5주차 2차시 OSI 계층과 구조(1)

[학습목표]

- 1. OSI 7 Layer 참조 모델에 대해 설명할 수 있다.
- 2. OSI 계층간 5가지 주요 요소를 설명할 수 있다.

학습내용1: 물리 계층(Physical Layer)

- 데이터링크 계층으로부터 한 단위의 데이터를 받아 통신 링크를 따라 전송될 수 있는 형태로 변환하며, 비트 단위의 정보를 장치들 사이의 전송매체를 통해 전기적 신호나 광신호로 전달하는 역할이다.
- 1. 유선 전송(Wired transmission)

이중 나선 케이블(Twisted pair cable) 기저대역 동축 케이블(Baseband coaxial cable) 광대역 동축 케이블(Broadband coaxial cable) 광섬유(Optical fiber)

2. 무선 전송(Wireless transmission)

라디오 전송(Radio transmission) 마이크로웨이브 전송(Microwave Transmission)

[그림] 물리계층

3. 역할

특성 : 상위 계층에서 전송된 데이터를 물리 매체를 통해 다른 시스템에 전기적 신호를 전송

장비 : 랜카드, 케이블, 허브, 리피터와 같은 물리적인 것과 데이터 전송을 위해 사용하는 전압이 물리 계층에 속함

학습내용2: 데이터 링크계층

- 물리적으로 연결된 시스템 양단에 신뢰성 있는 전송을 제공하며 데이터 블록의 시작과 끝을 설정하고 오류 검출과 정정, 흐름 제어 등을 정의 한다.

1. 특성

이웃하고 있는 노드 간의 데이터 전송을 담당한다. 패킷에 헤더와 트레일러를 덧붙여서 데이터 프레임(data frame)을 만든다.

[그림] 데이터 링크계층

2. 역할

- 접근제어 : 특정 순간에 어느 시스템이 회선을 점유하는지를 결정하는 기능을 한다.
- 흐름제어 : 수신기의 노드에 도착하는 패킷의 양이 그 노드가 처리할 수 있는 양보다 많아지는 것을 막아주는 기능을 할 수 있도록 정의한다. Stop-and-wait 방식 & Sliding window 방식이다.
- 오류제어 : 오류가 발생한 프레임을 검출하고 이를 재전송 또는 복원하는 방법 등의 기능적 역할을 수행한다.
- 동기화 : 프레임의 도착을 수신국에 알리기 위한 비트를 포함한다. 타이밍을 조절한다.

[그림] OSI계층과 구조-1

3. MAC와 LLC

- 데이터 링크 계층은 MAC와 LLC 의 두 계층으로 세분화 할 수 있다.
- * MAC : 하나의 통신 채널을 여러 네트워크 시스템이 공유하는 방법에 관한 것으로, 경쟁(Contention), 토큰-패싱(token-passing), 폴링(polling)의 액세스 방법이 있다. 여기서 폴링은 여러 개의 장치가 동일 회선을 공유할 경우 전송할 데이터가 있는지 묻는 방식이다.
- * LLC : 기기간의 정확한 데이터 전송을 논리적으로 연결 및 유지해 주는 기능이다.

4. HDLC

점대점(point-to-point)과 다중점(multipoint) 링크상에서 반이중 통신과 전이중 통신 둘 다 지원하도록 설계된 비트 중심의 프로토콜로 특징은 다음과 같다.

- 반이중 및 전이중 통신 지원
- 동기식 전송 방식
- 오류 제어를 위해 Go-back-N-ARQ 및 선택적 재 전송 ARQ 방식 사용

[세부설명]

Go-back-N-ARQ은 프로토콜이 단순하고 링크 효율이 낮으며 불연속 전송이 가능한 특징을 가지며 연속한 N개의 패킷을 전송한다. 만약 전송에 대한 오류가 발견되면 NAK를 송신측에 보내고, 송신측은 오류가 난 패킷으로부터 N개의 패킷을 전송한다.

선택적 재전송 ARQ은 전이중에 많이 사용하며 윈도우 크기만큼의 패킷을 연속적으로 송신하며 ACK가 오지 않은 패킷만을 재전송한다.

학습내용3 : 네트워크 계층(Network Layer)

상위 계층인 전송 계층의 개체들이 데이터를 송신 노드에서 수신 노드로 신뢰성 있게 전송할 수 있도록 경로 선택과 중계 기능을 수행하고 혼잡 제어(Congestion control), 오류 제어를 제공한다.

1. 특성

- 전송 효율은 좋아지지만, 송신 측에서는 수신측의 수신 상태에 따라 전송해야 함으로 "송신순서를 벗어난 전송이 많이 발생"할 수 있다.

2. 역할

- 논리주소 지정
- 네트워크 단위로 라우팅
- 주소변환
- 논리주소 물리주소

[그림] OSI계층과 구조-2

학습내용4: 전송 계층(Transport Layer)

- 계층 구조의 네트워크 구성요소와 프로토콜 내에서 송신자와 수신자를 연결하는 통신 서비스를 제공한다.

1. 특성

- 네트워크 서비스와 사용자 서비스 간의 인터페이스 기능

- 네트워크 서비스 : 1~3 계층 - 사용자 서비스 : 5~7 계층

- 전체 메시지의 종단간 전송 수행

[그림] 전송계층

2. 역할

- 종단간(end-to-end) 메시지 전달
- 최종 목적지까지의 데이터 전송을 의미하며 오류가 발생한 세그먼트의 처리도 담당한다.
- * 서비스 포트 주소 지정 : 응용 프로그램을 실행 중인 컴퓨터에서 하위 계층으로부터 수신된 메시지를 해당되는 응용으로 전달하는 것을 보장한다.
- * 분할과 재조합 : 전송 가능한 크기로 나누고(Segmentation) 각 세그먼트에 순서 번호(Sequence Number)를 표시한다.
- * 연결제어: 데이터를 안전하게 전송하기 위해 발신지와 목적지 사이의 논리적인 통로인 연결을 만드는 기능을 한다. [연결설정, 데이터 전송, 연결해제]
- * 흐름제어 : 종단과 종단간의 흐름제어를 통하여 신뢰성 있는 전달을 보장한다.
- * 오류제어 : 송신측에서 전체 메시지가 수신측까지 오류 없이 전달되었는지 확인한다.

[학습정리]

- 1. 네트워크 계층은 데이터링크 기능을 이용하여 네트워크 시스템 상호 간에 데이터를 전송할 수 있도록 경로배정(routing)과 중계(relay) 기능, 흐름제어, 오류제어 등의 기능을 수행하는 계층이다.
- 2. 전송기능은 하부 네트워크와 독립적으로 신뢰성 있는 프로세스 상호 간의 완전한 메시지 전달기능을 제공하는 계층이다.
- 3. 선택적 재전송 ARQ은 전이중에 많이 사용하며 윈도우 크기만큼의 패킷을 연속적으로 송신하며 ACK가 오지 않은 패킷만을 재전송한다.