Simple & Multiple Correspondence Analyses Contingency, categorical, ordinal, continuous and mixed data

Derek Beaton

Rotman Research Institute

October 27, 2019

Our new best friends

via @allison_horst

via @allison_horst

via @allison_horst

► Not everything is a number

- Not everything is a number
- ► Sometimes numbers aren't numbers!

- Not everything is a number
- Sometimes numbers aren't numbers!
- ▶ We need to recognize when this happens

- Not everything is a number
- Sometimes numbers aren't numbers!
- ▶ We need to recognize when this happens
 - And know what to do

Typology

► SS Stevens (not a boat!)

Typology

- ► SS Stevens (not a boat!)
- ► Levels of measurement

Typology

- SS Stevens (not a boat!)
- Levels of measurement
- Excellent examples: https://en.wikipedia.org/wiki/Level_of_measurement

Where to find everything

► Generally: https://github.com/derekbeaton/workshops

Where to find everything

- ► Generally: https://github.com/derekbeaton/workshops
- ► Today:

► Revisit PCA

- ► Revisit PCA
- ► Looking at some data

- Revisit PCA
- ► Looking at some data
- ► Simple correspondence analysis

- Revisit PCA
- ► Looking at some data
- ► Simple correspondence analysis
 - and many of its connections

- Revisit PCA
- ► Looking at some data
- ► Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)
 - and how to handle various data types

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)
 - and how to handle various data types
- A whole bunch of bonuses

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)
 - and how to handle various data types
- A whole bunch of bonuses
 - Robustness

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)
 - and how to handle various data types
- A whole bunch of bonuses
 - Robustness
 - PLS

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)
 - and how to handle various data types
- A whole bunch of bonuses
 - Robustness
 - PLS
 - Networks

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)
 - and how to handle various data types
- A whole bunch of bonuses
 - Robustness
 - PLS
 - Networks
 - Software

Revisting PCA

▶ When we can compute a covariance or correlation matrix

- ▶ When we can compute a covariance or correlation matrix
- ► Break data into components

- ▶ When we can compute a covariance or correlation matrix
- ► Break data into components
 - Orthogonal

- ▶ When we can compute a covariance or correlation matrix
- Break data into components
 - Orthogonal
 - Rank ordered

- ▶ When we can compute a covariance or correlation matrix
- Break data into components
 - Orthogonal
 - Rank ordered
 - Made of bits & pieces of original measures

Eigen- and singular value decompositions

Left (row) singular vectors

Diagnosis and education

	CN	Dementia	MCI
ADV	39	7	54
В	57	17	75
B+	75	19	113
HS	25	13	46
HS+	39	9	77

Given you a table, and asked for a multivariate analysis
 We do what we know: PCA

PCA: Row component scores PCA: Variable-Component Correlations 1.0 нs Component 2. Explained variance: 12.91% Component 2. Explained variance: 12.91% Dementia 0.5 -•B -0.5 -B+ -1.0 -ADV 0.0 1.0 -0.5 -1.0 Component 1. Explained variance: 84.7% HS+ Component 1. Explained variance: 84.7%

What did we analyze?

	CN	Dementia	MCI
CN	1.000	0.730	0.921
Dementia	0.730	1.000	0.652
MCI	0.921	0.652	1.000

Let's try something different!

	ADV	В	B+	HS	HS+
CN	39	57	75	25	39
Dementia	7	17	19	13	9
MCI	54	75	113	46	77

Component 1. Explained variance: 97.8%

What did PCA analyze?

	ADV	В	B+	HS	HS+
ADV	1.000	1.000	0.995	0.935	0.963
В	1.000	1.000	0.994	0.932	0.960
B+	0.995	0.994	1.000	0.965	0.984
HS	0.935	0.932	0.965	1.000	0.996
HS+	0.963	0.960	0.984	0.996	1.000

What did PCA detect?

	ADV	В	В+	HS	HS+	Row sums
CN	39	57	75	25	39	235
Dementia	7	17	19	13	9	65
MCI	54	75	113	46	77	365

What is PCA for?

► When we can compute a *meaningful* covariance or correlation matrix

Let's take another look

```
## Warning in rbind(cbind(edu_dx_table, rowSums(edu_dx_table)
## colSums(edu_dx_table)): number of columns of result is number
## vector length (arg 2)
```

NA

Simple correspondence analysis

► CA

- ► CA
 - ► Hirschfeld (1935)

- ► CA
 - ► Hirschfeld (1935)
 - ► Guttman (1941)

- ► CA
 - ► Hirschfeld (1935)
 - ► Guttman (1941)
 - ▶ Burt (1950)

- ► CA
 - ► Hirschfeld (1935)
 - ► Guttman (1941)
 - ▶ Burt (1950)
 - ► Benzecri (1964)

- ► CA
 - ► Hirschfeld (1935)
 - ► Guttman (1941)
 - ▶ Burt (1950)
 - ► Benzecri (1964)
 - ► Escofier (1965)

- ► CA
 - ► Hirschfeld (1935)
 - ► Guttman (1941)
 - ▶ Burt (1950)
 - Benzecri (1964)
 - Escofier (1965)
- See Lebart's History & Prehistory of CA: http: //www.dtmvic.com/doc/About_the_History_of_CA.pdf

Chi-squared

Chi-squared

See here

► The eigenvalue decomposition (EVD)

- ► The eigenvalue decomposition (EVD)
 - ▶ Requires squares, symmetric, and positive semi definite

- ► The eigenvalue decomposition (EVD)
 - ▶ Requires squares, symmetric, and positive semi definite
 - Generally correlation or covariance

- ► The eigenvalue decomposition (EVD)
 - ▶ Requires squares, symmetric, and positive semi definite
 - ► Generally correlation or covariance
- ► The singular value decomposition (SVD)

- ► The eigenvalue decomposition (EVD)
 - ▶ Requires squares, symmetric, and positive semi definite
 - ► Generally correlation or covariance
- ► The singular value decomposition (SVD)
 - Works with rectangular tables

- ► The eigenvalue decomposition (EVD)
 - ▶ Requires squares, symmetric, and positive semi definite
 - ► Generally correlation or covariance
- ► The singular value decomposition (SVD)
 - Works with rectangular tables
- ► The generalized SVD

- ► The eigenvalue decomposition (EVD)
 - ▶ Requires squares, symmetric, and positive semi definite
 - Generally correlation or covariance
- ► The singular value decomposition (SVD)
 - Works with rectangular tables
- The generalized SVD
 - Apply constraints (weights) to rows & columns of rectangular table

- ► The eigenvalue decomposition (EVD)
 - ▶ Requires squares, symmetric, and positive semi definite
 - Generally correlation or covariance
- ► The singular value decomposition (SVD)
 - Works with rectangular tables
- ► The generalized SVD
 - Apply constraints (weights) to rows & columns of rectangular table
 - ► Required for CA and fancier PCA-like techniques & extensions

The GSVD

(Some) References

See the reference sections of these

▶ Beaton, D., Saporta, G., Abdi, H., & Alzheimer's Disease Neuroimaging Initiative. (2019). A generalization of partial least squares regression and correspondence analysis for categorical and mixed data: An application with the ADNI data. bioRxiv, 598888.

See the reference sections of these

- ▶ Beaton, D., Saporta, G., Abdi, H., & Alzheimer's Disease Neuroimaging Initiative. (2019). A generalization of partial least squares regression and correspondence analysis for categorical and mixed data: An application with the ADNI data. bioRxiv, 598888.
- Beaton, D., Sunderland, K. M., Levine, B., Mandzia, J., Masellis, M., Swartz, R. H., ... & Strother, S. C. (2019). Generalization of the minimum covariance determinant algorithm for categorical and mixed data types. bioRxiv, 333005.

And these

Abdi, H., Guillemot, V., Eslami, A., & Beaton, D. (2017). Canonical correlation analysis. Encyclopedia of Social Network Analysis and Mining, 1-16.

And these

- Abdi, H., Guillemot, V., Eslami, A., & Beaton, D. (2017). Canonical correlation analysis. Encyclopedia of Social Network Analysis and Mining, 1-16.
- Beaton, D., Dunlop, J., & Abdi, H. (2016). Partial least squares correspondence analysis: A framework to simultaneously analyze behavioral and genetic data. Psychological methods, 21(4), 621.

► Greenacre, M. (2017). Correspondence analysis in practice. CRC press.

- Greenacre, M. (2017). Correspondence analysis in practice. CRC press.
- Greenacre, M. J. (1984). Theory and Applications of Correspondence Analysis. Retrieved from http://books.google.com/books?id=LsPaAAAAMAAJ

▶ Greenacre, M. J. (2010). Correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 613–619. https://doi.org/10.1002/wics.114

- ▶ Greenacre, M. J. (2010). Correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 613–619. https://doi.org/10.1002/wics.114
- Lebart, L., Morineau, A., & Warwick, K. M. (1984). Multivariate descriptive statistical analysis: correspondence analysis and related techniques for large matrices. Wiley.

- ▶ Greenacre, M. J. (2010). Correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 613–619. https://doi.org/10.1002/wics.114
- Lebart, L., Morineau, A., & Warwick, K. M. (1984). Multivariate descriptive statistical analysis: correspondence analysis and related techniques for large matrices. Wiley.
- Nguyen, L. H., & Holmes, S. (2019). Ten quick tips for effective dimensionality reduction. PLOS Computational Biology, 15(6), e1006907.

Data

► Escofier, B. (1978). Analyse factorielle et distances répondant au principe d'équivalence distributionnelle. Revue de Statistique Appliquée, 26(4), 29–37.

Data

- Escofier, B. (1978). Analyse factorielle et distances répondant au principe d'équivalence distributionnelle. Revue de Statistique Appliquée, 26(4), 29–37.
- Escofier, B. (1979). Traitement simultané de variables qualitatives et quantitatives en analyse factorielle. Cahiers de l'Analyse Des Données, 4(2), 137–146.

Data

- ► Escofier, B. (1978). Analyse factorielle et distances répondant au principe d'équivalence distributionnelle. Revue de Statistique Appliquée, 26(4), 29–37.
- Escofier, B. (1979). Traitement simultané de variables qualitatives et quantitatives en analyse factorielle. Cahiers de l'Analyse Des Données, 4(2), 137–146.
- Greenacre, M. (2014). Data Doubling and Fuzzy Coding. In J. Blasius & M. Greenacre (Eds.), Visualization and Verbalization of Data (pp. 239–253). Philadelphia, PA, USA: CRC Press.