Chapter 9

Functions of Several Variables

9.1 Notes

2/14:

- Plan:
 - 1. Warm-up with matrices.
 - 2. The total derivatives of $f: \mathbb{R}^n \to \mathbb{R}^m$ $(n = m = 2, \text{ i.e., } f: \mathbb{C} \to \mathbb{C}).$
 - 3. Basic properties: Chain rule, relation with partial derivatives, implicit function theorem.
- Let V, W be finite-dimensional vector spaces over \mathbb{R} . We let L(V, W) be the vector space of all linear transformations $\phi: V \to W$.
- If we pick bases N_1, \ldots, N_n of V and w_1, \ldots, w_m of W, then $V \cong \mathbb{R}^n$ and $W \cong \mathbb{R}^m$. It follows that $L(V, W) \cong \mathbb{R}^{mn}$.
- $L(V, W) \times L(W, U) \xrightarrow{\text{compose}} L(V, U)$, i.e., $\mathbb{R}^{mn} \times \mathbb{R}^{nl} \xrightarrow{\text{matrix}} \mathbb{R}^{ml}$.
- Sup norm: If A is an $m \times n$ real matrix, then $||A|| = \sup_{\substack{\mathbf{x} \in \mathbb{R}^n \\ |\mathbf{x}| = 1}} |A\mathbf{x}|$.
 - Basic properties:
 - 1. $|A\mathbf{x}| \le ||A|||x|$.
 - 2. $||A|| < \infty$ and all $A : \mathbb{R}^n \to \mathbb{R}^m$ are uniformly continuous.
 - 3. $||A|| = 0 \iff A = 0$.
 - 4. ||cA|| = |c|||A||.
 - 5. $||A + B|| \le ||A|| + ||B||$.
 - 6. $||AB|| \le ||A|| ||B||$.
 - Note that we get a metric space structure on L(V, W) by defining d(A, B) = ||A B||.
- Proves that 1 and 2 imply the uniform continuity of all A (via Lipschitz continuity).
- **Differentiable** (multivariate function f at \mathbf{x}_0): A function $f: U \to \mathbb{R}^m$ ($U \subset \mathbb{R}^n$) such that to $\mathbf{x}_0 \in U$ there corresponds some linear transformation $A: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{|f(\mathbf{x}_0 - \mathbf{h}) - f(\mathbf{x}_0) - A\mathbf{h}}{|\mathbf{h}|} = 0$$

- Total derivative (of f multivariate at \mathbf{x}_0): The linear transformation A in the above definition. Denoted by $f'(\mathbf{x}_0)$.
- "An proof and progress in mathematics" Thurston.

- Relating to the old one dimensional derivative.
- A paper we'd find rather impressionistic right now.
- Propositions ahead of us.
 - Proposition: Suppose that f is differentiable at $\mathbf{x}_0 \in U$ and A, B are both derivatives of f at \mathbf{x}_0 . Then A = B.
 - Proposition: Differentiable implies continuous.
 - Proposition: Sum rule, product rule, quotient rule.

9.2 Chapter 9: Functions of Several Variables

From Rudin (1976).

2/15:

- Defines a vector space by the closure of its elements under addition and scalar multiplication.
- Defines a linear combination, span, independence and dependence, dimension, basis, coordinates, and the standard basis.
- Theorem 9.2: If X is spanned by r vectors, dim $X \leq r$.
- Corollary: $\dim \mathbb{R}^n = n$.
- Theorem 9.3: Let X a vector space with dim X = n.
 - (a) $E \subset X$ containing n vectors spans X iff E is independent.
 - (b) X has a basis, and every basis contains n vectors.
 - (c) If $1 \le r \le n$ and $\{\mathbf{y}_1, \dots, \mathbf{y}_r\}$ is independent in X, then X has a basis containing $\{\mathbf{y}_1, \dots, \mathbf{y}_r\}$.
- Defines linear transformation, linear operator.
- Notes that $A\mathbf{0} = \mathbf{0}$ if A is a linear transformation, and that A is completely determined by its action on any basis.
- **Invertible** (linear operator): A linear operator A that is one-to-one and onto.
- Theorem 9.5: A a linear operator on X finite-dimensional is one-to-one iff it is onto.
- Defines L(X,Y), L(X), the product BA of two linear transformations, and the supremum norm of a linear transformation.
- Theorem 9.7:
 - (a) $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ implies $||A|| < \infty$ and $A : \mathbb{R}^n \to \mathbb{R}^m$ uniformly continuous.
 - (b) $A, B \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $c \in \mathbb{C}$ implies

$$||A + B|| \le ||A|| + ||B||$$
 $||cA|| = |c|||A||$

Defining d(A, B) = ||A - B|| makes $L(\mathbb{R}^n, \mathbb{R}^m)$ a metric space.

(c) $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $B \in L(\mathbb{R}^m, \mathbb{R}^k)$ implies

- Theorem 9.8: Let Ω be the set of all invertible linear operators on \mathbb{R}^n .
 - (a) $A \in \Omega$, $B \in L(\mathbb{R}^n)$, and $||B A|| \cdot ||A^{-1}|| < 1$ implies $B \in \Omega$.

Proof. Let $||A^{-1}|| = 1/\alpha$, and let $||B - A|| = \beta$. Then

$$\|B - A\| \cdot \|A^{-1}\| < 1$$

$$\beta \cdot \frac{1}{\alpha} < 1$$

$$\beta < \alpha$$

To prove that $B \in \Omega$, the definition of invertibility and Theorem 9.5 tell us that it will suffice to show that B is 1-1. To do so, it will suffice to show that $B\mathbf{x} = \mathbf{0}$ iff $\mathbf{x} = \mathbf{0}$. Let's begin. Let $\mathbf{x} \in \mathbb{R}^n$ be arbitrary. Then

$$\alpha |\mathbf{x}| = \alpha |A^{-1}A\mathbf{x}| \le \alpha ||A^{-1}|| \cdot |A\mathbf{x}| = |A\mathbf{x}| \le |(A - B)\mathbf{x}| + |B\mathbf{x}| \le \beta |\mathbf{x}| + |B\mathbf{x}|$$
$$(\alpha - \beta)|\mathbf{x}| \le |B\mathbf{x}|$$

It follows that if $\mathbf{x} \neq \mathbf{0}$, then $|B\mathbf{x}| > 0$. This combined with the fact that $B\mathbf{0} = \mathbf{0}$ implies the desired result.

(b) Ω is open in $L(\mathbb{R}^n)$ and $A \mapsto A^{-1}$ is continuous on Ω .

Proof. To prove that Ω is open in $L(\mathbb{R}^n)$, it will suffice to show that for all $A \in \Omega$, there exists $N_r(A)$ such that if $\|B - A\| < r$, then $B \in \Omega$. Let's begin. Let $A \in \Omega$ be arbitrary. Choose $N_{\alpha}(A)$ to be our neighborhood, where α is defined as in part (a). Let $B \in L(\mathbb{R}^n)$ satisfy $\|B - A\| < \alpha$. Then $\|B - A\| \cdot \|A^{-1}\| < 1$, so $B \in \Omega$ by part (a), as desired.

To prove that $A \mapsto A^{-1}$ is continuous, it will suffice to show that $||B^{-1} - A^{-1}|| \to 0$ as $B \to A$. First off, we have by part (a) and the substitution $\mathbf{x} = B^{-1}\mathbf{y}$ ($\mathbf{y} \in \mathbb{R}^n$) that

$$(\alpha - \beta)|B^{-1}\mathbf{y}| \le |BB^{-1}\mathbf{y}| = |\mathbf{y}|$$

$$\left|B^{-1}\left(\frac{\mathbf{y}}{|\mathbf{y}|}\right)\right| \le (\alpha - \beta)^{-1}$$

Thus, since $|B^{-1}\mathbf{u}|$ is bounded by $(\alpha - \beta)^{-1}$ for every unit vector $\mathbf{u} \in \mathbb{R}^n$, $||B^{-1}||$ is bounded by $(\alpha - \beta)^{-1}$. This combined with the fact that

$$B^{-1} - A^{-1} = B^{-1}I - IA^{-1}$$

$$= B^{-1}AA^{-1} - B^{-1}BA^{-1}$$

$$= B^{-1}(A - B)A^{-1}$$

implies by Theorem 9.7c that

$$||B^{-1} - A^{-1}|| \le ||B^{-1}|| ||A - B|| ||A^{-1}|| \le (\alpha - \beta)^{-1} \cdot \beta \cdot \frac{1}{\alpha} = \frac{\beta}{\alpha(\alpha - \beta)}$$

Therefore, since $\beta \to 0$ as $B \to A$, the above inequality establishes the desired result.

- Note that the mapping $A \mapsto A^{-1}$ defined in Theorem 9.8b is a 1-1 mapping of Ω onto Ω and its own inverse.
- Defines matrices, column vectors, and matrix multiplication.
- From the Schwarz inequality, we can show that

$$||A|| \le \left(\sum_{i,j} a_{i,j}^2\right)^{1/2}$$

• "If S is a metric space, if a_{11}, \ldots, a_{mn} are real continuous functions on S, and if for each $p \in S$, A_p is the linear transformation of \mathbb{R}^n into \mathbb{R}^m whose matrix has entries $a_{ij}(p)$, then the mapping $p \to A_p$ is a continuous mapping of S into $L(\mathbb{R}^n, \mathbb{R}^m)$ " (Rudin, 1976, p. 211).

- Rudin (1976) spends some time motivating the definition of the total derivative. He also discusses the natural 1-1 correspondence between \mathbb{R}^1 and $L(\mathbb{R}^1)$.
- Defines differentiability in \mathbb{R}^n .
- Theorem 9.12: A_1, A_2 the derivative of \mathbf{f} at \mathbf{x} implies $A_1 = A_2$.
- If $\mathbf{f}: E \to \mathbb{R}^m$ where $E \subset \mathbb{R}^n$, then $\mathbf{f}': E \to L(\mathbb{R}^n, \mathbb{R}^m)$.
- **f** differentiable implies **f** continuous.
- Example (**f** is linear):
 - If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, then $A'(\mathbf{x}) = A$ for all $\mathbf{x} \in \mathbb{R}^n$. Note that this means that $A' : \mathbb{R}^n \to L(\mathbb{R}^n, \mathbb{R}^m)$, as expected.
- Theorem 9.15 (Chain Rule): E open in \mathbb{R}^n , $\mathbf{f}: E \to \mathbb{R}^m$ differentiable at $\mathbf{x}_0 \in E$, $I \supset \mathbf{f}(E)$ open in \mathbb{R}^m , and $\mathbf{g}: I \to \mathbb{R}^k$ differentiable at $\mathbf{f}(\mathbf{x}_0)$ implies $\mathbf{F}: E \to \mathbb{R}^k$ defined by

$$\mathbf{F}(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x}))$$

is differentiable at \mathbf{x}_0 with

$$\mathbf{F}'(\mathbf{x}_0) = \mathbf{g}'(\mathbf{f}(\mathbf{x}_0))\mathbf{f}'(\mathbf{x}_0)^{[1]}$$

Proof. Largely symmetric to that of the one-dimensional chain rule in Chapter 5.

• Components (of $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$): The real functions f_1, \dots, f_m defined by

$$\mathbf{f}(\mathbf{x}) = \sum_{i=1}^{m} f_i(\mathbf{x}) \mathbf{u}_i$$

for all $\mathbf{x} \in E$ or, equivalently, by $f_i(\mathbf{x}) = f(\mathbf{x}) \cdot \mathbf{u}_i$ $(1 \le i \le m)$, where $\mathbf{u}_1, \dots, \mathbf{u}_m$ is the standard basis of \mathbb{R}^m .

- Defines partial derivatives.
- Theorem 9.17: $E \subset \mathbb{R}^n$ open and $\mathbf{f}: E \to \mathbb{R}^m$ differentiable at $\mathbf{x} \in E$ imply the partial derivatives $(D_i f_i)(\mathbf{x})$ exist and

$$\mathbf{f}'(\mathbf{x})\mathbf{e}_j = \sum_{i=1}^m (D_j f_i)(\mathbf{x})\mathbf{u}_i$$

for $1 \leq j \leq n$.

• It follows that

$$[\mathbf{f}'(\mathbf{x})] = \begin{bmatrix} (D_1 f_1)(\mathbf{x}) & \cdots & (D_n f_1)(\mathbf{x}) \\ \vdots & & \vdots \\ (D_1 f_m)(\mathbf{x}) & \cdots & (D_n f_m)(\mathbf{x}) \end{bmatrix}$$

- Discusses the gradient and the directional derivative.
- Theorem 9.19: $E \subset \mathbb{R}^n$ convex and open, $\mathbf{f}: E \to \mathbb{R}^m$ differentiable in E, and there exists M such that

$$\|\mathbf{f}'(\mathbf{x})\| \le M$$

for all $\mathbf{x} \in E$ implies

$$|\mathbf{f}(\mathbf{b}) - \mathbf{f}(\mathbf{a})| \le M|\mathbf{b} - \mathbf{a}|$$

for all $\mathbf{a}, \mathbf{b} \in E$.

¹Note that the right-hand side of this equation contains the product of two linear transformations.

- Corollary: If, in addition, f'(x) = 0 for all $x \in E$, then f is constant.
- Continuously differentiable (mapping $\mathbf{f}: E \to \mathbb{R}^m$): A function $\mathbf{f}: E \to \mathbb{R}^m$ such that $\mathbf{f}': E \to L(\mathbb{R}^n, \mathbb{R}^m)$ is continuous. Also known as \mathbf{E}' -mapping. Denoted by $\mathbf{f} \in \mathbf{E}'(\mathbf{E})$.
- Theorem 9.21: Let $E \subset \mathbb{R}^n$ open and $\mathbf{f}: E \to \mathbb{R}^m$. Then $\mathbf{f} \in \mathscr{C}'(E)$ iff the partial derivatives $D_j f_i$ $(1 \le i \le m; 1 \le j \le n)$ exist and are continuous on E.