Modular Forms

Lei Bichang

Exercise 1. Let (n, N) = 1. Because $n \mapsto a_n$ and $n \mapsto \langle n \rangle$ are multiplicative, it suffices to prove the result for $n = p^e$ a power of a prime $p \nmid N$. We do induction on e.

If n=p, then since $T_p^* = \langle p^{-1} \rangle T_p$, we have $T_p^* f = \chi(p^{-1}) a_p f = \overline{\chi}(p) a_p f$, and thus

$$\overline{a_p} \left\langle f, f \right\rangle = \left\langle f, a_p f \right\rangle = \left\langle f, T_p f \right\rangle = \left\langle T_p^* f, f \right\rangle = \left\langle \overline{\chi(p)} a_p f, f \right\rangle = \overline{\chi(p)} a_p \left\langle f, f \right\rangle.$$

As $f \neq 0$, $\overline{a_p} = \overline{\chi(p)}a_p$.

Next, assume the result holds for $n = p^r$ with $1 \le r \le e$. For $n = p^{e+1}$,

$$\begin{split} \overline{a_{p^{e+1}}} &= \overline{a_p a_{p^e} - p^{k-1} \chi(p) a_{p^{e-1}}} \\ &= \overline{\chi(p) a_p \overline{\chi(p^e)} a_{p^e} - p^{k-1} \overline{\chi(p) \chi(p^{e-1})} a_{p^{e-1}}} \\ &= \overline{\chi(p^{e+1})} \left(a_p a_{p^e} - p^{k-1} \chi(p) a_{p^{e-1}} \right) = \overline{\chi(p^{e+1})} a_{p^{e+1}}. \end{split}$$

Exercise 2. 1. Let (d, N) = 1 and take

$$\gamma_d = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N).$$

Then

$$\tilde{\gamma} := w_N \gamma_d w_N^{-1} = \begin{pmatrix} d & -c/N \\ -Nb & a \end{pmatrix}.$$

Since $1 = ad - bc \equiv ad \pmod{N}$, the matrix $\tilde{\gamma} \in \Gamma_0(N)$ is a lift of $a \mod N = (d \mod N)^{-1} \in (\mathbb{Z}/N\mathbb{Z})^{\times}$. Therefore,

$$\langle d \rangle (w_N f) = f|_k(w_N \gamma_d) = f|_k(\tilde{\gamma} w_N) = w_N \left(\langle d^{-1} \rangle f \right)$$
$$= w_N(\chi(d^{-1})f) = w_N(\overline{\chi(d)}f) = \overline{\chi(d)}(w_N f).$$

2. Assume that $T_n f = \lambda f$ for a specific n prime to N.

If f = 0, the statement is trivial. Otherwise, $a_1(f) \neq 0$. Without loss of generality, we may assume $a_1(f) = 1$, so $a_n(f) = \lambda$. By Exercise 1,

$$\bar{\lambda} = \overline{a_n(f)} = \overline{\chi(n)}a_n(f) = \overline{\chi(n)}\lambda.$$

Since $w_N f \in M_1(\Gamma_1(N), \bar{\chi}),$

$$\bar{\lambda}w_N f = \lambda \overline{\chi(n)}w_N f = \lambda \langle n \rangle w_N f = \langle n \rangle w_N(\lambda f) = \langle n \rangle w_N T_n f.$$

So we need to show that $\langle n \rangle w_N T_n f = T_n w_N f$.

Lemma 1. If
$$(n, N) = 1$$
, then $T_n^* = \langle n \rangle^{-1} T_n$.

Proof. It suffices to prove this for $n=p^e$ a prime power with $p \nmid N$. We do induction on e.

The case of n=p is already known. Suppose the lemma holds for $n=p^r$ with $1 \le r \le e$. For $n=p^{e+1}$,

$$\begin{split} T_{p^{e+1}}^* &= \left(T_p T_{p^e} - p^{k-1} \left\langle p \right\rangle T_{p^{e-1}} \right)^* \\ &= T_{p^e}^* T_p^* - p^{k-1} T_{p^{e-1}}^* \overline{\left\langle p \right\rangle} \\ &= \left\langle p^e \right\rangle^{-1} T_{p^e} \left\langle p \right\rangle^{-1} T_p - p^{k-1} \left\langle p^{e-1} \right\rangle^{-1} T_{p^{e-1}} \left\langle p \right\rangle^{-1} \\ &= \left\langle p^{e+1} \right\rangle^{-1} \left(T_{p^e} T_p - p^{k-1} \left\langle p \right\rangle T_{p^{e-1}} \right) = \left\langle p^{e+1} \right\rangle^{-1} T_{p^{e+1}}. \end{split}$$

Therefore, $w_N T_n w_N^{-1} = T_n^* = \langle n \rangle^{-1} T_n$, and thus

$$\bar{\lambda}w_N f = \langle n \rangle w_N T_n f = T_n W_N f.$$

Exercise 3. 1. Let $f \in M_k(\Gamma)$.

• As f is holomorphic, $c(f): z \mapsto \overline{f(-\overline{z})}$ is also holomorphic.

• If
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$
, then $C\gamma C^{-1} = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$. So for all $z \in \mathcal{H}$,

$$c(f)|_{k}(C\gamma C^{-1})(z) = (-cz+d)^{-k}c(f)\left(\frac{az-b}{-cz+d}\right)$$

$$= (-cz+d)^{-k}\overline{f\left(\frac{a\bar{z}-b}{c\bar{z}-d}\right)}$$

$$= \overline{(-c\bar{z}+d)^{-k}f\left(\frac{-a\bar{z}+b}{-cz+d}\right)}$$

$$= \overline{f|_{k}\gamma(-\bar{z})}.$$

For $\gamma \in \Gamma$, we obtain

$$c(f)|_k(C\gamma C^{-1})(z) = \overline{f(-\overline{z})} = c(f)(z).$$

• Consider a cusp $g\infty$ of $C\Gamma C^{-1}$, where $g\in \mathrm{SL}_2(\mathbb{Z})$. Let $f|_kg(z)=\sum_{n\geq 0}a_nq_N^n$ be the q-expansion of $f|_kg$. Then by the computation in **1.** and $\overline{\mathrm{e}^s}=\mathrm{e}^{\bar{s}}$ for all $s\in\mathbb{C}$,

$$c(f)|_k(CgC^{-1})(z) = \overline{f|_kg(-\bar{z})} = \overline{\sum_{n\geq 0} a_n e^{-\frac{2\pi i}{N}\bar{z}}} = \sum_{n\geq 0} \overline{a_n} e^{\frac{2\pi i}{N}z} = \sum_{n\geq 0} \overline{a_n} q_N^n, \tag{1}$$

which gives a q-expansion of $c(f)|_k(CgC^{-1})$. As $f|_kg$ is bounded at the cusp ∞ , so is $c(f)|_k(CgC^{-1})$. Now CgC^{-1} permutes all elements of $\mathrm{SL}_2(\mathbb{Z})$ as g goes through $\mathrm{SL}_2(\mathbb{Z})$, so we see that c(f) is bounded at every cusps.

In conclusion, $c(f) \in M_k(C\Gamma C^{-1})$.

2. As we have computed,

$$C\begin{pmatrix} a & b \\ c & d \end{pmatrix}C^{-1} = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}.$$

So $C\Gamma_1(N)C^{-1} = \Gamma_1(N)$.

- 3. Set g = 1 in Eq. (1).
- 4. Let $f \in M_k(\Gamma_1(N), \chi)$. If $n \in (\mathbb{Z}/N\mathbb{Z})^{\times}$ and γ_n is a lift of n in $\Gamma_0(N)$, then the computation in Exercise 3.2 shows that $C\gamma_nC^{-1}$ is also a lift of n. Hence

$$(\langle n \rangle c(f))(z) = c(f)|_k (C\gamma_n C^{-1})(z)$$

$$= \overline{f|_k \gamma_n (-\bar{z})}$$

$$= \overline{(\langle n \rangle f)(-\bar{z})}$$

$$= \overline{\chi(n)f(-\bar{z})} = \overline{\chi(n)}c(f)(z).$$

This means $c(f) \in M_k(\Gamma_1(N), \bar{\chi})$.

5. Assume that $T_n f = \lambda f$. By the formula of T_n action on q-expansion and Exercise 3.3,

$$a_{m}(T_{n}c(f)) = \sum_{d|(m,n)} \bar{\chi}(d)d^{k-1}a_{mn/d^{2}}(c(f))$$

$$= \sum_{d|(m,n)} \bar{\chi}(d)d^{k-1}\overline{a_{mn/d^{2}}(f)}$$

$$= \sum_{d|(m,n)} \chi(d)d^{k-1}a_{mn/d^{2}}(f)$$

$$= \overline{a_{m}(T_{n}f)} = \overline{\lambda a_{m}(f)} = \bar{\lambda}a_{m}(c(f)).$$

Hence c(f) is is an eigenvector for T_n with eigenvalue $\bar{\lambda}$.

6. We first show that, f being old $\implies c(f)$ being old. This can be deduced via computation. Let $M \mid N$, $d \mid \frac{N}{M}$, and $h \in S_k(\Gamma_1(M))$. Then

$$i_{d}(c(h))(z) = d^{1-k} \left(c(h) \begin{vmatrix} k & d \\ k & 1 \end{pmatrix} \right) (z)$$

$$= d^{1-k} \left(h \begin{vmatrix} k & C^{-1} & d \\ k & 1 \end{pmatrix} \right) (-\bar{z})$$

$$= \overline{d^{1-k} \left(h \begin{vmatrix} k & d \\ k & 1 \end{pmatrix} \right) (-\bar{z})}$$

$$= \overline{i_{d}(h)(-\bar{z})} = c(i_{d}(h))(z).$$

Every form $f \in S_k(\Gamma_1(N))^{\text{old}}$ is a finite sum of elements in the form $i_{d,M,N}(h)$, and note that $c(f_1+f_2) = c(f_1) + c(f_2)$, we can conclude that c(f) is also old.

To prove that f being new $\implies c(f)$ being new, we use the following result.

Lemma 2. $\langle c(f), c(g) \rangle = \langle g, f \rangle$, $\forall f, g \in S_k(\Gamma_1(N))$.

Proof. Let D be a fundamental domain of $\Gamma_1(N)$. Let $f, g \in S_k(\Gamma_1(N))$, then

$$\langle c(f), c(g) \rangle = \frac{1}{\operatorname{vol}(\Gamma_1(N) \backslash \mathcal{H})} \int_D \overline{f(-\bar{z})} g(-\bar{z}) \operatorname{Im}(z)^k d\mu(z),$$

where $d\mu(z) = y^{-2}dxdy$. Under the change of variable $t := -\bar{z} = -x + iy$, D is converted to $D' = \{t \in \mathcal{H} \mid -\bar{t} \in D\}$ Put $\tau(z) := -\bar{z}$ so that $D' = \tau(D)$.

We know that $SL_2(\mathbb{Z})$ has a fundamental domain D_0 that is mirror-symmetric along the y-axis, i.e.,

$$D_0 = \{ -\bar{z} \mid z \in D_0 \}.$$

Write $\mathrm{SL}_2(\mathbb{Z}) = \bigsqcup_q g\Gamma_1(N)$ so that $D = \bigcup_q gD_0$ for finitely many $g \in \mathrm{SL}_2(\mathbb{Z})$. Then since

$$-\overline{\begin{pmatrix} a & b \\ c & d \end{pmatrix}}z = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}(-\bar{z}) = C\begin{pmatrix} a & b \\ c & d \end{pmatrix}C^{-1}(-\bar{z}),$$

we find that

$$\tau(gD_0) = \{ -\overline{gz} \mid z \in D_0 \} = \{ (CgC^{-1})(-\overline{z}) \mid z \in D_0 \} = CgC^{-1}D_0.$$

Hence

$$D' = \bigcup_{g} \tau(gD_0) = \bigcup_{g} CgC^{-1}D_0.$$

By Exercise 4.2,

$$\operatorname{SL}_2(\mathbb{Z}) = C \operatorname{SL}_2(\mathbb{Z})C^{-1} = \bigsqcup_g Cg\Gamma_1(N)C^{-1} = \bigsqcup_g CgC\Gamma_1(N).$$

As $C = C^{-1}$, the above shows that D' is also a fundamental domain for $\Gamma_1(N)$.

Therefore, the integral becomes

$$\frac{1}{\operatorname{vol}(\Gamma_1(N)\backslash \mathcal{H})} \int_{D'} \overline{f(t)} g(t) \operatorname{Im}(t)^k d\mu(t) = \langle g, f \rangle. \qquad \Box$$

Note that $c \circ c = id$. Therefore, if f is new and g is old, then

$$\langle c(f), g \rangle = \langle c(g), f \rangle = 0$$

because c(g) is also old. This implies that c(f) is new.

Exercise 4. 1. Because f is a primitive form, Exercise 3 shows that c(f) is also a primitive form, and Exercise 2 shows that $w_N f$ is an eigenform for $\mathbb{T}_1^{\circ}(N) = \mathbb{T}_1^{(N)}(N)$. Moreover, c(f) and $w_N f$ have the same eigenvalues for $T \in \mathbb{T}_1^{\circ}(N)$.

By the weak multiplicity one theorem, once we verify that $w_N f$ is new, we shall see that $w_N f$ is a nonzero multiple of c(f). Note that

$$w_N^2 f = (-1)^k N^{k-2} f,$$

so we use a strategy similar to Exercise 3.6.

Lemma 3. If $f \in S_k(\Gamma_1(N))$ is old, then $w_N(f)$ is old.

Proof. It suffices to show that w_N stabilises $S_k(\Gamma_1(N))^{p\text{-old}}$ for every $p \mid N$. Let $h \in S_k(\Gamma_1(N/p))$. Then

$$w_{N}(i_{1}h) = h \begin{vmatrix} k \\ N \end{vmatrix} \begin{pmatrix} -1 \\ N \end{vmatrix}$$

$$= f \begin{vmatrix} k \\ N/p \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$= p^{k-1}i_{p}(w_{N/p}h) \in i_{p}S_{k}(\Gamma_{1}(N)),$$

$$w_{N}(i_{p}h) = p^{1-k}h \begin{vmatrix} k \\ 1 \end{pmatrix} \begin{pmatrix} p \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ N \end{pmatrix} = p^{1-k}h \begin{vmatrix} k \\ N \end{pmatrix}$$

$$= p^{1-k}h \begin{vmatrix} k \\ N/p \end{pmatrix} \begin{pmatrix} -1 \\ N \end{pmatrix} \begin{pmatrix} p \\ p \end{pmatrix}$$

$$= p^{1-k}w_{N/p}h \begin{vmatrix} k \\ p \end{pmatrix} = p^{1-k}(p^{2})^{k-1}p^{-k}w_{N/p}f$$

$$= p^{-1}i_{1}(w_{N/p}h) \in i_{1}S_{k}(\Gamma_{1}(N/p)).$$

We thus proved that $S_k(\Gamma_1(N))^{p\text{-old}} = i_1(S_k(\Gamma_1(N/p))) + i_p(S_k(\Gamma_1(N/p)))$ is stable under w_N .

Since $W_N = i^k N^{1-\frac{k}{2}} w_N$ is self-adjoint, we have $w_N^* = (-1)^k w_N$, and thus

$$\langle w_N f, g \rangle = \langle f, (-1)^k w_N g \rangle = 0$$

because f is new and $(-1)^k w_N g$ is old by Lemma 3. Hence $w_N(f)$ is new, and applying the weak multiplicity one theorem completes the proof.

2. By definition,

$$w_N^2 f = w_N(\eta_f c(f)) = \eta_f(w_N c(f)) = \eta_f \eta_{c(f)} c(c(f)) = \eta_f \eta_{c(f)} f.$$

As
$$w_N^2 f = (-1)^k N^{k-2} f = (-N)^{k-2} f$$
 and $f \neq 0$, we get $\eta_f \eta_{c(f)} = (-N)^{k-2}$.

We have seen that $w_N^* = (-1)^k w_N$, so

$$\eta_{c(f)} \langle f, f \rangle = \langle \eta_{c(f)} f, f \rangle = \langle w_N c(f), f \rangle
= \langle c(f), (-1)^k w_N f \rangle = \langle c(f), (-1)^k \eta_f c(f) \rangle = (-1)^k \overline{\eta_f} \langle c(f), c(f) \rangle.$$

By Lemma 2, $\langle f, f \rangle = \langle c(f), c(f) \rangle \neq 0$, which implies $\eta_{c(f)} = (-1)^k \overline{\eta_f}$.

Since $|\eta_f|^2 = |\eta_f \eta_{c(f)}| = N^{k-2}$, we have $|\eta_f| = N^{k/2-1}$.

Exercise 5. Since $\langle \cdot \rangle$ is multiplicative, it suffices to show that every $\langle p \rangle$, in which $p \nmid N$ is a prime, can be generated by the T_n 's with n prime to N.

For $p \nmid N$, we have

$$p^{k-1} \langle p \rangle = T_p^2 - T_{p^2}.$$

By Dirichlet's theorem on arithmetic progression, $\{p+Nk\mid k\in\mathbb{Z}_{\geq 1}\}$ contains infinitely many primes. In particular, there exists a prime $q\neq p$ s.t $q\equiv p\pmod N$, and hence

$$q^{k-1} \langle p \rangle = q^{k-1} \langle q \rangle = T_q^2 - T_{q^2}.$$

Since $(p^{k-1},q^{k-1})=1$, there exists $u,v\in\mathbb{Z}$ s.t. $1=up^{k-1}+vq^{k-1}$, which yields

$$\langle p \rangle = up^{k-1} \langle p \rangle + vq^{k-1} \langle p \rangle = u(T_p^2 - T_{p^2}) + v(T_q^2 - T_{q^2}).$$