The book's model is $\log(\text{deaths})^{\sim} \log(\text{population}) + i \square$

where i = 1 for the age group 30–34 years , . . . , i = 8 for 65–69 years.

Plot below shows the implementation for this model.

Now we use an OLS model: log(deaths_rate) ~ log(avg_age) where

deaths_rate = (deaths/population)*100000 and

 $avg_age = avg(30, 34)$ for the age group 30–34 years, ..., = avg(65,69) for 65–69 years.

This model has R^2 = 0.96 which is a good approximate although it is based on the Normal distribution not the Poisson distribution.

Finally, we use a GLM model for the deaths_rate:

glm(deaths ~ avg_age, offset=log(population +1), family="poisson")

The comparison of GLM and OLS for death rate shows that our OLS model provides a good prediction.

Table below shows the comparisons of the three models with actual data

age group <u></u>	actual deaths 🔼	book model 🔼	OLS 🔼	GLM 🔼
30-34	1	2	1	4
35-39	5	3	3	6
40-44	5	5	7	9
45-49	12	10	12	13
50-54	25	22	19	18
55-59	38	41	30	27
60-64	54	49	57	50
65-69	65	83	87	79

Appendix: R Code

```
#prepration of Data
#install.packages('dobson')
mortality <- dobson::mortality
mortality$age_index <- c(1:8)
age<-seq(from=30, to=70, by=5)
for(i in 1:length(age)-1)
\{avg\_age[i] < floor((age[i] + age[i+1])/2)\}
mortality$avg_age<- avg_age
mortality$deaths_rate<- round(mortality$deaths/mortality$population*100000, 0)
log.deaths <- log(mortality$deaths)
log.avg_age <- log(mortality$avg_age)</pre>
log.population <- log(mortality$population)
log.deaths_rate<- log(mortality$deaths_rate)</pre>
#regression - OLS
lm1<- lm(log.deaths_rate ~ log.avg_age)</pre>
#plots
#plot( lm1$fitted , resid(lm1))
plot( y= log.deaths_rate, x= log.avg_age, type='p', pch=19, col='blue',
   ylab = "log (deaths_rate)", xlab= "log (avg_age)", main= "OLS regression (log-log)")
abline(lm1,col='red', lwd=3)
plot(mortality$avg_age, mortality$deaths, pch=19,col="blue",
```

```
xlab= "Age", ylab="Deaths", main= "OLS regression")
lines(mortality$avg_age, (exp(lm1$fitted)*mortality$population)/100000, col="red",lwd=3)
#regression - book, exercise 3.5.3
lm0_age_index<- lm(log.deaths ~ log.population + mortality$age_index )</pre>
#plots
plot( exp(lm0 age index$fitted ))
plot( mortality$age_index, mortality$deaths, pch=19,col="black",
   xlab= "Index", ylab="Deaths", main= "Regression model used in exercise 3.5.3")
lines(mortality$age_index, exp(lm0_age_index$fitted),col="blue",lwd=3)
#regression - poisson - rate
glm2 <- glm(mortality$deaths ~ mortality$avg_age, offset=log(mortality$population +1),
      family="poisson",data=mortality)
#plots
plot(mortality$avg_age, mortality$deaths, pch=19,col="black",
   xlab= "Age", ylab="Deaths", main="Regression comparison (blue = GLM, red = OLS)")
lines(mortality$avg_age, glm2$fitted,col="blue",lwd=3)
lines(mortality$avg_age, (exp(lm1$fitted)*mortality$population)/100000, col="red",lwd=3)
```