

Лекция 4 Различные аспекты кластеризации

Николай Анохин

14 марта 2016 г.

Краткое содержание предыдущих лекций

Дано. Признаковые описания N объектов $\mathbf{x}=(x_1,\ldots,x_m)\in\mathcal{X}$, образующие тренировочный набор данных X

Найти. Модель из семейства параметрических функций

$$H = \{h(\mathbf{x}, \theta) : \mathcal{X} \times \Theta \rightarrow \mathcal{Y} \mid \mathcal{Y} = \{1, \dots, K\}\},\$$

ставящую в соответствие произвольному $\mathbf{x} \in \mathcal{X}$ один из K кластеров так, чтобы объекты внутри одного кластера были похожи, а объекты из разных кластеров различались

Краткое содержание предыдущих лекций

Рассмотрели классические алгоритмы кластеризации

- 1. Hierarchical Clustering
- 2. dbscan, OPTICS
- 3. Смесь гауссовских распределений и k-means++

Байесовская кластеризация + ЕМ

Expectation Maximization

Дано.

Известно распределение $P(\mathbf{X},\mathbf{Z}|\theta)$, где \mathbf{x} — наблюдаемые переменные, а \mathbf{z} — скрытые.

Найти.

 θ , максимизирующее $P(\mathbf{X}|\theta)$.

 E вычислить $P(\mathsf{Z}|\mathsf{X},\theta^{old})$ при фиксированном θ^{old}

 M вычислить $\theta^{new} = \operatorname{arg\,max}_{\theta} \mathcal{Q}(\theta, \theta^{old})$, где

$$Q(\theta, \theta^{old}) = E_{\mathbf{Z}}[\ln p(\mathbf{X}, \mathbf{Z}|\theta)] = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \theta^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\theta))$$

Кластеризация пользователей стримингового сервиса

	romance	action	avg. price
0	1	0	264.563366
1	1	1	100.852569
2	1	0	337.576899
3	0	1	105.545184
4	1	0	430.988385
5	1	0	284.593125
6	0	1	58.789076
7	0	1	116.824524
8	1	0	317.829967
9	1	1	146.660413

Для каждого пользователя известно, есть ли у него/нее интерес к романтике, экшену и средняя цена купленных фильмов

Предположения модели

Априорное распределение

$$p(C_k) = \pi_k$$

Распределение интересов

$$p(I_i|C_k) \sim Ber(P_{ki})$$

Распределение средней цены фильма

$$p(x|C_k) \sim \mathcal{N}(x|\mu_k, \sigma_k)$$

Итерации ЕМ

Ε

$$\gamma_{nk} = p(z_n = k | u_n, \pi, P, \mu, \sigma) = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \sigma_k) \prod_{i=1}^2 P_{ki}^{I_{ni}} (1 - P_{ki})^{1 - I_{ni}}}{\sum_j \pi_j \mathcal{N}(x_n | \mu_j, \sigma_j) \prod_{i=1}^2 P_{ji}^{I_{ni}} (1 - P_{ji})^{1 - I_{ni}}}$$

M

$$N_k = \sum_{n=1}^N \gamma_{nk}, \qquad \pi_k = \frac{N_k}{N}$$

$$P_{ki} = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} I_{ni}, \quad \mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} x_n, \quad \sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (x_n - \mu_k)^2$$

Функции расстояния

VS

VS

Kelvin 100 Dead Dead Dead

Модификации алгоритма

Взять уже известную нам функцию потерь (инерцию) и "поиграть" с функцией расстояния.

$$ilde{J}(\mu) = \sum_{n=1}^N \sum_{k=1}^K r_{nk} d(\mathbf{x}_n, \mu_k), \quad r_{nk} = egin{cases} 1, \ ext{для } k = rg \min_j d(\mathbf{x}_n, \mu_j) \ 0, \ ext{иначе} \end{cases}$$

Расстояния 1

Минковского

$$d_r(\mathbf{x},\mathbf{y}) = \left[\sum_{j=1}^N |x_j - y_j|^r\right]^{\frac{1}{r}}$$

▶ Евклидово *r* = 2

$$d_E(\mathbf{x},\mathbf{y})=d_2(\mathbf{x},\mathbf{y})$$

▶ Манхэттэн *r* = 1

$$d_M(\mathbf{x},\mathbf{y})=d_1(\mathbf{x},\mathbf{y})$$

 $r = \infty$

$$d_{\infty}(\mathbf{x},\mathbf{y}) = \max_{i} |x_{i} - y_{j}|$$

- 1. Функции расстояния чувствительны к "масштабу" данных
 - ▶ Преобразовать обучающую выборку так, чтобы признаки имели нулевое среднее и единичную дисперсию (standartization)
 - ▶ Преобразовать обучающую выборку так, чтобы значения признаков лежали на отрезке [0,1] (normalization)

2. Есть шанс улучшить качество, применив монотонное преобразование (\log , $\sqrt{\ }$)

Расстояния 2

▶ Жаккар

$$d_J(\mathsf{x},\mathsf{y}) = 1 - rac{|\mathsf{x} \cap \mathsf{y}|}{|\mathsf{x} \cup \mathsf{y}|}$$

Косинус

$$d_c(\mathbf{x}, \mathbf{y}) = \arccos rac{\mathbf{x} \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

- ▶ Правки d_e — наименьшее количество удалений и вставок, приводящее х к у.
- Хэмминг
 d_H количество различных компонент в х и
 у.

Выбор количества кластеров

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

Выбор наилучшего K

 $\mathit{Идея}.$ Выбрать критерий качества кластеризации и построить его значение для $K=1,2,\ldots$

- средняя сумма квадратов расстояния до центроида
- средний диаметр кластера

Критерий Silhouette

Пусть дана кластеризация в K кластеров, и объект i попал в C_k

- ightharpoonup a(i) среднее расстояние от i объекта до объектов из C_k
- $lackbox{b}(i) = min_{j
 eq k} b_j(i)$, где $b_j(i)$ среднее расстояние от i объекта до объектов из C_j

$$silhouette(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$$

Средний silhouette для всех точек из ${\bf X}$ является критерием качества кластеризации.

Качество кластеризации

Качество кластеризации 1

Пусть дана обучающая выборка, для которой правильная кластеризация C известна. С помощью выбранного алгоритма получена кластеризация K. Проверить, насколько K совпадает с C.

► Adjusted Rand Index
 а – кол-во пар объектов, попавших в один кластер и в С, и в К
 b – кол-во пар объектов, попавших в разные кластеры и в С. и в К

$$RI = \frac{a+b}{C_2^N}, \quad ARI = \frac{RI - E_{rdm}[RI]}{\max(RI) - E_{rdm}[RI]}$$

Mutual Information

$$MI = \sum_{c \in C} \sum_{k \in K} p(c, k) \log \frac{p(c, k)}{p(k)p(c)}$$

¹scikit-learn docs

Multidimensional Scaling

Идея метода

Перейти в пространство меньшей размерности так, чтобы расстояния между объектами в новом пространстве были подобны расстояниям в исходном пространстве.

t-Stochastic Neighbour Embedding (t-SNE)²

Схожесть между объектами в исходном пространстве

$$p(i,j) = \frac{p(i|j) + p(j|i)}{2n}, \quad p(j|i) = \frac{\exp(-\|\mathbf{x}_j - \mathbf{x}_i\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_k - \mathbf{x}_i\|^2 / 2\sigma_i^2)}$$

Схожесть между объектами в целевом пространстве

$$q(i,j) = \frac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_{k \neq l} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}$$

Критерий

$$J_{t-\mathsf{SNE}} = \mathsf{KL}(P\|Q) = \sum_{i} \sum_{j} p(i,j) \log \frac{p(i,j)}{q(i,j)} o \mathsf{min}$$

²http://lvdmaaten.github.io/tsne/

t-распределение

$$au(\mu,\sigma^2,
u) \propto \left[1 + rac{1}{
u} \left(rac{x-\mu}{\sigma}
ight)^2
ight]^{-rac{
u+1}{2}}$$

Уильям Госсет 1908 (Student)

Дивергенция Кульбака-Лейблера³

Насколько распределение P отличается от распределения Q?

$$KL(P||Q) = \sum_{z} P(z) \log \frac{P(z)}{Q(z)}$$

³Visual Information Theory

Digits Dataset

около 1800 картинок 8х8 с рукописными цифрами

t-SNE

MNIST Dataset

70000 картинок 20x20 с рукописными цифрами

t-SNE

Еще примеры

CalTech

S&P 500

Words

Еще алгоритмы

Вопросы

