Lab 3: Data Preparation

CPE232 Data Models

√ [1] Reviews on Pandas

```
1.1) Discover
```

• methods to explore and understand your DataFrame

```
import pandas as pd
df = pd.read csv('nss15.csv')
# see the shape of the dataframe
print(df.shape)
→ (334839, 12)
# seeing the summary of the dataframe
print(df.info())
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 334839 entries, 0 to 334838
    Data columns (total 12 columns):
     # Column
                   Non-Null Count
         caseNumber 334839 non-null int64
         treatmentDate 334839 non-null object
         statWeight 334839 non-null float6d stratum 334839 non-null object
                        334839 non-null int64
         age
         sex
                       334837 non-null object
                        205014 non-null object
         race
         diagnosis
                       334839 non-null int64
         bodyPart
                        334839 non-null int64
         disposition 334839 non-null int64
     10 location
                        334839 non-null int64
     11 product
                        334839 non-null int64
    dtypes: float64(1), int64(7), object(4)
    memory usage: 30.7+ MB
# seeing the stats of the column in dataframe
print(df.describe())
```

_		caseNumber	statWeight	age	diagnosis	\
	count	3.348390e+05	334839.000000	334839.000000	334839.000000	
	mean	1.510271e+08	39.343028	31.385451	60.154591	
	std	1.720330e+06	34.142933	26.105098	6.170699	
	min	1.501032e+08	4.965500	0.000000	41.000000	
	25%	1.504405e+08	15.059100	10.000000	57.000000	
	50%	1.507358e+08	15.776200	23.000000	59.000000	
	75%	1.510231e+08	74.881300	51.000000	64.000000	
	max	1.603418e+08	97.923900	107.000000	74.000000	
		bodyPart	disposition	location	product	
	count	334839.000000	334839.000000	334839.000000	334839.000000	
	mean	64.374192	1.307930	2.485451	2098.900854	
	std	24.002331	0.977627	3.217617	1332.222670	
	min	0.000000	1.000000	0.000000	106.000000	
	25%	35.000000	1.000000	0.000000	1211.000000	
	50%	75.000000	1.000000	1.000000	1807.000000	
	75%	82.000000	1.000000	5.000000	3265.000000	
	max	94.000000	9.000000	9.000000	5555.000000	

seeing the first 5 rows of the dataframe
print(df.head())

		caseNumber	treatmentDate	statWeight	stratum	age	sex	race	\
	0	150733174	7/11/2015	15.7762	V	5	Male	NaN	
	1	150734723	7/6/2015	83.2157	S	36	Male	White	
	2	150817487	8/2/2015	74.8813	L	20	Female	NaN	
	3	150717776	6/26/2015	15.7762	V	61	Male	NaN	
	4	150721694	7/4/2015	7/ 8813	1	22	Female	Other	

```
diagnosis bodyPart disposition location product
0
          57
                    33
          57
2
          71
                    94
                                  1
                                            0
                                                   3274
          71
                    35
                                            0
3
                                  1
                                                   611
                                                   1893
          62
```

seeing the last 5 rows of the dataframe
print(df.tail())

```
caseNumber treatmentDate statWeight stratum
₹
                                                          age
                                                                   sex
                                                                         race
    334834
             150739278
                            5/31/2015
                                         15.0591
                                                            7
                                                                  Male
                                                                          NaN
    334835
                            7/11/2015
                                          5.6748
             150733393
                                                            3
                                                                Female
                                                                        Black
                                                        C
    334836
             150819286
                            7/24/2015
                                          15.7762
                                                        V
                                                           38
                                                                  Male
                                                                          NaN
             150823002
                                                                Female
    334837
                            8/8/2015
                                          97.9239
                                                                        White
                                                        М
                                                            38
    334838
             150723074
                           6/20/2015
                                          49.2646
                                                        М
                                                                Female
                                                                        White
                                                            5
            diagnosis bodyPart
                                 disposition location product
    334834
                   59
                             76
                                           1
                                                      1
                                                            1864
    334835
                   68
                             85
                                           1
                                                      0
                                                            1931
    334836
                   71
                             79
                                           1
                                                      0
                                                            3250
    334837
                   59
                              82
                                                            464
                                           1
    334838
                   57
                                                            3273
                                           1
```

seeing the list of columns in the dataframe
print(df.columns)

1.2) Selecting variables

• select specific columns from the DataFrame to create a new DataFrame with only those columns

```
df['age']
→
    0
                 5
                36
     2
                20
                61
     3
     4
                88
                 ٠.
     334834
                 7
     334835
                 3
     334836
                38
     334837
                38
     334838
     Name: age, Length: 334839, dtype: int64
df['age'].head()
\overline{2}
     0
            5
     1
           36
           20
     2
     3
           61
     4
           88
     Name: age, dtype: int64
```

df[['caseNumber', 'age']]

_			
		caseNumber	age
	0	150733174	5
	1	150734723	36
	2	150817487	20
	3	150717776	61
	4	150721694	88
	334834	150739278	7
	334835	150733393	3
	334836	150819286	38
	334837	150823002	38
	334838	150723074	5
	334839 ro	ws × 2 columns	;

select columns based on the data type
df.select_dtypes(include=['number'])

→		caseNumber	statWeight	age	diagnosis	bodyPart	disposition	location	product
	0	150733174	15.7762	5	57	33	1	9	1267
	1	150734723	83.2157	36	57	34	1	1	1439
	2	150817487	74.8813	20	71	94	1	0	3274
	3	150717776	15.7762	61	71	35	1	0	611
	4	150721694	74.8813	88	62	75	1	0	1893
	334834	150739278	15.0591	7	59	76	1	1	1864
	334835	150733393	5.6748	3	68	85	1	0	1931
	334836	150819286	15.7762	38	71	79	1	0	3250
	334837	150823002	97.9239	38	59	82	1	1	464
	334838	150723074	49.2646	5	57	34	1	9	3273
	334839 ro	ws × 8 column	s						_

select row by .loc
df.loc[0]

150733174 **→** caseNumber ${\tt treatmentDate}$ 7/11/2015 statWeight 15.7762 stratum 5 age sex Male NaN 57 race diagnosis bodyPart 33 disposition 1 location 9 product 1267 Name: 0, dtype: object

 $\mbox{\tt\#}$ select column by .loc

df.loc[:6,'treatmentDate':'diagnosis']

_		treatmentDate	statWeight	stratum	age	sex	race	diagnosis
	0	7/11/2015	15.7762	V	5	Male	NaN	57
	1	7/6/2015	83.2157	S	36	Male	White	57
	2	8/2/2015	74.8813	L	20	Female	NaN	71
	3	6/26/2015	15.7762	V	61	Male	NaN	71
	4	7/4/2015	74.8813	L	88	Female	Other	62
	5	7/2/2015	5.6748	С	1	Female	White	71
	6	6/8/2015	15.7762	V	25	Male	Black	51

df.loc[df['age']>80, ['treatmentDate', 'age']]

	treatmentDate	age
4	7/4/2015	88
8	7/16/2015	98
39	5/3/2015	88
46	4/15/2015	91
63	1/12/2015	97
334701	4/27/2015	86
334784	7/7/2015	82
334785	7/11/2015	86
334815	10/28/2015	85
334819	1/13/2015	85
20422 rov	vs × 2 columns	

select row by .iloc
df.iloc[0:5]

₹		caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyPart	disposition	location	product
	0	150733174	7/11/2015	15.7762	V	5	Male	NaN	57	33	1	9	1267
	1	150734723	7/6/2015	83.2157	S	36	Male	White	57	34	1	1	1439
	2	150817487	8/2/2015	74.8813	L	20	Female	NaN	71	94	1	0	3274
	3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	35	1	0	611
	4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	75	1	0	1893

select column by .iloc
df.iloc[:,[0,1,2,3,4]]

_		caseNumber	treatmentDate	statWeight	stratum	age
	0	150733174	7/11/2015	15.7762	V	5
	1	150734723	7/6/2015	83.2157	S	36
	2	150817487	8/2/2015	74.8813	L	20
	3	150717776	6/26/2015	15.7762	V	61
	4	150721694	7/4/2015	74.8813	L	88
	334834	150739278	5/31/2015	15.0591	V	7
	334835	150733393	7/11/2015	5.6748	С	3
	334836	150819286	7/24/2015	15.7762	V	38
	334837	150823002	8/8/2015	97.9239	М	38
	334838	150723074	6/20/2015	49.2646	М	5
	334839 ro	ws × 5 column	s			

1.3) Filtering the data

filter rows based on the condition $df[df['age'] \,>\, 50]$

_													
<u> </u>		caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyPart	disposition	location	product
	3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	35	1	0	611
	4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	75	1	0	1893
	7	150704114	6/14/2015	83.2157	S	53	Male	White	57	30	1	0	5040
	8	150736558	7/16/2015	83.2157	S	98	Male	Black	59	76	1	1	1807
1	16	150901411	8/27/2015	83.2157	S	65	Female	White	59	83	1	1	1817
334	4811	150702215	6/27/2015	15.7762	٧	51	Female	NaN	53	83	1	1	1426
334	4815	151100368	10/28/2015	83.2157	S	85	Female	NaN	57	80	4	1	1807
334	4819	150528367	1/13/2015	49.2646	М	85	Female	NaN	57	79	5	1	676
334	4826	150648619	6/17/2015	15.7762	V	52	Female	White	64	30	1	1	1842
334	4829	150633526	4/4/2015	49.2646	М	51	Female	NaN	56	92	1	1	1616
8523	35 row	s × 12 column	S										

filter coloum based on column name
df.filter(like='age')

1.4) Sorting

• Sort the DataFrame by its index based on column

 $\label{thm:continuous} \mbox{\# sort the dataframe based on column name and ascending order} \\ \mbox{df.sort_values(by='statWeight', ascending=False)}$

₹		caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyPart	disposition	location	product
	275174	150343700	3/9/2015	97.9239	М	48	Male	NaN	57	93	1	1	281
	36	151029422	10/6/2015	97.9239	М	37	Male	White	64	35	1	0	1267
	334806	150612491	5/29/2015	97.9239	М	18	Female	White	59	92	1	1	845
	334810	150725804	7/8/2015	97.9239	М	33	Female	Black	71	94	1	0	1616
	275161	150450816	4/13/2015	97.9239	М	24	Male	White	71	37	1	1	3286
	44011	160222258	12/29/2015	4.9655	С	2	Female	Other	71	92	1	1	1893
	325320	151213065	11/29/2015	4.9655	С	16	Female	White	62	75	1	8	3254
	43891	160113865	12/28/2015	4.9655	С	4	Male	White	59	76	1	1	1842
	43628	151130111	11/9/2015	4.9655	С	13	Male	Black	53	33	1	0	5011
	43523	151139237	11/16/2015	4.9655	С	2	Female	Black	57	80	1	0	679
	334839 ro	ws × 12 colum	ns										

sort the index of the dataframe
df.sort_index()

1 1507 2 1508 3 1507 4 1507	733174 734723 817487 717776 721694	7/11/2015 7/6/2015 8/2/2015 6/26/2015 7/4/2015	15.7762 83.2157 74.8813 15.7762 74.8813	V S L V	5 36 20 61 88	Male Male Female Male Female	NaN White NaN NaN	57 57 71 71	33 34 94 35	1 1 1 1	9 1 0	1267 1439 3274 611
2 1508 3 1507 4 1507	817487 717776 721694	8/2/2015 6/26/2015 7/4/2015	74.8813 15.7762	L	20 61	Female Male	NaN NaN	71	94	1 1 1	0	3274
3 1507 4 1507 	717776 721694	6/26/2015 7/4/2015	15.7762	L V L	61	Male	NaN			1 1		
4 1507	721694	7/4/2015		V L				71	35	1	0	611
			74.8813	L	88	Female	Othor					
							Other	62	75	1	0	1893
334834 1507												
	739278	5/31/2015	15.0591	V	7	Male	NaN	59	76	1	1	1864
334835 1507	733393	7/11/2015	5.6748	С	3	Female	Black	68	85	1	0	1931
334836 1508	819286	7/24/2015	15.7762	V	38	Male	NaN	71	79	1	0	3250
334837 1508	823002	8/8/2015	97.9239	М	38	Female	White	59	82	1	1	464
334838 1507	723074	6/20/2015	49.2646	М	5	Female	White	57	34	1	9	3273

1.5) Add/Remove

• This section shows how to manipulate the DataFrame's structure

Dropping the column
df.drop(columns=['disposition'])

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyPart	location	product
0	150733174	7/11/2015	15.7762	V	5	Male	NaN	57	33	9	1267
1	150734723	7/6/2015	83.2157	S	36	Male	White	57	34	1	1439
2	150817487	8/2/2015	74.8813	L	20	Female	NaN	71	94	0	3274
3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	35	0	611
4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	75	0	1893
334834	150739278	5/31/2015	15.0591	V	7	Male	NaN	59	76	1	1864
334835	150733393	7/11/2015	5.6748	С	3	Female	Black	68	85	0	1931
334836	150819286	7/24/2015	15.7762	V	38	Male	NaN	71	79	0	3250
334837	150823002	8/8/2015	97.9239	М	38	Female	White	59	82	1	464
334838	150723074	6/20/2015	49.2646	М	5	Female	White	57	34	9	3273

Adding column and create into a new column
df.assign(new_column=df['diagnosis'] + df['bodyPart'])

_	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyPart	disposition	location	product	new
0	150733174	7/11/2015	15.7762	V	5	Male	NaN	57	33	1	9	1267	
1	150734723	7/6/2015	83.2157	S	36	Male	White	57	34	1	1	1439	
2	150817487	8/2/2015	74.8813	L	20	Female	NaN	71	94	1	0	3274	
3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	35	1	0	611	
4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	75	1	0	1893	
334834	150739278	5/31/2015	15.0591	٧	7	Male	NaN	59	76	1	1	1864	
334835	150733393	7/11/2015	5.6748	С	3	Female	Black	68	85	1	0	1931	
334836	150819286	7/24/2015	15.7762	V	38	Male	NaN	71	79	1	0	3250	
334837	150823002	8/8/2015	97.9239	М	38	Female	White	59	82	1	1	464	
334838	150723074	6/20/2015	49.2646	М	5	Female	White	57	34	1	9	3273	
334839 rc	ws × 13 colum	ns											•

Removing the column and assigning it to a new variable
ages = df.pop('age')

- 1.6) Clean missing
 - to remove rows with missing values or replace missing values with a specified value
- # replaceing the missing values with a specified value
 df.fillna(value=0)

	caseNumber	treatmentDate	statWeight	stratum	sex	race	diagnosis	bodyPart	disposition	location	product
0	150733174	7/11/2015	15.7762	V	Male	0	57	33	1	9	1267
1	150734723	7/6/2015	83.2157	S	Male	White	57	34	1	1	1439
2	150817487	8/2/2015	74.8813	L	Female	0	71	94	1	0	3274
3	150717776	6/26/2015	15.7762	V	Male	0	71	35	1	0	611
4	150721694	7/4/2015	74.8813	L	Female	Other	62	75	1	0	1893
334834	150739278	5/31/2015	15.0591	V	Male	0	59	76	1	1	1864
334835	150733393	7/11/2015	5.6748	С	Female	Black	68	85	1	0	1931
334836	150819286	7/24/2015	15.7762	V	Male	0	71	79	1	0	3250
334837	150823002	8/8/2015	97.9239	М	Female	White	59	82	1	1	464
334838	150723074	6/20/2015	49.2646	М	Female	White	57	34	1	9	3273

Remove the rows with missing values
df.dropna()

	caseNumber	treatmentDate	statWeight	stratum	sex	race	diagnosis	bodyPart	disposition	location	product
1	150734723	7/6/2015	83.2157	S	Male	White	57	34	1	1	1439
4	150721694	7/4/2015	74.8813	L	Female	Other	62	75	1	0	1893
5	150721815	7/2/2015	5.6748	С	Female	White	71	76	1	1	171
6	150713483	6/8/2015	15.7762	V	Male	Black	51	33	4	9	1138
7	150704114	6/14/2015	83.2157	S	Male	White	57	30	1	0	5040
334830	150628863	6/8/2015	15.7762	V	Female	White	64	79	1	1	1522
334831	150607637	5/22/2015	5.6748	С	Female	Black	59	94	1	0	161
334835	150733393	7/11/2015	5.6748	С	Female	Black	68	85	1	0	193
334837	150823002	8/8/2015	97.9239	М	Female	White	59	82	1	1	464
334838	150723074	6/20/2015	49.2646	М	Female	White	57	34	1	9	327

[2] Data Cleaning and Preparation

- ✓ .isnull, .dropna, .fillna
- 2.1) checking

```
df.columns
```

isnull checking
df.isnull().sum()

```
caseNumber 0
treatmentDate 0
statWeight 0
```

```
0
stratum
sex
                     2
                129825
race
diagnosis
                     0
bodyPart
                     0
disposition
location
                     0
product
                     0
dtype: int64
```

percentage of missing values for the race
df.race.isnull().sum()/df.shape[0]*100

→ np.float64(38.772365226272925)

df.shape[0]

→ 334839

2.2) Drop column

remove column by using
df = df.drop(columns=['race'])

df.head()

_		caseNumber	treatmentDate	statWeight	stratum	sex	diagnosis	bodyPart	disposition	location	product
	0	150733174	7/11/2015	15.7762	V	Male	57	33	1	9	1267
	1	150734723	7/6/2015	83.2157	S	Male	57	34	1	1	1439
	2	150817487	8/2/2015	74.8813	L	Female	71	94	1	0	3274
	3	150717776	6/26/2015	15.7762	٧	Male	71	35	1	0	611
	4	150721694	7/4/2015	74.8813	L	Female	62	75	1	0	1893

2.3) Data imputation

```
# fillna
df['age'] = df['age'].fillna(df['age'].median())
```

```
Traceback (most recent call last)
File c:\Users\adiso\AppData\Local\Programs\Python\Python313\Lib\site-packages\pandas\core\indexes\base.py:3805, in
Index.get loc(self, key)
  3804 try:
-> 3805
          return self._engine.get_loc(casted_key)
  3806 except KeyError as err:
File index.pyx:167, in pandas._libs.index.IndexEngine.get_loc()
File index.pyx:196, in pandas._libs.index.IndexEngine.get_loc()
File pandas\\libs\\hashtable_class_helper.pxi:7081, in pandas._libs.hashtable.PyObjectHashTable.get_item()
File pandas\\_libs\\hashtable_class_helper.pxi:7089, in pandas._libs.hashtable.PyObjectHashTable.get_item()
KevError: 'age'
The above exception was the direct cause of the following exception:
KeyError
                                       Traceback (most recent call last)
Cell In[32], line 2
     1 # fillna
 ---> 2 df['age'] = df['age'].fillna(df['age'].median())
File c:\Users\adiso\AppData\Local\Programs\Python\Python313\Lib\site-packages\pandas\core\frame.py:4102, in
DataFrame, getitem (self, kev)
  4100 if self.columns.nlevels > 1:
  4101
          return self._getitem_multilevel(key)
-> 4102 indexer = self.columns.get_loc(key)
  4103 if is_integer(indexer):
  4104
          indexer = [indexer]
Index.get_loc(self, key)
  3807
          if isinstance(casted_key, slice) or (
  3808
               isinstance(casted_key, abc.Iterable)
  3809
               and any(isinstance(x, slice) for x in casted_key)
  3810
  3811
               raise InvalidIndexError(key)
          raise KeyError(key) from err
-> 3812
  3813 except TypeError:
  3814
          # If we have a listlike key, _check_indexing_error will raise
  3815
           # InvalidIndexError. Otherwise we fall through and re-raise
  3816
           # the TypeError.
  3817
           self. check indexing error(kev)
```

[Q1] From the above cell, Why it showing an error?

Ans: The error message "KeyError: 'age" indicates that the DataFrame does not contain a column named 'age'. Upon checking with df.columns, the available columns are:

Index(['caseNumber', 'treatmentDate', 'statWeight', 'stratum', 'sex', 'race', 'diagnosis', 'bodyPart', 'disposition', 'location', 'product'], dtype='object')

This confirms that the 'age' column is missing from the DataFrame.

[Q2] Fix the error from Q1 problem.

```
# [Q2]
# hint: see the cell that run `df.pop()`
df["age"] = ages
# fillna again
df['age'] = df['age'].fillna(df['age'].median())
df.head()
```

→		caseNumber	treatmentDate	statWeight	stratum	sex	diagnosis	bodyPart	disposition	location	product	age	Year	Month
	0	150733174	11/07/2015	15.7762	V	Male	57	33	1	9	1267	5	2015	7
	1	150734723	06/07/2015	83.2157	S	Male	57	34	1	1	1439	36	2015	7
	2	150817487	02/08/2015	74.8813	L	Female	71	94	1	0	3274	20	2015	8
	3	150717776	26/06/2015	15.7762	V	Male	71	35	1	0	611	61	2015	6
	4	150721694	04/07/2015	74.8813	L	Female	62	75	1	0	1893	88	2015	7

2.4) Drop row that have missing value

```
# remove column by using .dropna()
df = df.dropna()
df.isnull().sum()
→ caseNumber
     treatmentDate
     statWeight
     stratum
     sex
     diagnosis
     bodyPart
                      0
     disposition
                      0
     location
     product
                      a
     age
                      a
     dtype: int64
Datetime
2.5) Working with the datetime format
df["treatmentDate"] = pd.to_datetime(df["treatmentDate"], format="%m/%d/%Y")
C:\Users\adiso\AppData\Local\Temp\ipykernel_17212\3208943844.py:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     df["treatmentDate"] = pd.to_datetime(df["treatmentDate"], format="%m/%d/%Y")
df.info()
</pre
     Index: 334837 entries, 0 to 334838
     Data columns (total 11 columns):
      # Column
                        Non-Null Count
                                         Dtvpe
                        -----
      0
         caseNumber
                        334837 non-null int64
         treatmentDate 334837 non-null datetime64[ns]
      1
         statWeight 334837 non-null float64
      3
          stratum
                        334837 non-null object
         sex
                        334837 non-null object
          diagnosis
                        334837 non-null int64
         bodyPart
                        334837 non-null int64
          disposition 334837 non-null int64
                        334837 non-null int64
         location
                        334837 non-null int64
         product
      10 age
                        334837 non-null int64
     dtypes: datetime64[ns](1), float64(1), int64(7), object(2)
     memory usage: 30.7+ MB
df['Year'] = df['treatmentDate'].dt.year
C:\Users\adiso\AppData\Local\Temp\ipykernel_17212\1686165144.py:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus</a>
       df['Year'] = df['treatmentDate'].dt.year
df['Month'] = df['treatmentDate'].dt.month
C:\Users\adiso\AppData\Local\Temp\ipykernel_17212\404848564.py:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus</a>
       df['Month'] = df['treatmentDate'].dt.month
df.head()
```

→		caseNumber	treatmentDate	statWeight	stratum	sex	diagnosis	bodyPart	disposition	location	product	age	Year	Month
	0	150733174	2015-07-11	15.7762	V	Male	57	33	1	9	1267	0	2015	7
	1	150734723	2015-07-06	83.2157	S	Male	57	34	1	1	1439	0	2015	7
	2	150817487	2015-08-02	74.8813	L	Female	71	94	1	0	3274	0	2015	8
	3	150717776	2015-06-26	15.7762	V	Male	71	35	1	0	611	0	2015	6
	4	150721694	2015-07-04	74.8813	L	Female	62	75	1	0	1893	0	2015	7

[Q3] Can you change the format to DD/MM/YYYY? Show your work.

```
# write your code here
df['treatmentDate'] = pd.to_datetime(df['treatmentDate'])
df['treatmentDate'] = df['treatmentDate'].dt.strftime('%d/%m/%Y')
print(df.head())
C:\Users\adiso\AppData\Local\Temp\ipykernel_17212\563021845.py:2: SettingWithCopyWarning:
      A value is trying to be set on a copy of a slice from a DataFrame.
      Try using .loc[row_indexer,col_indexer] = value instead
      See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus</a>
        df['treatmentDate'] = pd.to_datetime(df['treatmentDate'])
         caseNumber treatmentDate statWeight stratum
                                                                     sex diagnosis bodyPart
         150733174
                          11/07/2015
                                            15.7762
                                                                                   57
                                                                   Male
          150734723
                          06/07/2015
                                             83.2157
                                                                                   57
                                                                                                34
          150817487
                          02/08/2015
                                             74.8813
                                                                 Female
                                                                                   71
                                                                                                94
          150717776
                          26/06/2015
                                             15.7762
                                                                   Male
                                                                                   71
                                                                                                35
          150721694
                          04/07/2015
                                             74.8813
                                                             L Female
                                                                                                75
                                                                                   62
         disposition location product age Year
                                                             Month
      0
                     1
                                 9
                                         1267
                                                  0
                                                      2015
      1
                     1
                                 1
                                         1439
                                                  a
                                                      2015
      2
                     1
                                 0
                                         3274
                                                  0
                                                      2015
                                                                  8
      3
                                 0
                                          611
                                                  0
                                                      2015
                                         1893
                                                  0
                                                      2015
      C:\Users\adiso\AppData\Local\Temp\ipykernel_17212\563021845.py:4: SettingWithCopyWarning:
      A value is trying to be set on a copy of a slice from a DataFrame.
      Try using .loc[row_indexer,col_indexer] = value instead
      See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus</a> df['treatmentDate'] = df['treatmentDate'].dt.strftime('%d/%m/%Y')
```

Combine Dataframe by .merge and .concat

2.6 Merge

```
import pandas as pd

superstore_order = pd.read_csv('superstore_order.csv')
superstore_people = pd.read_csv('superstore_people.csv')
superstore_return = pd.read_csv('superstore_return.csv')

superstore_order.merge(superstore_return[superstore_return["Returned"]=="Yes"],
on="Order ID" ,
how="inner")\
[["Customer ID", "Returned"]]\
.drop_duplicates()
```

	Customer ID	Returned
0	ZD-21925	Yes
3	TB-21055	Yes
10	JS-15685	Yes
13	LC-16885	Yes
20	BS-11755	Yes
•••		
688	ED-13885	Yes
689	TS-21205	Yes
696	MF-17665	Yes
702	SH-19975	Yes
705	RB-19435	Yes
222 r	ows × 2 columns	

[Q4] What does the argument how="inner" do?

Ans: argument how="inner" is to ensures that only rows with matching "Order ID" values in both DataFrames are retained and to filtering out unmatched records.

[Q5] In your opinion, what information that the result above conveys?

Ans: List of Customers Who Returned Orders and also provide Customer ID column shows which customers. the infomation are removing Duplicates it can use to analyze in to find patterns.

More merging...

```
superstore_order.merge(superstore_return,
on="Order ID" ,
how="inner")
```

-	_	_
-	÷	$\overline{\mathbf{v}}$
	ŕ	_

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	City	 Region	Product ID	Categor
0	19	CA- 2014- 143336	27/08/2014	01/09/2014	Second Class	ZD-21925	Zuschuss Donatelli	Consumer	United States	San Francisco	 West	OFF-AR- 10003056	Offic Supplie
1	20	CA- 2014- 143336	27/08/2014	01/09/2014	Second Class	ZD-21925	Zuschuss Donatelli	Consumer	United States	San Francisco	 West	TEC-PH- 10001949	Technolog
2	21	CA- 2014- 143336	27/08/2014	01/09/2014	Second Class	ZD-21925	Zuschuss Donatelli	Consumer	United States	San Francisco	 West	OFF-BI- 10002215	Offic Supplic
3	56	CA- 2016- 111682	17/06/2016	18/06/2016	First Class	TB-21055	Ted Butterfield	Consumer	United States	Troy	 East	OFF-ST- 10000604	Offic Supplic
4	57	CA- 2016- 111682	17/06/2016	18/06/2016	First Class	TB-21055	Ted Butterfield	Consumer	United States	Troy	 East	OFF-PA- 10001569	Offic Supplie
702	8870	CA- 2017- 101805	01/12/2017	06/12/2017	Standard Class	SH-19975	Sally Hughsby	Corporate	United States	Seattle	 West	OFF-BI- 10002003	Offic Supplic
703	8871	CA- 2017- 101805	01/12/2017	06/12/2017	Standard Class	SH-19975	Sally Hughsby	Corporate	United States	Seattle	 West	FUR-FU- 10000023	Furnitu
704	8872	CA- 2017- 101805	01/12/2017	06/12/2017	Standard Class	SH-19975	Sally Hughsby	Corporate	United States	Seattle	 West	OFF-ST- 10002756	Offic Supplic
705	8873	US- 2014- 105137	10/10/2014	10/10/2014	Same Day	RB-19435	Richard Bierner	Consumer	United States	Columbus	 East	TEC-MA- 10002694	Technolog
706	8874	US- 2014- 105137	10/10/2014	10/10/2014	Same Day	RB-19435	Richard Bierner	Consumer	United States	Columbus	 East	OFF-BI- 10002429	Offic Supplie

707 rows × 22 columns

2.7) Concatenate

pd.concat([superstore_order, superstore_people], axis=1, join='inner')

∓

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	City	 Product ID	Category	Sub- Category
C) 1	CA- 2016- 152156	08/11/2016	11/11/2016	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson	 FUR-BO- 10001798	Furniture	Bookcases
1	2	CA- 2016- 152156	08/11/2016	11/11/2016	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson	 FUR-CH- 10000454	Furniture	Chairs
2	. 3	CA- 2016- 138688	12/06/2016	16/06/2016	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	Los Angeles	 OFF-LA- 10000240	Office Supplies	Labels
3	3 4	US- 2015- 108966	11/10/2015	18/10/2015	Standard Class	SO-20335	Sean ODonnell	Consumer	United States	Fort Lauderdale	 FUR-TA- 10000577	Furniture	Tables

⁴ rows × 23 columns

[Q6] What is the difference between inner and outer on parameter join in pd.concat?

Ans: inner: Keeps only indices that appear in the input DataFrames. outer: Keeps all indices that appear in any of the input DataFrames then using NULL to fill missing values.

superstore_order.groupby(['Segment','Ship Mode'])[['Sales','Quantity','Discount','Profit']].sum()

			Calaa	0	Diagonat	Dun Cit
			Sales	Quantity	DISCOUNT	Profit
	Segment	Ship Mode				
	Consumer	First Class	138594.9328	2455	110.29	18953.7264
		Same Day	53660.6340	1001	43.85	8555.7193
		Second Class	203605.6822	3489	127.29	24701.9148
		Standard Class	627061.3262	10430	443.05	68864.9892
	Corporate	First Class	97720.1209	1670	73.07	12660.2526
		Same Day	41716.5550	366	14.50	1120.9222
		Second Class	130759.9288	2027	71.47	15582.1762
		Standard Class	359359.2109	6203	262.82	49832.6780
	Home Office	First Class	76743.8674	924	39.82	11829.8821
		Same Day	20968.5170	343	12.50	3909.3442
		Second Class	77175.1080	1148	37.80	12785.8953
		Standard Class	218325.9795	3595	142.14	27298.5786
•						

[Q7] Describe an information that the result above conveys?

Ans: Standard Class shipping is the highest volume shipping method. The profit columns show positive values on all segments and shipping modes

```
superstore_order["Profit Ratio"] = superstore_order["Profit"]/superstore_order["Sales"]
superstore_order.groupby(["Category", "Sub-Category"]).agg(mean_profit_ratio = ("Profit Ratio", "mean"))
```


Category	Sub-Category	
Furniture	Bookcases	-0.127756
	Chairs	0.045028
	Furnishings	0.140782
	Tables	-0.147916
Office Supplies	Appliances	-0.145513
	Art	0.251678
	Binders	-0.191641
	Envelopes	0.421913
	Fasteners	0.301157
	Labels	0.429984
	Paper	0.425586
	Storage	0.092382
	Supplies	0.104970
Technology	Accessories	0.219012
	Copiers	0.317826
	Machines	-0.059535
	Phones	0.118926

mean_profit_ratio

[Q8] Describe an information that the result above conveys?

Ans: Some sub-categories have negative profit ratios, indicating losses: Bookcases (-0.12756) Tables (-0.14792) Appliances (-0.14551) Binders (-0.19164) Machines (-0.05954)

```
Technology category mostly shows positive profit ratios:
   Copiers having the highest (0.31783)
   Only Machines showing a slight loss (-0.05954)

Office Supplies has several highly profitable sub-categories:
   Labels (0.42998)
   Paper (0.42559)
   Envelopes (0.42191)
   Fasteners (0.30116)
   Art (0.25168)
```

Pivot and Melt

Pivot

 $superstore_order.pivot_table(index="State", columns="Ship Mode", values="Order ID", aggfunc="count").fillna(0).head(10) \\$

_	Ship Mode	First Class	Same Day	Second Class	Standard Class
	State				
	Alabama	9.0	1.0	18.0	30.0
	Arizona	42.0	15.0	22.0	123.0
	Arkansas	10.0	2.0	8.0	35.0
	California	302.0	106.0	346.0	1000.0
	Colorado	43.0	5.0	32.0	95.0
	Connecticut	19.0	8.0	11.0	39.0
	Delaware	16.0	2.0	13.0	55.0
	District of Columbia	0.0	0.0	3.0	7.0
	Florida	47.0	25.0	57.0	210.0
	Georgia	19.0	15.0	31.0	108.0

pivot_table_result = superstore_order.pivot_table(index="State", columns="Ship Mode", values="Order ID", aggfunc="count").fillna(0)
print(pivot_table_result)

_				6 1 67	6
→ ▼	Ship Mode	First Class	Same Day	Second Class	Standard Class
	State	0.0	1.0	10.0	20.0
	Alabama Arizona	9.0 42.0	15.0	18.0 22.0	30.0
					123.0
	Arkansas	10.0	2.0	8.0	35.0
	California Colorado	302.0 43.0	106.0 5.0	346.0 32.0	1000.0 95.0
	Connecticut		8.0		
		19.0		11.0	39.0
	Delaware	16.0	2.0	13.0	55.0
	District of Columbia	0.0	0.0	3.0	7.0
	Florida	47.0	25.0	57.0	210.0
	Georgia	19.0	15.0	31.0	108.0
	Idaho	3.0	0.0	2.0	13.0
	Illinois	58.0	24.0	96.0	249.0
	Indiana	13.0	3.0	30.0	79.0
	Iowa	1.0	1.0	4.0	17.0
	Kansas	6.0	1.0	2.0	15.0
	Kentucky	12.0	5.0	49.0	62.0
	Louisiana	7.0	2.0	14.0	15.0
	Maine	0.0	0.0	0.0	5.0
	Maryland	18.0	7.0	12.0	63.0
	Massachusetts	14.0	4.0	35.0	71.0
	Michigan	20.0	16.0	43.0	151.0
	Minnesota	9.0	4.0	13.0	59.0
	Mississippi	3.0	4.0	7.0	36.0
	Missouri	7.0	2.0	20.0	24.0
	Montana	1.0	1.0	0.0	13.0
	Nebraska	6.0	3.0	6.0	20.0
	Nevada	4.0	1.0	12.0	17.0
	New Hampshire	2.0	0.0	10.0	13.0
	New Jersey	5.0	1.0	20.0	87.0
	New Mexico	1.0	0.0	9.0	22.0
	New York	155.0	57.0	183.0	606.0
	North Carolina	36.0	14.0	40.0	139.0
	North Dakota	0.0	0.0	5.0	2.0
	Ohio	66.0	47.0	84.0	199.0
	Oklahoma	5.0	6.0	7.0	44.0
	Oregon	20.0	0.0	15.0	81.0
	Pennsylvania	103.0	9.0	78.0	341.0
	Rhode Island	16.0	0.0	21.0	16.0
	South Carolina	3.0	5.0	18.0	16.0
	South Dakota	2.0	0.0	0.0	9.0
	Tennessee	21.0	2.0	24.0	118.0
	Texas	125.0	37.0	161.0	537.0
	Utah	4.0	2.0	19.0	28.0
	Vermont	0.0	0.0	1.0	2.0
	Virginia	39.0	4.0	33.0	115.0
	Washington	56.0	34.0	97.0	265.0
	West Virginia	0.0	0.0	0.0	3.0
	Wisconsin	12.0	3.0	10.0	66.0
	Wyoming	0.0	0.0	0.0	1.0

Melt

melted_result = pd.melt(pivot_table_result.reset_index(), id_vars=["State"], var_name="Ship Mode", value_name="Order Count")
print(melted_result)

ınt
0.0
2.0
0.0
2.0
3.0
.0
.0
3.0
5.0
.0

[196 rows x 3 columns]

[Q9] What is the advantage of using melt?

Ans: it helps transform "wide" format data into "long" format data, making it more suitable for certain types of analysis and visualization

[Q10] From the superstore_order, display the ascending order considering values in the 'Profit' column to group the 'Category'.

```
#enter your code
```

[#] Group by Category, sum the Profit, and sort in ascending order

```
result = superstore_order.groupby('Category')['Profit'].sum().sort_values(ascending=True)
print(result)
```

→ Category

Furniture 16858.5619 Office Supplies 105827.0238 Technology 133410.4932 Name: Profit, dtype: float64

[Q11] Create a new column that calculates the total price (sale*quantity) before discount then group by 'product id' and 'category', then show the mean of the total price

```
#enter your code here
# Create a new column for total price before discount
superstore_order['Total_Price'] = superstore_order['Sales'] * superstore_order['Quantity']
# Group by product id and category, then calculate mean of total price
result = superstore_order.groupby(['Product ID', 'Category'])['Total_Price'].mean()
print(result)
   Product ID
                     Category
     FUR-BO-10000112 Furniture
                                   7426.566000
     FUR-BO-10000330 Furniture
                                   1258.192000
     FUR-BO-10000362 Furniture
                                   1726.898000
     FUR-BO-10000468 Furniture
                                    426.532400
     FUR-BO-10000711 Furniture
                                   3194.100000
     TEC-PH-10004912 Technology
                                    747.320000
     TEC-PH-10004922 Technology
                                    673.249500
     TEC-PH-10004924 Technology
                                    57.149333
     TEC-PH-10004959 Technology
                                    412.009000
     TEC-PH-10004977 Technology
                                   2441.475429
     Name: Total_Price, Length: 1846, dtype: float64
[Q12] Complete the function to apply ratio column that calculates from First Class and Standard Class columns on
pivot_table_result
```

```
# [Q12] Complete the function to apply `ratio` column that calculates from `First Class` and `Standard Class` columns on `pivot_table_re
# function to transform the ratio
def get_class_ratio(row):
    # get the first class column
```

```
# get the standard class column
standard_class = row['Standard Class']
# calculate the ratio
ratio = first_class / standard_class
```

first_class = row['First Class']

return ratio

pivot_table_result["ratio"] = pivot_table_result.apply(get_class_ratio, axis=1)

pivot_table_result.head()

Đ₹

Ship Mode	First Class	Same Day	Second Class	Standard Class	ratio
State					
Alabama	9.0	1.0	18.0	30.0	0.300000
Arizona	42.0	15.0	22.0	123.0	0.341463
Arkansas	10.0	2.0	8.0	35.0	0.285714
California	302.0	106.0	346.0	1000.0	0.302000
Colorado	43.0	5.0	32.0	95.0	0.452632
1					

[Q13] After complete Q12, What does the apply function do?

Ans: to perform operations that are more complex than simple vectorized operations and returns a new Series with the results of applying the function to each row/column

[Q14] Create a new column(short_ratio) that works the same as Q12 but with lambda function

₹

pivot_table_result["short_ratio"] = pivot_table_result.apply(lambda row: row['First Class'] / row['Standard Class'], axis=1)
pivot_table_result.head()

•	Ship Mode	First Class	Same Day	Second Class	Standard Class	ratio	short_ratio
	State						
	Alabama	9.0	1.0	18.0	30.0	0.300000	0.300000
	Arizona	42.0	15.0	22.0	123.0	0.341463	0.341463
	Arkansas	10.0	2.0	8.0	35.0	0.285714	0.285714
	California	302.0	106.0	346.0	1000.0	0.302000	0.302000
	Colorado	43.0	5.0	32.0	95.0	0.452632	0.452632

[Q15] What is the difference between using function in apply and lambda function? give 2 examples use case.

Ans: Key differences: Regular functions are better for complex logic, multiple operations, or reusable code and documented and are more readable for complex operations Lambda functions are better for one-line operations, anonymous and can't be reused elsewhere in the code

Use cases: Use regular functions when I need documentation, complex logic, or reusability Use lambda functions when the operation is simple and used only once