On rank-one unitary perturbations of the shift operator over a de Branges-Rovnyak space

Pierre-Olivier Parisé (Université Laval) Advisor, T. Ransford

> AMS/CMS Winter meeting 2018 Vancouver

> 7th-10th, December, 2018

In 1949, A. Beurling characterizes all the closed invariant subspaces of the shift operator $S: H^2 \to H^2$:

Theorem (Beurling's characterization)

If $V \subset H^2$ is a closed invariant subspace of the shift operator S, that is $SV \subset V$, then there exists a inner function $\theta : \mathbb{D} \to \mathbb{C}$ such that

$$V=\theta H^2.$$

Remarks:

- H^2 is the space of holomorphic functions defined on the unit disk $\mathbb D$ such that $\langle f, f \rangle_2 := \sum_{n=0}^{\infty} \left| \frac{f^{(n)}(0)}{n!} \right|^2 < +\infty$.
- $S: H^2 \to H^2$ is the shift operator defined as Sf(z) := zf(z). In other words, it shifts the sequence of Taylor coefficients by one place to the right.
- A function θ is inner if θ is bounded on $\mathbb D$ and extends to the unit circle \mathbb{T} such that $|\theta|=1$ a.e.

As a consequence of A. Beurling's characterization, we have a characterization of the closed invariant subspaces of the backward shift operator $S^*: H^2 \to H^2$:

Corollary

If $V \subset H^2$ is a closed invariant subspace of the backward shift operator S^* , then there exists an inner function $\theta: \mathbb{D} \to \mathbb{C}$ such that

$$V=K_{\theta}:=H^2\ominus\theta H^2.$$

Remark:

• The backward shift operator is the adjoint of S and is expressed as

$$S^*f(z)=\frac{f(z)-f(0)}{z}.$$

It shifts the sequence of Taylor coefficients by one place to the left.

• K_{θ} is the so-called model space associated to θ .

Definition

We define $S_{\theta}: K_{\theta} \to K_{\theta}$ to be the compression of the shift operator S to K_{θ} :

$$S_{\theta}:=P_{\theta}|S|_{K_{\theta}}$$
.

Remarks:

- ullet The operator $P_{ heta}:H^2 o K_{ heta}$ is the orthogonal projection onto $K_{ heta}.$
- $S|_{K_{\theta}}$ is the shift operator restricted to the model space.
- K_{θ} is a Hilbert space that inherits the Hilbert space structure of H^2 .

Why are we interesting in the operator S_{θ} ?

Theorem

If T is a contraction ($||T|| \le 1$) on a Hilbert space such that

- $\lim_{n\to\infty} T^{*n} = 0$ in the operator-norm;
- the rank of $I T^*T$ is one;
- the rank of I − TT* is one;

then T is unitarily equivalent to S_{θ} for some inner function θ .

Remark:

- In other words, studying the operator S_{θ} is the same thing as studying the operator T in the above Theorem.
- The specialists called the model operator in the Sz.-Nagy-Foiaş functional model.

In 1972, Clark was interested in the operators of the form $U = T + S_{\theta}$ where T has rank equals to 1 and U is unitary.

Theorem

If $\theta(0) = 0$ and U is a rank-one perturbation of S_{θ} that is also unitary, then there exists $\alpha \in \mathbb{T}$ such that

$$U=U_{\alpha}:=S_{\theta}+\alpha\otimes S^*\theta.$$

Remarks:

- We already know that T must be a tensor product. Now we know exactly the form of it.
- The tensor product (in the case of Hilbert spaces) is the operator defined on H^2 in the following way: given $f, g \in K_\theta$, $f \otimes g$ is defined as

$$(f \otimes g)h = \langle h, g \rangle_2 f \quad h \in K_\theta.$$

Let H be a Hilbert space of Holomorphic functions equiped with an inner product. H is a RKHS (Reproducing kernel Hilbert space) if it satisfies the following properties:

- $f \mapsto f(w)$ is continuous for all $w \in \mathbb{D}$;
- the family $\{f \mapsto f(w) : w \in \mathbb{D}\}$ separates points.

By the Riesz-Fischer's Theorem, the first property implies that there exists functions k_w such that $f(z) = \langle f, k_z \rangle$. These functions k_w are called the reproducing kernels of the space.

Example

- **1** The space H^2 is a RKHS with $k_w(z) := (1 \overline{w}z)^{-1}$.
- ② The model space K_{θ} is a RKHS with

$$k_w^{\theta}(z) := (1 - \overline{\theta(w)}\theta(z))k_w(z) = \frac{1 - \overline{\theta(w)}\theta(z)}{1 - \overline{w}z}.$$

Let L^{∞} be the set of bounded functions on \mathbb{T} . Let L^2 be the square summable functions on \mathbb{T} . Then, we know that

$$L^2=H^2\oplus (H_0^2)^{\perp}.$$

We denote by $P_+:L^2\to H^2$ the orthogonal projection onto the space H^2 .

Definition

Let $\psi \in H^{\infty}$. The Toeplitz operator $T_{\psi}: H^2 \to H^2$ is defined as

$$T_{\psi}f := P_{+}(\psi f)$$

Remark:

- $||T_{\phi}|| = ||\psi||_{L^{\infty}}$.
- $T_{\psi}^* = T_{\overline{\psi}}$.
- $\bullet \ \ \text{For} \ \psi, \varphi \in H^{\infty}, \ T_{\overline{\psi}}T_{\varphi} = T_{\overline{\psi}\varphi}.$

8 / 23

de Branges-Rovnyak spaces $\mathcal{H}(b)$ can be defined in the following way.

Definition

Let $b \in H^{\infty}$ such that $||b||_{\infty} \leq 1$. The Hilbert space $\mathcal{H}(b)$ is the range of the operator $(I - T_b T_{\overline{b}})^{1/2}$ endowed with the inner product

$$\left\langle (I - T_b T_{\overline{b}})^{1/2} f, (I - T_b T_{\overline{b}})^{1/2} g \right\rangle_b := \left\langle f, g \right\rangle_2$$

for $f,g \in (\ker(I-T_bT_{\overline{b}})^{1/2})^{\perp}$.

Remark:

- $\mathcal{H}(b)$ can be viewed as a RKHS with the following kernel: $k_w^b := (1 \overline{b(w)}b)k_w$ for $w \in \mathbb{D}$.
- It is a generelization of the model space.
- We have $h \in \mathcal{H}(b)$ if and only if $T_{\overline{b}}h \in \mathcal{H}(\overline{b})$.

An inner function $\theta: \mathbb{D} \to \mathbb{D}$ is an example of an extreme point of the unit ball of H^{∞} :

Theorem

Let H^{∞} be the bounded holomorphic functions on the unit disk and let $f \in H^{\infty}$ such that $||f||_{\infty} \leq 1$. f is an extreme point of the unit ball of H^{∞} if and only if $\log(1-|f|) \notin L^1(\mathbb{T})$.

Question: Is Clark's result still true in the case of $\mathcal{H}(b)$ where b is an extreme point?

However, we can't work directly with the compressed shift since $\mathcal{H}(b)$ is not invariant under the shift operator:

Theorem (D. Sarason)

The following conditions are all equivalent:

- $b \in \mathcal{H}(b)$.
- Polynomials are densed in $\mathcal{H}(b)$.
- b is non-extreme point of H^{∞} .
- $SH(b) \subset H(b)$.

So, to extend Clark's result, we must properly defined the shift operator on the space $\mathcal{H}(b)$ in the extreme case.

7th-10th, December, 2018

A general Theorem on de Branges-Rovnyak spaces is the following:

Theorem

Let $b \in H^{\infty}$ with $||b||_{\infty} \leq 1$. Then,

- $\mathcal{H}(b)$ and $\mathcal{H}(\overline{b})$ are invariant under the Toeplitz operator $T_{\overline{\omega}}$ with $\varphi \in H^{\infty}$:
- the operator $\mathcal{T}_{\overline{\omega}}:\mathcal{H}(b) o \mathcal{H}(b)$ is a bounded operator with $||T_{\overline{\varphi}}|| \leq ||\varphi||_{\infty}$.

Remarks:

- $S^* = T_{\overline{z}}$. We denote $X_b := S^*|_{\mathcal{H}(b)}$.
- X_b plays the role of the "backward shift" on $\mathcal{H}(b)$.
- Also, $S^*b \in \mathcal{H}(b)$ even if $b \notin \mathcal{H}(b)$. This comes from the fact that

$$T_{\overline{b}}S^*b = S^*T_{\overline{b}}T_b1 = -S^*(I - T_{\overline{b}}T_b)1 \in \mathcal{H}(\overline{b}).$$

Moreover, $||S^*b||_b^2 = 1 - |b(0)|^2$.

• X_h^* will play the role of the "shift" on $\mathcal{H}(b)$.

We have now a formula for the shift X_b^* defined on $\mathcal{H}(b)$.

Theorem

For any $h \in \mathcal{H}(b)$, we have

$$X_b^*h = Sh - \langle h, S^*b \rangle_b b.$$

Remark:

- In other words, $X_b^* = S b \otimes S^*b$. So, we see that X_b^* is the shift operator perturbated by a rank-one operator.
- Moreover, $X_b X_b^* = I S^* b \otimes S^* b$.
- Also, if b(0) = 0, then $X_b^* X_b = I k_0^b \otimes k_0^b$.

We are now able to define U_{α} for some $\alpha \in \mathbb{T}$. We suppose for now on that b(0) = 0.

Definition

Let $\alpha \in \mathbb{T}$. Then, for $f \in \mathcal{H}(b)$, we define

$$U_{\alpha}f := X_b^* f + \alpha \langle f, S^* b \rangle_b 1.$$

In other words, we can write U_{α} as

$$U_{\alpha} = X_b^* + \alpha \otimes S^*b.$$

Remark:

- If b(0)=0, then $k_0^b=1$ and so $1\in \mathcal{H}(b)$. So, U_α is well defined.
- The operator U_{α} is unitary for each $\alpha \in \mathbb{T}$. That means that

$$U_{\alpha}U_{\alpha}^*=U_{\alpha}^*U_{\alpha}=I.$$

We have all the tools to state Clark's result.

Theorem

Let b(0) = 0, $\alpha \in \mathbb{T}$ and let T be a rank-one operator on $\mathcal{H}(b)$. Suppose that $U = X_b^* + T$ is a unitary operator on $\mathcal{H}(b)$. Then, there exists a $\alpha \in \mathbb{T}$ such that

$$T = \alpha \otimes S^*b$$
.

To prove this Theorem, we need two key lemmas.

Lemma

If
$$||h||_b = ||X_b h||_b$$
, then $h \perp S^* b$.

Lemma

If
$$||h||_b = ||X_b^*h||_b$$
 and $b(0) = 0$, then $h \perp 1$.

T is a rank-one operator, so U can be written as

$$U = X_b^* + f \otimes g \quad f, g \in \mathcal{H}(b).$$

Since U is unitary, we must have that

$$||Uh||_b = ||h||_b = ||U^*h||_b \quad \forall h \in \mathcal{H}(b).$$

The goal is to show that $f = \alpha$ and $g = S^*$.

- The first step will be to show that $\mathbb{C}.S^*b = \mathbb{C}.g$.
- The second step will be to show that $\mathbb{C}.1 = \mathbb{C}f$.

First step

Suppose that $h \perp g$. Then, we have that

$$(f\otimes g)h=\langle h,g\rangle_b f=0$$

and so

$$Uh = X_b^*h.$$

From this, we deduce that

$$||X_b^*h||_b = ||Uh||_b = ||h||_b.$$

Thus, $h \perp S^*b$. We have just shown that $(\mathbb{C}.g)^{\perp} \subset (\mathbb{C}.S^*b)^{\perp}$. Thus,

$$\mathbb{C}S^*b=\mathbb{C}g\Rightarrow g=c_1S^*b.$$

Second step

Suppose that $h \perp f$. Then, the adjoint of U_{α} is

$$U_{\alpha}^* = X_b + g \otimes f.$$

So, we have

$$U_{\alpha}^*h = X_bh + \langle h, f \rangle_b g = X_bh.$$

Since U_{α} is unitary, we have

$$||X_b h||_b = ||U_\alpha h||_\alpha = ||h||_b.$$

From the second Lemma, $h \perp 1$. We have just shown that $(\mathbb{C}.f)^{\perp} \subset (\mathbb{C}.1)^{\perp}$. Thus,

$$\mathbb{C}.f = \mathbb{C}.1 \Rightarrow f = c_2.$$

Conclusion

We have $f=c_2$ and $g=c_1S^*b$. Thus, U_{α} has now the following form

$$U = X_b^* + c \otimes S^*b \quad \alpha \in \mathbb{C}.$$

It remains to show that |c|=1. Since b(0)=0, we know that $1\in \mathcal{H}(b)$. So

$$U^*1 = X_b1 + (S^*b \otimes c)1 = \overline{c} \langle 1, 1 \rangle_b S^*b.$$

By the reproducing kernel property, we have that

$$\langle 1, 1 \rangle_b = \left\langle 1, k_0^b \right\rangle_b = 1.$$

Thus, $U^*1 = \overline{c}S^*b$. Now, it remains to remark that

$$1 = ||1||_b = ||U^*1||_b = |c|||S^*b||_b = |c|. \quad \Box$$

We could continu to inspect the properties of the operators U_{α} , like characterizing their spectrum and much more.

We could continu to inspect the properties of the operators U_{α} , like characterizing their spectrum and much more.

Fricain, E. Bases of reproducing kernels in de Branges-Rovnyak spaces. *J. Funct. Anal. 266*, 2 (2005), 373-405.

We could continu to inspect the properties of the operators U_{α} , like characterizing their spectrum and much more.

Fricain, E. Bases of reproducing kernels in de Branges-Rovnyak spaces. *J. Funct. Anal. 266*, 2 (2005), 373-405.

Theorem

Let $U_{\alpha} := X_b^* + \alpha (1 - \alpha b(0))^{-1} k_0^b \otimes S^* b$ with $|\alpha| = 1$. Then, U_{α} is an isometry of $\mathcal{H}(b)$. Moreover, it is a unitary operator of $\mathcal{H}(b)$ if and only if b is extreme and in that case, the operator U_{α} are the only one-dimensional perturbation of X_b^* which are unitary.

Remark:

• This covers the case $b(0) \neq 0$.

We could continu to inspect the properties of the operators U_{α} , like characterizing their spectrum and much more.

Fricain, E. Bases of reproducing kernels in de Branges-Rovnyak spaces. J. Funct. Anal. 266, 2 (2005), 373-405.

Theorem

Let $U_{\alpha}:=X_{b}^{*}+\alpha(1-\alpha\overline{b(0)})^{-1}k_{0}^{b}\otimes S^{*}b$ with $|\alpha|=1$. Then, U_{α} is an isometry of $\mathcal{H}(b)$. Moreover, it is a unitary operator of $\mathcal{H}(b)$ if and only if b is extreme and in that case, the operator U_{α} are the only one-dimensional perturbation of X_h^* which are unitary.

Remark:

- This covers the case $b(0) \neq 0$.
- Moral of the story: always check in the litterature if things have already been done...

Thanks for your attention!

Fricain, E. Bases of reproducing kernels in de Branges-Rovnyak spaces. *J. Funct. Anal. 266*, 2 (2005), 373-405.

Sarason, D. Sub-Hardy Hilbert spaces in the unit disk, vol. 10 of *University of Arkansas Notes in the Mathematical Sciences*. Wiley-Interscience, New-York, 1994.