

Discrete Mathematics MH1812

Topic 8 - Relations Summary

ECHNOLOGICAL

UNIVERSITY SINGAPORE

Example

Consider the relation $R = \{(1,1), (1,2), (2,3)\}$ on the set $A = \{1,2,3\}$.

- Is it Reflexive? Symmetric? Anti-symmetric? Transitive?

Reflexeive? No,
$$(2,2) \notin R$$
.

 $\forall x \in A$, $(x,x) \in R$
 $\exists z \text{ symmetric}? No, (12) \in R \text{ Sut}(2,1) \notin R$
 $\exists z \text{ symmetric}? No, (12) \in R \text{ Sut}(2,1) \notin R$
 $\exists z \text{ symmetric}? No, (2,y) \in R \rightarrow (y,x) \in R$

MH1812: Discrete Mathematics

Anti-symmetric. Yes, check everything. $\forall x, y \in A$, $(x, y) \in R \land (y, x) \in R \rightarrow x = y$ (x,y) = R 1 (y,x) = R | x=y | (x,y) = R 1(y,x) = R -> (x=y)

Trans, tile? No, (1,2) eR1(2,3) eR but (1,3) &R $\forall x,y,z \in A, (x,y) \in l^{\Lambda}(y,z) \in l^{\lambda}(x,z) \in l^{\lambda}$ A [A] \(Z \). => \(Y \) relation is symmetric. 0/0/02

(there exists) Not reflexive no arrow Not symmetric no arrow Not anti-symmetric (No arrow Not transitive no acrow in given direction

Symmetry vs anti-symmetry

	Anti symmetric	Not anti-symmetric
Synmetric	000000	0
Not symmetric	0 6	1 0 30 2 30 30 4

Symmetric/anti-sym

$$R = \{(1,z),(2,1),(3,4)\}$$

Symm

 $x,y \in A, (x,y) \in R \rightarrow (y,x) \in R$
 $x \mid y \mid (x,y) \in R \mid (y,x) \in R \mid (x,y) \in R \mid (x,y)$

Example

Let relation R be defined on set $A = \{a, b, c, d\}$ and $R = \{(a, b), (b, a), (b, c), (c, d)\}$.

- Find R^{-1} and R^t .

- Is R^t an equivalence relation, a partial order?

$$R^{t} = \{(a,b), (b,a), (b,c), (c,d), (a,a), (a,c), (a,d), (b,b), (b,d)\}$$

MH1812: Discrete Mathematics

Example

Consider the relation $R = \{(x,y) \mid x \equiv y \mod 2\}$ on the set $A = \mathbb{N}$.

- Show that *R* is an equivalence relation.
- Show that the equivalence classes of R partition the set A.

Compare to online video lessons.

MH1812: Discrete Mathematics 4