Atom- und Molekülphysik

(Kompendium)

Herausgegeben von

Jeffrey Kelling Felix Lemke Stefan Majewsky

Stand: 23. Oktober 2008

Inhaltsverzeichnis

Struktur des H-Atoms	3
Grundgrößen	
Feinstrukturkorrekturterme (durch Elektroneneigenschaften)	
Hyperfeinstrukturkorrekturterme (durch Kernstruktur)	
Mehrniveau- und Mehrelektronensysteme	4
Dipol-Auswahlregeln	
Aufbau von Mehrelektronensystemen	
Besondere Gruppen von Elementen und Atomen	
Atome in äußeren Feldern	5
Zeeman-Effekt	
Stark-Effekt	
Spektroskopie	
Molekülphysik	6
Bindungsarten	
Rotationsniveaus	
Schwingungsniveaus	

Grundgrößen

Quantenzahl	Abhängige Größe	Zusammenhang	
Hauptqz. $n = 0, 1, \dots$	Energie	$E = -hcR_{\infty} \cdot \frac{Z^2}{n^2}$	

- Rydberg-Konstante: $R_{\infty} = \frac{m_e}{2hc} \cdot \left(\frac{e^2}{4\pi\varepsilon_0 \cdot \hbar}\right)^2$
- Zweikörperproblem: $m_e \to \frac{m_e}{1+m_e/m_k}$ bzw. $R_\infty \to R_\infty \cdot \frac{1}{1+m_e/m_k}$ mit der Kernmasse m_k

Quantenzahl		Abhängige Größe	Zusammenhang	
	Bahndrehimpulsqz.	$l = 0, \dots, n - 1$ $m_l = -l, \dots, l$	Bahndrehimpuls	$ ec{L} = \sqrt{l \cdot (l+1)} \cdot \hbar$ $L_z = m_l \cdot \hbar$

- Magnetisches Moment: $\vec{\mu}_l = -\frac{g_l \cdot \mu_B}{\hbar} \cdot \vec{L}$ (Vorzeichen ist Konvention) mit $g_l = 1$ (Landé-Faktor)
- Komponenten des magnetischen Momentes: $(\mu_l)_z = -m_l \cdot g_l \mu_B$
- Bohrsches Magneton: $\mu_B = \frac{e \cdot \hbar}{2m} \approx 0.9274 \cdot 10^{-23} \text{ J/T}$

Quan	tenzahl	Abhängige Größe	Zusammenhang
Spinqz.	$s = 1/2$ $m_s = \pm 1/2$	Eigendrehimpuls (Spin)	$ \vec{S} = \sqrt{s \cdot (s+1)} \cdot \hbar$ $S_z = m_s \cdot \hbar$

- Magnetisches Moment: $\vec{\mu}_s = -\frac{g_s \cdot \mu_B}{\hbar} \cdot \vec{S}$ mit $g_s \approx 2$
- Komponenten des magnetischen Momentes: $(\mu_s)_z = -m_s \cdot g_s \mu_B$

Quantenzahl		Abhängige Größe	Zusammenhang	
	Elektron endre himpulsqz.	$j = l \pm s \ (> 0!)$ $m_j = -j, \dots, j$	Elektronendrehimpuls	$ \vec{J} = \sqrt{j \cdot (j+1)} \cdot \hbar$ $J_z = m_j \cdot \hbar$

- Elektronendrehimpuls: $\vec{J} = \vec{L} + \vec{S}$, somit $m_j = m_l + m_s$

Quantenzahl		Abhängige Größe	Zusammenhang
Kerndrehimpulsqz.	$i = 0, 1/2, \dots$ $m_i = -i, \dots, i$	Kerndrehimpuls	$ \vec{I} = \sqrt{i \cdot (i+1)} \cdot \hbar$ $I_z = m_i \cdot \hbar$

- Magnetisches Moment: $\vec{\mu}_i = -\frac{g_i \cdot \mu_N}{\hbar} \cdot \vec{I}$ mit $\mu_N = m_e/m_p \cdot \mu_B$
- Atomdrehimpuls: $\vec{F} = \vec{I} + \vec{J}$ (mit Quantenzahl $f = i \pm j$ in völliger Analogie zu j)

Im zeitlichen Mittel verschwinden die x- und y-Komponenten von \vec{L} , \vec{S} , \vec{J} , \vec{I} , \vec{F} , $\vec{\mu}_l$, $\vec{\mu}_s$ und $\vec{\mu}_i$.

Feinstrukturkorrekturterme (durch Elektroneneigenschaften)

- Spin-Bahn-Kopplung: $\Delta E_{\rm LS} = -E \cdot \frac{\alpha^2 \cdot Z^2}{\hbar^2} \cdot \frac{n}{l \cdot (l+1/2) \cdot (l+1)} \cdot \vec{S} \cdot \vec{L}$ Feinstrukturkonstante: $\alpha := \frac{e^2}{4\pi\varepsilon_0 \cdot \hbar c} \approx \frac{1}{137}$
- relativistische Rechnung: $\Delta E_{\rm rel} = -E \cdot \frac{\alpha^2 \cdot Z^2}{n^2} \cdot \left[\frac{3}{4} \frac{n}{l+1/2} \right]$
- \bullet endliche Ladungsdichte des Kerns: $\Delta E_{\mathrm{Darwin}} = E \cdot \frac{\alpha^2 \cdot Z^2}{n}$ für l=0
- Lamb-Shift (quantisiertes Feld): $\Delta E_{\rm Lamb} \sim \frac{Z^4}{n^3}$ für l=0
- Gesamte Feinstrukturkorrektur: $\Delta E_{\rm fs} = E_n \cdot \frac{\alpha^2 \cdot Z^2}{n^2} \cdot \left(\frac{n}{j+1/2} \frac{3}{4}\right)$

Hyperfeinstrukturkorrekturterme (durch Kernstruktur)

- Kern-Elektron-Kopplung: $\Delta E_{\rm hfs} = -\vec{\mu}_i \cdot \vec{B}_e(\vec{r}=0) = A \cdot m_j m_i \text{ mit } A = \frac{\mu_i \cdot \overline{B}_e(r=0)}{IJ} = \frac{\mu_n \cdot g_I \cdot \overline{B}_e(r=0)}{J}$
- inhomogene Kernladungsverteilung (zum Beispiel Quadrupol)
- massenabhängiger Isotopieeffekt (relevant für kleine Nukleonenzahlen): Änderung der reduzierten Masse
- volumenabhängiger Isotopieeffekt (relevant für große Nukleonenzahlen): Variation der Elektronenkreisbahn führt zu Variation der Energie

Dipol-Auswahlregeln

- Übergänge zwischen Grobstrukturniveaus: $\Delta l = \pm 1$ und $\Delta m_l = 0, \pm 1$
 - $-\sigma$ -Übergänge: $\Delta m = \pm 1$ (hervorgerufen durch zirkular polarisiertes Licht)
 - $-\pi$ -Übergänge: $\Delta m = 0$ (hervorgerufen durch linear polarisiertes Licht)
- Übergänge zwischen Feinstrukturniveaus: $\Delta j = 0, \pm 1$ und $\Delta m_j = 0, \pm 1$ (außer $j = 0 \rightarrow j = 0$)
- analog für Hyperfeinstrukturniveaus

Aufbau von Mehrelektronensystemen

- Pauli-Prinzip: Zwei Elektronen im Zentralfeld des Atomkerns können nicht im selben Zustand sein. Ein Zustand wird durch die Quantenzahlen-Quadrupel n, l, m_l, m_s oder n, l, j, m_j beschrieben.
- Zustände einer (Unter)Schale: $(n)^{2S+1}L_J$ mit $L=|\sum m_l|, S=|\sum m_s|$ und $J=|L-S|,\ldots,|L+S|$
 - Eine Unterschale n,lkann maximal 2(2l+1) Elektronen aufnehmen.
 - Eine Schale n kann maximal $2n^2$ Elektronen aufnehmen.
 - Der Grundzustand des Atoms ergibt sich den Hundschen Regeln:
 - 1. Eine volle (Unter)Schale hat stets den Zustand ${}^{1}S_{0}$.
 - 2. Im Grundzustand ist S maximal.
 - 3. Im Grundzustand ist L maximal.
 - 4. Im Grundzustand ist J = |L S| bei weniger und J = |L + S| bei mehr als halbgefüllter Schale.
- ullet Auffüllreihenfolge der Unterschalen: 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 5d/4f 6p 7s 6d/5f 7p \cdots
- Anomalie: Streben nach halbgefüllten Schalen, zum Beispiel Cr, Cu, Ag

Besondere Gruppen von Elementen und Atomen

- Alkaliatome: ein Elektron auf einer nicht gefüllten Schale Singulett- und Triplettzustände
 - ausgeprägte Hyperfeinstrukturaufspaltung (scharfe, breite, intermediäre Übergänge)
 - Tauchbahnen \rightarrow effektive HQZ: $n^* = n \alpha(l) + \beta(l)/n^2$ (relevant für S- und P-Zustände)
 - kein Übergang zwischen Singulett- und Triplettzuständen (aufgrund Auswahlregeln)
- Erdalkaliatome und weitere 2e⁻-Systeme (Zn, Cd, Hg) Singulett-, Dublett- und Triplettzustände
 - ähnlich zu Alkaliatomen (Tauchbahnen)
 - Interkombinationsübergänge: Übergänge zwischen bestimmten Singulett- und Triplettzuständen möglich aufgrund intermediärer Kopplung der Zustände
- Mehrelektronensysteme Singulett-, Dublett-, Triplett- und Quartettzustände
 - keine Trennung zwischen reinen Singulett- und Triplettzuständen möglich; viele Interkombinationsübergänge
 - Auftreten deutlicher Quadrupolübergänge
 - Edelgase: nur abgeschlossene Schalen; bei Ionisation (Entfernung eines Elektrons) entsteht ein Loch, an das andere Elektronen koppeln können Gesamtdrehimpuls $\vec{K} = \vec{J} + \vec{L}$ (Bezeichnung der entstehenden Konfigurationen: $(P_{1/2})l[K]_j$ und $(P_{3/2})l[K]_j$)
- positive Ionen A^{n+} n Elektronen fehlen; Energiekorrekturen:
 - Coulombwechselwirkung zwischen Elektronen (~ Z^2) und zwischen Elektronen und Kern (bei Heartigen Atomen; ~ $(Z-\delta)^2$ mit Kernabschirmungsfaktor δ)
 - bei H-artigen Atomen: für $l \neq 0$ Dublettaufspaltung $\sim Z^4$
- negative Ionen A^{n-} n Elektronen (meist nur eines) werden aufgenommen
 - Elektronenaffinität: $E_{\rm EA}(A) = E_{\rm ges}(A) E_{\rm ges}(A^-) > 0$ bei stabilen Ionen; besonders hoch bei Halogenen und Edelmetalle

Zeeman-Effekt

- ullet Aufspaltung beim Anliegen eines äußeren magnetischen Feldes \vec{B} Störungsrechnung nötig
- normaler Zeeman-Effekt (Grobstruktur): $\Delta \omega = \Delta m_l \cdot \frac{eB}{2m}$ und $\Delta \overline{\nu} = \Delta m_l \cdot \frac{\mu_B \cdot B}{hc}$ (beachte Auswahlregeln) Beim anormalen Zeeman-Effekt unterscheidet man die folgenden Bereiche:
- Russel-Saunders-Bereich ($\Delta E_{\rm LS} \gg \Delta E_B$): $\Delta E_B = m_j \cdot g_j \cdot \mu_B \cdot B$ mit $g_j = 1 + \frac{\vec{J}^2 + \vec{S}^2 \vec{L}^2}{2 \cdot \vec{I}^2}$
- Landau-Bereich ($\Delta E_{\rm LS} \approx \Delta E_B$, quadratischer Zeeman-Effekt): $E_{\rm ges} = (n + \frac{1}{2}) \cdot \hbar \omega_c + \frac{\hbar^2 \cdot k_z^2}{2m}$ mit $\omega_c = \frac{eB}{2m}$
- Paschen-Back-Bereich ($\Delta E_{\rm LS} \ll \Delta E_B$): $\Delta E_B = (m_l + 2m_s) \cdot \mu_B \cdot B$ Eine ähnliche Aufteilung gibt es in der Hyperfeinstruktur: (ohne Betrachtung des nichtlinearen Bereiches)
- linearer Bereich ($\Delta E_{\rm hfs} \gg \Delta E_B^{\rm hfs}$): $\Delta E_B^{\rm hfs} = m_f \cdot g_f \cdot \mu_B \cdot B$ mit $g_f = g_j \cdot \frac{\vec{F}^2 + \vec{J}^2 \vec{I}^2}{2\vec{F}\vec{J}}$
- Paschen-Back-Bereich ($\Delta E_{\rm hfs} \ll \Delta E_B^{\rm hfs}$): $\Delta E_B^{\rm hfs} = m_j \cdot g_j \cdot \mu_B \cdot B \frac{m_e}{m_p} \cdot g_i \cdot \cos(\vec{I}, \vec{B}) \cdot \mu_B \cdot B$ (hinterer Term vernachlässigbar)

Stark-Effekt

- \bullet Aufspaltung beim Anliegen eines äußeren elektrischen Feldes \vec{F} Störungsrechnung nötig
- $\Delta E_{\rm fs} \ll \Delta E_F$: linearer Term dominiert (H-artige Atome)
- $\Delta E_{\rm fs} \gg \Delta E_F$ oder S=0 mit $\Delta E_{\rm fs}=0$: quadratischer Term dominiert (Mehrelektronensysteme)
- neue Quantenzahlen: $n_1, n_2 = 0, ..., n-1$ mit $n = n_1 + n_2 + |m_l| + 1$
- Energieeintrag erster Ordnung: $\Delta E^{(1)} = \frac{3}{2}a_0 \cdot eF \cdot \frac{n}{Z} \cdot (n_1 n_2)$ (Schwarzschild-Epstein-Formel)
- maximale Energieaufspaltung: $\delta E^{(1)} = 3a_0 \cdot eF \cdot \frac{n}{Z} \cdot (n-1)$
- Energieeintrag zweiter Ordnung: $\Delta E^{(2)} = -\frac{4\pi\varepsilon_0 \cdot F^2}{16} \cdot \left(\frac{n}{Z}\right)^4 \cdot (17n^2 3(n_1 n_2)^2 9\left|m_l\right|^2 + 19)$
- Spezialfall für n=1 (H-Atom): $\Delta E_{100}^{(1)}=0, \ \Delta E_{100}^{(2)}=-8\pi\varepsilon_0\cdot\frac{a_0^3}{Z^4}\cdot F^2=-\frac{\alpha}{2}\cdot\vec{F}^2$ mit $\alpha=7.42\cdot\frac{1}{Z^4}\frac{\text{C.nm}^2}{\text{V}}$
- Spezialfall für n=2 und $m_l=0$: $\Delta E_{2l0}^{(1)}=\pm 3a_0\cdot eF$

Spektroskopie

- ullet Röntgenspektroskopie: Ionisierung des Atoms mittels Elektronen o Herunterfallen von Elektronen in höheren Schalen in Loch o Emission von Strahlung
- Röntgenspektrum: Bremsstrahlung anfliegender Elektronen (breites Spektrum), Emissionsstrahlung der meist kaskadenartig fallenden Elektronen (scharfe Linien)
- Photoemissionsspektroskopie: Ein Elektron mit der Bindungsenergie E_{B1} wird durch ein Photon aus der Hülle geschlagen; der Rest der Photonenenergie beschleunigt das Elektron (scharfe Linien).

$$E_{\rm kin} = h\nu_0 - E_{B,\rm max} - E_{B1}$$
 mit $E_{B,\rm max} = {\rm Bindungsenergie}$ des höchsten Zustandes

• Augerspektroskopie: In das entstehende Loch rutscht ein Elektron mit E_{B2} nach, wobei das emittierte Photon ein noch höher liegendes Elektron mit E_{B3} herauschlägt; dieses wird mit der restlichen Energie beschleunigt. (unscharfe Linien)

$$E_{\rm kin} = E_{B1} - E_{B2} - E_{B3}$$

Bindungsarten

- kovalente (homöopolare) Bindung durch Überschneidung von Orbitalen; stark und gerichtet; bei Nichtmetallen, organischen Elementen und Gasmolekülen
 - Bindung nur bei halbgefüllten Orbitalen und antiparallelen Elektronenspins möglich \Rightarrow Elektonen bewegen sich in gemeinsamem Orbital.
 - $-\sigma$ -Bindung: rotationssymmetrisch, stark. Z.B.: s-s, s-sp, s- p_z (schwächer)
 - $-\pi$ -Bindung: Keine Drehung möglich, schwächer. Z.B.: p-p, s-p_x
 - Zur Bindung werden die äußeren S- und P-Elektronen (Valenzelektronen) herangezogen Oktettregel,
 Streben nach energetisch günstigstem Zustand.
 - *sp-Hybridisierung*: Anheben eines Elektorns aus einem voll besetztem S-Orbital, Bedarfsabhängige Bildung von *sp*-Hybridorbitalen. Erhöht die Wertigkeit des Atoms um zwei.
 - Zwei Atome können miteinander nur eine σ -Bindung haben, weitere sind π -Bindungen, Bildung von sp-Orbitalen erfolgt entsprechend.
 - Im Hybridzustand addieren sich die Wellenfunktionen der beteiligten Orbitale wie folgt

$$\begin{array}{rcl} \psi_{1}^{\mathrm{sp3}} & = & \frac{1}{2} \cdot \left[\psi(2s) + \psi(2p_{x}) + \psi(2p_{y}) + \psi(2p_{z}) \right] \\ \psi_{2}^{\mathrm{sp3}} & = & \frac{1}{2} \cdot \left[\psi(2s) + \psi(2p_{x}) - \psi(2p_{y}) - \psi(2p_{z}) \right] \\ \psi_{3}^{\mathrm{sp3}} & = & \frac{1}{2} \cdot \left[\psi(2s) - \psi(2p_{x}) + \psi(2p_{y}) - \psi(2p_{z}) \right] \\ \psi_{4}^{\mathrm{sp3}} & = & \frac{1}{2} \cdot \left[\psi(2s) - \psi(2p_{x}) - \psi(2p_{y}) + \psi(2p_{z}) \right] \\ \psi_{1}^{\mathrm{sp2}} & = & \sqrt{\frac{1}{3}} \cdot \psi(ns) + \sqrt{\frac{2}{3}} \cdot \psi(np_{x}) \\ \psi_{2}^{\mathrm{sp2}} & = & \sqrt{\frac{1}{3}} \cdot \psi(ns) - \sqrt{\frac{1}{6}} \cdot \psi(np_{x}) + \sqrt{\frac{1}{2}} \cdot \psi(np_{y}) \\ \psi_{3}^{\mathrm{sp2}} & = & \sqrt{\frac{1}{3}} \cdot \psi(ns) - \sqrt{\frac{1}{6}} \cdot \psi(np_{x}) - \sqrt{\frac{1}{2}} \cdot \psi(np_{y}) \\ \psi_{1}^{\mathrm{sp}} & = & \frac{1}{\sqrt{2}} \cdot \left[\psi(2s) + \psi(2p_{x}) \right] \\ \psi_{2}^{\mathrm{sp}} & = & \frac{1}{\sqrt{2}} \cdot \left[\psi(2s) - \psi(2p_{x}) \right] \end{array}$$

- Ionenbindung (heteropolare Bindung durch kompletten Austausch eines Elektrons; stark und gerichtet; bei Nichtmetall-Metall-Bindungen und manchen organischen Elementen
- metallische Bindung durch Delokalisation von Außenelektronen; mittelstark und ungerichtet; bei Metallen und dotierten Polymeren
- van-der-Waals-Bindung durch Kopplung der magnetischen Momente der Atome oder Polarisierbarkeiten der Atome (die unter äußeren Einflüssen zu sich gegenseitig erhaltenden magnetischen Momenten führen); schwach und gerichtet
- Wasserstoffbrückenbindung durch quantenmechanische Kopplung eines H-Atoms und eines elektronegativen Atoms; intermolekulare Bindung, als solche stark und gerichtet

Rotationsniveaus

- Energieniveaus: $E_{\rm rot} = \vec{L}_{\rm mol}^2/2I = B \cdot L(L+1)$ mit $B = \hbar^2/2I$
- Molekülträgheitsmoment: $I = \sum_{i} m_i \cdot r_i^2$ $(r_i = \text{Abstand des } i\text{-ten Atoms vom Schwerpunkt})$
- Zwei-Atom-Molekül: $I = \mu \cdot r_0^2 \ (r_0 = \text{Bindungslänge})$
- Übergangsregel: $\Delta L = -1, 0, 1$ (P-, Q- und R-Zweig)

Schwingungsniveaus

- Energieniveaus: $E_{\text{osz}} = \hbar\omega \cdot (n + \frac{1}{2})$
- Übergangsregel: $\Delta n = \pm 1$
- Achtung: In unterschiedlichen Oszillatorniveaus ändern sich das Trägheitsmoment und damit die Rotationsenergieniveaus aufgrund der unterschiedlichen mittleren Abstände.