

Phylodynamics of pathogenic mycobacteria

CONOR MEEHAN
UNIT OF MYCOBACTERIOLOGY

Acknowledgements

Mycobacteriology unit, ITM, Antwerp, Belgium

- Pauline Lempens
- Florian Gehre
- Suryia Akter
- Bouke de Jong

ADReM, UA, Antwerp, Belgium

Pieter Moris

Computational Evolution, ETH Zurich, Switzerland

- Jūlija Pečerska
- Denise Kühnert
- Tanja Stadler

Mycobacteriology group, Research Center Borstel, Germany

- Thomas Kohl
- Matthias Merker
- Stefan Niemann

National TB program, Democratic Republic of Congo

Michel Kaswa

Established by the European Commission

Terminology

- Phylodynamics
 - The interface between evolutionary biology and epidemiology
 - Estimating pathogen evo/epi parameters from phylogenies
 - Mutation rates
 - \blacksquare Transmission rates and chains (R_0)
 - Population dynamics
- SNP
 - Single nucleotide polymorphism
 - Nucleotide that differs from the consensus/reference genome
 - SNP alignment contains only sites that have 2 or more nucleotides

Mycobacterium tuberculosis

- Causative agent of TB
 - ~1/3 of the world (supposedly) infected
 - 10.4M new cases per year
- Transmitted by aerosols
 - Close contact between people
 - Long latency before active disease

- Transmission important in drug resistance
 - Transmission > point mutations
 - Some multidrug resistant (MDR) strains circulating for decades

Mycobacterium tuberculosis clustering

- Several methods have been developed to look for transmission clusters of M. tuberculosis
- Classical genotyping methods:
 - Spoligotype (low resolution)
 - MIRU-VNTR (medium resolution)
 - SpoNC (high resolution)

Spoligotyping

- Direct repeat region of the genome
 - Repeats seperated by spacers
- PCR the spacers
 - Repeats used for primers
- Hybridize to a membrane with spacers
- Presence/absence of spacers gives genotype

7

BIOMEDICAL SCIENCES

MIRU-VNTR

- Mycobacterium Interspersed Repetitive Units- Variable Number Tandem Repeats
- Tandem repeat spread throughout the genome
 - 24 loci chosen for genotyping
- PCR the repeat
 - Size of amplicon indicates number of copies at location
- Pattern gives a fingerprint

MIRU-VNTR and Spoligotyping

Devi et al PLOS ONE 2015

SpoNC

- Mutations tend to occur often within the *pncA* gene
 - Many associated with resistance to pyrazinimide
- Thought that convergence of these mutations is low
- Combination of pncA mutations with Spoligotyping increases resolution
 - Referred to as the SpoNC method
 - Only works for those with pncA mutations
 - Quite sparse

Mycobacterium tuberculosis clustering

- Several methods have been developed to look for transmission clusters of M. tuberculosis
- Classical genotyping methods:
 - Spoligotype (low resolution)
 - MIRU-VNTR (medium resolution)
 - SpoNC (high resolution)
- Whole genome sequencing allows for high resolution clustering
 - 4.4Mb circular genome
 - Chains of transmission
 - SNP thresholds

SNP thresholds

- Walker et al (2013) compared 390 isolates to look for SNP thresholds of likely tranmission
 - < 5 very likely; > 12 very unlikely
 - ~0.3-0.5 SNPs per year
- Unknown how these relate to phylogenetic distances/clustering

cgMLST

- Comparison of SNPs is heavily reliant on accurate SNP calling
 - Different pipelines/versions can give small/large differences in SNP calls
- Core Group Multi-Locus Sequence Typing (cgMLST)
 - Pre-selected set of genes to call alleles in
 - Create matrix based on allele distances
 - Applied to *M. tuberculosis* by Kohl et al (2015)
 - Stated that 5/12 cgMLST grouping is similar to 5/12 SNP groupings

Partitional SNP clustering

Tight clusters

- Every isolate is within the SNP cutoff distance of all others
- Isolates may belong to 2 clusters

Loose clustering

- Every isolate is within the SNP cutoff distance of at least one other
- Isolates belong to one cluster only
- May create long chains of sparse connections

	T1	T2	T3	T4
T1	-	3	6	7
T2		-	3	4
Т3			-	1
T4				-

Applying 5 SNP cut-off

Tight clusters:

C1: T1 T2

C2: T2 T3 T4

Loose clusters:

C1: T1 T2 T3 T4

Phylogenetic inclusion method (extension of loose clusters)

Aim

- Aid public health initiatives in selecting the best approach for tracking transmissions
 - Good resolution in the time scale of their study
 - Cost/resolution trade-off
- What is the best method for finding chains of recent transmission?
- What time period is covered by each clustering method?

Transmission clusters estimated by 20 methods

- Spoligotype
 - Membrane-based (Mem-Spo)
 - Genome-Based (Gen-Spo)
- MIRU-VNTR
- Combination of both
 - MemSpo-MIRU
 - GenSpo-MIRU
- Above methods with pncA mutation clustering
 - MemSpo-NC
 - GenSpo-NC
 - MIRU-NC
- 4 different SNP cut-offs
 - 0, 1, 5, 12
- Extension of these cut-offs (Phylogenetic inclusion method; clades)
- 4 different cgMLST cut-offs
 - 0, 1, 5, 12

Kinshasa dataset

- Democratic Republic of Congo
 - One of 22 high prevelance countries
- MDR-TB dataset
 - 324 samples
 - 2005-2010
 - Retreatment cases
 - Rifampicin resistant (+ isoniazid for most)
- WGS reads -> SNPs with MTBseq

Clustering method comparisons

- Maximum likelihood tree with RAxML-NG
 - GTR+γ model with Stamatakis ascertainment bias correction
 - 10 starting trees, 100 bootstraps
- Map clusters from different methods on to tree
- Visualise with GraPhlan
- Black: in a cluster
- Grey: in a cluster affected by convergence

Assigning timespans

- Phylogenetic dating method
- Tree built using the Bayesian method in BEAST-2

Bayesian analysis (MCMC)

- Each cycle is a step in a Monte Carlo Markov Chain (MCMC)
- Can store the parameters (tree, rates etc) at each step or subset of steps
- Must assess for convergence to see if the cycles are finding the same answer repeatedly and thus can be stopped

Assigning timespans

- Phylogenetic dating method
- Tree built using the Bayesian method in BEAST-2
- Constant coalescent population model
- Relaxed clock model
 - Diffuse prior between 1x10⁻⁷ and 1x10⁻⁸
 - Started previously as the rate for M. tuberculosis

Molecular Clock

- Assumes that there is a stocastic relationship between time and the rate of mutation of a gene
- If we know this rate, we can correlate it to changes through time and estimate a divergence time

Strict vs Relaxed

Strict:

One rate of mutation for every branch in tree

Relaxed

- Different rate for each branch
- Correlated:
 - Rates influenced by the rate of the parent branch
- Uncorrelated
 - Rates independent

Coalescent

- A model of population evolution
- When two alleles/individuals come together to form an ancestor (i.e. two branches meet) this is called a coalescent event

Sainani Biomedical computation review (2009)

Assigning timespans

- Phylogenetic dating method
- Tree built using the Bayesian method in BEAST-2
- Constant coalescent population model
- Relaxed clock model
 - Diffuse prior between 1x10⁻⁷ and 1x10⁻⁸
- Find the age of the MRCA of each cluster

Assessing ages from MCMC

- Place clusters on tree according to method
- Get the MRCA of each cluster
- Age is the difference in time between the MRCA and the furthest isolate
 - Internal node (MRCA) times are time before the last sample in the dataset (2010)
 - 17.4=~1993
 - 22.13=~1988
 - Age:
 - 2007 1993 = 14
 - 2008 1988 = 20

INSTITUTE OF TROPICAL MEDICINE ANTWERP

Aggregate over all the trees in the MCMC run

Assessing ages from MCMC

Assessing ages from MCMC

Cluster	Age 1	Age 2	Age 3	
1	13	11	6	•••
2	20	19	11	

- Aggregate all ages of all clusters in all MCMC samples per method
 - ~20,000 samples per method
- Use R to get the mean and the 95% HPD
- Visualise with violin plots

Spoligotype and MIRU-VNTR (classical methods)

Method	Mean Timespan	Max Timespan 95% HPD
Gen-Spo	383	1893
GenSpo-MIRU	64	278
Gen-SpoNC	22	94
Mem-Spo	141	823
MemSpo-MIRU	49	216
Mem-SpoNC	21	97
MIRU-VNTR	38	162
MIRU-NC	15	58

SNP based methods (WGS-based methods)

Method	Mean Timespan	Max Timespan 95% HPD
0 SNP cluster	4	16
1 SNP cluster	6	24
5 SNP cluster	13	47
12 SNP cluster	29	103
0 SNP clade	6	24
1 SNP clade	6	26
5 SNP clade	13	47
12 SNP clade	30	105
0 allele cgMLST	4	15
1 allele cgMLST	6	25
5 allele cgMLST	18	69
12 allele cgMLST	30	112

Drawbacks and improvements

- SNP –based methods have their own issues.
 - No standard pipelines
 - Reference genomes and SNP calls
 - Exclude repetitive regions
 - Known to have many mutations
 - Cause structural rearrangements
 - Solution?
 - Long read sequencing (maybe)
- Drug resistance and mutation rates
- Confirmation of transmission links

Integrating different methods into public health

- Spoligotype
 - Cheap and quick
 - High convergence rates
 - Suitable for assigning 7 primary lineages
- MIRU-VNTR
 - Somewhat quick
 - Medium/low convergence rates
 - Suitable for country surveillance
- 12 SNP/cgMLST
 - Slower method (for now) and most expensive
 - Best for country surveillance
- 0, 1, 5 SNP/cgMLST
 - Slower method (for now) and most expensive
 - Best for recent transmission studies
 - Different cut-offs for different timespans

Conor Meehan

cmeehan@itg.be