### 1. Image export from LEXT



Possible format: \*.tif / \*.bmp

## 2. Specify refractive index (Brechzahl) and run calculation



\*see 5. Setting of median value (%Anzahl Werte für Medianfilter)

If the refractive index in unknown, measure a line on high and low level of a step and compare the difference depending on the refractive index with the step height.

| Point | Step height | Used        | Median low | Median high | avgmed <sub>high</sub> |
|-------|-------------|-------------|------------|-------------|------------------------|
|       | [µm]        | refractive  | thickness  | thickness   | -avgmed <sub>low</sub> |
|       |             | index       | avgmed     | avgmed      | [µm]                   |
|       |             | (Brechzahl) | [µm]       | [µm]        |                        |
| 1     |             |             |            |             |                        |

>> if the difference is equal to the step height, the refractive index is correct.

#### 3. Select image file



Coffee break...

... the result appears!



\_\_\_\_\_\_

#### 4. Results:



avgthic: mean of the thickness values based on Gaussian fit (Fig. 1)

*avgthicmed*: thickness value based on median fit (Fig. 1), see 5. Setting of median value (%Anzahl Werte für Medianfilter)







Figure 2: Graphic output median fit



Figure 3: Output in Command window

# 5. Setting of median value (%Anzahl Werte für Medianfilter)



Figure 4: Medianbreite = 5



Figure 6: Medianbreite = 40



Figure 8: Medianbreite = 200



Figure 5: Medianbreite = 30



Figure 7: Medianbreite = 50