Parallel programming // programming

S.I

Françoise Baude

Université Côte d'Azur

Polytech Nice Sophia

baude@unice.fr

web site: https://lms.univ-

cotedazur.fr/course/view.php?id=14214

(self registration)

Feb 2023

Chapter 2: PRAM related measures, Complexity

Plan

- 1. Some indicators to evaluate a PRAM algorithm
- 2. Complexity of parallel problems

Work of PRAM algorithms

- SURFACE: number of processors used by a PRAM algorithm $A_{//}(N)$ working on a size N problem:
 - $H(A_{//}(N))$ = the maximum amount of procs required in a given parallel PRAM instruction, during the algo
- PARALLEL TIME $T_p(A_{//}(N))$ of the algo using P procs:
 - $T_p(A_{//}(N))$ = the number of computation steps when using P procs
- WORK: product of SURFACE by PARALLEL TIME

• W=
$$\mathbf{H}$$
 (A_{//}(N)) * \mathbf{T} H (A //(N)) (A_{//}(N))
= P * \mathbf{T} P

Speedup, Efficiency

- Consider the (best)Seq time to solve the problem $A_{seq}(N)$ whose time is $T_{seq}(N)$ (using 1 proc!)
- SPEEDUP (acceleration factor) of A_{//}(N) using P
 procs
 By using p procs,
 - $S_p(N) = T_{seq}(N) / T_p(A_{//}(N))$
 - Theoretical goal is to have S_p(N) = p
- EFFICIENCY of $A_{//}(N)$ using P procs
 - e = Sequential work / Parallel work
 - $e = T_{seq}(N) * 1/W$ = $T_{seq}(N) / p* T_p(A_{//}(N))$

■ Theoretical goal is to have e=1

Seq runtime has been converted into adding procs!

the speed-up is p

Speedup curves

Speed-up is a factor, not a speed, nor a duration

Speedup curves measure the utility of parallel computing, not speed.

trivially parallel

S = p (e.g., matrix product, LU decomposition, ray tracing)

 \rightarrow close to ideal S = p

work-bound algorithms

 \rightarrow linear $SU \in \Theta(p)$, work-optimal

tree-like task graphs (e.g., global sum / max)

ightarrow sublinear $SU \in \Theta(p/\log p)$

There is a high variation in the number of proc use during the computation

communication-bound

 \rightarrow sublinear SU = 1/fn(p)

Most papers on parallelization show only relative speedup (as $SU_{abs} \leq SU_{rel}$, and best seq. algorithm would be needed for getting Su_{abs})

Speed-up in practice: ways to measure performances

- Theoretical Speed-up (Absolute speedup):
 - Computed using the complexity of the algorithm solving problem in sequential
- Can we always have the sequential time?
 - Sometimes, no sequential implementation exists
 - Take the parallel version, run it using p = 1
 - Sometimes, not feasible when n is too big
 - Not enough memory to run with input of size n
 - Take the parallel version and measure its time, when p increases
 - In these cases, we measure the RELATIVE speed-up
 - Sometimes, the sequential time gets penalized due to some memory cache effects
 - With more processors, the measured speedup becomes better than the theoretical speedup ... ⊕: because mem accesses apply more often in cache
 - Speed-up becomes super-linear!

Example: Cost-optimal parallel sum algorithm on SB-PRAM

258874

69172

21868

64

256

1024

. Cost-optime	ai parallei suiti	algorit	illi oli ol)-I I (/AIVI		
		S	aarbrucken U	niv. PRAM:	real PRAM n	nachine [1990]
		n =	10,000			
Processors	Clock cycles	Time	SU _{rel}	SU_{abs}	EF rel	Trace (4)
Sequentia	l 460118	1.84				$\frac{\text{Tpar}(1)}{\text{p* Tpar}(p)}$
1	1621738	6.49	1.00	0.28	1.00	p* Tpar(p)
4	408622	1.63	3.97	1.13	0.99	
16	105682	0.42	15.35	4.35	0.96	
64	29950	0.12	54.15	15.36	0.85	
256	10996	0.04	147.48	41.84	0.58	
1024	6460	0.03	251.04	71.23	0.25	
n = 100,000						
Processors	Clock cycles	Time	SU _{rel}	SU _{abs}	EFre	I
Sequential	4600118	18.40				
1	16202152	64.81	1.00	0.28	1.00	
4	4054528	16.22	4.00	1.13	1.00	
16	1017844	4.07	15.92	4.52	0.99	

1.04 62.59

0.28 234.23 66.50

0.09 740.91 210.36

17.77 0.98

0.91

0.72

Theorem: Conservation of work by simulation

- Given an algorithm A running in time t on p procs. of a given PRAM
 It is possible to simulate A on a same sort of PRAM using p' <=p procs in time O(t* (p / p'))</p>
- Proof: intuitive! At each step, each p' proc will have to execute a subset of (p/p') // instructions in sequence
- Work is kept as it is:
 - W = p * t, new W = p' * (t*(p/p')) = t * p

Exemple: EREW maximum computation -v2

=> v3

```
m=k=8, k'=6
```

N= $2^k=2^8=256$. p= $2^(k-1)=2^7=128$. p'= $2^(k'-1)=2^5=32$ each of the O(log(2^8))=O(8) instructions of the Maxv2_{//}(2^8) will be simulated by up to 2^5 procs, executing up to $2^(k-k')=2^2=4$ max binary operations

Pour (k=m-1; k>=0; k--) /*still costs m parallel steps */

/*enroll up to 2^(k-1) procs per step ? NO, just enroll up to q=2^(k'-1) */
Pour chaque proc q en parallele

Pour (
$$l=0;l<2^{(k-k')}; l++)$$
 costs 2^(k-k') seq time/
A[zz] = max(A[yy],A[yy+1]);

Consequences of Theorem: Conservation of work by simulation

• The work of a $A_{//}(N)$ with p proc is **at least** in the order of $T_{seq}(N)$, the best sequential algo

$$H (A_{//}(N)) * T_p(A_{//}(N)) >= T_{seq}(N)$$

 $T_{seq}(N) <= H (A_{//}(N)) * T_p(A_{//}(N))$

- Proof: by absurd
 - Suppose H $(A_{//}(N)) * T_p(A_{//}(N)) < T_{seq}(N)$,
 - then, decide p'=1,
 - Each p' proc will have to execute a subset of (p/p') // instructions in sequence
 - If $T_1(A_{1/2}(N)) < T_{seq}(N)$, the seq algo was not the best !!

WORK EFFICIENCY

- A parallel algorithm is said to be WORK EFFICIENT:
 - Its work is of the same amount than the best sequential algorithm
 - i.e. e == 1
- (counter-)Examples:
 - max-v3 versus O(n) seq max.
 - Using the simulation theorem
 - O(t* (p / p')); p=n; choose p'=n/logn; t = log n
 - max-v3 time = log n * n/n/logn = log² n (limiting factor: same t)
 - max-v3 work= n/logn * log² n = n*log n => not work efficient
 - Because of the same t=log n on same initial size=n
 - max-v2 with subtrees, versus O(n) seq max.
 - $[\log n + O(\log (n/\log n))] * (n/\log n) = O(n)$, work eff.
 - Here max-v2 with subtrees applies the Brent Principle

Brent Principle

- A general principle to decrease number of used procs (not a method, just a principle!)
- Given $A_{//}(N)$ having a total of m operations, running in t=T $(A_{//}(N))$ with an unbounded number of procs

One can simulate $A_{I/}(N)$ in time O(m/p + t) on a similar PRAM using p processors

- Proof: at step i, $A_{//}$ runs m(i) ops s.t. $\sum m(i) = m$
 - Simulation with p procs takes [m(i)/p]≤ m(i)/p+1

```
In total, the time of simulation \leq \sum_{i=1 \text{ to } t} (m(i)/p + 1) = m/p + t
```

Consequence: if (m/p)=t then T_p (A_{//}(N)) <=2*t</p>

(Proof of) Brent has no real incidence!

- The proof is not constructive
 - It is not a method, it is not a receipe in order to go from an unlimited number of procs to a practical & concrete number of p processors
 - It does not tell how to concretely split m operations into m(i)
 - For a given step i, it does not tell how to split the m(i) operations into p tasks (it is not a load sharing method)
 - E.g list ranking on a linked list of size n: it is not easy to split the list into p sublists, each of successive elements, of size n/p
 - Still, in some cases, like working on linear structures such as arrays, quite easy to be split into seq tasks then parallel tasks, eg:
 - Ex: on max-v2, how many max ops? $\sum m(i) = m$
 - $k=8,2^7=128$; + k=7, $2^6=64$; + $2^5=32$; ... + k=0, 2^0
 - Choose p'=p/t=n/log n=256/8=32; t=8 =>t'=log(n/logn)=5
 - New Step1: 256/32=2^8/2^5=8 values to work on, in seq. per proc,tseq=8 => we needed to modify the //algo (8x32 max ops)
 - Next steps: just parallel max-v2 working on 32 values: t'=5

Plan

- 1. Some indicators to evaluate a PRAM algorithm
- 2. Complexity of parallel problems

The NC complexity class of parallel problems

- It tell us what is a « good » parallel algo
- NC complexity class (« Nick's Class »)
 - The set of problems for which there exists a parallel algorithm taking a (poly)logarithmic parallel time, and using a polynomial number of processors
 - $\mathcal{N}C$ in \mathcal{P} , \mathcal{P} ? in $\mathcal{N}C$, probably \neq
- An « Optimal » parallel algorithm :
 - Belongs to NC, and moreover is efficient (in work)
- Be careful in practice with the poly-log time:
 - Ex: A $//time = log^3 n << n \frac{1}{4} only when n > 10^{12}$
- More: <u>Parallel complexity theory NC algorithms (wisc.edu)</u> and <u>Parallel complexity theory - P-completeness (wisc.edu)</u>

Sort n values in an optimal way?

- Complexity to sort n values:
 - Somehow, they all must be compared 2 by 2 (cf max-v1)
 - It is known that the lower bound in sequential is $\Omega(n^*\log n)$
 - =>It provides us with a framework for parallel algorithms!
 - With only O(n) procs. used, goal is to sort in O(logn) //time
 - It is feasible, but the factor hidden in the O() is very high
 - Principle of the merge parallel sort algo on an EREW [due to Cole]:
 - Start from n lists of size 1, merge them two by two in //
 - Start again, to merge all these lists 2 by 2, and so on Depth of the tree to traverse from leaves to root: $\log n$, so, the sub goal is to merge two lists of length O(n) in constant time It is hard but feasible; make inactive procs of the upper stages in the tree become active in order to contribute to these merge operations in O(1) // time that run at lower stages: pipeline, anticipate
- In pratice: Sort in // in time O(log²n), non optimal
 - On a PRAM
 - Or, on a « sorting network »: it is a topology of sorting elements that is always the same whatever be the initial sequence of input data to be sorted
 - Provides an « oblivious » or « regular » algorithm (i.e., just dependant of the problem size, not of the data values)

Architecture of a sorting network

- Built using 2x2 comparators/sorting elements
- Architecture of comparison-exchange sorting networks.
 - (a) The default type of comparator
 - (b) The second type of comparator.
 - (c) Sorting network composed from columns of basic comparators.

Even-Odd Merge Sorting network

Even-Odd MergeSort (a) and Merge (b) network

$$C = \{EOMerge\}(even(A), odd(B))$$

$$D = \{EOMerge\}(odd(A), even(B))$$

$$L'=\{Interleave\}(C,D)$$

$$L=\{EOMerge\}(A,B)=\{Pairwise_CE\}(L')$$