Extração de caracteriscas para Analise de Sentimentos

2º Projeto - Computação Evolutiva 2019.1

Raissa Camelo Salhab

Mineração de Texto e Analise de Sentimentos

- O que é mineração de texto?
- O que é analise de sentimento?

Estado da Arte

- Utilização de algoritmos evolutivos para sumarização de textos. [Ramiz et al.] Algoritmo de Evolução Diferencial Discreto.
- Attribute Selection [Freitas] Determinar regras de classificação [Frank et al.].
- Clusterização de Documentos [Abraham et al.]

Utilizando Computação Evolutiva para a Otimização de Classificadores

- Otimização dinâmica de Grupos para redes neurais de feed-forward [Tang et. Al]
- Otimização de pesos de redes neurais utilizando computação evolutiva.
- Otimização de parametros de KNN e de Redes neurais [Tharwat et al.]

Base de Dados: LarissaNet

Modelagem: Pré-processamento

- Tokenização / Lemmatization
- Extração de caracteres irrelevantes (números acentos, etc).
- Extração de preposições e pronomes.
- TF-IDF

$$TF = nt/n$$

Modelagem: Algoritmo Evolucionário

- Cada individuo consistirá em uma série de 1.200 valores de 0 à 1. Cada um mapeando uma caracteristicas do vetor TF-IDF (palavras).
- As caracteristicas que possuirem um valor acima de 50% serão utilizadas para a validação com a Random Forest
- A população inicial será gerada aleatóriamente (20 individuos)

Funções de Fitness

Utilizar a acurácia de teste para calcular o fitness de cada idivíduo.

Algoritmos Implementados

- Algoritmo Genético
- Estratégias Evolutivas
- Evolução Diferencial
- Programação Evolutiva
- Estratéfias Evolutivas: Variação da Cauchy
- Estratéfias Evolutivas: Variação da Cauchy + Variação de crossover
- GSO
- PSO

Crossover 1

```
def crossover(father,mother,cross):
    crossing = np.random.uniform(low=0, high=1.0, size=(len(father)))
    crossing = crossing > cross
    new_born = []
    for i in range(len(father)):
        if crossing[i]:
            new_born.append(father[i])
        else:
            new_born.append(mother[i])
```

Crossover 2

```
def crossover(father, mother):
   half = int(len(father)/2)
   trues = np.ones(half)
   falses = np.zeros(half)
   bool_array = concatenate(trues_falses)
   random.shuffle(bool array)
   new born = []
    for i in range(len(father)):
        if bool array[i]:
            new born.append(father[i])
        else:
            new born.append(mother[i])
    return new born
```

Mutação

```
idef mutation(hemafrodite, mut):
    new_mutation = []

rl = (math.sqrt(((2 * len(hemafrodite))))) ** -1
    r2 = (math.sqrt(math.sqrt(((4*len(hemafrodite)))))) **-1

#print(rl, r2)

for gene in hemafrodite:
    o = mut * np.exp((rl*random.gauss(0, 1))+ (r2*random.gauss(0, 1)))
    new_gene = gene + (o * random.gauss(0, 1))
    if new_gene > 0:
        gene = new_gene
    new_mutation.append(gene)

return new_mutation
```

GA

- Taxa de mutação: 0.3
- Taxa de crossover: 0.7
- Utilizando metódo da roleta probabilistica para seleção parental

Referencia: Computational Methods of Feature Selection, 2008

DE

- Taxa de mutação: 0.3
- Taxa de Crossover: 0.6

- Referência: Referencia: Computational Methods of Feature Selection, 2008
- Differential Evolution A Simple and Efficient Heuristic for Global Optimization over Continuous Space, 1997

PE

■ Taxa de mutação: 0.3

- Referência: Referencia: Computational Methods of Feature Selection, 2008
- ► Fast Evolutionary Programming, 1996

EE

■ Taxa de mutação: 0.3

Taxa de Crossover: 0.2 e 0.7

Referência: Referencia: Computational Methods of Feature Selection, 2008

 Estratégias evolutivas Aplicadas à Resolução de Otimização Multimodal 1999

EE - Cauchy

- Taxa de mutação: 0.3
- Taxa de Crossover: 0.2
- Utiliza uma série Gaussiana para a realização da mutação

Estratégias evolutivas Aplicadas à Resolução de Otimização Multimodal,

EE - Cauchy + mutação meio à meio

- Taxa de mutação: 0.3
- Utiliza uma série Gaussiana para a realização da mutação
- O crossover obrigatóriamente pega metade dod genes da mãe e a outra metade do pai.

- Referência: Referencia: Computational Methods of Feature Selection, 2008
- Estratégias evolutivas Aplicadas à Resolução de Otimização Multimodal,

GSO e PSO

- Limites Inferiores e Superiores (0 1) GSO e PSO
- ► C1 e C2 = 2, (PSO)

Resultados

Média, Desvio Padrão e Mediana do Tempo de Execução					
Algoritmo	Média	Desvio Padrão	Mediana		
Algorítmo Genético	0.642	0.022	0.65		
Estratégias Evolucionárias	0.706	0.114	0.75		
Evolução Diferencial	0.735	0.053	0.73		
Programação Evolutiva	0.622	0.081	0.64		
Estratégias Evolucionárias - C	0.642	0.034	0.65		
Estratégias Evolucionárias -CC	0.6427	0.034	0.65		
Random Forrest	0.6154	0.094	0.65		
GSO	0.746	0.056	0.77		
PSO	0.709	0.064	0.69		

Resultados

Comparação				
Comparação	t-value	p-value		
Normal e GA	-0.899	0.3790		
Normal e EP	-0.193	0.848		
Normal e EE	-2.0340	0.0554		
Normal e DE	-3.667	0.0015		
Normal e EE_Cauchy	-0.899	0.379		
Normal e EE_Cauchy2	-0.899	0.3790		
Normal e GSO	-4.609	9.414		
Normal e PSO	-2.625	0.0166		
GA e EP	0.746	0.4642		
GA e EE	-1.764	0.8848		
GA e DE	-4.797	0.6047		
GA e ee_cauchy	0.0	1.0		
GA e ee_cauchy2	0.0	1.0		
GA e GSO	0.7461	0.4642		
GA e PSO	-1.764	0.0929		
EP e EE	0.1510	0.8848		

Comparação				
Comparação	t-value	p-value		
EP e DE	-0.5460	0.6047		
EP e ee_cauchy	-0.746	0.464		
EP e GSO	-47.427	6.6278		
EP e PSO	-2.664	0.0153		
EE e ee_cauchy2	1.764	0.092		
EE e DE	-0.6632	0.5318		
EE e GSO	-1.238	0.226		
EE e PSO	-0.0641	0.9495		
DE e ee_cauchy	4.7976	0.0001		
DE e ee_cauchy2	4.7976	0.0001		
DE e GSO	0.512	0.612		
DE e PSO	1.0244	0.3184		
GSO e PSO	1.576	0.1273		

Dificuldades

Demora para rodar os experimentos

Projeto IV

- Enxame de Abelhas (Artificial Bee Colony)
- FireFly (Vagalumes)

Referências

- A. Freitas, "A Review of Evolutionary Algorithms for Data Mining".
- Tang at al., "Dynamic group optimisation algorithm for training feed-forward neural networks"
- Alejandro et al., "Evolutionary optimization of convolutional neural networks for cancer miRNA biomarkers classification"
- Rasim et al., "Evolutionary Algorithm for Extractive Text Summarization"
- Sebastiani. Fabrizio, "Machine Learning in Automated Text Categorization"
- Black et al., "Evolutionary Computation: Comments on the History and Current State"
- Atkinson et al., "Combining Information Extraction with Genetic Algorithms for Text Mining"
- Tharwat et al., "Recognizing human activity in mobile crowdsensing environment using optimized k-NN algorithm"
- Abraham et al.,"Document Clustering Using Differential Evolution"
- Evolutionary Computation Algorithms for Feature Selection of EEG-based Emotion Recognition using Mobile Sensors, 2017
- Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior, 2009
- Particle swarm optimization (PSO), 1995

