

Quantization 2

Kaisheng Ma

Assistant Professor IIIS Tsinghua University

kaishengthu@163.com

Lecture Plan

Today we will:

- 1. Review Linear Quantization.
- 2. Introduce **Post-Training Quantization (PTQ)** that quantizes a floating-point neural network model, including: channel quantization, group quantization, and range clipping.
- 3. Introduce **Quantization-Aware Training (QAT)** that emulates inference-time quantization during the training/fine-tuning and recover the accuracy.
- 4. Introduce binary and ternary quantization.
- 5. Introduce automatic mixed-precision quantization.

Neural Network Quantization

K-Means-based
Quantization

Linear Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

K-Means-based Weight Quantization

K-Means-based Weight Quantization

Accuracy vs. compression rate for AlexNet on ImageNet dataset

Pruning + Quantization 📤 Pruning Only 🗗 Quantization Only 0.5% 0.0% -0.5% -1.0% -1.5% Accuracy -2.0% -2.5% -3.0% -3.5% -4.0% -4.5% **5** % 2 % 8 % 11% 14% 17% 20%

Model Size Ratio after Compression

Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

weights (32-bit float)

 2.09
 -0.98
 1.48
 0.09

 0.05
 -0.14
 -1.08
 2.12

 -0.91
 1.92
 0
 -1.03

 1.87
 0
 1.53
 1.49

quantized weights (2-bit signed int)

1	-2	0	-1
-1	-1	-2	1
-2	1	-1	-2
1	-1	0	0

zero point (2-bit signed int)

scale (32-bit float)

 $-1) \times 1.07 =$

2.14	-1.07	1.07	0
0	0	-1.07	2.14
-1.07	2.14	0	-1.07
2.14	0	1.07	1.07

Binary	Decimal
01	1
00	0
11	-1
10	-2

Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Linear Quantized Fully-Connected Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

• Consider the following fully-connected layer.

$$\mathbf{Y} = \mathbf{W}\mathbf{X} + \mathbf{b}$$

$$Z_{\mathbf{W}} = 0$$

$$Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}}S_{\mathbf{X}}$$

$$\mathbf{q}_{bias} = \mathbf{q}_{\mathbf{b}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}}$$

$$\mathbf{q}_{\mathbf{Y}} = \underbrace{S_{\mathbf{W}}S_{\mathbf{X}}}_{S_{\mathbf{Y}}} (\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} + \mathbf{q}_{bias}) + Z_{\mathbf{Y}}$$
Rescale to N-bit Int Mult. N-bit Int N-bit Int Add. Add

Note: both q_b and q_{bias} are 32 bits.

Linear Quantized Convolution Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

• Consider the following convolution layer.

$$\mathbf{Y} = \mathsf{Conv}\left(\mathbf{W}, \mathbf{X}\right) + \mathbf{b}$$

$$Z_{\mathbf{W}} = 0$$

$$Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}}S_{\mathbf{X}}$$

$$\mathbf{q}_{bias} = \mathbf{q}_{\mathbf{b}} - \mathsf{Conv}\left(\mathbf{q}_{\mathbf{W}}, Z_{\mathbf{X}}\right)$$

$$\mathbf{q}_{Y} = \underbrace{S_{\mathbf{W}}S_{\mathbf{X}}}_{S_{\mathbf{Y}}} \left(\mathsf{Conv}\left(\mathbf{q}_{\mathbf{W}}, \mathbf{q}_{\mathbf{X}}\right) + \mathbf{q}_{bias}\right) + Z_{\mathbf{Y}}$$
Rescale to N-bit Int Mult. N-bit Int Mult. Add.

Note: both \mathbf{q}_{b} and \mathbf{q}_{bias} are 32 bits.

Scale and Zero Point of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}} \qquad Z = q_{\text{min}} - \frac{r_{\text{min}}}{S}$$

$$= \frac{2.12 - (-1.08)}{1 - (-2)} \qquad = \text{round}(-2 - \frac{-1.08}{1.07})$$

$$= 1.07$$

Scale and Zero Point of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$S = \frac{|r|_{\text{max}}}{q_{\text{max}}}$$

$$= \frac{2.12}{1}$$

$$= 2.12$$

Post-Training Quantization

How should we get the optimal linear quantization parameters (S, Z)?

Topic I: Quantization Granularity

Topic II: Dynamic Range Clipping

Topic III: Rounding

Post-Training Quantization

How should we get the optimal linear quantization parameters (S, Z)?

Topic I: Quantization Granularity

Topic II: Dynamic Range Clipping

Topic III: Rounding

Quantization Granularity

Per-Tensor Quantization

Per-Channel Quantization

Group Quantization

- Per-Vector Quantization
- Shared Micro-exponent (MX) data type

Quantization Granularity

Per-Tensor Quantization

Per-Channel Quantization

- Group Quantization
 - Per-Vector Quantization

Symmetric Linear Quantization on Weights

•
$$r|_{\max} = |\mathbf{W}|_{\max}$$

- Using single scale S for whole weight tensor (Per-Tensor Quantization)
 - works well for large models
 - accuracy drops for small models
- Common failure results from
 - large differences (more than 100×) in ranges of weights for different output channels — outlier weight
- Solution: Per-Channel Quantization

Quantization Granularity

Per-Tensor Quantization

Per-Channel Quantization

Group Quantization

- Per-Vector Quantization
- Shared Micro-exponent (MX) data type

Example: 2-bit linear quantization

ic

Per-Channel Quantization

oc	2.09	-0.98	1.48	0.09
	0.05	-0.14	-1.08	2.12
	-0.91	1.92	0	-1.03
	1.87	0	1.53	1.49

Per-Tensor Quantization

Example: 2-bit linear quantization

ic

Per-Channel Quantization

	2.09	-0.98	1.48	0.09
ОС	0.05	-0.14	-1.08	2.12
<i>OC</i>	-0.91	1.92	0	-1.03
	1.87	0	1.53	1.49

Per-Tensor Quantization

$$|r|_{\text{max}} = 2.12$$

$$S = \frac{|r|_{\text{max}}}{q_{\text{max}}} = \frac{2.12}{2^{2-1} - 1} = 2.12$$

1	0	1	0
0	0	-1	1
0	1	0	0
1	0	1	1

2.12	0	2.12	0
0	0	-2.12	2.12
0	2.12	0	0
2.12	0	2.12	2.12

Quantized

$$\|\mathbf{W} - S\mathbf{q}_{\mathbf{W}}\|_F = 2.28$$

Example: 2-bit linear quantization

ic

Per-Channel Quantization

$$|r|_{\text{max}} = 2.09$$

$$S_0 = 2.09$$

$$|r|_{\text{max}} = 2.12$$

$$S_1 = 2.12$$

$$|r|_{\text{max}} = 1.92$$

$$S_2 = 1.92$$

$$|r|_{\text{max}} = 1.87$$

$$S_3 = 1.87$$

Per-Tensor Quantization

$$|r|_{\text{max}} = 2.12$$

$$S = \frac{|r|_{\text{max}}}{q_{\text{max}}} = \frac{2.12}{2^{2-1} - 1} = 2.12$$

1	0	1	0
0	0	-1	1
0	1	0	0
1	0	1	1

2.12	0	2.12	0	
0	0	-2.12	2.12	
0	2.12	0	0	
2.12	0	2.12	2.12	

Quantized

$$\|\mathbf{W} - S\mathbf{q}_{\mathbf{W}}\|_F = 2.28$$

Example: 2-bit linear quantization

ic

Per-Channel Quantization

$$|r|_{\text{max}} = 2.09$$

$$S_0 = 2.09$$

$$|r|_{\text{max}} = 2.12$$

$$S_1 = 2.12$$

$$|r|_{\text{max}} = 1.92$$

$$S_2 = 1.92$$

$$|r|_{\text{max}} = 1.87$$

$$S_3 = 1.87$$

1	0	1	0
0	0	-1	1
0	1	0	-1
1	0	1	1

2.09	0	2.09	0
0	0	-2.12	2.12
0	1.92	0	-1.92
1.87	0	1.87	1.87

Quantized

Reconstructed

$$\|\mathbf{W} - \mathbf{S} \odot \mathbf{q}_{\mathbf{W}}\|_F = 2.08$$

Per-Tensor Quantization

$$|r|_{\text{max}} = 2.12$$

$$S = \frac{|r|_{\text{max}}}{q_{\text{max}}} = \frac{2.12}{2^{2-1} - 1} = 2.12$$

1	0	1	0
0	0	-1	1
0	1	0	0
1	0	1	1

2.12	0	2.12	0
0	0	-2.12	2.12
0	2.12	0	0
2.12	0	2.12	2.12

Quantized

$$\|\mathbf{W} - S\mathbf{q_W}\|_F = 2.28$$

Example: 2-bit linear quantization

ic

Per-Channel Quantization

$$|r|_{\text{max}} = 2.09$$

$$S_0 = 2.09$$

$$|r|_{\text{max}} = 2.12$$

$$S_1 = 2.12$$

$$|r|_{\text{max}} = 1.92$$

$$S_2 = 1.92$$

$$|r|_{\text{max}} = 1.87$$

$$S_3 = 1.87$$

1	0	1	0
0	0	-1	1
0	1	0	-1
1	0	1	1

2.09	0	2.09	0
0	0	-2.12	2.12
0	1.92	0	-1.92
1.87	0	1.87	1.87

Quantized

Reconstructed

$$\|\mathbf{W} - \mathbf{S} \odot \mathbf{q}_{\mathbf{W}}\|_F = 2.08$$

Per-Tensor Quantization

$$|r|_{\text{max}} = 2.12$$

$$S = \frac{|r|_{\text{max}}}{q_{\text{max}}} = \frac{2.12}{2^{2-1} - 1} = 2.12$$

1	0	1	0
0	0	-1	1
0	1	0	0
1	0	1	1

2.12	0	2.12	0
0	0	-2.12	2.12
0	2.12	0	0
2.12	0	2.12	2.12

Quantized

$$\|\mathbf{W} - S\mathbf{q_W}\|_F = 2.28$$

Quantization Granularity

Per-Tensor Quantization

Per-Channel Quantization

Group Quantization

- Per-Vector Quantization
- Shared Micro-exponent (MX) data type

VS-Quant: Per-vector Scaled Quantization

Hierarchical scaling factor

- $r = S(q Z) \rightarrow r = \gamma \cdot S_q(q Z)$
 - γ is a floating-point coarse grained scale factor
 - S_q is an integer per-vector scale factor
 - achieves a balance between accuracy and hardware efficiency by
 - less expensive integer scale factors at finer granularity
 - more expensive floating-point scale factors at coarser granularity
- Memory Overhead of two-level scaling:
 - Given 4-bit quantization with 4-bit per-vector scale for every 16 elements, the effective bit width is 4 + 4 / 16 = 4.25 bits.

scale factor S_q for each vector

another scale factor γ for each tensor

Multi-level scaling scheme

$$r = (q - z) \cdot s \rightarrow$$

$$r = (q - z) \cdot s_{l_0} \cdot s_{l_1} \cdot \cdots$$

r: real number value

q: quantized value

z: zero point (z = 0 is symmetric quantization)

Multi-level scaling scheme

$$r = (q - z) \cdot s_{l_0} \cdot s_{l_1} \cdot \cdots$$

r: real number value

q: quantized value

z: zero point (z = 0 is symmetric quantization)

FP16	INT4
S_{l_0}	\overline{q}

	Quantization Approach	Data Type	L0 Group Size	L0 Scale Data Type	L1 Group Size	L1 Scale Data Type	Effective Bit Width
P	er-Channel Quant	INT4	Per Channel	FP16	-	-	4

Multi-level scaling scheme

$$r = (q - z) \cdot s_{l_0} \cdot s_{l_1} \cdot \cdots$$

r: real number value

q: quantized value

z: zero point (z = 0 is symmetric quantization)

Quantization Approach	Data Type	L0 Group Size	L0 Scale Data Type	L1 Group Size	L1 Scale Data Type	Effective Bit Width
Per-Channel Quant	INT4	Per Channel	FP16	-	-	4
VSQ	INT4	16	UINT4	Per Channel	FP16	4+4/16=4.25

Multi-level scaling scheme

$$r = (q - z) \cdot s_{l_0} \cdot s_{l_1} \cdot \cdots$$

r: real number value

q: quantized value

z: zero point (z = 0 is symmetric quantization)

Quantization Approach	Data Type	L0 Group Size	L0 Scale Data Type	L1 Group Size	L1 Scale Data Type	Effective Bit Width
Per-Channel Quant	INT4	Per Channel	FP16	-	-	4
VSQ	INT4	16	UINT4	Per Channel	FP16	4+4/16=4.25
MX4	S1M2	2	E1M0	16	E8M0	3+1/2+8/16=4
MX6	S1M4	2	E1M0	16	E8M0	5+1/2+8/16=6
MX9	S1M7	2	E1M0	16	E8M0	8+1/2+8/16=9

Post-Training Quantization

How should we get the optimal linear quantization parameters (S, Z)?

Topic I: Quantization Granularity

Topic II: Dynamic Range Clipping

Topic III: Rounding

Linear Quantization on Activations

- Unlike weights, the activation range varies across inputs.
- To determine the floating-point range, the activations statistics are gathered *before* deploying the model.

Collect activations statistics before deploying the model

$$\hat{r}^{(t)} = \alpha \cdot r^{(t)} + (1 - \alpha) \cdot \hat{r}^{(t-1)}$$
max, min
max, min
max, min

- Type 1: During training
 - Exponential moving averages (EMA)
 - observed ranges are smoothed across thousands of training steps

Collect activations statistics before deploying the model

- Type 2: By running a few "calibration" batches of samples on the trained FP32 model
 - spending dynamic range on the outliers hurts the representation ability.
 - use mean of the min/max of each sample in the batches
 - analytical calculation (see next slide)

Neural Network Distiller

Collect activations statistics before deploying the model

- Type 2: By running a few "calibration" batches of samples on the trained FP32 model
 - <u>minimize loss of information</u>, since integer model encodes the same information as the original floating-point model.
 - loss of information is measured by Kullback-Leibler divergence (relative entropy or information divergence):
 - for two discrete probability distributions P, Q

$$D_{KL}(P||Q) = \sum_{i}^{N} P(x_i) \log \frac{P(x_i)}{Q(x_i)}$$

• intuition: KL divergence measures the amount of information lost when approximating a given encoding.

Minimize loss of information by minimizing the KL divergence

Minimize loss of information by minimizing the KL divergence

GoogleNet: incpetion_3a/pool

8-bit Inference with TensorRT [Szymon Migacz, 2017]

Dynamic Range for Quantization

Minimize mean-square-error (MSE) using Newton-Raphson method

clipped quantization

Dynamic Range for Quantization

Minimize mean-square-error (MSE) using Newton-Raphson method

Network	FP32 Accuracy	OCTAV int4	
ResNet-50	76.07	75.84	
MobileNet-V2	71.71	70.88	
Bert-Large	91.00	87.09	

Post-Training Quantization

How should we get the optimal linear quantization parameters (S, Z)?

Topic I: Quantization Granularity

Topic II: Dynamic Range Clipping

Topic III: Rounding

Adaptive Rounding for Weight Quantization

Rounding-to-nearest is not optimal

- Philosophy
 - Rounding-to-nearest is not optimal
 - Weights are correlated with each other. The best rounding for each weight (to nearest) is not the best rounding for the whole tensor

- What is optimal? Rounding that reconstructs the original <u>activation</u> the best, which may be very different
 - For weight quantization only
 - With short-term tuning, (almost) post-training quantization

Adaptive Rounding for Weight Quantization

Rounding-to-nearest is not optimal

- Method:
 - Instead of $\lfloor w \rfloor$, we want to choose from $\{\lfloor w \rfloor, \lceil w \rceil\}$ to get the best reconstruction
 - We took a learning-based method to find quantized value $\tilde{w} = \lfloor \lfloor w \rfloor + \delta \rceil$, $\delta \in [0,1]$

Adaptive Rounding for Weight Quantization

Rounding-to-nearest is not optimal

• Method:

- Instead of $\lfloor w \rfloor$, we want to choose from $\{\lfloor w \rfloor, \lceil w \rceil\}$ to get the best reconstruction
- We took a learning-based method to find quantized value $\tilde{w} = \lfloor \lfloor w \rfloor + \delta \rceil$, $\delta \in [0,1]$
- We optimize the following equation (omit the derivation):

$$\underset{\mathbf{V}}{\operatorname{argmin}}_{\mathbf{V}} \|\mathbf{W}\mathbf{x} - \widetilde{\mathbf{W}}\mathbf{x}\|_{F}^{2} + \lambda f_{reg}(\mathbf{V})$$

$$\rightarrow \underset{\mathbf{V}}{\operatorname{argmin}}_{\mathbf{V}} \|\mathbf{W}\mathbf{x} - [[\mathbf{W}] + \mathbf{h}(\mathbf{V})]\mathbf{x}\|_{F}^{2} + \lambda f_{reg}(\mathbf{V})$$

- ullet ${f x}$ is the input to the layer, ${f V}$ is a random variable of the same shape
- $\mathbf{h}()$ is a function to map the range to (0,1), such as rectified sigmoid
- $f_{reg}(\mathbf{V})$ is a regularization that encourages $\mathbf{h}(\mathbf{V})$ to be binary

•
$$f_{reg}(\mathbf{V}) = \sum_{i,j} 1 - |2h(\mathbf{V}_{i,j}) - 1|^{\beta}$$

Neural Network Quantization

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

3	0	2	1	3:	2.00	
1	1	0	3	2:	1.50	
0	3	1	0	1:	0.00	
3	1	2	2	0:	-1.00	

K-Means-based Quantization

Linear Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

Zero Point

- Asymmetric
- Symmetric

Scaling Granularity

- Per-Tensor
- Per-Channel
- Group Quantization

Range Clipping

- Exponential Moving Average
- Minimizing KL
 Divergence
- Minimizing Mean-Square-Error

Rounding

- Round-to-Nearest
- AdaRound

Post-Training INT8 Linear Quantization

		Symmetric	Asymmertric
A . 1.		Per-Tensor	Per-Tensor
Activ	ation	Minimize KL-Divergence	Exponential Moving Average (EMA)
VA.L.		Symmetric	Symmetric
vve	Weight		Per-Channel
	GoogleNet	-0.45%	0%
	ResNet-50	-0.13%	-0.6%
Neural Network	ResNet-152	-0.08%	-1.8%
	MobileNetV1	-	-11.8%
	MobileNetV2	-	-2.1%

Post-Training INT8 Linear Quantization

		Symmetric	Asymmertric	
Λ •	livation	Per-Tensor	Per-Tensor	
ACI	tivation	Minimize KL-Divergence	Exponential Moving Average (EMA)	
1A	laight	Symmetric	Symmetric	
V	<i>l</i> eight	Per-Tensor	Per-Channel	
Neural Network	Smaller models seem well to post-trainin presumabley due t representation	g quantization, to their smaller	How should we improve performance of quantized models?	
	MobileNetV1	-	-11.8%	
	MobileNetV2	-	-2.1%	

How should we improve performance of quantized models?

Train the model taking quantization into consideration

- To minimize the loss of accuracy, especially aggressive quantization with 4 bits and lower bit width, neural network will be trained/fine-tuned with quantized weights and activations.
- Usually, fine-tuning a pre-trained floating point model provides better accuracy than training from scratch.

Train the model taking quantization into consideration

- A full precision copy of the weights W is maintained throughout the training.
- The small gradients are accumulated without loss of precision.
- Once the model is trained, only the quantized weights are used for inference.

Forward
Backward

Train the model taking quantization into consideration

- A full precision copy of the weights W is maintained throughout the training.
- The small gradients are accumulated without loss of precision.
- Once the model is trained, only the quantized weights are used for inference.

Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

	wei (32-bi	ghts t float)	_	antize -bit sig		_	zero point (2-bit signed int)	scale (32-bit float)					
2.09	-0.98	1.48	0.09	1	-2	0	-1				2.14	-1.07	1.07	0
0.05	-0.14	-1.08	2.12	-1	-1	-2	1	4	<i>1</i> 07	_	0	0	-1.07	2.14
-0.91	1.92	0	-1.03	-2	1	-1	-2		1.07		-1.07	2.14	0	-1.07
1.87	0	1.53	1.49	1	-1	0	0				2.14	0	1.07	1.07
	•	W			q	w						Q(

Train the model taking quantization into consideration

- A full precision copy of the weights W is maintained throughout the training.
- The small gradients are accumulated without loss of precision.
- Once the model is trained, only the quantized weights are used for inference.

Straight-Through Estimator (STE)

• Quantization is discrete-valued, and thus the derivative is 0 almost everywhere.

$$\frac{\partial Q(W)}{\partial W} = 0$$

 The neural network will learn nothing since gradients become 0 and the weights won't get updated.

$$g_{\mathbf{W}} = \frac{\partial L}{\partial \mathbf{W}} = \frac{\partial L}{\partial Q(\mathbf{W})} \cdot \frac{\partial Q(\mathbf{W})}{\partial \mathbf{W}} = 0$$

• Straight-Through Estimator (STE) simply passes the gradients through the quantization as if it had been the *identity* function.

$$g_{\mathbf{W}} = \frac{\partial L}{\partial \mathbf{W}} = \frac{\partial L}{\partial Q(\mathbf{W})}$$

Train the model taking quantization into consideration

- A full precision copy of the weights is maintained throughout the training.
- The small gradients are accumulated without loss of precision.
- Once the model is trained, only the quantized weights are used for inference.

INT8 Linear Quantization-Aware Training

			Quantization	Quantization-Aware Training		
Neural Network	Floating-Point	Asymmetric	Symmetric	Asymmetric	Symmetric Per-Channel	
		Per-Tensor	Per-Channel	Per-Tensor		
MobileNetV1	70.9%	0.1%	59.1%	70.0%	70.7%	
MobileNetV2	71.9%	0.1%	69.8%	70.9%	71.1%	
NASNet-Mobile	74.9%	72.2%	72.1%	73.0%	73.0%	

Neural Network Quantization

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

K-Means-based
Quantization

Linear Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

Neural Network Quantization

1	0	1	1
1	0	0	1
0	1	1	0
1	1	1	1

K-Means-based
Quantization

Linear Quantization

Binary/Ternary Quantization

		Quantization	Quantization	Quantization
Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights	Binary/Ternary Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic	Bit Operations

Binary/Ternary Quantization

Can we push the quantization precision to 1 bit?

Can quantization bit width go even lower?

$$y_i = \sum_{\sum_{j} W_{ij} \cdot x_j$$

= 8×5 + (-3)×2 + 5×0 + (-1)×1

input	weight	operations	memory	computation
R	R	+ ×	1×	1×

If weights are quantized to +1 and -1

$$y_i = \sum_{j} W_{ij} \cdot x_j$$

= 5 - 2 + 0 - 1

					×	5
	8	-3	5	-1		2
						0
						1

input	weight	operations	memory	computation
R	R	+ ×	1×	1×
R	В	+ -	~32× less	~2× less

BinaryConnect: Training Deep Neural Networks with Binary Weights during Propagations [Courbariaux et al., NeurIPS 2015] XNOR-Net: ImageNet Classification using Binary Convolutional Neural Networks [Rastegari et al., ECCV 2016]

Binarization

Deterministic Binarization

• directly computes the bit value based on a threshold, usually 0, resulting in a sign function.

$$q = \operatorname{sign}(r) = \begin{cases} +1, r \ge 0 \\ -1, r < 0 \end{cases}$$

Stochastic Binarization

- use global statistics or the value of input data to determine the probability of being -1 or +1
 - e.g., in Binary Connect (BC), probability is determined by hard sigmoid function $\sigma(r)$

$$q = \begin{cases} +1, & \text{with probability } p = \sigma(r) \\ -1, & \text{with probability } 1-p \end{cases}, & \text{where } \sigma(r) = \min(\max(\frac{r+1}{2},0),1) \end{cases}$$

harder to implement as it requires the hardware to generate random bits when quantizing.

Minimizing Quantization Error in Binarization

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$\alpha = \frac{1}{n} ||\mathbf{W}||_1$$

 \mathbf{W}^{B}

W

1	-1	1	1
1	-1	-1	1
-1	1	1	-1
1	1	1	1

AlexNet-based Network	ImageNet Top-1 Accuracy Delta
BinaryConnect	-21.2%
Binary Weight Network (BWN)	0.2%

$$\|\mathbf{W} - \mathbf{W}^{\mathsf{B}}\|_F^2 = 9.28$$

scale (32-bit float)

$$\begin{array}{c} \mathbf{X} & \mathbf{1.05} = \frac{1}{16} \|\mathbf{W}\|_{1} \\ \|\mathbf{W} - \boldsymbol{\alpha}\mathbf{W}^{\mathsf{B}}\|_{F}^{2} &= 9.24 \end{array}$$

$$\|\mathbf{W} - \alpha \mathbf{W}^{\mathsf{B}}\|_{F}^{2} = 9.24$$

$$y_i = \sum_{j} W_{ij} \cdot x_j$$
= 1×1 + (-1)×1 + 1×(-1) + (-1)×1
= 1 + (-1) + (-1) + (-1) = -2

$$y_i = \sum_{j} W_{ij} \cdot x_j$$

$$= 1 \times 1 + (-1) \times 1 + 1 \times (-1) + (-1) \times 1$$

$$= 1 + (-1) + (-1) + (-1) = -2$$

W	X	Y=WX
1	1	1
1	-1	-1
-1	-1	1
-1	1	-1

bw	bx	XNOR(bw, bx)
1	1	1
1	0	0
0	0	1
0	1	0

$$y_{i} = \sum_{j} W_{ij} \cdot x_{j}$$

$$= 1 \times 1 + (-1) \times 1 + 1 \times (-1) + (-1) \times 1$$

$$= 1 + (-1) + (-1) + (-1) = -2$$

$$= 1 + 0 + 0 + 0 = 1$$

W	X	Y=WX
1	1	1
1	-1	-1
-1	-1	1
-1	1	-1

bw	bx	XNOR(bw, bx)
1	1	1
1	0	0
0	0	1
0	1	0

$$y_i = \sum_{j} W_{ij} \cdot x_j$$
 $y_i = -n + 2 \cdot \sum_{j} W_{ij} \times x_{ij} \times x_{ij}$
 $= 1 \times 1 + (-1) \times 1 + 1 \times (-1) + (-1) \times 1$ $= 1 \times x_{ij} \times x_$

W	X	Y=WX
1	1	1
1	-1	-1
-1	-1	1
-1	1	-1

bw	bx	XNOR(bw, bx)
1	1	1
1	0	0
0	0	1
0	1	0

$$y_i = -n + 2 \underbrace{\sum_{j} W_{ij} \text{ xnor } x_j}_{j} \rightarrow y_i = -n + \text{popcount } (W_i \text{ xnor } x) \ll 1$$

= -4 + 2 × (1 xnor 1 + 0 xnor 1 + 1 xnor 0 + 0 xnor 1)
= -4 + 2 × $(1 + 0 + 0 + 0) = -2$

→ popcount: return the number of 1

W	X	Y=WX
1	1	1
1	-1	-1
-1	-1	1
-1	1	-1

bw	bx	XNOR(bw, bx)
1	1	1
1	0	0
0	0	1
0	1	0

$$y_i = -n + \text{popcount}(W_i \times xnor x) \ll 1$$

= -4 + popcount(1010 \times nor 1101) \leftleq 1
= -4 + popcount(1000) \leftleq 1 = -4 + 2 = -2

					×	5
	8	-3	5	-1		2
						0
						1

input	weight	operations	memory	computation
R	R	+ ×	1×	1×
R	В	+ -	~32× less	~2× less
В	В	xnor, popcount	~32× less	~58× less

Accuracy Degradation of Binarization

Neural Network	Quantization	Bit-V	ImageNet Top-1 Accuracy	
		W	A	Delta
	BWN	1	32	0.2%
AlexNet	BNN	1	1	-28.7%
	XNOR-Net	1	1	-12.4%
CaarlaNat	BWN	1	32	-5.80%
GoogleNet	BNN	1	1	-24.20%
Dacklet 40	BWN	1	32	-8.5%
ResNet-18	XNOR-Net	1	1	-18.1%

^{*} BWN: Binary Weight Network with scale for weight binarization * BNN: Binarized Neural Network without scale factors

^{*} XNOR-Net: scale factors for both activation and weight binarization

Ternary Weight Networks (TWN)

Weights are quantized to +1, -1 and 0

$$q = \begin{cases} r_t, & r > \Delta \\ 0, & |r| \le \Delta, \text{ where } \Delta = 0.7 \times \mathbb{E}(|r|), r_t = \mathbb{E}_{|r| > \Delta}(|r|) \\ -r_t, & r < -\Delta \end{cases}$$

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

ternary weights $\mathbf{W}^{\mathbb{I}}$ (2-bit)

1	-1	1	0
0	0	-1	1
-1	1	0	-1
1	0	1	1

$$\Delta = 0.7 \times \frac{1}{16} ||\mathbf{W}||_1 = 0.73$$

$$\Delta = 0.7 \times \frac{1}{16} ||\mathbf{W}||_{1} = 0.73$$

$$\mathbf{X} \quad \mathbf{1.5} = \frac{1}{11} ||\mathbf{W}_{\mathbf{W}^{T} \neq 0}||_{1}$$

ImageNet Top-1 Accuracy	Full Precision	1 bit (BWN)	2 bit (TWN)
ResNet-18	69.6	60.8	65.3

Trained Ternary Quantization (TTQ)

• Instead of using fixed scale \mathbf{r}_t , TTQ introduces two *trainable* parameters w_p and w_n to represent the positive and negative scales in the quantization.

$$q = \begin{cases} w_p, & r > \Delta \\ 0, & |r| \le \Delta \\ -w_n, & r < -\Delta \end{cases}$$

ImageNet Top-1 Accuracy	Full Precision	1 bit (BWN)	2 bit (TWN)	TTQ
ResNet-18	69.6	60.8	65.3	66.6

Neural Network Quantization

1	0	1	1
1	0	0	1
0	1	1	0
1	1	1	1

K-Means-based
Quantization

Linear Quantization

Integer Weights

Binary/Ternary Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook
Computation	Floating-Point	Floating-Point

Weights

Binary/Ternary

Arithmetic Arithmetic

Integer Arithmetic

Bit Operations

Mixed-Precision Quantization

Uniform Quantization

Bit Widths

Quantized Model

Mixed-Precision Quantization

Challenge: Huge Design Space

Choices: 8 x 8 = 64

Choices: 8 x 8 = 64

Choices: 8 x 8 = 64

Design Space: 64ⁿ

Solution: Design Automation

Solution: Design Automation

HAQ Outperforms Uniform Quantization

Mixed-Precision Quantized MobileNetV1

HAQ Supports Multiple Objectives

Quantization Policy for Edge and Cloud

Mixed-Precision Quantized MobileNetV2

Summary of Today's Lecture

In this lecture, we

- 1. Reviewed Linear Quantization.
- 2. Introduced **Post-Training Quantization (PTQ)** that quantizes an already-trained floating-point neural network model.
 - Per-tensor vs. per-channel vs. group quantization
 - How to determine dynamic range for quantization
- Introduced Quantization-Aware Training (QAT) that emulates inference-time quantization during the training/fine-tuning.
 - Straight-Through Estimator (STE)
- 4. Introduced binary and ternary quantization.
- 5. Introduced automatic mixed-precision quantization.

References

- 1. Deep Compression [Han et al., ICLR 2016]
- 2. Neural Network Distiller: https://intellabs.github.io/distiller/algo_quantization.html
- Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]
- 4. Data-Free Quantization Through Weight Equalization and Bias Correction [Markus et al., ICCV 2019]
- 5. Post-Training 4-Bit Quantization of Convolution Networks for Rapid-Deployment [Banner et al., NeurIPS 2019]
- 6. <u>8-bit Inference with TensorRT [Szymon Migacz, 2017]</u>
- 7. Quantizing Deep Convolutional Networks for Efficient Inference: A Whitepaper [Raghuraman Krishnamoorthi, arXiv 2018]
- 8. Neural Networks for Machine Learning [Hinton et al., Coursera Video Lecture, 2012]
- 9. Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation [Bengio, arXiv 2013]
- 10. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or −1. [Courbariaux et al., Arxiv 2016]
- 11.DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients [Zhou et al., arXiv 2016]
- 12. PACT: Parameterized Clipping Activation for Quantized Neural Networks [Choi et al., arXiv 2018]
- 13. WRPN: Wide Reduced-Precision Networks [Mishra et al., ICLR 2018]
- 14. Towards Accurate Binary Convolutional Neural Network [Lin et al., NeurIPS 2017]
- 15. Incremental Network Quantization: Towards Lossless CNNs with Low-precision Weights [Zhou et al., ICLR 2017]
- 16.HAQ: Hardware-Aware Automated Quantization with Mixed Precision [Wang et al., CVPR 2019]

Paper Reading Homeworks

- 1. Deep Compression [Han et al., ICLR 2016]
- 2. Neural Network Distiller: https://intellabs.github.io/distiller/algo_quantization.html
- 3. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]
- 4. Data-Free Quantization Through Weight Equalization and Bias Correction [Markus et al., ICCV 2019]
- 5. Post-Training 4-Bit Quantization of Convolution Networks for Rapid-Deployment [Banner et al., NeurIPS 2019]
- 6. <u>8-bit Inference with TensorRT [Szymon Migacz, 2017]</u>
- 7. Quantizing Deep Convolutional Networks for Efficient Inference: A Whitepaper [Raghuraman Krishnamoorthi, arXiv 2018]
- 8. Neural Networks for Machine Learning [Hinton et al., Coursera Video Lecture, 2012]
- 9. Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation [Bengio, arXiv 2013]
- 10. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. [Courbariaux et al., Arxiv 2016]
- 11. DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients [Zhou et al., arXiv 2016]
- 12. PACT: Parameterized Clipping Activation for Quantized Neural Networks [Choi et al., arXiv 2018]
- 13. WRPN: Wide Reduced-Precision Networks [Mishra et al., ICLR 2018]
- 14. Towards Accurate Binary Convolutional Neural Network [Lin et al., NeurIPS 2017]
- 15. Incremental Network Quantization: Towards Lossless CNNs with Low-precision Weights [Zhou et al., ICLR 2017]
- 16. HAQ: Hardware-Aware Automated Quantization with Mixed Precision [Wang et al., CVPR 2019]