algorithm

4.b.分治策略

本节内容

- •分治算法改进
 - 4.6 改进分治算法的途径1:减少子问题数
 - 4.7 改进分治算法的途径2: 增加预处理
- 分治算法实例:
 - 4.8 选最大与最小
 - 4.9 选第二大
 - 4.10 一般选择问题的算法设计
 - 4.11 选择问题的算法分析

改进分治算法的途径1:减少子问题数

- •减少子问题个数的依据
- 分治算法的时间复杂度方程

$$W(n) = aW(n/b) + d(n)$$

a:子问题数, n/b:子问题规模, d(n):划分与综合工作量

• 当 a 较大, b较小, d(n)不大时, 方程的解:

$$W(n) = \boldsymbol{\Theta}(n^{\log_b a})$$

- 减少a是降低函数W(n)的阶的途径
- 利用子问题的依赖关系,使某些子问题的解通过组合其他子问题的解而得到

例1:整数位乘问题

- 输入: $X,Y \in n$ 位二进制数, $n=2^k$
- 输出: XY
- 普通乘法: 需要O(n²)次位乘运算
- •简单划分:令
 - $X = A2^{n/2} + B$, $Y = C2^{n/2} + D$.
 - $XY = AC 2^n + (AD + BC) 2^{n/2} + BD$

17	▲	D
X	A	К
4 8.	4 🛦	D

•
$$W(n) = 4W(n/2) + O(n) \Rightarrow W(n) = O(n^2)$$

减少子问题个数

•子问题间的依赖关系:代数变换

$$AD+BC = (A - B)(D - C) + AC + BD$$

• 算法复杂度

$$W(n) = 3 W(n/2) + cn W(1) = 1$$

• 方程的解

$$W(n) = O(n^{\log 3}) = O(n^{1.59})$$

例2: 矩阵相乘问题

• 输入: A, B 为 n 阶矩阵, $n = 2^k$

• 输出: *C = AB*

- 通常矩阵乘法:
 - *C* 中有 *n*²个元素
 - •每个元素需要做 n 次乘法 以元素相乘为基本运算

$$W(n) = O(n^3)$$

简单分治算法

•分治法将矩阵分块,得

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} \\ B_{21} \end{pmatrix} \begin{pmatrix} B_{12} \\ B_{22} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

其中

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$
 $C_{12} = A_{11}B_{12} + A_{12}B_{22}$ $C_{21} = A_{21}B_{11} + A_{22}B_{21}$ $C_{22} = A_{21}B_{12} + A_{22}B_{22}$

递推方程
$$W(n) = 8 W(n/2) + cn^2 W(1) = 1$$

解 $W(n) = O(n^3)$

Strassen 矩阵乘法

- •变换方法:
- 设计 *M*₁, *M*₂, ..., *M*₇, 对应7个子问题

$$M_1 = A_{11} (B_{12} - B_{22})$$

$$M_2 = (A_{11} + A_{12}) B_{22}$$

$$M_3 = (A_{21} + A_{22}) B_{11}$$

$$M_4 = A_{22} (B_{21} - B_{11})$$

$$M_5 = (A_{11} + A_{22}) (B_{11} + B_{22})$$

$$M_6 = (A_{12} - A_{22}) (B_{21} + B_{22})$$

$$M_7 = (A_{11} - A_{21}) (B_{11} + B_{12})$$

Strassen 矩阵乘法

•利用中间矩阵,得到结果矩阵

$$C_{11} = M_5 + M_4 - M_2 + M_6$$
 $C_{12} = M_1 + M_2$
 $C_{21} = M_3 + M_4$
 $C_{22} = M_5 + M_1 - M_3 - M_7$

•时间复杂度函数:

$$W(n) = 7 W(n/2) + 18(n/2)^2$$

 $W(1) = 1$

• \mathbb{H}^2 $W(n) = O(n^{\log 7}) = O(n^{2.8075})$

矩阵乘法的研究及应用

- 矩阵乘法问题的难度:
- •目前为止最好的上界: Coppersmith—Winograd算法: $O(n^{2.376})$
- •目前为止最好的下界: $\Omega(n^2)$
- 应用:
- 科学计算、图像处理、数据挖掘等
- •回归、聚类、主成分分析、决策树等挖掘算法常涉及大规模矩阵运算

改进途径小结

适用于:子问题个数多,划分和综合工作量不太大,时间 复杂度函数

$$W(n) = \boldsymbol{\Theta}(n^{\log_b a})$$

- 利用子问题依赖关系,用某些子问题解的代数表达式表示另一些子问题的解,减少独立计算子问题个数
- 综合解的工作量可能会增加,但增加的工作量不影响 W(n) 的阶

改进分治算法的途径2:增加预处理

- 例子: 平面点对问题
- 输入: 平面点集 *P* 中有*n* 个点, *n* > 1
- 输出: P中的两个点, 其距离最小
- 蛮力算法: C(n,2)个点对,计算最小距离, $O(n^2)$
- •分治策略: P划为大小相等的 P_L 和 P_R
 - 分别计算 P_L 、 P_R 中最近点对
 - 计算 P_L 与 P_R 中各一个点的最近点对
 - 上述情况下的最近点对是解

划分实例: n=10

算法伪码

- MinDistance (*P*, *X*, *Y*)
- 输入: 点集P,X和Y为横、纵坐标数组
- 输出: 最近的两个点及距离
- 1. 若|P/≤3,直接计算其最小距离
- 2. 排序X,Y
- 3. 做中垂线 l 将P划分为 P_L 和 P_R
- 4. MinDidtance (P_L, X_L, Y_L)
- 5. MinDistance (P_R, X_R, Y_R)
- $6. \delta = \min(\delta_L, \delta_R) / / \delta_L, \delta_R$ 为子问题的距离
- 7. 检查距 l 不超过 δ 两侧各l 个点的距离. 若小于 δ ,修改 δ 为这个值

跨边界处理

$$d = \sqrt{(\delta/2)^2 + (2\delta/3)^2}$$

$$= \sqrt{\delta^2/4 + 4\delta^2/9}$$

$$= \sqrt{25\delta^2/36} = 5\delta/6$$

- 右边每个小方格至多1个点,每个点至多比较对面的6个点,
- 检查1个点是常数时间,O(n) 个点需要O(n)时间

算法分析

- •步1 递归边界处理: O(1)
- •步2排序: *O*(*n*log*n*)
- ·步3划分: *O*(1)
- 步4-5子问题: 2T(n/2)
- 步6确定δ: O(1)
- •步7检查跨边界点对: O(n)

$$T(n)=2T(n/2)+O(n\log n)$$

$$T(n)=O(1), n \le 3$$

• 递归树求解 $T(n)=O(n\log^2 n)$

增加预处理

- •原算法:
- 在每次划分时对子问题数组重新排序
- 改进算法:
 - 在递归前对 X,Y 排序, 作为预处理
 - 划分时对排序的数组 X,Y 进行拆分,得到针对子问题 P_L 的数组 X_L,Y_L 及针对子问题 P_R 的数组 X_R,Y_R
- •原问题规模为n,拆分的时间为O(n)

实例: 递归中的拆分

P	1	2	3	4	な
X	0.5	2	-2	1	新
Y	2	3	4	-1	

X	-2(3)	0.5(1)	1(4)	2(2)	预
Y	-1(4)	2(1)	3(2)	4(3)	处理

X_L	2(3)	0.5(1)
Y_L	2(1)	4(3)

X_R	1(4)	2(2)
Y_R	-1(4)	3(2)

拆分后

改进算法时间复杂度

- W(n)为算法时间复杂度
- 递归过程: T(n) , 预处理: $O(n\log n)$

$$W(n) = T(n) + O(n\log n)$$

$$T(n) = 2T(n/2) + O(n)$$

$$T(n) = O(1) \qquad n \le 3$$

- •解得 $T(n) = O(n \log n)$
- 于是 $W(n) = O(n \log n)$

选最大与最小

- 选择问题
- 输入:集合 $L(2n \cap T)$ 等的实数)
- 输出: *L*中第 *i* 小元素
- *i*=1, 称为最小元素
- *i=n*, 称为最大元素
- 位置处在中间的元素, 称为中位元素
- n为奇数,中位数唯一, i = (n+1)/2
- n为偶数,可指定 i = n/2+1

选最大

• 算法: 顺序比较

- 输出: max = 17, k=4
- 算法最坏情况下的时间W(n)=n-1

伪码

- 算法 Findmax
- 输入: n 个数的数组 L
- 输出: max, k
 - 1. $max \leftarrow L[1]$
 - 2. for $i \leftarrow 2$ to n do
 - 3. if max < L[i]
 - 4. then $max \leftarrow L[i]$
 - 5. $k \leftarrow i$
 - 6. return max, k

选最大最小

- 通常算法:
- 1. 顺序比较,先选最大 max
- 2. 顺序比较,在剩余数组中选最小 min,类似于选最大算法,但比较时保留较小的数
- •时间复杂性:

$$W(n) = n-1 + n-2 = 2n-3$$

分组算法

伪码

- 算法 FindMaxMin
- 输入: n个数的数组 L
- 输出: max, min
- 1. 将 n 个元素两两一组分成 $\lfloor n/2 \rfloor$ 组
- 2. 每组比较,得到 $\lfloor n/2 \rfloor$ 个较小和 $\lfloor n/2 \rfloor$ 个较大
- 3. $\mathbb{E}[n/2]$ 个较大(含轮空元素)中找最大 $\mathbb{E}[n/2]$
- 4. 在 $\lceil n/2 \rceil$ 个较小(含轮空元素)中找最小min

最坏情况时间复杂度

- 行2 的组内比较: \[\n/2 \] 次
- 行3--4 求 max 和 min 比较:
- 至多 $2\lceil n/2 \rceil 2$ 次 $W(n) = \lfloor n/2 \rfloor + 2\lceil n/2 \rceil 2$ $= n + \lceil n/2 \rceil 2$ $= \lceil 3n/2 \rceil 2$

分治算法

- 1. 将数组 L从中间划分为两个 子数组 L_1 和 L_2
- 2. 递归地在 L_1 中求最大 max_1 和 min_1
- 3. 递归地在 L_2 中求最大 max_2 和 min_2
- 4. $max \leftarrow max\{ max_1, max_2 \}$
- 5. $min \leftarrow min\{min_1, min_2\}$

最坏情况时间复杂度

假设
$$n = 2^k$$
,
$$W(n) = 2W(n/2) + 2$$

$$W(2) = 1$$
解 $W(2^k) = 2W(2^{k-1}) + 2$

$$= 2[2W(2^{k-2}) + 2] + 2$$

$$= 2^2W(2^{k-2}) + 2^2 + 2 = \dots$$

$$= 2^{k-1} + 2^{k-1} + \dots + 2^2 + 2$$

$$= 3 \cdot 2^{k-1} - 2 = 3n/2 - 2$$

选择算法小结

- 选最大: 顺序比较, 比较次数 n-1
- 选最大最小
- 选最大+选最小,比较次数 2n-3
- 分组: 比较次数「3*n*/2]-2
- 分治: n=2k, 比较次数 3n/2-2

选第二大

- 输入: *n*个数的数组 *L*
- 输出:第二大的数 second
- 通常算法: 顺序比较
 - 1. 顺序比较找到最大 max
 - 2. 从剩下 n-1个数中找最大,就是第二大second
- 时间复杂度:

$$W(n) = n - 1 + n - 2 = 2n - 3$$

提高效率的途径

- 成为第二大数的条件: 仅在与最大 数的比较中被淘汰
- 要确定第二大数,必须知道最大数
- 在确定最大数的过程中记录下被最大数直接淘汰的元素
- 在上述范围(被最大数直接淘汰的数)内的最大数就是第二大数
- •设计思想: 用空间换时间

锦标赛算法

- 两两分组比较,大者进入下一轮,直到剩下 1个元素 max 为止
- 在每次比较中淘汰较小元素,将被淘汰元素记录在淘汰它的元素的链表上
- 检查 max 的链表,从中找到最大元,即second

伪码

- 算法 FindSecond
- 输入: *n*个数的数组 *L*, 输出: *second*
- 1. *k*←*n* // 参与淘汰的元素数
- 2. 将k个元素两两1组,分成 $\lfloor k/2 \rfloor$ 组
- 3. 每组的2个数比较, 找到较大数
- 4. 将被淘汰数记入较大数的链表
- 5. if *k* 为奇数 then *k*← *k*/2 +1
- 6. else $k \leftarrow \lfloor k/2 \rfloor$
- 7. if k>1 then goto 2
- •8. *max* ←最大数
- 9. $second \leftarrow max$ 的链表中的最大

实例

• 分组1

• 分组2

• 分组3

时间复杂度分析

- 命题1:设参与比较的有 t 个元素,经过 i 轮淘汰后元素数至多为 $\lceil t/2^i \rceil$
- •证 对 *i* 归纳.
 - i=1,分 $\lfloor t/2 \rfloor$ 组,淘汰 $\lfloor t/2 \rfloor$ 个元素,进入下一轮元素数是 $t-\lfloor t/2 \rfloor = \lceil t/2 \rceil$
 - 假设 i 轮分组淘汰后元素数至多为 $[t/2^i]$,
 - 那么 i +1 轮分组淘汰后元素数为

$$\lceil \lceil t/2^i \rceil/2 \rceil = \lceil t/2^{i+1} \rceil$$

时间复杂度分析

- 命题2 max 在第一阶段分组比较中总计进行了 log n 次比较.
- 证:假设到产生 max 时总计进行k 轮淘汰,根据命题 1有 $\lceil n/2^k \rceil = 1$
- 若 *n*=2^d, 那么有

$$k = d = \log n = \lceil \log n \rceil$$

• 若 $2^d < n < 2^{d+1}$, 那么

$$k = d + 1 = \lceil \log n \rceil$$

第一阶段元素数: n, 比较次数: n-1, 淘汰了 n-1个元素

第二阶段:元素数「log n]

比较次数: $\lceil \log n \rceil - 1$, 淘汰元素数为 $\lceil \log n \rceil - 1$

时间复杂度:

$$W(n) = n - 1 + \lceil \log n \rceil - 1 = n + \lceil \log n \rceil - 2$$

一般选择问题的算法设计

- •问题:选第 *k* 小.
- 输入:数组 S, S 的长度 n, 正整数 k, $1 \le k \le n$.
- 输出: 第 *k* 小的数
- 实例 1
- $S=\{3,4,8,2,5,9,18\}, k=4,$ 解: 5
- 实例 2
- 统计数据的集合S, |S|=n,
- 选中位数, *k*=[*n*/2]

一个应用:管道位置

- •问题:某区域有*n*口油井,需要修建输油管道.根据设计要求,水平方向有一条主管道,每口油井修一条垂直方向的支管道通向主管道
- •如何选择主管道的位置,以使得支管道长度的总和最小?

最优解: Y坐标的中位数

简单的算法

- 算法一:
 - 调用 k 次选最小算法 时间复杂度为 O(kn)
- 算法二:
 - 先排序, 然后输出第 k 小的数
 - 时间复杂度为 *O*(*n* log*n*)

分治算法

- 假设元素彼此不等,设计思想:
- •用某个元素 m*作为标准将 S 划分 成 S_1 与 S_2 , 其中 S_1 的元素 小于 m*, S_2 的元素大于等于 m*.
- 如果 $k \le |S_1|$,则在 S_1 中找第 k 小. 如果 $k = |S_1|+1$,则 m^* 是第 k 小 如果 $k > |S_1|+1$,则在 S_2 中找第 $k-|S_1|=1$ 小

m*的选择与划分过程

A: 数需要与m*比大小,

B: 数大于m*

C: 数小于m*,

D: 数需要与m*比大小

实例: n=15, k=6

8	2	3	5	7	6	11	14	1	9	13	10	4	12	15
0		3	3	,	O	ТТ	14	Т	9	13	10	4	12	13
		8			14		15							
M	_		7		11		13			_		•		
		5			9		12		n	n*	= 9			
		3			6			10						
			2		1			4						
\boldsymbol{A}		8 7			14			15						
					11			13	\boldsymbol{B}					
		5			9		,	12						
	\boldsymbol{C}	3 2			6			10	0					
	_				1		4			D				

8, 7, 10, 4 需要与9比较

归约为子问题

子问题

8 7 5 3 2 6 1 4

子问题规模=8, k=6

伪码

- 算法 Select (S, k)
- 输入: 数组 S, 正整数 k,
- 输出: *S* 中的第 *k* 小元素
- 1. 将S分5个一组, 共 $n_M = \lceil n/5 \rceil$ 组
- 2. 每组排序,中位数放到集合 M
- 3. m^* ← Select(M, $\lceil |M|/2 \rceil$) //S \rightarrow A, B, C, D
- 4. A,D元素小于m*放 S_1 ,大于m*放 S_2
- 5. $S_1 \leftarrow S_1 \cup C$; $S_2 \leftarrow S_2 \cup B$
- 6. if $k = |S_1| + 1$ then 输出 m^*
- 7. else if $k \leq |S_1|$
- 8. then Select (S_1, k)
- 9. else Select $(S_2, k |S_1| 1)$

选择问题的算法分析

• 用*m**划分

$$n = 5 (2r + 1), \quad |A| = |D| = 2r$$

•子问题规模至多: 2r+2r+3r+2=7r+2

子问题规模估计

• 不妨设 n = 5(2r+1), |A|=|D|=2r,

$$r=\frac{n/5-1}{2}=\frac{n}{10}-\frac{1}{2}$$

•划分后子问题规模至多为

$$7r + 2 = 7\left(\frac{n}{10} - \frac{1}{2}\right) + 2$$
$$= \frac{7n}{10} - \frac{3}{2} < \frac{7n}{10}$$

时间复杂度递推方程

- 算法工作量 *W*(*n*)
- 行2: O(n)//每5个数找中位数,构成M
- 行3: W(n/5) // M 中找中位数 m*
- 行4: O(n) // 用m*划分集合 S
- 行8-9: W(7n/10)//递归

$$W(n) \le W(n/5) + W(7n/10) + O(n)$$

递归树

• W(n)=W(n/5)+W(7n/10)+cn

.

•
$$W(n) \le cn (1+0.9+0.9^2+...)=O(n)$$

思考

- 分组时为什么5个元素一组?
- 3个一组或 7个一组行不行?
- •分析: 递归调用
- 1. 求 m*的工作量与 |M| = n/t 相关, t 为每组元素数. t大, |M|小
- 2. 归约后子问题大小与分组元素数t 有关.t 大,子问题规模大

3分组时的子问题规模

• 假设 t =3, 3个一组:

- n = 3(2r + 1)
- r = (n/3 1)/2 = n/6 1/2
- •子问题规模最多为 4r+1=4n/6-1

算法的时间复杂度

- 算法的时间复杂度满足方程
- W(n) = W(n/3) + W(4n/6) + cn
- 由递归树得 $W(n)=\Theta(n\log n)$
- 关键:
- /M/与归约后子问题规模之和小于 n,
- 递归树每行的工作量构成公比小于 1
- •的等比级数,算法复杂度才是O(n).

