

UNIQ - GLAZEN-BALUSTRADE-SYSTEEM

TYPE SB-0 1.0S

Montage op de vloer na aanbrengen van een afwerkvloer Toepassingsgebied met lijnbelasting tot 0,8 kN/m

Berekeningsrapport profielsysteem voor Nederland

IMS - Nederland B.V. Gildenweg 21 NL-3334 KC Zwijndrecht

Rapportage opgesteld d.d. 14-1-2018 te Eindhoven.

Revisie -

Aantal bladen: 9 + bijlagen

Opgesteld door:

Arsycon Glas en Geveladvies

De heer ir. Klaas Schoustra

INHOUDSOPGAVE

- Algemeen
- Conclusies en opmerkingen
- Geldende normen
- Constructieve uitgangspunten
- Berekeningen:
 - o Beglazing
 - o Profiel
 - Verankering
- Bijlagen

ALGEMEEN

Het aluminium balustradeprofiel is ontworpen als U-vormig klemprofiel met een doorlopende klemstrip, voor doorvalveilige beglazing. Type SB-O 1.0S is op de afgewerkte vloer gemonteerd en kan een lijnlast van 0,8 kN/m opnemen bij een hoogte van 1200 mm+ vanaf de afgewerkte vloer in twee richtingen.

Systeemopbouw:

- Montage U-vormig klemprofiel op een afgewerkte vloer of staalconstructie.
- Standaard verankering met RVS 20x2mm onderlegring en M12 betonschroeven of met M10 bouten op de staalconstructie.
- De onderzijde van het profiel bevindt zich op de afgewerkte vloer.
- Bovenzijde balustrade tot 1200 mm+ bovenzijde afgewerkte vloer.
- Opbouw beglazing 8.8.2, 8.8.4, 8.12.4, 10.10.2 of 10.10.4 gehard gelaagd.
- Aluminium klemstrippen aan de binnenzijde van het profiel, over de volledige insteekdiepte en lengte van de beglazing.
- Contactonderbrekingen van kunststof tussen glas en aluminium.
- Aluminium afwerkprofielen.

CONCLUSIES EN OPMERKINGEN

Het getoetste U-vormige aluminium balustradeprofiel is geschikt om een lijnlast van 0,8 kN/m op te kunnen nemen van binnen naar buiten en van buiten naar binnen gericht, bij een vrije balustradehoogte tot 1200mm+. Het systeem voldoet daarmee aan het Bouwbesluit 2012 voor klasse A (ruimten met een woonfunctie) en B (overige ruimten en ruimten met een kantoorfunctie) volgens NEN-EN 1991-1.1.

Voor klasse C (ruimten met een bijeenkomstfunctie) en D (winkelruimten) gelden hogere eisen en is een zwaarder profielsysteem noodzakelijk.

Het bepalen van de doorval en in voorkomende gevallen ook de windbelasting, die van toepassing is, blijft de verantwoordelijkheid van de projectconstructeur. De berekeningen in dit rapport, van de verankering aan de onderconstructie en beglazing zijn indicatief; ze tonen de geschiktheid van het profielsysteem aan. Per situatie dient de constructeur een berekening te maken voor de juiste beglazing en verankering.

GELDENDE NORMEN

- Bouwbesluit 2012
- NEN-EN 1990 (2011): Grondslagen voor constructief ontwerp.
- NEN-EN 1991-1.1 (2011): Horizontale belastingen op afscheidingen.
- NEN 2608 (2014): Vlakglas voor gebouwen Eisen en bepalingsmethode.
- NEN-EN 1999-1.1 (2011): Ontwerp en berekening van aluminium constructies.
- ETAG-001-C (2008): Metalen ankers voor bevestiging in beton.

Tabel NB.6 — Horizontale belastingen, tijdsduur en zones op afscheidingen bij een hoogteverschil

	G rep		F _{rep}	
Ruimten	Voorgeschreven hoogte of zone a a	Voorgeschreven hoogte of zone a	Zone b	Zone a + b
Niet-gemeenschappelijke ruimten met een woonfunctie Klasse A	0,3 kN/m ^c	0,5 kN ^c	0,35 kN ^{cd}	0,2 kN ^{bcd}
	1 min	1 min	10 s	24 h
Gemeenschappelijke ruimten met een	0,5 kN/m ^c	1 kN ^c	0,35 kN ^{cd}	0,2 kN ^{bcd}
woonfunctie Klasse A	1 min	1 min	10 s	24 h
Niet-gemeenschappelijke ruimten van een celfunctie, niet gelegen in een cellengebouw en van een logiesfunctie ^{e f} Klasse A Vlieringen en zolders van bovengenoemde functie, niet bereikbaar langs vaste trap en met vrije hoogte van minder dan 2,2 m	0,5 kN/m 1 min	1 kN 1 min	0,5 kN 10 s	0,3 kN ^b 24 h
Overige gebruiksfuncties voor het personenvervoer, bijeenkomstfuncties, sportfuncties en de gebruiksfunctie "bouwwerk, geen gebouw zijnde" met een gedeelte mede bestemd voor bezoekers "" Klasse C +D Ter plaatse van opperviakken waar zitplaatsen vast aan de vloer verbonden zijn	3 kN/m	1 kN	0,7 kN	0,5 kN ⁵
	5 min	5 min	5 min	7 × 24 h
Overige ruimten	0,8 kN/m	1 kN	0,7 kN	0,5 kN ^b
Klasse B	5 min	5 min	5 min	7×24 h

- Voor zones zie figuur NB.1.
- Deze belasting is niet van toepassing op afscheidingen langs trappen.
- ^c Zie voetnoot b uit tabel NB.20 B.1 van NB bij NEN-EN 1990.
- d In zone b mag bij plaatconstructies een afstand van 250 mm tussen de rand van de plaat en het zwaartepunt van de last worden aangehouden, op voorwaarde dat zich op een afstand van maximaal 100 mm van de rand van de plaat een balustrade of ander draagkrachtig element bevindt. Bij plaatoonstructies met één of meer afmetingen kleiner dan 500 mm moet worden aangenomen dat het
 - zwaartepunt van de last in het midden van deze kleine afmeting ligt.
- Waarbij de groep van niet-gemeenschappelijke ruimten, gelegen binnen de omhullende ruimte van een andere gebruiksruimte die bijdraagt aan het functioneren van de beschouwde gebruiksfunctie, buiten beschouwing blijft.
- Daaronder mede begrepen een buitenbergruimte of een garage.
- Bij tribunes moet bovendien rekening zijn gehouden met een veranderlijke gelijkmatig verdeelde horizontale belasting die kan optreden als gevolg van de bewegende mensenmassa. Deze horizontale belasting bedraagt 10 % van de verticale belasting en moet wat betreft de richting zijn beschouwd als een vrije belasting.
- In aanvulling op (2) moet een geoonoentreerde belasting F_k als een vrije belasting in verticale richting van 1 kN in rekening worden gebracht voor zover deze belasting, gegeven de constructie, in de praktijk kan worden teweeggebracht.

Belastingen op balustrades conform NEN-EN 1991-1.1

CONSTRUCTIEVE UITGANGSPUNTEN

Klemsysteem:

De doorbuiging van de beglazing aan de bovenzijde van de balustrade is sterk afhankelijk van de inklemming in het U-vormige aluminium profiel. Het SB balustradesysteem kenmerkt zich door een volledige inklemming van de beglazing. Dit wordt bereikt door het toepassen van een relatief dunne pakking in combinatie met een aluminium klemstrip over de volledige klemhoogte en profiellengte, aan de binnenzijde van de balustrade. Hierdoor zal de doorbuiging en optredende spanning van de beglazing geringer zijn dan bij systemen waarbij de beglazing wordt geklemd met losse keggen en rubbers. De klemstrippen kunnen met deze bevestigingswijze niet lostrillen.

Lijnbelasting:

Het SB-O1-S profielsysteem is berekend met een horizontale lijnbelasting van 1 kN/m van binnen naar buiten en van buiten naar binnen gericht op een hoogte van 1200 mm+ vanaf bovenzijde afgewerkte vloer. De belasting is verdeeld over een zone van 100 mm breed en grijpt aan op 50 mm vanaf bovenzijde. Hiermee wordt voldaan aan de Nederlandse klasse B voor een lijnbelasting van 0,8 kN/m en aan de eis van 0,5 en 0,3 kN/m klasse A.

Windbelasting:

De windbelasting is afhankelijk van de gebouwhoogte, regio, type bebouwing en locatie in de gevel. Voor het profielsysteem is de maximaal toelaatbare windbelasting berekend.

Puntbelasting:

De puntbelasting voor klasse A en B bedraagt maximaal 1,0 kN en kan aangrijpen op 100mm vanaf de bovenzijde of 0,7 kN op ieder ander punt. Via de beglazing kan deze zich verdelen over de profiellengte en is niet maatgevend voor dimensionering van de klemprofielen en wordt als zodanig niet verder beschouwd. Voor de optredende glasspanning kan de puntlast wel maatgevend zijn, afhankelijk van de paneelbreedte en aanwezigheid van een leuning op het glas. Bij het toepassen van een leuning met voldoende sterkte, mag de puntlast verdeeld worden over twee glaspanelen en zijn smallere glaspanelen mogelijk.

Doorbuiging:

De maximaal toelaatbare horizontale doorbuiging voor de beglazing bedraagt 20 mm op 1200 mm+ en voor de bijkomende doorbuiging van het profiel door vervorming L:100 = 1200 : 100 = 12 mm.

Belastingfactoren:

- Referentieperiode 50 jaar (NEN-EN 1990-1.1)
- Gevolgklasse CC2 (NEN-EN 1990-1.1)
- Partiële belastingfactoren:
 - o y = 1,5 voor de sterkte
 - \circ γ = 1,0 voor de doorbuiging en bij glasbreuk van een blad
- Belastingduur voor de beglazing 5 minuten bij 17°C (NEN 2608)

GLASBEREKENING

Glaspanelen op 1200 mm+ zonder leuning

- Opbouw 8.12.PVB, 8 glasblad mm aan publiek(aanval)zijde
- Paneelbreedte 1000 mm
- Doorbuiging beglazing = 13,3 / 1,5 = 9 mm bij lijnlast van 0,8 kN/m
- · Glasspanning:
 - Volledige sterkte bij lijnlast 0,8 kN/m = 24 N/mm2
 - Volledige sterkte puntlast 1 kN = 42 N/mm2
 - Reststerkte 12 mm met lijnlast 0,8 kN/m = 39 N/mm2
 - Reststerkte 12 mm met puntlast 1 kN = 62 N/mm2
- Toelaatbaar is 78 N/mm2 op glasrand volgens NEN 2608, zie bijlage
- N.B. voor een balustrade met doorgaande leuning voldoet een 10.10.2 geharde beglazing doordat de puntlast bij breuk van een glasblad over twee ruiten wordt verdeeld.

Glasspanning bij reststerkte en puntlast

Glasspanning bij volledige opbouw en puntlast

Glaspanelen op 1000 mm+ zonder doorgaande leuning

- Opbouw 10.10.PVB
- Paneelbreedte 1200 mm
- Geen doorgaande leuning op bovenzijde beglazing
- Doorbuiging beglazing = 8,3 / 1,5 = 5,5 mm bij lijnlast van 0,8 kN/m
- Glasspanning:
 - Volledige sterkte bij lijnlast 0,8 kN/m = 20 N/mm2
 - Volledige sterkte puntlast 1 kN = 35 N/mm2
 - Reststerkte 10 mm met lijnlast 0,8 kN/m = 45 N/mm2
 - Reststerkte 10 mm met puntlast 1 kN = 76 N/mm2
- Toelaatbaar volgens NEN 2608, op glasrand 78 N/mm2 (zie bijlage)
- N.B. voor een glaspaneel smaller dan 1200mm is een doorgaande leuning nodig of een ruit van 8.12.4 gehard (8 mm blad aan gebruikerszijde).

Glasspanning bij reststerkte zonder doorgaande leuning

Glasspanning bij volledige opbouw zonder doorgaande leuning

PROFIELBEREKENING

Materiaaleigenschappen:

- Aluminium EN-AW 6060-T66
- fo = 160 N/mm2 tot 3 mm en 150 N/mm2 vanaf 3 mm dikte (0,2% rekgrens)
- fu = 215 N/mm2 tot 3 mm en 195 N/mm2 vanaf 3 mm dikte (treksterkte)
- Ym1 = 1,1 voor buiging
- Ym2 = 1,25 voor bevestigingspunten
- Toelaatbare buigspanning fo / 1,1 = 160 / 1,1 = 145 N/mm2 (tot 3 mm) resp. 150 / 1,1 = 136 N/mm2 (vanaf 3 mm).
- Toelaatbare treksterkte fu / 1,25 = 215 / 1,25 = 172 N/mm2 (tot 3 mm) resp. 195 / 1,25 = 156 N/mm2 (vanaf 3 mm).
- Plastische vervorming is toegestaan in de knopen van de profieldelen tot fu / Ym1

Bijdrage tot de totale doorbuiging aan de bovenzijde van de balustrade u = (1200-50-20) / 90 x e;x

Het rekenmodel is opgezet voor een profiellengte van 100 mm (zie bijlage).

Eigen gewicht:

- 20 mm glas, glashoogte 1170 mm
- $G = Y \times t \times sg \times h + profiel$
- $G = 1.2 \times (20 \times 25 \times 1.17 + 50) = 0.8 \text{ kN/m}$
- Fg = 0.08 kN/100 mm

Belasting van binnen naar buiten (zie bijlage):

- Belasting op profiel:
 - \circ QI = 1,0 kN/m
 - o $M = Yd \times Ql \times h = 1.5 \times 1000 \times (1200-50-20) = 1.70 \text{ kNm/m}$
 - \circ M = Fa1 x 72 + Fa2 x 48
 - \circ Fa1 = 72/48 x Fa2 = 1.50 x Fa2
 - \circ Fa2 = 0.67 x Fa1
 - \circ M = Fa1 x 72 + 0.67 x Fa1 x 48
 - \circ Fa1 = M / 104 = 1,70 / 104 = 16,3 kN/m = 1,63 kN/100mm
 - \circ Fa2 = 0,67 x 1,63 = 10,1 kN/m = 1,0 kN/100mm
 - o Fb = Fa1 + Fa2 Ql = $1,63 + 1,0 1,5 \times 0,1 = 24,8 \text{ KN/m} = 2,48 \text{ kN/100 mm}$
- Berekeningsresultaten (zie bijlage):
 - Maximum buigspanning = 133 N/mm2 in knoop 16 (172 N/mm2 toelaatbaar)
 - Horizontale verplaatsing buitenbeen e;x = 0,98 / 1,5 = 0,65 mm
 - Horizontale verplaatsing op bovenzijde = (1200-50-20) / 90 x 0,65 = 8 mm (toelaatbaar = 1200 / 100 = 12 mm)
 - \circ Rz = 4,9 kN/100 mm, per anker 2,5x4,9 = 12,3 kN/250 mm
 - o $Rx = 0.15 \text{ kN}/100 \text{ mm} = 2.5 \times 0.15 = 0.4 \text{ kN}/250 \text{ mm}$

Belasting van buiten naar binnen (zie bijlage):

- Belasting op profiel:
 - \circ QI = 1,0 kN/m
 - o $M = Yd \times Ql \times h = 1.5 \times 1000 \times (1200-50-20) = 1.70 \text{ kNm/m}$
 - \circ M = Fd x 57
 - \circ Fd = 1,70 / 57 = 29,8 kN/m = 2,98 kN/100mm
 - \circ Fc = 29,8 1,5 = 28,3 kN/m = 2,83 kN/100mm
- Berekeningsresultaten (zie bijlage):
 - Maximum buigspanning = 156 N/mm2 in knoop 7 (172 N/mm2 toelaatbaar)
 - Horizontale verplaatsing binnenbeen e;x = 1,61/1,5 = 1,07 mm
 - Horizontale verplaatsing aan bovenzijde = (1200-50-20) / 90 x 1,07 = 13 mm (toelaatbaar = 1200 / 100 = 12 mm; 1mm overschrijding is acceptable voor comfort).
 - \circ Rz = 5,5 kN/100 mm, per anker = 2,5x5,5 = 13,8 kN/250 mm
 - o Rx = 0.15 kN/100 mm, per anker = $2.5 \times 0.15 = 0.4 \text{ kN}/250 \text{ mm}$

Controle bevestingspunten (knoop 20):

- Krachten
 - o Maatgevend is de belasting van buiten naar binnen.
 - o Ankers M12 h.o.h. 250 mm
 - o Rz max = 13.8 kN/250 mm
 - o Buiging profiel is niet maatgevend bij gebruik van RVS onderlegringen 20x2 mm.
- Pons anker
 - \circ Rz = 13,8 kN
 - \circ F;Rd = 0,6 x π x d x t x fu / Ym2
 - o F;Rd-alu = 0,6 x π x 24 x 5 x 195 / 1,25 = 35,3 kN (> 13,8 kN voldoet)
 - \circ F;Rd-onderlegring = 0,6 x π x 24 x 2 x 500 / 1,25 = 36,1 kN (> 13,8 kN voldoet)

Controle fixatieschroeven in klemstrip:

- o M8x9,5 304 h.o.h. 300 mm
- o Minimum diepte = 5 mm na aandraaien schroef
- \circ Fd = 29,8 kN/m
- o F;Rd = 0,6 x π x d x t x fu / Ym2
- \circ F;Rd-alu = 0,6 x π x 8 x 5 x 195 / 1,25 = 11,8 kN / schroef
- o F;alu = 29,8 x 0,3 = 8,9 kN (< 11,8 kN respected) voldoet)

Conclusie: U-profiel voldoet aan de eisen.

Toelaatbare windbelasting (informatief):

- Overeenkomstige windlast met lijnlast $QI = 1,5 \times 1,0 = 1,5 \text{ kN/m}$.
- $h \times Qw \times \frac{1}{2} h = 1.5 \text{ kN/m}$
- $1.2 \times Qw \times \frac{1}{2} \times 1.2 = 1.5 \text{ kN/m}$
- Qw = 2,08 kNm2/m
- Er is geen overcapaciteit in het profiel i.v.m. toelaatbare doorbuiging binnenbeen
- $Qw = y \times Cp; net \times q; p$
- y = 1,5 partiële veiligheidsfactor voor de windbelasting
- C;net = drukcoëfficient afhankelijk van de gebouwzone A t/m D
- q;p = extreme stuwdruk volgens tabel NB-5 van NEN-EN 1991-1.4 (windbelasting)

ANKERBEREKENING

Een standaard berekening voor een anker in de betonvloer is gemaakt op informatieve basis, voor een lijnlast van 1 kN/m (zie bijlage).

Fischer FBS12 - 130x30 betonschroef, thermisch verzinkt klasse 5.8 of RVS A4

- C25/30 gescheurde beton.
- Fv = 13.8 kN
- Fs = 0.4 kN
- Ankers h.o.h. 250 mm.
- Randafstand 80mm
- Minimum ankerdiepte 100 mm in de gewapende beton.
- Ankerbelasting 98%.
- Alternatief met randafstand van 90 mm voor C20/25 beton

De projectconstructeur dient de definitieve ankerberekening te maken.

BIJLAGEN

- o Toelaatbare glasspanningen
- o Berekening glasspanningen en vervormingen (4 stuks)
- o Berekening aluminium profiel (2 stuks)
- Voorbeeldberekening verankering

REKENWAARDE BUIGTREKSTERKTE G	LAS volgens NEN	2608;2014					
ARSYCON GLAS EN GEVELADVIES Software versie 19-11-2014							
Software versie 19-11-2014							
Niet voorgespannen glas	f;gk	k;sp	k;sp-draadglas				
	45	1,00	0,78				N/mm2
V	f.L.	I	f.bl. loon of all				N/2
Voorgespannen glas half gehard (versterkt)	f;bk	k;sp 1,00	f;bk-k;sp x f;gk				N/mm2
gehard (voorgespannen)		1,00	75				
geëmailleerd half gehard	45	0,78	10				
geëmailleerd gehard		0,78	40				
gegoten figuurglas half gehard		0,80	19				
gegoten figuurglas gehard	90	0,80	54				
Modificatiefactoren						Gekozen waarde	
							belasting op vlak of op zijkant
Randkwaliteit k;e	loodrecht 0,80	zijkant 0,80			luo	0,80	(geslepen rand)
ongehard half gehard	1,00	0,80			k;e k;e	1,00	ongehard half gehard
gehard	1,00	1,00			k;e	1,00	gehard
Type belasting k;a	lineair	niet lineair					
belastingoppervlak (mm2)	nvt	10.000					oppervlak onder puntlast = belastingoppervlak
k;a	1,0	1,14			k;a	1,14	k;aNL = 1,664*(Abelast)^(- 1/25)
K,d	1,0	1,14			K,a	1,14	1/23)
Belastingduur k;mod	sec				sec	300	
5 sec							
10 sec 1 minuut							
5 minuten	60 300						
1 uur							
24 uur							
48 uur							
1 week							
4 weken 50 jaar							
SUJaai	1.370.713.000						
corrosieconstante c	randzone	16			С	16	
	middenzone						
	spouwzijde	27					
	gelaagd	40					
	foliezijde overige	18 16			k;mod	0,77	k;mod = (5/sec)^(1/c)
	Overige	10			клиос	0,77	k,mod = (5/300) (1/0)
Zone k;z	midden plaat	rand	op hoek	rondom gat			
							hoek = ongehard glas
ongehard	nvt	nvt	nvt	nvt	I	1.00	(r = 3,41 x t;pl)
half gehard gehard	1,00 1,00	1,00 0,90	0	1,00 0,90	k;z k;z	1,00 0,90	rand = 1,5*t;n (halfgehard) rand = 1,0*t;n (gehard)
gendra	2,00	3,30			.,,2	2,50	-,,- (801010)
Materiaalfactor Ym	windbelasting	overige					
Ym;A					Ym;A		ongehard glas
Ym;V	1,2	1,2			Ym;V	1,2	(half)gehard glas
Rekenwaarde buigsterkte glas							
(N/mm2)	ongehard				f;mt;u;d	17,7	ongehard float glas
	1	× k × k	∨ k ∨ f				half gehard (thermisch
	$f_{mt} = f_{mt}$	a ^ n _e × K	$_{\text{mod}} \times k_{\text{sp}} \times f_{\text{g;k}}$		f;mt;u;d	42,9	versterkt)
	mit,u,u	2	m;A		f;mt;u;d	78,3	gehard (voorgespannen)
	(half)gehard				f;mt;u;d		geëmailleerd half gehard
			k vf k vk	√(f _k ∨f)			
	$f_{\text{mt;u;d}} = \frac{\kappa_e \times}{}$	na ^ nmod ^	$\frac{n_{sp} \wedge r_{g;k}}{n_{e} + n_{e} \wedge n_{e}} + \frac{n_{e} \wedge n_{e}}{n_{e} \wedge n_{e}}$	$\frac{\mathbf{z} \times (f_{b;k} - k_{sp} \times f_{g;k})}{\gamma_{m;V}}$	f;mt;u;d	47,1	geëmailleerd gehard
		γ _{m;A}	1	γ _{m;V}	f;mt;u;d	33,5	gegoten figuurglas half gehard
					f;mt;u;d	58,2	gegoten figuurglas gehard
					f;mt;u;d	13,8	spiegeldraadglas ongehard
	· · · · · ·						

Toelaatbare glasspanning bij 5 minuten belasting op glasrand (randzone).

SJ MEPLA Berekeningsprotocol:

Geometrie:

Rand	nd Randpunt		Middelpur	nt boog	Draairichting
	mm	mm	mm	mm	+/-
1	0.00	0.00			
2	1200.00	0.00			
3	1200.00	900.00			
4	0.00	900.00			

Ondersteuning:

Randondersteuning:

Rand _____Type ondersteuning ______ 1 w,u,v, ϕ , θ : vast (volledig ingeklemd)

Veerondersteuning:

С_Ө								
		mm	_mm	_mm	N/mm	N/mm	N/mm	Nmm
1 0.00e+000		0.0	0.0	0.0	1.000e+000	1.000e+000	0.000e+000	0.00e+000
1 0.00e+000	1	1000.0	0.0	0.0	0.000e+000	1.000e+000	0.000e+000	0.00e+000

 C_x

 C_ϕ

Lagen:

Laagopbouw:

Pakket	Laag	Beschrijving				
1	3	Glas, thermisch voorgespannen				
1	2	PVB 5 minuten 17C				
1	1	Glas, thermisch voorgespannen				

Pakket Laag x y z

Karakteristieke waarden:

Pakk	et	Laag	E-mod.	ν	Dikte	Dichtheid	αt	ΔT
			N/mm²		mm	kg/m³	1/K	K
1	3	7	0000.00	0.23	9.70	2550.00 1	.0000e-005	0.00

1	2	4.96	0.50	1.52	1070.00 8.0000e-005	0.00
1	1	70000.00	0.23	9.70	2550.00 1.0000e-005	0.00

Belastingen:

Geconcentreerde belastingen:

Pakket	X	У	Fx	FУ	Fz	lx	ly
	mm	mm	N	N	N	mm	mm
1	100.00	800.00	0.00	0.00 -10	00.00	200.00	200.00

Lijnbelastingen:

Pakket		van		naar	dx	dХ	qz
	X	У_	X	У	N/mm_	N/mm_	N/mm_
1	0.00	850.00	1200.00	850.00	0.00	0.00	-0.80

Constante en lineair stijgende vlakbelastingen: zie belastingsgeval

Eigengewicht:

Hellingshoek van de plaat: 90.00° Grad
Richtingsvector van de gravitatiekracht [9.81 m/s²]:

_____Vx____Vy____Vz___
0.00000 -1.00000 0.00000

Berekeningsmethode:

geometrisch lineair
statische berekening

Eigenschappen van de eindige elementen mesh::

Elementgrootte : 80.0 mm

Aantal elementen : 165

Aantal knooppunten : 713 (per pakket)

Aantal van onbekend : 6138

Belastingcombinatie: 1 (Lijnlast 0,8 kN/m volledige sterkte)

Coefficienten / veiligheidsfactoren:

		•			Klima	aat	
Eigen gewic	htWind_	Sneeuw_	Lijn_	Punt_	Δρ,ΔΤ	ΔΗ	_Afschuiving
1.2	0.00	0.00	1.50	0.00	0.00	0.00	1.00

Belastingcombinatie:

	Wind	Sneeuw	Klimaat
	N/mm²	N/mm²	
buiten	0.00000	0.00000	geen klimaatbelasting
hinnen	0 00000		

Resulterende vlakbelasting t.g.v. wind en sneeuw:

	N/mm	2							
buiten	0.00000	N/mm²	=	0.00000	*	0.00	+0.00000	*	0.00
binnen	0.00000	N/mm^2	=	0.00000	*	0.00			

Bijkomende begrensde vlakbelasting (lineair verdeeld, buiten) - hier niet geselecteerd!

Berekeningsresultaat:

Minimale en maximale vervorming w:

	- Po	ositie -	Vervorming		
Pakket	X	У	W		
	mm	mm	mm		
1	600.00	900.00	-8.26	(min)	
	0.00	0.00	0.00	(max)	

Maximale hoofdtrekspanning:

Pakket	Laag		X	У	σ	σ (max)
			mm	mm	N/mm²	N/mm²_
1	3	(boven)	600.00	9.22	19.64	19.64
		(onder)	1190.98	827.40	1.61	
1	1	(boven)	809.02	9.22	9.21	9.21
		(onder)	600.00	827.40	0.75	

Veren:

	ket La M_θ	ag u	V	W	φ	θ	Fx	Fy	Fz	
_ (x	/			ma d	d	ħΤ	M	M	Nmm	
λ)	mm	mm	mm	rad	rad	N	N	N	Nmm	
(0.00 /	0.00)							
1			0.00	0.00	0.0000	0.0000	0.00	0.00	0.00	
0.00	0.00									
(1	.000.00 /	0.00)							
1	1	0.00	0.00	0.00	0.0000	0.0000	0.00	0.00	0.00	
0.00	0.00									

Belastingcombinatie: 2 (Puntlast 1 kN volledige sterkte)

Coefficienten / veiligheidsfactoren:

						Klimaa	at	
Eigen	gewicht_	_Wind_	Sneeuw	Lijn	Punt	Δρ,ΔΤ	ΔH	_Afschuiving
	1.20	_0.00_	0.00	0.00	1.50	0.00	0.00	1.00

Belastingcombinatie:

	Wind	Sneeuw	Klimaat
	N/mm²	N/mm²	
buiten	0.0000	0.0000	geen klimaatbelasting
binnen	0.00000		

Resulterende vlakbelasting t.g.v. wind en sneeuw:

	N/mm?	2							
buiten	0.0000	N/mm²	=	0.00000	*	0.00	+0.00000	*	0.00
binnen	0.00000	N/mm²	=	0.00000	*	0.00			

Bijkomende begrensde vlakbelasting (lineair verdeeld, buiten) - hier niet geselecteerd!

Berekeningsresultaat:

Minimale	en	maximale	vervorming	w:
----------	----	----------	------------	----

	- Po	Vervo	Vervorming		
Pakket	X	У	W		
	mm	mm	mm		
1	0.00	900.00	-14.55	(min)	
	1200.00	81.82	0.01	(max)	

Maximale hoofdtrekspanning:

Pakket	ket Laag		X	У	σ	σ (max)
			mm	mm	N/mm²	N/mm²
1	3	(boven)	70.98	9.22	34.84	34.84
		(onder)	1190.98	9.22	10.06	
1	1	(boven)	40.00	9.22	23.98	23.98
		(onder)	150.98	745.58	8.45	

Veren:

	akket La	ag u	V	W	φ	θ	Fx	Fу	Fz	
_	M_θ x /									
А)	mm	mm	mm	rad	rad	N	N	N	Nmm	
(0.00 /	0.00)							
1			0.00	0.00	0.0000	0.0000	0.00	0.00	0.00	
0.00	0.00									
(1000.00 /	0.00)							
1	. 1	0.00	0.00	0.00	0.0000	0.0000	0.00	0.00	0.00	
0.00	0.00									

Resulterende belasting:

Maximale hoofdtrekspanning:

Pakket	Laa	ag	σ Belastingcombinat		
			N/mm²		
1	3	(boven)	34.84	2	
		(onder)	10.06	2	
1	1	(boven)	23.98	2	
		(onder)	8.45	2	

ınımare	en maximale	verv	orming w:	
Pakket	Vervorm	ing	Belastingc	ombinatie
	mm			
1	0.01	(max)	2	
1	-14.55	(min)	2	

 C_ϕ

SJ MEPLA Berekeningsprotocol:

Geometrie:

Rand		Randpunt	Middelpur	nt boog	Draairichting
	mm	mm	mm	mm	+/-
1	0.00	0.00			
2	1200.00	0.00			
3	1200.00	900.00			
4	0.00	900.00			

Ondersteuning:

Randondersteuning:

Veerondersteuning:

С_Ө					_	_	_	_
		mm	mm	_mm	N/mm	N/mm	N/mm	Nmm
1 0.00e+000	1	0.0	0.0	0.0	1.000e+000	1.000e+000	0.000e+000	0.00e+000
1 0.00e+000	1	1000.0	0.0	0.0	0.000e+000	1.000e+000	0.000e+000	0.00e+000

Pakket Laag x y z C_x C_y C_z

Lagen:

Laagopbouw:

Pakket Laag Beschrijving 1 Glas, thermisch voorgespannen

Karakteristieke waarden:

Pakke	et	Laag	E-mod.	ν	Dikte	Dichtheid	αt	ΔT
			N/mm²		mm_	kg/m³	1/K_	K_
1	1	7(00.00	0.23	9.70	2550.00	1.0000e-005	0.00

Belastingen:

Geconcentreerde belastingen:

Pakket	X	У	Fx	Fy	Fz	lx	ly
	mm	mm	N	N	N	mm_	mm
1	100 00	800 00	0 00	0 00 -10	00000	200 00	200 00

Lijnbelastingen:

Pakket		- van		naar	dx	dλ	qz
	Х	У	X	У	N/mm	N/mm	N/mm
1	0.00	850.00	1200.00	850.00	0.00	0.00	-0.80

Constante en lineair stijgende vlakbelastingen: zie belastingsgeval

Eigengewicht:

Hellingshoek van de plaat: 90.00° Grad
Richtingsvector van de gravitatiekracht [9.81 m/s²]:

_____Vx____Vy____Vz___
0.00000 -1.00000 0.00000

Berekeningsmethode:

geometrisch lineair
statische berekening

Eigenschappen van de eindige elementen mesh::

Elementgrootte : 80.0 mm

Aantal elementen : 165

Aantal knooppunten : 713 (per pakket)

Aantal van onbekend : 3410

Belastingcombinatie: 1 (Lijnlast 0,8 kN/m reststerkte)

Coefficienten / veiligheidsfactoren:

						Klimaa	t	
Eigen	gewicht	Wind	Sneeuw	Lijn	Punt	Δρ,ΔΤ	ΔH	Afschuiving
	1.00	_0.00	0.00	1.00	0.00	0.00	0.00	1.00

Belastingcombinatie:

	Wind	Sneeuw	Klimaat
	N/mm²_	N/mm²	
buiten	0.0000	0.00000	geen klimaatbelasting
binnen	0.00000		

Resulterende vlakbelasting t.g.v. wind en sneeuw:

	N/mm?	2							
buiten	0.0000	N/mm²	=	0.00000	*	0.00	+0.00000	*	0.00
binnen	0.00000	N/mm²	=	0.00000	*	0.00			

Bijkomende begrensde vlakbelasting (lineair verdeeld, buiten) - hier niet geselecteerd!

Berekeningsresultaat:

Pagina: 3

	- Po	ositie -	Vervorming			
Pakket	X	У	W			
	mm	mm	mm			
1	600.00	900.00	-32.42	(min)		
	0.00	0.00	0.00	(max)		

Maximale hoofdtrekspanning:

Pakket	Laag	X	У	σ	σ (max)
		mm	mm	N/mm²	N/mm²_
1	1 (boven)	600.00	9.22	45.05	45.05
	(onder)	889.02	890.78	1.66	

Veren:

Р	akket La Μθ	ag u	V	W	φ	θ	Fx	Fy	Fz	
λ)(x / mm	mm	mm	rad	rad	N	N	N	Nmm	
(1 0.00	0.00 / 1 0.00	0.00	•	0.00	0.0000	0.0000	0.00	0.00	0.00	
0.00	1000.00 /	0.00	•	0.00	0.0000	0.0000	0.00	0.00	0.00	

Belastingcombinatie: 2 (Puntlast 1 kN reststerkte)

Coefficienten / veiligheidsfactoren:

					Klim	aat	
Eigen gew	icht Wind	d Sneeuw	Lijn	Punt	Δρ,ΔΤ	ΔH	Afschuiving
1	.000.00	0.00	0.00	1.00	0.00	0.00	1.00

Belastingcombinatie:

	Wind	Sneeuw	Klimaat
	N/mm²	N/mm²	
buiten	0.00000	0.00000	geen klimaatbelasting
binnen	0.00000		

Resulterende vlakbelasting t.g.v. wind en sneeuw:

	N/mm?	2							
buiten	0.0000	N/mm²	=	0.00000	*	0.00	+0.00000	*	0.00
binnen	0.00000	N/mm²	=	0.00000	*	0.00			

Bijkomende begrensde vlakbelasting (lineair verdeeld, buiten) - hier niet geselecteerd!

Berekeningsresultaat:

	- Po	ositie -	Vervorming		
Pakket	X	У	W		
	mm	mm	mm_		
1	0.00	900.00	-47.42	(min)	
	1200.00	40.91	0.00	(max)	

Pakket	Laag		x mm	У mm	σ N/mm²		(max) nm²	
1	1 (boven) 70	.98	9.22	76.44	76	.44	
	(onder) 150	.98 8	327.40	15.89			
Veren:								
	Laag u	V	W	φ	θ	Fx	Fy	Fz
	М_Ө							
(x /			,	1	27	3.7	3.7	3.7
mn	nmm	mm	rad	rad	N	N	N	Nmm
(0.	.00 / 0.	00)						
1 1	0.00	0.00	0.00	0.0000	0.0000	0.00	0.00	0.00
00	0.00							
(1000.	.00 / 0.	00)						
1 1	0.00	0.00	0.00	0.0000	0.0000	0.00	0.00	0.00
.00	0.00							

Resulterende belasting:

Maximale hoofdtrekspanning:

Pakket	L	aag	σ	Belastingcombination	
			N/mm²		
1	1	(boven)	76.44	2	
		(onder)	15.89	2	

Pakket	Vervormi	ng	Belastingcombinati		
	mm				
1	0.00 (:	max)	2		
1	-47.42 (i	min)	2		

Pagina: 1

SJ MEPLA Berekeningsprotocol:

Geometrie:

_	mectice.											
Rand			Randpunt	Middelpun	t boog	Draairichting						
		mm	mm	mm	mm	+/						
	1	0.00	0.00									
	2	1000.00	0.00									
	3	1000.00	1100.00									
	4	0.00	1100.00									

Ondersteuning:

Randondersteuning:

Rand_____Type ondersteuning______1 w,u,v,φ,θ: vast (volledig ingeklemd)

Veerondersteuning:

Pakket C_θ	Laag >	х у	Z	C_x	С_У	C_z	С_ф
	mm	mm	mm	N/mm	N/mm	N/mm	Nmm
1 1 0.00e+000	0.0	0.0	0.0	1.000e+000	1.000e+000	0.000e+000	0.00e+000
1 1 0.00e+000	1000.0	0.0	0.0	0.000e+000	1.000e+000	0.000e+000	0.00e+000

Lagen:

Laagopbouw:

Pakket____Laag___Beschrijving____

1 3 Glas, thermisch voorgespannen

1 2 PVB 5 minuten 17C

1 Glas, thermisch voorgespannen

Karakteristieke waarden:

Pakk	et	Laag	E-mod.	ν	Dikte	Dichtheid	d αt	ΔT
			N/mm²		mm	kg/m³	1/K	K
1	3	7	0000.00	0.23	11.70	2550.00	1.0000e-005	0.00
1	2		4.96	0.50	1.52	1070.00	8.0000e-005	0.00
1	1	7	0000.00	0.23	7.70	2550.00	1.0000e-005	0.00

Belastingen:

Geconcentreerde belastingen:

Pakket	X	У	Fx	Fу	Fz	lx	ly
	mm_	mm	N	N	N	mm	mm
1	100.00	1000.00	0.00	0.00 -10	00.00	200.00	200.00

Lijnbelastingen:

Pakket		- van		naar	qx	dХ	qz
	X	У_	X	У_	N/mm_	N/mm_	N/mm_
1	0.00	1050.00	1000.00	1050.00	0.00	0.00	-0.80

Constante en lineair stijgende vlakbelastingen: zie belastingsgeval

Eigengewicht:

Berekeningsmethode:

geometrisch lineair
statische berekening

Eigenschappen van de eindige elementen mesh::

Elementgrootte : 80.0 mm

Aantal elementen : 156

Aantal knooppunten : 675 (per pakket)

Aantal van onbekend : 5850

Belastingcombinatie: 1 (Lijnlast 0,8 kN/m volledige sterkte)

Coefficienten / veiligheidsfactoren:

						KIIMaa	L	
Eigen	gewicht_	_Wind_	Sneeuw	Lijn	Punt	Δp,ΔT	ΔH	Afschuiving
	1.20	0.00	0.00	1.50	0.00	0.00	0.00	1.00

Belastingcombinatie:

	Wind	Sneeuw	Klimaat
	N/mm²_	N/mm²	
buiten	0.0000	0.0000	geen klimaatbelasting
binnen	0.00000		

Resulterende vlakbelasting t.g.v. wind en sneeuw:

 $\frac{\text{N/mm}^2}{\text{buiten}} = \frac{\text{N/mm}^2}{\text{0.00000 N/mm}^2} = \frac{0.00000 * 0.00 + 0.00000 * 0.00}{\text{0.00000 N/mm}^2} = \frac{0.00000 * 0.00}{0.0000} = 0.00000$

Bijkomende begrensde vlakbelasting (lineair verdeeld, buiten) - hier niet geselecteerd!

Berekeningsresultaat:

Minimale en maximale vervorming w:

	- P	ositie -	Vervo	Vervorming		
Pakket	X	У	W			
	mm	mm_	mm			
1	500.00	1100.00	-13.30	(min)		
	0.00	0.00	0.00	(max)		

Maximale hoofdtrekspanning:

Pakket	kket Laag		X	У	σ	σ (max)
			mm	mm	N/mm²	N/mm²
1	3	(boven)	509.39	9.54	24.21	24.21
		(onder)	9.39	1024.92	1.68	
1	1	(boven)	323.94	9.54	4.13	4.13
		(onder)	509.39	1024.92	0.74	

Veren:

Рак М ф	ket La Μ θ	ag u	V	W	φ	Θ	Ł'X	F,À	Ł'Z	
λ)(x	_	mm	mm	rad	rad	N	N	N	Nmm_	
(0.00 /	0.00)							
10.00	1 0.00		0.00	0.00	0.0000	0.0000	0.00	0.00	0.00	
(1	000.00 /	0.00)							
1	1		0.00	0.00	0.0000	0.0000	0.00	0.00	0.00	
0.00	0.00									

Belastingcombinatie: 2 (Puntlast 1 kN volledige sterkte)

Coefficienten / veiligheidsfactoren:

						KIIIIIda	lL	
Eigen	gewicht_	_Wind_	Sneeuw	Lijn	Punt	Δρ,ΔΤ	ΔH	_Afschuiving
	1.20	0.00	0.00	0.00	1.50	0.00	0.00	1.00

Belastingcombinatie:

	Wind	Sneeuw	Klimaat
	N/mm²	N/mm²	
buiten	0.00000	0.00000	geen klimaatbelasting
binnen	0.00000		

Resulterende vlakbelasting t.g.v. wind en sneeuw:

	N/mm²	,						
buiten	0.00000 N/mm ²	=	0.00000	*	0.00	+0.00000	*	0.00
binnen	0.00000 N/mm ²	=	0.00000	*	0.00			

Bijkomende begrensde vlakbelasting (lineair verdeeld, buiten) - hier niet geselecteerd!

Berekeningsresultaat:

Minimale en maximale vervorming w:

	- P	ositie -	Vervo	Vervorming		
Pakket	X	У	W			
	mm	mm_	mm			
1	0.00	1100.00	-22.27	(min)		
	1000.00	42.31	0.00	(max)		

Maximale hoofdtrekspanning:

Pakket	Laag		X	У	σ	σ (max)
			mm	mm	N/mm²	N/mm²
1	3	(boven)	73.94	9.54	41.82	41.82
		(onder)	990.61	9.54	11.44	
1	1	(boven)	73.94	9.54	14.23	14.23
		(onder)	157.27	940.31	6.08	

Veren:

	akket La M_θ	ag u	V	W	φ	θ	Fx	Fу	Fz	
	x /	mm	mm	rad	rad	N	N	N	Nmm	
у)			mm	rau	rau	N		N		
(•	0.00	•							
0.00	1 0.00		0.00	0.00	0.0000	0.0000	0.00	0.00	0.00	
(1000.00 /	0.00)							
0.00	1	0.00	0.00	0.00	0.0000	0.0000	0.00	0.00	0.00	

Resulterende belasting:

Maximale hoofdtrekspanning:

Pakket	Laa	ag	σ Be N/mm²	lastingcom	binatie
1	3	(boven)	41.82	2	
		(onder)	11.44	2	
1	1	(boven)	14.23	2	
		(onder)	6.08	2	

Pakket	Vervorm	ing	Belastingcombinatie
	mm		
1	0.00	(max)	2
1	-22.27	(min)	2

SJ MEPLA Berekeningsprotocol:

Geometrie:

 	~ •				
Rand		Randpunt	Middelpun	t boog	Draairichting
	mm_	mm	mm	mm	+/
1	0.00	0.00			
2	1000.00	0.00			
3	1000.00	1100.00			
4	0.00	1100.00			

Ondersteuning:

Randondersteuning:

Rand_____Type ondersteuning______1 w,u,v,φ,θ: vast (volledig ingeklemd)

Veerondersteuning:

Lagen:

Laagopbouw:

Pakket____Laag___Beschrijving_____

Pagina: 2

1 Glas, thermisch voorgespannen

Karakteristieke waarden:

Pakk	et	Laag E-mod.		ν Dikte Dichtheid		d αt	ΔT	
			N/mm²		mm	kg/m³	1/K	K
1	1	7	0000.00	0.23	11.70	2550.00	1.0000e-005	0.00

Belastingen:

Geconcentreerde belastingen:

Pakket	X	У	Fx	Fy	Fz	lx	ly
	mm_	mm_	N	N_	N	mm_	mm
1	100.00	1000.00	0.00	0.00	-1000.00	200.00	200.00

Lijnbelastingen:

Pakket		- van		naar	dx	dХ	qz
	X	У	X	У	N/mm	N/mm	N/mm
1	0.00	1050.00	1000.00	1050.00	0.00	0.00	-0.80

Constante en lineair stijgende vlakbelastingen: zie belastingsgeval

Eigengewicht:

Berekeningsmethode:

geometrisch lineair
statische berekening

Eigenschappen van de eindige elementen mesh::

Elementgrootte : 80.0 mm

Aantal elementen : 156

Aantal knooppunten : 675 (per pakket)

Aantal van onbekend : 3250

Belastingcombinatie: 1 (Lijnlast 0,8 kN/m reststerkte)

Coefficienten / veiligheidsfactoren:

·					Klimaa	at	
Eigen gewicht	Wind	Sneeuw_	Lijn	Punt	Δρ,ΔΤ	ΔH	_Afschuiving
1.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00

Belastingcombinatie:

	Wind	Sneeuw	Klimaat
	N/mm²	N/mm²	
buiten	0.00000	0.00000	geen klimaatbelasting
binnen	0.00000		

Resulterende vlakbelasting t.g.v. wind en sneeuw:

Meaniference Arapperase			c.y.v. w	1 111	a en i	Sileeuw.		
	N/mm?	2						
buiten	0.00000	$N/mm^2 =$	0.00000	*	0.00	+0.00000	*	0.00
binnen	0.00000	$N/mm^2 =$	0.00000	*	0.00			

Bijkomende begrensde vlakbelasting (lineair verdeeld, buiten) - hier niet geselecteerd!

Berekeningsresultaat:

Minimale en maximale vervorming w:

	- P	ositie -	Vervo	Vervorming		
Pakket	X	У	W			
	mm_	mm_	mm			
1	500.00	1100.00	-34.37	(min)		
	0.00	0.00	0.00	(max)		

Maximale hoofdtrekspanning:

Pakket	Laag	X	У	σ	σ (max)
		mm	mm	N/mm²	N/mm²
1	1 (boven)	509.39	9.54	39.00	39.00
	(onder)	509.39	1090.46	1.84	

Veren:

	kket La Μθ	ag u	V	W	φ	θ	Fx	Fy	Fz	
λ)(x		mm	mm	rad	rad	N	N	N	Nmm	
(0.00 /	0.00)							
0.00	1		0.00	0.00	0.0000	0.0000	0.00	0.00	0.00	
(2	1000.00 /		•							
0.00	1	0.00	0.00	0.00	0.0000	0.0000	0.00	0.00	0.00	

Belastingcombinatie: 2 (Puntlast 1 kN reststerkte)

Coefficienten / veiligheidsfactoren:

Belastingcombinatie:

	Wind	Sneeuw	Klimaat
	N/mm²	N/mm²	
buiten	0.00000	0.00000	geen klimaatbelasting
binnen	0.00000		

Resulterende vlakbelasting t.g.v. wind en sneeuw:

	N/mm?								
buiten	0.0000	N/mm²	=	0.00000	*	0.00	+0.00000	*	0.00
binnen	0.00000	N/mm²	=	0.00000	*	0.00			

Bijkomende begrensde vlakbelasting (lineair verdeeld, buiten) - hier niet geselecteerd!

Berekeningsresultaat:

Minimale en maximale vervorming w:

	- P	ositie -	Vervo	rming
Pakket	X	У	W	
	mm_	mm_	mm_	
1	0.00	1100.00	-50.11	(min)
	0.00	0.00	0.00	(max)

Maximale hoofdtrekspanning:

Pakket	Laag	X	У	σ	σ (max)
		mm	mm	N/mm²	N/mm²
1	1 (boven)	73.94	9.54	61.99	61.99
	(onder)	157 27	1024 92	11 08	

Veren:

Pakke Μ φ	et Laag M A	g u	V	W	φ	θ	Fx	Fy	Fz
_ (x /	_	_mm	mm	_rad	rad	N	N	N	Nmm
•			•	0.00	0.0000	0.0000	0.00	0.00	0.00
(100 1 0.00	0.00 /		•	0.00	0.0000	0.0000	0.00	0.00	0.00

Resulterende belasting:

Maximale hoofdtrekspanning:

Pakket	Laa	ag	σ	Belastingcombinatie
			N/mm²	
1	1	(boven)	61.99	2
		(onder)	11.08	2

Pakket	Vervormi	ng	Belastingcombinatie
	mm		
1	0.00	(max)	1
1	-50.11	(min)	2

Constructeur: ArSyCon Glas en Geveladvies

AxisVM 13.0 R1g · Geregistreerd aan ArSyCon Glas en Geveladvies SB-O1-S on floor - rev k - outside towards inside.axs

Rapport

Onderdeel	Pagina
3D view	3
ST1, Vooraanzicht	3
Materialen	4
Knopen	4
Staven	4
Knoopopleggingen	5
ST1: Knoopbelastingen	5
ST1: Geconcentreerde belastingen op staven	5
Gewicht per doorsnede	5
Knoopverplaatsingen [Lineair, ST1]	6
[I], Lineair, ST1, eX, Lijnen, Vooraanzicht	6
Staafspanningen [Lineair, ST1]	6
[I], Lineair, ST1, Sominmax, Lijnen, Vooraanzicht	7
[I], Lineair, ST1, Staafspanningen, Staaf 7, [Pos.: 0,002m;]	8
Interne krachten knoopoplegging [Lineair, ST1]	8
[I], Lineair, ST1, Rz (Interne krachten knoopoplegging), Lijnen, Vooraanzicht	9

3D view

ST1, Vooraanzicht

Constructeur: ArSyCon Glas en Geveladvies

Model: SB-O1-S on floor - rev k - outside towards inside.axs

12-6-2016

Pag. 4

Materialen

	Naam	Туре	Mod	'el	E_x [N/	mm²]	E_{y}	[N/mm	² J	v	$\alpha_T[I]$	'/°C]	ρ [kg/	$[m^3]$	Materi kleu		Contour kleur
1	T66	Aluminium	Line	air	7	70000		7000	00	0,20	2,	3E-5	2	700			
	Naam	Structuur	P_{I}	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}	P_{II}	P ₁₂	P_{13}	P_{14}	
1	T66	-															

Naam: Materiaalnaam; Type: Type materiaal; Model: Materiaal model; E_x: Elasticiteitsmodulus in lokale x richting; E_y: Elasticiteitsmodulus in lokale y richting; v: Poisson's verhouding; α_T: Warmteuitzettingscoĕfficiĕnt; ρ: Dichtheid; Materiaal kleur: Materiaalkleur; Contour kleur: Contourkleur; P₁, P₂, P₃, P₄, P₅, P₆, P₇, P₈, P₉, P₁₀, P₁₁, P₁₂, P₁₃, P₁₄: Ontwerpparameter;

Knopen

	X [m]	Y [m]	Z [m]	e_X	e_Y	e_Z	θ_X	θ_Y	θ_Z
1	0	0	0,012	Vrij	Vast	Vrij	Vast	Vrij	Vast
2	0	0	0,042	Vrij	Vast	Vrij	Vast	Vrij	Vast
3	0	0	0,073	Vrij	Vast	Vrij	Vast	Vrij	Vast
4	0	0	0,102	Vrij	Vast	Vrij	Vast	Vrij	Vast
5	0,017	0	0,102	Vrij	Vast	Vrij	Vast	Vrij	Vast
6	0,017	0	0,073	Vrij	Vast	Vrij	Vast	Vrij	Vast
7	0,017	0	0,012	Vrij	Vast	Vrij	Vast	Vrij	Vast
8	0,017	0	0,025	Vrij	Vast	Vrij	Vast	Vrij	Vast
9	0,050	0	0,012	Vrij	Vast	Vrij	Vast	Vrij	Vast
10	0,055	0	0,025	Vrij	Vast	Vrij	Vast	Vrij	Vast
11	0,065	0	0,052	Vrij	Vast	Vrij	Vast	Vrij	Vast
12	0,065	0	0,082	Vrij	Vast	Vrij	Vast	Vrij	Vast
13	0,065	0	0,102	Vrij	Vast	Vrij	Vast	Vrij	Vast
14	0,065	0	0,012	Vrij	Vast	Vrij	Vast	Vrij	Vast
15	0,033	0	0,012	Vrij	Vast	Vrij	Vast	Vrij	Vast
16	0,017	0	-0,004	Vrij	Vast	Vrij	Vast	Vrij	Vast
17	0,050	0	-0,004	Vrij	Vast	Vrij	Vast	Vrij	Vast
18	0,065	0	-0,004	Vrij	Vast	Vrij	Vast	Vrij	Vast
19	0	0	-0,004	Vrij	Vast	Vrij	Vast	Vrij	Vast
20	0,034	0	-0,004	Vrij	Vast	Vrij	Vast	Vrij	Vast
21	0	0	0,076	Vrij	Vast	Vrij	Vast	Vrij	Vast
22	0,065	0	0,004	Vrij	Vast	Vrij	Vast	Vrij	Vast
26	0,017	0	0,097	Vrij	Vast	Vrij	Vast	Vrij	Vast

 $[\]mathbf{e}_{\mathbf{X}}$: Knoopvrijheidsgraden (Verplaatsingsbeperking X); $\mathbf{e}_{\mathbf{Y}}$: Knoopvrijheidsgraden (Verplaatsingsbeperking Y); $\mathbf{e}_{\mathbf{Z}}$: Knoopvrijheidsgraden (Verplaatsingsbeperking Z);

Staven

	Knoop i	Kno	ор ј	Lengte [m] Lokaal X		Materiaal	Start doorsnede	Eind doorsnede	
1	1	→ 2		0,030	i - j	1	1	1	
2	2	+	3	0,031	i - j	1	1	1	
3	4	+	5	0,017	i - j	1	1	1	
4	5	+	6	0,029	j - i	1	1	1	
5	2	+	6	0,035	i - j	1	1	1	
6	2	+	7	0,034	j - i	1	1	1	
7	7	+	8	0,013	i - j	1	1	1	
8	6	+	8	0,048	j - i	1	1	1	
9	3	+	6	0,017	i - j	1	1	1	
10	1	+	7	0,017	i - j	1	1	1	
11	7	+	15	0,016	i - j	1	1	1	
12	9	+	10	0,014	i - j	1	3	3	
13	10	+	11	0,029	i - j	1	3	3	
14	12	+	13	0,020	i - j	1	3	3	
15	9	+	14	0,015	i - j	1	1	1	
16	11	+	14	0,040	j - i	1	3	3	
17	7	+	16	0,016	j - i	1	1	1	
18	9			0,016	j - i	1	1	1	
19	14	+	18	0,016	j - i	1	1	1	

 $[\]pmb{\theta_{X}}\text{:} Knoopvrijheidsgraden (Rotatiebeperking rond X-as); \pmb{\theta_{Y}}\text{:} Knoopvrijheidsgraden (Rotatiebeperking rond Y-as); \pmb{\theta_{Z}}\text{:} Knoopvrijheidsgraden (Rotatiebeperking rond Z-as); \textbf{A} \text{:} Knoopvrijheidsgraden (Rotatiebeperking rond Z-as); \textbf{A} \text{:} Knoopvrijheidsgraden (Rotatiebeperking rond Z-as); \textbf{$

Constructeur: ArSyCon Glas en Geveladvies

Model: SB-O1-S on floor - rev k - outside towards inside.axs

12-6-2016

Pag. 5

Staven

	Knoop i	Kno	ор ј	Lengte [m]	Lokaal X	Materiaal	Start doorsnede	Eind doorsnede
20	17	-	18	0,015	i - j	1	2	2
21	1	+	19	0,016	j - i	1	1	1
22	16	-	19	0,017	j - i	1	2	2
23	16	-	20	0,017	i - j	1	3	3
24	17	-	20	0,016	j - i	1	3	3
25	4	-	21	0,026	j - i	1	1	1
26	3	-	21	0,003	i - j	1	1	1
27	11	-	12	0,030	i - j	1	4	4
28	9	-	15	0,017	j - i	1	1	1
29	14			0,022	j - i	1	1	1
30	1	-	16	0,023	i - j	1	1	1

Knoop i: Knoop aan i einde; Knoop j: Knoop aan j einde; Lengte: Staaflengte; Lokaal X: Lokale X-richting; Eind doorsnede: Eind-doorsnede;

Knoopopleggingen

	Кпоор	Туре	Ref. elem.	Rx [kN/m]	Ry [kN/m]	Rz [kN/m]	Rxx [kNm/rad]	Ryy [kNm/rad]	Rzz [kNm/rad]	
		Glob.								
1	20	Glob.		1E+10	1E+10	1E+10	0	0	0	
2	18	Glob.		0	1E+10	1E+10	0	0	0	

	Knoop	NL(x)	NL(y)	NL(z)	NL(xx)	NL(yy)	NL(zz)	F(x) [kN]	F(y) [kN]	F(z) [kN]	M(x) [kNm]	M(y) [kNm]	M(z) [kNm]
1	20												
2	18												

Knoop: Ondersteunde knoop; Type: Opleggingstype; Ref. elem.: Referentie-element; Rx, Ry, Rz: Verplaatsingsstijfheid; Rxx, Ryy, Rzz: Rotatiestijfheid; NL(x), NL(y), NL(z), NL(x), NL(yy), NL(zz): Niet-lineaire parameters; F(x): Weerstand in X-richting; F(y): Weerstand in Y-richting; F(z): Weerstand in Z-richting; M(x): Weerstandsmoment in X-richting; M(y): Weerstandsmoment in Y-richting; M(z): Weerstandsmoment in Z-richting;

ST1: Knoopbelastingen

	Richting	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
8	Globaal	-2,83	0	0	0	0	0
12	Globaal	2,98	0	0	0	0	0

Fx, Fy, Fz: Belastingkracht component; Mx, My, Mz: Belastingsmoment component;

ST1: Geconcentreerde belastingen op staven

	Туре	Lengte [m]	a/d	Pos.	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
28	Staaf G	0,017	d	0	0	0	-0,08	0	0	0

Gewicht per doorsnede

	Profiel	Materiaalnaam	$\Sigma L[m]$	$\Sigma V [m^3]$	M [kg/m]	Σ G [kg]	$\Sigma A_o [m^2]$	$\Sigma A_i [m^2]$
1	100x2,5	T66	0,458	0	0,675	0,309	0,094	0
2	100x4	T66	0,032	0	1,080	0,035	0,007	0
3	100x5	T66	0,136	0	1,350	0,183	0,029	0
4	100x6	T66	0,030	0	1,620	0,049	0,006	0
	Totaal			0		0,576	0,135	0

Σ L: Totale lengte; Σ V: Totaal volume; M: Massa per lengte; Σ G: Totale massa; Σ Ao: Oppervlakte (buitenste); Σ Ai: Oppervlakte (binnenste);

Knoopverplaatsingen [Lineair, ST1]

	eX [mm]	eY [mm]	eZ [mm]	eR [mm]	fX [rad]	fY [rad]	fZ [rad]	fR [rad]
Ext.								
8	-0,075	0	-0,023	0,078	0	-0,00903	0	0,00903
13	1,609	0	-0,024	1,610	0	0,02673	0	0,02673
1	*	0	*	*	*	*	*	*
1	*	0	*	*	*	*	*	*
16	0,002	0	-0,025	0,025	0	0,00105	0	0,00105
9	0,059	0	0,075	0,096	0	0,00383	0	0,00383
20	0	0	0	0	0	-0,00420	0	0,00420
13	1,609	0	-0,024	1,610	0	0,02673	0	0,02673
1	*	*	*	*	0	*	*	*
1	*	*	*	*	0	*	*	*
8	-0,075	0	-0,023	0,078	0	-0,00903	0	0,00903
12	1,075	0	-0,024	1,075	0	0,02673	0	0,02673
13	1,609	0	-0,024	1,610	0	0,02673	0	0,02673
25	1,068	0	-0,024	1,068	0	0,02673	0	0,02673
1	*	*	*	*	*	*	0	*
1	*	*	*	*	*	*	0	*
17	-0,002	0	0,063	0,063	0	-0,00067	0	0,00067
12	1,075	0	-0,024	1,075	0	0,02673	0	0,02673
13	1,609	0	-0,024	1,610	0	0,02673	0	0,02673
25	1,068	0	-0,024	1,068	0	0,02673	0	0,02673

eX: Verplaatsing in X-richting; eY: Verplaatsing in Y-richting; eZ: Verplaatsing in Z-richting; eR: Resulterende verplaatsing; fX: Rotatie in X-richting; fY: Rotatie in Y-richting; fZ: Rotatie in Z-richting; fR: Resulterende rotatie;

[I], Lineair, ST1, eX, Lijnen, Vooraanzicht

Staafspanningen [Lineair, ST1]

	Sh.	Loc. [m]	Кпоор	S;x;min [N/mm²]	S;x;max [N/mm²]	Vmin [N/mm²]	Vmax [N/mm²]	Somin [N/mm²]	Somax [N/mm²]	V;y;gem [N/mm²]
Ext.										
L/At.										
7	1	0	(7)	-199,89	201,68	0	14,80	25,65	201,68	0

	Sh.	Loc. [m]	Knoop	V;z;gem [N/mm²]
Ext.				
7	1	0	(7)	-9,86

Staafspanningen [Lineair, ST1]

	Sh.	Loc. [m]	Knoop	S;x;min [N/mm²]	S;x;max [N/mm²]	Vmin [N/mm²]	Vmax [N/mm²]	Somin [N/mm²]	Somax [N/mm²]	V;y;gem [N/mm²]
18	1	0,011		48,43	57,85	0	5,73	48,43	57,85	0
19	1	0,010		-34,58	-34,12	0	3,34	34,12	34,83	0
7	1	0	(7)	-199,89	201,68	0	14,80	25,65	201,68	0
1	1	0	(1)	*	*	0	*	*	*	*
1	1	0	(1)	*	*	0	*	*	*	*
14	3	0	(12)	*	*	*	0	*	*	*
24	3	0	(20)	*	*	*	15,57	*	*	*
14	3	0,010		*	*	*	*	0	*	*
18	1	0,011		48,43	57,85	0	5,73	48,43	57,85	0
14	3	0,008		*	*	*	*	*	0	*
7	1	0	(7)	-199,89	201,68	0	14,80	25,65	201,68	0
1	1	0	(1)	*	*	*	*	*	*	0
1	1	0	(1)	*	*	*	*	*	*	0
7	1	0	(7)	*	*	*	*	*	*	*
24	3	0	(20)	*	*	*	*	*	*	*

	Sh.	Loc. [m]	Knoop	V;z;gem [N/mm²]
18	1	0,011		3,82
19	1	0,010		-2,23
7	1	0	(7)	-9,86
1	1	0	(1)	*
1	1	0	(1)	*
14	3	0	(12)	*
24	3	0	(20)	*
14	3	0,010		*
18	1	0,011		3,82
14	3	0,008		*
7	1	0	(7)	-9,86
1	1	0	(1)	*
1	1	0	(1)	*
7	1	0	(7)	-9,86
24	3	0	(20)	10,38

Sh.: Profiel; Loc.: Lokale X-positie van de doorsnede op de staaf; S;x;min: Doorsnede minimum normaalspanning; S;x;max: Doorsnede maximum normaalspanning; Vmin: Doorsnede minimum afschuifspanning; Vmax: Doorsnede maximum afschuifspanning; Vmax: Doorsnede maximum Von Mises spanning; V;y;gem: Afschuifspanning in lokale Y-richting;

[I], Lineair, ST1, Sominmax, Lijnen, Vooraanzicht

Constructeur: ArSyCon Glas en Geveladvies

Model: SB-O1-S on floor - rev k - outside towards inside.axs

12-6-2016

Pag. 8

[I], Lineair, ST1, Staafspanningen, Staaf 7, [Pos.: 0,002m;]

Interne krachten knoopoplegging [Lineair, ST1]

	Rx [kN]	Ry [kN]	Rz [kN]	Rr [kN]
Ext.				
1	0,150	0	5,537	5,539
1	0,150	0	5,537	5,539
1	*	0	*	*
1	*	0	*	*
2		0	-5,617	5,617
1	0,150	0	5,537	5,539
1	0,150	0	5,537	5,539
2		0	-5,617	5,617

 $\textbf{Rx:} \ \textbf{X-} component \ opleggings reactiek racht; \ \textbf{Ry:} \ \textbf{Y-} component \ opleggings reactiek racht; \ \textbf{Rz:} \ \textbf{Z-} component \ opleggings reactiek racht; \ \textbf{Rr:} \ \textbf{Resulterende } opleggings reactiek racht; \ \textbf{Rr:} \ \textbf{Rr:} \ \textbf{Resulterende } opleggings reactiek racht; \ \textbf{Rr:} \ \textbf{$

Constructeur: ArSyCon Glas en Geveladvies Model: SB-O1-S on floor - rev k - outside towards inside.axs

12-6-2016

Pag. 9

[I], Lineair, ST1, Rz (Interne krachten knoopoplegging), Lijnen, Vooraanzicht

Constructeur: ArSyCon Glas en Geveladvies

AxisVM 13.0 R1g · Geregistreerd aan ArSyCon Glas en Geveladvies SB-O1-S on floor - rev k - inside towards outside.axs

Rapport

Onderdeel	Pagina
3D view	3
ST1, Vooraanzicht	3
Materialen	4
Knopen	4
Staven	4
Knoopopleggingen	5
ST1: Knoopbelastingen	5
ST1: Geconcentreerde belastingen op staven	5
Gewicht per doorsnede	5
Knoopverplaatsingen [Lineair, ST1]	6
[I], Lineair, ST1, eX, Lijnen, Vooraanzicht	6
Staafspanningen [Lineair, ST1]	6
[I], Lineair, ST1, Sominmax, Lijnen, Vooraanzicht	7
Interne krachten knoopoplegging [Lineair, ST1]	8
[I], Lineair, ST1, Rz (Interne krachten knoopoplegging), Lijnen, Vooraanzicht	8

3D view

ST1, Vooraanzicht

UNIQ SB-O-1,0S

Constructeur: ArSyCon Glas en Geveladvies

Model: SB-O1-S on floor - rev k - inside towards outside.axs

12-6-2016

Pag. 4

Materialen

	Naam	Туре	Mod	'el	E_x [N/	mm²]	E_{y}	[N/mm	² J	ν	$\alpha_T[I]$	'/°C]	ρ [kg/	$[m^3]$	Materi kleu		Contour kleur
1	T66	Aluminium	Line	air	7	70000		7000	00	0,20	2,	3E-5	2	700			
	Naam	Structuur	P_{I}	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}	P_{II}	P ₁₂	P_{13}	P_{14}	
1	T66	-															

Naam: Materiaalnaam; Type: Type materiaal; Model: Materiaal model; E_x: Elasticiteitsmodulus in lokale x richting; E_y: Elasticiteitsmodulus in lokale y richting; v: Poisson's verhouding; α_T: Warmteuitzettingscoĕfficiĕnt; ρ: Dichtheid; Materiaal kleur: Materiaalkleur; Contour kleur: Contourkleur; P₁, P₂, P₃, P₄, P₅, P₆, P₇, P₈, P₉, P₁₀, P₁₁, P₁₂, P₁₃, P₁₄: Ontwerpparameter;

Knopen

	X [m]	Y [m]	Z[m]	e_X	e_Y	e_Z	θ_X	θ_{Y}	θ_Z
1	0	0	0,012	Vrij	Vast	Vrij	Vast	Vrij	Vast
2	0	0	0,042	Vrij	Vast	Vrij	Vast	Vrij	Vast
3	0	0	0,073	Vrij	Vast	Vrij	Vast	Vrij	Vast
4	0	0	0,102	Vrij	Vast	Vrij	Vast	Vrij	Vast
5	0,017	0	0,102	Vrij	Vast	Vrij	Vast	Vrij	Vast
6	0,017	0	0,073	Vrij	Vast	Vrij	Vast	Vrij	Vast
7	0,017	0	0,012	Vrij	Vast	Vrij	Vast	Vrij	Vast
8	0,017	0	0,025	Vrij	Vast	Vrij	Vast	Vrij	Vast
9	0,050	0	0,012	Vrij	Vast	Vrij	Vast	Vrij	Vast
10	0,055	0	0,025	Vrij	Vast	Vrij	Vast	Vrij	Vast
11	0,065	0	0,052	Vrij	Vast	Vrij	Vast	Vrij	Vast
12	0,065	0	0,082	Vrij	Vast	Vrij	Vast	Vrij	Vast
13	0,065	0	0,102	Vrij	Vast	Vrij	Vast	Vrij	Vast
14	0,065	0	0,012	Vrij	Vast	Vrij	Vast	Vrij	Vast
15	0,033	0	0,012	Vrij	Vast	Vrij	Vast	Vrij	Vast
16	0,017	0	-0,004	Vrij	Vast	Vrij	Vast	Vrij	Vast
17	0,050	0	-0,004	Vrij	Vast	Vrij	Vast	Vrij	Vast
18	0,065	0	-0,004	Vrij	Vast	Vrij	Vast	Vrij	Vast
19	0	0	-0,004	Vrij	Vast	Vrij	Vast	Vrij	Vast
20	0,034	0	-0,004	Vrij	Vast	Vrij	Vast	Vrij	Vast
21	0	0	0,076	Vrij	Vast	Vrij	Vast	Vrij	Vast
22	0,065	0	0,004	Vrij	Vast	Vrij	Vast	Vrij	Vast
26	0,017	0	0,097	Vrij	Vast	Vrij	Vast	Vrij	Vast

 $[\]mathbf{e}_{\mathbf{X}}$: Knoopvrijheidsgraden (Verplaatsingsbeperking X); $\mathbf{e}_{\mathbf{Y}}$: Knoopvrijheidsgraden (Verplaatsingsbeperking Y); $\mathbf{e}_{\mathbf{Z}}$: Knoopvrijheidsgraden (Verplaatsingsbeperking Z);

Staven

	Knoop i	Kno	ор ј	Lengte [m]	Lokaal X	Materiaal	Start doorsnede	Eind doorsnede
1	1	†	2	0,030	i - j	1	1	1
2	2	+	3	0,031	i - j	1	1	1
3	4	+	5	0,017	i - j	1	1	1
4	5	+	6	0,029	j - i	1	1	1
5	2	+	6	0,035	i - j	1	1	1
6	2	+	7	0,034	j - i	1	1	1
7	7	+	8	0,013	i - j	1	1	1
8	6	+	8	0,048	j - i	1	1	1
9	3	+	6	0,017	i - j	1	1	1
10	1	+	7	0,017	i - j	1	1	1
11	7	+	15	0,016	i - j	1	1	1
12	9	+	10	0,014	i - j	1	3	3
13	10	+	11	0,029	i - j	1	3	3
14	12	+	13	0,020	i - j	1	3	3
15	9	+	14	0,015	i - j	1	1	1
16	11	+	14	0,040	j - i	1	3	3
17	7	+	16	0,016	j - i	1	1	1
18	9	+	17	0,016	j - i	1	1	1
19	14	+	18	0,016	j - i	1	1	1

 $[\]pmb{\theta_{X}}\text{:} Knoopvrijheidsgraden (Rotatiebeperking rond X-as); \pmb{\theta_{Y}}\text{:} Knoopvrijheidsgraden (Rotatiebeperking rond Y-as); \pmb{\theta_{Z}}\text{:} Knoopvrijheidsgraden (Rotatiebeperking rond Z-as); \textbf{A} \text{:} Knoopvrijheidsgraden (Rotatiebeperking rond Z-as); \textbf{A} \text{:} Knoopvrijheidsgraden (Rotatiebeperking rond Z-as); \textbf{$

UNIQ SB-O-1,0S

Constructeur: ArSyCon Glas en Geveladvies

Model: SB-O1-S on floor - rev k - inside towards outside.axs

12-6-2016

Pag. 5

Staven

	Knoop i	Kno	ор ј	Lengte [m]	Lokaal X	Materiaal	Start doorsnede	Eind doorsnede
20	17	-	18	0,015	i - j	1	2	2
21	1	+	19	0,016	j - i	1	1	1
22	16	-	19	0,017	j - i	1	2	2
23	16	-	20	0,017	i - j	1	3	3
24	17	-	20	0,016	j - i	1	3	3
25	4	-	21	0,026	j - i	1	1	1
26	3	-	21	0,003	i - j	1	1	1
27	11	-	12	0,030	i - j	1	4	4
28	9	-	15	0,017	j - i	1	1	1
29	14	+	17	0,022	j - i	1	1	1
30	1	-	16	0,023	i - j	1	1	1

Knoop i: Knoop aan i einde; Knoop j: Knoop aan j einde; Lengte: Staaflengte; Lokaal X: Lokale X-richting; Eind doorsnede: Eind-doorsnede;

Knoopopleggingen

	Knoop	Туре	Ref. elem.	Rx [kN/m]	Ry [kN/m]	Rz [kN/m]	Rxx [kNm/rad]	Ryy [kNm/rad]	Rzz [kNm/rad]
		Glob.							
1	20	Glob.		1E+10	1E+10	1E+10	0	0	0
2	19	Glob.		0	1E+10	1E+10	0	0	0

	Knoop	NL(x)	NL(y)	NL(z)	NL(xx)	NL(yy)	NL(zz)	F(x) [kN]	F(y) [kN]	F(z) [kN]	M(x) [kNm]	M(y) [kNm]	M(z) [kNm]
1	20												1
2	19												

Knoop: Ondersteunde knoop; Type: Opleggingstype; Ref. elem.: Referentie-element; Rx, Ry, Rz: Verplaatsingsstijfheid; Rxx, Ryy, Rzz: Rotatiestijfheid; NL(x), NL(y), NL(z), NL(x), NL(yy), NL(zz): Niet-lineaire parameters; F(x): Weerstand in X-richting; F(y): Weerstand in Y-richting; F(z): Weerstand in Z-richting; M(x): Weerstandsmoment in X-richting; M(y): Weerstandsmoment in Y-richting; M(z): Weerstandsmoment in Z-richting;

ST1: Knoopbelastingen

	Richting	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
6	Globaal	-1,00	0	0	0	0	0
10	Globaal	2,48	0	0	0	0	0
26	Globaal	-1,63	0	0	0	0	0

Fx, Fy, Fz: Belastingkracht component; Mx, My, Mz: Belastingsmoment component;

ST1: Geconcentreerde belastingen op staven

	Туре	Lengte [m]	a/d	Pos.	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
28	Staaf G	0,017	d	0	0	0	-0,08	0	0	0

Type: Belastingtype; Lengte: Staaflengte; a/d: Positie als verhouding (a) of lengte (d); Pos.: Positie; Fx, Fy, Fz: Belastingkracht component; Mx, My, Mz: Belastingsmoment component;

Gewicht per doorsnede

	Profiel	Materiaalnaam	$\Sigma L[m]$	$\Sigma V [m^3]$	M [kg/m]	Σ G [kg]	$\Sigma A_o [m^2]$	$\Sigma A_i [m^2]$
1	100x2,5	T66	0,458	0	0,675	0,309	0,094	0
2	100x4	T66	0,032	0	1,080	0,035	0,007	0
3	100x5	T66	0,136	0	1,350	0,183	0,029	0
4	100x6	T66	0,030	0	1,620	0,049	0,006	0
	Totaal			0		0,576	0,135	0

Σ L: Totale lengte; Σ V: Totala volume; M: Massa per lengte; Σ G: Totale massa; Σ A_o: Oppervlakte (buitenste); Σ A_i: Oppervlakte (binnenste);

Knoopverplaatsingen [Lineair, ST1]

	eX [mm]	eY [mm]	eZ [mm]	eR [mm]	fX [rad]	fY [rad]	fZ [rad]	fR [rad]
Ext.								
4	-0,980	0	-0,031	0,980	0	-0,01164	0	0,01164
5	-0,980	0	0,102	0,986	0	-0,00914	0	0,00914
19	0,002	0	0	0,002	0	-0,00564	0	0,00564
1	*	0	*	*	*	*	*	*
1	*	0	*	*	*	*	*	*
4	-0,980	0	-0,031	0,980	0	-0,01164	0	0,01164
5	-0,980	0	0,102	0,986	0	-0,00914	0	0,00914
20	0	0	0	0	0	0,00393	0	0,00393
5	-0,980	0	0,102	0,986	0	-0,00914	0	0,00914
1	*	*	*	*	0	*	*	*
1	*	*	*	*	0	*	*	*
26	-0,924	0	0,102	0,929	0	-0,01379	0	0,01379
15	-0,048	0	0,045	0,066	0	0,00530	0	0,00530
1	*	*	*	*	*	*	0	*
1	*	*	*	*	*	*	0	*
9	-0,042	0	-0,021	0,047	0	0,00010	0	0,00010
26	-0,924	0	0,102	0,929	0	-0,01379	0	0,01379

eX: Verplaatsing in X-richting; eY: Verplaatsing in Y-richting; eZ: Verplaatsing in Z-richting; eR: Resulterende verplaatsing; fX: Rotatie in X-richting; fY: Rotatie in Y-richting; fZ: Rotatie in Z-richting; fR: Resulterende rotatie;

[I], Lineair, ST1, eX, Lijnen, Vooraanzicht

Staafspanningen [Lineair, ST1]

	Sh.	Loc. [m]	Knoop	S;x;min [N/mm²]	S;x;max [N/mm²]	Vmin [N/mm²]	Vmax [N/mm²]	Somin [N/mm²]	Somax [N/mm²]	V;y;gem [N/mm²]
Ext.										
22	2	0,017	(16)	-131,23	127,89	0	8,89	15,49	131,23	0
17	1	0,011	, ,	42,06	43,83	0	4,96	42,06	43,83	0
1	1	0,030	(2)	-46,44	-45,08	0	0,32	45,08	46,44	0

	Sh.	Loc. [m]	Knoop	V;z;gem [N/mm²]
Ext.				
22	2	0,017	(16)	5,93
17	1	0,011		-3,31
1	1	0,030	(2)	-0,21

Staafspanningen [Lineair, ST1]

	Sh.	Loc. [m]	Knoop	S;x;min [N/mm²]	S;x;max [N/mm²]	Vmin [N/mm²]	Vmax [N/mm²]	Somin [N/mm²]	Somax [N/mm²]	V;y;gem [N/mm²]
17	1	0	(16)	-46,90	132,79	0	4,96	43,80	132,79	0
1	1	0	(1)	*	*	0	*	*	*	*
1	1	0	(1)	*	*	0	*	*	*	*
14	3	0	(12)	*	*	*	0	*	*	*
23	3	0	(16)	*	*	*	13,40	*	*	*
14	3	0,010		*	*	*	*	0	*	*
1	1	0,030	(2)	-46,44	-45,08	0	0,32	45,08	46,44	0
14	3	0,008		*	*	*	*	*	0	*
17	1	0	(16)	-46,90	132,79	0	4,96	43,80	132,79	0
1	1	0	(1)	*	*	*	*	*	*	0
1	1	0	(1)	*	*	*	*	*	*	0
23	3	0	(16)	*	*	*	*	*	*	*
22	2	0	(19)	*	*	*	*	*	*	*
			· · · · · ·							

	Sh.	Loc. [m]	Knoop	V;z;gem [N/mm²]
17	1	0	(16)	-3,31
1	1	0	(1)	*
1	1	0	(1)	*
14	3	0	(12)	*
23	3	0	(16)	*
14	3	0,010		*
1	1	0,030	(2)	-0,21
14	3	0,008		*
17	1	0	(16)	-3,31
1	1	0	(1)	*
1	1	0	(1)	*
23	3	0	(16)	-8,93
22	2	0	(19)	5,93

Sh.: Profiel; Loc.: Lokale X-positie van de doorsnede op de staaf; S;x;min: Doorsnede minimum normaalspanning; S;x;max: Doorsnede maximum normaalspanning; Vmin: Doorsnede minimum afschuifspanning; Vmax: Doorsnede maximum afschuifspanning; Vmax: Doorsnede maximum Von Mises spanning; V;y;gem: Afschuifspanning in lokale Y-richting;

[I], Lineair, ST1, Sominmax, Lijnen, Vooraanzicht

Interne krachten knoopoplegging [Lineair, ST1]

	Rx [kN]	Ry [kN]	Rz [kN]	Rr [kN]
Ext.				
1	-0,150	0	4,914	4,916
1	-0,150	0	4,914	4,916
1	*	0	*	*
1	*	0	*	*
2		0	-4,994	4,994
1	-0,150	0	4,914	4,916
1	-0,150	0	4,914	4,916
2		0	-4,994	4,994

Rx: X-component opleggingsreactiekracht; Ry: Y-component opleggingsreactiekracht; Rz: Z-component opleggingsreactiekracht; Rr: Resulterende opleggingsreactiekracht;

[I], Lineair, ST1, Rz (Interne krachten knoopoplegging), Lijnen, Vooraanzicht

innovative solutions

Ontwerp buro Arsycon Glas en Geveladvies

fischer Benelux B.V

Amsterdamsestraatweg 45 B/C 1411 AX Naarden Telefoon: +31 35 6 95 66 66 Fax: +31 35 6 95 66 99 techniek@fischer.nl www.fischer.nl

Opmerking

UNIQ SB-O-1,0S - Betonschroef - FBS 12x130/30 h.o.h. 250mm, schroefdiepte 100 mm, randafstand 80 mm.

Ontwerp specificaties

<u>Anker</u>

Systeem fischer Betonschroef FBS

Anker Betonschroef FBS 12 x 130/30 US, zink lamellen gecoat

staal

Inschroef diepte 100 mm

Geometrie / Belastingen

mm, kN, kNm

Rekenwaarden (inclusief veiligheidsfactoren aan de belastingzijde)

Niet op schaal

Gegevens

Ontwerpmethode Rekenmethode ETA mechanisch

Ondergrond Normale dichtheid beton, C25/30, EN 206

Betonsituatie Gescheurd, Droog boorgat

Wapening Geen of normale wapening. Zonder randwapening. Met

Splijtwapening

Boormethode Hamerboren

Installatie Doorsteek montage Ruimte in doorvoergat Doorvoergat niet gevult

Belasting type Statisch
Afstand montage Geen Buiging

Ankerplaat afmetingen 500 mm x 58 mm x 20 mm

Profiel type None

Rekenwaarde van de belastingen *)

#	N _{Sd} kN	V _{Sd,x} kN	V _{Sd,y} kN	M _{Sd,x} kNm	M _{Sd,y} kNm	M _{T,Sd} kNm	Belasting type
1	27,60	0,00	-0,80	0,00	0,00	0,00	Statisch

^{*)} Inclusief benodigde veiligheidsfactoren voor de belasting

Resulterende ankerkracht

	Trekkracht	Dwarskracht	Dwarskracht x	Dwarskracht y	
Anker nr.	kN	kN	kN	kN	° 1
1	13,80	0,40	0,00	-0,40	
2	13,80	0,40	0,00	-0,40	

°1 🖄 °2

Resultante trekkracht : 27,60 kN, X/Y positie (0 / 0) Resultante drukkracht : 0,00 kN, X/Y positie (0 / 0)

Opneembare rekenwaarde trekkracht

Berekening	Belasting kN	Capaciteit kN	Uitnutting β _N %
Staalbreuk *	13,80	45,71	30,2
Betonkegel breuk	13,80	14,11	97,8

^{*} Maatgevende anker

Staalbreuk

$$N_{Sd} \, \leq \, rac{N_{Rk,s}}{\gamma_{Ms}}$$
 ($N_{ ext{Rd,s}}$)

innovative solutions

N _{Rk,s}	Yмs	N _{Rd,s}	N sd	β _{N,s}
kN		kN	kN	%
64,00	1,40	45,71	13,80	30,2

Anker nr.	β _{N,s} %	Groep N°	Maatgevende Beta
1	30,2	1	βN,s;1
2	30,2	2	β _{N,s;2}

Betonkegel breuk

$$N_{Sd} \, \leq \, rac{N_{Rk,c}}{\gamma_{Mc}}$$
 ($N_{ ext{Rd,c}}$)

$$N_{Rk,c} = N_{Rk,c}^0 \cdot \frac{A_{c,N}}{A_{c,N}^0} \cdot \Psi_{s,N} \cdot \Psi_{re,N} \cdot \Psi_{ec,N}$$

$$N_{Rk,c} = 28,22kN \cdot \frac{48.000mm^2}{57.600mm^2} \cdot 0,900 \cdot 1,000 \cdot 1,000 = 21,16kN$$

$$N_{Rk,c}^0 = k_1 \cdot \sqrt{f_{ck,cube}} \cdot h_{ef}^{1,5} = 7.2 \cdot \sqrt{30.0N/mm^2} \cdot \left(80mm\right)^{1.5} = 28.22kN$$

$$\Psi_{s,N} = 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}} = 0.7 + 0.3 \cdot \frac{80mm}{120mm} = 0.900 \le 1$$

$$\Psi_{re,N} = 1,000$$

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \Longrightarrow \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1,000 \cdot 1,000 = 1,000 \le 1$$

$$\Psi_{ec,Nx} = \frac{1}{1 + \frac{2 \cdot 0mm}{240mm}} = 1,000 \le 1$$
 $\Psi_{ec,Ny} = \frac{1}{1 + \frac{2 \cdot 0mm}{240mm}} = 1,000 \le 1$

N _{Rk,c} kN	Ү Мс	N _{Rd,c} kN	N _{sd} kN	β _{N,c} %
21,16	1,50	14,11	13,80	97,8

Anker nr.	β _{N,c} %	Groep N°	Maatgevende Beta
1	97,8	1	β _{N,c;1}
2	97,8	2	β _{N.c:2}

Vergelijking (5.2)

Vergelijking (5.2a)

Vergelijking (5.2c)

Vergelijking (5.2e)

innovative solutions

Opneembare dwarskracht

Berekening	Belasting kN	Capaciteit kN	Uitnutting βν %
Staalbreuk zonder hefboomsarm *	0,40	28,00	1,4
Beton achteruitbreken	0,40	28,22	1,4
Betonrand breuk	0,40	7,69	5,2

^{*} Maatgevende anker

Staalbreuk zonder hefboomsarm

$$V_{Sd} \, \leq \, rac{V_{Rk,s}}{\gamma_{Ms}}$$
 ($V_{ exttt{Rd,s}}$)

V_{Rk,s} kN	Yms	V_{Rd,s} kN	V sd kN	β _{Vs} %
42,00	1,50	28,00	0,40	1,4

Anker nr.	β _{Vs} %	Groep N°	Maatgevende Beta
1	1,4	1	βvs;1
2	1,4	2	β _{Vs;2}

Beton achteruitbreken

$$V_{Sd} \, \leq \, rac{V_{Rk,cp}}{\gamma_{Mcn}}$$
 ($V_{ ext{Rd,cp}}$)

$$V_{Rk,cp} = k \cdot N_{Rk,c} = 2 \cdot 21,16kN = 42,33kN$$

$$N_{Rk,c} = N_{Rk,c}^0 \cdot rac{A_{c,N}}{A_{c,N}^0} \cdot \Psi_{s,N} \cdot \Psi_{re,N} \cdot \Psi_{ec,N}$$

$$N_{Rk,c} = 28,22kN \cdot \frac{48.000mm^2}{57.600mm^2} \cdot 0,900 \cdot 1,000 \cdot 1,000 = 21,16kN$$

$$N_{Rk,c}^{0} = k_{1} \cdot \sqrt{f_{ck,cube}} \cdot h_{ef}^{1,5} = 7.2 \cdot \sqrt{30.0N/mm^{2}} \cdot \left(80mm\right)^{1,5} = 28.22kN^{2}$$

$$\Psi_{s,N} \; = \; 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}} \; = \; 0.7 + 0.3 \cdot \frac{80mm}{120mm} \; = \; 0.900 \; \leq \; 1$$

$$\Psi_{re,N} = 1,000$$

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \Longrightarrow \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1,000 \cdot 1,000 = 1,000 \le 1$$

innovative solutions

V _{Rk,cp} kN	Ү мс	V _{Rd,cp} kN	V _{Sd} kN	β _{V,cp} %
42,33	1,50	28,22	0,40	1,4

Anker nr.	β _{V,cp} %	Groep N°	Maatgevende Beta
1	1,4	1	β _{V,cp;1}
2	1,4	2	β _{V,cp;2}

Betonrand breuk

$$V_{Sd} \, \leq \, rac{V_{Rk,c}}{\gamma_{Mc}}$$
 ($V_{ exttt{Rd,c}}$)

$$V_{Rk,c} = V_{Rk,c}^0 \cdot rac{A_{c,V}}{A_{c,V}^0} \cdot \Psi_{s,V} \cdot \Psi_{h,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{ec,V} \cdot \Psi_{re,V}$$
 Vergelijking (5.7)

$$V_{Rk,c} \ = \ 11,53kN \cdot \frac{28.800mm^2}{28.800mm^2} \cdot 1,000 \cdot 1,000 \cdot 1,000 \cdot 1,000 \cdot 1,000 \ = \ 11,53kN$$

$$V_{Rk,c}^0 = k_1 \cdot d_{nom}^\alpha \cdot h_{ef}^\beta \cdot \sqrt{f_{ck,cube}} \cdot c_1^{1,5}$$
 Vergelijking (5.7a)

$$V_{Rk,c}^{0} = 1.7 \cdot \left(12mm\right)^{0,100} \cdot \left(80mm\right)^{0,068} \cdot \sqrt{30,0N/mm^{2}} \cdot \left(80mm\right)^{1.5} = 11,53kN^{-1}$$

$$\alpha = 0.1 \cdot \sqrt{\frac{l_f}{c_1}} = 0.1 \cdot \sqrt{\frac{80mm}{80mm}} = 0.100$$
 $\beta = 0.1 \cdot \left(\frac{d_{nom}}{c_1}\right)^{0.2} = 0.1 \cdot \left(\frac{12mm}{80mm}\right)^{0.2} = 0.068$ Vergelijking (5.7b/c)

$$\Psi_{s,V} = 0.7 + 0.3 \cdot \frac{c_2}{1.5c_1} = 0.7 + 0.3 \cdot \frac{120mm}{1.5 \cdot 80mm} = 1,000 \le 1$$
 Vergelijking (5.7e)

$$\Psi_{h,V} = \max \Big(1; \, \sqrt{\frac{1,5c_1}{h}} \Big) \ = \ \max \Big(1; \, \sqrt{\frac{1,5\cdot 80mm}{250mm}} \Big) \ = \ 1,000 \ \geq \ 1 \qquad \qquad \text{Vergelijking} \tag{5.7f}$$

$$\Psi_{\alpha,V} = \sqrt{\frac{1}{\left(\cos{\alpha_{V}}\right)^{2} + \left(\frac{\sin{\alpha_{V}}}{2.5}\right)^{2}}} = \sqrt{\frac{1}{\left(\cos{0.0}\right)^{2} + \left(\frac{\sin{0.0}}{2.5}\right)^{2}}} = 1,000 \ge 1$$
Vergelijking (5.7g)

$$\Psi_{ec,V} = \frac{1}{1 + \frac{2 \; e_n}{3 \; c_1}} = \frac{1}{1 + \frac{2 \cdot 0mm}{3 \cdot 80mm}} = 1,000 \; \leq \; 1 \qquad \qquad \text{Vergelijking} \tag{5.7h}$$

$$\Psi_{re,V} = 1,000$$

V _{Rk,c} kN	Y Mc	V_{Rd,c} kN	V _{Sd} kN	β _{V,c} %
11,53	1,50	7,69	0,40	5,2

Anker nr.	β _{V,c} %	Groep N°	Maatgevende Beta
1, 2	5,2	1	βv,c;1
2	5,2	2	β _{V,c;2}

<u>Uitnutting van trek- en dwarskrachten</u>

Trekkrachten	Uitnutting β N %
Staalbreuk *	30,2
Betonkegel breuk	97,8

Dwarskrachten	Uitnutting βV %
Staalbreuk zonder hefboomsarm *	1,4
Beton achteruitbreken	1,4
Betonrand breuk	5,2

<u>Gecombineerde trek- en drukkracht</u>

Informatie betreffende de ankerplaat

Ankerplaat details

Ankerplaat dikte zonder berekening gekozen

t = 20 mm

Profiel type None

Technische opmerkingen

Als de randafstand van een anker kleiner is dan de karakteristieke randafstand ccr,N (rekenmethode A), is langswapening van tenminste 6 mm benodigd ter plaatse van de verankeringsdiepte. The calculation was done under the assumption that a sufficient

splitting reinforcement is available. In this case the spliiting failure can be omitted.

Het overbrengen van de belasting op het beton wordt gecontroleerd voor de uiterste grenstoestand. Hierdoor zullen de controles voor het betonnen bouwdeel uitgevoerd moeten worden. Om dit te versificeren moeten de gegevens uit de huidige rekenmethode worden gehanteerd.

^{*} Maatgevende anker

innovative solutions

Montage gegevens

<u>Anker</u>

Systeem fischer Betonschroef FBS
Anker Betonschroef FBS 12 x 130/30 US,

zink lamellen gecoat staal

Accessoires Blaasbalg ABG

Hamer boor SDS Plus IV

12/150/210

Artikel 517900

Artikel 89300 Artikel 504145

Installatie details

Draad diameter

 $\begin{array}{lll} \mbox{Boor diameter} & \mbox{d}_0 = 12 \mbox{ mm} \\ \mbox{Boorgat diepte} & \mbox{h}_2 = 140 \mbox{ mm} \\ \mbox{Inschroef diepte} & \mbox{h}_{nom} = 100 \mbox{ mm} \\ \mbox{Boormethode} & \mbox{Hamerboren} \end{array}$

Boorgat reiniging Boorgat met blaasbalg uitblazen.

Installatie Doorsteek montage
Ruimte in doorvoergat Doorvoergat niet gevult

Maximaal aandraaimoment -

 $\begin{tabular}{lll} Sleutelwijdte & 17 mm \\ Ankerplaat dikte & t = 20 mm \\ t fix & t_{fix} = 20 mm \\ Tfix,max & t_{fix, max} = 30 mm \\ \end{tabular}$

Ankerplaat details

Voetplaat materiaal Niet beschikbaar Ankerplaat dikte t = 20 mm Doorvoergat in ankerplaat d_f =16 mm

Bijlage

Profiel type None

Anker coördinaten

Anker nr.	x mm	y mm
1	-125	0
2	125	0