Filière SMI S3 Année 2020-2021 Pr. A. Lahrech

Travaux Dirigés d'électronique Numérique Correction de la série n°4

Exercice 1:

On considère un afficheur sept segments (Fig.1):

Fig. 1

Un chiffre décimal est fourni à l'afficheur sous son code DCB (quatre bits $Q_3Q_2Q_1Q_0$). On désigne par a, b, c, d, e, f, g les sept fonctions logiques valant 0 lorsque le segment correspondant est allumé, 1 sinon.

- 1. Dresser la table de vérite du décodeur DCB-7 segments commandant le segment f.
- 2. A l'aide du tableau de Karnaugh déterminer l'expression simplifiée de la sortie f
- 3. Représenter le schéma logique du segment f en n'utilisant que des portes NAND.

Solution:

1. Table de vérite de la fonction f.

La table de vérité est écrite en affectant le niveau 0 au segment f allumé, 1 sinon, d'où la table de vérité :

	Entre	ées		Afficheur	Sortie	
Q_3	Q_2	Q_1	Q_0	7 segment	f	
0	0	0	0	0	0	
0	0	0	1	•	1	
0	0	1	0	5	1	
0	0	1	1	3	1	
0	1	0	0	7	0	
0	1	0	1	ч 5 8	0	
0	1	1	0	8	0	
0	1	1	1	7	1	
1	0	0	0	8	0	
1	0	0	1	9	0	
1	0	1	0		×	
1	0	1	1		×	
1	1	0	0		×	
1	1	0	1		×	
1	1	1	0		×	
1	1	1	1		×	

Fig. 2

f=0si le chiffre est0,4,,5,6,8,9 (segment allumé)

f=1 si le chiffre est 1,3,7,2 (segment éteint)

Les combinaisons $(Q_3.\overline{Q_2}.Q_1\overline{Q_0})$; $(Q_3.\overline{Q_2}.Q_1.Q_0)$, ..., $(Q_3.Q_2.Q_1.Q_0)$ ne sont pas spécifiées. On peut leur affecter la valeur (0 ou 1) qui permet des simplifications

2. Expression simplifiée de la fonction logique f

La table de Karnaugh correspondant au segment f est :

Fig. 3

On obtient finalement:

$$F = Q_1.Q_0 + \overline{Q_3}.\overline{Q_2}.Q_0 + Q_1\overline{Q_2}$$

3. Réalisation de la fonction f à l'aide des portes NAND :

On double complémente l'équation logique, puis on applique le théorème de De Morgan

$$f = \overline{\overline{f}} = \overline{\overline{Q_1.Q_0 + \overline{Q_3}.\overline{Q_2}.Q_0 + Q_1\overline{Q_2}}}$$
$$= \overline{\overline{(Q_1.Q_0)}.\overline{(\overline{Q_3}.\overline{Q_2}.Q_0)}.\overline{(Q_1\overline{Q_2})}}$$

d'où le schéma logique du segment f

Fig. 4

Exercice 2:

1. Donner l'équation de la fonction logique F réalisée par le multiplexeur représenté sur la Figure 5

Fig. 5

2. A l'aide d'un multiplexeur à 2 entrées d'adresses, réaliser la fonction :

$$F = \overline{A}.\overline{B}.\overline{C} + A.B.\overline{C} + \overline{A}.B.C$$

Solution:

1. Table de vérité associée au multiplexeur à 2 entrées d'adresses :

$S_1 = z$	$S_0 = y$	Entrée	F
0	0	E_0	0
0	1	E_1	1
1	0	E_2	1
1	1	E_3	1

La fonction logique réalisée par le multiplexeur s'écrit donc :

$$F = y.\overline{z} + \overline{y}.z + yz$$

2. A l'aide d'un multiplexeur à 2 entrées d'adresses, réaliser la fonction suivante :

$$F = \overline{A}.\overline{B}.\overline{C} + A.B.\overline{C} + \overline{A}.B.C$$

Le nombre de variables est égal à 3, une de plus que les entrées de sélection. Une solution consiste à connecter deux variables sur les entrées de sélection (S_1S_0) et la troisième sera branchée en entrée de donneés du multiplexeur.

Plusieurs solutions sont possibles, on peut choisir par exemple $A = S_0$ et $B = S_1$. On en déduit la table de vérité suivante :

Fonction	$S_1 = B$	$S_0 = A$	F	Entrée
$\overline{A}.\overline{B}.\overline{C}$	0	0	\overline{C}	E_0
	0	1	0	E_1
$\overline{A}.B.C$	1	0	C	E_2
$A.B.\overline{C}$	1	1	\overline{C}	E_3

Ce qui donne le schéma suivant :

Fig. 6

Exercice 3:

Déterminer la forme d'onde de Q pour la bascule de la figure 8, en supposant qu'au début Q=0.

$\underline{\textbf{Solution}:}$

Fig. 9

Exercice 4:

Déterminer la forme d'onde de Q pour la bascule de la figure 11, en supposant qu'au début Q=0.

$\underline{\textbf{Solution}:}$

Fig. 12

Exercice 5:

Dessinez la forme d'onde Q pour chacune des bascules de la figure 13, en supposant qu'au début Q=0.

Solution:

Fig. 15

Exercice 6:

On considère le circuit de la figure 16 réalisé avec une bascule RS asynchrone à base de portes NAND

Fig. 16

Fig. 17

- 1. Rappeler la table de vérité d'une bascule RS asynchrone à base de portes NAND
- 2. Donner les expressions logiques des entrées R et S de la bascule RS.
- 3. Compléter le chronogramme de la figure 17

Solution:

1. Table de vérité d'une bascule RS asynchrone à base de portes NAND

R	S	Q_{n+1}	$\overline{Q_{n+1}}$	
0	0	1	1	"Interdit"
0	1	1	0	Set
1	0	0	1	Reset
1	1	Q_n	$\overline{Q_n}$	Mémoire

2. Expressions logiques des entrées R et S.

Sur le schéma on lit directement :

$$S = \overline{\overline{x}.\overline{z}} = x + z$$

$$R = \overline{\overline{z}.\overline{y}} = z + y$$

3. Forme d'onde de ${\cal Q}$

x	y	z	S	R	Q_{n+1}
0	0	0	0	0	"Interdit"
0	0	1	1	1	Q_n
0	1	0	0	1	0
0	1	1	1	1	Q_n
1	0	0	1	0	1
1	0	1	1	1	Q_n
1	1	0	1	1	Q_n
1	1	1	1	1	Q_n

Fig. 18

Exercice 7:

On désire réaliser un compteur synchrone modulo-5 à l'aide des bascules JK.

- 1. Combien de bascules JK sont nécessaires
- 2. Etablissez la table de vérité de ce compteur.
- 3. A l'aide de tableaux de Karnaugh, donnez les équations des entrées J_i et K_i des différentes bascules
- 4. Dessinez le schéma logique du compteur

Solution:

1. $2^2 < 5 < 2^3 \Longrightarrow 3$ bascules

2. Table de vérité du compteur modulo-5.

État présent		État suivant			Entrées des bascules						
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	J_0	K_0	J_1	K_1	J_2	K_2
0	0	0	0	0	1	1	×	0	×	0	×
0	0	1	0	1	0	×	1	1	×	0	×
0	1	0	0	1	1	1	×	×	0	0	×
0	1	1	1	0	0	×	1	×	1	1	×
1	0	0	0	0	0	0	×	0	×	×	1

Table 1 – Table de vérité du compteur modulo-5

Fig. 19

On obtient finalement :

$$J_0 = \overline{Q_2}; K_0 = 1$$
 $J_1 = Q_0; K_1 = Q_0$
 $J_2 = Q_0.Q_1; K_2 = 1$
 $10 \mid 11$

3. Schéma logique du compteur

Fig. 20 – Compteur synchrone modulo-5