Počítačové sítě

Jiří Zacpal

DEPARTMENT OF COMPUTER SCIENCE PALACKÝ UNIVERSITY, OLOMOUC

KMI/YUDIT Úvod do informačních technologií

Osnova

- Počítačová síť
- Síťová architektura
- Popis jednotlivých vrstev
- Aplikační programy

Literatura

- P. Příhoda: Počítačové sítě
- 2. Andrew S. Tanenbauma Computer Networks.
- 3. Jiří Peterka: Báječný svět počítačových sítí (http://www.earchiv.cz/i serial.php3)

Počítačová síť

Počítačová síť

- počítačová síť = skupina vzájemně propojených počítačů a dalších zařízení (hostitelských/koncových uzlů), komunikujících pomocí prvků síťové infrastruktury:
 - přenosová/propojovací média: metalické vodiče a optická vlákna = "drát", elektromagnetické (rádiové) vlny = "bezdrát"
 - aktivní a pasivní propojovací prvky: opakovače, přepínače, směrovače, brány aj.
- přenosová rychlost udává množství dat, které se po síti přenesou za určitou časovou
 jednotku (Mb/s, Gb/s)
- přenosový výkon udává množství "užitečných" dat, které se po síti přenesou za určitou časovou jednotku

Taxonomie počítačových sítí

Typy počítačových sítí

Sítě serverového typu

 V takovéto síti existuje hlavní počítač, nazývaný server, který ostatním počítačům, které se nazývají klienti, poskytuje služby.

Peer to peer

Každý počítač v síti může poskytovat služby jiným počítačům.

Podle rozlehlosti

- Osobní počítačová síť (PAN)
 - propojení zařízení, příp. k počítači, s umožněním vzájemné komunikace a přenosu dat
 - charakterem LAN
 - omezeny dosahem, v okolí zařízení (jednotky až desítky m, nejčastěji "kolem osoby")
- Lokální počítačová síť (LAN)
 - propojení koncových uzlů s umožněním vzájemné komunikace a přenosu dat
 - lokální = omezeny rozsahem (jednotky km, nejčastěji v budově nebo komplexu budov),
- Metropolitní počítačová síť (MAN)
 - propojení a "prodloužení" několika LAN, účelem přenosové sítě, charakterem lokální v rámci města (desítky km)
- Rozlehlá počítačová síť (WAN)
 - přenosové sítě propojující LAN/MAN (páteřní sítě)
 - velké vzdálenosti, pokrývají území států a kontinentů (neomezené)

Topologie počítačových sítí

U

- Topologie logické uspořádání počítačů (příp. jiných zařízení) v síti
- Fyzická topologie popisuje reálnou konstrukci sítě, zapojená zařízení a jejich umístění včetně instalovaných kabelů
- Logická topologie se vztahuje k tomu, jak jsou data v síti přenášena a kudy protékají z jednoho zařízení do druhého. Nemusí nutně kopírovat fyzické schéma sítě.
- Topologie:
 - hvězdicová
 - kruhová
 - sběrnicová
 - stromová

zdroj: Wikipeida

Síťová architektura

Síťová architektura

- vrstva každá vrstva plní specifické úkoly
- služba každá vrstva poskytuje službu vyšší vrstvě a sama využívá služby vrstvy nižší
- protokol pravidla komunikace mezi stejnolehlými vrstvami

zdroj: J. Peterka – Báječný svět počítačových sítí

Služby

- Služby mohou být:
 - Spojované. Ty si můžete představit jako klasické volání telefonem. Abyste mohli s někým komunikovat, musíte vytočit jeho číslo a počkat, až volaný telefon zvedne. Tím je navázáno spojení a vy můžete komunikovat.
 - Nespojované. Tyto služby se podobají klasické poště. Vy na dopis napíšete pouze adresu a předáte poště. Dopis pak putuje z jedné pošty na druhou až k příjemci.
- Každá služba podle spolehlivosti může být:
 - Spolehlivou službou (Reliable Service), kdy je zaručeno dodání dat adresátovi.
 - Nespolehlivou službou (Unreliable Service), kdy odesilatel neví, zda data adresátovi došla.

Referenční model ISO OSI (Open Systems Interconnection)

- propojení otevřených systémů = zařízení podporujících příslušné normy
- obecně platné principy implementace systémů (abstrakce síťové architektury)

zdroj: J. Peterka - Principy počítačových sítí

Fyzická vrstva

- úkolem je fyzický přenos dat = přenos jednotlivých bitů a bitových sekvencí
- úkoly:
 - jakým způsobem jsou datové bity zakódovány do takového signálu, jaký se skutečně přenáší
 - jaký je časový průběh tohoto signálu
 - jaké jsou obvodové vlastnosti přenosových cest apod
- vyšší vrstvě nabízí služby typu "přijmi bit" a "odešli bit"

Linková vrstva

- má za úkol přenášet celé bloky dat (obecně označované jako rámce), a to mezi sousedními počítači
- úkoly:
 - vyznačit začátek a konec každého rámce
 - zajištění spolehlivosti přenosu
 - správné dodržování "tempa" přenosu tedy toho, aby příjemce stačil přijímat všechno to, co mu odesilatel posílá
- vyšší vrstvě nabízí nabízí služby typu "odešli rámec sousednímu uzlu", resp. "přijmi rámec od sousedního uzlu,
- vrstva obsahuje dvě podvrstvy:
 - LLC, která zajišťuje přenos dat a jejich kontrolu.
 - MAC, která řeší problémy s přístupem ke sdílené přenosové lince

Síťová vrstva

- má za úkol zajistit doručení bloku dat paket, uzlu, se kterým není přímé spojení, ale pouze spojení nepřímé, vedoucí přes jeden nebo několik přestupních uzlů
- musí "znát" celou topologii sítě a je schopna stanovit, kudy (přes které přestupní uzly)
 má být daný paket postupně přenášen, tak aby se nakonec dostal k cíli
- úkoly:
 - rozhoduje o tom, kudy (jakou cestou) budou postupně přenášena data = "směrování" (routing)
- směrování může vycházet z různých filosofií a může používat různé algoritmy pro hledání nejvhodnějších cest od příjemce k odesilateli
- vyšší vrstvě nabízí přenos bloku dat na libovolný počítač v síti

Transportní vrstva

- má za úkol vyrovnávat rozdíly mezi schopnostmi tří spodních přenosových vrstev a požadavky tří vyšších, aplikačně orientovaných vrstev
- úkoly:
 - z nespolehlivých přenosových služeb, jaké nabízí přenosový subsystém tvořený třemi nejnižšími vrstvami, vyrobila spolehlivou službou, jakou požadují horní, aplikačně orientované vrstvy
 - zajišťuje komunikaci koncových uzlů
 - zařídí předání dat konkrétnímu příjemci v rámci daného uzlu

Relační vrstva

- má za úkol řízení a průběh relací
- relace "dialog" mezi spolupracujícími relačními vrstvami obou systémů
- úkoly:
 - řídit výměnu dat
 - vytvoření a ukončení relační spojení
 - synchronizaci a obnovení spojení
 - oznamovaní výjimečných stavů

Prezentační vrstva

- úkolem je konverze přenášených dat tak, aby je obě strany shodně interpretovaly
- úkoly:
 - linearizace dat pro potřeby přenosu
 - kódování znaků a čísel

Aplikační vrstva

- účelem vrstvy je poskytnout aplikacím přístup ke komunikačnímu systému a umožnit tak
 jejich spolupráci
- v aplikační vrstvě jsou části aplikací související se síťovou komunikací

Referenční model TCP/IP

- použití v síti Internet (největší celosvětová síť propojených heterogenních sítí)
- nejpoužívanější síťová architektura
- všechny informace (konvence, protokoly, doporučení) v RFC (Request For Comments) od IAB (rada pro architekturu Internetu), de facto normy IETF (komise s pracovními skupinami Internetu)

zdroj: J. Peterka – Báječný svět počítačových sítí

Přenosové cesty

Koaxiální kabely

- tlustý Ø 1 cm, max. 500 m, zakončený terminátory 50 Ω, připojení uzlu přes transceiver napíchnutý svorkou vampír, redukce i na tenký a dvojlinku
- tenký max. 185 m (u stejných síťových karet uzlů až 400 m), zakončený terminátory 50 Ω, připojení přes BNC konektor
- sběrnicová topologie

zdroj: J. Peterka - Principy počítačových sítí

Kroucená dvoulinka

- max. 100 m (závisí na kvalitě kabelu)
- 4 páry měděných vodičů
- varianty
 - stíněná (STP)
 - nestíněná (UTP)
- kategorie
 - Cat 3 (šířka pásma do 25 MHz) 10 Mbps až 10 Mbps
 - Cat 5(E) (do 100 MHz) –100 Mbps až 1 Gbps
 - Cat 6 (do 250 MHz) 1 Gbps až 10 Gbps sítě
 - Cat 7 (do 600 MHz) 10 Gbps sítě

zdroj: Wikipedia

Optické vlákno

- dvě vrstvy skla: obal a jádro
- druhy
 - vícevidové (Ø 50 a 62.5 µm, paprsky se odráží od rozhraní skel)
 - jednovidové (9 μm), buzení laserem (850, 1300, 1500 nm)
- dosah 2–3 km (vícevidové) nebo až 70 km (jednovidové),

zdroj: J. Peterka - Principy počítačových sítí

Bezdrátové přenosy

- radiové
 - jejich dosah může být relativně velký
 - mohou prostupovat budovami
 - šíření je všesměrové
- mikrovlné
 - přímočaré šíření
 - nutná přímá viditelnost
- infračervené
 - na velmi krátkou vzdálenost
 - neprostupují překážkami
- optické spoje
 - laserové
 - výhodou velká šířka přenosového pásma
 - nevýhodou je silná závislost na povětrnostních vlivech

zdroj: J. Peterka - Principy počítačových sítí

Přenosové techniky

Druhy přenosu

- simplex k přenosu dochází jen v jednom směru, a nikoli ve směru druhém
- duplex takový, který může probíhat v obou směrech, a to i současně
- poloduplex takový, který může probíhat v jednom nebo druhém směru, ale nikdy ne současně

Synchronizace přenosu

- bitový interval = doba "trvání" přenosu jednoho bitu
- nutnost synchronizace v čase
- asynchronní přenos
 - odesilatel sdělí příjemci, kdy začíná a kdy končí každý jednotlivý interval
- arytmický přenos
 - data se nepřenáší jako libovolně dlouhé posloupnosti bitů, ale jako skupinky bitů pevně dané velikosti (například 8 bitů)
 - na začátek každé takovéto skupinky se pak umístí zvláštní značka, která příjemci umožní "seřídit si" jeho hodinky
- synchronní přenos
 - mezi příjemcem a odesilatelem dochází k udržování vzájemné koordinace hodinek (přenosem "tikání" hodinek, smícháním signálu hodinek a dat, …)

a) asynchronní, b) arytmický přenos zdroj: J. Peterka - Principy počítačových sítí

Multiplexování

- logické rozdělení fyzické cesty
- frekvenční multiplex analogový signál se "posunul do vhodné frekvenční polohy"
- časový multiplex digitálně fungující přenosová cesta je pravidelně, podle předem známého a definovaného postupu, přidělována jednotlivým dílčím kanálům, na předem známé a definované časové úseky
- statistický multiplex kapacitu společné přenosové cesty přiděluje podle momentální potřeby

zdroj: J. Peterka - Principy počítačových sítí

Propojování přenosových cest

- přepojování okruhů
 - dochází k vytvoření souvislého přenosového kanálu mezi komunikujícími stranami
- přepojování paketů
 - přenášena jsou data členěna na bloky (pakety)
 - jednotlivé pakety od různých odesilatelů a určené různým příjemcům se přenáší společným přenosovým kanálem

Ethernet

Ethernet

- sdílené přenosové médium, v daném okamžiku využívá jeden uzel
- uzly samostatné, rovnocenné
- počátky koncem 70. let Xerox, 1982 DEC, Intel a Xerox jako DIX Ethernet (Ethernet II), 1985 IEEE 802.3
- přístupová metoda CSMA/CD
 - "příposlech" zjištění, zda se na přenosovém médiu komunikuje
 - detekce kolizí

"Klasický" Ethernet

- přenosová rychlost 10 Mb/s
- s koaxiálním kabelem
 - tlustý (10Base5): tlustý koaxiální kabel, topologie sběrnice, max. 100 stanic
 - tenký (10Base2): tenký koaxiální kabel, topologie sběrnice, max. 30 stanic
- s kroucenou dvojlinkou (10BaseT)
 - konektor RJ45 na síťové kartě
 - hvězdicová topologie,
 - max. 100 m mezi počítačem a opakovačem
- s vícevidovými optickými vlákny (10BaseFx)
 - původně jen propojení optických opakovačů, max. 2 km

Fast Ethernet

- přenosová rychlost 100 Mb/s
- 1993 sítě 100BaseT a 100VG-AnyLAN, z důvodu zpětné kompatibility u metody přístupu k médiu vybrána 100BaseT
- jen hvězdicová topologie
- kroucená dvojlinka
 - 100BaseTX dva páry dvoulinky kategorie 5
 - 100BaseT4 čtyři páry dvoulinky kategorie 5
 - max. 200 m
- optická vlákna (100BaseFX)
 - max. 300 m (Full Duplex 2 km)

Gigabitový Ethernet

- 1988 pro optické linky (IEEE 802.3z), pak pro kroucenou dvojlinku kategorie 5E (IEEE 802.3ab)
- 1 Gb/s
- jen hvězdicová topologie
- optická vlákna
 - jednovidová 1000BaseLX max. 2km
 - vícevidová 1000BaseSX) max. 550 m
- kroucená dvojlinka (1000BaseT)
 - duplexní přenos na všech 4 párech u kategorie 5E,
 - plně duplexní přenos u kategorie 6, max. 100 m

10Gigabitový Ethernet

- 10 GB/s, velký dosah
- jen režim Full Duplex, ne sdílené médium
- fyzická rozhraní pro LAN a WAN
- optická vlákna
 - mnohovidová 10GBaseS 400 m
 - jednovidová 10GBase-L/E 10/40 km
- kroucená dvojlinka (10GBaseT)
 - 55 m kabel kategorie 5E nebo 6
 - 100 m 6A nebo 7

Formáty Ethernetových rámců

- obsah rámce:
 - 48bitové adresy (MAC adresa) příjemce a odesilatele
 - EtherType identifikace protokolu, který vlastní síťový paket
 - délka rámce
 - SAP identifikaci konkrétní entity, která datový obsah vytvořila, resp. má dále zpracovat (číslo tzv. přechodového bodu mezi linkovou a síťovou vrstvou, skrz který byla data převzata k odeslání, resp. mají být předána k dalšímu zpracování)
 - síťový paket data o velikosti 46-1500 B
 - zabezpečení kontrolní součet

0				
	příjemce	příjemce	příjemce	příjemce
6	odesilatel	odesilatel	odesilatel	odesilatel
12	EtherTyp	délka	délka	délka
14		cílový. SAP zdroj. SAP	AA _H AA ^H	FF _H FF _H
	síťový paket	síťový paket	protokol síťový paket	IPX paket
	zabezpečení	zabezpečení	zabezpečení	zabezpečení
	rámec Ethernet_II	rámec 802.3+ 802.2	rámec 802.3+ 802.2 SNAP	rámec "raw 802.3"

zdroj: J. Peterka - Principy počítačových sítí

Bezdrátové lokální sítě (WLAN) – Wi-Fi

- důvody pro WLAN (Wireless LAN): mobilita, snadná použitelnost, dostupnost, nižší náklady, rozšiřitelnost, roaming (vysílače si klienta předávají), atd., polovina 90. let
- použití pro vnitřní (původně, popř. v kombinaci s kabeláží) i vnější prostory (např. připojení k Internetu), propojení s drátovými LAN
- norma IEEE 802.11 (1997)
- standardy

Standard	Pásmo [GHz]	Maximální rychlost [Mbit/s]
původní IEEE 802.11	2,4	2
IEEE 802.11a	5	54
IEEE 802.11b	2,4	11
IEEE 802.11g	2,4	54
IEEE 802.11n	2,4 nebo 5	600
IEEE 802.11ac	2,4 nebo 5	1800

zdroj: Wikipedia

Wi-Fi

- Konfigurace (topologie)
 - ad-hoc přímá komunikace mezi stanicemi
 - infrastrukturní stanice komunikují jen prostřednictvím přístupového bodu (AP) (nejdříve asociace a autorizace)
- Přenosové médium
 - rádiové vlny
 - 2,4 GHz (802.11b/g/n),
 - 5 GHz (802.11a/n)

zdroj: J. Peterka – Báječný svět počítačových sítí

Bezdrátové personální sítě (WPAN) – Bluetooth

- projekt "Blue Tooth", Ericsson, 1994,
- bezdrátová komunikace mezi různorodými zařízeními (počítače, mobilní telefony, PDA, dig. fotoaparáty, kamery aj.)
- rádiové vlny 2,4 GHz, přenosová rychlost 1 nebo 2
 Mb/s, max. 10 m (s opakovači do 100 m)
- norma IEEE 802.15
- piconet ad-hoc síť, kde jedna radiová stanice působí jako řídicí (master) a může simultánně obsloužit až 7 podřízených (slave) zařízení (další jsou tzv. parkující)
- scatternet vytvoří se, jestliže jeden slave je součástí více piconet
- komunikace po kanálech s pseudo-náhodnými skoky

zdroj: http://flylib.com/

Bluetooth

- odlišná protokolová architektura
 - fyzická (Bluetooth radio, podvrstvy Radio a Baseband)
 - linková
 - vyšší (identifikace a možnosti zařízení, podpora služeb, protokoly SDP, RFCOMM, TCS BIN, WAE/WAP)

zdroj: http://flylib.com/

Propojování sítí

Propojování sítí

- důvody
 - optimalizace provozu
 - zvýšení dosahu
 - ekonomické důvody
 - bezpečnostní důvody
- propojování na různé úrovni
 - fyzická
 - linková
 - síťová
 - aplikační

zdroj: J. Peterka - Principy počítačových sítí

Propojování na úrovni fyzické vrstvy

- opakovače zařízení si lze představit jako jednoduchý digitální zesilovač, který si všímá jednotlivých přenášených bitů, ale jeho inteligence již nesahá tak daleko, aby chápal, co tyto bity znamenají
- počet opakovačů v Ethernetu
 - maximálně dva opakovače mezi libovolnými uzly

zdroj: J. Peterka - Principy počítačových sítí

Propojování na úrovni linkové vrstvy

- propojovací zařízení most (obvykle 2 porty, switch víceportové zařízení)
 - pozná, která data "patří k sobě", tj. tvoří jeden přenosový rámec
 - rozumí formátu tohoto rámce
 - odvodí si, od koho rámec pochází a komu je určen
 - má vnitřní paměť pro uložení rámce
 - adresování se učí automaticky z procházejícího provozu
- způsoby přeposílání rámců
 - "store and forward" rámec z jednoho rozhraní přijmou, uloží si do vyrovnávací paměti, prozkoumají jeho hlavičky, a následně odvysílají do příslušného rozhraní.
 - "cut-through switching" k analýze hlaviček dochází, jakmile dorazí začátek rámce a poté se rámec ihned odesílá příjemci

zdroj: J. Peterka - Principy počítačových sítí

Propojování na úrovni síťové vrstvy

- směrovač (router)
 - musí znát topologii celé sítě
 - provádí směrování
 - neadaptivní nepřizpůsobuje se změnám v sítí
 - adaptivní reaguje na změny v síti
 - je viditelný pro ostatní uzly

zdroj: J. Peterka - Principy počítačových sítí

Internet

Historie Internetu

- počátky v USA, 50. léta 20. století
- snaha o vybudování decentralizované sítě odolné útoku

Síť ARPANET

- finanční grant agentury ARPA (Advanced Research Projects Agency) ministerstva obrany USA
- síť založená na výměně **paketů** nový přístup
- data jsou rozdělena do packetů
- jeden komunikační kanál může být v jednom okamžiku používán více počítači

ARPANET

- původně používala komunikační protokol NCP (Network Control Program)
- ARPANET poskytoval tyto služby:
 - e-mail
 - přenos souborů
 - přenos hlasu předchůdce dnešního Voice over IP; nefungovalo dobře
- později byl NCP nahrazen TCP/IP
- rok 1988: uvolnění ARPANETu pro komerční účely

Internet v Česku

- 13. února 1992, se Česká a Slovenská federativní republika oficiálně připojila k internetu
- první reálné internetové připojení s rychlostí 19,2 kb/s získalo ČVUT díky podpoře George Mellon Foundation
- fyzicky spojení mířilo z Prahy do Lince a kromě připojení k internetu sloužila linka k využití další univerzitní sítě BITNET, která fungovala s využitím jiných technologií a spojovala přibližně 500 vysokých škol
- používané služby: e-mail, FTP, Gopher
- 1993 CESNET zahájil provoz české páteřní akademické sítě
- 2000 CESNET prodal komerční síť telekomunikačnímu operátorovi Contactel a o rok později i díky utrženým 645 milionům korun zprovoznil síť CESNET 2 s rychlostí jeden gigabit
- 2010 CESNET v rámci akademické sítě testuje datové přenosy o rychlosti 100 gigabitů za sekundu

Referenční model TCP/IP

Síťová spojení

Architektura TCP/IP

Síťová vrstva

Síťová vrstva

- základním úkolem síťové vrstvy je doručení dat ve formě paketu do "vzdálenějších" uzlů
- síťová vrstva musí vědět, jaká je topologie sítě (tj. množinu směrovačů a propojení mezi nimi) a podle ní vybrat vhodnou cestu = směrování

každý uzel "zná" celou topologii sítě

síťová vrstva

zdroj: J. Peterka – Báječný svět počítačových sítí

Směrování

- hledání cesty ke koncovému příjemci
- směrování
 - přímé
 - přenos paket mezi dvěma uzly v rámci stejné sítě = předání linkové vrstvě
 - nepřímé
 - koncový příjemce se nenachází ve stejné síti, jako právě odesílající uzel
 - postupného předávání paketu sousednímu uzlu (směrovači) tak dlouho, dokud se paket nedostane ke svému cíli

zdroj: J. Peterka – Báječný svět počítačových sítí

Směrovací tabulky

- směrovače si v nich udržují potřebné informace
- jsou v nich informace o cílové síti nikoliv o všech uzlech v těchto sítích
- směrování
 - neadaptivní obsah směrovacích tabulek (směrovačů) je dán apriorně a nemění se
 - adaptivní směrovací tabulky směrovačů jsou na počátku nějak nastaveny, ale jejich obsah se průběžně aktualizuje, tak aby odrážel topologii soustavy sítí a reagoval na její změny

zdroj: J. Peterka – Báječný svět počítačových sítí

Druhy směrování

- centralizované rozhodování o volbě nejvhodnější cesty provádí jeden centrální prvek
- izolované rozhodují jednotlivé směrovače, aniž by přitom spolupracovaly s ostatními
 - záplavové směrování
 - směrování metodou horké brambory
 - náhodné směrování
 - metoda zpětného učení
- distribuované celé rozhodování je rozděleno (distribuováno) mezi jednotlivé uzly, které na něm spolupracují
 - vector-distance sousední směrovače si mezi sebou vyměňují celé své směrovací tabulky, i s jejich obsahem (tyto údaje se používají pro vlastní výpočet vzdálenosti uzlů)
 - link-state každý směrovač uzel rozešle při změně do sítě informaci o tom, kdo jsou
 jeho sousedé a zda jsou pro něj dosažitelní (zda spojení mezi nimi funguje)

IP protokol

- poskytuje "nespolehlivou" nespojovanou službu nevytváří spojení, nepotvrzuje
- příjem paketů
- spojuje lokální sítě do celosvětové sítě Internet
- síťové rozhraní uzlu má alespoň jednu síťovou IP adresu

IP paket (datagram)

- základní jednotka dat přenášených IP
- záhlaví 20 B povinných položek + volitelné položky, data, max. délka 64kB

0 8		16	24				
Verze IP 4 bity	Délka záhlaví	Typ služby 8 bitů	Celková délka IP-datagramu 16 bitů				
ldentifikace IP-datagramu 16 bitů			Příznaky (flags)	Posunutí fragmentu od počátku (fragment offset) - 13 bitů			
Doba života datagramu (TTL) - 8 bitů		Protokol vyšší vrstvy (protocol) - 8 bitů	Kontrolní součet z IP-záhlaví (checksun 16 bitů				
IP-adresa odesilatele (source IP-adress) 32 bitů							
IP-adresa příjemce (destination IP-adress) 32 bitů							
Volitelné položky záhlaví							
Přenášená data (nepovinné)							

zdroj: http://zam.opf.slu.cz/

IP adresa

 32bitové číslo, zapisované po jednotlivých bajtech, oddělených tečkami, např.

192.168.48.39

- brzy vzniká problém s vyčerpáním IP adres
- 32bitová IP adresa dovoluje identifikovat

2³²=4 294 967 296 síťových rozhraní

- řešení:
 - rozdělení na třídy (Two-level Classful Hierarchy)
 - rozdělení na subsítě (Subset Address Hierarchy)
 - dynamické přidělování adres

Třídy IP adres (1)

- adresní prostor je proto rozdělen do tříd A, B, C
- IP adresa je rozdělena na adresu sítě a na adresu rozhraní
- každá třída definuje, která část adresy určuje síť a která rozhraní
- třídu určuje prefix IP adresy
- prefix pak vymezuje interval přípustných hodnot 1. bytu

Třídy IP adres (2)

Třída A

- prefix 0, první byte: 0-127
- 2⁷-2=126 sítí (dvě adresy sítě jsou rezervované)
- 2²⁴-2=16 777 214 rozhraní (dvě adresy rozhraní jsou rezervované)
- adresy této třídy jsou již vyčerpané

Třída B

- prefix 10, první byte: 128-191
- 2¹⁴-2=16 382 sítí
- 2¹⁶-2=65 534 rozhraní
- adresy této třídy používají např. univerzity

Třída C

- prefix 110, první byte: 192-223
- 2²¹-2=2 097 150 sítí
- 28-2=254 rozhraní
- adresy této třídy jsou nejběžnější

Podsítě

- od roku 1993 se pak začal používat tzv. Classless Inter-Domain Routing (CIDR)
- adresa se skládá z:
 - adresy subsítě
 - adresy uzlu
- síťová maska hranici mezi adresou sítě a počítače
 - v binárním tvaru obsahuje
 - 1 tam, kde se v adrese nachází subsíť,
 - 0 tam, kde je uzel
 - určení adresy sítě bitový součin IP adresy a síťové masky
- počet uzlů v síti = 2 (počet 0 v masce) 2
- notace sítě spolu s maskou adresa sítě/maska, např. 158.194.0.0/255.255.0.0
- CIDR formát (Classless Inter-Domain Routing), např. 158.194.0.0/16

IP protokol verze 6

- nahrazuje starý IPv4
- IP adresa je 128bitové číslo
- počet adres: 2¹²⁸ (zhruba 3,4×10³⁸) adres, což odpovídá počtu 5×10²⁸ adres pro každého z 6,5 miliardy dnes žijících lidí
- IPv6 adresy s obvykle zapisují jako osm skupin čtyř hexadecimálních číslic

2001:0db8:85a3:08d3:1319:8a2e:0370:7334

Transportní vrstva

Transportní vrstva

- hlavním úkolem transportní vrstvy je zajišťovat vzájemnou komunikaci koncových uzlů
- první vrstvou, se kterou se setkáme pouze v koncových uzlech sítě, ale nikoli v jejích vnitřních uzlech
- první vrstva, která v rámci uzlu rozlišuje jednotlivé entity (procesy), prostřednictvím tzv.
 portů

Protokoly

- nejznámější Internetové protokoly v transportní vrstvě jsou:
 - UDP (User Datagram Protocol) je pouze jednouchou nadstavbou nad protokolem IP a funguje stejně jako on (tj. nespojovaně a nespolehlivě)
 - TCP (Transmission Control Protocol) je už složitější nadstavbou nad protokolem IP, a mění jeho způsob fungování - na spojitý a spolehlivý

zdroj: J. Peterka – Báječný svět počítačových sítí

TCP

- poskytuje spojovanou "spolehlivou" službu, řeší:
 - navázání, udržování a ukončení spojení
 - potvrzování přijetí dat (tzv. pozitivní potvrzování)
 - vyžádání opakování přenosu ztracených nebo poškozených dat,
 - zaručení správného pořadí bytů dat
 - adaptivní přizpůsobení parametrů protokolu podle stavu spojení
 - řízení toku dat pomocí bufferů a posuvného okna a průchodnosti přenosové cesty (zahlcení sítě)

UDP

- poskytuje nespojovanou (datagramovou) "nespolehlivou" službu data odeslána, nezaručuje se doručení ani znovuzasílání ztracených nebo poškozených dat (ponecháno na vyšším protokolu)
- vyšší výkon a rychlost přenosu dat než u TCP, za cenu "nespolehlivosti"
- využití u streamování multimediálního obsahu
- oproti TCP může být příjemcem skupina uzlů, tj. IP adresa příjemce může být všesměrová (např. u DHCP) nebo skupinová (multicast, typicky u streamování multimediálního obsahu)

Rozlišování jednotlivých příjemců a odesilatelů

- transportní vrstva k adresování používá koncept, založený na představě "přechodových bodů" mezi transportní vrstvou a vrstvou bezprostředně vyšší
- přechodové body jsou obecně obousměrné (lze si je představit jako dvě samostatné fronty s opačným "směrem")
- v prostředí TCP/IP se přechodové body nazývají porty

zdroj: J. Peterka – Báječný svět počítačových sítí

Dobře známé porty

- portům, jejichž význam je dopředu stanoven, se v TCP/IP říká dobře známé porty
- jde obecně o porty v rozsahu od 0 do 1023
- příslušnou konvenci spravuje orgán jménem IANA (Internet Assigned Numbers Autority)

PORT #	POPIS
21	FTP
23	Telnet
25	SMTP
69	TFTP
70	Gopher
80	HTTP
110	POP3
143	IMAP

DNS

DNS

- hierarchický systém doménových jmen, který je realizován servery DNS a protokolem stejného jména, kterým si vyměňují informace.
- hlavním úkolem a příčinou vzniku jsou vzájemné převody doménových jmen a IP adres uzlů sítě
- doménové jméno, např.

www.upol.cz

- kořenová doména (0. řádu)
- domény nejvyšší úrovně (TLD, 1. řádu)
- domény k-tého řádu
- hostitel

zdroj: www.windowsnetworking.com

Doménová jména

- 1. řádu (Top-level Domains TLD):
 - generické domény (gTLD), např.:
 - edu ... vzdělávací instituce
 - com …komerční sféra
 - net ... síťové instituce
 - gov ... vláda USA
 - org ... ostatní instituce
 - domény státních území (ccTLD), např.:
 - cz ... Česká republika
 - eu ... Evropská unie
 - uk ... Velká Británie
 - fr ... Francie
 - us ... USA
- domény 1. řádu přiděluje ICANN (Internet Corporation for Assigned Names and Numbers)
- za přidělování domény 2. řádu je zodpovědný správce dané domény 1. řádu, atd.

DNS servery

- DNS služba je založena na architektuře klient/server ... klient žádá DNS server o překlad symbolického
 jména na IP adresu
- DNS servery:
 - Autoritativní
 - jsou na něm trvale uloženy záznamy k dané doméně/zóně
 - je jich obvykle více (minimálně dva primární a sekundární, ale běžně i více)
 - jsou obvykle provozovány registrátorem domény nebo poskytovatelem webhostingu.
 - Rekurzivní (caching only) server
 - na server se se svými dotazy obracejí klientská zařízení (počítač, mobil aj.)
 - server pro ně příslušný záznam získá rekurzivními dotazy u autoritativních DNS serverů
 - po stanovenou dobu (definovanou pomocí parametru TTL) má záznamy uloženy v cache, aby
 mohl odpovídat klientům rychleji a šetřil zatížení serverů autoritativních
 - server obvykle provozuje ISP (poskytovatel připojení k internetu)
 - serverů může být na klientu definováno více na různých IP adresách

Překlad symbolického jména na IP adresu

- 1. klient se dotáže nejbližšího DNS serveru (např. DNS server poskytovatele připojení)
- 2. DNS server zná odpověď (tzn., že počítač buď leží v doméně tohoto serveru nebo má odpověď uloženou ve vyrovnávací paměti), předá ji klientovi
- 3. DNS server nezná odpověď, pak existují dvě možnosti:
 - server odkáže klienta na DNS server, který je výše v hierarchii (v doméně nižšího řádu) nerekurzivní metoda
 - pokusí se sám najít IP adresu rekurzivní metoda

zdroj: cs.wikipedia.org

Reverzní překlad

- kromě přímého překladu (symbolické jméno na IP adresu) poskytují DNS servery také zpětný překlad (IP adresa na symbolické jméno)
- při vkládání dat pro zpětné dotazy bylo ale třeba vyřešit problém s opačným uspořádáním IP adresy a doménového jména.
- tento nesoulad řeší DNS tak, že při reverzních dotazech obrací pořadí bajtů v adrese.
- k obrácené adrese pak připojí doménu in-addr.arpa a výsledné "jméno" pak vyhledává standardním postupem.

Aplikační vrstva

Elektronická pošta

poštovní adresa

jiri.zacpal@upol.cz

princip:

Odesilatel pomocí programu, který nazývá poštovní klient – MUA, napíše dopis, který MUA elektronicky předá poště – MTA, což je typicky systémový proces, který běží na poštovním serveru. Úkolem MTA je doručit dopis na poštu – MTA adresáta. K tomu je využíván protokol SMTP. Na MTA adresáta umístí program pro lokální doručování – Mail Delivery Agent (MDA), dopis do do adresátovy poštovní schránky (mailboxu), případně jej MDA může přímo automaticky zpracovávat (ukládat přílohy, odpovídat, spouštět různé aplikace pro zpracování apod.). Z poštovní schránky si jej adresát může kdykoliv vyzvednout. K tomu se nejčastěji požívají protokoly POP3 nebo IMAP.

zdroj: philippe.scoffoni.net/

World Wide Web

- vlastnosti:
 - hypertextový
 - bezstavový
- je tvořen klientem prohlížečem, který je nainstalován na uživatelově počítači, a serverem, což je počítač
 připojený k Internetu, na kterém jsou umístěny webové stránky
- komunikace mezi klientem a serverem probíhá pomocí HTTP (HyperText Transfer Protocol)
- každá webová stránka je určena svým URL:

protokol://přihlašovací_jméno:heslo@hostitel.doména:port/cesta

http://phoenix.inf.upol.cz/~zacpalj/zp2.html

zdroj: www.kosek.cz

Podrobnější informace

- P. Příhoda: Počítačové sítě
- Andrew S. Tanenbauma Computer Networks.
- Jiří Peterka: Báječný svět počítačových sítí (http://www.earchiv.cz/i serial.php3)

Příště

- Základy databázových systémů a zpracování dat
- Studijní texty:
 - Connolly T., Begg C.: Database Systems. A Practical Approach to Design, Implementation and Management, 3rd edition.
 Addison Wesley, 2002. ISBN 0-201-70857-4
 - Pokorný J.: Databázové systémy a jejich použití v informačních systémech.
 Academia, 1992. ISBN 80-200-0177-8
 - Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom: Database Systems: The Complete Book