

JavaPolis 2003

PicoContainer

Inversion-of-Control made easy

Jon Tirsén & Aslak Hellesøy ThoughtWorks

Jon Tirsén

Aslak Hellesøy

Paul couldn't come...

"Inversion of Control is about software components doing what they are told, when they are told. Your OO application could well become unmaintainable without it."

- Paul Hammant, ThoughtWorks

What we gonna talk about?

- PicoContainer
- Code and TDD!
- Summary

Inversion of Control

- Testing becomes easy
- Maintenance becomes easy
- Configuration becomes easy
- Reuse becomes easy

A simple system

- A Girl that kisses a Boy
- How does the Girl get to know the Boy?

A simple system

Singleton or Factory

- Girl asks someone else to create a Boy
- Singleton is static and global
- So is the kind of Boy it creates
- Handier than "do it yourself", but not flexible enough

Inversion of Control

- It's no longer up to the Girl to find a Boy
- The Girl is given a Boy by someone else
- Also known as The Hollywood principle

The Hollywood Principle

 Components do not reach out to the rest of the system to get dependencies

 Instead, they are handed their dependencies by an external entity

Dependency Inversion Principle

- Favours loose coupling
- Components should be split in two parts
 - Service, a declaration of offered functionality
 - Implementation, a specific implementation of a service
- Makes multiple runtime coupling combinations easy
- Breaks the dreaded "everything depends on everything" problem

PicoContainer

Containers

2. Materialize and lace the components

- Play the Hollywood role
- Reusable
- May provide other services
 - Lifecycle
 - Transactions
 - Etc...

So what about PicoContainer?

- PicoContainer is the simplest container for IoC
- Pico implements IoC type 3 constructors
- Pico components are assembled by registration
- Pico components can optionally implement lifecycle methods (start, stop, dispose)
- (oh, btw, PicoContainer is also reaaally extensible)

Pico components are easy to write

```
01 class Girl {
02
      Kissable kissable;
03
      Girl(Kissable kissable) {
         this.kissable = kissable;
04
05
     void kissYourKissable() {
06
         kissable.kiss();
08
10
11 interface Kissable
      void kiss();
12
```


IoC type 3 is based on the Good Citizen Pattern

"An object is a Good Citizen if it is always behaving well"

- Joshua Bloch

- After constructing an object it is ready to go
- IoC type 3 components are good citizens
- PicoContainer is based on these principles

PicoContainer is simple to use

```
01 PicoContainer pico =
      new DefaultPicoContainer();
02 pico.regCI(Boy.class);
03 pico.regCI(Girl.class);
04 \text{ Girl girl} = (\text{Girl})
      pico.getCI(Girl.class);
05 girl.kissYourKissable();
regCI = registerComponentImplementation
```

getCI = getComponentInstance

Demo

DEMO

Mock objects

- Testing components in isolation
- Stub
- Endo-testing
- Goes very well with IoC

Extensions to PicoContainer

- NanoContainer (standalone appserver)
- AOP (integrated with Nanning)
- XML configuration
- WebWork (1&2) integration
- Ant task
- Pico GUI
- ...and lots more

Summary – Inversion of Control

- Testing becomes easy
 - You can test the component in isolation by stubbing out entire parts of your application
- Maintenance becomes easy
 - Loose coupling facilitates local changes
- Configuration becomes easy
 - Component and service lacing is defined in one place
- Reuse becomes easy
 - A loosely coupled component can be reused outside its initial context

Q&A

Links

PicoContainer

http://picocontainer.org/

Codehaus

http://www.codehaus.org/

Avalon

http://avalon.apache.org/

Spring Framework

http://www.springframework.org/

HiveMind

http://jakarta.apache.org/commons/hivemind/

JavaPolis 2003

- If the Girls' primary concern is to have someone to kiss
 - she should declare that she needs a Kissable instead of a Boy
- A Girl can be fed a Boy, a Grandmother or a Kitten
- Flexibility!

loC types

IoC type 0 - No IoC

No meta data, but you can't change the dependencies

```
public class Girl implements Servicable {
   Kissable kissable;
   public void service(ServiceManager mgr) {
        kissable = new Boy();
   }
   public void kissYourKissable() {
        kissable.kiss();
   }
}
```

No meta data, but you can't change the dependencies

</container>

loC type 1 - Avalon example

Dependencies are fetched from a ServiceManager public class Girl implements Servicable { Kissable kissable; public void service(ServiceManager mgr) { kissable = (Kissable) mgr.lookup("kissable"); public void kissYourKissable() { kissable.kiss(); Hook up with meta-data <container> <classloader> <classpath> ... </classpath> </classloader> <component name="kissable" class="Boy"> <configuration> ... </configuration> </component> <component name="girl" class="Girl" />

loC type 2 – Spring example

```
Dependencies provided by JavaBean setters
public class Girl {
   Kissable kissable;
    public void setKissable(Kissable kissable) {
        this.kissable = kissable;
    public void kissYourKissable()
       kissable.kiss();
Meta-data needed
<beans>
    <bean id="boy" class="Boy"/>
    <bean id="girl" class="Girl">
       cproperty name="kissable">
          <ref bean="boy"/>
       </bean>
 </beans>
```


loC type 3 – PicoContainer example

```
Dependencies passed to the constructor
 public class Girl {
    Kissable kissable;
    public Girl(Kissable kissable)
         this.kissable = kissable;
    public void kissYourKissable()
       kissable.kiss();
Meta-data or interfaces not needed (but supported)
PicoContainer container = new DefaultPicoContainer();
container.registerComponentImplementation(Boy.class);
container.registerComponentImplementation(Girl.class);
Girl girl = (Girl) container.getComponentInstance(Girl.class);
girl.kissYourKissable();
```