Конспект лекций по геометрии, ΠH , 2 семестр Лекции

Собрано 26 февраля 2022 г. в 21:08

Содержание

1.	Аналитическая геометрия	-
	1.1. Системы координат	
	1.1.1. Аффинные системы координат	
	1.1.2. Криволинейные системы координаты	
	1.1.3. Параметризации	
	1.2. Понятие вектора	
	1.3. Сложение и умножение на число	
	1.4. ЛЗ, ЛНЗ, Базис, размерность	
	1.5. Скалярное умножение	
	1.6. Векторное умножение	

Раздел #1: Аналитическая геометрия

1.1. Системы координат

1.1.1. Аффинные системы координат

Def 1.1.1. Аффинной системой координат на прямой называется взаимно-однозначное соответствие $l \longleftrightarrow \mathbb{R}$.

$$\overline{OM} = \lambda \overline{e}$$

$$\overline{e} \neq \overline{0}$$

$$M$$

$$M \longleftrightarrow \lambda$$

Она определяется выбором точки O и выбором вектора \overline{e} . $ACK = \{O, \{\overline{e}\}\}$.

Def 1.1.2. *ACK* на плоскости называется биекция $\pi \longleftrightarrow \mathbb{R}^2$.

Она определяется выбором точки O и векторов $\overline{e}_1, \overline{e}_2 \neq \overline{e}, \overline{e}_1 \not | \overline{e}_2$. $ACK = \{O, \{\overline{e}_1, \overline{e}_2\}\}$.

 ${f Def~1.1.3.}~~Ecnu~|\overline{e}_1|=|\overline{e}_2|=1,\overline{e}_1\perp\overline{e}_2,~mo~ACK~$ называется декартовой системой координат.

Def 1.1.4. ACK в пространстве называется биекция $M \longleftrightarrow \mathbb{R}^3$. Она определяется выбором точки O и векторов $\overline{e}_1, \overline{e}_2, \overline{e}_3 \neq \overline{0}$ — не компланарны. $ACK = \{O, \{\overline{e}_1, \overline{e}_2, \overline{e}_3\}\}.$

Def 1.1.5. Упорядоченная тройка векторов $(\overline{u}, \overline{v}, \overline{w})$ называется **правой**, если из конца векторо \overline{w} поворот то \overline{u} к \overline{v} по наименьшему углу выглядит происходящим против часовой стрелки, и **левой** – в противном случае.

Автор: Илья Дудников

1.1.2. Криволинейные системы координаты

Def 1.1.6. Выберем точку O и построим из неё луч p, который назовем полярной осью. Возьмем теперь произвольную точку M на плоскости и измерим две величины: расстояние от M до O и угол между вектором \overline{OM} и полярной осью. Обозначим расстояние за r, а угол за φ . Тогда, чтобы избежать неоднозначности, будем считать, что $r > 0, \varphi \in [0, 2\pi)$, и если r = 0, то $\varphi = 0$. Такая система координат называется **полярной**.

Def 1.1.7. Полярная система координат, где $r \in \mathbb{R}, \varphi \in \mathbb{R}$, то она называется обобщенной полярной системой координат.

Рис. 1: Координатная сеть полярной системы координат

Def 1.1.8. Цилиндрической системой координат называют трёхмерную систему координат, являющуюся расширением полярной системы координат путём добавления третьей координаты (обычно обозначаемой z), которая задаёт высоту точки над плоскостью.

Def 1.1.9. Сферическая система координат — трёхмерная система координат, в которой каждая точка пространства определяется тремя числами, где r — расстояние до начала координат, а θ и φ — зенитный и азимутальный углы соответственно.

1.1.3. Параметризации

Построим декартову систему координат. Теперь возьмем какую-то новую систему координат x', y', z'. Проведем через x', y' плоскость. Если z' не совпадает с z, то эта плоскость пересекает

плоскость (x,y) по какой-то прямой. Отсчитает от вектора x до этой прямой угол φ . Угол между z и z' обозначим за ψ . Теперь, мы можем эту прямую поворачивать вокруг оси z' на угол δ , пока она не совпадет с x'.

Таким образом, мы совместили исходную систему координат с новой СК. То есть мы построили соответствие между (ψ, φ, δ).

1.2. Понятие вектора

Пусть E – евклидово пространство.

Def 1.2.1. Закрепленный вектор – упорядоченная пара точек в евклидовом пространстве. Обозначение: \overrightarrow{AB} , модуль $|\overrightarrow{AB}|$ – расстояние между точками A и B.

Def 1.2.2. Пусть $\{(A,B),A,B\in E\}$ – множество закрепленных векторов. Введём на нём отношение равенства: $(A,B)=(C,D)\Leftrightarrow$:

- 1. $|\overrightarrow{AB}| = |\overrightarrow{CD}|$
- 2. (A, B) || (C, D) либо совпадают.
- 3. $\overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD}$.

Замечание 1.2.3. $\forall A, B \rightarrow (A, A) = (B, B)$.

Утверждение 1.2.4. Отношение, введённое в прошлом определении – отношение эквивалентности.

Доказательство. 1. Рефлексивность: (A, B) = (A, B) – верно.

- 2. Симметричность очевидно.
- 3. Транзитивность: $(A, B) = (C, D), (C, D) = (F, G) \Rightarrow (A, B) = (F, G)$ верно.

Значит множество закрепленных векторов разбивается на классы эквивалентности.

Def 1.2.5. Класс эквивалентности называется свободным вектором.

1.3. Сложение и умножение на число

Пусть $\overline{a}, \overline{b} \in V$ – классы.

Def 1.3.1. Сложение векторов: $V \times V \to V$. $[\overrightarrow{OO''}] = \overline{a} + \overline{b}$

Def 1.3.2. Пусть $\overline{a} \in V, \lambda \in \mathbb{R}$. Умножение на число на число: $\mathbb{R} \times V \to V$.

 $(V, +, \cdot)$. Свойства:

- 1. $\forall \overline{a}, \overline{b} \in V \ \overline{a} + \overline{b} = \overline{b} + \overline{a}$.
- 2. $\forall \overline{a}, \overline{b}, \overline{c} \in V (\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}).$
- 3. $\exists \overline{0} : \forall \overline{a} \ \overline{a} + \overline{0} = \overline{0} + \overline{a} = \overline{a}$.
- 4. $\forall \overline{a} \ \exists -\overline{a} : \overline{a} + (-\overline{a}) = \overline{0}$.
- 5. $\forall \lambda \in \mathbb{R}, \overline{a}, \overline{b} \in V \ \lambda(\overline{a} + \overline{b}) = \lambda \overline{a} + \lambda \overline{b}$.
- 6. $\forall \lambda, \mu \in \mathbb{R}, \overline{a} \in V (\lambda + \mu)\overline{a} = \lambda \overline{a} + \mu \overline{a}$.
- 7. $\forall \overline{a} \in V \ 1 \cdot \overline{a} = \overline{a}$.
- 8. $\forall \lambda, \mu \in \mathbb{R}, \overline{a} \in V \ \lambda(\mu \overline{a}) = (\lambda \mu) \overline{a}$.

Def 1.3.3. Множество $(V,+,\cdot)$, удовлетворяющее свойствам 1-8, называется **векторным пространством**. Элементы – векторы.

1.4. ЛЗ, ЛНЗ, Базис, размерность

Def 1.4.1. $\lambda_1 \overline{a}_1 + ... + \lambda_n \overline{a}_n$ – линейная комбинация. Если $(\lambda_1, ..., \lambda_n) \neq (0, ..., 0)$ – нетривиальная ЛК.

Def 1.4.2. $\{\overline{a}_i\}_{i=1}^n$ – линейно зависимый, если \exists нетривиальная JK $\{\lambda_i\}_{i=1}^n: \sum_{i=1}^n \lambda_i \overline{a}_i = 0$

Def 1.4.3. $\{\overline{a}_i\}_{i=1}^n$ – ЛНЗ, если он не ЛЗ.

Свойства:

- 1. $\{\overline{a} \neq \overline{0}\} \Pi H 3$.
- 2. $\{\overline{0}\} \Pi 3$.
- 3. $\{\overline{a_1},...,\overline{a_n},\overline{0}\} \Pi 3.$
- 4. Пусть $\{\overline{a}_i\}$ ЛЗ. Тогда $\{\overline{a}_i, \overline{a}_j\}_{i=1,j=1}^{n,m}$ ЛЗ.

Def 1.4.4. $\{\overline{a}_{\alpha}\}_{{\alpha}\in\Lambda}$ – ЛЗ, если в нем \exists ЛЗ конечный поднабор.

Def 1.4.5. ЛНЗ – набор, который не является ЛЗ.

Def 1.4.6. $\{\overline{a}_{\alpha}\}_{\alpha \in \Lambda}$ – $nonhu\ddot{u}$, $ecnu \ \forall \overline{v} \in V \ \exists \{\alpha_i\}_{i=1}^n, \{\lambda_i\}_{i=1}^n \ \overline{v} = \lambda_1 \overline{a}_{\alpha_1} + \ldots + \lambda_n \overline{a}_{\alpha_n}$.

Def 1.4.7. $\{\overline{a}_{\alpha}\}_{\alpha\in\Lambda}$ – базис V, если он полный и ЛНЗ.

 ${f Def~1.4.8.}$ Размерность $V~(\dim V~)$ – мощность базиса.

Def 1.4.9. Векторное пространство V называется конечномерным, если \exists конечный полный набор.

1.5. Скалярное умножение

Будем определять скалярное произведение для элементов векторного пространства V.

Def 1.5.1. $(\overline{a}, \overline{b})$ – скалярное произведение: $V \times V \to \mathbb{R}$

Свойства:

- 1. Свойства 1-8, необходимые для существования векторного пространства.
- 2. $\forall \overline{a} \in V \ (\overline{a}, \overline{a}) \geqslant 0$ положительная определённость. Кроме того, $(\overline{a}, \overline{a}) = 0 \Leftrightarrow \overline{a} = \overline{0}$ — невырожденность.
- 3. $\forall \overline{a}, \overline{b}, \overline{c} \in V \ (\overline{a} + \overline{b}, \overline{c}) = (\overline{a}, \overline{c}) + (\overline{b}, \overline{c})$ аддитивность. $\forall \lambda \in \mathbb{R}, \overline{a}, \overline{b} \in V \ (\lambda \overline{a}, \overline{b}) = \lambda(\overline{a}, \overline{b})$ однородность.
- 4. $\forall \overline{a}, \overline{b} \in V (\overline{a}, \overline{b}) = (\overline{b}, \overline{a})$. коммутативность.

Пример 1.5.2. $\mathbb{R}^n = \{(x_1, x_2, ..., x_n) : x_i \in \mathbb{R}\}$ $\overline{v} = (x_1, ..., x_n), \overline{w} = (y_1, ..., y_n)$

Тогда скалярное произведение: $(\overline{v}, \overline{w}) = x_1 y_1 + ... + x_n y_n$.

Проверим свойства:

- 1. $(\overline{v}, \overline{v}) = x_1^2 + \dots + x_n^2 \ge 0$. $(\overline{v}, \overline{v}) = 0 \Leftrightarrow \forall i \ x_i = 0$.
- 2. Пусть $\overline{z} = (z_1, ..., z_n)$, тогда $(\overline{v} + \overline{w}, \overline{z}) = (x_1 + y_1)z_1 + ... + (x_n + y_n)z_n = x_1z_1 + ... + x_ny_z + y_1z_1 + ... + y_nz_n = (\overline{v}, \overline{z}) + (\overline{w}, \overline{z})$. $(\lambda \overline{v}, \overline{w}) = \lambda x_1y_1 + ... + \lambda x_ny_n = \lambda(x_1y_1 + ... + x_ny_n) = \lambda(\overline{v}, \overline{w})$.
- 3. $(\overline{v}, \overline{w}) = x_1 y_1 + \ldots + x_n y_n = y_1 x_1 + \ldots + y_n x_n = (\overline{w}, \overline{v}).$

Пример 1.5.3. C[0,1] – непрерывные функции на отрезке [0,1]. Пусть $f,g,q \in C[0,1]$ – функции: $(f,g) = \int_0^1 fg \, dx$.

- 1. $(f, f) = \int_0^1 f^2 dx \ge 0$. $(f, f) = 0 \Leftrightarrow f = 0$.
- 2. $(f+q,g) = \int_0^1 (f+q)g \, dx = \int_0^1 (fg+qg) \, dx = \int_0^1 fg \, dx + \int_0^1 qg \, dx = (f,g) + (q,g).$ $(\lambda f,g) = \int_0^1 \lambda fg \, dx = \lambda \int_0^1 fg \, dx = \lambda (f,g).$
- 3. $(f,g) = \int_0^1 fg \, dx = \int_0^1 gf \, dx = (g,f).$

Таким образом, это скалярное произведение непрерывных на [0,1] функций.

Пусть есть конечномерное векторное пространство V, на нём задано скалярное произведение (,), выберем базис векторного пространства $\{\overline{e}_i\}$, рассмотрим векторы $\overline{v} = (x_i), \overline{w} = (y_i)$, тогда их скалярное произведение $(\overline{v}, \overline{w}) = (x_1\overline{e}_1 + ... + x_n\overline{e}_n, y_1\overline{e}_1 + ... + y_n\overline{e}_n)$, т.е.

$$(\overline{v}, \overline{w}) = \sum_{i,j}^{n} x_i y_j(\overline{e}_i, \overline{e}_j)$$

Либо же запись вида:

$$(\overline{v}, \overline{w}) = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix} \begin{pmatrix} (\overline{e}_1, \overline{e}_1) & (\overline{e}_1, \overline{e}_2) & \cdots & (\overline{e}_1, \overline{e}_n) \\ \vdots & \vdots & \ddots & \vdots \\ (\overline{e}_n, \overline{e}_1) & (\overline{e}_n, \overline{e}_2) & \cdots & (\overline{e}_n, \overline{e}_n) \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

где $G = ((\overline{e}_i, \overline{e}_j)), 1 \le i \le j \le n$ — матрица Грама сколярного произведения. Тогда скалярное произведение можно записать в следующем виде: $(\overline{v}, \overline{w}) = \overline{v}^T G \overline{w}$.

В силу коммутативности скалярного произведения $G^T = G$.

Теорема 1.5.4 (Критерий Сильвестра).

$$\forall k = 1, ..., n \det(G_k) > 0$$

где G_n – миноры главной диагонали.

Утверждение 1.5.5. Если взять R^n, G , то G – матрица Грама $\Leftrightarrow G^T = G$, которая удовлетворяет критерию Сильвестра.

Def 1.5.6. Если базис обладает свойством: $(e_i, e_j) = \begin{cases} 1, i \neq j \\ 1, i = j \end{cases} \Rightarrow G = E$, тогда он называется ортонормированным базисом (OPE).

Теорема 1.5.7 (Теорема Грама-Шмидта). В $\forall V^n$ со скалярным произведением (,) \exists ОНБ.

Def 1.5.8. V – векторное пространство, (,) – скалярное произведение на нём, тогда **модуль** $(\partial \mathbf{n} \mathbf{u} \mathbf{n} \mathbf{a}) |\overline{a}| = \sqrt{(\overline{a}, \overline{a})}, |\overline{a}| = 0 \Leftrightarrow \overline{a} = 0.$

Def 1.5.9. Величина угла между векторами – число $\alpha \in [0;\pi] \in R : \cos \alpha = \frac{(\overline{a},\overline{b})}{|\overline{a}||\overline{b}|}, \overline{a} \neq 0, \overline{b} \neq 0.$

Теорема 1.5.10 (Неравенство Коши-Буняковского).

$$(\overline{a}, \overline{b})^2 \leqslant \overline{a}^2 \overline{b}^2$$

Доказательство. По свойству скалярного произведения $(\overline{a} + t\overline{b})^2$ всегда невырожденная величина, т.е. $(\overline{a} + t\overline{b})^2 \geqslant 0 \Rightarrow \overline{a}^2 + 2t(\overline{a}, \overline{b}) + t^2\overline{b}^2 \geqslant 0$, тогда его дискриминант не положительный, т.к. t – любое число, то

$$(\overline{a},\overline{b})^2 - \overline{a}^2 \overline{b}^2 \leq 0 \Rightarrow (\overline{a},\overline{b})^2 \leq \overline{a}^2 \overline{b}^2$$

.

1.6. Векторное умножение

Векторное умножение определяется только для трёхмерного пространства V^3 , кроме того, необходимо, чтобы пространство было ориентированным, выберем в нём правый ОНБ $(\bar{i}, \bar{j}, \bar{k})$.

Def 1.6.1. Пусть $\overline{v}=(x_1,x_2,x_3),\overline{w}=(y_1,y_2,y_3)$. Тогда векторное произедение

$$\overline{v} \times \overline{w} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = \overline{i}(x_2y_3 - x_3y_2) - \overline{j}(x_3y_1 - x_1y_3) + \overline{k}(x_1y_2 - x_2y_1).$$

Свойства:

1. $\overline{v} \times \overline{w} = -\overline{w} \times \overline{v}$ – косокоммутативность.

2.
$$\overline{v} \times \overline{v} = \overline{0}$$
.

$$2. \ \overline{v} \times \overline{v} = \overline{0}.$$

$$3. \ (\overline{v} + \overline{w}) \times \overline{z} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ x_1 + y_1 & x_2 + y_2 & x_3 + y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ x_1 & x_2 & x_3 \\ z_1 & z_2 & z_3 \end{vmatrix} + \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = \overline{v} \times \overline{z} + \overline{w} \times \overline{z} - \text{ адди-}$$

$$4. \ (\lambda \overline{v}) \times \overline{w} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \lambda x_1 & \lambda x_2 & \lambda x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = \lambda \overline{v} \times \overline{w}.$$

4.
$$(\lambda \overline{v}) \times \overline{w} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \lambda x_1 & \lambda x_2 & \lambda x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = \lambda \overline{v} \times \overline{w}$$

5.
$$\overline{v} \times \overline{w} \perp \overline{v}, \overline{u}$$

$$\overline{v} \times \overline{w} \perp \overline{v}, \overline{w}
(\overline{v}, \overline{v} \times \overline{w}) = \begin{pmatrix} \overline{i} & \overline{j} & \overline{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}, \overline{v}) = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} = 0.$$

6.
$$\overline{v} \times \overline{w} = 0 \Leftrightarrow \overline{v} \parallel \overline{w}$$

$$\overline{v} \times \overline{w} = 0 \Leftrightarrow \overline{v} \parallel \overline{w}
(\overline{v}, \overline{w}, \overline{v} \times \overline{w}) = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ (x_2y_3 - x_3y_2) & (x_3y_1 - x_1y_3) & (x_1y_2 - x_2y_1) \\ (x_1y_2 - x_2y_1)^2 \geqslant 0 \Rightarrow (\overline{v}, \overline{w}, \overline{v} \times \overline{w}) = 0 \Leftrightarrow \frac{x_2}{y_2} = \frac{x_3}{y_3}, \frac{x_3}{y_3} = \frac{x_1}{y_1}, \frac{x_1}{y_1} = \frac{x_2}{y_2} \Rightarrow \frac{x_1}{y_1} = \frac{x_2}{y_2} = \frac{x_3}{y_3}.$$

7.
$$\overline{v} \not\parallel \overline{w} \Rightarrow (\overline{v}, \overline{w}, \overline{v} \times \overline{w})$$
 – правая.

8.
$$\overline{i} \times \overline{j} = \overline{k}$$
. Получим таблицу умножения: $i \to j, j \to k, k \to i$.

9.
$$(\overline{a} \times \overline{b})^2 = (x_2y_3 - y_2x_3)^2 + (\dots)^2 + (\dots)^2$$

 $\overline{a}^2\overline{b}^2 - (\overline{a}\overline{b})^2 = (x_1^2 + x_2^2 + x_3^2)(y_1^2 + y_2^2 + y_3^2) - (x_1y_1 + x_2y_2 + x_3y_3)^2$
 $(\overline{a} \times \overline{b})^2 = \overline{a}^2\overline{b}^2 - (\overline{a}\overline{b})^2 - \text{упражнение.}$
 $\overline{a}^2\overline{b}^2 - (\overline{a}\overline{b})^2 = S^2 = |\overline{a}|^2|\overline{b}|^2\sin^2\alpha = a^2b^2(1-\cos^2\alpha) = \overline{a}^2\overline{b}^2 - (\overline{a}\overline{b})^2, \text{ т.к. } \cos^2\alpha = \frac{(a,b)^2}{|a||b|}.$
Следствие: $|\overline{a}| = |\overline{b}| = 1, (\overline{a}, \overline{b}) \Rightarrow |\overline{a} \times \overline{b}| = 1.$

$$\frac{\bar{a}}{S^2}$$

Рассмотрим V^3 , фиксируем ОНБ $(\bar{i}, \bar{j}, \bar{k})$, зададим векторное произведение $\times : V \times V \to V$. Выберем $\bar{a}, \bar{b}, \bar{c}$ – правый ОНБ, таким образом, если взять любой ОНБ, можно получить таблицу умножения: $a \to b, b \to c, c \to a$.

$$\overline{v} = (\lambda_1, \lambda_2, \lambda_3), \ \overline{w} = (\mu_1, \mu_2, \mu_3) \Rightarrow \overline{v} \times \overline{w} = (\lambda_1 \overline{a} + \lambda_2 \overline{b} + \lambda_3 \overline{c}) \times (\mu_1 \overline{a} + \mu_2 \overline{b} + \mu_3 \overline{c}) = \lambda_1 \mu_1 \overline{a} \times \overline{a} + \lambda_1 \mu_2 \overline{a} \times \overline{b} + \lambda_1 \mu_3 \overline{a} \times \overline{c} + \lambda_2 \mu_1 \overline{b} \times \overline{a} + \lambda_2 \mu_2 \overline{b} \times \overline{b} + \lambda_2 \mu_3 \overline{b} \times \overline{c} + \lambda_3 \mu_1 \overline{c} \times \overline{a} + \lambda_3 \mu_2 \overline{c} \times \overline{b} + \lambda_3 \mu_3 \overline{c} \times \overline{c} = \lambda_1 \mu_1 \overline{a} \times \overline{a} + \lambda_1 \mu_2 \overline{a} \times \overline{b} + \lambda_1 \mu_3 \overline{a} \times \overline{c} + \lambda_2 \mu_1 \overline{b} \times \overline{a} + \lambda_2 \mu_2 \overline{b} \times \overline{b} + \lambda_2 \mu_3 \overline{b} \times \overline{c} + \lambda_3 \mu_1 \overline{c} \times \overline{a} + \lambda_3 \mu_2 \overline{c} \times \overline{b} + \lambda_3 \mu_3 \overline{c} \times \overline{c} = \lambda_1 \mu_1 \overline{a} \times \overline{b} + \lambda_2 \mu_2 \overline{b} \times \overline{b} + \lambda_3 \mu_1 \overline{c} \times \overline{a} + \lambda_3 \mu_2 \overline{c} \times \overline{b} + \lambda_3 \mu_3 \overline{c} \times \overline{c} = \lambda_1 \mu_1 \overline{a} \times \overline{b} + \lambda_2 \mu_1 \overline{b} \times \overline{a} + \lambda_2 \mu_2 \overline{b} \times \overline{b} + \lambda_3 \mu_1 \overline{c} \times \overline{a} + \lambda_3 \mu_2 \overline{c} \times \overline{b} + \lambda_3 \mu_3 \overline{c} \times \overline{c} = \lambda_1 \mu_1 \overline{a} \times \overline{b} + \lambda_2 \mu_1 \overline{b} \times \overline{b} + \lambda_2 \mu_1 \overline{b} \times \overline{b} + \lambda_2 \mu_2 \overline{b} \times \overline{b} + \lambda_3 \mu_1 \overline{c} \times \overline{a} + \lambda_3 \mu_2 \overline{c} \times \overline{b} + \lambda_3 \mu_3 \overline{c} \times \overline{c} = \lambda_1 \mu_1 \overline{b} \times \overline{b} + \lambda_2 \mu_1 \overline{b} \times \overline{b} + \lambda_2 \mu_2 \overline{b} \times \overline{b} + \lambda_3 \mu_1 \overline{c} \times \overline{b} + \lambda_3 \mu_2 \overline{c} \times \overline{b} + \lambda_3 \mu_3 \overline{c} \times \overline{c} = \lambda_1 \mu_1 \overline{b} \times \overline{b} + \lambda_2 \mu_2 \overline{b} \times \overline{b} + \lambda_3 \mu_1 \overline{c} \times \overline{b} + \lambda_3 \mu_2 \overline{c} \times \overline{b} + \lambda_3 \mu_3 \overline{c} \times \overline{c} = \lambda_1 \mu_1 \overline{b} \times \overline{b} + \lambda_2 \mu_1 \overline{b} \times \overline{b} + \lambda_2 \mu_1 \overline{b} \times \overline{b} + \lambda_3 \mu_2 \overline{c} \times \overline{b} + \lambda_3 \mu_3 \overline{c} \times \overline{c} = \lambda_1 \mu_1 \overline{b} \times \overline{b} + \lambda_2 \mu_1 \overline{b} \times \overline{b} + \lambda_2 \mu_1 \overline{b} \times \overline{b} + \lambda_3 \mu_2 \overline{c} \times \overline{b} + \lambda_3 \mu_3 \overline{c} \times \overline{c} = \lambda_1 \mu_1 \overline{b} \times \overline{b} + \lambda_2 \mu_1 \overline{b} \times \overline{b} + \lambda_3 \mu_2 \overline{c} \times \overline{b} + \lambda_3 \mu_3 \overline{c} \times \overline{b} \times \overline{b} + \lambda_3 \mu_3 \overline{c} \times \overline{b} + \lambda_3 \mu_3 \overline{$$

$$= \overline{c}(\lambda_1\mu_2 - \lambda_2\mu_1) - \overline{b}(\lambda_1\mu_3 - \lambda_3\mu_1) + \overline{a}(\lambda_2\mu_3 - \lambda_3\mu_2) = \begin{vmatrix} \overline{a} & \overline{b} & \overline{c} \\ \lambda_1 & \lambda_2 & \lambda_3 \\ \mu_1 & \mu_2 & \mu_3 \end{vmatrix}.$$