In [1]:

```
import numpy as np
import pandas as pd
```

In [2]:

diabetes = pd.read_csv("D:/PGDAI - lec/Machine learning/Dataset/diabetes.csv")
diabetes.head(15)

Out[2]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.6
1	1	85	66	29	0	26.6	0.3
2	8	183	64	0	0	23.3	0.6
3	1	89	66	23	94	28.1	0.10
4	0	137	40	35	168	43.1	2.2
5	5	116	74	0	0	25.6	0.2
6	3	78	50	32	88	31.0	0.2
7	10	115	0	0	0	35.3	0.1
8	2	197	70	45	543	30.5	0.1
9	8	125	96	0	0	0.0	0.2
10	4	110	92	0	0	37.6	0.1!
11	10	168	74	0	0	38.0	0.5
12	10	139	80	0	0	27.1	1.4
13	1	189	60	23	846	30.1	0.3
14	5	166	72	19	175	25.8	0.5
4							•

In [3]:

```
diabetes.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

In [4]:

diabetes.describe()

Out[4]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Diabete
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							>

In [5]:

diabetes.isnull().sum()

Out[5]:

Pregnancies	0
Glucose	0
BloodPressure	0
SkinThickness	0
Insulin	0
BMI	0
DiabetesPedigreeFunction	0
Age	0
Outcome	0
dtyne: int6/	

In [6]:

```
#zeros or missing values will be replaced by the mean of that particular column
cols_clean = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFu

for i in cols_clean:
    diabetes[i] = diabetes[i].replace(0,np.NaN)
    cols_mean = int(diabetes[i].mean(skipna=True))
    diabetes[i] = diabetes[i].replace(np.NaN,cols_mean)
data = diabetes
data.head(15)
```

Out[6]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction
0	6	148.0	72.0	35.0	155.0	33.6	0.6
1	1	85.0	66.0	29.0	155.0	26.6	0.3
2	8	183.0	64.0	29.0	155.0	23.3	0.6
3	1	89.0	66.0	23.0	94.0	28.1	0.10
4	0	137.0	40.0	35.0	168.0	43.1	2.2
5	5	116.0	74.0	29.0	155.0	25.6	0.2
6	3	78.0	50.0	32.0	88.0	31.0	0.2
7	10	115.0	72.0	29.0	155.0	35.3	0.1
8	2	197.0	70.0	45.0	543.0	30.5	0.1
9	8	125.0	96.0	29.0	155.0	32.0	0.2
10	4	110.0	92.0	29.0	155.0	37.6	0.1!
11	10	168.0	74.0	29.0	155.0	38.0	0.5
12	10	139.0	80.0	29.0	155.0	27.1	1.4
13	1	189.0	60.0	23.0	846.0	30.1	0.3
14	5	166.0	72.0	19.0	175.0	25.8	0.5
4							•

In [7]:

```
x = diabetes.iloc[:,:-1].values
y = diabetes.iloc[:,8].values
```

In [8]:

```
print(x)
                     72.
                                                             ]
[[
    6.
           148.
                                   33.6
                                             0.627
                                                     50.
    1.
            85.
                     66.
                                   26.6
                                             0.351
                                                     31.
                                                             ]
                                                     32.
                                                             1
    8.
           183.
                     64.
                                   23.3
                                             0.672
    5.
           121.
                     72.
                                   26.2
                                             0.245
                                                     30.
                                                             1
 ]
           126.
                     60.
                                   30.1
                                             0.349
                                                     47.
    1.
                                             0.315
                                                     23.
                                                             ]]
    1.
            93.
                     70.
                                   30.4
```

In [9]:

```
print(y)
[1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0
```

```
1010110100101100101001010111001010001
1000010010010011100000010001011110
1001001011100111010101000010]
```

In [10]:

```
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x,y,test_size=0.2)
```

In [11]:

```
# Feature Scaling to bring the variable in a single scale
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

In [13]:

```
# Fitting Naive Bayes to the Training set
from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(X_train, y_train)
```

Out[13]:

GaussianNB()

In [15]:

```
classifier.score(X_test,y_test)
```

Out[15]:

0.7662337662337663

In [17]:

```
#Predicting the Test set results
y_pred = classifier.predict(X_test)
y_pred
```

Out[17]:

In [18]:

```
# confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test,y_pred)
cm
```

Out[18]:

```
array([[83, 12], [24, 35]], dtype=int64)
```

In [19]:

```
from sklearn.metrics import accuracy_score
acc = accuracy_score(y_test,y_pred)
print("Accuracy : {0:.2f}%".format(acc*100))
```

Accuracy : 76.62%

In [20]:

```
from sklearn import metrics
print(metrics.classification_report(y_test,y_pred))
```

	precision	precision recall f1-sc		support
0	0.78	0.87	0.82	95
1	0.74	0.59	0.66	59
accuracy			0.77	154
macro avg	0.76	0.73	0.74	154
weighted avg	0.76	0.77	0.76	154

In []: