Black box spike and slab variational inference, example with linear models

Laurent de Vito

18. December 2018

Let $\mathcal{D} = \{(\boldsymbol{x}_n, y_n)\}_{n=1}^N$ be our dataset with $\boldsymbol{x} \in \mathbb{R}^M$. We consider a linear regression model with spike and slab prior.

$$w_m \sim \mathcal{N}(0, \sigma_w^2),$$
 $m = 1, \dots, M$
 $s_m \sim \text{Bernoulli}(\pi_w),$ $m = 1, \dots, M$
 $y_n \sim \mathcal{N}(\sum_{m=1}^M w_m s_m x_{nm}, \sigma^2), n = 1, \dots, N$

where x_{nm} designates the *m*-component of x_n . σ^2 is the variance of the i.i.d. Gaussian noise. π_w and σ_w are hyperparameters.

We use black-box variational inference to find an approximation to the posterior over all parameters using optimization. Following Titsias and Lazaro-Gredilla in Spike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning, we propose the following approximation to the posterior:

$$q(\boldsymbol{w}, \boldsymbol{s}) = \prod_{m=1}^{M} q(w_m | s_m) \ q(s_m)$$

$$= \prod_{m=1}^{M} \mathcal{N}(s_m \mu_m, s_m \sigma_m^2 + (1 - s_m) \sigma_w^2) \ \pi_m^{s_m} (1 - \pi_m)^{(1 - s_m)}$$

where μ_m , σ_m^2 and π_m for $m=1,\cdots,M$ are variational parameters. The ELBO is given by

$$\mathcal{L}(\phi; \boldsymbol{y}, \boldsymbol{X}) = H(q_{\phi}(\boldsymbol{w}, \boldsymbol{s} | \boldsymbol{y}, \boldsymbol{X})) + \mathbf{E}_{\boldsymbol{w}, \boldsymbol{s} \sim q_{\phi}(\boldsymbol{w}, \boldsymbol{s} | \boldsymbol{y}, \boldsymbol{X})}[\log p(\boldsymbol{y}, \boldsymbol{w}, \boldsymbol{s} | \boldsymbol{X})]$$

with $\phi = \{(\mu_m, \sigma_m^2, \pi_m)\}_{m=1}^M$. The entropy of independent variables is the sum of the entropies of the independent variables. Hence we have

$$H(q_{\phi}(\boldsymbol{w}, \boldsymbol{s} | \boldsymbol{y}, \boldsymbol{X})) = \sum_{m=1}^{M} H(q_{\phi}(\boldsymbol{w}_{m}, \boldsymbol{s}_{m} | \boldsymbol{y}, \boldsymbol{X}))$$

Because of our factorization, we get:

$$-H(q_{\phi}(\boldsymbol{w}_{m}, \boldsymbol{s}_{m}|\boldsymbol{y}, \boldsymbol{X})) = \int (1 - \pi_{m}) \mathcal{N}(w_{m}|0, \sigma_{w}^{2}) \log \left[(1 - \pi_{m}) \mathcal{N}(w_{m}|0, \sigma_{w}^{2}) \right] dw_{m}$$

$$+ \int \pi_{m} \mathcal{N}(w_{m}|\mu_{m}, \sigma_{m}^{2}) \log \left[\pi_{m} \mathcal{N}(w_{m}|\mu_{m}, \sigma_{m}^{2}) \right] dw_{m}$$

$$= (1 - \pi_{m}) \left[\log (1 - \pi_{m}) - H(\mathcal{N}(w_{m}|0, \sigma_{w}^{2})) \right]$$

$$+ \pi_{m} \left[\log \pi_{m} - H(\mathcal{N}(w_{m}|\mu_{m}, \sigma_{m}^{2})) \right]$$

$$= (1 - \pi_{m}) \left[\log (1 - \pi_{m}) - 0.5 \log (2\pi e \sigma_{w}^{2}) \right]$$

$$+ \pi_{m} \left[\log \pi_{m} - 0.5 \log (2\pi e \sigma_{m}^{2}) \right]$$

$$= (1 - \pi_{m}) \log (1 - \pi_{m}) + \pi_{m} \log \pi_{m}$$

$$- \frac{1}{2} (1 - \pi_{m}) \log (2\pi e \sigma_{w}^{2}) - \frac{1}{2} \pi_{m} \log (2\pi e \sigma_{m}^{2})$$

An unbiased Monte Carlo approximation to the expectation of $\log p(\boldsymbol{y}, \boldsymbol{w}, \boldsymbol{s}|\boldsymbol{X})$ can be computed by first sampling from the Bernoulli variables s_m using the Gumbel-Max trick and then from the Gaussian variables w_m using the reparameterization trick.