CS 70 Fall 2021 Discrete Mathematics and Probability Theory

DIS 1B

(2k+1)+(2e+1)

(e) Contrapos. a even=> a even

Prove or Disprove

odd +odd = even

Prove or disprove each of the following statements. For each proof, state which of the proof types (as discussed in Note 2) you used. and 3nd

- (a) For all natural numbers n, if n is odd then $n^2 + 3n$ is even.
- (b) For all real numbers a, b, if $a + b \ge 20$ then $a \ge 17$ or $b \ge 3$.
- (c) For all real numbers r, if r is irrational then r+1 is irrational.
- (d) For all natural numbers n, $10n^3 > n!$.
- (e) For all natural numbers a where a^5 is odd, then a is odd.

(b) contrapos: a<17 / b<3 => a+b < 20 a+62 17+3=20

(C) contradict: Assume r+1 rational: $24 = \frac{9}{5}$, $a, b \in \mathbb{Z}$ $-19 \Rightarrow 8$ $-19 \Rightarrow 8$ => $9=\frac{a-b}{b}$, a-b, $b \in \mathbb{Z}$ => $r \in \mathbb{R}$ P => 78 => (Absurd) -P

(d) n = 10: $10 \, \text{n}^3 = 10000 < 3628800$, n = 0

- (a) Let p > 3 be a prime. Prove that p is of the form 3k + 1 or 3k 1 for some integer k.
- (b) Twin primes are pairs of prime numbers p and q that have a difference of 2. Use part (a) to prove that 5 is the only prime number that takes part in two different twin prime pairs.

CS 70, Fall 2021, DIS 1B

n irrational => ret irrational

not rational

Assume not rational $a = b = 2, b \in \mathbb{Z}$ $a - b \in \mathbb{Z}, b \in \mathbb{Z}$ $a - b \in \mathbb{Z}$

3 Induction
$$\rho(k) = 2^k > 2^{k+1}$$
 Indo hypothesis $= \rho(k)$ is true.

Prove the following using induction:

(a) For all natural numbers $n > 2$, $2^n > 2n + 1$.

Base $= 0$ When $n = 3$, $2^n = 3 > 6 + 1 = 7$.

 $= 0$ $= 0$

4 Make It Stronger

Suppose that the sequence $a_1, a_2, ...$ is defined by $a_1 = 1$ and $a_{n+1} = 3a_n^2$ for $n \ge 1$. We want to prove that $a_n \le 3^{(2^n)}$

for every positive integer n.

- (a) Suppose that we want to prove this statement using induction. Can we let our inductive hypothesis be simply $a_n \le 3^{(2^n)}$? Attempt an induction proof with this hypothesis to show why this does not work.
- (b) Try to instead prove the statement $a_n \le 3^{(2^n-1)}$ using induction.
- (c) Why does the hypothesis in part (b) imply the conclusion from part (a)?

CS 70, Fall 2021, DIS 1B 2