MATH 307 — Worksheet #5

1. Compute the integral. All curves are oriented counterclockwise.

(a)
$$\frac{1}{2\pi i} \int_C \frac{z \cos z}{(z+2i)^2} dz$$
, where C is the unit circle

(b)
$$\frac{1}{2\pi i} \int_C \frac{z \cos z}{z - 2i} dz$$
, where C is the circle $|z - i| = 2$

(c)
$$\frac{1}{2\pi i} \int_C \frac{2e^{2z}}{z^2+1} dz$$
, where C is the square with vertices at 1, $1+2i$, $-1+2i$, and -1 .

(d)
$$\frac{1}{2\pi i} \int_C \frac{2ze^z}{z^2+1} dz$$
, where C is the circle $|z|=2$

(e)
$$\frac{1}{2\pi i} \int_C \frac{e^{3z}}{z^3} dz$$
, where C is the unit circle

(f)
$$\frac{1}{2\pi i} \int_C \frac{e^{3z}}{z^3 - 2z^2} dz$$
, where C is the unit circle $|z| = 2$

2. In this problem, we evaluate the real, improper integral

$$I := \int_{-\infty}^{\infty} \frac{\mathrm{d}x}{(x^2 + 1)^2}.$$

(a) Let R > 0. Use Cauchy's integral formula to compute

$$J_R := \int_{\gamma_R} \frac{\mathrm{d}z}{(z^2 + 1)^2},$$

where γ_R is the simple, closed curve drawn in blue below.

(b) Let δ_R , be the semicircular portion of γ_R . Show that

$$|K_R| \le \frac{\pi R}{(R^2 - 1)^2}, \quad \text{where} \quad K_R := \int_{\delta_R} \frac{\mathrm{d}z}{(z^2 + 1)^2}.$$

Hint: Show that $|z^2 + 1| \ge R^2 - 1$ for z on γ_R , then use the ML-bound.

(c) Briefly justify the identity

$$J_R = K_R + I_R$$
, where $I_R := \int_{-R}^R \frac{\mathrm{d}x}{(x^2 + 1)^2}$.

Let $R \to \infty$ and evaluate I.