Classifying COVID-19 Chest X-Rays Using Custom CNNs and Automatic Machine Learning

AZUSA PACIFIC UNIVERSITY

Joshua Stapleton

DEPARTMENT OF ENGINEERING & COMPUTER SCIENCE - 29th April 2020

Project Goals

- Two-pronged approach
 - Automatic data import from online
 - CNNs (90% accuracy)
 - AutoML (?% accuracy)

Best Solution Summary

- Google Cloud's AutoML.
 - Online data pipeline (761 positive and negative images)
 - Jupyter Notebook Development Environment for pre-processing.
 - Tensorflow, Keras, Numpy, Pillows, Tensorboard, BeautifulSoup, and many more!

Results of Best Solution

- 100% accuracy.
 - 4 hours of training.
 - Online deployment.
 - ► F1 score of 100% (with 100% precision and

100% recall.)

All labels

685
76
100%
100%

	Predicted Lak	pel .~	John load C
True Label	Predict 4	ORMAL	JOHNIOC
NORMAL	100%	-	
Download_Covid	•	100%	

Results of CNN

non-covid

covid non-covid

covid

1.02 0.98 0.94 0.99 0.86

0 5 10 15 20 25 30 35 40 45 50

CNN structure

How The Results Compare...

- Kumar et al: Accurate Prediction of COVID-19 using Chest X-Ray Images through Deep Feature Learning model with SMOTE and Machine Learning Classifiers. https://www.medrxiv.org/content/10.1101/2020.04.13.20063461v1
 ~ 97.7% (XGBoost) 5840 Images.
- Narin et al: Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images and Deep Convolutional Neural Networks. https://arxiv.org/pdf/2003.10849.pdf
 - ~ 98.0% (ResNet50) 50 images.
- Minaee et al: Deep-COVID: Predicting COVID-19 From Chest X-Ray Images Using Deep Transfer Learning.
 <u>https://www.researchgate.net/publication/340806168_Deep-COVID_Predicting_COVID-19_From_Chest_X-Ray_Images_Using_Deep_Transfer_Learning</u>
 - ~ 97.0% (DenseNet-121) 5,000 Images.
- Our results are very similar, (if not better) considering data-set size.

Prominent Tweaks / Ingenuities...

- Simple is better
 - 2 levels of approach (first custom, then auto)
 - Tensorboard (50% accuracy increase + 100x faster)
 - Data standardization (image scaling)
 - Online data pipeline.
 - All feeding into Auto.

Other Solutions Attempted / Challenges

AlexNet

- Terrible Accuracy. (~40-50%)
- Very long training time. (~12 hours)
- SciKit Learn
 - No available CNNs (tried Random Forests, Extra Trees Classifiers, SVMs.)
 - Decent accuracy, but difficult to customize. (60-70%)
- Tensorboard
 - Creating logs directory
 - Fails sometimes (memory error, runtime error)

"Hypothetical" Future Plan

- Data data data!
 - Higher diversity of images.
 - Stricter testing (model confidence.)
- Potential deployment
 - "Real world testing" (optimized for hospital use.)
 - Multi-Machine model deployment (works across many platforms.)
 - Downloading from cloud

(Many) Main Lessons Learned

- Always an easier way to do something.
- You don't always have to know what is going on.
- Data. Is. Everything.
- 90% of the work is debugging.
- Does not have to be perfect, just start
- Patience because the code might fail you