Boolean Networks II

State of the system: described by **vector** of **discrete** values

$$S_i = \{0, 1, 1, 0, 0, 1, ...\}$$

$$S_i = \{x_1(i), x_2(i), x_3(i), \ldots\}$$

fixed number of species with finite number of states each

- → finite number of system states
- → periodic trajectories
 - → periodic sequence of states = attractor
 - \rightarrow all states leading to an attractor = **basin of attraction**

Propagation:

$$S_{i+1} = \{x_1(i+1), x_2(i+1), x_3(i+1), ...\}$$

 $x_1(i+1) = f_1(x_1(i), x_2(i), x_3(i), ...)$

with f_i given by condition tables

A Small Example

State vector $S = \{A, B, C\} \rightarrow 8$ possible states

Conditional evolution:

A is on if C is on

Α	activates	В
---	-----------	---

\mathbf{C}	is c	n if	(B	is	οn	ጴጴ	Α	is	off)
	13 C	/II II	(U	13	OH	$\alpha\alpha$	$\overline{}$	13	OIII

A _{i+1}	Ci
0	0
1	-1

B _{i+1}	A_{i}
0	0
- 1	ı

C _{i+1}	Ai	Bi
0	0	0
ı	0	ı
0	I	0
0	I	I

Start from $\{A, B, C\} = \{1, 0, 0\}$

#	Si	Α	В	С
0	S ₀	- 1	0	0
- 1	Sı	0	- 1	0
2	S ₂	0	0	- 1
3	$S_3 = S_0$	1	0	0

assume here that inhibition through A is stronger than activation via B

periodic orbit of length 3

Test the Other Starting Conditions

Test the other states

В	С
1	1
1	0
1	0
0	1
0	0
1	0
	I I I O

A _{i+1}	Ci
0	0
- 1	- 1

B _{i+1}	A_{i}
0	0
1	- 1

C _{i+1}	Ai	Bi
0	0	0
- 1	0	I
0	I	0
0	I	ı

	#	Α	В	С
\mathbf{A}	0	- 1	0	- 1
11		- 1	- 1	0

#	Α	В	С
0	0	- 1	- 1
1	- 1	0	- 1

Same attractor as before:

$$100 \rightarrow 010 \rightarrow 001 \rightarrow 100$$

is also reached from:

110, 111, 101, 011

#	Α	В	С
0	0	0	0
I	0	0	0

→ Either all off or stable oscillations

A Knock-out Mutant

A _{i+1}	Ci
0	0
I	1

Bi	+1	A_{i}
()	0
	l	ı

C _{i+1}	Bi
0	0
I	I

Attractors:

#	Α	В	С	
0	-	0	0	
- 1	0	1	0	
2	0	0	- 1	
3	-1	0	0	

#	Α	В	С	
0	- 1	1	0	*
- 1	0	-1	-1	\
2	-1	0	-1	
3	1	ı	0	

#	Α	В	С	
0	- 1	- 1	- 1	•
1	ı	- 1	- 1	_

#	Α	В	С	
0	0	0	0	*
1	0	0	0	

no feedback

→ no stabilization, network just "rotates"

The Feed-Forward-Loop

External signal determines state of X

 \rightarrow response Z for short and long signals X

 X

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 ↓

 <

condition tables:

Υ	X
0	0
1	- 1

Z	X	Y
0	0	0
0	0	I
0	I	0
1	I	- 1

Υ	X
- 1	0
0	1

Z	X	Υ
0	0	0
0	0	- 1
1	I	0
0	ı	- 1

Signal propagation

Left column: external signal

X	Y	Z
0	0	0
- 1	0	0
0	- 1	0
0	0	0
- 1	0	0
- 1	- 1	0
- 1	- 1	ı
0	- 1	ı
0	0	0
0	0	0

Response to signal X(t)

Short Signal

Long signal

X	Υ	Z
0	- I	0
- 1	- 1	0
0	0	0
0	- 1	0
- 1	- 1	0
- 1	0	0
- 1	0	- 1
0	0	- 1
0	- 1	ı
0	1	0

Can Boolean Networks be predictive?

Generally: \rightarrow quality of the **results** depends on the quality of the **model**

→ quality of the model depends on the quality of the **assumptions**

Assumptions for the Boolean network description:

(• subset of the species considered

→ reduced system state space)

only discrete density levels

→ dynamic balances lost, reduced to oscillations

• conditional yes—no causality

 \rightarrow no continuous processes

• discretized propagation steps

→ timing of concurrent paths?

"You get what you pay for"