Connectivity Regularization

Intermediate Presentation

Step 1: Perform all *basic* Edge Flips

- Check edges for ones that improve the degree of the vertices when flipped
- Optimal degree of a vertex d(v) is 4 for boundary vertices and 6 for other ones

Step 2:

Categorize edges:

Step 2:

Long edges: Split and perform basic Edge Flips

Step 2:

- Short Edges: Collapse and perform basic Edge Flips

Step 2:

 Drifting edges: move along mesh until they meet another irregular vertex

Step 2:

 Drifting edges: move along mesh until they meet another irregular vertex

Step 2:

 Apply angle-based smoothing to involved vertices after each operation

Result:

- Few irregular Vertices
- All irregular vertices surrounded by regular ones

Current state

- Individual Operations are implemented:
 - Edge Flip
 - Edge Split
 - Edge Collapse
 - Angle-based Smoothing

Edge Flip

Edge Split

Edge Collapse

Angle based smoothing

- Calculate new position of vertex c for all neighbor vertices p by rotating edge $p \rightarrow c$
- Move c to average of calculated positions

Angle based smoothing

- Adaptation for 3D meshes:
 - Calculate new Position by moving c along the other edges
 - Extend to preserve distance

To Do

- Put pieces together
- Handle Error cases
- Controls/Parameters/Thresholds
- Improve Performance
- Code Cleanup