@

- 1) compute x and y derivatives of image
- 2) compute products of derivatives at every pixel.
- 3) compute the sums of the products of derivatives at each pixel.

$$Sx^2 = G_0 + I_{x^2}$$

 $Sy^2 = G_0 + I_{xy}$
 $Sxy = G_0 + I_{xy}$

a) Define at each pixel (x,y) the

$$H(xy) = \begin{bmatrix} 5xr(xy) & Sxy(xy) \\ Sxy(xy) & Syz(xy) \end{bmatrix}$$

0

5) compute the response of the betecker at each pixel.

- 6) Threshold on value of R
- 27 Compute nonmax supression.

A 5x5 patch from my Image (39,16)						
	219	218	223	225	212 -	
	223	217	218	217	196	-
	239	233	208	216	182	
	235	235	232	219	177	
	237	233	222	205	159	

1 = -42.16 $1_2 = -3.04$ Eigen values $1_3 = 1084.9$ $1_4 = 1.140 + 1.132.i$ $1_5 = 1.140 + 1.732$

classification via Eigenvalues

In the above example, Su, it is an edge 237 230 222 265 168 91.24- -16 No.8-3.04 pato 1.286/1282·1 - clauthrakion via : Eigen value, "tomer 910 5 6 6 mg/ Longe 1-4-1-