

Capacidade e dieléctricos

Energia de condensadores carregados.

Definição de dieléctrico.

Efeitos do campo eléctrico nos dieléctricos.

Condensadores com dieléctricos.

Um dos equipamentos em que os condensadores são de uma grande importância é nos desfibriladores. No condensador destes equipamentos podem ser armazenados cerca de 360 J de energia que pode ser transferida para o paciente em cerca de 2 ms.

(Esta energia corresponde a cerca de 3000 vezes a energia de uma lâmpada de 60 W).

O choque eléctrico pára a fibrilação (contracções cardíacas arritmadas) que acontecem quando há ataques cardíacos, e ajudam a restabelecer o ritmo cardíaco.

Cacilda Moura-DFUM

Capítulo 3(2_2)

1

Quando um condensador de capacidade C é carregado, à medida que a carga é "armazenada" a diferença de potencial entre as duas placas vai aumentando.

O trabalho necessário para transferir a carga dq, é:

$$dW = \Delta V dq$$

O trabalho total para carregar o condensador de Q=0 até Q=Q, será:

$$dW = \frac{Q}{C}dq \Rightarrow W = \int_{0}^{Q} \frac{Q}{C}dq \Rightarrow W = \frac{Q^{2}}{2C}$$

O trabalho (W) efectuado no processo de carga de um condensador é uma medida da energia transferida ou uma medida da energia potencial eléctrica armazenada pelo condensador.

Energia Potencial Electrostática de um condensador carregado:

$$E_{condensador} = \frac{Q^2}{2C} = \frac{1}{2}QV = \frac{1}{2}CV^2$$

- · Aplica-se a qualquer condensador, independentemente da geometria.
- A energia armazenada aumenta com C e V
- Na prática, há um valor limite para a energia máxima (ou a Q_{max}) que pode ser armazenada: Quando a diferença de potencial entre as placas atinge um valor elevado (que depende da geometria do condensador e do material entre as placas) dá-se uma descarga eléctrica entre as placas o condensador descarrega.

Cacilda Moura-DFUM Capítulo 3(2_2)

O que é um dieléctrico? Como "funciona" o dieléctrico?

Que materiais se usam para dieléctricos?

- Há materiais, como a água, em que as moléculas estão permanentemente polarizadas; noutros as moléculas só ficam polarizadas na presença de um campo eléctrico.
- Nos materiais usados como dieléctricos, predominam aqueles em que a polarização é induzida.
- Na ausência de um campo eléctrico externo, os dipolos orientam-se aleatoriamente.
- Quando um campo é aplicado, surge sobre os dipolos um momento que tende a alinhar os dipolos com o campo externo. Geralmente o alinhamento não é total.
- O grau de alinhamento depende da temperatura, da intensidade do campo aplicado e do material em causa.

Condensadores com Dieléctricos

- Dieléctrico é um material não condutor (isolante). Ex: vidro, papel borracha, poliéster, etc.
- Quando se insere um material dieléctrico entre as placas dum condensador, a sua capacidade aumenta, porém a sua carga permanece inalterada.
- Se o dieléctrico encher completamente o espaço entre as placas, a capacidade aumenta por um factor adimensional denominado constante dieléctrica (κ) .

Cacilda Moura-DFUM Capítulo 3(2_2)

3

Caso de um dieléctrico num condensador de placas paralelas

A capacidade de um condensador de placas planas e paralelas é proporcional à área das placas e inversamente proporcional à separação entre as placas. $C_{\rm o}=\epsilon_{\rm o}\,\frac{A}{d}$

Com um dieléctrico:
$$C = \kappa C_o \Rightarrow C = \kappa \frac{\epsilon_o A}{d}$$
 C aumenta com a diminuição de **d**.

Na prática, o valor de **d** está limitado pela descarga eléctrica que pode ocorrer através do dieléctrico que separa as placas.

Para um dado d, a $V_{\rm max}$ que pode ser aplicada a um C, sem provocar descarga, depende da rigidez dieléctrica do material (intensidade máxima do campo)

Se o campo eléctrico no dieléctrico for superior ao valor da rigidez dieléctrica, as propriedades isolantes desaparecem; o meio começa a conduzir.

A maioria dos materiais isolantes têm valores de rigidez e constante dieléctrica superiores aos do ar.

Cacilda Moura-DFUM Capítulo 3(2_2)

Constantes Dieléctricas

TABLE 26.1	Dielectric Constants and Dielectric Strengths of Various Materials at Room Temperature	
Material	Dielectric Constant κ	Dielectric Strength* (V/m)
Air (dry)	1.000 59	3×10^6
Bakelite	4.9	24×10^{6}
Fined quartz	3.78	8×10^6
Neoprene rubber	6.7	12×10^{6}
Nylon	3.4	14×10^{6}
Paper	3.7	16×10^{6}
Polystyrene	2.56	24×10^{6}
Polyvinyl chloride	3.4	40×10^6
Porcelain	6	12×10^{6}
Pyrex glass	5.6	14×10^{6}
Silicone nil	2.5	15×10^{6}
Strontium titanate	233	8×10^{6}
Teflon	2.1	60×10^{6}
Vacuum	1,000 00	-
Water	30	

^{*} The dielectric strength equals the maximum electric field that can exist in a dielectric without electrical breakdown. Note that these values depend strongly on the presence of impurities and flaws in the materials.

Os materiais dieléctricos apresentam algumas vantagens:

Aumentam a capacidade

Aumentam a voltagem máxima de utilização

Podem proporcionar suporte mecânico entre as placas do condensador

Comportamento de um material dieléctrico quando submetido a um campo eléctrico

Considerar um condensador de placas paralelas (campo E – uniforme) sem dieléctrico e com dieléctrico:

Situação 1 – Mantendo a carga do condensador (Q) constante (condensador é carregado e depois desligado da fonte de tensão)

Situação 2 – Mantendo a diferença de potencial (V) aplicada constante (condensador é mantido ligado à fonte de tensão)

Cacilda Moura-DFUM

Capítulo 3(2_2)

Situação 1 – Mantendo a carga do condensador (Q) constante (condensador é carregado e depois desligado da fonte de tensão)

d.d.p

$$V_o = \frac{Q}{C_o}$$

$$V = \frac{Q}{C} = \frac{Q}{\kappa C_0} = \frac{V_0}{\kappa}$$

Campo

$$E_o = \frac{Q}{\varepsilon_o A}$$

$$E = \frac{Q}{\kappa \, \varepsilon_{o} A} = \frac{E_{o}}{\kappa}$$

Energia

$$\mathbf{W}_{\mathrm{o}} = \frac{1}{2} \mathbf{C}_{\mathrm{o}} \mathbf{V}_{\mathrm{o}}^{2}$$

$$W = \frac{1}{2}CV^2 = \frac{W_0}{\kappa}$$

 $W < W_o$

Cacilda Moura-DFUM

Capítulo 3(2_2)

10

Situação 2 – Mantendo a diferença de potencial (V) aplicada constante (condensador é mantido ligado à fonte de tensão)

K V_o

Carga

 $Q_o = C_o V_o$

 $Q = CV_0 = \kappa C_o V_o = \kappa Q_o$

Q>Q_o

Campo

 $E_o = \frac{V_o}{d}$

 $E = \frac{V_o}{d} = E_o$

E=E_o

Energia

 $\mathbf{W}_{o} = \frac{1}{2}\mathbf{C}_{o}\mathbf{V}_{o}^{2}$

 $W = \frac{1}{2}CV_o^2 = \kappa W_o$

W>W_o

Cacilda Moura-DFUM

Capítulo 3(2_2)

11

Taglada

Teclado

Cada uma das teclas dos teclados está associada a uma das placa de um condensador de placas paralelas. O condensador é mantido a uma diferença de potencial constante de 5 V. Ao pressionar a tecla altera-se a distância entre as placas e daí a capacidade do condensador, gerando um fluxo de corrente.

Cacilda Moura-DFUM Capítulo 3(2_2)

- Dieléctrico é um material não condutor (isolante). Ex: vidro, papel borracha, poliéster, etc.
- Quando se insere um material dieléctrico entre as placas dum condensador, a sua capacidade aumenta, porém a sua carga permanece inalterada.
- A capacidade aumenta de um factor κ (constante dieléctrica), quando o dieléctrico enche toda a região entre as placas.
- Quando se insere um dieléctrico entre as placas de um condensador carregado a carga (Q_o) fica inalterada, contudo a diferença de potencial (V) reduz-se para $V=V_o/\kappa$.