Algorithms

Xiyuan Yang 2025.10.05

SJTU Semester 2.1 Algorithms: Design and Analysis

Contents

1. Lec1 Introduction	. 1
1.1. Problems and Computation	. 1
1.2. Algorithm	
1.2.1. Definition	2
1.2.2. Pseudocode	2
1.3. RoadMap	3
1.3.1. Divide and Conquer	3
1.3.2. Greedy algorithms	
1.3.3. Dynamic Programming	3
1.3.4. Back Tracking	3
1.3.5. Heuristic Algorithms	
1.4. Correctness of the algorithms	. 4
1.5. 算法正确性证明	4
1.5.1. 数学归纳法	
1.6. Complexity & Efficiency	4
1.7. Asymptotic Notation	5
1.8. Model of Computation	5
	5
1.10. 算法时间复杂度证明	
2. Divide and Conquer	. 6
3. Computational Complexity	. 6
4. Future of Algorithms	
5. Conclusion	

§1. Lec1 Introduction

§1.1. Problems and Computation

The basis of **AI**:

- Search
- Learning

Definition 1.1.1 (计算问题).

- Given a **input**, $I, x \in I$
- output, $O, y \in O$
- relation: $f: x \to y$: use the algorithm!
 - we have some boundaries: (s.t.)

Xiyuan Yang Algorithms

Definition 1.1.2 (Problem Domain).

The set of all the problems. $\langle I, O, f \rangle$

Definition 1.1.3 (Problem Instance).

one simple case in the problem domain $\langle I, O, f, x \rangle$

What is algorithm:

- a piece of code
- handling the mapping from x to y

§1.2. Algorithm

§1.2.1. Definition

Definition 1.2.1.1 (Algorithm).

- Fixed length code
- accept input with any length (or we say it can scale up!)
- at finite time terminate
- Natural Language
- pseudocode
- Written Codes

For example, birthday matching problems.

§1.2.2. Pseudocode

- if else end
- foreach end
- init data structure (Use \leftarrow)

```
1 do something
```

- 2 do something else
- 3 while still something to do

```
do even more
    if not done yet then
      wait a bit
6
7
     resume working
8
    else
9
     | go home
10
   end
```

11 **end**

1 function BinarySearch(A, x)

Xiyuan Yang Algorithms

```
2 \text{ low} \leftarrow 0
 3 \text{ high} \leftarrow A.\text{length} - 1
 4 while low \leq high
       mid \leftarrow low + floor((high - low) / 2)
       if A[mid] == x then
 7
       | return mid
       else if A[mid] < x then
 8
 9
       | low \leftarrow mid + 1
10
       else
11
       \mid \text{high} \leftarrow \text{mid} - 1
     end
12
13 end
14 \text{ return } -1
15 end
```

§1.3. RoadMap

Recordings (RoadMaps).

- 基本概念, 算法复杂度和正确性分析
- 分治法
- 排序算法
- 哈希表
- 贪心算法
- 动态规划
- 图搜索算法
- 回溯法
- 分支界限
- 启发式算法

§1.3.1. Divide and Conquer

- Like the merge sort and recursion.
- Split bigger problems into smaller ones.

§1.3.2. Greedy algorithms

• making the **locally optimal choice** at each stage with the hope of finding a global optimum.

§1.3.3. Dynamic Programming

- 最优子结构 optimal sub-structure
 - ▶ 这也是和 divide and conquer 算法之间最显著的区别
- 重叠的子问题 overlapping sub-problems
 - ▶ 这保证了动态规划的重复利用的部分,也是动态规划的高效性所在(不再重复计算)

§1.3.4. Back Tracking

• a brute-force searching algorithms with pruning.

Xiyuan Yang Algorithms

- Like the DFS algorithm
 - N Queens Problems

§1.3.5. Heuristic Algorithms

- when encountering large solve space
- optimize (or tradeoff) for traditional searching algorithms.
- great for NP-hard problems.

§1.4. Correctness of the algorithms

给定输入-输出组 (x,y), 给出一个 judger function, 返回一个布尔值是否正确。

Recordings (Judger Functions).

- 一般而言,算法求解的复杂度是更被关注的部分,算法求解的复杂度会高于算法验证正确性的复杂度
- 但是 Evaluation is also important!

§1.5. 算法正确性证明

§1.5.1. 数学归纳法

归纳法将问题的结构简化为了两个部分的证明:

Definition 1.5.1.1 (数学归纳法**)**.

- 基础情况的证明成立
- 递推关系的证明成立
 - · 在递推关系中, 存在"假设", 相当于多添加了一个前提条件。

Example (Birthday Example).

4.2 生日匹配算法正确性证明

证明: 生日匹配算法的正确性

归纳基础: k=0, 记录中前k 个学生不包含匹配, 算法正确报告不匹配。

归纳假设:对于 $k = k_0$ 个学生,如果前 k_0 个包含匹配,算法在访问第 $k_0 + 1$ 个学生之前返回匹配。

归纳步骤: 考虑 $k = k_0 + 1$ 的情况

- 如果前 k_0 个包含匹配,根据归纳假设,算法已经返回匹配
- 否则前 k_0 个没有匹配,所以如果前 k_0+1 个有匹配,匹配必须包含第 k_0+1 个学生
- 然后算法直接检查第 k_0+1 个学生的生日是否存在于前 k_0 个学生中

Figure 1: Demo for the correctness of algorithms for birthday

§1.6. Complexity & Efficiency

时间复杂度的衡量为了摆脱硬件性能的约束和影响,在衡量算法复杂度的时候,往往使用原子操作来代表基本的时间步:

- Number of atomic operations.
- 常数开销 O(1) 的操作: 例如加减乘除
 - ► O(1) 生万物

§1.7. Asymptotic Notation

Definition 1.7.1 (Asymptotic Notation).

- O: Upper Bound
- Ω : Lower Bound
- Θ: 紧界
 - $f(n) = \Theta(g(n))$ 表示 f(n) 和 g(n) 的增长速度相同。
- Polynomial Complexity: $O(n^k)$
- Exponential Complexity: $O(k^n)$
 - X-hard problems

§1.8. Model of Computation

上述 O(1) 生万物 的计算模型基于 WordRAM 计算模型:

- 整数运算
 - ▶ 浮点数?理论上不是,但是基本上是。
- 逻辑运算
- 位运算
- 内存访问(给定地址的特定内存块的读取和写入)

上述的运算都为O(1)的时间复杂度。

§1.9. 系统字节数

32 位系统和 64 位系统标定的是内存地址的长度

- 32 位系统: 4GB
- 64 位系统: 16EB
 - ▶ 保证给 16 EB 的内存寻址, 在 O(1) 的时间复杂度进行存址

§1.10. 算法时间复杂度证明

记:

$$H_n = \sum_{i=1}^n \frac{1}{i}$$

求证:

$$H(N) = \Theta(\log N)$$

使用积分不等式:

Xiyuan Yang Algorithms

$$\int_0^1 \frac{1}{x} dx \le \sum_{i=1}^n \frac{1}{i} \le \int_0^1 \frac{1}{x} dx + 1$$

- §2. Divide and Conquer
- §3. Computational Complexity

Lecture notes for MIT 6.006 Lecture 19: Complexity

- §4. Future of Algorithms
- §5. Conclusion