Селіверстов Р. Г.

КОМП'ЮТЕРНІ МЕРЕЖІ

Лекція 2

СТАНДАРТИ КОМП'ЮТЕРНИХ МЕРЕЖ

Організації, які розробляють стандарти

- ISO (International Standards Organization) комплексні стандарти
- IEEE (Institute of Electrical and Electronics Engineers) обладнання
- IAB (Internet Architecture Board) протоколи Інтернет
- W3C (World Wide Web Consortium) HTML, XML, CSS, ...
- ANSI (American National Standards Institute) національний стандарт США

Стандарти IEEE

IEEE 802.3 — Ethernet

IEEE 802.11 — Wi-Fi

IEEE 802.15 — BlueTooth

IEEE 802.16 — WiMax (зараз практично не використовується)

Різноманітність обладнання і ПЗ

Надійність

Масштабованість

Розподіл ресурсів

Якість обслуговування

Безпека

Декомпозиція

Багаторівневий підхід

Сервіс - що робить рівень

Протокол — як він це робить (формалізовані правила обміну повідомленнями між мережевими компонентами одного рівня різних вузлів)

Інтерфейс — набір операцій для доступу до сервісу нижнього рівня

Складові протоколу

Протокол - набір правил, які описують формат і порядок повідомлень - блоків даних (**Protocol Data Unit, PDU**)

- **Синтаксис** протоколу визначає розміри полів протокольних блоків (скільки бітів/байт під що відведено).
- **Семантика** протоколу надає цим полям значення (що означають біти).
- **Синхронізація** визначає швидкість передавання даних у бітах за секунду.

Модель взаємодії відкритих систем

Модель OSI (Open System Interconnection)

На початку 1980-х визначила рівні, дала їм стандартні назви та визначила функції кожного рівня

Еталонна теоретична модель. На практиці не використовується, але добре описує логіку роботи мереж

Інкапсуляція

Блоки даних

Загальна назва:

Протокольний блок даних (Protocol Data Unit, PDU)

Спеціальні назви (на певних рівнях):

повідомлення (message) - прикладний сегмент (segment) - транспортний пакет (packet) - мережевий кадр (frame) - канальний біт (bit) - фізичний

Прикладний рівень (Application Layer)

Функція: підтримка мережевих додатків, надання доступу до загальних (shared) ресурсів - файлів, принтерів, Web-сторінок тощо

Приклади протоколів:

SMTP (Simple Mail Transfer Protocol)

FTP (File Transfer Protocol)

DNS (Domain Name System)

HTTP (HyperText Transfer Protocol)

Представницький рівень (Presentation Layer)

Функція: узгодження формату даних, які передаються

- кодування
- стискання
- шифрування-дешифрування

Приклади протоколів: Secure Socket Layer (SSL), XML, FTP

Сеансовий рівень (Session Layer)

Функція: контроль за сеансом і його відновлення в разі розриву на основі синхронізації (контрольних точок), щоб у разі відмови не починати все спочатку

Транспортний рівень (Transport Layer)

Функція: забезпечення якісної передачі повідомлень прикладного рівня між додатками (процесами)

Реалізація: кінцевими вузлами (ізоляція від мережевого обладнання)

Приклади протоколів:

TCP (Transmission Control Protocol)
UDP (User Datagram Protocol)

Найпопулярніший сервіс: захищений від помилок канал з гарантованим порядком надходження повідомлень

Мережевий рівень (Network Layer)

Функції:

- об'єднання мереж
- мережева адресація
- маршрутизація

Протоколи:

- мережеві (routed protocols) реалізують рух пакетів (IP)
- маршрутизації (routing protocols) збирають інформацію про міжмережеві з'єднання
- визначення адрес (Address
 Resolution Protocol) MAC↔IP

Мережа - сукупність вузлів, мережева адреса яких містить однаковий номер мережі

Канальний рівень (Data Link Layer)

Блоки даних групуються в **кадри** (спеціальна послідовність бітів на початку та в кінці кожного кадру + контрольна сума)

Функції:

- фізична адресація та перевірка доступності середовища передавання (у широкомовних мережах);
- передавання кадрів наступному вузлу;
- забезпечення коректності передавання кожного кадру (виявлення і корекція помилок (або повторне передавання кадру))

Фізичний рівень (Physical Layer)

Функція: передавання окремих бітів кадру по каналам зв'язку, не вникаючи в зміст інформації, яка передається

Завдання: як перетворити біти в сигнали

Реалізація: усіма пристроями, підключеними до мережі. Зі сторони ПК реалізуються мережевим адаптером

Приклад протоколу:

10-Base-T Ethernet: неекранована скручена пара 3-ої категорії з хвильовим опором 100 Ом, розняття RJ-45, максимальна довжина фізичного сегменту 100 м, манчестерський код і т. д.

Модель OSI не визначає протоколи, лише рівні

Стек протоколів — ієрархічно організований набір протоколів, достатній для організації взаємодії вузлів в мережі

ТСР/ІР - стандарт де-факто

Стек ТСР/ІР: загальні відомості

- розроблений за ініціативи Міністерства оборони США (1969 р.)
- реалізований університетом Берклі для ОС UNIX
- на TCP/IP працює Internet (стандарт описаний в RFC)
- підтримує усі популярні стандарти фізичного і канального рівнів
- ІР (мережевий рівень) просування пакетів складеною мережею
- ТСР (транспортний рівень) надійність доставки пакетів
- увібрав протоколи прикладного рівня (FTP, telnet, SMTP, ...)

OSI							TCP/IP
7							
6	www	SNMP	FTP	telnet	SMTP	TFTP	I
5							
	ТСР			UDP			
4		ТСР			UDP		II
3	IP	TCP ICMP	RIP	OSPF		RP	III
	IP	ICMP	RIP зень мереже		Al	RP	

Рівень міжмережевої взаємодії TCP/IP (III)

IP (internet Protocol) - основний протокол

RIP (Routing Internet Protocol) і OSPF (Open Shortest Path First) - протоколи збирання маршрутної інформації (упорядковують і модифікують таблиці маршрутизації)

ICMP (Internet Control Message Protocol) - протокол міжмережевих керуючих повідомлень (між маршрутизатором і станцією)

Основний рівень TCP/IP (II)

TCP (Transmission Control Protocol) - протокол керування передаванням, забезпечує надійну передачу повідомлень між віддаленими прикладними процесами з допомогою створення віртуальних сполучень

UDP (User Datagram Protocol) - швидка, але ненадійна доставка

ТСР: основні особливості

- Встановлюється з'єднання
- Дані передаються сегментами. Модуль ТСР "нарізає" повідомлення на пакети, кожен з яких передається окремо, а на приймачі пакети збираються в повідомлення. Для цього використовується порядковий номер пакета
- Надсилається запит на наступний пакет з його номером, тим самим підтверджується отримання попереднього пакету
- Перевіряється цілісність даних, якщо пакет «битий» надсилається повторний запит

Стек ТСР/ІР: чому досі лідер?

- Найбільш завершений популярний стек мережевих протоколів з багаторічною історією
- Майже всі великі мережі передають основну частину свого трафіку з допомогою протоколу TCP/IP
- Це метод отримання доступу до Internet
- На ньому ґрунтується intranet (приватна мережа організації)
- Підтримується усіма сучасними операційними системами
- Це гнучка технологія для сполучення різнорідних систем як на рівні транспортних підсистем, так і на рівні прикладних сервісів (міжплатформенне середовище для клієнт-серверних додатків)