Automatic Control Laboratory practice 2

M. Canale - S. M. Fosson

April 8, 2024

Objectives: evaluation of the steady state; step response of prototype models.

Problem 1

Consider the LTI system described by the transfer function

$$H(s) = \frac{1}{s^3 + 2s^2 + 5.25s + 4.25}.$$

- (a) Analyse the BIBO stability
- (b)If $\mathbf{possible}$, compute the steady state response $y_{ss}(t)$ in the presence of the input

$$u(t) = (3\sin(0.1t+1))\varepsilon(t)$$

(c) If $\mathbf{possible}$, compute the maximum amplitude \bar{u} of a sinusoidal input of the form

$$u(t) = \bar{u}\sin(3t)\varepsilon(t)$$

such that the steady state response $y_{ss}(t)$ satisfies $|y_{ss}(t)| \leq 1$.

Solution

- (a) The system is BIBO stable. Thus, the steady state response exists.
- (b) $y_{ss}(t) = (0.7038\sin(0.1t 0.1232) + 0.4706)\varepsilon(t)$
- (c) $\bar{u} \leq 17.7658$

Problem 2

Consider the 2nd order system described by the transfer function

$$H(s) = \frac{10}{s^2 + 1.6s + 4}.$$

- (a) evaluate the natural frequency ω_n , the damping coefficient ζ and the time constant τ of the poles;
- (b) In MATLAB, plot the step response by using the function step and get the following data from the graph:
 - 1. steady state value y_{∞}
 - 2. maximum overshoot \hat{s}
 - 3. peak time \hat{t}
 - 4. rise time t_r
 - 5. 5% settling time $t_{s,5\%}$

Solution

- (a) $\omega_n = 2$, $\zeta = 0.4$, $\tau = 1.25$ s
- (b) $y_{\infty}=2.5$, $\hat{s}=25.37,\hat{t}=1.7$ s, $t_r=1.08$ s, $t_{s,5\%}=3.8$ s

Problem 3

Consider a 2nd order LTI system described by

$$H(s) = K \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}.$$

Its (zero state) output response in the presence of a step input of amplitude 5 is depicted in the figure below.

Compute the values of the parameters K , ω_n and $\zeta.$

Solution

$$K = 0.2$$
, $\omega_n = 8$, $\zeta = 0.5 \Rightarrow H(s) = \frac{12.8}{s^2 + 8s + 64}$