Kompilacja jądra Linux

Łukasz Wójcik

1. Stara metoda localmodconfig

make bzImage

```
root@slack32:/usr/src/linux-5.12.1# time make -j2 bzImage
         include/config/auto.conf.cmd
 SYNC
 CC
         kernel/bounds.s
         scripts/atomic/check-atomics.sh
 CALL
         arch/x86/kernel/asm-offsets.s
 CC
         include/generated/asm-offsets.h
 UPD
 CALL
         scripts/checksyscalls.sh
 AS
         arch/x86/entry/entry_32.o
 CC
         init/main.o
 CC
         arch/x86/entry/syscall 32.0
 CC
         arch/x86/entry/common.o
         arch/x86/entry/vdso/vma.o
 CC
         include/generated/compile.h
 CHK
 CC
         init/do mounts.o
 CC
         arch/x86/entry/vdso/extable.o
         arch/x86/entry/vdso/vdso32-setup.o
 CC
 CC
         init/do mounts rd.o
         arch/x86/boot/compressed/early_serial_console.o
 CC
```

```
CC
         arch/x86/boot/compressed/acpi.o
 CC
         arch/x86/boot/compressed/misc.o
         arch/x86/boot/compressed/vmlinux.bin.lzma
 MKPIGGY arch/x86/boot/compressed/piggy.S
         arch/x86/boot/compressed/piggy.o
 AS
 LD
         arch/x86/boot/compressed/vmlinux
 ZOFFSET arch/x86/boot/zoffset.h
 OBJCOPY arch/x86/boot/vmlinux.bin
         arch/x86/boot/header.o
 AS
        arch/x86/boot/setup.elf
 LD
 OBJCOPY arch/x86/boot/setup.bin
 BUILD
         arch/x86/boot/bzImage
Kernel: arch/x86/boot/bzImage is ready (#2)
real
       9m50.400s
        15m41.843s
user
        2m29.001s
sys
```

Kompilacja została wykonana przy użyciu 2 rdzeni. Operacja przebiegła pomyślnie i zajęła 9 minut i 50 sekund.

make modules

```
root@slack32:/usr/src/linux-5.12.1# time make -j2 modules
 CALL
         scripts/atomic/check-atomics.sh
 CALL
         scripts/checksyscalls.sh
         arch/x86/crypto/crc32-pclmul glue.o
 CC [M]
         arch/x86/crypto/crc32-pclmul.o
 LD [M]
 CC [M]
         fs/fuse/dev.o
 CC
         drivers/video/fbdev/core/sysfillrect.o
         fs/fuse/dir.o
 CC
         drivers/video/fbdev/core/syscopyarea.o
 CC [M]
         drivers/video/fbdev/core/sysimgblt.o
 CC [M]
         fs/fuse/file.o
 CC [M]
 CC [M]
         drivers/video/fbdev/core/fb_sys_fops.o
         drivers/acpi/ac.o
 CC [M]
         drivers/acpi/button.o
```

```
net/wireless/cfg80211.ko
  LD
     [M]
          sound/ac97_bus.ko
 LD [M]
          sound/core/snd-pcm.ko
 LD [M]
          sound/core/snd-timer.ko
          sound/core/snd.ko
 LD
          sound/pci/ac97/snd-ac97-codec.ko
 LD
 LD [M]
          sound/pci/snd-intel8x0.ko
 LD [M]
          sound/soundcore.ko
real
        1m3.560s
user
        1m47.149s
        0m14.779s
```

Kompilacja została wykonana przy użyciu 2 rdzeni. Operacja przebiegła pomyślnie i zajęła 1 minutę i 3 sekundy.

make modules_install

```
root@slack32:/usr/src/linux-5.12.1# time make -j2 modules_install
 INSTALL arch/x86/crypto/crc32-pclmul.ko
 INSTALL drivers/acpi/ac.ko
 INSTALL drivers/acpi/button.ko
 INSTALL drivers/acpi/video.ko
 INSTALL drivers/block/loop.ko
 INSTALL drivers/char/agp/agpgart.ko
 INSTALL drivers/char/agp/intel-agp.ko
 INSTALL drivers/char/agp/intel-gtt.ko
 INSTALL drivers/char/tpm/tpm.ko
 INSTALL drivers/char/tpm/tpm_tis.ko
 INSTALL drivers/char/tpm/tpm tis core.ko
 INSTALL drivers/gpu/drm/drm.ko
 INSTALL drivers/gpu/drm/drm kms helper.ko
 INSTALL drivers/gpu/drm/ttm/ttm.ko
 INSTALL drivers/gpu/drm/vmwgfx/vmwgfx.ko
 INSTALL drivers/i2c/algos/i2c-algo-bit.ko
         drivers/i2c/husses/i2c-niiv4
 INSTALL net/wireless/cfg80211.ko
 INSTALL sound/ac97 bus.ko
 INSTALL sound/core/snd-pcm.ko
 INSTALL sound/core/snd-timer.ko
```

```
INSTALL net/wireless/cfg80211.ko
INSTALL sound/ac97_bus.ko
INSTALL sound/core/snd-pcm.ko
INSTALL sound/core/snd-timer.ko
INSTALL sound/core/snd.ko
INSTALL sound/pci/ac97/snd-ac97-codec.ko
INSTALL sound/pci/snd-intel8x0.ko
INSTALL sound/soundcore.ko
DEPMOD 5.12.1-smp

real 0m1.124s
user 0m0.527s
sys 0m0.511s
```

Operacja przebiegła pomyślnie i zajęła 1,124 sekundy, wykorzystując 2 rdzenie.

Tworzenie dysku ram

```
root@slack32:/boot# /usr/share/mkinitrd/mkinitrd_command_generator.sh -k 5.12.1-smp

# mkinitrd_command_generator.sh revision 1.45

# This script will now make a recommendation about the command to use

# in case you require an initrd image to boot a kernel that does not

# have support for your storage or root filesystem built in

# (such as the Slackware 'generic' kernels').

# A suitable 'mkinitrd' command will be:

mkinitrd -c -k 5.12.1-smp -f ext4 -r /dev/sda1 -m ext4 -u -o /boot/initrd.gz

root@slack32:/boot# mkinitrd -c -k 5.12.1-smp -f ext4 -r /dev/sda1 -m ext4 -u -o /boot/initrd.gz

31927 bloków

/boot/initrd.gz created.

Be sure to run lilo again if you use it.
```

Tworzenie wpisu w lilo

```
image = /boot/vmlinuz-custom-5.12.1-old-smp
  root = /dev/sda1
  label = "kernel-old"
  read-only_
# Linux bootable partition config ends
```

```
root@slack32:/boot# root@slack32:/boot# lilo
Warning: LBA32 addressing assumed
Added Slackware_14.2 *
Added kernel-custom +
Added kernel-old
One warning was issued.
root@slack32:/boot# _
```

2. Nowa metoda streamline config.pl

make bzImage

```
root@slack32:/usr/src/linux-5.12.1# time make -j2 bzImage
         include/config/auto.conf.cmd
 SYNC
 CALL
         scripts/atomic/check-atomics.sh
         scripts/checksyscalls.sh
 CALL
         include/generated/compile.h
 CHK
 GZIP
         kernel/config_data.gz
 CC
         kernel/configs.o
 AR
         kernel/built-in.a
 GEN
          .version
         include/generated/compile.h
 CHK
 UPD
         include/generated/compile.h
         init/version.o
 CC
 AR
         init/built-in.a
 LD
         vmlinux.o
 MODPOST vmlinux.symvers
 MODINFO modules.builtin.modinfo
 GEN
         modules.builtin
         .tmp vmlinux.kallsyms1
 LD
 KSYMS .tmp vmlinux.kallsyms1.S
```

```
VOFFSET arch/x86/boot/compressed/../voffset.h
  OBJCOPY arch/x86/boot/compressed/vmlinux.bin
  LZMA
          arch/x86/boot/compressed/vmlinux.bin.lzma
          arch/x86/boot/compressed/misc.o
  CC
 MKPIGGY arch/x86/boot/compressed/piggy.S
          arch/x86/boot/compressed/piggy.o
  AS
  LD
          arch/x86/boot/compressed/vmlinux
  ZOFFSET arch/x86/boot/zoffset.h
 OBJCOPY arch/x86/boot/vmlinux.bin
          arch/x86/boot/header.o
  LD
         arch/x86/boot/setup.elf
 OBJCOPY arch/x86/boot/setup.bin
          arch/x86/boot/bzImage
  BUILD
Kernel: arch/x86/boot/bzImage is ready (#3)
real
        0m29.479s
user
        0m24.534s
        0m18.120s
sys
```

Kompilacja z użyciem dwóch rdzeni zajęła około 30 sekund. Zkompilowane zostało o wiele mniej elementów w porównaniu do metody starej.

make modules

```
root@slack32:/usr/src/linux-5.12.1# time make -j2 modules
CALL scripts/atomic/check-atomics.sh
CALL scripts/checksyscalls.sh
MODPOST Module.symvers

real 0m5.874s
user 0m7.980s
sys 0m2.756s
root@slack32:/usr/src/linux-5.12.1#
```

Operacja przebiegła pomyślnie i zajęła 5,8 sekund przy użyciu dwóch rdzeni. Ponownie skompilowana została mniejsza ilość modułów.

make modules_install

```
root@slack32:/usr/src/linux-5.12.1# time make -j2 modules_install
  INSTALL arch/x86/crypto/crc32-pclmul.ko
  INSTALL drivers/acpi/ac.ko
  INSTALL drivers/acpi/button.ko
  INSTALL drivers/acpi/video.ko
  INSTALL drivers/block/loop.ko
  INSTALL drivers/char/agp/agpgart.ko
  INSTALL drivers/char/agp/intel-agp.ko
  INSTALL drivers/char/agp/intel-gtt.ko
  INSTALL drivers/char/tpm/tpm.ko
  INSTALL drivers/char/tpm/tpm tis.ko
  INSTALL drivers/char/tpm/tpm_tis_core.ko
  INSTALL drivers/gpu/drm/drm.ko
  INSTALL drivers/gpu/drm/drm kms helper.ko
  INSTALL drivers/gpu/drm/ttm/ttm.ko
  INSTALL drivers/gpu/drm/vmwgfx/vmwgfx.ko
  INSTALL drivers/i2c/algos/i2c-algo-bit.ko
  INSTALL drivers/i2c/busses/i2c-piix4.ko
  INSTALL drivers/i2c/i2c-core.ko
```

```
INSTALL sound/core/snd-timer.ko
INSTALL sound/core/snd.ko
INSTALL sound/pci/ac97/snd-ac97-codec.ko
INSTALL sound/pci/snd-intel8x0.ko
INSTALL sound/soundcore.ko
DEPMOD 5.12.1-smp

real 0m0.880s
user 0m0.527s
sys 0m0.499s
```

Komenda została zakończona w 0,8 sekundy używając dwóch rdzeni.

Tworzenie dysku ram

```
root@slack32:/boot# /usr/share/mkinitrd/mkinitrd_command_generator.sh -k 5.12.1-smp

# mkinitrd_command_generator.sh revision 1.45

# This script will now make a recommendation about the command to use

# in case you require an initrd image to boot a kernel that does not

# have support for your storage or root filesystem built in

# (such as the Slackware 'generic' kernels').

# A suitable 'mkinitrd' command will be:

mkinitrd -c -k 5.12.1-smp -f ext4 -r /dev/sda1 -m ext4 -u -o /boot/initrd.gz

root@slack32:/boot# mkinitrd -c -k 5.12.1-smp -f ext4 -r /dev/sda1 -m ext4 -u -o /boot/initrd.gz

31927 bloków

/boot/initrd.gz created.

Be sure to run lilo again if you use it.
```

Konfiguracja lilo

```
image = /boot/vmlinuz-custom-5.12.1-new-smp
  root = /dev/sda1
  label = "kernel-new"
  read-only__
# Linux bootable partition config ends
root@slack32:/boot# root@slack32:/boot# lilo
Warning: LBA32 addressing assumed
Added Slackware_14.2 *
Added kernel-custom +
Added kernel-old
Added kernel-new
One warning was issued.
```

3. Podsumowanie

Czas wykonania poszczególnych komend

	Stara metoda	Nowa metoda
make bzImage	9m 50,4s	29,48s
make modules	1m 3,56s	5,87s
make modules_install	1,12s	0,88s

Kompilacja przy użyciu nowej metody jest zdecydowanie szybsza. Wynika to głównie ze zmniejszenia ilości kompilowanych elementów.

Czas uruchamiania

Czas uruchamiania zmierzony jest od naciśnięcia klawisza enter w menu lilo do pojawienia się ekranu logowania. Przed rozruchem maszyna wirtualna jest całkowicie wyłączona. Jest to również pierwsze uruchomienie po kompilacji.

	Stara metoda	Nowa metoda
Czas	około 19 sekund	Około 18 sekund

Nowa metoda uruchamia się niewiele ponad sekundę szybciej.

Rozmiar na dysku

```
-rw-r--r-- 1 root root 8852336 maj 25 20:31 vmlinuz-custom-5.12.1-new-smp
-rw-r--r-- 1 root root 8851760 maj 25 20:13 vmlinuz-custom-5.12.1-old-smp
```

Różnica jest bardzo niewielka, jądro skompilowane przy użyciu starej metody jest o 576 bajty mniejsze.