Séries Numériques

Soit $(u_n)_{n\geq n_0}$ une suite de réels. On définit les sommes partielles par: $S_n=u_{n_0}+u_{n_0+1}+\cdots+u_n$ et on s'intéresse à la limite de S_n lorsque n tend vers $+\infty$.

1 Définitions et convergence

Définition 1.1. Soit $(u_n)_{n\geq n_0}$ une suite de réels. On appelle série de terme général u_n , et on note $\sum_{n\geq n_0} u_n$, la suite des sommes partielles $(S_n)_{n\geq n_0}$.

Exemples 1.2.

- 1. La série $\sum \frac{1}{n}$ de terme général $\frac{1}{n}$ pour $n \in \mathbb{N}^*$.
- 2. La série $\sum \frac{1}{n!}$ de terme général $\frac{1}{n!}$ pour $n \in \mathbb{N}$.
- 3. La série $\sum n$ de terme général n pour $n \in \mathbb{N}$.
- 4. La série géométrique $\sum a^n$ de terme général a^n pour $n \in \mathbb{N}$ avec $a \in \mathbb{R}$.

Définition 1.3. Une série de terme général u_n est dite convergente, si la suite des sommes partielles $(S_n)_{n\geq n_0}$ est convergente. Dans ce cas, la limite de la suite $(S_n)_{n\geq n_0}$ est appelée la somme de la série $\sum_{n\geq n_0} u_n$, et on note: $\lim_{n \to +\infty} S_n = \sum_{n=n_0}^{+\infty} u_n.$

Une série qui n'est pas convergente est dite divergente.

Remarque 1.4.

$$\begin{split} \sum_{n \geq n_0} u_n \ converge \ vers \ l \in \mathbb{R} & \Leftrightarrow & \lim_{n \to +\infty} \sum_{k=n_0}^n u_k = l \\ & \Leftrightarrow & \forall \epsilon > 0, \exists N \geq n_0 : (n \geq N \Rightarrow |\sum_{k=n_0}^n u_k - l| < 0). \end{split}$$

Exemple 1.5.

1. Série géométrique: Soit $a \in \mathbb{R}^*$

$$\frac{1}{\sum_{k=0}^{n} a^{k}} = 1 + a + a^{2} + \dots + a^{n} = \begin{cases} \frac{1 - a^{n+1}}{1 - a}, & \text{si } a \neq 1 \\ n + 1, & \text{si } a = 1. \end{cases}$$

Alors la série géométrique $\sum_{n\geq 0} a^n$ est convergente si et seulement si |a|<1. Dans ce cas $\sum_{n=0}^{+\infty} a^n=\frac{1}{1-a}$.

- 2. <u>Série exponentielle</u>: La série exponentielle $\sum_{n\geq 0} \frac{1}{n!}$ est convergente, et on a $\sum_{n=0}^{+\infty} \frac{1}{n!} = e$.
- 3. <u>Série harmonique</u>: On va montrer que la série harmonique $\sum_{n\geq 1} \frac{1}{n}$ est divergente. Pour cela, montrons qu'elle n'est pas de Cauchy.

Posons
$$S_n = \sum_{k=1}^n \frac{1}{k}$$
, alors $S_{2n} - S_n = \sum_{k=1}^n \frac{1}{n+k}$.
On a $\frac{1}{n+k} \ge \frac{1}{2n}$ pour $k = 1, 2, \dots, n$.

On a
$$\frac{1}{n+k} \ge \frac{1}{2n}$$
 pour $k = 1, 2, \dots, n$

Donc $S_{2n} - S_n \ge \frac{n}{2n} = \frac{1}{2}$. Donc la suite (S_n) n'est pas de Cauchy. D'où la série $\sum_{n\ge 1} \frac{1}{n}$ est divergente.

Puisque la suite (S_n) est strictement croissante, on déduit que $\sum_{n=1}^{+\infty} \frac{1}{n} = +\infty$.

Remarque 1.6 (Cas complexe).

Si le terme général u_n est complexe $u_n = a_n + ib_n$; la somme partielle

$$S_n = \sum_{k=n_0}^n u_k = \sum_{k=n_0}^n (a_n + ib_n) = \sum_{k=n_0}^n a_n + i \sum_{k=n_0}^n b_n$$

 $S_n = \sum_{k=n_0}^n u_k = \sum_{k=n_0}^n (a_n + ib_n) = \sum_{k=n_0}^n a_n + i \sum_{k=n_0}^n b_n.$ Alors on a le résultat suivant: $\sum_{n\geq n_0} u_n$ converge $\iff \sum_{n\geq n_0} a_n$ et $\sum_{n\geq n_0} b_n$ convergent en même temps.

Théorème 1.7. Si la série $\sum_{n>n_0} u_n$ converge, alors la suite $(u_n)_{n\geq n_0}$ tend vers 0.

Démonstration: Remarquer que $u_n = S_n - S_{n-1}$.

Remarques 1.8.

- La contraposée du théorème est souvent utilisée: une série dont le terme général ne tend pas vers 0, ne peut pas converger.
- Le fait que le terme général tend vers 0 n'est qu'une condition nécessaire de convergence. De nombreuse séries divergente ont un terme général qui tend vers 0. Par exemple, la série harmonique $\sum_{n>0} \frac{1}{n}$ est divergente, avec un terme général

Théorème 1.9. Soient $\sum u_n$ et $\sum v_n$ deux séries convergentes, de sommes respectives S et S'. Soient a et b deux réels. Alors la série $\sum (au_n + bv_n)$ est convergente, et sa somme égale à aS + bS'.

Exemple 1.10. Les séries $\sum \frac{1}{2^n}$ et $\sum \frac{1}{5^n}$ sont convergentes. Donc la série $\sum \frac{-3}{2^n} + \frac{2}{5^n}$ est convergente, et $\sum \frac{-3}{2^n} + \frac{2}{5^n} = -3 \sum \frac{1}{2^n} + 2 \sum \frac{1}{5^n} = -\frac{7}{2}$.

2 Séries à termes positifs et comparaison

Définition 2.1. Une série $\sum u_n$ est dite à terme positif, si le terme général u_n est positif à partir d'un certain rang.

Remarques 2.2.

- $Si \sum u_n$ est une série à terme positif, alors la suite (S_n) est croissante.
- Une suite croissante n'a que deux comportements. Soit elle est majorée et elle converge; soit elle tend vers +∞.

Proposition 2.3. Soit $\sum u_n$ une série à terme positif. Alors

$$\sum u_n \ converge \iff (S_n) \ est \ born\'ee.$$

Théorème 2.4 (Règle de comparaison).

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs. On suppose qu'il existe $N \in \mathbb{N}$ à partir duquel $u_n \leq v_n$. Alors

- 1. $\sum v_n \ converge \Longrightarrow \sum u_n \ converge$.
- 2. $\sum u_n \ diverge \Longrightarrow \sum v_n \ diverge$.

Exemples 2.5.

1. On s'intéresse au développement décimal d'un réel $x \in]0,1[$.

$$x = 0, a_1 a_2 \dots a_n \dots \quad \text{où } a_n \in \{0, 1, 2, \dots, 9\} \text{ pour tout } n \in \mathbb{N}^*.$$

Puisque $0, a_1 a_2 \dots a_n \dots = \sum_{n=1}^{+\infty} \frac{a_n}{10^n}$. Donc, l'écriture 1 correspond en fait à la série de terme général $u_n = \frac{a_n}{10^n}$. La somme partielle S_n est l'approximation décimale de x par défaut à 10^{-n} près.

Alors $\forall n \in \mathbb{N}^*$, $u_n \leq \frac{9}{10^n}$. Puisque la série $\sum_{n \geq 1} \frac{1}{10^n}$ converge (c'est une série géométrique de raison $q = \frac{1}{10} \in]-1,1[$). Alors $\sum_{n \geq 1} \frac{9}{10^n}$ est une série convergente. D'où la série $\sum_{n \geq 1} \frac{a_n}{10^n}$ converge.

2. On considère la série $\sum \sin(\frac{1}{2^n})$. On a $0 \le \sin(\frac{1}{2^n}) \le \frac{1}{2^n}$ pour tout $n \in \mathbb{N}$, et la série $\sum \frac{1}{2^n}$ converge. Donc $\sum \sin(\frac{1}{2^n})$ est une série convergente.

Théorème 2.6 (Règle de comparaison logarithmique).

 $Soient \sum_{u_n} u_n \ et \sum_{v_n+1} v_n \ deux \ s\'{e}ries \ \grave{a} \ termes \ strictement \ positifs. \ On \ suppose \ qu'il \ existe \ N \in \mathbb{N} \ \grave{a} \ partir \ duquel \ u_n+1 \le \frac{v_{n+1}}{v_n}. \ Alors$

- 1. $\sum v_n \ converge \Longrightarrow \sum u_n \ converge$.
- 2. $\sum u_n \ diverge \Longrightarrow \sum v_n \ diverge$.

Théorème 2.7 (Critère d'équivalence).

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes strictement positifs. On suppose que $\lim_{n\to+\infty}\frac{u_n}{v_n}=l$ avec $l\neq 0$ et $l\neq +\infty$. Alors les deux séries sont de même nature.

Démonstration: $\lim_{n \to +\infty} \frac{u_n}{v_n} = l \iff \forall \epsilon > 0, \exists N \in \mathbb{N} : (n \ge N \Rightarrow |\frac{u_n}{v_n} - l| < \epsilon).$ On choisit $\epsilon = \frac{l}{2}$, alors $\forall n \ge N, \; \frac{l}{2} < \frac{u_n}{v_n} < \frac{3l}{2}.$

Donc $\forall n \geq N, \frac{l}{2}v_n < u_n < \frac{3l}{2}v_n$.

Si $\sum v_n$ converge, alors $\sum \frac{3l}{2}v_n$ converge, ce qui implique que $\sum u_n$ converge. Si $\sum v_n$ diverge, alors $\sum \frac{1}{2}v_n$ diverge, ce qui implique que $\sum u_n$ diverge.

On en déduit que les deux séries ont la même nature.

Exemples 2.8.

1. On considère les séries $\sum u_n$ et $\sum v_n$ de termes généraux respectifs $u_n = \ln(1 + \frac{1}{2^n})$ et $v_n = \frac{1}{2^n}$. C'est clair que u_n et v_n sont strictement positifs. $\lim \frac{u_n}{v_n} = \lim \frac{\ln(1+\frac{1}{2^n})}{\frac{1}{2^n}} = 1.$ Donc $\sum u_n$ et $\sum v_n$ sont de la même nature. Puisque la série $\sum v_n$ converge, la série $\sum u_n$ l'est aussi.

$$\lim \frac{u_n}{v_n} = \lim \frac{\ln(1 + \frac{1}{2^n})}{\frac{1}{2^n}} = 1$$

2. Soient les séries
$$\sum_{n>0} \frac{n+\ln n}{n^2}$$
 et $\sum_{n>0} \frac{1}{n}$.

On a $\lim \frac{n+\ln n}{\frac{n^2}{n}} = \lim \frac{n^2+n\ln n}{n^2} = 1$ et la série $\sum_{n>0} \frac{1}{n}$ diverge, alors la série $\sum_{n>0} \frac{n+\ln n}{n^2}$ diverge.

Exercice 2.9. Que se passe-t-il si l = 0 ou $l = +\infty$?

Théorème 2.10 (Comparaison avec une intégrale). Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ une fonction continue décroissante. On pose $u_n = f(n)$ pour $n \in \mathbb{N}$. Alors $\sum u_n$ et $\int_0^{+\infty} f(t)dt$ sont de même nature.

Démonstration: Soit $k, n \in \mathbb{N}$ tels que $k \leq n$.

$$x \in [k, k+1] \implies k \le x \le k+1$$

$$\implies u_{k+1} \le f(x) \le u_k$$

$$\implies \int_k^{k+1} u_{k+1} dx \le \int_k^{k+1} f(x) dx \le \int_k^{k+1} u_k dx$$

$$\implies u_{k+1} \le \int_k^{k+1} f(x) dx \le u_k$$

$$\implies \sum_{k=0}^n u_{k+1} \le \int_0^{n+1} f(x) dx \le \sum_0^n u_k$$

$$\implies S_{n+1} - u_0 \le \int_0^{n+1} f(x) dx \le S_n$$

Si $\sum u_n$ est convergente, alors (S_n) est majorée. Donc $\int_0^{n+1} f(x) dx$ est majorée, et puisqu'elle est croissante, on déduit que $\int_0^{+\infty} f(x) dx$ est convergente. Réciproquement, si $\int_0^{+\infty} f(x) dx$ converge, alors $\int_0^{n+1} f(x) dx$ est majorée, et S_n l'est aussi, par suite $\sum u_n$ converge.

Remarque 2.11. Le résultat du théorème2.10 est encore valable si la fonction f est positive, continue et décroissante sur un intervalle $[a, +\infty[$ en considérant la série $\sum_{n\geq n_0} u_n$ avec $n_0\geq a$.

Exemple 2.12. On considère la fonction $f:[1,+\infty[\to\mathbb{R}^+, f(x)=\frac{1}{x(x+1)}]$

$$f$$
 est continue, décroissante et positive sur $[1,+\infty[$. On a $\int_1^x f(t)dt = \int_1^x (\frac{1}{t}-\frac{1}{t+1})dt = [\ln t - \ln(1+t)]_1^x = \ln(\frac{x}{x+1}) + \ln 2.$

Donc $\int_{1}^{+\infty} f(t)dt = \ln 2$.

On déduit que la série $\sum_{n>1} \frac{1}{n(n+1)}$ est convergente.

Soit
$$\alpha \in \mathbb{R}$$
. On considère la fonction $f(x) = \frac{1}{x^{\alpha}}$ pour $x \in [1, +\infty[$. Soit $t \in [1, +\infty[$, $\int_{1}^{t} f(x) dx = \int_{1}^{t} \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{1-\alpha}(t^{1-\alpha}-1), & \text{si } \alpha \neq 1 \\ \ln t, & \text{si } \alpha = 1 \end{cases}$

Donc
$$\int_{1}^{+\infty} f(x)dx = \begin{cases} +\infty, & \text{si } \alpha \leq 1\\ \frac{1}{1-\alpha}, & \text{si } \alpha > 1 \end{cases}$$

D'où le résultat suivant

Théorème 2.13 (Série de Riemann). Soit $\alpha \in \mathbb{R}$.

Si $\alpha > 1$, alors la série $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$ converge. Si $\alpha \leq 1$, alors la série $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$ diverge.

Proposition 2.14 (Règle de Riemann). Soit $\sum u_n$ une série à terme positifs.

- 1. S'il existe $\alpha > 1$ tel que la suite $(n^{\alpha}u_n)$ soit majorée par une constante M > 0, alors la série $\sum u_n$ converge.
- 2. S'il existe $\alpha \leq 1$ tel que la suite $(n^{\alpha}u_n)$ soit minorée par une constante m > 0, alors la série $\sum u_n$ diverge.

Théorème 2.15 (Règle de D'Alembert). Soit $\sum u_n$ une série à terme strictement positifs.

- 1. S'il existe une constante réelle r < 1 et $N \in \mathbb{N}$ tels que $\forall n \geq N$, $\frac{u_{n+1}}{u_n} < r < 1$, alors la série $\sum u_n$ converge.
- 2. S'il existe $N \in \mathbb{N}$ tel que $\forall n \geq N$, $\frac{u_{n+1}}{u_n} > 1$, alors la série $\sum u_n$ diverge.

En pratique on utilise le résultat suivant.

Corollaire 2.16. Soit $\sum u_n$ une série à terme strictement positifs, telle que $\lim \frac{u_{n+1}}{u_n} = l$.

- 1. Si l < 1, alors la série $\sum u_n$ converge.
- 2. Si l > 1, alors la série $\sum u_n$ diverge.

 $Si \ l = 1 \ on \ ne \ peut \ pas \ conclure.$

Exemples 2.17.

- $\begin{array}{ll} \text{1. On considère la série } \sum \frac{1}{n!}.\\ \text{On a } \lim \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} = \lim \frac{n!}{(n+1)!} = \lim \frac{1}{n+1} = 0 < 1.\\ \text{Donc la série } \sum \frac{1}{n!} \text{ converge}. \end{array}$
- $2. \ \ Soit \ \ la \ \ s\acute{e}rie \ \sum \frac{n^n}{n!}. \\ \lim \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} = \lim (\frac{n+1}{n})^n = \lim e^{n\ln(\frac{n+1}{n})} = \lim e^{\frac{\ln(\frac{n+1}{n})}{\frac{1}{n}}} = e > 1. \\ Donc \ \ la \ \ s\acute{e}rie \ \sum \frac{n^n}{n!} \ \ diverge.$

Théorème 2.18 (Critère de Cauchy). Soit $\sum u_n$ une série à termes positifs.

- 1. S'il existe une constante réelle r < 1 et $N \in \mathbb{N}$ tels que $\forall n \geq N$, $\sqrt[n]{u_n} < r < 1$, alors la série $\sum u_n$ converge.
- 2. S'il existe $N \in \mathbb{N}$ tel que $\forall n \geq N$, $\sqrt[n]{u_n} > 1$, alors la série $\sum u_n$ diverge.

En pratique on utilise le résultat suivant.

Corollaire 2.19. Soit $\sum u_n$ une série à terme strictement positifs, telle que $\lim \sqrt[n]{u_n} = l$.

- 1. Si l < 1, alors la série $\sum u_n$ converge.
- 2. Si l > 1, alors la série $\sum u_n$ diverge.

 $Si \ l = 1$ on ne peut pas conclure.

Exemples 2.20.

- $\begin{array}{ll} \text{1. On considère la série } \sum (\frac{2n+1}{3n+4})^n. \\ \text{On a } \lim \sqrt[n]{(\frac{2n+1}{3n+4})^n} = \lim \frac{2n+1}{3n+4} = \frac{2}{3} < 1. \\ \text{Donc la série } \sum (\frac{2n+1}{3n+4})^n \ \text{converge}. \end{array}$
- 2. Soit la série $\sum (\frac{2n+4}{2n+1})^n$. On a $\forall n \in \mathbb{N}, \ \sqrt[n]{(\frac{2n+4}{2n+1})^n} = \frac{2n+4}{2n+1}$. Alors $\forall n \in \mathbb{N}, \ \frac{2n+4}{2n+1} > 1$. Donc la série $\sum (\frac{2n+1}{3n+4})^n$ diverge.

3 Séries à termes quelconques

Lorsqu'une série n'est pas à termes positifs, la première chose à faire est d'étudier la nature de la série des valeurs absolues, ou des modules s'il s'agit de nombres complexes.

Définition 3.1. On dit qu'une série $\sum u_n$ est absolument convergente, si la série $\sum |u_n|$ est convergente.

Exemple 3.2. On considère la série suivante: $\sum_{n>0} \frac{(-1)^n}{n^3}$. $\sum_{n>0} |\frac{(-1)^n}{n^3}| = \sum_{n>0} \frac{1}{n^3}$ c'est une série de Riemann avec $\alpha > 1$. Donc converge. D'où la série $\sum_{n>0} \frac{(-1)^n}{n^3}$ est absolument convergente.

Théorème 3.3. Une série absolument convergente est convergente.

Démonstration: Soit $\sum u_n$ une série de nombres réels. Posons $u_n^+ = \left\{ \begin{array}{l} u_n, & \text{si } u_{n \geq 0} \\ 0, & \text{si } u_n < 0 \end{array} \right.$ et $u_n^- = \left\{ \begin{array}{l} 0, & \text{si } u_{n \geq 0} \\ -u_n, & \text{si } u_n < 0 \end{array} \right.$ Alors $\forall n \in \mathbb{N}, \ 0 \leq u_n^+ \leq |u_n|$ et $0 \leq u_n^- \leq |u_n|$. Si $\sum |u_n|$ converge, alors les séries $\sum u_n^+$ et $\sum u_n^-$ convergent. Or $\sum u_n = \sum u_n^+ - \sum u_n^-$, d'où la série $\sum u_n$ converge.

Remarque 3.4. Il existe des séries convergentes, mais qui ne sont pas absolument convergente.

Exemple 3.5. Soit $\sum u_n$ la série de terme général $u_n = \begin{cases} \frac{1}{k+1}, & \text{si } n = 2k \\ -\frac{1}{k+1}, & \text{si } n = 2k+1 \end{cases}$.

 $S_{2n} = \frac{1}{n+1} \longrightarrow 0 \text{ et } S_{2n+1} = 0.$ $Donc \sum u_n \text{ converge.}$ $Par \text{ contre } \sum_{k=0}^{2n} |u_k| = 2 \sum_{k=1}^{n} (\frac{1}{k}) + \frac{1}{n+1} \longrightarrow +\infty \text{ et } \sum_{k=0}^{2n+1} |u_k| = 2 \sum_{k=1}^{n+1} (\frac{1}{k}) \longrightarrow +\infty.$ $Ce \text{ qui implique que la série } \sum |u_n| \text{ diverge.}$

Théorème 3.6 (Règle d'Abel). On considère la série $\sum_{n\geq n_0} u_n v_n$ telle que:

- 1. $A_n = \sum_{k=n_0}^n v_k$ est bornée.
- 2. (u_n) tend vers 0.
- 3. La série $\sum_{n\geq n_0} |u_{n+1}-u_n|$ converge.

Alors la série $\sum_{n>n_0} u_n v_n$ converge.

Démonstration: Soient $p, q \in \mathbb{N}$ tels que $q > p > n_0$.

$$\sum_{k=p}^{q} u_k v_k = \sum_{k=p}^{q} u_k (A_k - A_{k-1})$$

$$= \sum_{k=p}^{q} A_k (u_k - u_{k+1}) + A_q u_{q+1} - A_{p-1} u_p.$$

On va montrer que $S_n = \sum_{k=n_0}^n u_k v_k$ est une suite de Cauchy.

$$|S_q - S_p| = |\sum_{k=n_0}^q u_k v_k - \sum_{k=n_0}^p u_k v_k|$$

$$= |\sum_{k=p+1}^q u_k v_k|$$

$$= |\sum_{k=p+1}^q A_k (u_k - u_{k+1}) + A_q u_{q+1} - A_p u_{p+1}|$$

$$= \sum_{k=p+1}^q |A_k| |u_k - u_{k+1}| + |A_q| |u_{q+1}| + |A_p| |u_{p+1}|.$$

Puisque $(A_n)_{n\geq n_0}$ est bornée, alors $\exists M\in]0,+\infty[,\,\forall n\geq n_0,\,|A_n|\leq M.$ Donc

$$|S_q - S_p| \le M(\sum_{k=n+1}^q |u_k - u_{k+1}| + |u_{q+1}| + |u_{p+1}|). \tag{2}$$

On a $\lim u_n = 0$, donc

$$\forall \epsilon > 0, \exists N_1 \in \mathbb{N} : n > N_1 \Rightarrow |u_n| < \frac{\epsilon}{3M}. \tag{3}$$

Puisque la série $\sum_{n\geq n_0} |u_{n+1}-u_n|$ converge, alors la suite $\sum_{n=n_0}^p |u_{n+1}-u_n|$ est de Cauchy.

$$\exists N_2 \in \mathbb{N} : q > p > N_2 \Rightarrow \sum_{k=p+1}^q |u_{k+1} - u_k| < \frac{\epsilon}{3M}. \tag{4}$$

Posons $N = max(N_1, N_2)$.

De (2),(3) et (4) on déduit que $q > p > N_2 \Rightarrow |S_q - S_p| < M(\frac{\epsilon}{3M} + \frac{\epsilon}{3M} + \frac{\epsilon}{3M}) = \epsilon$. Donc $S_n = \sum_{k=n_0}^n u_k v_k$ est une suite de Cauchy.

Corollaire 3.7. Soient $\sum_{n\geq n_0} u_n$ et $\sum_{n\geq n_0} v_n$ deux séries telles que:

- 1. $(u_n)_{n\geq n_0}$ est une suite décroissante de réels positifs, et tend vers 0.
- 2. Les sommes partielles de la suite $(v_n)_{n\geq n_0}$ sont bornées.

Alors la série $\sum_{n\geq n_0} u_n v_n$ converge.

4 Séries alternées

Définition 4.1. On appelle série alternée, toute série de la forme $\sum_{n\geq n_0} (-1)^n v_n$ avec $(v_n)_{n\geq n_0}$ est une suite positive.

Exemples 4.2.
$$\sum_{n\geq 1} \frac{(-1)^n}{n}, \sum_{n\geq 1} \frac{(-1)^{n+1}}{n^2}$$
.

Théorème 4.3. Soit $\sum_{n\geq n_0} (-1)^n v_n$ une série alternée. Si $(v_n)_{n\geq n_0}$ est une suite décroissante et tend vers 0, alors la série $\sum_{n\geq n_0} (-1)^n v_n$ converge. De plus $\forall n\geq n_0, \mid \sum_{k=n}^{+\infty} (-1)^k v_k \mid \leq \mid (-1)^n v_n \mid$.