Patterns in Random Permutations

Chaim Even-Zohar

Permutation Patterns

392571846

permutation $\pi \in S_n$

Permutation Patterns

permutation

 $\pi \in S_n$

pattern

 $\sigma \in S_k$

Pattern Densities

The density of $\sigma \in S_k$ in $\pi \in S_n$

$$P_{\sigma}(\pi) = \frac{\# \{\sigma \text{ occurs in } \pi\}}{\binom{n}{k}}$$

Pattern Densities

The density of $\sigma \in S_k$ in $\pi \in S_n$

$$P_{\sigma}(\pi) = \frac{\# \{\sigma \text{ occurs in } \pi\}}{\binom{n}{k}}$$

The k-profile of π

$$\mathbf{P}_k(\pi) = (P_{\sigma}(\pi))_{\sigma \in S_k} \in \mathbb{R}^{k!}$$

The k-Profile

Example $\pi = 452136$

The k-Profile

Example $\pi = 452136$

$$\boldsymbol{P}_{3}(\pi) = \begin{bmatrix} P_{123}(\pi) \\ P_{132}(\pi) \\ P_{213}(\pi) \\ P_{231}(\pi) \\ P_{312}(\pi) \\ P_{321}(\pi) \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 8 \\ 3 \\ 4 \\ 2 \end{bmatrix} / \begin{pmatrix} 6 \\ 3 \end{pmatrix} = \begin{bmatrix} 0.15 \\ 0 \\ 0.4 \\ 0.15 \\ 0.2 \\ 0.1 \end{bmatrix}$$

The k-Profile

Example $\pi = 452136$

$$\boldsymbol{P}_{3}(\pi) = \begin{bmatrix} P_{123}(\pi) \\ P_{132}(\pi) \\ P_{213}(\pi) \\ P_{231}(\pi) \\ P_{312}(\pi) \\ P_{321}(\pi) \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 8 \\ 3 \\ 4 \\ 2 \end{bmatrix} / \begin{pmatrix} 6 \\ 3 \end{pmatrix} = \begin{bmatrix} 0.15 \\ 0 \\ 0.4 \\ 0.15 \\ 0.2 \\ 0.1 \end{bmatrix}$$

$$P_k(\pi) \cdot 1 = \sum_{\sigma} P_{\sigma}(\pi) = 1$$

Randomness

Sample π at random

$$\mathbb{P}[\pi = \pi_0] = \frac{1}{n!}$$

$$\forall \, \pi_0 \in S_n$$

Randomness

Sample π at random

$$\mathbb{P}[\pi = \pi_0] = \frac{1}{n!} \qquad \forall \, \pi_0 \in S_n$$

What is the distribution of the random k-profile P_{kn} ?

Law of Large Numbers

Theorem

In probability,

$$\boldsymbol{P}_{kn} \xrightarrow{n \to \infty} \boldsymbol{U}_{k} = \begin{pmatrix} 1/k! \\ \vdots \\ 1/k! \end{pmatrix}$$

Law of Large Numbers

Theorem

In probability,

$$P_{kn} \xrightarrow{n \to \infty} U_k = \begin{pmatrix} 1/k! \\ \vdots \\ 1/k! \end{pmatrix}$$

- What is the magnitude of $(P_{kn}-U_k)$?
- What's its direction?

Central Limit Theorem

Theorem [Janson, Nakamura, Zeilberger '15]

The random vector

$$\sqrt{n} \left(\boldsymbol{P}_{kn} - \boldsymbol{U}_k \right)$$

weakly converges to

Central Limit Theorem

Theorem [Janson, Nakamura, Zeilberger '15]

The random vector

$$\sqrt{n} \left(\boldsymbol{P}_{kn} - \boldsymbol{U}_k \right)$$

weakly converges to

a multivariate normal distribution, supported on a $(k-1)^2$ -dimensional subspace.

- Projection along U_k
 - -constant

- Projection along U_k
 - -constant
- $(k-1)^2$ -dim subspace
 - -Order 1/√n
 - Asymptotically normal

- Projection along U_k
 - -constant
- $(k-1)^2$ -dim subspace
 - -Order 1/√n
 - Asymptotically normal
- Orthogonal complement
 - -Smaller order

- Projection along U_k
 - -constant
- $(k-1)^2$ -dim subspace
 - -Order 1/√n
 - Asymptotically normal
- · Orthogonal complement
 - -Smaller order
 - -Which directions, limits

Decomposition TBD

Pairwise orthogonal

$$\mathbb{R}^{k!} = V_0 \oplus V_1 \oplus \ldots \oplus V_{k-1}$$

Decomposition TBD

Pairwise orthogonal

$$\mathbb{R}^{k!} = V_0 \oplus V_1 \oplus \ldots \oplus V_{k-1}$$

Orthogonal projection

$$\Pi_r : \mathbb{R}^{k!} \longrightarrow V_r$$

Decomposition TBD

Pairwise orthogonal

$$\mathbb{R}^{k!} = V_0 \oplus V_1 \oplus \ldots \oplus V_{k-1}$$

Orthogonal projection

$$\Pi_r: \mathbb{R}^{k!} \longrightarrow V_r$$

* w.r.t.
$$\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{\sigma} \mathbf{u}_{\sigma} \mathbf{v}_{\sigma}$$

Theorem [E]

• For every r < k

$$n^{r/2} \ E[\|\Pi_r P_{kn}\|] \xrightarrow{n \to \infty} \sigma_{kr}$$

for some $0 < \sigma_{kr} < \infty$.

Theorem [E]

• For every r < k

$$n^{r/2} \ E[\|\Pi_r P_{kn}\|] \xrightarrow{n \to \infty} \sigma_{kr}$$

for some $0 < \sigma_{kr} < \infty$.

• For every r < s < k

$$\mathsf{E}\!\left[\left(\mathsf{n}^{\mathsf{r}/2} \Pi_{\mathsf{r}} \mathsf{P}_{\mathsf{kn}} \right) \left(\mathsf{n}^{\mathsf{s}/2} \Pi_{\mathsf{s}} \mathsf{P}_{\mathsf{kn}} \right)^{\mathsf{T}} \right] \xrightarrow{n \to \infty} \mathbf{0}$$

Case k=3

123
132
213
231
312
321

17	Γ07	Γ07	Г1 7
_1	$-\frac{\sqrt{3}}{}$	$-\frac{\sqrt{3}}{}$	$\frac{1}{2}$
	2	2	2
$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
<u>-</u> 2	2	2	$\frac{}{2}$
$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$	_1
	2	2	<u></u>
_1	$\sqrt{3}$	$\sqrt{3}$	_1
$-\frac{1}{2}$	2	$\frac{\sqrt{3}}{2}$	2
. 1]	$\Gamma 0$	$\Gamma 0$	L-1

 V_0

 V_1

 V_2

Case k=3

123132213231312321		$ \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} $	
	v ₀	v ₁	v ₂

1/√n

order

Group Representations

d-dimensional representation of G

$$R: G \longrightarrow GL(\mathbb{R}^d)$$

group hom

Group Representations

d-dimensional representation of G

$$R: G \longrightarrow GL(\mathbb{R}^d)$$

group hom

R and R' are similar if for some T,

$$R'(g) = T^{-1} \circ R(g) \circ T$$

Group Representations

d-dimensional representation of G

$$R: G \longrightarrow GL(\mathbb{R}^d)$$

group hom

R and R' are similar if for some T,

$$R'(g) = T^{-1} \circ R(g) \circ T$$

¥ geG

• R is simple if for no proper $V \subset \mathbb{R}^d$

$$R(g) V = V$$

¥ geG

Simple Representations of Sk

$$R^{\lambda}: S_{k} \longrightarrow \mathbb{R}^{d_{\lambda} \times d_{\lambda}}$$

Simple Representations of Sk

$$R^{\lambda}: S_{k} \longrightarrow \mathbb{R}^{d_{\lambda} \times d_{\lambda}}$$

up to similarity, correspond to partitions $\lambda \vdash k$

$$\lambda_1 + \lambda_2 + \dots + \lambda_{\ell} = k$$
$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{\ell}$$

$$\bigcirc$$

$$\odot$$

4

3+1

2+2

2+1+1

1+1+1+1

7絵 しオ会観美イ

カ版もレ

保の文精なフト社明

をに美と 字印 び技す 国出のシ品 致傷

The Matrix Elements

of R^{λ} are the kl-dim vectors

$$\mathbf{R}_{ij}^{\lambda} = \left(R_{ij}^{\lambda}(\sigma)\right)_{\sigma \in S_k} \qquad 1 \le i, j \le d_{\lambda}$$

$$1 \le i, j \le d_{\lambda}$$

The Matrix Elements

of R^{λ} are the k!-dim vectors

$$\mathbf{R}_{ij}^{\lambda} = \left(R_{ij}^{\lambda}(\sigma) \right)_{\sigma \in S_{\nu}} \qquad 1 \le i, j \le d_{\lambda}$$

Let

$$V_{r} = \operatorname{span} \left\{ \begin{array}{c|c} \lambda \vdash k \\ \lambda_{1} = k - r \\ 1 \leq i, j \leq d_{\lambda} \end{array} \right\}$$

123

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

$$\begin{bmatrix} -1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} -1/_2 & -\sqrt{3}/_2 \\ -\sqrt{3}/_2 & 1/_2 \end{bmatrix}$$

[1]

$$\begin{bmatrix} -1/_{2} & -\sqrt{3}/_{2} \\ \sqrt{3}/_{2} & -1/_{2} \end{bmatrix}$$
$$\begin{bmatrix} -1/_{2} & \sqrt{3}/_{2} \\ -\sqrt{3}/_{2} & -1/_{2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Theorem for ks6 [E]

There're unitary representations of S_k having

$$\mathsf{E}\Big[(\mathsf{U}_{\mathsf{R}} \mathsf{P}_{\mathsf{kn}}) \; (\mathsf{U}_{\mathsf{R}} \mathsf{P}_{\mathsf{kn}})^{\mathsf{T}} \Big] \quad \xrightarrow{n \to \infty} \; \mathbf{\Sigma}$$

is diagonal with positive entries, where

$$U_{R} v = \left(n^{\frac{k-\lambda_{1}}{2}} \langle \widehat{R}_{ij}^{\lambda}, v \rangle\right)_{\lambda \vdash k, 1 \leq i, j \leq d_{\lambda}}$$

Kendall's T / inversion number

$$\tau(\pi) = \langle R_{11}^{1+1}, P_2(\pi) \rangle = P_{12}(\pi) - P_{21}(\pi)$$

Kendall's T / inversion number

$$\tau(\pi) = \langle R_{11}^{1+1}, P_2(\pi) \rangle = P_{12}(\pi) - P_{21}(\pi)$$

- Order 1/√n
- Asymptotically normal

Spearman's p

$$\rho = P_{123} + P_{132} + P_{213} - P_{231} - P_{312} - P_{321}$$

$$\propto \langle R_{11}^{2+1} - \frac{1}{4} R_{11}^{1+1+1}, P_3 \rangle$$

$$\vdots$$

$$\vdots$$

Spearman's p

$$\rho = P_{123} + P_{132} + P_{213} - P_{231} - P_{312} - P_{321}$$

$$\propto \langle R_{11}^{2+1} - \frac{1}{4} R_{11}^{1+1+1}, P_3 \rangle$$

- Order 1/√n
- Asymptotically normal

Fisher-Lee / Gepner Statistics

$$\Delta = P_{123} + P_{231} + P_{312} - P_{321} - P_{213} - P_{132}$$
$$= \langle R_{11}^{1+1+1}, P_3 \rangle$$

Circular rank correlation

Circular Rank Correlation

Fisher-Lee / Gepner Statistics

$$\Delta = P_{123} + P_{231} + P_{312} - P_{321} - P_{213} - P_{132}$$
$$= \langle R_{11}^{1+1+1}, P_3 \rangle$$

- Circular rank correlation
- Order 1/n

Fisher-Lee / Gepner Statistics

$$\Delta = P_{123} + P_{231} + P_{312} - P_{321} - P_{213} - P_{132}$$
$$= \langle R_{11}^{1+1+1}, P_3 \rangle$$

- Circular rank correlation
- Order 1/n
- Not normal: 2nd order U-statistic

Fisher-Lee / Gepner Statistics

$$\Delta = P_{123} + P_{231} + P_{312} - P_{321} - P_{213} - P_{132}$$
$$= \langle R_{11}^{1+1+1}, P_3 \rangle$$

- Circular rank correlation
- Order 1/n
- Not normal: 2nd order U-statistic
- \propto $(T \rho)$

Two-Sample Independence Tests

$$P_{1234} + P_{1243} + P_{2134} + P_{2143} + P_{3412} + P_{3421} + P_{4312} + P_{4321}$$

- Order 1/n
- 2nd order U-statistic

Bergsma-Dassios (2010)

Two-Sample Independence Tests

$$P_{1234} + P_{1243} + P_{2134} + P_{2143} + P_{3412} + P_{3421} + P_{4312} + P_{4321}$$

- Order 1/n
- 2nd order U-statistic
 - Bergsma-Dassios
 - Hoeffding
 - Blum-Kiefer-Rosenblatt
 - Kráľ Pikhurko

$$\odot$$

$$\langle R_{11}^{2+2}, P_4 \rangle$$

$$\odot$$

+...
$$\langle R_{11}^{2+2+1}, P_5 \rangle$$

+...
$$\langle R_{11}^{3+2+1}, P_6 \rangle$$

