西安电子科技大学

2017年硕士研究生招生考试初试试题

考试科目代码及名称 811 信号与系统、电路 考试时间 2016 年 12 月 25 日下午 (3 小时)

答题要求: 所有答案(填空题按照标号写)必须写在答题纸上,写在试题上一律作废,准考证号写在指定位置!

信号与系统 部分(总分75分)

一. 选择题(共4小题,每小题4分,共16分)

每小题给出四个答案,其中只有一个是正确的,请将正确答案的标号(A或B或C或D)填写在答题纸上。例如,一选择题: 1.____, 2.____, ...

- 1. 某离散系统输入输出满足 y(k) + 2y(k-1) = f(1-k) + 5,那么该系统是()
 - (A) 线性 时不变
- (B) 线性 时变
- (C) 非线性 时变
- (D) 非线性 时不变
- 2. 信号 $f_1(t)$ 和 $f_2(t)$ 如图 1-2 所示, $f(t) = f_1(t) * f_2(t)$,则 f(1) 等于()
- (A) 0.5
- (B) -0.5
- (C) 1.5
- (D) -1.5

- 3. 已知像函数 $F(z) = \frac{z^2}{(z+3)(z-2)}$, 其收敛域为|z| < 2, 其原序列为 ()
- (A) $f(k) = \left[\frac{3}{5}(-3)^k + \frac{2}{5}(2)^k\right] \varepsilon(k)$

811 信号与系统、电路 试题 共 7 页 第 1 页

(B)
$$f(k) = [-\frac{3}{5}(-3)^k - \frac{2}{5}(2)^k]\varepsilon(-k-1)$$

(C)
$$f(k) = \frac{3}{5}(-3)^k \varepsilon(k) - \frac{2}{5}(2)^k \varepsilon(-k-1)$$

(D)
$$f(k) = -\frac{3}{5}(-3)^k \varepsilon(-k-1) + \frac{2}{5}(2)^k \varepsilon(k)$$

- 4. 一因果稳定连续系统的系统函数为H(s),则其所有的极点均在()
 - (A) s 平面的左半开平面
- (B) s 平面的右半开平面
- (C) s 平面的单位圆内
- (D) s 平面的单位圆外
- 二. 填空题(共6小题,每小题4分,共24分)

解答本大题中各小题不要求写解答过程,只将算得的正确答案填写在答题纸上。例如,二 填空题: 1. ··· , 2. ··· , ···

1. 积分
$$\int_{-\infty}^{t} (1-x) \left[\delta'(x) + \delta \left(2 - \frac{x}{2} \right) \right] dx = \underline{\qquad}$$

- 2. 已知某一 LTI 系统对输入激励 f(t) 的零状态响应 $r_{zs}(t) = \int_{-\infty}^{t-2} e^{t-\tau} f(\tau-1) d\tau$,则该系统的单位冲激响应是_____。
- 3. 有限频带信号 f(t) 的最高频率为 f_m Hz,若对 $f_1(t) = f(t)f(2t)$ 进行时域采样,使频谱不发生混叠的奈奎斯特频率是
 - 4. 己知 $f(t) \leftrightarrow F(j\omega)$,则 $e^{jt}f(5-2t)$ 的傅里叶变换是____。
- 5. 已知 $f(t) = 1 + \sin \omega_1 t + 2\cos \omega_1 t + \cos \left(2\omega_1 t + \frac{\pi}{4}\right)$,假设 f(t) 为 1 欧姆电阻上的电压信号,那么这个信号的功率是
 - 6. $\sin(\pi t)[\varepsilon(t) \varepsilon(t-1)]$ 的单边拉氏变换是_____。

三. 计算题 (共4小题,共35分)

解答本大题中各小题,请书写在答题纸上并写清楚概念性步骤,只有答案得 0 分,非通用符号请注明含义。

1. (9 分) 如图 (a) 所示系统,若输入信号 $f(t) = \frac{\sin(2t)}{\pi t} \cos(300t)$, $s(t) = \cos(300t)$,低通滤波器的频率响应如图 (b) 所示,其相频特性 $\varphi(\omega) = 0$ 。求输出信号 y(t)。

图 3-1

2. (9分) 描述某线性时不变系统的微分方程为

$$y''(t) + 3y'(t) + 2y(t) = f'(t) + 4f(t)$$
,

811 信号与系统、电路 试题 共 7 页 第 3 页

已知输入信号 $f(t)=\varepsilon(t)$, $y(0_+)=1$, $y'(0_+)=5$,求系统的零输入响应 $y_{zi}(t)$,零状态响应 $y_{zz}(t)$ 和全响应 y(t) 。

3. (9分) 描述某线性时不变因果离散系统的差分方程为

$$6y(k) - 5y(k-1) + y(k-2) = 6f(k)$$

- (1) 求系统函数H(z);
- (2) 判断该系统稳定否?并说明理由;
- (3) 若输入 $f(k) = (\frac{1}{4})^k \varepsilon(k)$,求系统的零状态响应 $y_{zs}(k)$ 。

4. $(8 \)$ 某离散系统的信号流图如图所示。写出以 $x_1(k)$ 、 $x_2(k)$ 为状态变量的状态方程和输出方程。

电路部分(总分75分)

一、填空题(共8小题,每小题5分,共40分)

[说明:解答本大题中各小题不要求写出解答过程,只需将正确答案写在答题纸上。例如,一、填空题: 1...., 2...., ...]

1. 计算图 1 所示电路中 I_s 产生的功率 P_s 。

- 2. 如图 2 所示电路, 欲使 $U_{ab}=0$, 计算此时的 R。
- 3. 如图 3 所示电路,当 $R=12\Omega$ 时,其上电流为I,若要求I增至原来的 3 倍,而电路中除R以外的其他部分均不变,计算此时的电阻R。

- 4. 求图示 4 电路中的 u_{ab} 。
- 5. 求图 5 所示电路中为使 R_L 上能获得最大功率时的匝数比 n 。

6. 计算图 6 所示电路的 Z 参数。

811 信号与系统、电路 试题 共 7 页 第 5 页

7. 写出图 7 所示谐振电路的谐振角频率 ω_0 的表达式。

- 8. 图 8 所示的电路,已知 $\dot{I}_s=2\angle 0^\circ A$,计算负载 Z_L 为多少时可以获得最大功率。
- 二、计算题(共4小题,共35分)

[说明:解答本大题中各小题,请写在答题纸上,并写清楚概念性步骤,只有答案得0分。非通用符号请注明含义。]

1. (8分) 如图 9 所示电路,已知网络 N 吸收的功率 $P_N = 2\mathbf{W}$,求电流 i 。

2. $(10 \, \text{分})$ 如图 $10 \, \text{所示电路}$,原已处于稳态。在t=0时刻开关 S 由 a 闭合到b,求i(t)。

 $3.(8 \, f)$ 如图 11 所示电路中 N 为线性含直流独立源的电阻电路。已知当 $i_S = 2\cos 10t(A)$,

 $R_L=2\Omega$ 时,电流 $i_L=4\cos 10t+2(A)$; 当 $i_S=4A$, $R_L=4\Omega$ 时,电流 $i_L=8A$; 问当 $i_S=5\cos 20t(A)$, $R_L=10\Omega$ 时,电流 i_L 为多少?

811 信号与系统、电路 试题 共 7 页 第 6 页

- 4. (9分)如图 12 所示电路的并联谐振电路。
- (1) 已知 $L=200\mu\mathrm{H}$, $C=200\mathrm{pF}$, $r=10\Omega$,求谐振频率 f_0 、谐振阻抗 Z_0 、品质因数 Q 及带宽 BW ;
- (2)若要求谐振频率 f_0 = 1MHz,已知线圈的电感 L = 200 μ H, Q = 50,求此时的带宽 BW;
- (3)为使(2)中带宽扩展为BW = 50kHz,需要在回路两端并联一电阻R,求此电阻 R的值。

