Chapter 2

Digital Design and Computer Architecture, 2nd Edition

David Money Harris and Sarah L. Harris

Chapter 2 :: Topics

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing

Introduction

A logic circuit is composed of:

- Inputs
- Outputs
- Functional specification
- Timing specification

Circuits

Nodes

- Inputs: A, B, C
- Outputs: Y, Z
- Internal: n1
- Circuit elements
 - E1, E2, E3
 - Each a circuit

Types of Logic Circuits

Combinational Logic

- Memoryless
- Outputs determined by current values of inputs

Sequential Logic

- Has memory
- Outputs determined by previous and current values of inputs

Rules of Combinational Composition

- Every element is combinational
- Every node is either an input or connects to exactly one output
- The circuit contains no cyclic paths
- Example:

Which of the circuits below are combinational?

Boolean Equations

- Functional specification of outputs in terms of inputs
- Example: $S = F(A, B, C_{in})$ $C_{out} = F(A, B, C_{in})$

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Some Definitions

- Complement: variable with a bar over it \overline{A} , \overline{B} , \overline{C}
- Literal: variable or its complement
 A, A, B, B, C, C
- Implicant: product of 1 or more literals
 ABC, AC, BC, B
- Minterm: product that includes all input variables

ABC, ABC, ABC

Maxterm: sum that includes all input variables

$$(A+\overline{B}+C)$$
, $(\overline{A}+B+\overline{C})$, $(\overline{A}+\overline{B}+C)$

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

				minterm
_ A	В	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	A B	m_1°
1	0	0	\overline{A}	m_2
1	1	1	АВ	m_3

$$Y = \mathbf{F}(A, B) =$$

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

				minterm
A	B	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_{0}
0	1	1	Ā B	m_1
1	0	0	\overline{AB}	m_2
1	1	1	АВ	m_3

$$Y = \mathbf{F}(A, B) =$$

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

				minterm
_ <i>A</i>	В	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	Ā B	m_1
1	0	0	\overline{AB}	m_2
1	1	1	АВ	m_3

$$Y = \mathbf{F}(A, B) = \overline{\mathbf{A}}\mathbf{B} + \mathbf{A}\mathbf{B} = \Sigma(1, 3)$$

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a **maxterm**
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing the maxterms for which the output is FALSE
- Thus, a product (AND) of sums (OR terms)

				maxterm
Α	В	Y	maxterm	name
0	0	0	A + B	M_0
0	1	1	$A + \overline{B}$	M_1
$\overline{1}$	0	0	A + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

$$Y = F(A, B) = (A + B)(A + \overline{B}) = \Pi(0, 2)$$

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E)
 - If it's not open $\overline{(O)}$ or
 - If they only serve corndogs (C)

Write a truth table for determining if you will eat lunch (E).

0	С	E
0	0	
0	1	
1	0	
1	1	

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E)
 - If it's not open $\overline{(O)}$ or
 - If they only serve corndogs (C)

Write a truth table for determining if you will eat lunch (E).

SOP & POS Form

• SOP – sum-of-products

0	С	E	minterm
0	0		OC
0	1		O C
1	0		$O\overline{C}$
1	1		O C

POS – product-of-sums

0	С	Y	maxterm
0	0		O + C
0	1		$O + \overline{C}$
1	0		O + C
1	1		$\overline{O} + \overline{C}$

SOP & POS Form

• SOP – sum-of-products

0	С	Ε	minterm
0	0	0	O C
0	1	0	O C
1	0	1	O C
1	1	0	O C

$$Y = O\overline{C}$$
$$= \Sigma(2)$$

POS – product-of-sums

0	С	Ε	maxterm
0	0	0	0 + C
0	1	0	$O + \overline{C}$
1	0	1	O + C
(1	1	0	$\overline{O} + \overline{C}$

$$Y = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$$
$$= \Pi(0, 1, 3)$$

Write a Boolean equation for the following truth table in SOP form

Α	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Write a Boolean equation for the following truth table in POS form

Α	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

A museum has three rooms, each with a motion sensor (m0, m1, and m2) that outputs 1 when motion is detected. At night, the only person in the museum is one security guard who walks from room to room. Create a circuit that sounds an alarm (by setting an output A to 1) if motion is ever detected in more than one room at a time (i.e., in two or three rooms), meaning there must be one or more intruders in the museum. Start with a truth table.

Convert the following English problem statements to Boolean equations. Introduce Boolean variables as needed.

- A flood detector should turn on a pump if water is detected and the system is set to enabled
- b. A house energy monitor should sound an alarm it is night and light is detected inside a room but motion is not detected.
- c. An irrigation system should open the sprinkler's water valve if the system is enabled and niether rain nor freezing temperatures are detected.
- a) Pump = WaterDetected AND SystemEnabled
- b) Alarm = Night AND LightInsideDetected AND NOT MotionDetected
- c) WaterValveOpen = SystemEnabled AND NOT (RainDetected OR FreezingTemperaturesDetected)

Let variables T represent being tall, H being heavy, and F being fast. Let's consider anyone who is not tall as short, not heavy as light, and not fast as slow. Write a Boolean equation to represent the following:

- a. You may ride a particular amusement park ride only if you are either tall and light, or short and heavy.
- b. You may NOT ride an amusement park ride if you are either tall and light, or short and heavy. Use algebra to simplify the equation to sum of products.
- c. You are eligible to play on a particular basketball team if you are tall and fast, or tall and slow. Simplify this equation.
- d. You are NOT eligible to play on a particular football team if you are short and slow, or if you are light. Simplify to sum of products form.
- e. You are eligible to play on both the basketball and football teams above, based on the above criteria. Hint: combine the two equations into one equation by ANDing them.

Boolean Algebra

- Axioms and theorems to simplify Boolean equations
- Like regular algebra, but simpler: variables have only two values (1 or 0)
- Duality in axioms and theorems:
 - ANDs and ORs, 0's and 1's interchanged

Boolean Axioms

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1′	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{T} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

Theorems of One Variable

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

T1: Identity Theorem

- B 1 = B
- B + 0 = B

T1: Identity Theorem

- B 1 = B
- B + 0 = B

$$\begin{bmatrix} B \\ 0 \end{bmatrix}$$
 $=$ B

T2: Null Element Theorem

- B 0 = 0
- B + 1 = 1

T2: Null Element Theorem

- B 0 = 0
- B + 1 = 1

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

T3: Idempotency Theorem

- B B = B
- B + B = B

T3: Idempotency Theorem

- B B = B
- B + B = B

$$\begin{array}{c|c}
B \\
B
\end{array}$$

$$B \rightarrow B \rightarrow B$$

T4: Involution Theorem

•
$$\overline{\overline{B}} = B$$

T4: Involution Theorem

$$\bullet \stackrel{=}{B} = B$$

$$B \longrightarrow B$$

T5: Complement Theorem

•
$$B • B = 0$$

•
$$B + \overline{B} = 1$$

T5: Complement Theorem

• B •
$$\overline{B} = 0$$

•
$$B + \overline{B} = 1$$

$$\frac{B}{B}$$
 = 0

$$\frac{B}{B}$$
 $=$ 1

Boolean Theorems Summary

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5′	$B + \overline{B} = 1$	Complements

Boolean Theorems of Several Vars

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + B \bullet D = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9′	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$	T11'	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$	Consensus
	$= B \bullet C + \overline{B} \bullet D$		$= (B + C) \bullet (\overline{B} + D)$	
T12	$B_0 \bullet B_1 \bullet B_2$	T12'	$B_0 + B_1 + B_2$	De Morgan's
	$= (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots)$		$= (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	Theorem

Example 1:

•
$$Y = AB + AB$$

Example 1:

•
$$Y = AB + \overline{AB}$$

= $B(A + \overline{A})$ T8
= $B(1)$ T5'
= B T1

Example 2:

• Y = A(AB + ABC)

Example 2:

•
$$Y = A(AB + ABC)$$

$$=A(AB(1+C))$$

$$=A(AB(1))$$

$$=A(AB)$$

$$= (AA)B$$

$$=AB$$

Exercise

Minimize the following expression:

$$\overline{A} \, \overline{B} \, \overline{C} + A \, \overline{B} \, \overline{C} + A \, \overline{B} \, \overline{C}$$

DeMorgan's Theorem

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

•
$$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$$

Bubble Pushing

Backward:

- Body changes
- Adds bubbles to inputs

Forward:

- Body changes
- Adds bubble to output

Bubble Pushing

• What is the Boolean expression for this circuit?

Bubble Pushing

• What is the Boolean expression for this circuit?

$$Y = AB + CD$$

Bubble Pushing Rules

- Begin at output, then work toward inputs
- Push bubbles on final output back
- Draw gates in a form so bubbles cancel

Bubble Pushing for CMOS

- □ CMOS logic favors NAND/NOR over AND/OR
- Convert the circuit above such that only NAND/NOR/INVs are used.

Bubble Pushing for CMOS

Inefficient!

Bubble Pushing for CMOS

Functional Completeness: True or False?

We can implement any logic function using:

- 1. Only AND, OR, INVs
- 2. Only AND, INVs
- 3. Only NANDs
- 4. Only NORs
- 5. Only ANDs

Functional Completeness: True or False?

We can implement any logic function using:

- 1. Only AND, OR, INVs TRUE
- 2. Only AND, INVs TRUE
- 3. Only NANDs TRUE
- 4. Only NORs TRUE
- 5. Only ANDs | FALSE

From Logic to Gates

- Two-level logic: ANDs followed by ORs
- Example: $Y = \overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$

Circuit Schematics Rules

- Inputs on the left (or top)
- Outputs on right (or bottom)
- Gates flow from left to right
- Straight wires are best

Circuit Schematic Rules (cont.)

- Wires always connect at a T junction
- A dot where wires cross indicates a connection between the wires
- Wires crossing without a dot make no connection

wires connect wires connect without a dot do at a T junction at a dot not connect

Multiple-Output Circuits

Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

A_3	A_2	A_1	A_{0}	Y ₃	Y_2	Y ₁	Yo
0	0	0	0			•	
0	0	0	0101010101010				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
0 1 1 1 1 1 1	1	1					
1	1	1	1				

Multiple-Output Circuits

Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

_	_	_	_				
A_3	A_2	A_1	A_{o}	Y_3	Y ₂	Y ₁	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
A_3 0 0 0 0 0 1 1 1 1 1	A_2 0 0 0 1 1 1 0 0 1 1 1 1 1	A_1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1	A _o 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Y ₃ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y ₂ 0 0 0 0 1 1 1 0 0 0 0 0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	Y _o 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Priority Circuit Hardware

A_3	A_2	A_1	A_{o}	Y_3	Y_2	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0 0	Y _o 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1	0	0 0 1 0 0 1 0 0 1 1 0 0 1	0	Y ₃ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y ₂ 0 0 0 0 1 1 1 0 0 0 0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	0 0 0 1 1 1 0 0 0 1 1 1 1	1	01010101010101	1	0	0	0
1	1	1	1	1	0	0	0

Don't Cares

A_3	A_2	A_1	A_{o}	Y_3	Y ₂ 0 0 0 0 1 1 1 0 0 0 0	Y_1	Y _o 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
A_3 0 0 0 0 0 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1 1	A_1 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1	01010101010101	Y ₃ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	0

	1 ₃ A	A ₂ /	4 ₁ A	o Y	$_{3}$ Y_{2}	Y ₁	Yo
C	() (0 C	0	0	0	0
C	() () 1	. 0	0	0	1
C	() [1 X	0	0	1	0
C) 1	L)	X X		1	0	0
1	. >		0 0 0 1 1 X X X	1	0	0	0

Contention: X

- Contention: circuit tries to drive output to 1 and 0
 - Actual value somewhere in between
 - Could be 0, 1, or in forbidden zone
 - Might change with voltage, temperature, time, noise
 - Often causes excessive power dissipation

$$A = 1 - Y = X$$

$$B = 0 - Y = X$$

- Warnings:
 - Contention usually indicates a bug.
 - X is used for "don't care" and contention look at the context to tell them apart

Floating: Z

- Floating, high impedance, open, high Z
- Floating output might be 0, 1, or somewhere in between
 - A voltmeter won't indicate whether a node is floating

Tristate Buffer

E	Α	Y
0	0	Z
0	1	Ζ
1	0	0
1	1	1

Tristate Busses

Floating nodes are used in tristate busses

- Many different drivers
- Exactly one is active at once

Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically

•
$$PA + P\overline{A} = P$$

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Y AB								
C	00	01	11	10				
0	1	0	0	0				
1	1	0	0	0				

Y	B 00	01	11	10
0	ĀĒĈ	ĀBĒ	ABĈ	AĒĈ
1	ĀĒC	ĀBC	ABC	AĒC

K-Map

- Circle 1's in adjacent squares
- In Boolean expression, include only literals whose true and complement form are *not* in the circle

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$Y = \overline{A}\overline{B}$$

3-Input K-Map

Truth Table

_ A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

K-Map

Y C	B 00	01	11	10
0				
1				

3-Input K-Map

Y	В 00	01	11	10
0	ABC	ABC	ABC	ABC
1	ĀĒC	ĀBC	ABC	AĒC

Truth Table

_ A	В	C	Y
0	0	0	0
Ο	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

K-Map

$$Y = \overline{A}B + B\overline{C}$$

K-Map Definitions

- Complement: variable with a bar over it \bar{A} , \bar{B} , \bar{C}
- Literal: variable or its complement \bar{A} , A, \bar{B} , B, C, \bar{C}
- Implicant: product of literals
 ABC, AC, BC, B
- **Prime implicant:** implicant corresponding to the largest circle in a K-map

K-Map Rules

- Every 1 must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2,
 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges
- A "don't care" (X) is circled only if it helps minimize the equation
- Goal: find the smallest number of largestpossible circles

Exercise

Solution

4-Input K-Map

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0 0 0	0	1	1 0	1
0	0	1 0 0 1 1 0	1	1
0		0	1 0	0
0 0 0 0	1 1 1 1	0	1	1
0	1	1	1	1
0	1	1		1
1	0	0	1 0	1
1 1	0 0 0	0		1
1	0	1	0	1
1	0	1 1 0 0	1 0 1 0	0
1	0 1 1	0	0	0
1	1	0	1 0	0
1 1 1 1 1	1	1	0	1 0 1 0 1 1 1 1 1 0 0 0 0
1	1	1	1	0

4-Input K-Map

Α	В	С	D	Y
0	0		0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1	0 0 1 0 0 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 0 1 1 1 1 1 0 0 0 0
1	1	1	1	0

Υ				
CDA	B 00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	1

4-Input K-Map

Α	В	С	D	Y
0			0	1
0	0	0	1	0
0	0	1	0	1
0	0 0 0	1	1	1
0	1	0	0	0
0	1 1 1 0 0	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1	0 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0	1 0 1 0 1 1 1 1 0 0 0 0
1	1	1	1	0

$$Y = \overline{A}C + \overline{A}BD + A\overline{B}\overline{C} + \overline{B}\overline{D}$$

K-Maps with Don't Cares

Α	В	С	D	Y
0	0	0	0	1
0	0 0 0	0 0	1	0
0	0		0	1
0	0	1	1	1
0	1 1	0	0	0
0	1	1 0 0 1 1 0 0 1 1 0	1	Χ
0	1 0 0 0	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	Х
1		1	1	Х
1	1 1	0	0	Х
1	1	0	1	Х
0 0 0 0 0 0 0 0 1 1 1 1 1	1	1	0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 0 X 1 1 1 X X X X
1	1	1	1	X

K-Maps with Don't Cares

Α	В	С	D	Υ
0		0	0	1
0	0 0	0	1	0
0 0 0 0 0 0	0	1	1 0 1 0	1
0	0	1	1	1
0	1	0	0	0
0	1 1 1 0 0	0	1 0 1 0	Χ
0	1	1 1	0	1
0	1	1	1	1
1	0	0	0	1
1 1 1 1 1 1	0	0		1
1	0	1	0	X
1	0	1	1 0 1 0 1	X
1	1 1	0	0	X
1	1	0	1	X
1	1	1	0	1 0 1 0 X 1 1 1 X X X X
1	1	1	1	X

Y				
CDA	B 00	01	11	10
00	1	0	X	1
01	0	X	X	1
11	1	1	X	X
10	1	1	X	Х

K-Maps with Don't Cares

Α	В	С	D	Y
	0	0	0	1
0	0	0	1	0
0	0 0 0		0	1
0	0	1 1	1	1
0	1	0	0	0
0	1 1 1 0 0 0	0	1	X
0	1	1	0	1
0	1	0 1 0 0 1 1 0 0	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	Х
1	0	1	1	X
1	1 1	0	0	X
1	1	0	1	X
0 0 0 0 0 0 0 0 1 1 1 1 1	1	1	0 1 0 1 0 1 0 1 0 1	1 0 1 0 X 1 1 1 X X X
1	1	1	1	X

$$Y = A + \overline{BD} + C$$

Combinational Building Blocks

- Multiplexers
- Decoders

Multiplexer (MUX)

- Selects between one of N inputs to connect to output
- log₂N-bit select input control input
- Example:

2:1 Mux

						l
	S	D_1	D_0	Y	S	Y
•	0	0	0	0	0	D_0
	0	0	1	1	1	D_1
	0	1	0	0		
	0	1	1	1		
	1	0	0	0		
	1	0	1	0		
	1	1	0	1		
	1	1	1	1		

Multiplexer Implementations

Logic gates

Sum-of-products form

Tristates

- For an N-input MUX, use N tristates
- Turn on exactly one to select the appropriate input

4:1 Mux Implementations

4:1 Mux Implementations

Implement a 4:1 Mux using 2:1 Muxes

Logic using Multiplexers

• Using the MUX as a lookup table

A	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

$$Y = AB$$

Can we implement the same logic with a 2-to-1 MUX?

• 2^N-to-1 MUX needed for n-inputs

Logic using Multiplexers

Reducing the size of the MUX

• 2^{N-1}-to-1 MUX needed for n-inputs

Exercise: Implement XOR using a 2:1 MUX

Exercise

Realize $F(A,B,C) = \Sigma (1,3,6,7)$ using 4x1 Mux

Or, you may connect A to inputs and B and C to select inputs. Then A' 0 1 2 3

A 4 5 6 7

O A' A 1

Exercise

Realize F(A, B, C, D) = S(1,2,3,4,8,11,12,15) using 8x1 mux

Use A,B,C as select inputs.

```
D' 0 2 4 6 8 10 12 14
D 1 3 5 7 9 11 13 15
D 1 D' 0 D' D D' D
```

System Verilog

Multiplexer Description

```
// 2x1 multiplexer
```

module mux2to1(input logic in1, in0, s, output logic y);

assign $y = s\&in1 \mid ^s\&in0$; endmodule

Using conditional assignment, we have a simpler statement:

assign y = s ? in1 : in0

Conditional Assignment

Four 2x1 muxes

is also called a *ternary operator* because it operates on 3 inputs: s, d1, and d0.

Implement an 8-bit mux2 using two 4-bit mux2s

SystemVerilog:

```
module mux2_8(input logic [7:0] d0, d1, input logic s, output logic [7:0] y);
```

```
mux2 lsbmux(d0[3:0], d1[3:0], s, y[3:0]);
mux2 msbmux(d0[7:4], d1[7:4], s, y[7:4]);
```

endmodule

Decoders

- N inputs, 2^N outputs
- "One-hot" outputs: only one output HIGH at once

A_1	A_0	Y_3	Y_2	Y_1	Y_0
0	0	0 0 0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Decoder Implementation

System Verilog Implementation of a 2:4 Decoder

```
module decoder2to4 (input logic in1,in0, output logic y3,y2,y1,y0);

assign y3 = in1 & in0;
assign y2 = in1 & ~in0;
assign y1 = ~in1 & in0;
assign y0 = ~in1 & ~in0;
endmodule
```

Logic Using Decoders

OR minterms

Timing

- Delay between input change and output changing
- How to build fast circuits?

Propagation & Contamination Delay

- **Propagation delay:** $t_{pd} = \max \text{ delay from input to output}$
- Contamination delay: $t_{cd} = \min$ delay from input to output

Propagation & Contamination Delay

- Delay is caused by
 - Capacitance and resistance in a circuit
 - Speed of light limitation
- Reasons why t_{pd} and t_{cd} may be different:
 - Different rising and falling delays
 - Multiple inputs and outputs, some of which are faster than others
 - Circuits slow down when hot and speed up when cold

Critical (Long) & Short Paths

Critical (Long) Path: $t_{pd} = 2t_{pd_AND} + t_{pd_OR}$

Short Path: $t_{cd} = t_{cd_AND}$

Glitches

When a single input change causes multiple output changes

Glitch Example

• What happens when A = 0, C = 1, B falls?

$$Y = \overline{A}\overline{B} + BC$$

Glitch Example (cont.)

Fixing the Glitch

Why Understand Glitches?

- Glitches don't cause problems when synchronous design conventions are used (see Chapter 3)
- It's important to **recognize** a glitch: in simulations or on oscilloscope
- Can't get rid of all glitches simultaneous transitions on multiple inputs can also cause glitches

