СПЕКТРЫ. СПЕКТРАЛЬНЫЙ АНАЛИЗ K 11/16

Источники света

тепловые

люминесцентные

- электро... (газ. разряд)
- катодо... (э/л. труба)
- хеми... (гнилуши, светлячки)
- фото... (лампы дневн. света)

Спектры испускания

1. Непрерывный (от раскал. тв. и ж. тел, высокотемпер. плазмы)

(4) Спектр поглощения

Закон Кирхгофа

линия

Атомы данного в-ва поглощают те световые волны, которые они сами испускают

Спектральный анализ

(метод определения хим. состава в-ва по его спектру)

Преимущества:

- Большая чувствительность (до 10⁻¹⁰ г)
- Минимальные затраты времени
- Фактор расстояния (астрономическая!) Открытие новых элементов (гелий, рубидий, цезий, ...)

ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ВОЛН

(Максвелл, Герц, Попов, Лебедев, ...)

Инфракрасные — Гершель (нем.) — 1800г

• Нагревают тела

• Мало поглощ. воздухом, пылью

Ульрафиолетовые — Волластон (англ.) — 1801г

→Солнце, ртутные лампы

• Химическ. и биолог. активность

• Ионизация газов

Рентгеновские лучи — Рентген (нем.) — 1895г

- Проник. способ.
- Биологич. активность
- Действие на фотомат.
- Ионизация газов
- Свечение некотор. в-в

Pb (несколько см)

Гамма лучи — Кюри, Резерфорд — 1898г

- <u>фото</u> Проник. способ.
 - Биологич. активность
 - Химическая активн. (фотоматер.)
 - Ионизация газов
 - Свечение некотор. в-в

Переход кол-ва в качество (Δv ($\Delta \lambda$) \longrightarrow $\Delta \kappa$ ачество)

- Способность к распростр. и проникнов.
- Действие на фотоматериалы
- Биологическая активность
- Способность к ионизации

примечание

примечание