

Mike Schoeffler

P2P historical data +

Data prep

```
# map zip codes to county codes
zip_counties = pd.read_excel('ZIP_COUNTY_122015.xlsx', skiprows = 0, header = 0)
zip_counties['COUNTY'] = zip_counties['COUNTY'].astype(str).str.zfill(5)
zip_counties['ZIP'] = zip_counties['ZIP'].astype(str).str.zfill(5)
zip_counties.sample()
```

	ZIP	COUNTY	RES_RATIO	BUS_RATIO	OTH_RATIO	TOT_		Leading zeros
39293	71456	22069	1	1	1	1		

	State	State_Code	County_Code	County	H1	County_Code_Full	County_Full
0	AL	01	001	Autauga County	H1	01001	Autauga, AL
1	AL	01	String mani	pulation (🗸		01003	Baldwin, AL

zip_to_adherents = pd.merge(religion, national_county, how='left', left_on='County or Equivalent', right_on='County_Full')
zip_to_adherents = pd.merge(zip_to_adherents, zip_courty_to_adherents.head()
how='right', left_on='County_Code_Full', right_on='COUNTY')
zip_to_adherents.head()

	- 1	County or Equivalent	Population	PopRank	Adherents	AdhRank	Congregations	ConRank	Adherents %	Adh% Rank	Congregations Per 10K People	Con Per 10K Rank	State	State_Code
(o A A	lutauga, L	54571	917	36938	691	106	831	67.7	546	19	1799	AL	01
-	ı A	utauga, L	54571	917	36938	691	106	831	67.7	546	19	1799	AL	01
	A	utauga,	5/571	017	36038	601	106	R 21	67 7	5/16	10	1700	ΔΙ	Ω1

Mike Schoeffler

```
# map function failed for unknown reason
past_loans['default'] = np.where(past_loans['loan_status']=='Fully Paid', 0,
    np.where(past_loans['loan_status']=='Charged Off', 1,
    np.where(past_loans['loan_status']=='Current', 0.05,
    np.where(past_loans['loan_status']=='Late (31-120 days)', 0.76,
    np.where(past_loans['loan_status']=='In Grace Period', 0.28,
    np.where(past_loans['loan_status']=='Late (16-30 days)', 0.59,
    np.where(past_loans['loan_status']=='Default', 0.9,
    np.where(past_loans['loan_status']=='Does not meet the credit policy. Status:Fully Paid', 0,
    np.where(past_loans['loan_status']=='Does not meet the credit policy. Status:Charged Off', 1, 999))))))))))
```

iome_ownership	annual_inc	verification_status	issue_d	loan_status	desc	purpose	title	zip_code	addr_state	dti	delinq_2yrs
RENT	24000	Verified	2011-	Fully Paid	Borrower added on 12/22/11 > I need to upgra	credit_card	Computer	86001	AZ	27.65 870,00	0 0 Rows
₹ENT	30000	Source Verified	2011- 12-01	Charged Off	Borrower added on 12/22/11 > I plan	car	bike	30901	GA	1.00	0

Examine field types and amount of data

Is there any missing data? Unfortunately the null counts disappear with too much data.

past_loans.info()

<class 'pandas.core.frame.DataFrame'>

Index: 887383 entries, 1077501 to 36271262
Columns: 104 entries, member id to fico

dtypes: category(7), datetime64[ns](4), float64(84), object(9)

memory usage: 669.4+ MB

Condensed info

Religion

Create dependent and independent data

```
import numpy as np
full_data = full_data[np.isfinite(full_data['Adherents %'])]
X = full_data[['dti', 'fico', 'Adherents %', 'loan_amnt', 'annual_inc', 'ranked_sub_grade', 'employment']]
#X = full_data[['Adherents %']]
y = full_data['default']
```

Split into training and test data

```
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
# 10 cross validation iterations with 20% test / 80% train
from sklearn.cross_validation import ShuffleSplit
cv = ShuffleSplit(X_train.shape[0], n_iter=10, test_size=0.2, random_state=0)
```

Set up regression

```
# Drop all features
lr_none = LogisticRegression(C= .00001, class_weight=None, penalty="l1")
lr_none.fit(X_train_std, y_train.apply(np.round))

# Drop the least predictive feature (turns out to be adherents)
lr_all_but_adherents = LogisticRegression(C= .05, class_weight=None, penalty="l1")
lr_all_but_adherents.fit(X_train_std, y_train.apply(np.round))

# include all features
lr_all = LogisticRegression(C= .5, class_weight=None, penalty=)
lr_all.fit(X_train_std, y_train.apply(np.round))
```

Coefficients

pd.DataFrame({'features': X train.columns, 'coefficients': lr none.coef [0]})

		f t
	coefficients	teatures
0	0	dti
1	0	fico
2	0	Adherents %
3	0	loan_amnt
4	0	annual_inc
5	0	ranked_sub_grade
6	0	employment

pd.DataFrame({'features': X_train.columns, 'coefficients': lr_all_but_adherents.coef_[(coefficients features 0 0.053639 dti 1 -0.128155 fico 2 0.000000 Adherents % 3 0.001957 loan_amnt 4 -0.280748 annual_inc **5** 0.311255 ranked_sub_grade 6 0.035417 employment

pd.DataFrame({'features': X train.columns, 'coefficien coefficients | features **0** 0.059471 dti 1 -0.160048 fico Adherents % 2 -0.010151 3 0.034970 loan_amnt 4 -0.330274 annual_inc 5 0.302917 ranked_sub_grade 6 0.052459 employment

Classification report

from sklearn.metrics import classification_report

print classification_report(lr_none.predict(X_test_std), y_test.apply(np.round), digits = 5)

	precision	recall	f1-score	support	
0.0	1.00000	0.92613	0.96165	217543 0	
avg / total					? f1=0.96

print classification_report(lr_all_but_adherents.predict(X_test_std), y_test.apply(np.round), digits = 5)

	precision	recall	fl-score	support
0.0 1.0	1.00000	0.92613 0.00000		217543 0
avg / total	1.00000	0.92613	0.96165	217543


```
# test if we simply predict 0 (no default) every time
junk = np.empty(217543)
junk.fill(0)
print classification_report(junk, y_test.apply(np.round), digits = 5)
```

support	f1-score	recall	precision		
		0.92613 0.00000	1.00000	0.0	
217543	0.96165	0.92613	1.00000	g / total	avg

Mike Schoeffler

ROC Area Under Curve

Mike Schoeffler

Next steps

- Investigate better metrics
- Add more factors
- Aim for prediction
 - Nearest neighbors
 - ARIMA