Comparative Study of CNN Architectures on CIFAR-10

1. Introduction

In this task, four convolutional neural network (CNN) architectures were compared on the CIFAR-10 image classification dataset: a custom Advanced CNN, EfficientNet-B0, ResNet-18, and VGG16. The objective was to understand how these models work and gain a research-oriented intuitive understanding beyond just accuracy.

2. Experimental Setup

Dataset

• Dataset: CIFAR-10

• Classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck

• Image size: 32×32 RGB

• Split: 80% training, 20% validation, 20% separate testing

• Augmentation: Several innovative augmentations were applied (see project details) 😁

Training Configuration

Model	Optimizer	Learning Rate	Weight Decay	Scheduler	Epochs
Advanced CNN	SGD (momentum=0.9)	0.01	1e-6	ReduceLROnPlateau	50
EfficientNet- B0	Adam (most efficient)	0.001	1e-4	ReduceLROnPlateau	50
ResNet-18	SGD (momentum=0.9)	0.01	1e-4	ReduceLROnPlateau	50
VGG16	Adam	0.001	1e-4	ReduceLROnPlateau	50

3. Model Architectures

3.1 Advanced CNN (Custom Model)

- · A deep convolutional network with nine convolutional layers, three Batch Normalization layers, and a three-layer fully connected classifier.
- Architecture Summary:
- Conv Layers: $3 \rightarrow 64 \rightarrow 128 \rightarrow 256 \rightarrow 512$ (deeper feature extraction at 256 and 512 channels)
- Activation: ReLU

• Pooling: MaxPool2d (2×2)

• Normalization: BatchNorm after key convolutional blocks

• Dropout: p = 0.2

• Fully Connected Layers: $[8192 \rightarrow 8192 \rightarrow 4096 \rightarrow 10]$

• Total Parameters: 108.3 million

3.2 Pretrained Architectures

• EfficientNet-B0: Compound-scaled network balancing depth, width, and input resolution.

• ResNet-18: Incorporates residual (skip) connections to improve gradient flow.

• VGG16: Classic deep CNN with uniform 3×3 convolutions, known for robust performance.

4. Results

4.1 Overall Performance

Model	Accuracy (%)	Precision	Recall	F1- score	Train Loss	Val Loss	Val Acc (%)
Advanced CNN	96.73	0.967	0.967	0.967	0.188	0.282	91.23
EfficientNet- B0	93.03	0.869	0.867	0.868	0.378	0.399	86.74
ResNet-18	94.98	0.858	0.856	0.857	0.254	0.471	85.62
VGG16	96.92	0.915	0.915	0.915	0.153	0.305	91.52

4.2 Class-wise Performance

Class	Advanced CNN F1	EfficientNet F1	ResNet F1	VGG16 F1
Airplane	0.967	0.938	0.962	0.977
Automobile	0.991	0.969	0.973	0.987
Bird	0.956	0.917	0.937	0.960
Cat	0.925	0.856	0.898	0.931
Deer	0.970	0.937	0.946	0.972
Dog	0.937	0.876	0.914	0.938
Frog	0.978	0.950	0.969	0.981
Horse	0.974	0.947	0.961	0.978
Ship	0.985	0.957	0.975	0.985
Truck	0.990	0.960	0.964	0.984

5. Discussion

The Advanced CNN demonstrates very strong performance on CIFAR-10 with a **96.73% test accuracy**, despite being a scratch-built model. EfficientNet-B0 performs well due to its compound scaling and efficiency, achieving 93.03%. ResNet-18 leverages residual connections for stable training, reaching 94.98%. VGG16 maintains the highest accuracy at 96.92%, showing balanced and consistent performance across all classes.

Observations highlight that all models struggle most with **cats and dogs**, likely due to high visual similarity. Minor misclassifications between **birds and airplanes** and **trucks and cars** occurred in training but did not significantly affect test performance. The high ROC-AUC values indicate reliable class boundary learning.

6. Conclusion

Rank	Model	Accuracy (%)	Best Qualities
1	VGG16	96.92	Consistent performance, high generalization
2	Advanced CNN	96.73	Strong scratch-built performance, high test accuracy
3	ResNet-18	94.98	Strong residual learning, stable training
4	EfficientNet-B0	93.03	Lightweight and efficient

In conclusion, the Advanced CNN now shows very competitive results, nearly matching VGG16, with only minor confusion on visually similar classes (cats vs. dogs). This demonstrates that a well-designed custom CNN can achieve near state-of-the-art performance on CIFAR-10.