ARTIFICIAL INTELLIGENCE

Informed Search AIMA Ch. 3.5 and 3.6

Lecture 4

Outline

- ♦ Greedy search
- \Diamond A* search
- ♦ Admissible heuristic
- \diamondsuit Optimality of A* search
- ♦ Consistent heuristic
- ♦ Relaxed problems

Revision: Tree search

```
function Tree-Search( problem, frontier) returns a solution, or failure
    Insert(Root-Node(problem.Initial-State), frontier)
    while not Empty?(frontier) do
        node ← Remove(frontier)
    if problem.Goal-Test applied to node.State succeeds return node
    for each action in problem.Actions(node.State) do
        Insert(Child-Node(problem, node, action), frontier)
    return failure
```

A strategy is defined by choosing the order of node expansion

Best-first search

What if we have problem-specific knowledge beyond the problem definition?

Idea: use an evaluation function f(n) for each node

- estimate of "desirability"
- \Rightarrow Expand most desirable unexpanded node

Implementation: frontier is a queue sorted in decreasing order of desirability

Special cases:

- greedy search
- A* search
- ⇒ Obtained by different desirability notions

Romania with step costs in km

Greedy search

Evaluation function h(n) (heuristic)

= estimated cost of getting from node n to the closest goal

E.g., $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

Typically, h(n) depends only on the state of n, and not on its parents

– e.g., the straight-line distance from n to Bucharest does not depend on how we got to n

Greedy search expands the node that **appears** to be closest to goal

- Resembles DFS in the way it prefers to follow a single path.
- ♦ Can go down an infinite path if we don't detect repeated states.

Properties of greedy search

Complete?? No: can get stuck in loops

- e.g., with Oradea as goal: $Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow \dots$
- Complete in finite state spaces with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ — keeps all nodes in memory

Optimal?? No

A^* search

Idea: avoid expanding paths that are already expensive

A* evaluation function: f(n) = g(n) + h(n)

- $g(n) = \cos t$ of the path from the start node to n
 - depends only on path cost, not on the heuristic
- h(n) =estimated cost of getting from node n to the closest goal
- f(n) =estimated total cost of a path through n to a goal

Admissible heuristic

Let $h^*(n)$ be the **true** cost of getting from n to the closest goal

Heuristic h(n) is admissible if $0 \le h(n) \le h^*(n)$ for each node n(Note: these two conditions imply $h(n_G) = 0$ for each goal node n_G)

 \Rightarrow I.e., h(n) is admissible if it never overestimates the cost of getting from n to the closest goal

E.g., $h_{SLD}(n)$ never overestimates the actual road distance

Theorem: A* tree search with an admissible heuristic is optimal

 \Rightarrow A* tree search with admissible heuristic is used throughout AI!

A* tree search example

Informed search

AIMA Ch. 3.5 and 3.6

A* tree search example

Informed search AIMA Ch. 3.5 and 3.6 Lecture 4

15

\mathbf{A}^* tree search example

\mathbf{A}^* tree search example

A* tree search example

A* tree search example

Optimality of A* tree search

Theorem: A* tree search with an admissible heuristic is optimal

Proof. Assume that a suboptimal goal node G_2 is in the queue, and consider an arbitrary unexpanded node n on a shortest path to an optimal goal G.

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, node G_2 will not be selected for expansion before n.

Properties of A* tree search

Complete?? Yes, unless there are infinitely many nodes with $f(n) \leq f(G)$

<u>Time</u>?? Exponential in [relative error in $h \times \text{length of solution.}]$

Space?? Keeps all nodes in memory

Optimal?? Yes

 A^* expands...

- all nodes with $f(n) < C^*$
- some nodes with $f(n) = C^*$
- no nodes with $f(n) > C^*$
- \Diamond Main difficulty with A*: memory requirements

Optimality of A* graph search

Reminder: graph search does not visit the same state twice

A* graph search is not optimal for an arbitrary admissible heuristic: if a suboptimal path to a node n is discovered first, the optimal path discovered later will not be considered

Solution 1: discard the more expensive path to n

Extra bookeeping is messy, but ensures optimality.

Solution 2: ensure that optimal paths are explored first, e.g., by using a **consistent** heuristic

Enforces a form of triangle inequality (stipulating that each side of a triangle cannot be longer than the sum of the other two).

Informed search

Consistent heuristic

A heuristic is consistent if

If h is consistent, then f(n') = g(n') + h(n') = g(n) + c(n, a, n') + h(n') = g(n) + c(n, a, n') + h(n') $\geq g(n) + h(n)$ $\geq g(n) + h(n)$ $\Rightarrow \text{I.e., along each path, } f(n) \text{ is } \textbf{nondecreasing.}$

- \Diamond Consistent \Rightarrow Admissible (but not the other way around)
- ♦ Graph search with a consistent heuristic is optimal

Optimality of A* graph search

Lemma: A^* expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

Informed search

Dealing with memory requirements: IDA*

 IDA^* combines iterative deepening with A^* :

- instead of depth, cutoff is the f-cost—that is, the value of g(n) + h(n)

```
function IDA*(problem) returns a goal node, or failure root \leftarrow \text{Root-Node}(problem.\text{Initial-State})
f\_limit \leftarrow h(root)
loop forever
goal, f\_limit \leftarrow \text{IDA-DFS}(problem, root, f\_limit)
if goal \neq failure \text{ return } goal
if f\_limit = \infty return failure
```

Informed search AIMA Ch. 3.5 and 3.6 Lecture 4

25

Dealing with memory requirements: IDA*

```
function IDA-DFS(problem, node, f_limit) returns a goal node, or next cost f\_node \leftarrow g(node) + h(node)

if f\_node > f\_limit return (failure, f\_node)

if problem.GOAL-TEST succeeds on node.STATE return (node, f_limit)

next\_f\_limit \leftarrow \infty

for each action in problem.ACTIONS(node.STATE) do

successor \leftarrow \text{CHILD-NODE}(problem, node, action)

goal, new\_f\_limit \leftarrow \text{IDA-DFS}(problem, successor, f\_limit)

if goal \neq failure \text{ return} (goal, new\_f\_limit)

next\_f\_limit \leftarrow \min(next\_f\_limit, new\_f\_limit)

return (failure, next\_f\_limit)
```

Avoids the overhead of keeping a sorted queue of nodes Progress can be slow if f-cost increases slowly

Alternatives: recursive best-first search; (simplified) memory-bounded A*

Deriving heuristic functions

For example, for the 8-puzzle:

 $h_1(n)$ = the number of misplaced tiles

 $h_2(n)$ = the total Manhattan distance

 i.e., the sum over all tiles of the number of moves needed to bring the tile into required position

$$\frac{h_1(S) =??}{h_2(S) =??} 6$$

$$\frac{h_2(S) =??}{4+0+3+3+1+0+2+1} = 14$$

Dominance

If $h_2(n) \ge h_1(n)$ for all n and both heuristics are admissible, then h_2 dominates h_1 and is better for search $-h_2$ is then closer to the actual cost $h^*(n)$

Typical search costs (for 8-puzzle):

$$d = 14$$
 IDS = 3,473,941 nodes
 $A^*(h_1) = 539$ nodes
 $A^*(h_2) = 113$ nodes
 $d = 24$ IDS $\approx 54,000,000,000$ nodes
 $A^*(h_1) = 39,135$ nodes
 $A^*(h_2) = 1,641$ nodes

Combining heuristics: given two admissible heuristics h_a and h_b ,

$$h(n) = \max(h_a(n), h_b(n))$$

is also admissible, and it dominates both h_a and h_b

Relaxed problems

Admissible heuristics can be derived from the **exact** solution cost of a **relaxed** version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move **anywhere**, then $h_1(n)$ is the cost of the shortest solution

If the rules are relaxed so that a tile can move to **any adjacent square**, then $h_2(n)$ is the cost of the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Informed search

AIMA Ch. 3.5 and 3.6

Relaxed problems: Example

Well-known example: traveling salesman problem (TSP) Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O(n^2)$ and is a lower bound on the shortest (open) tour

Subproblems and pattern databases

Exact cost of a solution to a subproblem gives an admissible heuristic

- e.g., in an 8-puzzle, h(n) might be the **exact cost** of moving tiles 1-4 into correct position (we disregard other tiles)

Subproblems: special kinds of relaxed problems

Exact cost of subproblem solutions is often stored in a pattern database

- we precompute and store the solutions to all possible subproblems
 - can be done by searching backwards from the goal
- -h(n) can be obtained via simple lookup

We can add h-values for **disjoint subproblems**

Informed search A

31

Disjoint subproblems

Subproblems of 8-puzzle:

- $-h_1$: move tiles 1–4 into appropriate position
- $-h_2$: move tiles 5–8 into appropriate position

We want to define h_1 and h_2 so that $h(n) = h_1(n) + h_2(n)$ is admissible

Not disjoint if the cost of a subproblem is the number of total steps

- moving tiles 1-4 into position involves moving tiles 5-8 as well
- -h(n) is not admissible as it may count some moves twice

Disjoint if in each subproblem we count only the moves of the target tiles

- $-\inf h_1(n)$ we count only the number of moves of tiles 1–4
- $\text{ in } h_2(n)$ we count only the number of moves of tiles 5–8

To reach a goal from n we clearly need at least $h_1(n) + h_2(n)$ steps

 $\Rightarrow h(n)$ is admissible

Summary

Heuristic functions estimate costs of shortest paths

Good heuristic can dramatically reduce search cost

Greedy best-first search expands n with lowest h(n)

- incomplete and not always optimal

A* tree search expands nodes n with lowest g(n) + h(n)

- complete and optimal if heuristic is admissible
- also optimally efficient (up to tie-breaks, for forward search)

A* graph search is optimal if heuristic is consistent

Admissible heuristic can be derived as solutions to relaxed problems

Subproblems can be seen as relaxed problems; can precompute solutions in a database

Informed search