立命合宿 2018 Day 3

F:最短距離を伸ばすえびちゃん

原案, 問題文, 解説:鈴木

解答:栗田,鈴木,杉江

問題概要

- N頂点M辺の有向グラフと2頂点s,tが与えられる
 - 辺iは距離d_i
- いくつかの辺を整数の範囲で伸ばす
 - 辺iは距離1伸ばすごとに c_i のコストがかかる
- s-t間の最短距離を伸ばすために必要な最小コストは?
- 制約
 - $2 \le N \le 200$
 - $1 \le M \le 2000$
 - $s \neq t$
 - $1 \le d_i, c_i \le 10$

2018/3/28 立命合宿2018 Day3 F

3

考察

• s-t最短路が通らない辺は伸ばす意味なし

伸ばす意味のない辺を消す

- sを始点,tを終点とする DAG になる
- 最短路DAGと呼ぶことにする

どこをどれだけ伸ばすか

• 最短路DAG上のあらゆるs-t経路に被る辺集合

=削除するとs-tが分断される辺集合

- = *s-t*カット辺集合
- ・各カット辺を1だけ伸ばせば十分

どのs-tカットが良いか

• いわゆる最小カット

詳細はググる か蟻本で!

• 最短路DAGとコストで最小カット問題を解く

解法の詳細

1. 最短路DAGを作る

グラフが小さいので これで十分です

- 各辺が最短路に寄与するかチェック O(M)
 - $dst(s,u_i) + d_i + dst(v_i,t) = dst(s,t)$ なら寄与
- 2. 最短路DAGで最小カット問題を解く
 - 例えば Dinic, フォード・フォルカーソン, ...
- 全体の計算量
 - Dinicを使う: $O(N^3 + N^2M)$
 - フォードを使う: $O(N^3 + M \times ANS)$

Writer解

	言語	行数	Byte
栗田	C++	90	2273
鈴木	C++	87	2085
杉江	C++	113	3153

提出状况

- Acceptance Rate
 - 72% (34 /47)

- First Accept
 - オンサイト
 - rupc_aiu (0:33)
 - オンライン
 - pekempey (0:49)