Low Light Face Image Enhancement

Liming Gong

Supervisor: Ha Le

Professor: Ioannis Kakadiaris

What does this project do?

Project overview

➤ Reimplement a state-of-the-art low light image enhancement method: **Deep Retinex Net**

- >Apply this network on 100 low light selfies
- Apply one pretrained face and landmark detection method to check improvement on enhanced selfies

➤ Dig deeper if something weird happens.....

Lighting and Reflectance

S= R* I (element-wise multiplication)

S=R*I

S: the scene you see

R: reflectance map, describes the intrinsic property of captured objects, which should not change for the same object no matter the light condition

I: illumination map, which reflects the lighting

Giving low-normal pair

gradient should be small)

Their approach

Input and output

>Training

Input: Image pair of low light image and corresponding normal light image, patch size: 48*48

Output: Reconstructed image patch with enhanced illumination

➤ Testing

Input: full size low light image

Output: Reconstructed image with enhanced illumination

Loss function

$$\mathcal{L}_{recon} = \sum_{i=low,normal} \sum_{j=low,normal} \lambda_{ij} ||R_i \circ I_j - S_j||_1.$$

$$\mathcal{L}_{ir} = ||R_{low} - R_{normal}||_1.$$

S: input image

R: reflectance map

I: illumination map

$$\mathcal{L}_{is} = \sum_{i=low.normal} ||\nabla I_i \circ exp(-\lambda_g \nabla R_i)||$$

Decom Net

$$\mathcal{L} = \mathcal{L}_{recon} + \lambda_{ir}\mathcal{L}_{ir} + \lambda_{is}\mathcal{L}_{is}$$

• Enhance Net $\mathcal{L} = \mathcal{L}_{recon} + \lambda_{is} \mathcal{L}_{is}$

Train and test steps

Train:

- 1, Random crop image pair patches and apply data augmentation.
- 2, Train Decom-Net with input image pairs.
- 3, Fix Decom-Net, train Enhance-Net with input image pairs.

Test:

1, Feed low light images.

Contributions

 The first dataset with paired low/normal-light images captured in real scenes.

 Light weighted, end to end trainable network: Deep Retinex Net.

My result for Decom Net

low Light illumination normal light reflectance

My result for Enhance Net

low light normal light illumination enhanced I reconstructed

Author's vs Mine

origin

author

mine

Does this really help?

The pretrained model

 How far are we from solving the 2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks) (ICCV 2017) (SFD face detector)

Detect 2D facial landmarks in pictures

Face detection rate

• The original face images: 118/124 = 95.16%

• My relighted faces: 105/124 = 84.68%

• Author's relighted faces: 79/124 = 63.71%

Original > My enhancement > Author's enhancement

Landmark detection

original

original

mine

author

Dig deeper: add Gamma enhancement

original

Face detection rate

- The original face images: 118/124 = 95.16%
- My relighted faces: 105/124 = 84.68%
- Author's relighted faces: 79/124 = 63.71%
- Gamma enhancement: 116/124 = 93.54%

Original > Gamma > My enhancement > Author's enhancement

Landmark detection

origin

gamma

mine

author

Does this really useful?

Result summarize

 Image enhancement is not helping face detection. It actually makes it worse.

No sure if it helps landmark detection.

Possible explanation

 The face/landmark detection method is trained on natural images. Any operation on input images may just change the distribution and make them "unnatural".

What have I learned?

Instinct may go wrong.

 Solve tasks straight forward. You don't need enhance images before face detection.

 A machine with the capability to solve "harder" problems may fail on "easy" ones.

Machine intelligence is really nothing humanlike.

My Notebook Environment

- Inteli5-7300HQ+24G RAM + GTX1060(6G RAM)
- Windows 10 system
- Tensorflow1.10 + Python3.66

- Training set: 1500 images offered by the author
- Testing set: 124 face images acquired by myself
- Training takes less than 1 hour for 100 epochs.

Complementary material:

Paper website:

https://daooshee.github.io/BMVC2018website/

My GitHub code repo:

https://github.com/stephenkung/FaceEnhancement

Face alignment method:

https://adrianbulat.com/face-alignment

BM3D denoising

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3 00.5214&rep=rep1&type=pdf

Thank you!