

REGRESSION

Linear Regression-II

Dr. Ramesh Anbanandam

DEPARTMENT of Management Studies

Least Squares Method

Slope for the Estimated Regression Equation

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

Sum of squares and sum of cross-products

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$$

Sum of squares and sum of cross-products

$$Slope(m) = \frac{S_{xy}}{S_{xx}}$$

SSE= error sum of squares =
$$S_{yy} - \frac{S_{xy}}{S_{xx}}$$

Least Squares Method

y-Intercept for the Estimated Regression Equation

$$b_0 = \overline{y} - b_1 \overline{x}$$

where:

 x_i = value of independent variable for *i*th observation

 y_i = value of dependent variable for *i*th observation

 \overline{x} = mean value for independent variable

 \overline{y} = mean value for dependent variable

n = total number of observations

Simple Linear Regression

Deviation from the estimated regression model

Simple Linear Regression

Example: Auto Sales

An Auto company periodically has a special week-long sale.

As part of the advertising campaign runs one or more television commercials during the weekend preceding the sale.

Data from a sample of 5 previous sales are shown on the next slide.

Simple Linear Regression

Example: Auto Sales

Number of	Number of		
TV Ads	Cars Sold		
1	14		
3	24		
2	18		
1	17		
3	27		

Estimated Regression Equation

Slope for the Estimated Regression Equation

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{20}{4} = 5$$

y-Intercept for the Estimated Regression Equation

$$b_0 = \overline{y} - b_1 \overline{x} = 20 - 5(2) = 10$$

Estimated Regression Equation

$$\hat{y} = 10 + 5x$$

Scatter Diagram and Trend Line

Jupyter Code

```
In [2]: import numpy as np
import matplotlib.pyplot as plt

In [3]: import seaborn as sns

In [4]: import pandas as pd
import matplotlib as mpl
import statsmodels.formula.api as sm
from sklearn.linear_model import LinearRegression
from scipy import stats
In [5]: tbl = pd.read_excel('C:/Users/Somi/Documents/regr.xlsx')
```


Jupyter Code

```
In [6]: tbl.plot('TV Ads', 'car Sold', style='o')
   plt.ylabel('car sold')
   plt.title('Sales in Several UK Regions')
   plt.show()
```

Sales in Several UK Regions 26 24 22 18 16 14 100 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

TV Ads

Jupyter code

```
In [5]: t= tbl['TV Ads']
    c= tbl['car Sold']

In [8]: import statsmodels.api as s
    t = s.add_constant(t)
    model1 = sm.OLS(c,t)
    result1 = model1.fit()
    print(result1.summary())
```

OLS Regression Results

Dep. Variabl	e:	car Sold	R-squ	uared:		0.877
Model:		OLS	Adj.	R-squared:		0.836
Method:	L	east Squares.	F-sta	atistic:		21.43
Date:	Fri,	30 Aug 2019	Prob	(F-statistic)):	0.0190
Time:		08:31:20	Log-l	ikelihood:		-9.6687
No. Observat	ions:	5	AIC:			23.34
Df Residuals	:	3	BIC:			22.56
Df Model:		1				22.55
Covariance T	ype:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	10.0000	2.366	4.226	0.024	2.469	17.531
TV Ads	5.0000	1.080	4.629	0.019	1.563	8.437
Omnibus:		nan	Durbi	in-Watson:		1.214
Prob(Omnibus):	nan	Jarqu	ue-Bera (JB):		0.674
Skew:		0.256	Prob(JB):			0.714
Kurtosis:		1.276	Cond. No.		6.33	
========						

Example Problem- II

- The data in the file hardness.xls provide measurements on the hardness and tensile strength for 35 specimens of die-cast aluminum.
- It is believed that hardness (measured in Rockwell E units) can be used to predict tensile strength (measured in thousands of pounds per square inch).
- a. Construct a scatter plot.
- **b.** Assuming a linear relationship, use the least-squares method to find the regression coefficients b_0 and b_1 .
- **c.** Interpret the meaning of the slope, b_1 , in this problem.
- **d.** Predict the mean tensile strength for die-cast aluminum that has a hardness of 30 Rockwell E units.

Tensile strength	Hardness
53	29.31
70.2	34.86
84.3	36.82
55.3	30.12
78.5	34.02
63.5	30.82
71.4	35.4
53.4	31.26
82.5	32.18
67.3	33.42
69.5	37.69
73	34.88
55.7	24.66
85.8	34.76
95.4	38.02
51.1	25.68
74.4	25.81
54.1	26.46
77.8	28.67
52.4	24.64
69.1	25.77
53.5	23.69
64.3	28.65
82.7	32.38
55.7	23.21
70.5	34
87.5	34.47
50.7	29.25
72.3	28.71
59.5	29.83
71.3	29.25
52.7	27.99
76.5	31.85
63.7	27.65
69.2	31.7

Thank You

