北京工业大学 2021——2022 学年第二学期 《高等代数-2》期末考试试卷 A 卷

考试说明:解答本卷中证明题与计算题时必须给出必要的步骤,否则无分承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分 条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试, 做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

并	、诺人:		学号:_		班号	·:	
	·····································	<u>」</u> 大题,共	<u>八</u> 页,满分	分100分,考	·····	用卷后附加的约	, 充
		卷 面	成绩汇总	表(阅卷教师	万填写)		
	斯早		_	=	ш	冶 	

题号	_	1	=	四	总成绩
满分	15	21	48	16	
得分					

一、单项选择题(每小题 3 分,共 15 分)

- 1. 下面说法中,正确的个数是()
 - 1) 两个子空间正交,则它们的和一定是直和:
 - 2) 复数域作为实数域上的线性空间是 2 维的;
 - 3) 两个子空间和的维数等于它们各自维数的和;
 - 4) n 维欧氏空间 V 的每一个子空间 W 都存在唯一的正交补.
 - A) 4:
- B) 3:
- C) 2:
- D) 1.
- 2、下列关于有限维线性空间 V 中线性变换 T 的说法错误的是()
- A. T的值域与核都是T的不变子空间; B. T是单射当且仅当T是满射;
- C. T 在两组不同基下的矩阵相似:
- D. T 的值域与核的和等于 V.
- 3. 下列哪个条件不是n 阶复矩阵 A 可对角化的充要条件 ()
 - A) A有n个线性无关的特征向量;
- B) A 的初等因子都是一次的;

C	A 有	n 个 7	「同的	特征	信:

- A 的不变因子没有重根.
- 4. 下面这些λ-矩阵中, 可逆的是(

A)
$$\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$$
; B) $\begin{pmatrix} \lambda & \lambda \\ 1 & \lambda \end{pmatrix}$; C) $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$; D) $\begin{pmatrix} \lambda & 1 \\ 1 & \lambda \end{pmatrix}$.

5. 设A 是n 维欧式空间中某组基的度量矩阵,则以下不可能是A 的迹(trA, 即A的主对角线元素之和)的是()

D)
$$-1$$
.

二、填空题(每空3分,共21分)

2. $\c \c \varepsilon_1 = (1,0,0)$, $\c \varepsilon_2 = (0,1,0)$, $\c \varepsilon_3 = (0,0,1)$ $\c \c \eta_1 = (1,2,3)$, $\c \eta_2 = (0,1,2)$,

 $\eta_3 = (0,0,1)$ 是线性空间 \mathbb{R}^3 中两组基,则从第一组基到第二组基的过渡矩阵为

,向量 $\alpha = (1,3,6)$ 在第二组基下的坐标为

4. 若矩阵
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}$$
 与矩阵 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 相似,则 $x =$ _______

5. 若线性变换 A 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵为 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$,则 A 在基 $\varepsilon_3, \varepsilon_2, \varepsilon_1$ 下的矩阵

6. 设欧氏空间 $\mathbb{R}^{2\times 1}$ 中的内积为 $(\alpha,\beta)=\alpha^T A\beta$, $A=\begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$, 则基 $\varepsilon_1=\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\varepsilon_2=\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

得 分

三、计算题(共48分)

1. (12 分) 设P是一个数域,记V是由向量

$$\alpha_1 = (1, 0, 0, 0), \ \alpha_2 = (0, 1, 0, 0),$$

生成的 P^4 的子空间,即 $V_1 = L(\alpha_1, \alpha_2)$. 记 V_2 是由向量

$$\beta_1 = (0, 0, 1, 1), \ \beta_2 = (1, 1, 1, 1).$$

生成的 P^4 的子空间,即 $V_2 = L(\beta_1, \beta_2)$.

- (1) 求 $V_1 \cap V_2$ 的维数和一组基.
- (2) 求 $V_1 + V_2$ 的维数和一组基.

- 2. (12 分) 已知 $P^{2\times 2}$ 的线性变换 $\sigma(X) = MX$, $\forall X \in P^{2\times 2}$, $M = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$,
- (1) 求 σ 在基 $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_{12} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_{22} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ 下的矩阵.
- (2) 求 σ 的值域的维数和一组基,以及 σ 的核的维数和一组基.

3、(10 分) 设
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
为复系数矩阵,

- (1) 求 $\lambda E A$ 的各阶行列式因子;
- (2) 求 A 的初等因子;
- (3) 求 A 的若尔当标准形.

4. (14分)已知实二次型

$$f(x_1, x_2, x_3) = ax_1^2 + x_2^2 + x_3^2 - 2x_1x_2 - 2x_1x_3 - 2x_2x_3$$

的矩阵的特征值之和是 3.

- (1) 求参数 a, 并写出该实二次型的矩阵;
- (2) 用正交线性替换将上述二次型化为标准型.

得 分

四. 证明题 (16分)

1. $(8 \ \beta)$ 设 σ 是 4 维线性空间 V 上的线性变换, 且 σ 在基 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 下的矩阵为

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}.$$

证明: V 的包含 α_1 的 σ 不变子空间只有V 本身.

2. (8分) 设 σ 是 n维欧氏空间 V的对称变换,即 σ 是 V的线性变换,且对任意 $\alpha, \beta \in V$ 都有 $(\sigma(\alpha), \beta) = (\alpha, \sigma(\beta))$.

证明: σ 的像子空间 $Im\sigma$ 是 σ 的核子空间 $ker\sigma$ 的正交补子空间.

+	上 中工 小 大 学	2021-2022	学在第一学期	《高等代数-2》	期末老试试卷
4		2012 1 20122	——————————————————————————————————————	\\ \D \\ \T\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	**************************************

草 稿 纸

姓名:	 学号:	