APB PROTOCOL

Name: Mark Amgad

Content

- AMBA Bus Architecture.
- APB Interface Diagram.
- Operation Of APB.
- BIN Description.
- Verilog Design Code , Test bench and Do file.
- Questa Sim Wave Form Simulation.
- XILINX Vivado Elaborated Design Schematic.
- XILINX Vivado Synthesized Design Schematic.
- Report Timing Summary.
- Tools.
- Sources.

AMBA ARCHITECTURE

Operation of APB

- IDLE
- SETUP
- ACCESS

PIN Description

SIGNAL	SOURCE	Description	WIDTH(Bit)	
Transfer	System Bus	APB enable signal. If high APB is activated else APB is disabled	1	
PCLK	Clock Source	All APB functionality occurs at rising edge.	1	
PRESETn	System Bus	An active low signal.	1	
PADDR	APB bridge	The APB address bus can be up to 32 bits.	32	
PSEL	APB bridge	There is a PSEL for each slave. It's an active high signal.	1	
PENABLE	APB bridge	It indicates the 2 nd cycle of a data transfer. It's an active high signal.	1	
PWRITE	APB bridge	Indicates the data transfer direction. PWRITE=1 indicates APB write access(Master to slave) PWRITE=0 indicates APB read access(Slave to master)	1	
PREADY	Slave Interface	This is an input from Slave. It is used to enter access state.	1	
PRDATA	Slave Interface	Read Data. The selected slave drives this bus during read operation	32	
PWDATA	Slave Interface	Write data. This bus is driven by the peripheral bus bridge unit during write cycles when PWRITE is high.	32	

```
D:\APB\APB Master.v - Sublime Text (UNREGISTERED).

■ APII_Master.v.

                                    * APE_SLAVEV
                                                                      = APB_WRAPPER.v
                                                                                                         × APE_tbs
                                                                                                                                            # EUN_AFE.do

    Constraints_basys3.xdc

              COURT TRANSFER.
                                             //Head Data from size. The selected slave drives this bus during read cycles when Hemile is Low.
//Heady. The slave uses this signal to extend an APE transfer.
                    [31:0] PRDATA,
              Commit PREADY.
             four [31:0] address,  // Address for the APO transaction.
four [31:0] write data,  // buts to be written (for write operations)
                                           // Write enable (1 for write, 0 for read)
              input write en.
                                            //Select. The APS bridge unit generates this signal to each purisheral bus slave. It indicates that the slave device is selected and that a data transfer is required.

//Couble. This signal indicates the second and subsequent cycles of an APO transfer.
              comput my PENABLE,
             control row PARITE.
             output reg [31:8] PADOR, //Address. This is the APU address but. It is driven by the peripheral bus bridge unit output reg [31:8] PADORA, //Write data. This bus is driven by the peripheral bus bridge unit during write cycles when PARITE is Hide.
              cuttout reg [33:8] read data
             localparam IDCE - Wg.
              Incolporam ACCESS - 21
             reg [1:8] state , mext_state;
              always #(posedge PCLK or negedge PRESETs) begin
                if (MMASSIM) begin
state - MMAS // deset to MMAS state
                 and also begin
                       state on next state; // Poww to the next state
                 case (state)
                           II (TRARSFER) begin
                               next state - SETUP; // Nove to SETUP on transfer signal
                                next state - IDLE: // Namedia in IDLE
                           IF (PREABY) toughn
                               neet state - IDLE; // Return to IDLE after successful transfer
```

```
if (PREADY) begin
               next state - IDLE; // Return to IDLE after successful transfer
               next state - ACCESS; // Hemain in ACCESS until PREADY
       default: next_state = IDLE; // Default state is IDLE
always #(posedge PCLK or negedge PRESETn) begin
   if (IPRESETn) begin
       PADDR 32 60;
       PSELx <= 1'68;
       PENABLE - 1 bo;
       PWRITE <= 1'50;
       PWDATA O= 32 68;
       read data <= 32'b0;
   end else begin
       case (state)
               PENABLE - 1'be;
               PADOR - address;
                                  // Set the address bus
               PWRITE ( write en: // Set write direction based on write en
                                    // Select the slave
               PWDATA we write data; // Set the write data
               PENABLE on 1'00; // PENABLE is low in the setup phase
               PENABLE (- 1 bl; // Enable data transfer in the access phase
               if (|write_en && PREADY) begin
                   read data - PRDATA; // Capture the read data during read operation
```

```
D:\APB\APB_SLAVE.v - Sublime Text (UNREGISTERED)
     APB SLAVE.V
                             X APB_WRAPPER.v
                                                         M APB
       moditie APE Slave (
           Input PCLK
           LOOM PRESETT.
           IMBUT PENABLE,
           INDUT PHRITE,
          input [31:8] PADOR,
input [31:8] PADATA,
           output reg PREADY,
          output reg [31:0] PRDATA
           reg [31:0] memory [8:7];
           always @(posedge PCLK or negedge PRESEIn) begin
              1+ (IPRESETA) begin
                  PROMITA <= 32'b8;
                  PREADY 6- 1 be:
                  If (PSELX 86 PENABLE) begin
                          momory[PADDR[2:0]] C- PWDATA;
                          PREADY = 1'b1;
                          PRDATA <= memory[PADDR[2:0]];
                          PREADY (= 1'b1;
                  else begin
                      PREADY <= 1'bB;
```

```
D:\APB\APR_WRAPPER.v - Subtime Text (UNREGISTERED)
                                   APB WRAPPER.v
                                                              K APS_tts.v
       PRESETH.
                                  // Clock source
// Active LOW Reset
        INDUT TRANSFER,
       orms [319] address, // Address for the APB transaction name [319] write_dota, // Gata to be written (for write operations) and write_en, // Write enable (1 for write, 8 for read)
       INTER PSELEC
       HERE PHRITE!
       Wird [31 8] PACCR;
       wire [31 H] PADATA;
       wire [Size] PRDATA;
            .PRESETH(PRESETH).
            .PREADY(PREADY),
            TRANSFER(TRANSFER),
             .address(address),
             .write_data(write_data),
            PADOR (PADOR).
            .PSELx(PSELx),
            PHOATA(PHOATA),
             .read_data(read_data)
             PRESETH(PRESETH).
            PSELK(PSELK),
             PENABLE (PENABLE),
            .PREADY(PREADY),
.PWRITE(PWRITE),
            PADOR (PADOR),
             .PMDATA(PMDATA),
```

Test bench

```
■ D\APB\APB_ttsv - Sutrime Test (UNREGISTERED)
   APE_SLAVEY
                                     APE_WRAPPERLY
                                                                           APS_IB.V
                                                                                                                    # HUN APE
          ring PRESETING
            reg TRANSFER;
           reg [31:0] address;
reg [31:0] write_data;
            wire [1110] read_data;
                 .PRESETH(PRESETH),
TRANSFER(TRANSFER),
                  .write en(write em),
                 .read_data(read_data)
                FORESE PELK;
            PHESETO - No.
                 TRAISFER - 0;
address - 12 hR;
                // Apply roset
@(regudge MCLE);
PRESETO = 1;
                // Test Write Operation (write to address 4) address = 12 h460; // Data to write
                 Ofregedge PCLK);

// America is trainfer for the access phase
g(nogough PCLK);

// Allow one more clock for access
TRANSFER = 0;

// End transfer
                 // Walt for a few clock cycles to ensure the write immulates
repeat(2) #(negedge PCLK);
                 // Test Read Operation (read From address 4)
address = 12'h4; // Same address
```

Test bench

```
// Test Write Operation (write to address 4)
address = 32'h4;
write data = 32'hABCD; // Data to write
write_en = 1;
TRANSFER = 1;
                      // Start transfer (setup phase)
@(negedge PCLK);
// Remain in transfer for the access phase
@(negedge PCLK);
                      // Allow one more clock for access
TRANSFER = 0;
                       // End transfer
@(negedge PCLK);
// Wait for a few clock cycles to ensure the write completes
repeat(2) @(negedge PCLK);
// Test Read Operation (read from address 4)
address = 32'h4;
                      // Same address
write en = 0;
TRANSFER = 1;
                      // Start transfer (setup phase)
@(negedge PCLK);
// Remain in transfer for the access phase
                      // Allow one more clock for access
@(negedge PCLK);
TRANSFER = 0;
                      // End transfer
@(negedge PCLK);
@(negedge PCLK);
@(negedge PCLK);
// Display the read data value
$display("Read Data: %h", read_data); // Should be 32'hABCD
```

Do file

```
D:\APB\RUN_APB.do - Sublime Text (UNREGISTERED)
                  × APB_SLAVE.v × APB_WRAPPER.v
APB_Master.v
 vlib work
 vlog APB_Master.v APB_SLAVE.v APB_WRAPPER.v APB_tb.v
 vsim -voptargs=+acc work.APB_tb
 add wave *
 run -all
 #quit -sim
```

Wave Form

ELABORATED DESIGN

SYNTHESIZED DESIGN

REPORT TIMING SUMMARY

◆ Design Timing Summary

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.921 ns	Worst Hold Slack (WHS):	0.144 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	682	Total Number of Endpoints:	682	Total Number of Endpoints:	363

Tools

- Sublime
- Questa Sim
- Xilinx Vivado

Sources

AMBA® APBProtocol:

https://www.eecs.umich.edu/courses/eecs373/readings/IHIoo24C_amba_apb_protocol_spec.pdf

https://documentation-

service.arm.com/static/6od5b5o5677cf7536a55c245?token=