

Subject Name: DIGITAL COMMUNICATION SYSTEM Subject code: 1DS5DCDCS

Module 1

By- Vidyashree K N
Assistant Professor
Department of ECE
DSCE

Class and Section: 5th C

- To transport an information-bearing signal from a source to a user destination via a communication channel.
- Basically, a communication system is of an analog or digital type.

Sources and Signals

- A source of information generates a message
 - Human voice, television picture, teletype data, atmospheric temperature, pressure etc.
- The message signal can be of analog or digital.
- Analog to digital conversion is performed by combining three basic operations;
 - Sampling
 - Quantizing
 - Encoding

Digital communication system

Fig 1: Block diagram

Information Source:

- Can be classified into Analog information source and discrete information sources.
- Ex for analog: micophone actuated by speech.,
- Ex for discrete: Teletype or numerical output of a computer consists of a sequence of discrete symbols or letters.

Source Encoder :

• Converting the output of whether analog or digital source into a sequence of binary digits.

• Channel encoder:

Introduce some redundancy in the binary information sequence. These extra bits do not convey any information but helps the receiver to detect and / or correct some of the errors in the information bearing bits.

• Channel:

Provides the electrical connection between the source and destination. Ex: Pair of wires, Coaxial cable, Optical fibre, Radio channel, Satellite channel or combination of any of these.

Modulator:

- It operates by keying shifts in the amplitude, frequency or phase of a sinusoidal carrier wave to the channel encoder output.
- The digital modulation techniques are referred to as amplitude- shift keying, frequency- shift keying or phase-shift keying respectively.
- Converts the input bit stream into an electrical waveform suitable for transmission over the communication channel.

Detector:

The detector performs demodulation, thereby producing a signal the follows the time variations in the channel encoder output.

Review of probability theory

- Deals with result of an experiment whose actual outcome is not known in advance.
- Mathematical approach used for studying the outcomes of such experiments is called "probabality theory"
- Ex: In the example of tossing of a coin, it is impossible to predict the outcome of the experiment with certainity.
- Hence 'chance' of getting an unexpected outcome may be defined as 'Probabality'

Information source

- The discrete information source consist of a discrete set of letters or symbol.
- a message emitted by a source consist of sequence of symbols
- Every message coming out of the source contains some information.
- However the information contains by the message varies from one another. Some message convey more information than others.
- In order to quantify the information contain in the message, it is necessary to define a measure of information.

Discrete Information source

Discrete information source are characterized by

i) Source alphabet

Ex: a teletype having 26 letters of English alphabet plus several special characters such as full stop, comma etc, along with numericals.

ii) Symbol rate

• Rate at which the teletype produces characters. Ex- if the teletype operates at the speed of 10 characters/sec, then symbol rate is said to be 10 symbols/sec.

iii)Source alphabet probobalities; and iv) probobalistic dependence of symbols in a sequence

• Structural properties of symbol sequences can be characterized by probability of occurance of individual symbols.

- In the block diagram of information system,
- Assume that discrete information source emitting discrete message symbols $s_{1, s2, S_{3,....}}$ S_q with probabilities $p_{1, P2,....}$ P_q respectively.
- Then

$$P_1 + P_2 + P_3 + \dots P_q = 1$$

$$\sum_{i=1}^{q} p_i = 1$$

Measure of information

- Let S_k be a symbol choosen for transmission at any instant of time with probability equal to P_k .
- Then amount of information of message is given by

$$\circ I_k = log (1/P_k)$$

- If base of logarithm is 2, units are Bits,
- If base of logarithm is 10, units are Hartleys or Decits
- If base of logarithm is e, units are NATS

Concept of amount of information

Example:

To know weather at chennai (peak winter time)

- 1. Sun will rise in east on the day of trip.
- 2. It will be a very cold day.
- 3. There will be snowfall on that particular day in chennai.

Conclusion: The message associated with an event least likely to occur contains more information.

Discrete memoryless source

• A source in which symbols emitted during successive signalling intervals are statistically independent.

Entropy

- Average information content per source symbol.
- Consider source alphabet $S = \{s_1, s_2, s_3, \dots, s_q\}$
- With probabilities $P = \{p_1, p_2, p_3, ..., p_q\}$
- Consider long independent sequence of length L symbols. This long sequence then contains
- p₁L number of messages of type s₁
- p₂L number of messages of type s₂.....
- pqL number of messages of type s_q

- We know that amount of information of $s_1 = log (1/p_1)$ bits
- p_1 L number of messages of type p_1 contain p_1 L log $(1/p_1)$ bits of information.

 p_2L number of messages of type s_2 contain $p_2L \log (1/p_2)$ bits of information.

 p_qL number of messages of type s_q contain $p_qL \log (1/p_q)$ bits of information.

:
$$I_{total} = p_1 L log (1/p_1) + p_2 L log (1/p_2) + + p_q L log (1/p_q)$$
bits

$$= \frac{L\sum_{i=1}^{q} p_{i} \log \frac{1}{p_{i}}}{\frac{I_{total}}{L}}$$

Average self-information H(S)

$$= \sum_{i=1}^{q} p_i \log \frac{1}{p_i}$$
 bits/message symbol

Information Rate

- Let us suppose that the symbols are emitted by the source at a fixed time rate " \mathbf{r}_s " symbols/sec
- The average information rate \mathbf{R}_s in bits/sec is defined as the product of the average information content per symbol(H(S)) and the message symbol rate \mathbf{r}_s
- $\therefore \mathbf{R}_{\mathbf{s}} = \mathbf{r}_{\mathbf{s}} \mathbf{H}(\mathbf{S})$ bits/sec or BPS

Numericals

• 1]Consider a binary source with source alphabet $S = \{s_1, s_2\}$ with probabilities $P = \{1/256, 255/256\}$. Find a)self-information of each message b)entropy.

Given:
$$S = (S_1, S_2)$$

$$P = /1, 355$$

$$256$$

$$256$$

$$\therefore \text{ enterppy H(S)} = \begin{cases} 2 \\ 1 \\ 1 \end{cases} \log \frac{1}{p_1}$$

$$= 1 \log_2 256 + \frac{255}{256} \log_2 \frac{256}{255}$$

$$= 0.037 \text{ bite | message symbol}$$

$$9/14/2020 \text{ Vidyashree K N}$$

- 2]Consider a binary source with source alphabet $S^1 = \{s_3, s_4\}$ with probabilities
- $P^{l}=\{7/16, 9/16\}$. Find
- a)self-information of each message
- b)Entropy
- 3]Consider a binary source with source alphabet $S^{11} = \{s_5, s_6\}$ with probabilities
 - P^{ll}={1/2, 1/2}.Find a)self-information of each message b)entropy
- 4] Consider a binary source with source alphabet $S = \{s_1, s_2, s_3\}$ with probabilities
 - P={1/2, 1/4, 1/4}.Find a)self-information of each message b)entropy of source S

- The collector voltage of certain circuit is to lie between -5 and -12 volts. The voltage can take on only these values -5,-6,-7,-9,-11,-12 volts with respective probabilities 1/6, 1/3,1/12,1/12,1/6,1/6. This voltage is recorded with a pen recorder. Determine the average self-information associated with the record in terms of bits/level.
- 6] A discrete source emits one of six symbols once every m-sec. The symbol probabilities are 1/2, 1/4, 1/8, 1/16, 1/32 and 1/32 respectively. Find the source entropy and information rate.
- 7]Find relationship between Hartleys, Nats, and bits.
- 8] The output of an information source consists of **150** symbols, **32** of which occur with a probability of **1/64** and the remaining **118** occur with a probability of **1/236**. The source emits **2000** symbols/sec. Assuming that the symbols are choosen independently, find the average information rate of this source.

[note: The solution pdf is attached in google classroom, and also solved during online classes]

- 9] A code is composed of dots and dashes. Assuming that a dash is 3 times as long as a dot and has one-third the probability of occurence. Calculate
- (i) The information in a dot and dash
- (ii) The entroy of dot-dash code
- (iii) The average rate of information if a dot lasts for 10 m-sc and this time is allowed between symbols.

Bolection:

Since only dote and darher agre parecent, we must have

Given Paper 1/3 Pat

(1) Theographica in a dot = I do = log 1 - log y/3 - 0.115 bite

Infoormation in a dech = I doon logu = a bite Pach

(ii) Enteropy of dot dack code

Source Encoding

- Source coding converts each symbols into codewords.
- Is the process by which the output of an information source is converted into a r-ray sequence.
- 'r' is the number of different symbols used in this transformation process.
- If r=2, then the output is a binary sequence,
- r=3, then the output is a ternary sequence,
- r=4, then the output is quaternary sequence

Fixed length code

• Consider size of source alphabet is 4;

$$S = \{s_1, s_2, s_3, s_4 \}$$

Source symbols	Code
s_1	11
s_2	10
s_3	01
S_4	00

Its fixed length code. Hence its uniquely decodable.

If we have 100100....

$$10 - s_1$$

$$01 - s_{2}$$

$$00 - s_3$$

$$S_1S_2,S_3$$

Variable length code(VLC code)

Source symbols	Code	No. of bits used
s_0	0	1-bit
\mathbf{s}_1	1	1-bit
s_2	00	2-bit
s_3	11	2-bit

If we have 000....
May be correspond to 0
followed by 00 or
00 followed by 0. Hence can be
decoded as

$$S_0 S_2$$
 or $S_2 S_0$

Here, code is not uniquely decodable.

Variable length code(VLC code)

Source symbols	Code	No. of bits used
s_0	1	1-bit
\mathbf{s}_1	01	2-bit
s_2	001	3-bit
s_3	000	3-bit

If we have 1001....

Can be decoded as

 S_0s_2

Here, code is uniquely decodable

-

VLC code is prefix-free code Also known as instantaneous code

Shannon's Encoding algorithm

Step1: List the source symbols in the order of non-increasing probabilities

Step2: Compute the sequences

$$\alpha_1 = 0$$

$$\alpha_2 = p_1 = p_1 + \alpha_1$$

$$\alpha_3 = p_2 + p_1 = p_2 + \alpha_{12} \qquad \dots$$

$$\alpha_{q+1} = p_q + p_{q-1} + \dots + p_2 \stackrel{1}{+p_i} p_1 = p_q + \alpha_1$$

Step3: Determine smallest integer value of l_i using the inequality

$$2 l_{i \geq \frac{1}{p_{i}}}$$
 for all i=1,2,....q

Step4: Expand the decimal number α_i in binary from upto l_i places neglecting expansion beyond l_i places

Step5: Remove the binary point to get the desired code.

1]Construct Shannon's binary code for the following message symbols $S=\{s_1, s_2, s_3, s_4\}$ with probabilities P=(0.4,0.3,0.2,0.1)

Solution:

Step2:
$$\alpha_1 = 0$$

$$\alpha_2 = p_1 = 0.4$$
 $\alpha_3 = p_2 + \alpha_2 = 0.3 + 0.4 = 0.7$
 $\alpha_4 = p_3 + \alpha_3 = 0.2 + 0.7 = 0.9$
 $\alpha_5 = p_4 + \alpha_4 = 0.1 + 0.9 = 1$

Step3: The smallest integer value of l_i is found using $2l_i \ge 1/p_i$ for all i=1,2,...5

For i=1;
$$2l_{1 \ge 1/0.4}$$
 $2l_{1 \ge 1/0.4}$ $2l_{1 \ge 2.5}$; hence $l_{1}=2$

For i=2;
$$2 l_2 \ge 1/0.3$$

 ≥ 3.333 ; hence $l_2 = 2$ Vidyashree K N

For i=3;
$$2 l_{3 \ge 1/0.2}$$

 ≥ 5 ; hence $l_{3=} 3$
For i=4; $2 l_{4 \ge 1/0.1}$
 ≥ 10 ; hence $l_{4=} 4$

Step4: The decimal numbers α_i are expanded in binary form upto l_i places.

Step4:
$$\alpha_1 = 0.0000$$

$$\alpha_2 = 0.4 = 0.0110$$

$$\alpha_3 = 0.10110$$

$$\alpha_4 = 0.1100...$$

$$(l_1 = 2)$$

$$(l_2 = 2)$$

$$(l_3 = 3)$$

$$(l_{\Delta}=4)$$

$$\begin{array}{c}
0.4 \times 2. \\
\hline
0.8 \times 2 \rightarrow 0 \\
\hline
1.6 \rightarrow 1 \\
0.6 \times 2 \longrightarrow 1
\end{array}$$

$$\begin{array}{c}
0.6 \times 2 \longrightarrow 1 \\
\hline
0.2 \times 2 \longrightarrow 0
\end{array}$$

$$\begin{array}{c|c}
0.7 \times 2 \\
\hline
1.4 \rightarrow 1 \\
0.4 \times 2 \\
\hline
0.8 \times 2 \rightarrow 0 \\
\hline
1.6 \rightarrow 1 \\
0.6 \times 2 \rightarrow 1 \\
\hline
0.6 \times 2 \rightarrow 1 \\
\hline
0.2 \times 2 \\
\hline
0.4 \times 2 \rightarrow 0 \\
\hline
0.9 \times 2 \rightarrow 0
\end{array}$$

$$\begin{array}{c|c}
0.2 \times 2 \\
\hline
0.4 \times 2 \rightarrow 0 \\
\hline
0.8 \rightarrow 0
\end{array}$$

$$\alpha_2$$

$$\alpha_3$$

$$\alpha_4$$

Source symbols	P _i	α_{i}	α _{i in} binary	l _i	Code
\mathbf{s}_1	0.4	0	(0.00000) ₂	2	00
s_2	0.3	0.4	(0.0110) ₂	2	01
s_3	0.2	0.7	(0.10110) ₂	3	101
S_4	0.1	0.9	(01101) ₂	4	1100

Average length of this code is $L=\Sigma p_i l_i$ Bits/message symbol

L = 2x0.4 + 2x0.3 + 3x0.2 + 4x0.1 = 2.4 binits/message symbol

$$\%\eta_{c} = \frac{H(S)}{L} * 100 = \frac{1.8464}{2.4} * 100 = 76.93\%$$

2]Construct Shannon's binary code for the following message symbols $S=\{s_1, s_2, s_3, s_4\}$ with probabilities P=(3/8, 1/16, 3/16, 1/4, 1/8). Obtain code efficiency and redundancy

step1;
$$3/8 > 1/4 > 3/16 > 1/8 > 1/16$$

Step2: : $\alpha_1 = 0$

$$\alpha_2 = p_1 = 3/8 = 0.375$$
 $\alpha_3 = p_2 + \alpha_2 = (1/4) + (3/8) = 0.625$
 $\alpha_4 = p_3 + \alpha_3 = (3/16) + 0.625 = 0.8125$
 $\alpha_5 = p_4 + \alpha_4 = (1/8) + 0.8125 = 0.9375$

Step3: The smallest integer value of l_i is found using $2^{i} \ge 1/p$ for all i=1,2,...5

For i=1;
$$_{2}l_{1} \ge 1/(3/8)$$

 $_{2}l_{1} \ge 2.66$; hence $l_{1}=2$

For i=2;
$$_{2}l_{2} \geq 1/(1/4)$$

 $_{2}l_{1} \geq 4$; hence $l_{1}=2$
For i=3; $_{2}l_{3} \geq 1/(3/16)$
 $_{2}\geq 5.33$; hence $l_{3}=3$
For i=4; $_{2}l_{4} \geq 1/(1/8)$
 $_{2}\geq 8$; hence $l_{4}=3$
For i=5; $_{3}l_{5} \geq 1/(1/16)$
 $_{4}l_{5} \geq 16$; hence $l_{4}=4$

 \therefore 1; values are 2,2,3,3,4

Step4: The decimal numbers α_i are expanded in binary form upto l_i places.

$$\alpha_1 = 0.00$$
 $\alpha_2 = 0.01$
 $\alpha_3 = 0.101$
 $\alpha_4 = 0.110$
 $\alpha_5 = 0.1111$

Si	Pi .	≪i	Li	binary	Code
S,	3/8	0	2	0.00	00
S_2	1/4	0.375	2	0-01	01
S_3	3/16	0.625	3	0.101	101
S4	1/8	0.8125	3	0-110	110
Ss	1/16	0-9375	4	0-1111	1100

•
$$H(S) = \frac{1}{4}\log_2 4 + \frac{3}{8}\log_2 \frac{8}{3} + \frac{1}{8}\log_2 8 + \frac{3}{16}\log_2 \frac{16}{3} + \frac{1}{4}\log_2 4 + \frac{1}{16}\log_2 16$$

- $H(S) = 2.1085 \ bits/symbol$
- $L = \sum_{i=1}^{q} P_i l_i = \frac{1}{4} (2) + \frac{3}{8} (2) + \frac{1}{8} (3) + \frac{3}{16} (3) + \frac{1}{16} (4)$
- $L = 2.4375 \ bits/symbol$

- Redundancy? Example
- Entropy? significance

3] 0.4, 0.25, 0.15, 0.12, 0.08

Solution:

Step1; 0.4>0.25>0.15>0.12>0.08

Step2:
$$\alpha_1 = 0$$

$$\alpha_2 = p_1 = 0.4$$

$$\alpha_3 = p_2 + \alpha_2 = 0.25 + 0.4 = 0.65$$

$$\alpha_4 = p_3 + \alpha_3 = 0.15 + 0.65 = 0.8$$

$$\alpha_5 = p_4 + \alpha_4 = 0.8 + 0.12 = 0.92$$

$$\alpha_6 = p_5 + \alpha_5 = 0.08 + 0.92 = 1$$

Step3: The smallest integer value of l_i is found using $2l_i \ge 1/p_i$ for all i=1,2,...5

For i=1;
$$2l_1 \ge 1/0.4$$

$$_{2}l_{1} \geq 2.5$$
; hence $l_{1}=2$

For i=2;
$$2^{l_2} \ge 1/0.25$$

 ≥ 4 ; hence $l_{2=}$ 2

```
For i=3;
                2^{l_3} \ge 1/0.15
                       \geq 6.67; hence l_{3} 3
For i=4;
                 7^{l_4} \ge 1/0.12
                       ≥ 8.33; hence l<sub>4=</sub> 4
For i=5;
                 7^{l_5} \ge 1/0.08
                       \geq 12.5; hence l_{5=} 4
```

Step4: The decimal numbers α_i are expanded in binary form upto l_i places.

Step4:
$$\alpha_1 = 0.0000$$
 $(l_1 = 2)$ $\alpha_2 = 0.011$ $(l_2 = 2)$ $\alpha_3 = 0.101$ $(l_3 = 3)$ $\alpha_4 = 0.1100$ $(l_4 = 4)$ $\alpha_5 = 0.1100$

Source symbols	p _i	Code
s_1	0.4	00
s_2	0.25	01
s_3	0.15	101
s_4	0.12	1100
S ₅	0.08	1110

4]A source emits an independent sequence of symbols from an alphabet consisting of five symbols A, B,C,D and E with probabilities of $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{8}$, $\frac{3}{16}$, and $\frac{5}{16}$ respectively. Find the shanon code for each symbol and efficiency of the coding scheme.

4]Solution:

Step1;
$$p_1$$
 p_2 p_3 p_4 p_5 $5/16$ $1/4$ $3/16$ $1/8$ $1/8$ E A D B C Step2: $\alpha_1 = 0$

$$\alpha_2 = p_1 = 5/16 = 0.3125$$
 $\alpha_3 = p_2 + \alpha_2 = 0.5625$
 $\alpha_4 = p_3 + \alpha_3 = 0.75$
 $\alpha_5 = p_4 + \alpha_4 = 0.875$

$$\alpha_6 = p_5 + \alpha_5 = 1$$
 Step3: The smallest integer value of l_i is found using $2l_i \ge 1/p_i$ for all $i=1,2,...6$

Step 3: The smallest integer value of
$$l_i$$
 is found using $2l_i \ge 1/p_{i \text{ for all } i=1,2,...}$

For i=1;
$$2l_1 \ge 1/(5/16)$$

 $2l_1 \ge 3.2$; hence $l_1 = 2$

For i=2;
$$2^{l_2} \ge 1/(1/4)$$

 ≥ 4 ; hence $l_{2} = 2^{9/14/2020}$ Vidyashree K N

For i=3;
$$2 l_{3 \ge 1/(3/16)}$$

 ≥ 5.33 ; hence $l_{3=} 3$
For i=4; $2 l_{4 \ge 1/(1/8)}$
 ≥ 8 ; hence $l_{4=} 3$
For i=5; $2 l_{5 \ge 1/(1/8)}$
 ≥ 8 ; hence $l_{5=} 3$

Step4: The decimal numbers α_i are expanded in binary form upto l_i places.

Step4: :
$$\alpha_1 = 0.000$$

$$(1_1 = 2)$$

$$\alpha_2 = 0.3125$$

$$0.3125 \text{ X } 2 = 0.625 \text{ with carry } 0$$

$$0.625 \times 2 = 0.25 \text{ with carry } 1$$

$$0.25x\ 2 = 0.5$$
 with carry 0

$$=(0.010)_2$$

$$\alpha_3 = 0.100$$

$$(1_3 = 3)$$

$$\alpha_4 = 0.11$$

$$(1_4 = 3)$$

$$\alpha_5 = 0.111$$

$$(1_5=3)$$

Source symbols	Code	length
E	00	2
A	01	2
D	100	3
В	110	3
С	111	3

L=
$$\Sigma$$
 p_i l_i = (5/16) (2)+(1/4)(2)+ (3/16)(3)+ (1/8)3 +(1/8)3= 2.4375 binits/ message symbol

$$H(S)=\Sigma p_i \log (1/p_i)$$
= 2.2272 bits/message symbol
 $n_c = H(S)/L \times 100\%$
 91.37%
 $Rnc = 1-n_c = 8.628$

Homework problem

5]The source emits the messages consisting of two symbols each. These messages and their probabilities are given in table. Design source encoder using shanon encoding algorithm and also

fino	Message M ₁	Probobality Pi
	AA	9/32
	AC	3/32
	CC	1/16
	СВ	3/32
	CA	3/32
	BC	3/32
	BB	9/32

Huffman coding

- The source symbols are listed in the decreasing order of probabilities.
- Check if q = r + a(r-1) is satisfied and find the integer 'a', q is number of source symbols and r is number of symbols used in code alphabets.
- If 'a' is not integer, add dummy symbols of zero probability of occurrence.
- Combine the last 'r' symbols into a single composite symbol by adding their probability to get a reduced source.
- Repeat the above three steps, until in the final step exactly *r*-symbols are left.

Cont...

- The last source with 'r' symbols are encoded with 'r' different codes 0,1,2,3,....r-1
- In binary coding the last source are encoded with 0 and
- As we pass from source to source working backward, decomposition of one code word each time is done in order to form 2 new code words.
- This procedure is repeated till we assign the code words to all the source symbols of alphabet of source 's' discarding the dummy symbols.

1] Construct Huffman code for symbols having {1/2, 1/4, 1/8, 1/8}.

$$q=r + \alpha(r-1)$$
;
 $4=2+\alpha(1) => \alpha=2 \in Z$

CODE	Source symbols	P _i	1 ST reduction	2 nd reduction	
	s_1	0.5	0.5	0.5	
	s_2	0.25	0.25	0.5	
	s_3	0.125	0.25		
	s_4	0.125			

CODE	Source symbols	$\mathbf{P_i}$	1 ST reduction	2 nd reduction
[0]	s_1	0.5	0.5	0.5
[10]	s_2	0.25	0.25	0.5
[110]	s_3	0.125	0.25	
[111]	s_4	0.125		

symbol	Probobality	code	Length l _i
s_1	1/2	0	1
s_2	1/4	10	1
s_3	1/8	110	3
S_4	1/8	111	3

2]Construct Huffman code for symbols having {0.4, 0.3, 0.2, 0.1}. Find efficiency and redundancy

$$q=r + \alpha(r-1)$$
;
 $4=2+\alpha(1) => \alpha=2 \in Z$

CODE	Source symbols	P _i	1 ST reduction	2 nd reduction	
		0.4	0.4	0.6	
	S_2	0.3	0.3	0.4	
	S_3	0.2	0.3		
	S_4	0.1			

CODE			1 ST reduction	2 nd reduction
	s_1	0.4	0.4	0.6
	s_2	0.3	0.3	0.4
	s_3	0.2	0.3	
	s_4	0.1		

CODE			1 ST reduction	2 nd reduction
1	S_1	0.4	0.4	0.6 [0]
00	S_2	0.3	0.3 [00]	0.4 [1]
010	S_3	0.2 [010]	0.3 [01]	
011	S_4	0.1 [011]		

symbol	Probobality	code	length
s_1	0.4	1	1
s_2	0.3	00	2
s_3	0.2	010	3
S_4	0.1	011	3

L=
$$\sum$$
 p_i l_i = (0.4) (1)+(0.3)(2)+ (0.2)(3)+ (0.1)3
= 1.9 binits/ message symbol

$$\begin{aligned} \textbf{H(S)} &= \Sigma \ p_i \ log \ (1/p_i \) \\ &= 0.4 \ log (1/0.4) + 0.3 \ log (1/0.3) + 0.2 \ log (1/0.2) + 0.1 \ log (1/0.1) \\ &= 1.846 \ bits/message \ symbol \\ \textbf{n_c} &= (H(S) \ / \ L \) \\ &= 97.15 \ \% \end{aligned}$$

$$_{\rm Rnc} = 1 - n_{\rm c} = 2.85$$
 %

• 3] Given the messages x_1 , x_2 , x_3 , x_4 , x_{5} , x_6 with respective probabilities of 0.4,0.2, 0.1, 0.07 and 0.03, construct a binary code by applying Huffman encoding procedure. Determine the efficiency and redundancy of the code so formed.

code	symbol	Probobaliti es	1 st reduction	2 nd reduction	3 rd reduction	4thre ductio n
1	x1	0.4	0.4	0.4	0.4	0.6
01	x2	0.2	0.2	0.2	8.4	0.4
000	x3000	0.2	0.2	0.2	6.2 \	
0010	x4		0.1	0.2		
00110	x5 20115	+	0.1			
00111	x6	0.03				

- Entropy= 2.209 bits/message-symbol
- Average length L = 2.3 binits/messagesymbol
- Code efficiency $n_c = 96.04\%$
- Code redundancy $R_{nc} = 2.96\%$

(steps with formula to be written)