TITLE

0001

BROADBAND FREQUENCY AGILE SIGNAL CHARACTERIZATION

INVENTORS

0002

Robert Eugene Stoddard Michael Shaw McKinley

BACKGROUND OF THE INVENTION

0003 The present invention relates to methods and apparatus for broadband frequency characterization of radio wave signals and particularly for broadband frequency characterization of frequency hopping radio wave signals.

0004 Frequency hopping is a form of spread-spectrum signaling where, for short instances of time, relatively narrowband signals are transmitted as short bursts with the carrier frequency for each burst tuned to a different one of a set of carrier frequencies than the ones of the carrier frequencies used for the previous burst and the next burst. The sequence of frequencies that is used for a sequence of bursts is known as the hopping sequence. The carrier frequency transmission at any particular instant of time for one burst is therefore different than the carrier frequency transmission at the previous instant of time for the previous burst and similarly is different than the carrier frequency transmission at the next instant of time for the next burst. While the bandwidth for any particular burst may be narrow, the bandwidth for the whole set of frequencies in the hopping sequence can be very large. Typically a frequency hop system hops over a bandwidth many times the bandwidth of the individual hop signal bandwidth. Bluetooth for example has a 1 MHz signal bandwidth and hops over 80 MHz. Some military radios have 25 kHz signal bandwidth with thousands of hop frequencies covering over 50 MHz. The frequency hoppers in use today hop over at least 8 times the bandwidth of the signal bandwidth.

0005 Frequency hopping systems with changing frequency transmissions have a number of advantages over the fixed frequency transmissions of non-hopping systems. If a particular hop frequency, in the set of frequencies used in a hopping sequence, happens to include a frequency that is regularly occupied by another interfering radio signal, the frequency hopping system detects the occupied status and functions to retransmit the burst of data at a different frequency. Also, the

pa1001_04^03^29.fi.doc Atty Doc No: CELE-01001US0 3/29/2004 11:56 AM

Express Mail No: ER261755235US

frequency hopping system detects the regularly occupied frequencies for any particular installation and reestablishes a hopping sequence that excludes the occupied frequency from the set of frequencies in the hopping sequence.

0006 Frequency hopping systems are more secure than fixed frequency systems because the interception of frequency hopped signals is significantly more difficult than interception of fixed frequency signals, particularly when the hopping sequence is not known in advance. If a communication protocol is intended to be secure, such as in military and other secure environments, the hopping sequence and other protocol, specification and standards information is not published and is changed from time to time to support secure operation.

0007 In any environment, the characterization of radios and radio wave signals for frequency hopped systems is difficult because they operate and function over broad bandwidths and because each burst at a particular frequency is of relatively short duration. The characterization of signals for frequency hopped systems is even more difficult when done in a secret environment where the protocol, specification, standards, hopping sequence and other characterizing information is not fully known in advance. A secret environment is common since manufacturers and users of frequency hopping systems often wish to maintain their protocols, specifications, standards and hopping sequences confidential and unpublished.

0008 In order to avoid the difficulties of characterizing frequency hopped systems, some analysis systems require the test radio to be put in a "hop-in-place" mode where the carrier frequency is the same for all bursts, that is, the frequency does not hop. Such "hop-in-place" systems eliminate the burden of dehopping the signal so that the analysis is much easier. However, such systems do not fully test the parameters that relate to or are affected by hopping and hence cannot fully characterize frequency hopping radios. Examples of such "hop-in-place" systems are the Agilent 89441A system with the Bluetooth® module and the Aeroflex RCTS-001 Radio Test Set.

0009 In order to avoid the difficulties of characterizing frequency hopped systems when frequencies actually hop, some analysis systems require that the next hop in a hopping sequence for the test radio be known in advance by the analysis system. When the next hop in a hopping sequence is known in advance, such systems synchronize the frequency hopping of the analysis system with the frequency hopping of the test radio. In order to know the next hop in a hopping sequence in advance, analysis systems use the tuning information present in the radio signal messages of the test pa1001 04^03^29.fi.doc

radio to derive each next hop frequency in the hopping sequence. Therefore, the next hop frequency is known in the analysis system before the hop actually occurs. Using the information from the radio signal messages, the analysis system synchronizes with the radio signal. In this manner, the frequency of the analysis system's local oscillator (LO) follows the hopping sequence in advance and thus can be used to dehop the radio signal being analyzed. In order for such systems to work, analysis systems are built to fully implement the radio signal protocols, specifications and standards, including the hopping sequence, for each radio to be analyzed. Such systems are expensive to build because many different radio signal protocols and standards exist. Further, such systems can only be used by those having full access to the signal protocols and standards including the hopping sequences. For many radio systems, however, for security and other reasons, such information is often not widely available. Examples of analysis systems that employ prior knowledge of the hops in a hopping sequence are the Agilent E1852B and Tektronix CMU 200 systems and the Marconi system (see US Patent 6,195,383). These Agilent and Tektronix test systems are designed to test the frequency hopping Bluetooth networks. They have internal Bluetooth modules that allow the test systems to become part of the network. These internal modules produce the carrier frequency values as they communicate with the radio under test external to the test system.

0010 Because the "hop-in-place" analysis systems provide limited information, they are not fully adequate for the communication industry. Because the "known-in-advance" analysis systems have cost disadvantages and do not perform well for analyzing radios that are not operating within the specification range for the protocols and standards, they are not fully adequate for the communication industry.

0011 Accordingly, in order to meet the demands of the communication industry, improved methods and apparatus are needed for analyzing frequency hopping signals, and other broadband signals, when the hopping sequences and other signal protocols and standards are not relied upon prior to analysis.

SUMMARY

0012 The present invention is a method and apparatus for broadband radio frequency analysis. The analysis is performed by receiving an input signal from a device under test; determining the start and stop of segments of the signal; and for each segment, processing the pa1001_04^03^29.fi.doc

Atty Doc No: CELE-01001US0

Express Mail No: ER261755235US

segment to determine the frequency of the segment and processing the segment to determine signal parameters of the signal. Typically, the device under test is a frequency hopping radio and the segments are instances of the signal at hop frequencies of the radio.

0013 The present system analyzes frequency hopped signals without requiring prior knowledge of the transmitter specifications and the protocols and standards used for messaging and otherwise used for controlling the radio communication. One of the advantages of the present system is that it is robust in analyzing radios that are not operating within their specifications. The capability of the present system to analyze unknown signals without need for knowledge of the radio specification is important in research and in the development of new radios. It is also useful for analyzing radios that are operating poorly.

0014 Another advantage of present system is that it can be used to analyze unknown signals.

0015 Another advantage of the present system is that it is able to analyze signals in the presence of interfering signals including other interfering signals of the same type.

0016 The present system receives the input signal to be analyzed in a receiver. The receiver in one embodiment receives the input signal through a receiving antenna that receives a signal transmitted through the air interface by a radio. Alternatively, the receiver in another embodiment receives the input signal through a direct-wired connection to a wired-output of the radio thereby bypassing the air interface. In any case, the receiver signal is a radiofrequency signal. The radio input signal from the receiver is down converted, when necessary, and digitized to form a digitized signal. The digitized signal is processed and is determined to be active when energy at a sufficient level is present. When the processed signal is active, the analysis system determines the frequency and bandwidth of the processed signal. The frequency and bandwidth information is used to down convert, filter and decimate the processed signal to form a converted signal. The converted signal is demodulated and analyzed.

0017 In the case of Bluetooth and many military radios, the demodulation consists of AM/ASK and FM/FSK demodulation. Signal parameters are measured on the demodulated signals.

0018 The signal parameters include symbol rate, bit rate, hop duration, hop interval, signal amplitude, frequency offsets, rise/fall times and many others.

0019 Symbols are generated from the demodulated signals. If specification information is

known about the signal being analyzed, the bits can be generated from the symbols. For example, if pa1001_04^03^29.fi.doc 3/29/2004 11:56 AM

the signal is an FSK signal as in Bluetooth, the frequency states are converted, when desired, directly to raw transmitted bits.

0020 If the specifications of the transmitter are known, the measured parameters can be compared to the specifications to determine if the radio is operating properly in accord with its specification.

0021 The foregoing and other objects, features and advantages of the invention will be apparent from the following detailed description in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

- **0022** FIG 1 shows a high-level functional block diagram of the present system including the radio, a signal capture receiver and signal processing components for analysis.
 - 0023 FIG 2 shows the radio having a wired connection for receiving the signal.
- **0024** FIG 3 shows the radio signal being received by present system via a transmit antenna on the radio and a receive antenna on present system.
 - **0025** FIG 4 is a hardware diagram of the preferred embodiment.
- **0026** FIG 5 represents the signal processing steps performed on digitized data to produce signal parameters and demodulated symbols and bits.
- 0027 FIG 6 is a high level diagram of the digital signal processing used in the preferred embodiment to calculate the carrier frequency of the signal segment.
- 0028 FIG 7 shows the digital signal processing used to identify the samples associated with the signal segment and to calculate the power spectrum of the segment.
- 0029 FIG 8 shows the digital signal processing used to calculate the carrier frequency and the bandwidth of the segment.
- **0030** FIG 9 is a block diagram of the digital signal processing algorithm used to calculate the signal symbol rate.
 - 0031 FIG 10 is a typical AM waveform for an FSK signal segment.
 - 0032 FIG 11 is a typical FM waveform for an FSK signal segment
 - 0033 FIG 12 is a typical FM waveform and the idealized representation of the waveform.
 - 0034 FIG 13 is a representation of a typical hop sequence showing frequency vs. time.

0035 FIG 14 is a spectrogram of a typical hop sequence showing frequency vs. time with signal power indicated by image intensity.

0036 FIG 15 depicts a histogram of dTOT values as compiled and analyzed to show the first

major peak and following peaks.

0037 FIG 16 shows an expansion of the first major peak of FIG 15 with three bins used to

find the center of mass of the histogram.

DETAILED DESCRIPTION

0038 In FIG 1, the radio 1, a device under test, produces a radio frequency input signal which

is captured by front end 29 and which is processed by the signal processing components 241. The

signal processing components 241 analyze and characterize the input signal from the radio 1.

Typically, the radio 1 is a frequency hopping radio that transmits a radio wave signal in segments

where each segment is an instance of the signal at one of the hop frequencies of the radio. The

broadband analysis performed in FIG 1 by the signal processing components 24₁ commences using

the AMPLITUDE component 24-1 to determine the start and stop times of each of the segments of

the input signal. For each segment identified by the AMPLITUDE component 24-1, the

FREQUENCY component 24-2 determines the frequency of the segment. The SIGNAL component

24-3 converts each input segment having an input form to a converted segment having a converted

form. The converted form facilitates further processing. An analysis of the converted segment is

performed using the PARAMETER component 24-4 to determine signal parameters of each segment

individually and to determine signal parameters of multiple segments collectively so as to

characterize the input signal.

0039 The analysis performed in FIG 1 occurs without requiring prior knowledge of the radio

specifications, protocols, standards or other similar information about the radio 1. Accordingly, the

FIG 1 analysis is particularly suitable for analyzing radios that are not operating within their

specifications or that are otherwise operating poorly, for analyzing unknown signals and for

analyzing signals without need for knowledge of the radio specification. These features of the FIG 1

analysis are important in research and in the development of new radios.

pa1001_04^03^29.fi.doc Atty Doc No: CELE-01001US0

0040 In FIG 2, one embodiment of a receiver 302 within the front end 29 of FIG 1 receives

the input signal from radio 1 through a direct-wired connection 25 from a wired-output of the radio

1. In FIG 2, the input signal is collected by a direct-wired connection. The direct-wired connection

25 avoids transmission through an air interface which typically has noise, interfering signals and

other unwanted transmissions. When hard wired to the radio 1, as indicated in FIG 2, the input signal

level will likely need to be reduced and hence the attenuator 26 is provided when needed. If the

received input signal is within the proper amplitude range, the attenuator 26 can be eliminated.

0041 In FIG 3, another embodiment of a receiver 30₃ within the front end 29 of FIG 1,

receives the input signal from radio 1 through a receiving antenna 3. In FIG 3, the input signal is

collected by an antenna. The receiving antenna 3 captures the radio frequency signal transmitted

through the air interface by antenna 2 of radio 1. When transmitted through the air interface by the

radio 1 as in FIG 3, the input signal will likely require amplification by amplifier 4. However, if the

received input signal is within the proper amplitude range, the amplifier 4 can be eliminated.

0042 In FIG 4, one embodiment of the front end 29 of FIG 1 is shown. The front end 29 of

FIG 4 includes a receiver 30 that typically is like either of the receivers in FIG 2 and FIG 3. The

radio frequency input signal from the receiver 30 is down converted, when necessary, by the radio

frequency to intermediate frequency converter, RF/IF 5, to provide an input to the A/D converter 6.

After down conversion in RF/IF 5, when required, the resulting converted signal is digitized in A/D

converter 6 to form a digitized signal. The sample rate of the A/D converter 6 generally must be at

least twice the highest frequency of the frequency hopped signal with enough bits of resolution to

provide a dynamic range that permits analysis. With a direct-wired connection as shown in FIG 3, 8

bits of resolution are sufficient. Using antennas that are subject to environmental interference signals

and noise, at least 12 bits of resolution are preferred. The digitized signal is stored in the memory 8

where it becomes available for processing by the digital signal processor 24.

0043 A typical frequency hopping sequence that represents the input signal from the radio 1

that is to be analyzed is shown in FIG 13. The signal of FIG 13 shows the signal time on the X axis

and the signal frequency on the Y axis. The hopping sequence for the first ten hops in FIG. 13 is

indicated in the following TABLE 1 as H1, H2, ..., H10. For clarity, FIG. 13 does not represent the

amplitude of the signals at the different hop frequencies.

pa1001 04^03^29.fi.doc

Atty Doc No: CELE-01001US0

TABLE 1		
НОР	f _c (MHz)	
H1	52	
H2	38	
H3	67	
H4	34	
H5	32	
H6	64	
H7	79	
H8	31	
Н9	81	
H10	44	

0045 Another typical frequency hopping sequence that represents an input signal from radio 1, the device under test is shown in FIG 14. The signal of FIG 14 shows the signal time on the X axis and the signal frequency on the Y axis and the signal power in the image intensity. The signal of FIG 14 is unique in that the hop bandwidth is greater than the channel frequencies. The hopping sequence for the first twenty hops in FIG. 14 is indicated in the following TABLE 2 as H1, H2, ..., H20.

0046

TABLE 2				
НОР	f _c (MHz)		HOP	f _c (MHz)
1	75		11	39
2	18		12	75
3	78		13	18
4	24		14	78
5	90		15	18
6	6		16	78
7	39		17	24
8	24		18	90
9	90		19	6
10	6		20	39

pa1001_04^03^29.fi.doc Atty Doc No: CELE-01001US0

0047 If the input signal is transmitted at a low radio frequency, the RF/IF converter 5 is not

necessary. For example, if the highest frequency of the input signal is 30 MHz, the received signal

may be sampled directly with a sample rate of 60 Msamples/second or higher to obey the Nyquist

criteria. Similarly, alias sampling can be used for signals near the sample rate. For example, if the

input signal is from 110 – 125 MHz, the input signal can be sampled at 100 Msamples/second to

create a digitized signal on the output of the A/D converter 6 of FIG 4 from 10-25 MHz.

0048 The digitized signal on output 7 in FIG. 4 is processed by the digital signal processor

24. This digital signal processor can be a real-time system with high speed processors such as DSP

(Digital Signal Processing) chips, FPGAs (Field Programmable Gate Arrays) or general purpose

computers. In such cases, the signal memory 8 is typically a FIFO (First In First Out) buffer that

provides the digitized data as an input to the digital signal processor 24. In another less costly

embodiment, the entire signal to be analyzed and post processed is digitized into a large embodiment

of memory 8, typically a disk drive, and analyzed later using a general purpose computer as the

signal processor 24.

0049 In FIG. 4, when desired, reference signal parameters, from a specification for a radio 1

under test, are stored in reference store 28 connected with an input to the digital signal processor 24.

The digital signal processor 24 compares the reference signal parameters from reference store 28

with the calculated signal parameters processed in to the digital signal processor 24 to determine how

the radio under test meets or differs from the specification.

0050 In FIG. 4, when desired, reference signal parameters, from a specification for a radio 1

under test, are stored in reference store 28 connected with an input to the Parameter Value

Comparator 86. Digital signal processor (DSP) 24 outputs the measured parameter values to be

compared against the specification values in store 28 to form a report 87 on the compliance of the

radio under test.

0051 In FIG 5, the digital signal processing 245 includes the processing steps performed on

digitized data from the input signal as stored in the memory 8 in front end unit 29 of FIG 4. Those

signal processing steps produce signal parameters and demodulated symbols and bits.

0052 In FIG 5, the AMPLITUDE component 24-1 determines the amplitude of the input

signal appearing on the output 7 from the front end unit 29 of FIG 4 using the amplitude measurement block 9. Various algorithms may be used in measurement block 9 to measure the

amplitude of the input signal. One efficient algorithm takes the absolute value of the digitized signal

on the output 7. The threshold detector 10 functions between hops to detect a burst by detecting the

first sample that exceeds the threshold. At this point, the threshold detector 10 is disabled or ignored

until the signal analysis indicates the burst has stopped.

0053 In parallel with AMPLITUDE component 24-1, the FREQUENCY component 24-2

determines the frequency of the input signal appearing on the output 7 from the front end unit 29 of

FIG 4. The frequency, f_c , is measured in the frequency estimation block 11 and appears at output 13.

The frequency estimation block 11 also estimates the bandwidth, BW, and that estimate appears at

output 17. The measurements in frequency estimation block 11 will be in error when the signal level

of the input signal appearing on output 7 is too low. When the signal level exceeds a threshold

established by the threshold unit 10 the frequency estimate on output 13 is valid and is then used as

the carrier frequency in the down conversion process 15. If information is known about the channel

frequencies of the input signal, in one embodiment, the frequency estimate 13 is rounded to the

nearest channel center and the bandwidth 17 is set to the known bandwidth.

0054 Various algorithms can be used to determine the frequency estimate at output 13.

Spectral analysis using a Fast Fourier Transform, FFT, or similar algorithm, is a robust embodiment

that uses substantial processing power and requires substantial time to execute. Spectral analysis is

preferred when the transmitted signal is received via antennas as shown in FIG 3. With the antenna

embodiment of FIG 3, other signals and noise will be intercepted along with the signal from the radio

1. For example, there are a set of military radios that hop from 30 – 88 MHz. The higher part of this

band overlaps with the lower TV channels. By using spectral analysis in the frequency estimation

block 11, the TV and other unwanted signals can be ignored. Spectral analysis is also advantageous

when the signal bandwidth is to be estimated.

0055 One preferred embodiment the frequency estimation block 11 uses the algorithm

outlined in FIG 6 and detailed in FIG 7 and FIG 8. FIG 6 represents the digital signal processing used

in the preferred embodiment to calculate the carrier frequency, fc, of each signal segment. FIG 7

shows the digital signal processing used to identify the samples associated with the signal segment

3/29/2004 11:56 AM

and to calculate the power spectrum of the segment. FIG 8 represents the digital signal processing used to calculate the carrier frequency and the bandwidth of the segment.

0056 Referring to FIG 6, the digitized signal at 7 is processed by the frequency estimation block 11. The first step is to isolate each signal segment, in block 45, as it comes in and calculate the carrier frequency of the segment, in blocks 46 and 47.

0057 Referring to FIG 7, the absolute value, in block 30, of the input signal 7 is calculated on each sample and stored in a buffer memory 31. When 100 samples are collected, the maximum value is determined in block 32. If this value is greater than a threshold, determined in block 34, the signal is considered active and the samples at 35, corresponding to the 100 absolute value samples stored in buffer memory 31, are stored in a memory 36 which is large enough to accumulate all samples associated with the signal segment. Once stored in memory 36, the system starts to collect the next 100 samples in buffer memory 31.

0058 When the max value in the 100 sample buffer memory 31drops below the threshold determined in block 34, the signal estimator 46 is commanded at 37 to calculate the power spectrum on all samples in memory 36. This calculation is done via a windowed digital Fourier transform, DFT in block 38. One preferred embodiment uses a Hamming window; however, other windows also work well. If memory 36 contains N signals, an N point Hamming window is calculated and multiplied with the signal on a sample by sample basis. The N point DFT of the windowed signal is calculated. A subset of the output DFT bins is processed to determine the strongest signal. The subset is bins from 5 to N/2 - 5. The first few bins near DC do not contain signal energy of interest and are ignored. Samples from N/2 to N-1 are the complex conjugate of samples from 0 to N/2-1 and are ignored as their power spectrum is redundant. Samples from N/2 - 5 to N/2 - 1 are ignored because they contain no useful signal energy. If the signal band is known, just the bins associated with this band can be processed to save processing time and to ignore unwanted signals.

0059 The DFT is used instead of an FFT algorithm so the present system can use all of the samples associated with the segment. The signal frequency accuracy is a function of the time duration of the samples in the DFT. Rounding the number of samples, N, to the nearest FFT size would exclude some samples reducing the measurement accuracy. Alternatively, the N samples can be padded with zeros to bring the buffer length to the nearest FFT size greater than N.

0060 The power spectrum 40 of the bin subset is calculated by taking the magnitude squared 39 of the complex DFT output bins as shown in Eq 1. When the time samples in memory 36 have been processed, the memory is reset to start compiling the next segment.

$$P(n) = sqrt(real\{bin(n)\}^2 + imag\{bin(n)\}^2), 5 < n < N/2-5$$

0062 The power spectrum bins at 40, P(n), are processed in block 47 to find the frequency at output 13 and bandwidth at output 17 of the strongest peak in the spectrum. The first step in block 50 is to find the bin number, n_{MAX} , on output 51 and magnitude on output 52 of the strongest bin, P_{MAX} , in P(n) input at 40. The bins below and above n_{MAX} are examined in block 53 to identify all consecutive bins that have sufficient energy. This examination is done by finding all bins that exceed a threshold based on the P_{MAX} . A typical threshold is to identify all bins exceeding X dB below the max bin. The first bin exceeding the threshold is n_{LOW} and the last bin exceeding the threshold is n_{HIGH} . A typical value of X is around 30 dB. Eq 2 shows the threshold calculation.

Threshold =
$$10^{(-X/10)} * P_{MAX}$$

0064 The bins associated with the strongest signal, n_{LOW} through n_{HIGH} , are processed to determine the signal frequency at output 13 and bandwidth at output 17. The signal frequency is estimated with a center of mass algorithm in block 54 as shown in Eq 3. The signal power is the value of the denominator of Eq 3.

$$fc = \frac{\sum_{n=n_{LOW}}^{n_{HIGH}} \frac{n * fs}{N} P(n)}{\sum_{n=n_{LOW}}^{n_{HIGH}} P(n)}$$

where:

f_c = carrier frequency 13 (cycles/second)

 f_s = sample rate (samples/second)

 n_{LOW} = first bin associated with the signal segment n_{HIGH} = last bin associated with the signal segment

N = Number of samples used in the DFT

P(n) = Power spectrum bins 40

0066 The signal bandwidth, BW, 17 is calculated with Eq 4.

0067 Eq 4

$$BW = (n_{HIGH} - n_{LOW} + 1) * f_s/N$$

0068 Alternatively, the bandwidth output at 17 can be calculated as bandwidth containing a given percentage of the total signal energy. The total signal energy is calculated by summing all bins about the peak bin, this would typically involve bins outside the bins from n_{LOW} and n_{HIGH}. For example, if the desired bandwidth value is to be that containing 98% of the signal energy, the bins below the peak bin will be summed to identify the bandwidth containing 49% of the total energy. Similarly, the bins above the peak bin are summed to identify the bandwidth containing 49% of the total energy. The upper and lower bandwidths are summed to produce the total bandwidth.

0069 When the transmitter of radio 1 is wired to the present system as shown in FIG 2, the received signal is free from interference signals from the environment. In this case, a simpler algorithm such as FM demodulation can be used to determine the carrier frequency. This technique can not measure the signal bandwidth.

0070 In FIG 5, delay memory 12 is used to give the frequency estimation enough signal duration to obtain a reliable estimate so the entire burst can be analyzed without losing the beginning

pa1001_04^03^29.fi.doc Atty Doc No: CELE-01001US0

of the signal.

0071 The down converter block 15 multiplies the digitized signal by a digital local oscillator to down convert the signal to baseband using Eq 5. The resultant digital signal at 18 is a complex signal.

0072 Eq 5

 $y_{BB}(k) = y_{IF}(k) * [\cos(2\pi f_c k / f_s) - j \sin(2\pi f_c k / f_s)]$ where k = sample number: 0, 1, 2, ... $y_{IF}(k) = \text{k'th sample from memory 8}$ $y_{BB}(k) = \text{k'th complex output down converted sample}$ $f_c = \text{carrier frequency 13 (cycles/second)}$ $f_s = \text{sample rate (samples/second)}$

0073 The resultant signal at 18 will have one component around 0 Hz and an undesired component centered around –2 f_c. The undesired component will be reduced to an acceptable level by lowpass filter 16. The filter 16 will also decimate the sample rate by M where only the M'th output filtered values are calculated by the filter 16. For example, in the case of Bluetooth, the hop frequency band covers 83.5 MHz. This band can be digitized with a 200 Msample/second sample rate. The individual hop channels are 1 MHz wide. It is reasonable to reduce the resultant complex sample rate of the baseband signal at 18 from 200 Msamples/second to around 1.25 M complex samples/second. In this case, the decimation factor M is 200/1.25 = 160. The low pass digital filter is either an FIR or IIR filter with bandwidth BW as determined at 17.

pa1001_04^03^29.fi.doc Atty Doc No: CELE-01001US0

0074 The baseband signal at 18 is processed to measure many of the signal parameters. The first step in the processing is to demodulate the data. The signal can be AM demodulated as shown in Eq 6, however, other algorithms can be used to generate the AM signal 20.

0075 Eq 6

 $AM(n) = sqrt[real\{y_D(n)\}^2 + imag\{y_D(n)\}^2]$ where $\begin{aligned} n &= & sample \ number \ of \ the \ decimated \ samples: \ 0, \ 1, \ 2, \ \dots \\ y_D(n) &= & decimated, \ filtered \ baseband \ complex \ time \ samples \\ AM(n) &= & amplitude \ waveform \ \textbf{20} \ of \ the \ filtered \ signal \end{aligned}$

imag = extracts the imaginary part of the complex signal

extracts the real part of the complex signal

0076 Other parameters may require the phase demodulated signal. The phase demodulated signal can be generated with Eq 7; however, other algorithms can be used to generate the phase demodulated signal at output 21.

0077 Eq 7

 $PM(n) = atan2(real\{y_D(n)\}, imag\{y_D(n)\})$

Where

real

n = sample number of the decimated samples: 0, 1, 2, ... $y_D(n) =$ decimated, filtered baseband complex time samples

PM(n) = phase waveform 21 of the filtered signal real = extracts the real part of the complex signal

imag = extracts the imaginary part of the complex signal

atan2 = four quadrant arc tangent function of atan

 $(imag{y_D(n)}/real{y_D(n)})$

pa1001_04^03^29.fi.doc
Atty Doc No: CELE-01001US0

0078 Other parameters still may require the frequency demodulated signal at output 22. The frequency demodulated signal may be generated with Eq 8, however, other algorithms can be used to generate the FM signal.

0079 Eq 8

 $FM(n) = (f_{sD}/2\pi) (PM(n) - PM(n-1))$

Where

n = sample number of the decimated samples: 0, 1, 2, ...

PM(n) = phase waveform 21 of the filtered signal

FM(n) = frequency waveform 22 of the filtered signal

(cycles/second)

 f_{sD} = decimated sample rate (samples/second) = f_{s}/M

0080 Since the FM signal at 22 is derived from the derivative of the PM signal at 21, any high frequency noise in the PM signal at 21 will be magnified in the FM signal at 22. It is common to low pass filter the PM signal to reduce the high frequency noise. It is also common to low pass filter the AM signal at 20 and FM signal at 22 to allow more accurate measurements to be made. The mean value of the FM output at 22 can be used to refine the frequency estimate 13 to produce a more accurate reporting of the hop frequency.

0081 The results of the present system are created in the signal analysis block 23. The AM signal 20 is used to calculate the rise time of the burst. This calculation is typically done by finding the average amplitude in the center 50% of the burst as a reference level and finding the time where the AM waveform at 20 is 10% and 90% of this reference amplitude. The rise time is the difference between the 90% and 10% times. Interpolation is used to measure the 10 and 90% times accurately. The 90% to 10% fall time at the end of the burst is similarly measured.

0082 Some signals do not turn completely off between bursts; the AM waveform at 20 can be used to measure this amplitude. The amplitude of some signals can come up to a low level for a short period before the burst is judged to turn on, the AM waveform can be used to measure this amplitude and duration.

0083 The AM waveform at 20 can also be used to measure the amplitude ripple magnitude

and frequency across the duration of the burst.

0084 If the signal is an AM or ASK signal, the AM waveform at 20 is used to determine the

signal symbol rate, symbol rate drift, modulation depth, jitter, the symbols and other parameters.

0085 If the signal is PSK, the PM waveform at 21 is used to measure the modulation -

degrees per symbol state. For example a QPSK signal changes 90 degrees per symbol state. The PM

waveform can be used to measure the signal symbol rate, symbol rate drift, modulation depth, jitter,

phase accuracy, the symbols and other parameters.

0086 If the signal is FSK, the FM waveform at 22 is used to measure the frequency deviation

of the symbol states. The FM waveform is used to measure the signal symbol rate, symbol rate drift,

modulation depth, jitter, phase accuracy, the symbols and other parameters.

0087 The symbol rate is a key parameter to all digital signals. Various algorithms can be used

to calculate the symbol rate including spectral analysis, correlation and time of transition (TOT)

analysis. It is desired to calculate the bit rate independently on each signal segment. TOT analysis is

selected as being the most accurate with the short amount of data available in the signal segment.

The algorithm that follows is for an FSK signal, however, it is easily adapted for ASK and PSK

signals.

0088 FIG 9 shows the algorithm used to calculate the symbol rate on an FSK signal at 22.

The first step in block 60 is to analyze the AM signal at 20 to determine the mean amplitude over the

center 75% of the center of the segment. The sample numbers at 62 are identified where the AM

signal for the segment exceeds 90% of the mean value. The FM samples associated with these AM

sample numbers are stored in memory 63 for processing.

0089 The next step 64 is to remove the mean value of the FM samples. Next the times of

each zero crossing 66, TOT, are calculated in block 65 by interpolating the time of the samples on

either side of the zero crossing. The first difference at 83 of the TOTs are calculated in block 67:

dTOT(k) = TOT(k) - TOT(k-1) for all TOTs in the burst.

0090 A histogram of the dTOT values is compiled at 68 and analyzed to find the first major

peak 81, b_{MAX} in block 69. FIG 15 shows an example of this histogram. There may be stray zero

crossings with very short TOT in noisy data that is to be ignored 80. Harmonic peaks will be present

at 2x 82, 3x 83, etc. of the fundamental symbol period due to double, triple, etc symbols with the

pa1001_04^03^29.fi.doc Atty Doc No: CELE-01001US0

same symbol value. FIG 16 shows an expansion of the first major peak 81 with bins 81-1, 81-2 and 81-3 at dTOT = 49, 50 and 51. The center of mass 84 of the histogram will be the estimate in block 70 of the symbol rate, τ_{est} , at 71. This estimate is calculated using histograms from about .9* b_{MAX} to 1.1* b_{MAX} which are calculated as shown in Eq 9. In the example of FIG 16, the center of mass 84 is (6x49 + 45x50 + 14x51) / (6 + 45 + 14) = 50.12 usec.

0091 Eq 9

$$\tau_{\text{\tiny EM}} = dBin \frac{\sum_{b=.9b_{\text{MAX}}}^{1.1b_{\text{MAX}}} bHist(b)}{\sum_{b=.9b_{\text{MAX}}}^{1.1b_{\text{MAX}}} b}$$

where:

dBin = histogram bin width (seconds) Hist(b) = histogram array with bins b

 $b_{MAX} =$ bin number of first major histogram peak

 τ_{est} = estimated symbol period (seconds)

0092 The modulo of the dTOT values at 83 and the estimated symbol rate, τ_{est} , at 71 is calculated in block 72 to remove the double, triple, etc symbols from the dTOT values. An unwrap algorithm is used to correct for +/- τ_{est} errors as shown in the Matlab code of TABLE 2 below. This unwrap algorithm is used if the symbol rate estimate is in error enough so the mod(dTOT) values drift beyond τ_{est} .

pa1001_04^03^29.fi.doc Atty Doc No: CELE-01001US0

0093 TABLE 2

Code

<u>Code</u>	Comment
correction = 0;	% wrap correction factor
for $k = 2:nTOTs$;	% process all TOTs
dTOT = TOT(k) - TOT(k-1);	% calculate the first difference
$mod_dTOT = mod(dTOT, tauEst);$	% calculate the modulo with the symbol rate estimate
if mod_dTOT - lastMod_dTOT > tauEst/2;	% value took too high a step indicating wrap around
correction = correction + tauEst;	%
end	%
if mod_dTOT - lastMod_dTOT < -tauEst/2;	% value took too high a step
	indicating wrap around
correction = correction - tauEst;	%
end;	%
<pre>mod_dTOT = mod_dTOT - correction;</pre>	%
end;	%

Comment

0094 The resultant mod_dTOT values are fitted to a straight line with a least squares fit 74. The resultant slope 75, m, is used 76 to produce the final symbol rate measurement 77 as shown in Eq 10.

0095 Eq 10

 $\tau_{\text{SYM}} = \tau_{\text{est}}(1 + \text{m})$

0096 The symbol rate is reported to the user. The symbol rate is also used to decode the individual symbol values and to determine the symbol rate jitter statistics. The first step in this process is to reconstruct the ideal waveform from the signal. A typical result is shown in FIG 12 with the FM waveform (shown solid) and the ideal waveform (shown dashed) superimposed, this is the same signal shown in FIG 10 representing the FM samples in memory 63. The data shown in FIG 11, FIG 11 and FIG 12 are the AM and FM demodulated data of the first signal hop H1 shown in FIG 13. The spectrogram analysis shown in FIG 13 and FIG 14 are good for overall visual analysis,

pa1001_04^03^29.fi.doc 3/29/2004 11:56 AM
Atty Doc No: CELE-01001US0 Express Mail No: ER261755235US

however, they lack the time and frequency resolution for detailed signal analysis. The ideal

waveform is calculated to have the same modulation depth, mean FSK mark and space frequency

offsets in this case, the symbol rate at 77 and is synchronized in time to the FSK waveform at 22 (see

FIG 5). The jitter is the error between the TOT from the FM waveform and that from the ideal,

calculated waveform.

0097 The raw digitized data at 7 are processed by the signal analyzer to determine the spurs,

harmonics and unwanted signals in the signal band. This processing is accomplished by computing

the spectrum of the signal and calculating the power and frequency of each signal exceeding a

threshold. The threshold is usually x dB below the power level of the hop. The spurs and harmonics

are calculated for each hop. The spur frequency is calculated by the center of mass algorithm

presented in Eq 3 where n_{LOW} and n_{HIGH} are bin values about the bin identified as a spur. The spur

power is the denominator of Eq 3.

0098 While the invention has been particularly shown and described with reference to

preferred embodiments thereof it will be understood by those skilled in the art that various changes

in form and details may be made therein without departing from the scope of the invention.

pa1001_04^03^29.fi.doc Atty Doc No: CELE-01001US0