5.408 two_orth_are_in_contact

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [358], used for defining orths_are_connected.

Constraint two_orth_are_in_contact(ORTHOTOPE1, ORTHOTOPE2)

Type ORTHOTOPE : collection(ori-dvar, siz-dvar, end-dvar)

Arguments ORTHOTOPE1 : ORTHOTOPE ORTHOTOPE2 : ORTHOTOPE

Restrictions |ORTHOTOPE| > 0

 ${\tt require_at_least}(2, {\tt ORTHOTOPE}, [{\tt ori}, {\tt siz}, {\tt end}])$

 ${\tt ORTHOTOPE.siz} > 0$

 $\begin{array}{l} \mathtt{ORTHOTOPE.ori} \leq \mathtt{ORTHOTOPE.end} \\ |\mathtt{ORTHOTOPE1}| = |\mathtt{ORTHOTOPE2}| \end{array}$

orth_link_ori_siz_end(ORTHOTOPE1)
orth_link_ori_siz_end(ORTHOTOPE2)

Enforce the following conditions on two orthotopes O_1 and O_2 :

- For all dimensions i, except one dimension, the projections of O_1 and O_2 onto i have a non-empty intersection.
- For all dimensions i, the distance between the projections of O_1 and O_2 onto i is equal to 0.

Example

Purpose

```
\left(\begin{array}{l} \left\langle \texttt{ori} - 1 \; \texttt{siz} - 3 \; \texttt{end} - 4, \texttt{ori} - 5 \; \texttt{siz} - 2 \; \texttt{end} - 7 \right\rangle, \\ \left\langle \texttt{ori} - 3 \; \texttt{siz} - 2 \; \texttt{end} - 5, \texttt{ori} - 2 \; \texttt{siz} - 3 \; \texttt{end} - 5 \right\rangle \end{array}\right)
```

Figure 5.772 shows the two rectangles of the example. The two_orth_are_in_contact constraint holds since the two rectangles are in contact: the contact is depicted by a pink line-segment.

Typical |ORTHOTOPE| > 1

Arguments are permutable w.r.t. permutation (ORTHOTOPE1, ORTHOTOPE2).

• Items of ORTHOTOPE1 and ORTHOTOPE2 are permutable (same permutation used).

Used in orths_are_connected.

See also implies: two_orth_do_not_overlap.

Keywords characteristic of a constraint: automaton, automaton without counters,

reified automaton constraint.

20030820 2343

Figure 5.772: The two rectangles that are in contact of the **Example** slot where the contact is shown in pink

constraint network structure: Berge-acyclic constraint network.
constraint type: logic.
filtering: arc-consistency.
geometry: geometrical constraint, touch, contact, non-overlapping, orthotope.

Arc input(s)	ORTHOTOPE1 ORTHOTOPE2
Arc generator	$PRODUCT(=) \mapsto collection(orthotope1, orthotope2)$
Arc arity	2
Arc constraint(s)	orthotope1.end > orthotope2.oriorthotope2.end > orthotope1.ori
Graph property(ies)	NARC = ORTHOTOPE1 - 1
Arc input(s)	ORTHOTOPE1 ORTHOTOPE2
Arc generator	$PRODUCT(=) \mapsto \texttt{collection}(\texttt{orthotope1}, \texttt{orthotope2})$
Arc arity	2
Arc constraint(s)	$\max \left(\begin{array}{cc} 0, & \max(\texttt{orthotope1.ori}, \texttt{orthotope2.ori}) - \\ & \min(\texttt{orthotope1.end}, \texttt{orthotope2.end}) \end{array} \right) = 0$
Graph property(ies)	NARC= ORTHOTOPE1

Graph model

Parts (A) and (B) of Figure 5.773 respectively show the initial and final graph associated with the first graph constraint of the **Example** slot. Since we use the **NARC** graph property, the unique arc of the final graph is stressed in bold. It corresponds to the fact that the projection onto dimension 1 of the two rectangles of the example overlap.

Figure 5.773: Initial and final graph of the two_orth_are_in_contact constraint

Signature

Consider the second graph constraint. Since we use the arc generator PRODUCT(=) on the collections <code>ORTHOTOPE1</code> and <code>ORTHOTOPE2</code>, and because of the restriction |ORTHOTOPE1| = |ORTHOTOPE2|, the maximum number of arcs of the corresponding final graph is equal to |ORTHOTOPE1|. Therefore we can rewrite the graph property NARC = |ORTHOTOPE1| to $NARC \ge |ORTHOTOPE1|$ and simplify \overline{NARC} to \overline{NARC} .

20030820 2345

Automaton

Figure 5.774 depicts the automaton associated with the two_orth_are_in_contact constraint. Let $\mathtt{ORI1}_i$, $\mathtt{SIZ1}_i$ and $\mathtt{END1}_i$ respectively be the ori, the \mathtt{siz} and the end attributes of the i^{th} item of the $\mathtt{ORTHOTOPE1}$ collection. Let $\mathtt{ORI2}_i$, $\mathtt{SIZ2}_i$ and $\mathtt{END2}_i$ respectively be the ori, the \mathtt{siz} and the end attributes of the i^{th} item of the $\mathtt{ORTHOTOPE2}$ collection. To each sextuple $(\mathtt{ORI1}_i,\mathtt{SIZ1}_i,\mathtt{END1}_i,\mathtt{ORI2}_i,\mathtt{SIZ2}_i,\mathtt{END2}_i)$ corresponds a signature variable S_i , which takes its value in $\{0,1,2\}$, as well as the following signature constraint:

$$\begin{split} & \left(\left(\mathtt{SIZ1}_i > 0 \right) \wedge \left(\mathtt{SIZ2}_i > 0 \right) \wedge \left(\mathtt{END1}_i > \mathtt{ORI2}_i \right) \wedge \left(\mathtt{END2}_i > \mathtt{ORI1}_i \right) \right) \Leftrightarrow S_i = 0 \\ & \left(\left(\mathtt{SIZ1}_i > 0 \right) \wedge \left(\mathtt{SIZ2}_i > 0 \right) \wedge \left(\mathtt{END1}_i = \mathtt{ORI2}_i \vee \mathtt{END2}_i = \mathtt{ORI1}_i \right) \right) \Leftrightarrow S_i = 1. \end{split}$$

Figure 5.774: Automaton of the $two_orth_are_in_contact$ constraint

Figure 5.775: Hypergraph of the reformulation corresponding to the automaton of the two_orth_are_in_contact constraint