ROOTHAAN-HARTREE-FOCK GROUND-STATE ATOMIC WAVE FUNCTIONS: SLATER-TYPE ORBITAL EXPANSIONS AND EXPECTATION VALUES FOR Z=2-54

CARLOS F. BUNGE and JOSÉ A. BARRIENTOS

Instituto de Física, Universidad Nacional Autónoma de México Apartado Postal 20-364, 01000 México D.F., México

and

ANNIK VIVIER BUNGE

Departamento de Química, Universidad Autónoma Metropolitana Apartado Postal 55-534, Iztapalapa, 09340 México D.F., México

Roothaan-Hartree-Fock orbitals expressed in a Slater-type basis are reported for the ground states of He through Xe. Energy accuracy ranges between 8 and 10 significant figures, reducing by between 21 and 2770 times the energy errors of the previous such compilation (E. Clementi and C. Roetti, Atomic Data and Nuclear Data Tables 14, 177, 1974). For each atom, the total energy, kinetic energy, potential energy, virial ratio, electron density at the nucleus, and the Kato cusp are given together with radial expectation values $\langle r^n \rangle$ with n from -3 to 2 for each orbital, orbital energies, and orbital expansion coefficients.

CONTENTS

INTRODUCTION	114
The Roothaan-Hartree-Fock Method	115
Computational Details	115
Accuracy	116
EXPLANATION OF TABLE	118
TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Func-	
tions, $Z = 2-54$	119

INTRODUCTION

The first compilation ¹ of Roothaan–Hartree–Fock (RHF) atomic wave functions constituted a major event for atomic physics and quantum chemistry. Another set of tables, offering an interesting compromise between accuracy and basis set size, was also published.² Eventually, Clementi and Roetti ³ produced comprehensive tables of RHF wave functions for ground and certain excited states of neutral and ionized atoms with atomic numbers 2 to 54. More than 2000 citations since their publication attest to their impact.

In 1974 the RHF method was the most accurate technique available to approximate the Hartree-Fock (HF) equations. Two years earlier, however, improved stability methods for the solution of the HF equations were developed, ⁴ and since the publication of Froese Fischer's book, ⁵ in which eight-digit numerical-HF energies and orbital expectation values for He through Rn configurations were reported, numerical HF is considered to be markedly superior to RHF.

Nevertheless, RHF wavefunctions offer some advantages over numerical ones, as they can be readily incorporated into various codes for atomic and related calculations. Numerical wave functions, instead, need to be kept on diskettes or generated as needed, and nontrivial software is required for their use.

The past decade witnessed the coming of age of orbital methods in atomic structure calculations.⁶⁻⁸ The numerical-multiconfiguration-Hartree-Fock (numerical-MCHF) approach ⁵ became established as the method of choice, although configuration interaction (CI)⁹ appeared to be more general and flexible.

The advantages of numerical MCHF come from the transparency with which both occupied and correlation orbitals are obtained by solving the MCHF equations⁵ when convergence problems do not occur. In CI, on the other hand, whereas correlation orbitals can be obtained successfully ¹⁰ and automatically, with minor human intervention, ¹¹ the inescapable need to use RHF-occupied orbitals poses severe limitations for atoms larger than Ar, as the existing compilation of RHF atomic wave functions³ is not sufficiently accurate for spectroscopic purposes. ¹² For example, energy errors are as large as 32 meV in the first transition metal series, and larger than 352 meV for elements of the second transition series.

The advantages of CI over numerical HF are the absence of MCHF equations and the orders-of-magnitudelarger CI sizes that can be accommodated. When corevalence correlations are important, as in the Ca spectrum, ¹³ CI optimization of core-valence orbitals can now be carried out by means of a straightforward and automated procedure while the solution of the corresponding MCHF equations is still beyond the scope of current computer codes.^{14,15} However, the potential accuracy of CI will not materialize unless RHF atomic wave functions with energy errors not more than 1 meV become available. The Clementi–Roetti energy errors are between 4 and 32 meV for K through Zn, between 10 and 48 meV for Ga through Kr, and between 220 and 1658 meV for Rb through Xe. In this work we report RHF wave functions for the ground states of He through Xe with energy errors not exceeding 0.6 meV.

For each atom, the total energy, kinetic energy, potential energy, virial ratio, and electron density at the nucleus and the Kato cusp 16 are given together with radial expectation values $\langle r^n \rangle$, n from -3 to 2 for each orbital, orbital energies, and orbital expansion coefficients. This

information is most appropriate at a time when the N=10 electron frontier is beginning to be pushed throughout the whole periodic table. Some classes of physical problems which would be better served by the present tables include structure and spectra of the first two transition metal series, electron scattering from atoms, negative ions beyond Ar, and fine- and hyperfine-structure calculations. The new RHF wave functions will also be useful as starting points for calculations of excited states and pseudopotentials, particularly for atoms beyond Ar, and as starting points for relativistic calculations. ¹⁷

The Roothaan-Hartree-Fock Method

Hartree-Fock atomic wave functions are independent-particle-model approximations to the nonrelativistic Schrodinger's equation for stationary states. The use of Slater determinants accounts for the Pauli principle, and for an *N*-electron system the HF equations yield *N* Hartree-Fock spin orbitals.

In conventional Hartree-Fock calculation, 5 the spin orbitals are expressed as products of a radial function times a spherical harmonic times a spin function, the radial functions are taken to depend only on the quantum numbers n and l, and the total wave function is required to be an eigenfunction of the total orbital and spin angular momentum; the form of the spin orbitals guarantees that L_z , S_z , and parity are good quantum numbers. Conventional HF is also known as restricted HF.

RHF or analytic self-consistent-field atomic wave functions ¹⁸ are approximations to conventional HF wave functions in which the radial atomic orbitals R_{nl} are expanded as a finite superposition of primitive radial functions:

$$R_{nl} = \sum_{i} S_{jl} C_{jln}. \tag{1}$$

In this work, the normalized primitive basis $\{S_{jl}\}$ is taken as a Slater-type orbital (STO) set,

$$S_{jl} = N_{jl} r^{(n_{jl}-1)} \exp(-Z_{jl} r),$$
 (2)

where N_{jl} is a normalization factor, n_{jl} is the principal quantum number, Z_{jl} is the orbital exponent, and l is the azimuthal quantum number.

The nonrelativistic atomic Hamiltonian is approximated by

$$H = \sum_{a} \left(-\frac{1}{2} \nabla_a^2 - \frac{Z}{r_a} \right) + \sum_{a>b} \frac{1}{r_{ab}}.$$
 (3)

Eq. (3) may be interpreted in units of energy and length that take into account the finite mass of the atom, which we refer to as atomic units (M) in this paper. The infinite mass atomic unit of energy is modified by a factor $(1 + m/M)^{-1}$ and the atomic unit of length by a factor $(1 + m/M)^{-1}$

m/M) where m is the mass of the electron and M is the nuclear mass. The use of atomic units (M) amounts to using the diagonal part of the mass polarization term, neglecting the nondiagonal part.¹⁹ This nondiagonal part is relatively small, is very sensitive to correlation, and, in calculations beyond HF, viz., in CI calculations, is taken up as a perturbation, or even variationally.

The RHF wave function Φ is a linear combination of Slater determinants \mathbf{D}_{α} with coefficients a_{α} fixed for each L-S symmetry:

$$\Phi = \sum_{\alpha} \mathbf{D}_{\alpha} a_{\alpha}. \tag{4}$$

The a_{α} coefficients may be calculated by a variety of methods, ²⁰ but they do not enter the RHF equations ²¹ explicitly; the RHF equations, instead, are usually expressed in terms of vector coupling coefficients ^{21,22} which appear in the energy expression after integration over angular coordinates. The RHF equations

$$\mathbf{F}_{c}\mathbf{C} = \mathbf{eSC} \tag{5a}$$

$$F_oC = eSC$$
 (5b)

are self-consistent-field equations obtained by minimizing the expectation value of H [Eq. (3)], taken with the trial wave function Φ , subject to the orthonormality of the radial functions with the same quantum number l. In Eqs. (5), $\mathbf{F_c}$ and $\mathbf{F_o}$ are the closed-shell and open-shell Fock matrices, respectively, \mathbf{S} is the overlap matrix, \mathbf{C} collects the orbital expansion coefficients C_{jln} of Eq. (2) in matrix form, and the vector \mathbf{e} holds the orbital energies.

A definitive formulation and derivation of the RHF equations have been given by Roothaan and Bagus, ²¹ and a stimulating review is provided in Ref. 3. Efficient methods to improve the attainment of self-consistency are well discussed in the work of Carbó et al.²³

Computational Details

The first tables of RHF atomic wave functions were produced with a program designed and written by Roothaan and Bagus. That program, after undergoing a translation to Fortran, evolved along several paths. One version was used by Clementi and Roetti. A further improved version is part of the MOTECC collection. An extension for handling open f shells was used to obtain RHF atomic wave functions for atomic numbers 55 to 92.

A fourth version incorporates pseudopotentials and has been effectively documented by Daudey.²⁷ We have used Daudey's version of the RHF program with the following modifications: (i) If a full calculation with the old program is called a macrocycle, the new program runs any number of macrocycles up to an energy convergence threshold. (ii) After each macrocycle, convergence

thresholds are reinitialized; usually, this procedure overcomes most divergence problems, as a new macrocycle uses the orbitals from the previous macrocycle. (iii) The existing Jacobi diagonalization routine was replaced by a more accurate one. Finally, a program error affecting the operator which eliminates the Lagrange multipliers between orbitals of closed and open shells was uncovered. That error did not prevent the reproduction of Clementi and Roetti's energy values to all reported figures; however, it prevented the achievement of further accuracy.

For certain pilot atoms, such as Ca, Zr, and Xe, we tested thousands of initial STO basis sets until arriving at the energy accuracies required by the physical applications mentioned above. These particular calculations took about three months on a dedicated and fully equipped IBM RS/6000 Model 520 computer. We estimate that to reproduce the results for copper, between 2 and 4 hours of Cray-YMP CPU time would be required, if as a starting point STO sets extrapolated from either our Ni or Zn wave functions were used. Seventy minutes of Cray CPU time are required to obtain the same result from an interpolation between Ni and Zn wave functions. On the other hand, a direct assault on Cu is likely to fail or require perhaps 10 times as much investment in human and computer time. For the complete tables we used approximately 2000 hours of IBM and 160 hours of Cray CPU time. Details on STO set selection are given elsewhere.²⁸

Accuracy

Our results have not been mass produced but rather have been generated one by one, recalculating everything several times; viz., we carried out successive extrapolations between Ca and Xe twice back and forth. As a consequence, our energy errors follow a smooth pattern, and approximate linear dependencies in the basis sets are kept to a minimum, an essential requirement for correlation calculations beyond Hartree–Fock.

The accuracy of the total RHF energies has been discussed in Ref. 28. The energy errors increase smoothly from 0.002 microhartree in He up to 0.4 microhartree in Ar. Starting with K, the basis set is kept as small as possible, consistent with the sought energy accuracy of 1 meV (37 microhartree).

Energy errors increase from 3.4 microhartree for K up to 19 microhartree for Cu and 14 microhartree for Zn. From Ga to Kr, the necessary addition of further *p*-type STOs causes the energy errors to be reduced to about 8 microhartree. Beginning with Rb, with an energy error of 11 microhartree, accuracy diminishes smoothly up to Cd, where the energy error reaches its largest value, 22 microhartree. From In onward the energy errors diminish again from 18 microhartree down to 14 microhartree for Xe. If we define an improved accuracy IA as the quotient

between present and past RHF energy errors, our IA relative to the energy results of Clementi and Roetti ranges between 21, for V, and 2770, for Cd.²⁸ Also, our RHF energies are accurate to more than eight digits, which is more accurate than the previous numerical-HF results.⁵ In fact, numerical-HF results for the ground states of Cr, Nb, Mo, Ru, and Rh have just become available with the publication of Ref. 28. In all these ground states the outermost s orbital is singly occupied, and these configurations had not been calculated before by numerical HF. For Cu, Pd, and Ag, previous numerical-HF results²⁹ were accurate to only six figures.

Acknowledgments

One of us (C.F.B.) thanks IBM México for lending him an IBM RS/6000 Model 520 computer, which was used through most of this work. In particular we express our appreciation to Ings. Manuel Flores Bravo, Humberto Hernández Ruano, Arturo Obregón, Gerardo Vega, and Carmen Villar, all at IBM México, for valuable contributions. After the RS/6000 computer was returned to IBM we used the Cray YMP/432 supercomputer at Universidad Nacional Autónoma de México (for atoms Mo through Xe). These tables are dedicated to Paul S. Bagus, Enrico Clementi, Charlotte Froese Fischer, Thomas L. Gilbert, Carla Roetti, and Clemens J. J. Roothaan. Without their work they could not have been made.

References

- 1. E. Clementi, IBM J. 9, 2 (1965); IBM J. Suppl. 9, 2 (1965)
- 2. P. S. Bagus, T. L. Gilbert, and C. C. J. Roothaan, J. Chem. Phys. **56**, 5195 (1972)
- 3. E. Clementi and C. Roetti, ATOMIC DATA AND NU-CLEAR DATA TABLES 14, 177 (1974)
- C. Froese Fischer, Comp. Phys. Commun. 4, 107 (1972);
 J. Comp. Phys. 10, 211 (1972)
- 5. C. Froese Fischer, *The Hartree–Fock Method for Atoms* (Wiley, New York, 1977)
- 6. C. F. Bunge, Phys. Rev. Lett. 44, 1450 (1980)
- 7. D. R. Beck, Phys. Rev. A 37, 1847 (1988)
- 8. C. Froese Fischer, Phys. Rev. Lett. **59**, 2263 (1987)

- 9. I. Shavitt, in *Methods of Electronic Structure Theory*, edited by H. F. Schaefer (Plenum, New York, 1977), Vol. 3, pp. 189–275
- 10. A. Bunge and C. F. Bunge, Phys. Rev. A 1, 1599 (1970)
- 11. O. Jitrik and C. F. Bunge, Phys. Rev. A **43**, 5804 (1991)
- 12. R. Jáuregui and C. F. Bunge, Phys. Rev. A 23, 1618 (1981)
- 13. R. Jáuregui and C. F. Bunge, manuscript in preparation
- 14. C. Froese Fischer, Comp. Phys. Commun. **14**, 145 (1978)
- I. P. Grant, B. J. McKenzie, P. H. Norrington, D. F. Mayers, and N. C. Pyper, Comp. Phys. Commun. 21, 207 (1980)
- T. Kato, Commun. Pure Appl. Math. 10, 151 (1957);
 S. Fraga and G. Malli, Many-Electron Systems: Properties and Interactions (Saunders, Philadelphia, 1968)
- 17. R. Jáuregui, C. F. Bunge, and E. Ley-Koo, in *Atomic* and *Molecular Physics*, edited by C. Cisneros, I. Alvarez, and T. J. Morgan (World Scientific, Singapore, 1991), pp. 276–287
- 18. C. C. J. Roothaan, Rev. Mod. Phys. **23**, 69 (1951); **32**, 179 (1960)
- 19. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Academic Press, New York, 1957)

- 20. J. C. Slater, Quantum Theory of Atomic Structure (McGraw-Hill, New York, 1960), Vol. 2
- 21. C. C. J. Roothaan and P. S. Bagus, in *Methods in Computational Physics* edited by B. Alder, S. Fernbach, and M. Rotenberg (Academic Press, New York, 1963), Vol. 2, pp. 47–94
- 22. G. L. Malli and J. P. Olive, J. Chem. Phys. 43, 861 (1965); see also "Laboratory of Molecular Structure," The University of Chicago Tech. Rep. 1962–63, Part 2, p. 258
- 23. R. Carbó, Ll. Domingo, and J. J. Peris, in *Advances in Quantum Chemistry*, edited by P.-O. Löwdin (Academic Press, New York, 1982), Vol. 15, pp. 215–265
- 24. B. Roos, C. Salez, A. Veillard, and E. Clementi, IBM Tech. Rep. RJ-518 (1968)
- 25. E. Clementi (Ed.), Modern Techniques in Computational Chemistry: MOTECC-90 (ESCOM Science, Leiden, 1990)
- 26. A. D. McLean and R. S. McLean, ATOMIC DATA AND NUCLEAR DATA TABLES **26**, 197 (1981)
- 27. J.-P. Daudey, "Program for Atomic Calculations," Instituto de Física, Universidad Nacional Autónoma de México Tech. Rep. (1978)
- 28. C. F. Bunge, J. A. Barrientos, A. V. Bunge, and J. A. Cogordan, Phys. Rev. A **46**, 3691 (1992)
- 29. J. P. Desclaux, Comp. Phys. Commun. **12**, 311 (1973)

EXPLANATION OF TABLE

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54

In each data block, the first row lists the element, the atomic number Z, and the configuration and term of the ground-state wave function. Complete orbital configurations are abbreviated with the corresponding noble gas symbol. For example, for silicon (Z = 14), [Ne]3s(2)3p(2) 3P means $1s^22s^22p^63s^23p^2$ 3P. Blocks are arranged in order of increasing Z.

The second row gives the TOTAL, KINETIC, and POTENTIAL ENERGY in atomic units (M) [1 a.u. = 27.2113961 eV and 1 a.u.(M) is 1 a.u. times $(1 + m/M)^{-1}$, where m is the electron mass and M is the nuclear mass] and the VIRIAL RATIO (=POTENTIAL ENERGY/KINETIC ENERGY, which is equal to -2 for the exact HF wave function).

The third row gives RHO at 0, the electron density ρ at the origin in atomic units (M) [1 a.u.(M) = $1/a_{\mu}^{3}$, with a_{μ} equal to the Bohr radius a_{0} times (1 + m/M)] and the Kato cusp defined as $(-1/Z)d[\ln \rho(r)]/dr$ at the origin. The Kato cusp is equal to 2 a.u.(M) [1 a.u.(M) = $1/a_{\mu}$] for the exact HF wave function. 1s, 2p, etc., denote RHF orbitals. Below each orbital are listed

ORB.ENERGY	Orbital energy in a.u.(M)
$\langle R \rangle$	Expectation value of r in a.u.(M)
$\langle R^{**2} \rangle$	Expectation value of r^2 in a.u.(M)
$\langle 1/R \rangle$	Expectation value of 1/r in a.u.(M)
$\langle 1/R^{**2} \rangle$	Expectation value of $1/r^2$ in a.u.(M).
$\langle 1/R^{**3} \rangle$	Expectation value of $1/r^3$ in a.u.(M).

The orbital expansion coefficients, C_{jln} in Eq. (1), are listed next under each RHF orbital. 1S, 2P, etc., denote Slater-type orbitals (STOs) $n_{jl}l$. Orbital exponents Z_{jl} are shown following the STO designation. The STO S_{jl} is given by

$$S_{il} = N_{il}r^{(n_{jl}-1)}\exp(-Z_{il}r),$$

and the normalization constant N_{il} is given by

$$N_{il} = (2Z_{il})^{[n_{jl}+1/2]}/[(2n_{il})!]^{1/2}.$$

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions. Z = 2-54See page 118 for Explanation of Table

HELIUM, Z=2 1S 1s(2) KINETIC ENERGY POTENTIAL ENERGY TOTAL ENERGY VIRIAL RATIO -5.723361606 -2.861679993 2.861681613 -1.999999434 RHOat0 = 22.593709Kato cusp = 1.9999721s ORB. ENERGY -0.917955 <R> 0.927272 <R**2> 1.184820 <1/R> 1.687283 <1/R**2> 5.995503 18 1.4595 1.347900 3S 5.3244 -0.001613 25 2.6298 -0.100506 1.7504 2.5 -0.270779 LITHIUM, Z=3 1s(2)2s(1)2S KINETIC ENERGY POTENTIAL ENERGY VIRIAL RATIO TOTAL ENERGY 7.432726876 -2.000000007 -7.432726924 -14.86545380 RHOat0 = 87.852850Kato cusp = 2.0008472s ORB. ENERGY -2,477741 -0.196323 0,573125 3.873661 <R> <R**2> 0.446803 17.738419 <1/R> 2.685034 0.345391 <1/R**2> 0.435420 14.888309 15 4.3069 0.141279 -0.022416 -0.135791 **1S** 2.4573 0.874231 3\$ 6.7850 -0.005201 0.000389 -0.002307 -0.000068 2S 7.4527 1.8504 0.006985 -0.076544 **2S** 25 0.7667 -0.000305 0.340542 0.000760 0.715708 25 0.6364 BERYLLIUM. Z=4 1s(2)2s(2) 1S TOTAL ENERGY KINETIC ENERGY POTENTIAL ENERGY VIRIAL RATIO 14.57302427 -14.57302313 -29.14604740 -1.999999922 RHOat0 = 222.35057Kato cusp = 2.0002142s1s ORB. ENERGY -4.732669 -0.309269 <R> 0.414994 2.649396 <R**2> 0.232955 8.426147 <1/R> 3.681877 0.522523 <1/R**2> 27.753395 1.055640 15 5.7531 0.285107 -0.016378 1S 0.474813 3.7156 -0.155066 35 9.9670 -0.001620 0.000426 35 3.7128 0.052852 -0.059234 0.243499

-0.031925

0.387968

0.685674

25

25

25

4.4661

1.2919

0.8555

0.000106

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

BORON, Z=5	1s(2)2s(2	2)2p(1) 2P			
TOTAL ENERGY -24.52906069		IC ENERGY	POTENTIAL -49.0581		VIRIAL RATIO -2.000000020
-24.52906069	24.	32906021	-49.0381	12090	-2.000000020
RHOat0 = 451	.88988 Ka	to cusp = 1.	.999917		
ORB.ENERGY <r> <r**2> <1/R> <1/R**2></r**2></r>	1s -7.695335 0.325866 0.143362 4.674339 44.538014	2s -0.494706 1.977064 4.709128 0.712882 2.024473	ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3></r**2></r>	2p -0.309856 2.204757 6.146069 0.605006 0.529888 0.775649	
1S 7.0178 1S 3.9468 3S 12.7297 3S 2.7646 2S 5.7420 2S 1.5436 2S 1.0802	0.381607 0.423958 -0.001316 -0.000822 0.237016 0.001062 -0.000137	-0.022549 0.321716 -0.000452 -0.072032 -0.050313 -0.484281 -0.518986	2P 5.7416 2P 2.6341 2P 1.8340 2P 1.1919 2P 0.8494	0.007600 0.045137 0.184206 0.394754 0.432795	
CARBON, Z=6	1s(2)2s(2)2p(2) 3P			
TOTAL ENERGY -37.68861890		IC ENERGY 68861825	POTENTIAL -75.3772		VIRIAL RATIO -2.000000017
RHOat0 = 800.	.79993 Ka	to cusp = 1.	999509		
ORB.ENERGY - <r> <r**2> <1/R> <1/R**2></r**2></r>	1s -11.325519 0.268443 0.097199 5.664439 65.234157	2s -0.705627 1.589344 3.052064 0.896798 3.255303	ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3></r**2></r>	2p -0.433341 1.714495 3.746800 0.783503 0.892066 1.691945	
1S 8.4936 1S 4.8788 3S 15.4660 2S 7.0500 2S 2.2640 2S 1.4747 2S 1.1639	0.352872 0.473621 -0.001199 0.210887 0.000886 0.000465 -0.000119	-0.071727 0.438307 -0.000383 -0.091194 -0.393105 -0.579121 -0.126067	2P 7.0500 2P 3.2275 2P 2.1908 2P 1.4413 2P 1.0242	0.006977 0.070877 0.230802 0.411931 0.350701	

25

2.5

2.1608

1.6411

0.000133

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

NITROGEN, Z=7 1s(2)2s(2)2p(3) 4S TOTAL ENERGY KINETIC ENERGY POTENTIAL ENERGY VIRIAL RATIO -54.40093415 54.40093494 -108.8018691 -1.999999985 RHOat0 = 1294.1163Kato cusp = 1.99983225 2p 15 -15.629060 -0.567589 ORB. ENERGY -0.945324 ORB. ENERGY 1,409631 <R> 0.228297 1.332277 <R> <R**2> 0.070265 2.149438 <R**2> 2.547642 <1/R> <1/R> 6.653236 1.078176 0.957690 <1/R**2> 89.841896 4.753583 <1/R**2> 1.336287 <1/R**3> 3.099879 9.9051 0.354839 -0.067498 2P 8.3490 0.006323 1S 5.7429 0.472579 3.8827 1S 0.434142 2P 0.082938 -0.001038 2 P -0.000315 3S 17.9816 2.5920 0.260147 8.3087 0.208492 -0.080331 2P 1.6946 0.418361 2S 0.001687 -0.374128 2P 1.1914 0.308272 25 2.7611 25 1.8223 0.000206 -0.5227751.4191 0.000064 2S -0.207735OXYGEN, Z=8 1s(2)2s(2)2p(4) 3P KINETIC ENERGY POTENTIAL ENERGY TOTAL ENERGY VIRIAL RATIO -74.80939840 74.80940128 -149.6187997 -1.999999961 RHOat0 = 1958.2230Kato cusp = 1.9999791s 2s 2p ORB. ENERGY -20.668657 -1.244315 ORB. ENERGY -0.631906 0.198589 1.141964 1.232198 < R> <R> <R**2> <R**2> 0.053146 1.581223 1.974976 <1/R> 1.265272 <1/R> 1.111111 7.642171 <1/R**2> <1/R**2> 118.382497 6.591548 1.818717 <1/R**3> 4.974380 11.2970 0.360063 -0.064363 2P 9.6471 0.005626 1S 6.5966 0.466625 0.433186 2P 1S 4.3323 0.126618 35 20.5019 -0.000918 -0.000275 2P 2.7502 0.328966 0.208441 0.395422 9.5546 -0.072497 2P 1.7525 28 1.2473 0.002018 2S 3.2482 -0.369900 2P 0.231788 0.000216

-0.512627

0.000463 0.000147

2S 2S 2.8357 2.0715 -0.523070 -0.246038

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

		See page 118 for	Explanation of Tab	ole	
FLUORINE, Z	=9 1s(2)2	s(2)2p(5) 2	2P		
TOTAL ENERG -99.4093492		IC ENERGY 40935019	POTENTIAL -198.818		VIRIAL RATIO -1.999999991
RHOat0 = 28	16.8876 Ka	to cusp = 1.	999963		
ORB.ENERGY <r> <r**2> <1/R> <1/R**2></r**2></r>		2s -1.572535 1.001094 1.216565 1.449751 8.697213	ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3></r**2></r>	2p -0.730018 1.084786 1.543524 1.271674 2.394771 7.545578	
1S 12.6074 1S 7.4101 3S 23.2475 2S 10.7416 2S 3.7543 2S 2.5009 2S 1.8577	0.443947 -0.000797 0.213846 0.002183 0.000335	-0.058489 0.426450 -0.000274 -0.063457 -0.358939 -0.516660 -0.239143	2P 11.0134 2P 4.9962 2P 3.1540 2P 1.9722 2P 1.3632	0.004879 0.130794 0.337876 0.396122 0.225374	
NEON, Z=10	1s(2)2s(2)2p(6) 1S			
TOTAL ENERG		IC ENERGY .5471001	POTENTIAL -257.094		VIRIAL RATIO -1.999999984
RHOat0 = 38	95.0667 Ka	to cusp = 1.	999933		
ORB.ENERGY <r> <r**2> <1/R> <1/R**2></r**2></r>	1s -32.772442 0.157631 0.033470 9.618054 187.196960	2s -1.930391 0.892113 0.967082 1.632554 11.071475	ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3></r**2></r>	2p -0.850410 0.965273 1.228454 1.435350 3.058859 10.906781	
1S 13.9074 1S 8.2187 3S 26.0325 2S 11.9249 2S 4.2635	0.217206 0.002300	-0.053023 0.419502 -0.000263 -0.055723 -0.349457	2P 12.3239 2P 5.6525 2P 3.5570 2P 2.2056 2P 1.4948	0.004391 0.133955 0.342978 0.395742 0.221831	

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

SODIUM, Z=1	1 [Ne]3s	(1) 2S			
TOTAL ENERGY	-	TIC ENERGY		AL ENERGY	VIRIAL RATIO
-161.858911	3 161	1.8589125	-323.	7178237	-1.999999993
RHOat0 = 52	41.9865 Ka	ato cusp = 2	.000003		
	1s	2s	3s		2p
ORB.ENERGY	-40.478500 0.142858	-2.797026 0.779068	-0.182102 4.208762	ORB.ENERGY	-1.518140 0.798485
<r**2></r**2>	0.027481	0.731495	20.704809	<r**2></r**2>	0.822132
<1/R>	10.607384	1.867338	0.301399	<1/R>	1.696598
<1/R**2>	227.533756	14.453227	0.398424	<1/R**2>	4.187710
1S 15.3319	0.387167	0.053722	0.011568	<1/R**3>	17.005671
1S 9.0902	0.434278	-0.430794	-0.072430	2P 13.6175	0.004308
2S 13.2013	0.213027	0.053654	0.011164	2P 6.2193	0.157824
2S 4.7444 2S 3.1516	0.002205	0.347971 0.608890	0.057679 0.089837	2P 3.8380 2P 2.3633	0.388545 0.489339
2S 3.1516 2S 2.4047	0.000627 -0.000044	0.157462	0.042114	2P 2.3033	0.489339
3S 28.4273	-0.000649	0.000280	-0.000001		
35 1.3179	0.000026	-0.000492	-0.182627		
3S 0.8911 3S 0.6679	-0.000023 0.000008	0.000457 0.000016	-0.471631 -0.408817		
35 0.0073	0.000000	0.000010	0.10001		
MAGNESIUM, 2	Z=12 [Ne]	3s(2) 1S			
momat ENERGY		TA PUPPAY	DOMPNATA	AT ENDDON	UIDIN DIMIO
TOTAL ENERGY -199.6146363		IC ENERGY		AL ENERGY 2292767	VIRIAL RATIO -1.99999978
RHOat0 = 687	72.1659 Ka	to cusp = 2	.000211		
ann Europau	15	2s	35	ODD BHEDGU	2p
ORB.ENERGY	-49.031735 0.130594	-3.767721 0.690335	-0.253052 3.252938	ORB.ENERGY	-2.282225 0.684998
<r**2></r**2>	0.022956	0.571084	12.418454	<r**2></r**2>	0.597695
<1/R>	11.597954	2.107821	0.399388	<1/R>	1.951690
<1/R**2>	271.847496	18.382421	0.788544	<1/R**2>	5.469817
1S 17.0241	0.352464	0.059265	0.016053	<1/R**3>	24.921147
1S 10.0727	0.481225	-0.447481	-0.096426	2P 14.9021	0.004178
2S 14.6751	0.198592	0.055907	0.014785	2P 6.8076	0.175692
2S 5.1514	0.002259	0.355163	0.077390	2P 4.1426	0.420054
2S 3.4870 2S 2.5249	0.000556 -0.000136	0.696633 0.058440	0.110979 0.082870	2P 2.7152 2P 1.4623	0.456246 0.012155
3S 29.9018	-0.000669	0.000283	0.000010	2. 1.4023	0.012133
3S 1.7568	0.000056	-0.001173	-0.232777		
3S 1.1659 3S 0.8244	-0.000033 0.000011	0.000277 -0.000059	-0.494745 -0.378869		
JJ U.UL44	0.000011	0.000039	0.3/0003		

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

ALUMINIUM,	Z=13 [Ne]	3s(2)3p(1)				
			2P			
		, , , , ,				
TOTAL ENERG		IC ENERGY		AL ENERGY	VIRIAL RAT	
-241.87670	70 241	8767064	-483.	7534134	-2.0000000	003
DUO-+0 0	214 2400 7/2	.+an - 2	000007			
RHOat0 = 88	314.3490 Ka	ito cusp = 2	.000007			
	1s	2s	3s		2p	3p
ORB. ENERGY	-58.501026	-4.910672	-0.393420	ORB. ENERGY	-3.218303	-0.209951
<r></r>	0.120258	0.620026	2.599278	<r></r>	0.600543	3.433889
<r**2></r**2>	0.019459	0.458897	7.890667	<r**2></r**2>	0.455357	14.006188
<1/R>	12.589248	2.349007	0.506786	<1/R>	2.205108	0.379283
<1/R**2>	320.129355	22.797434	1.359520	<1/R**2>	6.915864	0.310543
		0.064465		<1/R**3>	34.939997	1.088227
1S 18.1792		0.061165	0.020024	2D 14 4076	0.015400	0 001600
1S 10.8835 2S 15.7593		-0.460373	-0.119051	2P 14.4976	0.015480	-0.001690
2S 15.7593 2S 5.7600		0.055062 0.297052	0.017451 0.079185	2P 6.6568 2P 4.2183	0.204774 0.474317	-0.048903 -0.058101
2S 4.0085		0.750997	0.130917	2P 4.2163 2P 3.0026	0.339646	-0.090680
2S 2.8676		0.064079	0.139113	3P 11.0822	0.024290	-0.001445
3S 33.5797		0.000270	0.000038	3P 1.6784	0.003529	0.234760
3S 2.1106		-0.001972	-0.303750	3P 1.0788	-0.000204	0.496072
3S 1.3998		0.000614	-0.547941	3P 0.7494	0.000199	0.359277
3S 1.0003	0.000013	-0.000064	-0.285949			
arr 7 aay - 5	14 (37-10-	(0) 0 (0) 0	-			
SILICON, Z=	=14 [Nej3s	(2)3p(2) 3	P			
	=	(-)-F(-)	-			
TOTAL ENERG	י ע עדאוריד			I FNFDCV	VIDIAL DAT	TO.
TOTAL ENERG		IC ENERGY	POTENTIA	AL ENERGY	VIRIAL RAT	
TOTAL ENERG -288.854362			POTENTIA	AL ENERGY 7087246	VIRIAL RAT -1.9999999	
-288.854362	2 288	IC ENERGY .8543624	POTENTIA -577.7			
	2 288	IC ENERGY	POTENTIA -577.7			
-288.854362 RHOat0 = 11	22 288 .093.598 Ka 1s	IC ENERGY .8543624 to cusp = 1	POTENTIA -577.7 .999953 3s	7087246	-1.9999999 2p	99 3p
-288.854362 RHOatO = 11 ORB.ENERGY	2 288 .093.598 Ka 1s -68.812456	IC ENERGY .8543624 to cusp = 1 2s -6.156538	POTENTIA -577.7 .999953 3s -0.539842	7087246 ORB.ENERGY	-1.9999999 2p -4.256054	3p -0.297114
-288.854362 RHOatO = 11 ORB.ENERGY <r></r>	2 288 .093.598 Ka .1s -68.812456 0.111431	IC ENERGY .8543624 to cusp = 1 2s -6.156538 0.562941	POTENTIA -577.7 .999953 3s -0.539842 2.207085	7087246 ORB.ENERGY	-1.9999999 2p -4.256054 0.535408	3p -0.297114 2.752216
-288.854362 RHOatO = 11 ORB.ENERGY <r> <r**2></r**2></r>	22 288 .093.598 Ka -68.812456 0.111431 0.016701	IC ENERGY .8543624 to cusp = 1 2s -6.156538 0.562941 0.377257	POTENTIA -577.7 .999953 3s -0.539842 2.207085 5.676239	ORB.ENERGY <r> <r></r></r>	-1.99999999 2p -4.256054 0.535408 0.359681	3p -0.297114 2.752216 8.980888
-288.854362 RHOatO = 11 ORB.ENERGY <r> <r**2> <1/R></r**2></r>	2 288 .093.598 Ka .093.598 Ka .058.812456 .0111431 .0016701 .13.581150	IC ENERGY .8543624 to cusp = 1 2s -6.156538 0.562941 0.377257 2.590401	POTENTIA -577.7 .999953 3s -0.539842 2.207085 5.676239 0.603231	ORB.ENERGY <r> <r**2> <1/R></r**2></r>	-1.99999999 2p -4.256054 0.535408 0.359681 2.456382	3p -0.297114 2.752216 8.980888 0.478031
-288.854362 RHOatO = 11 ORB.ENERGY <r> <r**2></r**2></r>	22 288 .093.598 Ka -68.812456 0.111431 0.016701	IC ENERGY .8543624 to cusp = 1 2s -6.156538 0.562941 0.377257	POTENTIA -577.7 .999953 3s -0.539842 2.207085 5.676239	ORB.ENERGY <r> <r> <1/R> <1/R> <1/R**2></r></r>	-1.99999999 2p -4.256054 0.535408 0.359681 2.456382 8.520346	3p -0.297114 2.752216 8.980888 0.478031 0.501188
-288.854362 RHOatO = 11 ORB.ENERGY <r> <r**2> <1/R> <1/R**2></r**2></r>	2 288 .093.598 Ka .093.598 Ka .1s -68.812456 0.111431 0.016701 13.581150 372.382095	IC ENERGY .8543624 to cusp = 1 2s -6.156538 0.562941 0.377257 2.590401 27.691054	POTENTIA -577.7 .999953 3s -0.539842 2.207085 5.676239 0.603231 1.997988	ORB.ENERGY <r> <r**2> <1/R></r**2></r>	-1.99999999 2p -4.256054 0.535408 0.359681 2.456382	3p -0.297114 2.752216 8.980888 0.478031
-288.854362 RHOatO = 11 ORB.ENERGY <r> <r**2> <1/R> <1/R**2> 15 19.5017</r**2></r>	2 288 .093.598 Ka .093.598 Ka .1s .68.812456 .111431 .0.016701 .13.581150 .372.382095	IC ENERGY .8543624 to cusp = 1 2s -6.156538 0.562941 0.377257 2.590401 27.691054 0.064222	POTENTIA -577.7 .999953 3s -0.539842 2.207085 5.676239 0.603231 1.997988 0.023528	ORB.ENERGY <r> <r**2> <1/R> <1/R**3></r**2></r>	-1.99999999 2p -4.256054 0.535408 0.359681 2.456382 8.520346 47.269455	3p -0.297114 2.752216 8.980888 0.478031 0.501188 2.053873
-288.854362 RHOatO = 11 ORB.ENERGY <r> <r**2> <1/R> <1/R**2> 15 19.5017 15 11.7539</r**2></r>	22 288 .093.598 Ka .093.598 Ka .1s .68.812456 .0.111431 .0.016701 .13.581150 .372.382095 .377006 .454461	IC ENERGY .8543624 to cusp = 1 2s -6.156538 0.562941 0.377257 2.590401 27.691054 0.064222 -0.472631	POTENTIA -577.7 .999953 3s -0.539842 2.207085 5.676239 0.603231 1.997988 0.023528 -0.136207	ORB.ENERGY <r> <r**2> <1/R> <1/R**3> 2P 15.7304</r**2></r>	-1.99999999 2p -4.256054 0.535408 0.359681 2.456382 8.520346 47.269455 0.015661	3p -0.297114 2.752216 8.980888 0.478031 0.501188 2.053873 -0.001966
-288.854362 RHOatO = 11 ORB.ENERGY <r> <r**2> <1/R> <1/R**2> 15 19.5017 15 11.7539 25 16.9664</r**2></r>	22 288 .093.598 Ka .093.598 Ka .093.598 Ka .015.456 .0111431 .0.016701 .13.581150 .372.382095 .0.377006 .0.454461 .0.200676	IC ENERGY .8543624 to cusp = 1 2s -6.156538 0.562941 0.377257 2.590401 27.691054 0.064222 -0.472631 0.055383	POTENTIA -577.7 .999953 3s -0.539842 2.207085 5.676239 0.603231 1.997988 0.023528 -0.136207 0.019663	ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3> 2P 15.7304 2P 7.2926</r**2></r>	-1.99999999 2p -4.256054 0.535408 0.359681 2.456382 8.520346 47.269455 0.015661 0.196557	3p -0.297114 2.752216 8.980888 0.478031 0.501188 2.053873 -0.001966 -0.057175
-288.854362 RHOatO = 11 ORB.ENERGY <r> <r**2> <1/R> <1/R**2> 15 19.5017 15 11.7539 25 16.9664 25 6.3693</r**2></r>	22 288 .093.598 Ka .093.598	IC ENERGY .8543624 to cusp = 1 2s -6.156538 0.562941 0.377257 2.590401 27.691054 0.064222 -0.472631	POTENTIA -577.7 .999953 3s -0.539842 2.207085 5.676239 0.603231 1.997988 0.023528 -0.136207	ORB.ENERGY <r> <r**2> <1/R> <1/R**3> 2P 15.7304</r**2></r>	-1.99999999 2p -4.256054 0.535408 0.359681 2.456382 8.520346 47.269455 0.015661	3p -0.297114 2.752216 8.980888 0.478031 0.501188 2.053873 -0.001966
-288.854362 RHOatO = 11 ORB.ENERGY <r> <r**2> <1/R> <1/R**2> 15 19.5017 15 11.7539 25 16.9664</r**2></r>	2 288 .093.598 Ka .093.7006 .094.7	IC ENERGY .8543624 to cusp = 1 2s -6.156538 0.562941 0.377257 2.590401 27.691054 0.064222 -0.472631 0.055383 0.233799	POTENTIA -577.7 .999953 3s -0.539842 2.207085 5.676239 0.603231 1.997988 0.023528 -0.136207 0.019663 0.074362	ORB.ENERGY <r> <r> <1/R> <1/R* <1/R**2> <1/R**3> 2P 15.7304 2P 7.2926 2P 4.6514</r></r>	-1.99999999 -4.256054 0.535408 0.359681 2.456382 8.520346 47.269455 0.015661 0.196557 0.510448	3p -0.297114 2.752216 8.980888 0.478031 0.501188 2.053873 -0.001966 -0.057175 -0.068127
-288.854362 RHOatO = 11 ORB.ENERGY <r> <r> <r> <1/R> <1/R**2> 15 19.5017 15 11.7539 25 16.9664 25 6.3693 25 4.5748 25 3.3712 35 36.5764</r></r></r>	2 288 .093.598 Ka .093.598 Ka .093.598 Ka .015 .0111431 .0.016701 .13.581150 .372.382095 .377006 .0.454461 .0.200676 .0.001490 .0.001201 .0.000454	IC ENERGY .8543624 to cusp = 1 2s -6.156538 0.562941 0.377257 2.590401 27.691054 0.064222 -0.472631 0.055383 0.233799 0.781919	POTENTIA -577.7 .999953 3s -0.539842 2.207085 5.676239 0.603231 1.997988 0.023528 -0.136207 0.019663 0.074362 0.122580	ORB.ENERGY <r> <r> <i r=""> <1/R> <1/R**2> <1/R**3> Proceedings of the second content of</i></r></r>	-1.99999999 2p -4.256054 0.535408 0.359681 2.456382 8.520346 47.269455 0.015661 0.196557 0.510448 0.303956 0.025586 0.003153	3p -0.297114 2.752216 8.980888 0.478031 0.501188 2.053873 -0.001966 -0.057175 -0.068127 -0.114298
-288.854362 RHOatO = 11 ORB.ENERGY <r><r*<2><1/R> <1/R**2> 15 19.5017 15 11.7539 25 16.9664 25 6.3693 25 4.5748 25 33.712 35 36.5764 35 2.4996</r*<2></r>	1s -68.812456 0.111431 0.016701 13.581150 372.382095 0.377006 0.454461 0.200676 0.001490 0.001201 -0.000454 -0.000507 0.000103	IC ENERGY .8543624 to cusp = 1 2s -6.156538 0.562941 0.377257 2.590401 27.691054 0.064222 -0.472631 0.055383 0.233799 0.781919 0.096627 0.000257 -0.001832	POTENTIA -577.3 .999953 3s -0.539842 2.207085 5.676239 0.603231 1.997988 0.023528 -0.136207 0.019663 0.074362 0.122580 0.206180 0.206180 0.000048 -0.319063	ORB.ENERGY <r> <r**2> <1/R> <1/R**3> P 15.7304 P 7.2926 P 4.6514 P 3.3983 P 12.0786 P 2.0349 P 1.3221</r**2></r>	-1.99999999 2p -4.256054 0.535408 0.359681 2.456382 8.520346 47.269455 0.015661 0.196557 0.510448 0.303956 0.025586 0.003153 0.000167	3p -0.297114 2.752216 8.980888 0.478031 0.501188 2.053873 -0.001966 -0.057175 -0.068127 -0.114298 -0.001976 0.263703 0.522698
-288.854362 RHOatO = 11 ORB.ENERGY <r> <r> <r> <1/R> <1/R**2> 15 19.5017 15 11.7539 25 16.9664 25 6.3693 25 4.5748 25 3.3712 35 36.5764</r></r></r>	2 288 .093.598 Ka .093.598 Ka .093.598 Ka .0111431 .0.016701 .13.581150 .372.382095 .0.377006 .0.454461 .0.200676 .0.001490 .0.001201 .0.000454 .0.000507 .0.000103 .0.000053	IC ENERGY .8543624 to cusp = 1 2s -6.156538 0.562941 0.377257 2.590401 27.691054 0.064222 -0.472631 0.055383 0.233799 0.781919 0.096627 0.000257	POTENTIA -577.3 .999953 3s -0.539842 2.207085 5.676239 0.603231 1.997988 0.023528 -0.136207 0.019663 0.074362 0.122580 0.206180 0.000048	ORB.ENERGY <r> <r> <r**2> <1/R> <1/R**3> 2P 15.7304 2P 7.2926 2P 4.6514 2P 3.3983 3P 12.0786 3P 2.0349</r**2></r></r>	-1.99999999 2p -4.256054 0.535408 0.359681 2.456382 8.520346 47.269455 0.015661 0.196557 0.510448 0.303956 0.025586 0.003153	3p -0.297114 2.752216 8.980888 0.478031 0.501188 2.053873 -0.001966 -0.057175 -0.068127 -0.114298 -0.001976 0.263703

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

PHOSPHORUS	, Z=15 [Ne	e]3s(2)3p(3)	4S				
TOTAL ENERG		TIC ENERGY 0.7187797		AL ENERGY 4375603	VIRIAL RAT		
RHOat0 = 13736.907 Kato cusp = 1.999907							
ORB.ENERGY <r> <r**2> <1/R> <1/R**2> 1S 20.8264 1S 12.6329 2S 18.1766</r**2></r>	0.454633 0.198318	2s -7.511095 0.515660 0.315921 2.831708 33.056704 0.067068 -0.483053 0.055573	38 -0.696416 1.932685 4.347087 0.694730 2.712832 0.026409 -0.149611 0.021237	ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3> 2P 20.2974 2P 9.3161</r**2></r>	2p -5.400958 0.483401 0.291798 2.706271 10.284011 62.146721 0.000934 0.158097	3p -0.391708 2.322712 6.389634 0.570153 0.715755 3.311089 0.000893 -0.048486	
2S 6.9869 2S 5.1340 2S 3.7313 3S 39.5397 3S 2.9558 3S 1.9460 3S 1.3616	0.001500 -0.000594 7 -0.000464 0.000130 -0.000057 0.000011	0.172637 0.826915 0.114274 0.000249 -0.003280 0.001381 -0.000023	0.065512 0.119933 0.273929 0.000057 -0.321673 -0.583392 -0.293770	2P 5.5199 2P 3.9517 3P 15.5633 3P 2.2826 3P 1.4968 3P 1.0527	0.499724 0.389661 -0.004175 0.003823 -0.000307 0.000144	-0.088168 -0.136009 0.004247 0.325638 0.522331 0.255540	
SULFUR, Z=1		(2)3p(4) 3P FIC ENERGY	POTENTI	AL ENERGY	VIRIAL RAT	'10	
-397.504895		7.5048994	- 795.0	0097949	-1.9999999	90	
RHOat0 = 16	5772.672 Ka	ato cusp = 1	.999916				
ORB.ENERGY <r> <r**2> <1/R> <1/R**2></r**2></r>	1s -92.004449 0.097151 0.012686 15.566448 488.806411	2s -9.004288 0.475772 0.268530 3.073197 38.899462	3s -0.879527 1.720722 3.443200 0.786103 3.534613	ORB.ENERGY <r> <r**2> <1/R> <1/R> <1/R**2> <1/R**3></r**2></r>	2p -6.682508 0.441042 0.242088 2.954448 12.202777 79.777512	3p -0.437368 2.060717 5.065187 0.650667 0.941922 4.839939	
1S 22.2949 1S 13.5666 2S 19.4969 2S 7.5145 2S 5.7222 2S 4.2264 3S 42.1787 3S 3.3088 3S 2.1707	0.471254 0.192030 0.000539 0.002074 -0.000864 -0.000442 0.000163	0.070509 -0.492518 0.056472 0.114779 0.846899 0.150553 0.000233 -0.002483 0.001580	0.028833 -0.160596 0.022476 0.056607 0.107272 0.326955 0.000067 -0.337632 -0.602710	2P 22.6414 2P 10.4197 2P 6.1160 2P 4.4156 3P 17.3448 3P 2.6496 3P 1.6975 3P 1.1477	-0.000466 0.141231 0.501894 0.403324 -0.006509 0.004375 0.000225 0.000315	0.001263 -0.047039 -0.090305 -0.159888 0.005017 0.341230 0.519259 0.262504	

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

	•	
CHLORINE, Z=17 [Ne]3s(2)3p(5)	2P	
TOTAL ENERGY KINETIC ENERGY 459.4820719 459.4820743	POTENTIAL ENERGY -918.9641462	VIRIAL RATIO -1.99999995
-459.4620719 459.4620745	-910.9041402	-1.999999999
RHOat0 = 20226.726 Kato cusp = 1	1.999961	
1s 2s	3s	2p 3p
ORB.ENERGY -104.884420 -10.607480	-1.072912 ORB.ENERGY	-8.072227 -0.506400
<r> 0.091295 0.441714</r>	1.555630 <r></r>	0.405715 1.842024
<r**2> 0.011200 0.231193</r**2>	2.812958 <r**2></r**2>	0.204326 4.059178
<1/R> 16.559692 3.314397	0.874884 <1/R>	3.201537 0.733287
<1/R**2> 552.979453 45.207640	4.434507 <1/R**2>	14.277874 1.201129
10 22 7010 0 257615 0 072600	<1/R**3>	100.397663 6.768657
1S 23.7918 0.357615 0.072699 1S 14.4872 0.484997 -0.499909	0.032061 -0.172436 2P 24.4396	-0.001400 0.001535
1S 14.4872 0.484997 -0.499909 2S 20.8326 0.187615 0.056841	0.024503 2P 11.4909	
2S 9.4342 -0.000352 0.013158	0.018179 2P 6.6724	
2S 6.4160 0.002796 0.883708	0.140693 2P 4.8559	
2S 4.7671 -0.001073 0.214427	0.342425 3P 18.9808	
3S 44.4484 -0.000427 0.000223	0.000064 3P 2.9926	
3S 3.5704 0.000168 -0.001859	-0.353160 3P 1.8970	
3S 2.3743 -0.000089 0.002000	-0.600895 3P 1.2586	
3S 1.6610 0.000017 0.000024	-0.254301	
ARGON, Z=18 [Ne]3s(2)3p(6) 1S		
TOTAL ENERGY KINETIC ENERGY	POTENTIAL ENERGY	VIRIAL RATIO
-526.8175122 526.8175160	-1053.635028	-1.999999993
RHOat0 = 24125.995 Kato cusp = 1	99967	
1s 2s	3s	2p 3p
ORB.ENERGY -118.610349 -12.322152	-1.277352 ORB.ENERGY	-9.571464 -0.591016
<pre><r> 0.086104 0.412280 <r**2> 0.009960 0.201226</r**2></r></pre>	1.422172 <r> 2.350427 <r**2></r**2></r>	0.375330 1.662954
	0.961985 <1/R>	0.174342 3.310795 3.449989 0.814074
<1/R> 17.553229 3.555317 <1/R**2> 621.125483 51.979437	5.414514 <1/R**2>	16.525595 1.473630
(1/R**2> 021.125405 51.979457	<1/R**3>	124.380679 8.974675
1S 25.5708 0.316405 0.079148	0.035512	124.300073 0.374073
1S 15.6262 0.542760 -0.507823	-0.181267 2P 26.6358	0.002436 0.001854
25 22.3994 0.167691 0.059900	0.026500 2P 12.7337	-0.114774 -0.042064
2S 10.5300 0.000408 -0.026389	0.006280 2P 7.3041	-0.503175 -0.095603
2S 7.0534 0.002431 0.832638	0.111836 2P 5.3353	-0.427033 -0.194233
2S 5.4120 -0.000861 0.295522	0.385604 3P 20.7765	0.009669 0.005891
3S 46.7052 -0.000422 0.000217	0.000070 3P 3.3171	-0.004825 0.366141
3S 3.7982 0.000066 0.002203	-0.376901 3P 2.0947	0.000231 0.526490
3S 2.5495 -0.000061 0.001423 3S 1.7965 0.000009 0.000186	-0.593561 3P 1.3780 -0.229971	-0.000098 0.249866

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

POTASSIUM, Z=19 [Ar]4s(1) 2S

TOTAL ENERGY KINETIC ENERGY POTENTIAL ENERGY VIRIAL RATIO -599.1647831 599.1647844 -1198.329567 -1.999999998

RHOat0 = 28528.062 Kato cusp = 2.002065

	ls	2\$	3s	4 s
ORB.ENERGY	-133.533046	-14.489955	-1.748779	-0.147475
<r></r>	0.081466	0.386389	1.277058	5.243652
<r**2></r**2>	0.008913	0.176593	1.883466	31.542823
<1/R>	18.547363	3.797705	1.074858	0.236590
<1/R**2>	693.279202	59.265263	6.818406	0.295293
1S 16.9317	1.160058	-0.333245	-0.109835	0.021207
2S 23.6708	-0.107236	-0.019653	-0.009458	0.001900
2S 6.7720	0.001693	1.155997	0.451036	-0.088672
3S 20.5358	-0.079291	-0.033718	-0.016074	0.003193
3S 4.0061	-0.000214	0.018576	-0.397462	0.092956
3S 2.4110	-0.000052	0.002574	-0.569061	0.106797
4S 8.4209	-0.000393	-0.079850	0.037800	-0.009891
4S 3.7899	0.000116	-0.007017	-0.187652	0.045670
4S 1.4301	0.000008	-0.000286	-0.007578	-0.168271
4S 0.9450	-0.000005	0.000178	0.001939	-0.520283
4S 0.6607	0.000002	-0.000064	-0.000781	-0.402360

		2p	ЗÞ
ORB	.ENERGY	-11.519278	-0.954422
<r></r>		0.349427	1.436846
<r*< td=""><td>*2></td><td>0.150801</td><td>2.440647</td></r*<>	*2>	0.150801	2.440647
<1/	R>	3.697028	0.939014
<1/	R**2>	18.926828	1.946475
<1/	R**3>	151.814137	12.954567
2P	26.2044	0.001861	0.000437
2P	11.1009	0.366438	0.078509
2P	5.6095	0.380621	0.398893
2P	2.4374	0.002983	-0.769498
3 P	8.7158	0.311226	0.016842
3 P	1.9702	-0.000488	-0.404117
3 P	1.3184	0.000071	-0.039862

1.3295

0.000083

0.020164

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

CALCIUM, Z=20 [Ar]4s(2) 1S TOTAL ENERGY KINETIC ENERGY POTENTIAL ENERGY VIRIAL RATIO -676.7581817 -1353.516358 -2.000000007 676.7581767 RHOat0 = 33430.819Kato cusp = 2.0018802s3s 4 s 1sORB.ENERGY -149.363724 -16.822743 -2.245375 -0.195529 1.159424 0.077301 0.363504 <R> 4.218469 <R**2> 0.008023 0.156172 1.546005 20.453178 <1/R> 19.541934 4.040857 1.188772 0.299738 <1/R**2> 769.407364 67.045590 8.399576 0.535034 17.6670 1.176575 -0.341543 -0.117803 0.028125 24.5295 -0.119414 -0.019904 -0.010168 0.002534 2S 2S 7.2525 0.000730 1.150570 0.468206 -0.113880 35 21.3493 -0.086509 -0.033142 -0.016715 0.004109 0.000185 -0.640251 -0.000762 0.179379 3.5 3.6185 3 S 2.6126 -0.000097 0.001467 -0.4417780.115506 4 S 8.7808 0.000145 -0.068959 0.043103 -0.014022 -0.000317 0.016219 -0.064309 6.0113 0.020813 4.5 4S 1.5770 0.000021 -0.000184 -0.001947 -0.331747 1.0566 -0.000015 0.000124 0.000314 -0.522462 4 S 0.7584 0.000005 -0.000044 -0.000058 -0.257798 45 3p -1.340706 2p ORB. ENERGY -13.629270 <R> 0.326869 1.274550 <R**2> 1.908061 0.131725 <1/R> 3.944088 1.058811 <1/R**2> 21.491321 2.462364 <1/R**3> 183.014479 17.738971 2P 28.8909 0.001400 -0.000342 2P 11.9319 0.348898 -0.076856 6.0967 0.406540 2P -0.433592 2P 2.5605 0.003420 0.877080 3P 9.4272 0.300142 -0.015449 2.1782 -0.000861 0.312083 3P

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

SCANDIUM, Z=21 [Ar]3d(1)4s(2) 2D KINETIC ENERGY VIRIAL RATIO TOTAL ENERGY POTENTIAL ENERGY -759.7357123 759.7356951 -1519.471407 -2.000000023 RHOat0 = 38852.665Kato cusp = 2.0019014s ORB.ENERGY -165.899895 -19.080617 -2.567322 -0.210108 <R> 0.073535 0.343178 1.079391 3.959716 <R**2> 0.007259 0.139111 1.339906 18.070522 4.284364 1.281937 <1/R> 20.537537 0.320317 <1/R**2> 849.570335 75.317010 9.816080 0.617022 21.7237 -0.095941 1S 0.929286 -0.272325 0.022762 0.076816 25 18.5964 -0.165926 -0.066543 0.016069 2\$ 8.5331 0.001804 1.008339 0.413734 -0.100051 26.6635 0.000291 -0.001551 -0.001264 3S 0.010320 3S 6.3629 0.000323 0.085949 0.116177 -0.031040 4.4087 -0.000281 -0.006473 -0.567549 3S 0.162661 0.002830 2.9836 3S 0.000073 -0.638451 0.169417 4 S 10.0558 -0.000626 0.066049 0.079945 -0.022175 4 S 1.7339 -0.000024 -0.000346 -0.008505 -0.303304 0.000234 0.002704 1.1548 0.000018 -0.526693 4 S 4S 0.8074 -0.000007 -0.000082 -0.000727 -0.286745

	2p	3p			3d
ORB.ENERGY	-15.668246	-1.574546	ORB.	ENERGY	-0.343712
<r></r>	0.307067	1.174391	<r></r>		1.675431
<r**2></r**2>	0.116092	1.619875	<r**< td=""><td>·2></td><td>3.634183</td></r**<>	·2>	3.634183
<1/R>	4.191507	1.152125	<1/F	<>	0.798980
<1/R**2>	24.224866	2.911805	<1/F	?** 2>	0.886337
<1/R**3>	218.317138	22.409699	<1/F	?** 3>	1.429405
·			•		
2P 31.2091	0.001156	-0.000287	3 D	9.8549	0.015123
2P 12.6896	0.341553	-0.074761	3 D	4.8498	0.159653
2P 6.5469	0.415271	-0.457411	3 D	2.9200	0.359860
2P 2.7945	0.003830	0.888499	3D	1.7389	0.434880
3P 10.0778	0.296715	-0.013956	3D	1.0594	0.199419
3P 2.3661	-0.000849	0.311816			
3P 1.4540	0.000109	0.021060			

3P 3P

2.5803 1.6116

0.000126

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

			See page 116 for	Explanation of Table	
I	'ITANIUM, Z	=22 [Ar]3	3d(2)4s(2)	3 F	
	OTAL ENERG 848.405990		FIC ENERGY 3.4059678	POTENTIAL ENERGY -1696.811958	VIRIAL RATIO -2.00000027
R	HOatO = 44	828.283 Ka	ato cusp = 2	.001810	
< <	R> R**2> 1/R>		0.325038 0.124734 4.527617	3s 4s -2.873395 -0.220787 1.013029 3.778855 1.180623 16.500594 1.370325 0.336131 11.258644 0.679622	
2 3 3 3 4 4 4	S 22.7314 S 19.4596 S 8.9861 S 27.9364 S 6.6279 S 4.6765 S 3.1621 S 10.6755 S 1.8546 S 1.2210 S 0.8395	0.074430 0.001498 0.009843 0.000199 -0.000228 0.000055 -0.000431 -0.000019 0.000013	-0.275337 -0.169269 1.018751 -0.001341 0.082054 -0.007982 0.003062 0.063448 -0.000370 0.000236 -0.000081	-0.098438	
< < <	RB.ENERGY R> R**2> 1/R> 1/R**2> 1/R**3>	2p -17.791186 0.289587 0.103139 4.438401 27.117452 257.845159	3p -1.795085 1.093772 1.405774 1.239883 3.369362 27.542913	3d ORB.ENERGY -0.44065 <r> 1.45974 <r**2> 2.737443 <1/R> 0.907419 <1/R**2> 1.12923 <1/R**3> 2.016343</r**2></r>	5 2 9 7
2 2 3 3	P 33.3883 P 13.4246 P 6.9860 P 3.0695 P 10.7125 P 2.5803	0.337047 0.419748 0.004328 0.294936 -0.000789	0.000249 0.073107 0.475457 -0.866201 0.013483 -0.343747	3D 10.4755 0.016004 3D 5.2370 0.172844 3D 3.1849 0.37578 3D 1.9290 0.42420 3D 1.1952 0.170623) 1 1

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

VANADIUM, Z=23 [Ar] 3d(3)4s(2) 4F

TOTAL ENERGY KINETIC ENERGY POTENTIAL ENERGY VIRIAL RATIO -942.8843308 942.8842963 -1885.768627 -2.000000037

RHOat0 = 51386.879 Kato cusp = 2.001712

RHOat0 = 51	1386.879 K	ato cusp = 2	.001712	
	1s	2s	3s	4s
ORB. ENERGY	-201.502829	-23.874650	-3.183183	-0.230578
<r></r>	0.067000	0.308744	0.955586	3.626288
<r**2></r**2>	0.006023	0.112497	1.050952	15.232270
<1/R>	22.530118	4.770636	1.456687	0.350652
<1/R**2>	1021.909309		12.761267	0.738393
1S 23.7265	0.934724	-0.278303	-0.100645	0.022861
2S 20.2915		-0.173527	-0.072332	0.016726
2S 9.4802		1.022901	0.435733	-0.100913
3S 29.1499		-0.001124	-0.001135	0.000256
3S 29.1499		0.080937	0.102976	
				-0.028627
		-0.008467	-0.611858	0.172058
3S 3.3257		0.003140	-0.599875	0.147853
45 11.2844		0.065688	0.090418	-0.023449
45 1.9549		-0.000372	-0.007592	-0.291512
4S 1.2721		0.000230	0.002016	-0.534471
4S 0.8656	-0.000004	-0.000078	-0.000520	-0.295890
	2p	3p		3 đ
ORB. ENERGY	-20.022490	-2.019223	ORB. ENERGY	7 -0.509619
<r></r>	0.274031	1.025157	<r></r>	1.323232
<r**2></r**2>	0.092273	1.235619	<r**2></r**2>	2.247763
<1/R>	4.684842	1.325483	<1/R>	0.998468
<1/R**2>	30.168656	3.847820	<1/R**2>	1.361091
<1/R**3>	301.826879	33.272118	<1/R**3>	2.645475
2P 35.8086	0.000832	0.000208	3D 10.964	0.017413
2P 14.1832		0.070957	3D 5.505	
2P 7.4366		0.488333	3D 3.303	
2P 7.4300		-0.867911	3D 2.009	
3P 11.3721		0.013393	3D 1.263	
3P 2.7500		-0.348957	35 1.203	., 0.15//10
3P 1.7235		-0.025660		

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

CHROMIUM, Z	=24 [Ar]	3d(5)4s(1)	7S		
TOTAL ENERG -1043.35636		TIC ENERGY 43.356356	POTENTIAL -2086.71		VIRIAL RATIO -2.00000011
RHOatO = 58	544.339 Ka	ato cusp = 2	2.001644		
<r> <r**2> <1/R></r**2></r>	1s -220.386394 0.064146 0.005520 23.527254 1114.107459	0.294014 0.101988 5.013676	0.912445 3 0.960479 15 1.529583 0	4s .222046 .675012 .719869 .346492	
1S 24.7292 2S 21.1386 2S 9.9971 3S 30.4212 3S 7.3629 3S 5.1830 3S 3.4391 4S 11.9538 4S 2.1124 4S 1.3241 4S 0.8703	0.068919 0.000859 0.009143 0.000019 -0.000126 0.000025 -0.000067 -0.000010 0.000006	0.280906 0.177565 -1.021993 0.001001 -0.083861 0.007943 -0.003056 -0.068373 0.000328 -0.000305 0.000000	-0.074243 -0 0.436116 0 -0.001037 -0 0.108518 0 -0.632268 -0 -0.583503 -0 0.090243 0 -0.011065 0 0.002196 0	.021485 .015920 .093634 .000219 .031754 .170396 .128499 .020770 .225866 .541426	
ORB.ENERGY <r> <r**2> <1/R> <1/R**3></r**2></r>	2p -22.139845 0.260079 0.083058 4.931331 33.384703 350.594041	3p -2.050921 0.977756 1.128508 1.394535 4.266269 38.785815	ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3></r**2></r>	3d -0.373597 1.367969 2.505590 1.003726 1.415314 2.893424	
2P 37.4230 2P 14.8415 2P 7.8404 2P 3.6199 3P 11.9471 3P 2.9491 3P 1.9545	0.333715 0.420845 0.005346 0.294186 -0.000612	0.000199 0.070569 0.496567 -0.823061 0.014369 -0.389092 -0.049588	3D 11.4813 3D 5.8159 3D 3.4526 3D 1.9741 3D 1.1473	0.016904 0.198001 0.403137 0.392975 0.182481	

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

MANGANESE, Z=25 [Ar] 3d(5)4s(2)

TOTAL ENERGY KINETIC ENERGY POTENTIAL ENERGY VIRIAL RATIO -1149.866243 1149.866199 -2299.732442 -2.000000038

RHOat0 = 66362.197 Kato cusp = 2.001568

Knoaco - oc	1302.19/ N	ato cusp - 2	.001566	
	1s	2s	3 s	4s
ORB. ENERGY	-240.533986		-3.816640	-0.247867
<r></r>	0.061527		0.860445	3.381917
<r**2></r**2>		0.092907	0.852852	13.308367
<1/R>	24.523973	5.256006	1.624910	0.376551
<1/R**2>	1210.253676		15.952716	0.845322
1S 25.6998	0.940989	-0.283798	0.104332	0.022617
2S 21.8567	0.064731	-0.187870	0.079962	0.017628
2S 10.7524	0.000286	0.993354	-0.430390	-0.094991
3S 31.6095	0.008989	-0.000781	0.000892	0.000191
3S 7.9533	-0.000098	0.100053	-0.116416	-0.031656
3S 5.4792	-0.000071	-0.007203	0.619299	0.167891
3S 3.6809	0.000007	0.003047	0.596542	0.138100
4S 12.6273	0.000257	0.096877	-0.102035	-0.024434
4S 2.1701	-0.000006	-0.000357	0.008247	-0.272491
45 1.3884	0.000004	0.000212	-0.002062	-0.538366
4S 0.9204	-0.000001	-0.000071	0.000527	-0.315216
	2p	3p		3 d
ORB.ENERGY	-24.812585	-2.479526	ORB.ENERGY	
<r></r>	0.247530	0.913715	<r></r>	1.130052
<r**2></r**2>	0.075182	0.982773	<r**2></r**2>	1.640618
<1/R>	5.176571	1.491987	<1/R>	1.167041
<1/R**2>	36.746089	4.869761	<1/R**2>	1.850666
<1/R**3>	404.076937	46.651894	<1/R**3>	4.152144
2P 39.7636		0.000175	3D 12.110	
2P 15.5794		0.070131	3D 6.228	
2P 8.2726		0.510669	3D 3.764	
2P 3.9144		-0.801936	3D 2.277	
3P 12.5884		0.015885	3D 1.427	3 0.120919
3P 3.2243		-0.422222		
3P 2.1059	0.000178	-0.044967		

0.000215

3 P

2.1919

-0.041825

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

[Ar]3d(6)4s(2) IRON. Z=265D TOTAL ENERGY KINETIC ENERGY POTENTIAL ENERGY VIRIAL RATIO -1262.443656 1262.443629 -2524.887285 -2.000000022 RHOat0 = 74836.676Kato cusp = 2.0014972s 35 4s ORB.ENERGY -261.373415 -31.935515 -4.169434 -0.258178 0.059112 0.268461 0.819236 3.258487 <R> <R**2> 0.773333 12.381160 0.004685 0.084984 1.709910 <1/R> 5.498549 25.521201 0.391396 <1/R**2> 1310.420410 123.698534 17.698933 0.914094 26.7103 0.942524 -0.285853 0.105891 0.022650 15 25 22.7394 0.063210 -0.189028 0.081539 0.017743 -0.442968 25 11.1579 0.000162 1.008545 -0.096526 0.000194 0.008635 -0.000649 0.000883 35 32.8592 8.2265 -0.000114 0.093973 -0.101287 -0.028327 3*S* 5.7011 -0.000058 -0.007693 0.635102 0.171358 3.5 38 3.8393 0.000005 0.003112 0.577033 0.129599 0.000297 0.087617 -0.103885 -0.024523 4 S 13.2036 -0.000005 -0.000360 2.2676 0.007684 -0.275750 4 S 4 S 1.4378 0.000003 0.000209 -0.001785 -0.539740 -0.000001 -0.000070 0.000454 0.9462 -0.312861 2p 3dORB. ENERGY -27.413707 -2.742193 ORB. ENERGY -0.646883 1.072733 0.865859 < R> 0.236132 <R> <R**2> <R**2> 0.068377 0.882855 1.489969 <1/R> 5.422092 <1/R> 1.576545 1.236916 <1/R**2> <1/R**2> 5.433663 40.273502 2.085959 <1/R**3> 462.827450 54.596391 <1/R**3> 4.978801 0.000583 0.000148 3 D 12.7458 0.017645 2P 42.2924 2P 16.3351 0.323715 0.068651 3D 6.6281 0.216184 2P 0.434152 0.516640 3D 4.0177 0.414852 8.7201 2.4057 0.006165 2P 4.0978 -0.821240 3D 0.383883 3P 13.2514 0.288160 0.017006 3D 1.4774 0.129854 3P 3.3690 -0.000634 -0.407245

2.3606

-0.000226

0.050135

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

COBALT, Z=27 [Ar]3d(7)4s(2)4 F TOTAL ENERGY KINETIC ENERGY POTENTIAL ENERGY VIRIAL RATIO 1381.414516 -1381.414542 -2762.829058 -2,000000019 RHOat0 = 84002.354Kato cusp = 2.0014132s1s 3s4 s ORB.ENERGY -283.065494 -34.868323 -4.524279 -0.267415 0.056878 0.257290 0.782377 3.153572 <R> <R**2> 11.620654 0.004337 0.078042 0.705537 <1/R> 1.793467 0.404875 26.518656 5.740891 <1/R**2> 1414.588048 134.778776 19.502609 0.976951 27.7200 0.943995 -0.287759 0.107248 0.022574 23.6470 -0.187848 0.082163 28 0.061559 0.017611 1.037770 25 11.4491 0.000242 -0.462596 -0.099332 34.0340 0.008379 -0.000495 0.000918 0.000208 3 S -0.000061 0.080271 -0.069603 8.3235 -0.021162 3.5 3S 5.8668 -0.000079-0.008894 0.656282 0.176287 0.003249 0.544100 3S 3.9712 0.000014 0.116449 0.000194 0.068031 -0.104310 -0.024406 13.7147 45 4S 2.3510 -0.000007 -0.000376 0.006522 -0.281087 0.000004 0.000212 -0.001372 4S 1.4789 -0.539890 -0.000002 -0.000072 0.000344 -0.308876 45 0.9682 2p 3p 3d -30.120165 -0.675411 ORB. ENERGY -3.006235 ORB. ENERGY 0.225755 0.823547 <R> 1.016039 <R> <R**2> 0.799031 <R**2> 0.062466 1.342867 <1/R> <1/R> 5.667323 1.659533 1.310209 <1/R**2> 43.958994 6.017521 <1/R**2> 2.343520 <1/R**3> <1/R**3> 526.962559 63.257174 5.928037 2P 44.2550 -0.000537 -0.000138 3D 13.3848 0.017145 2P 17.0241 -0.324287 -0.068746 3D 7.0420 0.215033 2P -0.524198 4.2891 9.1323 -0.431492 3D 0.412560 2P 4.3892 -0.006429 0.802168 2.5511 0.385376 3D 3 P -0.289377 1.5435 13.8562 -0.018893 0.135684 3D 3P 3.5952 0.000501 0.427837

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, $Z \approx 2-54$ See page 118 for Explanation of Table

NICKEL, Z=28	[Ar]3d(8)4s(2)	3F	
TOTAL ENERGY -1506.870896	KINETIC ENERGY 1506.870821	POTENTIAL ENERGY -3013.741717	VIRIAL RATIO -2.000000050
RHOat0 = 9388	37.427 Kato cusp =	2.001330	
<r> <r**2> <1/R></r**2></r>	1s 2s 305.619027 -37.91781 0.054807 0.24701 0.004027 0.07192 27.516295 5.98308 522.756155 146.32500	9 0.748942 3.059109 3 0.646731 10.956617 9 1.876340 0.417810	
1S 28.7266 2S 24.5237 2S 11.7009 3S 35.2606 3S 8.3190 3S 5.8931 3S 4.0420 4S 14.1323 4S 2.4332 4S 1.5225 4S 0.9912	0.945523	9 -0.083030 0.017547 1 0.486257 -0.102978 9 -0.000950 0.000219 6 0.003334 -0.004844 1 -0.685620 0.182371 1 -0.475026 0.094382 0 0.106095 -0.024948 9 -0.004158 -0.283769 4 0.000568 -0.538297	
<r> <r**2> <1/R> <1/R**2></r**2></r>	2p 3p -32.941726 -3.27766 0.216263 0.78548 0.057298 0.72719 5.912332 1.74183 47.802900 6.62605 696.721392 72.71939	6 <r> 0.964703 9 <r**2> 1.215301 5 <1/R> 1.383487 5 <1/R**2> 2.615216</r**2></r>	
2P 46.7514 2P 17.7675 2P 9.5726 2P 4.5914 3P 14.5116 3P 3.7535 3P 2.4658	-0.000470 -0.00011 -0.319845 -0.06768 -0.438165 -0.52788 -0.006828 0.81067 -0.285978 -0.02028 0.000547 0.42137 -0.000255 0.04966	3 3D 7.3628 0.225100 4 3D 4.4602 0.419212 9 3D 2.6365 0.376659 3 3D 1.5875 0.130041 2	

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

COPPER, Z=29 [Ar]3d(10)4s(1) 2S

TOTAL ENERGY KINETIC ENERGY POTENTIAL ENERGY VIRIAL RATIO -1638.963723 1638.963674 -3277.927397 -2.000000030

RHOat0 = 104492.35 Kato cusp = 2.001282

RHOat0 = 10	4492.35 Ka	ato $cusp = 2$.001282	
ORB.ENERGY <r> <r**2> <1/R> <1/R**2></r**2></r>	1s -328.792952 0.052880 0.003748 28.514383 1634.950447	2s -40.818928 0.237540 0.066499 6.225289 158.345718	3s -5.011952 0.722765 0.603463 1.947498 23.064777	4s -0.238481 3.330979 13.081296 0.382211 0.807793
1S 29.6964 2S 25.2508 2S 12.5550 3S 36.3548 3S 9.2482 3S 6.2646 3S 4.1881 4S 14.8890 4S 2.4698 4S 0.9292	0.056347 -0.000132 0.008076 -0.000094 -0.000058 0.000009 0.000346	0.291804 0.197199 -1.032643 0.000189 -0.085466 0.005789 -0.002676 -0.078044 0.000278 -0.000149 0.000054	-0.109162 -0.087326 0.465300 -0.000831 0.045865 -0.684743 -0.499518 0.114174 -0.006857 0.000964 -0.000379	0.018928 0.015368 -0.082080 0.000180 -0.014992 0.155119 0.077800 -0.020952 -0.229694 -0.534263 -0.370075
ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3></r**2></r>	2p -35.617918 0.207536 0.052747 6.157564 51.812525 672.476798	3p -3.324793 0.757481 0.678316 1.810480 7.168310 81.840087	ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3></r**2></r>	3d -0.491208 0.991125 1.334835 1.391231 2.702492 7.503998
2P 48.7948 2P 18.4738 2P 9.9976 2P 4.7454 3P 15.1401 3P 3.8217 3P 2.5167	0.000433 0.318485 0.440209 0.007102 0.284462 -0.000579 0.000353	0.000109 0.067352 0.525020 -0.832540 0.022690 -0.397454 -0.053274	3D 14.191 3D 7.545 3D 4.460 3D 2.509 3D 1.409	0.239705 4 0.427410 6 0.365471

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

ZINC, Z=30	[Ar]3d(10	0)4s(2) 1S			
TOTAL ENERG		TIC ENERGY	POTENTIAL		VIRIAL RATIO
-1777.84810	2 177	77.848093	- 3555.69	6194	-2.000000005
RHOat0 = 11	5925.72 Ka	ato cusp = 2	.001265		
	1s	2s	3 s	4s	
ORB. ENERGY	-353.304524	-44.361702	- 5.637799 - 0	.292499	
<r></r>	0.051085	0.228773	0.690586 2	.897648	
<r**2></r**2>	0.003497	0.061672	0.550224 9	.867948	
<1/R>	29.512053	6.467081		.441879	
	1751.093680			.155444	
12/11	_,		20000000		
1S 30.7026	0.950023	0.293360	-0.110788 0	.022191	
2S 26.0605		0.203764		.018507	
2S 13.2539		-1.012933		.093638	
3S 37.7395		0.000174		.000170	
3S 9.8590		-0.099869		.021745	
3S 6.6334		0.005685		.171174	
3S 4.4668		-0.002788		.105412	
4S 15.6259		-0.093558		.025059	
45 2.6384	-0.000001	0.000306		.273189	
4S 1.6263	0.000001	-0.000170	0.001318 -0	.542094	
4S 1.0391	0.000000	0.000058		.320316	
	2 m	2 m		2.4	
ORB, ENERGY	2p -38.924823	3p -3.839357	ORB. ENERGY	3d -0.782523	
<r></r>	0.199514	0.719787	<r></r>	0.874864	
<r**2></r**2>			<r**2></r**2>		
	0.048729 6.401756	0.611170 1.904423	<1/R>	1.004942 1.530540	
<1/R> <1/R**2>	55.965534	7.914870	<1/R> <1/R**2>	3.202585	
<1/R**2> <1/R**3>	754.039092	94.149404	<1/R**3>	9.449971	
<1/R**3>	754.039092	94.149404	<1/R^^3>	9.4499/1	
2P 51.3224	-0.000384	-0.000097	3D 15.0303	0.017396	
2P 19.2139	-0.314928	-0.066963	3D 8.1007	0.230530	
2P 10.4311	-0.445010	-0.532060	3D 4.9123	0.421574	
2P 5.0040	-0.007426	0.823000	3D 2.8828	0.372225	
3P 15.7917	-0.282257	-0.024274	3D 1.7108	0.130294	
3P 4.0672	0.000573	0.413856			
3P 2.6701	-0.000295	0.048684			
- · · · · 					

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

GALLIUM, Z=	31 [Ar]3	d(10)4s(2)4p	o(1) 2P		
TOTAL ENERG -1923.26100		TIC ENERGY 23.260945	POTENTIA -3846.		VIRIAL RATIO -2.000000029
RHOat0 = 12	8176.14 K	ato cusp = 2	2.001229		
<r> <r**2> <1/R></r**2></r>	1s -378.818414 0.049408 0.003271 30.509723 1871.221001	0.220632 0.057352 6.708766	3s -6.394648 0.660472 0.502651 2.135134 27.764789	4s -0.424587 2.488873 7.206665 0.515590 1.671365	
1S 31.7059 2S 26.8956 2S 13.9060 3S 39.0025 3S 10.3974 3S 7.0296 3S 4.7718 4S 16.3515 4S 2.8372 4S 1.8235 4S 1.2004	0.054085 -0.000810 0.007436 -0.000213 -0.000014 -0.000006 0.000699 -0.000002	-0.294851 -0.208641 0.999302 -0.000181 0.111737 -0.006240 0.003025 0.103312 -0.000369 0.000210 -0.000070	0.000654 -0.098559 0.636679 0.572674 -0.116529 0.007303 -0.001607	0.026164 0.022235 -0.108184 0.000156 -0.029450 0.186235 0.144131 -0.029905 -0.313648 -0.554658 -0.262151	
ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3></r**2></r>	2p -42.494022 0.192085 0.045150 6.645971 60.278558 841.922736	3p -4.482360 0.684090 0.550701 2.002594 8.731266 108.094710	4p -0.208497 3.424103 13.898110 0.372133 0.342328 2.891166	ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3></r**2></r>	3d -1.193363 0.787885 0.796141 1.664871 3.730031
2P 30.9647 2P 11.6838 3P 25.4398 3P 8.2598 3P 5.5111 3P 3.7958 4P 20.5257 4P 2.2879 4P 1.3751 4P 0.8682	0.079671 0.667452 0.175535 0.015771 0.000196 0.000646 0.119573 -0.000029 0.000015	-0.015325 -0.422019 -0.025182 0.273334 0.616186 0.285565 0.000699 0.003673 0.000157 0.000039	-0.002333 -0.071040 -0.003629 0.048418 0.123582 0.025765 0.000350 -0.265238 -0.533374 -0.331517	3D 15.7448 3D 8.5680 3D 5.2654 3D 3.1808 3D 1.9710	0.016981 0.230981 0.423088 0.376129 0.104017

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

GERMANIUM, Z=32	(Ar]3d(10)4s(2)	4p(2) 3P	
TOTAL ENERGY -2075.359726	KINETIC ENERGY 2075.359733	POTENTIAL ENERGY -4150.719459	VIRIAL RATIO -1.999999996
RHOat0 = 141264	1.57 Kato cusp = 2	.001189	
<r> 0 <r**2> 0 <1/R> 31</r**2></r>	1s 2s 5.244442 -52.150327 0.047837 0.213048 0.003066 0.053468 0.507381 6.950515 5.331847 197.169775	3s 4s -7.190990 -0.553360 0.632246 2.225804 0.460062 5.730932 2.232786 0.578893 30.382780 2.191665	
2S 27.8041 0 2S 14.4020 -0 3S 40.2593 0 3S 10.8267 -0 3S 7.4435 -0 3S 5.0894 0 4S 17.0698 0 4S 3.0282 -0 4S 1.9965 0	0.952125	-0.114120 -0.029258 -0.094825 -0.024840 0.458992 0.120324 -0.000620 -0.000142 0.121081 0.036502 -0.609201 -0.191413 -0.613648 -0.182649 0.111808 0.032523 -0.008224 0.352753 0.001917 0.546670 -0.000560 0.232419	
<r> 0 <r**2> 0 <1/R> 6 <1/R**2> 64</r**2></r>	2p 3p .236154 -5.161593 .185185 0.650885 .041948 0.497423 .890252 2.103809 .752319 9.613220 .405701 123.721151	4p -0.287351 ORB.ENERGY 2.866859 <r> 9.655894 <r**2> 0.445517 <1/R> 0.511519 <1/R**2> 4.801440 <1/R**3></r**2></r>	3d -1.634891 0.721233 0.657080 1.793329 4.277804 14.106197
2P 12.2227 0 3P 26.6070 0 3P 8.7258 0 3P 5.8410 -0 3P 4.0849 0 4P 21.4919 0 4P 2.5444 -0 4P 1.5873 0	.074659 -0.013603 .685414 -0.435326 .165218 -0.021515 .018146 0.252229 .000114 0.623458 .000755 0.297367 .112519 0.003214 .000060 0.003686 .000027 0.000284 .000010 0.000030	-0.002241 3D 16.4691 -0.090957 3D 9.0439 -0.002950 3D 5.6272 0.056839 3D 3.4888 0.145276 3D 2.1980 0.045219 0.001935 -0.299040 -0.543013 -0.283008	0.016414 0.229546 0.422554 0.381489 0.086376

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

ARSENIC, Z=3	33 [Ar]3	d(10)4s(2)4p	(3) 45		
TOTAL ENERGY -2234.238647		TIC ENERGY 34.238611		AL ENERGY .477258	VIRIAL RATIO -2.00000016
RHOat0 = 155	S219.44 K	ato cusp = 2	.001147		
ORB.ENERGY - <r> < (R**2> <1/R> <1/R**2> 2</r>	0.046363 0.002879 32.505042	2s -56.309822 0.205963 0.049964 7.192370 211.057520	3s -8.029618 0.605962 0.422160 2.332275 33.171895	4s -0.685893 2.029704 4.747468 0.637555 2.735285	
1S 33.7071 2S 28.5493 2S 15.1540 3S 41.4602 3S 11.3318 3S 7.7302 3S 5.3683 4S 17.6911 4S 3.2155 4S 2.1464 4S 1.4740	0.954050 0.051397 -0.001136 0.007024 -0.0000228 -0.000016 -0.000005 0.000804 -0.000002 0.000002	-0.297645 -0.217749 0.983785 -0.000102 0.127118 -0.007865 0.003541 0.117619 -0.000491 0.000277 -0.000094	-0.115924 -0.099930 0.457387 -0.000574 0.124070 -0.596101 -0.624965 0.121421 -0.008075 0.001685 -0.000549	0.031925 0.028203 -0.129153 0.000125 -0.037218 0.195492 0.211438 -0.038577 -0.393306 -0.536125 -0.206671	
ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3> 1</r**2></r>	2p -50.153741 0.178758 0.039071 7.134625 69.387334 037.721550	3p -5.880690 0.620229 0.450758 2.207111 10.555878 141.058163	4p -0.369480 2.512233 7.371187 0.509991 0.686379 6.958306	ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3></r**2></r>	3d -2.112654 0.667450 0.556641 1.917759 4.848005 16.818814
2P 33.8306 2P 12.7682 3P 27.7931 3P 9.3346 3P 6.2386 3P 4.4077 4P 22.4504 4P 2.7882 4P 1.7792 4P 1.1706	0.069915 0.700126 0.156149 0.021050 0.000000 0.000760 0.106708 -0.000067 0.000029 -0.000010	-0.011491 -0.453070 -0.016656 0.219149 0.630930 0.322694 0.007328 0.004166 0.000064 -0.000022	-0.001866 -0.108812 -0.001656 0.058080 0.161657 0.068207 0.003906 -0.325259 -0.546313 -0.253975	3D 17.0538 3D 9.4108 3D 5.8490 3D 3.7033 3D 2.3465	0.016674 0.239639 0.435884 0.369917 0.062948

4P

1.9218

1.2451

0.000023

-0.000011

0.000316

0.000151

-0.538721

-0.242599

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

[Ar]3d(10)4s(2)4p(4)SELENIUM, Z=34 POTENTIAL ENERGY TOTAL ENERGY KINETIC ENERGY VIRIAL RATIO 2399.867576 -4799.735180 -2.000000012 -2399.867604 RHOat0 = 170070.73Kato cusp = 2.00111735 45 1 🤉 2s-8.932097 ORB.ENERGY -460.867399 -60.668866 -0.837378 <R> 0.044978 0.199330 0.581534 1.869230 <R**2> 0.388447 0.046790 4.015443 0.002710 <1/R> 33.502730 7.434387 2.433149 0.695413 <1/R**2> 2255.512617 225.425059 36.125092 3.331164 -0.034379 **1**S 34.7125 0.955079 -0.298867 -0.117604 29.3786 15.7400 25 0.050500 -0.221711 -0.102968 -0.030932 0.461461 0.138682 -0.001361 0.981133 25 42.7575 0.006777 -0.000034 -0.000545 -0.000114 3S 3 S 11.7494 -0.000279 0.131114 0.126802 0.037692 -0.008785 -0.586337 -0.197476 8.0222 0.000006 38 3*S* 5.6528 -0.000012 0.003839 -0.635716 -0.240944 0.121953 0.125109 0.042941 4S 18.3237 0.000911 0.000000 -0.000550 -0.008229 3.4106 0.430881 4S 4S 2.2896 0.000001 0.000298 0.001502 0.532759 0.000000 -0.000102 -0.000557 4 S 1.5845 0.178817 2p 4p 3d ORB. ENERGY -54.268896 -6.661518 -0.402851 ORB. ENERGY -2.649622 0.172757 0.592268 2.299617 0.622432 <R> <R> <R**2> <R**2> 0.036478 0.410405 6.195873 0.480001 <1/R> 2.311199 <1/R> 7.379110 0.562826 2.039610 <1/R**2> <1/R**2> 11.550310 0.857377 74.184149 5.443420 <1/R**3> 1146.116676 160.058270 9.280218 <1/R**3> 19.814292 35.2165 0.064815 -0.008694 -0.001192 3 D 17.6906 0.016536 2P 2P 13.3691 0.719004 -0.474977 -0.125022 3D 9.8167 0.244834 3P 28.9584 0.144057 -0.009411 0.000418 3D 6.1051 0.448354 0.181185 0.054010 3P 10.0638 0.026166 3D 3,9379 0.358333 3 P 6.6718 0.000188 0.636415 0.173494 3D 2.4892 0.047754 0.354144 4.7438 0.000765 0.093637 3 P 0.013955 0.006379 4P 23.4246 0.097238 3.0297 -0.000071 0.005093 -0.358802 4P

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

BROMINE, Z=35	[Ar]3d(10)4s(2)4p	o(5) 2P	
TOTAL ENERGY -2572.441325	KINETIC ENERGY 2572.441351	POTENTIAL ENERGY -5144.882675	VIRIAL RATIO -1.999999990
RHOat0 = 185843	3.56 Kato cusp = 2	2.001075	
<r> 0 <r**2> 0 <1/R> 34</r**2></r>	1s 2s 0.060332 -65.199950 0.043672 0.193107 0.002554 0.043907 4.500432 7.676539 1.582918 240.271720	3s 4s -9.871887 -0.992675 0.558860 1.738860 0.358460 3.467913 2.534994 0.750675 39.234690 3.952880	
2S 30.2313 0 2S 16.2817 -0 3S 43.9396 0 3S 12.1552 -0 3S 8.3109 -0 3S 5.9392 -0 4S 18.9651 0 4S 3.6167 -0 4S 2.4340 0	0.956178	-0.119257 -0.036545 -0.105248 -0.033223 0.466489 0.147307 -0.000526 -0.000106 0.130322 0.038175 -0.579501 -0.196982 -0.644361 -0.269614 0.126778 0.046308 -0.008641 0.459442 0.001333 0.530326 -0.000566 0.160145	
<r> 0 <r**2> 0 <1/R> 7 <1/R**2> 79</r**2></r>	2p 3p 3.554216 -7.478203 0.167142 0.566611 0.034132 0.375144 7.623705 2.416064 0.142919 12.596986 1.838536 180.807646	4p -0.457082 ORB.ENERGY 2.111601 <r> 5.223555 <r**2> 0.616846 <1/R> 1.046922 <1/R**2> 11.999778 <1/R**3></r**2></r>	3d -3.220169 0.584099 0.419895 2.159167 6.063313 23.100843
2P 13.9922 0 3P 30.1518 0 3P 10.8966 0 3P 7.0906 0 3P 5.0673 0 4P 24.3902 0 4P 3.2746 0 4P 2.0783 0	0.059746 -0.005460 0.734105 -0.499743 0.132860 -0.000944 0.033198 0.148906 0.000750 0.643268 0.000664 0.379137 0.088869 0.022016 0.000063 0.005992 0.000011 0.000647 0.000011 0.000313	-0.000217 3D 18.4910 -0.142598 3D 10.2980 0.003309 3D 6.4197 0.049718 3D 4.2010 0.184443 3D 2.6377 0.118116 0.009707 -0.380018 -0.537214 -0.232420	0.015518 0.242791 0.459169 0.351558 0.039199

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

KRYPTON, Z=3	6 [Ar]3d(10)4s(2)4	p(6) 1S	
TOTAL ENERGY -2752.054969	KINETIC ENERGY 2752.054983	POTENTIAL ENERGY -5504.109952	VIRIAL RATIO -1.999999995
RHOat0 = 2025	566.04 Kato cusp = :	2.001035	
<r> <r**2> <1/R></r**2></r>	1s 2s 520.165459 -69.903072 0.042441 0.187256 0.002412 0.041280 35.498151 7.918829 531.640192 255.598355	0.537802 1.629392 0.331729 3.040358 2.637556 0.804187	
1S 36.7205 2S 31.1118 2S 16.7539 3S 45.1135 3S 12.5170 3S 8.5715 3S 6.2171 4S 19.6005 4S 3.8388 4S 2.5911 4S 1.8100	0.957077 -0.301159 0.048295 -0.224630 -0.001340 0.985238 0.006469 0.000027 -0.000192 0.134207 -0.000010 0.004686 0.000816 0.119437 -0.000005 0.000347 -0.000001 -0.000119	0.120838	
<r> <r**2> <1/R> <1/R**2></r**2></r>	2p 3p -63.009777 -8.331494 0.161876 0.542627 0.032004 0.343537 7.868429 2.522775 84.264195 13.706161 385.133258 203.553552	4p -0.524182 ORB.ENERGY 1.951590 <r> 4.454829 <r**2> 0.669220 <1/R> 1.238775 <1/R**2> 14.886597 <1/R**3></r**2></r>	3d -3.825228 0.550880 0.371478 2.276940 6.708298 26.691863
2P 38.0283 2P 14.6932 3P 31.3136 3P 11.7833 3P 7.4972 3P 5.3888 4P 25.3638 4P 3.5216 4P 2.2424 4P 1.4475	0.054135 -0.001435 0.751976 -0.526859 0.118384 0.009958 0.044500 0.120509 0.001287 0.646740 0.000557 0.401547 0.076875 0.032338 -0.000045 0.006341 0.000013 -0.000025 -0.000004	0.001213 3D 19.1294 -0.160462 3D 10.7158 0.007447 3D 6.6805 0.045141 3D 4.4322 0.191368 3D 2.7599 0.141683 0.014153 -0.393849 -0.538338 -0.225021	0.015286 0.245430 0.473937 0.335752 0.031469

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

-2938.357442 2938.357361 -5876.714803 -2.000000000000000000000000000000000000	
1s 2s 3s 4s 5s ORB.ENERGY -551.457326 -75.049333 -12.133188 -1.523539 -0.137862 <r> 0.041276 0.181742 0.518105 1.499207 5.631401 <r**2> 0.002281 0.038879 0.307673 2.557226 36.167879</r**2></r>	
ORB.ENERGY -551.457326 -75.049333 -12.133188 -1.523539 -0.137862 <r> 0.041276 0.181742 0.518105 1.499207 5.631401 <r**2> 0.002281 0.038879 0.307673 2.557226 36.167879</r**2></r>	.000922
<1/R**2> 2675.688377 271.418660 45.924228 5.560444 0.280591	-12.133188 -1.523539 -0.137862 0.518105 1.499207 5.631401 0.307673 2.557226 36.167879 2.741239 0.876306 0.217763
1S 37.6597 0.960467 0.303005 -0.122718 0.041454 0.008728 2S 31.9404 0.042932 0.221238 -0.111462 0.038866 0.008204 2S 16.8617 -0.000093 -1.026270 0.524563 -0.183063 -0.038612 3S 45.3535 0.007109 -0.000245 -0.000825 0.000256 0.000042 3S 12.0916 0.000159 -0.100557 -0.215183 0.080032 0.016335 3S 6.6424 0.000125 -0.004612 -0.773124 0.372057 0.084781 4S 19.9148 -0.000059 -0.102291 0.167082 -0.065728 -0.014138 4S 3.9717 -0.000028 0.000640 -0.010285 -0.562841 -0.146431 4S 2.6062 0.000018 -0.000266 0.001188 -0.573101 -0.109368 5S 11.5420 -0.000211 0.010396 -0.210462 0.070777 0.013149 5S 1.0853 0.000005 -0.000066 0.000267 0.003312 0.556025 5S	-0.111462
ORB.ENERGY -67.906220 -9.487684 -0.810061 ORB.ENERGY -4.732282 (R) 0.156927 0.520757 1.734937 (R) 0.521335 (R**2) 0.030066 0.316060 3.477698 (R**2) 0.331036 (1/R) 8.113293 2.629144 0.752058 (1/R) 2.394259 (1/R**3) 1516.271831 228.065929 20.096797 (1/R**3) 30.625668 (1/R**3) 1516.271831 228.065929 20.096797 (1/R**3) 30.625668 (1/R) 30.002888 3D 19.9656 0.014081 (1/R) 30.002888 3D 19.9656 0.033527 (1/R) 30.002888 3D 19.9656 0.033527 (1/R) 30.002888 3D 19.9656 0.0349694 (1/R) 30.002888 3D 19.9656 0.0349694 (1/R) 30.002888 3D 19.9656 0.0349694 (1/R) 30.002888 3D 30.31960 0.425641 0.174300 (1/R) 30.002888 3D 30.31960 0.042870 (1/R) 30.7718 (1/R) 30.006843 (1/R) 30.002888 3D 30.31960 0.042870 (1/R) 30.000499 0.425641 0.174300 (1/R) 30.0042870 (1/R) 30.000051 0.006843 (1/R) 30.424584	-0.810061 ORB.ENERGY -4.732282 1.734937 <r> 0.521335 3.477698 <r**2> 0.331036 0.752058 <1/R> 2.394259 1.577857 <1/R**2> 7.383580 20.096797 <1/R**3> 30.625668 0.002888 3D 19.9656 0.014081 -0.184729 3D 11.2720 0.233527 0.012302 3D 7.1489 0.455528 0.039095 3D 4.8701 0.349694 0.207397 3D 3.1960 0.042870 0.174300 0.019670</r**2></r>

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

STRONTIUM,	Z=38 [Kr]5s(2) 1S			
TOTAL ENERG	Y KINE	TIC ENERGY	POTENTI	AL ENERGY	VIRIAL RATIO
-3131.54567		31.545574		.091248	-2.000000032
RHOat0 = 23	39052.25 K	Tato cusp = 2	2.000923		
	1s	2s	3s	4s	5 s
ORB. ENERGY		-80.390786			0.178452
<r></r>	0.040174	0.176536	0.499698	1.390924	4.632850
<r**2></r**2>	0.002161		0.286029		4.494709
<1/R>	37.493847		2.845715	0.948079	0.268683
<1/R**2>	2823.738208	287.731813	49.511285	6.606805	0.484018
1S 38.6766	0.960803	0.303862	0.124165	0.044153	0.011387
2S 32.7622			0.115932	0.042508	0.010991
2S 17.6638			-0.518144		0.049113
3S 46.8232			0.000757	0.000230	0.000042
3S 12.7979			0.175185	0.064281	0.015585
3S 6.9740			0.805787	0.420637	0.118647
4S 20.6858			-0.172787		0.018671
4S 4.2125 4S 2.8491			0.011784		0.187386
5S 12.1086			-0.001591 0.204433		0.139266 0.014814
5S 1.8492			0.000624		0.289906
5S 1.2152			-0.000339		0.558928
5S 0.8188			0.000114		0.288435
		_			_
ADD =111=Date	2p	3p	4p	000 EVED 411	3d
ORB. ENERGY	-72.996030		-1.098155	ORB. ENERGY	-5.694389
<r> <r**2></r**2></r>	0.152268 0.028297		1.577614 2.857242	<r> <r**2></r**2></r>	0.495014 0.297162
<1/R>	8.358311		0.829072	<1/R>	2.510862
<1/R**2>	94.996384		1.931624	<1/R**2>	8.087616
<1/R**3>	1655.482351		25.894968	<1/R**3>	34.909486
-7				_,	
2P 42.7301	0.030306	0.009319	0.005483	3D 20.7700	
2P 16.6389			-0.209108	3D 11.8072	
3P 35.0112		0.038033	0.019826	3D 7.5922	
3P 13.8073			0.028810	3D 5.2871	
3P 8.2941			0.225194	3D 3.5961	0.053222
3P 5.9989		0.436187 0.059016	0.199730 0.027842		
4P 28.1756 4P 4.0091			-0.451600		
4P 4.0091			-0.611309		
4P 1.6854		-0.000021	-0.090744		
2.0054	0.00000	0.00000	3.020.14		

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

YTTRIUM, Z=39 [Kr]4	d(1)5s(2) 2D			
,				
	TIC ENERGY 31.684150	POTENTIAL ENERGY -6663.368307	VIRIAL RATIO -2.000000002	
-5551.064156 55	31.004130	0003.308307	-2.000000002	
RHOat0 = 258825.47 K	ato cusp = 2.000	948		
1s	2s	3s 4s	5 s	
ORB.ENERGY -616.749339			-0.196137	
<r> 0.039129 <r**2> 0.002050</r**2></r>		482564 1.311714 266604 1.946802	4.299870 21.136058	
<1/R> 38.491889		950163 1.009637	0.290899	
<1/R**2> 2975.796354		229252 7.576340	0.584767	
1S 39.7224 0.960080	0.304345 0.	125399 0.046138	0.012247	
2S 33.6027 0.045175		119821 0.045391	0.012247	
2S 18.3793 -0.001567		516076 -0.195574	-0.051987	
3S 48.7440 0.006033		000700 0.000199	0.000038	
3S 13.3446 -0.000219		153637 0.052859	0.012518	
3S 7.2830 0.000014		824075 0.461392	0.134763	
4S 21.3822 0.000855		177748 -0.074774	-0.020203	
4S 4.4484 -0.000005 4S 3.0474 0.000005		012444 -0.581457 001672 -0.575339	-0.199281	
4S 3.0474 0.000005 5S 12.5609 -0.000022		001672 -0.575339 200249 0.062477	-0.145438 0.013467	
5S 2.0044 -0.000002		000618 -0.016837	0.296136	
5S 1.3112 0.000001		000310 0.002621	0.559777	
5S 0.8747 0.000000	0.000027 0.	000101 -0.000609	0.288710	
2p	3p	4p	3d	4d
		301177 ORB.ENERG		249843
<r> 0.147874</r>		471165 <r></r>		2.435117
<r**2> 0.026679</r**2>	0.270039 2.	480385 <r**2></r**2>		264053
<1/R> 8.603493		892449 <1/R>		.545592
<1/R**2> 100.608702		250015 <1/R**2>		566309
<1/R**3> 1803.049876	282.998630 31.	490662 <1/R**3>	39.561154 1	.711655
2P 45.1959 0.015985	0.013658 0.0	007526 3D 20.99	990 0.014824 -0	.002992
2P 17.8974 0.849353		219184 3D 11.90		.056375
3P 37.1587 0.026725		025116 3D 7.28		.241729
3P 14.7946 0.138567		011431 3D 4.60		.512516
3P 8.7835 0.003167 3P 6.3922 0.000262		219417 4D 5.79 238060 4D 2.71		365269
4P 29.9120 0.001671		238060 4D 2.71 033146 4D 1.63		.400153 .472371
4P 4.2354 -0.000040		473272 4D 0.99		0.213171
4P 2.7964 0.000009		505988	0.0001.0	
4P 1.7852 -0.000003	0.000043 -0.0	080554		

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

ZIRCONIUM, Z=40 [K	(r)4d(2)5s(2) 3F			
		IAL ENERGY 7.990095	VIRIAL RA'	
RHOat0 = 279659.35 K	<pre>Kato cusp = 2.001009</pre>			
<pre><r> 0.038137 <r**2> 0.001947 <1/R> 39.490031</r**2></r></pre>	0.032798 0.249103	1.245628 1.754744 1 1.067325	5s -0.207288 4.091705 19.179063 0.306527 0.657415	
1S 40.7891 0.958661 2S 34.4609 0.048443 2S 19.1696 -0.002967 3S 51.1760 0.005199 3S 14.0056 -0.000632 3S 7.5966 -0.001762 4S 22.1375 0.001762 4S 4.6587 0.000024 4S 3.2070 -0.000011 5S 13.0607 0.000172 5S 2.1201 0.000004 5S 1.3752 -0.000003 5S 0.9098 0.000000	0.240401 -0.123985 0.976241 0.510824 0.000180 -0.000621 0.137458 -0.125183 0.004954 -0.845727 0.000801 -0.013029 -0.000338 0.001754 0.010060 -0.196198 0.000129 -0.000626 0.000300	0.048124 -0.198339 -0.000172 0.037812 0.497570 -0.077806 -0.6604867 -0.561753 0.058290 -0.015948 0.002170	0.012672 0.012781 0.052635 0.000028 0.008034 0.146263 0.020961 0.209688 0.139697 0.011697 0.302034 0.559795 0.287194	
2p ORB.ENERGY -83.478533 <r> 0.143725 <r**2> 0.025195 <1/R> 8.848787 <1/R**2> 106.384524 <1/R**3> 1959.203195 2P 47.2894 0.007920 2P 18.9113 0.864740 3P 39.0617 0.006156 3P 15.5797 0.166347 3P 9.1966 0.003864 3P 6.7401 0.000095 4P 31.4855 -0.015667 4P 4.4650 -0.000029</r**2></r>	0.250756 2.198369 2.949831 0.950890 18.611844 2.563936 313.471604 37.312794 0.014954 0.008380 -0.548594 -0.222193 0.049948 0.026809 -0.041392 -0.000868 0.600526 0.214836 0.517300 0.268717 0.067124 0.034677	<r**2></r**2>	0.398441 0.359142 0.314611 0.015434 0.000045 0.000151	4d -0.336752 2.104484 5.359532 0.627586 0.744770 2.439249 0.003282 0.099488 0.090782 0.068680 -0.208862 -0.440798 -0.393876 -0.134919

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

NIOBIUM, Z=41	[Kr]4d(4)5s(1) 6D		
TOTAL ENERGY -3753.597716	KINETIC ENERGY 3753.597739	POTENTIAL ENERGY -7507.195454	VIRIAL RATIO -1.999999994
RHOat0 = 301563.83	3 Kato cusp = 2.0	000908	
<r> 0.03 <r**2> 0.00 <1/R> 40.48</r**2></r>	44011 -96.974820 -3 37194 0.162551 01852 0.031083 88326 9.134143	0.451645 1.193620 0.233323 1.611986 1	5s 0.215590 3.985219 8.212711 0.314471 0.686875
2S 35.3327 0.04 2S 19.4788 -0.00 3S 51.3713 0.00 3S 7.8700 0.00 4S 22.6990 0.00 4S 4.8823 -0.00 4S 3.3343 0.00 5S 13.3478 -0.00 5S 2.2445 -0.00 5S 1.4324 0.00	05628 -0.000221 00262 -0.130816 00005 -0.005172 00984 -0.129732 -000002 0.0002 0.000811 00004 -0.000327 -00005 0.010382 00001 0.000125	0.123668	0.012664 0.012565 0.053088 0.000023 0.006551 0.151392 0.020174 0.211147 0.132947 0.009289 0.280113 0.569278 0.301898
<pre><r></r></pre>	23116 -14.081419 - 39800 0.448341 23830 0.233523 94202 3.056550 24514 19.953619	4p -1.556984 ORB.ENERGY 1.324287 <r> 2.011649 <r**2> 0.998663 <1/R> 2.836612 <1/R**2> 42.723444 <1/R**3> 0.008213 3D 22.1877</r**2></r>	3d 4d -8.329286 -0.300639 0.430775 2.071214 0.222841 5.289530 2.856822 0.647834 10.369634 0.800651 49.986809 2.723784 0.014904 0.003283
2P 19.6324 0.86 3P 40.7909 0.00 3P 16.1936 0.17	52731 -0.536114 - 01179 0.047220 78498 -0.057793 - 04367 0.594477 00114 0.527609 L8878 0.063583 00015 0.010034 - 00015 -0.000586 -	-0.222053 3D 12.2251 0.026290 3D 5.7876 -0.006556 3D 3.4029 0.211376 4D 9.3914 0.289486 4D 2.5965 0.034165 4D 1.6522 -0.506457 4D 1.0605 -0.580540 -0.091582	0.409835 0.100591 0.327950 0.162213 0.011875 -0.348773 0.335209 0.065185 -0.000669 -0.394496

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

MOLYBDENUM, Z=42 [K	(r]4d(5)5s(1) 7S		
		IAL ENERGY 1.098980	VIRIAL RATIO -1.99999998
RHOat0 = 324598.90 K	(ato cusp = 2.000873		
1s ORB.ENERGY -721.202191 <r> 0.036296 <r**2> 0.001763 <1/R> 41.486632 <1/R**2> 3455.966236</r**2></r>	0.158364 0.437613 0.029498 0.218970	1.142377 1.476363 1.171270	5s 0.222725 3.841740 6.968563 0.327047 0.748298
1S 42.7425 0.962070 2S 36.2098 0.043169 2S 19.9247 -0.001678 3S 52.4536 0.005573 3S 14.6520 -0.000202 3S 8.1505 0.000029 4S 23.3229 0.000864 4S 5.1157 -0.000007 4S 3.4917 0.000007 5S 13.6857 -0.000038 5S 2.3571 -0.000002 5S 1.4897 0.000001 5S 0.9661 0.000000	0.237253	0.049874 -0.212208 0.000193 0.028878 0.551495 -0.076744 -0.634721 -0.553088 0.051443 -0.019802 0.004878	0.012933 0.012760 0.054220 0.000020 0.004143 0.160091 0.019965 0.214823 0.132312 0.007496 0.282363 0.568779 0.305619
ORB.ENERGY -94.444083 <r> 0.136081 <r**2> 0.022573 <1/R> 9.339690 <1/R**2> 118.427110 <1/R**3> 2298.252225</r**2></r>	0.218033 1.821849 3.163304 1.052205 21.342240 3.155945	ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3></r**2></r>	3d 4d -9.284218 -0.357912 0.413218 1.875157 0.204535 4.308556 2.970616 0.713442 11.183813 0.965543 55.781037 3.481440
2P 51.2736 0.002347 2P 20.4266 0.862806 3P 42.4402 -0.006158 3P 16.8366 0.193670 3P 9.8793 0.004935 3P 7.3678 -0.000336 4P 34.1870 -0.024536 4P 4.9234 0.000000 4P 3.2697 -0.000028 4P 2.1185 0.000000	-0.522435 -0.221257 0.045257 0.025846 -0.077421 -0.014486 0.585780 0.208525 0.541100 0.312120 0.060287 0.033403 0.010869 -0.519055 -0.000628 -0.576360	3D 22.9005 3D 12.6580 3D 6.0525 3D 3.5536 4D 9.7486 4D 2.7024 4D 1.7351 4D 1.1346	0.014298 0.003366 0.410590 0.108254 0.321217 0.176427 0.010376 -0.395951 0.340238 0.071509 -0.000597 -0.410929 0.000143 -0.335730 -0.000036 -0.110648

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

TECHNETIUM, Z=43 [Kr]4d(5)5s(2) 6S

KINETIC ENERGY POTENTIAL ENERGY VIRIAL RATIO TOTAL ENERGY 4204.788677 -8409.577399 -4204.788722 -2.00000011 RHOat0 = 348792.97Kato cusp = 2.0008662s 4s 5s ORB.ENERGY -758.043040-109.069778 -20.131826 -3.152181 -0.231268 0.035440 0.154384 0.424391 1.091530 3.684647 <R> <R**2> 0.001681 0.028030 0.205872 1.347033 15.641489 <1/R> 3.368888 1.229587 9.621442 0.341743 42.484927 <1/R**2> 3624.007856 376.575106 69.468169 11.549029 0.824194 1S 43.7613 2S 37.0818 0.962275 0.307603 -0.130405 0.052081 0.013283 0.239744 -0.126665 0.051665 0.043292 0.013157

25	20.5473	-0.001947	-0.989486	0.529567	-0.216073	-0.054962
3 <i>S</i>	53.9182	0.005310	-0.000230	-0.000589	0.000189	0.000023
3 <i>S</i>	15.1937	-0.000257	-0.135846	-0.114905	0.016662	0.000108
35	8.4476	0.000011	-0.005741	-0.852057	0.582808	0.170032
4 S	24.0307	0.001012	-0.128482	0.177528	-0.077501	-0.019908
4 S	5.3489	-0.000003	0.000911	-0.013016	-0.640499	-0.220526
4 S	3.6757	0.000004	-0.000339	0.001006	-0.558426	-0.127369
5S	14.1204	-0.000011	0.010992	-0.200850	0.048669	0.006109
5S	2.4102	-0.000001	0.000115	-0.000429	-0.015715	0.305203
5S	1.5279	0.000000	-0.000061	0.000185	0.002098	0.560859
5S	0.9884	0.000000	0.000021	-0.000060	-0.000493	0.290453
-						

		2p	3p	4p			3d	4d
ORB	. ENERGY	-100.406084	-16.699570	-2.041209	ORB	.ENERGY	-10.444631	-0.543944
<r></r>		0.132553	0.419294	1.193030	<r></r>	•	0.397210	1.620236
<r*< td=""><td>*2></td><td>0.021411</td><td>0.204040</td><td>1.628439</td><td><r*< td=""><td>*2></td><td>0.188595</td><td>3.142838</td></r*<></td></r*<>	*2>	0.021411	0.204040	1.628439	<r*< td=""><td>*2></td><td>0.188595</td><td>3.142838</td></r*<>	*2>	0.188595	3.142838
<1/	R>	9.585252	3.270182	1.113717	<1/	R>	3.083493	0.814479
<1/	R**2>	124.692426	22.778770	3.540576	<1/	R**2>	12.022897	1.241283
	R**3>	2481.573939	417.620145	57.128767	<1/	R**3>	61.968839	4.797754
•								
2P	52.9821	0.001500	0.013626	0.008186	3D	23.5175	0.014099	0.003718
2P	21.0486	0.860433	-0.519116	-0.224913	3 D	13.0453	0.416170	0.123034
3P	43.8578	-0.007648	0.044111	0.025642	3D	6.2613	0.304613	0.197914
3P	17.3646	0.198804	-0.083868	-0.018115	3 D	3.7227	0.007879	-0.464963
3P	10.1141	0.005092	0.609595	0.220385	4 D	10.0555	0.351461	0.084609
3P	7.6073	-0.000539	0.519096	0.324748	4 D	2.8086	-0.000165	-0.463260
4P	35.3274	-0.025053	0.058553	0.033083	4 D	1.8327	0.000023	-0.271624
4 P	5.1799	0.000013	0.010590	-0.526097	4 D	1.2458	0.000002	-0.041969
4 P	3.4522	-0.000037	-0.000366	-0.591749				
4 P	2.2236	0.000003	0.000153	-0.075879				

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

RUTHENIUM, Z=44 [Kr	1)4d(7)5s(1) 5F			
TOTAL ENERGY KINE	TIC ENERGY POTENT	IAL ENERGY 3.078888	VIRIAL RAT	
RHOat0 = 374131.21 K	ato cusp = 2.000845			
1s ORB.ENERGY -795.513463 <r> 0.034624 <r**2> 0.001604 <1/R> 43.483425 <1/R**2> 3796.066238</r**2></r>	0.150598 0.412017 0.026669 0.193987 9.865207 3.473377	1.054738 1.258968 1 1.275814	5s 0.222424 3.735235 6.140221 0.337123 0.785489	
1S 44.7676 0.962878 2S 37.9473 0.042691 2S 21.1032 -0.001991 3S 55.1696 0.005176 3S 15.7100 -0.000255 3S 8.7353 0.000014 4S 24.6978 0.001020 4S 5.5734 -0.000003 4S 3.7938 0.000004 5S 14.5125 -0.000016 5S 2.5155 -0.000001 5S 1.5531 0.000000 5S 0.9861 0.000000	0.241207 -0.128366 -0.987658 0.532288 -0.000234 -0.000565 -0.139581 -0.106262 -0.005705 -0.856572 -0.128097 0.177879 0.000887 -0.013147 -0.000311 0.000766 0.010610 -0.202916 0.000105 -0.000406 -0.000048 0.000156	0.0526610.218427 0.000184 - 0.006347 0.6073030.077079 -0.652721 -0.554377 0.0446360.019362 - 0.003030 -	0.012642 0.012529 0.051886 0.000013 0.002992 0.167177 0.018510 0.210064 0.117438 0.003639 0.272330 0.562346 0.327039	
2p ORB.ENERGY -106.239384 <r> 0.129203 <r**2> 0.020337 <1/R> 9.830944 <1/R**2> 131.122920 <1/R**3> 2674.513995 2P 55.3565 0.000623 2P 21.7256 0.853588 3P 45.6880 -0.008811</r**2></r>	0.406183 1.150563 0.191402 1.517294 3.376726 1.158209 24.257276 3.836005 456.767228 63.761114 0.012338 0.007580 -0.506203 -0.221231	ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3> 3D 24.1687 3D 13.4515 3D 6.5053</r**2></r>	3d -11.343334 0.382504 0.174579 3.195826 12.888866 68.576385 0.013758 0.419226 0.292226	4d -0.412767 1.630109 3.259047 0.824848 1.289621 5.142827 0.003579 0.121318 0.213964
3P 17.9535 0.207881 3P 10.4294 0.005614 3P 7.9116 -0.000815 4P 36.6952 -0.025164 4P 5.4132 0.000032 4P 3.5961 -0.000052 4P 2.3285 0.000002	-0.096627 -0.023526 0.607484 0.216321 0.524132 0.341837 0.054331 0.031441 0.011449 -0.533904 -0.000348 -0.580315	3D 4.0439 4D 10.3841 4D 2.9873 4D 1.8815 4D 1.2184	0.292220 0.007494 0.359007 0.000548 0.000087 0.000068	0.213964 -0.455974 0.082299 -0.440806 -0.308210 -0.084621

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

RHODIUM, Z=45 [Kr]4	d(8)5s(1) 4F			
TOTAL ENERGY KINE		TIAL ENERGY 71.763310	VIRIAL RAT	
RHOat0 = 400684.70 K	ato cusp = 2.000831			
1s ORB.ENERGY -834.039464 <r> 0.033844 <r**2> 0.001533 <1/R> 44.481916 <1/R**2> 3972.114072</r**2></r>	0.146991 0.40032 0.025403 0.18308 10.109146 3.57822	2 1.016687 5 1.169999 9 1.326834	5s -0.221613 3.702057 15.898379 0.340218 0.790115	
1S 45.7788 0.963300 2S 38.8162 0.042397 2S 21.7902 -0.002115 3S 56.5086 0.005005 3S 16.2941 -0.000265 3S 9.0435 0.000013 4S 25.4412 0.001061 4S 5.7859 -0.000003 4S 3.9281 0.000004 5S 14.9903 -0.000015 5S 2.5691 -0.000001 5S 0.9897 0.000000	0.244158 -0.13051 -0.977603 0.52897 -0.000199 -0.00053 -0.148954 -0.08298 -0.005830 -0.87270 -0.133289 0.17756 0.000908 -0.013733 -0.000309 0.00073 0.010662 -0.19960 0.000101 -0.00039 -0.000048 0.00015	2 0.054017 2 -0.218980 3 0.000178 5 -0.009239 9 0.633984 5 -0.076562 8 -0.665080 1 -0.550367 2 0.040465 -0.018196 1 0.002464	-0.012384 -0.012320 0.049849 -0.000004 0.007077 -0.168794 0.017614 0.207481 0.107292 -0.001585 -0.271487 -0.559488 -0.331979	
2p ORB.ENERGY -112.386169 <r> 0.126016 <r**2> 0.019341 <1/R> 10.076687 <1/R**2> 137.715931 <1/R**3> 2877.213116 2P 57.1592 0.000108 2P 22.3381 0.850632 3P 47.1396 -0.009588</r**2></r>	0.393875	1	0.368927 0.162142 3.307609 13.781017 75.610039 8 0.013008 2 0.416960 0 0.290073	4d -0.450183 1.531455 2.873215 0.878699 1.460626 6.086010 0.003491 0.124544 0.240728
3P 18.4771 0.212153 3P 10.6701 0.005752 3P 8.1551 -0.001016 4P 37.8449 -0.025177 4P 5.6674 0.000042 4P 3.7624 -0.000061 4P 2.4396 0.000003	0.630166 0.224562 0.503167 0.351346 0.052362 0.030544 0.011550 -0.538049	4D 10.7708 4D 3.2220 4 4D 2.025 5 4D 1.297	8 0.361199 0 0.000880 1 0.000162	-0.461136 0.083280 -0.448582 -0.313926 -0.086941

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

PALLADIUM, Z=46 [Kr	[]4d(10) 1S		
	ETIC ENERGY 937.921032	POTENTIAL ENERGY -9875.842036	VIRIAL RATIO -1.99999994
RHOat0 = 428395.15	Kato cusp = 2.00	00808	
1s ORB.ENERGY -873.315913 <r> 0.033099 <r**2> 0.001466 <1/R> 45.480522 <1/R**2> 4152.168886</r**2></r>	0.143552 0 0.024225 0 10.353164 3	3s 4s 4.209082 -3.587289 0.389298 0.985959 0.173103 1.101818 3.682831 1.371555 3.040800 14.537300	
1S 46.7974 0.963477 2S 39.7609 0.042281 2S 22.2661 -0.002125 3S 57.8248 0.004837 3S 17.1695 -0.000218 3S 10.4876 -0.000076 3S 7.6059 0.000076 4S 26.2283 0.001060 4S 4.6932 0.000010 4S 3.1874 -0.000002	-0.241461 -0 0.972158 0 0.000190 -0 0.166151 0 0.012539 -0 0.120928 0 -0.005154 0 0.000654 -0	0.133550	
ORB.ENERGY -118.531082 <r> 0.122981 <r**2> 0.018416 <1/R> 10.322528 <1/R**2> 144.473329 <1/R**3> 3089.985637</r**2></r>	0.382314 1 0.169459 1 3.589665 1 27.350491 4	4p 2.330069 ORB.ENERGY 2.068566 <r> 2.311048 <r**2> 2.253042 <1/R> 2.501777 <1/R**2> 2.71902 <1/R**3></r**2></r>	3d 4d -13.363420 -0.335984 0.356139 1.533028 0.150821 2.951405 3.420148 0.892660 14.708093 1.519603 83.143427 6.506021
2P 58.8127 -0.000956 2P 23.0155 0.848032 3P 48.5886 -0.011945 3P 19.0380 0.219542 3P 10.9139 0.006054 3P 8.3975 -0.001285 4P 39.0467 -0.026699 4P 5.9151 0.000060 4P 3.9120 -0.000073 4P 2.5168 0.000001	-0.497355 -0 0.038274 0 -0.111306 -0 0.652935 0 0.482199 0 0.050845 0 0.011737 -0 0.000059 -0	3D 25.6291 1.219932 3D 14.3366 1.022796 3D 7.0434 1.031602 3D 4.7075 1.231305 4D 11.1238 1.357808 4D 3.3993 1.029584 4D 2.0532 1.542403 4D 1.2286 1.579630 1.103448	0.417949 0.122300 0.282174 0.259777 0.007467 -0.458744 0.367116 0.080472 0.000776 -0.450081 -0.000099 -0.331187

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

SILVER, Z=47 [Kr]4d	(10)5s(1) 2S				
,	TIC ENERGY		AL ENERGY	VIRIAL RAT	7.7.0
	97.698391		5.39684	-2.0000000	
RHOat0 = 457506.91 K	(ato cusp = 2.0	000809			
	-		4.5	5s	
1s ORB.ENERGY -913.835587				-0.219972	
<r> 0.032386 <r**2> 0.001403</r**2></r>		0.378839 0.163895	0.949403 1.020639	3.655961 l5.577450	
<1/R> 46.479064	10.597352	3.787881	1.427064	0.344268	
<1/R**2> 4336.204776	456.400145	87.852441	15.794289	0.782627	
1S 47.8514 0.962576		-0.134351	0.055923	0.011744	
2S 40.9787 0.043178 2S 22.0035 -0.001792		-0.118518 0.533350	0.051198 -0.230754 -	0.010877 -0.048947	
3S 59.2334 0.004598		-0.000484	0.000190	0.000002	
3S 14.2658 -0.000095		0.240470		0.017119	
3S 9.8321 -0.000064 4S 26.8874 0.000892		-1.582931	0.833102	0.170582	
4S 26.8874 0.000892 4S 6.1462 -0.000005		0.128920 -0.011704		·0.014950 ·0.200263	
45 4.1628 0.000005		0.000035		0.085225	
5S 12.0237 0.000047		0.272133	-0.057381	0.000512	
5S 2.6653 -0.000002		-0.000238	-0.015230	0.266367	
5S 1.6001 0.000000		0.000089	0.001617	0.554588	
5S 0.9964 0.000000	-0.000015	-0.000027	-0.000589	0.343864	
2p	3p	4 p		3 d	4d
ORB.ENERGY -125.181574 <r> 0.120088</r>		-2.676802 1.023203	ORB, ENERGY	-14.678189	-0.537384
<r> 0.120088 <r**2> 0.017555</r**2></r>		1.199843	<r> <r**2></r**2></r>	0.344428 0.140869	1.369800 2.291413
<1/R> 10.568378		1.310063	<1/R>	3.531194	0.981689
<1/R**2> 151.392127		4.921961	<1/R**2>	15.654430	1.809902
<1/R**3> 3312.961384	588.488911 8	89.227741	<1/R**3>	91.081757	8.136570
2P 59.6755 -0.000486	0.012015	0.007326	3D 26.5320	0.011443	0.003198
2P 23.4442 0.852285		-0.225437	3D 14.8584		0.127221
3P 49.2846 -0.010777	0.038779	0.023026	3D 7.4089		0.292865
3P 19.4073 0.212194		-0.031813	3D 5.0317		-0.473484
3P 11.1133 0.005206 3P 8.5884 -0.001057		0.248680	4D 11.5827		0.081591
3P 8.5884 -0.001057 4P 39.6983 -0.025296		0.362284 0.029300	4D 3.6742 4D 2.3057		-0.461096 -0.323613
4P 6.1921 0.000004		-0.544134	4D 2.3037		-0.089292
4P 4.0980 -0.000056		-0.593807			3.00,2,2
4P 2.6664 -0.000002	0.000287 -	-0.097203			

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

CADMIUM, Z=48 [K	r]4d(10)5s(2)	1S			
TOTAL ENERGY K -5465.133119	INETIC ENERGY 5465.133066		IAL ENERGY 30.26618	VIRIAL RA -2.000000	
RHOat0 = 487877.14	Kato cusp =	2.000792			
1s ORB.ENERGY -955.315 <r> 0.031 <r**2> 0.001 <1/R> 47.477 <1/R**2> 4524.234</r**2></r>	703 0.137128 345 0.022100	0.368910 0.155390 3.893205	4s -4.450517 0.914133 0.945138 1.484941 17.160652	5s -0.264844 3.237216 12.166505 0.390406 1.070592	
1S 48.8593 -0.963 2S 41.8698 -0.042 2S 22.4790 0.001 3S 60.4880 -0.004 3S 14.3001 0.0000 3S 10.1202 0.0000 4S 27.5563 -0.0000 4S 6.4013 0.0000 4S 4.3771 -0.0000 5S 12.3302 -0.0000 5S 2.8247 0.0000 5S 1.7468 -0.0000 5S 1.0996 0.0000	0.228857 795 -1.019867 491 0.000076 057 -0.259887 0.09567 -0.002567 006 0.000762 072 -0.114971 002 -0.000139 001 0.000062	-0.119308 0.537403 -0.000469 0.288963 -1.653006 0.128363 -0.011693 -0.000097 0.296330 -0.000218 0.000081	0.057161 0.052306 -0.235995 0.000199 -0.139049 0.889261 -0.065501 -0.685578 -0.544565 -0.068777 -0.014236 0.001843 -0.000446	0.013586 0.012564 -0.056626 0.000016 -0.027410 0.209002 -0.016811 -0.225422 -0.106966 -0.003003 0.305107 0.559228 0.299847	
,	0.361119 753	0.980384 1.099649 1.368985 5.375469 100.266914	ORB.ENERGY <r> <r**2> <1/R> <1/R**3></r**2></r>	0.333489 0.131895 3.642018 16.628547 99.496539	4d -0.763640 1.252086 1.884727 1.064243 2.105655 9.903393
2P 61.2693 -0.0034 2P 24.3867 0.8467 3P 51.0214 -0.0178 3P 20.1418 0.2336 3P 11.4415 0.0063 3P 8.8868 -0.0016 4P 41.2731 -0.0316 4P 6.4430 0.0006 4P 4.2737 -0.0006 4P 2.7729 0.0006	774 -0.487592 899 0.037082 929 -0.129977 986 0.692790 925 0.047556 983 0.012624 988 0.000261	-0.220421 0.022058 -0.042937 0.248783 0.381672 0.027784 -0.547540 -0.608051	3D 27.118 3D 15.235 3D 7.567 3D 5.757 4D 11.882 4D 4.076 4D 2.600 4D 1.678	0.415382 0.273191 0.008574 0.374807 0.001446 0.000168	0.003372 0.134092 0.410853 -0.530026 0.080051 -0.492902 -0.337277 -0.079483

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

	. 0	•	
INDIUM, Z=49	[Kr]4d(10)5s(2)5p	(1) 2P	
TOTAL ENERGY -5740.169136	KINETIC ENERGY 5740.169085	POTENTIAL ENERGY -11480.33822	VIRIAL RATIO -2.000000009
RHOat0 = 5195	74.86 Kato cusp = 3	2.000773	
<r> <r**2> <1/R></r**2></r>	1s 2s 97.800440-149.395427 0.031048 0.134125 0.001290 0.021140 48.476204 11.086132 16.256388 499.249788	0.359491 0.881300	5s -0.372649 2.844453 9.304171 0.444787 1.468225
2S 42.7396 - 2S 23.3252 3S 61.5834 - 3S 15.4101 - 3S 10.5039 4S 28.3599 4S 6.6346 4S 4.5945 - 5S 12.8800 - 5S 2.9947	-0.963874	-0.136287 0.058380 -0.121521 0.054098 0.526341 -0.234633 -0.000472 0.000173 0.292647 -0.136020 -1.611645 0.868222 0.130254 -0.067856 -0.014751 -0.672160 0.000660 -0.559666 0.265628 -0.043432 -0.000375 -0.013547 0.000169 -0.000457	0.015733 0.014736 -0.063871 0.000019 -0.032213 0.234704 -0.019619 -0.251912 -0.133245 0.002168 0.343640 0.566475 0.246558
<r> <r**2> <1/R> <1/R> <1/R**2></r**2></r>	2p 3p 39.171910 -25.374265 0.114689 0.351365 0.016005 0.143028 11.060332 3.909187 65.721288 32.336681 90.740322 689.033986	4p 5p -3.507196 -0.197279 0.939852 3.777242 1.008733 16.634893 1.429675 0.331864 5.862263 0.313803 112.429693 4.457480	
4P 4.0228 - 5P 18.7753	0.069930 -0.000716 0.714310 0.656646 0.149803 -0.017882 0.001067 -0.901074 0.000149 -0.451270 0.105796 -0.041099 0.000141 -0.005543 0.000010 -0.000663 0.006026 0.130590 0.000005 0.000011 0.000002 -0.000003 0.0000004	0.020255 -0.004135 -0.471830 0.094945 0.064433 -0.013104 0.706386 -0.141370 0.168541 -0.039221 0.082715 -0.016775 -0.679925 0.174014 -0.485366 0.073620 -0.191612 0.038641 -0.015790 -0.269992 0.001286 -0.555145 -0.000517 -0.3333057	
<r> <r**2> <1/R> <1/R**2> 1</r**2></r>	3d 4d 7.589547 -1.063118 0.323243 1.156916 0.123768 1.590773 3.752678 1.144702 7.630750 2.416159 8.403669 11.856480		
3D 15.7710 3D 8.4278 3D 7.3906 4D 12.3645 4D 4.7206 4D 3.0048 ~	0.010541 -0.003594 0.402123 -0.103601 0.174209 -1.002117 0.135450 0.859764 0.357445 0.037696 0.002120 0.529715 0.000091 0.396615 0.000090 0.082009		

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

TIN. Z=50 [Kr]4d(10)5s(2)5p(2)3P KINETIC ENERGY TOTAL ENERGY POTENTIAL ENERGY VIRIAL RATIO -6022.931678 6022.931640 -12045.86332 -2.000000006 RHOat0 = 552621.73Kato cusp = 2.0007692s 4 s 5s ORB.ENERGY 1041.223339-156.977572 -31.598969 -5.512489 -0.476426 0.350534 2.585885 0.030419 0.131250 0.850435 <R> <R**2> 0.140251 0.816477 7.646049 0.001238 0.020241 <1/R> 49.474791 11.330667 4.104012 0.490494 1.602228 <1/R**2> 4912.272590 521.406227 103.140624 1.851116 20.102124 18 50.8848 -0.963742 0.311679 -0.137098 0.059535 0.017407 25 43.6518 -0.042158 0.232593 -0.122055 0.055090 0.016260 23.7600 2S 0.001971 -1.0031870.531834 -0.240399 -0.070946 -0.000468 0.000181 0.000038 3S 63.1844 -0.004214 0.000149 15.3000 0.000076 -0.281509 0.349803 -0.169197 -0.046567 3S -1.701531 0.000092 0.270107 0.933273 0.277739 35 10.7843 -0.000941 29.0062 -0.068648 -0.021206 4.5 -0.113792 0.130124 4 S 6.9275 0.000008 -0.003118 -0.014337 -0.648826 -0.265073 4 S 4.8462 -0.000007 0.000912 0.000313 -0.591938 -0.165573 -0.000064 -0.122197 0.299228-0.057389 -0.003124 5.5 13,1566 3.1710 58 0.000003 -0.000182 -0.000288 -0.014377 0.371340 5*S* 2.0784 -0.000002 0.000086 0.000144 0.002015 0.562270 0.000000 -0.000027 -0.000039 -0.000545 0.222868 5.5 1.3745 4p 5p 2p 3p ORB.ENERGY -146.489258 -27.209033 -3.969043 -0.265035 3.248093 0.112165 0.342112 0.902128 <R> 12.191397 <R**2> 0.015304 0.135565 0.927899 <1/R> 11.306439 4.015986 1.491373 0.386575 <1/R**2> 173.132173 34.095123 6.378493 0.445571 <1/R**3> 4046.070155 743.401042 125.701866 6.832151 2P 52.0165 0.065285 -0.000395 0.018150 -0.004624 0.731458 0.646815 -0.454590 0.110016 2P 20.4432 3P 43.4868 0.140962 -0.015665 0.058174 -0.014678 0.000357 -0.902956 0.699907 3P 12.6049 -0.168847 0.000268 -0.432953 0.171411 -0.045190 3 P 9.1725 4P 35.8464 0.100039 -0.037195 0.075210 -0.018836 6.3115 4 P -0.000171 -0.005180 -0.672221 0.203400 -0.000002 4 P 4.2560 -0.000768 -0.498300 0.094435 5P 19.3198 0.006952 0.120041 -0.178466 0.044257 -0.000007 0.000042 -0.015496 -0.313546 5P 2.7011 1.7056 0.000004 -0.000013 5P 0.001276 -0.561331 5P 1.0938 -0.000001 0.000008 -0.000511 -0.273972 34 4d ORB. ENERGY -19.163348 -1.369034 0.313622 1.080402 <R> <R**2> 0.116380 1.377097 3.863205 <1/R> 1.221482 <1/R**2> 18.661202 2.733849 <1/R**3> 117.818962 13.957697 28.8714 0.009551 -0.003436 3 D 3D 16.3132 0.391196 -0.098746 3D 8.8904 0.185799 -0.973948 3D 0.796256 7.6656 0.143279 4D 12.8390 0.347738 0.055998 4 D 4.9306 0.002084 0.548357 0.387795 3.1899 -0.000128 4 D 4D 2.0484 0.000005 0.061893

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

ANTIMONY, Z=51	[Kr]4d(10)5s(2)	5p(3) 4S	
TOTAL ENERGY -6313.485304	KINETIC ENERGY 6313.485364	POTENTIAL ENERGY -12626.97067	VIRIAL RATIO -1.999999990
RHOat0 = 587044	1.44 Kato cusp =	2.000752	
<r> 0 <r**2> 0 <1/R> 50</r**2></r>	1s 2s 5.589032-164.757946 0.029816 0.128494 0.001189 0.019398 0.473390 11.575314 2.280230 544.052180	0.342004 0.821515 0.133489 0.761324 4.209629 1.661857	5s -0.581765 2.390153 6.506819 0.532141 2.237688
2S 44.5213 -0 2S 24.4600 0 3S 64.3876 -0 3S 16.0100 -0 3S 11.1348 0 4S 29.7459 -0 4S 7.1903 0 4S 5.0920 -0 5S 13.6191 -0 5S 3.3489 0 5S 2.2326 -0	0.964330	-0.123689	-0.018852 -0.017743 0.075737 -0.000046 0.052605 -0.298252 0.022826 0.272024 0.195900 -0.000107 -0.393283 -0.556743 -0.209339
<r> 0 <r**2> 0 <1/R> 11 <1/R**2> 180</r**2></r>	2p 3p 1.003778 -29.106134 2.109749 0.333323 2.014649 0.128664 2.552631 4.122931 2.707339 35.902001 2.681007 800.596117	0.867077 2.901067 0.855986 9.667023 1.553756 0.433785 6.922127 0.576437	
2P 20.9836 0 3P 44.8533 0 3P 12.8322 0 3P 9.3659 0 4P 36.9427 0 4P 6.5539 -0 4P 4.4870 0 5P 19.8592 0 5P 2.8844 -0 5P 1.8640 0	0.061335	-0.443368	
<r> 0 <r**2> 0 <1/R> 3 <1/R**2> 19</r**2></r>	3d 4d 1.798064 -1.687854 1.304568 1.016399 1.109644 1.212421 1.973620 1.295656 1.719955 3.060008 1.755391 16.216641		
3D 11.7256 0 3D 8.1288 0 4D 25.4647 -0 4D 14.9735 -0 4D 5.6954 0 4D 3.7082 0	.178452		

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

TELLURIUM. Z=52 [Kr]4d(10)5s(2)5p(4)TOTAL ENERGY KINETIC ENERGY POTENTIAL ENERGY VIRIAL RATIO -6611.784043 6611.784050 -13223.56809 -1.999999999 RHOat0 = 622874.99Kato cusp = 2.00073755 1s2s 35 45 ORB.ENERGY 1130.916996-172.755400 -35.754883 -6.647011 -0.700555 <R> 0.029236 0.125850 0.333871 0.794422 2,227963 <R**2> 0.001143 0.018606 0.127199 5.637959 0.711487 <1/R> 51.472008 11.820079 4.315393 1.721886 0.572717 <1/R**2> 5316.282203 567.189131 114.039411 23.344190 2.651395 52.8991 **1**S -0.964664 0.312852 -0.138803 0.061845 0.020204 45.4465 -0.041115 0.057243 25 0.233815 -0.123500 0.018858 2S 24.8600 0.001902 -0.997672 0.532103 -0.246978 -0.081399 65.6488 -0.004049 0.000167 -0.000437 0.000163 3 S 0.000055 -0.310341 16.0400 -0.000139 0.420965 38 -0.210337-0.069302 0.000378 11.4242 0.304298 -1.778781 3S 1.000308 0.339745 4 S 30.4485 -0.000844 -0.114638 0.128010 -0.069568 -0.023624 4 S 7.4618 0.000011 -0.003957 -0.016045 -0.610764 -0.280046 -0.000011 5.3315 0.001178 0.000516 4S -0.641036 -0.223822 13.9235 -0.000205 -0.135154 0.316904 -0.058386 -0.006221 58 0.433791 58 3.4919 0.000004 -0.000228 -0.000262 -0.015384 -0.000002 0.000111 0.000169 55 2.3444 0.002097 0.549980 58 1.5918 0.000000 -0.000034 -0.000040 -0.000673 0.179374 2p 3p ORB.ENERGY -161.734370 -31.084040 4p -4.952561 5p -0.359827 0.107434 0.834979 <R> 0.324966 2.691328 <R**2> 0.014034 0.122270 0.793022 8.338314 <1/R> 11.798907 4.229998 1.615914 0.471710 <1/R**2> 188.446948 37.757092 0.701608 7.485997 <1/R**3> 4590.820851 860.684837 155.430526 11.936268 2P 55.4092 0.057722 0.000214 0.015790 -0.005407 2P 21.5212 0.757303 0.631491 -0.440349 0.133015 3P 46.2296 0.127432 -0.011784 0.051263 -0.017209 3 P 13.0584 -0.000208 -0.9210650.723399 -0.219879 3P 9.5469 0.000342 -0.388965 0.154219 -0.043211 4 P 38.0429 0.092022 -0.030576 0.067070 -0.022171 4 P 6.7573 -0.000210 -0.003564 -0.671899 0.243368 4P 4.6933 0.000011 -0.001050 -0.504924 0.126850 0.007976 0.102147 20.4079 5P -0.1647790.053565 5P 3.0444 -0.000009 0.000121 -0.014301 -0.394122 -0.000035 5P 1.9579 0.000005 0.000655 -0.547374 5P 1.2735 -0.000001 0.000018 -0.000455 -0.215262 3d ORB. ENERGY -22.512343 -2.038281 <R> 0.296029 0.961176 <R**2> 1.079909 0.103481 <1/R> 4.083956 1.368189 <1/R**2> 20.807251 3.396734 <1/R**3> 138.230493 18.648071 3D 19.1502 0.189945 0.004940 3D 11.9116 0.696808 -0.781454 3D 8,2893 0.217717 0.182028 4D 26.1132 -0.017243 0.008693 -0.037499 4D 15.2954 0.280698 5.8285 0.000343 0.536227 4D 3.8606 0.000478 0.456122 4D 2.4677 -0.000134 0.070461 4D

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

IODINE, Z=5	3 [Kr]4d	(10)5s(2)5p(5	5) 2P		
TOTAL ENERG -6917.98088		FIC ENERGY 17.980928		AL ENERGY 5.96181	VIRIAL RATIO -1.99999993
RHOatO = 66	0139.50 К	ato cusp = 2.	.000727		
<r> <r**2> <1/R></r**2></r>	0.028678 0.001100 52.470639	2s -180.949210 - 0.123312 0.017861 12.064949 590.816463 1	0.326110 0.121338 4.421281	4s -7.244349 0.769050 0.666420 1.782144 25.068477	5s -0.821109 2.094420 4.971697 0.611070 3.073379
1S 53.9232 2S 46.3778 2S 25.3200 3S 67.1360 3S 16.5300 3S 11.7430 4S 31.1982 4S 7.7564 4S 5.5959 5S 14.3135 5S 3.6876 5S 2.5058 5S 1.7111	-0.041350 0.002077 -0.003875 -0.000063 0.000273 -0.000950 0.000011 -0.000010 -0.000153	0.313262 0.233029 -0.998597 0.000169 -0.304908 0.292959 -0.111008 -0.003955 0.001165 -0.130049 -0.000215 0.000101 -0.000030	0.139548 0.123356 -0.533745 0.000411 -0.436540 1.788202 -0.124327 0.017184 -0.000621 -0.315258 0.000244 -0.000177 0.000037	0.062924 0.057894 -0.250833 0.000140 -0.219917 1.016648 -0.068867 -0.581290 -0.675335 -0.051735 -0.017394 0.002308 -0.000779	0.021403 0.019834 -0.086007 0.000065 -0.078592 0.365055 -0.024011 -0.275646 -0.261359 -0.006855 0.442124 0.549606 0.178244
<r> <r**2> <1/R> <1/R**2></r**2></r>	2p -169.660337 0.105213 0.013457 12.045262 196.350971 4880.731149	0.317010 0.116335 4.337185 39.660476	4p -5.473347 0.805271 0.737040 1.678107 8.071898	5p -0.403173 2.501704 7.200318 0.510301 0.837936 14.871083	
2P 57.1079 2P 22.0921 3P 47.6375 3P 13.2707 3P 9.7063 4P 39.2034 4P 6.9871 4P 4.9206 5P 20.9853 5P 3.2522 5P 2.1021 5P 1.3652	0.053730 0.773329 0.119094 -0.000909 0.000538 0.086139 -0.000264 0.000031 0.008997 -0.000013 0.000008 -0.000002	0.000290 0.624253 -0.010507 -0.932085 -0.363922 -0.027814 -0.002337 -0.001284 0.092541 0.000175 -0.000040 0.000025	0.014308 -0.427468 0.046630 0.726136 0.148233 0.061235 -0.671132 -0.509596 -0.153148 -0.014932 -0.000020 -0.000577	-0.005622 0.140976 -0.017855 -0.243155 -0.038653 -0.022967 0.255316 0.147401 0.056485 -0.410935 -0.543892 -0.210766	
ORB.ENERGY <r> <r**2> <1/R> <1/R**2> <1/R**3></r**2></r>	3d -24.285681 0.287964 0.097830 4.194206 21.922969 149.256705	4d -2.401195 0.913033 0.971471 1.439107 3.742982 21.250066			
3D 19.5616 3D 12.0593 3D 8.4937 4D 26.9243 4D 15.6155 4D 5.9399 4D 3.9812 4D 2.5304	0.206457 0.645959 0.205748 -0.015706 0.009349 0.000011 0.000439 -0.000133	-0.004338 -0.795614 0.222659 0.008081 0.263784 0.566249 0.427834 0.052510			

TABLE. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions, Z = 2-54See page 118 for Explanation of Table

and the first transfer and the first transfer and the first transfer and transfer a			
XENON, Z=54 [Kr]4d(10)5s(2)5p(6) 1S			
	TIC ENERGY 32.138386	POTENTIAL ENERGY -14464.27673	VIRIAL RATIO -1.999999995
RHOat0 = 698865.13 Kato cusp = 2.000711			
1s ORB.ENERGY 1224.397767- <r> 0.028141 <r**2> 0.001059 <1/R> 53.469284 <1/R**2> 5736.266145</r**2></r>		0.318696 0.745267 0.115870 0.625571 4.527285 1.842538	5s -0.944407 1.980955 4.440087 0.647891 3.506821
1S 54.9179 -0.965401 2S 47.2500 -0.040350 2S 26.0942 0.001890 3S 68.1771 -0.003868 3S 16.8296 -0.000263 3S 12.0759 0.000547 4S 31.9030 -0.000791 4S 8.0145 0.000014 4S 5.8396 -0.000013 5S 14.7123 -0.000286 5S 3.8555 0.000005 5S 2.6343 -0.000001	0.236118 -0.985333	-0.140382	-0.022510 -0.021077 0.088978 -0.000081 0.095199 -0.398492 0.025623 0.274471 0.291110 0.011171 -0.463123 -0.545266 -0.167779
ORB.ENERGY -177.782438 <r> 0.103082 <r**2> 0.012915 <1/R> 12.291694 <1/R**2> 204.419530 <1/R**3> 5182.670677</r**2></r>	3p -35.221651 0.309425 0.110816 4.444510 41.612611 989.845535 18	4p 5p -6.008328 -0.457283 0.777023 2.337950 0.685527 6.276430 1.741492 0.547155 8.690096 0.970729 89.572708 17.825267	
2P 58.7712 0.051242 2P 22.6065 0.781070 3P 48.9702 0.114910 3P 13.4997 -0.000731 3P 9.8328 0.000458 4P 40.2591 0.083993 4P 7.1841 -0.000265 4P 5.1284 0.000034 5P 21.5330 0.009061 5P 3.4469 -0.000014 5P 2.2384 0.000006 5P 1.4588 -0.000002	-0.009861 -0.952677 -0.337900 -0.026340 -0.001665 -0.087491 -0.000240 -0.000083	0.013769 -0.005879 -0.426955 0.149040 0.045088 -0.018716 0.748434 -0.266839 0.132850 -0.031096 0.059406 -0.024100 -0.679569 0.267374 -0.503653 0.161460 -0.149635 0.059721 -0.014193 -0.428353 0.000528 -0.542284 -0.000221 -0.201667	
3d ORB.ENERGY -26.118859 <r> 0.280333 <r**2> 0.092633 <1/R> 4.304379 <1/R**2> 23.067118 <1/R**3> 160.847940</r**2></r>	4d -2.777871 0.870451 0.880863 1.508735 4.099141 24.028996		
3D 19.9787 0.220185 3D 12.2129 0.603140 3D 8.6994 0.194682 4D 27.7398 -0.014369 4D 15.9410 0.049865 4D 6.0580 -0.000300 4D 4.0990 0.000418 4D 2.5857 -0.000133	-0.013758 -0.804573 0.260624 0.007490 0.244109 0.597018 0.395554 0.039786		