Problem: Vector

Nguyễn Quản Bá Hồng*

Ngày 2 tháng 9 năm 2024

Tóm tắt nội dung

Last updated version: GitHub/NQBH/elementary STEM & beyond/elementary mathematics/grade 10/vector/problem: vector [pdf]. [TeX]².

Muc luc

1	Vector & Các Phép Toán Trên Vector	1
2	Scalar product – Tích vô hướng	2
Tà	i liêu	3

1 Vector & Các Phép Toán Trên Vector

1 ([Hải+22], VD1, p. 59). Cho đoạn thắng $AB \ \mbox{\& I}$ là trung điểm của AB. Chứng minh: (a) $\overrightarrow{IA} + \overrightarrow{IB} = \vec{0}$. (b) $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$ với mọi điểm M.

2 ([Hải+22], VD2, p. 59). Cho ΔABC & điểm M nằm giữa B,C. Chứng minh:

$$\overrightarrow{AM} = \frac{MB}{BC}\overrightarrow{AC} + \frac{MC}{BC}\overrightarrow{AB}.$$

- 3 ([Håi+22], VD3, p. 60). Cho $\triangle ABC$. Chứng minh: (a) 3 đường trung tuyến đồng quy tại 1 điểm G. (b) $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \vec{0}$. (c) $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$ với mọi điểm M.
- 4 ([Håi+22], VD4, p. 60). Cho $\triangle ABC$ & 1 điểm M bất kỳ trong tam giác. Đặt $S_{MBC} = S_a$, $S_{MCA} = S_b$, $S_{MAB} = S_c$. Chứng minh: $S_a \overrightarrow{MA} + S_b \overrightarrow{MB} + S_c \overrightarrow{MC} = \vec{0}$.
- 5 ([Hải+22], VD5, p. 61). Cho $\triangle ABC$. Đường tròn nội tiếp (I) tiếp xúc với cạnh BC tại D. Gọi M là trung điểm của BC. Chứng minh: $a\overrightarrow{MD} + b\overrightarrow{MC} + c\overrightarrow{MB} = \vec{0}$ (với a, b, c là đô dài các cạnh BC, AC, AB).
- 6 ([Håi+22], VD6, p. 61). Cho $\triangle ABC$ & điểm P bất kỳ. Gọi A_1, B_1, C_1 lần lượt là trung điểm của BC, CA, AB. Trên các tia PA_1, PB_1, PC_1 lần lượt lấy các điểm X, Y, Z sao cho $\frac{PX}{PA_1} = \frac{PY}{PB_1} = \frac{PZ}{PC_1} = k$. Chứng minh: (a) AX, BY, CZ đồng quy tại T. (b) P, T, G thẳng hàng & $\frac{TG}{PG} = \left| \frac{3k}{2+k} \right|$.
- 7 ([Håi+22], VD7, p. 62). Đường đối trung trong tam giác là đường đối xứng với trung tuyến qua phân giác. Chứng minh: 3 đường đối trung đồng quy tại điểm L thỏa mãn $a^2\overrightarrow{LA} + b^2\overrightarrow{LB} + c^2\overrightarrow{LC} = \vec{0}$. Điểm L như vậy gọi là điểm Lemoine của ΔABC .
- 8 ([Hải+22], VD8, p. 62). Cho $\triangle ABC$ & điểm P bất kỳ. PA,PB,PC cắt các cạnh BC,CA,AB tương ứng tại các điểm A_1,B_1,C_1 . Gọi A_2,B_2,C_2 lần lượt là trung điểm của BC,CA,AB. Gọi A_3,B_3,C_3 lần lượt là trung điểm của AA_1,BB_1,CC_1 . (a) Chứng minh: A_2A_3,B_2B_3,C_2C_3 đồng quy. (b) Lấy điểm A_4 thuộc BC sao cho QA_4 song song với PA. Xác định các điểm B_4 & C_4 tương tự A_4 . Chứng minh: Q là trọng tâm của $\Delta A_4B_4C_4$.
- 9 ([Hải+22], VD9, p. 64). Cho $\triangle ABC$. Đường tròn nội tiếp (I) tiếp xúc với BC, CA, AB lần lượt tại D, E, F. Chứng minh: $a\overrightarrow{ID} + b\overrightarrow{IE} + c\overrightarrow{IF} = \overrightarrow{0}$.

^{*}Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

 $^{^{1}{}m URL:}$ https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_10/vector/problem/NQBH_vector_problem.pdf.

²URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_10/vector/problem/NQBH_vector_problem.tex.

- 10 ([Håi+22], VD10, p. 64). Cho $\triangle ABC$ có $\widehat{A}=90^{\circ}$ & các đường phân giác BE & CF. Đặt $\overrightarrow{u}=(AB+BC+CA)\overrightarrow{BC}+B\overrightarrow{CEF}$. Chứng minh: giá của \overrightarrow{u} vuông góc với BC.
- 11 ([Håi+22], 8.1., p. 65). Cho vector \vec{u} có 2 phương khác nhau, chứng minh $\vec{u} = \vec{0}$.
- 12 ([Hải+22], 8.2., p. 65). Cho $\triangle ABC$ có M & N lần lượt là trung điểm của AB & AC. Lấy P đối xứng với M qua N. Chứng minh: $\overrightarrow{MP} = \overrightarrow{BC}$.
- 13 ([Hải+22], 8.3., p. 65). Cho $\triangle ABC$ có tâm đường tròn ngoại tiếp O, trực tâm H. Lấy K đối xứng với O qua BC. Chứng minh: $\overrightarrow{OK} = \overrightarrow{AH}$.
- 14 ([Håi+22], 8.4., p. 65). Cho 2 vector $\vec{a} \ \mathcal{E} \ \vec{b}$ thỏa mãn $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$. Chứng minh: 2 vector $\vec{a} \ \mathcal{E} \ \vec{b}$ có giá vuông góc.
- 15 ([Håi+22], 8.5., p. 65). Cho $\triangle ABC \ \& \ \Delta DEF \ thỏa \ mãn \ \overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \vec{0}$. Chứng minh: $\triangle ABC \ \& \ \Delta DEF \ có \ cùng \ trọng tâm.$
- **16** ([Håi+22], 8.6., p. 65). Cho 2 vector $\vec{a} \in \vec{b}$ thỏa mãn \vec{a} có giá vuông góc với giá của vector $\vec{a}+\vec{b}$. Chứng minh: $|\vec{a}+\vec{b}|^2 = |\vec{b}|^2 |\vec{a}|^2$.
- 18 ([Hải+22], 8.8., p. 65). Cho $\triangle ABC$ nội tiếp đường tròn (O). Cho (O), B, C cố định & A di chuyển trên đường tròn (O). BE, CF là 2 đường cao của $\triangle ABC$. Giả sử có vector \vec{u} thỏa mãn $\frac{|\overrightarrow{EF} \vec{u}|^2}{EF^2} + \frac{|\overrightarrow{OA} \vec{u}|^2}{OA^2} = 1$. Chứng minh $\frac{1}{EF^2} \frac{1}{|\vec{u}|^2}$ luôn không đổi khi A thay đổi.
- 19 ([Håi+22], 8.9., p. 65). Cho $\triangle ABC$ có các phân giác trong AD, BE, CF. Gọi X, Y, Z lần lượt là trung điểm của EF, FD, DE. (a) Chứng minh: AX, BY, CZ đồng quy tại điểm P thỏa mãn hệ thức: $a(b+c)\overrightarrow{PA} + b(c+a)\overrightarrow{PB} + c(a+b)\overrightarrow{PC} = \vec{0}$. (b) Gọi N là tâm đường tròn Euler của $\triangle ABC$. Dựng vector \vec{u} thỏa mãn $\vec{u} = \frac{\overrightarrow{NA}}{a} + \frac{\overrightarrow{NB}}{b} + \frac{\overrightarrow{NC}}{c}$. Gọi Q là trung điểm ON, trong đó O là tâm đường tròn ngoại tiếp $\triangle ABC$. Chứng minh: PQ song song hoặc trùng với giá của vector \vec{u} .

2 Scalar product – Tích vô hướng

- **20** ([Håi+22], VD1, p. 75). (a) Cho đoạn AB & điểm M. Chứng minh $\overrightarrow{MA} \cdot \overrightarrow{MB} = \frac{1}{2}(MA^2 + MB^2 AB^2)$. (b) Cho đoạn thẳng AB, CD. Chứng minh $\overrightarrow{AB} \cdot \overrightarrow{CD} = \frac{1}{2}(AD^2 AC^2 + BD^2 BC^2)$. (c) Chứng minh $AB \perp CD \Leftrightarrow AD^2 AC^2 = BD^2 BC^2$.
- $\begin{aligned} \mathbf{21} & \text{ ([H\mathring{a}\textbf{i}+22], VD2, p. 76). } \text{ Cho } \Delta ABC. \text{ L\'ay I th\'oa } \alpha\overrightarrow{IA} + \beta\overrightarrow{IB} + \gamma\overrightarrow{IC} = \overrightarrow{0} \text{ v\'oi } \alpha + \beta + \gamma = 0. \text{ Ch\'ang minh: (a) } \alpha IA^2 + \beta IB^2 + \gamma IC^2 = \frac{\beta\gamma BC^2 + \gamma\alpha CA^2 + \alpha\beta AB^2}{\alpha + \beta + \gamma} = \frac{\beta\gamma a^2 + \gamma\alpha b^2 + \alpha\beta c^2}{\alpha + \beta + \gamma}. \text{ (b) } \alpha PA^2 + \beta PB^2 + \gamma PC^2 = (\alpha + \beta + \gamma)PI^2 + \alpha IA^2 + \beta IB^2 + \gamma IC^2 \\ \text{v\'oi mọi điểm P. (c) } PI^2 = \frac{\alpha PA^2 + \beta PB^2 + \gamma PC^2}{\alpha + \beta + \gamma} \frac{\beta\gamma a^2 + \gamma\alpha b^2 + \alpha\beta c^2}{(\alpha + \beta + \gamma)^2} \text{ v\'oi mọi điểm P. } \end{aligned}$
- **22** ([Håi+22], VD3, p. 77). Cho \vec{a} , \vec{b} không cùng phương. Tìm \vec{u} thỏa $\vec{a} \cdot \vec{u} = \alpha$, $\vec{b} \cdot \vec{u} = \beta$.
- 23 ([Håi+22], VD4, p. 77). Cho $\triangle ABC$ đều có trọng tâm O & điểm M bất kỳ. Chứng minh: (a) $\cos \widehat{AOM} + \cos \widehat{BOM} + \cos \widehat{COM} = 0$. (b) $\cos^2 \widehat{AOM} + \cos^2 \widehat{BOM} + \cos^2 \widehat{COM} = \text{const.}$ (c) $\cos^4 \widehat{AOM} + \cos^4 \widehat{BOM} + \cos^4 \widehat{COM} = \text{const.}$
- 24 ([Håi+22], BĐ, p. 77). Cho $\triangle ABC$ đều. (a) Điểm N nằm trên đường tròn (O) ngoại tiếp $\triangle ABC$. Chứng minh $AN^4 + BN^4 + CN^4$ không đổi. (b) Chứng minh $AN^4 + BN^4 + CN^4 = 18R^4 + 3(ON^2 R^2)(ON^2 + 5R^2)$ với mọi điểm N. (c) Từ đó suy ra $AN^4 + BN^4 + CN^4 < 18R^4 \Leftarrow N$ nằm trong (O), $AN^4 + BN^4 + CN^4 = 18R^4 \Leftarrow N \in (O)$, $AN^4 + BN^4 + CN^4 > 18R^4 \Leftarrow N$ nằm ngoài (O).
- 25 ([Hải+22], VD5, p. 79). Cho $\triangle ABC$ đều nội tiếp đường tròn (O). Đường thẳng d đi qua O & cắt BC, CA, AB lần lượt tại D, E, F. Chứng minh $\frac{1}{OD^4} + \frac{1}{OE^4} + \frac{1}{OF^4} = \mathrm{const.}$
- **26** ([Håi+22], VD6, p. 79). Cho 3 vector $\vec{a}, \vec{b}, \vec{c}$ thỏa $\vec{a} + \vec{b} + \vec{c} = \vec{0}, |\vec{a}| = |\vec{b}| = |\vec{c}|$ (mô hình vector của tam giác đều) \mathcal{E} \vec{u} là vector bất kỳ. Chứng minh: (a) $\cos(\vec{u}, \vec{a}) + \cos(\vec{u}, \vec{b}) + \cos(\vec{u}, \vec{c}) = 0$. (b) $\cos^2(\vec{u}, \vec{a}) + \cos^2(\vec{u}, \vec{b}) + \cos^2(\vec{u}, \vec{c}) = \frac{3}{2}$. (c) $\cos^4(\vec{u}, \vec{a}) + \cos^4(\vec{u}, \vec{c}) = \frac{9}{8}$. (d) Tính $\cos^{2^n}(\vec{u}, \vec{a}) + \cos^{2^n}(\vec{u}, \vec{c})$ với $n \in \mathbb{N}$.
- 27 ([Hải+22], VD7, p. 79). Cho $\triangle ABC$ đều & M,N bất kỳ. M_a, M_b, M_c lần lượt là hình chiếu của M lên BC,CA,AB. N_a, N_b, N_c lần lượt là hình chiếu của N lên BC,CA,AB. Chứng minh $M_aN_a^2 + M_bN_b^2 + M_cN_c^2 = \frac{3}{2}MN^2$.
- **28** ([Håi+22], 10.1., p. 79). Cho $\triangle ABC$, trọng tâm G. E,F nằm trên đường thẳng GC,GB sao cho EF \parallel BC, AG cắt (ABF), (ACE) tại N,M. Chứng minh FM = EN.

- 29 ([Håi+22], 10.3., p. 80). Cho $\triangle ABC$ có DEF là tam giác Ceva của điểm P bất kỳ. L,K là tâm đường tròn ngoại tiếp $\triangle PCA, \triangle PAB$. Lấy $S \in KL$ thỏa $DS \bot EF$. Đường trung trực của BC cắt KL tại T. Chứng minh S,T đối xứng qua trung điểm KL.
- **30** ([Hải+22], 10.4., p. 80). Cho $\triangle ABC$, đường tròn nội tiếp (I) tiếp xúc CA,AB tại E,F. Điểm P di chuyển trên EF,PB cắt CA tại M, MI cắt đường thẳng qua C vuông góc AC tại N. Chứng minh đường thẳng qua N vuông góc PC luôn đi qua 1 điểm cố định khi P di chuyển.
- 31 ([Hải+22], 10.5., p. 80). Cho $\triangle ABC$ & điểm $I(\alpha,\beta,\gamma)$ ở trong tam giác với mọi điểm P trong mặt phẳng. Chứng minh $\alpha PA \cdot IA + \beta PB \cdot IB + \gamma PC \cdot IC \ge \alpha IA^2 + \beta IB^2 + \gamma IC^2$.
- 32 ([Hải+22], 10.6., p. 80). Cho $\triangle ABC$ & điểm P bất kỳ nằm trong tam giác. A', B', C' lần lượt là hình chiếu của P xuống đoạn BC, CA, AB & (I, r0 là đường tròn nội tiếp $\triangle ABC$. Tìm GTNN của biểu thức $PA' + PB' + PC' + \frac{PI^2}{2r}$.
- 33 ([Håi+22], 10.7., p. 80). Cho $\triangle ABC$ với 3 trung tuyến m_a, m_b, m_c . A', B', C' di chuyển trên 3 đường thẳng BC, CA, AB. Tìm cực trị của $\frac{B'C'^3}{m_a} + \frac{C'A'^3}{m_b} + \frac{A'B'^3}{m_c}$.
- **34** ([Hải+22], 10.8., p. 80). Cho $\triangle ABC$ nội tiếp đường tròn (O), I là tâm đường tròn nội tiếp, M là điểm bất kỳ trên cung nhỏ BC. Chứng minh $MA + 2OI \ge MB + MC \ge MA 2OI$.
- 35 ([Hải+22], 10.9., p. 80). Cho $\triangle ABC$, trực tâm H, bán kính đường tròn ngoại tiếp R. Với mọi M trên mặt phẳng, tìm GTNN của biểu thức $MA^3 + MB^3 + MC^3 \frac{3}{2}R \cdot MH^2$.

Tài liệu

[Hải+22] Phạm Việt Hải, Trần Quang Hùng, Ninh Văn Thu, and Phạm Đình Tùng. Nâng Cao & Phát Triển Toán 10 Tập 1. Nhà Xuất Bản Giáo Dục Việt Nam, 2022, p. 176.