■ Chapitre 9 ■

Suites et séries de fonctions

Notations.

- $\blacksquare I$ désigne un intervalle de $\mathbb R$ non vide et non réduit à un point.
- $(f_n)_{n\in\mathbb{N}}$ et f désignent des fonctions définies sur I à valeurs dans \mathbb{K} (où \mathbb{K} est \mathbb{R} ou \mathbb{C}).

I. Modes de convergence

I.1 Convergence simple

Définition 1 (Convergence simple).

La suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers la fonction f si pour tout $x\in I$, la suite $(f_n(x))_{n\in\mathbb{N}}$ converge vers f(x), i.e.

$$\forall x \in I, \forall \varepsilon > 0, \exists n_{x,\varepsilon} \in \mathbb{N} ; \forall n \geqslant n_{x,\varepsilon}, |f_n(x) - f(x)| \leqslant \varepsilon.$$

Exercice 1. Étudier la convergence simple des fonctions définies par

1.
$$f_n(x) = \frac{nx}{1+nx} \text{ sur } \mathbb{R}_+.$$
 2. $f_n(x)$

2.
$$f_n(x) = \sum_{k=0}^n \frac{x^2}{(1+x^2)^k} \text{ sur } \mathbb{R}.$$
 3. $f_n(x) = \lim_{m \to +\infty} (\cos(n!\pi x))^{2m}$

Propriétés 1 (Propriétés stables par convergence simple).

On suppose que $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers f.

- (i). Si, à partir d'un certain, f_n est à valeurs positives, alors f est à valeurs positives.
- (ii). Si, à partir d'un certain rang, $x \mapsto f_n(x)$ est croissante, alors f est croissante.

Exercice 2.

- **1.** Pour tout x réel et tout entier naturel non nul, on pose $f_n(x) = \frac{\sin(nx)}{\sqrt{n}}$. Prouver la convergence simple sur \mathbb{R} de la suite $(f_n)_{n\in\mathbb{N}^*}$ puis étudier la convergence simple sur \mathbb{R} de la suite $(f'_n)_{n\in\mathbb{N}^*}$.
- **2.** Pour tout $x \in [0,1]$ et tout entier naturel n, on pose $f_n(x) = n^2 x (1-x^2)^n$. Prouver la convergence simple sur [0,1] de la suite $(f_n)_{n\in\mathbb{N}}$ puis déterminer le comportement asymptotique de la suite $\left(\int_0^1 f_n(x) \, \mathrm{d}x\right)_{n\in\mathbb{N}}$.
- **3.** Pour tout $x \in]0,1]$ et tout entier naturel n non nul, on pose $f_n(x) = n^2x$ si $0 \le x \le \frac{1}{n}$ et $f_n(x) = \frac{1}{x}$ si $\frac{1}{n} < x \le 1$. Montrer que la suite $(f_n)_{n \in \mathbb{N}^*}$ converge simplement sur]0,1]. Étudier la convergence des intégrales $\int_0^1 f_n(x) \, \mathrm{d}x$ et $\int_0^1 f(x) \, \mathrm{d}x$.

I.2 Convergence uniforme

Définition 2 (Convergence uniforme).

La suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction f si

$$\forall \ \varepsilon > 0, \ \exists \ n_{\varepsilon} \in \mathbb{N} \ ; \ \forall \ (x,n) \in I \times \mathbb{N}, \ [n \geqslant n_{\varepsilon} \ \Rightarrow \ |f_n(x) - f(x)| \leqslant \varepsilon].$$

Exercice 3. Pour tout entier naturel n, on pose $f_n : x \mapsto x^n$. Montrer que, pour tout réel $a \in]0,1[$, $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [0,a] vers la fonction nulle.

Propriété 2 (Simple vs. Uniforme).

Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers f, alors $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers f.

Exercice 4. Pour tout entier naturel n, on pose $f_n : x \mapsto x^n$. Montrer que la suite (f_n) converge simplement sur [0,1]. Montrer que (f_n) ne converge pas uniformément sur [0,1].

Définition 3 (Norme infinie).

Si f est une fonction bornée sur I, la norme infinie de f sur I est

$$||f||_{\infty,I} = \sup_{x \in I} |f(x)|.$$

Propriété 3 (Norme de la convergence uniforme).

La suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction f si et seulement si, à partir d'un certain rang, la fonction $f_n - f$ est bornée et $\lim_{n \to +\infty} ||f_n - f||_{\infty,I} = 0$.

Exercice 5.

- **1.** Pour tout réel positif x et tout entier naturel n, on pose $f_n(x) = \frac{x}{n} e^{-nx}$. Montrer que $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur \mathbb{R}_+ .
- **2.** Pour tout réel x et tout entier naturel non nul n, on note $f_n(x) = x^2 + \frac{1}{n}$. Montrer que $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur \mathbb{R} mais que f_n n'est pas bornée.
- 3. Montrer que $dsum f_n$ converge uniformément sur I si et seulement si $\sum f_n$ converge simplement sur I et $\lim_{n\to+\infty}\left\|\sum_{k=n+1}^{+\infty}f_k\right\|_{\infty}=0$.

Propriété 4 (Convergence uniforme & Majoration).

La suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers f si et seulement s'il existe une suite numérique $(a_n)_{n\in\mathbb{N}}$ de limite nulle telle que, à partir d'un certain rang,

$$\forall x \in I, |f_n(x) - f(x)| \leqslant a_n.$$

Exercice 6.

- **1.** Montrer que $\left(\sum_{k=1}^{n} \frac{(-1)^k}{x+k}\right)$ converge uniformément sur [1,2].
- **2. a)** On suppose que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers f. Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de I. Alors, $(f_n(x_n) f(x_n))_{n\in\mathbb{N}}$ converge vers 0.
- **b)** Pour tout réel x et tout entier naturel n, on pose $f_n(x) = \frac{x\sqrt{n}}{1+nx^2}$. Montrer que $(f_n)_{n\in\mathbb{N}}$ converge simplement mais non uniformément sur \mathbb{R}_+ .

Propriété 5 (Convergence uniforme sur tout segment).

On suppose que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers f. Alors, pour tout segment [a,b] inclus dans I, la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [a,b] vers f.

Exercice 7. Montrer que la réciproque est fausse.

I.3 Convergence normale d'une série de fonctions

Définition 4 (Convergence normale).

Soit (f_n) une suite de fonctions bornées sur I. La suite $\left(\sum_{k=0}^n f_k\right)_{n\in\mathbb{N}}$ converge normalement sur I si la série numérique $\sum \|f_n\|_{\infty,I}$ converge

Exercice 8.

- **1.** Montrer que s'il existe une suite (a_n) telle que $\sum a_n$ converge et $\forall n \in \mathbb{N}, \forall x \in I, |f_n(x)| \leq a_n$ alors $\sum f_n$ converge normalement sur I.
 - **2.** Montrer que $\sum \frac{\sin(nx)}{n^2}$ converge normalement sur \mathbb{R} .
 - 3. Montrer que $\sum \frac{x^n}{n!}$ converge normalement sur tout segment de \mathbb{R} .

Propriété 6.

Si $\left(\sum_{k=0}^{n} f_k\right)$ converge normalement sur I, alors $\left(\sum_{k=0}^{n} f_k\right)$ converge uniformément sur I.

Exercice 9. En étudiant $\sum \frac{(-1)^n}{x+n}$ sur [1,2], montrer que la réciproque de ce théorème est fausse.

Propriété 7 (Convergence normale sur tout segment).

On suppose que $\sum f_n$ converge normalement sur I. Alors, pour tout segment [a,b] inclus dans I, la série $\sum f_n$ converge normalement sur [a,b].

Exercice 10. En utilisant la série géométrique, montrer que la réciproque de ce théorème est fausse.

II. Propriétés préservées par convergence uniforme

Notation.

■ Dans toute cette section, $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction f.

Exercice 11.

- **1. a) Bornées.** Si, pour tout entier naturel n, la fonction f_n est bornée sur I, alors f est bornée $\operatorname{sur} I$.
- **b)** Pour tout réel $x \in]0,1[$ et pour tout entier naturel n, on note $f_n(x) = \frac{n}{nx+1}$. Montrer que (f_n) ne converge pas uniformément sur]0,1[.
- **2. Combinaisons linéaires.** Soit $\lambda \in \mathbb{K}$. On suppose que $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur I vers f et $(g_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers g. Alors, $(\lambda f_n + g_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers $\lambda f + q$.

3. Gare aux Produits. Pour tout réel x et tout entier naturel n non nul, on pose $f_n(x) = x + \frac{1}{n}$. Montrer que (f_n) converge uniformément sur \mathbb{R} mais que (f_n) ne converge pas uniformément sur \mathbb{R} .

II.1 Convergence uniforme & Continuité

Théorème 1 (Préservation de la continuité).

On suppose que (f_n) converge uniformément sur I vers f. Si, pour tout entier naturel n la fonction f_n est continue sur I, alors la fonction f est continue sur I.

Exercice 12.

- **1.** Pour tout réel $x \in [0,1]$ et tout entier naturel n, on pose $f_n(x) = x^n$. Montrer que $(f_n)_{n \in \mathbb{N}}$ ne converge pas uniformément sur [0,1].
- 2. Montrer que ce résultat reste vrai si (f_n) converge uniformément sur tout segment de I.

3. Pour tout x réel, on définit sur [0,1] la fonction continue par morceaux f_n par $f_n(x) = 0$ si $x \leq \frac{1}{n}$ et, pour tout $k \in [1, n-1]$, $f_n(x) = \frac{1}{k}$ si $x \in \left[\frac{1}{k+1}, \frac{1}{k}\right]$. Montrer que (f_n) converge uniformément sur [0,1] mais que sa limite n'est pas continue par morceaux.

Corollaire 2.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues sur I telles que $\sum f_n$ converge uniformément sur I. Alors, $\sum_{n=0}^{+\infty} f_n$ est continue sur I.

Exercice 13.

- 1. Montrer que ce résultat reste vrai si (f_n) converge uniformément sur tout segment de I.
- **2.** Montrer que exp: $x \mapsto \sum_{n=0}^{+\infty} \frac{x^n}{n!}$ est continue sur \mathbb{R} .
- **3.** Montrer que la fonction $\zeta: x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^x}$ est continue sur $]1, +\infty[$.

Théorème 3 (Théorème de la double limite, Admis).

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions qui converge uniformément sur I vers une fonction f et $x_0 \in \overline{I}$. S'il existe une suite de réels $(\ell_n)_{n\in\mathbb{N}}$ telle que pour tout entier naturel n, $\lim_{t\to x_0} f_n(t) = \ell_n$, alors $(\ell_n)_{n\in\mathbb{N}}$ converge et

$$\lim_{t \to x_0} f(t) = \lim_{n \to +\infty} \ell_n.$$

Corollaire 4

Soient $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur I et $x_0\in\overline{I}$. Si, pour tout entier naturel n, f_n converge en x_0 et $\sum f_n$ converge uniformément sur I, alors $\sum \left(\lim_{t\to x_0} f_n(t)\right)$ converge vers un scalaire ℓ et $\lim_{x\to x_0}\sum_{n=0}^{+\infty} f_n(x)=\ell$.

Exercice 14.

2. En utilisant la série géométrique, montrer que ce résultat ne s'applique pas si la convergence est uniforme sur tout segment de I.

II.2 Convergence uniforme & Intégration

Théorème 5 (Interversion limite / intégrale).

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues qui converge uniformément sur le segment [a,b]. Alors,

$$\int_{a}^{b} \lim_{n \to +\infty} f_n(t) dt = \lim_{n \to +\infty} \int_{a}^{b} f_n(t) dt.$$

Exercice 15.

- 1. Montrer que ce résultat peut être faux si la convergence est simple mais non uniforme.
- **2.** Pour tout réel x positif et pour tout entier naturel n, on pose

$$f_n(x) = \begin{cases} 2 \cdot \frac{x-k}{n} & \text{si } x \in \left[k, k + \frac{1}{2}\right], k \leqslant n \\ 2 \cdot \frac{k+1-x}{n} & \text{si } x \in \left[k + \frac{1}{2}, k + 1\right], k \leqslant n \\ 0 & \text{sinon.} \end{cases}$$

- a) Montrer que $\int_0^{+\infty} f_n(x) dx$ est convergente et déterminer sa valeur.
- **b)** Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur \mathbb{R} vers la fonction nulle.

Corollaire 6 (Interversion série / intégrale).

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues telle que $\sum f_n$ converge uniformément sur le segment [a,b]. Alors,

$$\int_a^b \left(\sum_{n=0}^{+\infty} f_n(t)\right) dt = \sum_{n=0}^{+\infty} \int_a^b f_n(t) dt.$$

Exercice 16.

- **1.** Montrer que, pour tout réel $x \in]-1,1[,\sum_{n=1}^{+\infty} \frac{x^n}{n} = -\ln(1-x).$
- 2. Montrer que, sur un ensemble à préciser,

$$\arctan(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}.$$

II.3 Convergence uniforme & Dérivation

Théorème 7 (Limite de dérivées).

Soit h une fonction définie sur I telle que

- (i). $\forall n \in \mathbb{N}, f_n \text{ soit de classe } \mathscr{C}^1 \text{ sur } I,$
- (ii). $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers f,
- (iii). $(f'_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers h.

Alors, la fonction f est de classe \mathscr{C}^1 et f' = h. De plus, $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur tout segment de I vers f.

Exercice 17.

- **1.** En étudiant la suite $f_n(x) = \sqrt{\frac{1}{n^2} + x^2}$ sur [-1, 1], montrer que (f_n) converge uniformément sur [-1, 1] vers la fonction valeur absolue, mais que (f'_n) ne converge pas uniformément sur [-1, 1].
- **2.** En étudiant la suite $f_n(x) = \frac{\sin(nx)}{n}$, montrer que (f_n) converge uniformément sur \mathbb{R} vers 0 mais que la suite des dérivées ne converge pas simplement sur \mathbb{R} .
- **3.** En étudiant la suite $f_n(x) = e^{-\frac{x}{n}}$, montrer que (f_n) converge simplement mais non uniformément sur \mathbb{R}_+ alors que (f'_n) converge uniformément sur \mathbb{R}_+ .

Corollaire 8 (Extension \mathcal{C}^k).

Soient $k \in \mathbb{N}^*$ et (g_0, \dots, g_k) des fonctions sur I tels que

- (i). $\forall n \in \mathbb{N}, f_n \text{ est de classe } \mathscr{C}^k \text{ sur } I,$
- (ii). $\left(f_n^{(k)}\right)_{n\in\mathbb{N}}$ converge uniformément sur I vers g_k ,
- (iii). pour tout $j \in [0, k-1]$, $\left(f_n^{(j)}\right)_{n \in \mathbb{N}}$ converge simplement sur I vers g_j .

Alors, la fonction g_0 est de classe \mathscr{C}^k et pour tout $j \in [0, k]$, $g_j = g_0^{(j)}$.

Corollaire 9.

Soit (f_n) une suite de fonctions définies sur I telles que

- (i). Pour tout entier naturel n, la fonction f_n est de classe \mathscr{C}^1 sur I,
- (ii). $\sum f'_n$ converge uniformément sur I.
- (iii). $\sum f_n$ converge simplement sur I,

Alors, la fonction $\sum_{n=0}^{+\infty} f_n$ est de classe \mathscr{C}^1 sur I et $\left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f_n'$.

Exercice 18.

- 1. Étendre le résultat précédent aux fonctions de classe \mathscr{C}^k .
- **2.** Montrer que la fonction ζ est de classe \mathscr{C}^1 sur $]1, +\infty[$ et que $\zeta'(x) = -\sum_{n=1}^{+\infty} \frac{\ln(n)}{n^x}.$
- **3.** Soit $z \in \mathbb{C}$. Pour tout réel t, on pose $g(t) = \sum_{n=0}^{+\infty} \frac{(tz)^k}{k!}$. Montrer que g est de classe \mathscr{C}^{∞} sur \mathbb{R} et que pour tout entier naturel k, $g^{(k)}: t \mapsto z^k e^{tz}$.

Convergence d'une suite de fonctions de répartition

Exercice 19. (Cas particulier du deuxième théorème de Dini) Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires telles que, pour tout $n\in\mathbb{N}$,

- (i). X_n est à valeurs dans $\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}\}$.
- (ii). $\mathbb{P}\left(X_n = \frac{k}{n}\right) = \alpha_n \left(e^{\frac{k}{n}} 1\right)$, où $\alpha_n = \frac{1}{\sum\limits_{k=0}^{n-1} \left(e^{k/n} 1\right)}$.
- (iii). F_n est la fonction de répartition de X_n .
- 1. Déterminer un équivalent de (α_n) .
- **2.** Déterminer une expression de F_n sans signe somme.
- **3.** Montrer que (F_n) converge simplement vers une fonction continue f.
- 4. Montrer que cette convergence est uniforme.

Programme officiel (PSI)

Suites et séries - B - Suites et séries de fonctions (p. 13)