NCEA Level 2 Mathematics (Algebra)

Linear and quadratic equations

1. Simplify the following:

A

(a) $\frac{x^2 - 4x + 4}{x - 2}$

M

(b) $\frac{5x^2y}{2} \div \frac{10x}{y^2}$

A :

2. Factorise $4x^2 + 12x - 7$.

A

3. Find the nature of the roots of the equation $x^2 + 3x - 28 = 0$.

M

4. Find the possible values of k such that $x^2 + (k-1)x + k = 0$ has no real roots.

Е	5.	The graph of $y = 2x^2 + (k+3)x + (k+2)$ does not cut the x-axis. Find the possible values of k.
Е	6.	Find the range of values of k for which the roots of the equation $y = x^2 + (k-2)x + (k+3)$ are not real.

7. A cy	vlinder which has a radius of $(x-2)$ and a height of $(x-8)$ has a volume given by
	$V = \pi (x - 2)^2 (x - 8)$
(a)	Find the possible height of the cylinder if its volume is 32π .
(b)	If L is the length of the longest rod that can be placed inside the cylinder, show that
	$x = \sqrt{\frac{L^2 - 80}{5}}$
	~ V 5
3. The	roots of the quadratic equation $2x^2 - 9x + k = 0$ are $\frac{m}{2}$ and $m - 3$. Find k .

E 9	. Find the values of m for which one root of the equation $4x^2 = mx - 5$ is three times the other root.
_	
M 10	. A theme park has a rectangular playground which is 30 metres long and 15 metres wide. It is surrounded by a border which has a constant width of x metres. The area of the border is twice the area of the playground. Find x .
E 11	. The length of the longer of the parallel sides of a trapezium is the same as the height of the trapezium. It is also $8\mathrm{cm}$ longer than the shorter of the parallel sides. The area of the trapezium is less than $60\mathrm{cm}^2$. What is the height of the trapezium?

Logarithms and Exponents

12. Solve the following:

A

(a) $\log_x 81 = 4$

A

- (b) $\log_9 y = \frac{1}{2}$
- 13. Write as a log of a single number:

A

(a) $\log 3 + 3 \log 2$

A

(b) $3 \log 2 - \log 4$

|A| 14. Write $\log 8 + \log 16$ in terms of $\log 2$.

 $\boxed{\mathbf{A}}$ 15. Simplify fully $\log a + \log b - \log b^2$.

16. Solve the following:

A

(a) $9^x = 3^{x+5}$

M

(b) $2(1+0.07)^x = 15$

M	17.		neme park will need to close if the number of people entering the park in any month falls below 00. A model for the number entering is
			$P = 45000 \times 0.96^{n+2}$
			re P is the number of people entering the park in a month and n is the number of months since start of the year. Assuming this model continues to hold, after how many months will the park e ?
	18.	has cut	is investigating paper sizes. She takes measurements and finds that an A0 sized piece of paper an area of $1 \mathrm{m}^2$, a length of $119 \mathrm{cm}$, and a width of $84.1 \mathrm{cm}$. When an A0 sized piece of paper is in half, it is referred to as A1 sized paper and has an area of $0.5 \mathrm{m}^2$. This pattern continues: the sized piece of paper is double the area of the $A(n+1)$ sized paper.
M		(a)	Give the equation for the area of a piece of An sized paper, and use this to find the area of an A10 sized piece of paper.
Е		(b)	The ratio of length to width of any piece of A-sized paper is always the same. Use this information to find the width of a piece of A7 paper.