

W9 Lecture 17 Notes

Rules for Differentiation (Continued ...)

8. Devivatives of Log functions

a) If
$$f(x) = \log_b x$$
 for any $b>0$, $b \neq 1$ then $f'(x) = \frac{1}{x \ln b}$

b) If
$$f(x) = \ln x$$
 then $f'(x) = \frac{1}{x}$

c) If
$$f(x) = (n | x|$$
 then $f'(x) = \frac{1}{x}$

Proof:

$$f'(x) = \frac{1}{e^{f(x)}} = \frac{1}{e^{f(x)}} = \frac{1}{e^{f(x)}} = \frac{1}{e^{f(x)}} = \frac{1}{e^{f(x)}}$$

$$A) \quad X = b^{\log_b X}$$

$$1 = b^{\log_b X} \cdot [nb] \cdot (\log_b X)^{\frac{1}{2}}$$

$$(\log_b X)^{\frac{1}{2}} = \frac{1}{|x|} [nb]$$

9. Log Differentiation

$$\left[\ln f(x)\right]' = \frac{f(x)}{f(x)} \cdot f'(x)$$

Ex ample:

1. Find
$$f'(x)$$
 if $f(x) = \frac{(x-1)^3 (x+6)^6}{(x-2)^2 (x^2+2x+6)^5}$.

$$|f(x)| = \frac{(x-1)^3 \cdot (x+6)^6}{(x-2)^2 \cdot (x^2+2x+6)^5}| \leftarrow \text{Take abs be cause we want}$$

to stay in domain of linx

$$|f(x)| = |h||x-1|^3 + |h||x+6|^6 - |h||x-2|^2 - |h||x^2+2x+6|^5$$

$$|h||f(x)| = 3|h|x-1| + 6|h|x+6| - 2|h|x-2| - 5|h||x^2+2x+6|$$

$$\frac{f'(x)}{f(x)} = \frac{3}{x-1} + \frac{6}{x+6} - \frac{2}{x-2} - \frac{5(2x+2)}{x^2+2x+6}$$

$$f'(x) = f(x) \cdot \left(\frac{3}{x-1} + \frac{6}{x+6} - \frac{2}{x-2} - \frac{5(2x+2)}{x^2+2x+6}\right)$$

2. Find
$$f(x)$$
 if $f(x) = x^{x}$

$$(|ny)' = (x^{x} |nx)'$$

$$\frac{y'}{y} = (x^{x})' |nx + x^{x} (|nx)'$$

$$y' = x^{x} \left[x^{x} (|nx+1) \cdot |nx + x^{x} \cdot \frac{1}{x} \right]$$

3.
$$f(x) = \begin{cases} x^2, & x < 1 \\ 1 + \ln x, & x \ge 1 \end{cases}$$

- a) Is f(x) continuos on R?
- b) Is f(x) differentiable on R?
- c) f'(x) = ?
- a) For flx) to be continuous, we need:

$$\lim_{x \to 1^{-}} X^{2} = \lim_{x \to 1^{+}} \left(1 + (nx) = f(x) \Big|_{x=1} = 1 \right)$$

f(x) is continuous on R.

b)
$$f(x)$$
 is differentiable at $x=1$ if $\frac{f(x+h)-f(x)}{h}=f'(1-)=f'(1+)$

$$f'(1^-) = 2x|_{x=1} = 2$$

 $f'(1^+) = \frac{1}{x}|_{x=1} = 1$

$$f'(1^-) + f'(1^+)$$
, thus $f(x)$ is not differentiable at $x=1$.

c)
$$f'(x) = \begin{cases} 2x , x < 1 \\ DNE, x = 1 \\ \frac{1}{x}, x > 1 \end{cases}$$

Derivatives of Trig Functions

Each trig function is differentiable on its domain.

- a) $\frac{d}{dx}$ (sinx) = cosxb) $\frac{d}{dx}$ (cosx) = -sinxc) $\frac{d}{dx}$ (tanx) = sec^2x
 - d) $\frac{d}{dx}$ (cscx) = cscx cotx
- e) ax (secx) = secx tanx
- f) & ((otx) = (SC2 x

Prove $\frac{d}{dx}(\cos x) = -\sin x$

$$\frac{d}{dx}(\cos x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{\cos x (\cosh - \sin x \sin h - \cos x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos x (\cosh - 1)}{h} - \lim_{h \to 0} \frac{\sin x \sinh h}{h}$$

$$= \cos x \cdot \lim_{h \to 0} \frac{\cosh - 1}{h} - \sinh x \frac{\sinh h}{h}$$

$$= \cos x \cdot \lim_{h \to 0} \frac{\cosh - 1}{h} - \sinh x \frac{\sinh h}{h}$$

$$= \cos x \cdot \lim_{h \to 0} \frac{\cosh - 1}{h} - \sinh x \frac{\sinh h}{h}$$

$$= \cos x \cdot \lim_{h \to 0} \frac{\cosh - 1}{h} - \sinh x \frac{\sinh h}{h}$$

QED

Derivatives of Inverse Trig Functions

a)
$$\frac{1}{x}$$
 (arcsiux) = $\sqrt{1-x^2}$

d)
$$\frac{d}{dx} \left(\operatorname{arccotx} \right) = -\frac{1}{1+x^2}$$

b)
$$\frac{d}{dx} \left(\operatorname{arccos} x \right) = -\frac{1}{\sqrt{1-x^2}}$$

a)
$$\frac{d}{dx} \left(\operatorname{arcsinx} \right) = \frac{1}{\sqrt{1 - x^2}}$$
 d) $\frac{d}{dx} \left(\operatorname{arccotx} \right) = -\frac{1}{1 + x^2}$
b) $\frac{d}{dx} \left(\operatorname{arccosx} \right) = -\frac{1}{\sqrt{1 - x^2}}$ e) $\frac{d}{dx} \left(\operatorname{arcsecx} \right) = \frac{1}{|x|\sqrt{x^2 - 1}}$
c) $\frac{d}{dx} \left(\operatorname{arctanx} \right) = \frac{1}{1 + x^2}$ f) $\frac{d}{dx} \left(\operatorname{arccscx} \right) = -\frac{1}{|x|\sqrt{x^2 - 1}}$

c)
$$\frac{d}{dx}(arctanx) = \frac{1}{1+x^2}$$

$$f$$
) $\frac{d}{dx}$ (arc cscx) = $-\frac{1}{|x|\sqrt{x^2-1}}$

Prove
$$\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$$

$$y = \arctan \times \Leftrightarrow \times = \tan y$$

$$1 = \sec^2 y \cdot \frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}$$

Euclidean Geometry (Euclid's 5 postulates)

- 1. A straight line segment can be drawn joining any two points.
- 2. Any straight line segment can be extended indefinitely in a straight line.
- 3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
- 4. All right angles are congruent.
- 5. Given any straight line and a point not on it, there exists one and only one straight line which passes through the point and never intersects the first line, no matter how far they are extended.

Hyperbolic Functions

cost, sint are circular functions

$$X^2 + y^2 = 1$$

 $X = cost$, $y = sint$ Parametrization of unit circles
 $cos^2 t + sin^2 t = 1$

Any point with coord $(\frac{e^t+e^{-t}}{2}, \frac{e^t-e^{-t}}{2})$

t-parameter = area of OPA

$$CoSht = \frac{e^t + e^{-t}}{2} \quad sinht = \frac{e^t - e^{-t}}{2}$$

$$cosh^2t - sinh^2t = 1$$

Graphs of Hyperbolic Functions

Derivatives of Hyperbolic Functions

a)
$$\frac{d}{dx}$$
 (sinhx) = coshx

d)
$$\frac{d}{dx}$$
 (sechx) = - sechx tanhx

e)
$$\frac{a}{ax}$$
 (cschx) = -cschx·cothx

$$f$$
) $\frac{d}{dx}$ (cothx) = - csch²x

Prove ax (coshx) = sinhx

$$\frac{d}{dx}\left(\frac{e^{x}+e^{-x}}{2}\right) = \frac{1}{2}\left(e^{x}-e^{-x}\right) = \sinh x$$

Derivatives of Inverse Hyberbolic Function

a)
$$\frac{d}{dx} \left(\sinh^{-1} x \right) = \frac{1}{\sqrt{x^2+1}}$$

b)
$$\frac{d}{dx} \left(\cosh^{-1}x \right) = \frac{1}{\sqrt{x^2 - 1}}$$
 X is not an angle.
c) $\frac{d}{dx} \left(\tanh^{-1}x \right) = \frac{1}{1 - x^2}$

c)
$$\frac{d}{dx} \left(\tanh^{-1} x \right) = \frac{1}{1-x^2}$$

Prove
$$\frac{d}{dx}(\sinh^2x) = \frac{1}{\sqrt{x^2+1}}$$

$$(x)' = (\sinh (\sinh^{-1}x))'$$

$$= (\cosh x \cdot \sinh^{-1}x \cdot (\sinh^{-1}x)')$$

$$(\sinh^{-1}x)' = \frac{1}{\cosh x \cdot \sinh^{-1}x}$$

$$= \frac{1}{\sqrt{1 + \sinh^{2}(\sinh^{4}x)}}$$

$$= \frac{1}{\sqrt{1 + x^{2}}}$$

Prove
$$\sinh^{-1}x = \ln(x + \sqrt{x^2 + 1})$$

$$y = \sinh^{-1}x \iff x = \sinh y = \frac{e^{y} - e^{-y}}{2} \iff x = \frac{e^{y} - e^{-y}}{2}$$

$$2x = e^{y} - e^{-y} \iff e^{y} - e^{-y} - 2x = 0$$

$$e^{2y} - 2xe^{y} - 1 = 0$$

$$e^{4} = \frac{2 \times \pm \sqrt{4 \times^{2} + 4}}{2} = \times \pm \sqrt{x^{2} + 1}$$

$$= \times \pm \sqrt{x^{2}$$

Examples:

=
$$Sech^{2}(1+e^{2x}) \cdot (1+e^{2x})^{1}$$

= $Sech^{2}(1+e^{2x}) \cdot 2e^{2x}$

$$\frac{1 + t_{anhx}}{1 - t_{anhx}} = \frac{1 + \frac{s_{inhx}}{coshx}}{1 - \frac{s_{inhx}}{coshx}} = \frac{coshx + s_{inhx}}{coshx - s_{inhx}} = \frac{e^{x} + e^{x} + e^{x} - e^{x}}{e^{x} + e^{-x}}$$

$$= \frac{e^{x} + e^{x} + e^{x}}{2e^{x}} = e^{2x}$$

$$= \frac{2e^{x}}{2e^{x}} = e^{2x}$$