2_1_Lineare_Regression

January 8, 2024

cml1 - Immobilienrechner

1 Einfache lineare Regression und Residuenanalyse

Verwende ein einfaches lineares Modell zur Vorhersage von price_cleaned mit dem Attribut Space extracted oder Floor_space_merged (es gibt einige, wo beide fehlen (um die 800, können ignoriert werden).

Entwickle das Modell in einem Notebook. Untersuche dabei ob die Annahmen eines linearen Modells erfüllt sind mit geeigneten Darstellungen. Wie können Variablen-Transformationen verwendet werden, um die Modellvoraussetzungen besser zu erfüllen und das Modell zu verbessern?

Rapportiere und diskutiere die erreichte Genauigkeit der Vorhersage mit mehreren sinnvollen Metriken und auf unabhängigen Testdaten.

Wir haben im Notebook "datawrangling.ipynb" den Datensatz bereinigt und lesen dieser hier ein. Die Aufgabe dieses Notebooks ist es, ein einfaches lineares Modell zu erstellen, um Vorhersagen von price_cleaned mit dem Attribut Space extracted oder Floor_space_merged zu machen. In unserem Fall ist der Attribut Living_area_unified, da wir alle "Nutzfläche" Variablen zusammengefasst haben.

Achtung: Im Datawrangling Notebook haben wir Space extracted zu Living_area_unified zusammengefasst. Anstelle hier also wie in der Aufgabenstellung Space extraced zu wählen, arbeiten wir mit Living area_unified.

1.1 Daten laden und betrachten

Anzahl der Zeilen: 21466 Anzahl der Spalten: 57

Nun untersuchen wir die gefragten Variablen und machen uns Gedanken über die Modellvoraussetzungen.

Anhand der Verteilungen ohne Transformationen, sehen wir das die Verteilungen nicht normalverteilt sind, sondern linksschief. Bei einer linearen Regression kann eine linksschiefe Verteilung problematisch sein, da sie oft die Normalverteilungsannahme der Residuen verletzt, was die Genauigkeit und Validität der Modellschätzungen beeinträchtigt. Solche Verteilungen können auch zu einem überproportionalen Einfluss von Ausreissern führen. Um diese Probleme zu beheben, werden häufig Transformationen der Daten eingesetzt, um eine symmetrischere Verteilung zu erreichen und die Modellannahmen zu erfüllen.

Wenn wir also die transformierten Verteilungen anschauen, sehen wir genauere Normalverteilungen. Es sind aber trotzdem viele Ausreisser vorhanden.

Schauen wir nun die fehlenden Werte unserer Variablen an.

Der Output von oben Zeigt uns: Floor_space_merged hat extrem viele fehlende Werte. Eine "einfache" lineare Regression würde hier nicht gut funktionieren.

(711, 57)

Dieser Ouput von 711 Zeilen zeigt die in der Aufgabenstellung angekündigten ca. 800 Fehlenden Werte beider Features.

(0, 57)

Wie in der Aufgabenstellung beschrieben werden diese 711 Zeilen nun für unsere Modelle ignoriert. Wir haben nun folgende Optionen für die Modellierung:

- Wir verwenden nur Living_area_unified und rechnen unser Modell so (2.1.1)
- Wir ersetzen fehlende Floor_space_merged values mit Living_area_unified (2.1.2)
- Wir ersetzen fehlende Living_area_unified values mit Floor_space_merged (2.1.3)
- Wir versuchen anhand der beiden Features ein neues Feature zu generieren das anstelle Floor_space_merged verwendet wird. (2.1.4)
- Wir verwenden ein nicht lineares Modell, welches dann aber nicht mehr der Aufgabenstellung für 2.1 entspricht

1.2 Lineare Regression mit Living_area_unified

In dieser Teilaufgabe (2.1.1) wird eine einfache lineare Regression mit Living_area_unified als Feature und price_cleaned als Zielvariable erstellt. Wir werden die Annahmen eines linearen Modells mit geeigneten Darstellungen untersuchen und Variablen-Transformationen verwenden, um die Modellvoraussetzungen eventuell besser zu erfüllen und das Modell zu verbessern.

Anhand des Scatterplots sehen wir keine grosse Korrelaiton zwischen dem Preis und der Nutzfläche. Wir werden trotzdem eine lineare Regression durchführen und die Residuen analysieren.

Erstellen wir nun eine Funktion, bei der wir verschiedene Modelle erstellen können. Die Funktion wird folgendermassen gestaltet:

Eingabe: 1. X (Feature-Daten) 2. y (Zielvariable) 3. Eine Transformationsfunktion (optional), die auf X angewendet wird, bevor die Regression durchgeführt wird.

Ausgabe: - Ein Plot mit drei Subplots: "Actual vs Predicted Price", "Residuals" und "Residuals Histogram". - Ein Print mit den Metriken: R2, RMSE und MAE

R2: 0.3932 - RMSE: 1339575.9200, MAE: 570184.6900

Es ist gut zu sehen, dass das Modell die Immobilienpreise nicht gut vorhersagen kann. - R^2 ist sehr klein: 39.32%. - Die Residuen streuen sich meistens um den Erwartungswert 0, wir sehen aber sehr grosse Ausreisser. - Die Residuen sind recht normalverteilt, aber es gibt auch hier grosse Ausreisser.

Um das Modell eventuell zu verbessern, werden wir folgende Variablen-Transformation machen: - Log - Quadrat - Quadratwurzel

1.2.1 Log-Transformation (Teilaufgabe 2.1.1)

R2: 0.3048 - RMSE: 1433837.9500, MAE: 682242.5100

R2: 0.3744 - RMSE: 1360145.3700, MAE: 524850.1700

Bei der Log-Transformation der x- und y-Variablen sehen wir eine minimale Verbesserung des Modells im Sinne des RMSE und MAE. Im Sinne des \mathbb{R}^2 ist das Modell aber schlechter geworden.

1.2.2 Quadrat-Transformation (Teilaufgabe 2.1.1)

R2: 0.0846 - RMSE: 1645302.8500, MAE: 795996.3500

R2: -0.0416 - RMSE: 1754975.5600, MAE: 1246092.5000

Bei beiden Quadrat-Transformationen sehen wir erhebliche Verschlechterungen des Modells. Das \mathbb{R}^2 ist sehr klein, die Residuen sind nicht mehr normalverteilt und es gibt noch grössere Ausreisser.

1.2.3 Quadratwurzel-Transformation (Teilaufgabe 2.1.1)

R2: 0.3815 - RMSE: 1352438.9000, MAE: 621362.0100

R2: 0.3983 - RMSE: 1333846.8700, MAE: 534759.8500

R2: 0.2886 - RMSE: 1450362.2100, MAE: 572916.3700

Die Residuen der Quadratwurzel-Transformationen sehen alle gut normalverteilt aus. Aber grosse Verbesserungen des Modells sehen wir nicht.

1.2.4 Interpretation (Teilaufgabe 2.1.1)

Model	Transformation	R2	RMSE	MAE
2.1.1	Baseline - keine Transformation	0.3932	1339575.9200	570184.6900
2.1.1	Log(x)	0.3048	1433837.9500	682242.5100
2.1.1	Log (x and y)	0.3744	1360145.3700	524850.1700

Model	Transformation	R2	RMSE	MAE
2.1.1	Quadrat (x)	0.0846	1645302.8500	795996.3500
2.1.1	Quadrat (x and y)	-0.0416	1754975.5600	1246092.5000
2.1.1	Quadratwurzel (x)	0.3815	1352438.9000	621362.0100
2.1.1	Quadratwurzel (x and y)	0.3983	1333846.8700	534759.8500
2.1.1	Quadratwurzel (y)	0.2886	1450362.2100	572916.3700

Das Modell mit Quadratwurzel (x und y) Transformation hat den höchsten R2-Wert (0.3983) und relativ niedrige Werte für RMSE und MAE. Dies deutet darauf hin, dass es unter den aufgeführten Modellen am besten die Variabilität der Daten erklärt und eine geringere Fehlerquote aufweist. Auf Basis dieser Analyse scheint es das beste unter den aufgelisteten zu sein.

Es wäre eventuell sinnvoll, eine Ausreisserbehandlung durchzuführen, um das Modell zu verbessern.

1.3 Fehlende Werte bei Floor_space_merged ersetzen (Teilaufgabe 2.1.2)

Diese Teilaufgabe ist offensichtlich ein eher schlechter Ansatz, weil Floor_space_merged 19'000+ fehlende Werte hat. Das heisst wir ersetzen hier die meisten Werte mit Living_area_unified. Im Sinne der Experimente, führen wir das aber trotzdem druch.

R2: 0.3499 - RMSE: 1489067.9300, MAE: 628984.7800

1.3.1 Log-Transformation (Teilaufgabe 2.1.2)

R2: 0.3335 - RMSE: 1507824.1500, MAE: 582392.9500

R2: 0.2586 - RMSE: 1590283.6200, MAE: 729437.8800

R2: -10.4703 - RMSE: 6254956.2100, MAE: 757846.1800

1.3.2 Quadrat-Transformation (Teilaufgabe 2.1.2)

R2: 0.0671 - RMSE: 1783866.5200, MAE: 836359.6400

R2: -0.0179 - RMSE: 1863289.1400, MAE: 1264163.2400

1.3.3 Quadratwurzel-Transformation (Teilaufgabe 2.1.2)

R2: 0.3555 - RMSE: 1482710.7800, MAE: 591063.3700

R2: 0.3438 - RMSE: 1496045.9100, MAE: 666437.9100

R2: 0.2881 - RMSE: 1558295.5300, MAE: 630991.2800

1.3.4 Interpretation (Teilaufgabe 2.1.2)

Model	Transformation	R2	RMSE	MAE
2.1.2	Baseline - keine Transformation	0.3499	1489067.9300	628984.7800
2.1.2	Log (x und y)	0.3335	1507824.1500	582392.9500
2.1.2	Log(x)	0.2586	1590283.6200	729437.8800
2.1.2	Log (y)	-10.4703	6254956.2100	757846.1800
2.1.2	Quadrat (x und	-0.0179	1863289.1400	1264163.2400
	y)			

Model	Transformation	R2	RMSE	MAE
2.1.2	Quadrat (x)	0.0671	1783866.5200	836359.6400
2.1.2	Quadratwurzel (x und y)	0.3555	1482710.7800	591063.3700
2.1.2	$\begin{array}{c} \text{Quadratwurzel} \\ \text{(x)} \end{array}$	0.3438	1496045.9100	666437.9100
2.1.2	Quadratwurzel (y)	0.2881	1558295.5300	630991.2800

Wie nach Erwartung sehen wir, dass die Modelle bei diesem Experiment nicht besser geworden sind.

1.4 Fehlende Werte bei Living_area_unified ersetzen (Teilaufgabe 2.1.3)

Anzahl fehlender Werte vor dem Imputing: 192

Anzahl fehlender Werte nach dem Imputing: 0

R2: 0.3993 - RMSE: 1431370.0900, MAE: 604510.4100

1.4.1 Log-Transformation (Teilaufgabe 2.1.3)

R2: 0.3879 - RMSE: 1444883.5700, MAE: 564085.7800

R2: 0.2802 - RMSE: 1566912.5400, MAE: 723867.9200

R2: -0.2018 - RMSE: 2024646.3900, MAE: 668169.3900

1.4.2 Quadrat-Transformation (Teilaufgabe 2.1.3)

R2: 0.0196 - RMSE: 1828643.6700, MAE: 1243486.6600

R2: 0.0884 - RMSE: 1763361.1100, MAE: 828685.3900

1.4.3 Quadratwurzel-Transformation (Teilaufgabe 2.1.3)

R2: 0.4078 - RMSE: 1421277.5000, MAE: 572081.8300

R2: 0.3753 - RMSE: 1459762.2900, MAE: 659822.3600

R2: 0.3761 - RMSE: 1458847.0100, MAE: 605729.8900

1.4.4 Interpretation (Teilaufgabe 2.1.3)

Model	Transformation	R2	RMSE	MAE
2.1.3	Baseline - Keine Transformation	0.3993	1431370.0900	604510.4100
2.1.3	Log (x und y)	0.3879	1444883.5700	564085.7800
2.1.3	Log(x)	0.2802	1566912.5400	723867.9200
2.1.3	Log(y)	-0.2018	2024646.3900	668169.3900
2.1.3	Quadrat (x und	0.0196	1828643.6700	1243486.6600
	y)			
2.1.3	Quadrat (x)	0.0884	1763361.1100	828685.3900
2.1.3	Quadratwurzel (x und y)	0.4078	1421277.5000	572081.8300
2.1.3	Quadratwurzel (x)	0.3753	1459762.2900	659822.3600
2.1.3	$\begin{matrix} \text{Quadratwurzel} \\ \text{(y)} \end{matrix}$	0.3761	1458847.0100	605729.8900

Bei dieser Teilaufgabe scheint das Modell mit der Quadratwurzel-Transformation von x und y $(R^2: 0.4078)$ am effektivsten zu sein. Es hat den höchsten R2-Wert und den niedrigsten RMSE Wert.

Wir sehen also eine Verbesserung der Modelle, wenn wir die fehlenden Werte von Living_area_unified mit Floor_space_merged ersetzen.

1.5 Feature Engineering (Teilaufgabe 2.1.4)

In diesem Abschnitt versuchen wir anhand der beiden Features Floor_space_merged und Living_area_unified ein neues Feature zu generieren, das anstelle Floor_space_merged verwendet wird.

R2: 0.3505 - RMSE: 1488378.7900, MAE: 625766.4800

1.5.1 Log-Transformation (Teilaufgabe 2.1.4)

R2: 0.3413 - RMSE: 1498902.2600, MAE: 579782.0100

R2: 0.2686 - RMSE: 1579489.7500, MAE: 724371.6400

R2: -10.9442 - RMSE: 6382884.6900, MAE: 759422.7000

1.5.2 Quadrat-Transformation (Teilaufgabe 2.1.4)

R2: 0.0671 - RMSE: 1783855.6000, MAE: 836263.0600

R2: -0.0178 - RMSE: 1863224.5400, MAE: 1264137.8100

1.5.3 Quadratwurzel-Transformation (Teilaufgabe 2.1.4)

R2: 0.3568 - RMSE: 1481192.8000, MAE: 587623.4900

R2: 0.3470 - RMSE: 1492399.4000, MAE: 661346.8500

R2: 0.2881 - RMSE: 1558233.6700, MAE: 629332.8200

1.5.4 Interpretation (Teilaufgabe 2.1.4)

Model	Transformation	R2	RMSE	MAE
2.1.4	Baseline - keine Transformation	0.3505	1488378.7900	625766.4800
2.1.4	Log (x und y)	0.3413	1498902.2600	579782.0100
2.1.4	Log(x)	0.2686	1579489.7500	724371.6400
2.1.4	Log (y)	-10.9442	6382884.6900	759422.7000
2.1.4	Quadrat (x)	0.0671	1783855.6000	836263.0600

Model	Transformation	R2	RMSE	MAE
2.1.4	Quadrat (x und y)	-0.0178	1863224.5400	1264137.8100
2.1.4	Quadratwurzel (x und y)	0.3568	21481192.8000	587623.4900
2.1.4	Quadratwurzel (x)	0.3470	1492399.4000	661346.8500
2.1.4	Quadratwurzel (y)	0.2881	1558233.6700	629332.8200

Diese Tabelle zeigt die Ergebnisse der neu generierten Variable calc und price_cleaned. Basierend auf den R2-Werten und den Fehlermetriken scheint wieder das Modell mit der Quadratwurzel-Transformation von x und y (R2: 0.3568) am besten abzuschneiden. Aber nicht besser als das Modell aus 2.1.3.

Hier nochmals das beste Modell 2.1.3 - fehlende Werte von Living_area_unified mit Floor_space_merged ersetzt: - Quadratwurzel (x und y) - R^2 : 0.4078

1.6 Outlier Handling

Wir haben verschiedene Methoden für das Outlier-Handling in unseren Daten angewendet, um sicherzustellen, dass unsere Analysen und Modelle zuverlässige Ergebnisse liefern. Hierbei haben wir sowohl das Interquartilsbereich (IQR)-Verfahren als auch den Z-Score-Ansatz verwendet, um Ausreisser zu identifizieren und zu entfernen.

1.6.1 IQR

Für das IQR-Verfahren haben wir zunächst einen Bereich von unteren und oberen Prozentilen definiert, um die Flexibilität bei der Identifizierung von Ausreissern zu erhöhen. Wir haben dann die IQR für die relevanten Variablen in unseren Daten berechnet und die unteren und oberen Whisker-Grenzwerte definiert. Alle Datenpunkte, die ausserhalb dieser Grenzwerte lagen, wurden als Ausreisser betrachtet und aus unserem Datensatz entfernt. Anschliessend haben wir die R2-Werte für verschiedene Kombinationen von unteren und oberen Prozentilen berechnet, um die Auswirkungen des Outlier-Handlings auf die Modellleistung zu bewerten. Die Ergebnisse sind in der Visualisierung zu sehen und die optimale Kombination von unteren und oberen Prozentilen ist unten aufgeführt.

Best R2 Score:

1.6.2 **Z-Score**

Zusätzlich dazu haben wir den Z-Score verwendet, um Ausreisser zu identifizieren. Hierbei haben wir verschiedene Schwellenwerte für den Z-Score getestet und alle Datenpunkte entfernt, die den festgelegten Schwellenwert überschritten haben. Auch hier haben wir die R2-Werte für verschiedene Schwellenwerte berechnet, um die Auswirkungen auf die Modellleistung zu bewerten.

Max R2 Score: 0.5213

Anzahl der Datenpunkte vor Entfernen von Ausreissern: 20755 Neue Anzahl der Datenpunkte nach Entfernen von Ausreissern: 20748

Wir sehen also, dass das beste Modell im Sinne des \mathbb{R}^2 nur 7 Ausreisser entfernt hat. Das bedeutet, dass diese 7 Ausreisser einen grossen Einfluss auf die Modellleistung hatten.

Schauen wir nun die Residuen an.

R2: 0.5213 - RMSE: 1179279.2600, MAE: 555138.4500

Die Residuen im zweiten Plot sind nun besser um die Null verteilt, aber treffen immer noch nicht die Annahmen einer Residuenanalyse, da die Verteilung um Null sehr zufällig ist.

1.6.3 Transformationen

Wir stellen uns jetzt die Frage, ob wir die Modellleistung durch Transformationen der Variablen verbessern können.

Living Area vs Price - with x and y log transformation R2: 0.4524 - RMSE: 1261284.2300, MAE: 532575.2900

Living Area vs Price - with x log transformation R2: 0.3645 - RMSE: 1358776.6400, MAE: 682822.6500

Living Area vs Price - with y log transformation R2: -48.1833 - RMSE: 11953164.0100, MAE: 819575.6700

Living Area vs Price - with x square transformation R2: 0.3696 - RMSE: 1353304.4900, MAE: 689117.5000

Living Area vs Price - with x and y sqrt transformation R2: 0.4967 - RMSE: 1209228.2400, MAE: 534978.3400

Living Area vs Price - with x sqrt transformation R2: 0.4664 - RMSE: 1244981.0500, MAE: 628538.0900

Living Area vs Price - with y sqrt transformation R2: 0.4742 - RMSE: 1235869.9100, MAE: 547842.4100

Leider konnten wir mittels Variablentransformationen die Modellleistung im Sinne des \mathbb{R}^2 nicht verbessern. Die Quadratwurzel - und Log-Transformationen von x und y erreichen jedoch eine minimale Verbesserung der Modellleistung im Sinne des MAE, aber deren RMSE ist höher als bei der Baseline.

1.7 Gesamtinterpretation

Median der Immobilienpreise: 865000.0

Ein R2 von 0.52 ist das beste, was wir hier erzielen können. Die Residuen zeigen weiterhin, dass das Modell zu wenig komplex ist. Wir haben aber immer noch einen Mean-Average-Error von ca. CHF 555'000 auf den tatsächlichen Preis. Bei einer durchschnittlichen Preis der Immobilien von CHF 865'000 ist das ein miserables Resultat.

Wir sind deshalb auf andere Modelle angewiesen und können uns nicht auf eine einfache Lineare Regression verlassen.