

CROP YIELD PREDICTION USING MACHINE LEARNING ALGORITHM

Student: TRAN HOANG HAI YEN

ID: IELSIU19319

Thesis Advisor: Dr. DAO VU TRUONG SON

AGENDA OVERVIEW

INTRODUCTION

Background

Problem Statement

Objective

INTRODUCTION

BACKGROUND

Growing population globally → Food security pressure of increasing demand & resource constraints

PROBLEM STATEMENT

- Traditional prediction methods: slow & less accurate
- ML offers efficient & precise solutions, but challenges remain due to complex factors

OBJECTIVE

- Enhance crop yield prediction accuracy using TSK-MBGD algorithm
- Provide insights for farmers, businesses, and policymakers to support sustainable agriculture

02

METHODOLOGY

Literature

Review

Proposed Model:

Takagi - Sugeno - Kang Fuzzy with Mini-

batch Gradient Descent (TSK-MBGD)

LITERATURE REVIEW

Table 1: Summary on Literature Review Reference

Articles	Objective	Research Method
Kaike Sa Teles Rocha Alves, Caian Dutra de Jesus, Eduardo Pestana de Aguiar (2024)	Linear Rule CharacteristicsTime Series Forecasting	 New Takagi-Sugeno-Kang (NTSK) model with various clusters to form the rules Recursive least squares (RLS) Weighted recursive least squares (wRLS)
Qiongdan Lou, Zhaohong Deng (2022)	Multi-Label LearningCorrelation Information	 Multi-Label Takagi-Sugeno-Kang Fuzzy System (ML-TSK FS)
None Maryum Bibi, Saif Ur Rehman, & None Khalid Mahmood. (2023)	 User-Friendly System Hybrid Approach (Machine Learning + Deep Learning) 	Random Forest (RF)Artificial Neural Network (ANN)
Agarwal, S., & Tarar, S. (2021)	Hybrid Approach (Machine Learning + Deep Learning)Cost Efficiency	 Support Vector Machine (SVM) Long-Short Term Memory (LSTM) Recurrent Neural Network (RNN)
Khaki, S., Wang, L., & Archontoulis, S.V. (2020)	Environmental DataManagement Practices	Convolutional Neural Network (CNN)Recurrent Neural Network (RNN)

PROPOSED MODEL: TSK-MBGD

Takagi - Sugeno - Kang Fuzzy System (TSK)

- Captures complex relationships
- Considers multiple crop & environmental factors

Mini-batch Gradient Descent (MBGD)

- Handles large dataset effectively
- Updates parameters in small batches
 → Reduces computational load
- Ensures stable convergence

ADVANTAGE

Enhanced Accuracy & Scalability
Robust Optimization
Combined Interpretability & Adaptability

Introduction Methodology Solution Development Result & Analysis Conclusions

SOLUTION DEVELOPMENT

Model

Feature Modification Correlation Data Preparation Train - Test -Validation

MODEL MODIFICATION

MODEL REFERENCE SOURCE PyTSK developed by YuqiCui, publicly available on Github https://github.com/YuqiCui/pytsk

NOTED Regression Problem (Not Classification as developed in ref)

- + Added MBGD Algorithm
- → Require Modification

FEATURE CORRELATION

Most Positive Correlations

- Soil Organic Carbon & Organic Carbon Stock & Density: 0.88 - 0.84
- → Related to the organic carbon amount in the area
- Min Temperature & Max
 Temperature & Vapor
 Pressure: 0.94 0.88 0.73
- → Related to the overall area's PICTIME temperature & vapor speed

Most Negative Correlations

- Sand & Silt: -0.94
- Clay & Sand: -0.80
- → All 3 key components in Soil Texture & Nutrient

Distribution → Mutually exclusive in proportions

- Soil Organic Carbon & Max Temperature/Solar Radiation:
 -0.74/-0.71
- → High Heat = Increased
 Decomposition of Carbon

Figure 4.2: Heatmap of Correlation Between Feature Groups

Introduction Methodology Solution Development Result & Analysis Conclusions

DATA PREPARATION

Data Assessment & Anomalies

Calculated variance of each feature

$$\sigma^2 = \sum \frac{(x_i - \mu)^2}{N}$$

Addressed anomalies & missing values (none)

Handling Missing Data

- Replaced missing data with 0
- Removed columns with constant zeros (-13 columns)

Variance Threshold Application

- Established a 95% variance threshold
- Removed high-variance features (-19 variables)

Feature & Sample Reduction

- Generated a final dataset with 360 features
- Reduced from 25,345 samples to 1,582 samples (year 2016-2018)

Introduction

Methodology

Solution Development

Result & Analysis

Conclusions

SOLUTION DEVELOPMENT

RESULT & ANALYSIS

Experimental Result

Model
Comparison &
Explanation

Delta Analysis - Target
Parameter Approach (DA-TPA) Sensitivity Analysis

EXPERIMENTAL RESULT

Fixed Parameters α (learning rate) = 0.005, K = epochs = 700, weight decay = 10^{-8} , patience = 300

Hyperparameters Batch Size $N_{bs} \in [5, 70]$, step size 2-5

Number of Rules $N_{rule} \in [5, 70]$, step size 2-5

Table 5.1, 5.2, 5.3, 5.4: Evaluation Metrics & Running Time at (N_{rule}, N_{bs})

R ² So	core		Batcl	h Size	
		15	30	45	60
4-	15	0.7009	0.6758	0.6416	0.6768
#Rules	30	0.7211	0.6820	0.5850	0.6984
#Rr	45	0.7580	0.7178	0.6367	0.5217
	60	0.7912	0.6417	0.5429	0.6179

MAE		Batch Size						
		15	30	45	60			
40	15	3.5710	3.9093	3.8686	3.7781			
#Rules	30	3.7530	3.8953	4.0833	3.5775			
#Rı	45	3.5072	3.6655	4.0389	4.1791			
	60	3.4012	3.8885	4.4989	4.0878			

RMSI	=		Batcl	h Size		Run	Гime		Batcl	h Size	
		15	30	45	60			15	30	45	60
4.5	15	4.8925	5.2592	5.7120	5.2236	40	15	260.43	488.60	331.18	221.09
#Rules	30	5.0871	5.4791	5.5258	5.1847	#Rules	30	355.20	380.49	368.03	208.60
#Rı	45	4.7744	4.7874	5.6140	6.4119	#Rı	45	687.65	822.26	412.62	254.12
	60	4.4331	5.5789	6.5237	5.8734		60	908.73	918.38	493.13	548.89
		Introduction	1	Meth	odology		Solution	n Developm	ent	Result 8	& Analysis

CONCLUSION

- Best performance observed at:
 - Batch Size = 15
 - Rule = 60 (optimal solution)
- Remarkably Long Running Time (15 minutes)

Conclusions

COMPARISON & EXPLANATION

• Red: Actual Value of Dataset

• Blue: TSK-MBGD (proposed model)

• Purple: TSK-BGD

• Green: NTSK-RLS

• Black: NTSK-wRLS

Figure 5.2 – 5.3 – 5.4: Visualization of Different Model Performances

Introduction

Methodology

Solution Development

Result & Analysis

Conclusions

COMPARISON & EXPLANATION

Table 5.5: Summary of Individual Model Performance

			MOL	DEL	
		TSK-MBGD	TSK-GD	NTSK-RLS	NTSK-wRLS
	Rules	60	30	20	85
Parameters	Batch Size	15	-	! ! - !	-
	Lambda	-	! -	2	
	R ² Score	0.791	0.718	0.083	0.484
Validation	RMSE	4.433	5.123	¦ 9.121	6.845
Validation Metrics	MAE	3.401	3.751	6.802	5.018
	Run Time (s)	908.73	396.31	854.41	561.12
	Run Time (min)	15.15	6.61	! 14.24	9.35

POTENTIAL REASONS FOR WHICH TSK-MBGD OUTPERFORMS OTHER MODELS

MBGD Optimization: Efficiently handle large data with smaller batch updates → Smoother, More Stable Convergence = Reduced variance of parameter updates & captured broader data trend → More controlled, steady approach toward the optimal solution = Better overall performance

- TSK-GD: Update parameters by processing the entire dataset → Potential overfitting/underfitting issues
- NTSK-RLS & NTSK-wRLS: Recursive approach suited for linear problems, less effective for complex, nonlinear data

Introduction Methodology Solution Development Result & Analysis Conclusions

DA-TPA SENSITIVITY ANALYSIS

Purpose Assess feature contribution to predictive accuracy

→ Identify impact VS less relevant features

- **Process** Applied *Min-Max Normalization* to each column
 - Calculated the normalized sum of 3 evaluation metrics
 - → Higher total value = more impactful feature

	Feature	R²	RMSE	MAE		Feature	R ²	RMSE	MAE	Sum
Table 5.6:	0	0.7349	4.8628	3.7391		0	1.0000	1.0000	0.9813	2.9813
Sensitivity Analysis of R ² Score, RMSE,	1	0.7312	4.8974	3.7572		1	0.9008	0.8978	0.9330	2.7316
and MAE Results	2	0.7334	4.8770	3.7493		2	0.9593	0.9580	0.9540	2.8713
across features	3	0.7317	4.8926	3.7567		3	0.9146	0.9119	0.9343	2.7608
	4	0.7315	4.8946	3.7749	Min-Max	4	0.9089	0.9060	0.8854	2.7002
	5	0.7323	4.8874	3.7594	Normalized	5	0.9295	0.9272	0.9270	2.7837
	6	0.7328	4.8823	3.7471		6	0.9443	0.9424	0.9599	2.8466
	7	0.7299	4.9088	3.7826		7	0.8679	0.8640	0.8648	2.5967
	8	0.7293	4.9148	3.7844		8	0.8504	0.8460	0.8601	2.5565
	9	0.7305	4.9032	3.7650		9	0.8841	0.8806	0.9120	2.6766
	10	0.7315	4.8948	3.7650		10	0.9081	0.9052	0.9121	2.7254
Introd	uction		Methodol	ogy	Solution Development		Result & A	Analysis		Conclusion

HIGH CONTRIBUTIVE FEATURE

Features with total normalized values > 2.86 (9 features)

Table 5.7: Most Dominant Features

Introduction

No.	Norm. Val.	Feature No.	Feature
1	2.9813	0	Precipitation
2	2.9131	56	Solar Radiation
3	2.8948	76	Solar Radiation
4	2.8883	107	Snow Water Equivalent
5	2.8801	36	Precipitation
6	2.8785	55	Solar Radiation
7	2.8713	2	Precipitation
8	2.8712	96	Solar Radiation
9	2.8711	103	Solar Radiation

Table 5.8: Composition of Weather Features among Nth Highest Ranked

Feat	rures	Nth Highest Ranked Features						
		10	20	30	40	50	60	70
	1	4	9	11	12	13	16	18
	2	5	6	11	15	21	27	29
Weather	3	1	3	3	3	3	3	6
Wea	4	-	2	5	10	12	13	16
	5	-	-	-	-	1	1	1
	6	<u>-</u>	-	-	-	-	<u>-</u>	-

Highly Contributive Features Identified

- Precipitation
- Solar Radiation
- Maximum Temperature

Key Findings

- Increased impact of Precipitation (Weather 1) & Solar Radiation (Weather 2)
- Escalation of Maximum Temperature impact observed (Weather 4)

Methodology Solution Development Result & Analysis Conclusions

LOW CONTRIBUTIVE FEATURE

— Features with total normalized values < 1.5 (4 features)

Table 5.9: Least Dominant Features

No.	Norm. Val.	Feature No.	Feature
1	0	117	Snow Water Equivalent
2	0.4882	119	Snow Water Equivalent
3	0.5508	118	Snow Water Equivalent
4	1.3140	139	Snow Water Equivalent
5	2.3321	351	Planting Time
6	2.3487	312	Organic Carbon Density
7	2.3525	249	Vapor Pressure
8	2.3552	286	Bulk Density
9	2.3596	343	Soil Organic Carbon

Table 5.10: Composition of Features among Nth Highest Ranked Features

		Nth Lowest Ranked Features				
		10	20	30	40	50
Soil	S	3	6	10	14	19
Plant	Р	2	3	5	5	5
	3	4	4	4	4	4
ther	4	-	-	-	-	-
Weather	5	-	3	4	8	10
	6	1	4	7	9	12
		•				

Introduction Methodology Solution Development

Less Impactful Features Identified

- Vapor Pressure
- Minimum Temperature
- Various Soil Features (Sand, Soil Organic Carbon)

Key Findings

- Minor variance in evaluation metrics across features
- No single feature drastically outperforms or underperforms
- Soil & 2 weather features (Minimum Temperature (W5) & Vapor Pressure (W6)) show minimal impact

Result & Analysis Conclusions

05

CONCLUSIONS

Discussion

Implication

Future Research

DISCUSSION

		Model
	TSK-MBGD	*CNN-RNN
R ² Score	79.12%	85.45%-87.09%
RMSE	4.433	4.15-4.91

^{*}CNN-RNN Model from Khaki, S., Wang, L., & Archontoulis, S.V. (2020). A CNN-RNN Framework for Crop Yield Prediction. Frontiers in Plant Science, 10.

- Performed slightly worse than CNN-RNN
- Potential improvements with parameter tuning and model modifications

IMPLICATION

SCALABILITY & FLEXIBILITY

Effective for non-linear problems

BENEFITS

Enhanced productivity, better resource use, and increased profitability for farmers and policymakers

Introduction Methodology Solution Development Result & Analysis Conclusions

^{*}Under circumstances: Similar Dataset

FUTURE RESEARCH

Enhance Model Accuracy

- Integrate additional data (CO2, sunlight, pests)
- Refine TSK-MBGD algorithm
- Use cross-validation and advanced ML techniques

Adapt to Changing Conditions

- Incorporate climate change predictions
- Explore time-based models (e.g., RNN, LSTM)

Improve Robustness

- Ensure model generalizability
- Apply risk measurement and Bayesian methods

Reference

- [1] Alves, K. S. T. R., De Jesus, C. D., & De Aguiar, E. P. (2024). A new Takagi-Sugeno-Kang model to time series forecasting. Engineering Applications of Artificial Intelligence, 133, 108155.
- [2] Khaki, S., Wang, L., & Archontoulis, S.V. (2020). A CNN-RNN Framework for Crop Yield Prediction. Frontiers in Plant Science, 10.
- [3] Khaki, S., & Wang, L. (2019). Crop Yield Prediction Using Deep Neural Networks. Frontiers in Plant Science, 10.
- [4] van Klompenburg, T., Kassahun, A., & Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 177, 105709.
- [5] Lou, Q., Deng, Z., Xiao, Z., Choi, K., & Wang, S. (2022). Multilabel Takagi-Sugeno-Kang Fuzzy System. IEEE Transactions on Fuzzy Systems, 30(9), 3410–3425.
- [6] Everingham, Y., Sexton, J., Skocaj, D. et al. (2016). Accurate Prediction of Sugarcane Yield Using A Random Forest Algorithm. Agron. Sustain. Dev. 36, 27.
- [7] Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., Esposito, F., & Fritschi, F. B. (2020). Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote sensing of environment, 237, 111599. [8] Di Y, Gao M, Feng F, Li Q, Zhang H. (2022) A New Framework for Winter Wheat Yield Prediction Integrating Deep Learning and Bayesian Optimization. Agronomy. 12(12):3194.
- [9] Chen, Chieh-Huang & Lai, Jung-Pin & Chang, Yu-Ming & Lai, Chi-Ju & Pai, Ping-Feng. (2023). A Study of Optimization in Deep Neural Networks for Regression. Electronics. 12. 3071

THANK YOU

Q&A SECTION

DATA DESCRIPTION

Source "A CNN-RNN Framework for Crop Yield Prediction" by Saeed Khaki, Lizhi Wang, and Sotirios Archontoulis (2020)

Loc_ID 1046 locations in 12 states: Indiana, Illinois, Iowa, Minnesota, Missouri, Nebraska, Kansas, North Dakota, South Dakota, Ohio, Kentucky, and Michigan

Year 1980 - 2018

Acronym	Property
bdod	Bulk Density
cec	Cation Exchange Capacity at pH = 7
cfvo	Coarse Fragments
clay	Clay
nitrogen	Total Nitrogen
ocd	Organic Carbon Density
ocs	Organic Carbon Stock
phh2o	pH in H2O
sand	Sand
silt	Silt
soc	Soil Organic Carbon

loc_ID	y	ear	yield	W_1_1	W_1_2	W_1_3	W_1_4	W_1_5	W_1_6	W_1_7
	0	1980	32.5	0.274725	0	1.615385	0.395604	0.967033	0.736264	1.153846
	0	1981	36	0.604396	0	0.043956	0	0.857143	1.824176	0
	0	1982	37	2.098901	0.384615	1.681319	0.527473	6.340659	1.593407	1.868132
	0	1983	23	0	0	0	1.032967	4.373626	0.351648	0.263736
	0	1984	28.5	0	0.043956	0.197802	0.461538	0.142857	0.67033	4.615385
	0	1985	39	3.351648	1.56044	1.208791	0	1.956044	2.824176	0.10989
	0	1986	36.5	0.131868	0	0	0.142857	2.549451	2.098901	0.857143
	0	1987	37	0.098901	2.527473	3.274725	0.065934	0	0.384615	0
	0	1988	27	0	0	5.505495	0	2.923077	1.637363	0
	0	1989	29	0.978022	0	0.142857	1.252747	1.428571	0.747253	1.758242
	0	1990	33.5	1.21978	0	2.021978	1.021978	3.549451	0	5.274725
	0	1991	36.5	1.802198	0.615385	0.956044	0.857143	0.054945	0	2.197802
	0	1992	38.5	0.582418	0.967033	0	0.648352	0	0.065934	3.945055
	0	1993	40	4.593407	2.252747	0.945055	0	0	0.681319	2.417582
	0	1994	46	0.582418	0.725275	0.406593	0.230769	0.208791	0.076923	0
	_	4000			0 5 10 151	0.404505	4 004040	4 74 4000		0.40000

11 Soil Elements at

6 Diverse Levels of Depth (0 - 5cm;

5 - 15cm; 15 - 30cm; 30 - 60cm; 60

- 100cm; 100 - 200cm)

 $11 \times 6 = 66$

P_[1,14]

Planting Time in 14

Planting Date Week

14

+

6 x 52 = 312

392 Features

W_[1,6]_[1,52]

[52]: Weeks/Year

[6]: Weather Elements

1. Precipitation

2. Solar Radiation

3. Snow Water Equivalent

4. Maximum Temperature

5. Minimum Temperature

6. Vapor Pressure