

ESC201: Introduction to Electronics

MODULE 5: AMPLIFIERS

Dr. Shubham Sahay,
Assistant Professor,
Department of Electrical Engineering,
IIT Kanpur

Amplifier circuits

Ideal transistor

$$A_V = \frac{V_o}{V_S} = -g_m r_o \times \frac{R_L}{r_o + R_L} \times \frac{R_i}{R_i + R_S}$$

• Ideally, r_o and R_i are infinite

$$A_V = -g_m R_L$$

Key device needed: voltage controlled current source

Ideal transistor characteristics

$$A_V = \frac{v_o}{v_s} = -g_m R$$

In practice there is no element which has the characteristics of ideal transistor!

Real transistors

Transfer Characteristic

metal-oxide-semiconductor field-effect transistor MOSFET

Real Devices to Amplifiers

Ideal transistor

Li. Siluuliaili Sallay LSC 201

How do we use devices such as X, Y etc to make amplifiers?

Simplified model X

Ideal transistor

Device X (non-linear)

$$I_o = \begin{cases} 0 & \text{for } V_i \leq V_{\alpha} \\ g_m(V_i - V_{\alpha}) & \text{for } V_i > V_{\alpha} \end{cases}$$

Amplifier with biasing

$$V_{\alpha} = 1V; g_m = 0.01\Omega^{-1}$$

 $R_L = 1K;$

Biasing

When only a part of device characteristics is suitable for amplification, then we need to push the device into that region by applying suitable bias voltages.

$$V_o = -I_o R_L$$

How to choose the bias voltage V_B ?

- Choose V_B as the center point of desired operating range
- Otherwise: clipping!

 V_B : Bias point or Quiescent point (Q-point)

DC vs AC Components

Large signal model: non linear

$$V_{\alpha} = 1V;$$

$$g_m = 0.01\Omega^{-1}$$

$$V_i = 1.5 V$$

$$I_o = g_m(V_i - V_\alpha) = 5 \text{mA}$$

Non-linear characteristics since superposition does not hold

Small signal method

- Operate at some bias point V_D , I_D
- Superimpose small signal \boldsymbol{v}_d on top of \boldsymbol{V}_D
- Response i_d to small signal v_d is approximately linear.

$$i_D = I_D + i_d$$
 $v_D = V_D + v_d$ signal Bias Additional small signal

- Also known as
 - Incremental model
 - Linearized model
 - AC model

Linear $i_d = k v_d$

Small signal model: linear

Small signal model

input $\overline{v_i} = V_i + v_i$ $i_o = g_m v_i \langle$ Output $I_o = g_m(V_i - V_\alpha)$ $V_i \rightarrow$ $I_o + i_o = g_m(V_i + v_i - V_\alpha)$ $V_i + v_i \rightarrow$ additional $v_i \rightarrow$ $i_o = g_m(v_i)$

Dr. Shubham Sahay ESC201

14

Alternative biasing technique

What happens if both dc voltage source and signal source have one terminal as ground?

Alternative biasing technique

What happens if both dc voltage source and signal source have one terminal as ground?

Alternative biasing technique

$$\overline{v_i} = v_S + V_B$$

Simplified model Y

How do we use element Y to make amplifiers?

for
$$V_O < V_{sat}$$
: $I_O = 0$

for
$$V_0 \ge V_{sat}$$
:
$$I_o = \begin{cases} 0 & \text{for } V_i \le V_{\alpha} \\ g_m \times (V_i - V_{\alpha}) & \text{for } V_i > V_{\alpha} \end{cases}$$

Can we use the circuit for model X?

 $V_{\rm O}$ is -ve which will not produce any current in device Y

ANALYZING TWO ELEMENT SYSTEM

- > Usually element close to the ground treated as primary element (if input given to both).
- Other element: load to primary element.
- > Goal is to find the operating point of the circuit: Load line analysis.
- > Represent electrical characteristics of both elements on a single plot.
- ➤ Intersection gives Operating Point.

REVISITING LOAD LINE ANALYSIS

- $ightharpoonup I_2 = I_1$ (no change in the direction); $V_2 = V_{supply} V_1$ i.e. $V_1 = V_{supply} V_2$
- \triangleright Current in both Elements 1 & 2 is I_{op} .
- \triangleright Voltage in node X is V_{op} .
- Voltage drop is V_{op} and $(V_{supply} V_{op})$ in Elements 1 & 2, respectively. Dr. Shubham Sahay ESC201

Understanding Load Line

 I_{02} Q-point V_{α} V_{i2}

Transfer Characteristics

No solution possible that satisfies both load line and device Y

Why is circuit working for Device X and not for Device Y?

Device X

Valid solution possible V_{i3} V_{i2} V_{i1} Load line $(V_o = -I_o \cdot R_C)$

Output Characteristics

Device Y

Solution to get meaningful Q point

Purpose of biasing network is to operate the device in a region which resembles ideal transistor

Need bias at output

Revised Amplifier Schematic for Device Y

Another representation of biasing

Do we really need two DC power supplies?

$$V_B = V_{CC} \times \frac{R_2}{R_1 + R_2}$$

Remember: input of Y is open circuit

MOSFETs: Workhorse of Semiconductor Industry

MOSFET: Metal Oxide Semiconductor Field effect Transistor

Drain current is controlled by gate voltage

BJT vs. MOSFET

High gain

Small caps

Static power

Low gain

Large caps

Dynamic power

The MOSFET

