CS & IT ENGINEERING

Operating System

CPU Scheduling

DPP Discussion Notes

#Q. Consider the following process scenario.

Process	Arrival Time	Burst Time
	(in milliseconds)	(In milliseconds)
P1	4	5
P2	5	3
Р3	8	4
P4	7	2
P5	3	1
P6	0	6
P7	7	2

W	
	W

Process	A·T	B.T	C·T	TAT	W·T
PI	4	5	12	8	3
$\checkmark P_2$	5	3	15	0)	7
~P3	8	4	23	15	ιι
VP4	7	2	17	10	8
1P5	3	(7	4	3
~ Pc	0	6	6	6	0
V P7	7	2	19	12	10

Gantt court for FCFS: -

Average maiting => 3+7+11+8+3 +10

$$= \frac{42}{7} = 6 \text{ ms} . 7$$

#Q. Consider the following process scenario.

Process	Arrival Time	Burst Time
	(in milliseconds)	(In milliseconds)
P1	5	6
P2	3	3
Р3	1	4
P4	2	2
P5	4	1
P6	0	3
P7	1	2

Process	A.T	B·T	C· T	てA・T	w·T
\mathcal{P}_{I}	5	6	21	16	lΟ
P2	3	3	ll	8	5
-P3	1	4	15	14	lo
Py	2	2	8	6	4
P5	4	l	P	\mathcal{A}	1
P6	0	3	3	3	O
1-P7	1	2	52	4	2

Gant chart for SJF:-

Average waiting time = 10+5+10+4+1+0+2 = 32 7=> 4.57 ms.

#Q. Consider a CPU performance metric throughput which is calculated as:

Throughput= Number of processes executed

Total scheduling duration from first process arrival till last process completion

For the following process scenario calculate the throughput calculated for non-preemptive SJF algorithm ____ per milliseconds (rounded up to 1 decimal place)?

Process	Arrival Time (in milliseconds)	Burst Time (in milliseconds)
✓ P1	_0	3
✓ P2		6
Р3	7	4_
✓ P4	9	2
✓ P5	8	1-
✓ P6	6	3

Gantt Mart for SJF:-

Throughput
$$\Rightarrow \frac{6}{20} \Rightarrow 0.3$$

#Q. Consider a CPU performance metric throughput which is calculated as:

Throughput= Number of processes executed

Total scheduling duration from first process arrival till last process completion

For the following process scenario calculate the throughput calculated for FCFS algorithm as x and for non-preemptive SJF scheduling as y. The value of x - y is _____?

Process	Arrival Time	Burst Time
P1	0	4
P2	0	3
Р3	0	1
P4	0	5

Inroughput =)
$$\frac{4}{13}$$
 $\Rightarrow x$

Gant cuart for SJF policy: -

Tunoughput
$$=$$
 $\frac{4}{13}$ $=$ $> y$

X-Y =
$$\frac{4}{13} - \frac{4}{13} = 0$$
.

#Q.

Consider 4 processes A, B, C and D. All arrived at time 0 in the given order. The processes needed 5ns, 3ns, 9ns and 10ns respectively for their CPU burst to complete. The average turnaround time of processes if executed in FCFS order is <u>u-25</u> ns (rounded up to 2 decimal place)?

Process	P.7	B. T	C·T	T.A.T
A	0	5	15%	5
B	0	3	8	8
C	Ο	9	17	17
\Box	0	lO	27	27

Gant Chart for FCFS policy: -

Average T.A.T =
$$(5+8+17+27)$$
 => $\frac{57}{4}$ => $\frac{14.25}{4}$ ns

[NAT]

#Q.

0+ in the order A, B, C and D. Their CPU burst time requirements are 4, 1, 6, 2 time units respectively. The completion time of process A under Round-Robin scheduling with time slice of one time unit is _____?

Processes	D. T	B·T	$T \cdot S / T \cdot Q = 1$
A	0+	43	220
В	0+	X O	
C	0+	KBL	3
\mathcal{D}	0+	DX6	2

Ganttenart for R.R using [T.Q=1

Ready Over :- PBFBFBFCBACAC

[MCQ]

#Q. On a system using round robin CPU scheduling context-switch overhead is given by 's'. Time quantum is 'q'. The CPU efficiency, if q=s is?

- B Zero
- **c** 100%
- Not predictable

#Q. Consider the following process scenario.

Process	Arrival Time	Burst Time
	(in milliseconds)	(In milliseconds)
P1	0 ,	12
P2	1 .	8
Р3	2 .	7
P4	3 '	2
P5	7 ·	3

The average waiting time processes for preemptive shortest remaining time first scheduling algorithm is <u>٦٠५</u> milliseconds (rounded up to 1 decimal place)?

Processes	A.T	B·T	C·T	T.O.T	W·T
\mathcal{P}_{I}	O	1211	32	32	20
/ P2	1	by A	14	13	5
/ P3	٦.	7	21	19	12
, Py	3	20	52	2	0
Ps	7	3	(0	3	0

Gant chart:

#Q. Consider the following process scenario.

Process	Arrival Time	Burst Time
	(in milliseconds)	(In milliseconds)
P1	0	8
P2	1	4
Р3	2	1
P4	4	5

The average waiting time processes for round robin scheduling algorithm is $\boxed{3 \cdot 5}$ milliseconds with time slice of 3 milliseconds (rounded up to 1 decimal place)?

Processes	A.T	B.T	C·T	T.A.T	w· T
PI	0	\$08\$	16	16	8
P2		OKX	14	13	9
P3	2	20	7	5	4
Py	4	0 \$ \$	18	14	9

Gant chart:

$$= \frac{30}{4} = 7.5 \text{ m/s}$$

[NAT]

#Q. A computer system has <u>2GB of RAM and OS occupies 256MB of RAM</u>. All the user processes are of 128MB and have same characteristics. If the goal is <u>99% CPU utilization</u>, then the maximum I/O wait that can be tolerated is <u>72</u>% (rounded to nearest integer)?

Max.
$$7/0$$
 mind that can be tolerated = $1-\frac{m}{p}$ = $1-\frac{14}{p}$ = 0.99

$$1-0.99 = 6^{14} \Rightarrow 6 \Rightarrow 71.96\% \approx 72\%$$

THANK - YOU