

BIRZEIT UNIVERSITY

Faculty of Engineering & Technology
Department of Electrical & Computer Engineering
ENEE4113-COMMUNICATIONS LAB

Exp 1: Normal Am Pre Lab #1

Prepared by:

Saja Asfour

1210737

Instructor:

Dr. Qadri Mayyala

Assistance:

Eng.Mohammad Al-Battat

Section:

Sec 5

Date:

21/7/2024

Table of Contents

Table of Figure:	2
Block simulation	3
A-Modulation Schematic diagram	
B-Coherent Demodulation	
C- Demodulation Schema using Envelop detector	

Table of Figure:

Figure 1: Block parameter for m(t)	3
Figure2 :Block parameter for c(t)	3
Figure3 :Modulation Schematic	4
Figure4 : meesage signal	4
Figure 5: carrier signal	4
Figure 6: modulated signal(u=1)	5
Figure7: Spectrum for message signal	5
Figure8: Spectrum for carrier signal	6
Figure9 : Spectrum for modulated signal (u=1)	6
Figure 10: modulated signal(u>1)	7
Figure 11: Spectrum for modulated signal (u>1)	7
Figure 12: modulated signal(u<1)	7
Figure 13: Spectrum for modulated signal (u<1)	8
Figure 14: Coherent Demodulation block diagram	8
Figure 15: Block parameters for analog filter design	8
Figure 16: Demodulated Signal using Coherent demodulation if (u=1)	9
Figure 17: spectram for Demodulated Signal using Coherent demodulation if (u=1)	9
Figure 18:Demodulated Signal using Coherent demodulation if (u<1)	9
Figure 19: spectram for Demodulated Signal using Coherent demodulation if (u<1)	10
Figure 20: Demodulated Signal using Coherent demodulation if (u>1)	10
Figure 21: spectram for Demodulated Signal using Coherent demodulation if (u>1)	10
Figure 22: Envelop detector	11
Figure 23: Demodulated Signal using Envelop detector if (u=1)	11
Figure 24: spectrum of Demodulated Signal using Envelop detector if (u=1)	11
Figure 25: Demodulated Signal using Envelop detector if (u<1)	12
Figure 26: spectram of Demodulated Signal using Envelop detector if (u<1)	12
Figure 27: Demodulated Signal using Envelop detector if (u>1)	12
Figure 28: spectram of Demodulated Signal using Envelop detector if (u>1)	13

Block simulation

For time domain I set the step time to 5/1000, and in spectrum I set it to 1

A-Modulation Schematic diagram

 $M(t) = 0.85 \cos(2 \pi (1000)t)$

 $Figure 1: Block\ parameter\ for\ m(t)$

 $C(t) = 1 \cos(2 \pi (15000)t)$

Figure2 :Block parameter for c(t)

If we have modulation index (u) equal 1:

$$u = k \text{ Am } \rightarrow 1 = k (0.85) \rightarrow k = \frac{1}{0.85}$$

Figure3 : Modulation Schematic

Figure4: meesage signal

Figure 5: carrier signal

Figure 6: modulated signal(u=1)

Figure7 : Spectrum for message signal

Figure8: Spectrum for carrier signal

Figure9 : Spectrum for modulated signal (u=1)

If we have modulation index (u) > 1:

$$u = k \text{ Am } \rightarrow 2 = k (0.85) \rightarrow k = \frac{2}{0.85}$$

I change k in the block diagram to $\frac{2}{0.85}$

Figure10 : modulated signal(u>1)

Figure 11: Spectrum for modulated signal (u>1)

If we have modulation index (u) < 1:

$$u = k \text{ Am } \rightarrow 0.5 = k (0.85) \rightarrow k = \frac{0.5}{0.85}$$
I change k in the block diagram to $\frac{0.5}{0.85}$

Figure 12: modulated signal(u<1)

Figure 13: Spectrum for modulated signal (u<1)

B-Coherent Demodulation

Figure 14: Coherent Demodulation block diagram

Figure 15: Block parameters for analog filter design

Figure 16: Demodulated Signal using Coherent demodulation if (u=1)

Figure~17: spectram~for~Demodulated~Signal~using~Coherent~demodulation~if~(u=1)

Figure 18:Demodulated Signal using Coherent demodulation if (u<1)

Figure 19: spectram for Demodulated Signal using Coherent demodulation if (u<1)

Figure 20: Demodulated Signal using Coherent demodulation if (u>1)

Figure 21: spectram for Demodulated Signal using Coherent demodulation if (u>1)

C- Demodulation Schema using Envelop detector

Figure 22: Envelop detector

Figure 23: Demodulated Signal using Envelop detector if (u=1)

Figure 24: spectrum of Demodulated Signal using Envelop detector if (u=1)

Figure 25: Demodulated Signal using Envelop detector if (u<1)

Figure 26: spectram of Demodulated Signal using Envelop detector if (u < 1)

Figure 27: Demodulated Signal using Envelop detector if (u>1)

Figure 28: spectram of Demodulated Signal using Envelop detector if (u>1)