<u>TD 2</u>

Le S.C intrinsèque, n_i ; le S.C extrinsèque dopé n, p. Relation de concentrations.

**exercice 2.1

On donne le tableau suivant :

	Eg [eV]	Nc [atomes/cm ³]	Nv [atomes/cm ³]
AsGa	1,43	4,7.10 ¹⁷	7.10 ¹⁸
Ge	0,66	1,04.10 ¹⁹	6.10 ¹⁸
Si	1,12	2,8.10 ¹⁹	1,04.10 ¹⁹

- 1. Parmi ces trois semi-conducteurs, quel est celui qui présente la concentration intrinsèque la plus faible ?
- 2. Calculer n_i pour ce semi-conducteur à 300 K.

**exercice 2.2

Le Germanium est caractérisé par :

masse atomique M = 72.6 g. masse volumique d = 5.32 g/cm³.

énergie de la bande interdite Eg = 0,67 eV.

Nombre d'Avogadro $A = 6,023.10^{23} \text{ mol}^{-1}, k = 8,62.10^{-5} \text{ eV/K}.$

Densité effective d'états énergétiques à 300 K, $Nc = 1,04.10^{19}$ atomes/cm³, $Nv = 6.10^{18}$ atomes/cm³.

- 1. déterminer le nombre d'atomes par cm³.
- 2. calculer la concentration intrinsèque à 300 K.
- 3. quelle est la fraction d'atomes ionisés ?

**exercice 2.3

Dans le cas du Silicium, à T = 300 K, avec ni = 1,5.10¹⁰ cm⁻³, nombre total d'atomes par cm³ = 5.10²².

- 1. Quel est le rapport du nombre d'atomes ionisés au nombre total d'atomes ?
- 2. Quelle est la largueur de la bande interdite en eV ?

$$Nc = 3.10^{19} \left(\frac{T}{300}\right)^{\frac{3}{2}}$$
 atomes/cm⁻³, $Nv = 10^{19} \left(\frac{T}{300}\right)^{\frac{3}{2}}$ atomes/cm⁻³

- 3. Déterminer sans calculs le type de semi-conducteur (n ou p) puis les concentrations des porteurs à l'équilibre dans les cas suivants :
 - a) Silicium dopé par 10¹⁵ atomes de Ga par cm⁻³.
 - b) Silicium dopé par 10^{12} atomes de Sb par cm⁻³.
 - c) Silicium dopé par 3.10¹⁰ atomes de In par cm⁻³.

exercice 2.4

Dans un semi-conducteur intrinsèque, la concentration de porteurs libres est donnée par la relation suivante :

$$n = p = n_i = A \cdot e^{-\frac{Wc - Wv}{2kT}}$$

- 1. sachant qu'à 300 K la concentration intrinsèque du silicium vaut 6,4.10⁹ cm⁻³ et que la hauteur de la bande interdite vaut 1,12 eV, déterminer la valeur de A.
- 2. en supposant A indépendant de T, calculer la concentration intrinsèque du silicium à la température d'un four à diffusion (1200 K).

exercice 2.5

Un matériau intrinsèque est dopé par N_d atomes donneurs et N_a atomes accepteurs.

- 1. Donner l'expression de la concentration n_0 en fonction de n_i et de $N=N_d$ N_a .
- 2. Quel est le signe de N si le semi-conducteur est de type n ? de type p ?
- 3. On suppose $N_d > N_a$. Faire un développement limité de n_0 en fonction de $\frac{n_i}{N}$.

4. En déduire la valeur minimale de $\frac{N}{n_i}$ pour que l'erreur introduite en utilisant la formule approchée de $n_0 = N$ soit inférieure à 5 %.

exercice 2.6

On considère un barreau de silicium intrinsèque. On donne :

$$e = 1,6.10^{-19} \text{ C}, k = 1,38.10^{-23} \text{ J/K}, \text{ nombre d'Avogadro} = 6,02.10^{23}, h = 6,6.10^{-34} \text{ J.s.}$$

Masse atomique = 28,08 g.

Masse volumique = $2,33.10^3$ kg.m⁻³.

Largeur de la bande interdite Eg = 1,1 eV (supposée indépendante de la température).

Concentration effective des porteurs dans la bande de conduction,

$$Nc = 3.10^{19} \left(\frac{T}{300}\right)^{\frac{3}{2}}$$
 atomes/cm⁻³, $Nv = 10^{19} \left(\frac{T}{300}\right)^{\frac{3}{2}}$ atomes/cm⁻³

- 1. Calculer la concentration n_i des porteurs à 300 K.
- 2. Le barreau est maintenant dopé à raison d'un atome d'antimoine (Sb) pour 5.10¹² atomes de silicium. Déterminer la concentrations des impuretés introduites. Quel type de semi-conducteur obtient-on ? (dans quelle colonne de la classification périodique se situe cet atome?)
- 3. Après avoir rappelé comment on établit les expressions générales donnant les concentrations des porteurs n et p en fonction de n_i et des concentration des impuretés acceptrices et donatrices, déterminer ces concentrations à 300 K.
- 4. On admet que le barreau de silicium redevient pratiquement intrinsèque lorsque n_i dépasse de 10 fois la valeur de la concentration des impuretés introduites. A quelle température minimum doit-on chauffer le barreau pour se trouver dans un tel cas ?

exercice 2.7

On considère l'élément de semi-conducteur suivant réalisé à partir d'une plaquette de silicium dopée avec une concentration d'atomes accepteurs $Na=10^{13}~cm^{-3}$. Par des diffusions successives d'impuretés dans la plaquette primitive, on a introduit $Nd=10^{15}~cm^{-3}$ atomes donneurs dans la zone 2 et $Na=10^{17}~cm^{-3}$ atomes accepteurs dans les zones 3 et 4. On se place à la température de 300 K avec $n_i=8,3.10^9~cm^{-3}$.

Conservatoire National des Arts et Metiers

- 1. De quel type sont les différentes régions ?
- 2. Ecrire l'équation qui traduit l'équilibre des porteurs et celle qui traduit la neutralité.
- 3. Calculer les concentrations de trous et d'électrons dans chacune des zones.

exercice 2.8

La concentration intrinsèque d'un semi-conducteur varie en fonction de la température suivant :

$$ni^2 = A_0 T^3 \exp\left(-\frac{Eg}{kT}\right)$$

avec $n_i=2,5.10^{13}$ cm⁻³ à 300 K, Eg = 0,67 eV à 300 K pour le germanium et $n_i=1,5.10^{10}$ cm⁻³ à 300 K, Eg = 1,1 eV à 300 K pour le silicium.

Quel est le pourcentage de variation de n_i (à 300 K) pour une élévation de température de un degré ?

Réponses 2.1

- 1. L'AsGa.
- 2. $n_i = 1.8.10^6 \text{ cm}^{-3}$.

Réponses 2.2

- 1. $4,41.10^{22}$ atomes par cm³.
- 2. $n_i = 1.87.10^{13} \text{ cm}^{-3}$.
- 3. 4,2.10⁻¹⁰.

Réponses 2.3

- 1. 3.10⁻¹³.
- 2. 1,08 eV.
- 3. \underline{a} : type p, $p_0 = 10^{15}$ cm⁻³, $n_0 = 2,25.10^{10}$ cm⁻³. \underline{b} : type n, $p_0 = 2,28.10^8$ cm⁻³, $n_0 = 10^{12}$ cm⁻³. \underline{c} : type p, $p_0 = 3,62.10^{10}$ cm⁻³, $n_0 = 6,2.10^9$ cm⁻³.

Réponses 2.4

- 1. $A = 1.63.10^{19} \text{ cm}^{-3}$.
- 2. $n_i = 7.26.10^{16} \text{ cm}^{-3}$.

Réponses 2.5

1.
$$n_0 = \frac{N}{2} \left(1 + \sqrt{1 + \frac{4 \cdot n_i^2}{N^2}} \right)$$
.

- 2. type n, N > 0; type p, N < 0.
- 3. $n_0 = N \left(1 + \frac{n_i^2}{N^2} \right)$.
- 4. $\frac{N}{n_i} = 4,47$.

Réponses 2.6

- 1. $n_i = 1,016.10^{10} \text{ cm}^{-3}$.
- 2. 10^{10} cm⁻³, type n.
- 3. $p_0 = 6.25.10^9 \text{ cm}^{-3}$, $n_0 = 1.6.10^{10} \text{ cm}^{-3}$.
- 4. 336 K.

Conservatoire National des Arts et Metiers

Réponses 2.7

- 1. 1: type p, 2: type n, 3 et 4: type p.
- 2. équilibre : $n_0.p_0={n_i}^2,\, neutralité$: $n_0+N_A=p_0+N_D.$
- 3. $1: n_0 = 6.9.10^6 \text{ cm}^{-3} p_0 = 10^{13} \text{ cm}^{-3}, 2: n_0 = 10^{15} \text{ cm}^{-3} p_0 = 6.9.10^4 \text{ cm}^{-3}, 3 \text{ et } 4:$ $n_0 = 6.9.10^2 \text{ cm}^{-3} p_0 = 10^{17} \text{ cm}^{-3}.$

Réponses 2.8

Ge:
$$\frac{\Delta n_i}{n_i}$$
 = 4,8 %, Si: $\frac{\Delta n_i}{n_i}$ = 7,6 %.