Vecteurs et colinéarité

Remarque. On peut définir, l'angle géométrique entre deux vecteurs (non nuls).

Définition. Deux vecteurs non nuls sont **colinéaires**, s'ils forment un angle nul ou plat (0° ou 180°), autrement dit s'ils sont alignés, dans le même sens ou de sens opposés.

Exemple. Les vecteurs \vec{u} , \vec{v} et \vec{k} sur l'image ci-contre sont colinéaires entre eux. Le vecteur \vec{w} n'est colinéaire avec aucun des autres vecteurs.

Définition. Deux vecteurs non nuls sont orthogonaux, s'ils forment un angle droit (90°).

Exemple. Les vecteurs \vec{u} et \vec{v} sur l'image ci-contre sont orthogonaux, car si on les fait partir du même point, ils forment un angle droit.

Définition. Un **repère** désigne la donnée d'un point 0 et de vecteurs \vec{i} et \vec{j} non colinéaires. On note $(0; \vec{i}; \vec{j})$ un tel repère.

Un repère sert à repérer les coordonnées, les longueurs, aires, angles, etc..

Remarque. Quand on change de repère, les coordonnées d'un vecteur ou d'un point changent. Cependant, les définitions et formules précédentes restent valables, si on les écrit dans un $\underline{\text{même}}$ repère R.

Attention : Les longueurs, aires et angles sont des notions a priori relatives au repère utilisé.

Définition. On note $\mathbf{R_0} = \left((0;0); \binom{1}{0}; \binom{0}{1}\right)$ le **repère canonique**. Jusqu'ici, on a toujours utilisé R_0 .

Définition. Un **repère** $R = (0; \vec{\imath}; \vec{\jmath})$ est **orthonormé** si $\vec{\imath}$ et $\vec{\jmath}$ sont orthogonaux et de longueur 1 (dans R_0).

Propriété. Les longueurs, aires et angles géométriques sont identiques dans tout repère <u>orthonormé</u>.

Exemples. Ici on considère R_0 comme le repère de référence.

Ci-contre, les repères R_0 , R_1 et R_2 sont orthonormés. Les longueurs ont donc la même mesure dans R_0 , R_1 , R_2 . R_3 n'est pas orthonormé car ses vecteurs sont de longueur 2 (en les mesurant dans R_0). R_4 n'est pas orthonormé car ses vecteurs ne sont pas

orthogonaux (au sens de R_0).

Propriété. Deux vecteurs non nuls \vec{u} et \vec{v} sont **colinéaires** ssi il existe un nombre réel k tel que $\vec{u} = k\vec{v}$.

Exemple. $\binom{3}{2}$ et $\binom{-9}{-6}$ sont colinéaires car $\binom{-9}{-6} = -3\binom{3}{2}$.

Exemple. Les vecteurs ci-contre sont colinéaires entre eux puisqu'ils sont proportionnels à \vec{u}

Définition. Le **déterminant** de deux vecteurs $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ est

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - yx'.$$
 (A priori le déterminant dépend du repère)

Exemple. Si
$$\vec{u} = \binom{2}{-1}$$
 et $\vec{v} = \binom{-1}{4}$, alors $\det(\vec{u}; \vec{v}) = \begin{vmatrix} 2 & -1 \\ -1 & 4 \end{vmatrix} = (2)(4) - (-1)(-1) = 8 - 1 = 7$

Propriété. Dans un repère orthonormé, l'aire du parallélogramme formé par \vec{u} et \vec{v} quand on les fait partir d'un même point, vaut $|\det(\vec{u}; \vec{v})|$

Exemple. En supposant que l'unité de base est le cm, l'aire du parallélogramme délimité par les vecteurs \vec{u} et \vec{v} précédents est : $|\det(\vec{u}; \vec{v})| = 7 \text{ cm}^2$

Propriété. Deux vecteurs sont colinéaires ssi leur déterminant est nul. (dans n'importe quel repère)

Exemple. $\begin{vmatrix} 3 & -9 \\ 2 & -6 \end{vmatrix} = (3)(-6) - (2)(-9) = 18 - (-18) = 0$ donc $\binom{3}{2}$ et $\binom{-9}{-6}$ sont bien colinéaires.

Propriété. Deux droites (AB) et (MN) sont parallèles ssi \overrightarrow{AB} et \overrightarrow{MN} sont colinéaires ssi $\det(\overrightarrow{AB}; \overrightarrow{MN}) = 0$.

Propriété. Trois points distincts A, B et C sont alignés ssi \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires ssi $\det(\overrightarrow{AB}; \overrightarrow{AC}) = 0$.

Exemple. Les points A = (1;3), B = (2;6) et C = (3;9) sont-ils alignés ?

$$\det(\overrightarrow{AB}; \overrightarrow{AC}) = \begin{vmatrix} (2-1) & (3-1) \\ (6-3) & (9-3) \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix} = 1 \times 6 - 3 \times 2 = 0$$
. Donc *A*, *B* et *C* sont alignés.