SAMB for "CeCoSi"

Generated on 2023-05-24 22:48 by MultiPie 1.1.1

- \bullet Group: No. 129 $~D_{4h}^{7}~P4/nmm~$ [tetragonal]
- Associated point group: No. 15 D_{4h} 4/mmm [tetragonal]
- Generation condition
 - model type: tight_binding
 - time-reversal type: electric
 - irrep: [A1g]
 - spinful
- Unit cell:

$$a=4.057,\ b=4.057,\ c=6.987,\ \alpha=90.0,\ \beta=90.0,\ \gamma=90.0$$

• Lattice vectors:

$$\boldsymbol{a}_1 = \begin{pmatrix} 4.057 & 0 & 0 \end{pmatrix}$$

$$\mathbf{a}_2 = \begin{pmatrix} 0 & 4.057 & 0 \end{pmatrix}$$

$$a_3 = (0 \quad 0 \quad 6.987)$$

Table 1: High-symmetry line: Γ -X.

symbol	position	symbol	position
Γ	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	X	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$

• Kets: dimension = 36

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket	No.	ket
1	(p_x,\uparrow) @Ce ₁	2	(p_x,\downarrow) @Ce ₁	3	(p_y,\uparrow) @Ce ₁	4	(p_y,\downarrow) @Ce ₁	5	(p_z,\uparrow) @Ce ₁
 6	(p_z,\downarrow) @Ce ₁								

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	mapping
S_1	Ce_1	$\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & 0.678 \end{pmatrix}$	[1,2,7,8,11,12,13,14]
	Ce_2	$\left(\begin{array}{ccc} \frac{3}{4} & \frac{3}{4} & 0.322 \end{array}\right)$	[3,4,5,6,9,10,15,16]
S_2	Co_1	$\begin{pmatrix} \frac{1}{4} & \frac{3}{4} & 0 \end{pmatrix}$	[1,2,5,6,11,12,15,16]
	Co_2	$\begin{pmatrix} \frac{3}{4} & \frac{1}{4} & 0 \end{pmatrix}$	[3,4,7,8,9,10,13,14]
S_3	Si_1	$\left(\begin{array}{ccc} \frac{1}{4} & \frac{1}{4} & 0.178 \end{array}\right)$	[1,2,7,8,11,12,13,14]
	Si_2	$ \left(\frac{3}{4} \frac{3}{4} 0.822 \right) $	[3,4,5,6,9,10,15,16]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B_1	b_1	Ce_1	Co_1	1	1	$\left(0 -\frac{1}{2} 0.322\right) @ \left(\frac{1}{4} 0 0.839\right)$	[1,11]
	b_2	Ce_1	Co_1	1	1	$ \left(0 \frac{1}{2} 0.322 \right) @ \left(\frac{1}{4} \frac{1}{2} 0.839 \right) $	[2,12]
	b_3	Ce_2	Co_2	1	1	$\left(0 \frac{1}{2} -0.322\right) @ \left(\frac{3}{4} 0 0.161\right)$	[3,9]
	b_4	Ce_2	Co_2	1	1	$\left(\begin{array}{cccc} 0 & -\frac{1}{2} & -0.322 \end{array}\right) @ \left(\frac{3}{4} & \frac{1}{2} & 0.161 \right)$	[4,10]
	b_5	Ce_2	Co_1	1	1	$\left(-\frac{1}{2} 0 -0.322\right) @ \left(\frac{1}{2} \frac{3}{4} 0.161\right)$	[5,15]

Table 4

	bond	tail	head	n	#	b@c	mapping
	b_6	Ce_2	Co_1	1	1	$\left(\begin{array}{cccc} \frac{1}{2} & 0 & -0.322 \end{array}\right) @ \left(0 & \frac{3}{4} & 0.161 \right)$	[6,16]
	b_7	Ce_1	Co_2	1	1	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	[7,13]
	b_8	Ce_1	Co_2	1	1	$\left(-\frac{1}{2} 0 0.322 \right) @ \left(0 \frac{1}{4} 0.839 \right)$	[8,14]
B_2	b ₉	Ce_1	Si_2	1	1	$\left(-\frac{1}{2} -\frac{1}{2} 0.144\right) @ \left(0 0 \frac{3}{4}\right)$	[1,14]
	b_{10}	Ce_1	Si_2	1	1	$\left(\begin{array}{cccc} \frac{1}{2} & \frac{1}{2} & 0.144 \end{array}\right) @ \left(\begin{array}{cccc} \frac{1}{2} & \frac{1}{2} & \frac{3}{4} \end{array}\right)$	[2,13]
	b_{11}	Ce_2	Si_1	1	1	$\left(-\frac{1}{2} \frac{1}{2} -0.144 \right) @ \left(\frac{1}{2} 0 \frac{1}{4} \right)$	[3,15]
	b_{12}	Ce_2	Si_1	1	1	$\left(\begin{array}{ccc} \frac{1}{2} & -\frac{1}{2} & -0.144 \end{array}\right) @ \left(0 & \frac{1}{2} & \frac{1}{4} \right)$	[4,16]
	b_{13}	Ce_2	Si_1	1	1	$\left(\begin{array}{cccc} -\frac{1}{2} & -\frac{1}{2} & -0.144 \end{array} \right) @ \left(\begin{array}{cccc} \frac{1}{2} & \frac{1}{4} \end{array} \right)$	[5,10]
	b_{14}	Ce_2	Si_1	1	1	$\left(\begin{array}{cccc} \frac{1}{2} & \frac{1}{2} & -0.144 \end{array}\right) @ \left(\begin{array}{cccc} 0 & 0 & \frac{1}{4} \end{array}\right)$	[6,9]
	b_{15}	Ce_1	Si_2	1	1	$\left(\begin{array}{cccc} \frac{1}{2} & -\frac{1}{2} & 0.144 \end{array}\right) @ \left(\begin{array}{cccc} \frac{1}{2} & 0 & \frac{3}{4} \end{array}\right)$	[7,11]
	b_{16}	Ce_1	Si_2	1	1	$\left(-\frac{1}{2} \frac{1}{2} 0.144 \right) @ \left(0 \frac{1}{2} \frac{3}{4} \right)$	[8,12]
Вз	b ₁₇	Co ₁	Si_1	1	1	$\left(0 \frac{1}{2} 0.178\right) @ \left(\frac{1}{4} 0 0.089\right)$	[1,11]
	b_{18}	Co_1	Si_1	1	1	$\begin{pmatrix} 0 & -\frac{1}{2} & 0.178 \end{pmatrix} @ \begin{pmatrix} \frac{1}{4} & \frac{1}{2} & 0.089 \end{pmatrix}$	[2,12]
	b_{19}	Co_2	Si_2	1	1	$\left(\begin{array}{cccc} 0 & -\frac{1}{2} & -0.178 \end{array}\right) @ \left(\frac{3}{4} & 0 & 0.911 \right)$	[3,9]
	b_{20}	Co_2	Si_2	1	1	$\left(0 \frac{1}{2} -0.178\right) \cdot \left(0 \frac{3}{4} \frac{1}{2} 0.911\right)$	[4,10]
	b_{21}	Co ₁	Si_2	1	1	$\left(\begin{array}{cccc} \frac{1}{2} & 0 & -0.178 \end{array}\right) @ \left(\begin{array}{cccc} \frac{1}{2} & \frac{3}{4} & 0.911 \end{array}\right)$	[5,15]
	b_{22}	Co_1	Si_2	1	1	$\left(-\frac{1}{2} 0 -0.178 \right) @ \left(0 \frac{3}{4} 0.911 \right)$	[6,16]
	b_{23}	Co_2	Si_1	1	1	$\left(-\frac{1}{2} 0 0.178\right) @ \left(\frac{1}{2} \frac{1}{4} 0.089\right)$	[7,13]
	b_{24}	Co_2	Si_1	1	1	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	[8,14]

• SAMB:

$$\begin{split} & \boxed{ \text{No. 1} } \quad \hat{\mathbb{Q}}_0^{(A_{1g})} \ [M_1, S_1] \\ \\ \hat{\mathbb{Z}}_1 &= \mathbb{X}_1[\mathbb{Q}_0^{(a, A_{1g})}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s, A_{1g})}] \\ \\ \hat{\mathbb{Z}}_1(\boldsymbol{k}) &= \mathbb{X}_1[\mathbb{Q}_0^{(a, A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s, A_{1g})}] \end{split}$$

No. 2
$$\hat{\mathbb{Q}}_2^{(A_{1g})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_2(\boldsymbol{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 3
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,1)$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_3 = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_{1g})}(1,1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_3(\mathbf{k}) = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 4
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_4 = \mathbb{X}_4[\mathbb{Q}_2^{(a, A_{1g})}(1, -1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s, A_{1g})}]$$

$$\hat{\mathbb{Z}}_4(\boldsymbol{k}) = \mathbb{X}_4[\mathbb{Q}_2^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 5
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_5 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_5(\mathbf{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_2[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 6
$$\hat{\mathbb{Q}}_2^{(A_{1g})}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_6 = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_6(\boldsymbol{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_2[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 7
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,1)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_7 = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_{1g})}(1,1)] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_7(\boldsymbol{k}) = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_2[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 8
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_8 = \mathbb{X}_4[\mathbb{Q}_2^{(a,A_{1g})}(1,-1)] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{8}(\mathbf{k}) = \mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{0}^{(s,A_{1g})}]$$

No. 9
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, S₃]

$$\hat{\mathbb{Z}}_9 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_3[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_9(\mathbf{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_3[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 10
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₁, S₃]

$$\hat{\mathbb{Z}}_{10} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{Y}_3[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{10}(\boldsymbol{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_3[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 11
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,1)$$
 [M₁,S₃]

$$\hat{\mathbb{Z}}_{11} = \mathbb{X}_3[\mathbb{Q}_0^{(a, A_{1g})}(1, 1)] \otimes \mathbb{Y}_3[\mathbb{Q}_0^{(s, A_{1g})}]$$

$$\hat{\mathbb{Z}}_{11}(\mathbf{k}) = \mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(s,A_{1g})}]$$

No. 12
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₁, S₃]

$$\hat{\mathbb{Z}}_{12} = \mathbb{X}_4[\mathbb{Q}_2^{(a,A_{1g})}(1,-1)] \otimes \mathbb{Y}_3[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{12}(\mathbf{k}) = \mathbb{X}_4[\mathbb{Q}_2^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 13
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{13} = \mathbb{X}_1[\mathbb{Q}_0^{(a, A_{1g})}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b, A_{1g})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{13}(\pmb{k}) &= -\frac{\mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_{11}[\mathbb{T}_3^{(u,B_{2u})}] \otimes \mathbb{F}_8[\mathbb{T}_3^{(k,B_{2u})}]}{2} + \frac{\mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(u,A_{1g})}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_{1g})}]}{2} \\ &+ \frac{\mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_6[\mathbb{Q}_2^{(u,B_{1g})}] \otimes \mathbb{F}_2[\mathbb{Q}_2^{(k,B_{1g})}]}{2} - \frac{\mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_9[\mathbb{T}_1^{(u,A_{2u})}] \otimes \mathbb{F}_5[\mathbb{T}_1^{(k,A_{2u})}]}{2} \end{split}$$

$$\begin{split} & \boxed{ \begin{aligned} & \boxed{ No. \ 14 } \quad \hat{\mathbb{Q}}_{2}^{(A_{1g})} \left[\mathbb{M}_{1}, \mathbb{B}_{1} \right] \\ & \hat{\mathbb{Z}}_{14} = \mathbb{X}_{2} [\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{Y}_{4} [\mathbb{Q}_{0}^{(b,A_{1g})}] \\ & \hat{\mathbb{Z}}_{14}(\boldsymbol{k}) = - \frac{\mathbb{X}_{2} [\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{11} [\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{8} [\mathbb{T}_{3}^{(k,B_{2u})}]}{2} \\ & + \frac{\mathbb{X}_{2} [\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{4} [\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{1} [\mathbb{Q}_{0}^{(k,A_{1g})}]}{2} \\ & + \frac{\mathbb{X}_{2} [\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{6} [\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{2} [\mathbb{Q}_{2}^{(k,B_{1g})}]}{2} - \frac{\mathbb{X}_{2} [\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{9} [\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{5} [\mathbb{T}_{1}^{(k,A_{2u})}]}{2} \end{aligned}$$

 $\hat{\mathbb{Z}}_{15} = \frac{\hat{\mathbb{Q}}_{0}^{(A_{1g})} \left[\mathbb{M}_{1}, \mathbb{B}_{1} \right] }{3} + \frac{\sqrt{3}\mathbb{X}_{7} \left[\mathbb{Q}_{2,0}^{(a,E_{g})} \right] \otimes \mathbb{Y}_{6} \left[\mathbb{Q}_{2,0}^{(b,E_{g})} \right] }{3} + \frac{\sqrt{3}\mathbb{X}_{8} \left[\mathbb{Q}_{2,1}^{(a,E_{g})} \right] \otimes \mathbb{Y}_{7} \left[\mathbb{Q}_{2,1}^{(b,E_{g})} \right] }{3}$

$$\begin{split} \hat{\mathbb{Z}}_{15}(\pmb{k}) &= -\frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1}^{(k,A_{2u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{0}^{(u,B_{1g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} \\ &- \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{8}[\mathbb{T}_{3}^{(k,B_{2u})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,0}^{(u,B_{1g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{2,1}^{(u,B_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1,0}^{(k,E_{g})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{2,1}^{(u,A_{1g})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{P}_{9}[\mathbb{Q}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{P}_{9}[\mathbb{Q$$

$$\begin{split} & \boxed{ \begin{bmatrix} \text{No. } 16 \end{bmatrix} } \ \hat{\mathbb{Q}}_{2}^{(A_{1}g)} \ [\text{M}_{1}, \text{B}_{1}] \\ \\ \hat{\mathbb{Z}}_{16} &= -\frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1}g)}]}{3} \otimes \mathbb{Y}_{5}[\mathbb{Q}_{2}^{(b,B_{1}g)}]} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}]}{6} \otimes \mathbb{Y}_{6}[\mathbb{Q}_{2,0}^{(b,E_{g})}]} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}]}{6} \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,1}^{(b,E_{g})}]} \\ \hat{\mathbb{Z}}_{16}(k) &= \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1}g)}]}{6} \otimes \mathbb{U}_{11}[\mathbb{T}_{3}^{(u,B_{2}u)}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1}^{(k,A_{2}u)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1}g)}]}{8} \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1}g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,B_{1}g)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1}g)}]}{8} \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1}g)}]} \\ &+ \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1}g)}]}{6} \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2}u)}] \otimes \mathbb{F}_{8}[\mathbb{T}_{3}^{(k,B_{2}u)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}]}{8} \otimes \mathbb{U}_{1}[\mathbb{T}_{3}^{(u,B_{2}u)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}]}{8} \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(k,E_{g})}]} - \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}]}{8} \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2}u)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}]}{8} \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1}g)}]} \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}]}{8} \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2}u)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}]}{8} \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1}g)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}]}{8} \otimes \mathbb{E}_{9}[\mathbb{T}_{1}^{(k,E_{u})}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}]}{12} \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1}g)}]} \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}]}{12} \otimes \mathbb{E}_{9}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}]}{12} \otimes \mathbb{E}_{9}[\mathbb{Q}_{1}^{(k,E_{g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{12} - \frac{\sqrt{6}\mathbb{X}$$

No. 17
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{17} = \mathbb{X}_3[\mathbb{Q}_0^{(a, A_{1g})}(1, 1)] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b, A_{1g})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{17}(\boldsymbol{k}) &= -\frac{\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{8}[\mathbb{T}_{3}^{(k,B_{2u})}]}{2} + \frac{\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{2} \\ &+ \frac{\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{2} - \frac{\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1}^{(k,A_{2u})}]}{2} \end{split}$$

No. 18
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{18} = \mathbb{X}_4[\mathbb{Q}_2^{(a, A_{1g})}(1, -1)] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b, A_{1g})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{18}(\textbf{\textit{k}}) &= -\frac{\mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{8}[\mathbb{T}_{3}^{(k,B_{2u})}]}{2} + \frac{\mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{2} \\ &+ \frac{\mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{2} - \frac{\mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1}^{(k,A_{2u})}]}{2} \end{split}$$

No. 19
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{19} = \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{2}^{(b,B_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{2,1}^{(b,B_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{2,1}^{(a,B_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{2,1}^{(a,B_{1g})}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{2,1}^{$$

$$\begin{split} \hat{\mathbb{Z}}_{19}(\mathbf{k}) &= -\frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} \\ &- \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,B_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_g)}]}{6} \\ &- \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1}^{(k,A_{2u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(k,B_{2u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(k,B_{2u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(k,B_{2u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(k,B_{2u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,B_{2u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{3}^{(u,B_{2u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{3}^{(u,B_{2u})}(1,-1)] \otimes \mathbb{Q}_{9}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{Q}_{9}[\mathbb{Q}_{3}^{(u,B_{2u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{Z}_{9}[\mathbb{Q}_{3}^{(u,B_{2u})}(1,-1)] \otimes \mathbb{Q}_{9}[\mathbb{Q}_{3}^{(u,B_{2u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{Z$$

No. 20
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{20} = \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{2}^{(b,B_{1g})}]}{3}$$

$$\begin{split} \hat{\mathbb{Z}}_{20}(\pmb{k}) &= -\frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{12} - \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_g)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,0}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,0}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1,1}^{(u,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,1}^{(u,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,1}^{(u,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Q}_{12}[\mathbb{Q}_{1,1}^{(u,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(u,E_g)}(1,-1)] \otimes \mathbb{Q}_{12}[\mathbb{Q}_{1,1}^{(u,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}$$

No. 21
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,0)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{21} = \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{21}(\pmb{k}) &= -\frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(u,B_{2u})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{1,1}^{(u,B_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(u,B_{2u})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(u,B_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(u,B_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(u,B_{2u})}]}{4} \\ &+ \frac{\mathbb{X}_{14}[\mathbb{T}_{1,1}^{(u,B_{2u})}] \otimes \mathbb{T}_{9}[\mathbb{T}_{1,1}^{(u,B_{2u})}]}{4} \\ &+ \frac{\mathbb{X}_{14}[\mathbb{T}_{1,1}^{(u,B$$

No. 22
$$\hat{\mathbb{Q}}_2^{(A_{1g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{22} = \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{Y}_{10}[\mathbb{T}_{2,0}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,1}^{(b,E_g)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{22}(\pmb{k}) &= \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{10}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{7}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{10}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_u)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_u)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{7}[\mathbb{Q}_{3}^{(u,B_{1g})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_u)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_u)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{7}[\mathbb{Q}_{3}^{(u,A_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{1g})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{1,1}^{(k,E_u)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1,1}^{(k,E_u)}]}{4} \\ &- \frac{\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{X}_{16}[\mathbb{M}_{1,1}^{(u,A_{2u})}]}{4} \\ &- \frac{\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{X}_{16}[\mathbb{M}_{1,1}^{(u,A_{2u})}]}{4} \\ &- \frac{\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(u,A_{2u})}] \otimes \mathbb{X}_{16}[\mathbb{M}_{1,1}^{(u,A_{2u$$

No. 23 $\hat{\mathbb{Q}}_2^{(A_{1g})}(1,1)$ [M₁, B₁]

$$\hat{\mathbb{Z}}_{23} = \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{Y}_{10}[\mathbb{T}_{2,0}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,1}^{(b,E_g)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{23}(\boldsymbol{k}) &= \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{10}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{7}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{10}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_u)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_u)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{7}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_u)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{1g})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{7}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,1}^{(u,A_{1g})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{7}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,1}^{(u,A_{1g})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{Q}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,1}^{(u,B_{1g})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{Q}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,1}^{(u,B_{1g})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{Z}_{18}[\mathbb{Q}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,1}^{(u,B_{1g})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{Z}_{18}[\mathbb{Q}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{$$

No. 24
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{24} = \frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{T}_{2,0}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,1}^{(b,E_g)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{24}(\boldsymbol{k}) &= \frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_u)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_u)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_u)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{0}^{(u,A_{2u})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{0}^{(u,B_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{0}^{(u,B_{2u})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,1}^{(u,B_{1g})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{T}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{F}_{1,1}^{(u,B_{1g})}}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{T}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{F}_{1,1}^{(u,B_{1g})}}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{F}_{1,1}^$$

No. 25
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}(1,-1)$$
 [M₁, B₁] $\hat{\mathbb{Z}}_{25} = -\frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)]}{6}$

$$\begin{split} \hat{\mathbb{Z}}_{25} &= -\frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)]\otimes\mathbb{Y}_{10}[\mathbb{T}_{2,0}^{(b,E_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)]\otimes\mathbb{Y}_{11}[\mathbb{T}_{2,1}^{(b,E_g)}]}{6} - \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{Y}_{10}[\mathbb{T}_{2,0}^{(b,E_g)}]}{6} \\ &+ \frac{\sqrt{5}\mathbb{X}_{24}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{Y}_{11}[\mathbb{T}_{2,1}^{(b,E_g)}]}{6} - \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)]\otimes\mathbb{Y}_{9}[\mathbb{T}_{2}^{(b,B_{1g})}]}{3} \end{split}$$

$$\hat{\mathbb{Z}}_{25}(k) = -\frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,Eg,1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{12} - \frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{12} - \frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{12} - \frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{12} - \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{12} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,0}^{(k,E_{g})}]}{12} - \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{12} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{1}^{(k,E_{g})}]}{12} - \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{12} - \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_{g},2)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{12} - \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_{g},2)}(1,-$$

No. 26
$$\hat{\mathbb{Q}}_{4}^{(A_{1g},1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{26} = \frac{\sqrt{195}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{T}_{2,0}^{(b,E_g)}]}{78} - \frac{\sqrt{195}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,1}^{(b,E_g)}]}{78} - \frac{\sqrt{13}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,0}^{(b,E_g)}]}{6} \\ + \frac{\sqrt{13}\mathbb{X}_{24}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{T}_{2,1}^{(b,E_g)}]}{6} + \frac{5\sqrt{13}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{Y}_{9}[\mathbb{T}_{2}^{(b,B_{1g})}]}{39} \\ - \frac{\sqrt{13}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{T}_{2,0}^{(b,E_g)}]}{6} \\ - \frac{5\sqrt{13}\mathbb{X}_{27}[\mathbb{M}_{3,0}^{(a,B_{1g},1)}(1,-1)] \otimes \mathbb{Y}_{9}[\mathbb{T}_{2}^{(b,B_{1g})}]}{6} \\ - \frac{5\sqrt{13}\mathbb{X}_{27}[\mathbb{M}_{3,0}^{(a,B_{1g},1)}(1,-1)] \otimes \mathbb{Y}_{9}[\mathbb{T}_{2}^{(b,B_{1g})}]}{6} \\ - \frac{5\sqrt{13}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{T}_{2,0}^{(b,E_g)}]}{6} \\ - \frac{5\sqrt{13}\mathbb{X}_{27}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{T}_{2,0}^{(b,E_g)}]}{6} \\ - \frac{5\sqrt{13}\mathbb{X}_{27}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{T}_{2,0}^{(b,E_g,2)}]}{6} \\ - \frac{5\sqrt{13}\mathbb{X}_{27}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{T}_{2,0}^{(a,E_g,2)}(1,-1)]}{6} \\ - \frac{5\sqrt{13}\mathbb{X}_{27}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)]}{6} \\ - \frac{5\sqrt{13$$

$$\hat{\mathbb{Z}}_{26}(k) = \frac{\sqrt{195}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{156} + \frac{\sqrt{195}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{156} + \frac{\sqrt{195}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{156} + \frac{\sqrt{195}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_u)}]}{156} - \frac{\sqrt{195}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,E_u)}]}{156} - \frac{\sqrt{195}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,E_u)}]}{156} - \frac{\sqrt{195}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{0}^{(u,A_{2u})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,1}^{(k,E_u)}]}{156} - \frac{\sqrt{13}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{12} - \frac{\sqrt{13}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{0}^{(u,A_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{12} - \frac{\sqrt{13}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{0}^{(u,A_{2u})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,1}^{(k,E_u)}]}{12} - \frac{\sqrt{13}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{0}^{(u,A_{2u})}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,E_u)}]}{12} - \frac{\sqrt{13}\mathbb{X}_{23}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{0}^{(u,A_{2u})}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,E_u)}]}{12} - \frac{\sqrt{13}\mathbb{X}_{23}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{0}^{(u,B_{2u})}]}{12} + \frac{\sqrt{13}\mathbb{X}_{23}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{0}^{(u,B_{2u})}]}{12} + \frac{\sqrt{13}\mathbb{X}_{23}[$$

$$\begin{split} & \begin{bmatrix} \text{No. 27} \end{bmatrix} \ \hat{\mathbb{Q}}_{4}^{(A_{1g},2)}(1,-1) \ [\text{M}_{1},\text{B}_{1}] \\ \hat{\mathbb{Z}}_{27} = -\frac{\sqrt{65}\mathbb{X}_{21} [\mathbb{M}_{3,0}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{Y}_{10} [\mathbb{T}_{2,0}^{(b,E_{g})}]}{13} + \frac{\sqrt{65}\mathbb{X}_{22} [\mathbb{M}_{3,1}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{Y}_{11} [\mathbb{T}_{2,1}^{(b,E_{g})}]}{13} + \frac{\sqrt{39}\mathbb{X}_{27} [\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{Y}_{9} [\mathbb{T}_{2}^{(b,B_{1g})}]}{13} \\ \hat{\mathbb{Z}}_{27}(\boldsymbol{k}) = -\frac{\sqrt{65}\mathbb{X}_{21} [\mathbb{M}_{3,0}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{U}_{10} [\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{3} [\mathbb{Q}_{2,0}^{(k,E_{g})}]}{26} - \frac{\sqrt{65}\mathbb{X}_{21} [\mathbb{M}_{3,0}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{U}_{5} [\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{7} [\mathbb{T}_{1,1}^{(k,E_{u})}]}{26} \\ -\frac{\sqrt{65}\mathbb{X}_{21} [\mathbb{M}_{3,0}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{U}_{10} [\mathbb{T}_{2}^{(u,B_{2u})}] \otimes \mathbb{F}_{7} [\mathbb{T}_{1,1}^{(k,E_{u})}]}{26} + \frac{\sqrt{65}\mathbb{X}_{22} [\mathbb{M}_{3,1}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{U}_{5} [\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6} [\mathbb{T}_{1,0}^{(k,E_{g})}]}{26} \\ -\frac{\sqrt{65}\mathbb{X}_{22} [\mathbb{M}_{3,1}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{U}_{7} [\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{6} [\mathbb{T}_{1,0}^{(k,E_{g})}]}{26} + \frac{\sqrt{65}\mathbb{X}_{22} [\mathbb{M}_{3,1}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{U}_{5} [\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{6} [\mathbb{T}_{1,0}^{(k,E_{g})}]}{26} \\ +\frac{\sqrt{39}\mathbb{X}_{27} [\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{10} [\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{1} [\mathbb{Q}_{0}^{(k,A_{1g})}]}{26} + \frac{\sqrt{39}\mathbb{X}_{27} [\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{5} [\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{8} [\mathbb{T}_{3}^{(k,E_{2u})}]}{26} \\ +\frac{\sqrt{39}\mathbb{X}_{27} [\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{7} [\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{5} [\mathbb{T}_{1}^{(k,A_{2u})}]}{26} \\ +\frac{\sqrt{39}\mathbb{X}_{27} [\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{8} [\mathbb{Q}_{0}^{(u,B_{2u})}] \otimes \mathbb{F}_{5} [\mathbb{T}_{1}^{(k,A_{2u})}]}{26} \\ +\frac{\sqrt{39}\mathbb{X}_{27} [\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{8} [\mathbb{Q}_{0}^{(u,B_{2u})}] \otimes \mathbb{F}_{5} [\mathbb{Q}_{0}^{(k,B_{2u})}]}{26} \\ +\frac{\sqrt{39}\mathbb{X}_{27} [\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{8} [\mathbb{Q}_{0}^{(u,B_{2u})}] \otimes \mathbb{F}_{8} [\mathbb{Q}_{0}^{(k,B_{2u})}]}{26} \\ +\frac{\sqrt{39}\mathbb{X}_{27} [\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{8} [\mathbb{Q}_{0}^{(u,B_{2u})}] \otimes \mathbb{F}_{8} [\mathbb{Q}_{0}^{(u,B_{2u})}]}{26} \\ +\frac{\mathbb{Q}$$

$$\begin{array}{c} [No.\ 28] \quad & \tilde{Q}_{2}^{(A_{1})}(1,0) \quad [M_{1},B_{1}] \\ & \tilde{Z}_{28} = X_{31} [\mathbb{T}_{2}^{(A_{1}A_{2})}(1,0)] \otimes Y_{3}[\mathbb{T}_{0}^{(A_{1}B_{2})}] \otimes \mathbb{F}_{2}[Q_{2}^{(A_{1}B_{1}g)}] \\ & \tilde{Z}_{28}(k) = \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}A_{1}g)}(1,0)] \otimes V_{3}[\mathbb{T}_{0}^{(A_{1}B_{2}a)}] \otimes \mathbb{F}_{3}[\mathbb{T}_{3}^{(A_{1}B_{2}a)}] + \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}A_{1}g)}(1,0)] \otimes U_{3}[Q_{3}^{(A_{1}B_{2}a)}] \otimes \mathbb{F}_{3}[\mathbb{T}_{3}^{(A_{1}A_{2}g)}] \\ & + \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}A_{2}g)}(1,0)] \otimes V_{3}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \otimes \mathbb{F}_{3}[\mathbb{T}_{3}^{(A_{1}B_{2}a)}] + \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}A_{1}g)}(1,0)] \otimes U_{3}[\mathbb{T}_{3}^{(A_{1}A_{2}g)}] \otimes \mathbb{F}_{3}[Q_{3}^{(A_{1}A_{2}g)}] \\ & + \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}A_{2}g)}(1,0)] \otimes V_{3}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \otimes \mathbb{F}_{3}[Q_{3}^{(A_{1}B_{2}a)}] \\ & + \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}A_{2}g)}(1,0)] \otimes V_{3}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \otimes \mathbb{F}_{3}[Q_{3}^{(A_{1}B_{2}a)}] \\ & + \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}A_{2}g)}(1,0)] \otimes V_{3}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \\ & + \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}A_{2}a)}] \otimes \mathbb{F}_{3}[Q_{2}^{(A_{1}B_{2}a)}] + \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}B_{2}a)}(1,0)] \otimes V_{3}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \otimes \mathbb{F}_{3}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \\ & + \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}B_{2}a)}(1,0)] \otimes U_{3}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \otimes \mathbb{F}_{3}[Q_{2}^{(A_{1}B_{2}a)}] + \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}B_{2}a)}(1,0)] \otimes U_{3}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \\ & + \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}B_{2}a)}(1,0)] \otimes U_{3}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \otimes \mathbb{F}_{3}[Q_{2}^{(A_{1}B_{2}a)}] - \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}B_{2}a)}(1,0)] \otimes U_{3}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \\ & + \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}B_{2}a)}(1,0)] \otimes U_{3}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] - \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}]} \\ & + \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}B_{2}a)}(1,0)] \otimes U_{3}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}] - \frac{X_{31} [\mathbb{T}_{2}^{(A_{1}B_{2}a)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{2}^{(A_{1}B_{2}a)}]} \otimes \mathbb{F}_{$$

No. 31
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{31} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{31}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{13}[\mathbb{T}_{1}^{(k,A_{2u})}]}{2}$$

No. 32
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{32} = \mathbb{X}_2[\mathbb{Q}_2^{(a, A_{1g})}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_0^{(b, A_{1g})}]$$

$$\hat{\mathbb{Z}}_{32}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_{12}[\mathbb{Q}_0^{(u,A_{1g})}] \otimes \mathbb{F}_9[\mathbb{Q}_0^{(k,A_{1g})}]}{2} - \frac{\sqrt{2}\mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_1^{(u,A_{2u})}] \otimes \mathbb{F}_{13}[\mathbb{T}_1^{(k,A_{2u})}]}{2} - \frac{\sqrt{2}\mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_1^{(u,A_{2u})}] \otimes \mathbb{F}_{13}[\mathbb{T}_1^{(u,A_{2u})}]}{2} - \frac{\sqrt{2}\mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_1^{(u,A_{2u})}] \otimes \mathbb{F}_{13}[\mathbb{T}_1^{(u,A_{2u})}]}{2} - \frac{\sqrt{2}\mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_1^{(u,A_{2u})}] \otimes \mathbb{F}_{13}[\mathbb{T}_1^{(u,A_{2u})}]}{2} - \frac{\sqrt{2}\mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_1^{(u,A_{2u})}]}{2} - \frac{\sqrt{2}\mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_1^{(u,A_{2u})}]}{2} - \frac{\sqrt{2}\mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_1^{(u,A_{2u})}]}{2} - \frac{\sqrt{2}\mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}]}{2} - \frac{\sqrt{2}\mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_1^{(u,A_{2u})}]}{2} - \frac{\sqrt{2}\mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}]}{2} - \frac$$

No. 33
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{33} = \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,B_{2g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2}^{(b,B_{2g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}]}{3}$$

$$\hat{\mathbb{Z}}_{33}(\textbf{\textit{k}}) = \frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,B_{2g})}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,B_{2g})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,B_{2g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{16}[\mathbb{T}_{3}^{(k,B_{1u})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(u,A_{1g})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(u,A_{1g})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(u,A_{1g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(u,A_{1g})}] \otimes \mathbb{F}_$$

No. 34
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{34} = -\frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,B_{2g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2}^{(b,B_{2g})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_{g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}]}{6}$$

$$\hat{\mathbb{Z}}_{34}(\boldsymbol{k}) = -\frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,B_{2g})}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,B_{2g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,B_{2g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{16}[\mathbb{T}_{3}^{(k,B_{1u})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_{g})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,0}^{(u,A_{1g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_{g})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,1}^{(u,A_{1g})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,1}^{(u,A_{1g})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,1}^{(u,A_{1g})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,0}^{(u,A_{1g})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,0}^{(u,A_{1g})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,0}^{(u,A_{1g})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,0}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,1}^{(u,A_{2u})}]}{6} \\ - \frac$$

No. 35
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,1) [M_1, B_2]$$

$$\hat{\mathbb{Z}}_{35} = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_{1g})}(1,1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{35}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{13}[\mathbb{T}_{1}^{(k,A_{2u})}]}{2}$$

No. 36
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{36} = \mathbb{X}_4[\mathbb{Q}_2^{(a,A_{1g})}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{36}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{13}[\mathbb{T}_{1}^{(k,A_{2u})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{13}[\mathbb{T}_{1}^{(k,A_{2u})}]}{2} - \frac{\mathbb{E}_{13}[\mathbb{T}_{1}^{(u,A_{2u})}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{13}[\mathbb{T}_{1}^{(u,A_{2u})}]}{2} - \frac{\mathbb{E}_{13}[\mathbb{T}_{1}^{(u,A_{2u})}(1,-1)] \otimes \mathbb{E}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}]}{2} \otimes \mathbb{E}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{E}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}]}$$

No. 37
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{37} = \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{2}^{(a,B_{2g})}(1,-1)] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2}^{(b,B_{2g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(b,E_g)}(1,-1)] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(b,E_g)}(1,-1)] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(b,E_g)}(1,-1)] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(b,E_g)}(1,-1)] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(b,E_g)}(1,-1)] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(b,E_g)}(1,-1)]}{3} +$$

$$\begin{split} \hat{\mathbb{Z}}_{37}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{2}^{(a,B_{2g})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,B_{2g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_{g})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_{g})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_{g})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_{g})}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \end{split}$$

No. 38
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{38} = -\frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{2}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{Y}_{13}[\mathbb{Q}_{2}^{(b,B_{2g})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_{g})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_{g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{g})}(1,-1)]\otimes\mathbb{Y}_{15$$

$$\begin{split} \hat{\mathbb{Z}}_{38}(\boldsymbol{k}) &= -\frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{2}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}]\otimes\mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,B_{2g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{2}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}]\otimes\mathbb{F}_{16}[\mathbb{T}_{3}^{(k,B_{1u})}]}{3} \\ &+ \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_{g})}(1,-1)]\otimes\mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}]\otimes\mathbb{F}_{11}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_{g})}(1,-1)]\otimes\mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}]\otimes\mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_{g})}(1,-1)]\otimes\mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}]\otimes\mathbb{F}_{12}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_{g})}(1,-1)]\otimes\mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}]\otimes\mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_{u})}]}{6} \end{split}$$

No. 39
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,0)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{39} = \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{39}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2} - \frac{\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_u)}]}{2} \\ &- \frac{\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2} + \frac{\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_u)}]}{2} \end{split}$$

No. 40
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{40} = \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{Y}_{18}[\mathbb{T}_{2,0}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,1}^{(b,E_g)}]}{2}$$

$$\hat{\mathbb{Z}}_{40}(\boldsymbol{k}) = \frac{\mathbb{X}_{15}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_u)}]}{2} + \frac{\mathbb{X}_{15}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2} \\ - \frac{\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_u)}]}{2} - \frac{\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2}$$

No. 41
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{41} = \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{2,0}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,1}^{(b,E_g)}]}{2}$$

$$\hat{\mathbb{Z}}_{41}(\boldsymbol{k}) = \frac{\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_u)}]}{2} + \frac{\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2} \\ - \frac{\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_u)}]}{2} - \frac{\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2}$$

No. 42
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{42} = \frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{2,0}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,1}^{(b,E_g)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{42}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{19}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_u)}]}{2} + \frac{\mathbb{X}_{19}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2} \\ &- \frac{\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_u)}]}{2} - \frac{\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2} \end{split}$$

No. 43
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₁, B₂]

$$\begin{split} \hat{\mathbb{Z}}_{43} &= -\frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)]\otimes\mathbb{Y}_{18}[\mathbb{T}_{2,0}^{(b,E_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)]\otimes\mathbb{Y}_{19}[\mathbb{T}_{2,1}^{(b,E_g)}]}{6} - \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{Y}_{18}[\mathbb{T}_{2,0}^{(b,E_g)}]}{6} \\ &+ \frac{\sqrt{5}\mathbb{X}_{24}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{Y}_{19}[\mathbb{T}_{2,1}^{(b,E_g)}]}{6} + \frac{\sqrt{5}\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{Y}_{17}[\mathbb{T}_{2}^{(b,B_{2g})}]}{3} \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{43}(\textbf{\textit{k}}) &= -\frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_u)}]}{12} - \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_u)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{12} \\ &- \frac{\sqrt{10}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_u)}]}{12} - \frac{\sqrt{10}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{10}\mathbb{X}_{24}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{16}[\mathbb{T}_{3}^{(k,B_{1u})}]}{12} + \frac{\sqrt{10}\mathbb{X}_{24}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{10}\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{2u})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,B_{1u})}]}{6} + \frac{\sqrt{10}\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{10}\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{2u})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,B_{2u})}]}{12} \\ &+ \frac{\sqrt{10}\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{2u})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,B_{2u})}]}{12} \\ &+ \frac{\sqrt{10}\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{2u})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,B_{2u})}]}{12} \\ &+ \frac{\sqrt{10}\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{2u})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,B_{2u})}]}{12} \\ &+ \frac{\sqrt{10}\mathbb{X}_{29}[\mathbb{M}_{3}^{(u,A_{2u})}] \otimes \mathbb{T}_{16}[\mathbb{Q}_{2}^{(u,A_{2u})}] \otimes \mathbb{T}_{16}[\mathbb{Q}_{2}^{(u,A_{2u})}]}{12} \\ &+ \frac{\sqrt{10}\mathbb{X}_{29}[\mathbb{M}_{3}^{(u,A_{2u})}] \otimes \mathbb{T}_{16}[\mathbb{Q}_{2}^{(u,A_{2u})}]}{12} \otimes \mathbb{T}_{16}[\mathbb{Q}_{2}^{(u,A_{2u})}]} \otimes \mathbb{T}_{16}[\mathbb{Q}_{2}^{(u,A_{2u})}]}{12$$

No. 44
$$\hat{\mathbb{Q}}_{4}^{(A_{1g},1)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{44} = -\frac{\sqrt{3}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{Y}_{18}[\mathbb{T}_{2,0}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{Y}_{19}[\mathbb{T}_{2,1}^{(b,E_g)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{Y}_{17}[\mathbb{T}_{2}^{(b,B_{2g})}]}{3} - \frac{\mathbb{X}_{17}[\mathbb{T}_{2,1}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{Y}_{18}[\mathbb{T}_{2,1}^{(b,B_{2g})}]}{3} - \frac{\mathbb{X}_{18}[\mathbb{T}_{2,1}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{Y}_{18}[\mathbb{T}_{2,1}^{(b,B_{2g})}]}{3} - \frac{\mathbb{X}_{18}[\mathbb{T}_{2,1}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{Y}_{18}[\mathbb{T}_{2,1}^{(b,B_{2g})}]}{3} - \frac{\mathbb{X}_{18}[\mathbb{T}_{2,1}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{Y}_{18}[\mathbb{T}_{2,1}^{(b,B_{2g})}]}{3} - \frac{\mathbb{X}_{18}[\mathbb{T}_{2,1}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{Y}_{18}[\mathbb{T}_{2,1}^{(b,B_{2g})}]}{3} - \frac{\mathbb{X}_{18}[\mathbb{T}_{2,1}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{Y}_{18}[\mathbb{T}_{2,1}^{(b,B_{2g})}]}{3} - \frac{\mathbb{X}_{18}[\mathbb{T}_{2,1}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{Y}_{18}[\mathbb{T}_{2,1}^{(b,B_{2g})}]}{3} - \frac{\mathbb{X}_{18}[\mathbb{T}_{2,1}^{(b,B_{2g})}(1,-1)]\otimes\mathbb{Y}_{18}[\mathbb{T}_{2,1}^{(b,B_{2g})}(1,-1$$

$$\begin{split} \hat{\mathbb{Z}}_{44}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_u)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{24}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{2u})}] \otimes \mathbb{F}_{16}[\mathbb{T}_{3}^{(k,B_{1u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,E_{2g})}]}{6} \end{split}$$

No. 45
$$\hat{\mathbb{Q}}_4^{(A_{1g},2)}(1,-1)$$
 [M₁, B₂]

$$\begin{split} \hat{\mathbb{Z}}_{45} &= -\frac{\sqrt{15}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)]\otimes\mathbb{Y}_{18}[\mathbb{T}_{2,0}^{(b,E_g)}]}{6} + \frac{\sqrt{15}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)]\otimes\mathbb{Y}_{19}[\mathbb{T}_{2,1}^{(b,E_g)}]}{6} \\ &+ \frac{\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{Y}_{18}[\mathbb{T}_{2,0}^{(b,E_g)}]}{6} - \frac{\mathbb{X}_{24}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{Y}_{19}[\mathbb{T}_{2,1}^{(b,E_g)}]}{6} - \frac{\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{Y}_{17}[\mathbb{T}_{2}^{(b,B_{2g})}]}{3} \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{45}(\boldsymbol{k}) &= -\frac{\sqrt{30}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)]\otimes\mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}]\otimes\mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_u)}]}{12} - \frac{\sqrt{30}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}]\otimes\mathbb{F}_{11}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{30}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)]\otimes\mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}]\otimes\mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_u)}]}{12} + \frac{\sqrt{30}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}]\otimes\mathbb{F}_{12}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{2u})}]\otimes\mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_u)}]}{12} + \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}]\otimes\mathbb{F}_{11}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{12} \\ &- \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)]\otimes\mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}]\otimes\mathbb{F}_{16}[\mathbb{T}_{3}^{(k,E_u)}]}{6} - \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}]\otimes\mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,E_g)}]}{6} \\ &- \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}]\otimes\mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,B_{2g})}]}{6} \\ &- \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}]\otimes\mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,B_{2g})}]}{6} \\ &- \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}]\otimes\mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,B_{2g})}]}{6} \\ &- \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}]\otimes\mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,B_{2g})}]}{6} \\ &- \frac{\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{2u})}]\otimes\mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,B_{2g})}]}{6} \\ &- \frac{\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{2u})}]\otimes\mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,B_{2g})}]}{6} \\ &- \frac{\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{X}_{0}^{(u,A_{2u})}]\otimes\mathbb{F}_{16}[\mathbb{Q}_{2}^{(u,A_{2u})}]}{6} \\ &- \frac{\mathbb{X}_{29}[\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{Q}_{2}^{(u,A_{2u})}]\otimes\mathbb{P}_{16}[\mathbb{Q}_{2}^{(u,A_{2u})}]}{6} \\ &- \frac{\mathbb{X}_{29}[\mathbb{M}_{3}^{(u,A_{2g})}(1,-1)]\otimes\mathbb{Q}_{14}[\mathbb{Q}_{2}^{(u,A_{2u})}]}{6} \\ &- \frac{\mathbb{X}_{29}[\mathbb{Q}_{2}^{(u,A_{2u})}]}{6}$$

No. 46
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,0) [M_1, B_2]$$

$$\hat{\mathbb{Z}}_{46} = \mathbb{X}_{31}[\mathbb{T}_2^{(a,A_{1g})}(1,0)] \otimes \mathbb{Y}_{16}[\mathbb{T}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{46}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{T}_{2}^{(a,A_{1g})}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{13}[\mathbb{T}_{1}^{(k,A_{2u})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{T}_{2}^{(a,A_{1g})}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{2}$$

No. 47
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,0)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{47} = \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{2,0}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,1}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{T}_{2}^{(a,B_{2g})}(1,0)] \otimes \mathbb{Y}_{17}[\mathbb{T}_{2}^{(b,B_{2g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,1}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{T}_{2,1}^{(a,B_{2g})}(1,0)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,1}^{(b,B_{2g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{T}_{2,1}^{(b,B_{2g})}(1,0)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,1}^{(b,B_{2g})}]}{3} + \frac{\sqrt{$$

$$\begin{split} \hat{\mathbb{Z}}_{47}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_u)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{30}[\mathbb{T}_{2}^{(a,B_{2g})}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{16}[\mathbb{T}_{3}^{(k,B_{1u})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{30}[\mathbb{T}_{2}^{(a,B_{2g})}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,E_{2g})}]}{6} \end{split}$$

No. 48
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,0)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{48} = \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{2,0}^{(b,E_g)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,1}^{(b,E_g)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{30}[\mathbb{T}_{2}^{(a,B_{2g})}(1,0)] \otimes \mathbb{Y}_{17}[\mathbb{T}_{2}^{(b,B_{2g})}]}{3}$$

$$\begin{split} \hat{\mathbb{Z}}_{48}(\textbf{\textit{k}}) &= \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_u)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} \\ &- \frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{T}_{2}^{(a,B_{2g})}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{16}[\mathbb{T}_{3}^{(k,B_{1u})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{T}_{2}^{(a,B_{2g})}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,B_{2g})}]}{3} \end{split}$$

No. 49
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{49} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_{20}[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{49}(\boldsymbol{k}) &= \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{2} + \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{18}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{2} \\ &- \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{21}[\mathbb{T}_{1}^{(k,A_{2u})}]}{2} - \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{24}[\mathbb{T}_{3}^{(k,B_{2u})}]}{2} \end{split}$$

No. 50
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{50} = \mathbb{X}_2[\mathbb{Q}_2^{(a, A_{1g})}] \otimes \mathbb{Y}_{20}[\mathbb{Q}_0^{(b, A_{1g})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{50}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{2} + \frac{\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{18}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{2} \\ &- \frac{\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{21}[\mathbb{T}_{1}^{(k,A_{2u})}]}{2} - \frac{\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{24}[\mathbb{T}_{3}^{(k,B_{2u})}]}{2} \end{split}$$

No. 51
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{51} = \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{Y}_{21}[\mathbb{Q}_{2}^{(b,B_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{Y}_{22}[\mathbb{Q}_{2,0}^{(b,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{Y}_{23}[\mathbb{Q}_{2,1}^{(b,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(b,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{8}[\mathbb{Q}_{2,1}^{(b,E_{g})}]}{3} + \frac{\sqrt{3}$$

$$\hat{\mathbb{Z}}_{51}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{18}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{24}[\mathbb{T}_{3}^{(k,B_{2u})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{21}[\mathbb{T}_{1}^{(k,A_{2u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_{g})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_{g})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_{g})}]}{6} \\ + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{21}[\mathbb{Q}_{2,1}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{6} \\ + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{21}[\mathbb{Q}_{2,1}^{(u,B_{2u})}] \otimes \mathbb{P}_{22}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{6} \\ + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{Q}_{2,1}^{(a,E_{g})}}{6} \\ + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{Q}_{2,1}^{(a,E_{g})}}{6} \\ + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{Q}_{2,1}^{(a,E_{g})}}{6} \\ + \frac{\sqrt{$$

No. 52
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{52} = -\frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{Y}_{21}[\mathbb{Q}_{2}^{(b,B_{1g})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{Y}_{22}[\mathbb{Q}_{2,0}^{(b,E_{g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{Y}_{23}[\mathbb{Q}_{2,1}^{(b,E_{g})}]}{6}$$

$$\hat{\mathbb{Z}}_{52}(\boldsymbol{k}) = -\frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{18}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{24}[\mathbb{T}_{3}^{(k,B_{2u})}]}{6} \\ + \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,B_{1g})}] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{21}[\mathbb{T}_{1}^{(k,A_{2u})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{12} \\ - \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_{u})}]}{12} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{12} \\ - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{1,0}^{(u,A_{2g})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_{g})}]}{12} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{12} \\ - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{21}[\mathbb{T}_{1,0}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_{g})}]}{12} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{12} \\ - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_{g})}]}{12} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{12} \\ - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(u,B_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1,0}^{(u,B_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1,0}^{(u,B_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1,0}^{(u,B_{1g})}]}{12} \\ - \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(u,B_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1,1}^{(u,B_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1,$$

No. 53
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{53} = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_{1g})}(1,1)] \otimes \mathbb{Y}_{20}[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{53}(\boldsymbol{k}) &= \frac{\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{2} + \frac{\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{18}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{2} \\ &- \frac{\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{21}[\mathbb{T}_{1}^{(k,A_{2u})}]}{2} - \frac{\mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{24}[\mathbb{T}_{3}^{(k,B_{2u})}]}{2} \end{split}$$

No. 54
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{54} = \mathbb{X}_4[\mathbb{Q}_2^{(a,A_{1g})}(1,-1)] \otimes \mathbb{Y}_{20}[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{54}(\boldsymbol{k}) &= \frac{\mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{2} + \frac{\mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{18}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{2} \\ &- \frac{\mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{21}[\mathbb{T}_{1}^{(k,A_{2u})}]}{2} - \frac{\mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A_{1g})}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{24}[\mathbb{T}_{3}^{(k,B_{2u})}]}{2} \end{split}$$

No. 55
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{55} = \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{22}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{23}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)]\otimes\mathbb{Y}_{21}[\mathbb{Q}_{2}^{(b,B_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2,0}^{(a,B_{1g})}(1,-1)]\otimes\mathbb{Y}_{21}[\mathbb{Q}_{2,0}^{(b,B_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2,0}^{(a,B_{1g})}(1,-1)]\otimes\mathbb{Y}_{21}[\mathbb{Q}_{2,0}^{(a,B_{1g})}(1,-1)]\otimes\mathbb{Y}_{21}[\mathbb{Q}_{2,0}^{(a,B_{1g})}(1,-1)]\otimes\mathbb$$

$$\hat{\mathbb{Z}}_{55}(\textbf{\textit{k}}) = \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} \\ + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,B_{2g})}(1,-1)] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{6} \\ + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{18}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,A_{2u})}] \otimes \mathbb{F}_{24}[\mathbb{T}_{3}^{(k,B_{2u})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,A_{2u})}] \otimes \mathbb{F}_{24}[\mathbb{T}_{3}^{(k,B_{2u})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{21}[\mathbb{T}_{3}^{(k,A_{2u})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,A_{2u})}] \otimes \mathbb{F}_{24}[\mathbb{T}_{3}^{(u,A_{2u})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(u,B_{1g})}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{21}[\mathbb{T}_{3}^{(u,A_{2u})}]}{6} \\ - \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(u,A_{2u})}(1,-1)] \otimes \mathbb{Q}_{2}[\mathbb{Q}_{2}^{(u,A_{2u})}]}{6} - \frac{\sqrt{$$

No. 56
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{56} = \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{22}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{23}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{Y}_{21}[\mathbb{Q}_{2}^{(b,B_{1g})}]}{3} - \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{Y}_{21}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)]}{3} - \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{Y}_{21}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)]}{3} - \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{Y}_{21}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)]}{3} - \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)]}{3} - \frac{\sqrt{6}\mathbb{$$

$$\begin{split} \hat{\mathbb{Z}}_{56}(\textbf{k}) &= \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{12} \\ &- \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{12} - \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{12} - \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_u)}]}{12} \\ &- \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{12} \\ &- \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{21}[\mathbb{T}_{1}^{(k,A_{2u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{21}[\mathbb{T}_{1}^{(k,A_{2u})}]}{6} \end{aligned}$$

No. 57
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,0)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{57} = \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{22}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{23}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{57}(\textbf{\textit{k}}) &= \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{21}[\mathbb{T}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{18}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_u)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{23}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,0}^{(u,B_{2u})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(u,B_{2u})}] \otimes \mathbb{T}_{23}[\mathbb{T}_{1,1}^{(u,B_{2u})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(u,B_{2u})}] \otimes \mathbb{T}_{23}[\mathbb{T}_{1,1}^{(u,B_{2u})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{1,1}^{(u,B_{2u})}] \otimes \mathbb{T}_{23}[\mathbb{T}_{1,1}^{(u,B_{2u})}]}{4} \\ &+ \frac{\mathbb{T}_{14}[\mathbb{T}_{1,1}^{(u,B_{2u})}] \otimes \mathbb{T}_{23}[\mathbb{T}_{1,1}^{(u,B_{2u})}]}$$

No. 58 $\hat{\mathbb{Q}}_{2}^{(A_{1g})}$ [M₁, B₃]

$$\hat{\mathbb{Z}}_{58} = \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{Y}_{26}[\mathbb{T}_{2,0}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{Y}_{27}[\mathbb{T}_{2,1}^{(b,E_g)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{58}(\boldsymbol{k}) &= \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{20}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1,0}^{(a,E_g)}] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_u)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_u)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{20}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(u,B_{2u})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(a,E_g)}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(u,B_{2u})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(u,B_{2u})}] \otimes \mathbb{V}_{20}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{V}_{20}[\mathbb{Q}_{3}^{(u,B_{2u})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1,1}^{(u,B_{2u})}] \otimes \mathbb{V}_{20}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{V}_{20}[\mathbb{Q}_{3}^{(u,B_{2u})}]}{4} \\ &+ \frac{\mathbb{V}_{10}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{V}_{20}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{V}_{20}[\mathbb{Q}_{3}^{(u,B_{2u})}]}{4} \\ &+ \frac{\mathbb{V}_{10}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{V}_{20}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{V}_{20}[\mathbb{Q}_{3$$

No. 59 $\hat{\mathbb{Q}}_2^{(A_{1g})}(1,1)$ [M₁, B₃]

$$\hat{\mathbb{Z}}_{59} = \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{Y}_{26}[\mathbb{T}_{2,0}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{2,1}^{(b,E_g)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{59}(\boldsymbol{k}) &= \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1,0}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{2}^{(k,E_g)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(a,E_g)}(1,1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(u,B_{1g})}(1,1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(u,B_{1g})}(1,1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(u,B_{1g})}(1,1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1,1}^{(u,B_{1g$$

No. 60
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{60} = \frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{26}[\mathbb{T}_{2,0}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{2,1}^{(b,E_g)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{60}(\boldsymbol{k}) &= \frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_u)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2}^{(u,A_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(u,B_{1g})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(u,B_{1g})}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{Q}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2}^{(u,B_{1g})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1,1}^{(u,B_{1g})}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{Q}_{2}^{(u,B$$

No. 61
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₁, B₃]

$$\begin{split} \hat{\mathbb{Z}}_{61} &= -\frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{26}[\mathbb{T}_{2,0}^{(b,E_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{2,1}^{(b,E_g)}]}{6} - \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_{26}[\mathbb{T}_{2,0}^{(b,E_g)}]}{6} \\ &+ \frac{\sqrt{5}\mathbb{X}_{24}[\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{2,1}^{(b,E_g)}]}{6} - \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{Y}_{25}[\mathbb{T}_{2}^{(b,B_{1g})}]}{3} \end{split}$$

$$\hat{\mathbb{Z}}_{61}(k) = -\frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,Eg,1)}(1,-1)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,Eu)}]}{12} - \frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,Eg,1)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,Eg)}]}{12} - \frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,Eg,1)}(1,-1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,Eu)}]}{12} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,Eg,1)}(1,-1)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,Eg)}]}{12} - \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,Eg,1)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,Eu)}]}{12} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,Eg,1)}(1,-1)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{2,1}^{(k,Eu)}]}{12} - \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,Eg,1)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,Eu)}]}{12} + \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,Eg,2)}(1,-1)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,Eu)}]}{12} - \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,Eg,2)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,1}^{(k,Eu)}]}{12} - \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,Eg,2)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,Eu)}]}{12} - \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,Eg,2)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,E_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_{2u})}]}{12} - \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,Eg,2)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_{2u})}]}{12} - \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_{2u})}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,E_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_{2u})}]}{12} - \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_{2u})}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,E_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_{2u})}]}{12} - \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_{2u})}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,E_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_{2u})}]}{12} - \frac{\sqrt{5}\mathbb{X}_{24}[\mathbb{M}_{3,1}^{(a,E_{2u})}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,E_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_{2u})}]}{12} - \frac{\sqrt{5}\mathbb{X}_{24}[\mathbb{M}_{3,1}^{(a,E_{2u})}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,$$

$$\begin{split} & \tilde{\mathbb{Z}}_{62} = \frac{\hat{\mathbb{Q}}_{4}^{(A_{1g},1)}(1,-1) \; [M_{1},B_{3}]}{78} \\ & + \frac{\sqrt{13}\mathbb{X}_{24}[\mathbb{M}_{3,1}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{2,1}^{(b,E_{g})}]}{6} - \frac{\sqrt{195}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_{g},1)}(1,-1)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{2,1}^{(b,E_{g})}]}{78} - \frac{\sqrt{13}\mathbb{X}_{23}[\mathbb{M}_{3,0}^{(a,E_{g},2)}(1,-1)] \otimes \mathbb{Y}_{26}[\mathbb{T}_{2,0}^{(b,E_{g})}]}{6} \\ & + \frac{\sqrt{13}\mathbb{X}_{24}[\mathbb{M}_{3,1}^{(a,E_{g},2)}(1,-1)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{2,1}^{(b,E_{g})}]}{6} + \frac{5\sqrt{13}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{Y}_{25}[\mathbb{T}_{2}^{(b,B_{1g})}]}{39} \end{split}$$

$$\hat{\mathbb{Z}}_{62}(k) = \frac{\sqrt{195} \mathbb{X}_{21} [\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{17} [\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{23} [\mathbb{T}_{1,1}^{(k,E_u)}]}{156} + \frac{\sqrt{195} \mathbb{X}_{21} [\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{20} [\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19} [\mathbb{Q}_{2,0}^{(k,E_g)}]}{156} + \frac{\sqrt{195} \mathbb{X}_{21} [\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{20} [\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19} [\mathbb{Q}_{2,0}^{(k,E_g)}]}{156} + \frac{\sqrt{195} \mathbb{X}_{22} [\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{22} [\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{19} [\mathbb{Q}_{2,0}^{(k,E_g)}]}{156} + \frac{\sqrt{195} \mathbb{X}_{22} [\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{19} [\mathbb{Q}_{3}^{(u,E_{1g})}] \otimes \mathbb{F}_{19} [\mathbb{Q}_{2,0}^{(k,E_g)}]}{156} + \frac{\sqrt{195} \mathbb{X}_{22} [\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{19} [\mathbb{Q}_{3}^{(u,E_{1g})}] \otimes \mathbb{F}_{22} [\mathbb{T}_{1,0}^{(k,E_u)}]}{156} + \frac{\sqrt{195} \mathbb{X}_{22} [\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{19} [\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22} [\mathbb{T}_{1,0}^{(k,E_u)}]}{156} + \frac{\sqrt{195} \mathbb{X}_{22} [\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{19} [\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22} [\mathbb{T}_{1,0}^{(k,E_u)}]}{156} + \frac{\sqrt{195} \mathbb{X}_{22} [\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{19} [\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22} [\mathbb{T}_{1,0}^{(k,E_u)}]}{156} + \frac{\sqrt{195} \mathbb{X}_{22} [\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{19} [\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22} [\mathbb{Q}_{2,1}^{(k,E_u)}]}{156} + \frac{\sqrt{195} \mathbb{X}_{22} [\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{19} [\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22} [\mathbb{Q}_{2,1}^{(k,E_u)}]}{156} + \frac{\sqrt{195} \mathbb{X}_{22} [\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{19} [\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23} [\mathbb{Q}_{2,1}^{(k,E_u)}]}{156} + \frac{\sqrt{195} \mathbb{X}_{22} [\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{19} [\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23} [\mathbb{Q}_{2,1}^{(k,E_u)}]}{156} + \frac{\sqrt{195} \mathbb{X}_{22} [\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{19} [\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23} [\mathbb{Q}_{2,1}^{(k,E_u)}]}{156} + \frac{\sqrt{195} \mathbb{X}_{23} [\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{19} [\mathbb{Q}_{3}^{(u,E_g,1)}] \otimes \mathbb{F}_{23} [\mathbb{Q}_{2,1}^{(k,E_u)}]}{156} + \frac{\sqrt{13} \mathbb{X}_{23} [\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{19} [\mathbb{Q}_{3}^{(u,E_g,1)}] \otimes \mathbb{F}_$$

$$\begin{split} & \tilde{\mathbb{Z}}_{63} = -\frac{\sqrt{65}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{26}[\mathbb{T}_{2,0}^{(b,E_g)}]}{13} + \frac{\sqrt{65}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{2,1}^{(b,E_g)}]}{13} + \frac{\sqrt{39}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{Y}_{25}[\mathbb{T}_{2}^{(b,B_{1g})}]}{13} \\ & \tilde{\mathbb{Z}}_{63}(\boldsymbol{k}) = -\frac{\sqrt{65}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{26} - \frac{\sqrt{65}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{26} \\ & -\frac{\sqrt{65}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{26} - \frac{\sqrt{65}\mathbb{X}_{21}[\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{26} \\ & +\frac{\sqrt{65}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{26} - \frac{\sqrt{65}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{26} \\ & +\frac{\sqrt{65}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{26} + \frac{\sqrt{65}\mathbb{X}_{22}[\mathbb{M}_{3,1}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{26} \\ & +\frac{\sqrt{39}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{24}[\mathbb{T}_{3}^{(k,B_{2u})}]}{26} + \frac{\sqrt{39}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{1g})}] \otimes \mathbb{F}_{21}[\mathbb{T}_{1}^{(k,A_{2u})}]}{26} \\ & +\frac{\sqrt{39}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,A_{1g})}] \otimes \mathbb{F}_{21}[\mathbb{T}_{1}^{(k,A_{2u})}]}{26} \\ & +\frac{\sqrt{39}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,A_{1g})}]}{26} \otimes \mathbb{F}_{21}[\mathbb{T}_{1}^{(k,A_{2u})}]} \\ & +\frac{\sqrt{39}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{26} \\ & +\frac{\sqrt{39}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)] \otimes \mathbb{U}_{27}[\mathbb{T}_{2}^{(u,A_{1g})}]}{26} \otimes \mathbb{T}_{27}[\mathbb{T}_{2}^{(u$$

No. 64
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,0)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{64} = \mathbb{X}_{31}[\mathbb{T}_2^{(a,A_{1g})}(1,0)] \otimes \mathbb{Y}_{24}[\mathbb{T}_0^{(b,A_{1g})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{64}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{31}[\mathbb{T}_{2}^{(a,A_{1g})}(1,0)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{21}[\mathbb{T}_{1}^{(k,A_{2u})}]}{2} + \frac{\mathbb{X}_{31}[\mathbb{T}_{2}^{(a,A_{1g})}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{24}[\mathbb{T}_{3}^{(k,B_{2u})}]}{2} \\ &+ \frac{\mathbb{X}_{31}[\mathbb{T}_{2}^{(a,A_{1g})}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{2} + \frac{\mathbb{X}_{31}[\mathbb{T}_{2}^{(a,A_{1g})}(1,0)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{18}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{2} \end{split}$$

No. 65
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,0) [M_1, B_3]$$

$$\hat{\mathbb{Z}}_{65} = \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{26}[\mathbb{T}_{2,0}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{2,1}^{(b,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{Y}_{25}[\mathbb{T}_{2}^{(b,B_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{Y}_{25}[\mathbb{T}_{2}^{(b,B_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{Y}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{Y}_{28}[\mathbb{T}_{2}^{(a,B_{1$$

$$\begin{split} \hat{\mathbb{Z}}_{65}(\textbf{\textit{k}}) &= \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_u)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_u)}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{24}[\mathbb{T}_{3}^{(k,E_u)}]}{6} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{21}[\mathbb{T}_{1}^{(k,A_{2u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1}^{(k,A_{2u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1}^{(k,A_{2u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1}^{(u,A_{2u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{T}_{22}[\mathbb{T}_{1}^{(u,A_{2u})}]}{6}$$

No. 66
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,0)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{66} = \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{26}[\mathbb{T}_{2,0}^{(b,E_g)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{2,1}^{(b,E_g)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{Y}_{25}[\mathbb{T}_{2}^{(b,B_{1g})}]}{3}$$

$$\begin{split} \hat{\mathbb{Z}}_{66}(k) &= \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{23}[\mathbb{T}_{1,1}^{(k,E_u)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{12} + \frac{\sqrt{6}\mathbb{X}_{25}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_u)}]}{12} - \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{22}[\mathbb{T}_{1,0}^{(k,E_u)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{12} - \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{12} \\ &- \frac{\sqrt{6}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{U}_{17}[\mathbb{Q}_{1}^{(u,A_{2u})}] \otimes \mathbb{F}_{24}[\mathbb{T}_{3}^{(k,B_{2u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{U}_{19}[\mathbb{Q}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{21}[\mathbb{T}_{1}^{(k,E_u)}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{18}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{18}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{U}_{22}[\mathbb{T}_{2}^{(u,B_{1g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{18}[\mathbb{Q}_{2}^{(k,B_{1g})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{T}_{2}^{(u,A_{1g})}] \otimes \mathbb{F}_{24}[\mathbb{T}_{3}^{(k,B_{2u})}]}{6} \\ &- \frac{\sqrt{6}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1g})}(1,0)] \otimes \mathbb{U}_{29}[\mathbb{T}_{2}^{(u,A_{1g})}]}{6} \\ &-$$

Table 5: Atomic SAMB group.

group	bra	ket
M_1	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_{1g})}$	$ m M_1$	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \end{pmatrix}$

Table 6

symbol	type	group	form
\mathbb{X}_2	$\mathbb{Q}_2^{(a,A_{1g})}$	$ m M_1$	$\begin{pmatrix} -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & 0\\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0\\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} \end{pmatrix}$
\mathbb{X}_3	$\mathbb{Q}_0^{(a,A_{1g})}(1,1)$	$ m M_1$	$ \begin{pmatrix} 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}}{6} & 0 \\ \frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{e} & 0 & \frac{\sqrt{3}i}{e} & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_4	$\mathbb{Q}_2^{(a,A_{1g})}(1,-1)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & \frac{\sqrt{6}}{12} & 0 \\ \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{12} \\ 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & \frac{\sqrt{6}i}{12} & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 \\ -\frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_5	$\mathbb{Q}_2^{(a,B_{1g})}$	$ m M_1$	
\mathbb{X}_{6}	$\mathbb{Q}_2^{(a,B_{2g})}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$

continued ...

Table 6

	Г		
symbol	type	group	form
\mathbb{X}_7	$\mathbb{Q}_{2,0}^{(a,E_g)}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{X}_8	$\mathbb{Q}_{2,1}^{(a,E_g)}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
\mathbb{X}_9	$\mathbb{Q}_2^{(a,B_{1g})}(1,-1)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & \frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{10}	$\mathbb{Q}_2^{(a,B_{2g})}(1,-1)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$
X ₁₁	$\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)$	$ m M_1$	$\begin{pmatrix} 4 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

Table 6

Table 6			
symbol	type	group	form
\mathbb{X}_{12}	$\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0\\ 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0\\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4}\\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$
\mathbb{X}_{13}	$\mathbb{G}_{1,0}^{(a,E_g)}(1,0)$	$ m M_1$	$ \begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_{14}	$\mathbb{G}_{1,1}^{(a,E_g)}(1,0)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0\\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0\\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4}\\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$
\mathbb{X}_{15}	$\mathbb{M}_{1,0}^{(a,E_g)}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{X}_{16}	$\mathbb{M}_{1,1}^{(a,E_g)}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{i}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{i}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$

Table 6

Table 6			
symbol	type	group	form
\mathbb{X}_{17}	$\mathbb{M}_{1,0}^{(a,E_g)}(1,1)$	M_1	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{X}_{18}	$\mathbb{M}_{1,1}^{(a,E_g)}(1,1)$	M_1	$ \begin{bmatrix} \begin{pmatrix} 0 & -\frac{\sqrt{30}}{20} & 0 & 0 & -\frac{\sqrt{30}}{30} & 0 \\ 0 & \frac{\sqrt{30}i}{30} & 0 & \frac{\sqrt{30}}{20} & 0 & 0 \\ -\frac{\sqrt{30}i}{30} & 0 & \frac{\sqrt{30}}{20} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{15} & \frac{\sqrt{30}}{20} & 0 \\ \frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{15} & 0 & 0 & -\frac{\sqrt{30}}{20} \\ 0 & 0 & \frac{\sqrt{30}}{20} & 0 & 0 & \frac{\sqrt{30}i}{30} \\ 0 & 0 & 0 & -\frac{\sqrt{30}}{20} & -\frac{\sqrt{30}i}{30} & 0 \end{bmatrix} $
\mathbb{X}_{19}	$\mathbb{M}_{1,0}^{(a,E_g)}(1,-1)$	M_1	$\begin{pmatrix} 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \end{pmatrix}$
\mathbb{X}_{20}	$\mathbb{M}_{1,1}^{(a,E_g)}(1,-1)$	M_1	$\begin{pmatrix} 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0\\ \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0\\ 0 & 0 & \frac{\sqrt{6}i}{6} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}i}{6}\\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & 0 \end{pmatrix}$
\mathbb{X}_{21}	$\mathbb{M}_{3,0}^{(a,E_g,1)}(1,-1)$	M_1	$\begin{pmatrix} 0 & \frac{\sqrt{5}}{5} & 0 & \frac{\sqrt{5}i}{10} & -\frac{\sqrt{5}}{10} & 0\\ \frac{\sqrt{5}}{5} & 0 & -\frac{\sqrt{5}i}{10} & 0 & 0 & \frac{\sqrt{5}}{10}\\ 0 & \frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0\\ -\frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & 0\\ -\frac{\sqrt{5}}{10} & 0 & 0 & 0 & 0 & -\frac{\sqrt{5}}{10}\\ 0 & \frac{\sqrt{5}}{10} & 0 & 0 & -\frac{\sqrt{5}}{10} & 0 \end{pmatrix}$

Table 6

	Т		
symbol	type	group	form
\mathbb{X}_{22}	$\mathbb{M}_{3,1}^{(a,E_g,1)}(1,-1)$	M_1	$\begin{pmatrix} 0 & \frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0\\ -\frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{5}}{10} & 0 & -\frac{\sqrt{5}i}{5} & -\frac{\sqrt{5}}{10} & 0\\ -\frac{\sqrt{5}}{10} & 0 & \frac{\sqrt{5}i}{5} & 0 & 0 & \frac{\sqrt{5}}{10}\\ 0 & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & \frac{\sqrt{5}i}{10}\\ 0 & 0 & 0 & \frac{\sqrt{5}}{10} & -\frac{\sqrt{5}i}{10} & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{5}i}{10} & -\frac{\sqrt{5}i}{10} & 0\\ 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}}{6} & 0\\ 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}}{6} & 0 \end{pmatrix}$
\mathbb{X}_{23}	$\mathbb{M}_{3,0}^{(a,E_g,2)}(1,-1)$	M_1	$\begin{bmatrix} 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{6}}{6} \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 \\ \frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} \\ 0 & \sqrt{3} & 0 & 0 & \sqrt{3} & 0 \end{bmatrix}$
\mathbb{X}_{24}	$\mathbb{M}_{3,1}^{(a,E_g,2)}(1,-1)$	M_1	$ \begin{pmatrix} 0 & -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 \\ \frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} \\ 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 \\ \frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 \\ 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}i}{6} \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}i}{6} & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{6}i}{12} & \frac{\sqrt{6}i}{12} & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_{25}	$\mathbb{T}_{2,0}^{(a,E_g)}(1,0)$	M_1	$\begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{6}i}{12} & \frac{\sqrt{6}}{12} & 0\\ 0 & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & -\frac{\sqrt{6}}{12}\\ 0 & \frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0\\ -\frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0\\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6}\\ 0 & -\frac{\sqrt{6}}{12} & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 \end{pmatrix}$
\mathbb{X}_{26}	$\mathbb{T}_{2,1}^{(a,E_g)}(1,0)$	$ m M_1$	$\begin{pmatrix} 12 & 0 & -\frac{\sqrt{6}}{12} & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 \\ 0 & -\frac{\sqrt{6}i}{6} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 \\ -\frac{\sqrt{6}i}{6} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & 0 & -\frac{\sqrt{6}}{12} & 0 \\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{12} \\ 0 & 0 & -\frac{\sqrt{6}}{12} & 0 & 0 & -\frac{\sqrt{6}i}{6} \\ 0 & 0 & 0 & \frac{\sqrt{6}}{12} & \frac{\sqrt{6}i}{6} & 0 \end{pmatrix}$

Table 6

symbol	type	group	form
\mathbb{X}_{27}	$\mathbb{M}_{3}^{(a,B_{1g})}(1,-1)$	M_1	$\begin{pmatrix} 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}i}{6} & 0 \\ \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 \\ \frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{28}	$\mathbb{T}_{2}^{(a,B_{1g})}(1,0)$	M_1	form $ \begin{pmatrix} 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}i}{6} & 0 \\ \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 \\ \frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{12} & 0 \\ -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & \frac{\sqrt{6}}{12} & 0 \\ 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & \frac{\sqrt{6}i}{12} & 0 \end{pmatrix} $ $ \begin{pmatrix} \frac{\sqrt{3}}{6} & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 \end{pmatrix} $ $ \begin{pmatrix} \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \end{pmatrix} $ $ \begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{12} & 0 \end{pmatrix} $ $ \begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & -\frac{\sqrt{6}i}{12} \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{12} & 0 \end{pmatrix} $ $ \begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & -\frac{\sqrt{6}i}{12} \\ 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & -\frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & \frac{\sqrt{6}i}{12} & 0 \end{pmatrix} $
\mathbb{X}_{29}	$\mathbb{M}_{3}^{(a,B_{2g})}(1,-1)$	M_1	$ \begin{pmatrix} \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_{30}	$\mathbb{T}_2^{(a,B_{2g})}(1,0)$	M_1	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{X}_{31}	$\mathbb{T}_2^{(a,A_{1g})}(1,0)$	M_1	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$

Table 7: Cluster SAMB.

symbol	type	cluster	form
$\frac{\mathbb{Y}_1}{\mathbb{Y}_1}$	$\mathbb{Q}_0^{(s,A_{1g})}$	S_1	$\begin{pmatrix} \sqrt{2} & \sqrt{2} \\ 2 & 2 \end{pmatrix}$
\mathbb{Y}_2	$\mathbb{Q}_0^{(s,A_{1g})}$	S_2	$\left(\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}\right)$
\mathbb{Y}_3	\bigcirc (s, A_{1g})	S_3	$\left(\begin{array}{cc} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{array}\right)$
\mathbb{Y}_4	$\mathbb{Q}_0^{(b,A_{1g})}$	B_1	$ \begin{pmatrix} \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \end{pmatrix} $
\mathbb{Y}_5	$\mathbb{Q}_2^{(b,B_{1g})}$	B_1	$\left(\frac{\sqrt{2}}{4} \frac{\sqrt{2}}{4} \frac{\sqrt{2}}{4} \frac{\sqrt{2}}{4} -\frac{\sqrt{2}}{4} -\frac{\sqrt{2}}{4} -\frac{\sqrt{2}}{4} -\frac{\sqrt{2}}{4}\right)$
\mathbb{Y}_6	$\mathbb{Q}_{2,0}^{(b,E_g)}$	B_1	
\mathbb{Y}_7	\bigcap (b, E_g)	B_1	$\begin{pmatrix} 0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$
\mathbb{Y}_8	$\mathbb{T}_0^{(b,A_{1g})}$	B_1	$\left(\begin{array}{cccc} \sqrt{2}i & \sqrt{2}i \end{array}\right)$
\mathbb{Y}_9	$\mathbb{T}_2^{(b,B_{1g})}$	B_1	$\begin{pmatrix} 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} \end{pmatrix}$
\mathbb{Y}_{10}	$\mathbb{T}_{2,0}^{(b,E_g)}$	B_1	$\left(egin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{11}	$\mathbb{T}_{2,1}^{(b,E_g)}$	B_1	$\left(egin{matrix} 0 & 0 & 0 & -rac{i}{2} & rac{i}{2} & -rac{i}{2} & rac{i}{2} \end{matrix} ight)$
\mathbb{Y}_{12}	$\mathbb{Q}_0^{(b,A_{1g})}$	B_2	$ \begin{pmatrix} \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \end{pmatrix} $
\mathbb{Y}_{13}	$\mathbb{Q}_2^{(b,B_{2g})}$	B_2	$ \begin{pmatrix} \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \end{pmatrix} $
\mathbb{Y}_{14}	$\mathbb{Q}_{2,0}^{(b,E_g)}$	B_2	$\left(\frac{\sqrt{2}}{4} - \frac{\sqrt{2}}{4} \frac{\sqrt{2}}{4} - \frac{\sqrt{2}}{4} - \frac{\sqrt{2}}{4} \frac{\sqrt{2}}{4} \frac{\sqrt{2}}{4} - \frac{\sqrt{2}}{4} \right)$
\mathbb{Y}_{15}	$\mathbb{Q}_{2,1}^{(b,E_g)}$	B_2	$\left(egin{array}{cccccc} rac{\sqrt{2}}{4} & -rac{\sqrt{2}}{4} & -rac{\sqrt{2}}{4} & rac{\sqrt{2}}{4} & -rac{\sqrt{2}}{4} & rac{\sqrt{2}}{4} & -rac{\sqrt{2}}{4} \end{array} ight)$
\mathbb{Y}_{16}	$\mathbb{T}_0^{(b,A_{1g})}$	B_2	$\begin{pmatrix} \sqrt{2}i & \sqrt{2}i \end{pmatrix}$
\mathbb{Y}_{17}	$\mathbb{T}_2^{(b,B_{2g})}$	B_2	$\begin{pmatrix} \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} \\ \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} \end{pmatrix}$
\mathbb{Y}_{18}	$\mathbb{T}_{2,0}^{(b,E_g)}$	B_2	$\begin{pmatrix} \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} \\ \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} \end{pmatrix}$
\mathbb{Y}_{19}	$\mathbb{T}_{2,1}^{(b,E_g)}$	B_2	$\begin{pmatrix} \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} \\ \left(\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} \\ & & & & & & & & & & & & \\ \begin{pmatrix} \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ & & & & & & & & & & & \\ \end{pmatrix} & \begin{pmatrix} \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ & & & & & & & & & \\ \end{pmatrix}$
\mathbb{Y}_{20}	$\mathbb{Q}_0^{(b,A_{1g})}$	B_3	$ \begin{pmatrix} \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} \end{pmatrix} $ $ \begin{pmatrix} \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} \end{pmatrix} $ $ \begin{pmatrix} \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \end{pmatrix} $
\mathbb{Y}_{21}	$\mathbb{Q}_2^{(b,B_{1g})}$	B_3	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{22}	$\mathbb{Q}_{2,0}^{(b,E_g)}$	B_3	$\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{Y}_{23}	$\mathbb{Q}_{2,1}^{(b,E_g)}$	B_3	$\begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$
\mathbb{Y}_{24}	$\mathbb{T}_0^{(b,A_{1g})}$	B_3	$\begin{pmatrix} \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} \end{pmatrix}$
\mathbb{Y}_{25}	$\mathbb{T}_2^{(b,B_{1g})}$	B_3	$\left(\frac{\sqrt{2}i}{4} \frac{\sqrt{2}i}{4} \frac{\sqrt{2}i}{4} \frac{\sqrt{2}i}{4} -\frac{\sqrt{2}i}{4} -\frac{\sqrt{2}i}{4} -\frac{\sqrt{2}i}{4} -\frac{\sqrt{2}i}{4} \right)$
\mathbb{Y}_{26}	$\mathbb{T}_{2,0}^{(b,E_g)}$	B_3	$\begin{pmatrix} \frac{i}{2} & -\frac{i}{2} & \frac{i}{2} & -\frac{i}{2} & 0 & 0 & 0 & 0 \\ & \frac{i}{2} & \frac{i}{2} & \frac{i}{2} & -\frac{i}{2} & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{Y}_{27}	$\mathbb{T}_{2,1}^{(b,E_g)}$	B_3	$\begin{pmatrix} 0 & 0 & 0 & -\frac{i}{2} & \frac{i}{2} & -\frac{i}{2} & \frac{i}{2} \end{pmatrix}$

Table 8: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_{1g})}$	S_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{U}_2	$\mathbb{Q}_0^{(s,A_{1g})}$	S_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{U}_3	$\mathbb{Q}_0^{(s,A_{1g})}$	S_3	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{U}_4	$\mathbb{Q}_0^{(u,A_{1g})}$	B ₁	$\begin{pmatrix} 0 & 0 & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & 0 \\ \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{U}_5	$\mathbb{Q}_1^{(u,A_{2u})}$	В1	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$

Table 8

		ī	
symbol	type	cluster	form
\mathbb{U}_6	$\mathbb{Q}_2^{(u,B_{1g})}$	B ₁	$ \begin{bmatrix} 0 & 0 & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & 0 \\ \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{U}_7	$\mathbb{Q}_3^{(u,B_{2u})}$	B_1	$\begin{pmatrix} 0 & 0 & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & 0 & 0\\ 0 & 0 & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & 0 & 0\\ \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 &$
\mathbb{U}_8	$\mathbb{T}_0^{(u,A_{1g})}$	В1	$ \begin{pmatrix} 0 & 0 & \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & 0 & 0\\ 0 & 0 & \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & 0 & 0\\ -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 &$
\mathbb{U}_9	$\mathbb{T}_1^{(u,A_{2u})}$	B_1	$ \begin{pmatrix} 0 & 0 & \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & 0 & 0\\ 0 & 0 & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & 0 & 0\\ -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 &$
\mathbb{U}_{10}	$\mathbb{T}_2^{(u,B_{1g})}$	В1	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$

Table 8

Table 8			
symbol	type	cluster	form
\mathbb{U}_{11}	$\mathbb{T}_3^{(u,B_{2u})}$	В1	$ \begin{pmatrix} 0 & 0 & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & 0 & 0\\ 0 & 0 & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & 0 & 0\\ -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0\\ \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 &$
\mathbb{U}_{12}	$\mathbb{Q}_0^{(u,A_{1g})}$	B_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$
\mathbb{U}_{13}	$\mathbb{Q}_1^{(u,A_{2u})}$	$ m B_2$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$
\mathbb{U}_{14}	$\mathbb{T}_0^{(u,A_{1g})}$	B_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{i}{2} \\ 0 & 0 & 0 & 0 & \frac{i}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$
\mathbb{U}_{15}	$\mathbb{T}_1^{(u,A_{2u})}$	B_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{i}{2} \\ 0 & 0 & 0 & 0 & -\frac{i}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$

Table 8

Table 8			
symbol	type	cluster	form
\mathbb{U}_{16}	$\mathbb{Q}_0^{(u,A_{1g})}$	B_3	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{U}_{17}	$\mathbb{Q}_1^{(u,A_{2u})}$	B_3	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{U}_{18}	$\mathbb{Q}_2^{(u,B_{1g})}$	B_3	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & 0 \end{pmatrix} $
\mathbb{U}_{19}	$\mathbb{Q}_3^{(u,B_{2u})}$	B_3	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{U}_{20}	$\mathbb{T}_0^{(u,A_{1g})}$	B_3	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$

Table 8

symbol	type	cluster	form
\mathbb{U}_{21}	$\mathbb{T}_1^{(u,A_{2u})}$	В3	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{U}_{22}	$\mathbb{T}_2^{(u,B_{1g})}$	B_3	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{U}_{23}	$\mathbb{T}_3^{(u,B_{2u})}$	B_3	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$

Table 9: Structure SAMB.

symbol	type	cluster	form				
\mathbb{F}_1	$\mathbb{Q}_0^{(k,A_{1g})}$	B_1	$\frac{\sqrt{2}c_{001}}{2} + \frac{\sqrt{2}c_{002}}{2} + \frac{\sqrt{2}c_{005}}{2} + \frac{\sqrt{2}c_{006}}{2}$				
\mathbb{F}_2	$\mathbb{Q}_2^{(k,B_{1g})}$	B_1	$\frac{\sqrt{2}c_{001}}{2} + \frac{\sqrt{2}c_{002}}{2} - \frac{\sqrt{2}c_{005}}{2} - \frac{\sqrt{2}c_{006}}{2}$				
\mathbb{F}_3	$\mathbb{Q}_{2,0}^{(k,E_g)}$	B_1	$c_{001} - c_{002}$				
\mathbb{F}_4	$\mathbb{Q}_{2,1}^{(k,E_g)}$	B_1	$-c_{005} + c_{006}$				
\mathbb{F}_5	$\mathbb{T}_1^{(k,A_{2u})}$	B_1	$\frac{\sqrt{2}s_{001}}{2} + \frac{\sqrt{2}s_{002}}{2} - \frac{\sqrt{2}s_{005}}{2} - \frac{\sqrt{2}s_{006}}{2}$				
\mathbb{F}_6	$\mathbb{T}_{1,0}^{(k,E_u)}$	B_1	$s_{005}-s_{006}$				
\mathbb{F}_7	$\mathbb{T}_{1,1}^{(k,E_u)}$	B_1	$s_{001} - s_{002}$				

Table 9

symbol	type	cluster	form
\mathbb{F}_8	$\mathbb{T}_3^{(k,B_{2u})}$	B_1	$\frac{\sqrt{2}s_{001}}{2} + \frac{\sqrt{2}s_{002}}{2} + \frac{\sqrt{2}s_{005}}{2} + \frac{\sqrt{2}s_{006}}{2}$
\mathbb{F}_9	$\mathbb{Q}_0^{(k,A_{1g})}$	B_2	$\frac{\sqrt{2}c_{009}}{2} + \frac{\sqrt{2}c_{010}}{2} + \frac{\sqrt{2}c_{011}}{2} + \frac{\sqrt{2}c_{012}}{2}$
\mathbb{F}_{10}	$\mathbb{Q}_2^{(k,B_{2g})}$	B_2	$\frac{\sqrt{2}c_{009}}{2} + \frac{\sqrt{2}c_{010}}{2} - \frac{\sqrt{2}c_{011}}{2} - \frac{\sqrt{2}c_{012}}{2}$
\mathbb{F}_{11}	$\mathbb{Q}_{2,0}^{(k,E_g)}$	B_2	$\frac{\sqrt{2}c_{009}}{2} - \frac{\sqrt{2}c_{010}}{2} + \frac{\sqrt{2}c_{011}}{2} - \frac{\sqrt{2}c_{012}}{2}$
\mathbb{F}_{12}	$\mathbb{Q}_{2,1}^{(k,E_g)}$	B_2	$\frac{\sqrt{2}c_{009}}{2} - \frac{\sqrt{2}c_{010}}{2} - \frac{\sqrt{2}c_{011}}{2} + \frac{\sqrt{2}c_{012}}{2}$
\mathbb{F}_{13}	$\mathbb{T}_1^{(k,A_{2u})}$	B_2	$\frac{\sqrt{2}s_{009}}{2} + \frac{\sqrt{2}s_{010}}{2} - \frac{\sqrt{2}s_{011}}{2} - \frac{\sqrt{2}s_{012}}{2}$
\mathbb{F}_{14}	$\mathbb{T}_{1,0}^{(k,E_u)}$	B_2	$\frac{\sqrt{2}s_{009}}{2} - \frac{\sqrt{2}s_{010}}{2} + \frac{\sqrt{2}s_{011}}{2} - \frac{\sqrt{2}s_{012}}{2}$
\mathbb{F}_{15}	$\mathbb{T}_{1,1}^{(k,E_u)}$	B_2	$\frac{\sqrt{2}s_{009}}{2} - \frac{\sqrt{2}s_{010}}{2} - \frac{\sqrt{2}s_{011}}{2} + \frac{\sqrt{2}s_{012}}{2}$
\mathbb{F}_{16}	$\mathbb{T}_3^{(k,B_{1u})}$	B_2	$\frac{\sqrt{2}s_{009}}{2} + \frac{\sqrt{2}s_{010}}{2} + \frac{\sqrt{2}s_{011}}{2} + \frac{\sqrt{2}s_{012}}{2}$
\mathbb{F}_{17}	$\mathbb{O}^{(k,A_{1g})}$	B_3	$\frac{\sqrt{2}c_{017}}{2} + \frac{\sqrt{2}c_{018}}{2} + \frac{\sqrt{2}c_{021}}{2} + \frac{\sqrt{2}c_{022}}{2}$
\mathbb{F}_{18}	$\mathbb{Q}_2^{(k,B_{1g})}$	B_3	$\frac{\sqrt{2}c_{017}}{2} + \frac{\sqrt{2}c_{018}}{2} - \frac{\sqrt{2}c_{021}}{2} - \frac{\sqrt{2}c_{022}}{2}$
\mathbb{F}_{19}	$\mathbb{Q}_{2,0}^{(k,E_g)}$	B_3	$c_{017} - c_{018}$
\mathbb{F}_{20}	$\mathbb{Q}_{2,1}^{(k,E_g)}$	B_3	$-c_{021} + c_{022}$
\mathbb{F}_{21}	$\mathbb{T}_1^{(k,A_{2u})}$	B_3	$\frac{\sqrt{2}s_{017}}{2} + \frac{\sqrt{2}s_{018}}{2} - \frac{\sqrt{2}s_{021}}{2} - \frac{\sqrt{2}s_{022}}{2}$
\mathbb{F}_{22}	$\mathbb{T}_{1,0}^{(k,E_u)}$	B_3	$s_{021} - s_{022}$
\mathbb{F}_{23}	$\mathbb{T}_{1,1}^{(k,E_u)}$	B_3	$s_{017} - s_{018}$
\mathbb{F}_{24}	$\mathbb{T}_3^{(k,B_{2u})}$	B_3	$\frac{\sqrt{2}s_{017}}{2} + \frac{\sqrt{2}s_{018}}{2} + \frac{\sqrt{2}s_{021}}{2} + \frac{\sqrt{2}s_{022}}{2}$

Table 10: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_{1g})}$	0	A_{1g}	_	_	1
2	$\mathbb{Q}_1^{(A_{2u})}$	1	A_{2u}	_	_	z
3	$\mathbb{Q}_{1,0}^{(E_u)}$	1	E_u	_	0	x
4	$\mathbb{Q}_{1,1}^{(E_u)}$	1	E_u	_	1	y
5	$\mathbb{Q}_2^{(A_{1g})}$	2	A_{1g}	_	_	$-\frac{x^2}{2} - \frac{y^2}{2} + z^2$
6	$\mathbb{Q}_2^{(B_{1g})}$	2	B_{1g}	_	_	$\frac{-\frac{1}{2} - \frac{1}{2} + 2}{\sqrt{3}(x-y)(x+y)}$

Table 10

No.	symbol	rank	irrep.	mul.	comp.	form
7	$\mathbb{Q}_2^{(B_{2g})}$	2	B_{2g}	_	_	$\sqrt{3}xy$
8	$\mathbb{Q}_{2,0}^{(E_g)}$	2	E_g	_	0	$\sqrt{3}yz$
9	$\mathbb{Q}_{2,1}^{(E_g)}$	2	E_g	_	1	$\sqrt{3}xz$
10	$\mathbb{Q}_3^{(B_{1u})}$	3	B_{1u}	_	_	$\frac{\sqrt{15}xyz}{\sqrt{15}z(x-y)(x+y)}$
11	$\mathbb{Q}_3^{(B_{2u})}$	3	B_{2u}	_	_	$\frac{\sqrt{15}z(x-y)(x+y)}{2}$

Table 11: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_{1,0}^{(E_g)}$	1	E_g	_	0	X
2	$\mathbb{G}_{1,1}^{(\widetilde{E}_g)}$	1	E_g	_	1	Y
3	$\mathbb{G}_{0}^{(B_{1g})}$	3	B_{1g}	_	_	$\sqrt{15}XYZ$
4	$\mathbb{G}_3^{(B_{2g})}$	3	B_{2g}	_	_	$\frac{\sqrt{15}Z(X-Y)(X+Y)}{2}$
5	$\mathbb{G}_{3,0}^{(E_g,1)}$	3	E_g	1	0	$\frac{X(2X^2-3Y^2-3Z^2)}{2}$
6	$\mathbb{G}_{3,1}^{(E_g,1)}$	3	E_g	1	1	$-\frac{Y(3X^2-2Y^2+3Z^2)}{2}$
7	$\mathbb{G}_{3,0}^{(E_g,2)}$	3	E_g	2	0	$\frac{\sqrt{15}X(Y-Z)(Y+Z)}{2}$
8	$\mathbb{G}_{3,1}^{(E_g,2)}$	3	E_g	2	1	$\frac{\sqrt{15}Y(X-Z)(X+Z)}{2}$

 $\bullet \ \, \text{Group info.: Generator} = \{2_{001}|\frac{1}{2}\frac{1}{2}0\}, \ \{4_{\ 001}^{+}|\frac{1}{2}00\}, \ \{2_{010}|0\frac{1}{2}0\}, \ \{-1|0\}$

Table 12: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}

Table 12

rep. SO	symmetry operations
$\{2_{001} \frac{1}{2}\frac{1}{2}0\}$	$\{2_{001} \frac{1}{2}\frac{1}{2}0\}$
$\{2_{100} \frac{1}{2}00\}$	$\{2_{100} \frac{1}{2}00\}, \{2_{010} 0\frac{1}{2}0\}$
$\{2_{110} \frac{1}{2}\frac{1}{2}0\}$	$\{2_{110} \frac{1}{2}\frac{1}{2}0\}, \{2_{1-10} 0\}$
$\{4^{+}_{001} \frac{1}{2}00\}$	$\{4^{+}_{001} \frac{1}{2}00\}, \{4^{-}_{001} 0\frac{1}{2}0\}$
-1 0	$\{-1 0\}$
$\{m_{001} \frac{1}{2}\frac{1}{2}0\}$	$\{m_{001} \frac{1}{2}\frac{1}{2}0\}$
$\{m_{100} \frac{1}{2}00\}$	$\{m_{100} \frac{1}{2}00\}, \{m_{010} 0\frac{1}{2}0\}$
$\{m_{110} \frac{1}{2}\frac{1}{2}0\}$	$\{m_{110} \frac{1}{2}\frac{1}{2}0\}, \{m_{1-10} 0\}$
$\{-4^{+}_{001} \frac{1}{2}00\}$	$\{-4^{+}_{001} \frac{1}{2}00\}, \{-4^{-}_{001} 0\frac{1}{2}0\}$

Table 13: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	{1 0}	2	$\{2_{001} \frac{1}{2}\frac{1}{2}0\}$	3	$\{2_{100} \frac{1}{2}00\}$	4	$\{2_{010} 0\frac{1}{2}0\}$	5	$\{2_{110} \frac{1}{2}\frac{1}{2}0\}$
6	$\{2_{1-10} 0\}$	7	$\{4^{+}_{001} \frac{1}{2}00\}$	8	$\{4^{-}_{001} 0^{\frac{1}{2}}0\}$	9	$\{-1 0\}$	10	$\{m_{001} \frac{1}{2}\frac{1}{2}0\}$
11	$\{m_{100} \frac{1}{2}00\}$	12	$\{m_{010} 0\frac{1}{2}0\}$	13	$\{m_{110} \frac{1}{2}\frac{1}{2}0\}$	14	$\{m_{1-10} 0\}$	15	$\{-4^{+}_{001} \frac{1}{2}00\}$
16	$\{-4^{-}_{001} 0\frac{1}{2}0\}$								

Table 14: Character table (point-group part).

	1	2_{001}	2_{100}	2_{110}	4^{+}_{001}	-1	m_{001}	m_{100}	m_{110}	-4^{+}_{001}
A_{1g}	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	-1	-1	1	1	1	-1	-1	1
B_{1g}	1	1	1	-1	-1	1	1	1	-1	-1
B_{2g}	1	1	-1	1	-1	1	1	-1	1	-1
E_g	2	-2	0	0	0	2	-2	0	0	0
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A_{2u}	1	1	-1	-1	1	-1	-1	1	1	-1

Table 14

	1	2001	2_{100}	2_{110}	4 ⁺ ₀₀₁	-1	m_{001}	m_{100}	m_{110}	-4^{+}_{001}
B_{1u}	1	1	1	-1	-1	-1	-1	-1	1	1
B_{2u}	1	1	-1	1	-1	-1	-1	1	-1	1
E_u	2	-2	0	0	0	-2	2	0	0	0

Table 15: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
			$A_{2g} (A_{2u})$	
$A_{1u} (A_{1g})$	$B_{1u} (B_{1g})$	$E_u (E_g)$	$A_{2u} (A_{2g})$	$B_{2u} (B_{2g})$

Table 16: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_g	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_u
A_{1g}	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_g	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_u
A_{2g}		A_{1g}	B_{2g}	B_{1g}	E_{g}	A_{2u}	A_{1u}	B_{2u}	B_{1u}	E_{u}
B_{1g}			A_{1g}	A_{2g}	E_{g}	B_{1u}	B_{2u}	A_{1u}	A_{2u}	E_u
B_{2g}				A_{1g}	$E_{m{g}}$	B_{2u}	B_{1u}	A_{2u}	A_{1u}	E_u
E_g					$A_{1g} + B_{1g} + B_{2g}$	E_u	E_u	E_u	E_u	$A_{1u} + A_{2u} + B_{1u} + B_{2u}$
A_{1u}						A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{g}
A_{2u}							A_{1g}	B_{2g}	B_{1g}	E_g
B_{1u}								A_{1g}	A_{2g}	E_g
B_{2u}									A_{1g}	E_g°
E_u										$A_{1g} + B_{1g} + B_{2g}$

Table 17: Anti-symmetric product, $[\Gamma \otimes \Gamma]_{-}$.

$\overline{A_{1g}}$	A_{2g}	B_{1g}	B_{2g}	E_g	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_u
_	_	_	_	A_{2g}	_	_	_	_	A_{2g}

Table 18: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 2 & 1 & 1 \end{pmatrix}$	2	$\begin{pmatrix} -2 & -1 & 1 \end{pmatrix}$	3	$\begin{pmatrix} 2 & -1 & -1 \end{pmatrix}$	4	$\begin{pmatrix} -2 & 1 & -1 \end{pmatrix}$
5	$\begin{pmatrix} 1 & 2 & -1 \end{pmatrix}$	6	$\begin{pmatrix} -1 & -2 & -1 \end{pmatrix}$	7	$\begin{pmatrix} -1 & 2 & 1 \end{pmatrix}$	8	$\begin{pmatrix} 1 & -2 & 1 \end{pmatrix}$
9	$\begin{pmatrix} -2 & -1 & -1 \end{pmatrix}$	10	$\begin{pmatrix} 2 & 1 & -1 \end{pmatrix}$	11	$\begin{pmatrix} -2 & 1 & 1 \end{pmatrix}$	12	$\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$
13	$\begin{pmatrix} -1 & -2 & 1 \end{pmatrix}$	14	$\begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$	15	$\begin{pmatrix} 1 & -2 & -1 \end{pmatrix}$	16	$\begin{pmatrix} -1 & 2 & -1 \end{pmatrix}$

Table 19: Virtual-cluster basis.

symbol	1	2	3	4	5	6	7	8	9	10
$\frac{\mathbb{Q}_0^{(A_{1g})}}{\mathbb{Q}_0^{(A_{1g})}}$	$\frac{1}{4}$									
	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$				
$\mathbb{Q}_1^{(A_{2u})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$
	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				
$\mathbb{Q}_{1,0}^{(E_u)}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$
	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$				
$\mathbb{Q}_{1,1}^{(E_u)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$
	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$				
$\mathbb{Q}_2^{(B_{1g})}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				
$\mathbb{Q}_2^{(B_{2g})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				
$\mathbb{Q}_{2,0}^{(E_g)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$
	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$				
$\mathbb{Q}_{2,1}^{(E_g)}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$
	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$				

Table 19

symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_3^{(B_{1u})}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$
	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$				
$\mathbb{Q}_{3}^{(B_{2u})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$
	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$				
$\mathbb{Q}_{3,0}^{(E_u,1)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$
	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$				
$\mathbb{Q}_{3,1}^{(E_u,1)}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$
	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$				
$\mathbb{Q}_4^{(A_{2g})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$				
$\mathbb{Q}_{4,0}^{(E_g,1)}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$
	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$				
$\mathbb{Q}_{4,1}^{(E_g,1)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$
	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$				
$\mathbb{Q}_{5}^{(A_{1u})}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$
	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				