Question	Answer		Mark
Number 12(a)			2
12(a)	Amount of work from the electric motor is reduced	(1)	
	Because there is energy transfer between the counterweight and the lift Or		
	Because counterweight contributes to total work done (on lift cage) Or		
	Because the counterweight reduces the force required from the motor Or		
	Because total work done (on lift cage) is sum of work done by counterweight/gravity and by the motor.	(1)	
12(b)	Use of $\Delta W = F\Delta x$ or $\Delta E_{\text{grav}} = mg\Delta h$	(1)	4
	Use of conservation of energy	(1)	
	Use of $P = W/t$	(1)	
	P = 12.4 (kW)	(1)	
	Or		
	Calculates resultant force	(1)	
	Use of $\Delta W = F \Delta x$	(1)	
	Use of $P = W/t$	(1)	
	P = 12.4 (kW)	(1)	
	Example of calculation For counterweight $\Delta E_{\text{grav}} = mg\Delta h$ = 1300 kg × 9.81 ms ⁻² ×40.0 m = 5.101 × 10 ⁵ J		
	For lift $\Delta E_{\text{grav}} = mg\Delta h$ = 2250 kg × 9.81 ms ⁻² ×40.0 m = 8.829 × 10 ⁵ J		
	Energy required = $8.829 \times 10^5 \text{ J} - 5.101 \times 10^5 \text{ J} = 3.728 \times 10^5 \text{ J}$ $P = 3.728 \times 10^5 \text{ J} \div 30 \text{ s} = 1.243 \times 10^4 \text{ W}$		
12(c)			2
.,	Use of efficiency = useful power output ÷ total power input	(1)	
	Efficiency = 0.78 (ecf from (b)	(1)	
	Example of calculation Efficiency = $12.4 \text{ kW} \div (12.4 + 3.6) \text{ kW} = 0.775$		
	Total for question 12		8