NATURAL LANGUAGE PROCESSING

intersection of linguistics, AI, and computer science

Noise Removal

stripping text of formatting

Tokenization

breaking text into individual words

Normalization cleaning data in any other way

- Stemming chop off affixes
- **Lemmatization** bring words to their root form
- Stopwords, lowercasing, spelling, etc.

Part-of-speech tagging (POS)

Identifies part of speech

Named-entity recognition (NER)

Identify proper nouns (e.g. "Berlin")

Dependency grammar trees

Interpret the relationship between words

Regular expression Parsing (Regex)

Coupled with POS, identify specific phrase chunks/patterns (e.g. email addresses)

N-grams (Markov Chains)

Predict the likelihood of each following word/character based on that training corpus

They are **memory-less**; they make predictions based entirely on the current n-gram on hand

Long Short-Term Memory (LSTM)

Deep Learning models that manage memory

LANGUAGE MODELS

Probabilistic computer models of language

TOPIC MODELLING

language

An area of NLP dedicated to uncovering

latent (hidden) topics within a body of

Bag-of-Words (BoW)

- Unigram model which tally count each word instance
- Suitable for making predictions concerning text topic or sentiment
- When grammar & word order are irrelevant

Considers a sequence of n units & calculates the probability of each unit in a body of language given the preceding sequence of length n

Neural Language Models (NLMs)

Deep Learning approach, e.g. LSTMs, transformer models, etc.

Term Frequency-Inverse Document Frequency (TF-IDF)

Deprioritize the most common words and prioritize less frequently terms

Latent Dirichlet Allocation (LDA)

The next step after Bow or TF-IDF; a statistical model that takes the docs and determines which word keeps popping up together in the same contexts (documents)

Word2Vec

Maps out the topic model results spatially as vectors so that similarly used words are closer together (word embedding)

Levenshtein distance (minimal edit distance)

The minimum number of insertions, deletions, and substitution that would need to occur for one word to become another

Phonetic similarity

How much two words/phrases sound the same

Lexical similarity

The degree to which texts use the same vocabulary & phrases

Semantic similarity

The degree to which documents contain similar meaning or topics (recommendation systems)

LANGUAGE PREDICTION

E.g. auto-correct, auto-suggest, etc.

TEXT PREPROCESSING

PARSING TEXT

Segmenting text based on syntax

Common tasks

ADVANCED NLP TOPICS:

- Machine translation (NNs, LSTMs)
- **Bias** Detection

TEXT SIMILARITY

Language Accessibility (text2speech, speech recognition)

CONSIDERATIONS:

- Different languages (cultural & linguistic biases)
- NLP can limit, but also propagate bias (within code or corpus)
- **Privacy** issues