Sentiment Analysis with Deep Learning

Name: Ezgi Subaşı

Student ID: 20050111016

1. Preprocessing Decisions

Contraction Expansion: Replaced contractions (e.g., "don't" \rightarrow "do not") for consistent text representation.

Email, URL, and HTML Tag Removal: Removed irrelevant elements using regex to retain only meaningful content.

Special Characters, Numbers, and Accented Characters: Eliminated non-alphabetic characters and converted accented ones to their non-accented forms for compatibility with GloVe embeddings.

Text Normalization: Converted text to lowercase, removed extra whitespaces, and corrected spelling errors for uniform tokenization.

2. Model Architecture

Embedding Layer: Used pre-trained 100-dimensional GloVe embeddings; words not in the GloVe vocabulary were assigned zero vectors.

Bidirectional LSTM Layers: Captured context in both directions for improved understanding of sentiment nuances.

Dropout Layers: Reduced overfitting by randomly deactivating neurons during training.

Dense Layers: Performed feature extraction and dimensionality reduction before the final classification.

Output Layer: Utilized softmax activation for three-class sentiment classification (negative, neutral, positive).

3. Analysis of Results

Training and Validation: Trained the model for 10 epochs with early stopping (patience=3) to prevent overfitting.

Challenges and Improvements:

Initial simple architecture resulted in low accuracy (\sim 41%).

Introducing bidirectional LSTMs and improved preprocessing significantly enhanced performance.

Used Keras Tuner to optimize hyperparameters within three hours. Find best parameters in below.

```
Trial 25 Complete [00h 06m 02s]
 val_accuracy: 0.6998198628425598
 Best val_accuracy So Far: \theta.7050229907035828 Total elapsed time: \theta3h \theta3m \theta4s
 Search: Running Trial #26
                     |Best Value So Far |Hyperparameter
                     True
256
                                          |trainable_embeddings
                                          |lstm_units
0.2
                     10.3
                                          |dropout_rate
                     196
                                       |gru_units
|dense_units
                     256
0.2
                     10.4
                                         |dense_dropout_rate
0.001
                     10.0005
                                        |learning_rate
                                         |tuner/epochs
                                         |tuner/initial_epoch
                    11
                                         |tuner/bracket
0019
                                         |tuner/round
|tuner/trial id
Epoch 5/10
```

Observations:

The model struggled with ambiguous or context-dependent texts. Future improvements could include attention mechanisms or fine-tuning transformer models like BERT.