CMP_SC 3050: Connected Components of Directed Graphs

Rohit Chadha

September 18, 2014

Strongly connected component of a digraph

u is said to strongly connected to v if there is a directed path from u
to v and from v to u.

Strongly connected component of a digraph

- u is said to strongly connected to v if there is a directed path from u
 to v and from v to u.
- The strongly connected component (SCC) of u is the set of all vertices strongly connected to u. We shall write the SCC of u as SCC(u)

Example

Example

$$SCC(A) = \{A, C, D\}$$

 $SCC(B) = \{B, E, F\}$
 $SCC(C) = \{A, C, D\}$
 $SCC(D) = \{A, C, D\}$
 $SCC(E) = \{B, E, F\}$
 $SCC(F) = \{B, E, F\}$
 $SCC(G) = \{G\}$
 $SCC(H) = \{H\}$

Properties of Strongly Connected Components

• For any two vertices u, v, either they have the same SCC or their SCCs have no vertex in common

Properties of Strongly Connected Components

- For any two vertices u, v, either they have the same SCC or their SCCs have no vertex in common
- In a dag, for every vertex u, $SCC(u) = \{u\}$.

Properties of Strongly Connected Components

- For any two vertices u, v, either they have the same SCC or their SCCs have no vertex in common
- In a dag, for every vertex u, $SCC(u) = \{u\}$.
- Strongly connected component of a graph G is the set of all SCCs. We shall call this set SCC(G)

Example

The strongly connected components are $\{B,E,F\}$, $\{A,C,D\}$, $\{G\}$ and $\{H\}$

Figure : Graph G

Let $C_1, C_2, \dots C_k$ be the SCCs of G. The component graph of G is the graph where

Figure: Graph G

Let $C_1, C_2, \dots C_k$ be the SCCs of G. The component graph of G is the graph where

• Vertices are $C_1, C_2, \dots C_k$

Figure: Graph G

Let $C_1, C_2, \dots C_k$ be the SCCs of G. The component graph of G is the graph where

• Vertices are $C_1, C_2, \dots C_k$

Figure: Graph G

Let $C_1, C_2, \dots C_k$ be the SCCs of G. The component graph of G is the graph where

- Vertices are $C_1, C_2, \dots C_k$
- There is an edge (C_i, C_j) if $i \neq j$ and there is some $u \in C_i$ and $v \in C_j$ such that (u, v) is an edge in G.

Figure : Graph G

Figure : Component Graph of G

Let $C_1, C_2, \dots C_k$ be the SCCs of G. The component graph of G is the graph where

- Vertices are $C_1, C_2, \dots C_k$
- There is an edge (C_i, C_j) if $i \neq j$ and there is some $u \in C_i$ and $v \in C_j$ such that (u, v) is an edge in G.

Figure : Graph G

Figure : Component Graph of *G*

Let $C_1, C_2, \dots C_k$ be the SCCs of G. The component graph of G is the graph where

- Vertices are $C_1, C_2, \dots C_k$
- There is an edge (C_i, C_j) if $i \neq j$ and there is some $u \in C_i$ and $v \in C_j$ such that (u, v) is an edge in G.

Component graph is always a dag

Strongly connected graphs

Figure: Not strongly connected

Figure: Strongly connected

A graph is strongly connected if it has exactly one strongly connected component.

Algorithmic questions

• Give an algorithm that given a graph G, vertices u and v checks if u is connected to v

- ② Give an algorithm that given a graph G and vertex u, outputs SCC(u) (the strongly connected component of u)
- lacktriangle Give an algorithm that given a graph G, outputs SCC(G)

Algorithmic questions

- Give an algorithm that given a graph G, vertices u and v checks if u is connected to v
 - (a) Check if v is reachable from u (use BFS or DFS)?
 - (b) Check if u is reachable from v?
 - (c) u is connected to v iff the answers to the questions (a) and (b) is Yes
 - (d) Runs in O(|V| + |E|) time
- ② Give an algorithm that given a graph G and vertex u, outputs SCC(u) (the strongly connected component of u)
- **3** Give an algorithm that given a graph G, outputs SCC(G)

Transpose of a digraph

Figure : Graph G

Figure : G^T

The transpose of digraph G is the digraph G^T in which all the edges of G are reversed

- ullet The set of vertices of G^T is the same as the set of vertices of G
- ullet u is adjacent to v iff v is adjacent to u

Figure : Graph G

Figure : G^T

• If u is reachable from v in G then v is reachable from u in G^T

Figure : Graph G

Figure : G^T

- If u is reachable from v in G then v is reachable from u in G^T
- u is connected to v in G iff u is connected to v in G^T

Figure : Graph G

Figure : G^T

- If u is reachable from v in G then v is reachable from u in G^T
- u is connected to v in G iff u is connected to v in G^T
- ullet The connected components of G and G^T are exactly the same

Figure : Graph G

Figure : G^T

- If u is reachable from v in G then v is reachable from u in G^T
- u is connected to v in G iff u is connected to v in G^T
- ullet The connected components of G and G^T are exactly the same
- ullet The component graph of SCCs of G^T is the same as the transpose of component graph of G

Algorithm

• Output all vertices reachable from u (run BFS or DFS on source vertex u)

- Output all vertices reachable from u (run BFS or DFS on source vertex u)
- **2** Compute the adjacency list representation of G^T

- Output all vertices reachable from u (run BFS or DFS on source vertex u)
- $oldsymbol{\circ}$ Compute the adjacency list representation of G^T
- **3** Output all vertices reachable from u in G^T

- Output all vertices reachable from u (run BFS or DFS on source vertex u)
- ② Compute the adjacency list representation of G^T
- **3** Output all vertices reachable from u in G^T
- $\ensuremath{\bullet}$ The vertices that are output in both steps 1 and 3 constitute $\mathrm{SCC}(u)$

- Output all vertices reachable from u (run BFS or DFS on source vertex u)
- $oldsymbol{\circ}$ Compute the adjacency list representation of G^T
- **3** Output all vertices reachable from u in G^T
- ullet The vertices that are output in both steps 1 and 3 constitute SCC(u)
- **5** Runs in $\Theta(|V| + |E|)$ time

Figure : Graph G

Figure : G^T

Figure : Graph G

Figure : G^T

Figure : DFS of G with source A

Figure : Graph G

Figure : DFS of G with source A

Figure : G^T

Figure : DFS of G^T with source A

Figure : DFS of G with source A

Figure : G^T

Figure : DFS of G^T with source A

$$SCC(A) = \{A, C, D\}$$

Computing all Strongly Connected Components

- Initially the set of all SCCs is empty
- ② Pick a vertex u which is not in a previously computed SCC. If there is no such u, then we are done
- lacktriangle Compute SCC(u) and add it to the set of all SCCs
- Go back to step 2

Computing all Strongly Connected Components

- Initially the set of all SCCs is empty
- ② Pick a vertex u which is not in a previously computed SCC. If there is no such u, then we are done
- ullet Compute SCC(u) and add it to the set of all SCCs
- Go back to step 2

Running time is $O(|V| \cdot (|V| + |E|))$

Computing all Strongly Connected Components

- Initially the set of all SCCs is empty
- ② Pick a vertex u which is not in a previously computed SCC. If there is no such u, then we are done
- lacktriangle Compute SCC(u) and add it to the set of all SCCs
- Go back to step 2

Running time is $O(|V| \cdot (|V| + |E|))$

There is an algorithm to compute all SCCs using just 2 DFSs!

Recall: DFS of a graph

We extend DFS to the whole graph!

- Pick a vertex
- Perform a DFS on the picked vertex
- Pick a new vertex which has not been reached as yet and repeat Step 2

lacksquare Compute the DFS of the whole graph G

- Compute the DFS of the whole graph G
- ② Store the vertices in a list L with decreasing order of finish times.

- Compute the DFS of the whole graph G
- ② Store the vertices in a list L with decreasing order of finish times.
- **3** Compute G^T

- Compute the DFS of the whole graph G
- ② Store the vertices in a list L with decreasing order of finish times.
- \odot Compute G^T
- **①** Do DFS of G^T but pick vertices in the order of their appearance in list L when picking a new vertex (in step 3 on previous slide)

- Compute the DFS of the whole graph G
- ② Store the vertices in a list L with decreasing order of finish times.
- Compute G^T
- **9** Do DFS of G^T but pick vertices in the order of their appearance in list L when picking a new vertex (in step 3 on previous slide)
- Output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

- Compute the DFS of the whole graph G
- ② Store the vertices in a list L with decreasing order of finish times.
- **3** Compute G^T
- **9** Do DFS of G^T but pick vertices in the order of their appearance in list L when picking a new vertex (in step 3 on previous slide)
- Output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Runs in O(|V| + |E|) time

Figure : Graph G

Figure : G^T

Figure : Graph G

Figure : G^T

Figure: DFS of G

Components of G are

Figure : Graph G

Figure: DFS of G

Components of G are $\{A, D, C\}$;

Figure : G^T

Figure : DFS of G^T

Figure : Graph G

Figure: DFS of G

Components of G are $\{A, D, C\}$; $\{B, F, E\}$;

Figure : G^T

Figure : DFS of G^T

Figure : Graph G

Figure : G^T

Figure : DFS of G

Figure : DFS of G^T

Components of G are $\{A, D, C\}$; $\{B, F, E\}$; $\{H\}$;

Figure : Graph G

Figure : G^T

Figure : DFS of G

Figure : DFS of G^T

Components of G are $\{A, D, C\}$; $\{B, F, E\}$; $\{H\}$; and $\{G\}$

Why does this algorithm work?

Extend start times and finish times to a component C as follows:

- C.d is the smallest starting time of vertices in C in the DFS of G, and
- C.f is the largest finish time of vertices in C in the DFS of G

Why does this algorithm work?

Extend start times and finish times to a component C as follows:

- C.d is the smallest starting time of vertices in C in the DFS of G, and
- C.f is the largest finish time of vertices in C in the DFS of G

Key Idea: By considering vertices in second DFS in decreasing order of finishing times from first DFS, we are visiting vertices of the component graph in topological sort order

Example

Figure : Graph G

Figure : Component Graph of G

In the example, we first found $\{A, C, D\}$ then $\{B, E, F\}$ then $\{H\}$ and finally G

Component graph of G and finish times

Fact: If C_1 and C_2 are distinct SCCs in G and there is an edge from C_1 to C_2 in the component graph of G then C_1 . $f > C_2$. f

Back to Example

Figure : Component Graph of G

Figure : Graph G

Figure : DFS of G

Component graph of *G* and finish times

Fact: If C_1 and C_2 are distinct SCCs in G and there is an edge from C_1 to C_2 in the component graph of G then C_1 . $f > C_2$. f

Why is this fact true?

Let u be first vertex amongst those in C_1 or C_2 that is visited.

- If $u \in C_1$ then all of C_2 will be explored before DFS(u) completes
- If $u \in C_2$ then all of C_2 will be explored before any of C_1

From the previous fact, we get a new fact:

From the previous fact, we get a new fact:

If C_1 and C_2 are distinct SCCs in G such that $C_1.f > C_2.f$ then there cannot be an edge from C_1 to C_2 in G^T

• When we do the second DFS on G^T , we start with SCC C such that C.f is the maximum finish time amongst all components

From the previous fact, we get a new fact:

- When we do the second DFS on G^T , we start with SCC C such that C.f is the maximum finish time amongst all components
- The second DFS starts from some vertex u of C and it visits all vertices in C

From the previous fact, we get a new fact:

- When we do the second DFS on G^T , we start with SCC C such that C.f is the maximum finish time amongst all components
- The second DFS starts from some vertex u of C and it visits all vertices in C
- From the new fact above, there is no edge from C to a different C' in G^T

From the previous fact, we get a new fact:

- When we do the second DFS on G^T , we start with SCC C such that C.f is the maximum finish time amongst all components
- The second DFS starts from some vertex u of C and it visits all vertices in C
- From the new fact above, there is no edge from C to a different C' in G^T
- So DFS of u in G^T only visits the vertices of C

From the previous fact, we get a new fact:

- When we do the second DFS on G^T , we start with SCC C such that C.f is the maximum finish time amongst all components
- The second DFS starts from some vertex u of C and it visits all vertices in C
- From the new fact above, there is no edge from C to a different C' in G^T
- So DFS of u in G^T only visits the vertices of C
- The next root chosen in the second DFS is in SCC C₁ such that C₁. f is maximum over all SCCs other than C

From the previous fact, we get a new fact:

- When we do the second DFS on G^T , we start with SCC C such that C.f is the maximum finish time amongst all components
- The second DFS starts from some vertex u of C and it visits all vertices in C
- From the new fact above, there is no edge from C to a different C' in G^T
- So DFS of u in G^T only visits the vertices of C
- The next root chosen in the second DFS is in SCC C₁ such that C₁. f is maximum over all SCCs other than C
- Thus DFS now visits all vertices in C_1

From the previous fact, we get a new fact:

- When we do the second DFS on G^T , we start with SCC C such that C.f is the maximum finish time amongst all components
- The second DFS starts from some vertex u of C and it visits all vertices in C
- From the new fact above, there is no edge from C to a different C' in G^T
- So DFS of u in G^T only visits the vertices of C
- The next root chosen in the second DFS is in SCC C₁ such that C₁. f is maximum over all SCCs other than C
- ullet Thus DFS now visits all vertices in C_1
- The only edges out of C_1 in G^T go to C which we have already visited

From the previous fact, we get a new fact:

- When we do the second DFS on G^T , we start with SCC C such that C.f is the maximum finish time amongst all components
- The second DFS starts from some vertex u of C and it visits all vertices in C
- From the new fact above, there is no edge from ${\cal C}$ to a different ${\cal C}'$ in ${\cal G}^T$
- So DFS of u in G^T only visits the vertices of C
- The next root chosen in the second DFS is in SCC C₁ such that C₁. f is maximum over all SCCs other than C
- ullet Thus DFS now visits all vertices in C_1
- The only edges out of C_1 in G^T go to C which we have already visited
- ullet Therefore, tree edges will be only to vertices in \mathcal{C}_1

From the previous fact, we get a new fact:

- When we do the second DFS on G^T , we start with SCC C such that C.f is the maximum finish time amongst all components
- The second DFS starts from some vertex u of C and it visits all vertices in C
- From the new fact above, there is no edge from C to a different C' in G^T
- So DFS of u in G^T only visits the vertices of C
- The next root chosen in the second DFS is in SCC C₁ such that C₁. f
 is maximum over all SCCs other than C
- ullet Thus DFS now visits all vertices in C_1
- The only edges out of C_1 in G^T go to C which we have already visited
- ullet Therefore, tree edges will be only to vertices in \mathcal{C}_1
- The process continues

Summary

- We have several studied fundamental graph algorithms
- DFS and BFS are the two basic strategies for traversing a graph
- BFS was used to find distances from a vertex in a graph
- We have seen applications of DFS to finding topological sort of dag and also to find connected components in a graph
- We have finished Chapter 22 of the book. We shall start Sections 16.1 and 16.2 next week before coming back to graphs