MATHEMATICS-II (MATH F112)

Dr. Krishnendra Shekhawat

BITS PILANI
Department of Mathematics

Section 5.5

Isomorphism

Isomorphism

A LT $L: V \to W$ that is both one-to-one and onto is called as isomorphism from V to W.

Q:. Check if $L: P_n \to P_n$ given by L(p) = p + p' is an isomorphism.

Q:. Check if $L: P_n \to P_n$ given by L(p) = p + p' is an isomorphism.

Sol. First we need to show that

Q:. Check if $L: P_n \to P_n$ given by L(p) = p + p' is an isomorphism.

Sol. First we need to show that L is a linear operator.

Q:. Check if $L: P_n \to P_n$ given by L(p) = p + p' is an isomorphism.

Sol. First we need to show that L is a linear operator.

$$L(p+q) = (p+q) + (p+q)' = p + p' + q + q' = L(p) + L(q)$$
 for all $p, q \in P_n$.

Q:. Check if $L: P_n \to P_n$ given by L(p) = p + p' is an isomorphism.

Sol. First we need to show that L is a linear operator.

$$L(p+q) = (p+q) + (p+q)' = p + p' + q + q' = L(p) + L(q)$$
 for all $p, q \in P_n$.

Similarly, L(cp) = cL(p) for all real c and $p \in P_n$.

Q:. Check if $L: P_n \to P_n$ given by L(p) = p + p' is an isomorphism.

Sol. First we need to show that L is a linear operator.

$$L(p+q) = (p+q) + (p+q)' = p + p' + q + q' = L(p) + L(q)$$
 for all $p, q \in P_n$.

Similarly, L(cp) = cL(p) for all real c and $p \in P_n$. Hence, L is a linear operator.

Now,
$$ker(L) = \{p | L(p) = 0\}.$$

Now,
$$ker(L) = \{p | L(p) = 0\}.$$

$$L(p) = 0 \implies p + p' = 0 \implies p = -p'.$$

$$L(p) = 0 \implies p + p' = 0 \implies p = -p'.$$

If p is not a constant polynomial, p and p' must have different degrees, i.e.,

$$L(p) = 0 \implies p + p' = 0 \implies p = -p'.$$

If p is not a constant polynomial, p and p' must have different degrees, i.e., p = -p' is an contradiction

$$L(p) = 0 \implies p + p' = 0 \implies p = -p'.$$

If p is not a constant polynomial, p and p' must have different degrees, i.e., p = -p' is an contradiction $\implies p = 0$ and p' = 0

Now,
$$ker(L) = \{p | L(p) = 0\}.$$

$$L(p) = 0 \implies p + p' = 0 \implies p = -p'.$$

If p is not a constant polynomial, p and p' must have different degrees, i.e., p = -p' is an contradiction $\implies p = 0$ and $p' = 0 \implies \ker(L) = \{0\}$

$$L(p) = 0 \implies p + p' = 0 \implies p = -p'.$$

If p is not a constant polynomial, p and p' must have different degrees, i.e., p = -p' is an contradiction $\implies p = 0$ and $p' = 0 \implies \ker(L) = \{0\} \implies L$ is one-to-one.

$$L(p) = 0 \implies p + p' = 0 \implies p = -p'.$$

If p is not a constant polynomial, p and p' must have different degrees, i.e., p = -p' is an contradiction $\implies p = 0$ and $p' = 0 \implies \ker(L) = \{0\} \implies L$ is one-to-one.

Also, L is onto

$$L(p) = 0 \implies p + p' = 0 \implies p = -p'.$$

If p is not a constant polynomial, p and p' must have different degrees, i.e., p = -p' is an contradiction $\implies p = 0$ and $p' = 0 \implies \ker(L) = \{0\} \implies L$ is one-to-one.

Also, *L* is onto because $\dim \operatorname{range}(L) = \dim(P_n) = n + 1$.

$$L(p) = 0 \implies p + p' = 0 \implies p = -p'.$$

If p is not a constant polynomial, p and p' must have different degrees, i.e., p = -p' is an contradiction $\implies p = 0$ and $p' = 0 \implies \ker(L) = \{0\} \implies L$ is one-to-one.

Also, L is onto because $\dim \operatorname{range}(L) = \dim(P_n) = n + 1$. Hence, L is an isomorphism.

Q:. Check if the linear operator $L: \mathbb{R}^3 \to \mathbb{R}^3$ given by $L(e_1) = e_1 + e_2, L(e_2) = e_2 + e_3, L(e_3) = e_1 + e_2 + e_3$ is an isomorphism.

Sol. For $u = [x, y, z] \in \mathbb{R}^3$,

Q:. Check if the linear operator $L: \mathbb{R}^3 \to \mathbb{R}^3$ given by $L(e_1) = e_1 + e_2, L(e_2) = e_2 + e_3, L(e_3) = e_1 + e_2 + e_3$ is an isomorphism.

Sol. For $u = [x, y, z] \in \mathbb{R}^3$, L(u) = L([x, y, z]) =

Sol. For
$$u = [x, y, z] \in \mathbb{R}^3$$
, $L(u) = L([x, y, z]) = L([xe_1 + ye_2 + ze_3]) = xL(e_1) + yL(e_2) + zL(e_3) = [x + z, x + y + z, y + z].$

Sol. For
$$u = [x, y, z] \in \mathbb{R}^3$$
, $L(u) = L([x, y, z]) = L([xe_1 + ye_2 + ze_3]) = xL(e_1) + yL(e_2) + zL(e_3) = [x + z, x + y + z, y + z].$

Now
$$L([x,y,z]) = [0,0,0] \Longrightarrow$$

Sol. For
$$u = [x, y, z] \in \mathbb{R}^3$$
, $L(u) = L([x, y, z]) = L([xe_1 + ye_2 + ze_3]) = xL(e_1) + yL(e_2) + zL(e_3) = [x + z, x + y + z, y + z].$

Now
$$L([x, y, z]) = [0, 0, 0] \implies$$

 $[x+z, x+y+z, y+z] = [0, 0, 0] \implies x = y = z = 0.$

Sol. For
$$u = [x, y, z] \in \mathbb{R}^3$$
, $L(u) = L([x, y, z]) = L([xe_1 + ye_2 + ze_3]) = xL(e_1) + yL(e_2) + zL(e_3) = [x + z, x + y + z, y + z].$

Now
$$L([x,y,z]) = [0,0,0] \implies$$

 $[x+z,x+y+z,y+z] = [0,0,0] \implies x = y = z = 0$. Since $\ker(L) = \{0_{\mathbb{R}^3}\}$, L is one-to-one.

Q:. Check if the linear operator $L: \mathbb{R}^3 \to \mathbb{R}^3$ given by $L(e_1) = e_1 + e_2, L(e_2) = e_2 + e_3, L(e_3) = e_1 + e_2 + e_3$ is an isomorphism.

Sol. For
$$u = [x, y, z] \in \mathbb{R}^3$$
, $L(u) = L([x, y, z]) = L([xe_1 + ye_2 + ze_3]) = xL(e_1) + yL(e_2) + zL(e_3) = [x + z, x + y + z, y + z].$

Now $L([x,y,z]) = [0,0,0] \Longrightarrow$ $[x+z,x+y+z,y+z] = [0,0,0] \Longrightarrow x = y = z = 0$. Since $\ker(L) = \{0_{\mathbb{R}^3}\}$, L is one-to-one.L is also onto onto since $\dim(\operatorname{range}(L)) = 3 - 0 = 3 = \dim(\mathbb{R}^3)$, from Dimension Theorem.

Q:. Check if the linear operator $L: \mathbb{R}^3 \to \mathbb{R}^3$ given by $L(e_1) = e_1 + e_2, L(e_2) = e_2 + e_3, L(e_3) = e_1 + e_2 + e_3$ is an isomorphism.

Sol. For
$$u = [x, y, z] \in \mathbb{R}^3$$
, $L(u) = L([x, y, z]) = L([xe_1 + ye_2 + ze_3]) = xL(e_1) + yL(e_2) + zL(e_3) = [x + z, x + y + z, y + z].$

Now $L([x,y,z]) = [0,0,0] \Longrightarrow$ $[x+z,x+y+z,y+z] = [0,0,0] \Longrightarrow x = y = z = 0$. Since $\ker(L) = \{0_{\mathbb{R}^3}\}$, L is one-to-one.L is also onto onto since $\dim(\operatorname{range}(L)) = 3 - 0 = 3 = \dim(\mathbb{R}^3)$, from Dimension Theorem. Hence, L is an isomorphism.

Q:. Check if the LT $L: P_4 \to \mathbb{R}^3$ given by

$$L(p) = [p(-1), p(0), p(1)]$$
 is an isomorphism.

Q:. Check if the LT $L: P_4 \to \mathbb{R}^3$ given by

$$L(p) = [p(-1), p(0), p(1)]$$
 is an isomorphism.

Sol. Basis for $\ker(L)$ is $\{x(x^2-1), x^2(x^2-1)\}$.

Q:. Check if the LT $L: P_4 \to \mathbb{R}^3$ given by

$$L(p) = [p(-1), p(0), p(1)]$$
 is an isomorphism.

Sol. Basis for $\ker(L)$ is $\{x(x^2-1), x^2(x^2-1)\}$. Hence, $\dim(\ker(L)) = 2$

Q:. Check if the LT $L: P_4 \to \mathbb{R}^3$ given by

L(p) = [p(-1), p(0), p(1)] is an isomorphism.

Sol. Basis for $\ker(L)$ is $\{x(x^2-1), x^2(x^2-1)\}$. Hence,

 $\dim(\ker(L)) = 2.$

Hence, L is not one-to-one, i.e., it is not an isomorphism.

Exercise

Q:. Show that the linear operator $L: P_2 \to P_2$ given by $L(a+bt+ct^2) = (b+c)+(a+c)t+(a+b)t^2$ is an isomorphism.

Exercise

Q:. Show that the linear operator $L: P_2 \to P_2$ given by $L(a+bt+ct^2) = (b+c)+(a+c)t+(a+b)t^2$ is an isomorphism.

Q:. Show that the linear operator $L: M_{mn} \to M_{nm}$ given by $L(A) = A^T$ is an isomorphism.

Invertible LT

Let $L: V \to W$ be a LT. Then L is an invertible LT if and only if

Invertible LT

Let $L: V \to W$ be a LT. Then L is an invertible LT if and only if there is a function $M: W \to V$ such that $(M \circ L)(v) = v$, for all $v \in V$, and $(L \circ M)(w) = w$, for all $w \in W$.

Invertible LT

Let $L: V \to W$ be a LT. Then L is an invertible LT if and only if there is a function $M: W \to V$ such that $(M \circ L)(v) = v$, for all $v \in V$, and $(L \circ M)(w) = w$, for all $w \in W$.

Such a function M, denoted by L^{-1} , is called an inverse of L.

Theorem: A LT $L: V \to W$ is an isomorphism if and only if L is an invertible LT.

Theorem: A LT $L: V \to W$ is an isomorphism if and only if L is an invertible LT. Moreover, if L is invertible, then L^{-1} is also a LT.

Q: Let $L: \mathbb{R}^3 \to P_2$ be a LT given by

$$L([x, y, z]) = x + (x + y - z)t + (x + y + z)t^{2}.$$

Q: Let $L: \mathbb{R}^3 \to P_2$ be a LT given by

$$L([x, y, z]) = x + (x + y - z)t + (x + y + z)t^{2}.$$

Is L invertible.

Q: Let $L: \mathbb{R}^3 \to P_2$ be a LT given by

$$L([x, y, z]) = x + (x + y - z)t + (x + y + z)t^{2}.$$

Is L invertible. If yes, find L^{-1} .

Q: Let $L: \mathbb{R}^3 \to P_2$ be a LT given by

$$L([x, y, z]) = x + (x + y - z)t + (x + y + z)t^{2}.$$

Is L invertible. If yes, find L^{-1} .

Sol. It can be easily verified that L is both one-to-one and onto. Hence, invertible.

Let $L^{-1}: P_2 \to \mathbb{R}^3$ be defined by

Let $L^{-1}: P_2 \to \mathbb{R}^3$ be defined by $L^{-1}(a+bt+ct^2) = [x,y,z]$

Let
$$L^{-1}: P_2 \to \mathbb{R}^3$$
 be defined by $L^{-1}(a+bt+ct^2) = [x,y,z]$
 $\Longrightarrow L([x,y,z]) = a+bt+ct^2$

Let
$$L^{-1}: P_2 \to \mathbb{R}^3$$
 be defined by $L^{-1}(a+bt+ct^2) = [x,y,z]$
 $\Longrightarrow L([x,y,z]) = a+bt+ct^2$
 $\Longrightarrow x+(x+y-z)t+(x+y+z)t^2 = a+bt+ct^2$

Let
$$L^{-1}: P_2 \to \mathbb{R}^3$$
 be defined by $L^{-1}(a+bt+ct^2) = [x,y,z]$
 $\Longrightarrow L([x,y,z]) = a+bt+ct^2$
 $\Longrightarrow x + (x+y-z)t + (x+y+z)t^2 = a+bt+ct^2$
 $\Longrightarrow x = a, x+y-z = b, x+y+z = c$

Let
$$L^{-1}: P_2 \to \mathbb{R}^3$$
 be defined by $L^{-1}(a+bt+ct^2) = [x,y,z]$
 $\implies L([x,y,z]) = a+bt+ct^2$
 $\implies x+(x+y-z)t+(x+y+z)t^2 = a+bt+ct^2$
 $\implies x = a, x+y-z = b, x+y+z = c$
 $\implies x = a, y = \frac{b+c-2a}{2}, z = \frac{c-b}{2}$.

Let
$$L^{-1}: P_2 \to \mathbb{R}^3$$
 be defined by

$$L^{-1}(a+bt+ct^2) = [x, y, z]$$

$$\implies L([x, y, z]) = a + bt + ct^2$$

$$\implies x + (x + y - z)t + (x + y + z)t^2 = a + bt + ct^2$$

$$\implies x = a, x + y - z = b, x + y + z = c$$

$$\implies x = a, y = \frac{b+c-2a}{2}, z = \frac{c-b}{2}.$$

Hence,
$$L^{-1}(a+bt+ct^2) = [a, \frac{b+c-2a}{2}, \frac{c-b}{2}].$$

Q: Let $L: P_2 \to P_2$ be a LT given by

$$L(a+bt+ct^{2}) = (b+c) + (a+c)t + (a+b)t^{2}.$$

Q: Let $L: P_2 \to P_2$ be a LT given by

$$L(a+bt+ct^{2}) = (b+c) + (a+c)t + (a+b)t^{2}.$$

Is L invertible.

Q: Let $L: P_2 \to P_2$ be a LT given by

$$L(a+bt+ct^{2}) = (b+c) + (a+c)t + (a+b)t^{2}.$$

Is L invertible. If yes, find L^{-1} .

Q: Let $L: P_2 \to P_2$ be a LT given by

$$L(a+bt+ct^{2}) = (b+c) + (a+c)t + (a+b)t^{2}.$$

Is L invertible. If yes, find L^{-1} .

Sol. It can be easily verified that L is both one-to-one and onto. Hence, invertible.

Let $L^{-1}: P_2 \to P_2$ be defined by

Let
$$L^{-1}: P_2 \to P_2$$
 be defined by $L^{-1}(a+bt+ct^2) = a_1 + b_1t + c_1t^2$

Let
$$L^{-1}: P_2 \to P_2$$
 be defined by $L^{-1}(a+bt+ct^2) = a_1 + b_1t + c_1t^2$
 $\implies L(a_1 + b_1t + c_1t^2) = a + bt + ct^2$

Let
$$L^{-1}: P_2 \to P_2$$
 be defined by $L^{-1}(a+bt+ct^2) = a_1 + b_1t + c_1t^2$
 $\implies L(a_1 + b_1t + c_1t^2) = a + bt + ct^2$
 $\implies (b_1 + c_1) + (a_1 + c_1)t + (a_1 + b_1)t^2 = a + bt + ct^2$.

Let $L^{-1}: P_2 \to P_2$ be defined by $L^{-1}(a+bt+ct^2) = a_1 + b_1t + c_1t^2$ $\implies L(a_1 + b_1t + c_1t^2) = a + bt + ct^2$ $\implies (b_1 + c_1) + (a_1 + c_1)t + (a_1 + b_1)t^2 = a + bt + ct^2$.

On equating the coefficient of t on both sides, we get

Let $L^{-1}: P_2 \to P_2$ be defined by $L^{-1}(a+bt+ct^2) = a_1 + b_1t + c_1t^2$ $\implies L(a_1 + b_1t + c_1t^2) = a + bt + ct^2$ $\implies (b_1 + c_1) + (a_1 + c_1)t + (a_1 + b_1)t^2 = a + bt + ct^2$. On equating the coefficient of t on both sides, we get $a = b_1 + c_1, b = a_1 + c_1, c = a_1 + b_1$.

Let $L^{-1}: P_2 \to P_2$ be defined by

$$L^{-1}(a+bt+ct^2) = a_1 + b_1t + c_1t^2$$

$$\implies L(a_1 + b_1t + c_1t^2) = a + bt + ct^2$$

$$\implies (b_1 + c_1) + (a_1 + c_1)t + (a_1 + b_1)t^2 = a + bt + ct^2.$$

On equating the coefficient of t on both sides, we get

$$a = b_1 + c_1, b = a_1 + c_1, c = a_1 + b_1.$$

On solving, we get

$$a_1 = \frac{1}{2}(b+c-a), b_1 = \frac{1}{2}(a+c-b), c_1 = \frac{1}{2}(a+b-c).$$

Let $L^{-1}: P_2 \to P_2$ be defined by

$$L^{-1}(a+bt+ct^2) = a_1 + b_1t + c_1t^2$$

$$\implies L(a_1 + b_1t + c_1t^2) = a + bt + ct^2$$

$$\implies (b_1 + c_1) + (a_1 + c_1)t + (a_1 + b_1)t^2 = a + bt + ct^2.$$

On equating the coefficient of t on both sides, we get

$$a = b_1 + c_1, b = a_1 + c_1, c = a_1 + b_1.$$

On solving, we get

$$a_1 = \frac{1}{2}(b+c-a), b_1 = \frac{1}{2}(a+c-b), c_1 = \frac{1}{2}(a+b-c).$$

Hence,

$$L^{-1}(a+bt+ct^2) = \frac{1}{2}(b+c-a) + \frac{1}{2}(a+c-b)t + \frac{1}{2}(a+b-c)t^2$$

Q:. Let $L: P_2 \to \mathbb{R}^2$ be a LT given by L(p) = [p(1), p'(1)].

Q:. Let $L: P_2 \to \mathbb{R}^2$ be a LT given by

$$L(p) = [p(1), p'(1)].$$

Is L invertible.

Q: Let $L: P_2 \to \mathbb{R}^2$ be a LT given by

$$L(p) = [p(1), p'(1)].$$

Is L invertible. If yes, find L^{-1} .

Q: Let $L: P_2 \to \mathbb{R}^2$ be a LT given by

$$L(p) = [p(1), p'(1)].$$

Q: Let $L: P_2 \to \mathbb{R}^2$ be a LT given by

$$L(p) = [p(1), p'(1)].$$

Sol.
$$\ker(L) = \{ p \in P_2 | L(p) = 0_{\mathbb{R}^2} \} \Longrightarrow$$

Q: Let $L: P_2 \to \mathbb{R}^2$ be a LT given by

$$L(p) = [p(1), p'(1)].$$

Sol.
$$\ker(L) = \{ p \in P_2 | L(p) = 0_{\mathbb{R}^2} \} \Longrightarrow$$

$$\ker(L) = \{ p \in P_2 | [p(1), p'(1)] = [0, 0] \} \implies$$

Q: Let $L: P_2 \to \mathbb{R}^2$ be a LT given by

$$L(p) = [p(1), p'(1)].$$

Sol.
$$\ker(L) = \{ p \in P_2 | L(p) = 0_{\mathbb{R}^2} \} \Longrightarrow$$

$$\ker(L) = \{ p \in P_2 | [p(1), p'(1)] = [0, 0] \} \Longrightarrow$$

$$\ker(L) = \{ p \in P_2 | p(1) = 0, p'(1) = 0 \}.$$

Now,
$$p(1) = 0 \implies$$

Now,
$$p(1) = 0 \implies p = (x-1)(ax+b)$$
.

Now,
$$p(1) = 0 \implies p = (x-1)(ax+b)$$
. Also, $p'(1) = 0 \implies$

Now,
$$p(1) = 0 \implies p = (x-1)(ax+b)$$
. Also, $p'(1) = 0 \implies a = -b$.

Now,
$$p(1) = 0 \implies p = (x-1)(ax+b)$$
. Also, $p'(1) = 0 \implies a = -b$. Hence, $p = (x-1)(ax-a) \implies p = a(x^2-2x+1)$.

Now,
$$p(1) = 0 \implies p = (x-1)(ax+b)$$
. Also,
 $p'(1) = 0 \implies a = -b$. Hence,
 $p = (x-1)(ax-a) \implies p = a(x^2-2x+1)$. Thus
 $\ker(L) = \{a(x^2-2x+1)|a \in \mathbb{R}\}$.

Q: Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be a LT given by

$$L(e_1) = e_1 + e_2, L(e_2) = e_2 + e_3, L(e_3) = e_1 + e_2 + e_3.$$

Q: Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be a LT given by

$$L(e_1) = e_1 + e_2, L(e_2) = e_2 + e_3, L(e_3) = e_1 + e_2 + e_3.$$

Is L invertible.

Q: Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be a LT given by

$$L(e_1) = e_1 + e_2, L(e_2) = e_2 + e_3, L(e_3) = e_1 + e_2 + e_3.$$

Is L invertible. If yes, find L^{-1} .

Q: Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be a LT given by

$$L(e_1) = e_1 + e_2, L(e_2) = e_2 + e_3, L(e_3) = e_1 + e_2 + e_3.$$

Is L invertible. If yes, find L^{-1} .

Sol.
$$L^{-1}([x,y,z]) = [y-z,y-x,x-y+z].$$

Isomorphism

Let V and W be vector spaces. Then V is isomorphic to W, denoted by $V \cong W$, if and only if there exists an isomorphism $L: V \to W$.

Q:. Show that \mathbb{R}^n and P_n are not isomorphic.

Q:. Show that \mathbb{R}^n and P_n are not isomorphic.

Sol. Since,
$$\dim(\mathbb{R}^n) = n \neq n + 1 = \dim(P_n)$$
,

Q:. Show that \mathbb{R}^n and P_n are not isomorphic.

Sol. Since, $\dim(\mathbb{R}^n) = n \neq n+1 = \dim(P_n)$, \mathbb{R}^n and P_n are not isomorphic.

Q:. Let W be the vector space of all symmetric 2×2 matrices. Show that W is isomorphic to \mathbb{R}^3 .

Q:. Let W be the vector space of all symmetric 2×2 matrices. Show that W is isomorphic to \mathbb{R}^3 .

Q:. Check if $P_{4n+3} \cong M_{4,n+1}$.

