Lista de Exercícios 3

- 1. Mostre os seguintes resultados sobre números pares e ímpares.
 - a) A soma de dois números pares é um número par.
 - b) A soma de dois números ímpares é um número par.
 - c) A soma de um número par com um número ímpar é um número ímpar.
 - d) A soma de três números ímpares é um número ímpar.
 - e) A soma de quatro números ímpares é um número par.
 - f) $(\forall n \in \mathbb{N})$ n é par $\iff n^2$ é par
 - g) $(\forall n \in \mathbb{N})$ n é ímpar $\iff n^2$ é ímpar
 - h) $(\forall n \in \mathbb{N})$ n é par $\iff n+1$ é impar
 - i) $(\forall n \in \mathbb{N})$ n é impar \iff n é soma de dois números naturais consecutivos.
 - j) O produto de dois números pares é par.
 - k) O produto de dois números ímpares é ímpar.
- 2. Prove ou dê um contra-exemplo para as seguintes proposições.
 - a) O produto de dois números naturais é par se e somente se os dois números são pares.
 - b) O produto de dois números naturais é ímpar se e só se os dois números são ímpares.
 - c) O cubo de um número natural é impar se e somente se o número é impar.
- 3. Mostre que a soma de três números naturais consecutivos é um natural múltiplo de três.
- 4. Mostre que: $(\forall n \in \mathbb{N})$ $n! > n + 1 \Longrightarrow n > 2$.
- 5. Mostre que se a soma de dois primos é um número primo então um dos primos é 2.
- 6. Mostre que existem infinitos números primos.

Dica: suponha que existe apenas um número finito de números primos.

- 7. Mostre que: $(\forall n \in \mathbb{N})$ n é um múltiplo de $3 \iff n^2$ é um múltiplo de 3.
- 8. Use o exercício anterior para mostrar que $\sqrt{3}$ é um número irracional.

Dica: faça uma prova semelhante a feita em aula para $\sqrt{2}$.

- 9. Mostre que: $(\forall n \in \mathbb{N})$ n é um múltiplo de $5 \iff n^2$ é um múltiplo de 5.
- 10. Mostre que $\sqrt{5}$ é um número irracional.
- 11. Sejam $n, k, a_k, a_{k-1}, \dots, a_2, a_1, a_0 \in \mathbb{N}$ tais que

$$n = a_k 10^k + a_{k-1} 10^{k-1} + \ldots + a_2 10^2 + a_1 10 + a_0$$

- e $0 \le a_i < 10 \ \forall i \in \{0, 1, 2, 3, ..., k\}$, ou seja, $n = a_k a_{k-1} ... a_2 a_1 a_0$. Mostre que:
 - a) $(\forall n \in \mathbb{N}) \ n \ \text{\'e par} \iff a_0 = 0 \lor a_0 = 2 \lor a_0 = 4 \lor a_0 = 6 \lor a_0 = 8.$
- b) $(\forall n \in \mathbb{N})$ n é divisível por 5 $\iff a_0 = 0 \lor a_0 = 5$.