Logica per la Programmazione

Lezione 2

- Dimostrazione di Tautologie
 - ► Tabelle di Verità
 - Dimostrazioni per sostituzione
 - ► Leggi del Calcolo Proposizionale
- ▶ Insiemi funzionalmente completi di connettivi

Dimostrazione di Tautologie

Abbiamo detto che: Per dimostrare che P è una tautologia possiamo:

- Usare le tabelle di verità, sfruttando quelle dei connettivi
 - ▶ Del tutto meccanico, richiede di considerare 2ⁿ casi, dove n è il numero di variabili proposizionali in P
- Cercare di costruire una dimostrazione
 - Usando delle leggi (tautologie già dimostrate)
 - Usando opportune regole di inferenza
 - Si possono impostare vari tipi di dimostrazioni
- ► Mostrare che non è una tautologia
 - ▶ individuando valori delle variabili proposizionali che rendono falsa P

Vediamo come si costruiscono le tabelle di verità

Interpretazione di una Formula Proposizionale

- ► Interpretazione: funzione da variabili proposizionali a {0,1} Nota: useremo F e T nelle formule, ma 0 e 1 per falso e vero nella semantica
- ► Esempio: ⇒ LAVAGNA
 - ▶ Formula $(P \land Q) \lor \neg R$
 - ▶ Interpretazione $\{P \mapsto 1, Q \mapsto 0, R \mapsto 0\}$
- ▶ Si può calcolare il valore di verità della formula nell'interpretazione usando le tavole di verità dei connettivi logici:

P	Q	¬P	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \equiv Q$	$P \Leftarrow Q$
1	1	0	1	1	1	1	1
1	0	0	0	1	0	0	1
0	1	1	0	1	1	0	0
0	0	1	0	0	1 0 1 1	1	1

Tabella di verità di una formula proposizionale

- La tabella di verità raccoglie tutte le possibili interpretazioni
- ▶ Un esempio: $((P \land Q) \lor \neg R)$

Ρ	Q	R	((P	\wedge	Q)	\vee	\neg	R)
1	1	1	1	1	1	1	0	1
1	1	0	1	1	1	1	1	0
1	0	1	1	0	0	0	0	1
1	0	0	1	0	0	1	1	0
0	1	1	0	0	1	0	0	1
0	1	0	0	0	1	1	1	0
0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	1	1	0
			(1)	(2)	(1)	(3)	(2)	(1)

Dimostrazione di Tautologie

Abbiamo detto che: Per dimostrare che P è una tautologia possiamo:

- ▶ Usare le tabelle di verità, sfruttando quelle dei connettivi
 - ▶ Del tutto meccanico, richiede di considerare 2ⁿ casi, dove n è il numero di variabili proposizionali in P
- ► Cercare di costruire una dimostrazione
 - Usando delle leggi (tautologie già dimostrate)
 - Usando opportune regole di inferenza
 - Si possono impostare vari tipi di dimostrazioni
- Mostrare che non è una tautologia
 - ▶ individuando valori delle variabili proposizionali che rendono falsa P

Dimostrazioni per Sostituzione: cominciamo dall'Aritmetica

Struttura di una semplice Dimostrazione

Nella dimostrazione vista abbiamo

- una sequenza di eguaglianze
 - es: $a^2 + 0 b^2 = a^2 b^2$
- ogni eguaglianza ha come giustificazione una o più leggi (dell'aritmetica)
 - es: x + 0 = x
- La correttezza di ogni eguaglianza è basata su una regola di inferenza: il principio di sostituzione Informalmente:

"Sostituendo eguali con eguali il valore non cambia"

- es: dalla legge (con sostituzione $\{x \mapsto a^2\}$) sappiamo che $a^2 + 0 = a^2$
- quindi per il principio di sostituzione abbiamo $a^2 + 0 b^2 = \underline{a^2} b^2$

Principio di Sostituzione

- Esprime una proprietà fondamentale dell'**eguaglianza**.
- ▶ "Se sappiamo che A = B, allora il valore di una espressione C in cui compare A non cambia se A è sostituito con B"
- $in formule, \qquad \frac{A=B}{C=C[^B/_A]}$
- ▶ Qui A = B è una legge, e C = C[B/A] è l'eguaglianza da essa giustificata, grazie al principio di sostituzione
- ▶ Nel Calcolo Proposizionale esprime una proprietà dell'equivalenza:

$$\frac{P \equiv Q}{R \equiv R[^Q/_P]}$$

A volte scriviamo R_P^Q per $R[^Q/_P]$

Leggi del Calcolo Proposizionale

- Una legge è una tautologia.
- Di solito una tautologia viene chiamata "legge" quando descrive una proprietà di uno o più connettivi logici, o quando è usata come giustificazione nelle dimostrazioni.
- Per ogni legge che introduciamo, bisognerebbe verificare che sia una tautologia
 - a volte è ovvio
 - ▶ a volte lo mostreremo con tabelle di verità
 - a volte presenteremo una dimostrazione in cui usiamo solo leggi introdotte in precedenza
 - spesso lo lasceremo come esercizio...

Leggi per l'Equivalenza

- $(p \equiv q) \equiv (q \equiv p)$ (Simmetria)
- $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$ (Associatività)
- $(p \equiv T) \equiv p$ (Unità)
- $\blacktriangleright \ (p \equiv q) \land (q \equiv r) \Rightarrow (p \equiv r)$ (Transitività)
- ► Esempio di dimostrazione: (Unità), (Transitività)

<i>P</i>	(<i>P</i>	\equiv	T)	\equiv	Ρ	
1 0	1	1	1	1	1	
0	0	0 (2)	1	1	0	
	(1)	(2)	(1)	(3)	(1)	

Leggi per Congiunzione e Disgiunzione

$$\begin{array}{ll} p \vee q \equiv q \vee p & \text{(Commutatività)} \\ p \wedge q \equiv q \wedge p & \text{(Associatività)} \\ p \vee (q \vee r) \equiv (p \vee q) \vee r & \text{(Associatività)} \\ p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r & \text{(Idempotenza)} \\ p \wedge p \equiv p & \text{(Idempotenza)} \\ p \wedge p \equiv p & \text{(Unità)} \\ p \vee \mathbf{F} \equiv p & \text{(Unità)} \\ p \vee \mathbf{F} \equiv \mathbf{F} & \text{(Zero) (Dominanza)} \\ p \vee \mathbf{T} \equiv \mathbf{T} & \text{(}p \vee q) \vee (p \wedge r) & \text{(Distributività)} \\ p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r) & \text{(Distributività)} \end{array}$$

Esercizio: dimostrare alcune leggi con tabelle di verità

Dimostrazioni di Equivalenze Tautologiche

 \blacktriangleright Come per equazioni algebriche si può provare $P_1 \equiv P_n$ nel modo seguente:

```
\begin{array}{ll} & \textbf{P_1} \\ & \{ \text{giustificazione} \} \\ & P_2 \\ & \dots \\ & \equiv \quad \{ \text{giustificazione} \} \\ & \textbf{P_n} \end{array}
```

▶ dove ogni passo ha la seguente forma, in cui $P \equiv Q$ è una legge:

$$\equiv \begin{array}{c} \mathbf{R} \\ \equiv & \{P \equiv Q\} \\ \mathbf{R}[\mathbf{Q}/\mathbf{P}] \end{array}$$

▶ Ogni passo è corretto per il *Principio di Sostituzione*

Una Semplice Dimostrazione ⇒ Lavagna

```
Teorema: p \lor (q \lor r) \equiv (p \lor q) \lor (p \lor r)
      (p \lor q) \lor (p \lor r)
         \{(p \lor q) \equiv (q \lor p) \text{ (Commutatività)}\}
      (q \lor p) \lor (p \lor r)
\equiv {(Associatività)}
      q \lor (p \lor (p \lor r))
\equiv {(Associatività)}
      q \vee ((p \vee p) \vee r))
         {(Idempotenza)}
      q \vee (p \vee r)
      {(Associatività)}
      (q \lor p) \lor r
\equiv {(Commutatività)}
      (p \lor a) \lor r
\equiv {(Associatività)}
      p \vee (a \vee r)
```

Commenti

- ► La dimostrazione fatta usando le leggi garantisce la correttezza della dimostrazione grazie al *Principio di Sostituzione*
- Naturalmente la tecnica non automatizza le dimostrazioni. Rimane a carico nostro la scelta delle leggi da usare, da quale membro della equivalenza partire, l'organizzazione della sequenza dei passaggi
- Nel seguito semplificheremo le dimostrazioni, saltando passi ovvi come l'applicazione di Associatività, Commutatività e Idempotenza

Leggi della Negazione

$$\neg(\neg p) \equiv p \qquad \qquad \text{(Doppia Negazione)} \\
p \lor \neg p \equiv \mathbf{T} \qquad \qquad \text{(Terzo escluso)} \\
p \land \neg p \equiv \mathbf{F} \qquad \qquad \text{(Contraddizione)} \\
\neg(p \land q) \equiv \neg p \lor \neg q \qquad \text{(De Morgan)} \\
\neg(p \lor q) \equiv \neg p \land \neg q \\
\neg \mathbf{T} \equiv \mathbf{F} \qquad \qquad \mathbf{(T: F)} \\
\neg \mathbf{F} \equiv \mathbf{T} \qquad \qquad \mathbf{(F: T)}$$

Esercizio: dimostrare alcune leggi con tabelle di verità

Leggi di eliminazione

$$(p \Rightarrow q) \equiv (\neg p \lor q) \qquad (Elim-\Rightarrow)$$

$$(p \equiv q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$$
 (Elim- \equiv)

$$(p \equiv q) \equiv (p \land q) \lor (\neg p \land \neg q)$$
 (Elim- \equiv -bis)

$$(p \Leftarrow q) \equiv (q \Rightarrow p)$$
 (Elim- \Leftarrow)

Sulle Leggi del Calcolo Proposizionale

- ▶ Abbiamo visto le leggi per l'equivalenza (\equiv), la congiunzione (\land), la disgiunzione (\lor), la negazione (\neg)
- Poi abbiamo visto le leggi per eliminare implicazione (⇒), conseguenza (←) ed equivalenza (≡)
- ► Si può mostrare che tutte le tautologie del Calcolo Proposizionale sono dimostrabili a partire dall'insieme delle leggi visto sinora
- Conviene comunque, per motivi di espressività e compattezza delle definizioni, introdurre altre leggi che corrispondono, per esempio, ad assodate tecniche di dimostrazione

Insiemi Funzionalmente Completi di Connettivi Logici

► Abbiamo introdotto 6 diversi connettivi logici:

Connettivo	Forma simbolica	Operazione corrispondente
not	$\neg p$	negazione
and, e	$p \wedge q$	congiunzione
or, o	$p \lor q$	disgiunzione
se p allora q	$p\Rightarrow q$	implicazione
p se e solo se q	$p \equiv q$	equivalenza
p se q	$p \leftarrow q$	conseguenza

- ▶ Alcuni possono essere definiti in termini di altri.
- ▶ Molti sottoinsiemi sono "funzionalmente completi" cioè permettono di derivare tutti gli altri.
- ▶ Vediamo che $\{\land, \neg\}$ è funzionalmente completo.
- ► Esercizio: dimostrare che anche {∨,¬} e {⇒,¬} sono funzionalmente completi.

L'Insieme $\{\land, \neg\}$ è funzionalmente completo

- ▶ Occorre mostrare che una qualunque formula proposizionale è equivalente a una formula che contiene solo $\{\land, \neg\}$.
- ▶ Per induzione strutturale sulla sintassi delle formule
 - Ricordiamo la sintassi:

$$\begin{array}{lll} \textit{Prop} & ::= & \textit{Prop} \equiv \textit{Prop} \mid \textit{Prop} \land \textit{Prop} \mid \textit{Prop} \lor \textit{Prop} \mid \\ & \textit{Prop} \Rightarrow \textit{Prop} \mid \textit{Prop} \Leftarrow \textit{Prop} \\ & \textit{Atom} \mid \neg \textit{Atom} \\ \textit{Atom} & ::= & \textbf{T} \mid \textbf{F} \mid \textit{Ide} \mid (\textit{Prop}) \\ \textit{Ide} & ::= & \textit{p} \mid \textit{q} \mid ... \mid \textit{P} \mid \textit{Q} \mid ... \\ \end{array}$$

- ▶ implicazione (\Rightarrow), conseguenza (\Leftarrow) ed equivalenza (\equiv): facile!
- disgiunzione:

$$\begin{array}{ll}
 & p \lor q \\
 & \qquad \qquad \{(\mathsf{Doppia} \; \mathsf{Neg.})\} \\
 & \neg \neg (p \lor q) \\
 & \equiv \qquad \qquad \{(\mathsf{De} \; \mathsf{Morgan})\} \\
 & \neg (\neg p \land \neg q)
\end{array}$$

Il Connettivo "NAND"

➤ Si consideri il connettivo proposizionale binario nand la cui semantica è definita dalla seguente tabella di verità:

Ρ	Q	P nand Q
0	0	1
0	1	1
1	0	1
1	1	0

► Esercizio: si provi che l'insieme {nand} è funzionalmente completo.