Datapath pipeline with pipelined functional units

Algorithm:

Circuit (includes controller and datapath):

1. Datapath:

- The datapath has 22 inputs and 1 output, of which 2 inputs (8 bits) transmit the number to be calculated, the remaining 20 inputs are control signals (opcodes of AU blocks, read/write signals of registers, tries, CLK), the output for the final result.
- The datapath consists of 5 registers and 2 AU blocks, "Shift3" block and "Shift1" block. "AU1" and "AU2" are controlled by 4 bit opcodes (Opcode[3..2] control AU2, Opcode[1..0] control AU1), the registers store the following values, "AU1" and "AU2" perform the following funtions:

(About AU, we divide each calculation into 2 states to reduce the time each state)

• AU1 (is used to calculating abs/min/max and controlled by Opcode[1..0]):

AU1						
Opcode	Function					
00	abs					
01	max					
10	min					
11	min					

- Use 4 D-FF to devide each calculation into 2 states, the first D-FF save Input1, the 2nd D-FF save result of "Add_sub" Block, the highest bit of it is sign bit, the 3rd save Input2 and the last D-FF save control signal (C[1..0]).
- Connect Select of "Add sub" Block to alway calculate A-B.
- In A[7..0] of "Add_sub" Block, we connect with ((C[1] + C[0]).In1), so only $C[1] = C[0] = 0 \Rightarrow A[7..0] = 0$. Then result of "Add_sub" Block is 0-B, we use Result[7] as a sign bit to control 2 Mux Block following.
- "Control" Block:

		Input			Outpu	t	Output of AU1
	Sign	C[1]	C[0]	S1	S0	Funtion	
	0	0	0	1	0	abs	Result
A>B	0	0	1	1	1	max	Α
A/B	0	1	0	0	X	min	В
	0	1	1	0	X	min	В
	1	0	0	0	X	abs	В
A <b< td=""><td>1</td><td>0</td><td>1</td><td>0</td><td>X</td><td>max</td><td>В</td></b<>	1	0	1	0	X	max	В
A\D	1	1	0	1	1	min	Α
	1	1	1	1	1	min	Α

M	Mux						
Select	Result						
0	S0						
1	S1						

S0			C[10]					
3	U	00 01 11 10						
Sign	0	0	1	Х	Х			
Sign	1	X	X	1	1			

$$S1 = C[1] + C[0]$$

$$S0 = Sign.C[1] + Sign'.C[0]'$$

Add_sub:

 Select
 Function

 0
 Add

 1
 Sub

 AU2 (is used to calculating add/sub/max and controlled by Opcode[3..2]:

AU2						
Opcode	Function					
00	Add					
01	Sub					
10	Max					
11	Sub					

- The same as AU1, only different "Control" block and the Select of "Add_sub" Block:
- "Control" Block:

	Control AU1								
		Input				Ou	tput		Output of AU1
	Sign	C[1]	C[0]		S1	S0	Select	Funtion	
	0	0	0		1	0	0	Add	Result of Add_sub
A>B	0	0	1		1	0	1	Sub	Result of Add_sub
A/B	0	1	0		1	1	1	Max	Α
	0	1	1		1	0	1	Sub	Result of Add_sub
	1	0	0		1	0	0	Add	Result of Add_sub
A <b< td=""><td>1</td><td>0</td><td>1</td><td></td><td>1</td><td>0</td><td>1</td><td>Sub</td><td>Result of Add_sub</td></b<>	1	0	1		1	0	1	Sub	Result of Add_sub
A <b< td=""><td>1</td><td>1</td><td>0</td><td></td><td>0</td><td>Х</td><td>1</td><td>Max</td><td>В</td></b<>	1	1	0		0	Х	1	Max	В
	1	1	1		1	0	1	Sub	Result of Add_sub

S1			C[10]					
3	1	00	01	11	10			
Sign	0	1	1	1	1			
Sign	1	1	1	0	1			

Select		C[10]					
Sei	ect	00	01	11	10		
Cian	0	0	1	1	1		
Sign	1	0	1	1	1		
					l		

S0			C[10]					
3	00 01 11 10				10			
Sign	0	0	0	0	1			
Sign	1	0	0	0	х			

$$S1 = (C[1].C[0]'.Sign)'$$

$$Select = C[1] + C[0]$$

$$S0 = C[1].C[0]$$

• Register:

- Register if created by 8 D-FF and "Mux2_1".
- The input Select decides that the register loads new value or not. If Select = 0 => no load new value and put previous value (S0) into D-FF so it can stores value, otherwise, Select = 1 => load new value (S1).

• Shift 3 (8 bits):

Connect bits [7..3] of input to bits[4..0] of output, remaining bits of output are GND.

• Shift 1 (8 bits):

Connect bits [7..1] of input to bits[6..0] of output, remaining bit of output is GND.

2. Controller:

Controller includes "Next_state" block, Register always load new value and a block to decode from state into control signal to control datapath.

• Next state:

STATE	IN					OUT			
SIAIL	Start	Q3	Q2	Q1	Q0	Q3+	Q2+	Q1+	Q0+
S0	0	0	0	0	0	0	0	0	0
S0	1	0	0	0	0	0	0	0	1
S1	X	0	0	0	1	0	0	1	0
S2	X	0	0	1	0	0	0	1	1
S3	X	0	0	1	1	0	1	0	0
S4	X	0	1	0	0	0	1	0	1
S 5	X	0	1	0	1	0	1	1	0
S6	X	0	1	1	0	0	1	1	1
S7	X	0	1	1	1	1	0	0	0
S8	X	1	0	0	0	1	0	0	1
S9	X	1	0	0	1	1	0	1	0
S10	X	1	0	1	0	1	0	1	1
S11	X	1	0	1	1	1	1	0	0
S12	X	1	1	0	0	1	1	0	1
S13	X	1	1	0	1	0	1	1	1
S14	X	1	1	1	0	X	X	X	X
S15	X	1	1	1	1	X	X	X	X

Temporarily removed Start to easy to draw K_map, after that we or(+) Q_{0+} with Start.S₀, because Start = 1 only in case that input(Q3_Q2_Q1_Q0) = 0000 and output(Q3+_Q2+_Q1+_Q0+) = 0001:

0.	Q3+		Q1_Q0					
Ų,			01	11	10			
	00							
02.02	01			1				
Q3_Q2	11	1		X	X			
	10	1	1	1	1			

$$Q_{3+} = Q_3.Q_2' + Q_3.Q_0' + Q_2.Q_1.Q_0$$

Q2+		Q1_Q0					
L Q	2+	00	01	11	10		
	00			1			
03 03	01	1	1		1		
Q3_Q2	11	1	1	X	X		
	10			1			

$$Q_{2+} = (Q_2+Q_1) \times (Q_2+Q_0) \times (Q_2.Q_1.Q_0)'$$

0.	Q1+		Q1_Q0						
Ų.			01	11	10				
	00	1			1				
03 03	01		1		1				
Q3_Q2	11		1	X	X				
	10		1		1				

$$Q_{1+} = (Q_1+Q_0) \times (Q_1.Q_0)$$

0	Q0+		Q1_Q0						
Ų.			01	11	10				
	00				1				
03 03	01	1			1				
Q3_Q2	11		1	X	X				
	10	1			1				

$$Q_{0+} = Q_1.Q_0' + Q_3'.Q_2.Q_0' + Q_3.Q_2'.Q_0' + Q_3.Q_2.Q_0$$
+ Start. Q₃'.Q₂'.Q₁'.Q₀'

• Decoder from state to control:

		- II	N												OL	JT									
STATE	Q3	Q2	Q1	Q0		I1B3	1284	R1B2	R2B2	AU1B3	AU1B4	S3B7	R4B5	R5B5	AU2B7	LR1	LR2	LR3	LR4	LR5	OP[3]	OP[2]	OP[1]	OP[0]	DONE
S0	0	0	0	0		1	1									1	1						Х	X	
S1	0	0	0	1				1															0	0	
S2	0	0	1	0	1				1	1						1							0	0	
S3	0	0	1	1	1				1		1						1						0	0	
S4	0	1	0	0																			1	X	
S5	0	1	0	1	1				1											1			0	1	
S6	0	1	1	0								1						1	1				Х	X	
S7	0	1	1	1		1	1						1			1	1				0	1	Х	X	
S8	1	0	0	0				1							1			1					0	0	
S9	1	0	0	1					1	1				1		1					0	0	0	0	
S10	1	0	1	0							1				1		1	1					0	0	
S11	1	0	1	1					1				1								1	0	1	X	
S12	1	1	0	0	1				1						1			1		1			0	1	
S13	1	1	0	1								1						1	1				X	Х	1
S14	1	1	1	0		X	X	X	Х	X	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	X
S15	1	1	1	1	1	X	Х	Х	X	Х	Х	X	X	Х	X	X	Х	X	Х	X	X	Х	Х	X	X

11	I1B3		Q1_Q0						
1103		00	01	11	10				
	00	1							
03.02	01			1					
Q3_Q2	11			X	X				
	10								

121	1284		Q1_Q0						
121			01	11	10				
	00	1							
Q3_Q2	01			1					
Q3_Q2	11			X	X				
	10								

$$\mathbf{I1B3} = \mathbf{Q_3'.Q_2'.Q_1'.Q_0'} + \mathbf{Q_2.Q_1.Q_0}$$

D1	R1B2		Q1_Q0						
K102		00	01	11	10				
	00		1						
Q3_Q2	01								
Q3_Q2	11			X	X				
	10	1							

$$\mathbf{I2B4} = \mathbf{Q_3}'.\mathbf{Q_2}'.\mathbf{Q_1}'.\mathbf{Q_0}' + \mathbf{Q_2}.\mathbf{Q_1}.\mathbf{Q_0}$$

	R2B2		Q1_Q0						
K2			01	11	10				
	00	0	X	1	1				
Q3_Q2	01	1	1	X	X				
Q3_Q2	11	1	X	X	X				
	10	0	1	1	X				

$$\mathbf{R1B2} = \mathbf{Q_3}'.\mathbf{Q_2}'.\mathbf{Q_1}'.\mathbf{Q_0} + \mathbf{Q_3}.\mathbf{Q_2}'.\mathbf{Q_1}'.\mathbf{Q_0}'$$

ALI	AU1B3		Q1_Q0						
AOIBS		00	01	11	10				
	00				1				
03 03	01								
Q3_Q2	11			X	X				
	10		1						

$$\mathbf{R2B2} = \mathbf{Q}_2 + \mathbf{Q}_0 + \mathbf{Q}_1$$

ALL	AU1B4		Q1_Q0							
A0164		00	01	11	10					
	00			1						
03 03	01									
Q3_Q2	11			X	X					
	10				1					

$$\mathbf{AU1B3} = \mathbf{Q}_3'.\mathbf{Q}_2'.\mathbf{Q}_1.\mathbf{Q}_0' + \mathbf{Q}_3.\mathbf{Q}_2'.\mathbf{Q}_1'.\mathbf{Q}_0$$

$$\boldsymbol{AU1B4} = Q_3.Q_1.Q_0\text{'} + Q_3\text{'}.Q_2\text{'}.Q_1.Q_0$$

co.	S3B7		Q1_Q0						
3387		00	01	11	10				
	00								
Q3_Q2	01				1				
Q3_Q2	11		1	X	X				
	10								

 $\mathbf{S3B7} = \mathbf{Q}_2.\mathbf{Q}_1.\mathbf{Q}_0' + \mathbf{Q}_3.\mathbf{Q}_2.\mathbf{Q}_0$

DE	R5B5		Q1_Q0						
67			01	11	10				
	00								
Q3_Q2	01								
Q3_Q2	11			X	X				
	10		1						

 $R5B5 = Q_3.Q_2'.Q_1'.Q_0$

1.5	LR1		Q1_Q0						
LNI		00	01	11	10				
	00	1			1				
Q3_Q2	01			1					
Q3_Q2	11			X	X				
	10		1						

$$\mathbf{LR1} = Q_3'.Q_2'.Q_0' + Q_2.Q_1.Q_0 + Q_3.Q_2'.Q_1'.Q_0 \qquad \qquad \mathbf{LR2} = Q_3'.Q_2'.Q_1 + Q_2.Q_1.Q_0 + Q_3.Q_1.Q_0'$$

LR3		Q1_Q0			
		00	01	11	10
Q3_Q2	00				
	01				1
	11	1	1	X	X
	10	1			1

$$\mathbf{LR3} = \mathbf{Q}_3.\mathbf{Q}_2 + \mathbf{Q}_3.\mathbf{Q}_0' + \mathbf{Q}_2.\mathbf{Q}_1.\mathbf{Q}_0'$$

LR5		Q1_Q0			
		00	01	11	10
Q3_Q2	00				
	01		1		
	11	1		X	X
	10				

$$\mathbf{LR5} = \mathbf{Q}_3.\mathbf{Q}_2.\mathbf{Q}_0' + \mathbf{Q}_3'.\mathbf{Q}_2.\mathbf{Q}_1'.\mathbf{Q}_0$$

R4B5			Q1_Q0			
		00	01	11	10	
Q3_Q2	00					
	01			1		
	11			X	X	
	10			1		

 $\mathbf{R4B5} = \mathbf{Q}_3.\mathbf{Q}_1.\mathbf{Q}_0 + \mathbf{Q}_2.\mathbf{Q}_1.\mathbf{Q}_0$

AU2B7			Q1_Q0			
		00	01	11	10	
	00					
Q3_Q2	01					
Q 3_ Q 2	11	1		X	X	
	10	1			1	

$$AU2B7 = Q_3.Q_0$$

LR2		Q1_Q0			
		00	01	11	10
	00		1	1	
Q3_Q2	01			1	
Q 3_ Q 2	11			X	X
	10				1

$$LR2 = Q_3'.Q_2'.Q_1 + Q_2.Q_1.Q_0 + Q_3.Q_1.Q_0'$$

LR4		Q1_Q0			
		00	01	11	10
Q3_Q2	00				
	01				1
	11		1	X	X
	10				

$$\mathbf{LR4} = Q_3.Q_2.Q_0 + Q_2.Q_1.Q_0$$

OP[3]		Q1_Q0				
		00	01	11	10	
Q3_Q2	00	X	X	X	X	
	01	X	X	0	X	
	11	X	X	X	X	
	10	X	0	1	X	

$$\mathbf{OP[3]} = Q_3.Q_1$$

OP[2]		Q1_Q0			
		00	01	11	10
Q3_Q2	00	X	X	X	X
	01	X	X	1	Х
	11	X	X	X	X
	10	X	0	0	X

OP[2] =
$$Q_3$$
'

OP[0]			Q1_Q0				
		00	01	11	10		
Q3_Q2	00	X	0	0	0		
	01	X	1	X	X		
	11	1	X	X	X		
	10	0	0	X	0		

$$\mathbf{OP}[\mathbf{0}] = \mathbf{Q}_2$$

$$\mathbf{OP[1]} = Q_3'.Q_1'.Q_0' + Q_3.Q_1.Q_0$$

DONE			Q1_Q0			
		00	01	11	10	
	00					
Q3_Q2	01					
Q3_Q2	11		1	X	X	
	10					

$$\mathbf{DONE} = Q_3.Q_2.Q_0$$

Note (according to datapath):

- I1B3: control tri allows transferring data from Input1 to Bus 3.
- AU1B3: control tri allows transferring data from AU1 to Bus_3. (in the same time only Input1 or AU1 load data to Bus_3)
- R1B2 (Bus2[0]): control tri allows loading data from Register1 to Bus_2.
- R2B2 (Bus2[1]): control tri allows loading data from Register2 to Bus_2. (in the same time only register1 or register2 load data to Bus_2)
- I2B4: control tri allows transferring data from Input2 to Bus 4.
- AU1B4: control tri allows transferring data from AU1 to Bus_4. (in the same time only Input2 or AU1 load data to Bus_4)
- S3B7: control tri allows transferring data from Shift3 to Bus_7.
- AU2B7: control tri allows transferring data from AU2 to Bus_7. (in the same time only Shift3 or AU2 load data to Bus_7)
- R4B5 (Bus5[0]): control tri allows transferring data from Register4 to Bus 5.
- R5B5 (Bus5[1]): control tri allows transferring data from Register5 to Bus_5. (in the same time only Register4 or Register5 load data to Bus_5)
- LR1: Allows to load data to Register1.
- LR2: Allows to load data to Register2.
- LR3: Allows to load data to Register3.
- LR4: Allows to load data to Register4.
- LR5: Allows to load data to Register5. (LR5-LR1 corresponding to LR[4..0])
- Opcode[3..0]: OP[3..2] control AU2, OP[1..0] control AU1.
- Done: when state is S8 (after successfully calculated final result we will have the output is result, in other states output is "X")

3. Waveform (input and output according to color respectively):


```
a = 3

b = -4

t1 = |a| = 3

t2 = |b| = 4

t4 = min(t1, t2) >> 1 = 1

x = max(t1, t2) = 4

t3 = max(t1, t2) >> 3 = 0

t5 = x - t3 = 4

t6 = t4 + t5 = 5

t7 = max(t6, x) = 5

Result = t7 = 5
```

```
a = -6

b = 8

t1 = |a| = 6

t2 = |b| = 8

t4 = min(t1, t2) >> 1 = 3

x = max(t1, t2) = 8

t3 = max(t1, t2) >> 3 = 1

t5 = x - t3 = 7

t6 = t4 + t5 = 10

t7 = max(t6, x) = 10

Result = t7 = 10
```

```
a = -40

b = 32

t1 = |a| = 40

t2 = |b| = 32

t4 = min(t1, t2)>>1 = 16

x = max(t1, t2) = 40

t3 = max(t1, t2)>>3 = 5

t5 = x - t3 = 35

t6 = t4 + t5 = 51

t7 = max(t6, x) = 51

Result = t7 = 51
```



```
a = 66

b = -64

t1 = |a| = 66

t2 = |b| = 64

t4 = min(t1, t2) >> 1 = 32

x = max(t1, t2) = 66

t3 = max(t1, t2) >> 3 = 8

t5 = x - t3 = 58

t6 = t4 + t5 = 90

t7 = max(t6, x) = 90

Result = t7 = 90
```

```
a = -95

b = 70

t1 = |a| = 95

t2 = |b| = 70

t4 = min(t1, t2) >> 1 = 35

x = max(t1, t2) = 95

t3 = max(t1, t2) >> 3 = 11

t5 = x - t3 = 84

t6 = t4 + t5 = 119

t7 = max(t6, x) = 119

Result = t7 = 119
```