

# TRAITEMENT D'IMAGES FILTRAGE FRÉQUENTIEL

Max Mignotte

Département d'Informatique et de Recherche Opérationnelle.

Http://www.iro.umontreal.ca/~mignotte/ift6150

E-mail: mignotte@iro.umontreal.ca

## FILTRAGE FRÉQUENTIEL SOMMAIRE

| Introduction                       | 2  |
|------------------------------------|----|
| Filtre Passe-bas Idéal             | 3  |
| Filtre Passe-bas de Butterworth    | 4  |
| Filtre Passe-haut Idéal            | 7  |
| Filtre Passe-haut de Butterworth   | 8  |
| Rehaussement des Hautes Fréquences | 9  |
| Filtre Passe-bande                 | 10 |
| Filtre Spectral Local              | 11 |
| Filtre à Rejection de Bande        | 12 |
| Filtre Homomorphique               | 14 |

### FILTRAGE FRÉQUENTIEL INTRODUCTION

Rehaussement d'Images par Filtrage Spatial/Fréquentiel



#### Théorème de Convolution -Rappel-

donc, si f(x,y) est l'image à filtrer et  $G(u,\nu)$ , le filtre fréquentiel

$$f(x,y) * g(x,y) = \mathcal{F}^{-1} \Big\{ F(u,\nu) \cdot G(u,\nu) \Big\}$$

2

FILTRE PASSE-BAS IDÉAL (1)

$$H(u,\nu) = \begin{cases} 1 & D(u,\nu) \le D_0 \\ 0 & D(u,\nu) > D_0 \end{cases}$$

$$D(u,\nu) = \sqrt{u^2 + \nu^2}$$

 $D_0$ : Fréquence de Coupure



#### Problème

$$G(u,v) = F(u,v) \cdot H(u,v)$$

$$Convolution Theorm$$
 $g(x,y) = f(x,y) \cdot h(x,y)$ 



 $\uparrow D_0 \longrightarrow \downarrow Rayons des ondulations (-flou)$ 

## FILTRAGE FRÉQUENTIEL FILTRE PASSE-BAS IDÉAL (2)



### FILTRAGE FRÉQUENTIEL FILTRE PASSE-BAS DE BUTTERWORTH (1)

$$H(u,\nu) = \frac{1}{1 + (D(u,\nu)/D_0)^{2n}}$$
$$D(u,\nu) = \sqrt{u^2 + \nu^2}$$

 $D_0$ : Fréquence de Coupure



- Flou moins brutal et aucune ondulation -

#### FILTRAGE FRÉQUENTIEL FILTRE PASSE-BAS DE BUTTERWORTH (2)



FILTRE PASSE-HAUT IDÉAL

$$H(u,\nu) = \begin{cases} 1 & D(u,\nu) \ge D_0 \\ 0 & D(u,\nu) < D_0 \end{cases}$$

$$D(u,\nu) = \sqrt{u^2 + \nu^2}$$

 $D_0$ : Fréquence de Coupure



#### Exemple





### FILTRAGE FRÉQUENTIEL FILTRE PASSE-HAUT DE BUTTERWORTH

$$H(u,\nu) = \frac{1}{1 + (D_0/D(u,\nu))^{2n}}$$
  
$$D(u,\nu) = \sqrt{u^2 + \nu^2}$$

 $D_0$  : Fréquence de Coupure







### FILTRAGE FRÉQUENTIEL REHAUSSEMENT DES HAUTES FRÉQUENCES

- Maintient la moyenne et les BF
- Amplifie les HF

$$H'(u,\nu) = K_0 + H(u,\nu)$$



#### Exemple: Filtre PH Butterworth+Rehaussement HF+Égalisation



FILTRE PASSE-BANDE

$$H(u,\nu) = \begin{cases} 0 & D(u,\nu) \le D_0 - \frac{w}{2} \\ 1 & D_0 - \frac{w}{2} < D(u,\nu) < D_0 + \frac{w}{2} \\ 0 & D(u,\nu) \ge D_0 + \frac{w}{2} \end{cases}$$

$$D(u,\nu) = \sqrt{u^2 + \nu^2}$$

 $D_0$ : Fréquence de Coupure w: Largeur de Bande



### FILTRAGE FRÉQUENTIEL FILTRE SPECTRAL LOCAL

$$H(u,\nu) = \begin{cases} 1 & D_1(u,\nu) \le D_0 \text{ ou } D_2(u,\nu) \le D_0 \\ 0 & \text{sinon} \end{cases}$$

$$D_1(u,\nu) = \sqrt{(u-u_0)^2 + (\nu-\nu_0)^2}$$
  
$$D_2(u,\nu) = \sqrt{(u+u_0)^2 + (\nu+\nu_0)^2}$$

 $D_0$ : Rayon autour de la fréquence locale  $u_0, \nu_0$ : Coordonné de la fréquence locale



### FILTRAGE FRÉQUENTIEL FILTRE A REJECTION DE BANDE (1)

$$H(u,\nu) = \begin{cases} 0 & D_1(u,\nu) \le D_0 \text{ ou } D_2(u,\nu) \le D_0 \\ 1 & \text{sinon} \end{cases}$$

$$D_1(u,\nu) = \sqrt{(u-u_0)^2 + (\nu-\nu_0)^2}$$
  
$$D_2(u,\nu) = \sqrt{(u+u_0)^2 + (\nu+\nu_0)^2}$$

 $D_0$ : Rayon autour de la fréquence locale  $u_0, \nu_0$ : Coordonné de la fréquence locale



## FILTRAGE FRÉQUENTIEL FILTRE A REJECTION DE BANDE (2)



## FILTRAGE FRÉQUENTIEL FILTRAGE HOMOMORPHIQUE (1)



$$f(x,y) = i(x,y) \cdot r(x,y)$$

- i(x,y) : Illumination  $\blacktriangleright$  très basses fréquences
- r(x,y): Réflectance  $\blacktriangleright$  plus hautes fréquences

#### ► Opération Ponctuelle







Filtrage Homomorphique

FILTRAGE HOMOMORPHIQUE (2)

$$\begin{split} z(x,y) &= \textbf{log}(f(x,y)) \\ &= \textbf{log}(i(x,y) \bullet (r(x,y)) = \textbf{log}(i(x,y)) + \textbf{log}(r(x,y)) \end{split}$$



$$Z(u,v) = I(u,v) + R(u,v)$$

#### Filtre Passe-haut H(u,v):

$$S(u,v) = H(u,v) \cdot Z(u,v) = H(u,v) \cdot I(u,v) + H(u,v) \cdot R(u,v)$$

$$= \prod_{i=1}^{n-1} I(u,v) \cdot I(u,v) + H(u,v) \cdot R(u,v) \cdot R($$

$$s(x,y) = i'(x,y) + r'(x,y)$$

$$g(x,y) = \exp(s(x,y)) = \exp(i'(x,y)) \cdot \exp(r'(x,y))$$
$$= i_0(x,y) \cdot r_0(x,y)$$

#### Diagramme Bloc



15

## FILTRAGE FRÉQUENTIEL FILTRAGE HOMOMORPHIQUE (3)



