Лабораторная работа №4. Оценка качества моделей машинного обучения.

Часть 3. Задача регрессии.

Используемый набор данных: Airfoil Self-Noise (https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise)

In [1]:

```
from IPython.display import display
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import classification_report, mean_squared_error, r2_score
import os
import requests

%matplotlib inline
pd.options.display.max_columns = None
```

In [2]:

```
def downloadFile(url, filePath):
    if not os.path.exists(filePath):
        req = requests.get(url)
        f = open(filePath, "wb")
        f.write(req.content)
        f.close

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/00291"
downloadFile(url + "/airfoil_self_noise.dat", "dataset/airfoil_self_noise.dat")
```

In [3]:

Out[3]:

	Frequency	Angle	Chord length	Free-stream velocity	Suction side displacement thickness	Scaled sound pressure level
145	630	3.0	0.3048	31.7	0.005295	128.698
943	1600	19.7	0.0508	71.3	0.034118	120.575
697	500	12.6	0.1524	71.3	0.048316	121.664
475	2500	0.0	0.1524	55.5	0.001727	127.763
1084	400	9.5	0.0254	39.6	0.004498	121.154
1075	2000	9.5	0.0254	55.5	0.004328	134.052
928	2000	15.4	0.0508	31.7	0.028985	120.835
488	1250	0.0	0.1524	39.6	0.001933	131.023
1487	200	15.6	0.1016	39.6	0.052849	123.514
109	6300	3.0	0.3048	71.3	0.004257	116.134
1013	8000	4.8	0.0254	71.3	0.000849	131.518
344	8000	4.0	0.2286	39.6	0.004738	113.129
1433	1250	12.3	0.1016	55.5	0.036823	124.214
833	800	8.4	0.0508	31.7	0.005808	128.246
1198	400	17.4	0.0254	31.7	0.017663	120.766
153	4000	3.0	0.3048	31.7	0.005295	115.608
660	6300	9.9	0.1524	55.5	0.020844	110.555
424	315	7.3	0.2286	39.6	0.012348	132.149
42	4000	0.0	0.3048	39.6	0.003101	119.229
984	2000	0.0	0.0254	39.6	0.000428	130.026
515	1600	2.7	0.1524	71.3	0.002439	130.644
1113	250	12.7	0.0254	71.3	0.012181	119.698
363	800	5.3	0.2286	71.3	0.005194	133.480
14	500	0.0	0.3048	55.5	0.002831	126.416
367	2000	5.3	0.2286	71.3	0.005194	125.890
1477	500	15.6	0.1016	71.3	0.043726	130.638
1189	1600	17.4	0.0254	39.6	0.017221	127.614
207	1250	0.0	0.2286	55.5	0.002293	127.910
819	400	8.4	0.0508	39.6	0.005662	120.015
688	2500	9.9	0.1524	31.7	0.025278	114.729
500	800	0.0	0.1524	31.7	0.002094	129.117
1191	2500	17.4	0.0254	39.6	0.017221	124.154
834	1000	8.4	0.0508	31.7	0.005808	129.516
33	500	0.0	0.3048	39.6	0.003101	126.959
62	5000	0.0	0.3048	31.7	0.003313	115.645
892	800	15.4	0.0508	55.5	0.027193	130.430

	Frequency	Angle	Chord length	Free-stream velocity	Suction side displacement thickness	Scaled sound pressure level
529	1000	2.7	0.1524	39.6	0.002948	130.589
862	1000	11.2	0.0508	39.6	0.015048	132.430
1034	1250	4.8	0.0254	39.6	0.000907	125.026
957	1600	19.7	0.0508	39.6	0.036484	117.604

In [4]:

<pre>display(data.describe())</pre>	<pre>display(data.isna().sum()) display(data.describe())</pre>	
-------------------------------------	--	--

Frequency	0
Angle	0
Chord length	0
Free-stream velocity	0
Suction side displacement thickness	0
Scaled sound pressure level	0

dtype: int64

	Frequency	Angle	Chord length	Free-stream velocity	Suction side displacement thickness	Scaled sound pressure level
count	1503.000000	1503.000000	1503.000000	1503.000000	1503.000000	1503.000000
mean	2886.380572	6.782302	0.136548	50.860745	0.011140	124.835943
std	3152.573137	5.918128	0.093541	15.572784	0.013150	6.898657
min	200.000000	0.000000	0.025400	31.700000	0.000401	103.380000
25%	800.000000	2.000000	0.050800	39.600000	0.002535	120.191000
50%	1600.000000	5.400000	0.101600	39.600000	0.004957	125.721000
75%	4000.000000	9.900000	0.228600	71.300000	0.015576	129.995500
max	20000.000000	22.200000	0.304800	71.300000	0.058411	140.987000

Пропусков в данных нет.

Подготовим данные и обучим модель.

In [5]:

```
y = data["Scaled sound pressure level"].copy()
X = data.drop(columns=["Scaled sound pressure level"]).copy()

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.35, random_state=
25)
y_pred = LinearRegression().fit(X_train, y_train).predict(X_test)
```

Выполним подсчет RMSE и коэффициента детерминации.

In [6]:

```
RMSE = mean_squared_error(y_test, y_pred, squared=False)
r2 = r2_score(y_test, y_pred)
print("RMSE = {0:0.3f}\nr2 = {1:0.3f}".format(RMSE, r2))
```

```
RMSE = 4.838 r2 = 0.498
```

Диаграмма рассеяния для построенной модели.

In [7]:

```
_, ax = plt.subplots()
ax.scatter(y_test, y_pred, s = 5, color = "r", alpha = 0.75)
ax.set_title("Scatter Plot")
ax.set_xlabel("Scaled sound pressure level")
ax.set_ylabel("Predicted")
display()
```

