Advanced Database Management Systems

Lecture 16

Dynamic Indexes: Sections 14.3

Multi-Level Indexes

- Since a single-level index is an ordered file,
 we can create a primary index to the index itself
 - In this case, the original index file is called the first-level index and the index to the index is called the second-level index.
- We can repeat the process
 - Create additional levels until all entries of the top level fit in one disk block
- A multi-level index can be created for any type of first-level index (primary, secondary, clustering)

Two-level, static, primary index

35

55 85

This is similar to the ISAM organization used in early IBM systems

Index Sequential Access Method

Schematic view of multilevel index

Figure 9.15 Page at a separator level in an ISAM index.

Example of an ISAM index

Dynamic Indexes

- Previous indexes are static
 - built up level by level from a data instance (always balanced)
 - must be rebuilt if the record set changes
- Multi-level indexes are a form of search tree
 - for static indexes, insertion and deletion
 of new index entries is a severe problem,
 since every level of the index is an ordered file.

Dynamic Indexes

- Dynamic indexes are modified as the record set changes
- Dynamic indexes are balanced search tree structures
 - tree nodes are sized to match block size
 - nodes are not kept in contiguous blocks
 - nodes are left partially filled to avoid extensive modification to the tree when records are inserted
 - insert and delete algorithms are designed to keep tree balanced
 - balanced = all leaf nodes at same level

Trees: Review

- A tree is a rooted, directed, acyclic graph
- every node has 0-1 parents and 0-p children
 - p is the order or fan-out of the tree
- root node has no parent: there is exactly one root
- leaf nodes have no children
- interior nodes have at least one child
- height of a tree is length of longest path
 - (from root to some leaf)
- binary trees (order 2) are typical for in-memory algorithms
- order of disk-based trees is selected to match node size to disk block size

An Unbalanced Tree

balanced tree = path length from root to any leaf node is the same

Search Tree: Basic Structure

- Disk based trees have a large fan-out (order)
- Maximize order such that nodes fit in disk blocks/pages
- Following node has order q

A node with order q, will have q-1 separator values

Search Tree, Order = 3

Is this a balanced tree?

B-Trees and B+-Trees

- Most multi-level indexes
 use B-tree or B+-tree data structures
 - Efficient insertion and deletion
 - Each tree node corresponds to a disk block
 - Update algorithms maintain balanced tree
 - Nodes are kept between half-full and completely full to allow for new index entries

Updates to B-Trees & B+-Trees

- Insertion into a node that is not full is quite efficient
- Insertion into a full node causes a split into two nodes
 - Splitting may propagate to other tree levels
- Deletion into from a node that is more than half full is quite efficient
- When deletion causes a node to become less than half full, it must be merged with neighboring nodes
 - merging may propagate to other tree levels

B-trees

- B-trees have a single node type
 - interior and leaf nodes have the same structure
 - interior nodes have keys,
 subtree pointers and data pointers
 - leaf nodes have keys and data pointers, all subtree pointers are NULL
 - key values appear in exactly one node

B-tree Structure (order q)

B-tree node with q-1 search values and q pointers

Example B-tree

A B-tree of order 3

B-tree, B+-tree Comparison

B-tree:

- pointers to data records exist at all levels of the tree
- each index value appears in exactly one node

B+-tree:

- pointers to data records exists only in the leaf nodes
- each index value appears in exactly one leaf node
- some index values also appear in interior nodes

B⁺-Trees

- Support equality and range searches, multi-attribute keys and partial key searches
- Either a secondary index (in a separate file)
 or the basis for an integrated storage structure
- Responds to dynamic changes in the table
- B+-trees have two kinds of nodes
 - interior nodes contain keys and subtree pointers
 - leaf nodes contain keys and data pointers
 - key values may appear in multiple nodes

B⁺ Tree Structure

- Leaf level is an ordered linked list of index entries
- All data pointers are in leaves, interior nodes have sub-tree pointers
- Sibling pointers support range searches

B+-tree Nodes (Order = q)

Internal node: *q*–1 search values, *q* subtree pointers

Leaf node: *q*–1 search values, *q*–1 data pointers, 1 or 2 next node pointers

Example B+-tree (order 3)

not shown: each entry in leaf level has a pointer to the data file

Order of a B+-tree

 Let B = block size, P = block pointer size and V = index value size.

$$(p-1)V + pP < B$$

 $p(V+P) - V < B$
 $p(V+P) < B+V$

$$p < \frac{B+V}{V+P}$$

$$p = \left\lfloor \frac{B+V}{V+P} \right\rfloor$$

- B+-tree nodes are deliberately kept partially filled
 - q
 - q is typically defined as some fill factor,
 for example: q = 0.7p

B⁺-tree Size

- To estimate the size of a B+-tree:
 - determine p, from block size, pointer size and key size
 - determine q, from p and desired fill factor
 - determine number of leaf nodes, r_{leaf},
 using q-1 and number of data records (r)

$$r_0 = r_{leaf} = \left| \frac{r}{q - 1} \right|$$

• determine number of interior nodes, r_i , at each level using number of blocks in lower level (r_{i-1}) and q

$$r_i = \left\lceil \frac{r_{i-1}}{q} \right\rceil$$

When r_i = 1, you've reached the root.
 The tree height is h = i

Blocks required to store the tree is
$$\sum_{i=0}^{n} r_i$$

B+-tree Insertion Example

insert "vince"

B⁺-tree Insertion Example

Insert "vera": Since there is no room in leaf page:

- 1. Create new leaf, C
- 2. Distribute index entries between B and C (maintain order)
- 3. Adjust parent node D

B+-tree Insertion Example

Insert "rob". Since there is no room in leaf A:

- 1. Split A into A1 and A2 and distribute index entries between the two (maintain order)
- 2. Split parent D into D1 and D2 to make room for additional pointer
- 3. Add new level to connect D1 and D2

B⁺-tree Insertion: Split Propagation

- When splitting an interior node, push a separator up
- Repeat process at next level
- Height of tree increases by one

Handling Deletions

- Deletion can cause page to have fewer than q entries
 - Entries can be redistributed over adjacent pages to maintain minimum occupancy requirement
 - Ultimately, adjacent pages must be merged, and if merge propagates up the tree, height might be reduced
- In practice, tables generally grow,
 and merge algorithm is often not implemented
 - Reconstruct tree to compact it

Example: B+-tree Deletion

Example: B+-tree Deletion

Example: B+-tree Deletion

REFERENCES

- Figures on slides 4, 5, 6, 20, 22, 25-28 borrowed from Database Systems:
 An Application-Oriented Approach (2nd ed)
 - by Kifer, Bernstein and Lewis, Addison-Wesley, 2005
- Remaining figures from Elmasri/Navathe