Exame ep. Normal 2015

Ex. 10

Dados:

dimensoes do pilar em y

dimensoes do pilar em Z

 $h_z := 0.10 \text{ m}$

Secçao do pilar

$$b_{v} := 0.80 \text{ m}$$

$$N_{C2} := 60 \text{ kN}$$

$$N_{c1} := 200 \text{ kN}$$
 $M_{c1} := 180 \text{ kN m}$

$$M_{C2} := 150 \text{ kN m}$$

$$A := b_{V} \cdot h_{Z} = 0.08 \text{ m}^2$$

$$\mathbf{W}_{\mathbf{y}} \coloneqq \frac{\mathbf{h}_{\mathbf{z}} \cdot \mathbf{b}_{\mathbf{y}}^{2}}{6} \qquad \quad \mathbf{W}_{\mathbf{z}} \coloneqq \frac{\mathbf{b}_{\mathbf{y}} \cdot \mathbf{h}_{\mathbf{z}}^{2}}{6}$$

$$W_v = 0.0107 \,\mathrm{m}^3 \qquad W_z = 0.0013 \,\mathrm{m}^3$$

$$W = 0.0013 \,\mathrm{m}^3$$

Madeira lamelada colada (classe GL28h)

Resist. compressão perpendicular à fibra

□ — Valores Caraterísticos <u>de r</u>esistencia e rigidez — Valores característicos da resistência e rigidez (em N/mm²) da massa volúmica (em kg/m³) da Madeira Lamelada Colada

Designação	Simbologia	GL24h	GL24c	GL28h	GL28c	GL32h	GL32c
Resist. flexão	f _{m,g,k}	24	24	28	28	32	32
Resist. tracção paralela à fibra	f _{t,0,g,k}	16,5	14	19,5	16,5	22,5	19,5
Resist. tracção perpendicular a fibra	f _{t.90g.k}	0,4	0,35	0,45	0,4	0,5	0,45
Resist compressão paralela à fibra	f	24	21	26.5	24	20	26.5

nesisti corte	*V,g,k	-,,	-,-	٥,٠	-,,	3,0	5,2
Módulo elasticidade paralelo à fibra	E _{o,g,medio}	11.600	11.600	12.600	12.600	13.700	13.700
	E _{o,g,0,05}	9.400	9.400	10.200	10.200	11.100	11.100
Módulo elasticidade perpendicular a fibra	E _{90,g,medio}	390	320	420	390	460	420
Módulo distorção	$G_{g,medio}$	720	590	780	720	850	780
Massa volúmica	r _{g,k}	380	350	410	380	430	410

$$f_{mk} := 28 \text{ MPa}$$

$$f_{t,k} := 19.5 \, \text{MPa}$$

$$f_{ck} \coloneqq 26.5 \text{ MPa}$$

$$f_{vk} := 3.2 \text{ MPa}$$

$$E_{5*} := 10.2 \text{ GPa} = 1.02 \cdot 10^{7} \text{ kPa}$$

Resistencias de Calculo

⊡—tabelas e formulas -

1. Propriedades físicas e mecânicas

 \circ Coeficiente de modificação k_{mod}

Material	Standard	Service	Load-duration class					
		class	Permanent	Long	Medium	Short	Instanta-	
			action	term	term	term	neous	
	l	l		action	action	action	action	
Solid timber	EN 14081-1	1	0,60	0,70	0,80	0,90	1,10	
		2	0.60	0.70	0.80	0.90	1.10	
		3	0.50	0.55	0.65	0.70	0.90	
Glued	EN 14080	1	0,60	0,70	0,80	0,90	1,10	
laminated		2	0.60	0.70	0.80	0.90	1,10	
timber		3	0.50	0.55	0.65	0.70	0,90	
LVL	EN 14374, EN 14279	1	0.60	0.70	0.80	0.90	1.10	
		2	0.60	0.70	0.80	0.90	1.10	
		3	0.50	0.55	0.65	0.70	0.90	
Plywood	EN 636			-				
,	Part 1, Part 2, Part 3	1	0.60	0.70	0.80	0.90	1.10	
	Part 2. Part 3	2	0.60	0.70	0.80	0.90	1.10	
	Part 3	3	0.50	0.55	0.65	0.70	0.90	
OSB	EN 300		.,					
	OSB/2	1	0.30	0.45	0.65	0.85	1.10	
	OSB/3, OSB/4	1	0.40	0.50	0.70	0.90	1.10	
	OSB/3, OSB/4	2	0.30	0.40	0.55	0.70	0.90	
Particle-	EN 312							
board	Part 4, Part 5	1	0.30	0.45	0.65	0.85	1.10	
	Part 5	2	0.20	0.30	0.45	0.60	0.80	
	Part 6, Part 7	1	0,40	0,50	0,70	0,90	1,10	
	Part 7	2	0,30	0.40	0,55	0.70	0.90	
Fibreboard,	EN 622-2							
hard	HB.LA, HB.HLA 1 or	1	0,30	0,45	0,65	0,85	1,10	
	2							
	HB.HLA1 or 2	2	0,20	0,30	0,45	0,60	0,80	
Fibreboard,	EN 622-3							
medium	MBH.LA1 or 2	1	0,20	0,40	0,60	0,80	1,10	
	MBH.HLS1 or 2	1	0,20	0,40	0,60	0,80	1,10	
	MBH.HLS1 or 2	2	-	-	-	0,45	0,80	
Fibreboard,	EN 622-5							
MDF	MDF.LA, MDF.HLS	1	0,20	0.40	0,60	0.80	1,10	
	MDF.HLS	2	_	-	I-	0.45	0.80	

Table 3.1 - Values of kmod

1. Propriedades físicas e mecânicas

 \circ Coeficiente parcial de segurança γ_M

Table 2.3 – Recommended partial factors $\gamma_{\rm M}$ for material properties and resistances

Fundamental combinations:	
Solid timber	1,3
Glued laminated timber	1,25
LVL, plywood, OSB,	1,2
Particleboards	1,3
Fibreboards, hard	1,3
Fibreboards, medium	1,3
Fibreboards, MDF	1,3
Fibreboards, soft	1,3
Connections	1,3
Punched metal plate fasteners	1,25
Accidental combinations	1,0

EC1

$$K_{mod} := 0.90 \qquad Y_m := 1.25$$

$$f_{\mathit{md}} \coloneqq f_{\mathit{mk}} \cdot \frac{K_{\mathit{mod}}}{Y_{\mathit{m}}} \qquad \qquad f_{\mathit{td}} \coloneqq f_{\mathit{tk}} \cdot \frac{K_{\mathit{mod}}}{Y_{\mathit{m}}} \qquad \qquad f_{\mathit{od}} \coloneqq f_{\mathit{ok}} \cdot \frac{K_{\mathit{mod}}}{Y_{\mathit{m}}} \qquad \qquad f_{\mathit{vd}} \coloneqq f_{\mathit{vk}} \cdot \frac{K_{\mathit{mod}}}{Y_{\mathit{m}}}$$

$$f_{td} := f_{tk} \cdot \frac{K_{mod}}{K_{mod}}$$

$$f_{cd} := f_{ck} \cdot \frac{\kappa_{mod}}{\gamma_{-}}$$

$$f_{vd} := f_{vk} \cdot \frac{K_{mod}}{Y_m}$$

 $f_{md} = 20.16 \, \text{MPa}$

 $f_{td} = 14.04 \text{ MPa}$

 $f_{cd} = 19.08 \text{ MPa}$

 $f_{vd} = 2.304 \text{ MPa}$ $f_{vd} = 2304 \text{ kPa}$

1) Verificação da segurança (Flexão composta/desviada com N de tracção (6.2.3) e Flexão composta/desviada com N de compressão (6.2.4)(esforços de 1ºOrdem)

⊡—Tabelas de ELU para verificação da segurança —

2. ELU_Verificação da segurança

- o Flexão composta/desviada com N de tracção (6.2.3) - verificar a flexão-torção
- $\frac{\sigma_{t,0,d}}{f_{t,0,d}} + k_m \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$
- o Flexão composta/desviada em pilares (6.3.2) ou a flexão-torção em vigas (6.3.3)
 - com N de compressão (6.2.4) $\left[\frac{\sigma_{c,0,d}}{f_{c,0,d}} \right]^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$ verificar a encurvadura $\left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + k_m \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$
- $C_2 := \left(\frac{\left(\frac{N_{c2}}{A}\right)}{f_{L,c}}\right) + \frac{\left(\frac{M_{c2}}{w_y}\right)}{f_{md}} = 0.751$

h := 0.1 m

 $I_y = 0.0043 \text{ m}^4$ $I_z = 6.6667 \cdot 10 - 5 \text{ m} \text{ 4}$

$N\,\grave{a}$ compressao: Combinação C_1

 $C_1 = 0.8542$

Nà traçao: Combinaçao C2

 $C_2 = 0.751$

Verificação OK

2) Verificação da segurança (compressão ou flexão composta em pilares (6.3.2)

∃-Tabelas de ELU para verificação da segurança

o Compressão ou flexão composta em pilares (6.3.2)

$$k_{c,y} = \frac{1}{k_y + \sqrt{k_y^2 \cdot \lambda_{rel,y}^2}}$$

$$k_{c,y} = \frac{1}{k_z + \sqrt{k_z^2 \cdot \lambda_{rel,z}^2}}$$

$$k_{c,z} = \frac{1}{k_z + \sqrt{k_z^2 \cdot \lambda_{rel,z}^2}}$$

$$k_{c,z} = \frac{1}{k_z + \sqrt{k_z^2 \cdot \lambda_{rel,z}^2}}$$

$$k_z = 0.5 \left(1 + \beta_c (\lambda_{rel,y} - 0.3) + \lambda_{rel,y}^2\right)$$

$$k_z = 0.5 \left(1 + \beta_c (\lambda_{rel,y} - 0.3) + \lambda_{rel,y}^2\right)$$

$$k_z = 0.5 \left(1 + \beta_c (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2\right)$$
(1) The relative slenderness ratios should have $k_z = 0.5 \left(1 + \beta_c (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2\right)$

$$k_z = 0.5 \left(1 + \beta_c (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2\right)$$

$$k_z = 0.5 \left(1 + \beta_c (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2\right)$$

$$k_z = 0.5 \left(1 + \beta_c (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2\right)$$
(1) The relative slenderness ratios should have $k_z = 0.5 \left(1 + \beta_c (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2\right)$
and $k_z = 0.5 \left(1 + \beta_c (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2\right)$

$$k_{y} = 0.5 \left(1 + \beta_{c} \left(\lambda_{\text{rel,y}} - 0.3 \right) + \lambda_{\text{rel,y}}^{2} \right)$$

$$\begin{array}{ll} \lambda_{\rm rel,y} &= \frac{\lambda_{\rm y}}{\pi} \, \sqrt{\frac{f_{\rm c,0,k}}{E_{\rm 0,05}}} \\ \text{and} & \\ \lambda_{\rm rel,z} &= \frac{\lambda_{\rm z}}{\pi} \, \sqrt{\frac{f_{\rm c,0,k}}{E_{\rm 0,05}}} \end{array}$$

 $\beta_c = \begin{cases}
0.2 & \text{for solid timber} \\
0.1 & \text{for glued laminated timber and LVL}
\end{cases}$

$$L_{\text{e.y}} := 12 \text{ m}$$

$$\lambda_{y} := \frac{L_{\text{e.y}}}{\sqrt{\frac{I_{y}}{A}}} = 51.96$$

$$\lambda_{z} := \frac{L_{\text{e.z}}}{\sqrt{\frac{I_{z}}{A}}} = 103.92$$

$$\lambda_z := \frac{I_{e.z}}{\sqrt{\frac{I_z}{A}}} = 103.92$$

$$L_{e.z} := 3 \text{ m}$$

$$\lambda_{\texttt{rel.y}} \coloneqq \frac{\lambda_y}{\mathbf{m}} \cdot \sqrt{\frac{f_{ck}}{E_{5\$}}} = \texttt{0.8431}$$

$$\lambda_{\texttt{rel.z}} \coloneqq \frac{\lambda_{\texttt{z}}}{\pi} \cdot \sqrt{\frac{f_{\texttt{ck}}}{E_{\texttt{5\$}}}} = \texttt{1.6861}$$

DADOS

Norma (section 6.1.6)

Norma (section 6.3.2)

$$k_m := 0.7$$

$$\beta_0 := 0.1$$

$$\lambda_{_{\boldsymbol{y}}}=51.9615$$

$$\lambda_{rel.y} = 0.8431$$

$$\lambda_z = 103.923$$

$$\lambda_{rel.z} = 1.6861$$

$$K_{y} := 0.5 \cdot \left(1 + \beta_{0} \cdot (\lambda_{rel.y} - 03) + \lambda_{rel.y}^{2}\right) = 0.7475$$

$$K_z := 0.5 \cdot \left(1 + \beta_0 \cdot \left(\lambda_{rel.z} - 03\right) + \lambda_{rel.z}^2\right) = 1.8558$$

$$K_{CY} := \frac{1}{K_Y + \sqrt{\left(K_Y^2 - \lambda_{rel.y}^2\right) \cdot (-1)}} = 0.8793$$

$$K_{cz} := \frac{1}{K_z + \sqrt{\left(K_z^2 - \lambda_{rel.z}^2\right)}} = 0.3801$$

?????

porque deu negativo ?

VERIFICAÇAO

 \Box - σ .m.y.c

$$\boxed{\sigma_{\text{m.y.d}} \coloneqq \frac{\textit{M}_{\textit{c1}}}{\textit{w}_{\textit{y}}} = \text{16.875 MPa}} \quad \sigma_{\textit{cd}} \coloneqq \frac{\textit{N}_{\textit{c1}}}{\textit{A}}$$

$$Instabilidade_a_curvatura_1 := \left(\left(\frac{\sigma_{cd}}{K_{cy} \cdot f_{cd}} \right) + \frac{\sigma_{\text{m.y.d}}}{f_{\text{md}}} \right) = 0.9861$$

$$Instabilidade_a_curvatura_2 := \left(\left(\frac{\sigma_{cd}}{K_{cz} \cdot f_{cd}} \right) + k_{\text{m}} \cdot \frac{\sigma_{\text{m.y.d}}}{f_{\text{md}}} \right) = 0.9307$$

 $Instabilidade_a_curvatura_1 = 0.9861$

 $Instabilidade_a_curvatura_2 = 0.9307$

 $ELU_1 := 0.9861$ $ELU_2 := 0.9307$

Verificação OK

COMENTARIOS

A solução esta optimizada, esta no limite do criterio de estabilidade, caso o valor excedesse a unidade tiriamos de aumentar "h" para aumentar a rigidez

2) Verificação da segurança (ao esforço transverso)

 $V_{ed} := 35 \text{ kN}$

$$s_{momento_estatico} := (0.1 \text{ m} \cdot 0.4 \text{ m} \cdot 0.2 \text{ m}) = 0.008 \text{ m}^3$$

$$I_{v} = 0.0043 \text{ m}^{4}$$

$$h_{_{Z}}=\text{0.1}\;\text{m}$$

$$\delta_{ed} \coloneqq \frac{V_{ed} \cdot s_{\text{momento_estatico}}}{I_{y} \cdot \left(\frac{2}{3} \cdot h_{z}\right)} = 984.375 \text{ kPa}$$

 $f_{vd} = 2304 \text{ kPa}$

$$verificação_ao_esforço_transverso := \frac{\delta_{ed}}{f_{vd}} = \text{0.4272}$$

EC - MATERIAL DE APOIO\02 - CONSTRUÇÃO PREFABRICADA

Verificação OK