Calcolo integrale

$$y=x^2$$

$$x_k = k \frac{b}{n}$$

$$f(x_k) = \left(\frac{kb}{n}\right)^2$$

$$\sum_{k=1}^{n} \frac{b}{n} \left(\frac{b(k-1)}{n} \right)^{2}$$

$$x_k = k \frac{b}{n}$$

$$f(x_k) = \left(\frac{kb}{n}\right)^2$$

$$\sum_{k=1}^{n} \frac{b}{n} \left(\frac{bk}{n} \right)^{2}$$

$$\sum_{k=1}^{n} \frac{b}{n} \left(\frac{b(k-1)}{n} \right)^{2} \leq A \leq$$

$$\sum_{k=1}^{n} \frac{b}{n} \left(\frac{bk}{n} \right)^{2}$$

$$\sum_{k=1}^{n} \frac{b}{n} \left(\frac{b(k-1)}{n} \right)^{2} \leq A \leq \sum_{k=1}^{n} \frac{b}{n} \left(\frac{bk}{n} \right)^{2}$$

$$\sum_{r=1}^{n} (x)^{2} = \frac{1}{6}n(n+1)(2n+1)$$

$$\lim_{n \to \infty} \frac{b^3}{n^3} \frac{(n-1)n[2(n-1)]}{6} \le A \le \lim_{n \to \infty} \frac{b^3}{n^3} \frac{n(n+1)(2n+1)}{6}$$

$$\downarrow b^3$$

$$\frac{b^3}{3} = A$$

Integrale definito

Sia $f: [a,b] \rightarrow R$, positiva e continua.

Integrale definito

Sia $f: [a,b] \rightarrow R$, positiva e continua.

Somme di Riemann

Sia $f: [a,b] \rightarrow R$, positiva e continua.

Somme di Riemann

Sia $f: [a,b] \rightarrow R$ continua. Essa è integrabile in [a,b] se esiste ed è

finito il
$$\lim_{\delta \to 0} \sum_{k=0}^{n-1} (x_{k+1} - x_k) f(\xi_k) = \int_a^b f(x) dx$$

Calcolo delle Aree

Sia f: $[a,b] \rightarrow R$ positiva e continua. L'area sottesa dal grafico di f nell'intervallo $[a,b] \grave{e} = \int_{a}^{b} f(x) dx$.

Sia f: $[a,b] \rightarrow R$ negativa e continua. L'area sot_btesa dal grafico di f nell'intervallo $[a,b] \grave{e} = -\int f(x)dx$.

Proprietà di linearità dell'integrale definito

Siano f e g: $[a,b] \rightarrow R$ integrabili nel dominio, allora:

1.
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$2. \int_{a}^{b} c \cdot f(x) dx = c \int_{a}^{b} f(x) dx$$

Proprietà dell'integrale definito

Sia $f : [a,b] \rightarrow R$ integrabile nel dominio, allora:

$$1. \int_{a}^{a} f(x)dx = 0$$

$$2. \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

3.
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Calcolo delle Aree

Sia f: [a,b] \rightarrow R continua. Sia D+ il sottoinsieme del dominio in cui la funzione f è positiva e D- il sottoinsieme del dominio in cui la funzione f è negativa. L'area sottesa dal grafico di f nell'intervallo [a,b] è = $\int_{D+} f(x)dx - \int_{D-} f(x)dx$.

Integrale definito di funzioni pari

Sia $f: [-a,a] \rightarrow R$ integrabile e pari.

$$\int_{-a}^{a} f(x)dx$$

$$= \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$$

Integrale definito di funzioni dispari

Sia $f: [-a,a] \rightarrow R$ integrabile e dispari.

$$\int_{-a}^{a} f(x)dx$$

$$= \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx = 0$$

Proprietà dell'integrale definito

Siano f e g : $[a,b] \rightarrow R$ integrabili nel dominio, allora:

$$1. \int_{a}^{b} c \cdot dx = c(b-a)$$

2. se
$$f(x) \ge g(x)$$
, $\forall x \in [a,b]$
$$\int_a^b f(x) dx \ge \int_a^b g(x) dx$$

Teorema

Sia $f : [a,b] \rightarrow R$ continua nel dominio, allora f è integrabile in A.

Teorema della media

Sia $f: A=[a,b] \rightarrow R$ continua in A, allora $\exists x_0 \in A$

$$\int_{a}^{b} f(x)dx = f(x_0)(b-a)$$

Integrale indefinito

$$\int_{a}^{x} f(t)dt = F(x)$$

funzione funzione integranda integrale

Teorema di Torricelli-Barrow o

T. fondamentale del calcolo integrale

Sia $f: [a,b] \rightarrow R$ integrabile in [a,b] e sia

$$F(x) = \int_{a}^{x} f(t)dt$$

Se f(t) è continua allora F(x) è derivabile e F'(x)=f(x).

F(x) è detta primitiva di f(x) ed è quella funzione la cui derivata è f(x).

Integrali indefiniti

Sia $f:[a,b] \rightarrow R$ integrabile in [a,b] e sia

$$F(x) = \int_{a}^{x} f(t)dt$$

Se F(x) è una primitiva di f(x), anche G(x)=F(x)+c è una primitiva di f(x).

$$F(x) + c = \int_{a}^{x} f(t)dt$$

$$F(a) + c = \int_{a}^{x} f(t)dt = 0$$

$$F(b) - F(a) = \int_{a}^{b} f(t)dt$$

Integrali indefiniti

Sia $f:[a,b] \rightarrow R$ integrabile in [a,b] e sia

$$F(x) + c = \int_{a}^{x} f(t)dt$$
 allora
$$D[F(x) + c] = D\int f(t)dt = f(x)$$
 e

$$G(x) + c = \int D[f(t)]dt$$

$$D[G(x)+c] = D[f(x)] \qquad G(x)+c = f(x)$$

Risoluzione degli integrali definiti

$$F(b) - F(a) = \int_{a}^{b} f(t)dt$$

- 1. Determinare la primitiva F(x) risolvendo l'integrale indefinito $\int f(t)dt$.
- 2. Calcolare la primitiva in b e in a e sottrarre i risultati.

Risoluzione degli integrali indefiniti

Integrali immediati

$$\int c \cdot dx = c \cdot x$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \qquad \qquad n \neq -1$$

$$\int \frac{1}{x} dx = \ln|x| + c \qquad \text{x>0}$$

$$\int e^x dx = e^x + c$$

Risoluzione degli integrali indefiniti

Integrali immediati

$$\int \sin x \cdot dx = -\cos x$$

$$\int \cos x \cdot dx = \sin x$$

$$\int \frac{1}{\cos^2 x} dx = \tan x + c$$

$$\int \frac{1}{1+x^2} dx = arc \tan x + c$$

Esercizi

$$\int \left(\frac{1}{x} - \cos x\right) dx$$

$$\int \tan^2 x \cdot dx$$

$$\int \frac{1-x^4}{1-x^2} dx$$

Esercizi

$$\int_{1}^{2} \left(e^{x} + x^{3}\right) dx$$

$$\int_{-\pi}^{\pi} \sin x \cdot dx$$

$$\int_{e}^{e^{3}} \frac{1}{x} dx$$

Risoluzione degli integrali indefiniti Riconoscimento di funzioni composte

$$\int g[f(x)] \cdot f(x) dx = g(x) + c$$

$$\int 7 \cdot e^{7x} dx$$

$$\int \frac{1}{2x-1} \cdot 2dx$$

$$\int (6x-2)\cos(3x^2-2x)dx$$

Risoluzione degli integrali definiti Riconoscimento di funzioni composte

$$\int g[f(x)] \cdot f(x) dx = g(x) + c$$

$$\int_{0}^{1} e^{3x+1} dx$$

$$\int_{\frac{\pi}{2}-1}^{\pi-1} \tan(2x+1)dx$$

$$\int_{0}^{\sqrt{\pi}} \frac{4x}{\cos^2(2x^2)} dx$$

Risoluzione degli integrali indefiniti Integrazione per parti

$$\int g'(x) \cdot f(x) \cdot dx = g(x) \cdot f(x) - \int g(x) \cdot f'(x) \cdot dx$$

$$\int x \cdot e^x dx$$

$$\int x^2 \cdot e^x dx$$

$$\int \ln(x) \cdot dx$$

Risoluzione degli integrali definiti

Integrazione per parti

$$\int_{a}^{b} g'(x) \cdot f(x) \cdot dx = \left[g(x) \cdot f(x) \right]_{a}^{b} - \int_{a}^{b} g(x) \cdot f'(x) \cdot dx$$

$$\int_{0}^{\pi} x \cdot \sin x \cdot dx$$

$$\int_{1}^{0} x \cdot e^{2x} \cdot dx$$

$$\int_{-2}^{2} x^{2} \cdot \ln(x) \cdot dx$$

Risoluzione degli integrali indefiniti

Integrazione per sostituzione

$$\int f(x) \cdot dx \qquad \text{pongo} \qquad x = \varphi(t)$$

con ϕ invertibile

$$t = \varphi^{-1}(x)$$

$$dx = d\left[\varphi(t)\right] = \varphi(t) \cdot dt$$

$$\int f(x) \cdot dx = \int f \left[\varphi(t) \right] \varphi(t) \cdot dt \Big|_{t=\varphi^{-1}(x)}$$

Risoluzione degli integrali indefiniti

Integrazione per sostituzione

$$\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx \quad \text{pongo} \quad \sqrt{x} = t$$

$$\int \sqrt{1+x} \cdot dx \quad \text{pongo} \quad \sqrt{x+1} = t$$

$$\int x\sqrt{x-1}\cdot dx \quad \text{pongo} \quad \sqrt{x-1} = t$$

Risoluzione degli integrali indefiniti

Integrazione per sostituzione

$$\int_{a}^{b} f(x) \cdot dx \quad \text{pongo} \quad x = \varphi(t) \qquad t = \varphi^{-1}(x)$$

$$\cot \varphi \text{ invertibile}$$

$$\int_{a}^{b} f(x) \cdot dx = F(b) - F(a) \qquad t_{a} = \varphi^{-1}(a)$$

$$t_{b} = \varphi^{-1}(b)$$

$$dx = d\left[\varphi(t)\right] = \varphi(t) \cdot dt$$

Risoluzione degli integrali definiti

Integrazione per sostituzione

$$\int_{1}^{2} \frac{\sin \sqrt{x-1}}{\sqrt{x-1}} dx \text{ pongo } \sqrt{x-1} = t$$

$$\int_{0}^{3} \sqrt{4 - x} \cdot dx \quad \text{pongo} \quad \sqrt{4 - x} = t$$

$$\int_{1}^{0} x^2 \sqrt{x+1} \cdot dx \quad \text{pongo} \quad \sqrt{x+1} = t$$

Sia f e g: $[a,b] \rightarrow R$ continue $| f(x) \ge g(x)$.

Sia $f e g: [a,b] \rightarrow R$ continue.

Sia f(x)=x e g(x)=ln(x).

$$A = \int_{a}^{b} \left[x - \ln(x) \right] dx$$

Determinare l'area compresa tra i grafici delle due funzioni rappresentate nella seguente figura.

Determinare l'area compresa tra i grafici delle due funzioni rappresentate nella seguente figura.

Metodi numerici per il calcolo delle aree

Metodo dei rettangoli

Metodi numerici per il calcolo delle aree

Metodo dei trapezi

Metodo di Cavalieri-Simpson

Sia $f: [a,+\infty) \rightarrow R$ continua.

 \forall b \in R, b>a, f: [a,b] \rightarrow R è continua e quindi integrabile secondo Riemann.

$$\lim_{b \to +\infty} \int_{a}^{b} f(x) dx = \int_{a}^{+\infty} f(x) dx$$

Sia $f: (-\infty, b] \rightarrow \mathbb{R}$ continua.

 \forall a \in R, a < b, f: [a,b] \rightarrow R è continua e quindi integrabile secondo Riemann.

$$\lim_{a \to -\infty} \int_{a}^{b} f(x) dx = \int_{-\infty}^{b} f(x) dx$$

Sia $f: (-\infty, +\infty) \rightarrow \mathbb{R}$ continua.

 \forall a,b \in R, a<b, f: [a,b] \rightarrow R è continua e quindi integrabile secondo Riemann.

$$\lim_{a \to -\infty} \lim_{b \to \infty} \int_{a}^{b} f(x) dx = \int_{-\infty}^{+\infty} f(x) dx$$

Esercizi

$$\int_{2}^{+\infty} \frac{1}{(x+1)^2} dx$$

$$\int_{-\infty}^{0} \frac{e^x}{1 + e^x} dx$$

$$\int_{-\infty}^{+\infty} \sin x \ dx$$

$$\int_{-\infty}^{+\infty} (2x+3)^3 dx$$

Sia $f: [a, b) \rightarrow R$ continua.

 $\forall \epsilon > 0 \in R$, f: [a, b- ϵ] $\rightarrow R$ è continua e quindi integrabile secondo Riemann.

$$\lim_{\varepsilon \to 0^+} \int_a^{b-\varepsilon} f(x) dx = \int_a^b f(x) dx$$

Sia $f: (a, b] \rightarrow R$ continua.

 $\forall \epsilon > 0 \in R$, $f: [a+\epsilon, b] \rightarrow R$ è continua e quindi integrabile secondo Riemann.

$$\lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^b f(x) dx = \int_a^b f(x) dx$$

Sia $f: (a, b) \rightarrow R$ continua.

 $\forall \epsilon, \delta > 0 \in \mathbb{R}$, f: $[a+\epsilon, b-\delta] \rightarrow \mathbb{R}$ è continua e quindi integrabile secondo Riemann.

$$\lim_{\delta \to 0^+} \lim_{\epsilon \to 0^+} \int_{a+\epsilon}^{b-\delta} f(x) dx = \int_a^b f(x) dx$$

Esercizi

$$\int_0^2 \frac{1}{\sqrt{2-x}} dx$$

$$\int_0^1 \frac{e^x}{1 - e^x} dx$$

$$\int_0^{\pi} \frac{\cos x}{\sin x} dx$$

$$\int_{1}^{4} \frac{1}{x-1} dx$$

In tutti i casi precedenti

- se il risultato del limite è infinito allora la funzione non è integrabile in senso generalizzato e l'integrale è divergente.
- se il risultato del limite non esiste allora la funzione non è integrabile in senso generalizzato e l'integrale è indeterminato.