武汉大学数学与统计学院 2009-2010 第一学期 《线性代数 B》 (A 卷)

女 25	学院	式	专业		学	ਰੋ	メナイ	, 1
------	----	---	----	--	---	----	-----	--------

注: 1. 本试题供线性代数 B (即工科 54 学时) 使用;

2. 所有答题均须有详细过程,内容必须写在答题纸上,凡写在其它地方一律无效。

一、(10分)计算下列各题

(1). 已知
$$A = \begin{pmatrix} a & a & a \\ b & b & b \\ c & c & c \end{pmatrix}$$
, 求 A^{2010}

- (2). 已知n 阶矩阵 A $(n \ge 2)$, 且A 非奇异, 求 $(A^*)^*$.
- 二、(10 分)设A为n阶矩阵,证明:存在 $n \times s$ 矩阵 $B \neq 0$,使得AB = 0的充要条件是|A| = 0。

三、(16分)设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 6 & a \end{pmatrix}$$
, 且 $R(A) = 2$, X 满足 $AX + I = A^2 + X$, 求 $a \in X$.

四、(16分)已知方程组AX = b,其中

$$A = \begin{pmatrix} 2 - \lambda & 2 & -2 \\ 2 & 5 - \lambda & -4 \\ -2 & -4 & 5 - \lambda \end{pmatrix}, b = \begin{pmatrix} 1 \\ 2 \\ -1 - \lambda \end{pmatrix},$$

讨论 2 为何值时方程组有惟一解、无解、有无穷多解,并在有无穷多解时求出其解.

- 五、(16 分) 设二次型 $f(x_1, x_2, x_3) = X^T A X = a x_1^2 + 2 x_2^2 2 x_3^2 + 2 b x_1 x_3 (b > 0)$, 其中二次型的矩阵 A 的特征值之和为 1,特征值之积为 -12.
 - (1) 求 a,b 的值:
 - (2) 求矩阵 A 的特征值与特征向量。

六、(16 分) 设矩阵
$$A=\begin{bmatrix}1&1&a\\1&a&1\\a&1&1\end{bmatrix}$$
, $\beta=\begin{bmatrix}1\\1\\-2\end{bmatrix}$. 已知线性方程组 $AX=\beta$ 有解但不唯一,试求

- (1) α 的值:
- (2) 正交矩阵Q,使用 Q^TAQ 为对角矩阵.
- 七、(16分)给定 R^3 的两组基

$$\varepsilon_1 = (1,0,1)^T$$
, $\varepsilon_2 = (2,1,0)^T$, $\varepsilon_3 = (1,1,1)^T$,
 $\eta_1 = (1,0,0)^T$, $\eta_2 = (1,1,0)^T$, $\eta_3 = (1,1,1)^T$

定义线性变换: $\sigma(\varepsilon_i) = \eta_i, i = 1, 2, 3$, 试求:

- (1) 求由基 \mathcal{E}_1 , \mathcal{E}_2 , \mathcal{E}_3 到基 η_1 , η_2 , η_3 的过渡矩阵;
- (2) 求线性变换 σ 在基 η_1,η_2,η_3 下的矩阵。

武汉大学数学与统计学院 2009-2010 第一学期 《线性代数 B》 (A 卷答案)

-, 1.
$$\not H$$
 (1) $A^{2010} = (a+b+c)^{2009} \begin{pmatrix} a & a & a \\ b & b & b \\ c & c & c \end{pmatrix}$,

(2)
$$|A|^{n-2} A$$
.

- 二、证明见线性代数教材(居余马,第二版,P133-134)
- 三、解:由初等变换求得 a=1,(记 I=E,下同),由 $\left|A-E\right|\neq 0$,因此 A-E 可逆 ,且

$$X = (A - E)^{-1}(A - E)(A + E) = A + E = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 6 & 2 \end{pmatrix}$$

四、解: 经计算 $|A| = -(\lambda - 1)^2(\lambda - 10)$,因此方程组有唯一解 $\Leftrightarrow |A| = 0 \Leftrightarrow \lambda = 1$ 且 $\lambda = 10$ 。 $\lambda = 10$ 时,对增广矩阵作行变换化为阶梯形:

$$\widetilde{A} = (A,b) = \begin{bmatrix} -8 & 2 & -2 & 1 \\ 2 & -5 & -5 & 2 \\ -2 & -4 & -4 & -11 \end{bmatrix} \rightarrow \begin{bmatrix} -8 & 2 & -2 & 1 \\ 0 & -18 & -18 & 9 \\ 0 & 0 & -54 \end{bmatrix}$$

因 rank(A) = 2, $rank(\widetilde{A}) = 3$, $rank(A) * r(\widetilde{A})$, 即 $\lambda = 10$ 时无解。

 $\lambda=1$ 时,同样对增广矩阵作行变换化为阶梯形: $\widetilde{A} \rightarrow \begin{bmatrix} 1 & 2 & -2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

因 $rank(A) = rank(\widetilde{A}) = 1 < 3$,所以 $\lambda = 1$ 时有无穷多解。等价方程组为:

五、解 (1)二次型 f 的矩阵为 $A=\begin{pmatrix} a & 0 & b \\ 0 & 2 & 0 \\ b & 0 & -2 \end{pmatrix}$. 设 A 的特征值为 λ_i (i=1,2,3). 由题设,有

$$\lambda_1 + \lambda_2 + \lambda_3 = a + 2 + (-2) = 1$$
,

$$\lambda_1 \lambda_2 \lambda_3 = \begin{vmatrix} a & 0 & b \\ 0 & 2 & 0 \\ b & 0 & -2 \end{vmatrix} = -4a - 2b^2 = -12.$$

(2) 由矩**阵** A 的特征多项式 $|\lambda E - A| = (\lambda - 2)^2 (\lambda + 3)$, 得 A 的特征值

$$\lambda_1 = \lambda_2 = 2, \lambda_3 = -3.$$

对于 $\lambda_1 = \lambda_2 = 2$,解齐次线性方程组(2E - A)X = 0,得线性无关的特征向量为

 $\xi_1 = (2,0,1)^T, \xi_2 = (0,1,0)^T$. (进而给出全部特征向量)

对于 $\lambda_3 = -3$,解齐次线性方程组(-3E - A)X = 0,得线性无关的特征向量为 $\xi_3 = (1,0,-2)^T$. (进而给出全部特征向量)

六、解(1)因为线性方程组 $AX = \beta$ 有解但不惟一,所以

$$|A| = \begin{vmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{vmatrix} = -(a-1)^2(a+2) = 0.$$

当a=1时,秩(A)不等于秩(A β),此时方程组无解;

当 a = -2 时,秩(A)等于秩(AB)此时方程组的解存在但不惟一.于是,a = -2.

(2) A 的特征多项式 $|\lambda I - A| = \lambda(\lambda - 3)(\lambda + 3)$, 故 A 的特征值为 $\lambda_1 = 3$, $\lambda_2 = -3$, $\lambda_3 = 0$. 对应的特征向量依次是 $\alpha_1 = (1, 0, -1)^T$, $\alpha_2 = (1, -2, 1)^T$, $\alpha_3 = (1, 1, 1)^T$.

将 $\alpha_1,\alpha_2,\alpha_3$ 单位化,得

$$\beta_{1} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{T}, \beta_{2} = \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{6}}\right)^{T}, \beta_{3} = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{T}.$$

$$\diamondsuit Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}. 则有 Q^T A Q = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

七、解 (1) 由

$$(\eta_1, \eta_2, \eta_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3) X$$

可解得由基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 到基 η_1, η_2, η_3 的过渡矩阵为

$$X = P^{-1}Q = \begin{pmatrix} 1/2 & -1/2 & 0 \\ 1/2 & 1/2 & 0 \\ -1/2 & 1/2 & 1 \end{pmatrix}$$

(2) 由定义知

$$\sigma(\eta_1,\eta_2,\eta_3) = \sigma(\varepsilon_1,\varepsilon_2,\varepsilon_3)X = (\eta_1,\eta_2,\eta_3)X,$$

故 σ 在基 η_1,η_2,η_3 下的矩阵仍为 X。

武汉大学数学与统计学院 2010-2011 第一学期《线性代数 B》(A卷, 工 54)

学院	专业		岁号		姓	名
----	----	--	----	--	---	---

注: 所有冬题均须有详细过程,内容必须写在答题纸上,凡写在其它地方一律无效。

一、(12分) 计算下列行列式;

1.
$$D_{i_1} = \begin{vmatrix} x + a_1 & a_2 & a_3 & \cdots & a_n \\ a_1 & x + a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 & x + a_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & x + a_n \end{vmatrix};$$

- 2. 若 $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2$ 都是四维列向量,且四阶行列式 $|\alpha_1\alpha_2\alpha_3\beta_1| = m, |\alpha_1\alpha_2\beta_2\alpha_3| = n,$ 求四阶行列式 $|\alpha_3\alpha_2\alpha_1(\beta_1+\beta_2)|$.
- 二、(10 分) 若有不全为零的数 $\lambda_1, \lambda_2, \cdots, \lambda_m$,使 $\lambda_1 \alpha_1 + \cdots + \lambda_m \alpha_m + \lambda_1 \beta_1 + \cdots + \lambda_m \beta_m = O$ 成立,则 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性相关, $\beta_1, \beta_2, \cdots, \beta_m$ 也线性相关. 试讨论该结论是否正确?

$$\alpha_1, \alpha_2, \dots, \alpha_m$$
 线性相关, $\beta_1, \beta_2, \dots, \beta_m$ 也线性相关。试讨论该结论是否正确?

 $\Xi. (12 分) 设 A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 6 & a \end{pmatrix}, \ \exists r(A) = 2, \ X 满足 AX + I = A^2 + X, \ 求 a 和 X.$

- 四、(15 分) 设有向量组 $\alpha_1 = (1,2,0)^T$, $\alpha_2 = (1,a+2,-3a)^T$, $\alpha_3 = (-1,-b-2,a+2b)^T$, $\beta = (1,3,-3)^T$. 试讨论当 ab 为何值时.
 - 1、 β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 、线性表示;
 - 2、 β 可由 $\alpha_1,\alpha_2,\alpha_3$,惟一地线性表示,并求出表示式;
 - 3、 β 可由 α_1 , α_2 , α_3 线性表示,但表示式不惟一,并求出表示式.
- 五、(15分) 已知二次型

$$f(x_1, x_2, x_3) = 4x_2^2 - 3x_3^2 + 4x_1x_2 - 4x_1x_3 + 8x_2x_3,$$

- 1、写出二次型了的矩阵表达式:
- 2、用正交变换把二次型 f 化为标准型, 并写出相应的正交矩阵.
- 六、(1.3) 在四淮实向量构成的线性空间 R^4 中, 已知:

$$\alpha_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \alpha_{2} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \alpha_{3} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \alpha_{4} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}; \quad \beta_{1} = \begin{pmatrix} 1 \\ -1 \\ a \\ 1 \end{pmatrix}, \beta_{2} = \begin{pmatrix} -1 \\ 1 \\ 2-a \\ 1 \end{pmatrix}, \beta_{3} = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \beta_{4} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

- 1、求a使 $\beta_1,\beta_2,\beta_3,\beta_4$ 为 R^4 的基;
- 2、求由基 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 到 $\beta_1, \beta_2, \beta_3, \beta_4$ 的过渡矩阵P;
- 3、设线性变换 T 为: $T(\alpha_i) = \beta_i$, (i=1,2,3,4) , 求 T 在基 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 下的变换矩阵 C.

七、(20分)

- 1. 设A为n阶正交矩阵,且|A|<0,证明: |A+I|=0;
- 2. 设A和 B为n阶矩阵,且满足 $A^2=A$, $B^2=B$, r(A+B-E)=n,证明: r(A)=r(B)。

武汉大学数学与统计学院 2010-2011 第一学期 《线性代数 B》 (工 54, A 卷答案)

一、1、从第2行开始,每一行乘以(-1)加到上一行,然后从第1列开始,每列加到后1列,得

$$D_n = x^{n-1} (x + \sum_{i=1}^n a_i).$$

2、由行列式的性质,可得

$$\left|\alpha_3\alpha_2\alpha_1\left(\beta_1+\beta_2\right)\right| = \left|\alpha_3\alpha_2\alpha_1\beta_1\right| + \left|\alpha_3\alpha_2\alpha_1\beta_2\right| = -\left|\alpha_1\alpha_2\alpha_3\beta_1\right| + \left|\alpha_1\alpha_2\beta_2\alpha_3\right| = -m + n.$$

二、由题设能断定向量组 $\alpha_1, \alpha_2, \dots, \alpha_m, \beta_1, \beta_2, \dots, \beta_m$ 线性相关,但其部分向量组不一定线性相关。 例如取 $\alpha_1 = [1,0], \alpha_2 = [0,1], \beta_1 = [-1,0], \beta_2 = [0,-1].$

则当 $\lambda_1 = \lambda_2 = 1$ 时,有 $\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \lambda_1 \beta_1 + \lambda_2 \beta_2 = 0$,从而 $\alpha_1, \alpha_2, \beta_1, \beta_2$ 线性相关,但其部分向量组 $\alpha_1, \alpha_2, \beta_1, \beta_2$ 却分别线性无关.

三、对 A 作初等变换,由 r(A) = 2,可求得 a = 1,再由 $AX + E = A^2 + X$,得 (A - E)X = (A - E)(A + E)

由于
$$|A-E| \neq 0$$
,因此 $A-E$ 可逆,且 $X = (A-E)^{-1}(A-E)(A+E) = A+E = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 6 & 2 \end{pmatrix}$

四、解:设有数 k_1,k_2,k_3 使得

$$k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = \beta. \tag{1}$$

若记 $A = (\alpha_1, \alpha_2, \alpha_3)$,并对矩阵 $(A\beta)$ 施以初等行变换,有

$$(A \ \beta) = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 2 & a+2 & -b-2 & 3 \\ 0 & -3a & a+2b & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & a & -b & 1 \\ 0 & 0 & a-b & 0 \end{pmatrix}.$$

1、当a=0,b为任意常数时,有 $r(A)\neq r(A-\beta)$.故(1) 无解, β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。

2、当 $a \neq 0$,且 $a \neq b$ 时, $r(A) = r(A \beta) = 3$,故(1)有惟一解 $k_1 = 1 - \frac{1}{a}, k_2 = \frac{1}{a}, k_3 = 0$,

即 β 可由 $\alpha_1, \alpha_2, \alpha_3$ 惟一地线性表示, 其表示式为 $\beta = (1 - \frac{1}{a})\alpha_1 + \frac{1}{a}\alpha_2$.

3、当 $a=b\neq 0$ 时,对 $(A\beta)$ 施以初等行变换,有 $r(A)=r(A-\beta)=2$,故方程组(1)有无穷多解,其全部解为

$$k_1 = 1 - \frac{1}{a}, k_2 = (\frac{1}{a} + c), k_3 = c$$
, 其中 c 为任意常数.

 β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,但表示式不惟一,其表示式为 $\beta=(1-\frac{1}{a})\alpha_1+(\frac{1}{a}+c)\alpha_2+c\alpha_3$.

五、1、f 的矩阵表达式为 $f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{bmatrix} 0 & 2 & -2 \\ 2 & 4 & 4 \\ -2 & 4 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

2、二次型矩阵为
$$A = \begin{bmatrix} 0 & 2 & -2 \\ 2 & 4 & 4 \\ -2 & 4 & -3 \end{bmatrix}$$
, 则 $|\lambda I - A| = \begin{vmatrix} \lambda & -2 & 2 \\ -2 & \lambda - 4 & -4 \\ 2 & -4 & \lambda + 3 \end{vmatrix} = (\lambda - 1)(\lambda^2 - 36) = 0$,

由此可解得 A 的特征值分别为 $\lambda_1 = 1$, $\lambda_2 = 6$, $\lambda_3 = -6$

且对应的正交特征向量为
$$\alpha_1 = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$

再单位化,可得两两正交的单位特征向量为
$$\beta_1 = \begin{bmatrix} \frac{2}{\sqrt{5}} \\ 0 \\ \frac{-1}{\sqrt{5}} \end{bmatrix}$$
, $\beta_2 = \begin{bmatrix} \frac{1}{\sqrt{30}} \\ \frac{5}{\sqrt{30}} \\ \frac{2}{\sqrt{30}} \end{bmatrix}$, $\beta_3 = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{-1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{bmatrix}$

故所求正交矩阵为
$$P = (\beta_1, \beta_2, \beta_3) = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{30}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{5}{\sqrt{30}} & \frac{-1}{\sqrt{6}} \\ \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{30}} & \frac{2}{\sqrt{6}} \end{pmatrix}$$
. 进而,对二次型 f 作正交变换
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = P \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix},$$

则二次型 f 可以化为如下标准形 $f(x_1, x_2, x_3) = y_1^2 + 6y_2^2 - 6y_3^2$

六、解: 1、 $a \neq 1$;

、设
$$A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$$
, $B = (\beta_1, \beta_2, \beta_3, \beta_4)$,则
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 & -1 & 1 \\ -1 & 1 & 1 & 0 \\ a & 2-a & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}.$$

设 $(\beta_1,\beta_2,\beta_3,\beta_4) = (\alpha_1,\alpha_2,\alpha_3,\alpha_4)P$,则

$$P = A^{-1}B = \begin{pmatrix} 2 & -2 & -2 & 1 \\ -1 - a & a - 1 & 1 & 0 \\ a - 1 & 1 - a & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

3 由 T(α_i) = β_i , (i = 1, 2, 3, 4),求 T 在基 α_1 , α_2 , α_3 , α_4 下的变换矩阵 C=P。 七、1、证明:

$$|A + I| = |I + A^T| |A| = |I + A| (-1) = -|A + I|$$

故|A+I|=0。

2、证: 因为 $A(A+B-E) = A^2 + AB - A = AB$, $(A+B-E)B = AB + B^2 - B = AB$, 由 (A+B-E) 为可逆矩阵,可得:

$$r(A(A+B-E)) = r(A) = r(AB)$$
, $r((A+B-E)B) = r(B) = r(AB)$, 所以, $r(A) = r(B)$.

武汉大学数学与统计学院 2011-2012 第一学期

《线性代数 B》 (A 卷, 54 学时)

字院 专业 字号 姓名	4 T	姓名	
-------------	-----	----	--

注: 所有答题均须有详细过程,内容必须写在答题纸上,凡写在其它地方一律无效。

一、(10分)计算行列式

$$D_{n} = \begin{vmatrix} x + a_{1} & a_{2} & a_{3} & \cdots & a_{n} \\ a_{1} & x + a_{2} & a_{3} & \cdots & a_{n} \\ a_{1} & a_{2} & x + a_{3} & \cdots & a_{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1} & a_{2} & a_{3} & \cdots & x + a_{n} \end{vmatrix}.$$

二、(12 分) 设n维向量 $\alpha = (x, 0, \dots, 0, x)^T$, 矩阵 $A = I - \alpha \alpha^T$, $A^{-1} = I + x \alpha \alpha^T$, 求实数 x.

三、(16分)设

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 6 & a \end{pmatrix}$$
, $\exists r(A) = 2$, $X \not \exists E AX + I = A^2 + X$,

求a和X.

四、(16分)已知方程组 AX = b 中

$$A = \begin{pmatrix} 2 - \lambda & 2 & -2 \\ 2 & 5 - \lambda & -4 \\ -2 & -4 & 5 - \lambda \end{pmatrix}, b = \begin{pmatrix} 1 \\ 2 \\ -1 - \lambda \end{pmatrix},$$

就该方程组无解、有唯一解、有无穷多解诸情形,对允值进行讨论,并在有无穷多解时求其通解.

- 五、(16 分) 设三阶实对称矩阵 A 的特征值是 1, 2, 3; 矩阵 A 的属于特征值 1, 2 的特征向量分别 是 $\alpha_1 = (-1,-1,1)^T$, $\alpha_2 = (1,-2,-1)^T$.
 - 1、 A 的属于特征值 3 的特征向量;
 - 2、矩阵 A。
- 六、(20 分) 对线性空间 \mathbb{R}^3 中的向量组 $A: \alpha_1, \alpha_2, \alpha_3$ 和 $B: \beta_1, \beta_2, \beta_3$, 讨论下面的问题:
 - 1、向量组 B 是否能成为 R^3 中的基?能否用 A 线性表示 B ?如果可以,试求出由 $\alpha_1,\alpha_2,\alpha_3$ 到 β_1,β_2,β_3 的过渡矩阵 P ,其中

$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad \alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}; \quad \beta_1 = \begin{pmatrix} 1 \\ 1 \\ a \end{pmatrix} \qquad \beta_2 = \begin{pmatrix} 1 \\ 1 \\ 2-a \end{pmatrix} \qquad \beta_3 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix},$$

且 a 为实数.

- $2 \cdot 若 \beta_1 = k(2\alpha_1+2\alpha_2-\alpha_3), \ \beta_2 = k(2\alpha_1-\alpha_2+2\alpha_3), \ \beta_3 = k(\alpha_1-2\alpha_2-2\alpha_3), \ k \ \text{ 是非零实数,}$
 - (1) 给出向量组 β_1 , β_2 , β_3 , 线性无关的一个充要条件,并证明之;
 - (2) 给出矩阵 $(\beta_1, \beta_2, \beta_3)$ 为正交阵的一个充要条件,并证明之.

七、(10分)设n阶实对称矩阵 $A \neq O$,且其特征值全为非负数,I 为n阶单位阵,则行列式 |A+I| > 1.

武汉大学数学与统计学院 2011-2012 第一学期

《线性代数 B》 (54 学时, A 卷答案)

一、解:从第2行开始,每一行乘以(-1)加到上一行,然后从第1列开始,每列加到后1列,得

$$D_{n} = \begin{vmatrix} x & 0 & 0 & \cdots & 0 \\ 0 & x & 0 & \cdots & 0 \\ 0 & 0 & x & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1} & a_{2} + a_{2} & a_{1} + a_{2} + a_{3} & \cdots & x + \sum_{i=1}^{n} a_{i} \end{vmatrix} = x^{n-1} (x + \sum_{i=1}^{n} a_{i}).$$

二、解: x = -1 发 $\chi = 0$

征向量为

三、解: 对 A 作初等变换,由 r(A) = 2,可求得 a = 1,再由 $AX + I = A^2 + X$,得 (A - I)X = (A - I)(A + I) .

由于 $|A-I| \neq 0$,因此 A-I可逆 ,且

$$X = (A-I)^{-1}(A-I)(A+I) = A+I = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 6 & 2 \end{pmatrix}$$

四、解: 经计算 $|A| = -(\lambda - 1)^2(\lambda - 10)$,因此方程组有唯一解

$$\Leftrightarrow |A| \neq 0 \Leftrightarrow \lambda \neq 1 \pm \lambda \neq 10$$

 λ = 10 时,因 rank(A) = 2 , $rank(\widetilde{A})$ = 3 , $rank(A) \neq r(\widetilde{A})$,即 λ = 10 时无解。

 $\lambda = 1$ 时,因 $rank(A) = rank(\widetilde{A}) = 1 < 3$,通解为:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + k_1 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \quad (k_1, k_2 \in \mathbb{R})$$

五、解: 1、设 A 的属于特征值 3 的特征向量为 $\alpha_3 = (x_1, x_2, x_3)^T$,因为对于实对称矩阵,属于不同特征值 的特征向量相互正交,所以 $\alpha_1^T\alpha_3 = 0$ 且 $\alpha_2^T\alpha_3 = 0$. 即 x_1, x_2, x_3 是 齐次线性方程组 $\begin{cases} -x_1 - x_2 + x_3 = 0 \\ x_1 - 2x_2 - x_3 = 0 \end{cases}$ 的非零解,解上列方程组,得其基础系为 $(1,0,1)^T$. 因此 A 的属于特征值 3 的特

 $\alpha_3 = k(1,0,1)^T$ (k 为任意非零常数).

$$2 \cdot \diamondsuit P = (\alpha_1 \alpha_2 \alpha_3) = \begin{bmatrix} -1 & 1 & 1 \\ -1 & -2 & 0 \\ 1 & -1 & 1 \end{bmatrix}. \ \text{\mathbb{Q}} \ \tilde{p} \ A = P \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} P^{-1}. \ \text{\mathbb{D}} \ P^{-1} = \begin{bmatrix} -1/3 & -1/3 & 1/3 \\ 1/6 & -1/3 & -1/6 \\ 1/2 & 0 & 1/2 \end{bmatrix},$$

1

可见
$$A = P \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} P^{-1} = \frac{1}{6} \begin{bmatrix} 13 & -2 & 5 \\ -2 & 10 & 2 \\ 5 & 2 & 13 \end{bmatrix}.$$

六、解: 设 $A = (\alpha_1, \alpha_2, \alpha_3)$, $B = (\beta_1, \beta_2, \beta_3)$,

1、
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ a & 2-a & 0 \end{pmatrix}$, 易知 $a \neq 1$ 时, $\beta_1, \beta_2, \beta_3$ 能成为 \mathbf{R}^3 中的基.

即有 A = BQ, 且 $|Q| \neq 0$, 令 $B = AQ^{-1} = AP \ (P = Q^{-1})$, 故能用 A 线性表示 B. 由初等行变换

求得
$$A^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
,则所求过渡矩阵为 $P = A^{-1}B = \begin{pmatrix} 0 & 0 & -2 \\ 1-a & -1+a & 1 \\ a & 2-a & 0 \end{pmatrix}$.

2、(1) 由题设
$$B=AC$$
,其中 $C=k\begin{pmatrix} 2 & 2 & 1 \\ 2 & -1 & -2 \\ -1 & 2 & -2 \end{pmatrix}$,且 $|C|=27k^3 \neq 0$.

如果 $|A|\neq 0$,即 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,则有 $|B|=|AC|=|A||C|\neq 0$,得 β_1,β_2,β_3 线性无关;反之如果 β_1,β_2,β_3 线性无关,则由 $|A||C|=|B|\neq 0$,得到 $|A|\neq 0$.

可见, $\alpha_1,\alpha_2,\alpha_3$ 线性无关是 β_1,β_2,β_3 线性无关的一个充分必要条件.

(2) 如果 $A = (\alpha_1, \alpha_2, \alpha_3)$ 是正交阵, 即 $A^T A = I$,

则
$$B^{\mathsf{T}}B = C^{\mathsf{T}}A^{\mathsf{T}}AC = C^{\mathsf{T}}C = k^2 \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ 1 & -2 & -2 \end{pmatrix} \begin{pmatrix} 2 & 2 & 1 \\ 2 & -1 & -2 \\ -1 & 2 & -2 \end{pmatrix} = 9k^2I$$
,可见 $k = \pm \frac{1}{3}$ 时. B 是正交

阵.

反之 B 是正交阵时, $BB^{\mathsf{T}} = AC^{\mathsf{T}}CA^{\mathsf{T}} = 9k^2AA^{\mathsf{T}} = I$,即 $AA^{\mathsf{T}} = \frac{1}{9k^2}I$,可见 $k = \pm \frac{1}{3}$ 时,A 是正交阵. 综上, B 为正交阵的一个充要条件是 $k = \pm \frac{1}{3}$ 且 A 为正交阵.

七、证明: 设A的n个特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,则 $\lambda_i \ge 0$ ($i = 1, 2, \dots, n$).

因 $A \neq O$,故至少有一个特征值 $\lambda_i > 0$. 事实上,如特征值 $\lambda_i = 0 (i = 1, 2, \cdots, n)$,则

$$A = Qdiag(\lambda_1, \lambda_2, \dots, \lambda_n)Q^{-1} = Q \cdot O \cdot Q^{-1} = O.$$

这与 $A \neq O$ 矛盾. 由 $A = Qdiag(\lambda_1, \cdots, \lambda_j, \cdots, \lambda_n)Q^{-1}$. 及 $I = Qdiag(1, \cdots, 1, \cdots, 1)Q^{-1}$,故

$$|A + I| = |Qdiag(\lambda_1 + 1, \dots, \lambda_j + 1, \dots, \lambda_n + 1)Q^{-1}| = |Q||Q|^{-1}|diag(\lambda_1 + 1, \dots, \lambda_j + 1, \dots, \lambda_n + 1)|$$

$$= (\lambda_1 + 1)(\lambda_2 + 1) \cdots (\lambda_j + 1) \cdots (\lambda_{n-1} + 1)(\lambda_n + 1) > 1$$

武汉大学数学与统计学院 2012-2013 第一学期 《线性代数 B》期末考试试题 54 学时 A 卷

1、(**10**) 已知
$$A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$
, 求 $|A|$

2、(**15**) 设
$$A$$
是一个 4×3 矩阵,且 $r(A) = 2$,而 $B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{bmatrix}$,求秩 $r(AB)$.

3、(15分) 已知
$$A$$
可逆,且 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 4 & 0 & 3 \end{bmatrix}$,若 $ABA^* + BA^* = 4I$,求矩阵 B .

4、(15分)设A=
$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & a+4 & a+3 \\ -1 & a & 2a+1 \end{bmatrix}$$
,若存在 **3** 阶非零矩阵 **B**,使得 **AB=O**.

1) 求 a 的值;

- 2) 求方程组 AX = 0 的通解.
- 5、(15 分) 已知二次型 $f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + cx_3^2 2x_1x_2 2x_1x_3 2x_2x_3$ 的秩为 2.
- 1) 求参数c及此二次型对应的矩阵A;
- 2) 求相似变换矩阵 P,把 A 对角化,并写出二次型 f 的标准型.
- **6**、(**15** 分)设 $A=(\alpha_1,\alpha_2,\alpha_3)$ 是一个 4×3 矩阵,且方程组

$$AX = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \text{ ob } \exists AB \in X = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + c \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix},$$

- 1) 求 A 的第二列 α_2 和第三列 α_3 ;
- **2**) 对 A 的列向量组 $\alpha_1,\alpha_2,\alpha_3$, 求一个最大无关组.
- 7、(15 分)设线性空间 R^3 中的向量组 $A: \alpha_1, \alpha_2, \alpha_3$ 和 $B: \beta_1, \beta_2, \beta_3$ 分别为

$$\alpha_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \alpha_{2} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad \alpha_{3} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}; \quad \beta_{1} = \begin{bmatrix} 1 \\ 1 \\ a \end{bmatrix} \quad \beta_{2} = \begin{bmatrix} 1 \\ 1 \\ 2-a \end{bmatrix} \quad \beta_{3} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix},$$

其中a为实数. 问向量组B是否能成为 R^3 中的基?能否用A线性表示B?如果可以,试求出由 $\alpha_1,\alpha_2,\alpha_3$ 到 β_1,β_2,β_3 的过渡矩阵P.

武汉大学数学与统计学院 2012-2013 第一学期

《线性代数 B》54 学时 (A卷答案)

- 1, |A| = 5
- 2、因为 B 可逆,故r(AB) = r(A) = 2.
- 3、注意,由条件 $|A| = \frac{1}{3}$ 。 再由 $ABA^* + BA^* = 4I \Rightarrow A^{-1}(ABA^* + BA^*)A = 4A^{-1}IA \Rightarrow$ $BA^*A + A^{-1}BA^*A = 4I \Rightarrow B|A|I + A^{-1}B|A|I = 4I \Rightarrow \frac{1}{3}B + \frac{1}{3}A^{-1}B = 4I$,

$$\mathbb{P} B = 12(I + A^{-1})^{-1} \circ \overline{m} (I + A^{-1}) = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 2 & 0 & 2 & 0 \\ 0 & 4 & 0 & 4 \end{bmatrix}, \quad (I + A^{-1})^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{4} \end{bmatrix}$$

则
$$B = 12(I + A^{-1})^{-1} = \begin{bmatrix} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ -6 & 0 & 6 & 0 \\ 0 & -6 & 0 & 3 \end{bmatrix}$$
。

- 4、1) AX = O 有非零解的充分必要条件是 $\begin{vmatrix} 1 & 2 & 1 \\ 1 & a+4 & a+3 \\ -1 & a & 2a+1 \end{vmatrix} = 0$,解得 a = 0 或 a = -2。
- 2) $\stackrel{.}{=} a = 0$ $\stackrel{.}{=}$ $\stackrel{.}{=} A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 4 & 3 \\ -1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & -2 \\ 0 & 2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, $\stackrel{.}{=} R(A) = 2$, AX = O

的基础解系只有一个向量,可取为 $(1,-1,1)^T$ 。

则 AX = O 的通解 $X = k_1 (1, -1, 1)^T$, (k_1) 为任意常数);

当
$$a = -2$$
 时, $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ -1 & -2 & -3 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$,即 $R(A) = 2$, $AX = O$ 的基础解系

只含一个向量,可取为 $(2,-1,0)^T$ 。

则 AX = O 的通解 $X = k_2 (2,-1,0)^T$, (k_2 为任意常数)。

5、1)
$$:: R(A) = 2$$
 , $:: |A| = 0$, 求得 $c = 2$ 。 二次型对应的矩阵为 $A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$ 。

2) 由计算,这儿A对应的特征值为 $\lambda = \lambda_2 = 3, \lambda_3 = 0$,

特征向量可取为 $\alpha_1 = (1,0,-1)^T$, $\alpha_2 = (1,-1,0)^T$,

对
$$\lambda_3 = 0$$
, $A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix}$

特征向量可取为 α_3 = $\begin{pmatrix}1,1,1\end{pmatrix}^{\mathsf{T}}$,则所求相似变换阵为 $P=\begin{bmatrix}1&1&1\\0&-1&1\\-1&0&1\end{bmatrix}$,二次型f 的标准型

为 $f(y_1, y_2, y_3) = 3y_1^2 + 3y_2^2$ 。

6.1)
$$X = \begin{bmatrix} 0 \\ 1+2c \\ 1+c \end{bmatrix}$$
, $[\alpha_1, \alpha_2, \alpha_3] \begin{bmatrix} 0 \\ 1+2c \\ 1+c \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$, $(1+2c)\alpha_2 + (1+c)\alpha_3 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$, $\Leftrightarrow c = -\frac{1}{2}$

和
$$c=-1$$
, 分别得 $\alpha_2=\begin{bmatrix} -1\\-2\\-3\\-4 \end{bmatrix}$, $\alpha_3=\begin{bmatrix} 2\\4\\6\\8 \end{bmatrix}$ 。

2)由于所给非齐次方程组所对应的齐次方程组的基础解系只含有一个解向量,则 R(A)=3-1=2,从而 $\alpha_1,\alpha_2,\alpha_3$ 的秩为 $\alpha_1,\alpha_2,\alpha_3$ 的秩为 α_2,α_3 线性相关,则最大无关组为 α_1,α_2 或 α_1,α_3 。

7 设 $A=(\alpha_1,\alpha_2,\alpha_3)$, $B=(\beta_1,\beta_2,\beta_3)$, 则

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ a & 2-a & 0 \end{bmatrix}, \quad \mathbf{B} \mathbf{p} a \neq 1 \text{ 时}, \quad \beta_1, \beta_2, \beta_3 \text{ 能成为 } \mathbf{R}^3 \text{ 中}$$

的基. 即有 A = BQ, 且 $|Q| \neq 0$, 令 $B = AQ^{-1} = AP \ (P = Q^{-1})$, 故能用 A 线性表示 B. 由初等行变换

求得
$$A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
,则所求过渡矩阵为 $P = A^{-1}B = \begin{bmatrix} 0 & 0 & -2 \\ 1-a & -1+a & 1 \\ a & 2-a & 0 \end{bmatrix}$.

武汉大学数学与统计学院 2012-2013 学年二学期 《线性代数 B》期末试卷(A 卷)

一、 $(10 \, \text{分})$ 已知 $\alpha_1 = (1,1,0)^T, \alpha_2 = (1,0,1)^T, \alpha_3 = (0,1,1)^T$ 为向量空间 R^3 的一组基,求向量 $\beta = (2,0,0)^T$ 在这组基下的坐标向量。

二、(10 分) 已知
$$A$$
 为 3 阶矩阵, $B = \begin{pmatrix} 1 & -2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,且满足方程 $2A^{-1}B = B - 4I$, I 为 3

阶单位矩阵, 求矩阵 A。

1、计算四阶行列式 D 的值,2、计算四阶行列式 D 的第一行元素代数余子式之和。

四、(10 分) 已知矩阵
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1 \end{pmatrix}$$
, 矩阵 $B = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ (2,1,0),且 $r(A - AB) = 2$,

求参数t的值。

五、(16 分) 己知
$$\alpha_1 = \begin{pmatrix} 1\\4\\0\\2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2\\7\\1\\3 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0\\1\\-1\\a \end{pmatrix}$, $\beta = \begin{pmatrix} 3\\10\\b\\4 \end{pmatrix}$, 问 a,b 为何值时

- 1、 β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示;
- 2、 β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示?并写出表示式;
- 3、 β 可由 $\alpha_1,\alpha_2,\alpha_3$ 用无穷多方式线性表示,写出一般表示式;
- 4、向量组 $lpha_1,lpha_2,lpha_3$ 线性相关,并在此时求它的秩和一个最大无关组,且用一个极大 无关组表示其余向量。
- 六、(14分) 已知二次型 $f(x_1,x_2,x_3) = (1-a)x_1^2 + (1-a)x_2^2 + 2x_3^2 + 2(1+a)x_1x_2$ 的秩为2,
 - 1、求a的值; 2、求正交变换x = Qy,将 $f(x_1, x_2, x_3)$ 化为标准形。
- 七、(12分)设A为三阶实对称阵,且满足条件 $A^2+2A=O$,已知A的秩为r(A)=2,
 - 1、求 A 的全部特征值;
 - 2、计算 | A+41|
 - 3、当k为何值时,A+kI为正定阵,其中I为三阶单位阵。
- 八、 $(8\,
 m eta)$ 。已知 A 为 3 阶方阵, $\lambda_1, \lambda_2, \lambda_3$ 为 A 的三个不同的特征值, $\alpha_1, \alpha_2, \alpha_3$ 分别为相应 的特征向量,又 $\beta = \alpha_1 + \alpha_2 + \alpha_3$,试证: $\beta_1 A \beta_2 A^2 \beta_3$ 线性无关.
- 九、(8分)设 α_1 , α_2 , α_3 是n维非零实向量, $\beta_2 = k_1\alpha_1 + k_2\alpha_2$, k_1 , k_2 为使得 $\alpha_4 \neq 0$ 的 任意常数,以下结论若正确,请证明;若不正确,请举出反例。
 - 1、若 α 3,与 α 1 正交,且 α 3,与 α 2 也正交,则 α 3,与 β 正交。
 - 2、若 α_3 与 α_1 线性无关,且 α_3 与 α_2 也线性无关,则 α_3 与 β 线性无关。

武汉大学数学与统计学院 2012-2013 学年二学期 《线性代数 B》期末试卷(A卷)解答

-、(10 分)解: β 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的坐标就是方程 $(\alpha_1,\alpha_2,\alpha_3)x=\beta$ 的唯一解,

因为
$$\begin{pmatrix} 1 & 1 & 0 & 2 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$
 $\xrightarrow{r_2 - r_1}$ $\begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & -1 & 1 & -2 \\ 0 & 1 & 1 & 0 \end{pmatrix}$ $\xrightarrow{r_3 + r_2}$ $\begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & 2 & -2 \end{pmatrix}$ $\xrightarrow{\frac{1}{2}r_5}$ $\begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & 1 & -1 \end{pmatrix}$ $\xrightarrow{r_2 - r_1}$ $\begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$ $\xrightarrow{r_3 + r_2}$ $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$, 故所求坐标为 $(1,1,-1)^T$ 。

二、(10 分)解:
$$AB-4A = A(B-4I) = 2B$$
, $A = 2B(B-4I)^{-1} = \begin{pmatrix} 0 & 2 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$

三、(12分)解: 1、
$$D = \begin{vmatrix} 1 & 2 & 0 & 0 \\ -1 & -1 & 3 & 0 \\ 0 & -1 & -2 & 4 \\ 0 & 0 & -1 & -3 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 1;$$

$$2 \cdot A_{11} + A_{12} + A_{13} + A_{14} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 3 & 0 \\ 0 & -1 & -2 & 4 \\ 0 & 0 & -1 & -3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & -1 & -2 & 4 \\ 0 & 0 & -1 & -3 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & -4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -11 \end{vmatrix} = -11;$$

四、(10 分)解:
$$I - B = I - \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} (2 \quad 1 \quad 0) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 4 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -3 & -2 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$|I-B| = \begin{vmatrix} -3 & -2 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} -3 & -2 \\ -2 & 0 \end{vmatrix} = -4 \neq 0, \quad \text{If } I-B \text{ $\vec{\square}$} ;$$

所以r(A-AB)=r[A(I-B)]=r(A)=2。下面,计算A的行列式为零或作初等变换均可。

如,
$$|A| = \begin{vmatrix} 1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & -2 \\ 0 & t - 8 & 11 \\ 0 & -7 & 7 \end{vmatrix} = 7 \begin{vmatrix} 1 & 2 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & t + 3 \end{vmatrix} = 7(t+3)$$
,知当 $t = -3$ 时, $r(A) = 2$

五、(16 分)解:设
$$\beta = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3$$

$$(A|B) = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 4 & 7 & 1 & 10 \\ 0 & 1 & -1 & b \\ 2 & 3 & a & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & a-1 & 0 \\ 0 & 0 & 0 & b-2 \end{pmatrix}$$

1、 $b\neq 2$ 时, β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,

2、 $b = 2, a \neq 1$ 时, β 可由 $\alpha_1, \alpha_2, \alpha_3$ 唯一表示为 $\beta = -\alpha_1 + 2\alpha_2$

2、
$$b = 2, a \neq 1$$
时, β 可由 $\alpha_1, \alpha_2, \alpha_3$ 唯一表示为 $\beta = -\alpha_1 + 2\alpha_2$ 3、 $b = 2, a = 1$ 有无穷多表示方法, $(A \mid B) \rightarrow \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

一般解为:
$$\begin{cases} x_1 = -2x_3 - 1 \\ x_2 = x_3 + 2 \end{cases}, \quad \beta = -(2k+1)\alpha_1 + (k+2)\alpha_2 + k\alpha_3, \quad k \text{ 为任意实数。}$$

4、b=2, a=1时, 向量组 α_1 , α_2 , α_3 线性相关, α_1 , α_2 为其一极大无关组, 且有 $\alpha_3=2\alpha_1-\alpha_2$

六、(14分)解: 1、因为二次型矩阵
$$A = \begin{pmatrix} 1-a & 1+a & 0 \\ 1+a & 1-a & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 秩为 2,

所以
$$|A|=0$$
,即 $\begin{vmatrix} 1-a & 1+a \\ 1+a & 1-a \end{vmatrix} = \begin{vmatrix} 1-a & 1+a \\ 2 & 2 \end{vmatrix} = -4a = 0$,即得 $a=0$ 。

2、当
$$a = 0$$
时, $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 。因为 A 特征多项式为

$$|A - \lambda E| = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 1 & 1 - \lambda & 0 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = (2 - \lambda)[(1 - \lambda)^2 - 1] = -(2 - \lambda)^2 \lambda$$
 , 所以 A 的特征值为

为:
$$p_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
; 对 $\lambda_2 = \lambda_3 = 2$, 由 $A - 2I = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\stackrel{r_1 - r_2}{\rightarrow} \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 知其对应线性无关特

征向量为:
$$p_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, p_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
。显然, p_1, p_2, p_3 两两正交, 故只需单位化得:

$$e_1 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
。作正交阵 $Q = (e_1, e_2, e_3)$,则原二次型经正交变换 $x = Qy$ 化为

标准形: $f = 2v_2^2 + 2v_3^2$ 。

七、 $(12\, \mathcal{H})$ 解: 1、设 λ 为A的特征值,则由 $A^2+2A=O$ 知有: $\lambda^2+2\lambda=0$,即特征值只能为 $\lambda=0,-2$ 。因为A为实对称阵,所以A正交相似于对角阵 Λ ,从而 $r(A)=r(\Lambda)=2$,也即特征值为 $\lambda=\lambda_2=-2,\lambda_3=0$ 。

- $2 \cdot |A+4I| = 2 \cdot 2 \cdot 4 = 16$
- 3、因为A的特征值为 $\lambda_1 = \lambda_2 = -2, \lambda_3 = 0$,所以A + kI的特征值为k 2,k 2,k。 当k > 2时,A + kI为正定阵。

八、(8分) 证:
$$A\beta = A(\alpha_1 + \alpha_2 + \alpha_3) = \lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \lambda_3 \alpha_3$$
,
$$A^2\beta = A^2(\alpha_1 + \alpha_2 + \alpha_3) = \lambda_1^2 \alpha_1 + \lambda_2^2 \alpha_2 + \lambda_3^2 \alpha_3$$

$$(\beta, A\beta, A^2\beta) = (\alpha_1 + \alpha_2 + \alpha_3, \lambda_1\alpha_1 + \lambda_2\alpha_2 + \lambda_3\alpha_3, \lambda_1^2\alpha_1 + \lambda_2^2\alpha_2 + \lambda_3^2\alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 \\ 1 & \lambda_2 & \lambda_2^2 \\ 1 & \lambda_3 & \lambda_3^2 \end{pmatrix} = CK$$

又 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,且K可逆,故 $\beta, A\beta, A^2\beta$ 线性无关.

九、(8分) 证: 1、 因为 $(\alpha_3,\beta)=k_1(\alpha_3,\alpha_1)+k_2(\alpha_3,\alpha_2)=0$,所以成立。

2、 不成立。如
$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\beta = \alpha_1 + 2\alpha_2 = \alpha_3$ 。

武汉大学 2013-2014 学年第一学期期末考试

线性代数B(A 卷答题卡)

姓名 1.答题前, 为生先将自己的姓名、学号填写清楚者号信息点。 正确填涂, 注 2.解答题必须使用黑色显水的签字笔书写, 不终 请 作解答题: 字体工数、笔迹满笼。 请 作解答题: 字体工数、笔迹满笼。 可 写的答题无效, 在草鹬纸、试题卷上经题无效。 ○ 不上10 到 写的答题无效, 在草鹬纸、试题卷上答题无效。	1.答腦前,考生 考与信息点。 2.解答题必须他 作解答题: 字化 3.请按照题号服 写的答题无效。	姓名 1. 答题前,当组 地名德尼克 正确集除 注 2. 解答题必须创	考 生 学 号	TH 601	71.5% AT 50.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 ((1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	答題前,考生先将自己的姓名、学号填写清楚,并填涂相应的 [23] [23] [23] [23] [23] [23] [23] [23]	(63) (63) (63) (63) (63) (63) (63) (63)	注 2 解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔 [44] [44] [45] [45] [45] [45] [45] [45]	本工整、總遂清楚。 (53) [53] [53] [53] [53] [53] [53] [53] [53]	3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书 [63] [63] [63] [63] [63] [63] [63] [63]	在草藤纸、试题卷上答题无效。 [77] [77] [77] [77] [77] [77] [77] [77	5, 不要折叠、不要弄破。 [83] [83] [83] [83] [83] [83] [83] [83]	[63] [63] [63] [65] [65] [65] [65] [65] [65] [65] [65] [65] [65] [65]
---	---	-------------------------------------	---------	--------	--	---	---	---	---	---	--	---	---	---

 $-\cdot(8\, \mathrm{A})\, \epsilon_n$ 阶行列式 $D\, \mathrm{d}$ 中,如果把第一列移到最后一列,因而其余各列保持原来次序各向左移动了一列,得行列式 Δ ,问行列式 Δ 与D有何关系?

三、(12 分) 求下列向量组的一个最大线性无关组,并用它线性表出向量组中的其它向量. $\alpha_1=(3,1,2,5),\alpha_2=(1,1,1,2),\alpha_3=(2,0,1,3),\alpha_4=(1,-1,0,1),\alpha_5=(4,2,3,7).$

 $\begin{bmatrix} a & b & c & x_1 \\ b & -a & d & x_2 \\ c & -d & -a & x_3 \end{bmatrix}$, a,b,c,d 是不全为0 的实数,求 $x_i(i=1,2,3,4)$ 及数k, 使 B=kd 为正交矩 $\begin{bmatrix} d & c & -b & x_4 \end{bmatrix}$

五、 (12.9) 用正交变换化二次型 $f=x_1^2+x_2^2+2x_1^2-2x_1x_2+4x_1x_3+4x_2x_3$ 为标准形,并写出所用正交变换及	七、(10分)证明:与齐次线性方程组 AX=0基础解系等价的线性无关向量组也是该方程组的基础解系.
f 助标准形。	
	八、(10 分) 在 R^4 中, 向量 α 在基: $\alpha_1 = (1,1,0,0), \alpha_2 = (0,1,1,0), \alpha_3 = (0,0,1,1), \alpha_4 = (1,0,0,1)$ 下的坐标为 $\alpha_1 = (1,0,0,1), \alpha_4 = (1,0,0,1), \alpha_5 = (1,0,0,1),$
	(c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,
$x+ay+a^2z=1$ 六、(16 分) 讨论 a,b 为何值时,方程组 $\left\{\begin{array}{ccc} x+ay+abz=a & 有唯一解?有无穷多解? 无解? 并在有解时求出$	
$bx+a^{-}y+a^{-}bz=a^{-}b$ 其解.	
	九、(10分) 设 $\alpha = (a_1, a_2, a_3)^T$, $\beta = (b_1, b_2, b_3)^T$, 且 $\alpha^T \beta = 2, A = \alpha \beta^T$, (1) 求 A 的特征值, (2) 求可逆
	阵 P 及对角阵 Λ ,使 $P^-AP=\Lambda$.
_	

武汉大学 2013-2014 学年第一学期期末考试线性代数 B(A & E) 解答 $-(B \land E)$ 在n 阶行列式 D 中,如果把第一列移到最后一列,因而其余各列保持原来次序各向左移动了一列,得行列式 Δ ,问行列式 Δ 与 D 有何关系?

$$M$$
 $\Delta = (-1)^{n-1} D$

(1) 求 A^n . (n 为正整数). (2) 设 $A^2 + AB - A = E$, 求行列式 |B| 的值.

解 (1) 记
$$B = \frac{1}{2}A$$
.则 B 为正交阵。由 $A^T = A$. 故 $B^T = B$. $A^2 = A^T A = 4B^T B = 4E$ $A^3 = A^2 A = 4A$, $A^4 = (A^2)^2 = 16E$, $A^{2k-1} = 2^{2k-2}A$, $A^{2k} = 2^{2k}E$. (k 为正整数).

(2)
$$A^2 = 4E, A^{-1} = \frac{1}{4}A, AB = E + A - A^2 = A - 3E.$$

$$B = E - 3A^{-1} = E - \frac{3}{4}A = \frac{1}{4} \begin{pmatrix} 1 & 3 & 3 & 3 \\ 3 & 1 & 3 & 3 \\ 3 & 3 & 1 & 3 \\ 3 & 3 & 3 & 1 \end{pmatrix}, \therefore |B| = \frac{10}{4^4} \begin{vmatrix} 1 & 3 & 3 & 3 \\ 1 & 1 & 3 & 3 \\ 1 & 3 & 1 & 3 \\ 1 & 3 & 3 & 1 \end{vmatrix} = -\frac{5}{16}.$$

三、(12分) 求下列向量组的一个最大线性无关组,并用它线性表出向量组中的其它向量.

$$\alpha_1 = (3,1,2,5), \alpha_2 = (1,1,1,2), \alpha_3 = (2,0,1,3), \alpha_4 = (1,-1,0,1), \alpha_5 = (4,2,3,7).$$

解
$$\alpha_1, \alpha_2$$
线性无关。又 $\alpha_3 = \alpha_1 - \alpha_2, \alpha_4 = \alpha_1 - 2\alpha_2, \alpha_5 = \alpha_1 + \alpha_2$

故 α_1, α_2 ,是向量组的一个最大无关组。

四、(10 分)设
$$A = \begin{bmatrix} a & b & c & x_1 \\ b & -a & d & x_2 \\ c & -d & -a & x_3 \\ d & c & -b & x_4 \end{bmatrix}$$
, a,b,c,d 是不全为 0 的实数,求 x_i $(i = 1,2,3,4)$ 及

数 k, 使 B = kA 为正交矩阵.

解 若 KA 为 正 交 矩 阵 , 则 它 的 行 向 量 成 正 交 向 量 组 , 由 此 有 $ab+b(-a)+cd+x_1x_2=0,cd+x_1x_2=0,$ 同理有 $-bd+x_1x_3=0,ad-x_1x_4=0$

取 $x_1 = d, x_2 = -c, x_3 = b, x_4 = -a$, 经验证: A的 4 个列向量两两正交, 且它们的模都是

$$\sqrt{a^2 + b^2 + c^2 + d^2} \, \mathbb{R} \, K = \frac{1}{\sqrt{a^2 + b^2 + c^2 + d^2}},$$

则
$$B = \frac{1}{\sqrt{a^2 + b^2 + c^2 + d^2}} \begin{bmatrix} a & b & c & d \\ b & -a & d & -c \\ c & -d & -a & b \\ d & c & -b & -a \end{bmatrix}$$
, 正交阵。

五、(12 分) 用正交变换化二次型 $f = x_1^2 + x_2^2 + 2x_3^2 - 2x_1x_2 + 4x_1x_3 + 4x_2x_3$ 为标准形,并写出所用正交变换及 f 的标准形。

$$\beta R = 2$$
, $\lambda_2 = -2$, $\lambda_3 = 4$

$$e_1 = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)^T$$
, $e_2 = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)^T$, $e_3 = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)^T$

在正交变换
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$
之下。

f 化成标准形: $2y_1^2 - 2y_2^2 + 4y_3^2$

六、(16 分) 讨论 a,b 为何值时,方程组 $\begin{cases} x+ay+a^2z=1\\ x+ay+abz=a \end{cases}$ 有唯一解?有无穷多解? 无 $bx+a^2y+a^2bz=a^2b$

解?并在有解时求出其解.

解 当
$$a(a-b) \neq 0$$
 时有唯一解: $x = \frac{a^2(b-1)}{b-a}, y = \frac{b(a^2-1)}{a(a-b)}, z = \frac{a-1}{a(b-a)}$

当a=0时,方程组无解.

当a=b≠1时方程组无解.

当
$$a=b=1$$
 时,方程组有解:
$$\begin{cases} x=1-y-z\\ y=y \qquad (y,z)$$
 为任意常数)
$$z=z$$

证明: 设 $\eta_1, \eta_2, \cdots, \eta_r$ 是 AX=0 的一个基础解系, 线性无关向量组 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 与它等价, 显然两向量组的向量个数相等.

① $\alpha_i(i=1,\cdots,r)$ 可由 $\eta_1,\eta_2,\cdots,\eta_r$ 线性表示,故 α_i 为AX=0的解;

- ② AX=0 的任一个解 β 可由 $\eta_1,\eta_2,\cdots,\eta_r$ 线性表示, 而 η_1,\cdots,η_r 与 α_1,\cdots,α_r 等价, 故 β 可由 α_1,\cdots,α_r 线性表示,
- ③ $\alpha_1, \dots, \alpha_r$ 线性无关, 故 $\alpha_1, \dots, \alpha_r$ 也是 AX = 0 的基础解系.

八、(10分)在 R^4 中,向量 α 在基:

$$\alpha_1 = (1,1,0,0), \alpha_2 = (0,1,1,0), \alpha_3 = (0,0,1,1), \alpha_4 = (0,0,0,1),$$
下的坐标为 $(2,3,1,2)$; 求 α 在基: $\beta_1 = (1,2,0,0), \beta_2 = (0,2,3,0), \beta_3 = (0,0,2,4), \beta_4 = (3,0,0,2)$ 下的坐标.

$$\widetilde{\mathbf{M}} \quad \alpha = 2\alpha_1 + 3\alpha_2 + \alpha_3 + 2\alpha_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 4 \\ 3 \end{pmatrix}$$

设
$$\alpha = x_1 \beta_1 + \dots + x_4 \beta_4$$
,得
$$\begin{pmatrix} 1 & 0 & 0 & 3 \\ 2 & 2 & 0 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 4 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 4 \\ 3 \end{pmatrix},$$

它有唯一解: $(x_1, x_2, x_3, x_4) = (\frac{13}{8}, \frac{7}{8}, \frac{11}{16}, \frac{1}{8}).$

故 α 在基 β_1,\dots,β_4 下的坐标为: $(\frac{13}{8},\frac{7}{8},\frac{11}{16},\frac{1}{8})$

九、(10 分) 设
$$\alpha = (a_1, a_2, a_3)^T$$
, $\beta = (b_1, b_2, b_3)^T$, 且 $\alpha^T \beta = 2$, $A = \alpha \beta^T$,

- (1) 求A的特征值,
- (2) 求可逆阵P及对角阵 Λ , 使 $P^{-1}AP = \Lambda$.

解 设
$$\alpha^T \beta = a_1 b_1 + a_2 b_2 + a_3 b_3 = 2 \neq 0$$
, 故不妨设 $a_1 b_1 \neq 0$, 因此 $r(A) = 1$ 故 $\lambda_1 = \lambda_2 = 0$ 是 A 的两个特征值,又 $0 + 0 + \lambda_3 = a_1 b_1 + a_2 b_2 + a_3 b_3 = 2$

所以 $\lambda_3 = 2$,对应于 $\lambda_1 = \lambda_2 = 0$ 的特征向量是方程 $x_1b_1 + x_2b_2 + x_3b_3 = 0$ 的基础解系为: $\xi_1 = (b_2, -b_1, 0)^T$, $\xi_2 = (b_3, 0, -b_1)^T$,又 $A\alpha = (\alpha\beta^T)\alpha = \alpha(\beta^T\alpha) = 2\alpha$, $\xi_3 = \alpha$

于是
$$P = (\xi_1, \xi_2, \xi_3), \Lambda = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$