1. Problem:

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution: We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
168	-16.5	16.5
180	-4.5	4.5
187	2.5	2.5
195	10.5	10.5
180	-4.5	4.5
197	12.5	12.5
======	=======	=======
$\sum x = 1107$ $\bar{x} = 184.5$		$\sum x - \bar{x} = 51$

$$s = \frac{\sum |x - \bar{x}|}{n}$$
$$= \frac{51}{6}$$
$$= 8.5$$

2. Problem:

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution: We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
164	6	6
153	-5	5
151	-7	7
162	4	4
160	2	2
======	======	=======
$\sum x = 790$		$\sum x - \bar{x} = 24$
$\bar{x} = 158$		

$$s = \frac{\sum |x - \bar{x}|}{n}$$
$$= \frac{24}{5}$$
$$= \boxed{4.8}$$

3. Problem:

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution: We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
40	-0.5	0.25
42	1.5	2.25
40	-0.5	0.25
40	-0.5	0.25
======	======	=======
$\sum x = 162$ $\bar{x} = 40.5$		$\sum (x - \bar{x})^2 = 3$

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

$$= \sqrt{\frac{3}{4 - 1}}$$

$$= \sqrt{1}$$

$$= \boxed{1}$$

4. Problem:

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution: We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
150	8	64
137	-5	25
141	-1	1
139	-3	9
143	1	1
======	======	=======
$\sum x = 710$ $\bar{x} = 142$		$\sum (x - \bar{x})^2 = 100$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{100}{5 - 1}}$$
$$= \sqrt{25}$$
$$= \boxed{5}$$

5. **Problem:**

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution: We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
104	2	2
107	5	5
107	5	5
96	-6	6
96	-6	6
======	======	=======
$\sum x = 510$		$\sum x - \bar{x} = 24$
$\bar{x} = 102$		

$$s = \frac{\sum |x - \bar{x}|}{n}$$
$$= \frac{24}{5}$$
$$= \boxed{4.8}$$

6. Problem:

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution: We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
103	-2	4
107	2	4
103	-2	4
105	0	0
107	2	4
======	======	=======
$\sum x = 525$		$\sum (x - \bar{x})^2 = 16$
$\bar{x} = 105$		

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{16}{5 - 1}}$$
$$= \sqrt{4}$$
$$= \boxed{2}$$