

# Lecture 13 - Filters



#### **Filters**

- Circuit designed to retain certain frequency range but discard or attenuate others
  - Low-pass: pass low frequencies and reject high frequencies
  - High-pass: pass high frequencies and reject low frequencies
  - Band-pass: pass some particular range of frequencies, reject other frequencies outside that band
  - Band-reject (notch): reject a range of frequencies and pass all other frequencies









[Source: Berkeley]

#### Filters - Realistic Curves



3



#### **Passive Filters**

- A filter is passive if it consists only of <u>passive</u> elements
  - R, L and C
- LC filters have been used in practical applications for more than eight decades
  - Very important circuits
    - many technological advances would not have been possible without the development of filters
  - LC filter technology feeds many areas
    - equalizers, impedance-matching networks, transformers, shaping networks, power dividers, attenuators, and directional couplers ...



## First-Order RC Lowpass Filter

 A typical lowpass filter is formed when the output of a RC circuit is taken off the capacitor.



$$\mathbf{H}(\boldsymbol{\omega}) =$$

The cutoff frequency is:

$$\omega_c =$$

• Filter is designed to pass from DC up to  $\omega_c$ .





## First-Order RC Highpass Filter

$$\mathbf{H}(\boldsymbol{\omega}) =$$

The cutoff frequency.

$$\omega_c =$$

• The difference being that the frequencies passed go from  $\omega_c$  to infinity.







#### **How about RL Circuits?**





$$H_R = R / (R + 1/j\omega C)$$

$$H_C = (1/j\omega C) / (R + 1/j\omega C)$$

$$H_R = R / (R + j\omega L)$$

$$\mathbf{H}_{\perp} = j\omega \mathbf{L} / (\mathbf{R} + j\omega \mathbf{L})$$



## **How about RLC Circuits?**







## **Bandpass RLC Filter**



$$\mathbf{V}_{\mathrm{R}}$$
  $\mathbf{H}_{\mathrm{BP}}(\omega) = \frac{\mathbf{V}_{\mathrm{R}}}{\mathbf{V}_{\mathrm{S}}} =$ 

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega_{c_1} = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}},$$

$$\omega_{c_2} = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}.$$





Lecture 13



## **Example**

- (a) Design a series RLC bandpass filter with a center frequency  $f_0=1\,\mathrm{MHz}$  and a quality factor Q=20, given that  $L=0.1\,\mathrm{mH}$ .
- (b) Determine the 10-dB bandwidth of the filter, which is defined as the bandwidth between frequencies at which the power level is 10 dB below the peak value.







# **Bandstop (Bandreject) Filter**



$$H_{BR} = V_{LC}/V_s$$

#### Electric Circuits (Spring 2020)





#### **Second-Order RLC Filter Circuits**



$$\mathbf{Z} = \mathbf{R} + 1/j\omega\mathbf{C} + j\omega\mathbf{L}$$

$$\mathbf{H}_{BP} = \mathbf{R} / \mathbf{Z}$$

$$\mathbf{H}_{LP} = (1/j\omega\mathbf{C}) / \mathbf{Z}$$

$$\mathbf{H}_{HP} = j\omega\mathbf{L} / \mathbf{Z}$$

$$\mathbf{H}_{\mathrm{BR}} = \mathbf{H}_{\mathrm{LP}} + \mathbf{H}_{\mathrm{HP}}$$



## **Example**

 Determine what type of filter is shown below. Calculate half-power frequency.

$$R=2\mathrm{k}\Omega$$
,  $L=2\mathrm{H}$  and  $C=2\mu\mathrm{F}$ .

$$\mathbf{H}(s) = \frac{\mathbf{V}_o}{\mathbf{V}_i} =$$





#### **Active Filters**

- Passive filters have a few drawbacks.
  - Generally, they cannot create gain greater than 1.
  - They require inductors, which tend to be bulky and more expensive than other components.



- It is possible, using <u>op-amps</u>, <u>together</u> <u>with resistors and capacitors</u>, to create all the common filters.
  - Their ability to isolate input and output also makes them very desirable.
  - Limited to frequency less than 1MHz.





# **Four Types of Filters**



16



# **Active Filters – Lowpass**



(a) Inverting amplifier



 $\mathbf{Z}_{\mathrm{f}}$ 

(b) Phasor domain with impedances

Lecture 13 17

# **Active Filters – Highpass**



$$\mathbf{H}_{\mathrm{HP}}(\omega) = \frac{\mathbf{V}_{\mathrm{out}}}{\mathbf{V}_{\mathrm{s}}} =$$



## **Bandpass**





(a) Bandpass filter



## **Active Bandpass Filter**





## **Active Bandreject Filter**





Lecture 13 21



## **Active Bandreject Filter**



Lecture 13 22