

Komplexität und Größe des Dokuments

Verfassen wissenschaftlicher Texte mit LATEX

Übersicht

- 1 Grundlagen
- 2 Text erstellen
- 3 Zahlen und Einheiten
- 4 Formelsatz
 - im Fließtext
 - Mathe-Umgebungen
- 5 Floating-Umgebungen

PeP et Al. toolbox, 2014 1/21

Was ist LATEX?

- Programmiersprache zum Setzen von Text
- Kein WYSIWYG, es werden Befehle und Inhalt in normale Text-Dateien geschrieben.
- Kompiler überträgt LETEX-Code in ein Ausgabedokument (meist PDF)
- OpenSource mit zahlreichen Erweiterungsmöglichkeit (Pakete)

Warum LATEX benutzen?

- hervorragender Text- und Formelsatz
- automatisierte Erstellung von Inhalts- und Literaturverzeichnis
- Tex-Dateien sind reine Text-Dateien ⇒ kleine Datein, gut für Versionskontrolle geeignet
- sehr gute Vorlagen für wissenschaftliche Arbeiten
- aber auch: Briefe, Notensatz, Präsentationen
- ausgezeichnete Dokumentionen
- erweiterbar durch zahlreiche und mächtige Pakete
- aus allen geläufigen Betriebssystem verfügbar
- Ausgabe nach PDF

PeP et Al. toolbox, 2014 Grundlagen 3/21

Das Dokument

Diese drei Zeilen braucht jedes LATEX-Dokument:

```
MEX-Code
\documentclass{scrartcl}
    % Präambel
    .
    .
    .
\begin{document}
    % Inhalt des Dokuments
    .
    .
\end{document}
```

documentclass

Hier wird die Dokumentenklasse definiert. Es folgt die Präambel des Dokuments. Hier werden globale Optionen gesetzt und zusätzliche Pakete eingebunden.

document-Umgebung

Hier wird das eigentliche Dokument erstellt.

Syntax: Befehle

LaTEX-Befehle beginnen stets mit einem Back-Slash.
Obligatorische Argumente stehen in { }, optionale Argumente stehen in [].

LAT⊨X-Code

% Kommentar

Erklärung

Beispiel

Setzt die Dokumentenklasse auf scrartcl und das Papierformat auf DIN A4.

Es gibt auch Befehle mit zwei oder mehr Pflichtargumenten, z.B. der Bruch.

Text oder Befehle nach einem %-Zeichen werden nicht berücksichtigt.

Syntax: Umgebungen

Das zweite wichtige LATEX-Element sind die Umgebungen.

Syntax

Eigenschaften

- Umgebungen können verschachtelt werden
- Umgebungen können nicht verschränkt werden

Das Ausgabedokument erstellen

Es gibt mehrere verschiedene Lagabeformate erzeugen können. Der modernste Kompiler, der PDF-Dateien erstellt, ist lualatex.

LATEX-Dakument kompilieren

Konsole öffnen:

\$ lualatex MeinDokument.tex

Vorsicht!

- Es muss fast immer mindestens zweimal kompiliert werden.
- Es werden diverse Hilfs- und Logdateien erzeugt.
- Die Input-Dokumente müssten UTF-8 codiert sein.

PeP et Al. toolbox, 2014 Grundlagen 7/21

Standardpakete

Die hier aufgezählten Pakete sollten immer geladen werden, da sie wesentliche Funktionen bieten und wichtige Einstellungen vornehmen.

Paket

\usepackage[ngerman]{babel}

\usepackage{fontspec}

Funktion

Deutsche Spracheinstellungen für das Dokument.

Schriftpaket. Wichtig, damit Umlaute korrekt dargestellt werden. Erlaubt einfaches ändern der verschiedenen Schriftarten.

Titelseite und Metadaten

LATEX erstellt automatisch eine Titelseite aus den Metadaten.

Empfehlung fürs Praktikum:

```
\subject{Fakultät Physik, TU Dortmund}
\title{Vxxx: Titel des Versuchs}
\subtitle{Physikalisches Anfängerpraktikum}
\author{Max Mustermann}
% Mehrere Autoren mit \and :
\author{Max Mustermann \and Maria Musterfrau}
\date{Datum der Versuchsdurchführung}
% Zusätzlich möglich:
\titlehead{Kopf}
\publishers{Verlag}
```

Titelseite generieren

\maketitle

Inhaltsverzeichnis und Gliederung

LETEX bietet Befehle zum erstellen von Gliederungsebenen. Diese werden automatisch nummeriert und in entsprechend größerer und fetter Schrift gesetzt. Mit \tableof contents wird das Inhaltsverzeichnis erstellt.

Gliederungsebenen für scrartcl

```
\section{Überschrift}
\subsection{Überschrift}
\subsubsection{Überschrift}
\paragraph{Überschrift} % wird nicht nummeriert
\subparagraph{Überschrift} % wird nicht nummeriert
```

höhere Gliederungsebenen für scrrepr und scrbook

```
\part{Überschrift}
\chapter{Überschrift}
\section{Überschrift}
```


Konventionen für Text

- höchstens einen Satz pro Code-Zeile
- Absätze werden durch eine Leerzeile markiert
- Im Fließtext sollten keine Umbrüche mit \\ erzwungen werden.

Sonderzeichen

Viele Sonderzeichen sind Late. Steuerzeichen. Damit diese im Text genutzt werden können, muss meist ein \vorangestellt oder ein Befehl genutzt werden:

PeP et Al. toolbox, 2014 Text erstellen 11/21

Übung: Aufbau des Protokolls

Aufgabe

Schreibt und kompiliert den groben Rahmen für das Protokoll. Es sollte folgendes enthalten:

- Titelseite mit den wichtigen Informationen
- Inhaltsverzeichnis
- Section Theorie
 - subsection Theorie A
 - subsection Theorie B
- Section Aufbau und Durchführung
 - subsection Aufbau
 - subsection Versuchsdurchführung
- Section Auswertung
 - subsection Teil 1 der Auswertung
 - 2 subsection Teil 2 der Auswertung
- Section Diskussion

Das Slunitx-Paket

Dieses Paket sollte immer und für jede Zahl mit oder ohne Einheit verwendet werden.

benötigte Pakete

\usepackage[locale=DE, separate-uncertainty=true, per-mode=fraction]
{siunitx}

LATEX-Code

```
\num{1.23456} und \num{987654321}
\num{1.2e2}
\si{\newton} = \si{\kilo\gram\metre\per
\second\squared}
\SI{1.2}{\metre\per\second}
\SI{4,3(12)}{\micro\second}
\SI{4,3(12)e-6}{\second}
```

Ergebnis

1,234 56 und 987 654 321 1,2 · 10² $N = \frac{kg m}{s^2}$ 1,2 $\frac{m}{s}$ (4,3 ± 1,2) µs

 $(4,3+1,2)\cdot 10^{-6}$ s

\$...\$-Umgebung

Für mathematische Symbole, Variablen und kleine Formeln im Fließtext.

benötigte Pakete

```
\usepackage{amsmath}
\usepackage{mathtools}
\usepackage{amssymb}
```

LAT_FX-Code

```
$x$
$x^i$
$x^12$ bzw. $x^{12}$ % Vorsicht
$x_\text{max}$
$U(t) = U 0 \cdot \cos(\omega t)$
```

```
x
x^{i}
x^{1}2 bzw. x^{12}
x_{\max}
U(t) = U_{0} \cdot \cos(\omega t)
```


Die equation-Umgebung

Für eine abgesetzte Gleichung, die automatisch nummeriert wird.

LAT⊨X-Code

```
\begin{equation}
   \nabla \cdot \vec{E} =
   \frac{\rho} {\epsilon_0}
   \label{eq:maxwell1}
\end{equation}
```

$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \tag{1}$$

Die align-Umgebung

- für mehrere Gleichungen
- & steuert Ausrichtung

- \\ erzeugt neue Zeile
- jede Zeile bekommt eine Gleichungsnummer

LAT⊨X-Code

$$a = 2$$
 $b = 2$ (2)

$$a \cdot b = 2$$
 $\frac{a}{b} = 0.5$ (3)

Symbol-Sammlung

LAT⊨X-Code

```
\begin{align}
  \leq \geq \gg \ll \approx \propto \\
  \cdot \times \partial \bar{x} \vec{x} \\
  \pm \mp \infty \partial \nabla \\
  \int\limits_0^1 \sum\limits_{i=1}^N \\
  \int \iiint \oint
\end{align}
```

$$\leq \geq \gg \ll \approx \infty$$

$$\cdot \times \bar{x}\bar{x}$$

$$\pm \mp \infty \partial \nabla$$

$$\int_{0}^{1} \sum_{i=1}^{N} \bigoplus_{i=1}^{N} \bigoplus$$

Konventionen: Variablen, Zahlen, Einheiten, Indizes

- Variablen werden kursiv gesetzt. Dies geschieht im Mathematikmodus automatisch.
- Einheiten werden aufrecht gesetzt und haben ein kleines Leerzeichen (\,) Abstand zu ihrer Zahl. Am besten benutzt man hierfür immer siunitx.
- Die eulersche Zahl e, das imaginäre i und das infinitesimale d werden ebenfalls aufrecht gesetzt. Im Mathematikmodus erreicht man dies mit \mathrm{e}, \mathrm{d}, \mathrm{i}.
- Bestehen Indizes aus Text, wie min oder max, so wird dies ebenfalls aufrecht gesetzt.
 - x_\text{min}
- ein dx sollte durch ein kleines Leerzeichen (\,) vom Integranden abgetrennt werden.

Übung: Maxwell-Gleichungen

Erstellt mit Hilfe der align-Umgebung die Maxwellgleichungen:

$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \qquad \qquad \nabla \cdot \vec{B} = 0 \tag{4}$$

$$\nabla \times \vec{E} = \partial_t \vec{B} \qquad \qquad \nabla \times \vec{B} = \mu_0 \vec{j} + \mu_0 \epsilon_0 \partial_t \vec{E}$$
 (5)

Gleitumgebungen

Zum setzen Elementen, die nicht zum Fließtext gehören, werden Gleitumgebungen genutzt. Diese werden automatisch an eine passende Stelle gesetzt.

- für Abbildungen und Tabellen
- Die Freiheit die LaTEX beim setzen hat, kann mit optionalen Argumenten gestuert werden.
- h (here), !h (noch strenger), t (top), b (bottom)

Bilder einbinden

benötigte Pakete

```
\usepackage{graphicx}
\usepackage[labelfont=bf]{caption}
```

LATEX-Code

```
\begin{figure}
    \centering
    \includegraphics[width=\textwidth]{./
    peplogo.pdf}
    \caption{Das Pep-Logo}
    \label{fig:peplogo}
\end{figure}
```

Ergebnis

Abbildung 1: Das PeP-Logo