Домашняя работа № 1

Автор: Минеева Екатерина

Задача 2

Пусть $L_1, L_2 \in \text{NP}$. Тогда для L_1 и L_2 существуют алгоритмы верификации A_1 и A_2 соответственно. То есть:

I.
$$x \in L_1 \Leftrightarrow \exists y_1 A_1(x, y_1) = 1$$

II.
$$x \in L_2 \Leftrightarrow \exists y_2 A_1(x, y_2) = 1$$

Пусть вход — это x. Построим алгоритм верификации для:

a) $L_1 \cap L_2$.

Роль сертификата для алгоритма A, верифицирующего язык $L_1 \cap L_2$, будет играть пара (y_1,y_2) . Алгоритм будет запускать сначала алгоритм A_1 на входе (x,y_1) , потом A_2 на входе (x,y_2) . В качестве результаты выдается $A_1(x,y_1) \wedge A_2(x,y_2)$. Время работы A будет полиномиально, поскольку по отдельности A_1 и A_2 работают полиномиальное время от размера x и сумма двух полиномов также является полиномом. Аналогично размер самого сертификата (y_1,y_2) будет полиномом от x.

б) $L_1 \cup L_2$.

Принцип построения алгоритма верификации тот же, с той только разницей, что в качестве ответа выдается $A_1(x,y_1) \vee A_2(x,y_2)$

B) L_1^* .

Роль сертификата будет разбиение слова x на части $x = x_1 x_2 x_3 \dots x_k$, а также кортеж $(y_1, y_2, \dots y_k)$ где $\forall 1 \leq i \leq k : A_1(x_i, y_i) = 1$. Результатом работы A алгоритма верификации x, будет $\bigwedge_{1 \leq i \leq k} A_1(x_i, y_i)$.

Заметим, что так как $\forall 1 \leq i \leq k : |x_i| = \underline{O}(|x|)$ то $\forall 1 \leq i \leq k : |y_i| = Poly(|x|)$.

При этом $k \leq n$, а сумма п полиномов также является полиномом. Таким образом размер сертификата в данном случае полиномиален. Аналогичные рассуждения показывают, что время работы A является суммой n полиномов, следовательно, тоже полиномом.