Al2 metoder – øving 2

Håkon Hukkelås

Part A

- 1. Settet av uobserverte variabler i domenet er om det regner eller ikke utenfor
- 2. Settet av observerbare variabler er om direktøren kommer inn med en paraply eller ikke.
- 3. $P(X_t \mid X_{t-1}) = [0.7, 0.3]$ $P(E_t \mid X_t) = [0.9, 0.2]$
- 4. Antagelser i boken er at hver dag bare er avhengig av den tidligere dagen, altså at det er en første ordens markov modell

Part B

K	F _{1:k} ([Rain, Not rain])
1	[0.81818182, 0.18181818]
2	[0.88335704, 0.11664296]
3	[0.29518943, 0.70481057]
4	[0.763759, 0.236241]
5	[0.87352896, 0.12647104]

Part C

K	F _{1:k} ([Rain, Not rain])
1	[0.91036757, 0.08963243]
2	[0.92552223, 0.07447777]
3	[0.47584622, 0.52415378]
4	[0.84474086, 0.15525914]
5	[0.87352896, 0.12647104]

Hvor for k = 5 vil det være samme som fra forward ettersom at vi ikke har flere observasjoner for paraplyen for k > 5.

Viterbi

Kort pseudokode:

For alle tider t:

For alle mulige stater x:

Finn slik at P(x | e_{1:t}) blir maksimert

Viterbi algoritmen går for alle statene i algoritmen og finner hvilken som med høyst sannsynligvis er størst i forhold til hva vi har observert fram til nå.

Jeg prøvde Viterbi algoritmen på samme dataset som i oppgave B/D og fikk:
TRUE
TRUE
FALSE
TRUE
TRUE