Redes Neurais Artificiais

Prof. Gustavo Willam Pereira

Conteúdo

- 1. Introdução
- 2. Neurônio artificial e funções de ativação
- 3. Redes multicamadas
- 4. Algoritmo backpropagation
- 5. Gradient descente (descida do gradiente)
- 6. Avaliação das RNAs

Inteligência Artificial

Aprendizado de Máquina

Aprendizado Profundo (deep learning)

O que é inteligência

Na ficção...

Inteligência...

Normalmente, é definida como a capacidade de:

- Adquirir e aplicar conhecimento.
- Razão dedutiva.
- Criatividade.

O que é inteligência artificial?

• IA é a capacidade de realizar as funções que são tipicamente associados com a inteligência humana.

O que são redes neurais artificiais?

- São sistemas computacionais massivos e paralelos, com propensão de armazenar conhecimento experimental e torna-lo disponível para uso.
- As redes neurais artificiais tentam imitar o funcionamento do cérebro biológico representando-o artificialmente.

Por que aprender a aplicar RNA?

- Capacidade de aprendizado e generalização.
- Tolerância a falhas devido ao elevado número de conexões entre os neurônios artificiais.
- Tolerância a ruídos nos dados (dados viesados ou outliers)
- Superioridade em relação às estimativas de modelos de regressão.

Características das RNA's

- Lógica de decisão baseada em pesos estatísticos.
- Conseguir distinguir características semelhantes após um processo de "aprendizado".
- Capacidade de generalizar o que foi aprendido.

Inspiração biológica

Forma mais simples de uma rede neural

Forma mais simples de uma rede neural

Neurônio Artificial

Função de Ativação

Função de Ativação

 W_n

Sigmoide (logística)

Linear

Tangente Hiperbólica Linear retificada (ReLU)

Rede Neural Artificial X_n Camada de Camadas Camada de Entrada escondida Saída Sudeste de Minas Gerais

Rede Neural Artificial

Rede Neural Artificial

Princípio de funcionamento

A operação de um neurônio artificial resume em:

- Sinais são apresentados à entrada (x₁ a x_m);
- Cada sinal é multiplicado por um peso que indica sua influência na saída da unidade (w_k);
- É feito a soma ponderada dos sinais que produz um nível de atividade (u_k);
- A função de ativação f(u_k) tem a função de limitar a saída e introduzir não-linearidade ao modelo;
- O bias b_k tem o papel de aumentar ou diminuir a influência dos valores de entrada.

Princípio de funcionamento

Matematicamente a saída é expressa por:

$$y_k = f(u_k) = f\left(\sum_{j=1}^m w_{kj} x_j\right)$$

• Ou considerando o bias como entrada de valor $x_0 = 1$ e peso $w_{k0} = b_k$

$$y_k = f(u_k) = f\left(\sum_{j=1}^m x_i w_i + b_k\right)$$

FUNÇÃO DE ATIVAÇÃO

Função degrau

$$f(u) = \begin{cases} 1, \text{ se } u \ge 0 \\ 0, \text{ se } u < 0 \end{cases}$$

Função degrau bipolar

$$f(u) = \begin{cases} 1, \text{ se } u > 0 \\ 0, \text{ se } u = 0 \\ -1, \text{ se } u < 0 \end{cases}$$

Função sigmoide

Função logística

$$f(u) = \frac{1}{1 + \mathrm{e}^{-u}}$$

Função tangente hiperbólica

$$f(u) = \frac{1 - e^{-u}}{1 + e^{-u}}$$

Função linear

$$f(u) = u$$

ARQUITETURA

Principais arquiteturas

Em geral, podemos identificar três tipos de arquiteturas de rede fundamentalmente diferentes:

- Redes alimentadas adiante com Camada Única.
- Redes alimentadas diretamente com Múltiplas Camadas.
- Redes Recorrentes.

Arquitetura – Camada Única

 Há somente uma camada de ligações com pesos. As unidades podem ser distinguidas como unidades de entrada e saída.

Fonte: Haykin, 2001.

Arquitetura – Camada Múltipla

 Uma ou mais camadas de nós intermediários às unidades de entrada e saída, chamadas unidades ocultas (*hidden*).
 (ex: Multilayer Perceptron).

Fonte: Haykin 2001.

INSTITUTO FEDERAL
Sudeste de Minas Gerais

Arquitetura – Recorrentes

 Se distingue de uma rede neural alimentada adiante por ter pelo menos um laço realimentação.

Sem neurônios ocultos

Com neurônios ocultos

Fonte: Haykin, 2001.

TREINAMENTO

Como uma RNA aprende?

Exemplos (entrada – saída)

Configuração

Saída desejada

Avaliação

Erro

Como uma RNA aprende?

- Processo iterativo de ajuste dos parâmetros da rede
- Os pesos armazenam o conhecimento adquirido pela rede
- Os algoritmos são agrupados em dois paradigmas principais: aprendizado supervisionado e aprendizado não supervisionado

Fonte: Haykin, 2001.

Aprendizado Supervisionado

O método mais comum de treinamento das RNAs

- As entradas e saídas são fornecidas por um supervisor (professor) externo.
- Ajusta-se os parâmetros da rede, encontrando alguma ligação entre os pares de entrada e saída.
- O professor indica um comportamento bom ou ruim da rede.

Aprendizado Supervisionado

A rede tem uma resposta (saída) que é comparada com a saída desejada, recebendo informações do supervisor sobre o erro da resposta atual.

Aprendizado Supervisionado

O método mais comum de treinamento das RNAs

- As entradas e saídas são fornecidas por um supervisor (professor) externo.
- Ajusta-se os parâmetros da rede, encontrando alguma ligação entre os pares de entrada e saída.
- O professor indica um comportamento bom ou ruim da rede.

DEMONSTRAÇÃO

Operador XOR

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

$$Soma = \sum_{i=1}^{n} x_i * w_i$$

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

$$Soma = \sum_{i=1}^{n} x_i * w_i$$

$$u1 = 0 * (-0.424) + 0 * 0.358 = 0$$

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

$$Soma = \sum_{i=1}^{n} x_i * w_i$$

$$u1 = 0 * (-0.424) + 0 * 0.358 = 0$$

$$u2 = 0 * (-0.740) + 0 * (-0.577) = 0$$

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

$$Soma = \sum_{i=1}^{n} x_i * w_i$$

$$u1 = 0 * (-0.424) + 0 * 0.358 = 0$$

 $u2 = 0 * (-0.740) + 0 * (-0.577) = 0$
 $u3 = 0 * (-0.961) + 0 * (-0.469) = 0$

$$f(u) = \frac{1}{1 + \mathrm{e}^{-u}}$$

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

$$Soma = \sum_{i=1}^{n} x_i * w_i$$

$$u1 = 0 * (-0.424) + 0 * (0.358) = 0$$

$$u2 = 0 * (-0.740) + 0 * (-0.577) = 0$$

$$u3 = 0 * (-0.961) + 0 * (-0.469) = 0$$

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

$$f(u) = \frac{1}{1 + \mathrm{e}^{-u}}$$

$$u1 = 0 * (-0.424) + 1 * 0.358 = 0.358$$

 $u2 = 0 * (-0.740) + 1 * (-0.577) = -0.577$
 $u3 = 0 * (-0.961) + 1 * (-0.469) = -0.469$

3° Registro

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

$$f(u) = \frac{1}{1 + \mathrm{e}^{-u}}$$

$$u1 = 1 * (-0.424) + 0 * 0.358 = -0.424$$

 $u2 = 1 * (-0.740) + 0 * (-0.577) = -0.740$

$$u3 = 1 * (-0.961) + 0 * (-0.469) = -0.961$$

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

$$f(u) = \frac{1}{1 + \mathrm{e}^{-u}}$$

$$u1 = 1 * (-0.424) + 1 * 0.358 = -0.066$$

$$u2 = 1 * (-0.740) + 1 * (-0.577) = -1.317$$

$$u3 = 1 * (-0.961) + 1 * (-0.469) = -1.430$$

Ativação camada saída

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

$$f(u) = \frac{1}{1 + \mathrm{e}^{-u}}$$

$$u = 0.5 * (-0.017) + 0.5 * (-0.893) + 0.5 * (0.148) = -0.381$$

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

$$f(u) = \frac{1}{1 + e^{-u}}$$

u = 0.589 * (-0.017) + 0.360 * (-0.893) + 0.385 * (0.148) = -0.275

3° Registro

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

$$f(u) = \frac{1}{1 + \mathrm{e}^{-u}}$$

u = 0.396 * (-0.017) + 0.323 * (-0.893) + 0.277 * (0.148) = -0.254

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

$$f(u) = \frac{1}{1 + \mathrm{e}^{-u}}$$

u = 0.484 * (-0.017) + 0.211 * (-0.893) + 0.193 * (0.148) = -0.168

Cálculo do erro

Erro = Resposta correta – Resposta calculada

X1	X2	CLASSE	CALCULADO	ERRO
0	0	0	0.406	-0.406
0	1	1	0.432	0.568
1	0	1	0.437	0.563
1	1	0	0.458	-0.458

Média absoluta = 0.49

Descida do gradiente (gradient descent)

Computed by Wolfram Alpha

Computed by Wolfram Alpha

Descida do gradiente (gradient descent)

Descida do gradiente (gradient descent)

$$y = \frac{1}{1+e^{-u}}$$
 \longrightarrow $y' = y * (1 - y)$

Derivada função de ativação

Delta camada saída

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

Delta saída = Erro * Derivada ativação

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

Delta saída = Erro * Derivada ativação

Soma = -0.381

Erro = 0 - 0.406 = -0.406

Ativação = 0.406

Derivada ativação= 0.241

Delta saída = -0.406 * = -0.406 * 0.241 = **-0.098** (indica a melhor direção para atualizar os pesos)

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

Delta saída = Erro * Derivada ativação

Soma = -0.274

Erro = 1 - 0.432 = 0.568

Ativação = 0.432

Derivada ativação= 0.245

Delta saída = 0.568 * 0.245 =**0.139**

3° Registro

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

Delta saída = Erro * Derivada ativação

Soma = -0.254

Erro = 1 - 0.437 = 0.563

Ativação = 0.437

Derivada ativação= 0.246

Delta saída = 0.563 * 0.246 = **0.139**

4° Registro

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

Delta saída = Erro * Derivada ativação

Soma = -0.168

Erro = 0 - 0.458 = -0.458

Ativação = 0.458

Derivada ativação= 0.248

Delta saída = -0.458 * 0.248 = -0.114

Delta camada oculta

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

Delta oculta = Derivada ativação * peso * Delta saída

1º Registro Derivada = 0.25

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

Delta oculta = Derivada ativação * peso * Delta saída

Delta saída = -0.098

Delta oculta 1 = 0.25 * (-0.017) * (-0.098) =**0.000**

Delta oculta 2 = 0.25 * (-0.893) * (-0.098) =**0.022**

Delta oculta 3 = 0.25 * 0.148 * (-0.098) = -0.004

2º Registro

Derivada = 0

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

Delta oculta = Derivada ativação * peso * Delta saída

Delta saída = 0.139

Delta oculta 1 = 0.242 * (-0.017) * 0.139 = -0.001

Delta oculta 2 = 0.230 * (-0.893) * 0.139 = -0.029

Delta oculta 3 = 0.236 * 0.148 * 0.139 = **0.005**

3° Registro

Derivada = 0.239

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

Delta oculta = Derivada ativação * peso * Delta saída

Delta saída = 0.139

Delta oculta 1 = 0.239 * (-0.017) * 0.139 = -0.001

Delta oculta 2 = 0.219 * (-0.893) * 0.139 = -0.027

Delta oculta 3 = 0.200 * 0.148 * 0.139 = 0.004

X1	X2	CLASSE
0	0	0
0	1	1
1	0	1
1	1	0

Delta oculta = Derivada ativação * peso * Delta saída

Delta saída = -0.114

Delta oculta 1 = 0.250 * (-0.017) * (-0.114) = 0.000

Delta oculta 2 = 0.167 * (-0.893) * (-0.114) =**0.017**

Delta oculta 3 = 0.156 * 0.148 * (-0.114) = -0.003

Atualização dos pesos (backpropagation)

Peso_{n+1} = (Peso_n * momento) + (entrada * Delta saída * taxa de aprendizagem)

Entrada * Delta saída

Entrada*delta 1 = 0.5 * (-0.098) + 0.589 * 0.139 + 0.396 * 0.139 + 0.484 * (-0.114) = **0.032**

Entrada * Delta saída

Entrada*delta 2 = 0.5 * (-0.098) + 0.360 * 0.139 + 0.323 * 0.139 + 0.211 * (-0.114) = **0.022**

Entrada * Delta saída

Entrada*delta 3 = 0.5 * (-0.098) + 0.385 * 0.139 + 0.277 * 0.139 + 0.193 * (-0.114) = **0.021**

Atualização dos pesos

Peso_{n+1} = (Peso_n * momento) + (entrada * Delta saída * taxa de aprendizagem)

Taxa de aprendizagem = 0.3

Momento = 1

Entrada*delta 1 = 0.032

Entrada*delta 2 = 0.022

Entrada*delta 3 = 0.021

$$W_1 = (-0.017*1) + 0.032 * 0.3 = -0.007$$

 $W_2 = (-0.893 * 1) + 0.022 * 0.3 = -0.886$
 $W_3 = (0.148 * 1) + 0.021 * 0.3 = 0.154$

Entrada * Delta oculta (da 1ª Entrada para o 1º neurônio da camada oculta)

Entrada*delta 1 = 0 * 0.000 + 0 * (-0.001) + 1 * (-0.001) + 1 * 0.000 = -0.001

Entrada * Delta oculta (da 2ª Entrada para o 1º neurônio da camada oculta)

Entrada*delta 1 = 0 * 0.000 + 1 * (-0.001) + 0 * (-0.001) + 1 * 0.000 = **-0.001**

Entrada * Delta oculta (da 1ª Entrada para o 2º neurônio da camada oculta)

Entrada*delta 2 = 0 * 0.022 + 0 * (-0.029) + 1 * (-0.027) + 1 * 0.017 = **-0.010**

Entrada * Delta oculta (da 2ª Entrada para o 2º neurônio da camada oculta)

Entrada*delta 2 = 0 * 0.022 + 1 * (-0.029) + 0 * (-0.027) + 1 * 0.017 = **-0.012**

Entrada * Delta oculta (da 1ª Entrada para o 3º neurônio da camada oculta)

Entrada*delta 3 = 0 * (-0.004) + 0 * 0.005 + 1 * (0.004) + 1 * (-0.003) =**0.001**

Entrada * Delta oculta (da 2ª Entrada para o 3º neurônio da camada oculta)

Entrada*delta 3 = 0 * (-0.004) + 1 * 0.005 + 0 * (0.004) + 1 * (-0.003) =**0.002**

Atualização dos pesos

Peso_{n+1} = (Peso_n * momento) + (entrada * Delta saída * taxa de aprendizagem)

```
Taxa de aprendizagem = 0.3
```

Momento = 1

Entrada*delta n1 = -0.000; -0.000

Entrada*delta n2 = -0.010; -0.012

Entrada*delta n3 = 0.001; 0.002

$$W_1 = (-0.424 *1) + (-0.001 * 0.3) = -0.4243$$

 $W_2 = (0.358 *1) + (-0.001 * 0.3) = 0.3577$
 $W_3 = (-0.740 *1) + (-0.010 * 0.3) = -0.743$
 $W_4 = (-0.577 *1) + (-0.012 * 0.3) = -0.581$
 $W_5 = (-0.961 *1) + (0.001 * 0.3) = -0.961$
 $W_6 = (-0.469 *1) + (0.002 * 0.3) = -0.468$

Taxa de aprendizagem e momento

Taxa de aprendizagem:

- Define o quão rápido o algoritmo vai aprender.
- Alto: convergência é mais rápida mas pode perder um mínimo global.
- Baixo: o processo será mais lento mas tem mais chances de chegar no mínimo global.

Momento

- Escapar de mínimos locais.
- Define o quão confiável foi a última alteração.

Momento e taxa de aprendizagem

Etapas para desenvolver uma RNA

1 - Coleta de dados

 Os dados devem ser significativos e cobrir amplamente o domínio do problema e também as exceções.

2 – Separação em conjuntos

 Dados treinamento, dados de teste e dados de validação (verificar a performance sob condições reais de utilização).

Etapas para desenvolver uma RNA

3 – Configuração da rede

- Seleção do paradigma neural (Supervisionado ou Não-Supervisionado)
- Definição da topologia da rede
- Definição de parâmetros do algoritmo de treinamento e funções de ativação

4 – Treinamento

- Emprego do algoritmo de treinamento
- Ajuste do peso das conexões

5 – Validação ou teste

 Determinar a performance da rede, medida nessa fase, é uma boa indicação de sua performance real.

VALIDAÇÃO CRUZADA

MATRIZ DE CONFUSÃO

	Doente positivo	Doente negativo
Doente positivo	Verdadeiro positivo	Falso negativo
Doente negativo	Falso positivo	Verdadeiro negativo

PROBLEMAS

Principais problemas

- Sobre ajuste (overfitting).
- Falta de ajuste (underfitting).

 Para simular graficamente as redes neurais você poderá acessar o seguinte link (http://playground.tensorflow.org/). Veja o que acontece quando você adicionar mais camadas (layers), neurônios, dados de entrada, etc.

