From Mathematics to Generic Programming

Brooks Mershon

April 2017

11.3

Solution.

When n=2, we see that any element of S_n is a transposition or the identity permutation (do nothing). So commutativity trivially follows. When n>2, we might intuitively suspect that permutations are not commutative because functions are, in general, not commutative: $f(g(x)) \neq g(f(x))$. Intuitively, pure functions depend on their inputs, so swapping functions around in terms of composition seems like it would, in general, not preserve inputs for the respective functions.

Consider s_1 , s_2 , and s_3 as elements in S_n where n > 3. Let α be the permutation which transposes s_1 and s_2 and let $s\beta$ be the permutation which transposes s_2 and s_3 .

$$\alpha \circ \beta = (3 \ 1 \ 2)$$

$$\beta \circ \alpha = (2 \ 3 \ 1) \neq \alpha \circ \beta$$

We see that permutations which *intersect* will tend to not allow for commutativity, as this counterexample shows. S_n is not abelian for n > 3.