Propensity Score Matching Hebrew University of Jerusalem Morning Session

Alberto Stefanelli and Prof. Sharon Gilad

2019-12-11

Section 1

The Workshop

About me: Alberto

- PhD Candidate at University of Leuven (Ku Leuven), Belgium
- Previously...
 - MA at Central European University
- My research:
 - Radial Beliefs System: Measurement, Causes, Consequences
 - Polarization: Measurement, Consequences
 - Methods: Causality, experimental and semi-experimental design, SEM etc.
- Contact: alberto.stefanelli@kuleuven.be
- Website: www.albertostefanelli.com
- Twitter: @sergsagara

About me: Sharon

- Professor at Hebrew University, Jerusalem
- Previously...
 - PhD at Oxford, Nuffield Collage
 - Researcher at King Collage
- My research:
 - Public Administration
 - Regulation and agenda setting
 - Response of civil servants and bureaucrats to public pressures
- Methods:
 - Mixed-Methods
- Contact: sharon.gilad@mail.huji.ac.il

Your turn

- Name?
- Affiliation? Country?
- Research interests?
- Previous experience with experimental designs?
- Previous experience with R?
- Why are you taking this workshop?

Structure (1/2)

Morning (tentative)

- 10.00 10.30 Get to know each other and WS Presentation
 - Who are we?
 - Your turn
 - Workshop presentation and rational
- 10.30 11.00 "The problem of Causality"
 - Terminology
 - Equifinality and Manipulation
- 3 11.00 11.30 Potential outcomes framework
 - General concept
 - The fundamental problem
- **11.30 11.45 Coffee Break**
- 11.45 12.30 Casual Estimands
 - Differences between ATE ATT ATC ?
 - Exercise 1

Structure (1/2)

Afternoon (tentative)

- 14.00 14.15 Recap
- 4 14.15 15.45 Propensity Matching Score
 - Matching, PS, Weights: Making sense of the terms
 - Why we should use matching
- **14.45 15.30 How it works**
 - Steps
 - What is happening under the hood
- **15.30 16.00**
 - Selection on the observables
 - Covariate Balancing
- **16.00 16.15** Break
- 16.15 16.45 Lalonde dataset
 - Description
 - Assessing covariate Balancing
 - Estimating the ATE
- 16.45 17.00 Setting up R Studio
- 17.00 17.15 Look at some code
- 17.15 18.15 Exercise: Casual inference with Observational data

Section 2

Where to find the material

Where to find the material

- On my website
 - Slides Morning:
 - Slides Afternoon:
 - Set up R: https://albertostefanelli.com/files/set_up.html
 - Coding Example:
 - Script for the Exercise:
- Oata
 - From my github
 - From the replication dataset https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi: 10.7910/DVN/TAXCB3

Goal of the Workshop

- Theoretical foundations
 - Understanding Causal Analysis
 - Understanding Propensity Score Matching
- Technical skills
 - Gain visual understanding of data
 - · Learning by doing in R
- Have fun!

Reading list I

Recommended:

- Morgan, S. L., & Winship, C. (2015). Counterfactuals and Causal Inference.
 526. Chapter 2 p.37-68
- Hernán MA, Robins JM (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC." Chapter 7 p.83-98
- Bauer, P. C. (2015). Negative Experiences and Trust: A Causal Analysis of the Effects of Victimization on Generalized Trust. European Sociological Review, 31(4), 397–417. https://doi.org/10.1093/esr/jcu096
- Caliendo, M., & Kopeinig, S. (2008). Some practical guidance for the implementation of propensity score matching. Journal of economic surveys, 22(1), 31-72.
- Bartels, L. (2013). Your genes influence your political views. So what?
 Washington Post. Retrieved from https://www.washingtonpost.com/news/monkeycage/wp/2013/11/12/your-genes-influence-your-political-views-so-what/

Reading list II

 Bartlett, J. (2016). Why you shouldn't use propensity score matching – The Stats Geek. Retrieved November 15, 2019, from https://thestatsgeek.com/2016/09/07/why-you-shouldnt-use-propensity-score-matching/

Optional:

- Keele, Luke. 2015. "The Statistics of Causal Inference: A View from Political Methodology." Polit. Anal. 23 (3): 313–35
- Felix J. Thoemmes & Eun Sook Kim (2011) A Systematic Review of Propensity Score Methods in the Social Sciences, Multivariate Behavioral Research, 46:1, 90-118, DOI: 10.1080/00273171.2011.540475
- Hedström, Peter, and Petri Ylikoski. 2010. "Causal Mechanisms in the Social Sciences." Annu. Rev. Sociol. 36 (1): 49–67.

Section 3

The Problem of Causality

Experimental logic

- Does this workshop (treatment X) affect your knowledge on PS (outcome Y)?
- ② Discussion
 - Q: Is it sufficient to measure knowledge before the lecture?
 - Q: If yes, when should I measure knowledge after the lecture?
 - Q: Is that a randomized experiment here?
 - Q: What's the problem if someone knows everything beforehand?

Casual analysis: The basic terminology

- In broader terms, causality is a connection of phenomena that connects one element (the cause) with another elements (effect/outcome/response)
 - It is a **process**. The 1st element of this process is responsible for 2nd and the 2nd dependent on the 1st.
 - Causality is temporally bound. The cause(s) must precede the effect and all lie in its past.
- Terminology (many terms that refers to same phenomena)
 - "Causality" = "Causation" = "Cause and Effect" = "Casual Mechanism"
 - Treatment (yes, it is a variable) = Cause = treatment and control groups = pre-treatment post-treatment
 - Outcomes/response (yes, it is a variable) = Effect

Casual analysis: Equifinality

- Social reality is complex. An outcome can be a cause of many other effects.
 - This is called equifinality.
 - It is what Hume (1772) summaries in the billiard ball example.

Figure 1: Equifinality

Casual analysis: Identification

- Q: At age 40 both Cory and Janneke have an income (Y) of 3000 Euros. How can this be an example for equifinality?
- The longer the time gap between treatment and outcome
 - the more fuzzy the theory (causal chain).
 - the more likely something else, unrelated happened in between.
- Intervening mediating variables can make the process difficult to identify (K. Imai et al. 2011)
 - Want to think more about it?
 - Read "Republic should pray for rain" Gomez, Hansford, and Krause 2007,
 - Weather —-> voter turnout (Gomez, Hansford, and Krause 2007)
 - Q: Are there intervening phenomena?

Casual Analysis: Manipulation (1/2)

- Example of the causes in the social sciences
 - Income
 - Social class
 - Exposure to political news/information
 - Education
 - Genes
 - Personality traits
 - Gender
 - Ethnic background
 - Exposure to particular policy intervention
- Q: The effect is the exam result: What is the difference between the "causes" in the following examples?
 - She did well on the exam because she is a woman.
 - She did well on the exam because she studied for it.
 - She did well on the exam because she was properly coached by her teacher.

Casual Analysis: Manipulation (2/2)

- No Causation WITHOUT Manipulation" (Holland 1986, 954–55, 959; Rubin 1975, 238)
 - "[C]auses are only those things that could, in principle, be treatments in experiment" (Holland 1986, 954)
 - "[C]auses are experiences that units undergo and not attributes that they possess" (Holland 2003: 8)

Section 4

Potential Outcome Framework

Potential Outcome Framework: A Definition

- Developed by Fisher (1935) and Neyman (1923). After it has being forcefully advocated in a series of papers by Rubin (1974, 1977).
- Contrasts between observed exposure to one state and what-if counter-factual exposure to another state
 - What would have happened if a particular unit exposed to treatment is at the same time exposed to the control (Imbens and Rubin 2015, 4)
 - Comparison of potential (NOT observed) outcomes of the same individual at the same moment in time post-treatment (Imbens and Rubin 2015)

Potential Outcome framework: A visualization (1/2)

Figure 2: Graph POF

Potential Outcome framework: The central question

Q: What is the **Fundamental Problem of Casual Inference**?

Potential Outcome framework: The Answer

• Fundamental Problem of Casual Inference: we can never simultaneously measure the response in case they did participate, and the response in case they did not participate. (Holland 1986)

Potential Outcome framework: A visualization (2/2)

Figure 3: Graph POF

Resolving the fundamental problem

- Single Individual-level Treatment Effect: Difference in potential outcome for unit i at time t post-treatment
- Missing data problem
- Estimation requires filling in the missing counterfactual (the missing data point)
- Basically, the potential outcomes are the data that we wish we had to estimate causal treatment effects

Unit	D _i (Aspirin: Yes/No)	Y _i (Pain: Yes/No)	Y _i 1 (Pain Aspirin:Yes)	Y _i 0 (Pain Aspirin:No)
Alberto	Yes	No	No	?

Estimating the ITE

- Definition of "causal effect" does not require more than one unit (Imbens and Rubin 2015, 8)
- However, estimation requires multiple observations of either
 - same unit/individual (pre-post)
 - different units/individuals (control treatment)
- ITE is unidentifiable meaning that we cannot estimate it.

So What?

So what?

The Average Treatment Effect (ATE) (1/3)

- ATE= The average difference in the potential outcomes averaged over the entire population of interest (at a particular moment in time)
- Averaging allows us to borrow information from other units
- Meaning that we fill up the missing counterfactuals
- We circumnavigate the fundamental problem of casual inference

The Average Treatment Effect (2/3)

- ATE = $E[Y_i1 Y_i0]$
- Naive estimate of ATE: Difference between expected values in treatment and control
- Example: Effect of Academic college degree on a productivity

Units	D_i (Collage: Yes/No)	Y_i (Level of Productivity)
Chris	Yes	40
Julia	Yes	50
Paul	No	20
Trump	No	10
Fred	No	40
Diego	No	30

The Naive ATE

- Q: How can we calculate the ATE?
- 2 Exercise 1: Calculate the naive ATE
- **3** Hint $\sum_{i=1}^{N} (Y_i 1) \sum_{i=1}^{N} (Y_i 0)$

Units	D_i (Collage: Yes/No)	Y_i (Level of Productivity)
Chris	Yes	40
Julia	Yes	50
Paul	No	20
Trump	No	10
Fred	No	40
Diego	No	30

The Naive ATE: Results

$$ATE = (40 + 50)/2 - (20 + 10 + 40 + 30)/4$$

= $45 - 25$
= 20

Simple mean difference

The Average Treatment Effect (ATE)

- ATE can be **decomposed** as a function of 5 quantities (e.g. Keele 2015b, 4):
 - π =Proportion of the sample that received the treatment (e.g., 2/6=0.33)
 - $E[Y_i 1 | D_i = 1]$: Average outcome under treatment for units in treatment condition
 - $E[Y_i 0 | D_i = 0]$: Average outcome under control for those in the control condition
 - $E[Y_i 1 | D_i = 0]$: Average outcome under treatment for those in the control condition
 - $E[Y_i 0 | D_i = 1]$: Average outcome under control for units in treatment condition

Units	D _i (Collage: Yes/No)	Y_i (Level of Productivity)	Productivity $Y_i 1 D_i = 1 (Yes)$	Productivity $Y_i 0 D_i = 0 (No)$
Chris	Yes	40	40	?
Julia	Yes	50	50	?
Paul	No	20	?	20
Trump	No	10	?	10
Fred	No	40	?	40
Diego	No	30	?	30

The Omniscient ATE

- Let's assume we are omniscient creatures and we can observe the quantities that were before unobservable
 - $E[Y_i 1 | D_i = 0]$: Average outcome under treatment for those in the control condition
 - $E[Y_i0|D_i=1]$: Average outcome under control for units in treatment condition

Units	D _i (Collage: Yes/No)	Productivity Y_i	Productivity Y_i1	Productivity Y_i 0
Chris	Yes	40	40	35
Julia	Yes	50	50	20
Paul	No	20	40	20
Trump	No	10	25	10
Fred	No	40	40	40
Diego	No	30	35	30

The Omniscient ATE: Exercise I

- 2 Exercise 2: Calculate the ATE with these new data
 - Q: Do we have any missing information?
 - Hint:

$$E[Y_i1 - Y_i0] = (\pi) (E[Y_i1|D_i = 1] - E[Y_i0|D_i = 1]) + (1 - (\pi)) (E[Y_i1|D_i = 0] - E[Y_i0|D_i = 0])$$

The Omniscient ATE: Calculation I

- ATT = average treatment effect for those that typically are (choose to be) treated based on counterfactual comparison.
- **2** ATT= $E[Y_i 1 | D_i = 1] E[Y_i 0 | D_i = 1]$

$$ATT = (40 + 50)/2 - (40 + 25 + 40 + 35)/4$$

$$= (90/2) - 140/4$$

$$= 45 - 35$$

$$= 10$$

The Omniscient ATE: Calculation II

- ATC = average treatment effect for those that typically are (choose to be)
 NOT treated based on counterfactual comparison.
- **2** ATC= $E[Y_i 1 | D_i = 0] E[Y_i 0 | D_i = 0]$

$$ATC = (35 + 20)/2 - (40 + 25 + 40 + 35)/4$$
$$= (55/2) - (100/4)$$
$$= 27.5 - 25$$
$$= 2.5$$

The Omniscient ATE: Calculation III

- ATE is just the sum from the effect among the treated and the effect among the control
- Easy as that !

$$ATE = ATT + ATC$$
$$= 10 + 2.5$$
$$= 12.5$$

- ATE is 12.5 and NOT 20
- ② Q: Why is this the case?