There once was a grid at ol' Carkeek

First Author*¹, Second Author^{1,2}, and Third Author²

¹Department of Computer Science, LAT_EX University

²Department of Mechanical Engineering, Superfabulous University

October 6, 2015

1 Keywords

2 Stuff, things, neat, cool, wow, instafun, tags4likes, etc

3 Abstract

4 This is the text of the abstract.

5 Introduction

- 6 For centuries, humankind has wondered: If I have two apples, and someone gives me another two
- 7 apples, how many apples do I have? Some people did this (?).

8 Methods

- 9 We use the general framework outlined by Shelton et al (CITE). That study outlined the structure
- 10 for estimation of the proportional biomass of a taxon (B_i) given the proportional counts of sequences
- 11 recovered from a parallel sequencing run (Z_i) .

^{*}first.author@funstuff.com

We modeled the counts of DNA sequences (Z) from each of a given taxon i, in each replicate 13 PCR j, from each replicate of a given location k (hence, Z_{ijk}), as though they are ?(proportional 14 to/drawn from)? a Poisson distribution. Poisson distributions are described by one and only one 15 parameter, their mean; in this case the mean is given by an exponential function e^{λ} . Thus,

$$Z_{ijk} \sim Poisson(e^{\lambda_{ijk}})$$
 (1)

In turn, we further assume this parameter λ is linearly proportional to a suite of taxon-, pcr-, and site- specific parameters describing the variance associated with each sub-process linking the amount of DNA (Y) of a given taxon i at a given location k in a DNA extract (hence Y_{ik}):

$$\lambda_{ijk} = \beta_0 + \beta_i + \eta_{ijk} + \epsilon_{ijk} \tag{2}$$

Where β_0 is a general intercept across all taxa, β_i is a fixed effect accounting for the variance associated with taxon i, and η_{ijk} and ϵ_{ijk} are random effects of variance resulting from the processes associated with PCR and spatial location, respectively.

22 Results

We found that if you have two apples, and someone gives you another two apples, you have four apples.

25 Discussion

26 Boy those results sure are neat. Now, the pressing question becomes: How do you like them apples?

27 Acknowledgements

28 We wish to thank all of the little people.

29 Funding

30 This study was funded by our super-rich uncle.

31 Author Contributions

- 32 Conceived and designed the experiments: . Collected the data: . Conducted the analyses: . Wrote
- 33 the first draft: . Edited the manuscript: .

34 Data Availablity

35 The data and code used to generate our results can be found at the following url:

36 References

37 Figures