Politecnico di Milano	Analisi Matematica II	19 gennaio 2018					
Prof. E. Maluta							
Ing. Informatica e Ing. delle Telecomunicazioni	Prima Parte						
Cognome e Nome:	Matricola:	P	\mathbf{T}	1	2	3	4

Ogni risposta va scritta nello spazio sotto il quesito e motivata con calcoli o/e spiegazioni.

- 1. Determinare l'equazione del piano tangente al grafico della funzione $f(x,y) = x^2 2y^2$ nel punto di coordinate (1,1,f(1,1)).
- 2. Detta $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ la serie di Fourier della funzione 2π -periodica $f(x) = (\cos x \sin x)^2$, determinare a_0, a_1, b_1, b_2 .
- 3. Trovare tutte le soluzioni limitate su \mathbb{R} dell'equazione differenziale y''(t)-4y(t)=1.

4. Calcolare l'integrale doppio $\int_0^1 \int_x^1 y \, dy \, dx$.

5. Determinare il raggio di convergenza della serie di potenze $\sum_{n=1}^{\infty} \frac{1 + \log n}{2^n} z^n.$

6. Calcolare la lunghezza della curva

$$r(t) \begin{cases} x(t) = 1 - \sqrt[4]{t} \\ y(t) = 2 - 2\sqrt[4]{t} \\ z(t) = 3 - 3\sqrt[4]{t} \end{cases}$$
 $(0 \le t \le 1)$.

7. Calcolare la divergenza del campo vettoriale $u(x, y, z) = 1945x\mathbf{i} + 1918z\mathbf{j} - 2018y\mathbf{k}$.

8. Stabilire se il campo vettoriale $v(x,y)=3xy\big(y\mathbf{i}+x\mathbf{j}\big)$ è irrotazionale.

9. Determinare il minimo assoluto della funzione $f(x,y) = \log (e^{x^4+y^2+1}-1)$ in \mathbb{R}^2 .

10. Scrivere due soluzioni linearmente indipendenti dell'equazione y'''(t)-y'(t)=0