Introduction to Number Theory

Math 110 | Winter 2023

Xu Gao March 13, 2023

Further Readings

Congratulations on finishing your introductory course in number theory!

If you're interested in exploring this fascinating subject further, here are some possible readings suggestions.

Textbooks on Number Theory

First, I would suggest you to finish our **textbook** before moving to the next one. We have covered a lot of its content but not all.

Next, you need knowledge from **abstract algebra** and **complex analysis**. These subjects should be mastered before reading further textbooks.

After that, I would suggest:

• A Course in Arithmetic by Jean-Pierre Serre. This is a concise introduction to some important topics in number theory. A highly readable masterpiece. (Second Textbook)

Textbooks on Number Theory

- Introduction to Modern Number Theory: Fundamental Problems, Ideas and Theories by Yuri I. Manin and Alexei A. Panchishkin. This is a comprehensive survey of modern number theory, motivated by elementary problems, exposing central ideas of various theories very well. (Reference Book)
- An Introduction to the Theory of Numbers by G.H. Hardy and E.M. Wright. It is a classic, suitable for who want more training on number theory traditionally. (Complementary advanced textbook)

Quadratic Forms

We have covered Quadratic Reciprocity Laws in the course and now know how to detect quadratic residues. However, it remains to have a system treatment of **solving** modular quadratic equations. This leads to the theory of **Quadratic Forms**.

Definition 25.1

A *quadratic form* is a homogeneous polynomial of degree two in several variables.

The theory of quadratic forms studies their properties, including their representations by other quadratic forms and their values over different rings.

Quadratic Forms

Chapter 9–11 of the textbook is an interesting elementary approach to this topic. For further study, a possible roadmap is:

- Learn the basic definitions and examples of quadratic forms.
- Learn how to classify quadratic forms.
- Learn how to **diagonalize** a quadratic form or translate between different forms (**standard** form, **factored** form, and **vertex** form).
- Explore advanced topics such as the **Siegel mass formula** and the connections between quadratic forms and other objects (lattices, modular forms, theta functions, elliptic curves etc.).

Geometry of Numbers

You have seen a lot of examples about how a geometric interpretation can help us to solve arithmetic problems. There are two main subjects arising from such an idea.

One is called the *geometry of numbers*. It studies the geometry of lattices in Euclidean space and its applications to number theory. Our proof of Dirichlet's approximation theorem can also be viewed as a one-dimensional version of such methods. You can take a look at pp. 200–201 on the textbook to see one 2-dimensional example.

Geometry of Numbers

A possible roadmap for further study is:

- Learn what a lattice is and how to define its basis, rank, determinant and volume.
- Learn how to measure the density and distribution of lattice points, the concept of a fundamental domain, and study the Minkowski embedding theorem.
- Explore topics such as the **lattice point counting problem**, the **geometry of continued fractions**, and the connection between the geometry of numbers and **Diophantine approximation**.

Algebraic Numbers

There are other number systems sharing similar properties with \mathbb{Z} . *Gaussian integers* and *Eisenstein integers*, which are covered in Chapter 4 of the textbook, are two such examples. We can use similar methods to study them. Generally, these systems arise as *integral rings* of *algebraic numbers*.

Recall that algebraic numbers are numbers that satisfy a polynomial equation with integer coefficients. These integral rings arise from our original ring of integers through *integral extensions* and the *Galois theory*.

Algebraic Numbers

A main branch of modern number theory is **Algebraic Number Theory**. It used to mean the study of algebraic numbers and nowadays means to study arithmetic problems using methods from abstract algebra.

A possible roadmap to approach this subject is:

- Build some **intuitions** through the examples of rational integers, Gaussian integers, Eisenstein integers, and more crucially, some bad behaved examples such as $\mathbb{Z}[\sqrt{-5}]$.
- Learn basic concepts of abstract algebra such as groups, rings, fields, homomorphisms and ideals.

Algebraic Numbers

- Specialize your knowledge from abstract algebra to number fields. Learn about their properties such as degree, discriminant, norm and trace. Learn about the ring of integers in a number field, the factorization of ideals, the behavior of primes, and the ideal class group.
- Learn about some special classes of number fields such as quadratic fields, cyclotomic fields and Galois extensions.
- Explore some applications of algebraic number theory such as
 Fermat's last theorem and class field theory.

Books on Algebraic Number Theory

Here are some textbook on algebraic number theory (should be read after your Second Textbook on number theory):

- Basic Number Theory by A Weil. It is classic but maybe difficult.
- Algebraic Number Theory by Cassels and Froehlich. It is not a textbook but rather a collection of short courses written by various great mathematicians.
- Algebraic Number Theory by S. Lang. Well-written, accessible, and comprehensive.
- Algebraic Number Theory by J. Neukirch. A very extensive and geometric approach.

Analytic Number Theory

Another main branch of modern number theory is **Analytic Number Theory**. It means to use methods from analysis to study arithmetic problems. It can be mainly divides into two major parts:

- Multiplicative number theory, which deals with the distribution of the prime, including prime number theorem, primes in specific progressions. A remarkably important problem is the Riemann Hypothesis.
- Additive number theory, which is concerned with the additive structure of integers. Two classical problems are Goldbach's conjecture, that every even number greater than 2 is the sum of two primes, and Waring's problem, which asks whether every natural number is the sum of certain number of powers.

Analytic Number Theory

A possible roadmap to this subject is:

- Learn Complex Analysis, including topics such as conformal mappings, Cauchy's theorem and formula, poles and residues, and analytic continuation.
- Learn basic properties of *Dirichlet Series*, such as their convergence and the Euler product formula.
- Learn basics of zeta functions, such as the functional equation and special values.
- Learn how to prove prime number theorem and Dirichlet's theorem on primes in arithmetic progressions.

Books on Analytic Number Theory

Here are some textbook on analytic number theory:

- Introduction to Analytic Number Theory by Apostol. A classic textbook for undergraduates. (feetbook)
- **Problems in Analytic Number Theory** by Murty. Well-organized theory and problems guiding students through the most important areas of analytic number theory.
- Multiplicative Number Theory by Davenport.
- Additive Number Theory by Nathanson.

After Analytic Number Theory

After analytic number theory, you can explore topics such as:

- Transcendental Number Theory, which investigates the transcendental numbers. Diophantine approximation and transcendence measure are major topics in this field. One big open problem is Schanuel's conjecture.
- Modular Forms, which are analytic functions with remarkable properties. It is related to many important topics such as congruence subgroups, elliptic curves, Hecke operators, and L-functions.
- Then Automorphic Forms and Langlands Program.

Books on Those Topics

- Transcendental Numbers by Murty and Rath.
- · A First Course in Modular Forms by Diamond and Shurman.
- Automorphic Forms and Representations by Bump.
- An Introduction to the Langlands Program by J. Bernstein and S. Gelbart.
- And also found in textbooks of algebraic number theory.

Arithemtic Geometry

Another subject arising from interpreting arithmetic into geometry is **Arithmetic Geometry**. It studies the geometric properties of Diophantine equations.

A possible roadmap to approach this topic is:

- Learn about number fields, class field theory, and Galois representations from a book like
 - Algebraic Number Theory by S. Lang.
 - Algebraic Number Theory by J. Neukirch.
- Learn about schemes and their cohomology from a book like
 - Algebraic Geometry and Arithmetic Curves by Liu,
 - Algebraic Geometry by Hartshorne,
 - The Rising Sea: Foundations of Algebraic Geometry by Ravi Vakil.

Leadable!

Arithemtic Geometry

- Learn about <u>elliptic curves</u>, <u>modular forms</u>, and <u>L-functions</u>
 from a book like
 - The Arithmetic of Elliptic Curves by Silverman,
 - · A First Course in Modular Forms by Diamond and Shurman,
 - Advanced Topics in the Arithmetic of Elliptic Curves by Silverman.
- Learn about p-adic analysis from a book like
 - p-adic Numbers, p-adic Analysis, and Zeta-Functions by Neal Koblitz.
 - Non-Archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry by S. Bosch, U. Güntzer, R. Remmert. By Sock
 - Local Fields by Jean-Pierre Serre.
 - a chart book

Arithemtic Geometry

- Learn about Arakelov Geometry:
 - Lectures on Arakelov Geometry by Mumford et al.
 - Arakelov Geometry and Diophantine Applications by E. Peyre, and G. Rémond.
- Learn about Etale cohomology:
 - **Etale Cohomology** by James Milne.
 - Etale Cohomology by Lei Fu. detailed
- After above, you should have enough knowledge to delve into a specific area. Enjoy your journey!