Infinite Series

Exercise Set 9.1

1. (a)
$$\frac{1}{3^{n-1}}$$

b)
$$\frac{(-1)^{n-1}}{3^{n-1}}$$

(b)
$$\frac{(-1)^{n-1}}{3^{n-1}}$$
 (c) $\frac{2n-1}{2n}$ (d) $\frac{n^2}{\pi^{1/(n+1)}}$

(d)
$$\frac{n^2}{\pi^{1/(n+1)}}$$

2. (a)
$$(-r)^{n-1}$$
; $(-r)^n$ (b) $-(-r)^n$; $(-1)^n r^{n+1}$

3. (a)
$$2,0,2,0$$
 (b) $1,-1,1,-1$ (c) $2(1+(-1)^n); 2+2\cos n\pi$

- 5. (a) No; f(n) oscillates between ± 1 and 0. (b) -1, +1, -1, +1, -1 (c) No, it oscillates between +1 and -1
- **6.** If n is an integer then f(2n+1)=0
 - (a) 0,0,0,0,0 (b) $b_n = 0$ for all n, so the sequence converges to 0. (c) No, it oscillates between ± 1 and 0.
- 7. 1/3, 2/4, 3/5, 4/6, 5/7,...; $\lim_{n\to+\infty} \frac{n}{n+2} = 1$, converges.
- **8.** 1/3, 4/5, 9/7, 16/9, 25/11, ...; $\lim_{n \to +\infty} \frac{n^2}{2n+1} = +\infty$, diverges.
- **9.** $2, 2, 2, 2, 2, \ldots$; $\lim_{n \to +\infty} 2 = 2$, converges
- **10.** $\ln 1$, $\ln \frac{1}{2}$, $\ln \frac{1}{3}$, $\ln \frac{1}{4}$, $\ln \frac{1}{5}$, ...; $\lim_{n \to +\infty} \ln(1/n) = -\infty$, diverges
- $\mathbf{11.} \ \frac{\ln 1}{1}, \frac{\ln 2}{2}, \frac{\ln 3}{3}, \frac{\ln 4}{4}, \frac{\ln 5}{5}, \ldots; \lim_{n \to +\infty} \frac{\ln n}{n} = \lim_{n \to +\infty} \frac{1}{n} = 0 \ \left(\text{apply L'Hôpital's Rule to } \frac{\ln x}{r} \right), \text{ converges } \left(\frac{\ln x}{r} \right)$
- 12. $\sin \pi$, $2\sin(\pi/2)$, $3\sin(\pi/3)$, $4\sin(\pi/4)$, $5\sin(\pi/5)$, ...; $\lim_{n\to+\infty} n\sin(\pi/n) = \lim_{n\to+\infty} \frac{\sin(\pi/n)}{1/n}$; but using L'Hospital's rule, $\lim_{x \to +\infty} \frac{\sin(\pi/x)}{1/x} = \lim_{x \to +\infty} \frac{(-\pi/x^2)\cos(\pi/x)}{-1/x^2} = \pi$, so the sequence also converges to π
- 13. 0, 2, 0, 2, 0, . . .; diverges.
- **14.** 1, -1/4, 1/9, -1/16, 1/25,...; $\lim_{n \to +\infty} \frac{(-1)^{n+1}}{n^2} = 0$, converges
- $\textbf{15.} \hspace{0.1cm} -1, \hspace{0.1cm} 16/9, \hspace{0.1cm} -54/28, \hspace{0.1cm} 128/65, \hspace{0.1cm} -250/126, \ldots; \hspace{0.1cm} \text{diverges because odd-numbered terms approach} \hspace{0.1cm} -2, \hspace{0.1cm} \text{even-numbered terms} \hspace{0.1cm} \text{approach} \hspace{0.1cm} -2, \hspace{0.1cm} \text{even-numbered terms} \hspace{0.1cm} -2, \hspace{0.1cm} \text{even-numbered terms} \hspace{0.$ terms approach 2.

437

438

- **16.** 1/2, 2/4, 3/8, 4/16, 5/32, ...; using L'Hospital's rule, $\lim_{x \to +\infty} \frac{x}{2^x} = \lim_{x \to +\infty} \frac{1}{2^x \ln 2} = 0$, so the sequence also converges
- 17. 6/2, 12/8, 20/18, 30/32, 42/50, ...; $\lim_{n\to+\infty}\frac{1}{2}(1+1/n)(1+2/n)=1/2$, converges
- **18.** $\pi/4$, $\pi^2/4^2$, $\pi^3/4^3$, $\pi^4/4^4$, $\pi^5/4^5$,...; $\lim_{n \to +\infty} (\pi/4)^n = 0$, converges
- **19.** e^{-1} , $4e^{-2}$, $9e^{-3}$, $16e^{-4}$, $25e^{-5}$,...; using L'Hospital's rule, $\lim_{x \to +\infty} x^2 e^{-x} = \lim_{x \to +\infty} \frac{x^2}{e^x} = \lim_{x \to +\infty} \frac{2x}{e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0$, so $\lim_{n \to +\infty} n^2 e^{-n} = 0$, converges.
- **20.** 1, $\sqrt{10}$ 2, $\sqrt{18}$ 3, $\sqrt{28}$ 4, $\sqrt{40}$ 5, ...; $\lim_{n \to +\infty} (\sqrt{n^2 + 3n} n) = \lim_{n \to +\infty} \frac{3n}{\sqrt{n^2 + 3n} + n} = \lim_{n \to +\infty} \frac{3}{\sqrt{1 + 3/n} + 1} = \lim_{n \to +\infty} \frac{3n}{\sqrt{1 + 3/n} + 1} = \lim_{n \to +\infty} \frac{3n}{\sqrt{n^2 + 3n} + n} = \lim_{n \to +\infty} \frac{3n}{\sqrt{1 + 3/n} + 1} = \lim_{n \to +\infty} \frac{3n}{\sqrt{1$ $\frac{3}{2}$, converges.
- **21.** 2, $(5/3)^2$, $(6/4)^3$, $(7/5)^4$, $(8/6)^5$,...; let $y = \left[\frac{x+3}{x+1}\right]^x$, converges because $\lim_{x \to +\infty} \ln y = \lim_{x \to +\infty} \frac{\ln \frac{x+3}{x+1}}{1/x} = \lim_{x \to +\infty} \frac{2x^2}{(x+1)(x+3)} = 2$, so $\lim_{n \to +\infty} \left[\frac{n+3}{n+1}\right]^n = e^2$.
- **22.** -1, 0, $(1/3)^3$, $(2/4)^4$, $(3/5)^5$,...; let $y=(1-2/x)^x$, converges because $\lim_{x\to +\infty} \ln y = \lim_{x\to +\infty} \frac{\ln(1-2/x)}{1/x} = \frac{\ln(1-x)}{1/x}$ $\lim_{x \to +\infty} \frac{-2}{1-2/x} = -2, \ \lim_{n \to +\infty} (1-2/n)^n = \lim_{x \to +\infty} y = e^{-2}.$
- **23.** $\left\{\frac{2n-1}{2n}\right\}_{n=1}^{+\infty}$; $\lim_{n\to+\infty}\frac{2n-1}{2n}=1$, converges.
- **24.** $\left\{\frac{n-1}{n^2}\right\}_{n=1}^{+\infty}$; $\lim_{n\to+\infty} \frac{n-1}{n^2} = 0$, converges.
- **25.** $\left\{ (-1)^{n-1} \frac{1}{3^n} \right\}_{\substack{n = 1 \ n \to +\infty}}^{+\infty} \frac{(-1)^{n-1}}{3^n} = 0$, converges
- **26.** $\{(-1)^n n\}_{n=1}^{+\infty}$; diverges because odd-numbered terms tend toward $-\infty$, even-numbered terms tend toward $+\infty$.

27.
$$\left\{(-1)^{n+1}\left(\frac{1}{n}-\frac{1}{n+1}\right)\right\}_{n=1}^{+\infty}$$
; the sequence converges to 0.

28.
$${3/2^{n-1}}_{n=1}^{+\infty}$$
; $\lim_{n \to \infty} 3/2^{n-1} = 0$, converges.

29.
$$\left\{\sqrt{n+1} - \sqrt{n+2}\right\}_{n=1}^{+\infty}$$
; converges because $\lim_{n \to +\infty} (\sqrt{n+1} - \sqrt{n+2}) = \lim_{n \to +\infty} \frac{(n+1) - (n+2)}{\sqrt{n+1} + \sqrt{n+2}} = \lim_{n \to +\infty} \frac{-1}{\sqrt{n+1} + \sqrt{n+2}} = 0.$

30.
$$\{(-1)^{n+1}/3^{n+4}\}_{n=1}^{+\infty}$$
; $\lim_{n\to\infty} (-1)^{n+1}/3^{n+4} = 0$, converges.

31. True; a function whose domain is a set of integers.

Exercise Set 9.1 439

- **32.** False, e.g. $a_n = 1 n, b_n = n 1$.
- **33.** False, e.g. $a_n = (-1)^n$.
- **34.** True.

35. Let
$$a_n = 0, b_n = \frac{\sin^2 n}{n}, c_n = \frac{1}{n}$$
; then $a_n \le b_n \le c_n$, $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} c_n = 0$, so $\lim_{n \to +\infty} b_n = 0$.

36. Let
$$a_n = 0, b_n = \left(\frac{1+n}{2n}\right)^n, c_n = \left(\frac{3}{4}\right)^n;$$
 then (for $n \ge 2$), $a_n \le b_n \le \left(\frac{n/2+n}{2n}\right)^n = c_n,$ $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} c_n = 0,$ so $\lim_{n \to +\infty} b_n = 0.$

37.
$$a_n = \begin{cases} +1 & k \text{ even} \\ -1 & k \text{ odd} \end{cases}$$
 oscillates; there is no limit point which attracts all of the a_n . $b_n = \cos n$; the terms lie all over the interval $[-1,1]$ without any limit.

- **38.** (a) No, because given N > 0, all values of f(x) are greater than N provided x is close enough to zero. But certainly the terms 1/n will be arbitrarily close to zero, and when so then f(1/n) > N, so f(1/n) cannot converge.
 - (b) $f(x) = \sin(\pi/x)$. Then f = 0 when x = 1/n and $f \neq 0$ otherwise; indeed, the values of f are located all over the interval [-1, 1].

39. (a)
$$1, 2, 1, 4, 1, 6$$
 (b) $a_n = \begin{cases} n, & n \text{ odd} \\ 1/2^n, & n \text{ even} \end{cases}$ (c) $a_n = \begin{cases} 1/n, & n \text{ odd} \\ 1/(n+1), & n \text{ even} \end{cases}$

- (d) In part (a) the sequence diverges, since the even terms diverge to $+\infty$ and the odd terms equal 1; in part (b) the sequence diverges, since the odd terms diverge to $+\infty$ and the even terms tend to zero; in part (c) $\lim_{n\to +\infty} a_n = 0$.
- **40.** The even terms are zero, so the odd terms must converge to zero, and this is true if and only if $\lim_{n\to+\infty}b^n=0$, or 0< b<1 (b is required to be positive).
- **41.** $\lim_{n \to +\infty} x_{n+1} = \frac{1}{2} \lim_{n \to +\infty} \left(x_n + \frac{a}{x_n} \right)$ or $L = \frac{1}{2} \left(L + \frac{a}{L} \right)$, $2L^2 L^2 a = 0$, $L = \sqrt{a}$ (we reject $-\sqrt{a}$ because $x_n > 0$, thus $L \ge 0$).
- **42.** (a) $a_{n+1} = \sqrt{6 + a_n}$
 - (b) $\lim_{n\to+\infty} a_{n+1} = \lim_{n\to+\infty} \sqrt{6+a_n}$, $L=\sqrt{6+L}$, $L^2-L-6=0$, (L-3)(L+2)=0, L=-2 (reject, because the terms in the sequence are positive) or L=3; $\lim_{n\to+\infty} a_n=3$.
- **43.** (a) $a_1 = (0.5)^2, a_2 = a_1^2 = (0.5)^4, \dots, a_n = (0.5)^{2^n}$.

(c)
$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} e^{2^n \ln(0.5)} = 0$$
, since $\ln(0.5) < 0$.

- (d) Replace 0.5 in part (a) with a_0 ; then the sequence converges for $-1 \le a_0 \le 1$, because if $a_0 = \pm 1$, then $a_n = 1$ for $n \ge 1$; if $a_0 = 0$ then $a_n = 0$ for $n \ge 1$; and if $0 < |a_0| < 1$ then $a_1 = a_0^2 > 0$ and $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} e^{2^{n-1} \ln a_1} = 0$ since $0 < a_1 < 1$. This same argument proves divergence to $+\infty$ for |a| > 1 since then $|a_1| > 0$.
- **44.** f(0.2) = 0.4, f(0.4) = 0.8, f(0.8) = 0.6, f(0.6) = 0.2 and then the cycle repeats, so the sequence does not converge.

440 Chapter 9

(b) Let $y = (2^x + 3^x)^{1/x}$, $\lim_{x \to +\infty} \ln y = \lim_{x \to +\infty} \frac{\ln(2^x + 3^x)}{x} = \lim_{x \to +\infty} \frac{2^x \ln 2 + 3^x \ln 3}{2^x + 3^x} = \lim_{x \to +\infty} \frac{(2/3)^x \ln 2 + \ln 3}{(2/3)^x + 1} = \ln 3$, so $\lim_{x \to +\infty} (2^n + 3^n)^{1/n} = e^{\ln 3} = 3$. Alternate proof: $3 = (3^n)^{1/n} < (2^n + 3^n)^{1/n} < (2 \cdot 3^n)^{1/n} = 3 \cdot 2^{1/n}$. Then

45. (a)

(b) Let $y=(2^x+3^x)^{1/x}$, $\lim_{x\to+\infty}\ln y=\lim_{x\to+\infty}\frac{\ln(2^x+3^x)}{x}=\lim_{x\to+\infty}\frac{2^x\ln 2+3^x\ln 3}{2^x+3^x}=\lim_{x\to+\infty}\frac{(2/3)^x\ln 2+\ln 3}{(2/3)^x+1}=\ln 3$, so $\lim_{n\to+\infty}(2^n+3^n)^{1/n}=e^{\ln 3}=3$. Alternate proof: $3=(3^n)^{1/n}<(2^n+3^n)^{1/n}<(2\cdot 3^n)^{1/n}=3\cdot 2^{1/n}$. Then apply the Squeezing Theorem.

46. Let
$$f(x) = 1/(1+x)$$
, $0 \le x \le 1$. Take $\Delta x_k = 1/n$ and $x_k^* = k/n$ then $a_n = \sum_{k=1}^n \frac{1}{1+(k/n)}(1/n) = \sum_{k=1}^n \frac{1}{1+x_k^*} \Delta x_k$ so $\lim_{n \to +\infty} a_n = \int_0^1 \frac{1}{1+x} dx = \ln(1+x) \Big|_0^1 = \ln 2$.

47. (a) If
$$n \ge 1$$
, then $a_{n+2} = a_{n+1} + a_n$, so $\frac{a_{n+2}}{a_{n+1}} = 1 + \frac{a_n}{a_{n+1}}$.

(c) With $L = \lim_{n \to +\infty} (a_{n+2}/a_{n+1}) = \lim_{n \to +\infty} (a_{n+1}/a_n)$, L = 1 + 1/L, $L^2 - L - 1 = 0$, $L = (1 \pm \sqrt{5})/2$, so $L = (1 + \sqrt{5})/2$ because the limit cannot be negative.

48.
$$\left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \epsilon \text{ if } n > 1/\epsilon;$$

(a) $1/\epsilon = 1/0.5 = 2$, N = 3. (b) $1/\epsilon = 1/0.1 = 10$, N = 11. (c) $1/\epsilon = 1/0.001 = 1000$, N = 1001.

49.
$$\left| \frac{n}{n+1} - 1 \right| = \frac{1}{n+1} < \epsilon \text{ if } n+1 > 1/\epsilon, \ n > 1/\epsilon - 1;$$

(a) $1/\epsilon - 1 = 1/0.25 - 1 = 3$, N = 4. (b) $1/\epsilon - 1 = 1/0.1 - 1 = 9$, N = 10. (c) $1/\epsilon - 1 = 1/0.001 - 1 = 999$, N = 1000.

50. (a)
$$\left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \epsilon \text{ if } n > 1/\epsilon, \text{ choose any } N > 1/\epsilon.$$

(b)
$$\left| \frac{n}{n+1} - 1 \right| = \frac{1}{n+1} < \epsilon \text{ if } n > 1/\epsilon - 1, \text{ choose any } N > 1/\epsilon - 1.$$

Exercise Set 9.2

1. $a_{n+1}-a_n=\frac{1}{n+1}-\frac{1}{n}=-\frac{1}{n(n+1)}<0$ for $n\geq 1,$ so strictly decreasing.

2.
$$a_{n+1} - a_n = \left(1 - \frac{1}{n+1}\right) - \left(1 - \frac{1}{n}\right) = \frac{1}{n(n+1)} > 0$$
 for $n \ge 1$, so strictly increasing.

3.
$$a_{n+1}-a_n=\frac{n+1}{2n+3}-\frac{n}{2n+1}=\frac{1}{(2n+1)(2n+3)}>0$$
 for $n\geq 1$, so strictly increasing.

4.
$$a_{n+1}-a_n=\frac{n+1}{4n+3}-\frac{n}{4n-1}=-\frac{1}{(4n-1)(4n+3)}<0$$
 for $n\geq 1$, so strictly decreasing

Exercise Set 9.2 441

5. $a_{n+1} - a_n = (n+1-2^{n+1}) - (n-2^n) = 1-2^n < 0$ for $n \ge 1$, so strictly decreasing.

6.
$$a_{n+1} - a_n = [(n+1) - (n+1)^2] - (n-n^2) = -2n < 0$$
 for $n \ge 1$, so strictly decreasing.

$$\mathbf{7.} \ \, \frac{a_{n+1}}{a_n} = \frac{(n+1)/(2n+3)}{n/(2n+1)} = \frac{(n+1)(2n+1)}{n(2n+3)} = \frac{2n^2+3n+1}{2n^2+3n} > 1 \text{ for } n \geq 1, \text{ so strictly increasing.}$$

$$\mathbf{8.} \ \, \frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{1+2^{n+1}} \cdot \frac{1+2^n}{2^n} = \frac{2+2^{n+1}}{1+2^{n+1}} = 1 + \frac{1}{1+2^{n+1}} > 1 \text{ for } n \geq 1, \text{ so strictly increasing.}$$

9.
$$\frac{a_{n+1}}{a_n} = \frac{(n+1)e^{-(n+1)}}{ne^{-n}} = (1+1/n)e^{-1} < 1$$
 for $n \ge 1$, so strictly decreasing.

$$\mathbf{10.} \ \ \, \frac{a_{n+1}}{a_n} = \frac{10^{n+1}}{(2n+2)!} \cdot \frac{(2n)!}{10^n} = \frac{10}{(2n+2)(2n+1)} < 1 \text{ for } n \geq 1, \text{ so strictly decreasing.}$$

11.
$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} = \frac{(n+1)^n}{n^n} = (1+1/n)^n > 1$$
 for $n \ge 1$, so strictly increasing.

$$\mathbf{12.}\ \, \frac{a_{n+1}}{a_n} = \frac{5^{n+1}}{2^{(n+1)^2}} \cdot \frac{2^{n^2}}{5^n} = \frac{5}{2^{2n+1}} < 1 \text{ for } n \geq 1, \text{ so strictly decreasing}$$

13. True by definition

14. False; either $a_{n+1} \leq a_n$ always or else $a_{n+1} \geq a_n$ always.

15. False, e.g. $a_n = (-1)^n$.

16. False; such a sequence could decrease until a_{300} , e.g.

- 17. f(x) = x/(2x+1), $f'(x) = 1/(2x+1)^2 > 0$ for x > 1, so strictly increasing.
- **18.** $f(x) = \frac{\ln(x+2)}{x+2}$, $f'(x) = \frac{1 \ln(x+2)}{(x+2)^2} < 0$ for $x \ge 1$, so strictly decreasing.
- 19. $f(x) = \tan^{-1} x$, $f'(x) = 1/(1+x^2) > 0$ for $x \ge 1$, so strictly increasing.
- **20.** $f(x) = xe^{-2x}$, $f'(x) = (1-2x)e^{-2x} < 0$ for $x \ge 1$, so strictly decreasing.
- **21.** $f(x) = 2x^2 7x$, f'(x) = 4x 7 > 0 for $x \ge 2$, so eventually strictly increasing.
- **22.** $f(x) = \frac{x}{x^2 + 10}$, $f'(x) = \frac{10 x^2}{(x^2 + 10)^2} < 0$ for $x \ge 4$, so eventually strictly decreasing.
- 23. $\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{3^{n+1}} \cdot \frac{3^n}{n!} = \frac{n+1}{3} > 1$ for $n \ge 3$, so eventually strictly increasing.
- **24.** $f(x) = x^5 e^{-x}$, $f'(x) = x^4 (5-x) e^{-x} < 0$ for $x \ge 6$, so eventually strictly decreasing.
- 25. Yes: a monotone sequence is increasing or decreasing; if it is increasing, then it is increasing and bounded above, so by Theorem 9.2.3 it converges; if decreasing, then use Theorem 9.2.4. The limit lies in the interval [1, 2].
- 26. Such a sequence may converge, in which case, by the argument in part (a), its limit is ≤ 2. If the sequence is also increasing then it will converge. But convergence may not happen: for example, the sequence {−n}^{+∞}_{n=1} diverges.

- **27.** (a) $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2+\sqrt{2}}}$
 - (b) $a_1 = \sqrt{2} < 2$ so $a_2 = \sqrt{2 + a_1} < \sqrt{2 + 2} = 2$, $a_3 = \sqrt{2 + a_2} < \sqrt{2 + 2} = 2$, and so on indefinitely.
 - (c) $a_{n+1}^2 a_n^2 = (2 + a_n) a_n^2 = 2 + a_n a_n^2 = (2 a_n)(1 + a_n)$.
 - (d) $a_n>0$ and, from part (b), $a_n<2$ so $2-a_n>0$ and $1+a_n>0$ thus, from part (c), $a_{n+1}^2-a_n^2>0$, $a_{n+1}-a_n>0$, $a_{n+1}>a_n$; $\{a_n\}$ is a strictly increasing sequence.
 - (e) The sequence is increasing and has 2 as an upper bound so it must converge to a limit L, $\lim_{n \to +\infty} a_{n+1} = \lim_{n \to +\infty} \sqrt{2 + a_n}$, $L = \sqrt{2 + L}$, $L^2 L 2 = 0$, (L 2)(L + 1) = 0, thus $\lim_{n \to +\infty} a_n = 2$.
- **28.** (a) If $f(x) = \frac{1}{2}(x+3/x)$, then $f'(x) = (x^2-3)/(2x^2)$ and f'(x) = 0 for $x = \sqrt{3}$; the minimum value of f(x) for x > 0 is $f(\sqrt{3}) = \sqrt{3}$. Thus $f(x) \ge \sqrt{3}$ for x > 0 and hence $a_n \ge \sqrt{3}$ for $n \ge 2$.
 - (b) $a_{n+1}-a_n=(3-a_n^2)/(2a_n)\leq 0$ for $n\geq 2$ since $a_n\geq \sqrt{3}$ for $n\geq 2$; $\{a_n\}$ is eventually decreasing.
 - (c) $\sqrt{3}$ is a lower bound for a_n so $\{a_n\}$ converges; $\lim_{n \to +\infty} a_{n+1} = \lim_{n \to +\infty} \frac{1}{2}(a_n + 3/a_n), L = \frac{1}{2}(L + 3/L), L^2 3 = 0, L = \sqrt{3}.$
- **29.** (a) $x_1 = 60, x_2 = \frac{1500}{7} \approx 214.3, x_3 = \frac{3750}{13} \approx 288.5, x_4 = \frac{75000}{251} \approx 298.8.$
 - (b) We can see that $x_{n+1} = \frac{RK}{K/x_n + (R-1)} = \frac{10 \cdot 300}{300/x_n + 9}$; if $0 < x_n$ then clearly $0 < x_{n+1}$. Also, if $x_n < 300$, then $x_{n+1} = \frac{10 \cdot 300}{300/x_n + 9} < \frac{10 \cdot 300}{300/300 + 9} = 300$, so the conclusion is valid.
 - (c) $\frac{x_{n+1}}{x_n} = \frac{RK}{K + (R-1)x_n} = \frac{10 \cdot 300}{300 + 9x_n} > \frac{10 \cdot 300}{300 + 9 \cdot 300} = 1$, because $x_n < 300$. So x_n is increasing.
 - (d) x_n is increasing and bounded above, so it is convergent. The limit can be found by letting $L = \frac{RKL}{K + (R-1)L}$, this gives us L = K = 300. (The other root, L = 0 can be ruled out by the increasing property of the sequence.)
- **30.** (a) Again, $x_{n+1} = \frac{RK}{K/x_n + (R-1)}$, so if $x_n > K$, then $x_{n+1} = \frac{RK}{K/x_n + (R-1)} > \frac{RK}{K/K + (R-1)} = K$, so the conclusion is valid (we only used R > 1 and K > 0).
 - (b) $\frac{x_{n+1}}{x_n} = \frac{RK}{K + (R-1)x_n} < \frac{RK}{K + (R-1)K} = 1$, because $x_n > K$. So x_n is decreasing.
 - (c) x_n is decreasing and bounded below, so it is convergent. The limit can be found by letting $L = \frac{RKL}{K + (R-1)L}$, this gives us L = K. (The other root, L = 0 can be ruled out by the fact that $x_n > K$.)
- **31.** (a) $a_{n+1} = \frac{|x|^{n+1}}{(n+1)!} = \frac{|x|}{n+1} \frac{|x|^n}{n!} = \frac{|x|}{n+1} a_n$
 - **(b)** $a_{n+1}/a_n = |x|/(n+1) < 1 \text{ if } n > |x| 1.$
 - (c) From part (b) the sequence is eventually decreasing, and it is bounded below by 0, so by Theorem 9.2.4 it converges.

Exercise Set 9.3 443

32. (a) The altitudes of the rectangles are $\ln k$ for k=2 to n, and their bases all have length 1 so the sum of their areas is $\ln 2 + \ln 3 + \ldots + \ln n = \ln(2 \cdot 3 \cdot \ldots \cdot n) = \ln n!$. The area under the curve $y = \ln x$ for x in

Exercise Set 9.3 443

32. (a) The altitudes of the rectangles are $\ln k$ for k=2 to n, and their bases all have length 1 so the sum of their areas is $\ln 2 + \ln 3 + \ldots + \ln n = \ln(2 \cdot 3 \cdot \ldots \cdot n) = \ln n!$. The area under the curve $y = \ln x$ for x in the interval [1, n] is $\int_{1}^{n} \ln x \, dx$, and $\int_{1}^{n+1} \ln x \, dx$ is the area for x in the interval [1, n+1] so, from the figure, $\int_{1}^{n} \ln x \, dx < \ln n! < \int_{1}^{n+1} \ln x \, dx.$

(b)
$$\int_{1}^{n} \ln x \, dx = (x \ln x - x) \bigg]_{1}^{n} = n \ln n - n + 1 \text{ and } \int_{1}^{n+1} \ln x \, dx = (n+1) \ln(n+1) - n, \text{ so from part (a), } \\ n \ln n - n + 1 < \ln n! < (n+1) \ln(n+1) - n, e^{n \ln n - n + 1} < n! < e^{(n+1) \ln(n+1) - n}, e^{n \ln n} e^{1 - n} < n! < e^{(n+1) \ln(n+1)} e^{-n}, \\ \frac{n^{n}}{e^{n-1}} < n! < \frac{(n+1)^{n+1}}{e^{n}}.$$

$$\begin{array}{ll} \textbf{(c)} & \text{From part (b), } \left[\frac{n^n}{e^{n-1}}\right]^{1/n} < \sqrt[n]{n!} < \left[\frac{(n+1)^{n+1}}{e^n}\right]^{1/n}, \\ \frac{n}{e^{1-1/n}} < \sqrt[n]{n!} < \frac{(n+1)^{1+1/n}}{e}, \\ \frac{(1+1/n)(n+1)^{1/n}}{e}, \text{ but } \frac{1}{e^{1-1/n}} \to \frac{1}{e} \text{ and } \frac{(1+1/n)(n+1)^{1/n}}{e} \to \frac{1}{e} \text{ as } n \to +\infty \text{ (why?), so } \lim_{n \to +\infty} \frac{\sqrt[n]{n!}}{n} = \frac{1}{e}. \end{array}$$

33.
$$n! > \frac{n^n}{e^{n-1}}, \sqrt[n]{n!} > \frac{n}{e^{1-1/n}}, \lim_{n \to +\infty} \frac{n}{e^{1-1/n}} = +\infty, \text{ so } \lim_{n \to +\infty} \sqrt[n]{n!} = +\infty.$$

Exercise Set 9.3

1. (a)
$$s_1=2, s_2=12/5, s_3=\frac{62}{25}, s_4=\frac{312}{125} s_n=\frac{2-2(1/5)^n}{1-1/5}=\frac{5}{2}-\frac{5}{2}(1/5)^n, \lim_{n\to+\infty} s_n=\frac{5}{2},$$
 converges.

$$\textbf{(b)} \ \ s_1 = \frac{1}{4}, \ s_2 = \frac{3}{4}, \ s_3 = \frac{7}{4}, \ s_4 = \frac{15}{4} \ s_n = \frac{(1/4) - (1/4)2^n}{1-2} = -\frac{1}{4} + \frac{1}{4}(2^n), \\ \lim_{n \to +\infty} s_n = +\infty, \ \text{diverges.}$$

$$\textbf{(c)} \quad \frac{1}{(k+1)(k+2)} = \frac{1}{k+1} - \frac{1}{k+2}, \ s_1 = \frac{1}{6}, \ s_2 = \frac{1}{4}, \ s_3 = \frac{3}{10}, \ s_4 = \frac{1}{3}; \ s_n = \frac{1}{2} - \frac{1}{n+2}, \ \lim_{n \to +\infty} s_n = \frac{1}{2}, \ \text{converges.}$$

2. (a)
$$s_1 = 1/4, s_2 = 5/16, s_3 = 21/64, s_4 = 85/256, s_n = \frac{1}{4}\left(1 + \frac{1}{4} + \ldots + \left(\frac{1}{4}\right)^{n-1}\right) = \frac{1}{4}\frac{1 - (1/4)^n}{1 - 1/4} = \frac{1}{3}\left(1 - \left(\frac{1}{4}\right)^n\right); \lim_{n \to +\infty} s_n = \frac{1}{3}.$$

(b)
$$s_1 = 1, s_2 = 5, s_3 = 21, s_4 = 85; s_n = \frac{4^n - 1}{3}$$
, diverges.

(c)
$$s_1 = 1/20, s_2 = 1/12, s_3 = 3/28, s_4 = 1/8; s_n = \sum_{k=1}^n \left(\frac{1}{k+3} - \frac{1}{k+4}\right) = \frac{1}{4} - \frac{1}{n+4}, \lim_{n \to +\infty} s_n = 1/4.$$

3. Geometric,
$$a=1, \ r=-3/4, \ |r|=3/4<1,$$
 series converges, sum $=\frac{1}{1-(-3/4)}=4/7.$

4. Geometric,
$$a = (2/3)^3$$
, $r = 2/3$, $|r| = 2/3 < 1$, series converges, sum $= \frac{(2/3)^3}{1 - 2/3} = 8/9$.

5. Geometric,
$$a = 7$$
, $r = -1/6$, $|r| = 1/6 < 1$, series converges, sum $= \frac{7}{1 + 1/6} = 6$.

6. Geometric, r = -3/2, $|r| = 3/2 \ge 1$, diverges.

444 Chapter 9

7.
$$s_n = \sum_{k=1}^n \left(\frac{1}{k+2} - \frac{1}{k+3}\right) = \frac{1}{3} - \frac{1}{n+3}, \lim_{n \to +\infty} s_n = 1/3, \text{ series converges by definition, sum} = 1/3.$$

8.
$$s_n = \sum_{k=1}^n \left(\frac{1}{2^k} - \frac{1}{2^{k+1}}\right) = \frac{1}{2} - \frac{1}{2^{n+1}}, \lim_{n \to +\infty} s_n = 1/2, \text{ series converges by definition, sum} = 1/2.$$

9.
$$s_n = \sum_{k=1}^n \left(\frac{1/3}{3k-1} - \frac{1/3}{3k+2} \right) = \frac{1}{6} - \frac{1/3}{3n+2}, \lim_{n \to +\infty} s_n = 1/6, \text{ series converges by definition, sum} = 1/6.$$

$$\mathbf{10.} \ \ s_n = \sum_{k=2}^{n+1} \left[\frac{1/2}{k-1} - \frac{1/2}{k+1} \right] = \frac{1}{2} \left[\sum_{k=2}^{n+1} \frac{1}{k-1} - \sum_{k=2}^{n+1} \frac{1}{k+1} \right] = \frac{1}{2} \left[\sum_{k=2}^{n+1} \frac{1}{k-1} - \sum_{k=4}^{n+3} \frac{1}{k-1} \right] = \frac{1}{2} \left[1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right]; \lim_{n \to +\infty} s_n = \frac{3}{4}, \text{ series converges by definition, sum} = 3/4.$$

11.
$$\sum_{k=3}^{\infty} \frac{1}{k-2} = \sum_{k=1}^{\infty} 1/k$$
, the harmonic series, so the series diverges.

12. Geometric,
$$a = (e/\pi)^4$$
, $r = e/\pi$, $|r| = e/\pi < 1$, series converges, sum $= \frac{(e/\pi)^4}{1 - e/\pi} = \frac{e^4}{\pi^3(\pi - e)}$.

$$\textbf{13.} \ \ \sum_{k=1}^{\infty} \frac{4^{k+2}}{7^{k-1}} = \sum_{k=1}^{\infty} 64 \left(\frac{4}{7}\right)^{k-1}; \ \text{geometric}, \ a=64, \ r=4/7, \ |r|=4/7 < 1, \ \text{series converges, sum} = \frac{64}{1-4/7} = 448/3.$$

14. Geometric, $a = 125, r = 125/7, |r| = 125/7 \ge 1$, diverges

- **15.** (a) Exercise 5
- (b) Exercise 3
- (c) Exercise 7
- (d) Exercise 9

- **16.** (a) Exercise 10
- (b) Exercise 6
- (c) Exercise 4
- (d) Exercise 8

- **17.** False; e.g. $a_n = 1/n$
- 18. True, Theorem 9.3.3.
- 19. True.
- **20.** True

21.
$$0.9999... = 0.9 + 0.09 + 0.009 + ... = \frac{0.9}{1 - 0.1} = 1.$$

22.
$$0.4444... = 0.4 + 0.04 + 0.004 + ... = \frac{0.4}{1 - 0.1} = 4/9.$$

23.
$$5.373737... = 5 + 0.37 + 0.0037 + 0.000037 + ... = 5 + \frac{0.37}{1 - 0.01} = 5 + 37/99 = 532/99.$$

$$\textbf{24.} \ \ 0.451141414\ldots = 0.451 + 0.00014 + 0.0000014 + 0.000000014 + \ldots = 0.451 + \frac{0.00014}{1 - 0.01} = \frac{44663}{99000}.$$

25.
$$0.a_1a_2...a_n9999... = 0.a_1a_2...a_n + 0.9(10^{-n}) + 0.09(10^{-n}) + ... = 0.a_1a_2...a_n + \frac{0.9(10^{-n})}{1 - 0.1} = 0.a_1a_2...a_n + \frac{10^{-n}}{1 - 0.1} = 0.a_1a_2...(a_n + 1) = 0.a_1a_2...(a_n + 1) 0000...$$

Exercise Set 9.3 445

- **26.** The series converges to 1/(1-x) only if -1 < x < 1.
- **27.** $d = 10 + 2 \cdot \frac{3}{4} \cdot 10 + 2 \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot 10 + 2 \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot 10 + \dots = 10 + 20 \left(\frac{3}{4}\right) + 20 \left(\frac{3}{4}\right)^2 + 20 \left(\frac{3}{4}\right)^3 + \dots = 10 + \frac{20(3/4)}{1 3/4} = 10 + 60 = 70$ meters.

28. Volume =
$$1^3 + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{4}\right)^3 + \ldots + \left(\frac{1}{2^n}\right)^3 + \ldots = 1 + \frac{1}{8} + \left(\frac{1}{8}\right)^2 + \ldots + \left(\frac{1}{8}\right)^n + \ldots = \frac{1}{1 - (1/8)} = 8/7.$$

29. (a) $s_n = \ln \frac{1}{2} + \ln \frac{2}{3} + \ln \frac{3}{4} + \ldots + \ln \frac{n}{n+1} = \ln \left(\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \ldots \cdot \frac{n}{n+1} \right) = \ln \frac{1}{n+1} = -\ln(n+1), \lim_{n \to +\infty} s_n = -\infty,$ series diverges.

(b)
$$\ln(1-1/k^2) = \ln\frac{k^2-1}{k^2} = \ln\frac{(k-1)(k+1)}{k^2} = \ln\frac{k-1}{k} + \ln\frac{k+1}{k} = \ln\frac{k-1}{k} - \ln\frac{k}{k+1}$$
, so $s_n = \sum_{k=2}^{n+1} \left[\ln\frac{k-1}{k} - \ln\frac{k}{k+1} \right] = \left(\ln\frac{1}{2} - \ln\frac{2}{3} \right) + \left(\ln\frac{2}{3} - \ln\frac{3}{4} \right) + \left(\ln\frac{3}{4} - \ln\frac{4}{5} \right) + \dots + \left(\ln\frac{n}{n+1} - \ln\frac{n+1}{n+2} \right) = \ln\frac{1}{2} - \ln\frac{n+1}{n+2}$, and then $\lim_{n \to +\infty} s_n = \ln\frac{1}{2} = -\ln 2$.

30. (a)
$$\sum_{k=0}^{\infty} (-1)^k x^k = 1 - x + x^2 - x^3 + \ldots = \frac{1}{1 - (-x)} = \frac{1}{1 + x} \text{ if } |-x| < 1, |x| < 1, -1 < x < 1.$$

(b)
$$\sum_{k=0}^{\infty} (x-3)^k = 1 + (x-3) + (x-3)^2 + \ldots = \frac{1}{1 - (x-3)} = \frac{1}{4-x} \text{ if } |x-3| < 1, 2 < x < 4.$$

(c)
$$\sum_{k=0}^{\infty} (-1)^k x^{2k} = 1 - x^2 + x^4 - x^6 + \ldots = \frac{1}{1 - (-x^2)} = \frac{1}{1 + x^2}$$
 if $|-x^2| < 1, |x| < 1, -1 < x < 1$.

31. (a) Geometric series,
$$a = x$$
, $r = -x^2$. Converges for $|-x^2| < 1$, $|x| < 1$; $S = \frac{x}{1 - (-x^2)} = \frac{x}{1 + x^2}$

(b) Geometric series,
$$a=1/x^2, \ r=2/x.$$
 Converges for $|2/x|<1, \ |x|>2; \ S=\frac{1/x^2}{1-2/x}=\frac{1}{x^2-2x}.$

(c) Geometric series,
$$a=e^{-x}, \ r=e^{-x}$$
. Converges for $|e^{-x}|<1, \ e^{-x}<1, \ e^{x}>1, \ x>0; \ S=\frac{e^{-x}}{1-e^{-x}}=\frac{1}{e^{x}-1}$

32. Geometric series,
$$a=\sin x$$
, $r=-\frac{1}{2}\sin x$. Converges for $|-\frac{1}{2}\sin x|<1$, $|\sin x|<2$, so converges for all values of x . $S=\frac{\sin x}{1+\frac{1}{2}\sin x}=\frac{2\sin x}{2+\sin x}$.

33.
$$a_2 = \frac{1}{2}a_1 + \frac{1}{2}, a_3 = \frac{1}{2}a_2 + \frac{1}{2} = \frac{1}{2^2}a_1 + \frac{1}{2^2} + \frac{1}{2}, a_4 = \frac{1}{2}a_3 + \frac{1}{2} = \frac{1}{2^3}a_1 + \frac{1}{2^3} + \frac{1}{2^2} + \frac{1}{2}, a_5 = \frac{1}{2}a_4 + \frac{1}{2} = \frac{1}{2^4}a_1 + \frac{1}{2^4} + \frac{1}{2^3} + \frac{1}{2^2} + \frac{1}{2}, \dots, a_n = \frac{1}{2^{n-1}}a_1 + \frac{1}{2^{n-1}} + \frac{1}{2^{n-2}} + \dots + \frac{1}{2}, \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{a_1}{2^{n-1}} + \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = 0 + \frac{1/2}{1 - 1/2} = 1.$$

$$\mathbf{34.} \ \, \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k^2 + k}} = \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k}\sqrt{k+1}} = \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}, \ s_n = \sum_{k=1}^n \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}\right) = \left(\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}\right) + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{n+1}}\right) = 1 - \frac{1}{\sqrt{n+1}}; \lim_{n \to +\infty} s_n = 1.$$

446 Chapter 9

$$\begin{array}{c} 445 \; \left(447 \; / \; 762\right) \\ \hspace{0.5cm} + (1/3 - 1/5) + (1/4 - 1/6) + \ldots + [1/n - 1/(n + 2)] = (1 + 1/2 + 1/3 + \ldots + 1/n) - (1/n + 1/2) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) \\ \hspace{0.5cm} + (1/n - 1/(n + 2)) + (1/n - 1/(n +$$

く

Chapter (

35. $s_n = (1-1/3) + (1/2-1/4) + (1/3-1/5) + (1/4-1/6) + \ldots + [1/n-1/(n+2)] = (1+1/2+1/3+\ldots+1/n) - (1/3+1/4+1/5+\ldots+1/(n+2)) = 3/2-1/(n+1)-1/(n+2), \lim_{n\to+\infty} s_n = 3/2.$

$$\mathbf{36.} \ \ s_n = \sum_{k=1}^n \frac{1}{k(k+2)} = \sum_{k=1}^n \left[\frac{1/2}{k} - \frac{1/2}{k+2} \right] = \frac{1}{2} \left[\sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k+2} \right] = \frac{1}{2} \left[\sum_{k=1}^n \frac{1}{k} - \sum_{k=3}^{n+2} \frac{1}{k} \right] = \frac{1}{2} \left[1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right]; \ \lim_{n \to +\infty} s_n = \frac{3}{4}.$$

$$\begin{aligned} \mathbf{37.} \ \ s_n &= \sum_{k=1}^n \frac{1}{(2k-1)(2k+1)} = \sum_{k=1}^n \left[\frac{1/2}{2k-1} - \frac{1/2}{2k+1} \right] = \frac{1}{2} \left[\sum_{k=1}^n \frac{1}{2k-1} - \sum_{k=1}^n \frac{1}{2k+1} \right] = \\ &= \frac{1}{2} \left[\sum_{k=1}^n \frac{1}{2k-1} - \sum_{k=2}^{n+1} \frac{1}{2k-1} \right] = \frac{1}{2} \left[1 - \frac{1}{2n+1} \right]; \ \lim_{n \to +\infty} s_n = \frac{1}{2}. \end{aligned}$$

38.
$$A_1 + A_2 + A_3 + \ldots = 1 + 1/2 + 1/4 + \ldots = \frac{1}{1 - (1/2)} = 2.$$

39. By inspection,
$$\frac{\theta}{2} - \frac{\theta}{4} + \frac{\theta}{8} - \frac{\theta}{16} + \dots = \frac{\theta/2}{1 - (-1/2)} = \theta/3$$
.

40. (a) Geometric; 18/5. (b) Geometric; diverges. (c)
$$\sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{1}{2k-1} - \frac{1}{2k+1} \right) = 1/2$$
.

Exercise Set 9.4

1. (a)
$$\sum_{k=1}^{\infty} \frac{1}{2^k} = \frac{1/2}{1-1/2} = 1; \sum_{k=1}^{\infty} \frac{1}{4^k} = \frac{1/4}{1-1/4} = 1/3; \sum_{k=1}^{\infty} \left(\frac{1}{2^k} + \frac{1}{4^k}\right) = 1 + 1/3 = 4/3.$$

(b)
$$\sum_{k=1}^{\infty} \frac{1}{5^k} = \frac{1/5}{1-1/5} = 1/4; \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = 1, \text{ (Ex. 5, Section 9.3)}; \sum_{k=1}^{\infty} \left[\frac{1}{5^k} - \frac{1}{k(k+1)} \right] = 1/4 - 1 = -3/4.$$

2. (a)
$$\sum_{k=2}^{\infty} \frac{1}{k^2 - 1} = 3/4$$
 (Ex. 10, Section 9.3); $\sum_{k=2}^{\infty} \frac{7}{10^{k-1}} = \frac{7/10}{1 - 1/10} = 7/9$; so $\sum_{k=2}^{\infty} \left[\frac{1}{k^2 - 1} - \frac{7}{10^{k-1}} \right] = 3/4 - 7/9 = -1/36$.

(b) With
$$a=9/7$$
, $r=3/7$, geometric, $\sum_{k=1}^{\infty} 7^{-k} 3^{k+1} = \frac{9/7}{1-(3/7)} = 9/4$; with $a=4/5, r=2/5$, geometric, $\sum_{k=1}^{\infty} \frac{2^{k+1}}{5^k} = \frac{4/5}{1-(2/5)} = 4/3$; $\sum_{k=1}^{\infty} \left[7^{-k} 3^{k+1} - \frac{2^{k+1}}{5^k} \right] = 9/4 - 4/3 = 11/12$.

3. (a)
$$p=3>1$$
, converges. (b) $p=1/2 \le 1$, diverges. (c) $p=1 \le 1$, diverges. (d) $p=2/3 \le 1$, diverges.

4. (a)
$$p=4/3>1$$
, converges. (b) $p=1/4\le 1$, diverges. (c) $p=5/3>1$, converges. (d) $p=\pi>1$, converges.

5. (a)
$$\lim_{k \to +\infty} \frac{k^2 + k + 3}{2k^2 + 1} = \frac{1}{2} \neq 0$$
; the series diverges. (b) $\lim_{k \to +\infty} \left(1 + \frac{1}{k}\right)^k = e \neq 0$; the series diverges.

(c)
$$\lim_{k \to +\infty} \cos k\pi$$
 does not exist; the series diverges. (d) $\lim_{k \to +\infty} \frac{1}{k!} = 0$; no information

Exercise Set 9.4 447

6. (a) $\lim_{k\to +\infty} \frac{k}{e^k} = 0$; no information. (b) $\lim_{k\to +\infty} \ln k = +\infty \neq 0$; the series diverges.

(c)
$$\lim_{k \to +\infty} \frac{1}{\sqrt{k}} = 0$$
; no information. (d) $\lim_{k \to +\infty} \frac{\sqrt{k}}{\sqrt{k} + 3} = 1 \neq 0$; the series diverges

7. (a) $\int_{1}^{+\infty} \frac{1}{5x+2} = \lim_{\ell \to +\infty} \frac{1}{5} \ln(5x+2) \bigg|_{1}^{\ell} = +\infty, \text{ the series diverges by the Integral Test (which can be applied, because the series has positive terms, and } f \text{ is decreasing and continuous)}.$

(b) $\int_{1}^{+\infty} \frac{1}{1+9x^{2}} dx = \lim_{\ell \to +\infty} \frac{1}{3} \tan^{-1} 3x \Big]_{1}^{\ell} = \frac{1}{3} \left(\pi/2 - \tan^{-1} 3 \right), \text{ the series converges by the Integral Test (which can be applied, because the series has positive terms, and } f \text{ is decreasing and continuous}).$

8. (a) $\int_{1}^{+\infty} \frac{x}{1+x^2} dx = \lim_{\ell \to +\infty} \frac{1}{2} \ln(1+x^2) \bigg]_{1}^{\ell} = +\infty, \text{ the series diverges by the Integral Test (which can be applied, because the series has positive terms, and } f \text{ is decreasing and continuous)}.$

(b) $\int_1^{+\infty} (4+2x)^{-3/2} dx = \lim_{\ell \to +\infty} -1/\sqrt{4+2x} \Big|_1^\ell = 1/\sqrt{6}$, the series converges by the Integral Test (which can be applied, because the series has positive terms, and f is decreasing and continuous).

9. $\sum_{k=1}^{\infty} \frac{1}{k+6} = \sum_{k=7}^{\infty} \frac{1}{k}$, diverges because the harmonic series diverges

10. $\sum_{k=1}^{\infty} \frac{3}{5k} = \sum_{k=1}^{\infty} \frac{3}{5} \left(\frac{1}{k} \right)$, diverges because the harmonic series diverges

11. $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k+5}} = \sum_{k=0}^{\infty} \frac{1}{\sqrt{k}}$, diverges because the *p*-series with $p = 1/2 \le 1$ diverges.

12. $\lim_{k\to +\infty} \frac{1}{e^{1/k}} = 1$, the series diverges by the Divergence Test, because $\lim_{k\to +\infty} u_k = 1 \neq 0$.

- 13. $\int_{1}^{+\infty} (2x-1)^{-1/3} dx = \lim_{\ell \to +\infty} \frac{3}{4} (2x-1)^{2/3} \bigg]_{1}^{\ell} = +\infty, \text{ the series diverges by the Integral Test (which can be applied, because the series has positive terms, and } f \text{ is decreasing and continuous)}.$
- 14. $\frac{\ln x}{x}$ is decreasing for $x \ge e$, and $\int_3^{+\infty} \frac{\ln x}{x} = \lim_{\ell \to +\infty} \frac{1}{2} (\ln x)^2 \Big]_3^{\ell} = +\infty$, so the series diverges by the Integral Test (which can be applied, because the series has positive terms, and f is decreasing and continuous).
- $\textbf{15.} \ \lim_{k \to +\infty} \frac{k}{\ln(k+1)} = \lim_{k \to +\infty} \frac{1}{1/(k+1)} = +\infty, \text{ the series diverges by the Divergence Test, because } \lim_{k \to +\infty} u_k \neq 0.$
- 16. $\int_{1}^{+\infty} x e^{-x^2} dx = \lim_{\ell \to +\infty} -\frac{1}{2} e^{-x^2} \bigg]_{1}^{\ell} = e^{-1}/2, \text{ the series converges by the Integral Test (which can be applied, because the series has positive terms, and <math>f$ is decreasing and continuous).
- 17. $\lim_{k \to +\infty} (1+1/k)^{-k} = 1/e \neq 0$, the series diverges by the Divergence Test.

- **18.** $\lim_{k\to+\infty}\frac{k^2+1}{k^2+3}=1\neq 0$, the series diverges by the Divergence Test.
- 19. $\int_{1}^{+\infty} \frac{\tan^{-1}x}{1+x^2} dx = \lim_{\ell \to +\infty} \frac{1}{2} \left(\tan^{-1}x\right)^2 \bigg|_{1}^{\ell} = 3\pi^2/32, \text{ the series converges by the Integral Test (which can be applied, because the series has positive terms, and } f \text{ is decreasing and continuous), since } \frac{d}{dx} \frac{\tan^{-1}x}{1+x^2} = \frac{1-2x\tan^{-1}x}{(1+x^2)^2} < 0$ for $x \ge 1$.
- **20.** $\int_{1}^{+\infty} \frac{1}{\sqrt{x^2 + 1}} dx = \lim_{\ell \to +\infty} \sinh^{-1} x \Big]_{1}^{\ell} = +\infty, \text{ the series diverges by the Integral Test (which can be applied, because the series has positive terms, and <math>f$ is decreasing and continuous).
- **21.** $\lim_{k \to +\infty} k^2 \sin^2(1/k) = 1 \neq 0$, the series diverges by the Divergence Test.
- 22. $\int_{1}^{+\infty} x^2 e^{-x^3} dx = \lim_{\ell \to +\infty} -\frac{1}{3} e^{-x^2} \bigg|_{1}^{\ell} = e^{-1}/3, \text{ the series converges by the Integral Test (which can be applied, because } x^2 e^{-x^3} \text{ is decreasing for } x \ge 1, \text{ it is continuous and the series has positive terms).}$
- **23.** $7 \sum_{k=5}^{\infty} k^{-1.01}$, *p*-series with p = 1.01 > 1, converges.
- 24. $\int_{1}^{+\infty} \operatorname{sech}^{2} x \, dx = \lim_{\ell \to +\infty} \tanh x \bigg|_{1}^{\ell} = 1 \tanh(1), \text{ the series converges by the Integral Test (which can be applied, because the series has positive terms, and } f \text{ is decreasing and continuous).}$
- $25. \ \, \frac{1}{x(\ln x)^p} \ \, \text{is decreasing for} \ \, x \geq e^{-p}, \, \text{so use the Integral Test (which can be applied, because} \, \, f \, \text{is continuous} \\ \text{and the series has positive terms) with} \, \, a = e^{\alpha}, \, \text{i.e.} \, \int_{e^{\alpha}}^{+\infty} \frac{dx}{x(\ln x)^p} \, \, \text{to get} \, \lim_{\ell \to +\infty} \ln(\ln x) \bigg]_{e^{\alpha}}^{\ell} = +\infty \, \, \text{if} \, p = 1, \\ \lim_{\ell \to +\infty} \frac{(\ln x)^{1-p}}{1-p} \bigg]_{e^{\alpha}}^{\ell} = \left\{ \begin{array}{c} +\infty & \text{if} \, p < 1 \\ \frac{\alpha^{1-p}}{p-1} & \text{if} \, p > 1 \end{array} \right. \, .$ Thus the series converges for p > 1.
- $\begin{aligned} \textbf{26.} & \text{ If } p>0 \text{ set } g(x)=x(\ln x)[\ln(\ln x)]^p, g'(x)=(\ln(\ln x))^{p-1}\left[(1+\ln x)\ln(\ln x)+p\right], \text{ and, for } x>e^e, g'(x)>0, \text{ thus } \\ 1/g(x) \text{ is decreasing for } x>e^e; \text{ use the Integral Test with } \int_{e^e}^{+\infty} \frac{dx}{x(\ln x)[\ln(\ln x)]^p} \text{ to get } \lim_{\ell\to+\infty} \ln[\ln(\ln x)] \int_{e^e}^{\ell}=+\infty \\ \text{ if } p=1, \lim_{\ell\to+\infty} \frac{[\ln(\ln x)]^{1-p}}{1-p} \Big]_{e^e}^{\ell}= \begin{cases} +\infty & \text{ if } p<1, \\ \frac{1}{p-1} & \text{ if } p>1 \end{cases}. \text{ Thus the series converges for } p>1 \text{ and diverges for } 0< p\leq 1. \text{ If } p\leq 0 \text{ then } \frac{[\ln(\ln x)]^{-p}}{x\ln x}\geq \frac{1}{x\ln x} \text{ for } x>e^e \text{ so the series diverges, since } \int \frac{1}{x\ln x} dx \text{ is divergent by } \\ \text{Exercise 25.} & \text{ (The Integral Test can be applied, because } f \text{ is continuous and the series has positive terms).} \end{aligned}$
- 27. Suppose $\sum (u_k + v_k)$ converges; then so does $\sum [(u_k + v_k) u_k]$, but $\sum [(u_k + v_k) u_k] = \sum v_k$, so $\sum v_k$ converges which contradicts the assumption that $\sum v_k$ diverges. Suppose $\sum (u_k v_k)$ converges; then so does $\sum [u_k (u_k v_k)] = \sum v_k$ which leads to the same contradiction as before.
- **28.** Let $u_k = 2/k$ and $v_k = 1/k$; then both $\sum (u_k + v_k)$ and $\sum (u_k v_k)$ diverge; let $u_k = 1/k$ and $v_k = -1/k$ then $\sum (u_k + v_k)$ converges; let $u_k = v_k = 1/k$ then $\sum (u_k v_k)$ converges.

xercise Set 9.4 449

- **29.** (a) Diverges because $\sum_{k=1}^{\infty} (2/3)^{k-1}$ converges (geometric series, r=2/3, |r|<1) and $\sum_{k=1}^{\infty} 1/k$ diverges (the harmonic series).
 - (b) Diverges because $\sum_{k=1}^{\infty} 1/(3k+2)$ diverges (Integral Test) and $\sum_{k=1}^{\infty} 1/k^{3/2}$ converges (p-series, p=3/2>1).
- **30.** (a) Converges because both $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^2}$ (Exercise 25) and $\sum_{k=2}^{\infty} \frac{1}{k^2}$ converge (p-series, p=2>1)
 - (b) Diverges, because $\sum_{k=2}^{+\infty} ke^{-k^2}$ converges (Integral Test), and, by Exercise 25, $\sum_{k=2}^{+\infty} \frac{1}{k \ln k}$ diverges.

31. False; if
$$\sum u_k$$
 converges then $\lim u_k = 0$, so $\lim \frac{1}{u_k}$ diverges, so $\sum \frac{1}{u_k}$ cannot converge.

32. True; if
$$\sum cu_k$$
 diverges then $c \neq 0$ so $\sum u_k$ diverges.

34. False,
$$\sum_{k=1}^{\infty} \frac{1}{k^p}$$
 is a *p*-series.

35. (a)
$$3\sum_{k=1}^{\infty} \frac{1}{k^2} - \sum_{k=1}^{\infty} \frac{1}{k^4} = \pi^2/2 - \pi^4/90$$
. (b) $\sum_{k=1}^{\infty} \frac{1}{k^2} - 1 - \frac{1}{2^2} = \pi^2/6 - 5/4$. (c) $\sum_{k=2}^{\infty} \frac{1}{(k-1)^4} = \sum_{k=1}^{\infty} \frac{1}{k^4} = \pi^4/90$.

36. (a) If
$$S = \sum_{k=1}^{\infty} u_k$$
 and $s_n = \sum_{k=1}^{n} u_k$, then $S - s_n = \sum_{k=n+1}^{\infty} u_k$. Interpret u_k , $k = n+1, n+2, \ldots$, as the areas of inscribed or circumscribed rectangles with height u_k and base of length one for the curve $y = f(x)$ to obtain the result.

(b) Add
$$s_n = \sum_{k=1}^n u_k$$
 to each term in the conclusion of part (a) to get the desired result: $s_n + \int_{n+1}^{+\infty} f(x) dx < \sum_{k=1}^{+\infty} u_k < s_n + \int_{n}^{+\infty} f(x) dx$.

37. (a) In Exercise 36 above let
$$f(x) = \frac{1}{x^2}$$
. Then $\int_n^{+\infty} f(x) dx = -\frac{1}{x} \Big]_n^{+\infty} = \frac{1}{n}$; use this result and the same result with $n+1$ replacing n to obtain the desired result.

(b)
$$s_3 = 1 + 1/4 + 1/9 = 49/36$$
; $58/36 = s_3 + \frac{1}{4} < \frac{1}{6}\pi^2 < s_3 + \frac{1}{3} = 61/36$.

(d)
$$1/11 < \frac{1}{6}\pi^2 - s_{10} < 1/10$$
.

38. Apply Exercise 36 in each case:

(a)
$$f(x) = \frac{1}{(2x+1)^2}$$
, $\int_{n}^{+\infty} f(x) dx = \frac{1}{2(2n+1)}$, so $\frac{1}{46} < \sum_{k=1}^{\infty} \frac{1}{(2k+1)^2} - s_{10} < \frac{1}{42}$.

450 Chapter 9

(b)
$$f(x) = \frac{1}{k^2 + 1}$$
, $\int_{n}^{+\infty} f(x) dx = \frac{\pi}{2} - \tan^{-1}(n)$, so $\pi/2 - \tan^{-1}(11) < \sum_{k=1}^{\infty} \frac{1}{k^2 + 1} - s_{10} < \pi/2 - \tan^{-1}(10)$.

(c)
$$f(x) = \frac{x}{e^x}$$
, $\int_{n}^{+\infty} f(x) dx = (n+1)e^{-n}$, so $12e^{-11} < \sum_{k=1}^{\infty} \frac{k}{e^k} - s_{10} < 11e^{-10}$.

39. (a) Let
$$S_n = \sum_{k=1}^n \frac{1}{k^4}$$
 By Exercise 36(a), with $f(x) = \frac{1}{x^4}$, the result follows.

(b)
$$h(x) = \frac{1}{3x^3} - \frac{1}{3(x+1)^3}$$
 is a decreasing function, and the smallest n such that $\left|\frac{1}{3n^3} - \frac{1}{3(n+1)^3}\right| \le 0.001$ is $n = 6$.

(c) The midpoint of the interval indicated in Part c is
$$S_6+\frac{\frac{1}{3\cdot 6^3}+\frac{1}{3\cdot 7^3}}{2}\approx 1.082381$$
. A calculator gives $\pi^4/90\approx 1.08232$.

40. (a) Let
$$F(x) = \frac{1}{x}$$
, then $\int_{1}^{n} \frac{1}{x} dx = \ln n$ and $\int_{1}^{n+1} \frac{1}{x} dx = \ln(n+1)$, $u_1 = 1$, so $\ln(n+1) < s_n < 1 + \ln n$.

(b)
$$\ln(1,000,001) < s_{1,000,000} < 1 + \ln(1,000,000), 13 < s_{1,000,000} < 15.$$

(c)
$$s_{10^9} < 1 + \ln 10^9 = 1 + 9 \ln 10 < 22$$
.

(d)
$$s_n > \ln(n+1) \ge 100, \ n \ge e^{100} - 1 \approx 2.688 \times 10^{43}; \ n = 2.69 \times 10^{43}.$$

41.
$$x^2e^{-x}$$
 is continuous, decreasing and positive for $x>2$ so the Integral Test applies:
$$\int_1^\infty x^2e^{-x}\,dx = -(x^2+2x+2)e^{-x}\Big]_1^\infty = 5e^{-1}$$
 so the series converges.

42. (a)
$$f(x) = 1/(x^3 + 1)$$
 is continuous, decreasing and positive on the interval $[1, +\infty]$, so the Integral Test applies.

(c)

n	10	20	30	40	50	60	70	80	90	100
s_n	0.681980	0.685314	0.685966	0.686199	0.686307	0.686367	0.686403	0.686426	0.686442	0.686454

(e) Set
$$g(n) = \int_n^{+\infty} \frac{1}{x^3+1} \, dx = \frac{\sqrt{3}}{6}\pi + \frac{1}{6} \ln \frac{n^3+1}{(n+1)^3} - \frac{\sqrt{3}}{3} \tan^{-1} \left(\frac{2n-1}{\sqrt{3}}\right)$$
; for $n \ge 13, g(n) - g(n+1) \le 0.0005$; $s_{13} + (g(13) + g(14))/2 \approx 0.6865$, so the sum ≈ 0.6865 to three decimal places.

Exercise Set 9.5

All convergence tests in this section require that the series have positive terms - this requirement is met in all these exercises.

1. (a)
$$\frac{1}{5k^2-k} \le \frac{1}{5k^2-k^2} = \frac{1}{4k^2}$$
, $\sum_{k=1}^{\infty} \frac{1}{4k^2}$ converges, so the original series also converges.

(b)
$$\frac{3}{k-1/4} > \frac{3}{k}$$
, $\sum_{k=1}^{\infty} \frac{3}{k}$ diverges, so the original series also diverges.

Exercise Set 9.5 451

- **2.** (a) $\frac{k+1}{k^2-k} > \frac{k}{k^2} = \frac{1}{k}, \sum_{k=0}^{\infty} \frac{1}{k}$ diverges, so the original series also diverges.
 - (b) $\frac{2}{k^4+k} < \frac{2}{k^4}$, $\sum_{k=1}^{\infty} \frac{2}{k^4}$ converges, so the original series also converges
- 3. (a) $\frac{1}{3^k+5} < \frac{1}{3^k}$, $\sum_{k=1}^{\infty} \frac{1}{3^k}$ converges, so the original series also converges.
 - (b) $\frac{5\sin^2 k}{k!} < \frac{5}{k!}$, $\sum_{k=1}^{\infty} \frac{5}{k!}$ converges, so the original series also converges.
- **4.** (a) $\frac{\ln k}{k} > \frac{1}{k}$ for $k \ge 3$, $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges, so the original series also diverges.
 - (b) $\frac{k}{k^{3/2}-1/2} > \frac{k}{k^{3/2}} = \frac{1}{\sqrt{k}}$, $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$ diverges, so the original series also diverges.
- **5.** Compare with the convergent series $\sum_{k=1}^{\infty} \frac{1}{k^5}$, $\rho = \lim_{k \to +\infty} \frac{4k^7 2k^6 + 6k^5}{8k^7 + k 8} = 1/2$, which is finite and positive, therefore the original series converges.
- **6.** Compare with the divergent series $\sum_{k=1}^{\infty} \frac{1}{k}$, $\rho = \lim_{k \to +\infty} \frac{k}{9k+6} = 1/9$, which is finite and positive, therefore the original series diverges.
- 7. Compare with the convergent series $\sum_{k=1}^{\infty} \frac{5}{3^k}$, $\rho = \lim_{k \to +\infty} \frac{3^k}{3^k + 1} = 1$, which is finite and positive, therefore the original series converges.
- 8. Compare with the divergent series $\sum_{k=1}^{\infty} \frac{1}{k}$. $\rho = \lim_{k \to +\infty} \frac{k^2(k+3)}{(k+1)(k+2)(k+5)} = 1$, which is finite and positive, therefore the original series diverges.
- 9. Compare with the divergent series $\sum_{k=1}^{\infty} \frac{1}{k^{2/3}}, \ \rho = \lim_{k \to +\infty} \frac{k^{2/3}}{(8k^2 3k)^{1/3}} = \lim_{k \to +\infty} \frac{1}{(8 3/k)^{1/3}} = 1/2, \text{ which is finite and positive, therefore the original series diverges.}$
- 10. Compare with the convergent series $\sum_{k=1}^{\infty} \frac{1}{k^{17}}, \ \rho = \lim_{k \to +\infty} \frac{k^{17}}{(2k+3)^{17}} = \lim_{k \to +\infty} \frac{1}{(2+3/k)^{17}} = 1/2^{17}, \text{ which is finite and positive, therefore the original series converges.}$
- **11.** $\rho = \lim_{k \to +\infty} \frac{3^{k+1}/(k+1)!}{3^k/k!} = \lim_{k \to +\infty} \frac{3}{k+1} = 0 < 1$, the series converges.
- **12.** $\rho = \lim_{k \to +\infty} \frac{4^{k+1}/(k+1)^2}{4^k/k^2} = \lim_{k \to +\infty} \frac{4k^2}{(k+1)^2} = 4 > 1$, the series diverges.
- 13. $\rho = \lim_{k \to +\infty} \frac{k}{k+1} = 1$, the result is inconclusive.

452 Chapter 9

14.
$$\rho = \lim_{k \to +\infty} \frac{(k+1)(1/2)^{k+1}}{k(1/2)^k} = \lim_{k \to +\infty} \frac{k+1}{2k} = 1/2 < 1$$
, the series converges

15.
$$\rho = \lim_{k \to +\infty} \frac{(k+1)!/(k+1)^3}{k!/k^3} = \lim_{k \to +\infty} \frac{k^3}{(k+1)^2} = +\infty$$
, the series diverges.

16.
$$\rho = \lim_{k \to +\infty} \frac{(k+1)/[(k+1)^2+1]}{k/(k^2+1)} = \lim_{k \to +\infty} \frac{(k+1)(k^2+1)}{k(k^2+2k+2)} = 1$$
, the result is inconclusive

17.
$$\rho = \lim_{k \to +\infty} \frac{3k+2}{2k-1} = 3/2 > 1$$
, the series diverges.

18.
$$\rho = \lim_{k \to +\infty} k/100 = +\infty$$
, the series diverges.

19.
$$\rho = \lim_{k \to +\infty} \frac{k^{1/k}}{5} = 1/5 < 1$$
, the series converges

- **20.** $\rho = \lim_{k \to +\infty} (1 e^{-k}) = 1$, the result is inconclusive
- 21. False; it uses terms from two different sequences.
- 22. True, Ratio Test.
- 23. True, Limit Comparison Test with $v_k = 1/k^2$.
- 24. False: it decides convergence based on a limit of k-th roots of the terms of the series.
- **25.** Ratio Test, $\rho = \lim_{k \to +\infty} 7/(k+1) = 0$, converges.
- **26.** Limit Comparison Test, compare with the divergent series $\sum_{k=1}^{\infty} 1/k$, $\rho = \lim_{k \to +\infty} \frac{k}{2k+1} = 1/2$, which is finite and positive, therefore the original series diverges.
- **27.** Ratio Test, $\rho = \lim_{k \to +\infty} \frac{(k+1)^2}{5k^2} = 1/5 < 1$, converges
- **28.** Ratio Test, $\rho = \lim_{k \to \infty} (10/3)(k+1) = +\infty$, diverges

- **29.** Ratio Test, $\rho = \lim_{k \to \infty} e^{-1}(k+1)^{50}/k^{50} = e^{-1} < 1$, converges.
- 30. Limit Comparison Test, compare with the divergent series $\sum_{k=1}^{\infty} 1/k$
- **31.** Limit Comparison Test, compare with the convergent series $\sum_{k=1}^{\infty} 1/k^{5/2}$, $\rho = \lim_{k \to +\infty} \frac{k^3}{k^3 + 1} = 1$, converges.
- $\textbf{32.} \ \, \frac{4}{2+3^kk} < \frac{4}{3^kk}, \sum_{k=1}^{\infty} \frac{4}{3^kk} \text{ converges (Ratio Test) so } \sum_{k=1}^{\infty} \frac{4}{2+k3^k} \text{ converges by the Comparison Test.}$
- **33.** Limit Comparison Test, compare with the divergent series $\sum_{k=1}^{\infty} 1/k$, $\rho = \lim_{k \to +\infty} \frac{k}{\sqrt{k^2 + k}} = 1$, diverges.

Exercise Set 9.5 453

34.
$$\frac{2+(-1)^k}{5^k} \leq \frac{3}{5^k}, \sum_{k=1}^{\infty} 3/5^k$$
 converges so $\sum_{k=1}^{\infty} \frac{2+(-1)^k}{5^k}$ converges by the Comparison Test.

35. Limit Comparison Test, compare with the convergent series
$$\sum_{k=1}^{\infty} \frac{1}{k^{5/2}}, \rho = \lim_{k \to +\infty} \frac{k^3 + 2k^{5/2}}{k^3 + 3k^2 + 3k} = 1, \text{ converges.}$$

36.
$$\frac{4 + |\cos x|}{k^3} < \frac{5}{k^3}, \sum_{k=1}^{\infty} 5/k^3$$
 converges so $\sum_{k=1}^{\infty} \frac{4 + |\cos x|}{k^3}$ converges.

37. Limit Comparison Test, compare with the divergent series
$$\sum_{k=1}^{\infty} 1/\sqrt{k}$$
.

38. Ratio Test,
$$\rho = \lim_{k \to +\infty} (1 + 1/k)^{-k} = 1/e < 1$$
, converges

39. Ratio Test,
$$\rho = \lim_{k \to +\infty} \frac{\ln(k+1)}{e \ln k} = \lim_{k \to +\infty} \frac{k}{e(k+1)} = 1/e < 1$$
, converges.

40. Ratio Test,
$$\rho = \lim_{k \to +\infty} \frac{k+1}{e^{2k+1}} = \lim_{k \to +\infty} \frac{1}{2e^{2k+1}} = 0$$
, converges

41. Ratio Test,
$$\rho = \lim_{k \to +\infty} \frac{k+5}{4(k+1)} = 1/4$$
, converges.

42. Root Test,
$$\rho = \lim_{k \to +\infty} \left(\frac{k}{k+1}\right)^k = \lim_{k \to +\infty} \frac{1}{(1+1/k)^k} = 1/e$$
, converges

43. Diverges by the Divergence Test, because
$$\lim_{k\to+\infty}\frac{1}{4+2^{-k}}=1/4\neq0$$
.

$$\textbf{44.} \ \sum_{k=1}^{\infty} \frac{\sqrt{k} \ln k}{k^3 + 1} = \sum_{k=2}^{\infty} \frac{\sqrt{k} \ln k}{k^3 + 1} \ \text{because } \ln 1 = 0, \ \frac{\sqrt{k} \ln k}{k^3 + 1} < \frac{k \ln k}{k^3} = \frac{\ln k}{k^2}, \ \int_{2}^{+\infty} \frac{\ln x}{x^2} dx = \lim_{\ell \to +\infty} \left(-\frac{\ln x}{x} - \frac{1}{x} \right) \bigg]_{2}^{\ell} = \frac{1}{2} (\ln 2 + 1), \text{ so } \sum_{k=2}^{\infty} \frac{\ln k}{k^2} \ \text{converges and so does } \sum_{k=1}^{\infty} \frac{\sqrt{k} \ln k}{k^3 + 1}.$$

45.
$$\frac{\tan^{-1} k}{k^2} < \frac{\pi/2}{k^2}$$
, $\sum_{k=1}^{\infty} \frac{\pi/2}{k^2}$ converges so $\sum_{k=1}^{\infty} \frac{\tan^{-1} k}{k^2}$ converges.

$$\textbf{46.} \ \frac{5^k+k}{k!+3} < \frac{5^k+5^k}{k!} = \frac{2\left(5^k\right)}{k!}, \sum_{k=1}^{\infty} 2\left(\frac{5^k}{k!}\right) \text{ converges (Ratio Test), so } \sum_{k=1}^{\infty} \frac{5^k+k}{k!+3} \text{ converges (Particle Test)}$$

47. Ratio Test,
$$\rho = \lim_{k \to +\infty} \frac{(k+1)^2}{(2k+2)(2k+1)} = 1/4$$
, converges

48. Root Test:
$$\rho = \lim_{k \to +\infty} \frac{\pi(k+1)}{k^{1+1/k}} = \lim_{k \to +\infty} \pi \frac{k+1}{k} = \pi$$
, diverges.

49.
$$a_k = \frac{\ln k}{3^k}, \frac{a_{k+1}}{a_k} = \frac{\ln(k+1)}{\ln k} \frac{3^k}{3^{k+1}} \to \frac{1}{3}$$
, converges

$$\textbf{50.} \ \ a_k = \frac{\alpha^k}{k^\alpha}, \frac{a_{k+1}}{a_k} = \alpha \left(\frac{k+1}{k}\right)^\alpha \rightarrow \alpha, \text{ converges if and only if } \alpha < 1. \ (\alpha = 1: \text{ harmonic series})$$

Chapter 9

51.
$$u_k = \frac{k!}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2k-1)}$$
, by the Ratio Test $\rho = \lim_{k \to +\infty} \frac{k+1}{2k+1} = 1/2$; converges

52.
$$u_k = \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2k-1)}{(2k-1)!}$$
, by the Ratio Test $\rho = \lim_{k \to +\infty} \frac{1}{2k} = 0$; converges

53. Set
$$g(x) = \sqrt{x} - \ln x$$
; $\frac{d}{dx}g(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x} = 0$ only at $x = 4$. Since $\lim_{x \to 0+} g(x) = \lim_{x \to +\infty} g(x) = +\infty$ it follows that $g(x)$ has its absolute minimum at $x = 4$, $g(4) = \sqrt{4} - \ln 4 > 0$, and thus $\sqrt{x} - \ln x > 0$ for $x > 0$.

(a)
$$\frac{\ln k}{k^2} < \frac{\sqrt{k}}{k^2} = \frac{1}{k^{3/2}}, \sum_{k=1}^{\infty} \frac{1}{k^{3/2}}$$
 converges so $\sum_{k=1}^{\infty} \frac{\ln k}{k^2}$ converges

(b)
$$\frac{1}{(\ln k)^2} > \frac{1}{k}$$
, $\sum_{k=2}^{\infty} \frac{1}{k}$ diverges so $\sum_{k=2}^{\infty} \frac{1}{(\ln k)^2}$ diverges

54. (b)
$$\rho = \lim_{k \to +\infty} \frac{\sin(\pi/k)}{\pi/k} = 1$$
 and $\sum_{k=1}^{\infty} \pi/k$ diverges, so the original series also diverges.

55. (a)
$$\cos x \approx 1 - x^2/2, 1 - \cos\left(\frac{1}{k}\right) \approx \frac{1}{2k^2}.$$
 (b) $\rho = \lim_{k \to +\infty} \frac{1 - \cos(1/k)}{1/k^2} = 1/2$, converges.

- **56.** (a) If $\lim_{k\to +\infty} (a_k/b_k) = 0$ then for $k \ge K$, $a_k/b_k < 1$, $a_k < b_k$ so $\sum a_k$ converges by the Comparison Test.
 - (b) If $\lim_{k \to +\infty} (a_k/b_k) = +\infty$ then for $k \ge K$, $a_k/b_k > 1$, $a_k > b_k$ so $\sum a_k$ diverges by the Comparison Test.
- 57. (a) If $\sum b_k$ converges, then set $M = \sum b_k$. Then $a_1 + a_2 + \ldots + a_n \leq b_1 + b_2 + \ldots + b_n \leq M$; apply Theorem 9.4.6 to get convergence of $\sum a_k$.
 - (b) Assume the contrary, that $\sum b_k$ converges; then use part (a) of the Theorem to show that $\sum a_k$ converges, a contradiction.

Exercise Set 9.7

1. (a) $f^{(k)}(x) = (-1)^k e^{-x}$, $f^{(k)}(0) = (-1)^k$; $e^{-x} \approx 1 - x + x^2/2$ (quadratic), $e^{-x} \approx 1 - x$ (linear).

(b)
$$f'(x) = -\sin x$$
, $f''(x) = -\cos x$, $f(0) = 1$, $f'(0) = 0$, $f''(0) = -1$, $\cos x \approx 1 - x^2/2$ (quadratic), $\cos x \approx 1$ (linear).

2. (a) $f'(x) = \cos x$, $f''(x) = -\sin x$, $f(\pi/2) = 1$, $f'(\pi/2) = 0$, $f''(\pi/2) = -1$, $\sin x \approx 1 - (x - \pi/2)^2/2$ (quadratic), $\sin x \approx 1$ (linear).

(b)
$$f(1) = 1$$
, $f'(1) = 1/2$, $f''(1) = -1/4$; $\sqrt{x} = 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2$ (quadratic), $\sqrt{x} \approx 1 + \frac{1}{2}(x-1)$ (linear).

3. (a)
$$f'(x) = \frac{1}{2}x^{-1/2}$$
, $f''(x) = -\frac{1}{4}x^{-3/2}$; $f(1) = 1$, $f'(1) = \frac{1}{2}$, $f''(1) = -\frac{1}{4}$; $\sqrt{x} \approx 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2$

(b)
$$x = 1.1, x_0 = 1, \sqrt{1.1} \approx 1 + \frac{1}{2}(0.1) - \frac{1}{2}(0.1)^2 = 1.04875$$
, calculator value ≈ 1.0488088 .

4. (a) $\cos x \approx 1 - x^2/2$

(b)
$$2^{\circ} = \pi/90 \text{ rad}$$
, $\cos 2^{\circ} = \cos(\pi/90) \approx 1 - \frac{\pi^2}{2 \cdot 90^2} \approx 0.99939077$, calculator value ≈ 0.99939083

- 5. $f(x) = \tan x$, $61^{\circ} = \pi/3 + \pi/180$ rad; $x_0 = \pi/3$, $f'(x) = \sec^2 x$, $f''(x) = 2\sec^2 x \tan x$; $f(\pi/3) = \sqrt{3}$, $f'(\pi/3) = 4$, $f''(x) = 8\sqrt{3}$; $\tan x \approx \sqrt{3} + 4(x \pi/3) + 4\sqrt{3}(x \pi/3)^2$, $\tan 61^{\circ} = \tan(\pi/3 + \pi/180) \approx \sqrt{3} + 4\pi/180 + 4\sqrt{3}(\pi/180)^2 \approx 1.80397443$, calculator value ≈ 1.80404776 .
- $\begin{aligned} \mathbf{6.} \ \ f(x) &= \sqrt{x}, \ x_0 = 36, f'(x) = \frac{1}{2}x^{-1/2}, \ f''(x) = -\frac{1}{4}x^{-3/2}; \ f(36) = 6, f'(36) = \frac{1}{12}, f''(36) = -\frac{1}{864}; \ \sqrt{x} \approx \\ 6 &+ \frac{1}{12}(x-36) \frac{1}{1728}(x-36)^2; \ \sqrt{36.03} \approx 6 + \frac{0.03}{12} \frac{(0.03)^2}{1728} \approx 6.00249947917, \text{ calculator value} \approx 6.00249947938. \end{aligned}$
- $7. \ \, f^{(k)}(x) = (-1)^k e^{-x}, \, f^{(k)}(0) = (-1)^k; \\ p_0(x) = 1, \, p_1(x) = 1 x, \, p_2(x) = 1 x + \frac{1}{2} x^2, \, p_3(x) = 1 x + \frac{1}{2} x^2 \frac{1}{3!} x^3, \, p_4(x) = 1 x + \frac{1}{2} x^2 \frac{1}{3!} x^3 + \frac{1}{4!} x^4; \, \sum_{k=0}^n \frac{(-1)^k}{k!} x^k.$
- $8. \ f^{(k)}(x) = a^k e^{ax}, \ f^{(k)}(0) = a^k; \ p_0(x) = 1, \ p_1(x) = 1 + ax, \ p_2(x) = 1 + ax + \frac{a^2}{2} x^2, \ p_3(x) = 1 + ax + \frac{a^2}{2} x^2 + \frac{a^3}{3!} x^3, \ p_4(x) = 1 + ax + \frac{a^2}{2} x^2 + \frac{a^3}{3!} x^3 + \frac{a^4}{4!} x^4; \ \sum_{k=0}^n \frac{a^k}{k!} x^k.$
- $\textbf{9.} \ \ f^{(k)}(0) = 0 \ \ \text{if} \ \ k \ \ \text{is odd}, \ \ f^{(k)}(0) \ \ \text{is alternately} \ \pi^k \ \ \text{and} \ -\pi^k \ \ \text{if} \ k \ \ \text{is even}; \ p_0(x) = 1, \ p_1(x) = 1, \ p_2(x) = 1 \frac{\pi^2}{2!} x^2; \ p_3(x) = 1 \frac{\pi^2}{2!} x^2, \ p_4(x) = 1 \frac{\pi^2}{2!} x^2 + \frac{\pi^4}{4!} x^4; \ \sum_{k=0}^{\left \lfloor \frac{n}{2} \right \rfloor} \frac{(-1)^k \pi^{2k}}{(2k)!} x^{2k}.$

NB: The function [x] defined for real x indicates the greatest integer which is $\leq x$.

10. $f^{(k)}(0) = 0$ if k is even, $f^{(k)}(0)$ is alternately π^k and $-\pi^k$ if k is odd; $p_0(x) = 0$, $p_1(x) = \pi x$, $p_2(x) = \pi x$; $p_3(x) = \pi x - \frac{\pi^3}{3!}x^3$, $p_4(x) = \pi x - \frac{\pi^3}{3!}x^3$; $\sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \frac{(-1)^k \pi^{2k+1}}{(2k+1)!}x^{2k+1}$.

NB: If n=0 then $\left[\frac{n-1}{2}\right]=-1$; by definition any sum which runs from k=0 to k=-1 is called the 'empty sum' and has value 0.

Exercise Set 9.7 459

- 11. $f^{(0)}(0) = 0$; for $k \ge 1$, $f^{(k)}(x) = \frac{(-1)^{k+1}(k-1)!}{(1+x)^k}$, $f^{(k)}(0) = (-1)^{k+1}(k-1)!$; $p_0(x) = 0$, $p_1(x) = x$, $p_2(x) = x \frac{1}{2}x^2$, $p_3(x) = x \frac{1}{2}x^2 + \frac{1}{3}x^3$, $p_4(x) = x \frac{1}{2}x^2 + \frac{1}{3}x^3 \frac{1}{4}x^4$; $\sum_{k=1}^n \frac{(-1)^{k+1}}{k}x^k$.
- **13.** $f^{(k)}(0) = 0$ if k is odd, $f^{(k)}(0) = 1$ if k is even; $p_0(x) = 1, p_1(x) = 1, p_2(x) = 1 + x^2/2, p_3(x) = 1 + x^2/2, p_4(x) = 1 + x^2/2 + x^4/4!$; $\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{1}{(2k)!} x^{2k}$.
- $\textbf{14.} \ \ f^{(k)}(0) = 0 \ \ \text{if} \ \ k \ \ \text{is even}, \ f^{(k)}(0) = 1 \ \ \text{if} \ \ k \ \ \text{is odd}; \ p_0(x) = 0, \ \ p_1(x) = x, \ \ p_2(x) = x, \ p_3(x) = x + x^3/3!, \ \ p_4(x) = x + x^3/3!; \ \ \sum_{k=0}^{\left \lfloor \frac{n-1}{2} \right \rfloor} \frac{1}{(2k+1)!} x^{2k+1}.$
- $\textbf{15.} \ f^{(k)}(x) \ = \ \left\{ \begin{array}{l} (-1)^{k/2}(x\sin x k\cos x) & k \ \text{even} \\ (-1)^{(k-1)/2}(x\cos x + k\sin x) & k \ \text{odd} \end{array} \right., \ f^{(k)}(0) \ = \ \left\{ \begin{array}{l} (-1)^{1+k/2}k & k \ \text{even} \\ 0 & k \ \text{odd} \end{array} \right., \ p_0(x) \ = \ 0, \ p_1(x) \ = \ 0, \ p_2(x) = x^2, \ p_3(x) = x^2, \ p_4(x) = x^2 \frac{1}{6}x^4; \ \sum_{k=0}^{\left[\frac{n}{2}\right]-1} \frac{(-1)^k}{(2k+1)!} x^{2k+2}.$
- **16.** $f^{(k)}(x) = (k+x)e^x$, $f^{(k)}(0) = k$; $p_0(x) = 0$, $p_1(x) = x$, $p_2(x) = x + x^2$, $p_3(x) = x + x^2 + \frac{1}{2}x^3$, $p_4(x) = x + x^2 + \frac{1}{2}x^3 + \frac{1}{3!}x^4$; $\sum_{k=1}^{n} \frac{1}{(k-1)!}x^k$.
- **17.** $f^{(k)}(x_0) = e$; $p_0(x) = e$, $p_1(x) = e + e(x-1)$, $p_2(x) = e + e(x-1) + \frac{e}{2}(x-1)^2$, $p_3(x) = e + e(x-1) + \frac{e}{2}(x-1)^2$

17.
$$f^{(k)}(x_0) = e$$
; $p_0(x) = e$, $p_1(x) = e + e(x - 1)$, $p_2(x) = e + e(x - 1) + \frac{e}{2}(x - 1)^2$, $p_3(x) = e + e(x - 1) + \frac{e}{2}(x - 1)^2 + \frac{e}{3!}(x - 1)^3$, $p_4(x) = e + e(x - 1) + \frac{e}{2}(x - 1)^2 + \frac{e}{3!}(x - 1)^3 + \frac{e}{4!}(x - 1)^4$; $\sum_{k=0}^{n} \frac{e}{k!}(x - 1)^k$.

$$\begin{aligned} \mathbf{18.} \ \ f^{(k)}(x) &= (-1)^k e^{-x}, \ f^{(k)}(\ln 2) = (-1)^k \frac{1}{2}; \ p_0(x) = \frac{1}{2}, \ p_1(x) = \frac{1}{2} - \frac{1}{2}(x - \ln 2), \ p_2(x) = \frac{1}{2} - \frac{1}{2}(x - \ln 2) + \frac{1}{2 \cdot 2}(x - \ln 2) + \frac{1}{2 \cdot 2}(x - \ln 2)^2, \ p_3(x) = \frac{1}{2} - \frac{1}{2}(x - \ln 2) + \frac{1}{2 \cdot 2}(x - \ln 2)^2 - \frac{1}{2 \cdot 3!}(x - \ln 2)^3, \ p_4(x) = \frac{1}{2} - \frac{1}{2}(x - \ln 2) + \frac{1}{2 \cdot 2}(x - \ln 2)^2 - \frac{1}{2 \cdot 3!}(x - \ln 2)^3 + \frac{1}{2 \cdot 4!}(x - \ln 2)^4; \ \sum_{k=0}^n \frac{(-1)^k}{2 \cdot k!}(x - \ln 2)^k. \end{aligned}$$

$$\begin{aligned} \mathbf{19.} \ \ f^{(k)}(x) &= \frac{(-1)^k k!}{x^{k+1}}, \ f^{(k)}(-1) = -k!; \ p_0(x) = -1; \ p_1(x) = -1 - (x+1); \ p_2(x) = -1 - (x+1) - (x+1)^2; \ p_3(x) = -1 - (x+1) - (x+1)^2 - (x+1)^3; \ p_4(x) = -1 - (x+1) - (x+1)^2 - (x+1)^3 - (x+1)^4; \ \sum_{k=0}^{n} (-1)(x+1)^k. \end{aligned}$$

20.
$$f^{(k)}(x) = \frac{(-1)^k k!}{(x+2)^{k+1}}, f^{(k)}(3) = \frac{(-1)^k k!}{5^{k+1}}; p_0(x) = \frac{1}{5}; p_1(x) = \frac{1}{5} - \frac{1}{25}(x-3); p_2(x) = \frac{1}{5} - \frac{1}{25}(x-3) + \frac{1}{125}(x-3) + \frac{1}{125}(x-3)^2; p_3(x) = \frac{1}{5} - \frac{1}{25}(x-3) + \frac{1}{125}(x-3)^2 - \frac{1}{625}(x-3)^3; p_4(x) = \frac{1}{5} - \frac{1}{25}(x-3) + \frac{1}{125}(x-3)^2 - \frac{1}{625}(x-3)^3 + \frac{1}{3125}(x-3)^4; \sum_{k=0}^{n} \frac{(-1)^k}{5^{k+1}}(x-3)^k.$$

21. $f^{(k)}(1/2) = 0$ if k is odd, $f^{(k)}(1/2)$ is alternately π^k and $-\pi^k$ if k is even; $p_0(x) = p_1(x) = 1, p_2(x) = p_3(x) = 1 - \frac{\pi^2}{2}(x - 1/2)^2, \ p_4(x) = 1 - \frac{\pi^2}{2}(x - 1/2)^2 + \frac{\pi^4}{4!}(x - 1/2)^4; \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{(-1)^k \pi^{2k}}{(2k)!}(x - 1/2)^{2k}.$

 $\begin{aligned} \textbf{22.} \ \ f^{(k)}(\pi/2) &= 0 \ \text{if} \ k \ \text{is even}, \ f^{(k)}(\pi/2) \ \text{is alternately} \ -1 \ \text{and} \ 1 \ \text{if} \ k \ \text{is odd}; \ p_0(x) &= 0, \ p_1(x) = -(x - \pi/2), \ p_2(x) = -(x - \pi/2), \ p_3(x) &= -(x - \pi/2) + \frac{1}{3!}(x - \pi/2)^3, \ p_4(x) = -(x - \pi/2) + \frac{1}{3!}(x - \pi/2)^3; \ \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \frac{(-1)^{k+1}}{(2k+1)!}(x - \pi/2)^{2k+1}. \end{aligned}$

23. f(1) = 0, for $k \ge 1$, $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{x^k}$; $f^{(k)}(1) = (-1)^{k-1}(k-1)!$; $p_0(x) = 0$, $p_1(x) = (x-1)$; $p_2(x) = (x-1) - \frac{1}{2}(x-1)^2$; $p_3(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3$, $p_4(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4$; $\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}(x-1)^k$.

 $\begin{aligned} \textbf{24.} \ \ f(e) \ &= \ 1, \ \text{for} \ k \ge 1, \\ f^{(k)}(x) \ &= \ \frac{(-1)^{k-1}(k-1)!}{x^k}; \ f^{(k)}(e) \ &= \ \frac{(-1)^{k-1}(k-1)!}{e^k}; \\ p_0(x) \ &= \ 1, \ p_1(x) \ &= \ 1 + \frac{1}{e}(x-e), \\ e); \ p_2(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2; \\ p_3(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_4(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_5(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3, \\ p_5(x) \ &= \ 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{2e^2}(x-e)^2 + \frac{1}{2e^2}(x-e)^2, \\ p_5(x) \ &= \ 1 + \frac{1}{2e^2}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{2e^2}(x-e)^2 +$

25. (a) f(0) = 1, f'(0) = 2, f''(0) = -2, f'''(0) = 6, the third MacLaurin polynomial for f(x) is f(x).

(b) f(1) = 1, f'(1) = 2, f''(1) = -2, f'''(1) = 6, the third Taylor polynomial for f(x) is f(x).

26. (a) $f^{(k)}(0) = k!c_k$ for $k \le n$; the *n*th Maclaurin polynomial for f(x) is f(x).

(b) $f^{(k)}(x_0) = k!c_k$ for $k \le n$; the *n*th Taylor polynomial about x = 1 for f(x) is f(x).

27. $f^{(k)}(0) = (-2)^k$; $p_0(x) = 1$, $p_1(x) = 1 - 2x$, $p_2(x) = 1 - 2x + 2x^2$, $p_3(x) = 1 - 2x + 2x^2 - \frac{4}{3}x^3$.

 $\begin{aligned} \textbf{28.} \ \ f^{(k)}(\pi/2) &= 0 \ \text{if} \ k \ \text{is odd}, \ f^{(k)}(\pi/2) \ \text{is alternately 1 and } -1 \ \text{if} \ k \ \text{is even}; \ p_0(x) &= 1, \ p_2(x) = 1 - \frac{1}{2}(x - \pi/2)^2, \\ p_4(x) &= 1 - \frac{1}{2}(x - \pi/2)^2 + \frac{1}{24}(x - \pi/2)^4, \ p_6(x) &= 1 - \frac{1}{2}(x - \pi/2)^2 + \frac{1}{24}(x - \pi/2)^4 - \frac{1}{720}(x - \pi/2)^6. \end{aligned}$

Exercise Set 9.7 461

 $\mathbf{29.} \ \ f^{(k)}(\pi) = 0 \ \ \text{if} \ \ k \ \ \text{is odd}, \ f^{(k)}(\pi) \ \ \text{is alternately} \ -1 \ \ \text{and} \ \ 1 \ \ \text{if} \ \ k \ \ \text{is even}; \ p_0(x) = -1, \ p_2(x) = -1 + \frac{1}{2}(x-\pi)^2, \\ p_4(x) = -1 + \frac{1}{2}(x-\pi)^2 - \frac{1}{24}(x-\pi)^4, \\ p_6(x) = -1 + \frac{1}{2}(x-\pi)^2 - \frac{1}{24}(x-\pi)^4 + \frac{1}{720}(x-\pi)^6.$

Exercise Set 9.7 461

 $\begin{aligned} \textbf{29.} \ \ f^{(k)}(\pi) \ = \ 0 \ \text{if} \ k \ \text{is odd}, \ f^{(k)}(\pi) \ \text{is alternately} \ -1 \ \text{and} \ 1 \ \text{if} \ k \ \text{is even}; \ p_0(x) \ = \ -1, \ p_2(x) \ = \ -1 + \frac{1}{2}(x-\pi)^2, \\ p_4(x) \ = \ -1 + \frac{1}{2}(x-\pi)^2 - \frac{1}{24}(x-\pi)^4, \ p_6(x) \ = \ -1 + \frac{1}{2}(x-\pi)^2 - \frac{1}{24}(x-\pi)^4 + \frac{1}{720}(x-\pi)^6. \end{aligned}$

30. f(0) = 0; for $k \ge 1$, $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{(x+1)^k}$, $f^{(k)}(0) = (-1)^{k-1}(k-1)!$; $p_0(x) = 0$, $p_1(x) = x$, $p_2(x) = x - \frac{1}{2}x^2$, $p_3(x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3$.

- **31.** True.
- **32.** True, $a_0 = f(0)$.
- **33.** False, $p_6^{(4)}(x_0) = f^{(4)}(x_0)$.
- **34.** False, since $M=e^2, |e^2-p_4(2)| \leq \frac{M|x-0|^{n+1}}{(n+1)!} \leq \frac{e^2 \cdot 2^5}{5!} < \frac{9 \cdot 2^5}{5!}.$
- **35.** $\sqrt{e}=e^{1/2}, f(x)=e^x, M=e^{1/2}, |e^{1/2}-p_n(1/2)| \leq M\frac{|x-1/2|^{n+1}}{(n+1)!} \leq 0.00005$, by experimentation take $n=5, \sqrt{e}\approx p_5(1/2)\approx 1.648698$, calculator value ≈ 1.648721 , difference ≈ 0.000023 .
- $\begin{aligned} \textbf{36.} \ \ 1/e &= e^{-1}, f(x) = e^x, M_n = \max|f^{(n+1)}(x)| = e^0 = 1, |e^{-1} p_n(-1)| \leq M \frac{|0 + 1|^{n+1}}{(n+1)!}, \text{ so want } \frac{1}{(n+1)!} \leq 0.0005, \\ n &= 7, e^{-1} \approx p_7(-1) \approx 0.367857, \text{ calculator gives } e^{-1} \approx 0.367879, |1/e p_7(-1)| \approx 0.000022. \end{aligned}$
- 37. p(0) = 1, p(x) has slope -1 at x = 0, and p(x) is concave up at x = 0, eliminating I, II and III respectively and leaving IV.
- **38.** Let $p_0(x) = 2$, $p_1(x) = p_2(x) = 2 3(x 1)$, $p_3(x) = 2 3(x 1) + (x 1)^3$.
- **39.** From Exercise 2(a), $p_1(x) = 1 + x$, $p_2(x) = 1 + x + x^2/2$.

462 Chapter 9

(a)

(b)	x	-1.000	-0.750	-0.500	-0.250	0.000	0.250	0.500	0.750	1.000
	f(x)	0.431	0.506	0.619	0.781	1.000	1.281	1.615	1.977	2.320
	$p_1(x)$	0.000	0.250	0.500	0.750	1.000	1.250	1.500	1.750	2.000
	$p_2(x)$	0.500	0.531	0.625	0.781	1.000	1.281	1.625	2.031	2.500

(c) $|e^{\sin x} - (1+x)| < 0.01$ for -0.14 < x < 0.14.

(d)
$$|e^{\sin x} - (1 + x + x^2/2)| < 0.01$$
 for $-0.50 < x < 0.50$.

(d) $|e^{\sin x} - (1 + x + x^2/2)| < 0.01$ for -0.50 < x < 0.50.

- **40.** (a) $\cos \alpha \approx 1 \alpha^2/2$; $x = r r \cos \alpha = r(1 \cos \alpha) \approx r\alpha^2/2$.
 - (b) In Figure Ex-36 let r=4000 mi and $\alpha=1/80$ so that the arc has length $2r\alpha=100$ mi. Then $x\approx r\alpha^2/2=\frac{4000}{2\cdot 80^2}=5/16$ mi.
- **41.** (a) $f^{(k)}(x) = e^x \le e^b$, $|R_2(x)| \le \frac{e^b b^3}{3!} < 0.0005$, $e^b b^3 < 0.003$ if $b \le 0.137$ (by trial and error with a hand calculator), so [0, 0.137].

42. $f^{(k)}(\ln 4) = 15/8$ for k even, $f^{(k)}(\ln 4) = 17/8$ for k odd, which can be written as $f^{(k)}(\ln 4) = \frac{16 - (-1)^k}{8}$;

Exercise Set 9.8 463

$$\sum_{k=0}^{n} \frac{16 - (-1)^k}{8k!} (x - \ln 4)^k.$$

43. $\sin x = x - \frac{x^3}{3!} + 0 \cdot x^4 + R_4(x), \ |R_4(x)| \le \frac{|x|^5}{5!} < 0.5 \times 10^{-3} \text{ if } |x|^5 < 0.06, \ |x| < (0.06)^{1/5} \approx 0.569, (-0.569, 0.569).$

44. $M=1,\,\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}+R_5(x),\,R_5(x)\leq \frac{1}{6!}|x|^6\leq 0.0005 \text{ if }|x|<0.8434.$

 $\textbf{45.} \ \ f^{(6)}(x) = \frac{46080x^6}{(1+x^2)^7} - \frac{57600x^4}{(1+x^2)^6} + \frac{17280x^2}{(1+x^2)^5} - \frac{720}{(1+x^2)^4}, \text{ assume first that } |x| < 1/2, \text{ then } |f^{(6)}(x)| < 46080|x|^6 + 57600|x|^4 + 17280|x|^2 + 720, \text{ so let } M = 9360, \ R_5(x) \leq \frac{9360}{5!}|x|^5 < 0.0005 \text{ if } x < 0.0915.$

46. $f(x) = \ln(1+x)$, $f^{(4)}(x) = -6/(1+x)^4$, first assume |x| < 0.8, then we can calculate $M = 6/2^{-4} = 96$, and $|f(x) - p(x)| \le \frac{96}{4!}|x|^4 < 0.0005$ if |x| < 0.1057.

Exercise Set 9.8

$$\textbf{1.} \ \ f^{(k)}(x) = (-1)^k e^{-x}, \ f^{(k)}(0) = (-1)^k; \quad \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^k.$$

463 (465 / 762)