PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-031717

(43) Date of publication of application: 31.01.2002

(51)Int.CI.

G02B 5/30 G02F 1/13

G02F 1/1335 G09F 9/00

(21)Application number: 2000-214556

(71)Applicant: NIPPON MITSUBISHI OIL CORP

(22)Date of filing:

14.07.2000 (72)Invento

(72)Inventor: KAMISAKA TETSUYA

YODA EIJI

TOYOOKA TAKEHIRO

(54) CIRCULARLY POLARIZING PLATE AND LIQUID CRYSTAL DISPLAY DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a circularly polarizing plate with excellent circular polarization characteristics and a semitransmissive liquid crystal display device with a bright display, with high contrast and with little viewing angle dependence in a transmissive mode.

SOLUTION: The circularly polarizing plate at least comprises a polarizing plate and an optically anisotropic element with a phase difference of nearly a quarter of a wavelength in the visible ray region and is characterized by having the optically anisotropic element comprising at least a liquid crystal film with a fixed nematic hybrid alignment structure. The liquid crystal display device is provided with the circularly polarizing plate.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Dat of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-31717 (P2002-31717A)

(43)公開日 平成14年1月31日(2002.1.31)

(51) Int.Cl. ⁷		歳別記号	FI			テーマコート*((参考)
G 0 2 B	5/30		G 0 2 B	5/30		2 H 0	49
G02F	1/1335	5 1 0	G 0 2 F	1/1335	510	2 H 0	91
		5 2 0			520	5 G 4	3 5
G09F	9/00	313	G09F	9/00	313		
	·	3 2 4			324		
			水髓查審	未請求	請求項の数9	OL (全	9 頁)
(21)出願番号	,	特顧2000-214556(P2000-214556)	(71) 出願人				
					菱株式会社		
(22)出願日		平成12年7月14日(2000.7.14)			巻区西新橋1丁	目3番12号	
			(72)発明者				
					具横浜市中区千川		日石三
					会社中央技術研究	究所内	
			(72)発明者				
				* * * * *	具横浜市中区千点 会社中央技術研究		日石三
			(74)代理人	1001032	285		
				弁理士	森田 順之	(外1名)	
				开理工	林田 馬足		・質に

(54) 【発明の名称】 円偏光板および被晶表示装置

(57)【要約】

【課題】 良好な円偏光特性を有する円偏光板、および 透過モードにおいて表示が明るく、高コントラストであ り、視野角依存性の少ない半透過型液晶表示装置を提供 する。

【解決手段】 偏光板および可視光域で略4分の1波長の位相差を有する光学異方素子から少なくとも構成される円偏光板であって、前記光学異方素子がネマチックハイブリッド配向構造を固定化した液晶フィルムから少なくとも構成されることを特徴とする円偏光板、および該円偏光板を有する液晶表示装置。

20

1

【特許請求の範囲】

【請求項1】 偏光板および可視光域で略4分の1波長 の位相差を有する光学異方素子から少なくとも構成され る円偏光板であって、前記光学異方素子がネマチックハ イブリッド配向構造を固定化した液晶フィルムから少な くとも構成されることを特徴とする円偏光板。

【請求項2】 前記液晶フィルムが、液晶材料を液晶状 態においてネマチックハイブリッド配向させ、その状態 から冷却することにより該配向をガラス固定化した液晶 フィルムである請求項1記載の円偏光板。

【請求項3】 前記液晶フィルムが、液晶材料を液晶状 熊においてネマチックハイブリッド配向させ、光または 熱による架橋反応により該配向を固定化した液晶フィル ムである請求項1記載の円偏光板。

【請求項4】 前記光学異方素子が、ネマチックハイブ リッド配向構造を固定化した液晶フィルムおよび延伸フ ィルムから少なくとも構成されることを特徴とする請求 項1記載の円偏光板。

【請求項5】 請求項1乃至4のいずれか1項記載の円 偏光板を有することを特徴とする液晶表示装置。

【請求項6】 電極を備える一対の透明基板で液晶層を 狭持した液晶セルと、該液晶セルの観察者側に配置され た偏光板と、前記偏光板と前記液晶セルの間に配置され る少なくとも1枚の位相差補償板と、観察者から見て前 記液晶層よりも後方に設置された半透過反射層を少なく とも備える半透過反射型液晶表示装置であって、観察者 から見て前記半透過反射層よりも後方に少なくとも請求 項1乃至4のいずれか1項記載の円偏光板を有すること を特徴とする半透過型液晶表示装置。

【請求項7】 ツイステッドネマチックモードを用いた 30 ことを特徴とする請求項6記載の半透過型液晶表示装

【請求項8】 スーパーツイステッドネマチックモード を用いたことを特徴とする請求項6記載の半透過型液晶 表示装置。

【請求項9】 HANモードを用いたことを特徴とする 請求項6記載の半透過型液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、円偏光板およびこ れを備えた液晶表示装置に関する。

[0002]

【従来の技術】近年、液晶表示装置はその薄型軽量な特 徴を大きく活かせることができる携帯型情報端末機器の ディスプレイとしての市場拡大の期待が高まっている。 携帯型電子機器は通常バッテリー駆動であるがために消 費電力を抑えることが重要な課題となっている。そのた め、携帯型用途の液晶表示装置等としては、電力消費が 大きいバックライトを使用しない、若しくは、常時使用 しないで済み、低消費電力化、薄型化、軽量化が可能で 50

ある反射型液晶表示装置が特に注目されている。反射型 液晶表示装置としては、液晶セルを1対の偏光板で挟 み、さらに外側に反射板を配置した偏光板2枚型の反射 型液晶表示装置が、白黒表示用として広く使用されてい る。さらに最近では、液晶層を偏光板と反射板で挟んだ 偏光板1枚型の反射型液晶表示装置が偏光板2枚型より も原理的に明るくカラー化も容易なことから、提案、実 用化されている (T. Soneharaら、JAPAN DISPLAY, 192(19 89)。しかしながら、これら反射型液晶表示装置は、通 10 常、外光を利用して表示を行うため、暗い環境下で用い る場合には表示が見えにくくなるという欠点を有する。 【0003】この問題を解決する技術として、特開平1 0-206846号公報記載のように、偏光板1枚型の 反射型液晶表示装置においては、反射板の代わりに入射 光の一部を透過する性質を持つ半透過反射板を使用し、 かつバックライトを備えた半透過反射型液晶表示装置が 提案されている。この場合、バックライト非点灯の状態 では外光を利用した反射型(反射モード)として、暗い 環境ではバックライトを点灯させた透過型(透過モー ド)として使用することができる。この偏光板1枚型の 半透過反射型液晶表示装置では、透過モードにおいては 半透過反射層を通して液晶セルに略円偏光を入射させる 必要があることから、1枚または複数枚のポリカーボネ ートに代表される高分子延伸フィルムと偏光板からなる 円偏光板を半透過反射層とバックライトの間に配置させ る必要がある。しかしながら、透過モードのTN-LC Dにおいては、液晶分子の持つ屈折率異方性のため斜め から見たときに表示色が変化するあるいは表示コントラ ストが低下するという視野角の問題が本質的に避けられ ず、高分子延伸フィルムを用いた円偏光板では、この視

[0004]

野角拡大は本質的に難しい。

【発明が解決しようとする課題】本発明は、良好な円偏 光特性を有する円偏光板、および透過モードにおいて表 示が明るく、髙コントラストであり、視野角依存性の少 ない半透過型液晶表示装置を提供することを目的とす る。

[0005]

【課題を解決するための手段】すなわち本発明は、偏光 板および可視光域で略4分の1波長の位相差を有する光 学異方素子から少なくとも構成される円偏光板であっ て、前記光学異方素子がネマチックハイブリッド配向構 造を固定化した液晶フィルムから少なくとも構成される ことを特徴とする円偏光板に関する。また本発明は、前 記液晶フィルムが、液晶材料を液晶状態においてネマチ ックハイブリッド配向させ、その状態から冷却すること により該配向をガラス固定化した液晶フィルムである前 記円偏光板に関する。また本発明は、前記液晶フィルム が、液晶材料を液晶状態においてネマチックハイブリッ ド配向させ、光または熱による架橋反応により該配向を

固定化した液晶フィルムである前記円偏光板に関する。 また本発明は、前記光学異方素子が、ネマチックハイブ リッド配向構造を固定化した液晶フィルムおよび延伸フ ィルムから少なくとも構成されることを特徴とする前記 円偏光板に関する。

【0006】また本発明は、前記円偏光板を有すること を特徴とする液晶表示装置に関する。また本発明は、電 極を備える一対の透明基板で液晶層を狭持した液晶セル と、該液晶セルの観察者側に配置された偏光板と、前記 偏光板と前記液晶セルの間に配置される少なくとも1枚 10 の位相差補償板と、観察者から見て前記液晶層よりも後 方に設置された半透過反射層を少なくとも備える半透過 反射型液晶表示装置であって、観察者から見て前記半透 過反射層よりも後方に少なくとも前記円偏光板を有する ことを特徴とする半透過型液晶表示装置に関する。また 本発明は、ツイステッドネマチックモードを用いたこと を特徴とする前記半透過型液晶表示装置に関する。また 本発明は、スーパーツイステッドネマチックモードを用 いたことを特徴とする前記半透過型液晶表示装置に関す る。さらに本発明は、HANモードを用いたことを特徴 とする前記半透過型液晶表示装置に関する。

[0007]

【発明の実施の形態】本発明の円偏光板は、偏光板および可視光域で略4分の1波長の位相差を有する光学異方素子から少なくとも構成される。前記偏光板は、本発明の目的が達成し得るものであれば特に制限されず、液晶表示装置に用いられる通常のものを適宜使用することができる。具体的には、ポリビニルアルコール(PVA)や部分アセタール化PVAのようなPVA系やエチレンー酢酸ビニル共重合体の部分ケン化物等からなる親水性 30高分子フィルムに、ヨウ素および/または2色性色素を吸着して延伸した偏光フィルム、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物のようなポリエン配向フィルムなどからなる偏光フィルムを使用することができる。また、反射型の偏光フィルムも使用することができる。また、反射型の偏光フィルムも使用することができる。また、反射型の偏光フィルムも使用することができる。また、反射型の偏光フィルムも使用することができる。

【0008】前記偏光板は、偏光フィルム単独で使用しても良いし、強度向上、耐湿性向上、耐熱性の向上等の目的で偏光フィルムの片面または両面に透明保護層等を設けたものであっても良い。透明保護層としては、ポリエステルやトリアセチルセルロース等の透明プラスチックフィルムを直接または接着層を介して積層したもの、樹脂の塗布層、アクリル系やエポキシ系等の光硬化型樹脂層などが挙げられる。これら透明保護層を偏光フィルムの両面に被覆する場合、両側に同じ保護層を設けても良いし、また異なる保護層を設けても良い。

【0009】本発明の円偏光板を構成する光学異方素子は、少なくとも1枚のネマチックハイブリッド配向構造を固定化した液晶フィルムから構成され、可視光域で略4分の1波長の位相差を有する素子である。前記液晶フ 50

4

ィルムにおいて固定化されているネマチックハイブリッ ド配向構造としては、液晶フィルムの一方のフィルム界 面付近において液晶分子のダイレクターとフィルム平面 との成す角度が絶対値として通常60°~90°、好ま しくは80°~90°であり、当該フィルム面の反対の フィルム界面付近においては当該角度が絶対値として通 常0~50°、好ましくは0~30°であることが望ま しい。また、当該配向構造における平均チルト角として は、絶対値として通常5°~35°、好ましくは7°~ 33°、さらに好ましくは10°~30°、最も好まし くは13°~27°である。平均チルト角が、上記範囲 から外れた場合、円偏光板として液晶表示装置に備えた 際にコントラスト低下等の恐れがある。ここで平均チル ト角とは、液晶フィルムの膜厚方向における液晶分子の ダイレクターとフィルム平面との成す角度の平均値を意 味するものであり、当該角度は、クリスタルローテーシ ョン法を応用して求めることができる。なお前記液晶フ ィルムは、上記の如き液晶分子のダイレクターがフィル ム膜厚方向のすべての場所において異なる角度を向いた ネマチックハイブリッド配向構造を固定化したものであ ることから、フィルムという構造体として見た場合、も はや光軸は存在しない。

【0010】また前記液晶フィルムのリターデーション 値としては、円偏光板として備えられる液晶表示装置の 方式や種々の光学パラメーターに依存することから一概 には言えないが、550nmの単色光に対して、通常1 0nm~600nm、好ましくは30nm~400n m、さらに好ましくは50nm~300nmの範囲であ る。リターデーション値が10mm未満の場合、円偏光 板として液晶表示装置に備えた際に十分な視野角拡大効 果を得ることができない恐れがある。また600nmよ り大きい場合には、円偏光板として液晶表示装置に備え た際、斜めから見たときに不必要な色付きが生じる恐れ がある。なお、ここでいうリターデーション値とは、液 晶フィルムの法線方向から見た場合の面内の見かけのリ ターデーション値である。すなわちネマチックハイブリ ッド配向構造を固定化した液晶フィルムでは、ダイレク ターに平行な方向の屈折率(ne)と垂直な方向の屈折 率 (ng) が異なっていることから、neからnoを引い た値を見かけ上の複屈折率とし、当該複屈折率とフィル ム絶対膜厚との積として当該リターデーション値は与え られる。通常、このリターデーション値は、エリプソメ トリー等の偏光光学測定によって容易に求めることがで

【0011】さらに前記液晶フィルムの膜厚は、円偏光板として備えられる液晶表示装置の方式や種々の光学パラメーターに依存することから一概には言えないが、通常0.2 μ m~10 μ m、好ましくは0.3 μ m~5 μ m、さらに好ましくは0.5 μ m~2 μ mである。膜厚が0.2 μ mより薄い場合、十分な視野角拡大効果を得

ることができない恐れがある。また10μmを越えると、液晶表示装置が不必要に色付く恐れがある。

【0012】前記液晶フィルムは、ネマチック液晶性を 示す液晶材料を液晶状態においてネマチックハイブリッ ド配向させた後、その配向構造を、液晶材料の諸物性に 応じて、例えば光架橋、熱架橋または冷却といった方法 で固定化することによって得ることができる。前記の液 晶材料としては、ネマチック液晶性を示す液晶材料であ れば特に制限されず、各種の低分子液晶物質、高分子液 晶物質、またはこれらの混合物を当該材料とすることが できる。液晶物質の分子形状は、棒状であるか円盤状で あるかを問わず、例えば、ディスコチックネマチック液 晶性を示すディスコチック液晶も使用することができ る。さらにこれらの混合物を液晶材料として使用する際 には、当該材料で最終的に所望するネマチックハイブリ ッド配向構造を形成することができ、しかも、その配向 構造を固定化できるものであれば、当該材料の組成や組 成比等に何ら制限はない。例えば、単独もしくは複数種 の低分子および/または髙分子の液晶物質と、単独もし くは複数種の低分子および/または高分子の非液晶性物 質や各種添加剤とからなる混合物を液晶材料として使用 することもできる。

【0013】前記低分子液晶物質としては、シッフ塩基系、ビフェニル系、ターフェニル系、エステル系、チオエステル系、スチルベン系、トラン系、アゾキシ系、アソ系、フェニルシクロヘキサン系、ピリミジン系、シクロヘキシルシクロヘキサン系、トリメシン酸系、トリフェニレン系、トルクセン系、フタロシアニン系、ポルフィリン系分子骨格を有する低分子液晶化合物、またはこれら化合物の混合物等が挙げられる。

【0014】高分子液晶物質としては、各種の主鎖型高分子液晶物質、側鎖型高分子液晶物質、またはこれらの混合物等を用いることができる。主鎖型高分子液晶物質としては、ポリエステル系、ポリアミド系、ポリカーボネート系、ポリイミド系、ポリウレタン系、ポリベンズイミダゾール系、ポリベンズオキサゾール系、ポリベンズチアゾール系、ポリアンメチン系、ポリエステルアミド系、ポリエステルカーボネート系、ポリエステルイミド系の高分子液晶、またはこれらの混合物等が挙げられる。これらの中でも液晶性を与えるメソゲン基とポリメチレン、ポリエチレンオキサイド、ポリシロキサン等の屈曲鎖とが交互に結合した半芳香族系ポリエステル系高分子液晶や、屈曲鎖のない全芳香族系ポリエステル系高分子液晶が本発明では望ましい。

【0015】また、側鎖型高分子液晶物質としては、ポリアクリレート系、ポリメタクリレート系、ポリビニル系、ポリシロキサン系、ポリエーテル系、ポリマロネート系、ポリエステル系等の直鎖状又は環状構造の骨格鎖を有する物質に側鎖としてメソゲン基が結合した高分子液晶、またはこれらの混合物等が挙げられる。これらの50

6

中でも、骨格鎖に屈曲鎖からなるスペーサーを介して液 晶性を与えるメソゲン基が結合した側鎖型高分子液晶 や、主鎖および側鎖の両方にメソゲンを有する分子構造 の当該高分子液晶が本発明では望ましい。

【0016】前記液晶フィルムを調製するに際し、液晶 状態において形成した配向構造を熱架橋や光架橋で固定 化する場合には、液晶材料中に熱・光架橋反応等によっ て反応しうる官能基または部位を有している各種液晶物 質を当該材料とすることが望ましい。架橋反応しうる官 能基としては、例えば、アクリル基、メタクリル基、ビ ニル基、ビニルエーテル基、アリル基、アリロキシ基、 グリシジル基等のエポキシ基、イソシアネート基、イソ チオシアネート基、アゾ基、ジアゾ基、アジド基、ヒド ロキシル基、カルボキシル基、低級エステル基などが挙 げられ、特にアクリル基、メタクリル基が望ましい。ま た架橋反応しうる部位としては、マレイミド、マレイン 酸無水物、ケイ皮酸およびケイ皮酸エステル、アルケ ン、ジエン、アレン、アルキン、アゾ、アゾキシ、ジス ルフィド、ポリスルフィドなどの分子構造を含む部位が 挙げられる。これら架橋基および架橋反応部位は、液晶 材料を構成する各種液晶物質自身に含まれていてもよい が、架橋性基または部位をもつ非液晶性物質を別途液晶 材料に添加しても良い。

【0017】本発明の円偏光板を構成する光学異方素子 は、上記の如きネマチックハイブリッド配向構造を固定 化した液晶フィルムから少なくとも構成される。ここで 当該液晶フィルム単独を当該素子として使用することも 可能であるが、液晶フィルムの強度や耐性向上のために 液晶フィルムの片面または両面を透明保護層で被覆した 形態で円偏光板を構成することもできる。透明保護層と しては、ポリエステルやトリアセチルセルロース等の透 明プラスチックフィルムを直接または粘接着剤を介して 積層したもの、樹脂の塗布層、アクリル系やエポキシ系 等の光硬化型樹脂層等が挙げられる。これら透明保護層 を液晶フィルムの両面に被覆する場合、両側に同じ保護 層を設けても良いし、また異なる保護層を設けても良 い。また、偏光板に直接液晶フィルムを形成し、そのま ま本発明の円偏光板とすることもできる。例えばポリエ ステルやトリアセチルセルロース等の透明プラスチック フィルムに液晶フィルムを積層した後、偏光フィルムと 一体化することにより、偏光フィルム/透明プラスチッ クフィルム/光学異方素子(液晶フィルム)や偏光フィ ルム/光学異方素子(液晶フィルム)/透明プラスチッ クフィルムといった構成の円偏光板とすることができ る。

【0018】また本発明の円偏光板を構成する光学異方素子は、ネマチックハイブリッド配向構造を固定化した液晶フィルムと延伸フィルムとから構成してもよい。延伸フィルムとしては、一軸性または二軸性を示すような媒質で、例えばポリカーボネート(PC)、ポリメタク

ることもできる。

リレート (PMMA)、ポリビニルアルコール (PVA) 等の各種高分子延伸フィルムを挙げることができる。これら延伸フィルムと液晶フィルムとから構成される光学異方素子を偏光板と組み合わせることにより本発明の円偏光板とすることもできる。なお光学異方素子を構成する液晶フィルム、延伸フィルムは、それぞれ一枚または複数枚用いて当該素子を構成することができる。

【0019】本発明の円偏光板は、以上説明した偏光板と光学異方素子とから少なくとも構成される。円偏光板の厚みとしては、当該円偏光板が備えられる液晶表示装置の各種光学パラメーターや、要求される表示品位によって液晶フィルム単独または液晶フィルムと延伸フィルムとの積層体を光学異方素子として構成するために一概には言えないが、通常600μm以下、好ましくは500μm以下、より好ましくは400μm以下、さらに好ましくは300μm以下である。また本発明の円偏光板は、偏光板と光学異方素子の他に、保護層、反射防止層、防眩処理層、ハードコート層、粘接着剤層、光拡散性粘接着剤層等を1層または複数層含んでいてもよい。

【0020】なお本発明の円偏光板の光学異方素子を構成する液晶フィルムは、ネマチックハイブリッド配向構造を固定化したフィルムであることから、当該フィルムの上下は光学的に等価ではない。したがって円偏光板として、液晶フィルムのどちらのフィルム面を偏光板側にするのかによって、その円偏光板としての光学特性が異なる。本発明は液晶フィルムのどちらのフィルム面を偏光板側にするのか限定しないが、円偏光板に要求される光学特性、また当該円偏光板を備える液晶表示装置に要求される表示特性等を考慮して、本発明の円偏光板を製造することが望ましい。

【0021】本発明の液晶表示装置は、前記円偏光板を 少なくとも有する。液晶表示装置は一般的に、偏光板、 液晶セル、および必要に応じて位相差補償板、反射層、 光拡散層、バックライト、フロントライト、光制御フィ ルム、導光板、プリズムシート等の部材から構成される が、本発明においては前記円偏光板を使用することを必 須とする点を除いて特に制限は無い。また前記円偏光板 の使用位置は特に制限はなく、また、1カ所でも複数カ 所でも良い。液晶セルとしては特に制限されず、電極を 備える一対の透明基板で液晶層を狭持したもの等の一般 的な液晶セルが使用できる。液晶セルを構成する前記透 明基板としては、液晶層を構成する液晶性を示す材料を 特定の配向方向に配向させるものであれば特に制限はな い。具体的には、基板自体が液晶を配向させる性質を有 していている透明基板、基板自体は配向能に欠けるが、 液晶を配向させる性質を有する配向膜等をこれに設けた 透明基板等がいずれも使用できる。また、液晶セルの電 極は、公知のものが使用できる。通常、液晶層が接する 透明基板の面上に設けることができ、配向膜を有する基 50

板を使用する場合は、基板と配向膜との間に設けることができる。前記液晶層を形成する液晶性を示す材料としては、特に制限されず、各種の液晶セルを構成し得る通常の各種低分子液晶物質、高分子液晶物質およびこれらの混合物が挙げられる。また、これらに液晶性を損なわない範囲で色素やカイラル剤、非液晶性物質等を添加す

【0022】前記液晶セルは、前記電極基板および液晶 層の他に、後述する各種の方式の液晶セルとするのに必 要な各種の構成要素を備えていても良い。前記液晶セル の方式としては、TN(Twisted Nematic)方式、ST N (SuperTwisted Nematic) 方式、ECB (Electrical ly Controlled Birefringence) 方式、IPS (In-Plan e Switching) 方式、VA (Vertical Alignment) 方 式、OCB (Optically Compensated Birefringence) 方式、HAN (Hybrid Aligned Nematic) 方式、ASM (Axially Symmetric Aligned Microcell) 方式、ハー フトーングレイスケール方式、ドメイン分割方式、ある いは強誘電性液晶、反強誘電性液晶を利用した表示方式 等の各種の方式が挙げられる。また、液晶セルの駆動方 式も特に制限はなく、STN-LCD等に用いられるパ ッシブマトリクス方式、並びにTFT(Thin Film Trans istor)電極、TFD(Thin Film Diode)電極等の能動電 極を用いるアクティブマトリクス方式、プラズマアドレ ス方式等のいずれの駆動方式であっても良い。

【0023】前記液晶表示装置に用いる位相差補償板と しては、透明性と均一性に優れたものであれば特に制限 されないが、高分子延伸フィルムや、液晶からなる光学 補償フィルムが好ましく使用できる。高分子延伸フィル ムとしては、セルロース系、ポリカーボネート系、ポリ アリレート系、ポリスルフォン系、ポリアクリル系、ポ リエーテルスルフォン系、環状オレフィン系高分子等か らなる1軸又は2軸位相差フィルムを例示することがで きる。中でもポリカーボネート系がコスト面およびフィ ルムの均一性から好ましい。、また、ここで言う液晶から なる光学補償フィルムとは、液晶を配向させてその配向 状態から生じる光学異方性を利用できるフィルムであれ ば特に制限されるものではない。例えばネマチック液晶 やディスコチック液晶、スメクチック液晶等を利用した 各種光学機能性フィルム等、公知のものを使用すること ができる。ここに例示した位相差補償板は、液晶表示装 置を構成するにあたり、1枚のみの使用でも良いし、複 数枚使用しても良い。また、髙分子延伸フィルムと、液 晶からなる光学補償フィルムの両方を使用することもで きる。

【0024】前記反射層としては、特に制限されず、アルミニウム、銀、金、クロム、白金等の金属やそれらを含む合金、酸化マグネシウム等の酸化物、誘電体の多層膜、選択反射を示す液晶又は、これらの組み合わせ等を例示することができる。これら反射層は平面であっても

良く、また曲面であっても良い。さらに反射層は、凹凸 形状など表面形状に加工を施して拡散反射性を持たせた もの、液晶セルの観察者側と反対側の前記電極基板上の 電極を兼備させたもの、反射層の厚みを薄くしたり、穴 をあける等の加工を施すことで光を一部透過させるよう にした半透過反射層であっても良く、またそれらを組み 合わせたものであっても良い。

【0025】前記光拡散層は、入射光を等方的あるいは 異方的に拡散させる性質を有するものであれば、特に制 限はない。例えば2種以上の領域からなり、その領域間 に屈折率差をもつものや、表面形状に凹凸を付けたもの が挙げられる。前記2種以上の領域からなり、その領域 間に屈折率差をもつものとしては、マトリックス中にマ トリックスとは異なる屈折率を有する粒子を分散させた ものが例示される。前記拡散層はそれ自身が粘接着性を 有するものであっても良い。前記光拡散層の膜厚は、特 に制限されるものではないが、通常10μm以上500 μm以下であることが望ましい。また光拡散層の全光線 透過率は、50%以上であることが好ましく、特に70 %以上であることが好ましい。さらに当該光拡散層のへ 20 イズ値は、通常10~95%であり、好ましくは40~ 90%であり、さらに好ましくは60~90%であるこ とが望ましい。

【0026】前記バックライト、フロントライト、光制御フィルム、導光板、プリズムシートとしては、特に制限されず公知のものを使用することができる。本発明の液晶表示装置は、前記した構成部材以外にも他の構成部材を付設することができる。例えば、カラーフィルターを本発明の液晶表示装置に付設することにより、色純度の高いマルチカラー又はフルカラー表示を行うことができるカラー液晶表示装置を作製することができる。

【0027】本発明における液晶表示装置としては、電 極を備える一対の透明基板で液晶層を狭持した液晶セル と、該液晶セルの観察者側に配置された偏光板と、前記 偏光板と前記液晶セルの間に配置される少なくとも1枚 の位相差補償板と、観察者から見て前記液晶層よりも後 方に設置された半透過反射層を少なくとも備える半透過 反射型液晶表示装置であって、観察者から見て前記半透 過反射層よりも後方に前記円偏光板を有するものが特に 好ましい。このタイプの液晶表示装置では、円偏光板後 40 方にバックライトを設置することで反射モードと透過モ ード両方の使用が可能となる。例えば液晶セルとしてT N-LCD方式のものを使用した場合、前記位相差補償 板として前記高分子延伸フィルムを2枚および/または 前記液晶からなる光学補償フィルムを1枚用いたもの が、良好な表示を得ることができることから望ましい。 また前記液晶表示装置は、前記偏光板と液晶セルの間に 拡散層を設けるか、拡散反射性の半透過反射層を液晶セ ルの電極に用いたものが良好な表示特性を与えることか ら望ましいと言える。

10

【0028】TN-LCD方式の液晶セルのねじれ角と しては、通常30度以上85度以下、好ましくは45度 以上80度以下、さらに好ましくは55度以上70度以 下のものが、本発明の円偏光板と組み合わせた際に良好 な表示特性を与えることから望ましいと言える。本発明 の円偏光板を各種液晶表示装置に備える際、その円偏光 板を構成する光学異方素子として用いられる液晶フィル ムは、ネマチックハイブリッド配向構造を固定化したも のであることから、当該フィルムの上下は光学的に等価 ではない。したがって液晶フィルムの上下どちらのフィ ルム面を液晶セル側に配置するかによって、また液晶セ ル等の光学パラメーターとの組合せによって表示性能が 異なる。本発明の半透過型液晶表示装置においては、円 偏光板を構成する液晶フィルムのどちらのフィルム面を 液晶セルに近接させるかを限定しないが、当該液晶セル の光学パラメーターや要求される表示性能等を考慮し て、本発明の円偏光板の構成ならびに液晶表示装置への 配置条件等を決定することが望ましい。

【0029】さらに、本発明の円偏光板としての特性を より発現させた半透過型液晶表示装置を得る為には、円 偏光板を構成する液晶フィルムのチルト方向(軸)と、 液晶セルのプレチルト方向(配向軸)との関係を考慮し て配置することが望ましい。ここで液晶フィルムのチル ト方向(軸)とは、図2に示すように b 面側から液晶フ ィルムを通してc面を見た際に、液晶分子ダイレクター とダイレクターのc面への投影成分が成す角度が鋭角と なる方向で、かつ投影成分と平行な方向を意味する。ま た通常、液晶セル層のセル界面では、駆動用低分子液晶 はセル界面に対して平行ではなく、ある角度をもって傾 いており、これを一般にプレチルト角と言うが、セル界 面の液晶分子のダイレクターとダイレクターの界面への 投影成分とが成す角度が鋭角である方向で、かつダイレ クターの投影成分と平行な方向を本発明では液晶セルの プレチルト方向(配向軸)と定義する。本発明の半透過 型液晶表示装置は、円偏光板を構成する液晶フィルムの チルト方向(軸)と液晶セルのプレチルト方向(配向 軸) との成す角度を限定するものではないが、液晶セル の光学パラメーターや要求される表示性能等を考慮し て、本発明の円偏光板と液晶セルの軸配置を決定するこ とが望ましい。

[0030]

【発明の効果】本発明の円偏光板は広い視野角特性を有しており、本発明の円偏光板を用いた半透過型液晶表示 装置は透過モードにおいて表示が明るく、高コントラストである。

[0031]

【実施例】以下、本発明を実施例および比較例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、本実施例におけるリターデーション Δ n d は特に断りのない限り波長 5 5 0 n mにおける値

とする。

【0032】 実施例1

膜厚方向の平均チルト角が15度のネマチックハイブリ ッド配向が固定化された膜厚1. 32μmの液晶フィル ム7を用いて円偏光板を作製し、図3に示したような配 置でTN型の半透過反射型液晶表示装置を作製した。使 用した液晶セル4は、液晶材料として2LI-1695 (メルク社製)を用い、セルパラメータはセルギャップ 3. 5 μm、ねじれ角 6 3 度 (左ねじれ) 、プレチルト 角2度である。液晶セル4の表示面側(図の上側)に偏 10 透過率の視野角特性を示している。図9は、バックライ 光板1 (厚み約180μm;住友化学(株) 製SQW-862) を配置し、上側偏光板1と液晶セル4との間に 一軸延伸したポリカーボネートフィルムからなる位相差 補償板2及び3を配置し、偏光板とは反対側に半透過反 射板5を配置した。位相差補償板2の△ndは略280 nm、位相差補償板3の△ndは略140nmであっ た。この時、液晶セル4の配向軸41から位相差補償板 2の遅相軸への角度 θ 2=+58度、液晶セル4の配向 軸41から位相差補償板3の遅相軸への角度θ3への角 度 θ 3 = + 1 1 8 度とした。液晶セル4の配向軸41か ら上側偏光板1の吸収軸11への角度θ1=+133度 とした。

【0033】また、円偏光板9を観察者から見て液晶セ ルの後方に配置した。円偏光板9は、下側偏光板8と一 軸延伸したポリカーボネートフィルム6(△nd=略1 40nm)とハイブリッドネマチック配向構造を固定化 した液晶フィルム7 (△nd=略280nm) からなる が、液晶セル4の配向軸41からポリカーボネートフィ ルム6の遅相軸への角度θ6=+153度、液晶セル4 の配向軸41から液晶フィルム7のチルト方向71への 角度 θ 7=+32度とした。液晶セル4の配向軸41か ら下側偏光板の吸収軸81への角度θ8=+47度とし た。さらに、位相差補償板3と液晶セル4の間は光拡散 特性を有する粘着層(全光線透過率90%、ヘイズ値8 0%) を配置した。

【0034】上記TN型半透過反射型液晶表示装置の各 構成部材における角度 θ 1 \sim θ 8 の関係を図4と図5に 示す。図4において、液晶セル層4の、偏光板1側の面 上における配向方向41と、円偏光板側の面上における 配向方向42とは、角度84をなしている。位相差補償 40 板2の遅相軸の方向21と、液晶セルの配向軸41と は、角度 6 2をなしている。位相差補償板 3 の遅相軸の 方向31と、液晶セル側の面上における配向軸の向き4 1とは、角度 θ 3をなしている。また、偏光板 1の吸収 軸11と、液晶セルの配向軸41とは、角度θ1をなし ている。図5において、円偏光板9中の液晶フィルム7 のチルト方向71は、液晶セルの配向軸41と角度 87 をなし、ポリカーボネートフィルム6の光学軸61と、 液晶セルの配向軸41とは、角度86をなしている。偏 光板8の吸収軸81は液晶セルの配向軸41と角度 8 50 12

をなしている。

【0035】図6は、実施例1で得られた半透過型液晶 表示素子のバックライト点灯時(透過モード)の印加電 圧に対する透過率を示している。 図7は、バックライト 点灯時(透過モード)での、白表示0V、黒表示6Vの 透過率の比(白表示)/(黒表示)をコントラスト比と して、全方位からのコントラスト比を示している。図8 は、バックライト点灯時(透過モード)での、白表示0 Vから黒表示6Vまで8階調表示した時の左右方向での ト点灯時(透過モード)での、白表示0Vから黒表示6 Vまで8階調表示した時の上下方向での透過率の視野角 特性を示している。図6の結果から、透過モードにおい て明るく高コントラストの表示ができた。特に透過モー ドにおいて良好な視野角特性を持っていることが分かっ

【0036】本実施例では、カラーフィルターの無い形 態で実験を行ったが、液晶セル中にカラーフィルターを 設ければ、良好なマルチカラー、またはフルカラー表示 ができることは言うまでもない。さらに本発明の円偏光 板を備えたSTNモード方式、HANモード方式の半透 過型液晶表示装置を作製したところ、それぞれのモード 方式において、良好な表示特性を有する液晶表示装置を 得ることができた。

【0037】比較例1

図3に示した配置において、液晶セル4の△ndを略2 10mm、位相差補償板2の△ndを略280mm、位 相差補償板3のΔndを略140nmとし、ポリカーボ ネート6は実施例1のもの (Andが略140nm)、 液晶フィルム7の代わりにポリカーボネート7 (Δη d が略280nm) を用い、θ1=+133度、θ2=+ 58度、θ3=+118度、θ4=+63度、θ6=+ 153度、 θ 7=+32度、 θ 8=+47度とした以外 は、実施例1と同様の液晶表示装置を作製した。図10 は、比較例1で得られた半透過型液晶表示素子のバック ライト点灯時(透過モード)の印加電圧に対する透過率 を示している。図11は、バックライト点灯時(透過モ ード)での、白表示0V、黒表示6Vの透過率の比(白 表示)/(黒表示)をコントラスト比として、全方位か らのコントラスト比を示している。図12は、バックラ イト点灯時 (透過モード) での、白表示 0 V から黒表示 6 Vまで8階調表示した時の左右方向での透過率の視野 角特性を示している。図13は、バックライト点灯時 (透過モード)での、白表示0Vから黒表示6Vまで8 階調表示した時の左右方向での透過率の視野角特性を示 している。図10の結果から、透過モードにおいて正面 特性では同様に明るく高コントラストの表示ができた。 【0038】視野角特性について、実施例1と比較例1 を比較する。全方位の等コントラスト曲線を図7と図1 1で比較すると、円偏光板にハイブリッドネマチック構 造を持つ液晶フィルムを用いることにより、広い視野角 特性が得られていることが分かる。また、透過モードで の欠点となる左右、上下方向の階調特性を図8、9と図 12, 13で比較すると、円偏光板にハイブリッドネマ チック構造を持つ液晶フィルムを用いることにより、反 転特性が改善されていることが分かる。

【図面の簡単な説明】

【図1】液晶分子のチルト角及びツイスト角を説明する ための概念図である。

【図2】補償素子を構成する液晶フィルムの配向構造の 概念図である。

【図3】実施例1を模式的に表した断面図である。

【図4】実施例における偏光板の吸収軸、液晶セルの配 向方向および液晶フィルムの遅相軸方向との角度関係を 示した平面図である。

【図5】実施例における偏光板の吸収軸、液晶セルの配 向方向および液晶フィルムの遅相軸方向との角度関係を 示した平面図である。

【図6】実施例1の電圧変化に対する透過率を示す図で ある。

【図7】実施例1における半透過型液晶表示装置を全方 位から見た時のコントラスト比を示す図である。

【図8】実施例1における半透過型液晶表示装置を0V から6 Vまで8 階調表示した時の左右方位の透過率の視 野角特性を示す図である。

【図9】実施例1における半透過型液晶表示装置を0V から6 Vまで8 階調表示した時の上下方位の透過率の視 野角特性を示す図である。

【図10】比較例1の電圧変化に対する色度の変化を示 す図である。

14

【図11】比較例1における半透過型液晶表示装置を全 方位から見た時のコントラスト比を示す図である。

【図12】比較例1における半透過型液晶表示装置を0 Vから6Vまで8階調表示した時の左右方位の透過率の 視野角特性を示す図である。

【図13】比較例1における半透過型液晶表示装置を0 Vから6Vまで8階調表示した時の上下方位の透過率の 10 視野角特性を示す図である。

【符号の説明】

- 1 上側偏光板
- 2、3 位相差補償板
- 4 液晶セル
- 5 半透過板
- 6 延伸フィルム
- 7 液晶フィルム (または延伸フィルム)
- 8 下側偏光板
- 9 円偏光板
- 11 上側偏光板1の吸収軸 20
 - 21 位相差補償板2の遅相軸
 - 31 位相差補償板3の遅相軸
 - 41 液晶セル4の上側の液晶分子配向方向
 - 42 液晶セル4の下側の液晶分子配向方向
 - 61 延伸フィルム6の光学軸

71 液晶フィルム7のチルト方向(軸)または延伸フ ィルム7の光学軸

[図5]

81 下側偏光板8の吸収軸

フロントページの続き

(72)発明者 豊岡 武裕

神奈川県横浜市中区千鳥町8番地 日石三 菱株式会社中央技術研究所内 F ターム(参考) 2H049 BA02 BA03 BA06 BA07 BA25

BA42 BB03 BB44 BB63 BB65 BC02 BC05 BC22

2H091 FA08Z FA11X FA11Z FA15Z FB02 FC22 FC23 HA07 HA10

LA19 LA20

5G435 AA02 BB12 BB15 BB16 CC12

FF03 FF05

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The circular polarization of light board characterized by consisting of liquid crystal films with which it is the circular polarization of light board which consists of optical different direction elements which have the phase contrast of abbreviation quadrant wavelength in a polarizing plate and a light region at least, and the aforementioned optical different direction element fixed the nematic hybrid oriented structure at least.

[Claim 2] The circular polarization of light board according to claim 1 which is the liquid crystal film with which the aforementioned liquid crystal film carried out nematic hybrid orientation of the liquid crystal material in the liquid crystal state, and carried out glass fixation of this orientation by cooling from the state.

[Claim 3] The circular polarization of light board according to claim 1 which is the liquid crystal film on which the aforementioned liquid crystal film carried out nematic hybrid orientation of the liquid crystal material in the liquid crystal state, and fixed this orientation by the crosslinking reaction by light or heat.

[Claim 4] The circular polarization of light board according to claim 1 characterized by the aforementioned optical different direction element consisting of the liquid crystal films and oriented films which fixed the nematic hybrid oriented structure at least.

[Claim 5] The liquid crystal display characterized by having a claim 1 or the circular polarization of light board of four given in any 1 term.

[Claim 6] The transflective LCD characterized by providing the following. The liquid crystal cell which ****(ed) the liquid crystal layer by the transparent substrate of a couple equipped with an electrode. The polarizing plate arranged at the observer side of this liquid crystal cell. The aforementioned polarizing plate and the phase contrast compensating plate of at least one sheet arranged between the aforementioned liquid crystal cells. It is the transflective reflection type liquid crystal display equipped with the transflective reflection layer which saw from the observer and was installed more back than the aforementioned liquid crystal layer at least, sees from an observer, and they are a claim 1 or the circular polarization of light board of four given in any 1 term from the aforementioned transflective reflection layer at least to back

[Claim 7] The transflective LCD according to claim 6 characterized by using a twisted nematic type.

[Claim 8] The transflective LCD according to claim 6 characterized by using a super twisted nematic type.

[Claim 9] The transflective LCD according to claim 6 characterized by using HAN mode.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damag s caus d by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[The technical field to which invention belongs] this invention relates to the liquid crystal display equipped with a circular polarization of light board and this.

[0002]

[Description of the Prior Art] recent years and a liquid crystal display -- the thin shape -- expectation of the commercial-scene expansion as a display of a personal digital assistant device which can harness the lightweight feature greatly is growing Carried type electronic equipment has been a technical problem with important stopping power consumption harder [which is usually a dc-battery drive]. Therefore, or power consumption does not use a large back light as a liquid crystal display of a carried type use etc., it is not necessary to always use it and especially the reflected type liquid crystal display in which low-power-izing, thin-shape-izing, and lightweight-izing are possible attracts attention. As a reflected type liquid crystal display, a liquid crystal cell is inserted with one pair of polarizing plates, and the polarizing plate 2 which have arranged reflecting plate outside further sheet type reflected type liquid crystal display is widely used as an object for monochrome display. Furthermore, recently, the polarizing plate 1 whose liquid crystal layer was pinched by polarizing plate and reflecting plate sheet type reflected type liquid crystal display is proposed and put in practical use from colorization being easy theoretically and brightly rather than the two polarizing plate type (T. Sonehara et al., JAPAN DISPLAY, 192 (1989).). However, usually, when using under dark environment, these reflection type liquid crystal display has the fault that a display stops being able to be visible easily, in order to display using outdoor daylight.

[0003] like a JP,10-206846,A publication as technology which solves this problem, a part of incident light is penetrated instead of a reflecting plate in a polarizing plate 1-sheet type reflected type liquid crystal display -- the transflective reflection type liquid crystal display which used the transflective reflecting plate with a property, and was equipped with the back light is proposed In this case, in the environment dark as a reflected type (reflective mode) where outdoor daylight was used in the state of the back light astigmatism LGT, it can be used as a penetrated type (transparent mode) which made the back light turn on. In a this polarizing plate 1-sheet type transflective reflection type liquid crystal display, since it is necessary to carry out incidence of the approximate circle polarization to a liquid crystal cell through a transflective reflection layer in the transparent mode, it is necessary to arrange the circular polarization of light board which consists of a macromolecule oriented film represented by the polycarbonate of one sheet or two or more sheets, and a polarizing plate between a transflective reflection layer and a back light. However, in TN-LCD of the transparent mode, when it sees from across for the refractive-index anisotropy which a liquid crystal molecule has, or a foreground color changes, the problem of the angle of visibility that display contrast falls is not avoided in essence, but this angle-of-visibility expansion is essentially difficult with the circular polarization of light board using the macromolecule oriented film.

[0004]

[Problem(s) to be Solved by the Invention] In the circular polarization of light board which has a good circular polarization of light property, and the transparent mode, the display of this invention is bright, it is high contrast, and aims at offering a transflective LCD with few angle-of-visibility dependencies.

[0005]

[Means for Solving the Problem] That is, this invention is a circular polarization of light board which consists of optical different direction elements which have the phase contrast of abbreviation quadrant wavelength in a polarizing plate and a light region at least, and relates to the circular polarization of light board characterized by consisting of liquid crystal films with which the aforementioned optical different direction element fixed the nematic hybrid oriented structure at least. Moreover, the aforementioned liquid crystal film carries out nematic hybrid orientation of the liquid

crystal material in a liquid crystal state, and this invention relates to the aforementioned circular polarization of light board which is the liquid crystal film which carried out glass fixation of this orientation by cooling from the state. Moreover, the aforementioned liquid crystal film carries out nematic hybrid orientation of the liquid crystal material in a liquid crystal state, and this invention relates to the aforementioned circular polarization of light board which is the liquid crystal film which fixed this orientation by the crosslinking reaction by light or heat. Moreover, this invention relates to the aforementioned circular polarization of light board characterized by the aforementioned optical different direction element consisting of the liquid crystal films and oriented films which fixed the nematic hybrid oriented structure at least.

[0006] Moreover, this invention relates to the liquid crystal display characterized by having the aforementioned circular polarization of light board. Moreover, the liquid crystal cell which ****(ed) the liquid crystal layer by the transparent substrate of the couple which this invention equips with an electrode, The polarizing plate arranged at the observer side of this liquid crystal cell, and the aforementioned polarizing plate and the phase contrast compensating plate of at least one sheet arranged between the aforementioned liquid crystal cells, It is the transflective reflection type liquid crystal display equipped with the transflective reflection layer which saw from the observer and was installed more back than the aforementioned liquid crystal layer at least, and is related with the transflective LCD characterized by seeing from an observer and having the aforementioned circular polarization of light board at least more back than the aforementioned transflective reflection layer. Moreover, this invention relates to the aforementioned transflective LCD characterized by using a twisted nematic type. Moreover, this invention relates to the aforementioned transflective LCD characterized by using a super twisted nematic type. Furthermore, this invention relates to the aforementioned transflective LCD characterized by using HAN mode.

[Embodiments of the Invention] The circular polarization of light board of this invention consists of optical different direction elements which have the phase contrast of abbreviation quadrant wavelength in a polarizing plate and a light region at least. The aforementioned polarizing plate will not be restricted especially if the purpose of this invention can attain, but the usual thing used for a liquid crystal display can be suitably used for it. The polarization film which consists of a polarization film, a polyene oriented film like the dehydration processing object of PVA or the desalting acid-treatment object of a polyvinyl chloride, etc. which adsorbed iodine and/or dichroic coloring matter and specifically extended them to the hydrophilic high polymer film which consists of polyvinyl alcohol (PVA), a PVA system like the partial acetalization PVA, a partial saponification object of an ethylene vinylacetate copolymer, etc. can be used. Moreover, a reflected type polarization film can also be used.

[0008] The aforementioned polarizing plate may be used by the polarization film independent, and may prepare transparent protection layer etc. in one side or both sides of a polarization film for the purpose, such as heat-resistant improvement, on the improvement in on the strength, and a moisture-proof disposition. Optical hardening type resin layers which carried out the laminating of the transparent plastic film, such as polyester and a triacetyl cellulose, through direct or the glue line as transparent protection layer, such as a thing, an application layer of a resin, and acrylic, an epoxy system, are mentioned. When covering these transparent protection layer to both sides of a polarization film, you may prepare a protective layer which may prepare the same protective layer as both sides, and is different.

[0009] The optical different direction element which constitutes the circular polarization of light board of this invention is an element which consists of liquid crystal films which fixed the nematic hybrid oriented structure of at least one sheet, and has the phase contrast of abbreviation quadrant wavelength in a light region. As a nematic hybrid oriented structure fixed in the aforementioned liquid crystal film, 60 degrees - 90 degrees of angles of the director of a liquid crystal molecule and a film flat surface to accomplish are usually 80 degrees - 90 degrees preferably as an absolute value in near [one] the film interface of a liquid crystal film, and it is desirable in near [opposite] the film interface of the film plane concerned for the 0-50 degrees of the angles concerned to be usually 0-30 degrees preferably as an absolute value. Moreover, as an average tilt angle in the oriented structure concerned, 5 degrees - 7 degrees - 33 degrees 35 degrees [10 degrees - 30 degrees] are usually 13 degrees - 27 degrees most preferably still more preferably as an absolute value. When an average tilt angle separates from the above-mentioned range and it prepares for a liquid crystal display as a circular polarization of light board, there is fear, such as a contrast fall. An average tilt angle means the average of the angle of the director of a liquid crystal molecule and film flat surface in the direction of thickness of a liquid crystal film to accomplish here, and the angle concerned can apply and search for the crystal rotation method. In addition, since the aforementioned liquid crystal film fixed the nematic hybrid oriented structure which turned to the angle from which the director of the liquid crystal molecule like the above differs in all the places of the direction of film thickness, when it is seen as the structure called a film, an optical axis does not exist any longer.

[0010] moreover -- although there is no ***** generally from being dependent on the method and the various optical

parameters of the liquid crystal display which it has as a circular polarization of light board as a retardation value of the aforementioned liquid crystal film -- the 550nm homogeneous light -- receiving -- usually -- 10nm - 30nm - 400nm 600nm is the range of 50nm - 300nm still more preferably preferably When a retardation value is less than 10nm and it prepares for a liquid crystal display as a circular polarization of light board, there is a possibility that sufficient angle-of-visibility expansion effect cannot be acquired. Moreover, when larger [than 600nm], it prepares for a liquid crystal display as a circular polarization of light board and it sees from across, there is a possibility that unnecessary coloring may arise. In addition, a retardation value here is a retardation value of the appearance within the field at the time of seeing from [of a liquid crystal film] a normal. That is, with the liquid crystal film which fixed the nematic hybrid oriented structure, since the refractive index (ne) of a direction parallel to a director differs from the refractive index (no) of a perpendicular direction, the value which lengthened no from ne is seen, it considers as the upper rate of a birefringence, and the retardation value concerned is given as a product of the rate of a birefringence concerned, and film absolute thickness. Usually, this retardation value can be easily calculated by polarization optical measurements, such as an ellipsometry.

[0011] Although the thickness of the aforementioned liquid crystal film does not generally have ***** from being dependent on the method and the various optical parameters of the liquid crystal display which it has as a circular polarization of light board, furthermore, it is 0.2 micrometers - 10 micrometers usually 0.5 micrometers - 2 micrometers still more preferably 0.3 micrometers - 5 micrometers preferably. When thickness is thinner than 0.2 micrometers, there is a possibility that sufficient angle-of-visibility expansion effect cannot be acquired. Moreover, when 10 micrometers is exceeded, there is a possibility that a liquid crystal display may color superfluously. [0012] The aforementioned liquid crystal film can be obtained by fixing the oriented structure by methods, such as optical bridge formation, heat bridge formation, or cooling, corresponding to many physical properties of liquid crystal material, after carrying out nematic hybrid orientation of the liquid crystal material which shows nematic mesomorphism in a liquid crystal state. Especially if it is the liquid crystal material which shows nematic mesomorphism as the aforementioned liquid crystal material, it will not be restricted, but let various kinds of lowmolecular-liquid-crystal matter, polymer-liquid-crystal matter, or such mixture be the material concerned. The molecular shape of the liquid crystal matter can also use the disco tic liquid crystal which does not ask whether it is cylindrical or it is a disk-like, for example, shows disco tic nematic mesomorphism. In case such mixture is furthermore used as a liquid crystal material, the nematic hybrid oriented structure for which it finally asks with the material concerned can be formed, and if the oriented structure is fixable, moreover, there will be no limit in composition, a composition ratio, etc. of the material concerned in any way. For example, the liquid crystal matter of low-molecular [two or more sorts of] and/or a macromolecule, and independent or independent or the mixture which consists of the non-mesomorphism matter and the various additives of low-molecular [two or more sorts of] and/or a macromolecule can also be used as a liquid crystal material.

[0013] As the aforementioned low-molecular-liquid-crystal matter, the mixture of a Schiff-base system, a biphenyl system, a terphenyl system, an ester system, a thioester system, a stilbene system, a tolan system, an azoxy series, an azo system, a phenylcyclohexane system, a pyrimidine system, a cyclohexyl cyclohexane system, a trimesic-acid system, a triphenylene system, a torr KUSEN system, a phthalocyanine system, the low-molecular-liquid-crystal compound that has a porphyrin system molecule skeleton, or these compounds etc. is mentioned.

[0014] As polymer-liquid-crystal matter, various kinds of principal chain type polymer-liquid-crystal matter, side-chain type polymer-liquid-crystal matter, or such mixture can be used. As principal chain type polymer-liquid-crystal matter, the polymer liquid crystals of a polyester system, a polyamide system, a polycarbonate system, a polyimide system, a polyurethane system, a polybenzimidazole system, a poly benzoxazole system, the poly bends thiazole system or such mixture are mentioned. The half-aromatic system polyester system polymer liquid crystal which the meso gene machine which gives mesomorphism also in these, and incurvation chains, such as a polymethylene, a polyethylene oxide, and a polysiloxane, combined by turns, and a full-aromatic system polyester system polymer liquid crystal without an incurvation chain are desirable in this invention.

[0015] Moreover, the polymer liquid crystals which the meso gene machine combined with the matter which has the shape of a straight chain, such as a polyacrylate system, a polymethacrylate system, a polyvinyl system, a polysiloxane system, a polyether system, a polymethacrylate system, and the skeleton chain of a cyclic structure as a side chain as side-chain type polymer-liquid-crystal matter, or such mixture are mentioned. The side-chain type polymer liquid crystal which the meso gene machine which gives mesomorphism also in these to a skeleton chain through the spacer which consists of an incurvation chain combined, and the polymer liquid crystal concerned of the molecular structure which has a meso gene in both a principal chain and a side chain are desirable in this invention. [0016] When it fixes the oriented structure which it faced preparing the aforementioned liquid crystal film, and was

formed in the liquid crystal state by heat bridge formation or optical bridge formation, it is desirable to make into the material concerned the various liquid crystal matter which has the functional group or part which can react by heat, optical crosslinking reaction, etc. into liquid crystal material. As a functional group which can carry out crosslinking reaction, for example, epoxy groups, such as an acrylic machine, an methacrylic machine, a vinyl group, a vinyl ether machine, an allyl group, an aryloxy machine, and a glycidyl group, an isocyanate machine, an isothiocyanate machine, an azo machine, a diazo group, an azide machine, a hydroxyl, a carboxyl group, a low-grade ester machine, etc. are mentioned, and an acrylic machine and an methacrylic machine are especially desirable. Moreover, as a part which can carry out crosslinking reaction, a part including the molecular structures, such as maleimide, a maleic-acid anhydride, a cinnamic acid and cinnamic-acid ester, an alkene, a diene, an allene, an alkyne, azo, AZOKISHI, disulfide, and a polysulfide, is mentioned. Although these bridge formation machine and the crosslinking reaction part may be contained in the various liquid crystal matter itself which constitutes liquid crystal material, they may add separately the non-mesomorphism matter with a cross-linking machine or a part into liquid crystal material. [0017] The optical different direction element which constitutes the circular polarization of light board of this invention consists of liquid crystal films which fixed the nematic hybrid oriented structure like the above at least. Although it is also possible to use the liquid crystal film independent concerned as the element concerned here, a circular polarization of light board can also consist of gestalten which covered one side or both sides of a liquid crystal film with transparent protection layer for the intensity of a liquid crystal film, or the improvement in resistance. Optical hardening type resin layers which carried out the laminating of the transparent plastic film, such as polyester and a triacetyl cellulose, through direct or the adhesive as transparent protection layer, such as a thing, an application layer of a resin, and acrylic, an epoxy system, are mentioned. When covering these transparent protection layer to both sides of a liquid crystal film, you may prepare a protective layer which may prepare the same protective layer as both sides, and is different. Moreover, a direct liquid crystal film can be formed in a polarizing plate, and it can also consider as the circular polarization of light board of this invention as it is. For example, after carrying out the laminating of the liquid crystal film to transparent plastic film, such as polyester and a triacetyl cellulose, it can consider as the circular polarization of light board of composition, such as a polarization film / transparent plastic film / optical different direction element (liquid crystal film), and a polarization film / optical different direction element (liquid crystal film) / transparent plastic film, by uniting with a polarization film.

[0018] Moreover, the optical different direction element which constitutes the circular polarization of light board of this invention may consist of the liquid crystal films and oriented films which fixed the nematic hybrid oriented structure. As an oriented film, it is a medium as optically uniaxial or optically biaxial shown, for example, various macromolecule oriented films, such as a polycarbonate (PC), a polymethacrylate (PMMA), and polyvinyl alcohol (PVA), can be mentioned. It can also consider as the circular polarization of light board of this invention by combining with a polarizing plate the optical different direction element which consists of these oriented films and a liquid crystal film. in addition, the liquid crystal film and oriented film which constitute an optical different direction element -respectively -- one sheet -- or two or more sheets can be used and the element concerned can be constituted [0019] The circular polarization of light board of this invention consists of a polarizing plate explained above and an optical different direction element at least. Although there is no ***** generally since the various optical parameters and the display grace demanded of the liquid crystal display with which it has the circular polarization of light board concerned constitute the layered product of a liquid crystal film independent or a liquid crystal film, and an oriented film as an optical different direction element as thickness of a circular polarization of light board, 600 micrometers [400 micrometers or less] or less 500 micrometers or less are usually 300 micrometers or less still more preferably more preferably. moreover, the circular polarization of light board of this invention -- everything but a polarizing plate and an optical different direction element -- a protective layer, an acid-resisting layer, an anti-dazzle processing layer, a hard-coat layer, an adhesive layer, an optical diffusion layer, an optical diffusibility adhesive layer, etc. -- one layer -or two or more layers may be included

[0020] In addition, since the liquid crystal film which constitutes the optical different direction element of the circular polarization of light board of this invention is a film which fixed the nematic hybrid oriented structure, the upper and lower sides of the film concerned are not optically equivalent. Therefore, as a circular polarization of light board, the optical property as the circular polarization of light board changes with which film plane of a liquid crystal film is made into a polarizing plate side. Although this invention does not limit which film plane of a liquid crystal film is made into a polarizing plate side, it is desirable to manufacture the circular polarization of light board of this invention in consideration of the optical property required of a circular polarization of light board, the display property required of a liquid crystal display equipped with the circular polarization of light board concerned.

[0021] The liquid crystal display of this invention has the aforementioned circular polarization of light board at least. Although a liquid crystal display generally consists of members, such as a phase contrast compensating plate, a

reflecting layer, an optical diffusion layer, a back light, a front light, an optical control film, a light guide plate, and a prism sheet, a polarizing plate, a liquid crystal cell, and if needed, there is especially no limit except for the point which makes it indispensable to use the aforementioned circular polarization of light board in this invention. Moreover, especially a limit may not have the operating position of the aforementioned circular polarization of light board. and one place or two or more places are sufficient as it. It is not restricted especially as a liquid crystal cell, but general liquid crystal cells, such as what ****(ed) the liquid crystal layer by the transparent substrate of a couple equipped with an electrode, can be used. If the orientation of the material which shows the mesomorphism which constitutes a liquid crystal layer as the aforementioned transparent substrate which constitutes a liquid crystal cell is made to carry out in the specific direction of orientation, there will be especially no limit. Although a transparent substrate and the substrate themselves which specifically have the property to which the substrate itself carries out orientation of the liquid crystal lack in orientation ability, each transparent substrate which prepared in this the orientation film which has the property to which orientation of the liquid crystal is carried out can use them. Moreover, a well-known thing can be used for the electrode of a liquid crystal cell. Usually, it can prepare on the field of the transparent substrate which a liquid crystal layer touches, and when using the substrate which has an orientation film, it can prepare between a substrate and an orientation film. Especially as a material which shows the mesomorphism which forms the aforementioned liquid crystal layer, it is not restricted but usual various low-molecular-liquid-crystal matter, polymerliquid-crystal matter, and such mixture which can constitute various kinds of liquid crystal cells are mentioned. Moreover, coloring matter, a chiral agent, the non-mesomorphism matter, etc. can also be added in the range which does not spoil mesomorphism to these.

[0022] The aforementioned liquid crystal cell may be equipped with various kinds of components required to consider as the liquid crystal cell of various kinds of methods mentioned later besides the aforementioned electrode substrate and a liquid crystal layer. As a method of the aforementioned liquid crystal cell, TN (Twisted Nematic) method, A STN (SuperTwisted Nematic) method, an ECB (Electrically Controlled Birefringence) method, An installationperformance-specification (In-Plane Switching) method, VA (Vertical Alignment) method, An OCB (Optically Compensated Birefringence) method, A HAN (Hybrid Aligned Nematic) method, an ASM (Axially Symmetric Aligned Microcell) method, Various kinds of methods, such as means of displaying using a halftone gray scale method, a domain division method or a ferroelectric liquid crystal, and antiferroelectricity liquid crystal, are held. Moreover, you may be which drive methods, such as an active matrix, a plasma address system, etc. using active electrodes, such as a passive matrix method with which especially a limit does not have the drive method of a liquid crystal cell, either, and it is used for STN-LCD etc. and a TFT (Thin Film Transistor) electrode, and a TFD (Thin Film

Diode) electrode.

[0023] Although it will not be restricted as a phase contrast compensating plate used for the aforementioned liquid crystal display especially if excelled in transparency and homogeneity, a macromolecule oriented film and the optical compensation film which consists of liquid crystal can use it preferably. As a macromolecule oriented film, one shaft or biaxial phase contrast film which consists of a cellulose system, a polycarbonate system, a polyarylate system, a polysulfone system, the poly acrylic, a polyether sulfone system, an annular olefin system macromolecule, etc. can be illustrated. A polycarbonate system is desirable from the homogeneity of a cost side and a film especially. Moreover, it will not be restricted especially if the optical compensation film which consists of liquid crystal said here is a film which can use the optical anisotropy which is made to carry out orientation of the liquid crystal, and is produced from the orientation state. For example, well-known things using the nematic liquid crystal, disco tic liquid crystal, a smectic liquid crystal, etc., such as various optical functionality films, can be used. In constituting a liquid crystal display, use of only one sheet is sufficient as the phase contrast compensating plate illustrated here, and it may be used two or more sheets. Moreover, both a macromolecule oriented film and the optical compensation film which consists of liquid crystal can also be used.

[0024] Especially as the aforementioned reflecting layer, it is not restricted but the liquid crystal which shows the multilayer of oxides, such as an alloy containing metals, such as aluminum, silver, gold, chromium, and platinum, or them and a magnesium oxide, and a dielectric and selective reflection, or such combination can be illustrated. These reflecting layers may be flat surfaces, and may be curved surfaces. Thickness of what the reflecting layer furthermore processed it in the shape of [, such as the shape of toothing,] surface type, and gave diffuse reflection nature, the thing which made the electrode on the aforementioned electrode substrate of an opposite side have the observer side of a liquid crystal cell, and a reflecting layer may be made thin, or you may be the transflective reflection layer it was made to make a part of light penetrate by processing making a hole etc., and they may be combined.

[0025] If the aforementioned optical diffusion layer has the property to diffuse an incident light isotropic or in different direction, there will be especially no limit. For example, it consists of two or more sorts of fields, and what has a refractive-index difference between the field, and the thing which attached irregularity in the shape of surface type are

mentioned. It consists of the two or more aforementioned sorts of fields, and what distributed the particle which has a different refractive index from a matrix in a matrix as what has a refractive-index difference between the field is illustrated. As for the aforementioned diffusion layer, itself may have adhesion nature. Although especially the thickness of the aforementioned optical diffusion layer is not restricted, it is usually desirable that it is [10 micrometer or more] 500 micrometers or less. Moreover, as for all the light transmissions of an optical diffusion layer, it is desirable that it is 50% or more, and it is desirable that it is especially 70% or more. It is usually 10 - 95%, and the Hayes value of the optical diffusion layer concerned is 40 - 90% preferably, and it is still more desirable that it is 60 - 90% still more preferably.

[0026] Especially as the aforementioned back light, a front light, an optical control film, a light guide plate, and a prism sheet, it is not restricted but a well-known thing can be used. the composition which described above the liquid crystal display of this invention -- a member -- other composition members can be attached also to except For example, the electrochromatic display display which can perform multicolor or a full color display with high color purity is producible by attaching a light filter to the liquid crystal display of this invention.

[0027] The liquid crystal cell which ****(ed) the liquid crystal layer by the transparent substrate of a couple equipped with an electrode as a liquid crystal display in this invention, The polarizing plate arranged at the observer side of this liquid crystal cell, and the aforementioned polarizing plate and the phase contrast compensating plate of at least one sheet arranged between the aforementioned liquid crystal cells, Especially the thing that sees from an observer, is the transflective reflection type liquid crystal display equipped with the transflective reflection layer installed more back than the aforementioned liquid crystal layer at least, sees from an observer, and has the aforementioned circular polarization of light board more back than the aforementioned transflective reflection layer is desirable. With this type of liquid crystal display, it becomes usable [both reflective mode and the transparent mode] by installing a back light in circular polarization of light board back. For example, when the thing of a TN-LCD method is used as a liquid crystal cell, the thing using the optical compensation film which consists the aforementioned macromolecule oriented film of two sheets and/or the aforementioned liquid crystal as the aforementioned phase contrast compensating plate is desirable from the ability to obtain a good display one sheet. Moreover, the aforementioned liquid crystal display can be said to be desirable from what established the diffusion layer between the aforementioned polarizing plate and the liquid crystal cell, or used the transflective reflection layer of diffuse reflection nature for the electrode of a liquid crystal cell giving a good display property.

[0028] As angle of torsion of the liquid crystal cell of a TN-LCD method, usually, when the thing of 70 or less degrees combines with the circular polarization of light board of this invention 55 degrees or more still more preferably 80 or less degrees 45 degrees or more preferably 85 or less degrees 30 degrees or more, it can be said from giving a good display property that it is desirable. Since the liquid crystal film used as an optical different direction element which constitutes the circular polarization of light board fixes a nematic hybrid oriented structure in case various liquid crystal displays are equipped with the circular polarization of light board of this invention, the upper and lower sides of the film concerned are not optically equivalent, therefore, the upper and lower sides of a liquid crystal film -- or [arranging which film plane to a liquid crystal cell side] -- moreover, a display performance changes with combination with optical parameters, such as a liquid crystal cell In the transflective LCD of this invention, although it does not limit which film plane of the liquid crystal film which constitutes a circular polarization of light board is made to approach a liquid crystal cell, it is desirable to determine the arrangement conditions to a liquid crystal display etc. as the composition row of the circular polarization of light board of this invention in consideration of an optical parameter, a display performance demanded of the liquid crystal cell concerned.

[0029] Furthermore, in order to obtain the transflective LCD which made the property as a circular polarization of light board of this invention discover more, it is desirable to arrange in consideration of the relation between the direction of a tilt of the liquid crystal film which constitutes a circular polarization of light board (shaft), and the direction of a pre tilt of a liquid crystal cell (orientation shaft). As it is indicated in drawing 2 as the direction of a tilt of a liquid crystal film (shaft) here, when the c-th page is seen through a liquid crystal film from a b-th page side, the direction parallel to a projection component which is a direction where the angle which the projection component to the c-th page of a liquid crystal molecule director accomplishes serves as an acute angle is meant. Moreover, usually, in the cell interface of a liquid crystal cell layer, it is the direction whose angle which the projection component to the interface of the director of the liquid crystal molecule of a cell interface and a director accomplishes is an acute angle although the low-molecular liquid crystal for a drive leans with a certain angle rather than is parallel and generally says this as a pre tilt angle to a cell interface, and a direction parallel to the projection component of a director is defined as the direction of a pre tilt of a liquid crystal cell (orientation shaft) by this invention Although the transflective LCD of this invention does not limit the angle of the direction of a tilt of a liquid crystal film (shaft) and the direction of a pre tilt of a liquid crystal cell (orientation shaft) which constitute a circular polarization of light board to accomplish, it is

desirable to determine axial arrangement of the circular polarization of light board of this invention and a liquid crystal cell in consideration of an optical parameter, a display performance demanded of a liquid crystal cell. [0030]

[Effect of the Invention] The circular polarization of light board of this invention has the large angle-of-visibility property, and in the transparent mode, the transflective LCD using the circular polarization of light board of this invention has a bright display, and is high contrast.

[0031]

[Example] Hereafter, although an example and the example of comparison explain this invention to a detail further, this invention is not limited to these. In addition, especially, retardation deltand in this example is taken as the value in the wavelength of 550nm, as long as there is no notice.

[0032] The circular polarization of light board was produced using the liquid crystal film 7 which is 1.32 micrometers of thickness by which the nematic hybrid orientation whose average tilt angle of the direction of example 1 thickness is 15 degrees was fixed, and the TN type transflective reflection type liquid crystal display was produced by arrangement as shown in drawing 3. The cell parameters of the used liquid crystal cell 4 are cell gap 3.5micrometer, 63 angle of torsion (left hand), and two pre tilt angles, using ZLI-1695 (Merck Co. make) as a liquid crystal material. The polarizing plate 1 (thickness about 180micrometer; SQW[by Sumitomo Chemical Co., Ltd.]- 862) has been arranged to the screen side (on drawing) of a liquid crystal cell 4, the phase contrast compensating plates 2 and 3 which consist of a polycarbonate film which carried out uniaxial stretching between the top polarizing plate 1 and the liquid crystal cell 4 have been arranged, and the polarizing plate has arranged the transflective reflecting plate 5 to the opposite side.

**nd of 280nm of abbreviation and the phase contrast compensating plate 3 of **nd of the phase contrast compensating plate 2 was 140nm of abbreviation. At this time, it took the angle theta2=+58 degree from the orientation shaft 41 of a liquid crystal cell 4 to the lagging axis of the phase contrast compensating plate 2 for the angle theta3=+118 degree to the angle theta 3 from the orientation shaft 41 of a liquid crystal cell 4 to the lagging axis of the phase contrast compensating plate 3. It could be the angle theta1=+133 degree from the orientation shaft 41 of the top polarizing plate 1 of a liquid crystal cell 4.

[0033] Moreover, the circular polarization of light board 9 was seen from the observer, and it has arranged behind a liquid crystal cell. Although the circular polarization of light board 9 consisted of a polycarbonate film 6 (140nm of **nd= abbreviation) which carried out uniaxial stretching to the bottom polarizing plate 8, and a liquid crystal film 7 (280nm of **nd= abbreviation) which fixed the hybrid nematic oriented structure, it was made into the angle theta7=+32 degree from the orientation shaft 41 of a liquid crystal cell 4 to the direction 71 of a tilt of the liquid crystal film 7 the angle theta6=+153 degree from the orientation shaft 41 of a liquid crystal cell 4 It could be the angle theta8=+47 degree from the orientation shaft 41 to the absorption shaft 81 of a bottom polarizing plate of a liquid crystal cell 4. Furthermore, the adhesive layer (90% of all light transmissions, 80% of Hayes values) which has an optical diffusion property has been arranged between the phase contrast compensating plate 3 and a liquid crystal cell 4.

[0034] The relation of the angles theta1-theta8 in each composition member of the type transflective reflection type liquid crystal display above-mentioned [TN] is shown in drawing 4 and drawing 5. Setting to drawing 4, the direction 41 of orientation on the field by the side of the polarizing plate 1 of the liquid crystal cell layer 4 and the direction 42 of orientation on the field by the side of a circular polarization of light board are making the angle theta 4. The direction 21 of the lagging axis of the phase contrast compensating plate 2 and the orientation shaft 41 of a liquid crystal cell are making the angle theta 2. The direction 31 of the lagging axis of the phase contrast compensating plate 3 and the sense 41 of the orientation shaft on the field by the side of a liquid crystal cell are making the angle theta 3. Moreover, the absorption shaft 11 of a polarizing plate 1 and the orientation shaft 41 of a liquid crystal cell are making the angle theta 1. In drawing 5, the direction 71 of a tilt of the liquid crystal film 7 in the circular polarization of light board 9 is making the orientation shaft 41 and angle theta 7 of a liquid crystal cell, and the optical axis 61 of nothing and the polycarbonate film 6 and the orientation shaft 41 of a liquid crystal cell are making the angle theta 6. The absorption shaft 81 of a polarizing plate 8 is making the orientation shaft 41 and angle theta 8 of a liquid crystal cell. [0035] Drawing 6 shows the permeability to the applied voltage at the time of back light lighting of the transflective type liquid crystal display element obtained in the example 1 (transparent mode). drawing 7 -- the time of back light lighting (transparent mode) -- white -- the ratio (white display) of the permeability of display 0V and black display 6V -- the contrast ratio from an omnidirection is shown by making / (black display) into a contrast ratio drawing 8 -- the time of back light lighting (transparent mode) -- white -- the angle-of-visibility property of the permeability in the longitudinal direction when displaying eight gradation from display 0V to black display 6V is shown drawing 9 -- the time of back light lighting (transparent mode) -- white -- the angle-of-visibility property of the permeability in the vertical direction when displaying eight gradation from display 0V to black display 6V is shown From the result of

drawing 6, the bright display of high contrast was completed in the transparent mode. It turns out that it has a good angle-of-visibility property especially in the transparent mode.

[0036] Although experimented with the gestalt without a light filter in this example, if a light filter is prepared into a liquid crystal cell, it cannot be overemphasized that good multicolor or a full color display can be performed. When the transflective LCD of the STN mode method furthermore equipped with the circular polarization of light board of this invention and a HAN mode method was produced, in each mode method, the liquid crystal display which has a good display property was able to be obtained.

[0037] In the arrangement shown in example of comparison 1 drawing 3 deltand of a liquid crystal cell 4 210nm of abbreviation, deltand of 280nm of abbreviation and the phase contrast compensating plate 3 is considered for deltand of the phase contrast compensating plate 2 as 140nm of abbreviation. A polycarbonate 6 uses a polycarbonate 7 (deltand is 280nm of abbreviation) instead of being the thing (deltand being 140nm of abbreviation) of an example 1, and the liquid crystal film 7. theta -- the same liquid crystal display as an example 1 was produced except having considered as theta 8= +47 degrees theta 7= +32 degrees theta 6= +153 degrees theta 4= +63 degrees theta 3= +118 degrees theta 2= +58 degrees 1= +133 degrees Drawing 10 shows the permeability to the applied voltage at the time of back light lighting of the transflective type liquid crystal display element obtained in the example 1 of comparison (transparent mode). drawing 11 -- the time of back light lighting (transparent mode) -- white -- the ratio (white display) of the permeability of display 0V and black display 6V -- the contrast ratio from an omnidirection is shown by making / (black display) into a contrast ratio drawing 12 -- the time of back light lighting (transparent mode) -- white -the angle-of-visibility property of the permeability in the longitudinal direction when displaying eight gradation from display 0V to black display 6V is shown drawing 13 -- the time of back light lighting (transparent mode) -- white -- the angle-of-visibility property of the permeability in the longitudinal direction when displaying eight gradation from display 0V to black display 6V is shown From the result of drawing 10, the bright display of high contrast was similarly completed in the transverse-plane property in the transparent mode.

[0038] An example 1 is compared with the example 1 of comparison about an angle-of-visibility property. When drawing 7 and drawing 11 compare contrast curves, such as an omnidirection, by using the liquid crystal film which has hybrid nematic structure in a circular polarization of light board shows that the latus angle-of-visibility property is acquired. Moreover, when drawing 8, 9 and drawing 12, and 13 compare the gradation property of right and left and the vertical direction used as the fault in the transparent mode, by using the liquid crystal film which has hybrid

nematic structure in a circular polarization of light board shows that the reversal property is improved.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 7]

[Translation done.]