INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

5 - Funções

5.1) Definições e Tipos

5.2) Crescimento de Funções

FUNÇÕES & COMPLEXIDADE

- Para cada método de solução de um problema (algoritmo), pode-se definir funções que relacionam:
 - o espaço necessário para guardar os dados
 - a quantidade de passos para resolvê-lo com o tamanho (magnitude) dos dados de entrada.
- Estas funções permitem concluir sobre:
 - memória necessária para armazenar todos os dados
 - tempo de execução de algoritmos

FUNÇÕES & COMPLEXIDADE

- Comparações de ordens de grandeza destas funções equivalem a comparar os custos computacionais de diferentes métodos de solução de um problema.
- **Exemplo:** Solução de um sistema linear $n \times n$:

método	nro de OPFs	tempo para $n=30~(*)$
Regra de Cramer	$\sim (n+1)!$	$1.4 \times 10^{12} \ anos$
Eliminação gaussiana	$\sim n^3/3$	$0.05 \times 10^{-9} \ s$

- (*) em um supercomputador BlueGene (\sim 180 TFlops)
- A primeira função cresce muito mais rapidamente do que a 2a.
- Assunto relacionado com o tema complexidade de algoritmos.

CRESCIMENTO DE FUNÇÕES

- **Exemplo 1:** Considere o problema de determinar a transitividade de uma relação R sobre um conjunto A com n elementos.
 - número de passos necessários (média) pelo método 1: $t(n) = \frac{1}{2}n^3 + \frac{1}{2}n^2$
 - número de passos necessários (média) pelo método 2: $s(n) = \tfrac{1}{8} n^4$
 - A tabela mostra que s "cresce mais rápido" do que t:

n	t(n)	s(n)
2	6	2
5	75	78
10	550	1250
50	63750	781250
100	505000	12500000

- Sejam f e g funções cujos domínios são subconjuntos de \mathbb{Z}^+ :
 - dizemos que $f \in O(g)$ se existem constantes $c \in k$ tais que:

$$|f(n)| \leq \mathbf{c} \cdot |g(n)|, \qquad \forall n \geq \mathbf{k}$$

- ullet lê-se: f é "big-O" de g
- lacksquare Ou seja: se f é O(g), então f não cresce mais rápido do que g.
- Vantagem da notação big-O:
 - pode-se estimar o crescimento de uma função sem ligar para multiplicadores constantes ou termos de ordem menor
 - ou seja: usando notação big-O, não precisamos ligar para o hardware e o software usados para implementar um algoritmo.

- **Exemplo 2:** A função $f(n) = \frac{1}{2}n^3 + \frac{1}{2}n^2$ é O(g) para $g(n) = n^3$.
 - Para ver isto, note que:

$$\frac{1}{2}n^3 + \frac{1}{2}n^2 \le \frac{1}{2}n^3 + \frac{1}{2}n^3$$
 se $n \ge 1$

Portanto:

$$\frac{1}{2}n^3 + \frac{1}{2}n^2 \le 1 \cdot n^3$$
 se $n \ge 1$

• Daí, escolhendo c=1 e k=1, obtemos:

$$|f(n)| \le |g(n)| \qquad \forall n \ge 1$$

• O que mostra que $f \notin O(g)$

- ▶ Note que são possíveis outras escolhas para c, k e até mesmo g.
- ▶ Note que, se $|f(n)| \le c \cdot |g(n)|$, $\forall n \ge k$, então:
 - $|f(n)| \le C \cdot |g(n)|$, $\forall n \ge k$, $\forall C \ge c$, e
 - $|f(n)| \le c \cdot |g(n)|, \quad \forall n \ge K, \quad \forall K \ge k$
 - ou seja: quando existe um par de constantes, existem infinitos
- Agora seja novamente a função $t(n) = \frac{1}{2}n^3 + \frac{1}{2}n^2$:
 - $t \in O(h)$ para $h(n) = dn^3$, se $d \ge 1$, pois:
 - $|t(n)| \le 1 \cdot |g(n)| \le |h(n)|$
 - Observe também que $t \in O(r)$ para $r(n) = n^4$, pois:

- Ao analisar algoritmos, buscamos a função simples g de "crescimento mais lento" para a qual $f \not\in O(g)$.
 - algumas vezes ela vem de um "conjunto de referência"
 - ullet tal como as funções da forma x^n , para n dado
- É comum substituirmos g em O(g) pela fórmula que define g:
 - portanto, escrevemos que " $t \in O(n^3)$ "
 - esta é a chamada notação "big-O"
- \blacksquare Ainda: dizemos que f e g possuem mesma ordem se:
 - $f \in O(g)$ e
 - $g \in O(f)$

- **Exemplo 3:** As funções $f(n) = 3n^4 5n^2$ e $g(n) = n^4$, definidas para inteiros positivos n, possuem a mesma ordem.
 - Primeiro, note que:

$$3n^4 - 5n^2 \le 3n^4 + 5n^2$$
 $\le 3n^4 + 5n^4$, se $n \ge 1$ $= 8n^4$.

- ullet daí, fazendo c=8 e k=1, temos $|f(n)| \leq c \cdot |g(n)|, \ \forall n \geq k$
- Conversamente:

$$n^4 = 3n^4 - 2n^4 < 3n^4 - 5n^2$$
, se $n > 2$

- isto ocorre porque, se $n \ge 2$, então: $2n^4 > 5n^2$
- ullet daí, usando 1 para c e 2 para k, concluímos que g é O(f).

- Se $f \notin O(g)$ mas g não é O(f), dizemos que:
 - f é de ordem mais baixa do que g ou que:
 - f cresce mais lentamente do que g

- **Exemplo 4:** $f(n) = n^5$ é de ordem mais baixa do que $g(n) = n^7$.
 - É claro que, se $n \ge 1$, então $n^5 \le n^7$.
 - Agora suponha que existam c e k tais que:

$$n^7 \le cn^5, \qquad \forall n \ge k$$

- ullet então escolha um N tal que N>k e $N^2>c$
- daí: $N^7 < cN^5 < N^2 \cdot N^5$
- mas isto é uma contradição!
- ullet Portanto, $f \notin O(g)$ mas g não é O(f)
 - ullet e f é de ordem mais baixa do que g
 - ullet o que, é claro, concorda com a idéia usual sobre n^5 e n^7

Com a ajuda da notação big-O, podemos determinar se é prático usar um certo algoritmo para resolver um problema à medida que o tamanho dos dados de entrada cresce.

Exemplo:

- temos dois algoritmos para resolver um problema:
 - · um utiliza $100n^2 + 17n + 4$ operações
 - · o outro utiliza n^3 operações
- $m{\square}$ a notação big-O mostra que o primeiro usa muito menos operações quando n é grande
 - · mas gasta menos operações para n pequeno
 - · (n = 10, por exemplo)

- Dica para encontrar as constantes:
 - primeiro, selecione um valor de k para o qual o tamanho de |f(x)| pode ser prontamente estimado quando x>k
 - verificar se é possível encontrar um valor de C para o qual |f(x)| < C|g(x)| para x > k.
 - abordagem ilustrada no exemplo a seguir
- Note que a notação big-O também funciona com funções definidas sobre os reais.

Exemplo: Mostre que $f(x) = x^2 + 2x + 1$ é $O(x^2)$

Solução:

- podemos prontamente estimar o tamanho de f(x) quando x > 1:
 - $m{\square} \quad x < x^2 \quad {\rm e} \quad 1 < x^2 \quad {\rm quando} \quad x > 1$
- segue então que:

$$0 \le x^2 + 2x + 1 \le x^2 + 2x^2 + x^2 = 4x^2$$

- ${\color{red} \bullet}$ assim, fazendo c=4 e k=1, temos que f(x) é $O(x^2)$, pois: $f(x)=x^2+2x+1<4x^2, \text{ sempre que } x>1$
- note que c=3 e k=2 também serviriam, pois:
 - se x > 2, temos que:

$$0 \le x^2 + 2x + 1 \le x^2 + x^2 + x^2 = 3x^2$$

Exemplo (cont.): $x^2 + 2x + 1 < 4x^2$ para x > 1:

- Observe que na relação "f(x) é O(x)", x^2 pode ser trocada por qualquer função com valores maiores do que x^2 .
 - Exemplo:
 - $f(x) \notin O(x^3)$
 - $f(x) \notin O(x^2 + 2x + 1)$, etc.
- Note que $f(x) = x^2 + 2x + 1$ e $g(x) = x^2$ possuem mesma ordem.
- ▶ Note ainda que não é aceitável escrever: f(x) = O(g(x))
 - ullet pois big-O significa apenas que existe uma desigualdade válida relacionando valores das funções f e g
 - para valores suficientemente grandes nos respectivos domínios
- ▶ No entanto, está correto dizer que: $f(x) \in O(g(x))$
 - pois O(g(x)) representa o conjunto de todas as funções que são O(g(x))

■ Ilustração de "f(x) é O(g(x))" (ou: f(x) < c.g(x) para x > k)

Exemplo: Mostre que $7x^2$ é $O(x^3)$

Solução:

- Note que, quando x > 7, temos: $7x^2 < x^3$
 - (multiplicar ambos os lados de x > 7 por x^2)
- Logo, as constantes c=1 e k=7 mostram que $7x^2$ é $O(x^3)$
- Alternativamente:
 - ightharpoonup quando x > 1, temos que $7x^2 < 7x^3$
 - ullet de modo que c=7 e k=1 também servem

Exemplo: Mostre que n^2 não é O(n)

Solução:

• Temos que mostrar que nenhum par de constantes c e k satisfaz: $n^2 \le cn$, sempre que n > k

- Para ver que as constantes não existem, note que, quando n > 0:
 - ightharpoonup pode-se dividir ambos os lados de $n^2 \le cn$ por n
 - para obter: $n \le c$
- ullet Note, então, que, não importa quem sejam c e k:
 - a desigualdade $n \le c$ não pode valer para todo n, com n > k
 - note que, uma vez fixado um valor para k:
 - \cdot quando n for maior do que o máximo de k e c,
 - · não é verdade que $n \le c$
 - · muito embora tenhamos n > k

Exemplo: Mostre que x^3 não é $O(7x^2)$

Solução:

- Temos que mostrar que nenhum par de constantes c e k satisfaz: $x^3 \le c(7x^2)$, sempre que n > k
- A desigualdade $x^3 \le c(7x^2)$ é equivalente a: $x \le 7c$
- Note que não existe c para o qual $x \le 7c$ para todo x > k
 - não importa quem seja k, pois x pode ser tornado tão grande quanto se queira
- Segue que não existem c e k para os quais exista a relação proposta.

- É comum o uso de polinômios para estimar o crescimento de funções.
- O teorema a seguir mostra que o termo principal de um polinômio domina o seu crescimento.
- **Teorema 1:** Seja $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, aonde $a_0, a_1, \ldots, a_{n-1}, a_n$ são números reais. Então f(x) é $O(x^n)$.

■ Exemplo 1(/3): Use notação big-O para estimar a quantidade de operações envolvida na soma dos primeiros n inteiros positivos.

Solução:

• Como cada inteiro da soma é < n, segue que:

$$1 + 2 + \dots + n \le n + n + \dots + n = n^2$$

• Então, tomando-se c=1 e k=1, concluímos que:

$$1 + 2 + \cdots + n$$
 é $O(n^2)$

- Exemplo 2(/3): Forneça estimativas big-O para a função fatorial e para o seu logaritmo.
 - ▶ Nota: a função fatorial é definida por: $n! = 1 \cdot 2 \cdot 3 \cdots n$, (0! = 1)
 - Note que a função fatorial crece rapidamente:

$$1! = 1$$
, $2! = 2$, $3! = 6$, $4! = 24$, ..., $20! = 2.432.902.008.176.640.000$

Solução:

- Note que cada termo no produto n\u00e3o excede n.
- Portanto: $n! = 1 \cdot 2 \cdot 3 \cdot \cdots n$ $\leq n \cdot n \cdot n \cdot \cdots n$ $= n^n$
- o que mostra que n! é $O(n^n)$ (tomando c=1 e k=1)

- Exemplo 2 (cont.): Estimativa big-O para o log da função fatorial:
 - Tomando log de ambos os lados, obtemos:

$$log n! \le log n^n = n.log n$$

o que significa que:

$$log n!$$
 é $O(n.log n)$ (tomando $c = 1$ e $k = 1$)

Exemplo 3(/3): No cap sobre indução veremos que, para $n \in \mathbb{Z}^+$:

$$n < 2^n$$

- Isto permite concluir que: $n \notin O(2^n)$ (k = 1, c = 1)
- Como o logaritmo é crescente, podemos tomar log desta desigualdade:

• Segue que $\log n$ é O(n) (k=1, c=1)

- (rel.) A notação big-O é usada para estimar o número de operações necessárias para resolver um problema usando um procedimento ou algoritmo específico.
- As funções usadas nestas estimativas comumente incluem:

1,
$$\log n$$
, $n \log n$, n^2 , 2^n , $n!$

- Usando Cálculo, pode-se mostrar que cada função nesta lista é menor do que a seguinte.
 - Ou seja: a relação entre cada função e sua sucessora tende a zero à medida que n cresce.

COMBINAÇÃO DE FUNÇÕES

- Muitos algoritmos são compostos de dois ou mais subprocedimentos.
 - Neste caso, a quantidade total de passos é a soma dos passos dos subprocedimentos.
 - Estimativas big-O para o total envolvem, portanto, a combinação das sub-estimativas.

COMBINAÇÃO DE FUNÇÕES

- Estimativas de combinações de funções exigem cuidado quando estimativas diferentes são combinadas.
- É frequentemente necessário estimar o crescimento de somas e de produtos de duas funções.

BIG-O DE SOMAS DE FUNÇÕES

Suponha que:

- f_1 seja $O(g_1(x))$: existem constantes c_1 e k_1 tais que: $|f_1(x)| \le c_1 |g_1(x)|$, quando $x > k_1$
- f_2 seja $O(g_2(x))$: existem constantes c_2 e k_2 tais que: $|f_2(x)| \le c_2 |g_2(x)|$, quando $x > k_2$
- **Proof.** Estimativa para a soma de $f_1(x)$ e $f_2(x)$:

$$|(f_1 + f_2)(x)| = |f_1(x) + f_2(x)|$$

$$\leq |f_1(x)| + |f_2(x)|$$

• em que foi usada a desigualdade triangular $|a+b| \leq |a| + |b|$

BIG-O DE SOMAS DE FUNÇÕES

 \blacksquare Então, quando x é maior do que k_1 e k_2 , temos:

$$|f_1(x)| + |f_2(x)| \le c_1 |g_1(x)| + c_2 |g_2(x)|$$

$$\le c_1 |g(x)| + c_2 |g(x)|$$

$$= (c_1 + c_2)|g(x)|$$

$$= c|g(x)|$$

- onde: $c = c_1 + c_2$
 - e: $|g(x)| = max(|g_1(x)|, |g_2(x)|)|$
- o que mostra que: $|(f_1 + f_2)(x)| \le c.|g(x)|$
 - sempre que x > k
 - aonde $k = max(k_1, k_2)$

BIG-O DE SOMAS DE FUNÇÕES

- O raciocínio anterior demonstra o seguinte teorema:
- Teorema 2: suponha que:
 - $f_1(x) \notin O(g_1(x))$
 - $f_2(x) \notin O(g_2(x))$.

Então:

$$(f_1+f_2)(x)$$
 é $O(max(|g_1(x)|,|g_2(x)|))$

- Se, por acaso, tivermos estimativas para f_1 e f_2 em termos da mesma função g, vale o seguinte:
- **Corolário:** Suponha que $f_1(x)$ e $f_2(x)$ são ambas O(g(x)). Então $(f_1 + f_2)(x)$ é O(g(x)).

BIG-O DE PRODUTOS DE FUNÇÕES

■ De modo similar, quando x é maior do que $max(k_1, k_2)$, segue que:

$$|(f_1 f_2)(x)| = |f_1(x)||f_2(x)|$$

$$\leq c_1 |g_1(x)| \cdot c_2 |g_2(x)|$$

$$\leq c_1 c_2 |(g_1 g_2)(x)|$$

$$\leq c|(g_1 g_2)(x)|$$

- onde: $c = c_1 c_2$
- o que mostra que $f_1(x)f_2(x)$ é $O(g_1g_2)$, pois:
 - existem constantes c e k (ou seja: $c = c_1c_2$ e $k = max(k_1, k_2)$)
 - tais que: $|(f_1f_2)(x)| \le c|g_1(x)g_2(x)|$, sempre que x > k

BIG-O DE PRODUTOS DE FUNÇÕES

- O raciocínio anterior demonstra o seguinte teorema:
- Teorema 3: suponha que:
 - $f_1(x) \notin O(g_1(x))$
 - $f_2(x) \notin O(g_2(x))$.

Então:

$$(f_1f_2)(x)$$
 é $O(g_1(x)g_2(x))$.

- Objetivo de usar a notação big-O:
 - escolher uma função g(x) que cresça lentamente o suficiente para que f(x) seja O(g(x)).
- Os exemplos a seguir ilustram como usar os dois teoremas anteriores para fazer isto.
- Nota: este é um tipo de análise frequentemente usado na análise de tempo necessário para resolver um problema com programas computacionais.

Exemplo: Forneça uma estimativa big-O para

$$f(n) = 3n \log(n!) + (n^2 + 3) \log n$$
 $(n \in \mathbb{Z}^+)$

Solução:

- estimando o produto $3n \log(n!)$:
 - sabemos que: log(n!) é O(n log n)
 - além disto: 3n é O(n)
 - o teorema 2, então, fornece a estimativa:

$$3n \log(n!)$$
 é $O(n^2 \log n)$

Exemplo: Forneça uma estimativa big-O para

$$f(n) = 3n \log(n!) + (n^2 + 3) \log n$$
 $(n \in \mathbb{Z}^+)$

Solução (cont.):

- Vimos que: $3n \log(n!)$ é $O(n^2 \log n)$
- Estimando o produto $(n^2 + 3) \log n$:
 - uma vez que $(n^2+3) < 2n^2$ quando n>2, segue que: n^2+3 é $O(n^2)$
 - logo, do teorema 3 segue que:

$$(n^2+3)\log n$$
 é $O(n^2\log n)$

Com o teorema 2 novamente, temos que:

$$f(n) = 3n \log(n!) + (n^2 + 3) \log n$$
 é $O(n^2 \log n)$

Exemplo: Forneça uma estimativa big-O para:

$$f(x) = (x+1)\log(x^2+1) + 3x^2$$

Solução:

- estimativa big-O para $(x+1) log(x^2+1)$:
 - \bullet (x+1) é O(x)
 - além disto: $x^2 + 1 \le 2x^2$ quando x > 1
 - ightharpoonup portanto, se $x \ge 2$, podemos escrever:

$$log(x^2 + 1) \le log(2x^2) = log 2 + 2log x \le 3log x$$

isto mostra que:

$$log(x^2+1)$$
 é $O(log x)$

então, o teorema 3 mostra que:

$$(x+1)log(x^2+1)$$
 é $O(x log x)$

Exemplo: Forneça uma estimativa big-O para:

$$f(x) = (x+1)\log(x^2+1) + 3x^2$$

Solução (cont.):

- vimos que: $(x+1)log(x^2+1)$ é O(x log x)
- daí, uma vez que $3x^2$ é $O(x^2)$, temos, pelo teorema 2, que: f(x) é $O(max(x \log x, x^2))$
- já que $x \log x \le x^2$, para x > 1, temos: f(x) é $O(x^2)$.

CRESCIMENTO DE FUNÇÕES

Final deste item.

Dica: fazer exercícios sobre Crescimento de funções...