• Simple npn CM:

- \triangleright Q₁ has its **B** and C shorted
 - Can never saturate $(V_{BC} = 0)$
 - Known as diode-connectedBJT
- \triangleright Q₁ and Q₂ have *same* V_{BE}
- $I_{REF} = Reference Current$ $= (V_{CC} V_{BE})/R$
- $ightharpoonup I_0 = Output Current = I_{C2}$
- $> V_0 = Output Voltage$
 - Variable, depends on the load connected to it

• Output Resistance R_0 :

 \succ First, investigate Q_1

- The *small-signal equivalent* consists simply of r_E , which is the same as that for a *diode*
 - Hence the name *diode-connected BJT*

- Algorithm to find R_0 :
 - > Short all independent DC/ac voltage sources
 - > Open all independent DC/ac current sources
 - > Replace the active device by its low-frequency hybrid-π model
 - Excite the output terminal by a test voltage source (ac) v_t
 - \succ Find the current (ac) i_t drawn from v_t
 - ightharpoonup Then, $R_0 = v_t/i_t$

• For the complete circuit:

Left part of the circuit has no source

$$\Rightarrow$$
 $\mathbf{v}_2 = 0$

$$\Rightarrow$$
 $g_{m2}v_2 = 0$

- ightharpoonup Thus, $R_0 = v_t/i_t = r_{02} = V_{A2}/I_0$
- For a good current source, R_0 should be as large as possible (ideally infinite)
 - \Rightarrow V_{A2} should be as large as possible and/or I_0 should be as small as possible