编译原理

武汉大学计算机学院编译原理课程组

前述内容回顾

与语法分析有关的概念:

最左(右)推导、规范推导 语法树和二义性 递归 文法的实用限制

本章内容简介

- · DFA、NDFA
- ·NDFA到DFA的转换
- ·正规文法与FA
- ·正规表达式与FA

语言的描述

第3章 有穷自动机

3.1 有穷自动机的形式定义

1. 确定的有穷自动机DFA DFA=(Q, Σ , t, q_0 , F)

Q —— 有穷非空的状态集。

∑——有穷的输入字母表。

 $q_0 \longrightarrow \in Q$,是开始状态。

F——⊆Q,非空终止状态集合。

 $t \longrightarrow$ 单值映射 $Q \times \Sigma \rightarrow Q$ 。 t(q,x)=q?

"确定": 当前状态和下一个输入字符惟一地确定了后继状态。

3.1 FA的形式定义——DFA

2. FA的表示:

- ①状态转换表
- ②状态转换图

DFA的表示举例——状态转换表

DFA A=($\{q_1, q_2, q_3, q_4\}, \{0, 1\}, t, q_1, \{q_3, q_4\}$) 映射为:

状态 t 字母	0	1	
\mathbf{q}_1	$\mathbf{q_1}$	\mathbf{q}_{2}	
\mathbf{q}_2	\mathbf{q}_1	\mathbf{q}_3	
\mathbf{q}_3	\mathbf{q}_4	\mathbf{q}_3	
$\mathbf{q_4}$	$\mathbf{q_4}$	$\mathbf{q_3}$	

DFA的表示举例——状态转换图

DFA A=($\{q_1, q_2, q_3, q_4\},$ $\{0, 1\}, t, q_1, \{q_3, q_4\})$

状态	t 0	1	
\mathbf{q}_1	\mathbf{q}_1	\mathbf{q}_2	
\mathbf{q}_{2}	\mathbf{q}_1	\mathbf{q}_3	
q_3	$\mathbf{q_4}$	\mathbf{q}_3	
\mathbf{q}_4	$\mathbf{q_4}$	\mathbf{q}_3	

3.1 FA的形式定义——DFA的扩充

DFA=(Q, Σ , t, q_0 , F)扩充的映射

$$t: Q \times \Sigma^* \rightarrow Q$$

定义为 (1) $t(q, \varepsilon)=q$

(2) $t(q, a \alpha) = t(t(q, a), \alpha)$

其中 $q \in Q$, $a \in \Sigma$, $\alpha \in \Sigma$ *。

DFA映射的扩充, 使得DFA可以描述对符号串的识别。

如果t(q₀, α)∈F,则α可被DFA接受(或识别)。

被DFAA识别的符号串集合,记为L(A)。

有穷自动机识别的符号串举例

DFA A=(
$$\{q_1, q_2, q_3, q_4\},$$

{0, 1}, t, $q_1, \{q_3, q_4\}$)

$t(q_1, 0011) = t(t(q_1, 0), 011)$			
$=t(q_1,011)$			
$=t(t(q_1, 0), 11)$			

 $=t(q_1, 11)$

状态t字母	÷ 0	1	
\mathbf{q}_1	\mathbf{q}_1	$\mathbf{q_2}$	
\mathbf{q}_2	\mathbf{q}_1	\mathbf{q}_3	
\mathbf{q}_3	$\mathbf{q_4}$	\mathbf{q}_3	
$\mathbf{q_4}$	$\mathbf{q_4}$	\mathbf{q}_3	

$-\tau (\tau (q_1,$	1),	1)
$=t(q_2, 1)$		
=q ₃ ∈F		start

-+ (+ (- 1) 1)

3.1 FA的形式定义——FA的等价性

如果两个有穷自动机A1和A2满足

$$L(A_1)=L(A_2)$$

则称自动机A₁和A₂是等价的。

FA的等价性举例

DFA A=(
$$\{q_0, q_1\}, \{a, b\}, t, q_0, \{q_0\}$$
)
 $t(q_0, a)=q_1, t(q_1, b)=q_0$

DFA B=(
$$\{q_0',q_1',q_2'\}$$
, $\{a, b\}$, $t',q_0',\{q_0',q_2'\}$)
 $t'(q_0',a)=q_1'$, $t'(q_1',b)=q_2'$, $t'(q_2',a)=q_1'$

$$L(A)=L(B)=\{(ab)^n|n\geq 0\}$$

3.1 有穷自动机的形式定义

非确定的有穷自动机NDFA NDFA=(Q, Σ , t, Q_0 , F)

Q — 有穷非空的状态集。

∑ — 有穷的输入字母表。

 $Q_0 \longrightarrow \subseteq Q$,是开始状态<u>集</u>。

F—— ⊆Q,非空终止状态集合。

t — 多值映射 $Q \times \Sigma \rightarrow 2^{Q}$ 。

$$t(q,x)=\{q_1,q_2,...,q_n\}$$

NDFA举例

NDFA=({0,1,2,3}, {x,y}, t, {0}, {1}) 其中t为

$$t(0, x)=\{1,2\}$$
 $t(0, y)=\{0\}$

$$t(1, x)=\{0\}$$
 $t(1, y)=\{1,2\}$

$$t(2, x)={3}$$
 $t(2, y)={3}$

$$t(3, x)=\{1,3\}$$
 $t(3, y)=\{3\}$

3.1 FA的形式定义——NDFA的扩充

NDFA=(Q,
$$\Sigma$$
, t, Q₀, F)扩充的映射 t: Q $\times \Sigma^* \rightarrow 2^Q$

定义为 (1) $t(q,\epsilon)=q$

(2) $t(q,a\alpha)=t(q_1,\alpha)\cup t(q_2,\alpha)\cup ...\cup t(q_n,\alpha)$

其中 $a \in \Sigma$, $\alpha \in \Sigma^*$, $t(q,a) = \{q_1, q_2, \dots, q_n\}$ 。

如果 $q \in t(q_0, \alpha)$, $q_0 \in Q_0$, $q \in F$,

则α可被NDFA接受。

被NDFA A识别的符号串集合,记为L(A)。

NDFA举例

NDFA= $(\{0,1,2,3\}, \{x,y\}, f, \{0\}, \{1\})$

问: xy是否可被NDFA所接受?

xyx呢?

3.2 NDFA到DFA的转换

为什么要进行从NDFA到DFA的转换? 为什么要引入NDFA?

- □ DFA是NDFA的特例。 NDFA真的比DFA强大吗
- □ 对每个NDFA N一定存在一个DFA M,使得L(M)=L(N)。即对任意的NDFA N存在与之等价的DFA M。但这种DFA M可能不唯一。

3.2 NDFA到DFA的转换

NDFA到DFA的转换:

- □确定化 —— 子集法、造表法
- □ DFA最小化 —— 构造状态集合的划分

【定义】 ϵ 自动机 ϵ NDFA为 (Q, Σ U{ ϵ }, t, Q₀, F)

自动机的弧上允许标记 ϵ , 称此 $FA为\epsilon$ 自动机,

记为εFA(εNDFA或εDFA)。

消除ε自动机中的空移:

对于EFA. 总可以构造等价的FA. 使得

$$L(\varepsilon FA) = L(FA)$$

1. 子集法

- (1) 空移环路的寻找和消除
- (2) 消除余下的空移
- (3) 利用子集法确定化

(1) 空移环路的寻找和消除

空移环路:一个从状态A开始并以A结束的空移动序列。 空移环路中的所有状态是等价的。

消除方法:

- ① 把空移环路上的所有结点 $q_1,q_2,...,q_n$ 合并成一个结点,取一个公共名。
- ② 若有 $q_i \in Q_0(=q_0)/F$, (i=1,...,n) 则合并后的新状态相应设置为初态/终态。

NDFA到DFA的转换——举例

消除空移环路:

1. 子集法

- (1) 空移环路的寻找和消除
- (2) 消除余下的空移
- (3) 利用子集法确定化

(2) 消除空移

- ① 若 $t(A,\varepsilon)=\{...,B,...\}$,则置 $t(A,\varepsilon)=\emptyset$ 。
- ② $\forall a \in \Sigma, q \in Q$: 若 $q \in t(B,a)$ 把q加入t(A,a)
- ③ 若A是初态(或从初态经ε路径到达A), 则置B为初态;

若B是终态,则置A为终态。

NDFA到DFA的转换——举例

消除空移:

NDFA到DFA的转换——举例

1. 子集法

- (1) 空移环路的寻找和消除
- (2) 消除余下的空移
- (3) 利用子集法确定化

(3) 利用子集法确定化

主要思想:

利用状态子集间确定的转换关系,进行确定化。

(3) 利用子集法确定化

NDFA DFA

设已知的NDFAA为(Q, Σ, t, Q_0, F),

与A等价的DFAA'为(Q', Σ ',t', q_0 ,F')。

$$\begin{split} \Sigma' &= \Sigma \\ Q' &= 2^Q \setminus \{\varnothing\}, \ \text{由Q 的状态子集组成} \\ q_0 &= [s_1, s_2, ..., s_k], \quad s_1, s_2, ..., s_k \in Q_0 \\ F' &= \{ [e_1, e_2, ..., e_p] \mid \{e_1, e_2, ..., e_p\} \cap F \neq \varnothing \} \\ t': t'(r', a) &= q', \ \ \ \, \sharp \ r' = [r_1, r_2, ..., r_n] \ , \ \ \ \, q' = [q_1, q_2, ..., q_m] \\ &= \{q_1, q_2, ..., q_m\} = t(r_1, a) \cup t(r_2, a) \cup ... \cup t(r_n, a) \end{split}$$

子集法举例

 $DFA=(Q',\{x,y\}, t', [0], \{[1],[0,1],[1,2],[1,3],[0,1,2],[0,1,3], [1,2,3],[0,1,2,3]\})$

$$t'([0],x)=[1,2]$$

$$t'([0],y)=[0]$$

$$t'([1],x)=[0]$$

$$t'([2],x)=[3]$$

$$t'([2],y)=[3]$$

$$t'([3],x)=[1,3]$$

$$t'([3],y)=[3]$$

$$t'([0,1],x)=[0,1,2]$$

$$t'([0,1],y)=[0,1,2]$$

$$t'([0,2],x)=[1,2,3]$$

$$t'([0,2],y)=[0,3]$$

$$t'([0,3],x)=[1,2,3]$$

$$t'([0,3],y)=[0,3]$$

$$t'([1,2],x)=[0,3]$$

子集法举例

罗 为什么可以用子集法进行NDFA的确定化?

 $DFA = (Q', \{x,y\}, t', [0], \{[1], [0,1], [1,2], [1,3], [0,1,2], [0,1,3], [1,2,3], [0,1,2,3]\})$

$$t'([0],x)=[1,2]$$

$$t'([1],x)=[0]$$

$$t'([2],x)=[3]$$

$$t'([3],x)=[1,3]$$

$$t'([0,1],x)=[0,1,2]$$

$$t'([0,2],x)=[1,2,3]$$

$$t'([0,3],x)=[1,2,3]$$

$$t'([1,2],x)=[0,3]$$

$$t'([0],y)=[0]$$

$$t'([2],y)=[3]$$

$$t'([3],y)=[3]$$

$$t'([0,2],y)=[0,3]$$

$$t'([0,3],y)=[0,3]$$

$$t'([1,3],x)=[0,1,3]$$

$$t'([2,3],x)=[1,3]$$

$$t'([0,1,2],x)=[0,1,2,3]$$

$$t'([0,1,3],x)=[0,1,2,3]$$

$$t'([0,2,3],x)=[1,2,3]$$

$$t'([1,2,3],x)=[0,1,3]$$

$$t'([0,1,2,3],x)=[0,1,2,3]$$

$$t'([2,3],y)=[3]$$

$$t'([0,2,3],y)=[0,3]$$

$$t'([0,1,2,3],y)=[0,1,2,3]$$

子集法举例

NDFA的状态转换图

DFA的状态转换图[部分]

子集法的局限

DFA的状态转换图[部分]

子集法的局限性:

- □状态数太多
- □存在不可达状态

造表法

NDFA到DFA的转换——造表法

利用造表法确定化

主要思想:

为避免不可达状态,从初始状态出发,计算t', 依次构造其后继状态,进行确定化。

$$I$$
子集 \xrightarrow{a} I_a 子集

$$I_a = t'(I, a)$$

3.2 NDFA到DFA的转换——造表法

□ 求某个子集I在a下的后继状态(子集)Ia:

即从I中状态出发,经过一条a弧(跳过a弧前、越过a弧后的任意条g弧)到达的状态集合(子集)。

- ① 状态子集I的E闭包
- ② Ia子集

$$I_a = t'(I, a)$$

3.2 NDFA到DFA的转换——造表法

①状态子集I的E闭包

假设I是状态集合Q的一个子集。

定义I的ε闭包(ε-CLOSURE(I))为:

i.如果状态q∈I,则q∈ε-CLOSURE(I);

ii.如果状态q∈I,则q'∈ε-CLOSURE(I)。

其中q'为由状态q出发,经任意条 ϵ 弧能到达的Q中的状态。

4

3.2 NDFA到DFA的转换——造表法

② Ia子集

 $I_a = t'(I, a)$

设I是状态集Q的一个子集。

由I中的状态出发,经历一条a弧(跳过a弧前的任意条ε弧)可 到达的状态的集合称为J.则

$$I_{a} = \varepsilon - CLOSURE (J)$$

NDFA到DFA的转换——造表法

利用造表法确定化

- 1. 将 $I=ε-closure(Q_0)$ 作为表的第1行第1列,然后求其 I_a 和 I_b ,填入第2,3列;
- 2. 将未出现在第1列的|_a和|_b依次填入下一行作为|值,并求其|_a和|_b,填入相应行的第2,3列;
- 3. 重复2, 直至所有2, 3列元素全部在第1列出现过为止;
- 4. 最终表即是状态转换表。

状态: 第1列元素

输入符号: Ia和Ib看作a和b

状态转换函数: 表中相应元素

初态: 第1行第1列元素

终态: 含原终态的元素

NDFA到DFA的转换——举例

NDFA到DFA的转换——造表法

造表法的特点:

- □简单有效
- □不存在不可达状态
- □状态数比子集法大大减少

3.2 NDFA到DFA的转换

NDFA到DFA的转换:

- □确定化 —— 子集法、造表法
- □ DFA最小化 —— 构造状态集合的划分

3.2 NDFA到DFA的转换——DFA化简

寻找一个状态数比M更少的DFA M', 使得M和M'所识别的字符串相同, 即L(M)=L(M')。(M'唯一的)

条件:接受的语言相同(等价的DFA)

主要思想:

- □ 合并等价状态
- □ 删除无关状态

3.2 NDFA到DFA的转换——DFA化简

等价状态:如果从DFA的某个状态 q_1 出发能识别某一字符串x而停止于终态,那么从 q_2 出发也能识别字符串x而停止于终态;反之亦然。则称状态 q_1 和 q_2 是等价的。

如果q1和q2不等价,则说q1和q2是可区分的。

最小化算法(划分法):

DFA最小化的关键在于把它的状态集分成一些两两互不相 交的子集,使得任何两个不同的子集中的状态都是可区分的, 而同一子集中的任何两个状态都是等价的。

3.2 NDFA到DFA的转换——DFA化简

步骤一 构造状态集的划分

- □终止状态集/非终止状态集
- 口对每一个子集进行再分解(属于同一子集的任意状态 q_1 和 q_2 ,对于任何 $a \in \Sigma$, $t(q_1,a)$ 与 $t(q_2,a)$ 属于同一子集。)

步骤二 取每一组中的一个状态作代表,合并等价状态步骤三 删去无关状态

不可达状态死状态

DFA化简举例

[例] 删去无关状态

DFA化简举例

[例] 将下列DFA最小化。

从化简后的DFA到程序表示

从化简后的DFA到程序表示

标识符DFA

识别标识符的程序流程图

[定理1] RG→FA

由正规文法G[S]可直接构造一个与之等价的FAA,使得L(G)=L(A)。

[定理2] FA→RG

由有穷自动机FAA可直接构造一个与之等价的正规 文法G,使得L(G)=L(A)。

1. RG→FA的构造:

- · 令G的终结符号集为A的字母表;
- G的非终结符号作为A的状态, G的开始符号为A的开始状态;
- · 增加一个终止状态Z(Z∉V_N);
- 形如U→a的规则, 引一条从状态U到终止状态Z的标记为a的 弧;
- 形如U→aW的规则,引一条从状态U到W的a弧。

正规文法⇒FA

【例1】给定文法G[Z]:

 $Z\rightarrow 0U|1V$

 $U\rightarrow 1Z|1$

 $V \rightarrow 0Z|0$

试给出等价的FAA。

【例2】给定文法G[S]:

 $S \rightarrow aS | aB$

 $B \rightarrow bB|bA$

 $A \rightarrow cA|c$

试给出等价的FAA。

FA⇒正规文法

2. FA→RG的构造:

- ①自动机A中的每一个状态均作为G的非终结符号,其中A的开始状态作为G的开始符号,A的输入字母表中的所有符号作为G的终结符号;
 - ②对A中V \in t(U,a)的映射,构造G的产生式U::=aV; 若 $V \in F$,则构造G的产生式 U::=a;
 - ③若A中 $q_0 \in F$,则构造G的产生式S::= ϵ 。

FA⇒正规文法

2. FA→RG的构造:

- ①自动机A中的每一个状态均作为G的非终结符号,其中A的开始状态作为G的开始符号,A的输入字母表中的所有符号作为G的终结符号;
 - ②对A中V \in t(U,a)的映射,构造G的产生式U := aV;
 - ③对A中终止状态Z,构造G的形如Z∷=ε的产生式。

FA ⇒ RG举例

[例] 为下列NDFAA构造等价的正规文法。(P46, 3.9)

3.4 正规表达式RE与FA

- 字母表 Σ 上的正规表达式RE e, 描述的语言称为正规集L(e) 。
- $(1)_{\varepsilon}$ 、 \emptyset 是 Σ 上的RE,相应的正规集分别是 $\{\varepsilon\}$ 、 \emptyset 。
- (2) \forall a∈Σ, a是Σ上的RE, 相应的正规集是{a};
- (3)设 e_1 与 e_2 是 Σ 上的RE,分别描述正规集 $L(e_1)$ 、 $L(e_2)$,则
 - ① (e_1) 也是 Σ 上的RE,相应正规集为 $L((e_1))=L(e_1)$;
 - ② e_1e_2 也是 Σ 上的RE,相应正规集为 $L(e_1e_2)=L(e_1)L(e_2)$;
 - ③ $e_1|e_2$ 也是 Σ 上的RE,相应的正规集为 $L(e_1|e_2)=L(e_1)\cup L(e_2)$;
 - $Φ_1^*$ 也是Σ上的RE,相应的正规集为 $L(e_1^*)=(L(e_1))^*$ 。

仅由有限次(3)所描述运算而得到的表达式才是Σ上的正规表达式。

正规表达式举例

- **(1) 0*10***
- (2) $\Sigma * 1\Sigma *$
- (3) $\Sigma * 001\Sigma *$
- (4) $(\Sigma \Sigma)$ *
- $(5) \quad (\Sigma \Sigma \Sigma) *$
- (6) $0\Sigma*0|1\Sigma*1|0|1$
- (7) $(0 | \epsilon)1^* = 01^* | 1^*$
- (8) Φ *={ ϵ }

3.4 RE与FA——正规表达式等价

【定义】正规表达式等价

设e₁, e₂均为Σ上的正规表达式,

若 L(e₁)=L(e₂)

则称 e_1 与 e_2 等价,记为: $e_1=e_2$ 。

[例] 试证: b(ab)* = (ba)*b

3.4 RE与FA——RE的性质

设A、B、C均为正规表达式,则有下列等价关系成立:

- $(1) \mathbf{A} | \mathbf{B} = \mathbf{B} | \mathbf{A}$
- (2) A|(B|C)=(A|B)|C
- (3) A(BC)=(AB)C
- $(4) A(B|C)=AB|AC \qquad (B|C)A=BA|CA$
- (5) $\varepsilon A = A \varepsilon = A$
- $(6) (A^*)^* = A^*$
- (7) $A^*=\epsilon|AA^*$
- (8) (AB)*A=A(BA)*
- (9) (A|B)*=(A*B*)*=(A*|B*)*
- (10) A=b|aA 当且仅当 A=a*b (11) A=b|Aa 当且仅当 A=ba*

RG、FA和RE的关系

3.4 RE与FA——关系

[定理1] RE→FA

对于字母表 Σ 上的任意正规表达式e,一定可以构造一个输入字母表 Σ 上的NDFAA,使得L(A)=L(e)。

[定理2] FA→RE

由有穷自动机FAA所识别的语言L(A),可以用 Σ 上的RE e来表示,使得L(A)=L(e)。

3.4 RE与FA——RE⇒FA

1. RE \rightarrow FA

- (1)构造广义NFA:S是惟一开始状态,Z是惟一终止状态。弧标记e。
- (2)根据分解规则分解e,得到与e对应的NFA。

RE⇒FA举例

[例] 构造正规表达式 xy*|yx*y|xyx 相应的NDFA。

》为什么要引入NDFA?

RE⇒FA举例

[例] 构造正规表达式 xy*|yx*y|xyx 相应的NDFA。

☞ 为什么要引入NDFA?

RE⇒FA举例

[例] 构造正规表达式 xy*|yx*y|xyx 相应的NDFA。

》为什么要引入NDFA?

3.4 RE与FA——FA⇒RE

2. FA→RE

(1)在FA A的状态图中增加两个结点: S是惟一开始状态, 从S向原开始状态连ε弧; Z是惟一终止状态, 从原终止状态向Z连ε弧。 (2)利用下列替换规则逐步消去状态图中的结点和弧, 直至仅剩下S到Z的一条弧为止, 则该弧上的标记即为RE e。

FA⇒RE举例

[例] 求与下列FA等价的正规表达式。

RG、FA和RE的关系

3.5 正规文法到正规表达式

[定理1] RG→RE

对任何一个正规文法G,都存在一个正规表达式e,使得L(e)=L(G)。

[定理2] RE→RG

对任何一个正规表达式e,都存在一个正规文法G,使得L(G)=L(e)。

3.5 正规文法到正规表达式

1. RG→RE

对任何一个正规文法G,都存在一个等价的正规表达式e,使得L(e)=L(G)。

将正规文法拓广:

产生式的形式为 $U\rightarrow\alpha V$ 或 $U\rightarrow\alpha$, α 为可空字符串, 即右线性文法,容易改写成RG。

$RG \Rightarrow RE$

1. RG→RE

由右线性文法转换得到正规表达式的规则为:

- (1)形如 $U \rightarrow \alpha V$, $V \rightarrow \beta$ 的产生式转换成正规表达式 $U = \alpha \beta$;
- (2)形如 $U\rightarrow \alpha U$ |β的产生式转换成 $U=\alpha*\beta$;
- (3)形如 $U\rightarrow\alpha|\beta$ 的产生式转换成 $U=\alpha|\beta$ 。
- (4)反复使用(1)、(2)、(3), 直到文法只剩下一条关于文法开始符号的产生式, 且该条产生式的右部不含非终结符号。这个产生式的右部就是正规表达式。

RG⇒RE举例

[例] 求与下列文法G[S]等价的正规表达式。

S::=aS|aB

B:=bB|bA

A:=cA|c

S::=dA|eB

A := aA|b

B:=bB|c

S:=aA

A:=aA|bA|d

$RE \Rightarrow RG$

2. $RE \rightarrow RG$

一般地,直接由RE写RG有困难,但可通过FA写出。

$RG \Rightarrow RE$

2. RE→RG

- (1) 令RG为G[S], 对RE e, 形成产生式 $S \rightarrow e$;
- (2) 利用下列替换规则, 重写产生式, 直至符合RG形式要求:

① $A \rightarrow xy$ 替换成 $A \rightarrow xB$, $B \rightarrow y$ (新增 $B \in V_N$)

② $A \rightarrow x^*y$ 替换成 $A \rightarrow xA \mid y$

③ $A \rightarrow x \mid y$ 替换成 $A \rightarrow x$, $A \rightarrow y$

即得所求之RG G[S]。

【例】将(a|b)*a转换成等价的RG。

RG、FA和RE的关系

RG、FA和RE的关系

正规语言(正规集)

THEOREM

The following statements are equivalent:

- (1) L is a regular set.
- (2) L is a right-linear language.
- (3) L is a finite automaton language.
- (4) L is a nondeterministic finite automaton language.
- (5) L is denoted by a regular expression.

第3章内容小结

- · DFA的形式定义
- · NDFA的形式定义
- · FA的构造
- · 由NDFA构造DFA
- · DFA最小化
- · 正规表达式
- · 由正规表达式构造FA
- · 由FA构造正规表达式

下章内容简介 —— 第4章

- ·词法分析程序与单词符号
- ·词法分析程序的设计
- ·词法分析程序的自动生成