

Dependências Funcionais e Normalização

Prof. Humberto Luiz Razente Bloco B - sala 1B144

Roteiro

- Dependências Funcionais
- ♦ Introdução aos conceitos de normalização
 - 1 FN
 - 2 FN
 - 3 FN
 - BCNF

Dependência Funcional e Normalização

- Cada esquema de relação consiste de um número de atributos e o esquema do banco de dados relacional consiste de um número de esquemas de relação
- É necessário uma maneira formal para mensurar o quanto um esquema de relação é melhor do que outro
 - Dependências funcionais
 - Formas normais

Dependência Funcional e Normalização

- Processo de normalização
 - oferece mecanismos para analisar o projeto do BD
 - identificação de erros
 - oferece métodos para corrigir problemas
- Erros encontrados
 - repetição de informação
 - perda de informações
 - inabilidade de representar certas informações

- ◆ É uma restrição entre dois conjuntos de atributos de um esquema de relação R
 - restrição → impõe uma limitação nos valores possíveis de tuplas que formem um estado da relação r de R
- É uma propriedade da semântica ou do significado dos atributos
 - são derivadas pelo projetista do BD na análise da especificação de requisitos

relaçãoR (atributoA, atributoB, atributoC)

- Um atributo B de um esquema de relação R é funcionalmente dependente de um outro atributo A de R se um valor para A determina um único valor para B em qualquer momento
- ♦ Notação: A → B
- Se B é <u>funcionalmente dependente</u> de A, então A <u>determina funcionalmente</u> B

Observações

- As dependências funcionais são informações semânticas fornecidas pelo projetista
- Uma dependência funcional é uma propriedade do esquema da relação R, não de um estado particular válido da relação r de R
- ♦ Se X →Y em R, isso não implica necessariamente que Y → X em R

- Certas DF podem ser especificadas sem recorrer a uma relação específica, mas pelas propriedades de seus atributos
- Os exemplos abaixo deveriam ser válidos para qualquer advogado ou engenheiro no Brasil:
 - ♦ {ESTADO, OAB} → NOME_ADVOGADO
 - ♦ {ESTADO, CREA} → NOME_ENGENHEIRO

- Também é possível que algumas DF possam deixar de existir
- Exemplo: telefonia celular nos anos 90 e início dos anos 2000
 - ◆ PRIMEIROS_QUATRO_DÍGITOS → OPERADORA_CELULAR
 - com a portabilidade numérica a partir de 2008 no Brasil, essa DF passou a não ser mais verdadeira

- Exemplo:
 - ♦ SSN → ENOME
 - \bullet PNUMERO \rightarrow {PNOME, PLOCALIZACAO}
 - \bullet {SSN, PNUMERO} \rightarrow HORAS

Notação diagramática para DF

Exercício 1

Dada a seguinte relação cliente (nro cliente, nome, endereço)

As seguintes dependências são corretas?

- ♦ nro_cliente → nome ——
- ♦ nro_cliente → endereço →
- ♦ nome → endereço
- ♦ endereço → nome

Não!

OK!

Exercício 2

Dada a seguinte relação (e suas instâncias) linha_pedido (nro_pedido, nro_peça qtidade_comprada, preço_cotado)

nro_pedido	nro_peça	qtidade_ comprada	preço_cotado
101	P01	3 4	30,00
101	P02		70,00
102	P01	8	80,00
102	P02		20,00

Exercício 2

nro_pedido	nro_peça	qtidade_ comprada	preço_cotado
101	P01	3	30.00
101	P02	4	70,00
102	P01	8	80,00
102	P02	3	20,00

- As seguintes dependências são verdadeiras?
 - nro_pedido → qtidade_comprada
 - nro_peça → qtidade_comprada
 - nro_pedido > preço quotado
 - nro_peça → preço_quotado
 - {nro_pedido, nro_peça} → qtidade_comprada
- preço cotado}

Não!

Dependência Funcional e Normalização

- Vantagens:
 - garante relações sem redundância
 - oferece fácil recuperação das informações
- Formas normais:
 - Primeira Forma Normal (1FN)
 - Segunda Forma Normal (2FN)
 - Terceira Forma Normal (3FN)
 - Forma Normal de Boyce-Codd (FNBC)
 - 4FN, 5FN...

Uma superchave de uma relação R é um conjunto de atributos S contido em R

no qual não haverá duas tuplas t₁ e t₂ cujo t₁[S] = t₂[S]

Uma chave K é uma superchave com a propriedade adicional de que a remoção de qualquer atributo da chave fará com que K não identifique mais unicamente cada tupla da relação

 a diferença é que uma chave tem que ser mínima

EMPREGADO

chave estrangeira (f.k.)

ENOME SSN	DATANASC	ENDERECO	DNUMERO
-----------	----------	----------	---------

chave primária (p.k.)

Exemplo:

- {SSN} é uma chave de empregado
- Superchaves
 - {SSN, Enome}
 - {SSN, Enome, Datanasc}
 - {SSN, Enome, Datanasc, Endereço}
 - {SSN, Enome, Datanasc, DNumero}

- Chave candidata:
 - se um esquema de relação tiver mais de uma chave, cada uma delas é chamada chave candidata
 - uma delas é arbitrariamente designada para ser chave primária
- Um atributo de um esquema de relação R é chamado <u>atributo primário</u> se for membro de alguma chave candidata

EMPREGADO chave estrangeira (f.k.)

ENOME SSN DATANASC ENDERECO DNUMERO

chave primária (p.k.)

Exemplo:

 {SSN} é a única chave candidata de empregado, portanto também é a chave primária

Revisão: Chave Primária

- Um atributo A (ou coleção de atributos) é a chave primária para um esquema de relação R se
 - todos os atributos em R são funcionalmente dependentes de A
 - não existe um subconjunto próprio de A que determina funcionalmente os atributos em R

Primeira Forma Normal (1FN)

Uma relação R está na 1FN se:

 todo valor em R for <u>atômico</u> e <u>monovalorado</u>

ou seja, R não contém grupos de repetição

Primeira Forma Normal (1FN)

◆Exemplo

repetição

cliente (nro cli, nome, {end_entrega})

nro_cli	nome	end_entrega
124	João dos Santos	{Rua 10, 1024 Rua 24, 1356}
311	José Ferreira Neves	{Rua 46, 1344 Rua 98, 4456}

• cliente nem mesmo pode ser qualificado como uma relação ...

Métodos para Corrigir o Problema

Método 1

Cliente_nome

nro_cli	nome
124	João dos Santos
311	José Ferreira Neves

Cliente_entrega

nro_cli	end_entrega	
124	Rua 10, 1024	
124	Rua 24, 1356	
311	Rua 46, 1344	
311	Rua 98, 4456	

Métodos para Corrigir o Problema

Método 2

- substituir o grupo de repetição pelo número máximo de valores estabelecido para o grupo
- > <u>abordagem menos genérica e que pode</u> introduzir muitos valores *null*

nro_cli_	nome	end_entrega1	end_entrega2
124	João dos Santos	Rua 10, 1024	Rua 24, 1356
311	José Ferreira Neves	Rua 46, 1344	Rua 98, 4456
025	Cecília Neves	Rua 77, 275	null

E se Cecília tivesse 3 endereços de entrega?

Primeira Forma Normal (1FN)

- Problema
- cliente (<u>nro_cli</u>, nome, {end_entrega})Corrigindo o problema ...
- Solução 1
 - cliente_nome (nro_cli, nome)
 - cliente_entrega (nro cli, end_entrega)
- Solução 2
 - cliente (nro_cli, nome, entrega1, entrega2)

- Uma relação R está na 2FN se:
 - está na 1FN
 - não existe <u>atributo não chave</u> que é dependente de somente uma parte da chave primária

Exemplo:

 pedido (<u>nro-pedido</u>, data, <u>nro-peça</u>, descrição, qtdade_comprada, preço_cotado)

```
nro-pedido → data

nro-peça → descrição

{nro-pedido, nro-peça} → {qtdade_comprada,

preço_cotado}
```

- Método para corrigir o problema:
 - para cada sub-conjunto do conjunto de atributos que constitui a chave primária, começar uma relação com esse sub-conjunto como sua chave primária
 - incluir os atributos da relação original na relação correspondente à chave primária apropriada, isto é, colocar cada atributo junto com a coleção mínima da qual ele depende, atribuindo um nome a cada relação

Problema: pedido (nro-pedido, data, nro-peça, descrição, qtdade_comprada, preço_cotado)

Corrigindo o problema ...

Solução:
pedido (pro-pedido d:

pedido (<u>nro-pedido</u>, data)

peça (<u>nro peça</u>, descrição)

pedido_peça (<u>nro pedido</u>, <u>nro peça</u>,

qtdade_comprada, preço_cotado)

Exercícios

- Diga em que forma normal (Nenhuma, 1 FN, 2 FN) está cada relação abaixo, justificando sua resposta. Depois, se necessário, indique os passos que devem ser realizados para normalizar para a 2ª forma normal.
- ◆ LIVROS = {<u>Título</u>, <u>Autor</u>, Tipo, Preço, {FiliaçãoDoAutor}, Editora}
 - Título → {Editora, Tipo}
 - Tipo → Preço
 - Autor → FiliaçãoDoAutor
- ♦ FORNECEDOR = {<u>CNPJ</u>, RazãoSocial, NomeFantasia, Contato}
 - CNPJ → {RazãoSocial, NomeFantasia, Contato}
- ◆ CLIENTE = {<u>CPF</u>, Nome, <u>NroAgência</u>, <u>NroConta</u>, <u>TipoConta</u>}
 - CPF → {Nome, NroAgência, NroConta, TipoConta}
 - {NroAgência, NroConta} → {CPF, Nome, TipoConta}
 - TipoConta → NroAgência

- Uma relação R está na 3FN se:
 - está na 2FN
 - não existem <u>atributos não chave</u> que sejam dependentes de outros <u>atributos não chave</u> (determinante não chave)
 - dependência transitiva

Uma relação está na 3ª FN se já estiver na 2ª e ...

TODOS os atributos que **NÃO** fazem parte da chave primária **NÃO** possuírem nenhuma dependência entre si.

OU SEJA,

Na 2ª FN verifica-se a dependência em relação aos atributos que fazem parte da CHAVE PRIMÁRIA

Na 3^a FN verifica-se a dependência em relação aos atributos que NÃO fazem parte da CHAVE PRIMÁRIA

- ♦ Dependência transitiva X → Y em R
 - se (X → Z) e (Z → Y) e (Z não for nem a chave candidata nem um subconjunto de qualquer chave de R)

Exemplo de dependência transitiva

- DNOME e DGERSSN dependem funcionalmente de DNUMERO (Z₄ → {Z₅, Z₆})
- DNUMERO depende funcionalmente de SSN ($X \rightarrow \{Z_1, ..., Z_4\}$)
 - DNUMERO não é chave, nem parte de chave
- DNOME e DGERSSN dependem transitivamente de SSN

- Método para corrigir o problema:
 - para cada determinante que não é uma chave candidata, remover da relação os atributos que dependem desse determinante
 - criar uma nova relação contendo todos os atributos da relação original que dependem desse determinante
 - tornar o determinante a chave primária da nova relação

Terceira Forma Normal (3FN)

Exemplo 1:

Terceira Forma Normal (3FN)

- Exemplo 2:
 - cliente (<u>nro-cliente</u>, nome-cliente, end-cliente, nro-vendedor, nome-vendedor)

nro-cliente → nome-cliente, end-cliente, nro_vendedor

nro-vendedor → nome_vendedor

Terceira Forma Normal (3FN)

Problema: cliente (<u>nro-cliente</u>, nome-cliente, end-cliente, nro-vendedor, nome-vendedor)

Corrigindo o problema ...

Solução:
cliente (nro-cliente, nome-cliente, end-cliente, nro-vendedor)
vendedor (nro-vendedor, nome-vendedor)

- Diga em que forma normal (Nenhuma, 1 FN, 2 FN ou 3 FN) está cada relação abaixo, justificando sua resposta. Depois, se necessário, indique os passos que devem ser realizados para normalizar para a forma normal mais restrita possível.
- ◆ LIVROS = {<u>Título</u>, <u>Autor</u>, Tipo, Preço, {FiliaçãoDoAutor}, Editora}
 - Título → {Editora, Tipo}
 - Tipo → Preço
 - Autor → FiliaçãoDoAutor
- ◆ FORNECEDOR = {<u>CNPJ</u>, RazãoSocial, NomeFantasia, Contato}
 - CNPJ → {RazãoSocial, NomeFantasia, Contato}
- ◆ CLIENTE = {<u>CPF</u>, Nome, <u>NroAgência</u>, <u>NroConta</u>, <u>TipoConta</u>}
 - CPF → {Nome, NroAgência, NroConta, TipoConta}
 - {NroAgência, NroConta} → {CPF, Nome, TipoConta}
 - TipoConta → NroAgência

- ◆ LIVROS = {<u>Título</u>, <u>Autor</u>, Tipo, Preço, {FiliaçãoDoAutor}, Editora}
 - DF:
 - Título → {Editora, Tipo}
 - Tipo → Preço
 - Autor → FiliaçãoDoAutor
 - 1) Não está na 1FN (atributo multivalorado) LIVROS = {<u>Título, Autor</u>, Tipo, Preço, Pai, Mãe, Editora}
 - 2) Não está na 2FN (existência de dependência parcial)
 - LIVROS = {<u>Título</u>, <u>Autor</u>}
 - DADOSLIVROS = {<u>Título</u>, Tipo, Preço, Editora}
 - AUTOR = {<u>Autor</u>, Pai, Mãe}
 - 3) Não está na 3FN (existência de dependência transitiva)
 - LIVROS = {<u>Título</u>, <u>Autor</u>}
 - DADOSLIVROS = {<u>Título</u>, Tipo, Editora}
 - TIPO_LIVRO = {<u>Tipo</u>, Preço}
 - AUTOR = {<u>Autor</u>, Pai, Mãe}

- ◆ FORNECEDOR = {<u>CNPJ</u>, RazãoSocial, NomeFantasia, Contato}
 - DF: CNPJ → {RazãoSocial, NomeFantasia, Contato}
 - 1FN, ok! Todos atributos atômicos
 - 2FN, ok! A chave primária é composta de apenas 1 atributo
 - 3FN, ok! Não existe dependência transitiva

- ◆ CLIENTE = {<u>CPF</u>, Nome, <u>NroAgência</u>, NroConta, TipoConta}
 - CPF → {Nome, NroAgência, NroConta, TipoConta}
 - {NroAgência, NroConta} → {CPF, Nome, TipoConta}
 - TipoConta → NroAgência
 - 1FN, ok! Todos atributos atômicos
 - 2FN, ok! Não existe dependência parcial
 - 3FN, ok! N\u00e3o existe depend\u00e9ncia transitiva

Considerações Finais

- A normalização para as FN apoiadas em DF se atinge com a separação dos atributos em duas ou mais relações
 - Isso aumenta o número de relações
 - Requer operações de junção na recuperação de informações
- Normalizar evita inconsistências nas relações, porém obriga a execução de operações de junção nas consultas

Considerações Finais

- Normalizar ou não uma relação?
 - O que é mais importante
 - garantir a eliminação de inconsistências no banco de dados ou a eficiência de acesso?

- Se a consistência não for um fator fundamental pode-se abrir mão da normalização
 - em casos muito especiais
 - por exemplo em relações com uma quantidade crítica de linhas

- 1. Diga em que forma normal (Nenhuma, 1FN, 2FN, 3FN) está cada relação abaixo, justificando sua resposta. Depois, se necessário, indique os passos que devem ser realizados para normalizar para a forma normal mais restrita possível.
- a) CARROSVENDIDOS = {Carro, DataVenda, <u>Vendedor</u>, Comissão, Desconto}
 - DF:
 - Carro → DataVenda
 - DataVenda → Desconto
 - Vendedor → Comissão
- b) FILIAL = {<u>CodF</u>, País, Cidade, Continente, Língua, NomeGerente, FusoHorário, Nível}
 - DF:
 - CodF → {País, Cidade, NomeGerente, Nível, FusoHorário}
 - País → {Continente, Língua}

- C. ProjetoEmpresa = {CodProj, Tipo, Descr, CodEmp, Nome, Cat, Sal, DataIni, TempAl}
 - DF:
 - { CodProj, CodEmp } → {DataIni, TempAl}
 - CodProj → {Tipo, Descr}
 - CodEmp → {Nome, Cat, Sal}
 - Cat → Sal
- d. Matricula = {CodAluno, CodTurma, CodDisciplina,
 CargaHoraria, Oferecimento, NomeDisciplina, NomeAluno,
 CodLocalNascAluno, NomeLocalNascAluno, Nota, Faltas}
 - DF:
 - CodAluno → {NomeAluno, CodLocalNascAluno, NomeLocalNascAluno}
 - CodLocalNascAluno → NomeLocalNascAluno
 - CodTurma → {CodDisciplina, NomeDisciplina, CargaHoraria, Oferecimento}
 - CodDisciplina → {NomeDisciplina, CargaHoraria}
 - {CodAluno, CodTurma} → {Nota, Faltas}

Bibliografia e leitura complementar para casa

- Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados, 6ª edição.
 - Capitulo 15: "Fundamentos de dependências funcionais e normalização para bancos de dados relacionais"