Definition 0.1. Let I be a subset of a ring R. Then an additive subgroup of R having the property that

$$ra \in I$$
 for $a \in I$, $r \in R$

is called a left ideal of R. Similarly

$$ar \in I$$
 for $a \in I$, $r \in R$

is called a right ideal of R. If an ideal is both a right and a left ideal then we call it a two-sided ideal of R, or simply an ideal of R.

We say that an ideal I of R is proper if $I \neq R$. We say that is it non-trivial if $I \neq R$ and $I \neq 0$.

I've seen several different notations for ideals including, among others: rI = $\{ri \mid r \in R, i \in I\}$ and $rI \subset I$ for $\forall r \in R$.

So in words: An $ideal\ I$ is a subset of a ring R such that

- I is a subgroup of R under addition (so $0 \in I$ and so $I \neq \emptyset$)
- I is not only closed under multiplication but also satisfies the stronger property that it "absorbs" all of the elements of R under multiplication: $\forall r \in R \Rightarrow rI \subset I$

Groups

- $\phi: G \xrightarrow{hom} H$ $\ker \phi = N$ # ϕ is a group homomorphism: $G \simeq H$
 - # N is a **normal subgroup** of $G(N \triangleleft G)$
- if ϕ is onto then $H \simeq G/N$ # First Isomorphism Theorem for groups

Rings

- $\phi: R \xrightarrow{hom} S$
 - # ϕ is a ring homomorphism: $R \simeq S$ # I is a two-sided ideal in R with $1 \notin I$
- $\ker \phi = I$ if ϕ is onto then $S \simeq R/I$
- # First Isomorphism Theorem for rings

Notes

- An ideal is the same thing as the kernel of a ring homomorphism ϕ
- Ideals are to rings as normal subgroups are to groups