Lee 21 MATH 340/640 lets do a general proof. Let V be a cum to thath down no let i = EF) Let ACIR MAN Rull S:=Var() = E() E() T E() = Añ, E() AT = AT AT = from prenion doss Vn (A) = E (AP (P)) - E(AP) E(AP) = E[AVPTAT] - (Am)(Am) = A EPPT AT - AMATAT = A (EPPT) AT - MINTAT) - A (巨龙河-成成) AT LEA Z Nu(On, In), X= A+AZ => Vm(x) = Vm (in+AZ) = Vm(AZ) = AIAT = AAT = S 2 is symmetr 13 (AAT) = ATTAT=AAT AKA the Let $\vec{X} \sim N_m(\vec{x}_1 \xi)$ $0 := (\vec{X} - \vec{m})^T \xi^{-1} (\vec{X} - \vec{m}) \sim ?$ Mahalandis Dixme Rember 2 = (A-1) A-1 i.e. J. A such that this is the! $= 0 = (\widehat{X} - \widehat{m})^{T} (\widehat{A}^{-1})^{T} A^{-1} (\widehat{X} - \widehat{m}) = (\widehat{X} - \widehat{m}) A^{-1})^{T} (\widehat{A}^{-1} (\widehat{X} - \widehat{m})) = \widehat{Z}^{T} \widehat{Z} \sim \chi_{n}^{2}$ Renel $\tilde{Z} = h(\tilde{X}) = (\tilde{X} - i\tilde{\eta}) f^{-1}$ Gom E, how so ful A? E = PTOP digundam let A=PTO=

 $Z \sim N_n \left(\delta_n, I_n \right)$ $Z_1, Z_n \stackrel{\text{ind}}{\sim} N_{\text{end}} \right)$ $\phi_{\vec{z}}(\vec{z}) = E[e^{i\vec{z}'\vec{z}}] = \phi_{z}(\xi_{1}) \cdot ... \cdot \phi_{z}(\xi_{n}) = T[e^{-\frac{\xi_{1}^{n}}{2}} = e^{-\frac{i}{2}\xi_{1}^{n}}] = e^{-\frac{i}{2}\xi_{1}^{n}}$ For AERMA memble, in ERM X = AZ+in ~ Nu (in, E) where E = AAT め、(主) = eiをがめる(ATE) = eiをが e- さんで) (ATE) = eiなーさをアイトラ ニョンディーナきてをさ For my AERMAN, MERM. Is it possible to deme. X=AZ+A => Rr Nm (m, E)

Sceningly... O= (i = Ti + + + + = = =

Can this go way ?? = Jenymder(3) e-2 (-2) (-2)

Yes!! det (2) mus be >0! Osternon dering desir cons \$\frac{1}{2}\$ \\ \delta \times \\ \del You was be oble to me & more & => E=AAT and full rank @ E is posione definite"

In 348 ve proje Vanh(s) = ranh(A) = SER main = MS4

Since rank of my more & # columns.

Hr: X ~ Nn (in, E) dmn P=BX+2 Une BERMON, CERM PN [Condition on B, 2? $\frac{1}{2} \sim N_n(\vec{k}, \xi) , \quad \chi_i \sim \frac{1}{2} \left[0... e^{\xi_0...} \right] \leq \frac{1}{2} \left[0... e^{\xi_0...}$

Her: XnKn(h, E), (Xi)n? Vse (B) Han (P)...

Irill be MVN

Truncal distribution

Some shape as file) in the transact regar for all me real to do is scale this timese density so it staymes to 1.

$$\Rightarrow f_{\chi}(x) = \frac{f_{\chi}(x) \int_{\chi \in (0,0)} \chi_{\chi}(x)}{\int_{\chi} f_{\chi}(u) du} \approx \frac{1}{0.16} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \int_{\chi \in (0,0)} \chi_{\chi}(u) du$$

In gent, gim denny Ynfry), X=Y1/x=R n fxx)1x=R n fxx)1x=R

As promised, a discussion of the headell. Who were proud alterty × ~ Weibel (kd) = k/k x = e-(x) = 1 x = (00), F(x) = 1-e-(xx) = 5(x) = p(xx) = e-(xx) + if K=1 Weidel (1,x) = >e-xx 1/x = (0,0) = Exp(2) = Weihll is a generalment of the Copparail w. Three type of heibles: k=1 (esposise) KE(0,1) A truncal distr Country the conditional probability P(X=x+c|X=c) where $P(X \ge x + c \mid X \ge c) = \frac{P(X \ge x + c \cap X \ge c)}{P(X \ge c)} = \frac{P(X \ge x + c)}{P(X \ge c)} = \frac{e^{-(X \ge x + c)}^{*}}{e^{-(X \ge c)}^{*}}$ = e (x+0)+(xc)+ = e x*(c+-(x+0+)

K is called the breitell modeling" If k=1, P(x3x+c|x>c) = ex (c'-(x+0)) = ex = P(x>x) = ex 4x,c>0 This is known as the memorablessness" property of the exponent.

No make how long you mant, the or "fasets" itself.

Hx,c>0

If k>1, P(X2x+c|X>c) = e X*(c*-(x+o)*) < P(X>x) = e(xx)* Caryles?

human life. himm litegen Proof les v:= ext(ck. Exc)* WTS- v <1 (=> ln(v) <0 Y= ex (ex + xx - (x+c)x) = lu(x) = xx (cx + xx - (x+c)x)

duly xx = 20

lu(x) = xx (cx + xx - (x+c)x)

Lux d = x > 6 WTS ck+xk-(k+c)k < 0 => (=)k+1-(+=)k<0 => dk+1-(+d)k0 dk+1 = (1+d) = | lex k=1+B => B>0 since k>1 = 18 +1 < (1+d)(1+d) = (1+d) + d(1+d) b the size 1< (1+d) & for 02 pm(1+d) do < X(4) = photo & Bhild & Since la is a conse processing france If KE(01) P(X=X+C|X>C) = e > (cx-@104) > P(X>x) = - (xx)+ 44,000 Colingles? WTS r>1 (3) h(G)>0 => d*+1 > (+d)+ infor morning, let k= l+B => B<0 age-hadani alloys => 61/6+1 > (1+d) 16 + d (1+d) 15 17(1+d) B = 0> pln(ed) the dd > d(+d) by B A(d) > fo holand) => hold) = h