Histogram Processing

Topics to be covered

- Histogram
- Histogram of Gray Level Image
- Histogram of Color Image
- Histogram Equalization

Histogram

Histogram is a visual or graphical distribution of the frequency of occurence of continuous features OR events.

Data = [1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 5, 6, 7, 7, 7]

Another Example

Histogram of a Gray Level Image

The range of intensity levels for gray scale image is between 0 and 255 i.e (0-255).

Example

Intensity Levels	Number of Pixels
0	10
1	100
2	30
3	40
4	100
5	150
6	120

Histogram of Seven Intensity Levels of Gray Scale Image

Color Image Histogram

- For color images we can distribute the frequency of the values of colors.
- Since color image has three channels (RGB) and has values between (0-255), therefore, we can plot three histograms on top of each other to represents the frequency of values of each color.

Histogram Equalization

Histogram equalization is a technique in which we try to distribute the intensity of an image in such a way as to obtain a uniform (flat) resulting histogram, in which the percentage of pixels of every intensity value is the same. This is done to obtain a better image which has more details than the input image.

Input Image

Histogram Equalized

Numerical Example

Intensity Levels (r_k)	Number of Pixels	Probability Distribution $p_k = \frac{r_k}{n}$	
0	10	0.016	
1	80	0.129	
2	30	0.048	
3	40	0.064	
4	100	0.161	
5	150	0.242	
6	120	0.193	
7	90	0.145	

$$n = 620$$

Histogram Equalization

The commonly used function for histogram equalization is commulative distribution function (cdf).

$$s_k = T(r_k) = \sum_{j=0}^k p(r_j)$$

$$s_0 = T(r_0) = \sum_{j=0}^{0} p(r_j) = p(r_0) = 0.016$$

$$s_1 = T(r_1) = \sum_{j=0}^{1} p(r_j) = p(r_0) + p(r_1) = 0.145$$

Similarly,

$$s_2 = 0.193$$

$$s_3 = 0.257$$

Intensity Levels (r_k)	Number of Pixels	Probability Distribution $p_k = \frac{r_k}{n}$	
0	10	0.016	
1	80	0.129	
2	30	0.048	
3	40	0.064	
4	100	0.161	
5	150	0.242	
6	120	0.193	
7	90	0.145	

$$n = 620$$

$$s_4 = 0.418$$

$$s_5 = 0.66$$

$$s_6 = 0.853$$

$$s_7 = 1.00$$

Intensity Levels (r_k)	Number of Pixels	Probability Distribution $p_k = \frac{r_k}{n}$	Commulative Distribution Function (s_k)	$(s_k) \times 7$	New Intensity Levels (s_k)
0	10	0.016	0.016	0.112	0
1	80	0.129	0.145	1.015	1
2	30	0.048	0.193	1.351	1
3	40	0.064	0.257	1.8	2
4	100	0.161	0.418	2.92	3
5	150	0.242	0.66	4.62	5
6	120	0.193	0.853	5.97	6
7	90	0.145	1.00	7.00	7

Number of		
Pixels		
10		
110		
40		
100		
0		
150		
120		
90		

Histogram Equalization of Color Images

Color Spaces

RGB Color Spaces

RGB is an additive color space model that generates colors by combining blue, green and red and different intensities.

Red – Intensity Levels (0–255)

Green – Intensity Levels (0–255)

Blue – Intensity Levels (0–255)

HSV Color Spaces

Hue, Saturation and Value (HSV) is a color space model that represents the colors the way the humans perceive.

It stores color information in a cylindrical representation of RGB color points.

Hue – Color Value (0 – 179) Saturation – Vibrancy of color (0-255) Value – Intensity (0-255)

