Why normalize inputs?

Hyperparameters To Tune

Learning Rate

Learning Rate

Try random values: Don't use a grid

Try random values: Don't use a grid

Coarse to fine

Picking hyperparameters at random

$$\rightarrow N^{Te7} = 50, \dots, 100$$

$$\frac{1}{50}$$

$$50$$

$$\frac{1}{100}$$

$$\frac{1}{100}$$

$$\frac{1}{100}$$

Appropriate scale for hyperparameters

$$d = 0.0001 \dots$$

$$\frac{10^{-14}}{10^{-14}} \frac{10^{-14}}{10^{-14}} \frac{10^$$

Andrew Ng

Babysitting one model

Panda <

Training many models in parallel

Caviar <

Andrew Ng

Adam optimization algorithm

RMSprop W., WZ, 42 Compute dw. do on count mini-both

Implementation details

On iteration *t*:

Compute dW, db on the current mini-batch

$$v_{dW} = \beta v_{dW} + (1 - \beta)dW$$

$$v_{db} = \beta v_{db} + (1 - \beta)db$$

$$W = W - \alpha v_{dW}, b = b - \alpha v_{db}$$

Hyperparameters:
$$\alpha, \beta$$

$$\beta = 0.9$$