✓ NanoEdge™ Outlier Detection Demo Walkthrough

This is the full development and deployment cycle—from signal capture to embedded anomaly detection—optimized for tight SRAM and clean reproducibility.

Step 1: Raw DSP Signal Logging

- Run firmware with SIGNAL_FORMAT undefined
- Watch real-time DSP output over UART (FFT bins, temp, jitter, etc.)
- Validate that your pipeline is transforming raw hardware signals correctly

Step 2: Data Collection for Model Training

- Define SIGNAL_FORMAT in dsp_test.h
- Outputs one space-delimited signal vector per row (128 floats per signal window)
- Post-process as needed (e.g. limit rows with head, format for upload)

🌼 Step 3: Train Outlier Model in NanoEdge AI Studio

- Create a new Outlier Detection project
- Upload your signal CSV/TXT, select active dimensions
- Benchmark various libraries
- Use **Validation tab** to preview results & choose the best inference engine
- Deploy and extract the generated ZIP archive

Step 4: Integrate Inference Library

- Copy headers (* . h) and static library (* . a) into STM32CubeIDE project
- Update linker settings:
 - Add lib/ path to include directories
 - Add lNanoEdgeAI (or appropriate library name) to libraries list
- Define INFERENCE_MODE to enable inference behavior

Step 5: Inference on Real Data

- Run the firmware with TExaSdisplay, PuTTY, or CubeIDE terminal
- The device will:
 - Loop over the entire const float inference data[495][128]
 - Copy one row at a time to a RAM buffer (inf_call[]) to strip const
 - Run neai_oneclass() and print detection results
- Only 512 bytes of RAM used during active inference

🗘 Step 6: Highlight Reusable Buffer Strategy

- Swap static arrays for a custom ru_vec abstraction
- Confirm that inference still works with memcpy() to buffer.pbuf
- Keep inference input lean and prevent duplicate allocations