Galois Theory hw1

xianzhi wang

August 2022

2.1.8

Question 1. Let u be one of the complex roots of the polynomial $x^3 - 2x + 2$. Present u^7 and 1/(u-1) as a \mathbb{Q} -linear combination of $1, u, u^2$.

Since u is a root of $x^3 - 2x + 2$, we have $u^3 = 2u - 2$, so

$$u^7 = u \cdot u^3 \cdot u^3$$
$$= -8u^2 + 12u - 8$$

Write

$$0 = u^{3} - 2u + 2 = (u^{2} + u - 1)(u - 1) + 1$$
$$\frac{1}{u - 1} = \frac{u^{2} + u - 1}{(u - 1)(u^{2} + u - 1)} = \cdots$$

2.1.9

Proposition 1. A quadratic field extension can always be obtained by adjoining the square root of some element of the base field.

 $K \subset L$, with $\dim_k(L) = 2$. Take $\alpha \in L, \alpha \notin K$. Thus, $(1, \alpha)$ is a linearly independent set over K. Since $\dim_k(L) = 2$, $(1, \alpha)$ is a basis for L. $\alpha^2 \in L$ can be expressed as a linear combination of 1 and α , with coefficients in K.

$$\alpha^2 = -b\alpha - c \tag{1}$$

$$\implies \alpha^2 + b\alpha + c = 0, b, c \in K. \tag{2}$$

Thus, α is a root of $f(x) = x^2 + bx + c$. Since $\alpha \notin K$, this f(x) is irreducible over K. Let $\beta = \sqrt{b^2 - 4c}$, then $L = K(\beta)$, and $\beta^2 \in K$.

3.2.10

The trick:

$$\left[\left(\mathbb{Q}(\alpha) \right) (\beta) : \mathbb{Q} \right] = \underbrace{\left[\left(\mathbb{Q}(\alpha) \right) (\beta) : \mathbb{Q}(\alpha) \right]}_{=\deg_{\mathbb{Q}(\alpha)}(\beta) \le \deg_{\mathbb{Q}}(\beta) = 3} \left[\mathbb{Q}(\alpha) : \mathbb{Q} \right]$$

Enlarge

$$[(\mathbb{Q}(\alpha))(\beta):\mathbb{Q}(\alpha)] = \deg_{\mathbb{Q}(\alpha)}(\beta) \le \deg_{\mathbb{Q}}(\beta) = 3$$