§ 4. Универсальные алгебры и их основные типы

Б.М.Верников

Уральский федеральный университет, Институт естественных наук и математики, кафедра алгебры и фундаментальной информатики

Операции на множестве (определение)

Определение

Пусть S — непустое множество, а n — натуральное число. n-арной алгебраической операцией на множестве S называется отображение из множества S^n (т. е. n-й декартовой степени множества S) в S. При n=1 n-арная операция называется унарной, при n=2 — бинарной, при n=3 — тернарной. 0-арной операцией на S называется выделение некоторого фиксированного элемента множества S.

В табл. 1 на следующем слайде приведены примеры операций на различных множествах.

Операции на множестве (примеры)

Табл. 1. Множества и операции на них

	Операции		
Множества	0-арные	унарные	бинарные
N	1	x + 1, x!	$x+y$, xy , x^y , min $\{x,y\}$, max $\{x,y\}$, HOД (x,y) , HOK (x,y)
\mathbb{Z}	0, 1	-x, $ x $	x + y, $x - y$, xy , min $\{x, y\}$, max $\{x, y\}$
Q	0, 1	-x, $ x $, $[x]$	x + y, $x - y$, xy , $min\{x, y\}$, $max\{x, y\}$
\mathbb{R}	0, 1	$-x, x , [x],$ $\sqrt[3]{x}, e^{x},$ $\sin x, \cos x$	x + y, x - y, xy, $\min\{x, y\}, \max\{x, y\}$
$\mathcal{B}(S)$	\varnothing, S	Ā	$A \cup B, A \cap B, A \setminus B$
Множество всех бинарных отношений на S	Δ_S , ∇_S	α^{-1}	lphaeta
Множество всех векторов	\vec{O}	$-\vec{a}$	$\vec{a} + \vec{b}$

Операции на множестве (комментарии)

В общем случае мы будем записывать n-арную алгебраическую операцию на некотором множестве в виде $f(x_1, x_2, \ldots, x_n)$ и называть x_1, x_2, \ldots, x_n aprументами операции f. Как правило, мы будем опускать слово «алгебраическая» и называть алгебраические операции просто операциями. Отметим, однако, что многие естественные и важные операции (в широком смысле этого слова) не являются алгебраическими. В самом деле, по определению *п*-арной операции, ее результат должен быть определен для любой п-ки элементов основного множества. Поэтому не являются алгебраическими операции вычитания на множестве $\mathbb N$ (если x < y, то $x - y \notin \mathbb{N}$), деления на множествах \mathbb{Q} и \mathbb{R} (результат не определен, если делитель равен 0) и извлечения квадратного корня на множестве \mathbb{R} (если x < 0, то \sqrt{x} не существует). Результат операции должен быть определен однозначно (еще одна причина, по которой извлечение квадратного корня — не алгебраическая операция на $\mathbb R$). Все аргументы операции должны принадлежать исходному множеству. Поэтому не является алгебраической операция умножения вектора на число (см. $\S 10$), если рассматривать ее как операцию от двух аргументов¹. Наконец, результат операции должен принадлежать исходному множеству. Поэтому не является алгебраической операция скалярного произведения векторов (см. § 11), результатом которой является число.

¹Но операция умножения вектора на фиксированное число является унарной операцией на множестве всех векторов.

Универсальные алгебры

Определение

Универсальной алгеброй (или просто алгеброй) называется совокупность непустого множества A и произвольного набора Ω заданных на A алгебраических операций. Такая алгебра обозначается через $\mathcal{A}=\langle A;\Omega\rangle$. Множество A называется основным множеством или носителем алгебры \mathcal{A} , а множество Ω — сигнатурой этой алгебры. В тех случаях, когда сигнатура будет ясна из контекста, мы часто будем отождествлять алгебру \mathcal{A} с ее основным множеством A.

Универсальными алгебрами являются, например: множество $\mathbb N$ с операцией сложения чисел; множество $\mathbb Q$ с бинарной операцией умножения чисел, унарной операцией взятия числа, обратного к данному, и 0-арной операцией 1; множество всех векторов с бинарной операцией сложения векторов и набором всевозможных унарных операций умножения на число t, где t пробегает множество $\mathbb R$. Последний пример показывает, что сигнатура алгебры может быть бесконечной.

Группоиды

Произвольная универсальная алгебра — это очень общее понятие. Мы будем рассматривать несколько частных случаев этого понятия.

Определение

Группоидом называется универсальная алгебра, сигнатура которой состоит из одной бинарной операции.

Группоидами, являются, например, множество $\mathbb Z$ с операцией сложения, множество $\mathbb R$ с операцией умножения, множество $\mathcal B(S)$ с операцией разности множеств и т. д. Операцию в произвольном группоиде часто называют *умножением* и обозначают так же, как умножение чисел: точкой или отсутствием символа (т. е. $x \cdot y$ или xy).

Ассоциативность

Определение

Бинарная операция f, заданная на множестве A, называется ассоциативной, если f(f(x,y),z)=f(x,f(y,z)) для любых $x,y,z\in A$. Если писать xy вместо f(x,y), то ассоциативность операции означает, что (xy)z=x(yz) для любых $x,y,z\in A$.

Если операция ассоциативна, то в записях вида $x_1x_2\cdots x_n$ скобок можно не ставить, так как результат операции от их расстановки не зависит.

Почти все упоминавшиеся в §1 и 2 бинарные операции ассоциативны. Единственным исключением является разность множеств. Чтобы убедиться в том, что эта операция неассоциативна, рассмотрим произвольные множества A, B и C такие, что $A \cap C \neq \varnothing$. Легко понять, что если $x \in A \cap C$, то $x \in A \setminus (B \setminus C)$, но $x \notin (A \setminus B) \setminus C$. Неассоциативность разности множеств можно доказать и по-другому: ясно, что $(A \setminus A) \setminus A = \varnothing \setminus A = \varnothing$, но $A \setminus (A \setminus A) = A \setminus \varnothing = A$.

Полугруппы

Определение

Полугруппой называется группоид, в котором сигнатурная бинарная операция ассоциативна.

Мы многократно встречались ранее с полугруппами — это любое из множеств $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ и \mathbb{R} с любой из операций сложения и умножения, множество $\mathcal{B}(S)$ с любой из операций объединения и пересечения, множество Eq(S) с операцией произведения бинарных отношений, множество всех векторов с операцией сложения векторов, множество всех отображений произвольного непустого множества S в себя с операцией произведения отображений. Приведем еще один очень важный пример полугруппы. Для произвольного непустого множества X обозначим через X^+ множество всевозможных конечных последовательностей элементов из X. Элементы множества X^+ будем называть словами над алфавитом X. На множестве X^+ определим операцию *конкатенации* или *приписывания* слов: если $\alpha,\beta\in X^+$, то результат указанной операции — это слово $\alpha\beta$, получаемое приписыванием слова eta к слову lpha справа. Очевидно, что операция приписывания ассоциативна, и потому множество X^+ с этой операцией является полугруппой. Эта полугруппа называется свободной полугруппой над множеством Х.

Нейтральные элементы

Важным частным случаем полугрупп являются моноиды. Чтобы дать соответствующее определение, нам понадобится одно новое понятие.

Определение

Пусть A — группоид с бинарной операцией f. Элемент $e \in A$ называется нейтральным относительно f, если f(x,e) = f(e,x) = x для любого $x \in S$. Если писать xy вместо f(x,y), то нейтральность элемента e означает, что xe = ex = x для любого $x \in A$.

Замечание о нейтральном элементе

Если группоид содержит нейтральный элемент, то этот элемент является единственным.

Доказательство. Пусть e_1 и e_2 — нейтральные элементы группоида A с операцией f. Тогда из нейтральности элемента e_1 вытекает, что $f(e_1,e_2)=e_2$, а из нейтральности e_2 — что $f(e_1,e_2)=e_1$. Следовательно, $e_1=e_2$.

Определение

Моноидом называется универсальная алгебра, сигнатура которой состоит из ассоциативной бинарной операции f и 0-арной операции, которая выделяет нейтральный относительно f элемент.

Иными словами, моноид — это полугруппа, на которой дополнительно задана 0-арная операция, выделяющая элемент, нейтральный относительно умножения. Нейтральный элемент в произвольном моноиде часто называется единицей и обозначается через 1.

Примерами моноидов являются следующие алгебры: $\langle \mathbb{Z};\cdot,1 \rangle$, $\langle \mathbb{Z};+,0 \rangle$, $\langle \mathcal{B}(S);\cup,\varnothing \rangle$, $\langle \mathcal{B}(S);\cap,S \rangle$, $\langle \mathrm{Eq}(S);\cdot,\nabla_S \rangle$, множество всех векторов относительно сложения векторов и выделения нулевого вектора, множество всех отображений данного множества в себя с операциями произведения отображений и выделения тождественного отображения. Для произвольного непустого множества X положим $X^* = X^+ \cup \{\varepsilon\}$, где ε — пустое слово, и распространим операцию конкатенации с множества X^+ на множество X^* правилом: $\alpha \varepsilon = \varepsilon \alpha = \alpha$ для любого слова $\alpha \in X^*$. Ясно, что X^* с операциями конкатенации и выделения пустого слова — моноид. Он называется свободным моноидом над множеством X.

Обратные и обратимые элементы

Определение

Пусть A — моноид с бинарной операцией \cdot и нейтральным элементом e. Элемент $y \in A$ называется обратным к элементу $x \in A$, если xy = yx = e. Элемент, обратный к x, обозначается через x^{-1} . Элемент $x \in A$ называется обратимым, если существует элемент, обратный к x.

Лемма об обратном элементе

Если элемент x моноида $\langle A;\cdot,e
angle$ обратим, то обратный к x элемент является единственным.

Доказательство. Пусть y и z — элементы, обратные к x. Тогда z = ez = (yx)z = y(xz) = ye = y.

Свойства обратных элементов

Свойства обратных элементов

Eсли элементы x и y моноида $\langle A;\cdot,e \rangle$ обратимы, то:

- 1) элемент x^{-1} обратим и $(x^{-1})^{-1} = x$;
- 2) элемент ху обратим и $(xy)^{-1} = y^{-1}x^{-1}$.

Доказательство. 1) По определению обратного элемента, для всякого $x \in A$ выполнены равенства $x^{-1}x = xx^{-1} = e$, где e — нейтральный элемент в моноиде A. Это означает, что элемент x является обратным к x^{-1} . В частности, элемент x^{-1} обратим. В силу леммы об обратном элементе, отличных от x элементов, обратных к x^{-1} , не существует, и потому $(x^{-1})^{-1} = x$. Заметим, что свойство 1) выполнено не только в моноиде, но и в произвольном группоиде с нейтральным элементом.

2) Заметим, что $(xy)(y^{-1}x^{-1}) = x(yy^{-1})x^{-1} = xex^{-1} = xx^{-1} = e$. Аналогично проверяется, что $(y^{-1}x^{-1})xy = e$.

Отметим еще, что свойства обратного отображения, указанные в $\S 1$, являются частными случаями доказанных сейчас свойств обратных элементов.

Группы

Определение

Группой называется моноид, в котором все элементы обратимы.

Таким образом, группа — это универсальная алгебра, сигнатура которой состоит из ассоциативной бинарной операции, унарной операции взятия элемента, обратного к данному, и 0-арной операции выделения нейтрального элемента.

В любой группе можно определить операцию *деления* элементов правилом $x/y = xy^{-1}$.

Укажем еще один важный тип бинарных операций.

Определение

Бинарная операция f, заданная на множестве A, называется коммутативной, если f(x,y)=f(y,x) для любых $x,y\in A$. Если писать xy вместо f(x,y), то коммутативность операции означает, что xy=yx для любых $x,y\in A$.

Определение

Группа G называется *абелевой*, если ее бинарная операция коммутативна (т. е. если xy = yx для любых $x, y \in G$).

Примеры групп (1)

Приведем несколько примеров групп. Отметим, что для того, чтобы это сделать, достаточно указать основное множество и бинарную операцию, играющую роль умножения. Из определения этой операции, как правило, уже легко вытекает, какой элемент является нейтральным, и как «устроена» операция взятия обратного элемента.

Пример 1. Любое из множеств \mathbb{Z} , \mathbb{Q} и \mathbb{R} является группой относительно сложения. Очевидно, что нейтральным элементом в этих группах является число 0, а элементом, обратным к x, — число -x. Эти группы называют аддитивными группами целых, рациональных и действительных чисел соответственно.

Пример 2. Множество всех ненулевых рациональных чисел, равно как и множество всех ненулевых действительных чисел, образует группу относительно умножения. Роль нейтрального элемента здесь играет число 1, а роль элемента, обратного к x, — число $\frac{1}{x}$. Эти группы называют мультипликативными группами рациональных и действительных чисел соответственно.

Пример 3. Группой является и множество всех векторов с операцией сложения векторов. Здесь нейтральный элемент — это $\vec{0}$, а элемент, обратный к \vec{x} , — вектор $-\vec{x}$.

Примеры групп (2)

Все группы, указанные в примерах 1-3, абелевы. Чтобы привести пример неабелевой группы, введем одно новое понятие.

Определение

Пусть S — непустое множество. Взаимно однозначное отображение множества S на себя называется подстановкой на S.

Пример 4. Множество всех подстановок на данном множестве S образует группу относительно операции произведения отображений. Роль нейтрального элемента играет здесь тождественная подстановка, а роль подстановки, обратной к подстановке f, — отображение, обратное к f, в смысле определения обратного отображения, данного в §1 (отображение f^{-1} существует в силу того, что всякая подстановка взаимно однозначна — см. критерий существования обратного отображения в §1). Группа подстановок на множестве X называется симметрической группой на X. Симметрическая группа на n-элементном множестве обозначается через \mathbf{S}_n .

Неабелевость группы S_n

Если n>2, то группа \mathbf{S}_n неабелева. В самом деле, пусть $X=\{x_1,x_2,\ldots,x_n\}$ и n>2. Определим подстановки α и β на X следующим образом: α отображает x_1 и x_2 друг в друга, оставляя остальные элементы на месте, а β отображает x_1 и x_3 друг в друга, оставляя остальные элементы на месте. Тогда

$$(\alpha\beta)(x_1) = \beta(\alpha(x_1)) = \beta(x_2) = x_2, \quad \mathsf{a}$$
$$(\beta\alpha)(x_1) = \alpha(\beta(x_1)) = \alpha(x_3) = x_3.$$

Следовательно, $\alpha\beta \neq \beta\alpha$.

В § 19 нам понадобится следующее утверждение.

Лемма о степенях элементов в конечной группе

Пусть G — конечная группа. Тогда существует такое натуральное число k, что для любого элемента $x \in G$ выполнено равенство $x^k = 1$.

Доказательство. Пусть $x \in G$. Рассмотрим элементы $x, x^2, \dots, x^n, \dots$ Поскольку группа G конечна, они не могут быть попарно различными. Следовательно, $x^n = x^m$ для некоторых различных n и m. Без ограничения общности будем считать, что n < m. Тогда $x^{m-n} = 1$. Пусть теперь $G = \{x_1, x_2, \dots, x_r\}$. В силу сказанного выше, для всякого $i = 1, 2, \dots, r$ существует натуральное число s_i такое, что $x_i^{s_i} = 1$. Положим $s = s_1 s_2 \cdots s_r$. Тогда

$$x_i^s = x_i^{s_1 s_2 \cdots s_r} = (x_i^{s_i})^{s_1 \cdots s_{i-1} s_{i+1} \cdots s_r} = 1^{s_1 \cdots s_{i-1} s_{i+1} \cdots s_r} = 1$$

ля всякого $i = 1, 2, \dots, r$.

В действительности справедливо более сильное утверждение, называемое теоремой Лагранжа: если группа G состоит из k элементов, то $x^k=1$ для всякого $x\in G$. Это утверждение мы доказывать не будем.

Мультипликативный и аддитивный способы представления операций

Если бинарная операция коммутативна, то ее часто называют сложением и обозначают символом +. Нейтральный элемент относительно такой операции обычно называется *нулем* и обозначается символом 0, а элемент, обратный к x относительно сложения, как правило, называется *противоположным* к x и обозначается через -x. Такой способ представления операций называется *аддитивным*, поскольку он возник по аналогии со сложением чисел, в отличие от изложенного выше более употребительного *мультипликативного* способа, возникшего по аналогии с умножением чисел. При аддитивной записи операции в группе вместо операции деления можно ввести *операцию вычитания* правилом: x-y=x+(-y).

Дистрибутивность

Определение

Пусть f и g — бинарные операции на множестве S. Операция g называется дистрибутивной относительно f, если $g\big(f(x,y),z\big)=f\big(g(x,z),g(y,z)\big)$ и $g\big(x,f(y,z)\big)=f\big(g(x,y),g(x,z)\big)$ для любых $x,y,z\in S$.

Если заменить в этом определении f(x,y) на x+y, а g(x,y) на xy, и договориться о том, что, как обычно, умножение имеет приоритет перед сложением, то равенства из определения примут знакомый и привычный вид: (x+y)z=xz+yz и x(y+z)=xy+xz.

Примерами дистрибутивности являются дистрибутивность умножения относительно сложения на всех числовых множествах, дистрибутивность объединения [пересечения] множеств относительно их пересечения [объединения], дистрибутивность прямого произведения множеств относительно их объединения и пересечения, дистрибутивность умножения вектора на данное число (рассматриваемое как унарная операция над векторами) относительно сложения векторов.

Определение

Кольцом называется универсальная алгебра R, сигнатура которой состоит из двух бинарных операций (одну из которых мы будем называть сложением и обозначать через x+y, другую — умножением и обозначать через $x\cdot y$ или xy) таких, что выполнены следующие условия:

- 1) $\langle R; + \rangle$ абелева группа;
- 2) умножение дистрибутивно относительно сложения.

Группа $\langle R; + \rangle$ называется аддитивной группой кольца, ее нейтральный элемент обозначается через 0 и называется нулем, а элемент, обратный к элементу $x \in A$, называется противоположным к x обозначается через -x. Если умножение ассоциативно [коммутативно], то кольцо называется ассоциативным [соответственно коммутативным]. Если в кольце есть нейтральный элемент по умножению, то этот элемент называется единицей и обозначается (как правило) через 1, а кольцо называется кольцом c 1.

Примеры колец

Пример 1. Множества \mathbb{Z}, \mathbb{Q} и \mathbb{R} являются ассоциативно-коммутативными кольцами с 1 относительно обычных операций сложения и умножения.

Пример 2. Пусть n- натуральное число такое, что n>1. Положим $\mathbb{Z}_n=\{0,1,\dots,n-1\}$ и определим на множестве \mathbb{Z}_n операции сложения \oplus и умножения \otimes следующим образом: если $x,y\in\mathbb{Z}_n$, то $x\oplus y$ [соответственно $x\otimes n$] — это остаток от деления числа x+y [соответственно xy] на n (здесь x+y и xy- обычные сумма и произведение чисел x и y). Очевидно, что $\langle \mathbb{Z}_n; \oplus, \otimes \rangle$ — ассоциативно-коммутативное кольцо с 1 (если $x\neq 0$, то противоположным к x является число n-x). Оно называется кольцом вычетов по модулю n.

Пример 3. Пусть S — произвольное множество. Булеан множества S с операциями симметрический разности (в роли сложения) и пересечения (в роли произведения) является ассоциативно-коммутативным кольцом с 1. Нулем в этом кольце является пустое множество, единицей — множество S, а элементом, противоположным к произвольному подмножеству A множества S, — само множество A.

Пример 4. Пусть $\langle R; + \rangle$ — абелева группа с нейтральным элементом 0. Положим x*y=0 для любых $x,y\in R$. Очевидно, что $\langle R; +, * \rangle$ — ассоциативно-коммутативное кольцо. Такие кольца называются кольцами с нулевым умножением.

Понятие матрицы

Все кольца, указанные на предыдущем слайде, коммутативны. Чтобы привести пример некоммутативного кольца, введем понятие, которое является одним из важнейших в нашем курсе.

Определение

Запись произвольной матрицы

Для обозначения элементов матриц применяется двойная индексация, при этом первый индекс означает номер строки, а второй — номер столбца, в которых стоит данный элемент. Произвольная матрица размера $m \times n$ записывается следующим образом:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

Кратко эта матрица записывается в виде $A=(a_{ij}).$

Сложение матриц

Определение

Пусть $A=(a_{ij})$ и $B=(b_{ij})$ — матрицы размера $m\times n$ над кольцом R. Суммой матриц A и B называется матрица $C=(c_{ij})\in R^{m\times n}$ такая, что $c_{ij}=a_{ij}+b_{ij}$ для всех $i=1,2,\ldots,m$ и $j=1,2,\ldots,n$. Эта матрица обозначается через A+B.

- Если матрицы A и B имеют различные размеры, то их сумма не определена.
- Очевидно, что множество $R^{m \times n}$ с операцией сложения матриц является абелевой группой. Нейтральным элементом этой группы является матрица, все элементы которой равны 0. Эта матрица называется нулевой и обозначается буквой O. Матрицей, противоположной к матрице $A=(a_{ij})$, является матрица $-A=(-a_{ij})$.

Умножение матриц

Введем теперь операцию умножения матриц.

!! Произведение двух матриц над одним и тем же кольцом определено лишь в случае, когда число столбцов первого сомножителя равно числу строк второго.

Иными словами, если A и B — матрицы над кольцом R, A имеет размер $k imes \ell$, а B — размер r imes m, то произведение AB существует тогда и только тогда, когда $\ell=r$.

Определение

Пусть $A=(a_{ii})\in R^{k\times \ell}$, а $B=(b_{ii})\in R^{\ell\times m}$. Тогда произведением ABматриц A и B называется матрица $C=(c_{ii})\in R^{k\times m}$ такая, что

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{i\ell}b_{\ell j}$$

для всех $i=1,2,\ldots,k$ и $j=1,2,\ldots,m$. Иными словами, c_{ij} есть сумма произведений элементов i-й строки матрицы A на соответствующие элементы j-го столбца матрицы B.

Для краткости правило вычисления элементов произведения матриц часто формулируют так:

 элемент с_{іі} равен произведению і-й строки матрицы A на j-й столбец матрицы В.

Единичная матрица

В дальнейшем нам понадобятся следующие понятия.

Определение

Если $A=(a_{ij})$ — квадратная матрица порядка n, то элементы $a_{11}, a_{22}, \ldots, a_{nn}$ образуют ее *главную диагональ*. Квадратная матрица, в которой все элементы на главной диагонали равны 1, а все остальные элементы равны 0, называется *единичной* и обозначается буквой E.

Таким образом, единичная матрица выглядит следующим образом:

$$\begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}.$$

Свойства произведения матриц (1)

Свойства произведения матриц

Пусть A, B и C — матрицы над одним и тем жем же кольцом R. Тогда:

- 1) если произведения матриц AB и BC определены, то (AB)C = A(BC) (умножение матриц ассоциативно);
- 2) если A и B матрицы одного и того же размера и произведение матриц AC определено, то (A+B)C = AC + BC (умножение матриц дистрибутивно справа относительно сложения);
- 3) если B и C матрицы одного и того же размера и произведение матриц AB определено, то A(B+C)=AB+AC (умножение матриц дистрибутивно слева относительно сложения);
- 4) если E единичная матрица такая, что произведение AE [соответственно EA] определено, то AE = A [соответственно EA = A].

Свойства произведения матриц (2)

Доказательство. Свойства 2)-4) проверяются простыми вычислениями, основанными на определениях операций над матрицами. Докажем свойство 1). Пусть $A=(a_{ij}),\ B=(b_{ij})$ и $C=(c_{ij}),\$ причем $A\in R^{m\times n}$ для некоторых m и n. Из существования матриц AB и BC вытекает, что $B\in R^{n\times r}$ и $C\in R^{r\times s}$ для некоторых r и s. Положим $AB=D=(d_{ij})$ и $BC=F=(f_{ij}).$ Ясно, что $D\in R^{m\times r}$ и $F\in R^{n\times s}.$ Отсюда вытекает, что матрицы (AB)C и A(BC) существуют и лежат в $R^{m\times s}.$ Положим $(AB)C=(g_{ij})$ и $A(BC)=(h_{ij}).$ Требуется доказать, что $g_{ij}=h_{ij}$ для всех $i=1,2,\ldots,m$ и $j=1,2,\ldots,s.$ В самом деле:

$$\begin{split} g_{ij} &= \sum_{k=1}^r d_{ik} c_{kj} = \sum_{k=1}^r \left[\left(\sum_{\ell=1}^n a_{i\ell} b_{\ell k} \right) \cdot c_{kj} \right] = \sum_{k=1}^r \sum_{\ell=1}^n a_{i\ell} b_{\ell k} c_{kj} = \\ &= \sum_{\ell=1}^n \sum_{k=1}^r a_{i\ell} b_{\ell k} c_{kj} = \sum_{\ell=1}^n \left[a_{i\ell} \cdot \left(\sum_{k=1}^r b_{\ell k} c_{kj} \right) \right] = \sum_{\ell=1}^n a_{i\ell} f_{\ell j} = h_{ij}. \end{split}$$

Свойство 1) доказано.

П

Кольцо квадратных матриц. Договоренность о терминологии

Теперь мы уже можем привести обещанный выше пример некоммутативного кольца. Мы продолжаем при этом начатую ранее нумерацию примеров колец.

Пример 5. Очевидно, что если A и B — квадратные матрицы одного и того же порядка n над кольцом R, то матрица AB существует и является квадратной матрицей порядка n над R. С учетом этого факта, из свойств сложения и умножения матриц вытекает, что множество $R^{n\times n}$ с операциями сложения и умножения является ассоциативным кольцом с единицей, роль которой играет единичная матрица порядка n. Это кольцо называется кольцом квадратных матриц порядка n или просто кольцом матриц. Легко убедиться в том, что если n>1, а кольцо R неодноэлементно, то кольцо $R^{n\times n}$ некоммутативно.

В дальнейшем у нас еще будут возникать примеры некоммутативных колец. Но почти все кольца, которые будут появляться в дальнейшем, будут ассоциативными. Поэтому

В всюду в дальнейшем, если явно не оговорено противное, слово «кольцо» означает «ассоциативное кольцо».

Некоторые свойства сложения в кольцах

Если R — кольцо, $x \in R$, а n — натуральное число, то мы будем писать $nx = \underbrace{x + \dots + x}_{n \text{ pas}}.$

Замечание о свойствах сложения в кольцах

Если R — кольцо, $x,y \in R$, а k и m — натуральные числа, то выполнены равенства:

$$k(xy) = (kx)y, (1)$$

$$(kx)(my) = (km)xy. (2)$$

Доказательство. В самом деле,

$$k(xy) = \underbrace{xy + \dots + xy}_{k \text{ pas}} = \underbrace{(x + \dots + x)}_{k \text{ pas}} y = (kx)y \quad \text{M}$$

$$(kx)(my) = \underbrace{(x + \dots + x)}_{k \text{ pas}} \underbrace{(y + \dots + y)}_{m \text{ pas}} = \underbrace{xy + \dots + xy}_{km \text{ pas}} = (km)xy,$$

что и требовалось доказать.

Если x — произвольное натуральное число, то nx делится на n. Поэтому

ullet для всякого $x\in \mathbb{Z}_n$ в кольце \mathbb{Z}_n выполнено равенство nx=0.

Свойства умножения в кольцах

Во всяком кольце можно определить *разность* x-y элементов x и y правилом: x-y=x+(-y).

Замечание о свойствах умножения в кольцах

Для произвольных элементов x,y,z произвольного кольца R выполнены равенства:

- 1) (x y)z = xz yz и x(y z) = xy xz (умножение дистрибутивно относительно вычитания);
- 2) $x \cdot 0 = 0 \cdot x = 0$.

Доказательство. 1) В самом деле,

$$(x-y) + y = (x + (-y)) + y = x + ((-y) + y) = x + 0 = x,$$

т.е. (x-y)+y=x. Умножая обе части этого равенства на z справа и используя дистрибутивность умножения относительно сложения, имеем xz=((x-y)+y)z=(x-y)z+yz, т.е. xz=(x-y)z+yz. Вычитая из обеих частей этого равенства элемент yz, получаем

$$xz - yz = (x - y)z + yz - yz = (x - y)z$$
. Следовательно, $(x - y)z = xz - yz$. Равенство $x(y - z) = xy - xz$ проверяется аналогично.

2) Используя п. 1), имеем $x \cdot 0 = x(x-x) = x^2 - x^2 = 0$. Аналогично проверяется, что $0 \cdot x = 0$.

Делители нуля

Определение

Элемент x кольца R называется делителем нуля, если $x \neq 0$ и xy = 0 для некоторого ненулевого элемента $y \in R$.

В кольце с нулевым умножением все ненулевые элементы являются делителями нуля. Делители нуля есть и в кольце \mathbb{Z}_n при условии, что n- составное число (если n=km, где 1< k, m< n, то $k\otimes m=0$). Следующее очевидное равенство доставляет пример делителей нуля в кольце 2×2 -матриц над произвольным кольцом с 1:

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Замечание о делителях нуля

Обратимый (относительно умножения) элемент произвольного кольца с 1 не является делителем нуля.

 Δ оказательство. Если элемент x обратим и xy=0, то

$$y = 1 \cdot y = (x^{-1}x)y = x^{-1}(xy) = x^{-1} \cdot 0 = 0.$$

Следовательно, x не является делителем нуля.

Определение

Неодноэлементное ассоциативно-коммутативное кольцо с 1, в котором все ненулевые элементы обратимы (относительно умножения), называется полем.

Ясно, что если R — кольцо с 1, то множество всех его обратимых (относительно умножения) элементов образует группу, которая обозначается через R^* . Если R — поле, то $R^* = R \setminus \{0\}$ и группа R^* абелева.

Определение

Если $\langle F;+,\cdot \rangle$ — поле, то группа $\langle F^*;\cdot \rangle$ называется *мультипликативной группой* этого поля.

Из замечания о делителях нуля вытекает, что

• поле не может содержать делителей нуля.

Примерами полей являются кольца $\mathbb Q$ и $\mathbb R$ с обычными операциями сложения и умножения. На следующем слайде приведен еще один пример поля.

Поле вычетов по простому модулю

Лемма о кольце вычетов по простому модулю

Кольцо вычетов по модулю п является полем тогда и только тогда, когда п — простое число.

Доказательство. Достаточность. Пусть n=p — простое число. Достаточно проверить, что каждый ненулевой элемент кольца \mathbb{Z}_p имеет обратный элемент по умножению. Пусть $1\leqslant s\leqslant p-1$. Для произвольного натурального числа m будем обозначать через \overline{m} остаток от деления m на p. Рассмотрим числа

$$\overline{s}, \overline{2s}, \dots, \overline{(p-1)s}.$$
 (3)

Пусть $k\in\{1,2,\ldots,p-1\}$. Очевидно, $0\leqslant \overline{ks}\leqslant p-1$. Из того, что $s\not\equiv 0\ (\mathrm{mod}\ p)$, а p- простое число, вытекает, что $ks\not\equiv 0\ (\mathrm{mod}\ p)$. Следовательно, все числа (3) отличны от 0. Далее, если $\overline{ks}=\overline{\ell s}$ для некоторых $1\leqslant k<\ell\leqslant p-1$, то $\overline{(\ell-k)s}=0$ вопреки сказанному выше. Следовательно, все числа (3) попарно различны. Иными словами, (3) — это (возможно, переставленные) числа $1,2,\ldots,p-1$. Следовательно, существует $t\in\{1,2,\ldots,p-1\}$ такое, что $\overline{ts}=1$. Это означает, что $t\in\mathbb{Z}_p$ и $t\otimes s=1$. Иными словами, элемент t обратен к s по умножению.

Heoбxoдимость. Как уже отмечалось выше, кольцо \mathbb{Z}_n при составном n содержит делители нуля, а в поле делителей нуля нет.

Xарактеристика поля (1)

Определение

Пусть F — произвольное поле. Если существует натуральное число n такое, что nx=0 для всякого $x\in F$, то минимальное n с таким свойством называется x арактеристикой поля F; если такого n не существует, то характеристика поля F полагается равной 0. Характеристика поля F обозначается через char F.

Очевидно, что $\operatorname{char} \mathbb{Q} = \operatorname{char} \mathbb{R} = 0$, a $\operatorname{char} \mathbb{Z}_p = p$.

Предложение о характеристике поля

Характеристика всякого поля равна либо нулю, либо простому числу.

Доказательство. Будем обозначать нейтральный элемент поля по умножению не через 1, как обычно, а через e. Пусть F — поле и char $F=n\neq 0$. Предположим, что n не является простым числом. Это означает, что либо n=1, либо n=km для некоторых 1< k, m< n. Предположим сначала, что n=1. Тогда $e=1\cdot e=0$, и потому $x=xe=x\cdot 0=0$ для любого $x\in F$. Это означает, что $F=\{0\}$. Но это невозможно, так как поле по определению не одноэлементно.

Характеристика поля (2)

Предположим теперь, что n=km для некоторых 1< k, m< n. Пусть x=ke и y=me. Если x=0, то, в силу (1), для любого $z\in F$ выполнены равенства $kz=k(ez)=(ke)z=xz=0\cdot z=0$. Но это противоречит равенству n= char F. Таким образом, $x\neq 0$. Аналогично проверяется, что $y\neq 0$. Но $xy=(ke)(me)=(km)e^2=(km)e=ne=0$ в силу (2). Таким образом, x и y- делители нуля. Однако, как отмечалось выше, делителей нуля в поле нет. Итак, предположение о том, что n не является простым числом, приводит к противоречию.

Подалгебры

В заключение параграфа введем некоторые важные понятия, относящиеся к произвольным универсальным алгебрам.

Определение

Пусть $\langle A;\Omega \rangle$ — универсальная алгебра, а f-n-арная операция из Ω . Непустое подмножество B множества A называется $\mathit{замкнутым}$ относительно f, если для любых $x_1, x_2, \ldots, x_n \in B$ имеет место включение $f(x_1, x_2, \ldots, x_n) \in B$. Подмножество B называется $\mathit{подалгеброй}$ в A, если оно замкнуто относительно всех операций из Ω .

Очевидно, что подалгебра алгебры A сама является алгеброй той же сигнатуры, что и A.

Примеры подалгебр

Приведем некоторые примеры подалгебр. Любая алгебра A является подалгеброй в самой себе. Единица произвольной группы G образует подгруппу в G, а нуль произвольного кольца R — подкольцо в R. Полугруппа $\langle \mathbb{N}; + \rangle$ является подполугругруппой в полугруппах $\langle \mathbb{Z}; + \rangle$, $\langle \mathbb{Q}; + \rangle$ и $\langle \mathbb{R}; + \rangle$, а кольцо $\langle \mathbb{Z}; +, \cdot \rangle$ — подкольцом в кольцах $\langle \mathbb{Q}; +, \cdot \rangle$ и $\langle \mathbb{R}; +, \cdot \rangle$. Если R — произвольное кольцо, то каждый из следующих пяти наборов матриц является подкольцом в кольце $R^{2\times 2}$:

$$\left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in R \right\}; \left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \middle| a, b, c \in R \right\}; \\
\left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \middle| a, b \in R \right\}; \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \middle| a \in R \right\}; \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in R \right\}.$$

В то же время, кольцо вычетов $\langle \mathbb{Z}_n; \oplus, \otimes \rangle$ не является подкольцом кольца $\langle \mathbb{Z}; +, \cdot \rangle$, потому что может оказаться, что сумма (в обычном смысле этого слова) элементов из \mathbb{Z}_n больше, чем n-1, и потому не лежит в \mathbb{Z}_n .

Гомоморфизмы, изоморфизмы, изоморфные вложения, эндоморфизмы, автоморфизмы

Определения

Пусть $\mathcal{A}=\langle A;\Omega\rangle$ и $\mathcal{B}=\langle B;\Omega\rangle$ — две универсальных алгебры с одной и той же сигнатурой Ω . *Гомоморфизмом* из \mathcal{A} в \mathcal{B} называется отображение $f\colon A\longrightarrow B$ такое, что

$$f(\omega(x_1,x_2,\ldots,x_n))=\omega(f(x_1),f(x_2),\ldots,f(x_n))$$

для любой операции $\omega \in \Omega$ и любых $x_1, x_2, \ldots, x_n \in A$, где n- арность операции ω . Если гомоморфизм f биективен, то он называется изоморфизмом, а если этот гомоморфизм инъективен, то он называется изоморфным вложением или просто вложением. Если существует изоморфизм из \mathcal{A} на \mathcal{B} , то говорят, что алгебры \mathcal{A} и \mathcal{B} изоморфны и пишут $\mathcal{A} \cong \mathcal{B}$, а если существует изоморфное вложение \mathcal{A} в \mathcal{B} , то говорят, что \mathcal{A} изоморфно вложима (или просто вложима) в \mathcal{B} . Гомоморфизм алгебры в себя называется эндоморфизмом, а изоморфизм алгебры на себя — автоморфизмом.

«Содержательный смысл» понятия изоморфизма

Неформально говоря, существование изоморфизма алгебры $\mathcal{A}=\langle A;\Omega\rangle$ на алгебру $\mathcal{B}=\langle B;\Psi\rangle$ означает, что мы можем «переименовать» элементы из A и операции из Ω (элемент $a\in A$ «переименовывается» в f(a), а операция ω — в $g(\omega)$, где f — изоморфизм, а g — биекция между Ω и Ψ из определения изоморфизма), после чего все операции над элементами алгебры \mathcal{B} выполняются точно так же, как они выполнялись в \mathcal{A} , но под «новыми именами». Иначе говоря, изоморфные алгебры отличаются «внутренней природой» элементов, но неразличимы с точки зрения действия алгебраических операций. Поэтому в алгебре, как правило, отождествляют изоморфные алгебры, считая их одной и той же алгеброй (или различными «реализациями» одной и той же алгебры).

Примеры гомоморфизма и изоморфизма

Пример 1. Положим $\mathcal{A} = \langle \mathbb{Z}; +, \cdot \rangle$ и $\mathcal{B} = \langle \mathbb{Z}_n; \oplus, \otimes \rangle$. Определим отображение f из \mathbb{Z} в \mathbb{Z}_n правилом: если k — целое число, то f(k) — остаток от деления k на n. Легко проверяется, что для любых $k, m \in \mathbb{Z}$ выполнены равенства $f(k+m) = f(k) \oplus f(m)$ и $f(km) = f(k) \otimes f(m)$. Следовательно, f является гомоморфизмом из \mathcal{A} в \mathcal{B} . Изоморфизмом это отображение не является, так как оно не инъективно.

Формально говоря, в этом примере сигнатуры алгебр \mathcal{A} и \mathcal{B} различны. Но мы можем «отождествить» операции + и \oplus , считая, что это одна и та же операция, обозначенная двумя разными способами. Аналогичное соглашение относится к операциям \cdot и \otimes . Важно лишь то, что в каждом из этих случаев обе операции имеют одну и ту же арность.

Пример 2. Положим $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x > 0\}$. Обозначим через \mathcal{A} полугруппу $\langle \mathbb{R}; + \rangle$, а через $\mathcal{B} -$ полугруппу $\langle \mathbb{R}; + \rangle$. Зафиксируем произвольное положительное число $a \neq 1$ и определим отображение $f \colon \mathbb{R} \longrightarrow \mathbb{R}_+$ правилом: $f(x) = a^x$ для всякого $x \in \mathbb{R}$. Поскольку $a^{x+y} = a^x \cdot a^y$, отображение f является гомоморфизмом из \mathcal{A} в \mathcal{B} . Очевидно, что это отображение инъективно (если $x \neq y$, то $a^x \neq a^y$) и сюръективно (если $y \in \mathbb{R}_+$, то y = f(x), где $x = \log_a y$). Следовательно, f - изоморфизм. Таким образом, полугруппа действительных чисел по сложению изоморфна полугруппе положительных действительных чисел по умножению.

Пример 3. Определим отображение f из кольца $\langle \mathbb{Z};+,\cdot \rangle$ в кольцо $\langle \mathbb{Q};+,\cdot \rangle$ правилом: $f(n)=\frac{n}{1}$ для всякого $n\in \mathbb{Z}$. Очевидно, что f — изоморфное вложение.

Пример 4. Напомним, что через S_n обозначается группа всех подстановок на множестве $\{1,2,\ldots,n\}$. Пусть k и m — натуральные числа и k < m. Определим отображение f из группы S_k в группу S_m следующим образом. Если $\sigma \in S_k$, то $f(\sigma) = \xi$, где ξ — подстановка из S_m , определяемая правилом:

$$\xi(i) = egin{cases} \sigma(i), & ext{если } i \leq k, \ i, & ext{если } i > k. \end{cases}$$

Как и в предыдущем примере, очевидно, что f — изоморфное вложение.

Пример 5. Определим отображение f из полугруппы $\langle \mathbb{Z}; + \rangle$ в себя правилом: f(n) = 2n для всякого $n \in \mathbb{Z}$. Очевидно, что f — эндоморфизм.

Пример 6. Определим отображение f из полугруппы $\langle \mathbb{Z}; + \rangle$ на себя правилом: f(n) = -n для всякого $n \in \mathbb{Z}$. Очевидно, что f — автоморфизм.