The Best Biclique Cryptanalysis of the Lightweight Cipher FUTURE

Gabriel C. de Carvalho Luis A. B. Kowada

> gabrielcc@id.uff.br luis@ic.uff.br

Sumário

- 1 Introdução
- 2 Criptoanálise Biclique
- 3 A cifra FUTURE
- 4 Biclique Balanceada
- 5 Conclusões

■ Uma **cifra leve** é uma cifra projetada para ser usada em ambientes muito restritos, como sistemas embarcados, dispositivos de rádio e redes de sensores.

- Uma **cifra leve** é uma cifra projetada para ser usada em ambientes muito restritos, como sistemas embarcados, dispositivos de rádio e redes de sensores.
- **FUTURE** é um dos desenvolvimentos mais recentes nesse campo (2022).

- Uma **cifra leve** é uma cifra projetada para ser usada em ambientes muito restritos, como sistemas embarcados, dispositivos de rádio e redes de sensores.
- **FUTURE** é um dos desenvolvimentos mais recentes nesse campo (2022).
- A cifra tem sido alvo de vários ataques nestes dois anos.

■ Um **ataque** (ou **criptoanálise**) é um algoritmo que tenta descobrir a chave secreta *K* a partir de pares de texto claro/cifrado.

$$P \xrightarrow{K} C$$

■ Um **ataque** (ou **criptoanálise**) é um algoritmo que tenta descobrir a chave secreta *K* a partir de pares de texto claro/cifrado.

$$P \xrightarrow{K} C$$

■ A **criptoanálise biclique** é famosa por sua aplicação à cifra Rijndael (AES), sendo o primeiro ataque à sua versão completa.

■ Um **ataque** (ou **criptoanálise**) é um algoritmo que tenta descobrir a chave secreta *K* a partir de pares de texto claro/cifrado.

$$P \xrightarrow{K} C$$

- A **criptoanálise biclique** é famosa por sua aplicação à cifra Rijndael (AES), sendo o primeiro ataque à sua versão completa.
- Foi aplicada a muitas outras cifras na última década (ARIA, PRESENT, LED, Serpent, IDEA, PICCOLO, ...).

Ataques na literatura

Ataque	Ano	Tempo	Dados	Memória	Referência
Meet-in-the-Middle	2023	2 ¹²⁶	2 ⁶⁴	2 ³⁶	[2]
Biclique Balanceada	2024	$2^{125.8875}$	2 ⁴⁸	2 ³²	[1]
Múltiplas Bicliques	2024	2 ^{125.5365}	2 ⁴⁸	2 ³²	[1]
Integral	2024	2 ^{123.7}	2 ⁶³	≈ 0	[3]
Integral	2024	2^{112}	2 ⁶⁴	≈ 0	[3]

Nossas Contribuições

■ Todos os ataques atuais à FUTURE têm o mesmo problema: a **complexidade de dados** é muito grande para ser relevante.

Nossas Contribuições

- Todos os ataques atuais à FUTURE têm o mesmo problema: a **complexidade de dados** é muito grande para ser relevante.
- Este artigo apresenta o ataque biclique com **menor complexidade de tempo**, e outro que requer o mínimo de dados.

Nossas Contribuições

- Todos os ataques atuais à FUTURE têm o mesmo problema: a **complexidade de dados** é muito grande para ser relevante.
- Este artigo apresenta o ataque biclique com **menor complexidade de tempo**, e outro que requer o mínimo de dados.
- Ambos foram obtidos através da busca semi-automatizada por bicliques baseadas no conceito de Conjuntos Geradores de Chave.

Ataques na literatura

Ataque	Ano	Tempo	Dados	Memória	Referência
Meet-in-the-Middle	2023	2^{126}	2 ⁶⁴	2 ³⁶	[2]
Biclique Balanceada	2024	2 ^{125.8875}	2 ⁴⁸	2 ³²	[1]
Múltiplas Bicliques	2024	2 ^{125.5365}	2 ⁴⁸	2 ³²	[1]
Integral	2024	2 ^{123.7}	2 ⁶³	≈ 0	[3]
Integral	2024	2 ¹¹²	2 ⁶⁴	≈ 0	[3]
CGC-Biclique	2024	2 ^{125.18}	2 ²⁰	pprox 0	Nosso
CGC-Estrela	2024	2 ^{126.38}	1	pprox 0	Nosso

Criptoanálise Biclique

■ A criptoanálise biclique possui uma **fase de preparação** e três passos que são executados em loop.

Fase de preparação:

■ A criptoanálise biclique possui uma **fase de preparação** e três passos que são executados em loop.

Fase de preparação:

■ Um adversário particiona o espaço de chaves em grupos com 2^{2d} chaves para algum d.

■ A criptoanálise biclique possui uma **fase de preparação** e três passos que são executados em loop.

Fase de preparação:

- Um adversário particiona o espaço de chaves em grupos com 2^{2d} chaves para algum d.
- Cada grupo de chaves é associado a uma matriz $2^d \times 2^d K$, onde cada elemento K[i,j] representa uma chave no grupo (Há 2^{k-2d} grupos).

■ A criptoanálise biclique possui uma **fase de preparação** e três passos que são executados em loop.

Fase de preparação:

- Um adversário particiona o espaço de chaves em grupos com 2^{2d} chaves para algum d.
- Cada grupo de chaves é associado a uma matriz $2^d \times 2^d K$, onde cada elemento K[i,j] representa uma chave no grupo (Há 2^{k-2d} grupos).
- $Cifra = f \circ g \circ h$ sendo atacada é uma composição de três subcifras f, g e h.

Para cada grupo de chaves:

Para cada grupo de chaves:

■ A **biclique é construída** sobre a subcifra *f* , tal que

$$\forall i, j : S_j \xrightarrow{\kappa[i,j]} C_i,$$

onde $0 \le i, j < 2^d$, S_j são estados internos da cifra e C_i são textos cifrados.

Para cada grupo de chaves:

■ A **biclique é construída** sobre a subcifra *f* , tal que

$$\forall i, j: S_j \xrightarrow{\kappa[i,j]} C_i,$$

onde $0 \le i, j < 2^d$, S_j são estados internos da cifra e C_i são textos cifrados.

■ Este é um ataque de texto cifrado escolhido, é possível **obter os textos claros** correspondentes

$$\forall i: C_i \xrightarrow{oraculo \ de \ decifragem} P_i.$$

Para cada grupo de chaves:

■ A **biclique é construída** sobre a subcifra *f* , tal que

$$\forall i, j : S_j \xrightarrow{\kappa[i,j]} C_i,$$

onde $0 \le i, j < 2^d$, S_j são estados internos da cifra e C_i são textos cifrados.

■ Este é um ataque de texto cifrado escolhido, é possível **obter os textos claros** correspondentes

$$\forall i: C_i \xrightarrow{oraculo de decifragem} P_i.$$

■ Para cada chave K[i,j] no grupo, testa-se (**meet-in-the-middle**)

$$\exists i, j : P_i \xrightarrow[g \circ h]{K[i,j]} S_j.$$

Etapa de pré-computação

Etapa de pré-computação

O adversário calcula e armazena 2.2^d computações da cifra até uma **variável intermediária** v.

$$\forall i: P_i \xrightarrow{K[i,0]} v_{i,0}^1 \text{ and } \forall j: v_{0,j}^2 \xleftarrow{K[0,j]} S_j.$$

Etapa de pré-computação

■ O adversário calcula e armazena 2.2^d computações da cifra até uma **variável intermediária** v.

$$\forall i: P_i \xrightarrow{K[i,0]} v_{i,0}^1 \text{ and } \forall j: v_{0,j}^2 \xleftarrow{K[0,j]} S_j.$$

■ Todos os estados internos e subchaves de g e h até v devem ser armazenados.

Etapa de pré-computação

■ O adversário calcula e armazena 2.2^d computações da cifra até uma **variável intermediária** v.

$$\forall i: P_i \xrightarrow{K[i,0]} v_{i,0}^1 \text{ and } \forall j: v_{0,j}^2 \xleftarrow{K[0,j]} S_j.$$

■ Todos os estados internos e subchaves de g e h até v devem ser armazenados.

Etapa de recomputação

Etapa de pré-computação

■ O adversário calcula e armazena 2.2^d computações da cifra até uma **variável intermediária** v.

$$\forall i: P_i \xrightarrow{K[i,0]} v_{i,0}^1 \text{ and } \forall j: v_{0,j}^2 \xleftarrow{K[0,j]} S_j.$$

■ Todos os estados internos e subchaves de g e h até v devem ser armazenados.

Etapa de recomputação

As partes que diferem dos valores armazenados devem ser recomputadas.

■ Este ataque é uma otimização de força bruta. Três tipos de complexidades são de interesse: **memória**, **dados** e **tempo**.

- Este ataque é uma otimização de força bruta. Três tipos de complexidades são de interesse: **memória**, **dados** e **tempo**.
- A complexidade de memória é dominada pela etapa de pré-computação.

- Este ataque é uma otimização de força bruta. Três tipos de complexidades são de interesse: **memória**, **dados** e **tempo**.
- A complexidade de memória é dominada pela etapa de pré-computação.
- A **complexidade de dados** depende apenas de quantos bits de C são afetados pelos diferenciais $-\Delta$.

- Este ataque é uma otimização de força bruta. Três tipos de complexidades são de interesse: **memória**, **dados** e **tempo**.
- A complexidade de memória é dominada pela etapa de pré-computação.
- A **complexidade de dados** depende apenas de quantos bits de C são afetados pelos diferenciais $-\Delta$.
- A complexidade de tempo é

$$C_{time} = 2^{k-2d} (C_{biclique} + C_{precomp} + C_{recomp} + C_{falpos}).$$

Estado

- É uma cifra AES-like.
- Possui 10 rodadas.
- Blocos de 64 bits.
- Chave de 128 bits.

<i>s</i> ₀	s_1	s ₂	s ₃
<i>S</i> ₄	s ₅	s ₆	<i>S</i> ₇
<i>S</i> ₈	S 9	s ₁₀	s ₁₁
<i>s</i> ₁₂	<i>s</i> ₁₃	s ₁₄	<i>s</i> ₁₅

AddKey (AK)

<i>s</i> ₀	s_1	s ₂	s ₃	
<i>S</i> ₄	<i>S</i> ₅	<i>s</i> ₆	<i>S</i> ₇	
<i>S</i> ₈	S 9	<i>s</i> ₁₀	s ₁₁	
<i>s</i> ₁₂	<i>s</i> ₁₃	S ₁₄	<i>S</i> ₁₅	

$s_0 \oplus K_0^i$	$s_1 \oplus K_1^i$	$s_2 \oplus K_2^i$	$s_3 \oplus K_3^i$
$s_4 \oplus K_4^i$	$s_5 \oplus K_5^i$	$s_6 \oplus K_6^i$	$s_7 \oplus K_7^i$
$s_8 \oplus K_8^i$	$s_9 \oplus K_9^i$	$s_{10} \oplus K_{10}^i$	$s_{11}\oplus K_{11}^i$
$s_{12} \oplus K_{12}^i$	$s_{13} \oplus K_{13}^i$	$s_{14} \oplus K_{14}^i$	$s_{15} \oplus K_{15}^i$

SubCell

<i>s</i> ₀	s_1	s ₂	s ₃		` ′	. ,		$S(s_3)$
	<i>S</i> ₅							$S(s_7)$
s 8	S 9	<i>s</i> ₁₀	<i>s</i> ₁₁	7	$S(s_8)$	$S(s_9)$	$S(s_{10})$	$S(s_{11})$
<i>s</i> ₁₂	<i>s</i> ₁₃	<i>S</i> ₁₄	<i>s</i> ₁₅		$S(s_{12})$	$S(s_{13})$	$S(s_{14})$	$S(s_{15})$

ShiftRows

<i>s</i> ₀	<i>s</i> ₁	s ₂	s 3		s ₀	s_1	s ₂	s 3
<i>S</i> ₄	<i>S</i> ₅	s ₆	S 7			<i>S</i> ₄		
s 8	S 9	<i>s</i> ₁₀	<i>s</i> ₁₁	7	<i>s</i> ₁₀	s ₁₁	s 8	S 9
<i>s</i> ₁₂	<i>s</i> ₁₃	s ₁₄	<i>s</i> ₁₅		<i>s</i> ₁₃	s ₁₄	<i>s</i> ₁₅	<i>s</i> ₁₂

MixColumns

- Multiplicação em $GF(2^4)$.
- Polinômio $x^4 + x + 1$.

$$\begin{pmatrix}
8 & 9 & 1 & 8 \\
2 & 2 & 9 & 9 \\
2 & 3 & 8 & 9 \\
9 & 9 & 8 & 1
\end{pmatrix}$$

■ O sequenciamento de chaves para esta cifra é extremamente simples.

- O sequenciamento de chaves para esta cifra é extremamente simples.
- A chave de 128 bits é particionada em duas, os 64 bits mais à esquerda se tornam X e os outros 64 se tornam Y.

- O sequenciamento de chaves para esta cifra é extremamente simples.
- A chave de 128 bits é particionada em duas, os 64 bits mais à esquerda se tornam X e os outros 64 se tornam Y.
- Então, a i-ésima subchave é igual a $X <<< (5 \cdot (\frac{i}{2}))$, se i for par, e $Y <<< (5 \cdot (\frac{i}{2}))$ se i for impar.

- O sequenciamento de chaves para esta cifra é extremamente simples.
- A chave de 128 bits é particionada em duas, os 64 bits mais à esquerda se tornam X e os outros 64 se tornam Y.
- Então, a i-ésima subchave é igual a $X <<< (5 \cdot (\frac{i}{2}))$, se i for par, e $Y <<< (5 \cdot (\frac{i}{2}))$ se i for impar.
- Não utiliza S-boxes em seu agendamento de chaves.

Composição da cifra

- Possui 10 rodadas.
- Na última aplica-se uma subchave a mais em vez de MixColumns.

$$R_i = ShiftRows \circ MixColumns \circ SubCells \circ AK_i$$

$$FUTURE = AK_{10} \circ ShiftRows \circ SubCells \circ AK_{9} \circ R_{8} \circ R_{7} \circ ... \circ R_{1} \circ R_{0}$$

Os estados são indexados de tal maneira que o i—ésimo estado é o resultado da aplicação da i—ésima operação (P = #0 e C = #40).

Biclique Balanceada

■ A biclique escolhida é 4—dimensional.

- A biclique escolhida é 4—dimensional.
- A chave é particionada em $2^{128-2\cdot 4} = 2^{120}$ grupos.

- A biclique escolhida é 4—dimensional.
- A chave é particionada em $2^{128-2\cdot 4} = 2^{120}$ grupos.
- FUTURE é definida como $FUTURE = f \circ g \circ h$, onde:

- A biclique escolhida é 4—dimensional.
- A chave é particionada em $2^{128-2\cdot 4} = 2^{120}$ grupos.
- FUTURE é definida como $FUTURE = f \circ g \circ h$, onde:
 - h cifra o texto simples para até o estado #17,

- A biclique escolhida é 4—dimensional.
- A chave é particionada em $2^{128-2\cdot 4} = 2^{120}$ grupos.
- FUTURE é definida como $FUTURE = f \circ g \circ h$, onde:
 - *h* cifra o texto simples para até o estado #17,
 - g cifra o estado #17 para o estado #25 e

- A biclique escolhida é 4—dimensional.
- A chave é particionada em $2^{128-2\cdot 4} = 2^{120}$ grupos.
- FUTURE é definida como $FUTURE = f \circ g \circ h$, onde:
 - *h* cifra o texto simples para até o estado #17,
 - g cifra o estado #17 para o estado #25 e
 - \blacksquare f cifra o estado #25 para o texto cifrado.

■ Quaisquer duas subchaves são um conjunto gerador para a chave se o índice de uma for par e o da outra for ímpar.

- Quaisquer duas subchaves são um conjunto gerador para a chave se o índice de uma for par e o da outra for ímpar.
- As partições são tais que:

- Quaisquer duas subchaves são um conjunto gerador para a chave se o índice de uma for par e o da outra for ímpar.
- As partições são tais que:
 - \blacksquare O nibble 3 de \$0 é o único nibble ativo de Δ^K e

- Quaisquer duas subchaves são um conjunto gerador para a chave se o índice de uma for par e o da outra for ímpar.
- As partições são tais que:
 - O nibble 3 de \$0 é o único nibble ativo de Δ^K e
 - O nibble 8 de \$1 é o único nibble ativo de ∇^K .

- Quaisquer duas subchaves são um conjunto gerador para a chave se o índice de uma for par e o da outra for ímpar.
- As partições são tais que:
 - O nibble 3 de \$0 é o único nibble ativo de Δ^K e
 - O nibble 8 de \$1 é o único nibble ativo de ∇^K .

Biclique

Biclique

■ Aqui é checado se a chave secreta pertence a este grupo.

- Aqui é checado se a chave secreta pertence a este grupo.
- A variável intermediária v é o nibble 3 do estado #17.

- Aqui é checado se a chave secreta pertence a este grupo.
- A variável intermediária v é o nibble 3 do estado #17.

$$P_i \xrightarrow{K[i,0]} v_{i,0}^1 \in v_{0,j}^2 \xleftarrow{K[0,j]} S_j$$

- Aqui é checado se a chave secreta pertence a este grupo.
- A variável intermediária v é o nibble 3 do estado #17.

$$P_i \xrightarrow{K[i,0]} v_{i,0}^1 \in v_{0,j}^2 \xleftarrow{K[0,j]} S_j$$

■ Todos os nibbles que são afetados por ambas as diferenciais devem ser recomputados.

Recomputação de ida

Recomputação de volta

■ A **complexidade de dados** é determinada pelo número de nibbles ativos no texto cifrado.

- A **complexidade de dados** é determinada pelo número de nibbles ativos no texto cifrado.
- Apenas 5 nibbles são afetados e, portanto, apenas 2²⁰ pares de textos simples/cifrados são necessários.

- A **complexidade de dados** é determinada pelo número de nibbles ativos no texto cifrado.
- Apenas 5 nibbles são afetados e, portanto, apenas 2²⁰ pares de textos simples/cifrados são necessários.
- Em termos de **memória**, o ataque é limitado por 2^4 computações de $g \circ h$.

- A **complexidade de dados** é determinada pelo número de nibbles ativos no texto cifrado.
- Apenas 5 nibbles são afetados e, portanto, apenas 2²⁰ pares de textos simples/cifrados são necessários.
- Em termos de **memória**, o ataque é limitado por 2^4 computações de $g \circ h$.
- O cálculo completo de $g \circ h$ consiste em 25 estados e 6 subchaves, com 16 nibbles cada.

- A **complexidade de dados** é determinada pelo número de nibbles ativos no texto cifrado.
- Apenas 5 nibbles são afetados e, portanto, apenas 2²⁰ pares de textos simples/cifrados são necessários.
- Em termos de **memória**, o ataque é limitado por 2^4 computações de $g \circ h$.
- O cálculo completo de $g \circ h$ consiste em 25 estados e 6 subchaves, com 16 nibbles cada.
- Portanto, a complexidade de memória é $2^4 \cdot (25 + 16) \cdot 16 = 10.496$ nibbles, o que equivale a 5.248 bytes.

■ A complexidade de tempo é determinada por

$$C_{total} = 2^{k-2d} (C_{biclique} + C_{precomp} + C_{recomp} + C_{falpos}).$$

■ A **complexidade de tempo** é determinada por

$$C_{total} = 2^{k-2d} (C_{biclique} + C_{precomp} + C_{recomp} + C_{falpos}).$$

■ O cálculo dos custos é dado pela porcentagem de S-boxes necessárias para realizar o ataque, em comparação com o número total de S-boxes na cifra.

■ A **complexidade de tempo** é determinada por

$$C_{total} = 2^{k-2d} (C_{biclique} + C_{precomp} + C_{recomp} + C_{falpos}).$$

- O cálculo dos custos é dado pela porcentagem de S-boxes necessárias para realizar o ataque, em comparação com o número total de S-boxes na cifra.
- Por exemplo,

$$C_{recomp} = (2^8 - 2^4) \cdot (11/160) = 2^{4,0444}$$

■ A **complexidade de tempo** é determinada por

$$C_{total} = 2^{k-2d} (C_{biclique} + C_{precomp} + C_{recomp} + C_{falpos}).$$

- O cálculo dos custos é dado pela porcentagem de S-boxes necessárias para realizar o ataque, em comparação com o número total de S-boxes na cifra.
- Por exemplo,

$$C_{recomp} = (2^8 - 2^4) \cdot (11/160) = 2^{4,0444}$$

■ Ao final tem-se:

$$C_{total} = 2^{120}(2^{2,0820} + 2^{3,2863} + 2^{4,0444} + 2^{2,5110}) = 2^{125,18}$$

Conclusões

Conclusões

- Apresentamos aqui o ataque de biclique mais rápido e com, de longe, a menor complexidade de dados na cifra FUTURE de rodadas completas.
- É uma biclique balanceada de dimensão 4, que requer apenas 2^{20} pares para ser executado e tem complexidade de tempo de $2^{125,18}$.
- Todos os diagramas completos podem ser encontrados em https://github.com/Clique33/BicliqueFinder.
- Trabalhos futuros sobre esta cifra envolvem a busca por bicliques desbalanceadas.
- O mesmo processo também pode ser aplicado a outras cifras leves, como a família GIFT.

Fim de Apresentação

Referências

Cryptanalysis of full round future with multiple biclique structures. *Peer-to-Peer Networking and Applications*, 17(1):397–409, 2024.

André Schrottenloher and Marc Stevens. Simplified modeling of mitm attacks for block ciphers: New (quantum) attacks.

IACR Transactions on Symmetric Cryptology, 2023:146–183, 2023.

Zeyu Xu, Jiamin Cui, Kai Hu, and Meiqin Wang. Integral attack on the full future block cipher. *Tsinghua Science and Technology*, 2024.