# 7) t-distribution

Vitor Kamada

June 2018

#### Reference

Tables, Graphics, and Figures from Introductory Statistics with

Randomization and Simulation

Diez et al. (2014): Chapter 4 - Inference for Numerical Data

# t Distribution (Blue Solid Line) vs Normal Distribution (Red Dotted Line)



### t Distribution and Degrees of Freedom (df)



# What is the area below $t_{18} = -2.10$ ?



import scipy.stats
scipy.stats.t.cdf(-2.1,18)

Blue Area = 2.5%

#### t Table

scipy.stats.t.ppf(0.025,18)

| one tail  | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
|-----------|-------|-------|-------|-------|-------|
| two tails | 0.200 | 0.100 | 0.050 | 0.020 | 0.010 |
| df 1      | 3.08  | 6.31  | 12.71 | 31.82 | 63.66 |
| 2         | 1.89  | 2.92  | 4.30  | 6.96  | 9.92  |
| 3         | 1.64  | 2.35  | 3.18  | 4.54  | 5.84  |
| :         |       | :     | :     | :     |       |
| 17        | 1.33  | 1.74  | 2.11  | 2.57  | 2.90  |
| 18        | 1.33  | 1.73  | 2.10  | 2.55  | 2.88  |
| 19        | 1.33  | 1.73  | 2.09  | 2.54  | 2.86  |
| 20        | 1.33  | 1.72  | 2.09  | 2.53  | 2.85  |
| :         | :     | :     | :     | :     |       |
| 400       | 1.28  | 1.65  | 1.97  | 2.34  | 2.59  |
| 500       | 1.28  | 1.65  | 1.96  | 2.33  | 2.59  |
| $\infty$  | 1.28  | 1.65  | 1.96  | 2.33  | 2.58  |

### Confidence Interval for $\mu$

$$4.4 \pm 2.10 \times 0.528 = [3.29, 5.51]$$

We are 95% confident the average mercury content of muscles in Risso's dolphins is between 3.29 and 5.51 g/wet gram

#### **Paired Data**

|    | dept    | course | ucla  | amazon | diff  |
|----|---------|--------|-------|--------|-------|
| 1  | Am Ind  | C170   | 27.67 | 27.95  | -0.28 |
| 2  | Anthro  | 9      | 40.59 | 31.14  | 9.45  |
| 3  | Anthro  | 135T   | 31.68 | 32.00  | -0.32 |
| 4  | Anthro  | 191HB  | 16.00 | 11.52  | 4.48  |
| :  | :       | :      | :     | :      | :     |
| 72 | Wom Std | M144   | 23.76 | 18.72  | 5.04  |
| 73 | Wom Std | 285    | 27.70 | 18.22  | 9.48  |
|    |         |        |       |        |       |



#### Inference for Paired Data

$$H_o: \mu_{diff} = 0 \text{ vs } H_A: \mu_{diff} \neq 0$$

$$\overline{n_{diff} \quad \overline{x}_{diff} \quad s_{diff}}$$
73 12.76 14.26

$$SE_{\bar{x}_{diff}} = \frac{s_{diff}}{\sqrt{n_{diff}}} = \frac{14.26}{\sqrt{73}} = 1.67$$

$$t = \frac{(\bar{x}_{diff} - 0)}{SE_{\bar{x}_{diff}}} = \frac{12.76 - 0}{1.67} = 7.59$$

p-value of t > 7.50 is .00001



# Does treatment using embryonic stem cells (ESCs) help improve heart function following a heart attack?

|         | n | $\bar{x}$ | S    |  |
|---------|---|-----------|------|--|
| ESCs    | 9 | 3.50      | 5.17 |  |
| control | 9 | -4.33     | 2.76 |  |
|         |   |           |      |  |

$$\bar{x}_{esc} - \bar{x}_{control} = 3.50 - (-4.33) = 7.83$$

Higher values are associated with greater improvement

#### **Histograms**

#### Embryonic stem cell transplant



#### Control (no treatment)



# **95%** Confidence Interval for $\mu_1 - \mu_2$

$$SE_{\mu_1-\mu_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \cong \sqrt{\frac{5.17^2}{9} + \frac{2.76^2}{9}} = 1.95$$

$$ar{x}_{esc} - ar{x}_{control} \pm t^* imes SE_{esc-control}$$

$$7.83 \pm 2.31 \times 1.95 \rightarrow [3.38, 12.38]$$

\*To calculate the df, use software or the smaller of  $n_1-1$  and  $n_2-1$ 

# Hunt (1973): Experiment

# Absorption of Phosphorus by Rumex Acetosa

# import pandas as pd

```
\label{eq:df} \begin{array}{l} df = \\ pd.read\_table('http://www.stat.umn.edu//\sim gary//book//fcdae.data//eheader=10, \ delim\_whitespace=True) \end{array}
```

| 15 Days |     |     | 28 Days |     |     |     |     |
|---------|-----|-----|---------|-----|-----|-----|-----|
| 4.3     | 4.6 | 4.8 | 5.4     | 5.3 | 5.7 | 6.0 | 6.3 |

### Two-Sample t-Test

$$H_0: \mu_1 = \mu_2 \text{ vs } H_A: \mu_1 < \mu_2$$

$$s_p = \sqrt{\frac{\sum\limits_{i=1}^{n_1} (y_{1i} - \bar{y}_1)^2 + \sum\limits_{i=1}^{n_2} (y_{2i} - \bar{y}_2)^2}{n_1 + n_2 - 2}}$$

$$t = \frac{\bar{y}_1 - \bar{y}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{4.775 - 5.825}{.446 \sqrt{\frac{1}{4} + \frac{1}{4}}}$$

t = -3.3273, df = 6, p-value = 0.00793

# Two-Sample t-Test (Equal Variance)

$$a = df[df['days'] == 15]$$

$$b = df[df['days'] == 28]$$

Ttest\_indResult(statistic=-3.3273307180250296, pvalue=0.015859198

OneTail = TwoTail.pvalue/2

0.007929599172545378