Midterm 2 Version 2 Solution

Hyungmo Gu

April 4, 2020

Question 1

a.

$$100 \div 3 = 33$$
, Remainder $\mathbf{1}$
 $33 \div 3 = 11$, Remainder $\mathbf{0}$
 $11 \div 3 = 3$, Remainder $\mathbf{2}$
 $3 \div 3 = 1$, Remainder $\mathbf{0}$
 $1 \div 3 = 0$, Remainder $\mathbf{1}$

It follows from above that the ternary representation of 100 is (10201)₃.

Attempt 2:

$$100 + (-1 \cdot 3^{4}) = 100 - 81 = 19$$

$$19 + (-1 \cdot 3^{3}) = 19 - 27 = -8$$

$$-8 + (+1 \cdot 3^{2}) = -8 + 9 = 1$$

$$1 + (0 \cdot 3^{1}) = 1 + 0 = 1$$

$$1 + (-1 \cdot 3^{0}) = 1 - 1 = 0$$

So by flipping the signs, and reading from top to bottom, we can conclude the balanced ternary representation of 100 is $(11T101)_{bt}$

Notes:

- \bullet Balanced ternary representation expresses a decimal using 1, 0 and -1
- ullet T represents negative sign in balanced ternary representation.
- Is my way of calculating balanced ternary representation correct? My approach was 'which sign should be used given 3^n so the calculation stops at 3^0 ?'

b. The largest number expressible by an n-digit binary representation is

$$\sum_{i=0}^{n-1} 2^i \tag{1}$$

Correct Solution:

$$\sum_{i=0}^{n-1} 2^i = \frac{1 - 2^{n-1+1}}{1 - 2} = 2^n - 1 \tag{1}$$

Notes:

- Noticed professor simplified solution using geometric series
- Geometric series with finite sum

$$\sum_{i=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}, \text{ where } |r| > 1$$
 (2)

Notes:

- Learned \sqrt{n} rises faster than $\log n$.
- Learned if $g(n) \in \Theta(f(n))$ is true then $f(n) + g(n) \in \Theta(f(n))$ is true.

Question 2

Question 3

Question 4