EECS240 - Spring 2010

Lecture 21: Matching

Elad Alon Dept. of EECS

Sources of Local Variation

- Deterministic sources:
 - · Local poly density
 - · Sub-90nm: stress, litho interactions, ...
- · Random sources:
 - · Dopant fluctuations
 - · Line-edge roughness
 - Oxide traps
- · Focus our modeling on random variations
 - · Deterministic handled with good layout practices

EECS240 Lecture 21 4

Offset

- To achieve zero offset, comparator devices must be perfectly matched to each other
- How well-matched can the devices be made?
 - Not arbitrary direct function of design choices

EECS240 Lecture 21

References

- M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching properties of MOS transistors," *IEEE JSSC*, vol. 24, pp. 1433 - 1439, Oct. 1989
 - · Mismatch model
 - Statistical data for 2.5µm CMOS
- J. A. Croon, M. Rosmeulen, S. Decoutere, W. Sansen, and H. E. Maes, "An easy-to-use mismatch model for the MOS transistor," *IEEE JSSC*, vol. 37, pp. 1056 - 1064, Aug. 2002
 - 0.18µm CMOS data

EECS240 Lecture 21 5

Device Mismatch Categories

· Die-to-die

EECS240

- All devices on same chip (or wafer) have same characteristics
- Within die (long-range)
 - All devices within certain region have same characteristics
- · Local (short-range)
 - · Every device different, random
 - · Usually most important source of mismatch

Lecture 21

Mismatch Statistics

• Total mismatch set by co

- Total mismatch set by composite of many single, independent events
 - Correlation distance << device dimensions
 - E.g., number of dopant atoms implanted into the channel
- Individual effects are small: linear superposition holds
- → Mismatch is zero mean, Gaussian distribution

EECS240 Lecture 21 6

Parameter Mismatch Model

$$\sigma^2(\Delta P) = \frac{A_p^2}{WL} + S_p^2 D_x^2$$

 $\sigma^2(\Delta P)$: variance of P

WL: active gate area

 D_x : distance between device centers A_p : measured area proportionality constant

 S_p : measured distance proportionality constant,

: $\cong 0$ for "good" layout

EECS240 Lecture 21

V_T Mismatch

 Mismatch in V_T between two identical devices:

$$\sigma^2 \left(\Delta V_T \right) = \frac{A_{V_T}^2}{WL} + S_{V_T}^2 D_x^2$$

2.5µm CMOS process:

 $A_{V_T,NMOS} \cong 30 \text{ mV } \mu\text{m}$

 $A_{V_T,PMOS} \cong 35 \text{ mV } \mu\text{m}$

 Often largest source of offset

EECS240 Lecture 21

Sources of $\boldsymbol{\beta}$ Mismatch

- · Mobility variations
 - E.g., due to dopant variations, random defects
- · Oxide thickness variation
 - · Usually very well-controlled
- · Edge roughness

EECS240 Lecture 21

Edge Model

$$\frac{\sigma^{2}(\beta)}{\beta^{2}} = \frac{\sigma^{2}(W)}{W^{2}} + \frac{\sigma^{2}(L)}{L^{2}} + \frac{\sigma^{2}(C_{ox})}{C_{ox}^{2}} + \frac{\sigma^{2}(\mu_{n})}{\mu_{n}^{2}}$$

For: $\sigma^2(W) \propto \frac{1}{L}$ and $\sigma^2(L) \propto \frac{1}{W}$

Simplifies to:

$$\frac{\sigma^2(\beta)}{\beta^2} = \frac{A_L^2}{WL^2} + \frac{A_W^2}{W^2L} + \frac{A_{C_{ca}}^2}{WL} + \frac{A_\mu^2}{WL} + S_\beta^2 D^2$$

EECS240 Lecture 21 14

Process Dependence

 A_{vt} tends to scale with technology

Proportional to t_{ox}

 Also depends on doping level

EECS240 Lecture 21 17

Orientation Effects

- Si and transistors are not (perfectly) isotropic
- keep direction of current flow same!

EECS240 Lecture 21

0.18 μm CMOS

Current Matching EECS240 Lecture 21 19

Common Centroid Layout

- Cancels linear gradients
- · Required for moderate matching

EECS240 Lecture 21 22

Voltage Matching

Lecture 21

Simulating Mismatch

- Brute force: Monte Carlo
 - HSPICE "throws the dice"...

EECS240 Lecture 21 23

"Golden Rule" of Layout for Matching

- · Everything you can think of might matter
 - Even whether or not there is metal above the devices
- How to avoid systematic errors?

EECS240

Ref: A. Hastings, "The art of analog layout," Prentice Hall, 2001

EECS240 Lecture 21

Simulating Mismatch

EECS240 Lecture 21