PB 02

CO₂/hydrocarbon selectivity of phosphonium based ionic liquids

Authors and affiliation

Yuki Suzuki¹, Daisuke Kodama^{1,*}, Hirotoshi Mori^{2,3}, Nahoko Kuroki^{2,4}, Hidetaka Yamada⁵

- ¹ Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamura-machi, Koriyama, Fukushima 963-8642, Japan
- ² Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyoku, Tokyo 112-8551, Japan
- ³ Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Japan
- ⁴ JST, ACT-X, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- ⁵ Frontier Science and Social Co-creation Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- *E-mail: kodama.daisuke@nihon-u.ac.jp

Key Word (3 words)

Ionic liquid, Carbon dioxide, Hydrocarbon

Abstract (less than 300 words)

Carbon dioxide (CO₂) separation is critical in the petrochemical industry for natural gas purification and coal gasification. Chemical/physical absorption, adsorption, and membrane separation have been attempted for CO₂ separation from CO₂-hydrocarbon gas mixtures. The conventional physical absorbents such as Selexol and Rectisol absorb a large amount of CO₂ and a significant amount of hydrocarbons such as methane (CH₄), therefore, their CO₂/hydrocarbon selectivities are not so high. Ionic liquids (ILs) are expected to be a promising alternative to the conventional physical absorbents because of their comparable CO₂ solubilities and high CO₂/CH₄ selectivities ranging from 10 to 20 [1].

In the previous study, trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)amide ([P₆₆₆₁₄][TFSA]) and trihexyl(tetradecyl)phosphonium perfluorooctanesulfonate ([P₆₆₆₁₄][PFOS]) were chosen as the ILs with superior CO₂ absorption by predicting Henry's law constants of CO₂ in 68775 ILs using conductor like screening model for realistic solvation (COSMO-RS) method [2]. Based on the prediction results, CO₂ solubilities of the selected phosphonium based ILs were measured at 313.15 K and 333.15 K [3].

In the present study, hydrocarbon such as CH₄, ethane (C₂H₆), and ethylene (C₂H₄) solubilities in [P₆₆₆₁₄][TFSA] or [P₆₆₆₁₄][PFOS] were measured at 313.15 K and 333.15 K by using a magnetic suspension balance. Henry's law constants of CO₂ or hydrocarbon were calculated from the experimental solubility data at pressures lower than 0.4 MPa. Furthermore, CO₂/hydrocarbon selectivities of ILs were obtained from the ratio of CO₂ and hydrocarbon experimental solubility data.

References

- [1] L.M.C. Pereira et al., J. Supercrit. Fluids, 110 (2016) 56-64.
- [2] N. Kuroki et al., J Comput. Chem. Jpn., 18(5) (2019) 217-220.
- [3] D. Kodama et al., Preprints of SCEJ 51nd Autumn Meeting, Morioka, (2020) Y216.

MTMS '21