Основы маршрутизации в сетях

СОДЕРЖАНИЕ

- 1. Основные понятия маршрутизции: маршрутизатор, алгоритм, протокол, таблица
- 2. Принцип маршрутизации
- 3. L2 коммутация и L3 маршрутизация
- 4. Алгоритмы (и протоколы) и маршрутизации
 - 1. Одношаговые и многошаговые
 - 2. Статические и динамические
 - 3. Классовые и бесклассовые
 - 4. Дистанционно-векторные и состояния связей
 - 5. Внутренние и внешние
 - ASs + Core

Основные понятия (1)

- Маршрутизация (routing)
 - это процесс перемещения пакета от источника к приемнику через через сеть передачи данных
 - Выполняет маршрутизатор
 - Аппаратно старшие модели
 - Программно аппаратно
 - Программно младшие модели
- Маршрутизатор (Router)
 - это устройство, передающее пакет в нужном направлении (через нужный интерфейс)
 - далее по тексту роутер (короткая запись)
 - называют также шлюз (gateway в терминологии IETF)
- Маршрутизируемый протокол (Routed Protocol)
 - Существует в каждом маршрутизаторе для передачи пакета в нужном направлении
 - Нужное направление передачи маршрутизатор определяет на основании таблицы маршрутизации

Основные понятия (2)

- Таблицы маршрутизации (forwarding tables)
 - формируются протоколами маршрутизации
- Протокол маршрутизации (Routing Protocol)
 - это распределенный протокол
 - работающий координировано с другими роутерами
 - с целью изучения и формирования глобального представления сети непротиворечивым и законченным способом
 - Протоколы маршрутизации работают по алгоритмам маршрутизации
- Алгоритмы маршрутизации
 - Одношаговые и многошаговые
 - Статические и динамические
 - Классовые и бесклассовые
 - Дистанционно-векторные и состояния связей
 - Внутренние и внешние

Протоколы маршрутизации (Routing Protocols)

Application		SMTP	НТТР	FTP	Telne	DNS	Boot DHC		SNMI	P etc.	
Presentation	(MIME)										
Session		-					Routi	ng	Proto	cols	
Transport		TCP (Transmission Control Protocol)			UDP (User Datagram Protocol)		1	OSPF BGP RIP EGP			
Network		IP (Internet Protocol)									
HOLWOIK		ICMP						ARP RAF		RARP	
Link		IP Transmission over									
Physical		ATI RFC 1		IEEE 802.2 X.25 FR RFC 1042 RFC 1356 RFC 14				90	PPP RFC 1661		

Примеры роутеров Cisco 2611 и 7604

ІР-маршрутизация

Роутеры имеют следующие типы интерфейсов

- физический (порт)
 - <u>Ethernet</u>/FastE/GE
 - Serial (S) последовательные интерфейсы
 - Синхронные, Асинхронные (Async), Консольные (CON, AUX)
- Виртуальные
 - Loopback, Null, Dialer, Virtual-Temp Multilink

Обозначение интерфейс

- 1. <тип, номер порта>
 - Например: e5, s3
- 2. <тип, номер модуля/номер порта>
 - Например e0/1, s1/3
 - В модульных устройствах

Требования к процессу маршрутизации

- В процессе маршрутизации роутеру необходимо:
 - Иметь требуемый стек или стеки протоколов (IP, IPX, DECnet)
 - Иметь информацию о сети получателя
 - соответствующие записи в маршрутной таблице;
 - если записи о маршруте нет отказаться от передачи пакета и сформировать ICMP сообщение о недостижимости сети назначения
 - Информацию об оптимальном пути к получателю
 - Соответствующие записи в таблице маршрутизации
 - используется метрика (число);
 - оптимальный путь содержит минимальную метрику

Процесс формирования маршрутной таблицы

- При инсталляции роутеров
 - запускаются протоколы маршрутизации
 - протоколы маршрутизации обмениваются маршрутной информацией с соседями
 - Информация о маршрутах "соседей" используется для формирования своих таблиц маршрутизации
- Таблица маршрутизации, основные компоненты
 - <Пункт назначения> <Путь доставки>
 - <<u>пункт назначения</u>> = "<u>адрес сети</u>/подсети назначения"
 - пункт назначения это IP-адрес подсети, в которой находится хост
 - $< \underline{\mathsf{путь}} \ \underline{\mathsf{доставки}} > = "\underline{\mathsf{next-hop}} \ \mathsf{router"} + "\mathsf{исходящий} \ \mathsf{интерфейс} \ (\underline{\mathsf{порт}})"$
 - ІР- и МАС- адреса исходящего интерфейса роутера (порта) известны роутеру из своих системных таблиц
 - По IP-адресу "next-hop router" (следующий ближайший роутер) определяется MAC-адрес с помощью ARP-таблицы
 - Протоколы маршрутизации могут сформировать один или несколько путей для доставки пакетов в пункт назначения

Пример таблицы маршрутизации

Путь движения пакета Хост 192.10.1.2 -> до Хост 192.10.6.2

Пример таблицы маршрутизации

ІР-маршрутизация

Структура записи в маршрутной таблице

- Записи в таблице маршрутизации
 - формируются одним или более протоколами маршрутизации
- Каждая запись содержит:
 - 1. Механизм, по которому был распознан маршрут (динамический или статический)
 - 2. <u>Адрес сети</u> или подсети получателя. В некоторых случаях может содержать адреса хостов
 - 3. Адрес роутера на пути к получателю (Next-hop)
 - 4. <u>Исходящий интерфейс</u> порт, через который пакет покидает маршрутизатор
 - 5. Метрика оценка стоимости всего пути
 - 6. "<u>Административное расстояние</u>" мерило доверия к записи о маршруте. Кто породил запись?
 - 7. Периодичность подтверждения информации о пути

Хост: прямая/косвенная доставка пакета

- Что задается в ІР-настройках интерфейса Хоста ??? (след. слайд)
 - 1. «IP-адрес Хоста» и «маска подсети»
 - Подсеть Хоста (своя сеть) определяется логической операцией "И"
 - Например, «IP-адрес хоста A» = 172. 18.23.37
 - «Маска подсети» = 255.255. 0. 0
 - ------
 - Логическая операция "И" = 172. 18. 0. 0 → подсеть хоста А

2. <u>IP-адрес шлюза, IP-адреса DNS</u>

- Как Хост А узнает, прямая или косвенная доставка ???
 - Анализирует IP-адреса сети получателя:
 - Если «сеть получателя» = «сеть отправителя» → прямая доставка
 - Например, «IP-адрес DNS1-сервера» = 172.18.23.101
 - «Маска подсети» = 255.255.0.0
 - ------
 - Логическая операция "И" = 172.18.0.0 → DNS1 в сети хоста A
 - Если «сеть получателя» ≠ «сеть отправителя» → косвенная доставка
 - Например, «IP-адрес DNS2-сервера» = 172.17.21.101
 - «Маска подсети» = 255.255.0.0
 - •
 - Логическая операция "И" = 172.17.0.0 → DNS2 не в сети хоста A

Хост: прямая/косвенная доставка пакета

Процесс принятия решения о маршруте

- При поступлении пакета в роутер
 - 1. Выделяется ІР-адрес получателя
 - 2. Сопоставляется ІР-адрес получателя с информацией в таблице маршрутов и получает сведения об:
 - исходящем интерфейсе (через какой порт передавать)
 - адресе следующего роутера (next-hop), откуда можно попасть в пункт назначения
 - 3. Выполняет все необходимые дополнительные функции
 - уменьшение "времени жизни"- TTL
 - управление параметрами "тип сервиса" TOS
 - фрагментация при необходимости
 - отработка "опций" при необходимости

Маршрутизаторы НИКОГДА не передают broadcast или flood пакеты

 если они не имеют маршрута, они "перекладывают ответственность" на другой роутер, передавая пакет по маршруту «по умолчанию» или «убивая пакет»

Метрика маршрутизации

- Решение о лучшем маршруте выполняется на основании метрики маршрута
- Метрика это стандарт измерения (число), используемый протоколами маршрутизации
 - Определение лучшего пути к получателю присуще любому протоколу маршрутизации
 - Каждый протокол маршрутизации имеет свою собственную меру того, что является лучшим
 - Маршрутизаторы характеризуют путь к сети назначения с помощью метрики
 - Примеры метрик:
 - Число узлов (hop count)
 - Комплексная метрика, учитывающая пропускную способность, задержку, надежность, нагрузку, максимальный модуль передачи (MTU)

Административное расстояние

- Административное расстояние (Administrative Distance) рассматривается как мера достоверности источника информации IP-маршрутизации (Cisco)
 - Имеет смысл, когда более одного пути к получателю
 - Малые значения предпочтительней больших значений
 - Значения, вводимые вручную, предпочтительней значений, формируемых автоматически (статические маршруты приоритетны)
 - Протоколы маршрутизации со сложной метрикой предпочтительней протоколов с простыми метриками
 - Сравнение стандартных административных расстояний

Источник маршрута (пути)	Стандартное административное расстояние
Подключенный интерфейс	0
Статический маршрут из интерфейса	0
Статический маршрут к следующему устро	ойству 1
Суммарный маршрут EIGRP	5
Внешний протокол BGP	20
Внутренний протокол EIGRP	90
Протокол IGRP	100
Протокол OSPF	110
Протокол IS-IS	115
Протокол RIP v1 / v2	120
Протокол EGP	140
Внешний протокол EIGRP	170
Внутренний протокол BGP	200
Неизвестный	255

Принцип маршрутизации (1)

В основе маршрутизации лежит коммутация пакетов

- Коммутация пакета это перемещение пакета через роутер
- Пакет коммутируется (ретранслируется) на основании
 - L3-адреса получателя в заголовке поступившего пакета, который не изменяется в процессе коммутации пакета (движения пакета через IP-сеть передачи данных)
 - L3-адреса следующего узла (next-hop) в **таблице маршрутизации**
- После инсталяции протоколов маршрутизации роутеры
 - Устанавливают соседские отношения с ближайшими роутерами
 - Разные протоколы это делают по разному. Обычно формируются широковещательные кадры и "устройства увидели друг друга"
 - Обмениваются данными о топологии сети для ее изучения и формирования оптимальной таблицы маршрутизации
 - обмениваются приветствиями (hello-пакетами) или периодическими обновлениями (*Update-пакетами*)
 - Формируют таблицы маршрутизации с оптимальными путями к получателям для последующей ретрансляции пользовательского трафика к этим получателям

Принцип маршрутизации (2)

- При коммутации пакета роутеру необходимо сформировать L3- и L2-адреса
 - <u>L3-адреса (IP-адреса) отправителя и получателя</u> берутся из входящего пакета и не изменяются при формировании исходящего пакета
 - L2-адреса (МАС-адреса) отправителя и получателя необходимо сформировать
- Для формирования L2-адресов используется

Таблица маршрутизации, для определения

- Исходящего интерфейса (МАС-адреса порта отправителя роутера)
 - Роутер "знает" свой МАС-адреса порта, через который пакет передается
- Соседнего роутера на пути к получателю (IP-адрес Next-hop роутера)
 - IP-адрес "Next-hop роутера" используется для получения "MAC-адреса Next-hop роутера"
 - "MAC-адреса Next-hop" роутера ищется в ARP-таблице роутера, которая формируется ARP протоколом
 - В ARP-таблице хранятся IP-адреса "прямо подключенных устройств" и соответствующие им МАС-адреса

Таблица маршрутизации (RIP)

M(60) – метрика 60, обратно пропорциональна скорости, не учитывается в RIP

Пример маршрутизации (OSPF)

скорости, учитывается в OSPF

L2 коммутация и L3 маршрутизация (1)

- L2 коммутатор
 - работает только с МАС адресами хостов/узлов (ничего не знает об IP-адресах)
 - формирует в процессе "самообучения по source MAC-адресам" таблицу MACадресов хостов, называемой таблицей коммутации
 - в таблице коммутации содержатся пары "MAC-адрес --- порт коммутатора"
- L2 коммутация, применяемая в LAN, для передачи пакетов по IP-адресу назначения, связана с понятием широковещательный домен (broadcast domain)
 - в широковещательном домене каждый хост "видит IP-адреса" других хостов посредством соответствующих им MAC-адресов в ARP-таблицах
 - <u>в ARP-таблице содержатся пары IP и MAC-адресов</u>
- L3 маршрутизация предназначена для передачи пакетов между широковещательными доменами, посредством таблицы маршрутизации
 - Таблица маршрутизации формируется каждым маршрутизатором и содержит информацию о маршрутах к сетям

L2 коммутация и L3 маршрутизация (2)

ARP-таблицы и таблицы маршрутизации

- ARP-таблица формируется каждым хостом (и роутером), подключенных к Ethernet коммутаторам
 - необходима для пол держим 12 исмумутаций виутри широиовещательного домена, к которому под (Win) arp -a

содержит пар: Interface: 172.18.16.76 --- 0x2 (порт)

Internet Address Physical Address Type 172.18.16.169 00-20-ed-59-b4-d2 dynamic 172.18.18.1 00-15-17-24-e5-c7 dynamic

- Таблица маршрутизации формируется каждым маршрутизатором
 - необходима для доставки данных за пределы широковещательного домена
 - содержит информацию о маршрутах к сетям:
 - IP-адреса доступных сетей
 - Признак подключения этих сети
 - прямо (непосредственно) подключенная сеть (обозначена символом "C")
 - Косвенно подключенная сеть (обозначена символом "R" по RIP протоколу),
 - ІР-адрес следующего роутера, через который доступна сеть
 - Интерфейсы, через которые информация будет отправлена в нужную сеть
 - Метрика значение счетчика транзитных узлов до этих известных сетей

ТАБЛИЦА МАРШРУТИЗАЦИИ (RIP)

r1.lab#show ip route

```
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1,
L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default,
U - per-user static route
o - ODR, P - periodic downloaded static route
```

10.0.0.0/8 is variably subnetted, 8 subnets, 2 masks

Gateway of last resort is not set

			-
С	10.10.0.0/16	is directly connected	FastEthernet 0/0
R	10.30.0.0/16	[120/1] via 10.20.0.2	FastEthernet 0/1
С	10.20.0.0/16	is directly connected	FastEthernet 0/1
R	10.40.0.0/16	[120/1] via 10.70.0.2	Serial 0/1/0
R	10.60.0.0/16	[120/2] via 10.70.0.2	Serial 0/1/0
R	10.50.0.0/16	[120/1] via 10.70.0.2	Serial 0/1/0
С	10.70.0.0/16	is directly connected	Serial 0/1/0
С	10.70.0.2/32	is directly connected	Serial 0/1/0

Пояснения:

"R" — маршрут изученный по RIP В скобках — [Administrative Distance/ Metric] После "Via" — IP адрес net hop и исходящий интерфейс

- Для передани кадра и инкалсулированного в него пакета хост/роутер отправитель должен сформованом должен сформования и должения и должения
 - MAC- и IP-адреса отправителя хост/роутер знает из своих конфигурационных настроек
 - IP-адрес получателя в роутере берется из пришедшего пакета, подлежащего маршрутизации
- Процесс формирования МАС-адреса получателя в хосте
 - отправитель и получатель расположены в одном широковещательном домене
 - по "IP-адресу получателя" хост находитв ARP-таблице "MAC-адрес получателя", формирует кадр и предается через нужный интерфейс
 - отправитель и получатель расположены в разных широковещательных доменах
 - хост отправителя использует стандартный шлюз-маршрутизатор (IP-адрес шлюза прописывается в компьютере при установке стэка протоколов TCP/IP
 - По "IP-адресу шлюза" находит в ARP-таблице "MAC-адрес шлюза" и предает кадр через нужный интерфейс этому шлюзу-маршрутизатору
- Процесс формирования МАС-адреса получателя в роутере
 - Из пришедшего пакета изымается IP-адрес получателя
 - Находится в таблице маршрутизации сеть (строка таблицы), наиболее точно описывающая маршрут
 - Если прямо адресуемая сеть назначения по "IP-адресу получателя" ищется в ARP-таблице "MAC-адрес получателя", формируется кадр и предается через нужный интерфейс
 - Если косвенно адресуемая сеть по "IP-адресу next-hop" ищется в ARP-таблице "MAC-адрес next-hop" роутера, формируется кадр и предается через нужный интерфейс

Процесс выбора маршрута

- 1. Роутер берет IP-адрес получателя из заголовка пришедшего пакета
- 2. Берется маска сети из первой записи (строчки) в таблице маршрутизации
- 3. Выполняется логическая операция "И" (определяется номер сети)
- 4. Выполняется <u>сравнение</u> полученного <u>результата</u> <u>с сетью в первой записи</u> таблицы маршрутизации
 - Если совпали адреса сети, пакет пересылается на интерфейс (порт)
 маршрутизатора, с которым связана данная запись в таблице маршрутизации
 - Если не совпали адреса сети, проверяется на совпадение следующая запись в таблице маршрутизации описанным выше образом
- Если адрес пакета не соответствует ни одной из записей в таблице маршрутизации, роутер проверяет, есть ли у него маршрут по умолчанию
 - если в роутере сконфигурирован маршрут по умолчанию, пакет передается на соответствующий ему порт роутера
 - Маршрут по умолчанию (default route) это маршрут, который конфигурирует в устройстве системный администратор и который будет использоваться устройством в том случае, если не найдены соответствия ни одной записи в таблице маршрутизации;
 - если же маршрута по умолчанию нет, то пакет будет отброшен роутером
 - в обратном направлении роутер отправит ICMP-сообщение о том, что сеть получателя недоступна

Разница между MAC- и IP-адресами

- МАС-адреса не организованы по какому-то определенному принципу
 - нет проблем с управлением сетями, поскольку отдельные сетевые сегменты не содержат большого количества узлов
 - L2 коммутируемые сети не блокируют широковещательные рассылки третьего уровня
 - Вследствие этого L2 сети могут быть подвержены широковещательным штормам.
- IP-адреса иерархически организованы, позволяют рассматривать группы адресов как единое целое до тех пор, пока не потребуется определить адрес конкретного узла
 - L3 маршрутизаторы обычно блокируют широковещательные рассылки, ограничивая зону действия широковещательных штормов локальным широковещательным доменом
 - Поэтому маршрутизаторы предоставляют более высокий, чем коммутаторы, уровень защиты и контроль полосы пропускания

CIDR (Бесклассовая междоменная маршрутизация), Правило "длиннейшего" маршрута

CIDR

- <u>Дефицит класса В</u> → выделяют несколько классов С вместо одного адреса класса В
 - Проблема: каждая сетка класса С нуждается в отдельной строке маршрутизации!
- <u>Решение:</u> бесклассовая междоменная маршрутизация [*Classless* Inter-domain Routing (CIDR)]
 - Также называемая "суперсеть"
 - Ключевой момент: надо так распределить адреса, чтобы они в итоге могли быть просуммированы, то есть, расположены рядом
 - необходимо совместное использование одних и тех же старших бит при делении сети на подсети (то есть префикс)
 - Таблицы маршрутизации должны иметь маски подсететей и протоколы маршрутизации должны быть способны к переносу маски подсети. Система обозначений: 128.13.0/23
- Когда IP- адресу (194.0.22.1), соответствует много строк (записей), выбирается строка с самым длинным префиксным соответствием

До CIDR: Граница сети заканчивалась на 8-, 16, 24- бите

CIDR: Граница сети может закончится на любом бите

Network Prefix обычно пишется как 12.4.0.0/15, или "суперсеть"

Понимание: префикс и маска

12.5.9.16 покрывается префиксом 12.4.0.0/15

12.7.9.16 не покрывается префиксом 12.4.0.0/15

Иллюстрация суммирования маршрута в CIDR

Междоменная маршрутизация без CIDR

Междоменная маршрутизация с CIDR

Правило длиннейшего маршрута

Алгоритмы (и протоколы) и маршрутизации

Протоколы и алгоритмы маршрутизации

- Протоколы маршрутизации могут быть построены на основе разных алгоритмов, отличающихся способами построения таблиц маршрутизации, способами выбора наилучшего маршрута и другими особенностями своей работы
- Протоколы маршрутизации можно классифицировать так:
 - Одношаговые и многошаговые
 - Статические и динамические
 - Классовые и бесклассовые
 - Дистанционно-векторные и состояния связей
 - Внутренние и внешние

Алгоритмы маршрутизации: одношаговые

- При выборе рационального маршрута определяется только следующий (ближайший) маршрутизатор, а не вся последовательность маршрутизаторов от начального до конечного узла
- Маршрутизация выполняется по распределенной схеме:
 - каждый маршрутизатор ответственен за выбор только одного шага маршрута
 - а окончательный маршрут складывается в результате работы всех маршрутизаторов, через которые проходит данный пакет
- Такие алгоритмы маршрутизации называются одношаговыми

Алгоритмы маршрутизации: многошаговые

- Многошаговый подход маршрутизация от источника (Source Routing)
- Идея: узел-источник задает в отправляемом в сеть пакете полный маршрут его следования через все промежуточные маршрутизаторы
 - Поэтому нет необходимости строить и анализировать таблицы маршрутизации в каждом маршрутизаторе
 - И это ускоряет прохождение пакета по сети, разгружает маршрутизаторы, но при этом большая нагрузка ложится на конечные узлы
- Эта схема в сетях применяется сегодня гораздо реже, чем схема распределенной одношаговой маршрутизации
- В новой версии протокола IP наряду с классической одношаговой маршрутизацией будет разрешена и маршрутизация от источника
- Далее в курсе не рассматривается

Одношаговые алгоритмы маршрутизации

- В зависимости от способа формирования таблиц маршрутизации делятся на три класса:
- 1. Алгоритмы фиксированной (или статической) маршрутизации
- 2. Алгоритмы простой маршрутизации
- 3. Алгоритмы адаптивной (или динамической) маршрутизации

Алгоритмы маршрутизации: статические (1)

- Статические маршруты заносит Администратор сети вручную (например, с помощью утилиты route OC Unix или Windows NT)
- Таблица, как правило, создается в процессе загрузки, в дальнейшем она используется без изменений до тех пор, пока ее содержимое не будет отредактировано вручную
- Различают
 - одномаршрутные таблицы, в которых для каждого адресата задан один путь
 - многомаршрутные таблицы, определяющие несколько альтернативных путей для каждого адресата
 - должно быть задано правило выбора одного из маршрутов
 - чаще всего один путь является основным, а остальные резервными
- Статическая (фиксированная) маршрутизация приемлема только в небольших сетях с простой топологией
 - Однако может быть эффективно использован на магистралях крупных сетей, если имеет простую структуру с очевидными наилучшими путями следования пакетов в подсети, присоединенные к магистрали

Статические Маршруты – Stub Network (2)

- Используются при подключении конечных сетей (не транзитных –"Stub")
- Отсутствует routing-update сообщения (разгружаем сеть)

Статические Маршруты - Hub and Spoke (3)

- При подключении к сети вышестоящего провайдера, например, в соединениях точка-точка, например по технологии X.25, ISDN, Frame Relay, ATM
- Обмен возможен только между сетями оконечной системой и узлом (hub)
 "Hub"

Маршрут по умолчанию

• общий принцип маршрутизации

- Трафик неизвестным адресатам будет отклонен маршрутизатором (ICMP сообщение!!!)
- поведение может быть изменено заданием маршрута по умолчанию

принцип маршрутизации значения по умолчанию

- трафик неизвестным адресатам пошлют в заданный по умолчанию маршрут (заданная по умолчанию сеть)
- подразумевается, что другой маршрутизатор знает о большем количистве сетей
- permits routers для передачи не полных таблиц маршрутизации
- заданная по умолчанию сеть, отмечается сетевым префиксом, равным 0.0.0.0
 - В таблицах маршрутизации
 - B routing updates , используемых динамической маршрутизацией

Маршрут по умолчанию - Stub Network

Вопрос: что происходит с трафиком, сгенерированным в сети 172.19.0.0 с неизвестным адресом назначения? Что это означает для WAN link?

Маршрут по умолчанию - Any to Any

 В случае использования маршрута по умолчанию в оконечных системах обеспечивается обмен меду любыми сетями через роутер HUB

Маршрут по умолчанию - доступ в Интернет

 В случае подключения корпоративной сети к Интернет также целесообразно использовать статический маршрут по умолчанию на роутере, подключенном к провайдеру

Алгоритмы маршрутизации: простые

- Таблица маршрутизации либо вовсе не используется, либо строится без участия протоколов маршрутизации
- Выделяют три типа простой маршрутизации:
 - случайная маршрутизация, когда прибывший пакет посылается в первом попавшем случайном направлении, кроме исходного;
 - <u>лавинная маршрутизация</u>, когда пакет широковещательно посылается по всем возможным направлениям, кроме исходного (аналогично обработке мостами кадров с неизвестным адресом);
 - маршрутизация по предыдущему опыту, когда выбор маршрута осуществляется по таблице, но таблица строится по принципу моста путем анализа адресных полей пакетов, появляющихся на входных портах

Алгоритмы маршрутизации: динамические (1)

- Адаптивная (или динамическая) маршрутизация
 - самая распространенная
 - имеет распределенный характер (работа распределяется между всеми маршрутизаторами сети)
- Каждый маршрутизатор:
 - собирает и рассылает соседям информацию о топологии связей
 - оперативно отрабатывает все изменения конфигурации связей
 - обеспечивает автоматическое обновление таблиц маршрутизации
 - формирует для каждого маршрута время его жизни

Алгоритмы маршрутизации: динамические (2)

Таблицы маршрутизации формируют протоколы маршрутизации, например,
 RIP, EIGRP, OSPF, BGP

48

Алгоритмы маршрутизации: адаптивная (3)

• ПРИМЕЧАНИЕ

- В последнее время наметилась тенденция использовать так называемые "серверы маршрутов"
- Сервер маршрутов собирает маршрутную информацию, а затем раздает ее по запросам маршрутизаторам, которые освобождаются в этом случае от функции создания таблиц маршрутизации, либо создают только части этих таблиц
- Появились специальные протоколы взаимодействия маршрутизаторов с серверами маршрутов, например Next Hop Resolution Protocol (NHRP)

Алгоритмы маршрутизации: адаптивные (4)

- Адаптивные алгоритмы маршрутизации должны:
 - обеспечивать, если не оптимальность, то хотя бы рациональность маршрута
 - быть достаточно простыми, чтобы не тратилось много сетевых ресурсов (не слишком большой объем вычислений, не большой / не интенсивный служебный трафик)
 - обладать свойством сходимости, то есть всегда приводить к однозначному результату за приемлемое время
- Адаптивные алгоритмы маршрутизации и реализующие их протоколы в свою очередь делятся на две группы:
 - дистанционно-векторные алгоритмы (Distance Vector Algorithms, DVA);
 - алгоритмы состояния связей (Link State Algorithms, LSA).

DVA - дистанционно-векторные (1)

- Каждый роутер
 - периодически и широковещательно рассылает по сети вектор, в котором показывает известные ему сети расстояния до них
 - под расстоянием обычно понимается число хопов.
 - возможна метрика не только числом хопов, но и, например, временем прохождения пакетов по сети между соседними узлами
- При получении вектора от соседа роутер
 - увеличивает расстояния до указанных в векторе сетей на расстояние до соседа
 - добавляет к вектору информацию об известных ему других сетях, о которых он узнал
 - непосредственно (если они подключены к его портам) или из аналогичных объявлений других роутеров
 - рассылает новое значение вектора по сети
- В конце процесса сходимости протоколов маршрутизации
 - каждый роутер узнает информацию обо всех имеющихся сетях и о расстоянии до них через соседние роутеры

DVA - дистанционно-векторные (2)

- DVA хорошо работают только в небольших сетях
- В больших сетях что плохо?
 - засоряют линии связи интенсивным широковещательным трафиком
 - изменения конфигурации могут отрабатываться не всегда корректно, так как нет представления о топологии сети, а работа выполняется "по слухам"
- Наиболее распространенные DVA-протоколы:
 - RIP (Routing Information Protocol), который распространен в двух версиях
 - RIP IP, работающий с протоколом IP
 - RIP IPX, работающий с протоколом IPX
 - IGRP (Cisco, Interior Gateway Protocol)
 - Apple Talk RTMP (Routing Table Maintenance Protocol)

LSA - алгоритм состояния связей (1)

- Каждый роутер имеет точный граф сети (домена маршрутизации)
- Все роутеры работают на основании одинаковых графов
 - поэтому процесс маршрутизации более устойчив к изменениям топологии
- «Широковещательная» рассылка используется только при изменениях состояния связей в графе
 - в надежных сетях изменения происходят не так часто
- Вершины графа
 - роутеры и объединяемые ими сети
- Распространяемая по сети информация о графе
 - информация содержит сведения о связях различных типов: роутер роутер, роутер сеть

LSA - алгоритм состояния связей (2)

- Как представлен граф сети в роутере
 - В каждом роутере формируется топологическая база данных ("roadmap"), в которой представлена информация о всех роутерах, линках (каналах связи между роутерами) и их стоимостях (метрика)
 - Принцип "roadmap" → сетевая дорожная карта
- Таблица маршрутизации
 - Вычисляется роутером по сформированной у него топологической базе данных (roadmap)
- Вычисление коротких путей (SPF)
 - Используется алгоритм SPF (Shortest Path First, разработчик Dijkstra's), алгоритм по "roadmap" ищет наиболее короткий путь к сети назначения
 - короткий путь сохраняется в таблице маршрутизации
- Изменение топологии (включение или отключения линка, изменение линка)
 - Каждый роутер "видит" изменения своих линков
 - И распространяет (flooding) в сеть эти изменения (<u>L</u>ink <u>S</u>tate <u>A</u>dvertisements LSAs)

LSA - алгоритм состояние связей (3)

- Как роутер видит изменение состояния связи (LSAs)?
 - Маршрутизатор периодически обменивается короткими пакетами HELLO со своими ближайшими соседями для проверки их достижимости (проверка каналов/портов/интерфейсов)
 - Этот служебный трафик засоряет сеть не в такой степени как, например,
 RIP-пакеты, так как пакеты HELLO имеют намного меньший объем
- Как происходит Flooding LSAs ?
 - Передача роутером сообщений об изменении связей (LSAs) выполняется по Multicast технологии
 - Приводят к изменению топологической базы данных в других роутерах и, как следствие, к изменению таблиц маршрутизации
- Если изменений в топологии нет
 - Используются только короткие Hello сообщения для наблюдения за линками (тестируется достижимость соседних роутеров)
 - Поэтому полоса пропуская линка меньше загружается в сравнении
 Updates сообщениями дистанционно-векторных протоколов, в которых предается вся таблица маршрутизации

LSA - алгоритм состояние связей (4)

- Примеры LSA протоколов маршрутизации:
 - IS-IS (Intermediate System to Intermediate System) стека OSI
 - OSPF (Open Shortest Path First) стека TCP/IP
 - PNNI (ATM технология)
 - APPN (IBM)
 - NLSP стека Novell

Сравнение протоколов маршрутизации

Routing Protocol	Complexity	Max. Size	Convergence Time	Reliability	Protocol Traffic
RIP	very simple	16 Hops	High (minutes)	Not absolutely loop-safe	High
RIPv2	very simple	16 Hops	High (minutes)	Not absolutely loop-safe	High
IGRP	simple	x	High (minutes)	Medium	High
EIGRP	complex	х	Fast (seconds)	High	Medium
OSPF	very complex	Thousands of Routers	Fast (seconds)	High	Low
IS-IS	complex	Thousands of Routers	Fast (seconds)	High	Low
BGP-4	very complex	more than 100,000 networks	Middle	Very High	Low

Внутренние и внешние протоколы маршрутизации в IP-сетях

- Интернет происходит от своей предшественницы ARPANET
- Интернет изначально строилась как сеть, объединяющая большое количество существующих систем
- С самого начала в ее структуре выделяли
 - магистральную сеть (core backbone network)
 - <u>автономные системы</u> (autonomous systems, AS) сети, присоединенные к магистрали
- Автономная система (AS) это сеть находящаяся под единым административным управлением
 - Каждая AS использует собственные протоколы маршрутизации
 - значит внутри каждой AS своя политика маршрутизация
 - Все AS имеют уникальный (2¹⁶) номер
 - 2 байта отводится по номер AS
 - Магистральные сети также являются автономными системами со своими номерами AS

Core / магистраль / точка обмена трафиком

- Core / ядро /магистраль набор роутеров, которые имеют непротиворечивую и полную информацию обо всех адресатах
- Роутеры в сетях S1, ... Sn могут иметь "частичную информацию" (не полную информацию обо всех адресатах), если они указывают заданные по умолчанию маршруты на соге
- Таким образом, отдаленные роутеры (пограничные роутеры в сетях S1, S2 ...)
 - Поставляют Core информацию о своих сетях
 - Используют маршруты по умолчанию к Core
 - Частичная информация позволяет администраторам производить локальные изменения маршрутизации по месту нахождения независимо друг от друга

Маршрутизация внутри (intra) AS и между (inter) AS

Внутренние и внешние зроужеры (протоколы

- Внутренние шлюзы (interior gateways)
 - используются для образования сетей и подсетей внутри AS
- Внешние шлюзы (exterior gateways)
 - Используются для подключения AS друг к другу или к магистрали

ПРОТОКОЛЫ МАРШРУТИЗАЦИИ:

- Протоколы внутренних шлюзов (interior gateway protocol, IGP)
 - используются внутри автономных систем (AS)
 - будем далее по тексту называть внутренний протокол маршрутизации
 - Внутри AS допустим любой внутренний протокол IGP (RIP, OSPF и т.д.)
- Протоколы внешних шлюзов (exterior gateway protocol, <u>EGP</u>)
 - Используются между AS
 - Между AS работает, в настоящее время (2009), внешний протокол маршрутизации BGP-4

- Смысл разделения **Вдерем на ужи нрын А**Ссистемы (AS):
 - Возможность <u>реализации политик</u> маршрутизации
 - Способность к расширению в больших масштабах (МАСШТАБИРОВАНИЕ)
 - Изменение протоколов маршрутизации внутри какой-либо AS никак не должно влиять на работу остальных AS
- Деление Internet на AS способствует <u>агрегированию маршрутов</u> в магистральных и пограничных роутерах
 - Внутренние роутеры строят достаточно подробные графы связей между собой, чтобы выбрать наиболее рациональный маршрут внутри AS
 - Однако детальная топология внутри AS не нужна другим AS
 - Это обстоятельство позволяет представить содержимое одной AS другой AS, как правило, одной строчкой таблицы маршрутизации
- Пограничные роутеры представляют AS как единое целое для остальной части
 Интернета
 - Пограничные маршрутизаторы обмениваются минимальной маршрутной информацией: адрес(а) IP-сети(ей) AS и внутреннее расстояние до этих сетей от данного пограничного роутера

Автономные системы Autonomous Systems (AS)

Сегодняшняя карта сети

Большое количество иных сетей

Цель EGP

Как формируется Inter-AS маршрутизация?

- Два типа маршрутизаторов
 - 1. <u>Пограничный</u> маршрутизатор (фронтальный) [<u>Border</u> router (Edge)]
 - 2. Внутренний маршрутизатор (центральный) [Internal router (Core)]
- Два пограничных маршрутизатора различных AS имеют BGP-сессии

Intra-AS в сравнении с Inter-AS

- Автономная система (AS) домен маршрутизации
- В пределах AS:
 - Может выполнятся протокол маршрутизации link-state / "состояние связи"
 - Доверие к другим маршрутизаторам
 - Масштаб сети относительно мал
- Между AS:
 - <u>Отсутствие</u> информации о <u>топологии сети другой AS</u>
 - Предполагается пересечение границ
 - Протокол маршрутизации "состояния связей" (LSA) не масштабируем до размеров Интернет
 - Протокол маршрутизации базируется на распространении / размножении маршрута

Требования к междоменной (Inter-AS) маршрутизации

- <u>Масштабироваться</u> до размера глобального Internet
 - Фокус на *достижимости*, а не оптимальности
 - использование технологии агрегации адресов для уменьшения размеров таблиц маршрутизации и связанного с ним трафика управления
 - В то же самое время, это должно обеспечить *гибкости топологической структуре* (eg: не ограничится деревьями и т.д)
- Позволить политики маршрутизации между AS
 - Политика обращается к <u>произвольному предпочтению среди</u> меню располагаемых маршрутов (основанный на <u>атрибутах</u> маршрутов)
 - Полностью распределенная маршрутизация (в противоположность сигнализируемой технологии) единственная возможность
 - Удовлетворение возникающих потребностей в более новой политики

Autonomous Systems (AS) Автономные системы

- Internet не одна сеть
 - Коллекция сетей, которые контролируют различные администраторы
- Автономная система (AS) сеть под единственным административным управлением
- AS имеет IP-префикс
- Каждая AS имеет уникальный AS номер
- Каждая AS должна иметь коннективность с <u>internetwork</u> (международной сетью), образуя единственную виртуальную глобальную сеть
 - Нуждается в общем протоколе для связи

Autonomous Systems (ASes)

• Автономная система (AS) - автономная маршрутная область (домен маршрутизации), которой назначен Номер AS

администрирование автономной системы видно в других автономных системах, имеет единственную когерентную внутреннюю схему маршрутов связи и представляет непротиворечивое изображение того, какие сети являются доступными

RFC 1930: Guidelines for creation, selection, and registration of an Autonomous System

Internet регистратуры

Internet регистратуры занимаются распределением и выдачей IPадресов, AS, обратных доменных зон

RFC 2050 – Принципы распределения IP регистратурами Internet

RFC 1918 - Распределение адресов для Частных Internet

RFC 1518 - Архитектура для IP-адреса CIDR

AS нумерация (ASNs)

Значение из 16 бит Диапазон «64512 – 65535» - "private" В настоящее время используется около 11000

- Genuity: 1
- MIT: 3
- Harvard: 11
- UC San Diego: 7377
- AT&T: 7018, 6341, 5074, ...
- UUNET: 701, 702, 284, 12199, ...
- Sprint: 1239, 1240, 6211, 6242, ...
- ИМСС 8775, RBNET 5568, ПГТУ , ПГУ -

AS "и" Учреждение

- Нет одинаковых AS
 - Многие учреждения имеют несколько AS
 - Некоторые учреждения не имеют собственного номера AS
 - Владелец (собственник) AS точно определяется (Whois)
- Нет одинаковых блоков IP-адресов (префикс)
 - Многие учреждения имеют несколько (не смежных) префиксов
 - Некоторые учреждения маленькие части большего адресного блока
 - Владелец (собственник) префикса точно определяется (Whois)
- Нет одинаковых доменных имен (att.com)
 - Некоторые сайты можно разместить (hosted) в других институтах
 - Некоторые учреждения имеют несколько доменных имен (att.net)

Характеристика AS-графа

- Структура AS-графа
 - Высокая изменчивость: степень числа узлов ("степенной закон")
 - Только несколько очень высоко-связанных AS
 - Много AS имеют несколько подключений

10.04.2020

Откуда получают BGP-маршруты: Public Servers

10.04.2020

Типы AS: не транзитные и транзитные

Транзит селективный/выборочный

Большинство транзитных AS предоставляют только выборочный транзит: на коммерческой основе

Клиент и провайдер

Клиент платит провайдеру за доступ в Интернет

Иерархия клиент-провайдер

Пиринговые отношения

Пиринг (англ. *peering*) — соглашение интернет-операторов об обмене трафиком между своими сетями, а также техническое взаимодействие, реализующее данное соглашение: соединение сетей и обмен информацией о сетевых маршрутах по протоколу BGP.

Пример: Служба America Online (AOL's)

- Междоменная политика, свободная от взаиморасчетов
- Эксплуатационные требования к пиринговым сетям
 - Выход из строя одного узла не приводит к потере трафика
 - Единственный номер AS
 - Укомплектованность центра эксплуатации сети
- Базовая емкость
 - Не менее 10 Гбит/с между 8 или больше городами
 - Минимальное быстродействие принговых каналов 622
 Мбит/с
- Пиринг локализации (в США)
 - Не менее четырех
 - Размещенных в: округ Колумбия (1), середина страны (2), участок "Залив" Вау area (3), и Нью Йорк Сити или Атланты (4)

AOL требования к маршрутизации

- Непротиворечивые объявления
 - Все клиенты маршрутизируются
 - Со всеми точками пиринга
 - С той же самой длиной AS-path
- Блок адресов
 - Агрегация маршрутов в максимально возможной степени
 - Блоки адресов не меньшие чем /24
 - Адресные блоки зарегистрированы (например, в RIPE)
- Нет маршрутизации по умолчанию (в точку пиринга)
 - Трафик посылается только по назначению, объявленному службой America Online (AOL)

Пиринговые воины

Пирится (Peer)

- Уменьшает транзитные затраты в восходящем потоке данных
- Может увеличить end-to-end параметры (рабочие характеристики)
- Может быть единственным способом подключения ваших клиентов к некоторой части Internet ("Уровень 1")

He пирится (Don't Peer)

- Вы предпочитаете быстрее иметь клиентов
- Peers являются вашими конкурентами
- Peering зависимости необходимо периодически пересматривать

Пиринговая (Peering) борьба - безусловно самая спорная проблема в мире поставщиков Internet-сервиса!

Пиринговые (Peering) договоры являются часто конфиденциальными

Вспомним: Распределенные методы маршрутизации

Состояние связей (Link State)

- Информация о топологии <u>затопляет</u> (<u>flooded</u>) домен_маршрутизации
- Лучший end-to-end путь вычисляется локально в каждом маршрутизаторе
- Лучший end-to-end путь определяет следующий next-hops
- Основан на минимизации некоторого понятия расстояния
- Работает только если политика разделяется всеми и однородна
- Примеры: OSPF, IS-IS

Векторные (Vectoring)

- Каждый маршрутизатор знает немного о топологии сети
- Каждым маршрутизатор выбирает только лучший next-hops для каждой destination-сети
- Лучший end-to-end путь является результатом композиции всех выбранных next-hop
- Не требует никакого понятия расстояния
- Не требует однородной политики во всех маршрутизаторах
- Примеры: RIP, BGP