Push-down Automata = FA + Stack

Definition

A push-down automaton M is a tuple M = $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is the input alphabet (of terminal symbols, terminals)

 Γ is the stack alphabet

 $\delta: Q \times \sum_{\epsilon} \times \Gamma_{\epsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

intrinsically nondeterministic

Definition

A push-down automaton M is tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is the input alphabet (of terminal symbols, terminals)

 Γ is the stack alphabet

 $\delta: Q \times \sum_{\epsilon} \times \Gamma_{\epsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

intrinsically nondeterministic

Definition

A push-down automaton M is tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is the input alphabet (of terminal symbols, terminals)

 Γ is the stack alphabet

δ: $Q \times \sum_{\epsilon} \times \Gamma_{\epsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

 $(r,c) \in \delta(q,a,b)$ means that in a state q, reading input symbol a and popping b from the stack, the PDA may change to state r and push c on the stack

Compute via configurations

Compute via configurations

Given $M = (Q, \sum, \Gamma, \delta, q_0, F)$ a configuration of M is an element in

$$Q \times \Sigma^* \times \Gamma^*$$

an initial configuration is (q_0, w, ε) .

Compute via configurations

Given $M = (Q, \sum, \Gamma, \delta, q_0, F)$ a configuration of M is an element in

$$Q \times \Sigma^* \times \Gamma^*$$

an initial configuration is (q_0, w, ε) .

 $(q,w,u) \models (r,w_1, u_1)$ if and only if $w = aw_1, u = bu_2, and <math>u_1 = cu_2$

Compute via configurations

Given $M = (Q, \sum, \Gamma, \delta, q_0, F)$ a configuration of M is an element in

$$Q \times \sum^* \times \Gamma^*$$

an initial configuration is (q_0, w, ε) .

 $(q,w,u) \models (r,w_1, u_1)$ if and only if $w = aw_1, u = bu_2, and <math>u_1 = cu_2$

one-step computation

Compute via configurations

Given $M = (Q, \sum, \Gamma, \delta, q_0, F)$ a configuration of M is an element in

$$Q \times \Sigma^* \times \Gamma^*$$

one-step computation

an initial configuration is (q_0, w, ε) .

$$(q,w,u) \models (r,w_1, u_1)$$
 if and only if $w = aw_1, u = bu_2, and $u_1 = cu_2$$

Definition

The language recognised / accepted by a push-down automaton $M = (Q, \sum, \Gamma, \delta, q_0, F)$ is

$$L(M) = \{ w \in \sum^* | (q_0, w, \epsilon) \models^* (f, \epsilon, \epsilon) \text{ for some } f \in F \}$$

Compute via configurations

Given $M = (Q, \sum, \Gamma, \delta, q_0, F)$ a configuration of M is an element in

$$Q \times \Sigma^* \times \Gamma^*$$

one-step computation

an initial configuration is (q_0, w, ε) .

$$(q,w,u) \models (r,w_1, u_1)$$
 if and only if $w = aw_1, u = bu_2, and $u_1 = cu_2$$

Definition

The language recognised / accepted by a put $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is

zero-or-more-steps computation

$$L(M) = \{ w \in \sum^* | (q_0, w, \epsilon) \models^* (f, \epsilon, \epsilon) \text{ for some } f \in F \}$$

PDA vs. CFG

Theorem PDA-CFG

A language is context-free if and only if it is recognised by a push-down automaton.

PDA vs. CFG

Theorem PDA-CFG

A language is context-free if and only if it is recognised by a push-down automaton.

context-free languages generated by CFG recognised by PDA regular languages recognised by FA generated by regular grammars

Definitions

Definitions

Two words $u, v \in \sum^*$ are consistent if none is a prefix of the other.

Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as well as b and e are inconsistent.

A PDA M is deterministic if no two different transitions are compatible.

Definitions

 $(r,c) \in \delta(q,a,b)$

Two words $u, v \in \sum^*$ are consistent if none is 2 tenx of the other.

Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as well as b and e are inconsistent.

A PDA M is deterministic if no two different transitions are compatible.

Definitions

 $(r,c) \in \delta(q,a,b)$

Two words $u, v \in \sum^*$ are consistent if none is a serix of the other.

Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as well as b and e are inconsistent.

A PDA M is deterministic if no two different transitions

can fire at the same time

Definitions

 $(r,c) \in \delta(q,a,b)$

Two words $u, v \in \sum^*$ are consistent if none is a near of the other.

Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as well as b and e are inconsistent.

A PDA M is deterministic if no two different transitions

can fire at the same time

Definition

A language L is a deterministic context-free language if there exists a DPDA M that recognises

$$L$ = {w$ | w \in L}$$

We say then that M recognises L and write L = L(M).

Definitions

 $(r,c) \in \delta(q,a,b)$

Two words $u, v \in \sum^*$ are consistent if none is a near of the other.

Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as well as b and e are inconsistent.

A PDA M is deterministic if no two different transitions

can fire at the same time

Definition

A language L is a deterministic context-free language if there exists a DPDA M that recognises

$$L$ = {w$ | w \in L}$$

We say then that M recognises L and write L = L(M).

\$ is a fresh
symbol, not in ∑