20104169 - SUMESH R

Importing Libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
from google.colab import drive
drive.mount('/content/drive')
df=pd.read_csv("/content/drive/MyDrive/mydatasets/csvs_per_year/madrid_2013.csv")
df
```

Mounted at /content/drive

Out[2]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	0_3	PM10	PM25	SO_2	ТСН	TOL	station
0	2013-11-01 01:00:00	NaN	0.6	NaN	NaN	135.0	74.0	NaN	NaN	NaN	7.0	NaN	NaN	28079004
1	2013-11-01 01:00:00	1.5	0.5	1.3	NaN	71.0	83.0	2.0	23.0	16.0	12.0	NaN	8.3	28079008
2	2013-11-01 01:00:00	3.9	NaN	2.8	NaN	49.0	70.0	NaN	NaN	NaN	NaN	NaN	9.0	28079011
3	2013-11-01 01:00:00	NaN	0.5	NaN	NaN	82.0	87.0	3.0	NaN	NaN	NaN	NaN	NaN	28079016
4	2013-11-01 01:00:00	NaN	NaN	NaN	NaN	242.0	111.0	2.0	NaN	NaN	12.0	NaN	NaN	28079017
•••				•••									•••	
209875	2013-03-01 00:00:00	NaN	0.4	NaN	NaN	8.0	39.0	52.0	NaN	NaN	NaN	NaN	NaN	28079056
209876	2013-03-01 00:00:00	NaN	0.4	NaN	NaN	1.0	11.0	NaN	6.0	NaN	2.0	NaN	NaN	28079057
209877	2013-03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	4.0	75.0	NaN	NaN	NaN	NaN	NaN	28079058
209878	2013-03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	11.0	52.0	NaN	NaN	NaN	NaN	NaN	28079059
209879	2013-03-01 00:00:00	NaN	NaN	NaN	NaN	1.0	10.0	75.0	3.0	NaN	NaN	NaN	NaN	28079060

209880 rows × 14 columns

Data Cleaning and Data Preprocessing

```
In [3]:
```

```
df=df.fillna(1)
df
```

Out[3]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	0_3	PM10	PM25	SO_2	TCH	TOL	station
0 20	013-11-01 01:00:00	1.0	0.6	1.0	1.0	135.0	74.0	1.0	1.0	1.0	7.0	1.0	1.0	28079004
1 20	013-11-01 01:00:00	1.5	0.5	1.3	1.0	71.0	83.0	2.0	23.0	16.0	12.0	1.0	8.3	28079008
2 20	013-11-01 01:00:00	3.9	1.0	2.8	1.0	49.0	70.0	1.0	1.0	1.0	1.0	1.0	9.0	28079011
3 20	013-11-01 01:00:00	1.0	0.5	1.0	1.0	82.0	87.0	3.0	1.0	1.0	1.0	1.0	1.0	28079016
4 20	013-11-01 01:00:00	1.0	1.0	1.0	1.0	242.0	111.0	2.0	1.0	1.0	12.0	1.0	1.0	28079017

```
datë BEN CO EBE NMHC
                                                   NO NO_2 O_3 PM10 PM25 SO_2 TCH TOL
                                                                                                    station
209875 2013-03-01 00:00:00
                                                         39.0 52.0
                                                                                             1.0 28079056
                            1.0 0.4
                                      1.0
                                              1.0
                                                    8.0
                                                                      1.0
                                                                             1.0
                                                                                   1.0
                                                                                        1.0
209876 2013-03-01 00:00:00
                            1.0 0.4
                                      1.0
                                              1.0
                                                    1.0
                                                         11.0 1.0
                                                                      6.0
                                                                             1.0
                                                                                   2.0
                                                                                         1.0
                                                                                              1.0 28079057
209877 2013-03-01 00:00:00
                                                    2.0
                                                                                              1.0 28079058
                            1.0 1.0
                                      1.0
                                              1.0
                                                          4.0 75.0
                                                                      1.0
                                                                             1.0
                                                                                   1.0
                                                                                         1.0
209878 2013-03-01 00:00:00
                                                         11.0 52.0
                                                                                              1.0 28079059
                            1.0 1.0
                                      1.0
                                              1.0
                                                    2.0
                                                                      1.0
                                                                             1.0
                                                                                   1.0
                                                                                        1.0
209879 2013-03-01 00:00:00
                            1.0 1.0
                                      1.0
                                              1.0
                                                    1.0
                                                         10.0 75.0
                                                                      3.0
                                                                             1.0
                                                                                   1.0
                                                                                        1.0
                                                                                             1.0 28079060
```

209880 rows × 14 columns

```
In [4]:
```

```
df.columns
Out[4]:
```

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209880 entries, 0 to 209879
Data columns (total 14 columns):
 # Column Non-Null Count Dtype
    _____
            -----
0
   date
            209880 non-null object
1 BEN
            209880 non-null float64
 2 CO
            209880 non-null float64
3 EBE
            209880 non-null float64
            209880 non-null float64
 4 NMHC
 5 NO
            209880 non-null float64
 6 NO 2
            209880 non-null float64
             209880 non-null float64
 7
   0 3
            209880 non-null float64
   PM10
8
             209880 non-null float64
 9
    PM25
             209880 non-null float64
10 SO 2
             209880 non-null float64
11
    TCH
             209880 non-null float64
12
    TOL
13 station 209880 non-null int64
dtypes: float64(12), int64(1), object(1)
memory usage: 22.4+ MB
```

In [6]:

```
data=df[['CO' ,'station']]
data
```

Out[6]:

	СО	station
0	0.6	28079004
1	0.5	28079008
2	1.0	28079011
3	0.5	28079016
4	1.0	28079017
209875	0.4	28079056
209876	0.4	28079057
209877	1.0	28079058

20272 1 0 22070050

```
CO station
209879 1.0 28079060
```

209880 rows × 2 columns

Line chart

150000

200000

Line chart

50000

100000

Bar chart

```
In [9]:
b=data[0:50]
In [10]:
b.plot.bar()
```

Out[10]:
 <Axes: >

Histogram

175000

150000 -

∂ 125000 -

```
In [11]:
data.plot.hist()
Out[11]:
<Axes: ylabel='Frequency'>
```


Area chart

```
In [12]:
```


Box chart

Pie chart

In [14]:

```
b.plot.pie(y='station')
```

Out[14]:

<Axes: ylabel='station'>

Scatter chart

```
In [15]:
```

```
data.plot.scatter(x='CO' , y='station')
```

Out[15]:

<Axes: xlabel='CO', ylabel='station'>

In [16]:

```
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209880 entries, 0 to 209879
Data columns (total 14 columns):
    # Column Non-Null Count Dtype
```

```
0
     date
              209880 non-null object
 1
     BEN
              209880 non-null
                               float64
 2
     CO
              209880 non-null float64
 3
     EBE
              209880 non-null float64
 4
    NMHC
              209880 non-null float64
 5
              209880 non-null float64
    NO
 6
              209880 non-null float64
    NO 2
 7
    0 3
              209880 non-null float64
 8
     PM10
                              float64
              209880 non-null
 9
     PM25
              209880 non-null
                              float64
 10
    SO 2
              209880 non-null float64
 11
    TCH
              209880 non-null float64
 12
    TOL
              209880 non-null float64
 13 station 209880 non-null int64
dtypes: float64(12), int64(1), object(1)
memory usage: 22.4+ MB
```

In [17]:

df.describe()

Out[17]:

	BEN	co	EBE	NMHC	NO	NO_2	0_3	PI
count	209880.000000	209880.000000	209880.000000	209880.000000	209880.000000	209880.000000	209880.000000	209880.000
mean	0.931014	0.721695	0.954744	0.900223	20.101401	34.586402	29.461235	9.636
std	0.430684	0.361528	0.301074	0.267139	44.319112	27.866588	35.362880	13.492
min	0.100000	0.100000	0.100000	0.040000	1.000000	1.000000	1.000000	1.000
25%	1.000000	0.300000	1.000000	1.000000	2.000000	14.000000	1.000000	1.000
50%	1.000000	1.000000	1.000000	1.000000	5.000000	27.000000	8.000000	1.000
75%	1.000000	1.000000	1.000000	1.000000	17.000000	48.000000	54.000000	14.000
max	12.100000	10.400000	11.800000	1.000000	1081.000000	388.000000	226.000000	232.000
4								<u> </u>

EDA AND VISUALIZATION

In [18]:

sns.pairplot(df[0:50])

Out[18]:

<seaborn.axisgrid.PairGrid at 0x7d1a405fcbb0>

In [19]:

```
sns.distplot(df['station'])
<ipython-input-19-6e2460d4583e>:1: UserWarning:
    `distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['station'])
```

Out[19]:

<Axes: xlabel='station', ylabel='Density'>


```
In [20]:
```

```
sns.heatmap(df.corr())
```

<ipython-input-20-aa4f4450a243>:1: FutureWarning: The default value of numeric_only in Da
taFrame.corr is deprecated. In a future version, it will default to False. Select only va
lid columns or specify the value of numeric_only to silence this warning.
sns.heatmap(df.corr())

Out[20]:

<Axes: >

TO TRAIN THE MODEL AND MODEL BULDING

```
In [21]:
```

In [22]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

```
In [23]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[23]:

```
▼ LinearRegression
LinearRegression()
```

In [24]:

```
lr.intercept_
```

Out[24]:

28078977.103350364

In [25]:

```
coeff=pd.DataFrame(lr.coef_, x.columns, columns=['Co-efficient'])
coeff
```

Out[25]:

	Co-efficient
BEN	1.675295
CO	18.812592
EBE	10.008459
NMHC	18.092884
NO	-0.009336
NO_2	-0.039330
0_3	0.008942
PM10	0.279728
PM25	-0.371620
SO_2	-0.945909
TCH	25.161095
TOL	-3.445599

In [26]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[26]:

<matplotlib.collections.PathCollection at 0x7d1a7f509660>


```
ACCURACY
In [27]:
lr.score(x_test,y_test)
Out[27]:
0.30543236748624947
In [28]:
lr.score(x train,y train)
Out[28]:
0.30799712227942355
Ridge and Lasso
In [29]:
from sklearn.linear model import Ridge,Lasso
In [30]:
rr=Ridge(alpha=10)
rr.fit(x train, y train)
Out[30]:
     Ridge
Ridge(alpha=10)
Accuracy(Ridge)
In [31]:
rr.score(x_test,y_test)
Out[31]:
0.3054128646053008
In [32]:
rr.score(x_train,y_train)
Out[32]:
0.3079943077378543
```

Lasso(alpha=10)
In [34]:

Lasso

la=Lasso(alpha=10)
la.fit(x_train,y_train)

In [33]:

Out[33]:

```
la.score(x_train,y_train)
Out[34]:
0.0451475937957041
Accuracy(Lasso)
In [35]:
la.score(x_test,y_test)
Out[35]:
0.04531888865719813
In [36]:
from sklearn.linear model import ElasticNet
en=ElasticNet()
en.fit(x train, y train)
Out[36]:
▼ ElasticNet
ElasticNet()
In [37]:
en.coef
Out[37]:
array([ 0.33177767, 2.64130733,
                                  0.45537669, 0.
                                                         , 0.03569569,
       -0.05608388, -0.01983977, 0.23701462, -0.35214909, -1.35812245,
                 , -1.5728494 ])
In [38]:
en.intercept
Out[38]:
28079041.198403195
In [39]:
prediction=en.predict(x test)
In [40]:
en.score(x test,y test)
Out[40]:
0.1609692866422956
Evaluation Metrics
In [41]:
from sklearn import metrics
print(metrics.mean absolute error(y test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean squared error(y test,prediction)))
```

13.81701650598825 259.6923434931426 16.11497264946927

Logistic Regression

```
In [42]:
from sklearn.linear model import LogisticRegression
In [43]:
feature matrix=df[['BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO 2', 'O 3', 'PM10', 'PM25',
       'SO_2', 'TCH', 'TOL']][0:50]
target vector=df[ 'station'][0:50]
In [44]:
feature matrix.shape
Out[44]:
(50, 12)
In [45]:
target vector.shape
Out[45]:
(50,)
In [46]:
from sklearn.preprocessing import StandardScaler
In [47]:
fs=StandardScaler().fit transform(feature matrix)
In [48]:
logr=LogisticRegression(max iter=10000)
logr.fit(fs,target vector)
Out[48]:
         LogisticRegression
LogisticRegression (max iter=10000)
In [49]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12]]
In [50]:
prediction=logr.predict(observation)
print(prediction)
[28079038]
In [51]:
logr.classes
Out[51]:
array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
       28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
       28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
       28079055, 28079056, 28079057, 28079058, 28079059, 28079060])
```

```
In [52]:
logr.score(fs, target vector)
Out[52]:
0.9
In [53]:
logr.predict proba(observation)[0][0]
Out [53]:
3.2424612943857784e-12
In [54]:
logr.predict proba(observation)
Out[54]:
array([[3.24246129e-12, 1.98879790e-01, 2.68546600e-11, 9.18595327e-17,
        2.85595544e-05, 1.13436010e-07, 1.11387803e-06, 1.83744227e-14,
        4.41788720e-09, 2.60721644e-13, 8.01089957e-01, 6.75335556e-16,
        4.31028393e-12, 3.50004736e-07, 1.45256021e-14, 1.06842862e-19,
        1.45341132e-13, 1.18084324e-14, 1.11311169e-07, 4.24582423e-10,
        4.14877181e-17, 1.07641028e-18, 8.68787036e-11, 5.39240034e-11]])
Random Forest
In [55]:
from sklearn.ensemble import RandomForestClassifier
In [56]:
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[56]:
▼ RandomForestClassifier
RandomForestClassifier()
In [57]:
parameters={ 'max depth': [1,2,3,4,5],
            'min samples leaf': [5,10,15,20,25],
            'n estimators': [10,20,30,40,50]
In [58]:
from sklearn.model_selection import GridSearchCV
grid search =GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="accuracy")
grid search.fit(x train, y train)
Out[58]:
             GridSearchCV
 ▶ estimator: RandomForestClassifier
        RandomForestClassifier
        ______
In [59]:
grid search.best score
```

Out[59]: 0.7496052165863487 In [60]: rfc best=grid search.best estimator In [61]: from sklearn.tree import plot_tree plt.figure(figsize=(80,40)) plot tree(rfc best.estimators [5], feature names=x.columns, class names=['a', 'b', 'c', 'd', 'e ','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'],fi lled=True) Out[61]: $[\text{Text}(0.483695652173913, 0.91666666666666666, 'PM10 <= 1.5 \ngini = 0.958 \nsamples = 92834 \]$ nvalue = [6228, 6033, 6216, 6072, 6073, 6110, 6179, 6230, 6146\n6126, 6154, 6077, 5892, 6 086, 6144, 6135, 5964, 6091 $\nesign 6052$, 6081, 6217, 6305, 6041, 6264] $\nesign 6148$ $Text(0.17391304347826086, 0.75, 'NMHC <= 0.845 \ngini = 0.917 \nsamples = 46663 \nvalue = [$ 6228, 43, 6216, 6072, 6073, 28, 28, 6230, 6146, 6\n28, 6077, 25, 30, 28, 6135, 57, 6091, 25, 6081, $21 \setminus 6305$, 6041, $27] \setminus nclass = v'$), $Text(0.043478260869565216, 0.583333333333333334, 'O 3 <= 4.5 \ngini = 0.011 \nsamples = 3906$ lass = h'), $Text(0.06521739130434782, 0.4166666666666667, 'NO <= 1.5 \ngini = 0.006 \nsamples = 3795 \nsamples = 3795$ value = [0, 0, 0, 0, 0, 18, 6050, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\nclass s = h'), $Text(0.043478260869565216, 0.25, 'gini = 0.017 \nsamples = 1139 \nvalue = [0, 0, 0, 0, 0, 0, 0, 0]$ Text(0.08695652173913043, 0.25, 'NMHC <= 0.265 | mgini = 0.001 | msamples = 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | 2656 | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | nvalue = [0.08695652173913043, 0.25, 'NMHC | msamples | nvalue = [0.0869565217391304] | nvalue = [0.0869565217391304] | nvalue = [0.0869567304] | nvalue = [0.0869567 $Text(0.06521739130434782, 0.083333333333333333, 'gini = 0.0 \nsamples = 2415 \nvalue = [0, 0.0]$ $Text(0.10869565217391304, 0.0833333333333333333, 'gini = 0.011 \nsamples = 241 \nvalue = [0, 0.083333333333333333], 'gini = 0.011 \nsamples = 241 \nvalue = [0, 0.0833333333333333], 'gini = 0.011 \nsamples = 241 \nvalue = [0, 0.0833333333333333], 'gini = 0.011 \nsamples = 241 \nvalue = [0, 0.083333333333333], 'gini = 0.011 \nsamples = 241 \nvalue = [0, 0.08333333333333], 'gini = 0.011 \nsamples = 241 \nvalue = [0, 0.0833333333333], 'gini = 0.011 \nsamples = 241 \nvalue = [0, 0.0833333], 'gini = 0.011 \nsamples = 241 \nvalue = [0, 0.083333], 'gini = 0.011 \nsamples = 241 \nvalue = [0, 0.08333], 'gini = 0.011 \nsamples = 241 \nvalue = [0, 0.08333], 'gini = 0.011 \nsamples = 241 \nvalue = [0, 0.0833], 'gini = 0.011 \nsamples = 241 \nvalue = [0, 0.0833], 'gini = 0.011 \nsamples = 241 \nvalue = [0, 0.0833], 'gini = 0.011 \nsamples = 241 \nvalue = [0, 0.0833], 'gini = 0.011 \nsamples = 241 \nvalue = [0, 0.0833], 'gini = 0.011 \nsamples = 241 \nsampl$ nvalue = [6228, 43, 6216, 6072, 6073, 28, 10, 17, 6146, 6\n28, 6077, 25, 30, 28, 6135, 57 , 6091, 9, 6081, 21 n6305, 6041, 27] nclass = v'), $Text(0.21739130434782608, 0.41666666666666667, 'O 3 <= 1.5 \ngini = 0.801 \nsamples = 18709$ \nvalue = [5952, 11, 0, 5959, 0, 20, 1, 0, 5990, 4, 0, 5876\n0, 0, 0, 0, 0, 0, 5763, 20 , 0, 0, 0] \n class = i'), $Text(0.17391304347826086, 0.25, 'NO 2 \le 46.5 \le 0.064 \le 3835 \le 59$ 52, 0, 0, 7, 0, 0, 0, 123, 4, 0, 27, 0\n0, 0, 0, 0, 0, 0, 22, 20, 0, 0, 0]\nclass = a') $Text(0.1956521739130435, 0.083333333333333333, 'gini = 0.132 \n samples = 1459 \nvalue = [21]$ $Text(0.2608695652173913, 0.25, 'CO \le 0.15 \le 0.751 \le 14874 \le 14874 \le 0.751 \le 14874 \le$ 1, 0, 5952, 0, 20, 1, 0, 5867, 0, 0, 5849 n0, 0, 0, 0, 0, 0, 0, 5741, 0, 0, 0] nclass =d'), $Text(0.2391304347826087, 0.083333333333333333333, 'gini = 0.603 \nsamples = 886 \nvalue = [0, 0.083333333333333333]$ $3, 0, 36, 0, 0, 0, 183, 0, 0, 435, 0 \ 0, 0, 0, 0, 0, 0, 750, 0, 0, 0, 0] \ class = t'),$ $Text(0.2826086956521739, 0.083333333333333333333, 'gini = 0.75 \nsamples = 13988 \nvalue = [0, 0.2826086956521739, 0.08333333333333333333]$ 8, 0, 5916, 0, 20, 1, 0, 5684, 0, 0, 5414 no, 0, 0, 0, 0, 0, 0, 4991, 0, 0, 0, 0] nclass =d'), $Text(0.391304347826087, 0.416666666666666667, 'NO <= 2.5 \ngini = 0.845 \nsamples = 24048 \nv$ alue = [276, 32, 6216, 113, 6073, 8, 9, 17, 156, 2, 28\n201, 25, 30, 28, 6135, 57, 6091, 9, 318, 1, $6305 \ln 6041$, 27] \nclass = v'), $Text(0.34782608695652173, 0.25, 'BEN <= 0.95 \ngini = 0.786 \nsamples = 10298 \nvalue = [13]$, 29, 1733, 8, 2225, 8, 9, 8, 3, 2, 13, 10\n13, 7, 3, 3859, 50, 163, 3, 32, 1, 4855, 3311\ $n24] \nclass = v'),$ $Text(0.32608695652173914, 0.083333333333333333, 'gini = 0.013 \nsamples = 662 \nvalue = [0, 0.0833333333333333]$

```
24] \setminus nclass = v'),
   Text(0.43478260869565216, 0.25, 'O 3 \le 1.5 \neq 0.821 \le 1.3750 \le 1.
   3, 4483, 105, 3848, 0, 0, 9, 153, 0, 15\n191, 12, 23, 25, 2276, 7, 5928, 6, 286, 0, 145
0\n2730, 3]\nclass = r'),
   Text(0.41304347826086957, 0.08333333333333333333, 'gini = 0.29 \nsamples = 3363 \nvalue = [26]
3, 3, 4483, 5, 18, 0, 0, 4, 44, 0, 15, 7, 12\n23, 25, 319, 7, 17, 6, 12, 0, 65, 15, 0]\ncl
ass = c'),
   Text(0.45652173913043476, 0.0833333333333333333, 'qini = 0.768 \rangle = 10387 \rangle = [
0, 0, 0, 100, 3830, 0, 0, 5, 109, 0, 0, 184, 0\n0, 0, 1957, 0, 5911, 0, 274, 0, 1385, 271
5, 31 \cdot nclass = r'),
   Text(0.7934782608695652, 0.75, 'TCH <= 1.075 \ngini = 0.917 \nsamples = 46171 \nvalue = [0, 0.75]
5990, 0, 0, 0, 6082, 6151, 0, 0, 6120, 6126\n0, 5867, 6056, 6116, 0, 5907, 0, 6027, 0, 61
96, 0 n0, 6237] \nclass = x'),
  Text(0.6521739130434783, 0.583333333333333334, 'SO_2 \le 1.5 = 0.901 = 38603
\nvalue = [0, 5990, 0, 0, 0, 6082, 132, 0, 0, 6120, 6126, 0\n5867, 6056, 6116, 0, 5907, 0
, 62, 0, 6196, 0, 0 \le 37 \le x'),
  Text(0.5652173913043478, 0.41666666666666667, 'NO 2 <= 28.5 \ngini = 0.806 \nsamples = 1818
7\nvalue = [0, 14, 0, 0, 0, 32, 24, 0, 0, 3296, 4, 0, 915\n6056, 6116, 0, 5907, 0, 62, 0,
21, 0, 0, 6237]\nclass = x'),
  Text(0.5217391304347826, 0.25, 'NO \le 4.5 = 0.809 = 9731 = 9731 = 0.809 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731 = 9731
0, 0, 0, 13, 24, 0, 0, 2475, 3, 0, 639\n3425, 2779, 0, 2129, 0, 43, 0, 18, 0, 0, 3866]\ncl
ass = x'),
  23, 0, 0, 1685, 1, 0, 559\n2857, 1555, 0, 1369, 0, 28, 0, 13, 0, 0, 3407]\nclass = x'),
  Text(0.5434782608695652, 0.08333333333333333333, 'gini = 0.788 \nsamples = 2499 \nvalue = [0, 1]
2, 0, 0, 0, 1, 1, 0, 0, 790, 2, 0, 80\n568, 1224, 0, 760, 0, 15, 0, 5, 0, 0, 459]\nclass =
   Text(0.6086956521739131, 0.25, '0 3 \le 1.5  ngini = 0.78  nsamples = 8456  nvalue = [0, 11, 12]
0, 0, 0, 19, 0, 0, 821, 1, 0, 276\n2631, 3337, 0, 3778, 0, 19, 0, 3, 0, 0, 2371]\nclass
= q'),
  Text(0.5869565217391305, 0.08333333333333333333, 'gini = 0.723 \nsamples = 6968 \nvalue = [0, 0.083333333333333333]
0, 0, 0, 0, 3, 0, 0, 821, 1, 0, 276 \\ n2631, 3337, 0, 3778, 0, 19, 0, 3, 0, 0, 54] \\ nclass
= q'),
  Text(0.6304347826086957, 0.083333333333333333333, 'gini = 0.023\nsamples = 1488\nvalue = [0, 0.0833333333333333333]
Text(0.7391304347826086, 0.41666666666666667, 'O 3 <= 1.5 \ngini = 0.826 \nsamples = 20416 \nsamples
nvalue = [0, 5976, 0, 0, 0, 6050, 108, 0, 0, 2824, 6122, 0\n4952, 0, 0, 0, 0, 0, 0, 617
[5, 0, 0, 0] \setminus [s = u'),
  Text(0.6956521739130435, 0.25, 'EBE <= 0.95 / ngini = 0.735 / nsamples = 12767 / nvalue = [0, 1.95]
4, 0, 0, 0, 112, 2, 0, 0, 2824, 6122, 0\n4952, 0, 0, 0, 0, 0, 0, 0, 6175, 0, 0, 0]\nclass
= u'),
  Text(0.6739130434782609, 0.083333333333333333333, 'gini = 0.041 \nsamples = 2871 \nvalue = [0, 0.083333333333333333]
3, 0, 0, 0, 88, 2, 0, 0, 0, 4366, 0, 0, 0 \setminus 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] \setminus class = k'),
   1, 0, 0, 0, 24, 0, 0, 0, 2824, 1756, 0\n4952, 0, 0, 0, 0, 0, 0, 0, 6175, 0, 0, 0]\nclass =
u'),
   Text(0.782608695652174, 0.25, 'PM10 <= 15.5 \\ line = 0.509 \\ line = 7649 \\ line = [0, 5]
972, 0, 0, 0, 5938, 106, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\] \nclass = b'),
   2600, 0, 0, 0, 3209, 51, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\nclass = f'),
   Text (0.8043478260869565, \ 0.083333333333333333333333, \ 'gini = 0.503 \\ lnsamples = 3939 \\ lnvalue = [0, 10.0833333333333333333333], \ 'gini = 0.503 \\ lnsamples = 3939 \\ lnvalue = [0, 10.083333333333333333], \ 'gini = 0.503 \\ lnsamples = 3939 \\ lnvalue = [0, 10.0833333333333333], \ 'gini = 0.503 \\ lnsamples = 3939 \\ lnvalue = [0, 10.0833333333333], \ 'gini = 0.503 \\ lnsamples = 3939 \\ lnvalue = [0, 10.08333333333], \ 'gini = 0.503 \\ lnsamples = 3939 \\ lnvalue = [0, 10.083333], \ 'gini = 0.503 \\ lnsamples = 3939 \\ lnvalue = [0, 10.0833], \ 'gini = 0.503 \\ lnsamples = 3939 \\ lnvalue = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = 3939 \\ lnvalue = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = 3939 \\ lnvalue = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = 3939 \\ lnvalue = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = 3939 \\ lnvalue = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = 3939 \\ lnvalue = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = 3939 \\ lnvalue = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = [0, 10.083], \ 'gini = 0.503 \\ lnsamples = [0, 10.083], \ 'gini = [0, 10.083], \ 'gi
3372, 0, 0, 0, 2729, 55, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0\]\nclass = b'),
  Text(0.9347826086956522, 0.5833333333333333334, 'O 3 <= 1.5 \ngini = 0.5 \nsamples = 7568 \nvalue = 7568 \nva
lue = [0, 0, 0, 0, 0, 0, 6019, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5965, 0, 0, 0, 0]  \nclass
s = g'),
  Text(0.9130434782608695, 0.41666666666666667, 'PM10 <= 15.5 \ngini = 0.003 \nsamples = 3788

    | value = [0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5965, 0, 0, 0, 0, 0] \
ass = s'),
  Text(0.8695652173913043, 0.25, 'NO_2 \le 2.5 \neq 0.001 = 0.001 = 2176 \neq 0.001
     0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 0, 3399, 0, 0, 0, 0, 0] \setminus s = s'),
  Text(0.8478260869565217, 0.0833333333333333333, 'gini = 0.095 \nsamples = 15 \nvalue = [0, 0]
     0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] \setminus 0
   Text(0.8913043478260869, 0.0833333333333333333, 'gini = 0.001 \nsamples = 2161 \nvalue = [0, 0.001]
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3380, 0, 0, 0, 0, 0]  s = s'),
  Text(0.9565217391304348, 0.25, 'TCH <= 1.355 \ngini = 0.006 \nsamples = 1612 \nvalue = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nvalue = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nvalue = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nvalue = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nvalue = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nvalue = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nvalue = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nvalue = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nvalue = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nvalue = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nvalue = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nvalue = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nvalue = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nsamples = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nsamples = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nsamples = [0, 1.355 \ngini = 0.006 \nsamples = 1612 \nsamples = [0, 1.355 \ngini = 0.006 \nsamples = [0, 1.355 \ngini = [0
0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 32, 0, 0, 0, 0]\nclass = s'),
   , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 2534, 0, 0, 0, 0] \nclass = s'),
```

Conclusion

Accuracy

In [62]:

```
print("Linear Regression:",lr.score(x_test,y_test))
print("Ridge Regression:",rr.score(x_test,y_test))
print("Lasso Regression",la.score(x_test,y_test))
print("ElasticNet Regression:",en.score(x_test,y_test))
print("Logistic Regression:",logr.score(fs,target_vector))
print("Random Forest:",grid_search.best_score_)
```

Linear Regression: 0.30543236748624947 Ridge Regression: 0.3054128646053008 Lasso Regression 0.04531888865719813 ElasticNet Regression: 0.1609692866422956

Logistic Regression: 0.9

Random Forest: 0.7496052165863487

Logistic Regression is suitable for this dataset