Math 241 Midterm 2

Name:

1. Find the volume of the region in \mathbb{R}^3 containing those points inside the sphere $x^2+y^2+z^2=1$ and outside of the double cone $z^2=x^2+y^2$.

2. Find the area of the region $\begin{cases} x = u\cos(u+v) \\ y = u\sin(u+v) \end{cases} \text{ for } v \in [0,\pi], u \in [0,v/2]:$

3. Find the point on the surface $x^2 + y + z^2 = 1$ that minimizes the magnitude of the curl of $\langle xz, -xz, x \rangle$.

4. Evaluate $\int_{-1}^{0} \int_{0}^{\sqrt{1-x^2}} (x^2 + y^2)^{3/2} \, dy \, dx.$

5. Show that $\mathbf{F} = \langle xy^2 + yz, x^2y + xz, xy \rangle$ is conservative and find $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is a curve in \mathbb{R}^3 with start at (0,0,0) and end at (2,2,-1).