EE2000 Logic Circuit Design

Chapter 9 – Sequential Logic Circuit Design

Outline

- 9.1 Finite State Machines
 - Concepts of States
 - Mealy machines
 - Moore machines
 - Excitation table
 - Design example
- 9.2 Sequential Circuit Analysis

Sequential and combinational circuits

Switching system: a combinational circuit which transforms the input excitation to its corresponding output, the input and output are all function of time. The output is dependent only on the present input conditions.

Sequential circuit: the system outputs are dependent not only on the present input conditions but also on the past history of the system. The past history is usually regarded *states* which obviously require memory devices to remember their states.

combinational circuit

$$z_i(t) = f\left(x_i(t)\right)$$

sequential circuit

$$z_i(t) = f(x_i(-\infty, t))$$

Synchronous and asynchronous systems

- **Synchronous** sequential systems in which the change of state takes place at discrete instants of time defined by a synchronizing input called the *clock*.
- Asynchronous sequential systems, the states can change at any time as a function of input changes, there is no external synchronization.

<u>States</u>

- With continuous inputs, the input time functions can be group into classes.
- All time functions have the same effect on the output at time t.
- Practically, the number of classes is finite.
- These classes are represented by the auxiliary variables s; called states.
- States summarize the effect of past inputs.
- Make decision for present and future outputs.

Sequential Circuit Structure

States machine

• The state machine is illustrated using state diagram. A state diagram consists of circles which present the states; and lines connecting the circles that represent the transition of states.

Moore machine

Mealy Machine

A state is represented by a circle

Transitions between states are indicated by directed lines connecting the circles

For the present state S_i , if the next input is x, the state will change to S_j and produce an output z

Mealy Machine

Present State	Input X	Next State	Output Z
S _A	0	S _B	1
S _A	1	s_c	0
S _B	0	S_B	0
S _B	1	S_A	1
S _c	0	S _A	0
S _c	1	s_c	0

PS	Input X		
F 3	0	1	
S _A	S _B / 1	S _c / 0	
S _B	S _B / 0	S _A / 1	
S _c	S _A / 0	S _c / 0	

Next state (NS) / Output Z

Mealy Machine

■ What will the circuit behave if the input sequence to the circuit is 011010?

Moore Machine

- A state and its output is represented by
 - S_i/z_i State S_i and its output z_i
- Transitions between states are indicated by directed lines connecting the circles

For the present state S_i , its output is z_i (independent of the next input). If the next input is x, the state will change to S_i

The input only affects the next state but not the output

Moore Machine

PS	Input X	NS	Output <i>Z</i>
S _w	0	S_{γ}	0
S _W	1	S _X	0
S _X	0	S _X	1
S _X	1	S _Y	1
Sy	0	S _X	0
S_{γ}	1	S_w	0

Moore Machine

■ What will the circuit behave if the input sequence to the circuit is 011010?

 \blacksquare Given the initial state is S_W

	•				VV		
Time	0	1	2	3	4	5	
Present State (PS)	S _W		 				
Input X	0	1	1	0	1	0	
Output Z			 	 		 	
Next State (NS)			 	 			
Clk							<u></u>
PS	S _W	S_{γ}	S_W	S_X	S_X	S _Y	S_X
X					L		
Z							
NS							

Differences

Mealy machine

Present State	Input X	Next State	Output Z
S_A	0	S _B	1
S_A	1	s_c	0
S _B	0	S _B	0
S _B	1	S_A	1
s_c	0	S _A	0
S _c	1	s_c	0

Moore machine

PS	Input X	NS	Output Z
S _w	0	S_{γ}	0
s_w	1	S_X	0
S _X	0	S _X	1
S _X	1	S_{γ}	1
S_{γ}	0	S _X	0
S_{γ}	1	S_w	0

- The output of Moore machine is related to the current state only
 - The output will not change despite of the changes appears at the input
 - The output is stable, because it depends solely on the state which is the group of storage elements

Excitation Table of *D***-FFs**

Flip-flop is already a sequential circuit

PS(Q _n)	Input D	NS (Q _{n+1})
S ₀ (0)	0	S ₀ (0)
S ₀ (0)	1	S ₁ (1)
S ₁ (1)	0	S ₀ (0)
S ₁ (1)	1	S ₁ (1)

Q_n		Q _{n+1}	D
0	\rightarrow	0	0
0	\rightarrow	1	1
1	\rightarrow	0	0
1	\rightarrow	1	1

The excitation table of *D* flip-flips

Excitation Table of *JK***-FFs**

Q _n		Q _{n+1}	JK	
0	\rightarrow	0	0 x	
0	\rightarrow	1	1 x	

0

x 1

x 0

$S_0(0)$	0 1	$S_0(0)$
S ₀ (0)	1 0	S ₁ (1)
S ₀ (0)	11	S ₁ (1)
S ₁ (1)	0 0	S ₁ (1)
S ₁ (1)	0 1	S ₀ (0)
S ₁ (1)	1 0	S ₁ (1)

Input JK

0 0

11

The excitation table of *JK* flip-flip

 $S_{1}(1)$

 $PS(Q_n)$

 $S_0(0)$

Exercise: find the excitation tables of SR, T FFs

NS (Q_{n+1})

 $S_0(0)$

 $S_0(0)$

Traffic Light Circuit

■ Mealy or Moore machine?

Design Example

Free-running Counter

Design a free-running counter with counting sequence 2, 4, 5, 3, 7, 2, ... (and repeat) using *D* flip-flops

- Analysis
 - Free-running → 0 inputs
 - There are five numbers: 2, 4, 5, 3, 7
 - Therefore, there are 5 states
 - 3 flip-flops are required
 - The largest number is $7 = (111)_2$
 - Therefore, the number of outputs is 3
 - The counter will count ■ $010 \rightarrow 100 \rightarrow 101 \rightarrow 011 \rightarrow 111 \rightarrow 010 \dots$

Moore Machine Structure

■ Derive the state diagram and state table

Assign the state as the output code

$$S_A = 010$$
, $S_B = 100$, $S_C = 101$, $S_D = 011$, $S_E = 111$

■ Rewrite the state table as follow

PS	NS	Output $Z_0 Z_1 Z_2$
S _A	S _B	010
S _B	Sc	100
Sc	SD	101
SD	S _E	011
S _E	S _A	111

	PS			NS		Output
\mathbf{Q}_{A}	Q_B	Q_c	Q_A	Q_B	Q_c	$Z_0 Z_1 Z_2$
0	0	0	X	X	X	ххх
0	0	1	X	X	X	ххх
0	1	0	1	0	0	010
0	1	1	1	1	1	011
1	0	0	1	0	1	100
1	0	1	0	1	1	101
1	1	0	X	X	X	ххх
1	1	1	0	1	0	111

■ From truth table to K-map

- $\square Z_0(Q_A, Q_B, Q_C) = \Sigma m(4, 5, 7) + \Sigma d(0, 1, 6)$
- $\square Z_1(Q_A, Q_B, Q_C) = \Sigma m(2, 3, 7) + \Sigma d(0, 1, 6)$
- $\square Z_2(Q_A, Q_B, Q_C) = \Sigma m(3, 5, 7) + \Sigma d(0, 1, 6)$

- $\square Z_0(Q_A, Q_B, Q_C) = Q_A$
- $\square Z_1(Q_A, Q_B, Q_C) = Q_B$
- $\square Z_2(Q_A, Q_B, Q_C) = Q_{C_{FF_A}}$

From excitation table to the design table

Q_n		Q _{n+1}	D
0	\rightarrow	0	0
0	\rightarrow	1	1
1	\rightarrow	0	0
1	\rightarrow	1	1

Verification required for bit checking!

	PS			NS		FI	Fs inpu	ut	Output
Q_A	Q_B	Q_c	Q_A	Q_B	Q_c	D_A	D_B	D _c	$Z_0 Z_1 Z_2$
0	0	0	X	X	X	X	X	X	XXX
0	0	1	X	X	X	X	X	X	ххх
0	1	0	(0	0	\bigcirc	1	0	010
0	1	1	1	1	1	1	0	0	011
1	0	0	1	0	1	0	0	1	100
1	0	1	\bigcirc	1	1	(-)	1	0	101
1	1	0	X	X	X	X	X	X	XXX
1	1	1	0	1	0	1	0	1	111

From excitation table to the design table

Q_n		Q _{n+1}	D
0	\rightarrow	0	0
0	\rightarrow	1	1
1	\rightarrow	0	0
1	\rightarrow	1	1

Verification required for bit checking!

	PS			NS		FI	Fs inpu	it	Output
Q_A	Q_B	Q_c	Q_A	Q_B	Q_c	D_A	D_B	D _C	$Z_0 Z_1 Z_2$
0	0	0	X	X	X	X	X	X	XXX
0	0	1	X	X	X	X	X	X	ххх
0	1	0	1	0	0	1	10	0	010
0	1	1	1	1	1	1	01	01	011
1	0	0	1	0	1	01	0	1	100
1	0	1	0	1	1	10	1	01	101
1	1	0	X	X	X	X	X	X	ххх
1	1	1	0	1	0	10	01	10	111

- Find the flip-flips input equation
 - $\square D_A(Q_A, Q_B, Q_C) = \Sigma m(2, 3, 4) + \Sigma d(0, 1, 6)$
 - $\square D_B(Q_A, Q_B, Q_C) = \Sigma m(3, 5, 7) + \Sigma d(0, 1, 6)$
 - $\square D_C(Q_A, Q_B, Q_C) = \Sigma m(3, 4, 5) + \Sigma d(0, 1, 6)$

$$\square D_A(Q_A, Q_B, Q_C) = Q_A' + Q_C'$$

$$\square D_B(Q_A, Q_B, Q_C) = Q_C$$

9.2 Sequential Circuit Analysis

- To analysis a sequential circuit
 - To verify the circuit
 - To determine its state model
 - To obtain its state diagram
 - To obtain its state table
 - To obtain its state equation

Analysis Example

- First, determine its state model
 - Mealy, or Moore?

Analysis Example

Next, determine the flip-flop input functions

$$\blacksquare J_B = X', K_B = X \oplus Q_A$$

Analysis Example

- Start analysis
 - Number of flip-flops: 2
 - ■Since there are two flip-flops, this circuit has at most 4 states
 - Number of inputs: 1
 - Number of outputs: 1

$$\blacksquare Z = Q_A \oplus Q_B$$

Fill in present state first

Present State (PS)				
State (Q _A Q _B)				
S _A (00)				
S _B (01)				
S _c (10)				
S _D (11)				

■ Then fill in inputs

Present State (PS)	Input
State $(Q_A Q_B)$	X
s (00)	0
S _A (00)	1
S _B (01)	0
	1
S (40)	0
S _c (10)	1
S (44)	0
S _D (11)	1

Then fill in inputs to flip-flops

Present State (PS)	Input	Flip-Flops' Excitations				
State (Q _A Q _B)	X	J _A	K _A	J _B	K _B	
S (00)	0	0	0	1	0	
S _A (00)	1	0	0	0	1	
8 (04)	0	1	1	1	0	
S _B (01)	1	1	0	0	1	
8 (40)	0	0	0	1	1	
S _c (10)	1	0	0	0	0	
S (44)	0	1	1	1	1	
S _D (11)	1	1	0	0	0	

■ Then obtain the next state

Present State (PS)	Input	Flip	Elops'	Excitat	ions	Next State (NS)
State (Q Q _B)	X	J	K	J_{B}	K _B	$Q_A Q_B$
s (00)	0	0	0	1	0	0 1
SATOO	1	0	0	0	1	0 5
0 (04)	>	1	1	1	٥	1
S _B (01)	1	1	0	0	1	1 0
S (10)	0	0	0	1	1	1 1
S _c (10)	1	0	0	0	0	1 0
S (11)	0	1	1	1	1	0 0
S _D (11)	1	1	0	0	0	1 1

Finally obtain the output

$$\blacksquare Z = Q_A \oplus Q_B$$

Present State (PS)	Input	Flin-Flons' Excitations			tions	Next State (NS)	Output
State (Q _A Q	X	J _A	K _A	J _B	K _B	$Q_A Q_B$	Z
s (00)	0	0	0	1	0	0 1	0
$S_A((0,0))$	1	0	0	0	1	0 0	0
0 (04)	0	1	1	1	0	1 1	1
S _B (01)	1	1	0	0	1	1 0	1
8 (40)	0	0	0	1	1	1 1	1
S _c (10)	1	0	0	0	0	1 0	1
S (11)	0	1	1	1	1	0 0	0
S _D (11)	1	1	0	0	0	1 1	0

State Table and State Diagram

Present State (PS)	Input	Next State (NS)	Output
State (Q _A Q _B)	X	$Q_A Q_B$	Z
S (00)	0	0 1	0
S _A (00)	1	0 0	0
0 (04)	0	1 1	1
S _B (01)	1	1 0	1
S (40)	0	1 1	1
S _c (10)	1	1 0	1
S (11)	0	0 0	0
S _D (11)	1	1 1	0

State Equation

Present State (PS)	Input	Next State (NS)	Output
State $(Q_A Q_B)$	X	$Q_{\lambda}Q_{B}$	Z
S (00)	0	0 1	0
S _A (00)	1	0 0	0
0 (04)	0	1 1	1
S _B (01)	1	1 0	1
S (40)	0	1 1	1
S _c (10)	1	1 0	1
S _D (11)	0	0 0	0
	1	111	0

Determine $Q_{A(next)}$ and $Q_{B(next)}$ by means of K-map (or Q-M method)

