School of Biological and Behavioural Sciences, Queen Mary University of London

Behavioural and Electrophysiological Predictors of Subjective Alertness / Sleepiness during Human-Computer Interaction in a Simulated Driving Task

Sai Zhang, Xinyu Bai, Barbara Jachs, David Lloyd, Tristan Bekinschtein, Jason Mattingley, Valdas Noreika

Introduction

- ☐ Alertness refers to a state of readiness and vigilance, covering physical fatigue (sleep-wake) and mental fatigue (cognitive performance, controlled to be minimum in this study).
- ☐ Assessing alertness fluctuation is critical for ensuring safety, efficiency and satisfactory of the computer users.
- ☐ Our study focused on early signals of alertness alternations occurring within temporal windows on the scale of seconds to minutes.
- ☐ The direct comparison and integration of alertness indices remain largely unexplored.

*Assumptions & Hypothesis

- The simulated driving task requires minimal level of cognitive workload. Therefore, the alternation of alertness is largely attributed to the fluctuations in physical fatigue (sleepiness).
- The self-reported sleepiness metrics can represent the true internal states of the physical fatigue, with significant individual differences.
- > There exists optimal temporal patterns for the association between different modality of sleepiness measurements.
- Different modality of sleepiness indices have different predictive power against self-reported sleepiness levels.
- The combination of these modalities can help improve the overall predictive power of the model.

Table 2: Likelihood ratio test of slope with Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Log-likelihood, significance of ANOVA, estimates, Confidence Interval (CI), Intraclass Correlation Coefficient (ICC) and coefficient of determination (\mathbb{R}^2) for regression analysis between objective and subjective measurements. (.: p < 0.1, *: p < 0.05, **: p < 0.005, ***: p < 0.005, ***: p < 0.0005, ***: p < 0.0005)

Combined Predictors of Subjective Sleepiness

	Fixed Effects Linear Regression				Mixed Effects Linear Regression				
Predictor	AIC	Log-likelihood	Original/Adjusted \mathbb{R}^2	p > (F)	AIC	Log-likelihood	Marginal/Conditional \mathbb{R}^2	$p > (\chi^2)$	
EEG Alpha Band Power (Cluster 1)	578.928	-286.464	0.155 / 0.151	-	447.342	-216.455	0.500 / 0.905	-	
+ EEG Alpha Band Power (Cluster 2)	576.582	-284.291	0.172 / 0.164	0.039*	450.853	-214.030	0.484 / 0.904	0.303	
+ EEG Beta Band Power	579.553	-285.776	$0.160 \ / \ 0.152$	0.245	444.091	-210.061	0.393 / 0.939	0.012*	
+ EEG Theta Band Power	580.852	-286.426	$0.155 \ / \ 0.147$	0.785	450.812	-213.202	$0.430 \ / \ 0.922$	0.164	
+ EEG Delta Band Power	580.751	-286.375	0.156 / 0.148	0.677	436.246	-207.283	0.410 / 0.957	0.001**	
+ Percentage of Eyes Closed	572.952	-282.476	$0.186 \ / \ 0.178$	0.005**	441.665	-207.654	$0.491\ /\ 0.924$	0.001**	
+ Reaction Time	549.334	-270.667	$0.270 \ / \ 0.264$	< 0.001 ***	442.395	-208.794	0.438 / 0.921	0.004**	
+ Percentage of Eyes Closed + Reaction Time	544.934	-267.467	0.292 / 0.282	<0.001***	433.807	-197.588	0.431 / 0.938	<0.001***	
+ EEG Beta Band Power + EEG Delta Band Power + Percentage of Eyes Closed + Reaction Time	544.249	-265.124	0.307 / 0.291	<0.001***	432.038	-182.334	0.387 / 0.970	<0.001***	

Table 3: Model fitness for combined predictors with Akaike Information Criterion (AIC), Log-likelihood, significance of ANOVA and coefficient of determination (R^2) for linear regression with or without random effect. (.: p < 0.1, *: p < 0.05, **: p < 0.005, ***: p < 0.0005, ***: p < 0.0005)

Conclusion

EEG Delta Band Power

- 1. There exists **strong correlation** between subjective and objective sleepiness measurements.
- 2. Subjective sleepiness is best associated with objective sleepiness indices **in the past**, compared with other measurements obtained from the 5-minute sliding windows.
- 3. Electrophysiological predictors show **stronger predictive power** than behavioural predictors for subjective sleepiness.
- 4. Our findings support the integration of multiple objective sleepiness indices to substitute subjective measurements.

