k-centre Problem

Frank

December 13, 2021

1 k-centre Problem

1.1 Problem

• Input:

- Set S of "sites" and $k \in \mathbb{Z}^+$
- -|S|=n
- $-S\subseteq M$ metric space with distance function d with properties:
 - 1. $d(x,y) = 0 \iff x = y$
 - 2. d(x,y) = d(y,x) [symmetry]
 - 3. $d(x,y) \le d(x,z) + d(z,y)$ [triangle inequality]

Elements of M are $(x_1, x_2, \ldots, x_d) \in \mathbb{R}^d$

And that

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_d - y_d)^2}$$

-C = set of "centres" i.e. elements of M

– Choose k centres so as to minimize the max distance from a site to its closest centre in C

i.e.

$$d(s,C) = min_{s' \in C} \ d(s,s')$$
$$r(C) = max_{s \in S} \ d(s,C)$$

• Output:

- A set C of k centres with minimum radius r(C)

• Example with k = 1:

The most inconvenienced is the maximum radius $\,$

• Another example with k=2:

Notice how the radius shrunk.

• Example with k = 3:

• Example with k = 5:

So we can conclude that as k gets bigger, the radius gets smaller.

- $\bullet\,$ Note that this is an NP-hard problem
- The above examples show centres that are not necessarily sites, but our algorithm is a 2-approximation algorithm that chooses centres from the set of sites.

1.2 Algorithm: Greedy Approach

- 1. Choose a random site as the centre
- 2. Pick the most inconvenienced site within the radius of all the centres (pick the radius that is guaranteed to be larger than all other radiuses) and assign that site as a new centre. Shrink the radius according to the new inconvenienced site out of all the centres.
- 3. Repeat until we have selected k centres

```
1: procedure K-CENTRE

2: s_1 \leftarrow \text{any site in } S

3: C_1 \leftarrow \{s_1\}

4: for (i=2..k) do

5: s_i \leftarrow \text{site } s \in S \text{ that maximizes } d(s, C_{i-1})

6: C_i \leftarrow C_{i-1} \cup \{s_i\}

7: return C_k
```

1.3 Error Analysis

- Let C^* = an optimal set of k centres
- Thm: $r(C_k) \leq 2 \cdot r(C^*)$

Proof:

- Claim: \forall iteration $i \geq 2$, $d(s_i, C_{i-1}) \leq d(s, s') \ \forall s, s' \in C_i$ s.t. $s \neq s'$ Proof of claim:
 - * True if $s_i = s$ or $s_i = s'$ by default (picked s or s')
 - * For $s_i = s$: $d(s, C_{i-1}) = min_{s'' \in C_{i-1}} d(s, s'')$ by definition Thus, $d(s, C_{i-1}) \le d(s, s')$ because $s' \in C_{i-1}$ Similar results for $s_i = s'$
 - * So consider the case where $s, s' \in C_{i-1}$
 - * Suppose s was added to C in iteration $j \leq i-1$ and s' was added to C in iteration $j' \leq i-1$. So $j \neq j'$, and WLOG, $j' < j \leq i-1$
 - * $d(s_i, C_{i-1}) \leq d(s_i, C_{j-1})$ (by decreasing radius as we choose more sites)
 - * Now consider that $d(s_i, C_{j-1}) \leq d(s_j, C_{j-1})$ since we added s_j in iteration j-1 and thus it is more inconvenienced (more distance) compared to s_i .
 - * Now $d(s_j, C_{j-1}) \le d(s_j, s_{j'}) = d(s, s')$ because j' was added earlier $\implies d(s_i, C_{i-1}) \le d(s, s')$, as wanted

Now we can use our claim.

- Imagine we don't stop the algorithm at iteration k but go to iteration k+1. So we get k+1 sites.
- Then $s_{k+1} = \text{most inconvenienced by } C_k$

- Consider the optimal set of centres

Let c be the centre in C^* whose circle of radius $r(C^*)$ contains two distinct centres $s, s' \in C_{k+1}$

- $-r(C_k) = d(s_{k+1}, C_k) \le d(s, s')$ by claim $r(C_k) \le d(s, c) + d(c, s')$ by triangle inequality $r(C_k) \le r(C^*) + r(C^*) = 2 \cdot r(C^*)$ since $d(s, c) \le r(C^*)$ and $d(c, s') \le r(C^*)$
- Fact: If $P \neq NP$, then there is no polytime approximation algorithm for k-centre with ratio < 2