MATH 401: Lecture 14 (10/02/2025)

Today: * open and closed sets * review for midterm exam

But first Inverse triangle inequality (LSIRA Proposition 3.1.4) $|d(x,a)-d(b,a)| \leq d(x,b) \equiv d(x,b) = |d(x,a)-d(b,a)|, i.e.$ Show d(x,b) > d(x,a) -d(b,a) mof and $d(x,b) \ge d(ha) - d(x,a)$ By briangle inequality, $d(x,a) \leq d(x,b) + d(b,a)$ $\Rightarrow d(x,b) \ge d(x,a) - d(b,a) - (1)$ Also, $d(b,a) \leq d(b,x) + d(x,a)$ $\Rightarrow d(b_i x) \ge d(b_i a) - d(x_i a) - (2)$ = d(x,b) by symmetry (1) & (2) \Rightarrow $d(x_1b) = |d(x_1a) - d(b_1a)|$.

3.3 Open and Closed Sets (in metric spaces)

Recall Ball (open by default): For $a \in (X, d)$, r > 0 $B(a;r) = 3 \times E \times : d(x,a) = r$ is the Open ball of radius r centered at a. Also, $\overline{B}(a;r) = \{x \in X : d(x,a) \leq r\}$ is the

closed ball of radius r centered at a.

We draw open balls with dashed border curves, and closed balls with solid boundary/border curves.

Points and Sets

Def Given $x \in X$ and $A \subseteq X$, there are three possibilities. (i) $\exists B(x;r) \subset A$ for r > 0; the r-ball at x is contained fully in A x is an interior point of A. e.g., a.

x is a boundary point of A, e.g., b.

The set of all boundary points of A is denoted DA, called "boundary of A".

Def A subset A of a metric space (X,d) is open if it does not contain any of its boundary points, and it is closed if it contains all its boundary points.

\$\phi, \times are both open and closed, as they do not have any boundary points.

set A in a metric space

Proposition 3.3.3 A set $A \subset (X,d)$ is open iff it consist of only interior points, i.e., $\forall a \in A$, $\exists r \neq o$ s.t. $B(a;r) \subset A$.

Proposition 3.3.4 A set $A \subset (X,d)$ is open if A^{e} is closed. Froof (\Rightarrow) A is open

A is open Proof (=) A is open

A >=> boundary points of A

All boundary points of A are in A.

⇒ A is closed

can present the statements in reverse order for proof in the other clircition (=)

> note that boundary points of A are also boundary points of A, as every ball centered at these points intersect both A and A.

Given any set A, we can study an associated open set and an associated closed set.

Def The interior of $A \subset (X, d)$ is $A^\circ = \{x \mid x \text{ is an interior point of } A\},$ and the closure of A is $\bar{A} = \{x \mid x \in A \text{ or } x \text{ is a boundary point of } A\}, \text{ or }$ $A = \{x \mid x \in A \text{ or } x \in \partial A\}.$

Proposition For any set $A \subseteq (X,d)$, we have $A^{\circ} \subseteq A \subseteq \overline{A}$. Think about how you can prove this result.

Proposition 3.3.5 (Problem 4a, Pg 58) A is open, A is closed.

A is open: A is the set of interior points of A.

Note that The

 $\Rightarrow \forall x \in A^{\circ}, \exists B(x,r) \subset A, r>0.$ $\Rightarrow B(x,r) \cap A^{\circ} = \emptyset.$ $\Rightarrow x \text{ cannot be a boundary point of } A.$

> Note that $\partial A^{\circ}) = \partial A$, as the open balls that intersect A must also intersect A° , by definition.

⇒ A° cannot contain any of its boundary points ⇒ A° is open. Also follows directly from Proposition 3.3.3.

To prove \overline{A} is closed, we prove \overline{A}^c is open. By definition, $\overline{A}^c = \{x \in X \mid x \notin A \text{ and } x \notin \partial A\}$. of $\overline{A} = \{x \mid x \in A \text{ or } x \in \partial A\}$.

Let $x \in A$. $\Rightarrow \exists r > 0 \text{ s.t.} \ \underline{B(x;r)} \cap A = \emptyset$. But we want $B(x;r) \subset \overline{A}^c$.

Suppose $y \in B(x;r)$ be s.t. $(y \in \partial A. \Rightarrow \exists \in \neg \circ \text{s.t. } B(y; \in) \cap A \neq \emptyset$. But $B(y; \in) \subset B(x;r) \Rightarrow B(x;r) \cap A \neq 0$, a contradiction.

 \Rightarrow $\forall y \in B(x;r)$, $y \notin A$, $y \notin \partial A \Rightarrow B(x;r) \subset \widetilde{A}$.

 \Rightarrow X is an interior point of \overline{A}^c . \Rightarrow \overline{A}^c is open (by Proposition 3.3.3). \Rightarrow \overline{A} is closed.

Quick Review for Midderm

* injective & surjective functions... $(>x_1+x_2 \Rightarrow f(x_1)+f(x_2)$

* relations and equivalence relations.

> reflexive, symmetric, transitive

* countability

Sometiment of the necessary to work with a decimal prepresentation to construct a proof for uncountability. These problem from Hw3! in all cases.

* Convergence

2×n3→ a: +€>0, ∃NEN s.t. |xn-a|< € +n7N.

 \star continuity f(x) is continuous at x=a:

4679, 35>0 s.t. |f(x)-f(a)|= E whenever |x-a| < S.

Recall: fg is continuous when f and g are so.

Want to $show: |f(x)g(x)-f(a)g(a)| < \epsilon$

* Choose Eq. Eg. etc., independent of x& f(x), g(x).

Consider (|g(a)|+ &) Ep + |f(a)| Eg

If one uses Eg here as well, things would be trickier! e.g., When g(a)=0, $f(a)\neq 0$, we get

 $\frac{\mathcal{E}_{g}(\mathcal{E}_{f} + |fa)|}{\text{barder to choose } \mathcal{E}_{g}, \mathcal{E}_{f} \text{ to get } \mathcal{E}_{!}}$