## Sampling Theory

L07

Goal: Images can be thought of as sampled versions of 2D functions. We want to develop a framework for understanding the relationship between a function and its samples.

Consider a continuous-domain function  $f: \mathbb{R} \rightarrow \mathbb{R}$ , and samples of it,  $f_n: \mathbb{Z} \rightarrow \mathbb{R}$ .



To sample f, we multiply by the Shah function.  $s(x) = \sum S(x-n\Delta x)$  (or "comb")



Then, the sampled version of f can be written  $\bar{f}(x) = f(x) s(x) = f(x) \sum_{n \in \mathbb{Z}} S(x-n\Delta x)$ 

Consider the FT of F(x).

$$\mathcal{F}\{\bar{\tau}(x)\}(\omega) = \mathcal{F}\{s(x)f(x)\}(\omega) = (S*F)(\omega)$$

What is S(w)?

$$S(\omega) = \mathcal{F} \{s(x)\}(\omega)$$

$$= \int_{-\infty}^{\infty} (x) e^{-2\pi i \omega x} dx$$

$$= \int_{-\infty}^{\infty} Z S(x - n\Delta x) e^{-2\pi i \omega x} dx$$

$$= Z \int_{-\infty}^{\infty} S(x - n\Delta x) e^{-2\pi i \omega x} dx \qquad (after sumpping Z and I)$$

$$= Z \int_{-\infty}^{\infty} e^{-2\pi i \omega (n\Delta x)}$$

$$= | when w \Delta x = k \in \mathbb{Z} \implies w = \frac{k}{\Delta x}, k \in \mathbb{Z}$$

$$= | when w \Delta x = k \in \mathbb{Z} \implies w = \frac{k}{\Delta x}, k \in \mathbb{Z}$$

$$= | when w \Delta x = k \in \mathbb{Z} \implies w = \frac{k}{\Delta x}, k \in \mathbb{Z}$$

Thus, the FT of the Shah function is also a Shah function, but with different spacing.

$$S(x)$$

$$S(w)$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

Ok, back to 
$$\mathcal{F}(f(n)s(n))(\omega) = (S*F)(\omega)$$
  
 $F(\omega) = \mathcal{F}(f(n))(\omega)$  (S\*F)( $\omega$ )



So, sampling f gives us a periodic FT.

Likewise, a similar derivation can be used to show
that a periodic f yields a discrete FT.

| f(x)                  | F(w)                  |
|-----------------------|-----------------------|
| sampled               | periodic              |
| periodic              | Sampled               |
| periodic<br>& sampled | periodic &<br>Sampled |
| <u>hununu</u>         | MANA                  |

TASK: Do the short quiz in DZL.