CLAIM AMENDMENTS

1. (Original)

An electrophotographic photoreceptor comprising a support and a photosensitive layer, wherein the photosensitive layer contains a mixture of two or more compounds each of which is represented by Formula (1) having a specific number n different each other,

wherein CTM-group is a charge transfer group; X and Y are each a hydrogen atom, a halogen atom or a mono-valent organic group; and n is an integer of 0 to 10, provided that n is not 0 when both X and Y are a hydrogen atom or a halogen atom, and

(Rp + Rs) is not more than 99%,

wherein Rp is a content of a compound represented by Formula (1) which has a first specific number n and a maximum content in the mixture, and Rs is a content of a component represented by Formula (1) which has a second specific number n and a content next to the maximum content based on weight in percent.

(Currently Amended)

An electrophotographic photoreceptor of claim 1, wherein the photosensitive layer comprises a charge generation layer containing a charge transfer generation material and a charge transfer layer containing a charge transfer material, and the charge transfer material is the mixture of compounds.

(Original)

The electrophotographic photoreceptor of claim 1, wherein (Rp + Rs) is from 30 to 99%.

4. (Original)

The electrophotographic photoreceptor of claim 1, wherein a weight average molecular weight of the mixture is from 650 to 2,500.

5. (Original)

The electrophotographic photoreceptor of claim 4, wherein the weight average molecular weight the mixture is from 800 to 2,000.

The electrophotographic photoreceptor of claim 1, wherein (Rp + Rs) is from 45 to 90%.

7. (Original)

The electrophotographic photoreceptor of claim 1, wherein the CTM-group, X and Y in Formula (1) are each represented by following formula, respectively,

wherein Ar_1 is a substituted or unsubstituted mono-valent aromatic group; Ar_2 is a di-valent substituted or unsubstituted aromatic group, a di-valent furan or thiophene group; or a group represented by Formula (2); R_1 through R_3 are each a hydrogen atom, a substituted or unsubstituted alkyl group or a

substituted or unsubstituted mono-valent aromatic group; A is a di-valent group having a triarylamino group or a group represented by Formula (3), plural Ar_1 , R_1 , R_2 and R_3 may be the same or different from each other, and p and q are each an integer of 0 or 1,

Formula (2)

wherein Z is a single bond, an oxygen atom, a sulfur atom, $a\mbox{ -CH=CH- group or a -C}(R_4)\,(R_5)-\mbox{ group, and }R_4\mbox{ and }R_5\mbox{ may bond}$ with together,

Formula (3)

wherein Z_1 is a single bond, an alkylene group, an oxygen atom or a sulfur atom; and R.sub.6 is a substituted or unsubstituted alkyl group, or substituted or unsubstituted aromatic group.

The electrophotographic photoreceptor of claim 7, wherein the divalent group having the triarylamino group is a group represented by the following Formula (4),

Formula (4)

$$N$$
 N N

wherein \mbox{Ar}_3 is a substituted or unsubstituted mono-valent aromatic group.

9. (Original)

The electrophotographic photoreceptor of claim 7, wherein the group represented by Ar_3 is a group represented by Formula (5),

Formula (5)

wherein R_{31} , R_{32} , R_{33} , R_{34} and R_{35} are each a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms and at least one of R_{31} and R_{35} is an alkyl group having from 1 to 4 carbon atoms.

The electrophotographic photoreceptor of claim 7, wherein the di-valent group having a triarylamino group is a group represented by Formula (6),

Formula (6)

$$- \hspace{-1.5cm} \left\langle\hspace{-1.5cm}\right\rangle \hspace{-1.5cm} - \hspace{-1.5cm} \left\langle\hspace{-1.5cm}\right\rangle \hspace{$$

wherein X_2 is a single bond, a substituted or unsubstituted alkylene group, or a substituted or unsubstituted di-valent aromatic group; Ar_4 and Ar_5 are each a substituted or unsubstituted mono-valent aromatic group.

11. (Original)

The electrophotographic photoreceptor of claim 1, wherein CTM-group, X and Y in Formula (1) are each represented by the following formula, respectively,

wherein, Ar_2 is a substituted or unsubstituted di-valent aromatic group, a di-valent furan or thiophene group or a group represented by Formula (2); R_1 through R_3 are each a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aromatic group; A is a divalent group having a triarylamino group or a group represented by Formula (3); and Ar_1 is a substituted or unsubstituted mono-valent aromatic group; plural Ar_1 , R_1 , R_2 and R_3 each may be the same or different from each other and m is an integer of 0 or 1.

12. (Original)

The electrophotographic photoreceptor of claim 11, wherein the divalent group having the triarylamino group is a group represented by the following Formula (4),

Formula (4)

$$N$$
 N N

wherein Ar_3 is a substituted or unsubstituted mono-valent aromatic group.

The electrophotographic photoreceptor of claim 11, wherein the group represented by Ar.sub.3 is a group represented by Formula (5),

Formula (5)

wherein R_{31} , R_{32} , R_{33} , R_{34} and R_{35} are each a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms and at least one of R_{31} and R_{35} is an alkyl group having from 1 to 4 carbon atoms.

14. (Original)

The electrophotographic photoreceptor of claim 11,

wherein the di-valent group having a triarylamino group is a group represented by Formula (6),

Formula (6)

$$- \sqrt[N]{-N} - \sqrt[N]{-N$$

wherein X_2 is a single bond, a substituted or unsubstituted alkylene group, or a substituted or unsubstituted di-valent aromatic group; Ar_4 and Ar_5 are each a substituted or unsubstituted mono-valent aromatic group.

The electrophotographic photoreceptor of claim 11, wherein ${\rm Ar}_1$ is a group represented by Formula (7)

Formula (7)

wherein R_{41} , R_{42} , R_{43} , R_{44} , R_{45} , R_{51} , R_{52} , R_{53} , R_{54} and R_{55} are each a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms, provided that at least one of R_{41} , R_{45} , R_{51} and R_{55} is an alkyl group having from 1 to 4 carbon atoms.

16. (Original)

The electrophotographic photoreceptor of claim 1, wherein the CTM-group in Formula (1), X, and Y are each represented by Formula C

Formula C

$$\begin{array}{ccc} \text{CTM-group} & \overset{---\text{N-Ar}_6--}{\underset{\text{Ar}_1}{\text{Ar}_1}} \\ \text{X} & \text{R--} \\ \text{Y} & \overset{--\text{N-R}}{\underset{\text{Ar}_6}{\text{Ar}_6}} \\ \end{array}$$

wherein Ar_1 is a substituted or unsubstituted mono-valent aromatic group; Ar_6 is a substituted or unsubstituted di-valent aromatic group, or a group represented by the following Formula (8); R is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aromatic group, and plural Ar_1 , Ar_6 and R may be the same or different from each other,

Formula (8)

wherein Z_3 is an oxygen atom, a sulfur atom, a -CH=CH- group or a -CH₂-CH₂- group; and R_{81} and R_{82} are each a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms.

17. (Original)

A processing cartridge comprising the electrophotographic photoreceptor of claim 1, and at least one of a charging unit

for uniformly charging the surface of the electrophotographic photoreceptor, a latent image forming unit for forming a latent image on the charged electrophotographic photoreceptor, a developing unit for visualizing the latent image formed on the electrophotographic photoreceptor, a transferring unit for transferring the toner image visualized on the electrophotographic photoreceptor to a recording material, a discharging unit for removing the charge on the electrophotographic photoreceptor and a cleaning unit for removing the toner remaining on the electrophotographic photoreceptor, and is installed and released to from a main body of an image forming apparatus.