Mitigation options in the industry and waste management sector

Production of energy intensive industrial products

Country	Steel production	Share of global	Cement	Share of global
,	Mt/yr	%	Mt/yr	%
China	419	34	1064	47
EU	210	17	230	10
Japan	116	9	74	3
USA	98	8	99	4
Russia	71	6	45	2
South Korea	48	4	50	2
India	44	4	130	6
Ukraine	41	3	n/a	n/a
Brazil	31	2	39	2
Turkey	23	2	38	2
World	1242		2284	

Autonomous energy efficiency improvement, ammonia production

Waste management

Direct GHG emissions from industry and waste management

Indirect GHG emissions from industry and waste management

Industry emissions as share of total

Contributions of industrial processes to GHG emissions

Ways to reduce emissions in industry

- Replace energy intensive/ high emitting products with low emissions alternatives
- Reduce consumption
- Reduce emissions per unit product (efficiency, low carbon sources, CCS)

Energy efficiency

Carbon efficiency

Energy use per unit of product

GHG emission per unit of product

Iron and steel production

Main steel making processes

Carbon intensity of steel production

tCO2/ t steel

Measures to reduce emissions from steel making

- Replace steel in construction
- Minimise steel in products
- Shift to other production process (includes recycling)
- Shift to low carbon electricty
- Improve efficiency of existing process
- Shift from coal/coke to other reducing agents (biomass, oil, gas, waste)
- Apply CCS

Cement production

Cement production

GHG emissions of cement

Country	Average emissions (tCO2/ t cement)
Europe	0.70
Japan	0.73
South Korea	0.73
China	0.90
India	0.93
USA	0.93

Measures to reduce emissions from cement production

- Reduce cement use in construction
- Use blended cements
- Use dry kiln process
- Use low carbon fuel for kiln
- Improve energy efficiency of process equipment
- Use low carbon electricity
- Apply CCS

Measures to reduce emissions in refineries and chemicals manufacture

• Refineries:

- 15-20% of energy used in process
- Energy efficiency improvement 10-20% by 2030
- CCS

Chemicals

- Ethylene, methanol, ammonia good for 70% of energy used
- 50% of fuel for heating; 50% feedstock >> energy efficiency,low carbon energy and alternative feedstocks
- CCS
- N2O and HFC byproducts>> incineration

Measures to reduce emissions in aluminium production

- Lower CO2 emissions from reduction of aluminium oxide with carbon anode in electrochemical process
- Energy efficiency improvement
- Reduce PFC emissions from reaction with molten electrolyte>> process improvements

GHG emission reduction in aluminium production as a result of voluntary measures by industry

Mitigation measures in some other industrial processes

Industry	Main mitigation opportunity	
Pulp and paper	Use of waste biomass fuel	
	Combined heat and power	
	Gasification of wood pulping waste (black liquor) waste for fuel use	
	Increased recycling	
Food processing	Energy efficiency improvement	
	Combined heat and power	
	Methane recovery from waste water	
Glass	Energy efficiency improvement	
	Switching from oil to gas heating	
	CCS in combination with oxygen	
	Increased recycling	

Generic options

- More efficient electric motors (65% of elecuse) >> 30-40% improvement
- More efficient compressed air systems (20% leaking)
- More efficient steam boilers
- Insulation, heat recovery, maintainance (10-20% easy; 40-50% possible)
- Recycling
- Combined heat and power
- Use renewable energy

Solid waste management

Contributions to mitigation potential industry and waste management (direct and indirect)

Mitigation option	Economic potential 2030 (GtCO2eq/yr)	Cost range (US\$/t CO2eq avoided)
Iron and steel	0.4-1.5	20-50
Cement	0.5-2.1	<50
Chemicals and refining	1.0	75% of potential <20
Other industries	0.5-0.6	<100
Generic options	0.1-0.3	<100
Household/office waste management	0.4-1.0	<100
Total	2.9-6.5	<100

Reduction potential industry and waste management sector

Sensitivity for unfair competition

