Machine Learning

Prof. Dr. Bernt Schiele

Dr. Paul Swoboda & Dr. Gerard Pons-Moll

Solution 6 - 26.11.2018

due: 03.12.2018, 14:15

Exercise 11 - Construction of Kernels

Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a positive definite kernel. Prove that the following functions k'(x,y) are again positive definite kernels:

- a. (2 points) $k'(x,y) = \sum_{r=0}^{\infty} \alpha_r k(x,y)^r$ for $\alpha_r \ge 0, r \ge 0$.
- b. (2 points) $k'(x,y) = e^{-\lambda(d_k^2(x,y))}$, where $\lambda > 0$ and $d_k(x,y)$ is the (semi-)metric induced by the kernel k, $d_k^2(x,y) = k(x,x) + k(y,y) 2k(x,y)$.
- c. (1 point) $k'(x,y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}}$.
- d. (2 Bonus points) $\mathcal{X}=\{x\in\mathbb{R}^d\mid \|x\|_2<1\}$ and $k'(x,y)=\frac{1}{1-\langle x,u\rangle}$

Solution:

a. First of all, we have to assume that the series $\sum_{r=0}^{\infty} \alpha_r k(x,y)^r$ is convergent.

Since the pointwise product of two kernels $k_1(x,y)k_2(x,y)$ is again positive definite, $k(x,y)^2$ is a kernel, and by induction also any higher power $k(x,y)^r$, $r \ge 2$. Furthermore, $k(x,y)^0 = 1$ as a positive constant is a kernel.

As positive definiteness is preserved by multiplication by a positive constant, it holds that $\alpha_r k(x,y)^r$ is a kernel $\forall \alpha_r \geq 0, r \geq 0$.

Moreover, the pointwise sum of two kernels again yields a kernel, and by induction one shows that also $\sum_{r=0}^{n} \alpha_r k(x,y)^r$ is a kernel for $n \geq 0$.

Finally, as it is the pointwise limit of a sequence of positive definite kernels, also k'(x,y) is a kernel.

b. Note that we can rewrite k' as

$$k'(x,y) = e^{-\lambda d_k^2(x,y)} = e^{-\lambda k(x,x)} e^{-\lambda k(y,y)} e^{\lambda 2k(x,y)}$$
.

Using the series expansion of the exponential function we can rewrite the last term as

$$e^{2\lambda k(x,y)} = \sum_{r=0}^{\infty} \frac{(2\lambda)^r}{r!} k(x,y)^r ,$$

and choosing $\alpha_r = \frac{(2\lambda)^r}{r!}$ we can conclude from the result of the previous exercise that this is a positive definite kernel. Finally, since

$$k'(x, y) = f(x) f(y) k(x, y)$$

is a kernel for any function $f: \mathcal{X} \to \mathbb{R}$, it follows with $f(x) = e^{-\lambda k(x,x)}$ that k'(x,y) is a kernel.

c. This follows as a special case from part b) for $\lambda = \frac{2}{\sigma^2}$ and $k(x,y) = \langle x,y \rangle$, since

$$d_k^2(x,y) = \langle x,x \rangle + \langle y,y \rangle - 2 \, \langle x,y \rangle = \left\| x - y \right\|^2 \; .$$

d. We realize that $\frac{1}{1-x} = \sum_{r=0}^{\infty} x^r$ for |x| < 1 and thus $\frac{1}{1-\langle x,y \rangle}$ is a positive definite kernel according to a) as $k(x,y) = \langle x,y \rangle$ is a positive definite kernel and we have $|\langle x,y \rangle| \le ||x||_2 ||y||_2 < 1$ as $||x||_2 < 1$ for all x in the domain of the kernel.

1

Exercise 12 - Multiclass schemes for classification of handwritten digits

In this exercise we are doing handwritten digit classification using multi-class SVM with a Gaussian kernel. In order to solve the optimization problem for the SVM, we are using the MATLAB interface to the LIBSVM package (http://www.csie.ntu.edu.tw/~cjlin/libsvm/). Download DataEx6.zip from the course webpage. Note: You do not need to download anything from the LIBSVM webpage - everything you need is contained in the zip-file.

- Extract the files in libsym-3.14.zip somewhere in your home directory.
- Start Matlab and use addpath to add the directory where you have extracted LIBSVM to the MATLAB search path (use savepath in order to add it permanently).
- Go to the subfolder matlab and type make in the Matlab prompt. (Pre-built binary files for Windows 64bit already contained in the folder).
- The matlab function getKernelSVMSolution provides a nice interface to the LIBSVM package (use help getKernelSVMSolution to see how it works).
- (4 Points) The problem deals with the classification of handwritten digits (10 classes). You are supposed to use the SVM with the Gaussian kernel:

$$k(x,y) = e^{-\lambda \|x-y\|^2}.$$

The training and test data is in USPSTrain.mat and USPSTest.mat. The 16×16 -images of the digits are represented as 256-dimensional column vectors. Write two matlab scripts:

- one which solves the multi-class problem using one-versus-all (save it in OneVersusAll.m),
- one which solves the multi-class problem using one-versus-one (save it in OneVersusOne.m),

In both cases use C = 100 and $\lambda = \frac{3}{\gamma}$, where γ is the median of all squared distances between **training** points, as parameters for the binary SVM.

Visually inspect the digits which have been misclassified. How do you judge the result? Compare the quality of the classification obtained by the two multi-class schemes. How do the two multiclass schemes compare in terms of runtime?

Save your prediction on the test set in a file USPSResults.mat as PredOneVersusOne and PredOneVersusAll and report the test error for both cases. Also generate for both cases a figure (ErrorsOneVersusOne.png and ErrorsOneVersusAll.png) containing the misclassified images in the test set.

• (2 Points) Suppose the computation of a binary classifier has complexity $O(n^m)$, where n is the number of training points. Suppose we have k classes and the training set contains $\frac{n}{k}$ points of each class. What is the computational complexity of the one-versus-all and one-versus-one scheme? Which multi-class scheme is better in terms of complexity in terms of n? And in terms of k?

Hints:

- Use dist_euclidean.m to compute the squared Euclidean distances between two sets of
 points (warning: your own code may be too slow for this dataset), getKernelSVMSolution.m
 to obtain the dual variables α and the offset b of the SVM and VecToImage.m to plot the
 images of the digits which have been wrongly classified.
- Given a matrix D, with $D_{ij} = \|X_i Z_j\|^2$, i = 1, ..., n, j = 1, ..., m, of the squared distances between two point sets $\{X_1, ..., X_n\}$ and $\{Z_1, ..., Z_m\}$ with $X_i \in \mathbb{R}^d$ and $Z_j \in \mathbb{R}^d$, you can compute the kernel matrix K in Matlab as: $K=\exp(-lambda*D)$;

Solution:

- a. The two different multi-class schemes:
 - One versus all:

```
clear all;
   addpath DataEx6/libsvm-3.14/matlab/;
   load USPSTrain;
   num=size(Xtrain,1); dim=size(Xtrain,2);
   C = 100:
   lambda=3:
   Classes = CheckLabelVector(Ytrain);
   D=dist_euclidean(Xtrain, Xtrain);
   K=exp(-lambda*D/median(D(:)));
11
12
13
14 % one - versus - all
   for i=1:length(Classes)
15
    LabelVec = 2*(Ytrain==Classes(i))-1;
     [alpha(:,i),b(i)] = getKernelSVMSolution(K,LabelVec,C);
18
19
20
21 % compute the training error
  for i=1:length(Classes)
    LabelVec = 2*(Ytrain == Classes(i))-1;
24
    OutputTrain(:,i) =K*(alpha(:,i).*LabelVec)+b(i);
25
   [Max,PredTrain] = max(OutputTrain');
26
   trainError = sum(Classes(PredTrain)~=Ytrain);
   disp(['
   disp(['Number of training errors: ',num2str(trainError),' - Percentage: ',num2str(
29
        trainError/length(Ytrain))]);
30
   load USPSTest;
   D2=dist_euclidean(Xtest, Xtrain);
   Ktest=exp(-lambda*D2/median(D(:)));
34
35
   % compute the test error
36
   for i=1:length(Classes)
LabelVec = 2*(Ytrain==Classes(i))-1;
37
    OutputTest(:,i) =Ktest*(alpha(:,i).*LabelVec)+b(i);
39
40
   [Max,PredTest] = max(OutputTest');
testError = sum(Classes(PredTest)~=Ytest);
41
42
43
   disp(['Number of test errors: ',num2str(testError),' - Percentage: ',num2str(
        testError/length(Ytest))]);
 • One versus one:
   addpath DataEx6/libsvm-3.14/matlab/;
   load USPSTrain;
   num=size(Xtrain.1): dim=size(Xtrain.2):
   C=100;
   Classes = CheckLabelVector(Ytrain);
10 D=dist euclidean(Xtrain.Xtrain): medD=median(D(:)):
```

```
K=exp(-lambda*D/medD); clear D;
14
   % one - versus - one
          = zeros(length(Classes),length(Classes));
15
16
   for i=1:length(Classes)
17
     for j=i+1:length(Classes)
         Indices = find(Ytrain==Classes(i) | Ytrain==Classes(j));
         LabelVec = 2*(Ytrain(Indices) == Classes(i))-1;
20
         [alpha\{i,j\},b(i,j)] = getKernelSVMSolution(\texttt{K(Indices,Indices),LabelVec,C)};\\
21
     end
22
  end
23
26\, % compute the training error
   Votes = zeros(length(Ytrain),length(Classes),length(Classes));
for i=1:length(Classes)
27
28
    for j=i+1:length(Classes)
29
      Indices = find(Ytrain==Classes(i) | Ytrain==Classes(j));
       LabelVec = 2*(Ytrain(Indices) == Classes(i))-1;
      Votes(:,i,j) = K(:,Indices)*(alpha{i,j}.*LabelVec)+b(i,j)>0;
Votes(:,j,i) = 1-Votes(:,i,j);
32
33
34
    end
35 end
    MajVotes=sum(Votes,3);
36
    [Max, PredTrain] = max(MajVotes');
    trainError = sum(Classes(PredTrain)~=Ytrain);
    disp(['Number of training errors: ',num2str(trainError),' - Percentage: ',num2str(
        trainError/length(Ytrain))]);
40
41
   load USPSTest;
   D2=dist_euclidean(Xtest,Xtrain);
44
   Ktest = exp(-lambda*D2/medD);
45
46
   % compute the test error
47
   clear Votes; clear MajVotes;
48
   for i=1:length(Classes)
    for j=i+1:length(Classes)
       Indices = find(Ytrain==Classes(i) | Ytrain==Classes(j));
51
       LabelVec = 2*(Ytrain(Indices) == Classes(i))-1;
52
       Votes(:,i,j) = Ktest(:,Indices)*(alpha{i,j}.*LabelVec)+b(i,j)>0;
53
       Votes(:,j,i) = 1-Votes(:,i,j);
54
    end
    end
    MajVotes=sum(Votes,3);
57
    [Max.PredTest] = max(MaiVotes'):
58
    testError = sum(Classes(PredTest)~=Ytest);
59
60
    disp(['Number of test errors: ',num2str(testError),' - Percentage: ',num2str(
        testError/length(Ytest))]);
```

For the parameters C=100 and $\lambda=\frac{3}{\gamma}$ we have 129 errors (error rate 6.43%) for the one-versus-all scheme and 131 errors (error rate 6.53%) for the one-versus-one scheme. We see that they both perform almost in the same way, which is also an observation which often holds in practice. In particular, more complicated multi-class schemes have up to now not shown to be systematically better than the simple one-versus-all and one-versus-one scheme. In practice, often the one-versus-one scheme is used. In terms of runtime, we observe that the one-versus-one scheme is slightly faster (on the given dataset it takes ~ 13 seconds compared to ~ 18 seconds).

Code to plot the misclassified digits:

```
handles=VecToImage(Xtest(Classes(PredTest) = Ytest,:),16,16,0,2,1);
Index=find(Classes(PredTest) = Ytest);
for i=1:length(Index)
titleString=['True:',num2str(Ytest(Index(i))),
' - Pred:',num2str(Classes(PredTest(Index(i))))];
subplot(handles(i)); title(titleString,'FontWeight','bold');
end
```

The digits which have been wrongly classified for the **one-versus-all** scheme:

True:6 - Pred:0	True:6 - Pred:2	True:2 - Pred:0	True:4 - Pred:9	True:3 - Pred:2	True:5 - Pred:4	True:6 - Pred:2	True:9 - Pred:7	True:2 - Pred:0	True:0 - Pred:9	True:6 - Pred:5
G	L	3	E	3	5	<u>Z-</u>	7	5	6	6
True:6 - Pred:4	True:8 - Pred:3	True:8 - Pred:2	True:1 - Pred:6	True:9 - Pred:1	True:5 - Pred:8	True:9 - Pred:8	True:8 - Pred:0	True:4 - Pred:1	True:2 - Pred:3	True:2 - Pred:4
6	δ	δ	4	1	8	7	6	4	a	ð
True:9 - Pred:7	True:9 - Pred:7	True:5 - Pred:3	True:7 - Pred:4	True:1 - Pred:7	True:3 - Pred:5	True:1 - Pred:6	True:8 - Pred:0	True:9 - Pred:1	True:7 - Pred:9	True:2 - Pred:0
9	9	S	\sim	u	3	L	8	1	2	S
True:9 - Pred:7	True:3 - Pred:8	True:2 - Pred:8	True:2 - Pred:8	True:2 - Pred:8	True:2 - Pred:3	True:8 - Pred:5	True:8 - Pred:3	True:0 - Pred:2	True:2 - Pred:8	True:5 - Pred:3
9	3	2	2	2	9	8	8	2	9)
True:2 - Pred:7	True:3 - Pred:7	True:6 - Pred:4	True:6 - Pred:0	True:3 - Pred:0	True:3 - Pred:9	True:8 - Pred:7	True:7 - Pred:4	True:4 - Pred:2	True:3 - Pred:0	True:2 - Pred:7
2	0	4	6	3	3	8	3	7	3	2
True:2 - Pred:4	True:4 - Pred:1	True:4 - Pred:2	True:5 - Pred:0	True:0 - Pred:4	True:0 - Pred:2	True:2 - Pred:8	True:8 - Pred:5	True:5 - Pred:9	True:7 - Pred:4	True:5 - Pred:0
æ	L1	L	\odot	~	Ć	9	8	इ	4	õ
True:8 - Pred:5	True:3 - Pred:2	True:7 - Pred:2	True:8 - Pred:3	True:5 - Pred:3	True:4 - Pred:7	True:2 - Pred:4	True:9 - Pred:4	True:6 - Pred:8	True:3 - Pred:5	True:4 - Pred:6
8	3	Ei	8	S	7	2	9	6		4
True:4 - Pred:2	True:4 - Pred:2	True:9 - Pred:8	True:4 - Pred:2	True:1 - Pred:4	True:2 - Pred:8	True:4 - Pred:9	True:6 - Pred:2	True:1 - Pred:6	True:7 - Pred:4	True:3 - Pred:5
16	4	7	4-	ð	ž.	7	E.	(4	7/	9
True:4 - Pred:6	True:4 - Pred:7	True:5 - Pred:3	True:8 - Pred:2	True:3 - Pred:2	True:3 - Pred:0	True:3 - Pred:0	True:5 - Pred:3	True:8 - Pred:2	True:6 - Pred:8	True:6 - Pred:5
4	4	S	Œ	S)	3	5	丛	8	6	6
True:8 - Pred:5	True:7 - Pred:2	True:9 - Pred:4	True:9 - Pred:4	True:2 - Pred:3	True:8 - Pred:0	True:2 - Pred:4	True:4 - Pred:2	True:3 - Pred:2	True:8 - Pred:9	True:5 - Pred:0
2	Ĵ	9	9	2	ð	~	4	2	Ø	8
True:2 - Pred:0	True:3 - Pred:5	True:3 - Pred:5	True:4 - Pred:9	True:5 - Pred:3	True:5 - Pred:2	True:8 - Pred:0	True:1 - Pred:4	True:1 - Pred:4	True:1 - Pred:4	True:5 - Pred:0
9	3	3	11	7	5	ଞ	4	1	4)	S
True:5 - Pred:3	True:9 - Pred:5	True:5 - Pred:3	True:8 - Pred:0	True:2 - Pred:4	True:1 - Pred:4	True:5 - Pred:3	True:6 - Pred:4			
4	ŒΥ	59	(P)	₩		F7				

and for the **one-versus-one** scheme:

b. Computational complexity:

\bullet One-Versus-All:

We have to solve k binary classification problems (one for each class), each with the full set of training data points n.

Complexity: kn^m

• One-Versus-One:

We have to solve $\binom{k}{2}$ binary classification problems (each class vs. each other), each has a training set of $\frac{2n}{k}$ data points.

Complexity:
$$\frac{k(k-1)}{2} \left(\frac{2n}{k}\right)^m = \left(\frac{2}{k}\right)^{m-1} (k-1)n^m$$

We observe that the computational complexity in terms of the number of training examples n is the same. However, the dependency on the number of classes k is worse for the one-versus-all scheme. We want to check when $2^{m-1}k^{1-m}(k-1) \leq k$. Note that

$$2^{m-1}k^{1-m}(k-1) \le 2^{m-1}k^{m-1}k$$

And thus $\left(\frac{2}{k}\right)^{m-1} \leq 1$ is a sufficient condition. It is easy to check that this hold for all $k \geq 2$ irrespectively of m. However, note that for m=1 the difference is negligible.