

Permanent Magnet Spherical Penning trap as a Small Fusion Source

Daniel R. Knapp ¹ and Daniel C. Barnes ²

¹ Medical University of South Carolina and Wilhelm Bratwurst Institute Charleston, South Carolina, USA knappdr@musc.edu

²Coronado Consulting, Lamy, New Mexico, and Wilhelm Bratwurst Institute Charleston, South Carolina, USA coronadocon@msn.com

23nd IAEA Technical Meeting on Research Using Small Fusion Devices 29-31 March, 2017, Santiago, Chile

The Penning Trap as a Fusion Reactor

Original concept:

G. Miyamoto, G. Iwata, S. Mori, and K. Inoue, A Possible Fusion Reactor, *Journal of the Physical Society of Japan* **12**(4), 438 (1957).

Detailed Examination by Los Alamos Group:

D. C. Barnes, R. A. Nebel, L. Turner, and T. N. Tiouririne, "Alternate Fusion: Continuous Inertial Confinement," *Plasma Physics and Controlled Fusion* **35**, 929-940 (1993).

The Penning Trap

- Hyperbolic end cap and ring electrodes form a 3D quadrupole electric field.
- Tuning V with B can make the potential well spherical and harmonic.
- Charged particles inserted via a hole in an end cap can be confined in the spherical well.

The Penning Trap as a Fusion Reactor

Overall Scheme:

 A Penning trap with uniform B, harmonic V can be tuned to make a spherical well for electrons.

$$\Phi_{\text{eff}} = \frac{V}{3a^2} (r^2 - 2z^2) - \frac{eB^2}{8m} r^2$$
 $(R_0 = Z_0 = a)$

$$V_0 = \frac{eB^2a^2}{8m_e}$$
 Well depth = 2/3 of V_0

- Spherical convergence of trapped electrons produces a central virtual cathode (without the use of grids).
- Ions confined by the central cathode can reach keV energies and undergo nuclear fusion.

(tradeoff between n_i and T_i ; T_i around 10% of V_0)

Very Low Power Requirements

- Electrons are loaded into the well over a low potential barrier (a few V) at very low current (uA).
- Scattered electron current to the anode (10's kV) is very low (10's uA)
 (mW power input)
- Contrast with gridded IEC fusion device where grid (10's kV) current (10's mA) can approach kW power input levels.

Potential for Fusion with Q ≥ 1, but

- Highest rates require high (hundreds of kV) potentials.
- Very challenging requirements for high voltage standoff.

Los Alamos PFX Device, 1997

Summary of LANL PFX Work

- Extensive theoretical analysis of the system.
- Observed spherical focus of electrons as predicted by theory.
- Observed electron density 30 times the Brillouin limit.
- Observed 100:1 radial convergence of trapped electrons.
- Acquired data up to 8 kV anode potential.
- Theory predicted possibility of Q ≥ 1.
- Did not reach the point of actually demonstrating fusion.

Unfortunately, work was terminated due to end of funding.

Penning Traps as Neutron Sources

D.C. Barnes

presented at the

16th US-Japan Workshop on Fusion Neutron Sources for

Nuclear Assay and Applications

Madison, WI, October 1, 2014

Some summary points:

"Significant Q at mW fusion level."

"Only need modest (but challenging) technology improvements to make Q~1."

"Currently no funding, buta "garage" scale experiment."

Initial Studies with a Salvaged Paul Trap

The hyperbolic trap used in the initial experiments was salvaged from an ion trap mass spectrometer.

The electron source was an electron microscope hairpin filament.

Permanent Magnet Solenoid

Assembly of Permanent Magnet Solenoid

Tungsten Filament Electron Source

"Wehnelt" electron focus element

Tungsten electron Microscope filament

Vacuum Chamber and Overall System

Electron Trapping Resonance in WBI-1 Device

Broad peak not at the theoretically predicted anode voltage

Conversion of the Asymmetric Paul Trap to a=0.707 cm Symmetric Trap

Anode Voltage Scan with Symmetric Trap

Magnetic Field Distortion in 304SS Trap

COMSOL field plot for μ = 1.005 304SS trap showing field distortion.

COMSOL field plot showing field distortion due to Kovar filament pins.

Titanium Trap with Nonmagnetic Electron Source $R_o = Z_o = 1 \text{ cm}$

Materials: grade 2 Ti, Al, 316SS, W (filament), ceramics

Titanium Trap with Nonmagnetic Electron Source

Increased Magnetic Field by Adding Magnets

Vo vs. B Follows Theoretical Prediction

Operation at Higher B Limited by Discharge

Scaling Model for the Penning Fusion Source

$$\dot{N} \approx 2 \times 10^{14} \frac{f^2 V^{4.5} C}{[3 \log C + 20.7 + 1/(1 - f)]^{5/2} (1 - f)^{1/2} a}$$

$$f = n_{i0} / n_{e0}$$
 ca. 0.5 is sufficient
 $V = \text{applied voltage (units of 100kV)}$ scales strongly with V
 $C = \text{convergence (units of 1000)}$ ca. linear with C
 $a = \text{trap radius (units of cm)}$ scales inversely with a

Neutron production (fusion) rates of $10^9 - 10^{10}$ s⁻¹ may be achievable in a 1 cm trap.

D.C. Barnes, presented at the 16th US-Japan Workshop on Fusion Neutron Sources for Nuclear Assay and Applications, Madison, WI, October 1, 2014.

References

- 1. D. C. Barnes, R. A. Nebel, L. Turner, and T. N. Tiouririne, "Alternate Fusion: Continuous Inertial Confinement," *Plasma Phys. Control. Fusion* **35**, 929 (1993).
- 2. M. M. Schauer, T. B. Mitchell, M. H. Holzscheiter, and D. C. Barnes, "Electron Penning Trap for the Generation of High Density Non-neutral Plasmas, *Rev. Sci. Instrum.* **68**, 3340-3345 (1997).
- 3. T. B. Mitchell, M. M. Schauer, and D. C. Barnes, "Observation of Spherical Focus in an Electron Penning Trap," *Phys. Rev. Lett.* **78**, 58 (1997).
- 3. D. C. Barnes, T. B. Mitchell, and M. M. Schauer, "Beyond the Brillouin Limit with the Penning Fusion Experiment", *Phys. Plasmas* **4**, 1745 (1997).
- 4. D. C. Barnes, M. M. Schauer, K. R. Umstadter, L. Chacón, and G. H. Miley, "Electron Equilibrium and Confinement in a Modified Penning Trap and its Application to Penning Fusion", *Phys. Plasmas* 7, 1693 (2000).
- 5. L. Chacón, and D. C. Barnes, "Stability of thermal ions confined by electron clouds in Penning fusion systems", *Phys. of Plasmas* **7, 4774** (2000).
- 6. M. M. Schauer, D. C. Barnes, and K. R. Umstadter, "Physics of non-thermal Penning-trap electron plasma and application to ion trapping," *Phys. Plasmas* **11**, 9 (2004).

Extra Slides

Effect of V on Potential Well Shape

$$V_0 = \frac{eB^2a^2}{8m_e}$$

$$V < V_0$$
 Prolate well

$$V = V_0$$
 Spherical well

$$V > V_0$$
 Oblate well

Cross Section of Trap Showing Equipotential Surfaces

