Math3 CM

Cours de L. PASQUEREAU Note de C. THOMAS

12 octobre 2022

Table des matières

1	Fon	ctions	$\operatorname{\mathbf{de}} \mathbb{R} \operatorname{\mathbf{dans}} \mathbb{R}$
	1.1	Limite	e
		1.1.1	Adhérence
		1.1.2	Limite
		1.1.3	Fonctions négligeables
		1.1.4	Croissance comparée
		1.1.5	Fonctions Équivalentes
		1.1.6	Opération sur les équivalents
	1.2	Contin	nuité
	1.3	Dériva	abilité
		1.3.1	Dérivée successives
	1.4	Dévelo	oppements Limités (DL)
		1.4.1	Taylor-Young
		1.4.2	DL usuels
		1.4.3	Opération sur les DL
		1.4.4	Application au calcul de dérivé
2	Inté	gratio	$rac{\mathbf{n}}{\mathbf{n}}$
	2.1	_	ales de Riemann
		2.1.1	Introduction
		2.1.2	Propriétés de l'intégrale
		2.1.3	Opération sur les intégrales
		2.1.4	Positivité de l'intégrale
		2.1.5	Moyenne
		2.1.6	Théorème fondamental de l'analyse
		2.1.7	Primitives usuelles
		2.1.8	Changement de variable
		2.1.9	Intégration par parties
	2.2	Intégr	ales Généralisées
		2.2.1	Cas des fonctions réelles positives
		2.2.2	Cas des fonction réelles positives et où $b = \infty$
		2.2.3	Cas où b est fini

		2.2.4 Cas des fonctions de signes qql								
3	Séri	Séries numériques								
	3.1	Introduction aux séries numériques								
		3.1.1 Sommes de séries numériques								
	3.2	Séries géométriques								
	3.3	Séries À Termes Positifs (SATP)								
		3.3.1 Introduction								
		3.3.2 Comparaison								
		3.3.3 Liaison séries intégrales								
		3.3.4 Séries de Riemann								
		3.3.5 Règle de Cauchy								
		3.3.6 Règle d'Alembert								
	3.4	Séries de signes non constant								
		3.4.1 Séries Alternées								
4 Sé	Séri	ries Entières								
	4.1	Domaine de convergence								
	4.2	Rayon et intervalle de convergence								
	4.3	Calcul du rayon de convergence								
5	Not	Notations et rappels								
5.	5.1	Ensembles								
	5.2	Fonctions								
		5.2.1 Ensembles de fonctions								
		5.2.3 Comparaison entre fonctions et fonctions et scalaires								
		5.2.4 Limites, continuité et dérivabilité								
		5.2.5 Autre								

Chapitre 1

Fonctions de \mathbb{R} dans \mathbb{R}

Soit $D \in \mathbb{R}$, soit $f \in \mathbb{R}^D$

1.1 Limite

1.1.1 Adhérence

Définition 1.1.1

On appelle adhérence de D le plus petit ensemble fermé qui contient D. Noté \bar{D}

1.1.2 Limite

Soit f définie sur D, Soit $a \in \overline{D}$, Soit $l \in \mathbb{R}$

Définition 1.1.2

On dit que f a pour limite l quand x tends vers a si

$$\forall \varepsilon > 0, \exists \eta > 0 | |x - a| < \eta \Rightarrow |f(x) - l| < \varepsilon$$

1.1.3 Fonctions négligeables

Définition 1.1.3

Soit $f, g \in \mathbb{R}^D$ et $a \in \bar{D}$ on dit que $f = o_a(g)$ si $\frac{f(x)}{g(x)} \to_a 0$

1.1.1

en 0 on a

$$\frac{f(x)}{g(x)} = \frac{x}{\sqrt{x}} \tag{1.1}$$

$$\rightarrow_{0^{+}} 0 \tag{1.2}$$

$$f = o_{O^+}(g) \tag{1.3}$$

1.1.4 Croissance comparée

Théorème 1.1.1 – Croissances Comparées

Soient $(\alpha, \beta, \gamma) \in \mathbb{R}^{+*}$ avec $\gamma > 1$ avec

$$f: x \mapsto (\log x)^{\alpha}$$

$$g: x \mapsto x^{\beta}$$

$$h: x \mapsto \gamma^x$$

alors on a

$$g = o_{\infty}(f)$$

$$h = o_{\infty}(g)$$

c'est à dire

$$\frac{(\log x)^{\alpha}}{x^{\beta}} \to_{\infty} 0$$

$$\frac{x^{\beta}}{\gamma^x} \to_{\infty} 0$$

1.1.5 Fonctions Équivalentes

Définition 1.1.4

Soit $f, g \in \mathbb{R}^D$ et $a \in \bar{D}$ on dit que f est équivalente à g quand x tends vers a si $\frac{f}{a} \to_a 1$.

On note $f \equiv_a g$

- 1.1.2 Un polynome est équivalent à son monôme de plus haut degrès (resp bas) quand x tends vers ∞ (resp 0)
- $-\sin x \equiv_0 x$
- $-\ln(1+x) \equiv_0 x$

1.1.6 Opération sur les équivalents

Soient $f_1, g_1, f_2, g_2 \in \mathbb{R}^D$ soit $a \in \bar{D}$ soit $\alpha \in \mathbb{R}$

$$f_1 \equiv_a g_1$$

$$f_2 \equiv_a g_2$$

$$f_1 \cdot f_2 \equiv_a g_1 \cdot g_2$$

$$\frac{f_1}{f_2} \equiv_a \frac{g_1}{g_2}$$

$$f_1^{\alpha} \equiv_a g_1^{\alpha}$$

$$f = o_a g \Rightarrow f + g \equiv_a g \tag{1.4}$$

— Si $f \equiv_a g$ et $\lim_{x \to a} f(x) = l$ alors $\lim_{x \to a} g(x) = l$

Proposition 1.1.1

Si $f \equiv_a g$ et $\lim_a f \neq 1$ alors $\log f \equiv_a \log g$

Démonstration.

$$\frac{\log g(x)}{\log f(x)} - 1 = \frac{\log g(x) - \log f(x)}{\log f(x)}$$

$$= \frac{\log \left(\frac{g(x)}{f(x)}\right)}{\log f(x)} \quad \text{or } f \equiv_a g$$

$$\to_a \frac{0}{f(a)} \quad \text{par passage à la limite car } \lim_a f \neq 1$$

$$= 0$$

Donc
$$\lim_{x \to a} \frac{\log f(x)}{\log g(x)} = 1$$
 donc $\log f \equiv_a \log g$

Cas particulier où l=1

f(x) = 1 + x et $g(x) = 1 + \sqrt{x}$ on a bien $f \equiv_0 g$ et $f \to_0 1$ on a aussi $\log f(x) = \log 1 + x \equiv_0 x$ et $\log g(x) = \log 1 + \sqrt{x} \equiv_0 \sqrt{x}$ et $x \neq \sqrt{x}$

1.2 Continuité

Définition 1.2.1

Soit f définie sur un ouvert D de \mathbb{R} et $a \in D$. On dit que f est continue en a si et seulement si $\lim_{x\to a} f(x) = f(a)$. On note \mathcal{C}^0 l'ensemble des fonctions continues, c'est un espace vectoriel.

1.3 Dérivabilité

Définition 1.3.1

Soit f définie sur un ouvert D de \mathbb{R} et $a \in D$. On dit que f est dérivable en a si et seulement si $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ existe dans \mathbb{R} . On note f' la fonction $a\mapsto \lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ définie sur l'ensemble des valeurs dérivables de f.

1.3.1 Dérivée successives

On peut ensuite étudier la dérivabilité des dérivées successives de f

1.4 Développements Limités (DL)

Définition 1.4.1

On appelle Développement Limité (DL) à l'ordre n et au point $a \in I$ d'une fonction f défini sur un interval ouvert I de \mathbb{R} , un polynome P tel que

$$\deg P = n$$

$$f(x) = P(x-a) + o_0((x-a)^n)$$

C'est une propriété **locale** de f en a

1.4.1 Taylor-Young

Théorème 1.4.1 – Formule de Taylor-Young

Soit f une fonction définie de I dans \mathbb{R} , n fois dérivable, alors f admet un DL_n pour un point a de la forme

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + o((x-a)^{n})$$

Remarque 1.4.1

Dans la majorité des cas pratiques, on prend a=0 ce qui donne

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)x^{k}}{k!} + o(x^{n})$$

1.4.1

En exemple on prend $f = \exp$, $\exp \in \mathcal{C}^{\infty}$ et on a $\forall n \in \mathbb{N}, f^{(n)} = \exp$ donc $\forall n \in \mathbb{N}, f^{(n)}(0) = 1$ donc d'après le théorème de Taylor-Young, $\forall n \in \mathbb{N}, \exp$ admet un DL_n de la forme

$$\exp(x) = \sum_{k=0}^{n} \frac{\exp^{(k)}(0)}{k!} x^{k} + o(x^{n})$$
$$\exp(x) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n})$$

Remarque 1.4.2

La formule de Taylor-Young permet aussi de faire l'inverse, de trouver la valeur d'une dérivée en un point si l'on connaît le DL de la fonction.

1.4.2

Un exemple pour la valeur en 0 de la dérivée quatrième de $\frac{1}{1-x}$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + o(x^4)$$

Et d'après Taylor-Young on a

$$\frac{1}{1-x} = \frac{f(0)}{1} + \frac{f'(0)}{1}x + \frac{f''(0)}{2}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4 + o(x^4)$$

Or les deux DL sont égaux, donc les polynômes aussi, et donc par identification des coefficients on a

$$\frac{f^{(4)}(0)}{4!} = 1$$

ce qui donne

$$\frac{f^{(4)}(0)}{4!} = 1$$
$$f^{(4)}(0) = 4! = 24$$

On a donc la valeur de la dérivée quatrième en ${\cal O}$ sans avoir à dériver la fonction.

En pratique ça permet l'étude des dérivées en un point sur des fonctions bien plus complexes.

1.4.2 DL usuels

Proposition 1.4.1

Les développements limités usuels en 0 sont les suivants

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n})$$

$$\sin x = \sum_{k=0}^{n} \frac{(-1)^{k} x^{2k+1}}{(2k+1)!} + o(x^{2n+1})$$

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^{k} x^{2k}}{(2k)!} + o(x^{2n})$$

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + o(x^n)$$

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n)$$

$$\log(1+x) = \sum_{k=0}^{n} \frac{(-1)^k x^k}{k} + o(x^n)$$

$$(1+x)^{\alpha} = \sum_{k=0}^{n} \sigma_{\alpha}(k) x^k + o(x^n)$$

$$\alpha \in \mathbb{R}$$
et
$$\sigma_{\alpha}(k) = \begin{cases} 1, & \text{si } k = 0 \\ \frac{\sum_{i=0}^{k-1} (\alpha - i)}{k!}, & \text{sinon} \end{cases}$$

Remarque 1.4.3

Les DL de fonctions paires (resp impaires) ne contiennent que des coefficients sur les degrès pairs (resp impairs)

1.4.3

Exemple, la fonction cos est paire

1.4.3 Opération sur les DL

Sans perte de généralité, les DL sont ici en 0 Soit $P,Q \in R[X]$ et $f,g \in \mathbb{R}^I$ tels que

$$\deg P = \deg Q = n$$

$$f(x) = P(x) + o(x^n)$$

$$g(x) = Q(x) + o(x^n)$$

Troncage

Définition 1.4.2

On appelle "troncage" à l'ordre $k \leq n$ d'un DL, le polynome tronqué F_k de degrès k tel que tous les coefficients de F_k sont égaux à ceux de F jusqu'au

coefficient de x^k et tel que

$$f(x) = F_k(x) + o(x^k)$$

1.4.4

On a

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + o(x^5)$$

le DL_5 de exp alors on peut le "tronquer" à l'ordre $k=3\leq 5$ pour avoir le DL_3 de exp

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + o(x^3)$$

Somme

Proposition 1.4.2

Le DL_n de la fonction f + g est la somme des DL_n de f et de g

$$(f+g)(x) = P(x) + Q(x) + o(x^n)$$

Produit

Proposition 1.4.3

Le DL_n de la fonction fg est le produit des DL_n de f et de g tronqué à l'ordre n

$$(fg)(x) = PQ_n(x) + o(x^n)$$

Composée

Proposition 1.4.4

Si g(0) = 0 alors on peut composer les DL_n et le DL_n de $f \circ g$ est la composition des DL_n de f et de g tronqué à l'ordre n

$$(f \circ g)(x) = (P \circ Q)_n(x) + o(x^n)$$

1.4.5

Exemple DL_3 de $\sqrt{1+\sin x}$. On a bien $\sin 0 = 0$.

$$\sin x = x - \frac{x^3}{6} + o(x^3)$$

$$(1+X)^{\alpha} = 1 + \alpha X + \frac{\alpha(\alpha-1)x^2}{2}X^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{6}X^3 + o(X^3) \quad \text{donc}$$

$$(1+\sin x)^{\frac{1}{2}} = 1 + \frac{1}{2}\left(x - \frac{x^3}{6}\right) - \frac{1}{8}\left(x - \frac{x^3}{6}\right)^2 + \frac{3}{48}\left(x - \frac{x^3}{6}\right)^3 + o(x^9)$$

$$(1+\sin x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{x^3}{12} - \frac{1}{8}x^2 + \frac{3}{48}x^3 + o(x^3)$$

$$(1+\sin x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{48}x^3 + o(x^3)$$
tronquage

1.4.4 Application au calcul de dérivé

Les DL sont utiles pour résoudre des formes indéterminées lors du calcul de limite

1.4.6

Calcul de la limite en 0 de la fonction $f: x \mapsto \frac{e^{x^2} - \cos x}{x^2}$ On calcule les différents DL à l'ordre 4

$$e^{x^{2}} = 1 + (x^{2}) + \frac{(x^{2})^{2}}{2} + o(x^{4})$$

$$\cos x = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} + o(x^{4})$$

$$e^{x^{2}} - \cos x = \frac{3}{2}x^{2} + o(x^{2})$$

$$f(x) = \frac{\frac{3}{2}x^{2} + o(x^{2})}{x^{2}}$$

$$f(x) = \frac{3}{2} + o(1)$$

$$\lim_{x \to 0} f(x) = \frac{3}{2}$$

$$f(x) = \frac{3}{2}$$

$$f(x) = \frac{3}{2} + o(1)$$

On voit après que l'ordre 2 aurait suffit, l'intuition peut aider pour savoir à quel ordre calculer.

Chapitre 2

Intégration

2.1 Intégrales de Riemann

Explication des notations,

$$\int_{a}^{b} f = \int_{a}^{b} f(x) dx$$
$$\int_{[a,b]} f = \int_{a}^{b} f$$

2.1.1 Introduction

Soit $a, b \in \mathbb{R}$ tels que a < b. Soit f définie et bornée sur [a, b] et $d = (x_1, \dots, x_n) \subset [a, b]$ une subdivision de [a, b] pour $n \in \mathbb{N}$. On définie

$$M_{i} = \sup_{x \in [x_{i-1}, x_{i}]} f(x)$$

$$m_{i} = \inf_{x \in [x_{i-1}, x_{i}]} f(x)$$

$$S(d) = \sum_{i=1}^{n} M_{i} \cdot (x_{i} - x_{i-1})$$

$$s(d) = \sum_{i=1}^{n} m_{i} \cdot (x_{i} - x_{i-1})$$

Le but est double

- Approcher f par des fonctions en escalier
- Augmenter n pour augmenter la précision de l'approche

Et pour d' une subdivision plus fine que d on a

$$s(d) \le s(d') \le S(d') \le S(d)$$

On peut définir des suites convergentes, et à l'infini on note

$$I = \sup_{[a,b]} S(d)$$
$$J = \inf_{[a,b]} s(d)$$

Définition 2.1.1

Une fonction f est Riemann-intégrable si $I_f = J_f = \int_a^b f$

2.1.2 Propriétés de l'intégrale

On prend f, g deux fonctions Riemann-intégrable définie sur [a, b]

Proposition 2.1.1

On a

$$\int_{a}^{a} f = 0$$

$$\int_{b}^{a} f = -\int_{a}^{b} f$$

Proposition 2.1.2 – Relation de Chales

Soit $c \in [a, b]$,

$$\int_a^b f = \int_a^c f + \int_c^b f$$

2.1.1

Exemple d'une fonction non-Riemann-intégrable. Soit f la fonction indicatrice de \mathbb{Q} sur [0,1] alors on a

$$M_i = \sup f = 1$$
$$m_i = \inf f = 0$$

D'où

$$S(d) = x_n - x_0 = 1$$
$$s(d) = 0$$

Donc

$$I \neq J$$

Par conséquence, f n'est pas Riemann-intégrable sur [0,1]

Théorème 2.1.1

Soit f une fonction définie sur [a, b]

- 1. Si f est \mathcal{C}^0 alors f est Riemann-intégrable
- 2. Théorème des singularités supprimable, si on modifie f sur un nombre fini de point, l'intégrale n'est pas modifiée
- 3. Par conséquence, les fonctions continues par morceaux (\mathcal{M}^0) sont aussi Riemann-intégrable

2.1.3 Opération sur les intégrales

Proposition 2.1.3

Soient f, g Riemann-intégrables sur I

— Soit
$$\lambda \in \mathbb{R}$$
, alors $\int_I \lambda f = \lambda \int_I f$

- La fonction (f+g) est Riemann-intégrable et $\int_I (f+g) = \int_I f + \int_I g$
- La fonction |f| est Riemann-intégrable
- La fonction (fg) est Riemann-intégrable

2.1.4 Positivité de l'intégrale

Proposition 2.1.4

Soit f Riemann-intégrable sur I

— Si
$$\forall x \in I, f(x) \ge 0$$
 alors $\int_I f \ge 0$

— Si
$$\forall x \in I, f(x) \leq 0$$
 alors $\int_I f \leq 0$

Théorème 2.1.2 – Positivité de l'intégrale

Soit f, g Riemann-intégrable sur I telles que

$$\forall x \in I, f(x) \le g(x)$$

Alors il vient de la prop précédente que

$$\int_{I} f \le \int_{I} g$$

Proposition 2.1.5 – Généralisation de l'inégalitée triangulaire

Soit f Riemann-intégrable sur I, on a alors

$$\left| \int_{I} f \right| \le \int_{I} |f|$$

2.1.5 Moyenne

Soit f, g Riemann-intégrable sur I, on note

$$m = \inf_{I} f$$
$$M = \sup_{I} f$$

Proposition 2.1.6

Si g est de signe constant sur I alors $\exists \mu \in [m, M], \int_I fg = \mu \int_I g$

Démonstration. On a, $\forall x \in I, m \leq f(x) \leq M$, on considère sans perte de généralité que $\forall x \in I, g(x) \geq 0$ et que $\int_I g \neq 0$ alors on a

$$\forall x \in I, m \le f(x) \le M$$

$$mg(x) \le f(x)g(x) \le Mg(x)$$

$$m \int_{I} g \le \int_{I} fg \le M \int_{I} g$$

$$g \text{ est positive}$$

$$m \le \frac{\int_{I} fg}{\int_{I} g} \le M$$

$$\operatorname{car} \int_{I} g \ne 0$$

On pose
$$\frac{\int_I fg}{\int_I g} = \mu$$
, il vient que $\mu \in [m, M]$ et que $\mu \int_I g = \int_I fg$

Remarque 2.1.1

On prend le cas particulier où g=1 on a $\int_a^b f=\mu \int_a^b 1$ ce qui donne finalement

$$\mu = \frac{1}{(b-a)} \int_{a}^{b} f$$

On appelle alors μ la valeur moyenne de la fonction f sur [a,b]

2.1.6 Théorème fondamental de l'analyse

Proposition 2.1.7

Soit $f:[a,b]\to\mathbb{R}$ Riemann-intégrable, et on définie $g:[a,b]\in\mathbb{R}$ telle que

$$\forall x \in [a, b], g(x) = \int_{a}^{x} f$$

Alors

- Si f est Riemann-intégrable alors g est continue
- Si f est continue en $x_0 \in [a, b]$ alors g est dérivable en x_0
- Si f est continue sur [a, b] alors g est dérivable sur [a, b] et g' = f

Théorème 2.1.3 – Théorème fondamental de l'analyse

Soit f une fonction \mathcal{C}^0 sur I un interval de \mathbb{R} , et soit $\alpha \in I$ alors f admet une unique primitive F_{α} telle que $F'_{\alpha} = f$ s'annulant en $x = \alpha$. De plus pour toute fonction F primitive de f on a $\int_a^b f = F(b) - F(a)$

2.1.7 Primitives usuelles

Proposition 2.1.8

Les primitives usuelles sont les suivantes, par abus de notation toutes les fonctions suivantes sont marquées selon leur procédure, par example x^{α} réfère à la fonction $(x \mapsto x^{\alpha})$ sur son plus grand interval de définition, c désigne une constante réelle.

$$f = x^{\alpha}, F = \frac{x^{\alpha+1}}{\alpha+1} + c$$

$$f = \frac{1}{x}, F = \ln|f| + c$$

$$\alpha \neq -1$$

$$f = \frac{1}{\sqrt{x}}, F = 2\sqrt{x} + c$$

$$f = e^x, F = e^x + c$$

$$f = \cos(ax + b), F = \frac{1}{a}\sin(ax + b) + c \qquad a \neq 0$$

$$f = \sin(ax + b), F = -\frac{1}{a}\cos(ax + b) + c \qquad a \neq 0$$

$$f = \frac{1}{\cos^2 x}, F = \tan x$$

$$f = \frac{1}{x^2 + a^2}, F = \frac{1}{a}\arctan\frac{x}{a} + c \qquad a \neq 0$$

Pour les fonctions, il faut pas oublier la règle de la composée qui donne par example

$$f = u^{\alpha} \cdot u', F = \frac{u^{\alpha+1}}{\alpha+1}$$

$$\alpha \neq -1$$

$$f = \frac{u'}{u}, F = \ln|u|$$

$$f = \frac{u'}{\sqrt{u}}, F = 2\sqrt{u}$$

2.1.8 Changement de variable

Théorème 2.1.4-Théorème de changement de variable

Soit $\varphi[a,b] \in \mathbb{R}, \mathcal{C}^1$ sur [a,b], et soit $f: I \in \mathbb{R}\mathcal{C}'$ sur I alors on a la formule suivante

$$\int_{a}^{b} f \circ \varphi \cdot \varphi' = \int_{\varphi(a)}^{\varphi(b)} f$$

2.1.2

Calculons, $I = \int_0^1 \frac{x dx}{\sqrt{d - x^2}}$ On pose $t = 2 - x^2$ ce qui est bien C^1 alors on a dt = -2x dx donc par changement de variable,

$$I = \int_{2}^{1} \frac{\mathrm{d}t}{-2\sqrt{t}}$$
$$= \int_{1}^{2} \frac{\mathrm{d}t}{2\sqrt{t}}$$

$$= \left[2\sqrt{x}\right]_1^2$$
$$= \sqrt{2} - 1$$

2.1.9 Intégration par parties

Théorème 2.1.5 – Théorème d'intégration par parties Soit u, v, C^1 sur [a, b] alors on a

$$\int_a^b uv' = [uv]_a^b - \int_a^b u'v$$

2.1.3

Exemple calculons $I = \int_0^1 x e^x dx$ On pose u(x) = x donc u'(x) = 1 et donc $v'(x) = e^x$ ce qui donne $v(x) = e^x$ ce qui sont bien C^1 , donc par IPP on a

$$I = [xe^x]_0^1 - \int_0^1 e^x dx$$

= $e - (e - 1)$
= 1

2.2 Intégrales Généralisées

Il existe deux cas d'intégrales généralisées

- 1. Le cas où l'on intègre une fonction bornée sur un intervalle non borné (de forme [a,b[)
- 2. Le cas où l'on intègre une fonction non bornée sur un intervalle bornée (de forme [a,b])

Définition 2.2.1

Soit [a,b[tel que $-\infty < a < b \le +\infty.$ Soit $f:[a,b[\to \mathbb{R}.$ On prend l'application $I(\lambda)=\int_a^\lambda f$ définie sur [a,b[

— Si $I(\lambda)$ converge en b^- alors f est intégrable sur [a,b[, on note $\lim_{\lambda \to b^-} I(\lambda) = \int_a^b f$ et on appelle le scalaire $\int_a^b f$ **intégrale généralisée** de f sur [a,b[

— Si $I(\lambda)$ diverge en b^- alors f n'est pas intégrable sur [a,b[

2.2.1

On cherche à connaître la nature de l'intégrale de $\left(x \mapsto \frac{1}{x^2}\right)$ sur $[1, +\infty[$

$$I(\lambda) = \int_{1}^{\lambda} \frac{dx}{x^{2}}$$

$$= -\left[\frac{1}{x}\right]_{1}^{\lambda}$$

$$= -\frac{1}{\lambda} + 1 \to_{\infty} 1$$

Donc $\int_1^\infty \frac{\mathrm{d}x}{x^2}$ existe et vaut 1

2.2.2

On cherche à connaître la nature de l'intégrale de $(x \mapsto \cos x)$ sur $[0, \infty[$.

$$I(\lambda) = \int_{1}^{\lambda} \cos x dx$$
$$= [\sin x]_{1}^{\lambda}$$
$$= -\sin \lambda$$
 DV

Donc $(x \mapsto \cos x)$ n'est pas intégrable sur $[0, \infty]$

Remarque 2.2.1

Soit $c \in [a, b[$ alors $\int_a^b f$ et $\int_c^b f$ sont de même nature, et sont notés en général $\int_a^b f$

Remarque 2.2.2

Si on a $a = \infty$ ou f non définie en a on sépare l'étude en plusieurs sous problèmes

2.2.1 Cas des fonctions réelles positives

Dans la section f est une fonction réelle positive définie sur [a, b]

Approuvé pour usage interne à l'Université de Rennes, page 22

Majoration

Proposition 2.2.1

l'intégrale de f sur [a, b] CV $\Leftrightarrow \int_a^{\lambda} f$ majorée

Démonstration.

$$I(\lambda) = \int_{a}^{\lambda} f$$

On a I qui est croissante sur [a,b[d'après le théorème des limites monotones alors

- si I est majorée alors $I(\lambda) \to \mu \in \mathbb{R}$ et f est intégrable sur [a, b]
- si I n'est pas majorée alors $I(\lambda) \to \infty$ donc f n'est pas intégrable sur [a,b[

Comparaison

Proposition 2.2.2 – Théorème de comparaison

Soit $g:[a,b]\to\mathbb{R}$ tel que $0\leq f\leq g$ alors

- Si g est intégrable sur [a, b[alors f l'est
- Si f n'est pas intégrable sur [a, b[alors g ne l'est pas

Equivalent

Proposition 2.2.3

Soit $g:[a,b[\to\mathbb{R} \text{ tel que } f\equiv_b g \text{ alors } \int^b f \text{ et } \int^b g \text{ sont de même nature}]$

2.2.2 Cas des fonction réelles positives et où $b = \infty$

Proposition 2.2.4

Si $f \not\to 0$ alors f n'est pas intégrable sur $[a, \infty[$

Démonstration. Supposons que $f \to l \neq 0$ alors $f \equiv l$ donc $\int_{-\infty}^{\infty} f$ est de même nature que $\int_{-\infty}^{\infty} l dx$ donc $\int_{-\infty}^{\infty} f$ DV

Critère de Riemann

Théorème 2.2.1 – Critère de Riemann

La fonction $(x \mapsto \frac{1}{r^{\alpha}})$ est :

- intégrable $\Leftrightarrow \alpha > 1$
- pas intégrable $\Leftrightarrow \alpha \leq 1$

Démonstration.

$$I(\lambda) = \int_{1}^{\lambda} \frac{dx}{x^{\alpha}}$$

$$= \left[\frac{x^{1-\alpha}}{1-\alpha}\right]_{1}^{\lambda}$$

$$= \frac{1}{(1-\alpha)\lambda^{\alpha-1}} - \frac{1}{1-\alpha}$$

Donc I ne converge que si $\alpha > 1$ et en retour si $\alpha > 1$ alors I converge.

2.2.3

Cherchons la nature de $\int_0^\infty \frac{2x+1}{\sqrt{x^4+8}}$

$$\frac{2x+1}{\sqrt{x^4+8}} \equiv \frac{2x}{\sqrt{x^4}}$$
$$\equiv \frac{2}{x}$$

Donc d'après le critère de Riemann $\int_0^\infty \frac{2x+1}{\sqrt{x^4+8}}$ DV

Règle de Riemann

Proposition 2.2.5 – Règle de Riemann

Soit f une fonction définie sur $[a, \infty[$

- Si il existe $\alpha > 1$ tel que $x^{\alpha} f(x) \to l \in \mathbb{R}$ alors $\int_{-\infty}^{\infty} f \, \text{CV}$
- Si il existe $\alpha \leq 1$ tel que $x^{\alpha}f(x) \to l \in \mathbb{R}^*$ alors f n'est pas intégrable

Démonstration. Conséquence du critère de Riemann.

2.2.4

Est-ce que $(x \mapsto \sqrt{x}e^{-x})$ est intégrable sur $[0, \infty[$

$$x^{2} * \sqrt{x}e^{-x} = \frac{x^{\frac{5}{2}}}{e^{x}}$$

$$\to 0$$
CC

Donc d'après la règle de Riemann, $\int_{-\infty}^{\infty} \sqrt{x}e^{-x}$ CV

2.2.3 Cas où b est fini

On note

$$g(x) = \frac{1}{(b-x)^{\alpha}}, \alpha > 0$$

Proposition 2.2.6

Nature de $\int_a^b g$.

$$I(\lambda) = -\frac{1}{(1-\alpha)} \left((b-\lambda)^{1-\alpha} - (b-a)^{1-\alpha} \right)$$

Donc

- si $\alpha < 1$ alors $(b \lambda)^{1-\alpha} \to 0$ donc I CV
- $-\sin \alpha > 1 \text{ alors } (b-\lambda)^{1-\alpha} \to \infty \text{ donc } I \text{ DV}$
- si $\alpha = 1$ alors $I \to \infty$ donc I DV

Critère de Riemann

Théorème 2.2.2 – Critère de Riemann - Version finie

$$\int_{a}^{b} \frac{\mathrm{d}x}{(b-x)^{\alpha}} \, \mathrm{CV} \iff \alpha < 1$$

Voir ci dessus.

Proposition 2.2.7

Par conséquent si $f \equiv \frac{A}{(b-x)^{\alpha}}$ alors $\int_{a}^{b} f$ CV ssi $\alpha < 1$

Démonstration. Conséquence directe du critère de Riemann.

2.2.5

Nature de $\int_0^1 \frac{x+1}{\sqrt{x}}$ on a

$$\frac{x+1}{\sqrt{x}} \equiv \frac{2}{\sqrt{x}}$$
$$\equiv \frac{2}{x^{\frac{1}{2}}}$$

or
$$\frac{1}{2} < 1$$
 donc $\int_0^1 \frac{x+1}{\sqrt{x}}$ CV

Règle de Riemann

Proposition 2.2.8-Règle de Riemann - Version finie

Soit f une fonction définie sur [a, b[

- Si il existe $\alpha < 1$ tel que $x^{\alpha} f(x) \to l \in \mathbb{R}$ alors $\int_{-\infty}^{\infty} f \, \text{CV}$
- Si il existe $\alpha \geq 1$ tel que $x^{\alpha}f(x) \rightarrow l \in \mathbb{R}^*$ alors f n'est pas intégrable

Démonstration. Conséquence du critère de Riemann.

2.2.4 Cas des fonctions de signes qql

Définition 2.2.2

On dit que l'intégrale de f est simplement convergente si et seulement si $I(\lambda)$ a une limite et si

$$\lim_{x \to b^-} \int_a^x f \in \mathbb{R}$$

Définition 2.2.3

On dit que l'intégrale de f est absolument convergente si et seulement si $\int_a^x |f| \to \mu \in \mathbb{R}$

Théorème 2.2.3 – Comparaison

Soient $a \in \mathbb{R}$, $b \in \overline{\mathbb{R}}$ tel que a < b et f une fonction définie sur [a, b]

1. Si l'intégrale de f est absolument convergente alors l'intégrale de f est

simplement convergente

2. Le résultat $\left| \int f \right| \leq \int |f|$ est étendu aux intégrales généralisées

Démonstration. 1. Notons, $f^- = max(-f, 0)$ et $f^+ = max(f, 0)$. On observe que

$$f^{-} + f^{+} = max(-f, 0) + max(f, 0)$$

= $|f|$

Et on a aussi

$$f^{+} - f^{-} = max(f, 0) - max(-f, 0)$$

= f

On suppose que $\int |f|$ est convergente donc

$$\exists \mu \in \mathbb{R}, \lim_{x \to b^{-}} \int_{a}^{x} (f^{+} + f^{-}) = \mu$$

Or Les fonctions f^+ et f^- sont à valeurs positives, donc

$$\exists (\mu_1, \mu_2) \in \mathbb{R}^2, \lim_{x \to b^-} \int_a^x (f^+) = \mu_1$$
 et
$$\lim_{x \to b^-} \int_a^x (f^-) = \mu_2$$

Donc par linéarité,

$$\lim_{x \to b^{-}} \int_{a}^{x} (f^{+} - f^{-}) = \mu_{1} + \mu_{2} \in \mathbb{R}$$

Ce qui revient à

$$\exists \lambda \in \mathbb{R}, \lim_{x \to b^{-}} \int_{a}^{x} f = \lambda$$

Donc l'intégrale de f est simplement convergente.

2. Supposons que l'intégrale de f est absolument convergente, rappelons d'abord que sur les intégrales de Riemann on a pour $(\alpha, \beta) \in \mathbb{R}^2$ tels que a < b et $g \mathcal{M}^0$ sur [a, b]

$$\left| \int_{\alpha}^{\beta} g \right| \le \int_{\alpha}^{\beta} |g| \tag{2.1}$$

Puis,

$$\forall x \in [a, b[, \left| \int_{a}^{x} f \right| = \left| \int_{a}^{x} (f^{+} - f^{-}) \right|$$

$$\leq \left| \int_{a}^{x} f^{+} \right| + \left| \int_{a}^{x} f^{-} \right| \qquad IT$$

$$\leq \int_{a}^{x} |f^{+}| + \int_{a}^{x} |f^{-}| \qquad (1)$$

$$\leq \int_{a}^{x} f^{+} + f^{-} \qquad \text{valeurs positives}$$

$$\leq \int_{a}^{x} |f|$$

Enfin par passage à la limite avec $x \to b^-$ (les limites existe avec la démonstration du 1.)

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|$$

2.2.6

Nature de $\int_0^1 \sin \frac{1}{x} dx$. On a

$$\forall x \in]0,1] \le 1$$

Donc l'intégrale est absolument convergente donc l'intégrale est convergente

2.2.7

Nature de $\int_0^\infty \frac{\cos x}{1+x^2}$ par le même raisonnement absolument convergente donc convergente.

Chapitre 3

Séries numériques

3.1 Introduction aux séries numériques

Définition 3.1.1

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ et $S_n = \sum_{i=0}^n u_i$ alors la suite $(S_n)_{n \in \mathbb{N}}$ est appélée série de terme général u_n notée $\sum u_n$.

De plus si la suite (S_n) converge alors on note $S = \lim_{n \to \infty} \sum_{k=0}^n u_k$, notée aussi

 $\sum_{k=0}^{\infty} u_k$ appelée somme de la série.

On dit alors que la série de terme général u_n est convergente. Dans le cas contraire on dit qu'elle est divergente.

Définition 3.1.2

On appelle $S_n = \sum_{k=0}^n u_k$ somme partielle de la série de terme général u_n , et si la série est convergente alors on note $R_n = S - S_n$ le reste de la série.

Remarque 3.1.1

On a donc $\lim_{n\to\infty} R_n = 0$

Remarque 3.1.2

Les séries $\sum_{n=0}^{\infty} u_n$ et $\sum_{n=0}^{\infty}$ sont de même nature d'où la notation $\sum_{n=0}^{\infty} u_n$

Proposition 3.1.1 – Condition nécessaire de convergence

$$\left(\sum u_n \text{ CV}\right) \Leftrightarrow \lim_{n \to \infty} u_n = 0$$

On observe que

$$S_{n+1} - S_n = u_n$$

Donc, en supposant que $\sum u_n$ CV on a

$$u_n \to S - S$$
$$= 0$$

Donc
$$\lim_{n\to\infty} u_n = 0$$

Remarque 3.1.3

Cette condition est surtout utilisé pour montrer qu'il n'y a pas convergence (contraposée), lorsque $u_n \not\to 0$ on dit que $\sum u_n$ est grossièrement divergente.

3.1.1

Soit $u_n = \frac{1}{n(n+1)}$. Soit $n \ge 1$ on a alors

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

Donc par somme téléscopique on obtient que

$$\sum_{k=1}^{n} \frac{1}{n(n+1)} = 1 - \frac{1}{n+1} \to_{n \to \infty} 1$$

Donc la série de terme générale u_n est convergente et sa somme vaut 1

3.1.2

Soit $u_n = \log\left(1 + \frac{1}{n}\right)$, alors on a

$$u_n = \log \frac{n+1}{n}$$
$$= \log n + 1 - \log n$$

Donc,

$$\sum_{k=1}^{n} u_n = \sum_{k=1}^{n} \log n + 1 - \log n$$

$$= \log n + 1 - \log 1$$
 somme téléscopique
$$= \log n + 1$$

$$\to \infty$$

Donc la série de terme générale u_n est divergente

3.1.1 Sommes de séries numériques

Proposition 3.1.2 – Somme

Soit $(v_n) \in \mathbb{R}^{\mathbb{N}}$ et $(u_n) \in \mathbb{R}^{\mathbb{N}}$ et $w_n = u_n + v_n$

- Si $\sum u_n$ et $\sum v_n$ convergent alors $\sum w_n$ converge
- Si $\sum u_n$ ou $\sum v_n$ divergent alors $\sum w_n$ diverge
- Si $\sum u_n$ et $\sum v_n$ divergent alors on ne peut rien dire de $\sum w_n$

3.2 Séries géométriques

Définition 3.2.1

Soit $r \in \mathbb{R}$ alors on appelle suite géométrique une suite de la forme $u_n = r^n$ et alors la série de terme général u_n est appelée série géométrique de raison r

Théorème 3.2.1 – Théorèmes des Séries Géométriques

Soit $u_n = r^n$ et $\sum u_n$ la série associée, alors on a

$$\sum u_n \text{ CV } \Leftrightarrow |r| < 1$$

Et dans ce cas alors on a

$$\sum_{n=0}^{\infty} u_n = \frac{1}{1-r}$$

Démonstration. Soit $r \in \mathbb{R}$, soit $n \in \mathbb{N}$

$$(1-r)S_n = (1-r) \cdot \sum_{i=0}^n r^n$$

$$= \sum_{i=0}^n (1-r)r^n \qquad (1-r) \in \mathbb{R}$$

$$= \sum_{i=0}^n r^n - r^{n+1}$$

$$= 1 - r^{n+1} \qquad \text{somme t\'el\'escopique}$$

$$\to \begin{cases} 1 & \text{si } |r| < 1 \\ \text{DV sinon} \end{cases}$$

D'où dans le cas convergent

$$S = \frac{1}{1 - r}$$

3.3 Séries À Termes Positifs (SATP)

Définition 3.3.1

Soit $(u_n) \in (\mathbb{R}^+)^{\mathbb{N}}$ on appelle alors la série de terme générale $\sum u_n$ une série à terme positifs, abrégés SATP

3.3.1 Introduction

Proposition 3.3.1 Soit $(u_n) \in (\mathbb{R}^+)^{\mathbb{N}}$

$$\left(\sum u_n \text{ CV}\right) \Leftrightarrow (S_n)_{n \in \mathbb{N}} \text{ majorée}$$

Démonstration. $\sum (u_n)$ est une série à terme positifsdonc la suite $(S_n)_{n\in\mathbb{N}}$ des sommes partielles est croissante donc par théorème des limites monotones $(S_n)_{n\in\mathbb{N}}$ converge si et seulement si elle est majorée

3.3.2 Comparaison

Théorème 3.3.1 – Théorème de Comparaison des SATP

Soit $(u_n) \in (\mathbb{R}^+)^{\mathbb{N}}$ et $(v_n) \in (\mathbb{R}^+)^{\mathbb{N}}$ tels que

$$\forall n \in \mathbb{N}, 0 \le u_n \le v_n$$

On a,

- 1. Si $\sum v_n$ CV alors $\sum u_n$ CV
- 2. Si $\sum u_n$ DV alors $\sum v_n$ DV

Démonstration. Conséquence du théorème des limites monotones

Proposition 3.3.2

Soit $(u_n), (v_n) \in (\mathbb{R}^+)^{\mathbb{N}}$ telles que

$$u_n \equiv_{\infty} v_n$$

Alors $\sum u_n$ et $\sum v_n$ sont de même nature

3.3.1

Soit $u_n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)$ on a $u_n \equiv \frac{1}{n}$ et $\sum u_n$ DV donc la série $\sum \frac{1}{n}$ est divergente

Remarque 3.3.1

La série $\sum_{n=0}^{\infty} \frac{1}{n}$ est appelée série harmonique

3.3.3 Liaison séries intégrales

Théorème 3.3.2 – Comparaison Série/Intégrale

Soit $f \geq 0$, C^0 , et décroissante à partir d'un réel x_0 , alors $\sum f(n)$ et $\int_{-\infty}^{\infty} f$ sont de même nature

Démonstration. Soit $f \geq 0$, \mathcal{C}^0 et décroissante, soit $n \in \mathbb{N}$ on observe que

$$I(n+1) \le S_n$$
 et
$$S_n \le f(0) + I(n)$$

Donc si $\sum f(n)$ converge alors par comparaison à termes positifs on a I(n) qui

converge par la première inégalité, et si $\sum f(n)$ diverge alors par la deuxième inégalité I(n) diverge. Donc I et $\sum f(n)$ sont de même nature

3.3.4 Séries de Riemann

Théorème 3.3.3-Critère de Riemann

$$\sum \frac{1}{n^{\alpha}} \text{ CV} \Leftrightarrow \alpha > 1.$$

Soit $\alpha \in \mathbb{R}$ soit $f(x) = \frac{1}{x^{\alpha}}$, f est \mathcal{C}^0 , à terme positifs et décroissante donc par comparaison série intégrale $\int f$ et $\sum f(n)$ sont de même nature, or par critère de Riemann dans les intégrales $\int f$ converge si et seulement si $\alpha > 1$ donc $\sum f(n) = \sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

Remarque 3.3.2

Si $u_n \equiv \frac{A}{n^{\alpha}}$ alors $\sum u_n$ CV si et seulement si $\alpha > 1$

Proposition 3.3.3-Règle de Riemann

Soit $(u_n) \in (\mathbb{R}^+)^{\mathbb{N}}$, alors

- Si il existe $\alpha > 1$ tel que $n^{\alpha}u_n \to l \in \mathbb{R}$ alors $\sum u_n$ CV
- Si il existe $\alpha \leq 1$ tel que $n^{\alpha}u_n \to l \in \mathbb{R}^*$ alors $\sum u_n$ DV

Démonstration. Conséquence du critère de Riemann.

3.3.5 Règle de Cauchy

Théorème 3.3.4-Règle de Cauchy

Soit $(u_n) \in (\mathbb{R}^+)^{\mathbb{N}}$, telle que

$$\lim_{n \to \infty} \sqrt[n]{u_n} = l \in \mathbb{R}$$

On a

— Si
$$l < 1$$
 alors $\sum u_n$ CV

— Si
$$l > 1$$
 alors $\sum u_n$ DV

— Si l=1 on ne peut pas déterminer la nature de $\sum u_n$ par cette méthode

Démonstration. Soit $(u_n) \in (\mathbb{R}^+)^{\mathbb{N}}$ telle que $\lim_{n \to \infty} \sqrt[n]{u_n} = l \in \mathbb{R}$ alors

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, |\sqrt[n]{u_n} - l| \leq \varepsilon$$

Donc

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, l - \varepsilon \leq \sqrt[n]{u_n} \leq l + \varepsilon$$

Supposons l<1 alors prenons ε tel que $\varepsilon+l<1$, on prend le n_0 associé, et soit $n\geq n_0$

$$\sqrt[n]{u_n} \le l + \varepsilon < 1$$

Donc

$$(\sqrt[n]{u_n})^n \le (l+\varepsilon)^n$$

$$u_n \le (l+\varepsilon)^n$$

Or $|l + \varepsilon| < 1$ donc par théorème des séries géométriques $\sum (l + \varepsilon)^n$ converge, donc par comparaison de série à terme positifs, $\sum u_n$ converge.

Supposons maintenant que l > 1 alors prenons ε tel que $l - \varepsilon > 1$, et soit $n \ge n_0$

$$(l - \varepsilon) \le \sqrt[n]{u_n}$$
$$(l - \varepsilon)^n \le \sqrt[n]{u_n}^n$$
$$(l - \varepsilon)^n \le u_n$$

Or $|l - \varepsilon| > 1$ donc par théorèmes des séries géométriques $\sum (l - \varepsilon)^n$ diverge, donc par comparaisons de série à terme positifs, $\sum u_n$ diverge.

3.3.6 Règle d'Alembert

Théorème 3.3.5-Règle d'Alembert

Soit $(u_n) \in (\mathbb{R}^+)^{\mathbb{N}}$ tel que

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = l \in \mathbb{R}$$

On a

- Si l < 1 alors $\sum u_n$ CV
- Si l > 1 alors $\sum u_n$ DV
- Si l=1 alors on ne peut pas déterminer la nature de $\sum u_n$ par cette méthode

Démonstration. Soit $(u_n) \in (\mathbb{R}^+)^{\mathbb{N}}$ telle que $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} \to l \in \mathbb{R}$.

Supposons que l > 1 alors a que $\exists n_0 \in \mathbb{N}, \forall n \geq n_0, u_{n+1} > u_n$. Donc (u_n) est strictement croissante à partir d'un certain rang, donc par le théorème des limites monotones $\lim_{n\to\infty} u_n = \infty$ donc la série $\sum u_n$ est grossièrement divergente.

Supposons que l < 1 alors soit $q \in \mathbb{R}$ tel que l < q < 1. On a qu'il existe un rang n_0 tel que l < q ainsi on a à partir d'un certain rang

$$\frac{u_{n+1}}{u_n} < q$$

Donc par produit téléscopique on a que la suite (u_n) est majorée par la suite $v = (u_{n_0}q^{n-n_0})$, or |q| < 1 donc par théorème des séries géométriques $\sum v_n$ converge, donc par comparaison de séries à termes positifs $\sum u_n$ converge. \square

3.4 Séries de signes non constant

Définition 3.4.1

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$, Soit $\sum u_n$ la série de terme général u_n .

— Si
$$\exists \lambda \in \mathbb{R}, \lim_{n \to \infty} \sum_{k=0}^{n} u_k = \lambda \text{ alors } \sum u_n \text{ est dite } simplement \ convergente$$

— Si
$$\exists \mu \in \mathbb{R}$$
, $\lim_{n \to \infty} \sum_{k=0}^{n} |u_k| = \mu$ alors $\sum u_n$ est dite absolument convergente

Théorème 3.4.1

La convergence absolue implique la convergence simple

Démonstration. voir la preuve du théorème analogue pour les suites

3.4.1

Soit
$$u_n = \frac{\cos n^2}{n^4}$$
.

On a $\forall n \in \mathbb{N}, \left|\frac{\cos n^2}{n^4}\right| \leq \frac{1}{n^4}$, or par critère de Riemann la série $\sum \frac{1}{n^4}$ converge donc par comparaison de série à terme positive la série $\sum \left|\frac{\cos n^2}{n^4}\right|$ converge donc la série $\sum \frac{\cos n^2}{n^4}$ est absolument convergente donc elle converge simplement.

3.4.1 Séries Alternées

Définition 3.4.2

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ on dit que la série $\sum u_n$ est alternée si et seulement si la suite $(-1)^n u_n$ est de signe constant

Théorème 3.4.2 – Critère Spécial des Séries Alternées (CSSA)

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ telle que $\sum u_n$ soit une série alternée, si la suite $(|u_n|)$ est décroissante et que $\lim_{n \to \infty} u_n = 0$ alors $\sum u_n$ converge

Démonstration. Considérons, sans perte de généralitée que $u_0 > 0$ alors on a

$$S_n = u_0 + u_1 + \dots + u_n$$

$$= |u_0| - |u_1| \dots (-1)^n u_n$$
 il vient
$$S_n - S_{n-2} = (-1)^{n-1} |u_{n-1}| + (-1)^n |u_n|$$

$$= (-1)^n (|u_n| - |u_{n-1}|)$$

Or par hypothèse $|u_n|$ est décroissante donc la quantité $|u_n| - |u_{n-1}|$ est négative.

— Si n est pair alors n = 2p et la quantité $S_{2p} - S_{2p-2}$ est négative donc la suite (S_{2p}) est décroissante

- Si n est impair alors n = 2p + 1 et la quantité $S_{2p+1} S_{2p-1}$ est positive donc la suite (S_{2p+1}) est croissante
- De plus $S_{2p+1} S_{2p} = u_{2p+1} \to 0$

Donc les suites (S_{2p}) et (S_{2p+1}) sont adjacente, donc

$$\exists S \in \mathbb{R}, \lim_{p \to \infty} S_{2p} = \lim_{p \to \infty} S_{2p+1} = S \tag{3.1}$$

Donc par théorème des indices pair et impair la suite (S_n) converge donc la série $\sum u_n$ est convergente \Box

3.4.2 Soit
$$u_n = \frac{(-1)^n}{n+1}$$
 on a $|u_n| = \frac{1}{n+1}$ donc décroissante, et $\lim_{n \to \infty} u_n = 0$ car $(-1)^n$ est bornée donc par critère spécial des séries alternées la série $\sum u_n$ converge

Chapitre 4

Séries Entières

Définition 4.0.1

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ on définie $(f_n)_{n \in \mathbb{N}}$ par

$$f_n \colon \mathbb{R} \to \mathbb{R}$$

 $x \mapsto a_n x^n$.

on appelle la série de terme générale $f_n(x)$ soit la suite $\left(\sum_{k=0}^n f_k(x)\right)_{n\in\mathbb{N}}$ série entière centrée en 0 ou plus simplement série entière.

Le but de l'étude est de trouver l'ensemble D pour lesquels $\forall x \in D, \sum_{n=0}^{\infty} f_n(x)$ converge, autrement dit l'ensemble de définition de la fonction $\left(x \mapsto \sum_{n=0}^{\infty} a_n x^n\right)$

Remarque 4.0.1

Toute série entière converge pour x = 0

Remarque 4.0.2

Soit $(x_1, x_2) \in \mathbb{R}^2$ tels que $|x_1| < |x^2|$ alors $|a_n x_1^n| < |a_n x_2^n|$ donc on en tire les conclusions suivantes

- Si $\sum a_n x_1^n$ est absolument convergente alors $\sum a_n x_1^n$ est ACV
- Si $\sum a_n x_1^n$ est divergente alors $\sum a_n x_2^n$ est DV

4.1 Domaine de convergence

Théorème 4.1.1-Lemme d'Abel

Si il existe $x_0 \neq 0$ tel que $(a_n x_0^n)$ soit borné alors $\forall x \in \mathbb{R}$ tels que $|x| < |x_0|$, $\sum a_n x^n$ ACV

Démonstration. Soit $x \in \mathbb{R}$ tel que $|x| < |x_0|$ alors

$$|a_n x^n| = |a_n x_0^n| \cdot \left| \frac{x}{x_0} \right|^n$$

$$\leq M \left| \frac{x}{x_0} \right|^n$$

Or
$$\sum \left(\frac{x}{x_0}\right)^n$$
 est ACV car $\left|\frac{x}{x_0}\right| < 1$ donc $\sum a_n x^n$ est absolument convergente.

Remarque 4.1.1

Si il existe $x_0 \neq 0$ tel que $\sum (a_n x_0^n)$ soit simplement convergente alors $\forall x \in \mathbb{R}$ tels que $|x| < |x_0|$, $\sum a_n x^n$ ACV

 $D\acute{e}monstration.$ La convergence simple implique que la suite est borné à partir d'un certain rang

Remarque 4.1.2

Par contraposée on obtient que si il existe x_0 /0 tel que $\sum a_n x_0^n$ DV alors $\forall x \in \mathbb{R}$ tels que $|x| > |x_0|$, $\sum a_n x^n$ DV

4.2 Rayon et intervalle de convergence

Définition 4.2.1

Pour toute série entière $\sum a_n x^n$ il existe $R \in \mathbb{R}$ tel que R >= 0 et

- $\forall x \in \mathbb{R}$ tels que |x| < R la série entière $\sum a_n x^n$ est ACV
- $\forall x \in \mathbb{R}$ tels que |x| > R la série entière $\sum a_n x^n$ est DV

On appelle R le rayon de convergence de la série entière $\sum a_n x^n$ et l'intervalle]-R,R[est appelé intervalle de convergence.

Remarque 4.2.1

Pour une petite apparté, d'un point de vue général pour $(c_n) \in \mathbb{C}^{\mathbb{N}}$ et $a \in \mathbb{C}$ on a que la série $\sum c_n(z-a)^n$ est la série entière centrée en a de (c_n) . On a alors convergence si |z-a| < R et divergence si |z-a| > R ce qui dans le plan complexe représente un disque de centre a et de rayon R (disque sans le bord), d'où l'appellation rayon de convergence

4.3 Calcul du rayon de convergence

On peut utiliser la règle d'Alembert (ou de la même manière la règle de cauchy) pour calculer l'inverse du rayon de convergence

Proposition 4.3.1

Soit $(a_n) \in \mathbb{R}^{\mathbb{N}}$ telle que $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = l \in \overline{\mathbb{R}}, l >= 0$, on a

— si
$$l|x| < 1$$
 alors $\sum |a_n x^n|$ CV

— si
$$l|x| > 1$$
 alors $\sum |a_n x^n|$ DV

Démonstration.

$$\frac{\left|a_{n+1}x^{n+1}\right|}{\left|a_{n}x^{n}\right|} = \left|\frac{a_{n+1}}{a_{n}}\right||x|\tag{4.1}$$

D'après les hypothèses on a que $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=l\in\mathbb{R}$ et l>=0 on a alors d'après la règle d'Alembert on obtient le résultat donné en énoncé.

Remarque 4.3.1

De la même manière on peut calculer l avec la règle de Cauchy.

Proposition 4.3.2

Soit $l \in \bar{\mathbb{R}}$

$$-R = \frac{1}{l} \text{ si } l \neq 0$$

$$-R = \infty \text{ si } l = 0$$

$$-R = 0$$
 si $l = \infty$

Démonstration. Conséquence de la proposition précédente

4.3.1

Soit la série entière $\sum \frac{x^n}{n2^n}$ on a alors $a_n = \frac{1}{n2^n}$

$$\frac{a_{n+1}}{a_n} = \frac{\frac{1}{(n+1)2^{n+1}}}{\frac{1}{n2^n}}$$

$$= \frac{n2^n}{(n+1)2^{n+1}}$$

$$= \frac{1}{2} \cdot \frac{n}{n+1} \to \frac{1}{2}$$

Donc $l=\frac{1}{2}$ ce qui donne R=2 donc la série entière est convergente sur au moins] -2,2[

Observons maintenant en x = 2 on a alors

$$\left(\sum \frac{x^n}{n2^n}\right)(2) = \sum \frac{2^n}{n2^n}$$
$$= \sum \frac{1}{n}$$

ce qui est divergent par le critère de Riemann, donc la série entière est divergente en 2.

Enfin, en x = -2

$$\left(\sum \frac{x^n}{n2^n}\right)(-2) = \sum \frac{(-2)^n}{n2^n}$$
$$= \sum \frac{(-1)^n}{n}$$

Ce qui est convergent par le critère spécial des séries alternées, donc la série entière est convergente en -2.

On a donc enfin que l'intervalle de convergence de $\sum \frac{x^n}{n2^n}$ est [-2,2[

Chapitre 5

Notations et rappels

5.1 Ensembles

Remarque 5.1.1

Soit D un ensemble

- \bar{D} est l'adhérence de D c'est à dire le plus petit ensemble fermé contenant D, par exemple $\bar{R} = \mathbb{R} \cup \{-\infty, +\infty\}$
- Soit \mathbb{K} un corps, alors $\mathbb{K}[X]$ est l'ensemble des polynomes à coefficient dans \mathbb{K} a une indéterminée (en gros, variable)

5.2 Fonctions

5.2.1 Ensembles de fonctions

Remarque 5.2.1

Soit E, F deux ensembles, et soit I un interval de \mathbb{R}

- E^F est l'ensemble des applications (fonctions) de F dans E
- En particulier $\mathbb{R}^{\mathbb{N}}$ est l'ensemble des suites réelles
- $\mathcal{C}^0(I)$ est l'ensemble des fonctions continues sur I
- Dans le cas général $C^n(I)$ est l'ensemble des fonctions dérivable n fois sur I et dont la n-ème dérivée est continue sur I
- $--\mathcal{M}^0(I)$ est l'ensemble des fonctions continues par morceaux sur I

5.2.2 Opérations entre fonctions et fonctions et scalaires

Remarque 5.2.2

Soit f, g deux fonctions, Soit $\lambda \in \mathbb{R}$

- λf est la fonction $(x \mapsto \lambda \cdot f(x))$
- f + g est la fonction $(x \mapsto f(x) + g(x))$
- fg est la fonction $(x \mapsto f(x)g(x))$
- $f \circ g$ est la fonction $(x \mapsto f(g(x)))$

5.2.3 Comparaison entre fonctions et fonctions et scalaires

Remarque 5.2.3

Soit f, g deux fonctions et $\lambda \in \mathbb{R}$

- $-f \ge \lambda \text{ (resp >}, \le, <) \text{ représente } \forall x \in I, f(x) \ge \lambda \text{ (resp >}, \le, <)$
- $-f \ge g \text{ (resp } >, \le, <) \text{ représente } \forall x \in I, f(x) \ge g(x) \text{ (resp } >, \le, <)$

$$- f = o_a(g) \Leftrightarrow \lim_a \frac{f}{g} = 0$$

$$--f = \mathcal{O}_a(g) \Leftrightarrow \lim_a \frac{f}{g} \in \mathbb{R}$$

$$-f \equiv_a g \Leftrightarrow \lim_a \frac{f}{g} = 1$$

5.2.4 Limites, continuité et dérivabilité

Remarque 5.2.4

Soit f une fonction définie sur I et $a \in I$

— Définition de la limite de f au point a

$$\left(\lim_{x\to a} f(x) = l\right) \Leftrightarrow (\forall \varepsilon > 0, \exists \nu > 0, |x-a| < \nu \Rightarrow |f(x)-l| < \varepsilon)$$

- $-\lim_{a} f = \lim_{x \to a} f(x)$
- f est continue en a si $\lim_{a} f = f(a)$
- f est continue sur I si $\forall x \in I, f$ est continue en x
- f est dérivable en a si le quotient $\frac{f(x) f(a)}{x a}$ admet une limite finie quand $x \to a$

— f est dérivable sur I si $\forall x \in I, f$ est dérivable en x

5.2.5 Autre

Remarque 5.2.5

Soit f une fonction définie sur I un interval de $\mathbb R$ tel que I=[a,b]

$$-\int_{I} f = \int_{a}^{b} f = \int_{a}^{b} f(x) dx$$