

Why feature Selection?

Feature Selection Method Vs Dimensionality Reduction

Feature Selection Method

It selects the important feature among the input features variable.

Based on the user input it selects the number of feature

No change in the data value

www.hopelearning.net

Dimensionality Reduction

The input variable values are converted into cluster feature.

Based on the user input it selects the number of clusters

Change in the data value

Feature Selection Method

It selects the important feature among the input features variable.

Based on the user input it selects the number of feature

No change in the data value

	All the feature	e Variable	
House	Sale price (100\$)	Size (sgft)	Age (years)
Avalon	2050	2650	13
Cross Winds	2080	2600	*
The White House	2150	2554	6
The Rectory	2150	2921	3
Larchwood	1999	2580	4
Orchard House	1900	2580	4
Shangri-La	1800	2774	2
The Stables	1560	1920	1
Cobweb Cottage	1450	2150	*

After the feature selection method

1449

1710

Size (sqft)	Age (years)	
2650	13	
2600	*	
2554	6	
2921	3	
2580	4	
2580	4	
2774	2	
1920	1	
2150	*	AND THE REAL PROPERTY.
1710	@nope_a	tificial_intelligence

Nairn House

13

 I_4

Dimensionality Reduction

The input variable values are converted into cluster feature.

Based on the user input it selects the number of clusters

House	Sale price (100\$)	Size (sqft)	Age (years)
Avalon	2050	2650	13
Cross Winds	2080	2600	*
The White House	2150	2554	6
The Rectory	2150	2921	3
Larchwood	1999	2580	4
Orchard House	1900	2580	4
Shangri-La	1800	2774	2
The Stables	1560	1920	1
Cobweb Cottage	1450	2150	*
Nairn House	1449	1710	1

Wpc1	Wpc2	Wpc3	Wpc4
7	26	6	60
1	29	15	52
11	56	8	20
11	31	8	47
7	52	6	33
11	55	9	22
3	71	17	6
1	31	22	44
2	54	18	22
21	47	4	26
gence 1	40	23	34

After the PCA method

hange in the data value.

Hope Artificial Intellig

10628hope_artificial_intelligence

Carriarvitanianiona

P

Dataset

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p	specialisation	mba_p	status	salary
0	1	M	67.00	Others	91.00	Others	Commerce	58.00	Sci&Tech	No	55.0	Mkt&HR	58.80	Placed	270000.0
1	2	M	79.33	Central	78.33	Others	Science	77.48	Sci&Tech	Yes	86.5	Mkt&Fin	66.28	Placed	200000.0
2	3	M	65.00	Central	68.00	Central	Arts	64.00	Comm&Mgmt	No	75.0	Mkt&Fin	57.80	Placed	250000.0
3	4	M	56.00	Central	52.00	Central	Science	52.00	Sci&Tech	No	66.0	Mkt&HR	59.43	Not Placed	NaN
4	5	M	85.80	Central	73.60	जCentral	Commerce	73.30	Comm&Mgmt	No	96.8	Mkt&Fin	55.50	Placed	425000.0
			•••	***		***	***	***	•••		***	***	***	***	
210	211	M	80.60	Others	82.00	Others	Commerce	77.60	Comm&Mgmt	No	91.0	Mkt&Fin	74.49	Placed	400000.0
211	212	M	58.00	Others	60.00	Others	Science	72.00	Sci&Tech	No	74.0	Mkt&Fin	53.62	Placed	275000.0
212	213	M	67.00	Others	67.00	Others	Commerce	73.00	Comm&Mgmt	Yes	59.0	Mkt&Fin	69.72	Placed	295000.0
213	214	F	74.00	Others	66.00	Others	Commerce	58.00	Comm&Mgmt	No	70.0	Mkt&HR	60.23	Placed	204000.0
214	215	M	62.00	Central	58.00	Others	Science	53.00	Comm&Mgmt	No	89.0	Mkt&HR	60.22	Not Placed	NaN

215 rows × 15 columns

SelectK Algorithm

Chi Square, RMS

	1
ssc_p	hsc
67.00	91.00
79.33	78.33
65.00	68.00
56.00	52.00
85.80	73.60
•••	
80.60	82.00
58.00	60.00
67.00	67.00
74.00	66.00
62.00	58.00

-
salary
270000.0

210000.0

200000.0

250000.0

NaN

425000.0

...

400000.0

275000.0

295000.0

204000.0

NaN

Chi Square= 0.85

SelectK Algorithm

Chi Square, RMS

ssc_p	hsc_p	degree_p
67.00	91.00	58.00
79.33	78.33	77.48
65.00	68.00	64.00
56.00	52.00	52.00
85.80	73.60	73.30

80.60	82.00	77.60
58.00	60.00	72.00
67.00	67.00	73.00
74.00	66.00	58.00
62.00	58.00	53.00

Chi Square=-0.75

Select K Best

K=3

Classification

mercult - DataFrame

Index	Logistic	SVMI	SVMnI	KNN	Navie	Decision	Random
ChiSquare	0.94	0.94	0.95	0.89	0.83	0.96	0.95

Regression

\blacksquare	resul	t -	Data	Frame
-	10301			IIIIII

Index	Linear	SVMI	SVMnI	Decision	Random
ChiSquare	0.632365	0.597382	0.934341	0.565972	0.895399

#learnaiwithramisha

Recursive Feature Elimination

ssc_p	
67.00	
79.33	
65.00	
56.00	
85.80	
80.60	
58.00	
67.00	
74.00	
62.00	

salary
270000.0
200000.0
250000.0
NaN
425000.0
22.02
400000.0
275000.0
295000.0
204000.0

NaN

machine learning algorithm 1=0.78 machine learning algorithm 2=0.80

rnaiwithramisha

Recursive Feature Elimination

ssc_p	hsc_p	salary
67.00	91.00	270000.0
79.33	78.33	200000.0
65.00	68.00	250000.0
56.00	52.00	NaN
85.80	73.60	425000.0
80.60	82.00	400000.0
58.00	60.00	275000.0
67.00	67.00	295000.0
74.00	66.00	204000.0
62.00	58.00	NaN

machine learning algorithm 1=0.78 machine learning algorithm 2=0.80

Recursive Feature Elimination

Classification

f	Index	Logistic	SVMI	SVMnI	KNN	Navie	Decision	Random
	Logistic	0.94	0.94	0.94	0.94	0.94	0.94	0.94
4	SVC	0.87	0.87	0.87	0.87	0.87	0.87	0.87
	Random	0.94	0.94	0.94	0.94	0.9	0.91	0.92
	DecisionTree	0.97	0.97	0.97	0.96	0.84	0.96	0.97

Recursive Feature Elimination

Each Variable with output

Regression

m result - Da	ataFrame				-	×
Index	Linear	SVMI	Decision	Random		
Linear	0.441961	0.262153	0.441961	0.441816		
SVC	0.441961	0.262153	0.441961	0.441816		
Random	0.664893	0.609652	0.965961	0.916304		
DecisionTree	0.676174	0.670691	0.933504	0.887256		