Treap Analysis

Traverse across height of tree - o (height > o (log n)

Proving Expected height

Let Ick -> Node with the KM smallest key in the treap.

S2: To prove that for any node xx.

S3: E [depth (2D] = 0 (logn).

Let Yij = Indicator Random Variable defined as I.

Mij = O; When DC, is not a proper ancestor.

Mijel; When X; is a propor ancestor.

Mii=0; Can not le a proper ancestor.

Munce depth = (xx) = £Yik

Expected Depth of xx is equal to Expected number.
of Proper ancostors of xx.

E[depth (xk)] = E[\frac{2}{12} Yik] = \frac{2}{12} E[Yik]

E[depth (xk)] = \frac{2}{12} Pr[Yik=1]

Deletion in Treaps To delete: : Search Node X containing K wing BST algorithm. : If Node x is a leaf; just delete it. : 4 Not, use AVL rotations to rotate the node until it becomes leaf; then delete it. (Using Left Rotation if Right Child has higher Priority) : Since AUL rotations are Const-time operations, delete in treep can be performed in time O(H); where H is the height of treap. Trees Splitting: Given a tree and a long value K not in tree, create two trees: One with keys less than Ic, and one with keys greater than Ic. - Insent (k, so) in the treap. - Since, it has higher priority; it will become Root. - Left Subtree of Root, has lower value than Ic., the right Subtree of Rot, has greater value than Ic. - Since insort can be done in time O(H), whose H is height of treap, splitting can also be done in time O(M) - Trees Splitting Mechanism,

Cost of Split of Depth of the node. Expected depth of node = 0 (1090)
Expected Gest of Split = 0 (1090)

For Join (7, 1, 12)

Follows down the right Child and terminates, when right to the is empty

Hence:

The work is proportional to the sum of depth of the right-most and left-most keys.

The work of JoIN = 5 cm of Expected depth of no des = 0 (log 171)

Insert, update, search

- ,,	Randomised Search tree mathematical analysis.
	Nonder X, X2,, XN keys -> k, k2,, KN priorities -> P, 1 P2,, PN
	De node has key ki and priority pe
	Molaing 2 assumptions.
1)	All the keys k,,, kn are equally likely to be searched for.
ひ)	All the priorities are fr, for one randomly uniformly generated independent of each other and of the keys.
1)	Also assuming feeys are in sorted order ki < ki+1 But the keys can be inserted in any order. All the priorities are distinct.
	Expected node depth
	Depth of node $xi \rightarrow d(xi)$ This means that $d(xi)$ comparisions are sequested to find the key ki
	Propority values This will defermine shape of of the beap. and also location of every key nit. This help to determine depth of node xi
	to determine depth of node Xi

