Makine Öğrenmesi - 1

by Sefa Isci

Makine Öğrenmesi Giriş

İnsanoğluna insan üstü fayda!

Makine Öğrenmesi Nedir?

Bilgisayarların insanlara benzer şekilde öğrenmesini sağlamak maksadıyla çeşitli algoritma ve tekniklerin geliştirilmesi için çalışılan bilimsel çalışma alanıdır.

Makine Öğrenmesi Nedir?

Ülke	Yaş	Maaş	Satın Alma Durumu
Türkiye	55	72000	Hayır
İspanya	32	60000	Evet
Almanya	42	50000	Evet
Fransa	45	30000	Hayır
Türkiye	35	32000	Evet
Almanya	32	35000	Hayır
İspanya	50	70000	Hayır
Almanya	29	32000	Evet
Türkiye	30	33000	Evet
Fransa	40	40000	Evet

Makine Öğrenmesi Nedir?

Ülke	Yaş	Maaş	Satın Alma Durumu
Türkiye	55	72000	Hayır
İspanya	32	60000	Evet
Almanya	42	50000	Evet
Fransa	45	30000	Hayır
Türkiye	35	32000	Evet
Almanya	32	35000	Hayır
İspanya	50	70000	Hayır
Almanya	29	32000	Evet
Türkiye	30	33000	Evet
Fransa	40	40000	Evet

- 32 yaşında 30 Bin TL geliri olan bir Türkiye vatandaşı ürün alır mı?
- 46 yaşında 32 Bin TL geliri olan bir Fransız ürünü alır mı?
- Türkiye'ye en benzer davranışı gösteren ülke hangisidir?

Arabam Ne Kadar Eder?

♣

Makine Öğrenmesi Nedir?

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \dots + \beta_{j}X_{ij} + \dots + \beta_{p}X_{ip} + \varepsilon_{i}$$

$$\hat{y} = b_{0} + b_{1} x_{1} + b_{2} x_{2} + \dots + b_{p} x_{p}$$

$$\hat{y} = b_{0} + b_{1} x_{1} + b_{2} x_{2} + \dots + b_{p} x_{p}$$

fotoğraftan araç tanıma uygulaması

Gerçek Hayat Örnekleri

Linkedin, letgo ve gmail hazır cevap uygulamaları

Chatbotlar ve kişisel asistanlar (Siri ve diğerleri)

Facebook

Netflix, Amazon ve E Ticarette tavsiye sistemleri

Spam Engelleme

Cümle tamamlama ve smile tamamlama

Uber

Sahtekarlık Önleme Çalışmaları (Fraud Prevention)

Gerçek Hayat Örnekleri

Kredi Başvurusu Değerlendirme

Daha Gerçek Makine Öğrenmesi

Terminoloji

Makine öğrenmesinde sık kullanılan kavramlara kısa bir bakış

Bağımlı Değişken & Bağımsız Değişken


```
y1 x1 x2 x3 x4
   8.04 10 10 10 8
   6.95 8 8 8
   7.58 13 13 13 8
   8.81 9 9 9 8
   8.33 11 11 11 8
   9.96 14 14 14 8
   7.24 6 6 6 8
   4.26 4 4 4 19
 10.84 12 12 12 8
  4.82 7 7 7 8
11 5.68 5 5 5 8
```


Öğrenme Türleri Gözetimli Öğrenme Gözetimsiz Öğrenme Yarı Gözetimli Öğrenme

```
y1 x1 x2 x3 x4
8.04 10 10 10
6.95 8
        8 8
7.58 13 13 13
8.81 9
        9 9
8.33 11 11 11
9.96 14 14 14
7.24
4.26 4 4 4 19
10.84 12 12 12 8
4.82 7 7 7
5.68 5 5 5 8
```

```
x1 x2 x3 x4
10 10 10
8 8 8
13 13 13
11 11 11
14 14 14
   6
12 12 12
5 5 5 8
```


Problem Türü:

Regresyon vs

Sınıflandırma

	v1	v 1	x2	хЗ	y4
1	8.04	10	10	10	8
2	6.95	8	8	8	8
3	7.58	13	13	13	8
4	8.81	9	9	9	8
5	8.33	11	11	11	8
6	9.96	14	14	14	8
7	7.24	6	6	6	8
8	4.26	4	4	4	19
9	10.84	12	12	12	8
10	4.82	7	7	7	8
11	5.68	5	5	5	8

Değişken Türleri

- Değişken Türleri
 - Sayısal Değişkenler (nicel, kantitatif)
 - Kategorik Değişkenler (nitel, kalitatif)
- Ölçek Türleri
 - Sayısal değişkenler için: Aralık ve Oran
 - Kategorik değişkenler için: Nominal ve Ordinal

Kavramlar Grest-Train Ayrımı

Değişken Mühendisliği (Feature Engineering)

Değişken Seçimi (Variable Selection)

Model Seçimi

Model Seçimi için İki Durum Söz Konusu

- Birincisi: Oluşabilecek değişken kombinasyonları ile oluşturulan modeller arasından en iyi modelin seçilmesi
- İkincisi: Kurulan birbirinden farklı modeller arasından model seçimi

Model Neye Göre Seçilir?

- Regresyon için açıklanabilirlik oranı ve RMSE benzeri bir değer.
- Sınıflandırma için doğru sınıflandırma oranı benzeri bir değer.

Aşırı Öğrenme (Overfitting)

Deterministik Modeller vs Stokastik Modeller

Olasılıksal Model: y = 2,5x + tesadüfi hata

Doğrusal Modeller vs Doğrusal Olmayan Modeller

Model Doğrulama Yöntemleri

Modellerin ürettiği sonuçların doğru değerlendirilmesi çalışmaları

Holdout Yöntemi

K-Katlı Çapraz Doğrulama (k fold cross validation)

Model Doğrulama Yöntemleri

Leave One Out

Model Doğrulama Yöntemleri

Bootstrap

Orijinal Veri Seti

Model Doğrulama Yöntemleri

Model Başarı Değerlendirme Yöntemleri

Modellerin Tahmin Başarılarının Değerlendirilmesi

- Li Listeri

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y_i})^2$$

$$Gözlem Sayısı$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

1 Lichen

4.094 / 11 = 0.3721818

- Liberton

Karışıklık Matrisi

Model Başarı Değerlendirme - Sınıflandırma

Tahmin Edilen Sınıf

		Sinif = 1	Sinif = 0
Gerçek Sınıf	Sınıf = 1	a	b
	Sınıf = 0	С	d

a: True Pozitif (TP)

Doğruluk: (TP+TN) / Hepsi

d: True Negatif (TN)

Hata Oranı: (FN+FP) / Hepsi

c: False Pozitif (FP)

Kesinlik: TP / (TP+FP)

b: False Negatif (FN)

Anma: TP / (TP + FN)

Model Başarı Değerlendirme - Sınıflandırma

ROC Eğrisi

Yanlılık - Varyans Değiş Tokuşu (Bias-Variance Tradeoff)

Modellerin Tahmin Başarılarının Değerlendirilmesi

-

Eğitim Hatası VS Test Hatası

Model Karmaşıklığı

Parametre, Hiperparametre, Parametre Tuning, Model Tuning

Model Tahmin Performansını Arttırmak