The second equation yields

$$L(u,\mu) = J(u) + \sum_{i=1}^{m} \mu_i \varphi_i(u) \le J(u) = J(u) + \sum_{i=1}^{m} \lambda_i \varphi_i(u) = L(u,\lambda),$$

that is,

$$L(u,\mu) \le L(u,\lambda)$$
 for all $\mu \in \mathbb{R}^m_+$ (*2)

(since $\varphi_i(u) \leq 0$ as $u \in U$), and since the function $v \mapsto J(v) + \sum_{i=1} \lambda_i \varphi_i(v) = L(v, \lambda)$ is convex as a sum of convex functions, by Theorem 40.13(4), the first equation is a sufficient condition for the existence of minimum. Consequently,

$$L(u,\lambda) \le L(v,\lambda)$$
 for all $v \in \Omega$, $(*_3)$

and $(*_2)$ and $(*_3)$ show that (u, λ) is a saddle point of L.

To recap what we just proved, under some mild hypotheses, the set of solutions of the Minimization Problem (P)

minimize
$$J(v)$$

subject to $\varphi_i(v) \leq 0$, $i = 1, ..., m$

coincides with the set of first arguments of the saddle points of the Lagrangian

$$L(v,\mu) = J(v) + \sum_{i=1}^{m} \mu_i \varphi_i(v),$$

and for any optimum $u \in U$ of Problem (P), we have $J(u) = L(u, \lambda)$.

Therefore, if we knew some particular second argument λ of these saddle points, then the *constrained* Problem (P) would be replaced by the *unconstrained* Problem (P_{λ}) :

find
$$u_{\lambda} \in \Omega$$
 such that $L(u_{\lambda}, \lambda) = \inf_{v \in \Omega} L(v, \lambda)$.

How do we find such an element $\lambda \in \mathbb{R}_+^m$?

For this, remember that for a saddle point (u_{λ}, λ) , by Proposition 50.14, we have

$$L(u_{\lambda}, \lambda) = \inf_{v \in \Omega} L(v, \lambda) = \sup_{\mu \in \mathbb{R}^{m}_{\perp}} \inf_{v \in \Omega} L(v, \mu),$$

so we are naturally led to introduce the function $G \colon \mathbb{R}^m_+ \to \mathbb{R}$ given by

$$G(\mu) = \inf_{v \in \Omega} L(v, \mu) \quad \mu \in \mathbb{R}_+^m,$$