AMITY UNIVERSITY

CSE2403-Discrete Mathematics

Problem Sheet-3

Topic: Sets, Relations and Functions

Subject Instructor: Suresh Badarla

Date: 23/05/2022

- 1. Prove that $(A-C) \cap (C-B) = \emptyset$ analytically, where A, B, and C are sets. Verify graphically
- 2. If A, B and C are sets, prove analytically that $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- 3. If A, B, C and D are sets, Prove that analytically that $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$. Give an example to support this result.
- 4. Find the sets A and B, if

(a)
$$A - B = \{1, 3, 7, 11\}, B - A = \{2, 6, 8\} \text{ and } A \cap B = \{4, 9\}.$$

(b)
$$A - B = \{1, 2, 4\}, B - A = \{7, 8\} \text{ and } A \cup B = \{1, 2, 4, 5, 7, 8, 9\}.$$

5. Prove the following analytically or graphically:

(a) A - B = A
$$\cap \bar{B}$$

(b)
$$(A \cap B) \cup (A \cup \bar{B}) = A$$

(c)
$$(A \cup B) \cap (A \cup \emptyset) = A$$

(d)
$$A - (A \cap B) = A - B$$

(e)
$$(A \cap B) \cup (B - A) = B$$

(f)
$$(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$$

(g)
$$(A - B) - C = (A - C) - (B - C)$$

(h)
$$A \cap (B - C) = (A \cap B) - (A \cap C)$$

$$(i) (A - B) - C = (A - C) - (B - C)$$

- 6. List the ordered pairs in the relation R from $A = \{0, 1, 2, 3, 4\}$ to $B = \{0, 1, 2, 3\}$ where a R b if and only if i) a = b, ii) a + b = 4, iii) a greater than b, iv) a divides b, v) $\gcd(a, b) = 1$, vi) lcm(a, b) = 2.
- 7. The relation R on the set $A = \{1, 2, 3, 4, 5\}$ is defined by a R b if and only if 3 divides (a-b).
 - i) List the elements of R and R^{-1}
 - ii)Find the domain and range of R
 - iii) Find the domain and range of R^{-1}
 - iv)List the elements of complement of R
- 8. If R = (1, 2), (2, 4), (3, 3) and S = (1, 3), (2, 4), (4, 2), find i) $R \cup S$, ii) $R \cap S$, iii) R S, iv) S R. Also verify that the dom $(R \cup S) = \text{dom }(R) \cup \text{dom }(S)$ and range $(R \cap S) \subseteq \text{range }(R) \cap \text{range }(S)$.
- 9. If $R = \{(a, b) : a \equiv b \pmod 3\}$ and $S = \{(a, b) : a \equiv b \pmod 4\}$ are relations on the set of integers, the find i) $R \cup S$, ii) $R \cap S$, iii) R S, iv) S R.
- 10. Determine whether the relation R on the set of all integers is reflexive, symmetric, and antisymmetric and/or transitive, where a R b if and only if i) $a \neq b$, ii) $ab \geq 0$, iii) $ab \geq 1$, iv) a is multiple of b, v) $a \equiv b \pmod{7}$, vi) |a b| = 1, vii) $|a = b^2$, viii) $|a \geq b^2$.
- 11. Let R be the relation represented by the matrix

$$M_R = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Find the matrix representing i) R^{-1} , ii) \bar{R} , iii) R^2

12. Let R and S be the relations on a set A represented by the matrices 4

$$M_R = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$M_S = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Find the matrices that represents 5

- (a) $R \cup S$
- (b) $R \cap S$
- (c) R o S
- (d) S o R

- (e) $R \oplus S$
- 13. Find the transitive closure of the following relations on a set $A = \{a, b, c, d, e\}$, by using Warshall's algorithm.
 - (a) $\{(a, c), (b, d), (c, a), (d, b), (e, d)\}$
 - (b) $\{(b, c), (b, e), (c, e), (d, a), (e, b), (e, c)\}$
 - (c) $\{(a, b), (a, c), (a, e), (b, a), (b, c), (c, a), (c, b), (d, a), (e, d)\}$
 - $(d) \{(a, e), (b, a), (b, d), (c, d), (d, a), (d, c), (e, a), (e, b), (e, c), (e, e)\}$
- 14. How many elements are in $A_1 \cup A_2$ if there 12 elements in A_1 , 18 elements in A_2 , and
 - (a) $A_1 \cap A_2 = \emptyset$?
 - (b) $|A_1 \cap A_2| = 1$?
 - (c) $|A_1 \cap A_2| = 6$?
 - (d) $A_1 \subset A_2$?
- 15. Find the number of elements in $A_1 \cup A_2 \cup A_3$ if there are 100 elements in A_1 , 1000 elements in A_2 , and 10000 elements in A_3 if
 - (a) $A_1 \subset A_2$ and $A_2 \subset A_3$
 - (b) the sets are pairwise disjoint
 - (c) there are two elements common to each pair of sets and one element in all the three sets.
- 16. Prove that the inverse of a function f, if exists, is unique.
- 17. If f: A \rightarrow B and g: B \rightarrow C are invertible functions, then show that gof is invertible and $(gof)^{-1} = f^{-1}og^{-1}$.
- 18. If $A = \{x \in \Re: x \neq 1/2\}$ and $f: A \to \Re$ is defined by $f(x) = \frac{4x}{2x-1}$
 - (a) Find the range of f
 - (b) Show that f is invertible
 - (c) $dom(f^{-1})$
 - (d) range (f^{-1})
 - (e) Find the formula of f^{-1}