SELF-STUDY Material (will be on Quie 1). : See also Anstress online notes.

Standard form of LP We will focus LP of the following form.

maximize
$$C_1 \times_1 + C_2 \times_2 + \cdots + C_n \times_n$$

subject $G_{(1)} \times_1 + G_{(2)} \times_2 + \cdots + G_{(n)} \times_n \leq b_2$
 $G_{(2)} \times_1 + G_{(2)} \times_2 + \cdots + G_{(n)} \times_n \leq b_2$
 $G_{(2)} \times_1 + G_{(2)} \times_2 + \cdots + G_{(n)} \times_n \leq b_2$
 $G_{(n)} \times_1 + G_{(n)} \times_2 \times_2 + \cdots + G_{(n)} \times_n \leq b_m$
 $G_{(n)} \times_1 + G_{(n)} \times_2 \times_2 + \cdots + G_{(n)} \times_n \leq b_m$
 $G_{(n)} \times_1 + G_{(n)} \times_2 \times_2 + \cdots + G_{(n)} \times_n \leq b_m$

e.g maximize
$$X_1 + X_2 + X_5$$

Subject to $X_1 + 3X_1 + X_3 \le 1$
 $X_1 - X_2 + X_3 \le 2$
 $X_1, X_2, X_3 \ge 0$

· Nonstandard form LP can be reduced to the Standard form.

EX Min
$$3 \times 1 - 2 \times 2 + \times 3 + 1$$

Subject to $- \times 1 + \times 2 \ge -3$
 $2 \times 1 + \times 2 + \times 3 = 4$
 $\times 1 \ge -2$, $\times 2 \le 2$

Principles to use	changes
$\min f = -\max (-f)$	Max -3x1+2x2-x3-1
· Max(f + const) (=) Max f	MMX -3×1+2×2 -×3
· ×> ∅ (=) -X ≤ -∅.	X1-X5 € 3
· X=a € X≤9 & -x < -a	$\chi_1 + \chi_2 + \chi_3 \leq 4$ $-\chi_1 - \chi_2 - \chi_3 \leq -4$
• × ≥ a ← ×-0>0	Replace X_1 with $X_1'-2$ then $X_1>-2 \Longrightarrow X_1'>0$ Replace X_2 with $2-X_2'$ Then $X_2 \le 2 \Longrightarrow X_2'>0$
· no restriction on X	Replace X3 wth X3+-X3
	2 xst, x3 20

$$-3 \times_{1} + 2 \times_{2} - \times_{3} = -3(\times/-2) + 2(2-\times/2) - \times_{3}^{+} + \times_{3}^{-}$$

$$= -3 \times/-2 \times_{2}^{+} - \times_{3}^{+} + \times_{3}^{-} + 10$$

max -3x1-2x2-x3+x3

Note we dropped + 10

From the objective function

biect to subject to $Y_1' + Y_2' \leq 7$ $2 \times 1' - \times 2' \leq 4$ $x'_{1}, x'_{2}, x'_{3}, x'_{3} \ge 0$

 $=2(X_1'-2)+(2-X_2') \leq 2$ $x'_1 - x'_2 + x'_3 - x'_5 \le 4$ $(x'_1 - 2) + (2 - x'_2) + x'_3 + x'_5 \le 4$ $-\chi_{1}'+\chi_{2}'-\chi_{3}^{+}+\chi_{3}^{-}\leq -\frac{4}{3}\left|-\left[(\chi_{1}'-2)+(2-\chi_{2}')+\chi_{3}^{+}-\chi_{3}^{-}\right]\leq -\frac{4}{3}\right|$

After finding optimal solution to this

we get the optimal solution to the original problem (i.e. the values by using $X_1 = X_1 - 2$ of (X_1, X_2, X_3) $X_2 = 2 - x_2$ $X_3 = X_3 + - x_3$ and

min $(3x_1 - 2x_2 + x_3 + 1) = -max(-3x_1 + 2x_2 - x_3 - 1)$ $= 1 - max(-3x_1 + 2x_2 - x_3)$

