Diferenciales y derivada de funciones implícitas

Diferenciales

Para funciones de una variable y=f(x), se define el incremento de y como

$$\Delta y = f(x + \Delta x) - f(x)$$

Y la diferencial de y como

$$dy = f'(x) dx \cdots (1)$$

Ahora bien, Δy representa el cambio en la altura de la curva y=f(x), y dy representa la altura de la tangente, por tanto, la variación de una función se puede expresar como el producto de su derivada por la variación de su variable independiente $dx=\Delta x$ (incremento de x o diferencial de la variable x) tal como se indica en(1). En la siguiente figura se muestra dy y Δy

Observe $\Delta y - dy$ se aproxima a cero cuando Δx se aproxima a cero ya que

$$\epsilon = \frac{\Delta y - dy}{\Delta x} = \frac{f(x + \Delta x) - f(x) - f'(x)\Delta x}{\Delta x}$$
$$= \frac{f(x + \Delta x) - f(x)}{\Delta x} - f'(x)$$

Y all hacer $\Delta x \to 0$ tenemos que $\epsilon \to 0$, por tanto:

$$\Delta y = dy + \epsilon \Delta x$$

donde $\epsilon \to 0$ cuando $\Delta x \to 0$.

Ahora consideremos un función de dos variables z=f(x,y) si las variables x e y son incrementados, Δx y Δy entonces el correspondiente incremento de z es

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

Con lo cual Δz representa el cambio en el valor de f cuando (x,y) cambia a $(x + \Delta x, y + \Delta y)$.

Definición

Sean $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ una función escalar, z=f(x,y), Δx y Δy son los incrementos de x e y respectivamente, entonces la diferencial (total) de la variable dependiente z es

$$dz = f_x(x, y)dx + f_y(x, y)dy$$

Nótese que dz es una aproximación a Δz .

Ejemplo 1

Sea
$$z = f(x, y) = x^4 + sen y$$
, hallar dz

Solución

$$dz = f_x(x, y)dx + f_y(x, y)dy$$
$$= 4x^3dx + \cos y \, dy$$

Ejemplo 2

Sea $z = f(x, y) = 3x^2y + 4$ una función

- a) Hallar el incremento Δz de la función f en el punto (2,5); donde $\Delta x = \frac{1}{100}$ y $\Delta y = \frac{1}{40}$
- b) Hallar dz de la función f en el punto (2,5) y compárese con el incremento Δz obtenido en a)

Solución

a)
$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

 $\Delta z = 3(x + \Delta x)^2(y + \Delta y) + 4 - (3x^2y + 4)$
 $\Delta z = 3(x^2 + 2x\Delta x + (\Delta x)^2)(y + \Delta y) - 3x^2y$
 $\Delta z = 3x^2y + 3x^2\Delta y + 6xy\Delta x + 6x\Delta x\Delta y + 3y(\Delta x)^2 + 3(\Delta x)^2\Delta y - 3x^2y$
 $\Delta z = 3x^2\Delta y + 6xy\Delta x + 6x\Delta x\Delta y + 3y(\Delta x)^2 + 3(\Delta x)^2\Delta y$
Luego reemplazando la expresión anterior por $x = 2$; $y = 5$;
 $\Delta x = \frac{1}{100}$ y $\Delta y = \frac{1}{40}$ se tiene
 $\Delta z = \frac{361803}{400000} = 0,9045075$

b)
$$dz = f_x(x,y) dx + f_y(x,y) dy$$
 $dz = 6x \ y dx + 3x^2 dy$ Luego para $x = 2; y = 5; \Delta x = \frac{1}{100}$ y $\Delta y = \frac{1}{40}$ se tiene que $dz = \frac{9}{10} = 0.9$.

Siendo

$$\Delta z = \frac{361803}{400000} = 0,9045075$$

У

$$dz = \frac{9}{10} = 0.9$$

Luego $\Delta z \approx dz$ y la diferencia que se tiene es 0,0045075.

En general:

La diferencial (total) de una función $f: \mathbb{R}^n \to \mathbb{R}$ se puede expresar de la forma:

$$df = \sum_{i=1}^{n} f_{x_i} dx_i = f_{x_1} dx_1 + \dots + f_{x_n} dx_n$$

Diferenciales sucesivas

Sea z = f(x, y) una función que admite derivadas parciales continuas de orden superior puede definirse las diferenciales sucesivas.

$$dz = f_x dx + f_y dy \Rightarrow$$

$$d(dz) = \frac{\partial}{\partial x} (f_x dx + f_y dy) dx + \frac{\partial}{\partial y} (f_x dx + f_y dy) dy$$

$$d^2z = f_{xx} (dx)^2 + f_{yx} dx dy + f_{xy} dx dy + f_{yy} (dy)^2$$

Como las derivadas son continuas, resulta que

$$f_{yx}=f_{xy}$$
 , luego
$$d^2z=f_{xx}(dx)^2+2f_{xy}dxdy+f_{yy}(dy)^2$$

Por analogía con la expresión del cuadrado de un binomio, la diferencial segunda se puede escribir

$$d^2z = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^{(2)}f$$

O sea que

$$d^2z = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^{(2)}f = f_{xx}(dx)^2 + 2f_{xy}dxdy + f_{yy}(dy)^2$$

La diferencial tercera se puede escribir

$$d^3z = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^{(3)}f$$

Y donde

$$d^3z = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^{(3)}f$$

El cual puede expresarse como

$$d^{3}z = f_{xxx}(dx)^{3} + 3f_{xxy}(dx)^{2}dy + 3f_{xyy}dx(dy)^{2} + f_{yyy}(dy)^{3}$$

Ejemplo

Sea $z = x^3y^2$, hallar d^2z y d^3z en el punto (2,3).

Solución

$$d^{2}z = f_{xx}(dx)^{2} + 2f_{xy}dxdy + f_{yy}(dy)^{2}$$

$$f_x = 3x^2y^2 \Rightarrow f_{xx} = 6xy^2 \text{ y } f_{xy} = 6x^2y$$
$$f_y = 2x^3y \Rightarrow f_{yy} = 2x^3$$

$$d^2z = 6xy^2(dx)^2 + 12x^2ydxdy + 2x^3(dy)^2$$
 En el punto (2,3)
$$d^2z(2,3) = 108(dx)^2 + 144dxdy + 16(dy)^2$$

$$f_{xx} = 6xy^2$$

$$f_{xy} = 6x^2y$$
 Ahora se determinará d^3z :
$$f_{yy} = 2x^3$$

$$d^{3}z = f_{xxx}(dx)^{3} + 3f_{xxy}(dx)^{2}dy + 3f_{xyy}dx(dy)^{2} + \overline{f_{yyy}(dy)^{3}}$$

Considerando las derivadas parciales ya obtenidas

$$f_{xxx} = 6y^2$$
; $f_{xxy} = 12xy$; $f_{xyy} = 6x^2$ y $f_{yyy} = 0$

Luego

$$d^3z = 6y^2(dx)^3 + 36xy(dx)^2dy + 18x^2dx(dy)^2$$

$$d^3z(2,3) = 54(dx)^3 + 216(dx)^2dy + 72dx(dy)^2$$

Funciones implícitas

Consideremos la función f(x,y) donde la ecuación f(x,y)=0 define implícitamente la función y=g(x) y existen y son continuas f_x y f_y , además $f_y\neq 0$, resulta entonces

$$\frac{dy}{dx} = -\frac{f_x}{f_y}$$

Esta fórmula de derivación implícita es fácil de obtener. En efecto, siendo f(x, y) = 0.

Entonces

$$df = f_x dx + f_y dy = 0$$

Si
$$f_y \neq 0$$
 resulta, $f_y dy = -f_x dx$ y por tanto $\frac{dy}{dx} = -\frac{f_x}{f_y}$

Ejemplo 3

Sea
$$5 + 2x + y - e^x sen y = 0$$
 determinar $\frac{dy}{dx}$

Solución

Entonces, considerando la función $f(x,y) = 5 + 2x + y - e^x sen y$ y aplicando la formula

$$\frac{dy}{dx} = -\frac{f_x}{f_y} \text{ donde } f_y \neq 0$$
$$\frac{dy}{dx} = -\frac{2 - e^x \text{sen } y}{1 - e^x \text{cos } y}$$

Ejemplo 4

Hallar $\frac{dy}{dx}$ y $\frac{d^2y}{dx^2}$ si $4y^3 - 3xy^2 + 14 = 0$ define implícitamente a y = g(x)y evaluarlas en el punto (6,1)

Solución

Siendo
$$f(x,y)=4y^3-3xy^2+14=0$$
, resulta
$$\frac{dy}{dx}=-\frac{f_x}{f_y}\ donde\ f_y\neq 0$$

$$\frac{dy}{dx}=-\frac{-3y^2}{12y^2-6yx}=\frac{y}{4y-2x}$$

Luego

$$\frac{dy}{dx}(6,1) = \frac{1}{4-12} = -\frac{1}{8}$$

Calculemos ahora $\frac{d^2y}{dx^2}$

Siendo

$$\frac{dy}{dx} = \frac{y}{4y - 2x}$$

Y considerando a y en función de x, se tiene

$$\frac{d^2y}{dx^2} = \frac{\frac{dy}{dx} (4y - 2x) - y \frac{d}{dx} (4y - 2x)}{(4y - 2x)^2} =$$

$$= \frac{4y \frac{dy}{dx} - 2x \frac{dy}{dx} - y \left(4 \frac{dy}{dx} - 2\right)}{(4y - 2x)^2}$$

$$= \frac{4y \frac{dy}{dx} - 2x \frac{dy}{dx} - 4y \frac{dy}{dx} + 2y}{(4y - 2x)^2}$$

$$= \frac{-2x \frac{dy}{dx} + 2y}{(4y - 2x)^2}$$

$$= \frac{\frac{dy}{dx} (-2x) + 2y}{(4y - 2x)^2} = \frac{\frac{y}{4y - 2x} (-2x) + 2y}{(4y - 2x)^2}$$

$$= \frac{-2xy + 8y^2 - 4xy}{(4y - 2x)^3}$$

$$= \frac{8y^2 - 6xy}{(4y - 2x)^3}$$

Por tanto

$$\frac{d^2y}{dx^2} = \frac{8y^2 - 6xy}{(4y - 2x)^3}$$

luego

$$\frac{d^2y}{dx^2}(6,1) = \frac{8(1)^2 - 6(6)(1)}{(4(1) - 2(6))^3}$$
$$= \frac{8 - 36}{(-8)^3} = -\frac{\cancel{-}28}{-(\cancel{4})(2) \cdot (8^2)}$$
$$= \frac{7}{2(64)} = \frac{7}{128}$$

Si se tiene la ecuación f(x,y,z)=0, que define implícitamente la función z=g(x,y); y existen y son continuas f_x y f_z y si $f_z\neq 0$, se tiene

$$\frac{\partial z}{\partial x} = -\frac{f_x}{f_z}$$
; $\frac{\partial z}{\partial y} = -\frac{f_y}{f_z}$

Análogamente si la ecuación f(x, y, z) = 0, define implícitamente la función x = h(y, z); y si $f_x \neq 0$, se tiene

$$\frac{\partial x}{\partial y} = -\frac{f_y}{f_x}$$
; $\frac{\partial x}{\partial z} = -\frac{f_z}{f_x}$

Análogamente si la ecuación f(x,y,z)=0, define implícitamente la función y=l(x,z); y si $f_y\neq 0$, resulta

$$\frac{\partial y}{\partial x} = -\frac{f_x}{f_y}$$
; $\frac{\partial y}{\partial z} = -\frac{f_z}{f_y}$

Ejemplo 5

a) Sea
$$x^2 + y^2 + z^2 - 16 = 0$$
, determinar $\frac{\partial z}{\partial x}$ y $\frac{\partial z}{\partial y}$

b) ¿Existen las derivadas pedidas en el punto $(2,2\sqrt{3},0)$

Solución

a) Para
$$f_z \neq 0$$
 donde $f(x,y,z) = x^2 + y^2 + z^2 - 16$
$$\frac{\partial z}{\partial x} = -\frac{f_x}{f_z} \; ; \frac{\partial z}{\partial y} = -\frac{f_y}{f_z}$$

Resulta

$$\frac{\partial z}{\partial x} = -\frac{2x}{2z} = -\frac{x}{z}$$

Υ

$$\frac{\partial z}{\partial y} = -\frac{2y}{2z} = -\frac{y}{z}$$

b) En este caso

$$f_x = 2x = 4$$
; $f_y = 2y = 4\sqrt{3}$; $f_z = 2z = 0$

y por lo tanto no existen

Ejemplo 6

Sea xz + ylnz + 2x - 9 = 0, determinar

a)
$$\frac{\partial x}{\partial y}$$
 y $\frac{\partial x}{\partial z}$

b)
$$\frac{\partial y}{\partial x}$$
 y $\frac{\partial y}{\partial z}$

Solución

Considerando f(x, y, z) = xz + ylnz + 2x - 9, resulta

a) Si
$$f_x \neq 0$$

$$\frac{\partial x}{\partial y} = -\frac{f_y}{f_x} = -\frac{\ln z}{z+2}$$

$$\frac{\partial x}{\partial y} = \frac{f_y}{f_x} = -\frac{\ln z}{z+2}$$

$$\frac{\partial x}{\partial z} = -\frac{f_z}{f_x} = -\frac{x + \frac{y}{z}}{z + 2}$$

b) Si
$$f_y \neq 0$$

$$\frac{\partial y}{\partial x} = -\frac{f_x}{f_y} = -\frac{z+2}{\ln z}$$

$$\frac{\partial y}{\partial z} = -\frac{f_z}{f_y} = -\frac{x + \frac{y}{z}}{\ln z}$$

Ejemplo 7

Determinar
$$\frac{\partial z}{\partial x}$$
 si $\ln z + z^2 = 3x - y^3$

Solución

Sea
$$f(x, y) = \ln z + z^2 - 3x + y^3$$

$$\frac{\partial z}{\partial x} = -\frac{f_x}{f_z} = -\frac{-3}{\frac{1}{z} + 2z}$$

$$\Rightarrow \frac{\partial z}{\partial x} = \frac{3z}{1 + 2z^2}$$