

Digital Integrated Circuits A Design Perspective

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Designing Sequential Logic Circuits

November 2002

Sequential Logic

2 storage mechanisms

- positive feedback
- charge-based

Naming Conventions

- □ In our text:
 - a latch is level sensitive
 - a register is edge-triggered
- There are many different naming conventions
 - For instance, many books call edgetriggered elements flip-flops
 - This leads to confusion however

Latch versus Register

Latchstores data when clock is low

Registerstores data when clock rises

Latches

Latch-Based Design

Timing Definitions

Characterizing Timing

Register

Latch

Maximum Clock Frequency

Also:

$$t_{cdreg} + t_{cdlogic} > t_{hold}$$

t_{cd}: contamination delay = minimum delay

Positive Feedback: Bi-Stability

Meta-Stability

Gain should be larger than 1 in the transition region

Writing into a Static Latch

Use the clock as a decoupling signal, that distinguishes between the transparent and opaque states

Forcing the state (can implement as NMOS-only)

Mux-Based Latches

Negative latch (transparent when CLK= 0)

Positive latch (transparent when CLK= 1)

$$Q = \overline{Clk} \cdot Q + Clk \cdot In$$

$$Q = Clk \cdot Q + \overline{Clk} \cdot In$$

Mux-Based Latch

Mux-Based Latch

NMOS only

Non-overlapping clocks

Master-Slave (Edge-Triggered) Register

Two opposite latches trigger on edge Also called master-slave latch pair

Master-Slave Register

Multiplexer-based latch pair

Clk-Q Delay

Setup Time

Reduced Clock Load Master-Slave Register

Avoiding Clock Overlap

Overpowering the Feedback Loop — Cross-Coupled Pairs

NOR-based set-reset

Cross-Coupled NAND

Cross-coupled NANDs

Added clock

This is not used in datapaths any more, but is a basic building memory cell

Sizing Issues

Output voltage dependence on transistor width

Transient response

Storage Mechanisms

Static

Dynamic (charge-based)

Making a Dynamic Latch Pseudo-Static

More Precise Setup Time

Circuit before clock arrival (Setup-1 case)

Circuit before clock arrival (Setup-1 case)

Circuit before clock arrival (Setup-1 case)

Circuit before clock arrival (Setup-1 case)

Setup/Hold Time Illustrations

Other Latches/Registers: C²MOS

"Keepers" can be added to make circuit pseudo-static

Insensitive to Clock-Overlap

Pipelining

Reference

Clock Period	Adder	Absolute Value	Logarithm
1	$a_1 + b_1$		
2	$a_2 + b_2$	$ a_1+b_1 $	
3	$a_3 + b_3$	$ a_2 + b_2 $	$\log(a_1+b_1)$
4	a_4+b_4	$ a_3 + b_3 $	$\log(a_2+b_2)$
5	<i>a</i> ₅ + <i>b</i> ₅	$ a_4 + b_4 $	$\log(a_3+b_3)$

Pipelined

Other Latches/Registers: TSPC

Positive latch

Negative latch (transparent when CLK= 1) (transparent when CLK= 0)

Including Logic in TSPC

Example: logic inside the latch

AND latch

TSPC Register

Pulse-Triggered Latches An Alternative Approach

Ways to design an edge-triggered sequential cell:

Pulsed Latches

Pulsed Latches

Hybrid Latch – Flip-flop (HLFF), AMD K-6 and K-7:

Hybrid Latch-FF Timing

Latch-Based Pipeline

Non-Bistable Sequential Circuits— Schmitt Trigger

Restores signal slopes

Noise Suppression using Schmitt Trigger

CMOS Schmitt Trigger

Schmitt Trigger Simulated VTC

Voltage-transfer characteristics with hysteresis.

The effect of varying the ratio of the PMOS device M_4 . The width is $k^* 0.5_m$ m.

CMOS Schmitt Trigger (2)

Multivibrator Circuits

Bistable Multivibrator flip-flop, Schmitt Trigger

Monostable Multivibrator one-shot

Astable Multivibrator oscillator

Transition-Triggered Monostable

Monostable Trigger (RC-based)

(a) Trigger circuit.

(b) Waveforms.

Astable Multivibrators (Oscillators)

simulated response of 5-stage oscillator

Relaxation Oscillator

$$T = 2 \text{ (log3) } RC$$

Voltage Controller Oscillator (VCO)

propagation delay as a function of control voltage

Differential Delay Element and VCO

two stage VCO

simulated waveforms of 2-stage VCO