Ensayo 1

Respiración acumulada en frutos I y M

Immature and mature ubajay fruits were selected and randomly distributed in 4 jars, 2 immature and 2 mature, then respiration was quantified from accumulated CO2 every 15 minutes for 150 minutes.

CO₂ acumulation

Descriptive table

## ##		A tibble: Groups:		7 nin [10]				
##		time_min	matu	carbon_ac_n	carbon_ac_Mean	${\tt carbon_ac_sd}$	${\tt carbon_ac_min}$	carbon_ac_max
##		<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	15	I	2	42.5	4.97	39.0	46.1
##	2	15	M	2	39.6	1.86	38.3	40.9
##	3	30	I	2	62.2	5.13	58.5	65.8
##	4	30	M	2	59.4	2.79	57.4	61.4
##	5	45	I	2	75.2	5.23	71.5	78.9
##	6	45	M	2	76.6	0.110	76.6	76.7
##	7	60	I	2	94.9	5.39	91.1	98.7
##	8	60	М	2	99.0	4.66	95.7	102.
##	9	75	I	2	108.	5.50	104.	112.
##	10	75	М	2	116.	1.97	115.	118.
##	11	90	I	2	124.	10.3	117.	132.
##	12	90	М	2	136.	2.91	134.	138.
##	13	105	I	2	137.	10.4	130.	145.
##	14	105	M	2	153.	0.221	153.	153.
##	15	120	I	2	157.	10.5	150.	164.

##	16	120	M	2	176.	4.77	172.	179.
##	17	135	I	2	170.	10.6	163.	178.
##	18	135	M	2	190.	6.59	185.	194.
##	19	150	I	2	186.	15.4	176.	197.
##	20	150	M	2	213.	3.02	211.	215.

Correlations over time

									X150
								X135	0.98
							X120	1	0.99
						X105	0.98	0.96	1
					X90	0.98	0.98	0.97	0.98
				X75	0.99	0.98	1	0.99	0.99
			X60	0.87	0.9	0.78	0.86	0.88	0.82
		X45	0.77	0.74	0.82	0.74	0.69	0.66	0.71
	X30	0.67	0.55	0.16	0.28	0.08	0.11	0.12	0.07
X15	0.99	0.67	0.47	0.11	0.23	0.05	0.05	0.05	0.03

0.75

0.50

0.25

Covariance matrix

```
##
         15
              30
                    45
                         60
                               75
                                      90
                                           105
                                                  120
                                                        135
                                                              150
                       7.79
## 15
     12.28 12.95
                 7.38
                              2.21
                                    7.31
                                          1.73
                                                       2.50
                                                 2.14
                                                              1.66
## 30
      12.95 13.93
                 7.77 9.75
                             3.59
                                    9.42
                                          3.25
                                                5.23
                                                       6.22
                                                              4.90
                                         25.37
## 45
       7.38
           7.77 9.77 11.46
                             13.46
                                   23.37
                                                27.07
                                                      27.76
                                                             38.97
## 60
       7.79 9.75 11.46 22.55
                             24.26
                                   38.94
                                         40.66
                                               51.74
                                                      56.09
  75
            3.59 13.46 24.26
                             34.14
                                   52.90
                                         62.77
                                                73.57
## 90
       7.31 9.42 23.37 38.94
                             52.90
                                   83.40
                                         97.35 112.92 118.82 157.38
  105
       1.73
            3.25 25.37 40.66
                             62.77
                                   97.35 119.47 134.76 140.36 191.45
                            73.57 112.92 134.76 159.43 168.68 220.61
## 120
       2.14 5.23 27.07 51.74
## 135
       2.50 6.22 27.76 56.09 77.63 118.82 140.36 168.68 179.37 231.42
```

Marginal model with first-order autoregressive structure

```
## gls(model = (carbon_ac) ~ time_min * matu + basal, data = resp2w,
## correlation = corAR1(form = ~1 | rep))
```

Assumptions


```
##
## Shapiro-Wilk normality test
##
## data: e
## W = 0.9761627, p-value = 0.549824
```

Model coefficients

##	(Intercept)	time_min30	time_min45	time_min60	time_min75
##	-1088.309859117	19.625054307	32.708423844	52.333478151	65.416847689
##	time_min90	time_min105	time_min120	time_min135	time_min150
##	81.789723552	94.873093090	114.498147397	127.581516934	143.954392798
##	matuM	basal	time_min30:matuM	time_min45:matuM	time_min60:matuM
##	24.020301930	43.217057762	0.171220178	4.327249699	7.055345302
##	time_min75:matuM	time_min90:matuM	${\tt time_min105:matuM}$	${\tt time_min120:matuM}$	<pre>time_min135:matuM</pre>
##	11.211374823	14.634773444	18.790802965	21.518898568	22.485337162
##	time_min150:matuM				
##	29.098326710				

Anova

Simple effects

```
## $emmeans
## time_min = 15:
## matu
             emmean
                     SE df
                                     lower.CL
                                                 upper.CL
## I
         29.0559310 3.99641289 4.38 18.3274684 39.7843936
        53.0762329 3.99641289 4.26 42.2426703 63.9097956
##
## time_min = 30:
## matu
                         SE df
                                     lower.CL
                                                 upper.CL
         48.6809853 3.99641289 4.37 37.9473496 59.4146210
         72.8725074 3.99641289 4.38 62.1474410 83.5975738
## M
##
## time_min = 45:
## matu
                           SE df
                                     lower.CL
             emmean
                                                 upper.CL
         61.7643548 3.99641289 4.23 50.9066429 72.6220667
## M
         90.1119065 3.99641289 4.30 79.3151857 100.9086272
##
## time_min = 60:
## matu
             emmean
                           SE df
                                     lower.CL
                                                 upper.CL
## I
         81.3894091 3.99641289 4.35 70.6412810 92.1375372
        112.4650564 3.99641289 4.37 101.7314207 123.1986921
##
```

```
## time min = 75:
            emmean SE df
                                    lower.CL
## matu
                                               upper.CL
        94.4727787 3.99641289 4.28 83.6565866 105.2889707
        129.7044554 3.99641289 4.31 118.9126401 140.4962708
## M
## time_min = 90:
## matu
                        SE df
                                    lower.CL
                                               upper.CL
            emmean
## I
        110.8456545 3.99641289 4.38 100.1171919 121.5741172
        149.5007299 3.99641289 4.26 138.6671673 160.3342926
##
## time_min = 105:
                          SE df
## matu
                                    lower.CL
      123.9290241 3.99641289 4.37 113.1953884 134.6626598
## M
      166.7401290 3.99641289 4.38 156.0150626 177.4651953
##
## time_min = 120:
## matu
                          SE df
                                    lower.CL
            emmean
                                               upper.CL
      143.5540784 3.99641289 4.23 132.6963665 154.4117903
##
      189.0932789 3.99641289 4.30 178.2965581 199.8899996
##
## time_min = 135:
## matu
                     SE df lower.CL
            emmean
                                               upper.CL
## I 156.6374479 3.99641289 4.35 145.8893198 167.3855760
        203.1430870 3.99641289 4.37 192.4094513 213.8767227
##
## time_min = 150:
            emmean SE df lower.CL
## matu
                                               upper.CL
## I 173.0103238 3.99641289 4.28 162.1941317 183.8265159
        226.1289524 3.99641289 4.31 215.3371371 236.9207678
##
## Degrees-of-freedom method: satterthwaite
## Results are given on the ( (not the response) scale.
## Confidence level used: 0.95
##
## $contrasts
## time min = 15:
  contrast estimate SE df t.ratio p.value
## I - M
         -24.0203019 7.19762359 6.29 -3.337 0.0146
##
## time_min = 30:
## contrast estimate SE df t.ratio p.value
## I - M -24.1915221 7.19762359 6.30 -3.361 0.0141
## time_min = 45:
## contrast estimate
                             SE df t.ratio p.value
         -28.3475516 7.19762359 4.51 -3.938 0.0135
## I - M
##
## time_min = 60:
## contrast estimate
                          SE df t.ratio p.value
## I - M -31.0756472 7.19762359 6.28 -4.317 0.0045
##
## time_min = 75:
## contrast estimate SE df t.ratio p.value
## I - M -35.2316768 7.19762359 6.24 -4.895 0.0024
```

```
##
## time_min = 90:
   contrast
                estimate
                                 SE
                                      df t.ratio p.value
             -38.6550754 7.19762359 6.29 -5.371 0.0015
##
## time_min = 105:
    contrast
                                 SE
                                       df t.ratio p.value
                estimate
   I - M
             -42.8111049 7.19762359 6.30 -5.948 0.0008
##
## time_min = 120:
  contrast
                {\tt estimate}
                                 SE
                                       df t.ratio p.value
  I - M
             -45.5392005 7.19762359 4.51 -6.327 0.0021
##
##
## time_min = 135:
   contrast
                {\tt estimate}
                                 SE
                                       df t.ratio p.value
##
             -46.5056391 7.19762359 6.28 -6.461 0.0005
##
## time_min = 150:
  contrast
                {\tt estimate}
                                 SE
                                       df t.ratio p.value
             -53.1186286 7.19762359 6.24 -7.380 0.0003
##
## Note: contrasts are still on the ( scale
## Degrees-of-freedom method: satterthwaite
```

Statistically significant differences were found in the $\rm CO2$ respiration rate in each time between immature and mature Hexachlamys edulis fruits.

Comparison chart

Fitted model plot

