REVIEW OF LOGIC DESIGN

BOOLEAN ALGEBRA

The Boolean algebra is an algebra dealing with binary variables and logic operations.

A Boolean expression is an algebraic expression formed by using binary variables, the constants 1 and 0, the logic operation symbols and parenthesis.

1

Basic Properties and Theorems:

Closure w.r.t. $+: x, y \in B \rightarrow x + y \in B$ Closure w.r.t. $\cdot: x, y \in B \rightarrow x \cdot y \in B$

1- a)
$$A + 0 = A$$

b) $A.1 = A$
2- a) $A + 1 = 1$
b) $A.0 = 0$
3- a) $A + A = A$
b) $A.A = A$
4- a) $A + \overline{A} = 1$
b) $A.\overline{A} = 0$
5- a) $\overline{A} = A$
b) $(\overline{A}) = \overline{A}$
0.0 = 0
1.1 = 1
1.0 = 0
0.1 = 0
0.1 = 0
0.1 = 0
1.1 = 1
1.0 = 0
1.1 = 1
1.0 = 0
1.1 = 1
1.0 = 0
1.1 = 1
1.0 = 0
1.1 = 1
1.0 = 0

6- a) A B = B.A b) A+B = B+A	Commutative
7- a) $(A+B)+C = A+(B+C)$ b) $(A.B).C = A.(B.C)$	Associative
8- a) A(B+C) = A.B+A.C b) A+BC = (A+B).(A+C)	Distributive
9- a) A+AB = A b) A(A+B) = A	Absorbtion
10- a) $A + \overline{A} \cdot B = A + B$ b) $A \cdot (\overline{A} + B) = A \cdot B$	Common Identities

De Morgan's Theorem:

a)
$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

b) $\overline{A \cdot B} = \overline{A} + \overline{B}$

LOGIC OPERATIONS

There are 2 to the power of 2^n different combinations (functions) for n binary variables. So, for n = 2, there are $2^4 = 16$ Boolean functions:

x	y	Fo	F1	\mathbf{F}_2	F3	F4	Fs	F6	F7	Fs	F	F10	F11	F12	Fis	F14	Fis
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- 1. Two functions that produce a constant 0 or 1: F0, F15.
- 2. Four functions with unary operations complement and transfer: F3, F5, F10, F12.
- 3. Ten functions with binary operators that define 8 different operations: AND, OR, NAND, NOR, XOR, XNOR (EQUIVALANCE), Inhibition, Implication.

Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments		
$F_0 = 0$		Null	Binary constant 0		
$F_1 = xy$	$x \cdot y$	AND	x and y		
$F_2 = xy'$	x/y	Inhibition	x, but not y		
$F_3 = x$		Transfer	x		
$F_4 = x'y$	y/x	Inhibition	y, but not x		
$F_5 = y$		Transfer	y		
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both		
$F_7 = x + y$	x + y	OR	x or y		
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR		
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y		
$F_{10} = y'$	y'	Complement	Not y		
$F_{11} = x + y'$	$x \subset y$	Implication	If y , then x		
$F_{12} = x'$	x'	Complement	Not x		
$F_{13} = x' + y$	$x\supset y$	Implication	If x , then y		
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND		
$F_{15} = 1$		Identity	Binary constant 1		

LOGIC GATES

Name	Graphic symbol	Algebraic function		Truth table			
			X	y	1		
Transaction (1	-11.0-1.0-1.1	0	0	(
AND		$F = x \cdot y$	0		i		
			1	0	1		
			1	1	1		
			х	y	À		
OR	x — [-F = x + y	0	0	100		
22.	y —		0	1	3		
			1	0			
			1	1			
	165		X	F			
Inverter	x->>-	-F = x'	0	1			
	-		1	0			
994333	x		X	F			
Buffer		-F = x	100	-			
			0	0			
			Х	y	ş		
******	x	$-F = F = (xy)^{\epsilon}$	0	0			
NAND	v —	$-F = (xy)^r$	0	1	The second second		
			1	0	ì		
			1	1	1		
			x	ÿ	1		
120000	7 - x	e e-v-i-vi	0	0			
NOR	v —) > —	-F = (x + y)'	0		ì		
AND x y OR x y Inverter x Buffer x NAND y Exclusive-OR x y Exclusive-OR x y Exclusive-OR x y			1	0	Ì		
			1	1	Ì		
			X	y			
	x-11	F = xy' + x'y	0		į		
(XOR)	y — /	$= x \oplus y$	0	1	3		
	1	150	1	0			
			1	1	1		
erati saw			х	y	ļ		
10	$x \rightarrow t \rightarrow t$	$F = xy + x'y'$ $= (x \oplus y)'$	0	0			
	y - 11 /	$= (x \oplus y)'$	0	1	J		
	1 6		1	0	1		
			1	1	Ì		

XOR and XNOR

2-input XOR – XNOR:

3-input XOR – XNOR:

Properties of XOR Function:

$$x \oplus 0 = x$$

$$x \oplus 1 = x'$$

$$x \oplus x = 0$$

$$x \oplus x' = 1$$

$$x \oplus y' = x' \oplus y = (x \oplus y)'$$

Prove that:

a)
$$(x XOR y XOR z)' = (x XNOR y XNOR z)$$

b)
$$(x \times XNOR y \times XNOR z) = ((x \times XOR y) \times XNOR z)$$