Understanding Breakthrough Curves

v0.1

Generated by Doxygen 1.9.1

1 Todo List
2 Data Structure Index 3
2.1 Data Structures
3 File Index 5
3.1 File List
4 Data Structure Documentation 7
4.1 AppCtx Struct Reference
4.1.1 Detailed Description
4.1.2 Field Documentation
4.1.2.1 b
4.1.2.2 beta
4.1.2.3 btc
4.1.2.4 compute_analytical
4.1.2.5 dtau
4.1.2.6 dtau_est
4.1.2.7 dx
4.1.2.8 eps
4.1.2.9 errnorm_all
4.1.2.10 f_jm1
4.1.2.11 isotherm
4.1.2.12 j
4.1.2.13 K
4.1.2.14 kappa
4.1.2.15 m
4.1.2.16 make_movie
4.1.2.17 movie_step_interval
4.1.2.18 omega
4.1.2.19 print_header
4.1.2.20 S_jm1
4.1.2.21 save_btc
4.1.2.22 tau_star
4.1.2.23 theta
4.1.2.24 viewer
4.2 EXP_ISO Struct Reference
4.2.1 Field Documentation
4.2.1.1 c_scale
4.2.1.2 c_star
4.2.1.3 f_scale
4.2.1.4 f_star
4.2.1.5 n

	4.3 ISO Struct Reference	12
	4.3.1 Field Documentation	12
	4.3.1.1 data	12
	4.3.1.2 dF	12
	4.3.1.3 F	12
	4.3.1.4 num_params	13
	4.3.1.5 params	13
	4.4 isotherm Struct Reference	13
	4.5 isotherm Struct Reference	13
	4.6 isotherms.Langmuir Class Reference	13
	4.7 isotherms.Linear Class Reference	14
	4.8 Variables_j Struct Reference	14
	4.8.1 Detailed Description	14
	4.8.2 Field Documentation	15
	4.8.2.1 c_j	15
	4.8.2.2 c_jm1	15
	4.8.2.3 error	15
	4.8.2.4 W_j	15
	4.9 VecAndArray Struct Reference	15
	4.9.1 Detailed Description	15
	4.9.2 Field Documentation	16
	4.9.2.1 arr	16
	4.9.2.2 vec	16
5 1	File Documentation	17
	5.1 src/isotherm.h File Reference	
	5.2 src/my_funcs.hpp File Reference	
	5.2.1 Detailed Description	17
	5.2.2 Function Documentation	18
	5.2.2.1 analytical btc()	18
	5.2.2.2 exp_l0()	18
	5.2.2.3 integrate()	19
	5.2.2.4 update_solution()	19
	5.3 src/my_petsc.h File Reference	20
	5.3.1 Detailed Description	21
	5.3.2 Function Documentation	21
	5.3.2.1 CalculateOmega()	21
	5.3.2.2 DestroyVecAndArray()	21
	5.3.2.3 eval_dS_i_j()	22
	5.3.2.4 eval_S_i_j()	22
	5.3.2.5 FormFunctionLocal()	23
	5005	20
	5.3.2.6 FormJacobianLocal()	23

29
 27
 26
 26
 26
 25
 25
 24
 24

Chapter 1

Todo List

Class Variables_j

Change c_j and c_jm1 to a_j and a_jm1 to reflect notation change in paper

2 Todo List

Chapter 2

Data Structure Index

2.1 Data Structures

Here are the data structures with brief descriptions:

uppCtx
Useful parameters for solving, Application context
XP_ISO
80
sotherm
sotherm
sotherms.Langmuir
sotherms.Linear
'ariables_j
Analytical and numerical variables at time j (and jm1 if analytical)
ecAndArray

4 Data Structure Index

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

src/isotherm.h	
Functions and structs for adsorption isotherm	17
src/my_funcs.hpp	
For calculating analytical solutions	17
src/my_petsc.h	
Functions and structs for solving PDE	20

6 File Index

Chapter 4

Data Structure Documentation

4.1 AppCtx Struct Reference

Useful parameters for solving, Application context.

```
#include <my_petsc.h>
```

Collaboration diagram for AppCtx:

Data Fields

- PetscInt j
- PetscInt m
- PetscReal errnorm_all
- PetscReal eps
- ISO isotherm
- PetscReal theta
- PetscReal dx
- PetscReal dtau
- PetscReal * btc
- PetscReal tau star
- VecAndArray f_jm1
- VecAndArray S_jm1
- bool compute_analytical
- bool make_movie
- bool save_btc
- bool print_header
- PetscViewer viewer
- PetscInt movie_step_interval
- PetscReal omega
- PetscReal b
- PetscReal K
- PetscReal beta
- PetscReal kappa
- PetscReal dtau_est

4.1.1 Detailed Description

Useful parameters for solving, Application context.

4.1.2 Field Documentation

4.1.2.1 b

PetscReal AppCtx::b

scale factor for beta

4.1.2.2 beta

PetscReal AppCtx::beta

constant calculated

4.1.2.3 btc

PetscReal* AppCtx::btc

array for break-through curve

4.1.2.4 compute_analytical

bool AppCtx::compute_analytical

Whether or not to compute analytical solution

4.1.2.5 dtau

PetscReal AppCtx::dtau

time step

4.1.2.6 dtau_est

PetscReal AppCtx::dtau_est

estimated dtau for setting it when tau_star unknown

4.1.2.7 dx

PetscReal AppCtx::dx

grid spacing

4.1.2.8 eps

PetscReal AppCtx::eps

value of ε

4.1.2.9 errnorm_all

PetscReal AppCtx::errnorm_all

infinity norm

4.1.2.10 f_jm1

VecAndArray AppCtx::f_jm1

Isotherm function at previous time step

4.1.2.11 isotherm

ISO AppCtx::isotherm

structure for adsorption isotherm

4.1.2.12 j

PetscInt AppCtx::j

time step

4.1.2.13 K

PetscReal AppCtx::K

scale factor for kappa

4.1.2.14 kappa

PetscReal AppCtx::kappa

constant calculated

4.1.2.15 m

PetscInt AppCtx::m

total number of steps

4.1.2.16 make_movie

bool AppCtx::make_movie

whether or not to make movie

4.1.2.17 movie_step_interval

PetscInt AppCtx::movie_step_interval

step interval for saving movie frames

4.1.2.18 omega

PetscReal AppCtx::omega

closeness to steady state at end of simulation

4.1.2.19 print_header

bool AppCtx::print_header

whether to print header when displaying results of simulation

4.1.2.20 S_jm1

VecAndArray AppCtx::S_jm1

Solid concentration at previous time step

4.1.2.21 save_btc

bool AppCtx::save_btc

flag to save btc

4.1.2.22 tau_star

PetscReal AppCtx::tau_star

total simulation time au_{\star}

4.1.2.23 theta

```
PetscReal AppCtx::theta
```

fraction of BFD/FFD

4.1.2.24 viewer

```
PetscViewer AppCtx::viewer
```

petsc viewer

The documentation for this struct was generated from the following file:

• src/my_petsc.h

4.2 EXP_ISO Struct Reference

Data Fields

- double * c_star
- double * f_star
- int n
- double c_scale
- double f_scale

4.2.1 Field Documentation

4.2.1.1 c_scale

```
double EXP_ISO::c_scale
```

scale factor for concentration, multiplying c_scale by c_star gives units of mol/m3

4.2.1.2 c_star

```
double* EXP_ISO::c_star
```

scaled fluid concentration

4.2.1.3 f_scale

```
double EXP_ISO::f_scale
```

scale factor for loading, multiplying f_scale by f_star gives units of mol/m3

4.2.1.4 f_star

```
double* EXP_ISO::f_star
```

scaled solid concentration

4.2.1.5 n

```
int EXP_ISO::n
```

number of points

The documentation for this struct was generated from the following file:

• src/isotherm.h

4.3 ISO Struct Reference

Data Fields

- Fun F
- dFun dF
- int num_params
- double * params
- double * data

4.3.1 Field Documentation

4.3.1.1 data

double* ISO::data

data used for splines

4.3.1.2 dF

dFun ISO::dF

derivative of adsorption isotherm

4.3.1.3 F

Fun ISO::F

adsorption isotherm

4.3.1.4 num_params

```
int ISO::num_params
```

number of parameters used

4.3.1.5 params

```
double* ISO::params
```

parameters fit

The documentation for this struct was generated from the following file:

• src/isotherm.h

4.4 isotherm Struct Reference

The documentation for this struct was generated from the following file:

· src/isotherm.h

4.5 isotherm Struct Reference

The documentation for this struct was generated from the following file:

• src/isotherm.h

4.6 isotherms.Langmuir Class Reference

Public Member Functions

- def __init__ (self, k)
- def **f** (self, c)
- def df_dc (self, c)
- def s (self, c)
- def get_c_rarefaction (self, x, t)
- def get_c_shock (self, x, t)
- def is_rarefaction_wave (self)
- def is_shock_wave (self)
- def shock_lambda (self)
- def get_c_local_equilibrium (self, x, t)

Data Fields

- k
- name

The documentation for this class was generated from the following file:

· src/isotherms.py

4.7 isotherms.Linear Class Reference

Public Member Functions

- def __init__ (self)
- def f (self, c)
- def df_dc (self, c)

Data Fields

name

The documentation for this class was generated from the following file:

· src/isotherms.py

4.8 Variables_j Struct Reference

Analytical and numerical variables at time j (and jm1 if analytical)

```
#include <my_petsc.h>
```

Collaboration diagram for Variables_j:

Data Fields

- VecAndArray W_j
- VecAndArray c_j
- VecAndArray c jm1
- Vec error

4.8.1 Detailed Description

Analytical and numerical variables at time j (and jm1 if analytical)

Todo Change c_j and c_jm1 to a_j and a_jm1 to reflect notation change in paper

4.8.2 Field Documentation

4.8.2.1 c_j

```
VecAndArray Variables_j::c_j
```

Analytical values of fluid concentration at time \boldsymbol{j}

4.8.2.2 c_jm1

```
VecAndArray Variables_j::c_jm1
```

Analytical values of fluid concentration at time $j-1\,$

4.8.2.3 error

```
Vec Variables_j::error
```

vector comprising errors (presumably b/t analytical and numerical)

4.8.2.4 W_j

```
VecAndArray Variables_j::W_j
```

Numerical values of fluid concentration at time j

The documentation for this struct was generated from the following file:

• src/my_petsc.h

4.9 VecAndArray Struct Reference

```
#include <my_petsc.h>
```

Data Fields

- Vec vec
- PetscReal * arr

4.9.1 Detailed Description

Used for converting between vector and array types

4.9.2 Field Documentation

4.9.2.1 arr

PetscReal* VecAndArray::arr

array part

4.9.2.2 vec

Vec VecAndArray::vec

vector part

The documentation for this struct was generated from the following file:

• src/my_petsc.h

Chapter 5

File Documentation

5.1 src/isotherm.h File Reference

Functions and structs for adsorption isotherm.

```
#include <petsc.h>
Include dependency graph for isotherm.h:
```

5.2 src/my_funcs.hpp File Reference

For calculating analytical solutions.

Functions

• double exp_I0 (double T, double z)

Calculate exponential term involving bessel function.

• double integrate (double T_jm1, double T_j, double z)

Integrate expl0 from T_jm1 to T_j.

 $\bullet \ \ \text{double update_solution (double } *c_j, \ \text{double } *c_jm1, \ \text{double } T_jm1, \ \text{double } T_j, \ \text{double } *X, \ \text{int n)}\\$

• void analytical_btc (double *, double *, double X, int)

Provides analytical break-through curve.

Updates solution from previous time step.

5.2.1 Detailed Description

For calculating analytical solutions.

Used to calculate analytical solutions or break-through curves

Author

Robert F. DeJaco

18 File Documentation

5.2.2 Function Documentation

5.2.2.1 analytical_btc()

Provides analytical break-through curve.

Parameters

С	fluid concentration
T	times
X	value for distance (1/epsilon)
m	number of times including 0

Returns

void

5.2.2.2 exp_I0()

```
double exp_I0 ( \label{eq:condition} \mbox{double } \mbox{\it T,} \\ \mbox{double $z$} )
```

Calculate exponential term involving bessel function.

Evaluates $e^{-z-T}I_0(2\sqrt{zT})$, where I_0 is the modified Bessel function of zeroth order.

Parameters

T	Scaled value for time
Z	Scaled value for distance

Returns

value of expression

5.2.2.3 integrate()

Integrate expl0 from T_jm1 to T_j.

Evaluates

$$\int_{T_{j-1}}^{T_j} e^{-z-t} I_0\left(2\sqrt{zt}\right) dt$$

See also

exp_I0

Parameters

T_jm1	scaled time at previous index j-1
T_j	scaled time at current/next index j
Z	scaled distance

Returns

value of expression

5.2.2.4 update_solution()

Updates solution from previous time step.

Parameters

c_j	new solution at time j		
c_jm1	old solution at time j-1		
T_j	current/new value of time		
T_jm1	previous value of time		
X	distance along column		
n	last index of distance array		

20 **File Documentation**

Returns

void

Warning

{not tested, probably uses wrong value of n}

5.3 src/my petsc.h File Reference

Functions and structs for solving PDE.

```
#include <stdbool.h>
#include <petsc.h>
#include "isotherm.h"
Include dependency graph for my petsc.h:
```

Data Structures

- struct VecAndArray
- struct AppCtx

Useful parameters for solving, Application context.

struct Variables_j

Analytical and numerical variables at time j (and jm1 if analytical)

Functions

· void print user params (AppCtx u)

print user params associated with application

PetscErrorCode InitializeVecAndArray (DM da, VecAndArray *x)

Initialize Struct containing both vector and array.

PetscErrorCode DestroyVecAndArray (DM da, VecAndArray *x)

Destroy Struct containing both vector and array.

- PetscErrorCode one_time_step (SNES snes, DMDALocalInfo *p_info, AppCtx *p_user, Variables_j *p_vars) Perform one time step.
- PetscErrorCode simulate (DM da, SNES snes, DMDALocalInfo *p info, AppCtx *p user)
 - Perform calculations at all time steps.
- PetscErrorCode run (int argo, char **args, int m, double eps, double tau_star, double theta, ISO *isotherm, bool compute_analytical, double *btc, bool make_movie, bool print_header)

- PetscErrorCode UpdateAnalytical (DMDALocalInfo *info, PetscReal *c_j, PetscReal *c_jm1, AppCtx *user) Updates analytical solution.
- PetscErrorCode UpdateSolid (DMDALocalInfo *info, PetscReal *W_j, AppCtx *user)

Update solid concentration.

- PetscErrorCode UpdateIsotherm (DMDALocalInfo *info, PetscReal *W, AppCtx *user)
- PetscReal eval S i j (PetscReal f j, PetscReal f jm1, PetscReal exp mdT, PetscReal S jm1, PetscReal dT) evaluate value of solid concentration
- PetscReal eval dS i j (PetscReal df i j, PetscReal dT)

evaluates gradient in solid concentration wrt fluid

- PetscReal theta_rule (PetscReal val_i, PetscReal val_im1, PetscReal theta)
 does theta rule for discretization in space
- PetscErrorCode FormFunctionLocal (DMDALocalInfo *info, PetscReal *W_j, PetscReal *FF, AppCtx *user)
 residuals of nonlinear equations
- PetscErrorCode FormJacobianLocal (DMDALocalInfo *info, PetscReal *W_j, Mat J, Mat P, AppCtx *user)
 jacobian of nonlinear equations
- PetscErrorCode CalculateOmega (DMDALocalInfo *info, PetscReal *W, AppCtx *user) calculate ω

5.3.1 Detailed Description

Functions and structs for solving PDE.

Author

Robert F. DeJaco

5.3.2 Function Documentation

5.3.2.1 CalculateOmega()

calculate ω

Parameter used to determine if simulation is at steady state

Returns

void

Parameters

	info	grid object
in	W	solution
in,out	user	stores attribute omega

5.3.2.2 DestroyVecAndArray()

 ${\tt PetscErrorCode\ DestroyVecAndArray\ (}$

22 File Documentation

```
DM da,
VecAndArray * x )
```

Destroy Struct containing both vector and array.

See also

VecAndArray

Parameters

in	da	manages an abstract grid object and its interactions with the algebraic solvers	
	X	Vector and array to destroy	

5.3.2.3 eval_dS_i_j()

```
PetscReal eval_dS_i_j ( \label{eq:petscReal} \begin{tabular}{ll} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &
```

evaluates gradient in solid concentration wrt fluid

returns gradient, $\Delta au F'/2/arepsilon$

Parameters

in	<i>df_</i> ← <i>i_j</i>	gradient in isotherm
in	dT	scaled time step, likely $\Delta \tau/\varepsilon$

5.3.2.4 eval_S_i_j()

```
PetscReal eval_S_i_j (

PetscReal f_j,

PetscReal f_jm1,

PetscReal exp_mdT,

PetscReal S_jm1,

PetscReal dT )
```

evaluate value of solid concentration

Returns

value of solid concentration S_i^j

Parameters

f_j	value of adsorption isotherm at i and j
f_jm1	value of adsorption isotherm at i but j - 1
exp_mdT	value for $e^{-\Delta au/arepsilon}$
S_jm1	Value for solid concentration at i but j - 1
dT	value for $\Delta au/arepsilon$

5.3.2.5 FormFunctionLocal()

residuals of nonlinear equations

Returns

void

Parameters

info	Abstract object with grid info		
W ← Solution, used to evaluate residu			
_j			
FF	residuals or form function		
user	application context		

5.3.2.6 FormJacobianLocal()

jacobian of nonlinear equations

Returns

void

24 File Documentation

Parameters

info Abstract object with grid info		
W←	Solution, used to evaluate residuals	
_j		
J	not used?	
Р	jacobian	
user	application context	

5.3.2.7 InitializeVecAndArray()

```
PetscErrorCode InitializeVecAndArray ( \label{eq:da} {\tt DM} \ da, \\ {\tt VecAndArray} \ * \ x \ )
```

Initialize Struct containing both vector and array.

See also

VecAndArray

Parameters

	in	da	manages an abstract grid object and its interactions with the algebraic solver	
x Vector and array to initialize		Vector and array to initialize		

5.3.2.8 one_time_step()

Perform one time step.

Parameters

in	snes	Solver
in	p_info	Information about some parameters needed
in,out	p_user	Application context
out	p_vars	Variables at time j , updated for next time step

5.3.2.9 run()

```
PetscErrorCode run (
    int argc,
    char ** args,
    int m,
    double eps,
    double tau_star,
    double theta,
    ISO * isotherm,
    bool compute_analytical,
    double * btc,
    bool make_movie,
    bool print_header )
```

Main function called.

Parameters

in	argc	argc number of command arguments	
in	args	command arguments	
in	т	number of time steps	
in	eps	value of epsilon $arepsilon$	
in	tau_star	total simulation time $ au_\star$	
in	theta	fraction of bfd/ffd	
in	isotherm	adsorption isotherm struct. Needs to be allocated/initialized beforehand	
in	compute_analytical	whether or not to compute analytical solution	
in,out	btc	values of break-through curve	
in	make_movie whether or not to make movie		
in	n print_header whether or not to print header		

5.3.2.10 simulate()

```
PetscErrorCode simulate (

DM da,

SNES snes,

DMDALocalInfo * p_info,

AppCtx * p_user )
```

Perform calculations at all time steps.

Parameters

da	! Abstract grid object
snes	! solver
p_info	! local info on grid
p_user	User Application context

26 File Documentation

5.3.2.11 theta_rule()

```
PetscReal theta_rule (
PetscReal val_i,
PetscReal val_im1,
PetscReal theta)
```

does theta rule for discretization in space

Returns

value of expression averaged wrt theta, $v_i(1-\theta)+v_{i-1}\theta$ for some v_i,v_{i-1}

Parameters

val_i	value at spatial index i
val_im1	value at spatial index i - 1
theta	value for $0 \le \theta \le 1$

5.3.2.12 UpdateAnalytical()

Updates analytical solution.

Updates analytical solution for time j based off of info for j-1.

Parameters

in	info	information about local grid
in,out	c_j	new solution computed
in	c_jm1	old solution
in	user	Application context

5.3.2.13 UpdateIsotherm()

Parameters

in	info	local information about grid
in	W	Solution of PDE at some value of time
in, out user application con		application context. new values of isotherm stored here

5.3.2.14 UpdateSolid()

Update solid concentration.

Parameters

in	info	information about grid	
in	W↔	Numerical solution of fluid concentration	
	j		
in	user	application context	

28 File Documentation

Index

analytical_btc	data			
my_funcs.hpp, 18	ISO, 12			
AppCtx, 7	DestroyVecAndArray			
b, 8	my_petsc.h, 21			
beta, 8	dF			
btc, 8	ISO, 12			
compute_analytical, 8	dtau			
dtau, 8	AppCtx, 8			
dtau_est, 8	dtau_est			
dx, 8	AppCtx, 8			
eps, 9	dx			
errnorm_all, 9	AppCtx, 8			
f_im1, 9	eps			
isotherm, 9	AppCtx, 9			
j, 9 K, 9	errnorm all			
•	AppCtx, 9			
kappa, 9 m, 9	error			
make_movie, 10	Variables_j, 15			
movie_step_interval, 10	eval dS i j			
omega, 10	my_petsc.h, 22			
print_header, 10	eval S i j			
S_jm1, 10	my_petsc.h, 22			
save_btc, 10	exp_I0			
tau_star, 10	my_funcs.hpp, 18			
theta, 10	EXP_ISO, 11			
viewer, 11	c_scale, 11			
arr	c_star, 11			
VecAndArray, 16	f_scale, 11			
	f_star, 11			
b	n, 12			
AppCtx, 8	_			
beta	F 100 10			
AppCtx, 8	ISO, 12			
btc	f_jm1			
AppCtx, 8	AppCtx, 9			
o i	f_scale EXP ISO, 11			
c_j Variables_j, 15	f star			
c_jm1	EXP_ISO, 11			
Variables_j, 15	FormFunctionLocal			
c scale	my petsc.h, 23			
EXP_ISO, 11	FormJacobianLocal			
c star	my_petsc.h, 23			
EXP_ISO, 11				
CalculateOmega	InitializeVecAndArray			
my_petsc.h, 21	my_petsc.h, 24			
compute_analytical	integrate			
AppCtx, 8	my_funcs.hpp, 18			
	ISO, 12			

30 INDEX

	data, 12	run
	dF, 12	my_petsc.h, 24
	F, 12	•—
	num_params, 12	S_jm1
	params, 13	AppCtx, 10
ienth	nerm, 13	save btc
13011	AppCtx, 9	AppCtx, 10
: 41	• •	simulate
	nerms.Langmuir, 13	
ısotr	nerms.Linear, 14	my_petsc.h, 25
		src/isotherm.h, 17
J		src/my_funcs.hpp, 17
	AppCtx, 9	src/my_petsc.h, 20
K		tau_star
	AppCtx, 9	AppCtx, 10
kapp	oa .	theta
•	AppCtx, 9	AppCtx, 10
	· · · · · · · · · · · · · · · · · · ·	theta rule
m		my petsc.h, 25
	AppCtx, 9	my_persc.n, 25
mak	e_movie	update_solution
	AppCtx, 10	my_funcs.hpp, 19
mov	ie_step_interval	UpdateAnalytical
IIIOV	AppCtx, 10	•
	• • • • • • • • • • • • • • • • • • • •	my_petsc.h, 26
my_	funcs.hpp	UpdateIsotherm
	analytical_btc, 18	my_petsc.h, 26
	exp_I0, 18	UpdateSolid
	integrate, 18	my_petsc.h, 27
	update_solution, 19	
my_	petsc.h	Variables_j, 14
	CalculateOmega, 21	c_j, 15
	DestroyVecAndArray, 21	c_jm1, <mark>15</mark>
	eval_dS_i_j, 22	error, 15
	eval_S_i_j, 22	W_j, 15
	FormFunctionLocal, 23	vec
	,	VecAndArray, 16
	FormJacobianLocal, 23	VecAndArray, 15
	InitializeVecAndArray, 24	
	one_time_step, 24	arr, 16
	run, 24	vec, 16
	simulate, 25	viewer
	theta_rule, 25	AppCtx, 11
	UpdateAnalytical, 26	
	UpdateIsotherm, 26	W_j
	UpdateSolid, 27	Variables_j, 15
n		
	EXP_ISO, 12	
num		
Hulli	i_params	
	ISO, 12	
ome	ega	
	AppCtx, 10	
one	time_step	
J. 10_	my_petsc.h, 24	
	,_petsoni, = .	
para	ams	
	ISO, 13	
print	t_header	
	AppCtx, 10	