Lecture 2

Lecture 2 LAST Time Basic code review-Runtime Print hello for li=1 to n) {

 $\begin{cases} \text{for } (i=1 \ to \ n) \\ \text{for } (j=1 \ to \ i) \\ \text{fint hello}; \end{cases} \stackrel{h=1}{\underset{1}{\stackrel{n}{\smile}}} \stackrel{n}{\underset{2}{\stackrel{n}{\smile}}} \frac{1}{\underset{1}{\stackrel{n}{\smile}}} \frac{1}{\underset{2}{\stackrel{n}{\smile}}} \frac{1}{\underset{1}{\stackrel{n}{\smile}}} \frac{1}{\underset{2}{\stackrel{n}{\smile}}} \frac{1}{\underset{2}{\stackrel{n$

 $\frac{2}{2} = \frac{1}{2} = \frac{1}{2} = \frac{n(n+1)}{2} = O(n^2)$ $= \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{n(n+1)}{2} = O(n^2)$

Ex5
$$5n^{3} + 70n + 100 = 52 cn^{3}$$
 $5n^{3} + 0 + 0 > 2cn^{3} + 10c = 52 cn^{3}$
 $5n^{3} + 69n + 100 = 52 cn^{3}$
 $5n^{3} + 7 + 100 = 100 cn^{3}$

$$5n^{3}+7 > cn^{3}$$

$$5n^{3}+7 > cn^{3}$$

$$5n^{3}+0 > 5n^{3}$$

$$5n^{3}+0 > 5n^{3}$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1 = 10$$

$$1$$

 $\lim_{n\to\infty} \frac{\partial \Omega_n}{\partial g(n)} = L$ $i\delta \quad L = 0 \Rightarrow \quad \delta(n) = O(g(n))$ L = constant $Not zero \Rightarrow \delta(n) = \theta(g(n))$

$$T(n) = 5n^{3} - 100n^{2} \qquad \delta(n) = n^{3}.$$

$$Prove T(n) = \Omega(n^{3}).$$

$$\lim_{n \to \infty} \frac{5n^{3} - 100n^{2}}{n^{3}} = \frac{16n^{2} - 200n}{3n^{2}} = \frac{30n - 200}{6n} = \frac{30}{6}$$

$$\lim_{n \to \infty} \frac{6n}{n^{3}} = \lim_{n \to \infty} \frac{6n}{9n}$$

$$T(n) = \theta(n^{3}) = 7 T(n) = \Omega(n^{2})$$
by let of Theta.
$$\lim_{n \to \infty} \frac{10g(n)}{n^{2000}} = \lim_{n \to \infty} \frac{1}{n^{2}} = \frac{1}{n^{2}} \cdot (n^{2} - 0000) = \frac{1}{n^{2}}$$

$$\lim_{n \to \infty} \frac{10g(n)}{n^{2000}} = \frac{1}{n^{2}} \cdot (n^{2} - 0000) = \frac{1}{n^{2}}$$

$$\lim_{n \to \infty} \frac{1}{n^{2}} = \frac{1}{n^{2}} \cdot (n^{2} - 0000) = \frac{1}{n^{2}}$$

$$\lim_{n \to \infty} \frac{1}{n^{2}} = \frac{1}{n^{2}} \cdot (n^{2} - 0000) = \frac{1}{n^{2}} = \frac{1}{n^{2}} \cdot (n^{2} - 0000) = \frac{1}{n^{2}}$$

log (n) = 0 (nx)

		*	
Divide & conquer given a problem			
· Divide: The problem into subprusients	that	5mu	ller
. LAstonces of the same problem.			
inti chaprofit Reverne (array cost. array new	renue)	*	
int X = ADDUP costcostco)			
. conquer: 3 plue the smaller instance Recursively	7		
if [instance is small enough] = bas	ecour	٠	٠
solve Dicery.	*	32.	
combine : combine the sol. To smaller	inst.	unces	٠
into a Sinal answer.			
(1-20 115) 32 7 (nlogn)			
Assume you have an array s: such that	, ·s =	h.	
Find the smallest int in 5.	*	٠	
is (smallest > Aci])			
() 18 (Smallest) Milia)			

50 X=smallestLA(1,=]) Y=smallestCA 274 18 [X LY] ketum X else . Keturn /. T(n) = Runtime of my code on invact size n T(n)=3+2T(=1) 3 methods of solving Recurrence Tin)=2T(2)+O(n) nloyen tree . method 3 m. T.

$$\frac{n}{2^{i}} = n$$

$$\frac{n}{2^{i}} = 1 \text{ when } \overline{1} \text{ stop}$$

$$n = 2$$

$$\log_{2} n = \log_{2} 2^{\frac{1}{2}} \qquad i = \log_{2} n$$

$$\sum_{i=0}^{\log_{2} n} 2^{i} (1) = \sum_{j=0}^{\log_{2} n} 2^{j} = 2^{\log_{2} n}$$

2n-1 = O(n)

$$\sum_{i=0}^{x} 2^{i} = \frac{2^{x+1} - 1}{1}$$

