Ensembles

Tim Lawson

November 19, 2023

Bias and variance

A classification error may occur when:

- ► Feature vectors/per-class distributions *overlap*
- ► The model has *high bias* (is not expressive enough)
- ► The model has *high variance*

(Flach 2012, p. 338-9)

Ensembles

- Learn multiple models from different versions of the data
 - Resample the instances and/or features
 - Reweight the instances
- ► Aggregate the models' predictions
 - Average the scores or probabilities
 - Choose the majority prediction
- Or, learn multiple types of model

Bagging methods

A bagging method learns multiple instances of a model from random subsets of the data and aggregates the instances' predictions.

- ► Pasting: random subsets of the instances are sampled without replacement (Breiman 1999)
- ▶ Bagging: random subsets of the instances are sampled with replacement (Breiman 1996)
- Random subspaces: random subsets of the features are sampled (Ho 1998)
- ► Random patches: random subsets of the instances and features are sampled (Louppe and Geurts 2012)

(1.11. Ensembles n.d., sec. 1.11.3)

Boosting methods

A boosting method learns multiple instances of a model from weighted versions of the data and aggregates the instances' predictions.

- ► AdaBoost: weights are updated based on the error of the previous model (Freund and Schapire 1997)
- ▶ Gradient-boosted trees: weights are updated based on the gradient of the loss function, e.g., LightGBM (Ke et al. 2017), XGBoost (Chen and Guestrin 2016)

(1.11. Ensembles n.d., sec. 1.11.1)

See also, e.g., arcing ("adaptively resample and combine") and random forests (Breiman 1998; Breiman 2001).

Boosting methods

Code

```
def get_model_weight(weighted_error: float) -> float:
    """ Get the weight of a model."""
    raise NotImplementedError
def update_weight(
    weight: float,
    label: int,
    prediction: int,
    weighted_error: float,
) -> float:
    """ Update the weight of an instance."""
    raise NotImplementedError
```

Multiple types of model

The predictions of different types of models can be aggregated by:

- Voting or averaging (soft voting)
- Stacked generalization (stacking): using the predictions as the feature of a meta-model
- Meta-learning: learn a model that predicts whether a model will perform well on a given task and data

References

- 1.11. Ensembles (n.d.). 1.11. Ensembles: Gradient Boosting, Random Forests, Bagging, Voting, Stacking.
- Breiman, Leo (1996). "Bagging Predictors". In: Machine Learning 24.2, pp. 123-140.
- (1998). "Arcing Classifier (with Discussion and a Rejoinder by the Author)". In: The Annals of Statistics 26.3, pp. 801–849.
- (1999). "Pasting Small Votes for Classification in Large Databases and On-Line".
 In: Machine Learning 36.1, pp. 85–103.
- (2001). "Random Forests". In: Machine Learning 45.1, pp. 5-32.
- Chen, Tianqi and Carlos Guestrin (2016). "XGBoost: A Scalable Tree Boosting System". In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794.
- Flach, Peter (2012). Machine Learning: The Art and Science of Algorithms That Make Sense of Data. 1st ed. Cambridge University Press.
- Freund, Yoav and Robert E Schapire (1997). "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting". In: *Journal of Computer and System Sciences* 55.1, pp. 119–139.
- Ho, Tin Kam (1998). "The Random Subspace Method for Constructing Decision Forests". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 20.8, pp. 832–844.

References

Ke, Guolin et al. (2017). "LightGBM: A Highly Efficient Gradient Boosting Decision Tree". In: Advances in Neural Information Processing Systems. Vol. 30. Curran Associates, Inc.

Louppe, Gilles and Pierre Geurts (2012). "Ensembles on Random Patches". In: *Machine Learning and Knowledge Discovery in Databases.* Ed. by Peter A. Flach, Tijl De Bie, and Nello Cristianini. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, pp. 346–361.

Definition

- ▶ $\{x_i \mid i \in 1..n\}, \vec{x_i} \in \mathbb{R}^{n_x}$ are instances
- $ightharpoonup ec{y}_i \in \{0,1\}^{n_y}$ is a label (one-hot vector)
- $ightharpoonup f^{(t)}: \mathbb{R}^{n_x}
 ightarrow \{0,1\}^{n_y} ext{ is a model}$
- $ightharpoonup ec{\hat{y}}_i^{(t)} = f^{(t)}(ec{x}_i) \in \{0,1\}^{n_y}$ is a prediction (one-hot vector)
- $lacksymbol{w}_i^{(t)} \in \mathbb{R}, \; w_i^{(0)} = rac{1}{n}, \; \sum_{i=1}^n w_i^{(t)} = 1 \; ext{is an instance weight}$
- $m{\epsilon}^{(t)} = \sum_{i: ec{y}_i^{(t)}
 eq ec{y}_i} w_i^{(t)} \in \mathbb{R}$ is the weighted error of model $f^{(t)}$
- lacktriangledown $lpha^{(t)} = f_{lpha}(\epsilon^{(t)}) \in \mathbb{R}$ is the weight of model $f^{(t)}$
- $lackbrack w_i^{(t+1)} = f_w(w_i^{(t)}, \ ec{y}_i, \ ec{\hat{y}}_i^{(t)}, \ \epsilon^{(t)})$ is the updated instance weight
- $ightharpoonup ec{\hat{y}_i} = \sum_{t=1}^T lpha^{(t)} f^{(t)}(x_i) \in \{0,1\}^{n_y}$ is the ensemble model prediction

Boosting

Derivation

- ▶ What should the weights of the models $f_{\alpha}/\text{get_model_weights}$ be?
- ▶ What should the weight updates f_w /update_weight be?

Assume that the weight updates f_w are:

$$w_i^{(t+1)} = \frac{w_i^{(t)}}{Z^{(t)}} \times \begin{cases} e^{-\alpha^{(t)}} & \text{if } \vec{y}_i^{(t)} = \vec{y}_i \\ e^{\alpha^{(t)}} & \text{otherwise} \end{cases}$$

This can be simplified with:

$$\delta(\vec{y_i}, \, \hat{\vec{y}}_i^{(t)}) = \begin{cases} 1 & \text{if } \vec{y}_i^{(t)} = \vec{y_i} \\ -1 & \text{otherwise} \end{cases}$$

Boosting

Derivation

The weight updates are:

$$w_i^{(t+1)} = w_i^{(t)} \frac{\exp(-\alpha^{(t)}\delta(\vec{y}_i, \, \hat{\hat{y}}_i^{(t)}))}{Z^{(t)}}$$

Each update is multiplicative:

$$w_i^{(T)} = w_i^{(0)} \prod_{t=1}^{T} \frac{\exp(-\alpha^{(t)} \delta(\vec{y}_i, \, \vec{\hat{y}}_i^{(t)}))}{Z^{(t)}} = \frac{1}{n} \frac{\exp(-\delta(\vec{y}_i, \, \hat{y}_i^{(t)}))}{\prod_{t=1}^{T} Z^{(t)}}$$

Each set of instance weights sums to 1:

$$1 = \sum_{i=1}^{n} w_i^{(t)} = \sum_{i=1}^{n} \frac{1}{n} \frac{\exp(-\delta(\vec{y_i}, \, \hat{\vec{y}}_i^{(t)}))}{\prod_{t=1}^{T} Z^{(t)}}$$

$$\prod_{t=1}^{T} Z^{(t)} = \frac{1}{n} \sum_{i=1}^{n} \exp(-\delta(\vec{y_i}, \, \vec{\hat{y}}_i^{(t)}))$$

 $\exp(-\delta(\vec{y_i}, \hat{\vec{y}}_i^{(t)})) \ge 1$ if x_i is misclassified by the ensemble, so $\prod_{t=1}^T Z^{(t)}$ is an upper bound on the ensemble error.

 $\prod_{t=1}^{T} Z^{(t)}$ could be minimized by minimizing the model error $(n)Z^{(t)}$:

$$nZ^{(t)} = \sum_{i=1}^{n} w_i^{(t)} \exp(-\alpha^{(t)} \delta(\vec{y_i}, \, \hat{\vec{y}}_i^{(t)}))$$

By the definitions of $\epsilon^{(t)}$ and $\delta(\vec{y_i}, \vec{\hat{y}_i^{(t)}})$:

$$nZ^{(t)} = \epsilon^{(t)} \exp(\alpha^{(t)}) + (1 - \epsilon^{(t)}) \exp(-\alpha^{(t)})$$

Therefore, $Z^{(t)}$ is minimized when:

$$\begin{split} \frac{\partial Z^{(t)}}{\partial \alpha^{(t)}} &= \epsilon^{(t)} \exp(\alpha^{(t)}) - (1 - \epsilon^{(t)}) \exp(-\alpha^{(t)}) = 0 \\ &\exp(2\alpha^{(t)}) = \frac{1 - \epsilon^{(t)}}{\epsilon^{(t)}} \end{split}$$

That is:

$$\alpha^{(t)} = \frac{1}{2} \ln \left(\frac{1 - \epsilon^{(t)}}{\epsilon^{(t)}} \right), \ Z^{(t)} = 2 \sqrt{\epsilon^{(t)} (1 - \epsilon^{(t)})}$$