4 Exploration

The first step in analysing data is a graphical data exploration asking the following questions:

- 1. Where are the data centred? How are they spread? Are they symmetric, skewed bimodal?
- 2. Are there outliers?
- 3. Are the variables normally distributed?
- 4. Are there any relationships between the variables? Are relationships between the variables linear? Which follow-up analysis should be applied?
- 5. Do we need a transformation?
- 6. Was the sampling effort approximately the same for each observation or variable?

We need to address all of these questions because the next step of the analysis needs the data to comply with several assumptions before any conclusions can be considered valid. For example, principal component analysis (PCA) depends on linear relationships between variables, and outlying values may cause non-significant regression parameters and mislead the analysis. Another example is large overdispersion in generalised linear modelling, which can also result in non-significant parameters. We therefore need a range of exploratory tools to address questions 1 to 6 with different tools aimed at answering different questions. For example, a scatterplot might suggest that a particular point is an outlier in the combined xy-space, but not identify it as an outlier within in the x-space or y-space if inspected in isolation. This chapter discusses a range of exploratory tools and suggests how they can be used to ensure the validity of any subsequent analysis. When looking at your data you should use all the techniques discussed and not rely on the results from a single technique to make decisions about outliers, normality or relationships.

Many books have chapters on data exploration techniques, and good sources are Montgomery and Peck (1992), Crawley (2002), Fox (2002a) and Quinn and Keough (2002). We have only presented the methods we find the most useful. Expect to spend at least 20% of your research time exploring your data. This makes the follow-up analysis easier and more efficient.

4.1 The first steps

Boxplots and conditional boxplots

A boxplot, or a box-and-whiskers plot (Figure 4.1), visualises the mean and spread for a univariate variable. Normally, the midpoint of a boxplot is the median, but it can also be the mean. The 25% and 75% quartiles (Q_{25} and Q_{75}) define the hinges (end of the boxes), and the difference between the hinges is called the spread. Lines (or whiskers) are drawn from each hinge to 1.5 times the spread or to the most extreme value of the spread, whichever is the smaller. Any points outside these values are normally identified as outliers. Some computer programmes draw the whiskers to the values covering most data points, such as 10% and 90% of the points, and show minimum and maximum values as separate points.

Figure 4.1. Boxplots show the middle of the sampled values, variability, shape of the distribution, outliers and extreme values.

The numbers below give the number of ragworms (*Laeoneris acuta*) recorded in an Argentinean salt marsh, and we use them to explain making a boxplot. The top row identifies the ranked sampling point, and the lower row gives the number of ragworm counted at that point.

$$old Q_{25}$$
 $old M$ $old Q_{75}$ $old 1$ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0 0 0 1 2 3 6 7 9 11 14 14 14 16 19 20 21 24 27 35 121

The median value (denoted by **M**) for *L. acuta* is at observation number 11 (14 ragworms). The end points of the boxes in the boxplot are at Q_{25} and Q_{75} . Therefore, observation numbers 6 and 16 form the hinges. The spread for these data is 20-3=17, and 1.5 times the spread is 25.5. Adding 25.5 to the upper hinge of 20 (Q_{75}) allows the right line (or whisker) to be drawn up to 45.5. Observation number 21 (121 ragworms) would normally be considered as an extreme value or outlier. The resulting boxplot is given in Figure 4.2.

L. acuta

Figure 4.2. Boxplot for the ragworms (*L. acuta*). The upper hinge is calculated as having a value of 45.5, but as the most extreme value within this range is only 35, it is drawn at this latter point.

In Chapter 28, zoobenthic data from a salt marsh in Argentina are analysed. The data consist of measurements on four zoobenthic species in three transects. Each transect contained ten sites, and all sites were measured in Autumn and Spring, resulting in a 60-by-4 data matrix for the species data. Further details can be found in Chapter 28. Several boxplots for the species data are shown in Figure 4.3. Panel A in Figure 4.3 is a boxplot for the four zoobenthic species of the Argentinean zoobenthic dataset introduced in Chapter 2. It shows that some species have potential outliers, which prompted an inspection of the original data to check for errors in data entry. After checking, it was concluded that there were no data errors. However, the presence of outliers (or large observations) is the first sign that you may need to transform the data to reduce or down-weight its influence on the analysis. We decided to apply a square root transformation, and boxplots of the transformed data are shown in Figure 4.3-B. The reasons for choosing a square root transformation is discussed later. Note that the boxplots for the transformed data show that this has removed the outliers. The large number of dots outside the interval defined by 1.5 times the range might indicate a large number of zero observations for Uca uruguayensis and Neanthes succinea. This is called the doublezero problem, but how big a problem this is depends on the underlying ecological questions. If two variables have many data points with zero abundance, the correlation coefficient will be relatively large as both variables are below average at the same sites. This means that these two variables are identified as similar, only because they are absent at the same sites. It is like saying that butterflies and elephants are similar because they are both absent from the North Pole, the Antarctic and the moon. It sounds trivial, but the first few axes in a principal component analysis could be determined by such variables, and it is a common problem in ecological data of which we need to be aware.

Figure 4.3. Boxplots. A: boxplots of the abundance of four zoobenthic species (La = Laeonereis acuta, Hs = Heteromastus similis, Uu = Uca uruguayensis, Ns=Neanthes succinea). B: boxplots of four square root transformed species. C: boxplot of square root transformed L. acuta conditional on the nominal variable transect with values a, b and c. D: Boxplot of square root transformed L. acuta conditional on season (1 = Autumn, 2 = Spring) and transect.

Boxplots are also useful to find relationships between variables. Panel C in Figure 4.3 shows the boxplot of square root transformed *L. acuta* abundance conditional on the nominal variable transect (a, b and c). It is readily seen that abundances are considerably lower in transect C. Panel D takes this one step further; the same species is now plotted conditional on season and transect. The first two boxplots from the left correspond to *L. acuta* from transect a in Autumn and Spring. Although this shows differences in abundances between the seasons, it also shows there appears to be no seasonal consistency between transects.

Depending on software, boxplots can be modified in various ways. For example, notches can be drawn at each side of the boxes. If the notches of two plots do not overlap, then the medians are significantly different at the 5% (Chambers et al. 1983). It is also possible to have boxplots with widths proportional to the square roots of the number of observations in the groups. Sometimes, it can be useful to plot the boxplot vertically instead of horizontally, where this might better visualise the characteristics of the original data.

Cleveland dotplot

Cleveland dotplots (Cleveland 1985) are useful to identify outliers and homogeneity. Homogeneity means that the variance in the data does not change along the gradients. Violation is called heterogeneity, and as we will see later, homogeneity is a crucial assumption for many statistical methods. Various software programmes use different terminology for dotplots. For example, with S-Plus and R, each observation is presented by a single dot. The value is presented along the horizontal axis, and the order of the dots (as arranged by the programme) is shown along the vertical axis. Cleveland dotplots for the abundance of four zoobenthic species of the Argentinean dataset are given in Figure 4.4. The 60 data points (30 sites in Spring and 30 sites in Autumn) are plotted along the vertical axes and the horizontal axes show the values for each site. Any isolated points on the right- or left-hand side indicate outliers, but in this dataset, none of the points are considered outliers. However, the dotplots also indicate a large number of zero observations, which can be a problem with some of the methods discussed in later chapters. Also note that the boxplots show that L. acuta and H. similis are considerably more abundant than the other two species. The dotplots were made using different symbols conditional on a nominal explanatory variable, which in this case is Transect. This means that data points from the same transect will have the same symbols. Note that U. uruguayensis has zero abundance along transect a in the Autumn (these are the bottom 10 data points along the y-axis); along transect c in the Autumn (these are the data points in the middle with a '+'); along transect a in the Spring (next 10 data points represented by 'o'); and along transect c in Spring (the upper 10 data points represented by '+'). Although we have not done it here, it would also be useful to make Cleveland dotplots for explanatory variables and diversity indeces.

You can also usefully compare boxplots with dotplots, as this can explain why the boxplot identified some points as 'outliers'. The boxplots and dotplots for the Argentinean zoobenthic data tell us that we have many zero observations, two species have larger abundances than the other species, there are no 'real' outliers, and there are differences in species abundances between transects and seasons.

Figure 4.4. Dotplots for species of the Argentinean zoobenthic dataset. The horizontal axes show the value at each data point. The vertical axes represent the identity of the data points. The values at the top of the vertical axes are the data points at the end of the spreadsheet. It is also possible to group data points based on a nominal variable.

Histograms

A histogram shows the centre and distribution of the data and gives an indication of normality. However, applying a data transformation to make the data fit a normal distribution requires care. Panel A in Figure 4.5 shows the histogram for a set of data on the Gonadosomatic index (GSI, i.e., the weight of the gonads relative to total body weight) of squid (Graham Pierce, University of Aberdeen, UK, unpublished data). Measurements were taken from squid caught at various locations, months, and years in Scottish waters. The shape of the histogram shows bimodality, and one might be tempted to apply a transformation. However, a conditional histogram gives a rather different picture. In a conditional histogram the data are split up based on a nominal variable, and histograms of the subsets are plotted above each other. Panels B and C show the conditional histograms for the GSI index conditional on sex. Panel B shows the GSI index for female squid and Panel C for male squid. Notice that there is a clear difference in the shape and centre of the distribution. Hence, part of the first peak in panel A comprises mainly

the male squid. This suggests the need to include a sex effect and interactions rather than transform the full dataset. We also suggest making conditional histograms on year, month and location for these data.

Figure 4.5. Histograms. A: histogram for GSI index of the squid data. B and C: conditional histograms for GSI index for the squid data. Panel B is for the female species and panel C for the male species.

QQ-plots

A Quantile-Quantile plot is a graphical tool used to determine whether the data follow a particular distribution. The QQ-plot for a normal distribution compares the distribution of a given variable to the Gaussian distribution. If the resulting points lie roughly on a straight line, then the distribution of the data is considered to be the same as a normally distributed variable. Let us discuss this in a bit more detail, as it can be quite confusing to understand what exactly it does. First, we need to revise some basic statistics. The p^{th} quantile point q for a random variable y is given by $F(q) = P(y \le q) = p$. If we want to know which q value belongs to the p, we write $q = F^{-1}(p)$. Suppose we have five observations Y_i with values 1, 2, 3, 4 and 5. We have sorted the observations from the smallest to the highest. By definition the first number is the 0% percentile, the middle is the 50% percentile and 5 is the 100% percentile. The difference between a quantile and percentile point is only a factor 100. QQ-plots are either based on these percentiles, or more typically they use the sample quantile points (i - 0.5)/n where i is from 1 to 5 and n = 5 for this example. The sample quantile points for these data are 0.1, 0.3, 0.5, 0.7 and 0.9. These are the sample values for p. In the second step, we compare these sample quantile points with that of a normal distribution. This means that the density function used in $P(y \le q)$ is now a normal density function and F() is the corresponding normal cumulative distribution function. The QQ-plot is then a plot of the samples values Y_i versus q_i . Some software packages add a straight line to the plot, which is typically obtained by connecting the 25^{th} and 75^{th} quartile points.

It is useful to combine QQ-plots with a power transformation, which is given by

$$\frac{Y^{p}-1}{p} \text{ if } p \text{ is not equal to } 0 \quad \text{and} \quad \log(Y) \text{ if } p \text{ is } 0$$
 (4.1)

Note that this p is not the p that we used for the quantiles. It is also useful to compare several QQ-plots for different values of p, and Figure 4.6 shows an example for the Argentinean data. In this example the square root transformation seems to perform the best, but this could be open to debate.

Figure 4.6. QQ-plots for the zoobenthic species *L. acuta* from the Argentinean zoobenthic dataset; for the untransformed data, square root transformed data, the cubic root transformed data, and log₁₀ transformed data. In this example, the square root transformation seems to give the best results.

Scatterplot

So far, the main emphasis has been on detecting outliers, checking for normality, and exploring datasets associated with single nominal explanatory variables. The following techniques look at the relationships *between* variables.

A scatterplot is a tool to find a relationship between two variables. It plots one variable along the horizontal axis and a second variable along the vertical axis. To

help visualise the relationship between the variables, a straight line or smoothing curve is often added to the plot. Figure 4.7 shows the pairplot for the variables biomass and length for the wedge clam *Donax hanleyanus*, measured on a beach in Buenos Aires province, Argentina (Ieno, unpublished data).

Figure 4.7. Scatterplot for biomass wedge clam dataset, using log transformed biomass, versus log transformed length.

Pairplot

If you have more than two variables, then a series of scatterplots can be produced: one for each pair of variables. However, the number of scatterplots required increases rapidly if you have more than three variables to explore. A better approach, for up to approximately 10 explanatory variables, is the pairplot, or scatterplot matrix (Figure 4.8). These show multiple pair-wise scatterplots in one graph and can be used to detect relationships between variables and to detect collinearity. The example in Figure 4.8 shows a pairplot for the response variable species richness and for four selected environmental variables. Species richness measures the different number of species per observation. The Decapoda zooplankton data form the basis for the case study in Chapter 20. Each panel is a scatterplot between two variables, with the labels for the variables printed in the panels running diagonally through the plot. A smoothing line has been added to help visualise the strength of the relationship. However, you can choose not to add a line, or you can add a regression line, whichever best suits the data. The pairplot in Figure 4.8 suggests a relationship between species richness (R) and temperature (T1m) and between species richness (R) and chlorophyll a (Ch). It also shows some collinearity between salinity at the surface (S1m) and at 35-45 meters (S45 35). Collinearity means that there is a high correlation between explanatory variables.

Figure 4.9 shows another pairplot for the same dataset where all the available explanatory variables have been plotted. The differences between this graph and the previous pairplot is that correlation coefficients between the variables are printed in the lower part of the graph. Note that there is strong collinearity between some of the variables, for example temperature at 1 m and temperature at 45 m.

Pairplots should be made for every analysis. These should include (i) a pairplot of all response variables (assuming that more than one response variable is available); (ii) a pairplot of all explanatory variables; and (iii) a pairplot of all response and explanatory variables. The first plot (i) gives information that will help choose the most appropriate multivariate techniques. It is hoped that the response variables will show strong linear relationships (some techniques such as PCA depend on linear relationships). However, if plot (ii) shows a clear linear relationship between the explanatory variables, indicating collinearity, then we know we have a major problem to deal with before further analysis. With plot (iii) we are judging whether the relationships between the response variables and the explanatory variables are linear. If this is not the case, then several options are available. The easiest option is to apply a transformation on response and/or explanatory variables to linearise the relationships. Other options are discussed later in this chapter.

Figure 4.8. Pairplot for the response variable species richness and four selected environmental variables for the Decapoda zooplankton data. The pairplot indicates a linear relationship between richness and temperature. Each smoothing line is obtained by using one variable as the response variable and the other as an explanatory variable in the smoothing procedure. The difference between the smoothing lines in two corresponding graphs above and below the diagonal is due to what is used as the response and explanatory variable in the smoothing method, and therefore, the shape of the two matching smoothers might be different.

Figure 4.9. Pairplot for all environmental variables in the Decapoda zooplankton data. The lower diagonal part shows the (absolute) correlation coefficient and the upper diagonal part the scatterplots. The font size of the correlation is proportional to its size. There is strong collinearity between some of the variables, e.g., temperature at 1 m and temperature at 45 m.

Coplot

A coplot is a conditional scatterplot showing the relationship between y and x, for different values of a third variable z, or even a fourth variable w. The conditioning variables can be nominal or continuous. Figure 4.10 shows an example for the RIKZ data (Chapter 27). It is a coplot of the species richness versus NAP (which represents the average sea level height at each site), conditional on the nominal variable week. The panels are ordered from the lower left to the upper right. This order corresponds to increasing values of the conditioning explanatory variable. The lower left panel shows the relationship between NAP and the richness index for the samples measured in week 1, the lower right for the week 2 samples, the upper left panel for the week 3 samples, and the upper right panel for the week 4 samples. We did not add a regression line because in the fourth week, only 5 samples were taken. The richness values in week 1 are larger than in weeks 2 and 3, but the NAP range is smaller in week 1.

Figure 4.10. Coplot for the species richness index function of the RIKZ data versus NAP, conditional on week. The lower left panel corresponds to week 1, the lower right to week 2, the upper left to week 3, and the upper right for week 4. Note that the number of observations is different for each week.

For nominal variables, as shown in Figure 4.10, there is no overlap in ranges of the conditional variable. For continuous conditioning variables, we can allow for some overlap in the ranges of the conditioning variables, and the number of graphs, as well as the amount of overlap can be modified. This is illustrated in Figure 4.11, which shows another coplot for the RIKZ data. Each panel shows the relationship between the species richness index function and the explanatory variable NAP for a different temperature range. The lower left panel shows sites with temperatures between 15.5 and 17.5 degrees Celsius, and the upper right graph for temperature of 20 degrees and higher. The other panels show a range of different temperature bands between these two extremes. In this instance we have included smoothing curves (Chapter 7) and these highlight a negative relationship between species richness and NAP for all the measured temperature regimes. As this relationship between richness and NAP is common across all the temperature regimes, it suggests that it is not being influenced by temperature. Knowing that a specific variable is unrelated to the response variable is just as important as knowing that it is.

Figure 4.11. Coplot for RIKZ data where NAP is plotted against species richness for different temperature regimes.

Lattice graphs

Another useful tool are lattice graphs (called Trellis graphs in S-Plus). Like coplots these graphs show relationships between two variables, conditional on nominal variables. Lattice graphs have the advantage over coplots because they can work with larger numbers of panels. However, the conditional factor must be nominal. In coplots the conditional factor can be nominal or continuous. We use lattice graphs for time series data exploration and, to a lesser extent, to investigate sampling effort. Unless there are good reasons for deciding otherwise, you should normally use the same sample size and sampling effort across all the explanatory variables. Figure 4.12 shows a lattice graph for the squid data. Each panel shows the relationship between the GSI index and month. The conditional variable is area, and the plots clearly show an unbalance in the sampling effort. In some areas sampling largely took place in one month. Obviously, care is needed if these data were to be analysed in a regression model containing the nominal variables month and area.

Figure 4.12. GSI index (vertical axis) versus month (horizontal axis) conditional on area (different panels) for the squid data. Note the unbalanced design of the data.

Design and interaction plots

Design and interaction plots are another valuable tool for exploring datasets with nominal variables and are particularly useful to use before applying regression, GLM, mixed modelling or ANOVA. They visualise (i) differences in mean values of the response variable for different levels of the nominal variables and (ii) interactions between explanatory variables. Figure 4.13 shows a design plot for the wedge clam data introduced earlier in this chapter. For these data there are three nominal variables: beach (3 beaches), intertidal or subtidal level on the beach (2 levels) and month (5 months). The design plot allows a direct comparison of the means (or medians) of all the nominal variables in a single graph. The graphs indicate that the mean value of the number of clams for beach 1 is around 0.26, with the mean values at the other two beaches considerably lower. It can also be seen that months 2 and 5 have relatively high mean values. However, the design plot shows little about the interaction between explanatory variables, and for this, we use an interaction plot (Figure 4.14). Panel A shows the interaction between month and beach. Mean values at beach 1 are rather different compared with beaches 2 and 3. It also shows that the interaction between season (month) and the mean clam numbers is similar for beaches 1 and 2, but very different for beach 3. Panel B shows the interaction between month and level, with mean values at level 1 in month 5 considerably larger than in the other levels.

Figure 4.13. Design plot for the wedge clam data. The vertical axis shows the mean value per class for each nominal variable.

Figure 4.14. Design plot for the wedge clam data. The vertical axis shows the mean value and the horizontal axis the month. A: interaction between month and beach. B: interaction between month and level.