Classification

Elliott Ash

Text Data Course, Bocconi 2018

Regression vs. Classification

- In economics and other social sciences, most empirical analysis has an ordered, real-valued or binary (one-dimensional), outcome.
 - ▶ Regression gives us a linear prediction of $Y \in \mathbb{R}$ given the predictors X.
- ▶ But what if the outcome *Y* is a multi-dimensional classification, rather than a number?
 - For example, deciding the legal area of a court case, when there are dozens of areas.
 - ▶ There's no way to line legal areas up in one dimension.
 - This is a classification task rather than a regression task.

Document Classification

- Say you have a set of documents and a set of legal areas.
 - You only know the legal area for a subset of documents which have been hand-coded.
 - Can we use the existing labels, and the text of all cases, to machine-code the labels for the unlabelled cases?

Binary classifier

```
from sklearn.linear_model import SGDClassifier
sgd_clf = SGDClassifier(max_iter=10)
sgd_clf.fit(train[features], train['any_cites'])
sgd_clf.score(test[features],test['any_cites'])
# compare to picking largest category
df1['any_cites'].mean()
```

cross_val_predict()

Provides a "clean" prediction for each row, in the sense that it is trained on data outside that row's fold.

Confusion Matrix

► A confusion matrix is a nice way to visualize the performance of a classifier:

		Predicted Class		
		Negative	Positive	
Actual Class	Negative	True Negatives	False Positives	
	Positive	False Negatives	True Positives	

▶ The values in the table give counts in the evaluation set.

Precision and Recall

		Predicted Class		
		Negative	Positive	
Actual Class	Negative	True Negatives	False Positives	
	Positive	False Negatives	True Positives	

Two alternative metrics used to understand classifers:

$$\begin{aligned} & \text{Precision} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Positives}} \\ & \text{Recall} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}} \end{aligned}$$

```
from sklearn.metrics import precision_score, recall_score
precision_score(df1['any_cites'], df1['any_cites_sgd'])
recall_score(df1['any_cites'], df1['any_cites_sgd'])
```

F1 Score

► The F₁ score (also sometimes called F score) provides a single combined metric – it is the harmonic mean of precision and recall:

$$\begin{split} F_1 &= \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} = \\ &= \frac{\text{Total Positives}}{\text{Total Positives} + \frac{1}{2} (\text{False Negatives} + \text{False Positives})} \end{split}$$

```
from sklearn.metrics import f1_score
f1_score(df1['any_cites'], df1['any_cites_sgd'])
```

The Precision/Recall Tradeoff

- ▶ In general, one can tweak a classifier to increase precision at the cost of reducing recall, and vice versa.
- ▶ The F1 score values them symmetrically/
- But one can imagine contexts where they should be valued asymmetrically:
 - in the case of deciding "guilty" in court, you might prefer a model that lets many actual-guilty go free (high false negatives ↔ low recall) but has very few actual-innocent put in jail (low false positives ↔ high precision).
 - in the case of detecting bombs during flight screening, you might prefer a model that has many false alarms (low precision) to minimize the number of misses (high recall).

How sklearn predicts: decision_function()

The predict() method works by calling a decision_function() method to produce a score for each row, and then predict a label based on a threshold rule.

```
y scores = sgd clf.decision function(df1[features])
plt.hist(y_scores) # histogram of scores
# prediction using default threshold ...
threshold = 0
(y scores > threshold).mean()
# ... gives default model prediction
ypred = sgd_clf.predict(df1[features])
vpred.mean()
# increasing threshold means more zeros are predicted
threshold = 1
(y scores > threshold).mean()
```

SGDClassifer uses a threshold of zero by default

Visualizing the Precision/Recall Tradeoff

```
# Visualizing the precision/recall tradeoff
y_scores = cross_val_predict(sgd_clf,
                              df1[features],
                              df1['any cites'],
                              cv=3.
                              method='decision_function',
                              n iobs=3
from sklearn.metrics import precision_recall_curve
metrics = precision_recall_curve(df1['any_cites'],
                                  v scores)
precisions, recalls, thresholds = metrics
plt.plot(thresholds, precisions[:-1], label="Precision")
plt.plot(thresholds, recalls [:-1], label="Recall")
plt.xlabel('Threshold')
plt.legend()
# Plot precisions vs recall
plt.step(recalls , precisions)
plt.xlabel('Recall')
plt.ylabel('Precision')
```

Assessing other thresholds

```
ypred_lower = y_scores > -1
ypred_higher = y_scores > 1

precision_score(y, ypred_lower)
precision_score(y, ypred_higher)
recall_score(y, ypred_lower)
recall_score(y, ypred_higher)
```

ROC Curve and AUC

▶ Plots recall (the true positive rate) against the false positive rate.

```
from sklearn.metrics import roc_curve fpr, tpr, thresholds = roc_curve(y, y_scores) plt.plot(fpr, tpr) plt.plot([0,1],[0,1], 'k—') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate')
```

► The area under the ROC curve (AUC) is a popular metric ranging between 0.5 (random classification) and 1 (perfect classification)

```
from sklearn.metrics import roc_auc_score
roc_auc_score(y, y_scores)
```

Random Forests and predict_proba()

- ► Some classifiers, such as RandomForestClassifier, do not have a decision_function() method.
 - ► The predict_proba() method produces a predicted probability across classes for each row.
 - ► The predict() method chooses the class with the highest predicted probability.

Using predict_proba() for scoring

```
y_scores_rfc = y_probas_rfc[:,1]
roc_metrics = roc_curve(y,y_scores_rfc)
fpr_rfc , tpr_rfc , thresholds_rfc = roc_metrics
# compare precision/recall tradeoff for SGD and RF
plt.plot(fpr, tpr, label="SGD")
plt.plot(fpr_rfc , tpr_rfc , label="RF")
plt.legend()
roc auc score(y, y scores rfc)
```

Multi-Class Models

- Some algorithms (such as random forests) are designed to handle multiple classes directly. But binary classifiers can be generalized to multiple classes:
 - One-versus-All strategy: train a different model for each class, and then choose the class whose model outputs the highest score
 - One-versus-One strategy: train a different model for each pair of classes, and then choose the class that wins the most pairwise comparisons.
 - ▶ OvO requires the training of $N \times (N-1)/2$ models, so OvA is usually preferred.

Multi-Class Models

Scikit-learn detects automatically when you want to do multi-class classification.

Multi-Class Confusion Matrix

		Predicted Class			
		Class A	Class B	Class C	
Actual Class	Class A	Correct A	A, classed as B	A, classed as C	
	Class B	B, classed as A	Correct B	B, classed as C	
	Class C	C, classed as A	C, classed as B	Correct C	

```
conf_mx = confusion_matrix(state, statepred)
conf_mx
plt.matshow(conf_mx)

# normalize colors
conf_mx_norm = conf_mx / conf_mx.sum(axis=1, keepdims=True)
plt.matshow(conf_mx_norm)
```