

Evasive and efficient distributed adversarial attacks using PSO

Intermediate presentation II

Sander Prenen

Thesis supervisors: Prof. dr. ir. W. Joosen, Dr. ir. D. Preuveneers

Mentors: I. Tsingenopoulos, V. Rimmer

0 Outline

- Background
- 2 Research

3 Threat model

4 Evaluation

1 Boundary attack¹

¹Wieland Brendel, Jonas Rauber, and Matthias Bethge. "Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models". In: *arXiv:1712.04248* [cs, stat] (Feb. 2018). arXiv: 1712.04248. URL: http://arxiv.org/abs/1712.04248 (visited on 08/04/2021).

Biased boundary attack²

- Improvement on boundary attack
 - Low frequency noise sampling
 - Regional masking
 - Gradients of surrogate models

²Thomas Brunner et al. "Guessing Smart: Biased Sampling for Efficient Black-Box Adversarial Attacks". In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (Oct. 2019). arXiv: 1812.09803, pp. 4957-4965. DOI: 10.1109/ICCV.2019.00506. URL: http://arxiv.org/abs/1812.09803 (visited on 08/04/2021).

1 Stateful defense³

³Steven Chen, Nicholas Carlini, and David Wagner. "Stateful Detection of Black-Box Adversarial Attacks". In: *arXiv:1907.05587* [cs] (July 2019). arXiv: 1907.05587. URL: http://arxiv.org/abs/1907.05587 (visited on 08/04/2021).

1 Particle swarm optimization

$$v_t = \underbrace{wv_{t-1}}_{\text{Inertia}} + \underbrace{c_pr_p(p_{t-1} - x_{t-1})}_{\text{Individual best}} + \underbrace{c_gr_g(g_{t-1} - x_{t-1})}_{\text{Swarm best}}$$

$$x_t = x_{t-1} + v_t$$

2 Goal

- Propose new family of attacks
- Define threat model
- Experiment with the proposed attack
- Answer the following research questions:
 - What are the (dis)advantages of using PSO in relation to vanilla adversarial attacks?
 - How can PSO be combined with state of the art adversarial attacks?
 - What are the (dis)advantages of distributing an adversarial attack?

3 Threat model

- Decision based attack
- ► Targeted attack
- ► Stateful detection mechanism
 - Query bounded buffer
 - One buffer per account
- Cost per account
- Cost per query

4 Evaluation protocol

- ► MNIST⁴ and CIFAR-10⁵
- ► Black box model⁶

⁴Y. Lecun et al. "Gradient-based learning applied to document recognition". In: *Proceedings of the IEEE* 86.11 (1998), pp. 2278–2324. DOI: 10.1109/5.726791.

 $^{^5}$ Alex Krizhevsky. "Learning Multiple Layers of Features from Tiny Images". In: (2009), pp. 32–33. URL: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

⁶Nicholas Carlini and David Wagner. *Towards Evaluating the Robustness of Neural Networks*. 2017. arXiv: 1608.04644 [cs.CR].

4 Model architectures

Layer type	MNIST Model	CIFAR Model
Convolution + ReLU	$3 \times 3 \times 32$	$3 \times 3 \times 64$
${\sf Convolution} + {\sf ReLU}$	$3 \times 3 \times 32$	$3 \times 3 \times 64$
Max Pooling	2×2	2×2
${\sf Convolution} + {\sf ReLU}$	$3 \times 3 \times 64$	$3 \times 3 \times 128$
Convolution + ReLU	$3 \times 3 \times 64$	$3 \times 3 \times 128$
Max Pooling	2×2	2×2
Fully Connected $+$ ReLU	200	256
Fully Connected $+$ ReLU	200	256
Softmax	10	10

4 Evaluation protocol

- MNIST and CIFAR-10
- ► Black box model
- List of experiments
 - Original image (+label)
 - Target label
 - Starting position(s)
- Query bounded detector buffer of size 1000
- Number of neighbors is 50
- Query budget of 25000

4 Baseline results

- Determine baseline distance (L_2) and number of detections for biased boundary attack
- ► Hyperparameters as suggested in original paper⁷

	MNIST		CI	FAR
Attack	Distance	Detections	Distance	Detections
Baseline BBA	3.027	339	1.359	475

⁷Brunner et al., "Guessing Smart".

- Multiple starting positions
- More aggressive
- Communication between particles
- Fitness function

$$f(x) = \begin{cases} ||x - x'||_2, & \text{if } x \text{ is adversarial} \\ +\infty, & \text{else} \end{cases}$$

	MNIST		CIFAR	
Attack	Distance	Detections	Distance	Detections
Baseline BBA	3.027	339	1.359	475
PSO-BBA (5 particles)	2.691	173	1.133	301
PSO-BBA (10 particles)	2.788	107	1.782	243

Detections happen at the end of attack

4 Distributing the query submission

4 Distributing the query submission