Geometria Analítica: Prova 1

06 de abril de 2017

Nome: _____

Q:	1	2	3	4	5	Total
P:	10	20	25	20	25	100
N:						

Orientações gerais

- 1) As soluções devem conter o desenvolvimento e ou justificativa.

 Questões sem justificativa ou sem raciocínio lógico coerente não pontuam.
- 2) A interpretação das questões é parte importante do processo de avaliação. Organização e capricho também serão avaliados.
- 3) Não é permitido a consulta nem a comunicação entre alunos.
- 4) A prova pode ser feita com lápis ou caneta.
- 5) São cinco questões

Nos eixos coordenados

- (a) $\boxed{3}$ Esboce os pontos A = (1,0,0), B = (0,1/2,1/2) e C = (0,0,1).
- (b) $\boxed{3}$ Esboce os vetores \overrightarrow{AB} , \overrightarrow{BC} e \overrightarrow{BC} .
- (c) $\boxed{4}$ Calcule o vetor $\overrightarrow{AB} + \overrightarrow{BC} \overrightarrow{AC}$.

Responda:

- (a) $\boxed{10}$ Ache um vetor U tal que $U \times (\overrightarrow{i} + \overrightarrow{j}) = -\overrightarrow{i} + \overrightarrow{j}$ e $U \cdot (\overrightarrow{i} + \overrightarrow{j}) = 2$.
- (b) 10 Encontre um vetor V com norma $\sqrt{2}$, $\angle(V,(1,-1,0)) = 45^{\circ}$ e $V \perp (1,1,0)$.

Em \mathbb{R}^3 , considere os pontos A = (1, 2, 1), B = (2, 0, 1) e C = (1, 2, 0).

- (a) 10 Calcule a àrea do triângulo ABC.
- (b) 10 Encontre o seno do ângulo interno ao vértice A.
- (c) [5] Os pontos A, B e C são colineares? Justifique

Encontre as coordenadas do ponto D, se $\angle(EB, EA) = 90^{\circ}$, $\angle(OB, OE) = 60^{\circ}$ e a distância de D a E é três vezes a distância de B a D.

- (a) 10 Calcule o vetor $\overrightarrow{proj}_{\overrightarrow{OA}}\overrightarrow{OB}$.
- (b) 10 Use as propriedades da projeção para calcular o ponto D.

entre a roda e o plano inclinado tem coordenadas A=(5,3) e a roda tem radio $R=3\sqrt{2}$. A roda não cai devido à corda CE, onde C é o centro da roda e E é um ponto sobre o plano inclinado. Se $\angle(EA, CE) = 37^{\circ}$. Então:

- (a) 10 Encontre as coordenadas do ponto E.
- (b) |15| Ache as coordenadas da interseção do segmento CE com a borda da roda.

