Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	M32061	К работе допущен	
Студент	Величко М.И.	Работа выполнена	
Преподава:	тель Тимофеева	Э О Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.05

Исследование колебаний физического маятника

1. Цель работы.

Измерить характеристики затухающих колебаний: период T, круговую частоту ω , коэффициент затухания β .

- 2. Задачи, решаемые при выполнении работы.
 - 1) Исследование колебаний физического маятника.
 - 2) Измерение и анализ характеристик затухающих колебаний.
- 3. Объект исследования.

Физический маятник.

4. Метод экспериментального исследования.

Эксперимент, расчетно-аналитический метод.

- 5. Рабочие формулы и исходные данные.
 - Среднее время:

$$\bar{t} = \frac{1}{n} \sum_{i=1}^{n} t_i = \frac{1}{3} (t_1 + t_2 + t_3)$$

Период колебаний:

$$T = \frac{\bar{t}}{N}$$
.

• Амплитуда колебаний:

$$A = \varphi_0 - \varphi,$$

• Коэффициент затухания:

$$\beta = \frac{\ln A' - \ln A''}{t'' - t'},$$

• Циклическая частота затухающих колебаний:

$$\omega = 2\pi v = \frac{2\pi}{T},$$

• Циклическая частота собственных колебаний:

$$\omega_0 = \sqrt{\omega^2 + \beta^2}$$
,

• Период собственных колебаний:

$$T_0 = \frac{2\pi}{\sqrt{\omega^2 + \beta^2}}.$$

• Логарифмический декремент:

$$\Lambda = \ln \frac{A(t)}{A(t+T)} = \beta T.$$

6. Измерительные приборы.

N <u>º</u> п/п	Наименование	Предел измерений	Цена деления	Погрешность, Ди
1	Шкала	60°	1°/дел.	1°
2	Секундомер	30 мин	0,2с/дел.	0,2c

7. Схема установки (перечень схем, которые составляют Приложение 1).

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

t1	t2	t3	N
39,81	39,78	40,03	20

Угол						
отклонения						
по шкале ф	0	5	10	15	20	25
t1, c	0	20,99	45,47	77,92	108,33	151,38
t2, c	0	22,11	44,77	73,46	110,25	153,74
t3, c	0	23,15	47,30	76,03	112,74	153,84

9. Результаты косвенных измерений и их обработки (*таблицы, примеры расчетов*).

tcp	Т	w	N
39,87333	1,99	3,15	20

Угол						
отклонения						
по шкале ф	0	5	10	15	20	25
tcp, c	0	22,08	45,85	75,80	110,44	152,99
Α	30	25	20	15	10	5

φ0	β - коэф затухания		
30	0,0104		
A'	Α"		
25	10		
t'	t"		
22,08	110,44		

w0	T0	Λ	
3,15	1,99	0,02	

10. Графики (перечень графиков, которые составляют Приложение 2).

11. Выводы и анализ результатов работы.

В ходе лабораторной работы мы измерили характеристики затухающих колебаний: период Т, круговую частоту ω и коэффициент затухания β. Мы убедились, что график зависимости A(t) убывает по экспоненциальному закону, исходя из формулы амплитуды для затухающих колебаний.