CS & IT

ENGINEERING

Discrete maths

Mathematical logic

Lecture No 04

By- SATISH YADAV SIR

TOPICS TO BE COVERED

01 Open stmnt

02 predicate variable

03 Predicate logic

04 Quantifier

05 Practice

predicate variable.

Predicate logic. F P(n): n/is even no (open stmt) P(o): O/is even no (True) -> simple P(1): 1/is even no·(false) - Simple.

x23/0 < 9

open stmt.

it is a type of stmt where we can not directly define Lnuth value.

once we provide input it changes, simple Stmt. Domain: possible choices for open stmt.

Quantity > Truth value.

Tool:

Tool:

truth value in terms of quantity (All)

ALL (mirersal quantitier) (Hm)

for all of n, such that pin)
for every value of n, such that pin)

D: {1,2,3,+]. P(n): x259. P(n): 2<9. AND(N) () false. AND(N): 1259(T) N=1 2259(7) 3² ≤ 9 (T)

Uhen it is True for out the elements in the Domain.

Enistential quantifier (3n)

ヨれア(か)

there enist n. which satisfies P(n)

there exist n, such that P(n)
some of n, such that P(n)
afleast I value n, such that P(n)

(some)
(atleast)

Tool, which is used to find out truth in

False.

Pw

D: $\{1, 2, 3, ... \}$

日かりへり

OR

3n(n2=4)

Juny/

7.4

D: { 1, 3, 5, 7]

P(n): 2=4.

 $\exists x (x^2 - 4)$

1. F 3. F 5. F

D: 2. D(N): X2 > 0. Anp(n) An(2220)

P(n): 2220.

32 (n220)

32 (20)

D: 2.

Hapin) → Eapin),/
True
True

True

True

Megation of quantifier:

$$\neg \forall x P(x) = \exists x \neg P(x)$$

$$\neg \exists x P(x) = \forall x \neg P(x)$$

=
$$7P(1) \vee 7P(2) \vee 7P(3)$$

= $-\frac{1}{2} \times 7P(2)$.

```
D: \{1,2,3\}.

P(x): x+1=4

x=1

1+1=4(f)

x=2

2+1=4(f)

x=3

x=3

x=1

x=4

x=1
```

D:
$$\{1,2,3\}$$
.

Q(n): $2x+1=7$.

 $x=1$
 $2(1)+1=7(f)$

 $y_{t=1}$ $y_{t=2}$ $y_{t=2}$ $y_{t=3}$ y_{t

 $\exists x [P(x) \land Q(x)]$

D:123.

 $\exists x [P(x) \land Q(x)] \rightarrow \exists x P(x) \land \exists x Q(x) D: \{1,2,3\}$

PW

false.

4x[p(x) ~ Q(x)] TxP(x) N TxQ(x) Ax[b(x) \ d(x)] Axb(x) Axd(x) $\exists x [P(x) \land Q(x)] \rightarrow$ (n) pre v(n) qre [(n)pv(n)q] nE [(n) DNE V(n)] NE $\forall x P(x) \rightarrow \forall x Q(x)$ $AN[b(u) \rightarrow \sigma(u)]$ $Aub(n) \Leftrightarrow Aud(n)$ $Ax[b(x) \Leftrightarrow G(x)]$

