EPFL - Automne 2020	Prof. Z. Patakfalvi
Structures Algébriques	Exercices
Série 12	4 décembre 2020

Veuillez télécharger vos solutions à l'exercice 4 (Exercice ♠), à rendre sur la page Moodle du cours avant le lundi 21 décembre à 18h.

Exercice 1.

Soit k un corps et $n \ge 1$ un entier. Montrez que le centre du groupe $\mathrm{GL}(n,k)$ vant

$$Z(GL(n,k)) = k^{\times} I_n := \{aI_n : a \in k^{\times}\},\$$

où I_n désigne la matrice identité de taille $n \times n$.

Indication : les matrices I_n+E_{rs} peuvent être utiles, où E_{rs} est la matrice élémentaire dont tous les coefficients sont nuls, sauf celui de la ligne r et de la colonne s qui vaut 1.

Exercice 2.

Soit p un nombre premier. On désigne par $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ le corps de cardinal p.

- 1. Calculez le nombre d'éléments du sous-groupe unipotent standard $U(n, \mathbb{F}_p)$ ainsi que du sous-groupe standard de Borel $B(n, \mathbb{F}_p)$, définis dans l'exemple 3.7.31.
- 2. Calculez le nombre d'éléments du groupe $\mathrm{GL}(n,\mathbb{F}_p)$, en démontrant que

$$|\operatorname{GL}(n,\mathbb{F}_p)| = \prod_{i=0}^{n-1} (p^n - p^i).$$

Indication : une matrice est inversible si et seulement si ses colonnes sont linéairement indépendantes.

- 3. À l'aide du point précédent, déduisez l'ordre du groupe $\operatorname{PGL}(n, \mathbb{F}_p)$. Indication : utilisez aussi l'exercice 1.
- 4. À l'aide du point 2, trouvez l'ordre du groupe $SL(n, \mathbb{F}_p)$.
- 5. À l'aide du point précédent, déduisez que

$$|\operatorname{PSL}(n, \mathbb{F}_p)| = \frac{\prod\limits_{i=0}^{n-1} (p^n - p^i)}{(p-1) \cdot j(p, n)},$$

où j(p,n) désigne l'indice du sous-groupe $\left\{x^n: x \in \left(\mathbb{Z}/p\mathbb{Z}\right)^{\times}\right\}$ dans $\left(\mathbb{Z}/p\mathbb{Z}\right)^{\times}$.

Calculez explicitement ces cardinaux (en fonction de n) lorsque p=2, p=3 et p=5.

Indication : pour les valeurs explicites lorsque $p \in \{2, 3, 5\}$, la réponse va dépendre de la classe de n modulo p-1.

Exercice 3.

Soit k un corps.

1. Soient $a, b, c, x, y, z \in k$ quelconques. Calculez le produit de matrices

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}$$

- 2. À l'aide de la partie précédente, calculez le centre Z(U(3,k)) du groupe unipotent standard U(3,k).
- 3. Démontrez qu'on a un isomorphisme de groupes

$$U(3,k)/Z(U(3,k)) \cong k \oplus k,$$

où $k \oplus k$ désigne le produit cartésien du groupe additif (k, +) avec lui-même.

Indication : faites appel au premier théorème d'isomorphisme.

♠ Exercice 4.

Soit p un nombre premier. Dans cet exercice, nous nous intéressons aux sous-groupes du groupe unipotent standard $U(3, \mathbb{F}_p) \leq \operatorname{GL}(3, \mathbb{F}_p)$. Pour simplifier, on notera $\mathsf{U} := U(3, \mathbb{F}_p)$. Ce groupe est aussi appelé groupe de Heisenberg.

1. Démontrez d'abord que n'importe quel sous-groupe propre et non-trivial H de $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ est cyclique, et isomorphe à $\mathbb{Z}/p\mathbb{Z}$.

Dans les parties qui suivent, on fixe un sous-groupe propre et non-trivial $F \leq \mathsf{U}$ du groupe $\mathsf{U}.$

2. Démontrez que l'on a deux possibilités : soit $F \cap Z(\mathsf{U}) = \{e\}$ ou $F \supset Z(\mathsf{U}).$

Indication : vous pouvez utiliser (sans démonstration) le résultat de l'exercice 3.2 qui décrit le centre $Z(\mathsf{U})$ du groupe U .

3. Supposons que la première possibilité ait lieu, i.e. $F \cap Z(\mathsf{U}) = \{e\}$. Montrez que $F \cong \mathbb{Z}/p\mathbb{Z}$ ou bien $F \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

De plus, trouvez un exemple concret de sous-groupe $F \leq \mathsf{U}$ tel que $F \cap Z(\mathsf{U}) = \{e\}$ et $F \cong \mathbb{Z}/p\mathbb{Z}$, mais tel que F n'est pas normal dans U .

Indication : vous pouvez utiliser le deuxième théorème d'isomorphisme, ainsi que les exercices 2 et 3.

4. Supposons que la deuxième possibilité ait lieu, i.e. $F \supsetneq Z(\mathsf{U})$. Démontrez alors que $F/Z(\mathsf{U}) \cong \mathbb{Z}/p\mathbb{Z}$.

De plus, prouvez que F est un sous-groupe normal de $\mathsf{U}.$

Indication : la partie 1 juste ci-dessus peut être utile.

Exercice 5.

Soit k un corps. On définit les ensembles de matrices

$$H = \left\{ \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : a \in k \right\}, \qquad F = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} : z \in k \right\}.$$

- 1. Montrez que H est un sous-groupe de GL(3, k).
- 2. Montrez que F est un sous-groupe de GL(3, k).
- 3. Démontrez que le sous-groupe de GL(3,k) engendré par H et F vaut U(3,k), c'est-à-dire $\langle H \cup F \rangle = U(3,k)$.

(Notez que cela donne un exemple où $\langle H, F \rangle \neq HF$).

Exercice 6. 1. Soit $H \subseteq G$ un sous-groupe normal d'un groupe G. Supposons que $G/H \cong \mathbb{Z}/p\mathbb{Z}$ pour un nombre premier p.

Démontrez que pour tout sous-groupe $F \leq G$, on a soit $F \leq H$ ou $[F:F\cap H]=p.$

2. Déduire du point précédent que S_4 contient un seul sous-groupe d'ordre 12, à savoir A_4 .