Facultatea de Automatica si Calculatoare, Universitatea Politehnica din Bucuresti

Examen Partial MN

/12

Student:			Grupa:		
Descriere curs:	MN, An I, Semestrul II	Rezultate Examen Subject Punctaj			
Titlu curs:	Metode Numerice				
Profesor:	Florin POP, George POPESCU	1	/3		
Durata examenului:	90 minute	2	/3		
Tip Examen:	"Closed Book"	3	/2		
Materiale Aditionale:	Nu! (!Fara telefoane mobile!)		/ 2		
37		$\mid 4 \mid$	/2		
Numar pagini:					
		151	/2		

Subjecte (Numarul γ)

3 puncte

1. Fie matricea $A = \begin{pmatrix} 1 & 2 \\ 3 & 13 \end{pmatrix}$. Calculati facorizarea LU-Doolittle $(l_{ii} = 1)$ pentru matricea A. Scrieti o functie MATLAB, function [L U] = Doolittle(A), $A \in \mathbb{R}^{n \times n}$.

3 puncte

- 2. Un vector $u \in \mathbb{R}^n$ poate fi adus la un vector de norma 1 prin impartirea cu norma sa. Fie reflectorii Householder $U = I_n 2uu^T$, $||u||_2 = 1$ si $V = I_n vv^T$, $||v||_2 = \sqrt{2}$.
 - a) Dati un exemplu numeric pentru vectorii u si v.
 - b) Calculati reflectorii U si V pentru exemplul dat la punctul a).
 - c) Calculati Uu si Vv.
 - d) Daca $A = uv^T$, calculati $B = UAV^T$.

2 puncte

- 3. Fie functia f(x) data prin x = a, 0, 1, b si $f(x) = y_a, y_0, y_1, y_b$.
 - a) Calculati polinomul Lagrange de interpolare.
 - b) Scrieti o functie MATLAB pentru calculul polinomului Lagrange intr-un punct a.

2 puncte

4. Calculati functiile spline naturale $s_0(x)$ si $s_1(x)$, polinomiale de ordin 2, pentru functia f(x) data prin $x = [1 \ 3 \ 4]$ si $f = [-1 \ 1 \ 18]$.

2 puncte

5. Care dintre matricile $A=[0.0003\ 3;\ 1\ 1]$ si $B=[1\ 1;\ 1\ 1.0001]$ este rau conditionata? (Hint: numar de conditionare)