Probabilistic Supervised Learning: Linear Regression

CS772A: Probabilistic Machine Learning
Piyush Rai

Probabilistic Supervised Learning

- Goal: To learn the conditional distribution p(y|x) of output given input
- The form of the distribution p(y|x) depends on output type, e.g.,
 - Real: Model p(y|x) using a Gaussian (or some other suitable real-valued distribution)
 - Binary: Model p(y|x) using a Bernoulli
 - Categorical/multiclass: Model p(y|x) using a multinoulli/categorical distribution

■ Various other types (e.g., count, positive reals, etc) can also be modeled using appropriate

distributions (e.g., Poisson for count, gamma for positive reals)

■ The distribution p(y|x) can be defined directly or indirectly

"Direct" way without modeling the inputs $oldsymbol{x}_n$

Parameters of this distribution are the outputs of function f

= p(y|f(x,w))

"Indirect" way by modeling the outputs as well as the inputs

$$p(y|x) =$$

"Indirect" way requires first learning the joint distribution of inputs and outputs

p(y|x)

$$\frac{p(y,x)}{p(x)}$$

Discriminative vs Generative Sup. Learning

Non-probabilistic supervised learning approaches (e.g., SVM) are usually considered discriminative since p(x) is never modeled

■ Direct way of sup. learning is discriminative, indirect way is generative

Discriminative Approach

$$p(y|\mathbf{x}) = p(y|f(\mathbf{x}, \mathbf{w}))$$

f can be any function which uses inputs and weights ${m w}$ to defines parameters of distr. ${m p}$

Some examples

$$p(y|\mathbf{x}) = \mathcal{N}(y|\mathbf{w}^{\mathsf{T}}\mathbf{x}, \beta^{-1})$$

$$p(y|\mathbf{x}) = \text{Bernoulli}(y|\mathbf{\sigma}(\mathbf{w}^{\mathsf{T}}\mathbf{x}))$$

Generative Approach

$$p(y|\mathbf{x}) = \frac{p(y,\mathbf{x})}{p(\mathbf{x})}$$

Requires estimating the joint distribution of inputs and outputs to get the conditional p(y|x) (unlike the discriminative approach which directly estimates the conditional p(y|x) and does not model the distribution of x)

■ Note: Generative approach can also be used for other settings too, such as unsupervised learning and semi-supervised learning (will see later) CS771: Intro to ML

Probabilistic Linear Regression-

A discriminative model for regression problems

- Assume training data $\{x_n, y_n\}_{n=1}^N$, with features $x_n \in \mathbb{R}^D$ and responses $y_n \in \mathbb{R}$
- Assume y_n generated by a noisy linear model with wts $\mathbf{w} = [w_1, ..., w_D] \in \mathbb{R}^D$

$$y_n = w^{\mathsf{T}} x_n + \epsilon_n^{\mathsf{T}}$$
 Gaussian noise drawn from $\mathcal{N}(\epsilon_n | 0, eta^{-1})$

■ Notation alert: β is the precision Unknown to be estimated lise (and β^{-1} the variance)

The line represents the mean $\mathbf{w}^{\mathsf{T}}\mathbf{x}_n$ of the output random variable \mathbf{y}_n

The zero mean
Gaussian noise
perturbs the output
from its mean

Thus NLL is like squared loss

Probabilistic Linear Regression

■ For all the training data, we can write the above model in matrix-vector notation

■ This is a linear Gaussian model with **w** being the unknown Gaussian r.v.

■ A simple "plate diagram" for this model would look like this (hyperparameters not shown in the diagram) White nodes denote unknown $p(\mathbf{w})$

p(y|x,w)

Direction of arrow show dependency

quantities, grey nodes denote observed quantities (training input-output pairs)

> The plate/box with number N shows that we have Nsuch i.i.d. observations

On compact notations...

ullet When writing the likelihood (assuming y_n 's are i.i.d. given $oldsymbol{w}$ and $oldsymbol{x}_n$)

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(y_n | \mathbf{w}^{\mathsf{T}} \mathbf{x}_n, \beta^{-1})$$
$$= \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \beta^{-1} \mathbf{I}_N)$$

■ Thus a product of N univariate Gaussians here (not always) is equivalent to an N-dim Gaussian over the vector $\mathbf{y} = [y_1, y_2, ..., y_N]$

 We will prefer to use this equivalence at other places too whenever we have multiple i.i.d. random variables, each having a univariate Gaussian distribution

Prior on weights

Assume a zero-mean Gaussian prior on w

May also use a non-zero mean Gaussian prior, e.g., $\mathcal{N}(w_d|\mu,\lambda^{-1})$ if we expect weights to be close to some value μ

This prior assumes that a priori each weight has a small value (close to zero)

$$p(m{w}|\lambda) = \prod_{d=1}^{D} p(w_d|\lambda) = \prod_{d=1}^{D} \mathcal{N}(w_d|0,\lambda^{-1})$$

In zero-mean case, λ sort importance. Think why?

of denotes each feature's

$$= \mathcal{N}(\boldsymbol{w}|\mathbf{0}, \lambda^{-1}\mathbf{I}_D)$$

$$\propto \left(\frac{\lambda}{2\pi}\right)^{\frac{D}{2}} \exp\left[-\frac{\lambda}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}\right]$$

prior belief about value of w_d

Can also use a full covariance matrix Λ^{-1} for the prior to impose a priori correlations among different weights

Prior's hyperparameters $(\lambda/\Lambda/\mu)$ etc can be learned as well using point estimation (e.g., MLE-II) or fully Bayesian inference

■ Zero-mean Gaussian prior corresponds to ℓ₂ regularizer

Reason: The negative log prior $-\log p(\mathbf{w}) \propto \frac{\lambda}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$

The Posterior

■ The posterior over w (for now, assume hyperparams β and λ to be known)

$$p(\textbf{w}|\textbf{y},\textbf{X},\beta,\lambda) = \frac{p(\textbf{w}|\lambda)p(\textbf{y}|\textbf{w},\textbf{X},\beta)}{p(\textbf{y}|\textbf{X},\beta,\lambda)} \propto p(\textbf{w}|\lambda)p(\textbf{y}|\textbf{w},\textbf{X},\beta)$$
Must be a Gaussian due to conjugacy

Must be a Gaussian due to conjugacy

Must be a Gaussian assumed given and not being modeled

 $p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \beta, \lambda) \propto \mathcal{N}(\mathbf{w}|\mathbf{0}, \lambda^{-1}\mathbf{I}_D) \times \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \beta^{-1}\mathbf{I}_N)$

Using the "completing the squares" trick (or linear Gaussian model results)

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \beta, \lambda) = \mathcal{N}(\mu_N, \mathbf{\Sigma}_N)$$
Note that λ and β can be learned under the probabilistic set-up (though assumed fixed as of now)

where $\mathbf{\Sigma}_N = (\beta \sum_{n=1}^N x_n x_n^\top + \lambda \mathbf{I}_D)^{-1} = (\beta \mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I}_D)^{-1}$ (posterior's covariance matrix)

The form is also similar to the solution to ridge regression argmin_w||y - Xw||^2 + \lambda w^T w = (X^T X + \lambda I)^{-1} X^T y (posterior's mean)

$$\mu_N = \mathbf{\Sigma}_N \left[\beta \sum_{n=1}^N y_n x_n \right] = \mathbf{\Sigma}_N \left[\beta \mathbf{X}^\top \mathbf{y} \right] = (\mathbf{X}^\top \mathbf{X} + \frac{\lambda}{\beta} \mathbf{I}_D)^{-1} \mathbf{X}^\top \mathbf{y}$$
 (posterior's mean)

The Posterior: A Visualization

- Assume a lin. reg. problem with true $\mathbf{w} = [w_0, w_1], w_0 = -0.3, w_1 = 0.5$
- Assume data generated by a linear regression model $y = w_0 + w_1 x + "noise"$
 - Note: It's actually 1-D regression (w_0 is just a bias term), or 2-D reg. with feature [1,x]
- Figures below show the "data space" and posterior of \mathbf{w} for different number of observations (note: with no observations, the posterior = prior)

Posterior Predictive Distribution

 \blacksquare To get the prediction y_* for a new input x_* , we can compute its PPD

$$p(y_*|x_*,\mathbf{X},\mathbf{y},\beta,\lambda) = \int p(y_*|x_*,\mathbf{w},\beta)p(\mathbf{w}|\mathbf{X},\mathbf{y},\beta,\lambda)d\mathbf{w} - \int p(y_*|\mathbf{x},\mathbf{y},\beta,\lambda)d\mathbf{w} - \int p(y_*|\mathbf{x},\mathbf{y},\beta$$

■ The above is the marginalization of \boldsymbol{w} from $\mathcal{N}(y_*|\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}_*, \boldsymbol{\beta}^{-1})$. Using LGM results

$$p(y_*|\mathbf{x}_*,\mathbf{X},\mathbf{y},\beta,\lambda) = \mathcal{N}(\boldsymbol{\mu}_N^\top \mathbf{x}_*,\beta^{-1} + \mathbf{x}_*^\top \mathbf{\Sigma}_N \mathbf{x}_*)$$
 Can also derive it by writing $y_* = \mathbf{w}^\top \mathbf{x}_* + \epsilon$ where $\mathbf{w} \sim \mathcal{N}(\boldsymbol{\mu}_N, \boldsymbol{\Sigma}_N)$ and $\epsilon \sim \mathcal{N}(0,\beta^{-1})$

- \blacksquare So we have a predictive mean $\mu_N^T x_*$ as well as an input-specific predictive variance
- In contrast, MLE and MAP make "plug-in" predictions (using the point estimate of \boldsymbol{w})

$$p(y_*|x_*, w_{MLE}) = \mathcal{N}(w_{MLE}^\top x_*, \beta^{-1})$$
 - MLE prediction Since PPD also takes into account the uncertainty in w , the predictive variance is larger

■ Unlike MLE/MAP, variance of y_* also depends on the input x_* (this, as we will see later, will be very useful in sequential decision-making problems such as active learning), y_* (this, as we will see later, will be very useful in sequential decision-making problems such as active learning), y_*

Posterior Predictive Distribution: An Illustration

Black dots are training examples

- Width of the shaded region at any x denotes the predictive uncertainty at that x (+/-one std-dev)
- Regions with more training examples have smaller predictive variance

Nonlinear Regression

- Can extend the linear regression model to handle nonlinear regression problems
- lacktriangle One way is to replace the feature vectors $m{x}$ by a nonlinear mapping $m{\phi}(m{x})$

$$p(y|\mathbf{x}, \mathbf{w}) = \mathcal{N}(\mathbf{w}^{\top} \phi(\mathbf{x}), \beta^{-1})$$

Can be pre-defined (e.g., replace a scalar x by polynomial mapping $[1, x, x^2]$) or extracted by a pretrained deep neural net

- Alternatively, a kernel function can be used to implicitly define the nonlinear mapping
- More on nonlinear regression when we discuss Gaussian Processes

More on Visualization of Uncertainty

- Figures below: Green curve is the true function and blue circles are observations
- Posterior of the nonlinear regression model: Some curves drawn from the posterior

■ PPD: Red curve is predictive mean, shaded region denotes predictive uncertainty

Estimating Hyperparameters via MLE-II

- The probabilistic linear reg. model we saw had two hyperparams (β, λ)
 - Thus total three unknowns $(\boldsymbol{w}, \boldsymbol{\beta}, \boldsymbol{\lambda})$

 β y_n p(y|x,w) y_n N

Need posterior over all the 3 unknowns

$$p(\mathbf{w}, \beta, \lambda | \mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \beta, \lambda) p(\mathbf{w}, \lambda, \beta)}{p(\mathbf{y} | \mathbf{X})}$$
PPD would require integrating out all 3 unknowns
$$= \frac{p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \beta, \lambda) p(\mathbf{w} | \lambda) p(\beta) p(\lambda)}{\int p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \beta) p(\mathbf{w} | \lambda) p(\beta) p(\lambda) d\mathbf{w} d\lambda d\beta}$$

$$p(y_*|\mathbf{x}_*,\mathbf{X},\mathbf{y}) =$$

 $p(y_*|\mathbf{x}_*,\mathbf{w},\beta)p(\mathbf{w},\beta,\lambda|\mathbf{X},\mathbf{y})\ d\mathbf{w}\ d\beta\ d\lambda$

Posterior and PPD computation is intractable.

Called "MLE-II" because we are maximizing marginal likelihood, not the likelihood

• If we just want point estimates for (β, λ) then MLE-II is an option

And then compute $p(w|X, y, \hat{\beta}, \hat{\lambda})$ treating $\hat{\beta}, \hat{\lambda}$ as given

$$(\hat{\beta}, \hat{\lambda}) = \operatorname{argmax}_{\beta, \lambda} \log p(y|X, \beta, \lambda)$$

For regression with Gaussian likelihood and Gaussian prior on \boldsymbol{w} , the marginal likelihood has an exact expression

Will see various other methods like EM, variational inference, MCMC, etc later

Prob. Linear Regression: Some Other Variations

- lacktriangle Can use other likelihoods $p(y_n|x_n,w)$ and/or prior distribution p(w)
- Laplace distribution for the likelihood

$$p(y_n|\mathbf{x}_n,\mathbf{w}) = \text{Lap}(y_n|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n,b)$$

Heteroskedastic noise in the likelihood, e.g.,

$$p(y_n|\mathbf{x}_n,\mathbf{w}) = \mathcal{N}(y_n|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n,\boldsymbol{\beta}_n^{-1})$$

Can even assume β_n to depend on input x_n

Different noise distribution $\mathcal{N}(0, \beta_n^{-1})$ for each y_n

■ Feature-specific variances in the prior for **w**

 $p(\mathbf{w}) = \prod_{d=1}^{D} \mathcal{N}(\mathbf{w}_{d}|0, \lambda_{d}^{-1}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{\Lambda}^{-1})$

This has the effect of having feature-specific regularization

Diagonal precision/covariance matrix with λ_d 's along the columns of Λ

Since we can also learn these precisions (e.g., using MLE-II), using such a prior, we can learn the importance of different features (feature selection) which isn't possible with a $\mathcal{N}(w|\mathbf{0},\lambda^{-1}\mathbf{I})$ prior with spherical covariance