Coursera Beta

- Jakub
- Contact Us
- My Contributions
- Log Out

ML:Octave Tutorial

From Coursera

Contents

- 1 Basic Operations
- 2 Moving Data Around
- 3 Computing on Data
- 4 Plotting Data
- 5 Control statements: for, while, if statements
- 6 Functions
- 7 Vectorization
- 8 Working on and Submitting Programming Exercises
- 9 Video Lecture Table of Contents
 - 9.1 Basic Operations
 - 9.2 Moving Data Around
 - 9.3 Computing on Data
 - 9.4 Plotting data
 - 9.5 Control statements
 - 9.6 Vectorization
- 10 External Resources
- 11 Frequently Asked Questions

Basic Operations

```
%% Change Octave prompt PS1('>> '); %% Change working directory in windows example: cd \ 'c:/path/to/desired/directory name' %% Note that it uses normal slashes and does not use escape characters for the empty spaces. %% elementary operations 5+6 3-2 5*8 1/2 2^6 1 == 2 % false 1 -= 2 % true. note, not "!=" <math>1 \& 6 0 1 || 0 & cor(1,0)
```

```
% variable assignment
a = 3; % semicolon suppresses output
b = 'hi';
c = 3>=1;
% Displaying them:
a = pi
disp(a)
disp(sprintf('2 decimals: %0.2f', a))
disp(sprintf('6 decimals: %0.6f', a))
format long
format short
   vectors and matrices
A = [1 \ 2; \ 3 \ 4; \ 5 \ 6]
v = [1 \ 2 \ 3]
v = [1; \ 2; \ 3]
v = [1:0.1:2]
               % from 1 to 2, with stepsize of 0.1. Useful for plot axes
               % from 1 to 6, assumes stepsize of 1 (row vector)
C = 2*ones(2,3) % same as C = [2 \ 2 \ 2; \ 2 \ 2]
w = ones(1,3)
                  % 1x3 vector of ones
w = zeros(1,3)
w = rand(1,3) % drawn from a uniform distribution
w = randn(1,3) % drawn from a normal distribution (mean=0, var=1)
w = -6 + sqrt(10)*(randn(1,10000)); % (mean = -6, var = 10) - note: add the semicolon
            % plot histogram using 10 bins (default)
hist(w)
hist(w,50) % plot histogram using 50 bins
🎖 note: if hist() crashes, try "graphics_toolkit('gnu_plot')"
I = eye(4)
              % 4x4 identity matrix
% help function
help eye
help rand
help help
```

Moving Data Around

Data files used in this section: featuresX.dat (https://raw.githubusercontent.com/tansaku/py-coursera/master/featuresX.dat), priceY.dat (https://raw.githubusercontent.com/tansaku/py-coursera/master/priceY.dat)

```
%% dimensions
sz = size(A) % 1x2 matrix: [(number of rows) (number of columns)]
size(A,1) % number of rows
size(A,2) % number of cols
length(v) % size of longest dimension
%% loading data
     % show current directory (current path)
cd 'C:\Users\ang\Octave files'
                                 % change directory
ls
      % list files in current directory
load glv.dat
                % alternatively, load('q1y.dat')
load q1x.dat
who
       % list variables in workspace
whos
      % list variables in workspace (detailed view)
                % clear command without any args clears all vars
clear q1y
v = q1x(1:10); % first 10 elements of q1x (counts down the columns)
save hello.mat v; % save variable v into file hello.mat
save hello.txt v -ascii; % save as ascii
```

```
% fopen, fread, fprintf, fscanf also work [[not needed in class]]
%% indexing
A(3,2) % indexing is (row,col)
A(2,:) % get the 2nd row.
         \% ":" means every element along that dimension
A(:,2) % get the 2nd col
A([1\ 3],:)\ % print all the elements of rows 1 and 3
A(:,2) = [10; 11; 12]
                            % change second column
A = [A, [100; 101; 102]]; % append column vec
A(:) % Select all elements as a column vector.
% Putting data together
A = [1 \ 2; \ 3 \ 4; \ 5 \ 6]
B = [11 \ 12; \ 13 \ 14; \ 15 \ 16] \% same dims as A
C = [A B] \% concatenating A and B matrices side by side C = [A, B] \% concatenating A and B matrices side by side
C = [A; B] % Concatenating A and B top and bottom
```

Computing on Data

```
% initialize variables
A = [1 \ 2;3 \ 4;5 \ 6]
B = [11 12;13 14;15 16]
C = [1 \ 1; 2 \ 2]
v = [1;2;3]
% matrix operations
A * C % matrix multiplication
A .* B % element-wise multiplication
% A .* C or A * B gives error - wrong dimensions
A .^ 2 \% element-wise square of each element in A
1./v % element-wise reciprocal
log(v) % functions like this operate element-wise on vecs or matrices
exp(v)
abs(v)
-v % -1*v
v + ones(length(v), 1)
% v + 1 % same
'A' % matrix transpose
% misc useful functions
% max (or min)
a = [1 15 2 0.5]
val = max(a)
[[val,ind] = max(a) % val - maximum element of the vector a and index - index value where maximum occur
'val = max(A) % if A is matrix, returns max from each column
% compare values in a matrix & find
a < 3 % checks which values in a are less than 3
find(a < 3) % gives location of elements less than 3
A = magic(3) % generates a magic matrix - not much used in ML algorithms
[[r,c] = find(A>=7) % row, column indices for values matching comparison
% sum, prod
sum(a)
prod(a)
floor(a) % or ceil(a)
\max(\text{rand}(3), \text{rand}(3))
max(A,[],1) - maximum along columns(defaults to columns - max(A,[]))
max(A,[],2) - maximum along rows
A = magic(9)
sum(A,1)
sum(A,2)
sum(sum(A .* eye(9)))
```

```
sum(sum( A .* flipud(eye(9)) ))
% Matrix inverse (pseudo-inverse)
pinv(A) % inv(A'*A)*A'
```

Plotting Data

```
%% plotting
t = [0:0.01:0.98];
y1 = sin(2*pi*4*t);
plot(t,y1);
y2 = cos(2*pi*4*t);
hold on; % "hold off" to turn off
plot(t,y2,'r');
xlabel('time');
ylabel('value');
legend('sin','cos');
title('my plot');
print -dpng 'myPlot.png'
                 % or, "close all" to close all figs
close:
figure(1); plot(t, y1);
figure(2); plot(t, y2);
figure(2), clf; % can specify the figure number
subplot(1,2,1); % Divide plot into 1x2 grid, access 1st element
plot(t,y1);
subplot(1,2,2); % Divide plot into 1x2 grid, access 2nd element
plot(t,y2);
axis([0.5 1 -1 1]); % change axis scale
%% display a matrix (or image)
figure;
imagesc(magic(15)), colorbar, colormap gray;
% comma-chaining function calls.
a=1,b=2,c=3
a=1; b=2; c=3;
```

Control statements: for, while, if statements

```
v = zeros(10,1);
for i=1:10,
    v(i) = 2^i;
🎖 Can also use "break" and "continue" inside for and while loops to control execution.
i = 1;
while i \le 5,
 v(i) = 100;
 i = i+1;
end
i = 1;
while true,
 v(i) = 999;
 i = i+1;
 if i == 6,
    break;
  end:
end
if v(1) == 1,
 disp('The value is one!');
elseif v(1) == 2,
 disp('The value is two!');
else
```

```
disp('The value is not one or two!');
end
```

Functions

To create a function, type the function code in a text editor (e.g. gedit or notepad), and save the file as "functionName.m"

Example function:

```
function y = squareThisNumber(x)
y = x^2;
```

To call the function in Octave, do either:

1) Navigate to the directory of the functionName.m file and call the function:

```
% Navigate to directory:
cd /path/to/function
% Call the function:
functionName(args)
```

2) Add the directory of the function to the load path and save it:

You should not use addpath/savepath for any of the assignments in this course. Instead use 'cd' to change the current working directory. Watch the video on submitting assignments in week 2 for instructions.

```
% To add the path for the current session of Octave:
addpath('/path/to/function/')
% To remember the path for future sessions of Octave, after executing addpath above, also do:
savepath
```

Octave's functions can return more than one value:

```
function [y1, y2] = squareandCubeThisNo(x)

y1 = x^2

y2 = x^3
```

Call the above function this way:

```
[a,b] = squareandCubeThisNo(x)
```

Vectorization

Vectorization is the process of taking code that relies on **loops** and converting it into **matrix operations**. It is more efficient, more elegant, and more concise.

As an example, let's compute our prediction from a hypothesis. Theta is the vector of fields for the hypothesis and x is a vector of variables.

With loops:

```
prediction = 0.0;
for j = 1:n+1,
   prediction += theta(j) * x(j);
end;
```

With vectorization:

```
prediction = theta' * x;
```

If you recall the definition multiplying vectors, you'll see that this one operation does the element-wise multiplication and overall sum in a very concise notation.

Working on and Submitting Programming Exercises

- 1. Download and extract the assignment's zip file.
- 2. Edit the proper file 'a.m', where a is the name of the exercise you're working on.
- 3. Run octave and cd to the assignment's extracted directory
- 4. Run the 'submit' function and enter the assignment number, your email, and a password (found on the top of the "Programming Exercises" page on coursera)

Video Lecture Table of Contents

Basic Operations

```
0:00
        Introduction
3:15
        Elementary and Logical operations
5:12
        Variables
7:38
        Matrices
8:30
       Vectors
11:53
        Histograms
12:44
        Identity matrices
13:14
        Help command
```

Moving Data Around

```
0:24
        The size command
1:39
        The length command
2:18
        File system commands
2:25
4:50
        File handling
        Who, whos, and clear
6:50
        Saving data
8:35
        Manipulating data
12:10
        Unrolling a matrix
12:35
        Examples
14:50
        Summary
```

Computing on Data

			•
(9:00	Matrix operations	i
(9:57	Element-wise operations	i
4	4:28	Min and max	i
Į.	5:10	Element-wise comparisons	i
Ę	5:43	The find command	ł
(5:00	Various commands and operations	1
		The state of the s	1

Plotting data

```
0:00
        Introduction
0:54
        Basic plotting
2:04
        Superimposing plots and colors
3:15
        Saving a plot to an image
4:19
        Clearing a plot and multiple figures
4:59
        Subplots
6:15
        The axis command
6:39
        Color square plots
8:35
        Wrapping up
```

Control statements

```
0:10 For loops
1:33 While loops
3:35 If statements
4:54 Functions
6:15 Search paths
7:40 Multiple return values
8:59 Cost function example (machine learning)
12:24 Summary
```

Vectorization

!	
0:00	Why vectorize?
1:30	Example
4:22	C++ example
5:40	Vectorization applied to gradient descent
9:45	Python
-	

Next: Logistic Regression Back to Index: Main

External Resources

Octave Quick Reference (http://enacit1.epfl.ch/octave_doc/refcard/refcard-a4.pdf)

An Introduction to Matlab (http://www.maths.dundee.ac.uk/ftp/na-reports/MatlabNotes.pdf)

Learn X in Y Minutes: Matlab (https://learnxinyminutes.com/docs/matlab/)

Frequently Asked Questions

Q: Where is the MATLAB tutorial?

A: Octave and MATLAB are mostly identical for the purposes of this course. The differences are minor and and are pointed-out in the lecture notes in the Wiki, and in the Tutorials for the programming exercises (see the Forum for a list of Tutorials).

Retrieved from "https://share.coursera.org/wiki/index.php?title=ML:Octave_Tutorial&oldid=33575" Category: ML:Lecture Notes

- This page was last modified on 15 May 2016, at 15:59.
- This page has been accessed 89,836 times.
- Privacy policy
- About Coursera
- Disclaimers