

ICS3213 – Gestión de Operaciones

Sección 3 Primer Semestre 2025

Profesor: Rodrigo A. Carrasco

Avisos

- Mañana viernes es el Simulador de Cadena de Suministro.
- No olviden conectarse en el horario asignado para que participen del trabajo en equipo.
- La próxima semana es el Receso Universitario con lo que no habrá clases de Gestión de Operaciones.
- De regreso, el martes 6 de Mayo tendremos una charla Jorge Brahm, Gerente General de Golden Omega S.A. No falten.

Revisión de la clase pasada

- Aprendimos qué es un proyecto y los tipos que existen.
- Entendimos un par de formas de visualizar proyectos y cómo nos ayudan en gestión y control.
- Aprendimos que lo fundamental es la Ruta Crítica, la cual define cosas importantes del proyecto.
- Comenzamos a estudiar el algoritmo PERT para identificar el tiempo de duración de un proyecto y su Ruta Crítica.

Buscando Ruta Crítica

$ES_j = \max$	$\{EF_{ij}\}$
$LF_k = \min$	$\{LS_{kj}\}$

Actividades	Tiempo	Antecesores	ES	EF	LS	LF	Holgura
Α	3	-	0	3	C	3	0
В	4	Α	3	7	7	11	4
С	2	А	3	5	3	5	0
D	6	B,C	7	13	11	17	4
Е	5	С	15	10	5	10	0
F	3	С	5	8	9	12	4
G	7	E	10	17	10	17	O
Н	5	E,F	10	15	12	17	2
I	8	D,G,H	17	25	17	25	0

$$EF = ES + t$$
$$LS = LF - t$$

$$\min \sum_{i=1}^{n} x_i$$

s.a.

$$x_j - x_i \ge t_{ij} \quad \forall (i, j)$$

 $x_i \ge 0 \quad \forall i = 1, ..., n$

PERT con 3 estimaciones de tiempos

• PERT

- Generalización de CPM que permite incorporar incertidumbre en los tiempos de duración de actividades
- Tiempos: variables aleatorias
 - Se asume que los tiempos son v.a. independientes e igualmente distribuidas $(t_1, t_2, ..., t_n)$
- Máximo, mínimo, más probable
 - a = mínimo tiempo en completar actividad
 - m = tiempo más probable
 - b = máximo tiempo
- Distribución de probabilidades
 - Con extremos (Pr[] fuera de rango es cero)
 - Valor de moda en cualquier lugar del intervalo

PERT con 3 estimaciones de tiempos

Distribución BETA

- Sólo se utiliza para justificar aproximaciones simples de media y varianza
- No se usa para calcular probabilidades de tiempos de actividades individuales

• Teorema central del límite

- Distribución de la suma de v.a. iid, converge a una distribución normal (con el número de términos) $T = t_1 + t_2 + ... + t_n$
- E(T) y Var(T) corresponden a la suma de las medias y varianzas individuales
- Como aquí los tiempos de las actividades no están idénticamente distribuidos, hay que ver el caso <u>"No i.d. del TCL"</u>

PERT con 3 estimaciones de tiempos

Pasos del método PERT

- 1. Para cada actividad obtener o estimar (a,m,b)
- 2. Calcular media y varianza para cada actividad
- 3. Determinar la ruta crítica en base a tiempos medios
- 4. Encontrar media y varianza del tiempo total del proyecto, en función de actividades de la ruta crítica
- 5. El tiempo total del proyecto distribuye normal con media y varianza calculadas en (4)

CPM-PERT: Ejemplo

Tarea	Antecesores	Optimista (a)	Más probable (m)	Pesimista (b)
Α	None	3	6	15
В	None	2	4	14
С	Α	6	12	30
D	Α	2	5	8
Е	С	5	11	17
F	D	3	6	15
G	В	3	9	27
Н	E,F	1	4	7
	G,H	4	19	28

CPM-PERT: Ejemplo

Tarea	Antecesores	Optimista (a)	Más probable (m)	Pesimista (b)	Tiempo esperado	Varianza
A	None	3	6	15	7,0	4,0
В	None	2	4	14	5,3	
C	A	6	12	30	14,0	16,0
D	Α	2	5	8	5,0	
Е	С	5	11	17	11,0	4,0
F	D	3	6	15	7,0	
G	В	3	9	27	11,0	
Н	E,F	1	4	7	4,0	1,0
	G,H	4	19	28	18,0	16,0

CPM-PERT: Ejemplo

¿Cuál es la probabilidad de terminar el proyecto en menos de 53 días?

$$Z = \frac{D - T_E}{\sqrt{\sum \sigma_i^2}} = \frac{53 - 54}{\sqrt{41}} = -0.156$$

$$V_p = \text{multo} (alvos)$$

$$V_b = bons (adelanto)$$

$$P(multo) \cdot V_p = P(bono) \cdot V_b$$

$$P(multo) = V_b$$

Hay una probabilidad de un 43.6% de que el proyecto termine en menos de 53 días.

Supuesto básico

• Relación entre tiempo para completar actividad y costo del proyecto (tradeoff... recordar triángulo de hierro)

• Determinan el punto óptimo del trade-off tiempo-costo

- Costos directos de actividades
- Costos indirectos del proyecto
- Tiempo para completar actividades

• Pasos a seguir

- Preparar diagrama CPM
- Determinar costo por unidad de tiempo para cada actividad
- Determinar la ruta crítica
- · Acortar ruta crítica en actividad de menor costo por unidad de tiempo

(CT,NT) (CC,NC)

- CT: Tiempo más corto de una actividad
- NT: Tiempo normal de una actividad
- CC: Costo asociado al CT
- NC: Costo asociado a NT

• Trade-off tiempo costo

Ruta crítica actual	Nro de días en que una actividad puede ser acortada	Costo diario para apurar una actividad	Actividad de menor costo para apurar	Costo total de todas las actividades del proyecto	Tiempo total para completar el proyecto
ABD	Tiempo y costo	normales para to	das actividades	\$26	10
ABD	A-1;B-3;D-2	A-4;B-3;D-2	D	\$28	9
ABD	A-1;B-3;D-1	A-4;B-3;D-2	D	\$30	8
ABD	A-1;B-3	A-4;B-3	В	\$33	7
ABCD	A-1;B-2;C-1	A-4;B-3;C-2	А	\$37	6
ABCD	B-2;C-1	B-3;C-2	ВуС	\$42	5
ABCD	B-1	B-3	В	\$45	5

Ejercicio

Considere un proyecto formado por las 7 actividades que se detallan en la siguiente tabla, en la cual se indica precedencia, tiempo (en días) y costo normal en desarrollar cada actividad, y tiempo más corto en que se podría desarrollar la actividad y su respectivo costo.

Actividad	Predecesor	Tiempo normal	Costo normal	Tiempo más corto	Costo de más corto
Α	-	4	\$100	2	\$150
В	Α	8	\$80	2	\$140
С	A,B	2	\$40	1	\$60
D	Α	3	\$80	2	\$120
Е	В	5	\$80	3	\$140
F	C,D	5	\$60	1	\$100
G	D,E,F	6	\$120	2	\$160

- a)Dibuje la red para este proyecto (con actividades en las flechas)
- b)Calcule ES, LS, EF, LF para cada actividad
- c)Identifique la ruta crítica
- d)¿Cuál es el tiempo y costo normal para finalizar el proyecto?
- e)¿Cuánto cuesta adelantar el término del proyecto en 7 días?
- f)¿Cuál es el tiempo y costo para finalizar el proyecto lo antes posible?

