

Redes de Computadores I

Parcial 2 - Curso 2016/17

Escuela Superior de Informática

Este test consta de 16 preguntas con un total de 35 puntos. Cada 3 preguntas de test incorrectas restan 1 punto. Sólo una opción es correcta a menos que se indique algo distinto. No está permitido el uso de calculadora.

Apellidos: _	SOLUCIÓN	_ No	ombre:	Grupo:
1. (1p) Lo	s mensajes TCP se encapsulan sobre			
\Box a) t	tramas Ethernet		c) datagramas IP	
□ b) s	segmentos TCP		d) ninguna de las anteriore	s
2. (1p) ¿Q	ué son puertos efímeros o dinámicos?			
a)	Son puertos usados por el cliente para estar a la es	cucha	l	
\Box b)	Son puertos creados por el servidor cuya duración	es lir	mitada en el tiempo	
\Box c) :	Son puertos cuyos números están en el rango 1024	1-491:	51	
\Box d)	Las tres anteriores son falsas			
3. (1p) UI	OP es un protocolo de transporte			
□ a) 1	no orientado a conexión y confiable		c) no orientado a conexión	y no confiable
\Box b) of	orientado a conexión y no confiable		d) ninguna de las anteriore	s
4. (1p) UI	DP no añade nada a los servicios de IP excepto la c	capaci	dad de conexión	
\Box a) o	de nodo a nodo		c) de host a host	
b) d	le proceso a proceso		d) ninguna de las anteriore	S
5. (1p) El	valor del campo ACK de un segmento TCP define	el nú	mero del	
□ a) τ	último byte que se espera recibir		c) primer byte correcto reci	ibido
□ b) τ	último byte correcto recibido		d) el primer byte que se esp	
6. (1p) En	los protocolos confiables de tipo vuelta atrás N (G	o Bac	k N) de módulo 8, el tamaño	de las ventanas en emisor
	El mismo, e igual a 4			
	El mismo, e igual a 7			
_	Distintos, uno de ellos, el del receptor, de tamaño	1		
	Distintos, uno de ellos, el del emisor, de tamaño 1			
7. (1p) ;C	uál de estas afirmaciones sobre los datagramas IP	es fal	sa?	
	El tamaño máximo de la cabecera es de 60 bytes.			
\Box b)	El valor del campo que indica el tam <mark>año de la ca</mark> de bytes.	becer	a debe multiplicarse por 4 p.	ara obtener el número
_	El campo total length indica cuál es el tamaño de l	la carg	ga útil (payload) del datagrar	na.
\Box d)	Todos los fragmentos procedentes de un mismidentificación.			
8. (1p) Un cierta?	a datagrama IPv4 es fragmentado en tres datagram	nas m	as pequeños. ¿Cuál de las s	iguientes afirmaciones es
	El bit 'no fragmentación' es puesto a 1 en los tres	datag	ramas	
\Box b)	El bit 'más fragmentos' es puesto a 0 en los tres d	atagra	amas	
\Box c)	El campo 'desplazamiento' es el mismo para los tr	res da	tagramas	
d)	ninguna de las anteriores			

01 de junio de 2017 1/4

Redes de Computadores I Parcial 2 - Curso 2016/17

Escuela Superior de Informática

9.	(1p) ¿Cuál de las siguientes máscaras es ilegal?		
	□ a) 255.255.255.254		c) 255.148.0.0
	□ b) 255.255.224.0		d) todas son legales
10.	(1p) En un bloque, la longitud de la máscara es /18. ¿Cuál	es la	la máscara?
	a) 255.255.192.0		c) 255.255.252.0
	b) 255.252.0.0		d) ninguna de las anteriores
11.	(1p) Si el prefijo de una red es /25 ¿cuál es el máximo nún	nero	o de subredes de 30 hosts que pueden obtenerse?
	□ a) 2		c) 8
	b) 4		d) ninguna de las anteriores
12.	(1p) Un router descarta un paquete porque la ruta de salid cuencia envía un mensaje ICMP "fragmentation required".		
	a) Al router por defecto		c) Al siguiente router (columna «next hop»)
	b) Al host origen		d) Al host destino
13.	(1p) ¿Cuál de las siguientes cuestiones es cierta suponiend en una red distinta?	o el	envío de un datagrama IP de un host a otro que se halla
	a) Las direcciones IPs contenidas en la cabecera de destino de la comunicación	el da	atagrama IP corresponden a las del host origen y
	b) El datagrama IP se transporta sobre una trama Ethe que la MAC destino será la del "gateway" del prime		et cuya MAC origen será la del host origen, mientras
	c) Se requiere más de una trama Ethernet para el tra físicas utilizadas variarán.	ansp	porte del datagrama, y en cada una las direcciones
	d) todas las respuestas son ciertas		
14.	(2p) Describe la secuencia de mensajes que tienen lugar, tu host ejecutas el comando ping www.google.es. In mienta wireshark desde tu propio host. Supón que no exist red.	dica	a solamente aquellos que podrías capturar con la herra-
	 Petición ARP (broadcast) de la MAC del gateway, ya Respuesta ARP desde el gw 	que (el servidor de DNS no se encuentra en la misma red
	3. Petición DNS para la traducción www.google.es al ser	vido	or de nombres
	4. Recepción de la IP desde el servidor de nombres		
	5. Mensaje ICMP echo request a la IP retornada por el se	ervid	dor de nombres
	6. Mensaje de respuesta ICMP		

01 de junio de 2017 2/4

Redes de Computadores I

Parcial 2 - Curso 2016/17

Escuela Superior de Informática

15. (10p) Una empresa multinacional radicada en Europa necesita dividir la red original asignada, 114.12.160.0 / 20, en dos niveles, en primer lugar por países y en segundo lugar por ciudades. La división por países se hará en 4 subredes del mismo tamaño para España, Portugal, Francia e Italia. A su vez, dentro de cada país habrá un segundo reparto por ciudades en subredes del mismo tamaño.

En el caso del España hay 8 ciudades, en el caso de Portugal hay 7 ciudades, en el caso de Francia hay 4 ciudades y en el caso de Italia hay 2 ciudades (Roma y Florencia), pero en el caso se hará una excepción: la subred de Roma será de un tamaño superior a la de Florencia.

Se pide:

a) Rango de direcciones de hosts válidas antes de partir la red original (1p)

Desde 114.12.160.1 hasta 114.12.175.254

b) Red y rango de direcciones de hosts válidas para cada uno de los 4 países. (2p) España:

■ 114.12.160.0 / 22 : Desde 114.12.160.1 hasta 114.12.163.254

Portugal:

■ 114.12.164.0 / 22 : Desde 114.12.164.1 hasta 114.12.167.2544

Francia:

■ 114.12.168.0 / 22 : Desde 114.12.168.1 hasta 114.12.171.2544

Italia:

- 114.12.172.0 / 22 : Desde 114.12.172.1 hasta 114.12.175.2544
- c) Red y rango de direcciones de hosts válidas para una de las ciudades de cada país, excepto Italia. (2p) España:
 - Ciudad1: 114.12.160.0 / 25 : Desde 114.12.160.1 hasta 114.12.160.126

Portugal

■ Ciudad1: 114.12.164.0 / 25 : Desde 114.12.164.1 hasta 114.12.164.126

Francia

- Ciudad1: 114.12.168.0 / 24 : Desde 114.12.168.1 hasta 114.12.168.254
- d) Red y rango de direcciones de hosts válidas para cada una de las dos ciudades de Italia. (3p) Roma:
 - 114.12.172.0 / 23 : Desde 114.12.172.1 hasta 114.12.173.254

Florencia

- 114.12.174.0 / 24 : Desde 114.12.174.1 hasta 114.12.174.254
- e) Redes sobrantes, si las hubiera. (2p)

Una parte de Portugal:

■ 114.12.167.128 / 25 : Desde 114.12.167.129 hasta 114.12.167.254

Una parte de Italia:

■ 114.12.175.0 / 24 : Desde 114.12.175.1 hasta 114.12.175.254

01 de junio de 2017 3/4

Redes de Computadores I

Parcial 2 - Curso 2016/17

Escuela Superior de Informática

16. (10p) Contesta las siguientes preguntas a partir de la información mostrada en la figura, teniendo en cuenta que todos los dispositivos deben permitir en envío de tráfico hacia Internet.

- a) Asigna direcciones IPs a todos las interfaces de los hosts
 - eth1: 89.17.114.5
 - eth2: 59.90.116.5
 - eth3: 212.111.2.140
- b) Asigna direcciones IPs a todas las interfaces de los routers
 - IFA1: 89.17.114.1
 - IFB1: 212.111.2.129
 - IFB2: 212.111.2.130
 - IFB3: 212.111.2.131
 - IFC2: 59.90.116.1
- c) Escribe la tabla de rutas para el Host 2
 - red | máscara | siguiente salto | interfaz
 - 59.90.116.0 | 23 | 0.0.0.0 | eth2
 - 0.0.0.0 | 0 | 59.90.116.1 | eth2
- d) Escribe la tabla de rutas para el Router R1
 - red | máscara | siguiente salto | interfaz
 - 89.17.114.0 | 24 | 0.0.0.0 | IFA1
 - **212.111.2.128 | 25 | 0.0.0.0 | IFB1**
 - 59.90.116.0 | 23 | 212.111.2.130 | IFB1
 - 0.0.0.0 | 0 | 212.111.2.131 | IFB1

01 de junio de 2017 4/4