Compressione Dati

Data Audio Hiding

Andrea Di Pierno Marco Russo Hermann Senatore

Teoria dei Segnali

COS'È UN SEGNALE?

Un segnale è una variazione temporale dello stato fisico di un sistema (o di una grandezza fisica), come la tensione o l'intensità di corrente per i segnali o i parametri di campo elettromagnetico per i segnali radio, che serve per rappresentare e/o trasmettere

messaggi ed informazioni

CONVOLUZIONE

È un'operazione tra due funzioni (in questo caso segnali) che consiste nell'integrare il prodotto tra il primo ed il secondo segnale traslati di un certo valore

CAMPIONAMENTO

Il campionamento è una tecnica che permette di convertire un segnale continuo nel tempo in un segnale discreto, valutandone l'ampiezza ad intervalli temporali o spaziali regolari.

TEOREMA DEL CAMPIONAMENTO

Il teorema che stabilisce quale sia la frequenza di campionamento con una determinata caratterizzazione in frequenza affinché il segnale analogico possa essere ricostruito a valle a partire da quello discreto in input è il teorema di Shannon-Nyquist (teorema del campionamento), ovvero, la frequenza di campionamento deve essere maggiore a 2 volte la frequenza dello spettro del segnale da campionare.

TRASFORMATA DI FOURIER

La trasformata di fourier è un operatore che permette di rappresentare nel dominio delle frequenze di un segnale nel dominio del tempo e viceversa.

Viene utilizzata per poter calcolare in maniera efficiente la convoluzione di un segnale

DISCRETE FAST FOURIER TRANSOFRM

È un algoritmo utilizzato per calcolare in maniera efficiente la trasformata discreta di fourier e la sua inversa.

È utilizzata per l'elaborazione di segnali digitali poichè ha un basso costo computazionale

02

MP3

Audio Layer per MPEG

INTRODUZIONE AD MP3

ORIGINI

L'acronimo MP3 nasce nel 1997 dalle email di un gruppo di esperti MPEG.

Formalmente conosciuto come MPEG-1 Audio Layer III, rivoluzionò il modo di poter ordinare le tracce audio grazie all'introduzione delle playlist.

MP3 OGGI

Benché MP3 sia ancora largamente impiegato nella codifica audio e supportato dalla maggior parte dei dispositivi in commercio, lo standard MPEG ha adottato AAC come suo successore.

Degno di nota è anche il codec Ogg Vorbis, famoso per essere open source ed impiegato in applicazioni largamente utilizzate come WhatsApp.

TECNICHE DI CODIFICA

FORCE STEREO

Codifica di un unico canale, sdoppiato durante la riproduzione. Elevata perdita qualitativa.

JOINT-STEREO (Mid/Side)

Codifica di un unico canale, con aggiunta di informazioni sulle differenze tra L ed R.

JOINT-STEREO (Intensity)

Codifica basata sul principio di localizzazione sonora che impiega tecniche di modulazione dell'ampiezza inter-aurale

Codifica
indipendente dei
canali L ed R.
Migliore resa
qualitativa.

STRUTTURA DI UN FILE MP3

Un file MP3 è suddiviso in frame da 1152 samples ciascund. Ogni frame ha una durata di 26ms, quindi avremo 38 fps.

FRAME MP3

Header	CRC	Side informations	Main data	Accessory Data

I frame sono a loro volta suddivisi in granules da 576 samples ciascuno.

A seconda del bitrate e della frequenza di campionamento, avremo samples più o meno grandi.

HEADER MP3

Sync (12 bit)						
ID	Layer (2 bit)		Protection			
Bitrate (4 bit)						
Frequen	cy (2 bit)	Padding	Private			
Mode	(2 bit)	Mode extension (2 bit)				
©	Home	Emphasis (2 bit)				

CODIFICA MP3

DECODIFICA MP3

O3 Data Audio Hiding

Stato dell'arte

STEGANOGRAFIA AUDIO

"Nascondere informazioni all'interno di una traccia audio"

TOOL PER STEGANOGRAFIA AUDIO

- 1. DeepStego
- 2. Mp3Stego
- 3. StegHide
- 4. QuickStego
- 5. Audio Stego

TECNICHE DI STEGANOGRAFIA AUDIO -STATO DELL'ARTE

Echo Hiding

H. B. Dieu

ICIEIS 2013

Amplitude Hiding

M. Wen-Nung Lie, L. - C. Chang

IEEE Transaction on Multimedia 2006

ECHO HIDING - DIEU, 2013

Strategia semplice ed immediata;

Embedding delle informazioni tramite inserimento di eco nella traccia;

L'algoritmo fa uso di una chiave condivisa.

ECHO HIDING - EMBEDDING

- Viene utilizzata una chiave k = (int seed, int a);
- Mediante k viene generata una sequenza binaria R della stessa lunghezza del messaggio da nascondere;
- Si divide la traccia in frame di 1024 samples ciascuno;
- Se ci sono meno frame che bit da nascondere, l'algoritmo termina;
- Ad ogni frame i corrisponde un bit da nascondere:
 - Se R_i è 1, allora per codificare il bit 1 non viene effettuata alcuna operazione, per codificare il bit 0 si aggiunge dell'eco all'audio;
 - Se R_i è 0, allora per codificare il bit 0 non viene effettuata alcuna operazione, per codificare il bit 1 si aggiunge dell'eco all'audio
- Il resto dei frame viene lasciato inalterato

ECHO HIDING - RETRIEVAL

- Si genera la sequenza R a partire da k;
- Si divide la traccia audio modificata in frame da 1024 samples;
- Viene effettuato un confronto tra la traccia audio originale e la traccia audio modificata;
- Per ogni frame i:
 - Se i differisce nella traccia modificata, basandosi su R_i viene estratto 0 o 1;
 - Ripeti;
- Viene restituito il messaggio binario.

AMPLITUDE HIDING - LIE, CHANG, 2006

La strategia è leggermente più complessa rispetto alla precedente.

Invece di inserire eco all'interno della traccia, si modifica l'*amplitude* dello spettro delle frequenze.

L'algoritmo di embedding lavora su **GOS** (Group of Samples) e tiene in considerazione una feature chiamata **AOAA** (Average of Absolute Amplitudes).

AMPLITUDE HIDING, EMBEDDING

EMBEDDING SCHEME

- La traccia viene partizionata in GOS;
- Ogni GOS viene partizionato in tre sezioni (sec₁, sec₂, sec₃) le cui lunghezze (L₁, L₂, L₃) possono essere uguali o differire;
- In funzione di L_1 , L_2 ed L_3 vengono calcolati per ogni GOS i valori E_1 , E_2 ed E_3 , gli "item" della AOAA;
- Questi valori vengono ordinati in maniera crescente e rietichettati come E_{min}, E_{mid}, E_{max}

EMBEDDING SCHEME

- Vengono poi calcolati i seguenti valori:
- $A = E_{max} E_{mid}$ $B = E_{mid} E_{min}$ La relazione tra A e B definisce gli "stati" del segnale:
 - Se A ≥ B, allora ci troviamo nello stato "1"
 - Se A < B, allora ci troviamo nello stato "0"
- La definizione degli stati del segnale permette la procedura di embedding.

EMBEDDING SCHEME

- Per inserire 1:
 - Se A B ≥ di una soglia *(Thd1),* non viene effettuata alcuna operazione;
 - Altrimenti, si incrementa E_{max} e si decrementa E_{mid} di una quantità **δ**;
- Per inserire 0:
 - Se B A ≥ *Thd1*, non viene effettuata alcuna operazione;
 - Altrimenti, si incrementa E_{mid} e si decrementa E_{min} della stessa quantità **δ**.

δ ED ω

 δ è una costante non negativa;

 δ è ottenuto come combinazione tra A e B e *Thd1*.

A partire da δ si ottiene un altro parametro, ω , che rappresenta la variazione di amplitude dei samples

- Quando è necessario aumentare una componente dell'AOAA, ω assume il valore 1 + δ/E_{min, mid, max};
 Quando è necessario diminuire una componente
- Quando è necessario diminuire una componente dell'AOAA,, ω assume il valore 1 - δ/E_{min, mid, max}.

WATERMARK RETRIEVAL

WATERMARK RETRIEVAL

L'estrazione dei dati embeddati è molto semplice e ricalca il procedimento dell'algoritmo precedente.

Si assume di conoscere il punto di partenza della modifica e le lunghezze delle sezioni L_1 , L_2 ed L_3 di ogni GOS.

- Si raggruppano i sample della traccia audio modificata in GOS;
- Si calcolano i valori A e B come nell'algoritmo precedente;
- Per ogni GOS:
 - Se A ≥ B allora viene estratto 0;
 - Se A < B allora viene estratto 1.

Grazie per l'attenzione!