Optimisation convexe

21février 2017

Table des matières

1	Ensembles convexes	3
1	Définitions et premières propriétés	3
2	Enveloppe affine et enveloppe convexe	4
3	Propriétés topologiques des convexes 3.1 Ouverture et fermeture des convexes 3.2 Intérieur relatif	6 6
4	Opérations sur les ensembles convexes4.1 Projection sur un convexe fermé4.2 Séparation des ensembles convexes4.3 Enveloppe convexe fermée	6 6 7 8
5	Cônes convexes 5.1 Cône propre et inégalités généralisées 5.1.1 Minimum et élément minimal 5.2 Cône normal 5.3 Cône dual	9 11 11 11 12
6	Hyperplan d'appui	13
7	Lemme de Farkas	13
Η	Fonctions convexes	14
1	Définitions et propriétés 1.1 Fonctions convexes	14 14 15 16 16 16
2	Fonctions d'appui	17
3	Transformée de Fenchel	18
4	Continuité des fonctions convexes	20
5	Différentiabilité des fonctions convexes 5.1 Dérivées directionnelles des fonctions convexes 5.2 Reconnaître une fonction convexe à l'aide de ses dérivées	21 21 21

6	Sous-différentiabilité des fonctions convexes	2 1
	6.1 Définitions et premières propriétés	21
	6.2 Sous-différentiabilité et transformée de Fenchel	
	6.3 Liens avec la différentiabilité	
	6.4 Quelques règles de calcul	
Π	II Conditions d'optimalité	26
1	Introduction aux problèmes d'optimisation	26
	1.1 Terminologie	26
	1.2 Quelques formes équivalentes	
	Problème sous forme d'épigraphe	
	Problèmes différentiables avec contraintes linéaires : première approche des multiplicateurs .	
2	Dualité	27
	2.1 Conditions KKT	27
3	Problèmes convexes	27
	3.1 Une condition nécessaire générale d'optimalité	28
	3.2 Cas où les contraintes sont explicites	
	3.2.1 Qualification des contraintes	

Première partie

Ensembles convexes

1 Définitions et premières propriétés

♣ Définition: Ensemble affine

Soit E un espace vectoriel réel. Un sous-ensemble A de E est affine si

$$\forall x \in A; y \in A; \forall \alpha \in \mathbb{R}, \alpha x + (1 - \alpha)y \in A$$

Autrement dit, un ensemble affine contient toujours la droite passant par deux de ses points x et y

❖ Définition: Ensemble affine

Soit E un espace vectoriel réel. Un sous-ensemble C de E est convexe si

$$\forall x \in C; y \in C; \forall \alpha \in [0, 1], \alpha x + (1 - \alpha)y \in C$$

Autrement dit, un ensemble affine contient toujours le segment [x, y].

🔩 Définition: Simplexe

On appelle simplexe de \mathbb{R}^n le sous-ensemble

$$\Delta_n = \left\{ \alpha \in \mathbb{R}^n; \alpha_i \ge 0, i = 1, ..., n, \sum_{i=1}^n \alpha_i = 1 \right\}$$

♣ Définition: Combinaison convexe

On appelle combinaison convexe de n points $\{x_i\}_{i=1}^n$ tout point y s'écrivant

$$y = \sum_{i=1}^{n} \alpha_i x_i \text{ avec } \alpha \in \Delta_n$$

⇔ Théorème:

Un sous ensemble C de E est convexe si et seulement s'il contient toutes les combinaisons convexes de ses éléments.

3

1 Proposition: Opérations conservant la convexité

- Si $(C_i)_{i\in I}$ est une famille quelconque de convexes de E, alors l'intersection $\cap_{i\in I}C_i$ est encore un convexe.
- Pour $a \in E$, le translaté $a + C = \{a + x; x \in C\}$ est convexe
- Le produit cartésien de $C \in E$ et $C' \in E'$, ie $C \times C' = \{(x;y); x \in C; y \in C'\}$ est un sous ensemble convexe de $E \times E'$
- La somme $C_1 + C_2 = \{x_1 + x_2; x_1 \in C_1; x_2 \in C_2\}$ de deux ensembles convexes C_1 et C_2 est convexe.
- L'union de sous-ensembles convexes n'est en général pas convexe, mais l'union croissante de convexes est convexe.
- Soit $f: \mathbb{R}^n \to \mathbb{R}^k$ une fonction affine, et $C \subseteq \mathbb{R}^n$, $S \subseteq \mathbb{R}^k$ deux convexes. Alors f(C) et $f^{-1}(S)$ sont également convexes.
- La somme partielle de deux convexes S et $C \subseteq \mathbb{R}^n \times \mathbb{R}^m$:

$$\{(x, y_1 + y_2) | (x, y_1) \in S, (x, y_2) \in C\}$$

est aussi convexe.

— L'image d'un convexe $C \subset \mathbb{R}^{n+1}$ par la fonction perspective $P : \mathbb{R}^n \times \mathbb{R}^+_* \to \mathbb{R}^n$:

$$P(z,t) = z/t$$

est convexe. De même, la pré-image d'un convexe S par P

$$P^{-1}(S) = \{(x,t) \in \mathbb{R}^n \times \mathbb{R}_*^+ | x/t \in C\}$$

est convexe.

♦ Définition:

Soit C un ensemble convexe. Une partie convexe F de C est appelée face (ou partie extrémale) de C si la propriété suivante est vérifiée

$$\left. \begin{array}{c} (x,y) \in C \times C \text{ et} \\ \exists \alpha \in]0,1[\text{ tel que } \alpha x + (1-\alpha)y \in F \end{array} \right\} \Rightarrow [x,y] \in F$$

On appelle point extrémal une face réduite à un seul point. En d'autres termes, $\bar{x} \in C$ est un point extrémal de C s'il n'est pas possible d'avoir $\bar{x} = \alpha y + (1 - \alpha)z$ avec y et z deux points distincts de C et $\alpha \in]0,1[$. On note Ext(C) l'ensemble des points extrémaux de C.

🔩 Définition: Polyèdre

Soit $A\in\mathbb{R}^{m\times n},\,b\mathbb{R}^m,\,C\in\mathbb{R}^{p\times n},\,d\in\mathbb{R}^d.$ On définit le polyèdre $\mathcal P$ par :

$$\mathcal{P} = \{ x \in \mathbb{R}^n | Ax \le b, \ Cx = d \}$$

2 Enveloppe affine et enveloppe convexe

❖ Définition: Enveloppe affine

Soit A une partie de E. L'enveloppe affine de A, notée Aff(A), est l'intersection de tous les espaces affines contenant A.

On appelle dimension affine d'un ensemble C la dimension de Aff(C).

1 Proposition:

Soit A une partie de E. On a :

$$Aff(A) = \left\{ \sum_{i=1}^{n} \alpha_i x_i; n \ge 1, x_i \in A, \alpha_i \in \mathbb{R}, \sum_{i=1}^{n} \alpha_i = 1 \right\}$$

🔩 Définition: Enveloppe convexe

Soit A une partie de E. L'enveloppe convexe de A, notée conv(A), est l'intersection de tous les espaces convexes contenant A

1 Proposition:

Soit A une partie de E. On a :

$$Conv(A) = \left\{ \sum_{i=1}^{n} \alpha_i x_i; n \ge 1, x_i \in A, \alpha_i \ge 0, \sum_{i=1}^{n} \alpha_i = 1 \right\}$$

⇔ Théorème: Carathéodory

Soit A une partie d'un espace vectoriel E de dimension n. Alors tout élément de conv(A) peut s'écrire comme une combinaison convexe de n+1 éléments de A.

🔦 Définition: Simplexe

Soient $v_0,...,v_k \in \mathbb{R}^n$, k+1 vecteurs affinement indépendants, i.e. $v_1-v_0,...,v_k-v_0$ sont linéairement indépendants. On appelle simplexe l'ensemble défini par :

$$C = \operatorname{conv}\{v_0, ..., v_k\}$$

i Propriété:

Un simplexe est un polyèdre

3 Propriétés topologiques des convexes

3.1 Ouverture et fermeture des convexes

⇔ Théorème:

Soit C un ensemble convexe. Alors son intérieur int(C) et son adhérence \overline{C} sont aussi convexes.

3.2 Intérieur relatif

En analyse convexe, on rencontre souvent des ensembles convexes dont l'intérieur est vide : c'est le cas d'un segment dans \mathbb{R}^2 . Il est donc utile d'introduire la notion d'intérieur relatif.

♦ Définition: Intérieur relatif

Soit P une partie d'un espace vectoriel E. L'intérieur relatif de P, noté ri(P), est son intérieur dans son enveloppe affine Aff(P), munie de la topologie induite de celle de E, i.e.

$$ri(P) = \{x \in P; \exists r > 0; (B(x,r) \cap Aff(P)) \subset P\}$$

⇔ Théorème:

Soient E un espace vectoriel de dimension finie et C un convexe non vide de E. Alors ri(C) est non vide.

⇔ Lemme:

Soient E un espace vectoriel de dimension finie et C un convexe non vide. Alors

$$x \in ri(C)$$
 et $y \in \overline{C} \Rightarrow [x; y[\subset ri(C)$

Ainsi, un point $x \in E$ est dans l'intérieur relatif de C si et seulement si pour tout $y \in C$ (ou $y \in Aff(C)$), il existe $\alpha > 1$ tel que $(1 - \alpha)y + \alpha x \in C$

4 Opérations sur les ensembles convexes

4.1 Projection sur un convexe fermé

→ Théorème: Projection sur un convexe fermé

Soient H un espace de Hilbert et x un élément de H. Soit également C un sous-ensemble convexe fermé de H. Il existe un unique point $y \in C$ tel que

$$\|y-x\|=\min_{z\in C}\|z-x\|$$

Cet élément y est appelé la projection de x sur C et sera noté $P_C(x)$. Il est caractérisé par l'inéquation suivante

$$\forall z \in C, \langle x - P_c(x), z - P_C(x) \rangle \le 0$$

I Propriété: de la projection

L'application projection : $x \mapsto P_C(x)$ sur un convexe fermé non vide C possède les propriétés suivantes :

- 1. $\forall x_1, x_2 \in H, \langle P_C(x_2) P_C(x_1), x_2 x_1 \rangle \ge ||P_C(x_2) P_C(x_1)||^2$
- 2. elle est monotone : $\forall x_1, x_2 \in H, \langle P_C(x_2) P_C(x_1), x_2 x_1 \rangle \geq 0$
- 3. elle est Lipschitzienne de constante 1 :

$$\forall x_1, x_2 \in H, ||P_C(x_2) - P_C(x_1)|| \le ||x_2 - x_1||$$

4.2 Séparation des ensembles convexes

Un outil essentiel en analyse convexe est le théorème de Hahn-Banach sur la séparation des ensembles convexes. Etant donné un espace de Hilbert H, la séparation de deux convexes se fait géométriquement dans H en utilisant un hyperplan affine K de la forme

$$K = \{x \in H, \langle \xi, x \rangle = \alpha\}$$

où $\xi \in H$ est non nul et $\alpha \in \mathbb{R}$.

♦ Définition:

On dit qu'un hyperplan $K := \{x \in H; \langle \xi, x \rangle = \alpha\}$ sépare deux convexes C_1 et C_2 si l'on a

$$\forall x_1 \in C_1, \forall x_2 \in C_2, \langle \xi, x_1 \rangle \leq \alpha \leq \langle \xi, x_2 \rangle$$

On dit qu'un hyperplan $K := \{x \in H; \langle \xi, x \rangle = \alpha\}$ sépare strictement deux convexes C_1 et C_2 s'il existe deux scalaires α_1 et α_2 tels que $\alpha_1 < \alpha < \alpha_2$ et

$$\forall x_1 \in C_1, \forall x_2 \in C_2, \langle \xi, x_1 \rangle \le \alpha_1 < \alpha_2 \le \langle \xi, x_2 \rangle$$

$oxed{\mathbf{I}} Remarque:$

Une condition nécessaire et suffisante pour que C_1 et C_2 puisse être séparé par un hyperplan est qu'il existe un $\xi \in H$ non nul tel que

$$\sup_{x_1 \in C_1} \langle \xi, x_1 \rangle \le \inf_{x_2 \in C_2} \langle \xi, x_2 \rangle$$

Une condition nécessaire et suffisante pour que C_1 et C_2 puisse être séparé strictement par un hyperplan est qu'il existe un $\xi \in H$ tel que

$$\sup_{x_1 \in C_1} \langle \xi, x_1 \rangle < \inf_{x_2 \in C_2} \langle \xi, x_2 \rangle$$

⇔ Théorème: Séparation d'un convexe et d'un point

Soient H un espace de Hilbert, C un sous-ensemble convexe fermé de H et $x \notin C$. Alors il existe $r \in H$ tel que

$$sup_{z \in C} \langle r, z \rangle < \langle r, x \rangle$$

→ Théorème: Séparation de deux convexes

Soient H un espace de Hilbert et C_1 et C_2 deux convexes non vides disjoints de H, l'un étant fermé et l'autre étant compact. Alors on peut séparer strictement C_1 et C_2 .

→ Théorème: Séparation de deux convexes en dimension finie

Soient H un espace de Hilbert de dimension finie et C_1 et C_2 deux convexes non vides disjoints de H. Alors on peut séparer C_1 et C_2 au sens large, i.e., il existe $\xi \in H$ non nul tel que

$$\sup_{x_1 \in C_1} \langle \xi, x_1 \rangle \le \inf_{x_2 \in C_2} \langle \xi, x_2 \rangle$$

4.3 Enveloppe convexe fermée

L'enveloppe convexe d'un fermé n'est pas nécessairement fermée.

Exemple : Dans \mathbb{R}^2 , $C = \{xy \ge 1\} \cup \{0\}$: fermé. $conv(C) = \{x > 0, y > 0\} \cup \{0\}$: non fermé.

♦ Définition.

 $A \subset E$. On définit l'enveloppe convexe fermée, noté $\overline{conv}(A)$, comme l'intersection de tous les convexes fermés contenant A.

I Propriété:

$$\begin{array}{l} --A_1 \subset A_2 \Rightarrow \overline{conv}(A_1) \subset \overline{conv}(A_2) \\ --A \subset conv(A) \subset conv(\bar{A}) \subset \overline{conv}(A) \text{ et } \overline{conv}(A) = \overline{conv}(\bar{A}) = \overline{conv}(\bar{A}) \end{array}$$

♦ Définition:

Soit H un Hilbert.

Un demi-espace fermé de ${\cal H}$ est un ensemble de la forme :

$$H^{-}(\xi,\alpha) = \{x \in H; (x,\xi) \le \alpha\}$$

où $\xi \in H \neq \{0\}$ et $\alpha \in \mathbb{R}$

1 Proposition:

 $\overline{conv}(A)$ est l'intersection de tous les demi-espaces fermés contenant A.

⇔ Corollaire:

Soit C un ensemble convexe.

Alors l'intersection de tous les demi-espaces fermés contenant C est \overline{C} .

⇔ Corollaire:

C convexe fermés $\Leftrightarrow C$ est l'intersection de tous les demi-espaces fermés contenant C.

⇒ Théorème:

Soient H de dimension finie et A un compact de H. Alors conv(A) est compact.

5 Cônes convexes

🔩 Définition: Cône

Un ensemble C est un cône si $\lambda \in \mathbb{R}_+, \forall x \in C, \lambda x \in C$

♣ Définition: Enveloppe conique

Soit $A \subset E$. L'enveloppe conique A, notée cone(A), est l'intersection de tous les coônes convexes contenant A.

🔩 Définition: Combinaison conique

On appelle combinaison conique d'élements de A un point x tel que $x=\sum_{i=1}^n \lambda_i x_i,\ \lambda_i\geq 0,\ x_i\in A$

1 Proposition:

— C est un cône convexe si et seulement s'il contient toutes les combinaisons coniques de ses éléments.

 $cone(A) = \left\{ \sum_{i=1}^{n} \lambda_i x_i, n \in \mathbb{N}^*, \lambda_i \ge {}^{\circ}, x_i \in A \right\}$

🔩 Définition: Enveloppe conique fermée

On définit l'enveloppe conique fermée de A, notée $\overline{cone}A$, comme étant l'intersection de tous les cônes convexes fermés contenant A.

$\overline{ {f i} Propriét} \underline{ \acute{e}} :$

$$\begin{array}{l} --A\subset B\Rightarrow \overline{cone}(A)\subset \overline{cone}(B)\\ --A\subset cone(A)\subset cone(\bar{A})\subset \overline{cone}(A) \text{ et } \overline{cone}(A)=\overline{cone}(\bar{A})=\overline{cone}(\bar{A}) \end{array}$$

🔸 Définition: Cône induit par une norme

Soit $\|\cdot\|$ une norme (quelconque) sur \mathbb{R}^n . On définit le cône induit par cette norme par :

$$C = \{(x,t) | ||x|| \le t\} \subseteq \mathbb{R}^{n+1}\}$$

5.1 Cône propre et inégalités généralisées

🔩 Définition: Cône propre

Un cône $K\subseteq\mathbb{R}^n$ est dit propre si

- K est convexe
- Kest fermé
- K est solide, i.e. il est d'intérieur non vide
- K est pointé, ce qui signifie qu'il ne contient aucune droite, ou autrement dit

$$x \in K, -x \in K \implies x = 0$$

♣ Définition: Équations généralisées

On définit un pré-ordre sur \mathbb{R}^n de la façon suivante : à un cône propre K, on associe l'ordre partiel défini par

$$x \preccurlyeq_K y \Leftrightarrow y - x \in K$$

On définit aussi un ordre partiel strict par :

$$x \prec_K y \Leftrightarrow y - x \in \text{int } K$$

i Propriété:

La relation d'ordre \preccurlyeq_K est transitive, refléxive, antisymétrique, stable par addition et multiplication par un scalaire positif.

5.1.1 Minimum et élément minimal

🔩 Définition: Élément minimum et minimal

 $x \in S$ est un minimum de S (en vue de la relation \leq_K) si pour tout $y \in S$, $x \leq_K y$. x est un élément minimal de S si pour $y \in S$, $y \leq_K x$ seulement si y = x.

IPropriété:

- S'il existe, le minimum est unique.
- $x \in S$ est un minimum de S si et seulement si $S \subset x + K$.
- $x \in S$ est un élément maximal de S si et seulement si $(x K) \cap S = \{x\}$

5.2 Cône normal

♦ Définition:

Soient H de Hilbert, $C \subset H$, $x \in C$.

On définit le cône normal à C en x, noté $\mathcal{N}_x C$ ou $\mathcal{N}_C(x)$ par :

$$\mathcal{N}_C(x) = \{ d \in H; (d, y - x) \le 0 \forall y \in C \}$$

Les éléments de $\mathcal{N}_x C$ sont appelés les normales à C en x.

1 Proposition:

Soit H de Hilbert de dimension fnie.

Si $C \subset H$ et $x \in \partial C$, alors $\mathcal{N}_x C$ contient au moins un élément non nul.

Remarque : Le résultat reste vrai en dimension infini si \mathring{C} est non vide.

5.3 Cône dual

♣ Définition: Cône dual, bidual, polaire

Soit $P \subset H$. On appelle cône dual de P, noté P^* , l'ensemble :

$$P^* = \{x \in H; (x, y) \ge 0 \ \forall y \in P\}$$

On appelle cône bidual de $P: P^{**} = (P^*)^*$

On appelle cône polaire (ou dual négatif) P^- l'ensemble

$$P^{-} = \{x \in H; (x, y) \le 0 \ \forall y \in P\} = -P^{*}$$

1 Proposition:

- P^* est un cône convexe fermé non vide.
- $-K_1 \subseteq K_2 \implies K_2^* \subseteq K_1^*$
- Si K est d'intérieur non vide, alors K^* est pointé
- Si la fermeture de K est pointé, alors K^* est d'intérieur non vide

i Propriété: Caractérisation duale du minimum

Soit K un cône propre : on prend la relation d'ordre partielle \leq_K . x est le minimum de S selon la relation d'ordre partielle \leq_K si et seulement si pour tout $\lambda \succ_{K^*} 0$, x est l'unique minimiseur de $\langle \lambda, z \rangle$ pour $z \in S$

I Propriété: Caractérisation dual de l'élément minimal

- Si $\lambda \succ_{K^*} 0$ et x minimise $\langle \lambda, z \rangle$ pour $z \in S$, alors x est minimal. Si S est convexe, alors $x \in S$ est minimal s'il existe $\lambda \succcurlyeq_{K^*} 0$ non nul tel que x minimise $\langle \lambda, z \rangle$ pour $z \in S$.

Hyperplan d'appui 6

Un hyperplan d'affine d'équation (s,x)=r est appelé hyperplan d'appui à C en \bar{x} si :

$$(s,x) \le r \ \forall x \in C$$

$$(s, \bar{x}) = r$$

⇔ Théorème:

Soit C un ensemble convexe d'un Hilbert H. On suppose soit que H est de dimension finie soit que $\mathring{C} \neq \emptyset$. Soit $\bar{x} \in \partial C$. Alors il existe un hyperplan d'appui à C en \bar{x} .

Lemme de Farkas

⇔ Lemme:

Soient H un espace de Hilbert, $(\xi_j)_{j\in J}\subset H$ et $(\alpha_j)_{j\in J}\subset \mathbb{R}$. On suppoer que le système

$$(\xi_j, x) \le \alpha_j \ \forall j \in J$$

admet au moins une solution.

Soit $(s, \beta) \in H \times \mathbb{R}$. On a équivalence entre les 2 propositions :

$$\forall x \in H, [\forall j \in J, (\xi_j, x) \le \alpha_j \Rightarrow (s, x) \le \beta]$$

2.

$$(s,\beta) \in \overline{cone} ((\xi_j,\alpha_j)_{j \in J} \cup (0,1)) \subset H \times \mathbb{R}$$

⇔ Corollaire:

Sous les mêmes hypothèses avec $\alpha_j = 0 \ \forall j \in J$. On a pour $s \in H$:

$$\forall x \in H, [\forall j \in J, \ (\xi_j, x) \le 0 \Rightarrow (s, x) \le 0]$$

2.

$$s \in \overline{cone}\left((\xi_j)_{j \in J}\right)$$

⇔ Lemme:

Si C est un cône convexe fermé, alors $C^{**} = C$.

Deuxième partie

Fonctions convexes

1 Définitions et propriétés

1.1 Fonctions convexes

$$f: H \to \overline{\mathbb{R}} = \mathbb{R} \bigcup \{+\infty\}$$

♦ Définition:

$$Dom(f) = \{x \in H; f(x) < +\infty\}$$
$$epi(f) = \{(\alpha, x) \in \mathbb{R} \times H, \alpha \ge f(x)\}$$
$$epi_S(f) = \{(\alpha, x) \in \mathbb{R} \times H, \alpha > f(x)\}$$

On dit que f est propre si f n'est pas identiquement égal à $+\infty$.

On dit que f est convexe si epi(f) est convexe.

On dit que f est concave si -f est convexe.

1 Proposition:

Si f est convexe, alors Dom(f) est convexe.

De plus, f est convexe si et seulement si : $\forall x, y \in Dom(f), \forall \lambda \in [0, 1],$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

♦ Définition:

On dit que f est strictement convexe si $\forall x, y \in Dom(f), x \neq y, \forall \lambda \in]0,1[$

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

♦ Définition:

On dit que f est fortement convexe de module α si $\forall x,y \in Dom(f), \, \forall \lambda \in]0,1[$

$$\frac{\alpha}{2}\lambda(1-\lambda)\|x-y\|^2 + f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y)$$

IPropriété: opérations conservant la convexité

- 1. Pour $(f_i)_{i\in I}$ une famille quelconque de fonctions convexes, $\sup_{i\in I} f_i$ est convexe.
- 2. $\alpha \geq 0$, si f convexe, alors αf est convexe
- 3. Si f_1 et f_2 convexes, alors $f_1 + f_2$ convexes.

♣ Définition

Soit $f: H \to \overline{\mathbb{R}}$ et $\alpha \in \overline{\mathbb{R}}$.

On appelle sous ensemble de niveau de f au niveau α noté $\Gamma_{\alpha}(f)$ l'ensemble

$$\Gamma_{\alpha}(f) = \{x \in H; f(x) < \alpha\}$$

Remarque: f convexe $\Rightarrow \Gamma_{\alpha}(f)$ convexe $\forall \alpha \in \overline{\mathbb{R}}$

Si $\Gamma_{\alpha}(f)$ est convexe $\forall \alpha \in \mathbb{R}$, alors on dit que f est quasi-convexe.

♣ Définition:

Soit $P \subset H$. On appelle fonction indicatrice de P la fonction :

$$\mathbb{1}_P(x) = \begin{cases} 0 & \text{si} \quad x \in P \\ +\infty & \text{sinon} \end{cases}$$

Remarque: Si P convexe, alors $\mathbb{1}_P$ est convexe.

Si $\alpha > 0$, $\alpha \in \mathbb{R}$, alors $\Gamma_{\alpha}(\mathbb{1}_P) = P$ donc $\mathbb{1}_P$ caractérise P.

1.2 Fonctions quasi-convexes

♣ Définition: Quasi-convexe

 $f: \mathbb{R}^n \to \mathbb{R}$ est dite quasi-convexe (ou unimodale) si son domaine et tous ses ensembles de niveau sont convexes.

f est quasi-concave si -f est quasi-convexe. On fonction à la fois quasi-convexe et quasi-concave est dite quasi-linéaire.

i Propriété:

 $-f:\mathbb{R}^n \to \mathbb{R}$ est quasi-convexe si et seulement si dom f est convexe et pour tout $x,y\in \mathrm{dom}\ f,$ et $0\leq \lambda \leq 1$:

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}\$$

— Supposons f Fréchet-différentiable. f est quasi-convexe si et seulement si dom f est convexe et pour tout $x, y \in \text{dom} f$,

$$f(y) \le f(x) \implies \langle \nabla f(x), y - x \rangle \le 0$$

Si f est deux fois différentiable et quasi-convexe, alors pour tout $x \in \text{dom} f$, tout $y \in \mathbb{R}^n$,

$$\langle \nabla f(x), y \rangle = 0 \implies \langle y, \nabla^2 f(x)y \rangle \ge 0$$

On a équivalence si l'inégalité est stricte.

- $---f:\mathbb{R}\to\mathbb{R}$, continue, est quasiconvexe si et seulement si une de ces conditions est vérifiée :
 - f est croissante
 - ---f est décroissante
 - il existe $c \in \text{dom } f$ tel que pour tout $t \le c$ (et $t \in \text{dom } f$), f est décroissante, et pour tout $t \ge c$ (et $t \in \text{dom } f$), f est croissante.

1.3 Fonctions log-convexes

♣ Définition: Logarithmiquement convexe

 $f: \mathbb{R}^n \to \mathbb{R}^+_*$ est dite log-convexe si log f est convexe.

f est log-concave si log f est concave, ou de manière équivalente, 1/f est log-convexe.

1 Propriété:

— $f: \mathbb{R}^n \to \mathbb{R}^+_*$, avec domf convexe, est log-convave si et seulement si, pour tout $x, y \in \text{dom} f$, et $0 \le \theta \le 1$, on a

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1 - \theta}$$

— f est log-concave si et seulement si pour tout $x \in \text{dom} f$,

$$f(x)\nabla^2 f(x) \preceq \nabla f(x)\nabla f(x)^{\mathsf{T}}$$

1.4 Convexité en regard des inégalités généralisées

1.4.1 Monotonicité

Soit $K \subseteq \mathbb{R}^n$ un cône propre, associé à l'inégalité généralisée \leq_K .

🔥 Définition: K-croissant

Une fonction $f: \mathbb{R}^n \to \mathbb{R}$ est dite K-croissante si

$$x \preccurlyeq_K y \implies f(x) \leq f(y)$$

et K-strictement croissante si

$$x \preccurlyeq_K y, \ x \neq y \implies f(x) < f(y)$$

On définit la décroissance de manière similaire.

$\overline{ {1\hspace{-.1em} 1\hspace{-.1em} {1\hspace{-.1em} {1\hspace{0.1em} {1\hspace{-.1em} {1\hspace{-.1em } 1\hspace{-.1em} {1\hspace{-.1em} {1\hspace{-.1em} {1\hspace{-.1em} {1\hspace{-.1em} {1\hspace{-.1$

-f, de domaine convexe, et K-croissante si et seulement si

$$\forall x \in \text{dom} f, \ \nabla f(x) \succcurlyeq_{K^*} 0$$

Si l'inégalité est stricte, alors f est K-strictement croissante (mais la réciproque est fausse!)

1.4.2 Convexité

Soit $K \subseteq \mathbb{R}^m$ un cône propre, associé à l'inégalité généralisée \leq_K .

♦ Définition: K-croissant

Une fonction $f: \mathbb{R}^n \to \mathbb{R}^m$ est dite K-convexe si pour tout x, y et $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \preceq_K \theta f(x) + (1 - \theta)f(y)$$

f est strictement K-convexe si l'inégalité est stricte pour tout tout $x\neq y$ et $0<\theta<1.$

I Propriété:

- f est K-convexe si et seulement si pour tout $w \succcurlyeq_{K^*} 0$, la fonction scalaire $\langle w, f \rangle$ est convexe. f est strictement K-convexe si et seulement si pour tout $w \succcurlyeq_{K^*} 0$ non nul, la fonction scalaire $\langle w, f \rangle$ est strictement convexe
- f différentiable est K-convexe si et seulement si son domaine est convexe et pour tout $x, y \in \text{dom} f$,

$$f(y) \succcurlyeq_K f(x) + Df(x)(y-x)$$

(où Df(x) est la jacobienne de f en x). f est stricement K-convexe si l'inégalité est stricte pour tout $x \neq y$.

2 Fonctions d'appui

♦ Définition:

Soit $S \subset H$.

On appelle fonction d'appui à S et on note σ_S la fonction définie par :

$$\sigma_S(d) = \sup_{s \in S} (s, d)$$

Remarque : σ_S est toujours convexe (même si S ne l'est pas).

⇔ Théorème:

Soit S un sous-ensemble non vide de H. Alors $s \in \overline{conv}(S)$ si et seulement si

$$\forall d \in H, (s,d) \leq \sigma_S(d)$$

De plus, $\sigma_S = \sigma_{\overline{conv}(S)}$

Remarque : Soient S_1 et S_2 2 convexes fermés. $S_1 = S_2 \Leftrightarrow \sigma_{S_1} = \sigma_{S_2}$.

1 Propriété:

Soient S_1 et S_2 deux sous-ensembles de H non vides.

- 1. $\sigma_{S_1+S_2} = \sigma_{S_1} + \sigma_{S_2}$
- 2. $\sigma_{S_1 \cup S_2} = \max{\{\sigma_{S_1}, \sigma_{S_2}\}}$

3 Transformée de Fenchel

On va chercher les fonctions affines minorantes :

$$\langle p, x \rangle + \alpha \le f(x)$$

$$-\alpha \ge \langle p, x \rangle - f(x)$$

On va prendre $-\alpha = \sup_{x \in H} \{ \langle p, x \rangle - f(x) \} = f^*(p).$

♣ Définition: Transformée de Fenchel

Soit H un Hilbert et $f: H \to \overline{\mathbb{R}}$. On définit la transformée de Fenchel de f, notée $f^*: H \to \overline{\mathbb{R}}$ par :

$$f^*(p) = \sup_{x \in H} \{ \langle p, x \rangle - f(x) \}$$

Remarquons que, peu importe si f est convexe ou non, f^* est convexe.

I Propriété: Inégalité de Young

$$\forall p, x \in H, \ f^*(p) + f(x) \ge \langle p, x \rangle$$

I Proposition: Semi-continue inférieurement

Soit $f: H \to \mathbb{R}$. On dit que f est semi-continue inférieurement (sci) si l'une des deux propositions équivalentes suivantes est vérifiée :

- 1. $\forall x \in H, \ \forall x_n \to x, \ \liminf_{n \to +\infty} f(x_n) \ge f(x)$
- 2. epi(f) est fermé.

1 Proposition:

Soit $(f_i)_{i\in I}$ une famille de fonctions sci. Alors $\sup_{i\in I} f_i$ est sci.

⇔ Corollaire:

 f^* est sci et convexe.

🔩 Définition: Biconjuguée

La biconjuguée de f, notée f^{**} est définie par :

$$f^{**}(x) = \sup_{p \in H} \{\langle p, x \rangle - f^*(p)\}$$

I Propriété:

$$\begin{array}{ll} -- & f^{**}(x) + f^*(p) \geq \langle p, x \rangle \\ -- & f(x) \geq f^{**}(x) \end{array}$$

1 Proposition:

Si f est convexe, sci et propre, alors f^* est convexe, sci et propre.

⇔ Théorème: Fenchel-Moreau

Soit $f: H \to \overline{\mathbb{R}}$ une fonction propre, alors f est convexe et sci si et seulement si $f = f^{**}$

i Remarque:

On peut définir la transformée de Fenchel sur un espace normé E refléxif :

$$f^*: \begin{array}{ccc} E' & \to & \mathbb{R} \\ p & \mapsto & \sup_{x \in E} \{\langle p, x \rangle_{E'E} - f(x) \} \end{array}$$

Dans ce cas, les propositions précédentes et le théorème de Fenchel-Moreau restent vraies.

⇔ Corollaire:

Soit f propre, alors f est convexe et sci si et seulement si f est l'enveloppe supérieure de ses minorantes affines.

I Propriété:

— Supposons $f: \mathbb{R}^n \to \mathbb{R}$ convexe, Fréchet-différentiable, avec dom $f = \mathbb{R}^n$. Soit $z \in \mathbb{R}^n$. Posons $y = \nabla f(z)$. Alors

$$f^*(y) = \langle z, \nabla f(z) \rangle - f(z)$$

— Supposons $A \in \mathbb{R}^{n \times n}$ inversible, $b \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$ convexe et propre. Alors la conjuguée de g(x) = f(Ax + b) est :

$$g^*(p) = f^*\left(\left(A^{-1}\right)^{\mathsf{T}}y\right) - \langle A^{-1}b, y \rangle$$

et dom $g^* = A^{\intercal}$ dom f^* .

4 Continuité des fonctions convexes

1 Proposition:

Soit $f: H \to \overline{\mathbb{R}}$ convexe et propre. On suppose qu'il existe une boule ouverte sur laquelle f est bornée. Alors f est continue sur l'intérieur de son domaine qui est non vide.

1Remarque:

Si f est continue en un point, alors f est bornée sur une boule, et donc f est continue sur l'intérieur de son domaine.

⇔ Corollaire:

Si $f: H \to \overline{\mathbb{R}}$ est convexe et propre avec H de dimension finie, alors f restreinte à l'intérieur relatif de son domaine est continue.

Remarque: Si $f: H \to \mathbb{R}$, alors f continue sur H.

5 Différentiabilité des fonctions convexes

5.1 Dérivées directionnelles des fonctions convexes

⇒ Théorème:

Soient $f: H \to \overline{\mathbb{R}}, x \in Dom(f), d \in H$.

- 1. $\varepsilon \in \mathbb{R}_+^* \mapsto \frac{f(x+\varepsilon d)-f(x)}{\varepsilon}$ est croissante
- 2. f'(x,d) existe toujours et vaut éventuellement $\pm \infty$. De plus, $f'(x,d) = +\infty$ si et seulement si $x + \varepsilon d \notin Dom(F)$ pour tout ε petit, et :

$$f'(x,d) = \inf_{\varepsilon \in \mathbb{R}_+^*} \frac{f(x + \varepsilon d) - f(x)}{\varepsilon}$$

$$f'(x,d) \le f(x+d) - f(x)$$

3. $f'(x,d) \ge -f'(x,-d)$

5.2 Reconnaître une fonction convexe à l'aide de ses dérivées

⇔ Théorème:

Soit $f: H \to \overline{\mathbb{R}}$ une fonction propre. On suppose que f est différentiable sur un ouvert Ω de $Dom(f) \subset H$. On a équivalence entre les propositions suivantes :

- 1. f est convexe (resp. strictement convexe) sur Ω
- 2. $\forall x, y \in \Omega, f(y) \ge f(x) + f'(x, y x)$ (resp. f(y) > f(x) + f'(x, y x))
- 3. $\forall x, y \in \Omega, (f'(y) f'(x))(y x) \ge 0 \text{ (resp. } (f'(y) f'(x))(y x) > 0)$

⇔ Théorème:

Soit $f: H \to \overline{\mathbb{R}}$ propre et 2 fois différentiable sur un ouvert $\Omega \subset Dom(f)$.

Alors f est convexe si et seulement si $D^2 f(d, d) \ge 0 \ \forall d \in H$.

De plus, si $D^2 f(d,d) > 0$, alors f est strictement convexe (réciproque fausse : penser à $f(x) = x^4$)

6 Sous-différentiabilité des fonctions convexes

6.1 Définitions et premières propriétés

🔩 Définition: Fonction affine

a est affine si $\forall x, y \in H, \forall t \in \mathbb{R}$,

$$a(tx + (1 - t)y) = ta(x) + (1 - t)a(y)$$

Pour toute fonction affine, il existe x^* (la pente) et α (l'ordonnée) telles que $a(x) = \langle x^*, x \rangle + \alpha$.

♦ Définition: Minorante affine

On dit que a est une minorante affine de f si a est affine et si :

$$\forall x \in H, \ f(x) \ge a(x)$$

On dit qu'une minorante affine est exacte en x_0 si $f(x_0)=a(x_0)$. Dans ce cas,

$$a(x) = \langle x^*, x - x_0 \rangle + f(x)$$

⇔ Théorème: Existence d'une minorante affine

Soit $f: H \to \overline{\mathbb{R}}$ convexe et propre. Alors f admet une minorante affine. De plus, celle-ci peut être choisie exacte en un point de ri(Dom(f)), ie : si $x \in ri(Dom(f))$,

$$\exists x^* \in H; \ f(y) \ge \langle x^*, y - x \rangle + f(x)$$

♣ Définition: Sous-différentiable

On dit que f convexe et propre est sous-différentiable en x s'il existe $x^* \in H$ tel que :

$$\forall y \in H, \ f(y) \ge \langle x^*, y - x \rangle + f(x)$$

Les éléments x^* sont appelés les sous-gradients de f en x, et on note $\partial f(x)$ l'ensemble des sous-gradients de f en x.

Par convention, si $x \notin Dom(f)$, alors $\partial f(x) = \emptyset$

■ Proposition: Sur l'optimalité

Soit $f: H \to \overline{\mathbb{R}}$ convexe et propre. Alors f atteint un minimum en x si et seulement si $0 \in \partial f(x)$.

1 Proposition:

Sous les mêmes hypothèses :

$$\partial f(x) = \{x^* \in H; \ f'(x,d) \ge \langle x^*, d \rangle, \ \forall d \in H\}$$

⇔ Théorème:

Soit $f: H \to \overline{\mathbb{R}}$ convexe et propre, et soit $x \in Dom(f)$. Les assertions suivantes sont équivalentes :

- 1. $\partial f(x) \neq \emptyset$
- 2. $\exists y \in ri(Dom(f)); f'(x, y x) > -\infty$
- 3. $f'(x, \bullet) \neq -\infty$

⇔ Corollaire:

Si f est convexe et propre et si f est continue en $x \in Dom(f)$, alors $\partial f(x) \neq \emptyset$

1 Proposition:

Soit f convexe et propre tel que f est continue en x. Alors

$$f'(x,d) = \sigma_{\partial f(x)}(d) = \sup_{p \in \partial f(x)} \langle d, p \rangle$$

6.2 Sous-différentiabilité et transformée de Fenchel

1 Proposition:

Soit $f: H \to \overline{\mathbb{R}}$ convexe et propre. Alors

$$\partial f(x) = \{ p \in H; \ f(x) + f^*(p) = \langle p, x \rangle \}$$

On définit de la même manière :

$$\partial f^*(p) = \{ x \in H; \ f^{**}(x) + f^*(p) = \langle p, x \rangle \}$$

1 Proposition:

Soit $f: H \to \overline{\mathbb{R}}$ convexe, propre et sci.

$$x \in \partial f^*(p) \Leftrightarrow p \in \partial f(x)$$

6.3 Liens avec la différentiabilité

1 Proposition:

Soit $f: H \to \overline{\mathbb{R}}$ convexe, sci et propre. On suppose que f est continue en x.

1. Si f est Gâteaux-différentiable en x, alors

$$\partial f(x) = \{\nabla f(x)\}\$$

2. Réciproquement, si $\partial f(x)$ est réduit à un seul élément, alors f est Gâteaux-différentiable en x et $\partial f(x) = \{\nabla f(x)\}$

6.4 Quelques règles de calcul

Dans toute la suite, on supposera la dimension de H finie.

♣ Définition: Homogène et sous linéaire

 $f'(x, \bullet)$ est dite homogène de degré $n \in \mathbb{R}^*$ si :

$$\forall \lambda \in \mathbb{R}, \ f'(x, \lambda d) = \lambda^n f'(x, d)$$

 $f'(x, \bullet)$ est dite sous-linéaire si :

$$\forall d \in H, \ \exists L > 0; \ |f'(x,d)| \le L \|d\|$$

1 Proposition:

Soient $f: H \to \mathbb{R}$ une fonction convexe et propre et $x \in H$. Alors $f'(x, \bullet)$ est convexe, homogène de degré 1 et sous-linéaire.

⇔ Corollaire:

Sous les mêmes hypothèses, $\partial f(x)$ est un convexe compact non vide.

$\blacksquare Proposition:$

Soient $f_1, f_2: H \to \mathbb{R}$ deux fonctions convexes, et $t_1, t_2 > 0$. Alors

$$\partial(t_1f_1 + t_2f_2)(x) = t_1\partial f_1(x) + t_2\partial f_2(x)$$

$\blacksquare Proposition:$

Soient $A: \mathbb{R}^n \to \mathbb{R}^m$ une fonction affine $(Ax = A_0x + b, A_0 \in \mathcal{M}_{m \times n}, b \in \mathbb{R}^m)$ et $g: \mathbb{R}^n \to \mathbb{R}$ une fonction convexe.

$$\partial(g \circ A)(x) = A_0^* \partial g(Ax)$$

Troisième partie

Conditions d'optimalité

1 Introduction aux problèmes d'optimisation

1.1 Terminologie

On considère un problème du type

min
$$f_0(x)$$

t.q. $f_i(x) \le 0$, $i = 1, ..., m$ (1)
 $h_i(x) = 0$, $i = 1, ..., p$

On appelle

- \mathcal{U}_{ad} l'ensemble admissible des points vérifiant les contraintes d'inégalité et d'égalité
- point admissible un point de \mathcal{U}_{ad}
- valeure optimale p^* de (1):

$$p^* = \inf\{f_0(x)|f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p\}$$

— ensemble optimal l'ensemble des points optimaux x^* réalisant l'infimum :

$$X_{opt} = \{x^* | f_i(x^*) \le 0, i = 1, ..., m, h_i(x^*) = 0, i = 1, ..., p, f(x^*) = p^* \}$$

- ϵ -suboptimal un point admissible x tel que $f_0(x) \leq p^* + \epsilon$
- un point x locallement optimal s'il existe R > 0 tel que

$$f_0(x) = \inf\{f_0(z)|f_i(z) \le 0, i = 1, ..., m, h_i(z) = 0, i = 1, ..., p, ||x - z|| < R\}$$

1.2 Quelques formes équivalentes

Problème sous forme d'épigraphe On peut remettre le problème (1) sous la forme :

min
$$t$$

t.q. $f_0(x) - t \le 0$
 $f_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$

Problèmes différentiables avec contraintes linéaires : première approche des multiplicateurs Prenons le problème suivant où f_0 est Fréchet-différentiable :

$$\min f_0(x)$$

t.q. $Ax = b$

Les conditions d'optimalité pour un x admissibles sont :

$$\langle \nabla f_0(x), y - x \rangle \ge 0$$

pour tout y vérifiant Ay = b. Comme x est admissible, tout y admissible est de la forme y = x + v avec $v \in \ker(A)$. On peut donc réécrire la condition d'optimalité comme :

$$\langle \nabla f_0(x), v \rangle \ge 0, \ \forall v \in \ker(A)$$

et comme v est quelconque dans un espace vectoriel (rempalcer v par -v):

$$\nabla f_0(x) \perp \ker(A)$$

Mais comme $\ker(A)^{\perp} = \operatorname{Im}(A^{\intercal})$, on peut dire que $\nabla f_0(x) \in \operatorname{Im}(A^{\intercal})$, ou encore qu'il existe $\nu \in \mathbb{R}^p$ tel que :

$$\nabla f_0(x) + A^{\mathsf{T}} \nu = 0$$

2 Dualité

On s'intéresse aux problème sous forme standard (1) (qui est appelé pour la suite problème primal) avec $x \in \mathbb{R}^n$. On note $\mathcal{U}_{ad} = \bigcap_{i=0}^m \text{dom } f_i \cap \bigcap_{i=1}^p \text{dom } h_i$, le domaine admissible, qu'on suppose non vide, et p^* la valeur optimale. L(idée de la dualité est de former un coût augmenté : on définit $L : \mathcal{U}_{ad} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ par :

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

et la fonction duale $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ par :

$$g(\lambda, \mu) = \inf_{x \in \mathcal{U}_{ad}} L(x, \lambda, \nu)$$

Cette fonction duale duale donne une borne inferieure à la valeur p^* : pour tout $\lambda \geq 0$ et tout ν ,

$$g(\lambda, \nu) \le p^*$$

Une question naturelle est de savoir quelle est la *meilleure* borne inférieure qu'on puisse obtenir. Pour cela, on s'intéresse au problème :

$$\max_{\lambda \in \mathbb{R}_{+}^{m}, \ \nu \in \mathbb{R}^{p}} g(\lambda, \nu) \tag{2}$$

Ce problème, peu importe la forme de (1), admet un obejectif concave et un domaine convexe. La valeure optimale de ce problème, notée d^* , vérifie :

$$d^* < p^*$$

On appelle cette propriété dualité faible, et on appelle écart dual la valeur $p^* - d^*$. Sous certaines conditions, on vérifie que $d^* = p^*$; c'est ce qu'on appelle la dualité forte. Une de ces conditions est la condition de Slater, présentée plus loin.

2.1 Conditions KKT

Supposons pour le moment que les f_i et h_i sont différentiables. On note x^* et (λ^*, ν^*) les minimiseurs des problèmes primal et dual respectivement. Comme x^* minimise $L(x, \lambda^*, \nu^*)$ sur x, on a que le gradient s'annule en x^* , i.e.:

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(x^*) = 0$$

On a donc que si on vérifie la dualité forte, alors tout point primal-dual optimal (x^*, λ^*, ν^*) doit vérifier :

$$f_i(x^*) \le 0, \ i = 1, ..., m$$

$$h_i(x^*) = 0, \ i = 1, ..., p$$

$$\lambda_i^* \ge 0, \ i = 1, ..., m$$

$$\lambda_i f_i(x^*) = 0, \ i = 1, ..., m$$

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(x^*) = 0$$

ce qu'on appelle les conditions KKT.

3 Problèmes convexes

$$\min_{u \in \mathcal{U}_{ad}} J(u)$$

 $\mathcal{U}_{ad} \subset \mathbb{R}^n$ est l'ensemble (non vide) admissible. On suppose \mathcal{U}_{ad} fermé convexe, et J convexe.

⇔ Théorème:

Si J est coercive ou si \mathcal{U}_{ad} est borné, alors il existe un point de minimum.

3.1 Une condition nécessaire générale d'optimalité

🔩 Définition: Cône tangent

On dit que $d \in \mathbb{R}^n$ est une tangente à X en \bar{x} si $\exists x_k \to \bar{x}$ avec $(x_k \subset X, t_k \to 0, t_k > 0 \text{ tel que} :$

$$\frac{x_k - \bar{x}}{t_k} \to d$$

L'ensemble de toutes les directions tangentes est appelé le cône tangent et est noté $T_{\bar{x}}X$.

♣ Définition: équivalente

 $d \in T_{\bar{x}}X$ si $\exists t_k > 0, t_k \to 0$ et $\exists d_k \in X, d_k \to d$ tel que $\bar{x} + t_k d_k \in X$.

1 Proposition:

 $T_{\bar{x}}X$ est un cône fermé. Il est convexe si X est convexe.

1 Proposition:

Soient X un ensemble convexe et $\bar{x} \in X$. Alors

$$T_{\bar{x}}X = \overline{cone}(X - \bar{x}) = \overline{\mathbb{R}_{+}(X - \bar{x})}$$

♦ Définition:

Soient $X \subset \mathbb{R}^n$, $\bar{x} \in X$.

On dit que p est une direction normale à X en \bar{x} si

$$\langle p, d \rangle \le 0 \ \forall d \in T_{\bar{x}} X$$

L'ensemble des normales est appelé le cône normal, noté $\mathcal{N}_{\bar{x}}X$.

$$\mathcal{N}_{\bar{x}}X = (T_{\bar{x}}X)^- = -(T_{\bar{x}}X)^*$$

 $\mathcal{N}_{\bar{x}}X$ est donc un cône convexe.

⇔ Théorème:

Soit \mathcal{U}_{ad} un ensemble convexe fermé non vide, $J:\mathbb{R}^n\to\mathbb{R}$ une fonction convexe, et $\bar{u}\in\mathcal{U}_{ad}$. Les assertions suivantes sont équivalentes :

- 1. \bar{u} minimise J sur \mathcal{U}_{ad}
- 2. $J'(\bar{u}, u \bar{u}) \ge 0 \ \forall u \in \mathcal{U}_{ad}$ 3. $J'(\bar{u}, d) \ge 0 \ \forall d \in T_{\bar{u}}\mathcal{U}_{ad}$

3.2 Cas où les contraintes sont explicites

$$\mathcal{U}_{ad} = \left\{ \begin{array}{ll} u; & \langle a_i, u \rangle = b_i & i = 1, ..., m \\ c_j(u) \leq 0 & j = 1, ..., p \end{array} \right\}$$

 $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$, $c_j : \mathbb{R}^n \to \mathbb{R}$ convexe.

 \mathcal{U}_{ad} est convexe.

On note

$$A: \mathbb{R}^n \to \mathbb{R}^m$$

$$u \mapsto (\langle a_i, u \rangle)_{i=1}^m$$

$$b = (b_i)_{i=1}^m$$

$$\{\langle a_i, u \rangle = b_i, \ i = 1, ..., m\} = \{u; Au = b\}$$

On note (a, b, c) les contraintes de manière générique.

⇔ Lemme:

Pour $u \in \mathcal{U}_{ad}$, on définit l'ensemble $\Lambda(u)$ par :

$$\Lambda(u) = \{ \lambda \in \mathbb{R}^p; \lambda_i \ge 0, \lambda_i c_i(u) = 0 \ \forall j = 1, ..., p \}$$

On définit le cône :

$$\mathcal{N}_{(a,b,c)}(u) = \{A^*\mu + \sum_{j=1}^p \lambda_j s_j, \ \mu \in \mathbb{R}^n, \ \lambda \in \Lambda(u), \ s_j \in \partial c_j(u)\}$$

avec
$$A^*\mu = \sum_{i=1}^m \mu_i a_i$$

$$\mathscr{N}_{(a,b,c)}(u)\subset \mathscr{N}_{\mathcal{U}_{ad}}(u)$$

⇔ Théorème:

Soit $J: \mathbb{R}^n \to \mathbb{R}$ une fonction convexe, et $\bar{u} \in \mathcal{U}_{ad}$.

- 1. \bar{u} minimise J sur \mathcal{U}_{ad} 2. $0 \in \partial J(\bar{u}) + \mathcal{N}_{\bar{u}}\mathcal{U}_{ad}$. 3. $\exists \mu \in \mathbb{R}^n, \, \exists \lambda \in \Lambda(\bar{u}) \, ; \, 0 \in \partial J(\bar{u}) + \sum_{i=1}^m a_i \mu_i + \sum_{j=1}^p \lambda_j \partial c_j(\bar{u})$ Alors $(3) \Rightarrow (1) \Leftrightarrow (2)$

3.2.1Qualification des contraintes

Les contraintes sont qualifiées si :

$$\mathcal{N}_{(a,b,c)}(u) = \mathcal{N}_{\mathcal{U}_{ad}}(u)$$
 et alors (3) \Leftrightarrow (1)

⇔ Lemme:

Si les contraintes c_j sont affines et si \mathcal{U}_{ad} est non vide, alors

$$\mathcal{N}_{(a,b,c)}(u) = \mathcal{N}_{\mathcal{U}_{ad}}(u)$$

⇔ Lemme:

Si $s_1, ..., s_m \in \mathbb{R}^n$, alors $cone(s_1, ..., s_m)$ est fermé.

On oublie le cas affine :

On fait l'hypothèse dite de Slatter :

$$\exists u_0; \ \left\{ \begin{array}{l} Au_0 = b \\ c_j(u_0) < 0 \quad \forall j = 1,...,p \end{array} \right.$$

 \bar{u} minimise J sur \mathcal{U}_{ad} si et seulement si :

$$\exists \mu \in \mathbb{R}^n, \exists \lambda \in \Lambda(\bar{u}); 0 \in \partial J(\bar{u}) + \sum_{i=1}^m a_i \mu_i + \sum_{j=1}^p \lambda_j \partial c_j(\bar{u})$$