Трапеция.

Задание 23. Задачи на вычисление. ОГЭ 2022.

Сумма углов, прилегающих к боковой стороне трапеции равна 180°:

$$L1 + L2 = L3 + L4 = 180^{\circ};$$

Катет прямоугольного треугольника, лежащего против угла 30^{0} , равен половине гипотенузы: $BC = \frac{1}{2}AB$

Если у треугольника два угла равны, то этот треугольник является равнобедренным.

Теорема Пифагора: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. $c^2 = a^2 + b^2$

$$sin \alpha = \frac{a}{c} = \frac{\text{противолежащий катет}}{\text{гипотенуза}}$$

1. Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 150°, а CD=26.

Дано: трапеция ABCD,

$$LABC=45^{\circ}$$
, $LBCD=150^{\circ}$

CD=26

Найти: АВ

5) По теореме Пифагора: $AB^2 = KA^2 + BK^2$

Решение: 1)Проведём высоты СН и ВК;

2) BC||AD,
$$\bot$$
BCD+ \bot ADC = 180°
 \bot ADC = 180° - \bot BCD = 180° - 150° = 30°

- 3) В Δ СНD \bot H=90°, \bot D=30°, СН= $\frac{1}{2}$ CD = 13 по свойству катета, лежащего напротив угла в 30°
- 4) В Δ ВКА \bot К=90°, \bot КВА= 90° 45° = 45°, \bot КАВ = 45° Следовательно, Δ ВКА равнобедренный, ВК=КА=13.

Ответ:
$$AB = 13\sqrt{2}$$

$$AB^2 = 13^2 + 13^2$$

$$AB^2 = 169 + 169$$

$$AB^2 = 338$$

$$AB = \sqrt{338}$$

$$AB = \sqrt{169 \cdot 2}$$

$$AB=13\sqrt{2}$$

2. Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 30° и 120°, а CD=25.

Дано: трапеция ABCD, ∟ABC=30°, ∟BCD=120° CD=25

Найти: АВ

Решение: 1)Проведём высоты СН и ВК;

2)
$$BC|AD$$
, $\Box BCD + \Box CDA = 180^{\circ}$
 $\Box CDA = 180^{\circ} - \Box BCD = 180^{\circ} - 120^{\circ} = 60^{\circ}$

3) B
$$\triangle$$
CHD: \bot H=90°, $\sin \bot$ D= $\frac{CH}{CD}$,

CH=CD $\sin \bot$ D = $25\sin 60^{\circ}$ = $25 \cdot \frac{\sqrt{3}}{2} = \frac{25\sqrt{3}}{2}$

4) В Δ ВКА: \bot К=90°, ВК=СН= $\frac{25\sqrt{3}}{2}$ \bot КАВ = 30°, по свойству катета, лежащего напротив угла в 30° AВ=2ВК= $2\cdot\frac{25\sqrt{3}}{2}$ = $25\sqrt{3}$

Ответ: $AB = 25\sqrt{3}$

4. Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=24, BF=10.

Дано: трапеция ABCD, AF, BF – биссектрисы ∟А и ∟В, AF=24, BF=10

Найти: АВ

Решение: 1) AF - биссектриса \bot A, \bot 1 = \bot 2

BF – биссектриса LB, L3 = L4

2) ∟A+∟B=180° по свойству углов прилежащих к боковой стороне трапеции;

3)
$$2 \bot 1 + 2 \bot 3 = 180^{\circ}$$
;
 $\bot 1 + \bot 3 = 90^{\circ}$, следовательно $\bot AFB = 90^{\circ}$

4) По теореме Пифагора: $AB^2 = AF^2 + BF^2$

$$AB = \sqrt{24^2 + 10^2} = \sqrt{576 + 100} = \sqrt{676} = 26$$

Ответ: AB = 26

5. Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=15, BF=8.

Дано: трапеция ABCD, AF, BF – биссектрисы ∟А и ∟В, AF=15, BF=8

Найти: АВ

Решение: 1) AF - биссектриса \bot A, \bot 1 = \bot 2

BF – биссектриса LB, L3 = L4

2) ∟A+∟B=180° по свойству углов прилежащих к боковой стороне трапеции;

3)
$$2 \bot 1 + 2 \bot 3 = 180^{\circ}$$
;
 $\bot 1 + \bot 3 = 90^{\circ}$, следовательно $\bot AFB = 90^{\circ}$

4) По теореме Пифагора: $AB^2 = AF^2 + BF^2$

$$AB = \sqrt{15^2 + 8^2} = \sqrt{225 + 64} = \sqrt{289} = 17$$

Ответ: AB = 17

7. Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.

Дано: трапеция ABCD, AD||BC||EF, AD=42, BC=14, CF:DF=4:3

Найти: EF

Решение: 1) Пусть CF=4x, DF=3x

Через точку В проведём прямую, параллельную CD;

2) AL=42-14=28, BL=CD=4x+3x=7x;

3) ∆ABL∞∆EBK по 2 углам (∟В – общий, ∟ВКЕ=∟ВLА по свойству соответственных углов при AD∥EF и секущей BL);

4)
$$\frac{AL}{EK} = \frac{BL}{BK}$$
; $\frac{28}{EK} = \frac{7x}{4x}$; $EK = \frac{28 \cdot 4}{7} = 16$
EF=EK+KL=16+28=44

Ответ: ЕF=44

8. Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=44, BC=24, CF:DF=3:1.

Дано: трапеция ABCD, AD||BC||EF, AD=44, BC=24, CF:DF=3:1

Найти: EF

Решение: 1) Пусть CF=3x, DF=x

Через точку В проведём прямую, параллельную CD;

2) AL=44-24=20, BL=CD=3x+x=4x;

3) ∆ABL∞∆EBK по 2 углам (∟В – общий, ∟ВКЕ=∟ВLА по свойству соответственных углов при AD∥EF и секущей BL);

4)
$$\frac{AL}{EK} = \frac{BL}{BK}$$
; $\frac{20}{EK} = \frac{4x}{3x}$; $EK = \frac{20 \cdot 3}{4} = 15$
EF=EK+KL=15+20=35

Ответ: EF=35

2. Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB=11, DC=22, AC=27

Дано: $AB \parallel DC$, AC и BD пересекаются в точке M, AB=11, DC=22, AC=27

Найти: МС

Решение:

1) Рассмотрим Δ AMB и Δ CMD:

∟ AMB= ∟CMD по свойству вертикальных углов, ∟MDC = ∟ABM по свойству накрест лежащих углов при AB || DC и секущей **BD**

Δ AMB∾ΔCMD

$$2) \frac{AB}{DC} = \frac{AM}{MC} = \frac{MB}{MD}$$

$$\frac{11}{22} = \frac{x}{27 - x}$$

$$\frac{1}{2} = \frac{x}{27 - x}$$

$$2x = 27-x$$

$$2x + x = 27$$

$$3x = 27$$

$$x = 9$$

$$MC = 27 - x = 27 - 9$$

$$MC=18$$

Ответ: 18

Задание 23. Задачи на вычисления.

ОГЭ по математике. 9 класс. 2022 год.

Треугольник.

Задание 23. Задачи на вычисление.

Теория к задаче:

Сумма углов треугольника равна 180⁰

Теорема синусов:

 α

 \boldsymbol{a}

Стороны треугольника пропорциональны синусам противолежащих углов:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

1. Углы В и С треугольника АВС равны соответственно 71° и 79°. Найдите ВС, если радиус окружности, описанной около треугольника АВС, равен 8.

Дано: $\triangle ABC$, $\bot B=71^{\circ}$, $\bot C=79^{\circ}$,

окружность описана около ΔABC, R=8

Найти: ВС

Решение:

1) Суймта орговето вумом в нушко вртавана од 80 ника:

$$\triangle A = 180^{\circ} - (\triangle B + \triangle C) =$$

= $180^{\circ} - (71^{\circ} + 79^{\circ}) = 180^{\circ} - 150^{\circ} = 30^{\circ}$

$$=2.8$$
 BC = 16 $sinpo$ тиволежащих углов: $BC = 1.6$

$$\frac{sinA}{sinA} = \frac{AC}{sinB} = \frac{AB}{sinC} = 2$$

твет: ВС = 8

2. Углы В и С треугольника АВС равны соответственно 61° и 89°. Найдите ВС, если радиус окружности, описанной около треугольника АВС, равен 10.

Дано: ∆ABC, ∟B=61°, ∟C=89°,

окружность описана около ΔABC, R=10

Найти: ВС

Решение:

1) По теореме о сумме углов треугольника:

$$\triangle A = 180^{\circ} - (\triangle B + \triangle C) =$$

 $= 180^{\circ} - (61^{\circ} + 89^{\circ}) = 180^{\circ} - 150^{\circ} = 30^{\circ}$

2) По теореме синусов: $\frac{BC}{sinA} = 2R$

$$BC = 2R \sin A = 2.10 \sin 30^{\circ} = 2.10 \cdot \frac{1}{2} = 10$$

Ответ: ВС = 10

Теория к задаче:

Если а||b и с – секущая, то соответственные углы равны: $\bot 1 = \bot 5$, $\bot 4 = \bot 8$, $\bot 2 = \bot 6$, $\bot 3 = \bot 7$

$$\Delta ABC \hookrightarrow \Delta A_1B_1C_1,$$
если $\frac{AB}{A_1B_1} = \frac{AC}{A_1C_1} = \frac{BC}{B_1C_1}$
и $\Delta A = \Delta A_1, \Delta B = \Delta B_1, \Delta C = \Delta C_1$

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

4. Прямая, параллельная стороне АС треугольника АВС, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN=17, AC=51, NC=32.

Дано: ΔABC, MN||AC, MN=17, AC=51, NC=32.

Найти: BN

Решение:

1) Рассмотрим \triangle ABC и \triangle MBN:

∟В – общий

 \bot BMN = \bot BAC (по свойству

соответственных углов при прямых AC||MN и секущей AB)

$$2)\frac{AC}{MN} = \frac{BC}{BN}$$

Пусть
$$BN = x$$
, $BC = x+32$

$$\frac{51}{17} = \frac{x + 32}{x}$$

$$17(x+32) = 51x$$

$$(x+32) = 51x$$
 $34x = 54$

$$34x = 544$$

$$x = 544:34$$

$$51x - 17x = 544$$

17x + 544 = 51x

$$x = 16$$

Ответ: BN=16

BN = 16

5. Прямая, параллельная стороне АС треугольника АВС, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN=13, AC=65, NC=28.

Дано: ΔABC, MN||AC, MN=13, AC=65, NC=28.

Найти: BN

Решение:

1) Рассмотрим \triangle ABC и \triangle MBN:

∟В – общий

 \bot BMN = \bot BAC (по свойству

соответственных углов при

$$13(x+28) = 65x$$

$$52x = 364$$

x = 364 : 52

$$BN = 7$$

ΔABC∽ ΔMBN

Пусть
$$BN = x$$
, $BC = x+28$

$$\frac{65}{200} = \frac{x + 28}{200}$$
 65x -13x = 364

$$13x + 364 = 65x$$

$$x = 7$$

7. Точка Н является основанием высоты, проведённой из вершины прямого угла В треугольника АВС к гипотенузе АС. Найдите АВ, если АН=7, АС=28.

Дано: \triangle ABC, \bot B=90° AH=7, AC=28

Решение:

1) Рассмотрим ДАВС и ДАНВ:

ΔABC∽ ΔAHB:

$$LH = LB = 90^{\circ}$$
 по условию $DO = 1000$ ДАН $DO = 1000$ ДАН

2)
$$\frac{AC}{AB} = \frac{AB}{AH}$$
 AB·AB = 28·7
 $\frac{28}{AB} = \frac{AB}{AB}$ AB² = 28·7

$$AB = \sqrt{28 \cdot 7} = \sqrt{4 \cdot 7 \cdot 7} = \sqrt{2^2 \cdot 7^2} = 2 \cdot 7 = 14$$

Oтвет: AB = 14

8. Точка Н является основанием высоты, проведённой из вершины прямого угла В треугольника АВС к гипотенузе АС. Найдите АВ, если АН=5, АС=45.

Дано: \triangle ABC, \bot B=90° AH=5, AC = 45

Найти: АВ

Решение:

1) Рассмотрим ДАВС и ДАНВ:

$$LH = LB = 90^{0}$$
 по условию LA - общий угол

2)
$$\frac{AC}{AB} = \frac{AB}{AH}$$
 AB·AB = 45·5
 $\frac{45}{AB} = \frac{AB}{AB}$ AB² = 45·5

AB =
$$\sqrt{45 \cdot 5} = \sqrt{9 \cdot 5 \cdot 5} = \sqrt{3^2 \cdot 5^2} = 3.5 = 15$$

OTBET: AB = 15

Теория к задаче:

Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным углом.

Вписанный угол, опирающийся на полуокружность – прямой.

10. Точка Н является основанием высоты ВН, проведённой из вершины прямого угла В прямоугольного треугольника АВС. Окружность с диаметром ВН пересекает стороны АВ и СВ в точках Р и К соответственно. Найдите РК, если ВН=14.

Решение:

∟РВК вписанный, опирается на дугу РНК;

 \bot РВК = 90°, следовательно дуга РНК = 180°;

РК – диаметр окружности, РК = 14

Ответ: PK = 14

11. Точка Н является основанием высоты ВН, проведённой из вершины прямого угла В прямоугольного треугольника АВС. Окружность с диаметром ВН пересекает стороны АВ и СВ в точках Р и К соответственно. Найдите РК, если ВН=12.

Решение:

∟РВК вписанный, опирается на дугу РНК;

 \bot РВК = 90°, следовательно дуга РНК = 180°;

РК – диаметр окружности, РК = 12

Ответ: PK = 12

Параллелограмм.

Задание 23. Задачи на вычисления.

Теория к задаче:

Биссектриса параллелограмма отсекает от него равнобедренный треугольник.

L1=L2, следовательно ΔABN – равнобедренный и AB=AN

1. Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=7, CK=12.

Дано: параллелограмм АВСD, АК – биссектриса,

$$BK=7$$
, $CK=12$

Найти: периметр параллелограмма

Решение:

1) Биссектриса АК отсекает равнобедренный треугольник, АВ=ВК=7;

2)
$$BC = AD = 7 + 12 = 19$$

 $AB = DC = 7$

3) Pabcd =
$$2(AB+BC) = 2(7+19) = 2 \cdot 26 = 52$$

Ответ: 52

2. Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=6, CK=10.

Дано: параллелограмм ABCD, АК – биссектриса, BK=6, CK=10

Найти: периметр параллелограмма

Решение:

1) Биссектриса АК отсекает равнобедренный треугольник, АВ=ВК=6;

2)
$$BC = AD = 6 + 10 = 16$$

 $AB = DC = 6$

3) Pabcd =
$$2(AB+BC) = 2(6+16) = 2 \cdot 22 = 44$$

Ответ: 44

Ромб.

Задание 23. Задачи на вычисление.

Теория к задаче:

Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.

Диагонали являются биссектрисами его углов: $\angle BAC = \angle CAD$, $\angle ABD = \angle DBC$, $\angle BCA = \angle ACD$, $\angle ADB = \angle BDC$

1. Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 15, а одна из диагоналей ромба равна 60. Найдите углы ромба.

Дано: ромб ABCD, OH⊥BC, OH=15, AC=60

Найти: углы ромба

Решение:

1) Рассмотрим $\triangle COH$: $\bot H = 90^{\circ}$, $OC = \frac{1}{2}AC = \frac{1}{2} \cdot 60 = 30$

OH=15, OC=30, $OH=\frac{1}{2}OC$, следовательно $\stackrel{-}{\sqsubseteq}OCH=30^{\circ}$

2)
$$\bot$$
BCD= \bot BAD = $2 \cdot 30^{\circ} = 60^{\circ}$

$$\triangle ABC = \triangle ADC = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

Ответ: 60° , 60° , 120° , 120°

2. Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 17, а одна из диагоналей ромба равна 68. Найдите углы ромба.

Дано: ромб ABCD, OH \perp BC, OH=17, AC=68

Найти: углы ромба

Решение:

1) Рассмотрим \triangle COH: \bot H=90°, \bigcirc C= $\frac{1}{2}$ AC = $\frac{1}{2}$ ·68 = 34 \bigcirc OH=17, \bigcirc C=34, \bigcirc OH= $\frac{1}{2}$ OC, следовательно \bot \bigcirc CH=30°

2)
$$\bot$$
BCD= \bot BAD = $2 \cdot 30^{\circ} = 60^{\circ}$

$$\triangle ABC = \triangle ADC = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

Ответ: 60° , 60° , 120° , 120°

4. Высота АН ромба ABCD делит сторону CD на отрезки DH=8 и CH=2. Найдите высоту ромба.

Дано: ромб ABCD, AH \perp CD, DH=8 и CH=2

Найти: АН

Решение:

1)
$$CD = CH + HD = 2 + 8 = 10$$

2) Рассмотрим Δ CAH: \bot H=90°, AC=10, CH=2

По теореме Пифагора: $AC^2 = AH^2 + CH^2$

$$AH^2 = AC^2 - CH^2$$

$$AH = \sqrt{10^2 - 2^2} = \sqrt{100 - 4} = \sqrt{96} = \sqrt{16 \cdot 6} = 4\sqrt{6}$$

Ответ: $AH = 4\sqrt{6}$

5. Высота АН ромба ABCD делит сторону CD на отрезки DH=21 и CH=8. Найдите высоту ромба.

Дано: ромб ABCD, AH⊥CD, DH=21 и CH=8

Найти: АН

Решение:

1)
$$CD = CH + HD = 21 + 8 = 29$$

2) Рассмотрим Δ CAH: \bot H=90°, AC=29, CH=8

По теореме Пифагора: $AC^2 = AH^2 + CH^2$

$$AH^2 = AC^2 - CH^2$$

$$AH = \sqrt{29^2 - 8^2} = \sqrt{(29 - 8)(29 + 8)} = \sqrt{21 \cdot 37} = \sqrt{777}$$

Ответ: AH = √777

Окружность.

Задание 23. Задачи на вычисления.

Теория к задаче:

АВ - хорда окружности – отрезок, соединяющий две точки на окружности.

В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой:

BD – биссектриса ($\angle 3 = \angle 4$),

BD - медиана (AD = CD),

BD – высота (BD \perp AC).

1. Отрезки AB и CD являются хордами окружности. Найдите длину хорды CD, если AB=10, а расстояния от центра окружности до хорд AB и CD равны соответственно 12 и 5.

Дано: окружность с центром в т.О, AB, CD – хорды, AB=10, OH \perp AB, OK \perp CD, OH=12, OK=5

Найти: ОК Решение:

- 1) OB=OA=R, ΔAOB равнобедренный;
- 2) OH⊥AB, OH высота и медиана по свойству равнобедренного треугольника, AH=BH=5;
- 3) Δ AOH, $LH=90^{\circ}$, по теореме Пифагора: $AO^2=AH^2+OH^2$, $AO=\sqrt{12^2+5^2}=\sqrt{144+25}=\sqrt{169}=13$
- 4) ОС=ОD=R, ∆СОD равнобедренный;
- 5) Δ СОК, LК=90⁰, по теореме Пифагора: СК²=ОС²- ОК²,

$$CK = \sqrt{13^2 - 5^2} = \sqrt{169 - 25} = \sqrt{144} = 12$$

6)
$$CD = 2CK = 2 \cdot 12 = 24$$

Ответ: CD=24

2. Отрезки AB и CD являются хордами окружности. Найдите длину хорды CD, если AB=16, а расстояния от центра окружности до хорд AB и CD равны соответственно 15 и 8.

Дано: окружность с центром в т.О, АВ, CD – хорды, AB=16, OH\(\text{AB}\), OK\(\text{CD}\), OH=15, OK=8

Найти: ОК Решение:

- 1) ОВ=ОА=R, ДАОВ равнобедренный;
- 2) OH⊥AB, OH высота и медиана по свойству равнобедренного треугольника, AH=BH=8;
- 3) Δ AOH, LH=90⁰, по теореме Пифагора: $AO^2 = AH^2 + OH^2$, $AO = \sqrt{15^2 + 8^2} = \sqrt{225 + 64} = \sqrt{289} = 17$
- 4) ОС=ОD=R, ∆СОD равнобедренный;
- 5) Δ СОК, LК=90⁰, по теореме Пифагора: СК²=ОС²- ОК²,

$$CK = \sqrt{17^2 - 8^2} = \sqrt{289 - 64} = \sqrt{225} = 15$$

6)
$$CD = 2CK = 2.15 = 30$$

Ответ: CD=30

4. Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD, если AB=30, CD=40, а расстояние от центра окружности до хорды AB равно 20.

Дано: окружность с центром в т.О, AB, CD – хорды, AB=30, CD=40, OH \perp AB, OK \perp CD, OH=20

Найти: ОК Решение:

- 1) OB=OA=R, ΔAOB равнобедренный;
- 2) ОН⊥АВ, ОН высота и медиана по свойству равнобедренного треугольника, АН=ВН=15;
- 3) Δ AOH, $LH=90^{\circ}$, по теореме Пифагора: $AO^2=AH^2+OH^2$, $AO=\sqrt{15^2+20^2}=\sqrt{225+400}=\sqrt{625}=25$
- 4) ОС=ОD=R, ∆СОD равнобедренный, СК=DK=20
- 5) Δ СОК, LК=90 0 , по теореме Пифагора: ОК 2 =ОС 2 СК 2 ,

$$CK = \sqrt{25^2 - 20^2} = \sqrt{625 - 400} = \sqrt{225} = 15$$

6)
$$CD = 2CK = 2.15 = 30$$

Ответ: CD=30

5. Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD, если AB=40, CD=42, а расстояние от центра окружности до хорды AB равно 21.

Дано: окружность с центром в т.О, AB, CD – хорды, AB=40, CD=42, OH \perp AB, OK \perp CD, OH=21

Найти: ОК Решение:

- 1) OB=OA=R, ΔAOB равнобедренный;
- 2) OH⊥AB, OH высота и медиана по свойству равнобедренного треугольника, AH=BH=20;
- 3) Δ AOH, $LH=90^{\circ}$, по теореме Пифагора: $AO^2=AH^2+OH^2$, $AO=\sqrt{21^2+20^2}=\sqrt{441+400}=\sqrt{841}=29$
- 4) ОС=ОD=R, ∆СОD равнобедренный, СК=DK=21
- 5) Δ СОК, LК=90 0 , по теореме Пифагора: ОК 2 =ОС 2 СК 2 ,

$$0K = \sqrt{29^2 - 21^2} = \sqrt{841 - 441} = \sqrt{400} = 20$$

Ответ: ОК=20

Теория к задаче:

Касательная – прямая, которая имеет с окружностью только одну общую точку.

Касательная окружности перпендикулярна радиусу, проведённому в точку касания.

7. Окружность с центром на стороне АС треугольника ABC проходит через вершину С и касается прямой AB в точке В. Найдите диаметр окружности, если AB=3, AC=5.

Дано: окружность с центром в т.О, АВ=3, АС=5

Найти: диаметр окружности

Решение:

1)
$$AO = AC - OC = 5 - R$$

- 2) OB радиус окружности, проведённый в точку касания, OB⊥AB;
- 2) $\triangle AOB$: $\triangle B = 90^{\circ}$, по теореме Пифагора: $AO^2 = AB^2 + OB^2$

$$(5-R)^2 = 3^2 + R^2$$

 $25 - 10R + R^2 = 9 + R^2$
 $25 - 10R + R^2 - 9 - R^2 = 0$
 $16 - 10R = 0$

$$10R = 16$$
 $R = 1,6$
 $d = 2R = 2 \cdot 1,6 = 3,2$

Other: 3,2

8. Окружность с центром на стороне АС треугольника АВС проходит через вершину С и касается прямой АВ в точке В. Найдите диаметр окружности, если AB=2, AC=8.

Дано: окружность с центром в т.О, АВ=2, АС=8

Найти: диаметр окружности

Решение:

1)
$$AO = AC - OC = 8 - R$$

- 2) ОВ радиус окружности, проведённый в точку касания, ОВ⊥АВ;
- 2) $\triangle AOB$: $\triangle B = 90^{\circ}$, по теореме Пифагора: $AO^2 = AB^2 + OB^2$

$$(8-R)^2 = 2^2 + R^2$$

 $64 - 16R + R^2 = 4 + R^2$
 $64 - 16R + R^2 - 4 - R^2 = 0$
 $60 - 16R = 0$

$$16R = 60$$

$$R = \frac{60}{16} = \frac{15}{4} = 3,75$$

$$d = 2R = 2 \cdot 3,75 = 7,5$$
OTBET: 7.5

Ответ: 7,5

10. Окружность с центром на стороне АС треугольника ABC проходит через вершину С и касается прямой AB в точке В. Найдите АС, если диаметр окружности равен 6,4, а AB=6.

Дано: окружность с центром в т.О, AB=6, d=6,4

Найти: АС

Решение: 1) $R = \frac{1}{2}d = 3,2$

2) OB – радиус окружности, проведённый в точку касания, OB⊥AB;

3) $\triangle AOB$: $LB=90^{\circ}$, по теореме Пифагора: $AO^2=AB^2+OB^2$

4)
$$AO^2 = 6^2 + 3.2^2$$

$$AO = \sqrt{36 + 10,24} = \sqrt{46,24} = 6,8$$

$$AC = AO + OC = 6.8 + 3.2 = 10$$

11. Окружность с центром на стороне АС треугольника ABC проходит через вершину С и касается прямой AB в точке В. Найдите АС, если диаметр окружности равен 15, а AB=4.

Дано: окружность с центром в т.O, AB=4, d=15

Найти: АС

Решение: 1) $R = \frac{1}{2}d = 7,5$

2) OB – радиус окружности, проведённый в точку касания, OB⊥AB;

3) $\triangle AOB$: $\triangle B = 90^{\circ}$, по теореме Пифагора: $AO^2 = AB^2 + OB^2$

4)
$$AO^2 = 4^2 + 7.5^2$$

$$A0 = \sqrt{16 + 56,25} = \sqrt{72,25} = 8,5$$

$$AC = AO + OC = 8,5 + 7,5 = 16$$

13. Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AK=6, а сторона AC в 1,5 раза больше стороны BC.

Дано: ΔABC, окружность пересекает стороны AB и AC в точках К и P, окружность проходит через вершины B и C, AK=6, а сторона AC в 1,5 раза больше стороны BC.

Найти: КР Решение:

- 1) Четырёхугольник КРСВ вписан в окружность, значит сумма противоположных углов равна 180° : \bot KBC + \bot KPC = 180°
- 2) \bot APК и \bot KPС смежные, \bot APК+ \bot KPС = 180° ; Получим, что \bot KBС = \bot APК
- 3) Рассмотрим \triangle АРК и \triangle ABC: \bot A общий, \bot ABC = \bot APK \sqsubseteq \triangle APK \triangle ABC

$$4) \frac{AB}{AP} = \frac{AC}{AK} = \frac{BC}{KP}$$

По условию, AC=1,5BC, получим равенство: $\frac{1,5BC}{6} = \frac{BC}{KP}$

$$KP = \frac{6 \cdot BC}{1.5BC} = 4$$

15. Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AP=9, а сторона BC в 3 раза меньше стороны AB.

Дано: ΔABC, окружность пересекает стороны AB и AC в точках К и P, окружность проходит через вершины B и C, AP=9, а сторона BC в 3 раза меньше стороны AB.

Найти: КР Решение:

- 1) Четырёхугольник КРСВ вписан в окружность, значит сумма противоположных углов равна 180° : \bot KBC + \bot KPC = 180°
- 2) \bot АРК и \bot КРС смежные, \bot АРК+ \bot КРС = 180° ; Получим, что \bot КВС = \bot АРК
- 3) Рассмотрим \triangle АРК и \triangle ABC: \bot A общий, \bot ABC = \bot APK \sqsubseteq Δ APK \triangle \triangle ABC

$$4)\frac{AB}{AP} = \frac{AC}{AK} = \frac{BC}{KP}$$

По условию, AB=3BC, получим равенство: $\frac{3BC}{9} = \frac{BC}{KP}$

$$KP = \frac{3BC}{9 \cdot BC} = 3$$

Другое.

Задание 23. Задачи на вычисления.

1. Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB=12, DC=48, AC=35.

Дано: AB | DC, AC и BD пересекаются в точке M, AB=12, DC=48, AC=35

Найти: МС

Решение:

1) Рассмотрим Δ AMB и Δ CMD:

∟ AMB= ∟CMD по свойству вертикальных углов, ∟MDC = ∟ABM по свойству накрест лежащих углов при AB || DC и секущей **BD**

Δ AMB∾ΔCMD

$$2) \frac{AB}{DC} = \frac{AM}{MC} = \frac{MB}{MD}$$

$$\frac{12}{48} = \frac{x}{35 - x}$$

$$\frac{1}{4} = \frac{x}{35 - x}$$

$$4x = 35-x$$

$$4x + x = 35$$

$$5x = 35$$

$$x = 7$$

MC = 35 - x = 35 - 7

$$MC=28$$

2. Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB=11, DC=22, AC=27

Дано: AB | DC, AC и BD пересекаются в точке M, AB=11, DC=22, AC=27

Найти: МС

Решение:

1) Рассмотрим Δ AMB и Δ CMD:

∟ AMB= ∟CMD по свойству вертикальных углов, ∟MDC = ∟ABM по свойству накрест лежащих углов при AB || DC и секущей **BD**

Δ AMB∞ΔCMD

$$2) \frac{AB}{DC} = \frac{AM}{MC} = \frac{MB}{MD}$$

$$\frac{11}{22} = \frac{x}{27 - x}$$

$$\frac{1}{2} = \frac{x}{27 - x}$$

$$2x = 27-x$$

$$2x + x = 27$$

$$3x = 27$$

$$x = 9$$

$$MC=27-x=27-9$$

$$MC=18$$