Brief Introduction to Information Design

Alexey Makarin

May 25, 2020

Mechanism Design and Information Design

Mechanism Design

- Fix an economic environment and information structure
- Design the rules of the game to get a desirable outcome

Information Design

- Fix an economic environment and rules of the game
- Design an information structure to get a desirable outcome

Mechanism Design and Information Design

Mechanism Design

- Can compare particular mechanisms
 - E.g., first-price versus second-price auctions
- Can work with space of all mechanisms
 - E.g., Myerson's optimal mechanism, efficient mechanisms

Information Design

- Can compare particular information structures
 - Linkage principle: Milgrom-Weber (1982)
 - Information sharing in oligopoly: Novshek-Sonnenschein (1982)
- Can work with space of all information structures
 - E.g., "Bayesian Persuasion" by Kamenica-Gentzkow (2011)

This Lecture

- Leading Examples (adapted from Kamenica-Gentzkow, 2011);
- @ General framework (in words);
- Application to FPSB.

Bank Run: One Depositor and No Initial Information

• A bank depositor is deciding whether to run from the bank if he assigns a probability greater than 1/2 to a bad state:

Payoff	θ_{G}	θ_B
Stay	1	-1
Run	0	0

- Depositor knows only the probability of bad state, which is 2/3.
- Then, the outcome distribution with no prior information:

Outcome	θ_{G}	θ_{B}
Stay	0	0
Run	$\frac{1}{3}$	$\frac{2}{3}$

Probability of a run is 1.

Optimal Information Design with One Depositor

- The regulator cannot stop the depositor withdrawing.
 - But it can choose what information is made available to prevent withdrawals!
- Best information structure:
 - Tell the depositor that the state is bad exactly often enough so that he will stay if he doesn't get the signal:

Outcome	θ_{G}	θ_B
Stay (intermediate signal)	$\frac{1}{3}$	$\frac{1}{3}$
Run (bad signal)	0	$\frac{1}{3}$

- Think of the regulator making a recommendation to the depositor subject to an obedience constraint (i.e., that it is optimal for the depositor to follow it).
- Probability of run is 1/3.

Lessons

- Wlog, can restrict attention to information structures where each player's signal space is equal to his action space.
 - Similar to revelation principle in mechanism design:
 - Wlog, we can restrict attention to mechanisms where each player's message space is equal to his type space.

Bank Run: One Depositor with Initial Information

- If the state is good, with probability 1/2, the depositor will already have observed a signal t_G saying that the state is good.
- Outcome distribution with no additional information:

Outcome	θ_G, t_G	θ_G, t_0	θ_B, t_0
Stay	$\frac{1}{6}$	0	0
Run	0	$\frac{1}{6}$	$\frac{2}{3}$

• Probability of run is 5/6.

Optimal Information Design with One Depositor with Initial Information

- Best information structure:
 - tell the depositor that the state is bad exactly often enough so that he will stay if he doesn't get the signal:

Outcome	θ_G, t_G	θ_G, t_0	θ_B, t_0
Stay	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
Run	0	0	$\frac{1}{2}$

• Probability of run is 1/2.

Is Initially More Informed Depositor Good or Bad?

- With no information design:
 - With no initial information, probability of run is 1.
 - With initial information, probability of run is 5/6.
- With information design:
 - With no initial information, probability of a run is 1/3.
 - With initial information, probability of a run is 1/2.

Is Initially More Informed Depositor Good or Bad?

- With no information design:
 - In this example, more initial information is better for the regulator.
- With information design:
 - More initial information is always bad for the regulator!

Lessons

- Wlog, can restrict attention to information structures where each player's signal space is equal to his action space.
- 2 Prior information limits the scope for information design.

Bank Runs: Two Depositors and No Initial information (and Strategic Complements)

 A bank depositor would like to run from the bank if the state is bad OR the other depositor is running:

State θ_G	Stay	Run	State θ_B	Stay	Run
Stay	1	-1	Stay	-1	-1
Run	0	0	Run	0	0

• Assume that the probability of the bad state is $\frac{2}{3}$.

Bank Runs: Two Depositors and No Initial information

Outcome distribution with no information:

State θ_G	Stay	Run	State θ_B	Stay	Run
Stay	0	0	Stay	0	0
Run	0	$\frac{1}{3}$	Run	0	<u>2</u> 3

- Best information structure:
 - Tell the depositors that the state is bad exactly often enough so that they will stay if they don't get the signal:

State θ_G	Stay	Run	State θ_B	Stay	Run
Stay	$\frac{1}{3}$	0	Stay	$\frac{1}{3}$	0
Run	0	0	Run	0	$\frac{1}{3}$

• In this case, it is optimal to transmit a public signal.

Bank Runs: Two Depositors, No Initial information, and Strategic Substitutes

- Previous example had strategic complements
- Strategic substitutes example: A bank depositor would like to run from the bank if the state is bad AND the other depositor is staying:

State θ_G	Stay	Run	State θ_B	Stay	Run
Stay	1	1	Stay	-1	1
Run	0	0	Run	0	0

• Continue to assume that the probability of the bad state is $\frac{2}{3}$.

Bank Runs: Two Depositors and No Initial information

- Outcome distribution with no information: mixed strategy equilibrium.
- Best information structure:
 - Tell the depositors that the state is bad exactly often enough so that they will stay if they don't get the signal:

State θ_G	Stay	Run	State θ_B	Stay	Run
Stay	$\frac{1}{3}$	0	Stay	$\frac{4}{9}$	$\frac{1}{9}$
Run	0	0	Run	$\frac{1}{9}$	0

• In this case, it is optimal to transmit private signals.

Lessons

- Wlog, can restrict attention to information structures where each player's signal space is equal to his action space.
- 2 Prior information limits the scope for information design.
- Public signals optimal if actions are strategic complementarities; private signals optimal if actions are strategic substitutes

General Formulation (in words)

- Fix a game with incomplete information about payoff states.
- Ask what could happen in equilibrium for any additional information that players could be given.
- Equivalent to looking for joint distribution over payoff states, initial information signals and actions satisfying an obedience condition ("Bayes correlated equilibrium").

Application: First Price Auctions

- Typical cases: independent private values, common values, etc.
- But what if a planner sent signals about values of others? Can seller gain in revenue by revealing some information to players?
- Can one characterize the space of possible outcomes for all possible information structures?
- Information design approach gives you an answer: Bergemann, Brooks, and Morris (Econometrica, 2017)

Application: First Price Auctions

- 2 bidders with valuations uniformly distributed on [0, 1].
- Independent Private Values
 - Each bidder bids half his value
 - Revenue is expectation of low value = 1/3
 - Total efficient surplus is expectation of high value = 2/3
 - Bidder surplus is 1/3

• Nonnegative bidder surplus.

Nonnegative revenues.

• Efficient social surplus: always give the object to the bidder with the highest valuation.

 Least efficient allocation: always give the object to the bidder with the lowest valuation.

Surplus Trapezoid

• So far: feasibility and participation constraints.

Incentives Imposes Restrictions: Unknown Values

• Incentive constraints (optimal bidding) add new constraints (even if you don't know your own value!)

Information Generates Incentives: Known Values

• Each bidder i knows his own value v_i .