FRACTIONS

I) EGALITÉS DE QUOTIENTS

1) Propriété fondamentale

Le quotient de deux nombres relatifs ne change pas lorsque l'on multiplie (ou divise) à la fois le numérateur et le dénominateur par un même nombre relatif non nul.

Soient des nombres relatifs a, b et k (b et k non nuls):

$$\frac{a}{b} = \frac{a \times k}{b \times k}$$

De cette propriété découlent :

2) Signe « moins » dans les fractions

Soient deux nombres relatifs a et b (b non nul) :

$$\frac{a}{-b} = \frac{-a}{b} = -\frac{a}{b}$$

Démonstration:

$$\frac{a}{-b} = \frac{(-1) \times a}{(-1) \times (-b)} = \frac{-a}{b} = \frac{(-1) \times a}{b} = (-1) \times \left(\frac{a}{b}\right) = -\frac{a}{b}$$

3) Simplification de fractions

Simplifier :
$$A = \frac{-36}{54} = \frac{-6 \times 6}{6 \times 9} =$$

Transformer en fraction :
$$B = \frac{2}{-3.2} =$$

4) Mettre au même dénominateur

Ex: Comparer
$$\frac{17}{-6}$$
; $\frac{-7}{2}$ et -3

Prenons 6 comme dénominateur commun.

$$\frac{\frac{17}{-6}}{\frac{-7}{2}} = \frac{3}{1} = \frac{3}{1}$$

Bilan, on a donc:

5) Produit en croix

Quels que soient les nombres relatifs a, b, c et d (b et d non nuls) :

- Si $\frac{a}{b} = \frac{c}{d}$ alors $a \times d = b \times c$
- Et réciproquement, si $a \times d = b \times c$, alors $\frac{a}{b} = \frac{c}{d}$

En effet:

d est non nul donc $\frac{a}{b} = \frac{a \times d}{b \times d}$ et de même b est non nul donc $\frac{c}{d} = \frac{b \times c}{b \times d}$

donc si
$$\frac{a}{b} = \frac{c}{d}$$
 alors $\frac{a \times d}{b \times d} = \frac{b \times c}{b \times d}$

ces deux dernières fractions sont égales et elles ont le même dénominateur donc elles ont aussi le même on a donc l'égalité :

Ex: Montrer que : $\frac{60}{85} = \frac{36}{51}$

II) ADDITIONS ET SOUSTRACTIONS DE FRACTIONS

1) Méthode

On met les fractions au même dénominateur, puis on ajoute ou on soustrait les numérateurs.

Soient des nombres relatifs a, b et c (c non nul) :

$$\frac{a}{c} + \frac{b}{c} =$$

Ex: Calculer

$$A = \frac{2}{5} + \frac{1}{5} =$$

$$B = \frac{3}{-7} - \frac{8}{7} =$$

$$C = \frac{1}{4} + \frac{3}{8} =$$

2) Cas où le dénominateur commun n'est pas évident

Ex: Calculer

$$D = \frac{1}{3} + \frac{2}{5}$$

On peut choisir 3×5 comme dénominateur commun :

$$D = \frac{1 \times}{3 \times} + \frac{2 \times}{5 \times} =$$

$$E = \frac{5}{9} + \frac{1}{6}$$

On pourrait choisir $9\times6=54$ comme dénominateur commun mais il y a plus astucieux :

En effet, $9=3\times3$ et $6=3\times2$ donc on peut choisir $3\times3\times2=18$:

$$E = \frac{5 \times}{9 \times} + \frac{1 \times}{6 \times} =$$

$$F = \frac{-2}{9} - \frac{-8}{15}$$

III) MULTIPLICATIONS DE FRACTIONS

1) Exemple avec un calcul d'aire

On décide de construire un rectangle de longueur 5 cm et de largeur 3 cm, puis on partage la longueur de ce rectangle en 2 et sa largeur en 4. On obtient donc un « grand » rectangle contenant 8 « petits » rectangles.

a) Longueur d'un petit rectangle : —

Largeur d'un petit rectangle : —

Aire d'un petit rectangle : $A = -- \times --$

b) Aire du grand rectangle : $A' = \times$

Nombre de petits rectangles : $n = \times$

Aire d'un petit rectangle : $A = \frac{A'}{n} = \frac{\times}{\times}$

c) Bilan, de a) et b), on déduit : $A = -- \times -- = -\frac{\times}{\times}$

2) Propriété

Pour multiplier des fractions, il suffit de multiplier les numérateurs entre eux et les dénominateurs entre eux.

Soient des nombres relatifs a, b, c et d (b et d non nuls) :

$$\frac{a}{b} \times \frac{c}{d} =$$

$$A = \frac{4}{3} \times \frac{2}{5} =$$

$$B = 3 \times \frac{2}{5} =$$

$$C = \frac{7}{-5} \times \frac{-2}{3} =$$

3) Méthode à suivre dans les exercices

Essayer de simplifier les fractions <u>avant</u> de multiplier les numérateurs et dénominateurs.

Ex:

$$D = \frac{-8}{21} \times \frac{7}{5} =$$

$$E = \frac{39}{-16} \times \frac{8}{-26} =$$

4) Fraction d'une quantité

Propriété:

Prendre la fraction d'une quantité revient à multiplier cette quantité par la fraction.

Ex 1 : Je viens de faire les deux tiers des 6 km qui me séparent de l'école. Combien de km ai-je parcouru ?

Appelons D cette distance:

$$D = \frac{2}{3} \times 6 =$$

J'ai parcouru 4 km.

Ex 2: On prend les deux tiers de la moitié d'un gâteau. Quelle fraction du gâteau a-t-on pris ?

Appelons F cette fraction:

$$F = \frac{2}{3} \times \frac{1}{2} =$$

On a pris le tiers du gâteau.

IV) DIVISIONS DE FRACTIONS

1) Inverse d'un nombre

Définition:

Deux nombres sont dit « inverses l'un de l'autre » lorsque leur produit est égal à 1.

Ex:

$$A=3 \times \frac{1}{3} =$$

$$B=-2 \times \left(-\frac{1}{2}\right) =$$

$$C=\frac{3}{5} \times \frac{5}{3} =$$

Propriété:

Soient deux nombres a et b non nuls,

l'inverse de a est

l'inverse de $\frac{a}{b}$ est

Remarques:

- Le nombre 0 n'a pas d'inverse.
- Ne pas confondre « opposé » (somme égale à 0) et « inverse » (produit égal à 1) : L'opposé de 5 est -5 mais l'inverse de 5 est $\frac{1}{5}$ =0,2.
- Un nombre et son inverse sont de même signe.

2) Divisions de fractions

Propriété:

Diviser par un nombre non nul revient à multiplier par son inverse

Soient des nombres relatifs a, b, c et d (b, c et d non nuls):

$$\frac{\frac{a}{b}}{\frac{c}{d}} =$$

$$A = \frac{1}{0.5} = \frac{1}{\frac{1}{2}} = 1 \times$$

$$B = \frac{\frac{3}{2}}{\frac{3}{2}} = \frac{3}{2} \times$$

$$C = \frac{-\frac{15}{7}}{12} =$$

$$D = \frac{-\frac{4}{7}}{\frac{-10}{-21}} =$$