Class 11

Kalisa Kang (PID A16741690)

Section 1. Proportion of G/G in a population

 $Downloaded\ a\ CSV\ file\ from\ Ensemble < https://useast.ensembl.org/Homo_sapiens/Variation/Sample?db=coreset = 10090102; v=rs8067378; vdb=variation; vf=959672880\#373531_tablePanel>$

Here we read this CSV file

```
mxl <- read.csv("373531-SampleGenotypes-Homo_sapiens_Variation_Sample_rs8067378.csv")</pre>
  head(mxl)
 {\tt Sample..Male.Female.Unknown.\ Genotype..forward.strand.\ Population.s.\ Father}
1
                    NA19648 (F)
                                                        A|A ALL, AMR, MXL
2
                    NA19649 (M)
                                                        G|G ALL, AMR, MXL
                                                        A|A ALL, AMR, MXL
3
                    NA19651 (F)
4
                                                        G|G ALL, AMR, MXL
                    NA19652 (M)
5
                    NA19654 (F)
                                                        G|G ALL, AMR, MXL
                    NA19655 (M)
                                                        A|G ALL, AMR, MXL
 Mother
1
2
3
4
  table(mxl$Genotype..forward.strand.)
```

```
A|A A|G G|A G|G
22 21 12 9
```

```
table(mxl$Genotype..forward.strand.) / nrow(mxl) *100
```

```
A|A A|G G|A G|G
34.3750 32.8125 18.7500 14.0625
```

gbr

Now let's look at a different population. I picked the GBR (Great Britain) population.

```
gbr <- read.csv("373522-SampleGenotypes-Homo_sapiens_Variation_Sample_rs8067378 (1).csv")
head(gbr)</pre>
```

```
Sample..Male.Female.Unknown. Genotype..forward.strand. Population.s. Father
1
                   HG00096 (M)
                                                       A|A ALL, EUR, GBR
2
                   HG00097 (F)
                                                       G|A ALL, EUR, GBR
3
                   HG00099 (F)
                                                       G|G ALL, EUR, GBR
4
                                                       A|A ALL, EUR, GBR
                   HG00100 (F)
5
                   HG00101 (M)
                                                       A|A ALL, EUR, GBR
6
                   HG00102 (F)
                                                       A|A ALL, EUR, GBR
 Mother
1
2
3
4
5
6
```

```
Sample..Male.Female.Unknown. Genotype..forward.strand. Population.s. Father
                     HG00096 (M)
                                                        A|A ALL, EUR, GBR
1
2
                     HG00097 (F)
                                                        G|A ALL, EUR, GBR
                                                        G|G ALL, EUR, GBR
3
                     HG00099 (F)
4
                    HG00100 (F)
                                                        A|A ALL, EUR, GBR
                                                        A|A ALL, EUR, GBR
5
                    HG00101 (M)
6
                    HG00102 (F)
                                                        A|A ALL, EUR, GBR
7
                    HG00103 (M)
                                                        A|G ALL, EUR, GBR
8
                                                        A|A ALL, EUR, GBR
                    HG00105 (M)
                                                        G|A ALL, EUR, GBR
9
                    HG00106 (F)
10
                    HG00107 (M)
                                                        G|G ALL, EUR, GBR
```

11	HG00108	(M)	A A	ALL,	EUR,	GBR	_
12	HG00109	(M)	G G	ALL,	EUR,	GBR	_
13	HG00110	(F)	A G	ALL,	EUR,	GBR	-
14	HG00111	(F)	A A	ALL,	EUR,	GBR	_
15	HG00112	(M)	G G	ALL,	EUR,	GBR	_
16	HG00113	(M)	G G	ALL,	EUR,	GBR	-
17	HG00114	(M)	G A	ALL,	EUR,	GBR	-
18	HG00115	(M)	A G	ALL,	EUR,	GBR	-
19	HG00116	(M)	G G	ALL,	EUR,	GBR	_
20	HG00117	(M)	A A	ALL,	EUR,	GBR	_
21	HG00118	(F)	G G	ALL,	EUR,	GBR	-
22	HG00119	(M)	G A	ALL,	EUR,	GBR	-
23	HG00120	(F)	G G	ALL,	EUR,	GBR	_
24	HG00121	(F)	A G	ALL,	EUR,	GBR	_
25	HG00122	(F)	G G	ALL,	EUR,	GBR	_
26	HG00123	(F)	G A	ALL,	EUR,	GBR	_
27	HG00125	(F)	A G	ALL,	EUR,	GBR	_
28	HG00126	(M)	G G	ALL,	EUR,	GBR	-
29	HG00127	(F)	G A	ALL,	EUR,	GBR	_
30	HG00128	(F)	A G	ALL,	EUR,	GBR	_
31	HG00129	(M)	G G	ALL,	EUR,	GBR	-
32	HG00130	(F)	A G	ALL,	EUR,	GBR	-
33	HG00131	(M)	G G	ALL,	EUR,	GBR	-
34	HG00132	(F)	$A \mid A$	ALL,	EUR,	GBR	-
35	HG00133	(F)	G A	ALL,	EUR,	GBR	-
36	HG00136	(M)	G G	ALL,	EUR,	GBR	_
37	HG00137	(F)	G A	ALL,	EUR,	GBR	-
38	HG00138	(M)	$A \mid A$	ALL,	EUR,	GBR	-
39	HG00139	(M)	G G	ALL,	EUR,	GBR	-
40	HG00140	(M)	G A	ALL,	EUR,	GBR	-
41	HG00141	(M)	G G	ALL,	EUR,	GBR	-
42	HG00142	(M)	G G	ALL,	EUR,	GBR	-
43	HG00143	(M)	G A	ALL,	EUR,	GBR	-
44	HG00145	(M)	$A \mid A$	ALL,	EUR,	GBR	-
45	HG00146	(F)	$A \mid A$	ALL,	EUR,	GBR	-
46	HG00148	(M)	G A	ALL,	EUR,	GBR	-
47	HG00149	(M)	G A	ALL,	EUR,	GBR	-
48	HG00150	(F)	G A	ALL,	EUR,	GBR	-
49	HG00151	(M)	G A	ALL,	EUR,	GBR	-
50	HG00154	(F)	G G	ALL,	EUR,	GBR	_
51	HG00155	(M)	A G	ALL,	EUR,	GBR	-
52	HG00157	(M)	A A	ALL,	EUR,	GBR	-
53	HG00158	(F)	A A	ALL,	EUR,	GBR	-

		75-35					
54	HG00159				EUR,		-
55	HG00160				EUR,		-
56	HG00231	(F)			EUR,		-
57	HG00232	(F)			EUR,		-
58	HG00233	(F)		-	EUR,		-
59	HG00234	(M)	G G	ALL,	EUR,	GBR	-
60	HG00235	(F)	A A	ALL,	EUR,	GBR	-
61	HG00236	(F)	A A	ALL,	EUR,	GBR	-
62	HG00237	(F)	A A	ALL,	EUR,	GBR	-
63	HG00238	(F)	G G	ALL,	EUR,	GBR	-
64	HG00239	(F)	G A	ALL,	EUR,	GBR	-
65	HG00240	(F)	G A	ALL,	EUR,	GBR	-
66	HG00242	(M)	G A	ALL,	EUR,	GBR	-
67	HG00243	(M)	A G	ALL,	EUR,	GBR	-
68	HG00244	(M)	${\tt G} \mid {\tt A}$	ALL,	EUR,	GBR	-
69	HG00245	(F)	A G	ALL,	EUR,	GBR	-
70	HG00246	(M)	A G	ALL,	EUR,	GBR	_
71	HG00250	(F)	${\tt G} {\tt G}$	ALL,	EUR,	GBR	_
72	HG00251	(M)	G A	ALL,	EUR,	GBR	-
73	HG00252	(M)	G A	ALL,	EUR,	GBR	-
74	HG00253	(F)	$A \mid A$	ALL,	EUR,	GBR	-
75	HG00254	(F)	A G	ALL,	EUR,	GBR	-
76	HG00255	(F)	A G	ALL,	EUR,	GBR	-
77	HG00256	(M)	A G	ALL,	EUR,	GBR	-
78	HG00257	(F)	G G	ALL,	EUR,	GBR	-
79	HG00258	(F)	A A	ALL,	EUR,	GBR	_
80	HG00259	(F)	G A	ALL,	EUR,	GBR	-
81	HG00260	(M)	G G	ALL,	EUR,	GBR	-
82	HG00261	(F)	G G	ALL,	EUR,	GBR	_
83	HG00262	(F)	A A	ALL,	EUR,	GBR	-
84	HG00263	(F)	G A	ALL,	EUR,	GBR	-
85	HG00264	(M)	A G	ALL,	EUR,	GBR	-
86	HG00265	(M)	G G	ALL,	EUR,	GBR	-
87	HG01334	(M)	A G	ALL,	EUR,	GBR	_
88	HG01789	(M)	G A	ALL,	EUR,	GBR	_
89	HG01790	(F)	G A	ALL,	EUR,	GBR	_
90	HG01791	(M)	A A	ALL,	EUR,	GBR	_
91	HG02215	(F)	G G	ALL,	EUR,	GBR	_
	Mother			-	-		
1	_						
2	_						
3	_						
4	_						

```
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
         -
-
-
-
38
39
40
41
42
43
44
45
46
```

```
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
         -
-
74
75
76
77
78
79
80
         -
-
-
81
82
83
         -
84
85
86
87
88
89
```

```
91
```

Find proportion of G|G

```
round(table(gbr$Genotype..forward.strand.) / nrow(gbr) * 100, 2)

A|A A|G G|A G|G
25.27 18.68 26.37 29.67
```

This variant that is associated with childhood asthma is more frequent in the GBR population than the MXL population.

Let's now dig into this further.

Section 4: Population Scale Analysis

How many samples do we have?

```
expr <- read.table("rs8067378_ENSG00000172057.6.txt")
head(expr)

sample geno exp
HG00367 A/G 28.96038
NA20768 A/G 20.24449
HG00135 A/A 31.32628
HG00135 A/A 34.11169
NA18870 G/G 18.25141
NA11993 A/A 32.89721

nrow(expr)

[1] 462

table(expr$geno)
```

```
library(ggplot2)
```

Let's make a boxplot

```
ggplot(expr) + aes(x=geno, y=exp, fill=geno) +
geom_boxplot(notch=TRUE) + stat_summary()
```

No summary function supplied, defaulting to `mean_se()`

Q13: Read this file into R and determine the sample size for each genotype and their corresponding median expression levels for each of these genotypes.

```
table(expr$geno)
```

A/A A/G G/G 108 233 121

The sample size for A|A is 108, A|G is 233, and G|G is 121.

```
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
  medians <- expr %>%
    group_by(geno) %>%
    summarize(median_exp = median(exp))
  medians
# A tibble: 3 x 2
  geno median_exp
  <chr>
            <dbl>
1 A/A
              31.2
2 A/G
              25.1
3 G/G
              20.1
```

library(dplyr)

The median expression level for A|A is 31.25, A|G is 25.06, and G|G is 20.07.

Q14: Generate a boxplot with a box per genotype, what could you infer from the relative expression value between A/A and G/G displayed in this plot? Does the SNP effect the expression of ORMDL3?

```
library(ggplot2)

ggplot(expr) + aes(x=geno, y=exp, fill=geno) +
    geom_boxplot(notch=TRUE)
```


Based on the box plot without any statistical analyses, the expression levels of G|G are lower than that of A|A. The SNP affects expression of ORMDL3.