

Improving accuracy of neural networks compressed using fixed structures via doping

CITM Research

Urmish Thakker, Ganesh Dasika, Paul Whatmough, Matthew Mattina, Jesse Beu Arm ML Research Lab

Arm ML Research Lab

Summary

- Efficient structures (circular, block-circular, Kronecker products (KP) etc) have shown remarkable results in compressing NNs
 - KP can compress LSTMs in IoT workloads by 15-38x, outperforming traditional compression techniques
- However, hard to scale these techniques for larger networks
- We introduce doping A sparse matrix overlay that provides additional degrees of freedom to matrix expressed using efficient structures
 - To use doping, we need to overcome comatrix adaption using co-matrix row regularization

"Using Doped KP, we can compress a large language model with LSTM layers of size 25 MB by 25x with 1.4% loss in perplexity score outperforming other traditional compression techniques (pruning, LMF etc) by a large margin"

Introduction of Kronecker Products

• Let $A \in R^{m \times n}$, $B \in R^{m1 \times n1}$ and $C \in R^{m2 \times n2}$ then, the KP between B and C is given by

$$A = B \otimes C$$

$$A = \begin{pmatrix} b_{1,1} \circ C & \cdots & b_{1,n_1} & C \\ \vdots & \ddots & \vdots & \ddots \\ b_{m_1,1} & C & \cdots & b_{m_1,n_1} & C \end{pmatrix}$$

- B and C are referred to as Kronecker factors (KF) of A and m = m1xm2 and n = n1xn2
- If m = 154, n = 164, m1 = 11, n1 = 41, m2 = 14, n2 = 144, we get 50x compression!
- We can use more than 2 KFs. Eg -

$$W = W1 \otimes W2 \otimesWn$$
.

- Prior work [1] showed
 - How many number of KF matrices, n, should we choose
 - The impact on inference run-time when RNN are expressed as KP of 2 matrices
 - We can compress IoT Workloads by 15-
- However, this work does not scale to large networks

Applying KP to a large Language Model

- Applied KP to medium Language Model from [2].
 - LSTM layers with matrices of size 2600x1300 and layers total size of 25 MB.
 - Baseline Perplexity of 82.07
- Result of KP Compression
 - Compression by a factor of 338x
 - Perplexity of 104.03, perplexity loss of 38%!
- [1] suggests using Hybrid KP to recover lost accuracy
 - HKP can recover the lost accuracy, but compression reduces to a factor of 5x
- Questions
 - "Why does KP Compression lead to loss in accuracy for large models?"
 - "How can you scale KP to larger networks without sacrificing accuracy or giving up on their significant compression benefits"

Issues with KP Compression

(a) KP of two 2x2 matrices, B & C, leads to a matrix, A, of size 4x4

Question - What if, to get to optimal minima this value should go to 4?

(b) Changing a single element in B/C changes 4 elements in A. This restricts the expressibility of A. Solution 1 doubles the values of all elements in the green boxes in A. Thus, we do not reach the optimal solution. Similar observation can be made for Solution 2

(c) Solution proposed in this paper - Doping

Add a sparse matrix (94% sparsity) to A to provide additional degrees of freedom to the elements in matrix A. This allows the matrix to be updated such that it reaches the optimal minima

Doped Kronecker Products (DKP)

$$W = M_{kp} + M_{sp}$$
, where $M_{kp} = B \otimes C - (1)$

- Sparsity of M_{sp} determines the amount of compression
- For example, if W is of size 100x100, B and C are of size 10x10, then 95% sparsity in M_{sp} will lead to 14x compression and 90% sparsity in M_{sp} will lead to 8.4x compression
- During the initial phase of training, M_{sp} is dense. As training progresses, M_{sp} reaches the required sparsity level

Co-matrix Adaptation

 Applying DKP as in equation 1 does not work. Table 1 shows the result of applying DKP as in equation 1.

Table 1

Baseline	82.04	
Perplexity		
Compression Factor	338x	100x
Sparsity of M _{sp}	100%	99.93%
DKP Perplexity	104	138.3

DKP as shown in equation 1 does not work because of co-matrix adaptation, as shown below:

Possible methods to overcome CMA:

$$W = B \otimes C + \beta * M_{sp}, \min ||\beta|| - (2a)$$

$$W = \alpha * (B \otimes C) + \beta * M_{sp}, \min ||\beta|| - (2b)$$

• Equation 2a and 2b can be further trained using Block Circular Descent (BCD)

Co-matrix Row Dropout Regularization (CMR)

- Equations 2a and 2b, help manage CMA to a certain extent. We asked ourselves, could we do better?
- Our hypothesis: During CMA, incoming neurons from the M_{kp} matrix and the M_{sp} matrix learn to coadapt, leading to lost capacity
- Introduce stochastic behavior where either the Mkp neuron or the Msp neuron are not available to drive the output neuron
- CMR:

$$W = (B \otimes C) \odot b_1 + Msp \odot b_2$$

where $b_1 \sim Bernoulli(p), b_2 \sim Bernoulli(p)$

Results

	Compression	Test
	Factor	Perplexity
Baseline	1	82.04
4-bit quantization [3]	8	83.84
3-bit quantization [4]	10.67	83.14
Tensor Train		
Decomposition [5]	1.67	168.64
Weight Distortion with		
Pruning [6]	10	84.64
Low-rank matrix		
factorization	20	114.29
HMD [7]	20	105.43
HKD [1]	20	99.882
Magnitude Pruning	20	85.14
This work (DKP+CMR)	25	83.24

Read our papers for more details

Full paper available on arxiv, scan this QR code for

This work

Prior work on KP Compression

References

- [1] Compressing RNNs for IoT devices by 15-38x using Kronecker **Products**
- [2] Recurrent Neural Network Regularization
- [3] Weighted-Entropy-based Quantization for Deep Neural Networks [4] Retraining-Based Iterative Weight Quantization for Deep Neural Networks
- [5] Compression of Recurrent Neural Networks for Efficient Language Modeling
- [6] DeepTwist: Learning Model Compression via Occasional Weight Distortion
- [7] Run-Time Efficient RNN Compression for Inference on Edge Devices