Geometrical Transformation Techniques

		Geometrical Transform		
S. No	Techniques	Description	Advantages	Remarks
1.	Rotation	Rotating the image at arbitrary angles with respect to random centre or fixed centre.	Improves the model's generalizability, makes the model robust to variations in terms of orientation of the data.	It makes the model robust to variations to some extend but it is very inefficient approach as we need to generate new data and train it.
2.	Shifting	We will shift the image at random number of pixels both horizontally as well as vertically.	It handles the issues of positional bias of the model. And ensures that the model stands robust to shift variations in the input.	Since, CNNs are translation equivariant to some extent, the impact of this technique is not that much.
3.	Scaling	We will zoom in or zoom out the image at random ratio.	It helps the model to stand robust to variations in the scale /size of the subject in the frame.	It makes the model robust to scale variations to some extend but it is inefficient as need to generate new data for already existing data. And also, it does not guarantee that the model is invariant to scale.
4.	Sheering	We will sheer or rotate the image with respect to imaginary axis which rotate the image in terms of depth.	understand the structure	It is one of high impacting technique in the model's generalizability. But we can still incorporate the information in the architecture (which is better approach).
5.	Flipping	We will flip or invert the spatial information with respective to x-axis or y-axis.	It helps the model to understand the relative information of the pixels. It helps the model in developing the symmetrical kernels.	It is one of the high impacting techniques. As we are making the kernels symmetric, we can improve the activations of the kernels for various features.

	T.	T		T
		We will change the resolution of	This technique helps the	Resizing has its
		the image. Increasing the pixels or	model to detect the	disadvantage as we
		decreasing the pixels.	features much better as	need to change the
			we are conveying the	input layer for different
6.	Resizing		model that for the single	resolution.
			image, it can be	
			represented with a	
			smaller number of pixels	
			or many pixels. So, we will	
			be forcing model to	
			detect the structures.	
		We will select only a specific part of	It improves the model's	It is very good
		the image and discard the rest of	generalizability as we are	technique to improve
		the image. The way we can select	showing only some part	the models. It gives us
		part of the image can be random.	of the subject. That's, we	the impact of two
			are hiding some parts of	techniques one is
			the object and training. It	scaling and another one
7.	Cropping		improves the inference	is occlusion. But the
	5		mechanism of the model,	issues with this
			as it need to infer the	technique is that if the
			object based on less	cropped part is not
			information.	having the subject or
				the subject is not
				properly visible, then
				that can harm the
				performance of the
				model.
		We will wrap the image into	It improves the model's	It is a good technique to
		different deformations.	ability to withstand small	improve the model's
			variations in the structure	performance but it is
8.	Distortion		of the object.	limited is where is can
			,	be used and improper
				usage can harm the
				performance.
				periormance.

	Color Space Transformation Techniques				
S. No	Techniques	Description	Advantages	Remarks	
1.	Brightness	We will increase or decrease the brightness of the image. This is done by increasing every pixel value at some ratio.	It improves the model's robustness to lightning conditions.	It is one of the best techniques to ensure that the model develop certain thresholds that are activated irrespective of lighting conditions. In other words, the model considers structure rather than pixel values.	
2.	Contrast	We will increase or decrease the contrast of the image. It is done by increasing the brightness of bright areas and increasing the darkness of dark areas.	It improves the edge detection of the model as edges are nothing but sudden change in the intensity of bright region and dark region.	It is very good technique to improve the edge detection of the model but we can get the most out of it, if we combine this technique with some other augmentation technique.	
3.	Gamma	It is used to correct the brightness of the image as the brightness values represented by the camera is different to the brightness values represented by the monition. So, correct the different as similar to human view of brightness we are using gamma.	Improves in making the model invariant to brightness.	Rather than gamma, directly handling brightness improves the model's robustness to lightning conditions.	
4.	Saturation	It is used to adjust the color intensity of an image for a particular color. It does this but increasing or decreasing the related pixel values.	It improves the color dependency of the model.	It is a good technique if we need to maintain the information color specific class.	
5.	Hue	It is used to produce different shades of a same color.	It is improving the model's performance on different shades of a same color.	It is a good technique if we need to make the model perform same on different shades of same color.	

6.	. RGB to HSV	Here, instead of using RGB color format, we will use HSV format.	advantage of isolated	,
7	. RGB to YIQ	Here, instead of using RGB color format, we will use YIQ format. Y - Luminance, I - In-Phase, Q = Quadrature.	information of the	same as above
8	. RGB to YUV	Here, we will be using YUV format. Y = Luma, U = Blue - Luma, V = Red - Luma.	Y = Brightness, U = Blue projection, V = Red Production	Same as above

	Spatial Augmentation Techniques				
S. No	Technique	Description	Advantages	Remarks	
1.	Random Erasing	Here, randomly we will generate coordinates of a block which can be filed with noise or neutral colors like grey and placed on the image.	This creates effect of occlusion and forces the model to look for the other features.	It is great technique to force the model to look for other parts of subject but due to its random nature, it may harm the performance of the model, if there are too many new images where the complete subject is blocked.	
2.	CutMix	It is the next version of random erasing. Here, after selecting the random box, we will fill that with another image in the training dataset	The main goal if this technique is to improve the efficiency of the computation. Here, the operations performed on the blocked area in the random erasing is not wasted as we fill that with another image.	It is good technique to improve the generalizability of the model. But, CNNs are known to be sensitive to edges, those edges can influence the inference mechanism. And also, the CutMix approach	

				does not make any sense to a human.
		Here, we will select two random images which are belonging to same	produces additional	It does not make much sense to humans and
3.	MixUp	class and we will stack them or mix them in such a way that the features from both images are preserved.		harm the model's performance.

	Kernel Based Techniques				
S. No	Techniques	Description	Advantages	Remarks	
1.	Blurring	We will perform a convolution on the image with a specific kernel that spreads the edge details of the image or it blurs the image.	By blurring the image, we are guiding the model to look for shapes and structures rather than texture or pixel level information.	It is good technique but the amount of blur and the image will decide its impact.	
2.	Sharpening	It is opposite to Blurring	BY sharpening, we will force the model to look for the texture information.	If we have noisy pixel, then the model will learn and this can harm the performance of the model.	
3.	Laplacian	It is a specific kernel using which we can detect edges.	It guides the model in the detect of edges.	Since, it only displays edges, the model may not make sense of the information it learned or it may just not able to apply that in the real-time data.	
4.	Noise Injection	We will augment at pixel level with random values or in order words, we will damage some of the pixel level information using noise.	As we are damaging some of the pixel level information. The model is forced to become less sensitive to the noise. This in turn improves the generalizability of the model.	It is good technique but the amount of impact varies based on the data. And also, there are ways in which we can ensure that the model is less sensitive to noise by adding blur pool layers which is much better approaches as we are addressing at architecture level.	

There are many kernel/filters which can output image in different forms. Each of them has its own advantage.

	Deep Learning Techniques				
S. No	Techniques	Description	Advantages	Remarks	
1.	Neural Style Transfer	Here, using neural network we will convert a normal image into something of an art form.	Even after converting the entire image into some art, we are still preserving the information of main structures in the image. This helps the model in better structure detection.	Whenever, we are using NN, the biggest disadvantage we have it the computation. So, we cannot implement this in the runtime augmentation.	
2.	GAN based	Here, we have concept of Generator and Discriminator. The goal of the generator is to generate a new image that cannot be detected by the discriminator that it is an computer generated image.	The main advantage of GANs, it is that they can generate realistic images. Due to that, we can consider the new generated image as original image. This overall improves the quality of the data.	Computation and amount of other resources required are the biggest disadvantage of this approach.	
3.	Hybrid	Here, we will apply multiple augmentations in a single pipeline.	It is much more efficient approach as multiple augmentations impact can be gathered in a single iteration	It is hard to know the impact of single technique.	

	6 New Techniques of Augmentation				
S. No	Techniques	Description	Advantages	Remarks	
		La dista da caracila de la compansión de	II 's a Comment	T	
		In this approach, we will train the	It is an efficient	•	
		model on the existing data and after	technique as it directly	augmentation, we need	
		that, we will extract the feature	depends on the model's	to train a model first	
		vectors of the last layer and find the	performance, so we are	and generate data. This	
		top n (n can be 1 - 6), and fill these	addressing according to	can be time consuming.	
		spots with a neutral color like gray	the model. As we are	And also, sometimes, if	
		and blur the edges of the spot. And	block the high activated	the subject is very small	

1.	Activation Suppression	also, we will apply a stylizing effect like oil paint, cartoonization, etc.	regions, the model is forced to learn the other features. And with oil paint augmentation, the model is guided to learn the structures rather than pixel level information.	in the frame, then those suppressions can completely cover the subject and this can have negative effect. But this can be handled if we reduce the number of suppressions or the size of each suppression.
2.	1 Pixel Shift	In this approach, we will flip the image and shift the image one pixel both horizontally as well as vertically.	The main motive regarding this technique is to handle the issue of max pooling. In Max pooling, we will totally neglect the information of even spaced pixels, so, but flipping and shifting, we are preserving that information. This technique can improve the performance of the model where we need to learn texture information.	It is simple technique which ensures that the model has all the information. But, the effect of this technique is negligible if texture information is not the required one.
3.	Adaptive Color Scheme	In this approach, for each image we will extract the histogram information and find the top least shades in the image and overlay those particular shades.	In technique is inspired from contrast learning. So, as we are providing the shades on the image which are not at all in the image, we will be forcing the model to look for features rather than getting biased with color.	It is good technique but it is naïve in its approach as we cannot be sure that training with those particular shades guarantees that the model is invariant to colors.
		In this approach, we will divide an image into 9 equal tiles and shuffle them.	This technique is developed to ensure that the model learns the spatial information of related features. This is one of the fundamental flaws of CNNs. So, using this	The main issue with this technique can be the generation time. And also, for some images where the whole subject is fitted into a single tile, the effect of this technique is
4.	Tiles Shuffle		technique we can address this issue to some extent. And	negligible

5.	Low-Level Residual	In this approach, we will try to hide the details of the edges which the model already know so that we will end up with the residual or the edges which the model is not able to detect before.	this technique is to improve the edge detection of the model. So, rather than training the model on the edges which it already learned, in this technique we will train the model with the residual or the edges which it is not able to detect before. Next, except the first layer, we will freeze all the other layers from training. Due to that, there is no vanishing gradient problem and changes in the edge detection will have direct impact on the model's output. And as we are introducing artifacts into the image, it creates a similar impact of noise	If all edges have been learned by the model, applying this augmentation may not improve the model's performance.
6.	Texture Information Encoder	The goal of this technique is to improve the texture detection of the model. We do this my encoding the information of evenly spaced pixels onto the oddly spaced pixels.	artifacts into the image, it creates a similar	If the texture information is not the main priority, this augmentation may not give much impact on the model's performance.

	spaced pixels onto the odd spaced pixels, due to this, there is no information loss and the texture information is preserved.	

Methods of Training During Execution						
S. No	Techniques	Description	Advantages	Remarks		
1.	Sequential Learning	Here, we will place the augmentations of the same image at same place and pass into the model sequentially.	This approach has benefit of learning the required information for the augmentation batch of same image as everything is provided sequentially. Otherwise, the model weights keep fluctuating from one image to another. So, we can say that this approach will improve the training time.	need all augmentations generated before training and placed		
2.	Contrastive Learning	Here, we will provide the contrastive features for the model. Due to this, it is can improve is range of feature detection.	For example, we will provide image with high brightness and low brightness and pass it into the model. As we are providing two extremities, the model will expand its range for feature detection.	need to find ways of contrastive features for		

		Horo rather than combining all	Horo the idea is to	This sometimes can
		Here, rather than combining all		
		generated images into a single	isolate the model	have negative effect as
		folder, we will keep the separated.	training to fixed	the model may be
	Isolated		augmentation, due to	guided more towards
3.	Learning		that, the model is	the augmentation
			forced to look for	rather than
			specific augmentation.	generalization. In other
			The training is faster as	words, overfitting.
			we need to handle only	
			less data at a time.	
		Here, the idea is that, whenever it	In this approach, we	This main disadvantage
		is possible to transfer the	will train the model to	of this approach is that,
		information, we will simply transfer	learn the required	the efficiency that we
		it, rather than learning the	features, after that, in	are talking about is only
		additional information separately.	order to make it	achieve if the
		additional information separately.	rotational invariant, we	
			· · · · · · · · · · · · · · · · · · ·	knowledge is transferable.
			will simply transfer the	transferable.
	Transfer		learned information to	
4.	Learning		the rotated kernels.	
			This approach is an	
			efficient way of using	
			the resources as well as	
			information. The	
			training time and size	
			of model can be	
			reduced drastically if	
			implemented correctly.	