Econometrics Notes

Jiahui Shui

January 15, 2025

Contents	
1 Probability and Statistics Review 1.1 Probability Space . 1.2 Conditional Probability and Independence 1.3 Random Variable . 1.4 Convergence . 1.5 Law of Large Numbers . 1.6 Central Limit Theorem 1.7 Normal Distribution . 1.8 Hypothesis Testing .	2 2 2 2 2 2 3 4 4 4
1.9 Wald's Test	5

Conventions

 \mathbb{F} denotes either \mathbb{R} or \mathbb{C} .

 \mathbb{N} denotes the set $\{1, 2, 3, ...\}$ of natural numbers (excluding 0).

1 Probability and Statistics Review

What is statistics?

1.1 Probability Space

1.2 Conditional Probability and Independence

1.3 Random Variable

1.4 Convergence

Definition 1.1 (Convergence in Probability). Let $\{X_n\}, X$ be random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$. We say X_n converges to X in probability if, $\forall \varepsilon > 0$, $\mathbb{P}(|X_n - X| \ge \varepsilon) \to 0$ as $n \to \infty$. Or equivalently,

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X| < \varepsilon) = 1, \quad \forall \varepsilon > 0$$
 (1)

We denote it as $X_n \xrightarrow{p} X$.

Definition 1.2 (Almost Surely Convergence). Let $\{X_n\}$, X be random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$. We say X_n converges to X almost surely, if

$$\mathbb{P}(\lim_{n \to \infty} X_n = X) = 1 \tag{2}$$

This can be written as $X_n \xrightarrow{a.s.} X$

It is easy to say that $X_n \xrightarrow{a.s} X \Rightarrow X_n \xrightarrow{p} X$. But the opposite direction is not true. Counterexample: consider $((0,1],\mathcal{B}_{(0,1]},\lambda)$, where λ is Lebesgue measure. Let

$$\xi_n = \mathbf{1}_{(n/2^k - 1, (n+1)/2^k - 1)}, \quad 2^k \le n < 2^{k+1}$$

Then $\mathbb{P}(|\xi_n| > \varepsilon) \le 1/2^k \to 0$ but $\lim \xi_n(\omega)$ does not exist for any $\omega \in (0,1]$.

Definition 1.3 (Bounded in Probability). $\{X_n\}$ is said to be bounded in probability if $\forall \varepsilon > 0, \exists M > 0$ such that

$$\inf \mathbb{P}(|X_n| \le M) \ge 1 - \varepsilon \tag{3}$$

or equivalently, $\inf_n \mathbb{P}(|X_n| > M) < \varepsilon$

If $X_n \xrightarrow{p} 0$, the we denote it as $X_n = o_p(1)$.

If X_n is bounded in probability, then we denote it as $X_n = O_p(1)$. Moreover:

$$X_n = o_p(a_n) \Leftrightarrow \frac{X_n}{a_n} = o_p(1)$$

and

$$X_n = O_p(a_n) \Leftrightarrow \frac{X_n}{a_n} = O_p(1)$$

Exercise. Prove each of the followings:

- (i) $o_p(1) + o_p(1) = o_p(1)$
- (ii) $o_p(1) + O_p(1) = O_p(1)$
- (iii) $o_p(1)O_p(1) = o_p(1)$
- (iv) $(1 + o_p(1))^{-1} = O_p(1)$
- $(\mathbf{v}) \ o_p(a_n) = a_n o_p(1)$
- $(vi) O_p(a_n) = a_n O_p(1)$
- (vii) $o_p(O_p(1)) = o_p(1)$

Remark. (iii) is an implication of Slutsky theorem. Since $o_p(1)O_p(1) \xrightarrow{d} 0$, then it must converge to 0 in probability by proposition 1.6

A powerful theorem to prove convergence in probability:

Theorem 1.4 (Continuous Mapping Theorem). Suppose that a measurable function g is (a.s.) continuous, then

$$X_n \xrightarrow{p} X_{\infty} \Rightarrow g(X_n) \xrightarrow{p} g(X_{\infty})$$
 (4)

Moreover, it applies to a.s. convergence and convergence in distribution.

Definition 1.5 (Convergence in Distribution). We say $X_n \stackrel{d}{\to} X$ if the distribution $P_n := \mathbb{P}\{X_n \in \cdot\}$ converges to $P := \mathbb{P}\{X \in \cdot\}$. Or, equivalently

$$F_{X_n}(x) \to F(x)$$
, for any point x that $F(x)$ is continuous (5)

Another important result is that if for any $t \in \mathbb{R}$, the characteristic function $\phi_{X_n}(t) \to \phi_X(t)$, then $X_n \xrightarrow{d} X$. We can prove that

$$X_n \xrightarrow{a.s.} X \Rightarrow X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{d} X$$
 nce in distribution is: (6)

Another important result for convergence in distribution is:

Proposition 1.6. If $X_n \xrightarrow{d} c$ where c is a constant, then $X_n \xrightarrow{p} c$.

Proof. Let X = c, then $F_X(x) = \mathbf{1}_{\{x \geq c\}}$. Hence, $\forall \varepsilon > 0$

$$\lim_{n \to \infty} \mathbb{P}(|X_n - c| < \varepsilon) = \lim_{n \to \infty} \mathbb{P}(c - \varepsilon < X_n < c + \varepsilon)$$

$$= \lim_{n \to \infty} (F_{X_n}(c + \varepsilon) - F_{X_n}(c - \varepsilon))$$

$$= 1 - 0 = 1$$
(7)

Then we know that $X_n \xrightarrow{p} c$.

Lemma 1.7 (Marginal Convergence and Joint Convergence). • If $X_n \xrightarrow{a.s.} X$, $Y_n \xrightarrow{a.s.} Y$, then $(X_n, Y_n) \xrightarrow{a.s.} (X, Y)$

- If $X_n \xrightarrow{p} X, Y_n \xrightarrow{p} Y$, then $(X_n, Y_n) \xrightarrow{p} (X, Y)$
- If $X_n \xrightarrow{d} X, Y_n \xrightarrow{d} Y$ and X_n, Y_n are independent for all n, X, Y are independent, then $(X_n, Y_n) \xrightarrow{d} (X, Y)$
- If $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{d} c$, then $(X_n, Y_n) \xrightarrow{d} (X, c)$

Theorem 1.8 (Slutsky's Theorem). Let $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c$, where c is constant.

- $X_n + Y_n \xrightarrow{d} X + c$
- $X_n Y_n \xrightarrow{d} cX$
- $X_n/Y_n \xrightarrow{d} X/c$ if $c \neq 0$

Exercise. Let $\{X_n\}$ be independent with $X_n \sim \text{Gamma}(\alpha_n, \beta_n)$. $\alpha_n \to \alpha, \beta_n \to \beta$ for some positive real number α, β . Now, let $\hat{\beta}_n$ be a consistent estimator for β . Prove that $X_n/\hat{\beta}_n \xrightarrow{d} \text{Gamma}(\alpha, 1)$

Theorem 1.9 (Delta Method). First order expansion: Suppose that g is differentiable at c, for any sequence $0 < a_n \to \infty$, we have

$$a_n(\boldsymbol{X}_n - \boldsymbol{c}) \xrightarrow{d} \boldsymbol{X} \Rightarrow a_n[g(\boldsymbol{X}_n) - g(\boldsymbol{c})] \xrightarrow{d} [\nabla g(\boldsymbol{c})]^{\top} \boldsymbol{X}$$
 (8)

Theorem 1.10 (Prohorov's Theorem). If $X_n \xrightarrow{d} X$, then $X_n = O_p(1)$

Proof. $\forall \varepsilon > 0$, we can choose M_0 sufficiently large such that

$$\mathbb{P}(|X| > M_0) < \varepsilon) \tag{9}$$

Then, since $\mathbb{P}(|X_n| > M_0) \to \mathbb{P}(|X| > M_0)$, then we can choose n_0 such that for all $n \ge n_0$, $\mathbb{P}(|X_n| > M_0) < \varepsilon$. Now, we can select M_1 such that

$$\mathbb{P}(|X_i| > M_1) < \varepsilon, \quad \forall i = 1, \cdots, n_0 - 1 \tag{10}$$

Then let $M = \max(M_0, M_1)$ we have $\mathbb{P}(|X_n| > M) < \varepsilon$ for all n.

1.5 Law of Large Numbers

Theorem 1.11 (WLLN, Khintchin). If $\{X_n\}$ are i.i.d with $\mathbb{E}[X_1] = \mu < \infty$, then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{p} \mu \tag{11}$$

Theorem 1.12 (SLLN, Kolmogorov). If $\{X_n\}$ are i.i.d with $\mathbb{E}[X_1] = \mu < \infty$, then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{a.s.} \mu \tag{12}$$

1.6 **Central Limit Theorem**

Theorem 1.13 (Levy CLT). Suppose that $\{X_n\}$ i.i.d with mean μ and variance σ^2 , then

$$\sqrt{n}(\bar{X} - \mu) \xrightarrow{d} N(0, \sigma^2)$$
 (13)

where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

Normal Distribution 1.7

Consider multivariate normal distribution: $X \sim N(\mu, \Sigma)$, where $\mu \in \mathbb{R}^d, \Sigma \in \mathbb{R}^{d \times d}$. The moment generating function is

$$M_{\mathbf{X}}(\mathbf{t}) = \mathbb{E}[e^{\mathbf{t}'\mathbf{X}}] = e^{\mathbf{t}'\boldsymbol{\mu} + \frac{1}{2}\mathbf{t}'\boldsymbol{\Sigma}\mathbf{t}}, \quad \mathbf{t} \in \mathbb{R}^d$$
(14)

 $M_{\boldsymbol{X}}(\boldsymbol{t}) = \mathbb{E}[e^{\boldsymbol{t}'\boldsymbol{X}}] = e^{\boldsymbol{t}'\boldsymbol{\mu} + \frac{1}{2}\boldsymbol{t}'\boldsymbol{\Sigma}\boldsymbol{t}}, \quad \boldsymbol{t} \in \mathbb{R}^d$ For any $\boldsymbol{A} \in \mathbb{R}^{m \times d}$, we have $\boldsymbol{A}\boldsymbol{X} + \boldsymbol{b} \sim N(\boldsymbol{A}\boldsymbol{\mu} + \boldsymbol{b}, \boldsymbol{A}\boldsymbol{\Sigma}\boldsymbol{A}')$. The probability density function of \boldsymbol{X} is given by

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} \det(\mathbf{\Sigma})^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}, \quad \mathbf{x} \in \mathbb{R}^d$$
(15)

- If $X_1, \dots, X_n \sim N(0,1)$ i.i.d, then $X_1^2 + \dots + X_n^2 \sim \chi_n^2$.
- If $X \sim N(0,1)$ and $Q \sim \chi_n^2$ are independent, then $\frac{X}{\sqrt{Q}/n} \sim t_n$
- If $Q_1 \sim \chi_m^2, Q_2 \sim \chi_n^2$ are independent, then $\frac{Q_1/m}{Q_2/n} \sim F_{m,n}$

1.8 Hypothesis Testing

Consider $H_0: \theta \in \Theta$, this is called the null hypothesis. The alternative hypothesis is $H_1: \theta \in \Theta_1$, where $\Theta_1 = \Theta \setminus \Theta_0$. We have to decide between H_0 and H_1 . Let R denotes the reject region. A Test might have two types of mistake.

- Type I Error: Reject H_0 when $\theta \in \Theta_0$. $\mathbb{P}_{\theta}(X \in R)$ for $\theta \in \Theta_0$
- Type II Error: Accept H_0 when $\theta \in \Theta_1$. $\mathbb{P}_{\theta}(X \in \mathbb{R}^c)$ for $\theta \in \Theta_1$

In this notes, we will use φ to denote power function for a hypothesis test, i.e.

$$\varphi(\theta) = \mathbb{P}_{\theta}(\mathbf{X} \in R) \tag{16}$$

When $\theta \in \Theta_0$, then $\varphi(\theta) = \mathbb{P}(\text{Type I Error})$. If $\theta \in \Theta_1$, then $\varphi(\theta) = 1 - \mathbb{P}(\text{Type II Error})$

Definition 1.14. For $\alpha \in [0,1]$, a test with power function $\varphi(\theta)$ is a *size* α test if

$$\sup_{\theta \in \Theta_0} \varphi(\theta) = \alpha,$$

is a level α test if

$$\sup_{\theta \in \Theta_0} \varphi(\theta) \le \alpha$$

Definition 1.15. A test is unbiased if $\varphi(\theta') \geq \varphi(\theta'')$ for all $\theta' \in \Theta_1$ and $\theta'' \in \Theta_0$. A test is consistent if

$$\lim_{n \to \infty} \varphi(\theta) = 1, \quad \forall \theta \in \Theta_1$$

Definition 1.16. Let C be a class of tests. A test in class C with power function $\varphi(\theta)$ is a uniformly most powerful (UMP) class \mathcal{C} test if $\varphi(\theta) \geq g(\theta)$ for every $\theta \in \Theta_1$ and every $g(\theta)$ that is a power function of a test in class \mathcal{C} . Generally we take C as the class of all level α test.

Theorem 1.17 (Neyman-Pearson Lemma). Consider testing $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$, where the pdf or pmf corresponding to θ_i is $f(x|\theta_i), i = 0, 1$. Then

$$R = \{x : f(x|\theta_1) > kf(x|\theta)\}\$$

for some $k \geq 0$ and $\alpha = \mathbb{P}_{\theta_0}(X \in R)$ is a UMP level α test.

Definition 1.18 (p-value). A p-value p(X) is a test statistic satisfying $0 \le p(x) \le 1$ for every sample point x. Small values of p(X) give evidence that H_1 is true. A p-value is valid if, for every $\theta \in \Theta_0$ and every $0 \le \alpha \le 1$,

$$\mathbb{P}_{\theta}(p(X) \le \alpha) \le \alpha \tag{17}$$

If p(X) is a valid p-value, then it is easy to construct a level α test based on this statistics. We rejects H_0 if and only if $p(X) \leq \alpha$.

Theorem 1.19. Suppose that T(X) is a test statistic such that large values of T give evidence that H_1 is true. For each sample point x, define

$$p(x) = \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}(T(X) \ge T(x)) \tag{18}$$

Then p(X) is a valid p-value.

Now, suppose that β is a parameter, and $\hat{\beta}$ is an estimator of β . Moreover, we assume that $\hat{\beta}$ is consistent and asymptotically normal, i.e.

$$\hat{\beta} \xrightarrow{p} \beta$$
, $\sqrt{n}(\hat{\beta} - \beta) \xrightarrow{d} N(0, \sigma^2)$

Also, suppose that $\hat{\sigma}^2 \xrightarrow{p} \sigma^2$ is an estimator for asymptotical variance. Now we want to test the hypothesis: $H_0: \beta = c$, where c is a constant. To this end, we can employ t-test:

$$T = \frac{\hat{\beta} - c}{\operatorname{se}(\hat{\beta})} = \frac{\hat{\beta} - c}{\hat{\sigma}/\sqrt{n}} \tag{19}$$

Then under the null, T is asymptotically normal since by Slutsky's theorem, we have

$$\frac{\hat{\beta} - c}{\hat{\sigma}/\sqrt{n}} = \frac{1}{\hat{\sigma}}\sqrt{n}(\hat{\beta} - \beta) \xrightarrow{d} N(0, 1)$$
(20)

Then let the rejection region be

$$R := \{ |T| \ge z_{\alpha/2} \}, \quad z_{\alpha/2} := \Phi^{-1}(1 - \alpha/2)$$

 $R:=\{|T|\geq z_{\alpha/2}\},\quad z_{\alpha/2}:=\Phi^{-1}(1-\alpha/2)$ where $\Phi(x)$ is standard normal cdf. Also, we can construct confidence interval by test inversion:

$$CI_{1-\alpha} = \left[\hat{\beta} - z_{\alpha/2} \operatorname{se}(\hat{\beta}), \hat{\beta} + z_{\alpha/2} \operatorname{se}(\hat{\beta}) \right]$$
(21)

Wald's Test 1.9