ЛАБОРАТОРНАЯ РАБОТА №5

Наименование работ Изучение работы электроизмерительных приборов **Цель работы** проверка электроизмерительных приборов, определение их класса точности, проверить степень равномерности шкалы

Принадлежности

- 1. амперметр
- 2. вольтметр

Рабочая формула

$$n = \frac{V_{\text{\tiny M3M}}}{V_{\text{\tiny B}}} = \frac{r_B + r_g}{r_B} = 1 + \frac{r_g}{r_B}$$

Ход работы

- A показания испытуемого прибора
- A_{0+} и A_{0-} значения показаний эталонного прибора при приближении со стороны нуля и при приближении со стороны максимального значения.
- \overline{A} среднее значение показаний эталонного прибора
- δA поправка к показаниям испытуемого прибора

Абсолютная погрешность рабочего прибора:

$$\Delta A = A - A_0$$

Величина абсолютной погрешности, взятая с обратным знаком, называется поправкой:

$$\delta A = -\Delta A$$

A	A_{0+}	A_{0-}	\overline{A}	δA	ΔA	$\beta,\%$
0,010	0,011	0,010	0,0105	0,0005	-0,0005	5,000
0,035	0,036	0,034	0,035	0,000	0,000	0,000
0,050	0,050	0,050	0,050	0,000	0,000	0,000
0,060	0,065	0,060	0,0625	0,0025	-0,0025	4,170
0,070	0,070	0,070	0,070	0,000	0,000	0,000
0,100	0,110	0,100	0,105	0,005	-0,005	5,000
0,110	0,111	0,109	0,110	0,000	0,000	0,000
0,120	0,130	0,120	0,125	0,005	-0,005	4,170
0,155	0,156	0,154	0,155	0,000	0,000	0,000
0,185	0,186	0,187	0,187	0,0015	-0,0015	0,810

Вывод Данилы

В результате эксперимента была подтверждена зависимость напряжения от заряда Q, расстояния между пластинами d и площади пластин A. Также было установлено, что при увеличении заряда или расстояния между пластинами напряжение возрастает, а при увеличении площади пластин оно уменьшается.

Вывод Виктории

Результаты эксперимента подтвердили теоретические предсказания, что напряжение между пластинами плоского конденсатора пропорционально заряду и расстоянию между пластинами, а также обратно пропорционально площади пластин. Экспериментальные

данные согласуются с теоретическими формулами, что подтверждает правильность поставленных измерений и расчётов.