Class 5: Data Visualization with GGPLOT

Nicholas Yousefi

Our first ggplot

To use the ggplot2 package I first need to have it installed on my computer.

To install any package we use the install.packages() command.

(I already did this when I saw the videos before this class, but it is commented out in the code below).

Now, can I use it???

No! You first must run library(ggplot2) every time you want to use it. (It is sort of like import statements in Python; you must run it every time you want to use ggplot).

```
# install.packages("ggplot2")
library(ggplot2)
ggplot() # this function alone creates a blank canvas
```

We will be using the following built-in data to make our graphs:

mpg

# A tibble: 234 x 11											
	${\tt manufacturer}$	model	displ	year	cyl	trans	drv	cty	hwy	fl	class
	<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>	<int></int>	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<chr></chr>	<chr></chr>
1	audi	a4	1.8	1999	4	auto~	f	18	29	p	comp~
2	audi	a4	1.8	1999	4	manu~	f	21	29	p	comp~
3	audi	a4	2	2008	4	manu~	f	20	31	p	comp~
4	audi	a4	2	2008	4	auto~	f	21	30	p	comp~
5	audi	a4	2.8	1999	6	auto~	f	16	26	p	comp~
6	audi	a4	2.8	1999	6	manu~	f	18	26	p	comp~
7	audi	a4	3.1	2008	6	auto~	f	18	27	p	comp~
8	audi	a4 quattro	1.8	1999	4	manu~	4	18	26	p	comp~
9	audi	a4 quattro	1.8	1999	4	auto~	4	16	25	p	comp~
10	audi	a4 quattro	2	2008	4	manu~	4	20	28	p	comp~
# with 224 more rows											

Let's plot displacement (displ) vs. highway miles per gallon (hwy):

All ggplot() graphs are made in the same way: - data + aes + geoms

```
ggplot(data=mpg) +
  aes(x=displ, y=hwy) +
  geom_point()
```


I can add more layers:

```
ggplot(data=mpg) +
  aes(x=displ, y=hwy) +
  geom_point() +
  geom_smooth(se=FALSE, method=lm)
```

[`]geom_smooth()` using formula 'y ~ x'

Plot of gene expression data

First read the data from online.

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
AATF 5.0784720 5.0151916 unchanging
AATK 0.4711421 0.5598642 unchanging
AB015752.4 -3.6808610 -3.5921390 unchanging
```

Q. How many genes are in this dataset?

```
nrow(genes)
```

[1] 5196

What are the colnames?

```
colnames(genes)
```

[1] "Gene" "Condition1" "Condition2" "State"

A first version plot of this data Condition1 vs. Condition2:

```
ggplot(data=genes) +
  aes(x=Condition1, y=Condition2) +
  geom_point()
```


Adding Color:

```
p <- ggplot(data=genes) +
  aes(x=Condition1, y=Condition2, col=State) +
  geom_point()
p</pre>
```


Changing the color:

```
p <- p + scale_color_manual(values=c("blue", "gray", "red"))
p</pre>
```


Q. How many genes are up regulated and down regulated?

```
sum(genes$State == "up") # Number of up-regulated genes
```

[1] 127

```
sum(genes$State == "down") # Number of down-regulated genes
```

[1] 72

table(genes\$State) # A faster way to tell you # of up/down regulated genes

```
down unchanging up
72 4997 127
```

The Table function counts up the number of appearances of each item in a vector:

```
table(c("bimm143", "help", "me", "bimm143"))
```

Now, let's make the graph have a nice title, axes, etc.

Gene Expression Changes Upon Drug Treatment

What if you add argument to geom_plot(col="blue")?

```
ggplot(data=genes) +
  aes(x=Condition1, y=Condition2, col=State) +
  geom_point(col="blue")
```


That's not what we want! Whatever you do in the geom layer is applied to every point equally.

You can also set the transparency by putting arguments into geom_point().

```
ggplot(data=genes) +
  aes(x=Condition1, y=Condition2, col=State) +
  geom_point(alpha=0.35)
```

