Assignment1-AdvRprogramming

Vishweshwar Chowdhury; 24205804

Introduction

This project analyzes key development indicators for **France**, **Kazakhstan**, **and Ukraine** using World Bank data. We explore trends across areas like health, education, economy, and environment using the data.table package in R.

1) Read Data using data.table and assign correct class to variables

```
# Reading each country's data
fra <- fread("indicators_fra.csv")</pre>
      kaz <- fread("indicators_kaz.csv")
ukr <- fread("indicators_ukr.csv")</pre>
      options(datatable.print.topn = 3,datatable.print.nrows = 5,width = 80)
1 head(fra)
    Country Name Country ISO3 
<char> <char>
1: #country+name #country+code #date+year
            France
            France
                                FRA
                                            2021
            France
            France
                                FRA
                                            2018
            France
                                            2017
                                              Indicator Name
                                                                   Indicator Code
                                                         <char>
                                                                   #indicator+code
                                              #indicator+name
2: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
3: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
4: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
5: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
6: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
                     Value
1: #indicator+value+num
         7180.73874470283
3:
        1418.35276478348
        423.053706007171
      options(datatable.print.topn = 3,datatable.print.nrows = 5,width = 80)
- attr(*, ".internal.selfref")=<externalptr>
   1 head(kaz)
    Country Name Country ISO3
            <char>
                                          <char>
1: #country+name #country+code #date+year
       Kazakhstan
                                             2022
       Kazakhstan
                                KAZ
                                            2020
       Kazakhstan
       Kazakhstan
                                KAZ
                                            2018
                                               Indicator Name
                                                                   Indicator Code
                                                         <char>
                                               #indicator+name
2: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
3: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
4: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
5: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
6: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
                    <char)
        32.0859019740788
         36.8331633627589
        46.0065478697083
        24.1064217210881
6:
        40.4971037436908
```

```
1 options(datatable.print.topn = 3,datatable.print.nrows = 5,width = 80)
2 str(ukr)
```

```
Classes 'data.table' and 'data.frame': 71557 obs. of 6 variables:

$ Country Name : chr "#country+name" "Ukraine" "Ukraine" "...

$ Country ISO3 : chr "#country+code" "UKR" "UKR" "...

$ Year : chr "#date+year" "2021" "2020" "2019" ...

$ Indicator Name: chr "#indicator+name" "Fertilizer consumption (% of fertilizer production)" "Fertilizer consumption (% of fertilizer production)" "Fertilizer consumption (% of fertilizer production)" "...

$ Indicator Code: chr "#indicator+code" "AG.CON.FERT.PT.ZS" "AG.CON.FERT.PT.ZS" "AG.CON.FERT.PT.ZS" ...

$ Value : chr "#indicator+value+num" "262.754436707114" "253.050691645338" "208.823539445296" ...

- attr(*, ".internal.selfref")=cexternalptr>
```

1 head(ukr)

```
Country Name Country ISO3
                   <char>
                                            <char>
                                                                <char>
1: #country+name #country+code #date+year
2:
                Ukraine
                                                 UKR
                                                                    2021
                 Ukraine
                                                  UKR
                                                                    2020
4:
                 Ukraine
                                                  UKR
                                                                    2019
                 Ukraine
                                                                    2018
6:
                Ukraine
                                                 UKR
                                                                    2017
                                                                         Indicator Name
                                                                                                         Indicator Code
                                                                                        <char>
                                                                                                                         <char>
                                                                       #indicator+name
                                                                                                       #indicator+code
1: #INDICATOR+ACHOR
2: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
3: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
4: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
5: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
6: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
                                <char>
1: #indicator+value+num
2: 262.754436707114
             253.050691645338
4:
             208.823539445296
            209.61966292436
188.314558332498
6:
```

In the above output we can observe the following things:-

- Each dataset had 6 columns: Country Name, Country ISO3, Year, Indicator Name, Indicator Code, Value.
- The first row was incorrectly read as data (e.g., #country+name), so it was removed during cleaning. All columns were initially read as character; Year and Value were later converted to integer and numeric respectively.

2) Merging Datasets using data.table

```
1 # Add a country label to each dataset
 2 fra[, Country := "France"]
 3 kaz[, Country := "Kazakhstan"]
 4 ukr[, Country := "Ukraine"]
 6 # Combine the three datasets into one
 7 all_data <- rbindlist(list(fra, kaz, ukr),</pre>
 8 use.names = TRUE, fill = TRUE)
10 # Check structure and preview
11 str(all data)
Classes 'data.table' and 'data.frame': 222244 obs. of 7 variables:
$ Country Name : chr "#country+name" "France" "France" "France" ...
 $ Country ISO3 : chr "#country+code" "FRA" "FRA" "FRA" ...
           : chr "#date+year" "2022" "2021" "2019" ...
$ Indicator Name: chr "#indicator+name" "Fertilizer consumption (% of fertilizer production)" "Fertilizer
consumption (% of fertilizer production)" "Fertilizer consumption (% of fertilizer production)" \dots
 $ Indicator Code: chr "#indicator+code" "AG.CON.FERT.PT.ZS" "AG.CON.FERT.PT.ZS" "AG.CON.FERT.PT.ZS"
            : chr "#indicator+value+num" "7180.73874470283" "1418.35276478348" "444.042634876329" ...
: chr "France" "France" "France" ...
 $ Country
 - attr(*, ".internal.selfref")=<externalptr>
 1 head(all_data)
   Country Name Country ISO3
        <char>
                  <char>
1: #country+name #country+code #date+year
2:
    France
                         FRA
3:
         France
                          FRA
                                    2021
4:
        France
                         FRA
                                    2019
5:
        France
                          FRA
                                    2018
                          FRA
         France
                                    2017
6:
                                                         Indicator Code
                                       Indicator Name
                                              <char>
                                      #indicator+name #indicator+code
2: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
3: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
4: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
5: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
6: Fertilizer consumption (% of fertilizer production) AG.CON.FERT.PT.ZS
                 Value Country
```

<char> <char>

1: #indicator+value+num France 2: 7180.73874470283 France

> 1418.35276478348 France 444.042634876329 France

3:

4:

The merged dataset contains the following things:-

- The merged dataset contains 222,244 rows and 7 variables.
- Column names and structure are consistent across all countries.
- The resulting dataset allows for cross-country comparisons across years and indicators.

3) Data Exploration

```
1 # Basic summary
2 summary(all_data)
```

```
1 # Number of unique indicators
2 length(unique(all_data$`Indicator Name`))
```

[1] 3912

```
1 # Time coverage
2 range(all_data$Year, na.rm = TRUE)
```

[1] "#date+year" "2024"

```
1 # Count of rows per country
 2 all_data[, .N, by = Country]
     Country
      <char> <int>
     France 78971
1:
2: Kazakhstan 71716
3:
   Ukraine 71557
 1 # Top 5 most common indicators
 2 all_data[, .N, by = `Indicator Name`][order(-N)][1:5]
                                               Indicator Name
                                                                 N
                                                      <char> <int>
1:
                                                Net migration 585
2: Adolescent fertility rate (births per 1,000 women ages 15-19)
                                                               576
                      Life expectancy at birth, female (years)
4:
                        Life expectancy at birth, male (years)
                                                               576
5:
                Mortality rate, under-5 (per 1,000 live births)
                                                               510
 1 # Missing values check
 2 colSums(is.na(all_data))
                                    Year Indicator Name Indicator Code
  Country Name
               Country ISO3
           0
                        0
                                       0
                                                       0
        Value
                    Country
            0
                          0
 1 # Number of observations per year per country
 2 all_data[, .N, by = .(Country, Year)][order(Country, Year)]
    Country
                 Year
     <char>
                <char> <int>
  1: France #date+year
                        1
  2: France
                 1960
                        634
 3: France
                 1961 396
               2022 1046
196: Ukraine
197: Ukraine
                  2023
                        845
198: Ukraine
                2024
                       58
```

The findings of the data analysis task are as follows:-

- The merged dataset has 222,244 rows with 7 character columns, indicating raw data still needed cleaning.
- Indicators are diverse, with the most common including:
- Net migration
- Life expectancy
- Adolescent fertility rate
- Under 5-mortality rate
- The dataset spans a wide time range from 1960 to 2023 with varying data density per year.
- France had data available for nearly all years between **1960 and 2023**, with some variation in the number of observations per year.

4) Data Analysis task using keyby argument

```
1 # Viewing the most common indicators
2 all_data[, .N, by = `Indicator Name`][order(-N)][1:20]
```

```
Indicator Name N (char) <int>
1: Net migration 585
2: Adolescent fertility rate (births per 1,000 women ages 15-19) 576
3: Life expectancy at birth, female (years) 576
---
18: Urban population 384
19: Urban population (% of total population) 384
20: Mortality rate, adult, female (per 1,000 female adults) 382
```

```
Key: <Country, Indicator Name, Year>
  Country
                                          Indicator Name Year Average
                                                 <char> <char>
1: France Mortality rate, under-5 (per 1,000 live births) 1960
                                                                  28.5
2: France Mortality rate, under-5 (per 1,000 live births) 1961
                                                                  27.0
3: France Mortality rate, under-5 (per 1,000 live births) 1962
4: France Mortality rate, under-5 (per 1,000 live births) 1963
                                                                  24.5
5: France Mortality rate, under-5 (per 1,000 live births)
                                                          1964
                                                                  23.4
6: France Mortality rate, under-5 (per 1,000 live births) 1965
                                                                  22.4
```

The following observations were made from above output:-

- 1. Using data.table 5 relevant development indicators were found which are net migration, Adolescent fertility rate, Life expectancy at birth and mortality rate under 5.
- 2. The data was grouped and summarized by Country, Indicator Name, and Year using **keyby** to calculate yearly averages.

5) Creation of Development Indicators over time plot and Under 5 Mortality Rate over time plot

Code

```
1 # Clean Year column
 2 all_data <- all_data[!is.na(Year)]</pre>
 3 all_data <- all_data[Year != "#date+year"]</pre>
 5 # Convert Year to numeric
 6 all_data[, Year := as.integer(Year)]
8 # Filter indicators
 9 indicators_to_plot <- c(</pre>
10
     "Net migration",
     "Adolescent fertility rate (births per 1,000 women ages 15-19)",
11
"Life expectancy at birth, female (years)",
"Life expectancy at birth, male (years)",
14
    "Mortality rate, under-5 (per 1,000 live births)"
15 )
16
17 plot_data <- all_data[`Indicator Name` %in% indicators_to_plot]</pre>
18 plot_data[, Value := as.numeric(Value)]
19
20 # Recalculate summaries
21 summary_data <- plot_data[</pre>
    , .(Average = mean(Value, na.rm = TRUE)),
22
23 keyby = .(Country, `Indicator Name`, Year)
24
```

Creation of Development Indicators over time- Plot

Under 5 mortality rate over time-Plot

Plot interpretations

1) Development Indicators over time

- Life expectancy (male and female) shows consistent growth across all countries, with France leading, followed by Ukraine and Kazakhstan.
- Under-5 mortality rates have significantly declined in all three countries reflecting healthcare improvements though Kazakhstan started from a much higher rate.
- Adolescent fertility rates have steadily declined, especially in France, indicating improved reproductive health awareness.
- **Net migration** shows **extreme reduction in Ukraine**, likely reflecting the recent **war** between Ukraine and palestine.

2) Under-5 Mortality Rate Over Time

- Kazakhstan had the highest child mortality in the 1960s, but saw major declines over time.
- France maintained the lowest under-5 mortality rates throughout the timeline, reflecting a consistently strong public health system.
- Ukraine showed moderate improvement, with a steady decline from the 1970s to present.
- Overall, the plot demonstrates strong downward trends for all three countries,
 emphasizing global progress in reducing child mortality.

Speaker notes