WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONA	L APPLICATION PUBLIS	HED U	JNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Paten	t Classification 6:		(11) International Publication Number: WO 99/58736
C23C 14/34, 14/	708, C03C 17/00	A2	(43) International Publication Date: 18 November 1999 (18.11.99)
(21) International Appli (22) International Filing			BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD
(30) Priority Data: 60/084,720 60/085,129 09/302,409 (71) Applicant: PPG IN West 143rd Stree	8 May 1998 (08.05.98) 12 May 1998 (12.05.98) 30 April 1999 (30.04.99) IDUSTRIES OHIO, INC. [US/Ust, Cleveland, OH 44111 (US).	Ţ	SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI paten (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE
Drive, Allison P. 111 Cornwall D	JGHNESSY, Dennis, J.; 4219 Wark, PA 15101 (US). FINLEY, rive, Pittsburgh, PA 15238 (US)	James,). ME	J.; Without international search report and to be republished upon receipt of that report.

(54) Title: ZINC-TIN ALLOY SPUTTERING TARGET

Place, Pittsburgh, PA 15272 (US) et al.

WICK, Paul, A.; 4117 Stonecliffe Drive, Monroeville, PA

(74) Agents: LEPIANE, Donald, C.; PPG Industries, Inc., One PPG

(57) Abstract

15146 (US).

Tin is added to a zinc cathode target to enhance the sputter efficiency of the target. Films deposited using the cathode, e.g., greater than zero but less than 10 weight percent tin and greater than 90 but less than 100 weight percent zinc improve the chemical durability of a high transmittance, low emissivity coating stack over coating stacks having zinc oxides without tin oxide. High transmittance, low emissivity coating stacks are heated with the heated coating having reduced haze by selecting the thickness of metal primer layer between an infrared reflective film, e.g. a silver film and a dielectric film, e.g., a 52-48 zinc stannate, zinc oxide, tin oxide film or a zinc oxide film. Also disclosed are enhancing films that lower the resistivity of silver films deposited thereon and improve chemical durability of the coating stack.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
ВВ	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BJ	Benin	IE	Ireland	MN	Mongolia ~	ÜA	Ukraine	
BR	Brazil	ΙL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	•
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
СМ	Cameroon		Republic of Korea	PL	Poland			
.CN	China	KR	Republic of Korea	PT	Portugal .			
CU	Cuba	. KZ	Kazakstan	RO	Romania			
CZ ·	Czech Republic	LC	Saint Lucia	RU	Russian Federation		•	
DE	Germany	LI	Liechtenstein	SD	Sudan		•	
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			
		-						
							•	

WO 99/58736 PCT/US99/09890

ZINC-TIN ALLOY SPUTTERING TARGET

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Serial Nos. 60/084,720, and 60/085,129 filed May 8, 1998, and May 12, 1998, respectively.

FIELD OF THE INVENTION

This invention relates, in general, to a zinc cathode sputtering target having low weight percent of tin, to a shippable, heat treatable, low emissivity coating, which coating may be made using the target, to coated articles and to methods of making the coated articles.

15

10

DISCUSSION OF THE PRESENTLY AVAILABLE TECHNOLOGY

U.S. Patent No. 4,610,771 ("U.S.P.N. '771")
discloses an antireflective sputtered metal oxide film
deposited using a zinc/tin alloy target. U.S.P.N. '771 in
column 3, line 26, to column 4, line 12, discusses the use of
the alloy target to deposit a zinc stannate film having, in
general, oxides of zinc and tin preferably in proportions of
10 to 90 percent zinc and 90 to 10 percent tin.

Although the zinc/tin alloy target disclosed in

U.S.P.N. '771 to deposit the zinc stannate film is acceptable, there are limitations. More particularly, in a low E coating such as the ty e described in U.S.P.N. '771, an infrared reflecting metal film or layer, e.g., silver is deposited on the zinc stannate film. A silver film deposited on a sputtered zinc stannate film has a higher electrical resistivity and higher emissivity than a silver film deposited on a sputtered zinc oxide film or layer. More particularly, U.S. Patent No. 5,821,001 ("U.S.P.N. '001") discloses a silver film deposited on a zinc oxide film; the atoms of the silver film deposit in a form characterized by a low electrical resistivity which provides the silver film with a low emissivity. 1 depositing the zinc oxide film the process

parameters are selected to deposit a zinc oxide layer with a suitable crystallinity or preferential crystal growth for favorably affecting deposition of the silver atoms of the silver film.

5

Sputtering zinc in a reactive atmosphere, e.g., oxygen, to provide a zinc oxide film over which a silver film having a low electrical resistivity is deposited has drawbacks. For example, it is difficult to reactively sputter a pure zinc target, i.e., a target of about 100% zinc metal, in a reactive atmosphere such as oxygen for reasons discussed in more detail below.

U.S.P.N. '001 also discloses a heat treatable low emissivity film. The thickness of the primer layers, e.g., titanium films, may be increased to provide enhanced 15 mechanical durability, i.e., improve shear resistance. The shear resistance test consists of applying 20 successive strokes of a cloth wetted with deionized water against the coated surface of glass, followed by visual examination of the tested area. Depending on the appearance of the tested area, 20 letter grades of D-, D, D+...A, A+ are assigned to the coating; then, for numerical analysis, assignments of 5 to D-, 10 to D, 55 to A, and 60 to A+ are made. If a coating shows no signs of shear, not even barely visible scratches, then it receives a maximum rating of 60. Coatings that display 25 uniform shear and delamination at any interface of the multilayer coating within the test area receive a failing rating of zero. Other levels of performance receive interme liate scores. This method of coating durability characterization has been found to correlate well with field performance of the 30 coating. The drawback with using thick primer layers is that the coating stack after heating, e.g., glass tempering or glass bending operations, is likely to have a hazy appearance when viewed using a dark room, flood-light haze test. In the dark room, floodlight haze test, the coated specimen is viewed 35 in reflection in a dark room at various viewing angles relative to a spotlight, in order to find the geometry yielding maximum scattering of light, or, in other words,

haze, possible from the coating. If there is no geometry that can make haze observable, an A+ rating is assigned to the sample. Very poor samples receive D-. For purposes of numerical analysis, the letter grades are given values of 5 to 60, as described above for the shear test. Lower haze corresponds to higher numerical values.

- 3 -

As can be appreciated by those skilled in the art of making sputtered coatings, it would be advantageous to provide a zinc target that may be sputtered in a reactive atmosphere

10 without the drawbacks of the presently available zinc targets and to provide low emissivity coated articles that have mechanical durability so that the coated article may be shipped and subsequently heated without the heated coating having haze.

The disclosures of U.S.P.N.'s '771 and '001 are hereby incorporated by reference.

SUMMARY OF THE INVENTION

This invention relates to a sputter cathode target
having tin preferably in an amount greater than zero and less
than 10 weight percent of the total weight of the target
material, and zinc in an amount preferably less than 100
weight percent and more than 90 weight percent of the total
weight of the target material. Hereafter, unless indicated
otherwise, the term "weight percent" means the weight percent
of the total weight of the target material.

As used herein, "a zinc stannate film," e.g., of the type discussed in U.S.P.N. '771 is an oxide of an alloy of zinc and tin. The cathode used is made of an alloy of zinc and tin. A "zinc oxide, tin oxide film," is a film having oxides of tin and zinc. The cathode used to sputter the zinc oxide, tin oxide film is made of zinc having additions of tin as is discussed in detail below.

In one embodiment of the invention a coating stack

has a zinc stannate film deposited on a glass substrate, a

zinc oxide, tin oxide film deposited on the zinc stannate

film; an infrared reflecting film, e.g., silver, deposited on

the zinc oxide, tin oxide film; a primer layer, e.g., a titanium metal film, deposited on the infrared reflecting film; a zinc oxide, tin oxide film deposited on the primer film, a zinc stannate film deposited on the zinc oxide, tin 5 oxide film; an infrared reflecting film deposited on the zinc stannate film; a primer layer deposited on the infrared reflecting layer; a zinc oxide, tin oxide film deposited on the primer layer, a zinc stannate film deposited on the zinc oxide, tin oxide film; and a protective layer, e.g., a 10 titanium metal film or a titanium oxide film, deposited over the zinc stannate film. In another embodiment of the invention, a zinc oxide film is used in place of the zinc oxide, tin oxide film. In a further embodiment of the invention, a zinc stannate film is used in place of the zinc 15 oxide, tin oxide film. When a zinc stannate film is used in place of the zinc oxide, tin oxide film, the zinc stannate films differ in composition by at least 5 weight percent. For example, when one of the zinc stannate films is about 50 weight percent zinc and 50 weight percent tin, the other zinc 20 stannate film is about 10-45 or 55-90 weight percent zinc and 55-90 or 45-10 weight percent tin. In a still further embodiment of the invention, a first deposited zinc stannate film is 50 \pm 10 weight percent zinc and 50 \pm 10 weight percent tin. The second deposited or overlying zinc stannate film has 25 tin equal to or greater than 10 weight percent and less than 40 weight percent and preferably 20 weight percent, and has zinc equal to or less than 90 weight percent and greater than 60 weight percent and preferably 80 weight percent. Overlying zinc stannate films having 90 weight percent zinc and 10 weight percent tin have been used.

The above-described coating stack has mechanical and chemical durability. The coatings of the instant invention in addition to having mechanical and chemical durability which make them acceptable for shipment can be heat treated with the heat treated coating having reduced haze. The reduction in haze after heating is accomplished by selecting metal primer thicknesses which is discussed holow. The procedure for

10

15

30

determining haze was discussed above. As used herein a reduction in haze is a numerical increase of about 10. An advantage of the coatings of the instant invention is that a coating of the invention may be deposited on a substrate, the 5 coated substrate shipped to a fabricating facility where the coated substrate is heat-treated, e.g., heated to temperatures up to about 1350°F (732°C). The coating of the invention has particular application in the making of solar control automotive windshields. Sheets of glass having a low emissivity coating of the invention are coated in one facility and then shipped to another facility where the coated glass sheet is processed, e.g., into an automobile windshield.

DISCUSSION OF THE INVENTION

For a full appreciation of the various embodiments of the invention, the embodiments will be discussed separately and then combined. The first embodiment of the invention to be discussed is the use of a zinc cathode having low amounts of tin to improve the deposition of zinc oxide films and the benefits of a zinc oxide film having low amounts of tin.

The embodiments of the invention relating to zinc sputtering target having low amounts of tin and to a method of reactively sputtering such zinc targets to sputter deposit a zinc oxide, tin oxide film will be discussed. As will be 25 appreciated, the invention contemplates using the target of the instant invention to deposit a zinc oxide, tin oxide film over or under an infrared reflective film, e.g., gold, silver or aluminum film, other metal films, e.g., primer films such as a titanium metal, or ceramic films, or other dielectric films.

The sputtering cathode target in one embodiment of the invention has greater than zero weight percent and less than 10 weight percent tin, and less than 100 weight percent and more than 90 weight percent zinc to improve the emissivity 35 of an infrared reflective film, e.g., a silver film, deposited on the zinc oxide, tin oxide film and to improve the sputtering of the zinc cathode target having lo. amounts of

The cathode target of the instant invention may also be defined as having greater than 0 and less than 10 weight percent tin with the majority of the balance zinc, or as having less than 100 weight percent and more than 90 weight 5 percent zinc with the majority of the balance tin. Before discussing this embodiment of the invention, the drawbacks and/or limitations of reactively sputtering a zinc cathode target without tin and limitations of zinc oxide films deposited using such cathodes are discussed for a better appreciation of the invention.

10

30

Typically, a metal target is reactively sputtered in a gas such as oxygen, or gas mixture of oxygen with other gases such as nitrogen, argon or helium. Sputtering in a gas mixture will result in a higher sputtering rate for a stable 15 process but requires more control to maintain the process stability, e.g., requires controlling flow rate of two gases. Because of the higher sputtering rate, it is preferred to sputter in a gas mixture rather than in oxygen alone. In either case the resulting coating is a metal oxide, e.g., zinc 20 oxide when a zinc target is used.

Zinc oxide is a common dielectric material that is used as a high refractive index film in coating stacks having low emissivity. In the flat glass industry these coatings are usually applied by horizontal vacuum coaters using high power 25 supplied from a direct current source to energize cathodes that sputter layers onto glass substrates. Higher coater throughput requires higher power density to the cathode target. This in turn increases the tendency for the targets to arc, particularly during reactive sputtering.

During reactive sputtering the frequency of arcing of the zinc cathode target increases with time, and debris in the form of powder and flakes builds up on the target surface and adjacent areas. Debris in the form of powders, flakes and splatter eventually falls onto the surface of the substrate 35 being coated resulting in unacceptable coated product. Further the arcing increases to a point where the process becomes unstable. In addition, areas of the target surface

- 7 -

have a tendency to blacken over time. These blackened areas are nonconductive, thus limiting the sputtering rate and leading to non-uniformity in the coating.

The arcing and debris buildup to some degree may be reduced by periodic sputter cleaning as is known by those skilled in the art of sputter coating. One technique for sputter cleaning is to periodically sputter the targets for a certain time period in an inert gas, such as argon or helium, which sputters the target as a metal. Sputter cleaning to some degree removes the oxide buildup on the target surface that causes arcing. The black areas on the target may not be reduced by sputter cleaning. The debris and arcing, however, continually degrade the target, and after a period of time, the coater downtime increases and, consequently, there is less 15 production time for the coater. Zinc targets because of their tendency to frequently arc during sputtering are difficult to sputter clean and require longer and more frequent cleaning.

10

In the practice of the invention, tin is added to a zinc target to reduce if not eliminate the above drawbacks, 20 e.g., reduce the amount of flaking debris, reduce powdery buildup on the target, minimize arcing, and minimize, if not eliminate, blackening of the target surface areas. The amount of debris and degrading of the zinc target of the instant invention is considerably less with time than for a pure zinc 25 target. As a result, less periodic target cleaning is required with less duration of the cleaning in an inert gas.

As previously discussed, U.S.P.N. '771 discloses a zinc-tin alloy target to deposit a zinc stannate film, i.e., an oxide of a zinc tin alloy having 10 to 90 weight percent 30 zinc and 90-10 weight percent tin. The zinc-tin alloy cathode target of U.S.P.N. '771 provides a zinc stannate film that has better chemical durability than a zinc oxide film. Further, the zinc-tin alloy cathode target has less arcing and minimal debris buildup, e.g., there is no measurable powder buildup. 35 As is well-known in the art of sputter coating, zinc oxide films readily dissolve in acid and base solutions; zinc

stannate films have reduced salubility in acid or base.

Although the properties of the zinc oxide, tin oxide film of the instant invention have not been studied in great detail, it is believed that the following will occur. As the tin approaches zero weight percent, the chemical durability of 5 the deposited film decreases, and the problems associated with sputtering a zinc target in a reactive atmosphere increase. As the weight percent of tin approaches ten, the chemical durability of the zinc oxide film increases, and the problems associated with sputtering a zinc target in a reactive 10 atmosphere decrease. The electrical resistivity of a silver film deposited on the zinc oxide, tin oxide film is expected to be similar to a silver film deposited on a zinc oxide film. In the practice of this embodiment of the invention, a zinc target having tin greater than zero and less than ten weight 15 percent is a useable range; 0.5 to 9.5 weight percent of tin is a practical range; 4 to 8.5 weight percent of tin is a preferred range, and 5 to 9.5 weight percent of tin is a more preferred range. The weight percent of tin and zinc in a zinc oxide, tin oxide film is expected to be similar to the weight 20 percent of zinc and tin in the target.

As can now be appreciated, as the weight percent of tin in the zinc cathode increases, the chemical durability of the deposited film is expected to increase. Further, the crystalline structure of the zinc oxide film having tin in 25 weight percents greater than zero and less than ten is similar if not identical to the crystalline structure of zinc oxide film having zero weight percent of tin. Further, a zinc stannate film having 60-90 weight percent zinc and 10-40 weight percent tin have similar crystalline structures as zinc 30 oxide. Therefore, it is expected that emissivity of silver film deposited on a zinc oxide film will be similar to a silver film deposited on a zinc stannate film having 60-90 weight percent zinc and 10-40 weight percent tin. At values of less than 60 weight percent zinc, the crystalline structure 35 starts to change and the emissivity and resistivity start to increase. Transmission Electron Microscopy has shown a weak zinc oxide electron diffraction pattern for a zinc stannate

WO 99/58736

film having 66 weight percent zinc and 34 weight percent tin, and an amorphous structure for zinc stannate film having 47 weight percent zinc and 53 weight percent tin.

The coated articles disclosed in U.S.P.N. '001 and U.S. Patent Application Serial No. 09/023,746 filed February 13, 1998, in the names of Mehran Arbab, Russell C. Criss, Gary J. Marietti and Paul A. Medwick for "Coated Articles" (hereinafter "U.S.P.A. No. 09/023,746") may be made practicing this embodiment of the instant invention which includes but is not limited to sputtering a cathode target having 92 weight percent zinc and 8 weight percent tin in an atmosphere having more than 75% oxygen and the remainder argon. Further, problems discussed above associated with sputtering a zinc target are expected to be minimized if not eliminated.

The discussion will now be directed to improving chemical durability of the coating stack, reduction of haze of the coating stack and decreased emissivity of the infrared reflective metal, e.g., silver. "Chemical durability" means the coating is not readily attacked by acid or base solutions. Reference may be had to U.S.P.N.'s. '001 and '771 for a discussion on chemical durability. The test for haze was discussed above.

From the above discussion, the emissivity of the

silver film may be reduced by depositing the silver layer on a

zinc oxide film; a zinc oxide, tin oxide film or a zinc

stannate film having zinc in the range of 60 to 90 weight

percent and tin in the range of 10 to 40 weight percent.

Further, from the above discussion, chemical durability of a

layer having a zinc oxide film under a silver film and over a

zinc stannate film may be enhanced by adding tin to a zinc

target to provide a zinc oxide, tin oxide film, or a zinc

stannate film. As used herein, "a chemical and electrical

enhancement film" is a zinc oxide, tin oxide film and/or a

zinc stannate film having zinc in the range of 60 to 90 weight

percent and tin in the range of 10 to 40 weight percent. The

chemical and electrical enhancement film of the invention may

30

be used in place of zinc oxide films to enhance chemical durability of the coating stack while obtaining a silver film having low emissivity. By way of illustration, coated articles having a glass substrate/zinc stannate film/zinc 5 oxide film/silver film/titanium metal primer film/zinc oxide film/zinc stannate film/zinc oxide film/zinc stannate film/titanium oxide protective overcoat may be chemically enhanced by using the chemical and electrical enhancement film of the invention for one or more or all of the zinc oxide 10 film(s) of the above coating stack.

Another coated article includes glass substrate/zinc stannate film/zinc oxide film/silver film/titanium metal primer film/zinc oxide film/zinc stannate film/titanium oxide protective overcoat. As can now be appreciated, the chemical 15 and electrical enhancement film of the invention may be substituted for one or more or all of the zinc oxide film(s) of the above coating.

In the practice of the instant invention, a dielectric layer may include a zinc stannate film, and a 20 chemical and electrical enhancement film. Where the chemical and electrical enhancement film is zinc stannate, the difference between the composition of the zinc stannate film and the zinc stannate film of the chemical and electrical enhancement film is at least 5 weight percent. For example, 25 and not limiting to the invention a zinc stannate film having 58 weight percent zinc and 42 weight percent tin may be used with a zinc stannate film (chemical and electrical enhancement film) having 63 to 90 weight percent zinc and 10 to 37 weight percent tin.

The discussion will now be directed to the embodiment of the invention to provide a coating stack that is chemically and mechanically durable and a coating stack that has reduced haze after subjecting the coating stack to elevated temperatures, e.g., but not limiting to the 35 invention, above room temperature and below about 1350°F (732°C). As will be appreciated by those skilled in the art, the invention is not limited to the coatings discussed below

WO 99/58736 PCT/US99/09890

- 11 -

which are presented for illustration purposes only. The following Table 1 provides a few embodiments of coating stacks that may be used in the practice of the invention; however, as will be appreciated, the invention is not limited thereto.

5

TABLE 1

Coating Samples	Substrate						F	'ILM					
J.L.P.100			2 1	3	74.0	150	67	2	61	S	20 -	21.1	12
1	х	X	X	Х	Х		Х		· · · · ·				X
2	х	X	х	x	х		X	_	х	х		Х	х
3	х	х		х	х	х	х		Х	x		х	х
4	×	х		х	х		х		x	X	х	x	х
5	х	X	x	х	х	х	х		х	x		х	х
6	x	x	х	х	х		х		х	х	Х	х	х
7	x	х		х	х	х	х		х	х	Х	х	Х
8	x	х	х	х	х	х	х		х	х	х	х	x
9	Х	x	Х	х	х	х	х	х	х	Х	Х	х	Х
	J	7		ε	C		D		Œ	F	1 20		H
•							La	yer	3				

The second column from the left is entitled
"Substrate." The material of the substrate is not limiting to

the invention and may be made of any material, e.g., glass,
fiberglass, plastic, metal, wood or ceramic. The type of
articles that are made in the preferred practice of the
invention are transparencies for residential and commercial
buildings, and land, air, space, above, on and below water

vehicles, therefore, the substrate is preferably transparent
and made of glass, and flexible and rigid plastics. Glass
when used may be clear or tinted and the type of glass is not
limiting to the invention. It is expected that the coated
article will be subjected to elevated temperatures; therefore,
the substrate selected should be able to withstand the
elevated temperatures. In our discussion, but not limiting to
the invention, the substrates are glass sheets or pieces.

The columns numbered 1-12 are films, and the columns labeled A-H are layers, of coating stacks that incorporate

25 features of the invention. The layers (see the bottom of the Table 1) include at least one film and as shown in the Table 1 up to 3 films. The layers A, D and G are dielectric layers.

The index of refraction of the dielectric films of the Layers A, D and G is preferably greater than the index of refraction of the transparent substrate to anti-reflect the infrared reflection layer. The invention is not limited to the type of 5 dielectric films that may be used in combination with the chemical and electrical enhancement film of the invention. Dielectric films that may be used in the practice of the invention include but are not limited to zinc oxide, tin oxide, silicon oxide, silicon nitride, and silicon oxynitride. 10 It is preferred that films 1, 6 and 11 of the layers A, D and G, respectively are each a zinc stannate film having 52 weight percent zinc and 48 weight percent tin. The films 2, 5 and 7, and 10 of the layers A, D and G respectively may be a zinc oxide film, or a chemical and electrical enhancement film of 15 the invention. In the following discussion, the substrate is soda-lime-silicate clear glass and has an index of refraction about 1.5. As is known in the art, varying the thickness of the film and layers changes the color of the coated article, or may provide a coating with a neutral color. It is expected 20 that in the practice of the invention, the dielectric layers and/or films have a thickness in the range of 600 ± 500 Angstroms. The thickness of the zinc oxide film or the chemical and electrical enhancement film should be sufficient to affect the crystal structure of the silver film to be deposited thereon.

The films 3 and 8 of layers B and E, respectively, are infrared reflecting films and may be of any material that reflects infrared energy, e.g., but not limiting to gold, silver and aluminum. In the practice of the invention silver is preferred. The thickness of the silver is not limiting to the invention and is selected to provide a transparent coating having low emissivity. Silver films having a thickness of 200 ± 150 Å and preferably 100 ± 25 Å may be used in the practice of the invention.

The films 4 and 9 of the layers C and F, respectively, are primer films which have the function of (1) protecting the infrared metal layer from oxidizing during

sputtering of the dielectric films, (2) protecting the infrared reflecting layer during high temperature processing, (3) reducing haze formation in the coating stack during heating, and/or (4) providing the coating stack with mechanical durability for shipping the coated article. Primer films may be any of the type known in the art, e.g., metals such as titanium or ceramic, of the type disclosed in U.S. Patent Application Serial No. 09/215,560, filed December 8, 1998, the disclosure of which is hereby incorporated by reference. In the practice of the invention, the primer layer is preferably titanium.

Film 12 of the layer H is a protective film to provide additional chemical and mechanical durability for the coating stack during shipping and storage. The invention is not limited to the type of protective film and any of the types known in the art may be used, e.g., titanium, titanium dioxide, silicon oxide, silicon dioxide, silicon aluminum nitride. Further, more than one protective film may be used. For example, but not limiting to the invention, a zinc oxide film over a titanium dioxide film may be used. The thickness of the Layer H is not limiting to the invention; however, the thickness should be thick enough to provide protection.

Before discussing in detail the Samples of the Table 1, the following background information is provided for a better appreciate of the invention.

Using zinc oxide film, as discussed above, provides a silver layer having resistivity and emissivity lower than a silver layer deposited on a zinc stannate layer having less than about 60 weight percent zinc and more than about 40 weight percent tin.

U.S.P.N. '001 discusses increasing the thickness of the primer layer to enhance the mechanical durability of the coated article to make the coated article shippable. More particularly, U.S.P.N. 001 discloses that it has been found that where the coated article will be exposed to heat treatment during its production, there is a point at which the primer layer may be made either too thin or too thick. Too

thin a primer layer results in a lack of protection for the reflective, metallic film from oxidation at high temperature thus rendering the coated article unacceptable for heat treatment and in poor shear resistance which makes the article 5 unsuitable for long distance shipment for later thermal processing. Too thick a primer layer results in the formation of an undesirable haze in the coated article after heat treatment, also rendering it unacceptable for heat treatment. However, a limitation is that these films after heating have 10 haze.

It has been determined that by selecting dielectric films and primer layers that a coating stack can be made that has reduced haze after heating. For coated articles that are shipped but not heated, the primer layer should be thick 15 enough to protect the silver during deposition of the overlying dielectric film or layer on the silver layer. A thickness of primer layers in the range of about 8 to 12 Angstroms is sufficient. The thickness of the primer layer is increased when the primer layer is to protect the silver 20 during heating of the coated article. A thickness of about 20 ± 5Å is acceptable.

. For a coated article that is shippable and heatable with reduced haze, the thickness of the primer film is adjusted to compliment the dielectric layer or film 25 arrangement. In accordance with the teachings of the invention, primer layer thickness in the range of 18-32 Angstroms (Å) and preferably 18-40Å is acceptable to provide coating stack with reduced haze after heating. The following Examples illustrate the invention.

In the following discussion, the thickness of the metal primer layer is as deposited. As can be appreciated, the thickness increases after heating, changing a portion of the titanium metal primer film to titanium oxide. A method that will be referred to as the "XRF Method" is discussed in 35 U.S.P.N. '001. In general the XRF Method is used to measure the thickness of metal layers. The XRF Method uses calibrated x-ray fluorescence instrument to measure the weigh.

30

of the metal per unit area of the coating (namely, in µg/cm²). The XRF Method makes the assumption that the metal film is as dense as its bulk form. With this assumption, the metal film's measured weight per unit area is then converted to a 5 thickness in Angstroms, using its bulk density. For completeness sake, it should be noted that sputtered metal films are often less dense than their corresponding bulk metals, so that above described assumption is not always precisely correct, and the XRF Method may in some cases 10 underestimate the thickness of the metal film due to this variation in density. Thus, for the thin metal films, the initial measurement of weight per unit area (µg/cm²) is more accurate than the corresponding conversion to thickness based upon bulk density. Nonetheless, the XRF Method provides a 15 useful approximation for comparing the relative thicknesses of the layers in coating.

In the following discussion, the thickness of the dielectric layers and/or films are given in ranges. As can be appreciated by those skilled in the art, the ranges are not 20 limiting to the invention and the thickness may be selected to provide a coating stack of a desired color.

EXAMPLE 1

This Example 1 is Sample 1 of the Table 1. Sample 1 25 is a coated article that is shippable and heatable. The coating is a high transmittance, low emissivity coated article having a single infrared, reflective layer. Product having the coating stack of Sample 1 is made and the coating stack includes:

a clear glass substrate; a dielectric, antireflective layer deposited on the substrate, the layer includes (1) a zinc stannate film having 52 weight percent zinc and 48 weight percent tin (hereinafter referred to as 52-48 zinc stannate film) and having a thickness of 260 \pm 40Å, and 35 (2) a zinc stannate film having 90 weight percent zinc and 10 weight percent tin (hereinafter referred to as 90-10 zinc stannat^ film) and having a thickness of about 80 \pm 45Å;

- a silver film having a thickness of about 115 \pm 15Å deposited on the 90-10 zinc stannate film,
- a titanium primer film having a thickness of $24-28\mbox{\normalfont\AA}$ deposited on the metallic reflective film;
- a dielectric, antireflective upper layer deposited on the titanium primer film, the dielectric, antireflective upper film includes a 52-48 zinc stannate film having a thickness of about 230 \pm 60Å deposited on the primer layer metal oxide, and
- a titanium oxide layer having a thickness of 36 \pm 7Å deposited on the 52-48 zinc stannate layer or film.

EXAMPLE 2

This Example 2 is Sample 2 of the Table 1. The

coated article has been made and is shippable and heatable
with reduced haze. The coated article includes a glass
substrate/a layer of a 52-48 zinc stannate film having a
thickness of about 230 ± 40Å and a zinc oxide film having a
thickness of about 80 ± 40Å; a silver film having a thickness
of 110 ± 10Å; a titanium metal primer film having a thickness
of about 18 - 23Å and preferably 19.5Å; a 52-48 zinc stannate
film having a thickness of about 820 ± 40Å; a silver film
having a thickness of about 110 ± 10Å; a metal primer having a
thickness of about 18 - 31Å and preferably 25Å; a 52-48 zinc
stannate film having a thickness of about 200 ± 20Å, and a
titanium film having a thickness of about 29 ± 3Å.

EXAMPLE 3

This Example 3 is Sample 3 of the Table 1. The

coated article was not made; however, the following coated
article is expected to be shippable and heatable with reduced
haze. Example 3 includes a clear glass substrate; a
dielectric, antireflective base layer deposited on the
substrate includes a 52-48 zinc stannate film having a

thickness of about 310 ± 20Å deposited on the glass substrate;
a first silver film having a thickness of about 110 ± 10Å

deposited on the 52-48 zinc stannate film; a first titanium primer film having a thickness of 18-29Å deposited on the first silver film; a dielectric, antireflective intermediate layer deposited on the first primer film, the intermediate 5 layer includes a zinc oxide film having a thickness of 80 \pm 40Å deposited on the first primer film, a 52-48 zinc stannate film having a thickness of 740 \pm 40Å deposited on the zinc oxide film; a second silver film having a thickness of about 110 \pm 10Å deposited on the 52-48 zinc stannate film of the intermediate layer; a second titanium primer film having a thickness of about 18-31Å deposited on the second silver film. a dielectric, antireflective upper layer deposited on the second primer film, the dielectric upper layer is a 52-48 zinc stannate film having a thickness of about 200 \pm 20Å; and a 15 titanium metal protective film having a thickness of about 29 \pm 3Å, deposited on the 52-48 zinc stannate film of the dielectric upper layer.

EXAMPLE 4

This Example 4 is Sample 4 of the Table 1. The 20 coated article of Example 4 was made and is shippable and heatable with the heated, coated article having reduced haze. The coated article of this Example 4 includes a clear glass substrate; a 52-48 zinc stannate film having a thickness of 25 310 \pm 20Å deposited on the glass substrate; a first silver film having a thickness of 110 \pm 10Å deposited on the 52-48 zinc stannate film; a first titanium primer having a thickness of 18-29Å and preferably 22.5Å deposited on the first silver film; a 52-48 zinc stannate film having a thickness of about 30 820 \pm 40Å deposited on the first titanium film; a second silver film having a thickness of about 110 \pm 10Å deposited on the 52-48 zinc stannate film; a second titanium film having a thickness of 18-32Å and preferably 21.5Å is deposited on the second silver layer; a zinc oxide film having a thickness of 35 80 \pm 40Å deposited on the second titanium primer layer; a 52-48 zinc stannate film having a thickness of 120 \pm 40Å depc. ited on 5

the zinc oxide film and a titanium overcoat film having a thickness of 29 \pm 3Å over the 52-48 zinc stannate film.

EXAMPLE 5

This Example 5 is Sample 5 of the Table 1. coated article was not made; however, it is expected that the coated article is suitable for shipment and heat treatment with the heated, coated article having reduced haze. The coated article of this Example 5 includes the films and layers 10 similar to Example 3 except Sample 5 has a 52-48 zinc stannate film having a thickness of about 230 \pm 40Å deposited on the substrate and a zinc oxide film having a thickness of about 80 \pm 40Å deposited on the 52-48 zinc stannate film. The first titanium primer film on the first silver layer has a thickness of about 18-29Å; the second titanium primer film on the second silver layer has a thickness of about 18-31Å. The remaining layers of Sample 5 are as shown in the Table and have the same composition and thickness for the same films as described in Example 3.

20

EXAMPLE 6

This Example 6 is Sample 6 of the Table 1 and was made and is shippable and heatable with the heated, coated article having reduced haze. The coated stack is similar to the coating stack of Example 2 except a zinc oxide film having a thickness of about 80 \pm 40Å is deposited on the second titanium primer and a 52 48 zinc stannate film having a thickness of 120 \pm 40Å is deposited on the zinc oxide film. The first titanium primer layer had a thickness of 19-26Å and preferably 19.5Å, and the second primer layer had a thickness of 21.5-31Å and preferably 25Å. The composition and thickness of the remaining films/layers for Example 6 as shown for Sample 6 in the Table are as described in Example 2.

35

EXAMPLE 7

This Example 7 is Sample 7 of the Table 1 and was made and is shippable and heatable with the heated coating

- 19 -

stack having reduced haze. The coating stack of Sample 7 is similar to the coating stack of Example 3 except a zinc oxide film having a thickness of about 80 ± 40Å was deposited on the second titanium film and a 52-48 zinc stannate film was deposited on the zinc oxide film. The first titanium primer layer had a thickness of about 22-26Å and preferably 22.5Å, and the second titanium primer layer had a thickness of about 18-25Å and preferably 21.5Å. The composition and thickness of the remaining films/layers for Example 7 as shown for Sample 7 on the Table are as described in Example 2.

EXAMPLE 8

This Example 8 is Sample 8 of the Table. The coated article was made and is a coated article suitable for shipment and heat treatment with the heated coated articles having reduced haze. The coated article of this Example 8 is a coated stack deposited on a clear glass substrate. The coating thickness and order of the films is as follows with film 1 deposited on the glass substrate.

20

TABLE 2

Composition of the Film	Thickness of the Film
52-48 zinc stannate	230 ± 40Å
zinc oxide	80 ± 40Å
1 st silver	110 ± 30Å
1 st titanium primer	17-26Å, preferably 19.5Å
zinc oxide	80 ± 40Å
52-48 zinc stannate	740 ± 40Å
2 nd silver film	110 ± 30Å
2 nd titanium primer	18-31Å, preferably 28Å
zinc oxide	80 ± 40Å
52-48 zinc stannate	120 ± 40Å
titanium metal overcoat	29 ± 3Å
	52-48 zinc stannate zinc oxide 1st silver 1st titanium primer zinc oxide 52-48 zinc stannate 2nd silver film 2nd titanium primer zinc oxide 52-48 zinc stannate

The coated glass having the above coating was used in the fabrication of automotive windshields. The coated glass was cut to size, heated to shape the coated glass, and thereafter laminated to another shaped glass to provide an automotive windshield. The transmittance of the laminate was

greater than 70%, and reflects infrared energy. The windshield was made as is known in the art. Coated glass for use in automotive windshield was also made substituting 90-10 zinc stannate for the zinc oxide film. The coated article had film thickness in the ranges recited on Table 2.

As can be appreciated, the thickness of the primer layers presented in Table 2 can vary depending on cathode and sputtering equipment. For example, a shippable and heatable coating stack with reduced haze was made with a first titanium primer film having a thickness of 18 ± 0.5Å and the second titanium primer film having a thickness of 22 ± 1Å

EXAMPLE 9

This Example 9 is Sample 9 of the Table and is a coated article that was made. The coated article was shippable and heatable with the heated, coated article having reduced haze. The coated article of this Example 9 is a coated stack deposited on a clear glass substrate. The coating thickness and order of the films is as follows with film 1 deposited on the glass substrate.

TABLE 3

Film No.		i mili aluana af the Film					
from Table	Composition of the Film	Thickness of the Film					
1	52-48 zinc stannate	230 ± 40Å					
2	90-10 zinc stannate	80 ± 40Å					
3	1 st silver	107 ± 30Å					
4	1 st titanium primer	17-24Å, preferably 21.5Å					
5	90-10 zinc stannate	80 ± 40Å					
6	52-48 zinc stannate	600 ± 100Å					
7	90-10 zinc stannate	80 ± 30Å					
8	2 nd silver	, 127 ± 30Å					
9	titanium metal primer	20-26Å, preferably 22.5Å					
10	90-10 zinc stannate	80 ± 40Å					
11	52-48 zinc stannate	160 ± 60Å					
12	titanium oxide overcoat	45 ± 15Å					

As can now be appreciated, a 90-10 zinc stannate
25 film, a zinc oxide film and a zinc oxide, tin oxide film may
be interchanged with one another and substituted for one
another to obtain coated articles that are shippable and

heatable with reduced haze. However, in the practice of the invention the 9-10 zinc stannate film is preferred.

As can be appreciated, the thickness of the films is not limiting to the invention and may be selected to provide a coated article of a desired color as is known in the art.

Further, the films of all examples of the invention may be interchanged to attain the features of the invention.

A complete discussion of heating the coated glass sheets to automotive windshields, residential and commercial windows and other transparencies was not given as such technology is known in the art and as can now be appreciated used in the practice of the invention.

The invention is not limited to the examples presented above and that various changes and alterations can be made without departing from the spirit and broader aspects of the invention, as defined by the claims set forth below and by the range of equivalency allowed by law.

WO 99/58736 PCT/US99/09890

- 22 -

WHAT IS CLAIMED IS:

5

1. A sputter cathode target comprising: the target having a 100 weight percent; greater than about 90 and less than 100 weight percent zinc, and

majority of balance of weight percent tin.

- 2. The sputter cathode target wherein the weight percent of tin is greater than zero but less than 10 weight percent.
- 4. An infrared reflective coated article 20 comprising:

a substrate;

a dielectric layer sputter deposited over the substrate, the layer comprising a first zinc stannate film deposited over the substrate having zinc in weight percent range of equal to and greater than 10 and equal to and less than 90, and tin in the weight percent range of equal to and less than 90 and equal to and greater than 10, and an electrical enhancing film deposited over the zinc stannate film, the electrical enhancing film selected from the group of films consisting of zinc oxide, tin oxide film and a second zinc stannate film wherein the composition of the first zinc stannate film is at least about 5 weight percent different than the composition of the second zinc stannate film, and an infrared reflective layer deposited on the

35 dielectric layer.

- 5. The coated article of claim 4 wherein the infrared reflective metal is silver and the silver is deposited on the zinc oxide, tin oxide film.
- 5 6. The article stack of claim 4 wherein the infrared reflective layer is a silver film and the silver film is deposited on the second zinc stannate film.
- 7. The article stack of claim 4 wherein the

 10 dielectric layer is a first dielectric layer and the infrared reflective layer is a first infrared reflective layer and further including:
 - a metal primer layer over the first infrared reflective layer;
- a second dielectric layer over the primer layer and optionally a protective overcoat over the second dielectric layer.
- 8. The article of claim 7 wherein the second dielectric layer is a zinc stannate film having 10-90 weight percent zinc and 90-10 weight percent tin.
- 9. The article of claim 4 wherein the dielectric layer is a first dielectric layer and the infrared reflective 25 layer is a first infrared reflective layer and further including:
 - a first metal primer layer over the first infrared reflective metal layer;
- $$\tt a$$ second dielectric layer including over the first ${\tt 30}$ primer layer;
 - a second infrared reflective layer over the second dielectric layer;
 - a second metal primer layer over the second infrared reflective layer;
- a third dielectric layer including over the second metal primer layer; and

optionally a protective film over the third dielectric layer.

- 10. The article of claim 9 wherein at least one of the second and third dielectric layers includes a zinc stannate film having 10-90 weight percent zinc and 90-10 weight percent tin.
- 11. The coating stack of claim 4 wherein the

 10 dielectric layer is a first dielectric layer and the infrared

 reflective layer is a first infrared reflective layer and

 further including:
 - a first metal primer layer over the first reflective layer;
- primer layer, the second dielectric layer comprising a first dielectric film and a zinc stannate film defined as a first zinc stannate film, the first zinc stannate film having zinc in the weight percent range of equal to and greater than 10 and equal to and less than 90 and tin in the weight percent range of equal to and less than 90, the first dielectric layer deposited over the first metal primer layer;
- a second infrared reflective layer deposited over the second dielectric layer;
 - a second metal primer layer deposited over the second infrared reflective layer;
 - $\ensuremath{\mathtt{a}}$ third dielectric layer deposited over the second primer layer; and
- optionally a protective layer over the third dielectric layer.
- 12. The coating stack of claim 11 wherein the first dielectric film of the second dielectric layer comprises a zinc oxide film; a zinc oxide, tin oxide film or a zinc stannate film defined as a second zinc stannate film, the second zinc stannate film having a composition different than

WO 99/58736

the composition of the first zinc stannate film of the second dielectric layer.

- 25 -

The coating stack of claim 12 wherein the second zinc stannate film of the second dielectric layer has zinc in the weight percent range of equal to and greater than 60 and equal to and less than 90 and tin in the weight percent of equal to and greater than 10 and equal to and less than 40, and the third dielectric layer is a zinc stannate film.

10

35

- The coating stack of claim 4 wherein the 14. dielectric layer is a first dielectric layer and the infrared reflective layer is a first infrared reflective layer and further including:
- a first metal primer layer over the first reflective 15 layer;
 - a second dielectric layer over the first metal primer film;
- a second infrared reflective layer over the second dielectric layer; 20
 - a second metal primer layer over the second infrared reflecting metal layer;
- a third dielectric layer over the second metal primer layer, the third dielectric layer comprising a first 25 dielectric film and a zinc stannate film defined as a first zinc stannate film, the first zinc stannate film having zinc in a weight percent with the range of equal to and greater than 10 and equal to and less than 90 and tin within the weight percent range of equal to and less than 90 and equal to 30 and greater than 10, the third dielectric film deposited over the second metal primer; and

optionally a protective film overlying the third dielectric film.

15. The article of claim 14 wherein the first dielectric film of the third dielectric layer is selected from the group consisting of a zinc oxide film; a zinc oxide, tin

PCT/US99/09890

WO 99/58736

oxide film or a zinc stannate film defined as a second zinc stannate film, the second zinc stannate film having a composition different than the composition of the first zinc stannate film of third dielectric layer.

- 26 -

5

- The article of claim 15 wherein the second 16. zinc stannate film of the third dielectric layer has zinc in the weight percent range of equal to and greater than 60 and equal to and less than 90 and tin in the weight percent range 10 of equal to and greater than 10 and equal to and less than 40.
 - The article of claim 4 wherein the dielectric layer is a first dielectric layer and the infrared reflective layer is a first infrared reflective layer and further including:
 - a first metal primer layer over the first reflective layer;
- a second dielectric layer over the first metal primer layer, the second dielectric layer comprising a first 20 dielectric film and a zinc stannate film defined as a first zinc stannate film, the first zinc stannate film having zinc in a weight percent within the range of equal to and greater than 10 and equal to and less than 90 and tin within the weight percent range of equal to and less than 90 and equal to 25 and greater than 10, the second dielectric layer deposited over the first metal primer layer;
 - a second infrared reflective layer over the first zinc stannate film of the second dielectric layer;
- a second metal primer layer over the second infrared reflective layer; 30
- a third dielectric layer over the second metal primer layer, the third dielectric layer comprising a first dielectric film and a zinc stannate film defined as a first zinc stannate film, the first zinc stannate film having zinc 35 in a weight percent within the range of equal to and greater than 10 and equal to and less than 90 and tin within the weight percent range of equal to and less than 90 and equal to

PCT/US99/09890

WO 99/58736 PCT/U

and greater than 10, the third dielectric layer deposited over the second metal primer layer; and

- 27 -

optionally a protective film overlying the first zinc stannate film of the dielectric layer.

- 18. The coating stack of claim 17 wherein the first dielectric film of the second dielectric layer and the first dielectric film of the third dielectric layer each has a film selected from the group consisting of zinc oxide film;

 10 zinc oxide, tin oxide film or second zinc stannate film having a composition different than the composition of the first zinc stannate film in the respective same second or third dielectric layer.
- 19. The coating stack of claim 18 wherein the second zinc stannate film of the first and second dielectric layer each include zinc in the weight percent range of equal to and greater than 60 and equal to and less than 90 and tin in the weight percent of equal to and greater than 10 and equal to and less than 40.
- 20. The coating stack of claim 17 wherein the second dielectric layer further includes a third dielectric film over the first zinc stannate film of the second dielectric layer.
- 21. The coating stack of claim 18 wherein the second dielectric layer further includes a third dielectric film over the first zinc stannate film of the second dielectric layer wherein the third dielectric film of the second dielectric layer is a film selected from the group consisting of zinc oxide film, zinc oxide, tin oxide film and a zinc stannate film defined as a third zinc stannate film, the third zinc stannate film has a composition different than the composition of the zinc stannate film of the second dielectric layer closest to the third zinc stannate film.

- 22. The coating of claim 18 wherein the second dielectric film of the second dielectric layer and the second dielectric film of the third dielectric second layer each comprises a zinc oxide film; a zinc oxide, tin oxide film or a second zinc stannate film having a composition different than the composition of the first zinc stannate film of third dielectric layer.
- 23. The coating stack of claim 22 wherein the first and third dielectric films of the second dielectric layer and the first dielectric film of the third dielectric layer each include zinc in the weight percent range of equal to and greater than 60 and equal to and less than 90 and tin in the weight percent of equal to and greater than 10 and equal to and less than 40.
- The coating stack of claim 20 wherein the second zinc stannate film of the first dielectric layer is on the glass piece and has a thickness in the range of 230 \pm 40 Angstroms A; the first zinc stannate film of the first dielectric layer is on the second zinc stannate film of the first dielectric layer and has a thickness in the range of 80 \pm 40Å; the first infrared reflective metal layer is a first silver film deposited on the first zinc stannate film of the 25 first dielectric layer and has a thickness in the range of 110 \pm 30Å, the metal primer layer is a titanium film deposited on the first silver layer and has a thickness in the range of 17-26Å; the first dielectric film of the second dielectric layer is deposited on the titanium film and has a thickness in the 30 range of 80 \pm 40Å; the first zinc stannate film of the second dielectric layer is deposited on the first dielectric film of the second dielectric layer and has a thickness in the range of 740 \pm 40Å; the second infrared reflective metal layer is a second silver film deposited on the second dielectric film of 35 the second dielectric layer and has a thickness in the range of 110 \pm 38Å; the second primer film is a titanium film deposited on the second silver layer and having a thickness in

PCT/US99/09890 ·

the range of 18 - 31Å; the first dielectric film of the third dielectric layer is deposited on the second titanium film and has a thickness in the range of $80 \pm 40\text{Å}$; the first zinc stannate layer of the third dielectric layer is deposited on the first dielectric film of the third dielectric layer and has a thickness in the range of $120 \pm 40\text{Å}$, and the protective layer is a titanium metal film deposited on the first zinc stannate layer of the third dielectric layer and has a thickness in the range of $29 \pm 3\text{Å}$.

- 25. A coated article comprising:
- a substrate;
- a first dielectric layer over the substrate;
- a first infrared reflective layer over the first
- 15 dielectric layer;
 - a first metal primer layer over the first infrared reflective layer;
 - a second dielectric layer over the first metal primer, the second dielectric layer having a first dielectric film
- selected from the group consisting of zinc oxide, tin oxide film and a first zinc stannate film, and a second dielectric film the second dielectric film having a composition different than the first dielectric film of the second dielectric layer;
 - a second infrared reflective layer over the second dielectric layer;
 - a second primer layer over the second reflective layer;
 - a third dielectric layer over the second metal primer layer; and
- optionally a protective layer overlying the third dielectric layer.
- 26. The coated article of claim 25 wherein the first dielectric layer includes a zinc stannate film, the second dielectric film of the second dielectric layer is a zinc stannate film and the third dielectric layer includes a zinc stannate film, each of the zinc stannate films having

PCT/US99/09890

WO 99/58736 PCT/US99/

- 30 -

zinc in the weight percent range of 10-90 and tin in the weight percent range of 90-10.

27. The coated article of claim 26 wherein the first dielectric film of the second dielectric layer is the first zinc stannate film having zinc in the weight percent range of equal to and greater than 90 and equal to and less than 60 and tin in the weight percent range of equal to and greater than 10 and equal to and less than 40.

- 28. A coated article comprising:
- a substrate;
- a first dielectric layer over the substrate;
- a first infrared reflective layer over the first
- 15 dielectric layer;
 - a first metal primer layer over the first infrared
 reflective layer;
 - a second dielectric layer over the first metal primer layer;
- a second infrared reflective layer over the second dielectric layer;
 - a second metal primer layer over the second reflective metal layer;
- a third dielectric layer having a first dielectric

 film selected from the group consisting of zinc oxide film;

 zinc oxide, tin oxide film; a first zinc stannate film and a

 second dielectric film overlying the first dielectric film,

 the second dielectric film having a composition different from
 the first dielectric film; and
- optionally a protective film overlying the third dielectric layer.
- 29. The coated article of claim 28 wherein the first and second dielectric layers are each a zinc stannate film, and the second dielectric film of the third dielectric layer is a zinc stannate film and each of the zinc stannate

- 31 -

films has zinc in the weight percent range of 10-90 and tin in the weight percent range of 90-10.

30. The coated article of claim 29 wherein the first dielectric film of the second dielectric layer has zinc in the weight percent range of equal to and greater than 90 and equal to and less than 60 and tin in the weight percent range of equal to and greater than 10 and equal to and less than 40.

10

- 31. A coated article comprising:
- a substrate;
- a first dielectric layer over the substrate;
- a first infrared reflective layer over the first
- 15 dielectric layer;
 - a first primer layer over the first reflective metal layer;
- a second dielectric layer having a first dielectric film selected from the group consisting of zinc oxide, tin oxide film and a first zinc stannate film, and a second dielectric film overlying the first dielectric film having a composition different than the first dielectric film of the second dielectric layer;
- a second infrared reflective layer over the second dielectric layer;
 - a second primer layer over the second reflective layer;
 - a third dielectric layer over the second metal primer layer, the third dielectric layer having a first dielectric film selected from the group consisting of a zinc oxide, tin oxide film and a first zinc stannate film and a second dielectric film, the second dielectric film of the third dielectric layer have a composition different than the composition of the second dielectric film of the third dielectric layer; and

optionally a protective film overlying the third dielectric layer.

- 32. The coated article of claim 31 wherein the first dielectric layer, the second dielectric film of the second and third dielectric layers are each a zinc stannate film having zinc in the weight percent range of 10-90 and tin in the weight percent range of 90-10.
- 33. The coated article of claim 32 wherein the first dielectric film of the second and third dielectric

 10 layers are each a zinc stannate film having zinc in the weight percent range of equal to and greater than 90 and equal to and less than 60 and tin in the weight percent range of equal to and greater than 10 and equal to and less than 40.
- 15 34. The coated article of claim 32 wherein the coated article is a transparency.
 - 35. The coated article of claim 34 wherein the coated article is an automotive transparency.
- 36. The coated article of claim 35 wherein the automobile transparency is an automotive windshield having a pair of glass sheets laminated together and one of the sheets is fabricated from the substrate having the coating.
 - 37. A method of making an automobile transparency comprising:
 - applying a coating on a glass substrate having the following:
- a first dielectric layer over a glass substrate; a first infrared reflecting metal layer over the first dielectric film:
 - a first metal primer layer over the first reflective layer;
- a second dielectric layer over the first metal primer layer;

PCT/US99/09890 WO 99/58736

a second infrared reflective layer over the second dielectric layer;

a second metal primer layer over the second infrared reflective layer;

a protective film overlying the first zinc stannate film of the third dielectric layer, wherein at least one of the dielectric layers includes a first dielectric film selected from the group consisting of zinc oxide, tin oxide and a first zinc stannate film and a second dielectric film 10 including a second zinc stannate film having a composition different than the first zinc stannate film and a composition of 10-90 weight percent zinc and 90-10 weight percent tin;

5

processing the coated substrate to provide a coated windshield blank wherein the processing step includes heating 15 the coated substrate to its bending temperature and after heating the coating has reduced haze;

laminating the coated blank to another piece of glass to provide the automobile windshield.