Fraud detection with Quantum Machine Learning

Gianmarco Sarnelli Giovanni Varutti Edoardo Zappia

Stime di mercato

Dimensione del mercato globale del rilevamento e prevenzione delle frodi 2022

Grand View Research: 25.67 miliardi di dollari

previsione di crescita annuale composta: 17.6% dal 2023 al 230 [1]

Global Market Insights: 30 miliardi di dollari

previsione di crescita annuale composta: 17.6% dal 2023 al 230 [2]

[1] Grand View Research GVG:

https://www.grandviewresearch.com/industry-analysis/fraud-detection-prevention-market#:~:text=The%20global%20fraud%20detection%20%26%20prevention.USD%2028.98%20billion%20in%202023.

Obiettivo del progetto

Confrontare le performance di diverse feature map con diversi modelli di quantum machine learning

Data exploration

Data exploration

Variational Quantum Classifier

Feature map utilizzate

- ZZFeatureMap
- ZFeatureMap
- PauliFeatureMap (Z, X, ZY)
- ZZFeatureMap (profondità 2)
- ZFeatureMap (profondità 2)

Ansatz utilizzate

- RealAmplitudes (profondità 3)
- NLocal personalizzata (profondità 3)

Simulatore noiseless: loss functions

Ansatz: RealAmplitudes

Ansatz: NLocal personalizzata

Simulatore noiseless: accuracy

Simulatore noisy: loss functions

Ansatz: RealAmplitudes

Ansatz: NLocal personalizzata

Simulatore noisy: accuracy

Quantum Support Vector Classifiers

kernel classici

kernel quantistici

$$k(\vec{x}_i, \vec{x}_j) = \left\langle f(\vec{x}_i), f(\vec{x}_j) \right\rangle \to K_{ij} = \left| \left\langle \phi(\vec{x}_i) | \phi(\vec{x}_j) \right\rangle \right|^2$$

Quantum Kernels

- Funzione ad hoc con SVC
- Fidelity Quantum Kernel con SVC
- Fidelity Quantum Kernel con QSVC

Trainable Quantum Kernels

- diversi ansatz + feature maps
- simulazioni noiseless
- simulazione con noise

Feature maps utilizzate

- ZZFeatureMap
- ZFeatureMap
- PauliFeatureMap (Z, XY)
- ZZFeatureMap (profondità 2)
- ZFeatureMap (profondità 2)

Quantum Kernels

classification results

Feature Map	ROC AUC score	Weighed Av. Accuracy
Z Feature Map (profondita' 1)	0.9344	0.88
ZZ Feature Map (profondita' 1)	0.9511	0.92
Pauli Feature Map	0.9077	0.88
Z Feature Map (profondita' 2)	0.9310	0.88
ZZ Feature Map (profondita' 2)	0.9444	0.92

Trainable Quantum Kernels

- 1. Le feature maps vengono combinate con dei circuiti quantistici parametrici
- 2. Ottimizzazione dei parametri (SPSA, learning rate e perturbation variabili)
- 3. Il kernel ottimizzato viene usato nel modello QSVC

Ansatz testati:

- Singolo layer rotazionale con singolo parametro
- Singolo layer rotazionale con parametri multipli
- RealAmplitudes

Layer rotazionale con singolo parametro: loss functions

Layer rotazionale con singolo parametro

Risultati

Feature Map	ROC AUC score	Weighed Av. Accuracy
Z Feature Map (profondita' 1)	0.9344	0.88
ZZ Feature Map (profondita' 1)	0.9511	0.92
Pauli Feature Map	0.9388	0.92
Z Feature Map (profondita' 2)	0.9321	0.88
ZZ Feature Map (profondita' 2)	0.9466	0.92

Layer rotazionale con parametri multipli: loss functions

iterations

67

SSO|

64

63

62

-- Z, Ir=0.04

-- Z2, Ir=0.05

→ ZZ2, Ir=0.05

Layer rotazionale con parametri multipli

Risultati

Feature Map	ROC AUC score	Weighed Av. Accuracy
Z Feature Map (profondita' 1)	0.9344	0.88
ZZ Feature Map (profondita' 1)	0.9344	0.93
Pauli Feature Map	0.9677	0.95
Z Feature Map (profondita' 2)	0.9355	0.90
ZZ Feature Map (profondita' 2)	0.9811	0.95

RealAmplitudes

Risultati

Feature Map	ROC AUC score	Weighed Av. Accuracy
Z Feature Map (profondita' 1)	0.9333	0.88
ZZ Feature Map (profondita' 1)	0.9244	0.83
Pauli Feature Map	0.9700	0.97
Z Feature Map (profondita' 2)	0.9344	0.90
ZZ Feature Map (profondita' 2)	0.9644	0.90

Layer rotazionale con parametri multipli: simulazione con noise

63.6

63.4

63.2

62.8

62.6

62.4

12.5 15.0 17.5

iterations

Layer rotazionale con parametri multipli: simulazione con noise

Risultati

Feature Map	ROC AUC score	Weighed Av. Accuracy
Z Feature Map (profondita' 1)	0.9366	0.87
ZZ Feature Map (profondita' 1)	0.9344	0.88
Pauli Feature Map	0.9555	0.92
Z Feature Map (profondita' 2)	0.9366	0.88
ZZ Feature Map (profondita' 2)	0.9522	0.88

Risultati Finali

Risultati Finali

Per fare un confronto con modelli puramente classici:

- SVC con kernel polinomiale: ROC AUC = 0.9577, Accuracy = 0.91
- SVC con kernel gaussiano: ROC AUC = 0.9792, Accuracy = 0.94

Questi risultati sono stati ottenuti con un dataset "large" contenente 14000 osservazioni anziche' 200

Quantum Neural Networks

Abbiamo implementato tre differenti modelli di Neural Networks quantistiche:

- Estimator QNN
- Sampler QNN
- QNN ibrida

Estimator QNN

Sampler QNN

QNN ibrida

Dataset usato: alcune considerazioni

Andando ad analizzare il dataset si può notare che contiene sia feature numeriche (l'importo della transazione) sia feature categoriche, come in particolare la feature "categoria" che rappresenta la categoria dell'acquisto.

Per la feature "categoria" abbiamo provato sia un encoding numerico (dataset "thin") sia un encoding binario (dataset "large") ed abbiamo notato che per alcuni modelli quest'ultimo porta a risultati migliori

Binary Encoding

Places
New York
Boston
Chicago
California

Feature	Map
New York	0
Boston	1
Chicago	2
California	3

Feature	Encoded
New York	0
Boston	1
Chicago	10
California	11

Risultati QNN

Risultati QNN

Ulteriori test

Avendo notato che il modello con risultati migliori è la QNN ibrida, abbiamo fatto ulteriori test per esaminare le potenzialità di questo modello.

Abbiamo continuato ad usare l'encoding "large" ed abbiamo aumentato il numero di epoche dell'allenamento e la grandezza del dataset. Inoltre abbiamo aumentato la complessità del modello classico e di quello quantistico.

Successivamente abbiamo confrontato tale modello con un modello noisy ed un modello puramente classico

Modello ibrido

- - - - -

- - - - -

Time spent for Hybrid QNN with feature map P and dataset Large : 6661.815709114075 The accuracy is : 0.963333333333333333

- - - - - - - -

Modello classico

Time spent for Classical QNN number 0 with dataset Large : 19.899761199951172 The accuracy is : 0.935

Time spent for Classical QNN number 1 with dataset Large : 19.916569471359253 The accuracy is : 0.935

Time spent for Classical QNN number 2 with dataset Large : 20.651018619537354 The accuracy is : 0.935

The accuracy 13 . 0.55

Modello noisy

- - - - -

Conclusioni

Se consideriamo l'encoding numerico tutti i modelli hanno risultati comparabili, mentre se usiamo l'encoding binario ed aumentiamo il numero di qubit il modello ibrido risulta il migliore.

I risultati del modello ibrido sono influenzati in parte dal layer classico, anche se il modello puramente classico non ottiene gli stessi risultati di accuracy.

In conclusione il modello ibrido può portare ad ottimi risultati e l'utilizzo di un layer classico prima di uno quantistico può risolvere i problemi legati all'uso di troppi qubit.

Considerazioni finali

Dai nostri esperimenti si è potuto notare che le performance degli algoritmi di quantum machine learning sono ancora paragonabili se non inferiori a quelle dei corrispettivi algoritmi classici.

Il problema è che attualmente non è possibile mettere in pratica quegli algoritmi quantistici che potrebbero portare uno speedup esponenziale rispetto alle prestazioni classiche.

Un esempio tra tutti è l'algoritmo per la QSVM che richiede una complessità computazionale di O(log(N*M)).

Tale algoritmo è basato su altri algoritmi quantistici come l'HHL che al momento non sono ancora stati implementati con successo.

Grazie della visione