בעיות מספרים בNPC

מצגת 13

$$\alpha = (x_1 \lor x_2 \lor x_3') \land (x_2 \lor x_3 \lor x_4')$$

3-SAT

3-SAT

• נגדיר α נוסחה בולאנית ב-CNF כלומר, הנוסחה בצורת CNF ובכל קלוז מופיעים בדיוק 3 משתנים.

$$\alpha = (x_1 \lor x_2 \lor x_3') \land (x_2' \lor x_3 \lor x_4')$$

<u>NPC משפט: 3-SAT - משפט:</u>

$3-SAT \in NP$, שלב א בהוכחה

 $3-\mathsf{SAT} = \{\alpha \mid \mathsf{COP} \mid \mathsf{SAT} = 3-\mathsf{CNF} \}$ נוסחה ב

יש להראות שקימת מ"ט ל"ד N <u>שפועלת בזמן פולינומי בגודל הקלט,</u> שמקבלת את 3-SAT.

> לא תעצור אם N . α ∉ 3-SAT

לא תעצור אם N 3- כל השמה ל α, α כל השמה ל CNF נותנת CNF יכולה לעצור אם $\alpha \in 3-SAT$

יכולה לעצור אם N ל α, שהיא מצורת 3-CNF, קיימת השמה שנותנת TRUE

$3-SAT \in NP$, שלב א בהוכחה

- $_{,}\alpha$ הוכחה : נשתמש במ"ט ל"ד N שעבור קלט של נוסחה $_{\circ}$
- תנחש ערכים לכל המשתנים שבנוסחה, באופן שיגרמו לנוסחה להיות. TRUE. זמן לינארי בגודל הקלט
- 2. N תציב את הערכים של הניחוש בנוסחה ותבדוק למה הנוסחה שווה. <u>זמן</u> לינארי בגודל הקלט
 - . אם הנוסחה היא TRUE המכונה $\sf N$
 - א תעצור N אם הנוסחה היא FALSE, המכונה A.

סה"כ הניחוש והבדיקה פולינומים בגודל הקלט.

3-SAT ∈NP- הוכחה: שלב א

 $\alpha \notin 3-SAT$ מתקיים: אם

לא קיימת לα השמה שמספקת אותה

 α כל השמה שN תנחש, לא תיתן

 Γ לא מגיעה ל Ω תגלה ש

לא תעצור N

 $\alpha \in 3-SAT$ מתקיים: אם

קיימת לα השמה שמספקת אותה

N יכולה לנחש השמה זו.

בבדיקות N תגלה ש ניתנת לסיפוק

תעצור N

שלב ב - **3-SAT** שלמה ב

 $3-SAT = {\alpha \mid \alpha \mid 3-CNF}$ נוסחה ב 3-CNF והיא ניתנת לסיפוק α

3-SAT ∈NPC : טענה

✓ 3-SAT ∈NP הוכחה: יש להראות כי א

ב. לכל $B ext{∈ NP}$ מתקיים $S ext{∈ NP}$ או לחילופין להראות

L ∈NPC כאשר L ≤_p 3-SAT

SAT ≤_p 3-SAT הרדוקציה

SAT ={ α | והיא ניתנת לסיפוק CNF נוסחה ב α } 3-SAT ={ α | נוסחה ב α 5 והיא ניתנת לסיפוק α 6 נוסחה ב α 7 נוסחה ב

 α e SAT \Leftrightarrow β e 3-SAT כלומר β כלומר β שהיא ב 3-CNF ניתנת לסיפוק α

SAT ≤_p 3-SAT הרדוקציה

3-SAT של אברת קלט $oldsymbol{eta}$ של איל אין:R

βנייצר קלוז ל	α עבור קלוז ב
$\times \vee \times \vee \times$	×
$\times \vee \vee \times$	X V Y
X V Y V Z	$X \vee Y \vee Z$
?	$X_1 \lor X_2 \lor X_3 \lor X_4 \lor X_5 \lor X_6 \dots$
	•

$$(x_1 \lor x_2 \lor z_1) \land (z_1' \lor x_3 \lor z_2) \land (z_2' \lor x_4 \lor z_3) \land (z_3' \lor x_5 \lor x_6)$$

- ערך T. ערך CNF מתקיים: אם $\alpha \in SAT$ יש השמה שנותנת לנוסחה מסוג x_i יש השתנה אחד לפחות x_i שנותן לו $\alpha \in SAT$
- α נבנה השמה עבור β לפי ההשמה של β . (יש לבדוק ספיקות רק לקלוזים שהכילו מעל 3 משתנים ב α)

j < i-1 אזי ניתן T לקלוזים שלפניו על ידי $z_j = T$ אם $x_i = T$

 $j \ge i-1$ עבור $z_j = F$ וניתן T לקלוזים שאחריו על ידי

 $eta \in { extsf{3-SAT}} \Leftarrow eta$ יש סיפוק ל ${ extsf{3-SAT}} \Leftarrow { extsf{3-CNF}}$ יש משתנה ${ extsf{3-CNF}} \Rightarrow$ בכל קלוז מצורת

.T יש השמה שנותנת לנוסחה β מסוג \leftarrow $\beta \in 3$ -SAT אם \leftarrow +

שנותן לו T כדי שגם α תהיה מסופקת.

שנותן T כדי שגם α תהיה מסופקת.

 $:z_{i}$ אזי נספק את β על ידי נתינת T למשתני אם נניח על דרך השלילה אזי נספק את או איז נספק את אם נניח על איז איז איז נספק את

.T כדי שהקלוז יהיה z_1 =T כדי שהקלוז יהיה

... וכן הלאה $z_2 = T$ וכן הלאה...

 $(x_1 \lor x_2 \lor z_1) \land (z_1' \lor x_3 \lor z_2) \land (z_2' \lor x_4 \lor z_3) \land (z_3' \lor x_5 \lor x_6)$

בקלוז <u>האחרון צריך להציב</u> z_j =F ולכן בקלוז הלפני אחרון שני משתני z_j =F בקלוז האחרון בריך להציב בקלוז בקלוז הלפני אחרון שני משתני בקלוזים.

באחד הקלוזים, שיהיה שווה ל z_i כדי שכל \leftarrow חייב להיות משתנה שאינו באחד הקלוזים, שיהיה שווה לT כדי שכל הקלוזים יקבלו

בכל קלוז ארוך שפוצל לקלוזים עם 3 משתנים, יש משתנה אחד לפחות x_i , שהוא x_i , שהוא מקורי מ x_i , שהוא מקורי מ

.T) יש משתנה השווה ל α בכל קלוז מקורי של \leftarrow

 $\alpha \in SAT \Leftarrow$ ניתנת לסיפוק α ניתנת לסיפוק

SUBSETSUM

SubsetSum

SubsetSum= $\{S,t \mid t \mid S,t \mid t \}$ קבוצת מספרים בה יש תת קבוצה שסכומה שווה

there exists $S' \subseteq S$, such that $\Sigma_{si \in S'} s_i = t$.

 $S = \{9, 4, 5, 2\}$

(S, 7) ∈? SubsetSum

(S, 8) ∈? SubsetSum

שלב א בהוכחה, SubsetSum ∈NP

SubsetSum= $\{S, t \mid t \mid S \}$ קבוצת מספרים בה יש תת קבוצה שסכומה שווה

יש להראות שקימת מ"ט ל"ד N <u>שפועלת בזמן פולינומי בגודל הקלט,</u> שמקבלת את SubsetSum.

לא תעצור <u>בזמן פולינומי בגודל</u> N . S,t ∉ SubsetSum <u>הקלט</u>אם

לא תעצור <u>בזמן פולינומי בגודל הקלט</u> N אם ל S לא קיימת תת קבוצה שסכומה שווה לt יכולה לעצור בזמן פולינומי בגודל N S,t \in SubsetSum הקלט אם

יכולה לעצור <u>בזמן פולינומי בגודל</u> הקלט אם ל S קיימת תת קבוצה שסכומה שווה לt

הוכחה: שלב א − SubsetSum ∈ NP

נבנה מ"ט ל"ד N שתקלוט קבוצה S, t,

|S| שסכומה שווה לS. – זמן ריבועי בגודל א. תנחש תת קבוצה של

ב. N תבדוק: 1. האם כל האיברים של 's שונים. – בדיקה ריבועית בגודל |S|

2. האם סכום הערכים של תת הקבוצה שווה לt. – <u>בדיקה לינארית בגודל [2, t. s]</u>

. אם הבדיקות תקינות, המכונה N תעצור.

. אינה חוקית, המכונה N אא ט סכום תת הקבוצה אינו שווה לt, או ש s' אינה חוקית, המכונה

זמן: הניחוש ובדיקתו פולינומים בגודל הקבוצה S וt.

הוכחה: שלב א −SubsetSum ∈NP

S,t ∈ SubsetSum מתקיים: אם

t קיימת בS תת קבוצה שסכומה שווה ל

N יכולה לנחש תת קבוצה זו של המספרים.

t תגלה שבאמת זוהי תת קבוצה שסכומה שווה ל N תגלה

תעצור N

הוכחה: שלב א −SubsetSum ∈NP

מתקיים: אם S,t**∉** SubsetSum

t תת קבוצה שסכומה שווה ל

כל תת קבוצה שN תנחש, לא תענה על הדרישות

בבדיקות N תגלה או שזו אינה תת קבוצה תיקנית, או שסכום המספרים אינו שווה ל t.

לא תעצור N

שלב ב - SubsetSum שלמה בNP

SubsetSum= $\{S, t \mid t \mid S, t \mid t \}$ קבוצת מספרים בה יש תת קבוצה שסכומה שווה

טענה : SubsetSum ∈NPC

✓ SubsetSum ∈NP הוכחה: יש להראות כי א

ב. לכל B∈NP מתקיים B≤_p SubsetSum מתקיים B∈NP ב. לכל

L ∈NPC כאשר L ≤_p SubsetSum

3-SAT ≤_p SubsetSum הרדוקציה

SubsetSum= { S, t | t קבוצת מספרים בה יש תת קבוצה שסכומה שווה S } א כוסחה בה יש תת קבוצה שסכומה מספרים בה יש α }

 $\alpha \in 3\text{-SAT} \Leftrightarrow S,t \in SubsetSum$ כלומר יש ב $\alpha \Leftrightarrow 3$ ניתנת לסיפוק 3-CNF מה עשה קבוצה שמשקלה שווה ל

הרדוקציה

- בהנתן נוסחה α שבה יש | משתנים ו k קלוזים (בגודל 3 כל אחד) נגדיר 2k+2l מספרים. כל מספר הוא באורך
 - $\mathsf{I}(\mathsf{I}+\mathsf{k})$ סה"כ $\mathsf{y}_\mathsf{i},\mathsf{z}_\mathsf{i}$ מספרים x_i סה"כ v_i
 - k(l+k) סה"כ h_i, g_i מספרים 2 נגדיר c_j נגדיר \bullet
 - t = 11...1 33...3 •
 - . זמן הרדוקציה- פולינומי בגודל הקלט

$\alpha = (x_1 \lor x_2 \lor x_3) \land (x_1' \lor x_3' \lor x_2')$

		1	2	3	c_1	C_2
$\mathbf{x}_{\scriptscriptstyle 1}$ מייצג את	y ₁					
$\mathbf{x'}_1$ מייצג את	Z_1					
$\mathbf{x}_{_{2}}$ מייצג את	y_2					
x' ₂ מייצג את	Z_2					
$\mathbf{x}_{\scriptscriptstyle 3}$ מייצג את	y_3					
x' ₃ מייצג את	Z_3					
	g_1					
	h_1					
	g_2					
	h_2					
,	t=	1	1	1	3	3

בל הטורים הראשונים:

$$M[y_i, i] = 1$$
 $M[y_i, j] = 0$
 $M[z_i, i] = 1$ $M[z_i, j] = 0$

בו הטורים הראשונים:

$$M[y_i, i] = 1$$
 $M[y_i, j] = 0$
 $M[z_i, i] = 1$ $M[z_i, j] = 0$

בk הטורים הבאים:

$$M[y_i, c_j] = \begin{cases} 1 & \text{if } x_i \in C_j \\ 0 & \text{else} \end{cases}$$

$$M[z_i, c_j] = \begin{cases} 1 & \text{if } x'_i \in C_j \\ 0 & \text{else} \end{cases}$$

$$\alpha = (x_1 \lor x_2 \lor x_3) \land (x_1, \lor x_3 \lor x_2)$$

		1	2	3	c_1	c_2
$\mathbf{x_{\scriptscriptstyle 1}}$ מייצג את	y_1	1	0	0	1	0
$\mathbf{x'}_1$ מייצג את	Z_1	1	0	0	0	1
\mathbf{x}_2 מייצג את	y_2	0	1	0	0	0
x' ₂ מייצג את	Z_2	0	1	0	1	1
${ m x_3}$ מייצג את	y_3	0	0	1	1	0
x' ₃ מייצג את	Z_3	0	0	1	0	1
·	g_1					
	h_1					
	g_2					
	h_2					
	t=	1	1	1	3	3

בל הטורים הראשונים:

$$M[y_i, i] = 1$$
 $M[y_i, j] = 0$
 $M[z_i, i] = 1$ $M[z_i, j] = 0$

בא הטורים הבאים:

$$M[y_i, c_j] = \begin{cases} 1 & \text{if } x_i \in C_j \\ 0 & \text{else} \end{cases}$$

$$M[z_i, c_j] = \begin{cases} 1 & \text{if } x'_i \in C_j \\ 0 & \text{else} \end{cases}$$

$$\alpha = (x_1 \lor x_2 \lor x_3) \land (x_1, \lor x_3 \lor x_2)$$

		1	2	3	c_1	c_2
$\mathbf{x_1}$ מייצג את	y_1	1	0	0	1	0
$\mathbf{x'}_1$ מייצג את	Z_1	1	0	0	0	1
\mathbf{x}_2 מייצג את	y_2	0	1	0	0	0
x' ₂ מייצג את	Z_2	0	1	0	1	1
x ₃ מייצג את	y_3	0	0	1	1	0
x' ₃ מייצג את	Z_3	0	0	1	0	1
	g_1					
	h_1					
	g_2					
	h_2					
	t=	1	1	1	3	3

בל הטורים הראשונים:

$$M[y_i, i] = 1$$
 $M[y_i, j] = 0$
 $M[z_i, i] = 1$ $M[z_i, j] = 0$

בא הטורים הבאים:

$$M[y_i, c_j] = \begin{cases} 1 & \text{if } x_i \in C_j \\ 0 & \text{else} \end{cases}$$

$$M[z_i, c_j] = \begin{cases} 1 & \text{if } x'_i \in C_j \\ 0 & \text{else} \end{cases}$$

בא הטורים האחרונים:

$$M[h_i, c_i] = 1$$
 $M[h_i, c_j] = 0$
 $M[g_i, c_i] = 1$ $M[g_i, c_i] = 0$

$$\alpha = (x_1 \lor x_2 \lor x_3) \land (x_1' \lor x_3' \lor x_2')$$

		1	2	3	c_1	C_2
$\mathbf{x}_{\scriptscriptstyle 1}$ מייצג את	y ₁	1	0	0	1	0
$\mathbf{x'}_1$ מייצג את	Z_1	1	0	0	0	1
\mathbf{x}_2 מייצג את	y_2	0	1	0	0	0
x' ₂ מייצג את	Z_2	0	1	0	1	1
${ m x_3}$ מייצג את	y_3	0	0	1	1	0
x' ₃ מייצג את	Z_3	0	0	1	0	1
	g_1				1	0
	h_1				1	0
	g_2				0	1
	h_2				0	1
	t=	1	1	1	3	3

בל הטורים הראשונים:

$$M[y_i, i] = 1$$
 $M[y_i, j] = 0$
 $M[z_i, i] = 1$ $M[z_i, j] = 0$

בא הטורים הבאים:

$$M[y_i, c_j] = \begin{cases} 1 & \text{if } x_i \in C_j \\ 0 & \text{else} \end{cases}$$

$$M[z_i, c_j] = \begin{cases} 1 & \text{if } x'_i \in C_j \\ 0 & \text{else} \end{cases}$$

בא הטורים האחרונים:

$$M[h_i, c_i] = 1$$
 $M[h_i, c_j] = 0$
 $M[g_i, c_i] = 1$ $M[g_i, c_j] = 0$

$$\alpha = (x_1 \lor x_2 \lor x_3) \land (x_1, \lor x_3 \lor x_2)$$

	1	2	3	c_1	c_2
$\mathbf{x}_{_{1}}$ מייצג את $\mathbf{y}_{_{1}}$	1	0	0	1	0
$\mathbf{x'}_1$ מייצג את \mathbf{Z}_1	1	0	0	0	1
\mathbf{x}_2 מייצג את \mathbf{y}_2	0	1	0	0	0
$\mathbf{x'}_{_{2}}$ מייצג את $\mathbf{Z}_{_{2}}$	0	1	0	1	1
${ m x}_{\scriptscriptstyle 3}$ מייצג את ${ m extbf{y}}_{\scriptscriptstyle 3}$	0	0	1	1	0
$\mathbf{x'}_3$ מייצג את \mathbf{Z}_3	0	0	1	0	1
g_1				1	0
h_1				1	0
g_2				0	1
h,				0	1
	1	1	1	3	3

: בא הטורים הבאים

$$M[y_i, c_j] = \begin{cases} 1 & \text{if } x_i \in C_j \\ 0 & \text{else} \end{cases}$$

$$M[z_i, c_j] = \begin{cases} 1 & \text{if } x'_i \in C_j \\ 0 & \text{else} \end{cases}$$

$$X_1 = T$$
 עבור השמה של $X_2 = F$ $X_3 = T$

.T יש השמה שנותנת לנוסחה מסוג, $\alpha \in 3\text{-SAT}$ ערך, $\alpha \in 3\text{-SAT}$ אם $\alpha \in c_i$ יש משתנה אחד לפחות שנותן. $\alpha \in c_i$

 $z_i \in S'$ אזי $x_i = F$ ואם $y_i \in S'$ אזי $x_i = T$ אזי $x_i = C_j$ אוים y_i שנותן x_i שנותן x_i שנותן x_i בשורה של x_i שנותן x_i שנותן x_i שנותן x_i בשורה של x_i סכום הספרות ב x_i הראשונות הוא x_i כי בחרנו הצבה אחת לכל משתנה $x_i = x_i$ וסכום הספרות ב x_i הבאות הוא בין $x_i = x_i$ (3-CNF) ארך לפי הצורך ניתן להוסיף $x_i = x_i$ או את שניהם כך להגיע ל $x_i = x_i$ או את שניהם כך להגיע ל $x_i = x_i$ או את שניהם כך להגיע ל $x_i = x_i$

 $(S,t) \in SubsetSum \leftarrow t$ כלומר קיימת S' כך שסכום איברי C'

מתקיים:

- .t שסכום איבריה הוא \leftarrow (S,t) \in SubsetSum אם \leftarrow (S,t) אם
- - y_i עדיין חייב להיות, $y_j \in S'$ גם אם z_i , עדיין חייב להיות, אחרונות בל יש z_i שבמספר שב'S שבמספר שב'
 - T בכל קלוז מופיע לפחות משתנה אחד שמקבל \leftarrow
 - $\alpha \in 3-SAT \iff \alpha \in 3-SAT \iff \alpha \in 3$ הנוסחה ניתנת לסיפוק

$$\alpha = (x_1 \lor x_2 \lor x_3) \land (x_1, \lor x_3 \lor x_2)$$

		1	2	3	c_1	C_2
$\mathbf{x_1}$ מייצג את	y_1	1	0	0	1	0
$\mathbf{x'}_1$ מייצג את	Z_1	1	0	0	0	1
\mathbf{x}_2 מייצג את	y_2	0	1	0	0	0
x' ₂ מייצג את	Z_2	0	1	0	1	1
x ₃ מייצג את	y_3	0	0	1	1	0
x' ₃ מייצג את	Z_3	0	0	1	0	1
	g_1				1	0
	h_1				1	0
	g_2				0	1
	h_2				0	1
	t	1	1	1	3	3

ℓ ב הטורים הראשונים

$$M[y_i, i] = 1$$
 $M[y_i, j] = 0$
 $M[z_i, i] = 1$ $M[z_i, j] = 0$

: בא הטורים הבאים

$$M[y_i, c_j] = \begin{cases} 1 & \text{if } x_i \in C_j \\ 0 & \text{else} \end{cases}$$

$$M[z_i, c_j] = \begin{cases} 1 & \text{if } x'_i \in C_j \\ 0 & \text{else} \end{cases}$$

PARTITION

Partition

Partition = { A= $\{a_1,...,a_n\}$ | ניתנת לחלוקה לשתי קבוצות שסכומן שווה A

there exists A1 \subset A, such that $\Sigma_{ai \in A1} a_i = \Sigma_{ai \in A-A1} a_i$

אלב ב - Partition שלמה בNP

Partition = { A= $\{a_1,...,a_n\}$ | ניתנת לחלוקה לשתי קבוצות שסכומן שווה A

Partition ∈NPC : טענה

הוכחה: יש להראות כי א. Partition ∈NP

ב. לכל $B ≤_p Partition$ מתקיים B∈NP או לחילופין להראות ב. לכל

 $L \in NPC$ כאשר $L \leq_p Partition$

שלב א בהוכחה, Partition ∈NP

Partition = { A= {a₁,...,a_n} | ניתנת לחלוקה לשתי קבוצות שסכומן שווה A}

יש להראות שקימת מ"ט ל"ד N <u>שפועלת בזמן פולינומי בגודל הקלט,</u> שמקבלת את PARTITION.

לא תעצור <u>בזמן פולינומי בגודל</u> N

. A ∉ Partition הקלט, אם

לא תעצור <u>בזמן פולינומי בגודל</u> הקלט, אם אין חלוקה של A שתיתן 2 קבוצות שסכומן שווה יכולה לעצור בזמן פולינומי בגודל הקלט, N

A ∈ Partition אם

יכולה <u>בזמן פולינומי בגודל הקלט,</u> לעצור N אם ל A קיימת חלוקה ל2 קבוצות שסכומן שווה

חוכחה: שלב א − Partition ∈ NP

נבנה מ"ט ל"ד N שתקלוט קבוצה A,

א. תנחש חלוקה שלה ל $A_1 = A - A_2 = A - A_3$ כך שסכומי תתי הקבוצה יהיו שווים. זמן לינארי בגודל הקלט $A_1 = A_1$.

ב. N תבדוק שזוהי אכן חלוקה של A [כלומר כל איברי A נמצאים בתתי הקבוצות וכל N איבר מופיע פעם אחת. <u>- זמן ריבועי בגודל הקלט |A|.</u>

ג. N תסכום את הערכים של כל תת קבוצה ותבדוק האם הסכומים שווים. -<u>לינארי</u> ד. אם הסכומים שווים, המכונה N תעצור.

אם הסכומים אינם שווים, המכונה N לא תעצור

זמן: הנָּיחוש ובדיקתו פולינומיים בגודל בקלט A.

חוכחה: שלב א −Partition ∈NP

A ∈ Partition מתקיים: אם •

קיימת לA חלוקה לשתי קבוצות שסכומן שווה

N יכולה לנחש חלוקה זו של המספרים.

בבדיקות N תגלה שבאמת זוהי חלוקה לשתי קבוצות שוות סכום

תעצור N

חוכחה: שלב א −Partition ∈NP

A∉ Partition מתקיים: אם

לא קיימת לA חלוקה לשתי קבוצות שסכומן שווה

כל חלוקה שN תנחש, לא תענה על הדרישות

בבדיקות N תגלה או שזו אינה חלוקה תיקנית, או שסכום הקבוצות אינו שווה

לא תעצור N

שלב ב - Partition שלמה בNP

Partition = { A= $\{a_1,...,a_n\}$ | ניתנת לחלוקה לשתי קבוצות שסכומן שווה A

Partition ∈NPC : טענה

✓ Partition ∈NP הוכחה: יש להראות כי א

ב. לכל $B ≤_p Partition$ מתקיים B∈NP או לחילופין להראות ב. לכל

 $L \in NPC$ כאשר $L \leq_p Partition$

SubsetSum ≤_p Partition הרדוקציה

SubsetSum= { S, t | t קבוצת מספרים בה יש תת קבוצה שסכומה שווה S } Partition = { A = { $a_1,...,a_n$ } | ניתנת לחלוקה לשתי קבוצות שסכומן שווה

 $S,t \in SubsetSum \Leftrightarrow A \in Partition$ כלומר ניתן לחלק את A לשתי קבוצות שוות סכום בA יש תת קבוצה שסכומה A

הרדוקציה

- בהנתן S= {s₁,...,s_m} וקבוע t, וקבוע S= {s₁,...,s_m} שבה יש
 מייצרת את A שבה יש
 מספר איברים גדול ב1 ממספר האיברים בS.
 - i ≤ m כאשר a_i =s_i כאשר A= {a₁,...,a_m, a_{m+1}} •
- 2th A את האיבר הנוסף בA נגדיר כמשלים את הסכום של כל איברי •

2t אוברי A לכן סכום כל איברי a_{m+1} = 2t – Σs_i

. זמן הרדוקציה- לינארי בגודל הקלט

מתקיים:

.t יש בS' עת קבוצה (S,t) ∈ SubSum יש בS' יש בS' יש ב

A ניקח את האיברים ב'S והם יהיו האיברים בS שאר איברי שער איברי יעברו ל A2.

אוא A2 סכום האיברים בC הוא C חוא C סכום האיברים בC

• $\sum_{a_i \in A} a_i - t = 2t - t = t$

A כלומר סכום איברי הקבוצה השניה הוא גם כן t ולכן חילקנו את \Rightarrow לשתי תתי קבוצות שוות משקל

 $R(S,t)=A \in Partition \leftarrow 41$

מתקיים:

שסכום A1, A2 יש חלוקה של A לשתי תתי קבוצות $A \in Partition$ איבריהן שווה.

.A1 נניח ללא הגבלת הכלליות שזוהי a_{m+1} . מכילה את מהקבוצות מכילה את ביוח ללא הגבלת הכלליות שזוהי

.S כל האיברים לקוחים מ \Leftrightarrow

ובר A1 הוא שווה ולכן \Leftrightarrow

• $\sum_{a_i \in A1} a_i = \sum_{a_i \in A2} a_i = \sum_{a_i \in A} a_i / 2 = 2t / 2 = t$

t שכולה מורכבת מאיברים מA2 הוא \Leftrightarrow

 $(S,t) \in SubSum \Leftarrow_{42}$

BIN PACKING

Bin Packing

BP = { X={x₁,...,x_n}, W ={ w₁=W(x₁),...,w_n=W(x_n)}, b ,c | c בעלי משקל A ב A מיכלים שכל אחד במשקל A בעלי משקל בעלי משקל A בעלי משקל A בעלי משקל בעלי משקל A בעלי משקל בעלי משקל בעלי משל בעלי משקל בעלי משל בעלי משקל בעלי משקל

.NP Completeטענה: בעיית ה Bin Packing היא בעיה ב

שלב א בהוכחה, Bin Packing ∈NP

BP = $\{X, W, b, c \mid$ ניתן לאחסן את כל פרטי בעלי משקל מיכלים שכל אחד במשקל $\}$

יש להראות שקימת מ"ט ל"ד N <u>שפועלת בזמן פולינומי בגודל</u> <u>הקלט,</u> שמקבלת את Bin Packing .

ינומי בגודל הקלט N לא תעצור בזמן פולינומי בגודל הקלט

(X, W, b,c) ∉ BP Packing אם

לא תעצור <u>בזמן פולינומי בגודל הקלט</u>אם N לא ניתן לחלק את פרטי X בעלי משקל b W בd מיכלים שכ"א במשקל c. יכולה לעצור בזמן פולינומי בגודל הקלט N

(X, W, b ,c) ∈ BP אם

יכולה<u>בזמן פולינומי בגודל הקלט</u> לעצור N אם ניתן לחלק את פרטי X בעלי משקל b W בd מיכלים שכל אחד במשקל C.

Bin Packing ∈NP − הוכחה: שלב א

 $\{w_1,...,w_n\},b,c$ שהקלט שלה הוא N נבנה מ"ט ל"ד

- 1. תנחש חלוקה של משקלי W ל b מכלים שסכומי המשקלים בכל מיכל יהיו ≤ c.
 - 2. N תבדוק:
- א. האם סכום המשקלים של כל הפריטים בכל מיכל ≥ c. <u>זמן לינארי בגודל הקלט</u>
 - ב. האם מספר המכלים ≥ b <u>זמן לינארי בגודל הקלט</u>
 - ג. האם כל המשקלים של איברי X מופיעים בתתי הקבוצות. -<u>ריבועי בגודל הקלט</u>
 - . אם הבדיקה כנדרש, המכונה N תעצור.
 - אם אחת הבדיקות אינה תקינה המכונה N לא תעצור הניחוש ובדיקתו פולינומיים בגודל הקלט.

הוכחה: שלב א −Bin Packing ∈NP

 $(X, W, b, c) \in Bin Packing$ מתקיים: אם

.c בעלי משקל W בעלי משקל X בעלים שכל אחד במשקל X ניתן לחלק את פרטי

N יכולה לנחש חלוקה זו של המשקלים.

בבדיקות N תגלה שבאמת זוהי חלוקה של המשקולות של X מיכלים שכל אחד במשקל קטן או שווה ל c

תעצור N

הוכחה: שלב א −Bin Packing ∈NP

מתקיים: אם Bin Packing מתקיים: אם

.c בעלי משקל W בעלים שכל אחד במשקל X בעלים שכל אחד במשקל

כל חלוקה שN תנחש, לא תענה על הדרישות

בבדיקות N תגלה או שזו אינה חלוקה תיקנית, או שיש יותר מ b קבוצות או שסכום המשקולות בקבוצה גדול מc.

לא תעצור N

אם בב - Bin Packing שלמה בNP

 $BP = \{ X, W, b, c \mid$ ניתן לאחסן את כל פרטי בעלי משקל מיכלים שכל אחד במשקל $\}$

Bin Packing ∈NPC : טענה

√ Bin Packing ∈NP הוכחה: יש להראות כי א

או לחילופין להראות ב. לכל שתקיים B ≤ Bin Packing מתקיים B∈NP ב. לכל

L ∈NPC כאשר L ≤_p Bin Packing

Partition ≤_p Bin Packing הרדוקציה

BP = { X, W, b, c | ניתן לאחסן את כל פרטי בעלי משקל מיכלים שכל אחד במשקל}

Partition = { $A = \{a_1, ..., a_n\} \mid$ ניתנת לחלוקה לשתי קבוצות שסכומן שווה $A = \{a_1, ..., a_n\}$

 $A \in Partition \Leftrightarrow (X, W, b, c) \in Bin Packing כלומר ש (X, W, b, c) מה תעשה פרוצדורה <math>A \in Partition \Leftrightarrow C \ge C$ ב יש חלוקה לשתי תתי עלומר ש $A \in C \ge C$ בא יש חלוקה לשתי תתי קבוצות שסכומן שווה שחכומן שווה

הרדוקציה

- W, b, c מייצרת A= $\{a_1,...,a_m\}$ בהינתן $A=\{a_1,...,a_m\}$
 - $(w_1, ..., w_m)$ תהיה קבוצה בת m מספרים W_{\bullet}

$$c = \sum a_i / 2$$

- b = 2
- . זמן הרדוקציה- לינארי בגודל הקלט

A ∈ Partition מתקיים: אם •

ביש ל Δ חלוקה לשתי תתי קבוצות שסכום איברי כל תת קבוצה הוא Σ α_i \2.

היות שלפי הבניה איברי W הם איברי A- יש לW חלוקה ל b=2 תתי קבוצות

. $\Sigma w_i \setminus 2 = \Sigma a_i \setminus 2 = c = שסכום איברי כל תת קבוצה$

. W, b,c ∈ Bin Packing

W, b,c ∈ Bin Packing מתקיים: אם •

.c ≥ אזי יש חלוקה של המשקלים בW לַd תתי קבוצות שסכום איבריהן

היות שלפי הבניה איברי W הם איברי A- יש לA חלוקה ל W הבניה איברי Sw_i עם איברי כל תת קבוצה Σw_i עם איברי כל עם איברי כל עם איברי כל תת קבוצה Σw_i עם איברי כל עם א

כיוון שזוהי חלוקה, כל האיברים של A מופיעים בה ולכן סכום כל האיברים בקבוצות הוא סכום איברי A לכן סכום איברי תתי הקבוצות לא יכול להיות קטן בקבוצות הוא סכום איברים ולכן נקבל שסכום איברי שתי תת הקבוצות הוא = ממחצית סכום כל האיברים ולכן נקבל שסכום איברי שתי תת הקבוצות הוא Σa; \2

ערצה לעצור $N_{Partition}$ ולכן $A \in Partition$

<u>Bin Packing דוגמא למאמר עדכני של</u>

Improved Approximation for Vector Bin Packing

Proceedings of the 2016 Annual ACM-SIAM Symposium on Discrete Algorithms