Sieci neuronowe typu RBF

Polecenia tworzące sieć

```
net = newrb (we, wy, blad, spread, n max, disp) - polecenie tworzy sieć typu RBF
     we - macierz danych wejściowych
     wy – wektor zadanych danych wyjściowych
     blad – średni błąd kwadratowy sieci jaki chcemy osiągnąć
     spread – szerokość funkcji RBF
     n max – maksymalna ilość neuronów w sieci
     disp – krok, co jaki wyświetlany jest postęp w nauce sieci
Przykładowo:
     net = newrb(we, wy, 0.01, 1, 100, 1);
net = newrbe (we, wy, spread) - polecenie tworzy sieć typu RBF, z ilością neuronów równą ilości
                                  próbek
Przykład:
     we = load('dane sin1a i.txt'); we = we';
     wy = load('dane sin1a o.txt'); wy = wy';
     er = 0.01;
     spread = 1;
     net = newrb(we, wy, er, spread, 100, 1);
     ilosc neuronow = length(net.IW{1,1})
     we1 = linspace(min(we), max(we), 1000);
     wy1 = sim(net, we1);
     figure(2); plot(we1, wy1, '-', we, wy, '.');
     wy2 = sim(net, we);
     blad = abs(wy-wy2);
     figure(3); plot(blad);
Przykład dla danych 2-wejściowych:
     we = load('dane3d i.txt'); we = we';
     wy = load('dane3d o.txt'); wy = wy';
     er = 0.01;
     spread = 1;
     net = newrb(we, wy, er, spread, 200, 1);
     ilosc neuronow = length(net.IW{1,1})
     x lin = linspace(min(we(1,:)), max(we(1,:)), 50);
     y lin = linspace (min(we(2,:)), max(we(2,:)), 50);
     [X,Y] = meshgrid(x_lin,y_lin);
     Z = griddata(we(1,:), we(2,:), wy, X, Y, 'cubic');
     figure(1); mesh(X,Y,Z); axis tight; hold on;
     plot3(we(1,:), we(2,:), wy,'.'); title('Powierzchnia danych');
     wy2 = sim(net, we);
     blad = abs(wy-wy2);
     figure(2); plot(blad); title('Blad sieci');
```

Z1 = griddata(we(1,:), we(2,:), wy2, X, Y, 'cubic');

```
figure(3); mesh(X,Y,Z1); axis tight; hold on;
plot3(we(1,:), we(2,:), wy,'.'); title('Powierzchnia sieci');
```

Zadania do wykonania:

- 1. Dla wybranych plików z danymi:
 - a. zapoznać się z danymi
 - b. dobrać najkorzystniejszą szerokość neuronów RBF
 - c. dla badanych sieci przeprowadzić uczenie i porównać jakość wyników
- 2. Opracować samodzielnie skrypt, który:
 - a. podzieli dane na część uczącą i testującą w zadanej proporcji,
 - b. dobierze najkorzystniejszą wartość parametru spread sieci przy uczeniu z wykorzystaniem polecenia newrbe. W trakcie uczenia dane testujące powinny być wykorzystane do określenia momentu przerwania procesu zmniejszania parametru spread i do określenia rzeczywistej dokładności sieci.

<u>W sprawozdaniu</u> zamieszczamy raport z przeprowadzonych eksperymentów dla każdych badanych danych. Zamieścić należy także skrypty opracowane w czasie eksperymentów.

Opis plików z danymi:

Każdy zestaw danych składa się z dwóch plików. Końcówka '_i' w nazwie oznacza dane wejściowe, końcówka '_o' oznacza wyjścia zadane.

Plik(i)	Ilość wejść	Ilość	Opis
		wyjść	-
dane_sin1	1	1	Sinusoida (w kolejnych plikach próbkowana coraz
dane_sin2			rzadziej)
dane_sin3			37
dane_sin1a	1	1	Zaszumiona sinusoida (w kolejnych plikach próbkowana
dane_sin2a			coraz rzadziej)
dane_sin3a			
dane3d	2	1	Funkcja: $z = \sin(x) * \cos(y) / (x^2 + y^2 + 1)$
percep	2	1	Dane separowalne za pomocą 1 neuronu typu perceptron
dane_a			prosty
parity	5	1	Wyjście = 1 gdy suma wejść jest parzysta, 0 gdy nie
transak	6	1	Wejścia to: kwota, indeks firmy, godzina, typ osoby
			autoryzującej transakcję, dzień tygodnia, typ dnia (czy
			wolny czy nie)
			Wyjście to: wiarygodność transakcji w %
kapitan	3	1	Wyjście to ocena stopnia niebezpieczeństwa dla statku
			dokonana przez eksperta-kapitana (0, 0.5, 1)
			Wejścia to prędkości statku
diabet	8	1	Wejścia: dane o pacjentach
			Wyjście: ryzyko zachorowania na cukrzycę