Unit 12

——Asynchronous sequential circuit design

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

异步时序逻辑设计的特点

- 异步时序电路中,没有统一的时钟脉冲
- 异步时序电路中要求每次输入信号发生变化后,必须等电路 进入稳定状态,才允许输入信号再次发生改变
- 时钟脉冲作为一个输入变量考虑
- 为避免电路中出现竞争冒险,异步时序电路中每一时刻仅允许一个输入信号发生变化,不允许两个脉冲同时输入。n 个额入端有n+1个输入组合

如:异步时序中, X₁X₂X₃是三个输入端, 有四种输入组合: 000、001、010、100。

000——表示没有脉冲输入。

011、101、110、111是不允许出现的组合

例1:用D触发器设计一个 X_1 - X_2 - X_2 脉冲序列检测器,其中 X_1 、 X。为不同时出现的脉冲。

1. 建立原始状态表

① 设状态

S₀:初始状态,X₁X₂=00

S₁: 收到X₁, X₁X₂=10

S₂: 收到X₁-X₂,即10→01

S₃: 收到X₁-X₂-X₂, 即10→01→01, 且Z=1。

只标记感兴 趣的子序列

② 状态转换情况

③ Mealy 状态图

④ 状态表

现态	Q ⁿ⁺¹ / Z				
Qn	$X_1X_2=00$	$X_1X_2=01$	$X_1X_2=10$		
S ₀	S ₀ /0	S ₀ /0	S ₁ /0		
S ₁	S ₁ / 0	$S_2/0$	S ₁ /0		
S ₂	S ₂ /0	S ₃ /1	S ₁ /0		
S_3	S ₃ /0	S ₀ /0	S ₁ / 0		

2. 状态表化简

现态	Q ⁿ⁺¹ / Z			
Qn	$X_1X_2=00$	X ₁ X ₂ =01	X ₁ X ₂ =10	
S ₀	S ₀ /0	S ₀ /0	S ₁ /0	1
S₁	S ₁ / 0	S ₂ /0	S ₁ /0	
S ₂	S ₂ /0	S ₃ /1	S ₁ /0	
S_3	S ₃ /0	S ₀ /0	S ₁ / 0	√

现态		Q ⁿ⁺¹ / Z	
Qn	X ₁ X ₂ =00	X ₁ X ₂ =01	X ₁ X ₂ =10
S ₀	S ₀ / 0	S ₀ /0	S ₁ /0
S ₁	S ₁ /0	S ₂ /0	S ₁ /0
S ₂	S ₂ /0	S ₀ /1	S ₁ /0

3. 状态编码

原则1: S_0S_2 、 S_0S_1 、 S_1S_2 应取相邻编码

原则2: S₀S₁ 、 S₁S₂ 、 S₀S₂ 应取相邻编码 ➡

原则3: S_0S_2 、 S_0S_1 、 S_1S_2 应取相邻编码

\	0	1
0	So	S ₁
1	S ₂	

S₀: 00 S₁: 01 S₂: 10

4、D触发器的激励表

将CP看作控制函数,D触发器的特

征表达式为:

 $Q^{n+1} = D.CP + Q^n.\overline{CP}$

 $CP=1, Q^{n+1}=D$ $CP=0, Q^{n+1}=Q$

驱动表

Q _n	\rightarrow	Q_{n+1}	СР	D
0	\rightarrow	0	0	X
0	\rightarrow	1	1	1
1	\rightarrow	0	1	0
1	\rightarrow	1	0	Х

\	0	1
0	So	S ₁
1	S ₂	

S_0 :	00
S ₁ :	01
S ₂ :	10

现态	Q ⁿ⁺¹ / Z			
Qn	$X_1X_2=00$	$X_1X_2 = 01$	$X_1X_2=10$	
So	S ₀ /0	S ₀ / 0	S ₁ /0	
S ₁	S ₁ /0	S ₂ /0	S ₁ /0	
S ₂	S ₂ /0	S ₀ /1	S ₁ /0	

M定CP₂: 看Q₂n→Q₂n+1 确定CP₁: 看Q₁ⁿ→Q₁ⁿ⁺¹

确定 D_2 : 看 CP_2 和 Q_2^{n+1} 确定D₁:看CP₁和Q₁n+1

	MINED]: ACTIVACI										
	输	入	及现	态	次	态			输入	1	输出
	X ₁	X ₂	Q ₂ n	Q ₁ n	Q_2^{n+1}	Q ₁ n+1	CP ₂	D_2	CP ₁	D_1	Z
	0	0	0	0	0	0	0	X	0	X	0
	0	0	0	1	0	1	0	X	0	X	0
	0	0	1	0	1	0	0	X	0	X	0
	0	0	1	1	X	X	X	X	X	X	X
	0	1	0	0_	0	0	0	X	0	X	0
	0	1	0	1′	1	' 0	1	1	1	0	0
	0	1	1	0	0	0	1	0	0	X	1
N	0	1	1	1	X	X	X	X	X	X	X
V	1	0	0	0	0	_ 1	0	X	1	1	0
	1	0	0	1_	0	1	0	X	0	X	0
	1	0	1,	Ó	Q	1	1	0	1	1	0
	1	0	1	1	X	X	X	X	X	X	X
	1	1	0	0	X	X	X	X	X	X	X
	1	1	0	1	X	X	X	X	X	X	X
	1	1	1	0	X	X	X	X	X	X	X
	1	1	1	1	Х	X	X	X	X	X	X

5. 卡诺图化简

$$CP_2 = X_2Q_1^n + Q_2^n X_2 + X_1Q_2^n$$

$$D_2 = Q_1^n$$

$$CP_1 = \overline{Q}_1^n X_1 + Q_1^n X_2$$

X_1X_2	ⁿ Q ₁ ⁿ 00	01	11	10
00	0	0	X	0
01	0	0	X	1
11	X	X	X	X
10	0	0	X	0

$$Z = X_2 Q_2^n$$

X_1X_2 Q_2	ⁿ Q ₁ ⁿ 00	01	11	10_
00	X	X	X	X
01	X	0	X	X
11	X	X	X	X
10	1	X	X	1

$$D_1 = \overline{Q}_1^n$$

6. 逻辑图

7. 检查无关项

无关状态: $Q_2^nQ_1^n=11$

X₁X₂分别为 00, 01,10时,带入计算

$$\begin{cases} Q_2^{n+1} = D_2 = Q_1^n ; & CP_2 = X_2Q_1^n + Q_2^n X_2 + X_1Q_2^n \\ Q_1^{n+1} = D_1 = \overline{Q}_1^n ; & CP_1 = \overline{Q}_1^n X_1 + Q_1^n X_2 \\ Z = X_2Q_2^n \end{cases}$$

例2:用D触发器设计一个 X_1 - X_2 - X_3 异步脉冲序列检测器,其中 X_1 、 X_2 、 X_3 为不同时出现的脉冲

1. 建立原始状态表

①设状态

S₀: 初始状态, X₁X₂X₃=000

S₁: 收到X₁, X₁X₂X₃=100

S₂: 收到X₁-X₂, 即100 →010

S₃: 收到X₁-X₂-X₃,即100→010→001,且Z=1。

③ Mealy 状态图

状态表

现态	Q ⁿ⁺¹ / Z						
Qn	$X_1X_2X_3 = 000$	$X_1X_2X_3=100$	$X_1X_2X_3 = 010$	$X_1X_2X_3=001$			
So	S ₀ /0	S ₁ /0	S ₀ /0	S ₀ /0			
S ₁	S ₁ / 0	S ₁ /0	S ₂ /0	S ₀ /0			
S ₂	S ₂ / 0	S ₁ /0	S ₀ / 0	S ₃ / 1			
S_3	S ₃ /0	S ₁ /0	S ₀ / 0	S ₀ / 0			

2. 状态表化简

现态	Q ⁿ⁺¹ / Z			
Qn	$X_1X_2X_3 = 000$	$X_1X_2X_3=100$	$X_1X_2X_3 = 010$	$X_1X_2X_3=001$
S ₀	S ₀ /0	S ₁ /0	S ₀ /0	S ₀ /0
S ₁	S₁/ 0	S ₁ /0	S ₂ /0	S ₀ /0
S ₂	S ₂ /0	S ₁ /0	S ₀ / 0	S ₃ / 1
S ₃	S ₃ /0	S ₁ /0	S ₀ / 0	S ₀ / 0

现态	Q ⁿ⁺¹ / Z				
Qn	$X_1X_2X_3=000$	$X_1X_2X_3=100$	$X_1X_2X_3=010$	$X_1X_2X_3=001$	
S ₀	S ₀ /0	S ₁ /0	S ₀ /0	S ₀ /0	
S ₁	S ₁ / 0	S ₁ /0	S ₂ /0	S ₀ / 0	
S ₂	S ₂ /0	S ₁ /0	S ₀ / 0	S ₀ / 1	

3. 状态编码

原则1: S_0S_2 、 S_0S_1 、 S_1S_2 应取相邻编码

原则2: S_0S_1 、 S_1S_2 、 S_0S_2 应取相邻编码

原则3: S_0S_2 、 S_0S_1 、 S_1S_2 应取相邻编码

S_0 :	00
S ₁ :	01
S_2 :	10

4、 状态转换真值表

D触发器驱动表

Q _n	\rightarrow	Q_{n+1}	СР	D
0	\rightarrow	0	0	X
0	\rightarrow	1	1	1
1	\rightarrow	0	1	0
1	\rightarrow	1	0	Х

S₀: 00 S₁: 01 S₂: 10

状态转换真值表?