Blocked Gibbs Sampler for RNA Secondary Structure Prediction from Unaligned Sequences Chip's Lab Meeting

Donglai Wei and Charles Lawrence¹

¹Division of Applied Mathematics, Brown University

Nov.10 2001

Roadmap

1. Background: RNA alignment and structure prediction

2. Algorithm: Blocked Gibbs Sampling

3. Results

Background: the Prediction Problem

- 1. RNA alignment(A) prediction
- 2. RNA consensus structure(S) prediction
- **3.** A+S

1) RNA alignment(A) prediction: P(A|S)

- a) No S included: profile HMM
- b) Align individual S: RNAshape
- c) Find and assemble stems: comRNA
- d) SCFG grammar: CM

2) RNA consensus structure(S) prediction: P(S|A)

a) Individual Structure+Mutal Information: RNAlifold

b) Maximum weighted Matching: MWM

3) A+S: P(A,S)

- a) Dynamic Programming: Sankoff et.al
- b) Iterate between A and S:
- i) RNAsampler(stem)
- ii) MASTR(MCMC local change)

Probablistic Model

 $P(\vec{A}, \vec{S} | \Lambda_A, \Lambda_S, \vec{Q})$

Observation:

 \vec{Q} : Sequences

Hidden Variables:

 \vec{A} : Alignment

 \vec{S} : Consensus Structure

Prior:

Λ₃: Prior for Alignment model

 $\Lambda_{\vec{\varsigma}}$: Prior for Structure model

Visualization:

Q1: GCUAAUAUCGCUGUGGAACACCUGGAACCAUCCCGAACCCAGCAGU

A1:

U39694.1/9296-9392GCUA.AUAUCGCUGUGGAAACACCUGGAACCAUCCCGAACCCAGC.AGU M35167.1/2-111 UCCGGUGACUUUACGCGUGAGGAAACACUCGUUCCCAUUCCGAACACGAC. AGU A J131602 . 1/3-115 CCUGAUGACCAUAGCGACGUGGUACCACUCCUUCCCAUCCCGAACAGGAC, AGU X52302.1/2-117 GCUGGUGGCUAUGGCGGAAGGGCCACACCCGAUCCCAUCCCGAACUCGGU. CGU Y00159.1/2-117 CUUGGCGACUAUAGCGAUUUGGAACCACCUGAUACCAUCUCGAACUCAGA, AGU M58387.1/5-112 ACGGCCACAGUCAGCUGAAAACUGGGCAUCCCGUCC, GCUCUGCCAUACA X67494.1/1-118 AUCCUCGGCCAUAGAAUGACGAAAACGACGCGUCCCGUCC, GAUCUGCGA, AUC M36316.1/2-120 UCUHACGGCCAUUCACACCAGAAAGCACCAAAUCCCGUCC, GAUCUUUGA, AGU X02706.1/2-120 UGGALICGUUCAAACCUUCAAGGCCCCUCCCCAUCCCAUCA, GCACUGGGA, AGA X05535.1/1-118 AGGAACGGCCAUACCACGUCGAUCGCACCACAUCCCGUCC, GCUCUGUGA, AGU #=GC SS cons

Blocked Gibbs Sampling

- **1.** Initial alginment: \vec{A}^0
- 2. Iteration:
- a) Sample \vec{S}^{t+1} from $P(\vec{S}^{t+1}|\vec{A}^t)$
- b) Sample \vec{A}^{t+1} from $P(\vec{A}^{t+1}|\vec{S}^t)$

Cluster Analysis upon samples of S

- 1. Generalized Centroid Estimator
- 2. Bias-Variance
- 3. Credibility Limit
- 4. Distance between centroids

Test Cases

- 1. 85 alignments from 17 RNA family (Kiryu et.al.)
 - **a.** PPV-SEN curve for γ -centroid
 - **b.** Effects of number of sequences in the alignment
 - c. Detailed look into each family
- 2. Riboswitch Detection

1.0) Kiryu's Data

From 17 RNA famililies: tRNA,5sRNA,THI,...

5 Subalignments for each Family

10 homologous Sequences for each Subalignment

STOCKHOLM 1.0

#=GF AC RF00001:0 #=GF ID 5S rRNA:0

U39694.1/9296-9392 M35167.1/2-111 AJ131602.1/3-115 X52302.1/2-117 Y00159.1/2-117 M58387.1/5-112 X67494.1/1-118 M36316.1/2-120 X02706.1/2-120 X057355.1/1-118 #=GC SS cons

1.1) PPV-SEN curve

1.2) Varying number of Sequences in the Alignment

Table 1: effects of the number of sequences

	Area un	der PPV	-SEN				#samples		95% Credibility Limit			
		1st	2nd			1 st	2nd	All		1st	2nd	
#seqs	ensemble	cluster	cluster	Bias	Std	cluster	cluster		ensemble	cluster	cluster	
2	0.45	0.45	0.41	0.27	0.04	722.35	149.45	871.8	0.21	0.14	0.11	
3	0.61	0.60	0.55	0.20	0.03	788.78	122.64	911.42	0.14	0.10	0.07	
4	0.62	0.61	0.57	0.20	0.03	806.71	114.86	921.57	0.14	0.09	0.06	
5	0.65	0.65	0.59	0.17	0.03	816.28	114.04	930.32	0.12	0.08	0.05	
6	0.68	0.67	0.59	0.16	0.03	806.32	113.45	919.77	0.11	0.07	0.05	
7	0.70	0.68	0.64	0.15	0.03	794.54	111.43	905.97	0.10	0.07	0.05	
8	0.70	0.69	0.67	0.15	0.03	792.66	114.91	907.57	0.10	0.07	0.04	
9	0.70	0.69	0.65	0.14	0.02	793.52	122.76	916.28	0.09	0.06	0.04	
10	0.72	0.71	0.66	0.13	0.02	792.85	125.11	917.96	0.09	0.06	0.04	

1.3) Look into each Family

			Bias	Std										
RNA Family	RNA type	length			Credibility	Limit		ROC Area				# Samples		Centroid distance
						1st cluster 2nd			1st cluster 2nd			1st cluster 2nd	cluster	
T-box	tRNA	244	0.1	0.01	0.06	0.04	0.02	0.54		0.47			100	0.0613
t-RNA	tRNA	73	0.02	0.01	0.03	0.01	0.01	1	0.99	0.91	949	888	61	0.0493
5S-rRNA	rRNA	116	0.17	0.02	0.07	0.05	0.03	0.7	0.7	0.67	922	751	171	0.0657
5-85-rRNA	rRNA	154	0.18	0.03	0.14	0.1	0.08	0.41	0.4	0.26	907	744	163	0.1042
Retroviral-psi	Rviral	117	0.07	0.05	0.15	0.11	0.05	0.99	0.99	0.45	981	952	29	0.1997
U1	sRNA	157	0.16	0.02	0.06	0.06	0.02	0.69	0.69	0.63	988	928	60	0.093
U2	sRNA	182	0.08	0.02	0.05	0.05	0.02	0.91	0.9	0.7	981	941	40	0.081
sno-14q-I-II	sRNA	75	0.07	0.03	0.12	0.08	0.07	1	0.91	0.84	838	636	202	0.0749
Lysine	ribo switch	181	0.07	0.02	0.06	0.05	0.03	0.93	0.93	0.83	983	923	60	0.0693
RFN	ribo switch	140	0.15	0.03	0.11	0.06	0.06	0.67	0.64	0.59	820	574	246	0.07
THI	ribo switch	105	0.08	0.02	0.07	0.06	0.02	0.89	0.88	0.75	968	869	99	0.0936
S-box	ribo switch	107	0.09	0.02	0.07	0.03	0.03	0.88	0.87	0.74	945	806	139	0.0682
IRES-HCV	cis	261	0.25	0.05	0.21	0.16	0.08	0.6	0.57	0.44	936	877	59	0.2435
SECIS	cis	64	0.17	0.02	0.08	0.02	0.02	0.74	0.71	0.72	840	679	161	0.0609
Una L2	cis	54	0.18	0.03	0.06	0.02	0.02	0.62	0.62	0.61	867	752	115	0.0426
SRP-bact	srpRNA	93	0.16	0.03	0.12	0.04	0.04	0.79	0.78	0.7	834	646	188	0.111
SRP-euk-arch	srpRNA	291	0.23	0.01	0.04	0.03	0.02	0.49	0.48	0.47	921	837	84	0.0407
avg		142	0.13	0.02	0.09	0.06	0.04	0.76	0.74	0.63	926	826	100	0.10

2) Side words about Riboswitch

Take Home Message

- 1. Sampling, a glimpse of the complicated probability space
- 2. Reference Structure, a dream never comes true

Acknowledgement

- 1. Thanks Chip for opening the world of computation to me
- 2. Thanks Bill for endless technical support
- **3.** Thanks Everyone here for enduring the torture of my presentation :p

