Classification

Prof.Nilkamal More

Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian Classification
- Classification by backpropagation
- Classification based on concepts from association rule mining
- Other Classification Methods
- Prediction
- Classification accuracy
- Summary

Classification vs. Prediction

Classification:

- predicts categorical class labels
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

Prediction:

- models continuous-valued functions, i.e., predicts unknown or missing values
- Typical Applications
 - credit approval
 - target marketing
 - medical diagnosis
 - treatment effectiveness analysis

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction: training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Took ook is independent of tweining ook otherwises

Classification Process (1): Model Construction

Training Data

Classification Algorithms

Classifier (Model)

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Classifier

yes

Testing Data

Unseen Data

(Jeff, Professor, 4)

Tenured?

NAMERANKYEARS TENUREDTomAssistant Prof2noMerlisaAssociate Prof7noGeorgeProfessor5yes

Joseph Assistant Prof

Supervised vs. Unsupervised Learning

Supervised learning (classification)

- Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
- New data is classified based on the training set

Unsupervised learning (clustering)

- The class labels of training data is unknown
- Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data.

Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian Classification
- Classification by backpropagation
- Classification based on concepts from association rule mining
- Other Classification Methods
- Prediction
- Classification accuracy
- Summary

Issues (1): Data Preparation

- Data cleaning
 - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - Remove the irrelevant or redundant attributes
- Data transformation
 - Generalize and/or normalize data

Issues (2): Evaluating Classification Methods

- Predictive accuracy
- Speed and scalability
 - time to construct the model
 - time to use the model
- Robustness
 - handling noise and missing values
- Scalability
 - efficiency in disk-resident databases
- Interpretability:
 - understanding and insight provded by the model
- Goodness of rules
 - decision tree size
 - compactness of classification rules

Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian Classification
- Classification by backpropagation
- Classification based on concepts from association rule mining
- Other Classification Methods
- Prediction
- Classification accuracy
- Summary

Training Dataset

age	income	student	credit_rating	buys_ Computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Bayesian Classification: Why?

- Probabilistic learning: Calculate explicit probabilities for hypothesis, among the most practical approaches to certain types of learning problems
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct. Prior knowledge can be combined with observed data.
- Probabilistic prediction: Predict multiple hypotheses, weighted by their probabilities
- Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayesian Theorem

Given training data D, posteriori probability of a hypothesis h, P(h|D) follows the Bayes theorem

$$P(h/D) = \frac{P(D/h)P(h)}{P(D)}$$

MAP (maximum posteriori) hypothesis

$$P(D/h)P(h)$$
.

Practical difficulty: require initial knowledge of many probabilities, significant computational cost

Bayesian classification

- The classification problem may be formalized using a-posteriori probabilities:
- P(C|X) = prob. that the sample tuple $X = \langle x_1, ..., x_k \rangle$ is of class C.

- E.g. P(class=N | outlook=sunny,windy=true,...)
- Idea: assign to sample X the class label C such that P(C|X) is maximal

Estimating a-posteriori probabilities

Bayes theorem:

$$P(C|X) = P(X|C) \cdot P(C) / P(X)$$

- P(X) is constant for all classes
- P(C) = relative freq of class C samples
- C such that P(C|X) is maximum = C such that $P(X|C) \cdot P(C)$ is maximum
- Problem: computing P(X|C) is unfeasible!

Naïve Bayesian Classification

Naïve assumption: attribute independence

$$P(x_1,...,x_k|C) = P(x_1|C) \cdot ... \cdot P(x_k|C)$$

- If i-th attribute is categorical:

 P(x_i|C) is estimated as the relative freq of samples having value x_i as i-th attribute in class C
- If i-th attribute is continuous: P(x_i|C) is estimated thru a Gaussian density function
- Computationally easy in both cases

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	P
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

$$P(p) = 9/14$$

outlook

$$P(\text{sunny}|p) = 2/9$$

$$P(overcast|p) = 4/9$$
 $P(overcast|n) = 0$

$$P(rain|p) = 3/9$$

$$P(rain|n) = 2/5$$

P(sunny|n) = 3/5

P(n) = 5/14

temperature

$$P(hot|p) = 2/9$$

$$P(mild|p) = 4/9$$

$$P(cool|p) = 3/9$$

$$P(mild|n) = 2/5$$
$$P(cool|n) = 1/5$$

P(high|n) = 4/5

P(normal|n) = 2/5

P(hot|n) = 2/5

humidity

$$P(high|p) = 3/9$$

$$P(normal|p) = 6/9$$

windy

$$P(true|p) = 3/9$$

$$P(true|n) = 3/5$$

$$P(false|p) = 6/9$$

$$P(false|n) = 2/5$$

Play-tennis example: classifying X

- An unseen sample X = <rain, hot, high, false>
- P(X|p)·P(p) = P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p) = $3/9 \cdot 2/9 \cdot 3/9 \cdot 6/9 \cdot 9/14 = 0.010582$
- P(X|n)·P(n) = P(rain|n)·P(hot|n)·P(high|n)·P(false|n)·P(n) = $2/5 \cdot 2/5 \cdot 4/5 \cdot 2/5 \cdot 5/14 = 0.018286$
- Sample X is classified in class n (don't play)

The independence hypothesis...

- ... makes computation possible
- ... yields optimal classifiers when satisfied
- ... but is seldom satisfied in practice, as attributes (variables) are often correlated.
- Attempts to overcome this limitation:
 - Bayesian networks, that combine Bayesian reasoning with causal relationships between attributes
 - Decision trees, that reason on one attribute at the time, considering most important attributes first

Example of Naïve Bayesian:

Unknown sample---- { Red, SUV, Domestic,?}

Example No.	Color	Туре	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Color	
P(Red Yes)=3/5	P(Red No)=2/5
P(Yellow Yes)=2/5	P(Yellow No)=3/5
Туре	
P(SUV Yes)=1/5	P(SUV No)=3/5
P(Sports Yes)=4/5	P(Sports No)=2/5
Origin	
P(Domestic Yes)=2/5	P(Domestic No)=3/5
P(Imported Yes)=3/5	P(Imported No)=2/5

P(Yes) * P(Red | Yes) * P(SUV | Yes) * P(Domestic|Yes) = 5/10 * 3/5 * 2/5 * 1/5 = 0.024 and for v = No, P(No) * P(Red | No) * P(SUV | No) * P(Domestic | No) = 5/10 * 2/5 * 3/5 * 3/5 = 0.072

Since 0.072 > 0.024, our example gets classified as 'NO'