

Zenturie:

NAME: BJÖRN-HELGE BUSCH

Name des Prüflings:

NACHKLAUSUR: 1140 AUTOMATENTHEORIE UND FORMALE SPRACHEN

QUARTAL: 4/2015

Matrikelnummer:

Dauer: 90 Min	Seiten der Klausur ohne [Deckblatt:13 Datum: 19.11.2015
Hilfsmittel: Infoblatt	zur Klausur (siehe letzte Seite)	
Bemerkungen: Bitte	kontrollieren Sie Ihr Klausurheft z	zu Beginn der Prüfung auf Vollständigkeit.
Anzahl Antwortseiten e	einzelnes kariertes Zusatzpapier:	· (
Es sind 90 Punkte erro Zum Bestehen der Kla	eichbar. usur sind maximal 45 Punkte aus	sreichend!
Aufgabe	Erreichbare Punk	kte Erreichte Punkte
Aufgabe 1	10	
Aufgabe 2	30	
Aufgabe 3	20	
Aufgabe 4	30	
Gesamt	90	
Note:	Prozentsatz:	Ergänzungsprüfung:
Datum:	Unterschrift:	
Datum:	Unterschrift:	

a) Gegeben sei eine beliebige nichtleere formale Sprache L_1 . Wie wird L_1^* erzeugt und welche Mächtigkeit besitzt L_1^* ? Erläutern Sie die Abgrenzung zu L_1^+ . (2 Punkte)

b) Erläutern Sie den Begriff <u>Alphabet</u>. Wie wird dieses notiert und welche <u>Relation</u> wird im Allgemeinen zur Darstellung des Alphabets (und formaler Sprachen bei der Aufzählung der Elemente) vereinbart? (2 Punkte)

c)	Geben Sie zwei Wortfunktionen mit Angabe des jeweiligen <u>Definitions- und Wertebereichs</u> mit üblicher (mengentheoretischer) Funktionsvorschrift an Erläutern Sie die jeweiligen Zuordnungen von Definitions- und Wertebereich (2 Punkte)
d)	Erläutern Sie den Begriff Potenz eines Zeichens. Erläutern Sie, warum jedes Zeichen $a \in \Sigma$ auch ein Element einer formalen Sprache $L \subseteq \Sigma^*$ sein kann (2 Punkte)
e)	In welche <u>drei Bestandteile</u> lassen sich Wörter $w \in \Sigma^*$ in der Regel zerlegen? Welche Bedingung muss erfüllt sein, damit eine <u>echte Zerlegung</u> möglich ist? Geben Sie ein Beispiel für eine Zerlegung an, die nicht echt ist. (2 Punkte)

a) Erläutern Sie die Begriffe <u>endlicher Automat</u> und <u>Zustandsüberführungsfunktion.</u> (2 Punkte)

b) Was versteht man unter der <u>reflexiv-transitiven Hülle</u> der Zustandsüberführungsfunktion eines DEA? (2 Punkte)

c) Erläutern Sie den Begriff <u>Epsilon-Automat</u> mithilfe einer Skizze. Geben Sie ein sinnvolles Beispiel für die Nutzung dieses EA-Konzepts an. (2 Punkte)

d)	 d) Erläutern Sie den Begriff <u>Moore-Maschine</u>. Skizzieren Sie dazu ei Maschine mit <u>mindestens fünf Zuständen</u>. Warum spricht man im Zu hang von Moore-Maschinen auch von <u>transformierenden Syste</u> Punkte) 	usammer	Դ-
e)	e) Erläutern Sie das Konzept eines <u>verallgemeinerten endlichen A</u> anhand eines Beispiels. (2 Punkte)	<u>∖utomate</u>	<u>:n</u>
f)	Erläutern Sie den Begriff totaler Automat anhand eines Beispiels. (2	Punkte)	

g) Gegeben sind die Sprachen

$$\begin{split} L_2 &= \{w \in \Sigma^* | w = \{aa, ca\}^* \{bb, dd\}^+ e^i, i > 2\} \text{ und} \\ L_3 &= \{w \in \Sigma^* | w = e^j c^k \{aa, ac\}^+ \{bb, dd\}^*, j > 1, k > 0\}. \end{split}$$

Konstruieren Sie einen <u>nicht verallgemeinerten</u> DEA A_4 , der ausschließlich die Sprache $L_4=L_2\cup L_3$ akzeptiert. Geben Sie die graphische Repräsentation mit markierten akzeptierenden Zuständen und die formale Beschreibung von A_4 inklusive der Aufschlüsselung der enthaltenen Mengen an. Auf eine Darstellung von δ_4 kann verzichtet werden. (8 Punkte)

h) Gegeben sei die Sprache

$$L_5 = \{w \in \Sigma^* | w = \{a, b, c\}^+ \{cc\} \{a\}^+\}$$

Konstruieren Sie den korrespondierenden NEA A_5 (Automatengraph genügt) und demonstrieren Sie die Äquivalenz zwischen NEA und DEA, indem Sie A_5 in einen äquivalenten DEA ${A_5}^{\ast}$ transformieren. Nutzen Sie dafür den tabellarischen Ansatz und zeichnen Sie den Graphen von ${A_5}^{\ast}$. (8 Punkte)

a) Erläutern Sie die Begriffe Thue-System und Semi-Thue-System. (2 Punkte)

b) Gegeben ist die Sprache $L_6=\{w\in \Sigma^*|w=\{1,2,3\}\{l,m\}^*\{aa,bb\}^+\}$. Geben Sie die (<u>nicht verallgemeinerte</u>) Grammatik G_6 mit der Regelmenge P_6 an, die ausschließlich die Sprache L_6 erzeugt, und leiten Sie mithilfe dieser Regeln das Wort w=1llaabb mit vollständiger Angabe der <u>Satzformen</u> ab. (5 Punkte)

c)	Erläutern	Sie die	Begriffe	Syntaxbaum	und	<u>mehrdeutige</u>	Grammatik.	Was
	versteht n	nan unte	er einer <u>ir</u>	<u>nhärent mehro</u>	deutic	<u>gen</u> Grammat	ik? (2 Punkte))

d) Erläutern Sie die Begriffe Chomsky-Normalform und Greibach-Normalform und geben Sie für die Sprache

$$L_7 = \{ w \in \Sigma^* | \{a, c\}^+ b^i d^i, i > 0 \}$$

die Regelmengen *P* jeweils in Chomsky-Normalform und Greibach-Normalform an. (6 Punkte)

e) Gegeben sei die Sprache

$$L_8 = \{ w \in \Sigma^* | w = \{a, c\}^+ b^j d^j c^i, i \ge 0, j \ge 1 \}$$

Geben Sie die (nicht verallgemeinerte) Grammatik G_8 mit der Regelmenge P_8 an und konstruieren Sie den korrespondierenden Kellerautomaten K_8 mit der Zustandsübergangsfunktion δ_8 . (5 Punkte)

a) Skizzieren Sie die <u>Chomsky-Hierarchie</u> und erläutern Sie die Unterschiede anhand der Ausdrucksmächtigkeit der klassifizierten Grammatiken (Hinweis: *P* enthält Regeln unterschiedlichen Typs zur Worterzeugung). Geben Sie ferner die <u>Abschlusseigenschaften</u> der jeweiligen Sprachklassen gegenüber den Operationen <u>Schnitt, Vereinigung, Differenz, Komplement, Konkatenation und Spiegelung</u> an. (12 Punkte)

b)	Zeigen Sie mithilfe einer Skizze, dass das Alphabet Σ zur Klasse der regulärer Sprache gehört. (2 Punkte)
c)	Zeigen Sie mithilfe einer Skizze, dass das Kleene-Stern-Produkt über einem Alphabet Σ zur Klasse der regulären Sprache gehört. (2 Punkte)
d)	Erläutern Sie mithilfe von Skizzen, dass die Klasse der regulären Sprachen abgeschlossen gegenüber der <u>Vereinigung</u> und der <u>Konkatenation</u> ist. (4 Punkte)

e) Gegeben seien die Sprachen

$$L_9 = \{ w \in \Sigma^* | w = \{b, e\}^* a^i f^j e^j a^i \{b, e\}^+, i > 1, j > 1 \}$$

$$L_{10} = \{ w \in \Sigma^* | w = \{ccc, ddd\} b^i d^i e^i \{a, c\}^*, i > 0 \}$$

$$L_{11} = \{ w \in \Sigma^* | w = \{a, c\}^+ b^{2i} \{ccc\} e^j, i > 1, j > 0 \}$$

Testen Sie mithilfe des <u>Pumping-Lemmas</u>, ob es sich um Typ 3, Typ 2 oder Typ1/Typ0 Sprachen handeln könnte und geben Sie für die jeweilige Zerlegung, sofern möglich, die Pumping-Lemma-Zahl an. (6 Punkte)

- f) Kreuzen Sie an, welche Entscheidungsprobleme für <u>Typ 0-Sprachen</u> lösbar sind. (2 Punkte)
 - o Wortproblem
 - Leerheitsproblem
 - o Äquivalenzproblem
 - o Endlichkeitsproblem
- g) Kreuzen Sie an, welche Entscheidungsprobleme für <u>Typ 1-Sprachen</u> lösbar sind. (2 Punkte)
 - o Wortproblem
 - Leerheitsproblem
 - o Äquivalenzproblem
 - o Endlichkeitsproblem
- h) Kreuzen Sie an, welche Entscheidungsprobleme für <u>Typ 2-Sprachen</u> lösbar sind. (2 Punkte)
 - o Wortproblem
 - o Leerheitsproblem
 - o Äquivalenzproblem
 - o Endlichkeitsproblem