Limits of sequences, infinite limits

October 1st, 2024

Here are some	key ideas	from	sections	2.1	and	2.2.
---------------	-----------	------	----------	-----	-----	------

• We write $\lim_{n\to\infty} a_n = L$ to mean the sequence a_n approaches ______. If a_n becomes large as n becomes large, we write

ullet If the limit exists, the sequence . Otherwise, it .

• A geometric sequence has the form a, ar, ar^2, \cdots . If -1 < r < 1, the sum of the infinite geometric series is $a + ar + ar^2 + \cdots + ar^n + \cdots =$

To evaluate limits of rational sequences, divide by

• The expression $\lim_{x\to\infty} f(x) = L$ can be thought of as the ______ of f. We say y=L is a horizontal asymptote of f if

• To evaluate limits of functions with radical expressions, it may help to multiply by ______.

Midterm practice:

(a) Diagonalize the following matrix:

$$A = \begin{bmatrix} 5 & -3 \\ 6 & -4 \end{bmatrix}.$$

Explicitly write what P, D, and P^{-1} are.

(b) Consider the vector $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Compute $A^6 \mathbf{v}$.

My Attempt:

Solution:

Problem 1: (Stewart 2.1) Determine if $a_n = \frac{2n^2 + n - 1}{n^2}$ conv	verges. If it is convergent, find the limit.
My Attempt:	Solution:
Problem 2: (Stewart 2.1) Find the limit of $a_n = \frac{n^2}{\sqrt{n^3 + 4n}}$.	
My Attempt:	Solution:
Problem 3: (Stewart 2.1) Use a series to express $0.\overline{8}$ as a result.	atio of integers.
My Attempt:	Solution:
Problem 4: (Stewart 2.1) Use a series to express $1.53\overline{42}$ as	a ratio of integers.
My Attempt:	Solution:

Problem 5: (Stewart 2.2) Find $\lim_{x\to\infty} \sqrt{x^2 + ax} - \sqrt{x^2 + ax}$	\overline{bx} .
My Attempt:	Solution:
Problem 6: (Stewart 2.2) Find $\lim_{x\to\infty} e^{-1/x^2}$.	
My Attempt:	Solution:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Problem 7: (Stewart 2.2) Find $\lim_{x\to\infty} \frac{\sqrt{t}+t^2}{2t-t^2}$. My Attempt:	Solution:
Problem 8: (Stewart 2.2) Find $\lim_{x\to\infty} (e^{-x} + 2\cos 3x)$.	
My Attempt:	Solution:

Challenge problem: (Stewart 2.2) Let $f(x) = (3^x + 3^{2x})^{\frac{1}{x}}$. Find $\lim_{x \to \infty} f(x)$.

 $Visit\ tinyurl.com/sections 10a\ for\ my\ discussion\ resources.$