

INSTRUCTION DIVISION FIRST SEMESTER 2016-2017 Course Handout (Part-II)

Date: 02.08.2016

In addition to Part - I (General Handout for all courses appended to the Time - Table) this part gives further specific details regarding the course.

Name of Instructor: TRILOK MATHUR

Course No.: MATH F311

Course Title: INTRODUCTION TO TOPOLOGY

- 1. Scope and Objective of the Course: To introduce the students the concepts of logical thinking in abstract terms using formal and axiomatic methods and to lay the foundations for further studies in abstract Mathematics.
- **2.** Course Description: Topology and topological spaces, Metric spaces, Product and Quotient topology, Continuity and Homeomorphism, Connectedness, Compactness, Normal spaces, Classification of compact surfaces.
- **3. Text Book:** Munkres, J. R.: *Topology*, Pearson Education, 2000 (2nd Edition)

4. Reference Book(s):

- 1. Armstrong, M.A.: Basic Topology, Springer UTM, 1983.
- **2.** Boltyanskii and Efremovich: *Intuitive Combinatorial Topology*, Springer Universitext, 2001.
- **3.** Adams C. and Franzosa R.: *Introduction to Topology Pure and Applied*, Pearson Education, 2009 (1st Edition)
- **4.** Simmons G. F.: *Introduction to Topology and Modern Analysis*, Tata McGraw Hill, 2004

5. Course Plan:

Lec. No.	Learning Objectives	Topics to be covered	
1-4	Definition of topology and elementary	Topological Spaces, Basis for a	Chapter 2
	examples of topological spaces.	topology.	Sec. 12-13
5-9	Constructing new topological spaces	Order topology, Product topology on	Chapter 2
	from a given topological space.	X×Y, Subspace topology.	
10-11	Hausdorff axiom.	Closed sets, Limit point, Hausdorff	Chapter 2
		spaces.	Sec. 17
12-15	Continuity and properties of	Continuous functions and	Chapter 2
	continuous functions.	Homeomorphisms.	Sec. 18
16-20	Methods for imposing topologies on	The Product topology, The Metric	Chapter 2
	sets.	topology and The Quotient	Sec. 19-22
		topology.	

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

21-25	Connectedness and its importance.	Connected spaces, Connected	Chapter 3
	-	subspaces of Real Line,	Sec. 23-25
		components	
26-30	Compactness and its importance.	Compact spaces, Compact	Chapter 3
		subspaces of Real Line, Limit point	Sec. 26-29
		compactness, Local compactness	
31-38	Countability and Separation Axioms.	First countable spaces, Second	Chapter 4
		countable spaces, Regular spaces,	Sec. 30-35
		Normal Spaces, The Urysohn	
		Lemma, The Urysohn Metrization	
		Theorem, The Tietze extension	
		theorem.	
39-40	The Tychonoff Theorem.	The Tychonoff Theorem.	Chapter 5
			Sec. 37

6. Evaluation Scheme:

Components	Durations	Marks	Date & Time	Remarks
Continuous Assessment*	20 min.	60	Unannounced	Open book
Mid Semester Test	90 min.	60	6/10 2:00 - 3:30 PM	Close Book
Comp. Exam	3 hrs.	80	9/12 FN	Partially Open Book

- (*) Classroom performance tests will be conducted either in lecture sessions or in common hours and they will be unannounced & open book. Total 5 such tests of 20 Marks and 20Min. each will be conducted and best 3 will be considered for final evaluation. No makeup for classroom performance test will be given in any circumstances.
- 7. Students are advised to work out problems assigned in the class; some problems will be listed on NALANDA website for their reference. At least one problem from these problems will be asked in Mid-Semester & Comprehensive Exams.
- **8.** Make-Up: All makeup requests should submit before the evaluation component.
- **9. Chamber Consultation Hour:** Tuesday, 5th Hour
- **10. Notices:** All notices concerning this course will be put up only on Department of Mathematics Notice Board and NALANDA.

Instructor - in - Charge

MATH F311

