DEVOIR DE MAISON DE CHIMIE

Synthèse de l'ammoniac

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Ces gaz seront supposés parfaits. On prendra la constante des gaz parfaits $R = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$.

I Grandeurs standards

1°) On donne à 25 °C = 298,15 K :

	$N_2(g)$	$H_2(g)$	$NH_3(g)$
Entropie molaire en J.K ⁻¹ .mol ⁻¹	191.3	130.4	92.2

Déterminer les entropies standards de formation $\Delta_f S^\circ$ de N_2 , H_2 et NH_3 à 298,15 K.

- **2°)** Préfère-t-on utiliser en général les $\Delta_f S^\circ$ ou les S_m° , pourquoi ?
- 3°) On donne à 25 °C = 298,15 K:

	N ₂	H ₂	NH ₃
Enthalpie libre standard de formation $\Delta_f G^\circ$ en kJ.mol ⁻¹	0	0	-16,47

Déterminer les enthalpies standards de formation $\Delta_{\rm f}{\rm H}^{\circ}$ de N $_2$, H $_2$ et NH $_3$ à 298,15 K.

4°) On admet que, dans le domaine de température que l'on aura à considérer, on a, à peu près :

	N ₂	H ₂	NH ₃
Capacité thermique molaire standard,			
à pression constante, $c_{p,m}^{\circ}$ en J.K ⁻¹ .mol ⁻¹	29,4	29,1	38,9

Calculer l'enthalpie standard de réaction $\Delta_r H^\circ$ de l'équilibre

$$N_2(g) + 3 H_2(g) \rightleftarrows 2 NH_3(g)$$
 à 450 K.

- **5°)** Calculer l'entropie standard de réaction Δ_r S° de l'équilibre
- **6°)** $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$ toujours à 450 K.
- **7°)** En déduire la constante K°(T) de l'équilibre $N_2(g) + 3 H_2(g) \rightleftarrows 2 NH_3(g)$:
 - a) à 298,15 K;
 - b) à 450 K.
- **8°)** Conclure quant au déplacement de l'équilibre chimique par augmentation de la température de 298,15 K à 450 K.

- 9°) Aurait-on pu le prédire à partir des résultats du I 3°) uniquement ? Discuter.
- **10°)** Un industriel souhaitant synthétiser l'ammoniac peut-il en déduire la température qu'il aurait intérêt à choisir ?

II Affinité chimique

- 1°) Calculer numériquement la variance v dans le cas le plus général de l'existence de l'équilibre $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ Interpréter.
- 2°) Dans quel sens l'équilibre $N_2(g)+3\,H_2(g)\rightleftarrows 2\,NH_3(g)$ se déplace-t-il si on augmente la pression ?
- 3°) Exprimer l'affinité chimique A de la réaction $N_2(g)+3$ $H_2(g) \rightleftarrows 2$ $NH_3(g)$ en fonction de son K°(T), de la température T, de la pression P et des fractions molaires des gaz : x_{N_2} , x_{H_2} et x_{NH_3} .
- 4°) Que signifie un signe positif pour l'affinité chimique A?
- 5°) Combien vaut A à l'équilibre ?

III Rendement de la synthèse

On part d'un mélange contenant initialement 1 mole de dihydrogène et a moles de diazote, donc sans ammoniac au début.

On maintient définitivement la température T à 450 K et la pression P à 2 bars.

- 1°) Par un calcul différentiel sur les fractions molaires, trouver a pour que la fraction molaire d'ammoniac $x_{\rm NH_3}$ soit maximale. On ne demande pas de calculer $x_{\rm NH_3}$.
- **2°)** Le diazote étant moins onéreux que le dihydrogène, on peut préférer s'intéresser au maximum de moles d'ammoniac que l'on peut espérer à partir d'une mole de dihydrogène. Il faut donc calculer a pour que n_{NH3} soit maximal. Un calcul littéral étant délicat, on se limitera à une recherche purement numérique.
 - a) Par une résolution numérique, calculer n_{NH_3} (3 chiffres significatifs exacts suffiront) pour a variant de 0 à 2 de 0,2 en 0,2. Il est fortement conseillé de vérifier à chaque fois la vraisemblance de la valeur numérique trouvée.
 - b) En déduire l'ordre de grandeur de a rendant n_{NH_3} maximal.

Remarque : une autre méthode (calcul différentiel) permet de déterminer exactement cette valeur de a.

- 3°) Déduire du III 2°) le sens de déplacement de l'équilibre
- $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$ lors d'un ajout d'une petite quantité de diazote. Discuter : peutil y avoir exaltation aussi bien que modération ?