Фамилия, имя, номер группы:	8

Вопрос 1. Рассмотрим модель множественной регрессии $Y=X\beta+\varepsilon$, где $\hat{Y}=X\hat{\beta},\,e=Y-\hat{Y}.$ Величина RSS- это квадрат длины вектора

 $\boxed{A} \hat{Y} - \overline{Y}$

 $C \varepsilon$

 $EY - \bar{Y}$

B e

D \hat{Y}

Вопрос 2. Крокодил Гена оценивает модель регрессии $Y_i=\beta_0+\beta_1 X_i+\varepsilon_i$ с помощью МНК. Чебурашка получит такую же оценку коэффициента β_1 , если будет минимизировать

[A] выборочную дисперсию объясняющей переменной

[C] выборочную ковариацию регрессора и объясняемой переменной

объясняемой переменной

В коэффициент детерминации

Выборочную дисперсию

[E] выборочную дисперсию остатков

Вопрос 3. Чебурашка оценил модель $Y_i=\beta_0+\beta_1X_i+\varepsilon_i$, а Крокодил Гена — модель $X_i=\gamma_0+\gamma_1Y_i+u_i$. Оказалось, что $\hat{\gamma}_1=0.25/\hat{\beta}_1$. Величина R^2 в регрессии Чебурашки равна

A 1

C 0.75

E 0.25

B 0

D 0.5

Вопрос 4. В модели $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ при выполненных предпосылках теоремы Гаусса-Маркова и нормальных ошибках тестовая статистика $(\hat{\beta}_1 - \beta_1)/se(\hat{\beta}_1)$ имеет распределение

 $A t_{n-2}$

C χ^2_{n-2}

 $oxed{E} \, \, \mathcal{N}(0;\sigma^2)$

 $B \mathcal{N}(0;1)$

 $D \chi_1^2$

Вопрос 5. Крокодил Гена оценил с помощью МНК зависимость $Y_i=\beta_0+\beta_1X_i+\varepsilon_i$. Оказалось, что $\hat{\beta}_0=90$, а $\hat{\beta}_1=3$. Чебурашка увеличил переменные X и Y на 10% и снова оценил уравнение регрессии. В результате этой корректировки

 $oxed{A}$ оценка \hat{eta}_0 увеличилась, а оценка \hat{eta}_1 не изменилась

лись

лись

оценка \hat{eta}_1 не изменилась

 $oldsymbol{C}$ оценки \hat{eta}_0 и \hat{eta}_1 увеличились

 $oxed{E}$ оценка \hat{eta}_0 уменьшилась, а оценка \hat{eta}_1 не изменилась

 \boxed{B} оценки \hat{eta}_0 и \hat{eta}_1 не измени-

 $ar{D}$ оценки \hat{eta}_0 и \hat{eta}_1 уменьши-

Фамилия, имя, номер группы:

Вопрос 6. В модели парной линейной регрессии со свободным членом $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ несмещённой оценкой дисперсии оценки МНК $\hat{\beta}_1$ является

- $A \sum (Y_i \bar{Y})^2 / (n-1)$
- C RSS/(n-2)

 $E \sum (Y_i - \bar{Y})^2/(n-2)$

B RSS/n

 $D RSS/((n-2)\sum_{i}(X_{i}-\bar{X})^{2})$

Вопрос 7. Храбрый исследователь Вениамин оценил регрессию $\hat{Y}_i = 23 + 10X_i$, в скобках приведены стандартные ошибки. Доверительный интервал для свободного члена равен [14;32]. Доверительный интервал для коэффициента наклона при том же уровне доверия будет равен

A [6.08; 13.92]

C [5; 15]

[E] [6.4; 13.6]

B [6; 14]

 $\boxed{D} [1; 19]$

Вопрос 8. По 20 наблюдениям Чебурашка оценил модель $Y_i=\beta_0+\beta_1X_i+\varepsilon_i$. Известно, что $\sum X_i=-10$, $\sum X_i^2=40$, $\sum X_iY_i=10$, $\sum Y_i=50$.

Сумма оценок МНК коэффициентов $\hat{eta}_0 + \hat{eta}_1$ равна

A 4

[C] 3

 $E \mid 1$

B 5

D 2

Вопрос 9. Распределение случайной величины X задано таблицей

Вероятность $\mathbb{P}(X=1)$ равна

 \boxed{A} 0.2

C 0.5

E 0.3

B 0.4

D 0

Вопрос 10. Оценки МНК вектора коэффициентов регрессии $Y = X\beta + \varepsilon$ находятся по формуле

 $A (XX')^{-1}X'Y$

 $C (X'X)^{-1}X'Y$

 $E(XX')^{-1}Y'X$

 $\boxed{\textit{B}} \ X'Y(X'X)^{-1}$

Тест	1	2	3	4	Итого
1001					
	1				
					*

Фамилия, имя, номер группы:

- 1. (5 баллов) Случайные величины X и Y независимы и имеют хи-квадрат распределение с 5 и с 10 степенями свободы, соответственно. Случайная величина Z равна Z=(X+Y)/X. Найдите значение z^* такое, что $\mathbb{P}(Z>z^*)=0.05$.
- 2. (5 баллов) Докажите, что для модели парной регрессии $Y_i=\beta_0+\beta_1 X_i+\varepsilon_i$, оцененной с помощью МНК, выполнено равенство $\sum_{i=1}^n Y_i=\sum_{i=1}^n \hat{Y}_i$.
- 3. (5 баллов) Аккуратно сформулируйте теорему Гаусса-Маркова для случая парной регрессии.
- 4. (10 баллов) На основании 62 наблюдений Чебурашка оценил функцию спроса на апельсины:

$$\hat{Y}_i = \frac{3}{(1.6)} - \frac{1.25}{(0.2)} X_i$$
, где $\sum_i (X_i - \bar{X})^2 = 2.25$

В скобках приведены стандартные ошибки коэффициентов, случайные ошибки в регрессии можно считать нормальными.

- а) Проверьте гипотезы о значимости каждого из коэффициентов регрессии при уровне значимости 5%.
- б) Проверьте гипотезу о равенстве коэффициента наклона -1 при уровне значимости 5% и односторонней альтернативной гипотезе, что коэффициент наклона меньше -1.
- в) Найдите оценку дисперсии ошибок.
- r) Найдите 95% интервальный индивидуальный прогноз в точке X=8.