

第三部分 微机原理与接口

1章 接口电路及应用

14.1 I/O接口

最大模式

1 接口和端口的关系

- > 采用I/O独立编址方式
- ➤ I/O操作只使用20根地址线中的16根: A₁₅~A₀
- ➤ 可寻址的I/O端口数为64K(65536)个
- ➤ I/O地址范围为0~FFFFH
- ➤ IBM PC只使用了1024个I/O地址(0~3FFH)

接口中的端口地址分别为: 0000,0010,1111,00XX 2F0H-2F3H

14.2 简单接口芯片

1 74LS244三态门

- > 含8个三态门的集成电路芯片
- ▶ 在外设具有数据保持能力时用来 输入接口数据

例,编程判断图中的开关状态, 若全闭合则转NEXT1,否则转 NEXT2。

地址范围: 83FCH-83FFH

可以任选其中一个地址如 83FCH作为该接口地址

MOV DX, 83FCH
IN AL, DX
AND AL, 0FFH
JZ NEXT1
JMP NEXT2

USTC AT

74LS273锁存器

S	CP	\mathbf{D}_i	Q_i
0	X	X	0
1	A	1	1
1	A	0	0

- ▶8个D触发器
- > 具有对数据的锁存能力
- ▶只能用于数据的输出接口

74LS374锁存器

D_i	СР	ŌĒ	Q_i
1	A	0	1
0	A	0	0
X	X	1	高阻

- ▶含三态的8D触发器。
- > 既可以做输入接口,也可以做输出接口。

共阳极数码管结构示意图

根据开关状态在7段数码管上显示数字或符号, 编程实现当4个开关的状态分别为0000~1111时, 在7段数码管上对应显示'0'~'F'。

显示符号与输出数据对应表

符号	形状	7段码 Dp gfedcba D7 D0	符号	形状	7段码 Dp gfedcba D7 D0
'0'		00111111,3FH	'8 '	8	01111111,7FH
'1'	- 1	00000110,06Н	'9 '	<u> </u>	01100111,67H
'2'	ΩŪ	01011011,5BH	'A'	Œ	01110111,77H
'3'		01001111,4FH	'B'	Ū	01111100,7CH
'4'	Ţ	01100110,66H	'C'		00111001,39H
'5'	5	01101101,6DH	Ď	7[]	01011110,5EH
'6'	8	01111101,7DH	'E'		01111001,79H
'7 '		00000111,07H	' F '	F	01110001,71H

Seg7 DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H, 7FH,67H,77H,7CH,39H,5EH,79H,71H

LEA BX, Seg7

MOV AH, 0

GO: IN AL, 0F1H

AND AL, 0FH

MOV SI, AX

MOV AL, [BX+SI]

OUT 0F0H, AL

JMP GO

14.3 基本输入输出方式

要求外设总 是处于准备 好状态

缺点 只适用于简单外设, 适应范围较窄

优点 软件及接口硬 件简单

- 《 仅当条件满足时才能进行数据传送;
- 多每满足一次条件只能进行一次数据传送。
- 》适用场合:
 - 外设并不总是准备好
 - 对传送速率和效率要求不高
- 》工作条件:
 - 外设应提供设备状态信息
 - 接口应具备状态端口

>> 单个外设的查询工作方式流程图

单个外设的查询工作方式流程图

查询工作方式的例子—数据输出

外设状态端口地址为 03FBH, 第5位(bit5)为 状态标志(=1忙, =0准 备好)

试画出其电路图,并 将BUF中的100个字节 数据输出。

外设数据端口地址 为03F8H,写入数据 会使状态标志置1; 外设把数据读走后 又把它置0。

状态端口地址: 0000 0011 1111 1011 3FBH

数据端口地址: 0000 0011 1111 1000 3F8H

LEA SI,BUF MOV CX,100

AGAIN: MOV DX,03FBH

WAITT: IN AL,DX

TEST AL,20H

JNZ WAITT

MOV DX,03F8H

MOV AL, [SI]

OUT DX, AL

INC SI

LOOP AGAIN

HLT

💖 >>> 多个外设时查询工作方式

■ 优点:

■ 软硬件比较简单

■ 缺点:

CPU效率低,数据传送的实时性差,速度较慢

