MEMO_MATHS_POP

r

2024-11-11

Contents

1	TD	1:	2			
	1.1	Exercice 1 : Simulation de lois de Weibull	2			
		1.1.1 Q1 : Simulation d'une loi de weibul en passant par la loi exponentielle	2			
		1.1.2 Q2 : Simulation d'une loi de Weibul en passant par la fonction rweibull :	3			
		1.1.3 Q3 : fonction de survie empirique sur l'échantillon	4			
		1.1.4 Q4 : Estimation des paramètres de la loi de Weibull par régression linéaire	5			
		1.1.5 Q5: Estimation par maximum de vraisemblance	7			
		1.1.6 Q6: Estimation par la méthode de Newton-Raphson (en utilisant le package pracma)	7			
		1.1.7 Q7 : Comparaisons graphiques des méthodes	7			
		1.1.8 Q8 : utilisation de fitdistr	8			
		1.1.9 Q9 : utilisation d'une autre méthode de Newton-Raphson	9			
	1.2	Exercice 2 : Le modèle de Gompertz - Makeham	10			
		1.2.1 Q1: Fonction estimation moyenne Monte Carlo	10			
		· /	10			
		1.2.3 Q3 : Fonction de Hasard :	10			
		· · · · · · · · · · · · · · · · · · ·	1			
		· · · · · · · · · · · · · · · · · · ·	14			
		1.2.6 Q7 : Calcul approché de E[T] à partir de S theo	15			
2	TD	2:	.6			
	2.1	Exercice 1:	16			
		2.1.1 Q1 : Importation des données :	16			
		2.1.2 Q2 : Modèle de Gompertz Makeham :	16			
		2.1.3 Q3 : Comparaison de modèles log taux et taux brute	20			
3	TD	TD3: Examen 2019				
	3.1	Exercice 1:	22			
		3.1.1 Q0 : Importation des données	22			
		3.1.2 Q1 : Calculer l'espérance de vie résiduelle aux âges 0,20,40,60,80 ans pour l'année 2015 2	22			
		3.1.3 Q2 : Tracer l'espérance de vie résiduelle à la naissance en fonction de l'année				
		d'observation	23			
			27			
	3.2	,	27			
		•	27			
		3.2.2 Q2 : Application de l'estimation	27			
4	Exa	men 2017:	8			
	4.1	Exercice 1:	28			
		•	28			
	4.2	Q1 : Taux brute de mortalité	28			

		4.2.1 $4.2.2$	Q2:
5	Fon	ction (déjà établies dans le cours
	5.1	Exerc	$\operatorname{ice}^{2} : \ldots \ldots \ldots \ldots \ldots \ldots \ldots 32$
		5.1.1	Q1 : Points fixes
		5.1.2	$ m Q2: \ldots \ldots 35$
6	Gén	éralit	és sur les lois :
	6.1	La loi	exponentielle
		6.1.1	Définition
		6.1.2	Fonction de densité de probabilité (f.d.p)
		6.1.3	Fonction de répartition (F.d.R)
		6.1.4	Espérance et Variance
		6.1.5	Propriétés
	6.2	Loi de	e Weibul:
		6.2.1	Définition
		6.2.2	Fonction de Densité de Probabilité (f.d.p.)
		6.2.3	Fonction de Répartition
		6.2.4	Espérance et Variance
		6.2.5	Propriétés
		6.2.6	Transition de la Loi de Weibull à une Loi Exponentielle
	6.3	La loi	Gamma
		6.3.1	Définition
		6.3.2	Fonction de Densité de Probabilité (f.d.p.)
		6.3.3	Fonction de Répartition
		6.3.4	Espérance et Variance
		6.3.5	Propriétés
		6.3.6	Transition de la Loi Gamma à une Loi Exponentielle
	6.4	Min d	e loi exponentielle
	-		Variable Aléatoire T

1 TD 1:

1.1 Exercice 1 : Simulation de lois de Weibull

1.1.1 Q1 : Simulation d'une loi de weibul en passant par la loi exponentielle

Histogram of w

La fonction muette est tracée sur l'intervalle [0, max(w) + 5] en rouge.

1.1.2 Q2 : Simulation d'une loi de Weibul en passant par la fonction rweibull :

Histogram of w1

1.1.3 Q3 : fonction de survie empirique sur l'échantillon

```
t = sort(w) # ordonner les valeurs simulés par la loi de weibul (des âges sans doute)
Se = 1 - (1:n) / n # fonction de survie empirique
plot(
   c(0, t),
   c(1, Se),
   type = 's',
   xlab = "w",
   ylab = "S",
   main = 'Fonction de survie empirique'
)
```

Fonction de survie empirique

1.1.4 Q4 : Estimation des paramètres de la loi de Weibull par régression linéaire

```
# Adéquation graphique à la loi de Weibull ?
# Observe-t-on une tendance linéaire ?
y = log(-log(Se)) # transformation de la fonction de survie
plot(log(t), y, type = 'p')
plot(function(x)
    log(l) + a * x, -1, 4, add = TRUE, col = 'red')

# Méthode Régression pour estimer les paramètres
logt = log(t[-n])
z = log(-log(Se[-n])) # on enlève la dernière sinon : Inf
reg = lm(z ~ logt)

summary(reg)
```

```
##
## Call:
## lm(formula = z ~ logt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.57105 -0.04235 0.01082 0.05483 0.67684
##
## Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.65722
                         0.04434 -82.47
                                           <2e-16 ***
                         0.01896
                                  74.87
                                           <2e-16 ***
## logt
              1.41920
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1589 on 97 degrees of freedom
## Multiple R-squared: 0.983, Adjusted R-squared: 0.9828
## F-statistic: 5606 on 1 and 97 DF, p-value: < 2.2e-16
y = fitted(reg)
lines(logt, y, col = 'green')
```


1.1.5 Q5: Estimation par maximum de vraisemblance

```
f = function(x)
{
    1 / x - sum(t ^ x * log(t)) / sum(t ^ x) + sum(log(t) / n)
}

MV = uniroot(f, interval = c(a1 - 0.5, a1 + 0.5)) # solution f(a) = 0
a2 = MV$root
12 = n / sum(t ^ a2)

cat("Régression linéaire : " , c(a1, l1), "\n" , "Méthode de vraisemblance : " ,c(a2, l2), "\n", "Valeux

## Régression linéaire : 1.419203 0.02580405
## Méthode de vraisemblance : 1.456527 0.02303103
## Valeur exacte : 1.5 0.02
# c(a1, l1) # reg.
# c(a2, l2) # MV1
# c(a, l) # val. exactes
```

1.1.6 Q6: Estimation par la méthode de Newton-Raphson (en utilisant le package pracma)

```
#install.packages(pracma)
library(pracma)

## Warning: le package 'pracma' a été compilé avec la version R 4.3.3

n4 = newtonRaphson(f, a1)
a3 = n4$root
13 = n / sum(t ^ a3)

cat("Valeur Newton-Raphson : ", c(a3, 13) )

## Valeur Newton-Raphson : 1.456525 0.0230311

# c(a3, 13) # Newton-Raphson
```

1.1.7 Q7 : Comparaisons graphiques des méthodes

```
# graphes :
plot(
    c(0, t),
    c(1, Se),
    type = 's',
    col = 'blue',
    xlab = "w",
    ylab = "S",
    main = 'Fonction de survie'
)
Stheo = exp(-1 * t ^ a)
Stheoestime1 = exp(-11 * t ^ a1) # méthode régression
Stheoestime2 = exp(-12 * t ^ a2) # méthode MV1
Stheoestime3 = exp(-13 * t ^ a3) # méthode raphson (pracma)
lines(t, Stheo, col = 'red')
```

```
lines(t, Stheoestime1, col = 'green')
lines(t, Stheoestime2, col = 'darkgoldenrod2')
lines(t, Stheoestime3, col = 'darkorchid1')

legend(
    22,
    0.8,
    legend = c("S_obs", "S_theo", "S_Reg", "S_MV1", "S_MV2"),
    col = c("blue", "red", "green", "darkgoldenrod2", 'darkorchid1'),
    lty = 1,
    cex = 0.8
)
```

Fonction de survie

1.1.8 Q8: utilisation de fitdistr

```
library(MASS)
p = fitdistr(w, "weibull")
#p
a5 = p$estimate[1]
L = p$estimate[2]
15 = L ^ (-a5)
c(a5, 15)
```

1.1.8.1 Estimation fitdistr

```
## shape scale
```

```
# en utilisant les valeurs initiales estimées précédemment :
p = fitdistr(w, start = list(shape = a1, scale = l1 ^ (-1 / a1)), "weibull")
a6 = p$estimate[1]
L = p$estimate[2]
16 = L ^ (-a6)
c(a6, 16)
```

1.1.8.2 Utilisation des valeurs initiales estimées précédement :

```
## shape scale
## 1.4565255 0.0230311
```

1.1.9 Q9 : utilisation d'une autre méthode de Newton-Raphson

```
# remarque : autre algorithme pour Newton-Raphson -----
# Methode de Newton-Raphson
# https://rpubs.com/aaronsc32/newton-raphson-method
library(numDeriv)
newton.raphson \leftarrow function(f, a, b, tol = 1e-5, n = 1000) {
  \# require(numDeriv) \# Package for computing f'(x)
  x0 <- a # Set start value to supplied lower bound
  k <- n # Initialize for iteration results
  # Check the upper and lower bounds to see if approximations result in O
  fa <- f(a)
  if (fa == 0.0) {
    return(a)
  }
  fb \leftarrow f(b)
  if (fb == 0.0) {
    return(b)
  for (i in 1:n) {
    dx \leftarrow genD(func = f, x = x0)D[1] # First-order derivative <math>f'(x0)
    x1 \leftarrow x0 - (f(x0) / dx) \# Calculate next value x1
    k[i] <- x1 # Store x1
    # Once the difference between xO and x1 becomes sufficiently small, output the results.
    if (abs(x1 - x0) < tol) {
     root.approx <- tail(k, n = 1)</pre>
     res <-
       list('root approximation' = root.approx,
             'iterations' = k)
     return(res)
    }
    # If Newton-Raphson has not yet reached convergence set x1 as x0 and continue
```

```
print('Too many iterations in method')
}

# avec Newton-Raphson (voir fonction ci-dessus)
a3 = newton.raphson(f, a1 - 0.5, a1 + 0.5)
a3 = a3$`root approximation`
13 = n / sum(t ^ a3)
c(a3, 13) # MV2
```

1.2 Exercice 2 : Le modèle de Gompertz - Makeham

1.2.1 Q1: Fonction estimation moyenne Monte Carlo

```
# fonction d'estimation de moyenne par Méthode Monte Carlo
# avec intervalle de confiance au niveau de confiance 1- alpha
MCmean = function(x, alpha)
{
    n = length(x)
    m = mean(x)
    S = sd(x)
    t = qnorm(1 - alpha / 2)
    Iinf = m - t * S / sqrt(n)
    Isup = m + t * S / sqrt(n)
    data.frame(m, Iinf, Isup, S, n, alpha)
}
```

1.2.2 Q2 : Paramètres estimés (données)

```
# paramètres estimés :
a = 7.6655e-04
b = 6.1041e-06
l = 0.11511
g = exp(l)
```

1.2.3 Q3: Fonction de Hasard:

```
# Fonctiond de hasard : ----
# fonction de hasard h(t) = a + b *g^t
h = function(t)
{
    a + b * g ^ t
}
t = 0:110
plot(t, h(t), type = 'l', main = 'fonction de hasard de G.M.')
```

fonction de hasard de G.M.

1.2.4 Q4: Simulation d'échantillon

```
# simulation échantillon de Durées de vie selon le modèle de Gompertz - Makeham
n = 1e6 # taille de l'échantillon
X = rexp(n, a) # exponentielle
Y = 1 / 1 * log(1 - 1 / b * log(1 - runif(n))) # Gompertz en inversant la fonction de répartition
T = pmin(X, Y)
hist(X, 100)
```

Histogram of X

hist(Y, 100)

Histogram of Y

hist(T, nclass = 100)

Histogram of T

1.2.5 Q5: Fonction de survie

```
#fonction de survie S = S_T = S_X * S_Y
Stheo=function(x)
{exp(-a*x-b/l*(g^x-1))}
x=0:110
plot(x,Stheo(x),type='l')
```


$1.2.6~~\mathrm{Q7}:$ Calcul approché de $\mathrm{E}[\mathrm{T}]$ à partir de S theo

```
x = 0:110
sum(Stheo(x))
sum(Stheo(x + 1))
sum(Stheo(x + 0.5))

(sum(Stheo(x))+sum(Stheo(x+1)))/2

# mediane ?
m=sort(T)[n/2]
m
mean(T<=m)
# ou bien :
median(T)</pre>
```

2 TD 2:

2.1 Exercice 1:

2.1.1 Q1 : Importation des données :

```
# Importation des données : ----
## France, Total Population, Deaths (period 1x1),
#Last modified: 12 Aug 2022; Methods Protocol: v6 (2017)
De = read.csv("DATA/DeathsFrance2022.csv", header = TRUE, sep = ";")
#str(De)
#De[1, ]
#unique(De$Year)

# Remarque : la classe d'âge "110" est en réalité "110 et plus".
E = read.csv("DATA/ExposuresFrance2022.csv", header = TRUE, sep = ";")
# str(E)
```

2.1.2 Q2 : Modèle de Gompertz Makeham :

```
# Adéquation graphique (linéaire) au modèle de Gompertz-Makeham + modèle linéaire
# on se restreint aux âges de 0 à 100 ans, et on considère l'année 2018
N = E$Total[(E$Year == 2018) & (E$Age < 101)]
D = De$Total[(De$Year == 2018) & (De$Age < 101)]
ages = 0:100 #ages pris en compte dans le modèle
q = D / N # taux bruts de mortalité (population totale)
plot(ages, q, type = 'l')</pre>
```



```
L = length(q)
## Calcul du modèle :
t = ages + 1 #indices
y = log(q[t + 1] - q[t])
2.1.2.1 Ajustement linéaire :
## Warning in log(q[t + 1] - q[t]): Production de NaN
#y
\# problème si q n'est pas strictement croissante partout \Longrightarrow y est infini !
\# ==> on garde uniquement les t t.q. y soit fini <=> q[t+1]-q[t]>0
s = which(q[t + 1] - q[t] > 0)
reg1 = lm(y ~ ages, subset = s)
summary(reg1)
##
## Call:
## lm(formula = y ~ ages, subset = s)
## Residuals:
##
        Min
                    1Q
                        Median
                                        ЗQ
                                                 Max
```

```
## -2.65265 -0.31645 0.07764 0.31218 1.78217
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -12.884162
                           0.167075 -77.12
                                              <2e-16 ***
## ages
                0.093243
                           0.002762
                                      33.76
                                              <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7001 on 87 degrees of freedom
## Multiple R-squared: 0.9291, Adjusted R-squared: 0.9282
## F-statistic: 1139 on 1 and 87 DF, p-value: < 2.2e-16
plot(ages[s], y[s], type ='1')
yf = fitted(reg1, subset = s)
lines(ages[s], yf, col = 'red')
```



```
## Ajustement du modèle ----
## Ajustement du modèle de Makeham via régression linéaire y= a x + b
a = reg1$coefficients[2]
b = reg1$coefficients[1]

#### on en déduit les paramètres du modèle de G.M. :
gamma = exp(a)
beta = exp(b) * log(gamma) / (gamma - 1) ^ 2
```

```
# pour alpha, a priori, on pourrait prendre n'importe quel âge.
# Voyons si c'est le cas :
alpha0 = -log(1 - q) - beta / log(gamma) * gamma ^ ages * (gamma - 1)
plot(ages, alpha0) # variations importantes
```


2.1.2.2 Estimation des paramètres via modélisation linéaire

plot(20:60, alpha0[20:60]) # on se restreint sur un domaine où les variations sont moindres

alpha = mean(alpha0[25:55]) # difficile de choisir à partir des données...on prend une moyenne (par ex

2.1.2.3 Les paramètres finaux du modèles

```
## alpha beta gamma
## (Intercept) 6.515038e-05 2.477741e-05 1.097728
```

2.1.3 Q3: Comparaison de modèles log taux et taux brute

```
0.30,
legend = c("q_x bruts", "q_x Reg"),
col = c("blue", "red"),
lty = 1,
cex = 0.8
)
```

Ajustement des taux de mortalité


```
## Comparaison des log taux bruts et modèle G-M : ----
# comparaison entre log taux bruts et modèle de Makeham avec ces paramètres
plot(ages,
     log(q),
     type = '1',
    main = 'Ajustement des log taux de mortalité',
     col = 'blue') # q_x observés
qM1 = 1 - exp(-alpha) * exp(-beta / log(gamma) * gamma ^ ages * (gamma -1)) # <math>q_x donnés par le modèle
lines(ages, log(qM1), col = 'red')
legend(
  20,
  0.30,
  legend = c("q_x bruts", "q_x Reg"),
  col = c("blue", "red"),
  lty = 1,
  cex = 0.8
```

Ajustement des log taux de mortalité

3 TD3: Examen 2019

3.1 Exercice 1:

3.1.1 Q0 : Importation des données

```
# Importation des données :
expofrance <- read.csv2("DATA/ExposuresFrance2022.csv")
deathfrance <- read.csv2("DATA/DeathsFrance2022.csv")</pre>
```

3.1.2 Q1 : Calculer l'espérance de vie résiduelle aux âges 0,20,40,60,80 ans pour l'année 2015

```
# Fonction de l'espérance de de vie résiduelles
esp_vie_resid <- function(table, year) {
  table = table[table$Year == year,]
  table[,3:4] <- apply(table[,3:4], 2, as.numeric)
  esp_age_homme = c()
  esp_age_femme = c()
  for (i in 1:nrow(table)) {
    esp_age_homme[i] <- 1 / table[i,4] * sum(table[(i+1):nrow(table),4])
    esp_age_femme[i] <- 1 / table[i,3] * sum(table[(i+1):nrow(table),3])
}

df = as.data.frame(cbind((1:nrow(table)-1),esp_age_homme, esp_age_femme))
  colnames(df) = c("Age", "Homme", "Femme")</pre>
```

```
return(df)
}
esp_vie_resid(expofrance, 2015)[1+c(0,20,40,60,80),]
```

```
## Age Homme Femme
## 1 0 83.011704 92.038737
## 21 20 60.871152 69.774362
## 41 40 37.075480 42.160198
## 61 60 17.341041 20.666607
## 81 80 7.075688 9.529193
```

3.1.3 Q2 : Tracer l'espérance de vie résiduelle à la naissance en fonction de l'année d'observation

```
n = 2016-1816 + 1
esp_0 = as.data.frame(cbind(1816:2016, rep(0,n), rep(0,n)), nrow = n, ncol = 3)
colnames(esp_0) = c("Year", "Homme", "Femme")
esp_20 = as.data.frame(cbind(1816:2016, rep(0,n), rep(0,n)), nrow = n, ncol = 3)
colnames(esp_20) = c("Year", "Homme", "Femme")
esp_40 = as.data.frame(cbind(1816:2016, rep(0,n), rep(0,n)), nrow = n, ncol = 3)
colnames(esp_40) = c("Year", "Homme", "Femme")
esp_{60} = as.data.frame(cbind(1816:2016, rep(0,n), rep(0,n)), nrow = n, ncol = 3)
colnames(esp_60) = c("Year", "Homme", "Femme")
for (i in 1816:2016){
  esp_0[i-1815,2:3] = esp_vie_resid(expofrance, i)[1+c(0),2:3]
  esp_{20}[i-1815,2:3] = esp_{vie}_{resid}(expofrance, i)[1+c(20),2:3]
  esp_{40}[i-1815,2:3] = esp_{vie}_{resid}(expofrance, i)[1+c(40),2:3]
  esp_{60}[i-1815,2:3] = esp_{vie}_{resid}(expofrance, i)[1+c(60),2:3]
}
x = 1816:2016
plot(x, esp_0$Homme, type = "1", col = "blue",
     xlab = "Année", ylab = "Espérance de vie résiduelle âge 0",
     main = "Espérance de vie résiduelle par année à 0 ans")
lines(x, esp_0$Femme, col = "red")
legend("topleft", legend = c("Homme", "Femme"), col = c("blue", "red"), lty = 1)
```

Espérance de vie résiduelle par année à 0 ans

Espérance de vie résiduelle par année à 20 ans

Espérance de vie résiduelle par année à 40 ans

Espérance de vie résiduelle par année à 60 ans

- 3.1.4 Q3 : Commentaire de courbe
- 3.2 Exercice 2 (13 du cours) :

3.2.1 Q1 : Simulation de l'énoncé

```
lambda = 1  # paramètre de la loi de Ci et Xi
beta = 0.5  # paramètre de la loi de Ci
n = 1000000  # Nombre de simulations
Xi = rexp(n,lambda)  # Simulation de Xi
Ci = rexp(n, beta*lambda)  # Simulation de Ci
Ti = pmin(Xi,Ci)  # Simulation de Ti
Di = Xi <= Ci  ## Simulation de Di</pre>
```

3.2.2 Q2: Application de l'estimation

```
# Méthode d'estimations possible
lambda_chap = sum(Di)/sum(Ti)
beta_chap = n/sum(Di) - 1

cat("Lambda estimé : ", lambda_chap , "\n",
    "Beta estimé : ", beta_chap , "\n",
    "Lambda réel : ", lambda , "\n",
    "Beta réel : ", beta , "\n")
```

```
## Lambda estimé : 0.9983694
## Beta estimé : 0.499383
## Lambda réel : 1
## Beta réel : 0.5
```

4 Examen 2017:

4.1 Exercice 1:

4.1.1 Q0 : Importation des données

```
E <- read.csv2("DATA/ExposuresFrance2022.csv")
D <- read.csv2("DATA/DeathsFrance2022.csv")

TABLE_D <- D[D$Year == 1900,] # nombre de décès
TABLE_E <- E[E$Year == 1900,] # nombre individus</pre>
```

4.2 Q1 : Taux brute de mortalité

```
q = as.numeric(TABLE_D$Total)/as.numeric(TABLE_E$Total)
q = q[1:106] # il y a des valeurs manquantes sinon
ages = 0:105
plot(ages, q, type = 'l') # On affiche le graphique
```



```
# On estime le taux brut de mortalité
t = ages + 1
y = \log(q[t+1] - q[t])
## Warning in log(q[t + 1] - q[t]): Production de NaN
s = which(q[t + 1] - q[t] > 0)
reg1 = lm(y - ages, subset = s)
summary(reg1)
##
## Call:
## lm(formula = y ~ ages, subset = s)
##
## Residuals:
##
       \mathtt{Min}
                 1Q Median
                                    3Q
                                            Max
## -2.51275 -0.41928 0.04383 0.47587 2.22722
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9.840049
                         0.253059 -38.88
                                              <2e-16 ***
                          0.003834
                                    17.81
                                              <2e-16 ***
## ages
              0.068274
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9057 on 75 degrees of freedom
## Multiple R-squared: 0.8087, Adjusted R-squared: 0.8062
## F-statistic: 317.1 on 1 and 75 DF, p-value: < 2.2e-16
# Récupération des paramètres
a = reg1$coefficients[2]
b = reg1$coefficients[1]
#### on en déduit les paramètres du modèle de G.M. :
gamma = exp(a)
beta = exp(b) * log(gamma) / (gamma - 1) ^ 2
# pour alpha, a priori, on pourrait prendre n'importe quel âge.
# Voyons si c'est le cas :
alpha0 = -log(1 - q) - beta / log(gamma) * gamma ^ ages * (gamma - 1)
## Warning in log(1 - q): Production de NaN
plot(ages, alpha0) # variations importantes
```



```
alpha = mean(alpha0[25:60])
param = data.frame(alpha = alpha,
beta = beta,
gamma = gamma)
param
##
                                                                                                                    alpha
                                                                                                                                                                                                                                          gamma
## (Intercept) -0.002836237 0.0007285295 1.070658
4.2.1 Q2:
plot(ages,
q,
type = '1',
main = 'Ajustement des taux de mortalité',
col = 'blue') # q_x observés
21
## [1] 21
qM1 = 1 - exp(-alpha) * exp(-beta / log(gamma) * gamma ^ ages * (gamma - ages * (gamma - ages * (gamma - ages * (gamma - ages * (gamma) * gamma ^ ages * (gamma - ages * (gamma) * gamma ^ ages * (gamma) * (gamm
1)) # q_x donnés par le modèle
lines(ages, qM1, col = 'red')
legend(
20,
0.30,
legend = c("q_x bruts", "q_x Reg"),
```

```
col = c("blue", "red"),
lty = 1,
cex = 0.8)
```

Ajustement des taux de mortalité

Q3 : commentaires

4.2.2 Q4:

5 Fonction déjà établies dans le cours

```
MCmean = function(x, alpha)
{
n = length(x)
m = mean(x)
S = sd(x)
t = qnorm(1 - alpha / 2)
Iinf = m - t * S / sqrt(n)
Isup = m + t * S / sqrt(n)
data.frame(m, Iinf, Isup, S, n, alpha)
}
```

```
# Paramètres estimés :

n = 10^6

a = 7.10^(-3)

b = 10^(-4)
```

```
gamma = 1.11
1 = log(gamma)
\# Simulation de X
X = 1 / 1 * log(1 - 1 / b * log(1 - runif(n)))
# Simulation de Y
1 = \log(1.13)
Y = 1 / 1 * log(1 - 1 / b * log(1 - runif(n)))
# Estimations
MCmean(X, 0.05)
5.0.0.1 Q4:
                 Iinf
                          Isup
                                S
                                            n alpha
## 1 61.15769 61.13402 61.18135 12.07394 1000000 0.05
MCmean(Y, 0.05)
                          Isup S
                Iinf
                                            n alpha
        m
## 1 53.47691 53.45661 53.49721 10.35596 1000000 0.05
MCmean(X>Y, 0.05)
                  Iinf
                            Isup
                                    S
                                                n alpha
           m
## 1 0.710154 0.7092648 0.7110432 0.453691 1000000 0.05
5.1 Exercice 2:
5.1.1 Q1: Points fixes
Si x = 1 on a un point fixe
f(x) = x
5.1.2 Q2:
Analyse -> Stabilité à termes de la série
x0 = 0.12
r = 2
n = 1000
x_n_r \leftarrow function(x0,r,n)
 x_n = x0
 for (i in 1:n){
   x_n[i+1] = x_n[i]*exp(r*(1-x_n[i]))
tps = seq(0,n)
plot(tps ,x_n, 'l', main = paste("Pour r = ", r))
for (r in seq(0,4,0.25)){
 x_n_r(x0,r,n)
```

6 Généralités sur les lois :

6.1 La loi exponentielle

6.1.1 Définition

La loi exponentielle est une loi de probabilité continue qui est souvent utilisée pour modéliser le temps d'attente entre des événements indépendants qui se produisent à un taux constant.

6.1.2 Fonction de densité de probabilité (f.d.p)

Soit X une variable aléatoire suivant une loi exponentielle de paramètre $\lambda > 0$. La fonction de densité de probabilité est donnée par :

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0, \\ 0 & \text{si } x < 0. \end{cases}$$

6.1.3 Fonction de répartition (F.d.R)

La fonction de répartition $F_X(x)$ de la loi exponentielle est :

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{si } x \ge 0, \\ 0 & \text{si } x < 0. \end{cases}$$

6.1.4 Espérance et Variance

Pour une variable aléatoire X suivant une loi exponentielle de paramètre λ :

• Espérance : $\mathbb{E}(X) = \frac{1}{\lambda}$

• Variance : $Var(X) = \frac{1}{\lambda^2}$

6.1.5 Propriétés

• La loi exponentielle est sans mémoire : $P(X > s + t \mid X > t) = P(X > s)$ pour tout $s, t \ge 0$.

• La somme de n variables aléatoires indépendantes et identiquement distribuées selon une loi exponentielle de paramètre λ suit une loi Gamma de paramètres n et λ .

6.2 Loi de Weibul:

6.2.1 Définition

La loi de Weibull est une loi de probabilité continue utilisée pour modéliser la fiabilité des systèmes et le temps jusqu'à la défaillance.

6.2.2 Fonction de Densité de Probabilité (f.d.p.)

Soit X une variable aléatoire suivant une loi de Weibull de paramètres k>0 (paramètre de forme) et $\lambda>0$ (paramètre d'échelle). La fonction de densité de probabilité est donnée par :

$$f_X(x) = \begin{cases} \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k} & \text{pour } x \geq 0 \\ 0 & \text{pour } x < 0 \end{cases}$$

6.2.3 Fonction de Répartition

La fonction de répartition (F.d.R.) de X est :

$$F_X(x) = P(X \le x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 - e^{-(x/\lambda)^k} & \text{si } x \ge 0 \end{cases}$$

33

6.2.4 Espérance et Variance

L'espérance (ou moyenne) $\mathbb{E}(X)$ et la variance $\mathrm{Var}(X)$ d'une loi de Weibull de paramètres k et λ sont :

$$\mathbb{E}(X) = \lambda \Gamma \left(1 + \frac{1}{k} \right)$$

$$\mathrm{Var}(X) = \lambda^2 \left[\Gamma \left(1 + \frac{2}{k} \right) - \left(\Gamma \left(1 + \frac{1}{k} \right) \right)^2 \right]$$

 $\operatorname{var}(\Lambda) = \lambda^{-1} \left[\frac{1}{k} \left(1 + \frac{1}{k} \right) - \left(1 \left(1 + \frac{1}{k} \right) \right) \right]$ où $\Gamma(\cdot)$ est la fonction Gamma.

6.2.5 Propriétés

- Modélisation flexible : La loi de Weibull peut modéliser différents comportements de défaillance :
 - -k < 1: Taux de défaillance décroissant (période de jeunesse).
 - -k=1: Taux de défaillance constant (équivalent à la loi exponentielle).
 - -k > 1: Taux de défaillance croissant (période de vieillissement).
- Relation avec d'autres lois : La loi exponentielle est un cas particulier de la loi de Weibull avec k=1.

6.2.6 Transition de la Loi de Weibull à une Loi Exponentielle

La loi de Weibull devient une loi exponentielle lorsque le paramètre de forme k est égal à 1. En effet, pour k = 1, la fonction de densité de probabilité de la loi de Weibull devient :

$$f_X(x) = \frac{1}{\lambda} e^{-(x/\lambda)}$$
 pour $x \ge 0$

Ce qui correspond à la fonction de densité de probabilité d'une loi exponentielle de paramètre λ .

6.3 La loi Gamma

6.3.1 Définition

La loi Gamma est une loi de probabilité continue utilisée pour modéliser le temps jusqu'à la réalisation de n événements indépendants et identiquement distribués (i.i.d.) suivant une loi exponentielle.

6.3.2 Fonction de Densité de Probabilité (f.d.p.)

Soit X une variable aléatoire suivant une loi Gamma de paramètres $\alpha > 0$ (paramètre de forme) et $\beta > 0$ (paramètre d'échelle). La fonction de densité de probabilité est donnée par :

$$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$
 pour $x \ge 0$

6.3.3 Fonction de Répartition

La fonction de répartition (F.d.R.) de X est :

$$F_X(x) = P(X \le x) = \int_0^x \frac{\beta^{\alpha}}{\Gamma(\alpha)} t^{\alpha - 1} e^{-\beta t} dt$$

6.3.4 Espérance et Variance

L'espérance (ou moyenne) $\mathbb{E}(X)$ et la variance $\operatorname{Var}(X)$ d'une loi Gamma de paramètres α et β sont :

$$\mathbb{E}(X) = \frac{\alpha}{\beta}$$

$$Var(X) = \frac{\alpha}{\beta^2}$$

6.3.5 Propriétés

- Somme d'exponentielles : Si $X_1, X_2, ..., X_n$ sont n variables aléatoires indépendantes de paramètres λ suivant une loi exponentielle, alors la somme $S = X_1 + X_2 + ... + X_n$ suit une loi Gamma de paramètres $\alpha = n$ et $\beta = \lambda$.
- Additivité : Si X et Y sont deux variables aléatoires indépendantes suivant des lois Gamma de mêmes paramètres d'échelle β et de paramètres de forme α_1 et α_2 respectivement, alors X+Y suit une loi Gamma de paramètres $\alpha=\alpha_1+\alpha_2$ et β .

6.3.6 Transition de la Loi Gamma à une Loi Exponentielle

La loi exponentielle est un cas particulier de la loi Gamma. En effet, lorsque le paramètre de forme α est égal à 1, la loi Gamma devient une loi exponentielle. Plus précisément, pour $\alpha = 1$ et $\beta = \lambda$, la fonction de densité de probabilité de la loi Gamma devient :

$$f_X(x) = \frac{\lambda^1}{\Gamma(1)} x^{1-1} e^{-\lambda x} = \lambda e^{-\lambda x} \quad \text{pour } x \ge 0$$

Ce qui correspond à la fonction de densité de probabilité d'une loi exponentielle de paramètre λ .

6.4 Min de loi exponentielle

6.4.1 Variable Aléatoire T

Considérons deux variables aléatoires indépendantes X_1 et X_2 , suivant des lois exponentielles de paramètres λ_1 et λ_2 respectivement. Soit $T = \min(X_1, X_2)$ la variable aléatoire représentant le minimum de X_1 et X_2 . Pour déterminer la fonction de répartition (F.d.R.) de T, nous calculons $P(T \le t)$.

$$P(T \le t) = 1 - P(T > t)$$

Puisque T est le minimum de X_1 et X_2 , T>t si et seulement si $X_1>t$ et $X_2>t$. Étant donné que X_1 et X_2 sont indépendants :

$$P(T > t) = P(X_1 > t) \cdot P(X_2 > t)$$

Pour des variables exponentielles, la probabilité que X_i soit supérieure à t est :

$$P(X_i > t) = e^{-\lambda_i t}$$

Ainsi,

$$P(T>t)=e^{-\lambda_1 t}\cdot e^{-\lambda_2 t}=e^{-(\lambda_1+\lambda_2)t}$$

Donc, la fonction de répartition de T est :

$$F_T(t) = P(T < t) = 1 - e^{-(\lambda_1 + \lambda_2)t}$$
 pour $t > 0$

Ainsi, T suit une loi exponentielle de paramètre $\lambda_1 + \lambda_2$. En d'autres termes, si T est le minimum entre deux variables aléatoires exponentielles indépendantes X_1 et X_2 , alors T suit une loi exponentielle avec un paramètre qui est la somme des paramètres des deux lois exponentielles initiales.