Introduction to aeronautics

Part 4. The era of the jetpropelled airplane

4.4 The design for breaking sound barrier

- Flutter
 - Ballast is used to eliminate flutter

4.4 The design for breaking sound barrier

- Flutter
 - The wing tip missile can eliminate flutter

4.5 The flight control system

- Mechanical control system
 - The control surfaces are moved by cable, pushrods
 - Used by low speed and small aircraft

4.5 The flight control system

- Hydro-Mechanical control system
 - Used by high speed and large aircraft
 - The control surfaces are moved by hydraulic system
 - Artificial feel devices and stick shaker is required

4.5 The flight control system

- Fly-By-Wire system
 - The control command is transferred into electrical signal and transmitted by wires
 - The flight control computers will decide how to move the actuators

1. Fighter planes

The invention of jet engines lead to the world's 1st generation fighter planes

- Features of 1st generation fighters
 - Equipped with canons and rockets as primary weapon, Some of them can launch the 1st generation AAM

Kaliningrad K-5M (NATO: AA-1 "Alkali") missiles

- Features of 1st generation fighters
 - Equipped with simple radar and optical gun sight

Cockpit of Mig-19

RP-1 Izumrud radar

1. Fighter planes

 The experiences from Korean war and the advancement of technology leads to 2nd generation fighter planes

- The design philosophy behind the 2nd generation fighter planes
 - Aircraft with high speed will win the battle
 - AAMs will replace cannons. Therefore high speed is much more important than high maneuverability
 - Tactical bombers are slow and vulnerable. It needs escort planes, which is not efficient. Therefore multipurpose fighters or fighter-bombers are preferred
 - Shall deploy interceptors with high speed and AAMs to attack nuclear bombers. Try to win the battle with one approach

- The features of the 2nd generation fighter planes
 - Delta wings are very popular. Maneuverability is neglected. Maximum speed reaches Ma 2.0

- The features of the 2nd generation fighter planes
 - Multi-role fighters are favored
 - Some of them were not equipped with cannon, but totally counted on AAM.

- The features of the 2nd generation fighter planes
 - Some of them were equipped with on-board fire control computers, PD radar and CRT display

1. Fighter planes

 The bloody Vietnam war and the new technologies leads to the 3rd generation fighter planes

- The design philosophy behind the 3rd generation fighter planes
 - The development of SAM makes high altitude bombing dangerous. Low altitude cruise is preferred
 - The air combat during Vietnam war occurs at sub-sonic speed and altitude from 1500m to 4500m. Dog fights are very common. Therefore the aircraft must have high maneuverability at subsonic speed
 - Cannon is essential for wining the combat

The features of the 3rd generation fighter planes

The features of the 3rd generation fighter planes

The features of the 3rd generation fighter planes

- ·INS
- · TACAN
- ·ILS
- ·Infrared Search and Track

Versertile PD radar (AGP-70)

HUD and MFD

HOTAS

1. Fighter planes

 The stealth technology, advanced jet engine and modern avionics leads to the 4th generation fighter planes

- The features of the 4th generation fighter planes
 - Stealth
 - Infra red stealth
 - Radar stealth
 - Visual stealth
 - Aural stealth

Infrared stealth

- The most effective approach is to reduce engine IR signal from engine
 - Approach 1: High bypass ratio engine
 - Approach 2: Try to cover/hide the exhaust nozzle
 - Approach 3: Use rectangle or slit nozzle
 - Approach 4: Circulate coolant fluids, such as fuel, cool air, to absorb heat
 - Apply coating to reduce the IR signal

Infrared stealth

A-10

- TF34 High BPR engine
- Vent the nozzle by HT/VT

B-2

- Slit nozzle
- Exhaust nozzle above the wing
- Cool down the engine temperature with cold air taken from wing surface

- Radar stealth is achieved primarily by reducing RCS
 - Cross-sectional area of a perfectly reflecting sphere that would produce the same strength reflection as would the object in question
 - Unit: m^2 , dbsm $\sigma[dB(m^2)] = 10 \times lgRCS[m^2]$ $0dbsm \longrightarrow 10^{\circ} = 1m^2$ $20dbm \longrightarrow 10^2 = 100m^2$
 - Radar reflection is proportional to If RCS reduces 90%, the detection range reduces less than a half ($\sqrt[4]{0.1} = 0.56$)
 - The RCS increases, the detectability increses as well
 - RCS is not the actual cross section of the object

Major RCS contributors

1. The way to reduce RCS

- Tilt the vertical stabilizer or remove stabilizer
- Use "S" inlet duct or fine mesh screen to shield the fan
- Use rectangle/slit jet exhaust
- Apply iridium tin oxide coating on canopy

- Frequency Selective Surfaces (FSS)
- Hide missiles into internal weapon bays
- Mount conformal antenna

Replace conventional air intake by DSI air intake

Tilt both sides of fuselage

- Reduce reflection caused by creeping wave in the skin
 - Swept back/forward leading edge/trailing edge
 - Saw tooth on the edge of openings and doors

- Limit reflection waves into a few direction
 - Try to make all leading edge and trailing edge parallel to each other

Apply radar-absorbent material on the aircraft (Iron ball paint . Etc.)

Radar stealth

The effect of radar stealth technology

Super maneuverability

- Relaxed static stability (Statically unstable) and FBW
- · LEX
- Vectored thrust
- Advanced engine with thrust to weight radio as high as 10

- Superior Avionics for Battle Awareness and Effectiveness
 - Multi function phased array radar
 - Sensor fusion incorporates information from different types of sensor and enables pilots to focus on tactics and mission

- Superior Avionics for Battle Awareness and Effectiveness
 - Avionics of F-35:
 - EOTS (Electro-Optical Targeting system)
 - AN/AAQ-37 distributed aperture system (DAS)
 - Multifunction Advanced Data Link (MADL)

- Avionics of F-35:
 - User friendly MFD
 - Head mounted display system to replace HUD

- Avionics of F-35:
 - Versatile and powerful AN/APG-81 Radar
 - Data link
 - Air to air target detection/track
 - Synthetic aperture radar for topographic mapping
 - Ground target detection

- Supersonic cruise
 - Advanced aerodynamics configuration
 - All weapons are in the weapon bay
 - Powerful engines with thrust to weight ratio as high as 10
 - Multidisciplinary design optimization incorporating aerodynamics, structure and stealth

Limitations of current stealth fighters

- Too expensive to be deployed in a large number (F-22 costs \$13M for each!)
- Stealth performance is not so good above the aircraft as beneath aircraft
- When launching the weapons, the door is open and aircraft is able to be detected
- Narrow internal weapon bay limits the count and type of payload
- Stealth coatings are expensive to maintain. Its effectiveness is affected by weather or humidity

2. Ground Attack planes – An embarrassing member in the air force fleet

A-10 Su-25

- 2. Ground Attack airplanes An embarrassing member in the air force fleet
- Will ground attack be replaced by attack helicopters or fighter bombers?

A - 12

AH-64

F/A-18 E/F

2. Ground Attack planes – An embarrassing member in the air force fleet

Pros:

- Heavily armored. Can survive from harsh combat environment
- Heavily loaded. Can carry large amount of weapon with wide variety
- Superb maneuverability at low altitude and low speed
- Relatively cheap and cost effective. No complicated and expensive avionics
- Much faster than helicopters
- Very suitable for low value tactical targets

2. Ground Attack planes – An embarrassing member in the air force fleet

Cons:

- Vulnerable when under attack by fighter aircraft.
- Many of its missions can be accomplished by fighter bombers
- It is more cost effective to derive a fighter bomber from a fighter than develop an attack aircraft
- Much shorter battle radius compared to fighter bomber
- Avionics is too simple
- Compared to attack helicopters, it still needs airport

3. Fighter bombers

F-15E FBC-1

3. Fighter bombers

Features:

- Possessing at least partial fighter capabilities
- Some of them are derived from fighters, thus significantly reduces the R&D cost
- Usually much faster than attack aircraft
- Equipped with advanced avionics
- Almost equivalent maneuverability of fighters

4. UAVs --- The master of the future sky

4. UAVs --- The master of the future sky

- During the Korean war, U.S army deployed some UAVs
- During the Vietnam war, over 2500 U.S aircrafts are shot down and 5000 aircrew are dead. U.S deployed a lot of UAVs, such as AQM-34 "Firebee"

- 4. UAVs --- The master of the future sky
 - UAVs primarily performs reconnaissance missions
 - Now UAVs also carries AAM and AGM to perform target detection and attack mission simultaneously

- 4. UAVs --- The master of the future sky
 - UCAVs

- Features of UCAVs
 - Secure and efficient remote data link
 - Fully autonomous based on artificial intelligence and sensor fusion technologies
 - No human, no cockpit
 - High lift to drag ratio
 - High maneuverability
 - Low RCS
 - No KIAs

- 1. Airborne target detection system
- IR sensors (FLIR)
 - Detects infrared signal and convert it into image
 - Detects targets passively. Impossible for enemy to detect
 - Can detect "heat", which is very hard to camouflage
 - Can detect objects whose temperature is
 0.2° C different from the environment
 - Can see through smoke, fog etc.

- 1. Airborne target acquiring system
- Application of IR sensors (FLIR)
 - LANTIRN

AN/AAQ-13 LANTIRN navigation pod aboard an F-15E

F-15E Heads-up display of infrared image from the AN/AAQ-13 LANTIRN navigation pod

- 1. Airborne target acquiring system
- Application of IR sensors (FLIR)
 - LANTIRN

- 1. Environmental Control Unit
- 2. Power Supply
- 3. Control Computer
- 4. Forward-Looking Infra-Red
- 5. Laser
- 6. Missile Boresight Correlator

- 1. Airborne target acquiring system
- Radar

Invented in 1930s

Mono-pulse radar

Phased array radar

Pulse Doppler radar

Airborne target acquiring system

- Phased array radar
 - Active electrically scanned array (AESA)
 - Composed of numerous small solid-state transmit/receive modules (TRMs)
 - Transmit radio waves across a band of frequencies to remaining stealthy
 - Passive electrically scanned array(PESA)
 - Has only one central radio frequency source and one receiver
 - Inferior to AESA on band width, sign procession. But superior to mechanically scanned array

Radar

- Active phased array radar
- Can keep working even 10% of modules are damaged
- Electronic scanning is much faster and more efficient than mechanical scanning
- Detect, track, indentify and guide a lot of targets simultaneously
- Can be integrated with more functions such as electrical warfare, ultra high bandwidth communications

- Cockpit and helmet systems
 - Early cockpit is full of instruments and switches

- Cockpit and helmet systems
 - Some of them equipped with CRT to work as a navigation or radar screen

- Cockpit and helmet systems
 - In the late 1970's, MFD appears in the cockpit of F-18
 Hornet

- Cockpit and helmet systems
 - Wide angle HUDs that can mix FLIR image with characters appears in the cockpit of F-15/F-16

- Cockpit and helmet systems
 - Now in the F-35 cockpit, HMD replaced HUD

- Weapons
 - 5th generation Infrared guided AAMs
- Low drag configuration designed for high maneuverability
- Equipped with imaging infrared (IIR) to distinguish aircraft from infrared countermeasures (IRCM) such as flares (Focal plane has 128X128 sensors)
- Can synchronize with HMD to attack targets within front hemisphere of aircraft
- Greater sensitivity means longer range or the ability to identify UAV

Weapons

5th generation Infrared guided AAM

Python-5

- Weapons
 4th Generation radar guided AAM
- Long range (50km~80km)
- Attack multiple targets simultaneously
- Fire and forget improves survivability of aircraft

SD-10 AIM-120 AA-12

Weapons

AGM

- Radar, Laser, GPS, INS, TV/IR guided
- Trend of modern AGMs:
 - Long range, stand off
 - Apply stealth coatings and higher speed to penetrate enemy defense
 - High precision

 More powerful war head to destroy targets at one attack
 - Cluster war head to destroy targets at once

Weapons

Modern guided bombs

- High precision attack
- Much more powerful than AGMs
- Longer range than traditional bombs
- More simple and cheaper than AGMs
- Usually needs only one guided bomb to destroy targets. Very cost effective
- More flexible. Can attack various types of targets

WeaponsModern guided bombs

Laser guided Bombs

Weapons
 Modern guided bombs

– GPS/INS guided Bombs

LS-6

- Weapons
 - Cluster Bombs

Skeet war heads BLU-108

