### UMF-exam

#### **DGAP**

#### May 2019

Внимание! Составители не несут никакой ответственности за написанное! Мы попытаемся все перепроверить, но будьте готовы ко всякому. Лучшим решением будет посмотреть все лекции, разобраться со всем там сказанным, а затем уже пользоваться этим файлом. Все, кто взял себе билет и не успел в дедлайн - пидорасы. Все, кто оставляет за собой ошибки, тоже пидорасы.

**Примечание для составителей:** используйте окружение \paper{номер билета}{формулировка билета}, чтобы автоматически добавить билет в оглавление, выделить ему новую страницу, оформить все билеты одинаковым шрифтом.

Для теорем используйте overleaf guide

#### Содержание

| 1  |  |  |  | <br> |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 2  |
|----|--|--|--|------|--|--|--|--|--|--|--|------|--|--|--|--|--|--|--|--|--|--|--|--|------|--|----|
| 2  |  |  |  | <br> |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 6  |
| 3  |  |  |  | <br> |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 8  |
| 4  |  |  |  | <br> |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 11 |
| 5  |  |  |  | <br> |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 16 |
| 6  |  |  |  | <br> |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 19 |
| 7  |  |  |  | <br> |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 22 |
| 8  |  |  |  | <br> |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 29 |
| 9  |  |  |  | <br> |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 34 |
| 10 |  |  |  |      |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 35 |
| 11 |  |  |  |      |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 37 |
| 12 |  |  |  |      |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 40 |
| 13 |  |  |  |      |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 44 |
| 14 |  |  |  |      |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 45 |
| 15 |  |  |  | <br> |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 48 |
| 16 |  |  |  | <br> |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 51 |
| 17 |  |  |  | <br> |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 55 |
| 18 |  |  |  | <br> |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 61 |
| 19 |  |  |  |      |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 65 |
| 20 |  |  |  |      |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 69 |
| 21 |  |  |  |      |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 74 |
| 22 |  |  |  |      |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 76 |
| 23 |  |  |  |      |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |  | 77 |
| 24 |  |  |  | <br> |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  |      |  | 78 |
| 25 |  |  |  |      |  |  |  |  |  |  |  |      |  |  |  |  |  |  |  |  |  |  |  |  |      |  | 89 |

1. Постановка задачи Коши для гиперболического в заданной области линейного дифференциального уравнения второго порядка с двумя независимыми переменными. Полуклассическое решение решение этой задачи в характеристических переменных, его существование и единственность

Это 3 лекции Конста (2,3 и 5), перед ботанием, удостоверьтесь, что готовы столько проглотить. **Классификация** Условие уравнения:  $x \in G$ ;  $a_{ij}$ ,  $b_k$ , c,  $f \in C(G)$  и само уравнение:

$$\left(\widehat{L}\right)u(x) = \left(\sum_{i,j=1}^{m} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{k=1}^{m} b_k(x) \frac{\partial}{\partial x_k} + c(x)\right) u(x) = f(x);$$

 $u \in C^2(G)$ , удовлетворяющая основному уравнению, называется **решением** поставленной задачи. G — некоторая область в  $\mathbb{R}^m$ 

Рассмотрим матрицу  $(A(x))_{ij} = a_{ij}$ , в общем случае она не является симметричной, но её всега можно сделать такой, в силу равенства смешанных производных  $(\widetilde{A}_{ij} = (A_{ij} + A_{ji})/2$ , уравнение не изменится) далее будем считать её симметричной, тогда:

- ullet если  $\det A=0$ , то уравнение называется **параболическим** в точке
- если  $\det A \neq 0$  и A строго знакоопределена (все собственные значения одного знака), то уравнение называется эллиптическим в точке
- если  $\det A \neq 0$  и A строго знаконеопределена (существуют собственные значения разных знаков), то уравнение называется гиперболическим в точке

Если какое-то из условий выполняется во всех точках области, то говорят, что уравнение имеет такой тип в области. Преобразования основного уравнения смотри тут при гладкой замене в области  $G \subset \mathbb{R}^m$ . Рассматриваем  $\xi = \xi(x)$  — взаимооднозначную функцию,  $\xi \in C^2(G)$ . И  $J = \frac{\partial \xi}{\partial x} = \frac{\partial (\xi_1, \dots, \xi_m)}{\partial (x_1, \dots, x_m)}$  не вырождена в G. Обозначим  $\xi(G) = D \subset \mathbb{R}^m$ . Тогда существует  $\xi^{-1} = x : D \to G$ . Поймем, как преобразуется основное уравнение:

$$u(x) = u(x(\xi)) = v(\xi)$$

$$\frac{\partial u}{\partial x_i} = \sum_{s=1}^m \frac{\partial v}{\partial \xi_s} \frac{\partial \xi_s}{\partial x_i}$$

$$\frac{\partial^2 u}{\partial x_i \partial x_j} = \sum_{s,l=1}^m \frac{\partial^2 v}{\partial \xi_l \partial \xi_s} \frac{\partial \xi_l}{\partial x_j} \frac{\partial \xi_s}{\partial x_i} + \sum_{s=1}^m \frac{\partial v}{\partial \xi_s} \frac{\partial^2 \xi_s}{\partial x_i \partial x_j}$$

$$\hat{L}u(x) = \sum_{i,j}^m \sum_{s,l=1}^m a_{ij}(x) \frac{\partial^2 v}{\partial \xi_l \partial \xi_s} \frac{\partial \xi_l}{\partial x_j} \frac{\partial \xi_s}{\partial x_i} + \sum_{i,j=1}^m \sum_{s=1}^m a_{ij}(x) \frac{\partial v}{\partial \xi_s} \frac{\partial^2 \xi_s}{\partial x_i \partial x_j} + \sum_k^m \sum_{s=1}^m b_k(x) \frac{\partial v}{\partial \xi_s} \frac{\partial \xi_s}{\partial x_i} + c(x(\xi))v(\xi) =$$

$$= \sum_{s,l=1}^m \left( \sum_{i,j}^m a_{ij}(x) \frac{\partial \xi_l}{\partial x_j} \frac{\partial \xi_s}{\partial x_i} \right) \frac{\partial^2 v}{\partial \xi_l \partial \xi_s} + \sum_{s=1}^m \left( \sum_{i,j=1}^m a_{ij}(x) \frac{\partial^2 \xi_s}{\partial x_i \partial x_j} + \sum_k^m b_k(x) \frac{\partial \xi_s}{\partial x_i} \right) \frac{\partial v}{\partial \xi_s} + c(x(\xi))v(\xi)$$

Получаем выражения для коэффицентов в новых координатах:

$$\tilde{c}(\xi) = c(x(\xi))$$

$$\tilde{b}_s(\xi) = \sum_{i,j=1}^m a_{ij}(x) \frac{\partial^2 \xi_s}{\partial x_i \partial x_j} + \sum_k^m b_k(x) \frac{\partial \xi_s}{\partial x_k}$$

$$\tilde{a}_{sl} = \sum_{i,j}^m \frac{\partial \xi_s}{\partial x_i} a_{ij}(x) \frac{\partial \xi_l}{\partial x_j} \Rightarrow \boxed{\tilde{A} = JAJ^T}$$

Для диагональных элементов A:  $\tilde{a}_{ss} = (\nabla_x \xi_s)^T A(\nabla_x \xi_s)$  Постановка задачи Коши для гиперболического двумерного уравнения ( $\lambda_i$  разных знаков) из видоса

$$\left(\sum_{i,j=1}^{2} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{k=1}^{2} b_k(x) \frac{\partial}{\partial x_k} + c(x)\right) u(x) = f(x)$$
(1)



Введем обозначения  $x_1 = x, x_2 = y$ . В G рассматриваем задачу Коши с граничными условиями на  $\gamma$ :

$$u|_{\gamma} = u_0 \in C^1(\gamma)$$
$$\frac{\partial u}{\partial n}|_{\gamma} = u_1 \in C(\gamma)$$
$$u \in C^2(G\backslash \gamma) \cap C^1(G)$$

Не забываем, что все коэффициенты непрерывны. Пусть в точке  $X_0 = (x_0, y_0) \in G$ :  $a_{11} \neq 0$ . В силу непрерывности  $\exists$  окрестность  $U_0 \subset G$ , в которой  $a_{11} \neq 0$ . Введем  $F_i \in C^1(U_0)$  и  $\nabla F \neq 0$  в  $U_0$ .

Хотим занулить диагональные элементы  $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$ . Для этого сделаем характеристическую замену. Требуем  $\tilde{A} = \begin{pmatrix} 0 & \tilde{a}_{12} \\ \tilde{a}_{12} & 0 \end{pmatrix} = JAJ^T \Rightarrow (\nabla F_i)^T A(\nabla F_i) = 0$  для всех i.  $\nabla F_i = \begin{pmatrix} (F_i)_x' \\ (F_i)_x' \end{pmatrix}$ . Получаем уравнение

$$a_{11}((F_i)_x')^2 + 2a_{12}(F_i)_x'(F_i)_y' + a_{22}((F_i)_y')^2 = 0$$

Предположим, что  $(F_i)'_u \neq 0$  в  $U_0$ , если это не так, то переобозначим  $U_0$ .

Потребуем  $A \in C(G)$  для однозначной разрешимости задачи Коши. Тогда мы локально решаем каждый из этих диффуров, получаем два семейства интегральных кривых. По теореме о неявной функции, уравнение  $F_i(x,y) =$ const задает в  $U_1 \subset U_0$  функцию  $y_i = y_i(x)$ . Продифференцируя уравнение  $F_i(x, y_i(x)) = const$ , получаем

$$\frac{dy_i}{dx} = -\frac{(F_i)_x'}{(F_i)_y'}$$

Что дает из решения квадратного уравнения

$$\frac{dy_i}{dx} = \frac{a_{12} \pm \sqrt{a_{12}^2 - a_{11}a_{22}}}{a_{11}}$$

Заменим X=(x,y). Тогда пусть  $F_+(X)$  и  $F_-(X)$  интегральные кривые этих решений  $(i=\{+,-\})$ . Предположим, что  $J=(\nabla F)^T=\begin{pmatrix} \nabla (F_+)^T \\ \nabla (F_-)^T \end{pmatrix}$  вырожден в  $X_1$ , то есть  $\nabla F_+(X_1)$  и  $\nabla F_-(X_1)$  - линейно зависимы. То есть  $\nabla F_{+}(X_{1}) = \lambda \nabla F_{-}(X_{1})$ . Тогда из 2 предыдущих уравнений получим:

$$\frac{dy_{+}}{dx} = -\frac{(F_{+})'_{x}}{(F_{+})'_{y}} = -\frac{\lambda(F_{-})'_{x}}{\lambda(F_{-})'_{y}} = -\frac{(F_{-})'_{x}}{(F_{-})'_{y}} = \frac{dy_{-}}{dx} \Rightarrow a_{12}^{2} - a_{11}a_{22} = 0$$

Но  $\det(A) = a_{12}^2 - a_{11}a_{22} > 0$  (из-за того, что тип гиперболический). Противоречие, значит J невырождено. Определим характеристическую замену:

$$F(X) = \begin{cases} \xi = \xi(X) = F_{+}(X) \\ \eta = \eta(X) = F_{-}(X) \end{cases}$$

В характеристических переменных в окрестности  $V = V(\xi(X_0), \eta(X_0))$ , тогда уравнение запишется как

$$2\tilde{a}_{12}v_{\xi\eta}^{"} + \tilde{b}_{1}v_{\xi}^{'} + \tilde{b}_{2}v_{\eta}^{'} + \tilde{c}v = \tilde{f}$$

$$\tag{2}$$

Из неперерывности коэффициентов исходного дифура, новые коэффициенты тоже непрерывны в V. тут есть пример задачи

**Решение называется полуклассическим**(термин придуман Констом, будьте осторожны!), если а) $v \in C^1(V)$ и б) $\exists v_{\xi\eta} = v_{\eta\xi} \in C(V)$  и в)удовлетворяет в окрестности V уравнению 2. Доказательство невырожденности **замены:** Пусть в точке  $X_0=(x_0,y_0)\in G$ :  $a_{11}\neq 0$ . В силу непрерывности  $\exists$  окрестность  $U_0\subset G$ , в которой  $a_{11}\neq 0$ . Введем  $F \in C^1(U_0)$  и  $\nabla F \neq 0$  в  $U_0$ . Под действием характеристической замены граница  $\gamma$  перейдет в  $\tilde{\gamma}$ .

$$\gamma: X_{\gamma}(t) = \left\{ \begin{pmatrix} x_{\gamma}(t) \\ y_{\gamma}(t) \end{pmatrix} \;\middle|\; t \in T \right\} \Rightarrow \tilde{\gamma}: F(t)_{\gamma} = \left\{ \begin{pmatrix} \xi_{\gamma}(t) = \xi(x_{\gamma}(t), y_{\gamma}(t)) \\ \eta_{\gamma}(t) = \eta(x_{\gamma}(t), y_{\gamma}(t)) \end{pmatrix} \;\middle|\; t \in T \right\}$$

где T - числовой интервал.  $\tilde{\gamma}$  не должна касаться характеристик.(Почему? - по условию! На самом деле из-за невырожденности Ј) Следовательно условие не касания характеристик записывается через неравенство нулю производной по параметру t (обозначим точкой над, как будто это производная по времени):  $\dot{F}_i(t)_{\gamma} = \left(\nabla_x F_i, \dot{X}_{\gamma}(t)\right) \neq 0$ Или в нашем случае для 2-мерной задачи



$$\dot{\xi}_{\gamma} = \xi_x \dot{x}_{\gamma} + \xi_y \dot{y}_{\gamma} \neq 0$$

$$\dot{\eta}_{\gamma} = \eta_x \dot{x}_{\gamma} + \eta_y \dot{y}_{\gamma} \neq 0$$

Значит по теореме об обратной функции  $\exists I: \xi_0 \in \operatorname{Int} I$  и  $\exists J: \eta_0 \in \operatorname{Int} J$  отрезки, на которых функции обратимы.

To есть 
$$\xi = \xi_{\gamma}(t) \Rightarrow t = \xi_{\gamma}^{-1}(\xi)$$
.

Введём 
$$\varphi(\xi) = \eta_{\gamma}(t) = \eta_{\gamma}(\xi_{\gamma}^{-1}(\xi)).$$

Единичный вектор нормали к кривой:

$$n(t)=inom{-\dot{y}_{\gamma}(t)}{\dot{x}_{\gamma}(t)}rac{1}{\sqrt{\dot{x}_{\gamma}^2+\dot{y}_{\gamma}^2}}$$
 ⇒гран. условия:

$$\begin{cases} v|_{\gamma} = v(\xi, \varphi(\xi)) = v_0(\xi) \in C^1(I) \\ u_1 = \frac{\partial u}{\partial n}|_{\gamma} = \frac{\partial u}{\partial (x,y)} n = \frac{\partial u}{\partial (x,y)} \begin{pmatrix} -\dot{y}_{\gamma}(t) \\ \dot{x}_{\gamma}(t) \end{pmatrix} \frac{1}{\sqrt{\dot{x}_{\gamma}^2 + \dot{y}_{\gamma}^2}} \end{cases}$$

По теореме о дифференцировании сложной функции:

$$\frac{\partial u}{\partial (x,y)} = \frac{\partial v}{\partial (\xi,\eta)} \frac{\partial (\xi,\eta)}{\partial (x,y)} = \frac{\partial v}{\partial (\xi,\eta)} J$$

Подставляя эту замену во второе условие и дифференцируя первое:  $v_{\xi} + v_{\eta} \varphi'(\xi) = v'_{0}(\xi)$ , получаем систему:

$$\begin{cases} \frac{\partial v}{\partial(\xi,\eta)} \begin{pmatrix} 1\\ \varphi'(\xi) \end{pmatrix} = v_0'(\xi) \\ \frac{\partial v}{\partial(\xi,\eta)} J \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} \dot{x}_{\gamma}(t)\\ \dot{y}_{\gamma}(t) \end{pmatrix} = u_1 \sqrt{\dot{x}_{\gamma}(t)^2 + \dot{y}_{\gamma}(t)^2} = w_1(t) = w_1(\xi_{\gamma}^{-1}(\xi)) \in C(J) \end{cases}$$

Исследуем линейную зависимость столбцов  $\begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix}$  и  $J\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} \dot{x}_{\gamma}(t) \\ \dot{y}_{\gamma}(t) \end{pmatrix}$ .

$$\begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix}$$
 и  $\begin{pmatrix} \dot{\xi}_{\gamma}(t) \\ \dot{\eta}_{\gamma}(t) \end{pmatrix} = J \begin{pmatrix} \dot{x}_{\gamma}(t) \\ \dot{y}_{\gamma}(t) \end{pmatrix}$  это касательные к  $\tilde{\gamma}$  в разных параметризациях, значит  $J^{-1} \begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix} = k \begin{pmatrix} \dot{x}_{\gamma}(t) \\ \dot{y}_{\gamma}(t) \end{pmatrix}$ . Если они линейно независимы, то  $v'_{\xi}$  и  $v'_{\eta}$  будут найдены как непрерывные функции.

Если таки зависимы, то

$$\exists \lambda = \lambda(\xi): J\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} J^{-1}\begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix} = \lambda\begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix} \Rightarrow J\begin{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + \lambda\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} J^{-1}\begin{pmatrix} 1 \\ \varphi'(\xi) \end{pmatrix} = 0$$

Условие равенства нулю не выполнено так как остальные матрицы невырождены, а:

$$\begin{vmatrix} \lambda & 1 \\ -1 & \lambda \end{vmatrix} = \lambda^2 + 1 > 0$$

Значит такого  $\lambda$  не существует. Следовательно, мы можем разрешить систему, поэтому будем считать, что нам известны граничные условия в терминах характеристических переменных. Найдем решение:



$$\begin{cases} v_{\xi\eta}'' + d_1 v_{\xi}' + d_2 v_{\eta}' + ev = h \\ v(\xi, \varphi(\xi)) = v_0(\xi) \in C^1(I) \\ v'(\xi, \varphi(\xi)) = v_1(\xi) \in C(I) \end{cases}$$

Пусть имеется решение. Возьмем любую  $(\xi, \eta) \in (I \times K) \setminus \gamma$ . И рассмотрим границу "кривого треугольника"  $D(\xi, \eta)$  как на картинке. Проинтегрируем дифур по этой границе:

$$\iint\limits_{D(\xi,\eta)} d\widehat{\xi} d\widehat{\eta} \, v_{\widehat{\xi}\widehat{\eta}} = -\iint\limits_{D(\xi,\eta)} d\widehat{\xi} d\widehat{\eta} \, (d_1 v_{\xi}' + d_2 v_{\eta}' + ev - h)$$

Аналогично предыдущему, выразим  $\eta=\eta_{\gamma}(t)\Rightarrow t=\eta_{\gamma}^{-1}(\eta).$  Введём  $\psi(\eta)=\xi_{\gamma}(t)=\xi_{\gamma}(\eta_{\gamma}^{-1}(\eta)).$  И вспомним, что  $\varphi(\xi)=\eta_{\gamma}(\xi_{\gamma}^{-1}(\xi))$ 

$$\iint\limits_{D(\xi,\eta)} d\widehat{\xi} d\widehat{\eta} \, v_{\widehat{\xi}\widehat{\eta}} = \int\limits_{\psi(\eta)}^{\xi} d\widehat{\xi} \, \int\limits_{\eta}^{\varphi(\widehat{\xi})} d\widehat{\eta} \, v_{\widehat{\xi}\widehat{\eta}} = \int\limits_{\psi(\eta)}^{\xi} d\widehat{\xi} \left( v_{\widehat{\xi}}(\widehat{\xi},\varphi(\widehat{\xi})) - v_{\widehat{\xi}}(\widehat{\xi},\eta) \right) = \int\limits_{\psi(\eta)}^{\xi} v_1(\alpha) \, d\alpha - v(\xi,\eta) + v_0(\psi(\eta))$$

Выражаем  $v(\xi, \eta)$  и по сути находим решение:

$$v(\xi,\eta) = v_0(\psi(\eta)) + \int_{\psi(\eta)}^{\xi} v_1(\alpha) d\alpha + \int_{\psi(\eta)}^{\xi} d\widehat{\xi} \int_{\eta}^{\varphi(\widehat{\xi})} d\widehat{\eta} (v'_{\xi}d_1 + v'_{\eta}d_2 + ev - h)$$

#### Покажем, что решение существует и единственно

Рассмотрим отображение  $\Phi: C^1(\Pi) \to C^1(\Pi), \Pi = I \times J$ , заменив v на w

$$\Phi(\omega) = v_0(\psi(\eta)) + \int_{\psi(\eta)}^{\xi} v_1(\alpha) d\alpha + \int_{\psi(\eta)}^{\xi} d\widehat{\xi} \int_{\eta}^{\varphi(\widehat{\xi})} d\widehat{\eta} (\omega_{\xi}' d_1 + \omega_{\eta}' d_2 + e\omega - h)$$

Непосредственно дифференцируя, проверяем, что при естественной гладкости параметров для  $v = \Phi(\omega) \exists v_{\xi\eta} = v_{\eta\xi}$  и справеливо вложение  $v \in C^1(\Pi)$ . Тогда если существует w такое, что  $w = \Phi(w)$ , то w будет полуклассическим решением.

**Теорема** (Принцип сжимающих отображений Банаха (без доказательства)).  $(Z, \rho)$  – полное метрическое пространство. F – сжимающее отображение, т.е.  $\exists \ q \in [0,1)$  такое что  $\rho(F(z_1), F(z_2)) \leqslant q\rho(z_1, z_2)$ . Тогда  $\exists ! \ z^* \in Z$ , такое что  $F(z^*) = z^*$ .

Рассмотрим  $\Pi_0 = I_0 \times K_0 \in \Pi$ ,  $I_0 = \psi(K_0)$ ,  $K_0 = \varphi(I_0)$ . Введем метрику

$$\rho(v, w) = \max_{\Pi_0} |v - w| + \max_{\Pi_0} |v_{\xi} - w_{\xi}| + \max_{\Pi_0} |v_{\eta} - w_{\eta}|$$

 $(C(\Pi_0), \rho)$  является полным. Покажем, что отображение  $\Phi$  является сжимающим. Для этого проверяем, что справедливы следующие соотношения.

$$M = \max(\max_{\Pi} |d_1|, \max_{\Pi} |d_2|, \max_{\Pi} |e|)$$

$$|\Phi(w) - \Phi(v)|(\xi, \eta) \leqslant |I_0||K_0|M\rho(w, v)$$

$$|\Phi_{\xi}(w) - \Phi_{\xi}(v)|(\xi, \eta) \leqslant |K_0|M\rho(w, v)$$

$$|\Phi_{\eta}(w) - \Phi_{\eta}(v)|(\xi, \eta) \leqslant |I_0|M\rho(w, v)$$

Тогда

$$\rho(\Phi(w), \Phi(v)) \leqslant M(|I_0||K_0|+|I_0|+|K_0|)\rho(w, v)$$

Можем подобрать  $|I_0|$  и  $|K_0|$  так, что отображение будет сжимающим. Тогда решение существует и единственно.

2. Пространства D(G) и D'(G) для открытого множества  $G \subseteq \mathbb{R}^m$ . Обобщенное дифференцирование в D'(G), теорема о равенстве обобщенных и классических производных порядка не выше N в  $D'(G) \cap C^N(G)$ .

Очень простой билет с 1 сложной конструкцией. Видеолекция Конста Сначала дадим 100500 определений:

**Определение.** Носителем непрерывной функции  $\varphi(x) : \mathbb{R}^m \to \mathbb{C}$  называют замыкание множества точек, на котором функция  $\varphi(x)$  отлична от нуля. Обозначается  $\sup(\varphi)$ .

Определение. Пространство финитных (ограниченных) функций

$$C_{\text{фин.}}(\mathbb{R}^m) = \{ \varphi \in \mathbb{R}^m \to C : \operatorname{supp}(\varphi) - \operatorname{компакт} \ \mathbf{B} \ \mathbb{R}^m \}$$

Определение. Пространство пробных функций

$$D(\mathbb{R}^m) = C_{\text{фин.}}(\mathbb{R}^m) \cap C^{\infty}(\mathbb{R}^m)$$

**Определение.** Мультииндекс  $\alpha = (\alpha_1, \alpha_2, ..., \alpha_M) \in \mathbb{N}_0^M$ ,

$$\partial^{lpha}=\left(rac{\partial}{\partial x_1}
ight)^{lpha_1}...\left(rac{\partial}{\partial x_M}
ight)^{lpha_M},$$
 где  $|lpha|=\sum_{k=0}^Mlpha_k$ 

Определение. Сходимость в  $D(\mathbb{R}^m)$ :  $\varphi_n \stackrel{D(R^m)}{\to} \varphi \Leftrightarrow$ 

- 1.  $\exists K \in \mathbb{R}^m$  компакт:  $\mathrm{supp}(\varphi_n) \subset K \ \forall n$
- $2. \ \forall \alpha \in \mathbb{N}_0^m \ \partial_{\mathrm{KJ}}^\alpha \varphi_n \overset{\mathbb{R}^m}{\Longrightarrow} \partial_{\mathrm{KJ}}^\alpha \varphi, \ n \to \infty \ \text{или что эквивалентно: } \lim_{n \to \infty} \sup_{x \in \mathbb{R}^m} \left| \left| \varphi_n^{(p)}(x) \varphi^{(p)}(x) \right| \right| = 0$

**Определение.** Функционалом f(x) над пространством пробных функций D называют правило, которое сопоставляет каждой пробной функции  $\varphi(x)$  некоторое комплексное число, обозначают символами  $\langle f(x); \varphi(x) \rangle$ .

**Определение.** Функционал f(x) называют линейным, если для любых  $\alpha, \beta \in C$  и  $\varphi, \psi \in D$  выполняется условие:

$$\langle f(x), \alpha \varphi(x) + \beta \psi(x) \rangle = \alpha \langle f(x), \varphi(x) \rangle + \beta \langle f(x), \psi(x) \rangle$$

**Определение.** Линейный функционал f(x) называют непрерывным в D, если для любой последовательности основных функций  $\{\varphi_n(x)\}_{n=1}^{\infty}$ , такой что  $\varphi_n(x) \stackrel{D}{\to} \varphi(x), \ n \to \infty \ \exists \lim_{n \to \infty} \langle f(x), \varphi_n(x) \rangle - \langle f(x), \varphi(x) \rangle = 0$ 

**Определение.**  $D'(\mathbb{R}^m)$  - множество линейных непрерывных функционалов над  $D(\mathbb{R}^m)$ 

Рассмотрим множество  $G \subseteq \mathbb{R}^m$ 

**Определение.** Пространство пробных функций на множестве  $G \subseteq \mathbb{R}^m$ 

$$D(G) = \{ \varphi \in D(\mathbb{R}^m) : \operatorname{supp}(\varphi) \subset G \}$$

**Определение.** Сходимость в D(G):

$$\varphi_n \xrightarrow{D(G)} \varphi \Leftrightarrow$$

- 1.  $\exists K \in G$  компакт:  $supp(\varphi_n) \subset K \ \forall n$
- $2. \ \forall \alpha \in \mathbb{N}_0^m \ \partial_{\text{кл.}}^\alpha \varphi_n \overset{G}{\Longrightarrow} \partial_{\text{кл.}}^\alpha \varphi, \ n \to \infty \ \text{или что эквивалентно: } \lim_{n \to \infty} \sup_{x \in G} \lvert\lvert \varphi_n^{(p)}(x) \varphi^{(p)}(x) \rvert \rvert = 0$

**Определение.** D'(G) - множество линейных непрерывных функционалов над D(G)

**Определение.** Дифференцирование в D'(G):

$$\forall f \in D'(G), \ \varphi \in D(G), \ \alpha \in \mathbb{N}_0^m$$

обобщенная производная определяется как

$$\langle \partial^{\alpha} f, \varphi \rangle = (-1)^{|\alpha|} \langle f, \partial^{\alpha} \varphi \rangle$$

(Откуда? - пример в  $\mathbb{R}$ :  $(f'(x), \varphi(x)) = \int_{\mathbb{R}} f'(x)\varphi(x)dx = -\int_{\mathbb{R}} f(x)\varphi'(x)dx = -(f(x), \varphi'(x)), \varphi \in D$  при условии регулярности f, то есть возможности отождествить функцию функционалом)(дельта функция нерегулярна (сингулярна) и ее нельзя так представлять)

**Определение.** Пусть  $G \subseteq \mathbb{R}^m$  - открытое множество. Определим оператор

$$L = \sum_{k=1}^{N} a_k(x) \partial_x^{\alpha(k)}$$

$$\alpha(1), \alpha(2), ..., \alpha(N) \in \mathbb{N}_0^m, a_k \in C^{\infty}(G)$$

**Определение.** Определим действие L в D'(G):

$$\forall f \in D'(G), \varphi \in D(G) \ \langle Lf, \varphi \rangle = \langle f, L'\varphi \rangle$$
, где  $L'\varphi = \sum_{k=0}^M (-1)^{|\alpha(k)|} \partial^{\alpha(k)}(a_k(x)\varphi(x))$ 

Определение. Определим множество локально-интегрируемых функций:

$$\operatorname{Loc}_{1} = \{ f : \mathbb{R}^{m} \to \mathbb{C} \mid \int_{K} |f(x)| dx < +\infty \}$$

Где  $K \subset \mathbb{R}^m$  - любой компакт. Докажем теорему билета

**Теорема.** О равенстве обобщенных и классических производных порядка не выше N в  $D'(G) \cap C^N(G)$ :

1. Пусть  $f \in C^N(\mathbb{R}^m) \subset Loc_1(\mathbb{R}^m)$ ,  $\varphi \in C_{\text{фин.}}(\mathbb{R}^m) \cap C^N(\mathbb{R}^m)$ . Пусть  $\mathrm{supp}(\varphi) \subset \Pi_r$ , где  $\Pi_r$  - прямоугольник.

$$\forall \alpha \in \mathbb{N}_0^m, |\alpha| \leq N, \partial^{\alpha} f \in C(\mathbb{R}^m) \subset Loc_1(\mathbb{R}^m)$$

Конст вводит определение правила действия на пробные функции, как интеграл по всему пространству от произведения функций. В конечномерном пространстве такое определение удовлетворяет принадлежности D'(G).

$$\langle \partial^{\alpha} f, \varphi \rangle = \int_{\Pi_{r}} (\partial^{\alpha} f) \varphi dx =$$

$$= \int_{-r}^{r} dx_{1} \int_{-r}^{r} dx_{2} \dots \int_{-r}^{r} dx_{m} \left[ \left( \frac{\partial}{\partial x_{1}} \right)^{\alpha_{1}} \left( \frac{\partial}{\partial x_{2}} \right)^{\alpha_{2}} \dots \left( \frac{\partial}{\partial x_{m}} \right)^{\alpha_{m}} f(x) \right] \varphi(x)$$

Интегрируем по частям по каждой компоненте, с учетом

$$\partial^{\beta} \varphi(x)|_{x=\pm r} = 0, \ \forall \beta : |\beta| \le N$$

получим:

$$\langle \partial^{\alpha} f, \varphi \rangle = (-1)^{\alpha_1 + \alpha_2 + \dots + \alpha_m} \int_{-r}^{r} f(\partial^{\alpha} \varphi) dx = \left\langle f, (-1)^{|\alpha|} \partial^{\alpha} \varphi(x) \right\rangle$$

То есть, классическая и обобщенная производная совпадают.

2. Пусть  $f \in D'(G) \cap C^N(G)$ ,  $\varphi \in D(G)$ . Тогда аналогично предыдущему пункту получим, что классическая и обобщенная производные порядка не выше N равны. пример задачи из D' на полчаса

3. Постановка обобщенной задачи Коши в пространстве  $D'(\mathbb{R} \times \mathbb{R}^m)$ . Теорема о корректности определения обобщенного решения этой задачи: достаточно гладкое обобщенное решение является и классическим решением.

Вообще это 4 лекции Конста(с 7 по 10)(в которых он определяет основные операции в S') начало взято отсюда Постановка обобщенной задачи: пусть  $g \in D'(G)$ . Тогда функция  $u \in D'(G)$  называется обобщенным решением (решением в D'(G)) задачи Lu = g (где L' и L определены из прошлого билета) если

$$\forall \varphi \in D(G), \langle Lu, \varphi \rangle = \langle u, L'\varphi \rangle = \langle g, \varphi \rangle$$

**Теорема.** Корректность обобщенного решения: пусть  $N = \max_k(|\alpha(k)|), f \in C(G) \subset Loc_1(G) \subset D'(G)$ 

1.  $\Rightarrow$  Пусть  $u \in C^N(G)$  удовлетворяет классическому уравнению. Тогда u является обобщенным решением (то есть в D'(G)), т.е.

$$\forall \varphi \in D(G) \ \langle Lu, \varphi \rangle = \langle u, L'\varphi \rangle = \langle f, \varphi \rangle$$

$$\int_{G} u(x)(L'\varphi(x))dx = \int_{G} f(x)\varphi(x)dx$$

#### Доказательство:

(a) Предположим, что для  $\varphi$   $\exists \Pi$  - открытый прямоугольный параллелепипед:  $\sup \varphi \in \Pi \in G$ . Тогда

$$\langle Lu, \varphi \rangle = \langle u, L'\varphi \rangle = \int_G u(x)L'\varphi(x)dx = \int_\Pi u(x)L'\varphi(x)dx = (*)$$

 $u \in C^N(G)$ , поэтому можно интегрировать по частям

$$(*) = \int_{\Pi} (Lu(x))\varphi(x)dx = \int_{\Pi} f(x)\varphi(x)dx =$$
$$= \int_{G} f(x)\varphi(x)dx = \langle f, \varphi \rangle$$

(b) Общая ситуация:  $\varphi \in D(G)$ , обозначим  $K = \operatorname{supp}(\varphi) \in G$  - компактный носитель  $\varphi$ . Определим

$$\forall x \ \forall \varepsilon \ \Pi_{\varepsilon}(x) = \{ y \in \mathbb{R}^m : |x_k - y_k| < \varepsilon \ \forall k \in 1, m \}$$

Так как G - открытое множество, то

$$\forall x \in G \ \exists \varepsilon(x) > 0 : \Pi_{\varepsilon(x)}(x) \subset G$$

Таким образом,

$$\forall x \in K \exists \varepsilon(x) : \Pi_{\varepsilon(x)}(x) \subset G$$

Получим открытое покрытие компакта:

$$P = \{ \Pi_{\varepsilon(x)}(x), x \in K \}$$

Введем без доказательства вспомогательную лемму:

**Лемма.** о разбиении единицы: Пусть  $K \subset \mathbb{R}^m$  - компакт. P - его открытое покрытие. Тогда существуют функции  $\psi_1, ..., \psi_l \in C^{\infty}(\mathbb{R}^m)$ :

- i.  $0 \le \psi_k(x) \le 1 \ \forall k \in 1, l$
- ii.  $\forall k \in 1, l \; \exists V_k \in P : \operatorname{supp}(\psi_k) \subset V_k$
- iii.  $\sum_{k=1}^{l} \psi_k(x) = 1 \ \forall x \in K$

Заметим, что  $K\subset \cup_{k=1}^l V_k$  - конечное подпокрытие. По лемме о разбиении единицы

$$\exists \psi_1, ..., \psi_k \in D(\mathbb{R}^m) : \operatorname{supp}(\psi_k) \subset \Pi_{\varepsilon(x)k} = V_k$$

$$\langle Lu, \varphi \rangle = \langle u, L'\varphi \rangle = \int_G u(x)(L'\varphi(x))dx = \int_K u(x)(L'\varphi(x))dx = \int_K u(x)(L'\varphi(x))dx$$

$$= \int_{K} u(x) (L' \sum_{k=1}^{l} \psi_{k}(x) \varphi(x)) dx = \sum_{k=1}^{l} \int_{K} u(x) (L' \psi_{k}(x) \varphi(x)) dx = (**)$$

Так как  $\mathrm{supp}(\psi_k) = V_k = K \cap \Pi_{\varepsilon(x_k)}(x_k),$  получим:

$$(**) = \sum_{k=1}^{l} \int_{K \cap \Pi_{\varepsilon(x_k)}(x_k)} u(x) (L'\psi_k(x)\varphi(x)) dx = (**)$$

Так как  $supp(\varphi) = K$ , получим:

$$(**) = \sum_{k=1}^{l} \int_{\Pi_{\varepsilon(x_k)}} u(x) (L'\psi_k(x)\varphi(x)) dx = (**)$$

Используя первую часть доказательства, получим:

$$(**) = \sum_{k=1}^{l} \int_{\Pi_{\varepsilon(x_k)}} (Lu(x))\psi_k(x)\varphi(x)dx = \sum_{k=1}^{l} \int_{K} (Lu(x))\psi_k(x)\varphi(x)dx = \int_{K} (Lu(x))\varphi(x)dx = \int_{K} (Lu(x)$$

Таким образом, эта часть теоремы доказана.

2.  $\Leftarrow$  Пусть  $G \subset \mathbb{R}^m$  - открытое множество,  $u \in C^N(G)$ ,  $f \in C(G)$ . Пусть u - обобщенное решение уравнения Lu = f (решение в D'(G)), то есть

$$\forall \varphi \in D(G) \ \langle Lu, \varphi \rangle = \langle u, L'\varphi \rangle = \langle f, \varphi \rangle$$

Тогда u - классическое решение уравнения в G, то есть

$$\forall x \in G \ Lu(x) = f(x)$$

Доказательство: из первой части теоремы известно, что

$$\langle Lu, \varphi \rangle = \int_G u(x)(L'\varphi(x))dx = \int_G (Lu(x)), \varphi(x)dx$$

Из условия теоремы следует, что

$$\int_{G} u(x)(L\varphi(x))dx = \int_{G} (Lu(x)), \varphi(x)dx = \int_{G} f(x)\varphi(x)dx$$

Введем обозначение  $\omega(x) = (Lu(x)) - f(x) \ \forall x \in G, \ \omega \in C(G)$ 

$$\int_{G} \omega(x)\varphi(x)dx = 0 \ \forall \varphi \in D(G)$$

Очевидно, что  $\omega(x) = 0 \ \forall x \in G$ , что означает

$$(Lu(x)) = f(x) \ \forall x \in G$$

то есть, и является классическим решением, ч.т.д.

Снова 100500 определений.

**Определение.** Пусть  $f \in D'(\mathbb{R}^m), G \in \mathbb{R}^m$  - открытое множество. Будем говорить, что  $f|_G = 0$ , если  $\forall \varphi \in D(G) \ \langle f, \varphi \rangle = 0$ 

Определение. Носитель обобщенной функции:

$$\operatorname{supp}(f) = \mathbb{R}^m \setminus G, \ G : \ G \subset \mathbb{R}^m, \ G - \text{открытое}, \ f|_G = 0$$

**Определение.** Прямое произведение обобщенных функций (определяем только для  $\delta$ , потому что для остальных функций мы слишком тупые):  $\forall g \in D'(\mathbb{R}^m), \ \forall \varphi \in D(\mathbb{R} \times \mathbb{R}^m)$ 

$$\langle g(x)\delta(t), \varphi(t,x)\rangle = \langle g(x), \varphi(0,x)\rangle$$

$$\left(\frac{\partial}{\partial t}\right)_{\text{of.}}^{k} (g(x)\delta(t)) = g(x)\delta^{(k)}(t)$$

Постановка обобщенной задачи Коши: пусть  $f \in D'(\mathbb{R} \times \mathbb{R}^m)$  :  $\mathrm{supp}(f) \subset \{t \geq 0, x \in \mathbb{R}^m)\}$ . Пусть  $u_0,...,u_{l-1} \in D'(\mathbb{R}^m)$ . Пусть  $P = a_0 z^l + a_1 z^{l-1} + ... + a_{l-1} z + a_l$  - комплексный многочлен. Найти

$$u(t,x) \in D'(\mathbb{R} \times \mathbb{R}^m) : supp(u) \subset \{t \ge 0, x \in \mathbb{R}^m\}$$

удовлетворяющую уравнению

$$(P(\frac{\partial}{\partial t}) - L_x)u(t, x) = f(t, x) + \sum_{j=1}^{l} u_{j-1}(x) \sum_{k=j}^{l} a_{l-k} \delta^{(k-j)}(t)$$

**Теорема.** Пусть  $u_0, ..., u_l \in C(\mathbb{R}^m)$ ,  $f \in C(t \geq 0, x \in \mathbb{R}^m)$ . Если u - решение соответсвующей классической задачи, то, продолжая u = 0, f = 0 при t < 0, получим, что  $u \in D'(\mathbb{R} \times \mathbb{R}^m)$  и является обобщенным решением соотвествующей обобщенной задачи Коши.

Доказательство: следует из теоремы "Корректность обобщенного решения".

**Теорема.** Пусть  $u_0, ..., u_l \in C(\mathbb{R}^m), f \in C(t \ge 0, x \in \mathbb{R}^m), f(x) = 0 \ \forall t \le 0, x \in \mathbb{R}^m.$  Пусть

$$u \in C_{t,x}^{l,N}(t > 0, x \in \mathbb{R}^m) \cap C_{t,x}^{l,0}(t \le 0, x \in \mathbb{R}^m), \ u(t,x) = 0 \ \forall t < 0, x \in \mathbb{R}^m$$

является решением обобщенной задачи Коши. Тогда u является классическим решением соответсвующие классической задачи Коши.

**Доказательство:** так как  $u_{j-1}(x)\delta^{(k-j)}(x)=0$  при  $t>0, x\in\mathbb{R}^m\ \forall j\in 1, l\ \forall k\in j, l,$  то

$$\left\langle u_{j-1}(x)\delta^{(k-j)}(x),\varphi\right\rangle = 0$$

Следовательно,

$$\forall \varphi \in D(t > 0, x \in \mathbb{R}^m) \left\langle (P(\frac{\partial}{\partial t}) - L_x)_{\text{o6.}} u, \varphi \right\rangle = \left\langle f, \varphi \right\rangle$$
$$(P(\frac{\partial}{\partial t}) - L_x)_{\text{o6.}} u = f \text{ B } D'(t > 0, x \in \mathbb{R}^m)$$

При этом u и f - достаточно гладкие функции. Отсюда, по теореме о корректности обобщенного решения, получим, что уравнение выполняется как классическое.

Осталось разобраться с граничными условиями. Рассмотрим  $\forall \varphi \in D(\mathbb{R} \times \mathbb{R}^m)$ . По условию теоремы

$$\left\langle (P(\frac{\partial}{\partial t}) - L_x)_{\text{o6.}} u, \varphi \right\rangle = \left\langle f, \varphi \right\rangle + \sum_{j=1}^{l} \sum_{k=j}^{l} a_{l-k} \int_{\mathbb{R}^m} dx u_{j-1}(x) \varphi_t^{(k-j)}(0, x) (-1)^{k-j}$$

По определению

$$\left\langle (P(\frac{\partial}{\partial t}) - L_x)_{\text{o6.}} u, \varphi \right\rangle = \left\langle u, P(-\frac{\partial}{\partial t}) \varphi - L_x' \varphi \right\rangle =$$

$$= \left\langle (P(\frac{\partial}{\partial t}) - L_x)_{\text{кл.}} u, \varphi \right\rangle + \sum_{j=1}^{l} \sum_{k=j}^{l} a_{l-k} \int_{\mathbb{R}^m} dx u^{(j-1)}(x) \varphi_t^{(k-j)}(0, x) (-1)^{k-j}$$

Сокращая все, что не нужно, получим

$$\sum_{j=1}^{l} \sum_{k=j}^{l} a_{l-k} \int_{\mathbb{R}^m} dx (u^{(j-1)}(x) - u_{j-1}(x)) \varphi_t^{(k-j)}(0, x) (-1)^{k-j} = 0$$

Подбирая разные  $\varphi$ , получим, что  $u^{(j-1)}(x) = u_{j-1}(x)$ . Получим, что u является классическим решением соответствующей классической задачи Коши.

4. Нефинитность классического преобразования Фурье нетривиальной функции из  $\mathcal{D}(\mathbb{R})$ . Пространство Л. Шварца  $\mathcal{S}(\mathbb{R}^m)$  и плотность  $\mathcal{D}(\mathbb{R}^m)$  в нем. Классическое преобразование Фурье как линейное непрерывное преобразование пространства  $\mathcal{S}(\mathbb{R}^m)$  и теорема обращения.

#### 4.0. Вспомогательные теоремы

В этом билете мы будем много пользоваться всякой констовской херней. Объемный билет!

#### Теорема. 0.1 - Теорема Лебега об ограниченной сходимости (без док-ва)

- 1) Имеем последовательность  $f_n: \mathbb{R}^m \to \mathbb{C}$ , которая почти всюду сходится:  $f_n \to f$  в  $\mathbb{R}^m$
- 2)  $\exists h \in L_1(\mathbb{R}^m) : |f_n| \leq h$  почти всюду в  $x \in \mathbb{R}^m \forall n$ .

Тогда 
$$f_n$$
 и  $f \in L_1(\mathbb{R}^m)$ , а также  $\int\limits_{\mathbb{R}^m} f_n \to \int\limits_{\mathbb{R}^m} f$  при  $n \to \infty$ 

Под почти подразумевается везде кроме множества Лебеговой меры нуль.

#### Теорема. 0.2 - Теорема Фубини (без док-ва)

Имеем 
$$f: \mathbb{R}^m \times \mathbb{R}^l \to \mathbb{C}$$
 - измерима по Лебегу; Притом такая, что  $\int\limits_{\mathbb{R}^m} dx \int\limits_{\mathbb{R}^l} dy |f(x,y)| < +\infty$ .

Тогда 
$$f \in L_1(\mathbb{R}^m \times \mathbb{R}^l)$$
 и  $\int_{\mathbb{R}^m \times \mathbb{R}^l} f(x,y) dx dy = \int_{\mathbb{R}^m} dx \int_{\mathbb{R}^l} dy f(x,y) = \int_{\mathbb{R}^l}^{\mathbb{R}^m} dy \int_{\mathbb{R}^m}^{\mathbb{R}^m} dx f(x,y)$ 

#### Лемма. 0.1 - Свойство интеграла Лебега о его интегрируемости в среднем (без док-ва)

$$f \in L_1(\mathbb{R}^m \times \mathbb{R}^l) \Rightarrow \int_{\mathbb{R}^m} |f(x+z) - f(x)| dx \to 0$$
 при  $z \to 0$  в  $\mathbb{R}^l$ .

### Теорема. 0.3 - Теорема Римана об осцилляции

$$f \in L_1(\mathbb{R}^m) \Rightarrow \int_{\mathbb{R}^m} e^{i(x,y)} f(x) dx \to 0$$
 при  $|y| \to \infty$ .

Док-во: пользуемся **Л0.1**. Рассмотрим 
$$\int e^{i(x,y)} f(x) dx$$
 с  $x = z + \frac{\pi y}{|y|^2}$ .

Получим 
$$\int\limits_{\mathbb{R}^m} e^{i(z,y)} e^{i\pi} f(z + \frac{\pi y}{|y|^2}) dz = -\int\limits_{\mathbb{R}^m}^{\mathbb{R}^m} e^{i(x,y)} f(x + \frac{\pi y}{|y|^2}) dx$$
. Последний интеграл получается просто переобозначением индекса с  $z$  на  $x$ .

чением индекса с 
$$z$$
 на  $x$ . Значит, мы получили  $|2\int e^{i(x,y)}f(x)dx|=|\int e^{i(x,y)}f(x)dx+\int e^{i(x,y)}f(x)dx|=|\int e^{i(x,y)}(f(x)-f(x+\frac{\pi y}{|y|^2}))dx|\leq \int_{\mathbb{R}^m}(f(x)-f(x+\frac{\pi y}{|y|^2}))dx.$ 

По **Л0.1** получаем справа 0 при  $|y| \to \infty$  **.** 

#### 4.1. Из лекции 10 - нефинитность Фурье и пространство Шварца.

Рассмотрим классическое Фурье для  $f \in L_1(\mathbb{R}^m)$ .

$$F[f](y) = \int\limits_{\mathbb{R}^m} e^{i(x,y)} f(x) dx, y \in \mathbb{R}^m$$
. Заметим, что подинтегральная функция  $\in L_1(\mathbb{R}^m) \forall y \in \mathbb{R}^m$ .

#### Лемма. 1.1 - Непрерывность

Преобразование непрерывно: если  $y \to y_0$  в  $\mathbb{R}^m$ , то  $F[f](y) \to F[f](y_0)$ .

Док-во:  $|e^{i(x,y)}f(x)| \le f(x) \equiv h(x)$  из **T0.1** (Т Лебега). Пользуемся ей:

$$\lim_{y \to y_0} F[f](y) = \int e^{i(x,y_0)} f(x) dx = F[f](y_0) \, \spadesuit.$$

Мы можем рассмотреть Фурье как функционал, который будет действовать на пробные функции.

 $F[f](y) \subset Loc_1(\mathbb{R}^m) \subset \mathcal{D}'(\mathbb{R}^m)$ 

 $\forall \varphi \in \mathcal{D}(\mathbb{R}^m)$  подействуем на эту  $\varphi$ :

$$\langle F[f](y), \varphi(y) \rangle = \int_{\mathbb{R}^m} dy F[f](y) \varphi(y) = \int_{\mathbb{R}^m} dy \int_{\mathbb{R}^m} dx e^{i(x,y)} f(x) \varphi(y)$$

$$\int_{\mathbb{R}^m} dy \int_{\mathbb{R}^m} dx |e^{i(x,y)} f(x) \varphi(y)| = \int_{\mathbb{R}^m} dy |\varphi(y)| \int_{\mathbb{R}^m} dx |f(x)| < +\infty.$$

 $\mathbb{R}^m$   $\mathbb{R}^m$  Пользуемся Т Фубини (**T0.2**)

$$\int_{\mathbb{D}_m} dx f(x) \int_{\mathbb{D}_m} dy e^{i(x,y)} \varphi(y) = \int_{\mathbb{D}_m} dx f(x) F[\varphi](x) = \langle f(x), F[\varphi](x) \rangle$$

Обратим внимание, что Т Фубини прекрасно применяется, потому что  $f(x)\in L_1(\mathbb{R}^m)$ , а  $F[arphi](x)\in C(\mathbb{R}^m)$   $\cap$  $C_{\text{фин.}}(\mathbb{R}^m)$  - пространство непрерывных ограниченных функций. Значит, подинтегральная функция тоже  $\in L_1(\mathbb{R}^m)$ .

Рассмотрим некую  $\varphi$  из  $\mathcal{D}(\mathbb{R}^m)$ . Пусть  $\mathrm{supp}(\varphi)\subset B_R(0)$  - шар радиуса R с центром в нуле. Тогда  $F[\varphi](x)=$  $\int \ dy e^{i(x,y)} \varphi(y),$  и поскольку  $\varphi(y) \in C^{\infty}(\mathbb{R}^m),$  то по теореме о дифф. по параметру  $F[\varphi] \in C^{\infty}(\mathbb{R}^m) \Rightarrow \partial_x^{\alpha}(F[\varphi](x)) = 0$ 

 $\int dy (iy)^{|\alpha|} e^{i(x,y)} \varphi(y) = F[(iy)^{|\alpha|} \varphi(y)](x).$ 

Финитность такого преобразования Фурье благополучно теряется; об этом следующая теорема.

#### Теорема. 1.1 - Нефинитность Фурье

 $\forall \varphi \in \mathcal{D}(\mathbb{R}^m) : F[\varphi] \in \mathcal{D}(\mathbb{R}^m) \hookrightarrow \varphi \equiv 0.$ 

Док-во (в 1D):  $F[\varphi] \in \mathcal{D}(\mathbb{R}^m) \Rightarrow \exists R > 0 : F[\varphi](y) = 0 \ \forall |y| \geq R;$  аналогично  $\varphi(x) = 0 \ \forall |x| \geq r$ 

$$\int dx e^{i(x,y)} \varphi(x) = \int_{-r}^{r} dx e^{i(x,y)} \varphi(x) = \int_{-r}^{r} dx \sum_{k=0}^{\infty} \frac{(iy)^k}{k!} x^k \varphi(x)$$

 $\int dx e^{i(x,y)} \varphi(x) = \int\limits_{-r}^{r} dx e^{i(x,y)} \varphi(x) = \int\limits_{-r}^{r} dx \sum_{k=0}^{\infty} \frac{(iy)^k}{k!} x^k \varphi(x)$   $|\frac{(iy)^k}{k!} x^k \varphi(x)| \leq \frac{|y|^k r^k}{k!} \max_{[-r;r]} |\varphi(x)| \text{ - т. е. получились члены равномерно сходящегося ряда (по Т Вейерштрасса). Значит, можно переставить интеграл и ряд по Т об интегрировании равномерно сходящихся рядов.$ 

$$\sum_{k=0}^{\infty} \frac{(iy)^k}{k!} \int\limits_{-r}^r x^k \varphi(x) dx = 0 \ \forall |y| \geq R.$$
 Тогда по T о единственности степ. ряда 
$$\int\limits_{-r}^r x^k \varphi(x) dx = 0 \ (*)$$

Разложим в Фурье по основной триг. системе на [-r;r]. Её можно записать как  $\{e^{\frac{i\pi sx}{r}};x\in[-r;r];s\in\mathbb{Z}\}.$ 

$$\varphi(x)=\sum_{m=-\infty}^{+\infty}\varphi_me^{rac{i\pi mx}{r}}\; \forall x\in[-r;r]$$
 - равн. сх. триг. ряд Фурье на отрезке.

$$\varphi_m = \frac{\int\limits_{-r}^r e^{-\frac{i\pi mx}{r}} \varphi(x) dx}{2r} = \frac{1}{2r} \int\limits_{-r}^r dx \sum_{k=0}^{+\infty} (\frac{-i\pi m}{r})^k \frac{x^k \varphi(x)}{k!}.$$
 Всё это дело сходится равномерно по признаку Вейерштрас-

са, а значит, по Т об интегрировании равномерно сходящихся рядов ряд и интеграл можно переставить.

$$\varphi_m = \sum_{k=0}^{+\infty} (\frac{-i\pi m}{r})^k \int_{-r}^r x^k \varphi(x) dx = 0 \ (*) \ \forall m \in (Z) \ \text{Значит, если все коеф.} \ \varphi_m = 0, \text{ то } \varphi \equiv 0. \ \spadesuit$$

Как дышать? Надо вводить другое пространство, из которого мы не будем вылетать после Фурье. Это есть не что иное, как пространство Шварца.

**Определение.** 1 Пространство  $\mathcal{S}(\mathbb{R}^m)$  Шварца пробных функций задается как  $\mathcal{S}(\mathbb{R}^m) = \{ \varphi \in C^{\infty}(\mathbb{R}^m) | \forall \alpha, \beta \in \mathbb{N}_0^m \}$  $x^{\beta}\partial_{x}^{\alpha}\varphi(x)\to 0 \ \forall |x|\to\infty$  }. Здесь  $\alpha,\beta$  - мультииндексы.

Определение. 2 A еще можно задать пространство так:  $\mathcal{S}(\mathbb{R}^m) = \{ \varphi \in C^{\infty}(\mathbb{R}^m) | \forall \alpha \in \mathbb{N}_0^m \ \forall p \in \mathbb{R} \ |x|^p \partial_x^{\alpha} \varphi(x) \to 0 \}$  $\forall |x| \rightarrow \infty \}.$ 

#### Лемма. 1.2 - Эквивалентность определений

$$|x|^p \le m^{\frac{p}{2}} \max_{k=1..m} |x_k^p| \le m^{\frac{p}{2}} \sum_{k=1}^m |x_k|^p$$

$$|x|^p |\partial_x^\alpha \varphi| \le m^{\frac{p}{2}} \sum_{k=1}^m |x_k|^p |\partial_x^\alpha \varphi(x)| \to 0 \ \forall |x| \to \infty \}. \ \spadesuit$$

#### $\mathbf{2} ightarrow \mathbf{1}$ :

 $\forall \alpha, \beta \in \mathbb{N}_0^m$ :

$$|x^{\beta}\partial_x^{\alpha}\varphi| = |x_1|^{\beta_1}..|x_m|^{\beta_m}|\partial_x^{\alpha}\varphi| \le |x|^{|\beta|}\partial_x^{\alpha}\varphi \to 0 \ \forall |x| \to \infty\}. \ \spadesuit$$

#### Теорема. 1.2 - Инвариантность относительно Фурье

 $\forall \varphi \in \mathcal{S}(\mathbb{R}^m) \hookrightarrow F[\varphi] \in \mathcal{S}(\mathbb{R}^m)$ 

$$F[\varphi] = \int_{\mathbb{R}^m} e^{i(x,y)} \varphi(x) dx.$$

$$\partial_{y}^{\alpha} e^{i(x,y)} \varphi(x) = |(ix)^{\alpha} \varphi(x) e^{i(x,y)}| \le |x|^{\alpha} |\varphi(x)|$$

 $\partial_y^{\alpha} e^{i(x,y)} \varphi(x) = |(ix)^{\alpha} \varphi(x) e^{i(x,y)}| \le |x|^{\alpha} |\varphi(x)|$  Так как  $\varphi \in (S)$ , то  $(1+|x|^{2m})|x|^{\alpha} |\varphi(x)| \to 0$  и принадлежит  $C(\mathbb{R}^m)$ . Отсюда по Т Вейерштрасса имеем ограниченность  $|x|^{\alpha} |\varphi(x)| \le \frac{M}{1+|x|^{2m}}$ .

Тогда по признаку Вейерштрасса в силу абс. интегрируемости  $\int\limits_{\mathbb{R}^m} \frac{dx}{1+|x|^{2m}}$  мы получим равномерную по y сходи-

мость интеграла  $\int dy \partial_y^{\alpha} e^{i(x,y)} \varphi(x) dx$ . Значит, можно дифференциировать по параметру.

Теперь разберёмся со степенью:  $y^{\beta}F[(ix)^{\alpha}\varphi(x)](y)$ ; обозначим  $\psi(x)=(ix)^{\alpha}\varphi(x)$ 

Проинтегрировав по частям  $|\beta|$  раз, получим  $F[\partial_x^\beta \psi](y) = (-iy)^\beta F[\psi](y)$ . А значит,  $y^\beta F[\psi](y) = i^\beta F[\partial_x^\beta \psi]$ .

В итоге по Т Римана об осцилляции (**T0.3**)  $i^{\beta}F[\partial_x^{\beta}\psi] \to 0$  при  $|y| \to \infty$   $\spadesuit$ 

Определение. 3  $\varphi_n \to \varphi$  при  $n \to \infty$  в  $\mathcal{S}(\mathbb{R}^m)$ , если  $\forall \alpha, \beta \in \mathbb{N}_0^m \ x^\beta \partial_x^\alpha \varphi_n(x) \Rightarrow x^\beta \partial_x^\alpha \varphi(x)$  при  $n \to \infty$ . Две стрелки обозначают равномерную сходимость.

#### $\Pi$ емма. 1.3 - $\Pi$ лотность $\mathcal{D}$ в $\mathcal{S}$

$$\varphi_n \to \varphi$$
 при  $n \to \infty$  в  $\mathcal{S}(\mathbb{R}^m)$ , если  $\varphi_n \to \varphi$  при  $n \to \infty$  в  $\mathcal{D}(\mathbb{R}^m)$ 

#### Док-во:

$$\sup_{\mathbb{R}^m} [|x|^p |\partial_x^\alpha (\varphi_n - \varphi)|] \le R^p \max_{B_R(0)} |\partial_x^\alpha (\varphi_n - \varphi)| \ \spadesuit$$

Отсюда тут же следует, что  $\mathcal{S}'$  - это подмножество функционалов  $\mathcal{D}'$ , которые работают на расширенном пространстве, ведь из сходимости в  $\mathcal{D}$  следует сходимость в  $\mathcal{S}$ .

#### 4.2. Из лекции 11 - Классическое преобразование Фурье как линейное непрерывное преобразование пространства + Т обращения

Очевидно, что классическое преобразование Фурье линейно. Покажем его непрерывность.

#### Лемма. 2.1 - Непрерывность

Если  $\varphi_n \to \varphi$  в  $\mathcal{S}(\mathbb{R}^m)$ , то  $\forall \alpha, \beta \in \mathbb{N}_0^m y^\beta \partial^\alpha F[\varphi_n - \varphi](y) \rightrightarrows 0$  по  $y \in \mathbb{R}^m$ .

#### Док-во:

Проделаем те же вычисления, что и в Т4.1.2:

$$y^{\beta} \partial^{\alpha} F[\varphi_n - \varphi](y) = y^{\beta} F[(ix)^{\alpha} (\varphi_n - \varphi)(x)](y)$$
$$F[\partial^{\beta} \psi](y) = -(iy)^{\beta} F[\psi]$$

Соберём эти два соотношения в одно: 
$$y^{\beta}\partial^{\alpha}F[\varphi_n-\varphi](y)=-(i)^{(\beta+\alpha)}F[\partial^{\beta}(x^{\alpha}(\varphi_n-\varphi)(x))](y)$$

Соберём эти два соотношения в одно:  $y^{\beta}\partial^{\alpha}F[\varphi_{n}-\varphi](y)=-(i)^{(\beta+\alpha)}F[\partial^{\beta}(x^{\alpha}(\varphi_{n}-\varphi)(x))](y)$  По определению сходимости в  $\mathcal{S}$   $|x|^{p}\partial^{\beta}(x^{\alpha}(\varphi_{n}-\varphi))$   $\Rightarrow$  0 в  $\mathbb{R}^{m}$  при  $n\to\infty$ ; тогда выбирая p=0,2m, получим:  $(1+|x|^{2m})\partial^{\beta}(x^{\alpha}(\varphi_n-\varphi)) \leq \varepsilon \ \forall n \geq N(\varepsilon) \ \forall x \in \mathbb{R}^m.$ 

Окончательно 
$$|y^{\beta}\partial^{\alpha}F[\varphi_{n}-\varphi](y)| \leq \int_{\mathbb{R}^{m}} |y^{\beta}\partial^{\alpha}(\varphi_{n}-\varphi)(x)| dx \leq \int_{\mathbb{R}^{m}} \frac{\varepsilon}{1+|x|^{2m}} dx \to 0$$
 при  $\varepsilon \to 0$ . То есть, наш интеграл

равномерно сходится к нулю и тогда  $F[\varphi_n] \to F[\varphi]$  в  $\mathcal{S}(\mathbb{R}^m)$ .

#### Теорема. 2.1 - Т обращения: main

$$\forall \varphi \in \mathcal{S}(\mathbb{R}^m) \hookrightarrow \int_{\mathbb{R}^m} F[\varphi](y) dy = (2\pi)^m \varphi(0)$$

$$\forall \varphi, \psi \in \mathcal{S}(\mathbb{R}^m) \hookrightarrow \int \varphi(y) F[\psi](y) dy = \int F[\varphi](x) \psi(x) dx$$
 по Т Фубини (**T0.2**), т.к.  $\varphi, \psi \in \mathcal{S}(\mathbb{R}^m); F[\varphi], F[\psi] \in L_1$ 

Введём специальную функцию  $\psi_{\varepsilon}\stackrel{def}{=}e^{-\varepsilon|x|^2}\in\mathcal{S}(\mathbb{R}^m)\ \forall \varepsilon>0.$  Фурье от этой функции считается тупо в лоб с выделением полного квадрата показателя ехр.

$$F[\psi_{\varepsilon}](y) = \int_{\mathbb{R}^m} dx e^{i(xy)} e^{-\varepsilon|x|^2} = \frac{1}{\sqrt{\varepsilon}^m} \int_{\mathbb{R}^m} dz e^{-|z - \frac{iy}{2\sqrt{\varepsilon}}|^2} e^{-\frac{|y|^2}{4\varepsilon}} = \frac{1}{\sqrt{\varepsilon}^m} e^{-\frac{|y|^2}{4\varepsilon}} \prod_{k=1}^m \int_{\mathbb{R}} dt e^{-(t - \frac{iy_k}{2\sqrt{\varepsilon}})^2} = (\sqrt{\frac{\pi}{\varepsilon}})^m e^{-\frac{|y|^2}{4\varepsilon}}$$

Предпоследний переход - это теорема Фубини (Т0.2), сводящая кратный интеграл к повторному.

Последний в общем-то ясен, но для любителей попетушиться я принес вам покушать говнеца:

Рассмотрим 
$$\Phi(\xi) = \int e^{-(t-\xi)^2}; \ |\frac{d}{d\xi}e^{-(t-\xi)^2}| = |2(\xi-t)||e^{-(t-\xi)^2}| \le 2(r+|t|)e^{-t^2+2|t|r+r^2} \in L_1(\mathbb{R})$$
 При  $|\xi| \le r$  сходится равномерно  $\Rightarrow \exists \Phi'(\xi) = \int \frac{d}{d\xi}e^{-(t-\xi)^2}dt \ \forall |\xi| \le r.$ 

Значит, функция хорошая и по теореме единственности из ТФКП  $\Phi(\xi) = \Phi(\xi_{Re}) = \sqrt{(\pi)}$ 

Таким образом, мы осилили Фурье и теперь можем пописать Фубини: 
$$\int\limits_{\mathbb{R}^m}\varphi(y)F[\psi_\varepsilon](y)dy=\int\limits_{\mathbb{R}^m}F[\varphi](x)\psi_\varepsilon(x)dx$$

Подставим нашу функцию: 
$$\int\limits_{\mathbb{R}^m} \varphi(y) (\sqrt{\frac{\pi}{\varepsilon}})^m e^{-\frac{|y|^2}{4\varepsilon}} dy = \int\limits_{\mathbb{R}^m} F[\varphi](x) e^{-\varepsilon|x|^2} dx.$$
 Правая часть интегрируется, потому что

$$F[\varphi] \in \mathcal{S}(\mathbb{R}^m) \subset L_1(\mathbb{R}^m).$$
  
 $|F[\varphi](x)e^{-\varepsilon|x|^2}|dx \leq |F[\varphi](x)| \in L_1.$ 

Тогда по Т Лебега об огр. сходимости (**T0.1**) получим 
$$\int F[\varphi](x)e^{-\varepsilon|x|^2}dx \to \int F[\varphi](x)dx$$
 при  $\varepsilon \to 0$ .

Тем временем в левой части после замены переменной в интеграле получим 
$$(\sqrt{\frac{\pi}{\varepsilon}})^m (2\sqrt{\varepsilon})^m \int \varphi(2\sqrt{\varepsilon}z) e^{-|z|^2} dz$$

Подинтегральная функция оценивается:  $|\varphi(2\sqrt{\varepsilon}z)e^{-|z|^2}| \leq (\sup_{m,m} |\varphi|)e^{-|z|^2} \in L_1(\mathbb{R}^m) \forall z \in \mathbb{R}^m$ 

Тогда по Т Лебега об огр. сходимости получим 
$$(2\sqrt{\pi})^m \varphi(0) (\int dt e^{-t^2})^m \spadesuit$$

#### Теорема. 2.2 - Т обращения: как мы привыкли ее видеть

 $\forall \varphi \in \mathcal{S}(\mathbb{R}^m) \hookrightarrow F[F[\varphi(x)](y)](z) = (2\pi)^m \varphi(-z)$ 

Док-во:

$$F[F[\varphi(x)](y)](z) = \int_{\mathbb{R}^m} dy e^{i(y,z)} \int_{\mathbb{R}^m} dx e^{i(x,y)} \varphi(x) = \int_{\mathbb{R}^m} dy \int_{\mathbb{R}^m} d\xi e^{i(y,x+z)} \varphi(x) = \int_{\mathbb{R}^m} dy \int_{\mathbb{R}^m} dx e^{i(y,\xi)} \varphi(\xi-z) = \int_{\mathbb{R}^m} dy F[\varphi(\xi-z)](y) = (2\pi)^m \varphi(-z) \text{ no } \mathbf{T2.1} \ \spadesuit$$

Дальше немножечко напряжем мозг и высрем вот это.

Определение. 4 
$$F^{-1}[\varphi(x)](y) \stackrel{def}{=} \frac{1}{(2\pi)^m} F[\varphi(x)](-y) = \frac{1}{(2\pi)^m} F[\varphi(-x)](y)$$

5. Пространство обобщенных функций  $\mathcal{S}'(\mathbb{R}^m)$ . Обобщеннюе преобразование Фурье в  $\mathcal{S}'(\mathbb{R}^m)$  по всем или по части переменных, и его свойства, связанные с операцией обобщенного дифференцирования.

**Определение.** Пространство обобщенных функций Шварца  $\mathcal{S}'(\mathbb{R}^m)$  – множество линейных непрерывных функционалов над  $\mathcal{S}(\mathbb{R}^m)$ . Линейность и непрерывность в  $\mathcal{S}'(\mathbb{R}^m)$  определяется так же, как и в  $\mathcal{D}'(\mathbb{R}^m)$ .

**Определение.**  $\forall \alpha \in \mathbb{N}_0^m$  обобщенной производной функционала  $f \in \mathcal{S}'(\mathbb{R}^m)$  называется

$$\langle \partial^{\alpha} f, \varphi \rangle \stackrel{def}{=} (-1)^{|\alpha|} \langle f, \partial^{\alpha} \varphi \rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^m)$$
 (3)

**Определение.** Пусть  $\forall f \in \mathcal{S}'(\mathbb{R}^m) \ \forall g \in C^{\infty}(\mathbb{R}^m) : \ \forall \alpha \in \mathbb{N}_0^m \hookrightarrow \partial^{\alpha} g$  имеет медленный рост. Тогда определено произведение функции g на обобщенную функцию f по следующему правилу:

$$\langle gf, \varphi \rangle \stackrel{def}{=} \langle f, g\varphi \rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^m)$$
 (4)

**Определение.** Пусть  $f \in \mathcal{S}'(\mathbb{R}^m)$ ,  $A \in \mathbb{R}^{m \times m}$ ,  $b \in \mathbb{R}^m$ . Тогда определена замена переменных z = Ax + b в обобщенной функции:

$$\langle f(Ax+b), \varphi \rangle \stackrel{def}{=} \left\langle f(z), \frac{\varphi(A^{-1}(z-b))}{|\det A|} \right\rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^m)$$
 (5)

**Определение.** Пусть  $f \in \mathcal{S}'(\mathbb{R}^m)$ . Тогда можно определить обобщенное преобразование Фурье по следующему правилу:

$$\langle F[f], \varphi \rangle \stackrel{def}{=} \langle f, F[\varphi] \rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^m)$$
 (6)

Замечание. Для корректности данных выше определений необходимо доказывать линейность и непрерывность соответствующих функционалов. Линейность очевидна во всех случаях, а доказательство непрерывности приведем только для Фурье – в остальных определениях это либо очевидно, либо делается аналогично.

Доказательство. Пусть задана последовательность пробных функций  $\varphi_n \to \varphi \in \mathcal{S}(\mathbb{R}^m)$ . Тогда  $\forall \alpha, \beta \in \mathbb{N}_0^m$  рассмотрим следующую функцию:

$$g(y) = y^{\beta} \partial^{\alpha} F[\varphi_n - \varphi](y) = y^{\beta} F[(ix)^{\alpha} (\varphi_n - \varphi)](y) = i^{\alpha + \beta} F[\partial^{\beta} (x^{\alpha} (\varphi_n - \varphi))](y)$$
(7)

По определению сходимости в  $\mathcal{S}(\mathbb{R}^m)$ :

$$\forall p \in \mathbb{N}_0 \hookrightarrow |x|^p \partial^\beta (x^\alpha (\varphi_n - \varphi)) \rightrightarrows 0 \ (n \to \infty)$$

Тогда:

$$\exists \varepsilon : \forall n \geqslant N(\varepsilon) \ \forall x \in \mathbb{R}^m \hookrightarrow (1 + |x|^{2m}) \partial^{\beta} (x^{\alpha} (\varphi_n - \varphi)) \leqslant \varepsilon$$
 (8)

Из (7) и (8) получаем:

$$|g(y)| = |y^{\beta} \partial^{\alpha} F[\varphi_n - \varphi](y)| \leqslant \int_{\mathbb{R}^m} |\partial^{\beta} (x^{\alpha} (\varphi_n - \varphi))| dx \leqslant \int_{\mathbb{R}^m} \frac{\varepsilon}{1 + |x|^{2m}} dx = \varepsilon \frac{\pi S_m}{2m}$$
(9)

Таким образом  $g(y) \rightrightarrows 0 \ (n \to \infty)$ , а значит  $F[\varphi_n] \to F[\varphi]$  в  $\mathcal{S}(\mathbb{R}^m)$ .

**Определение** (Обратное преобразование). Пользуясь теоремой об обращении можно определить обратное преобразование Фурье в  $\mathcal{S}'(\mathbb{R}^m)$ :

$$F^{-1}[f](x) \stackrel{def}{=} \frac{1}{(2\pi)^m} F[f](-x) \in \mathcal{S}'(\mathbb{R}^m)$$
(10)

Таким образом, мы получили, что обобщенное преобразование Фурье является изоморфизмом над  $\mathcal{S}'(\mathbb{R}^m)$ , т.е., зная Фурьевый образ, можно найти саму функцию, и наоборот.

С помощью преобразования Фурье можно определить замену переменных в обобщенной функции для случая неквадратной матрицы перехода.

**Определение** (Замена переменных в обобщенной функции). Пусть  $f \in \mathcal{S}'(\mathbb{R}^l), \ A \in \mathbb{R}^{l \times m} : \operatorname{rg} A = l, \ b \in \mathbb{R}^l$ . Тогда:

$$\langle f(Ax+b), \varphi(x) \rangle \stackrel{def}{=} \langle F^{-1}[f](y), e^{i(b,y)} F[\varphi](A^T y) \rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^m)$$
 (11)

Докажем корректность такого определения.

Доказательство. Из определения обратного преобразования следует:

$$\forall f \in \mathcal{S}'(\mathbb{R}^l) \ \exists h(y) = F^{-1}[f] \in \mathcal{S}'(\mathbb{R}^l) : f(z) = F[h](z)$$

Тогда:

$$\forall \varphi \in \mathcal{S}(\mathbb{R}^l) \left\langle f(z), \varphi(z) \right\rangle = \left\langle F[h(y)](z), \varphi(z) \right\rangle = \left\langle h(y), F[\varphi(z)](y) \right\rangle = \left\langle h(y), \int\limits_{\mathbb{R}^l} dz \, \varphi(z) e^{i(z,y)} \right\rangle$$

Рассмотрим теперь  $\forall \varphi \in \mathcal{S}(\mathbb{R}^m) \ \forall y \in \mathbb{R}^l$  функцию:

$$\psi(y) = \int\limits_{\mathbb{R}^m} dx \, \varphi(x) e^{i(Ax+b,y)} = e^{i(b,y)} \int\limits_{\mathbb{R}^m} dx \, \varphi(x) e^{i(x,A^Ty)} = e^{i(b,y)} F[\varphi](A^Ty)$$

Выясним, для каких A выполнено вложение

$$\xi(y) = F[\varphi](A^T y) \in \mathcal{S}(\mathbb{R}^l)$$

Так как  $F[\varphi] \in \mathcal{S}(\mathbb{R}^m)$ , то  $|z|^p |\partial_z^\beta F[\varphi](z) \to 0 \ (|z| \to \infty)$ . Заметим теперь, что:

$$\partial^{\alpha} \xi(y) \in \operatorname{span} \{ \partial_{z}^{\beta} F[\varphi](z) \mid |\beta| \leqslant |\alpha| \} \Big|_{z=A^{T} y}$$

Соответственно  $\xi(y) \in \mathcal{S}(\mathbb{R}^l)$  для таких матриц A, что  $|A^Ty| \to \infty$  ( $|y| \to \infty$ ). Рассмотрим выражение  $|A^Ty|^2 = y^T(AA^T)y$ . Матрица  $AA^T$  является симметрической матрицей размера  $l \times l$ , которая задает квадратичную форму. Для того, чтобы  $y^T(AA^T)y \to \infty$  ( $|y| \to \infty$ ), необходимо, чтобы все ее собственные числа были строго больше нуля, то есть матрица была бы невырожденной. Это возможно тогда и только тогда, когда rg A = l (ker  $A^T = 0$ ). Непрерывность заданного функционала доказывается аналогично через представление

Рассмотрим теперь преобразование Фурье по части переменных.

**Определение** (Преобразование Фурье по части переменных). Рассмотрим  $f(x,z) \in \mathcal{S}'(\mathbb{R}^{l+m}), \ x \in \mathbb{R}^m, \ z \in \mathbb{R}^l$ . Тогда:

$$\langle F_x[f(x,z)](y,z), \varphi(y,z) \rangle \stackrel{def}{=} \langle f(x,z), F_y[\varphi(y,z)](x,z) \rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^{l+m})$$
 (12)

Докажем корректность этого определения.

Доказательство. Для начала нужно показать, что  $\psi(y,z) = F_x[\varphi(x,z)](y,z) \in \mathcal{S}(\mathbb{R}^{l+m})$ . Это означает, что:

$$\forall \alpha, \mu \in \mathbb{N}_0^m, \ \beta, \nu \in \mathbb{N}_0^l \hookrightarrow y^\mu z^\nu \partial_y^\alpha \partial_z^\beta \psi(y,z) \to 0 \ (|y| + |z| \to \infty)$$

По теореме о дифференцировании несобственного интеграла:

$$\xi(y,z) = y^{\mu} z^{\nu} \partial_{y}^{\alpha} \partial_{z}^{\beta} \psi(y,z) = y^{\mu} z^{\nu} \int_{\mathbb{R}^{m}} dx (ix)^{\alpha} e^{i(x,y)} \partial_{z}^{\beta} \varphi(x,z)$$
(13)

Далее проинтегрируем по частям выражение (13) и, обозначив  $\Phi(x,z) = \partial_x^{\mu} \left( (ix)^{\alpha} \partial_z^{\beta} \varphi(x,z) \right) \in \mathcal{S}(\mathbb{R}^{l+m})$ , получим:

$$\xi(y,z) = i^{\mu}z^{\nu} \int_{\mathbb{R}^m} dx \, e^{i(x,y)} \partial_x^{\mu} \left( (ix)^{\alpha} \partial_z^{\beta} \varphi(x,z) \right) = i^{\mu}z^{\nu} F_x \left[ \Phi(x,z) \right] (y)$$

Чтобы сделать оценку, воспользуемся тем фактом, что  $\Delta_x \Phi(x,z) \in \mathcal{S}(\mathbb{R}^{l+m})$ , а также:

$$F_x[\Delta_x \Phi(x,z)](y) = \sum_{k=1}^m F_x \left[ \frac{\partial^2}{\partial x_k^2} \Phi(x,z) \right](y) = -|y|^2 F_x[\Phi(x,z)](y) \in \mathcal{S}(\mathbb{R}^{l+m})$$

Тогда получаем:

$$\xi(y,z) = -\frac{i^{\mu}z^{\nu}}{1 + |y|^2} F_x \left[ \Delta_x \Phi(x,z) - \Phi(x,z) \right] (y)$$
(14)

В силу того, что  $\Delta_x \Phi(x,z) - \Phi(x,z) \in \mathcal{S}(\mathbb{R}^{l+m})$ :

$$|\Delta_x \Phi(x,z) - \Phi(x,z)| \le \frac{C}{(1+|x|^{2m})(1+|z|^{2\nu+1})}$$

Тогда, подставляя это в (14), получаем такую оценку:

$$|\xi(y,z)| \leqslant \frac{C|z|^{|\nu|}}{(1+|z|^{2\nu+1})(1+|y|^2)} \int_{\mathbb{R}^m} \frac{dx}{1+|x|^{2m}} \to 0 \ (|y|+|z|\to\infty)$$
 (15)

Значит  $\psi(y,z) = F_x[\varphi(x,z)](y,z) \in \mathcal{S}(\mathbb{R}^{l+m})$ . Линейность искомого функционала очевидна. Рассмотрим теперь непрерывность. Нужно доказать, что

$$\forall \alpha, \mu \in \mathbb{N}_0^m, \ \beta, \nu \in \mathbb{N}_0^l \hookrightarrow y^{\mu} z^{\nu} \partial_y^{\alpha} \partial_z^{\beta} F_x[(\varphi_n - \varphi)(x, z)](y, z) \Longrightarrow 0 \ (n \to \infty)$$
 (16)

Аналогично первой части доказательства, получаем:

$$y^{\mu}z^{\nu}\partial_{y}^{\alpha}\partial_{z}^{\beta}F_{x}[(\varphi_{n}-\varphi)(x,z)](y,z) = i^{\mu}z^{\nu}\int_{\mathbb{R}^{m}}dx\,e^{i(x,y)}\partial_{x}^{\mu}\left((ix)^{\alpha}\partial_{z}^{\beta}(\varphi_{n}-\varphi)(x,z)\right)$$

$$\tag{17}$$

Функция  $\Phi_n(x,z) = \partial_x^\mu \left( (ix)^\alpha \partial_z^\beta (\varphi_n - \varphi)(x,z) \right) \in \mathcal{S}(\mathbb{R}^{l+m})$ . Значит ее можно равномерно ограничить:

$$|\Phi_n(x,z)| \leqslant \frac{\varepsilon}{(1+|x|^{2m})(1+|z|^{|\nu|})} \tag{18}$$

Тогда получаем, подставляя это в (17), получаем равномерную оценку:

$$|y^{\mu}z^{\nu}\partial_{y}^{\alpha}\partial_{z}^{\beta}F_{x}[(\varphi_{n}-\varphi)(x,z)](y,z)| \leqslant \varepsilon \frac{C|z|^{|\nu|}}{1+|z|^{|\nu|}} \int_{\mathbb{D}_{m}} \frac{dx}{1+|x|^{2m}}$$

$$\tag{19}$$

При  $\varepsilon \to 0$  эта штука равномерно стремится к нулю, что и доказывает непрерывность.

**Наблюдение** Пусть  $f \in \mathcal{S}'(\mathbb{R}^{l+m})$ . Тогда, как следует из теоремы Фубини:

$$F[f(x,z)](a,b) = F_z[F_x[f(x,z)]](a,b) = F_x[F_z[f(x,z)]](a,b)$$
(20)

Рассмотрим важное свойство преобразования Фурье.

**Теорема** (О Фурье-образе производной обобщенной функции). Пусть  $f(x,z) \in \mathcal{S}(\mathbb{R}^{l+m})$ . Тогда:

$$F_x[\partial_x^{\alpha}\partial_z^{\beta}f(x,z)](y) = (-iy)^{\alpha}\partial_z^{\beta}F_x[f(x,z)](y)$$

Доказательство. Пусть  $\varphi(y,z) \in \mathcal{S}(\mathbb{R}^{l+m})$ . Тогда:

$$\left\langle F_{x}[\partial_{x}^{\alpha}\partial_{z}^{\beta}f(x,z)](y),\varphi(y,z)\right\rangle = \left\langle f(x,z),(-1)^{|\beta|}\partial_{z}^{\beta}(-1)^{|\alpha|}\partial_{x}^{\alpha}F_{y}[\varphi(y,z)](x)\right\rangle = 
= \left\langle f(x,z),(-1)^{|\alpha|+|\beta|}F_{y}[(iy)^{\alpha}\partial_{z}^{\beta}\varphi(y,z)](x)\right\rangle = \left\langle F_{x}[f(x,z)](y),(-iy)^{\alpha}(-1)^{|\beta|}\partial_{z}^{\beta}\varphi(y,z)\right\rangle = 
= \left\langle \partial_{z}^{\beta}F_{x}[f(x,z)](y),(-iy)^{\alpha}\varphi(y,z)\right\rangle = \left\langle (-iy)^{\alpha}\partial_{z}^{\beta}F_{x}[f(x,z)](y),\varphi(y,z)\right\rangle \tag{21}$$

# 6. Свёртка обобщённых функций в пространстве $S'(\mathbb{R}^m)$ . Лемма о дифференцировании действия обобщённой функции на гладко зависящую от параметра основную функцию. Дифференцирование свёртки обобщённых функций

Пусть для  $f \in S'(\mathbb{R}^m)$  и  $g \in S'(\mathbb{R}^m)$   $\exists$  такое  $h \in S'(\mathbb{R}^m)$ , что для  $\forall$  срезки  $\eta(x)$  и для  $\forall \varphi \in S(\mathbb{R}^m)$ 

$$\exists \lim_{r \to +\infty} \left\langle f(x), \eta\left(\frac{x}{r}\right) \left\langle g(y), \varphi(x+y) \right\rangle \right\rangle = \left\langle h(x), \varphi(x) \right\rangle$$

Тогда h(x) будем называть сверткой f(x), g(x) и обозначать h(x) = f(x) \* g(x)

#### Лемма. о дифференцировании действия

Пусть  $\varphi: \mathbb{R}^m \times \mathbb{R}^l \to C$  такая, что  $\varphi \in C^\infty(\mathbb{R}^m \times \mathbb{R}^l)$  и  $\forall p \in \mathbb{N}_0, \ \forall \alpha \in \mathbb{N}_0^m, \ \forall \beta \in \mathbb{N}_0^l, \ \forall R > 0$  выполнена равномерная сходимость  $|z|^p D_z^\beta D_y^\alpha \varphi(y,z) \to 0$  при  $z \to \infty$  для |y| < R, то  $\psi(y) = \langle g(z), \varphi(y,z) \rangle \in C^\infty(\mathbb{R}^m), \ \forall g \in S'(\mathbb{R}^l)$  и  $D_y^\alpha \psi(y) = \langle g(z), D_y^\alpha \varphi(y,z) \rangle$ .

Доказательство. Зафиксируем произвольный вектор  $e \in \mathbb{R}^m$ , и зафиксируем  $y \in \mathbb{R}^m$ 

$$\frac{\psi(y+te)-\psi(y)}{t} = \left\langle g(z), \frac{\varphi(y+te,z)-\varphi(y,z)}{t} \right\rangle$$

Нам необходимо доказать, что

$$\left\langle g(z), \dfrac{arphi(y+te,z)-arphi(y,z)}{t} 
ight
angle o \left\langle g(z), (
abla_y arphi(y,z),e) 
ight
angle$$
 при  $t o 0$ 

A именно,  $\forall p \in \mathbb{N}_0, \ \forall \beta \in \mathbb{N}_0^l$ 

$$\sup_{z\in\mathbb{R}^l}\,|z|^p\Bigg|D_z^\beta\left(\frac{\varphi(y+te,z)-\varphi(y,z)}{t}-(\nabla_y\varphi(y,z),e)\right)\Bigg|\to 0\ \text{при }t\to 0$$

Обозначим  $h(y,z) = D_z^{\beta} \varphi(y,z)$ , тогда

$$\sup_{z\in\mathbb{R}^l}\,|z|^p\Bigg|\Bigg(\frac{h(y+te,z)-h(y,z)}{t}-(\nabla_y h(y,z),e)\Bigg)\Bigg|\to 0\ \text{при }t\to 0$$

По теореме Лагранжа

$$\frac{h(y+te,z)-h(y,z)}{t} = (\nabla_y h(y+\zeta e,z),e)$$

Применим теорему Лагранжа второй раз, а именно: обозначим  $f(\tau) = (\nabla_y h(y + \tau e, z), e)$ , тогда

$$f(\zeta) - f(0) = f'(\xi)\zeta,$$

где  $f'(\tau) = (h''_{yy}(y + \tau e, z)e, e)$ . Следовательно, нам надо показать, что

$$\sup_{z \in \mathbb{R}^l} |z|^p |(h_{yy}''(y + \xi e, z)e, e)||\zeta| \to 0, \ t \to 0$$

Обозначим R = |y| + |e| пусть |t| < 1 тогда  $y_1 = |y + \xi e| < R$ . По условию леммы

$$|z|^p|(h_{yy}''(y_1,z)e,e)|{\to}\;0,\,|z|{\to}\;\infty$$
 равномерно при  $y_1 < R$ 

Следовательно существует такое M, что

$$\sup_{z \in \mathbb{R}^l} |z|^p |(h''_{yy}(y_1, z)e, e)| < M$$

И окончательно

$$\sup_{z \in \mathbb{R}^l} |z|^p |(h_{yy}''(y+\xi e,z)e,e)| \cdot |\zeta| < M|\zeta| < M|t| \to \text{ при } t \to 0$$

Ч.Т.Д.

#### Дифференцирование свёртки обобщённых функций

Пусть для  $f \in S'(\mathbb{R}^m)$  и  $g \in S'(\mathbb{R}^m)$   $\exists \ f * g \in S'(\mathbb{R}^m)$  тогда  $\forall \alpha \in \mathbb{N}_0^m \ \exists f * (D^\alpha g), \ (D^\alpha f) * g$  и справедливы равенства:

$$D^{\alpha}(f * g) = f * (D^{\alpha}g) = (D^{\alpha}f) * g.$$

Доказательство.

$$\left\langle \left( \eta \left( \frac{x}{r} \right) f(x) \right) * (D^{\alpha} g(x)), \varphi(x) \right\rangle = \left\langle f(x), \eta \left( \frac{x}{r} \right) \langle (D^{\alpha} g(x)), \varphi(x+y) \rangle \right\rangle =$$

$$= \left\langle f(x), \eta \left( \frac{x}{r} \right) \langle g(x), (-1)^{\alpha} D^{\alpha} \varphi(x+y) \rangle \right\rangle = \left\langle \eta \left( \frac{x}{r} \right) f(x) * g(x), (-1)^{\alpha} D^{\alpha} \varphi(x) \right\rangle \quad (22)$$

Так как по условию  $\exists f * g$  то

$$\exists \lim_{r \to +\infty} \left\langle \eta\left(\frac{x}{r}\right) f(x) * g(x), (-1)^{\alpha} D^{\alpha} \varphi(x) \right\rangle = \left\langle (f * g)(x), (-1)^{\alpha} D^{\alpha} \varphi(x) \right\rangle = \left\langle D^{\alpha} (f * g)(x), \varphi(x) \right\rangle$$

Следовательно.

$$\exists \lim_{r \to +\infty} \left\langle \left( \eta \left( \frac{x}{r} \right) f(x) * g(x), (-1)^{\alpha} D^{\alpha} \varphi(x) \right\rangle = \left\langle D^{\alpha} (f * g)(x), \varphi(x) \right\rangle.$$

Мы доказали, что существует свертка

$$f * (D^{\alpha}g) = D^{\alpha}(f * g).$$

Докажем теперь, что  $\exists$  свертка  $(D^{\alpha}f) * g$ .

$$\left\langle \left( \eta \left( \frac{x}{r} \right) D^{\alpha} f(x) \right) * g(x), \varphi(x) \right\rangle = \left\langle D^{\alpha} f(x), \eta \left( \frac{x}{r} \right) \langle g(y), \varphi(x+y) \rangle \right\rangle = \left\langle f(x), (-1)^{\alpha} D^{\alpha} \left( \eta \left( \frac{x}{r} \right) \langle g(y), \varphi(x+y) \rangle \right) \right\rangle$$
(23)

По формуле Лейбница дифференцирования произведения функций

$$D^{\alpha} \left\langle \eta \left( \frac{x}{r} \right) \left\langle g(y), \varphi(x+y) \right\rangle \right\rangle = \eta \left( \frac{x}{r} \right) D^{\alpha} \left\langle g(y), \varphi(x+y) \right\rangle + \psi_r(x),$$

где  $\psi_r(x)$  является конечной линейной комбинацией функций

$$D^{\beta} \eta\left(\frac{x}{r}\right) D^{\gamma} \langle g(y), \varphi(x+y) \rangle = D^{\beta} \eta\left(\frac{x}{r}\right) \langle g(y), D^{\gamma} \varphi(x+y) \rangle$$

для всевозможных  $\beta \in \mathbb{N}^m$  и  $\gamma \in \mathbb{N}^m$  вида  $\beta + \gamma = \alpha$ .

Покажем, что  $\lim_{r\to +\infty} \langle f(x), \psi_r(x) \rangle = 0$ . Для этого достаточно доказать, что для  $\forall \beta \in \mathbb{N}^m$  и  $\gamma \in \mathbb{N}^m$  вида  $\beta + \gamma = \alpha$  выполнено

$$\lim_{r \to +\infty} \langle f(x), D^{\beta} \eta \left\langle \eta \left( \frac{x}{r} \right) \langle g(y), D^{\beta} \varphi(x+y) \rangle \right\rangle = 0.$$

Зафиксируем  $\beta$  и  $\gamma$  и рассмотрим функцию

$$\zeta(z) = D^{\beta}\eta(z).$$

Тогда

$$D^{\beta} \eta \left( \frac{x}{r} \right) = \frac{1}{r^{\beta}} \zeta \left( \frac{x}{r} \right).$$

Нам требуется показать, что

$$\lim_{r \to +\infty} \left\langle f(x), \zeta\left(\frac{x}{r}\right) \left\langle g(y), D^{\gamma} \varphi(x+y) \right\rangle \right\rangle = 0.$$

Заметим, что  $\zeta(z)=0$  при  $|z|\leq 1$ . Отсюда следует, что  $\eta_1(z)=\eta(z)+\zeta(z)$  является 1-срезкой. Поэтому, так как  $\exists \ f*q$ 

$$\langle (f * g)(x), D^{\gamma} \varphi(x) \rangle = \lim_{r \to +\infty} \left\langle f(x), \eta_1 \left( \frac{x}{r} \right) \langle g(y), D^{\gamma} \varphi(x+y) \rangle \right\rangle =$$

$$= \lim_{r \to +\infty} \left\langle f(x), \eta \left( \frac{x}{r} \right) \langle g(y), D^{\gamma} \varphi(x+y) \rangle \right\rangle + \lim_{r \to +\infty} \left\langle f(x), \zeta \left( \frac{x}{r} \right) \langle g(y), D^{\gamma} \varphi(x+y) \rangle \right\rangle =$$

$$= \left\langle (f * g)(x), D^{\gamma} \varphi(x) \right\rangle + \lim_{r \to +\infty} \left\langle f(x), \zeta \left( \frac{x}{r} \right) \langle g(y), D^{\gamma} \varphi(x+y) \rangle \right\rangle. \tag{24}$$

Отсюда получаем, что

$$\lim_{r\to +\infty} \left\langle f(x), \zeta\left(\frac{x}{r}\right) \left\langle g(y), D^{\gamma} \varphi(x+y) \right\rangle \right\rangle = 0.$$

Значит,

$$\lim_{r \to +\infty} \left\langle f(x), \zeta\left(\frac{x}{r}\right) \left\langle g(y)D^{\gamma}\varphi(x+y)\right\rangle \right\rangle = 0$$
$$\lim_{r \to +\infty} \left\langle f(x), \psi_r(x)\right\rangle = 0.$$

Наконец,

$$\left\langle \left( \eta \left( \frac{x}{r} \right) D^{\alpha} f(x) \right) * g(x), \varphi(x) \right\rangle =$$

$$= \left\langle f(x), (-1)^{\alpha} \left( \eta \left( \frac{x}{r} \right) \langle g(y), (-1)^{\alpha} D^{\alpha} \varphi(x+y) \rangle \right) \right\rangle =$$

$$= \left\langle D^{\alpha} (f(x) * g(x)), \varphi(x) \right\rangle. \quad (25)$$

Мы получили, что

$$(D^{\alpha}f) * g = D^{\alpha}(f * g)$$

Ч.Т.Д.

## 7. Лемма об интегрировании действия. Преобразование Фурье обобщённой функции как действие на комплексную экспоненту. Преобразование Фурье свёртки обобщённых функций.

**Лемма.** Пусть  $\varphi(x,y) \in S((R)^m \times (R)^l)$  Рассмотрим функции

$$\psi(x) = \int_{\mathbb{R}^l} \varphi(x, y) dy \in S(\mathbb{R}^m)$$
$$\psi_R(x) = \int_{|y| \le R} \varphi(x, y) dy \in S(\mathbb{R}^m)$$
$$f(x) \in S'(\mathbb{R}^m)$$

Утверждение леммы заключается в том, что

$$\langle f(x); \psi(x) \rangle = \lim_{R \to \infty} \langle f(x); \psi_R(x) \rangle = \lim_{R \to \infty} \int_{|y| \le R} \langle f(x); \varphi(x, y) \rangle \, dy$$

Доказательство. Докажем сперва, что

$$\psi_R \xrightarrow[R \to \infty]{S(\mathbb{R}^m)} \psi , \qquad (1)$$

Для этого выберем  $\forall \alpha \in \mathbb{N}_0^m$  и  $\forall p \in \mathbb{N}_0$ , Утверждение (1) равносильно тому, что

$$\sup_{x \in \mathbb{R}^m} |x|^p \partial_x^{\alpha} |\psi(x) - \psi_R(x)| \to 0, R \to \infty$$

Но

$$\sup_{x \in \mathbb{R}^m} |x|^p \partial_x^{\alpha} |\psi(x) - \psi_R(x)| \le \int_{|y| > R} dy |x|^p |\partial_x^{\alpha} \varphi(x, y)|$$

В силу того, что  $\varphi(x,y) \in S((R)^m \times (R)^l)$ 

$$\partial_x^{\alpha} \varphi(x, y) \le \frac{C}{(1 + |x|)^{p+1} (1 + |y|^{2l})}$$

Из этого следует, что

$$\int\limits_{|y|>R} dy |x|^p |\partial_x^\alpha \varphi(x,y)| \leq \sup \frac{|x|}{(1+|x|)^{p+1}} \int\limits_{|y|>R} \frac{dy}{1+|y|^{2l}} \to 0$$

Утверждение (1) доказано.

Воспользуемся леммой 2.2.9. из Конста.

**Лемма 2.2.9.** Пусть обобщённая функция  $f \in \mathcal{S}'\left(\mathbb{R}^k\right)$ , функция  $\psi \in \mathcal{S}\left(\mathbb{R}^{k+l}\right)$ , а функция b(z) для  $z \in \mathbb{R}^l$  является непрерывной функцией медленного роста. Тогда для любого R > 0 справедливо равенство:

$$\left\langle f(y), \int\limits_{|z| < R} dz \; b(z) \, \psi(y,z) \right\rangle = \int\limits_{|z| < R} dz \; b(z) \, \left\langle f(y), \psi(y,z) \right\rangle.$$

**Доказательство.** Пусть P — разбиение шара |z| < R измеримыми непересекающимися множествами  $A_1, \ldots, A_N$  мелкости

$$|P| = \max_{i \in \overline{1,N}} \operatorname{diam}(A_i).$$

Рассмотрим сумму Римана интеграла  $\int\limits_{|z|< R} dz\ b(z)\ \psi(y,z)$  для разбиения P и произвольных векторов  $z_i\in A_i$  для любого  $i\in\overline{1,N}$ :

$$\sigma_P(y) = \sum_{i=1}^{N} b(z_i) \psi(y, z_i) \mu(A_i) = \sum_{i=1}^{N} \int_{A_i} dz \ b(z_i) \psi(y, z_i),$$

В силу линейности функционала f, справедливо равенство

$$\begin{split} \langle f(y), \sigma_P(y) \rangle &= \sum_{i=1}^N b(z_i) \left\langle f(y), \psi(y, z_i) \right\rangle \, \mu(A_i) = \\ &= \sum_{i=1}^N \int\limits_{A_i} dz \, \, b(z_i) \left\langle f(y), \psi(y, z_i) \right\rangle. \end{split}$$

Так как при  $|P| \to 0$  имеет место соотношение

$$\sum_{i=1}^{N} b(z_i) \left\langle f(y), \psi(y, z_i) \right\rangle \, \mu(A_i) \to \int_{|z| < R} dz \, b(z) \left\langle f(y), \psi(y, z) \right\rangle,$$

то мы имеем равенство

$$\lim_{|P| \to 0} \langle f(y), \sigma_P(y) \rangle = \int_{|z| < R} dz \ b(z) \langle f(y), \psi(y, z) \rangle.$$

Очевидно, что  $\sigma_P \in \mathcal{S}(\mathbb{R}^k)$ . Если мы докажем, что

$$\sigma_P(y) \stackrel{8(\mathbb{R}^k)}{\to} \int_{|z| < R} dz \ b(z) \psi(y, z),$$
 (2.2.11)

то получим равенство

$$\lim_{|P| \to 0} \langle f(y), \sigma_P(y) \rangle = \left\langle f(y), \int_{|z| < R} dz \ b(z) \ \psi(y, z) \right\rangle,$$

т. е. утверждение леммы будет доказано. Определим функцию  $\eta \in \mathcal{S}\left(\mathbb{R}^k\right)$  по формуле

$$\eta(y) = \int\limits_{|z| < R} dz \ b(z) \ \psi(y,z), \quad y \in \mathbb{R}^k.$$

Для доказательства соотношения (2.2.11) нам требуется показать, что для любого числа  $q \in \mathbb{N}_0$  и мультииндекса  $\alpha \in \mathbb{N}_0^k$  выполнено:

$$\sup_{y \in \mathbb{R}^k} \left( |y|^q \left| D_y^\alpha \sigma_P(y) - D_y^\alpha \eta(y) \right| \right) \to 0 \quad \text{при} \quad |P| \to 0.$$

Покажем это последнее соотношение. Так как функция b(z) имеет медленный рост, то она ограничена на шаре |z| < R, т. е. существует число M>0, такое, что  $|b(z)| \leq M$  при |z| < R. В силу вложения  $\psi \in \mathcal{S}\left(\mathbb{R}^{k+l}\right)$  имеем:

$$\forall \varepsilon > 0 \quad \exists d > 0: \quad \forall y \in \mathbb{R}^k: \quad |y| > d, \quad \forall z \in \mathbb{R}^l \quad \Rightarrow \quad |y|^q \left| D_n^\alpha \psi(y, z) \right| \le \varepsilon.$$

Следовательно, при |y| > d получаем:

$$\begin{split} |y|^q \left| D_y^\alpha \sigma_P(y) - D_y^\alpha \eta(y) \right| & \leq \\ & \leq \sum_{i=1}^N \int_{A_i} dz \; |b(z)| |y|^q \left( \left| D_y^\alpha \psi(y,z_i) \right| + \left| D_y^\alpha \psi(y,z) \right| \right) \leq \\ & \leq \sum_{i=1}^N \int_{A_i} dz \; 2M\varepsilon = \int_{|z| < R} dz \; 2M\varepsilon = R^l V_l 2M\varepsilon, \end{split}$$

где  $V_l = \int\limits_{|z|<1} dz$  — объём единичного шара в  $\mathbb{R}^l$ .

Далее, функция  $\binom{y}{z} \mapsto |y|^q b(z) D_y^\alpha \psi(y,z)$ , по условию, непрерывна по совокупности переменных y и z на  $R^{k+l}$ , и, поэтому, является равномерно непрерывной на компакте  $|y| \leq d$  и  $|z| \leq R$  в силу теоремы Кантора. Это, в частности, означает, что

$$\begin{aligned} \forall \, \varepsilon > 0 \quad \exists \, \gamma > 0 : \quad \forall \, y \in \mathbb{R}^k, \, \, z_1 \in \mathbb{R}^l, \, \, z_2 \in \mathbb{R}^l : \\ |z_1| \leq R, \, |z_2| \leq R, \, |z_1 - z_2| \leq \gamma, \, |y| \leq d \quad \Rightarrow \\ & \Rightarrow \quad |y|^q \left| b(z_1) D_y^\alpha \psi(y, z_1) - b(z_2) D_y^\alpha \psi(y, z_2) \right| \leq \varepsilon. \end{aligned}$$

Следовательно, если для заданного числа  $\varepsilon > 0$  мелкость разбиения P удовлетворяет неравенству  $|P| \le \gamma$ , то при  $|y| \le d$  получаем:

$$\begin{split} |y|^q \left| D_y^\alpha \sigma_P(y) - D_y^\alpha \eta(y) \right| &\leq \\ &\leq \sum_{i=1}^N \int_{A_i} dz \ |y|^q \left| b(z_i) D_y^\alpha \psi(y,z_i) - b(z) D_y^\alpha \psi(y,z_j) \right| \leq \\ &\leq \sum_{i=1}^N \int_{A_i} dz \ \varepsilon = \int_{|z| \leq R} dz \ \varepsilon = R^l V_l \varepsilon. \end{split}$$

Следовательно, мы доказали, что для любого  $\varepsilon>0$  существует число  $\gamma>0$ , такое, что для любого разбиения P шара |z|< R мелкости  $|P|\leq \gamma$  и для любого  $y\in \mathbb{R}^k$  справедливо неравенство:

$$|y|^q |D_y^{\alpha} \sigma_P(y) - D_y^{\alpha} \eta(y)| \le R^l V_l(1 + 2M)\varepsilon.$$

Это доказывает соотношение (2.2.11).

Итого получаем:

$$\langle f(x), \psi(x) \rangle \stackrel{(1)}{=} \lim_{R \to \infty} \langle f(x), \psi_R(x) \rangle \stackrel{2.2.9}{=} \lim_{R \to \infty} \int_{|y| \le R} \langle f(x); \varphi(x, y) \rangle dy$$

Преобразование фурье обобщенной функции как действие на комплексную экспоненту и преобразование фурье свертки обобщенных функций - из главы 2.8. конспекта Конста(стр. 176-183)

### 2.8 Преобразование Фурье как действие на комплексную экспоненту

Заметим, что для произвольной абсолютно интегрируемой на  $\mathbb{R}^m$  функции f(x) её классическое преобразование Фурье

$$\mathcal{F}[f(x)](y) = \int_{\mathbb{R}^m} f(x)e^{i(x,y)} dx$$

имеет для каждого  $y \in \mathbb{R}^m$  формальный вид действия регулярного функционала f(x) на бесконечно гладкую функцию  $e^{i(x,y)}$ . Хотя при любом фиксированном  $y \in \mathbb{R}^m$  функция  $e^{i(x,y)} \notin \mathcal{S}(\mathbb{R}^m)$ , но для любой срезки  $\eta_R(x)$  имеем вложение:

$$\eta_R(x)e^{i(x,y)} \in \mathcal{D}(\mathbb{R}^m) \subset \mathcal{S}(\mathbb{R}^m)$$
.

Зафиксировав срезку  $\eta_1(x) \in \mathcal{D}(\mathbb{R}^m)$ , для любого числа R>0 определим R—срезку вида  $\eta_1\left(\frac{x}{R}\right)$ . Тогда для любого  $y \in \mathbb{R}^m$  имеет место очевидное предельное соотношение:

$$\int_{\mathbb{R}^m} f(x)e^{i(x,y)} dx = \lim_{R \to +\infty} \int_{\mathbb{R}^m} f(x)\eta_1\left(\frac{x}{R}\right)e^{i(x,y)} dx =$$

$$= \lim_{R \to +\infty} \left\langle f(x), \eta_1\left(\frac{x}{R}\right)e^{i(x,y)} \right\rangle$$

Действительно, для любого R>0 имеем:

$$\left| \int_{\mathbb{R}^m} f(x)e^{i(x,y)} dx - \int_{\mathbb{R}^m} f(x)\eta_1\left(\frac{x}{R}\right)e^{i(x,y)} dx \right| =$$

$$= \left| \int_{|x|>R} f(x)\left(1 - \eta_1\left(\frac{x}{R}\right)\right)e^{i(x,y)} dx \right| \le$$

$$\le \left(1 + \sup_{z \in \mathbb{R}^m} |\eta_1(z)|\right) \int_{|x|>R} |f(x)| dx \to 0$$

при  $R \to +\infty$ . Действуя по аналогии, теперь для произвольной обобщённой функции  $f(x) \in \mathcal{S}'\left(\mathbb{R}^m\right)$  и любого числа R>0 мы можем определить функцию

$$\phi_R(y) = \left\langle f(x), \eta_1\left(\frac{x}{R}\right) e^{i(x,y)} \right\rangle, \quad y \in \mathbb{R}^m.$$

Рассмотрим функцию

$$\xi_R(x,y) = \eta_1\left(\frac{x}{R}\right)e^{i(x,y)}, \quad x \in \mathbb{R}^m, \quad y \in \mathbb{R}^m.$$

Так как для любого  $y \in \mathbb{R}^m$  носитель функции  $x \mapsto \xi_R(x,y)$  совпадает с носителем срезки  $\eta_1\left(\frac{x}{R}\right)$  и не зависит от y, то функция  $\xi_R(x,y)$ , очевидно, удовлетворяет условиям леммы 2.2.1. Действительно, пусть носитель функции  $\eta_1(x)$  содержится в шаре радиуса r>1. Тогда для любого |x|>Rr и произвольных  $y\in\mathbb{R}^m$ ,  $\alpha\in\mathbb{N}_0^m$ ,  $\beta\in\mathbb{N}_0^m$  и  $p\in\mathbb{N}_0$  получаем:

$$|x|^p D_y^\beta D_x^\alpha \xi_R(x, y) = 0,$$

т. е. имеет место соотношение:

$$|x|^p D_y^\beta D_x^\alpha \xi_R(x,y) \stackrel{y \in \mathbb{R}^m}{\Rightarrow} 0$$
 при  $|x| \to +\infty$ .

Справедливо очевидное равенство:

$$D_x^{\alpha} e^{i(x,y)} = (ix)^{\alpha} e^{i(x,y)} \quad \forall x, y \in \mathbb{R}^m.$$

По лемме 2.2.1 получаем, что  $\phi_R(y) \in C^{\infty}(\mathbb{R}^m)$ , и для любого мультииндекса  $\alpha \in \mathbb{N}_0^m$  справедливо равенство:

$$\begin{split} D_y^\alpha \phi_R(y) &= \left\langle f(x), D_y^\alpha \xi_R(x,y) \right\rangle = \\ &= \left\langle f(x), \eta_1\left(\frac{x}{R}\right) D_y^\alpha e^{i(x,y)} \right\rangle = \left\langle f(x), \eta_1\left(\frac{x}{R}\right) (ix)^\alpha e^{i(x,y)} \right\rangle = \end{split}$$

Далее, для любой функции  $\varphi(y) \in S(\mathbb{R}^m)$  имеем:

$$\phi_R(y)\varphi(y) = \langle f(x), \xi_R(x, y)\varphi(y) \rangle, \quad y \in \mathbb{R}^m.$$

Так как функция  $\xi_R(x,y)\varphi(y) \in \mathbb{S}\left(\mathbb{R}^{2m}\right)$ , то, в силу леммы 2.2.9, для любого  $n \in \mathbb{N}$  получаем:

$$\int_{|y| < n} \phi_R(y)\varphi(y) \, dy = \left\langle f(x), \int_{|y| < n} \xi_R(x, y)\varphi(y) \, dy \right\rangle.$$

По лемме 2.2.8, при  $n \to \infty$  имеет место соотношение:

$$\int_{|y| < n} \xi_R(x, y) \varphi(y) \, dy \stackrel{\mathcal{S}(\mathbb{R}^m)}{\to} \int_{\mathbb{R}^m} \xi_R(x, y) \varphi(y) \, dy.$$

Следовательно, существует

$$\int\limits_{\mathbb{R}^m} \phi_R(y)\varphi(y)\,dy = \lim_{n\to\infty} \int\limits_{|y|< n} \phi_R(y)\varphi(y)\,dy =$$

$$= \lim_{n\to\infty} \left\langle f(x), \int\limits_{|y|< n} \xi_R(x,y)\varphi(y)\,dy \right\rangle = \left\langle f(x), \int\limits_{\mathbb{R}^m} \xi_R(x,y)\varphi(y)\,dy \right\rangle.$$

Таким образом, для любого R>0 имеет место равенство:

$$\begin{split} \int\limits_{\mathbb{R}^m} \varphi(y) \left\langle f(x), \eta_1 \left( \frac{x}{R} \right) e^{i(x,y)} \right\rangle \, dy &= \\ &= \left\langle f(x), \eta_1 \left( \frac{x}{R} \right) \int\limits_{\mathbb{R}^m} \varphi(y) e^{i(x,y)} \, dy \right\rangle = \\ &= \left\langle f(x), \eta_1 \left( \frac{x}{R} \right) \mathcal{F}[\varphi(y)](x) \right\rangle. \end{split}$$

Так как отображение  $\varphi \mapsto \langle f(x), \eta_1\left(\frac{x}{R}\right) \mathcal{F}[\varphi(y)](x) \rangle$  является линейным и непрерывным на  $\mathcal{S}(\mathbb{R}^m)$ , то из полученного равенства следует, что функция  $\phi_R(y) = \langle f(x), \eta_1\left(\frac{x}{R}\right) e^{i(x,y)} \rangle$  определяет регулярный функционал в пространстве  $\mathcal{S}'(\mathbb{R}^m)$ :

$$\langle \phi_R(y), \varphi(y) \rangle = \int_{\mathbb{R}^m} \phi_R(y) \varphi(y) \, dy = \langle f(x), \eta_1 \left( \frac{x}{R} \right) \mathcal{F}[\varphi(y)](x) \rangle$$
 (2.8.1)

для любой функции  $\varphi(y) \in \mathcal{S}(\mathbb{R}^m)$ . Теперь в равенстве (2.8.1) хотелось бы перейти к пределу при  $R \to +\infty$ . Этому поможет следующая

 $\Pi$  е м м а  $\ 2.8.1.$  Для любой основной функции  $\psi(x) \in \mathcal{S}\left(\mathbb{R}^m\right)$  выполнено:

$$\eta_1\left(\frac{x}{R}\right)\psi(x) \stackrel{\mathbb{S}(\mathbb{R}^m)}{\longrightarrow} \psi(x)$$
 при  $R \to +\infty$ .

Доказательство. Рассмотрим произвольные  $\alpha \in \mathbb{N}_0^m$  и  $p \in \mathbb{N}_0$ . Тогда

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon, \alpha, p) > 0: \quad \forall |x| > \delta \quad \Rightarrow \quad |x|^p |D_x^\alpha \psi(x)| < \varepsilon.$$

Заметим, что  $D_x^{\alpha}\left(\left(\eta_1\left(\frac{x}{R}\right)-1\right)\psi(x)\right)$  имеет вид конечной линейной комбинации слагаемых вида  $D_x^{\beta}\left(\eta_1\left(\frac{x}{R}\right)-1\right)D_x^{\gamma}\psi(x)$  для произвольных мультииндексов  $\beta$  и  $\gamma$  вида  $\beta+\gamma=\alpha$ . Поэтому нам достаточно показать, что для таких  $\beta$  и  $\gamma$  имеет место соотношение

$$\sup_{x \in \mathbb{R}^m} \left( |x|^p D_x^\beta \left( \eta_1 \left( \frac{x}{R} \right) - 1 \right) D_x^\gamma \psi(x) \right) \to 0 \quad \text{при} \quad R \to +\infty.$$

При  $|x| \le R$  имеет место равенство:

$$D_x^{\beta} \left( \eta_1 \left( \frac{x}{R} \right) - 1 \right) = 0.$$

Определим число

Применяя лемму 2.8.1 для функции  $\psi(x) = \mathcal{F}[\varphi(y)](x) \in \mathcal{S}(\mathbb{R}^m)$ , получаем:

$$\eta_1\left(\frac{x}{R}\right)\mathcal{F}[\varphi(y)](x) \overset{\delta(\mathbb{R}^m)}{\to} \mathcal{F}[\varphi(y)](x)$$
 при  $R \to +\infty$ .

Отсюда находим, что существует

$$\begin{split} \lim_{R \to +\infty} \int\limits_{\mathbb{R}^m} \varphi(y) \left\langle f(x), \eta_1\left(\frac{x}{R}\right) e^{i(x,y)} \right\rangle \, dy &= \\ &= \lim_{R \to +\infty} \left\langle f(x), \eta_1\left(\frac{x}{R}\right) \mathcal{F}\left[\varphi(y)\right](x) \right\rangle = \\ &= \left\langle f(x), \mathcal{F}\left[\varphi(y)\right](x) \right\rangle = \left\langle \mathcal{F}\left[f(x)\right](y), \varphi(y) \right\rangle. \end{split}$$

Следователно, мы доказали, что в пространстве  $S'(\mathbb{R}^m)$  имеет место предельное соотношение:

$$\left\langle f(x), \eta_1\left(\frac{x}{R}\right) e^{i(x,y)} \right\rangle \stackrel{\mathbb{S}'(\mathbb{R}^m)}{\to} \mathcal{F}[f(x)](y)$$
 при  $R \to +\infty$ , (2.8.2)

которое проясняет смысл преобразования Фурье обобщённой функции f(x) в терминах действия на комплексную экспоненту  $e^{i(x,y)}$ .

Задача 2.8.2. Пусть обобщённые функции f(x) и g(x) принадлежат пространству  $\mathcal{S}'(\mathbb{R}^m)$ . Пусть  $\mathcal{F}[g](y) \in C^{\infty}(\mathbb{R}^m)$ , и для любого мультииндекса  $\alpha \in \mathbb{N}_0^m$  функция  $D^{\alpha}\mathcal{F}[g](y)$  имеет медленный рост. Тогда существует свёртка  $f * g \in \mathcal{S}'(\mathbb{R}^m)$ , и имеет место равенство

$$\mathcal{F}[f * g](y) = \mathcal{F}[f](y)\mathcal{F}[g](y). \tag{2.8.3}$$

**Р** е ш е н и е. Обозначим  $h(y) = \mathcal{F}[g](y)$ . Так как функция h(y) бесконечно дифференцируема, и её частные производные любого порядка имеют медленный рост, то, согласно определению 2.1.14, в пространстве  $S'(\mathbb{R}^m)$  определено произведение h(y) на любую обобщённую функцию. Зафиксируем произвольные функцию  $\varphi(x) \in \mathcal{S}(\mathbb{R}^m)$  и 1-срезку  $\eta_1(x) \in \mathcal{D}(\mathbb{R}^m)$ . Нам требуется доказать, что существует предел

$$\lim_{R \to +\infty} \left\langle f(x), \eta_1\left(\frac{x}{R}\right) \left\langle g(y), \mathfrak{F}\left[\varphi\right](x+y) \right\rangle \right\rangle = \left\langle \mathfrak{F}\left[f\right](z), h(z)\varphi(z) \right\rangle.$$

Имеем:

$$\begin{split} \left\langle f(x), \eta_1\left(\frac{x}{R}\right) \left\langle g(y), \mathfrak{F}\left[\varphi\right](x+y)\right\rangle \right\rangle &= \\ \\ \left\langle f(x), \eta_1\left(\frac{x}{R}\right) \left\langle \mathcal{F}^{-1}\left[h(z)\right](y), \mathfrak{F}\left[\varphi(z)\right](x+y)\right\rangle \right\rangle &= \\ \\ &= \left\langle f(x), \eta_1\left(\frac{x}{R}\right) \left\langle h(z), \mathcal{F}_y^{-1}\left[\mathfrak{F}\left[\varphi\right](x+y)\right](z)\right\rangle \right\rangle \end{split}$$

Заметим, что

$$\mathcal{F}\left[\,\varphi\,\right](x+y) = \mathcal{F}\left[\,\varphi(z)e^{i(x,z)}\,\right](y).$$

Следовательно, справедливо равенство

$$\mathcal{F}_{y}^{-1}\left[\,\mathcal{F}\left[\,\varphi\,\right]\left(x+y\right)\,\right]\left(z\right)=\varphi(z)e^{i(x,z)}.$$

Отсюда получаем, что

$$\begin{split} \left\langle f(x), \eta_1 \left( \frac{x}{R} \right) \left\langle g(y), \mathcal{F} \left[ \varphi \right] (x+y) \right\rangle \right\rangle &= \\ &= \left\langle f(x), \eta_1 \left( \frac{x}{R} \right) \left\langle h(z), \varphi(z) e^{i(x,z)} \right\rangle \right\rangle = \\ &= \left\langle f(x), \eta_1 \left( \frac{x}{R} \right) \int\limits_{\mathbb{R}^m} dz \, h(z) \varphi(z) e^{i(x,z)} \right\rangle \end{split}$$

Введём в рассмотрение функцию

$$\psi(x, z) = \eta_1\left(\frac{x}{R}\right)\varphi(z)e^{i(2\sqrt{2})}, \quad x \in \mathbb{R}^m, \quad z \in \mathbb{R}^m.$$

Далее, в силу леммы 2.2.9, имеет место равенство:

$$\left\langle f(x), \int\limits_{|z| < n} \, dz \, h(z) \psi(x,z) \right\rangle = \int\limits_{|z| < n} \, dz \, h(z) \, \left\langle f(x), \psi(x,z) \right\rangle.$$

Следовательно, получаем:

$$\left\langle f(x), \int\limits_{\mathbb{R}^m} dz \, h(z) \psi(x, z) \right\rangle = \lim_{n \to \infty} \left\langle f(x), \int\limits_{|z| < n} dz \, h(z) \psi(x, z) \right\rangle =$$

$$= \lim_{n \to \infty} \int\limits_{|z| < n} dz \, \left\langle f(x), h(z) \psi(x, z) \right\rangle = \int\limits_{\mathbb{R}^m} dz \, h(z) \left\langle f(x), \psi(x, z) \right\rangle =$$

$$= \int\limits_{\mathbb{R}^m} dz \, h(z) \varphi(z) \left\langle f(x), \eta_1 \left( \frac{x}{R} \right) e^{i(x, z)} \right\rangle.$$

Итак, мы показали, что:

$$\left\langle f(x),\eta_1\left(\tfrac{x}{R}\right)\left\langle g(y),\mathcal{F}\left[\,\varphi\,\right](x+y)\right\rangle\right\rangle = \int\limits_{\mathbb{R}^m} \,dz\,h(z)\varphi(z)\left\langle f(x),\eta_1\left(\tfrac{x}{R}\right)e^{i(x,z)}\right\rangle$$

Тогда, в силу соотношения (2.8.2), получаем:

$$\begin{split} \lim_{R \to +\infty} \left\langle f(x), \eta_1 \left( \frac{x}{R} \right) \left\langle g(y), \mathcal{F}[\varphi] \left( x + y \right) \right\rangle \right\rangle &= \\ &= \lim_{R \to +\infty} \int\limits_{\mathbb{R}^m} dz \, h(z) \varphi(z) \left\langle f(x), \eta_1 \left( \frac{x}{R} \right) e^{i(x,z)} \right\rangle = \left\langle \mathcal{F}[f] \left( z \right), h(z) \varphi(z) \right\rangle = \\ &= \left\langle \mathcal{F}[f] \left( z \right) h(z), \varphi(z) \right\rangle = \left\langle \mathcal{F}[f] \left( z \right) \mathcal{F}[g] \left( z \right), \varphi(z) \right\rangle = \\ &= \left\langle \mathcal{F}^{-1} \left[ \mathcal{F}[f] \left( z \right) \mathcal{F}[g] \left( z \right) \right] (x), \mathcal{F}[\varphi(z)] \left( x \right) \right\rangle. \end{split}$$

Следовательно, доказано существование свёртки обобщённых функций f(x) и g(x), которая имеет вид:

$$(f*g)(x)=\mathcal{F}^{-1}\left[\,\mathcal{F}\left[\,f\,\right](z)\,\mathcal{F}\left[\,g\,\right](z)\,\right](x).$$

Отсюда немедленно следует равенство

$$\mathcal{F}[f * g](z) = \mathcal{F}[f](z)\mathcal{F}[g](z),$$

что и требовалось.

8. Функция Грина линейного дифференциального оператора в  $\mathcal{S}'(\mathbb{R}^m)$ . Достаточное условие существования единственной функции Грина. Функция Грина оператора  $\Delta - k^2$  в  $\mathcal{S}'(\mathbb{R}^m)$  для фиксированного k > 0, и ее предел при  $k \to +0$ .

Определение. Пусть  $L: \mathcal{S}'(\mathbb{R}^m) \to \mathcal{S}'(\mathbb{R}^m); \ L = \sum_{k=1}^N a_k \partial_x^{\alpha(k)}; \ \alpha(k) \in \mathbb{N}_0^m, \ a_k \in \mathbb{C} \ \forall k = \overline{1, N}$  - линейный дифференциальный оператор в  $\mathcal{S}'(\mathbb{R}^m)$ . Тогда функция  $\mathcal{E}(x) \in \mathcal{S}'(\mathbb{R}^m)$  называется функцией Грина оператора L, если в  $\mathcal{S}'(\mathbb{R}^m)$  выполняется:

$$L\mathcal{E}(x) = \delta(x) \tag{26}$$

Взяв Фурье от левой и правой частей, имеем в  $\mathcal{S}'(\mathbb{R}^m)$ :

$$F[L\mathcal{E}(x)](y) = \left(\sum_{k=1}^{N} a_k (-iy)^{\alpha(k)}\right) F[\mathcal{E}](y) = 1$$
(27)

Обозначим многочлен  $\left(\sum_{k=1}^N a_k (-iy)^{lpha(k)}
ight)$  за  $P_L(y)$ :

$$P_L(y) = \left(\sum_{k=1}^N a_k (-iy)^{\alpha(k)}\right),\tag{28}$$

и будем говорить, что многочлен  $P_L(y)$  отделен от нуля, если  $\exists C>0: \ |P_L(y)| \ \geq C>0 \ \forall y \in \mathbb{R}^m.$  Если  $P_L(y)$ 

отделен от нуля, то, очевидно,

$$\frac{1}{P_L(y)} \in C^{\infty}(\mathbb{R}^m)$$

$$\left| \partial_y^{\beta} \frac{1}{P_L(y)} \right| = \frac{|Q(y)|}{|P_L(y)|^{|\beta|+1}} \le \frac{1}{C^{|\beta|+1}} |Q(y)|,$$

где  $|Q_L(y)|$  - некоторый многочлен. Таким образом,  $\frac{1}{P_L(y)}$  - бесконечно гладкая функция на  $\mathbb{R}^m$ , а все ее производные

 функции медленного роста. Отсюда следует достаточное условие существования единственной функции Грина.

**Лемма** (Достаточное условие существования единственной функции Грина). Пусть  $P_L(y)$  отделен от нуля в  $\mathbb{R}^m$ . Тогда уравнение  $L\mathcal{E}(x) = \delta(x)$  имеет единственное решение в  $\mathcal{S}'(\mathbb{R}^m)$ , причем

$$\mathcal{E}(x) = F^{-1} \left[ \frac{1}{P_L(y)} \right] (x). \tag{29}$$

Доказательство. Ну действительно, поскольку  $P_L(y)$  отделен от нуля в  $\mathbb{R}^m$ , то как было показано выше,  $\frac{1}{P_L(y)}$  бесконечно гладкая в  $\mathbb{R}^m$ , и все ее производные - функции медленного роста, а значит определено умножение на  $\frac{1}{P_L(y)}$  в пространстве  $\mathcal{S}'(\mathbb{R}^m)$ . Отсюда:

$$P_L(y)F\left[\mathcal{E}\right](y) = 1 \iff F\left[\mathcal{E}\right](y) = \frac{1}{P_L(y)} \iff \mathcal{E}(x) = F^{-1}\left[\frac{1}{P_L(y)}\right](x).$$

Более того, если  $P_L(y)$  отделим на  $\mathbb{R}^m$ , то  $\forall f \in \mathcal{S}'(\mathbb{R}^m)$  уравнение Lu(x) = f(x);  $u \in \mathcal{S}'(\mathbb{R}^m)$  имеет единственное решение:

$$u(x) = F^{-1} \left[ \frac{1}{P_L(y)} F[f](y) \right] (x)$$
(30)

### Функция Грина оператора $\triangle - k^2$ в $\mathcal{S}'(\mathbb{R}^m)$

Рассмотрим линейный дифференциальный оператор  $\triangle_x - k^2 = L : \mathcal{S}'(\mathbb{R}^3) \to \mathcal{S}'(\mathbb{R}^3), \ x \in \mathbb{R}^3, \ k > 0$  - фиксированное число. Решаем уравнение  $L\mathcal{E}(x) = \delta(x)$  в  $\mathcal{S}'(\mathbb{R}^m)$ . Находим  $P_L(y) = -|y|^2 - k^2 \le k^2 < 0 \ \forall y \in \mathbb{R}^3, \ \text{т.е.}$  многочлен

отделен от нуля. А значит, из достаточного условия существования единственной функции Грина, единственное решение в  $\mathcal{S}'(\mathbb{R}^m)$  имеет вид:

$$\mathcal{E}(x) = F^{-1} \left[ -\frac{1}{|y|^2 + k^2} \right](x). \tag{31}$$

Посчитаем эту функцию. Для этого  $\forall \varphi \in \mathcal{S}(\mathbb{R}^3)$  запишем:

$$\langle \mathcal{E}(x), \varphi(x) \rangle = \left\langle F\left[\mathcal{E}\right](y), F^{-1}\left[\varphi\right](y) \right\rangle = -\left\langle \frac{1}{|y|^2 + k^2}, \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} dx e^{-i(x,y)} \varphi(x) \right\rangle =$$

$$= -\frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} dy \frac{1}{|y|^2 + k^2} \int_{\mathbb{R}^3} dx e^{-i(x,y)} \varphi(x)$$

$$\underbrace{-\frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} dy \frac{1}{|y|^2 + k^2} \int_{\mathbb{R}^3} dx e^{-i(x,y)} \varphi(x)}_{\in \mathcal{E}_1(\mathbb{R}^3)}$$

К сожалению, нам не удастся в лоб переставить интегралы по Фубини, поскольку в  $\mathbb{R}^3$  функция  $\frac{e^{i(x,y)}\varphi(x)}{|y|^2+k^2}$  не является абсолютно сходящейся по y - у y слишком маленькая степень. С другой стороны,  $\int\limits_{\mathbb{R}^3} dx e^{-i(x,y)}\varphi(x) \in$ 

 $\mathcal{S}(\mathbb{R}^3)$ , поскольку фурье от пробной функции - пробная функция. При этом,  $\frac{1}{|y|^2+k^2}$  ограничена. Произведение ограниченной функции на пробную, естественно, даст функцию абсолютно сходящуюся по y. Поэтому можно воспользоваться свойством непрерывности интеграла Лебега по убыванию множеств (см. Карасевские лекции теорема 5.63), что мы и сделаем:

$$= -\frac{1}{(2\pi)^3} \lim_{R \to +\infty} \int_{|y| \le R} dy \frac{1}{|y|^2 + k^2} \int_{\mathbb{R}^3} dx e^{-i(x,y)} \varphi(x) =$$

Теперь опять посмотрим на функцию  $\frac{e^{i(x,y)}\varphi(x)}{|y|^2+k^2}$ . Покажем, что она  $\in L_1(x\in\mathbb{R}^3,|y|\leq R)$ . Ну действительно, учитывая, что  $\frac{1}{|y|^2+k^2}\leq \frac{1}{k^2}\ \forall y\in\mathbb{R}^3$ ,

$$\int\limits_{|y|\leq R}dy\int\limits_{\mathbb{R}^3}dx\frac{|\varphi(x)|}{|y|^2+k^2}=\int\limits_{|y|\leq R}\frac{dy}{|y|^2+k^2}\int\limits_{\mathbb{R}^3}dx|\varphi(x)|\leq \frac{4\pi}{3}\frac{R^3}{k^2}\int\limits_{\mathbb{R}^3}dx|\varphi(x)|\leq +\infty$$

Отлично, тогда мы можем радостно переставить интегралы по Фубини:

$$= -\frac{1}{(2\pi)^3} \lim_{R \to +\infty} \int_{\mathbb{R}^3} dx \varphi(x) \int_{|y| \le R} \frac{e^{-i(x,y)}}{|y|^2 + k^2} dy = \underbrace{\sum_{\forall x \ne 0}}_{\forall x \ne 0}$$

Для x=0 интеграл по y сходиться не будет при  $R\to +\infty$ , как уже обсуждалось выше, поэтому эту точку мы просто выкидываем, потому что для интеграла Лебега множества меры нуль роли не играют. Проинтегрируем интеграл по y в сферических координатах, где сонаправим ось z с направлением вектора x. Тогда имеем  $(x,y)=|x|\cdot r\cdot\cos\alpha$ , где  $\alpha\in[0;\pi]$  - полярный угол, а  $r=|y|\in[0;R]$ .

$$=-\frac{1}{(2\pi)^3}\lim_{R\to+\infty}\int\limits_{\mathbb{R}^3}dx\varphi(x)\int\limits_0^R\frac{r^2dr}{r^2+k^2}2\pi\int\limits_0^\pi d\alpha\sin\alpha\ e^{-i|x|r\cos\alpha}=$$

Считаем промежуточный интеграл по  $\tau$ :

$$\int_{-1}^{1} d\tau \ e^{-i|x|r\tau} = \frac{-2i\sin(|x|r)}{-i|x|r} = \frac{2\sin(|x|r)}{|x|r}$$

Подставляя, замечаем, что функция по r - четная, а значит интеграл можно переписать для удобства:

$$= -\frac{2}{(2\pi)^2} \lim_{R \to +\infty} \int_{\mathbb{R}^3} dx \frac{\varphi(x)}{|x|} \underbrace{\int_{0}^{R} \frac{r \sin(|x|r) dr}{r^2 + k^2}}_{R} = -\frac{1}{(2\pi)^2} \lim_{R \to +\infty} \int_{\mathbb{R}^3} dx \frac{\varphi(x)}{|x|} \operatorname{Im} \int_{-R}^{R} \frac{r e^{i|x|r} dr}{r^2 + k^2} dx \frac{\varphi(x)}{|x|} dx \frac{\varphi(x)}{|x|} = -\frac{1}{2} \int_{-R}^{R} \frac{r \sin(|x|r) dr}{r^2 + k^2}$$



Рассмотрим комплексный интеграл  $\int\limits_{\gamma_R} \frac{ze^{i|x|z}dz}{z^2+k^2}$  по контору  $\gamma_R$ , изображенному на схеме. У подыинтегральной

функции есть полюс первого порядка в точке ik. Соответственно, интеграл даст не нуль при  $\forall R>k$ . Согласно теореме Коши, получаем:

$$\int_{\gamma_R} \frac{ze^{i|x|z}dz}{z^2 + k^2} = 2\pi i \operatorname{res}_{ik} \frac{ze^{i|x|z}}{z^2 + k^2} = 2\pi i \frac{e^{i|x|ik}}{2} = \pi i e^{-|x|k}$$

Отсюда получаем,

$$\int_{-R}^{R} \frac{re^{i|x|r}dr}{r^2 + k^2} = \pi i e^{-|x|k} - \int_{C_R} \frac{ze^{i|x|z}dz}{z^2 + k^2},$$

$$\xrightarrow{\to \pi i e^{-|x|k}, R \to +\infty}$$

где последний интеграл стремится к нулю при  $R \to +\infty$  по лемме Жордана. Нам необходимо обосновать занесение предела под знак интеграла в выражении

$$-\frac{1}{(2\pi)^2} \lim_{R \to +\infty} \int_{\mathbb{R}^3} dx \frac{\varphi(x)}{|x|} \operatorname{Im} \int_{-R}^R \frac{re^{i|x|r} dr}{r^2 + k^2}$$

Для этого проверим условия теоремы Лебега об ограниченной сходимости. Нам нужно предъявить абсолютно интегрируемую функцию, которая мажорирует нашу подыинтегральную функцию для любого R. Покажем, что подойдет функция  $h(x) = \frac{|\varphi(x)|}{|x|} \cdot M$ , где M - некоторая константа, которую предстоит выяснить. Оценим  $\varphi$  как

 $|arphi(x)| \leq rac{C}{1+|x|^4}, \ C>0, \ \forall x\in\mathbb{R}^3,$  поскольку  $arphi\in\mathcal{S}(\mathbb{R}^3).$  Тогда

$$\int\limits_{\mathbb{R}^3} \frac{|\varphi(x)|}{|x|} dx \leq 4\pi \int\limits_0^{+\infty} \frac{r^2 C dr}{r(1+r^4)} = 2\pi C \int\limits_0^{+\infty} \frac{dr^2}{r(1+(r^2)^2)} = \pi^2 C < +\infty$$

Отсюда  $\frac{|\varphi(x)|}{|x|}\in L_1(\mathbb{R}^3)$ , а значит и h(x) тоже. Докажем теперь, что

$$\exists R_0 > k \; \exists M > 0 : \forall x \neq 0 \; \forall R \geq R_0 \Rightarrow \left| \int_{-R}^{R} \frac{re^{i|x|r}dr}{r^2 + k^2} \right| \leq M$$

Имеем следующую оценку:

$$\left| \int_{-R}^{R} \frac{re^{i|x|r}dr}{r^2 + k^2} \right| \leq \underbrace{\left| \pi i e^{-|x|k} \right|}_{=\pi e^{-|x|k} \leq \pi} + \left| \int_{C_R} \frac{ze^{i|x|z}dz}{z^2 + k^2} \right|$$

Показатель экспоненты всегда меньше нуля, поэтому оценили сверзу  $\pi$ , для интеграла по полуокружности оценим следующим образом:

$$\left| \int\limits_{C_R} \frac{z e^{i|x|z} dz}{z^2 + k^2} \right| \le \int\limits_{C_R} \frac{|z| \left| e^{i|x|z} \right| |dz|}{|z^2 + k^2|} \le \int\limits_{C_R} \frac{R}{R^2 - k^2} |dz| = \frac{\pi R^2}{R^2 - k^2} \le 2 * \pi$$

Где мы использовали  $|z|=R, \ |z^2+k^2|\geq |z|^2-k^2=R^2-k^2, \ |e^{i|x|z}|=e^{-|x|\mathrm{Im}z}<1, \ \mathrm{Im}z\geq 0 \ \forall z\in C_R, \ x\neq 0.$  В последнем переходе мы потребовали  $R^2\geq k^2.$ 

Таким образом, мы нашли  $R_0 = \sqrt{2}k$  и  $M = 3\pi$  и теперь можем воспользоваться теоремой Лебега об ограниченной сходимости.

$$-\frac{1}{(2\pi)^2} \lim_{R \to +\infty} \int_{\mathbb{R}^3} dx \frac{\varphi(x)}{|x|} \operatorname{Im} \int_{-R}^R \frac{re^{i|x|r} dr}{r^2 + k^2} = -\frac{1}{(2\pi)^2} \int_{\mathbb{R}^3} dx \frac{\varphi(x)}{|x|} \operatorname{Im} \pi i e^{-|x|k} =$$

$$= \int_{\mathbb{R}^3} dx \underbrace{\left(-\frac{e^{-|x|k}}{4\pi |x|}\right)}_{\in L_1(\mathbb{R}^3)} \varphi(x) = \left\langle -\frac{e^{-|x|k}}{4\pi |x|}, \varphi(x) \right\rangle$$

Отсюда получаем искомую функцию Грина:

$$\mathcal{E}(x) = -\frac{e^{-|x|k}}{4\pi|x|} \tag{32}$$

#### Предел $k \to +0$

Зададимся вопросом существования предела  $\lim_{k\to+0} \mathcal{E}_k$  в  $\mathcal{S}'(\mathbb{R}^3)$ , где  $\mathcal{E}_k(x) = -\frac{e^{-|x|k}}{4\pi|x|}$  - функция Грина с параметром k.

Для этого  $\forall \varphi \in \mathcal{S}(\mathbb{R}^3)$  запишем действие:

$$\lim_{k \to +0} \left\langle \mathcal{E}_k(x), \varphi(x) \right\rangle = -\frac{1}{4\pi} \lim_{k \to +0} \int\limits_{\mathbb{D}^3} dx \frac{\varphi(x)}{|x|} e^{-|x|k} = \int\limits_{\mathbb{D}^3} dx \frac{\varphi(x)}{|x|} = \left\langle -\frac{1}{4\pi|x|}, \varphi(x) \right\rangle$$

Легко видеть, что  $\forall k>0, \ \forall x\neq 0 \left|\frac{\varphi(x)}{|x|}e^{-|x|k}\right| \leq \left|\frac{\varphi(x)}{|x|}\right| \in L_1(\mathbb{R}^3)$ , как обсуждалось ранее в этом билете. Поэтому мы смогли воспользоваться теоремой Лебега об ограниченной сходимости и занесли предел под знак интеграла. Таким

образом, мы построили функционал, который очевидно является линейным. Осталось доказать его непрерывность по  $\mathcal{S}(\mathbb{R}^3)$ . Для этого проверим следующее:

$$\varphi_n \stackrel{S(R^3)}{\to} \varphi \Longrightarrow \langle \mathcal{E}_0, \varphi_n \rangle \stackrel{C}{\to} \langle \mathcal{E}_0, \varphi \rangle$$

Поскольку  $\varphi \in \mathcal{S}(\mathbb{R}^3)$ , то имеем следующую оценку:

$$\forall \varepsilon > 0 \; \exists \; N(\varepsilon) \; \forall \; n \ge N(\varepsilon) \Rightarrow |\varphi_n(x) - \varphi(x)| \le \frac{\varepsilon}{1 + |x^4|} \; \forall x \in \mathbb{R}^3$$

Но тогда

$$|\langle \mathcal{E}_{\prime}, \varphi_{n} - \varphi \rangle| \leq \frac{\varepsilon}{4\pi} \int_{\mathbb{D}^{3}} \frac{dx}{|x|(1+|x|^{4})} = \frac{\varepsilon}{4\pi} 4\pi \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\varepsilon\pi}{4} \rightarrow 0$$

Так, мы показали, что в  $\mathcal{S}'(\mathbb{R}^3)$  существует предел

$$\lim_{k \to +0} \mathcal{E}_k = \mathcal{E}_0 = -\frac{1}{4\pi|x|}$$

Осталось продемонстрировать, что он является также функцией Грина оператора Лапласа, т.е.  $\triangle_x \mathcal{E}_0(x) = \delta(x)$ . Для этого  $\forall \varphi \in \mathcal{S}(\mathbb{R}^3)$  запишем:

$$\langle \triangle \mathcal{E}_{0}, \varphi \rangle = \langle \mathcal{E}_{0}, \triangle \varphi \rangle = \lim_{k \to +0} \langle \mathcal{E}_{k}, \triangle \varphi \rangle = \lim_{k \to +0} \left( \langle \mathcal{E}_{k}, (\triangle - k^{2}) \varphi \rangle + k^{2} \langle \mathcal{E}_{k}, \varphi \rangle \right) =$$

$$= \lim_{k \to +0} \left( \langle \delta, \varphi \rangle + k^{2} \langle \mathcal{E}_{k}, \varphi \rangle \right) = \langle \delta, \varphi \rangle$$

Таким образом, мы показали, что функция Грина уравнения Лапласа действительно может быть получена как предельный переход функции Грина уравнения  $(\triangle_x - k^2) \mathcal{E}_k(x) = \delta(x)$  в  $\mathcal{S}'(\mathbb{R}^3)$ 

## 9. Метод регуляризации и вычисление функции Грина оператора Гельмгольца $\Delta + k^2$ в $\mathcal{S}'(\mathbb{R}^3)$ для фиксированного k>0, и ее предел при $k\to +0$ как функция Грина опретаора Лапласа

это конец 14 - начало 15 лекции, но можно в принципе с начала 15-ой смотреть Ищем функцию Грина оператора Гельмгольца:

$$L=\Delta_x+k^2:S'(\mathbb{R}^3) o S'(\mathbb{R}^3),\;k$$
 - фикс. число  $(\Delta_x+k^2)\mathcal{E}_k(x)=\delta(x)$   $(k^2-|y^2|)F[\mathcal{E}_k]=1$   $P_L(y)=k^2-|y^2|$  не отделен от нуля  $\Rightarrow$ 

Для поиска частного решения проведем процедуру **регуляризации** (добавим малый мнимый параметр, чтобы отделиться от нуля):

$$P_{\varepsilon}(y) = k^2 - |y|^2 + i\varepsilon, \ \varepsilon > 0$$
  
 $|P_{\varepsilon}(y)| \geqslant \varepsilon > 0 \ \forall y \in \mathbb{R}^3$ 

Раз теперь мы можем делить, рассмотрим решение:

$$P_{\varepsilon}(y)u_{\varepsilon}(y) = 1 \text{ в } S'(\mathbb{R}^3)$$
 
$$u_{\varepsilon}(y) = \frac{1}{k^2 - |y|^2 + i\varepsilon} \in S'(\mathbb{R}^3)$$
 
$$w_{\varepsilon}(x) \stackrel{den}{=} F^{-1}[u_{\varepsilon}(y)](x)$$

Если  $\exists \lim_{\varepsilon \to +0} w_{\varepsilon}(x) = w_0(x)$  в  $S'(\mathbb{R}^3) \Leftrightarrow \exists \lim_{\varepsilon \to +0} u_{\varepsilon}(y) = u_0(y)$  и  $w_0(x) = F^{-1}[u_0](x)$ , то :

$$\langle (k^2 - |y|^2) u_0(y), \ \varphi(y) \rangle = \lim_{\varepsilon \to +0} \langle u_\varepsilon(y), \ (k^2 - |y|^2 \pm i\varepsilon) \varphi(y) \rangle = \langle 1, \ \varphi(y) \rangle - \lim_{\varepsilon \to +0} \underbrace{i\varepsilon}_{0} \underbrace{\langle u_\varepsilon(y), \ \varphi(y) \rangle}_{\langle u_0(y), \ \varphi(y) \rangle \in \mathbb{C}}$$

$$\Rightarrow (k^2 - |y|^2)u_0(y) = 1$$
$$(k^2 + \Delta)w_0 = \delta(x)$$

 $w_0 = \mathcal{E}_k$  - одна из функций Грина

Итак,  $\forall \varphi \in S(\mathbb{R}^3)$ 

$$\langle w_{\varepsilon}, \varphi(y) \rangle = \langle F^{-1}[u_{\varepsilon}(y)](x), \varphi(x) \rangle = \langle u_{\varepsilon}(y), F^{-1}[\varphi(x)](y) \rangle = \langle \frac{1}{k^2 + i\varepsilon - |y|^2}, \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} dx \ e^{-i(x,y)} \varphi(x) \rangle =$$

$$= \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \underbrace{\frac{dy}{k^2 + i\varepsilon - |y|^2} \int_{\mathbb{R}^3} dx \ e^{-i(x,y)} \varphi(x)}_{\in L_1(x \in \mathbb{R}^3), y} =$$

## 10. Функция Грина оператора Лапласа в $S'(\mathbb{R}^3)$ и вычисление в $S'(\mathbb{R}^3)$ обобщённого решения уравнения Пуассона с абсолютно интегрируемым на $\mathbb{R}^3$ источником, формула Пуассона

Будем работать с уравнением Пуассона:

$$\Delta U(x) = f(x)$$

где 
$$f(x) \in \mathbb{L}_1(\mathbb{R}^3)$$
, т.е.  $\int\limits_{\mathbb{R}^3} |f(x)| \, dx$ ,  $\forall \varphi \in S(\mathbb{R}^3)$  и  $\langle f, g \rangle = \int\limits_{\mathbb{R}^3} f(x) \varphi(x) dx$ 

Функция Грина опекратора Лапласа (была получена в билетах 8 и 9, как предел функции Грина оператора Гельмгольца при  $k \to +0$ ):

$$E(x) = -\frac{1}{4\pi|x|}, \ x \in \mathbb{R}^3$$

T.e.  $\Delta E = \delta(x)$  в  $S'(\mathbb{R}^3)$ 

Для нахождения решения уравнения требуется доказать существование и найти свёртку:

$$f(x) * E(X)$$
 в  $S'(\mathbb{R}^3)$ 

По определению:

$$\forall \varphi \in S'(\mathbb{R}^3) \; \forall \; 1\text{-срезки} \; \eta_1\left(\frac{x}{R}\right) \in D(\mathbb{R}^3) \mapsto \\ \lim_{R \to \infty} \left\langle f(x), \eta_1\left(\frac{x}{R}\right) \left\langle E(y), \varphi(x+y) \right\rangle \right\rangle = \lim_{R \to \infty} \int\limits_{\mathbb{R}} dx f(x) \eta_1\left(\frac{x}{R}\right) \int\limits_{\mathbb{R}^3} \frac{dy}{-4\pi} \frac{\varphi(x+y)}{|y|} \stackrel{\text{e}}{=}$$

Требуется доказать, что  $\exists C_{\varphi} > 0: \left| \int_{\mathbb{R}^3} \frac{dy \varphi(x+y)}{|y|} \right| \leq C_{\varphi}, \ \forall x \in \mathbb{R}^3 \backslash \{0\}$  Тогда

$$\left| f(x)\eta_1\left(\frac{x}{R}\right) \int_{\mathbb{R}^3} \frac{dy}{-4\pi} \frac{\varphi(x+y)}{|y|} \right| \le \frac{MC_{\varphi}}{4\pi} |f(x)| \in \mathbb{L}_1(\mathbb{R}^3)$$

Т.е. выполнены условия теоремы Лебега об ограниченной сходимости Докажем существование  $C_{\varphi}$ 

$$\left|\int\limits_{\mathbb{R}^3} \frac{dy \varphi(x+y)}{|y|}\right| \leq \int\limits_{\mathbb{R}^3} \frac{|dy \varphi(x+y)|}{|y|} = /y = z - x/ = \int\limits_{\mathbb{R}^3} \frac{dz |\varphi(z)|}{|z-x|} \curlyeqprec \left(\varphi \in S(\mathbb{R}^3) \Rightarrow \exists M_\varphi > 0: \ |\varphi(x)| \leq \frac{M_\varphi}{1+|z|^4}\right)$$

$$\curlyeqprec \int\limits_{\mathbb{R}^3} \frac{dz M_\varphi}{(1+|z|^4)|z-x|} = /\mathbf{B} \text{ сфер. коорд.: } |z| = r, \alpha - \text{ угол между 0х и 0z/=}$$

$$= 2\pi M_\varphi \int\limits_0^+ \frac{r^2 dr}{1+r^4} \int\limits_0^\pi \frac{\sin(\alpha) d\alpha}{\sqrt{r^2+|x|^2-2r|x|\cos\alpha}} = /\cos\alpha = \xi/=$$

$$= 2\pi M_\varphi \int\limits_0^+ \frac{r^2 dr}{1+r^4} \int\limits_0^\pi \frac{d\xi}{\sqrt{r^2+|x|^2-2r|x|\xi}} = (\text{по Th Ньютона-Лейбница}) =$$

$$= 2\pi M_\varphi \int\limits_0^+ \frac{r^2 dr}{1+r^4} \cdot \frac{r+|x|-|r-|x||}{r|x|} = \frac{2\pi M_\varphi}{|x|} \left(\int\limits_0^{|x|} \frac{r}{1+r^4} \cdot 2r dr + \int\limits_{|x|}^{+\infty} \frac{r}{1+r^4} \cdot 2|x| dr\right) \leq$$

$$= (r \leq |x| \text{ в 1-ом инт-ле, по 1-ому r}) \leq |x| \arctan |x|^2 + |x| \left(\frac{\pi}{2} - \arctan |x|^2\right) = \pi^2 M_\varphi = C_\varphi$$

Итак мы доказали существование  $C_{\varphi}$ . Теперь можно занести предел под интеграл и 1-срезка уходит:

$$\stackrel{\circ}{=} -\frac{1}{4\pi} \int_{\mathbb{R}^3} dx \int_{\mathbb{R}^3} dz \frac{f(x)\varphi(z)}{|z-x|} \stackrel{\circ}{=}$$

Т.к.

$$\frac{|f(x)\varphi(z)|}{|z-x|} \le \frac{M_{\varphi}|f(x)}{(1+|z|^4)|z-x|} \in \mathbb{L}_1(x \in \mathbb{R}^3, \ z \in \mathbb{R}^3)$$

То по Th Фубини

$$\stackrel{\circ}{=} -\frac{1}{4\pi} \int\limits_{\mathbb{R}^3} dz \int\limits_{\mathbb{R}^3} dx \frac{f(x)\varphi(z)}{|z-x|} = \int\limits_{\mathbb{R}^3} dz \varphi(z) \int\limits_{\mathbb{R}^3} dx \frac{f(x)}{(-4\pi)|z-x|} = (\text{абс. сх. по } z \in \mathbb{R}^3 \text{ по Th Фубини}) =$$

$$= \left\langle -\int\limits_{\mathbb{R}^3} dx \frac{f(x)}{(-4\pi)|z-x|}, \varphi(z) \right\rangle$$

Итак предел существует и не зависит от срезки.

Линейность следует из линейности интеграла по функции.

Осталось показать непрерывность:

$$S(\mathbb{R}^3) \ni \varphi \mapsto \int_{\mathbb{R}^3} dz \varphi(z) \int_{\mathbb{R}^3} dx \frac{f(x)}{(-4\pi)|z-x|} = \int_{\mathbb{R}^3 \times \mathbb{R}^3} dx dz \frac{f(x)\varphi(z)}{(-4\pi)|z-x|} \in \mathbb{C}$$

Требуется доказать, что последний интеграл непрерывно зависит от  $\varphi$ 

Пусть  $\varphi_n \to \varphi$  в  $S(\mathbb{R}^3)$ 

Тогда по определению:

$$(1+|z|^4)|\varphi_n(z)-\varphi(z)| \Rightarrow 0, (z \in \mathbb{R}^3, n \to \infty)$$

$$\forall \varepsilon > 0 \exists N(\varepsilon) : \forall n \ge N(\varepsilon) \forall z \in \mathbb{R}^3 \mapsto |\varphi_n - \varphi(z)| \le \frac{\varepsilon}{1 + |z|^4}$$

Тогда

$$\left| \left\langle -\int_{\mathbb{R}^3} dx \frac{f(x)}{(-4\pi)|z-x|}, (\varphi_n - \varphi)(z) \right\rangle \right| \leq \int_{\mathbb{R}^3 \times \mathbb{R}^3} dx dz \frac{|f(x)||(\varphi_n - \varphi)(z)|}{(4\pi)|z-x|} =$$

$$= \frac{1}{4\pi} \int_{\mathbb{R}^3} dx |f(x) \int_{\mathbb{R}^3} \frac{dz |(\varphi_n - \varphi)(z)|}{|z-x|}$$

$$\leq /x \neq 0/\leq \pi^2 \varepsilon ||f||_{\mathbb{L}_1(\mathbb{R}^3)|} \cdot \frac{1}{4\pi}$$

Следовательно непрерывность по  $\varphi$  есть. Итак, решение уравнения:

$$U(z) = f(z) * E(z) = -\frac{1}{4\pi} \int_{\mathbb{R}^3} dx \frac{f(x)}{|z - x|}$$

# 11. Вторая гладкость на открытом множестве $G \in \mathbb{R}^3$ обобщённого решения уравнения Пуассона в $S'(\mathbb{R}^3)$ с абсолютно интегрируемым на $\mathbb{R}^3$ и непрерывно-дифференцируемым на G источником

**Теорема.** Пусть  $G \in \mathbb{R}^3$  открытое множество,  $f \in \mathbb{L}_1(\mathbb{R}^3) \cap C^1(G)$ .

Тогда функция 
$$U(z)=-rac{1}{4\pi}\int\limits_{\mathbb{R}^3}dxrac{f(x)}{|z-x|}\in C^2(G)$$

Доказательство.

$$\forall x_0 \in G \ \exists r_0 > 0: \ B_{2r_0}(x_0) \in G, \ B_{2r_0}(x_0) = x \in \mathbb{R}^3: |x - x_0| \leq 2r_0$$
  
Тогда  $\forall x \in B_{r_0}(x_0) \Rightarrow B_{r_0}(x_0) \subset B_{2r_0}(x_0) \subset G$ 

Обозначим

$$M_0 = \max_{z \in B_{2r_0}(x_0)} |f(z)| < +\infty$$

$$M_1 = \max_{z \in B_{2r_0}(x_0)} |\nabla f(z)| < +\infty$$

$$h(t) = f(x + t(y - x))$$

$$\forall y, x \in B_{2r_0}(x_0) \ \exists \xi \in (0,1): \ |f(y) - f(x)| = |h(1) - h(0)| \le |(\nabla f(x + \xi(y - x)), y - x)| \le M_1 |y - x|$$

Шаг 1: Анализируем первую гладкость

$$\forall z \neq x$$
 рассмотрим  $\nabla_x \left( -\frac{f(x)}{4\pi |x-z|} \right) = \frac{f(z)(x-z)}{4\pi |x-z|^3} \leftrightharpoons g(x,z)$ 

Требуется доказать, что

$$\forall x\in B_{r_0}(x_0)\mapsto \int\limits_{|z-x_0|\geq 2r_0}dz g(x,z)$$
 сх. р-но. по  $x\in B_{r_0}(x_0)$  и  $\int\limits_{|z-x_0|\leq \varepsilon}dz g(x,z)\rightrightarrows 0, (\varepsilon\to +0)$ 

Докажем первое утверждение

$$|z - x_0| \ge 2r_0, \ x \in B_{r_0}(x_0)$$
 
$$\Rightarrow |x - z| \ge |z - x_0| - |x - x_0| \ge r_0$$
 
$$\Rightarrow |g(x, z)| = \frac{|f(z)|}{4\pi |x - z|^2} \in \mathbb{L}_1(\mathbb{R}^3) \text{ и не зависит от } x \in B_{r_0}(x_0)$$

Тогда

$$\left|\int\limits_{|z-x_0|}g(x,z)dz\right|\leq\int\limits_{|z-x_0|\geq R\geq 2r_0}\left|\frac{|f(z)|}{4\pi|x-z|^2}\right|\rightrightarrows 0,\;x\in B_{r_0}(x_0)\;(\text{по признаку Вейерштрасса})$$

Докажем второе утверждение

$$|z-x| \leq \varepsilon \leq r_0, \ |x-x_0| \leq r_0$$
 
$$\int_{|z-x| \leq \varepsilon} dz |g(x,z)| \leq \int_{|z-x| \leq \varepsilon} dz \frac{M_0}{4\pi |z-x|^2} = /\text{сферические координаты}/= M_0 \int\limits_0^\varepsilon \frac{r^2 dr}{r^2} = M_0 \varepsilon$$
 
$$\Rightarrow \int\limits_{|z-x| \leq \varepsilon} dz |g(x,z)| \Rightarrow 0, \ (\varepsilon \to 0), \ x \in B_{2r_0}(x_0)$$

Итак

$$U \in C^1(B_{r_0}(x_0))$$
 и  $\nabla_x U(x) = \int\limits_{\mathbb{R}^3} dz, \ \forall x \in B_{r_0}(x_0)$ 

#### Шаг 2: Анализ второй гладкости

$$\forall x \in B_{r_0}(x_0) \text{ рассмотрим } \nabla_x U(x) = \int\limits_{B_{2r_0}(x_0)} dz g(x,z) + \int\limits_{|z-x_0|>2r_0} dz g(x,z) = \\ = \int\limits_{B_{2r_0}(x_0)} dz \frac{(f(z)-f(x))(x-z)}{4\pi(x-z)^3} + f(x) \int\limits_{B_{2r_0}(x_0)} dz \frac{(x-z)}{4\pi|x-z|^3} + \int\limits_{|z-x_0|>2r_0} dz g(x,z)$$

Исследуем каждое из трёх слагаемых

a) 
$$\int_{|z-x_0|>2r_0} dz g(x,z)$$

Рассмотрим  $\forall k = 1, 2, 3, |z - x_0| \ge 2r_0, x \in B_{r_0}(x_0)$ 

$$\frac{\partial}{\partial x_k}g(x,z) = \psi_k(x,z) = \frac{f(z)e_k}{4\pi|x-z|^3} - \frac{3f(x)(x-z)(x_k-z_k)}{4\pi|x-z|^5}$$
 т.к.  $|x-z| \ge |x_0-z|_{|x} - x_0| \ge 2r_0 - r_0 = r_0$  
$$\left|\frac{\partial}{\partial x_k}g(x,z)\right| \le \frac{|f(x)|}{4\pi r_0^3} + \frac{3|f(x)|}{4\pi r_0^3} = \frac{|f(x)|}{\pi r_0^3} \in \mathbb{L}_1(\mathbb{R}^3), \ (x \in B_{r_0}(x_0), |z-x_0| \ge 2r_0)$$
 
$$\Rightarrow \int_{|z-x_0| > 2r_0} \psi_k(x,z)dz \ \text{ сх. р-но. по } x \in B_{r_0}(x_0) \text{ по пр. Вейерштрасса}$$

6) 
$$f(x) \int_{B_{2r_0}(x_0)} dz \frac{(x-z)}{4\pi |x-z|^3}$$



Рассмотрим  $\forall x \in B_{r_0}(x_0)$ 

$$\int_{B_{2r_0}(x_0)} dz \frac{(x-z)}{|x-z|^3} = \lim_{\varepsilon \to 0} \int_{B_{2r_0}(x_0) \setminus B_{\varepsilon}(x)} dz \frac{(x-z)}{|x-z|^3} = \left(x \neq z, \frac{x-z}{|x-z|^3} = \nabla_z \frac{1}{|x-z|}\right) = \lim_{\varepsilon \to 0} \int_{B_{2r_0}(x_0) \setminus B_{\varepsilon}(x)} dz \left(\nabla_z \frac{1}{|x-z|}\right) \stackrel{\circ}{=}$$

Теорема. Гаусса-Остроградского (без док.)

Пусть  $\Omega \in \mathbb{R}^3$  ограниченая область с кусочно гладкой границей.

Пусть  $\Phi \in \mathbb{C}^1(\overline{\Omega})$ .

Тогда  $\int\limits_{\Omega} \nabla \Phi dz = \int\limits_{\partial \Omega} \Phi_{n_z} dS_z$ , где  $n_z$  – поле еденичных внешних нормалей к границе  $\partial \Omega$  по отношению к  $\Omega$ .

Рассмотрим 
$$\int\limits_{\Omega} \frac{\partial \Phi}{\partial z_k} dz = \left( div F_k = \frac{\partial \Phi}{\partial z_k} \right) = \int\limits_{\Omega} div F_k dz = (\Gamma.O.) = \int\limits_{\partial \Omega} (F_k, n_z) dS_z = \int\limits_{\partial \Omega} \Phi(n_z)_k dS_z$$
 Суммируюя по k=1,2,3

$$\int\limits_{\Omega} \nabla \Phi dz = \int\limits_{\partial \Omega} \Phi_{n_z} dS_z$$
 
$$\stackrel{\circ}{=} \lim_{\varepsilon \to 0} \int\limits_{B_{2r_0}(x_0) \backslash B_{\varepsilon}(x)} \frac{n_z}{|x-z|} dS_z = \lim_{\varepsilon \to 0} \int\limits_{|z-x|=\varepsilon} \frac{(x-z)}{\varepsilon \cdot \varepsilon} dS_z + \int\limits_{|z-x_0|=2r_0} \frac{(z-x_0)}{2r_0|x-z|} dS_z$$

Предел первого интеграла равен нулю 
$$\left|\int\limits_{|z-x|=\varepsilon}\frac{(x-z)}{\varepsilon^2}dS_z\right|\leq 4\pi\varepsilon\to 0$$

Таким образом получаем по теореме о дифференцировании собственного интеграла по параметру (с учётом  $|x-z| \ge r_0 > 0$ ) функцию из  $C^{\infty}(x \in B_{r_0}(x_0))$ 

Тогда с учётом  $f(x) \in C^1(x \in B_{r_0}(x_0))$ :

$$f(x)\int\limits_{B_{2r_0}(x_0)}dz\frac{(x-z)}{4\pi|x-z|^3}=f(x)\int\limits_{|z-x_0|=2r_0}\frac{(z-x_0)}{2r_0|x-z|}dS_z\in C^1(x\in B_{r_0}(x_0))$$
 b) 
$$\int\limits_{B_{2r_0}(x_0)}dz\frac{(f(z)-f(x))(x-z)}{4\pi(x-z)^3}$$

Рассмотрим  $\forall z \neq x, z \in B_{r_0}(x_0), x \in B_{r_0}(x_0)$ 

$$\frac{\partial}{\partial x_k} \left( \frac{(f(z) - f(x))(x - z)}{|x - z|^3} \right) = h_k(x, z) =$$

$$= -\frac{f'_{x_k}(x)(x - z)}{|x - z|^3} + \frac{(f(z) - f(x))e_k}{|x - z|^3} - \frac{3(f(z) - f(x))(x - z)(x_k - z_k)}{|x - z|^5}$$

где  $e_k$  – k-ый базисный вектор

Требуется доказать, что

$$\int_{|z-x|<\varepsilon} h_k(x,z)dz \Rightarrow 0, \ (0<\varepsilon \le r)$$

Оценим интеграл:

$$\int_{|z-x| \le \varepsilon} |h_k(x,z)| dz \le (|f(z) - f(x)| \le M_1 |z - x|) \le \int_{|z-x| \le \varepsilon} dz \left( \frac{M_1}{|z - x|^2} + \frac{M_1}{|z - x|^2} + \frac{3M_1}{|z - x|^2} \right) =$$

$$= (|z - x| = r \le \varepsilon) = 5M_1 \cdot 4\pi \int_{0}^{\varepsilon} \frac{r^2 dr}{r^2} = 20M_1 \pi \varepsilon, \ (\forall x \in B_{r_0}(x_0))$$

Таким образом получили по  $x \in B_{r_0}(x_0)$  равномерную оценку.

Итак вторая гладкость доказана:

$$U \in C^2(B_{2r_0}(x_0)), \ \forall x \in B_{r_0}(x_0), \ (B_{2r_0}(x_0) \subset G)$$

Замечание 1: Из доказательства теоремы следют соотношения:

$$\nabla_x U(x) = \int_{\mathbb{R}^3} \frac{f(z)(x-z)}{4\pi |x-z|^3} dz$$

$$\frac{\partial}{\partial x_k} \nabla_x U(x) = \int_{B_{2r_0}(x_0)} h_k(x,z) dz + \frac{\partial}{\partial x_k} \left( f(x) \int_{|z-x_0|=2r_0} \frac{(z-x_0)}{8\pi r_0 |x-z|} dS_z \right) + \int_{|z-x_0| \ge 2r_0} \psi(x,z) dz$$

$$\forall x_0 \in G, \ B_{2r_0}(x_0) \subset G$$

Замечание 2: По теореме о корректности обобщённого решения по отношению к классическому

$$\forall x \in G \; \exists \Delta_{\text{к.п.}} U(x) = f(x), \; \text{где} \; U(x) = -\int\limits_{\mathbb{D}^3} \frac{f(z)}{4\pi |x-z|} dz, \; f \in \mathbb{L}_1(\mathbb{R}^3) \cap C^1(G)$$

## 12. Вычисление методом регуляризации функции Грина оператора Даламбера в пространсте $S^{'}(\mathbb{R} \times \mathbb{R}^{3})$ и обобщенное решение волнового уравнения с источником медленного роста, запаздывающий потенциал.

Оператор Даламбера

$$L = \left(\frac{\partial}{\partial t}\right)^2 - a^2 \Delta_x$$

где

$$x \in \mathbb{R}^3$$

$$t \in \mathbb{R}$$

Мы хотим найти функцию Грина  $\mathcal{E}(t,x) \in S'(\mathbb{R} \times \mathbb{R}^3)$  такую что

$$L\mathcal{E}(t,x) = \delta(t,x)$$

$$\operatorname{supp} \mathcal{E} \subset \left\{ t \geqslant 0, x \in \mathbb{R}^3 \right\}$$

Будем решать равносильное уравнение. Применим преобразование Фурье

$$F\left[L\mathcal{E}(t,x)\right](\tau,y) = 1$$

$$\left( (-i\tau)^2 - a^2 \sum_{k=1}^3 (-iy_k)^2 \right) F\left[\mathcal{E}(t,x)\right] (\tau,y) = 1$$
$$(-\tau^2 + a^2 |y|^2) F\left[\mathcal{E}(t,x)\right] (\tau,y) = 1$$

Рассмотрим многочлен

$$P_L(\tau, y) = a^2 |y|^2 - \tau^2$$

где

$$y \in \mathbb{R}^3$$

$$\tau \in \mathbb{R}$$

Заметим, что он не отделен от нуля, поэтому придется вводить регуляризацию. Рассмотрим другой многочлен

$$P_{\varepsilon}(\tau, y) = a^2 |y|^2 - (\tau + i\varepsilon)^2$$

и будем решать вспомогательную задачу в  $S'(\mathbb{R} \times \mathbb{R}^3)$ 

$$P_{\varepsilon}(\tau, y)v_{\varepsilon}(\tau, y) = 1$$

$$|P_{\varepsilon}(\tau, y)| = |a|y| - \tau - i\varepsilon ||a|y| - \tau + i\varepsilon| \geqslant \varepsilon^2$$

Этот многочлен уже отделим от нуля поэтому существует и единственно решение уравнеиня в обобщенных функциях

$$v_{\varepsilon}(\tau, y) = \frac{1}{P_{\varepsilon}(\tau, y)}$$

Если бы существовал предел

$$\lim_{\varepsilon \to +0} F^{-1} \left[ v_{\varepsilon}(\tau, y) \right] (t, x) = g(t, x)$$

то предельная функция решала бы наше уравнение, покажем это

$$\langle P_L F[g], \varphi \rangle = \lim_{\varepsilon \to +0} \langle v_{\varepsilon}, P_L \varphi \rangle$$

это можно сделать поскольку спаривание непрерывно. Добавим и вычтем

$$\lim_{\varepsilon \to +0} \langle v_{\varepsilon}, P_{L} \varphi \rangle = \lim_{\varepsilon \to +0} \langle v_{\varepsilon}, P_{\varepsilon} \varphi \rangle + \lim_{\varepsilon \to +0} \langle v_{\varepsilon}, (P_{L} - P_{\varepsilon}) \varphi \rangle =$$

$$= \langle 1, \varphi \rangle + \lim_{\varepsilon \to +0} \langle (2\tau i \varepsilon - \varepsilon^{2}) v_{\varepsilon}, \varphi \rangle$$

Поскольку

$$\lim_{\varepsilon \to +0} v_{\varepsilon} = F[g]$$

второй член стремится к нулю. Тем самым мы показали, что предельная функция будет искомым решением. Давайте найдем этот предел. Для любой пробной функции

$$\lim_{\varepsilon \to +0} < F^{-1} \left[ \frac{1}{P_\varepsilon(\tau,y)} \right](t,x), \varphi(t,x) > = \lim_{\varepsilon \to +0} \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} d\tau \frac{1}{a^2 |y|^2 - |\tau + i\varepsilon|^2} \frac{1}{(2\pi)^4} \int\limits_{\mathbb{R}^4} dt dx \ \varphi(t,x) e^{-it\tau - i(x,y)} e^{-it$$

Заметим, что подынтегральная функция абсолютно интегрируема при любом фиксированном  $y \neq 0$  (точка ноль не считается, это множество меры нуль, я в домике), т.е

$$\frac{1}{a^2|y|^2 - |\tau + i\varepsilon|^2} \varphi(t, x) e^{-it\tau - i(x, y)} \in \mathbb{L}_1 \left[ \tau \in \mathbb{R}, \ t \in \mathbb{R}, \ x \in \mathbb{R}^3 \right]$$

Поэтому воспользуемся чудесной теоремой Фубини и переставим интералы по  $d\tau$  и dtdx

$$\lim_{\varepsilon \to +0} \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}^4} dt dx \ \frac{\varphi(t,x)}{(2\pi)^4} \ e^{-i(x,y)} \int\limits_{\mathbb{R}} d\tau \frac{e^{-it\tau}}{a^2|y|^2 - |\tau + i\varepsilon|^2}$$

Интеграл по  $d\tau$  вычислим методами ТФКП, два полюса хуе мое, вычеты, так паддажи ебана. Оба полюса находятся в нажней части комплексной плоскости. При t<0 контур нужно замыкать сверху, при t>0 - снизу (лемма Жордана). Поэтому при t<0 полюсы не попадают внутрь контура - интеграл обнуляется. Итого получаем

$$\int\limits_{\mathbb{T}} d\tau \frac{e^{-it\tau}}{a^2|y|^2-|\tau+i\varepsilon|^2} = -2\pi i\theta(t) \left(\frac{e^{-it(a|y|-i\varepsilon)}}{-2a|y|} + \frac{e^{-it(-a|y|-i\varepsilon)}}{2a|y|}\right) = 2\pi\theta(t) \ e^{-t\varepsilon} \ \frac{\sin at|y|}{a|y|}$$

Подставим обратно и перепишем часть функции как Фурье по части переменных.

$$\begin{split} &\lim_{\varepsilon \to +0} \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}^4} dt dx \ \frac{\varphi(t,x)}{(2\pi)^3} \ e^{-i(x,y)} \ \theta(t) \ e^{-t\varepsilon} \ \frac{\sin at|y|}{a|y|} = \\ &= \lim_{\varepsilon \to +0} \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \ e^{-t\varepsilon} \ \frac{\sin at|y|}{a|y|} \ F_x^{-1}[\varphi(t,x)](y) \end{split}$$

Фурье по части переменных от пробной функции является пробной функцией. Также заметим, что

$$\theta(t) e^{-t\varepsilon} \frac{\sin at|y|}{a|y|} \leqslant t$$
$$t F_r^{-1}[\varphi(t,x)](y) \in \mathbb{L}_1(\mathbb{R}^4)$$

Проверив, что подынтегральная функция мажорируется абсолютно интегрируемой, можем воспользоваться теоремой Лебега об огр. сходимости и внести предел под интеграл

$$\begin{split} \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \ \lim_{\varepsilon \to +0} e^{-t\varepsilon} \ \frac{\sin at |y|}{a|y|} \ F_x^{-1}[\varphi(t,x)](y) &= \int\limits_{\mathbb{R}^3} dy \int\limits_{\mathbb{R}} dt \ \theta(t) \ \frac{\sin at |y|}{a|y|} \ F_x^{-1}[\varphi(t,x)](y) = \\ &= <\theta(t) \ \frac{\sin at |y|}{a|y|}, \ F_x^{-1}[\varphi(t,x)](y) > = < F_y^{-1} \left[\theta(t) \ \frac{\sin at |y|}{a|y|}\right](t,x), \varphi(t,x) > \end{split}$$

Сейчас воспользуемся леммой, которую докажем позже

$$F[\delta_R(x)](y) = \frac{4\pi R \sin R|y|}{|y|}$$

Тогда получим

$$F_y^{-1} \left[ \theta(t) \frac{\sin at|y|}{a|y|} \right] (x) = \theta(t) \frac{\delta_{at}(x)}{4\pi a^2 t}$$

Подставим в свертку

$$<\theta(t)\frac{\delta_{at}(x)}{4\pi a^{2}t},\varphi> = \int_{0}^{+\infty} dt \int_{|x|=at} dS_{x} \frac{\varphi(t,x)}{4\pi a^{2}t} = /at = r/= \int_{0}^{+\infty} dr \int_{|x|=r} dS_{x} \frac{\varphi\left(\frac{|x|}{a},x\right)}{4\pi a^{2}|x|} =$$

$$= \int_{\mathbb{R}^{3}} \frac{\varphi\left(\frac{|x|}{a},x\right)}{4\pi a^{2}|x|} = \int_{\mathbb{R}^{4}} dt dx \ \varphi(t,x) \frac{\delta\left(t-\frac{|x|}{a}\right)}{4\pi|x|a^{2}} = < \frac{\delta\left(t-\frac{|x|}{a}\right)}{4\pi|x|a^{2}}, \varphi(t,x) >$$

Итого получаем ответ в пространстве обобщенных функций (by bashka)

$$\mathcal{E}(t,x) = \frac{\delta\left(t - \frac{|x|}{a}\right)}{4\pi |x| a^2}$$

Докажем теперь лемму про Фурье образ дельта функции на сфере. Будем двигаться от ответа, так можно потому что Фурье преобразование взаимооднозначно. Пишем для любой пробной

$$< F\left[\frac{\sin|x|k}{|x|}\right], \varphi > = <\frac{\sin|x|k}{|x|}, F[\varphi] > = \int\limits_{\mathbb{R}^3} dx \; \frac{\sin|x|k}{|x|} \int\limits_{\mathbb{R}^3} dy \; e^{i(x,y)} \varphi(y) =$$

$$= \lim_{R \to \infty} \int\limits_{|x| \leqslant R} dx \; \frac{\sin|x|k}{|x|} \int\limits_{\mathbb{R}^3} dy \; e^{i(x,y)} \varphi(y)$$

Подынтегральная функция

$$\frac{\sin|x|k}{|x|} e^{i(x,y)} \varphi(y) \in \mathbb{L}_1 \left[ y \in \mathbb{R}^3, |x| \leqslant R \right]$$

Поэтому используем чудесную теорему Фубини и меняем местами интегралы

$$\lim_{R \to \infty} \int_{\mathbb{R}^3} dy \int_{|x| \leqslant R} dx \frac{\sin|x|k}{|x|} e^{i(x,y)} \varphi(y)$$

Как обычно переходим к сферическим координатам в интеграли по шару и интегрируем. Получаем (используя формулы для косинуса суммы и разности)

$$\lim_{R\to\infty}\int\limits_{\mathbb{R}^3}dy\ \varphi(y)\frac{2\pi}{|y|}\int\limits_0^Rdr\ 2\sin(rk)\sin(|y|r)=2\pi\lim_{R\to\infty}\int\limits_{\mathbb{R}^3}dy\ \frac{\varphi(y)}{|y|}\left(\frac{\sin R(k-|y|)}{k-|y|}-\frac{\sin R(k+|y|)}{k+|y|}\right)$$

Рассмотрим второе слагаемое, у которого подынтегральная функция абс. интегр

$$\lim_{R \to \infty} \int_{\mathbb{R}^3} dy \, \frac{\varphi(y)}{|y|} \frac{\sin R(k+|y|)}{k+|y|}$$

Введем обозначение

$$f(\rho) = \rho \int_{|y|=1} \varphi(\rho y) dS_y \in \mathbb{L}_1[0,\infty] \cap C^{\infty}[0,\infty]$$

Тогда

$$\lim_{R \to \infty} \int_{0}^{\infty} d\rho \ f(\rho) \frac{\sin R(k+\rho)}{k+\rho} = \int_{k}^{\infty} dt f(t-k) \frac{\sin tR}{t}$$

Подынтрегральная функция мажорируется абс. интегриремой f, поэтому по теореме Римана об осциляции этот интеграл стремится к нулю.

Рассмотрим теперь первое слагаемое

$$\int\limits_{\mathbb{R}^3} dy \ \frac{\varphi(y)}{|y|} \frac{\sin R(|y|-k)}{|y|-k}$$

Проводя те же рассуждения, что и с первым слагаемым

$$\int_{0}^{\infty} d\rho f(\rho) \frac{\sin R(\rho - k)}{\rho - k} = \int_{-k}^{\infty} dt f(t + k) \frac{\sin Rt}{t} = \int_{-k}^{k} dt f(t + k) \frac{\sin Rt}{t} + \int_{k}^{\infty} dt f(t + k) \frac{\sin Rt}{t}$$

Второй интеграл обнуляется в пределе по теорема Римана, как и в прошлый раз (подынтегральная функция мажорируется абс. интегриремой бла бла бла бла). Рассмотрим первый интеграл, добавим и вычтем f(k)

$$\int_{-k}^{k} dt f(t+k) \frac{\sin Rt}{t} = \int_{-k}^{k} dt (f(t+k) - f(k)) \frac{\sin Rt}{t} + \int_{-k}^{k} dt f(k) \frac{\sin Rt}{t}$$

Здесь в первом интеграле

$$\left| \frac{f(t+k) - f(k)}{t} \right| \leqslant \max_{[-k,k]} f^{'}$$

Поскольку производная тоже абс. интегр на [-k,k], то по теореме Римана этот интеграл тоже обнуляется в пределе  $R \to \infty$ . Что остается это

$$\int_{-k}^{k} dt f(k) \frac{\sin Rt}{t} = f(k) \int_{-kR}^{kR} dz \frac{\sin z}{z} \to \pi f(k) = \frac{\pi}{k} \int_{|x|=k} \varphi(x) dS_x$$

Отсюда получаем

$$F[\delta_k(y)](x) = \frac{4\pi k \sin k|x|}{|x|}$$

13. 1) Формула Кирхгоффа решения обобщённой задачи Коши для однородного волнового уравнения в  $S'(\mathbb{R}^4)$  при начальных условиях медленного роста. 2) Достаточные условия, при которых обобщёное решение становится классическим.

Формулировка: 1)

$$u(t,x) = \frac{\partial}{\partial t} \left( \frac{\theta(t)}{4\pi a^2 t} \int_{|z-x|=at} u_0(z) dS_z \right) + \frac{\theta(t)}{4\pi a^2 t} \int_{|z-x|=at} u_1(z) dS_z$$

Для любых абсолютно интегрируемых функций медленного роста  $u_0(x)$  и  $u_1(x)$  (Интегрирование по поверхности). 2)  $u_0(x) \in C^3(\mathbb{R}^3)$  и  $u_1(x) \in C^2(\mathbb{R}^3)$ 

Идея доказательства:

- 1) из 2 более простых задач с одним однородным условием.
- 2) из непрерывности интеграла

#### Доказательство:

Я не вижу смысла его тут приводить, потому что оно есть в лекциях Константинова на страницах 339-352. А любые сокращения могут привести к потере смысла.

Указатель хода решения:

- 1) действие на функцию Грина 339-340
- 2) анализ правой части действия<br/>(принадлежность к  $S(\mathbb{R}^4)$ ) 341-342
- 3) доказательство того, что интеграл по поверхности можно вынести из действия(с введением и доказательством леммы) 343-346
- 4) действие на производную функциии Грина 347
- 5) решение 1 задачи с однородным вторым условием 348
- 6) решение 2 задачи с однородным первым условием 349-351
- 7) вид при выполнении условия для классичности 352

14. Сопряжённый оператор линейного оператора в гильбертовом пространстве. Область определения сопряжённого оператора. Теорема Фредгольма о связи множества значений линейного оператора и ядра его сопряжённого. Теорема о связи графиков линейного оператора и его сопряжённого.

Предварительно разберём две теоремы, которые будут использоваться в дальнейшем. На экзамене первую из них доказывать точно не будет необходимости, вторую с какой-то вероятностью в этом вопросе смогут спросить, для введения основных определений по билету пользуемся следствием из второй теоремы. Так что эти теоремы упоминаем, формулируем, пользуемся ими, а доказываем только если очень попросят.

**Теорема.** (Рисса об ортогональном разложении, без доказательства) Пусть  $L \subseteq \mathcal{H}$  - замкнутое подпространство. Тогда  $L \oplus L^{\perp} = \mathcal{H}$ 

**Теорема.** (Рисса, Фреше)  $\ \forall$  лин. и непр.  $\varphi:\mathcal{H}\to\mathbb{C}$   $\ \exists !\ h_{\varphi}\in\mathcal{H}: \forall f\in\mathcal{H}\ \varphi(f)=(f,h_{\varphi})$  и верно  $\ \forall$  лин. и непр.  $\varphi,\psi:\mathcal{H}\to\mathbb{C}$   $\ h_{\varphi+\psi}=h_{\varphi}+h_{\psi}$  и  $\ \forall \alpha\in\mathbb{C}$   $\ h_{\alpha\varphi}=\overline{\alpha}h_{\varphi}.$ 

Доказательство. Рассматриваем  $L = \ker \varphi = \{ f \in \mathcal{H} | \varphi(f) = 0 \}$ . L - подпространство в  $\mathcal{H}$ . Так как  $\varphi$  непр.  $\Rightarrow L = \ker \varphi$  замкнуто в  $\mathcal{H}$  (возьмём точку прикосновения множества L и подберем последовательность Гейне из ядра, сходящуюся к ней. Все значения образов будут нули, значит, и предел будет нулевой, то есть точка прикосновения принадлежит  $\ker \varphi$ ). Таким образом выполняются условия теоремы Рисса об ортогональном разложении и можно записать  $\ker \varphi \oplus (\ker \varphi)^{\perp} = \mathcal{H}$ . Далее есть две возможности:

- 1.  $\ker \varphi = \mathcal{H} \Rightarrow \forall f \in \mathcal{H}$  возьмем  $h_{\varphi} = 0$ .
- 2.  $\ker \varphi \neq \mathcal{H} \Rightarrow \exists g \in (\ker \varphi)^{\perp} \setminus \{0\}$ . Тогда  $\forall f \in \mathcal{H}$  имеем  $f = \underbrace{\frac{\varphi(f)}{\varphi(g)}g}_{\in (\ker \varphi)^{\perp}} + \underbrace{(f \frac{\varphi(f)}{\varphi(g)}g)}_{\in \ker \varphi}$ . Отсюда  $(f,g) = \frac{\varphi(f)}{\varphi(g)}(g,g) \Rightarrow$

 $\varphi(f)=(f, \frac{\overline{\varphi(g)}g}{||g||^2})$ . Итак, по полученному нами  $g\in(\ker\varphi)^\perp$  удалось построить требуемый в условии теоремы  $h_{\varphi}=\frac{\overline{\varphi(g)}}{||g||^2}g\in\mathcal{H}.$ 

Осталось доказать единственность найденного вектора. Пускай мы нашли второй вектор  $\widetilde{h_{\varphi}} \in \mathcal{H}$ :  $\forall f \in \mathcal{H}$   $\varphi(f) = (f, h_{\varphi}) = (f, h_{\varphi}) \Rightarrow \forall f \in \mathcal{H}$   $(f, h_{\varphi} - h_{\varphi}) = 0$ . В качестве f возьмем  $f = h_{\varphi} - h_{\varphi}$ . Тогда получаем  $||h_{\varphi} - h_{\varphi}||^2 = 0 \Rightarrow h_{\varphi} = h_{\varphi}$ , то есть единственность доказана. Теперь получим формулы для  $h_{\varphi+\psi}$  и  $h_{\alpha\varphi}$ .  $\forall f \in \mathcal{H}$   $(\varphi + \psi)(f) = (f, h_{\varphi+\psi}) = \varphi(f) + \psi(f) = (f, h_{\varphi} + h_{\psi})$ , отсюда по свойству единственности и получаем  $h_{\varphi+\psi} = h_{\varphi} + h_{\psi}$ . Наконец  $(\alpha\varphi)(f) = (f, h_{\alpha\varphi}) = \alpha\varphi(f) = \alpha(f, h_{\varphi}) = (f, \overline{\alpha}h_{\varphi}) \Rightarrow h_{\alpha\varphi} = \overline{\alpha}h_{\varphi}$ 

**Следствие**: Пусть  $L\subset \mathcal{H}$  - подпространство. Тогда  $\forall$  лин. и непр.  $\varphi:L\to\mathbb{C}$   $\exists ! \ h_{\varphi}\in\overline{L}: \ \forall f\in L \ \varphi(f)=(f,h_{\varphi})$  и верно  $\forall$  лин. и непр.  $\varphi,\psi:L\to\mathbb{C}$   $h_{\varphi+\psi}=h_{\varphi}+h_{\psi}$  и  $\forall \alpha\in\mathbb{C}$   $h_{\alpha\varphi}=\overline{\alpha}h_{\varphi}$ 

Доказательство.  $\forall$  лин. и непр.  $\varphi:L\to\mathbb{C}$   $\exists$ ! лин. и непр.  $\psi:\overline{L}\to\mathbb{C}$ . Это утверждение вряд ли придется доказывать на экзамене. Покуда у меня первый в списке из билетов про операторы, приведу упорядоченно леммы, которые вводил Константинов с самого начала и доведу их до доказательства нашего утверждения.

**Лемма.**  $\varphi: L \to \mathbb{C}$  - линейный функционал. Тогда  $\varphi$  непрерывен на  $L \Leftrightarrow \exists C_{\varphi} > 0: |\varphi(f)| \leqslant C_{\varphi} ||f|| \; \forall f \in L$ . То есть непрерывность линейного функционала в нашем случае равносильна его липшицевости.

Доказательство. Справа налево утверждение очевидно, ведь из липшицевости непрерывность гарантирована.  $|\varphi(f)-\varphi(g)|=|\varphi(f-g)|\leqslant C_{\varphi}||f-g||\leqslant \varepsilon$ , если  $||f-g||\leqslant \frac{\varepsilon}{C_{\varphi}+1}$ , получили даже больше чем непрерывность - равномерную непрерывность. Теперь доказываем слева направо.  $\varphi$  непр. в нуле  $\Rightarrow \exists \ \delta > 0 \ \forall f \in L : ||f|| \leqslant \delta \Rightarrow |\varphi(f)| \leqslant 1. \Rightarrow \forall g \in L \setminus \{0\}$  рассмотрим  $f=\delta \frac{g}{||g||} \Rightarrow ||f|| \leqslant \delta$ ,  $f \in L$ . Тогда  $|\varphi(\delta \frac{g}{||g||})| \leqslant 1 \Rightarrow |\varphi(g)| \leqslant \frac{||g||}{\delta}$ , то есть для ненулевых g липшицевость обнаружена. Если  $g=0 \Rightarrow \varphi(0)=0 \leqslant \frac{||0||}{\delta_{\varphi}}$ . Получили искомую липшицевость.

**Лемма.** Пусть  $L \subset \mathcal{H}$  - подпространство,  $\varphi : L \to \mathbb{C}$  - линейный и непрерывный функционал. Тогда  $\exists ! \, \psi : \overline{L} \to \mathbb{C}$ :  $\psi$  линеен и непрерывен и  $\psi|_L = \varphi$ . (процедуру построения  $\psi$  называем продолжением функционала на замыкание по непрерывности).

 $\overline{\mathcal{L}}$ оказательство.  $\forall f \in \overline{L} \quad \exists f_n \in L : f_n \stackrel{\|\cdot\|}{\to} f$  . Дальше смотрим на  $\varphi(f_n)$ . Расмотрим  $|\varphi(f_n) - \varphi(f_m)| = |\varphi(f_n - f_m)| \le C_{\varphi}||f_n - f_m||$ . Норма разности  $||f_n - f_m||$  стремится к нулю при устремлении индексов к  $\infty$ , тогда последовательность  $\varphi(f_n)$  фундаментальная в  $\mathbb{C}$  числовая последовательность. Следовательно, по критерию Коши для последовательностей в  $\mathbb{C}$   $\exists \lim_{n \to \infty} \varphi(f_n) = \psi(g)$ . Формально  $\psi$  зависит не только от g, но и от выбора последовательностей  $f_n$ , но в действительности от выбора последовательности  $f_n \stackrel{n \to \infty}{\to} g \in \overline{L}$  не зависит, сразу это докажем. Пусть  $h_n \in L \to g$ ,  $f_n \in L \to g \in \overline{L}$ ,  $\Rightarrow |\varphi(h_n) - \varphi(f_n)| = |\varphi(h_n - f_n)| \leqslant C_{\varphi}||h_n - f_n|| \to 0$ . Тогда  $\lim_{n \to \infty} \varphi(h_n) = \lim_{n \to \infty} \varphi(f_n) = \psi(g) \in \mathbb{C}$ .  $\psi$  продолжение  $\varphi$  по непрерывности с L на  $\overline{L}$ . Получим, что  $\psi_L = \varphi$ .  $\forall g \in L \Rightarrow f_n = g \ \forall n$ .  $\lim_{n \to \infty} \varphi(f_n) = \psi(g) = \varphi(g)$ . Осталось доказать, что  $\psi$  будет непрерывен и линеен на  $\overline{L}$ . Возьмем  $\forall f, g \in \overline{L}$ ,  $\forall \alpha, \beta \in \mathbb{C}$   $\exists f_n \in L : f_n \stackrel{\|\cdot\|}{\to} f$ ,  $\exists g_n \in L : g_n \stackrel{\|\cdot\|}{\to} g \Rightarrow \alpha f_n + \beta g_n \stackrel{\|\cdot\|}{\to} \alpha f + \beta g$ .  $\psi(\alpha f + \beta g) = \lim_{n \to \infty} \varphi(\alpha f_n + \beta g_n) = \lim_{n \to \infty} \alpha \varphi(f_n) + \beta \varphi(g_n) = \alpha \psi(f) + \beta \psi(g)$ , так получили, что  $\psi$  линеен на замыкании  $\overline{L}$ . Чтобы доказать его непрерывность, отыщем для него константу Липшица. Так как  $\varphi$  линеен и непрерывен на L, то  $\exists C_{\varphi} > 0 : |\varphi(f)| \leqslant C_{\varphi}||f|| \quad \forall f \in L$ . Эта же  $C_{\varphi}$  годится как константа Липшида для  $\psi$ :  $\forall g \in \overline{L}$   $\exists f_n \in L : f_n \stackrel{\|\cdot\|}{\to} g \Rightarrow |\psi(g)| = \lim_{n \to \infty} |\varphi(f_n)|_n = |\varphi(f_n)|_n \in C_{\varphi}||f_n||_n = |\varphi(f_n)|_n = |\varphi(f_n)|_n = 0$ . Тогда  $\psi(g) \leqslant C_{\varphi}||g||_n$ . Следовательно  $\psi: \overline{L} \to \mathbb{C}$  линеен и непрерывен.

Ну теперь-то мы стопудов не стесняемся сказать на экзамене, что  $\forall$  лин. и непр.  $\varphi:L\to\mathbb{C}$   $\exists !$   $h_{\varphi}\in\overline{L}: \forall f\in L$   $\varphi(f)=(f,h_{\varphi})$  и верно  $\forall$  лин. и непр.  $\varphi,\psi:L\to\mathbb{C}$   $h_{\varphi+\psi}=h_{\varphi}+h_{\psi}$  и  $\forall \alpha\in\mathbb{C}$   $h_{\alpha\varphi}=\overline{\alpha}h_{\varphi}$ . Теперь посмотрим на  $\overline{L}$ . Это - замкнутое подпространство в  $\mathcal{H}$ . Само  $\mathcal{H}$  полно, тогда  $\overline{L}$  полно как замкнутое в полном. Так что  $\overline{L}$  - тоже гильбертово. Тогда мы для этого  $\overline{L}$  и для линейного непрерывного функционала  $\psi$  запишем утверждение теоремы Рисса-Фреше:  $\exists !$   $h_{\psi}\in\overline{L}: \quad \psi(f)=(f,h_{\psi}) \quad \forall \psi\in\overline{L}$ . Вспомним, что  $\psi|_{L}=\varphi$ , тогда на элементах  $\forall f\in L$  эта формула будет выглядеть так  $\varphi(f)=(f,h_{\psi})$ . Вот этот единственный  $h_{\psi}\in\overline{L}$  и есть то, что мы искали как  $h_{\varphi}$  при формулировке задачи. Свойства  $h_{\psi}$  при суммировании функционалов и умножении на комплексные числа доказываются как и раньше для всего  $\mathcal{H}$ .

Пусть  $A: D(A) \to \mathcal{H}$  - линейный оператор. Желаем определить  $A^*$  таким образом, чтобы было верно  $(Af,g) = (f,A^*g) \ \forall f \in D(A) \ \forall g \in D(A^*)$ . Для этого определим сначала, что такое  $D(A^*)$ .

Определение. 
$$\mathrm{D}(A^*) = \{g \in \mathcal{H} \, | \, \forall f \in \mathrm{D}(A) \to (Af,g) \in \mathbb{C} \} \iff \exists C_g > 0: \, \forall f \in \mathrm{D}(A) \ |(Af,g)| \leqslant C_g ||f|| \}$$

То есть мы желаем, чтобы действие  $f \to (Af,g)$  было непрерывным. Определенное таким образом  $D(A^*)$  - линейное подпространство в  $\mathcal{H}$ , т.к.  $0 \in D(A^*)$  с  $C_0 = 1$  и  $\forall g,h \in D(A^*)$ ,  $\alpha,\beta \in \mathbb{C} \ |(Af,g+h)| \leqslant |\alpha|(Af,g) + |\beta|(Af,h) \leqslant (|\alpha|C_g+|\beta|C_h)||f||$ , то есть нашлась константа Липшица  $C_{\alpha g+\beta h} = (|\alpha|C_g+|\beta|C_h)$ , значит,  $\alpha g+\beta h \in D(A^*)$ . Теперь нам понадобится следствие из теоремы Рисса-Фреше. Мы имеем линейный и непрерывный функционал  $f \to (Af,g)$  на  $D(A^*)$ . Значит,  $\exists ! \ h_g \in \overline{D(A)} : \forall f \in D(A) \ (Af,g) = (f,h_g)$ . Тем самым мы подготовили почву для определения.

**Определение.** Сопряженным оператором  $A^*$  называется  $A^*: D(A^*) \to \overline{D(A)} \subseteq \mathcal{H}$  такой что  $\forall g \in D(A^*)$   $A^*g = h_g$ . При этом по определению  $\forall f \in D(A), \ \forall g \in D(A^*)(Af,g) = (f,A^*g)$ 

**Теорема.** (Фредгольма) Пусть  $A: D(A) \to \mathcal{H}$  линейный оператор. Тогда  $\ker A^* = (\Im A)^{\perp}$ .

Доказательство.  $\forall g \in \ker A^* \Leftrightarrow \begin{cases} g \in \mathrm{D}(A^*), \\ A^*g = 0 \end{cases}$ . Из записанных условий следует  $\forall f \in \mathrm{D}(A) \quad (Af,g) = (f,A^*g) = (f,0) = 0$ . Поставим теперь задачу наоборот - пусть есть условие  $\forall f \in \mathrm{D}(A) \quad (Af,g) = 0$ , можно ли выяснить, что  $g \in \mathrm{D}(A^*)$ ? Оказывается, можно, покажем это: пусть имеем  $g \in \mathcal{H}$  такой, что  $\forall f \in \mathrm{D}(A) \quad (Af,g) = 0$ . Тогда строим функционал  $\forall f \in \mathrm{D}(A) \quad f \to (Af,g) = 0$ . Этот функционал получился непрерывен на  $\mathrm{D}(A)$ , так как липшицев с  $C_g = 1$ . Значит, к этому линейному и непрерывному функционалу мы можем предъявить

сопряженный 
$$A^*$$
, причем  $g \in \mathrm{D}(A^*)$ . Сведем результаты:  $\forall f \in \mathrm{D}(A) \begin{cases} g \in \mathcal{H}, \\ (Af,g) = 0, \\ \forall f \in \mathrm{D}(A) \end{cases} \Rightarrow \begin{cases} g \in \mathrm{D}(A^*), \\ (Af,g) = (f,A^*g) = 0 \end{cases}$ 

Последнее равенство (красное) выполняется  $\forall f \in \mathrm{D}(A)$ , значит,  $A^*g = 0$ , то есть  $g \in \ker A^*$ . Но исходили мы из того, что  $\forall f \in \mathrm{D}(A)$  (Af, g) = 0, а это можно записать как  $g \in (\Im A)^{\perp}$  ( $\Im A = \{Af, f \in \mathrm{D}(A)\}$ ). Так мы и выяснили, что  $\ker A^* = (\Im A)^{\perp}$ .

**Теорема.** (о связи графиков линейного оператора и его сопряженного) Пусть  $A: D(A) \to \mathcal{H}$  линейный оператор. Тогда  $\operatorname{Gr} A^* = (V\operatorname{Gr} A)^{\perp} \cap (\mathcal{H} \times \overline{D(A)}).$ 

Доказательство. Будем последовательно определять понятия, которые нам потребуются.

Определение. 
$$A: \mathrm{D}(A) \to \mathcal{H}$$
 оператор, тогда  $\mathrm{Gr} A = \{ \begin{pmatrix} f \\ Af \end{pmatrix} \in \mathcal{H} \times \mathcal{H}: \ f \in \mathrm{D}(A) \}$ 

Пространство  $\mathcal{H} \times \mathcal{H}$  - это пространство столбцов из элементов  $\mathcal{H}$  по 2 элемента. На этом пространстве вводится скалярное произведение по формуле:  $\begin{pmatrix} \varphi \\ \psi \end{pmatrix}, \begin{pmatrix} f \\ g \end{pmatrix} \end{pmatrix}_{\mathcal{H} \times \mathcal{H}} = (\varphi, f)_{\mathcal{H}} + (\psi, g)_{\mathcal{H}}$ . Квадрат нормы элемента  $\mathcal{H} \times \mathcal{H}$  тогда оказывается суммой квадратов норм элементов из столбцов.  $\mathcal{H} \times \mathcal{H}$  с такой эвклидовой нормой полно.  $\mathrm{Gr} A \subset \mathcal{H} \times \mathcal{H}$ , причем  $\mathrm{Gr} A$  - подпространство.

Будем теперь рассматривать график сопряжённого оператора.

$$\begin{pmatrix} g \\ h \end{pmatrix} \in \operatorname{Gr} A^* \Leftrightarrow h \in \overline{\mathrm{D}(A)}$$
 вспоминаем теорему Рисса-Фреше, куда погружен  $h_{\varphi} \Leftrightarrow g \in \mathrm{D}(A^*), h \in \overline{\mathrm{D}(A)} \Leftrightarrow \overline{\mathrm{D$ 

$$\Leftrightarrow h \in \overline{\mathrm{D}(A)} \\
\forall f \in \mathrm{D}(A) \ (Af,g) = (f,h) \\
\Leftrightarrow \begin{cases}
\forall f \in \mathrm{D}(A) \ (-Af,g) + (f,h) = 0 \\
h \in \overline{\mathrm{D}(A)}
\end{cases}
\\
\Leftrightarrow \begin{cases}
\forall f \in \mathrm{D}(A) \ \left(\begin{pmatrix} -Af \\ f \end{pmatrix}, \begin{pmatrix} g \\ h \end{pmatrix}\right)_{\mathcal{H} \times \mathcal{H}} = 0
\end{cases}$$

Теперь определим оператор  $V: \mathcal{H} \times \mathcal{H} \to \mathcal{H} \times \mathcal{H}$ , который переставляет элементы в столбцах местами и к элементу, который появился в 1 позиции, приписывает минус.  $\binom{f}{Af} \stackrel{\text{V}}{\to} \binom{-Af}{f}$ . С помощью этого оператора, как видно, очень удобно выразить сомножитель в полученном нами скалярном произведении через график оператора A.

$$\Leftrightarrow \begin{cases} \forall f \in \mathrm{D}(A) & \left(\mathrm{V} \begin{pmatrix} f \\ Af \end{pmatrix}, \begin{pmatrix} g \\ h \end{pmatrix}\right)_{\mathcal{H} \times \mathcal{H}} = 0 \\ h \in \overline{\mathrm{D}(A)} & \Leftrightarrow \begin{pmatrix} g \\ h \end{pmatrix} \in (\mathrm{VGr}A)^{\perp} \cap (\mathcal{H} \times \overline{\mathrm{D}(A)}). \end{cases} \Box$$

Замечание: Введенный в доказательстве оператор V обладает свойствами:

- Линеен на  $\mathcal{H} \times \mathcal{H}$
- $V^2 = -I$ ,  $V^{-1} = -V$  (левый и правый обратные)
- Изометричен  $\left| \left| V \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \right| \right|_{\mathcal{H} \times \mathcal{H}} = \left| \left| \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \right| \right|_{\mathcal{H} \times \mathcal{H}}$  (изометрический изоморфизм)

15. Критерий замыкаемости плотно определённого линейного оператора в гильбертовом пространстве. Пример незамыкаемого плотно определённого оператора. Замыкаемость оператора Лапласа  $\Delta: C^2(\overline{G}) \to \mathbb{L}_2(G)$  для ограниченной области  $G \subset \mathbb{R}_m$  с кусочно—гладкой границей.

**Определение.**  $A: D(A) \to \mathcal{H}$  линейный оператор. Будем называть его плотно определенным, если  $\overline{D(A)} = \mathcal{H}$ .

**Определение.**  $A: D(A) \to \mathcal{H}$  линейный оператор. A называем замкнутым, если GrA замкнут в  $\mathcal{H} \times \mathcal{H}$ .

**Определение.**  $A: \mathrm{D}(A) \to \mathcal{H}$  линейный оператор. Пусть множество  $\overline{\mathrm{Gr}A} = \mathrm{Gr}T$  для некоторого линейного оператора  $T: \mathrm{D}(T) \to \mathcal{H}$ . Тогда говорят, что  $T = \overline{A}$  - замыкание A.

**Теорема.** (Критерий замыкаемости)  $A: D(A) \to \mathcal{H}$  линейный оператор, плотно определён. Тогда  $\overline{\mathrm{Gr}A}$  является графиком линейного оператора  $\overline{A}: D(\overline{A}) \to \mathcal{H} \iff \overline{D(A^*)} = \mathcal{H}$ , т.е  $A^*$  плотно определён.

Доказательство. 1. Докажем сначала справа налево. Запишем для плотно определенных операторов A,  $A^*$  теорему о связи графиков:  $\operatorname{Gr} A^* = (\operatorname{VGr} A)^{\perp} \cap (\mathcal{H} \times \overline{\operatorname{D}(A)})$ ;  $\operatorname{Gr} A^{**} = (\operatorname{VGr} A^*)^{\perp} \cap (\mathcal{H} \times \overline{\operatorname{D}(A^*)})$ . В силу того, что операторы плотно определены, эти равенства переходят в  $\operatorname{Gr} A^* = (\operatorname{VGr} A)^{\perp}$ ;  $\operatorname{Gr} A^{**} = (\operatorname{VGr} A^*)^{\perp}$ . Хотелось бы подставить первое полученное выражение во второе, но чтобы произвести дальнейшие сокращения, необходимо доказать лемму о вынесении  $\operatorname{V}$  из под знака ортогонального дополнения:

Лемма.  $L \subset \mathcal{H} \times \mathcal{H}$  - подпространство. Тогда  $(VL)^{\perp} = V(L)^{\perp}$ 

Доказательство. 
$$\forall \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \in (VL)^{\perp} \Leftrightarrow \forall \begin{pmatrix} f \\ g \end{pmatrix} \in L \quad (\begin{pmatrix} \varphi \\ \psi \end{pmatrix}, \begin{pmatrix} -g \\ f \end{pmatrix}) = 0 \Leftrightarrow \forall \begin{pmatrix} f \\ g \end{pmatrix} \in L \quad (-\varphi,g) + (\psi,f) = 0 \Leftrightarrow \forall \begin{pmatrix} f \\ g \end{pmatrix} \in V \quad (-\psi,f) + (\varphi,g) = 0 \Leftrightarrow \forall \begin{pmatrix} f \\ g \end{pmatrix} (V \begin{pmatrix} \varphi \\ \psi \end{pmatrix}, \begin{pmatrix} f \\ g \end{pmatrix}) = 0 \Leftrightarrow V \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \in L^{\perp} \Leftrightarrow \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \in V^{-1}L^{\perp} = -VL^{\perp}$$
. Подпространство и  $VL^{\perp}$ , значит, тоже подпространство. Значит, знак минус перед ним не играет никакой роли  $-VL^{\perp} = VL^{\perp}$ . Тогда получаем  $\begin{pmatrix} \varphi \\ \psi \end{pmatrix} \in VL^{\perp}$ .

Теперь подставляем:  $GrA^{**} = (V(VGrA)^{\perp})^{\perp} = (V^2(GrA)^{\perp})^{\perp} = (-(GrA)^{\perp})^{\perp}$ . Снова имеем знак минус перед подпространством и снова его игнорируем.  $GrA^{**} = ((GrA)^{\perp})^{\perp}$ . Докажем еще одну лемму.

**Лемма.**  $L \subset \mathcal{H}$  - подпространство. Тогда  $L^{\perp \perp} = \overline{L}$ 

 ${\cal A}$ оказательство.  $L\subset L^{\perp\perp}$  (элементы  $L^{\perp\perp}$  - это ортогональные ортогональным к элементам L. Ясно, что элементы L ортогональны ортогональным к себе). Так как  $L^{\perp\perp}$  замкнуто,  $\overline{L}\subset L^{\perp\perp}$ .  $\overline{L}$  гильбертово как замкнутое в гильбертовом. Тогда для него справедлива теорема Рисса:  $\overline{L}\oplus N=L^{\perp\perp}$ ,  $N\perp \overline{L}$ .  $N=(\overline{L})^{\perp}\cap L^{\perp\perp}$ . Если мы докажем, что  $N=\varnothing$ , то лемма будет доказана. Докажем лемму:

Лемма.  $L^{\perp} = \overline{L}^{\perp}$ 

Доказательство.  $\overline{L}^{\perp} \subset L^{\perp}$ , т.к если элемент ортонален замыканию множества, то и самому множеству ортогонален. Докажем  $L^{\perp} \subset \overline{L}^{\perp}$ . Пусть  $g \in L^{\perp} \Leftrightarrow \forall f \in L \ (f,g) = 0$ . По оределению замыкания оператора  $\forall f \in L, \ \forall h \in \overline{L} \ \exists f_n \in L: \ f_n \to h. \ (f_n,g) \to (h,g)$ . Слева стоит последовательность из одних нулей, значит и стремится она к нулю, то есть  $h \perp g$  и  $g \in \overline{L}^{\perp}$ .

Пользуемся доказанной леммой, получаем  $N = (\overline{L})^{\perp} \cap L^{\perp \perp} = (L)^{\perp} \cap L^{\perp \perp} = \varnothing$  (только нулевой элемент ортогонален сам себе).

Теперь получаем  $GrA^{**} = ((GrA)^{\perp})^{\perp} = \overline{GrA}$ . Видим, что замыкание графика  $\overline{GrA}$  является графиком линейного оператора  $A^{**}$ , значит по определению замыкание у A есть и равно оно  $A^{**}$ .

2. Теперь доказываем слева направо. Нам требуется увидеть равенство  $\overline{\mathrm{D}(A^*)} = \mathcal{H}$ . Берем  $\forall h \in (\mathrm{D}(A^*))^{\perp}$  и составляем конструкцию  $\binom{h}{0} \in (\mathrm{Gr}A^*)^{\perp}$ . Вложение здесь соблюдается, потому что  $\forall g \in \mathrm{D}(A^*) \quad \binom{h}{0}, \binom{g}{A^*g} = \binom{h}{0} + \binom{h}{0}, \binom{g}{A^*g} = 0$ . Но по теореме о связи графиков для плотно определённого  $A = (\mathrm{Gr}A^*)^{\perp} = (\mathrm{VGr}A)^{\perp \perp} \stackrel{\mathrm{Лемма}}{=} \frac{(\mathrm{NGr}A)^{\perp}}{\mathrm{VGr}A}$ . Тут нам снова нужна лемма, на этот раз для того, чтобы вынести V из-под замыкания.

**Лемма.**  $L \subset \mathcal{H} \times \mathcal{H}$  - подпространство. Тогда  $\overline{\mathrm{V}L} = \mathrm{V}\overline{L}$ 

Доказательство. 
$$\forall \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \in \overline{\mathrm{V}L} \Leftrightarrow \exists \begin{pmatrix} f_n \\ g_n \end{pmatrix} \colon \quad \begin{pmatrix} \varphi \\ \psi \end{pmatrix} = \lim_{n \to \infty} \mathrm{V} \begin{pmatrix} f_n \\ g_n \end{pmatrix} = \lim_{n \to \infty} \begin{pmatrix} -g_n \\ f_n \end{pmatrix}$$
 Получилось  $\begin{cases} g_n \to -\varphi \\ f_n \to \psi \end{cases}$  в  $\mathcal{H}$  при  $n \to \infty \Leftrightarrow \overline{L}$  содержит  $\begin{pmatrix} \psi \\ -\varphi \end{pmatrix} = \mathrm{V} \begin{pmatrix} -\varphi \\ -\psi \end{pmatrix} \Leftrightarrow$ . Тогда  $\begin{pmatrix} \varphi \\ \psi \end{pmatrix} = \mathrm{V}^2 \begin{pmatrix} -\varphi \\ -\psi \end{pmatrix} \in \overline{\mathrm{V}L}$ 

Тогда  $\overline{\mathrm{VGr}A}=\mathrm{V}\overline{L}$ . Таким образом  $(\mathrm{Gr}A^*)^\perp=\mathrm{V}\overline{\mathrm{Gr}A}$ . Тогда  $\begin{pmatrix} h\\0 \end{pmatrix}\in\mathrm{VGr}\overline{A}$ . Тогда  $\begin{pmatrix} 0\\h \end{pmatrix}\in\mathrm{Gr}\overline{A}\Rightarrow h=\overline{A}0=0,$  так как  $\overline{A}$  - линейный оператор. Значит,  $(\mathrm{D}(A^*))^\perp=\varnothing$  и доказано, что  $A^*$  плотно определён. Ну и покуда он плотно определен, то из рассуждений пункта 1  $\overline{A}=A^{**}$ .

Пример. (незамыкаемого плотно определённого оператора) Рассмотрим сепарабельное гильбертово пространство  $\mathcal{H}$ , в нём ортонормированный базис  $\{e_n\}_{n=1}^{\infty}$ .  $||f||^2 = \sum_{n=1}^{\infty} |f_n|^2 < +\infty$ . Рассмотрим еще плотное подпространство в  $\mathcal{H}$   $L = \{f \in \mathcal{H} | \sum_{n=1}^{\infty} |f_n| < +\infty \}$  (плотное, потому что содержит в себе все  $e_n$ ). Тогда  $\overline{L} = \mathcal{H}$ , но  $L \neq \mathcal{H}$  (есть, например,  $\sum_{n=1}^{\infty} \frac{e_n}{n}$ , суммируемый с квадратом, но абсолютно расходящийся ряд). Далее рассмотрим оператор  $A:L \to \mathcal{H}$ , D(A) = L с таким действием  $(Af) = (\sum_{n=1}^{\infty} f_n) \cdot e_1$ .  $\Im A = Lin \ e_1$  (линейная оболочка первого базисного вектора). Найдём  $A^*:D(A^*) \to \mathcal{H} = \overline{L} = \overline{D(A)}$ . Пусть  $g \in D(A)$ .  $|(Af,g)| = |\sum_{n=1}^{\infty} f_n| \cdot |(e_1,g)| \leqslant C_g ||f||$ . Если мы находим константу  $C_g$ , то это эквивалентно утверждению, что отображение  $f \to \sum_{n=1}^{\infty} f_n$  линейно и непрерывно на L. Рассмотрим два случая:

- 1.  $(e_1,g)=0 \Rightarrow C_g=1$  подойдёт, но о непрерывности исследуемого отображения ничего не говорит.
- 2.  $(e_1,g) \neq 0 \Rightarrow \forall f \in L \mid \sum_{n=1}^{\infty} f_n \mid \leqslant \frac{C_g}{|(e_1,g)|} ||f||$  оценка, гарантирующая непрерывность.

Но это отображение всегда разрывно, потому второй случай никогда не будет реализовываться. Докажем это, предъявив последовательность, члены которой стремятся по норме в L к нулю, но при этом модуль суммы которой

к нулю стремиться не будет. Пусть 
$$f_n(N) = \begin{cases} 0, & n < N, & n > 2N \\ \frac{1}{n}, & n \in \overline{N, 2N} \end{cases}$$
 .  $||f(N)|| = \sqrt{\sum_{N=1}^{2N} \frac{1}{n^2}} \to 0, \quad N \to \infty$  (остаток

сходящегося ряда). Но оценим модуль суммы  $\forall N \in \mathbb{N}$   $|\sum_{n=1}^{\infty} f_n(N)| = \sum_{N=1}^{\infty} \frac{1}{n} \geqslant \frac{1}{2}$ . Так что исследуемый оператор точно разрывен. А значит  $(e_1,g) \neq 0$  невозможно, то есть  $(e_1,g) = 0$ . Так как g - это произвольный вектор из области определения сопряжённого оператора,  $\mathrm{D}(A^*) = (Line_1)^{\perp}$ . Тогда  $\forall f \in L$ ,  $\forall g \in \mathrm{D}(A^*)$  (Af,g) = 0. Действие  $f \to (Af,g)$  для f,g из их областей определения становится тривиальным - обнулением, при этом оно линейно и непрерывно и применима Теорема Рисса-Фреше и можно записать  $\exists ! h_g \in \mathcal{H} = \overline{L} : (Af,g) = (f,h_g) = 0$ .  $h_g = 0$  нам подходит, а других быть не может в силу единственности. Тогда  $A^*g = h_g = 0$ . Тем самым мы описали и область определения сопряженного оператора и его действие:  $A^* : (Lin\ e_1)^{\perp} \to \mathcal{H}, \forall g \perp e_! \quad A^*g = 0$ . Увидим на этом примере утверждение теоремы Фредгольма:  $\ker A^* = \mathrm{D}(A^*) = (Lin\ e_1)^{\perp} = (\Im A)^{\perp}$ . Пронаблюдаем теперь, что этот оператор не имеет замыкания. Он всюду плотный, так как L плотно в  $\mathcal{H}$ . Нам необходимо исседовать замыкание графика  $\overline{\mathrm{Gr}A}$ , является ли оно графиком какого-нибудь линейного оператора. Мы покажем, что не является, доказав, что в замыкание графика входит вектор вида  $\begin{pmatrix} 0 \\ e_1 \end{pmatrix}$  (у линейного оператора если первый элемент

ноль, то второй, равный действию оператора на первый, тоже ноль). Соберем такую конструкцию  $f(N) = \sum_{n=m_N}^{m_{N+1}} \frac{e_n}{n}$ .

Существует такая возрастающая последовательность  $m_N$ , что  $\forall N$   $1\leqslant \sum_{n=m_N}^{m_{N+1}}\frac{1}{n}\leqslant 1+\frac{1}{m_{N+1}}$ . Элементы такой последовательности стремятся к нулю по норме при  $N\to\infty$  (аналогично было выше для  $m_N=N$  и  $m_{N+1}=2N$ ). А действие оператора A на этот элемент L даёт  $Af(N)=(\sum_{n=m_N}^{m_{N+1}}\frac{1}{n})e_1$   $\stackrel{\mathcal{H}}{e_1}$  (смотрим выше, так и определяли  $m_N$ , чтобы этот ряд суммировался в единицу). Мы переходили к пределу по Гейне-последовательности, значит, получили точку замыкания графика, причем её вид  $\begin{pmatrix} 0\\e_1 \end{pmatrix}$  - та самая недопустимая ситуация, в которой замыкание графика не может быть графиком линейного оператора и оператор A не имеет замыкания на A. Это можно увидеть и по критерию: область определения сопряженного оператора (все векторы, ортогональные линейной оболочке базисного  $e_1$ ) не полна в  $\mathcal{H}$ .

16. Неравенство Фридрихса для функции  $f \in C^1(\bar{G})$  и выпуклой ограниченной области  $G \subset \mathbb{R}^m$  с кусочно–гладкой границей. Задача Дирихле в круге  $K \subset \mathbb{R}^2$  для замыкания оператора Лапласа  $\Delta: C^2(\bar{K}) \to \mathbb{L}_2(K)$ , существование и единственность ее решения.

**Неравенство Фридрихса**  $G \subset \mathbb{R}^m$  – ограниченное, выпуклое множество с кусочно-гладкой границей  $\partial G$ . Пусть  $f \in C^1(\bar{G})$  и  $f|_{\partial G} = 0$ . Тогда

$$\int_{G} |f|^2 \leqslant (\operatorname{diam} G)^2 \int_{G} |\nabla f|^2$$

Или в терминах  $(L)_2$ -нормы

$$||f||_{\mathbb{L}_2(G)} \leq (\operatorname{diam} G)||\nabla f||_{\mathbb{L}_2(G)}$$

Докажем для  $m \geqslant 2$ , в случае m=1 доказательство тривиально. Рассмотрим  $x \in G$ .  $I_1$  — проекция G ось  $x_1$ , а  $G_0$  на оставшееся подпространство  $\mathbb{R}^{m-1}$ . При заданых  $(x_2 \dots x_m)^T \in G_0$  в силу выпуклости G  $x_1 \in [a(x_2,\dots,x_m),b(x_2,\dots,x_m)] \subset I$ , как изображено.



По Ньютону-Лейбницу и из-за того, что f на границе ноль

$$f(x) = f(x) - f(a(x_2, \dots, x_m)) = \int_{a(x_2, \dots, x_m)}^{x_1} \frac{\partial f}{\partial t}(t, x_2, \dots, x_m) dt$$

$$|f(x)| \leqslant \int_{a(x_2,\dots,x_m)}^{x_1} \left| \frac{\partial f}{\partial t}(t,x_2,\dots,x_m) \right| dt \leqslant \int_{a(x_2,\dots,x_m)}^{b(x_2,\dots,x_m)} \left| \frac{\partial f}{\partial t}(t,x_2,\dots,x_m) \right| dt \leqslant \sqrt{b-a} \sqrt{\int_a^b \left| \frac{\partial f}{\partial t}(t,x_2,\dots,x_m) \right|^2} dt$$

Здесь третье неравенство это Коши-Буняковскй. В силу того, что  $|\frac{\partial f}{\partial x_1}| \leqslant |\nabla f|$ , а  $b(x_2,\ldots,x_m) - a(x_2,\ldots,x_m) \leqslant |I_1|$ 

$$|f(x)|^2 \leqslant |I_1| \int_{a(x_2,\dots,x_m)}^{b(x_2,\dots,x_m)} |\nabla f(t,x_2,\dots,x_m)|^2 dt$$

Интегрируем по области G

$$\int_{G} |f(x)|^{2} dx \leq |I_{1}| \int_{G} \int_{a(x_{2},\dots,x_{m})}^{b(x_{2},\dots,x_{m})} |\nabla f(t,x_{2},\dots,x_{m})|^{2} dt dx \leq |I_{1}| \int_{G} dx_{1} \int_{G_{0}} dx_{2} \dots dx_{m} \int_{a(x_{2},\dots,x_{m})}^{b(x_{2},\dots,x_{m})} |\nabla f(t,x_{2},\dots,x_{m})|^{2} dt$$

Проинтегрировав по  $x_1$  и оценивая  $|I_1| \leqslant DiamG$  получаем

$$\int_{G} |f(x)|^{2} dx \le (\operatorname{diam} G)^{2} \int_{G} |\nabla f(x)|^{2} dx$$

Задача Дирихле для замыкания оператора Лапласа в круге

$$\begin{cases} \bar{\Delta}u = 0, u \in D(\bar{\Delta}) \\ u|_{\partial K_R} = v \in \mathbb{L}_2(K_R) \end{cases}$$

Это означет, что  $\exists \ u(N) \in D(\Delta) : \begin{cases} u(N) \xrightarrow{\mathbb{L}_2(K_R)} u \\ \Delta u(N) \xrightarrow{\mathbb{L}_2(K_R)} 0 \end{cases}$ 

при  $N \to \infty$  и  $||u(r, \bullet) - v(\bullet)||_{\mathbb{L}_2(K_R)} \to 0$  при  $r \to R$ . Рассмотрим следующие суммы

$$u(N) = \sum_{n=-N}^{N} u_n(r)e^{in\varphi}$$

$$v(N) = \sum_{n=-N}^{N} v_n e^{in\varphi}$$

Тогда u(N) сойдется к решению, если

$$\begin{cases} \Delta u(N) \xrightarrow{N \to \infty} 0 \\ u(N)|_{\partial K_R} = v(N) \end{cases}$$

Покажем, что эти условия выполняются при  $u_n=v_n\left(\frac{r}{R}\right)^{|n|}$ . Действительно  $\forall n\in\mathbb{N}$  справедливо

$$\Delta(v_n \left(\frac{r}{R}\right)^{|n|} e^{in\varphi}) = 0$$

Теперь докажем сходимость к и. Для начала покажем, что

$$u = \sum_{n \in \mathbb{N}} v_n \left(\frac{r}{R}\right)^{|n|} e^{in\varphi} \in \mathbb{L}_2(K_R)$$

В силу равенства Парсеваля и теоремы Бетто-Леви

$$\int\limits_{K_R} |u^2| = \int\limits_0^R dr \, r \int\limits_0^{2\pi} |u(r,\varphi)|^2 \, d\varphi = \int\limits_0^R dr \, r \sum_{n \in \mathbb{N}} |u_n|^2 2\pi = 2\pi \sum_{n \in \mathbb{N}} |v_n|^2 \int\limits_0^R r \left(\frac{r}{R}\right)^{2|n|} \, dr \leqslant \frac{R^2}{2} ||v||_{\mathbb{L}_2(K_R)} < +\infty$$

$$||u - u(N)||_{\mathbb{L}_2(K_R)} = \sum_{n > N} |v_n|^2 \int_0^R r\left(\frac{r}{R}\right)^{|n|} dr \to 0$$

В силу сходимости  $\sum_{n\in\mathbb{N}} |v_n|^2$ . Таким образом видим, что предъявленное u является решением.

**Единственность этого решения** Пусть решения два – u и w. Тогда по определению  $\exists$  такие сходящиеся к ним последовательности  $u(N) \in C^2(\bar{K}_R)$  и  $w(N) \in C^2(\bar{K}_R)$ , что

$$\begin{cases} \Delta u(N) \xrightarrow{N \to \infty} 0 \\ u(N)|_{\partial K_R} = v(N) \end{cases}$$

$$\begin{cases} \Delta w(N) \xrightarrow{N \to \infty} 0 \\ w(N)|_{\partial K_R} = v(N) \end{cases}$$

Рассмотрим их разность q(N) = u(N) - w(N)

$$\begin{cases} q(N) \xrightarrow{\mathbb{L}_2(K_R)} u - w \\ \Delta q(N) \xrightarrow{\mathbb{L}_2(K_R)} 0 \\ q(N)|_{\partial K_R} = 0 \end{cases}$$

Воспользуемся формулой Грина

$$\int\limits_{K_R} \Delta(q(N)) q(\bar{N}) = \int\limits_{\partial K_R} \frac{\partial q(N)}{\partial n} q(\bar{N}) - \int\limits_{K_R} |\nabla q(N)|^2 = - \int\limits_{K_R} |\nabla q(N)|^2$$

По этому и еще из-за неравенства Коши-Буняковского

$$||\nabla(q(N))||_{\mathbb{L}_{2}(K_{R})} = \int\limits_{K_{R}} |\nabla q(N)|^{2} \leqslant \int\limits_{K_{R}} |\Delta(q(N))||q(\bar{N})| \leqslant ||\Delta(q(N))||_{\mathbb{L}_{2}(K_{R})} ||q(\bar{N})||_{\mathbb{L}_{2}(K_{R})} \stackrel{N \to \infty}{\longrightarrow} 0$$

Тогда по неравенству Фридрихса

$$||q(N)||_{\mathbb{L}_2(K_R)} \leqslant 2R||\nabla(q(N))||_{\mathbb{L}_2(K_R)} \xrightarrow{N \to \infty} 0$$

Таким образом  $0 \leftarrow q(N) \rightarrow u - w$ , а значит u = w

Задача Дирихле в шаре  $B\subset\mathbb{R}^3$  для замыкания оператора Лапласа  $\Delta:C^2(\overline{B})\to\mathbb{L}_2(B),$  существование и единственность ее решения.

$$\begin{cases} \overline{\Delta}u = 0, u \in D(\overline{\Delta}) \\ u|_{\partial K_R} = v \in L_2(\partial K_R) \Leftrightarrow ||u(r, ...) - v(...)||_{L_2(\partial K_R)} \to 0 (r \to R - 0) \end{cases}$$

Докажем, что решение существует:

$$\overline{\Delta}u = 0, u \in D(\overline{\Delta}) \Leftrightarrow \exists u(N) \stackrel{\mathbb{H}}{\to} u(N \to \infty), \Delta u(N) \stackrel{\mathbb{H}}{\to} 0(N \to \infty), \mathbb{H} = L_2(K_R) \Leftrightarrow (u, 0)^T \in Gr_{\overline{\Delta}}$$

Будем рассматривать конечные суммы фурье

$$u(N) = \sum_{n=-N}^{N} u_n(r)e^{in\varphi}, u_n(r) \in C^2[0, R] \Rightarrow u_n(r) \in C^2(\overline{K_R})$$

$$u(N)|_{r=R} = \sum_{N=1}^{N} v_n e^{in\varphi} = v(N) \stackrel{L_{2(\partial K_R)}}{\to} v(N \to \infty)$$

Тогда задача выглядит так:

$$\begin{cases} \Delta u(N) = 0, \forall N \\ u(N)|_{r=R} = v(N) \end{cases}$$

Построим решение так:

$$u_n(r) = v_n(\frac{r}{R})^{|n|}, \forall n \in (-N, N)$$

Нужно проверить сходиться ли наша функция теперь:

$$\sum_{n=-N}^{N} v_n(\frac{r}{R})^{|n|} e^{in\varphi} \stackrel{?}{\to} u \mathbf{B} L_{2(K_R)}$$

Если она и сходиться, то к следующему ряду. Нужно проверить, лижит ли он в  $L_{2(K_R)}$ 

$$u = \sum_{n \in \mathbb{Z}} v_n(\frac{r}{R})^{|n|} e^{in\varphi}$$

Тогда

$$u \in L_{2(K_R)} \Leftrightarrow \int_{K_R} |u|^2 = \int_0^R dr r \int_0^{2\pi} |u(r,\varphi)|^2 d\varphi =$$
 
$$\text{Равенство} \prod_{n=-\infty}^{\text{Парсеваля}} \int_0^R dr r \sum_{n=-\infty}^{\infty} |u_n(r)|^2 2\pi =$$
 
$$Th. \text{Б.} \iint_{R=0}^{R=0} \sum_{n=0}^{\infty} |v_n|^2 2\pi \int_0^R (\frac{r}{R})^{2|n|} r dr \leqslant \frac{R^2}{2} ||v||^2 < +\infty \text{ B } L_{2(\partial K_R)}$$

Получается, что u действительно пренадлежит  $L_{2(K_R)}$  и к ней сходятся частичные суммы. Рассмотрим разность:

$$||u-u(N)||_{L_{2(K_{R})}}^{2} \overset{\text{Равенство Парсеваля и } Th. \ \text{Б. Леве}}{=} \sum_{|n|_{N}} |v_{n}|^{2} 2\pi \int_{0}^{R} (\frac{r}{R})^{|n|} r dr \leqslant \sum_{|n|>N} |v_{n}|^{2} \pi R^{2} \rightarrow 0 (N \rightarrow \infty),$$
 т.к. 
$$\sum_{|n|>N} |v_{n}|^{2} < +\infty$$

Таким образом:

$$\sum_{n\in\mathbb{Z}}v_n(\frac{r}{R})^{|n|}e^{in\varphi}=u\in D(\overline{\Delta}), \overline{\Delta}u=0, \text{t.k. } lim_{N\to\infty}(\Delta u(N))=0, \text{a } u(N)\overset{L_{2(K_R)}}{\to}u, u(N)\in D(\Delta)$$

Посмотрим на граничные условия:

$$||u(r,...) - v(...)||_{L_2(\partial K_R)} \overset{\text{Равенство}}{=} \sum_{n \in \mathbf{Z}} |v_n|^2 (1 - (\frac{r}{R})^{|n|})^2 2\pi, 0 < r < R,$$

 $1-(\frac{r}{R})^{|n|}\leqslant 1$ , значит, ряд сходится равномерно по теореме Вейерштрасса(ограничили разложением  $v_n)\Rightarrow$ 

$$1 - (\frac{r}{R})^{|n|} \to 0 (r \to R), \Rightarrow \sum_{n \in \mathbf{Z}} \to 0$$

Существование доказано.

17. Собственные числа и собственные функции оператора Лапласа—Бельтрами на сфере  $S\subset \mathbb{R}^3,$  сферические функции. Ортогональный базис в пространстве  $\mathbb{L}_2(S)$  из сферических функций.

#### Сферические координаты в $\mathbb{R}^3$

Сферические координаты определяются как

$$\begin{cases} x = r\cos\varphi\sin\theta; \\ y = r\sin\varphi\sin\theta; \\ z = r\cos\theta, \end{cases}$$
 где 
$$\begin{cases} r \in [0, +\infty); \\ \varphi \in [0, 2\pi); \\ \theta \in [0, \pi). \end{cases}$$

Далее S — единичная сфера в  $\mathbb{R}^3$ , определяемая как

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1 \right\}.$$

Работаем с комплекснозначными функциями  $f(\varphi, \theta)$  в гильбертовом пространстве  $\mathbb{L}_2(S)$  со скалярными произведением

$$(f,g) = \int_{S} f(\varphi,\theta) \, \overline{g(\varphi,\theta)} \, dS = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta \, d\theta \, (\varphi,\theta) \, \overline{g(\varphi,\theta)}, \quad f,g \in \mathbb{L}_{2}(S).$$

Таким образом, будем говорить, что функция  $f: S \to \mathbb{C}$  лежит в  $\mathbb{L}_2(S)$ , если ее норма

$$||f||_{\mathbb{L}_2(S)} = \sqrt{(f,f)} < +\infty.$$

#### Оператор Лапласа в сферических координатах

Оператор Лапласа определим как сумму его радиальной и угловой части:

$$\Delta = \Delta_r + \frac{1}{r^2} \Delta_{\varphi,\theta}, \quad \Delta_r = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r}, \quad \Delta_{\varphi,\theta} = \frac{\partial^2}{\partial \theta^2} + \operatorname{ctg} \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}.$$

**Определение 17.1:** Угловая часть оператора Лапласа  $\Delta_{\varphi,\theta}:C_2(S)\to \mathbb{L}_2(S)$  называется *оператором Лапласа-Бельтрами*.

**Утверждение 17.1:** Оператор  $\Delta_{\varphi,\theta}:C_2(S)\to\mathbb{L}_2(S)$  является симметричным оператором, то есть справедливо равенство

$$(\Delta_{\varphi,\theta}f,g) = (f,\Delta_{\varphi,\theta}g), \quad \forall f,g \in C_2(S).$$

ightharpoonup Рассмотрим для  $f,g\in C_2(S)$  скалярное произведение

$$(\Delta_{\varphi,\theta}f,g) = \int_{S} (\Delta_{\varphi,\theta}f) \,\overline{g} \,dS = \lim_{\varepsilon \to +0} \int_{\varepsilon}^{\pi-\varepsilon} d\theta \sin\theta \int_{0}^{2\pi} d\varphi \,(\Delta_{\varphi,\theta}f) \,\overline{g} = \lim_{\varepsilon \to +0} \int_{\varepsilon}^{\pi-\varepsilon} d\theta \int_{0}^{2\pi} d\varphi \,\left(\left(\sin\theta f_{\theta}'\right)_{\theta}' \,\overline{g} + \frac{f_{\varphi\varphi}''\overline{g}}{\sin\theta}\right).$$

Второе слагаемое интегрируем по частям по  $\varphi$  два раза:

$$\int_{0}^{2\pi} d\varphi \, f_{\varphi\varphi}^{"}\overline{g} = \left(f_{\varphi}^{'}\overline{g} - f\overline{g}_{\varphi}^{'}\right)\Big|_{\varphi=0}^{\varphi=2\pi} + \int_{0}^{2\pi} d\varphi \, f\overline{g}_{\varphi\varphi}^{"}.$$

Первое слагаемое равно нулю, так как функции f и g дважды непрерывно дифференцируемы. Следовательно, периодичны вместе со своими первыми производными. Меняем местами интегралы, используя теорему Фубини и выполняем интегрирование по частям по  $\theta$  для первого слагаемого:

$$\begin{split} &(\Delta_{\varphi,\theta}f,g) = \lim_{\varepsilon \to +0} \int\limits_{\varepsilon}^{\pi-\varepsilon} d\theta \int\limits_{0}^{2\pi} d\varphi \left( \left( \sin\theta f_{\theta}' \right)_{\theta}' \overline{g} + f \overline{g}_{\varphi\varphi}'' \right) = \\ &= \lim_{\varepsilon \to +0} \left[ \int\limits_{0}^{2\pi} d\varphi \left( \sin\theta f_{\theta}' \overline{g} \, \bigg|_{\theta=\varepsilon}^{\theta=\pi-\varepsilon} - \int\limits_{\varepsilon}^{\pi-\varepsilon} d\theta \, f_{\theta}' \sin\theta \, \overline{g}_{\theta}' \right) + \int\limits_{\varepsilon}^{\pi-\varepsilon} d\theta \int\limits_{0}^{2\pi} d\varphi \, \frac{f \overline{g}_{\varphi\varphi}''}{\sin\theta} \right] = \\ &= \lim_{\varepsilon \to +0} \left[ \int\limits_{0}^{2\pi} d\varphi \left( \left( \sin\theta f_{\theta}' \overline{g} - \sin\theta f \, \overline{g}_{\theta}' \right) \, \bigg|_{\theta=\varepsilon}^{\theta=\pi-\varepsilon} + \int\limits_{\varepsilon}^{\pi-\varepsilon} d\theta \, f \left( \overline{\sin\theta g_{\theta}'} \right)_{\theta}' \right) + \int\limits_{\varepsilon}^{\pi-\varepsilon} d\theta \int\limits_{0}^{2\pi} \frac{f \overline{g}_{\varphi\varphi}''}{\sin\theta} \right] = \\ &= \lim_{\varepsilon \to +0} \left\{ \int\limits_{\varepsilon}^{\pi-\varepsilon} d\theta \int\limits_{0}^{2\pi} d\varphi \, \left[ f \left( \sin\theta g_{\theta}' \right)_{\theta}' + \frac{f \overline{g}_{\varphi\varphi}''}{\sin\theta} \right] + \int\limits_{0}^{2\pi} d\varphi \, \left( f_{\theta}' \overline{g} - f \overline{g}_{\theta}' \right) \sin\theta \, \bigg|_{\varepsilon}^{\pi-\varepsilon} \right\}. \end{split}$$

Первое слагаемое в фигурных скобках дает  $(f, \Delta_{\varphi,\theta}g)$ . Во втором слагаемом функция  $(f'_{\theta}\overline{g} - f\overline{g}'_{\theta})$  непрерывна, а  $\sin\theta \xrightarrow{\theta \to \varepsilon, \pi - \varepsilon} 0$ . Следовательно, по теореме о непрерывной зависимости интеграла от параметра, можем внести предел внутрь и получить, что второе слагаемое равно нулю.

**Утверждение 17.2:** Оператор  $\Delta_{\varphi,\theta}$  является отрицательно полуопределенным оператором.

 $\blacktriangleright$  Рассматривая такое же скалярное произведение, в котором f=g, и интегрируя по частям каждое слагаемое только один раз, находим:

$$(\Delta_{\varphi,\theta}f,f) = \lim_{\varepsilon \to +0} \left\{ \int_{0}^{2\pi} d\varphi \left[ \left( \sin \theta f_{\theta}' \right) \overline{f} \Big|_{\theta=\varepsilon}^{\theta=\pi-\varepsilon} - \int_{\varepsilon}^{\pi-\varepsilon} d\theta \sin \theta \left| f_{\theta}' \right|^{2} \right] + \int_{\varepsilon}^{\pi-\varepsilon} d\theta \left[ \frac{f_{\varphi}' \overline{f}}{\sin \theta} \Big|_{\varphi=0}^{\varphi=2\pi} - \int_{0}^{2\pi} d\varphi \frac{\left| f_{\varphi}' \right|^{2}}{\sin \theta} \right] \right\} = -\lim_{\varepsilon \to +0} \int_{\varepsilon}^{\pi-\varepsilon} d\theta \int_{0}^{2\pi} d\varphi \left[ \sin \theta \left| f_{\theta}' \right|^{2} + \frac{\left| f_{\varphi}' \right|^{2}}{\sin \theta} \right] \le 0.$$

Причем равенство нулю достигается только на постоянных функциях.  $\square$ 

Следствие: Любое собственное значение оператора Лапласа–Бельтрами является вещественным неположительным числом. Ядром оператора  $\Delta_{\varphi,\theta}$  является подпространство, состоящее из всех функций-констант. Собственные функции оператора  $\Delta_{\varphi,\theta}$ , отвечающие различным собственным значениям, ортогональны в пространстве  $\mathbb{L}_2(S)$ .

#### Собственные функции оператора Лапласа-Бельтрами

**Определение 17.2:** Собственные функции оператора  $\Delta_{\varphi,\theta}$  называются сферическими функциями. Так как  $\mathbb{L}_2(S)$  представима в виде

$$\mathbb{L}_2(S) = \mathbb{L}_{2,\sin\theta}[0,\pi] \otimes \mathbb{L}_2[0,2\pi],$$

и мы знаем что в  $\mathbb{L}_2[0,2\pi]$  есть базис  $\left\{e^{in\varphi}\right\}_{n\in\mathbb{Z}}$ , будем искать собственные функции в виде  $v(\theta)e^{in\varphi}=u(\varphi,\theta)$ , где  $0\neq v(\theta)\in C^2[0,2\pi]$ . Запишем уравнение на собственные значения:

$$\Delta_{\varphi,\theta}\left(\exp\left(in\varphi\right)v(\theta)\right) = \left(\frac{d^2v(\theta)}{d\theta^2} + \operatorname{ctg}\theta\frac{dv(\theta)}{d\theta} - \frac{k^2v(\theta)}{\sin^2\theta}\right)\exp\left(in\varphi\right) = \lambda\exp\left(in\varphi\right)v(\theta);$$
$$v''(\theta) + \operatorname{ctg}\theta v'(\theta) - \frac{n^2}{\sin^2\theta}v(\theta) = \lambda v(\theta), \quad 0 < \theta < \pi, \quad v(\theta) = v_n(\theta), \quad n \in \mathbb{Z}.$$

Наша цель — разыскать  $\forall n \in \mathbb{Z}$  ортогональный базис  $\{v_{m,n}(\theta)\}_{m \in \mathbb{N}}$ , удовлетворяющий уравнению на собственные значения. Таким образом, для каждого из базисных векторов  $v_n(\theta)$  у нас будет ортогональный базис. По теореме о базисе в тензорном произведении двух гильбертовых пространств, ортогональным базисом в  $\mathbb{L}_2(S)$  будет тензорное произведение ортогональных базисов.

**Поиск собственных функций:** Сузим область поиска на бесконечно дифференцируемые функции  $v_n \in C^{\infty}(0,\pi)$  и  $\forall n \in \mathbb{Z}$  рассмотрим оператор

$$\Delta_n = \frac{d^2}{d\theta^2} + \operatorname{ctg} \theta \frac{d}{d\theta} - \frac{n^2}{\sin^2 \theta} I, \quad \Delta_n : C^{\infty}(0, \pi) \to C^{\infty}(0, \pi).$$

Здесь  $I: C^{\infty}(0,\pi) \to C^{\infty}(0,\pi)$  — единичный оператор. В этих терминах задача формулируется как

$$\Delta_{-n} = \Delta_n v = \lambda v, \quad v \in C^{\infty}(0, \pi), \quad \theta \in (0, \pi), \quad v \neq 0, \quad \lambda \in \mathbb{R}.$$

Рассмотрим оператор

$$A_n = \frac{1}{\sin^n \theta} \frac{d}{d\theta} \sin^n \theta = \frac{d}{d\theta} + n \operatorname{ctg} \theta I, \quad n \in \mathbb{Z}, \quad A_n : C^{\infty}(0, \pi) \to C^{\infty}(0, \pi).$$

Утверждение 17.3: Выполнено следующее соотношение:

$$A_{n+1}A_{-n} = \Delta_n + n(n+1)I : C^{\infty}(0,\pi) \to C^{\infty}(0,\pi)$$

▶ Подействуем оператором, стоящим в левой части, на функцию  $v \in C^{\infty}(0,\pi)$ :

$$A_{n+1}A_{-n}v = A_{n+1}(v' - nv\operatorname{ctg}\theta) = v'' + \frac{n}{\sin^2\theta}v - n\operatorname{ctg}\theta\left(v' - n\operatorname{ctg}\theta v\right) =$$

$$= v'' + \operatorname{ctg}\theta v' + v\left(\frac{n}{\sin^2\theta} - n(n+1)\operatorname{ctg}^2\theta\right) = v'' + \operatorname{ctg}\theta v + v\left(\frac{n - (n+1)n}{\sin^2\theta} + n(n+1)\right) =$$

$$= \Delta_n v + n(n+1)v \quad \forall v \in C^{\infty}(0,\pi). \quad \Box$$

Утверждение 17.4: Выполнено следующее соотношение:

$$\Delta_{n-1}A_n = A_n\Delta_n, \quad n \in \mathbb{Z}$$

▶ Выполняя замену  $n+1 \to -n, \ n \in \mathbb{Z}$  в утверждении 17.3, находим:

$$A_{-n}A_{n+1} = \Delta_{n+1} + n(n+1)I \Longrightarrow A_{n+1}A_{-n}A_{n+1} = A_{n+1}\Delta_{n+1} + n(n+1)A_{n+1}.$$
 (\*)

С другой стороны, сразу пользуясь результатом утверждения 17.3 и умножая справа на  $A_{n+1}$  получаем:

$$A_{n+1}A_{-n}A_{n+1} = \Delta_n A_{n+1} + n(n+1)A_{n+1}.$$
 (\*\*)

Используя равенство левых частей в (\*) и (\*\*), находим:

$$\Delta_n A_{n+1} = A_{n+1} \Delta_{n+1} \Longrightarrow \Delta_{n-1} A_n = A_n \Delta_n \text{ Ha } C^{\infty}(0,\pi), \quad n \in \mathbb{Z}.$$

Фиксируем  $n \in \mathbb{Z}$ . Тогда

$$A_{-n} = \sin^n \theta \frac{d}{d\theta} \sin^{-n} \theta.$$

Очевидно, что функция  $v_n(\theta) = \sin^n(\theta)$  лежит в  $C^{\infty}(0,\pi)$ , а также лежит в ядре оператора  $A_{-n}$ :

$$v_n(\theta) = \sin^n(\theta) \in C^{\infty}(0, \pi), \quad A_{-n}v_n = 0.$$

Следовательно, из утверждения 17.3 следует, что

$$A_{n+1}A_{-n}v_n = 0 = \Delta_n v_n + n(n+1)v_n \Longrightarrow \Delta_n v_n = -n(n+1)v_n.$$

Одна собственная функция найдена. Далее, пользуясь утверждением 17.4, получаем:

$$\Delta_{n-1}A_nv_n = A_n\Delta_nv_n = -n(n+1)A_nv_n \Longrightarrow v_{n-1} = A_nv_n, \quad \Delta_{n-1}v_{n-1} = -n(n+1)v_{n-1}.$$

Нашли еще одну собственную функцию  $v_{n-1}$ . Сделаем еще одну итерацию процесса:

$$\Delta_{n-2}A_{n-1} = A_{n-1}\Delta_{n-1} \Longrightarrow \Delta_{n-2}A_{n-1}v_{n-1} = -n(n+1)A_{n-1}v_{n-1} \Longrightarrow v_{n-2} = A_{n-1}v_{n-1}.$$

Если для  $k \in \mathbb{N}_0$  имеем  $v_{n-k} \in C^{\infty}(0,\pi)$ , то

$$\Delta_{n-k}v_{n-k} = -n(n+1)v_{n-k} \Longrightarrow \Delta_{n-k-1}A_{n-k}v_{n-k} = A_{n-k}\Delta_{n-k}v_{n-k} = -n(n+1)v_{n-k};$$
  
$$\Delta_{n-k-1}v_{n-k-1} = -n(n+1)v_{n-k-1}.$$

**Утверждение 17.5:** Для собственной функции  $v_{n-k}(\theta)$  справедлива явная формула:

$$v_{n-k}(\theta) = \frac{1}{\sin^{n-k}\theta} \left( \frac{d}{\sin\theta d\theta} \right)^k \sin^{2n}\theta, \quad k \in \mathbb{N}_0.$$

ightharpoonup Доказательство проведем по индукции. Мы знаем, что  $v_n(\theta) = \sin^n \theta$  и знаем, что  $v_{n-1} = A_n v_n$ . Тогда

$$v_{n-1} = A_n v_n = \frac{1}{\sin^n \theta} \frac{d}{d\theta} \sin^2 \theta v_n(\theta) = \frac{1}{\sin^{n-1} \theta} \left( \frac{d}{\sin \theta d\theta} \right)^1 \sin^{2n} \theta.$$

База индукции (для k=0) очевидна: для  $v_n(\theta)$  имеем:

$$v_n(\theta) = \frac{1}{\sin^n \theta} \left( \frac{d}{\sin \theta d\theta} \right)^0 \sin^{2n} \theta = \sin^n \theta.$$

Построим общую формулу. Предположим, что

$$v_{n-k}(\theta) = \frac{1}{\sin^{n-k}\theta} \left(\frac{d}{\sin\theta d\theta}\right)^k \sin^{2n}\theta, \quad k \in \mathbb{N}_0,$$

тогда

$$v_{n-k-1} = A_{n-k}v_{n-k} = \frac{1}{\sin^{n-k}\theta} \frac{d}{d\theta} \sin^{n-k}\theta \frac{1}{\sin^{n-k}\theta} \left(\frac{d}{\sin\theta d\theta}\right)^k \sin^{2n}\theta = \frac{1}{\sin^{n-k-1}\theta} \left(\frac{d}{\sin\theta d\theta}\right)^{k+1} \sin^{2n}\theta. \quad \Box$$

Выполняя замену  $k - n \to m, \ m \in \{-n, ..., n\}$ , получим:

$$v_{-m}(\theta) = \sin^m \theta \left(\frac{d}{\sin \theta d\theta}\right)^{n+m} \sin^{2n} \theta, \quad \Delta_m v_{-m}(\theta) = -n(n+1)v_{-m}(\theta).$$

Так как мы искали функции из  $C^{\infty}(0,\pi)$ , из этого набора необходимо выбрать функции  $v_{-m}$ , соответствующие целым неотрицательным m.

Выражение через полиномы Лежандра: Введем замену  $\tau = \cos \theta \in [-1,1]$ . Тогда

$$-\frac{d}{\sin\theta d\theta} = \frac{d}{d\tau}, \quad \sin^2\theta = 1 - \tau^2.$$

Для собственных функций  $v_{-m}(\theta)$  получаем выражение:

$$v_{-m}(\theta) = (-1)^{m+k} (1 - \tau^2)^{m/2} \left(\frac{d}{d\tau}\right)^m \left(\frac{d}{d\tau}\right)^n (1 - \tau^2)^n.$$

#### Определение 17.3:

• Для  $n \in \mathbb{N}_0$  полиномом Лежандра степени n называется многочлен

$$P_n(\tau) = \left(\frac{d}{d\tau}\right)^n (1 - \tau^2)^n, \quad \tau \in [-1, 1], \quad n \in \mathbb{N}_0.$$

• Для  $m \in \mathbb{N}_0$  присоединенным полиномом Лежандра называется многочлен

$$P_{n,m}(\tau) = (1 - \tau^2)^{m/2} \left(\frac{d}{d\tau}\right)^{n+m} (1 - \tau^2)^n, \quad \tau \in [-1, 1], \quad n, m \in \mathbb{N}_0.$$

Таким образом, для собственных функций  $v_{-m}(\theta)$  имеем (постоянный множитель можно опустить):

$$v_{-m}(\cos\theta) = P_{n,m}(\cos\theta).$$

Окончательно, получаем выражение для сферических функций  $Y_{n,m}(\varphi,\theta)$ :

$$Y_{n,m}(\varphi,\theta) = P_{n,|m|}(\cos\theta)e^{im\varphi}, \quad \theta \in [0,\pi], \quad \varphi \in [0,2\pi], \quad n \in \mathbb{N}_0, \quad m \in \{-n,\dots,n\}$$

Для них выполнено

$$Y_{n,m}(\varphi,\theta) \in C^2(S), \quad \Delta_{\varphi,\theta} = -n(n+1)Y_{n,m}(\varphi,\theta) \Longrightarrow \lambda_n = -n(n+1).$$

#### Полнота системы сферических функций

**Утверждение 17.6:** Система сферических функций ортогональна. При  $k_1 \neq k_2$  присоединенные полиномы Лежандра  $P_{k_1,m}(\cos\theta)$  и  $P_{k_2,m}(\cos\theta)$  ортогональны на  $\mathbb{L}_{2,\sin\theta}[0,\pi]$ .

▶ Рассмотрим числа  $k_1, k_2 \in \mathbb{N}_0$ ,  $m_1 \in \{-k_1, \dots, k_1\}$  и  $m_2 \in \{-k_2, \dots, k_2\}$ . Если  $m_1 \neq m_2$ , то ортогональность сферических функций  $Y_{k_1,m_1}$  и  $Y_{k_2,m_2}$  автоматически следует из ортогональности мнимых экспонент  $\exp(im_2\varphi)$  и  $\exp(im_2\varphi)$ . Действительно, если рассмотрим скалярное произведение, получим:

$$(Y_{k_1,m_1}, Y_{k_2,m_2}) = \underbrace{\int\limits_{0}^{2\pi} d\varphi e^{i\varphi(m_1 - m_2)}}_{0} \int\limits_{0}^{\pi} d\theta \sin\theta \, P_{n_1,|m_1|}(\cos\theta) P_{n_2,|m_2|}(\cos\theta) = 0.$$

Пусть теперь  $m_1 = m_2 = m$  и  $k_1 \neq k_2$ . Сферические функции  $Y_{k_1,m}$  и  $Y_{k_2,m}$  отвечают различным собственным значениям  $\lambda_{k_1}$  и  $\lambda_{k_2}$ . Так как оператор  $\Delta_{\varphi,\theta}$  симметричен на  $C_2(S)$ , его собственные функции, отвечающие различным собственным значениям, ортогональны. Отсюда:

$$0 = (Y_{k_1,m}, Y_{k_2,m}) = \int_0^{2\pi} d\varphi \int_0^{\pi} d\theta \sin\theta \, P_{k_1,|m|}(\cos\theta) P_{k_2,|m|}\cos(\theta) = 2\pi \int_{-1}^1 P_{k_1,|m|}(\tau) P_{k_2,|m|}(\tau) d\tau. \quad \Box$$

**Утверждение 17.7:** Для любого  $m \ge 0$  система функций

$$\left\{ P_{k,m} \mid k \ge m \right\}$$

образует ортогональный базис в пространстве  $\mathbb{L}_2[-1,1]$ .

▶ Ортогональность доказана в утверждении 17.6. Докажем теперь полноту. Для этого зафиксируем прозвольную функцию  $f \in \mathbb{L}_2[-1,1]$  и покажем, что ее можно приблизить полиномами Лежандра с заданной наперед точностью  $\varepsilon > 0$ . Так как  $\mathbb{L}_2[-1,1]$  всюду плотно в C[-1,1], то

$$\exists g \in C[-1,1]: ||f-g||_{\mathbb{L}_2[-1,1]} \le \varepsilon.$$

Для любого  $\delta \in \left(0, \frac{1}{4}\right)$  рассмотрим

$$\psi_{\delta}(\tau) \in C[-1,1]: [-1,1] \to [0,1],$$

для которой выполнено

$$\begin{cases} \psi_{\delta}(\tau) = 1, & \tau \in [-1 + 2\delta, 1 - 2\delta], \\ \psi_{\delta}(\tau) = 0, & \tau \in [-1, -1 + \delta] \cup [1 - \delta, 1]. \end{cases}$$

Определим  $g_{\delta}(\tau) = g(\tau)\psi_{\delta}(\tau)$ . Тогда

$$\|g - g_\delta\|_{\mathbb{L}_2} = \sqrt{\int\limits_{-1}^1 |g(\tau)|^2 (1 - \psi_\delta(\tau))^2 d\tau} \le \sqrt{M^2 4\delta} = 2M\sqrt{\delta}, \quad \text{где } M = \|g\|_C = \max_{\tau \in [-1,1]} |g(\tau)|.$$

При  $\delta \le \left(\frac{\varepsilon}{2M+1}\right)^2$  выполнено

$$\|g - g_{\delta}\|_{\mathbb{L}_2} \le \varepsilon \Longrightarrow \|f - g_{\delta}\|_{\mathbb{L}_2} \le 2\varepsilon.$$

Введем новую непрерывную функцию (another one)  $h_{\delta}$ :

$$h_{\delta}(\tau) = \begin{cases} \frac{g_{\delta}(\tau)}{(\sqrt{1-\tau^2})^m}, & \tau \in [-1+\delta, 1-\delta], \\ 0, & \tau \in [-1, -1+\delta] \cup [1-\delta, 1]. \end{cases}$$

Справедливо равенство  $g_{\delta}(\tau) = \left(\sqrt{1-\tau^2}\right)^m h_{\delta}(\tau)$ . По теореме Вейерштрасса существует такой многочлен  $T(\tau)$  порядка p, что

 $||h_{\delta} - T(\tau)||_{C} \le \frac{\varepsilon}{\sqrt{2}}.$ 

Но многочлен  $T(\tau)$  может быть выражен через линейную комбинацию многочленов Лежандра. Тогда

$$\left\| g_{\delta}(\tau) - \sum_{s=0}^{p-1} \alpha_s P_{m+s,m}(\tau) \right\| = \left\| \left( \sqrt{1 - \tau^2} \right)^m \left( h_{\delta}(\tau) - T(\tau) \right) \right\|_{\mathbb{L}_2} \le \sqrt{\int_{-1}^{1} \left| h_{\delta}(\tau) - T(\tau) \right|^2 d\tau} = \varepsilon.$$

Таким образом, выполнено неравенство

$$||f - \sum_{s=0}^{p-1} \alpha_s P_{m+s,m}(\tau)||_{\mathbb{L}_2} \le 3\varepsilon.$$

Отсюда следует, что система полиномов Лежандра является полной в пространстве  $\mathbb{L}_2[-1,1]$ .  $\square$ 

18. Неравенство Фридрихса для функции  $f \in C^1(\overline{G})$  и выпуклой ограничеснной области  $G \subset \mathbb{R}^m$  с кусочно-гладкой границей. Задача Дирихле в шаре  $B \subset \mathbb{R}^3$  для замыкания оператора Лапласа  $\Delta : C^2(\overline{B}) \to \mathbb{L}_2(B)$ , существование и единственность ее решения.

**Неравенство Фридрихса** Пусть  $G \subset \mathbb{R}^m$  - ограничеснная выпуклая область в  $\mathbb{R}^m$  с кусочно гладкой  $\partial G$  и функция  $f \in C^1(\overline{G}), \ f|_{\partial G} = 0$ , тогда  $\int_G |f|^2 \leqslant (diam(G))^2 \int_G |\nabla f|^2$ . Т.е.  $||f||_{L_2(G)} \leqslant diam(G)||\nabla f||_{L_2(G)}$  Док-во:

1. Случай m=1

$$G = (a, b), -\infty < a < b < +\infty, f \in C^{1}[a, b], f(a) = f(b) = 0$$

Возьмем произвольную x из интервала (a,b). Тогда:

$$f(x) = f(x) - f(a) = \int_a^x f'(t)dt$$
 — формула Ньютона-Лейбница

$$|f(x)| \leqslant \int_a^b |f'(t)| dt \leqslant \int_a^b |f'(t)| dt \overset{\text{Неравенство Коши-Буняковского}}{\leqslant} \sqrt{\int_a^b dt} \sqrt{\int_a^b |f'(t)|^2 dt} = \sqrt{b-a} ||f'(t)||_{L_2(a,b)}^2$$

Получаем:

$$||f||_{L_2(a,b)}^2 = \int_a^b |f(x)|^2 dx \leqslant \int_a^b dx (b-a) ||f'||_{L_2(a,b)}^2 = (b-a)^2 ||f'||_{L_2(a,b)}^2 \Rightarrow ||f||_{L_2(a,b)} \leqslant (b-a) ||f'||_{L_2(a,b)}$$

2. Случай  $m \geq 2$ .. Выделим ось  $x_1$ . Нашу выпуклую область G спроектируем на  $x_1$  -  $I_1$  - огранчиенный интервал в  $\mathbb R$  и ортоганальное дополение  $G_0 \subset \mathbb R^{m-1}$  - выпуклая ограниченная область. Зафиксируем точку  $x = (x_1, ..., x_m)^T$  в области G. Она может двигаться между точками  $(a, ..., x_m)^T$  и  $(b, ..., x_m)^T$ , обозначим их  $a(x_2, ..., x_m)$  и  $b(x_2, ..., x_m)$ .



$$\begin{split} f(x) &= f(x) - f(a(x_2,...,x_m))) = \int_a^{x_1} \frac{\partial f}{\partial x_1}(t,...,x_m) dt. \\ &\Rightarrow |f(x)| \leqslant \int_{(a,...x_m)^T}^{(x_1,...,x_m)^T} |\frac{\partial f}{\partial x_1}(t,...,x_m)| dt \leqslant \int_a^b |\frac{\partial f}{\partial x_1}(t,...,x_m)| dt \leqslant \\ &\qquad \qquad \text{ Неравенство Коши-Буняковского } \sqrt{b-a} \sqrt{\int_a^b |\frac{\partial f}{\partial x_1}|^2 dt} \end{split}$$

При этом

$$\left|\frac{\partial f}{\partial x_1}\right|^2 \leqslant |\nabla f|^2, (b-a) \leqslant |I_1|$$

Тогда

$$|f(x)|^2 \le |I_1| \int_a^b |\nabla f(t, x_2, ..., x_m)|^2 dt$$

Интегрируя по области

$$\int_{G} |f(x)|^{2} dx \leq |I_{1}| \int_{G} dx \int_{a}^{b} |\nabla f(t, x_{2}, ..., x_{m})|^{2} dt \leq |I_{1}| \int_{I_{1}} dx_{1} \int_{G_{0}} dx_{2} ... dx_{m} \int_{a}^{b} |\nabla f|^{2} dt \leq |I_{1}|^{2} \int_{G} |\nabla f|^{2} dx \leq (diam(G))^{2} \int_{G} |\nabla f|^{2} dx$$

Задача Дирихле в шаре  $B \subset \mathbb{R}^3$  для замыкания оператора Лапласа  $\Delta: C^2(\overline{B}) \to \mathbb{L}_2(B)$ , существование и единственность ее решения. Конст разбирает данную задачу в 9 лекции 2 семестра. Примерный тайминг: 51:30 - 01:18:00

$$\begin{cases} \overline{\Delta}u = 0, u \in D(\overline{\Delta}) \\ u|_{\partial K_R} = v \in L_2(\partial B_R) \Leftrightarrow ||u(r, ...) - v(...)||_{L_2(\partial K_R)} \to 0 \\ (r \to R - 0) \end{cases}$$

Докажем, что решение существует:

Ищем функцию:

$$\begin{cases} u(N) \in C^2(\overline{B_R}) \\ u(N) \stackrel{L_{2(B_R)}}{\to} u \\ \Delta u(N) = 0 \text{ в } \overline{B_R} \\ u(N)|_{\partial B_R} = f(N) \in C^\infty(S) \text{ по построению сферических функций (они такие ;))} \end{cases}$$
 
$$f(N) = \sum_{n=0}^{N} \sum_{n=0}^{N} f_{n,m} Y_{n,m} \stackrel{L_{2(S),N\to\infty}}{\to} f$$

$$f(N) = \sum_{n=0}^{N} \sum_{m=-n}^{n} f_{n,m} Y_{n,m} \overset{L_{2(S),N\to\infty}}{\to} f$$

$$f = \sum_{n\in\mathbb{N}_{0},m\in\overline{-n,n}} f_{n,m} Y_{n,m} \text{ B } L_{2(S)}$$

Раз у нас имеется базис из сферические функции, то

$$u(N) = \sum_{n=0}^{N} \sum_{m=-n}^{n} u_{n,m}(r) Y_{n,m}, u_{n,m}(r) \in C^{2}[0; R] \Rightarrow u(N) \in C^{2}(\overline{B_{R}}),$$

используем только те сферические функции, что есть в разложении граничных условий

$$\Delta u(N)_{0 < r < R} = (u_{n,m}'' + \frac{2}{r}u_{n,m}' - \frac{n(n+1)}{r^2}u_{n,m})Y_{n,m} = 0 \Rightarrow r^2u_{n,m}'' + 2ru_{n,m}' - n(n+1)u_{n,m} = 0, 0 < r < R$$
 Решения:  $r^\mu, \mu(\mu-1) + 2\mu - n(n+1) = 0, \mu = n, \mu = -n-1$  не подхдить из соображения гладкости

$$u_{n,m}(r) = a_{n,m}r^n \in C^2[0, R]$$

$$u_{n,m}(R) = f_{n,m} = a_{n,m}R^n$$

$$u_{n,m}(r) = f_{n,m}(\frac{r}{R})^n, \forall n \in \overline{0, n}, \forall m \in \overline{-n.n}$$

Проверим принадлежит ли это решение  $L_2$ , для этого рассмотрим:

$$u = \sum_{n \in \mathbb{N}_{0}, m \in \overline{-n, n}} f_{n,m} \left(\frac{r}{R}\right)^{n} Y_{n,m} \stackrel{?}{\in} L_{2}(B_{R}) \Leftrightarrow \sum_{n \in \mathbb{N}_{0}, m \in \overline{-n, n}} ||f_{n,m} \left(\frac{r}{R}\right)^{n}||_{L_{2,r^{2}[0,R]}} ||Y_{n,m}||_{L_{2(S)}} < +\infty$$

$$||f_{n,m} \left(\frac{r}{R}\right)^{n}||_{L_{2,r^{2}[0,R]}} \leqslant |f_{n,m}|^{2} \int_{0}^{R} dr r^{2} \left(\frac{r}{R}\right)^{n} \leqslant \frac{R^{3}}{3}$$

$$||u||_{L_{2(B_{R})}}^{2} \leqslant \frac{R^{3}}{3} \sum_{n \in \mathbb{N}_{0}, m \in \overline{-n, n}} |f_{n,m}|^{2} ||Y_{n,m}||_{L_{2(S)}} = \frac{R^{3}}{3} ||f||_{L_{2(S)}} < +\infty$$

Проверим теперь сходимость, для этого докажем фундаментальность:

$$||u(N)-u(N+M)||_{L_{2(B_{R})}}^{2} = \sum_{n=N+1}^{N+M} \sum_{m=-n}^{n} ||u_{n,m}(r)||_{L_{2,r^{2}[0,R]}} ||Y_{n,m}||_{L_{2(S)}} \leqslant \frac{R^{3}}{3} \sum_{n \in \overline{N+1,N+M}, m \in \overline{-n,n}} |f_{n,m}|^{2} ||Y_{n,m}||_{L_{2(S)}} \leqslant \varepsilon,$$
 
$$\forall N \geqslant N(\varepsilon), \forall M \in \mathbb{N}_{0}$$

Последня оценка сделана, т.к. под снаком суммы находятся члены сходящегося ряда, значит по критерию Коши сходимости числового ряда оценка справедлива.

Отсда получаем, что

$$u(N) \subset L_2(B_R)$$
 — фундаментальная последовательность  $\Rightarrow$  она сходится в  $L_2(B_R)$  в силу полноты  $L_2(B_R)$ .

Из этого вытекает:

$$u \in D(\overline{\Delta})$$
 и  $\overline{\Delta}u = 0$ 

Теперь проверим выполнение граничных условий, должно выполняться:

$$||u(r,...) - f(...)||_{L_{2(S)},0 < r < R}^{2} \xrightarrow{r \to R - 0} 0$$

$$||u(r,...) - f(...)||_{L_{2(S)},0 < r < R}^{2} = \sum_{n \in \mathbb{N}_{0},m \in \overline{-n,n}} |f_{n,m}|^{2} (1 - (\frac{r}{R})^{n})^{2} ||Y_{n,m}||_{L_{2(S)}} \le |||f_{n,m}||||Y_{n,m}||^{2} < +\infty$$

Последняя оценка сделана, так как  $|f_{n,m}|^2||Y_{n,m}||_{L_{2(S)}}$  - член сходящегося ряда.

Далее делаем следующие оценки:

$$(1 - (\frac{r}{R})^n)^2 \le 1, (1 - (\frac{r}{R})^n)^2 \stackrel{r \to R - 0}{\to} 0$$

Отсюда следует, что ряд сходится равномерно по  $r \in (0, R) \Rightarrow$ , следовательно, разность стремится к нулю, так как сходится равномерно по r. Существование доказано и решение построенно.

Теорема единственности Пусть теперь имеем:

$$\begin{cases} \tilde{u}(N) \in C^{2}(\overline{B_{R}}) \\ \tilde{u}(N) \stackrel{L_{2(B_{R})}}{\rightarrow} \tilde{u} \\ \Delta \tilde{u}(N) \stackrel{L_{2(B_{R})}}{\rightarrow} 0 \\ \tilde{u}(N)|_{\partial B_{R}} = f(N) \end{cases}$$

Рассмотрим функцию:

$$\begin{cases} w(N) = u(N) - \tilde{u}(N) \in C^{2}(\overline{B_{R}}) \\ \Delta w(N) \to 0 \\ w(N) \stackrel{L_{2(B_{R})}}{\to} u - \tilde{u} \\ w(N)|_{\partial B_{R}} = 0 \end{cases}$$

Применим неравенство Фридрихса для  $w(N) \in C^2(\overline{B_R}), w(N)|_{\partial B_R} = 0, B_R$  - выпуклая ограниченная область в  $\mathbb{R}^3$ .

Дальше следите за руками:

$$\int |w(N)|^2 \leqslant (2R)^2 \int_{B_R} |\nabla w(N)|^2$$
 
$$\int_{B_R} \Delta w(N) \overline{w(N)} = \int_{\partial B_R} \frac{\partial w(N)}{\partial n} \overline{w(N)} - \int_{B_R} |\nabla w(N)|^2$$
 
$$\Delta w(N) \overset{L_{2(B_R)}}{\to} 0$$
 
$$\overline{w(N)} \overset{L_{2(B_R)}}{\to} \overline{u - \widetilde{u}}$$
 
$$\int_{\partial B_R} \frac{\partial w(N)}{\partial n} \overline{w(N)} = 0, \text{ т.к. на границе } \overline{w(N)} = 0$$
 
$$\int_{B_R} \Delta w(N) \overline{w(N)} = -\int_{B_R} |\nabla w(N)|^2 \to 0$$

Тогда имеем по неравенству Коши-Буняковсково:

$$\begin{split} |\int_{B_R} \Delta w(N) \overline{w(N)}| &\leqslant ||\Delta w(N)||_{L_{2(B_R)}} ||w(N)||_{L_{2(B_R)}} \rightarrow \\ & / ||\Delta w(N)||_{L_{2(B_R)}} \rightarrow 0, \\ & ||w(N)||_{L_{2(B_R)}} \rightarrow ||u - \widetilde{u}|| < + \infty / \\ & \rightarrow 0 \end{split}$$

Получаем, что  $\int_{B_R} |\nabla w(N)|^2 \to 0$ . Тогда неравенства Фридрихса из  $\int |w(N)|^2 \leqslant (2R)^2 \int_{B_R} |\nabla w(N)|^2$  следует, что  $w(N) = \widetilde{w}(N)$ . Единственность доказана.

Спасибо всем, кто дочитал и осознал. Удачи при подготовке и на экзамене. Да прибудет с нами сила.

19. Самосопряжённый линейный оператор в гильбертовом пространстве, его плотная определённость, замкнутость и симметричность. Пример несамосопряженногозамкнутого плотно определенного симметричного оператора. Вещественность спектра самосопряженного оператора.

#### Сопряженный оператор

**Определение.**  $A: D(A) \to \mathcal{H}$  - линейный, тогда A - самосопряженный(эрмитов) если  $GrA = GrA^*$ , то есть  $D(A) = D(A^*)$  u  $A^*g = Ag \forall g \in D(a) = d(A^*)$ .

**Определение.**  $A: D(A) \to \mathcal{H}$  замкнут, если его график замкнут.

**Лемма.** Если A -самосопряженный оператор (CCO) то GrA замкнут.

Доказательство. Очевидно из определения. (см. билет про симметричный опертатор, в нем доказано что график сопряженного оператора заммкнут, а значит замкнут и график А из определения самосопряженного оператора)

**Определение.** A - симметричный оператор, если  $A: D(A) \to \mathcal{H}$   $(Af,g) = (f,Ag) \ \forall f,g \in D(A)$ 

**Определение.** Оператор A - плотно определенный, если  $\overline{\mathrm{D}(A)}=\mathcal{H}$ 

**Лемма.** Если A -самосопряженный тогда  $\overline{\mathrm{D}(A)}=\mathcal{H}$ 

Доказательство. Идея:  $L \subset \mathcal{H}$  - подпространство. Если  $\overline{L} = \mathcal{H}$ , то  $(\overline{L})^{\perp} = \{0\} = (L)^{\perp}$  (Равенство  $(\overline{L})^{\perp} = (L)^{(\perp)}$ ) из теоремы Фредгольма) Теперь берем  $p \in (D(A))^{\perp} \Leftrightarrow \forall h \in \overline{D(A)} \Rightarrow (h,p) = 0$  Возьмем  $\forall \in D(A) = D(A^*)$  рассмотрим  $Af = A^*f \in D(A)$ . Тогда  $h = Af(Af, p) = 0 \rightarrow p \in D(A^*) = D(A)$  тк A - ССОб то есть  $p \in D(A) \cap (D(A))^{\perp} = \{0\} \rightarrow B$  $p = 0 \to (D(A))^{\perp} = \{0\}$ 

Таким образом мы показали плотную определенность, замкнутость и симметричность самосопряженного опера-

Определение. Если  $A:D(A)\to \mathcal{H},\,T:D(T)\to \mathcal{H}$  и  $\overline{GrA}=GrT,\,$  то  $\mathrm{T}=\overline{A}$ 

**Лемма.** Есди A и  $A^*$  плотно определены в H то  $\overline{A} = A^{**}$ 

Доказательство. Знаем, что есть плотно определен то  $GrA^{**} = (VGrA^*)^{\perp}, GrA^* = (VGrA)^{\perp}$ , подставляя одно в другое полуаем: $GrA^{**} = (V(VGrA)^{\perp}))^{\perp} = (-I(GrA)^{\perp})^{\perp} = ((GrA)^{\perp})^{\perp} = \overline{GrA}$ 

**Лемма.** Если A плотно определен и существоет  $\overline{A}$  тогда  $A^*$  плотно определен и  $\overline{A} = A^{**}$ 

Доказательство. Хотим увидеть что  $\overline{D(A^*)} = \mathcal{H}$ .

$$\forall h \in (D(A^*))^{\perp} \Rightarrow \begin{pmatrix} h \\ 0 \end{pmatrix} \in (GrA^*)^{\perp}$$
$$(GrA^*)^{\perp} = (VGrA)^{\perp \perp} = \overline{VGrA} = V\overline{GrA} = VGr\overline{A}$$

$$(GrA^*)^{\perp} = (VGrA)^{\perp\perp} = \overline{VGrA} = V\overline{GrA} = VGr\overline{A}$$

То есть 
$$\begin{pmatrix} 0 \\ h \end{pmatrix} \in Gr\overline{A}$$
 Значит  $h=A0=0$ , следовательно  $\overline{D(A^*)}=\mathcal{H}=0$ 

Последние 2 леммы формируют критерий замыкаемости, из билета 15

Для того тчобы рассмотреть пример определим критерий самосопряженности замыкания А, этот критерий используется в примере, его доказательство состявляет билет 20

## Критерий самосопряженности $\overline{A}$

A -симметричный и плотоно определенный в H тогда  $\overline{A}$  - CCO  $\Leftrightarrow \overline{A} = A^*$ 

#### Пример!

Рассмотрим симметричный плотно определенный оператор, замыкание которого не ССО.

$$A = i\frac{d}{dx}, D(A) \to L_2[0,1], D(A) = \{p \in C^1[0,1] : p(0) = p(1) = 0\}$$

 $A=irac{d}{dx},\ D(A) o L_2[0,1],\ D(A)=\{p\in C^1[0,1]:p(0)=p(1)=0\}$  Область определения всюду плотна!  $\forall g\in L_2[0,1],\ \forall arepsilon\exists h\in C[0,1]:||g-h||\leqslant arepsilon.$  По теореме Вейерштрасса  $\exists$  многочлен  $\mathrm{P}: ||h=P||= \max\{|P-h|\}\leqslant arepsilon$  Значит  $||h-P||=\sqrt{\int |h-P|^2}\leqslant arepsilon$  Многочлены, с P(0)=P(1)=0 полны в  $L_2$  т к отличаются на меру 0

Симметричность: Очевидно по частям, область определения  $D(A^*) \supset C^1[0,1]$  (без граничных условий в отличие от области определения А).

Что такое  $\overline{A}$ ?

$$f \in D(\overline{A}) \Leftrightarrow \exists f_n \in D(A) : \begin{cases} f_n \to f \\ Af_n \to h = \overline{A}f \end{cases} \begin{cases} f_n(x) = \int_0^x f_n'(t)dt \\ f_n(1) = \int_0^1 f_n'(t)dt = 0 \end{cases}$$

 $|f_n(x)-f_m(x)|=|\int_0^x f_n'-\int_0^x f_m'|\leqslant \int_0^x |f_n'-f_m'|\leqslant ($ из Коши Буняковскоро $)\sqrt{\int_0^x |f_n'-f_m'|^2}=||f_n'-f_m'||=||Af_n-Af_m||\to 0$  следовательно  $f_n$  равномерно,  $f_n\rightrightarrows f$  причем f(0)=f(1)=0 так как  $f_n(0)=f_n(1)=0,\ f(x)=-i\int_0^x h(t)dt,$  $f_n(1) = -i \int_0^1 h dt = 0 = f(1).$ 

То есть  $D(\overline{A}) = \{f \in C[0,1]: f(0=f(1)=0, \exists \psi \in L_2[0,1]: f(x) = \int_0^x \psi(t)dt\}$  Следовательно  $C_1[0,1] \nsubseteq D(\overline{A})$ , то есть существует подпространство, поторое содержится в  $D(A^*)$  но не содержится в  $D(\overline{A})$  значит  $\overline{A}$  не CCO

#### Вещественность спектра

(Источник: Константинов, функциональный анализ)

Вспомогательное утверждение

Утверждение 3.5.4. Пусть  $(X, \|\cdot\|_X)$  и  $(Y, \|\cdot\|_Y)$  — линейные нормированные пространства. Линейный оператор  $A: X \rightarrow$ → Y является непрерывно обратимым тогда и только тогда, когда он является ограниченным снизу.

Доказательство. Пусть линейный оператор А является непрерывно обратимым, т. е. существует оператор  $A^{-1} \in \mathcal{L}(\operatorname{Im} A, X)$ . Следовательно, для любого вектора  $x \in X$  получаем

$$\|x\|_X = \left\|A^{-1}(A(x))\right\|_X \leq \left\|A^{-1}\right\| \, \|A(x)\|_Y,$$

т. е. число  $L=\frac{1}{\|A^{-1}\|}>0$  является искомым для ограниченности снизу оператора  $\tilde{A}$ .

Пусть линейный оператор А является ограниченным снизу, т. е. существует число L > 0, такое, что для любого вектора  $x \in X$  выполнено неравенство  $||A(x)||_Y \ge L||x||_X$ . Если вектор  $x \in \text{Ker } A$ , то получаем A(x) = 0 и  $0 = ||A(x)||_Y \ge L||x||_X$ . Следовательно, x = 0, т. е. справедливо равенство  $\operatorname{Ker} A = \{0\}$ . Тогда в силу утверждения 3.5.2 линейный обратный оператор  $A^{-1}$ : Im  $A \to X$  существует. При этом в силу ограниченности снизу оператора A для любого вектора  $y \in \operatorname{Im} A$  получаем

$$\left\|A^{-1}(y)\right\|_{X} \leq \frac{\left\|A\left(A^{-1}(y)\right)\right\|_{Y}}{L} = \frac{\|y\|_{Y}}{L}.$$

Последнее неравенство означает, что  $||A^{-1}|| \le \frac{1}{L}$ , т. е. справедливо включение  $A^{-1} \in \mathcal{L}(\operatorname{Im} A, X)$ , что и требовалось.

**Утверж дение 5.9.3.** Для любого числа  $\lambda \in \mathbb{C}$  с нетривиальной мнимой частью  $\operatorname{Im} \lambda \neq 0$  справедливы включение  $\lambda \in \rho(A)$  и оценка для нормы резольвенты  $\|R_A(\lambda)\| \leq \frac{1}{|\operatorname{Im} \lambda|}$ .

Доказательство. Пусть  $\lambda = \mu + i\nu$ , где  $\mu, \nu \in \mathbb{R}$ , причём  $\nu \neq 0$ . Тогда для любого  $x \in \mathcal{H}$  получаем

$$||A_{\lambda}(x)||^2 = (A_{\mu}(x) - i\nu x, A_{\mu}(x) - i\nu x) =$$
  
=  $||A_{\mu}(x)||^2 - i\nu(x, A_{\mu}(x)) + i\nu(A_{\mu}(x), x) + \nu^2||x||^2$ .

Так как  $\mu \in \mathbb{R}$ , то имеем равенство  $(A_{\mu})^* = A_{\mu}$ . Поэтому  $(x,A_{\mu}(x)) = (A_{\mu}(x),x)$ . Следовательно, получаем

$$||A_{\lambda}(x)||^2 = ||A_{\mu}(x)||^2 + \nu^2 ||x||^2 \ge \nu^2 ||x||^2.$$

Таким образом, для любого  $x \in \mathcal{H}$  справедливо неравенство

$$||A_{\lambda}(x)|| \ge |\nu| ||x||,$$

т. е. оператор  $A_{\lambda}$  ограничен снизу на  $\mathcal{H}$ . Тогда в силу утверждения 3.5.4 получаем, что оператор  $A_{\lambda}$  непрерывно обратим, т. е. существует обратный оператор  $(A_{\lambda})^{-1} \in \mathcal{L}(\operatorname{Im} A_{\lambda}, \mathcal{H})$ . При этом в силу утвержения 3.5.5 образ оператора  $A_{\lambda}$  является замкнутым. Но

387

тогда в силу  $\operatorname{Ker} A_{\lambda} = \{0\}$  и утверждения 5.9.2 получаем равенство  $\operatorname{Im} A_{\lambda} = \mathcal{H}$ . Поэтому  $(A_{\lambda})^{-1} = R_{A}(\lambda) \in \mathcal{L}(\mathcal{H})$ , т. е. справедливо включение  $\lambda \in \rho(A)$ . При этом для любого  $x \in \mathcal{H}$  имеем

$$\|R_A(\lambda)x\| \leq \frac{\|A_\lambda R_A(\lambda)(x)\|}{|\nu|} = \frac{\|x\|}{|\nu|},$$

т. е. справедливо неравенство  $||R_A(\lambda)|| \le \frac{1}{|\nu|}$ , что и требовалось.

Следствие 5.9.1. Спектр самосопряжённого оператора вещественен, т. е. справедливо включение  $\sigma(A) \subset \mathbb{R}$ .

Доказательство. Непосредственно следует из определения спектра  $\sigma(A) = \mathbb{C} \backslash \rho(A)$  и утверждения 5.9.3.

Еще одно полезное утверждение

Далее в этом параграфе рассматриваем самосопряжённый оператор A.

Утверждение 5.9.1. Справедливы следующие свойства:

- 1)  $(A(x), x) \in \mathbb{R}$  для любого  $x \in \mathcal{H}$ ;
- 2) точечный спектр оператора A вещественен,  $\tau$ . e.  $\sigma_p(A) \subset \mathbb{R}$ ;
- для любых двух различных собственных чисел оператора А любые соответствующие им собственные векторы ортогональны;
  - 4)  $||A^n|| = ||A||^n$  для любого  $n \in \mathbb{N}$ , r(A) = ||A||.

Доказательство. Свойство 1 следует из равенств

$$(A(x), x) = (x, A(x)) = \overline{(A(x), x)},$$

т. е. мнимая часть  ${\rm Im}(A(x),x)=0$ . Рассмотрим произвольное собственное число  $\lambda\in\sigma_p(A)$  оператора A. Пусть  $x\in{\rm Ker}\,A_\lambda$  — собственный вектор A, соответствующий  $\lambda$ . Тогда получаем равенства  $(A(x),x)=(\lambda x,x)=\lambda\|x\|^2$ . Следовательно, в силу свойства 1 получаем  $\lambda=\frac{(A(x),x)}{\|x\|^2}\in\mathbb{R}$ . Таким образом,  $\sigma_p(A)\subset\mathbb{R}$ , т. е. свойство 2 доказано. Рассмотрим теперь два различных собственных числа

 $\lambda_1 \neq \lambda_2$  оператора A. Пусть  $x_1 \in \operatorname{Ker} A_{\lambda_1}$  и  $x_2 \in \operatorname{Ker} A_{\lambda_2}$  — соответствующие им собственные векторы. Тогда получаем

$$\lambda_1(x_1,x_2)=(A(x_1),x_2)=(x_1,A(x_2))=\lambda_2(x_1,x_2).$$

Следовательно,  $(\lambda_1 - \lambda_2)(x_1, x_2) = 0$ . Так как  $\lambda_1 - \lambda_2 \neq 0$ , то получаем  $(x_1, x_2) = 0$ , т. е. свойство 3 доказано. Далее, по определению операторной нормы очевидно неравенство  $||A^n|| \leq ||A||^n$  для любого  $n \in \mathbb{N}$ . Предположим, рассуждая по индукции, что для некоторого  $m \in \mathbb{N}$  и для всех  $k \in \overline{1, m}$  справедливо равенство  $||A^k|| = ||A||^k$  (для m = 1 это верно). Тогда для любого  $x \in \mathcal{H}$  вида ||x|| = 1 получаем

$$\begin{split} \|A^m(x)\|^2 &= \Big(A^m(x), A^m(x)\Big) = \Big(A^{m+1}(x), A^{m-1}(x)\Big) \leq \\ &\leq \|A^{m+1}(x)\| \, \|A^{m-1}(x)\| \leq \|A^{m+1}\| \, \|A^{m-1}\| = \|A^{m+1}\| \, \|A\|^{m-1}. \end{split}$$

Следовательно, справедливо соотношение

$$||A||^{2m} = ||A^m||^2 = \sup_{||x||=1} ||A^m(x)||^2 \le ||A^{m+1}|| \, ||A||^{m-1}.$$

Отсюда получаем  $\|A\|^{m+1} \leq \|A^{m+1}\|$ , т. е. справедливо равенство  $\|A\|^{m+1} = \|A^{m+1}\|$ , что и требовалось. Наконец, спектральный радиус  $r(A) = \lim_{n \to \infty} \sqrt[n]{\|A^n\|} = \|A\|$ , т. е. свойство 4 доказано.

### Спектральное разложение и самосопряженность замыкания симметричного линейного оператора, обладающего ортогональным базисом в гильбертовом пространстве из своих собственных функций. Функция от замыкания такого оператора.

Спектральное разложение и самосопряженность Из методички Константинова Страница примерно 63, там же можно посмотреть примеры.

Первая теорема:

**Утверждение 57.** Пусть  $A:D(A) \to \mathcal{H}$  симметричный оператор. Пусть  $\{e_n\}_{n=1}^{\infty}$  ортонормированный базис в  $\mathcal{H}$ , целиком состоящий из собственных векторов оператора A, то есть

$$e_n \in D(A)$$
 и  $Ae_n = \lambda_n e_n$   $\forall n \in \mathbb{N}$ .

Тогда справедливо вложение

$$D(A) \subset \left\{ x \in \mathcal{H} : \sum_{n=1}^{\infty} \lambda_n^2 \left| (x, e_n) \right|^2 < +\infty \right\},$$

и равенство

$$Ax=\sum_{n=1}^\infty \lambda_n(x,e_n)e_n \qquad \forall\, x\in D(A).$$
 Определив для любого  $n\in\mathbb{N}$  ортопроектор  $P_n$  на линейную оболочку вектора  $e_n$ 

$$P_n x = (x, e_n)e_n \quad \forall x \in \mathcal{H},$$

имеем равенство

$$Ax = \sum_{n=1}^{\infty} \lambda_n P_n x \quad \forall x \in D(A),$$

которое называется спектральным разложением оператора А.

Доказательство. Для любого вектора  $x \in D(A)$  рассмотрим разложение в ряд Фурье по ортонормированному базису  $\{e_n\}_{n=1}^{\infty}$  вектора  $Ax \in \mathcal{H}$ :

$$Ax = \sum_{n=1}^{\infty} (Ax, e_n)e_n = \sum_{n=1}^{\infty} (x, Ae_n)e_n = \sum_{n=1}^{\infty} (x, \lambda_n e_n)e_n = \sum_{n=1}^{\infty} \lambda_n (x, e_n)e_n = \sum_{n=1}^{\infty} \lambda_n P_n x.$$

При этом, в силу равенства Парсеваля, выполнено

$$\|Ax\|^2 = \sum_{n=1}^{\infty} \left| \left(Ax, e_n\right) \right|^2 = \sum_{n=1}^{\infty} \lambda_n^2 \left| \left(x, e_n\right) \right|^2 < +\infty,$$

что и требовалось

Вторая и основная теорема:

**Утверждение 58.** Пусть  $A:D(A)\to \mathcal{H}$  симметричный оператор. Пусть  $\{e_n\}_{n=1}^{\infty}$  ортонормированный базис в  $\mathcal{H}$ , целиком состоящий из собственных векторов оператора A, то есть

$$e_n \in D(A)$$
 и  $Ae_n = \lambda_n e_n$   $\forall n \in \mathbb{N}$ .

Тогда оператор A является самосопряжённым в существенном, и справедливы равенства:

$$D(\overline{A}) = D(A^*) = \left\{ x \in \mathcal{H} : \sum_{n=1}^{\infty} \lambda_n^2 |(x, e_n)|^2 < +\infty \right\},$$
$$\overline{A}x = A^*x = \sum_{n=1}^{\infty} \lambda_n P_n x \qquad \forall x \in D(\overline{A}) = D(A^*),$$

где  $P_n$  ортопроектор на линейную оболочку вектора  $e_n$ :

$$P_n x = (x, e_n)e_n \quad \forall x \in \mathcal{H}.$$

Доказательство. Обозначим

$$\mathcal{D} = \left\{ x \in \mathcal{H} : \sum_{n=1}^{\infty} \lambda_n^2 \left| (x, e_n) \right|^2 < +\infty \right\}.$$

Зафиксируем произвольный вектор  $x \in D(A^*)$ . Тогда существует число  $C_x > 0$ , такое, что

$$|(Az, x)| \le C_x ||z|| \quad \forall z \in D(A).$$

Для любого  $n \in \mathbb{N}$  рассмотрим вектор

$$z_n = \sum_{k=1}^n \lambda_k(x, e_k) e_k \in D(A).$$

Тогда получаем, что

$$(Az_n, x) = \left(\sum_{k=1}^n \lambda_k^2(x, e_k)e_k, x\right) = \sum_{k=1}^n \lambda_k^2(x, e_k)(e_k, x) = \sum_{k=1}^n \lambda_k^2 \left| (x, e_k) \right|^2.$$

Следовательно,

$$|(Az_n, x)| = \sum_{k=1}^n \lambda_k^2 |(x, e_k)|^2 \le C_x ||z_n|| = C_x \sqrt{\sum_{k=1}^n \lambda_k^2 |(x, e_k)|^2}.$$

Отсюда следует, что

$$\sqrt{\sum_{k=1}^{n} \lambda_k^2 \left| (x, e_k) \right|^2} \le C_x \qquad \forall n \in \mathbb{N}.$$

Переходя в левой части этого неравенства к пределу при  $n \to \infty$ , получаем, что

$$\sqrt{\sum_{k=1}^{\infty} \lambda_k^2 |(x, e_k)|^2} \le C_x \quad \Rightarrow \quad x \in \mathcal{D}.$$

Таким образом, доказано вложение

$$D(A^*) \subset \mathfrak{D}$$
.

Теперь зафиксируем произвольный вектор  $x \in \mathcal{D}$  и рассмотрим число

$$C_x = \sqrt{\sum_{n=1}^{\infty} \lambda_n^2 \left| (x, e_n) \right|^2}.$$

Тогда, для любого вектора  $z \in D(A)$ , в силу утверждения 57, получаем

$$|(Az,x)| = \left| \sum_{n=1}^{\infty} \lambda_n(z,e_n)(e_n,x) \right| \le \sqrt{\sum_{n=1}^{\infty} \lambda_n^2 |(e_n,x)|^2} \underbrace{\sqrt{\sum_{n=1}^{\infty} |(z,e_n)|^2}}_{=||z||} = C_x ||z||.$$

Следовательно,  $x \in D(A^*)$ , то есть  $\mathcal{D} \subset D(A^*)$ , и для любого  $z \in D(A)$  выполнено

$$(Az,x) = \sum_{n=1}^{\infty} \lambda_n(z,e_n)(e_n,x) = \sum_{n=1}^{\infty} (z,\lambda_n(x,e_n)e_n) =$$

$$= \left(z,\sum_{n=1}^{\infty} \lambda_n(x,e_n)e_n\right) = (z,A^*x).$$

Это означает, что

$$A^*x = \sum_{n=1}^{\infty} \lambda_n(x, e_n)e_n = \sum_{n=1}^{\infty} \lambda_n P_n x \qquad \forall x \in \mathcal{D} = D(A^*).$$

Покажем равенство  $\overline{A} = A^*$ , которое, в силу утверждения 50, и завершит доказательство. Для любого вектора  $x \in D(A^*) = \mathcal{D}$  рассмотрим последовательность

$$x_n = \sum_{k=1}^n (x, e_k)e_k \in D(A), \quad n \in \mathbb{N}.$$

Так как вектор  $x_n$  является n ой суммой Фурье вектора x по ортонормированному базису  $\{e_k\}_{k=1}^{\infty}$ , то выполнено

$$x_n \to x$$
 при  $n \to \infty$ .

Далее,

$$Ax_n = \sum_{k=1}^n \lambda_k(x, e_k) e_k \to \sum_{k=1}^\infty \lambda_k(x, e_k) e_k = A^*x.$$

Таким образом,

$$\operatorname{Gr} A \ni \begin{pmatrix} x_n \\ Ax_n \end{pmatrix} \to \begin{pmatrix} x \\ A^*x \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} x \\ A^*x \end{pmatrix} \in \overline{\operatorname{Gr} A} = \operatorname{Gr} \overline{A},$$

то есть  $x \in D(\overline{A})$  и  $\overline{A}x = A^*x$ .

Обратно, рассмотрим произвольный вектор  $x \in D(\overline{A})$ . Тогда существует последовательность  $z_n \in D(A)$ , такая, что

$$\begin{pmatrix} z_n \\ Az_n \end{pmatrix} \to \begin{pmatrix} \frac{x}{Ax} \end{pmatrix} \quad \text{при} \quad n \to \infty.$$

Следовательно, для любого  $k \in \mathbb{N}$  при  $n \to \infty$  имеем:

$$(z_n, e_k) \to (x, e_k)$$
 и  $(\overline{A}x, e_k) \leftarrow (Az_n, e_k) = (z_n, Ae_k) = \lambda_k(z_n, e_k) \to \lambda_k(x, e_k)$ .

Таким образом,

$$(\overline{A}x, e_k) = \lambda_k(x, e_k) \quad \forall k \in \mathbb{N}.$$

Отсюда следует, что

$$\sum_{k=1}^{\infty} \lambda_k^2 \left| (x, e_k) \right|^2 = \sum_{k=1}^{\infty} \left| \left( \overline{A} x, e_k \right) \right|^2 = \left\| \overline{A} x \right\|^2 < +\infty, \quad \Rightarrow \quad x \in \mathcal{D} = D(A^*).$$

Следовательно, доказано вложение

$$D(\overline{A}) \subset D(A^*),$$

и выполнено равенство

$$\overline{A}x = \sum_{k=1}^{\infty} (\overline{A}x, e_k) e_k = \sum_{k=1}^{\infty} \lambda_k(x, e_k) e_k = \sum_{k=1}^{\infty} \lambda_k P_k x = A^*x,$$

что и требовалось.

**Функция от замыкания** Из лекций Константинова весны 2019  $A:D(A)\to H$  - симметричный оператор, обладающий ортогональным базисом из собственных функций  $\{e_n\}_{n=1}^\infty\subset D(A)$   $e_n$  - ортогональный базис в H и  $Ae_n=\lambda_n e_n, \forall n\lambda_n\in\mathbb{R}$ . Определим A.

$$\bar{A}: D(\bar{A}) \to H$$

$$D(\bar{A}) = \{ f \in H: \sum_{1}^{\infty} \lambda_n^2 |f_n|^2 ||e_n||^2 < +\infty \}$$

$$\bar{A}f = \sum_{1}^{\infty} \lambda_n f_n e_n = \sum_{1}^{\infty} \lambda_n P_n f \ \forall f \in D(\bar{A})$$

 $\bar{A}$  - самосопряженный.

Для такого оператора определим функцию от оператора.

 $\Phi:\mathbb{R}\to\mathbb{C}$  - любая функция. Тогда  $\Phi(\overline{A}):D(\Phi(\overline{A}))\to H$  определяется так:

$$D(\Phi(\bar{A})) = \{ f \in H : \sum_{1}^{\infty} |\Phi(\lambda_n)|^2 |f_n|^2 ||e_n||^2 < +\infty \}$$

И

$$\Phi(\bar{A})f = \sum_{n=1}^{\infty} \Phi(\lambda_n) f_n e_n \ \forall f \in D(\Phi(\bar{A}))$$

Этот ряд сходится в H на  $D(\Phi(\bar{A}))$  и только на нем по теореме Рисса-Фишера. Получается, что  $\Phi(\lambda_n)$  будут собственными числами оператора  $\Phi(\bar{A})$ . То есть

$$\Phi(\bar{A}) = \sum_{1}^{\infty} \Phi(\lambda_n) P_n : D(\Phi(\bar{A})) \to H$$

Так определили функцию от замыкания замыкания симметричного линейного оператора, обладающего ортогональным базисом в гильбертовом пространстве из своих собственных функций.

**Пример:**  $\Phi(t) = \exp(it), t \in \mathbb{R}$ . Действует он так:

$$\Phi(\overline{A}) = \exp(i\overline{A}) : D\left(e^{i\overline{A}}\right) \to H$$

А понятнее:

$$e^{i\overline{A}}f = \sum_{1}^{\infty} e^{i\lambda_n} f_n e_n, \ f \in D(e^{i\overline{A}})$$

Или

$$e^{i\overline{A}} = \sum_{1}^{\infty} e^{i\lambda_n} P_n$$

Важно заметить, что это не разложение в ряд Тейлора по степеням аргумента, так как степени оператора требуют дополнительного рассмотрения сходимости, области определения и прочих сложных моментов. Покажем, что такое область определения этого оператора:

$$D(e^{i\bar{A}}) = \{ f \in H : \sum_{1}^{\infty} |e^{i\lambda_n}|^2 |f_n|^2 ||e_n||^2 < +\infty \}$$

Так как модуль экспоненты единица, имеем

$$\sum_{1}^{\infty} |f_n|^2 ||e_n||^2 = ||f|| < +\infty$$

Что выполняется  $\forall f \in H$ , то есть

$$D(e^{i\bar{A}}) = H$$

Повторяя вышеуказанные выкладки, получаем, что  $e^{i\bar{A}}$  сохраняет норму:

$$||e^{i\bar{A}}f|| = ||f|| \ \forall f \in H$$

Из этого следует, что оператор также сохраняет скалярное произведение:

$$(e^{i\bar{A}}f, e^{i\bar{A}}g) = \sum_{n=1}^{\infty} e^{i\lambda_n} f e^{-i\lambda_n} \bar{g} ||e_n||^2 = (f, g)$$

То есть оператор унитарен. Отсюда, сопряженным оператором будет  $(e^{i\bar{A}})^* = e^{-i\bar{A}} = (e^{i\bar{A}})^{-1} : H \to H$ .

21. Начально-краевая задача для однородного уравнения Шрёдингера с самосопряжённым линейным оператором в гильбертовом пространстве. Метод Фурье решения этой задачи и критерий её разрешимости. Оператор эволюции.

## Общий вид постановки начально-краевой задачи:

Пусть P(z) - полином степени N (с комплексными коэффициентами),  $u(t) \in \mathcal{H}$ , A - симметричный оператор над  $\mathcal{H}$  , а  $\bar{A}$  - его замыкание.

Начально краевая задача: 
$$\stackrel{def}{=} \begin{cases} P\left(\frac{d}{dt}\right)u(t) = \bar{A}u(t), & t > 0, \quad u(t) \in D(\bar{A}) \\ u(+0) = v_0(t) \in \mathcal{H} \\ u'(+0) = v_1(t) \in \mathcal{H} \\ \dots \\ u^{(N-1)}(+0) = v_{N-1} \in \mathcal{H} \end{cases}$$
 (33)

**Примечание:** задача в том смысле «краевая», что область определения оператора содержит краевые условия, а функции рассматриваются из  $D(\bar{A})$ ; начальные условия здесь - все остальные уравнения системы.

Важно: производная и предел понимаются в смысле нормы гильбертова пространства:

Говорят, что  $\exists u'(t) \in \mathcal{H}, t > 0$ : Если существует предел:

$$\exists \lim_{\Delta t \to 0} \frac{\|u(t + \Delta t) - u(t)\|}{\Delta t} \stackrel{def}{=} u'(t), \quad t > 0$$
(34)

В силу этого определения получаются важные свойства производной и её коэффициентов Фурье. Выберем ортогональный базис собственных векторов ССО  $\bar{A}$  в  $\mathcal{H}$  и разложим u(t) по нему:

$$u(t) = \sum_{n=0}^{\infty} e_n u_n(t)$$

Пусть теперь  $\exists u'(t) = \sum_{n=0}^{\infty} e_n u'_n(t)$ . Тогда по определению коэффициентов Фурье и производной получим:

$$(u_n(t))' = \frac{u_n(t + \Delta t) - u_n(t)}{\Delta t} = \frac{(\frac{u(t + \Delta t) - u(t)}{\Delta t}, e_n)}{(e_n, e_n)} \to \frac{(u', e_n)}{(e_n, e_n)} = u'_n(t), \quad t \to 0$$

Здесь мы воспользовались непрерывностью скалярного произведения по каждому из сомножителей. Т.е. производная коэфициента Фурье - коэфициент производной. Производные высших порядков определяются аналогично.

Замечание: из существования производной следует, что компоненты вектора производной равны продифференцированным компонентам вектора, обратное неверно, и в задачах нужно доказывать, что «кандидат» на решение действительно удовлетворяет определению (34)

**Методом Фурье** называется разложение вектора u(t) на копоненты по базису собственных векторов оператора  $\bar{A}$ , благодаря этому задача сводится к задаче Коши.

Теперь покажем это. Пусть  $u(t) \in D(\bar{A}) \stackrel{\text{Равенство}}{\Leftrightarrow} \sum_{n=0}^{\infty} |\lambda_n|^2 |u_n|^2 \|e_n\|^2 < \infty$  решение поставленной задачи. Тогда, т.к. все производные у u(t) имеются, то нетрудно увидеть (в силу вышеуказанного свойства производной), что:

$$P\left(\frac{d}{dt}\right)u(t) = \sum_{n=0}^{\infty} P\left(\frac{d}{dt}\right)u_n(t)e_n$$

В то же время воспользуемся тем, что мы разложили векторы по собственным векторам симетричного самосопряженного оператора  $\bar{A}$ 

$$\bar{A}u(t) = \sum_{n=0}^{\infty} \lambda_n u_n e_n$$

Приравнивания оба выражения в силу уравнения (33):

$$P\left(\frac{d}{dt}\right)u_n(t) = \lambda_n u_n e_n, \quad t > 0$$

Т.е. мы получили задачу Коши из теории обыкновенных диф. уравнений. Покажем, что остальные уравнения системы (33) являются начальными условиями для этого счетного набора задач Коши:

$$u^{(k)}(+0) = v_k \stackrel{def:}{\Leftrightarrow} \lim_{t \to +0} ||u^{(k)}(t) - v_k|| \to 0$$

Выражение выше можно ослабить, но получить более удобный результат:

$$||u^{(k)}(t) - v_k|| > |u_n^{(k)}(t) - (v_k)_n|||e_n|| > 0$$

По теореме о двух милиционерах получаем,

$$u_n^{(k)}(0) = (v_k)_n$$

Замечание: после решения всех задач Коши, необходимо проверить выполнение всех предположений, которые были сделаны для поиска решения:  $u(t) \in D(\bar{A}), \forall k \in \{1,..N\} \hookrightarrow \exists u^{(k)}(t)$ . Если эти условия выполнены, получим единственность решения, согласно единственности и существованию решения задачи Коши.

## Уравнение Шредингера

$$\begin{cases} i\frac{d}{dt}u(t) = \bar{A}u(t), t > 0\\ u(+0) = v_0 \end{cases}$$

Воспользуемся методом Фурье и доказанными ранее свойствами:

$$\begin{cases} i(u_n(t))' = \lambda_n u_n, t > 0 \\ u(+0) = v_0 \end{cases} \rightarrow u_n(t) = e^{-i\lambda_n t} (v_0)_n \stackrel{def}{=} (e^{-it\bar{A}} v_0)_n$$

$$D(e^{-it\bar{A}}) = \mathcal{H}, \quad ||u(t)|| = ||e^{-it\bar{A}}v_0|| = ||v_0||$$

Этот оператор называется оператором эволюции. Последнее равенство очевидно из равенства . Это в свою очередь обозначает, что

$$u(t) \in D(\bar{A}) \Leftrightarrow v_0 \in D(\bar{A}) \stackrel{def}{\Leftrightarrow} \sum_n^{\infty} |(v_0)_n|^2 |\lambda_n|^2 ||e_n||^2 < +\infty$$

Это **Критерий разрешимости уравнения Шредингера**. Не для каждой начально-краевой он такой. Например, может быть критерий вида

$$\sum_{n=0}^{\infty} |(v_0)_n|^2 |\lambda_n| ||e_n||^2 < +\infty$$

Замечание: примеры решения других начально-краевых задач есть по ссылке: тык1, тык2

22. Собственные числа и собственные функции оператора Лапласа в круговом секторе при однородном граничном условии. Функции Бесселя. Свойство ортогональности и свойства нулей функций Бесселя.

Короче, это первые три пункта методички Конста по Бесселям. Но, с другой стороны, это 12 страниц. Проще почитать/распечатать тут

Следующий 23 билет, кстати, - это вторая половина методички.

## 23. Ортогональный базис в пространстве $\mathbb{L}_2(G)$ из собственных функций оператора Лапласа в круговом секторе $G \in \mathbb{R}^2$ при однородном граничном условии.

Подготовка к билету (для медленных и непонятливых): 318 - 332 страницы учебника Владимирова, сам билет: Методичка Конста про Бесселя с 4 пункта. Основная формула:

$$\{J_{\pi n/\alpha}(\mu_s(\pi n/\alpha)r/R)\sin\varphi\pi n/\alpha:s,n\in\mathbb{N}\}$$

- ортогональный базис, собственных функций оператора Лапласа в пространстве  $L_2(G_R) = \mathbb{L}_{2,r}[0,R] \otimes \mathbb{L}_2[0,\alpha]$ , где  $\mu_s$  - s-тый ноль функции Бесселя, а  $J_s$  - сама функция Бесселя.

## 24. Компактные самосопряженные операторы в гильбертовом пространстве. Теорема Гильберта Шмидта. Резольвента компактного самосопряженного оператора.

**Определение 1.** Открытым шаром с центром в точке  $x_0$  в линейном нормированном пространстве X называется множество  $O_R(x_0) = \{x \in X : ||x - x_0|| < R\}$ . Замкнутым шаром  $(B_R(x_0))$ , соответственно, когда выполняется нестрогое неравенство.

**Определение 2.** Множество S в линейном нормированном пространстве X называется <u>ограниченным</u>, если  $\exists C > 0 : \forall x \in S \hookrightarrow ||x|| \leqslant C$ . Иными словами, множество лежит в некотором замкнутом шаре радиуса C.

**Определение 3.** Множество S в линейном нормированном пространстве X называется вполне ограниченным, если  $\forall \varepsilon > 0 \ \exists \{x_i\}_{i=1}^{N(\varepsilon)} \subset S : S \subset \bigcup_{i=1}^N B_\varepsilon(x_i)$ . Конечный набор  $x_i$  для каждого  $\varepsilon$  называют конечной эпсилон-сетью **Определение 4.** Пусть X,Y - банаховы пространства (то есть полные линейные нормированные пространства). Линейный оператор  $A: X \to Y$  называется компактным, если для любого ограниченного множества  $S \subset X$  его образ A(S) является вполне ограниченным в Y.

Если вы не успеваете заботать, смотрите сразу после примера.

Рассмотрим несколько утверждений про компактные операторы. Пространство линейных непрерывных операторов из X в Y будем обозначать  $\mathcal{L}(X,Y)$ , а из X в X -  $\mathcal{L}(X)$ . Так как сумма вполне ограниченных множеств и умножение вполне ограниченного множества на скаляр тоже являются вполне ограниченными, то конечная линейная комбинация компактных операторов также является компактным оператором. Таким образом, множество компактных операторов из X в Y образуют подпространство, которое обозначим  $\mathcal{K}(X,Y)$ , из X в X, соответственно,  $\mathcal{K}(X)$ .

**Утверждение 1.** Если линейный непрерывный оператор  $A \in \mathcal{L}(X,Y)$  имеет конечномерный образ, то он компактный.

**Доказательство:** По определению ограниченного оператора, образ любого ограниченного множества S является ограниченным. Кроме того,  $A(S) \subset ImA$ , где ImA - конечномерное подпространство по условию. В конечномерном случае ограниченность совпадает со вполне ограниченностью, а, значит, A(S) - вполне ограниченное множество, то есть A - компактный.

**Утверждение 2.** Пусть последовательность операторов  $\{A_m\}_{m=1}^{\infty} \subset \mathcal{K}(X,Y)$  является сходящейся к оператору A по операторной норме, т. е.  $||A-A_m|| \to 0$ . Тогда A является компактным оператором, т. е.  $A \in \mathcal{K}(X,Y)$ . Иными словами, подпространство компактных операторов замкнуто.

Доказательство: По определению сходимости:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) : \forall m \geqslant N \hookrightarrow ||A_m - A|| < \varepsilon$$

Так как мы работаем в линейном нормированном пространстве, то достаточно рассмотреть единичный шар. Тогда для любого  $x \in B_1(0)$  получаем:  $||A_m(x) - A(x)|| \le ||A_m - A|| < \varepsilon$ . Зафиксируем произвольное  $m \ge N$ . Оператор  $A_m$  компактный, а значит  $A_m(B_1(0))$  вполне ограничено, следовательно, существует конечный набор  $x_1, ..., x_M$ , такой что  $\{A_m(x_i)\}_{i=1}^M$  является конечной эпсилон-сетью множества  $A_m(B_1(0))$ , т. е.

$$\forall x \in B_1(0) \exists k \in \overline{1, M} : ||A_m(x) - A_m(x_k)|| < \varepsilon$$

Из этого получаем следующие неравенства:

$$||A(x) - A(x_k)|| \le ||A(x) - A_m(x)|| + ||A_m(x) - A_m(x_k)|| + ||A_m(x_k) - A(x_k)|| \le 3\varepsilon$$

Таким образом, мы показали что существует конечная 3-эпсилон сеть для образа оператора  $A.\blacksquare$ 

Пример компактного оператора. Компактность интегрального оператора. Пусть функция  $K:[0,1] \times [0,1] \to \mathbb{C}$  такая, что  $K \in \mathbb{L}_2([0,1] \times [0,1])$ . Тогда интегральный оператор  $A: \mathbb{L}_2[0,1] \to \mathbb{L}_2[0,1]$  вида

$$(Ax)(t) = \int_0^1 K(t,\tau)x(\tau)d\tau$$

является компактным. Сначала покажем его ограниченность, воспользовавшись неравенством Коши-Буняковского:

$$||Ax||_2 = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} \leqslant \sqrt{\int_0^1 dt \left( \int_0^1 |K(t,\tau)|^2 d\tau \right) \left( \int_0^1 |x(\tau)|^2 d\tau \right)} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau \right|^2} = \sqrt{\int_0^1 dt \left| \int_0^1 K(t,\tau) x(\tau) d\tau$$

$$= \sqrt{\int_0^1 \int_0^1 dt d\tau |K(t,\tau)|^2} \sqrt{\int_0^1 d\tau |x(\tau)|^2} = ||K||_2 ||x||_2$$

Таким образом, получаем ограниченность оператора:  $||A|| \le ||K||_2 < +\infty$ .

Теперь покажем вполне ограниченность. Счетная система

$$S = \{f_n(t) = \sin(\pi nt)\}_{n=1}^{\infty}$$

образует ортогональный базис в гильбертовом пространстве  $\mathbb{L}_2[0,1]$ . Тогда счетная система  $E = \{f_n(t)f_m(\tau)\}_{n,m=1}^{\infty}$  образует ортогональный базис в  $\mathbb{L}_2[0,1] \times [0,1]$ . Занумеруем элементы E с помощью одного индекса:

$$E = \{g_k(t,\tau) = f_{n_k}(t)f_{m_k}(\tau)\}_{k=1}^{\infty}$$

Для любого N рассмотрим N-ю сумму Фурье функции K в  $\mathbb{L}_2[0,1] \times [0,1]$ :

$$S_N(t,\tau) = \sum_{k=1}^{N} \frac{(K,g_k)}{(g_k,g_k)} g_k(t,\tau)$$

Справедливо соотношение  $||S_N - K|| \to 0$  при  $N \to \infty$ . Определим линейный оператор  $A_N : \mathbb{L}_2[0,1] \to \mathbb{L}_2[0,1]$ :

$$(A_N x)(t) = \int_0^1 S_N(t, \tau) x(\tau) d\tau$$

Так как выполняется неравенство  $||A_N|| \le ||S_N|| < \infty$ , то все такие операторы непрерывны. Для любой функции  $x \in \mathbb{L}_2[0,1]$  выполняется  $A_N x \in Lin\{f_{n_1},...,f_{n_N}\}$ , значит  $ImA_N \subset Lin\{f_{n_1},...,f_{n_N}\}$ , т. е. образ лежит в конечномерном подпростанстве и является конечномерным. По утверждению 1 получаем, что каждый оператор  $A_N$  является компактным. Наконец:

$$((A_N - A)(x))(t) = \int_0^1 (S_N(t, \tau) - K(t, \tau)) x(\tau) d\tau$$

Значит:  $||A_N - A|| \le ||S_N - K|| \to 0$ . Таким образом, получаем последовательность компактных операторов, сходящихся к A по операторной норме, а, значит, по утверждению 2 о замкнутости подпространства компактных операторов A - компактный.

Введем понятие спектра линейного оператора. Рассмотрим банахово пространство X и линейный оператор  $A \in \mathcal{L}(X)$ . (Вообще говоря, понятие спектра вводится для элемента банаховой алгебры. В силу банаховости X, пространство  $\mathcal{L}(x)$  является банаховой алгеброй). Тождественный оператор обозначим I, и для любого  $\lambda \in \mathbb{C}$  определим  $A_{\lambda} = A - \lambda I$ .

**Определение 5.** Оператор A будем называть <u>непрерывно обратимым</u>, если существует  $A^{-1} \in \mathcal{L}(X)$  (то есть существует обратный и обратный является непрерывным).

Определение 6. Число  $\lambda \in \mathbb{C}$  называется регулярным для оператора A, если оператор  $A_{\lambda}$  непрерывно обратим. Определение 7. Совокупность всех регулярных значений называется резольвентным множеством и обозначается  $\rho(A)$ .

**Определение 8.** Оператор  $R_A(\lambda) = (A_{\lambda})^{-1} \in \mathcal{L}(X)$  называется резольвентой оператора A.

Определение 9. Спектром оператора A называется множество  $\overline{\sigma(A)} = \mathbb{C}\backslash \rho(A)$ . (то есть такие  $\lambda$ , для которых не существует обратного  $A_{\lambda}$ )

Оказывается, что спектр это не только собственные значения оператора. Чтобы понять каким бывает спектр, воспользуемся теоремой из функционального анализа.

Вспомогательная теорема. (Банаха, об обратном операторе). Пусть X,Y - банаховы пространства,  $A \in \mathcal{L}(X,Y)$ . Обратный непрерывный оператор  $A^{-1} \in \mathcal{L}(Y,X)$  существует тогда и только тогда, когда  $KerA = \{0\}$  и ImA = Y.

По этой теореме, включение  $\lambda \in \sigma(A)$  возможно в следующих случаях:

**Определение 10.** Множество  $\sigma_p(A) \subset \sigma(A)$  называется точечным спектром, если  $KerA_{\lambda} \neq \{0\}$ . В таком случае  $\lambda$  называется собственным числом оператора A, а любой нетривиальный вектор из  $KerA_{\lambda}$  - собственным вектором оператора A.

**Определение 11.** Множество  $\sigma_c(A) \subset \sigma(A)$  называется <u>непрерывным спектром</u>, если  $Ker A_{\lambda} = \{0\}$ ,  $Im A_{\lambda} \neq X$  и  $[Im A_{\lambda}] = X$ 

Определение 12. Множество  $\sigma_r(A) \subset \sigma(A)$  называется <u>остаточным спектром</u>, если  $Ker A_{\lambda} = \{0\}$  и  $[Im A_{\lambda}] \neq X$  Это все возможные варианты нарушения условия теоремы Банаха об обратном операторе, а значит:

$$\sigma(A) = \sigma_p(A) \cup \sigma_c(A) \cup \sigma_r(A)$$

Нам понадобятся следующие вспомогательные утверждения из функционального анализа:

Вспомогательное утверждение 1. Для  $A \in \mathcal{K}(X)$  и для любого  $\lambda \neq 0$  имеет место равенство:  $dimKerA_{\lambda} = dimKerA_{\lambda}^*$ .

Вспомогательное утверждение 2. Для  $A \in \mathcal{K}(X)$  и для любого  $\lambda \neq 0$  образ  $A_{\lambda}$  замкнут, то есть  $ImA_{\lambda} = [ImA_{\lambda}]$ , а  $KerA_{\lambda}$  конечномерно.

Вспомогательное утверждение 3. Для  $A \in \mathcal{K}(X)$  и для любого  $\delta > 0$  множество  $\Lambda_{\delta} = \{\lambda \in \sigma_p(A) : |\lambda| > \delta\}$  конечно (может быть, пусто).

Вспомогательное утверждение 4. (следствие предыдущего) Для  $A \in \mathcal{K}(X)$  точечный спектр  $\sigma_p(A)$  является не более, чем счетным множеством.

**Теорема.** (Спектр компактного оператора). Пусть  $A \in \mathcal{K}(X)$ . Тогда  $\sigma(A) \setminus \{0\} = \sigma_p \setminus \{0\}$ . Кроме того, спектр A не более, чем счетен и не имеет предельных точек, кроме, может быть, точки 0.

**Доказательство:** Пусть  $\lambda \in \sigma(A) \setminus \{0\}$ . Предположим, что  $\lambda \notin \sigma_p(A)$ , тогда  $Ker A_{\lambda} = \{0\}$ .

Применяя вспомогательное утверждение 1 в нашей теореме, получаем:  $dimKerA^*_{\lambda}=0 \Rightarrow KerA^*_{\lambda}=\{0\}$ . По теореме Фредгольма, имеем:  $^{\perp}(KerA^*_{\lambda})=[ImA_{\lambda}]\Leftrightarrow ^{\perp}(\{0\})=X=[ImA_{\lambda}]$ 

По вспомогательному утверждению 2,  $ImA_{\lambda}=X$ , а, значит, выполняются условия теоремы Банаха об обратном операторе и  $\lambda \in \rho(A)$ . Получили противоречие с тем, что  $\lambda \in \sigma(A) \setminus \{0\}$ , а значит доказано равенство  $\sigma(A) \setminus \{0\} = \sigma_p \setminus \{0\}$ . По вспомогательному утверждению 4, получаем не более чем счетную мощность спектра. По вспомогательному утверждению 3, получаем, что любое ненулевое собственное значение оператора A является изолированной точкой, а, значит, предельной точкой может быть только 0.

Гильбертово пространство является полным по определению. Рассмотрим компактные самосопряженные операторы в гильбертовом пространстве. Известно, что весь спектр самосопряженного оператора лежит на вещественной оси  $(\sigma(A) \subset \mathbb{R})$ . Для компактного самосопряженного оператора спектр состоит только из собственных значений  $\lambda_n$  и, может быть, нуля, значит,  $\forall \lambda \neq 0, \ \lambda \neq \lambda_n \ \exists \ R_A(\lambda) = (A - \lambda I)^{-1} \in \mathcal{L}(X)$ .

**Теорема.** (Гильберта-Шмидта). Пусть A - нетривиальный компактный самосопряженный оператор. Тогда в замкнутом подпространстве  $(KerA)^{\perp}$  существует не более чем счетная ортогональная полная система E из собственных векторов оператора A. (Полнота системы означает  $[LinE] = (KerA)^{\perp}$ ).

Доказательство: Так как оператор A нетривиален, то ||A|| > 0. По общему свойству спектрального радиуса эелемента банаховой алгебры  $r(A) = \sup |\lambda|$ :  $\lambda \in \sigma(A) = \lim_{n \to \infty} = \sqrt[n]{|A^n|}$ . По свойству самосопряженного оператора (последнее утверждение 19 билета на фотографии, свойство 4)  $||A^n|| = ||A||^n$ , получаем: r(A) = ||A|| > 0. Тогда существует ненулевое  $\lambda \in \sigma(A)$ , которое по теореме о спектре компактного оператора является собственным числом. По вспомогательному утверждению 2, для ненулевого  $\lambda$  ядро  $KerA_{\lambda}$  конечномерно, т. е.  $N_{\lambda} = dim KerA_{\lambda} \in \mathbb{N}$ . В конечномерном подпространстве всегда можно выделить ортогональный базис  $\{x_m\}_{m=1}^{N_{\lambda}}$ , эти вектора будут собственными векторами A, соответствующими собственному значению  $\lambda$ , по определению 10 собственного вектора. Таким образом, получаем множество:

$$E = \left\{ x_m(\lambda) : m \in \overline{1, N_\lambda}, \lambda \in \sigma(A) \setminus \{0\} \right\}$$

Вектора, соответствующие различным  $\lambda$  ортогональны по свойству 3 последнего утверждения 19 билета (впрочем, ортогональность векторов, соответствующих различным собственным числам самосопряженного оператора, показать несложно). Вектора с одинаковым  $\lambda$  ортогональны по построению. Получаем систему попарно ортогональных собственных векторов оператора A.

В общем случае, опять же, в силу ортогональности собственных векторов, выполняется вложение  $E \subset (KerA)^{\perp} \Rightarrow LinE \subset (KerA)^{\perp}$ . Определим L = [LinE]. В силу замкнутости  $(KerA)^{\perp}$ , получаем  $L \subset (KerA)^{\perp}$ . Для доказательства теоремы осталось показать равенство  $L = (KerA)^{\perp}$ . Определим множество:

$$M = \left\{ x \in (KerA)^{\perp} : (x,y) = 0 \; \forall \; y \in L \right\}$$

По теореме Рисса об ортогональном дополнении, для гильбертова пространства  $\mathcal{H}$  и его замкнутого подпространства L справедливо равенство  $\mathcal{H} = L \oplus L^{\perp}$ . В применении к нашей теореме, так как  $(KerA)^{\perp}$  - замкнутое пространство некоторого гильбертова пространства, то оно само является гильбертовым пространством, L - его замкнутое подпространство, откуда получаем:  $(KerA)^{\perp} = L \oplus M$ .

LinE состоит из собственных векторов A, откуда  $A(LinE) \subset LinE$ . В силу непрерывности оператора A:  $A(L) \subset L$ . Тогда  $\forall x \in M$ ,  $\forall y \in L \hookrightarrow (A(x), y) = (x, A(y)) = 0$ , значит  $A(x) \in M \Rightarrow A(M) \subset M$ . M как замкнутое подпространство гильбертова пространства само является гильбертовым пространством, а значит оператор A:  $M \to M$  является компактным самосопряженным на M. В силу теоремы о спектре компактного оператора, если A нетривиален на M, то по теореме о спектре компактного оператора существует собственный вектор  $z \in M$ , соответствующий некоторому собственному числу  $\mu \neq 0$ , т. е.  $z \in KerA_{\mu} \subset LinE \subset L \Rightarrow (z,z) = 0 \Rightarrow z = 0$  противоречие с определением собственного вектора. Значит,  $A(M) = \{0\}$ . Но тогда  $M \subset KerA$ , но мы определяли  $M \subset (KerA)^{\perp}$ . Значит,  $M = \{0\}$ , откуда получаем утверждение теоремы  $L = [LinE] = (KerA)^{\perp}$ .

Осталось получить явный вид резольвенты.

**Очевидное следствие теоремы Гильберта-Шмидта.** Пусть A - нетривиальный компактный самосопряженный оператор, тогда в  $(Ker A)^{\perp}$  существует не более чем счетный ортогональный базис  $E = \{e_n\}_{n=1}^N$ , где  $N \in \mathbb{N} \cup \{+\infty\}$ . Иными словами:

$$\mathcal{H} = KerA \oplus \left( \bigoplus_{n=1}^{N} Lin \ e_n \right)$$

Рассмотрим операторы ортогональной проекции  $P_0: \mathcal{H} \to KerA$  и  $P_n: \mathcal{H} \to Lin\{e_n\}$ :

$$P_n(x) = \frac{x, e_n}{e_n, e_n} e_n$$

В силу следствия, получаем  $\forall x \in \mathcal{H}$ :

$$x = P_0(x) + \sum_{n=1}^{N} P_n(x)$$

Так как  $A(P_0(x)) = 0$ , то для любого конечного N по линейности получаем:

$$A(x) = \sum_{n=1}^{N} \lambda_n P_n(x) \Leftrightarrow A = \sum_{n=1}^{N} \lambda_n P_n$$

Для бесконечного N и самосопряженного A:

$$||A(x) - \sum_{m=1}^{n} \lambda_m P_m(x)|| = ||\sum_{m=n+1}^{\infty} \lambda_m \frac{x, e_m}{e_m, e_m} e_m|| = \sqrt{\sum_{m=n+1}^{\infty} |\lambda_m|^2 \frac{|(x, e_m)|^2}{||e_m||^2}} \le \left(\sup_{m>n} |\lambda_m|\right) \sqrt{\sum_{m=n+1}^{\infty} \frac{|(x, e_m)|^2}{||e_m||^2}} \le \left(\sup_{m>n} |\lambda_m|\right) ||x||$$

$$||A(x) - \sum_{m=1}^{n} \lambda_m P_m(x)|| \le \sup_{m>n} |\lambda_m|$$

По теореме о спектре компактного оператора, предельной точкой  $\lambda_m$  может быть только 0, значит  $|\lambda_m| \to 0$ , откуда получаем равенство по операторной норме:

$$A = \sum_{n=1}^{\infty} \lambda_n P_n$$

Для любого  $\lambda \neq 0, \lambda \neq \lambda_n$  Рассмотрим уравнение  $A_{\lambda}(x) = y$ . В силу вышеизложенного:

$$A_{\lambda}(x) = (A - \lambda I)(x) = \sum_{n=1}^{N} (\lambda_n - \lambda) P_n(x) - \lambda P_0(x) = P_0(y) + \sum_{n=1}^{N} P_n(y)$$

Откуда получаем:  $-\lambda P_0(x)=P_0(y),\,(\lambda_n-\lambda)P_n(x)=P_n(y),$  тогда:

$$x = (A_{\lambda})^{-1}(y) = -\frac{P_0(y)}{\lambda} + \sum_{n=1}^{N} \frac{P_n(y)}{\lambda_n - \lambda}$$

Для конечного N:

$$R_A(\lambda) = -\frac{P_0}{\lambda} + \sum_{n=1}^{N} \frac{P_n}{\lambda_n - \lambda}$$

Для бесконечного N, последовательность

$$S_n = -\frac{P_0}{\lambda} + \sum_{m=1}^n \frac{P_n}{\lambda_n - \lambda}$$

является поточечено сходящейся к резольвенте (то есть достигается равенство на каждом элементе  $x \in \mathcal{H}$ ), но не является фундаментальной в простанстве  $\mathcal{L}(\mathcal{H})$ :

$$||S_{n+1} - S_n|| = \frac{||P_{n+1}||}{|\lambda_{n+1} - \lambda|} \geqslant \frac{1}{|\lambda_{n+1}| + |\lambda|} \geqslant \frac{1}{||A|| + \lambda}$$

Следовательно, последовательность не является сходящейся, а, значит, нет равенства по операторной норме.

25. Симметричный оператор Штурма–Лиувилля и критерий его обратимости. Замыкание оператора, обратного к оператору Штурма–Лиувилля, как самосопряженный компактный оператор. Теорема Стеклова.

**Определение 1.** Оператор Штурма-Лиувилля  $A:D(A) \to \mathbb{L}_2[\alpha,\beta]$ 

$$D(A) = \left\{ h \in C^{2}[\alpha, \beta] : \mu_{1}h(\alpha) + \nu_{1}h'(\alpha) = 0, \mu_{2}h(\beta) + \nu_{2}h'(\beta) = 0, |\mu_{1}| + |\nu_{1}| > 0, |\mu_{2}| + |\nu_{2}| > 0 \right\}$$

$$(Ah)(x) = a(x)h''(x) + b(x)h'(x) + c(x)$$

$$a, b, c \in C[\alpha, \beta]; \ a(x) \neq 0, \ x \in [\alpha, \beta]$$

При этом очевидно вложение  $ImA \subset C[\alpha, \beta]$ . Занумеруем условия:

$$\mu_1 h(\alpha) + \nu_1 h'(\alpha) = 0 \Leftrightarrow (1)$$

$$\mu_2 h(\beta) + \nu_2 h'(\beta) = 0 \Leftrightarrow (2)$$

Как известно, критерий существования обратного оператора  $A^{-1}: ImA \to D(A)$  это тривиальность ядра  $KerA = \{0\}$ . (Отличие от теоремы Банаха об обратном операторе, сформулированной в прошлом билете в том, что в теореме Банаха обратный оператор должен быть еще и ограниченным. Условие же тривиальности ядра говорит о существовании обратного, который может быть неограниченным).

**Теорема.** (**Критерий обратимости оператора Штурма-Лиувилля**) Оператор Штурма-Лиувилля обратим тогда и только тогда, когда существует специальная фундаментальная система решений ( $\Phi$ CP) { $u_1, u_2$ } уравнения:

$$Au = 0, \ u \in C^2[\alpha, \beta]$$

для которой выполняются следующие условия:

$$\begin{cases} Au_{1,2}=0\\ u_1-\text{удовл.}\ (1),\ \text{не удовл.}\ (2)\\ u_2-\text{удовл.}\ (2),\ \text{не удовл.}\ (1) \end{cases}$$

**Доказательство:** Пусть A - обратим, то есть  $KerA = \{0\}$ . Рассмотрим следующую задачу Коши:

$$\begin{cases} Au_1(x) = 0, \ u_1 \in C^2[\alpha, \beta] \\ u_1(\alpha) = \nu_1, \\ u'_1(\alpha) = -\mu_1; \end{cases}$$

Так как начальные условия нетривиальные, то существует единственное ненулевое решение задачи Коши, при этом мы выбрали начальные условия таким образом, чтобы удовлетворять (1). Если  $u_1(x)$  удовлетворяет (2), то мы получим нетривиальный вектор из KerA - противоречие. Таким образом,  $u_1(x)$  удовлетворяет (1) и не удовлетворяет (2). Аналогично проделываем для  $u_2$ , заменяя все индексы 1 на 2. Мы получили линейно независимые функции в  $C^2[\alpha, \beta]$ , а, значит, они образуют ФСР уравнения Au = 0.

Обратно. Пусть существует ФСР  $u_1, u_2$  уравнения Au = 0. Тогда  $\forall u \in D(A) \exists ! C_1, C_2 \in \mathbb{C}$ :

$$u = C_1 u_1 + C_2 u_2$$

Покажем, что тогда  $u \equiv 0$ . Так как u удовлетворяет (1), получаем:

$$\mu_1 u(\alpha) + \nu_1 u'(\alpha) = 0$$

$$\mu_1 (C_1 u_1(\alpha) + C_2 u_2(\alpha)) + \nu_1 (C_1 u_1'(\alpha) + C_2 u_2'(\alpha)) = 0$$

$$C_1 (\mu_1 u_1(\alpha) + \nu_1 u_1'(\alpha)) + C_2 (\mu_1 u_2(\alpha) + \nu_1 u_2'(\alpha)) = 0$$

Из условия того, что  $u_1$  удовлетворяет (1):

$$C_1(\mu_1\nu_1 - \nu_1\mu_1) + C_2(\mu_1u_2(\alpha) + \nu_1u_2'(\alpha)) = 0$$

Откуда получаем  $C_2 = 0$ , так как  $u_2$  не удовлетворяет (1). Аналогично, из того что u удовлетворяет (2), получаем  $C_1 = 0$ . Тогда  $u \equiv 0 \Rightarrow Ker A = \{0\}$ .

Пусть теперь выполняется критерий обратимости оператора Штурма-Лиувилля. Покажем, что  $\forall g \in C[\alpha,\beta] \; \exists ! \, h \in D(A) : Ah = g$ . Другими словами, покажем, что  $ImA = C[\alpha,\beta]$  и найдем обратный. Воспользуемся знаниями из курса дифференциальных уравнений, и используем метод вариации постоянных. Ищем решение уравнения Ah = g в виде:

$$h(x) = C_1(x)u_1(x) + C_2(x)u_2(x)$$

Тогда коэффициенты  $C_1, C_2$  находятся из ситемы уравнений:

$$\begin{pmatrix} u_1 & u_2 \\ u_1' & u_2' \end{pmatrix} \begin{pmatrix} C_1' \\ C_2' \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{g}{a} \end{pmatrix}$$

Вронскиан по теореме Лиувилля:

$$W(x) = \begin{vmatrix} u_1 & u_2 \\ u'_1 & u'_2 \end{vmatrix} = Cexp\left(-\int \frac{b(x)}{a(x)} dx\right)$$

По формуле обращения матрицы, находим  $C'_1, C'_2$ :

$$\begin{pmatrix} C_1' \\ C_2 \end{pmatrix} = \frac{1}{W(x)} \begin{pmatrix} u_2' & -u_2 \\ -u_1' & u_1 \end{pmatrix} \begin{pmatrix} 0 \\ \frac{g}{a} \end{pmatrix} = \frac{g(x)}{a(x)W(x)} \begin{pmatrix} -u_2 \\ u_1 \end{pmatrix}$$

Откуда интегрированием находим  $C_1, C_2$  в удобном виде:

$$C_1(x) = \int_x^\beta \frac{u_2(t)g(t)}{a(t)W(t)} dt + D_1$$

$$C_2(x) = \int_0^x \frac{u_1(t)g(t)}{a(t)W(t)} dt + D_2$$

Таким образом, h(x) имеет вид:

$$h(x) = D_1 u_1(x) + D_2 u_2(x) + \int_{\alpha}^{x} \frac{u_1(t)u_2(x)}{a(t)W(t)} g(t)dt + \int_{x}^{\beta} \frac{u_1(x)u_2(t)}{a(t)W(t)} g(t)dt$$

Так как h выражается через интеграл от непрерывных функций, то  $h \in C^1[\alpha\beta]$ .

$$h'(x) = D_1 u_1'(x) + D_2 u_2'(x) + \int_{\alpha}^{x} \frac{u_1(t)u_2'(x)}{a(t)W(t)} g(t)dt + \int_{x}^{\beta} \frac{u_1'(x)u_2(t)}{a(t)W(t)} g(t)dt$$

h'(x) снова выражется через интегралы от непрерывных функций, значит  $h \in C^2[\alpha, \beta]$ . Из условий (1) и (2), находим  $D_1 = D_2 = 0$ . Итого:

$$h(x) = \int_{\alpha}^{x} \frac{u_1(t)u_2(x)}{a(t)W(t)} g(t)dt + \int_{x}^{\beta} \frac{u_1(x)u_2(t)}{a(t)W(t)} g(t)dt$$

Можно записать интеграл через функцию  $K(x,t) \in \mathbb{L}_2([\alpha,\beta]^2)$ :

$$K(x,t) = \frac{1}{a(t)W(t)} \begin{cases} u_1(t)u_2(x), \ t \le x \\ u_1(x)u_2(t), \ x \le t \end{cases}$$

$$h(x) = (A^{-1}g)(x) = \int_{0}^{\beta} K(x,t)g(t)dt$$

 $A^{-1}:C[\alpha,\beta]\to D(A)$ . Замыкание обратного оператора  $T=\overline{A^{-1}}:\mathbb{L}_2[\alpha,\beta]\to\mathbb{L}_2[\alpha,\beta]$ :

$$(Tf)(x) = \int_{\alpha}^{\beta} K(x,t)g(t)dt$$

Как было показано в примере предыдущего билета, оператор является компактным. Известно, что такой оператор будет самосопряженным, если  $K(x,t)=\overline{K(t,x)}$  (общее свойство интгральных операторов, показывается непосредственно приравнивая  $T=T^*$ ). Это достигается при выполнении следующих условий:

$$\begin{cases} 1)a(x), b(x), c(x) \in \mathbb{R}; \\ 2)a(x) \in C^1[\alpha, \beta], b(x) = a'(x) \end{cases}$$

Первое условие необходимо, чтобы удовлетворить условию сопряжения фукнции K. Второе удовлетворяет условию симметричности функции K (перестановке аргументов). Дейсвительно, посчитаем вронскиан:

$$W(x) = \begin{vmatrix} u_1 & u_2 \\ u_1' & u_2' \end{vmatrix} = Cexp\left(-\int \frac{b(x)}{a(x)}dx\right) = Cexp(-\ln|a(x)|) = \frac{C}{|a(x)|}$$

Так как функция a(x) не пересекает ноль на  $[\alpha, \beta]$ , то она не меняет знак на отрезке. Тогда:

$$W(x) = \frac{\widetilde{C}}{a} \Rightarrow W(x)a(x) = const \in \mathbb{R}$$

Мы получили компактный самосопряженный оператор, как замыкание оператора, обратного к оператору Штурма-Лиувилля. На пространстве  $C[\alpha, \beta]$  он совпадает с  $A^{-1}$ . Легко проверить, что при таких условиях A является симметричным.

**Теорема.** (Стеклова). Пусть оператор Штурма-Лиувилля является симметричным с нулевым ядром. Тогда в  $\mathbb{L}_2[\alpha,\beta]$  существует ортогональный базис  $\{e_n\}$  из собственных векторов A.

**Доказательство:** По теореме Гильберта-Шмидта, оператор T обладает базисом из собственных функций в  $(Ker A)^{\perp}$ .

$$KerT = KerT^* = (ImT)^{\perp}$$
  
 $D(A) \subset ImT$ 

Так как D(A) всюду плотно в  $\mathbb{L}_2[\alpha, \beta]$ , то

$$KerT = KerT^* = (ImT)^{\perp} \subset (D(A))^{\perp} = ([D(A)])^{\perp} = (\mathbb{L}_2[\alpha, \beta])^{\perp} = \{0\}$$

Получили базис из собственных функций оператора T в  $\mathbb{L}_2[\alpha,\beta]$ . Осталось показать, что собственные функции T совпадают с собственными функциями A.  $\forall \lambda \neq 0$  - собственного значения T:

$$f = \frac{1}{\lambda} T f$$

Так как T интегральный оператор, то справедливо вложение  $ImT \subset C[\alpha,\beta] = ImA$ . Тогда  $f \in ImA \Rightarrow Tf = A^{-1}f \Rightarrow f \in D(A)$ . Получили, что любая собственная функция оператора T лежит в области значения A, значит:

$$Af = \frac{1}{\lambda}f$$

и f является собственной функцией оператора A.