Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2018 EE3CO06/EX3CO06 Signals & Systems

Programme: B.Tech.

Branch/Specialisation: EE/EX

Duration: 3 Hrs.

Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCOs) should be written in full instead of only a, b, c or d.

Q.1	i.	For a signal $x(t)$ δ (t–t _o), the value of integral $\int_{-\infty}^{+\infty} x(t) \delta$ (t–t _o) is :			1	
		(a) 0	(b) $x(t_0)$	(c) $x(t-t_0)$	(d) δ (t)	
	ii.	The signum	function sgn(t) can be written	as:	1
		(a) $u(t) - 1$	(b) $1 - u(t)$	(c) $2u(t) - 1$	(d) u(t)+u(-t)	
	iii.	The Fourier	r transform of u	ınit impulse sign	al δ (t) is:	1
		(a) 1	(b) 0	(c) o	(d) 1/ o	
	iv.	The trigono	metric Fourier	series of an odd	signal will consist of:	1
		(a) Cosine t	erms only	(b) Sine term	as only	
		(c) Both sir	ne & cosine ter	ms (d) None of t	hese	
	v.	The input o	utput relations	hip for a system	is given by $y(t)=x^2(t)$ is:	1
		(a) Linear t	ime invariant s	ystem		
		(b) Non-lin	ear time varian	it system		
		(c) Linear t	ime variant sys	stem		
		(d) Non-lin	ear time invari	ant system		
	vi.	If the impu	lse response of	a system is h(t),	for any arbitrary input	1
		x(t),the our	tput y(t) will	be: (×, * deno	otes multiplication &	
		convolution	respectively)			
		(a) $x(t) * h(t)$	$) (b) x(t) \times h($	(t) (c) δ (t)×h(t)	(d) $x(t) \times \delta(t)$	
	vii.	The system of	lescribed by eq	[uation y[n]= n x	[n] is:	1
		(a) Linear tir	ne varying & s	table		
		(b) Non-line	ar time varying	& unstable		
		(c) Non-linea	ar time varying	& stable		
		(d) Linear tir	ne varying & u	ınstable		
	viii.	The unit step	p response of	an LTI system v	vith impulse response	1
		$h[n] = \delta[n] -$	δ [n–1] is:			
		(a) δ [n–1]	(b) δ [n]	(c) u[n-1]	(d) u[n]	

	ix.	While mapping from s-plane to z-plane, imaginary axis in s-plane correspond to: (a) A circle of unit radius in z-plane. (b) Interior to circle of unit radius in z-plane. (c) Exterior to circle of unit radius in z-plane. (d) None of these		
	х.	If '*' denotes convolution of discrete time sequence & y[n]=		
		$x_1[n] * x_2[n]$ then Z-transform of $y[n]$ will be:		
		(a) $Y(z) = X_1(z) \times X_2(z)$ (b) $Y(z) = X_1(z) + X_2(z)$ (c) $Y(z) = X_1(z) - X_2(z)$ (d) $Y(z) = X_2(z) - X_1(z)$		
		(c) $\Gamma(Z) = \Lambda_1(Z) = \Lambda_2(Z)$ (d) $\Gamma(Z) = \Lambda_2(Z) = \Lambda_1(Z)$		
Q.2	i.	Explain graphically:		
		(a) Unit step signal (b) Ramp signal (c) Impulse signal		
	ii.	Plot the following signal graphically and determine energy and	,	
		power in each case:		
		(a) $x_1(t) = [(t-1)u(t-1)] - [(t-2)u(t-2)] - [(t-3)u(t-3)] + [(t-4)u(t-4)]$ (b) $x_2(t) = u(t-2) - u(t-4)$		
OR	iii.	(a) For given signal $x(t) = 2u(t) + 2u(t-1) - 4u(t-2)$		
		Perform following operations and plot graphically:		
		I. $x(t-2)$ II. $2x(t)$ III. $x(2t)$ IV. $x(-t)$		
		(b) Determine periodicity for following signals: I. $x_1(t) = 2 + \cos(\pi t)$ II. $x_2(t) = \sin^2(2\pi t)$		
		1. $x_1(t) = 2 + \cos(\pi t)$ 11. $x_2(t) = \sin(2\pi t)$		
Q.3	i.	List any two Dirichlet condition for existence of Fourier series?		
	ii.	Define sampling and Nyquist sampling theorem? Determine		
		Nyquist rate corresponding to following signals:		
		(a) $x(t) = \sin(200\pi t)$ (b) $x(t) = \sin(100\pi t)\cos(150\pi t)$		
		(c) $x(t) = \sin(100\pi t) + \cos(150\pi t)$		
		(d) $x(t) = \cos^3(200\pi t)$		
OR	iii.	What is the condition of R.O.C in Laplace transform for a L.T.I		
		system to be stable & causal? Give one example of each.		
		For following system function determine inverse Laplace		
		transform & check whether system is causal & stable? (σ denotes R.O.C.)		
		(a) $H_1(s) = \frac{1}{s^2 - s - 6} \sigma > 3$ (b) $H_2(s) = \frac{1}{s^2 - s - 6} -2 > \sigma > 3$		
		$s^2 - s - 6$ $s^2 - s - 6$		

Q.4	i.	Discuss continuous time system properties (any two) with example?	4
	ii.	Graphically evaluate convolution of following signals? $x_1(t) = u(t-2) - u(t-4)$ $x_2(t) = u(t-3) - u(t-5)$	6
OR	iii.	Determine output y(t) for given differential equation with x(t) as input: $ (D^2 + 3D + 2) \ y(t) = D \ x(t) $ Input x (t) =t ² +5t+3. Initial conditions are y(0 ⁺)=2 $\frac{dy}{dt}$ (0 ⁺)=3	6
Q.5		Attempt any two:	
	i.	Discuss classification of discrete time system with example for	5
	ii.	(a) Linear & non-linear system (b) Causal & non-causal system Determine closed form solution of unit impulse response h[n] for	5
	11.	system given by: $(x[n],y[n])$ are input & output respectively)	J
		y[n] - 0.6y[n-1] - 0.16y[n-2] = 5x[n]	
	iii.	Define convolution for discrete time signal. Perform convolution graphically for $y[n] = u[n] * u[n]$?	5
Q.6	i.	Define Z-transform for discrete time signal? List any three properties of Z-transform?	4
	ii.	A causal discrete time LTI system is given by	6
		$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = x[n]$	
		where x[n] & y[n] are input & output respectively.	
		(a) Determine impulse response h[n] by Z-transform method?	
OD		(b) Determine step response s[n] by Z-transform method?	
OR	iii.	Determine the inverse Z-transform of	6
		$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$	
		(a)R.O.C $ z > 1$ (b) R.O.C $ z < 0.5$ (c) R.O.C $ z < 1$	

Marking Scheme EE3CO06/EX3CO06 Signals & Systems

Q.1	i.	For a signal $x(t)$ δ (t–t _o), the value of integral $\int_{-\infty}^{+\infty} x(t) \delta$ (t–t _o) is:	1
	ii.	(b) x(t _o) The signum function sgn(t) can be written as: (c) 2u(t)-1	1
	iii.	The Fourier transform of unit impulse signal δ (t) is: (a) 1	1
	iv.	The trigonometric Fourier series of an odd signal will consist of: (b) Sine terms only	1
	v.	The input output relationship for a system is given by $y(t)=x^2(t)$ is: (d) Non-linear time invariant system	1
	vi.	If the impulse response of a system is $h(t)$, for any arbitrary input $x(t)$, the output $y(t)$ will be: (x ;* denotes multiplication & convolution respectively) (a) $x(t) * h(t)$	1
	vii.	The system described by equation y[n]= n x[n] is: (d)Linear time varying & unstable	1
	viii.	The unit step response of an LTI system with impulse response $h[n] = \delta [n] - \delta [n-1]$ is: (b) $\delta [n]$	1
	ix.	While mapping from s-plane to z-plane, imaginary axis in s-plane correspond to: (a) A circle of unit radius in z-plane.	1
	х.	If '*' denotes convolution of discrete time sequence & $y[n] = x_1[n] * x_2[n]$ then Z-transform of $y[n]$ will be (a) $Y(z) = X_1(z) \times X_2(z)$	1

Q.2	i.	One marks for each part (a), (b), (c).	(1 mark * 3)	3
	ii.	(a) Signal plotting	1.5 mark	7
		Energy power calculation	2 marks	
		(b) Signal plotting	1.5 mark	
		Energy power calculation	2 marks	
OR	iii.	(a)		7
		(i) Plotting $x(t-2)$	1 mark	
		(ii) Plotting 2x(t)	1 mark	
		(iii) Plotting x(2t)	1 mark	
		(iv) Plotting $x(-t)$	1 mark	
		(b)		
		(i) Time-period calculation	1.5 mark	
		(ii) Time-period calculation	1.5 mark	
Q.3	i.	Two Dirichlet condition 1 mark each	1 mark * 2)	2
	ii.	Sampling definition	1 mark	8
		Nyquist sampling theorem	1 mark	
		Nyquist rate 1.5 marks each (1.5 mark * 4)	6 marks	
OR	iii.	Stability condition	1 mark	8
		Example	0.5 mark .	
		Causality condition	1 mark	
		Example	0.5 mark.	
		Inverse Laplace transform 1.5 marks each (1.5 *2)	3 marks	
		Checking stability & causality condition for given	R.O.C	
		1 mark for each (1 mark * 2)	2 marks	
Q.4	i.	Two continuous time system properties	2 marks	4
		Example for each property	2 marks	
	ii.	Graphical plotting & shifting signals	2 marks	6
		Performing integration over time limits	4 marks	

OR	iii.	Natural response calculation Forced response calculation	2 marks 4 marks	6
Q.5		Attempt any two:		
	i.	(a) Linear & non linear system definition and exam	ple	5
			2.5 marks	
		(b) Causal & non-causal system definition and example (b) Causal & non-causal system definition and example (c)	mple	
			2.5 marks	
	i.	Roots of characteristic polynomial	2 marks	5
		Determination of unknown coefficients	3 marks	
	iii.	Convolution definition for discrete time	1 mark	5
		Graphical plotting & shifting signals	1.5 marks	
		Performing sum over time limits	2.5 marks	
Q.6	i.	Z-transform	1 mark	4
		Properties of Z-transform (any 3) (1 mark * 3)	3 marks	
	ii.	(a) Impulse response h[n] by Z-transform method:	3 marks	6
		(b) Step response s[n] by Z-transform method:	3 marks	
OR	iii.	Inverse Z-transform	3 marks	6
		x[n] for given R.O.C 1 mark each (1 mark * 3)	3 marks	