

Doc. Number :
☐ Tentative Specification
☐ Preliminary Specification
Approval Specification

MODEL NO.: M315DJJ SUFFIX: K30

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note Product Version C2	
Please return 1 copy for yo signature and comments.	ur confirmation with your

Approved By	Checked By	Prepared By
陳立錚	陳立錚	陳有成

Version 3.0 30 July 2018 1 / 39

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 GENERAL SPECIFICATIONS	5
2. MECHANICAL SPECIFICATIONS	6
3. ABSOLUTE MAXIMUM RATINGS	6
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
3.2 ELECTRICAL ABSOLUTE RATINGS	7
3.2.1 TFT LCD MODULE	7
3.2.2 BACKLIGHT UNIT	7
4. ELECTRICAL SPECIFICATIONS	7
4.1 FUNCTION BLOCK DIAGRAM	7
4.2. INTERFACE CONNECTIONS	8
4.3 ELECTRICAL CHARACTERISTICS	10
4.3.1 LCD ELETRONICS SPECIFICATION	10
4.3.2.BACKLIGHT UNIT	12
4.3.3 LIGHTBAR CONNECTOR PIN ASSIGNMENT:	12
4.4 V BY ONE INPUT SIGNAL SPECIFICATIONS	14
4.4.1 V BY ONE DATA MAPPING TABLE	14
4.4.2 COLOR DATA INPUT ASSIGNMENT	
4.5 DISPLAY TIMING SPECIFICATIONS	16
4.5.1 INPUT TIMING SPEC FOR NORMAL MODE	16
4.5.2 INPUT TIMING SPEC FOR FREE-SYNC MODE	16
4.6 V BY ONE INPUT SIGNAL TIMING DIAGRAM	19
4.7 BYTE LENGTH AND COLOR MAPPING OF V-BY-ONE HS	20
4.8 POWER ON/OFF SEQUENCE	21
5. OPTICAL CHARACTERISTICS	23
5.1 TEST CONDITIONS	23
5.2 OPTICAL SPECIFICATIONS	23
6. RELIABILITY TEST ITEM	26
7. MECHANICAL STRENGTH CHARACTERISTICS	27
7.1 MECHANICAL STRENGTH SPECIFICATIONS	27
7.2 TEST CONDITIONS	27
7.3 DEFINITION OF TEST POINTS	
8. PACKING	28
8.1 PACKING SPECIFICATIONS	28

8.2 PACKING METHOD	28
8.3 PALLET	29
8.4 UN-PACKING METHOD	30
9. INX MODULE LABEL	31
10. PRECAUTIONS	32
10.1 ASSEMBLY AND HANDLING PRECAUTIONS	32
10.2 STORAGE PRECAUTIONS	32
10.3 OPERATION PRECAUTIONS	33
10.4 SAFETY PRECAUTIONS	33
10.5 SAFETY STANDARDS	33
10.6 OTHER	33
Appendix 1. SYSTEM COVER DESIGN NOTICE	34
Appendix 2. OUTLINE DRAWING	37

REVISION HISTORY

Version	Date	Page	Description
3.0	July.4th, 2018	P1	Spec Ver.3.0_version C2 was first issued.

Version 3.0 30 July 2018 4 / 39

1. GENERAL DESCRIPTION

1.1 OVERVIEW

M315DJJ-K30 is a 31.5" TFT Liquid Crystal Display MNT module with WLED Backlight unit and 51 pins 8 lane – V by 1 interface. This module supports 3840 x 2160 UHD(Ultra High Definition) mode and can display up to 1.073G colors. The converter module for Backlight is not built in.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note	
Screen Size	31.5" real diagonal	mm		
Driver Element	a-si TFT active matrix	-	-	
Pixel Number	3840 x R.G.B. x 2160	pixel	-	
Pixel Pitch	0.181 (H) x 0.181 (V)	mm	-	
Pixel Arrangement	RGB vertical stripe	-	-	
Display Colors	1.073G	color	-	
Transmissive Mode	Normally Black	-	-	
Surface Treatment	AG type, 3H hard coating, Haze 25	-	-	
Color Gamut	95% of NTSC(Typ.) 100% of sRGB(Typ.) 88% of Adobe(Typ.)	-	-	
RoHS, Halogen Free &TCO 6.0	RoHS, Halogen Free TCO 6.0 compliance			
Luminance, White	(300)	Cd/m2		
Power Consumption	Total 41.52 W(Typ.) @ cell 15.12 W(Typ.), BL 26.4 W(Typ.)			

Note (1) The specified power consumption : Total= cell (reference 4.3.1)+BL (reference 4.3.3) Note (2)

Version 3.0 30 July 2018 5 / 39

2. MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	716.4	717.4	718.4	mm	
Module Size	Vertical (V)	412.85	413.85	414.85	mm	(1)
	Thickness (T)	16.9	17.9	18.9	mm	
Bezel Area	Horizontal	702.4	703.4	704.4	mm	
Dezei Alea	Vertical	396.85	397.85	398.85	mm	
Active Area	Horizontal	-	698.4	-	mm	
Active Alea	Vertical	-	392.85	-	mm	
We	eight	3287	3460	3633	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Storage Temperature	TST	-20	60	$^{\circ}\!\mathbb{C}$	(1)	
Operating Ambient Temperature	TOP	0	50	$^{\circ}\!\mathbb{C}$	(1), (2)	

Note (1)

- (a) 90 %RH Max..
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.

Note (2) Panel surface temperature should be 0° C min. and 65° C max under Vcc=5.0V, fr =60Hz, typical LED string current, 25° C ambient temperature, and no humidity control . Any condition of ambient operating temperature ,the surface of active area should be keeping not higher than 65° C.

Relative Humidity (%RH)

Version 3.0 30 July 2018 6 / 39

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

ltem	Symbol	Value		Value		Unit	Note
Rom	Cymbol	Min.	Max.	O i iii	11010		
Power Supply Voltage	VCCS	-0.3	13.5.	V	(1)		
Logic Input Voltage	VIN	-0.3	3.6	V	(1)		

3.2.2 BACKLIGHT UNIT

Item	Symbo		Value		Unit	Note
item	- 1	Min.	Тур	Max.	Offic	Note
LED Forward Current Per Input Pin	IF	104.5	110	115.5	mA	(1), (2) Duty=100%

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for input pin of LED light bar at Ta=25±2 [◦]C (Refer to 4.3.3 and 4.3.4 for further information).

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

Version 3.0 30 July 2018 7 / 39

4.2. INTERFACE CONNECTIONS

CNV1 Connector Pin Assignment : [WF23-402-5133(FCN),187059-51221(P-TWO)]

PIN ASSIGNMENT

Pin	Name	Description	Note
1	Vin	Power input (+12V)	
2	Vin	Power input (+12V)	
3	Vin	Power input (+12V)	
4	Vin	Power input (+12V)	
5	Vin	Power input (+12V)	
6	Vin	Power input (+12V)	
7	Vin	Power input (+12V)	
8	Vin	Power input (+12V)	
9	N.C.	No Connection	(2)
10	GND	Ground	
11	GND	Ground	
12	GND.	Ground	
13	GND.	Ground	
14	GND.	Ground	
15	N.C.	No Connection	(2)
16	N.C.	No Connection	(2)
17	N.C.	No Connection	(2)
18	N.C	For internal use, no connection	
19	N.C	For internal use, no connection	
20	N.C.	No Connection	(2)
21	N.C.	No Connection	(2)
22	N.C.	No Connection	(2)
23	N.C.	No Connection	(2)
24	N.C.	No Connection	(2)
25	HTPDN	Hot plug detect output, Open drain.	
26	LOCKN	Lock detect output, Open drain.	
27	GND	Ground	
28	RX0N	1 st Pixel Negative VbyOne differential data input in area A. Lan 0	(1)
29	RX0P	1 st Pixel Positive VbyOne differential data input in area A. Lan 0	
30	GND	Ground	
31	RX1N	2 nd Pixel Negative VbyOne differential data input in area A. Lan 1	(1)
32	RX1P	2 nd Pixel Positive VbyOne differential data input in area A. Lan 1	(.,
33	GND	Ground	
34	RX2N	3 rd Pixel Negative VbyOne differential data input in area A. Lan 2	(1)
35	RX2P	3 rd Pixel Positive VbyOne differential data input in area A. Lan 2	(' /
36	GND	Ground	
37	RX3N	4 th Pixel Negative VbyOne differential data input in area A. Lan 3	(1)
38	RX3P	4 th Pixel Positive VbyOne differential data input in area A. Lan 3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
39	GND	Ground	
40	RX4N	5 th Pixel Negative VbyOne differential data input in area A. Lan 4	(1)
41	RX4P	5 th Pixel Positive VbyOne differential data input in area A. Lan 4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
42	GND	Ground	
43	RX5N	6 th Pixel Negative VbyOne differential data input in area A. Lan 5	(1)
44	RX5P	6 th Pixel Positive VbyOne differential data input in area A. Lan 5	. ,
45	GND	Ground	
46	RX6N	7 th Pixel Negative VbyOne differential data input in area A. Lan 6	(1)
47	RX6P	7 th Pixel Positive VbyOne differential data input in area A. Lan 6	
48	GND	Ground	

Version 3.0 30 July 2018 8 / 39

Pin	Name	Description	Note			
49	RX7N	8 th Pixel Negative VbyOne differential data input in area A. Lan 7	(1)			
50	RX7P	8 th Pixel Positive VbyOne differential data input in area A. Lan 7				
51	GND	Ground				

Connector Information

Item	Description
Manufacturer	FCN/ P-TWO
Type part number	FCN: WF23-402-5133
	P-TWO: 187059-51221

Note (1) V-by-One[®] HS Data Mapping

Lan	Data Stream
Lan 0	1, 9, 17,, 3825, 3833
Lan 1	2, 10, 18,, 3826, 3834
Lan 2	3, 11, 19,, 3827, 3835
Lan 3	4, 12, 20,, 3828, 3836
Lan 4	5, 13, 21,, 3829, 3837
Lan 5	6, 14, 22,, 3830, 3838
Lan 6	7, 15, 23,, 3831, 3839
Lan 7	8, 16, 24,, 3832, 3840

Note (2) Reserved for internal use. Please leave it open.

Note (3) VbyOne HS connector pin order defined as following:

Note (4) V-by-One connector mating dimension range request is 0.93mm~1.0mm as below:

Note (5) The first pixel is odd.

Version 3.0 30 July 2018 9 / 39

Note (6) Input signal of even and odd clock should be the same timing

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

 $(Ta = 25 \pm 2 \, {}^{\circ}C)$

Parameter			Symbol		Value	Unit	Note			
		Cymbol	Min.	Тур.	Max.	Onne	Note			
Powe	er Suppl	y Voltage	V _{CC}	10.8	12	13.2	V	(1)		
I	Rush Cu	ırrent	I _{RUSH}	_		2.6	Α	(2)		
		White Pattern	P_{T}	_	8.78	9.52	W			
Power Consu	umption	Black Pattern	P_T	_	8.18	8.86	W	(3)		
		Horizontal Stripe	P _T	_	15.12	16.38	W			
Power Su	nnly	White Pattern	_	_	0.73	0.88	Α			
Curren		Black Pattern	_	_	0.68	0.82	Α	(3)		
		Horizontal Stripe	_	_	1.26	1.53	Α			
		ential Input High eshold Voltage	VLVTH	_	1	+50	mV			
VbyOne HS		ential Input Low eshold Voltage	VLVTL	-50	-		mV			
	Diff	ferential Input Resistor	RRIN	80	100	120	ohm			
CMOS	Input	High Threshold Voltage	VIH	2.7	_	3.3	V			
interface	Input	Low Threshold Voltage	VIL	0		0.7	V			

Version 3.0 30 July 2018 10 / 39

Note (1) The module should be always operated within the above ranges. The ripple voltage should be controlled under 10 % of Vcc (Typ.)

Note (2) Measurement Conditions

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, $Ta = 25 \pm 2 \, ^{\circ}\text{C}$, Fr = 60 Hz, whereas a power dissipation check pattern below is displayed.

Version 3.0 30 July 2018 11 / 39

4.3.2.BACKLIGHT UNIT

Parameter	Symbol		Unit	Note		
Farameter	Syllibol	Min.	Тур.	Max.	O I II	Note
LED Light Bar Input Voltage Per Input Pin	VPIN	-	60	66	٧	(1), Duty=100%, IPIN=210mA
LED Light Bar Current Per Input Pin	IPIN	104.5	110	115.5	mA	(1), (2) Duty=100%
LED Life Time	LLED	30000			Hrs	(3)
Power Consumption	PBL	-	26.4	29.04	W	(1) Duty=100%, IPIN=110mA

- Note (1) LED light bar input voltage and current are measured by utilizing a true RMS multimeter as shown below:
- Note (2) PBL = IPIN \times VPIN \times (4) input pins.
- Note (3) The lifetime of LED is defined as the time when LED packages continue to operate under the conditions at Ta = 25 \pm 2 $^{\circ}$ C and I= (150)mA (per chip) until the brightness becomes \leq 50% of its original value.
- Note (4) The module must be operated with constant driving current.
- Note (5) If converter has PWM function, the PWM Frequency setting must be over 480Hz.

4.3.3 LIGHTBAR CONNECTOR PIN ASSIGNMENT:

(1) Connector Information:

Item	Description
Manufacturer	FCN
Type part number	WM13-406-083N(FCN)
Mating housing part number	WF1300108-B (FCN)

^{*}Notice: There would be compatible issues if not using the indicated connectors in the matching list.

Version 3.0 30 July 2018 12 / 39

(2) LB Connector drawing:

Pin number	Description
1	Cathode of LED string1
2	Cathode of LED string2
3	NC
4	VLED
5	VLED
6	NC
7	Cathode of LED string3
8	Cathode of LED string4

Version 3.0 30 July 2018 13 / 39

4.4 V BY ONE INPUT SIGNAL SPECIFICATIONS

4.4.1 V BY ONE DATA MAPPING TABLE

Lan	Data Stream
Lan 0	1, 9, 17,, 3825, 3833
Lan 1	2, 10, 18,, 3826, 3834
Lan 2	3, 11, 19,, 3827, 3835
Lan 3	4, 12, 20,, 3828, 3836
Lan 4	5, 13, 21,, 3829, 3837
Lan 5	6, 14, 22,, 3830, 3838
Lan 6	7, 15, 23,, 3831, 3839
Lan 7	8, 16, 24,, 3832, 3840

Version 3.0 30 July 2018 14 / 39

4.4.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

														[Dat		Sigr														
	Color					R	ed										eer	1								BL	JE				
		R9	R8	G7	G6	R5	R4	R3	R 2	R1	R0	G9	G8	G 7	G 6	G 5	G4	G 3	G2	G 1	G0	В9	B8	B 7	В6	B5	В4	В 3	B2	B 1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta Yellow	1		1	1	1	1					0	0	0	0	0	0	0	0	0	0	1		1	1	1	1	1	1	1	1
	White	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0 1	0 1	0	0	0	0	0	0	0	0
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ŏ
Gray		0	"																												
Scale	:					:					:	:	:	:	:	:	:	:	:	:		:	:	:	:			:	:		:
Of	Red(1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó
Red	Red(1022)	1	1	1	1	1	1	1	1	1	0	0	Ō	0	0	0	0	0	0	0	0	0	Ō	Ō	Ō	ō	0	Ō	Ō	0	Ö
	Red(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
0.00	Green(1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:		:					:		:	:			li	:		:	:	:	:	: 1
Of	: Blue(1021)	:	:	:	:	:	:	0	:	:	:	-	:	:	:	:	:	:	:	:			1	:	:	;		:	:		;
Blue	Blue(1021) Blue(1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1
	Blue(1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1		1	1	1	1	0
	DIU U (1023)	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		ı	ı	ı	ı				I	ı

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Version 3.0 30 July 2018 15 / 39

4.5 DISPLAY TIMING SPECIFICATIONS

4.5.1 INPUT TIMING SPEC FOR NORMAL MODE

The input signal timing specifications are shown as the following table and timing diagram.

_							<u> </u>
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	70	74.25	80	MHz	(1)
	Intra-Pair skew		-0.3	-	0.3	UI	(2)
	Inter-Pair skew		-5	•	5	UI	(3)
V by One	Spread spectrum modulation range	Fclkin_ mod	F _{clkin} -0.5%	-	F _{clkin} +0.5%	MHz	
	Spread spectrum modulation frequency	F _{SSM}	-	-	30	KHz	(4)
	Frame Rate	Fr	57.5	60	62.5	Hz	(5)(6)
Vertical Display	Total	Tv	2200	2250	2790	Th	Tv=Tvd+Tvb
Term	Active Display	Tvd	2160	2160	2160	Th	-
	Blank	Tvb	40	90	630	Th	-
	Total	Th	530	550	570	Тс	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	480	480	480	Тс	-
	Blank	Thb	50	70	90	Tc	-

4.5.2 INPUT TIMING SPEC FOR FREE-SYNC MODE

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
	Frequency	Fc	70	74.25	80	MHz	(1)	
	Intra-Pair skew		-0.3	-	0.3	UI	(2)	
	Inter-Pair skew		-5	-	5	UI	(3)	
V by One	Spread spectrum modulation range	Fclkin_ mod	F _{clkin} -0.5%	-	F _{clkin} +0.5%	MHz		
	Spread spectrum modulation frequency	F _{SSM}	-	-	30	KHz	(4)	
	Frame Rate	Fr	40	60	62.5	Hz	(5)(6)(7)	
Vertical Display	Total	Tv	2200	2250	3350	Th	Tv=Tvd+Tvb	
Term	Active Display	Tvd	2160	2160	2160	Th	-	
	Blank	Tvb	40	90	1190	Th	-	
	Total	Th	530	550	570	Tc	Th=Thd+Thb	
Horizontal Display Term	Active Display	Thd	480	480	480	Тс	-	
	Blank	Thb	50	70	90	Tc	-	

Note (1) Please make sure the range of pixel clock has follow the below equation:

$$\begin{aligned} & \text{Fclkin(max)} \ge & \text{Fr} \times \text{Tv} \times \text{Th} \\ & \text{Fr} \times \text{Tv} \times \text{Th} \ge & \text{Fclkin (min)} \end{aligned}$$

INPUT SIGNAL TIMING DIAGRAM

Version 3.0 30 July 2018 16 / 39

INPUT SIGNAL TIMING DIAGRAM₽

Note (2) V-by-One HS Intra-pair skew

Note (3) V-by-One HS Inter-pair skew

Version 3.0 30 July 2018 17 / 39

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

- Note (5) The frame-to-frame jitter of the input frame rate is defined as the above figures. FRn = FRn-1 \pm 0.5%.
- Note (6) The setup of the frame rate jitter > 0.5% may result in the cosmetic LED backlight symptom and the electric function is affected.

Note (7) In Free-sync mode, only guaranteed no functional failure, but don't guaranteed its quality of the optical and cosmetic performance.

Version 3.0 30 July 2018 18 / 39

4.6 V BY ONE INPUT SIGNAL TIMING DIAGRAM

Table 1 Eye Mask Specification

	X [UI]	Y [mV]	Note
Α	0.25	0	(1)
В	0.3	50	(1)
С	0.7	50	(1)
D	0.75	0	(1)
E	0.7	-50	(1)
F	0.3	-50	(1)

Note (1) Input levels of V-by-One HS signals are comes from "V-by-One HS Stander Ver.1.4"

Version 3.0 30 July 2018 19 / 39

4.7 BYTE LENGTH AND COLOR MAPPING OF V-BY-ONE HS

Packer input & Unpacker output		30bpp RGB (10bit)
	D[0]	R[2]
	D[1]	R[3]
	D[2]	R[4]
Dista 0	D[3]	R[5]
Byte 0	D[4]	R[6]
	D[5]	R[7]
	D[6]	R[8]
	D[7]	R[9]
	D[8]	G[2]
	D[9]	G[3]
	D[10]	G[4]
Byte 1	D[11]	G[5]
byte i	D[12]	G[6]
	D[13]	G[7]
	D[14]	G[8]
	D[15]	G[9]
	D[16]	B[2]
	D[17]	B[3]
	D[18]	B[4]
Byte 2	D[19]	B[5]
byte 2	D[20]	B[6]
	D[21]	B[7]
	D[22]	B[8]
	D[23]	B[9]
	D[24]	X
	D[25]	X
Byte 3	D[26]	B[0]
	D[27]	B[1]
Dyte 3	D[28]	G[0]
	D[29]	G[1]
	D[30]	R[0]
	D[31]	R[1]

Version 3.0 30 July 2018 20 / 39

4.8 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 \, {}^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Version 3.0 30 July 2018 21 / 39

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the LED voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen..
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period..
- Note (5) Interface signal shall not be kept at high impedance when the power is on
- Note (6) Vcc must decay smoothly when power-off

Version 3.0 30 July 2018 22 / 39

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	оС
Ambient Humidity	На	50±10	%RH
Supply Voltage	VCC	12±0.12	V
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"		
LED Light Bar Input Current Per Input Pin	IPIN	110	mA
PWM Duty Ratio	D	100	%
LED Light Bar Test Converter	R373B00011100		

5.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 5.2. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5).

Į1	tem	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx		Typ – 0.03	0.685	Typ + 0.03	-	
		Ry			0.310			
	Green	Gx			0.260			(1), (5)
Color	Orcen	Gy			0.685			
Chromaticity (CIE 1931)	Blue	Bx	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$		0.150			
(312 1331)	Blue	Ву	CS-2000 R=G=B=255		0.060			
	White	Wx	Gray scale		0.313			
		Wy			0.329			
	Center Luminance of White (Center of Screen)			250	300	-	cd/m ²	(4), (5)
Contrast	Contrast Ratio			2000	3000	-	-	(2), (5)
Response Time		Gray to Gray	$\theta_x = 0^\circ$, $\theta_Y = 0^\circ$	-	25	35	ms	(3)
White Va	White Variation		$\theta_x=0^\circ$, $\theta_Y=0^\circ$		-	1.42		(5), (6)
Viewing Angle	Horizontal	$\theta x - + \theta x +$	- CR ≥ 10 -	160 178	-	Deg.	(1), (5)	
viewing Angle	Vertical	θ y- + θ y+		160	178	-	Deg.	(1), (3)

Version 3.0 30 July 2018 23 / 39

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255.

Gray to gray average time means the average switching time of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255 to each other

Version 3.0 30 July 2018 24 / 39

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point

$$L_C = L(5)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 40 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 9 points

 $\delta W = Maximum [L (1) \sim L (9)] / Minimum [L (1) \sim L (9)]$

Version 3.0 30 July 2018 25 / 39

6. RELIABILITY TEST ITEM

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50°C , 80%RH, 240hours	
High Temperature Operation (HTO)	Ta= 50°C , 240hours	
Low Temperature Operation (LTO)	Ta= 0°C , 240hours	
High Temperature Storage (HTS)	Ta= 60° C , 240hours	
Low Temperature Storage (LTS)	Ta= -20°C , 240hours	
	Acceleration: 1.5 G Wave: sine	
Vibration Test	Frequency: 10 - 300 Hz	
(Non-operation)	Sweep: 30 Minutes each Axis (X, Y, Z)	
	Acceleration: 50 G	
	Wave: Half-sine	
	Active Time: 11 ms	
Shock Test	Direction : $\pm X$, $\pm Y$, $\pm Z$.(one time for	
(Non-operation)	each Axis)	
Thermal Shock Test (TST)	-20°C/30min , 60°C / 30min , 100 cycles	
	25°C ,On/10sec , Off /10sec , 30,000	
On/Off Test	cycles	
	Contact Discharge: ± 8KV,	
ESD (Electro Static Discharge)	150pF(330Ω)	
	Air Discharge: ± 15KV, 150pF(330Ω)	
	Operation:10,000 ft / 24hours	
Altitude Test	Non-Operation:30,000 ft / 24hours	

Note (1) criteria: Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

7. MECHANICAL STRENGTH CHARACTERISTICS

7.1 MECHANICAL STRENGTH SPECIFICATIONS

Item	Condition	Min	Unit	Note
Mechanical Strength	128 th Gray Pattern	0.6	Kgf	

7.2 TEST CONDITIONS

Items	Description
Test Condition	 Ambient Illumination: 10~15 lux Test Pattern: 128 Gray Distance of the judgment: 30cm from the surface of module Viewing angle of the judgment: Front
Gage Information	1. Push pull guage a. Model name: HF-50, maker: ALGOL b. Shape of gage tip - Diameter: 2mm - Thickness: 2mm
Definition of Minimum force	To measure minimum force when operator detects any white spot and light leakage that have occurred while operator presses on back side of module with push pull gage.

7.3 DEFINITION OF TEST POINTS

Measure the minimum force of test points at 128th Gray pattern. The test points at back side of module area is showing as below (If the test points on the PCBA, these points are not included)..

Version 3.0 30 July 2018 27 / 39

8. PACKING

8.1 PACKING SPECIFICATIONS

- (1) 8 LCD modules / 1 Box
- (2) Box dimensions: 826(L) X 376(W) X 540(H) mm
- (3) Weight: approximately: 31.8 Kg (8 modules per box)

8.2 PACKING METHOD

- (1) Carton dimensions: 826(L)x376(W)x540(H)mm (2) 8 modules / carton

Figure. 8-1 Packing method

Version 3.0 30 July 2018 28 / 39

8.3 PALLET

For ocean shipping

Air Transportation

2 Layer

Sea / Land Transportation (40ft HQ Container)

2.21.....

3+2 Layer

Sea / Land Transportation (40ft Container)

3 Layer

Figure. 8-2 Packing method

Version 3.0 30 July 2018 29 / 39

8.4 UN-PACKING METHOD

Figure. 8-3 UN-Packing method

9. INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: M315DJJ-K30

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(c) InnoLux barcode definition:

Serial ID: XX-XX-XX-YMD-L-NNNN

Code	Meaning	Description
XX	InnoLux internal use	-
XX	Revision	Cover all the change
Х	InnoLux internal use	-
XX	InnoLux internal use	-
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

(d) Customer's barcode definition:

Serial ID: CM-V5J30-X-X-X-XX-L-XX-L-YMD-NNNN

Code	Meaning	Description
CM	Supplier code	INX=CM
V5J30	Model number	M315DJJ-K30= V5J30
Х	Revision code	Non ZBD: 1,2,~,8,9 / ZBD: A~Z
Х	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6, Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatec=C,
Х	Gate driver IC code	OKI=D, Philips=E, Renasas=F, Samsung=G, Sanyo=H, Sharp=I, TI=J, Topro=K, Toshiba=L, Windbond=M, ILITEK=Q, Fiti=Y, None IC =Z
XX	Cell location	Tainan Taiwan=TN, Ningbo China=CN, Hsinchu Taiwan=SC
L	Cell line #	1,2,~,9,A,B,~,Y,Z
XX	Module location	Tainan, Taiwan=TN , Ningbo China=NP, Shenzhen China=SH, Nanhai China=NH
L	Module line #	1,2,~,9,A,B,~,Y,Z
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, T, U, V
NNNN	Serial number	By LCD supplier

Version 3.0 30 July 2018 31 / 39

(e) FAB ID(UL Factory ID):

Region	Factory ID
TWINX	GEMN
NBCMI	LEOO
NBCMI	VIRO
NBCME	CANO
NHCMI	CAPG

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10)When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.
- (11) While touching the panel surface under the patterns with higher grey levels, a shadow or mura phenomenon would be seen. This phenomenon is totally recoverable by switching the patterns to lower grey levels. It is a product feature

10.2 STORAGE PRECAUTIONS

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0° to 35° and relative humidity of less than 70%
- (2) Do not store the TFT LCD module in direct sunlight
- (3) The module should be stored in dark place. It is prohibited to apply sunlight or fluorescent light in storing

Version 3.0 30 July 2018 32 / 39

10.3 OPERATION PRECAUTIONS

(1) The LCD product should be operated under normal condition.

Normal condition is defined as below:

Temperature : 20±15℃ Humidity: 65±20%

Display pattern: continually changing pattern(Not stationary)

(2) If the product will be used in extreme conditions such as high temperature, high humidity, high altitude, display pattern or operation time etc... It is strongly recommended to contact INX for application engineering advice. Otherwise, Its reliability and function may not be guaranteed.

10.4 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the module's end of life, it is not harmful in case of normal operation and storage.

10.5 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

Requirement	Standard	remark
UL	UL60950-1:2006 or Ed.2:2007	
cUL/CSA	CAN/CSA C22.2 No.60950-1-03 or 60950-1-07	
СВ	IEC60950-1:2005 / EN60950-1:2006+ A11:2009	

10.6 OTHER

When fixed patterns are displayed for a long time, remnant image is likely to occur.

Appendix 1. SYSTEM COVER DESIGN NOTICE

Version 3.0 30 July 2018 34 / 39

Version 3.0 30 July 2018 35 / 39

Version 3.0 30 July 2018 36 / 39

Appendix 2. OUTLINE DRAWING

Version 3.0 30 July 2018 37 / 39

