CLASSIFICATION PERIODIQUE DES ELEMENTS

I- Historique de la classification périodique

Classification de MENDELEIEV

Première classification périodique des éléments proposée par Mendeleïev entre 1869 et 1871 Classement selon la masse croissante de moins de 70 éléments connus.

			Ti=50 V=51 Cr=52 Mn=55 Fe=56	Zr=90 Nb=94 Mo=96 Rh=104,4 Ru=104,4	
				Pd=106,6	
H=1			Cu=63,4	Ag=108	Hg=200
	Be=9.4	Mg=24		Cd=112	
	B=11	AI=27,4	?=68	Ur=116	Au=197?
	C=12	Si=28	?=70	Sn=118	
	N=14	P=31	As=75	Sb=122	Bi=210?
	O=16	S=32	Se=79,4	Te=128?	
	F=19	CI=35,5	Br=80	J=127	
Li=7	Na=23	K=39	Rb=85,4	Cs=133	TI=204
		Ca=40	Sr=87,6	Ba=137	Pb=207
		?=45	Ce=92		
		?Er=56	La=94		
		?Yt=60	Di=95		
		?In=75,6	Th=118?		

Classification officielle (IUPAC)

Classement des éléments selon leur numéro atomique (Z) croissant

tableau périodique (réduit aux 18 premiers éléments)

II- Constitution du tableau périodique

1- Période d'un élément

La période d'un élément correspond au numéro de sa couche la plus externe

Exp 1:
$$_{13}$$
Al
 $_{13}$ Al : $1s^22s^2 2p^6/3s^2 3p^1$
 $P=3$
Exp 2: $_{26}$ Fe
 $_{26}$ Fe : $1s^2 2s^2 2p^6 3s^2 3p^6/4s^2 3d^6$
 $P=4$

2- Groupe ou colonne

Le numéro du groupe ou de la colonne est représenté par des chiffres romains. I, II, IIIVIII

Numéro de colonne (

Nombre d'électrons de valence

Exp 2:

$$_{20}$$
Ca: $[_{18}$ Ar]4s² 2 e⁻ de valence \longrightarrow Gp II

Les éléments d'un même groupe ont la même configuration externe

a- Subdivision des groupes

Les 18 groupes sont divisés en deux sous groupes; A et B

Sous groupe A: Les e de valence sont de type s ou p Exemple: $_5B: 1s^2/2s^2 2p^1$ groupe III_A

Sous groupe B: Les e⁻ de la s/c d interviennent dans la couche de valence

Exemple: $_{21}$ Sc : $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2 \ 3d^1$ groupe III_B

b-Position des groupes

Remarque 1: attribution des groupes I_B et II_B

²⁹Cu:
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$$

 $1e^-$ de valence sur la $4s$ _____ groupe I_B

$$ns^{1} (n-1)d^{10} = (n-1)d^{10} ns^{1} \longrightarrow groupe I_{\mathbf{B}}$$

$$_{30}$$
Zn: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰

$$2 e^{-}$$
 de valence sur la $4s \longrightarrow II_{B}$

$$ns^{2} (n-1)d^{10} = (n-1)d^{10} ns^{2} \longrightarrow groupe II_{B}$$

Qd la s/c d est saturée ses e ne sont plus comptabilisés comme e de valence

Remarque 2: La triade

Les éléments dont la configuration externe est :

$$ns^{2} (n-1)d^{6}$$

 $ns^{2} (n-1)d^{7}$
 $ns^{2} (n-1)d^{8}$

Groupe VIII_B

3-LES BLOCS

Bloc s: ns¹ et ns²

Bloc p: ns^2np^x (avec: $1 \le x \le 6$)

III- Les familles chimiques

Groupe I_A ; les alcalins : ns^1

métaux mous très réactifs (Li est utilisé dans des médicaments pour traiter les états dépressifs)

Groupes I_B à $VIII_B$: les métaux de transition $ns^2(n-1)d^x$ (ou ns^1) avec $1 \le x \le 10$.

Importance biologique: oligoéléments essentiels (actions des enzymes, et des pigments).

Groupe III_A: la famille du bore (B) ns²np¹

Groupe VI_A : la famille de l'oxygène ou chalcogènes ns² np⁴,

Groupe VIII, : les gaz rares ns²np⁶, sauf pour He (1 s²)
Ils présentent une grande inertie chimique.

Groupe VII_A: les halogènes ns² np⁵ Toxiques et bactéricides (Produits désinfectants) 18 VIIIa 2 14 13 15 16 17 He Illa IVa Va Vla VIIa 5 7 10 6 8 9 C В N О Ne 13 14 15 16 17 18 AI CI Si P S Ar 31 32 33 34 35 36 Kr Ga Ge As Se Br 49 50 51 52 53 54 Sb In Sn Te 1 Xe 81 82 83 84 85 86 TI Pb Bi Po At Rn

Configuration électronique abrégée

Structure électronique du 26 Fe

$$\frac{1s^{2} 2s^{2}p^{6} 3s^{2}3p^{6} 4s^{2} 3d^{6}}{\underset{18}{\text{Ar}}} \longleftarrow [_{18}\text{Ar}] 4s^{2} 3d^{6}$$

Structure électronique du 16S

$$1s^{2} 2s^{2}p^{6} 3s^{2}3p^{4} \longrightarrow [_{10}Ne] 3s^{2}3p^{4}$$