

MEEC/MIEEC

ELECTRONICS FOR MICRO-SYSTEMS

Lab#1 P1 A Temperature Meter System with 3 Sensors, Relay and GUI

Authors:

Martim Duarte Agostinho (70392) Francisco Simões Coelho Sá da Costa (70386) Sofia Margarida Mafra Dias Inácio (58079)

```
md.agostinho@campus.fct.unl.pt
fsc.costa@campus.fct.unl.pt
sm.inacio@campus.fct.unl.pt
```


Contents

1	Introduction		
2	Temperature Sensors2.1NTC - Negative Temperature Coefficient2.2LM35 - Precision Centigrade Temperature Sensor2.3DS18B20 - Digital Thermometer		
3	System Design 3.1 Analog FrontEnd (AFE) NTC 3.2 LM35 3.3 DS18B20 ??(Este tem Dimensionamento?) 3.4 Relé de saída		
4	Simulations		
5	Implementation and Experimental Tests		
6	Results Analysis		
7	Conclusion		

List of Figures

1	Temperature sensing system with 3 three types of sensors	3
2	AFE for the LM35 sensor.	4
3	AFE error curve.	4
4	NTC voltage divider	5

1 Introduction

explain the requirements and the main objectives of the project Se calhar dizer aqui quais sao as metricas por onde podemos avaliar a nossa solucao Linearidade de output para conseguir aproveitar melhor a resolucao do adc Consumo erro

Figure 1: Temperature sensing system with 3 three types of sensors.

2 Temperature Sensors

2.1 NTC - Negative Temperature Coefficient

2.2 LM35 - Precision Centigrade Temperature Sensor

Figure 2: AFE for the LM35 sensor.

Figure 3: AFE error curve.

2.3 DS18B20 - Digital Thermometer

3 System Design

3.1 Analog FrontEnd (AFE) NTC

A parte onde definimos o intervalo de temperatura nao devia estar aqui pq é para todos os circuitos

In order to design the NTF AFE first it's necessary to define the temperature interval in which this circuit will work, thus it was define as $T \in [10^\circ; 40^\circ]$. Through the NTC's datasheet the interval of its resistance values is $R_{NTC} \in [5, 282k; 19, 98k]$

For an accurate reading of the temperature it was used the *Steinhart-Hart* equation.

$$\frac{1}{T} = A + B \cdot \ln(R_{NTC}) + C \cdot [\ln(R_{NTC})]^3 \tag{1}$$

In order to find the parameters A, B and C, its necessary to use 3 points from the datasheet. The points chosen were the two extremes and the middles point.

$$\begin{cases} R(283, 15) = 1,998 \cdot 10^4 \ \Omega \\ R(298, 15) = 10^4 \ \Omega \\ R(313, 15) = 0,5282 \cdot 10^4 \ \Omega \end{cases} \Leftrightarrow \begin{cases} A = 1, 2 \cdot 10^{-3} \\ B = 2, 1 \cdot 10^{-4} \\ C = 1, 3 \cdot 10^{-7} \end{cases}$$
 (2)

Para poder dimensionar o AFE do NTC primeiro é necessario definir o intrevalo de temperaturas em que o circuito irá operar. Foi então decidido que seria adequado um temperatura $T \in [10^\circ; 40^\circ]$. E pelo datasheet do NTC foi obtido o intrevalo da sua resistencia $R_{NTC} \in [5, 282k ; 19, 98k]$

Para usar equação Steinhart-Hart $\frac{1}{T} = A + B \cdot \ln(R) + C \cdot [\ln(R)]^3$, precisamos de usar 3 pontos para encontrar as constantes A, B e C. $R(T) = R_{NTC}$ onde T é a temperatura em kelvin e R_{NTC} é o valor da resistencia do thermistor NTC

The simplest way to convert the resistance to voltage, is to use a voltage divider circuit.

Figure 4: NTC voltage divider.

This approach has a few problems:

- · The output resistance is really high $R \parallel NTC$,
- \cdot The output voltage is highly non linear, which is a problem because this way some ADC resolution is lost.

The first problem is solved through a buffer at the entrance of the AFE, and the second is somewhat mitigated by using a resistor R >> NTC, because, as seen in the equation a value for R will lead to small variation in the output voltage, making it closer to a straight curve.

aqui acho que se vê pela segunda derivada, quanto menor a segunda derivada mais reta é a curva certo ??

With R = ... the output signal is $V_{out} \in [...]$. But the ADC as resolution of 12 bits and a voltage range of 3.3V, meaning that to have the best resolution possible the signal needs an offset and a gain of ... and ... respectively. This is achieved using a differential amplifier.

3.2 LM35

This integrated-circuit temperature sensor, generates an output voltage linearly proportional to the Centigrade temperature

$$V_{out} = 10^{-2} \cdot T$$

Thus in the specified conditions $V_{out} \in [0.1; 0.4]$, as done in the last section we will be using a differential amplifier to fit this interval in the ADC's range.

- 3.3 DS18B20 ??(Este tem Dimensionamento?)
- 3.4 Relé de saída
- 4 Simulations
- 5 Implementation and Experimental Tests
- 6 Results Analysis
- 7 Conclusion