1. REPRÉSENTER GRAPHIQUEMENT UNE FONCTION

Définition. – Soit f une fonction définie sur un ensemble \mathcal{D} . La courbe représentative \mathcal{C} de f dans un repère est l'ensemble des points de coordonnées (x;y) telles que :

$$x$$
 appartient à \mathcal{D} et $y = f(x)$

Exemple. – On a représenté ci-contre la fonction f définie sur [-4;3] par $f(x) = 0,3x^3 - 4x + 1$.

male. Coit a la fanction définie que [a = a] nos

Exemple. – Soit g la fonction définie sur [-2,5;2] par $g(x) = x^3 - 2x + 1$. Grâce à la calculatrice, on obtient le tableau de valeurs ci-dessous :

deg	FUNCTIONS					
Functions	Graph	Table				
Set the interval						
×	f(x)	1				
-2.5						
-2	-3					
-1.5	0.625					
-1	2					
-0.5	1.875					
0	1					
0.5	0.125					

- 1. Quel nombre a été effacé?
- 2. Déterminer l'image de 1, 1, 5 et 2 par g.
- 3. Représenter g sur le graphique donné ci-contre.

2

10 4

Pour tracer la courbe précédente, on a utilisé 10 points. Afin d'obtenir une courbe plus « précise », on pourrait utiliser davantage de points.

3. RECONNAÎTRE UNE FONCTION PAIRE, UNE FONCTION IMPAIRE

Définition. – Lorsque dans un repère orthogonal, la courbe d'une fonction f est symétrique par rapport à l'axe des ordonnées, on dit que la fonction f est paire.

Exemple. – On a représenté ci-contre la fonction carré, c'est-à-dire la fonction k définie sur \mathbb{R} par $k(x) = x^2$. La fonction carré est paire.

2. SAVOIR SI UN POINT APPARTIENT À LA COURBE D'UNE FONCTION

Proposition. – Avec les notations de la définition précédente :

- 1. Si M(x; y) appartient à C_f , alors x appartient à \mathcal{D} et y = f(x).
- 2. Si x appartient à \mathcal{D} et y = f(x), alors M(x; y) appartient à \mathcal{C}_f .

Exemples. – Soit h la fonction définie sur [-4; 6] par $h(x) = 2x^3 - x + 1$. On note C_g la courbe représentative de h dans un repère du plan.

1. Le point A(0; 1) appartient-il à C_g ?

2. Le point B(2; 16) appartient-il à C_a ?

Le point Β(2, 10) αρρατιιεπι-π α C_g :

10 8

Définition. – Lorsque dans un repère, la courbe d'une fonction f est symétrique par rapport à l'origine du repère, on dit que la fonction f est impaire.

Exemple. – Soit m la fonction cube, c'est-à-dire la fonction définie sur \mathbb{R} par $m(x) = x^3$. Compléter le tableau de valeurs ci-dessous, puis représenter m sur le graphique ci-contre :

Х	-3	-2	-1	0	1	2	3
$\overline{m(x)}$							

On admettra que la courbe obtenue est symétrique par rapport à l'origine du repère. La fonction cube est donc une fonction impaire.

10 / 10