Geometry Unit 2: Angles Bronx Early College Academy

Christopher J. Huson PhD

28 September - 7 October 2022

2.1 Angle notation, measures	28 September
2.2 Angle addition	29 September
2.3 Angle pairs	30 September
2.4 Angle bisectors	3 October
2.5 Triangle sum; equilateral, isosceles \triangle angles	4 October
2.6 Review	6 October
2.7 Test: Angle measures	7 October

Open Middle: complementary and supplementary puzzle

Learning Target: I can measure angles

CCSS: HSG.CO.A.1 Know precise geometric definitions

2.1 Wednesday 28 Sept

Do Now: Which takes longer, for a clock's hour hand to go from the 1 to the 4 or the 5 to the 9?

Lesson: Angle measures, internal, external, acute, obtuse, right

Learning Target: I can measure angles

CCSS: HSG.CO.A.1 Know precise geometric definitions

2.1 Wednesday 28 Sept

Do Now: Which takes longer, for a clock's hour hand to go from the 1 to the 4 or the 5 to the 9?

Lesson: Angle measures, internal, external, acute, obtuse, right

Two rays with a common endpoint make an angle

Rays \overrightarrow{BA} and \overrightarrow{BC} , vertex B.

Angle Two rays with a common endpoint, $\angle ABC$ or $\angle B$ Vertex The common end point of two rays making an angle Interior Inside, the area between the two rays Exterior Outside, the area in the angle interior

Two rays with a common endpoint make an angle

Rays \overrightarrow{BA} and \overrightarrow{BC} , vertex B.

Angle Two rays with a common endpoint, $\angle ABC$ or $\angle B$ Vertex The common end point of two rays making an angle Interior Inside, the area between the two rays Exterior Outside, the area in the angle interior $m\angle A$ The "measure" of angle A, how big it is

Babylonian measures: 360° in a circle

Full turn A complete rotation, 360° Half turn A straight line, 180°

Quarter turn A right angle, 90°

Protractor A tool for measuring angles

Babylonian measures: 360° in a circle

Full turn A complete rotation, 360°

Half turn A straight line, 180°

Quarter turn A right angle, 90°

Protractor A tool for measuring angles

Angle terminology and notation

Write definitions in your notebook

Angle Q, written $\angle Q$ (also $\angle PQR$, $\angle 1$)

Point *Q* is the *vertex*

The sides or *legs* are \overrightarrow{QR} , \overrightarrow{QP}

Right angle Angle measuring 90°, mark as small square \square

Perpendicular lines meet at right angles. $AB \perp CD$

Acute angles measure $< 90^{\circ}$

Obtuse angles are $90^{\circ} < \angle m < 180^{\circ}$

Straight angle or straight line measures 180°

Reflex angles measure $180^{\circ} < \angle m < 360^{\circ}$

Learning Target: I can solve for angle measures

CCSS: HSG.CO.A.1 Know precise geometric definitions 2.2 Thursday 29 Sept

Do Now: Given
$$LMN$$
, $LM = 2x - 3$, $MN = x + 7$, $LN = 4x$. Find x

Don't forget to check the solution.

What is the name of the geometry postulate this problem requires?

Angle addition postulate

$$m\angle ABD = 30^{\circ}$$
, $m\angle DBC = 45^{\circ}$. Find $m\angle ABC$.

Lesson: Angle addition problems, vertical angles

Angle addition postulate

For adjacent angles, the sum of their measures is the measure of their combined angle.

Special pairs of angles [make a new slide]

A *linear pair* are two angles that make a straight line.

Opposite rays have a common endpoint and make a line. (They form an angle measuring 180°).

Angles whose measures sum to 180° are supplementary.

Angles whose measures sum to 90° are *complementary*.

Learning Target: I can identify vertical angles

CCSS: HSG.CO.A.1 Know precise geometric definitions 2.3 Friday 30 September

Definition: Vertical angles are angles opposite each other when two lines intersect. $\angle 1$ and $\angle 3$ are vertical angles, as are $\angle 2$ and $\angle 4$.

Lesson: Angle addition problems, vertical angles

Write down definitions in your notebook

Angle pairs

- 1. Adjacent angles share a leg ("next to each other")
- 2. Complementary angles measures sum to 90°
- 3. Supplementary angles sum to 180°
- 4. Vertical or opposite angles made by intersecting lines (1, 2)
- 5. Linear pairs, adjacent angles making a straight line (3, 4)

Angle pairs: check your knowledge

- 1. Complementary angles sum to how many degrees?
- 2. Supplementary angles sum to how many degrees?
- 3. Given complementary angles $\angle A$ and $\angle B$ with $m\angle A=30^\circ$. Find $m\angle B$.
- 4. Given $m\angle A=100^\circ$ and $m\angle B=2x$. Find x such that angles $\angle A$ and $\angle B$ are supplementary.

5. Given vertical angles as shown. Find *x*.

Angle pairs: apply your knowledge

Triangle external angle situation

- 1. Given $m \angle RSU = 115^{\circ}$. Find $m \angle TSU$
- 2. Given S bisects \overline{RT} , $RS = \frac{1}{5}(x+8)$ and ST = x. Find RT.

Write down definitions in your notebook

A postulate is a fundamental statement we agree is true

- 1. Scalene triangles have three unequal sides
- 2. Horizontal, sideways or level
- 3. Vertical, straight up and down
- 4. An angle's *measure*, it's size, is written $m\angle$
- Angle Addition Postulate
 Measures of adjacent angles sum to the resulting angle

$$m\angle 1 + m\angle 2 = m\angle ABC$$

Learning Target: I can bisect angles

CCSS: HSG.CO.A.1 Know precise geometric definitions

2.4 Monday 3 October

Do Now: Given vertical angles measuring 4x + 4 and 52° . Find x.

Lesson: Angle bisector situations

Bisect an angle by dividing it exactly in half

 \overrightarrow{BD} bisects $\angle ABC$ if and only if $\angle ABD \cong \angle CBD$.

Angle bisector ray dividing an angle into two congruent angles

Hash marks mark congruent angles

Model angle situations with algebra, then solve

Given angle bisector \overrightarrow{BD} with m $\angle ABD = 60^{\circ}$ and m $\angle CBD = 2x + 10$. Find x.

Model angle situations with algebra, then solve

Given angle bisector \overrightarrow{BD} with m $\angle ABD = 60^{\circ}$ and m $\angle CBD = 2x + 10$. Find x.

Solution:

$$\angle ABD \cong \angle CBD$$

$$2x + 10 = 60$$

$$2x = 50$$

$$x = 25$$

Check:
$$2(25) + 10 = 60?$$
 \checkmark

Extension: Use angles for compass directions

North South East West, points of the compass

Directions are measured relative to North

Bearing The direction as an angle *clockwise* from north Clockwise The direction the clocks turn, "to the right" (tighten) Counterclockwise Opposite of clocks, "to the left" (loosen)

Extension: Use angles for compass directions

North South East West, points of the compass

Directions are measured relative to North

Bearing The direction as an angle *clockwise* from north Clockwise The direction the clocks turn, "to the right" (tighten) Counterclockwise Opposite of clocks, "to the left" (loosen)

LT: I can work with equilateral and isosceles-right \triangle s

CCSS: HSG.CO.A.1 Know precise geometric definitions 2.5 Tuesday 4 October

Do Now: Given perpendiculars $\overrightarrow{AB} \perp \overrightarrow{BC}$, and that the ray \overrightarrow{BD} bisects $\angle ABC$, making two angles, $\angle 1$ and $\angle 2$.

Find the measures of $\angle 1$, $\angle 2$.

Lesson: Isosceles base theorem, special triangles 60° - 60° - 60° . 30° - 60° - 90° . 45° - 45° - 90°

Equilateral \triangle , special relationships and measures

Equilateral \triangle , special relationships and measures

Equiangular means having equal angles
Equilateral having equal sides

lsosceles-right triangles' angles measure 45° - 45° - 90°

Hypotenuse the longest side of a right triangle, opposite the 90° angle

Angle relationships

Review: Angle postulates and theorems you have learned.

- 1. \perp lines and complementary \angle s make 90°
- 2. linear pairs add to 180°
- 3. vertical \angle s are \cong
- 4. definition of an angle bisector

Open Middle problem (fun)

Use digits from 0 to 9. Using a digit no more than once.

The first two angle measures are complementary. The second two angles supplementary. (degrees)

