13.2 习题

张志聪

2025年2月19日

13.2.1

方法一: 使用连续的定义证明

• (a)

 $- \Rightarrow$

对任意 $\epsilon>0,\frac{1}{\sqrt{2}}\epsilon$,因为 f 在 x_0 处连续,存在 $\delta_f>0$ 使得只要 $d_X(x,x_0)<\delta_f$,就有

$$d_{l^2}(f(x), f(x_0)) = |f(x) - f(x_0)| < \frac{1}{\sqrt{2}}\epsilon$$

类似地,存在 $\delta_g > 0$ 使得只要 $d_X(x,x_0) < \delta_g$,就有

$$d_{l^2}(g(x), g(x_0)) = |g(x) - g(x_0)| < \frac{1}{\sqrt{2}}\epsilon$$

综上, $\delta < min(\delta_f, \delta_g)$, 使得只要 $d_X(x, x_0) < \delta$, 就有

$$d_{l^{2}}(f \oplus g(x), f \oplus g(x_{0})) = d_{l^{2}}((f(x), g(x)), (f(x_{0}), g(x_{0})))$$

$$= \sqrt{|f(x) - f(x_{0})|^{2} + |g(x) - g(x_{0})|^{2}}$$

$$< \epsilon$$

所以 $f \oplus g$ 在 x_0 处是连续的。

- =

任意 $\epsilon > 0$,由于 $f \oplus g$ 在 x_0 处是连续的,所以存在 $\delta > 0$ 使得只要 $d_X(x,x_0) < \delta$,就有

$$d_{l^{2}}(f \oplus g(x), f \oplus g(x_{0})) = d_{l^{2}}((f(x), g(x)), (f(x_{0}), g(x_{0})))$$

$$= \sqrt{|f(x) - f(x_{0})|^{2} + |g(x) - g(x_{0})|^{2}}$$

$$< \epsilon$$

由此可得

$$|f(x) - f(x_0)| < \epsilon$$

$$|g(x) - g(x_0)| < \epsilon$$

即

$$d_{l^2}(f(x), f(x_0)) < \epsilon$$

$$d_{l^2}(g(x), g(x_0)) < \epsilon$$

于是可得 f,g 在 x_0 处是连续的。

• (b)

可以由 (a) 直接推出。

方法二: 使用书中的提示

• (a)

 $- \Rightarrow$

任意 $(x^{(n)})_{n=1}^{\infty}$ 是 X 中依度量 d_X 收敛于 x_0 的序列,因为 f,g 在 x_0 处连续,由命题 13.1.4(b) 可知,序列 $(f(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $f(x_0)$ (书中有说在没有特殊说明的时,提到度量空间 $R^n(n \geq 1)$ 指的就是欧几里得度量)。序列 $(g(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $g(x_0)$ 。

由命题 12.1.18(d) 可知, $(f(x^{(n)}),g(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $(f(x_0),g(x_0))$,由 13.1.4(b) 可知 $f\oplus g$ 在 x_0 处是连续的。

 $- \Leftarrow$

任意 $(x^{(n)})_{n=1}^{\infty}$ 是 X 中依度量 d_X 收敛于 x_0 的序列,因为 $f \oplus g$ 在 x_0 处是连续的,由命题 13.1.4(b) 可知,序列 $(f \oplus g(x^{(n)}))_{n=1}^{\infty} = (f(x^{(n)}), g(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $(f(x_0), g(x_0))$,由命题 12.1.18(d) 可知序列 $(f(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $f(x_0)$,序列 $(g(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $g(x_0)$,所以由 13.1.4(b) 可知 f, g 在 x_0 处连续。

• (b) 可以由 (a) 直接推出。

13.2.2

任意 $(x_0, y_0) \in \mathbb{R}^2$,设 $(x^{(n)})_{n=1}^{\infty}$ 是 \mathbb{R}^2 中依度量 d_{l^2} 收敛于 (x_0, y_0) 的序列,对任意 $n \in \mathbb{N}$, $x^{(n)} = (a_n, b_n)$,由命题 12.1.18 可知,序列 $(a_n)_{n=1}^{\infty}$ 收敛于 x_0 ,序列 $(b_n)_{n=1}^{\infty}$ 收敛于 x_0 。由定理 6.1.19(极限定律)可知

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$
$$= x_0 + y_0$$

由定理 13.1.4(连续性保持收敛性)(b) 可知,函数 f(x,y) = x+y 在点 (x_0,y_0) 处是连续的。由 (x_0,y_0) 的任意性可知 f(x,y) = x+y 是连续的。同理可证其他函数。

13.2.3

定义 $g:X\to\mathbb{R}$,任意 $x\in X$ 都有 g(x)=0,于是 $g:X\to\mathbb{R}$ 是连续函数。又由于 |f|(x)=max(f(x),-f(x))=max(f(x),g(x)-f(x)),因为 $f:X\to\mathbb{R},g:X\to\mathbb{R}$ 是一个连续函数,由推论 13.2.3 可知 $g-f:X\to\mathbb{R}$ 是连续函数,再次利用推论 13.2.3 可知 $|f|:X\to\mathbb{R}$ 也是连续函数。

13.2.4

(1)

任意 $(x_0,y_0) \in \mathbb{R}^2$,设 $(x^{(n)})_{n=1}^{\infty}$ 是 \mathbb{R}^2 中依度量 d_{l^2} 收敛于 (x_0,y_0) 的序列,对任意 $n \in \mathbb{N}$, $x^{(n)} = (a_n,b_n)$ 。

由命题 12.1.18 可知,序列 $(a_n)_{n=1}^\infty$ 收敛于 x_0 ,序列 $(b_n)_{n=1}^\infty$ 收敛于 y_0 。于是

$$\lim_{n \to \infty} (\pi_1(x^{(n)})) = \lim_{n \to \infty} a_n = x_0 = \pi_1(x_0, y_0)$$

所以 π_1 是连续的;

同理可证 π_2 是连续的。

(2)

 $g_1(x,y) = f(\pi_1(x,y)) = f \circ \pi_1(x,y)$, 由推论 13.1.7 可知 g_1 是连续的; 同理可证 g_2 是连续的。

13.2.5

(1)

任意 $0 \le i \le n$ 和 $0 \le j \le m$,

$$c^{ij}x^iy^j=c^{ij}\pi_1^i(x,y)\pi_2^j(x,y)$$

由推论 13.2.3(b) 可知是连续函数。再次利用推论 13.2.3(b) 可知,有限个连续函数相加的结果是连续函数。

(2)

证明参考推论 13.2.3 的证明。

因为 f,g 都是连续的,那么 $f\oplus g$ 是连续的。由(1)可知函数 P 是连续的。我们把这两个函数复合在一起,那么根据推论 13.1.7 可知, $P(f,g)(x):X\to\mathbb{R}$ 是连续的。

13.2.6

• ⇒

证明方法与习题 13.2.1 的证明方法(方法二)相同,不再赘述。

• =

成立;证明方法与习题 13.2.1 的证明方法(方法二)相同,不再赘述。

13.2.7

这道题,没有用书中的提示证明。使用的证明方法与习题 13.2.5 一致。任意 $(i_1,i_2,\ldots,i_k)\in I$, $c(i_1,i_2,\ldots,i_k)$ 是常数, $x_1^{i_1},x_2^{i_2},\ldots,x_k^{i_k}$ 由习题 13.2.4 和推论 13.2.3(b) 可知分别都是连续的,再次利用推论 13.2.3(b) 可知 $c(i_1,i_2,\ldots,i_k)x_1^{i_1}x_2^{i_2}\ldots x_k^{i_k}$ 是连续函数。

因为 I 是有限子集,由推论 13.2.3(b) 可知有限个连续函数相加的结果 是连续函数,即 $P(x_1,\ldots,x_k)$ 是连续函数。

13.2.8

(1) $(X \times Y, d_{X \times Y})$ 是度量空间。证明度量是否满足四个公理

• (a)

对任意的 $(x,y) \in X \times Y$,

$$d_{X \times Y}((x, y), (x, y)) = d_X(x, x) + d_Y(y, y) = 0$$

注意,因为 (X, d_X) , (Y, d_Y) 都是度量空间,所以 $d_X(x, x) = 0$, $d_Y(y, y) = 0$ 。

• (b) 正性

对任意两个不同的 $(x,y),(x',y') \in X \times Y$,

$$d_{X\times Y}((x,y),(x',y')) = d_X(x,x') + d_Y(y,y') > 0$$

注意,因为 $(X,d_X),(Y,d_Y)$ 都是度量空间,所以 $d_X(x,x')>0, d_Y(y,y')>0$ 。

• (c) 对称性

对任意两个 $(x,y),(x',y') \in X \times Y$,

$$d_{X\times Y}((x,y),(x',y')) = d_X(x,x') + d_Y(y,y')$$

= $d_X(x',x) + d_Y(y',y)$
= $d_{X\times Y}((x',y'),(x,y))$

• (d) 三角不等式

对任意三个 $(x,y),(x',y'),(x'',y'') \in X \times Y$,

$$\begin{aligned} d_{X\times Y}((x,y),(x'',y'')) \\ &= d_X(x,x'') + d_Y(y,y'') \\ &\leq d_X(x,x') + d_X(x',x'') + d_Y(y,y') + d_Y(y',y'') \\ &= d_{X\times Y}((x,y),(x',y')) + d_{X\times Y}((x',y'),(x'',y'')) \end{aligned}$$

综上, $(X \times Y, d_{X \times Y})$ 是度量空间。

(2) 与命题 12.1.18 类似的结论。

如果 $(x^{(k)})_{k=1}^{\infty}$ 是度量空间 $(X \times Y, d_{X \times Y})$ 中的序列,其中 $x^{(k)} = (x_1^{(k)}, x_2^{(k)}), x_1^{(k)} \in X, x_2^{(k)} \in Y$, $x = (x_1, x_2)$ 是 $X \times Y$ 中的点,那么下面两个命题是等价的。

- (a) $(x^{(k)})_{k=1}^{\infty}$ 收敛于 x。
- (b) 序列 $(x_1^{(k)})_{k=1}^{\infty}$ 在 X 中收敛于 x_1 ,序列 $(x_1^{(k)})_{k=1}^{\infty}$ 收敛于 x_2 。证明:
- $(a) \Rightarrow (b)$

如果 (a) 成立, 那么对任意 $\epsilon > 0$, 存在 N > 1 使得

$$d_{X\times Y}(x^{(k)},x)<\epsilon$$

对任意 $k \ge N$ 均成立。

我们有

$$d_{X\times Y}(x^{(k)}, x) = d_X(x_1^{(k)}, x_1) + d_Y(x_2^{(k)}, x_2)$$

于是可得

$$\begin{cases} d_X(x_1^{(k)}, x_1) < \epsilon \\ d_Y(x_2^{(k)}, x_2) < \epsilon \end{cases}$$

对任意 k N 均成立, 所以(b)成立。

• (b) \Rightarrow (a)

如果 (b) 成立,序列 $(x_1^{(k)})_{k=1}^\infty$ 在 X 中收敛于 x_1 ,那么,对任意 $\epsilon>0$ 存在 $N_X\geq 1$ 使得

$$d_X(x_1^{(k)}, x_1) < \frac{1}{2}\epsilon$$

对任意 $k \ge N_X$ 均成立。

类似地,存在 $N_V > 1$ 使得

$$d_Y(x_2^{(k)}, x_2) < \frac{1}{2}\epsilon$$

对任意 $k \ge N_Y$ 均成立。

综上,存在 $N = max(N_X, N_Y)$ 使得

$$d_{X\times Y}(x^{(k)},x) = d_X(x_1^{(k)},x_1) + d_Y(x_2^{(k)},x_2) < \epsilon$$

对任意 k > N 均成立, 所以 (a) 成立。

(3) 与引理 13.2.1 类似的结论。

 (Z,d_Z) 也是度量空间,设 $f:Z\to X$ 和 $g:Z\to Y$ 是两个函数, $f\oplus g:Z\to X\times Y$ 是它们的直和。

- (a) 设 $z_0 \in X$, 那么 f 和 g 都在 z_0 处连续,当且仅当 $f \oplus g$ 在 z_0 处是连续的。
 - (b) f 和 g 都是连续的,当且仅当 $f \oplus g$ 是连续的。证明:
 - (a)

 $- \Rightarrow$

f,g 都在 z_0 处连续,那么由定理 13.1.4(b) 可知,对任意 $(z^n)_{n=1}^{\infty}$ 是 Z 中依度量 d_Z 收敛于 z_0 ,那么序列 $(f(z^{(n)}))_{n=1}^{\infty}$ 和 $(g(z^{(n)}))_{n=1}^{\infty}$ 分别依度量 d_X, d_Y 收敛于 $f(z_0), g(z_0)$ 。

于是存在 N 使得

$$\begin{cases} d_X(f(z^{(n)}), f(z_0)) < \frac{1}{2}\epsilon \\ d_Y(g(z^{(n)}), g(z_0)) < \frac{1}{2}\epsilon \end{cases}$$

对所有的 $n \ge N$ 均成立。

于是我们有

 $d_{X\times Y}((f(z^{(n)}),g(z^{(n)})),(f(z_0),g(z_0))) = d_X(f(z^{(n)}),f(z_0)) + d_Y(g(z^{(n)}),g(z_0)) < \epsilon$

对所有的 $n \ge N$ 均成立。

综上可得,序列 $(f\oplus g(z^{(n)}))_{n=1}^\infty$ 依度量 $d_{X\times Y}$ 收敛于 $f\oplus g(z_0)$,所以 $f\oplus g$ 在 z_0 处是连续的。

 $- \Leftarrow$

逆命题证明过程类似, 略。

• (b)

可以通过(a)推出(b)。

13.2.9

说明 1. 这道题应该有错误, $\lim_{x \to x_0} \lim_{y \to y_0} \sup f(x,y)$ 应该改成 $\lim_{x \to x_0} \lim_{y \to y_0} \sup f(x,y)$ 。 因为前一个公式没见过,而且也是为了能够利用题目中的 $\lim_{x \to x_0} \sup f(x) := \inf \sup_{r > 0} \int f(x)$,(注意,这里表示的是,随着 r 趋近于零时,函数 f(x) 在 x_0 附近的最大值的极限)不然我证明不出来。

说明 2. 书中 $\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)$ 没有具体说明,这里做一个补充:表达式 $\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)$ 代表的是对双变量函数 f(x,y) 进行逐次极限的操作。具体来说,这个表达式表示的是:

- 首先,对于固定的 x 值,求当 y 趋近于 y_0 时的极限,即 $\lim_{y\to y_0} f(x,y)$ 。 这个过程得到的结果是一个关于 x 的函数 $g(x):=\lim_{y\to y_0} f(x,y)$
- 然后,研究 g(x),看看 $\lim_{x \to x_0} g(x)$ 是否收敛。

(1)

因为 f 在 (x_0, y_0) 处是连续的,那么,对任意 $\epsilon > 0$,对存在 $\delta > 0$,使得只要 $d_{l^2}((x,y),(x_0,y_0)) = \sqrt{|x-x_0|^2 + |y-y_0|^2} < \delta$,就有 $d_{l^2}(f(x,y),f(x_0,y_0)) = |f(x,y)-f(x_0,y_0)| < \epsilon$ 。

固定 x 且 $x\in B(x_0,\frac12\delta)$,那么 F(y):=f(x,y) 是从 $\mathbb R$ 到 $\mathbb R$ 的函数。综上可得,当 $|y-y_0|<\frac12\delta$ 时,

$$F(y) < f(x_0, y_0) + \epsilon$$

于是可得

$$\lim \sup_{y \to y_0} F(y) := \inf_{r > 0} \sup_{|y - y_0| < r} F(y) \le f(x_0, y_0) + \epsilon$$

即

$$|\lim \sup_{y \to y_0} F(y) - f(x_0, y_0)| < \epsilon$$

由定义 9.3.6 可知, $\lim_{x \to x_0} \lim \sup_{y \to y_0} f(x, y) = f(x_0, y_0)$ 。

其他情况同理。

(2) 特别地(没有找到好的表达方式,就当是一个参考吧) 固定 x = x',接下来比较

$$\begin{cases}
\lim \sup_{y \to y_0} f(x', y) \\
\lim_{y \to y_0} f(x', y)
\end{cases}$$

任意 r > 0, $y' \in B(y_0, r)$,

$$\sup_{|y - y_0| < r} f(x', y) \ge f(x', y')$$

于是由引理 6.4.13(比较原理)可得,

$$\lim \sup_{y \to y_0} f(x',y) \ge \lim_{y \to y_0} f(x',y)$$

所以

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) \le \lim_{x \to x_0} \lim \sup_{y \to y_0} f(x, y) = f(x_0, y_0)$$

同理可得

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) \le \lim_{x \to x_0} \lim \inf_{y \to y_0} f(x, y) = f(x_0, y_0)$$

综上 $\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = f(x_0, y_0)$ 。 类似地, $\lim_{y \to y_0} \lim_{x \to x_0} f(x, y) = f(x_0, y_0)$ 。

所以,

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y) = f(x_0, y_0)$$

13.2.10

函数 $y \mapsto f(x,y)$ 其中 x 是固定值,对任意 $\epsilon > 0, y_0 \in \mathbb{R}$,因为 f 是一 个连续函数,存在 $\delta > 0$ 使得只要 $\sqrt{|x-x|^2 + |y-y_0|^2} = |y-y_0| < \delta$,就 有

$$f(x,y) - f(x,y_0) < \epsilon$$

综上可得,对任意 $\epsilon > 0$,都存在 $\delta > 0$,使得只要 $|y - y_0| < \delta$ (与 x 无关),就有

$$f(x,y) - f(x,y_0) < \epsilon$$

所以函数 $y\mapsto f(x,y)$ 在 y_0 处是连续的,由此可以推出其在 $\mathbb R$ 上连续。 同理可证 $x\mapsto f(x,y)$ 也是在 $\mathbb R$ 上连续的。

13.2.11

- (1) 固定的 $x \in \mathbb{R}$,函数 $y \mapsto f(x,y)$ 在 \mathbb{R} 是连续的。固定的 $y \in \mathbb{R}$,函数 $x \mapsto f(x,y)$ 在 \mathbb{R} 是连续的。
 - x = 0
 如果 y = 0 此时 f(x,y) = 0;
 任意 y ≠ 0 都有

$$f(x,y) = \frac{xy}{x^2 + y^2} = \frac{0}{y^2} = 0$$

由此可得当 x=0 时,f(x,y) 是常数函数,所以,函数 $y\mapsto f(x,y)$ 在 $\mathbb R$ 是连续的。

x ≠ 0任意 y 都有

$$f(x,y) = \frac{xy}{x^2 + y^2}$$

由于 $x^2 + y^2 > 0$,且分子分母都是连续函数,利用推论 13.2.3(b) 可知,函数 $y \mapsto f(x,y)$ 在 $\mathbb R$ 是连续的。

同理可证,固定的 $y \in \mathbb{R}$,函数 $x \mapsto f(x,y)$ 在 \mathbb{R} 是连续的。 (2) 函数 $f: \mathbb{R}^2 \to \mathbb{R}$ 在 \mathbb{R}^2 上不连续。

举一个反例。对任意 $\delta>0, x=y\neq 0$ 使得

$$d_{l^2}((x,y),(0,0)) < \delta$$

此时

$$f(x,y) = \frac{xy}{x^2 + y^2} = \frac{x^2}{2x^2} = \frac{1}{2} \neq f(0,0) = 0$$

可见,满足连续定义的 $\delta>0$ 不存在,所以 f 在 (0,0) 处不连续,那么, f 在 \mathbb{R}^2 上不连续。