

Wavelets and Their Applications EE6310: Image and Video Processing

April 13, 2023

The Why, What, How of Wavelets

- Why: Time-frequency localization
- What: Wavelets are a tool that cuts up data or functions into different frequency components and studies each component with a resolution matched to its scale
- ► How: Digital filters

Orthogonal Wavelet Filters

- Finite-length, orthogonal, discrete wavelets
- **Examples**:

Daubechies 4-tap filter:
$$h_0(i) = \frac{1}{4\sqrt{2}} \begin{cases} 1+\sqrt{3}; & i=0\\ 3+\sqrt{3}; & i=1\\ 3-\sqrt{3}; & i=2\\ 1-\sqrt{3}; & i=3\\ 0; & \text{otherwise} \end{cases}$$

Daubechies 4-tap Wavelet

2-D Wavelet Decomposition

- 2-D analysis filters decompose images into high and low frequency bands
- Information in each band can be analyzed separately

Figure: 2-D wavelet decomposition

Discrete Wavelet Transform

- ► Filter outputs are wavelet coefficients
- ▶ Image can be **prefectly** reconstructed from these coefficients
- Subsampling heavier at lower frequencies
- Multiple bands (> 2) created by iterated filtering on low-frequency subbands

Discrete Wavelet Transform - Example

(a) Image

(b) 2-level DWT

Image Processing Applications

Myriad of applications. A few popular ones...

- Image restoration
- Image compression
- Image quality assessment
- Sparse representation
- Object detection

- ightharpoonup Given J = I + N
- ► The process of **denoising** is accomplished simply by thresholding the DWT coefficients of J
- A threshold is applied to all non-LL subbands

► Hard Thresholding: signal zeroed if below threshold

$$J^{t}(i,j) = \begin{cases} J(i,j); & |J(i,j)| > \tau \\ 0; & |J(i,j)| \le \tau \end{cases}$$

➤ **Soft Thresholding:** in addition to threshold, threshold is subtracted if above threshold

$$J^t(i,j) = \operatorname{sgn}[J(i,j)] \max\{0, |J(i,j)| - \tau\}$$

- ➤ **Soft thresholding** is much more effective. It "shrinks" the wavelet coefficients
- Works since additive noise increases coefficient energy. Soft thresholding reduces the energy
- ▶ How to find threshold? Can be chosen to optimize many criteria such as MSE, Bayesian risk etc.
- ▶ MMSE Threshold (SureShrink): $\tau = \sigma \sqrt{2 \log NM}$ where σ^2 is the estimated noise variance, NM equals the number of pixels in the image
- ▶ Bayesian threshold (BayesShrink): $\tau = \sigma_{signal}/\sigma_{noise}$ is estimated for each subband, hence adaptive. Large SNR implies little thresholding and vice versa

Comments on Wavelet Shrinkage

- Since DWTs can be computed very fast, so can soft-threhold based denoising
- ► The results are **optimal in wavelet space** and the appearance is **reasonably good**

Wavelet-based Image Coding

- ▶ Idea: Compress images in the wavelet domain
- Image blocks not used: no blocking artifacts!
- ► Forms the basis of JPEG2000 standard
- Requires perfect reconstruction filter banks

Wavelet Decomposition

▶ Recall that wavelet filters separate or decompose the image into high and low frequency subbands

Low, Low	High, Low
Low, High	High, High

Wavelet Decomposition

 Typically frequency division is done iteratively on the lowest-frequency bands

DWT of an Image

Zero-tree Encoding Concept

- ▶ Many **complex** wavelet-based compression techniques
- Popular technique is based on zero-trees: similar to JPEG, scan from lower to higher frequencies and run-length code the zero coefficients

Wavelet-based Image Quality Assessment

Figure: All images have same MSE (309)!

Wavelet-based Image Quality Assessment

Outline:

- Statistical modeling of wavelet coefficients the Gaussian Scale Mixture model
- ▶ X = xU where $z \ge 0$ is a scalar random variable, $U \sim \mathcal{N}(0, Q)$ is Gaussian random vector
- Model the IQA process as a communication channel: Y = g * X + N
- Image quality is measured as the mutual information between X and Y, I(X;Y)

Compressive sensing

Image courtesy: http://nuit-blanche.blogspot.fr/

Compressive sensing

Image courtesy: http://nuit-blanche.blogspot.fr/

Sparse representation using wavelets

(a) Image

(b) Subband decomposition