PRACTICE PROBLEMS FOR EXAM II

Below are exercises to aid in your studying. If you are able to do all of these problems, then you are in a good position walking into the exam. This list of problems is longer than the exam will be and contains questions much harder the exam will ask. Furthermore, this is a list of practice problems, and only contains exercises for solving ODEs & IVPs as well as approximations. On the exam you will not only be asked to show that you can solve such things; you will also be probed for understanding, and as such you should also study your notes and read the associated sections. I highly suggest asking in the review about any problems you struggle on.

- 1. Find general solution to $\frac{d^4y}{dx^4} 7\frac{d^2y}{dx^2} 18y = 0.$
- 2. Find a differential operator that annihilates $x^3(1-5x)$.
- 3. Find general solution to $2x^2 \frac{d^2y}{dx^2} + 5x \frac{dy}{dx} + y + x = x^2$.
- 4. Find general solution to $6\frac{d^2y}{dx^2} + \frac{dy}{dx} y = 0$ given $y_1 = e^{x/3}$.
- 5. Find general solution to $\frac{1}{4}\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = x^2 2x$ via undetermined coefficients.
- 6. Find general solution to $\frac{d^4y}{dx^4} 4\frac{d^2y}{dx^2} = x + e^x$ given $y_c = c_1 + c_2x + c_3e^{2x} + c_4e^{-2x}$.
- 7. Consider the IVP $\frac{dy}{dx} = y^2 + x^2$, y(0) = 1. For the following, write the expressions, and then use a calculator to compute.
 - (a) Approximate y(0.2) via Euler's method with step size 0.1.
 - (b) Approximate y(0.2) via improved Euler's method with step size 0.1.
 - (c) The true solution is y(0.2) = 1.25302. What are the absolute and relative errors?
- 8. Solve the system given by the equations $\frac{dx}{dt} 4y = 1$ and $\frac{dy}{dt} + x = 2$.
- 9. Find general solution to $y^2 \frac{d^2y}{dx^2} = \frac{dy}{dx}$
- 10. Find general solution to $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} = 8x^2$ via annihilators.
- 11. Find a differential operator that annihilates $13x + 9x^2 \sin(4x)$.
- 12. Find general solution to $\frac{d^2y}{dx^2} + y = \sec^2(x)$ via variation of parameters given $y_c = c_1 \cos(x) + c_2 \sin(x)$.
- 13. Find general solution to $x^3 \frac{d^3y}{dx^3} + x \frac{dy}{dx} y = 0$.
- 14. Find general solution to $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = x\sin(x)$ via annihilators.

- 15. Find general solution to $\frac{d^3y}{dx^3} \frac{d^2y}{dx^2} 18y = 0$.
- 16. Find general solution to $\frac{d^3y}{dx^3} 3\frac{d^2y}{dx^2} + 3\frac{dy}{dx} y = e^x x + 16.$
- 17. Solve the system given by the equations $\frac{dx}{dt} + \frac{dy}{dt} = e^t$ and $\frac{d^2x}{dt^2} \frac{dx}{dt} x y = 0$.
- 18. Find general solution to $\frac{d^3y}{dx^3} 3\frac{d^2y}{dx^2} + 3\frac{dy}{dx} y = x 4e^x$ via undetermined coefficients.
- 19. Find general solution to $\frac{d^3y}{dx^3} + 4\frac{dy}{dx} = \sec(2x)$ via variation of parameters.
- 20. Find general solution to $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + 2y = 0$ given $y_1 = x \sin(\ln(x))$.
- 21. Use a degree five Taylor polynomial to approximate the solution to $\frac{d^2y}{dx^2} + y^2 = 1$, y(0) = 2, $\frac{dy}{dx}(0) = 3$.