ЛЕКЦИЯ 3. ОБРАТНАЯ МАТРИЦА

- 1. Обратная матрица: определение; алгоритм вычисления.
- 2. Критерий обратимости матрицы.
- 3. Решение матричных уравнений с помощью обратной матрицы
- 4. Решение систем линейных уравнений с помощью обратной матрицы.

3.1. Обратная матрица: определение; алгоритм вычисления

Обратным к элементу a называется такое число b , для которого выполняется условие $a \cdot b = 1$. Обозначается элемент $b : b = a^{-1}$. То есть $a \cdot a^{-1} = 1$.

Такого же подхода введения обратной матрицы придерживаются и в матричной алгебре. Напомним, что роль единицы в умножении матриц играет единичная матрица E.

Определение 1. Матрица B называется обратной к матрице A, если $A \cdot B = B \cdot A = E$.

Строго говоря, ввиду некоммутативности произведения матриц, необходимо вести речь о правой обратной матрице: $A \cdot B' = E$ и левой обратной матрице $B'' \cdot A = E$. Но, как будет показано далее B' = B''.

Пусть дана невырожденная матрица A. Рассмотрим матрицу A^* , составленную из алгебраических дополнений к элементам матрицы A:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & \boxed{a_{1j}} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ \hline a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \dots & \dots & \dots & \dots & \dots \\ \hline a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix} \longrightarrow A^* = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1j} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2j} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ \hline A_{i1} & A_{i2} & \dots & A_{ij} & \dots & A_{in} \\ \dots & \dots & \dots & \dots & \dots \\ \hline A_{n1} & A_{n2} & \dots & A_{nj} & \dots & A_{nn} \end{bmatrix}$$

Если теперь мы транспонируем матрицу A^* , то получим матрицу

$$\widetilde{A} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{i1} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{i2} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots & \dots \\ A_{1j} & A_{2j} & \dots & A_{ij} & \dots & A_{ni} \\ \dots & \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{in} & \dots & A_{nn} \end{pmatrix}$$

которая называется присоединенной матрицей.

Теорема 1. Присоединенная матрица обладает следующим важным свойством:

$$A \cdot \widetilde{A} = \widetilde{A} \cdot A = |A| \cdot E$$
.

3.2. Критерий обратимости матрицы

Теорема 2. *Критерий обратимости матрицы*. Пусть A — квадратная матрица. Матрица обратная к A существует тогда и только тогда, когда определитель матрицы A не равен 0. В этом случае матрица обратная к A единственна и может быть вычислена по формуле $A^{-1} = \frac{1}{|A|} \cdot \widetilde{A} \; .$

ВАЖНО: **Если** матрица \underline{A} вырожденная (определитель матрицы A равен 0), то у нее <u>не существует обратной</u> матрицы.

Из рассмотренного выше, в частности, следует, что $A \cdot A^{-1} = A^{-1} \cdot A = E$.

Докажем, что для заданной невырожденной квадратной матрицы A A^{-1} единственна.

Предположим, что существует другая матрица C, обладающая свойством:

$$A \cdot C = C \cdot A = E$$

Рассмотрим каждое из равенств отдельно $A \cdot C = E$ и $C \cdot A = E$

Домножим <u>обе части</u> обоих равенств на A^{-1} . <u>Первое</u> равенство домножим <u>слева</u> на A^{-1} , а <u>второе</u> равенство домножим <u>справа</u> на A^{-1} :

$$A^{-1} \cdot (A \cdot C) = A^{-1} \cdot E$$
 и $(C \cdot A) \cdot A^{-1} = E \cdot A^{-1}$

Воспользуемся свойствами операции умножения матриц и преобразуем равенства $A^{-1}\cdot (A\cdot C) = (\underbrace{A^{-1}\cdot A}_E)\cdot C = A^{-1}\cdot E \qquad \text{и} \qquad (C\cdot A)\cdot A^{-1} = C\cdot (\underbrace{A\cdot A^{-1}}_E) = E\cdot A^{-1}\,.$

Равенства перепишутся в виде $\underbrace{E \cdot C}_C = \underbrace{A^{-1} \cdot E}_{A^{-1}}$ и $\underbrace{C \cdot E}_C = \underbrace{E \cdot A^{-1}}_{A^{-1}}$.

То есть $C = A^{-1}$. Матрица C совпадает с матрицей A^{-1} . Матрица A^{-1} – единственна.

Свойства обратной матрицы

$$\mathbf{1}^{\circ}$$
. $(A^{-1})^{-1} = A$.

2°.
$$(\alpha A)^{-1} = \alpha^{-1} \cdot A^{-1} = \frac{1}{\alpha} A^{-1}$$
.

3°.
$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$
.

4°.
$$(A^{-1})^T = (A^T)^{-1}$$
.

5°.
$$|A^{-1}| = \frac{1}{|A|}$$
.

Алгоритм вычисления обратной матрицы A^{-1} :

- 1. Вычислить определитель матрицы A. Если |A|=0, то матрица A вырожденная и A^{-1} не существует. Если $|A|\neq 0$, то переходим к п.2.
 - 2. Составить матрицу A^* из алгебраических дополнений.
- 3. Транспонировать матрицу из алгебраических дополнений получить присоединенную матрицу $\left(A^*\right)^T = \widetilde{A}$.
 - 4. Вычислить A^{-1} по формуле $A^{-1} = \frac{1}{|A|} \cdot \widetilde{A}$.

Задача 1. Для $A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$ найти обратную матрицу A^{-1} . Сделать проверку.

Решение.

Воспользуемся алгоритмом.

- 1. Вычислим определитель матрицы $A\colon |A| = 1 \neq 0$, значит матрица A не вырожденная и существует A^{-1} .
- 2. Найдем алгебраические дополнения к каждому элементу матрицы A и составим из них матрицу A^*

$$a_{11} = 2 \rightarrow A_{11} = (-1)^{1+1} \cdot 3 = 3,$$
 $a_{12} = 5 \rightarrow A_{12} = (-1)^{1+2} \cdot 1 = -1,$ $a_{21} = 1 \rightarrow A_{21} = (-1)^{2+1} \cdot 5 = -5,$ $a_{22} = 3 \rightarrow A_{22} = (-1)^{2+2} \cdot 2 = 2.$ $A^* = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix}.$

3.
$$\widetilde{A} = (A^*)^T = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix}^T = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$$
.

4.
$$A^{-1} = \frac{1}{|A|} \cdot \widetilde{A} = \frac{1}{1} \cdot \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$$
.

Проверка
$$AA^{-1} = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E - A^{-1}$$
 найдена верно.

Ответ:
$$A^{-1} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$$
.

Задача 2. Для $A = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}$ найти обратную матрицу A^{-1} . Сделать проверку.

Решение.

Воспользуемся алгоритмом.

1. Вычислим определитель матрицы $A\colon |A|=0$, значит матрица A — вырожденная и A^{-1} не существует.

Задача 3. Для
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & -1 & 1 \\ 1 & 5 & 0 \end{pmatrix}$$
 найти обратную матрицу A^{-1} . Сделать

проверку.

Решение.

1. Найдем |A|. Для нахождения определителя воспользуемся элементарными преобразованиями строк. На первом шаге поменяем местами первую и третью строки, вынося за знак определителя «минус». Затем из второй и третьей строки вычитаем

первую, умноженную на соответствующий коэффициент. И, наконец, вычисляем определитель, раскладывая его по первому столбцу.

$$\begin{vmatrix} 3 & 2 & 1 \\ 2 & -1 & 1 \\ 1 & 5 & 0 \end{vmatrix} = -\begin{vmatrix} 1 & 5 & 0 \\ 2 & -1 & 1 \\ 3 & 2 & 1 \end{vmatrix} - 2R1 = \begin{vmatrix} 1 & 5 & 0 \\ 2 - 2 & -1 - 10 & 1 - 0 \\ 3 - 3 & 2 - 15 & 1 - 0 \end{vmatrix} =$$

$$= -\begin{vmatrix} 1 & 5 & 0 \\ 0 & -11 & 1 \\ 0 & -13 & 1 \end{vmatrix} - 2R2 = -1 \cdot \begin{vmatrix} -11 & 1 \\ -13 & 1 \end{vmatrix} = -1(-11 + 13) = -2$$

 $|A| = -2 \neq 0$, значит матрица A – не вырожденная и существует A^{-1} .

2. Найдем алгебраические дополнения к каждому элементу матрицы A и составим из них матрицу A^*

$$a_{11} = 3 \to A_{11} = (-1)^{1+1}(-5) = -5, \qquad a_{12} = 2 \to A_{12} = (-1)^{1+2}(-1) = 1,$$

$$a_{13} = 1 \to A_{13} = (-1)^{1+3} \cdot 11 = 11, \qquad a_{21} = 2 \to A_{21} = (-1)^{2+1} \cdot (-5) = 5,$$

$$a_{22} = -1 \to A_{22} = (-1)^{2+2} \cdot (-1) = -1, \qquad a_{23} = 1 \to A_{23} = (-1)^{2+3} \cdot 13 = -13,$$

$$a_{31} = 1 \to A_{13} = (-1)^{1+3} \cdot 3 = 3, \qquad a_{32} = 5 \to A_{32} = (-1)^{3+2} \cdot 1 = -1,$$

$$a_{33} = 0 \to A_{33} = (-1)^{3+3} \cdot (-7) = -7.$$

$$A^* = \begin{pmatrix} -5 & 1 & 11 \\ 5 & -1 & -13 \\ 3 & -1 & -7 \end{pmatrix}.$$

3.
$$\widetilde{A} = (A^*)^T = \begin{pmatrix} -5 & 1 & 11 \\ 5 & -1 & -13 \\ 3 & -1 & -7 \end{pmatrix}^T = \begin{pmatrix} -5 & 5 & 3 \\ 1 & -1 & -1 \\ 11 & -13 & -7 \end{pmatrix}$$
.

4.
$$A^{-1} = \frac{1}{|A|} \cdot \tilde{A} = \frac{1}{-2} \cdot \begin{pmatrix} -5 & 5 & 3 \\ 1 & -1 & -1 \\ 11 & -13 & -7 \end{pmatrix}$$

Проверка

$$A^{-1}A = \frac{1}{-2} \cdot \begin{pmatrix} -5 & 5 & 3 \\ 1 & -1 & -1 \\ 11 & -13 & -7 \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 & 1 \\ 2 & -1 & 1 \\ 1 & 5 & 0 \end{pmatrix} = \frac{1}{-2} \cdot \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E \Rightarrow$$

 A^{-1} найдена верно.

Ответ:
$$A^{-1} = \frac{1}{-2} \cdot \begin{pmatrix} -5 & 5 & 3 \\ 1 & -1 & -1 \\ 11 & -13 & -7 \end{pmatrix}$$
.

3.3. Решение матричных уравнений с помощью обратной матрицы

Рассмотрим матричные уравнения вида $A \cdot X = B$ и $Y \cdot A = B$, где A квадратная невырожденная матрица.

$$A \cdot X = B$$
 $Y \cdot A = B$ Домножим СПРАВА обе части равенства на $A^{-1} : \underbrace{A^{-1} \cdot A}_{E} \cdot X = A^{-1} \cdot B$. $X = A^{-1} \cdot B$ $Y \cdot A = B$ Домножим СЛЕВА обе части равенства на $A^{-1} : Y \cdot \underbrace{A^{-1} \cdot A}_{E} = B \cdot A^{-1}$. $Y = B \cdot A^{-1}$

Заметим, что ввиду некоммутативности матриц эти два решения буду различными.

Задача 4. Решить матричное уравнение $X \cdot \begin{pmatrix} 2 & 5 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 5 & 6 \\ 4 & -3 \end{pmatrix}$. Сделать

проверку.

Решение.

Пусть
$$A = \begin{pmatrix} 2 & 5 \\ 1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 0 \\ 5 & 6 \\ 4 & -3 \end{pmatrix}$.

$$X = B \cdot A^{-1}.$$

Найдем A^{-1} .

1. $|A| = -1 \neq 0$, значит A^{-1} существует.

$$2. A^* = \begin{pmatrix} 2 & -1 \\ -5 & 2 \end{pmatrix}.$$

3.
$$\widetilde{A} = \begin{pmatrix} 2 & -1 \\ -5 & 2 \end{pmatrix}^T = \begin{pmatrix} 2 & -5 \\ -1 & 2 \end{pmatrix}$$
.

4.
$$A^{-1} = \frac{1}{|A|} \cdot \tilde{A} = \frac{1}{-1} \cdot \begin{pmatrix} 2 & -5 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -2 & 5 \\ 1 & -2 \end{pmatrix}$$
.

Проверка
$$AA^{-1} = \begin{pmatrix} 2 & 5 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} -2 & 5 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E - A^{-1}$$
 найдена верно.

$$X = B \cdot A^{-1} = \begin{pmatrix} -1 & 0 \\ 5 & 6 \\ 4 & -3 \end{pmatrix} \cdot \begin{pmatrix} -2 & 5 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 2 & -5 \\ -4 & 13 \\ -11 & 26 \end{pmatrix}.$$

Проверка
$$\begin{pmatrix} 2 & -5 \\ -4 & 13 \\ -11 & 26 \end{pmatrix}$$
 $\cdot \begin{pmatrix} 2 & 5 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 5 & 6 \\ 4 & -3 \end{pmatrix}$ - верно.

Ответ:
$$X = \begin{pmatrix} 2 & -5 \\ -4 & 13 \\ -11 & 26 \end{pmatrix}$$
.

Задача 5. Решить матричное уравнение $\begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix} \cdot X = \begin{pmatrix} -1 & 3 & 0 \\ 0 & 4 & 6 \end{pmatrix}$. Сделать проверку.

Решение.

Пусть
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 3 & 0 \\ 0 & 4 & 6 \end{pmatrix}$.

$$X = A^{-1} \cdot B .$$

Найдем A^{-1}

1. $|A| = -4 \neq 0$, значит A^{-1} существует.

2.
$$A^* = \begin{pmatrix} 2 & -2 \\ -3 & 1 \end{pmatrix}$$
.

3.
$$\widetilde{A} = \begin{pmatrix} 2 & -2 \\ -3 & 1 \end{pmatrix}^T = \begin{pmatrix} 2 & -3 \\ -2 & 1 \end{pmatrix}$$
.

4.
$$A^{-1} = \frac{1}{|A|} \cdot \tilde{A} = \frac{1}{-4} \cdot \begin{pmatrix} 2 & -3 \\ -2 & 1 \end{pmatrix}$$
.

Проверка $A^{-1}A = \frac{1}{-4} \cdot \begin{pmatrix} 2 & -3 \\ -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix} = \frac{1}{-4} \cdot \begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E - A^{-1}$ найдена

верно.

$$X = A^{-1} \cdot B = \frac{1}{-4} \cdot \begin{pmatrix} 2 & -3 \\ -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 3 & 0 \\ 0 & 4 & 6 \end{pmatrix} = \frac{1}{-4} \begin{pmatrix} -2 & -6 & -18 \\ 2 & -2 & 6 \end{pmatrix} = \begin{pmatrix} 0.5 & 1.5 & 4.5 \\ -0.5 & 0.5 & -1.5 \end{pmatrix}.$$

Проверка
$$\begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} -2 & -6 & -18 \\ 2 & -2 & 6 \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{4} \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} 4 & -12 & 0 \\ 0 & -16 & -24 \end{pmatrix} = \begin{pmatrix} -1 & 3 & 0 \\ 0 & 4 & 6 \end{pmatrix}$$
 - верно.

ОТВЕТ:
$$X = \begin{pmatrix} 0.5 & 1.5 & 4.5 \\ -0.5 & 0.5 & -1.5 \end{pmatrix}$$
.

Задача 6. Решить матричное уравнение
$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 0 \\ 0 & 1 & -1 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ 3 & 0 \\ 1 & -5 \end{pmatrix}.$$

Сделать проверку.

Решение.

Пусть
$$A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 0 \\ 0 & 1 & -1 \end{pmatrix}$ $C = \begin{pmatrix} 4 & -2 \\ 3 & 0 \\ 1 & -5 \end{pmatrix}$.

Наше матричное уравнение перепишется в виде: $B \cdot X \cdot A = C$. Домножим <u>обечасти</u> слева на B^{-1} , а справа на A^{-1} . Получим:

$$\underbrace{B^{-1} \cdot B}_{F} \cdot X \cdot \underbrace{A \cdot A^{-1}}_{F} = B^{-1} \cdot C \cdot A^{-1} \Longrightarrow X = B^{-1} \cdot C \cdot A^{-1}$$

Найдем A^{-1} и B^{-1} .

1. $|A| = 1 \neq 0$, значит A^{-1} существует.

2.
$$A^* = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} \Rightarrow 3$$
. $\widetilde{A} = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} \Rightarrow 4$. $A^{-1} = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$.

Проверка $A^{-1}A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E - A^{-1}$ найдена верно.

1. $|B| = 3 \neq 0$, значит B^{-1} существует.

2.
$$B^* = \begin{pmatrix} -3 & 2 & 2 \\ 3 & -1 & -1 \\ -3 & 2 & -1 \end{pmatrix} \Rightarrow 3. \ \widetilde{B} = \begin{pmatrix} -3 & 3 & -3 \\ 2 & -1 & 2 \\ 2 & -1 & -1 \end{pmatrix}$$
.

4.
$$B^{-1} = \frac{1}{3} \cdot \begin{pmatrix} -3 & 3 & -3 \\ 2 & -1 & 2 \\ 2 & -1 & -1 \end{pmatrix}$$
.

Проверка
$$B^{-1}B = \frac{1}{3} \cdot \begin{pmatrix} -3 & 3 & -3 \\ 2 & -1 & 2 \\ 2 & -1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 0 \\ 0 & 1 & -1 \end{pmatrix} = \frac{1}{3} \cdot \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E \Rightarrow$$

 B^{-1} найдена верно.

$$X = B^{-1} \cdot C \cdot A^{-1} = \frac{1}{3} \cdot \begin{pmatrix} -3 & 3 & -3 \\ 2 & -1 & 2 \\ 2 & -1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 4 & -2 \\ 3 & 0 \\ 1 & -5 \end{pmatrix} \cdot \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} = \frac{1}{3} \cdot \begin{pmatrix} -6 & 21 \\ 7 & -14 \\ 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} = \frac{1}{3} \cdot \begin{pmatrix} -33 & 60 \\ 28 & -49 \\ 7 & -10 \end{pmatrix}.$$

Проверка

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 0 \\ 0 & 1 & -1 \end{pmatrix} \cdot \frac{1}{3} \cdot \begin{pmatrix} -33 & 60 \\ 28 & -49 \\ 7 & -10 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} = \frac{1}{3} \cdot \begin{pmatrix} 30 & -48 \\ 18 & -27 \\ 21 & -39 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 10 & -16 \\ 6 & -9 \\ 7 & -13 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ 3 & 0 \\ 1 & -5 \end{pmatrix}$$
- Bepho.

ОТВЕТ:
$$X = \frac{1}{3} \cdot \begin{pmatrix} -33 & 60 \\ 28 & -49 \\ 7 & -10 \end{pmatrix}$$
.

3.4. Решение систем линейных уравнений с помощью обратной матрицы

Рассмотрим систему n линейных уравнений с n неизвестными величинами $(x_1, x_2, ..., x_n)$:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$
 (1)

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \text{ - матрица, составленная из коэффициентов в системе (1),}$$

$$B = egin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix}$$
 - вектор-столбец свободных членов, $X = egin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$ - вектор-столбец неизвестных.

Систему можно записать в виде матричного уравнения $A \cdot X = B$. Действительно:

$$AX = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix} = B.$$

$$X = A^{-1} \cdot B .$$

Задача 7. Решить систему линейных уравнений с помощью обратной матрицы

$$\begin{cases} x_1 - x_2 - x_3 = 2 \\ x_1 - x_2 - 2x_3 = 1 \\ x_1 - 2x_2 - 3x_3 = 3 \end{cases}$$

Решение.

Пусть
$$A = \begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & -2 \\ 1 & -2 & -3 \end{pmatrix}, B = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}.$$

1.
$$|A| = \begin{vmatrix} 1 & -1 & -1 \\ 1 & -1 & -2 \\ 1 & -2 & -3 \end{vmatrix} = -1 \neq 0$$
, значит A^{-1} существует.

2.
$$A^* = \begin{pmatrix} -1 & 1 & -1 \\ -1 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} \Rightarrow 3. \ \widetilde{A} = \begin{pmatrix} -1 & -1 & 1 \\ 1 & -2 & 1 \\ -1 & 1 & 0 \end{pmatrix}.$$

4.
$$A^{-1} = -1 \cdot \begin{pmatrix} -1 & -1 & 1 \\ 1 & -2 & 1 \\ -1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 0 \end{pmatrix}$$
.

Проверка
$$A^{-1}A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & -2 \\ 1 & -2 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E \Rightarrow A^{-1}$$
 найдена верно.

$$X = A^{-1} \cdot B = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix}.$$

Проверка
$$\begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & -2 \\ 1 & -2 & -3 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
 - верно.

Ответ: (0;-3;1).