Scale Mixture of Rayleigh Distribution

Pilar A.Rivera , Inmaculada Barranco-Chamorro, Diego I.Gallardo , Hector W.Gomez

Swati Mohanty (EE20RESCH11007) Al5002: Research Paper Presentation

IIT, Hyderabad.

June 2021

SCALE MIXTURE OF RAYLEIGH DISTRIBUTION

INTRODUCTION

A new model called "Scale Mixture of Rayleigh Distribution" is introduced, which is defined to be the quotient of two independent random variables. can be expressed as a quotient of scale mixture of Rayleigh and a particular Generalized Gamma distribution.

Rayleigh Distribution: It is a continuous and positive distribution named after Lord Rayleigh. It is the most popular model used for describing skewed positive data

Generalized Gamma Distribution: It is a continuous probability distribution with three parameters. It is a generalization of the two-parameter gamma distribution

Equations

PDF of Rayleigh Distribution If a continuous RV X follows Rayleigh distribution with scale parameter $\sigma > 0$, then pdf of X $\sim R(\sigma)$ is:

$$f_X(x) = \frac{x}{\sigma^2} e^{\left(\frac{-x}{2\sigma}\right)^2}; x, \sigma > 0$$
 (1)

PDF of GG Distribution
If a RV Z follows three parameter GG distribution ,then pdf is:

$$f(z; a, d, p) = \frac{pa^d}{\Gamma(d/p)} e^{-(az)^p} z^{(d-1)}; a, d, p, z > 0$$
 (2)

It is denoted as $Z \sim GG(a,d,p)$.

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

Equations

■ PDF of SMR Distribution An RV T follows SMR distribution with parameter $\sigma > 0$, and q > 0, if T can be expressed as he ratio of two independent RVs

$$T = \frac{X}{Y} \tag{3}$$

with $X \sim R(\sigma)$ and $Y \sim GG(1, q, 2)$

With q > 0 and $\sigma > 0$, the pdf is:

$$f(t;\sigma,q) = \frac{qt}{2\sigma(t^2/(2\sigma)+1)^{\frac{q}{2}+1}}; t > 0$$
 (4)

T is denoted as T \sim SMR(q, σ).

◆ロト ◆個 ト ◆ 種 ト ◆ 種 ト ● ● の Q (*)

PDF and CDF Plots

Figure: (a) pdf and (b) cdf in SMR model for $\sigma=1$ and different values of q

Simulated PDF Plots

Figure: Python simulted pdf in SMR model for $\sigma=1$ and q=1

The python code for the figure is $https://github.com/Swati-Mohanty/Al5002/blob/main/Project/codes/smr\ pdf.py$

Simulated CDF Plots

Figure: Python simulated cdf in SMR model for $\sigma=1$ and $\mathsf{q}=1$

The python code for the figure is $https://github.com/Swati-Mohanty/Al5002/blob/main/Project/codes/smr_cdf.py$

Simulation Study

The performance of ML estimates for finite sample size were studied to check if the estimators satisfy the desirable properties.

Figure: Graphics of (a) bias (b) RMSE and (c) coverage of simulator for $\sigma=1, q=1, n=30...200$ in SMR model

Figure: Graphics of (a) bias (b) RMSE and (c) coverage of simulator for $\sigma=10, q=1.5, n=30...200$ in SMR model

INFERENCES

- As sample size increases, then bias and RMSE decreases. This suggests that the estimators are consistent.
- As sample size increases, the empirical coverage probability approaches to the nominal level (95%)

Application 1:Patients with Bladder cancer

Statistical Values	
n	128
T	9.366
S	10.508
$\sqrt{b_1}$	3.287
b_2	18.483
min(T)	0.08
max(T)	79.05

Table: Descriptive statistics

Figure: Density plot of patients with bladder cancer in the R, SR and SMR distribution

Application 1:Patients with Bladder cancer

Figure: QQ plot of patients with bladder cancer in the (a)R, (b)SR and (c)SMR distribution

Application 2:Number of failures of an air conditioning system

Figure: Density plot of number of failures of an air conditioning system in the R, SR and SMR distribution

Statistical Values	
n	188
T	92.074
S	107.916
S	10.508
$\sqrt{b_1}$	2.139
b ₂	8.023
min(T)	1
max(T)	603

Table: Descriptive statistics

Application 2:Number of failures of an air conditioning system

Figure: QQ plot of number of failures of an air conditioning system in the (a)R, (b)SR and (c)SMR distribution

CONCLUSION

- More flexible model as for its kurtosis coefficient than the Rayleigh and slashed Rayleigh distribution.
- A simulation study is included, which suggests that the ML estimators are consistent even for moderate sample sizes
- QQ-plots show that our proposal provides a better fit than R and SR distributions, especially on the right tail of these data sets.

REFERENCES

- [1.] Siddiqui, M.M. Some problems connected with Rayleigh distributions. J. Res. Natl. Bureu Stand. Ser. D 1962, 66, 167–174. [CrossRef]
- [2.] Miller, K.S. Multidimensional Gaussian Distributions; Wiley: New York, NY, USA, 1964.
- [3.] Polovko, A.M. Fundamentals of Reliability Theory; Academic Press: San Diego, CA, USA, 1968.
- [4.] Hirano, K. Rayleigh distribution, In Encyclopedia of Statistical Sciences; Kotz, S., Johnson, N.L., Read, C.B., Eds.; Wiley: New York, NY, USA, 1986; pp. 647–649.
- [5.] Lopez-Blazquez, J.F.; Barranco-Chamorro, I.; Moreno-Rebollo, J.L. Umvu estimation for certain family of exponential distributions. Commun. Stat.-Theory Methods 1997, 26, 469–482. [CrossRef]