Chapitre 22

Espaces de dimension finie

22 Espaces de dimension finie	1
22.3 Nombre maximal de vecteurs linéairement indépendants	2

Nombre maximal de vecteurs linéairement indépendants 22.3

Soit E un \mathbb{K} -ev de dimension finie engendré par n éléments. Alors toute partie libre de E possède au plus n éléments.

Soit G une famille génératrice de E avec $G=(g_1,\ldots,g_n)$. Soit $\mathcal L$ une famille libre de E. Supposons par l'absurde que $|\mathcal{L}| > n$. Pour $k \in [1, n]$, on note :

P(k): "E est engendré par n-k vecteurs de G et k vecteurs de \mathcal{L} "

Pour k = 0, la famille convient.

On suppose que pour $k \in [0, n-1]$, $E = Vect(\underbrace{g_1, \dots, g_{n-k}}_{\in G}, \underbrace{l_1, \dots, l_k}_{\in L})$

Comme $l_{k+1} \in E$, on écrit $l_{k+1} = \sum_{i=1}^{n-k} \alpha_i g_i + \sum_{i=1}^k \beta_i l_j$.

Comme \mathcal{L} est libre, $l_{k+1} \notin Vect(l1, \ldots, l_k)$. Donc il existe $i \in [\![1, n-k]\!]$, $\alpha_i \neq 0$ et quitte à renommer les g_i , on peut supposer $\alpha_{n-k} \neq 0$ et ainsi :

$$g_{n-k} \in Vect(g_1, \ldots, g_{n-k}, l_1, \ldots, l_k, l_n + 1)$$

Ainsi:

$$E = Vect(g_1, \dots, g_{n-k}, l_1, \dots, l_k, l_{k+1})$$

Par récurrence, P(k) est vraie pour $k \in [0, n]$, en particulier, P(n) est vraie. $(l1,\ldots,l_n)$ est une base de E. Or $l_{n+1}\in E$ et (l_1,\ldots,l_{n+1}) libre. Absurde.