Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk

Dipl.-Phys. Martin Rheinländer

2. Teilklausur

Analysis 1

4. Februar 2006

4. Iteration

Nam	e:									
Vorn	ame: _									
Matr	Nr.:									
Haup	otfach:									
Nebe	enfach:									
Übuı	ngsgruj	open	-Nr.	:						
	0.0 .1	. 1								
	Aufgabe	1)	2)	3)	4)	5)	6)	7)	Σ	
	maximal	9	4	7	8	10	6	7	51	
	erreicht									

Endnote:

Hinweise zur Bearbeitung der Klausur

(bitte sorgfältig lesen)

- Schalten Sie Ihr Handy aus wenn Sie während der Klausur inoder außerhalb des Hörsaals beim Telefonieren angetroffen werden, so wird dies als Täuschungsversuch gewertet.
- Es sind keine Hilfsmittel wie Taschenrechner, Vorlesungsskript, Merkblätter etc. zugelassen.
- Tragen Sie Name und Matrikelnummer auf jedem Blatt ein.
- Sie können Vorder- und Rückseiten benutzen, aber Antworten zur Aufgabe N immer nur auf Blättern zur Aufgabe N schreiben.
- Wenn bei einer Aufgabe der Platz nicht ausreicht, können Sie zusätzliche Blätter erhalten – schreiben Sie sowohl die Nummer der Frage als auch Name und Matrikelnummer oben auf das Zusatzblatt.
- Konzeptpapier wird ebenfalls gestellt. Versuchen Sie sauber zu schreiben und geben Sie keine Schmierblätter ab.
- Bei fast allen Aufgaben können die Teilaufgaben unabhängig voneinander bearbeitet werden; lassen Sie sich also nicht entmutigen, wenn eine Teilaufgabe nicht klappt.
- Kommentieren Sie Ihre Rechnungen ausführlich; im Zweifel besser mehr als zu wenig. Resultate aus der Vorlesung bzw. aus den Übungen dürfen mit Verweis ohne Begründung verwendet werden.
- Die Bearbeitungszeit für die Klausur beträgt 3 Stunden.

Aufgabe 1: Verständnisfragen à la MeGa

- a) Sei $f: \mathbb{R} \to \mathbb{R}$. Schreiben Sie mit Hilfe von Quantoren die Aussagen:
 - 1) f hat ein Minimum
 - 2) f hat kein Minimum
 - 3) f hat ein lokales Minimum.
- b) Konvertieren Sie die Zahl $0.12\overline{02} = 0.1202020202...$ vom Dreiersystem ins Dezimalsystem. Es genügt die Darstellung als Bruch.
- c) Bilden Sie eine Implikationskette mit den Begriffen gleichmäßig stetig, stetig und global Lipschitz-stetig.
- d) Seien $f,g:\mathbb{R}\to\mathbb{R}$ streng monoton wachsend. Welche Monotonie hat die Verkettung? Die Antwort ist sorgfältig zu begründen.

Lösung:

- a) 1) $\exists x \in \mathbb{R} : \forall y \in \mathbb{R} : f(x) \le f(y)$
 - 2) $\forall x \in \mathbb{R} : \exists y \in \mathbb{R} : f(x) > f(y)$
 - 3) $\exists x \in \mathbb{R} : \exists \epsilon > 0 : \forall y \in (x \epsilon, x + \epsilon) : f(x) \le f(y)$
- b) Umwandlung des periodischen b-adischen Bruchs zur Basis b=3 mittels der geometrischen Reihe:

$$0.12\overline{02} = \frac{1}{3} + \frac{2}{3^2} + \frac{2}{3^4} + \frac{2}{3^6} + \dots = \frac{1}{3} + 2\sum_{n=1}^{\infty} \frac{1}{3^{2n}} = \frac{1}{3} + 2\sum_{n=1}^{\infty} \frac{1}{9^n}$$

$$= \frac{1}{3} + \frac{2}{9}\sum_{n=0}^{\infty} \frac{1}{9^n} = \frac{1}{3} + \frac{2}{9} \frac{1}{1 - \frac{1}{9}} = \frac{1}{3} + \frac{2}{9} \frac{1}{\frac{8}{9}} = \frac{1}{3} + \frac{2}{9} \frac{9}{8} = \frac{1}{3} + \frac{1}{4} = \frac{7}{12}$$

- c) Lipschitz-stetig \Rightarrow gleichmäßig stetig \Rightarrow stetig.
- d) Die Verkettung $f \circ g$ ist ebenfalls streng monoton wachsend.

Beh.:
$$x < y \Rightarrow (f \circ g)(x) < (f \circ g)(y)$$

Bew.: g streng monoton wachsend: $x < y \Rightarrow g(x) < g(y)$

f streng monoton wachsend: $u < v \Rightarrow f(u) < f(v)$

Setze u := g(x) < g(y) =: v. Dann folgt: f(g(x)) < f(g(y))

Die Behauptung folgt nun unmittelbar aus der Definition der Verkettung $f \circ g$.

$\underline{\mathbf{Aufgabe\ 1:}}\ (\mathrm{Fortsetzung})$

Name:	MatrNr.:	Punkte:

Aufgabe 2: Minibeweis zum Einstieg

Seien $\xi, c \in \mathbb{R}$ und $f : \mathbb{R} \to \mathbb{R}$. Zeigen Sie sehr sorgfältig:

Gibt es zu jedem $\epsilon > 0$ ein $\delta > 0$, so daß $|f(x) - c| < \epsilon$ falls $|x - \xi| < \delta$, so gilt $\lim_{x \to \xi} f(x) = c$.

Lösung:

Sei $(x_n)_n$ eine beliebige Folge, welche gegen ξ konvergiert. Es ist zu zeigen, daß dann $(f(x_n))_n$ gegen c konvergiert. Sei nun $\epsilon > 0$ vorgegeben. Nach Voraussetzung existiert ein $\delta > 0$ mit $|f(x)-c| < \epsilon$ für alle $x \in U_{\delta}(\xi)$. Da $(x_n)_n$ nach Annahme gegen ξ konvergiert, existiert definitionsgemäß ein $N \in \mathbb{N}$, so daß für alle $\mathbb{N} \ni n > N$ gilt $x_n \in U_{\delta}(\xi)$. Dies impliziert aber $|f(x_n)-c| < \epsilon$ für alle n > N. Somit konvergiert $(f(x_n))_n$ gegen c.

Notation: $U_{\delta}(\xi) := \{x \in \mathbb{R} : |x - \xi| < \delta\}$

$\underline{\mathbf{Aufgabe\ 2:}}\ (\mathrm{Fortsetzung})$

Aufgabe 3: Grenzwerte & Konvergenzradien

- a) Welchen Konvergenzradius besitzt die Potenzreihe $\sum_{n=0}^{\infty} 3^n x^n$.
- b) Ermitteln Sie den Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty} [5^n + (-5)^n] x^n$.
- c) Geben Sie eine Potenzreihe an, deren Konvergenzintervall genau durch das halboffene Intervall (-2, 2] gegeben ist.
- d) Geben Sie den Konvergenzradius der Potenzreihe $\sum_{n=1}^{\infty} a_n x^n$ an, wobei die Koeffizienten a_n durch

$$a_n := \frac{1 - 2 + 3 - 4 + \dots - 2n}{\sqrt{n^2 + 1}}$$

gegeben sind. Bestimmen Sie dazu zunächst $\lim_{n\to\infty} a_n$.

Lösung:

Name:

- a) Mit dem Wurzelkriterium ergibt sich sofort der Konvergenzradius $R=1/\limsup_{n\to\infty} \sqrt[n]{3^n}=\frac{1}{3}.$
- b) Es gilt: $a_n = 5^n + (-5)^n = 5^n (1 + (-1)^n)$ mit $n \in \mathbb{N}_0$. Für a_n ergibt sich somit die Folge $2, 0, 2 \cdot 5^2, 0, 2 \cdot 5^4, \dots$ und damit erhalten wir für die Folge $(\sqrt[n]{|a_n|})_{n \in \mathbb{N}}$ zwei Häufungspunkte: 0 und 5, denn:

$$\sqrt[n]{|a_n|} = \begin{cases} 5\sqrt[n]{2} & \text{für } n = 2k, \ k \in \mathbb{N} \\ 0 & \text{für } n = 2k-1, \ k \in \mathbb{N} \end{cases}$$

Somit gilt: $\limsup_{n\to\infty} \sqrt[n]{|a_n|} = 5 \implies \text{Konvergenz radius } R = \frac{1}{\lim_{n\to\infty} \sqrt[n]{|a_n|}} = \frac{1}{5}$.

- c) Man erinnere sich an die harmonische bzw. alternierende harmonische Reihe, welche divergiert bzw. konvergiert. Dies motiviert folgende Potenzreihe: $\sum_{n=1}^{\infty} \frac{1}{2^n} \frac{(-1)^n}{n} x^n$.
- d) Offenbar gilt

$$1 - 2 + 3 - 4 + \dots - 2n = (1 - 2) + (3 - 4) + \dots + ((2n - 1) - 2n)$$

$$= \underbrace{(-1) + (-1) + \dots + (-1)}_{n-\text{mal}} = -n.$$

Aufgrund der Grenzwertsätze (insbesondere Quotientensatz) und wegen $\lim_{n\to\infty} \frac{1}{n^2} = 0$ sowie der Folgenstetigkeit der Quadratwurzel folgt:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left[\frac{-n}{n\sqrt{1 + \frac{1}{n^2}}} \right] = \lim_{n \to \infty} \frac{-1}{\sqrt{1 + \frac{1}{n^2}}} = \frac{-1}{\sqrt{1 + \lim_{n \to \infty} \frac{1}{n^2}}} = \frac{-1}{\sqrt{1}} = -1.$$

Bemerkung: Der Zähler des Bruchs läßt sich natürlich auch ohne Pünktchenschreibweise darstellen, es gilt: $1-2+3-4+...-2n=\sum_{k=1}^{2n}(-1)^{k+1}k=-n$. Das zweite Gleichheitszeichen läßt sich streng formal per Induktion nachweisen.

Aus dem Quotientenkriterium zur Berechnung des Konvergenzradius R folgt dann

$$1 = \frac{-1}{-1} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} a_{n+1}} = \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = R$$

$\underline{\mathbf{Aufgabe\ 3:}}\ (\mathrm{Fortsetzung})$

Name:	MatrNr.:	Punkte:	

Aufgabe 4: Rund um den Mittelwertsatz

- a) Die Ableitung von $f:(a,b)\to\mathbb{R}$ sei beschränkt. Zeigen Sie, daß f auf (a,b) global Lipschitz-stetig ist.
- b) Sei f eine Funktion wie in Teil a) beschrieben. Beweisen Sie <u>ohne</u> direkten Bezug auf eine der Übungsaufgaben, daß für jede Folge $(x_n)_n$, welche gegen den Intervallrandpunkt a konvergiert, der Grenzwert $\lim_{n\to\infty} f(x_n)$ existiert.
- c) Es seien $f, g : [0, \infty) \to \mathbb{R}$ differenzierbar und es gelte f(0) = g(0) sowie $f'(x) \le g'(x)$ für alle $x \ge 0$. Zeigen Sie, daß dann $f(x) \le g(x)$ für alle $x \ge 0$ gilt.

Lösung:

a) Aus der Vorausausetzung folgt unmittelbar die Existenz einer Zahl L>0 mit |f'(x)|< L für alle $x\in (a,b)$. Es seien nun $u,v\in (a,b)$ mit u< v beliebig vorgegeben. Der Mittelwertsatz garantiert nun die Existenz eines $z\in (u,v)$ mit

$$f(u) - f(v) = f'(z)(u - v)$$
 \Rightarrow $|f(u) - f(v)| = \underbrace{|f'(z)|}_{\leq L} \cdot |u - v|$

Nehmen wir auf beiden Seiten die Beträge und schätzen |f'(z)| durch L ab, so zeigt sich, daß f (global) Lipschitz-stetig ist, wobei L als Lipschitz-Konstante fungiert.

b) Es sei $(a_n)_n$ eine Folge, welche innerhalb des offenen Intervalls (a,b) von rechts gegen a konvergiert. Da f auf (a,b) Lipschitz-stetig ist, folgt für $m,n \in \mathbb{N}$

$$|f(a_n) - f(a_m)| < L|a_n - a_m|.$$

Da $(a_n)_n$ konvergiert, handelt es sich um eine Cauchy-Folge. Aus der obigen Abschätzung ist zu entnehmen, daß $(f(a_n))_n$ ebenfalls eine Cauchy-Folge ist, denn zu $\epsilon > 0$ existiert stets ein $N \in \mathbb{N}$, so daß $|a_n - a_m| < \epsilon/L$ für alle m, n > N. Damit ist $(f(a_n))_n$ ebenfalls eine Cauchy-Folge und es existiert $\alpha := \lim_{n \to \infty} f(a_n)$.

c) Wir betrachten die Funktion $h:[0,\infty)\to\mathbb{R}$ mit h(x):=g(x)-f(x). Aufgrund der Voraussetzungen gilt dann:

$$h(0) = g(0) - f(0) = 0$$
 und $h'(x) = g'(x) - f'(x) \ge 0$.

Somit ist h monoton wachsend, da die Ableitung h' nicht negativ ist. Insbesondere folgt die Behauptung:

$$0 = h(0) \le h(x) = g(x) - f(x)$$
 \Leftrightarrow $f(x) \le g(x)$.

$\underline{\mathbf{Aufgabe\ 4:}}\ (\mathrm{Fortsetzung})$

Aufgabe 5: Differenzieren

- a) Berechnen Sie die Ableitung von $\tan(x) = \frac{\sin(x)}{\cos(x)}$. Stellen Sie das Ergebnis mit $\tan(x)$ dar (ohne Verwendung von Sinus und Kosinus).
- b) Berechnen Sie die Ableitung des Arcustangens arctan (Umkehrfunktion des Tangens). Benutzen Sie das Ergebnis aus a).
- c) Berechnen Sie die Ableitungen der Hyperbelfunktionen

$$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \qquad \sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

und drücken Sie das Ergebnis wieder durch die Hyperbelfunktionen aus. Zeigen Sie anschließend, daß die Ableitung von $\cosh(x)^2 - \sinh(x)^2$ verschwindet, und begründen Sie damit, daß $\cosh(x)^2 - \sinh(x)^2 = 1$ gilt.

d) Berechnen Sie die Ableitung von $(f \circ g \circ h)/(g' \circ h)^2$. Kürzen Sie wenn möglich.

Lösung:

Name:

a) Anwenden der Quotientenregel:

$$\frac{d}{dx}\tan(x) = \frac{\cos(x)\cos(x) - \sin(x)[-\sin(x)]}{\cos^2(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)}$$
$$= 1 + \frac{\sin^2(x)}{\cos^2(x)} = 1 + \tan^2(x)$$

Somit ist der Tangens eine Lösung der Differentialgleichung $y'=1+y^2$. Benutzt man die Identität $\sin^2(x)+\cos^2(x)=1$ so erhält man alternativ: $\frac{\mathrm{d}}{\mathrm{d}x}\tan(x)=\frac{1}{\cos^2(x)}$.

b) Ableitung der Umkehrfunktion: $\frac{\mathrm{d}}{\mathrm{d}x}f^{-1}(x)=1/(f'\circ f^{-1})(x)$

$$\frac{\mathrm{d}}{\mathrm{d}x}\arctan(x) = \frac{1}{\tan'\left(\arctan(x)\right)} = \frac{1}{1+\tan^2\left(\arctan(x)\right)} = \frac{1}{1+x^2}$$

c) Durch gliedweises Differenzieren ergeben sich aus den Reihendarstellungen sofort die folgenden Ableitungsregeln:

$$\sinh'(x) = \cosh(x) \qquad \cosh'(x) = \sinh(x)$$

Mittels der Summen- und Kettenregel erhält man dann:

$$\frac{d}{dx}\left(\cosh^2(x) - \sinh^2(x)\right) = \frac{d}{dx}\cosh^2(x) - \frac{d}{dx}\sinh^2(x)$$

$$= 2\cosh(x)\cosh'(x) - 2\sinh(x)\sinh'(x)$$

$$= 2\cosh(x)\sinh(x) - 2\sinh(x)\cosh(x)$$

$$= 0$$

Da die Ableitung überall verschwindet, ist die Funktion $x \mapsto \cosh^2(x) - \sinh^2(x)$ konstant. Insbesondere gilt $\cosh^2(x) - \sinh^2(x) = \cosh^2(0) - \sinh^2(0) = 1^2 - 0^2 = 1$.

d) Anwenden der Ketten- und Quotientenregel:

$$\left[\frac{f \circ g \circ h}{(g' \circ h)^2}\right]' = \frac{(f' \circ g \circ h) \cdot (g' \circ h) \cdot h' \cdot (g' \circ h)^2 - (f \circ g \circ h) \cdot 2(g' \circ h) \cdot (g'' \circ h) \cdot h'}{(g' \circ h)^4} \\
= \frac{(f' \circ g \circ h) \cdot h'}{g' \circ h} - \frac{2(f \circ g \circ h) \cdot (g'' \circ h) \cdot h'}{(g' \circ h)^3}$$

$\underline{\mathbf{Aufgabe\ 5:}}\ (\mathrm{Fortsetzung})$

Punkte:

Aufgabe 6: Gleichmäßige Konvergenz

Betrachten Sie die Folge der Funktionen $f_n: \mathbb{R} \to \mathbb{R}$ mit

$$f_n(x) := \frac{nx}{1 + n^2 x^2}, \qquad n \in \mathbb{N}.$$

Beantworten Sie die folgenden Fragen jeweils mit Begründung:

- a) Wie lautet der punktweise Grenzwert der Funktionenfolge $(f_n)_n$?
- b) Konvergiert die Folge gleichmäßig auf [0, 1]?
- c) Konvergiert die Folge auch gleichmäßig auf $[1, \infty)$?

Lösung:

a) Mittels der Grenzwertsätze erhalten wir für alle $x \neq 0$:

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left[\frac{1}{n} \cdot \frac{x}{n^{-2} + x^2} \right] = \lim_{n \to \infty} \frac{1}{n} \cdot \frac{x}{\lim_{n \to \infty} n^{-2} + x^2} = 0 \cdot \frac{1}{x} = 0.$$

Außerdem gilt für alle $n \in \mathbb{N}$: $f_n(0) = 0$. Daher strebt die Funktionenfolge punktweise gegen die Nullfunktion $f \equiv 0$.

b) Die Funktionenfolge konvergiert auf [0, 1] nicht gleichmäßig gegen die Nullfunktion, denn:

$$\sup_{x \in [0,1]} \left| f_n(x) - f(x) \right| \ge \left| f_n(\frac{1}{n}) - 0 \right| = \frac{1}{1+1} = \frac{1}{2}.$$

c) Die Antwort lautet JA aufgrund der folgenden Abschätzung:

$$0 \le f_n(x) = \frac{1}{n} \cdot \frac{x}{\frac{1}{n^2} + x^2} \le \frac{1}{n} \cdot \frac{x}{x^2} = \frac{1}{n} \cdot \frac{1}{x} \le \frac{1}{n}$$

Bei der letzten Abschätzung haben wir von der Voraussetzung $x \ge 1$ Gebrauch gemacht. Somit gibt es zu jedem $\epsilon > 0$ ein $N \in \mathbb{N}$ mit $\frac{1}{N} < \epsilon$, so daß für alle $n \ge N$ gilt

$$\sup_{x \in [1,\infty)} |f_n(x)| < \epsilon.$$

Dies bedeutet aber gerade gleichmäßige Konvergenz.

$\underline{\mathbf{Aufgabe~6:}}~(\mathrm{Fortsetzung})$

Aufgabe 7: Hyperbelfunktionen (Thema: Potenzreihen)

In Analogie zu den Winkelfunktionen (Kreisfunktionen) definiert man die *Hyperbel-funktionen* durch die Potenzreihen:

Cosinus hyperbolicus:
$$\cosh(x) := \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

Sinus hyperbolicus: $\sinh(x) := \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$

Beweisen Sie mit Hilfe des Cauchy-Produkts die Verdopplungsformel

$$\sinh(2x) = 2\sinh(x)\cosh(x).$$

Lösung:

Zunächst betrachten wir die Potenzreihendarstellung von sinh(2x), welche sehr leicht aus der Reihe des Sinus hyperbolicus gewonnen werden kann:

$$\sinh(2x) = \sum_{n=0}^{\infty} \frac{(2x)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{2^{2n+1}}{(2n+1)!} x^{2n+1}$$
 (*)

Es bezeichnen C_j, S_j und P_j die Summanden (Reihenglieder) der cosh- bzw. sinh-Reihe und der Produktreihe zum Index $j \in \mathbb{N}_0$. Unter Beachtung von $C_{2k+1} = 0$ und $S_{2k} = 0$ für alle $k \in \mathbb{N}_0$, berechnen sich P_{2n} und P_{2n+1} nach dem Reihenproduktsatz von Cauchy wie folgt:

$$P_{2n} = \underbrace{S_0C_{2n}}_{=0} + \underbrace{S_1C_{2n-1}}_{=0} + \underbrace{S_2C_{2n-2}}_{=0} + \underbrace{S_3C_{2n-3}}_{=0} + \dots + \underbrace{S_{2n-2}C_2}_{=0} + \underbrace{S_{2n-1}C_1}_{=0} + \underbrace{S_{2n}C_0}_{=0} = 0$$

$$P_{2n+1} = \underbrace{S_0C_{2n+1}}_{=0} + S_1C_{2n} + \underbrace{S_2C_{2n-1}}_{=0} + S_3C_{2n-2} + \dots + \underbrace{S_{2n-1}C_2}_{=0} + \underbrace{S_{2n-1}C_1}_{=0} + S_{2n+1}C_0$$

Somit erhalten wir:

$$2 \sinh(x) \cosh(x) = 2 \sum_{j=0}^{\infty} P_j = 2 \sum_{n=0}^{\infty} (P_{2n} + P_{2n+1}) = 2 \sum_{n=0}^{\infty} P_{2n+1}$$

$$= 2 \sum_{n=0}^{\infty} \left(S_1 C_{2n} + S_3 C_{2n-2} + \dots + S_{2n-1} C_2 + S_{2n+1} C_0 \right)$$

$$= 2 \sum_{n=0}^{\infty} \sum_{k=0}^{n} S_{2k+1} C_{2n-2k}$$

$$= 2 \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} \frac{x^{2n-2k}}{(2n-2k)!}$$

$$= 2 \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} \sum_{k=0}^{n} \frac{(2n+1)!}{(2k+1)!(2n-2k)!} x^{2n+1}$$

$$= 2 \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} \sum_{k=0}^{n} \binom{2n+1}{2k+1} x^{2n+1}$$

$$= 2 \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} \cdot \frac{1}{2} \cdot 2^{2n+1} x^{2n+1}$$

$$= \sum_{n=0}^{\infty} \frac{2^{2n+1}}{(2n+1)!} x^{2n+1} \qquad (**)$$

Vergleich von (*) mit (**) liefert die angegebene Verdopplungsformel.

Bei der Rechnung haben wir von folgender Identität Gebrauch gemacht: $\sum_{k=0}^{n} {2n+1 \choose 2k+1} = 2^{2n}$. Diese ergibt sich sofort aus der Summe und der Symmetrie der Binomialkoeffizienten: $\sum_{\kappa=0}^{\nu} {\nu \choose \kappa} = 2^{\nu}$ und ${\nu \choose \kappa} = {\nu \choose \nu-\kappa}$ für $\nu \in \mathbb{N}_0$.

$\underline{\mathbf{Aufgabe\ 7:}}\ (\mathrm{Fortsetzung})$