Exercise.

Determine the best alternative between A_1 , A_2 and A_3 .

Three criteria to be considered in your decision making are:

 C_1 : to be minimised

 C_2 : to be minimised

 C_3 : to be minimised

The relative importance of criteria are: $w_1 = 0.5$, $w_2 = 0.3$, $w_3 = 0.2$ The values of criteria of the three alternatives are given in the following matrix.

	C_1	C_2	C_3
A_1	90	180	10
A_2	110	150	8
A_3	100	170	5

Select the best alternative by using the TOPSIS method.

Answer.

Step1. Calculate the elements of the normalised matrix.

$$r_{nk} = \frac{f_{nk}}{\sqrt{\sum_{n=1}^{3} f_{nk}^{2}}}, k = 1,...,3$$

	C_1	C_2	C_3
A_1	0.518	0.622	0.727
A_2	0.633	0.518	0.582
A_3	0.5575	0.587	0.364

Step 2. Construct the weighted normalised decision matrix.

	C_1	C_2	C_3
A_1	0.2590	0.1866	0.1454
A_2	0.3165	0.1554	0.1164
A_3	0.2875	0.1761	0.0728

Step 3. Determine the ideal point A^+ and nadir $A_{\#}$.

$$A^{+}$$
 = {0.2590, 0.1554, 0.0728} $A_{\#}$. = {0.3165, 0.1866, 0.1454}

Step 4. Calculate the distance between each alternative and the ideal point A^+ and nadir $A_{\#}$.

$$\begin{split} S_{1+} &= \sqrt{(0.2590 - 0.2590)^2 + (0.1866 - 0.1554)^2 + (0.1454 - 0.0728)^2} = \sqrt{0.0062441} = 0.079 \\ S_{2+} &= \sqrt{(0.3165 - 0.2590)^2 + (0.1554 - 0.1554)^2 + (0.1164 - 0.0728)^2} = 0.072 \\ S_{3+} &= \sqrt{(0.2875 - 0.2590^2 + (0.1761 - 0.1554)^2 + (0.0728 - 0.0728)^2} = 0.037 \\ S_{1\#} &= \sqrt{(0.2590 - 0.3165)^2 + (0.1866 - 0.1866)^2 + (0.1454 - 0.1454)^2} = 0.057 \\ S_{2\#} &= \sqrt{(0.3165 - 0.3165)^2 + (0.1554 - 0.1866)^2 + (0.1164 - 0.1454)^2} = 0.0424 \\ S_{3\#} &= \sqrt{(0.2875 - 0.3165)^2 + (0.1761 - 0.1866)^2 + (0.0728 - 0.1454)^2} = 0.079 \end{split}$$

Step 5. Calculate the relative closeness to the ideal point A^* .

$$P_1 = \frac{0.057}{0.079 + 0.055} 7 = 0.419$$

$$P_2 = \frac{0.0424}{0.072 + 0.0424} = 0.3706$$

$$P_3 = \frac{0.079}{0.037 + 0.079} = 0.681$$

Step 6. The best alternative is A3 (followed by A2 and then A1).