Отчет о выполнении лабораторной работы 2.2.1 Исследование взаимной диффузии газов.

Исламов Сардор, группа Б02-111

19 апреля 2022 г.

Аннотация. В ходе выполнения данной работы определена зависмость разности концентраций гелия и воздухе в сосуде от времени. По результатам измерений определен коэффицент взаимной диффузии газов.

Теоретическое введение

Рассмотрим процесс выравнивания концентрации. Пусть концентрации одного из компонентов смеси в сосудах V_1 и V_2 равны n_1 и n_2 . Плотность диффузионного потока любого компонента (т. е. количество вещества, проходящее в единицу времени через единичную поверхность) определяется законом Фика:

$$j = -D\frac{\partial n}{\partial x},$$

где D — коэффициент взаимной диффузии газов, а j - плотность потока частиц.

В нашем случае ввиду того что, а) объем соединительной трубки мал по сравнению с объемами сосудов, б) концентрацию газов внутри каждого сосуда можно считать постоянной по всему объему. Диффузионный поток в любом сечении трубки одинаков. Поэтому,

$$J = -DS \frac{n_1 - n_2}{l}.$$

Обозначим через Δn_1 и Δn_2 изменения концентрации в объемах V_1 и V_2 за время Δt . Тогда $V_1\Delta n_1$ равно изменению количества компонента в объеме V_1 , а $V_2\Delta n_2$ — изменению количества этого компонента в V_2 . Из закона сохранения вещества следует, что $V_1n_1+V_2n_2=const$, откуда $V_1\Delta n_1=-V_2\Delta n_2$. Эти изменения происходят вследствие диффузии, поэтому:

$$V_1 \Delta n_1 = -V_2 \Delta n_2.$$

C другой стороны $V_1\Delta n_1=J\Delta t$ и $V_1\frac{dn_1}{dt}=-DS\frac{n_1-n_2}{l}$. Аналогично $V_2\frac{dn_2}{dt}=DS\frac{n_1-n_2}{l}$ Тогда

$$\frac{d(n_1 - n_2)}{dt} = -\frac{n_1 - n_2}{l} \frac{V_1 + V_2}{V_1 V_2}.$$

Проинтегрируем и получим, что

$$n_1 - n_2 = (n_1 - n_2)_0 e^{-t/\tau},$$

где $(n_1 - n_2)_0$ — разность концентраций в начальный момент времени,

$$\tau = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{SD} \tag{1}$$

Для измерения концентраций в данной установке применяются датчики теплопроводности $Д_1$, $Д_2$ (см. рис. 1) используется зависимость теплопроводности газовой смеси от ее состава. Для измерения разности концентраций газов используется мостовая схема (рис. 1). Здесь $Д_1$ и $Д_2$ — датчики теплопроводности, расположенные в сосудах V_1 и V_2 . Сопротивления R_1, R_2 и R служат для установки прибора на нуль (балансировка моста). В одну из диагоналей моста включен гальванометр, к другой подключается небольшое постоянное напряжение. Мост балансируется при заполнении сосудов (и датчиков) одной и той же смесью.

При незначительном различии в составах смесей показания гальванометра, подсоединённого к диагонали моста, будут пропорциональны разности концентраций примеси. В процессе диффузии разность концентраций убывает по экспоненте, и значит по тому же закону изменяются во времени показания гальванометра

$$U = U_0 \exp(-t/\tau) \tag{2}$$

Эксперементальная установка

Рис. 1: Схема установки

Схема установки изображена на рис. 1. Там же показана схема электрических соединений и конструкция многоходового крана K_6

Установка состоит из двух сосудов V_1 и V_2 соединенных краном K_3 , форвакуумного насоса Ф.Н. с выключателем Т, манометра M и системы напуска гелия, включающей в себя краны K_6 и K_7 . Кран K_5 позволяет соединять форвакуумный насос либо с установкой, либо с атмосферой. Между форвакуумным насосом и краном K_5 вставлен предохранительный баллон П.Б., защищающий кран K_5 и установку при неправильной эксплуатации ее от попадания форвакуумного масла из насоса Ф.Н. Сосуды V_1 и V_2 и порознь и вместе можно соединять как с системой напуска гелия, так и с форвакуумным насосом. Для этого служат краны K_1 , K_2 , K_4 и K_5 . Манометр M регистрирует давление газа, до которого заполняют тот или другой сосуды.

Для сохранения гелия, а также для уменьшения неконтролированного попадания гелия в установку (по протечкам в кране K_6) между трубопроводом подачи гелия и краном K_6 поставлен металлический кран K_7 . Его открывают только на время непосредственного заполнения установки гелием. Все остальное время он закрыт.

В силу того, что в сосуд требуется подавать малое давление гелия, между кранами K_7 и K_4 стоит кран K_6 , снабженный дозатором. Дозатор - это маленький объем, который заполняют до давления гелия в трубопроводе, а затем уже эту порцию гелия с помощью крана K_6 впускают в установку.

Описание схемы электрического соединения. \mathcal{A}_1 и \mathcal{A}_2 — сопротивления проволок датчиков парциального давления, которые составляют одно плечо моста. Второе плечо моста составляют сопротивления r_1 , R_1 и r_2 , R_2 . $r_1 \ll R_1$, $r_2 \ll R_2$, R_1 и R_2 спаренные, их подвижные контакты находятся на общей оси. Оба они исполь- зуются для грубой регулировки моста. Точная балансировка моста выполняется потенциометром R. Последовательно с гальванометром Γ , стоящим в диагонали моста, поставлен магазин сопротивлений MR. Когда мост балансируют, магазин сопротивлений выводят на ноль. В процессе же составления рабочей смеси в сосудах V_1 и V_2 мост разбалансирован. Чтобы не сжечь при этом гальванометр, магазин MR ставят на максимальное сопротивление.

Ход работы

1. Включим питание электрической схемы установки рубильником B. Откроем краны K_1, K_2, K_3 . Перепишем параметры установки:

$$V_1 = V_2 = V = 800 \pm 5 \text{ cm}^3, \ \frac{L}{S} = 15.0 \pm 0.1 \text{ cm}^{-1}$$

- 2. Очистим установку от всех газов, откачав установку до давления ≈ 0.1 торр.
- 3. Напустим в установку воздух до рабочего давления и сбалансируем мост.
- 4. Снова очистим установку и заполним её рабочей смесью: в сосуде V_2 должен быть воздух $(P \approx 1.75 P_{\Sigma})$, а в сосуде V_1 гелий $(P \approx 0.2 P_{\Sigma})$.
- 5. Проведём измерения и повторим процедуру для нескольких рабочих давлений в диапазоне 40–300 торр. Данные записаны в таблице 1.
- 6. Построим графики по полученным значениям (рис. 2) и найдем коэффиценты наклона по МНК:

$$k_1 = (2187 \pm 2) \cdot 10^{-6} c^{-1}, \ k_2 = (893 \pm 2) \cdot 10^{-6} c^{-1}, \ k_3 = (358 \pm 3) \cdot 10^{-6} c^{-1}.$$

7. Теперь расчитаем коэффициенты взаимной диффузии и построим график зависимости $D(\frac{1}{P})$ (рис. 3).

Из (1) и (2) следует $D = k \frac{VL}{2S}$:

$$D_1 = 13.12 \pm 0.12 \ \frac{\text{cm}^2}{c}, D_2 = 5.36 \pm 0.05 \ \frac{\text{cm}^2}{c}, D_3 = 2.15 \pm 0.03 \ \frac{\text{cm}^2}{c}$$

Отложив расчитанные точки на графике по МНК получаем коэффицент наклона $k=529\pm6~\frac{\rm cm^2\cdot ropp}{c}=7.05\pm0.08~\frac{\rm kr\cdot m}{c^3}\Rightarrow D=0.71\pm0.01~\frac{\rm cm^2}{c}~(\varepsilon=2\%).$ При этом табличное значение составляет $D=0.62~\frac{\rm cm^2}{c}.$

Р, торр								
40.00			103.60			253.60		
t, c	U, мВ	$\ln \frac{U}{U_0}$	t, c	U, мВ	$\ln \frac{U}{U_0}$	t, c	U, мВ	$\ln \frac{U}{U_0}$
0	13.8	0.0	0	14.12	0.0	0	14.5	0.0
10	13.5	0.02	20	13.88	0.02	60	14.1	0.03
20	13.21	0.04	40	13.62	0.04	120	13.73	0.05
30	12.93	0.07	60	13.37	0.05	180	13.39	0.08
40	12.62	0.09	80	13.12	0.07	240	13.08	0.1
50	12.35	0.11	100	12.88	0.09	300	12.78	0.13
60	12.09	0.13	120	12.65	0.11	360	12.51	0.15
70	11.83	0.15	140	12.42	0.13	420	12.25	0.17
80	11.56	0.18	160	12.2	0.15	480	11.98	0.19
90	11.31	0.2	180	11.98	0.16	540	11.73	0.21
100	11.07	0.22	200	11.77	0.18	600	11.49	0.23
110	10.82	0.24	220	11.6	0.2	660	11.26	0.25
120	10.59	0.26	240	11.36	0.22	720	11.03	0.27
130	10.37	0.29	260	11.15	0.24	780	10.82	0.29
140	10.16	0.31	280	10.98	0.25	840	10.6	0.31
150	9.92	0.33	300	10.77	0.27	900	10.39	0.33
160	9.7	0.35	320	10.58	0.29	960	10.19	0.35
170	9.5	0.37	340	10.4	0.31	1020	9.99	0.37
180	9.3	0.39	360	10.23	0.32	1080	9.82	0.39
190	9.11	0.42	380	10.04	0.34	1140	9.63	0.41
200	8.92	0.44	400	9.87	0.36	1200	9.46	0.43
210	8.73	0.46	420	9.71	0.37	1260	9.27	0.45
220	8.53	0.48	440	9.54	0.39	1320	9.1	0.47
230	8.35	0.5	460	9.38	0.41	1380	8.93	0.48
240	8.17	0.52	480	9.23	0.43	1440	8.78	0.5
250	8.01	0.54	500	9.07	0.44	1500	8.62	0.52
260	7.84	0.57	520	8.9	0.46	1560	8.45	0.54
270	7.65	0.59	540	8.78	0.48	1620	8.3	0.56

Таблица 1: Показания, снятые с установки

221. 19.04.22 Cl

Рис. 2: Графики зависимости $\ln \frac{U}{U_0}$ от времени

Рис. 3: График зависимости $D(\frac{1}{P})$

8. Теперь расчитаем длину свободного пробега атомов гелия в воздухе:

$$\lambda_{He} = 3D\sqrt{\frac{\pi\mu}{8RT}} = (1.71 \pm 0.02) \cdot 10^{-7} \text{ м } (\varepsilon = 2\%) \text{ для } T = 300K.$$

И среднее сечение столкновения частиц гелия с воздухом:

$$\sigma_{He-{
m Bo}{
m 3}{
m Д}} = rac{1}{\lambda_{He}n_{\Sigma}} = rac{k_{
m B}T}{\lambda_{He}P} = (4.84 \pm 0.04) \cdot 10^{-19}{
m M}^2 \; (arepsilon = 2\%).$$

Вывод

В ходе выполнения данной работы определена зависимость разности концентрации частиц гелия и воздуха в смеси от времени, по полученным результатам расчитаны коэффициенты взаимной диффузии воздуха и гелия при разных давлениях. После определения зависимости между полученными коэффицентами и давлением получен коэффицент взаимной диффузии гелия и воздуха при атмосферном давлении для используемой установки $D=0.71\pm0.01~\frac{\text{см}^2}{c}~(\varepsilon=2\%)$. Табличное значение составляет $D=0.62~\frac{\text{см}^2}{c}$. Также при комнатной температуре T=300K расчитаны длина свободного пробега атомов гелия в воздухе $\lambda_{He}=(1.71\pm0.02)\cdot10^{-7}$ м ($\varepsilon=2\%$) и среднее сечение столкновения частиц гелия с воздухом $\sigma_{He-\text{возд}}=(4.84\pm0.04)\cdot10^{-19}\text{m}^2~(\varepsilon=2\%)$.