LES SUITES E05C

EXERCICE N°1 (Le corrigé)

Alice place un capital initial $C_0=3\,000$ \in à un taux annuel de 6%, les intérêts étant simples, c'est-à-dire que le capital d'une année est égal à celui de l'année précédente augmenté de 6 % du capital initial (les intérêts ne sont pas capitalisés chaque année, comme ce serait le cas pour des intérêts composés).

On note C_n le capital de Alice au bout de n années, capital exprimé en euros.

1) Montrer que, pour tout entier n, $C_{n+1} = C_n + 180$. Qu'en déduit-on?

On sait que, chaque année, le capital C_n est augmenté de 6 % du capital initial C_0 .

Or
$$\frac{6}{100} \times C_0 = \frac{6}{100} \times 3000 = 180$$
.

Donc, pour tout entier naturel n: $C_{n+1} = C_n + 180$

On en déduit que (C_n) est une suite arithmétique de raison r=180 et de premier terme $C_0 = 180$

2) Pour tout entier n, exprimer C_n en fonction de n.

Pour tout entier natural n,

$$C_n = C_0 + rn$$

$$C_n = 3000 + 180 n$$

3) De quel capital Alice dispose-t-elle au bout de 10 ans?

Il s'agit de calculer $\,C_{10}\,$.

$$C_{10} = 3000 + 180 \times 10$$

$$C_{10} = 4800$$

Au bout de 10 ans, alice dispose de 4800 €

4) Au bout de combien d'années le capital a-t-il doublé?

Il s'agit de résoudre $C_n \ge 2 \times 3000$

Les inéquations suivantes sont équivalentes.

$$C_n \geqslant 6000$$

$$3000 + 180 n \ge 6000$$

 $3000+180n-3000 \ge 6000-3000$ (Le sens de l'inégalité ne change pas : relire <u>ce cours</u>)

$$180 n \ge 3000$$

$$\frac{180 \, n}{180} \ge \frac{3000}{180}$$
 (Le sens de l'inégalité ne change pas)

$$n \geqslant \frac{50}{3} \approx 16,67$$

On en déduit que le capital aura doublé au bout de la 17^e année

5) Au bout de combien d'années le capital dépasse-t-il 10 000 €?

Il s'agit de résoudre $C_n \ge 10000$

Les inéquations suivantes sont équivalentes.

$$C_n \ge 10000$$

$$3000+180 n \ge 10000$$

 $3000+180n-3000 \ge 10000-3000$ (Le sens de l'inégalité ne change pas : relire <u>ce cours</u>)

$$180 \, n \, \geq \, 7000$$

$$\frac{180 \, n}{180} \ge \frac{7000}{180}$$
 (Le sens de l'inégalité ne change pas)

$$n \ge \frac{350}{9} \approx 38,89$$

On en déduit que le capital dépassé 10 000 € au bout de la 39^e année

LES SUITES E05C

EXERCICE N°2 (Le corrigé)

En ce début d'année, Rémy a pris de bonnes résolutions. Il a décidé d'arrêter de fumer. Il fume 140 cigarettes par semaine et va réduire progressivement sa consommation hebdomadaire de 4 cigarettes chaque semaine.

1) Montrer que cette situation peut être modélisée par une suite arithmétique.

Chaque semaine, Rémy diminue sa consommation de 4 cigarettes. Sa consommation hebdomadaire peut donc être modélisée par une suite arithmétique de raison -4.

2) On note (u_n) cette suite. En déterminer le premier terme u_0 et la raison r.

Au départ Rémyfume 140 cigarettes par semaine, donc $u_0 = 140$.

Il réduit consommation hebdomadaire de 4 cigarettes chaque semaine donc r = -4

Il est possible, sur votre copie, de rassembler les deux questions (le précisant bien sûr).

3) Combien de cigarettes fume Rémy après 5 semaines d'efforts?

Il s'agit de calculer u_5 .

On pourrait calculer u_1 , u_2 etc... mais on a une formule pour faire moins de calculs.

D'après la question 2) la suite est arithmétique de raison -4.

On peut donc écrire que pour tout entier nature n,

$$u_n = 140 - 4n$$
.

En particulier,

$$u_5 = 140 - 4 \times 5$$

$$u_5 = 120$$

Donc, au bout de 5 semaines Rémy fume | 120 cigarettes par semaine

4) Au bout de combien de semaines Rémy aura-t-il complètement arrêté la cigarette ?

Il s'agit de résoudre $u_n = 0$.

Les équations suivantes sont équivalentes :

$$u_n = 0$$

$$140 - 4n = 0$$

$$140 - 4n - 140 = 0 - 140$$

$$-4 n = -140$$

$$\frac{-4n}{-4} = \frac{-140}{-4}$$

$$n = 35$$

On en déduit que, Rémy aura arrêté au bout de 35 semaines

5) Entre le moment où Rémy a décidé de faire des efforts et le moment où il a enfin arrêté de fumer, combien de cigarettes aura-t-il fumé en tout ?

Il s'agit de calculer la somme des 36 premiers termes de notre suite arithmétique.

En la notant S, on peut écrire :

$$S = 36 \times \frac{140 - 0}{2}$$

$$S = 2520$$

Rémy aura fumé 2520 cigarettes

LES SUITES E05C

EXERCICE N°3 (Le corrigé)

On s'intéresse au recyclage des emballages ménagers en plastique issus de la collecte sélective (EMPCS). Le tableau ci-dessous donne l'évolution de la masse d'EMPCS recyclés entre 2011 et 2016.

Cette masse est exprimée en millier de tonnes et arrondie au millier de tonnes.

Année	2011	2012	2013	2014	2015	2016
Masse d'EMPCS recyclés	229	243	250	256	266	282

Source: http://www.statistiques.developpement-durable.gouv.fr

1) Justifier que le taux d'évolution global de la masse d'EMPCS recyclés entre 2011 et 2016, exprimé en pourcentage et arrondi à l'unité, est de 23 %.

En notant t_g le taux cherché, on peut écrire,

$$t_g = \frac{282 - 229}{229} \approx 0.23$$

Soit environ 23 %.

2) En déduire le taux d'évolution annuel moyen de la masse d'EMPCS recyclés entre 2011 et 2016.

Entre 2011 et 2016, il y a eu 5 évolutions.

En notant t_m le taux annuel moyen, on peut écrire,

$$t_{m} = (1 + t_{g})^{\frac{1}{5}} - 1$$

$$t_{m} \approx 0,0425$$

Soit environ 4,25 %

Pas de panique...voici une autre rédaction avec plus de notations mais plus simples à comprendre :

Entre 2011 et 2016, il y a eu 5 évolutions.

De plus,

3) Les nombres 229, 243 et 250 sont-ils les premiers termes d'une suite arithmétique ? Géométrique ?

Ainsi, si la suite est arithmétique, la raison ne peut être que 14.

et
$$250 - 243 = 7 \neq 14$$

Donc la suite ne peut pas être arithmétique.

$$\frac{243}{229} \approx 1,06$$

Ainsi, si la suite est géométrique, la raison ne peut être que proche de 1,06.

et
$$\frac{250}{243} = 1,03 \neq 1,06$$

Donc la suite ne peut pas être géométrique

On fait l'hypothèse qu'à partir de 2016, le taux d'évolution annuel de la masse d'EMPCS recyclés est constant et égal à 4,2 %.

La masse d'EMPCS recyclés au cours de l'année (2016+n), exprimée en millier de tonnes, est modélisée par le terme de rang n d'une suite (u_n) de premier terme $u_0=282$.

4) Justifier que la suite (u_n) est géométrique. Préciser sa raison q.

Une augmentation de 4,2 % correspond à un coefficient multiplicateur *CM* valant 1,042. Ainsi, pour passer d'un terme au suivant, on multiplie par 1,042.

La suite (u_n) est donc bien géométrique de raison q = 1,042 et de 1^{er} terme $u_0 = 282$

5) Exprimer u_n en fonction de l'entier n.

Pour tout entier nature n,

$$u_n = u_0 \times q^n$$

$$u_n = 282 \times 1,042^n$$

6) En déduire une estimation de la masse d'EMPCS recyclés en 2019.

2019 = 2016+3, il s'agit donc de calculer
$$u_3$$

$$u_3 = 282 \times 1,042^3 \approx 319$$

En 2019, on peut estimer la masse d'EMPCS recyclés à environ 319 milliers de tonnes

LES SUITES E05

EXERCICE N°1

Alice place un capital initial $C_0=3\,000$ \in à un taux annuel de 6%, les intérêts étant simples, c'est-à-dire que le capital d'une année est égal à celui de l'année précédente augmenté de 6 % du capital initial (les intérêts ne sont pas capitalisés chaque année, comme ce serait le cas pour des intérêts composés).

On note C_n le capital de Alice au bout de n années, capital exprimé en euros.

- 1) Montrer que, pour tout entier n, $C_{n+1} = C_n + 180$. Qu'en déduit-on?
- 2) Pour tout entier n, exprimer C_n en fonction de n.
- 3) De quel capital Alice dispose-t-elle au bout de 10 ans?
- 4) Au bout de combien d'années le capital a-t-il doublé?
- 5) Au bout de combien d'années le capital dépasse-t-il 10 000 €?

EXERCICE N°2

En ce début d'année, Rémy a pris de bonnes résolutions. Il a décidé d'arrêter de fumer. Il fume 140 cigarettes par semaine et va réduire progressivement sa consommation hebdomadaire de 4 cigarettes chaque semaine.

- 1) Montrer que cette situation peut être modélisée par une suite arithmétique.
- 2) On note (u_n) cette suite. En déterminer le premier terme u_0 et la raison r.
- 3) Combien de cigarettes fume Rémy après 5 semaines d'efforts?
- 4) Au bout de combien de semaines Rémy aura-t-il complètement arrêté la cigarette ?
- 5) Entre le moment où Rémy a décidé de faire des efforts et le moment où il a enfin arrêté de fumer, combien de cigarettes aura-t-il fumé en tout ?

EXERCICE N°3

On s'intéresse au recyclage des emballages ménagers en plastique issus de la collecte sélective (EMPCS). Le tableau ci-dessous donne l'évolution de la masse d'EMPCS recyclés entre 2011 et 2016.

Cette masse est exprimée en millier de tonnes et arrondie au millier de tonnes.

Année	2011	2012	2013	2014	2015	2016
Masse d'EMPCS recyclés	229	243	250	256	266	282

Source: http://www.statistiques.developpement-durable.gouv.fr

- 1) Justifier que le taux d'évolution global de la masse d'EMPCS recyclés entre 2011 et 2016, exprimé en pourcentage et arrondi à l'unité, est de 23 %.
- 2) En déduire le taux d'évolution annuel moyen de la masse d'EMPCS recyclés entre 2011 et 2016.
- **3)** Les nombres 229, 243 et 250 sont-ils les premiers termes d'une suite arithmétique ? Géométrique ?

On fait l'hypothèse qu'à partir de 2016, le taux d'évolution annuel de la masse d'EMPCS recyclés est constant et égal à 4,2 %.

La masse d'EMPCS recyclés au cours de l'année (2016+n), exprimée en millier de tonnes, est modélisée par le terme de rang n d'une suite (u_n) de premier terme $u_0=282$.

- 4) Justifier que la suite (u_n) est géométrique. Préciser sa raison q.
- 5) Exprimer u_n en fonction de l'entier n.
- 6) En déduire une estimation de la masse d'EMPCS recyclés en 2019.