댐 유입 수량 예측을 통한 최적의 수량 예측 모형 도출

2021 빅콘테스트 퓨처스리그 홍수 ZERO

[빅콘푸로스트]

유현주 (yuhj2049@gmail.com) 서민지 (lyn7666@gmail.com) 정찬웅 (jcw7468@naver.com)

"<mark>기후변화 예측 못한 댐 관리</mark>가 작년 홍수피해 키웠다"

[투데이에너지 송명규 기자] 지난 8월 용담댐, 섬진강댐, 합천댐 하류의 홍수피해 원인에 대한 국정감사가 계속되는 가운데 댐을 관리하고 있는 한국수자원공사가 8월 강우량에 대한 부정확한 자체 예측으로 사전 방류 골든타임을 놓쳤다는 지적이 제기됐다.

국회 환경노동위원회 이수진 의원은 한국수자원공사로부터 제출받은 자료를 분석한 결과 이러한 사실이 드러났다고 밝혔다.

'코스핌모형' 예측 엉터리 ..홍수피해 키워"

올여름 집중호우로 발생한 용담댐 하류지역 홍수 피해의 원인으로 한국수자원공 사(이하 수공)가 홍수통제소에 방류 승인 공문을 받을 당시 첨부한 코스핌모형 예 측이 엉터리였다는 지적이 나왔다.

"지난해 댐 하류 수해, '기후변화 못 따라간' 댐 운영 등이 원인"

배덕효 한국수자원학회장은 "댐 방류는 댐 초기 수위, 기상예보상 유입량이 얼마나 예측되는지에 따라 종합적으로 결정되는 구조이기 때문에 단순히 방류량만을 갖고 적절성 여부를 답변하기는 곤란하다"면서도 "댐관리규정, 지침·매뉴얼 등에서 '댐 준공 당시' 계획방류량을 현재까지 그대로 유지하는 등 이상기후에 따른 여건 변화를 반영하는 노력이 장기간 부족했다"고 밝혔다.

"<mark>기후변화 예측 못한 댐 관리</mark>가 작년 홍수피해 키웠다"

투데이에너지 송명규 기자] 지난 8월 용담댐, 섬진강댐, 합천댐 하류의 홍수피해 원인에 대한 국정감사가 계속되는 가운데 댐을 괸

COSFIM 물리적 모형을 사용하여 홍수량 예측에 한계로 인한 홍수 피해 ↑ ⇒ 시 기반의 모델이 필요

'코스핌모형' 예측 엉터리<mark>..홍수피해 키워"</mark>

올여름 집중호우로 발생한 용담댐 하류지역 홍수 피해의 원인으로 한국수자원공 사(이하 수공)가 홍수통제소에 방류 승인 공문을 받을 당시 첨부한 코스핌모형 예 측이 엉터리였다는 지적이 나왔다.

"지난해 댐 하류 수해,<mark>'</mark>기후변화 못 따라간' 댐 운영 등이 원인"

배덕효 한국수자원학회장은 "댐 방류는 댐 초기 수위, 기상예보상 유입량이 얼마나 예측되는지에 따라 종합적으로 결정되는 구조이기 때문에 단순히 방류량만을 갖고 적절성 여부를 답변하기는 곤란하다"면서도 "댐관리규정, 지침·매뉴얼 등에서 '댐 준공 당시' 계획방류량을 현재까지 그대로 유지하는 등 이상기후에 따른 여건 변화를 반영하는 노력이 장기간 부족했다"고 밝혔다.

CONTENTS

- Ⅰ. 데이터 설명
- II. EDA
- Ⅲ. 데이터 전처리
- **N**. Feature Engineering
- V. Modeling
- Ⅵ. 성능평가
- ₩. 결론 및 토론

▎. 데이터 설명

데이터 설명

• 제공데이터

: 원본데이터 가공 후

```
data.columns =
                                                                       '1_강무(C지역)', '1_강무(D지역)', '1_수위(E지역)',
                                                                     1_감무(C 지
                                                                          1_강무(D
                                                                               1_
수
위
                                                                                                                      2_
감
무
               홍수사상번호
                                                                                                       2.강무(A)지
                                                                                                                 2.강무(C 지
                                                            L 강무 (A 지
                                                                                    1_수위(D
                                                                                                                                2_수위(D
                                                                               (E
                                                                                                                           (E
                                                                                       지역)
                                                                                                                                   지역)
                                                                                                                          역)
              1.0 2006.0 7.0 10.0
                                    8.0 189.100000
                                                    6.4000
                                                                                   122.56875
                                                                                               6.3000
                                                                                                                         2.54 122.541667
              1.0 2006.0 7.0 10.0
                                    9.0 216.951962 6.3000
                                                                            8 2.53 122.56250
                                                                                               6.4000
                                                                                                                       8 2.53 122.550000
              1.0 2006.0 7.0 10.0 10.0 251.424419 6.4000
                                                                            8 2.53 122.55625
                                                                                               7.3000
                                                                                                                       8 2.53 122.558333
              1.0 2006.0 7.0 10.0 11.0 302.812199 7.3000
                                                                 10
                                                                            8 2.53 122.55625
                                                                                               8.2000
                                                                                                                       8 2.53 122.566667
              1.0 2006.0 7.0 10.0 12.0 384.783406 8.2000
                                                                          10 2.53 122.55625 11.3000
                                                                                                                      10 2.53 122.575000
                                                                                                                       0 3.16 130.016667
       3046 26.0 2018.0 7.0 7.0 17.0
       3047 26.0 2018.0 7.0
                               7.0 18.0
                                                                            0 3.15 130.00625
                                                                                               2.3689
                                                                                                                       0 3.15 130.025000
       3048 26.0 2018.0 7.0 7.0 19.0
                                                                            0 3.13 130.01250
                                                                                               2.3689
                                              NaN 2.3689
                                                                                                                       0 3.13 130.025000
       3049 26.0 2018.0 7.0
                                                                                                                       0 3.11 130.025000
                              7.0 20.0
                                                                                               2.3689
       3050 26.0 2018.0 7.0
                                                                            0 3.10 130.01875
                             7.0 21.0
                                                                                               2.3689
                                                                                                                       0 3.10 130.025000
                                              NaN 2.3689
```

데이터 설명

• 외부 데이터

: 기상청 데이터

1_강무(A지역) 1_강무(B지역) 1_강무(C지역) 1_강무(D지역)

연	월				
2006	7	251	367	253	262
2007	8	81	89	107	235
	9	127	116	98	116
2008	7	275	220	159	177
2009	7	221	126	117	125
	8	156	98	53	85
2010	9	165	146	105	179
2011	6	142	76	102	91
	7	171	148	121	136
	8	79	112	159	222
2012	7	164	191	163	184
	8	74	90	106	89
	9	55	47	106	81
2013	7	329	209	58	140
2017	7	293	202	166	119
2018	7	109	124	146	156

- 주어진 데이터의 2013년 7월 15일의 강우량과 춘천의 강우량이 유사함

데이터 설명

• 외부 데이터

: 기상청 데이터

	일시	기온	풍속	습도
0	2006-07-10 08:00	24.3	2.0	85.0
1	2006-07-10 09:00	24.6	1.5	83.0
2	2006-07-10 10:00	25.4	1.6	79.0
3	2006-07-10 11:00	25.4	0.9	82.0
4	2006-07-10 12:00	25.3	8.0	81.0
3046	2018-07-07 17:00	23.5	3.6	56.0
3047	2018-07-07 18:00	23.2	3.4	56.0
3048	2018-07-07 19:00	22.0	3.5	56.0
3049	2018-07-07 20:00	20.0	2.3	61.0
3050	2018-07-07 21:00	18.9	3.0	64.0

3051 rows × 4 columns

춘천 지역 근방의 댐이라고 가정

⇒ 2003 ~ 2018년도의 **기상청 데이터**를 사용

Ⅱ. 탐색적 데이터 설명(EDA)

• 데이터 형태

데이	터	칼럼
----	---	----

	홍수 사상 번호	연	뤋	일	시 간	유입량	1_유역 평균강수	1_강 우(A 지역)	1_강 우(B 지역)	1_강 우(C 지역)	 6_강 우(A 지역)	6_강 우(B 지역)	6_강 우(C 지역)	6_강 우(D 지역)	6_수 위(E지 역)	6_수위(D 지역)	일시	기 온	풍 속	습 도
0	1.0	2006.0	7.0	10.0	8.0	189.100000	6.4000	7	7	7	 7	7	8	8	2.54	122.610	2006- 07-10 08:00	24.3	2.0	85.0
1	1.0	2006.0	7.0	10.0	9.0	216.951962	6.3000	7	8	7	 7	8	10	10	2.53	122.600	2006- 07-10 09:00	24.6	1.5	83.0
2	1.0	2006.0	7.0	10.0	10.0	251.424419	6.4000	7	9	7	 7	9	10	11	2.53	122.590	2006- 07-10 10:00	25.4	1.6	79.0
3	1.0	2006.0	7.0	10.0	11.0	302.812199	7.3000	7	10	7	 9	10	15	14	2.53	122.585	2006- 07-10 11:00	25.4	0.9	82.0
4	1.0	2006.0	7.0	10.0	12.0	384.783406	8.2000	7	12	8	 12	12	18	16	2.53	122.575	2006- 07-10 12:00	25.3	0.8	81.0
3046	26.0	2018.0	7.0	7.0	17.0	NaN	2.3689	1	0	0	 1	0	0	0	3.16	129.950	2018- 07-07 17:00	23.5	3.6	56.0
3047	26.0	2018.0	7.0	7.0	18.0	NaN	2.3689	1	0	0	 1	0	0	0	3.15	129.970	2018- 07-07 18:00	23.2	3.4	56.0
3048	26.0	2018.0	7.0	7.0	19.0	NaN	2.3689	1	0	0	 1	0	0	0	3.13	129.980	2018- 07-07 19:00	22.0	3.5	56.0
3049	26.0	2018.0	7.0	7.0	20.0	NaN	2.3689	1	0	0	 1	0	0	0	3.11	129.990	2018- 07-07 20:00	20.0	2.3	61.0
3050	26.0	2018.0	7.0	7.0	21.0	NaN	2.3689	1	0	0	 1	0	0	0	3.10	130.000	2018- 07-07 21:00	18.9	3.0	64.0

집단(1~6) 별 데이터 RangeIndex: 3051 entries, 0 to 3050 Data columns (total 52 columns): Column Non-Null Count Dtype 3051 non-null float64 2891 non-null float64 3 3051 non-null float64 1_유역평균강수 1_강우(A지역) 3051 non-null int64 1_강우(B지역) 1_강우(C지역) 3051 non-null 3051 non-null int64 int64 3051 non-null 3051 non-null 3051 non-null 3051 non-null 10 1_강우(저역) 11 1_수위(저역) float64 12 1_수위(D지역) float64 2_유역평균강수 float64 2_강우(A지역) 3051 non-null 2_강우(B지역) 3051 non-null int64 3051 non-null 3051 non-null 2_강위(C지역) int64 2_강우(D지역) int64 18 2.수위(E지역) 19 2.수위(D지역) 20 3.유역평균강수 21 3.강우(A지역) 3051 non-null 3051 non-null float64 3051 non-null 3051 non-null float64 int64 3_강우(B지역) 3_강우(C지역) 3051 non-null 3051 non-null int64 3_강우(D지역) 3_수윈(E지역) 3051 non-null 3051 non-null int64 3051 non-null float64 3051 non-null float64 3_수위(D지역) 4_유역평균강수 4_강우(A지역) 4_강우(B지역) 3051 non-null 3051 non-null int64 4_강우(C지역) 4_강우(D지역) 3051 non-null 3051 non-null int64 int64 32 4_수위(E지역) 3051 non-null • 33 4_수위(D지역) 3051 non-null float64 float64

<class 'pandas.core.frame.DataFrame'>

데이터 타입

3051 rows x 52 columns

데이터 형태

▶ 기본 데이터 기초 통계량

- 유입량: 75%에 해당하는 값과 MAX 값의 차이가 큼

	count	mean	std	min	25%	50%	75%	max
유입량	2891.0	1746.902717	2181.790290	3.541153	384.762514	1065.549253	2213.014288	21504.402260
1_유역평균강수	3051.0	67.938486	59.359959	0.000000	20.500000	57.198300	103.226400	328.400000
1_강우(A지역)	3051.0	78.058669	71.874728	0.000000	22.000000	55.000000	121.000000	329.000000
1_강우(B지역)	3051.0	64.361849	63.369565	0.000000	13.000000	52.000000	91.000000	367.000000
1_강우(C지역)	3051.0	39.822353	46.097700	0.000000	3.000000	22.000000	65.000000	253.000000
1_강우(D지역)	3051.0	53.558178	56.327987	0.000000	7.000000	35.000000	85.000000	262.000000
1_수위(E지역)	3051.0	4.564936	2.375226	1.070000	2.810000	4.080000	5.580000	16.720000
1_수위(D지역)	3051.0	131.539823	6.061602	118.700000	127.331250	133.012500	135.175000	143.893750
2_유역평균강수	3051.0	68.420307	59.315391	0.000000	20.917250	58.500000	103.413650	328.400000
2_강우(A지역)	3051.0	81.216978	72.927209	0.000000	23.000000	57.000000	123.000000	337.000000
2_강우(B지역)	3051.0	63.484104	62.906248	0.000000	13.000000	52.000000	90.000000	367.000000
2_강우(C지역)	3051.0	39.237955	45.493394	0.000000	3.000000	21.000000	64.000000	251.000000
2_강우(D지역)	3051.0	53.558178	56.327987	0.000000	7.000000	35.000000	85.000000	262.000000
2_수위(E지역)	3051.0	4.564936	2.375226	1.070000	2.810000	4.080000	5.580000	16.720000
2_수위(D지역)	3051.0	131.611259	6.060190	118.700000	127.333333	133.050000	135.200000	143.966667

• 홍수사상번호

- 홍수를 구분하는 고유번호로 홍수사상별로 지속기간(단위:시간)이 다름
- 홍수사상번호 22번의 기간이 가장 길고, 4번이 가장 짧음

	홍수 사상 번호	연	쥘	일	시 간	유입량	1_유역 평균강 수		우(B	우(C	
224	1.0	2006.0	7.0	19.0	16.0	3373.123471	105.3	125	88	72	
225	1.0	2006.0	7.0	19.0	17.0	3285.961383	103.2	121	86	71	
226	2.0	2006.0	7.0	25.0	24.0	323.993267	0.0	0	1	0	
227	2.0	2006.0	7.0	26.0	1.0	323.154138	0.0	0	2	0	

- 연, 월, 일, 시간
 - 홍수가 발생한 날짜 및 시간 데이터
 - 홍수사상별로 홍수가 발생한 시기는 모두 다름
 - 홍수는 2011년(연도 비중), 7월(월 비중)에 홍수의 발생빈도가 많음

- 유입량

- K-댐에 흘러 들어오는 유량으로 예측하고자 하는 값
- 홍수사상 1번은 20000 m³/s 이상의 최대값
- 1번을 제외한 홍수사상들의 경우 최댓값이 10000 m³/s 미만
- 연도별 평균 유입량은 줄어드는 추세를 보임

- 유입량

- 유입량의 boxplot을 통해, outlier에 해당하는 대부분의 값이 홍수사상번호 1번임을 확인

유역평균강수

- 전체 유역의 평균 누적 강수량 데이터
- 홍수사상별로 6개 데이터 집단의 유역평균강수의 분포가 유사하나 약간의 차이를 보임

유역평균강수

- 홍수사상별로 최대 유역평균강수를 확인하였을 때 홍수사상 1번이 최대임을 확인
- 연도별 유역평균강수의 분포는 점점 줄어드는 추세

• 강우(A지역)

- A 관측소의 누적강수량 데이터
- 홍수사상별로 6개 데이터 집단의 강우(A지역)의 분포가 유사하나 약간의 차이를 보임

■ 강우(B지역)

- B 관측소의 누적강수량 데이터
- 홍수사상별로 6개 데이터 집단의 강우(B지역)의 분포가 유사하나 약간의 차이를 보임

• 강우(C지역)

- C 관측소의 누적강수량 데이터
- 홍수사상별로 6개 데이터 집단의 강우(C지역)의 분포가 유사하나 약간의 차이를 보임

■ 강우(D지역)

- D 관측소의 누적강수량 데이터
- 홍수사상별로 6개 데이터 집단의 강우(D지역)의 분포가 유사하나 약간의 차이를 보임

• 강우(A, B, C, D지역)

- 데이터 집단 1에 대하여 강우 A, B, C, D 지역의 분포를 비교하면 다음과 같음
- 4개의 분포 중 강우 (A지역)의 분포는 다른 지역에 비해 2013년도에 높은 강우량이 나타남
 - ⇒ 관측소 A는 2013년에 홍수 피해를 겪은 곳이라고 추측

- 수위(D지역)

- D 관측소의 수위 데이터
- 홍수사상별로 6개 데이터 집단의 강우(D지역)의 분포가 유사하나 약간의 차이를 보임

수위(E지역)

- E 관측소의 수위 데이터
- 홍수사상별로 6개 데이터 집단의 수위(E지역)의 분포가 동일함을 확인

• 수위(D, E지역)

- 수위 D지역은 120 ~140(m)의 수위 값을 갖는 반면, 수위 E지역은 5~15(m)의 수위 값을 갖는다.
- 수위 D지역은 분포의 오르내림이 크지 않으며 일정한 수위 값을 가진다.

- 상관관계
 - 제공된 데이터와 기온데이터를 합친 데이터 프레임의 상관관계 확인

Ⅲ. 데이터 전처리

데이터 전처리

• 결측치

- target인 '홍수사상번호 26'의 유입량을 제외한 모든 구간 결측치 없음

데이터 전치리

• 기상데이터

	홍수사상번호	면	윌	일	시간	일시
0	1	2006	7	10	8	2006-07-10 08:00
1	1	2006	7	10	9	2006-07-10 09:00
2	1	2006	7	10	10	2006-07-10 10:00
3	1	2006	7	10	11	2006-07-10 11:00
4	1	2006	7	10	12	2006-07-10 12:00
5	1	2006	7	10	13	2006-07-10 13:00
6	1	2006	7	10	14	2006-07-10 14:00
7	1	2006	7	10	15	2006-07-10 15:00
8	1	2006	7	10	16	2006-07-10 16:00
9	1	2006	7	10	17	2006-07-10 17:00
10	1	2006	7	10	18	2006-07-10 18:00
11	1	2006	7	10	19	2006-07-10 19:00
12	1	2006	7	10	20	2006-07-10 20:00
13	1	2006	7	10	21	2006-07-10 21:00
14	1	2006	7	10	22	2006-07-10 22:00
15	1	2006	7	10	23	2006-07-10 23:00
16	1	2006	7	10	24	2006-07-11 00:00
17	1	2006	7	11	1	2006-07-11 01:00
18	1	2006	7	11	2	2006-07-11 02:00
19	1	2006	7	11	3	2006-07-11 03:00
20	1	2006	7	11	4	2006-07-11 04:00
21	1	2006	7	11	5	2006-07-11 05:00

제공데이터의 연, 월, 일, 시를 기온데이터의 일시에 맞춤

제공데이터의 시간 형식은 '2006-07-10 24시' 기온데이터는 '2006-07-11 00시'로 시간

⇒ '일시' 컬럼을 제거할 것이므로 형식을 변환하지 않음

데이터 전처리

• 이상치

- 유입량 데이터를 고려하였을 때, 홍수사상번호 1번의 유입량이 다른 유입량에 비해 현저히 높음
- 또한, 유입량의 이상치 중 대부분이 홍수사상번호 1번에 속함
- ⇒ 따라서 홍수사상 1번을 이상치로 보고, 홍수사상번호 1번을 삭제

Kmeans를 이용한 binning

- 데이터 그룹핑
 - : K-means 알고리즘을 이용하여 유입량을 제외한 나머지 featur로 클러스터링 진행
- 각 클러스터와 거리 차이의 분산을 최소화 하는 방식이며, k는 실루엣 계수가 1에 가깝고 DB index는 값이 작은 2로 선정

n:2 K = 2 선정 Silhouette Coefficient: 0.4044 Davies Bouldin Index: 1.1655 (0 과 1 라벨링 진행) Silhouette Coefficient: 0.2148 Davies Bouldin Index: 1.5682 Silhouette Coefficient: 0.2239 Davies Bouldin Index: 1.3997 n:5 Silhouette Coefficient: 0.2355 Davies Bouldin Index: 1.2887 n : 6 Silhouette Coefficient: 0.2509 Davies Bouldin Index: 1.2401 n : 7Silhouette Coefficient: 0.2478 Davies Bouldin Index: 1,2990 n:8 Silhouette Coefficient: 0.2474 Davies Bouldin Index: 1.3264 n:9 Silhouette Coefficient: 0.2312 Davies Bouldin Index: 1.3481

k	means	kı	neans
0	0	66	1
1	0	67	1
2	0	68	1
3	0	69	1
4	0	70	1
5	0	71	1
6	0	72	1
7	0	73	1
8	0	74	1
9	0	75	1
10	0	76	1

• 홍수 기간

- 홍수사상번호 별 홍수 지속 시간을 계산하여 홍수기간 컬럼을 생성
- 홍수사상 22번이 285시간으로 홍수지속 시간이 제일 길고, 홍수사상 4번이 34시간으로 가장 짧음

																										(_ /
홍수사상번호	22	20	15	1	16	26	23	12	17	11	25	2	19	24	5	10	21	3	9	13	18	7	14	6	8	4
홍수기간	285	264	262	226	205	160	128	127	125	110	103	100	95	94	94	86	84	81	68	67	65	51	50	46	41	34

• 홍수기간 binning

- 앞서 생성한 홍수 기간 컬럼을 바탕으로 binning하여 또 다른 categorical 변수 생성
- 홍수기간에 대하여 8개의 구간을 설정하였다.

```
bins = [0,30, 50, 70, 100, 120, 160, 220]
data_feat['홍수_bin'] = np.digitize(data_feat['홍수기간'], bins)
data_feat.groupby('홍수_bin')[['홍수기간']].count().T
```


단위 (시간)

■ 절기

http://encykorea.aks.ac.kr/Contents/Item/E0049791

음력월	절기	양력일자	황경
5월(仲夏月)	망종(芒 種)	6월 6일경	75°
3名(怀疑力)	하지(夏 至)	6월 21일경	90°
6월(季夏月)	소서(小 됨)	7월 7일경	105°
0四(字复月)	대서(大 됨)	7월 23일경	120°
791/구시 ㅁ\	입추(立 秋)	8월 8일경	135°
7월(孟秋月)	처서(處 暑)	8월 23일경	150°
0일(4뉴쥬 무)	백로(白 露)	9월 8일경	165°
8월(仲秋月)	추분(秋 分)	9월 23일경	180°

	언	월	일	시간	월일	절기
0	2006	7	10	8	2	소서
1	2006	7	10	9	2	소서
2	2006	7	10	10	2	소서
3	2006	7	10	11	2	소서
4	2006	7	10	12	2	소서
3046	2018	7	7	17	-1	하지
3047	2018	7	7	18	-1	하지
3048	2018	7	7	19	-1	하지
3049	2018	7	7	20	-1	하지
3050	2018	7	7	21	-1	하지

연, 월, 일 대신 시간의 특성을 나타낼 수 있는 **'절기' 컬럼 추가** 그 중에서도 제공데이터의 기간에 해당하는 **하지, 소서, 대서, 입추, 처서, 백로, 추분**으로 분류

■ 집단 7 생성

: 각각의 특징 변수들 간 최대값과 최소값을 뺀 나머지 4개의 관측치의 평균으로 구성

	1_유역평균강수	2_뮤멱평균감수	3_뮤멱평균감수	4_뮤멱평균감수	5_뮤멱평균감수	6_뮤역평균강수	7_유역평균강수
0	6.4000	6.3000	6.3000	6.4000	6.4000	6.4000	6.375000
1	6.3000	6.4000	6.4000	7.3000	7.3000	7.3000	6.850000
2	6.4000	7.3000	7.3000	8.2000	8.2000	8.2000	7.750000
3	7.3000	8.2000	8.2000	11.3000	11.3000	11.3000	9.750000
4	8.2000	11.3000	11.3000	14.4000	14.4000	14.4000	12.850000
3046	2.3689	2.3689	2.3689	2.3689	2.3689	2.1722	2.368900
3047	2.3689	2.3689	2.3689	2.3689	2.3689	2.0805	2.368900
3048	2.3689	2.3689	2.3689	2.3689	2.3689	2.0354	2.368900
3049	2.3689	2.3689	2.3689	2.3689	2.3488	1.8993	2.363875
3050	2.3689	2.3689	2.3689	2.3689	2.2615	1.8810	2.342050

3051 rows × 7 columns

■ 집단 7 생성

	7_유역평균강수	7_강우(A지역)	7_강우(B지역)	7_강우(C지역)	7_강무(D지역)	7_수위(D지역)
0	6.375000	7.0	7.0	7.50	8.00	122.597188
1	6.850000	7.0	8.0	8.50	9.00	122.592208
2	7.750000	7.0	9.0	8.75	9.50	122.587750
3	9.750000	8.0	10.0	12.00	11.50	122.586667
4	12.850000	10.5	12.0	14.00	13.25	122.582250
3046	2.368900	1.0	0.0	0.25	0.00	129.969104
3047	2.368900	1.0	0.0	0.25	0.00	129.982313
3048	2.368900	1.0	0.0	0.25	0.00	129.989375
3049	2.363875	1.0	0.0	0.25	0.00	129.996438
3050	2.342050	1.0	0.0	0.25	0.00	130.001937

3051 rows × 6 columns

Rolling & Difference

: 데이터 집단 7에 대하여 각 관측치 별로 1시간 전, 2시간 전, 3시간 전의 유입량, 강우, 수위 추가

- Rolling

3051 rows x 28 columns

	7_뮤역평 균강수 _shift_1	7_강우(A지 역)_shift_1	7_강우(B지 역)_shift_1	7_강무(C지 역)_shift_1	7_강무(D지 역)_shift_1	7_수위(D지 역)_shift_1	7_수위(E지 역)_shift_1
0	5.900000	7.0	6.0	6.50	7.0	122.602167	2.55
1	6.375000	7.0	7.0	7.50	8.0	122.597188	2.54
2	6.850000	7.0	8.0	8.50	9.0	122.592208	2.53
3	7.750000	7.0	9.0	8.75	9.5	122.587750	2.53
4	9.750000	8.0	10.0	12.00	11.5	122.586667	2.53
3046	2.368900	1.0	0.0	0.50	0.0	129.957229	3.18
3047	2.368900	1.0	0.0	0.25	0.0	129.969104	3.16
3048	2.368900	1.0	0.0	0.25	0.0	129.982313	3.15
3049	2.368900	1.0	0.0	0.25	0.0	129.989375	3.13
3050	2.363875	1.0	0.0	0.25	0.0	129.996438	3.11

- Difference

7_유역 평균강 수_diff	7_강우(A 지 역)_diff	7_강무(B 지 역)_diff	7_강무(C 지 역)_diff	X	7_수위(D 지 역)_diff	7_수위(E 지 역)_diff
0.475000	0.0	1.0	1.00	1.00	-0.004979	-0.01
0.475000	0.0	1.0	1.00	1.00	-0.004979	-0.01
0.900000	0.0	1.0	0.25	0.50	-0.004458	0.00
2.000000	1.0	1.0	3.25	2.00	-0.001083	0.00
3.100000	2.5	2.0	2.00	1.75	-0.004417	0.00
0.000000	0.0	0.0	-0.25	0.00	0.011875	-0.02
0.000000	0.0	0.0	0.00	0.00	0.013208	-0.01
0.000000	0.0	0.0	0.00	0.00	0.007062	-0.02
-0.005025	0.0	0.0	0.00	0.00	0.007063	-0.02
-0.021825	0.0	0.0	0.00	0.00	0.005500	-0.01

불완전한 시계열 특성을 띄는 제공데이터

⇒ rolling과 difference를 통해 **과거의 정보를 추가적으로 사용**하여 예측도 향상 도모

box_cox 변환 (유입량)

Feature Selection

Feature Selection

V. Modeling

Data Scaling

- StandardScaler를 이용하여 수치형 칼럼들에 대하여 스케일 적용
- 타겟 변수인 유입량의 경우 Box-Cox 변환을 진행

1_유 역평 균강 수	1_ 강 (A 지 역)	1_ 강 (B 지 역)	1_ 강무 (C 지 멱)	1_ 강무 (D 지 역)	1_ 수 위 (E 지 역)	1_수위 (D지역)	2_유 역평 균강 수	2_ 강무 (A 지 멱)	2_ 강 무 (B 지 역)	2_ 강무 (C 지 명)
6.4000	7	7	7	8	2.54	122.56875	6.3000	7	7	7
6.3000	7	8	7	8	2.53	122.56250	6.4000	7	8	7
6.4000	7	9	7	8	2.53	122.55625	7.3000	7	9	7
7.3000	7	10	7	8	2.53	122.55625	8.2000	7	10	8
8.2000	7	12	8	10	2.53	122.55625	11.3000	9	12	10
2.3689	1	0	0	0	3.16	129.99375	2.3689	1	0	0
2.3689	1	0	0	0	3.15	130.00625	2.3689	1	0	0
2.3689	1	0	0	0	3.13	130.01250	2.3689	1	0	0
2.3689	1	0	0	0	3.11	130.01875	2.3689	1	0	0
2.3689	1	0	0	0	3.10	130.01875	2.3689	1	0	0

1_뮤멱 평균감 수	1_강무 (A지 역)	1_강무 (B지 역)	1_강무 (C지 역)	1_강무 (D지 역)	1_수위 (E지 역)	1_수위 (D지 역)	2_뮤멱 평균감 수	2_강무 (A지 역)	2_강무 (B지 역)	2_강무 (C지 역)
0.019488	0.021277	0.019074	0.027668	0.030534	0.093930	0.153560	0.019184	0.020772	0.019074	0.027888
0.019184	0.021277	0.021798	0.027668	0.030534	0.093291	0.153312	0.019488	0.020772	0.021798	0.027888
0.019488	0.021277	0.024523	0.027668	0.030534	0.093291	0.153064	0.022229	0.020772	0.024523	0.027888
0.022229	0.021277	0.027248	0.027668	0.030534	0.093291	0.153064	0.024970	0.020772	0.027248	0.031873
0.024970	0.021277	0.032698	0.031621	0.038168	0.093291	0.153064	0.034409	0.026706	0.032698	0.039841
0.069378	0.018237	0.000000	0.003953	0.003817	0.125240	0.733069	0.025148	0.017804	0.000000	0.003984
0.025148	0.006079	0.000000	0.003953	0.003817	0.123323	0.733565	0.012512	0.005935	0.000000	0.003984
0.012512	0.003040	0.000000	0.003953	0.003817	0.122045	0.733813	0.010309	0.002967	0.000000	0.003984
0.010309	0.003040	0.000000	0.003953	0.003817	0.120767	0.734061	0.010000	0.002967	0.000000	0.003984
0.010000	0.003040	0.000000	0.003953	0.003817	0.119489	0.734557	0.008378	0.002967	0.000000	0.003984

Cross Validation

- 데이터의 크기가 크지 않고, test set에 과적합을 방지하고자 교차검증으로 모델링을 진행
- 홍수사상 별로 홍수 사건이 나뉘어지며, 연속적으로 데이터가 측정되었기 때문에 랜덤하게 fold를 나누지 않고, 홍수사상번호 별로 fold를 나누어 교차검증을 진행하였다.

Bayesian Optimization

- 하이퍼 파라미터 튜닝을 위해 베이지안 최적화를 이용하여 모델링 진행

Machine Learning Model 선택한 이유

- 설명가능한 AI(XAI)를 통한 모델 결과의 효과적인 이해
- 시간의 흐름을 반영하기 위해 차분과 롤링을 사용
- 사용한 ML 모델
 - : Linear Regressor, RandomForest, XGB, Extra Tree, LGBM

■ Deep Learning을 선택한 이유

- 홍수사상별 일정한 시간동안 수집된 일련의 순차적 데이터 셋이라고 판단
- 시계열 분석을 통한 예측 모형 구축하기 위함
- 사용한 딥러닝 모델
 - : LSTM, GRU

Hyperparameter Tunning

- LGBM Gradient Boosting

- LGBM Gradient-Based One-side Sampling

- XGBoost2: reg추가

Hyperparameter Tunning

- LSTM

STACKING

⇒ LGBM_goss, LGBM_gbdt, XGBoost1, XGBoost2, LSTM의 predict 값을 이용한 stacking

Ⅵ. 성능 평가

홍수사상번호 25번 예측 그래프

LGBM Gradient Boosting

LGBM Gradient-Based One-side Sampling

성능 평가

홍수사상번호 25번 예측 그래프

성능 평가

홍수사상번호 25번 예측 그래프

▶ 모델의 예측 그래프

- 홍수사상번호 25번

성능 평가

METRIC

- ① RMSE (Root Mean Square Error)
 - 예측값과 실제값 사이의 잔차 값을 기준으로 모델의 정확도를 측정하는 지표
 - 예측하려는 값의 크기에 따라 에러가 의존적인 경향 존재

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

- ② MAPE (Mean Absolute Percentage Error)
 - 실제값 대비 예측값과 실제값 사이의 잔차 비율 평균
 - 홍수사상별로 유입량이 다르기에, RMSE의 크기 의존적인 에러의 단점을 보완하고자 사용

$$\mathrm{M} = rac{100}{n} \sum_{t=1}^n \left| rac{A_t - F_t}{A_t}
ight|$$

 A_t : 실제값, F_t : 예측값

성능 평가

• 성능 평가

- 교차검증 진행 후, 홍수사상번호 25번에 대하여 RMSE값과 MAPE값을 비교
- XGBoost2 모델의 RMSE값이 158.09로 최소, MAPE값은 19.84로 두번째로 작음

Ⅶ. 결론 및 토론

결론 및 토론

- 최종 모델 선택
 - 홍수사상번호 26번을 XGBoost2로 예측한 그래프

결론 및 토론

▪ 최종 모델 선택

- 홍수사상번호 26번을 XGBoost2로 예측한 그래프

결론 및 토론

▪ 기대효과

효과적인 댐 운영 관리

홍수 피해 최소화

07

결론 및 토론

• 한계점

- 주어진 데이터에서 지역적인 특성이 배제되어 기온 데이터 뿐만 아니라 더 많은 외부 데이터 활용의 한계
- 제공된 데이터는 홍수사상 기준으로 이뤄진 데이터로, 홍수가 발생하지 않는 날들의 정보가 없어 보다 나은 예측의 한계
- 데이터의 관측 시간 단위가 '시간'으로 다소 크기 때문에 데이터의 볼륨이 작다는 한계

REFERENCE

https://keras.io/

https://scikit-learn.org

https://pycaret.org/

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

https://www.water.or.kr/disaster/general/flood/flood03_datail06.do

https://www.youtube.com/watch?v=oNLaw2Q8Irw&list=PL9mhQYIIKEhd60Qq4r2yC7xYKIhs97FfC

https://www.youtube.com/watch?v=hCl8zTYM4So&list=PLSN_PltQeOyjnE4AnJyQUlHXNwE_hVtKL

https://wooono.tistory.com/102

https://www.weather.go.kr/w/index.do

https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html

https://pandas.pydata.org/docs/index.html

https://stackoverflow.com/questions/45361559/feature-importance-chart-in-neural-network-using-keras-in-python

https://ko.wikipedia.org/wiki/%EC%A0%88%EA%B8%B0

https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python/

감사합니다