Silicon as a photovoltaic material

Overview

- A brief introduction to silicon (Si)
- Si for solar cells
- Defects in Si
 - Classification
 - Point defects
 - The effect of impurities
 - Impurity complexes
 - Extended defects
- Handling impurities
 - Impurity management
 - Segregation
 - Gettering and passivation

Topsil, IFE

Silicon (Si)

- Group IV A element
- Abundant
 - Second most abundant element in crust (~ 26 %_{wt} Si)
- Industrially important
 - Semiconductor industry
 - Photovoltaic industry (~ 98%)
- Non-toxic
 - However, fine Si-containing powders can be hazardous
 - Explosive
 - Silicosis
- Si never occurs pure in nature
 - Forms oxides and silicates
 - Challenge: making pure Si

Physical properties of ¹⁴ Si	
Atauta stali	00.005
Atomic weight	28.085
Atomic density	5.0·10 ²² cm ⁻³
Melting point	1410 °C
Boiling point	2355 °C
Density	2.33 g cm ⁻³
Volume of contraction	9.5 %
(on melting)	
Energy gap	1.12 eV
Crystal structure	diamond

A brief history of silicon production

- The use of Si-based materials is as old as civilization itself
 - Neolithic era flint tools and silicate glass (12 000 BC)
- Main dates of Si-related discoveries and inventions
 - 1824: First preparation of elemental Si [Berzelius]
 - 1854: First preparation of Si crystals (electrolysis) [Sainte-Claire Deville]
 - 1895: Production of Si in arc furnace [Moisan]
 - 1897-8: Industrial production of Si [Bozel and Rathenau]
 - WWII: Preparation of pure Si metal (Purity > 96 %)
- Si becomes industrially important towards the end of the 19th century for use in steel production

Main applications of silicon

- Metallurgical industry
 - Si is used to modify the properties of different melts and alloys
- Chemical industry
 - Silicones
 - $Si(s) + 2CH_3Cl(g) -> (CH_3)_2Si(OH)_2$
 - Silica
 - · Optical fibre feedstock, silicone rubber additive, food...
 - Functional silanes
 - $SiH_{4-x}Cl_x(g)$
- Semiconductor industry
 - Based on "poly Si" (ultra-pure Si)
 - Important from 1950's

Silicon for solar cells

- Solar cells are made up of different types of Si precursors
 - Thin-film Si (amorphous, micro/nanocrystalline, crystalline)
 - Deposition from silanes (SiH_{4-x}Cl_x)
 - Quantity and cost not very critical, low material consumption
 - Crystalline Si substrates
 - sc and mc-Si grown by different processes from melts of poly-Si
 - Until recently mostly from semiconductor-grade Si
 - Quantity and cost critical, high material consumption
- Q: "How pure must Si be if it is to be used in a solar cell?"
 - Different solar cell designs have different material requirements!

Silicon for solar cells

What do we know so far?

- Semiconductor theory describes the behaviour of a perfect Si crystal and an ideal solar cell very accurately
- Real Si crystals and solar cells always contain imperfections
 - Imperfections will affect or in some cases even determine the overall properties of Si materials and Si-based solar cells
- The effect of a number of isolated defects is well known.
- Main challenges:
 - To fully understand the role of and interplay between different defects and impurities occurring simultaneously in a Si material
 - To develop suitable processes for Si material and solar cell production

Crystal defects

H. Granlund (IFE)

Defects in Si

- Overview of things to come
 - Classification
 - Impurities
 - Donors and acceptors
 - Metallic impurities
 - O, C and N
 - Dislocations
 - Interfaces
 - Precipitates

Classification

- Point defects
 - Vacancies
 - Impurities
 - Substitutional and interstitial
 - Si self-interstitials

- Extended defects
 - Line defects
 - Dislocations
 - Area defects
 - Grain boundaries
 - Sub-grain boundaries (Misorientation < 5 ⁰)
 - Twin boundaries
 - Stacking faults
 - Volume defects
 - Precipitates

Donors and acceptors

- Point defects
- Substitutional impurities
- Donors: elements from group IIIA
 - B, Al, Ga...
- Acceptors: elements from group VA
 - P, As, Sb...
- Form defect levels close to the band edges
- All donors and acceptors ionized at room temperature
- Source: feedstock, intentional doping

Metallic impurities

- Transition metals
 - Interstitial metals
 - Cu, Fe, Co, Cr, Ag ...
 - Substitutional metals
 - Zn, As, Sb, Sn ...
- The main effect of metals is to reduce the lifetime of the material
- Can easily supersaturate during cooling of melt and form precipitates
 - Metal particles, silicides ...
- Source: feedstock, furnace, crucible ...

Metallic impurities

Recombination centres for minority carriers

$$\tau = (\sigma v N)^{-1}$$

- σ = capture cross section
- v = thermal electron velocity
- N = impurity concentration
- Elements with high σ are often called lifetime killers

Impurity levels in Si

Data from O'Mara (1990) and Goetzberger

Impurity levels in Si from lifetime

The effect of metal impurities

Carbon, oxygen and nitrogen

- - Substitutional element
 - Can form various precipitates
 - SiC
 - Source: feedstock, graphite furnace parts, atmosphere ...
- 0
 - Interstitial element
 - Fast diffuser
 - Participates in the formation of a range of defects and precipitates
 - Source: crucible ...
- N
 - SiN precipitates
 - Source: crucible coating ...

B-O complexes

Light induced degradation

- B_s and O_i can form complexes in Si under illumination
 - More generally: under any minority carrier injection
 - Causes formation of states in the band gap
 - Proposed candidate: B_sO_{i2}
- Solar cells made from B-doped Cz Si show an appreciable degradation of the efficiency under illumination
 - Important to state stable efficiencies
- Example
 - Solar cell made from Cz(B) immediately upon illumination: ~21.0 %
 - Same cell, stable efficiency: ~19.5 %

B-O complexes

Light induced degradation

Nærland/IFE

Fe-B complexes

- B_s and Fe_i can form complexes in Si
 - Important for B-doped Si
 - These pairs dissociate under illumination
 - Pairs reform if samples are left in darkness for some time
- J_{SC} and η will always degrade as a result of this dissociation
 - Degradation depends on Fe concentration, can be several $\%_{\rm rel}$
- Constructive use:
 - The lifetimes of the whole and dissociated pairs are different
 - Estimates of the Fe concentration in a material can be made

Line defects – dislocations

- Sites for heterogeneous or strain assisted nucleation of precipitates
- In n-Si: Bonds at a dislocation can be filled with e⁻ from donor atoms, making the dislocation negatively charged
 - A negative dislocation surrounded by positive donor ions result in the formation of cylindrical space charge regions
- In p-Si: Bonds at dislocation can be filled with h⁺ from acceptor atoms, making the dislocation positively charged
 - A positive dislocation surrounded by negative acceptor ions also result in the formation of cylindrical space charge region
- Dislocations decorated with impurity atoms can cause shunting
- Dislocation density affects lifetime

Plane defects

- Grain boundaries
- Sub-grain boundaries
 - Misorientation < 5⁰
- Twin boundaries
 - Highly symmetrical grain boundaries
- Boundaries can introduce recombinative interface states in the band gap
 - Affects lifetime
- Boundaries can accumulate charge and/or impurity atoms

Volume defects

Precipitates

- Precipitates can affect lifetime and diffusion lengths
- Certain precipitates can cause trouble during subsequent processing (e.g. sawing or cell fabrication processes)
- Certain precipitates can cause shunting

Origin of precipitates

- Silicide particles, as well as SiC and SiN particles can form during the casting of the material
- Large oxidized precipitates with several metal constituents (often slow diffusers) can come from particles falling into the Si melt ...

Metallic impurities – dilemma

- Many recent studies indicate that the concentration of metals in solar grade Si is orders of magnitude higher than the lifetime indicates
 - Explanation 1: metals mostly present in passive states
 - Explanation 2: metals extremely inhomogeneously distributed

Precipitates

- Much of the metal atoms present are present within various precipitates
 - Cause a reduction of diffusion lengths

$$L = 0.7 \cdot (N_p)^{-1/3}$$

- Generally more benign than fully dissolved and homogenously distributed metal impurities
- Few large and isolated precipitates:

 L larger
- Many smaller precipitates:
 L shorter

Handling impurities

- A certain amount of metallic impurities must probably be allowed in the Si material
- The effect of these impurities can be reduced
 - Reduction of recombination strength (passivation)
 - Redistribution of remaining metal atoms
 - Precipitate formation (impurity management)
 - Transport of impurities to non-critical sites within the solar cell (gettering)
- Thermal processing both during Si crystal growth and Si manufacture critical

Case study 1 – Cooling rates

- High-purity mc-Si with controlled additions of Cu, Fe and Ni
- Samples subjected to different cooling treatments after impurity addition at 1200 °C
 - Slow cool $(3 8 \, ^{\circ}\text{C/s})$
 - Low density of large particles forms
 - $L \sim 30 \mu m$
 - Rapid quenching (200 °C/s)
 - Predominantly dissolved impurities
 - Homogeneous distribution
 - L < 10 µm

IES

Case study 2 – RTP

- Rapid thermal processing (RTP) of mc-Si wafers in solar cell processing
 - As-grown material
 - FeSi₂, Cu₃Si and Ni-rich (NiSi₂(?)) precipitates built up during casting
 - Low-T RTP
 - FeSi₂ remains, fewer Ni-rich precipitates, no more Cu₃Si
 - High-T RTP
 - Fewer FeSi₂ remain (50% of Fe atoms), no Ni-rich or Cu₃Si remain
 - Lessons
 - 1. Metal silicides and particles an important source for metals during processing
 - Metal impact can be reduced by forming precipitates during casting and disturbing these as little as possible during subsequent processes
 - Use low T
 - ... as Schultz did when he made his famous 20.3 % mc-Si solar cell

Buonassisi et al., Appl. Phys. Lett. 2005

