

TEST REPORT

Applicant	Telitek Wireless Inc.				
Address	1001 Denison Street Suite 202	Markham Ontario Canada L3R 2Z6			
Manufacturer or Supplier	Telitek Wireless Inc.				
Address	1001 Denison Street Suite 202	Markham Ontario Canada L3R 2Z6			
Product	GPS Tracker				
FCC ID	2AD7A-1508				
Brand Name	Telitek				
Model Name	GMS50T	GMS50T			
Additional Model & Model Difference	GMS50; See items 2.1				
Date of tests	Jan. 09, 2015 ~ Feb. 09, 2015				
The submitted samp following standards:	ole of the above equipment has	been tested for according to the requirements of the			
⊠ FCC PART 22, Se	ubpart H				
CONCLUSION: The	submitted sample was found t	o COMPLY with the test requirement			
Tested by Yuqiang Yin Project Engineer / EMC Department Approved by Glyn He Supervisor / EMC Department					
	Jugions	Date: Feb. 09, 2015			

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China Tel: +86 769 8593 5656

Fax: +86 769 8593 1080

Email: customerservice.dg@cn.bureauveritas.com

TABLE OF CONTENTS

RELEASE	CONTROL RECORD	4
1 SUMN	MARY OF TEST RESULTS	5
1.1 M	EASUREMENT UNCERTAINTY	5
1.2 T	EST SITE AND INSTRUMENTS	6
2 GENE	RAL INFORMATION	7
2.1 G	ENERAL DESCRIPTION OF EUT	7
2.3 D	ESCRIPTION OF SUPPORT UNITS	9
2.4 T	EST ITEM AND TEST CONFIGURATION	9
2.5 E	UT OPERATING CONDITIONS	10
2.6 G	ENERAL DESCRIPTION OF APPLIED STANDARDS	10
3 TEST	TYPES AND RESULTS	11
3.1 O 3.1.1 3.1.2 3.1.3 3.1.4	UTPUT POWER MEASUREMENT LIMITS OF OUTPUT POWER MEASUREMENT TEST PROCEDURES TEST SETUP TEST RESULTS	11 11 12
3.2 F 3.2.1 3.2.2 3.2.3 3.2.4	REQUENCY STABILITY MEASUREMENT	14 14
3.3 O 3.3.1 3.3.2 3.3.3	CCUPIED BANDWIDTH MEASUREMENT TEST PROCEDURES TEST SETUP TEST RESULTS	16
3.4 B 3.4.1 3.4.2 3.4.3 3.4.4	AND EDGE MEASUREMENT LIMITS OF BAND EDGE MEASUREMENT TEST SETUP TEST PROCEDURES TEST RESULTS	19 19 19
3.5 C 3.5.1 3.5.2 3.5.3 3.5.4	ONDUCTED SPURIOUS EMISSIONSLIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENTTEST PROCEDURETEST SETUPTEST RESULTS	21 21 21
3.6 R 3.6.1 3.6.2 3.6.3	ADIATED EMISSION MEASUREMENTLIMITS OF RADIATED EMISSION MEASUREMENTTEST PROCEDURESDEVIATION FROM TEST STANDARD	23

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

Email: customerservice.dg@cn.bureauveritas.com

	3.6.4	TEST SETUP	24
		TEST RESULTS	
4	РНОТ	OGRAPHS OF THE TEST CONFIGURATION	29
5	INFOR	MATION ON THE TESTING LABORATORIES	30
6		NDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE E	

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF150109N009-1	Original release	Feb. 09, 2015

Fax: +86 769 8593 1080 Email: customerservice.dg@cn.bureauveritas.com

Tel: +86 769 8593 5656

Page 4 of 31

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 22 & Part 2						
STANDARD SECTION	TEST TYPE	RESULT	REMARK			
2.1046 22.913 (a)	Effective Radiated Power	PASS	Meet the requirement of limit.			
2.1055 22.355	Frequency Stability	PASS	Meet the requirement of limit.			
2.1049	Occupied Bandwidth	PASS	Meet the requirement of limit.			
22.917	Band Edge Measurements	PASS	Meet the requirement of limit.			
2.1051 22.917	Conducted Spurious Emissions	PASS	Meet the requirement of limit.			
2.1053 22.917	Radiated Spurious Emissions		Meet the requirement of limit. Minimum passing margin is -49.92dB at 2530.00MHz.			

1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY	
Conducted emissions 9kHz~30MHz		2.66dB	
	9KHz ~ 30MHz	2.74dB	
Radiated emissions	30MHz ~ 1GHz	3.55dB	
Nadiated emissions	1GHz ~ 18GHz	4.84dB	
	18GHz ~ 40GHz	4.84dB	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.2 TEST SITE AND INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESU 26	100005	May 13,14	May 12,15
GPS Generator+ Antenna	TOJOIN	GNSS-5000A	E1-010119	Aug. 08, 14	Aug. 07, 15
Bilog Antenna	Teseq	CBL 6111D	30643	Jul. 25, 14	Jul. 24, 15
Horn Antenna (1GHz -18GHz)	ETS -Lindgren	3117	00062558	May 30, 14	May 29, 16
Amplifier (9kHz-1GHz)	SONOMA	310D	186955	Mar. 05,14	Mar. 04, 15
Pre-Amplifier (18GHz-40GHz)	EMCI	EMC 184045	980102	Nov. 20,14	Nov. 19,15
Pre-Amplifier (100MHz-26.5GHz)	Agilent	8449B	3008A00409	May 13,14	May 12,15
GPS Generator+ Antenna	TOJOIN	GNSS-5000A	E1-010119	Aug. 08, 14	Aug. 07, 15
3m Semi-anechoic Chamber	ETS-LINDGREN	9m*6m*6m	NSEMC003	Apr. 19,14	Apr. 18,15
Test Software	ADT	ADT_Radiated _V7.6.15.9.2	N/A	N/A	N/A
Spectrum Analyzer (9KHz-25GHz)	Agilent	E7405A	MY45118807	May 13,14	May 12,15
Power Meter	Anritsu	ML2495A	1139001	Feb. 20,14	Feb. 19,15
Power Sensor	Anritsu	MA2411B	1126068	Feb. 20,14	Feb. 19,15
Digital Multimeter	FLUKE	15B	A1220010DG	Oct. 29, 14	Oct. 28, 15
Humid & Temp Programmable Tester	Haida	HD-2257	110807201	Sep.04,14	Sep. 03,15
Oscilloscope	Agilent	DSO9254A	MY51260160	Oct. 17, 14	Oct. 16, 15
Signal Analyzer	Rohde & Schwarz	FSV7	102331	Nov. 05,14	Nov. 04,15
Signal Generator	Agilent	N5183A	MY50140980	Nov. 05,14	Nov. 04,15
ESG Vector Signal Generator	Agilent	E4438C	MY49072505	Mar.13, 14	Mar.12, 15
BLUETOOTH TESTER	Rohde&Schwarz	CBT32	100811	Sep. 04,14	Sep. 03,15

NOTE: 1. The calibration interval of the above test instruments is 12 months or 24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

- 2. The test was performed in Dongguan 966 Chamber
- 3. The horn antenna are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 494399.

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT NAME	GPS Tracker			
FCC ID	2AD7A-1508	2AD7A-1508		
MODEL NAME	GMS50T			
POWER SUPPLY	DC Input 12V or DC 3.7V fro	om internal rechargeable battery		
MODULATION TYPE	GSM/GPRS	GMSK		
FREQUENCY RANGE	GSM/GPRS 824.2MHz ~ 848.8MHz			
MAX. ERP POWER	GSM 648.63mW			
EMISSION DESIGNATOR	GSM 245KGXW			
ANTENNA TYPE	Fixed Internal antenna with 2	2dBi gain		
HW VERSION	V2.4			
SW VERSION	V1.9			
I/O PORTS	Refer to user's manual			
CABLE SUPPLIED	Refer to user's manual			

NOTE:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. Please refer to the EUT photo document (Reference No.: 150109N009) for detailed product photo.
- 3. Additional model GMS50 is identical with the test model GMS50T except the Housing, connector and model name for marketing purpose.
- 4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

Tel: +86 769 8593 5656

Fax: +86 769 8593 1080

2.2 CONFIGURATION OF SYSTEM UNDER TEST

FOR RADIATION EMISSION TEST

FOR E.R.P. TEST

2.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	DC source	LONG WEI	PS-6403D	010934269	N/A
2	PC	HP	A6608CN	3CR83825X3	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS		
1	DC Line: Unshielded, Detachable 1.0m		
2	AC Line :Unshielded, Detachable 1.5m		

NOTE: All power cords of the above support units are non-shielded (1.8m).

2.4 TEST ITEM AND TEST CONFIGURATION

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports The worst case in ERP and radiated emission was found when positioned on X-plane for GSM. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE MODE	DESCRIPTION	
А	EUT + DC Input with GSM	
В	EUT + battery with GSM	

GSM MODE

EUT CONFIGURE MODE	TEST ITEM	AVAILABLE CHANNEL	TESTED CHANNEL	MODE
В	ERP	128 to 251	128, 190, 251	GSM
А	FREQUENCY STABILITY	128 to 251	190	GSM
А	OCCUPIED BANDWIDTH	128 to 251	128, 190, 251	GSM, GPRS
А	BAND EDGE	128 to 251	128, 251	GSM, GPRS
А	CONDUCTED SPURIOUS EMISSION	128 to 251	128, 190, 251	GSM
А	RADIATED EMISSION	128 to 251	190	GSM

TEST ITEM	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
ERP	23deg. C, 62%RH	DC 3.7V from battery	Yuqiang Yin
FREQUENCY STABILITY	23deg. C, 62%RH	DC 12V	Yuqiang Yin
OCCUPIED BANDWIDTH	23deg. C, 62%RH	DC 12V	Yuqiang Yin
BAND EDGE	23deg. C, 62%RH	DC 12V	Yuqiang Yin
CONDUCTED SPURIOUS EMISSION	23deg. C, 62%RH	DC 12V	Yuqiang Yin
RADIATED EMISSION	25deg. C, 55%RH	DC 12V	Bob Chen

2.5 EUT OPERATING CONDITIONS

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

2.6 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 22 ANSI/TIA/EIA-603-C 2004

NOTE: All test items have been performed and recorded as per the above standards.

Tel: +86 769 8593 5656

Fax: +86 769 8593 1080

3 TEST TYPES AND RESULTS

3.1 OUTPUT POWER MEASUREMENT

3.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

Mobile / Portable station are limited to 7 watts e.r.p.

3.1.2 TEST PROCEDURES

EIRP / ERP MEASUREMENT:

- a. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 1MHz for GSM, GPRS & EDGE, 5MHz for WCDMA mode.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G
- d. ERP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15dBi.

CONDUCTED POWER MEASUREMENT:

The EUT was set up for the maximum power with GSM, GPRS, &EDGE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

3.1.3 TEST SETUP

EIRP / ERP MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

CONDUCTED POWER MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.4 TEST RESULTS

CONDUCTED OUTPUT POWER (dBm)

Band	GSM850				
Channel	128	190	251		
Frequency (MHz)	824.2	836.6	848.8		
GSM	31.09	31.17	31.21		
GPRS 8	31.15	31.18	31.17		
GPRS 10	30.13	30.24	30.26		
GPRS 11	31.16	31.12	31.11		
GPRS 12	30.23	30.21	30.25		

ERP POWER (dBm)

GSM

Channel	Frequency (MHz)	LVL (dBm)	Correction Factor(dB)	ERP(dBm)	ERP(mW)	Polarization (H/V)
128	824.2	-6.87	35.85	26.83	481.95	Н
189	836.4	-6.90	37.09	28.04	636.80	Н
251	848.8	-6.69	36.96	28.12	648.63	Н
128	824.2	-10.98	36.88	23.75	237.14	V
189	836.4	-11.60	37.56	23.81	240.44	V
251	848.8	-12.31	37.72	23.26	211.84	V

3.2 FREQUENCY STABILITY MEASUREMENT

3.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT

1.5 ppm is for base and fixed station. 2.5 ppm is for mobile station.

3.2.2 TEST PROCEDURE

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}$ C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

3.2.3 TEST SETUP

3.2.4 TEST RESULTS

FREQUENCY ERROR VS. VOLTAGE

Voltage	Frequency Error (ppm)	Limit(ppm)
(Volts)	GSM	Limit(ppiii)
12(normal)	0.0026	2.5
6(Min.)	0.0075	2.5
30(Max.)	0.0144	2.5

NOTE: The applicant defined the normal working voltage of the battery is from 6Vdc to 30Vdc.

FREQUENCY ERROR VS. TEMPERATURE.

Voltage	Frequency Error (ppm)	Limit (ppm)
(Volts)	GSM	
-30	-0.0145	2.5
-20	-0.0145	2.5
-10	-0.0120	2.5
0	-0.0075	2.5
10	-0.0062	2.5
20	-0.0030	2.5
30	0.0038	2.5
40	0.0062	2.5
50	0.0057	2.5
60	0.0179	2.5

3.3 OCCUPIED BANDWIDTH MEASUREMENT

3.3.1 TEST PROCEDURES

The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

3.3.2 TEST SETUP

3.3.3 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	99% OCCUPIED BANDWIDTH (kHz)
0117111112 <u>2</u>	TREGOLITOT (IIIIE)	GSM
128	824.2	244.93
189	836.6	243.48
251	848.8	244.93

CHANNEL	FREQUENCY (MHz)	26dB BANDWIDTH (kHz)
	()	GSM
128	824.2	313.004
189	836.6	315.707
251	848.8	316.202

3.4 BAND EDGE MEASUREMENT

3.4.1 LIMITS OF BAND EDGE MEASUREMENT

Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

3.4.2 TEST SETUP

3.4.3 TEST PROCEDURES

- a. All measurements were done at low and high operational frequency range.
- b. The center frequency of spectrum is the band edge frequency and span is 1.5MHz. RBW of the spectrum is 10kHz and VBW of the spectrum is 30kHz (GSM/GPRS/EDGE).
- c. Record the max trace plot into the test report.

3.4.4 TEST RESULTS

3.5 CONDUCTED SPURIOUS EMISSIONS

3.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13dBm.

3.5.2 TEST PROCEDURE

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- Measuring frequency range is from 9 kHz to 9GHz. 20dB attenuation pad is connected with spectrum. RBW=1MHz and VBW=3MHz is used for conducted emission measurement.

3.5.3 TEST SETUP

3.5.4 TEST RESULTS

3.6 RADIATED EMISSION MEASUREMENT

3.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13dBm.

3.6.2 TEST PROCEDURES

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15dBi.

NOTE: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

3.6.3 DEVIATION FROM TEST STANDARD

No deviation.

Tel: +86 769 8593 5656

Fax: +86 769 8593 1080

3.6.4 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

Page 24 of 31

3.6.5 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

GSM 850:

MODE	TX channel 128	FREQUENCY RANGE	Below 1000MHz			
ENVIRONMENTAL CONDITIONS	25deg. C, 55%RH	INPUT POWER	DC 12V			
TESTED BY	TESTED BY Bob Chen					
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						

\Box	lo.	Frequency	Factor	Reading	Emission	Li mit	Margin	Tower	/Table
L		MHz	dΒ	dBm	dBm	dBm	dΒ	cm	deg
Г	1	62.33	-25.09	-48.20	-73.29	-13.00	-60.29	100	0
×	2	133.47	-18.17	-46.81	-64.98	-13.00	-51.98	100	0
	3	175.50	-19.92	-48.71	-68.63	-13.00	-55.63	100	0
	4	224.00	-19.27	-52.87	-72.14	-13.00	-59.14	100	0
	5	291.90	-15.60	-58.56	-74.16	-13.00	-61.16	100	0
Г	6	316.15	-14.52	-60.15	-74.67	-13.00	-61.67	100	0

MODE	TX channel 128	FREQUENCY RANGE	Below 1000MHz			
ENVIRONMENTAL CONDITIONS	25deg. C, 55%RH	INPUT POWER	DC 12V			
TESTED BY	STED BY Bob Chen					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

٦	lo.	Frequency	Factor	Reading	Emission	Li mit	Margin	Tower	/Table
L		MHz	dΒ	dBm	dBm	dBm	dΒ	cm	deg
Г	1	62.33	-25.09	-45.45	-70.54	-13.00	-57.54	100	0
Г	2	130.23	-18.19	-50.94	-69.13	-13.00	-56.13	100	0
×	3	159.33	-19.04	-49.34	-68.38	-13.00	-55.38	100	0
Г	4	183.58	-20.25	-55.48	-75.73	-13.00	-62.73	100	0
	5	280.58	-16.07	-57.00	-73.07	-13.00	-60.07	100	0
	6	342.02	-14.07	-62.69	-76.76	-13.00	-63.76	100	0

ABOVE 1GHz DATA

GSM 850:

MODE	TX channel 128	FREQUENCY RANGE	Above 1000MHz				
ENVIRONMENTAL CONDITIONS	25deg. C, 55%RH	INPUT POWER	DC 12V				
TESTED BY	TESTED BY Bob Chen						
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							

No.		Frequency	Factor	Reading	Emission	Li mit	Margin	Tower / Table	
		MHz	dΒ	dBm	dBm	dBm	dΒ	cm	deg
	1	1660.00 (PK)	-2.39	-69.67	-72.06	-13.00	-59.06	100	0
*	2	2530.00 (PK)	3.59	-69.15	-65.56	-13.00	-52.56	100	0

MODE	TX channel 128	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	25deg. C, 55%RH	INPUT POWER	DC 12V			
TESTED BY Bob Chen						
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

١	łо.	Frequency	Factor	Reading	Emission	Li mit	Margin	Tower / Table	
L		MHz	dΒ	dBm	dBm	dBm	dΒ	cm	deg
Г	1	1660.00 (PK)	-2.39	-68.77	-71.16	-13.00	-58.16	100	0
×	2	2530.00 (PK)	3.59	-66.51	-62.92	-13.00	-49.92	100	0

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

Page 28 of 31

4 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

5 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, were founded in 2002 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Dongguan EMC/RF Lab:

Tel: +86-769-85935656 Fax: +86-769-85931080

Email: customerservice.dg@cn.bureauveritas.com

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

Tel: +86 769 8593 5656

Fax: +86 769 8593 1080

6 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---

Tel: +86 769 8593 5656

Fax: +86 769 8593 1080