Исследование операций Многокритериальная оптимизация

Виктор Васильевич Лепин

Институт математики НАН Беларуси, Минск

Пример "Покупка автомобиля"

	VW Golf	Opel Astra	Ford Focus	Toyota Corolla
Цена (1000 Euro)	16.2	14.9	14.0	15.2
РТ (на 100 км)	7.2	7.0	7.5	8.2
Мощность (kW)	66.0	62.0	55	71

Какой автомобиль выбрать, чтобы он был мощным, недорогим, с малым расходом топлива?

Пример "Минимизация пары функций"

$$\min_{x\geq 0} f_1(x)=\sqrt{x+1}$$
 $\min_{x\geq 0} f_2(x)=x^2-4x+5$ минимум f_1 в точке $x_1=0$ минимум f_2 в точке $x_2=2$

Задача многокритериальной оптимизации

$$\min(f_1(x), \dots, f_p(x)) \tag{1}$$

при условии

$$x \in X$$
,

часто

$$X \subseteq \mathbb{R}^n$$

• Для пары допустимых решений $x,y\in X$ разделим наши p критериев на три группы:

- Для пары допустимых решений $x,y\in X$ разделим наши p критериев на три группы:
 - $L(x,y) = \{i: f_i(x) < f_i(Y)\}$ множество критериев, для которых решение x лучше решения y;

- Для пары допустимых решений $x,y \in X$ разделим наши p критериев на три группы:
 - $L(x,y) = \{i: f_i(x) < f_i(Y)\}$ множество критериев, для которых решение x лучше решения y;
 - $G(x,y) = \{i: f_i(x) > f_i(Y)\}$ множество критериев, для которых решение x хуже решения y;

- Для пары допустимых решений $x,y \in X$ разделим наши p критериев на три группы:
 - $L(x,y) = \{i : f_i(x) < f_i(Y)\}$ множество критериев, для которых решение x лучше решения y;
 - $G(x,y) = \{i: f_i(x) > f_i(Y)\}$ множество критериев, для которых решение x хуже решения y;
 - $E(x,y) = \{i : f_i(x) = f_i(Y)\}$ множество критериев, относительно которых решения x и y равноценны.

- Если
 - ullet $E(x,y)=\{1,\ldots,p\},$ то решения x и y равноценны;

- Если
 - ullet $E(x,y)=\{1,\ldots,p\},$ то решения x и y равноценны;
 - $G(x,y)=\emptyset$, то говорят, что решение x не хуже по Паретто, чем решение y;

- Если
 - $E(x,y) = \{1, ..., p\}$, то решения x и y равноценны;
 - $G(x,y)=\emptyset$, то говорят, что решение x не хуже по Паретто, чем решение y;
 - $G(x,y)=\emptyset$, и $L(x,y)\neq\emptyset$, то решение x лучше по Паретто, чем решение y;

• Если

- \bullet $E(x,y) = \{1,\ldots,p\}$, то решения x и y равноценны;
- $G(x,y)=\emptyset$, то говорят, что решение x не хуже по Паретто, чем решение y;
- $G(x,y)=\emptyset$, и $L(x,y)\neq\emptyset$, то решение x лучше по Паретто, чем решение y;
- $G(x,y) \neq \emptyset$, и $L(x,y) \neq \emptyset$, то говорят, что решения x и y несравнимы по Паретто.

- Допустимое решение $x^* \in X$ называется слабо эффективным (слабо эффективным по Парето), если не существует решения $x \in X$ такого, что $f_k(x) < f_k(x^*)$, для всех $k=1,\ldots,p$.
- Множество всех слабо эффективных решений называется слабо эффективным множеством и обозначается X_{wE} .

- Если x^* слабо эффективное решение, то y^* , такое, что $y^* = f(x^*)$ называется слабо недоминируемой точкой
- Множество всех слабо недоминируемых точек называется слабо недоминируемым множеством и обозначается Y_{wN} .

- Допустимое решение $x^* \in X$ называется эффективным по Парето (оптимальным по Парето), если не существует решения $x \in X$ такого, что $f_k(x) \le f_k(x^*)$, для всех $k=1,\ldots,p$. и $f_k(x) < f_k(x^*)$ хотя бы для одного $i=1,\ldots,p$.
- Множество всех эффективных решений называется эффективным множеством и обозначается X_E .

- Если x^* эффективное решение, то y^* , такое, что $y^* = f(x^*)$ называется недоминируемой точкой
- Множество всех недоминируемых точек называется недоминируемым множеством и обозначается Y_N .

Пространство решений и пространство критериев

Пример Opel и Ford эффективный выбор или Парето-оптимальные решения

```
X=\{VW,Opel,Ford,Toyota\} – допустимое множество f_i:X\to R,\ i=1,2 — критерии оптимизации f=(f_1,f_2) Y:=f(X):=\{y\in R^2:y=f(x) для x\in X\} – образ множества X или допустимое множество в пространстве критериев \min_{x\in X}(f_1(x),f_2(x))
```

Пространство решений и пространство критериев

Вильфредо Парето, 1848-1923 итальянский экономист

Пространство решений и пространство критериев. Пример

```
X=\{x\in R: x\geq 0\} — допустимое множество Y — допустимое множество в пространстве критериев состоит из части графика расположенно справа от вертикально линии y_1=1 Y_N=\{y_1,y_2\in R|1\leq y_1\leq \sqrt{3},1\leq y_2\leq 5\}
```

Пространство решений и пространство критериев. Пример

$$X_E = \{ x \in R | 0 \le x \le 2 \}$$

• При решении реальных практических задач <выписать> все оптимальные по Паретто решения чаще всего невозможно, из-за огромного числа таких решений. К тому же, при наличии нескольких решений нам все равно нужно будет выбрать одно из них для реализации на практике.

 Поэтому на практике изначально ставится более скромная задача – найти одно оптимальное по Паретто решение задачи, которое

- Поэтому на практике изначально ставится более скромная задача – найти одно оптимальное по Паретто решение задачи, которое
 - 🚺 оптимально для некоторого скалярного критерия,

- Поэтому на практике изначально ставится более скромная задача – найти одно оптимальное по Паретто решение задачи, которое
 - 🚺 оптимально для некоторого скалярного критерия,
 - ② или является лексикографически оптимальным для некоторого упорядочения критериев f_1, \ldots, f_m .

Линейная свертка критериев

• Каждому критерию $i=1,\dots,p$ приписывается некоторый вес $\lambda_i \geq 0$ (часто $\sum_{k=1}^p \lambda_k = 1$.) и затем решается оптимизационная задача с одним критерием:

$$\min_{x \in X} \sum_{k=1}^{p} \lambda_k f_k(x), \tag{2}$$

Линейная свертка критериев

• Каждому критерию $i=1,\dots,p$ приписывается некоторый вес $\lambda_i \geq 0$ (часто $\sum_{k=1}^p \lambda_k = 1$.) и затем решается оптимизационная задача с одним критерием:

$$\min_{x \in X} \sum_{k=1}^{p} \lambda_k f_k(x), \tag{2}$$

• Свертку критериев можно использовать тогда, когда значения всех критериев можно выразить в одной единице измерения.

Графическая интерпретация

При заданных $\lambda_k,\ k=1,\dots,p$ ищем элементы множества $S(\lambda,Y)=\{y^*\in Y: (\lambda,y^*)=\min_{y\in Y}\}$

- Всегда ли такой процесс дает недоминируемые точки?
- ullet Если да, то все ли точки можно получить, меняя $\lambda_k?$

Утверждение 1

Если все $\lambda_i > 0$, то оптимальное решение x^0 задачи (2) является оптимальным по Паретто для задачи (1).

Доказательство.

• Пусть существует точка $x^1 \in X$, которая лучше x^0 : $f_i(x^1) \leq f_i(x^0)$ для $i=1,\ldots,p,$ и $f_{i_0}(x^1) < f_{i_0}(x^0)$ для некотрого i_0 .

Доказательство.

- Пусть существует точка $x^1 \in X$, которая лучше x^0 : $f_i(x^1) \leq f_i(x^0)$ для $i=1,\ldots,p$, и $f_{i_0}(x^1) < f_{i_0}(x^0)$ для некотрого i_0 .
- Складывая неравенства $\lambda_i f_i(x^1) \leq \lambda_i f_i(x^0) (i=1,\dots,p),$ получим неравенство $\sum_{i=1}^p \lambda_i f_i(x^1) < \sum_{i=1}^p \lambda_i f_i(x^0),$ которое противоречит тому, что x^0 есть оптимальное решение задачи (2).

Но верно ли обратное:

можно ли подобрать веса таким образом, чтобы оптимальным в задаче (2) оказалось любое заданное оптимальное по Паретто решение задачи (1)?

В общем случае ответ на этот вопрос отрицательный, что продемонстрировано на следующем рисунке.

Геометрическая интерпретация свертки критериев

Эффективность по Джеоффриону

Доп-е решение $x^* \in X$ называется эффективным по Джеоффриону, если x является эффективным и существует такое положительное число M, что для любого $x \in X$, удовлет-го условию

$$f_i(x) < f_i(x^*)$$
 для некоторого i ,

найдется такой индекс j, что $f_j(x^st) < f_j(x)$ и выполнено неравенство

$$\frac{f_i(x^*) - f_i(x)}{f_j(x) - f_j(x^*)} \le M.$$

Точка $y^*,$ такая что $y^*=f(x^*)$ называется недоминируемой по Джеоффриону.

Эффективность по Джеоффриону. Пример

$$X = \{(x_1, x_2) \in \mathbb{R}^2 : (x_1 - 1)^2 + (x_2 - 1)^2 \le 1, \ 0 \le x_1, x_2 \le 1\}$$

 $Y = X$

- $ilde{y}$ недоминируемая точка
 - Какие точки являются эффективными по Джеоффриону?
 - Какие точки не являются эффективными по Джеоффриону?

Эффективность по Джеоффриону. Пример

- ullet точка $\dot{x}=(1,0)$ не является эффективной по Джеоффриону
- Покажем, что для любого M>0 $\exists i \in \{1,2\}$, т.ч. для некоторого $x \in X$ с $f_i(x) < f_i(\dot{x}), \frac{f_i(\dot{x}) f_i(x)}{f_j(x) f_j(\dot{x})} > M$ для любого $j \in \{1,2\}$ с $f_j(\dot{x}), f_j(x)$.

Пусть i=1, возьмем $(x_1^\epsilon,x_2^\epsilon)=(1-\epsilon,1-\sqrt{1-\epsilon^2}).$

Эффективность по Джеоффриону. Пример

$$(x_1^\epsilon, x_2^\epsilon)$$
 – эффективное решение, т.к. $(x_1^\epsilon - 1)^2 + (x_2^\epsilon - 1)^2 = 1$. $(x_1^\epsilon, x_2^\epsilon) \in X, \ x_1^\epsilon < \dot{x}_1, \ x_2^\epsilon > \dot{x}_2, \ i = 1, \ j = 2$.
$$\frac{f_i(\dot{x}) - f_i(x^\epsilon)}{f_j(x^\epsilon) - f_j(\dot{x})} = \frac{1 - (1 - \epsilon)}{1 - \sqrt{1 - \epsilon^2}} = \frac{\epsilon}{1 - \sqrt{1 - \epsilon^2}} \rightarrow_{\epsilon \to 0} \infty$$

Свойства линейной свертки

Теорема 1

Пусть положительные величины $\lambda_k,\,k=1,\dots,p$ удовлетворяют равенству $\sum_{k=1}^p \lambda_k=0.$ Если x^* – оптимальное решение линейной свертки, то x^* – эффективное решение по Джеоффриону.

Свойства линейной свертки

Доказательство.

Покажем, что x^* – эффективное решение.

Пусть $x' \in X, \, f(x') \leq f(x^*)$ и существует индекс i, т.ч.

$$f_i(x') < f_i(x^*)$$
. Т.к. $\lambda_k > 0$, то

$$\sum_{k=1}^{p} \lambda_k f_k(x') < \sum_{k=1}^{p} \lambda_k f_k(x^*),$$

что противоречит оптимальности x^{st} в линейной свертке.

Свойства линейной свертки. Док-во (продолжение).

Покажем эффективность по Джеоффриону. Положим $M:=(p-1)\max_{i,j}\frac{\lambda_j}{\lambda_i}$. Предположим, существует $x\in X$ и такой индекс $i\leq p$, что $f_i(x)< f_i(x^*)$ и $f_i(x^*)>M(f_j(x)-f_j(x^*))$ для всех индексов j, где $f_j(x^*)< f_j(x)$. Тогда по выбору M получаем

$$f_i(x^*) - f_i(x) > \frac{p-1}{\lambda_i} \lambda_j (f_j(x) - f_j(x^*)).$$

Заметим, что неравенство верно для всех $j \neq i$, т.к. при $f_j(x^*) \geq f_j(x)$ оно тривиально.

Свойства линейной свертки. Док-во (продолжение).

Умножим это неравенство на $rac{\lambda_i}{(p-1)}$ и сложим по всем j
eq i :

$$\lambda_i(f_i(x^*) - f_i(x)) > \sum_{j \neq i} \lambda_j(f_j(x) - f_j(x^*)).$$

Тогда $\lambda_i(f_i(x^*))>\sum_{j\neq i}\lambda_jf_j(x)-\sum_{j\neq i}\lambda_jf_j(x^*)$, группируем $\lambda_if_i(x^*)+\sum_{j\neq i}\lambda_jf_j(x^*)>\lambda_if_i(x)+\sum_{j\neq i}\lambda_jf_j(x)$. Получаем $\sum_{i=1}^p\lambda_if_i(x^*)>\sum_{j=1}^p\lambda_if_i(x)$, что противоречит оптимальности x^* .

Свойства линейной свертки

Верно ли обратное утверждение?

Свойства линейной свертки

Верно ли обратное утверждение?

 $ilde{y}$ — недоминируемая точка

Вспомогательная лемма

Лемма (о свойствах выпуклых функций)

Пусть $X\subset R^n$ — выпуклое множество и все функции $h_k:R^n\to R$ выпуклые, $k=1,\ldots,p$. Если система $h_k(x)<0,\,k=1,\ldots,p$, не имеет решений x из множества X, то существуют такие неотрицательные величины λ_k , в сумме равные 1, что $\sum_{k=1}^p \lambda_k h_k(x)\geq 0$ для всех $x\in X$.

Без доказательства.

Свертка критериев для выпуклых задач

Утверждение 2

Когда — выпуклое множество и все критерии $f_l, \dots f_p$ — выпуклые на X функции, можно подобрать веса таким образом, чтобы оптимальным в задаче (2) оказалось любое заданное оптимальное по Паретто решение задачи (1).

Свойства решений линейной свертки для выпуклых функций

Теорема 2

Пусть $X\subset R^n$ – выпуклая область и все функции $f_k:R^n\to R$ выпуклые, $k=1,\dots,p$. Тогда $x^*\in X$ является эффективным решением по Джеоффриону, если и только если x^* – оптимальное решение линейной свертки с положительными весами $\lambda_k,\,k=1,\dots,p$.

Свойства решений линейной свертки для выпуклых функций

Доказательство.

Проверим необходимость. Достаточность следует из предыдущей теоремы. Пусть x^* – эффективное решение по Джеоффриону. Из определения следует, что существует M>0, для которого при любом $i=1,\dots,p$ система

$$f_i(x) < f_i(x^*)$$

$$f_i(x) + Mf_j(x) < f_i(x^*) + Mf_j(x^*), \ j \neq i$$

не имеет решений.

Док-во (продолжение)

Тогда по лемме о выпуклых функциях для i-й системы найдутся величины $\lambda_k^i \geq 0, \, k=1,\dots,p$ в сумме равные 1, т.е. $\sum_{k=1}^p \lambda_k^i = 1$ при которых для любого $x \in X$ верно неравенство:

$$\lambda_i^i f_i(x) + \sum_{k \neq i} \lambda_k^i (f_i(x) + M f_k(x)) \ge$$

$$\ge \lambda_i^i f_i(x^*) + \sum_{k \neq i} \lambda_k^i (f_i(x^*) + M f_k(x^*)).$$

Открываем скобки:

$$\lambda_i^i f_i(x) + \sum_{k \neq i} \lambda_k^i f_i(x) + M \sum_{k \neq i} \lambda_k^i f_k(x) \ge$$

$$\ge \lambda_i^i f_i(x^*) + \sum_{k \neq i} \lambda_k^i f_i(x^*) + M \sum_{k \neq i} \lambda_k^i f_k(x^*).$$

Док-во (продолжение)

Заносим в сумму первое слагаемое в обеих частях неравенства:

$$\sum_{k=1}^{p} \lambda_k^i f_i(x) + M \sum_{k \neq i} \lambda_k^i f_k(x) \ge$$

$$\geq \sum_{k=1}^{p} \lambda_k^i f_i(x^*) + M \sum_{k \neq i} \lambda_k^i f_k(x^*).$$

Доказательство (продолжение)

Пользуясь равенством $\sum_{k=1}^p \lambda_k^i = 1$,, получаем:

$$f_i(x) + M \sum_{k \neq i} \lambda_k^i f_k(x) \ge f_i(x^*) + M \sum_{k \neq i} \lambda_k^i f_k(x^*).$$

Итак, для каждого $i=1,\dots,p$ получили неравенство. Складывая их по i, получаем:

$$\sum_{i=1}^{p} f_i(x) + M \sum_{i=1}^{p} \sum_{k \neq i} \lambda_k^i f_i(x) \ge$$

$$\ge \sum_{i=1}^{p} f_i(x^*) + M \sum_{i=1}^{p} \sum_{k \neq i} \lambda_k^i f_i(x^*).$$

Доказательство (продолжение)

Отсюда следует, что

$$\sum_{i=1}^{p} (1 + M \sum_{k \neq i} \lambda_k^i) f_k(x) \ge$$

$$\geq \sum_{i=1}^{P} (1 + M \sum_{k \neq i} \lambda_k^i) f_k(x^*)$$

верно для всех $x\in X$. Поделив обе части на $\sum_{i=1}^p (1+M\sum_{k\neq i}\lambda_k^i),$ получаем нормированный вектор $\lambda>0,$ указанный в теореме, при котором x^* – оптимальное решение в линейной свертке.

Пример

$$X = \{x \in R_{\geq}^2 : x_1^2 + x_2^2 \ge 1\}$$
$$f_1(x) = x_1, \ f_2(x) = x_2$$

$$X_E = \{x \in X : x_1^2 + x_2^2 = 1\}$$

При любых $\lambda \geq 0$ линейная свертка дает только $ilde{y}_1,\, ilde{y}_2!$

Метод уступок

Для $\epsilon \in R^p$ рассмотрим задачу с одним критерием:

$$\min_{x \in X} f_j(x) \tag{3}$$

при условии

$$f_k(x) \le \epsilon, \ k \ne j.$$

Теорема 3

Допустимое решение $x^*\in X$ является эффективным по Парето \Leftrightarrow $\exists \epsilon\in R^p,$ при котором x^* – оптимальное решение задачи (3) для всех $j=1,\ldots,p.$

Теорема 3

Допустимое решение $x^*\in X$ является эффективным по Парето $\Leftrightarrow \exists \epsilon\in R^p$, при котором x^* – оптимальное решение задачи (3) для всех $j=1,\dots,p$.

Доказательство.

 $ildе{\Rightarrow}$: Положим $ildе{\epsilon}=f(ilde{x})$ и предположим, что $ilde{x}$ не является оптимальным решением для некоторого j. Тогда найдется $x\in X$, для которых $f_j(x)< f_j(ilde{x})$ и $f_k(x)\leq f_k(ilde{x}),\ k\neq j$, т. е. $ilde{x}$ не является эффективным по Парето.

 \Leftarrow : Предположим, что $\tilde{x} \not\in X_E$. Тогда $\exists j$ и решение $x \in X$, для которых $f_j(x) < f_j(\tilde{x})$ и $f_k(x) \le f_k(x^*), \, k \ne j$. Поэтому \tilde{x} не может быть оптимальным решением ни при каком ϵ , если \tilde{x} – допустимое решение для этого ϵ .

Целевое программирование

• Нам известны целевые значения g_1, \dots, g_p для всех критериев f_1, \dots, f_p , отклонения от которых в большую сторону нежелательны.

- Нам известны целевые значения g_1, \dots, g_p для всех критериев f_1, \dots, f_p , отклонения от которых в большую сторону нежелательны.
- Например, мы хотели бы разместить несколько дополнительных станций скорой помощи, чтобы достичь следующих целей:

- Нам известны целевые значения g_1, \dots, g_p для всех критериев f_1, \dots, f_p , отклонения от которых в большую сторону нежелательны.
- Например, мы хотели бы разместить несколько дополнительных станций скорой помощи, чтобы достичь следующих целей:
 - среднее время отклика (от звонка больного до момента прибытия к нему скорой помощи) не должно превосходить 5 минут;

- Нам известны целевые значения g_1, \ldots, g_p для всех критериев f_1, \ldots, f_p , отклонения от которых в большую сторону нежелательны.
- Например, мы хотели бы разместить несколько дополнительных станций скорой помощи, чтобы достичь следующих целей:
 - среднее время отклика (от звонка больного до момента прибытия к нему скорой помощи) не должно превосходить 5 минут;
 - количество потенциальных больных, которые не смогут получить помощь в течении 10 минут, не должно превосходить 10 процентов от их общего количества;

- Нам известны целевые значения g_1, \ldots, g_p для всех критериев f_1, \ldots, f_p , отклонения от которых в большую сторону нежелательны.
- Например, мы хотели бы разместить несколько дополнительных станций скорой помощи, чтобы достичь следующих целей:
 - среднее время отклика (от звонка больного до момента прибытия к нему скорой помощи) не должно превосходить 5 минут;
 - количество потенциальных больных, которые не смогут получить помощь в течении 10 минут, не должно превосходить 10 процентов от их общего количества;
 - как можно меньше отклониться от бюджета в 250 тыс. долларов.

 Задача многокритериальной оптимизации (1) заменяется следующей задачей:

$$\sum_{i=1}^{p} w_i h_i(s_i) \to \min,$$

$$f_i(x) - s_i \le g_i, \quad i = 1, \dots, p,$$

$$(4)$$

где $h_i(s_i)$ — это штраф за превышение критерием i его целевого значения на величину $s_i.$

 $s \in R^p_+, x \in X,$

 Задача многокритериальной оптимизации (1) заменяется следующей задачей:

$$\sum_{i=1}^{p} w_i h_i(s_i) \to \min, \tag{4}$$

$$f_i(x) - s_i \le g_i, \quad i = 1, \dots, p,$$

 $s \in R_+^p, \quad x \in X,$

где $h_i(s_i)$ — это штраф за превышение критерием i его целевого значения на величину $s_i.$

• На практике наиболее часто используются линейные $h_i(s_i) = s_i$ и квадратичные $h_i(s_i) = s_i^2$ штрафные функции.

 Задача многокритериальной оптимизации (1) заменяется следующей задачей:

$$\sum_{i=1}^{p} w_i h_i(s_i) \to \min, \tag{4}$$

$$f_i(x) - s_i \le g_i, \ i = 1, \dots, p,$$

 $s \in R_+^p, \ x \in X,$

где $h_i(s_i)$ — это штраф за превышение критерием i его целевого значения на величину s_i .

- На практике наиболее часто используются линейные $h_i(s_i) = s_i$ и квадратичные $h_i(s_i) = s_i^2$ штрафные функции.
- Целью в задаче (4) является минимизация взвешенной суммы штрафов за отклонение компонент векторного критерия от их целевых значений.

Лексикографическая оптимизация

Определение

Говорят, что $u \in R^p$ лексикографически меньше чем $v \in R^p$ и записывается $u <_{lex} v$, если для некоторого $k, 1 \leq k < p$, выполняются условия $u_i = v_i$ для $i = 1, \ldots, k-1$ и $u_k < v_k$. Обозначение $u \leq_{lex} v$ означает, что $u <_{lex} v$ или u = v.

ullet Пусть $X\subseteq R^n$ и $f:X o R^p$. Критерии f_1,\dots,f_p пронумерованы в порядке убывания их значимости.

Определение

Говорят, что $u \in R^p$ лексикографически меньше чем $v \in R^p$ и записывается $u <_{lex} v$, если для некоторого $k, 1 \leq k < p$, выполняются условия $u_i = v_i$ для $i = 1, \ldots, k-1$ и $u_k < v_k$. Обозначение $u \leq_{lex} v$ означает, что $u <_{lex} v$ или u = v.

- ullet Пусть $X\subseteq R^n$ и $f:X o R^p$. Критерии f_1,\dots,f_p пронумерованы в порядке убывания их значимости.
- В задаче лексикографической оптимизации

$$\operatorname{lexmin}\{f(x): x \in X\} \tag{5}$$

нужно найти точку $x^0 \in X$, что $f(x^0) \leq_{lex} f(x) \ \forall x \in X$.

Определение

Говорят, что $u \in R^p$ лексикографически меньше чем $v \in R^p$ и записывается $u <_{lex} v$, если для некоторого $k, 1 \leq k < p$, выполняются условия $u_i = v_i$ для $i = 1, \ldots, k-1$ и $u_k < v_k$. Обозначение $u \leq_{lex} v$ означает, что $u <_{lex} v$ или u = v.

- ullet Пусть $X\subseteq R^n$ и $f:X o R^p$. Критерии f_1,\ldots,f_p пронумерованы в порядке убывания их значимости.
- В задаче лексикографической оптимизации

$$\operatorname{lexmin}\{f(x): x \in X\} \tag{5}$$

нужно найти точку $x^0 \in X$, что $f(x^0) \leq_{lex} f(x) \ \forall x \in X$.

• x^0 называется точкой лексикографического минимума, которая также являются оптимальной по Паретто для задачи многокритериальной оптимизации (1).

• Мы можем найти лексикографический минимум в задаче лексикографической оптимизации (5), для $k=1,\ldots,p$ последовательно решив p оптимизационных задач:

$$f_k^* = \min f_k(k),$$

$$f_i(x) \le f_i^*, \quad i = 1 < \dots k - 1,$$

$$x \in X.$$

• Мы можем найти лексикографический минимум в задаче лексикографической оптимизации (5), для $k=1,\ldots,p$ последовательно решив p оптимизационных задач:

$$f_k^* = \min f_k(k),$$

$$f_i(x) \le f_i^*, \quad i = 1 < \dots k - 1,$$

$$x \in X.$$

• Решение x^* последней задачи (при k=p) и будет точкой лексикографического минимума в задаче (5).