```
In [1]:
#importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
In [2]:
#load the data
df=pd.read_csv("winequality_white.csv")
In [3]:
#shape of data
df.shape
Out[3]:
(4898, 12)
In [4]:
#features in data
df.columns
Out[4]:
'pH', 'sulphates', 'alcohol', 'quality'],
    dtype='object')
In [5]:
#few datapoints
df.head()
Out[5]:
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6
2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6
3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6
4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6

EDA

```
In [6]:
```

df.describe()

Out[6]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	
--	---------------	---------------------	-------------	-------------------	-----------	------------------------	-------------------------	---------	--

count	4828 QCOORD	4898. V9l3tile	⁴⁸ 28, A20200	4898.000000	489 8,000000	48 58.96666	48989686666	4898 aens no	4898.000	
mean	6.854788	acidity 0.278241	0.334192	6.391415	0.045772	dioxide 35.308085	138.360657	0.994027	3.18826	
std	0.843868	0.100795	0.121020	5.072058	0.021848	17.007137	42.498065	0.002991	0.15100 ⁻	
min	3.800000	0.080000	0.000000	0.600000	0.009000	2.000000	9.000000	0.987110	2.720000	
25%	6.300000	0.210000	0.270000	1.700000	0.036000	23.000000	108.000000	0.991723	3.090000	
50%	6.800000	0.260000	0.320000	5.200000	0.043000	34.000000	134.000000	0.993740	3.180000	
75%	7.300000	0.320000	0.390000	9.900000	0.050000	46.000000	167.000000	0.996100	3.280000	
max	14.200000	1.100000	1.660000	65.800000	0.346000	289.000000	440.000000	1.038980	3.820000	
1										

1-there is wide range of all the features. 2-mean value of all the features are less than medium value. 3-there are some features whose max value so there may be some features with outliers.

```
Tn [7]
```

```
#checking the missing data
df.isnull().any().any()
Out[7]:
```

False

there is no missing data.

```
In [8]:
```

```
#data information
df.info()

<class 'pandas.core.frame.DataFrame'>
```

```
RangeIndex: 4898 entries, 0 to 4897
Data columns (total 12 columns):
fixed acidity
                       4898 non-null float64
volatile acidity
                       4898 non-null float64
citric acid
                       4898 non-null float64
                       4898 non-null float64
residual sugar
chlorides
                       4898 non-null float64
free sulfur dioxide
                       4898 non-null float64
                       4898 non-null float64
total sulfur dioxide
density
                        4898 non-null float64
рΗ
                        4898 non-null float64
sulphates
                       4898 non-null float.64
alcohol
                       4898 non-null float64
quality
                        4898 non-null int64
dtypes: float64(11), int64(1)
memory usage: 459.3 KB
```

all the features are numerical & mostly in decimal except quality.

```
In [9]:
```

```
#number of unique value in each features
for col in df.columns.values:
    print("Number of unique values of {} : {}".format(col, df[col].nunique()))

Number of unique values of fixed acidity : 68
Number of unique values of volatile acidity : 125
Number of unique values of citric acid : 87
Number of unique values of residual sugar : 310
Number of unique values of chlorides : 160
Number of unique values of free sulfur dioxide : 132
Number of unique values of total sulfur dioxide : 251
Number of unique values of density : 890
Number of unique values of pH : 103
Number of unique values of sulphates : 79
Number of unique values of alcohol : 103
Number of unique values of quality : 7
```

the feature which has max unique value is density. the feature which has min unique value is quality.

In [10]:

```
sns.catplot(x='quality',data=df,kind='count')
```

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x12fc0cea5f8>

In [11]:

```
df['quality'].value_counts()
```

Out[11]:

```
6 2198
5 1457
7 880
8 175
4 163
3 20
9 5
```

Name: quality, dtype: int64

most of the wine has quality between 5 & 6.

In [14]:

```
plt.figure(figsize=(15,10))
sns.heatmap(df.corr(), annot=True)
```

- 0.9

- 0.6

- 0.3

0.0

Out[14]:

<matplotlib.axes._subplots.AxesSubplot at 0x12fc3f594a8>

In []:

1-density & residual sugar has strong positive correlation
2-density & alcohol has strong negative correlation.
3-pH & fixed acidity has negative correlation.
4-density & fixed acidity has positive correlation.
5-citric acid & fixed acidity has positive correlation.
6-citric acid & volatile acidity has negative correlation.
7-free sulphur dioxide & total sulphur dioxide has positive correlation.

In [22]:

df.plot(x='pH', y='fixed acidity', style='^')

Out[22]:

<matplotlib.axes._subplots.AxesSubplot at 0x12fcbb7cdd8>

In [23]:

df.plot(x='density', y='fixed acidity', style='o')

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x12fcbbcada0>


```
4 0.99 100 101 102 103 104 density
```

In [15]:

```
plt.figure(figsize=(10,15))
for i, col in enumerate(list(df.columns.values)):
    plt.subplot(4,3,i+1)
    df.boxplot(col)
    plt.grid()
    plt.tight_layout()
```


except alcohol, all other features have outliers

In [16]:

```
plt.figure(figsize=(20,16))
for i, col in enumerate(list(df.columns.values)):
    plt.subplot(4,3,i + 1)
    sns.distplot(df[col],color='r',kde=True,label='data')
    plt.grid()
    plt.legend(loc='upper right')
    plt.tight_layout()
```


all the features are either left or rightly skewed except for the pH variable which is almost looking like normal distribution

In [24]:

```
sns.pairplot(data=df,kind='scatter',diag_kind='kde')
```

Out[24]:

<seaborn.axisgrid.PairGrid at 0x12fcbbb2e80>

