

Appendix for the Report

Dosimetric Assessment of the Portable Device Datalogic ELF (FCC ID: U4G0040)

According to the FCC Requirements SAR Distribution Plots

June 22, 2011

IMST GmbH

Carl-Friedrich-Gauß-Str. 2

D-47475 Kamp-Lintfort

Customer
7layers AG
Borsigstrasse 11
D-40880 Ratingen

The test results only relate to the items tested. This report shall not be reproduced except in full without the written approval of the testing laboratory.

Table of Contents

1	SAR DISTRIBUTION PLOTS, IEEE 802.11 G	. 3
2	SAR DISTRIBUTION PLOTS, IEEE 802.11 A (5200 MHZ RANGE)	. 4
3	SAR DISTRIBUTION PLOTS, IEEE 802.11 A (5500 MHZ RANGE)	. 5
4	SAR DISTRIBUTION PLOTS, IEEE 802.11 A (5800 MHZ RANGE)	. 6
5	SAR Z-AXIS SCANS (VALIDATION)	. 7
6	SAR Z-AXIS SCANS (MEASUREMENTS)	. 9

1 SAR Distribution Plots, IEEE 802.11 g

Test Laboratory: Imst GmbH, DASY Yellow (II); File Name:

Elf_ywhm_g_CH6_15mm_dspl_down.da4

DUT: Datalogic; Type: ELF; Serial: D11D03297

Program Name: IEEE 802.11 g

Communication System: WLAN 2450; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; σ = 2.01 mho/m; ϵ_r = 52.5; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.39, 7.39, 7.39); Calibrated: 16.09.2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 17.09.2010
- Phantom: SAM Glycol 1340; Type: QD 000 P40 CB; Serial: TP-1340
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (16x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.033 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.90 V/m; Power Drift = 0.121 dB

Peak SAR (extrapolated) = 0.053 W/kg

SAR(1 g) = 0.030 mW/g; SAR(10 g) = 0.016 mW/gMaximum value of SAR (measured) = 0.032 mW/g

Fig. 1: SAR distribution for IEEE 802.11 g, channel 6, worst case body worn configuration, display towards the ground, 15 mm distance (June 21, 2011; Ambient Temperature: 21.9° C; Liquid Temperature: 21.5° C).

2 SAR Distribution Plots, IEEE 802.11 a (5200 MHz Range)

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: Elf_bwhm_ch36_15mm_dspl_down.da4

DUT: Datalogic; Type: ELF; Serial: D11D03297

Program Name: IEEE 802.11 a

Communication System: 5 GHz; Frequency: 5180 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5180 MHz; σ = 5.22 mho/m; ε_r = 48.8; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3536; ConvF(4.36, 4.36, 4.36); Calibrated: 16.09.2010

- Sensor-Surface: 2mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn631; Calibrated: 17.09.2010

- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (15x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.138 mW/g

Body Worn/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 2.90 V/m; Power Drift = 0.115 dB

Peak SAR (extrapolated) = 0.240 W/kg

SAR(1 g) = 0.081 mW/g; SAR(10 g) = 0.037 mW/g

Maximum value of SAR (measured) = 0.140 mW/g

Fig. 2: SAR distribution for IEEE 802.11 a, channel 36, worst case body worn configuration, display towards the ground, 15 mm distance (June 21, 2011; Ambient Temperature: 22.0° C; Liquid Temperature: 21.7° C).

3 SAR Distribution Plots, IEEE 802.11 a (5500 MHz Range)

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: Elf_bwhm_ch124_15mm_dspl_down.da4

DUT: Datalogic; Type: ELF; Serial: D11D03297

Program Name: IEEE 802.11 a

Communication System: 5 GHz; Frequency: 5620 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5620 MHz; σ = 5.88 mho/m; ε_r = 47.9; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3536; ConvF(3.9, 3.9, 3.9); Calibrated: 16.09.2010

- Sensor-Surface: 2mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn631; Calibrated: 17.09.2010

- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (15x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.105 mW/g

Body Worn/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 1.92 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 0.201 W/kg

SAR(1 g) = 0.055 mW/g; SAR(10 g) = 0.024 mW/g

Maximum value of SAR (measured) = 0.099 mW/g

Fig. 3: SAR distribution for IEEE 802.11 a, channel 124, worst case body worn configuration, display towards the ground, 15 mm distance (June 21, 2011; Ambient Temperature: 22.0° C; Liquid Temperature: 21.7° C).

4 SAR Distribution Plots, IEEE 802.11 a (5800 MHz Range)

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: Elf_bwhm_ch161_15mm_dspl_down.da4

DUT: Datalogic; Type: ELF; Serial: D11D03297

Program Name: IEEE 802.11 a

Communication System: 5 GHz; Frequency: 5805 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5805 MHz; σ = 6.18 mho/m; ε_r = 47.5; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3536; ConvF(4.1, 4.1, 4.1); Calibrated: 16.09.2010

- Sensor-Surface: 2mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn631; Calibrated: 17.09.2010

- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (15x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.056 mW/g

Body Worn/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 1.67 V/m; Power Drift = 0.054 dB

Peak SAR (extrapolated) = 0.108 W/kg

SAR(1 g) = 0.032 mW/g; SAR(10 g) = 0.013 mW/g

Maximum value of SAR (measured) = 0.062 mW/g

Fig. 4: SAR distribution for IEEE 802.11 a, channel 161, worst case body worn configuration, display towards the ground, 15 mm distance (June 21, 2011; Ambient Temperature: 22.0° C; Liquid Temperature: 21.7° C).

5 SAR Z-axis Scans (Validation)

Fig. 5: SAR versus liquid depth, 2450 MHz, body (June 21, 2011; Ambient Temperature: 21.9° C; Liquid Temperature: 21.5° C).

Fig. 6: SAR versus liquid depth, 5200 MHz, body (June 21, 2011; Ambient Temperature: 22.0° C; Liquid Temperature: 21.7° C).

Fig. 7: SAR versus liquid depth, 5500 MHz, body (June 21, 2011; Ambient Temperature: 21.9° C; Liquid Temperature: 21.7° C).

Fig. 8: SAR versus liquid depth, 5800 MHz, body (June 21, 2011; Ambient Temperature: 21.9° C; Liquid Temperature: 21.7° C).

6 SAR Z-axis Scans (Measurements)

The following pictures show the plots of SAR versus liquid depth for the worst case values.

Fig. 9: SAR versus liquid depth, body: IEEE 802.11 g, channel 6, display towards the ground, 15 mm distance (June 21, 2011; Ambient Temperature: 21.9° C; Liquid Temperature: 21.5° C).

Fig. 10: SAR versus liquid depth, body: IEEE 802.11 a, channel 36, display towards the ground, 15 mm distance (June 21, 2011; Ambient Temperature: 22.0°C; Liquid Temperature: 21.7°C).