Le vecteur Nabla en algèbre géométrique.

Rappels.

Nous nous plaçons a priori dans la situation ou les systèmes de coordonnées sont quelconques dans ${\bf R}^3$. On a donc les définitions suivantes :

1.
$$e_i(x) = \frac{\partial x}{\partial x^i} = \lim_{\varepsilon} \frac{1}{\varepsilon} [x(..., x^i + \varepsilon,) - x]$$

2.
$$e_i \cdot e^j = \delta_i^j$$

3.
$$a.\nabla F(x) = \lim_{\varepsilon} \frac{1}{\varepsilon} [F(x + \varepsilon a) - F(x)]$$
 et

4.
$$e_i \cdot \nabla F(x) = \lim_{\varepsilon} \frac{1}{\varepsilon} [F(x + \varepsilon e_i) - F(x)] = \frac{\partial}{\partial x^i} F(x)$$

On en tire:

5.
$$e_i \cdot \nabla = \frac{\partial}{\partial x^i} = \partial_i$$

6.
$$e_i \cdot \nabla x^j = \frac{\partial x^j}{\partial x^i} = \delta_i^j$$

Ce qui permet d'identifier les e^j avec les ∇x^j :

7.
$$\nabla x^j = e^j$$

On retrouve là une des relations fondamentales du calcul différentiel moderne. On en déduit que le vecteur ∇ s'ecrit :

8.
$$\nabla = e^j \frac{\partial}{\partial x^j} = e^j \partial_j$$

Il est essentiel de noter les e^j et les e_i se correspondent par dualité. Le choix des coordonnées détermine aussi les e^j .

9.
$$\nabla \wedge e^j = \nabla \wedge (\nabla x^j) = 0$$

Cette dernière relation est doute la moins évidente. Elle résulte simplement de la commutativité des dérivées secondes.

Application au rotationnel.

Le physicien ne sera intéressé de par des systèmes de coordonnées orthonormales. Encore faut-il lui en faciliter le passage.

Il faut d'abord écrire les équations dans leur système "naturel".

10.
$$\nabla = e^j \frac{\partial}{\partial x^j}$$

$$11. a = e^i a_i = e_i a^i$$

Il est évident qu'il faut choisir l'expression covariante du vecteur a. On obtient , en l'utilisant (9):

12.
$$\nabla \wedge a = \partial_i a_i e^j \wedge e^i$$

Cette expression est valable dans n'importe quel système naturel .

Ce qu'il ne faut pas faire ! Essayer de transformer simultanément les vecteurs ∇ et a. En effet la relation (9) n'est plus valable.

Il faut transformer directement le deuxième membre de (12) en écrivant :

13.
$$\bar{a}_i = \lambda_i a^i = (\lambda_i)^{-1} a_i$$
 et $\bar{e}^j = \lambda_j e^j = \bar{e}_j$

où les λ_i sont les unités locales de longueur.

On obtient ¹:

14.
$$\nabla \wedge a = \left[\frac{1}{\lambda_3 \lambda_2} \left(\frac{\partial \lambda_2 \bar{a}_2}{\partial x^3} - \frac{\partial \lambda_3 \bar{a}_3}{\partial x^2} \right) \bar{e}^{\ 3} \wedge \bar{e}^{\ 2} \dots \right]$$

On vérifie facilement l'on a $\nabla \times a = -I \nabla \wedge a$.

Autres éléments.

Le gradient donne immédiatement :

15.
$$\nabla \phi = e^i \, \partial_i \, \phi = \bar{e}_i \, \frac{\partial \phi}{\lambda_i \partial x^i}$$

Plus intéressante est la divergence :

16.
$$\nabla \cdot a = (\nabla a^i) \cdot e_i + a^i \nabla \cdot e_i = \frac{\partial a^i}{\partial x^i} + a^i \nabla \cdot e_i$$

Pour aller plus loin, il faut exprimer les e_i en fonctions de e^j :

17.
$$e_i = (-1)^{n-i} e^n \wedge e^{n-1} \wedge \dots \wedge \hat{e}^i \wedge \dots \wedge e^1 IV$$

$$\hat{e}^i = \text{absent} \qquad I \text{ pseudoscalaire} \qquad V \text{ element de volume scalaire}$$
 ici $n=3$ $I^2 = -1$

18.
$$\nabla \cdot e_i = \nabla \cdot \left[(-1)^{n-i} e^n \wedge e^{n-1} \wedge \dots \wedge \hat{e}^i \wedge \dots \wedge e^1 I \right] V$$
$$+ e^k \cdot \left[(-1)^{n-i} e^n \wedge e^{n-1} \wedge \dots \wedge \hat{e}^i \wedge \dots \wedge e^1 I \right] \partial_k V$$
$$= 0 + \left[e^n \wedge e^{n-1} \wedge \dots \wedge e^1 I \right] \partial_i V = V^{-1} \partial_i V$$

19.
$$\nabla \cdot a = \frac{\partial a^i}{\partial x^i} + a^i \nabla \cdot e_i = \frac{\partial a^i}{\partial x^i} + a^i V^{-1} \partial_i V = \frac{1}{V} \frac{\partial}{\partial x^i} (a^i V)$$

En definitive on obtient en coordonnées orthonormales, en utilisant (13):

20.
$$\nabla \cdot a = \frac{1}{\lambda_1 \lambda_2 \lambda_3} \left[\frac{\partial}{\partial x^1} \cdot (\lambda_2 \lambda_3 \bar{a}_1) + \dots \right]$$

Le **laplacien** nécessite quelques précautions. Sous sa forme la plus simple , en repères cartésiens , il apparaît comme la divergence d'un gradient :

^{1.} Les formulaires détruisent souvent les symétries de belles formules !

21.
$$\nabla^2 \phi = (\nabla \cdot \nabla) \phi = \nabla \cdot (\bar{e}^i \partial_i \phi) = \frac{\partial^2 \phi}{(\partial x^1)^2} + \frac{\partial^2 \phi}{(\partial x^2)^2} + \frac{\partial^2 \phi}{(\partial x^3)^2}$$

Pour généraliser cette formule, il faut repartir de l'expression (19) de la divergence, en remplaçant a^i par $\partial_i \phi$ rendu contravariant, c'est-à-dire par $e^i.e^j \partial_j \phi$!

22.
$$\nabla^2 \phi = \frac{1}{V} \frac{\partial}{\partial x^i} (Ve^i . e^j \partial_j \phi)$$

Cette formule est bien sûr valable aussi en repères cartésiens, ce qui valide le premier membre.

On obtient donc en coordonnées orthonormales :

23.
$$\nabla^2 \phi = \frac{1}{\lambda_1 \lambda_2 \lambda_3} \left[\frac{\partial}{\partial x^1} \left(\frac{\lambda_2 \lambda_3}{\lambda_1} \frac{\partial \phi}{\partial x^1} \right) + \frac{\partial}{\partial x^2} \left(\frac{\lambda_3 \lambda_1}{\lambda_2} \frac{\partial \phi}{\partial x^2} \right) + \frac{\partial}{\partial x^3} \left(\frac{\lambda_1 \lambda_2}{\lambda_3} \frac{\partial \phi}{\partial x^3} \right) \right]$$

Le laplacien vectoriel se définit par la formule évidente :

24.
$$\nabla^2 a = (\nabla \nabla) a = \nabla (\nabla \cdot a) + \nabla (\nabla \wedge a)$$

qui correspond à celle moins transparente :

25.
$$\nabla^2 a = \operatorname{grad}[\operatorname{div}(a)] - \operatorname{rot}[\operatorname{rot}(a)]$$

Remarque additionnelle au sujet de la relation (9).

9.
$$\nabla \wedge e^i = 0$$

Cette relation est vraie si on ne considère que des coordonnées quelconques dans un \mathcal{R}^n ou \mathcal{M}^4 , c'est à dire dans des espaces vectoriels plats. On peut tenter de démontrer celà par les méthodes classiques, ce qui oblige à dérouler toute la mécanique tensorielle jusqu'au calcul de la courbure de Riemann, que l'on prendra egale à 0. Encore faut-il ajouter que la relation (9) n'apparaîtra pas explicitement²si on ne fait pas appel à la GA!

Pour y voir clair commençons par la fin . On peut tracer le schéma synthétique suivant :

 \mathcal{L}_n est l'espace à connection affine le plus géneral . \mathcal{L}_n^0 est l'espace à connection affine sans torsion . \mathcal{A}_n est l'espace affine lineaire . \mathcal{R}_n (ou \mathcal{M}_4) est un espace euclidien . \mathcal{V}_n est un espace de Riemann .

$$\mathcal{L}_n \longrightarrow \mathcal{L}_n^0 \longrightarrow \mathcal{A}_n$$

$$\mathcal{L}_n^0 \longrightarrow \mathcal{V}_n$$

$$A_n \longrightarrow \mathcal{R}_n$$

Un élément essentiel dans ces calculs est tenu par les coefficients de connection Γ^i_{jk} tels que :

^{2.} Pas du tout dans les textes anciens compréhensibles (Brillouin) , bien caché dans les textes modernes peu accessibles (Durrer , 70 pages de math préliminaires) .

26.
$$\delta e_j = \Gamma^i_{kj} e_i \delta x^k$$
 soit en GA $\nabla_k e_j = \Gamma^i_{kj} e_i$

On démontre facilement que :

27.
$$\delta e^i = -\Gamma^i_{kj} e^j \delta x^k$$
 soit en GA $\nabla_k e^i = -\Gamma^i_{kj} e^j$

Ces coefficients expriment le caractère curviligne des coordonnées. On pose ou on démontre :

pour
$$\mathcal{L}_n \longrightarrow \Gamma^i_{kj} \neq \Gamma^i_{jk}$$

pour $\mathcal{L}^0_n \longrightarrow \Gamma^i_{kj} = \Gamma^i_{jk}$
pour $\mathcal{A}_n \longrightarrow \Gamma^i_{kj} = \Gamma_{jk}$
pour $\mathcal{R}_n \longrightarrow \Gamma^i_{kj} = \Gamma_{jk}$ et $\mathfrak{R}^{i}_{kl,p} = 0$ (tenseur de courbure)
pour $\mathcal{V}_n \longrightarrow \Gamma^i_{kj} = \Gamma_{jk}$ et $\mathfrak{R}^{i}_{kl,p} \neq 0$

Seuls \mathcal{R}_n et \mathcal{V}_n sont métriques .

Par les relation (26) et (27) on introduit la notion de dérivée covariante qui traduit le fait que les e_i sont variables d'un point à un autre. Ceci s'exprime très simplement en GA: ∇ devient \mathcal{D} qui est la projection de ∇ sur la variété \mathcal{V}_n considérée (on n'a pas besoin de préciser dans quel $\mathcal{R}_{n+\cdots}$ on se situe).

La relation (9) devient:

28.
$$\mathcal{D} \wedge e^j = e^k \wedge e^l \Gamma_{kl}^j$$
 (car $\mathcal{D}_k e^j = -\Gamma_{kl}^j e^l$)

Le membre de droite représente la torsion de l'espace . Elle est donc nulle si $\Gamma^j_{kl} = \Gamma^j_{lk}$.

Donc pour \mathcal{R}_n et \mathcal{V}_n :

29.
$$D \wedge e^j = 0$$

et pour \mathcal{R}_n (et \mathcal{M}_4) \mathcal{D} est identique à ∇ .

En définitive on peut donc dire que la relation (28) est aussi importante que le tenseur de courbure pour classer les espaces . Or elle n'existe qu'en GA . Il n'est pire sourd que celui qui ne veut point entendre

G.Ringeisen octobre 2015

Doran / Lasenby Geometric Algebra for Physicists

Hestenes Spacetime Geometry with Geometric Calculus