Préparez des données pour un organisme de santé publique →







# Sommaire

- 01 --- Rappel du contexte et de l'objectifs
- 02 --- Exploration du jeu de données
- 03 --- Nettoyage du jeu de données
- 04 --- Analyse univariée
- 05 → Analyse bivariée
- 06 → Analyse bivariée
- 07 --- Présentation des résultats

**01** →

# Rappel du contexte et de l'objectifs

# Rappel du contexte

L'agence Santé publique France souhaite améliorer sa base de données Open Food Facts.

Cette base de données open source est mise à la disposition de particuliers et d'organisations afin de leur permettre de connaître la qualité nutritionnelle de produits.

# Rappel de l'objectif

Création d'un système de suggestion ou d'auto-complétion pour aider les usagers à remplir plus efficacement la base de données.

**02** →

# Exploration du jeu de données

# (a) Exploration du jeu de données

L'analyse initiale du DataFrame products\_data révèle 320 772 entrées réparties sur 162 colonnes, avec une occupation mémoire de 396.5 MB. Les types de données dominants sont float64 (106 colonnes) et object (56 colonnes).

```
print("Nombre de colonnes :", products_data.shape[1])
print("Nombre de lignes :", products_data.shape[0])

Nombre de colonnes : 162
Nombre de lignes : 320772
```



Les statistiques descriptives montrent une variabilité significative dans les colonnes numériques, tandis que l'examen des colonnes catégorielles indique une diversité de valeurs uniques, comme 320 638 valeurs distinctes pour la colonne "code".

| products_data.describe() |               |               |                             |                           |                                  |  |  |  |  |  |
|--------------------------|---------------|---------------|-----------------------------|---------------------------|----------------------------------|--|--|--|--|--|
|                          | no_nutriments | additives_n   | ingredients_from_palm_oil_n | ingredients_from_palm_oil | ingredients_that_may_be_from_pal |  |  |  |  |  |
| count                    | 0.0           | 248939.000000 | 248939.000000               | 0.0                       | 248939                           |  |  |  |  |  |
| mean                     | NaN           | 1.936024      | 0.019659                    | NaN                       | 0                                |  |  |  |  |  |
| std                      | NaN           | 2.502019      | 0.140524                    | NaN                       | 0                                |  |  |  |  |  |
| min                      | NaN           | 0.000000      | 0.000000                    | NaN                       | 0                                |  |  |  |  |  |
| 25%                      | NaN           | 0.000000      | 0.000000                    | NaN                       | 0                                |  |  |  |  |  |
| 50%                      | NaN           | 1.000000      | 0.000000                    | NaN                       | 0                                |  |  |  |  |  |
| 75%                      | NaN           | 3.000000      | 0.000000                    | NaN                       | 0                                |  |  |  |  |  |
| max                      | NaN           | 31.000000     | 2.000000                    | NaN                       | 6                                |  |  |  |  |  |

Un défi majeur identifié est la présence de 39 608 589 valeurs manquantes sur un total de 51 965 064, nécessitant une attention particulière lors des étapes ultérieures de prétraitement.



# (b) Vérification de l'équilibre de notre DataFrame

L'importance d'une distribution équilibrée des données est cruciale pour assurer la fiabilité des analyses et des modèles.

Dans le contexte de notre étude, une exploration approfondie des données nécessaires à la publication d'un produit en ligne a été réalisée.

Nous avons donc extrait les variables des produits déjà présent sur l'application.

La distance de Levenshtein, une métrique de similarité entre deux chaînes, a été employée pour identifier les correspondances entre les colonnes des DataFrames products\_data et extrate\_data.

Grâce à la bibliothèque fuzzywuzzy, une liste de correspondances a été établie en fixant un seuil de similarité à 70%.

Une analyse de la fréquence des variables a été effectuée, mettant en évidence les occurrences des colonnes correspondantes.

|    | Extrate Column                     | Products Column      | Extrate Value count | Products Value count | Total Value count |
|----|------------------------------------|----------------------|---------------------|----------------------|-------------------|
| 0  | Energy                             | energy_100g          | 1                   | 1                    | 2                 |
| 1  | Saturated fat                      | saturated-fat_100g   | 1                   | 1                    | 2                 |
| 2  | Carbohydrates                      | carbohydrates_100g   | 1                   | 1                    | 2                 |
| 3  | Sugars                             | sugars_100g          | 1                   | 1                    | 2                 |
| 4  | Proteins                           | proteins_100g        | 1                   | 1                    | 2                 |
| 5  | Silica                             | silica_100g          | 1                   | 1                    | 2                 |
| 6  | Bicarbonate                        | bicarbonate_100g     | 1                   | 1                    | 2                 |
| 7  | Potassium                          | potassium_100g       | 1                   | 1                    | 2                 |
| 8  | Chloride                           | chloride_100g        | 1                   | 1                    | 2                 |
| 9  | Calcium                            | calcium_100g         | 1                   | 1                    | 2                 |
| 10 | Magnesium                          | magnesium_100g       | 1                   | 1                    | 2                 |
| 11 | Barcode                            | code                 | 1                   | 1                    | 2                 |
| 12 | Quantity                           | quantity             | 1                   | 1                    | 2                 |
| 13 | Packaging                          | packaging            | 2                   | 1                    | 3                 |
| 14 | Packaging                          | packaging_tags       | 2                   | 1                    | 3                 |
| 15 | Brands                             | brands               | 2                   | 1                    | 3                 |
| 16 | Brands                             | brands_tags          | 2                   | 1                    | 3                 |
| 17 | Categories                         | categories           | 3                   | 1                    | 4                 |
| 18 | Categories                         | categories_tags      | 3                   | 1                    | 4                 |
| 19 | Categories                         | categories_fr        | 3                   | 1                    | 4                 |
| 20 | Manufacturing or processing places | manufacturing_places | 1                   | 1                    | 2                 |
| 21 | Stores                             | stores               | 1                   | 1                    | 2                 |

Une étude détaillée du Nutri-Score a été menée, identifiant les critères et formules utilisés pour sa détermination.

Le score est basé sur des éléments négatifs (énergie, sucres simples, acides gras saturés, sel) et positifs (fruits, légumes, fibres, protéines).

Le score final est dérivé de la soustraction des points positifs des points négatifs.

Nous avons trouvé ce document PDF sur le site de santé publique France intitulé : "questions-réponses sur le nutri-score -

scientifique & technique".



Ce document nous as fournis de précieuse informations sur le calcul du Nutri-Score.

Suite à l'extraction de ces informations sur le Nutri-Score, il est apparu pertinent de créer un troisième data frame avec les variables servant au calcul du Nutri-Score afin de refaire une recherche de corrélations et une analyse de fréquences.

Un troisième DataFrame, nutriscore\_df, a été créé pour rechercher des corrélations avec les variables utilisées dans le calcul du Nutri-Score.

Une nouvelle analyse de correspondance a été effectuée entre les trois DataFrames.

|   | Extrate Column                                | Products Column              | Nutri Score<br>Column    | Value count | Products<br>Value count | Nutri Score<br>Value count | Total Value count |
|---|-----------------------------------------------|------------------------------|--------------------------|-------------|-------------------------|----------------------------|-------------------|
| 0 | Energy                                        | energy_100g                  | Energy                   | 1           | 1                       | 1                          | 3                 |
| 1 | fat                                           | energy-from-fat_100g         | saturated fatty<br>acids | 1           | 2                       | 2                          | 5                 |
| 1 | Saturated fat                                 | monounsaturated-<br>fat_100g | saturated fatty<br>acids | 1           | 1                       | 2                          | 4                 |
|   | Sugars                                        | sugars_100g                  | Simple sugars            | 1           | 1                       | 1                          | 3                 |
|   | Fiber                                         | fiber_100g                   | fibers                   | 1           | 1                       | 1                          | 3                 |
|   | Proteins                                      | proteins_100g                | Proteins                 | 1           | 1                       | 1                          | 3                 |
|   | Salt                                          | salt_100g                    | Salt                     | 1           | 1                       | 1                          | 3                 |
|   | Fruits, vegetables, nuts and rapeseed, walnut | energy-from-fat_100g         | rapeseed oils            | 1           | 2                       | 1                          | 4                 |
|   |                                               |                              |                          |             |                         |                            |                   |

Une visualisation a été générée pour représenter le nombre de variables importantes et très importantes dans le DataFrame products\_data.

Environ 17,9% des variables étaient jugées importantes, fournissant une base solide pour le nettoyage des données.



**03** →

# Nettoyage du jeu de données

# (a) Suppression des variables non pertinentes

Pour se concentrer sur les variables pertinentes à nos objectifs, toutes les colonnes non essentielles ont été supprimées du DataFrame products\_data.

Seules les colonnes jugées importantes ou très importantes, ainsi que la colonne nutrition\_grade\_fr, ont été conservées.

Après cette étape de suppression, le DataFrame products\_data contient les colonnes suivantes :

```
list(products data.columns)
for col in products data.columns:
    print(col)
code
quantity
packaging
packaging tags
brands
brands tags
categories
categories tags
categories fr
manufacturing places
stores
nutrition grade fr
energy 100g
energy-from-fat 100g
saturated-fat 100g
monounsaturated-fat 100g
carbohydrates 100g
sugars 100g
fiber 100g
proteins_100g
salt 100g
silica 100g
bicarbonate 100g
potassium_100g
chloride 100g
calcium 100g
magnesium 100g
```

# (b) Détection des valeurs manquantes

Dans le DataFrame products\_data, il a été constaté qu'il y a un total de 5 038 448 valeurs manquantes.

Afin de mieux comprendre la répartition des valeurs manquantes, plusieurs visualisations ont été générées :



Ce diagramme compare le nombre total de valeurs dans le DataFrame avec le nombre de valeurs manquantes.

Il a été observé que les valeurs manquantes représentent une proportion significative des données.



La matrice offre une vue d'ensemble rapide des zones où les données sont manquantes.

Chaque ligne représente une entrée du DataFrame, et les colonnes blanches indiquent les valeurs manquantes.



Ce diagramme montre le nombre de valeurs manquantes pour chaque colonne du DataFrame.

# (c) Recherche de corrélats pour les valeurs manquantes

Des heatmaps et des dendrogrammes ont été utilisés pour identifier les corrélations entre les valeurs manquantes de différentes colonnes.

Ces visualisations ont aidé à comprendre si l'absence d'une valeur dans une colonne était liée à l'absence d'une valeur dans une autre colonne.



# (d) Évaluation du Pourcentage de Valeurs Manquantes:

Un tableau a été généré pour montrer le nombre et le pourcentage de valeurs manquantes pour chaque colonne.

|                          | Missing                                 | Values | Percentage |
|--------------------------|-----------------------------------------|--------|------------|
| nutrition_grade_fr       | 0.0000000000000000000000000000000000000 | 99562  | 31.038245  |
| fiber_100g               |                                         | 119886 | 37.374210  |
| calcium_100g             |                                         | 179722 | 56.027958  |
| quantity                 |                                         | 215953 | 67.322896  |
| categories_fr            |                                         | 236361 | 73.685047  |
| categories               |                                         | 236362 | 73.685359  |
| categories tags          |                                         | 236383 | 73.691906  |
| packaging_tags           |                                         | 241811 | 75.384073  |
| packaging                |                                         | 241812 | 75.384385  |
| stores                   |                                         | 269050 | 83.875775  |
| manufacturing_places     |                                         | 284271 | 88.620890  |
| potassium_100g           |                                         | 296024 | 92.284863  |
| monounsaturated-fat_100g |                                         | 297949 | 92.884977  |
| magnesium_100g           |                                         | 314519 | 98.050640  |
| energy-from-fat_100g     |                                         | 319915 | 99.732832  |
| chloride_100g            |                                         | 320614 | 99.950744  |
| bicarbonate_100g         |                                         | 320691 | 99.974748  |
| silica_100g              |                                         | 320734 | 99.988154  |
|                          |                                         |        |            |

Sur la base de cette analyse, il a été décidé de ne pas imputer les données pour les colonnes ayant moins de 30% de valeurs manquantes, en se basant sur des recommandations scientifiques.

Cette approche est soutenue par des recherches dans le domaine, comme le montrent les articles de Dr. Graham et de Dr. Schafer.

- The prevention and handling of the missing data
- When and how should multiple imputation be used for handling missing data in randomised clinical trials a
   practical guide with flowcharts

# (e) Analyse de Similarité entre les Colonnes :

Une étude détaillée de la similarité entre différentes colonnes a été réalisée.

Cette étude a révélé que certaines colonnes présentaient une forte similarité.

Pour éviter la redondance, certaines de ces colonnes ont été supprimées.

| Evamples    | do | similarité    | entre  | colonnes |  |
|-------------|----|---------------|--------|----------|--|
| PYCIIID TG2 | uc | PTHITTGI TICE | CHILLE | COTOURS  |  |

| Valeur 2                      | Valeur 1                        | Score | Colonne 2   | Colonne 1 |   |
|-------------------------------|---------------------------------|-------|-------------|-----------|---|
| tesco,encinger                | tesco, encinger                 | 97    | brands_tags | brands    | 0 |
| strongbow,heineken            | strongbow, heineken             | 97    | brands_tags | brands    | 1 |
| berchtesgadener               | berchtesgadener                 | 97    | brands_tags | brands    | 2 |
| amalattea-granarolo,amalattea | amalattea - granarolo,amalattea | 97    | brands_tags | brands    | 3 |
| vonlait vona                  | voplait vopal                   | 96    | brands tags | brands    | 4 |

Moyenne globale de similarité : 76.46042360305762

Exemples de similarité entre colonnes :

| Valeur 2                                           | Valeur 1                                           | Score | Colonne<br>2 | Colonne 1      |   |
|----------------------------------------------------|----------------------------------------------------|-------|--------------|----------------|---|
| пластиковая бутылка,полиэтилентерефталат           | пластиковая-бутылка,полиэтилентерефталат           | 98    | packaging    | packaging_tags | 0 |
| vaschetta,coperchio,plastica,banda stagnata        | vaschetta,coperchio,plastica,banda-stagnata        | 98    | packaging    | packaging_tags | 1 |
| semi-conservas,bandeja termo-<br>formada,film,term | semi-conservas,bandeja-termo-<br>formada,film,term | 98    | packaging    | packaging_tags | 2 |
| pots,plastique,suremballage carton,opercule        | pots,plastique,suremballage-carton,opercule        | 98    | packaging    | packaging_tags | 3 |
| Polyethylenterephthalat,84,tetrapack,tetrapack     | polyethylenterephthalat,84,tetrapack,tetrapack     | 98    | packaging    | packaging_tags | 4 |

Moyenne globale de similarité : 96.66047535321037

|    | Colonne 1     | Colonne 2       | Score | Valeur 1                                          | Valeur 2                                          |
|----|---------------|-----------------|-------|---------------------------------------------------|---------------------------------------------------|
| 0  | categories    | categories_fr   | 100   | Édulcorants, Sucres, Sucres roux, Sucres de canne | Édulcorants, Sucres, Sucres roux, Sucres de canne |
| 1  | categories    | categories_fr   | 100   | Édulcorants, Sucres, Sucres roux, Sucres de canne | Édulcorants, Sucres, Sucres roux, Sucres de canne |
| 2  | categories    | categories_fr   | 100   | Édulcorants, Sucres, Sucres roux, Sucres de canne | Édulcorants, Sucres, Sucres roux, Sucres de canne |
| 3  | categories    | categories_fr   | 100   | Édulcorants, Sucres, Sucres roux                  | Édulcorants, Sucres, Sucres roux                  |
| 4  | categories    | categories_fr   | 100   | Édulcorants, Sucres, Sucres gélifiant             | Édulcorants, Sucres, Sucres gélifiant             |
| 5  | categories    | categories_tags | 100   | zh:复原乳                                            | zh:复原乳                                            |
| 6  | categories    | categories_tags | 100   | pt:matte                                          | pt:matte                                          |
| 7  | categories    | categories_tags | 100   | nan                                               | nan                                               |
| 8  | categories    | categories_tags | 100   | nan                                               | nan                                               |
| 9  | categories    | categories_tags | 100   | nan                                               | nan                                               |
| 10 | categories_fr | categories_tags | 100   | zh:复原乳                                            | zh:复原乳                                            |
| 11 | categories_fr | categories_tags | 100   | xx:煎茶                                             | xx. 煎茶                                            |
| 12 | categories_fr | categories_tags | 100   | xx:スナック菓子,xx:ポップコーン                               | xx:スナック菓子,xx:ポップコーン                               |
| 13 | categories_fr | categories_tags | 100   | nl:100-kokosnootwater                             | nl:100-kokosnootwater                             |
| 14 | categories_fr | categories_tags | 100   | nan                                               | nan                                               |

### (f) Gestions des valeurs manquantes :

Après avoir analysé les graphiques, il est possible de déduire les variables qui sont corrélées entre elles et celles qui ne le sont pas.

Le dendrogramme montre trois groupes de variables ayant des corrélations, suggérant que ces données manquantes sont probablement de type MNAR (Missing Not At Random).



Un aperçu des données montre le pourcentage de valeurs manquantes pour chaque colonne.

Certaines variables, comme energy-from-fat\_100g et silica\_100g, ont presque 100% de valeurs manquantes.

Les colonnes avec plus de 90% de valeurs manquantes ont été supprimées car elles sont peu susceptibles d'apporter des informations utiles.

```
missing values = products data.isnull().sum()
missing percentage = 100 * missing values / len(products data)
print(missing_percentage)
code
                             0.007170
quantity
                            67.322896
packaging
                            75.384385
brands
                            8.857382
categories
                           73.685359
manufacturing places
                            88.620890
stores
                            83.875775
nutrition_grade_fr
                            31.038245
energy 100g
                           18.598568
energy-from-fat_100g
                           99.732832
saturated-fat 100g
                            28.437021
monounsaturated-fat 100g
                           92.884977
carbohydrates 100g
                            24.061951
sugars 100g
                            23.630803
fiber 100g
                            37.374210
proteins 100g
                            18.969860
salt 100g
                            20.345292
silica 100g
                            99.988154
bicarbonate 100g
                            99.974748
potassium 100g
                            92.284863
chloride 100g
                            99.950744
calcium_100g
                            56.027958
magnesium 100g
                            98.050640
dtype: float64
```

Malgré la suppression des colonnes avec un taux élevé de valeurs manquantes, il reste encore des colonnes avec des données manquantes. Groupe 1:

Ces colonnes sont divisées en deux groupes basés sur leurs corrélations.

Chaque groupe contient des variables qualitatives et quantitatives.

Pour les variables qualitatives, l'imputation par le mode est utilisée.

#### Variables qualitatives :

- code
- brands
- · nutrition grade fr

#### Variables quantitatives :

- energy 100g
- saturated-fat\_100g
- carbohydrates 100g
- sugars\_100g
- fiber 100g
- proteins 100g
- salt 100g
- calcium 100g

#### Groupe 2:

#### Variables qualitatives :

- packaging
- categories
- manufacturing places
- stores

#### Variables quantitatives :

quantity

- La colonne quantity est particulière car elle est de type object mais contient des informations quantitatives.
- Les valeurs de cette colonne sont des chaînes contenant à la fois un nombre et une unité (par exemple "1kg").
- Une fonction est utilisée pour extraire la partie numérique de ces valeurs et convertir toutes les valeurs en grammes.
- Une exception est faite pour 'nutrition\_grade\_fr' qui donne le Nutri-score est un système d'étiquetage nutritionnel à cinq niveaux, allant de A à E et du vert au rouge.
- La formule exacte n'étant pas disponible et le taux de valeurs manquante étant faible les valeurs contenant des NaN ont été supprimer

Imputations pour les variables quantitatives.

Les variables sont classées en fonction de la méthode d'imputation la plus efficace.

Les variables sont ensuite imputées en utilisant la méthode KNN ou IterativeImputer, selon ce qui est jugé le plus efficace.

|    | Variable           | Méthode          | Erreur        | Pourcentage d'erreur |
|----|--------------------|------------------|---------------|----------------------|
| 0  | energy_100g        | KNN              | 240713.877935 | 2195.092814          |
| 1  | energy_100g        | IterativeImputer | 242318.045681 | 2209.721372          |
| 2  | saturated-fat_100g | KNN              | 32.675519     | 35.907164            |
| 3  | saturated-fat_100g | IterativeImputer | 33.382720     | 36.684307            |
| 4  | carbohydrates_100g | KNN              | 286.335407    | 286.335407           |
| 5  | carbohydrates_100g | IterativeImputer | 177581.675108 | 177581.675108        |
| 6  | sugars_100g        | KNN              | 213.228943    | 213.228943           |
| 7  | sugars_100g        | IterativeImputer | 221.116365    | 221.116365           |
| 8  | fiber_100g         | KNN              | 13.635794     | 27.271588            |
| 9  | fiber_100g         | IterativeImputer | 13.966023     | 27.932046            |
| 10 | proteins_100g      | KNN              | 47.840583     | 47.840583            |
| 11 | proteins_100g      | IterativeImputer | 48.418950     | 48.418950            |
|    |                    |                  |               |                      |

En regardant les résultats de l'imputation, on peut voir que certaines variables ont un taux d'erreur élevé.

Cela suggère que les méthodes d'imputation que nous avons utilisées, à savoir KNN et IterativeImputer, peuvent ne pas être les meilleures pour ces variables spécifiques.

A savoir : energy\_100g, carbohydrates\_100g, sugars\_100g et quantity

Nous avons opté pour une approche par la médiane, sauf pour la variable "quantity", celle-ci ne risquant pas de biaise l'analyse nous obtenons pour une approche par la mise à zéro.

### (g) Gestion des valeurs aberrantes :

#### Approche du métier :

Avant de plonger dans les méthodes statistiques, il ete essentiel de comprendre le contexte métier.

Pour les valeurs qui doivent être comprises entre 0 et 100g, toute valeur négative ou supérieure à 100g est considérée comme aberrante.

Après avoir identifié ces valeurs aberrantes, elles sont remplacées par NaN

Cependant, nous avons exclus la feature 'energy\_100g' car elle est généralement exprimée en kilocalories (kcal) ou en kilojoules (kJ), et non en grammes.

Selon l'ANSES (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail) en France, il n'y a pas de limite maximale spécifique pour l'énergie (en kilocalories ou kilojoules) dans un produit alimentaire.

Cependant, des recommandations existent pour la consommation énergétique quotidienne. L'examen des statistiques descriptives de 'energy\_100g' montre une valeur maximale de 69292.0, ce qui semble être une valeur aberrante.

#### Approche du métier :

- Avant de plonger dans les méthodes statistiques, il ete essentiel de comprendre le contexte métier.
- Pour les valeurs qui doivent être comprises entre 0 et 100g, toute valeur négative ou supérieure à 100g est considérée comme aberrante.
- Après avoir identifié ces valeurs aberrantes, elles sont remplacées par NaN
- Cependant, nous avons exclus la feature 'energy\_100g' car elle est généralement exprimée en kilocalories (kcal) ou en kilojoules (kJ), et non en grammes.
- Selon l'ANSES (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail) en France, il n'y a pas de limite maximale spécifique pour l'énergie (en kilocalories ou kilojoules) dans un produit alimentaire.
- Cependant, des recommandations existent pour la consommation énergétique quotidienne. L'examen des statistiques descriptives de 'energy\_100g' montre une valeur maximale de 69292.0, ce qui semble être une valeur aberrante.

#### Approche du métier :

Nous avons donc procéder à l'identification des valeurs aberrantes en utilisant différentes méthodes, puis nous sélectionnons celle qui se révèle la plus efficace pour la feature 'energy 100g'.

#### Approche de l'interquartile (IQR) :

Cette méthode utilise les quartiles pour identifier les valeurs aberrantes. Les valeurs en dehors de la plage Q1 - 1,5 \* IQR à Q3 + 1,5 \* IQR sont considérées comme aberrantes. Pour 'energy\_100g', 49 valeurs aberrantes ont été identifiées.

#### Approche du Z-score:

Cette méthode est basée sur l'écart par rapport à la moyenne des données. Les valeurs ayant un Z-score supérieur à un certain seuil sont considérées comme aberrantes.

Pour 'energy\_100g', 6 valeurs aberrantes ont été identifiées.



#### Comparaison des méthodes :

En comparant l'IQR et le Z-score, l'IQR a identifié plus de valeurs aberrantes.



Dans notre analyse, nous avons choisi d'utiliser l'approche de l'intervalle interquartile (IQR) pour détecter et filtrer les valeurs aberrantes.

L'IQR est une méthode robuste qui est moins sensible aux valeurs extrêmes que d'autres méthodes, comme le Z-score.

De plus, l'IQR ne fait pas d'hypothèses sur la distribution des données, ce qui le rend particulièrement adapté à notre ensemble de données.

En utilisant l'IQR, les données aberrantes sont filtrées, laissant 11008 points de données sur les 11057 initiaux.

**04** →

# Analyse univariée

# (a) Variables qualitatives :

#### **Analyse statistiques:**

Statistiques pour packaging:

Nombre de modalités uniques : 1215

Mode : Carton

Statistiques pour brands:

Nombre de modalités uniques : 5768 Nombre de modalités uniques : 2307

Mode : Carrefour

Statistiques pour categories:

Mode : Snacks sucrés, Biscuits et gâteaux, Biscuits

|   | packaging            | Effectifs | Frequences |       |    |
|---|----------------------|-----------|------------|-------|----|
| 0 | Carton               | 8451      | 0.764312   | 0     | C  |
| 1 | Sachet, Plastique    | 78        | 0.007054   | 1     |    |
| 2 | Plastique            | 74        | 0.006693   | 2     |    |
| 3 | Bouteille, Plastique | 52        | 0.004703   | 3 Lea | ad |
| 4 | Kunststoff           | 48        | 0.004341   | 4     |    |

|   | brands       | Effectifs | Frequences |
|---|--------------|-----------|------------|
| 0 | Carrefour    | 370       | 0.033463   |
| 1 | Auchan       | 100       | 0.009044   |
| 2 | U            | 83        | 0.007507   |
| 3 | Leader Price | 74        | 0.006693   |
| 4 | Ahold        | 66        | 0.005969   |

Nombre de modalités uniques : 516 Mode : France

Statistiques pour manufacturing places: Statistiques pour stores: Nombre de modalités uniques : 341 Mode : Carrefour

|   | manufacturing_places | Effectifs | Frequences |   | stores      | Effectifs | Frequences |
|---|----------------------|-----------|------------|---|-------------|-----------|------------|
| 0 | France               | 10088     | 0.912363   | 0 | Carrefour   | 9379      | 0.848241   |
| 1 | Italie               | 59        | 0.005336   | 1 | Leclerc     | 123       | 0.011124   |
| 2 | Suisse               | 35        | 0.003165   | 2 | Auchan      | 118       | 0.010672   |
| 3 | Deutschland          | 31        | 0.002804   | 3 | Cora        | 88        | 0.007959   |
| 4 | Belgique             | 31        | 0.002804   | 4 | Intermarché | 85        | 0.007687   |

|   | categories                                        | Effectifs | Frequences |
|---|---------------------------------------------------|-----------|------------|
| 0 | Snacks sucrés, Biscuits et gâteaux, Biscuits      | 8227      | 0.744054   |
| 1 | Snacks sucrés, Biscuits et gâteaux, Biscuits, Bis | 14        | 0.001266   |
| 2 | Biscuits                                          | 13        | 0.001176   |
| 3 | Snacks salés, Apéritif, Biscuits apéritifs        | 11        | 0.000995   |
| 4 | Snacks sucrés, Chocolats, Chocolats au lait       | 10        | 0.000904   |

Il y a une grande disparité dans les variables qualitatives, probablement due à l'imputation des valeurs manquantes.

Le jeu de données nécessite un travail supplémentaire pour améliorer la qualité.

# (b) Variables quantitatives:

### **Statistiques descriptives:**

|   | Variable           | Variance empirique | Variance<br>empirique non<br>biaisé | Ecart type  | Coefficient de variation | Moyenne     | Mediane     | Mode        | Etendue   | Asymetrie | Aplatissement |
|---|--------------------|--------------------|-------------------------------------|-------------|--------------------------|-------------|-------------|-------------|-----------|-----------|---------------|
| 0 | energy_100g        | 1.010151e+06       | 1.010060e+06                        | 1005.062631 | 0.853261                 | 1177.907598 | 1159.000000 | 2092.000000 | 69292.000 | 28.355100 | 1906.403045   |
| 1 | saturated-fat_100g | 5.468336e+01       | 5.467841e+01                        | 7.394820    | 1.504755                 | 4.914301    | 1.790000    | 0.000000    | 95.000    | 3.218898  | 20.485456     |
| 2 | carbohydrates_100g | 7.402521e+02       | 7.401852e+02                        | 27.207575   | 0.839483                 | 32.409918   | 23.880000   | 23.880000   | 100.000   | 0.561069  | -0.970861     |
| 3 | sugars_100g        | 3.917629e+02       | 3.917275e+02                        | 19.793002   | 1.324806                 | 14.940303   | 5.000000    | 0.000000    | 100.000   | 1.691793  | 2.421697      |
| 4 | fiber_100g         | 1.684129e+01       | 1.683977e+01                        | 4.103814    | 1.490537                 | 2.753245    | 2.000000    | 0.000000    | 83.300    | 4.950825  | 46.621132     |
| 5 | proteins_100g      | 6.374278e+01       | 6.373701e+01                        | 7.983907    | 1.037033                 | 7.698799    | 5.620000    | 0.000000    | 90.000    | 2.034482  | 7.958028      |
| 6 | salt_100g          | 2.004712e+01       | 2.004531e+01                        | 4.477401    | 3.464052                 | 1.292533    | 0.647000    | 0.000000    | 100.000   | 14.667409 | 262.969838    |
| 7 | calcium_100g       | 1.979919e-02       | 1.979740e-02                        | 0.140710    | 1.512186                 | 0.093050    | 0.093049    | 0.093049    | 2.105     | 5.178047  | 37.172979     |

# (a) Variables quantitatives:

#### Mesures de concentration :



#### Mesures de concentration :

Le coefficient de Gini pour la variable energy\_100g est 0.37
Le coefficient de Gini pour la variable saturated-fat\_100g est 0.68
Le coefficient de Gini pour la variable carbohydrates\_100g est 0.47
Le coefficient de Gini pour la variable sugars\_100g est 0.65
Le coefficient de Gini pour la variable fiber\_100g est 0.61
Le coefficient de Gini pour la variable proteins\_100g est 0.52
Le coefficient de Gini pour la variable salt\_100g est 0.69
Le coefficient de Gini pour la variable calcium\_100g est 0.53

Suite à notre analyse des mesures de concentration, effectuée grâce à la courbe de Lorenz et au calcul du coefficient de Gini, nous avons pu distinguer trois catégories distinctes :

Les variables avec une dispersion élevée : "salt\_100g" et "sugars\_100g" avec des coefficients de Gini de 0.67 et 0.64 respectivement.

Cela signifie que cesvariables présentent une grande inégalité dans leur distribution, avec probablement quelques valeurs extrêmes.

Les variables avec une dispersion modérée : "saturated-fat\_100g", "carbohydrates\_100g", "fiber\_100g", "proteins\_100g", "calcium\_100g" avec des coefficients de Gini allant de 0.42 à 0.57.

Ces variables présentent une dispersion modérée dans leur distribution. La variable avec une dispersion faible : "energy\_100g" avec un coefficient de Gini de 0.36.

Cela indique une distribution plus uniforme parmi les produits pour cette variable.

#### **Analyse de normalité:**



|    | Variable           | Nom du test        | Statistique de test | p-valeur | Normalité |
|----|--------------------|--------------------|---------------------|----------|-----------|
| 0  | energy_100g        | Shapiro-Wilk       | 0.594515            | 0.000    | Non       |
| 1  | energy_100g        | Kolmogorov-Smirnov | 0.989296            | 0.000    | Non       |
| 2  | energy_100g        | Anderson-Darling   | 211.856167          | NaN      | Non       |
| 3  | energy_100g        | D'Agostino-Pearson | 28325.081258        | 0.000    | Non       |
| 4  | energy_100g        | Lilliefors         | 0.120604            | 0.001    | Non       |
| 5  | saturated-fat_100g | Shapiro-Wilk       | 0.681687            | 0.000    | Non       |
| 6  | saturated-fat_100g | Kolmogorov-Smirnov | 0.500000            | 0.000    | Non       |
| 7  | saturated-fat_100g | Anderson-Darling   | 976.283579          | NaN      | Non       |
| 8  | saturated-fat_100g | D'Agostino-Pearson | 8058.010489         | 0.000    | Non       |
| 9  | saturated-fat_100g | Lilliefors         | 0.253166            | 0.001    | Non       |
| 10 | carbohydrates_100g | Shapiro-Wilk       | 0.905101            | 0.000    | Non       |
| 11 | carbohydrates_100g | Kolmogorov-Smirnov | 0.889320            | 0.000    | Non       |
| 12 | carbohydrates_100g | Anderson-Darling   | 372.205794          | NaN      | Non       |
| 13 | carbohydrates_100g | D'Agostino-Pearson | 2672.051502         | 0.000    | Non       |
| 14 | carbohydrates_100g | Lilliefors         | 0.160041            | 0.001    | Non       |
| 15 | sugars_100g        | Shapiro-Wilk       | 0.756068            | 0.000    | Non       |
| 16 | sugars_100g        | Kolmogorov-Smirnov | 0.685545            | 0.000    | Non       |
| 17 | sugars_100g        | Anderson-Darling   | 982.595269          | NaN      | Non       |
| 18 | sugars_100g        | D'Agostino-Pearson | 3312.298635         | 0.000    | Non       |
| 19 | sugars_100g        | Lilliefors         | 0.225176            | 0.001    | Non       |
| 20 | fiber_100g         | Shapiro-Wilk       | 0.609666            | 0.000    | Non       |
| 21 | fiber_100g         | Kolmogorov-Smirnov | 0.500000            | 0.000    | Non       |
| 22 | fiber_100g         | Anderson-Darling   | 927.571043          | NaN      | Non       |
| 23 | fiber_100g         | D'Agostino-Pearson | 11318.169959        | 0.000    | Non       |
| 24 | fiber_100g         | Lilliefors         | 0.251142            | 0.001    | Non       |
| 25 | proteins_100g      | Shapiro-Wilk       | 0.824300            | 0.000    | Non       |
| 26 | proteins_100g      | Kolmogorov-Smirnov | 0.726352            | 0.000    | Non       |
| 27 | proteins_100g      | Anderson-Darling   | 462.394173          | NaN      | Non       |
| 28 | proteins_100g      | D'Agostino-Pearson | 5013.116084         | 0.000    | Non       |
| 29 | proteins_100g      | Lilliefors         | 0.167450            | 0.001    | Non       |
| 30 | salt_100g          | Shapiro-Wilk       | 0.190836            | 0.000    | Non       |
| 31 | salt_100g          | Kolmogorov-Smirnov | 0.500000            | 0.000    | Non       |
| 32 | salt_100g          | Anderson-Darling   | 2479.558779         | NaN      | Non       |
|    |                    |                    |                     |          |           |

Plusieurs tests et graphiques (histogrammes, boxplots, Q-Q plots) ainsi que des tests statistiques ont montré que la plupart des variables ne suivent pas une distribution normale.

### **05** →

# Analyse bivariée

### (a) Variables qualitatives:

Pour rechercher des corrélations ou des relations entre ces variables qualitatives, nous avons utiliser des tableau de contingence, le paitplot, le test de Kruskal-Wallis, Le test du chi-carré.



|                                    | Correlation | Percentage |
|------------------------------------|-------------|------------|
| (packaging, brands)                | 34          | 38         |
| (packaging, categories)            | 28          | 28         |
| (packaging, manufacturing_places)  | 40          | 44         |
| (packaging, stores)                | 61          | 68         |
| (brands, packaging)                | 34          | 38         |
| (brands, categories)               | 25          | 28         |
| (brands, manufacturing_places)     | 23          | 33         |
| (brands, stores)                   | 15          | 25         |
| (categories, packaging)            | 28          | 28         |
| (categories, brands)               | 25          | 28         |
| (categories, manufacturing_places) | 20          | 40         |
| (categories, stores)               | 34          | 38         |
| (manufacturing_places, packaging)  | 40          | 44         |
| (manufacturing_places, brands)     | 23          | 33         |
| (manufacturing_places, categories) | 20          | 40         |
| (manufacturing_places, stores)     | 52          | 52         |
| (stores, packaging)                | 61          | 68         |
| (stores, brands)                   | 15          | 25         |
| (stores, categories)               | 34          | 38         |
| (stores, manufacturing_places)     | 52          | 52         |

Les variables quantitatives montrent des différences significatives entre les catégories de produits néanmoins celle ci sont associées entre elles, à quelques exceptions près.

Ces résultats suggèrent des variations dans la formulation des produits et des tendances spécifiques dans leur emballage et leur marque.

### (b) Variables quantitatives:

Pour rechercher des corrélations ou des relations entre ces variables quantitatives, nous avons utiliser des diagramme de dispersion, des Boîte à moustaches, Heatmap, nous avons également calculer Covariance empirique et coefficient de corrélation de Pearson.



| variance |
|----------|
| 3.170039 |
| 1.516726 |
| 6.645136 |
| 9.216279 |
| 7.429200 |
| 1.908425 |
| .106634  |
| 2        |

Suite à notre analyse, il a été observé que la variable saturated-fat\_100g présente le coefficient de Pearson le plus élevé (en valeur absolue) en relation avec energy 100g.

Cette variable démontre une corrélation positive modérée avec energy 100g.

Nous avons donc décidé d'initier notre étude par une régression linéaire impliquant ces deux variables.



```
print("Coefficient de détermination (R2):", model.score(X, Y))
Coefficient de détermination (R2): 0.18059600986643487
```

Le graphique montre clairement une tendance ascendante, indiquant que lorsque la quantité de graisses saturées augmente, l'énergie du produit tend également à augmenter. Cependant, le coefficient de détermination (R²) est de 0.18.

Cela signifie que seulement 18% de la variabilité de l'énergie peut être expliquée par la quantité de graisses saturées.

06 →

# Analyse multivariée

### (a) Réduction de Dimensionnalité :

Afin de faciliter l'analyse, nous avons regroupé les catégories en groupes plus larges basés sur des caractéristiques communes.

Suite à l'analyse des coefficients de corrélation entre nos variables quantitatives, il a été observé que les variables carbohydrates\_100g et sugars\_100g présentent une corrélation significative.

| Faible | 0.388567  | energy_100g        | carbohydrates_100g | 16 |
|--------|-----------|--------------------|--------------------|----|
| Nut    | -0.018265 | saturated-fat_100g | carbohydrates_100g | 17 |
| Moyen  | 0.610790  | sugars_100g        | carbohydrates_100g | 19 |
| Faible | 0.224116  | fiber_100g         | carbohydrates_100g | 20 |
| Nut    | -0.122048 | proteins_100g      | carbohydrates_100g | 21 |
| Nut    | -0.051846 | salt_100g          | carbohydrates_100g | 22 |
| Nut    | -0.146473 | calcium_100g       | carbohydrates_100g | 23 |
| Faible | 0.253207  | energy_100g        | sugars_100g        | 24 |
| Nut    | 0.122076  | saturated-fat_100g | sugars_100g        | 25 |
| Moyen  | 0.610790  | carbohydrates_100g | sugars_100g        | 26 |
| hid    | 0.020662  | fiber 100a         | eurare 100a        | 28 |



Afin d'optimiser la représentativité de notre jeu de données tout en réduisant sa dimensionnalité, nous avons décidé d'appliquer une Analyse en Composantes Principales (ACP) sur ces deux variables spécifiques.

Suite à notre analyse des variances expliquées par les composantes principales, il est clairement observé que la première dimension (Dim1) explique à elle seule 82.70% de la variance totale, tandis que la deuxième dimension (Dim2) apporte un complément pour atteindre 100%.

Ainsi, en considérant uniquement ces deux dimensions, nous sommes en mesure de représenter intégralement l'information contenue dans les variables carbohydrates\_100g et sugars\_100g. Cette réduction dimensionnelle nous offre une représentation synthétique et optimisée de notre jeu de données initial.







#### Nous avons ensuite réalisé une ACP sur l'ensemble de nos features



La première dimension (Dim1) explique 25.03% de la variance totale. La deuxième dimension (Dim2) ajoute 22.03%, portant la somme cumulée à 47.06%. Si nous ajoutons la troisième dimension (Dim3), qui explique 14.17% de la variance, la somme cumulée atteint 61.23%. En considérant uniquement les trois premières dimensions, nous sommes en mesure de représenter plus de 60% de l'information contenue dans notre jeu de données initial.





Les deux premières dimensions, Dim1 et Dim2, contiennent à elles seules près de la moitié (47.06%) de l'information (variance) du jeu de données original. Cependant, il est judicieux de considérer au moins jusqu'à Dim4 ou Dim5, car elles permettent de couvrir plus de 73% à 83% de la variance totale.

Suite à l'analyse en composantes principales et à l'examen des cercles de corrélation des variables, conjugué au nuage des individus classés selon le grade de Nutri-Score, plusieurs observations pertinentes émergent :

La projection sur les dimensions Dim3 et Dim4 révèle une structuration significative des données.

Ces dimensions mettent en évidence les relations intrinsèques entre les caractéristiques étudiées et leur influence sur le Nutri-Score. La distribution des individus dans le nuage, en fonction de leur grade de Nutri-Score, suggère que certaines caractéristiques ont un impact prépondérant sur la classification nutritionnelle

### (b) Variables Qualitatives et Quantitatives:

Nous avons exploré la relation entre une variable qualitative et une variable quantitative à l'aide de l'ANOVA.

Cela nous a permis de déterminer si une relation significative existait entre les modalités de la variable qualitative et les valeurs de la variable quantitative.

Cette étape a renforcé les constatations de l'ACP.

Nous avons commencé par créer un sous-échantillon de nos données et renommé certaines colonnes pour faciliter l'analyse.

Des boîtes à moustaches ont été utilisées pour visualiser la distribution de chaque variable quantitative par rapport à la variable qualitative.

Les points rouges au milieu de chaque boîte représentent la moyenne des valeurs.



Nous avons utilisé l'ANOVA pour modéliser la relation entre "nutrition\_grade\_fr" et chaque variable quantitative.

Les résultats montrent la valeur F, la valeur p et le rapport de corrélation  $\eta^2$  pour chaque variable.

Le rapport de corrélation  $\eta^2$  a été utilisé pour évaluer la qualité du modèle.

Ce rapport varie entre 0 et 1 et représente le degré de corrélation entre la variable qualitative et la variable quantitative.

| η²       | p-value       | F-value     | Variable           |   |
|----------|---------------|-------------|--------------------|---|
| 0.220055 | 0.000000e+00  | 779.555763  | energy_100g        | 0 |
| 0.415184 | 0.000000e+00  | 1961.564290 | saturated_fat_100g | 1 |
| 0.082043 | 1.633366e-203 | 246.945621  | carbohydrates_100g | 2 |
| 0.194520 | 0.000000e+00  | 667.253570  | sugars_100g        | 3 |
| 0.056011 | 1.447051e-136 | 163.939512  | fiber_100g         | 4 |
| 0.027825 | 2.924041e-66  | 79.080307   | proteins_100g      | 5 |
| 0.018426 | 2.393066e-43  | 51.866599   | salt_100g          | 6 |
| 0.046384 | 2.680211e-112 | 134.393174  | calcium_100g       | 7 |

|   | Variable           | η²       | Corrélation |
|---|--------------------|----------|-------------|
| 0 | energy_100g        | 0.220055 | Forte       |
| 1 | saturated_fat_100g | 0.415184 | Forte       |
| 2 | carbohydrates_100g | 0.082043 | Modérée     |
| 3 | sugars_100g        | 0.194520 | Forte       |
| 4 | fiber_100g         | 0.056011 | Faible      |
| 5 | proteins_100g      | 0.027825 | Faible      |
| 6 | salt_100g          | 0.018426 | Faible      |
| 7 | calcium_100g       | 0.046384 | Faible      |
|   |                    |          |             |

Les variables "energy\_100g", "saturated\_fat\_100g" et "sugars\_100g" montrent une forte corrélation avec "nutrition\_grade\_fr".

La variable "carbohydrates\_100g" présente une corrélation modérée. Les autres variables montrent une faible corrélation.

L'analyse a confirmé certaines des constatations déduites de l'Analyse en Composantes Principales (ACP).

Plusieurs variables quantitatives montrent une corrélation significative avec la variable qualitative "nutrition\_grade\_fr".

### Merci

Avez-vous des questions?



GitHub

Cette présentation est en liens avec le noteBook :

 $\verb"NoteBook_P3_Pr\'eparez_des_donn\'e es_pour_un_organisme_de_sant\'e_publique"$ 

