Section 3.1

Def 3.1: Subspace Topology

DEFINITION 3.1. Let X be a topological space and let Y be a subset of X.

Define $\mathcal{T}_Y = \{U \cap Y | U \text{ is open in } X\}$. This is called the subspace topology on Y and, with this topology, Y is called a subspace of X. We say that $V \subset Y$ is open in Y if V is an open set in the subspace topology on Y.

Def 3.2: Standard Topology on a subspace Y

DEFINITION 3.2. Let Y be a subset of \mathbb{R}^n . The standard topology on Y is the topology that Y inherits as a subspace of \mathbb{R}^n with the standard topology.

Def 3.3: Closed in a Subspace

DEFINITION 3.3. Let X be a topological space, and let $Y \subset X$ have the subspace topology. We say that a set $C \subset Y$ is closed in Y if C is closed in the subspace topology on Y

Thm 3.4: Showing a set is closed in a subspace

THEOREM 3.4. Let X be a topological space, and let $Y \subset X$ have the subspace topology. Then $C \subset Y$ is closed in Y if and only if $C = D \cap Y$ for some closed set D in X

Thm 3.5: Basis for subspace

THEOREM 3.5. Let X be a topological space and B be a basis for the topology on X. If $Y \subset X$, then the collection

$$B_Y = \{B \cap Y | B \in \mathcal{B}\}$$

is a basis for the subspace topology on Y

Section 3.2

Def 3.6: Product Topology

DEFINITION 3.6. Let X and Y be topological spaces and $X \times Y$ be their product. The product topology on $X \times Y$ is the topology generated by the basis

$$\mathcal{B} = \{U \times V | U \text{ is open in } X \text{ and } V \text{ is open in } Y\}$$

Thm 3.7: Basis for product of two topologies

THEOREM 3.7. Let X and Y be topological spaces and $X \times Y$ be their product. Define

$$\mathcal{B} := \{U \times V | U \text{ is open in } X \text{ and } V \text{ is open in } Y\}$$

The collection \mathcal{B} is a basis for a topology on $X \times Y$

Thm 3.8: Products of bases form a basis

THEOREM 3.8. If \mathcal{C} is a basis for X and \mathcal{D} is a basis for Y, then

$$\mathcal{E} = \{C \times D | C \in \mathcal{C} \text{ and } D \in \mathcal{D}\}$$

is a basis that generates the product topology on $X \times Y$.

Thm 3.9: Subspace of a Product Topology

THEOREM 3.9. Let X and Y be topological spaces, and assume that $A \subset X$ and $B \subset Y$. Then the topology on $A \times B$ as a subspace of the product $X \times Y$ is the same as the product topology on $A \times B$, where A has the subspace topology inherited from X, and B has the subspace topology inherited from Y.

Thm 3.10: Interior of Product Topologies

THEOREM 3.10. Let A and B be subsets of topological spaces X and Y, respectively. Then $Int(A \times B) = Int(A) \times Int(B)$

Section 3.3

Def 3.11: Quotient Topology, Quotient Map, and Quotient Space

DEFINITION 3.11. Let X be a topological space and A be a set (that is not necessarily a subset of X). Let $p: X \to A$ be a surjective map. Define a subset U of A to be open in A if and only if $p^{-1}(U)$ is open in X. The resultant collection of open sets in A is called the **quotient topology induced by** p, and the function p is called a **quotient map**. The topological space A is called a **quotient space**.

Thm 3.12: Quotient Maps induce a Quotient Topology

THEOREM 3.12. Let $p: X \to A$ be a quotient map. The quotient topology on A induced by p is a topology.