Beschreibungslogik

Übungsblatt 2

Abgabe im PDF-Format bis 17.5.2020, 23:59 Uhr in Stud.IP, Ordner "Abgabe Blatt 2" Bitte nur eine PDF-Datei pro Gruppe, Lizenz "Selbst verfasstes, nicht publiziertes Werk".

1. (20%) Für jedes der folgenden Interpretationspaare \mathcal{I}_i , \mathcal{J}_i bestimme, ob es ein \mathcal{ALC} Konzept C gibt mit $d \in C^{\mathcal{I}_i}$ und $x \notin C^{\mathcal{J}_i}$ oder umgekehrt. Wenn dies der Fall ist, gib das Konzept C explizit an. Wenn nicht, gib eine Bisimulation an, die zeigt, dass $(\mathcal{I}_i, d) \sim (\mathcal{J}_i, x)$.

- 2. (20%) Beweise, dass die folgenden Eigenschaften nicht in \mathcal{ALC} ausdrückbar sind, wobei r und s feste Rollennamen sind. Benutze dazu Theorem 3.5.
 - a) $\{(\mathcal{I}, d) \mid \text{ für alle } e \in \Delta^{\mathcal{I}} \text{ gilt } (d, e) \in r^{\mathcal{I}} \}$
 - b) $\{(\mathcal{I}, d) \mid \text{ es gibt ein } e \in \Delta^{\mathcal{I}} \text{ mit } (d, e) \in r^{\mathcal{I}} \text{ und } (e, d) \in s^{\mathcal{I}} \}$
- 3. (20%) Konstruiere die Unravellings der Interpretationen \mathcal{J}_2 und \mathcal{I}_3 aus Aufgabe 1 an der Stelle x bzw. d gemäß Definition 3.7 (graphische Darstellung genügt).

Bitte wenden.

4. (20%)

a) Seien C = A und $\mathcal{T} = \{A \sqsubseteq \exists r.B, \ \forall r.B \sqsubseteq A \sqcup B, \ A \sqcap \neg B \sqsubseteq \exists s.(A \sqcap \neg B)\}$. Konstruiere die Filtration \mathcal{J} des folgenden Modells \mathcal{I} von C und \mathcal{T} gemäß Definition 3.16. Gib $\mathsf{sub}(C,\mathcal{T})$ und $t_{\mathcal{I}}(x)$ für alle Elemente x an und stelle \mathcal{J} graphisch dar.

b) Gilt $(\mathcal{I}, d) \sim (\mathcal{J}, [d])$? Begründe.

5. (20%) Beweise die offenen Punkte von Lemma 2.9: Für alle TBoxen \mathcal{T} und \mathcal{ALC} -Konzepte C, D gilt:

- a) C ist erfüllbar bzgl. \mathcal{T} gdw. $\mathcal{T} \not\models C \equiv \bot$
- b) $\mathcal{T} \models C \equiv D \text{ gdw. } \mathcal{T} \models \top \sqsubseteq (C \sqcap D) \sqcup (\neg C \sqcap \neg D)$

Use the definitions, Luke! ☺

6. Zusatzaufgabe (20%) Betrachte den folgenden Versuch, eine für \mathcal{ALCQ} geeignete Bisimulationsrelation zu definieren:

Eine Relation ρ heißt \mathcal{ALCQ} -Bisimulation zwischen zwei Interpretationen \mathcal{I}_1 und \mathcal{I}_2 , wenn Bedingungen 1–3 aus Definition 3.1 erfüllt sind und zusätzlich gilt:

- 4. Wenn $d_1 \rho d_2$ und (d_1, d_1') , $(d_1, d_1'') \in r^{\mathcal{I}_1}$ mit $d_1' \neq d_1''$ für einen Rollennamen r, dann gibt es d_2' , $d_2'' \in \Delta^{\mathcal{I}_2}$ mit $d_1' \rho d_2'$ und $d_1'' \rho d_2''$ sowie (d_2, d_2') , $(d_2, d_2'') \in r^{\mathcal{I}_2}$.
- a) Zeige, dass diese Definition nicht ausreicht, um die in Theorem 3.2 behauptete Eigenschaft für alle \mathcal{ALCQ} -Konzepte sicherzustellen. Gib dafür ein \mathcal{ALCQ} -Konzept C sowie zwei Interpretationen $\mathcal{I}_1, \mathcal{I}_2$ und Elemente d_1, d_2 an mit $(\mathcal{I}_1, d_1) \sim (\mathcal{I}_2, d_2)$ und $d_1 \in C^{\mathcal{I}_1}$, aber $d_2 \notin C^{\mathcal{I}_2}$.
- b) Wie muss man Bedingung 4 modifizieren, damit die Behauptung aus Theorem 3.2 für alle \mathcal{ALCQ} -Konzepte gilt? Gib die modifizierte Bedingung an.
- c) Zeige nun, dass mit Deiner modifizierten Bedingung 4 Theorem 3.2 für \mathcal{ALCQ} -Konzepte gilt. Formuliere dazu nur den im Induktionsschritt zusätzlich benötigten Fall für Konzepte der Form $(\geqslant n\,r.C)$ aus. Warum ist kein zusätzlicher Fall für $(\leqslant n\,r.C)$ notwendig?