University of Waterloo
Faculty of Engineering
Department of Electrical and Computer Engineering

Project Specifications and Risk Assessment

Group #2015.010
Professor Werner Dietl (Consultant)
Qi Liu (20358515)
Asif Arman (20349964)
SangHoon Lee (20357600)
Danny Yan (20387735)
June 2, 2014

1.	High	-Level Project Description	2	
	_	Motivation		
		Problem Statement		
		Block Diagram		
		ect Specifications		
		Functional Specifications		
	2.2	Non-Functional Specifications	5	
		Assessment		
Re	References9			

Instant messaging systems of today are instant in name only.

Messages are sent when the send button is pressed by the sender, and no feedback to the receiver is presented during the waiting period except a wholly inadequate "user is typing" notification. This disruptive downtime between message and reply in modern instant messaging systems is becoming more apparent day by day.

In a 2007 study conducted by scientists at the Dortmund Institute for German Language and Literature, it was discovered that the average instant messaging system user discards 20% of their composed messages [1]. Evidently, messages in instant messaging systems of today are at constant risk of becoming obsolete before the send button is pressed.

Much of this awkward inefficiency could be avoided if there exists an instant messaging system that is true to its name: a system that provides instant, real-time communication between participants, without being bound by the archaic timing constraint dictated by the send button.

More recently, leaks provided by Edward Snowden on NSA's overreach in its information collection practices has sparked a global discussion regarding government surveillance, and a surge in public demand for truly private and secure communication systems.

Some believe that the widely popular instant messaging network, Skype, is the solution to this problem as it makes use of a peer-to-peer architecture. However, this is no longer true of the network since 2012, when Microsoft replaced all of the decentralized supernodes in the Skype network (peers that had enough resources to act as relays for traffic between other peers) with servers under their control [2]. A quick look at the current Skype privacy policy verifies that Microsoft indeed reserves the right to collect "Content of instant messaging communications, Voice messages, and video messages" [3].

As of today, the demand for truly private and secure instant messaging systems has yet to be met.

We aim to design an instant messaging system that mimics the free-flowing experience of natural, inperson conversations, and at the same time protects the privacy of its users as an utmost priority.

Our system will meet the former objective by updating messages on the receiver side as they are being written in real time, removing the disruptive delay between message and reply necessitated by the send button.

Ideally, we will meet the latter objective by implementing our system as a truly decentralized peer-to-peer architecture with no centrally controlled servers of any kind. Messages in this system will thus travel directly from the sender to the recipient, through a completely encrypted channel, giving no opportunity for any third-party to access message contents.

Alternatively, if a pure peer-to-peer system proves to be impractical for any reason, we will attempt to design a hybrid system that makes use of central servers for only peer discovery and authentication.

User Input: Enter Credentials Authentication Request/ Distributed U Cross-Platfo Updates Publication packages Traffic Between Peers Screen ϳ Service mutat Paer Bissavery Service (ND) Packa€ Dist William West Attention in ili litebile Application Wrapper Library (ND) stricel User Inturface (D) dryption ayer (ND) Populates Compets Last in many manifesters and and the Cantacts Selected Conversation Interface (D) Cor tact List (D) Syncirconize Messages Between Peers Update Service (D) Send/Receive Wessage Updates System Outbillt: Displays অ has bed Messages User Input! Select 場合場合

Figure 1: Block diagram of project components and inputs/outputs

Table 1: List of functional specifications

Functional	Essential /	Description
Specification #	Non-Essential	
1	Essential	Messages should be displayed in real time: the receiver should see the
		message that the sender is typing as it is being typed. The average
		update time should be less than 2 seconds assuming both sender and
		receiver are under an ideal and stable network.
2	Essential	Every message sent over the network will be encrypted. Messages
		should use at least 128 bit encryption scheme.
3	Essential	Users are not limited to one conversation. They will be able to
		participate in multiple conversations concurrently.
4	Essential	Users should have access to the same contact list on every device that
		they sign in to.
5	Essential	Each member of the user's contact list will display an availability
		indicator showing they are available to communicate.
6	Essential	Users must successfully authenticate themselves through a sign-in
		screen to obtain access to their contact list as well as send and receive
		messages.
7	Essential	Communication between users is routed through a private P2P
		channel using Distributed Hash Tables (DHT) for peer discovery. A
		client-server architecture will be used for peer discovery as a fall back
		in case suitable DHT libraries are not found.
8	Non-Essential	The frequency of real time message updates should be user
		adjustable. Both sender and receiver should be able to modify how
		often messages are to be updated within 0.1 second level of
		granularity. If they wish, users should be able to turn off the real time
		component completely so that the application behaves like traditional
		messaging systems that send messages only on demand.
9	Non-Essential	Message queuing will be supported. If the receiver of the message is
		offline (unavailable), messages can be queued, and the receiver will
		receive the message when he/she next becomes available.
10	Non-Essential	Group chat should be supported. At least 4 users should be able to
		participate in the same real-time conversation with no noticeable
		performance degradations.
11	Non-Essential	Group conversation messages should remain synchronized. Every user
		should have the same consistent view of the messages in terms of
		ordering and content.

12	Non-Essential	The user can choose to save conversation history. When a user reconnects to their account (on a different device) they will be able to view their previous conversations between the other users and groups.
13	Non-Essential	A user should be able to use the application on more than 1 device concurrently. State between each instance of the application should be synchronized to within 10 seconds of delay under ideal network conditions.
14	Non-Essential	Real time widgets will be supported that allow users to perform more than just sending messages. Examples may include a drawing widget, voice communication widget, video widget, etc.
15	Non-Essential	Users should be able to search through their contact list and messages. Searching will be done in real time and filter through new messages as they arrive.

Table 2: List of non-functional specifications

Non-functional	Essential /	Description
specification	Non-Essential	
Efficiency	Essential	Efficiency is one of the most important non-functional specifications
		that our system requires. The system needs to be as efficient as
		possible in both local and network resource usage. In terms of
		network usage, on average it should not surpass 1MB per 10000
		characters sent/received. In terms of local resource usage, it should
		never use more than 50MB of memory under normal operation as a
		mobile or web application.
Security	Essential	Our system needs to safeguard the privacy of the user as an utmost
		priority. All messaging traffic needs to be encrypted and resist
		tampering and eavesdropping. Only the intended recipient should be
		able to decrypt the messages efficiently with his private key, and be
		able to validate that it came from the expected sender.
Dependability	Essential	Our system needs to be very dependable. Instant messaging systems
		are required to be very reliable and robust. It should perform within
		our design limits without failure over time and should be able to
		respond adequately to unanticipated runtime conditions. Therefore,
		all messages should be delivered in the correct order and without any
		errors under ideal network conditions. Also, all failures in delivery due
		to poor networking conditions needs to be notified to the user.
Usability	Essential	Our system should be highly usable, with an intuitive and responsive
		real-time interface. Our system needs to have minimal input latency

		under all supported platforms. There should not be more than 0.5
		second of lag between user input and interface response (not
		counting network latency) as long as the system has sufficient local
		resources for normal operation.
Maintainability	Non-Essential	Our system needs to be easily maintainable so we can update the
		client and add features without needing to perform architecture
		overhauls. Our component topology needs to be laid out in a layered
		architecture with high degrees of separation, with automated tests
		covering all important features to detect regression issues when
		changes are made.
Portability	Non-Essential	As our system may need to run on multiple platforms, portability
becomes important		becomes important aspect of our system. It should be able to run on
		android, iOS mobile platforms in addition to the original web
		platform, retaining all of functional and non-functional specifications.
		Once we have completed the core specifications for the web
		application, this can be accomplished using open source libraries that
		wrap the web application with platform specific interfaces.

Table 3: List of possible risks, their probabilities and potential impact

	Nature of Situation	Potential impact	Probability of the
			Situation
Quality,	Certain functionality for the	This situation can	The probability of this
stability,	project are dependent on	cause a devastating	situation is considered
interoperability	open-source libraries for	impact to our project	to be high. Due to the
and maturity of	operation (for instance, the	success. If any of the	usage of open-source
open-source	Encryption layer and the DHT	depended open source	libraries, we have no
libraries needed	library used for peer	libraries creates	guaranteed support in
for certain	discovery). Some of the open-	conflict during the	the case where a
project	source libraries we plan to use	development of the	library malfunctions or
components.	are under heavy development	project, it can greatly	does not perform as we
	and may or may not contain	delay our project	expect.
	incomplete features or show-	completion time and	
	stopping bugs.	decrease the chances	Finding possible
		of the project	alternatives to each
	In addition, compatibility is	successfulness.	library we plan to use
	another concern we have		can greatly reduce the
	regarding use of open-source		impact of this situation
	libraries, as some of them may		occurring. Having a list
	conflict with aspects our code		of alternative libraries
	or other libraries we're using.		that can substitute

			dysfunctional or
			incompatible libraries
			means we can switch
			between them to avoid
			failure or halting our
			project.
			We also have the
			option of contributing
			to the open-source
			project that is causing
			issues for us or fork the
			project for our own
			use. However this
			option requires a great
			amount of domain
			specific technical
			expertise, and a huge
			maintenance overhead.
			Thus it is best avoided
			if alternative libraries
			exist.
			No matter what we do,
			it is still possible for the
			worst case to occur.
			Therefore, to mediate
			the damage caused by
			the situation, we may
			end up needing to
			reduce the scope or
			remove certain
			features from the
			project, or fall back to
			alternative
			implementations.
Failure to meet	Time management is an	Failure to complete the	The probability of this
time	important factor in	project under the	situation is medium
constraints for	determining the completion of	deadline can result to	because group
certain	project before the deadline	academic penalties.	members have a
deliverables.	because we need to invest	The produced delays	flexible schedule

	enough time to complete each	by poor time	throughout the
	component of the project. Our	management can also	duration of project to
	project treads on many	increase or create	reduce the chances of
	uncharted territories in the	more potential delays	this situation occurring.
	field of instant messaging and	as the project	
	requires knowledge of several	progresses.	If timing does become
	advanced networking topics,		a significant constraint,
	so time required for	Time to market will	we can consider
	completing each component	also be effected by	reducing the scope of
	can be difficult to estimate.	delays in the project. If	the project by focusing
		we take too long, we	only on our core
		risk losing our	specifications.
		competitive edge	
		if/when another	
		developer releases a	
		similar instant	
		messaging system.	
Team member	In every project involving two	In the situation where	The probability of this
leaving or	or more people, some degree	a team member were	situation to occur is
disbandment of	of conflict will be inevitable.	to leave the group, it	low. The team
the team.	Members may decide to leave	will greatly affect the	members have worked
	the team in the worst case.	project and the	on previous projects
		remaining team	involving cooperation
	Also, there is a chance that	members. Addition	and teamwork.
	certain members may need to	time required to cover	
	leave the program in the	for the remaining work	To mitigate the risk of
	second term due to failing out	of the missing member,	any single member
	or other special circumstances.	and the morale of the	leaving, we will try to
		team will be heavily	distribute work so that
		affected. In the worst	at least two people in
		case, the entire team	the group are domain
		can disband and	experts on any single
		abandon the project.	component or
			technology used in our
			project.

- [1] T. Simonite, "New Scientist Blogs," 07 December 2007. [Online]. Available: http://www.newscientist.com/blog/technology/2007/12/instant-message-irrelevance.html. [Accessed 01 June 2014].
- [2] D. Goodin, "Skype replaces P2P supernodes with Linux boxes hosted by Microsoft (updated)," 01 May 2012. [Online]. Available: http://arstechnica.com/business/2012/05/skype-replaces-p2p-supernodes-with-linux-boxes-hosted-by-microsoft/. [Accessed 01 June 2014].
- [3] Microsoft, "Skype Privacy Policy," 2014. [Online]. Available: http://www.skype.com/en/legal/privacy/. [Accessed 01 June 2014].