Normalformen Einstieg [Drei-Schemata]

Es seien folgende Relationenschemata mit den jeweiligen Mengen funktionaler Abhängigkeiten gegeben:

 $S_1(P,Q,R)$ mit

$$F_1 = \left\{ \begin{array}{c} \{P,Q\} \rightarrow \{R\}, \\ \{P,R\} \rightarrow \{Q\}, \\ \{Q,R\} \rightarrow \{P\}, \end{array} \right.$$

 $S_2(P, R, S, T)$ mit

$$F_2 = \left\{ \left\{ P, S \right\} \to \left\{ T \right\}, \right.$$

 $S_3(P, S, U)$ mit

$$F_3 = \left\{ \right.$$

(a) Welche der drei Schemata sind in BCNF, welche in 3NF, welche in 2NF? Begründe!

 S_1 : BCNF

 S_2 : 1NF aber nicht 2NF

S₃: BCNF

 (S_1, F_1) und (S_3, F_3) sind offenbar in BCNF und daher auch in 3NF und 2NF. (S_2, F_2) ist offenbar nicht in 2NF, da der Schlüsselkandidat PRS ist und T von einem Teil dieser Schlüsselkandidaten, nämlich PS, abhängig ist und daher auch nicht in 3NF oder BCNF.

(b) Wenden Sie auf (S_2, F_2) den Synthesealgorithmus an, und bestimmen Sie auch die Mengen aller nichttrivialen einfachen funktionalen Abhängigkeiten, die über den erhaltenen Teilrelationen gelten. Ihr Lösungsweg muss nachvollziehbar sein.

(i) Kanonische Überdeckung

— Die kanonische Überdeckung - also die kleinst mögliche noch äquivalente Menge von funktionalen Abhängigkeiten kann in vier Schritten erreicht werden.

$$F_2 = \left\{ \left\{ P, S \right\} \to \left\{ T \right\}, \right.$$

(ist schon in der kanonische Überdeckung)

(ii) Relationsschemata formen

— Erzeuge für jede funktionale Abhängigkeit $\alpha \to \beta \in F_c$ ein Relationenschema $\mathcal{R}_\alpha := \alpha \cup \beta$. -

 $R_{21}(P, S, T)$

(iii) Schlüssel hinzufügen

— Falls eines der in Schritt 2. erzeugten Schemata R_{α} einen Schlüsselkandidaten von \mathcal{R} bezüglich F_c enthält, sind wir fertig, sonst wähle einen Schlüsselkandidaten $\mathcal{K} \subseteq \mathcal{R}$ aus und definiere folgendes zusätzliche Schema: $\mathcal{R}_{\mathcal{K}} := \mathcal{K}$ und $\mathcal{F}_{\mathcal{K}} := \emptyset$

$$R_{21}(P, S, T)$$
 mit

$$F_{21} = \left\{ \left\{ PS \right\} \to \left\{ T \right\}, \right\}$$

 $Github: \verb|Module|| 10_DB|| 50_Relationale-Entwurfs theorie|| 30_Normalformen|| 10_Synthese algorithmus|| Aufgabe_Drei-Schemata.tex||$