Converting from simulation to SI

symbol	meaning	unit	simulation value	SI value
M	cell mass	mass	N_v simulation mass	$3 \cdot 10^{-12} \text{ kg}$
V_0	starting cell volume	length ³	1 simulation volume	$23^3 \cdot 10^{-18} \text{ m}^3$
P	volume oscillation period(?)	time	$\sqrt{\frac{M}{LB}} = \sqrt{\frac{N_v V_0}{V_v^{1/3} \epsilon_v}} = \sqrt{N_v}$ simulation time	$1.14 \cdot 10^{-8} \text{ s}$

symbol	meaning	unit	value
M'	mass re-scaling factor	$\frac{\mathrm{kg}}{\mathrm{simulation\ mass}}$	$\frac{3 \cdot 10^{-12} \text{ kg}}{N_v \text{ simulation mass}}$
L'	length re-scaling factor	$\frac{\text{m}}{\text{simulation length}}$	$\frac{23 \cdot 10^{-6} \text{ m}}{1 \text{ simulation length}}$
T'	time re-scaling factor	s simulation time	$\frac{1.14 \cdot 10^{-8} \text{ s}}{\sqrt{N_v} \text{ simulation time}}$

Converting other things:

symbol	meaning	unit	value in simulation units	SI value
ϵ_v	volume spring constant	Energy Length ⁻⁶	1	$10^{23}~{ m J}~{ m m}^{-6}$
ϵ_a	area spring constant	Energy Length ⁻⁴	$\frac{1}{2}$	$10^{13}~{ m J}~{ m m}^{-4}$
ϵ_c	contact spring constant	Energy Length ⁻²	$\frac{1}{2}$	$10^4~{ m J}~{ m m}^{-2}$
ϵ_b	bending spring constant	Energy radian ⁻²	10^{-4}	$10^{-9} \text{ J Radian}^{-2}$
$\epsilon_v \bar{V_0}$	cell volume modulus	Energy Length ⁻³	1	$10^9 \; { m J} \; { m m}^{-3}$
$\epsilon_a \bar{a_0}$	face area modulus	Energy Length ⁻²	10^{-3}	$10^2~{ m J}~{ m m}^{-2}$
$\epsilon_c \sigma$	contact spring modulus	Energy Length ⁻¹	10^{-4}	$10^{-8}~{ m J}~{ m m}^{-1}$
$\epsilon_b \bar{\theta_0}$	edge bending spring modulus	Energy Radian ⁻¹	10^{-7}	$10^{-13} \text{ J Radian}^{-1}$
$\epsilon_v \bar{V_0}^2$	cell volume energy scale	Energy	1	$10^{-5} \; { m J}$
$\epsilon_a \bar{a_0}^2$	face area energy scale	Energy	10^{-4}	10^{-10} J
$\epsilon_c \sigma^2$	contact spring energy scale	Energy	10^{-3}	$10^{-8} \; \mathrm{J}$
$\epsilon_b \bar{\theta_0}^2$	edge bending spring energy scale	Energy	10^{-10}	$10^{-16} \; \mathrm{J}$

13 Creating Jammed Packings

13.1 Binary Search

Binary search for jammed packings. The packing must begin at a low density with pressure less than target pressure P_t . A range of acceptable pressures is set from the high value of pressure $P_{t,h}$ to the low value of pressure $P_{t,l}$. Usually they are one percent away from each other. A binary search like algorithm is used to find the a box size L that satisfies the target pressure.

At first $P < P_{t,l}$, and in each iteration L is shrunk by a fixed amount r_{scale} . Each time the algorithm finds an unjammed state it saves this state.

The loop: If the pressure is less than the lower bound of the target pressure, the state is saved, L_h is noted. If, currently a jammed state is known L is set to be in the middle of the known over-pressure and under-pressure states. Since

we are at lower than threshold pressure – rearrangements are a concern and so L_l is unset as this may no longer correspond to a jammed packing. If L_l was no known at the beginning of this iteration, L is instead rescalled by a fixed amount r_{scale} .

If $P > P_{t,l}$ this is an over-pressure state. First the state is returned to the most recent under-pressure state. Then L_l is set to be the current L, and the new L is set to be the mean of the new L_l and the previously known L_h .

If $P_{t,l} < P < P_{t,h}$ its a success and the loop breaks. The loop also breaks if the lower and upper bounds are too close to one another and it looks impossible to find a target pressure state.

When there is a known over-pressure state (L_l is set) and we keep finding over-pressure states this works as a binary search algorithm. However due to the possibility of rearrangements we can't use the binary search method when we have an under-pressure state, hence the unsetting of L_l when we find under pressure states. In pseudo code the algorithm is as follows:

```
/* lower pressure bound for the jammed state */
     Set P_{t,h} ;
                                                                   /* upper pressure bound for the jammed state, often P_{t,h}=1.01*P_{t,l} */
2 Set F_{t,h}, N_{\min} initiation; /* energy minimization sensitivity max number of minimization steps */
4 success = 0;
5 r_{\text{scale}} = 0.999;
6 L_l = -1; L_h = -1;
7 Set L_{tol};
8 Initialize System, state.Positions, state.Velocities, box size L; velocities */
                                                            /\ast energy minimization sensitivity - could replace with force as appropriate, and
                                                                                                                                                /* rate of shrinking */
                                                                                                                   /* Lower and upper bound of box size */
/* Smallest space searched usually Te-10 */
/* Initialize state with positions and
      Save, OldState = state:
      11 \\ 12
\frac{13}{14}
                    = Pressure(state, L):
              if P < P_{t,l} then OldState = state;
                                                                                                                                    /* save known unjammed state */
15
16
17
18
19
                       L_{\text{old}} = L;

L_h = L;

if L_l > 0 then
                                                                                /* when L_{\,h}\,>\,0 it is the box length for a known unjammed state */
                            L_l>0 then L=(L_h+L_l)/2; /* split the difference between known jammed state and known unjammed state */ L_l=-1; /* If P< P_{t,l} rearrangment possible, L_l may no longer correspond to unjammed state */
20
21
22
23
                                                                                /* shrink the box by a fixed ammount if no jammed state is known */
24
25
                      \label{eq:local_problem} \left| \begin{array}{c} \textbf{if } P > P_{t,h} \ \textbf{then} \\ L_l = L \ ; \\ \textbf{state} = \textbf{OldState} \ ; \end{array} \right|
                                                                                   /* when L_{\,l}>0 is is the box length for a known jammed state */    /* reset to prior state and shrink a smaller amount */
26
                                L_{\text{prior}} = L_{\text{old}};
29
                               L=(L_h+L_l)/2 ; /* split the difference between known jammed state and known unjammed state */
30
31
32
                       else
                               break;
33
                      end
34
               end
               state. Positions = state. Positions \cdot L/L_{
m prior} ; /* Rescale system to avoid boundary effects. NB: be aware of
              added presress esp. with many body potentials */ if L_l > 0 and L_h > 0 and |L_h/L_l-1| < L_{tol} then | error("No Jammed State Found"); /* no jammed state at this pressure could be found */
38
39 end
```

Algorithm 5: Jamming Threshold