Revisão: Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks

Kevin Washington, Valério Júnior

O artigo

Autores:

Ali Narin, Ceren Kaya, Ziynet Pamuk (Bulent Ecevit University)

Data de publicação:

09 de maio de 2021

Publicação:

Pattern Analysis and Applications

Background

- Pandemia de COVID-19
- Alta quantidade de radiografias de tórax

Proposta

- Modelo de predição utilizando CNN's
- Um sistema de apoio à decisão de alta performance para diagnóstico de COVID-19
- Comparação de exames com COVID-19 com os exames de pessoas saudáveis,
 com pneumonia viral e bacteriana

Metodologia

Preparação dos dados

Datasets utilizados

Dr. Joseph Cohen:

341 imagens de COVID-19

ChestX-ray8:

• 2800 imagens de pacientes saudáveis

Chest X-Ray - Kaggle:

 2772 imagens de pneumonia bacteriana e 1493 de pneumonia viral

Fig. 1: radiografias de tórax de pacientes saudáveis, com COVID-19, com pneumonia bacteriana e pneumonia viral

Preparação dos dados

Aumento de dados (data augmentation)

- Cisalhamento
- Ampliação
- Espelhamento horizontal

Divisão do dataset

- COVID-19 e saudável
- 2. COVID-19 e pneumonia viral
- 3. COVID-19 e pneumonia bacteriana

Preparação dos dados

Divisão do dataset (k-fold cross validation)

Fig. 2: representação gráfica da divisão do dataset em grupos de teste e treino

Metodologia

Treinamento

Ambiente de desenvolvimento

- Google Colab (grátis), Ubuntu 16.04
- GPU Tesla K80
- Python + Tensorflow (Keras)

Modelos pré-treinados utilizados

- ResNet50
- InceptionV3
- ResNet101
- Inception-ResNetV2
- ResNet152

Treinamento

Fig. 3: representação esquemática do uso de modelos pré-treinados para a predição de casos normais, com COVID-19 ou pneumonia viral/bacteriana

Treinamento

Transferência de aprendizado (transfer learning)

- Transferência do que foi aprendido em um modelo para outro
- Modelos treinados em grandes bases
- O novo treinamento reaproveita os pesos e só calcula algumas camadas que fazem o ajuste fino para os novos dados
- Reduz significativamente o custo computacional do treino

Metodologia

Validação

Métricas utilizadas

- Acurácia
- Recall
- Precisão
- Especificidade
- F1-score

Tempos de treino variaram de 2h a 6,5h

A maior acurácia foi apresentada pela ResNet50 - 99,7%

A menor acurácia foi apresentada pela ResNet152, 92,8%

Classe binária 1 (COVID-19 / saudável)

Fig. 4: comparação da acurácia (treino e teste, respectivamente) dos 5 modelos, para k = 4

Classe binária 2 (COVID-19 / Pneumonia viral)

Fig. 5: comparação da acurácia (treino e teste, respectivamente) dos 5 modelos, para k = 4

Classe binária 3 (COVID-19 / Pneumonia bacteriana)

Fig. 6: comparação da acurácia (treino e teste, respectivamente) dos 5 modelos, para k = 4

Discussão & conclusões

- Número limitado de estudos lidam com múltiplas classes
- Baixa quantidade de dados

- Importância da detecção precoce de COVID-19
- Aumento da carga de trabalho dos profissionais
- Auxílio à radiologistas na tomada de decisão

Discussão & conclusões

Comparação com estudos anteriores

Previous study	Data type	Methods/classifier	Number of classes	Accuracy (%)
Narayan Das et al. [9]	X-ray	Xception	3	97.40
Singh et. al. [52]	X-ray	MADE-based CNN	2	94.65 ∓ 2.1
Afshar et al. [30]	X-ray	Capsule Networks	4	95.7
Ucar and Korkmaz [24]	X-ray	Bayes-SqueezeNet	3	98.26
Khan et al. [21]	X-ray	CoroNet	4	89.60
Sahinbas and Catak [26]	X-ray	VGG16, VGG19, ResNet	2	80
		DenseNet and InceptionV3		
Medhi et al. [27]	X-ray	Deep CNN	2	93
Zhang et al. [16]	X-ray	CAAD	2	95.18
Apostopolus et al. [25]	X-ray	VGG-19	3	93.48
Narin et al. [31]	X-ray	InceptionV3, ResNet50, Inception-ResNetV2	2	98
This study	X-ray	InceptionV3, ResNet50, ResNet101	2 (COVID-19/Normal)	96.1
		ResNet152, Inception-ResNetV2		
This study	X-ray	InceptionV3, ResNet50, ResNet101	2 (COVID-19/Viral Pne.)	99.5
		ResNet152, Inception-ResNetV2		
This study	X-ray	InceptionV3, ResNet50, ResNet101	2 (COVID-19/Bacterial Pne.)	99.7
		ResNet152, Inception-ResNetV2		

Referências

NARIN, Ali; KAYA, Ceren; PAMUK, Ziynet. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Analysis And Applications, [S.L.], v. 24, n. 3, p. 1207-1220, 9 maio 2021. Springer Science and Business Media LLC.