## The Long Range Communication Technologies for IoT: NB-IoT

#### **Are Mobile Radio Networks IoT-ready?**

**OLD SCHOOL MOBILE** 

**Few Applications** 

throughput-bound

**HighEnd Terminals** 

**IoT-Enabled Mobile** 

Fragmented Applications

Many clients – Low Traffic

Simple (cheap) terminals

#### **M2M Opportunity Segmentation**



# Major LPWAN Technologies Comparison

|                              | SIGFOX<br>One network A billion dreams | LoRa                  | NB-IoT            |
|------------------------------|----------------------------------------|-----------------------|-------------------|
| Bandwidth                    | 100 KHz                                | 125 kHz               | 180 kHz           |
| Coverage (Indoor)            | 149dB                                  | 157dB                 | 164dB             |
| Capacity                     | <25.000 / Cell                         | <40.000 / Cell        | <100.000 / Cell   |
| Throughput                   | 100 bit/s                              | 290 bit/s - 50 kbit/s | 250 kbit/s        |
| Bi-directional Data Transfer | No                                     | Class dependent       | Yes               |
| Security                     | 16 Bit                                 | 32 Bit                | 3GPP 128-256 Bit  |
| Scalability                  | Low                                    | Medium                | High              |
| Mobility                     | No                                     | Yes                   | Yes               |
| Location Support             | No                                     | Yes                   | GPS / Positioning |
| Cost per module              | 2 USD                                  | 12 USD                | 5 USD             |
|                              |                                        |                       |                   |

#### **NB-IOT** in a Nutshell **KEY BENEFITS & FEATURES**



### **General NB-IoT Requirements**

#### Several targets were derived by 3GPP for NB-loT:

- Minimize **signaling overhead**, especially over the radio interface
- End-to-end security for the complete system, including the core network
- Improved battery life
- Support for delivery of both IP and non-IP data
- Support of SMS as a deployment option

#### The benefits of NB-IoT, as compared to Sigfox and LoRA, include:

- Standardized technology
- 3GPP-based security built-in
- Use of licensed spectrum
- Reuse of existing mobile networkequipment and processes



#### **Stripped LTE Features**

In order to fulfill LPWA requirements, numerous LTE Release 8/9 features are not supported:

- No handover support for UEs in the connected state; only cell reselection in the idle state is supported
- No Intra-RAT interaction with other radio technologies
- No LTE-WLAN interworking, interference avoidance for in-device coexistence, or measurements to monitor the channel quality
- Most LTE-Advanced features are not supported (e.g. Carrier Aggregation, Dual Connectivity, or device-to-device services)
- No QoS concept, as NB-loT is not used for delay-sensitive data packets
- Services requiring a guaranteed bit rate, like real-time IMS, are not offered in NB-IoT

## **CAT-M and NB-IOT Deployment Options**



### In-band operation

- In-band deployments introduce NB-loT carriers within the LTE carrier:
- Solution is scalable by simply adding more NB-IoT carriers
- Near-far interference to non-upgraded LTE base stations can occur; recommendation is to do a network-wide deployment
- ☐ In-band deployments reduce the capacity (and max. speed) of the LTE carrier:
- NB-IoT output power is 35dBm, leading to 0.3dB reduction in case no sufficient PA power is available
- A possible solution is to power-boost NB-IoT by 6dB (anchor carrier in multi-carrier mode)
- Optionally, the NB-IoT baseband capacity can be dynamically shared with LTE MBB when there is no NB-IoT traffic



### **Power Saving Mode**

- It is a specially kind of UE status that can minimize the energy consumption that is supposed to be even lower than normal idle mode energy consumption
- □ This is newly added feature in Release 12 and is specified in 3GPP 24.301-5.3.11 Power saving mode and 23.682-4.5.4 UE Power Saving Mode
- Similar to power-off, but the UE remains registered with the network
- No need to re-attach or re-establish PDN connections
- □ A UE in PSM is not immediately reachable for mobile terminating services

## **Power Saving Mode and eDRX**



## **NB-IoT Key Parameters**

|    | Frequency range              | <b>NB-loT (LTE) FDD Bands:</b> 1, 2, 3, 5, 8, 11, 12, 13, 17, 18, 19, 20, 25, 26, 28, 66, 70 | Support for other features:                                        |  |
|----|------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| \$ | Duplex Mode                  | FDD Half Duplex type B                                                                       | HARQ (1 process only)  UL Power Control (Open Loop only)           |  |
| Ψ  | MIMO                         | No MIMO support                                                                              |                                                                    |  |
|    | Bandwidth                    | 180 kHz (1PRB)                                                                               |                                                                    |  |
|    | Multiple Access              | Downlink: OFDMA<br>Uplink: SC-FDMA                                                           | RSRP, RSRQ Reporting  CSI Paparting                                |  |
|    | Modulation Schemes           | Downlink: QPSK Uplink: Single Tone: π/4-QPSK, π/2-BPSK Multi Tone: QPSK                      | <ul><li>☐ CSI Reporting</li><li>☐ Handovers in CONNECTED</li></ul> |  |
|    | Coverage 164 dB (+20dB GPRS) |                                                                                              | Carrier Aggregation                                                |  |
|    | Data Rate                    | ~25 kbps in DL and ~64 kbps in UL (multi-tone UE)                                            | ☐ IMS                                                              |  |
|    | Latency                      | < 10 seconds                                                                                 | □ eMBMS                                                            |  |
|    | Low Power                    | eDRX, Power Saving Mode                                                                      |                                                                    |  |
|    |                              |                                                                                              |                                                                    |  |

#### Random Access Procedure



Preamble repetition:
1, 2, 4, 8, 16, 32, 64, or 128 times

1st Higher Layer Protocol Interaction

Random Access Preamble

Random Access Response

Scheduled Transmission (msg3)

NB-IoT Device

NB-IoT Device

#### Repetitions

- Technique consisting on repeating the same transmission several times:
  - Achieve extra coverage (up to 20 dB compared to GPRS)
  - · Each Repetition is self-decodable
  - · Scrambling code is changed for each transmission to help combination
  - · Repetitions are ACK-ed just once
- For NB-IoT all channels can use Repetitions to extend coverage





**Example:** Repetitions used in NB-IoT in NPDCCH and NPDSCH channels

## **Coverage Levels**

- Up to 3 different Coverage Levels signaled via SIB2-NB
  - (Normal, Robust, Extreme)
  - (CE Level: 0,1, 2)
  - (MCL: 144 db, 154 db, 164 db)
- The coverage level selected determines the NPRACH resources to use:
  - Subset of subcarriers, PRACH
     Repetitions, Max number of attempts,
     etc...
- UE derives the Coverage Level based on NRSRP measured
  - NPRACH resources to be used are determined by the Coverage Level



### Summary

- LTE evolution is able to provide an efficient solution for Cellular IoT
  - Natural evolution of existing networks in existing or additional spectrum
  - M2M traffic can co-exist on the same carrier as other traffic if desired
- Rel-12 improvements for M2M
  - 50% modem complexity reduction compared to Cat-1 UE
  - 10+ years battery lifetime for downlink delay-tolerant traffic
- Rel-13 improvements for M2M
  - 75% modem complexity reduction compared to Cat-1 UE
  - Main cost reduction comes from reducing the UE receive bandwidth to 1.4 MHz
  - 10+ years battery lifetime for cases not targeted by Rel-12
  - 15-20 dB coverage enhancement
- Narrowband deployment
  - Introduction of a narrower LTE system bandwidth (e.g. 200 kHz) can be considered but requires substantial additional efforts compared to the improvements listed above

## 5G is coming to Industry

- ☐ Industry-compliant 5G nice features:
  - mmWave access, Massive MIMO
  - Network Densification
  - Slicing
  - Mobile Edge Computing (MEC)



#### Tactile Internet

- High Access Speed
- low latency

- Enabled/Boosted Applications
  - Immersive reality/virtual reality
  - Autonomous vehicles
  - Collaborative Robotics

## 5G RoadMap



**5G** slicing **5** $\hat{G}$ 







Extension to 5G URLLC (IAB)
Support of network slicing with network virtualization operational mode in non-licensed

spectrum portions

**2019- Release 15** 

Focus on eMBB
Initial functionalities to edge computing and low latency
Commercial launches worldwide



#### 2021 Release 17

Full support of NR light radio for mMTC integration with NB-IoT location services
Integrated Access and Backhauling (IAB)

Source: 3GPP 2019