

Lambda

Created	@May 3, 2024 5:21 PM
Reviewed	

Lambda phases regulation

- 1. Infection: phage attaches to the bacterium exploit the bacterial pili to inject the nucleic acid into the bacterium (for lambda phage it is the DNA)
- 2. Early development: decide whether to enter the lytic stage, depending on the conditions
 - a. high nutrient level
 - b. low MOI (multiplicity of infection) measured as phage:bacteria ratio if it is low: means that there are ample number of bacteria to infect favour replication and infection
 - c. therefore, in labs, normally use low [phage] to infect more likely to enter lytic stage
- 3. phage DNA replication in bacteria
- 4. Late development: using the bacterial machinery, heads and tails are made, and DNA is packed into the heads, with tails attached
- 5. Lysis: cell is broken to release progeny phages
- In 2. the phage can instead enter the lysogenic phase
 - When nutrients level is low
 - When MOI is high far more phages than the number of bacteria
 - In these two scenarios, lysogenic phase is preferable because the bacteria can grow

- When nutrients level is low, metabolism and transcription level is also low, phage DNA has to integrate into bacterial chromosome to prevent from being degraded and recycled
 - When conditions turn favourable for lysis, the phage DNA can be excised from bacterial chromosome to re-enter the lytic phase

▼ Lambda genomes

- dsDNA, all characterised
- when infection: dsDNA is **circularised**; other time **linear**

Transcription Anti-termination

- use processive anti-termintion
- anti-terminator proteins conjugate with RNA pol & these bind to the nascent mRNA — RNA pol incapable of termination at many downstream sites
- anti-termination proteins: N and Q (Q is then used to turn on the synthesis of its late proteins, including the head and tail proteins)
- When lambda DNA first enters the cell, transcription immediately begins from pL and pR
 - these are strong promoters, allow transcription without the presence of activators
 - rightwards: encodes Cro inhibitor of repressor synthesis; also nutR (N utilisation site)
 - 2. leftwards: N protein: allow the RNA pol to bypass the termination site
 - a. the N transcript is leftward from pL
 - b. nutL is upstream of the start codon of N protein

- 2. RNA synthesis terminates at transcription termination sites
 - a. if N protein is present, & nutR bind to RNA pol the RNA pol can bypass tR1, and tL1
- 3. after passing tR1, transcribe delayed early genes: *CII*, *CIII* regulators are transcribed, O and P are expressed, to allow replication; another antiterminator **Q** is also transcribed
- 4. Q by binding on the **qut** site, can load on RNA pol to increase its affinity to binding to the late promoter: **pR'** allows the late genes to be transcribed: head genes, tail genes, **lysis genes**
- after passing tL1, gam, red are transcribed lambda recombination & int, xis
 integrating DNA and excising

Replication

Decision making between lysogeny and lytic phase

- depends on the outcome of a competition between the product of the cll gene
 - form lysogens
- cro gene lytic cycle
- ▼ CII
 - 1. Once the CII protein is made from the pR promoter, it acts as the **transcriptional activators** activate three promoters:
 - pRE: initiate the expression of CI repressor
 - pl: expression of int gene encoding for integrase

 pAntiQ: makes an anti-sense transcript for Q — hybridise with Q transcript to degrade the level of the transcript — downregulate the synthesis and activity of Q protein — prevent synthesis of lytic proteins

2. Expression of CI repressor:

- a. C-termini dimerise
- b. This increases the affinity N-termini bind to Operator R (oR) and oL
- c. This prevents the transcription by RNA pol see below the affinity
 - i. reduced level of protein N and Cro, and also CII
 - ii. transcription of CI repressor is actually self-regulated: RNA pol can still bind to an alternative promoter pRM: when CII level is low, CI can still be constantly expressed — CI level is maintained even CII level is low
 - iii. immunity
 - 1. this can cease replication (transcription of integrase allows integration_
 - 2. free CI and also bind newly entered phage prevent lytic phase
- 3. The role of CIII is to prevent CII from degradation
- ▼ Affinity to the operator region
 - The operator has three sites, each composed of two half sites
 - The RNA pol binding site for promoter pRM, pR and the three sites of operator have overlapping regions.
 - CI repressor has the highest affinity to oR/L1:
 - when the repressor binds to oR1/ oL1, no N protein transcribed, no cro and cll transcribed
 - cooperative binding: binding to oL/R1 increases the affinity of repressor to bind to oL/R2

- instead, RNA pol can bind to region near oR3 allow RNA pol to recognise and start transcription from pRM — encodes CI — maintain the repressor & lysogeny state
- Cro has the highest affinity of oR/L3, not in cooperative manner
 - this can still prevent RNA pol from binding to oR/L3, such that it hinders the binding of RNA pol at pRM — one inhibitory mechanism of CI transcription
 - RNA pol can transcribe Cro, N, and replication, lysis proteins into lytic cycle
 - When Cro binds to the other operator sites it prevents RNA pol from binding to pL and pR to turn off early gene expression (when Cro conc. too high — no longer need those for proliferation etc)

So the critical event is whether cll causes sufficient synthesis of Cl repressor to outcompete the action of Cro

Figure 8.3 Genetic map of λ cyclized by pairing at the *cos* sites, shown at the top. The positions and directions of transcription from some promoters are shown in blue. doi:10.1128/9781555817169.ch8.f8.3

Figure 8.9 Formation of lysogens after λ infection. **(A)** The cll and clll genes are transcribed from promoters p_R and p_L , respectively. **(B)** Cll activates transcription from promoters p_{RE} and p_L , leading to the synthesis of Cl repressor and the integrase lnt, respectively. It also activates transcription from p_{AQ} , probably inhibiting synthesis of Q. **(C)** The repressor shuts off transcription from p_L and p_R by binding to o_R and o_L . Finally, the lnt protein integrates the λ DNA into the chromosome (Figure 8.10). doi:10.1128/9781555817169.ch8.f8.9

Figure 8.11 Regulation of repressor synthesis in the lysogenic state. The dumbbell shape represents the two domains of the repressor. (A) The dimeric repressor, shown as two dumbbells, binds cooperatively to o_R^{-1} and o_R^{-2} (and o_L^{-1} and o_L^{-2}), repressing transcription from $p_{\rm R}$ (and $p_{\rm L}$) and activating transcription from $p_{\rm RM}$. At higher repressor concentrations, it also binds to $o_{\rm R}^3$ and $o_{\rm L}^3$, repressing transcription from $p_{\rm RM}$. (B) Still higher concentrations cause the formation of tetramers that bend the DNA, further repressing transcription from $p_{\rm RM}$. The relative affinities of the repressor for the sites is as follows: $o_R^{1} > o_R^{2} > o_R^{3}$ and o_L^{1} $> o_1^2 > o_1^3$.

doi:10.1128/9781555817169.ch8.f8.11

Integration

- recombination requires: attP site on the phage and attB site on the bacteria
 - formation of holliday junction
- Integration requires: integrase & integration host factor (IHF)
- Excision requires: integrase & Xis
 - The equilibrium depends on the ratio of expressed Int and Xis
 - if Int: Xis high integration
 - if Int: Xis low exision
 - equal amount: same rate equilibrium