A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs

Juan Pablo Vielma¹ Shabbir Ahmed¹ George L. Nemhauser¹

¹School of Industrial and Systems Engineering Georgia Institute of Technology

CRM, Université de Montréal, July-August, 2007

Mixed Integer Non-Linear Programming (MINLP) Problems

$$z_{\mathsf{MINLPP}} := \max_{x,y} \quad cx + dy$$

$$s.t. \qquad (x,y) \in \mathcal{C} \subset \mathbb{R}^{n+p} \qquad (\mathsf{MINLPP})$$
 $x \in \mathbb{Z}^n$

- C is a convex compact set.
- Assume for simplicity that MINLPP is feasible.
- ▶ Also let NLPP be the nonlinear continuous relaxation obtained by eliminating $x \in \mathbb{Z}^n$.

Two Algorithm Approaches for MINLP

- Non-linear programming (NLP) based branch-and-bound algorithms (Borchers and Mitchell, 1994; Gupta and Ravindran, 1985, Leyffer 2001 and Stubbs and Mehrotra, 1999):
 - Analog of LP branch-and-bound for MILP.
 - ► Implementations: CPLEX 9.0 and 10.0 (ILOG, 2005) and I-BB solver in Bonmin (Bonami et al., 2005)
- Polyhedral relaxation based algorithms:
 - Outer approximation (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994)
 - Generalized Benders decomposition (Geoffrion, 1972).
 - LP/NLP-based branch-and-bound (Quesada and Grossmann, 1992).
 - Extended cutting plane method (Westerlund and Pettersson, 1995; Westerlund et al., 1994).
 - Implementations: I-OA, I-QG and I-Hyb solvers in Bonmin, MINLP solver FilMINT (Abhishek et al., 2006).

Branch-and-Bound Methods

- ▶ A branch-and-bound node is defined by $(l^k, u^k) \in \mathbb{Z}^{2n}$.
- ▶ The problem solved in a branch-and-bound node (l^k, u^k) is obtained by adding $l^k \le x \le u^k$ to some continuous relaxation of MINLPP.
- For example, NLP based branch-and-bound algorithms use

$$z_{\mathsf{NLPP}(l^k,u^k)} := \max_{x,y} \quad cx + dy$$
 s.t.
$$(x,y) \in \mathcal{C} \subset \mathbb{R}^{n+p} \quad (\mathsf{NLPP}(l^k,u^k))$$

$$x \ge l^k$$

$$x < u^k$$

▶ Polyhedral relaxation based branch-and-bound algorithms use several polyhedral relaxations of C.

Polyheral Relaxation of Convex Sets

▶ Bad news: Even approximating the d dimensional unit euclidean ball $\mathcal{B}^d(1)$ is hard. Any $\mathcal{P} \subset \mathbb{R}^d$ such that

$$\mathcal{B}^d(1) \subset \mathcal{P} \subset (1+\varepsilon)\mathcal{B}^d(1)$$

has at least $e^{(d/(2(1+\varepsilon))^2)}$ facets.

- To try to resolve this issue, current polyhedral based algorithms generate the relaxations dynamically.
- ▶ Possible solution: Projection of $\mathcal{P} \subset \mathbb{R}^{d+q}$ to \mathbb{R}^d can have an exponential (w/r to facets and variables of \mathcal{P}) number of facets.
 - Exploiting this Ben-Tal and Nemirovski (Ben-Tal and Nemirovski, 2001) gave a relaxation of $\mathcal{B}^d(1)$ with $O(d\log(1/\varepsilon))$ facets and extra variables.
 - Higher dimensional or lifted polyhedral relaxation of convex sets.

Using a fixed lifted polyhedral relaxation

- Lifted Linear Programming Relaxation of MINLPP:
 - ▶ Polyhedron $\mathcal{P} \subset \mathbb{R}^{n+p+q}$ such that:

$$\mathcal{C} \subset \{(x,y) \in \mathbb{R}^{n+p} : \exists v \in \mathbb{R}^q \text{ s.t. } (x,y,v) \in \mathcal{P}\}.$$

We get the relaxation of MINLPP (and NLPP):

$$z_{\mathsf{LPP}} := \max_{x,y,v} cx + dy$$
 s.t. $(x, y, v) \in \mathcal{P}$ (LPP)

- Basic lifted LP branch-and-bound algorithm:
 - ▶ Branch-and-bound algorithm that solves $LPP(l^k, u^k)$ in each node (l^k, u^k) trying to mimic NLP based branch-and-bound.
 - If \mathcal{P} is not tight enough we may have two problems:
 - 1. Integer feasible solutions might not be in C.
 - 2. Fathoming by integrality might fathom optimal solution.

Correcting the basic algorithm

1. Let $(x^*, y^*) \in (\mathcal{P} \setminus \mathcal{C}) \cap (\mathbb{Z}^n \times \mathbb{R}^p)$. We correct it to be feasible for \mathcal{C} using:

$$z_{\mathsf{NLPP}(x^*)} := \max_{y} cx^* + dy$$
 s.t.
$$(x^*, y) \in \mathcal{C} \subset \mathbb{R}^{n+p}. \quad (\mathsf{NLPP}(x^*))$$

- 2. If $l^k \neq u^k$ and solution x^* to LPP(l^k, u^k) is integer feasible we could have a problem:
 - Neither x^* (if $x^* \in \mathcal{C}$) nor the optimal solution to NLPP(x^*) are necessarily the optimal solutions to NLPP(l^k, u^k) (The problem we should really be solving in node (l^k, u^k))
 - ► Solution: Solve $NLPP(l^k, u^k)$ and hope this doesn't happen too often.
 - This can cause to effectively branch on an integer feasible solution.

Mixed Integer Conic Quadratic Programming Problems

$$z_{\mathsf{MICPP}} := \max_{x,y} \quad cx + dy$$
 s.t.
$$Dx + Ey \le f$$

$$(x,y) \in \mathcal{CC}_i \quad i \in \mathcal{I}$$

$$(x,y) \in \mathbb{R}^{n+p}$$

$$x \in \mathbb{Z}^n$$
 (MICPP)

 $ightharpoonup CC_i$ is a conic quadratic constraint of the form

$$\mathcal{CC} := \{(x, y) \in \mathbb{R}^{n+p} : ||Ax + By + \delta||_2 \le ax + by + \delta_0\}$$

▶ Also let CPP be the continuous relaxation obtained by eliminating $x \in \mathbb{Z}^n$.

Ben-Tal Nemirovski Polyhedral Relaxation of CPP

$$\begin{aligned} z_{\mathsf{LPP}(\varepsilon)} &:= \max_{x,y,v} & cx + dy \\ s.t. & Dx + Ey \leq f & (\mathsf{LPP}(\varepsilon)) \\ & (x,y,v) \in \mathcal{P}(\mathcal{CC}_i,\varepsilon) & i \in \mathcal{I} \\ & (x,y,v) \in \mathbb{R}^{n+p+q}, \end{aligned}$$

▶ $\mathcal{P}(\mathcal{CC}_i, \varepsilon)$ polyhedron with $O((n+p)\log(1/\varepsilon))$ variables and constraints.

Implementation of Lifted LP Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programming Problems

- ▶ Denoted by LPP(ε) -BB .
- ▶ Using LPP = LPP(ε) and NLPP = CPP.
- Using a version of the Ben-Tal Nemirovski relaxation introduced by Glineur.
- Implemented by modifying CPLEX 10's MILP solver.
- ▶ Using C++, Ilog Concert Technology. Branch, incumbent and heuristic callbacks.
- ho $\varepsilon = 0.01$ was selected after calibration experiments.

Computational Experiments

- Dual 2.4GHz Xeon workstation with 2GB of RAM running Linux Kernel 2 4
- LPP(ε) -BB v/s CPLEX 10's MIQCP solver and Bonmin's I-BB, I-QG and I-Hyb.
- Test set:
 - ► Three types of portfolio optimization problems with cardinality constraints and *n* stocks (Ceria and Stubbs, 2006; Lobo et al., 1998, 2007).
 - ▶ 100 instances for each $n \in \{20, 30, 40, 50\}$.
 - ▶ 10 instances foe each $n \in \{100, 200\}$.

Problem 1: Classical

$$\max_{x,y} \quad \bar{a}y$$

$$s.t.$$

$$||Q^{1/2}y||_2 \le \sigma$$

$$i \in \{1,2\}$$

$$\sum_{j=1}^n y_j = 1$$

$$y_j \le x_j \qquad \forall j \in \{1,\dots,n\}$$

$$\sum_{j=1}^n x_j \le K$$

 $x \in \{0, 1\}^n$

- y fraction of the portfolio invested in each of n assets.
- ā expected returns of assets.
- ▶ $Q^{1/2}$ positive semidefinite square root of the covariance matrix Q of returns.
- K maximum number of assets to hold.

Problem 2: Shortfall

s.t.

$$||Q^{1/2}y||_2 \le \frac{\bar{a}y - W_i^{low}}{\Phi^{-1}(\eta_i)}$$
 $i \in \{1, 2\}$

$$\sum_{j=1}^{n} y_j = 1$$

$$y_j \le x_j \qquad \forall j \in \{1, \dots, n\}$$

$$\sum_{j=1}^{n} x_j \le K$$

$$x \in \{0, 1\}^n$$

$$y \in \mathbb{R}^n_+$$

- y fraction of the portfolio invested in each of n assets.
- ā expected returns of assets.
- Q^{1/2} positive semidefinite square root of the covariance matrix Q of returns.
- K maximum number of assets to hold.
- ► Approximation of Prob($\bar{a}y \ge W_i^{low}$) $\ge \eta_i$

Problem 3: Robust

```
max
 x,y,r
S.t.
i \in \{1, 2\}
                   ||Q^{1/2}y||_2 \le \sigma
\alpha ||R^{1/2}y||_2 \leq \bar{a}y - r
                                y_i \le x_i \quad \forall j \in \{1, \dots, n\}
                                 x \in \{0, 1\}^n
                                  y \in \mathbb{R}^n_{\perp}
```

- y fraction of the portfolio invested in each of n assets.
- ā expected returns of assets.
- Q^{1/2} positive semidefinite square root of the covariance matrix Q of returns.
- K maximum number of assets to hold.
- ► Robust version from uncertainty in \bar{a} .

instance(n)	stat	$LPP(\varepsilon)$ -BB	I-QG	l-Hyb	I-BB	CPLEX
classical(20)	min	0.08	0.38	0.22	0.28	0.02
	avg	0.29	26.41	24.84	1.28	1.31
	max	1.06	222.19	164.71	13.33	7.95
	std	0.18	42.92	26.37	2.31	1.17
classical(30)	min	0.25	1.62	0.33	0.38	0.73
	avg	1.65	1434.86	217.25	13.19	9.68
	max	27.0	10005.2	10003.3	573.97	324.63
	std	3.21	2768.34	1016.68	59.17	33.68
shortfall(20)	min	0.19	0.18	0.26	0.34	0.03
	avg	0.48	17.42	16.78	0.63	1.68
	max	1.65	174.62	58.45	3.52	5.19
	std	0.21	30.77	17.96	0.52	0.89
shortfall(30)	min	0.4	1.25	0.57	0.47	1.26
	avg	2.20	847.63	136.39	5.00	9.26
	max	29.34	10003.1	5907.32	73.81	80.36
	std	3.21	1992.86	588.61	10.00	12.20
robust(20)	min	0.19	0.39	0.12	0.37	0.03
	avg	0.39	4.99	15.51	2.57	1.03
	max	1.05	33.85	599.46	57.22	3.5
	std	0.20	5.60	60.37	10.25	0.90
robust(30)	min	0.43	0.59	0.29	0.48	0.07
	avg	1.20	75.07	23.43	1.02	3.54
	max	4.72	2071.47	134.08	4.92	10.76
	std	0.81	284.39	25.49	0.87	2.45

Table: Solve Times for 20 and 30 stocks [s] \bigcirc

Performance Profile for solve times for n = 40, 50

0.61 1.55
0.01 1.00
4.17 63.41
8.95 2033.65
8.84 208.86
0.75 4.12
4.00 636.83
30.1 10000.0
8.96 1626.37
0.7 4.93
2.85 111.97
88.26 4259.5
9.98 430.95
0.96 5.69
2.05 567.74
34.1 10000.0
35.52 1319.39
0.69 0.14
4.31 11.17
9.82 160.71
4.64 18.58
0.93 0.25
3.67 41.71
6.37 876.31
5.68 120.24

Table: Solve Times for 40 and 50 stocks [s]

Performance profile for solve times for n = 40, 50

instance(n)	stat	LPP(arepsilon) -BB	I-BB	CPLEX
classical(100)	min	1653	3497	4503
	avg	7443	8605	8767
	max	10012	10035	10000
	solved	4	3	3
shortfall(100)	min	2014	4105	8733
	avg	6660	8497	9818
	max	10003	10163	10000
	solved	6	4	2
robust(100)	min	30	4	85
	avg	956	612	1395
	max	4943	2684	5294
	solved	10	10	10
robust(200)	min	1458	1775	9789
	avg	6207	7346	9979
	max	10138	10016	10000
	solved	6	5	1

Table: Solve Times for 100 and 200 stocks [s]

Performance profile for solve times for n = 100, 200

Reasons for the good performance: Lifted LP Relaxation (10 first instances for $n \in \{20, 30\}$)

X Confirming (Glineur, 2000) relaxation is slower than NLP:

	CPP	LPP(0.01)			
stat	Barrier	P. Simplex	D. Simplex	Barrier	
min	0.09	0.72	0.58	0.19	
avg	4.88	34.94	11.66	6.94	
max	20.39	174.45	49.69	29.7	
std	1.50	10.45	2.86	2.05	

Table: Solve Time for Root Relaxation [s].

 $\sqrt{\ }$ Accuracy of the lifted LP relaxation is good:

stat	$\varepsilon = 1$	$\varepsilon = 0.1$	$\varepsilon = 0.01$	$\varepsilon = 0.001$	$\varepsilon = 0.0001$
min	0.25	0.07	0.00	0.00	0.00
avg	4.30	1.14	0.07	0.00	0.00
max	13.94	5.16	0.29	0.02	0.01
std	0.80	0.21	0.01	0.00	0.00

Table: Accuracy of Relaxation $z_{LPP(\varepsilon)}$ [%]

Reasons for the good performance: Total Number of Nodes and Calls to Relaxations (All instance for $n \in \{20, 30\}$)

- Very few calls to non-linear relaxations.
- As expected: Fewer nodes than other polyhedral relaxations.
- Somewhat unexpected: Fewer nodes than NLP solvers.

B-and-b nodes I-QG	3580051
B-and-b nodes I-Hyb	328316
B-and-b nodes I-BB	68915
B-and-b nodes CPLEX	85957
B-and-b nodes LPP(ε) -BB	57933
$LPP(\varepsilon)$ -BB calls to $CPP(l^k, u^k)$	2305
$LPP(\varepsilon)$ -BB calls to $CPP(x^*)$	7810

Final Remarks

- Polyhedral relaxation algorithm for MINLP:
 - Based on a lifted polyhedral relaxation.
 - Branches on integer feasible solutions.
 - "Does not update the relaxation".
- Algorithm for the conic quadratic case:
 - Based on a lifted polyhedral relaxation by Ben-Tal and Nemirovski.
 - Implemented by modifying CPLEX MILP solver.
 - Significantly outperforms other methods for portfolio optimization problems.