

2

Motion in a Straight Line

DISTANCE VERSUS DISPLACEMENT

Total length of path (ACB) covered by the particle is called distance. Displacement vector or displacement is the straught line distance (AB) and directed from initial position to final position.

DISPLACEMENT IS CHANGE OF POSITION VECTOR

From $\triangle OAB$ $\triangle \vec{r} = \vec{r}_B - \vec{r}_A$

$$\vec{r}_{p} = x_{2}\hat{i} + y_{2}\hat{j} + z_{2}\hat{k}$$

and
$$\vec{r}_A = x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}$$

$$\Delta \vec{r} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

 $Average speed = \frac{Distance travelled}{Time interval}$

For uniform motion

Average speed = | average velocity | = | instantaneous velocity

$$\begin{aligned} \textbf{Velocity} \ \, \vec{v} &= \frac{d\vec{r}}{dt} = \frac{d}{dt} (x\hat{i} + y\hat{j} + z\hat{k}) \\ &= \frac{dx}{dt} \hat{i} + \frac{dy}{dt} \hat{j} + \frac{dz}{dt} \hat{k} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k} \end{aligned}$$

Average Acceleration =
$$\frac{\text{Total change in velocity}}{\text{Total time taken}} = \vec{a}_{av} = \frac{\Delta \vec{v}}{\Delta t}$$

Acceleration

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} (v_x \hat{i} + v_y \hat{j} + v_z \hat{k})$$

$$= \frac{dv_x}{dt} \hat{i} + \frac{dv_y}{dt} \hat{j} + \frac{dv_z}{dt} \hat{k} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$

Important Points About 1D Motion

- Distance ≥ | displacement | and Average speed ≥ | average velocity |
- ❖ If distance > | displacement | it implies that at least at one point in path velocity is zero.

Motion with Constant Acceleration: Equations of Motion

* In vector form:

$$\vec{v} = \vec{u} + \vec{a}t$$
 and $\Delta \vec{r} = \vec{r}_2 - \vec{r}_1 = \vec{s} = \left(\frac{\vec{u} + \vec{v}}{2}\right)t = \vec{u}t + \frac{1}{2}\vec{a}t^2 = \vec{v}t - \frac{1}{2}\vec{a}t^2$

$$v^2 = u^2 + 2\vec{a}.\vec{s}$$
 and $\vec{s}_{n^{th}} = \vec{u} + \frac{\vec{a}}{2}(2n-1)$

 $(S_n^{th} \rightarrow displacement in n^{th} second)$

* For one dimensional motion

$$v = u + at$$
 $s = \left(\frac{u + v}{2}\right)t = ut + \frac{1}{2}at^2 = vt - \frac{1}{2}at^2$

$$v^2 = u^2 + 2as$$
 $s_n = u + \frac{a}{2}(2n - 1)$

UNIFORM MOTION

If an object moving along the straight line covers equal distance in equal interval of time, it is said to be in uniform motion along a straight line.

Velocity of the ofset is constant.

DIFFERENT GRAPHS OF MOTION DISPLACEMENT-TIME GRAPH

S.No.	Condition	Graph
1.	For a stationary body	Displacement
2.	Body moving with a constant velocity	Displacement
3.	Body moving with a constant acceleration	Displacement
4.	Body moving with a constant retardation	Displacement
5.	Body moving with infinite velocity. But such motion of body is never possible	Displacement A Time

Note: Slooe of displacement time graph given elocity

VELOCITY-TIME GRAPH

S.No.	Condition	Graph
1.	Moving with a constant velocity	O Velocity O Lime
2.	Moving with a constant acceleration having zero initial velocity	Velocity
3.	Body moving with a constant retardation and its initial velocity is not zero	A Nelocity O Time

4.	Moving with a constant retardation with zero initial velocity	Velocity O Time
5.	Moving with increasing acceleration	OVelocity
6.	Moving with decreasing acceleration	O Time

Note: Slope of velocity-time graph gives acceleration.

ACCELERATION-TIME GRAPH

S.No.	Condition	Graph
1.	When object is moving with constant acceleration	O Acceleration O Time
2.	When object is moving with constantly increasing acceleration	Acceleration
3.	When object is moving with constantly decreasing acceleration	O Acceleration Time

MOTION UNDER GRAVITY (NO AIR RESISTANCE)

If an object is falling freely under gravity, then equations of motion become

(i)
$$v = u + gt$$

(*ii*)
$$h = ut + \frac{1}{2} gt^2$$

(*iii*)
$$v^2 = u^2 + 2gh$$

Notes: If an object is thrown upward then g is replaced by –g in above three equations.

If a body is thrown vertically up with a velocity u in the uniform gravitational field then

- (iii) Total time of flight = $\frac{2u}{g}$
- (*iv*) Velocity of fall at the point of projection = u (downwards)
- (v) Gallileo's law of odd numbers: For a freely falling body dropped from rest, the ratio of successive distance covered in equal time interval, is

$$S_1 : S_2 : S_3 : \dots : S_n = 1 : 3 : 5 : \dots : 2n - 1$$

At any point on its path the body will have same speed for upward journey and downward journey.

If a body thrown upwards crosses a point in time t₁ and t₂ respectively then height of point h = ½ gt₁t₂. Maximum height $H = \frac{1}{8} g(t_1 + t_2)^2.$

A body thrown upwards, downwards and horizontally with same speed takes time t₁, t₂ and t₃ respectively to reach the ground then $t_3 = \sqrt{t_1 t_2}$ and height from where the particle was thrown is $H = \frac{1}{2} gt_1t_2.$

