K-means vs. Hierarchical Clustering

- K-means uses the intra cluster distance to find clusters
- · Hierarchical clustering uses the inter cluster distances.

Cluster Analysis

Hierarchical Clustering

 Produces a set of nested clusters organized as a hierarchical tree

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - 'cut' the dendogram at the proper level to have a certain number of clusters
- They may correspond to meaningful taxonomies
 - Example in biological sciences e.g.,
 - · animal kingdom,
 - · phylogeny reconstruction,
 - ...

Hierarchical Clustering

Algorithm

Let each data point be a cluster Compute the proximity matrix

Repeat

Merge the two closest clusters Update the proximity matrix Until only a single cluster remains

• Key operation is the computation of *cluster closeness*

Starting Situation

Start with clusters of individual points and a proximity matrix

Intermediate Situation

· After some merging steps, we have some clusters

Intermediate Situation

 We want to merge the two closest clusters (say C2 and C5) and update the proximity matrix.

After Merging

• The question is "How do we update the proximity matrix?"

First Define Inter-Cluster Similarity

 p1
 p2
 p3
 p4
 p5

 p1
 ...
 ...

 p2
 ...
 ...

 p3
 ...
 ...

 p4
 ...
 ...

 p5
 ...
 ...

• MAX

Group Average

Proximity Matrix

How to Define Inter-Cluster Similarity

Proximity Matrix

How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average

Proximity Matrix

How to Define Inter-Cluster Similarity

- MIN
- MAX
- **Group Average**

Proximity Matrix

Cluster Similarity: MIN

- · Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points

Cluster Similarity: MIN

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points

1 [1[0. ,	2 0.24,	3&6 0.22,	4 0.37,	5 0.34],	
2[0.24,	0. ,	0.15,	0.2 ,	0.14],	
3&6[0.22,	0.15,	0. ,	0.16,	0.28],	
4[0.37,	0.2 ,	0.16,	0.,	0.29],	
5[0.34,	0.14,	0.28,	0.29,	0.],]	

1 [1[0. ,	2&5 0.24,	3&6 0.22,	4 0.37],
2&5[0.24,	0. ,	0.15,	0.2],
3&6[0.22,	0.15,		0.16],
4[0.37,	0.2 ,	0.16,	0.],]
	THE RESERVE		

Cluster Similarity: MIN

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points

Cluster Similarity: MIN

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN (single)

Can handle non-globular shapes

Limitations of MIN (single)

Sensitive to noise and outliers

Cluster Similarity: MAX

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

Cluster Similarity: MAX

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

Cluster Similarity: MAX

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

Cluster Similarity: MAX

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

1	2&5	3&6	4
[1[0. ,	0.34,	0.23,	0.37],
2&5[0.34,	0. ,	0.39,	0.29],
3&6[0.23,	0.39,	0. ,	0.22 ,
4[0.37,	0.29,	0.22,	0.]]
1 [1[0. , 2&5[0.34, 3&6[0.37,		, 0.39	1,

Cluster Similarity: MAX

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

Hierarchical Clustering: MAX

Hierarchical Clustering: MAX

Note: Algorithmically, you need to consider all pairs of clusters. Here, we use the figure to avoid some of the silly comparisons (e.g. when we considered merging 4 with 3&6 we didn't consider merging with 1)

Strengths of MAX (complete)

Less susceptible with respect to noise and outliers

Limitations of MAX (complete)

Tends to break large clusters

Cluster Similarity: Group Average

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

Hierarchical Clustering: Group Average

Self test

• Which dendrogram can create this clustering?

• Which merging method is it?