



# DEPARTMENT OF PHYSICS AND NANOTECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

18PYB103J – Semiconduuctor Physics

### Joint density of states

(Conservation of energy and momenta of electron with photon interacts)





#### **Optical Joint Density of States**

How many states are possible for photon interaction of energy  $h\gamma$  in valence and conduction band is given by optical joint density of states. To determine the density of state  $\rho\gamma$  with which a photon of energy  $h\gamma$  interacts under a condition of energy and momentum conservation in a direct band gap semiconductor.

To approximate this relation for a direct bandgap semiconductor by two parabolas,

$$E_{2} = E_{c} + \frac{\hbar^{2} K^{2}}{2m_{c}}$$

$$E_{1} = E_{v} - \frac{\hbar^{2} K^{2}}{2m_{v}}$$

$$h\gamma = E_2 - E_1$$

$$h\gamma = E_g + \frac{h^2 K^2}{2m_v}$$

$$K^2 = \frac{2m_v}{\hbar^2} \left(h\gamma - E_g\right)$$







Here, substitute the value of  $K^2$  in eq (1) & eq (2)

$$E_2 = E_c + \frac{\mathrm{m_v}}{m_c} \left( \mathrm{h} \gamma - \mathrm{E_g} \right)$$

Similarly,

$$E_1 = E_v - \frac{\mathrm{m_v}}{m_c} \left( \mathrm{h} \gamma - \mathrm{E_g} \right)$$

The one-to-one correspondence between  $E_2$  and  $\gamma$  permits us to readily relative  $\rho$  ( $\gamma$ ) to the density of states  $\rho_c(E_2)$  in conduction band by use of the incremental relation  $\rho_c(E_2) dE = \rho (\gamma) d\gamma$ 

Here  $\rho_c(E_2)$ dE is no of states between  $E_2$  and dE<sub>2</sub> and  $\rho$  ( $\gamma$ ) d $\gamma$  is the number of states per unit volume of energy between h $\gamma$  and h( $\gamma$ +d $\gamma$ ) to interact.

Therefore,

$$\rho(\gamma) = \rho_c(E_2) \frac{dE}{d\gamma}$$







$$\rho(\gamma) = \frac{(2m_v)^{3/2}}{\pi\hbar^2} (h\gamma - E_g)^{1/2} \text{ for } h\gamma \ge E_g$$

The density of states which a photon of energy h $\gamma$  interact increases with h $\gamma \geq E_g$  in accordance with a square root law. Similarly One-to-One correspondence between  $E_1$  and  $\rho(\gamma)$  in equation, together with  $\rho(\gamma)$   $E_1$ , results in an expression for  $\rho(\gamma)$  identical.





#### Transition Rate due to electron-photon interaction

The interaction rate for t absorption of a photon is shown in figure. Assuming an electrons is initially at the solid state a is given by Fermi's Golden rule (using time-dependent perturbation theory)

$$W_{abs} = \frac{2\pi}{\hbar} |\langle b|H'(r)|a \rangle|^2 \delta (E_b - E_a - \hbar\omega)$$

Absorption

Emission







In general Transition probability for Fermi's golden rule

$$\lambda_{if} = \frac{2\pi}{\hbar} |M_{if}|^2 Pf$$

Where,  $|M_{if}|^2$  - is Matrix element for interaction  $|M_{if}|^2 = |\langle b|H'(r)|a\rangle|^2$  and,

Pf - is the number of continuum state per unit volume or density of final state.

$$(Pf = \delta (E_b - E_a - \hbar \omega).$$

Where  $E_b > E_a$  has been assumed. The total upward transition rate per unit volume(S<sup>-1</sup>, cm<sup>-3</sup>) in the crystal taking into account the probability that state a is occupied and state b is empty is

$$R_{a-b} = \frac{2}{v} \sum_{K_a} \sum_{K_b} \frac{2\pi}{\hbar} |H'_{ba}|^2 \delta \left( E_b - E_a - \hbar \omega \right) f_a \left( 1 - f_b \right)$$





In general Transition probability for Fermi's golden rule

$$\lambda_{if} = \frac{2\pi}{\hbar} \left| M_{if} \right|^2 Pf$$

Where,  $\left|M_{if}\right|^2$  - is Matrix element for interaction  $\left|M_{if}\right|^2 = |\langle b|H'(r)|a\rangle|^2$  and,

Pf – is the number of continuum state per unit volume or density of final state.

$$(Pf = \delta (E_b - E_a - \hbar \omega).$$

Where  $E_b > E_a$  has been assumed. The total upward transition rate per unit volume(S<sup>-1</sup>, cm<sup>-3</sup>) in the crystal taking into account the probability that state a is occupied and state b is empty is





$$R_{a-b} = \frac{2}{V} \sum_{K_a} \sum_{K_b} \frac{2\pi}{\hbar} |H'_{ba}|^2 \delta (E_b - E_a - \hbar \omega) f_a (1 - f_b)$$

Where we sum over the initial and final states and assume that the Fermi-Dirac distribution  $f_a$  is the probability that the state a is occupied. A similar expression holds for  $f_b$  with  $E_a$  replaced by  $E_b$ , and  $(1 - f_b)$  is probability that the state b is empty. The prefactor 2 takes into account the sum over spins, and the matrix element  $H'_{ba}$  is given by

$$H'_{ba} = |\langle b|H'(r)|a \rangle|^2 = \int \psi^*(r)H'(r)\psi_a(r)d^3r$$

Similarly, The transition rate for the emission of a photon (fig.2) if an electron is initially at state b is.

$$W_{\text{ems}} = \frac{2\pi}{\hbar} |\langle \alpha | H'^{+}(r) | b \rangle|^{2} \delta (E_{a} - E_{b} + \hbar \omega)$$





The downward transition rate per unit volume (S-1 cm-3) is

$$R_{b-a} = \frac{2}{v} \sum_{K_a} \sum_{K_b} \frac{2\pi}{\hbar} |H'^{+}_{ab}|^2 \delta (E_a - E_b + \hbar \omega) f_b (1 - f_a)$$

Using the even property of the delta function,  $\delta(-x) = \delta(x)$  and  $|H'_{ba}| = |H'^{+}_{ab}|$ .

The net upward transition rate per unit volume can be written as,

$$R = R_{a \to b} - R_{b \to a}$$

$$R = \frac{2}{V} \sum_{K_a} \sum_{K_b} \frac{2\pi}{\hbar} |H'_{ba}|^2 \delta (E_b - E_a - \hbar \omega) (f_a - f_b)$$





### Optical Gain in Semiconductor

Each downward transition generator a new photon while upward absorbs one. If the number of downward transition for seconds exceeds the number of upward transition there will be a net generation of photons and optical gain can be achieved. The condition for optical gain is net stimulated emission is greater than absorption process.







### **Optical Gain in Semiconductor**

Optical gain in the material is attained when we injected a carrier density beyond E2 such that the Quasi-Fermi level are separated by an energy greater (E<sub>fa</sub>-E<sub>fb</sub>). The process of stimulated downward transition is called optical gain and the process of upward transition is called optical loss. The simple formula for optical gain is

$$g \equiv \frac{1}{\phi} \frac{d\phi}{dz}$$

Where  $\varphi$  is photon flux (number of photons per cross section area unit in the unit time) and Z is the direction of electromagnetic field propagation is equal to

$$R = R_{a \to b} - R_{b \to a}$$





#### **Optical Gain in Semiconductor**

So the resultant gain we explained as

$$g = \frac{1}{\omega} \cdot \frac{2}{V} \sum_{K_a} \sum_{K_b} \frac{2\pi}{\hbar} |H'_{ba}|^2 \delta (E_a - E_{ab} + \hbar \omega) (f_b - f_a)$$

The gain and absorption (Loss) profiles as a function of energy is shown in Fig.

#### **Optical Gain Curve**







### **Density of States for Photons**

To define the density of states for photons we assume that the photon is enclosed in a large cube of side length L, such that volume is  $V = L^3$ . The wave function of photon is a plane wave  $e^{ik \cdot \vec{r}}$ . We use the periodic boundary conditions that the wave function should be periodic in the x,y and z directions with a period L.

Because of the wave function has to be zero at boundaries. We have Quantization of wave number

L. 
$$K = n2\pi$$

$$K_x = 1 \frac{2\pi}{L}$$
;  $K_y = 1 \frac{2\pi}{m}$ ;  $K_z = 1 \frac{2\pi}{n}$ 

The volume of state in K space is  $(\frac{2\pi}{L})^3$ 





### **Density of States for Photons**

Let us look at the integral using the number of states with a differential volume in the K-space.

$$\frac{d^3K}{(\frac{2\pi}{L})^3} = \frac{K^2dkd\Omega}{(\frac{2\pi}{L})^3}$$

Where  $d\Omega$  is the differential solid angle.

Therefore

$$N(E_{21}) = \frac{2}{V} \sum_{K} \delta(E_2 - E_1 - E_k)$$

$$N(E_{21}) = 2 \int \frac{K^2 dk d\Omega}{(2\pi)^3} \delta(E_2 - E_1 - E_k)$$

$$E_k = \hbar \omega_k = \frac{\hbar KC}{n_r}$$



Where,  $C/n_r$  is the speed of light in medium with refractive index of  $n_r$ . Here integration over solid angle is  $4\pi$ .





### **Density of States for Photons**

$$\begin{split} K &= \frac{E_k n_r}{\hbar C} \\ dK &= \frac{n_r 2\pi}{\hbar C} dE_k \\ N &(E_{21}) = 2 \int \frac{K^2 dk d\Omega}{(2\pi)^3} \delta \ (E_{21} - E_k) \\ N &(E_{21}) = 2 \int \frac{K^2}{(2\pi)^3} \frac{n_r 2\pi}{\hbar C} dE_k (4\pi) \delta \ (E_{21} - E_k) \\ N &(E_{21}) = 2 \int \frac{1}{(2\pi)^3} \left( \frac{E_k n_r 2\pi}{\hbar C} \right)^2 \frac{n_r 2\pi}{\hbar C} dE_k (4\pi) \delta \ (E_{21} - E_k) \\ N &(E_{21}) = \frac{2 \times 4\pi \times (2\pi)^3 (n_r)^3}{(2\pi)^3 (\hbar C)^3} \int (E_k)^3 dE_k \delta \ (E_{21} - E_k) \\ N &(E_{21}) = \frac{8\pi (n_r)^3}{(\hbar C)^3} E_{21}^2 \left[ \hbar = \frac{\hbar}{2\pi} ; h = \hbar 2\pi \right] \\ N &(E_{21}) = \frac{8\pi E_{21}^2 (n_r)^3}{8\pi^3 \hbar^3 C^3} = \frac{E_{21}^2 (n_r)^3}{\pi^2 \hbar^3 C^3} \end{split}$$

Which is the number of states with photon energy  $E_{21}$  per unit volume per energy interval.





## Thank you