$$]x=egin{pmatrix} \xi^1 & \xi^2 & \xi^3 \end{pmatrix}$$
 $\varphi(x)=egin{pmatrix} \xi^1+\xi^2,\xi^2,\xi^3 \end{pmatrix}$ — линеный оператор.

Определение. Ядро ЛОп φ называется множество

$$Ker\varphi = \{x \in X : \varphi x = O_Y\}$$

Примечание. $Ker\varphi$ — подпространство ЛП X

Определение. Образом ЛОп φ называется множество:

$$Im\varphi = \{ y \in Y : \exists x \quad \varphi x = y \} = \varphi(X)$$

Примечание. $Im\varphi$ — подпространство ЛП Y

Доказательство.
$$y_1,y_2\in Im\varphi\Rightarrow\exists x_1,x_2\in X: \varphi x_1=y_1\ \varphi x_2=y_2$$
 $\sphericalangle y_1+y_2=\varphi(x_1)+\varphi(x_2)=\varphi(x_1+x_2)\Rightarrow y_1+y_2\in Im\varphi$

 Π ример. E_3 — евклидово пространство $\varphi E_3 \to E_3$

$$\varphi(\vec{x}) = \vec{x} - \frac{(\vec{x}\vec{n})}{(\vec{n}\vec{n})}\vec{n} \quad \vec{n} \neq \vec{0}$$

- 1. $Ker\varphi$
- 2. $Im\varphi$
- 3. Геометрический смысл

 $Ker\varphi$:

$$\vec{x} - \frac{(\vec{x}\vec{n})}{(\vec{n}\vec{n})}\vec{n} = 0$$

$$\vec{x} = \frac{(\vec{x}\vec{n})}{(\vec{n}\vec{n})}\vec{n} \Rightarrow Ker\varphi = \mathcal{L}(\vec{n})$$

 $Im\varphi$:

$$\mathcal{L}(\vec{n}) \cap \mathcal{L}^{\perp}(\vec{n}) = 0 \Rightarrow E_3 = \mathcal{L}(\vec{n}) + \mathcal{L}^{\perp}(\vec{n})$$

Пример. E_3 $\varphi: E_3 \to E_3$

$$\varphi(\vec{x}) = \vec{x} - \frac{(\vec{x}\vec{n})}{(\vec{a}\vec{n})}\vec{a} \quad (\vec{a}, \vec{n}) \neq 0$$

$$Ker\varphi = \mathcal{L}(\vec{a})$$
$$\vec{x} \stackrel{!}{=} \vec{y} + \alpha \vec{a}$$

$$]\{e_j\}_{j=1}^n$$
 — базис $X,\{h_k\}_{k=1}^m$ — базис $Y\Rightarrow \varphi(e_j)=\sum\limits_{k=1}^m a_j^k h_k$ $\sphericalangle A_{arphi}=||a_j^k||$ — матрица оператора $arphi$ в паре выбранных базисов

М3137у2019 Практика 4

Линейная алгерба 2 из 2

 Π ример. Найти матрицу оператора φ в стандартном базисе E_3 $\vec{n}=\begin{pmatrix}1&2&3\end{pmatrix}^T$

$$\varphi(e_1) = \begin{bmatrix} 1\\0\\0 \end{bmatrix} - \frac{1}{14} \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} \frac{13}{14}\\ \frac{-2}{14}\\ \frac{-3}{14} \end{bmatrix}$$
$$\varphi(e_2) = \begin{bmatrix} 0\\1\\0 \end{bmatrix} - \frac{w}{14} \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} \frac{-2}{14}\\ \frac{10}{14}\\ \frac{-6}{14} \end{bmatrix}$$

То же самое для e_3 и собрать все в матрицу.

Пример.
$$\varphi_{\theta}$$
 — оператор поворота вокруг \vec{S} на θ $]y=\beta\vec{a}+\gamma\vec{b}, \vec{a}\perp\vec{b}\perp\vec{c}, |\vec{a}|=|\vec{b}|=1$ $]\vec{x}=\alpha\vec{s}+\vec{y}=\alpha\vec{s}+\beta\vec{a}+\gamma\vec{b}$ $\varphi(x)=\varphi(\alpha\vec{s}+\beta\vec{a}+\gamma\vec{b})=\alpha\vec{s}+(\beta\cos\theta-\gamma\sin\theta)\vec{a}+(\beta\sin\theta+\gamma\cos\theta)\vec{b}$ $\varphi(e_1)=\dots$ и так далее $]\varphi:X\to X$ $\{e_j\}_{j=1}^n$ — базис $X\Rightarrow A_{\varphi}$ $\{\tilde{e}_k\}_{k=1}^n$ — базис $X\Rightarrow \tilde{A}_{\varphi}$ $\{e_l\}_{k=1}^T$ — базис $X\Rightarrow \tilde{A}_{\varphi}$ $\{e_l\}_{k=1}^T$

М3137у2019 Практика 4