2. előadás

Mérai László diái alapján

Komputeralgebra Tanszék

2014. ősz

Matematikai logika

A logika a helyes következtetés tudománya.

Alkalmazási területek:

- matematika:
- informatika:
- mesterséges intelligencia;
-

Példa

Minden bogár rovar.

tagadás: Van olyan bogár, ami nem rovar.

Esik az eső, de meleg van, bár a nap is elbújt, és az idő is későre jár.

tagadás: ?

Axiomatikus módszer

A tudományok a valóság egy részének modellezésével foglalkoznak. Axiomatikus módszer: közismert, nem definiált fogalmakból (alapfogalmakból) és bizonyos feltevésekből (axiómákból) a logika szabályai szerint milyen következtetéseket vonunk le (milyen tételeket bizonyítunk).

Példa

Euklidészi geometria

Alapfogalmak

- pont,
- egyenes,
- sík.

Axiómák

- párhuzamossági axióma,
- Az axiomatikus módszer előnye: elég ellenőrizni az axiómák teljesülését.

Predikátumok

Definíció

Predikátum: olyan változóktól függő definiálatlan alapfogalom, amelyhez a változóik értékétől függően valamilyen igazságérték tartozik: $igaz(I,\uparrow)$, hamis (H,\downarrow) és a kettő egyidejűleg nem teljesül.

Példa

M():Minden jogász hazudik. 0-változós, értéke: I. Sz(x): x egy szám. 1-változós. értéke: Sz(1)=I, SZ(h)=H. 1-változós. E(x): x egy egyenes. P(x): x egy pont. 1-változós. I(x, y): x illeszkedik y-ra. 2-változós. F(x, y): x az y férje. 2-változós. Gy(x, y, z): x az y és z gyermeke. 3-változós.

2014. ősz

Logikai jelek

A predikátumokat logikai jelekkel tudjuk összekötni:

Tagadás, jele: $\neg A$.

És, jele: $A \wedge B$

Vagy (megengedő), jele: $A \lor B$.

Ha..., akkor... (implikáció), jele: $A \Rightarrow B$.

Ekvivalencia, jele: $A \Leftrightarrow B$.

Igazságtáblázat

Α	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
ı	ı	Н	ı	ı	I	I
ı	Н	Н	Н	I	Н	Н
Н	ı	I	Н	I	I	Н
Н	Н		Н	Н	I	

Logikai jelek

A köznyelvben a vagy háromféle értelemmel bírhat:

Megengedő **vagy** "Átok reá ki gyávaságból **vagy** lomhaságból elmarad,..."

$A \vee B$	ı	Н
I	ı	ı
Н	ı	Н

Kizáró vagy: "Vagy bolondok vagyunk és elveszünk egy szálig, vagy ez a mi hitünk valóságra válik."

$A \oplus B$	ı	Н
I	Η	ı
Н	ı	Н

Összeférhetetlen vagy: "Iszik vagy vezet!"

A B	I	Н
I	Н	ı
Н	I	ı

Logikai jelek

Az implikáció $(A \Rightarrow B)$ csak logikai összefüggést jelent és nem okozatit!

$A \Rightarrow B$	ı	Н
I	ı	Н
Н	ı	ı

Példa

$$2 \cdot 2 = 4 \quad \Rightarrow \quad i^2 = -1$$

$$2 \cdot 2 = 4 \implies \text{kedd van}$$

Hamis állításból minden következik:

Példa

$$2 \cdot 2 = 5 \Rightarrow i^2 = -2$$

Adott logikai jel, más módon is kifejezhető:

$$(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$$

Kvantorok

Kvantorok

∃ egzisztenciális kvantor: "létezik", "van olyan".

∀ univerzális kvantor: "minden".

Példa

V(x): x veréb.

M(x): x madár.

Minden veréb madár. $\forall x(V(x) \Rightarrow M(x)).$

Van olyan madár, ami veréb. $\exists x (M(x) \land V(x)).$

Minden veréb madár, de nem minden madár veréb.

 $(\forall x(V(x) \Rightarrow M(x))) \land (\exists x(M(x) \land \neg V(x))).$

Formulák

A formulák predikátumokból és logikai jelekből alkotott "mondatok".

Definíció (Formulák)

- A predikátumok a legegyszerűbb, ún. elemi formulák.
- Ha \mathcal{A}, \mathcal{B} két formula, akkor $\neg \mathcal{A}, (\mathcal{A} \land \mathcal{B}), (\mathcal{A} \lor \mathcal{B}), (\mathcal{A} \Rightarrow \mathcal{B}),$ $(\mathcal{A} \Leftrightarrow \mathcal{B})$ is formulák.
- Ha \mathcal{A} egy formula és x egy változó, akkor $(\exists x \mathcal{A})$ és $(\forall x \mathcal{A})$ is formulák.

Példa

Minden veréb madár, de nem minden madár veréb.

$$(\forall x (V(x) \Rightarrow M(x))) \land (\exists x (M(x) \land \neg V(x))).$$

Ez egy formula.

Ha nem okoz félreértést, a zárójelek elhagyhatóak.

Zárt/ nyitott formulák

Definíció

Ha \mathcal{A} egy formula és x egy változó, akkor $(\exists x \mathcal{A})$ és $(\forall x \mathcal{A})$ formulákban az x változó minden előfordulása az \mathcal{A} formulában a kvantor hatáskörében van.

Ha egy formulában a változó adott előfordulása egy kvantor hatáskörében van, akkor az előfordulás kötött, egyébként szabad.

Ha egy formulában a változónak van szabad előfordulása, akkor a változó szabad változó, egyébként kötött változó.

Ha egy formulának van szabad változója, akkor nyitott formula, egyébként zárt formula.

Példa

Gy(x, y): x gyereke y-nak.

 $\exists y \ Gy(x,y)$: x-nek létezik szülője.

Zárt/nyitott formulák

Példa

E(x): x egy egyenes.

P(x): x egy pont.

I(x, y): x illeszkedik y-ra.

E(x), P(x), I(x, y) (elemi) nyitott formulák.

 $\mathcal{A}(x,y)$ legyen $E(x) \wedge P(y) \wedge I(x,y)$!

Az x egyenes illeszkedik az y pontra.

 $\mathcal{B}(x,y)$ legyen $P(x) \land P(y) \land \neg(x=y)!$ Az x és y pontok különbözőek.

C(x) legyen $\exists y (E(x) \land P(y) \land I(x,y))!$

Van olyan y pont, ami illeszkedik az x egyenesre.

Itt x szabad y kötött változó.

 $\mathcal{D}()$ legyen $\forall x (E(x) \Rightarrow \exists y (E(x) \land P(y) \land I(x,y)))$

Minden x egyenes esetén, van olyan y pont, ami illeszkedik az x egyenesre.

ltt x, y kötött változó.

Halmazelméletben az alapvető fogalmak predikátumok, nem definiáljuk őket:

- A halmaz (rendszer, osztály, összesség,...) elemeinek gondolati burka.
- $x \in \mathcal{A}$, ha az x eleme az \mathcal{A} halmaznak.

A halmazok alapvető tulajdonságai axiómák, nem bizonyítjuk őket. Példa:

Meghatározottsági axióma

Egy halmazt az elemei egyértelműen meghatároznak.

- Két halmaz pontosan akkor egyenlő, ha ugyanazok az elemeik.
- Egy halmaznak egy elem csak egyszer lehet eleme.

Részhalmazok

Definíció

Az A halmaz részhalmaza a B halmaznak: $A \subset B$, ha $\forall x (x \in A \Rightarrow x \in B)$.

Ha $A \subset B$ -nek, de $A \neq B$, akkor A valódi részhalmaza B-nek: $A \subsetneq B$.

A részhalmazok tulajdonságai:

Állítás (Biz. HF)

Halmazok egyenlősége egy további tulajdonságot is teljesít:

3'. $\forall A, B \quad A = B \Rightarrow B = A \text{ (szimmetria)}.$

Definíció

A halmaz és $\mathcal{F}(x)$ formula esetén $\{x \in A : \mathcal{F}(x)\} = \{x \in A | \mathcal{F}(x)\}$ halmaz elemei pontosan azon elemei A-nak, melyre $\mathcal{F}(x)$ igaz.

Példa

- $\{z \in \mathbb{C} : Im \ z = 0\}$: valós számok halmaza.
- $\{z\in\mathbb{C}:\exists n\in\mathbb{N}\ z^n=1\}$: komplex egységgyökök halmaza.

Speciális halmazok

Üres halmaz Annak a halmaznak, melynek nincs eleme a jele: ∅. A meghatározottsági axióma alapján ez egyértelmű.

 $\forall A \ A \ \mathsf{halmaz} \Rightarrow \emptyset \subset A$

Halmaz megadása elemei felsorolásával. Annak a halmaznak, melynek csak az a eleme a jelölése: $\{a\}$. Annak a halmaznak, melynek az a és b az eleme a jelölése: $\{a,b\}$,...

Speciálisan $\emptyset = \{\}$, illetve, ha a = b, akkor $\{a\} = \{a, b\} = \{b\}$.

Definíció

Az A és B halmazok uniója: $A \cup B$ az a halmaz, mely pontosan az A és a B elemeit tartalmazza.

Általában: Legyen $\mathcal A$ egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor $\cup \mathcal A = \cup \{A: A \in \mathcal A\} = \cup_{A \in \mathcal A} A$ az a halmaz, mely az $\mathcal A$ összes elemének elemét tartalmazza.

Speciálisan: $A \cup B = \cup \{A, B\}$.

Példa

- $\{a, b, c\} \cup \{b, c, d\} = \{a, b, c, d\}$
- $\bullet \ \{n: n \equiv 0 \mod 2\} \cup \{n: n \equiv 1 \mod 2\} = \mathbb{Z}$

Rövidebben, ha $\overline{a} = \{n : n \equiv a \mod m\}$, akkor

• m=2 esetén $\overline{0}\cup\overline{1}=\mathbb{Z}$

Általában

• $\cup \{\overline{a}: a \in \{0, 1, \dots, m-1\}\} = \cup_{a=0}^{m-1} \overline{a} = \mathbb{Z}$

Az unió tulajdonságai

Állítás

- $A \cup B = B \cup A$ (kommutativitás)
- \bullet $A \cup A = A$ (idempotencia)
- $A \subset B \Leftrightarrow A \cup B = B$

Bizonyítás

- 1. Egy x pontosan akkor eleme mindkét oldalnak, ha $x \in A$
- 2. Egy x pontosan akkor eleme mindkét oldalnak, ha $x \in A$ vagy $x \in B$
- 3-as, 4-es hasonló
- 5. \Rightarrow : $A \subset B \Rightarrow A \cup B \subset B$, de $A \cup B \supset B$ mindig teljesül, így $A \cup B = B$.
 - \Leftarrow : Ha $A \cup B = B$, akkor A minden eleme B-nek.

Definíció

Az A és B halmazok metszete: $A \cap B$ az a halmaz, mely pontosan az A és a B közös elemeit tartalmazza: $A \cap B = \{x \in A : x \in B\}$. Általában: Legyen A egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer)! Ekkor $\cap A = \cap \{A : A \in A\} = \cap_{A \in \mathcal{A}} A$ a következő halmaz

$$\cap \mathcal{A} = \{ x : \forall A \in \mathcal{A} \mid x \in A \}$$

Speciálisan: $A \cap B = \cap \{A, B\}$.

Példa

- $\{a, b, c\} \cap \{b, c, d\} = \{b, c\}.$
- ullet Ha $E_n=\{z\in\mathbb{C}:z^n=1\}$ az n-edik egységgyökök halmaza, akkor
 - $\bullet \ E_2 \cap E_4 = E_2$
 - $E_6 \cap E_8 = E_2$
 - $E_n \cap E_m = E_{(n,m)}$
 - $\bullet \ \cap_{n=1}^{\infty} E_n = E_1 = \{1\}$

Definíció

Ha $A \cap B = \emptyset$, akkor A és B diszjunktak.

Ha $\mathcal A$ egy halmazrendszer és $\cap \mathcal A=\emptyset$, akkor $\mathcal A$ diszjunkt, illetve $\mathcal A$ elemei diszjunktak.

Ha $\mathcal A$ egy halmazrendszer és $\mathcal A$ bármely két eleme diszjunkt, akkor $\mathcal A$ elemei páronként diszjunktak.

Példa

- Az {1,2} és {3,4} halmazok diszjunktak.
- Az {1,2}, {2,3} és {1,3} halmazok diszjunktak, de nem páronként diszjunktak.
- Az {1,2}, {3,4} és {5,6} halmazok páronként diszjunktak.

A metszet tulajdonságai

Állítás (Biz. HF)

- $A \cap B = B \cap A$ (kommutativitás)
- $A \cap A = A$ (idempotencia)

Az unió és metszet disztributivitási tulajdonságai

Állítás

Bizonyítás

- $x \in A \cap (B \cup C) \Leftrightarrow x \in A \wedge x \in B \cup C$. Így x pontosan akkor eleme a bal oldalnak, ha $x \in A \wedge x \in B$ vagy $x \in A \wedge x \in C$ azaz $x \in (A \cap B) \cup (A \cap C)$.
- 4 HF. hasonló

Különbség, komplementer

Definíció

Az A és B halmazok különbsége az $A \setminus B = \{x \in A : x \notin B\}$.

Definíció

Egy rögzített X alaphalmaz és $A \subset X$ részhalmaz esetén az A halmaz komplementere az $\overline{A} = A' = X \setminus A$.

Állítás (Biz. HF) $\underline{0} \ \overline{\emptyset} = X$: $\mathbf{S} \overline{\mathbf{X}} = \emptyset$: $A \cap \overline{A} = \emptyset :$ $A \cup \overline{A} = X:$ $\bullet A \subset B \Leftrightarrow \overline{B} \subset \overline{A}:$ $\overline{A \cap B} = \overline{A} \cup \overline{B}:$

A 7. és 8. összefüggések az ún. de Morgan szabályok.

Definíció

Az A és B halmazok szimmetrikus differenciája az $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

Állítás (Biz. HF)

 $A \triangle B = (A \cup B) \setminus (A \cap B).$

Hatványhalmaz

Definíció

Ha A egy halmaz, akkor azt a halmazrendszert, melynek elemei az A halmaz összes részhalmaza, az A hatványhalmazának mondjuk és 2^A -val jelöljük.

- $\bullet \ A = \emptyset, 2^{\emptyset} = \{\emptyset\}$
- $A = \{a\}, 2^{\{a\}} = \{\emptyset, \{a\}\}$
- $A = \{a, b\}, 2^{\{a,b\}} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

Állítás (Biz. HF)

$$|2^A| = 2^{|A|}$$