1 Interpolare liniară

O problemă importantă în grafica pe calculator este interpolarea punctelor. Dacă avem punctele p_i , cu parametrii t_i , sa gasim o curba care trece prin aceste puncte. Trebuie indeplinita conditia $p(t_i) = p_i$, i = 0, 1, 2, ..., n.

1.1 Algoritmul lui Aitken

Recurența Aitken calculează un punct al polinomului de interpolare prin șirul repetat de interpolare liniară pornind de la:

$$p_i^1(t) = \frac{t_{i+1} - t}{t_{i+1} - t_i} p_i + \frac{t - t_i}{t_{i+1} - t_i} p_{i+1}$$

unde i=0,1,2,...,n-1. În continuare, presupunând că am rezolvat problema pentru cazul n-1 și că am găsit polinoamele p_0^{n-1} , care interpoleaza primele n puncte $p_0,p_1,...,p_{n-1}$ puncte si ca polinomul p_1^{n-1} interpoleaza punctele $p_1,...,p_n$. Atunci cu aceste presupuneri, avem

$$p_0^n(t) = \frac{t_n - t}{t_n - t_0} p_0^{n-1}(t) + \frac{t - t_0}{t_n - t_0} p_1^{n-1}(t)$$

ilustram cu figura de mai jos:

Putem generaliza acum relatia de mai sus astfel, pornind cu valorile parametrilor de intrare t_i si cu punctele $p_i = p_i^0$, considerand:

$$p_i^r(t) = \frac{t_{i+r} - t}{t_{i+r} - t} p_i^{r-1}(t) + \frac{t - t_i}{t_{i+r} - t} p_{i+1}^{r-1}(t)$$

 $r=1,2,...,n;\ i=0,1,2,...,n-r.$ Pentru a calcula p_i^r , transformam intervalul $[t_i,t_{i+r}]$ intr-un segment de dreapta prin punctele p_i^{r-1},p_{i+1}^{r-1} . Aceasta aplicatie afina transforma t in p_i^r . Cazul cubic al algoritmului Aitken o prezentam mai jos:

 p_0

 $p_1 \ p_0^1$

 $p_2 p_1^1 p_0^2$

 p_3 p_2^1 p_1^2 p_0^3

Proprietăți:

- Invarianța afină- acest algoritm al lui Aitken folosește doar combinații baricentrice.
- 2. Precizie liniară: dacă toți p_i sunt uniform distribuiți pe un segment toate punctele $p_i^r(t)$ sunt identice cu r > 0
- 3. Nu avem proprietatea acoperirii convexe. Parametrul t nu trebuie sa fie între t_i si t_{i+r} .

Practic, daca avem n+1 puncte: (x_0, y_0) , (x_1, y_1) ,..., (x_n, y_n) , unde valorile lui x sunt egal departate si vrem sa aflam valorile lui y, pentru valoarea data lui x, atunci: la primul pas, polinomul de interpolare de grad 1 este dat de:

$$\Delta_{01}(x) = \frac{1}{x_1 - x_0} \begin{vmatrix} y_0 & x_0 - x \\ y_1 & x_1 - x \end{vmatrix}$$

$$\Delta_{02}(x) = \frac{1}{x_2 - x_0} \begin{vmatrix} y_0 & x_0 - x \\ y_2 & x_2 - x \end{vmatrix}$$

si asa mai departe.

La pasul 2 de interpolare, avem interpolare de gradul doi:

$$\Delta_{012}(x) = \frac{1}{x_2 - x_1} \begin{vmatrix} \Delta_{01}(x) & x_1 - x \\ \Delta_{02}(x) & x_2 - x \end{vmatrix}$$

$$\Delta_{013}(x) = \frac{1}{x_3 - x_1} \begin{vmatrix} \Delta_{01}(x) & x_1 - x \\ \Delta_{03}(x) & x_3 - x \end{vmatrix}$$

si asa mai departe.

La pasul 3 de interpolare, avem interpolare de gradul trei:

$$\Delta_{0123}(x) = \frac{1}{x_3 - x_2} \begin{vmatrix} \Delta_{012}(x) & x_2 - x \\ \Delta_{013}(x) & x_3 - x \end{vmatrix}$$

X	У	Pas 1	Pas 2	Pas 3
x_0	y_0			
x_1	y_1	$\Delta_{01}(x)$	$\Delta_{012}(x)$	ı
x_2	y_2	$\Delta_{02}(x)$,	$\Delta_{0123}(x)$
x_3	y_3	$\Delta_{03}(x)$	$\Delta_{013}(x)$	
X	0	0.5	0.75	1
f(x)	1	0.6065	0.4724	0.3679

Exemplu: Aflați f(0.25) folosind algoritmul lui Aitken din tabelul de mai sus (folosind doar aceste date): Soluția:

X	У	Pas 1	Pas 2	Pas 3
$x_0 = 0$	$y_0 = 1$			
0.5	0.6065	A () 0.00205		
$x_1 = 0.5$	$y_1 = 0.6065$	$\Delta_{01}(x) = 0.80325$	$\Delta_{012}(x) = 0.78237$	
$x_2 = 0.75$	$y_2 = 0.4724$	$\Delta_{02}(x) = 0.82413$	$\Delta_{012}(\omega) = 0.10291$	$\Delta_{0123}(x) = 0.77933$
_	V -	V- ()	$\Delta_{013}(x) = 0.78389$	
$x_3 = 1$	$y_3 = 0.3679$	$\Delta_{03}(x) = 0.841975$		

X	-1	0	3	6	7
f(x)	3	-6	39	822	1611

$\log_{10} 300$	$\log_{10} 304$	$\log_{10} 305$	$\log_{10} 307$
2.4771	2.4829	2.4843	2.4871

2 Probleme propuse

Temă- similar – rezolvați și apoi implementați în python, următoarele probleme: 1) Aflați f(2) folosind algoritmul lui Aitken din tabelul de mai sus (folosind doar aceste date):

2) Aflati $\log_{10} 301$ utilizand tabelul: