Reg. No.	:	*****	*******	• • • • • •
Name:	*******	*****		

First Semester B.C.A. Degree Examination, August 2021 Career Related First Degree Programme under CBCSS

Complementary Course I

Mathematics

MM 1131.9: MATHEMATICS I

(2020 Admission Regular)

Time: 3 Hours Max. Marks: 80

SECTION - I

All the first questions are compulsory. Each question carries 1 mark.

- 1. Find $\frac{d(\operatorname{sec} h x)}{dx}$.
- 2. Find the derivative of $sec^{-1} x^2$.
- 3. Show that $\cosh 2x = 1 + 2(\sinh x)^2$.
- 4. State Rolle's Theorem.
- 5. Show that $\mathcal{L}\left\{e^{\alpha t}\right\} = \frac{1}{s-a}$; s > a.
- 6. Give an example of second degree first order differential equation.
- 7. Solve the differential equation $\left(\frac{d^2y}{dx^2} 1\right)y = 0$.

- 8. Define Relatively Prime Numbers.
- 9. State Fermat's Theorem.
- 10. Express $-1+i\sqrt{3}$ in the form $r(\cos\theta+i\sin\theta)$.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight question's among the questions 11 to 26. They carry 2 marks each.

11. Find
$$\frac{dy}{dx} = x^y$$

- $\sqrt{12}$. Show that $\sinh 2x = 2 \sinh x \cosh x$
- $\sqrt{13}$. Find $\frac{dy}{dx}$ when $x = \cos t$ and $y = \sin t$
- 14. Verify Rolle's Theorem for the function $f(x) = 16x x^2$ in then interval [0, 16]
- 15. Solve the differential equation $\frac{d^2y}{dx^2} + y = 0$
- 16. Find the integrating factor for the differential equation $\frac{dy}{dx}$ + y tan x = $\cos^3 x$
 - $\sqrt{17}$. Find $\mathcal{L}\left\{te^{t}\right\}$
- 18. Find the sum of divisors of 480
- \int 19. Give an example to show that $a^2 \equiv b^2 \pmod{n}$ need not imply that $a \equiv b \pmod{n}$
- $\sqrt{20}$. Find the remainders when 2^{50} is divided by 7
 - 21. Show that f(z) = z is analytic

- / 22. Separate into real and imaginary parts $(\alpha + i\beta)$
 - 23. Find the derivative of $\cos z + e^z$, where z = x + iy
 - 24. Formulate a Linear Programming problem for the following "Maximise the perimeter of a rectangle with sum of length and breadth do not exceed 7 and their difference must be greater than 5"
 - 25. Explain Pure Birth process in Markov Process
 - 26. Write the Fourier Series of the even function f(x) with the period of 2L.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions among the questions 27 to 38. They carry 4 marks each.

- 27. Find the maxima and minima of $x^2 + xy + y^2 + 3x 3y + 4$
- 28. Solve $x \frac{dy}{dx} y \tan x = \frac{\sin x \cos^2 x}{y^2}$
- 29. Solve $\frac{d^3y}{dx^3} + y = 0$
- 30. Find the inverse Laplace Transform of $\frac{3s+1}{(s-1)(s^2+1)}$
- $\sqrt{31}$. Find the *n* the derivative of $e^x \ln x$
- 32. Show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial z^2} = 0$, for the function $e^{-2y} \cos 2x$
- 33. Solve $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} 10y = e^{2x}$
- 34. Find the remainder when 2¹⁰⁰⁰ is divisible 17

 $\sqrt{35}$. If p and q are distinct primes, prove that

$$p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$$

- 36. Show that 16! + 86 is a multiple of 323
- 37. Prove that the integer $53^{103} + 103^{53}$ is divisible by 39
- /38. Expand the function $f(x) = x^2$, $0 < x < 2\pi$ in a Fourier Series.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions among the questions 39 to 44. They carry 15 marks each.

- 39. (a) State and prove Leibnitz's Theorem
 - (b) Show that the maximum value of $\frac{1}{x^x}$ is $e^{1/e}$
- 40. Find the general solution of the partial differential equation $xz\frac{\partial z}{\partial x} + yz\frac{\partial z}{\partial y} = xy$
- 41. Show that $a^7 \equiv a \pmod{42}$ for any positive integer a
- 42. Show that 41 divides $2^{20} 1$
- 43. (a) Show that f(x + iy) = x iy is not analytic
 - (b) Solve $x^5 + 32 = 0$.
- 44. Maximize 5x-y subject to the constraints : $2x+5y \le 80$; $x+y \le 20$, $x,y \ge 0$. (2 × 15 = 30 Marks)