Tutorial 1: Questions

January 17, 2018

Review of Key Terms

- unimodal, bimodal
- symmetric, right-skew/positive skew, left-skew/negative skew,
- range, fourth spread (IQR), mild/extreme outliers
- trimmed mean

Question 1.3.33, Page 34

Consider the following dataset of home sale amounts in 1000s of \$:

590	815	575	608	350
1285	408	540	555	679

- (a) Calculate and interpret the sample mean and median.
- (b) Suppose the 6th observation had been 985 rather than 1285. How would the mean and median change?
- (c) Calculate a 20% trimmed mean by first trimming the two smallest and two largest observations.
- (d) Calculate a 15% trimmed mean.

Question 1.S.78, Page 50

Consider a sample $x_1, x_2, ..., x_n$ and suppose that the values of \overline{x} , s^2 , and s have been calculated.

- (a) Let $y_i = x_i \overline{x}$ for i = 1, 2, ..., n. How do the values of s^2 and s for the y_i s compare to the corresponding values for the x_i s? Explain.
- (b) Let $z_i = (x_i \overline{x})/s$ for i = 1, 2, ..., n. What are the values of the sample variance and sample standard deviation for the z_i s?

Bonus: Show that the sample variance, s^2 , can be calculated using either

$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 \quad \text{or} \quad \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - n\overline{x}^2 \right).$$