复合函数极限

2022年7月1日

考虑 $g\colon A\to B,\,f\colon B\to C,\,\mathrm{range}(g)\subseteq B=\mathrm{dom}(f),\,$ 意味着 $f\circ g$ 是有意义的. 若 $\lim_{x\to a}g(x)=b,\,\lim_{y\to b}f(y)=L,\,$ 在满足下列任一条件时:

- 1. f 在 b 连续
- 2. g 在定义域内 a 附近 (不包括 a) 取不到极限值 b
- 3. $b=\infty$

复合函数的极限存在且:

$$\lim_{x \to a} f(g(x)) = L.$$

注 从证明过程中可看出,除了两极限都取最弱时 $\lim g(x) = \infty$, $\lim_{y \to \pm \infty} f(y) = L$ 无法进行复合,其余三种情况均可按照上述方式复合:

- $(\mathfrak{P},\mathfrak{P})$ $\lim g(x)=\infty, \lim_{y\to\infty}f(y)=L$
- $(\mathfrak{A}, \mathfrak{B}) \lim g(x) = \pm \infty, \lim_{y \to +\infty} f(y) = L$
- $(\mathfrak{A}, \mathfrak{A}) \lim g(x) = \pm \infty, \lim_{y \to \infty} f(y) = L$

证明. (1) $\lim_{y \to b} f(x) = L$ 意味着 $\forall \varepsilon \; \exists \delta, \; (\forall y \in B \colon 0 < |y - b| < \delta), \; 有 \; |f(x) - L| < \varepsilon.$

 $(2) \lim_{x\to a} g(x) = b \text{ 则对于 } (1) \text{ 中的 } \delta, \exists \delta', (\forall x\in A\colon 0<|x-a|<\delta', 有 |g(x)-b|<\delta.$

要将 (2) 和 (1) 连接起来, 矛盾在于 (2) 中 $|g(x) - b| < \delta$ 不是去心邻域, 而 (1) 中 $0 < |y - b| < \delta$ 要求去心邻域.

若 f 在 b 连续, $\lim_{y\to b}f(y)=f(b)=L$, 意味着 (1) 中 $0<|y-b|<\delta$ 的条件可以改写 为 $|y-b|<\delta$, 而已经有 $|g(x)-b|<\delta$, 于是 $|f\big(g(x)\big)-L|<\varepsilon$.

若 g 在 a 的一个去心邻域内取不到 b, 故 (2) 中的 $|g(x) - b| < \delta$ 可以变为 $0 < |g(x) - b| < \delta$, 由 (1), $|f(g(x)) - L| < \epsilon$.

若 $b = \infty$, 根据定义, (2) 中最后为 $|g(x)| > \delta$, (1) 中有对应的条件 $|y| > \delta$. 故无需其它条件. ■