Application Note

ExiGo® API Overview

Contents

١.	Introdu	uction	9
2.	Serial	communication framing and format	9
3.	Set Co	ommands	10
	3.1. Set	t syringe type	10
	3.1.1.	Syntax	11
	3.1.2.	Field description	11
	3.1.3.	Valid conditions	11
	3.2. Set	t Flow Rate	11
	3.2.1.	Syntax	12
	3.2.2.	Field condition	12
	3.2.3.	Valid conditions	12
	3.3. Set	t PID parameters	12
	3.3.1.	Syntax	12
	3.3.2.	Field description	13
	3.3.3.	Valid conditions	13
	3.4. Set	t Action	13
	3.4.1.	Syntax	13
	3.4.2.	Field Description	13
	• A	Action Information: Constant Flow Rate	14
	• A	Action Information: Ramp	14
	• A	Action Information: Pulse	14
	• A	Action Information: Sine	15
	3.4.3.	Valid conditions	15
	3.4.4.	Examples	15
	3.5. Set	t LED type	17
	3.5.1.	Syntax	17
	3.5.2.	Field description	17
	3.5.3.	Valid conditions	17
	3.1. Set	t ECO mode	17
	3.1.1.	Syntax	17

www.cellixltd.com

3.1.2.	Field description	18
3.1.3.	Valid conditions	18
4. Query	Commands	18
4.1. Sys	stem Status query	18
4.1.1.	Syntax	18
4.1.2.	Answer	18
4.1.3.	Field description	19
4.2. Sy	ringe query	19
4.2.1.	Syntax	20
4.2.2.	Answer	20
4.2.3.	Field Description	20
4.3. Flo	w Rate query	20
4.3.1.	Syntax	20
4.3.2.	Answer	21
4.3.3.	Field description	21
4.4. PI	D parameters query	21
4.4.1.	Syntax	21
4.4.2.	Answer	21
4.4.3.	Field description	21
4.5. Nu	mber of actions query	22
4.5.1.	Syntax	22
4.5.2.	Answer	22
<i>4.5.3.</i>	Field Description	22
4.6. Ac	tion details query	23
4.6.1.	Syntax	23
4.6.2.	Answer	23
4.6.3.	Field description	23
• (Constant Flow rate	23
• F	Ramp	24
• F	Pulse	24
• 5	Sine	24

4.7. Pum	np position query	25
4.7.1.	Syntax	25
4.7.2.	Answer	25
4.7.3.	Field description	25
4.8. Assa	ay run status query	25
4.8.1.	Syntax	26
4.8.2.	Assay run status query answer	26
4.8.3.	Field description	26
4.9. Firm	nware version query	26
4.9.1.	Syntax	26
4.9.2.	Answer	27
4.9.3.	Field description	27
4.10. Fl	ow rate set-point query	27
4.10.1.	Syntax	
4.10.2.	Answer	27
4.10.3.	Field description	28
4.11. Se	ensor details query	
4.11.1.	Syntax	
4.11.2.	Answer	
4.11.3.	Field description	28
4.12. PO	CB Info query	28
4.12.1.	Syntax	
4.12.2.	Answer	29
4.12.3.	Field description	29
4.13. Sy	ringe details query	29
4.13.1.	Syntax	
4.13.2.	Answer	30
4.13.3.	Field description	30
4.14. Pr	essure reading query	
4.14.1.	Syntax	
4.14.2.	Answer	
4.14.3.	Field description	

4.15. I	Device type query	31
4.15.1.	Syntax	31
4.15.2.	Answer	31
4.15.3.	Field description	31
5. Dynar	nic Commands	31
5.1. Ini	tialize command	32
5.1.1.	Syntax	
5.1.2.	Valid Conditions	32
5.2. Ma	anual run command	32
5.2.1.	Syntax	32
5.2.2.	Valid conditions	32
5.3. Ru	ın assay command	33
5.3.1.	Syntax	
5.3.2.	Valid conditions	33
5.4. Sto	op command	33
5.4.1.	Syntax	
5.4.2.	Valid conditions	33
5.5. Dis	splacement command	34
5.5.1.	Syntax	34
5.5.2.	Field description	34
5.5.3.	Valid conditions	34
6. How t	o communicate with slave ExiGo pumps	34
6.1.1.	Syntax	35
6.1.2.	Field description	35
6.2. Ex	amples	35
7. ACK/N	NACK commands	36
7.1. AC	CK command	36
7.1.1.	Syntax	36
7.1.2.	Field Description	
7.2. NA	, ACK Command	
	Syntax	

7.2.2	P. Field Description	37
8. Erro	or command	37
8.1.1		
8.1.2	P. Field description	37
8.2. E	Error codes and explanation	
Tahla	s and Figures	
	•	_
	Structure of a valid ExiGo pump command	
	Definition of START and END flag bytes	
	Set Syringe syntax	
	Set syringe field description	
	Set Syringe command valid conditions	
	Set Flow Rate syntax	
	Flow Rate command field description	
	Flow rate command valid conditions	
	Set PID command syntax	
	: Set PID command field description	
	: Set PID command valid conditions	
	: Set action command syntax	
	: Set action command fields description	
	: Constant flow rate action information syntax	
	: Constant flow rate action information fields description	
	: Ramp action information syntax	
	: Ramp action information fields description	
Table 18	: Pulse action information syntax	14
Table 19	: Pulse action information fields description	14
	: Sine action information syntax	
Table 21:	: Sine action information fields description	15
	: System Status query syntax	
	: System Status query answer	
Table 24	: System Status query fields description	19
Table 25	: Syringe query command syntax	20
	: Syringe query command answer	
Table 27	: Syringe query command answer fields description	20
Table 28	: Flow rate query syntax	20
Table 29	: Flow rate query answer	21
Table 30	: Flow rate query answer fields description	21

Table 31: PID parameters query syntax	21
Table 32: PID parameters query answer	21
Table 33: PID parameters query answer fields description	21
Table 34: Number of actions query syntax	22
Table 35: Number of actions query answer	22
Table 36: Number of actions query answer fields description	22
Table 37: Action details query syntax	23
Table 38: Action details query answer	23
Table 39: Action details query answer fields description	23
Table 40: Constant flow rate action details syntax	23
Table 41: Constant flow rate action detail fields description	23
Table 42: Ramp action details syntax	
Table 43: Ramp action detail fields description	24
Table 44: Pulse action details syntax	
Table 45: Pulse action detail fields description	
Table 46: Sine action details syntax	
Table 47: Sine action detail fields description	
Table 48: Pump position query syntax	
Table 49: Pump position query answer	25
Table 50: Pump position query answer fields description	25
Table 51: Assay run status query syntax	
Table 52: Assay run status query answer	26
Table 53: Assay run status query answer fields description	26
Table 54: Firmware version query syntax	
Table 55: Firmware version query answer	27
Table 56: Firmware version query answer fields description	
Table 57: Initialize command syntax	32
Table 58: Initialize command valid conditions	32
Table 59: Manual run command syntax	
Table 60: manual run command valid conditions	32
Table 61: Run assay command syntax	33
Table 62: Run assay command valid conditions	
Table 63: Stop command syntax	33
Table 64: Stop command valid conditions	33
Table 65: Displacement command syntax	34
Table 66: Displacement command fields description	
Table 67: Displacement command valid conditions	34
Table 68: Repeat command syntax	35
Table 69: Repeat command fields description	35

Table 70: Example 1 syntax	35
Table 71: Example 2 syntax	
Table 72: ACK command syntax	
Table 73: ACK command fields description	
Table 74: NACK command syntax	
Table 75: NACK command fields description	
Table 76: Error command syntax	37
Table 77: Error command field description	37
Table 78: Revision history	

1. Introduction

This document gives an overview of the serial communication framing and format as well as a detailed description of the commands available to control the ExiGo Pump via serial communication.

2. Serial communication framing and format

Serial communication with ExiGo pump is ASCII based and therefore all the information to be transmitted must be converted to ASCII prior being sent to the pump.

For instance, to transfer the decimal number 100 (0h64) must be converted to the ASCII code "100" (0h313030).

The set of commands available in order to control the ExiGo Pump can be classified in:

- Set commands
- Query commands
- Miscellaneous commands
- Repeat commands
- Error commands
- ACK/NACK commands.

Every command included in the categories listed above must be framed (using flag bytes) in order to allow either the Pump or the host software application to detect the beginning and end of these commands. Flag bytes are special bytes which denote when a frame begins and when a frame ends

Table 1: Structure of a valid ExiGo pump command

The value of these special flags is defined within the table below:

Table 2: Definition of START and END flag bytes

Flag	Hex value	ASCII character
START	0h1B	Escape
END	0h00	Null

As all the set of commands are comprised by "human readable" ASCII characters there is no need to use byte stuffing technique as it is not expected to receive either a START flag or END flag as part of valid DATA field.

3. Set Commands

The commands allocated within this group are used to define configuration parameters within the ExiGo pump (Syringe type, Flow rate, etc).

Some of the commands described below are only valid when the ExiGo pump is within certain status or statuses and/or when some prerequisites are satisfied. Please refer to individual command description for further information.

3.1. Set syringe type

This command sets the type of syringe used during the experiment. There are two different set of syringes already preset on the device:

Hamilton Syringes¹:

700 Series		
Part Number	Description	
<u>80601</u>	100 μL, Model 710 LT SYR	
<u>80701</u>	250 μL, Model 725 LT SYR	
<u>80801</u>	500 μL, Model 750 LT SYR	
	1000 Series Gastight Syringes	
Part Number	Description	
<u>81301</u>	1 mL, Model 1001 LT SYR	

¹ Part Number indicated here belongs to Luer tip termination. Different syringe tips are also supported.

BD Plastipak Syringes:

Part Number	Description
300013	1 ml Syringe. Luer tip
300185	2.5 ml Syringe. Luer tip
302187	5 ml Syringe. Luer tip

3.1.1.Syntax

Table 3: Set Syringe syntax

ESC S	Υ	Syringe Type	NULL
-------	---	--------------	------

3.1.2. Field description

Table 4: Set syringe field description

Field	Format	Values
Syringe Type	Uint16	0 = Hamilton 100uL
		1 = Hamilton 250uL
		2 = Hamilton 500uL
		3 = Hamilton 1 mL
		4 = BD PlastiPak 1mL
		5 = BD PlastiPak 2.5mL
		6 = BD PlastiPak 5mL

3.1.3. Valid conditions

Table 5: Set Syringe command valid conditions

Pump valid statuses	Command prerequisites		
All	None		

3.2. Set Flow Rate

When running in manual mode, the desired flow rate at which the pump is perfusing can be set by means of the following command:

3.2.1.Syntax

Table 6: Set Flow Rate syntax

ESC S	F	Flow Rate	NULL
-------	---	-----------	------

3.2.2. Field condition

Table 7: Flow Rate command field description

Field	Format	Values
Flow Rate	double	Depending on the syringe. Flow rate unit nl/min ²

3.2.3. Valid conditions

Table 8: Flow rate command valid conditions

Pump valid statuses	Command prerequisites	
Running Stopped	Syringe must be defined	

Flow rates can be positive or negative. A positive flow rate means that the ExiGo pump will move forward (perfuse) while a negative flow rate means that the ExiGo pump will move backward (pick up) at the desired rate.

3.3. Set PID parameters

When running an experiment using ExiGo sensor, the pump can be controlled using a PID controller. Each of the PID parameters (proportional, integral and differential) can be set independently as well as the PID can be enabled or disabled completely.

3.3.1.Syntax

Table 9: Set PID command syntax

ESC S I PID State SPC³ P value SPC I value SPC D SPC Value NULL

² The maximum flow rate to be set depends on the selected syringe. Flow rates must be sent in nanoliters per minute.

³ Space character (SPC) hexadecimal equivalent is 0h30.

3.3.2. Field description

Table 10: Set PID command field description

Field	Format	Values	
PID state	boolean	0: OFF 1: ON	
P value	double	Proportional value: 0 to 10000	
I value	double	Integral value:0 to 1	
D value	double	Differential value: 0 to 10000	
C value	double	0 to 1 (0 recommended)	

3.3.3. Valid conditions

Table 11: Set PID command valid conditions

Pump valid statuses	Command prerequisites		
Running Stopped	ExiGo sensor must be plugged in		

3.4. Set Action

The ExiGo pump can be programmed in order to perform an automated assay. This assay is comprised of interconnected elements (constant flow rate, ramp, pulse, pause, etc) of certain duration forming the desired flow rate waveform

3.4.1.Syntax

Table 12: Set action command syntax

ESC	S	Α	Action Index	SPC	Total of Actions	SPC	Action Information	NULL
-----	---	---	--------------	-----	------------------	-----	--------------------	------

3.4.2.Field Description

Table 13: Set action command fields description

Field	Format	Values
Action Index	Uint16	0 to 255
Total of Actions	Uint16	0 to 255
Action Information	mixed	Every action has its own syntax. Please read description

	below

• Action Information: Constant Flow Rate

Table 14: Constant flow rate action information syntax

С	SPC	Flow Rate	SPC	Time min	SPC	Time secs	
---	-----	-----------	-----	----------	-----	-----------	--

Table 15: Constant flow rate action information fields description

Field	Format	Values	
Flow Rate	double	Depending on the syringe used	
Time min	Uint32	0 to 12000 minutes	
Time secs	Uint32	0 to 60 seconds	

• Action Information: Ramp

Table 16: Ramp action information syntax

Table 17: Ramp action information fields description

Field	Format	Values
Initial Flow Rate	double	Depending on the syringe type
Final Flow Rate	double	Depending on the syringe type
Time min	Uint32	0 to 12000 minutes
Time secs	Uint32	0 to 60 seconds

Action Information: Pulse

Table 18: Pulse action information syntax

Р	SPC Initial Flow Rate	SPC	Final Flow Rate	SPC	Period min	SPC	Period secs	SPC	Repetitions	SPC	Duty Cycle	
---	-----------------------	-----	--------------------	-----	---------------	-----	-------------	-----	-------------	-----	---------------	--

Table 19: Pulse action information fields description

Field	Format	Values
Initial Flow Rate	double	Depending on the syringe type
Final Flow Rate	double	Depending on the syringe type
Period min	Uint32	0 to 12000 minutes
Period secs	Uint32	0 to 60 seconds
Repetitions	Uint32	1 to 999

Duty Cycle	Uint32	0 to 100
, ,		

• Action Information: Sine

Table 20: Sine action information syntax

s	SPC	Initial Flow Rate	SPC	Period min	SPC	Period secs	SPC	Repetitions	SPC	Phase	SPC	Offset	
---	-----	----------------------	-----	---------------	-----	----------------	-----	-------------	-----	-------	-----	--------	--

Table 21: Sine action information fields description

Field	Format	Values
Initial Flow Rate	double	Depending on the syringe type
Period min	Uint32	0 to 12000 minutes
Period secs	Uint32	0 to 60 seconds
Repetitions	Uint32	1 to 999
Phase	Uint32	0 to 360
Offset	Uint32	Depending on the syringe type

3.4.3. Valid conditions

Pump valid statuses	Command prerequisites
Stopped	None

3.4.4.Examples

Example 1:

This example shows how to program the ExiGo pump for the following assay:

Number Element								Settings								
1 Constant Flow rate						Initial Flow Rate: 1000 nl/min Time min: 1 min Time seconds: 20 seconds										
Command:																
ESC	S	Α	0	SPC	SPC 2 SPC C SPC 10				100	0	SPC	1	SPC	20	NULL	
2			Ramp						Initial Flow Rate: 1000 nl/min Final Flow Rate: 3000 nl/min Time min: 1 min							

											Ti	me se	cond	ds: 45	sec	onds	
Comm	Command:																
ESC	S	Α	1	SPC	2	SPC	R	SPO	C 100	00 8	SPC	3000	SP	C 1	SPO	45	NULL
3				Co	Constant Flow rate					Initial Flow Rate: 3000 nl/min Time min: 1 min Time seconds: 0 seconds							
Comm	Command:																
ESC	S	Α	2	SP	С	2 SF	C	С	SPC	30	00	SPC	1	SPC	0	NUL	L

In order to program the pump successfully the 3 commands described above need to be sent to the pump IN ORDER:

• Step 1: Send the first command

ESC | S | A | 0 | SPC | 2 | SPC | C | SPC | 1000 | SPC | 1 | SPC | 20 | NULL

- Step 2: Get ACK from the pump⁴
- Step 3: Send the second command

ESC S A 1 SPC 2 SPC R SPC 1000 SPC 3000 SPC 1 SPC 45 NULL

- Step 4: Get ACK from the pump
- Step 5: Send the third and last command

 ESC
 S
 A
 2
 SPC
 2
 SPC
 C
 SPC
 3000
 SPC
 1
 SPC
 0
 NULL

• Step 6: Get ACK from the pump

16

⁴ This step is not mandatory but recommended

3.5. Set LED type

This command turns ON or OFF the LED lights on the Exigo and UniGo pumps. The current LED status is displayed on the bit number 6 of the status word (see point 4.1)

3.5.1.Syntax

Table 22: Set LED syntax

ESC S L	LED ON/OFF	NULL
---------	------------	------

3.5.2. Field description

Table 23: Set LED field description

Field	Format	Values
LED ON/OFF	boolean	0 = LED ON
		1 = LED OFF

3.5.3. Valid conditions

Table 24: Set LED command valid conditions

Pump valid statuses	Command prerequisites					
All	None					

3.1. Set ECO mode

This command turns ON or OFF the ECO mode on the Exigo pump. The current ECO status is displayed on the bit number 7 of the status word (see point 4.1)

3.1.1.Syntax

Table 25: Set ECO syntax

ESC S E ECO ON/OFF NULL	
-------------------------	--

3.1.2. Field description

Table 26: Set ECO field description

Field	Format	Values
500 01/055	boolean	0 = ECO ON
ECO ON/OFF		1 = ECO OFF

3.1.3. Valid conditions

Table 27: Set ECO command valid conditions

Pump valid statuses	Command prerequisites
All	None

4. Query Commands

This group of commands are used to retrieve information from the ExiGo Pump such as pump status, flow rate measurements, PID parameters, etc.

Query commands can be performed independently of the status of the pumps.

4.1. System Status query

This query retrieves the overall status of any pump connected.

4.1.1.Syntax

Table 28: System Status query syntax

4.1.2. Answer

Table 29: System Status query answer

ESC	Α	S	Pumps Connected	SPC	Status Word(1)	NULL
-----	---	---	-----------------	-----	----------------	------

4.1.3. Field description

Table 30: System Status query fields description

Field	Format	Values					
Pumps Connected	Uint16	0 to 3					
	Uint32	Bit Index	Size	Information			
		28-31	4 bits	Pump Status: 0 = Stopped 1 = Running 2 = Displacing 3 = Initializing 4 = Not Initialized			
		24-27	4 bits	0 = No limits reached1 = Back limit reached2 = Front limit reached			
		8-23	16 bits	Step Index (0 to 3175) 4095 if no initialized (0xFFF)			
Status Word(1)		7	1bits	ECO mode 1 = ON 0 = OFF			
		6	1bits	LED mode 1 = ON 0 = OFF			
		5	1 bits	Sensor Plugged 1 = YES 0 = NO			
		4	1 bits	Syringe Placed 1 = YES 0 = NO			
		0-3	4 bits	Pump Programmed 1 = YES 0 = NO			
(1) Should m	nore than o	one pumps be	connected	<u>.</u> !:			
Status Word SPC Status Word Status Word NULL Pump 1 Pump 2 Pump n							

4.2. Syringe query

Retrieves the type of syringe placed in every pump connected.

4.2.1.Syntax

Table 31: Syringe query command syntax

ESC Q Y NULL

4.2.2. Answer

Table 32: Syringe query command answer

ESC	Α	Υ	Syringe Type (1)	NULL
-----	---	---	------------------	------

4.2.3. Field Description

Table 33: Syringe query command answer fields description

Field	Format	Values					
	int	-1 = No Syringe installed					
		0 = Hamilton 100uL					
		1 = Hamilton 250uL					
Suringo Tuno (1)		2 = Hamilton 500uL					
Syringe Type (1)		3 = Hamilton 1 mL					
		4 = BD PlastiPak 1mL					
		5 = BD PlastiPak 2.5mL					
		6 = BD PlastiPak 5mL					
(2) Should more than one pumps be connected:							
Syringe Type SPC Pump 1		Syringe Type Syringe Type NULL Pump n					

4.3. Flow Rate query

This command retrieves the last flow rate measurement performed by the flow sensor for every pump.

4.3.1.Syntax

Table 34: Flow rate query syntax

ESC Q	F	NULL
-------	---	------

4.3.2. Answer

Table 35: Flow rate query answer

E	sc	Α	F	Flow Rate(1)	NULL
---	----	---	---	--------------	------

4.3.3. Field description

Table 36: Flow rate query answer fields description

Field	Format	Values							
Flow Rate (1)	double	*Values depending on the flow sensor If there is no sensor connected the flow rate retrieved is equal to 0							
(1) Should more than one pumps be connected:									
Flow Rate Pump 1	SPC	Flow Rate Pump 2		Flow Rate Pump n	NULL				

4.4. PID parameters query

This command retrieves the parameters of the PID controller set within the ExiGo pump. Each individual pump needs to be queried independently (use repeat command).

4.4.1.Syntax

Table 37: PID parameters query syntax

ESC	Q	I	NULL
-----	---	---	------

4.4.2. Answer

Table 38: PID parameters query answer

ESC	Α	I	PID State	SPC	KP	SPC	KI	SPC	KD	SPC	KC	NULL

4.4.3. Field description

Table 39: PID parameters query answer fields description

Field	Format	Values
PID state	boolean	0: OFF

		1: ON
KP	double	Proportional value: 0 to 10000
KI	double	Integral value:0 to 1
KD	double	Differential value: 0 to 10000
KC	double	0 to 1

4.5. Number of actions query

Using this query the number of actions programmed within a given ExiGo pump can be retrieved

4.5.1.Syntax

Table 40: Number of actions query syntax

ESC	Q I	N N	ULL
-----	-----	-----	-----

4.5.2.Answer

Table 41: Number of actions query answer

ESC A N Number of Pumps SPC Number of Actions(1) NU	NULL	
---	------	--

4.5.3. Field Description

Table 42: Number of actions query answer fields description

Field	Format	Values
Number of Pumps	Uint16	0 to 3
Number of Actions (1)	Uint32	0 to 255

(1) Should more than one pumps be connected:

Number of Actions Pump 1	Number of Actions Pump 2		Number of Actions Pump n	NULL
--------------------------	-----------------------------	--	-----------------------------	------

4.6. Action details query

Use this query to retrieve detailed information about a particular assay action programmed within the ExiGo pump. Each individual pump needs to be queried independently (use repeat command).

This command must be preceded of a *Number of Actions* Query in order to determine how many Assay Actions are programmed within the given pump and send an Action index accordingly to the received values.

4.6.1.Syntax

Table 43: Action details query syntax

ESC	Q	Α	Action index	NULL
-----	---	---	--------------	------

4.6.2.Answer

Table 44: Action details query answer

ESC	A A	Pump Number SPC	Action index SPC	Number of Actions	SPC	Action Details	NULL
-----	-----	--------------------	------------------	-------------------	-----	-------------------	------

4.6.3. Field description

Table 45: Action details query answer fields description

Field	Format	Values
Pump Number	Uint16	0 to 3
Action Index	Uint16	0 to 255
Number of Actions	Uint16	0 to 255
Action Details	mixed	Every action has its own syntax. Please read description below:

• Constant Flow rate

Table 46: Constant flow rate action details syntax

С	SPC	Flow Rate	SPC	Time min	SPC	Time secs
---	-----	-----------	-----	----------	-----	-----------

Table 47: Constant flow rate action detail fields description

Field	Fa **** 04	Values
Field	Format	Values

Flow Rate	double	Depending on the syringe
Time min	Uint32	0 to 12000 minutes
Time secs	Uint32	0 to 60 seconds

• Ramp

Table 48: Ramp action details syntax

Table 49: Ramp action detail fields description

Field	Format	Values
Initial Flow Rate double		Depending on the syringe
Final Flow Rate	double	Depending on the syringe
Time min	Uint32	0 to 12000 minutes
Time secs	Uint32	0 to 60 seconds

• Pulse

Table 50: Pulse action details syntax

Р	SPC	Initial Flow Rate	SPC	Final Flow Rate	SPC	Period min	SPC	Period secs	SPC	Repetitions	SPC	Duty Cycle	
---	-----	----------------------	-----	--------------------	-----	---------------	-----	-------------	-----	-------------	-----	---------------	--

Table 51: Pulse action detail fields description

Field	Format	Values
Initial Flow Rate	double	Depending on the syringe
Final Flow Rate	double	Depending on the syringe
Period min	Uint32	0 to 12000 minutes
Period secs	Uint32	0 to 60 seconds
Repetitions	Uint32	0 to 999
Duty Cycle	Uint32	0 to 100

• Sine

Table 52: Sine action details syntax

s	SPC	Initial Flow Rate	SPC	Period min	SPC	Period secs	SPC	Repetitions	SPC	Phase	SPC	Offset
---	-----	----------------------	-----	---------------	-----	-------------	-----	-------------	-----	-------	-----	--------

Table 53: Sine action detail fields description

Field	Format	Values
Initial Flow Rate double		Depending on the syringe
Period min Uint32		0 to 12000 minutes
Period secs	Uint32	0 to 60 seconds
Repetitions	Uint32	0 to 999
Phase	Uint32	0 to 360
Offset	Uint32	Depending on the syringe

4.7. Pump position query

Query used to request the position (in steps and micro-steps) of every pump.

4.7.1.Syntax

Table 54: Pump position query syntax

ESC	Q P	NULL
-----	-----	------

4.7.2. Answer

Table 55: Pump position query answer

ESC	Α	Ρ	Steps	SPC	Microsteps	NULL
-----	---	---	-------	-----	------------	------

4.7.3. Field description

Table 56: Pump position query answer fields description

Field	Format	Values
Pump Number	Uint16	0 to 3
Steps	Uint16	0 to 3175
Micro-steps	Uint16	0 to 5000

4.8. Assay run status query

This query can be used to retrieve the status of the pump while running in assay mode.

4.8.1.Syntax

Table 57: Assay run status query syntax

ESC Q R NULL

4.8.2. Assay run status query answer

Table 58: Assay run status query answer

ESC	Α	R	Action index	SPC	Time (min)	SPC	Time (sec)	NULL

Assay run information (1)

4.8.3. Field description

Table 59: Assay run status query answer fields description

Field	Format	Val	ues						
Action Index	Uint16	0 to	0 to 255						
Time (min)	Uint16	0 to 12000							
Time (sec)	Uint16	0 to	60 seconds						
(1) Should m	ore than or	ne pur	mps be connected:						
Assay run i Pump 1	info	SPC	Assay run info Pump 2	•••	Assay run info Pump n	NULL			

4.9. Firmware version query

This command retrieves the firmware version of a particular ExiGo pump. Each individual pump needs to be queried independently (use repeat command).

4.9.1.Syntax

Table 60: Firmware version query syntax

ESC Q V NULL

4.9.2.Answer

Table 61: Firmware version query answer

ESC	Α	٧	SPC	Pump	SPC	Firmware	SPC	Build	SPC	Build	SPC	NULL
				No		Version		Date		Time		

4.9.3. Field description

Table 62: Firmware version query answer fields description

Field	Format	Values
Pump Number	Uint16	0 to 3
Firmware Version	ASCII string	X.X.X (i.e 1.0.0)
Build Date ASCII string		Example: "Jun 3 2014"
Build Time	ASCII string	Example: "09:47:12"
	•	

4.10. Flow rate set-point query

Use this query to retrieve the flow rate set-point of a particular ExiGo pump. Each individual pump needs to be queried independently (use repeat command).

4.10.1. Syntax

Table 63: Flow rate set-point query syntax

ESC Q	W	NULL
-------	---	------

4.10.2. Answer

Table 64: Flow rate set-point query answer

4.10.3. Field description

Table 65: Flow rate set-point query answer fields description

Field	Format	Values
Flow Rate Set-point	double	

4.11. Sensor details query

Use this query to retrieve the sensor details plugged to an ExiGo pump. Each individual pump needs to be queried independently (use repeat command).

4.11.1. Syntax

Table 66: Sensor details query syntax

ESC	Q	С	NULL
-----	---	---	------

4.11.2. Answer

Table 67: Sensor details query answer

ESC	A C	SPC	Part Number	SPC	Serial Number	NULL
-----	-----	-----	-------------	-----	---------------	------

4.11.3. Field description

Table 68: Sensor details query answer fields description

Field	Format	Values
Part Number	ASCII string	 LG16-0025-: 1.5ul/min LG16-0150-: 7 ul/min LG16-0430D: 50ul/min LG16-1000D: 1000 ul/min
Serial Number	ASCII string	WWYYXXXXX WW = week YY = year XXXXX = device number

4.12. PCB Info query

Use this query to retrieve the PCB details of an ExiGo pump. Each individual pump needs to be queried independently (use repeat command).

4.12.1. Syntax

Table 69: PCB info query syntax

ESC Q B NULL

4.12.2. Answer

Table 70: PCB info query answer

ESC	Α	В	SPC	PCB Serial	SPC	PCB Version	SPC	EEPROM Programmed	SPC	Wifi FW	NULL
				No		Version		i rogrammeu		Ver	

4.12.3. Field description

Table 71: PCB info query answer fields description

Field	Format	Values
PCB Serial No	ASCII string	 YYMMXXXX YY = year MM = Month XXXXX = device number
PCB Version	ASCII string	 X.Y (i.e. 1.8) X = Mayor Revision Y = Minor revision
EEPROM programmed	boolean	0: Not programmed 1: Programmed
WIFI FW ver	ASCII string	Not Implemented
Flow Rate Set-point	double	

4.13. Syringe details query

Use this query to retrieve the syringe details when a customized syringe is set. Each individual pump needs to be queried independently (use repeat command).

4.13.1. Syntax

Table 72: Syringe details query syntax

ESC C	H	NULL
-------	---	------

4.13.2. Answer

Table 73: Syringe details query answer

4.13.3. Field description

Table 74: Syringe details query answer fields description

Field	Format	Values
Syringe Volume	double	Volume in nanoliters
Syringe Length double		Length in mm

4.14. Pressure reading query

This command retrieves the last pressure measurement performed by the pressure sensor for every pump.

4.14.1. Syntax

Table 75: Pressure query syntax

4.14.2. Answer

Table 76: Pressure query answer

ESC	Α	K	Flow Rate(1)	NULL
-----	---	---	--------------	------

4.14.3. Field description

Table 77: Pressure query answer fields description

Field	Format	Values
Flow Rate (1)	double	*Values depending on the pressure sensor in mbar If there is no sensor or the pump is not an UniGo pump it will return 0

(1) Should more than one pumps be connected:

Pressure	SPC	Pressure	•••	Pressure	NULL
Pump 1		Pump 2		Pump n	

4.15. Device type query

This command retrieves the type of device connected.

4.15.1. Syntax

Table 78: Device type query syntax

4.15.2. Answer

Table 79: Device type query answer

ESC	Α	0	Device type(1)	NULL
-----	---	---	----------------	------

4.15.3. Field description

Table 80: Device type query answer fields description

Field	Format	Values		
Device type (1)	ascii	 EXI = ExiGo UNI = UniGo BAR = 4U/Bo 	pump	
(1) Should more than one pumps be connected:				
Device type	1 SPC	Device type 2	Device type n	NULL

5. Dynamic Commands

The commands under this group control the movement of the ExiGo pump.

Some of the commands described below are only valid when the ExiGo pump is within certain status or statuses and/or when some prerequisites are satisfied. Please refer to individual command description for further information.

5.1. Initialize command

This command initializes the pump and moves the plunger to the home position.

5.1.1.Syntax

Table 81: Initialize command syntax

LOCITIOLL

5.1.2. Valid Conditions

Table 82: Initialize command valid conditions

Pump valid statuses	Command prerequisites
Not initialized Stopped	None

5.2. Manual run command

Run the pump with the last flow rate set (using the Set flow rate command)

5.2.1.Syntax

Table 83: Manual run command syntax

5.2.2. Valid conditions

Table 84: manual run command valid conditions

Pump valid statuses	Command prerequisites
Stopped	Syringe must be defined A flow rate must be set: If flow rate set is negative: Pump must have

not reached rear limit If flow rate set is positive: Pump must have not
reached front limit

5.3. Run assay command

Run the last assay programmed within the pump. The pump must be previously programmed by means of the Set Action command.

5.3.1.Syntax

Table 85: Run assay command syntax

5.3.2. Valid conditions

Table 86: Run assay command valid conditions

Pump valid statuses	Command prerequisites
Stopped	Syringe must be defined Pump must be programmed Pump must have enough steps to perform desired assay

5.4. Stop command

This command stops the pump.

5.4.1.Syntax

Table 87: Stop command syntax

5.4.2. Valid conditions

Table 88: Stop command valid conditions

Pump valid statuses	Command prerequisites
---------------------	-----------------------

All	If displacement is forward: Pump must have not reached rear limit
	If displacement is backward: Pump must have not reached front limit

5.5. Displacement command

This command moves the plunger to an absolute position defined by the number of steps and micro-steps in regards to the home position.

5.5.1.Syntax

Table 89: Displacement command syntax

ESC	D	Step Index	SPC	Micro-step Index	NULL
-----	---	------------	-----	------------------	------

5.5.2. Field description

Table 90: Displacement command fields description

Field Format		Values
Step index	Uint16	0 to 3175
Micro-steps index	Uint16	0 to 5000

5.5.3. Valid conditions

Table 91: Displacement command valid conditions

Pump valid statuses	Command prerequisites	
Stopped	None	

6. How to communicate with slave ExiGo pumps

The communication protocol used within the ExiGo pumps is a Master-Slave based. This implies that all the information going to any of the pumps of the system must go through the Master pump. However there is no difference between master and slave pumps in terms of hardware or software. A master pump can act as a slave pump and

vice-versa depending on how they are interconnected; therefore the structure of the commands is the same for a slave and for a master pump.

However, it is required to wrap the command in such a way that the Master pump understands that is directed towards one of the slave pumps in the system and thereby, it will forward the command onto the selected slave pump.

In order to achieve this, it is necessary to add an indicator that the command is directed to a slave pump (R character) as well as the address of the slave pump which the command is directed towards.

This combination is also defined as a repeat command:

6.1.1.Syntax

Table 92: Repeat command syntax

ESC	R Pump Address	ESC	SPC	Command to Send	NULL
-----	----------------	-----	-----	-----------------	------

6.1.2. Field description

Table 93: Repeat command fields description

Field	Format	Values
Pump Address	Uint16	1 to 3
Command to Send	mixed	Any of the standard set, query or miscellaneous commands ⁵

6.2. Examples

Example 1: Initialize Slave 1

Table 94: Example 1 syntax

ESC R 1 SPC I⁶ NULL

Example 2: Set 1000 nl/min as flow rate Slave 3

⁵ Some of the query commands such as Status query or Syringe query collect already information from all the pumps in the system and therefore they cannot be used within a Repeat command.

⁶ The ESC character of the Command to send must be omitted as the pump would consider it as a new command.

Table 95: Example 2 syntax

Valid conditions using the repeat command are the same than when using direct master communication. Please refer to individual command description for further information.

7. ACK/NACK commands

In order to have a robust and stable communication, a system is required to determine if an ExiGo pump received a particular command correctly or not.

In general, query commands will not receive an ACK command but the requested information instead.

7.1. ACK command

The pump answers ACK if the command sent is received properly.

7.1.1.Syntax

Table 96: ACK command syntax

7.1.2. Field Description

Table 97: ACK command fields description

Field	Format	Values
ACK	Uint16	0h06
Pump Address	Uint16	1 to 3
Command ID	mixed	Contains the 1 or 2 ASCII characters that determine the type of command received. I.e.: "SF" for Set flow rate command, "QI" for PID query command, etc.

7.2. NACK Command

The pump answers NACK if the command sent is not received properly or contains wrong information (START or END flag missing, etc.)

7.2.1.Syntax

Table 98: NACK command syntax

E	SC	Α	NACK	Pump Address	SPC	Command ID	NULL	
---	----	---	------	--------------	-----	------------	------	--

7.2.2.Field Description

Table 99: NACK command fields description

Field	Format	Values
NACK	Uint16	0h15
Pump Address	Uint16	1 to 3
Command ID	mixed	Contains the 1 or 2 ASCII characters that determine the type of command received. I.e.: "SF" for Set flow rate command, "QI" for PID query command, etc.

8. Error command

This command indicates if there was an error trying to perform the sent command.

8.1.1.Syntax

Table 100: Error command syntax

8.1.2. Field description

Table 101: Error command field description

Field	Format	Values
Pump Address	Uint16	1 to 3
Command ID	mixed	Contains the 1 or 2 ASCII characters that determine the type of command received. I.e.: "SF" for Set flow rate command, "QI" for PID query command, etc.
Error Code	Uint16	Code indicating the type or error

8.2. Error codes and explanation

Code	Name	Description	
1	Pump not programmed	The ExiGo Pump response with this error under the following situations: • Run assay command sent when the pump is not programmed • Action details command sent when the pump is not programmed	
2	Action out of range	This error appears when an Action details query command with an index bigger than the total number of actions defined is requested.	
3	CAN communication error	The requested command could not being transmitted to the selected slave pump.	
4	Pump not detected	The pump acting as a receiver for the sent command could not have being detected.	
5	Pump already displacing	The Displace command was sent while the pump was performing a previous displace command.	
6	Pump initializing	Receiver pump is currently initializing and the command could not have being set.	
7	Pump not initialized	The pump must be initialized prior to perform the requested command.	
8	Pump running	The receiver pump must be stopped prior to perform the requested command.	
9	Syringe not defined	The Syringe type of the receiver pump must be defined prior to perform the requested command.	
10	Pump has reached front limit	The receiver pump cannot continue forward because it has reached its physical front limit.	
11	Pump has reached rear limit	The receiver pump cannot continue forward because it has reached its physical rear limit.	
12	Flow rate too high	The flow rate is too high for the pump to run.	
13	Pump undefined error	General pump error	
14	Wrong Action Index	The index received was different of the expected	
15	Pump booting	Pump is booting	

16	Sensor disconnected	The flow sensor was disconnected while the pump was running with PID on
17	Negative Flow	When trying to set a negative flow in a UniGo pump

Table 102: Revision history

Date	Version	Changes
10-Dec-13	V1.0	First release

Cellix Limited

Unit 1, Longmile Business Park

Longmile Road Dublin 12, Ireland.

Tel: +353-1-4500 155 Fax: +353-1-4500 158 Email: <u>info@cellixltd.com</u>