DEVOIR SURVEILLÉ N°02

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

EXERCICE 1.

On pose
$$s = \cos\left(\frac{2\pi}{5}\right) + \cos\left(\frac{4\pi}{5}\right)$$
 et $p = \cos\left(\frac{2\pi}{5}\right)\cos\left(\frac{4\pi}{5}\right)$.

- **1.** Montrer que s = 2p.
- 2. En calculant p sin $\left(\frac{2\pi}{5}\right)$, déterminer la valeur de p et en déduire celle de s.
- 3. En déduire que $\cos\left(\frac{2\pi}{5}\right) = \frac{-1+\sqrt{5}}{4}$ et $\cos\left(\frac{4\pi}{5}\right) = \frac{-1-\sqrt{5}}{4}$.

EXERCICE 2.

Pour
$$n \in \mathbb{N}$$
, on pose $S_n = \sum_{i=0}^n \sum_{j=i}^n \binom{j}{i}$.

- **1.** Calculer S_0 , S_1 et S_2 .
- 2. Calculer les sommes $\sum_{k=0}^{n} {n \choose k}$ et $\sum_{k=0}^{n} 2^k$.
- 3. En intervertissant l'ordre de sommation, calculer S_n pour tout $n \in \mathbb{N}$.

EXERCICE 3.

Résoudre le système

(S):
$$\begin{cases} x + y - z = 1 \\ x + my - z = 1 \\ x + y + mz = m \end{cases}$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$ et de paramètre $\mathfrak{m} \in \mathbb{R}$.

Exercice 4.

On pose pour $n \in \mathbb{N}^*$,

$$u_n = \sum_{k=1}^n \frac{sin\left(\frac{\pi}{4k(k+1)}\right)}{cos\left(\frac{\pi}{4k}\right)cos\left(\frac{\pi}{4(k+1)}\right)}$$

- **1.** Déterminer une expression simple de u_n pour tout $n \in \mathbb{N}^*$.
- **2.** En déduire la limite de la suite (u_n) .

Problème 1 -

Partie I - Préliminaires

On rappelle que pour $(k,n)\in\mathbb{N}^2$ tel que $k\leqslant n,$ le coefficient binomial $\binom{n}{k}$ est défini par

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Dans cette partie, on redémontre deux résultats sur les coefficients binomiaux qui serviront par la suite.

- **1. Question de cours.** Soit $(k,n) \in \mathbb{N}^2$ tel que $k \leqslant n$. Montrer que $\binom{n}{n-k} = \binom{n}{k}$.
- **2. Question de cours.** Soit $(k, n) \in \mathbb{N}^2$ tel que $1 \le k \le n$. Montrer que

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$

Partie II - Une formule célèbre

3. On convient dans cette question que pour $n \in \mathbb{N}$ et $k \in \mathbb{Z}$, $\binom{n}{k} = 0$ lorsque k < 0 ou k > n. On admet que les relations démontrées à la partie I restent vraies dans ces cas. Démontrer par récurrence la propriété suivante :

$$\mathcal{P}_n\colon\,\forall (m,p)\in\mathbb{N}^2,\;\sum_{k=0}^p\binom{n}{k}\binom{m}{p-k}=\binom{n+m}{p}$$

- 4. En déduire la valeur de $S_n = \sum_{k=0}^n \binom{n}{k}^2$ pour $n \in \mathbb{N}.$
- 5. A l'aide du changement d'indice $\ell=n-k$, déterminer la valeur de $T_n=\sum_{k=0}^n k \binom{n}{k}^2$ pour $n\in\mathbb{N}$.
- **6.** En déduire que si n est un entier naturel impair, $\binom{2n}{n}$ est pair.