Cluster distribution

Ricardo Martins-Ferreira

2023-07-27

Distribution of nuclei populations or clusters across different pathologies

```
libs <- c("Seurat", "tidyverse", "gridExtra", "sccomp", "ggplot2", "ggpubr")
suppressMessages(
  suppressWarnings(sapply(libs, require, character.only = TRUE))
)
##
      Seurat tidyverse gridExtra
                                                          ggpubr
                                     sccomp
                                              ggplot2
##
        TRUE
                  TRUE
                             TRUE
                                       TRUE
                                                 TRUE
                                                            TRUE
```

Upload Seurat object

The Seurat object consists of the 64,438 nuclei already clustered and annotated for clinicopathological features of the subjects. This object is divided in 15 clusters.

Calculate the proportions of clusters per patholoy

```
metadata <- Seurat@meta.data
# percentage of cluster in each pathology ("Group")
data <- metadata[,c("Subject","Group","integrated_snn_res.0.25")]</pre>
colnames(data)<- c("Subject", "Group", "Cluster")</pre>
data <- data %>% group_by(Group, Cluster) %>%
  dplyr::summarise(Nb = n()) %>%
  dplyr::mutate(C = sum(Nb))%>%
  dplyr::mutate(percent = Nb/C*100)
data$percent2 <- format(round(data$percent,2), nsmall=2)</pre>
#percentage of cluster in the whole dataset
metadata$whole <- "ALL"</pre>
data2 <- metadata[,c("whole","integrated_snn_res.0.25")]</pre>
colnames(data2)<- c("whole", "Cluster")</pre>
data2 <- data2 %>% group_by(whole, Cluster) %>%
  dplyr::summarise(Nb = n()) %>%
  dplyr::mutate(C = sum(Nb))%>%
  dplyr::mutate(percent = Nb/C*100)
```

```
data2$percent2 <- format(round(data2$percent,2), nsmall=2)
colnames(data2)[1] <- "Group"

data <- rbind(data,data2)</pre>
```

Stacked Bar plot per "Group"

```
color_clusters <-c("#E6AB02", "#FC8D62", "#7570B3", "#38470B", "#E5D8BD", "#874C62",</pre>
                   "#937666", "#666666" ,"#FA7070" ,"#B3E2CD", "#344D67","#B3CDE3",
                   "#D9D9D9" ,"#BC80BD", "#DE6E4B" ,"#430D27")
#replace cluster 1 by cluster 01, etc...
data <- data %>% mutate(Cluster = str_replace(Cluster, "^0$","00")) %>%
  mutate(Cluster = str_replace(Cluster, "^1$","01")) %>%
  mutate(Cluster = str_replace(Cluster, "^2$","02")) %>%
  mutate(Cluster = str_replace(Cluster, "^3$","03")) %>%
  mutate(Cluster = str_replace(Cluster, "^4$","04")) %>%
  mutate(Cluster = str_replace(Cluster, "^5$", "05")) %>%
  mutate(Cluster = str_replace(Cluster, "^6$","06")) %>%
  mutate(Cluster = str_replace(Cluster, "^7$","07")) %>%
  mutate(Cluster = str_replace(Cluster, "^8$","08")) %>%
  mutate(Cluster = str_replace(Cluster, "^9$","09"))
ggplot(data, aes(x = Group,
                 y = percent, fill = Cluster))+
  scale_x_discrete(limits=c("AD","ASD","Epilepsy","MS","LBD", "COVID-19",
                            "No Neuropathology", "ALL"))+
  geom_bar(stat = "identity",)+
  scale_fill_manual(values=color_clusters)+
  theme_linedraw()+
  coord_flip()+
  theme(panel.grid=element_blank(), axis.text.x = element_text(angle = 45, hjust = 1))
```


Calculate the proportions of clusters per subject

```
metadata <- Seurat@meta.data
data <- metadata[,c("Subject","Group","Study","integrated_snn_res.0.25")]</pre>
```

```
colnames(data)<- c("Subject", "Group", "Study", "Cluster")

data <- data %>% group_by(Subject, Group, Study, Cluster) %>%
   dplyr::summarise(Nb = n()) %>%
   mutate(C = sum(Nb))%>%
   mutate(percent = Nb/C*100)
```

Stacked Bar plot per "Subject" (grouped by "Group")

```
# loop for each cluster
cluster_list <- c("0","1","2","3","4","5","6","7","8","9","10","11","12","13","14")</pre>
group_colors <- c("#A4243B","#D8973C","#BD632F","#4C956C","#273E47","#720026","#81C3D7")
p<-list()
for (i in 1:length(cluster_list)) {
data_cluster <- data[data$Cluster==cluster_list[i],]</pre>
p[[i]] <- ggplot(data_cluster, aes(y=percent, x=as.factor(Group),fill=Group , color = Group)) +</pre>
  geom_boxplot(color="black",outlier.shape =NA)+
  geom_point(aes(colour=Group), size=2,
             position = position jitterdodge(jitter.width = NULL,
                                              jitter.height = 0,dodge.width = 0.75,
                                              seed=NA)) +
  scale_fill_manual("Group", values=group_colors)+
  scale_color_manual("Group", values=group_colors)+
  theme_bw(base_size=15) +
  ylab('Percentage') +
  labs(title = paste0("Cluster ",cluster_list[i]))+
  xlab('') +
  theme(axis.text.x = element_text(angle = 45, vjust = 0.9,
                                    hjust = 1, colour = "black"),
        axis.text.y = element_text(colour = "black"),
        panel.grid.minor = element_blank(),
        panel.grid.major = element_blank(),
        plot.title = element_text(hjust=0, face = "italic"))
}
do.call(grid.arrange, p)
```


Calculate the significance of differential distribution with sccomp

The significance is calculated for each pathology ("Group") in comparison to the control population ("Healthy" or "No Neuropathology")

```
colnames(Seurat@meta.data)[16]<- "ReplicateID"</pre>
Seurat@meta.data <- Seurat@meta.data %>%
  mutated(Group = str_replace(Group, "No Neuropathology", "Healthy"))
Seurat@meta.data <- Seurat@meta.data %>%
  mutate(Group = str_replace(Group, "COVID-19", "COVID19"))
#####
#with contrasts
res = Seurat|>
  sccomp glm(
    formula_composition = ~ 0+Group,
    contrasts = c("GroupAD - GroupHealthy", "GroupASD - GroupHealthy",
                   "GroupCOVID19 - GroupHealthy", "GroupEpilepsy - GroupHealthy",
                   "GroupLBD - GroupHealthy", "GroupMS - GroupHealthy"),
    .sample = ReplicateID,
    .cell_group = integrated_snn_res.0.25 ,
    bimodal_mean_variability_association = TRUE,
```

```
cores = 5
)
```

Plot sccomp output

```
## Rows: 90 Columns: 18
## -- Column specification -
## Delimiter: ","
## chr (2): parameter, factor
## dbl (6): integrated_snn_res.0.25, c_lower, c_effect, c_upper, c_pH0, c_FDR
## lgl (10): c_n_eff, c_R_k_hat, v_lower, v_effect, v_upper, v_pHO, v_FDR, v_n_...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
res$sig<- ifelse(res$c_FDR<0.05, "yes", "no")</pre>
ggplot(res, aes(x = integrated_snn_res.0.25, y = res$c_effect, color=sig)) +
 geom_point(stat = "identity", shape = 15) +
  scale_color_manual(values = c("grey","#A21F16"))+
  geom_hline(yintercept = c(-0.2, 0.2), linetype = "dashed", color = "grey") +
  geom_errorbar(aes(ymin = c_lower, ymax = c_upper), width = 0.4) +
  facet_wrap(~parameter,scales="free")+
 ylab("Credible interval of the slope")+
 xlab("Cluster")+
  coord_flip()+
  theme_pubr()+
  border()
```


