Statistics and Machine Learning 1

Lecture 3B: Multivariate Visualisation

Mark Muldoon
Department of Mathematics, Alan Turing Building
University of Manchester

Week 3

Bivariate visualisation techniques: Scatter Plots

A scatter plot is a lossless visualisation that involves placing a marker at (x_{ia}, x_{ib}) for each i and some a, b.

ggplot(auto.data, aes(x=Displacement,y=Weight)) + geom_point()

Bivariate visualisation techniques: Scatter Plots

plt.scatter(dis,wgt)

Bivariate visualisation techniques: 2d Histograms

A 2d histogram generalised the univariate in the natural way as the count of data points falling inside a given two-dimensional area.

ggplot(auto.data, aes(x=Displacement,y=Weight)) + geom_bin2d()

And the area need not be a rectangle!

Bivariate visualisation techniques: 2d Histograms

plt.hist2d(dis,wgt,cmap='Blues')

Multivariate DKE

► The kernel density estimate (KDE) approximates the population distribution function (as before) and is defined by

$$\hat{f}(\mathbf{x} \mid \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} \mid \mathbf{x}_{i}, \boldsymbol{\theta}).$$
 (1)

though here the bandwidth is replaced by a more general, potentially multivariate set of parameters, θ .

► Typically the *kernel function K* will be chosen to be the multivariate normal probability density function:

$$K(\mathbf{x} \mid \mathbf{x}_i, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x} \mid \mathbf{x}_i, \boldsymbol{\sigma}).$$
 (2)

A 2d kernel density plot shows estimated curves of constant $f(\mathbf{x})$.

Bivariate visualisation techniques: 2d KDE

ggplot(auto.data, aes(x=Displacement,y=Weight)) + geom_density_2d()

Bivariate visualisation techniques: 2d KDE

sns.kdeplot(dis,wgt,cmap="Blues")

Higher dimensions: 3d Scatter

Higher dimensions: Scaled Scatter

Point Size is Proportional to Horsepower

Higher dimensions: Plot Matrices

Pairs of categorical variables

Contingency tables:

		Accide	nt Occurred?	
		No	Yes	Total
Location:	Offsite	414	153	567
	Onsite	390	43	433
	Total	804	196	1000

- Can be used for categorical, ordinal and discrete variables, with more than two levels
- Can write values as proportions of each row or each column
- Can write them as proportions of the total
- Can compare them with what the values would be if the two variables were independent (values would be the products of respective marginals)

Categorical and continuous variables

For example, one density plot, or a heatmap strip, per category:

