MPE Calculation Method

 $E (V/m) = (30*P*G)^{0.5}/d$

Power Density: Pd $(W/m2) = E^2/377$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

 $Pd = (30*P*G) / (377*d^2)$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Calculated Result and Limit (WORSE CASE IS AS BELOW) ${\tt SISO}$

Antenna	Peak Output	Power Density	Limit of Power	Test
Gain	Power (mW)	(S) (mW/cm2)	Density (S)	Result
(Numeric)			(mW/cm2)	
2(3dBi)	59.16	0.024	1	Compiles
	(17.72 dBm)			

MIMO

Antenna	Peak Output	Power Density	Limit of Power	Test
Gain	Power (mW)	(S) $(mW/cm2)$	Density (S)	Result
(Numeric)			(mW/cm2)	
4	57.02	0.045	1	Compiles
(3+10log	(17.56 dBm)			
2=6.01dBi)				