CPSC 121: Models of Computation

Unit 7: Proof Techniques

Based on slides by Patrice Belleville and Steve Wolfman

Quiz 7 Feedback:

- In general:
- Issues:

■ We will do more proof examples in class.

Unit 7- Proof Techniques

Pre-Class Learning Goals

- By the start of class, for each proof strategy below, you should be able to:
 - > Identify the form of statement the strategy can prove.
 - > Sketch the structure of a proof that uses the strategy.
- Strategies for quantifiers:
 - \triangleright generalizing from the generic particular (WLOG) (for $\forall x \in Z \dots$)
 - \triangleright constructive/non-constructive proofs of existence (for $\exists x \in Z \dots$)
 - proof by exhaustion

General strategies

- > antecedent assumption proof (for $p \rightarrow q$.)
- (for $p \rightarrow q$.) > proof by contrapositive
- proof by contradiction (for any statement.) (for any statement.) > proof by cases.

Unit 7- Proof Techniques

(for $\forall x \in Z \dots$)

Quiz 7 Feedback

- Open-ended question: when should you switch strategies?
- - > When the proof is going around in circles.
- > When the proof is getting too messy.
- When it is taking too long.
- Through experience (how do you get that?)

Unit 7- Proof Techniques

In-Class Learning Goals

- By the end of this unit, you should be able to:
 - Devise and attempt multiple different, appropriate proof strategies for a given theorem, including
 - o all those listed in the "pre-class" learning goals
 - o logical equivalences,
 - o propositional rules of inference
 - o rules of inference on quantifiers

i.e. be able to apply the strategies listed in the <u>Guide to Proof Strategies</u> reference sheet on the course web site (in Other Handouts)

For theorems requiring only simple insights beyond strategic choices or for which the insight is given/hinted, additionally prove the theorem.

Unit 7- Proof Techniques

5

NOTE:

Epp calls some of

these direct proofs

and others indirect. We'll avoid using

these terms

Where We Are in The BIG Questions

- How can we convince ourselves that an algorithm does what it's supposed to do?
 - > We need to prove its correctness.
- How do we determine whether or not one algorithm is better than another one?
 - > Sometimes, we need a proof to convince someone that the number of steps of our algorithm is what we claim it is.

Unit 7- Proof Techniques

Unit Outline

- Techniques for quantifiers.
 - > Existential quantifiers.
 - Universal quantifiers.
- Dealing with multiple quantifiers.
- -
- Using logical equivalencies : Proof by contrapositive
- Using Premises
- Proof by contradiction
- Additional Examples

Unit 7- Proof Techniques

7

Techniques for quantifiers

- There are two general forms of statements:
 - o Those that start with an existential quantifier.
 - o Those that start with a universal quantifier.
- We use different techniques for them. We'll study each case in turns.

Unit 7- Proof Techniques

iques 6

Existential Statements

Suppose the statement has the form:

$$\exists x \in D, P(x)$$

- To prove this statement is true, we must
 - Find a value of x (a "witness") for which P(x) holds.
- We call it a witness proof
- So the proof will look like this:
 - ➤ Let x = <some value in D>
 - > Verify that the x we chose satisfies the predicate.
- Example: There is a prime number x such that 3x+2 is not prime.

Unit 7- Proof Techniques

q

Existential Statements (cont')

- How do we translate *There is a prime number x such that 3x+2 is not prime into predicate logic?*
 - A. $\forall x \in Z^+$, Prime(x) $\land \sim Prime(3x+2)$
 - B. $\exists x \in Z^+$, Prime(x) $\land \sim Prime(3x+2)$
 - C. $\forall x \in Z^+$, Prime(x) $\rightarrow \sim$ Prime(3x+2)
 - D. $\exists x \in Z^+$, Prime(x) $\rightarrow \sim$ Prime(3x+2)
 - E. None of the above.

Unit 7- Proof Techniques

10

Existential Statements (cont')

- What is the right start of the proof for the statement There is a prime number x such that 3x+2 is not prime?
 - A. Without loss of generality let x be a positive integer
 - B. Without loss of generality let x be a prime
 - C. Let x be any non specific prime
 - D. Let x be 2
 - E. None of the above.

Unit 7- Proof Techniques

11

Existential Statements (cont')

- So the proof goes as follows:
 - Proof:
 - o Let x =
 - o It is prime because its only factors are 1 and
 - o Now 3x+2 =
 - and
 - o Hence 3x+2 is not prime.
 - o QED.

Unit 7- Proof Techniques

Unit Outline

- Techniques for direct proofs.
 - > Existential quantifiers.
 - > Universal quantifiers.
- Dealing with multiple quantifiers.
- Using logical equivalencies : Proof by contrapositive
- Using Premises
- Proof by contradiction
- Additional Examples

Unit 7- Proof Techniques

13

Universal Statements (cont')

- Terminology: the following statements all mean the same thing:
 - ➤ Let x be a nonspecific element of D
 - > Let x be an unspecified element of D
 - Let x be an arbitrary element of D
 - > Let x be a generic element of D
 - > Let x be any element of D
 - > Suppose x is a particular but arbitrarily chosen element of D.

Unit 7- Proof Techniques

15

Universal Statements

Suppose our statement has the form:

 $\forall x \in D, P(x)$

- To prove this statement is true, we must
 - > Show that P(x) holds no matter how we choose x.
- So the proof will look like this:
 - Without loss of generality, let x be any element of D (or an equivalent expression like those shown on next page)
 - > Verify that the predicate P holds for this x.
 - Note: the only assumption we can make about x is the fact that it belongs to D. So we can only use properties common to all elements of D.

Unit 7- Proof Techniques

4.4

16

Universal Statements (cont')

- Example: Every Racket function definition is at least 12 characters long.
- What is the starting phrase of a proof for this statement?
 - A. Without loss of generality let f be a string of 12 characters
 - B. Let f be a nonspecific Racket function definition....
 - C. Let f be the following Racket function definition
 - D. Let f be a nonspecific Racket function with 12 or more characters
 - E. None of the above.

Unit 7- Proof Techniques

Universal Statements (cont')

- Example 1: Every Racket function definition is at least 12 characters long.
- The proof goes as follows:
 - Proof:
 - o Let f be
 - Then f should look like:

o Therefore f is at least 12 characters long.

Unit 7- Proof Techniques

17

Special Case: Antecedent Assumption

Suppose the statement has the form:

$$\forall x \in D, P(x) \rightarrow Q(x)$$

- This is a special case of the previous formula
- The textbook calls this (and only this) a direct proof.
- The proof looks like this:
 - Proof:
 - o Consider an unspecified element k of D.
 - o Assume that P(k) is true.
 - o Use this and properties of the element of D to verify that the predicate Q holds for this k.

Unit 7- Proof Techniques

4.0

Antecedent Assumption (cont')

- Why is the line Assume that P(k) is true valid?
 - A. Because these are the only cases where Q(k) matters.
 - B. Because P(k) is preceded by a universal quantifier.
 - C. Because we know that P(k) is true.
 - D. Both (a) and (c)
 - E. Both (b) and (c)

Unit 7- Proof Techniques

19

Antecedent Assumption (cont')

■ Example: prove that

 $ightharpoonup \forall n \in \mathbb{N}, \ n \ge 1024 \rightarrow 10n \le nlog_2 n$

Proof:

- > WLOG let n be an unspecified natural number.
- Assume that
- > Then

Unit 7- Proof Techniques

Antecedent Assumption (cont')

Example 2: The sum of two odd numbers is even.

If $Odd(x) \equiv \exists k \in \mathbb{N}, x = 2k+1$ $Even(x) \equiv \exists k \in \mathbb{N}, x = 2k$

the above statement is:

 $\forall n \in \mathbb{N}, \forall m \in \mathbb{N}, Odd(n) \land Odd(m) \rightarrow Even(n+m)$

Proof:

- > Let n be an arbitrary natural number.
- > Let m be an arbitrary natural number.
- > Assume that n and m are both odd.
- ➤ Then n = 2i+1 for some natural number i, and m = 2i+1 for some natural number j
- \rightarrow Then m+n = 2i+1 + 2j+1 = 2i + 2j + 2 = 2(i+j+1)
- ➤ Since i+j+1 is a natural number, 2(i+j+1) is even and so is n+m.
- > OFD

Unit 7- Proof Techniques

21

... and for fun ...

- Other interesting proof techniques ©
 - > Proof by intimidation
 - Proof by lack of space (Fermat's favorite!)
 - Proof by authority
 - > Proof by never-ending revision
- For the full list, see:
 - http://school.maths.uwa.edu.au/~berwin/humour/invalid.proofs.html

Unit 7- Proof Techniques

22

Unit Outline

- Techniques for direct proofs.
 - > Existential quantifiers.
 - Universal quantifiers.
- Dealing with multiple quantifiers.
- Using logical equivalencies : Proof by contrapositive
- Using Premises
- Proof by contradiction
- Additional Examples

Unit 7- Proof Techniques

23

Multiple Quantifiers

- How do we deal with theorems that involve multiple quantifiers?
 - > Start the proof from the outermost quantifier.
 - > Work our way inwards.
- Example: Suppose we wan to prove:

An algorithm whose run time is $t(n) = n^2$ is <u>generally faster</u> than an algorithm whose time is 60n, i.e. we want to show that as n increases, $60n < n^2$

> The statement in predicate logic is:

 $\exists i \in Z^+, \forall n \in Z^+, n \ge i \rightarrow 60n < n^2$

Unit 7- Proof Techniques

Multiple Quantifiers: Example

- Theorem: $\exists i \in Z^+$, $\forall n \in Z^+$, $n \ge i \rightarrow 60n < n^2$
- We can think of it as a statement of the form $\exists i \in Z^+, P(i),$

where $P(i) \equiv \forall n \in \mathbb{Z}^+, n \geq i \rightarrow 60n < n$

- So, how do we pick i
 - A. Let i be any specific integer.
 - Without loss of generality, let i be any arbitrary positive integer
 - C.) Let i = (a specific value)
 - D. None of the above

Unit 7- Proof Techniques

25

Multiple Quantifiers: Example

- Theorem: $\exists i \in Z^+$, $\forall n \in Z^+$, $n \ge i \rightarrow 60n < n^2$
- We can think of it as a statement of the form

```
\exists i \in Z^+, P(i),
```

where

So.

 $P(i) \equiv \forall n \in Z^+, n \ge i \rightarrow 60n < n$

LEAVE this blank until you know what to pick. Take notes as you learn more about i.

We pick i = ??.

Then, we prove: $\forall n \in \mathbb{Z}^+, n \ge i \rightarrow 60n < n^2$.

Unit 7- Proof Techniques

26

Multiple Quantifiers: Example

- Theorem: $\exists i \in Z^+$, $\forall n \in Z^+$, $n \ge i \rightarrow 60n < n^2$
- Proof:
 - \triangleright Let i = ??.
 - ightharpoonup Need to prove $\forall n \in \mathbb{Z}^+$, $n \ge i \rightarrow 60n < n^2$
- How do we proceed?
 - A. Let n = 10
 - B. Let n = 70
 - (C.) WLOG, let n be an arbitrary positive integer
 - D. Let n be some specific integer (we can decide later)
 - E. None of the above

Unit 7- Proof Techniques

27

Multiple Quantifiers: Example

- Theorem: $\exists i \in Z+$, $\forall n \in Z+$, $n \ge i \rightarrow 60n < n^2$
- Proof:
 - \triangleright Let i = ??.
 - >WLOG, let n be any arbitrary positive integer
 - ➤ Need to prove $n \ge i \rightarrow 60n < n^2$
- How should we prove this statement?
 - A. Pick an n value, like 100, and show that this is true.
 - B. Assume $n \ge i$ and prove $60n < n^2$.
 - C. Use proof by exhaustion and show that it is true for every n
 - D. We should use some other strategy.

Unit 7- Proof Techniques

Multiple Quantifiers: Example

- Theorem: $\exists i \in Z+$, $\forall n \in Z+$, $n \ge i \rightarrow 60n < n^2$
- Proof:
 - ➤ Let i = ??.
 - ➤ Let n be any arbitrary positive integer
 - ➤ Assume n ≥ i
 - ➤ Then prove 60n < n²
- How do we prove inequalities?

Unit 7- Proof Techniques

29

"Rules" for Inequalities

Proving an inequality is a lot like proving equivalence.

First, do your scratch work (often solving for a variable).

Then, rewrite formally:

- Start from one side.
- Work step-by-step to the other.
- Never move "opposite" to your inequality (so, to prove "<", never make the quantity smaller).</p>
- Strict inequalities (< and >): have at least one strict inequality step.

Multiple Quantifiers: Example

- Theorem: $\exists i \in Z+, \forall n \in Z+, n \ge i \rightarrow 60n < n^2$
- Proof:
 - ▶ Let i = ??.
 - ➤ Let n be any arbitrary positive integer
 - ➤ Assume n ≥ i
 - ➤ Then prove 60n < n²
- We need to pick an i, so that 60n < n²
 - > Let's solve this inequality for n: in our scratch work
 - ➤ So the solution is n>60. What i should be?

Unit 7- Proof Techniques

31

Multiple Quantifiers: Example

- Theorem: $\exists i \in Z+, \forall n \in Z+, n \ge i \rightarrow 60n < n^2$
- Proof:
 - \rightarrow Let i = 61.
 - ➤ Let n be any arbitrary positive integer
 - ➤ Assume n ≥ i
 - > Then

```
60n < 61n
= i* n
\leq n* n \quad \text{since } n \geq i \quad \text{(using the assumption)}
= n^2
```

Unit 7- Proof Techniques

How Did We Build the Proof?

- Theorem: $\exists i \in \mathbb{Z}+, \forall n \in \mathbb{Z}+, n \geq i \rightarrow 60n < n^2$
- Proof:
 - \triangleright Let **i = 61**.
 - > Let n be any arbitrary positive integer
 - Assume n ≥ i
 - > Then

```
60n < 61n
    = i^* n
```

since $n \ge i$ (using the assumption) ≤ n * n

 $= n^2$

Unit 7- Proof Techniques

35

Unit Outline

- Techniques for direct proofs.
 - Existential quantifiers.
 - Universal quantifiers.
- Dealing with multiple quantifiers.
- Using logical equivalencies: Proof by contrapositive
- Using Premises
- Proof by contradiction
- Additional Examples

Unit 7- Proof Techniques

Using Logical Equivalences

- Every logical equivalence that we've learned applies to predicate logic statements.
- For example, to prove $\sim \exists x \in D$, P(x), you can prove $\forall x \in D$, $\sim P(x)$ and then convert it back with generalized De Morgan's.
- To prove $\forall x \in D$, $P(x) \rightarrow Q(x)$, you can prove $\forall x \in D$, $\sim Q(x) \rightarrow \sim P(x)$ and convert it back using the contrapositive rule.
- In other words, Epp's "proof by contrapositive" is direct proof after applying a logical equivalence rule.

Then what?

Example: Contrapositive

Consider the following theorem:

If the square of a positive integer n is even, then n is even.

- How can we prove this?
- Let's try a directly.

Consider an unspecified integer n.

Assume that n2 is even.

So $n^2 = 2k$ for some (positive) integer k.

Hence $n = \sqrt{2k}$

Contrapositive

- Consider instead the contrapositive statement: If a positive integer n is odd, then its square is odd.
- We can prove this easily:

Consider an unspecified positive integer n.

Assume that n is odd.

Hence n = 2k+1 for some integer k.

Then
$$n^2 = (2k+1)^2$$

= $4k^2 + 4k + 1$
= $2(2k^2+2k)+1$
= $2m+1$ where $m = 2k^2+2k$

Since k is an integer, $2k^2+2k$ is an integer and therefore n^2 is odd.

Unit 7- Proof Techniques

37

Contrapositive

■ Since we proved the statement

If a positive integer n is odd, then its square is odd. the contrapositive of this statement, i.e.

If the square of a positive integer n is even, then n is even.

is also true (by the propositional equivalence rules).

Unit 7- Proof Techniques

Unit Outline

- Techniques for direct proofs.
 - > Existential quantifiers.
 - Universal quantifiers.
- Dealing with multiple quantifiers.
- Using logical equivalencies : Proof by contrapositive
- Using Premises
- Proof by contradiction
- Additional Examples

Unit 7- Proof Techniques

39

Using Premises: Universals

What can you say if you know (you have already proven or its given)

$$\forall x \in D, P(x)$$
?

■ If you know $\forall x \in D, P(x)$:

You can say P(d) is true for any particular d in D of your choice, for an arbitrary d, or for every d.

This is basically the opposite of how we go about proving a universal. This is how we USE (instantiate) a universal statement.

Using Premises: Existentials

 What can you say if you know (you have already proven or its given)

$$\exists y \in D, Q(y)$$
?

■ If you know ∃y ∈ D, Q(y): Do you know Q(d) is true for every d in D? Do you know Q(d) is true for a particular d of your choice?

What do you know?

This is basically the opposite of how we go about proving an existential. This is how we USE (instantiate) an existential statement.

41

Using Predicate Logic Premises

What can you say if you know (rather than needing to prove)

$$\forall x \in D, P(x) \text{ or } \exists y \in D, Q(y)$$
?

- If you know $\forall x \in D$, P(x), you can say that
 - > for any d in D that P(d) is true
 - ➤ P(d) is true for any particular d in D or for an arbitrary one.
- If you know $\exists y \in D$, Q(y), you can say that
 - for some d in D, Q(d) is true, but you don't know which one
 - So, assume nothing more about e than that it's from D.

40

Example 1

- Suppose we know (factorization of integers theorem): For every integer n>1 there are distinct prime numbers p₁, p₂, ..., p_k and integers e₁, e₂, ..., e_k such that n = p₁^{e1} p₂^{e2} ... p_k^{ek}
- Prove: Every integer greater than 1 has at least one prime factor.
- What proof shall we do?
 - A. Witness
 - B WLOG
 - C. Antecedent assumption
 - D. Contraposition
 - E. I have no idea

Unit 7- Proof Techniques

43

Example 1

- Suppose we know (factorization of integers theorem): For every integer n>1 there are distinct prime numbers p₁, p₂, ..., p_k and integers e₁, e₂, ..., e_k such that n = p₁^{e1} p₂^{e2} ... p_k^{ek}
- Prove:

Every integer greater than 1 has at least one prime factor.

- Proof:
 - > WLOG let m be any integer greater than 1.
 - > How shall we use the theorem?

Unit 7- Proof Techniques

Example 1

- Suppose we know (factorization of integers theorem):

 For every integer n>1 there are distinct prime numbers p₁, p₂, ..., p_k and integers e₁, e₂, ..., e_k such that

 n = p₁^{e1} p₂^{e2} ... p_k^{ek}
- Prove:

Every integer greater than 1 has at least one prime factor.

- Proof:
 - > WLOG let m be any integer greater than 1.
 - ► By the factorization theorem, $m = p_1^{e1} p_2^{e2} ... p_k^{ek}$

for some primes $p_1, p_2, ..., p_k$ and integers $e_1, e_2, ..., e_k$.

> Therefore m has at least one prime factor.

Unit 7- Proof Techniques

45

Example 2

Another example:

Every even square can be written as the sum of two consecutive odd integers.

or

 $\forall x \in Z^+$, Even(x) \land Square(x) \rightarrow SumOfTwoConsOdd(x)

- Where:
 - ightharpoonup Square(x) $\equiv \exists y \in Z^+, x = y y$
 - ightharpoonup SumOfTwoConsOdd(x) $\equiv \exists k \in Z^+, x = (2k-1) + (2k+1)$
- Prove it using the following theorem:

For every positive integer n, if n^2 is even, then n is even.

Unit 7- Proof Techniques

46

Example 2

- Proof:
 - > Let x be any unspecified positive integer
 - > Assume that x is an even square.
 - Then
- $x = y^*y$ for some $y \in Z^+$ (1)
- > By the given theorem, y is even.
- > Therefore

$$y = 2m$$
 for some $m \in Z^+$ (2)

> Then from (1) and (2):

$$x = 2m * 2m = 4m^2$$

$$= 2m^2 - 1 + 2m^2 + 1 = (2m^2 - 1) + (2m^2 + 1)$$

- Since m² is a positive integer then 2m² -1 and 2m² +1 are consecutive odd integers.
- QED

Unit 7- Proof Techniques

47

Unit Outline

- Techniques for direct proofs.
 - > Existential quantifiers.
 - Universal quantifiers.
- Dealing with multiple quantifiers.
- Using logical equivalencies : Proof by contrapositive
- Using Premises
- Proof by contradiction
- Additional Examples

Unit 7- Proof Techniques

Proof by Contradiction

■ To prove p:

Assume ~p.

Derive a contradiction

(i.e. $p ^ p, x is odd ^ x is even, x < 5 ^ x > 10, etc).$

- We have then shown that there was something wrong (impossible) about assuming ~p; so, p must be true.
- This is the same as antecedent assumption.

We have proved $\sim p \rightarrow F$

What is the logical equivalent to it?

49

Proof by Contradiction: With premisses

■ To prove:

Premise 1

...

Premise_n

Conclusion

We assume

Premise_1, ..., Premise_n, ~Conclusion and then derive a contradiction

We then conclude that Conclusion is true.

Unit 7- Proof Techniques

50

Proof by Contradiction

- Why are proofs by contradiction a valid proof technique?
 - We proved

Premise 1 Λ ... Λ Premise n Λ ~Conclusion \rightarrow F

- ➤ By the definition of → this is equivalent to
 - ~(Premise 1 ∧ ... ∧ Premise n ∧ ~Conclusion) ∨ F
- > By the identity law it is equivalent to
 - ~(Premise 1 Λ ... Λ Premise n Λ ~Conclusion)
- > By De Morgan:
 - ~(Premise 1 A ... A Premise n) V Conclusion
- \triangleright By the definition of \rightarrow :

Premise 1 \wedge ... \wedge Premise $n \rightarrow$ Conclusion

Unit 7- Proof Techniques

51

Proof by Contradiction: Example 1

■ Theorem:

Not every CPSC 121 student got an above average grade on midterm 1.

- What are:
 - > The premise(s)?
 - > The negated conclusion?
- Let us prove this theorem together.

Unit 7- Proof Techniques

Proof by Contradiction: Example 1

■ Theorem:

Not every CPSC 121 student got an above average grade on midterm

■ Proof:

- Assume that every CPSC 121 student got an above average grade on midterm1
- \succ Let $g_1,\,g_2,\,\,\ldots\,\,,\,g_n\,$ be the grades of the students. And let a be the exam average
- \triangleright Then $g_i > a$ for $1 \le i \le n$
- ightharpoonup And $g_1 + g_2 + \dots + g_n > n^*a$

or
$$(g_1 + g_2 + ... + g_n) / n > a$$

- ightharpoonup But $(g_1 + g_2 + \dots + g_n)$ / n IS the average and is equal to a.
- Contradiction.
- Therefore, Not every 121 students got an above average grade on midterm1. QED

Unit 7- Proof Techniques

53

Proof by Contradiction: Example 2

- A rational number can be expressed as a/b for some $a \in Z$, $b \in Z^+$ with no common factor except 1.
- Theorem: For all real numbers x and y, if x is a rational number, and y is an irrational number, then x+y is irrational.
- What are
 - > the premise(s)?
 - > the negated conclusion?
- Prove the theorem!

Unit 7- Proof Techniques

_ .

Proof by Contradiction: Example 2

- Theorem: For all real numbers x and y, if x is a rational number, and y is an irrational number, then x+y is irrational.
- Proof
 - Assume x is a rational number, y is an irrational number and that x+y is a rational number.
 - ➤ Then x+y = a/b for some $a \in Z$ and some $b \in Z^+$
 - ➤ Since x is rational, x = c/d for some $c \in Z$ and some $d \in Z^+$
 - ightharpoonup Then (c/d) + y = a/b
 - \rightarrow and y = (a / b) (c / d) = (ab bc) / bd
 - ➤ Since ab bc and bd are integers and bd > 0, y is rational.
 - This is a contradiction. Therefore the original theorem is true. QED

5

Proof Strategies

So Far:

 $\forall x \in D, P(x).$ let x be an arbitrary

 $\exists x \in D, P(x).$ with a witness

 $p \rightarrow q$ by assuming the LHS or

prove the contrapositive

assume ~p

and derive F proof by contradiction

 We can use all the propositional logic strategies. Each inference rule suggests a strategy:

 $p \wedge q$ by proving each part $p \vee q$ by proving either part

 $p \vee q$ by assuming $\sim p$ and showing q (same strategy as for $p \rightarrow q!!$)

and so on.

Unit 7- Proof Techniques

How should you tackle a proof?

- Have lots of strategies on hand, and switch strategies when you get stuck:
- Try using WLOG, exhaustion, or witness approaches to strip the quantifiers
- Try antecedent assumption on conditionals
- Try the contrapositive of conditionals
- Try contradiction on the whole statement or as part of other strategies

Unit 7- Proof Techniques

Unit Outline

57

- Techniques for direct proofs.
 - > Existential quantifiers.
 - Universal quantifiers.
- Dealing with multiple quantifiers.
- Indirect proofs: contrapositive and contradiction
- Additional Examples

Unit 7- Proof Techniques

59

How should you tackle a proof? (cont')

- Work forward, playing around with what you can prove from the premises
- Work backward, considering what you'd need to reach the conclusion
- Play with the form of both premises and conclusions using logical equivalences
- Finally, disproving something is just proving its negation

Unit 7- Proof Techniques

58

Exercises

- Prove that for every positive integer x, either \sqrt{x} is an integer, or it is irrational.
- Prove that any circuit consisting of NOT, OR, AND and XOR gates can be implemented using only NOR gates.
- Prove that if a, b and c are integers, and a²+b²=c², then at least one of a and b is even. Hint: use a proof by contradiction, and show that 4 divides both c² and c²-2.
- Prove that there is a positive integer c such that x + y ≤ c · max{ x, y } for every pair of positive integers x and y.

Unit 7- Proof Techniques

Quiz 8

- Due Day and Time: Check the announcements
- Reading for Quiz 8:
 - > Epp, 4th edition: 12.2, pages 791 to 795.
 - > Epp, 3rd edition: 12.2, pages 745 to 747, 752 to 754
 - > Rosen, 6th edition: 12.2 pages 796 to 798, 12.3
 - > Rosen, 7th edition: 13.2 pages 858 to 861, 13.3

Unit 7- Proof Techniques