

[영역] 5.기하

중 3 과정

5-3-1.삼각비의 값, 삼각비를 이용하여 변의 길이 구하기

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2016-10-25

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

1. 직각삼각형에서 삼각비의 값 구하기

 \angle B=90°인 직각삼각형 ABC에서 \angle A의 삼각비

1)
$$\sin A = \frac{\left(\frac{1}{2} \circ \right)}{\left(\frac{1}{2} \circ \right)} = \frac{a}{b}$$

2)
$$\cos A = \frac{(밑변의 길이)}{(빗변의 길이)} = \frac{c}{b}$$

3)
$$\tan A = \frac{\left(\frac{1}{2} \circ \right)}{\left(\frac{1}{2} \circ \right)} = \frac{a}{c}$$

 $\Rightarrow \sin A, \cos A, \tan A = \angle A$ 의 삼각비라고 한다.

·· 주호

● 기준각에 따라 직각삼각형에서 높이 와 밀변이 바뀌므로 주의한다.

참고

● 닮은 직각삼각형에서 같은 각에 대 한 삼각비의 값은 같다.

2. 삼각비의 값을 알 때

1) 삼각형의 변의 길이 구하기

직각삼각형에서 한 변의 길이와 삼각비의 값을 알 때, 나머지 두 변의 길이는

- (1) 주어진 삼각비의 값을 이용하여 한 변의 길이를 구한다.
- (2) 피타고라스 정리를 이용하여 나머지 한 변의 길이를 구한다.
- 2) 다른 삼각비의 값 구하기

삼각비에서 sin, cos, tan 중 하나의 값을 알 때, 다른 두 삼각비의 값은

- (1) 주어진 삼각비를 가지는 간단한 직각삼각형을 그린다.
- (2) 피타고라스 정리를 이용하여 나머지 한 변의 길이를 구한다.
- (3) 다른 두 삼각비의 값을 구한다.

B

삼각비의 값

☐ 다음 그림과 같은 직각삼각형 ABC에서 다음 삼각비의 값을 구하여라.

- 1. $\sin A$
- $2. \cos A$
- 3. tan A
- 4. $\sin C$
- 5. $\cos C$
- 6. tan C

☐ 다음 그림과 같은 직각삼각형 ABC에서 다음 삼각비의 값을 구하여라.

- 7. $\sin A$
- 8. $\cos A$
- 9. tan A
- 10. $\sin C$
- 11. $\cos C$
- 12. tan C

☑ 다음 그림을 보고 ◯ 안에 알맞은 선분을 써넣어라.

- 13. $\sin A = \frac{\Box}{\overline{AC}} = \frac{\overline{DE}}{\Box} = \frac{\Box}{\overline{AF}}$
- 14. $\cos A = \frac{\Box}{\overline{AC}} = \frac{\overline{AE}}{\Box} = \frac{\Box}{\overline{AF}}$
- 15. $\tan A = \frac{\Box}{\overline{AB}} = \frac{\overline{DE}}{\overline{AG}} = \frac{\Box}{\overline{AG}}$

☑ 다음 그림을 보고 ○ 안에 알맞은 선분을 써넣어라.

- 16. $\sin x = \frac{\Box}{\overline{BC}} = \frac{\overline{AH}}{\Box} = \frac{\Box}{\overline{AC}}$
- 17. $\cos x = \frac{\overline{AB}}{\Box} = \frac{\overline{BH}}{\Box} = \frac{\overline{\overline{BH}}}{\overline{\overline{AC}}}$
- 18. $\tan x = \frac{\Box}{\overline{AB}} = \frac{\overline{AH}}{\Box} = \frac{\Box}{\overline{AH}}$

☑ 다음 그림을 보고 ○ 안에 알맞은 선분을 써넣어라.

- 19. $\sin x = \frac{\Box}{\overline{AD}} = \frac{\overline{AB}}{\Box}$
- 20. $\cos x = \frac{\overline{DE}}{\Box} = \frac{\Box}{\overline{AC}}$
- 21. $\tan x = \frac{\Box}{\overline{DE}} = \frac{\Box}{\overline{BC}}$

\square 다음 그림의 직각삼각형 ABC에서 $\overline{DE} \perp \overline{BC}$ 일 때, 다음을 구하여라.

- △ABC**와 닮음인 삼각형**
- 23. \triangle ABC**에서** $\angle x$ 와 크기가 같은 각
- 24. $\sin x$
- 25. $\cos x$
- 26. $\tan x$

☑ 다음 그림의 직각삼각형 ABC에서 다음을 구하여라.

- 27. \triangle ABC에서 $\angle x$ 와 크기가 같은 각
- 28. $\triangle ABC$ 에서 $\angle y$ 와 크기가 같은 각
- 29. $\sin x$
- 30. $\cos x$
- 31. $\tan x$
- 32. $\sin y$
- 33. $\cos y$
- 34. tan y

Arr $\overline{DE} \perp \overline{BC}$ 일 때, ① $\sin x$, ② $\cos x$, ③ $\tan x$ 의 값을 구하여라.

35.

36.

Arr ∠B = 90°인 다음 그림과 같은 직각삼각형 ABC에서 $\overline{\rm DE} \perp \overline{\rm BC}$ 일 때, ① $\sin x$, ② $\cos x$, ③ $\tan x$ 의 값을 구하여라.

37.

38.

ightharpoonup 다음 그림과 같은 직각삼각형 ABC 애서 sin C, cos C, tan C의 값을 구하여라.

39.

40.

41.

42.

43.

44.

49.

45.

50.

46.

51.

ightharpoonup 다음 그림과 같은 직각삼각형 ABC에서 sin A, cos A, tan A의 값을 구하여라.

47.

52.

48.

53.

☑ 다음 그림은 한 모서리의 길이가 1인 정육면체이다. $\angle BHF = x$ 라고 할 때, 다음 물음에 답하여라.

- 54. FH의 **길이를 구하여라.**
- 55. BH 의 **길이를 구하여라.**
- 56. $\sin x$ 의 값을 구하여라.
- 57. cosx의 값을 구하여라.
- 58. tanx의 값을 구하여라.
- ☑ 다음 그림과 같은 정육면체에서 삼각비
 - (1) tanx, (2) sinx, (3) cosx의 값을 구하여라.
- 59.

60.

61.

삼각비의 값을 알 때, 변의 길이 구하기

- ☑ 그림에서 한 변의 길이와 삼각비의 값이 다음과 같이 주어질 때, x의 값을 구하여라.
- 62. $\sin A = \frac{2}{3}$

 $63. \quad \cos A = \frac{2\sqrt{2}}{5}$

64. $\cos A = \frac{2\sqrt{2}}{3}$

65. $\tan A = \frac{\sqrt{3}}{3}$

 $\sin A = \frac{12}{13}$ 66.

67. $\sin A = \frac{1}{3}$

68. $\cos C = \frac{4}{5}$

69. $\tan A = \frac{1}{3}$

70. $\tan B = 2$

71. $\tan A = \frac{1}{3}$

72. $\tan A = \frac{4}{3}$

73. $\sin A = \frac{4}{5}$

74. $\cos A = \frac{\sqrt{3}}{2}$

75. tan A = 1

☑ 다음과 같이 삼각비의 값이 주어진 직각삼각형 ABC에서 x, y의 값을 각각 구하여라.

$$76. \quad \sin A = \frac{\sqrt{3}}{2}$$

77. $\cos A = \frac{3}{4}$

$$78. \quad \tan A = \frac{2\sqrt{5}}{5}$$

$$79. \quad \sin A = \frac{3}{5}$$

80.
$$\cos C = \frac{1}{3}$$

81.
$$\tan C = 3$$

한 삼각비의 값을 알 때, 다른 삼각비의 값 구하기

 \square \angle B=90 $^{\circ}$ 인 직각삼각형 ABC에서 다음의 값을 구하여라.

82.
$$\cos A = \frac{8}{17}$$
일 때, $\sin A$, $\tan A$

83.
$$\tan A = \frac{1}{2}$$
일 때, $\sin A$, $\cos A$

84.
$$\tan C = \sqrt{3}$$
 일 때, $\sin C$, $\cos C$

85.
$$\sin C = \frac{2\sqrt{2}}{3}$$
일 때, $\cos C$, $\tan C$

86.
$$\cos C = \frac{5}{13}$$
일 때, $\sin C$, $\tan C$

87.
$$\sin A = \frac{1}{3}$$
일 때, $\cos A$, $\tan A$

88.
$$\cos A = \frac{4}{5}$$
일 때, $\sin A$, $\tan A$

89.
$$\tan A = \frac{1}{2}$$
일 때, $\sin A$, $\cos A$

90.
$$\sin C = \frac{5}{7}$$
일 때, $\cos A$, $\tan A$

Arr \angle B=90 $^{\circ}$ 인 직각삼각형 ABC에서 삼각비의 값이 다음과 같을 때, 식의 값을 구하여라.

91.
$$\sin A = \frac{3}{5}$$
일 때, $\cos A \tan A$ 의 값

92.
$$\sin A = \frac{4}{5}$$
 2 III, $\cos A + \tan A$

93.
$$\cos A = \frac{4}{5}$$
 2 m, $\sin A \times \tan A$

94.
$$\cos A = \frac{12}{13}$$
일 때, $156(\sin A - \tan A)$ 의 값

95.
$$\cos A = \frac{3}{5}$$
일 때, $\sin A - \tan A$ 의 값

96.
$$\tan A = \frac{4}{5}$$
 2 m, $\sin A \times \cos A$

97.
$$\sin A = \frac{2}{7}$$
일 때, $\cos A + \tan A$ 의 값

정답 및 해설

- 1) $\frac{1}{2}$
- \Rightarrow $\overline{\rm AB} = \sqrt{2^2 1^2} = \sqrt{3}$ 이므로 $\sin A = \frac{\overline{\rm BC}}{\overline{\rm AC}} = \frac{1}{2}$
- 2) $\frac{\sqrt{3}}{2}$
- \Rightarrow $\overline{AB} = \sqrt{2^2 1^2} = \sqrt{3}$ 이므로 $\cos A = \frac{\overline{AB}}{AC} = \frac{\sqrt{3}}{2}$
- 3) $\frac{\sqrt{3}}{3}$
- \Rightarrow $\overline{AB} = \sqrt{2^2 1^2} = \sqrt{3}$ 이므로 $\tan A = \frac{\overline{BC}}{\overline{AB}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
- 4) $\frac{\sqrt{3}}{2}$
- \Rightarrow $\overline{\rm AB} = \sqrt{2^2 1^2} = \sqrt{3}$ 이므로 $\sin C = \frac{\overline{\rm AB}}{\overline{\rm AC}} = \frac{\sqrt{3}}{2}$
- 5) $\frac{1}{2}$
- \Rightarrow $\overline{\rm AB} = \sqrt{2^2-1^2} = \sqrt{3}$ 이므로 $\cos C = \frac{\overline{\rm BC}}{\overline{\rm AC}} = \frac{1}{2}$
- 6) $\sqrt{3}$
- 다 $\overline{AB} = \sqrt{2^2 1^2} = \sqrt{3}$ 이므로 $\tan A = \frac{\overline{AB}}{\overline{BC}} = \frac{\sqrt{3}}{1} = \sqrt{3}$
- 7) $\frac{5}{13}$
- $\Rightarrow \sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{5}{13}$
- 8) $\frac{12}{13}$
- $\Rightarrow \cos A = \frac{\overline{AB}}{\overline{AC}} = \frac{12}{13}$
- 9) $\frac{5}{12}$
- $\Rightarrow \tan A = \frac{\overline{BC}}{\overline{AB}} = \frac{5}{12}$
- 10) $\frac{12}{13}$

$$\Rightarrow \sin C = \frac{\overline{AB}}{\overline{AC}} = \frac{12}{13}$$

- 11) $\frac{5}{13}$
- $\Rightarrow \cos C = \frac{\overline{BC}}{\overline{AC}} = \frac{5}{13}$
- 12) $\frac{12}{5}$
- $\Rightarrow \tan C = \frac{\overline{AB}}{\overline{BC}} = \frac{12}{5}$
- 13) \overline{BC} , \overline{AD} , \overline{FG}
- 14) \overline{AB} , \overline{AD} , \overline{AG}
- 15) \overline{BC} , \overline{AE} , \overline{FG}
- 16) \overline{AC} , \overline{AB} , \overline{CH}
- 17) \overline{BC} , \overline{AB} , \overline{AH}
- 18) \overline{AC} , \overline{BH} , \overline{CH}
- 19) \overline{AE} , \overline{AC}
- 20) \overline{AD} , \overline{BC}
- 21) \overline{AE} , \overline{AB}
- 22) △EBD
- □ ∠BAC = ∠BED = 90°, ∠B는 공통이므로 ΔABC ∽ ΔEBD (AA 닮음)
- **23**) ∠ACB
- 24) $\frac{12}{13}$
- $\Rightarrow \sin x = \sin C = \frac{\overline{AB}}{\overline{BC}} = \frac{12}{13}$
- 25) $\frac{5}{13}$
- $\Rightarrow \cos x = \cos C = \frac{\overline{AC}}{\overline{BC}} = \frac{5}{13}$
- 26) $\frac{12}{5}$
- $\Rightarrow \tan x = \tan C = \frac{\overline{AB}}{\overline{AC}} = \frac{12}{5}$
- 27) ∠ACB
- 28) ∠ABC

- 29) $\frac{3}{5}$
- ⇒ △ABC ∽ △HBA ∽ △HAC $\sin x = \sin C = \frac{AB}{BC} = \frac{6}{10} = \frac{3}{5}$
- 30) $\frac{4}{5}$
- ⇒ △ABC ∽ △HBA ∽ △HAC $\cos x = \cos C = \frac{\overline{AC}}{\overline{BC}} = \frac{8}{10} = \frac{4}{5}$
- 31) $\frac{3}{4}$
- ⇒ △ABC ∽ △HBA ∽ △HAC $\tan x = \tan C = \frac{\overline{AB}}{\overline{AC}} = \frac{6}{8} = \frac{3}{4}$
- 32) $\frac{4}{5}$
- $\Rightarrow \triangle ABC \circ \triangle HBA \circ \triangle HAC$ $\sin y = \sin B = \frac{\overline{AC}}{\overline{BC}} = \frac{8}{10} = \frac{4}{5}$
- 33) $\frac{3}{5}$
- ⇒ △ABC ∽ △HBA ∽ △HAC $\cos y = \cos B = \frac{AB}{RC} = \frac{6}{10} = \frac{3}{5}$
- 34) $\frac{4}{3}$
- ⇒ △ABC ∽ △HBA ∽ △HAC $\tan y = \tan B = \frac{AC}{\overline{AB}} = \frac{8}{6} = \frac{4}{3}$
- 35) ① $\frac{12}{13}$ ② $\frac{5}{13}$ ③ $\frac{12}{5}$
- \Rightarrow \triangle ABC \hookrightarrow \triangle DBE이므로 $\angle x = \angle$ A

 - ② $\cos x = \cos A = \frac{5}{12}$
 - (3) $\tan x = \tan A = \frac{12}{5}$
- 36) ① $\frac{3\sqrt{10}}{10}$ ② $\frac{\sqrt{10}}{10}$ ③ 3
- \Rightarrow \triangle ABC \hookrightarrow \triangle EBD이므로 $\angle x = \angle$ C
 - ① $\sin x = \sin C = \frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10}$
 - ② $\cos x = \cos C = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10}$

- $3 \tan x = \tan C = 3$
- 37) ① $\frac{15}{17}$ ② $\frac{8}{17}$ ③ $\frac{15}{8}$
- $\Rightarrow \overline{AB} = \sqrt{8^2 + 15^2} = 17$ $\triangle ABC \hookrightarrow \triangle DEC \cup \Box \Box z = \angle x = \angle A \cup \Box \Box z$

 - ② $\cos x = \cos A = \frac{8}{17}$
 - $3 \tan x = \tan A = \frac{15}{8}$
- 38) ① $\frac{\sqrt{2}}{2}$ ② $\frac{\sqrt{2}}{2}$ ③ 1
- \Rightarrow \triangle ABC \hookrightarrow \triangle AED 이므로 $\angle x = \angle$ A
 - ① $\sin x = \sin A = \frac{3}{3\sqrt{2}} = \frac{\sqrt{2}}{2}$
 - (2) $\cos x = \cos A = \frac{3}{3\sqrt{2}} = \frac{\sqrt{2}}{2}$
 - $3 \tan x = \tan A = \frac{3}{3} = 1$
- 39) $\sin C = \frac{15}{17}$, $\cos C = \frac{8}{17}$, $\tan C = \frac{15}{8}$
- 40) $\sin C = \frac{20}{25} = \frac{4}{5}$, $\cos C = \frac{15}{25} = \frac{3}{5}$ $\tan C = \frac{20}{15} = \frac{4}{2}$
- 41) $\sin C = \frac{4}{5}$, $\cos C = \frac{3}{5}$, $\tan C = \frac{4}{3}$
- 42) $\sin C = \frac{1}{2}$, $\cos C = \frac{\sqrt{3}}{2}$, $\tan C = \frac{\sqrt{3}}{3}$
- 43) $\sin C = \frac{2}{\sqrt{13}} = \frac{2\sqrt{13}}{13}$, $\cos C = \frac{3}{\sqrt{13}} = \frac{3\sqrt{13}}{13}$ $\tan C = \frac{2}{3}$
- 44) $\sin C = \frac{5}{5\sqrt{2}} = \frac{\sqrt{2}}{2}$, $\cos C = \frac{5}{5\sqrt{2}} = \frac{\sqrt{2}}{2}$ $\tan C = \frac{5}{5} = 1$
- 45) $\sin C = \frac{9}{15} = \frac{3}{5}, \cos C = \frac{12}{15} = \frac{4}{5}, \tan C = \frac{9}{12} = \frac{3}{4}$
- 46) $\sin C = \frac{6\sqrt{2}}{11}$, $\cos C = \frac{7}{11}$, $\tan C = \frac{6\sqrt{2}}{7}$
- 47) $\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{5}{13}$, $\cos A = \frac{\overline{AB}}{\overline{AC}} = \frac{12}{13}$

$$\tan A = \frac{\overline{BC}}{\overline{AB}} = \frac{5}{12}$$

- 48) $\sin A = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$, $\cos A = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$,
- 49) $\sin A = \frac{8}{10} = \frac{4}{5}$, $\cos A = \frac{6}{10} = \frac{3}{5}$ $\tan A = \frac{8}{6} = \frac{4}{3}$
- 50) $\sin A = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}, \cos A = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5},$ $\tan A = \frac{2}{1} = 2$
- 51) $\sin A = \frac{3}{5}$, $\cos A = \frac{4}{5}$, $\tan A = \frac{3}{4}$
- 52) $\sin A = \frac{5}{12}$, $\cos A = \frac{12}{13}$, $\tan A = \frac{5}{12}$
- $\Rightarrow \overline{AB} = \sqrt{12^2 + 5^2} = 13$
- 53) $\sin A = \frac{\sqrt{2}}{2}$, $\cos A = \frac{\sqrt{2}}{2}$, $\tan A = 1$
- $\Rightarrow \overline{AC} = \sqrt{(4\sqrt{2})^2 4^2} = 4$
- 54) $\sqrt{2}$
- $\Rightarrow \overline{\text{FH}} = \sqrt{1^2 + 1^2} = \sqrt{2}$
- 55) $\sqrt{3}$
- $\Rightarrow \overline{BH} = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$
- 56) $\frac{\sqrt{3}}{2}$
- $\Rightarrow \sin x = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
- 57) $\frac{\sqrt{6}}{2}$
- $\Rightarrow \cos x = \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{6}}{3}$
- 58) $\frac{\sqrt{2}}{2}$
- $\Rightarrow \tan x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
- 59) (1) $\frac{\sqrt{2}}{2}$ (2) $\frac{\sqrt{3}}{2}$ (3) $\frac{\sqrt{6}}{2}$
- \Rightarrow (1) \Box EFGH는 정사각형이므로 대각선 $FH = 8\sqrt{2}$ 이다. △DFH는 ∠H=90°인 직각삼각형이므로

$$\tan x = \frac{\overline{DH}}{\overline{FH}} = \frac{8}{8\sqrt{2}} = \frac{\sqrt{2}}{2}$$

(2) 정육면체이므로 대각선 DF = $8\sqrt{3}$

△DFH는 ∠H=90°인 직각삼각형이므로

$$\sin x = \frac{\overline{DH}}{\overline{DF}} = \frac{8}{8\sqrt{3}} = \frac{\sqrt{3}}{3}$$

(3) △DFH는 ∠H=90°인 직각삼각형이므로

$$\cos x = \frac{\overline{\text{FH}}}{\overline{\text{DF}}} = \frac{\sqrt{6}}{3}$$

- 60) (1) $\frac{\sqrt{2}}{2}$ (2) $\frac{\sqrt{3}}{3}$ (3) $\frac{\sqrt{6}}{3}$
- \Rightarrow (1) \Box EFGH는 정사각형이므로 대각선 EG = $3\sqrt{2}$ 이고. $\triangle AEG$ 는 $\angle E = 90$ °인 직각삼각형이므로

$$\tan x = \frac{\overline{AE}}{\overline{EG}} = \frac{3}{3\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

(2) 정육면체이므로 대각선 $AG = 3\sqrt{3}$ 이고.

△AGE는 ∠E=90°인 직각삼각형이므로

$$\sin x = \frac{\overline{AE}}{\overline{AG}} = \frac{3}{3\sqrt{3}} = \frac{\sqrt{3}}{3}$$

(3) △AGE는 ∠E=90°인 직각삼각형이므로

$$\cos x = \frac{\overline{EG}}{\overline{AG}} = \frac{3\sqrt{2}}{3\sqrt{3}} = \frac{\sqrt{6}}{3}$$

- 61) (1) $\frac{\sqrt{2}}{2}$ (2) $\frac{\sqrt{3}}{3}$ (3) $\frac{\sqrt{6}}{3}$
- \Rightarrow (1) \Box EFGH는 정사각형이므로 대각선 EG = $6\sqrt{2}$ 이고, $\triangle BHF$ 는 $\angle F = 90$ °인 직각삼각형이므로

$$\tan x = \frac{\overline{BF}}{\overline{FH}} = \frac{6}{6\sqrt{2}} = \frac{\sqrt{2}}{2}$$

(2) 정육면체이므로 대각선 BH= $6\sqrt{3}$ 이고,

 $\triangle BHF$ 는 $\angle F = 90$ °인 직각삼각형이므로

$$\sin x = \frac{\overline{BF}}{\overline{BH}} = \frac{6}{6\sqrt{3}} = \frac{\sqrt{3}}{3}$$

(3) $\triangle BHF는 \angle F = 90$ °인 직각삼각형이므로

$$\cos x = \frac{\overline{FH}}{\overline{BH}} = \frac{6\sqrt{2}}{6\sqrt{3}} = \frac{\sqrt{6}}{3}$$

- $\Rightarrow \sin A = \frac{\overline{BC}}{\overline{\Delta C}} = \frac{10}{x} = \frac{2}{3} \qquad \therefore x = 15$
- $\Rightarrow \cos A = \frac{\overline{AB}}{\overline{AC}} = \frac{x}{20} = \frac{2\sqrt{2}}{5} \quad \therefore \quad x = 8\sqrt{2}$
- 64) 9
- $\Rightarrow \cos A = \frac{\overline{AB}}{\overline{AC}} = \frac{6\sqrt{2}}{x} = \frac{2\sqrt{2}}{3} \qquad \therefore x = 9$

$$\Rightarrow \tan A = \frac{\overline{BC}}{\overline{AB}} = \frac{4\sqrt{3}}{x} = \frac{\sqrt{3}}{3} \quad \therefore x = 12$$

66) 13

$$\Rightarrow \sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{12}{x} = \frac{12}{13} \qquad \therefore x = 13$$

67) 2

$$\Rightarrow \sin A = \frac{x}{6} = \frac{1}{3}$$
 $\therefore x = 2$

$$\Rightarrow \cos C = \frac{8}{x} = \frac{4}{5} \qquad \therefore x = 10$$

$$\Rightarrow \tan A = \frac{3}{x} = \frac{1}{3} \qquad \therefore x = 9$$

70) 4

$$\Rightarrow \tan B = \frac{x}{2} = 2$$
 $\therefore x = 4$

71) 12

$$\Rightarrow \tan A = \frac{\overline{BC}}{\overline{AB}} = \frac{4}{x} = \frac{1}{3} \quad \therefore x = 12$$

$$\Rightarrow \tan A = \frac{\overline{BC}}{\overline{AB}} = \frac{8}{x} = \frac{4}{3}$$
이므로 $x = 8 \times \frac{3}{4} = 6$

- 73) 8
- 74) $3\sqrt{3}$
- 75) 3

76)
$$x = 2\sqrt{3}, y = 2$$

$$\Rightarrow \sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{x}{4} = \frac{\sqrt{3}}{2} \text{ olds}$$
$$x = \frac{\sqrt{3}}{2} \times 4 = 2\sqrt{3}$$
$$\therefore y = \sqrt{4^2 - (2\sqrt{3})^2} = \sqrt{4} = 2$$

77) $x = 6, y = 2\sqrt{7}$

$$\cos A = \frac{\overline{AB}}{\overline{AC}} = \frac{x}{8} = \frac{3}{4} \text{ 이므로 } x = \frac{3}{4} \times 8 = 6$$

$$\therefore y = \sqrt{8^2 - 6^2} = \sqrt{28} = 2\sqrt{7}$$

78) x = 2, y = 3

$$\Rightarrow \tan A = \frac{\overline{BC}}{\overline{AB}} = \frac{x}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$$
이므로

$$x = \frac{2\sqrt{5}}{5} \times \sqrt{5} = 2$$

$$\therefore y = \sqrt{(\sqrt{5})^2 + 2^2} = \sqrt{9} = 3$$

79) x = 15, y = 12

$$\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{9}{x} = \frac{3}{5} \text{ 이므로}$$

$$x = 9 \times \frac{5}{3} = 15$$

$$\therefore y = \sqrt{15^2 - 9^2} = \sqrt{144} = 12$$

80)
$$x = 2, y = 4\sqrt{2}$$

$$\Leftrightarrow \cos C = \frac{\overline{BC}}{\overline{AC}} = \frac{x}{6} = \frac{1}{3} \text{ 이므로 } x = \frac{1}{3} \times 6 = 2$$
$$\therefore y = \sqrt{6^2 - 2^2} = \sqrt{32} = 4\sqrt{2}$$

81)
$$x = 6, y = 2\sqrt{10}$$

$$\Rightarrow \tan C = \frac{\overline{AB}}{\overline{BC}} = \frac{x}{2} = 30 | \Box \exists x = 3 \times 2 = 6$$
$$\therefore y = \sqrt{6^2 + 2^2} = \sqrt{40} = 2\sqrt{10}$$

82)
$$\sin A = \frac{15}{17}$$
, $\tan A = \frac{15}{8}$

⇒ 그림을 그려 나타내면 다음과 같다.

$$\overline{\mathrm{BC}} = \sqrt{17^2 - 8^2} = 15$$
이므로 $\sin A = \frac{15}{17}$, $\tan A = \frac{15}{8}$

83)
$$\sin A = \frac{\sqrt{5}}{5}$$
, $\cos A = \frac{2\sqrt{5}}{5}$

⇒ 그림을 그려 나타내면 다음과 같다.

$$\overline{AC} = \sqrt{2^2 + 1^2} = \sqrt{5}$$
 이므로 $\sin A = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}, \cos A = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$

84)
$$\sin C = \frac{\sqrt{3}}{2}$$
, $\cos C = \frac{1}{2}$

$$\Rightarrow \overline{AC} = \sqrt{(\sqrt{3})^2 + 1^2} = 2$$
$$\therefore \sin C = \frac{\sqrt{3}}{2}, \cos C = \frac{1}{2}$$

85)
$$\cos C = \frac{1}{3}$$
, $\tan C = 2\sqrt{2}$

⇒ 그림을 그려 나타내면 다음과 같다.

86)
$$\sin C = \frac{12}{13}$$
, $\tan C = \frac{12}{5}$

⇒ 그림을 그려 나타내면 다음과 같다.

87)
$$\cos A = \frac{2\sqrt{2}}{3}$$
, $\tan A = \frac{\sqrt{2}}{4}$

 $\sin A = \frac{1}{3}$ 이므로 다음 그림과 같은 직각삼각형 ABC를 생각하면 $\overline{AB} = \sqrt{3^2-1^2} = 2\sqrt{2}$

$$\cos A = \frac{\overline{AB}}{\overline{AC}} = \frac{2\sqrt{2}}{3}, \ \tan A = \frac{\overline{BC}}{\overline{AB}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$$

88)
$$\sin A = \frac{3}{5}$$
, $\tan A = \frac{3}{4}$

 $\cos A = \frac{4}{5}$ 이므로 다음 그림과 같은 직각삼각형 ABC를 생각하면 $\overline{BC} = \sqrt{5^2 - 4^2} = 3$

$$\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{3}{5}$$
, $\tan A = \frac{\overline{BC}}{\overline{AB}} = \frac{3}{4}$

89)
$$\sin A = \frac{\sqrt{5}}{5}$$
, $\cos A = \frac{2\sqrt{5}}{5}$

$$\Rightarrow$$
 $\tan A=rac{1}{2}$ 이므로 다음 그림과 같은 직각삼각형 ABC를 생각하면 $\overline{AC}=\sqrt{2^2+1^2}=\sqrt{5}$

$$\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}, \cos A = \frac{\overline{AB}}{\overline{AC}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$$

90)
$$\cos A = \frac{5}{7}$$
, $\tan A = \frac{2\sqrt{6}}{5}$

 $\Rightarrow \sin C = \frac{5}{7}$ 이므로 다음 그림과 같은 직각삼각형 ABC를 생각하면 $\overline{\mathrm{BC}} = \sqrt{7^2 - 5^2} = 2\sqrt{6}$

$$\cos A = \frac{\overline{AB}}{\overline{AC}} = \frac{5}{7}$$
, $\tan A = \frac{\overline{BC}}{\overline{AB}} = \frac{2\sqrt{6}}{5}$

91) $\frac{3}{5}$

$$\cos A \tan A = \frac{4}{5} \times \frac{3}{4} = \frac{3}{5}$$

92)
$$\frac{29}{15}$$

$$\Rightarrow \sin A = \frac{4}{5}$$
일 때, $\cos A = \frac{3}{5}$, $\tan A = \frac{4}{3}$ 이므로
 $\therefore \cos A + \tan A = \frac{3}{5} + \frac{4}{3} = \frac{29}{15}$

93)
$$\frac{9}{20}$$

$$\Rightarrow \cos A = \frac{4}{5}$$
 \subseteq $= \frac{3}{5}$, $\tan A = \frac{3}{4}$

$$\therefore \sin A \times \tan A = \frac{3}{5} \times \frac{3}{4} = \frac{9}{20}$$

94)
$$-5$$

$$156(\sin A - \tan A) = 156 \times \left(\frac{5}{13} - \frac{5}{12}\right) = 60 - 65 = -5$$

- 95) $-\frac{8}{15}$
- \Leftrightarrow $\cos A = \frac{3}{5}$ 이므로 $\sin A = \frac{4}{5}, \tan A = \frac{4}{3}$ 이다. 따라서 $\sin A - \tan A = \frac{4}{5} - \frac{4}{3} = -\frac{8}{15}$ or .
- $\Rightarrow \tan A = \frac{4}{5}$ 일 때, $\sin A = \frac{4}{\sqrt{41}}$, $\cos A = \frac{5}{\sqrt{41}}$
 - $\therefore \sin A \times \cos A = \frac{4}{\sqrt{41}} \times \frac{5}{\sqrt{41}} = \frac{20}{41}$
- 97) $\frac{59\sqrt{5}}{105}$
- ightharpoonup ightharpoonup ightharpoonup ightharpoonup ightharpoonup 하면 피타고라스 정리에 의해
- $\therefore \cos A + \tan A = \frac{3\sqrt{5}}{7} + \frac{2}{3\sqrt{5}} = \frac{59\sqrt{5}}{105}$