Transformada Z

2 - Considerando o sistema abaixo, calcular a saída y(k) para uma entrada x(k) que é um degrau unitário, para -2 até 8. Apresentando o gráfico de y(k) e x(k).

$$y(k) - \frac{1}{4}y(k-1) + \frac{1}{2}y(k-2) = x(k)$$

Dessa forma, uma tabela foi desenvolvida com os resultados:

K	x[k]	y[k]	y[k-1]	y[k-2]
-2	0	0	0	0
-1	0	0	0	0
0	1	1	0	0
1	1	1,25	1	0
2	1	0,8125	1,25	1
3	1	0,578125	0,8125	1,25
4	1	0,738281	0,578125	0,8125
5	1	0,895508	0,738281	0,578125
6	1	0,854736	0,895508	0,738281
7	1	0,76593	0,854736	0,895508
8	1	0,764114	0,76593	0,854736

Por fim, os seguintes gráficos foram gerados pra x(k) e y(k):

3- Realizar os cálculos anteriores utilizando as seguintes equações diferença

a-

$$y(k) - \frac{1}{4}y(k-1) + \frac{1}{2}y(k-2) = x(k) + \frac{1}{2}x(k-1) + \frac{1}{5}x(k-2)$$

Dessa forma, uma tabela foi desenvolvida com os resultados:

K	x[k]	x[k-1]	x[k-2]	y[k]	y[k-1]	y[k-2]
-2	0	0	0	0	0	0
-1	0	0	0	0	0	0
0	1	0	0	1	0	0
1	1	1	0	1,75	1	0
2	1	1	1	1,6375	1,75	1
3	1	1	1	1,234375	1,6375	1,75
4	1	1	1	1,18984375	1,234375	1,6375
5	1	1	1	1,380273438	1,189844	1,234375
6	1	1	1	1,450146484	1,380273	1,189844
7	1	1	1	1,372399902	1,450146	1,380273
8	1	1	1	1,318026733	1,3724	1,450146

Por fim, os seguintes gráficos foram gerados pra x(k) e y(k):

$$y(k) = 0.2x(k) + 0.3x(k-1) + 0.3x(k-2) + 0.2x(k-3)$$

Dessa forma, uma tabela foi desenvolvida com os resultados:

K	x[k]	x[k-1]	x[k-2]	x[k-3]	y[k]
-2	0	0	0	0	0
-1	0	0	0	0	0
0	1	0	0	0	0,2
1	1	1	0	0	0,5
2	1	1	1	0	0,8
3	1	1	1	1	1
4	1	1	1	1	1
5	1	1	1	1	1
6	1	1	1	1	1
7	1	1	1	1	1
8	1	1	1	1	1

Por fim, os seguintes gráficos foram gerados pra x(k) e y(k):

4- Determinar a função de transferência e os polos/zeros dos sistemas discretos e modelados pela seguinte equação diferença:

a-

$$y(k) + \frac{1}{4}y(k-1) = x(k) - \frac{1}{2}x(k-1)$$

$$Y(Z) + \frac{1}{4}Z^{-1}Y(Z) = X(Z) - \frac{1}{2}Z^{-1}X(Z)$$

$$\frac{Y(Z)}{X(Z)} = \frac{1 - \frac{1}{2}Z^{-1}}{1 + \frac{1}{4}Z^{-1}}$$

$$H(Z) = \frac{Y(Z)}{X(Z)} = \frac{Z - \frac{1}{2}}{Z + \frac{1}{4}}$$

Dessa forma o zero será igual a $\frac{1}{2}$ enquanto o polo é igual a $-\frac{1}{4}$.

b-

$$y(k) + \frac{4}{3}y(k-1) - \frac{1}{2}y(k-2) = -2x(k)$$

$$Y(Z) + \frac{4}{3}Z^{-1}Y(Z) - \frac{1}{2}Z^{-2}Y(Z) = -2X(Z)$$

$$\frac{Y(Z)}{X(Z)} = \frac{-2}{1 + \frac{4}{3}Z^{-1} - \frac{1}{2}Z^{-2}}$$

$$H(Z) = \frac{Y(Z)}{X(Z)} = \frac{-2Z^{2}}{Z^{2} + \frac{4}{3}Z^{1} - \frac{1}{2}}$$

$$x = \frac{-\frac{4}{3} \pm \sqrt{\frac{4^{2}}{3} - 4.1. - \frac{1}{2}}}{2}$$

$$x' = \frac{-\frac{4}{3} + \sqrt{\frac{34}{9}}}{2} = 0,3051$$

$$x'' = \frac{-\frac{4}{3} - \sqrt{\frac{34}{9}}}{2} = -1,6385$$

Dessa forma o zero estará em zero, enquanto o polo é igual aos valores obtidos no sistema, sendo eles 0,3051 e -1,6385.

5- Repita o mesmo exercício 4 utilizando das equações diferença da questão 3.

$$y(k) - \frac{1}{4}y(k-1) + \frac{1}{2}y(k-2) = x(k) + \frac{1}{2}x(k-1) + \frac{1}{5}x(k-2)$$

$$Y(Z) - \frac{1}{4}Z^{-1}Y(Z) + \frac{1}{2}Z^{-2}Y(Z) = X(Z) + \frac{1}{2}Z^{-1}X(Z) + \frac{1}{5}Z^{-2}X(Z)$$

$$\frac{Y(Z)}{X(Z)} = \frac{1 + \frac{1}{2}Z^{-1} + \frac{1}{5}Z^{-2}}{1 - \frac{1}{4}Z^{-1} + \frac{1}{2}Z^{-2}}$$

$$H(Z) = \frac{Y(Z)}{X(Z)} = \frac{Z^2 + \frac{1}{2}Z^1 + \frac{1}{5}}{Z^2 - \frac{1}{4}Z^1 + \frac{1}{2}}$$

$$y(k) = 0.2x(k) + 0.3x(k-1) + 0.3x(k-2) + 0.2x(k-3)$$

$$Y(Z) = 0.2X(Z) + 0.3Z^{-1}X(Z) + 0.3Z^{-2}X(Z) + 0.2Z^{-3}X(Z)$$

$$\frac{Y(Z)}{X(Z)} = \frac{0.2 + 0.3Z^{-1} + 0.3Z^{-2} + 0.2Z^{-3}}{1}$$

$$H(3) = \frac{Y(Z)}{Y(Z)} = \frac{0.2Z^{3} + 0.3Z^{2} + 0.3Z^{1} + 0.2}{7^{3}}$$

6- Determine e esboce no plano complexo z os polos e zeros das seguintes funções de transferência.

a-

$$H(Z) = \frac{Y(Z)}{X(Z)} = \frac{z + 0.6}{(z^2 + 0.6z + 0.2)(z - 1)}$$
$$x = \frac{-0.6 \pm \sqrt{0.6^2 - 4.1.0.2}}{2}$$
$$x' = \frac{-0.6 + \sqrt{-0.44}}{2} = -0.3 + 0.3317j$$
$$x'' = \frac{-0.6 - \sqrt{-0.44}}{2} = -0.3 - 0.3317j$$

Resposta: Dessa forma os polos serão iguais a -0.3 + 0.3317j, -0.3 - 0.3317j e 1, enquanto o zero será igual a -0.6.

b-

$$H(Z) = \frac{Y(Z)}{X(Z)} = \frac{z^{-1} + 0.8z^{-2}}{1 + z^{-1} + 0.41z^{-2}}$$

$$H(Z) = \frac{Y(Z)}{X(Z)} = \frac{z + 0.8}{z^2 + z + 0.41}$$

$$x = \frac{-1 \pm \sqrt{1^2 - 4.1.0.41}}{2}$$

$$x' = \frac{-1 + \sqrt{-0.64}}{2} = -0.5 + 0.4j$$

$$x'' = \frac{-1 - \sqrt{-0.64}}{2} = -0.5 - 0.4j$$

Resposta: Dessa forma os polos serão iguais a -0.5 + 0.4j e -0.5 - 0.4j, enquanto o zero será igual a -0.8.

