Groups and Rings - SF2729

Homework 2

Jim Holmström - 890503-7571

March 7, 2012

Exercise 1. Let G be a finite group and let $H \subset G$ be a subset. Assume that for $\forall a, b \in H \Rightarrow ab \in H$.

Prove that H is a subgroup.

Solution.

 \mathcal{G}_1 Associativity

 \mathcal{G}_2 Existence of unit

 \mathcal{G}_3 Existence of inverses

Table 1: Group axioms

Associativity is trivially inherited from G and therefore H satisfies \mathcal{G}_1 . Let n = |H| and $a \in H$ then $a, a^2, \ldots, a^{n+1} \in H$ since we know that H is closed under the operation. All these cannot be the same which means we have $\exists i < j : a^i = a^j$.

$$a^{i} = a^{j} \in H$$
$$a^{i}a^{-i} = a^{j}a^{-i} \in H$$
$$e = a^{j-i} \in H$$

Thus $e \in H$ showing that H satisfies \mathcal{G}_2 . $a^{-1} = ea^{-1} = a^{j-i}a^{-1} = a^{j-i-1}$ which is $e \in H$ and thus $a^{-1} \in H$ which gives that Hsatisfies \mathcal{G}_3 .

 $\therefore H \subset G \text{ and } H \text{ satisfying } \mathcal{G}_{1:3} \Rightarrow H < G \square$

Exercise 2. Show that a group with no proper non-trivial subgroup is cyclic. Furthermore find the order of such a group.

Solution. G is a group with no proper non-trivial subgroup. In the case $G = \{e\}$ it's trivially cyclic. For the other cases we can take $a \in G, a \neq e$, we know that < a > is a nontrivial subgroup of G and since G doesn't have any non-trivial proper subgroups we have < a >= G and are thus cyclic. A cyclic group is isomorphic Z_n or Z, where for finite G, n = |G|. Since a is arbitrary the above statement most hold $\forall a \neq e \in G$. If $\gcd(a,n) \neq 1$ then $< a > \neq G$ and since this cannot be we have that $\forall a \in \{2,...,n-1\}$ $\gcd(a,n) = 1$. Therefore n most be prime since that's the only number that has this property. \Box

Exercise 3. Let G be a group and supposed $a \in G$ generates a cyclic group of order 2 and is the unique such element.

Show that $ax = xa \forall x \in G$. (Hint: consider $(xax^{-1})^2$).

Solution.

$$a \neq e$$
 (Since a is of order 2)
$$xa \neq x$$

$$xax^{-1} \neq e$$

 $\forall x, (xax^{-1})^2 = xaeax^{-1} = xa^2x^{-1} = \{a \text{ of order } 2 \Rightarrow a^2 = e \} = xex^{-1} = e$ Thus xax^{-1} is of order 2 and since a is given to be the unique element of order 2 in G we have $\forall x, xax^{-1} = a$ resulting in $\forall x, xa = ax$

Exercise 4. Let p and q be distinct prime numbers. Find the number of generators of the cyclic group \mathbb{Z}_{pq}

(Assuming that we have 2 typos and are therefore following the text in the book.)

Solution. Assuming $\mathbb{Z}_{pq} = \langle \mathbb{Z}_{pq}, + \rangle$

Generators = $\{a \in \mathbb{Z}^+ : a < pq \land sgd(a, pq) = 1\}$ This fits the definition of eulers totient function ϕ .

 $|Generators| = \phi(pq) = (p-1)(q-1)$