Notes of [2]

Chao Tao

Mar. 13, 2020

1 Problem Setup

There is a tabular infinite undiscounted MDP $M^* = (S, A, \theta^*, c, x_1)$ where c is bounded within [0, 1] and only the transition probability θ^* is *unknown*. x_1 is the initial state which can be either randomized or *adversarial*. For simplicity, we also assume the cost function c is *deterministic*. We want to find a policy such that the cost incurred by this policy after T time steps is minimized.

In infinite undiscounted MDP, the average cost per step for any policy π is defined as

$$\ell_{\pi} \stackrel{\text{def}}{=} \limsup_{T \to +\infty} \frac{1}{T} \cdot \mathbb{E} \left[\sum_{t=1}^{T} c(x_t, a_t) \right],$$

where x_t and a_t denotes the state and action pair at the tth time step. Note that we have removed the dependency on policy to simplify the notations. Let π^* be the optimal policy such that $\ell_{\pi^*} = \min_{\pi'} \ell_{\pi'}$. And the *frequentist* regret is defined by

$$\mathcal{R}_T^{\pi} \stackrel{\text{def}}{=} \mathbb{E} \left[\sum_{t=1}^T c(x_t, a_t) \right] - T\ell_{\pi^*}.$$

1.1 Weakly Communicating MDP

To make it possible to suffer a sub-linear regret, we also need to make some restrictions on the underlying MDP. Here, we assume the underlying MDP is *weakly communicating*.

Definition 1. An MDP is weakly communicating iff the state space S can be decomposed into two parts S_1 and S_2 such that every state in S_1 is reachable from other states in S_1 under some policy, whereas all states in S_2 are transient under all policies.

The intuition to introduce such a concept is to avoid trap states. For example we can construct an MDP as the following (see Figure 1):

i.
$$S = \{s_1, s_2\}$$

ii.
$$A = \{a_1, a_2\}$$

iii.
$$\theta^*(s_1 \mid s_1, a_1) = 1, \theta^*(s_2 \mid s_1, a_2) = 1, \theta^*(s_2 \mid s_2, a_1) = 1, \theta^*(s_2 \mid s_2, a_2) = 1$$

iv.
$$c(s_1, a_1) = 0.5, c(s_1, a_2) = 1, c(s_2, a_1) = 1, c(s_2, a_2) = 1$$

Figure 1: A counterexample

v.
$$x_1 = s_1$$

It is clear that the optimal policy is $\pi^* = a_1$. However, no policy could achieve $\widetilde{\mathcal{O}}(\sqrt{T})$. We prove this by contradiction. Suppose such a policy exists. We call it π' . Then during the first T/2 steps, it must not try action a_2 . Otherwise, the regret would be at least $0.25T = \Omega(T)$. A key observation is that when we change the cost function such that $c(s_1, a_1) = 1$, $c(s_1, a_2) = 0.5$, $c(s_2, a_1) = 0.5$ and $c(s_2, a_2) = 0.5$, π' will not change its behavior in the first T/2 steps since it does not even try action a_1 . Note that during the first T/2 steps, it already incurs a $\Omega(T)$ regret. A contradiction happens.

1.2 Optimality

Theorem 1. There always exists a stationary deterministic policy π^* achieving the optimal average cost and its average cost satisfies

$$\ell_{\pi^*}^{M^*} + v(x, \theta^*) = \min_{a \in \mathcal{A}} \left\{ c(x, a) + \sum_{x' \in \mathcal{S}} \theta^*(x' \mid x, a) v(x', \theta^*) \right\},$$

where $v(\cdot, \theta^*)$ is called the bias vector of MDP M^* .

It is easy to see if $v(\cdot, \theta^*)$ is a bias vector of model M^* , so does $v(\cdot, \theta^*) - C$ where C is an arbitrary constant. Hence w.l.o.g., we assume $\min_{x \in \mathcal{S}} v(x, \theta^*) = 0$ also $\max_{x \in \mathcal{S}} v(x, \theta^*) \leq D'$.

Remark 2. We only assume the existence of D'. We do not assume D' is known beforehand.

From now on, we only need to consider a MDP such that its bias vector is upper bounded by D' and stationary deterministic policies.

2 Thompson Sampling

Like Optimism in the Face of Uncertainty, Thompson Sampling dating back to [3] is another general principal guiding you how to operate in a poorly understood environment. Due to its superior empirical performance [1], it gains increasing popularity recently.

Thompson Sampling is a *Bayesian* method. Basically, at the very beginning, the learner equipped with this policy assumes a prior distribution \mathcal{P}_1 on the unknown parameter of the underlying environment i.e., θ^* . At the beginning of each episode $k \geq 1$, the learner just samples a virtual environment from the posterior distribution \mathcal{P}_k on θ^* which is derived based on \mathcal{P}_{k-1} and the history in the (k-1)th episode via Bayes' Theorem and then takes the optimal policy assuming the underlying model is the sampled one.

To apply Thompson Sampling, we need to design a stopping criteria for each episode. Before describing the stopping criteria, we introduce several notations. Let t_k and T_k denote the start time and the length of the kth episode respectively. Also let $N_t(x,a)$ be the number of visits of state-action pairs before time step t. In the algorithm, episode k finishes if one of the following situation happens:

```
i. t - t_k > T_{k-1} or
```

ii.
$$\exists (x, a) \in \mathcal{S} \times \mathcal{A}, \text{ s.t.}, N_t(x, a) > 2N_{t_k}(x, a).$$

The details are decribed in the following Algorithm 1.

Algorithm 1: Thompson Sampling

Given a prior distribution \mathcal{P}_1 on transition probability θ^* , the *Bayesian* regret is defined by

$$\mathcal{BR}_{T}^{\pi} \stackrel{\text{def}}{=} \mathbb{E}_{\theta^{*} \sim \mathcal{P}_{1}} \left[\mathbb{E} \left[\mathcal{R}_{T}^{\pi} \mid \theta^{*} \right] \right]. \tag{1}$$

Notations and Definitions

$\lceil [n] \rceil$	$\{1,2,\ldots,n\}$
A	action space
A	$ \mathcal{A} $
\mathcal{S}	state space
$\mid S \mid$	$ \mathcal{S} $
$\mid T$	horizon of the MDP
$c: \mathcal{S} \times \mathcal{A} \to [0,1]$	known cost function
$ heta^*: \mathcal{S} imes \mathcal{A} o \Delta(\mathcal{S})$	transition probability of the underlying MDP
$ \pi_k $	policy in the k th episode
$ x_1 $	initial state
(x_t, a_t)	state-action pair at the t th time step
$\mid \mathcal{H}_t \mid$	history before the tth time step $(x_1, a_1, \dots, x_{t-1}, a_{t-1}, x_t)$
$N_t(x,a)$	number of hits of state-action pair (x, a) before the tth time step
$\mid t_k \mid$	start time of the k th episode
$\mid T_k$	length of the k th episode
$\mid \mathcal{P}_k$	posterior distribution right <i>before</i> the <i>k</i> th episode
$\mathcal{B}\mathcal{R}_T^\pi$	Bayesian regret incurred by policy π

4 Theorem

In this lecture, we are going to show

Theorem 3. The Bayesian regret i.e., (1) incurred by Algorithm 1 is bouned by $\widetilde{\mathcal{O}}(D'S\sqrt{AT})$.

Remark 4. The theorem holds for any prior distribution.

Proof. In the subsequent part, unless otherwise specified, the expectation operator is taken over all random variables. Note that θ^* is treated as a random variable. Let K be the random variable denoting the total number of episodes. W.o.l.g., we assume $t_{K+1} = T + 1$. Rewrite \mathcal{BR}_T^{π} we have

$$(1) = \mathbb{E}\left[\sum_{k=1}^{K} \sum_{t=t_{k}}^{t_{k+1}-1} c(x_{t}, a_{t})\right] - T \cdot \mathbb{E}[\ell_{\pi^{*}}^{M^{*}}]$$

$$= \mathbb{E}\left[\sum_{k=1}^{K} \sum_{t=t_{k}}^{t_{k+1}-1} \left[\ell_{\pi_{k}}^{M_{k}} + v(x_{t}, \theta_{k}) - \sum_{x' \in \mathcal{S}} \theta_{k}(x' \mid x_{t}, a_{t})v(x', \theta_{k})\right]\right] - T \cdot \mathbb{E}[\ell_{\pi^{*}}^{M^{*}}]$$

$$= \mathbb{E}\left[\sum_{k=1}^{K} \sum_{t=t_{k}}^{t_{k+1}-1} \ell_{\pi_{k}}^{M_{k}}\right] - T \cdot \mathbb{E}[\ell_{\pi^{*}}^{M^{*}}] + \mathbb{E}\left[\sum_{k=1}^{K} \sum_{t=t_{k}}^{t_{k+1}-1} \left[v(x_{t}, \theta_{k}) - v(x_{t+1}, \theta_{k})\right]\right] \right]$$

$$+ \mathbb{E}\left[\sum_{k=1}^{K} \sum_{t=t_{k}}^{t_{k+1}-1} \left[v(x_{t+1}, \theta_{k}) - \sum_{x' \in \mathcal{S}} \theta_{k}(x' \mid x_{t}, a_{t})v(x', \theta_{k})\right]\right], \tag{2}$$

where in the second last equality we have applied Theorem 1.

In the following part, we will try to bound (I), (II) and (III) separately.

Lemma 5. $(I) \leq \mathbb{E}[K]$.

Proof. First we note that

$$(I) = \mathbb{E}\left[\sum_{k=1}^{K} T_k \ell_{\pi_k}^{M_k}\right] - T \cdot \mathbb{E}[\ell_{\pi^*}^{M^*}]$$

$$= \mathbb{E}\left[\sum_{k=1}^{K} \mathbb{E}[T_k \ell_{\pi_k}^{M_k} \mid \mathcal{H}_{t_k}]\right] - T \cdot \mathbb{E}[\ell_{\pi^*}^{M^*}]$$

$$\leq \mathbb{E}\left[\sum_{k=1}^{K} \mathbb{E}[(T_{k-1} + 1)\ell_{\pi_k}^{M_k} \mid \mathcal{H}_{t_k}]\right] - T \cdot \mathbb{E}[\ell_{\pi^*}^{M^*}],$$

where in the last inequality we have used $T_k \leq T_{k-1}$ which is enforced by the algorithm. Since conditioned on \mathcal{H}_{t_k} , T_{k-1} is a constant, we have $\mathbb{E}[(T_{k-1}+1)\ell_{\pi_k}^{M_k}\mid \mathcal{H}_{t_k}]=(T_{k-1}+1)\mathbb{E}[\ell_{\pi_k}^{M_k}\mid \mathcal{H}_{t_k}]$. Further utilizing

the relation that $\theta_k \mid \mathcal{H}_{t_k} = \theta^* \mid \mathcal{H}_{t_k}$, we derive

$$(I) \leq \mathbb{E}\left[\sum_{k=1}^{K} (T_{k-1} + 1)\mathbb{E}[\ell_{\pi^*}^{M^*} \mid \mathcal{H}_{t_k}]\right] - T \cdot \mathbb{E}[\ell_{\pi^*}^{M^*}]$$

$$= \mathbb{E}\left[\sum_{k=1}^{K} (T_{k-1} + 1)\ell_{\pi^*}^{M^*}\right] - T \cdot \mathbb{E}[\ell_{\pi^*}^{M^*}]$$

$$\leq \mathbb{E}[K\ell_{\pi^*}^{M^*}] \leq \mathbb{E}[K],$$

where the last inequality is due to $\ell_{\pi^*}^{M^*} \leq 1$.

Lemma 6. $(II) \leq D'\mathbb{E}[K]$.

Putting Lemma 5 and Lemma 6 together, we get $(I) + (II) \le (D'+1)\mathbb{E}[K]$. We next take care of $\mathbb{E}[K]$ and try to give an upper bound of the expected number of episodes.

Lemma 7.
$$\mathbb{E}[K] = \mathcal{O}(\sqrt{SAT\ln(T)}).$$

Proof. According to the stopping condition, we divide K episodes into M meta episodes such that within meta episode m, except for the last episode, all the other episodes ends due to the first condition i.e., $t-t_k > T_{k-1}$. Let τ_m be the start episode of meta episode m. By default, we set $\tau_{M+1} = K+1$.

T_{k-1}. Let τ_m be the start episode of meta episode m. By default, we set $\tau_{M+1} = K+1$. Hence for any meta episode m, the total number of time steps $\sum_{k=\tau_m}^{\tau_{m+1}-1} T_k$ satisfies $\sum_{k=\tau_m}^{\tau_{m+1}-1} T_k \geq \sum_{k=\tau_m}^{\tau_{m+1}-2} (T_{\tau_m}+k-\tau_m) = (\tau_{m+1}-\tau_m-1)(2T_{\tau_m}+\tau_{m+1}-\tau_m-2)/2$. Since $T_{\tau_m} \geq 1$, we further derive $\tau_{m+1}-\tau_m \leq 1+\sqrt{2\sum_{k=\tau_m}^{\tau_{m+1}-1} T_k} \leq 2\sqrt{2\sum_{k=\tau_m}^{\tau_{m+1}-1} T_k}$. Next by Cauchy-Schwarz inequality, we get

$$K = \tau_M - 1 = \sum_{m=1}^{M} (\tau_{m+1} - \tau_m) \le \sum_{m=1}^{M} 2 \sqrt{2 \sum_{k=\tau_m}^{\tau_{m+1} - 1} T_k} \le \sqrt{8MT}.$$

Note that M is at most the total number of episodes which ends due to visit number of state-action pair doubles. Hence $M = \mathcal{O}(SA \ln T)$. Using this inequality, we prove $K = \mathcal{O}(\sqrt{SAT \ln T})$ and finishes the proof of this lemma.

In the remaining part of the proof, we focus on bounding (III). Expand $v(x_{t+1}, \theta_k)$ we derive

$$(III) = \mathbb{E}\left[\sum_{k=1}^K \sum_{t=t_k}^{t_{k+1}-1} \left[\sum_{x' \in \mathcal{S}} \theta^*(x' \mid x_t, a_t) v(x', \theta_k) - \sum_{x' \in \mathcal{S}} \theta_k(x' \mid x_t, a_t) v(x', \theta_k)\right]\right].$$

Since $v(\cdot, \cdot) \leq D'$, further by Hölder's inequality, we have

$$(III) \le D' \mathbb{E} \left[\sum_{k=1}^{K} \sum_{t=t_k}^{t_{k+1}-1} \|\theta^*(\cdot \mid x_t, a_t) - \theta_k(\cdot \mid x_t, a_t)\|_1 \right].$$

Let $\bar{\theta}_k(\cdot \mid x, a)$ be the empirical transition probability before the kth episode. We define \mathcal{M}_k as the set of models such that its transition probability θ satisfies $|\bar{\theta}_k(\cdot \mid x, a) - \theta(\cdot \mid x, a)| \leq C\sqrt{\frac{S \ln(SAT)}{1 \vee N_{t_k}(x, a)}}$ for all

 $(x,a) \in \mathcal{S} \times \mathcal{A}$ where C is a universal constant which will be defined later. According to Theorem 8, we know that there exists a constant C > 0 such that $\mathbf{Pr}(M_k \notin \mathcal{M}_k) \leq 1/T$ and $\mathbf{Pr}(M^* \notin \mathcal{M}_k) \leq 1/T$.

Plugging in events $M_k \in \mathcal{M}_k, M^* \in \mathcal{M}_k$, we get

$$(III) \leq D' \mathbb{E} \left[\sum_{k=1}^{K} \sum_{t=t_{k}}^{t_{k+1}-1} \|\theta^{*}(\cdot \mid x_{t}, a_{t}) - \theta_{k}(\cdot \mid x_{t}, a_{t})\|_{1} \cdot \mathbb{1}(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k}) \right]$$

$$+ D' \mathbb{E} \left[\sum_{k=1}^{K} \sum_{t=t_{k}}^{t_{k+1}-1} \mathbb{1}(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k}) \right]$$

$$\leq D' \mathbb{E} \left[\sum_{k=1}^{K} \sum_{t=t_{k}}^{t_{k+1}-1} C \sqrt{\frac{S \ln(SAT)}{1 \vee N_{t_{k}}(x_{t}, a_{t})}} \right] + D' \mathbb{E} \left[\sum_{k=1}^{K} \sum_{t=t_{k}}^{t_{k+1}-1} \mathbb{1}(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k}) \right].$$
 (3)

Note that for any $t_k \leq t < t_{k+1}$, we have $N_t(x,a) \leq 2N_{t_k}(x,a)$ holds for any state-action pair (x,a). Hence $(t_{k+1}-t_k)\sqrt{\frac{1}{1\vee N_{t_k}(s,a)}} \leq 2\cdot\sum_{t=N_{t_k}(x,a)}^{N_{t_{k+1}-1}(x,a)}\sqrt{\frac{1}{1\vee t}}$. Using this inequality in (*), we have

$$(*) \leq \sum_{k=1}^{K} \sum_{t=t_{k}}^{t_{k+1}-1} C \sqrt{\frac{S \ln(SAT)}{1 \vee N_{t_{k}}(x_{t}, a_{t})}}$$

$$\leq 2C \cdot \sum_{k=1}^{K} \sum_{t=t_{k}}^{t_{k+1}-1} \sqrt{\frac{S \ln(SAT)}{1 \vee N_{t}(x_{t}, a_{t})}}$$

$$= 2C \cdot \sum_{t=1}^{T} \sqrt{\frac{S \ln(SAT)}{1 \vee N_{t}(x_{t}, a_{t})}}$$

$$= 2C \sqrt{S \ln(SAT)} \cdot \sum_{(x,a)} \sum_{t=0}^{N_{T}(x,a)} \sqrt{\frac{1}{1 \vee t}}.$$

Since $\sum_{t=0}^{t'} \sqrt{\frac{1}{1 \lor t}} \le 2\sqrt{t'} + 1$, we further derive $(*) \le 2C\sqrt{S\ln(SAT)} \cdot (SA + \sum_{(x,a)} \sqrt{N_T(x,a)}) \le 2C\sqrt{S\ln(SAT)} \cdot (SA + \sqrt{SAT}) = \mathcal{O}(S\sqrt{AT\ln(SAT)})$, where the second last inequality is due to Cauchy-Schwarz inequality and the last inequality is due to $T \ge \sqrt{SA}$.

Recall that $\Pr(M_k \notin \mathcal{M}_k) \leq 1/T$ and $\Pr(M^* \notin \mathcal{M}_k) \leq 1/T$. Hence we have

$$(**) = \mathbb{E}\left[\sum_{k=1}^{K} \sum_{t=t_{k}}^{t_{k+1}-1} \mathbb{E}\left[\mathbb{1}\left(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k}\right)\right]\right]$$

$$\leq \mathbb{E}\left[\sum_{k=1}^{K} \sum_{t=t_{k}}^{t_{k+1}-1} \left(\mathbf{Pr}\left(M_{k} \notin \mathcal{M}_{k}\right) + \mathbf{Pr}\left(M^{*} \notin \mathcal{M}_{k}\right)\right)\right]$$

$$\leq 2. \tag{4}$$

Plugging in inequality (*) $\leq \mathcal{O}(S\sqrt{AT\ln(SAT)})$ and (4) back to (3), we get

$$(III) \le \mathcal{O}(D'A\sqrt{AT\ln(SAT)}). \tag{5}$$

Putting Lemma 5, Lemma 6, Lemma 7 and (5) together, we prove this theorem.

5 Tools

Theorem 8 ([4]). Let P be a probability distribution on the set $S = \{1, ..., S\}$. Let $X_1, X_2, ..., X_m$ be i.i.d. random variables distributed according to P. Then, for all $\epsilon > 0$, it holds that

$$\mathbf{Pr}(\|P - \bar{P}\|_1 \ge \epsilon) \le (2^S - 2) \exp(-m\epsilon^2/2),$$

where \bar{P} is the empirical estimation of P defined as $\bar{P}(i) = \frac{\sum_{j=1}^{m} \mathbb{1}(X_j = i)}{m}$.

References

- [1] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In *NIPS*, pages 2249–2257, 2011.
- [2] Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, and Rahul Jain. Learning unknown markov decision processes: A thompson sampling approach. In *NeurIPS*, 2017.
- [3] William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.
- [4] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger. Inequalities for the 11 deviation of the empirical distribution. *Hewlett-Packard Labs, Tech. Rep*, 2003.