Lab 3: Data Cleaning and Preparation

Objectives:

- · To be more familiar with Pandas libraries
- To gain more hands-on experience in data cleaning and preparation

v [1] More Reviews on Pandas

1.0) Discover

• methods to explore and understand your DataFrame

```
import pandas as pd
df = pd.read_csv('nss15.csv')
# see the shape of the dataframe
print(df.shape)
     (334839, 12)
# seeing the summary of the dataframe
print(df.info())
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 334839 entries, 0 to 334838
     Data columns (total 12 columns):
     # Column
                     Non-Null Count
         caseNumber
                       334839 non-null int64
         treatmentDate 334839 non-null object
         statWeight
                       334839 non-null float64
         stratum
                       334839 non-null
                       334839 non-null int64
         age
     5
                       334837 non-null
         sex
                                       object
     6
         race
                       205014 non-null object
         diagnosis 334839 non-null int64
                       334839 non-null int64
         bodyPart
         disposition
                       334839 non-null
     10 location
                       334839 non-null int64
                       334839 non-null int64
     11 product
     dtypes: float64(1), int64(7), object(4)
     memory usage: 30.7+ MB
```

seeing the stats of the column in dataframe
print(df.describe())

	caseNumber	statWeight	age	diagnosis	\
count	3.348390e+05	334839.000000	334839.000000	334839.000000	
mean	1.510271e+08	39.343028	31.385451	60.154591	
std	1.720330e+06	34.142933	26.105098	6.170699	
min	1.501032e+08	4.965500	0.000000	41.000000	
25%	1.504405e+08	15.059100	10.000000	57.000000	
50%	1.507358e+08	15.776200	23.000000	59.000000	
75%	1.510231e+08	74.881300	51.000000	64.000000	
max	1.603418e+08	97.923900	107.000000	74.000000	
	bodyPart	disposition	location	product	
count	334839.000000	334839.000000	334839.000000	334839.000000	
mean	64.374192	1.307930	2.485451	2098.900854	
std	24.002331	0.977627	3.217617	1332.222670	
min	0.000000	1.000000	0.000000	106.000000	
25%	35.000000	1.000000	0.000000	1211.000000	
50%	75.000000	1.000000	1.000000	1807.000000	
75%	82.000000	1.000000	5.000000	3265.000000	
max	94.000000	9.000000	9.000000	5555.000000	

```
# seeing the first 5 rows of the dataframe
print(df.head())
        caseNumber treatmentDate statWeight stratum
                                                        age
                                                                sex
                                                                       race
     0
         150733174
                        7/11/2015
                                      15.7762
                                                     ٧
                                                               Male
                                                                        NaN
                                                          5
         150734723
                         7/6/2015
                                      83,2157
                                                         36
                                                               Male
                                                                      White
     1
                                                     S
                        8/2/2015
                                                             Female
     2
         150817487
                                      74.8813
                                                     L
                                                         20
                                                                        NaN
     3
         150717776
                        6/26/2015
                                      15.7762
                                                     V
                                                         61
                                                               Male
                                                                        NaN
         150721694
                         7/4/2015
                                      74.8813
                                                         88
                                                             Female
                                                                     0ther
        diagnosis bodyPart
                              {\tt disposition}
                                           location
                                                      product
     0
               57
                          33
                                        1
     1
               57
                          34
                                        1
                                                   1
                                                         1439
     2
               71
                          94
                                        1
                                                   0
                                                         3274
               71
                          35
                                                   0
                                                          611
     3
                                        1
                          75
                                                   0
                                                         1893
               62
                                        1
# seeing the last 5 rows of the dataframe
print(df.tail())
             caseNumber treatmentDate statWeight stratum
                                                             age
                                                                      sex
                                                                            race
     334834
              150739278
                             5/31/2015
                                           15.0591
                                                                    Male
                                            5.6748
     334835
              150733393
                             7/11/2015
                                                          C
                                                               3
                                                                  Female
```

```
NaN
                                                                     Black
334836
         150819286
                       7/24/2015
                                      15.7762
                                                     ٧
                                                         38
                                                               Male
                                                                       NaN
334837
         150823002
                        8/8/2015
                                      97.9239
                                                         38
                                                             Female
                                                                     White
                                                     М
334838
        150723074
                       6/20/2015
                                      49.2646
                                                    Μ
                                                                     White
                                                             Female
                             disposition location product
        diagnosis bodyPart
334834
                                                         1864
               59
                          76
                                        1
                                                  1
334835
               68
                          85
                                        1
                                                  0
                                                         1931
334836
               71
                          79
                                        1
                                                  0
                                                         3250
334837
               59
                          82
                                                          464
                                                  1
                                        1
334838
               57
                          34
                                        1
                                                  9
                                                         3273
```

1.2) Selecting variables

· select specific columns from the DataFrame to create a new DataFrame with only those columns

```
df['age']
                 5
     0
     1
                36
     2
                20
     3
                61
                88
     4
     334834
     334835
                3
     334836
                38
     334837
                38
     334838
     Name: age, Length: 334839, dtype: int64
df['age'].head()
     0
     1
          36
     2
          20
     3
          61
     Name: age, dtype: int64
df[['caseNumber', 'age']]
```

	caseNumber	age
0	150733174	5
1	150734723	36
2	150817487	20
3	150717776	61
4	150721694	88
334834	150739278	7
334835	150733393	3
334836	150819286	38
334837	150823002	38
334838	150723074	5

select columns based on the data type
df.select_dtypes(include=['number'])

334839 rows × 2 columns

	caseNumber	statWeight	age	diagnosis	bodyPart	disposition	location	product
0	150733174	15.7762	5	57	33	1	9	1267
1	150734723	83.2157	36	57	34	1	1	1439
2	150817487	74.8813	20	71	94	1	0	3274
3	150717776	15.7762	61	71	35	1	0	611
4	150721694	74.8813	88	62	75	1	0	1893
								**
334834	150739278	15.0591	7	59	76	1	1	1864
334835	150733393	5.6748	3	68	85	1	0	1931
334836	150819286	15.7762	38	71	79	1	0	3250
334837	150823002	97.9239	38	59	82	1	1	464
334838	150723074	49.2646	5	57	34	1	9	3273
334839 rc	ows × 8 column	IS						•

select row by .loc
df.loc[0]

150733174 caseNumber treatmentDate 7/11/2015 statWeight 15.7762 V stratum age 5 Male sex race NaN diagnosis 57 bodyPart 33 disposition 1 location 9 product 1267 Name: 0, dtype: object

select column by .loc

df.loc[:6,'treatmentDate':'diagnosis']

	treatmentDate	statWeight	stratum	age	sex	race	diagnosis
0	7/11/2015	15.7762	V	5	Male	NaN	57
1	7/6/2015	83.2157	S	36 Male		White	57
2	8/2/2015	74.8813	L	20	Female	NaN	71
3	6/26/2015	15.7762	V	61	Male	NaN	71
4	7/4/2015	74.8813	L	88	Female	Other	62
5	7/2/2015	5.6748	С	1	Female	White	71
6	6/8/2015	15.7762	V	25	Male	Black	51

df.loc[df['age']>80, ['treatmentDate', 'age']]

	treatmentDate	age
4	7/4/2015	88
8	7/16/2015	98
39	5/3/2015	88
46	4/15/2015	91
63	1/12/2015	97
334701	4/27/2015	86
334784	7/7/2015	82
334785	7/11/2015	86
334815	10/28/2015	85
334819	1/13/2015	85

20422 rows × 2 columns

select row by .iloc
df.iloc[0:5]

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyPa
0	150733174	7/11/2015	15.7762	V	5	Male	NaN	57	
1	150734723	7/6/2015	83.2157	S	36	Male	White	57	
2	150817487	8/2/2015	74.8813	L	20	Female	NaN	71	
3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	
4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	
4									•

select column by .iloc
df.iloc[:,[0,1,2,3,4]]

	caseNumber	treatmentDate	statWeight	stratum	age
0	150733174	7/11/2015	15.7762	V	5
1	150734723	7/6/2015	83.2157	S	36
2	150817487	8/2/2015	74.8813	L	20
3	150717776	6/26/2015	15.7762	V	61
4	150721694	7/4/2015	74.8813	L	88
334834	150739278	5/31/2015	15.0591	V	7
334835	150733393	7/11/2015	5.6748	С	3
334836	150819286	7/24/2015	15.7762	V	38
334837	150823002	8/8/2015	97.9239	М	38
334838	150723074	6/20/2015	49.2646	М	5

334839 rows × 5 columns

1.3) Filtering the data

filter rows based on the condition
df[df['age'] > 50]

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	b
3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	
4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	
7	150704114	6/14/2015	83.2157	S	53	Male	White	57	
8	150736558	7/16/2015	83.2157	S	98	Male	Black	59	
16	150901411	8/27/2015	83.2157	S	65	Female	White	59	
334811	150702215	6/27/2015	15.7762	V	51	Female	NaN	53	
334815	151100368	10/28/2015	83.2157	S	85	Female	NaN	57	
334819	150528367	1/13/2015	49.2646	М	85	Female	NaN	57	
334826	150648619	6/17/2015	15.7762	V	52	Female	White	64	
334829	150633526	4/4/2015	49.2646	М	51	Female	NaN	56	
85235 rov	ws × 12 column	ıs							
1									•

https://colab.research.google.com/drive/1AYvk2fNn8U2Efg-6ys2T2CgGmZV33k6H#scrollTo=KrouO-jTmeA6&printMode=true-line for the control of the

filter coloum based on column name
df.filter(like='age')

	age	
0	5	
1	36	
2	20	
3	61	
4	88	
334834	7	
334835	3	
334836	38	
334837	38	
334838	5	
334839 ro	ws ×	1 columns

1.4) Sorting

• Sort the DataFrame by its index based on column

sort the dataframe based on column name and ascending order
df.sort_values(by='statWeight', ascending=False)

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	b
67072	150533084	5/15/2015	97.9239	М	89	Male	NaN	53	
313846	150521217	4/18/2015	97.9239	М	36	Female	NaN	64	
230135	150857760	8/25/2015	97.9239	М	14	Male	White	64	
141323	151039262	10/11/2015	97.9239	М	39	Female	White	71	
230141	150662453	6/5/2015	97.9239	М	11	Female	White	59	
122009	151146792	11/15/2015	4.9655	С	2	Female	White	59	
211090	151253201	12/15/2015	4.9655	С	2	Male	White	60	
317625	160106638	12/25/2015	4.9655	С	1	Male	White	55	
33679	151256307	12/20/2015	4.9655	С	9	Female	Black	57	
229596	160148171	12/4/2015	4.9655	С	16	Female	Other	55	
334839 rd	ows × 12 colum	nns							
4									•

sort the index of the dataframe
df.sort_index()

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	b
0	150733174	7/11/2015	15.7762	V	5	Male	NaN	57	
1	150734723	7/6/2015	83.2157	S	36	Male	White	57	
2	150817487	8/2/2015	74.8813	L	20	Female	NaN	71	
3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	
4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	
334834	150739278	5/31/2015	15.0591	V	7	Male	NaN	59	
334835	150733393	7/11/2015	5.6748	С	3	Female	Black	68	
334836	150819286	7/24/2015	15.7762	V	38	Male	NaN	71	
334837	150823002	8/8/2015	97.9239	М	38	Female	White	59	
334838	150723074	6/20/2015	49.2646	М	5	Female	White	57	
334839 rd	ows × 12 colum	ins							
4									•

1.5) Add/Remove

• This section shows how to manipulate the DataFrame's structure

```
# Dropping the column
df.drop(columns=['disposition'])
```

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	b
0	150733174	7/11/2015	15.7762	V	5	Male	NaN	57	
1	150734723	7/6/2015	83.2157	S	36	Male	White	57	
2	150817487	8/2/2015	74.8813	L	20	Female	NaN	71	
3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	
4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	
334834	150739278	5/31/2015	15.0591	V	7	Male	NaN	59	
334835	150733393	7/11/2015	5.6748	С	3	Female	Black	68	
334836	150819286	7/24/2015	15.7762	V	38	Male	NaN	71	
334837	150823002	8/8/2015	97.9239	М	38	Female	White	59	
334838	150723074	6/20/2015	49.2646	М	5	Female	White	57	
334839 rd	ows × 11 colum	ins							>
1									-

[#] Adding column and create into a new column
df.assign(new_column=df['diagnosis'] + df['bodyPart'])

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	b
0	150733174	7/11/2015	15.7762	V	5	Male	NaN	57	
1	150734723	7/6/2015	83.2157	S	36	Male	White	57	
2	150817487	8/2/2015	74.8813	L	20	Female	NaN	71	
3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	
4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	
334834	150739278	5/31/2015	15.0591	V	7	Male	NaN	59	
334835	150733393	7/11/2015	5.6748	С	3	Female	Black	68	
334836	150819286	7/24/2015	15.7762	V	38	Male	NaN	71	
334837	150823002	8/8/2015	97.9239	М	38	Female	White	59	
334838	150723074	6/20/2015	49.2646	М	5	Female	White	57	
334839 ro	ws × 13 colum	ins		_					→
4									

Removing the column and assigning it to a new variable df.pop('age')

```
1
          36
2
         20
3
          61
          88
          7
334834
334835
334836
         38
334837
          38
334838
          5
Name: age, Length: 334839, dtype: int64
```

1.6) Clean missing

• to remove rows with missing values or replace missing values with a specified value

```
# replaceing the missing values with a specified value df.fillna(value=0)
```

	caseNumber	treatmentDate	statWeight	stratum	sex	race	diagnosis	bodyPa
0	150733174	7/11/2015	15.7762	V	Male	0	57	
1	150734723	7/6/2015	83.2157	S	Male	White	57	
2	150817487	8/2/2015	74.8813	L	Female	0	71	
3	150717776	6/26/2015	15.7762	V	Male	0	71	
4	150721694	7/4/2015	74.8813	L	Female	Other	62	
334834	150739278	5/31/2015	15.0591	V	Male	0	59	
334835	150733393	7/11/2015	5.6748	С	Female	Black	68	
334836	150819286	7/24/2015	15.7762	V	Male	0	71	
334837	150823002	8/8/2015	97.9239	М	Female	White	59	
334838	150723074	6/20/2015	49.2646	М	Female	White	57	
334839 rd	ows × 11 colum	ns						
4								+

Remove the rows with missing values df.dropna()

	caseNumber	treatmentDate	statWeight	stratum	sex	race	diagnosis	bodyPa
1	150734723	7/6/2015	83.2157	S	Male	White	57	
4	150721694	7/4/2015	74.8813	L	Female	Other	62	
5	150721815	7/2/2015	5.6748	С	Female	White	71	
6	150713483	6/8/2015	15.7762	V	Male	Black	51	
7	150704114	6/14/2015	83.2157	S	Male	White	57	
334830	150628863	6/8/2015	15.7762	V	Female	White	64	
334831	150607637	5/22/2015	5.6748	С	Female	Black	59	
334835	150733393	7/11/2015	5.6748	С	Female	Black	68	
334837	150823002	8/8/2015	97.9239	М	Female	White	59	
334838	150723074	6/20/2015	49.2646	М	Female	White	57	
205014 rd	ows × 11 colum	ns						>

[2] Pandas Practice

Now that the knowledge about Pandas is still fresh, let's practice!

2.1) [Question] Use pandas to generate a series of 20 consecutive numbers, starting from 120.

```
import numpy as np
import pandas as pd
num = pd.Series(range(120,140))
print(num)
           120
```

- 121 1
- 122
- 123
- 124
- 125
- 7 127
- 128
- 8 9

```
2/1/24, 7:35 PM
```

```
10
      130
11
      131
12
      132
13
      133
14
      134
15
      135
16
      136
17
      137
18
      138
19
      139
dtype: int64
```

2.2) [Question] Use pandas to generate a series of 20 even numbers, starting from 120.

```
even = pd.Series(range(120,160,2))
print(even)
     0
            120
            122
            124
     3
            126
     4
            128
     5
            130
     6
            132
            134
     8
            136
            138
     10
            140
     11
            142
     12
            144
     13
            146
     14
            148
     15
            150
     16
            152
     17
            154
     18
            156
     19
            158
     dtype: int64
```

2.3) [Question] Use pandas to generate a series of 50 numbers in the Fibonacci sequence.

(Hint: The Fibonacci sequence is the series of numbers where each number is the sum of the two preceding numbers. For example, 0, 1, 1, 2, 3, 5, ...)

```
def fibonacci(n):
  fibo = [0,1]
  while len(fibo)<n:
   fibo.append(sum(fibo[-2:]))
  return fibo[:n]
num = pd.Series(fibonacci(50))
print(num)
     0
                     0
     1
                     1
     2
                     1
     3
     4
                     3
     6
                     8
                    13
     8
                    21
                    34
     10
                    55
     11
                    89
     12
                   144
     13
                  233
     14
                  377
     15
                  610
     16
                  987
     17
                 1597
     18
                 2584
     19
                 4181
     20
                 6765
     21
                10946
     22
                 17711
```

```
2/1/24, 7:35 PM
```

```
26
          121393
27
          196418
28
          317811
29
          514229
30
          832040
31
         1346269
32
         2178309
33
         3524578
34
         5702887
35
         9227465
36
        14930352
37
        24157817
38
        39088169
39
        63245986
40
       102334155
41
       165580141
42
       267914296
43
       433494437
       701408733
45
      1134903170
46
      1836311903
47
      2971215073
48
      4807526976
49
      7778742049
dtype: int64
```

2.4) [Question] Use pandas to generate a series of 20 random numbers.

```
random = pd.Series(np.random.randn(20))
print(random)
          1.289892
     0
          -2.089178
          -0.866082
          -0.957709
     3
     4
          0.862843
           0.547167
          -0.345073
     6
          -0.138995
     8
           2.584712
          -0.657285
     10
          0.592690
     11
          -0.016348
     12
          -0.288702
     13
          -0.165038
     14
          -0.235155
     15
          -0.413447
     16
           1.556343
     17
           3.044533
     18
          -0.672022
     19
           0.520892
     dtype: float64
```

dtype: float64

2.5) [Question] Use pandas to generate a series of 20 random numbers, indexed in alphabetical order.

```
random = pd.Series(np.random.randn(20), index = list('ABCDEFGHIJKLMNOPQRST'))
print(random)
          0.094669
     Α
         -0.690833
     C
         0.138224
     D
          1.240561
     Е
        -0.687463
     F
          0.134502
     G
          0.846827
     Н
          0.271843
     Ι
          0.045277
     J
         -0.008694
     Κ
        -1.437961
         -0.288176
         -1.418809
     Μ
     N
          0.856130
     0
          0.779236
         -0.677710
     0
         0.118488
     R
         -0.918571
          0.546124
          0.995225
```

Next, we're going to use a dataframe which has already been created earlier at the beginning of this notebook. Let's view the first 5 rows (by default).

 $\label{eq:df} \mbox{df = pd.read_csv('nss15.csv') \# uncomment this line if the dataframe has been deleted.} \\ \mbox{df.head()}$

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyPa
0	150733174	7/11/2015	15.7762	V	5	Male	NaN	57	
1	150734723	7/6/2015	83.2157	S	36	Male	White	57	
2	150817487	8/2/2015	74.8813	L	20	Female	NaN	71	
3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	
4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	
4									•

2.6) [Question] Display the first 12 rows

df.head(12)

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyP
0	150733174	7/11/2015	15.7762	V	5	Male	NaN	57	
1	150734723	7/6/2015	83.2157	S	36	Male	White	57	
2	150817487	8/2/2015	74.8813	L	20	Female	NaN	71	
3	150717776	6/26/2015	15.7762	V	61	Male	NaN	71	
4	150721694	7/4/2015	74.8813	L	88	Female	Other	62	
5	150721815	7/2/2015	5.6748	С	1	Female	White	71	
6	150713483	6/8/2015	15.7762	V	25	Male	Black	51	
7	150704114	6/14/2015	83.2157	S	53	Male	White	57	
8	150736558	7/16/2015	83.2157	S	98	Male	Black	59	
9	150734928	7/13/2015	74.8813	L	48	Female	Black	53	
10	150734952	7/4/2015	15.7762	V	20	Male	Black	59	
11	150821622	7/20/2015	83.2157	S	20	Female	White	57	
4									•

2.7) [Question] Display the last 7 rows

df.tail(7)

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	b
334832	150747209	7/24/2015	83.2157	S	14	Female	NaN	62	
334833	150747217	7/24/2015	83.2157	S	2	Male	NaN	62	
334834	150739278	5/31/2015	15.0591	V	7	Male	NaN	59	
334835	150733393	7/11/2015	5.6748	С	3	Female	Black	68	
334836	150819286	7/24/2015	15.7762	V	38	Male	NaN	71	
334837	150823002	8/8/2015	97.9239	М	38	Female	White	59	
334838	150723074	6/20/2015	49.2646	М	5	Female	White	57	
4									▶

2.8) [Question] Display the last 5 rows (by default).

df.tail(5)

		caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	b
33	4834	150739278	5/31/2015	15.0591	V	7	Male	NaN	59	
33	4835	150733393	7/11/2015	5.6748	С	3	Female	Black	68	
33	4836	150819286	7/24/2015	15.7762	V	38	Male	NaN	71	
33	4837	150823002	8/8/2015	97.9239	М	38	Female	White	59	
33	4838	150723074	6/20/2015	49.2646	М	5	Female	White	57	•
4										P

2.9) [Question] Select the column 'statWeight' and display

```
df['statWeight']
               15.7762
     1
               83.2157
     2
               74.8813
               15.7762
               74.8813
     334834
               15.0591
     334835
                5.6748
     334836
               15.7762
     334837
               97.9239
     334838
               49.2646
     Name: statWeight, Length: 334839, dtype: float64
```

2.10) [Question] Select the first 20 rows of the column 'statWeight' and display

```
df['statWeight'].head(20)
           15.7762
     1
           83.2157
     2
           74.8813
     3
           15.7762
           74.8813
     5
            5.6748
     6
           15.7762
           83.2157
     8
           83.2157
     9
           74.8813
     10
           15.7762
     11
           83.2157
     12
           15.7762
     13
           15.7762
     14
           37.6645
     15
           83.2157
     16
           83.2157
     17
            5.6748
           15.7762
     18
     19
           97.9239
     Name: statWeight, dtype: float64
```

- 2.11) [Question] Select the last 50 rows of the column 'statWeight' and find/compute the following values:
 - Minimum
 - Maximum
 - Average
 - · Standard Deviation

2.12) [Question] Select the first 25 rows of two columns 'statWeight' and 'age', then find/compute the following values for both columns:

- Minimum
- Maximum
- Average
- · Standard Deviation

2.13) [Question] Select only columns that are of the type integer

```
inttype = df.select_dtypes(include='int')
print(inttype)
```

	caseNumber	age	diagnosis	bodyPart	disposition	location	product
0	150733174	5	57	33	1	9	1267
1	150734723	36	57	34	1	1	1439
2	150817487	20	71	94	1	0	3274
3	150717776	61	71	35	1	0	611
4	150721694	88	62	75	1	0	1893
334834	150739278	7	59	76	1	1	1864
334835	150733393	3	68	85	1	0	1931
334836	150819286	38	71	79	1	0	3250
334837	150823002	38	59	82	1	1	464
334838	150723074	5	57	34	1	9	3273

[334839 rows x 7 columns]

2.14) [Question] Select only columns that are of the type string or character

```
objtype = df.select_dtypes(include='object')
print(objtype)
```

	treatmentDate	stratum	sex	race
0	7/11/2015	V	Male	NaN
1	7/6/2015	S	Male	White
2	8/2/2015	L	Female	NaN
3	6/26/2015	V	Male	NaN
4	7/4/2015	L	Female	Other
• • •				
334834	5/31/2015	V	Male	NaN
334835	7/11/2015	C	Female	Black
334836	7/24/2015	V	Male	NaN
334837	8/8/2015	М	Female	White
334838	6/20/2015	М	Female	White
[33483	9 rows x 4 colu	umns]		

2.15) [Question] Display only unique values in the column 'race'

- 2.16) [Question] Display rows with the following conditions:
 - · Patients are male

- The age ranges from 35 to 60 years old
- · Could be of any race

df.loc[(df['sex'] == 'Male') & (df['age'] >= 35) & (df['age'] <= 60)]</pre>

4 4	150734723								
1 1	100704720	7/6/2015	83.2157	S	36	Male	White	57	
7 1	150704114	6/14/2015	83.2157	S	53	Male	White	57	
15 1	150655986	6/6/2015	83.2157	S	36	Male	NaN	59	
27 1	150913230	9/4/2015	15.7762	V	39	Male	NaN	71	
32 1	150908859	8/27/2015	37.6645	L	38	Male	Black	53	
334769 1	150648575	6/16/2015	15.7762	V	47	Male	White	62	
334779 1	150612283	6/2/2015	15.7762	V	46	Male	NaN	68	
334800 1	150648581	6/16/2015	15.7762	V	52	Male	White	64	
334805 1	150511998	4/20/2015	15.0591	V	55	Male	Black	71	
334836 1	150819286	7/24/2015	15.7762	V	38	Male	NaN	71	
36406 rows >	× 12 column	s							+

2.17) [Question] Based on your output in 2.16), select only the columns below to display.

- caseNumber
- treatmentDate
- race
- diagnosis
- bodyPart
- product

df.loc[(df['sex'] == 'Male') & (df['age'] >= 35) & (df['age'] <= 60), ['caseNumber', 'treatmentDate', 'race', 'diagnosis', 'bodyPart', 'pro-</pre>

	caseNumber	treatmentDate	race	diagnosis	bodyPart	product		
1	150734723	7/6/2015	White	57	34	1439		
7	150704114	6/14/2015	White	57	30	5040		
15	150655986	6/6/2015	NaN	59	82	894		
27	150913230	9/4/2015	NaN	71	94	3274		
32	150908859	8/27/2015	Black	53	36	5040		
334769	150648575	6/16/2015	White	62	75	1615		
334779	150612283	6/2/2015	NaN	68	85	5041		
334800	150648581	6/16/2015	White	64	35	4074		
334805	150511998	4/20/2015	Black	71	31	4014		
334836	150819286	7/24/2015	NaN	71	79	3250		
36406 rov	36406 rows × 6 columns							

2.18) [Question] Let's change the condition a bit.

- Patients are female
- The age ranges from 5 to 40 years old
- · Could be of any race

df.loc[(df['sex'] == 'Female') & (df['age'] >= 5) & (df['age'] <= 40)]</pre>

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	b
2	150817487	8/2/2015	74.8813	L	20	Female	NaN	71	
11	150821622	7/20/2015	83.2157	S	20	Female	White	57	
13	150666343	6/27/2015	15.7762	V	26	Female	White	62	
24	151029050	9/5/2015	49.2646	М	27	Female	NaN	58	
26	151005691	9/29/2015	74.8813	L	27	Female	Black	64	
334827	150640832	6/8/2015	15.7762	V	8	Female	NaN	64	
334830	150628863	6/8/2015	15.7762	V	30	Female	White	64	
334832	150747209	7/24/2015	83.2157	S	14	Female	NaN	62	
334837	150823002	8/8/2015	97.9239	М	38	Female	White	59	
334838	150723074	6/20/2015	49.2646	М	5	Female	White	57	
71275 rov	vs × 12 column	is							
4									•

- 2.19) [Question] Likewise, based on your output in 2.18), select only the columns below to display.
 - caseNumber
 - treatmentDate
 - race
 - · diagnosis
 - bodyPart
 - product

df.loc[(df['sex'] == 'Male') & (df['age'] >= 35) & (df['age'] <= 60), ['caseNumber', 'treatmentDate', 'race', 'diagnosis', 'bodyPart', 'pro</pre>

	caseNumber	treatmentDate	race	diagnosis	bodyPart	product
1	150734723	7/6/2015	White	57	34	1439
7	150704114	6/14/2015	White	57	30	5040
15	150655986	6/6/2015	NaN	59	82	894
27	150913230	9/4/2015	NaN	71	94	3274
32	150908859	8/27/2015	Black	53	36	5040
334769	150648575	6/16/2015	White	62	75	1615
334779	150612283	6/2/2015	NaN	68	85	5041
334800	150648581	6/16/2015	White	64	35	4074
334805	150511998	4/20/2015	Black	71	31	4014
334836	150819286	7/24/2015	NaN	71	79	3250
36406 rov	vs × 6 columns					

[3] Data Cleaning and Preparation

- ✓ .isnull, .dropna, .fillna
- 3.1) checking
- # isnull checking
 df.isnull().sum()

caseNumber 60 treatmentDate 50 statWeight 60

```
stratum
                           0
                           2
     sex
                      129825
     race
     diagnosis
                           0
     bodyPart
                           0
     disposition
                           0
     location
                           0
     product
                           0
     dtype: int64
# percentage of missing values for the race
df.race.isnull().sum()/df.shape[0]*100
     38.772365226272925
df.shape[0]
     334839
3.2) Drop column
# remove column by using
df = df.drop(columns=['race'])
df.head()
```

```
caseNumber treatmentDate statWeight stratum
                                                      sex diagnosis bodyPart disposit
0
  150733174
                    7/11/2015
                                 15.7762
                                               ٧
                                                     Male
                                                                  57
                                                                            33
1
   150734723
                    7/6/2015
                                 83.2157
                                               S
                                                     Male
                                                                  57
                                                                            34
   150817487
                    8/2/2015
                                 74.8813
                                                                  71
                                                                            94
                                                L Female
3
   150717776
                   6/26/2015
                                 15.7762
                                                     Male
                                                                  71
                                                                            35
   150721694
                    7/4/2015
                                 74.8813
                                                L Female
                                                                  62
                                                                            75
```

3.3) Data imputation

```
# fillna
df['age'] = df['age'].fillna(df['age'].median())
```

3.4) Drop row that have missing value

```
# remove column by using .dropna()
df = df.dropna()
df.isnull().sum()
     caseNumber
                       0
     {\tt treatmentDate}
     statWeight
                       0
                       0
     stratum
                       0
     age
     sex
                       0
                       0
     race
     diagnosis
                       0
     bodyPart
                       0
     disposition
                       0
     location
                       0
     product
                       0
     dtype: int64
```

→ Datetime

3.5) Working with the datetime format

```
import pandas as pd
import numpy as np
df = pd.read_csv('nss15.csv')
df["treatmentDate"] = pd.to_datetime(df["treatmentDate"], format="%m/%d/%Y")
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 334839 entries, 0 to 334838
     Data columns (total 12 columns):
                        Non-Null Count
     # Column
                                         Dtype
         caseNumber
                        334839 non-null
         treatmentDate 334839 non-null datetime64[ns]
     1
         statWeight
                        334839 non-null float64
         stratum
                        334839 non-null object
                        334839 non-null int64
         age
                        334837 non-null object
     5
         sex
      6
         race
                        205014 non-null
                                        object
         diagnosis
                        334839 non-null int64
         bodyPart
      8
                        334839 non-null int64
                        334839 non-null int64
         disposition
      10 location
                        334839 non-null int64
     11 product
                        334839 non-null int64
     dtypes: datetime64[ns](1), float64(1), int64(7), object(3)
     memory usage: 30.7+ MB
df['Year'] = df['treatmentDate'].dt.year
df['Month'] = df['treatmentDate'].dt.month
df.head()
```

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyPa
0	150733174	11/07/15	15.7762	V	5	Male	NaN	57	
1	150734723	06/07/15	83.2157	S	36	Male	White	57	
2	150817487	02/08/15	74.8813	L	20	Female	NaN	71	
3	150717776	26/06/15	15.7762	V	61	Male	NaN	71	
4	150721694	04/07/15	74.8813	L	88	Female	Other	62	
4									+

[Question] Can you change the format to DD/MM/YYYY? Show your work.

df["treatmentDate"] = pd.to_datetime(df["treatmentDate"], format="%d/%m/%y")
df.head()

	caseNumber	treatmentDate	statWeight	stratum	age	sex	race	diagnosis	bodyPa
0	150733174	2015-07-11	15.7762	V	5	Male	NaN	57	
1	150734723	2015-07-06	83.2157	S	36	Male	White	57	
2	150817487	2015-08-02	74.8813	L	20	Female	NaN	71	
3	150717776	2015-06-26	15.7762	V	61	Male	NaN	71	
4	150721694	2015-07-04	74.8813	L	88	Female	Other	62	
4									•

Combine Dataframe by .merge and .concat

3.6 Merge

```
superstore_order = pd.read_csv('superstore_order.csv')
superstore_people = pd.read_csv('superstore_people.csv')
superstore_return = pd.read_csv('superstore_return.csv')
```

```
superstore_order.merge(superstore_return[superstore_return["Returned"]=="Yes"],
on="Order ID" ,
how="inner")\
[["Customer ID", "Returned"]]\
.drop_duplicates()
```

	Customer ID	Returned					
0	ZD-21925	Yes					
3	TB-21055	Yes					
10	JS-15685	Yes					
13	LC-16885	Yes					
20	BS-11755	Yes					
688	ED-13885	Yes					
689	TS-21205	Yes					
696	MF-17665	Yes					
702	SH-19975	Yes					
705	RB-19435	Yes					
222 rows × 2 columns							

[Question] In your opinion, what information that the result above conveys?

Ans: The result show who return product that each customer has bought and the customer id show who bought the product earlier.

More merging...

```
superstore_order.merge(superstore_return,
on="Order ID" ,
how="inner")
```

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country
0	19	CA- 2014- 143336	27/08/2014	01/09/2014	Second Class	ZD- 21925	Zuschuss Donatelli	Consumer	United States
1	20	CA- 2014- 143336	27/08/2014	01/09/2014	Second Class	ZD- 21925	Zuschuss Donatelli	Consumer	United States
2	21	CA- 2014- 143336	27/08/2014	01/09/2014	Second Class	ZD- 21925	Zuschuss Donatelli	Consumer	United States
3	56	CA- 2016- 111682	17/06/2016	18/06/2016	First Class	TB-21055	Ted Butterfield	Consumer	United States
4	57	CA- 2016- 111682	17/06/2016	18/06/2016	First Class	TB-21055	Ted Butterfield	Consumer	United States
702	8870	CA- 2017- 101805	01/12/2017	06/12/2017	Standard Class	SH- 19975	Sally Hughsby	Corporate	United States
703	8871	CA- 2017- 101805	01/12/2017	06/12/2017	Standard Class	SH- 19975	Sally Hughsby	Corporate	United States
704	8872	CA- 2017- 101805	01/12/2017	06/12/2017	Standard Class	SH- 19975	Sally Hughsby	Corporate	United Stated
705	8873	US- 2014- 105137	10/10/2014	10/10/2014	Same Day	RB- 19435	Richard Bierner	Consumer	United Stated
706	8874	US- 2014- 105137	10/10/2014	10/10/2014	Same Day	RB- 19435	Richard Bierner	Consumer	United States

707 rows × 22 columns

3.7) Concatenate

pd.concat([superstore_order, superstore_people], axis=1, join='inner')

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	
0	1	CA- 2016- 152156	08/11/2016	11/11/2016	Second Class	CG- 12520	Claire Gute	Consumer	United States	ŀ
1	2	CA- 2016- 152156	08/11/2016	11/11/2016	Second Class	CG- 12520	Claire Gute	Consumer	United States	ŀ
2	3	CA- 2016- 138688	12/06/2016	16/06/2016	Second Class	DV- 13045	Darrin Van Huff	Corporate	United States	
3	4	US- 2015- 108966	11/10/2015	18/10/2015	Standard Class	SO- 20335	Sean ODonnell	Consumer	United States	L

⁴ rows × 23 columns

✓ Groupby

superstore_order.groupby(['Segment','Ship Mode'])[['Sales','Quantity','Discount','Profit']].sum()

		Sales	Quantity	Discount	Profit
Segment	Ship Mode				
Consumer	First Class	138594.9328	2455	110.29	18953.7264
	Same Day	53660.6340	1001	43.85	8555.7193
	Second Class	203605.6822	3489	127.29	24701.9148
	Standard Class	627061.3262	10430	443.05	68864.9892
Corporate	First Class	97720.1209	1670	73.07	12660.2526
	Same Day	41716.5550	366	14.50	1120.9222
	Second Class	130759.9288	2027	71.47	15582.1762
	Standard Class	359359.2109	6203	262.82	49832.6780
Home Office	First Class	76743.8674	924	39.82	11829.8821
	Same Day	20968.5170	343	12.50	3909.3442
	Second Class	77175.1080	1148	37.80	12785.8953
	Standard Class	218325.9795	3595	142.14	27298.5786

[Question] Briefly describe an information that the result above conveys?

Ans: The customer segment show that there are 3 types of customer which are consumer, corporate, and home office and each of them have different type of shipping, for example first class and standard class.

```
superstore_order["Profit Ratio"] = superstore_order["Profit"]/superstore_order["Sales"]
superstore_order.groupby(["Category", "Sub-Category"]).agg(mean_profit_ratio = ("Profit Ratio", "mean"))
```

mean_profit_ratio

Category	Sub-Category	
Furniture	Bookcases	-0.127756
	Chairs	0.045028
	Furnishings	0.140782
	Tables	-0.147916
Office Supplies	Appliances	-0.145513
	Art	0.251678
	Binders	-0.191641
	Envelopes	0.421913
	Fasteners	0.301157
	Labels	0.429984
	Paper	0.425586
	Storage	0.092382
	Supplies	0.104970
Technology	Accessories	0.219012
	Copiers	0.317826
	Machines	-0.059535
	Phones	0.118926

[Question] Briefly describe an information that the result above conveys?

Ans: It show the profit ratio of every product the company sell that has variesties of furniture, office services, and technology which each categories have a lot more products.

→ Pivot and Melt

Pivot

 $superstore_order.pivot_table(index="State", columns="Ship Mode", values="Order ID", aggfunc="count").fillna(0).head(10)$

State				
Alabama	9.0	1.0	18.0	30.0
Arizona	42.0	15.0	22.0	123.0
Arkansas	10.0	2.0	8.0	35.0
California	302.0	106.0	346.0	1000.0
Colorado	43.0	5.0	32.0	95.0
Connecticut	19.0	8.0	11.0	39.0
Delaware	16.0	2.0	13.0	55.0
District of Columbia	0.0	0.0	3.0	7.0
Florida	47.0	25.0	57.0	210.0
Georgia	19.0	15.0	31.0	108.0

Ship Mode First Class Same Day Second Class Standard Class

pivot_table_result = superstore_order.pivot_table(index="State", columns="Ship Mode", values="Order ID", aggfunc="count").fillna(0)
print(pivot_table_result)

Ship Mode	First Class	Same Day	Second Class	Standard Class
State				
Alabama	9.0	1.0	18.0	30.0
Arizona	42.0	15.0	22.0	123.0
Arkansas	10.0	2.0	8.0	35.0

California	302.0	106.0	346.0	1000.0
Colorado	43.0	5.0	32.0	95.0
Connecticut	19.0	8.0	11.0	39.0
Delaware	16.0	2.0	13.0	55.0
District of Columbia	0.0	0.0	3.0	7.0
Florida	47.0	25.0	57.0	210.0
Georgia	19.0	15.0	31.0	108.0
Tdaho	3 0	aa	2 A	13 0