[W23] CMPUT466/566 Final. Name (print):	ID (number):	P. 1/4 (two-sided)
Q1 [5x2=10 pts] Use machine learning terminological	gies to explain the following	phenomenon

Scenario	Fill in the blank with "overfitting" or "underfitting"	
A student can solve every written assignment question after checking reference solutions, but the student fails to solve final exam questions.	This is <u>overfitting</u> .	
A student can solve neither written assignment questions nor final exam questions.	This is <u>underfitting</u> .	

Note: No explanation is needed.

$$y_i = \frac{\exp\{s_i\}}{\sum_i \exp\{s_j\}}$$

Q2 [3x5=15 pts]. Consider $\mathbf{y} = \operatorname{softmax}(\mathbf{s})$ for $\mathbf{y}, \mathbf{s} \in \mathbb{R}^K$, where $y_i = \frac{\exp\{s_i\}}{\sum_j \exp\{s_j\}}$ (a) Is it true that $\operatorname{softmax}(\mathbf{s}) = \operatorname{softmax}(\mathbf{s})$?

- (a) Is it true that $\operatorname{softmax}(s) = \operatorname{softmax}(cs)$ for any positive constant c? (b) What happens if c > 1?
- (c) What happens if 0 < c < 1? **Note**: A few words would suffice. No proof is needed.

Q3 [15 pts]. Directly adding a lower layer is common in modern neural architectures. Let $\mathbf{y} \in \mathbb{R}^d$ be computed by $y = x + \tilde{y}$, where $\tilde{y} = f(Wx + b)$, $f(\cdot)$ is a scalar non-linear activation function. When fed with a vector, $f(\cdot)$ is applied to every element of the vector.

- a) ${m y}$ is a d-dimensional vector. Infer the dimensions of $\tilde{{f y}}, {f W}, {f b}$, and ${f x}$.
- b) Suppose $\overline{\partial y_i}$ is known for $i=1,\cdots,d$, where y_i is an element of y. Derive ∂x_j for some given j. Note: The derivative of f evaluated at z, denoted by f'(z), can be directly used in the solution. Give key derivation steps.

a)
$$\tilde{g}$$
, b , $x \in \mathbb{R}^d$

$$W \in \mathbb{R}^{d \times d}$$

b) We have
$$\frac{\partial J}{\partial x_{j}} = \frac{\partial J}{\partial y_{j}} + \sum_{i} \frac{\partial J}{\partial y_{i}} \cdot \frac{\partial \tilde{y}_{i}}{\partial x_{j}}$$

$$= \frac{\partial J}{\partial y_{j}} + \sum_{i} \frac{\partial J}{\partial y_{i}} \cdot f'(w_{i}^{T}x + b_{i}) w_{ij}$$

Wy is the jth row of W as a solumn vector

Name (print): Student ID (number):	Page 2/4

Q4 [30 pts]. Consider a dataset $\mathcal{D}=\{x^{(m)}\}_{m=1}^M$, where each $x^{(m)}\in\{0,1\}$ is iid sampled from $\mathrm{Bernoulli}(\pi)$, meaning that $\Pr[x^{(m)}=1]=\pi$, $\Pr[x^{(m)}=0]=1-\pi$.

- a) Give a formula of the probability of a sample $x^{(m)}$, where $x^{(m)}=1$ and $x^{(m)}=0$ cases are unified.
- b) Consider a Beta prior $\pi \sim \mathrm{Beta}(\alpha,\beta)$, i.e., $p(\pi;\alpha,\beta) = C(\alpha,\beta)\pi^{\alpha}(1-\pi)^{\beta}$, where $\alpha,\beta>0$. $C(\alpha,\beta)$ is a function depending on α and β , but is a constant with respect to π . $C(\alpha,\beta)$ serves as a normalizing factor to make $p(\pi;\alpha,\beta)$ a valid distribution over π . Compute the posterior distribution $p(\pi|\mathcal{D})$, where the normalizing factor need not be expressed explicitly. Show that the posterior also follows a Beta distribution $\mathrm{Beta}(\alpha',\beta')$. What are α' and β' ?
- c) Give the max a posterior estimation of π under the above prior.

a).
$$P(x^{(m)} | \pi) = \prod_{m=1}^{p} \pi^{x^{(m)}} (1-\pi)^{1-x^{(m)}}$$

b)
$$p(\pi i \mathcal{D}; \alpha, \beta) \propto p(\pi) \cdot p(\mathcal{D}|\pi)$$

$$= C(\alpha, \beta) \pi^{\alpha} (i-\pi)^{\beta} \prod_{m=1}^{M} \pi^{\chi^{(m)}} (i-\pi)^{1-\chi^{(m)}}$$

$$= C(\alpha, \beta) \cdot \pi^{\alpha} + \sum_{m=1}^{M} \chi^{(m)} (i-\pi)^{\beta+M-\sum_{m=1}^{M} \chi^{(m)}}$$

C) Nativity the MLE is to maximize
$$T_1 \stackrel{M}{\underset{m=1}{\longrightarrow}} x^{(m)}$$
 (1-T) $M - \stackrel{M}{\underset{m=1}{\longrightarrow}} x^{(m)}$ and gields $T_1 M = \frac{M}{M} x^{(m)}$.

we have MAP to maximize π $(1-\pi)$ $\beta + M - \sum_{n=1}^{M} \chi^{(n)}$

and yield
$$\frac{1}{11 \text{ MAP}} = \frac{\chi + \sum_{m=1}^{M} \chi^{(m)}}{\chi + \chi + \chi}$$

Name (print):	C4d.a	ent ID (number):	Page 3/4
name (bunb)	Singe	ani ir) (numben)	Page 5/4
. tao (pt).		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 . 4900,

Q5 [30 pts]. Consider any continuous function $f: \mathbb{R}^d \to \mathbb{R}$. We would like to iteratively update the input $\mathbf{x}_k \in \mathbb{R}^d$ along a direction $\mathbf{p}_k \in \mathbb{R}^d$ with step size $\alpha_k > 0$, i.e., $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$ for the kth iteration step. For notational purposes, we denote the gradient vector by $\mathbf{g}_k = \nabla_{\mathbf{x}} f(\mathbf{x}_k)$ and the Hessian matrix by $\mathbf{H}_k = \nabla_{\mathbf{x}}^2 f(\mathbf{x}_k)$.

- a) In the lecture, we showed that, if $\mathbf{p}_k = -\mathbf{g}_k \neq \mathbf{0}$, then there exists some small α_k such that $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$. In other words, $-\mathbf{g}_k$ is a descending direction if not zero. Prove that any direction \mathbf{p}_k satisfying $\mathbf{p}_k^{\top}\mathbf{g}_k < 0$ is a descending direction.
- b) Suppose f is a quadratic function with the form of $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{Q}\mathbf{x} \mathbf{b}^{\top}\mathbf{x}$, where \mathbf{Q} is a symmetric and positive-definite matrix. Show that Newton's direction $-\mathbf{H}_k^{-1}\mathbf{g}_k$ with step size $\alpha_k = 1$ will move \mathbf{x}_k to the global optimum of f in one step. **Hint:** In this case, $\mathbf{H}_k = \mathbf{Q}$ and $\mathbf{g}_k = \mathbf{Q}\mathbf{x}_k \mathbf{b}$.
- c) Now consider a convex function f (not necessarily quadratic). Prove that Newton's direction $-\mathbf{H}_k^{-1}\mathbf{g}_k$ is a descending direction, i.e., with a small enough α_k , we will have $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$.

Cheatsheet: Taylor's theorem suggests that, for a small enough α_k ,

$$\begin{split} f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) &= f(\mathbf{x}_k) + \alpha_k \mathbf{p}_k^\top \mathbf{g}_k + O(\alpha_k^2), \text{ and} \\ f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) &= f(\mathbf{x}_k) + \alpha_k \mathbf{p}_k^\top \mathbf{g}_k + \frac{1}{2} \alpha_k^2 \mathbf{p}_k^\top \mathbf{H}_k \mathbf{p}_k + O(\alpha_k^3) \end{split}$$

where $O(\cdot)$ is a higher-order small term.

a)
$$f(x_{k+1}) = f(x_k) + \alpha_k p_k^T g_k + O(\alpha_k^2)$$

Thus, $f(x_{k+1}) < f(x_k)$
b) Newton's direction $p_k^{\text{Newton}} = -H_k^{-1} g_k = -Q^{-1}(Qx_k - b) = -x_k + Q^{-1} b$
 $x_{k+1} = x_k + \alpha_k^{\text{Newton}} \cdot p_k^{\text{Newton}} = x_k - x_k + Q^{-1} b = Q^{-1} b$.
The global opinum of $f(x)$ can be couputed by $Q_k f(x) = Qx - b \stackrel{\text{set}}{=} 0 \Rightarrow x^* = Q^{-1} b$
Thus $x_{k+1} = x^*$
c). $(-H_k^{-1} g_k)^T g_k = -g_k^T H_k^{-1} f_k < 0$ satisfying a)

Name (print): Studer	t ID (number):	Page 4/4
----------------------	----------------	----------

Scrap paper. May be detached. Additional paper is available upon request as appropriate.

May be used as answer sheets if you

- Print your name and ID on every answer sheet (including additional sheets) submitted (1 bonus mark)
- Mark your solution and corresponding problem number clearly
- Submit the sheet by the end of the exam