SINGAPORE POLYTECHNIC 2022/2023 Semester 2 Examination

No.	SOLUTION							
A1	Answer: (d)							
	Notice that A^{2023} performs unit shearing in the y-direction for 2023 times, and this is equivalent to shearing in the y-direction by a factor of 2023.							
	Similarly, \mathbf{B}^{2023} performs unit shearing in the <i>x</i> -direction for 2023 times, and this is equivalent to shearing in the <i>x</i> -direction by a factor of 2023.							
	$\mathbf{A}^{2023} + \mathbf{B}^{2023} = \begin{bmatrix} 1 & 0 \\ 2023 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 2023 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2023 \\ 2023 & 2 \end{bmatrix}$							
	Hence, $a+b+c+d=2+2023+2023+2=4050$.							
A2	Answer: (c)							
	There are three possible cases for any two sets A and B such that $ A = B $.							
	Case 1: $A = B$							
	Case 2: $A \neq B$, and they are disjoint							
	Case 3: $A \neq B$, and they are not disjoint							
	The only set relationship that applies for all three cases is the inclusion-exclusion principle, i.e. $ A \cup B = A + B - A \cap B $.							
	Since $ A = B $, the terms in the inclusion-exclusion principle can be rearranged to become $ A \cup B + A \cap B = 2 A $.							
A3	Answer: (a)							
	For the proposition "If x is an integer or x is positive, then x is an integer" to be false, we require the antecedent to be true and the consequent to be false.							
	For the consequent to be false, this means that x must not be an integer.							
	For the antecedent to be true, knowing that x must not be an integer, this means that x must be positive.							
	Hence, $x = \frac{1}{2}$ is a possible value that makes the above proposition false.							
A4	Answer: (b)							
	There are $16C2 = 120$ ways to pair up every player with every other player. This corresponds to the total number of matches played if every player plays exactly one match against every other player.							
	Hence, the total number of matches played if every player plays exactly two matches against every other player is $120 \times 2 = 240$.							

SINGAPORE POLYTECHNIC 2022/2023 Semester 2 Examination

A5 Answer: (c)

Since the card obtained has at least one green side, it has to be either Card 1, Card 2 or Card 3. Card 1 has two green sides, while Card 2 and Card 3 has one green side each, so there are four green sides in total. Hence, the probability that the card obtained is Card 1 (i.e. the other side is green) is 2/4 = 1/2.

Alternative solution:

$$P(\text{other side green} | \text{one side green}) = \frac{P(\text{other side green} \cap \text{one side green})}{P(\text{one side green})}$$

$$= \frac{P(\text{Card 1})}{P(\text{one side green})}$$

$$= \frac{\frac{1}{4}}{\frac{4}{8}}$$

$$= \frac{1}{4}$$

SINGAPORE POLYTECHNIC 2022/2023 Semester 2 Examination

B1a (i)
$$\mathbf{A} - 2\mathbf{B} = \begin{bmatrix} 1 & 5 \\ -6 & 2 \end{bmatrix} - \begin{bmatrix} -4 & 2 \\ -8 & 6 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 2 & -4 \end{bmatrix}$$

B1a (ii)
$$\mathbf{AB}^{T} = \begin{bmatrix} 1 & 5 \\ -6 & 2 \end{bmatrix} \begin{bmatrix} -2 & -4 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 11 \\ 14 & 30 \end{bmatrix}$$

B1b
$$\mathbf{CD} = \begin{bmatrix} -2 & 0 & -3 \\ -1 & 1 & -2 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 4 & -3 & 3 \\ 2 & -4 & -1 \\ -1 & 2 & -2 \end{bmatrix} = \begin{bmatrix} -5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5 \end{bmatrix}$$

Since CD = -5I:

$$\mathbf{CDD}^{-1} = -5\mathbf{ID}^{-1}$$

$$\Rightarrow$$
 C = -5 D⁻¹

$$\therefore \mathbf{D}^{-1} = -\frac{1}{5}\mathbf{C} = -\frac{1}{5} \begin{bmatrix} -2 & 0 & -3 \\ -1 & 1 & -2 \\ 0 & 1 & 2 \end{bmatrix}$$

B2a
$$\mathbf{T}_{1} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ; \mathbf{T}_{2} = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{C} = \mathbf{T}_2 \mathbf{T}_1 = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

B2b
$$\mathbf{P'} = \mathbf{CP} = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 3 \\ 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 4 & 3 \\ 1 & 1 \end{bmatrix}$$

B2c
$$\mathbf{T}_{1}^{-1} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ; \ \mathbf{T}_{2}^{-1} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}_{1}^{-1} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ; \mathbf{T}_{2}^{-1} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{C}^{-1} = \mathbf{T}_{1}^{-1} \mathbf{T}_{2}^{-1} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 7 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

B3a | Convert to HEX:

$$1011110.01_2 = (0101)(1110).(0100)_2 = 5E.4_{16}$$

Convert to DEC:

$$1011110.01_2 = 2^6 + 2^4 + 2^3 + 2^2 + 2^1 + 2^{-2} = 94.25_{10}$$

SINGAPORE POLYTECHNIC 2022/2023 Semester 2 Examination

B3b						
	Integral part:					
	2	632				
	2	316	0			
	2	158	0			
	2	79	0			
	2	39	1			
	2	19	1			
	2	9	1			
	2	4	1			

2

1

0

2

Fractional part:					
2	0.95				
2	0.9	1			
2	0.8	1			
2	0.6	1			
2	0.2	1			
2	0.4	0			
2	0.8	0			
2	0.6	1			
2	0.2	1			
2	0.4	0			
2	0.8	0			
2	0.6 (rep)	1			

 $\therefore 632.95_{10} = 1001111000.11\overline{1100}_2$

0

0

1

B4a

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$A = \{2, 3, 4, 5, 6\}$$

$$B = \{3, 6, 9\}$$

B4b

$$A \cap \overline{B} = \{2, 4, 5\}$$

$$|A \cup B| = 6$$

B4c

B5a John goes to university if and only if his GPA is above 3.8 and he does not secure a full-time job.

B5b $\left(\neg q \lor r \right) \Rightarrow \neg p$

SINGAPORE POLYTECHNIC 2022/2023 Semester 2 Examination

B5c	p	q	$p \lor q$	$\neg (p \lor q)$	$\neg q$	$p \land \neg q$	$\neg (p \lor q) \land (p \land \neg q)$	
	T	T	T	F	F	F	F	
	T	F	T	F	T	T	F	
	F	T	T	F	F	F	F	
	F	F	F	T	T	F	F	
	$\therefore \neg (p \lor q) \land (p \land \neg q)$ is a contradiction .							
B6a	$^{12}C_5 = 792$							
B6b	$^{11}C_4 = 330$							
В6с	$^{11}C_5 = 462 \left(\text{or }^{12}C_5 - ^{11}C_4 = 462\right)$							
B6d	$^{10}C_3 = 120$							
B6e	$^{10}C_4 = 210$							
B7a	0.7 Hit							
	Hit							
	0.4 0.3 Miss							
	0.6 Miss Hit							
	Miss							
	0.8 Miss							
B7b (i)	$P(\text{hit exactly once}) = 0.4 \times 0.3 + 0.6 \times 0.2 = 0.24 \text{ (or } 24\%)$							
B7b	$P(\text{hit } 1^{\text{st}} \cap \text{hit } 2^{\text{nd}})$							
(ii)	$P(\text{hit } 1^{\text{st}} \mid \text{hit } 2^{\text{nd}}) = \frac{P(\text{hit } 1^{\text{st}} \cap \text{hit } 2^{\text{nd}})}{P(\text{hit } 2^{\text{nd}})} = \frac{0.4 \times 0.7}{0.4 \times 0.7 + 0.6 \times 0.2} = 0.7 (\text{or } 70\%)$							

SINGAPORE POLYTECHNIC 2022/2023 Semester 2 Examination

C1a | Since $p \lor \neg p$ is a tautology, it is always true.

Since $(p \lor \neg p) \Leftrightarrow (p \land q \land r)$ is true and $p \lor \neg p$ is always true, $p \land q \land r$ must be true.

Therefore, p = q = r = T.

C1b

(i)

x	У	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

C1b (ii)

 $f(x,y,z) = (x+y+z)(x+y+\overline{z})(x+\overline{y}+z)$ $= (x+y+z\overline{z})(x+\overline{y}+z)$ $= (x+y)(x+\overline{y}+z)$ $= x+y(\overline{y}+z)$ = x+yz

C2a The word QUEENSTOWN has 1 'Q', 1 'U', 2 'E', 2 'N', 1 'S', 1 'T', 1 'O', 1 'W'.

Case 1 (all 4 letters distinct): ${}^8P_4 = 1,680$

<u>Case 2 (2 'E' + 2 distinct letters):</u> $\frac{{}^{7}C_{2} \times 4!}{2!} = 252$

<u>Case 3 (2 'N' + 2 distinct letters):</u> $\frac{{}^{7}C_{2} \times 4!}{2!} = 252$

Case 4 (2 'E' + 2 'N'): $\frac{4!}{2!2!}$ = 6

 \therefore Total number of ways = 1,680 + 252 + 252 + 6 = 2,190

SINGAPORE POLYTECHNIC 2022/2023 Semester 2 Examination

Let b and w represent the number of black marbles and white marbles respectively in the C2b (i) urn.

No. of ways to get two marbles of same colour = ${}^{b}C_{2} + {}^{w}C_{2} = \frac{b(b-1)}{2} + \frac{w(w-1)}{2}$

No. of ways to get two marbles of different colours = ${}^{b}C_{1} \times {}^{w}C_{1} = bw$

$$\frac{b(b-1)}{2} + \frac{w(w-1)}{2} = bw$$

$$b(b-1)+w(w-1)=2bw$$

$$b^{2}-b+w^{2}-w=2bw$$
$$b^{2}-2bw+w^{2}=b+w$$

$$b^2 - 2bw + w^2 = b + w$$

$$\left(b - w\right)^2 = b + w = N$$

$$b - w = \sqrt{N}$$
 (reject $-\sqrt{N}$ since $b > w$)

Solving the two simultaneous equations for b and w:

$$b + w = N$$
 ---- (1)

$$b - w = \sqrt{N}$$
 ---- (2)

Therefore,
$$b = \frac{N + \sqrt{N}}{2}$$
 and $w = \frac{N - \sqrt{N}}{2}$.

C2b
$$\{x^2 \mid x \in \mathbb{Z}, x \ge 2\}$$
 or $\{4, 9, 16, 25, 36, \dots\}$

SINGAPORE POLYTECHNIC 2022/2023 Semester 2 Examination

C3a Transformation matrix \mathbf{T}_a can be decomposed into a sequence of three transformations \mathbf{T}_1 ,

 T_2 and T_3 :

 T_1 : rotation by an angle of α clockwise about the origin, followed by

 T_2 : reflection about the x-axis, followed by

 T_3 : rotation by an angle of α anticlockwise about the origin.

Using the two properties $\sin(-\alpha) = -\sin \alpha$ and $\cos(-\alpha) = \cos \alpha$:

$$\mathbf{T}_{1} = \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) & 0 \\ \sin(-\alpha) & \cos(-\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\alpha & \sin\alpha & 0 \\ -\sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{aligned} \therefore \mathbf{T}_{a} &= \mathbf{T}_{3} \mathbf{T}_{2} \mathbf{T}_{1} \\ &= \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

$$= \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ \sin \alpha & -\cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos^2 \alpha - \sin^2 \alpha & 2\sin \alpha \cos \alpha & 0 \\ 2\sin \alpha \cos \alpha & \sin^2 \alpha - \cos^2 \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos 2\alpha & \sin 2\alpha & 0 \\ \sin 2\alpha & -\cos 2\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (shown)

SINGAPORE POLYTECHNIC 2022/2023 Semester 2 Examination

Transformation matrix \mathbf{T}_b can be decomposed into a sequence of three transformations \mathbf{T}_1 ,

 \mathbf{T}_2 and \mathbf{T}_3 :

 T_1 : translation by c units downwards

 T_2 : reflection about the line y = mx

 T_3 : translation by c units upwards

Using the answer in part (a), a line inclined at an angle of α with respect to the positive xaxis can be expressed in terms of its gradient m. If we let x = 1, then y = m, and this forms a right-angled triangle with the following properties:

$$\cos \alpha = \frac{\text{adj}}{\text{hyp}} = \frac{1}{\sqrt{1+m^2}}$$
 and $\sin \alpha = \frac{\text{opp}}{\text{hyp}} = \frac{m}{\sqrt{1+m^2}}$

With the above properties, we can express T_2 in terms of m only:

$$\mathbf{T}_{2} = \begin{bmatrix} \cos^{2} \alpha - \sin^{2} \alpha & 2 \sin \alpha \cos \alpha & 0 \\ 2 \sin \alpha \cos \alpha & \sin^{2} \alpha - \cos^{2} \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1-m^{2}}{1+m^{2}} & \frac{2m}{1+m^{2}} & 0 \\ \frac{2m}{1+m^{2}} & \frac{m^{2}-1}{1+m^{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\therefore \mathbf{T}_b = \mathbf{T}_3 \mathbf{T}_2 \mathbf{T}_1$$

$$= \frac{1}{1+m^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1-m^2 & 2m & 0 \\ 2m & m^2-1 & 0 \\ 0 & 0 & 1+m^2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \frac{1}{1+m^2} \begin{bmatrix} 1-m^2 & 2m & 0\\ 2m & m^2-1 & c+m^2c\\ 0 & 0 & 1+m^2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & -c\\ 0 & 0 & 1 \end{bmatrix}$$
$$= \frac{1}{1+m^2} \begin{bmatrix} 1-m^2 & 2m & -2mc\\ 2m & m^2-1 & 2c\\ 0 & 0 & 1+m^2 \end{bmatrix}$$
 (shown)

$$= \frac{1}{1+m^2} \begin{vmatrix} 1-m^2 & 2m & -2mc \\ 2m & m^2-1 & 2c \\ 0 & 0 & 1+m^2 \end{vmatrix}$$
 (shown)