Big Data Preparation

Preamble to Machine Learning

Broad Working definition:

organizing the data(aka 'data wrangling' or 'data munging')

- cleaning, filtering, and transforming

Organizing Data into Input

DATA MATRIX

'variables', or 'attributes', 'features' (columns) Instances (rows)

Large number of rows

. . .

• • •

Large number of rows

Large number of Columns

• • •

• • •

Assume: data partitioned on rows, and 1 row fits in 1 computer memory

Large number of rows

Large number of Columns

• • •

• • •

Assume: data partitioned on rows, and 1 row fits in 1 computer memory

Data Matrix to Models

Instance	Customer	Item	Price	Date	Label/outcome
1	John	Acme Mower	100	Jan 2000	Used coupon
2	John	Acme Wrench	10	Sept 2000	Used coupon
3	Jane	Ace Mower	120	Mar 2003	No coupon
4	Jane	Ace Rake	20	Mar 2003	No coupon
5	Fred	Ace Hammer	15	July 2002	Used coupon

Data Matrix to Models

Instance	Customer	Item	Price	Date	Label/outcome	
1	John	Acme Mower	100	Jan 2000	Used coupon	
2	John	Acme Wrench	10	Sept 2000	Used coupon	
3	Jane	Ace Mower	120	Mar 2003	No coupon	
4	Jane	Ace Rake	20	Mar 2003	No coupon	
5	Fred	Ace Hammer	15	July 2002	Used coupon	

Model:

Coupon-use is function of Price, Customer, Item, Date, etc..

Data Matrix to Models

Instance	Customer	Item	Price	Date	Label/outcome
1	John	Acme Mower	100	Jan 2000	Used coupon
2	John	Acme Wrench	10	Sept 2000	Used coupon
3	Jane	Ace Mower	120	Mar 2003	No coupon
4	Jane	Ace Rake	20	Mar 2003	No coupon
5	Fred	Ace Hammer	15	July 2002	Used coupon

Model:

```
coupon_1 = F(Price_1, Customer_1, Item_1, etc..)

coupon_2 = F(Price_2, Customer_2, Item_2, etc..)
```

• • •

New Model: compare customers

Customer	Mower	Wrench	Rake	Hammer	 (last item)
John	1	1	1	1	
Jane	1	0	0	0	

New Model: compare customers

Customer	Mower	Wrench	Rake	Hammer	 (last item)
John	1	1	1	1	
Jane	1	0	0	0	

Recode categorical items-bought as 1 column for each item

Each Row is now a vector

sometimes called the 'input space'

– Cleaning & Filtering

Cleaning & Filtering

Variable transformations

Cleaning & Filtering

Variable transformations

Variable Selection

Cleaning Noise

Entity Resolution and Record Linkage

e.g. Are these equal?

West Main Street W Main St

Strategy: use dictionaries and search possible matches

Cleaning Noise

Entity Resolution and Record Linkage

e.g. Are these equal?

West Main Street W Main St

Strategy: use dictionaries and search possible matches

Statistical Noise:

Outlierse.g. remove them,

mean + 3*std-devm

Statistical Noise:

Outlierse.g. remove them, but cutoff is arbitrary

mean + 3*std-devm

Missing Data

Not applicable

e.g. spouse name depends on marital status

Not Available

unknown

not entered

Missing Data

– Do missing cases depend on some other variable?

e.g. 'CEOs' don't like to list their salary

Strategy: *get most common job titles* for missing salaries

Quick Approaches

Delete instancesand/or

Delete attributes with high missingness

Quick Approaches

- Leave as 'NULL' category
 - Some algorithms implementation handle NULL (ie Decision Trees)

Simple Imputation

Use the attribute mean (by class)

Complicated Imputation

Use a model (based on other attributes)
 to infer missing value

Not Simple Imputation

Use a model (based on other attributes)
 to infer missing value

Best strategy depends on time vs accuracy tradeoffs

Variable Transformation

and Feature Engineering

Variable Transformations

Combine attributes

Variable Transformations

- Combine attributese.g. rates and ratios
- Scaling data
- Discretize dataoften more intuitive

Re-scaling

Mean center

$$x_{new} = x - \text{mean}(x)$$

z-score

$$score = \frac{x - \text{mean}(x)}{\text{std}(x)}$$

• Scale to [0...1]
$$x_{new} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

log scaling

$$x_{new} = \log(x)$$

Variable selection

- Heuristic methods:
 - remove variables with low correlations to outcome

Variable selection

- Heuristic methods:
 - remove variables with low correlations to outcome

 step wise: add 1 variable at a time and test algorithm on samples

Summary

 Preparing data is based on statistical principles,

But also heuristics