMA-TPA	1.6(0.4)	1.3(0.2)	1.2(0.3)	1.3(0.3)	1.4(0.3)	1.5(0.2)	1.6(0.5)	15/15
GP1-CMAES	8.5(7)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 5024	0/15
IPOPCMAv3p	1.5(0.1)	1.2(0.1)	1.1(0.1)	1.9(2)	14(18)	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
RF1-CMAES	56(44)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	193(288)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	644(684)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	277(548)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 8: 20-D, running time excess ERT/ERT_{best 2009} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

 CCCII CIIID (CII.	ac arrage.	,	CIIDICII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f7	1351	4274	9503	16523	16524	16524	16969	15/15
BSifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSrr	∞	∞	∞	∞	∞	∞	∞ 2e5	0/15
CMA-CSA	1.7 (1)	2.3 (1)	1.7(0.5)	1.1(0.3)	1.1(0.4)	1.1(0.3)	1.0(0.4)	15/15
CMA-MSR	2.1 (1.0)	4.2(5)	2.4 (1)	1.6 (2)	1.6(0.6)	1.6(0.5)	1.5 (1)	15/15
CMA-TPA	2.1 (1)	2.7 (1)	1.6(0.8)	1.0(0.4)	1.0(0.4)	1.0(0.4)	1.0(0.4)	15/15
GP1-CMAES	3.0(4)	∞	∞	∞	∞	∞	∞ 5010	0/15
GP5-CMAES	1.6(0.7)	∞	∞	∞	∞	∞	∞ 5022	0/15
IPOPCMAv3p	1.3 (1)	∞	∞	∞	∞	∞	$\infty 5008$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	54(57)	∞	∞	∞	∞	∞	∞ 5022	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 5034	0/15
Sifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 9: 20-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f8	2039	3871	4040	4148	4219	4371	4484	15/15
BSifeg	76(69)	358(191)	689(366)	∞	∞	∞	$\infty~2e5$	0/15
BSif	401(275)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	30(54)	325(348)	∞	∞	∞	∞	$\infty~2e5$	0/8
BSrr	79(70)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	3.4 (0.7)	3.4(0.4)	3.6(0.4)	3.7(0.2)	3.8 (0.3)	3.8 (0.3)	3.8(0.2)	15/15
CMA-MSR	3.6 (0.8)	4.6(2)	4.8(3)	4.8(2)	4.8(3)	4.8(2)	4.9 (3)	15/15
CMA-TPA	3.1 (0.7)	3.5(0.4)	3.8 (2)	3.9(0.4)	3.9 (1)	3.9(0.3)	3.9(0.3)	15/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	12(10)	∞	∞	∞	∞	∞	$\infty 5010$	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	51(56)	94(182)	219(148)	∞	∞	∞	$\infty~2e5$	0/15
Sif	87(30)	327(235)	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	61(105)	141(118)	304(555)	606(584)	∞	∞	$\infty~2e5$	0/15

Table 10: 20-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f9	1716	3102	3277	3379	3455	3594	3727	15/15
BSifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/5
BSrr	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	3.8 (0.5)	4.1(0.2)	4.3(0.3)	4.4(0.3)	4.4(0.2)	4.5(0.2)	4.5(0.3)	15/15
CMA-MSR	3.8 (0.7)	4.5(4)	4.8(2)	4.8(2)	4.8(2)	4.8(0.5)	4.8(0.5)	15/15
CMA-TPA	3.8 (0.6)	5.5(2)	5.8(0.3)	5.8 (0.3)	5.8 (2)	5.8 (4)	5.8 (1)	15/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5020$	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 11: 20-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	# succ
f10	7413	8661	10735	13641	14920	17073	17476	15/15
BSifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSrr	∞	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
CMA-CSA	1.2(0.2)	1.2(0.1)	1.0(0.1)	0.86(0.0)	0.81(0.0)	0.74(0.0)	0.76(0.0)	15/15
CMA-MSR	1.3(0.2)	1.3(0.2)	1.2(0.1)	0.99 (0.1)	0.93 (0.0)	0.86(0.0)	0.88(0.1)	15/15
CMA-TPA	1.4(0.2)	1.4(0.2)	1.2(0.1)	1.0(0.1)	0.95 (0.0)	0.86(0.0)	0.86(0.0)	15/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	3.4(3)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	∞	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	∞	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	∞	∞	∞	∞	∞	∞	∞ 7e4	0/15

Table 12: 20-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f11	1002	2228	6278	8586	9762	12285	14831	15/15
BSifeg	∞	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSrr	∞	∞	∞	∞	∞	∞	∞ 8e4	0/15
CMA-CSA	4.6 (0.3)	2.3 (0.1)	0.86(0.0)	0.67 (0.0)	0.63 (0.0)	0.55 (0.0)	0.50 (0.0)	15/15
CMA-MSR	4.7 (0.3)	2.6 (0.1)	1.0(0.1)	0.80 (0.1)	0.74 (0.0)	0.65 (0.0)	0.58 (0.0)	15/15
CMA-TPA	4.5(0.4)	2.3 (0.1)	0.89 (0.0)	0.69 (0.0)	0.65 (0.0)	0.57 (0.0)	0.51 (0.0)	15/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5008$	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5008$	0/15
Sifeg	∞	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	∞	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	∞	∞	∞	∞	∞	∞	∞ 7e4	0/15

Table 13: 20-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	$1e\overset{\circ}{0}$	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f12	1042	1938	2740	3156	4140	12407	13827	15/15
BSifeg	∞	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	173(186)	1151(1006)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSrr	677(1003)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
CMA-CSA	3.6(2)	3.5 (2)	3.8 (2)	3.9 (1)	3.5 (1)	1.4(0.4)	1.5(0.3)	15/15
CMA-MSR	3.7(3)	3.3 (2)	3.5 (2)	3.6 (2)	3.2 (1)	1.3(0.5)	1.4(0.3)	15/15
CMA-TPA	3.8(3)	4.1(2)	3.8 (2)	3.9 (3)	3.3 (2)	1.4(0.3)	1.4(0.7)	15/15
GP1-CMAES	2.4(0.2)	2.7 (3)	6.1(5)	23(17)	18(17)	∞	$\infty 5006$	0/15
GP5-CMAES	21(34)	18(16)	26(18)	23(17)	∞	∞	$\infty 5020$	0/15
IPOPCMAv3p	3.8(1)	5.1(5)	27(40)	23(28)	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
RF1-CMAES	3.0 (3)	11(13)	26(39)	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	∞	∞	∞	∞	∞	∞	∞ 4e4	0/15
Sif	∞	∞	∞	∞	∞	∞	∞ $5e4$	0/15
Srr	∞	∞	∞	∞	∞	∞	∞ 4e4	0/15

Table 14: 20-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f13	652	2021	2751	3507	18749	24455	30201	15/15
BSifeg	137(232)	193(182)	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	103(37)	182(76)	∞	∞	∞	∞	$\infty~2e5$	0/15
BSrr	120(126)	221(350)	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	3.2 (3)	4.2 (4)	4.0 (1)	4.5(2)	0.93 (0.4)	1.1(0.5)	1.3(0.7)	15/15
CMA-MSR	4.4(3)	3.3 (4)	4.9 (3)	4.2(2)	0.87 (0.5)	1.0(0.4)	1.5(0.5)	15/15
CMA-TPA	4.7(5)	4.7(2)	5.0 (2)	5.4(4)	1.1(0.2)	1.3(0.3)	1.5(0.5)	15/15
GP1-CMAES	22(19)	∞	∞	∞	∞	∞	$\infty 5046$	0/15
GP5-CMAES	5.5(12)	4.9(6)	13(7)	∞	∞	∞	∞ 5022	0/15
IPOPCMAv3p	8.3(8)	7.9(5)	26(38)	21(37)	4.0(8)	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	23(18)	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	8.1(6)	6.4(2)	27(40)	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	44(46)	102(61)	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	64(55)	282(361)	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	57(48)	109(92)	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 15: 20-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f14	75	239	304	451	932	1648	15661	15/15
BSifeg	1.5 (0.8)	11(10)	17(8)	46(15)	∞	∞	$\infty~2e5$	0/15
BSif	1.5(0.4)	12(10)	50(82)	864(887)	∞	∞	$\infty~2e5$	0/15
BSqi	1.5(0.5)	5.0(3)	8.5(2)	37(15)	∞	∞	$\infty~2e5$	0/4
BSrr	1.4(0.7)	7.1(8)	12(7)	34(15)	∞	∞	$\infty~2e5$	0/15
CMA-CSA	4.2(2)	2.9 (0.5)	3.7(0.6)	4.1(0.5)	3.3 (0.3)	3.9(0.3)	0.67 (0.0)	15/15
CMA-MSR	4.2(1)	2.8 (0.6)	3.4(0.5)	3.6(0.4)	2.9 (0.4)	3.9(0.2)	0.73 (0.0)	15/15
CMA-TPA	3.5(1)	2.3 (0.6)	2.8 (0.4)	3.1(0.2)	2.8 (0.3)	3.8(0.4)	0.71 (0.0)	15/15
GP1-CMAES	3.0 (0.8)	2.3 (0.7)	2.9 (0.6)	3.5 (0.8)	4.0(0.6)	∞	$\infty 5006$	0/15
GP5-CMAES	2.1(0.5)	1.7(0.2)	1.9(0.5)	8.0(6)	79(80)	∞	∞ 5020	0/15
IPOPCMAv3p	3.7(1)	2.8 (0.3)	3.6(0.3)	4.3(0.3)	4.1(0.2)	∞	$\infty 5006$	0/15
LHD-10xDef	6.9(0.7)	10(3)	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	3.1(1)	5.3(2)	12(14)	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	3.3(0.6)	9.4(12)	24(37)	∞	∞	∞	$\infty 1000$	0/15
RF1-CMAES	3.5(0.9)	3.2(0.9)	4.0(0.9)	4.9(2)	15(23)	∞	$\infty 5006$	0/15
RF5-CMAES	3.7(1)	300(455)	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	1.3(0.5)	1.4(0.7)	2.8 (1)	23(19)	∞	∞	$\infty~2e5$	0/15
Sif	1.3(0.5)	1.6 (0.6)	3.5(2)	79(59)	∞	∞	$\infty~2e5$	0/15
Srr	1.3 (0.3)	1.2(0.3)	2.0 (0.6)	14(12)	∞	∞	$\infty~2e5$	0/15

Table 16: 20-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f15	30378	1.5e5	3.1e5	3.2e5	3.2e5	4.5e5	4.6e5	15/15
BSifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/11
BSrr	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	0.83 (0.6)	0.99 (0.3)	0.64(0.3)	0.65 (0.3)	0.65 (0.3)	0.49 (0.3)	0.49 (0.1)	15/15
CMA-MSR	0.98 (0.3)	0.95 (0.1)	0.54(0.4)	0.55 (0.2)	0.56(0.2)	0.43 (0.3)	0.45 (0.3)	15/15
CMA-TPA	0.94 (0.5)	1.1(0.4)	0.63(0.3)	0.64(0.4)	0.64(0.1)	0.48(0.2)	0.49 (0.2)	15/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5048$	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 17: 20-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f16	1384	27265	77015	1.4e5	1.9e5	2.0e5	2.2e5	15/15
BSifeg	123(161)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	178(95)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	98(127)	∞	∞	∞	∞	∞	$\infty~2e5$	0/13
BSrr	119(147)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	1.9(0.6)	0.64(0.7)	0.84(0.2)	1.2(2)	1.4 (1)	1.5(0.8)	1.4(2)	15/15
CMA-MSR	0.80(0.1)	0.84(0.5)	1.1(1)	1.3(0.5)	3.3 (1)	4.7 (10)	4.3 (4)	12/15
CMA-TPA	1.2(0.6)	0.78 (0.6)	0.80(0.5)	0.67 (0.5)	0.63(0.2)	0.66(0.2)	0.62(0.2)	15/15
GP1-CMAES	0.90(0.1)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	0.57 (0.2)↓	∞	∞	∞	∞	∞	∞ 5022	0/15
IPOPCMAv3p	1.4(0.4)	0.63 (0.6)	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	3.4(4)	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	5.1(6)	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	11(7)	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	0.79 (0.2)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	1.0(3)	∞	∞	∞	∞	∞	$\infty 5008$	0/15
Sifeg	15(12)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	12(8)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	14(8)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 18: 20-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	$1\dot{e}0$	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f17	63	1030	4005	12242	30677	56288	80472	15/15
BSifeg	493(1588)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	488(800)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	1.7(0.6)	∞	∞	∞	∞	∞	$\infty~2e5$	0/3
BSrr	476(0.7)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	3.0(2)	1.0(0.3)	1.4(2)	1.2(0.6)	0.74 (0.6)	0.88 (0.4)	0.88(0.2)	15/15
CMA-MSR	2.7 (0.6)	6.5(5)	3.5(1)	1.9(0.7)	0.97 (0.6)	0.88 (0.3)	0.81(0.4)	15/15
CMA-TPA	2.7 (0.6)	1.4(2)	1.5(0.9)	0.94 (0.1)	0.74 (0.3)	0.71(0.4)	0.80(0.3)	15/15
GP1-CMAES	1.4(0.7)	3.4(5)	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	1.6(0.8)	11(10)	∞	∞	∞	∞	∞ 5022	0/15
IPOPCMAv3p	2.0 (0.8)	0.99 (0.3)	0.93(1)	1.1(1)	∞	∞	$\infty 5006$	0/15
LHD-10xDef	7.3(3)	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	2.6 (1)	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	2.7 (1)	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	1.9(1)	4.2(5)	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	2.7 (2)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	230(797)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	7.1(15)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	3.8(2)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 19: 20-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
BSrr ∞
CMACSA = 0.06(0.5) 0.72(1) 0.81(0.6) 1.1(0.6) 0.82(0.5) 1.1(1) 1.0(1) 15/1
CMA-CSA 0.30(0.2) 0.72(1) 0.81(0.8) 1.1(0.9) 0.83(0.3) 1.1(1) 1.0(1) 13/1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
GP1-CMAES $ $ 0.93(0.3) ∞
GP5-CMAES $ $ 2.8 (2) ∞
IPOPCMAv3p 1.1(0.2) 0.90(1) 3.7(3) ∞ ∞ ∞ ∞ ∞ ∞ 5006 0/1
LHD-10xDef ∞
LHD-2xDefa ∞
RAND-2xDef ∞
RF1-CMAES $1.0_{(0.7)}$ ∞
RF5-CMAES $ 53(44) $ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Sifeg ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e5 $0/1$
Sif $4564_{(5711)}$ ∞ ∞ ∞ ∞ ∞ ∞ ∞ $0/1$
Srr ∞

Table 20: 20-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COLOTE CITED (CC)	ac arraca	0,5	IIOI OII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f19	1	1	3.4e5	4.7e6	6.2e6	6.7e6	6.7e6	15/15
BSifeg	161(160)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	603(70)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	171(61)	∞	∞	∞	∞	∞	$\infty~2e5$	0/8
$_{\mathrm{BSrr}}$	151 (116)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	221(80)	3.3e4(3e4	0.82(0.3)	0.56(0.7)	2.4 (3)	4.5(4)	4.5 (6)	1/15
CMA-MSR	212(60)	3.5e4(5e4)	1.2(0.3)	∞	∞	∞	$\infty~2e6$	0/15
CMA-TPA	177(33)	1.9e4(948	61). 6 (0.7)	1.2(0.7)	4.7 (7)	4.3 (2)	4.3(4)	1/15
GP1-CMAES	153 (29)	3.6e4(5e4)	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	97 (16)	1.6e4(3e4)∞	∞	∞	∞	∞ 5020	0/15
IPOPCMAv3p	229(64)	∞	∞	∞	∞	∞	$\infty 5008$	0/15
LHD-10xDef	507(504)	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	185(70)	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	165(139)	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	177(22)	3.7e4(8e4)	∞	∞	∞	∞	$\infty 5008$	0/15
RF5-CMAES	182(95)	∞	∞	∞	∞	∞	∞ 5034	0/15
Sifeg	164(166)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	176(223)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	166(42)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 21: 20-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

cacii tiiib vai	ac aiviac	a by aim	CHOICH.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f20	82	46150	3.1e6	5.5e6	5.5e6	5.6e6	5.6e6	14/15
BSifeg	1.7 (1.0)	0.83 (0.5)	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	1.7(0.3)	2.8 (1)	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	1.3(0.6)	5.7(7)	∞	∞	∞	∞	$\infty~2e5$	0/4
BSrr	1.6(0.5)	2.1 (3)	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	5.0(1.0)	2.5 (1)	0.35 (0.1)	0.29 (0.0)	0.29 (0.0)	0.29 (0.0)	0.30 (0.0)	15/15
CMA-MSR	5.1(0.8)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
CMA-TPA	4.0(0.7)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
GP1-CMAES	3.2(0.8)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	2.3 (0.4)	∞	∞	∞	∞	∞	∞ 5022	0/15
IPOPCMAv3p	5.5(1)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	7.6(0.6)	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	4.1(1)	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	4.5(2)	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	4.9(1)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	15(26)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	1.8(0.3)	0.73 (2)	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	1.8(1)	1.0 (1)	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	1.6 (0.6)	0.74 (0.9)	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 22: 20-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f21	561	6541	14103	14318	14643	15567	17589	15/15
BSifeg	91(290)	430(536)	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	90(178)	∞ $$	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	153(212)	∞	∞	∞	∞	∞	$\infty~2e5$	0/4
BSrr	96(87)	137(302)	211(309)	208(245)	203(226)	192(203)	$\infty~2e5$	0/15
CMA-CSA	113(4)	159(519)	95(173)	94(157)	92(158)	87(72)	77(108)	7/15
CMA-MSR	24(168)	278(777)	449(528)	442(223)	433(269)	407(584)	360(854)	3/15
CMA-TPA	63(227)	248(332)	115(225)	114(261)	111(287)	105(119)	93(91)	6/15
GP1-CMAES	2.5(4)	2.2 (3)	5.0 (5)	5.0 (7)	4.9(6)	4.6(4)	4.1(4)	1/15
GP5-CMAES	2.3(1)	11(24)	∞	∞	∞	∞	∞ 5046	0/15
IPOPCMAv3p	4.8(7)	2.5 (3)	5.1(8)	5.1 (6)	5.0 (3)	4.7 (3)	4.2 (5)	1/15
LHD-10xDef	2.6(2)	2.2(2)	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	1.2(1.0)	2.3 (1)	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	0.46(0.4	$)_{\perp 2} 0.67 (0.3)$	7) 1.0 (2)	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	7.4(14)	2.4 (3)	2.5 (2)	2.5 (3)	2.5(2)	4.7 (4)	4.2 (3)	1/15
RF5-CMAES	7.3(9)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	65(118)	137(83)	210(291)	207(168)	203(195)	191(183)	$\infty~2e5$	0/15
Sif	103(307)	102(109)	68(67)	67(65)	66(72)	190(148)	170(296)	1/15
Srr	81(86)	130(191)	100(131)	99(128)	97(68)	92(111)	$\infty~2e5$	0/15

Table 23: 20-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f22	467	5580	23491	24163	24948	26847	1.3e5	12/15
BSifeg	129(214)	77(93)	124(130)	124(87)	∞	∞	$\infty~2e5$	0/15
BSif	130(272)	233(592)	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	297(544)	133(266)	∞	∞	∞	∞	$\infty~2e5$	0/5
BSrr	131(223)	61(105)	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	22(38)	145(197)	∞	∞	∞	∞	$\infty~1e6$	0/15
CMA-MSR	254(5)	249(352)	∞	∞	∞	∞	$\infty~2e6$	0/15
CMA-TPA	162(11)	216(93)	∞	∞	∞	∞	$\infty~1e6$	0/15
GP1-CMAES	6.9(11)	1.4(2)	∞	∞	∞	∞	$\infty 5008$	0/15
GP5-CMAES	3.9(11)	3.9(5)	∞	∞	∞	∞	∞ 5022	0/15
IPOPCMAv3p	4.9(4)	13(10)	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	3.2 (3)	0.63 (0.9)	∞	∞	∞	∞	$\infty 1000$	0/15
LHD-2xDefa	1.4(2)	2.7 (4)	∞	∞	∞	∞	$\infty 1000$	0/15
RAND-2xDef	1.2(0.5)	2.6 (3)	∞	∞	∞	∞	$\infty 1000$	0/15
RF1-CMAES	3.5(3)	6.2(3)	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	11(19)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	213(624)	83(50)	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	120(536)	107(143)	126(181)	∞	∞	∞	$\infty~2e5$	0/15
Srr	132(536)	77(62)	∞	∞	∞	∞	$\propto 2e5$	0/15

Table 24: 20-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f23	3.2	1614	67457	3.7e5	4.9e5	8.1e5	8.4e5	15/15
BSifeg	2.8 (3)	60(58)	∞	∞	∞	∞	∞ 2e5	0/15
BSif	2.8 (4)	37(43)	∞	∞	∞	∞	$\infty~2e5$	0/15
BSrr	2.8 (2)	54(56)	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	6.1(5)	93(494)	13 (11)	16(21)	58 (78)	35 (58)	34 (25)	1/15
CMA-MSR	6.8(6)	2.0(2)	0.79 (0.6)	0.74 (0.2)	0.73 (0.1)	0.49 (0.1)	0.51 (0.0)	15/15
CMA-TPA	6.5(8)	23(41)	4.8(11)	3.0(5)	9.3(13)	5.6 (3)	5.5 (7)	5/15
GP1-CMAES	2.5 (3)	1.6(0.7)	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES		0.84 (0.8)	∞	∞	∞	∞	∞ 5010	0/15
IPOPCMAv3p	2.0(2)	∞	∞	∞	∞	∞	∞ 5020	0/15
LHD-10xDef	1.8(2)	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	1.9(2)	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	2.0 (3)	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	1.6 (1)	∞	∞	∞	∞	∞	∞ 5010	0/15
RF5-CMAES	2.3 (0.9)	∞	∞	∞	∞	∞	$\infty 5086$	0/15
Sifeg	2.8 (2)	6.5(6)	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	2.8 (2)	11(12)	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	2.8 (2)	5.2(4)	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 25: 20-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f24	1.3e6	7.5e6	5.2e7	5.2e7	5.2e7	5.2e7	5.2e7	3/15
BSifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSrr	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	6.0 (15)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
CMA-MSR	4.1 (7)	1.8 (1)	0.55 (1.0)	0.55 (0.7)	0.55 (0.4)	0.55 (0.8)	0.55(1)	1/15
CMA-TPA	6.2 (10)	3.9 (2)	∞	∞	∞	∞	$\infty~2e6$	0/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5026$	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5008$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 5034	0/15
Sifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15

References

- [1] Asma Atamna. Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB noiseless testbed. In Laredo et al. [8], pages 1135–1142.
- [2] Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April 2010.
- [3] Lukás Bajer, Zbynek Pitra, and Martin Holena. Benchmarking gaussian processes and random forests surrogate models on the BBOB noiseless testbed. In Laredo et al. [8], pages 1143–1150.
- [4] Dimo Brockhoff, Bernd Bischl, and Tobias Wagner. The impact of initial designs on the performance of matsumoto on the noiseless BBOB-2015 testbed: A preliminary study. In Laredo et al. [8], pages 1159–1166.
- [5] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010.
- [6] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
- [7] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [8] Juan Luis Jiménez Laredo, Sara Silva, and Anna Isabel Esparcia-Alcázar, editors. Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material Proceedings. ACM, 2015.
- [9] Petr Posík and Petr Baudis. Dimension selection in axis-parallel brent-step method for black-box optimization of separable continuous functions. In Laredo et al. [8], pages 1151–1158.