Intersection of Line Segments

- Given: n line segments.
- Find: All intersections (report segments at each intersection point).

Intersection of Line Segments

- Trivial method $O(n^2)$.
- Plane sweep: $O((n+k)\log n)$ time, O(n+k) space where k is the number of intersections (at most $O(n^2)$).
- Necessary condition for two lines to intersect: next to each other on some vertical line.
- Simplifying assumptions:
 - No vertical segments.
 - No segements overlap.
 - No three segments meet at the same point.

Plane Sweep – Events

- Left endpoints of segments.
- Right endpoints of segments.
- Intersections of line segments.

Plane Sweep - Status

- Status of the sweep line at a given xcoordinate.
 - Segments intersected by the vertical sweep line through x from top to bottom.

- Arriving at a left endpoint of a line segment s:
 - Insert s into the correct spot on the sweep line.
 - Check if s intersects the segment above it. If so, add the intersection to the events.
 - Check if s intersects the segment below it. If so, add the intersection to the events.

- Arriving at a right endpoint of a line segment s.
 - Check if the segments above and below s intersect to the right of s. If so, and the intersection was not reported earlier, add it to the events.
 - Remove s from the status.

- Arriving at an intersection point p between two line segments s₁ and s₂
 - Swap s_1 and s_2 in the status.
 - Check if s₂ and the segment above it intersect to the right of p. If so and p was not reported earlier, add it to the events.
 - Check if s₁ and the segment below it intersect to the right of p. If so and p was not reported earlier, add it to the events.

Plane Sweep Algorithm - Events

- Operations that must be supported:
 - Get the smallest (lexicographically) element and delete it.
 - Insert a new element in an appropriate position.
 - Check for membership.
- Use binary search trees.
- Every operations requires O(logn) time.

Plane Sweep Algorithm - Status

- Operations that must be supported:
 - Insert an element in an appropriate position.
 - Delete an element.
 - Swap two consecutive elements.
 - Return the element just before a given element.
 - Return the element just after a given element.
- Use binary search trees.
- Every operation requires O(logn) time.

Plane Sweep - Complexity

- Preprocessing: $O(n\log n)$ time and O(n) space.
- $O((n+k)\log n)$ time:
 - Number of stops: 2n+k.
 - Each stop requires O(logn) time.
- O(n+k) space.
- O(n) space: delete events if line segments seize to be neighbours on the sweep line.