Efficient Point-Based Trajectory Search

Shuyao Qi, The University of Hong Kong Panagiotis Bouros, Humboldt-Universität zu Berlin Dimitris Sacharidis, Technische Universität Wien Nikos Mamoulis, The University of Hong Kong

Trajectory Data

• A trajectory is a sequence of **spatio-temporal records**, indicating the travelling history of an object

Trajectory Search

- ullet Given a database D of trajectories, find the subset of trajectories qualifying a given criterion
 - P-query: search trajectories w.r.t. given point(s)
 - R-query: search trajectories w.r.t. a given range
 - T-query: search trajectories w.r.t. a selected trajectory

Trajectory Search

- ullet Given a database D of trajectories, find the subset of trajectories qualifying a given criterion
 - P-query: search trajectories w.r.t. given point(s)
 - R-query: search trajectories w.r.t. a given range
 - T-query: search trajectories w.r.t. a selected trajectory

Outline

- Distance-Based Trajectory Search
 - Existing solutions and their drawbacks
 - SRA and SRA+: Novel and efficient approaches
- Bounded Distance-Based Trajectory Search
- Other variants
- Experiments
- Conclusion

- [Chen 2010, Tang 2011]
- Given a trajectory database T
- Input a set of locations $Q = \{q_1, q_2, \dots, q_n\}$
- Find the top-k trajectories that are closest to Q
 - Formally: $dist(Q,T) = \sum_{q_i \in Q} \min_{p_j \in T} dist(q_i, p_j)$
- Route recommendation, trajectory mining, traffic study, etc.
- Unordered / Ordered

Existing Approaches: NN-based Solutions

- IKNN [Chen 2010], GH/QE [Tang 2011]
- Given trajectory database T, index all trajectory points by an **R-tree**
- Generation-Refinement Framework
 - Step1: Generate trajectories candidates using NN queries
 - Step2: **Refine** the candidates to find the top-k results

Generation with NN queries

NN-Heaps

Candidates

	q_1	q_2	q_3
T_1	p_{13}	/	/

Generation with NN queries

NN-Heaps

Candidates

	q_1	q_2	q_3
T_1	p_{13}	/	/
T_2	/	p_{22}	/

Generation with NN queries

NN-Heaps

H_1	H_2	H_3
p_{13}	p_{22}	p_{26}
	•••	

Candidates

	q_1	q_2	q_3
T_1	p_{13}	/	/
T_2	/	p_{22}	p_{26}

Termination and Refinement (Trivial)

- $UB_k = k$ th worst bound of existing candidates
- LB =bound of unseen trajectories
- When $UB_k \leq LB$, refine the candidates and select the top-k as results

Drawbacks of NN-Based Solutions

- Independent NN-queries for each $q_i \in Q$
- <u>I/O</u>: R-tree nodes and trajectory points may be accessed multiple times
- **CPU**: NN heaps are costly to maintain

What we thought

- Can we access the R-tree nodes at most once?
- Can we avoid costly heap maintenance?
- Can we hold intermediate entries in one single structure?

Spatial Range-Based Approach (SRA)

- Initialize list *N* = {root of R-Tree}
- For each $q_i \in Q$, do range query with radius r_i on N
 - *N* will be expanded during range queries

 $oldsymbol{\cdot}$ Go to refine when termination condition satisfies, otherwise increase r_i and repeat

Spatial Range-Based Approach (SRA)

- Initialize list *N* = {root of R-Tree}
- For each $q_i \in Q$, do range query with radius r_i on N
 - *N* will be expanded during range queries

- $oldsymbol{\cdot}$ Go to refine when termination condition satisfies, otherwise increase r_i and repeat
- Challenges
 - Correctness
 - Node pruning
 - Termination condition

Correctness

• $\{p_{13}, p_{14}, p_{24}\}$ are accessed and removed from N

	q_1	q_2	q_3
T_1	p_{13}	/	/
T_2	p_{24}	/	/

Correctness

• p_{24} will NOT be accessed by q_2 , but it is actually the *matching* location for q_2

	q_1	q_2	q_3
T_1	p_{13}	/	/
T_2	p_{24}	/	/

Temporary Matching Point

• $\{p_{13}, p_{14}, p_{24}\}$ are considered as temporary matching points for q_2 and q_3

	q_1	q_2	q_3
T_1	p_{13}	* p ₁₃	* p ₁₄
T_2	p_{24}	* p ₂₄	* p ₂₄

Temporary Matching Point

Temporary Matching Point

- q_2 cannot find better match in T_2 than p_{24}
- p_{24} is finalized at (q_2, T_2)

	q_1	q_2	q_3
T_1	p_{13}	* <i>p</i> ₁₃	* <i>p</i> ₁₄
T_2	p_{24}	p_{24}	* p ₂₄

Entry pruning

	q_1	q_2	q_3	UB
T_1	p_{13}	* <i>p</i> ₁₃	* p ₁₄	$ heta_1$
T_2	p_{24}	p_{24}	* p ₂₄	$ heta_2$

 $\theta = k$ th minimum UB

e.g., Suppose k = 1 $\theta = \min(\theta_1, \theta_2)$

Entry pruning

	q_1	q_2	q_3	UB
T_1	p_{13}	* <i>p</i> ₁₃	* <i>p</i> ₁₄	$ heta_1$
T_2	p_{24}	p_{24}	* p ₂₄	$ heta_2$

 $\theta = k$ th minimum UB

e.g., Suppose
$$k = 1$$

 $\theta = \min(\theta_1, \theta_2)$

Lemma:

For an unseen trajectory T_i , it might become top-k only if $dist(T_i, Q) \leq \theta$

Radius Bounding

Lemma:

For an unseen trajectory T_i , it might become top-k only if $dist(T_i, Q) \leq \theta$

Radius Bounding: Any entry outside θ can be pruned. *

^{*}Bound can be further tightened, details in the paper

Termination Condition

- r_i increases
- θ decreases

Termination Condition

- r_i increases
- θ decreases
- If $r_i \ge \theta$, the candidate generation can be safely terminated

SRA+

- The idea of QE can be used in SRA as well
- During candidate generation, fill some partial matches

	q_1	q_2	q_3	UB
T_1	p_{13}	* <i>p</i> ₁₃	* p ₁₄	$ heta_1$
T_2	p_{24}	p_{24}	* p ₂₄	$ heta_2$

SRA+

- The idea of QE can be used in SRA as well
- During candidate generation, fill some partial matches
- Decrease θ faster

	q_1	q_2	q_3	UB
T_1	p_{13}	* <i>p</i> ₁₃	* p ₁₄	$ heta_1$
T_2	p_{24}	p_{24}	p_{26}	${\theta_2}'$

SRA/SRA+

- Keep entries in unordered list N
- Access each node/data at most once
- Shorten *N* with radius bounding
- Terminate when radiuses match
- Good applicability in other variants

Outline

- Distance-Based Trajectory Search
 - Existing solutions and their drawbacks
 - SRA and SRA+: Novel and efficient approaches
- Bounded Distance-Based Trajectory Search
- Other variants
- Experiments
- Conclusion

Bounded Distance-Based Trajectory Search

Bounded Distance-Based Trajectory Search

$$Span(T_1, Q) = 2 h$$

$$Span(T_2, Q) = 4 h$$

Bounded Distance-Based Trajectory Search

$$Span(T_1, Q) = 2 h$$

Bounded Distance-Based Trajectory Search (k-BDTS)

• Given a trajectory database T, a set of locations $Q = \{q_1, q_2, \dots, q_n\}$, and a span threshold τ , k-BDTS finds the top-k closest trajectories to Q with $\operatorname{span} \leq \tau$

k-BDTS: Incremental Algorithm

- (1) Result set $R = \emptyset$
- (2) Next k candidates R' = k-DTS (T, Q)
- (3) Update R with R', using span threshold τ
- (4) If $|R| \ge k$, return R
- (5) Otherwise go back to (1)

k-BDTS: Incremental Algorithm

- (1) Result set $R = \emptyset$
- (2) Next k candidates R' = k-DTS (T, Q)
- (3) Update R with R', using span threshold τ
- (4) If $|R| \ge k$, return R
- (5) Otherwise go back to (1)

- DTS has no idea whether a trajectory is valid or not (w.r.t. span)
- It may go through several rounds of generation-refinements

k-BDTS: One-Pass

- Follow DTS generationrefinement procedure
- Prune a candidate with span lower bound $> \tau$
- Lemma: When there are at least k fully matched candidates with span $\leq \tau$, calculate θ accordingly

Other Variants

- Distance and Span-based Trajectory Search (k-DSTS)
 - Instead of binary selection based on span, rank the trajectories based on a combined distance and span score
 - $f(T_i, Q) = \alpha \times dist(T_i, Q) + (1 \alpha) \times span(T_i, Q)$
 - Adapt by replacing distance function and upper/lower bound calculation
- Order-aware Trajectory Search
 - Q is not a set but a sequence with **order constraint**
 - Distance function defined recursively taking the order into account
 - Upper/lower bounds adjusted accordingly

Outline

- Distance-Based Trajectory Search
 - Existing solutions and their drawbacks
 - SRA and SRA+: Novel and efficient approaches
- Bounded Distance-Based Trajectory Search
- Other variants
- Experiments
- Conclusion

Experiments

- Trajectory Dataset: GeoLife Project [Zheng 2009]
 - 17K trajectories with 19M points
 - Indexed by R-tree

•
$$|Q| = \{2, 4, 6, 8, 10\}$$

• Vary k, |Q|, τ , etc.

k-DTS: Varying |Q|

k-BDTS: Varying |Q|

k-DSTS: Varying |Q|

Ordered DTS: Varying |Q|

Conclusions and Future Work

- SRA/SRA+: efficient and robust solutions to point-based trajectory search
- Applicability
 - Distance-based Trajectory Search
 - Bounded DTS
 - Ordered DTS
 - Distance & Span-based Trajectory Search
- Current/Future Work
 - Usage of SRA in more trajectory retrieval tasks
 - More general trajectory retrieval mechanism, e.g., set-based trajectory search

References

- [Chen 2010] Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by locations: an efficiency study. In: SIGMOD. (2010)
- [Tang 2011] Tang, L.A., Zheng, Y., Xie, X., Yuan, J., Yu, X., Han, J.: Retrieving k-nearest neighboring trajectories by a set of point locations. In: SSTD. (2011)
- [Zheng 2009] Zheng, Y., Zhang, L., Xie, X., Ma, W. Y.: Mining interesting locations and travel sequences from GPS trajectories. In: WWW. (2009)

Thanks!

Q & A