R1CS Programming ZK0x04 Workshop Notes

Daniel Lubarov

Brendan Farmer

October 16, 2019

Contents

1	Multiplicative inverse	2
2	Zero testing	2
3	Binary	2
4	Selection	3
5	2x2 switch	3
6	Permutations 6.1 2x2 case 6.2 2x2 case 6.3 2x2 case	3 3 3
7	Sorting	3
8	Random access	4
9	Comparisons	4
10	Embedded curve operations	4

1 Multiplicative inverse

Deterministically computing 1/x in an R1CS circuit would be expensive. Instead, we can have the prover compute 1/x outside of the circuit and supply the result as a witness element, which we will call $x_{\rm inv}$. To verify the result, we enforce

$$(x)(x_{\rm inv}) = (1) \tag{1}$$

2 Zero testing

To assert x = 0, we simply enforce

$$(x)(1) = (0) (2)$$

Asserting $x \neq 0$ is similarly easy: we compute 1/x (non-deterministically, as in Section 1). The result can be ignored; the mere fact that an inverse exists implies $x \neq 0$.

On the other hand, if we want to evaluate

$$y \coloneqq \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{otherwise} \end{cases} \tag{3}$$

we can do so by introducing another variable, m, and enforcing

$$(x)(m) = (y) \tag{4}$$

$$(1 - y)(x) = (0) (5)$$

Outside of the circuit, the prover generates y as in Equation 3, and generates m as

$$m \coloneqq \begin{cases} 1 & \text{if } x = 0\\ y/x & \text{otherwise} \end{cases} \tag{6}$$

This method is from [1].

3 Binary

To assert $b \in \{0, 1\}$, we enforce

$$(b)(b-1) = (0) (7)$$

TODO: Discuss splits and joins

4 Selection

Suppose we have a boolean value s, and we wish to compute

$$z := \begin{cases} x & \text{if } s = 0 \\ y & \text{if } s = 1 \end{cases}$$
 (8)

We can compute this as

$$z \coloneqq x + s(y - x) \tag{9}$$

This requires two constraints: one "is boolean" asertion (Equation 7), assuming s was not already known to be boolean, and one for the multiplication.

5 2x2 switch

Suppose we wish to implement a switch with the following structure:

$$\begin{array}{c|c}
a \longrightarrow & c \\
b \longrightarrow & d
\end{array}$$

In particular, if s = 0 then the outputs should be identical the inputs: (c, d) = (a, b). If s = 1 then the inputs should be swapped: (c, d) = (b, a).

This requires two constraints: one "is boolean" assertion (Equation 7), and another for selecting the value of c (Equation 9). Once we have c, we can compute d "for free" as

$$d \coloneqq a + b - c \tag{10}$$

6 Permutations

Say we want to verify that two sequences, (x_1, \ldots, x_n) and (y_1, \ldots, y_n) , are permutations of one another. This can be done efficiently using routing networks, which used a fixed (for a fixed n) network of $2x^2$ switches.

AS-Waksman networks [2] are a particularly useful construction, since they support arbitrary permutation sizes. They use about $n \log_2(n) - n$ switches, which is close to the theoretical lower bound of $\log_2(n!)$.

7 Sorting

TODO: Discuss sorting networks

TODO: Discuss permutation networks + comparisons to verify order

8 Random access

TODO: Discuss naive random access via index comparisons

TODO: Discuss binary tree method

9 Comparisons

TODO: Describe basic comparison algorithm

TODO: Describe Ahmed's optimization

A couple other optimizations are possible in particular circumstances:

- 1. To assert (not evaluate) x < y, we can split x non-canonically and split y canonically. The prover is forced to use x's canonical representation anyway, otherwise $x_{\text{bin}} \ge |F| > y_{\text{bin}}$, making the assertion unsatisfiable.
- 2. To assert x < c for some constant $c \ll |F|$, we can split x into just $\lceil \log_2 c \rceil$ bits.

10 Embedded curve operations

TODO: Discuss basic embedded curve operations

References

- [1] B. Parno, J. Howell, C. Gentry, and M. Raykova, "Pinocchio: Nearly practical verifiable computation," in 2013 IEEE Symposium on Security and Privacy, pp. 238–252, IEEE, 2013.
- [2] B. Beauquier and E. Darrot, "On arbitrary size waksman networks and their vulnerability," *Parallel Processing Letters*, vol. 12, no. 03n04, pp. 287–296, 2002.