Statistics Ph.D. Qualifying Exam: Part I

November 13, 2004

Student Name:

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

1	2	3	4	5	6	7	8	9	10	11	12

- 2. Write your answer right after each problem selected, attach more pages if necessary.
- 3. Assemble your work in right order and in the original problem order.

- 1. Let X_1, \ldots, X_n and Y_1, \ldots, Y_m be exponential random variables with X's having mean $1/(\theta\lambda)$ and Y's having mean $1/\lambda$. Let $X = \sum_{i=1}^n X_i$ and $Y = \sum_{i=1}^m Y_i$. Let T = X/Y and U = Y.
 - (a) Find the joint density of T and U.
 - (b) Find the marginal density of T.
 - (c) Now let T_1, T_2 be a random sample with the same distribution as T. Find the maximum likelihood estimate of θ .

2. Let Y_1, \ldots, Y_n be independent random variables such that

$$Y_i = \mu + \sum_{j=1}^{p} x_{ij}\beta_j + \epsilon_i,$$

i = 1, ..., n, and p < n. Let **X** be the $n \times p$ matrix of x_{ij} 's, **1**, the $n \times 1$ vector of 1's, β the $p \times 1$ vector of β_j 's and ϵ , the vector of ϵ_i 's. Assume that $\mathbf{X}^T \mathbf{1} = \mathbf{0}$.

- (a) Derive an expression for $\hat{\beta}$, the least squares estimate of β .
- (b) Describe the test of

$$H_0: \beta = \mathbf{0}$$

(c) How would you check the assumption that $\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$?

3. Let X_1 and X_2 be independent Poisson random variables with means $\lambda\mu$ and μ respectively. We wish to test

$$H_0: \lambda \leq \lambda_0 \text{ versus } H_1: \lambda > \lambda_0,$$

where μ is unknown.

- (a) Explain why the appropriate test is a conditional test, based on the conditional distribution of X_1 given $X_1 + X_2$, and derive the test procedure.
- (b) If $X_1 = x_1$ and $X_2 = x_2$ are observed, and $s = x_1 + x_2$, show that the P-value corresponding for this test is approximately

$$1 - \Phi \left[\frac{x_1 - s\lambda_0/(1 + \lambda_0)}{\{s\lambda_0/(1 + \lambda_0)^2\}^{1/2}} \right]$$

- 4. Let $\{X_1, \ldots, X_n\}$ be a random sample from the normal distribution with mean μ and variance σ^2 . Put $U_1 = \sum_{i=1}^n X_i$, $U_i = X_1 X_i$, $i = 2, \ldots, n$ and $S^2 = \sum_{i=1}^n (X_i U_1/n)^2$.
 - (a) Show that $\{U_2, \ldots, U_n\}$ is independently distributed of U_1 stochastically. What is the joint probability distribution of $\{U_i, i = 2, \ldots, n\}$?
 - (b) Express S^2 as a function of $\{U_i, i=2,\ldots,n\}$ and then derive the probability density distribution of S^2 .

- 5. Let $\{X_1,\ldots,X_n\}$ be a random sample from the normal distribution with mean μ_1 and variance σ_x^2 and $\{Y_1,\ldots,Y_m\}$ a random sample from the normal distribution with mean μ_2 and variance σ_y^2 . Assume that the X_i 's are independently distributed of the Y_j 's. Put $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S_x^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$, $\bar{Y} = \frac{1}{m} \sum_{i=1}^m Y_i$, $S_y^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i \bar{Y})^2$, $\hat{\sigma}^2 = \frac{1}{n} S_x^2 + \frac{1}{m} S_y^2$.
 - (a) What are a and b if one approximates the sampling distribution of $\hat{\sigma}^2$ by $a\chi_b^2$, where χ_b^2 is a central Chi-square random variable with degrees of freedom b.
 - (b) Derive a (1α) % approximate confidence interval for $\mu_1 \mu_2$ by using the approximation in (a).

- 6. Let $\{X_1, \ldots, X_n\}$ be a random sample from the density $f(x, \theta)$ with parameter space $\Omega = (a, b), a < 0 < b$. Let $l(\hat{\theta}, \theta)$ be the loss function of the estimator $\hat{\theta}$ of the parameter θ .
 - (a) Show that if $l(\hat{\theta}, \theta) = (\hat{\theta} \theta)^2$, then the Bayese estimator of θ is given by the posterior mean of θ .
 - (b) If $l(\hat{\theta}, \theta) = |\hat{\theta} \theta|$, what is the Bayese estimator of θ ?.

- 7. Let $\{X_{i,1}, \ldots, X_{i,n_i}\}$ be independent random samples from the probability distribution with density $f(x, \theta_i, \phi_i) = \frac{1}{\phi_i} e^{-\frac{1}{\phi_i}(x-\theta_i)}, x \geq \theta_i$, where $\phi_i > 0, i = 1, 2$, respectively.
 - (a) Derive the level- α likelihood ratio test for testing $H_0: \phi_1 = \phi_2$ vesus $H_1: \phi_1 \neq \phi_2$ when $\{\theta_i, i=1, 2\}$ are unknown.
 - (b) Derive the sampling distribution of your testing statistic under H_0 .
 - (c) Derive the power function of your test.

8. Suppose that $X_1, X_2, ... X_n$ form a random sample from a uniform distribution with the following p.d.f.

$$f(x; \theta) = \frac{1}{\theta}, \quad 0 \le x \le \theta.$$

Let $Y_n = \max_{1 \le i \le n} X_i$ and we would like to test $H_0: 2 \le \theta \le 4$ vs. $H_1: \theta < 2$ or $\theta > 4$. The critical region is chosen to be $C = \{Y_n < 3 \text{ or } Y_n > 4\}$.

- (a) Determine the power function of the test.
- (b) Determine the size (maximum type I error) of the test.

9. Let X_1, X_2, \dots, X_n be a random sample from a distribution with the following p.d.f.

$$f(x;\theta) = \theta(1+x)^{-(1+\theta)}, \quad x > 0, \theta > 0.$$

- (a) Estimate θ by the method of moments assuming $\theta > 1$.
- (b) Find the maximum likelihood estimator of θ .

10. Let X_1, X_2, \dots, X_n be a random sample from a geometric distribution with p.d.f.

$$f(x;\theta) = \theta(1-\theta)^x$$
, $x = 0, 1, 2, \dots, 0 < \theta < 1$.

- (a) Find the Cramer-Rao lower bound for the variance of unbiased estimators of $(1-\theta)/\theta$.
- (b) Find the UMVUE of $(1-\theta)/\theta$, if such exists.
- (c) Find the UMVUE of θ , if such exists.

- 11. Let X, Y and Z be three independent random variables, each uniformly distributed over (0,1).
 - (a) Find the distribution of XY.
 - (b) Find the distribution of $\frac{XY}{Z}$.

- 12. Let X_1, X_2, \dots, X_n be a random sample from $Ber(1, \theta)$ Bernoulli distribution for which the θ is unknown $(0 < \theta < 1)$.
 - (a) Find the MLE of θ^2 .
 - (b) Find the UMVUE of θ^2 .
 - (c) Compare the asymptotic distributions of MLE and UMVUE found above.