Step-1

Explain two reasons that why the exponential matrix e^{At} can never be singular.

(a) *Inverse*: A square matrix that is not invertible is called as singular matrix. However, determinant of e^{At} exists, so inverse will also exist. Inverse of e^{At} is given as follows:

Inverse: e^{-At} .

Determinant of the exponential is given as follows:

$$\det(e^{At}) = e^{\lambda_0 t} \cdot e^{\lambda_2 t} \cdot \dots \cdot e^{\lambda_n t}$$

$$= e^{(\lambda_1 + \lambda_2 + \dots + \lambda_n)t}$$

$$= e^{\operatorname{trace}(At)}$$

Step-2

(b) Eigen values: If $Ax = \lambda x$ shows that λ is an Eigen values of A, then $e^{\lambda t}$ is an Eigen value matrix of $e^{\lambda t}$. That means $e^{\lambda t}$ can never be zero.

$$e^{At}x = e^{\lambda t}x$$
.

Step-3

Therefore, exponential matrix e^{At} can never be singular.