Claims

- 1-32. (withdrawn)
- 33. (original) A sampler, comprising:
- a signal conductor,
- a sampling diode in electrical communication with the signal conductor; and
- a non-linear transmission line that includes a non-parallel waveguide and a plurality of varactors, the non-linear transmission line configured to deliver sampling strobe pulses to the sampling diode.
- 34. (original) The sample of claim 33, further comprising an intermediate frequency (IF) waveguide configured to electrically connect to the signal conductor as controlled by the sampling diode.
- 35. (original) The sampler of claim 34, further comprising a measurement system configured to receive portions of an electrical signal applied to the signal conductor from the IF waveguide.
- 36. (original) The sampler of claim 35, wherein the measurement system is configured to produce an equivalent-time representation of the electrical signal.

- 37. (original) The sampler of claim 34, further comprising a measurement system configured to receive portions of an electrical signal applied to IF waveguide from the signal conductor.
- 38. (original) The sampler of claim 37, wherein the measurement system is configured to produce an equivalent-time representation of the electrical signal.
- 39. (original) The sampler of claim 33, wherein the non-linear transmission line includes a plurality of Schottky mesa diodes.
- 40. (original) The sampler of claim 33, wherein the non-parallel waveguide includes at least one periodically repeated waveguide section.
- 41. (original) The sampler of claim 33, further comprising a strobe waveguide transition configured to receive the sampling strobe pulses from the non-linear transmission line and to deliver enhanced strobe pulses to the sampling diode.
 - 42. (original) The sampler of claim 33, wherein the non-parallel waveguide is a slotline.
- 43. (original) The sampler of claim 33, wherein the non-parallel waveguide is a coplanar stripline.

- 44. (original) A sampling circuit, comprising:
- a first waveguide configured to receive a sampling strobe and having a first impedance;
- a second waveguide configured to receive the sampling strobe from the first waveguide and having a second impedance, wherein the first impedance and the second impedance are configured to produce an enhanced sampling strobe; and

at least one diode electrically controlled by the sampling strobe and configured to deliver a sampled portion of an input signal to an output conductor.

- 45. (original) The sampling circuit of claim 44, wherein the second waveguide includes a termination configured to direct an inverted portion of the enhanced sampling strobe to the sampling diode, thereby establishing a sampling window.
- 46. (original) The sampling circuit of claim 45, wherein the first waveguide and the second waveguide are slotlines.
- 47. (original) The sampling circuit of claim 45, further comprising an IF waveguide configured to deliver the sampled portion to the output conductor.
 - 48-52. (withdrawn)

Respectfully submitted,

KLARQUIST SPARKMAN, LLP

Ву

Michael D. Jones

Registration No. 41,879

One World Trade Center, Suite 1600

121 S.W. Salmon Street Portland, Oregon 97204

Telephone: (503) 226-7391 Facsimile: (503) 228-9446