2009 年全国硕士研究生招生考试试题

一、选择题(本题共8小题,每小题4分,满分32分)

(1) 当 $x \to 0$ 时, $f(x) = x - \sin ax$ 与 $g(x) = x^2 \ln(1 - bx)$ 是等价无穷小量,则()

$$(A) a = 1, b = -\frac{1}{6}.$$

(B)
$$a = 1, b = \frac{1}{6}$$
.

$$(C)a = -1, b = -\frac{1}{6}.$$

(D)
$$a = -1, b = \frac{1}{6}$$
.

(2)如图,正方形 $\{(x,y) \mid |x| \le 1, |y| \le 1\}$ 被其对角线划分为四个区

域
$$D_k(k=1,2,3,4)$$
 , $I_k=\iint\limits_{D_k}y\cos x\mathrm{d}x\mathrm{d}y$, 则 $\max\limits_{1\leq k\leq 4}\{I_k\}=($

(3)设函数 y = f(x) 在区间[-1,3]上的图形如右图所示,则函数

- (4)设有两个数列 $\{a_n\}$, $\{b_n\}$,若 $\lim_{n\to\infty}a_n=0$,则(
 - (A)当 $\sum_{n=1}^{\infty} b_n$ 收敛时, $\sum_{n=1}^{\infty} a_n b_n$ 收敛.
- (B)当 $\sum_{n=1}^{\infty} b_n$ 发散时, $\sum_{n=1}^{\infty} a_n b_n$ 发散.
- (C)当 $\sum_{n=1}^{\infty} |b_n|$ 收敛时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 收敛. (D)当 $\sum_{n=1}^{\infty} |b_n|$ 发散时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 发散.
- (5)设 $\alpha_1, \alpha_2, \alpha_3$ 是3维向量空间 \mathbf{R}^3 的一组基,则由基 $\alpha_1, \frac{1}{2}\alpha_2, \frac{1}{3}\alpha_3$ 到基 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 的过渡矩阵为(

 $(B) \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 3 \end{bmatrix}.$

$$(C) \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & -\frac{1}{6} \\ -\frac{1}{2} & \frac{1}{4} & \frac{1}{6} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{pmatrix} .$$

$$(D) \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} .$$

(6)设A,B均为2阶矩阵, A^* , B^* 分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵

$$\begin{pmatrix} O & A \\ B & O \end{pmatrix}$$
的伴随矩阵为()

$$(A) \begin{pmatrix} \mathbf{O} & 3\mathbf{B}^* \\ 2\mathbf{A}^* & \mathbf{O} \end{pmatrix} . \qquad (B) \begin{pmatrix} \mathbf{O} & 2\mathbf{B}^* \\ 3\mathbf{A}^* & \mathbf{O} \end{pmatrix} . \qquad (C) \begin{pmatrix} \mathbf{O} & 3\mathbf{A}^* \\ 2\mathbf{B}^* & \mathbf{O} \end{pmatrix} . \qquad (D) \begin{pmatrix} \mathbf{O} & 2\mathbf{A}^* \\ 3\mathbf{B}^* & \mathbf{O} \end{pmatrix} .$$

(7)设随机变量 X 的分布函数为 $F(x) = 0.3\Phi(x) + 0.7\Phi\left(\frac{x-1}{2}\right)$,其中 $\Phi(x)$ 为标准正态分布的分

布函数,则
$$E(X) = ($$
)

(8)设随机变量 X 与 Y 相互独立,且 X 服从标准正态分布 N(0,1),Y 的概率分布为 $P\{Y=0\}=$ $P\{Y=1\}=\frac{1}{2}$. 记 $F_{z}(z)$ 为随机变量 Z=XY 的分布函数,则函数 $F_{z}(z)$ 的间断点个数为() (A)0. (B)1. (C)2.(D)3.

二、填空题(本题共6小题,每小题4分,满分24分)

- (9) 设函数 f(u,v) 具有二阶连续偏导数 z = f(x,xy) ,则 $\frac{\partial^2 z}{\partial x \partial y} = \underline{\qquad}$.
- (10) 若二阶常系数线性齐次微分方程 y'' + ay' + by = 0 的通解为 $y = (C_1 + C_2 x)e^x$,则非齐次方程 y'' + ay' + by = x 满足条件 y(0) = 2, y'(0) = 0 的解为 $y = ____.$
- (11)已知曲线 $L: y = x^2 (0 \le x \le \sqrt{2})$,则 $\int_{L} x ds =$ _____.
- (12) 设 $\Omega = \{(x,y,z) \mid x^2 + y^2 + z^2 \le 1\}$, 则 $\iint z^2 dx dy dz = _____.$
- (13) 若 3 维列向量 α, β 满足 $\alpha^T \beta = 2$, 其中 α^T 为 α 的转置,则矩阵 $\beta \alpha^T$ 的非零特征值为
- (14)设 X_1,X_2,\cdots,X_m 为来自二项分布总体B(n,p)的简单随机样本, \overline{X} 和 S^2 分别为样本均值和样 本方差, 若 $\overline{X} + kS^2$ 为 np^2 的无偏估计量, 则 k = .

三、解答题(本题共9小题,满分94分,解答应写出文字说明、证明过程或演算步骤)

(15)(本题满分9分)

求二元函数 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值.

(16)(本题满分9分)

设 a_n 为曲线 $y = x^n$ 与 $y = x^{n+1} (n = 1, 2, \dots)$ 所围成区域的面积, 记 $S_1 = \sum_{i=1}^{\infty} a_i, S_2 = \sum_{i=1}^{\infty} a_{2n-1},$ 求 S_1 与 S_2 的值.

(17)(本题满分11分)

椭球面 S_1 是椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 绕 x 轴旋转而成,圆锥面 S_2 是由过点(4,0)且与椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 相切的直线绕 x 轴旋转而成.

- (I) 求 S₁ 及 S₂ 的方程;
- (II)求 S_1 与 S_2 之间的立体的体积.

(18)(本题满分11分)

- (I)证明拉格朗日中值定理: 若函数 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导,则存在 $\xi \in (a,b)$,使得 $f(b) f(a) = f'(\xi)(b-a)$.
- (II)证明:若函数 f(x) 在 x = 0 处连续,在 $(0,\delta)(\delta > 0)$ 内可导,且 $\lim_{x \to 0^+} f'(x) = A$,则 $f'_+(0)$ 存在,且 $f'_+(0) = A$.
- (19)(本题满分10分)

计算曲面积分
$$I = \iint_{\Sigma} \frac{x dy dz + y dz dx + z dx dy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$$
, 其中 Σ 是曲面 $2x^2 + 2y^2 + z^2 = 4$ 的外侧.

(20)(本题满分11分)

设
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ 0 & -4 & -2 \end{pmatrix}, \boldsymbol{\xi}_1 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}.$$

- (I)求满足 $A\xi_2 = \xi_1, A^2\xi_3 = \xi_1$ 的所有向量 ξ_2, ξ_3 ;
- (Ⅱ)对(Ⅰ)中的任意向量 $\boldsymbol{\xi}_2,\boldsymbol{\xi}_3$,证明 $\boldsymbol{\xi}_1,\boldsymbol{\xi}_2,\boldsymbol{\xi}_3$ 线性无关.
- (21)(本题满分11分)

设二次型 $f(x_1,x_2,x_3) = ax_1^2 + ax_2^2 + (a-1)x_3^2 + 2x_1x_3 - 2x_2x_3$.

- (I)求二次型f的矩阵的所有特征值;
- (\mathbb{I})若二次型f的规范形为 $y_1^2 + y_2^2$,求a的值.
- (22)(本题满分11分)

袋中有1个红球、2个黑球与3个白球. 现有放回地从袋中取两次,每次取一个球. 以 *X*, *Y*, *Z* 分别表示两次取球所取得的红球、黑球与白球的个数.

- (I) $\Re P\{X=1 \mid Z=0\}$;
- (Ⅱ)求二维随机变量(X,Y)的概率分布.
- (23)(本题满分11分)

设总体 X 的概率密度为 $f(x) = \begin{cases} \lambda^2 x e^{-\lambda x}, & x > 0, \\ 0, & \text{其他}, \end{cases}$ 其中参数 $\lambda(\lambda > 0)$ 未知 $\lambda(\lambda > 0)$ 和 $\lambda(\lambda > 0)$ 未知 $\lambda(\lambda > 0)$ 未知 $\lambda(\lambda > 0)$ 未知 $\lambda(\lambda > 0)$ 未知 $\lambda(\lambda > 0)$ 和 $\lambda(\lambda < 0)$ 和 $\lambda(\lambda < 0)$ 和

自总体 X 的简单随机样本.

- (I)求参数 λ 的矩估计量:
- (II)求参数 λ 的最大似然估计量.