```
In [1]:
                                                                                                         H
import pandas as pd
import seaborn as sn
import matplotlib.pyplot as plt
In [ ]:
                                                                                                         M
# Bar plot
# Box plot
# Histogram
# --- SEABORN ---
# displot
# heat map
# line plot
In [2]:
                                                                                                         H
#DATASET_PATH = ''
data = pd.read_csv(r'D:\COLLEGE\DSBDA\Assignments\DSBD\Datasets\Iris.csv');
In [3]:
                                                                                                         M
data
Out[3]:
           SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                            Species
   0
        1
                      5.1
                                      3.5
                                                      1.4
                                                                    0.2
                                                                          Iris-setosa
   1
        2
                      4.9
                                      3.0
                                                      1.4
                                                                    0.2
                                                                          Iris-setosa
   2
        3
                      4.7
                                      3.2
                                                      1.3
                                                                    0.2
                                                                          Iris-setosa
   3
        4
                      4.6
                                      3.1
                                                      1.5
                                                                    0.2
                                                                          Iris-setosa
   4
        5
                      5.0
                                      3.6
                                                                    0.2
                                                                          Iris-setosa
                                                      1.4
                       ...
                                       ...
                                                                     ...
 145
     146
                      6.7
                                      3.0
                                                      5.2
                                                                    2.3
                                                                         Iris-virginica
 146
     147
                      6.3
                                      2.5
                                                     5.0
                                                                         Iris-virginica
 147 148
                      6.5
                                      3.0
                                                      5.2
                                                                         Iris-virginica
 148 149
                      6.2
                                      3.4
                                                      5.4
                                                                    2.3 Iris-virginica
In [4]:
                                                                                                         H
data.shape
Out[4]:
(150, 6)
```

In [5]: ▶

data.columns

Out[5]:

In [6]: ▶

data.dtypes

Out[6]:

Id int64
SepalLengthCm float64
SepalWidthCm float64
PetalLengthCm float64
PetalWidthCm float64
Species object

dtype: object

In [7]: ▶

data.head()

Out[7]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [8]: ▶

data.describe()

Out[8]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

In [9]: ▶

data['Species'].value_counts()

Out[9]:

Species

Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
Name: count, dtype: int64

H In [10]:

```
data['SepalLengthCm'].value_counts()
```

Out[10]:

```
SepalLengthCm
5.0
       10
5.1
        9
        9
6.3
5.7
        8
        8
6.7
        7
5.8
        7
5.5
        7
6.4
4.9
        6
5.4
        6
6.1
        6
6.0
        6
        6
5.6
4.8
        5
        5
6.5
        4
6.2
        4
7.7
        4
6.9
4.6
        4
5.2
        4
        3
5.9
4.4
        3
        3
7.2
6.8
        3
```

7.1

6.6 4.7

7.6

7.4 7.3

7.0

2

2

1 1

1

1

1

1

5.3

4.3 1

4.5 1

7.9 1

Name: count, dtype: int64

In [11]: ▶

```
# Count Plot
sn.displot(data=data, x = 'Species')
```

Out[11]:

<seaborn.axisgrid.FacetGrid at 0x2129a2f7850>

In [12]:

Line Plot

sn.lineplot(data=data, x="SepalLengthCm", y="SepalWidthCm")

Out[12]:

<Axes: xlabel='SepalLengthCm', ylabel='SepalWidthCm'>

In [13]: ▶

data = pd.read_csv(r'D:\COLLEGE\DSBDA\Assignments\DSBD\Datasets\forestfires.csv')

In [14]: ▶

data

Out[14]:

	X	Y	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area
0	7	5	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	0.00
1	7	4	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	0.00
2	7	4	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	0.00
3	8	6	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	0.00
4	8	6	mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	0.00
512	4	3	aug	sun	81.6	56.7	665.6	1.9	27.8	32	2.7	0.0	6.44
513	2	4	aug	sun	81.6	56.7	665.6	1.9	21.9	71	5.8	0.0	54.29
514	7	4	aug	sun	81.6	56.7	665.6	1.9	21.2	70	6.7	0.0	11.16
515	1	4	aug	sat	94.4	146.0	614.7	11.3	25.6	42	4.0	0.0	0.00
516	6	3	nov	tue	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0	0.00

517 rows × 13 columns

In [15]:

data.shape

Out[15]:

(517, 13)

In [16]:

data.dtypes

Out[16]:

Χ int64 Υ int64 month object object day float64 **FFMC** float64 DMC float64 DC ISI float64 float64 temp int64 RHfloat64 wind float64 rain float64 area dtype: object

```
H
In [17]:
monthly_data = data['month'].value_counts()
monthly_data
Out[17]:
month
       184
aug
sep
       172
        54
mar
jul
        32
        20
feb
jun
        17
        15
oct
apr
          9
          9
dec
          2
jan
          2
may
          1
nov
Name: count, dtype: int64
Type Markdown and LaTeX: \alpha^2
In [18]:
                                                                                              M
monthly_data = data.groupby('month').size().sort_values(ascending=False)
monthly_data
Out[18]:
month
       184
aug
       172
sep
mar
        54
jul
        32
feb
        20
        17
jun
        15
oct
apr
          9
          9
dec
          2
jan
          2
may
          1
nov
dtype: int64
```

```
H
In [19]:
# Bar plot
```

plt.bar(monthly_data.index, monthly_data.values)

Out[19]:

<BarContainer object of 12 artists>


```
In [20]:
                                                                                                H
```

```
day_data = data['day'].value_counts()
day_data
```

Out[20]:

day 95 sun 85 fri 84 sat 74 mon 64 tue thu 61 54 wed

Name: count, dtype: int64

In [21]: ▶

day_data.index

Out[21]:

Index(['sun', 'fri', 'sat', 'mon', 'tue', 'thu', 'wed'], dtype='object', n
ame='day')

In [22]:

day_data.values

Out[22]:

array([95, 85, 84, 74, 64, 61, 54], dtype=int64)

In [23]:

#day wise data

plt.bar(day_data.index, day_data.values)

Out[23]:

<BarContainer object of 7 artists>


```
In [24]:
# month and day wise data
dm_data = data[data['month'] == 'aug']['day'].value_counts()
```

In [25]:

```
plt.bar(dm_data.index, dm_data.values)
```

Out[25]:

<BarContainer object of 7 artists>


```
In [26]:

box_plot_data = []
box_plot_data.append(data[data['day'] == 'mon']['wind']);
box_plot_data.append(data[data['day'] == 'tue']['wind']);
box_plot_data.append(data[data['day'] == 'wed']['wind']);
box_plot_data.append(data[data['day'] == 'thu']['wind']);
box_plot_data.append(data[data['day'] == 'fri']['wind']);
box_plot_data.append(data[data['day'] == 'sat']['wind']);
box_plot_data.append(data[data['day'] == 'sun']['wind']);
```

In [27]: ▶

```
plt.boxplot(box_plot_data)

# plt.title('Forest Fires by Month')
plt.xlabel('Day of the week')
plt.ylabel('Wind Measure on that day')
plt.show()
```


In [33]: ▶

```
# Histogram

plt.hist(data['X'], bins=25)
plt.title('Forest fire - Area wise')
plt.xlabel('Area Code')
plt.ylabel('Count')
```

Out[33]:

Text(0, 0.5, 'Count')

In []:
Seaborn

In [34]: ▶

sn.displot(data=data, x='X')

Out[34]:

<seaborn.axisgrid.FacetGrid at 0x2129d27cc50>

In [40]: ▶

```
# Heat Map

correlation_matrix = data.iloc[:, 4:].corr()
sn.heatmap(correlation_matrix, annot=True)
plt.title('Heat Map')
plt.show()
```


In [49]:

```
# Line plot
sn.lineplot(data = data[data['month'] == 'mar'], x = 'X', y = 'Y')
plt.title('Area wise plot')
plt.xlabel('X - Area Corrdinate')
plt.ylabel('Y - Area Corrdinate')
plt.show()
```



```
In [47]:

data[data['month'] == 'mar']['Y'].unique()
```

Out[47]:

array([5, 6, 4, 2, 3], dtype=int64)

In [54]: ▶

sn.stripplot(data=data, x = 'X', y = 'month', jitter = True, linewidth=2, edgecolor='pin')

Out[54]:

<Axes: xlabel='X', ylabel='month'>

In []: |