LOGARITMOS

1. Determina el valor de x:

a)
$$\log_2 x = 3$$

b)
$$\log_5 x = 0$$

c)
$$\log_{\frac{3}{4}} x = 2$$

d)
$$\log_{\frac{1}{2}} x = -1$$

e)
$$\log_{0.3} x = -2$$

f)
$$\log_2 x = -\frac{1}{2}$$

g)
$$\log_p x = -3$$

h)
$$\log_x 27 = 3$$

i)
$$\log_x 16 = -4$$

$$j) \quad \log_x \frac{1}{4} = 2$$

k)
$$\log_x \frac{1}{3} = \frac{1}{2}$$

1)
$$\log_2 32 = x$$

$$m) \quad \log_3 \frac{1}{81} = x$$

n)
$$\log_{\frac{1}{2}} 16 = x$$

o)
$$\log_{\frac{1}{125}} 625 = -x$$

$$p) \quad \log_4 x = \frac{3}{2}$$

$$q) \quad \log_x 4 = -\frac{2}{5}$$

r)
$$\log_{\frac{1}{64}} x = \frac{5}{6}$$

s)
$$\log_{0.01} 0.1 = x$$

t)
$$\log_{\frac{1}{4}} \frac{1}{128} = x$$

2. Desarrolla aplicando las propiedades de los logaritmos:

b)
$$\log \frac{3a}{4}$$

c)
$$\log \frac{2a^2}{3}$$

d) $\log a^5 b^4$

e)
$$\log \frac{2}{ab}$$

f)
$$\log \sqrt{ab}$$

g)
$$\log \frac{\sqrt{x}}{2y}$$

h)
$$\log 2a\sqrt{b}$$

i)
$$\log \frac{3a\sqrt[3]{b}}{c}$$

$$j) \quad \log \frac{5a^2b\sqrt[4]{c}}{2xy}$$

k)
$$\log(abc)^3$$

1)
$$\log(\frac{a\sqrt{c}}{2})^4$$

m)
$$\log 7ab\sqrt[3]{5c^2}$$

n)
$$\log \sqrt{\frac{2ab}{x^2y}}$$

o)
$$\log(a^2-b^2)$$

$$p) \quad \log \frac{\sqrt[3]{a^2}}{\sqrt[5]{b^3}}$$

q)
$$\log \frac{\sqrt{a} \cdot \sqrt[3]{b}}{\sqrt[4]{cd}}$$

$$r) \quad \log(x^4 - y^4)$$

s)
$$\log \frac{m-n}{2}$$

t)
$$\log \sqrt{\frac{a(b-c)}{d^2m}}$$

$$u) \quad \log \sqrt[3]{\frac{(a+b)^2}{5c}}$$

3. Reduce a un solo logaritmo:

- a) $\log a + \log b$
- b) $\log x \log y$
- c) $\frac{1}{2}\log x + \frac{1}{2}\log y$
- d) $\log a \log x \log y$
- $e) \quad log \; p + log \; q log \; r log \; s$
- f) $\log 2 + \log 3 + \log 4$

NÚMEROS LOGARITMOS

- g) $\frac{1}{3}\log a \frac{1}{2}\log b \frac{1}{2}\log c$
- h) $\frac{3}{2}\log a + \frac{5}{2}\log b$
- i) $\log a + \frac{1}{2} \log b 2 \log c$
- $j) \quad \log(a+b) + \log(a-b)$
- k) $\frac{1}{2}\log x \frac{1}{3}\log y + \frac{1}{4}\log z$
- 1) $\log(a-b) \log 3$
- m) $\log a 4\log b + \frac{1}{5}(\log c 2\log d)$
- n) $\frac{p}{n}\log a + \frac{q}{n}\log b$
- 4. Si $\log 2 = 0.3$; $\log 3 = 0.47$; $\log 5 = 0.69$ y \log 7 = 0.84. Calcula:
- a) log 4
- b) log 6
- c) log 27
- d) log 14
- e) $\log \sqrt{2}$
- $\log \sqrt[3]{15}$
- g) $\log \frac{2}{3}$
- h) log 3,5
- $3\log\frac{2}{5} 4\log\frac{1}{7}$
- $\log 18 \log 16$
- Determina la alternativa correcta:
- I) Si $\log b = x$, entonces $\log 100b =$
- a) 100 + x
- b) 100x
- c) 2x
- d) 2 + x

- $e) x^2$
- $\log x = y$, entonces $\log \sqrt{x} =$ II)

- d) $\frac{y}{2}$ e) y^2

- Si $a^x = b$, entonces x =
- a) $\log b \log a$ b) $\frac{\log b}{a}$ c) $\log \frac{b}{a}$

- IV) $2 - \log a =$
 - a) $\log \frac{100}{a}$ b) $\frac{2}{\log a}$ c) $\log \frac{2}{a}$

- d) $\log a$ e) $\log \frac{1}{2a}$