Review of the Greenhouse Effect

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #7: Monday, February 8 2021

Review of Lapse Rates and Stability

Terminology

Environmental Lapse

- Measured temperature of actual atmosphere
- Compares one bit of air at one height with another bit at another height.
- Changes from one time and place to another.

Adiabatic Lapse

- Change in a single parcel of air as it moves up or down
- "Adiabatic" means no heat flowing in or out
 - Adiabatic changes are reversible
 - Heat flow is irreversible

Perspective

- Stable:
 - Environmental lapse ≤ adiabatic lapse
- Unstable:
 - Environmental lapse > adiabatic lapse
- Adiabatic lapse:
 - Dry: 10 K/km
 - Moist: 4-8 K/km (depends on humidity)
- Pure radiative equilibrium (Layer models):
 - Would produce lapse of 16 K/km: unstable
- Radiative-Convective equilibrium:
 - Convection modifies environmental lapse
 - Normal environmental lapse is roughly 6 K/km (typical moist adiabatic lapse rate)

Band Saturation

Band Saturation

- Small concentrations of greenhouse gas
 - Small absorption
 - Absorption rises rapidly as more gas is added
 - Doubling the amount of gas doubles the absorption
- Saturation
 - Absorption can't be more than 100%
 - As absorption gets large, adding more gas has a diminishing effect
- "Band" saturation
 - Gases absorb in "bands"
 - Strong absorption in the middle of the band
 - This saturates first
 - Weak absorption on both sides
 - The "wings" of the band
 - These saturate more slowly
 - After the center of the band saturates, the wings gradually become more saturated
 - The saturated region of the spectrum gradually gets wider and wider
 - Total absorption rises by the same amount every time the amount of gas doubles

Set up MODTRAN:

- Open MODTRAN http://climatemodels.uchicago.edu/modtran
- Set "Location" to "1976 U.S. Standard Atmosphere".
- Set altitude to 20 km.
- Set all greenhouse gases to zero.

No CO₂

Vertical Structure and Saturation

Set up MODTRAN:

- Open MODTRAN http://climatemodels.uchicago.edu/modtran/
- Set location to "1976 U.S. Standard Atmosphere".
- Set altitude to 70 km.
- Set CO₂ to 0.1 ppm, all other gases to zero.
- Now increase CO₂ by factors of 10 (1, 10, 100, 1000, 10000)
- Notice differences between 70 km and 20 km.

10,000 ppm CO₂

Question

• Why do we see the spike in the middle of the CO₂ absorption feature?

Answer

Answer

Question

- Water vapor absorption is completely saturated.
 - Why does water vapor emit at warmer temperatures than CO₂?

Answer

- Near the ground, there is much more water vapor (15 times more)
- Above about 7 km, there is much more CO₂ (100 times more at 20 km)
 - Water vapor concentrations become small enough to be transparent to space at a much lower altitude than CO₂

Convection and the Greenhouse Effect

Another Perspective on Band Saturation

- Instead of thinking of saturation as increasing absorption ...
- Think of saturation as raising the skin height
 - Skin height = the height at which the atmosphere becomes transparent enough to radiate out to space
 - The height of the top of the atmospheric layer in a layer model
 - The atmosphere becomes opaque at a certain wavelength when there are more than a certain number of molecules per square meter of an absorbing gas overhead.
 - The higher you go, the fewer molecules are overhead and the more are below your feet.
 - The atmosphere gradually becomes more transparent, but we pretend that this happens suddenly at a certain height.
 - Pressure and density fall exponentially as you go higher, so this approximation is reasonable.
- After band saturation sets in, adding more greenhouse gas raises the skin height.

Saturation, Convection, and the Greenhouse Effect

- Skin temp: $T_{\text{skin}} = T_{\text{bare rock}} = 254 \text{ K}.$
- Ground temp: $T_{\text{ground}} = T_{\text{skin}} + h_{\text{skin}} \times \text{ELR}$
 - ELR = Environmental Lapse Rate

Global warming

- Greater CO₂ → greater skin height.
- Warming: $\Delta T_{\text{ground}} = \Delta h_{\text{skin}} \times \text{env. lapse}$

Review of the Greenhouse Effect

Review of the Greenhouse Effect

1. Start with bare-rock temperature

This becomes skin temperature

2. Add simple layer atmosphere:

- Completely black to longwave radiation
- Top of atmosphere: skin temperature (same as bare-rock)
- Atmosphere insulates surface ⇒ surface heats up
- More layers ⇒ bigger greenhouse effect

3. Realistic longwave absorption:

- Atmosphere is not black
- Absorption depends on wavelength

4. Radiative-Convective equilibrium:

- Pure radiative equilibrium would have huge environmental lapse rate
 - 16 K/km
- Big lapse rate is unstable ⇒ convection
 - ELR (16 K/km) > ALR (6–10 K/km)
 - Convection mixes hot & cold air ⇒ reduces environmental lapse until it becomes stable
 - Reduces greenhouse effect

Alternate perspective:

- Think of greenhouse effect in terms of raising the skin height instead of blocking heat flow.
- T_{skin} is always T~bare rock~
- $T_{ground} = T_{skin} + h_{skin} \times Environmental$ Lapse Rate

Questions & Discussion of Greenhouse Effect