# Gramatici LL(k) tari. Derivare descendent recursiva

## Ce e gramatica LL(k)? - reaminitire

O gramatica independenta de context G = (T, N, P, Z) este LL(k) pentru un  $k \ge 0$  daca pentru derivari arbitrare

$$Z \Rightarrow^L \mu X \chi \Rightarrow \mu \nu \chi \Rightarrow^* \mu \gamma$$

$$Z \Rightarrow^{L} \mu X \chi \Rightarrow \mu \omega \chi \Rightarrow^{*} \mu \gamma'$$

unde 
$$\mu, \gamma, \gamma' \in T^*, \nu, \chi, \omega \in V^*, X \in N$$

avem urmatoarea proprietate:  $k: \gamma = k: \gamma'$  implica  $\nu = \omega$  Observatie: Dependenta de  $\mu$  obliga pastrarea in situatiile  $[X \to \alpha.\beta; \omega]$  a contextului dreapta. Daca se elimina aceasta dependenta: gramatici **LL(k)** tari

## Gramatici LL(k) tari

O gramatica independenta de context G = (T, N, P, Z) este o gramatica LL(k) tare pentru un k > 0 daca pentru derivari arbitrare

$$Z \Rightarrow^L \mu X \chi \Rightarrow \mu \nu \chi \Rightarrow^* \mu \gamma$$

$$Z \Rightarrow^L \mu' X \chi' \Rightarrow \mu' \omega \chi' \Rightarrow^* \mu' \gamma'$$

unde 
$$\mu, \mu', \gamma, \gamma' \in T^*, \nu, \chi, \omega \in V^*, X \in N$$

avem urmatoarea proprietate:  $k: \gamma = k: \gamma'$  implica  $\nu = \omega$ 

## Algoritm LL(k) tare

Daca  $\nu = Y\gamma$ ,  $Y \in N$  si  $\gamma \in V^*$  in loc de pasul 5 din LL(k)

- fie  $q' = [X \rightarrow \mu Y.\gamma; \Omega]$
- ▶ si  $H = \{ [Y \to .\beta_i; FIRST_k(\gamma\Omega)] | Y \to \beta_i \in P \}.$
- actualizeaza  $Q = Q \cup \{q'\} \cup H$  si
- $R = R \cup \{q\tau_i \to q'h_i\tau_i | h_i \in H, \tau_i \in FIRST_k(\beta_i\gamma\Omega)\}$

#### se poate folosi

- fie  $q' = [X \to \mu Y.\gamma; \Omega]$
- ▶ si  $H = \{ [Y \rightarrow .\beta_i; FOLLOW_k(Y)] | Y \rightarrow \beta_i \in P \}.$
- ▶ actualizeaza  $Q = Q \cup \{q'\} \cup H$  si
- ►  $R = R \cup \{q\tau_i \rightarrow q'h_i\tau_i|h_i \in H, \tau_i \in FIRST_k(\beta_i FOLLOW_k(Y))\}$

Toate situatiile distincte anterior doar prin context dreapta apartin intotdeuna aceleiasi stari.

Fie G cu 
$$P = \{ Z \rightarrow X \\ X \rightarrow aAab|bAbb \\ A \rightarrow a|\varepsilon \}$$

$$Z \Rightarrow X \Rightarrow aAab \stackrel{A \rightarrow \varepsilon}{\Rightarrow} aab$$

$$Z \Rightarrow X \Rightarrow aAab \Rightarrow aaab$$

$$Z \Rightarrow X \Rightarrow bAbb \Rightarrow bbb$$

$$Z \Rightarrow X \Rightarrow bAbb \stackrel{A \rightarrow a}{\Rightarrow} babb$$
Este LL(1)? Este LL(2)? Este strong LL(2)?

```
Fie G cu P = \{ Z \rightarrow X \}
                                X \rightarrow aAab|bAbb
                                A \to a|\varepsilon
Z \Rightarrow X \Rightarrow aAab \stackrel{A \to \varepsilon}{\Rightarrow} aab
7 \Rightarrow X \Rightarrow aAab \Rightarrow aaab
Z \Rightarrow X \Rightarrow bAbb \Rightarrow bbb
7 \Rightarrow X \Rightarrow bAbb \stackrel{A \to a}{\Rightarrow} babb
Este LL(1)? Este LL(2)? Este strong LL(2)?
7 \Rightarrow X \Rightarrow aAab \Rightarrow aab
7 \Rightarrow X \Rightarrow bAbb \Rightarrow babb
pt LL(k) tare: k: \gamma = k: \gamma \Rightarrow aceeasi productie pt A; dar aici
contextul stanga conteaza
```

## Strong LL(k)

NU e necesar niciun context pt a decide productia pentru nonterminalul X. Nu trebuie tinuti minte pasii anteriori din derivarea stanga, cei care au condus la nonterminalul X.

## Conditia strong LL(k)

O gramatica independenta de context G este LL(k) daca pentru orice pereche de productii  $X \to \chi$ ,  $X \to \chi'$ ,  $\chi \neq \chi'$  urmatoarea conditie este adevarata:

$$FIRST_k(\chi FOLLOW_k(X)) \cap FIRST_k(\chi' FOLLOW_k(X)) = \emptyset$$

$$\begin{array}{ll} \textit{Fie G cu P} = \{ & \textit{Z} \rightarrow \textit{X} \\ \textit{exemplu} & \textit{X} \rightarrow \textit{aAab}|\textit{bAbb} \\ & \textit{A} \rightarrow \textit{a}|\varepsilon \} \\ \textit{pt A} : \textit{FIRST}_2(\textit{a}\{\textit{ab},\textit{bb}\}) \cap \textit{FIRST}_2(\varepsilon\{\textit{ab},\textit{bb}\}) = \{\textit{ab}\} \end{array}$$

### LL(1) tare

Fie 
$$Z \to E$$
,  $E \to E + F|F$ ,  $F \to i|(E)$ 

Prin eliminarea recursivitatii stanga:

$$Z \to E, E \to FE_1, E_1 \to \varepsilon | + FE_1, F \to i | (E)$$

| simbol | $FIRST_1(X)$         | $FOLLOW_1(X)$  |
|--------|----------------------|----------------|
| Ε      | {(, i}               | {),#}          |
| $E_1$  | $\{+, \varepsilon\}$ | $\{),\#\}$     |
| F      | $\{(,i\}$            | $\{+, \#, )\}$ |

Conditie LL(1) tare:

pt *E*<sub>1</sub>:

$$FIRST_1(\varepsilon FOLLOW(E_1)) \cap FIRST_1(+FE_1FOLLOW(E_1)) = \emptyset$$

pt *F*:

$$FIRST_1(iFOLLOW(F)) \cap FIRST_1((E)FOLLOW(F)) = \emptyset$$

| stari noi                                                      | tranzitii noi |
|----------------------------------------------------------------|---------------|
| $a_0 = \begin{bmatrix} 7 \rightarrow F \cdot \# \end{bmatrix}$ |               |

|    | stari noi                                 | tranzitii noi                                  |
|----|-------------------------------------------|------------------------------------------------|
|    | $q_0 = [Z \rightarrow .E; \#]$            |                                                |
| 90 | $q' = [Z \to E.; \#] = q_1$               | $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ |
|    | $H = \{[E \rightarrow .FE_1; \#] = q_2\}$ | $q_0i \rightarrow q_1q_2i$                     |
|    |                                           | $q_0(\rightarrow q_1q_2($                      |

|                       | stari noi                                 | tranzitii noi                                  |
|-----------------------|-------------------------------------------|------------------------------------------------|
|                       | $q_0 = [Z \rightarrow .E; \#]$            |                                                |
|                       | $q' = [Z \rightarrow E.; \#] = q_1$       | $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ |
|                       | $H = \{[E \rightarrow .FE_1; \#] = q_2\}$ | $q_0i \rightarrow q_1q_2i$                     |
|                       |                                           | $q_0(\rightarrow q_1q_2($                      |
| <i>q</i> <sub>1</sub> |                                           | $q_1 \varepsilon 	o \varepsilon$               |

|            | stari noi                                     | tranzitii noi                                  |
|------------|-----------------------------------------------|------------------------------------------------|
|            | $q_0 = [Z \rightarrow .E; \#]$                |                                                |
| $q_0$      | $q' = [Z \rightarrow E.; \#] = q_1$           | $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ |
|            | $H = \{ [E \rightarrow .FE_1; \#] = q_2 \}$   | $q_0i \rightarrow q_1q_2i$                     |
|            |                                               | $q_0(\rightarrow q_1q_2($                      |
| $q_1$      |                                               | $q_1arepsilon	oarepsilon$                      |
| <b>q</b> 2 | $[E \rightarrow F.E_1] = q_3$                 | $\tau \in FIRST_1(iFOLLOW_1(F))$               |
|            | $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_4$ | $q_2 i \rightarrow q_3 q_4 i$                  |
|            | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$     | $q_2(\rightarrow q_3q_5($                      |

fiind LL(1) strong, capetele din situatii nu le mai pastram (se pot deduce din situatie)

|                 | stari noi                                      | tranzitii noi                                  |
|-----------------|------------------------------------------------|------------------------------------------------|
|                 | $q_0 = [Z \rightarrow .E; \#]$                 |                                                |
| 90              | $q' = [Z \rightarrow E.; \#] = q_1$            | $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ |
|                 | $H = \{[E \rightarrow .FE_1; \#] = q_2\}$      | $q_0i \rightarrow q_1q_2i$                     |
|                 |                                                | $q_0(\rightarrow q_1q_2($                      |
| $q_1$           |                                                | $q_1 \varepsilon \to \varepsilon$              |
| <b>q</b> 2      | $[E \rightarrow F.E_1] = q_3$                  | $\tau \in FIRST_1(iFOLLOW_1(F))$               |
|                 | $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_4$  | $q_2 i \rightarrow q_3 q_4 i$                  |
|                 | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$      | $q_2(\rightarrow q_3q_5($                      |
| fiir            | nd $LL(1)$ strong, capetele din situatii nu le | mai pastram (se pot deduce din situatie)       |
| -q <sub>3</sub> | $[E \rightarrow FE_1.] = q_6$                  | $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$    |
|                 | $H = \{[E_1 \rightarrow .\varepsilon] = q_7$   | $q_3) \rightarrow q_6 q_7)$                    |
|                 |                                                | $q_3\# \rightarrow q_6q_7\#$                   |
|                 | $[E_1 \rightarrow . + FE_1] = q_8\}$           | $q_3+ \rightarrow q_6 q_8+$                    |

|       | stari noi                                         | tranzitii noi                                      |
|-------|---------------------------------------------------|----------------------------------------------------|
|       | $q_0 = [Z \rightarrow .E; \#]$                    |                                                    |
| $q_0$ | $q' = [Z \rightarrow E.; \#] = q_1$               | $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$     |
|       | $H = \{[E \rightarrow .FE_1; \#] = q_2\}$         | $q_0i \rightarrow q_1q_2i$                         |
|       |                                                   | $q_0(\rightarrow q_1q_2($                          |
| $q_1$ |                                                   | $q_1 \varepsilon 	o \varepsilon$                   |
| $q_2$ | $[E \rightarrow F.E_1] = q_3$                     | $\tau \in \mathit{FIRST}_1(\mathit{iFOLLOW}_1(F))$ |
|       | $H = \{ [F \rightarrow .i, FOLLOW_1(F)] = q_4 \}$ | $q_2 i \rightarrow q_3 q_4 i$                      |
|       | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5 $        | $q_2(\rightarrow q_3q_5($                          |
| fiin  | d LL(1) strong, capetele din situatii nu le       | mai pastram (se pot deduce din situatie)           |
| $q_3$ | $[E \rightarrow FE_1.] = q_6$                     | $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$        |
|       | $H = \{[E_1 \rightarrow .\varepsilon] = q_7$      | $q_3) \rightarrow q_6 q_7)$                        |
|       |                                                   | $q_3\# \rightarrow q_6q_7\#$                       |
|       | $[E_1 \rightarrow . + FE_1] = q_8\}$              | $q_3+ \rightarrow q_6q_8+$                         |
| 94    | $[F \rightarrow i.] = q_9$                        | $q_4i \rightarrow q_9$                             |

|            | stari noi                                         | tranzitii noi                                  |
|------------|---------------------------------------------------|------------------------------------------------|
|            | $q_0 = [Z \rightarrow .E; \#]$                    |                                                |
| 90         | $q' = [Z \to E.; \#] = q_1$                       | $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ |
|            | $H = \{[E \rightarrow .FE_1; \#] = q_2\}$         | $q_0i \rightarrow q_1q_2i$                     |
|            |                                                   | $q_0(\rightarrow q_1q_2($                      |
| $q_1$      |                                                   | $q_1 \varepsilon 	o \varepsilon$               |
| <b>q</b> 2 | $[E \rightarrow F.E_1] = q_3$                     | $\tau \in FIRST_1(iFOLLOW_1(F))$               |
|            | $H = \{ [F \rightarrow .i, FOLLOW_1(F)] = q_4 \}$ | $q_2 i \rightarrow q_3 q_4 i$                  |
|            | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$         | $q_2(\rightarrow q_3q_5($                      |
| fiir       | id $LL(1)$ strong, capetele din situatii nu le    |                                                |
| $q_3$      | $[E \rightarrow FE_1.] = q_6$                     | $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$    |
|            | $H = \{[E_1 \rightarrow .\varepsilon] = q_7$      | $q_3) \rightarrow q_6 q_7)$                    |
|            |                                                   | $q_3\# \rightarrow q_6q_7\#$                   |
|            | $[E_1 \rightarrow . + FE_1] = q_8\}$              | $q_3+ \rightarrow q_6q_8+$                     |
| 94         | $[F \rightarrow i.] = q_9$                        | $q_4i \rightarrow q_9$                         |
| <b>q</b> 5 | $[F \rightarrow (.E)] = q_{10}$                   | $q_5(	o q_{10}$                                |
|            |                                                   |                                                |

|                       | stari noi                                      | tranzitii noi                                  |
|-----------------------|------------------------------------------------|------------------------------------------------|
|                       | $q_0 = [Z \rightarrow .E; \#]$                 |                                                |
| $q_0$                 | $q' = [Z \to E.; \#] = q_1$                    | $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ |
|                       | $H = \{[E \rightarrow .FE_1; \#] = q_2\}$      | $q_0i \rightarrow q_1q_2i$                     |
|                       |                                                | $q_0(\rightarrow q_1q_2($                      |
| $q_1$                 |                                                | $q_1 \varepsilon \to \varepsilon$              |
| <b>q</b> 2            | $[E \rightarrow F.E_1] = q_3$                  | $\tau \in FIRST_1(iFOLLOW_1(F))$               |
|                       | $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_4$  | $q_2 i \rightarrow q_3 q_4 i$                  |
|                       | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$      | $q_2(\rightarrow q_3q_5($                      |
| fiir                  | nd $LL(1)$ strong, capetele din situatii nu le | mai pastram (se pot deduce din situatie)       |
| -q <sub>3</sub>       | $[E \rightarrow FE_1.] = q_6$                  | $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$    |
|                       | $H = \{[E_1 \rightarrow .\varepsilon] = q_7$   | $q_3) \rightarrow q_6 q_7)$                    |
|                       |                                                | $q_3\# \rightarrow q_6q_7\#$                   |
|                       | $[E_1 \rightarrow . + FE_1] = q_8\}$           | $q_3+ \rightarrow q_6q_8+$                     |
| <b>q</b> 4            | $[F \rightarrow i.] = q_9$                     | $q_4i \rightarrow q_9$                         |
| <i>q</i> <sub>5</sub> | $[F \to (.E)] = q_{10}$                        | $q_5(	o q_{10}$                                |
| <b>q</b> 6            |                                                | $q_6 \varepsilon 	o \varepsilon$               |

|       | stari noi                                     | tranzitii noi                                  |
|-------|-----------------------------------------------|------------------------------------------------|
|       | $q_0 = [Z \rightarrow .E; \#]$                |                                                |
|       | $q' = [Z \rightarrow E.; \#] = q_1$           | $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ |
|       | $H = \{ [E \rightarrow .FE_1; \#] = q_2 \}$   | $q_0i \rightarrow q_1q_2i$                     |
|       |                                               | $q_0(\rightarrow q_1q_2($                      |
| $q_1$ |                                               | $q_1 \varepsilon 	o \varepsilon$               |
|       | $[E \rightarrow F.E_1] = q_3$                 | $\tau \in FIRST_1(iFOLLOW_1(F))$               |
|       | $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_4$ | $q_2 i \rightarrow q_3 q_4 i$                  |
|       | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$     | $q_2(\rightarrow q_3q_5($                      |
| fiir  | nd LL(1) strong, capetele din situatii nu le  | mai pastram (se pot deduce din situatie)       |
|       | $[E \rightarrow FE_1.] = q_6$                 | $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$    |
|       | $H = \{[E_1 \to .\varepsilon] = q_7$          | $q_3) \rightarrow q_6 q_7)$                    |
|       |                                               | $q_3\# \rightarrow q_6q_7\#$                   |
|       | $[E_1 \rightarrow . + FE_1] = q_8\}$          | $q_3+ \rightarrow q_6q_8+$                     |
|       | $[F \rightarrow i.] = q_9$                    | $q_4i \rightarrow q_9$                         |
|       | $[F \rightarrow (.E)] = q_{10}$               | $q_5(	o q_{10}$                                |
| 96    |                                               | $q_6 \varepsilon 	o \varepsilon$               |
| 97    |                                               | $q_7 \varepsilon 	o \varepsilon$               |

|                 | stari noi                                      | tranzitii noi                                  |
|-----------------|------------------------------------------------|------------------------------------------------|
|                 | $q_0 = [Z \rightarrow .E; \#]$                 |                                                |
| 90              | $q' = [Z \to E.; \#] = q_1$                    | $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ |
|                 | $H = \{[E \rightarrow .FE_1; \#] = q_2\}$      | $q_0i \rightarrow q_1q_2i$                     |
|                 |                                                | $q_0(\rightarrow q_1q_2($                      |
| $q_1$           |                                                | $q_1 \varepsilon \to \varepsilon$              |
| <b>q</b> 2      | $[E \rightarrow F.E_1] = q_3$                  | $\tau \in FIRST_1(iFOLLOW_1(F))$               |
|                 | $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_4$  | $q_2 i \rightarrow q_3 q_4 i$                  |
|                 | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$      | $q_2(\rightarrow q_3q_5($                      |
| fiir            | id $LL(1)$ strong, capetele din situatii nu le | mai pastram (se pot deduce din situatie)       |
| -q <sub>3</sub> | $[E \rightarrow FE_1.] = q_6$                  | $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$    |
|                 | $H = \{[E_1 \rightarrow .\varepsilon] = q_7$   | $q_3) \rightarrow q_6 q_7)$                    |
|                 |                                                | $q_3\# \rightarrow q_6q_7\#$                   |
|                 | $[E_1 \rightarrow . + FE_1] = q_8\}$           | $q_3+ \rightarrow q_6q_8+$                     |
| <b>q</b> 4      | $[F \rightarrow i.] = q_9$                     | $q_4i \rightarrow q_9$                         |
|                 | $[F \to (.E)] = q_{10}$                        | $q_5(	o q_{10}$                                |
| 96              |                                                | $q_6 \varepsilon 	o \varepsilon$               |
| 97              |                                                | $q_7 \varepsilon \to \varepsilon$              |
| <b>q</b> 8      | $[E_1 \rightarrow +.FE_1] = q_{11}$            | $q_8+  ightarrow q_{11}$                       |

|                       | stari noi                                         | tranzitii noi                                                 |
|-----------------------|---------------------------------------------------|---------------------------------------------------------------|
|                       | $q_0 = [Z \rightarrow .E; \#]$                    |                                                               |
| $q_0$                 | $q' = [Z \rightarrow E.; \#] = q_1$               | $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$                |
|                       | $H = \{[E \rightarrow .FE_1; \#] = q_2\}$         | $q_0i \rightarrow q_1q_2i$                                    |
|                       |                                                   | $q_0(\rightarrow q_1q_2($                                     |
| $q_1$                 |                                                   | $q_1 \varepsilon 	o \varepsilon$                              |
| $q_2$                 | $[E \rightarrow F.E_1] = q_3$                     | $\tau \in FIRST_1(iFOLLOW_1(F))$                              |
|                       | $H = \{ [F \rightarrow .i, FOLLOW_1(F)] = q_4 \}$ | $q_2 i \rightarrow q_3 q_4 i$                                 |
|                       | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5 $        | $q_2(\rightarrow q_3q_5($                                     |
| fiin                  | d LL(1) strong, capetele din situatii nu le       |                                                               |
| -q <sub>3</sub>       | $[E \rightarrow FE_1.] = q_6$                     | $\tau \in \mathit{FIRST}_1(\varepsilon \mathit{FOLLOW}(E_1))$ |
|                       | $H = \{[E_1 \to .\varepsilon] = q_7$              | $q_3) \rightarrow q_6 q_7)$                                   |
|                       |                                                   | $q_3\# \rightarrow q_6q_7\#$                                  |
|                       | $[E_1 \rightarrow . + FE_1] = q_8\}$              | $q_3+ \rightarrow q_6q_8+$                                    |
| <b>q</b> 4            | $[F \rightarrow i.] = q_9$                        | $q_4i \rightarrow q_9$                                        |
| <i>q</i> <sub>5</sub> | $[F \rightarrow (.E)] = q_{10}$                   | $q_5(	o q_{10}$                                               |
| 96                    |                                                   | $q_6 \varepsilon 	o \varepsilon$                              |
| 97                    |                                                   | $q_7 \varepsilon 	o \varepsilon$                              |
| <b>q</b> 8            | $[E_1 \rightarrow +.FE_1] = q_{11}$               | $q_8+ ightarrow q_{11}$                                       |
| <b>q</b> 9            |                                                   | $q_9 \varepsilon 	o \varepsilon$                              |

|                  | stari noi                                         | tranzitii noi                                  |
|------------------|---------------------------------------------------|------------------------------------------------|
|                  | $q_0 = [Z \rightarrow .E; \#]$                    |                                                |
| $\overline{q_0}$ | $q' = [Z \to E.; \#] = q_1$                       | $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ |
|                  | $H = \{[E \rightarrow .FE_1; \#] = q_2\}$         | $q_0i \rightarrow q_1q_2i$                     |
|                  |                                                   | $q_0(\rightarrow q_1q_2($                      |
| $q_1$            |                                                   | $q_1 \varepsilon 	o \varepsilon$               |
| $q_2$            | $[E \rightarrow F.E_1] = q_3$                     | $\tau \in FIRST_1(iFOLLOW_1(F))$               |
|                  | $H = \{ [F \rightarrow .i, FOLLOW_1(F)] = q_4 \}$ | $q_2 i \rightarrow q_3 q_4 i$                  |
|                  | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5 $        | $q_2(\rightarrow q_3q_5($                      |
| fiin             | d LL(1) strong, capetele din situatii nu le       | mai pastram (se pot deduce din situatie)       |
| -q <sub>3</sub>  | $[E \rightarrow FE_1.] = q_6$                     | $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$    |
|                  | $H = \{ [E_1 \rightarrow .\varepsilon] = q_7 \}$  | $q_3) \rightarrow q_6 q_7)$                    |
|                  |                                                   | $q_3\# \rightarrow q_6q_7\#$                   |
|                  | $[E_1 \rightarrow . + FE_1] = q_8\}$              | $q_3+ \rightarrow q_6q_8+$                     |
| <b>q</b> 4       | $[F \rightarrow i.] = q_9$                        | $q_4i \rightarrow q_9$                         |
|                  | $[F \rightarrow (.E)] = q_{10}$                   | $q_5(	o q_{10}$                                |
| <b>q</b> 6       |                                                   | $q_6 \varepsilon 	o \varepsilon$               |
| 97               |                                                   | $q_7 \varepsilon 	o \varepsilon$               |
| <b></b> 98       | $[E_1 \to +.FE_1] = q_{11}$                       | $q_8+  ightarrow q_{11}$                       |
| <b>q</b> 9       |                                                   | $q_9\varepsilon 	o \varepsilon$                |
| 910              | $[F \to (E.)] = q_{12}$                           | $\tau \in FIRST_1(FE_1FOLLOW(E))$              |
|                  | $H = \{[E \rightarrow .FE_1] = q_2\}$             | $q_{10}(\to q_{12}q_2($                        |
|                  |                                                   | $q_{10}i \rightarrow q_{12}q_2i$               |

|                | stari noi                                         | tranzitii noi                                  |
|----------------|---------------------------------------------------|------------------------------------------------|
|                | $q_0 = [Z \rightarrow .E; \#]$                    |                                                |
| 90             | $q' = [Z \rightarrow E.; \#] = q_1$               | $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ |
|                | $H = \{[E \rightarrow .FE_1; \#] = q_2\}$         | $q_0i \rightarrow q_1q_2i$                     |
|                |                                                   | $q_0(\rightarrow q_1q_2($                      |
| $q_1$          |                                                   | $q_1 \varepsilon 	o \varepsilon$               |
| $q_2$          | $[E \rightarrow F.E_1] = q_3$                     | $\tau \in FIRST_1(iFOLLOW_1(F))$               |
|                | $H = \{ [F \rightarrow .i, FOLLOW_1(F)] = q_4 \}$ | $q_2 i \rightarrow q_3 q_4 i$                  |
|                | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$         | $q_2(\rightarrow q_3q_5($                      |
| fiin           |                                                   | mai pastram (se pot deduce din situatie)       |
| $q_3$          | $[E \rightarrow FE_1.] = q_6$                     | $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$    |
|                | $H = \{ [E_1 \rightarrow .\varepsilon] = q_7 $    | $q_3) \rightarrow q_6 q_7)$                    |
|                |                                                   | $q_3\# \rightarrow q_6q_7\#$                   |
|                | $[E_1 \rightarrow . + FE_1] = q_8\}$              | $q_3+ \rightarrow q_6q_8+$                     |
| q <sub>4</sub> | $[F \rightarrow i.] = q_9$                        | $q_4i \rightarrow q_9$                         |
| q <sub>5</sub> | $[F \rightarrow (.E)] = q_{10}$                   | $q_5(	o q_{10}$                                |
| <b>9</b> 6     |                                                   | $q_6 \varepsilon 	o \varepsilon$               |
| <b>q</b> 7     |                                                   | $q_7 \varepsilon 	o \varepsilon$               |
| <b>q</b> 8     | $[E_1 \rightarrow +.FE_1] = q_{11}$               | $q_8+ ightarrow q_{11}$                        |
| <b>q</b> 9     |                                                   | $q_9arepsilon  ightarrow arepsilon$            |
| 910            | $[F \rightarrow (E.)] = q_{12}$                   | $\tau \in FIRST_1(FE_1FOLLOW(E))$              |
|                | $H = \{[E \rightarrow .FE_1] = q_2\}$             | $q_{10}(\to q_{12}q_2($                        |
|                |                                                   | $q_{10}i \rightarrow q_{12}q_2i$               |
| 911            | $[E_1 \rightarrow +F.E_1] = q_{13}$               | $\tau \in FIRST_1(iFOLLOW_1(F))$               |
|                | $H = \{ [F \rightarrow .i, FOLLOW_1(F)] = q_4 \}$ | $q_{11}i \rightarrow q_{13}q_4i$               |
|                | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5 $        | $q_{11}(\to q_{13}q_5($                        |
|                |                                                   |                                                |

|                | stari noi                                      | tranzitii noi                                                |
|----------------|------------------------------------------------|--------------------------------------------------------------|
|                | $q_0 = [Z \rightarrow .E; \#]$                 |                                                              |
| 90             | $q' = [Z \to E.; \#] = q_1$                    | $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$               |
|                | $H = \{[E \rightarrow .FE_1; \#] = q_2\}$      | $q_0i \rightarrow q_1q_2i$                                   |
|                |                                                | $q_0(\rightarrow q_1q_2($                                    |
| $q_1$          |                                                | $q_1arepsilon  ightarrow arepsilon$                          |
| $q_2$          | $[E \rightarrow F.E_1] = q_3$                  | $\tau \in FIRST_1(iFOLLOW_1(F))$                             |
|                | $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_4$  | $q_2 i \rightarrow q_3 q_4 i$                                |
|                | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$      | $q_2(\rightarrow q_3q_5($                                    |
|                |                                                | mai pastram (se pot deduce din situatie)                     |
| $q_3$          | $[E \rightarrow FE_1.] = q_6$                  | $	au \in \mathit{FIRST}_1(\varepsilon \mathit{FOLLOW}(E_1))$ |
|                | $H = \{ [E_1 \rightarrow .\varepsilon] = q_7 $ | $q_3) \rightarrow q_6 q_7)$                                  |
|                |                                                | $q_3\# \rightarrow q_6q_7\#$                                 |
|                | $[E_1 \rightarrow . + FE_1] = q_8\}$           | $q_3+ \rightarrow q_6q_8+$                                   |
| q <sub>4</sub> | $[F \rightarrow i.] = q_9$                     | $q_4i \rightarrow q_9$                                       |
| q <sub>5</sub> | $[F \rightarrow (.E)] = q_{10}$                | $q_5(	o q_{10}$                                              |
| <b>9</b> 6     |                                                | $q_6 \varepsilon 	o \varepsilon$                             |
| <b>q</b> 7     |                                                | $q_7 \varepsilon 	o \varepsilon$                             |
| <b>q</b> 8     | $[E_1 \rightarrow +.FE_1] = q_{11}$            | $q_8+ ightarrow q_{11}$                                      |
| <b>q</b> 9     |                                                | $q_9arepsilon  ightarrow arepsilon$                          |
| 910            | $[F \rightarrow (E.)] = q_{12}$                | $\tau \in FIRST_1(FE_1FOLLOW(E))$                            |
|                | $H = \{[E \rightarrow .FE_1] = q_2\}$          | $q_{10}(\to q_{12}q_2($                                      |
|                |                                                | $q_{10}i \rightarrow q_{12}q_2i$                             |
| 911            | $[E_1 \rightarrow +F.E_1] = q_{13}$            | $\tau \in FIRST_1(iFOLLOW_1(F))$                             |
|                | $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_4$  | $q_{11}i \rightarrow q_{13}q_4i$                             |
|                | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$      | $q_{11}(\to q_{13}q_5($                                      |
| $q_{12}$       | $[F \rightarrow (E).] = q_{14}$                | $q_{12}) \rightarrow q_{14}$                                 |

|                  | stari noi                                         | tranzitii noi                                  |
|------------------|---------------------------------------------------|------------------------------------------------|
|                  | $q_0 = [Z \rightarrow .E; \#]$                    |                                                |
| <b>q</b> 0       | $q' = [Z \to E.; \#] = q_1$                       | $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ |
| .0               | $H = \{ [E \rightarrow .FE_1; \#] = q_2 \}$       | $q_0i \rightarrow q_1q_2i$                     |
|                  | 2 125                                             | $q_0(\rightarrow q_1q_2($                      |
| $\overline{q_1}$ |                                                   | $q_1 \varepsilon 	o \varepsilon$               |
|                  | $[E \rightarrow F.E_1] = q_3$                     | $\tau \in FIRST_1(iFOLLOW_1(F))$               |
|                  | $H = \{ [F \rightarrow .i, FOLLOW_1(F)] = q_4 \}$ | $q_2 i \rightarrow q_3 q_4 i$                  |
|                  | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$         | $q_2(\rightarrow q_3q_5($                      |
| fiin             | d LL(1) strong, capetele din situatii nu le       | mai pastram (se pot deduce din situatie)       |
|                  | $[E \rightarrow FE_1.] = q_6$                     | $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$    |
|                  | $H = \{[E_1 \rightarrow .\varepsilon] = q_7$      | $q_3) \rightarrow q_6 q_7)$                    |
|                  |                                                   | $q_3\# \rightarrow q_6q_7\#$                   |
|                  | $[E_1 \rightarrow . + FE_1] = q_8\}$              | $q_3+ \rightarrow q_6q_8+$                     |
|                  | $[F \rightarrow i.] = q_9$                        | $q_4i \rightarrow q_9$                         |
|                  | $[F \to (.E)] = q_{10}$                           | $q_5(\rightarrow q_{10}$                       |
|                  |                                                   | $q_6 \varepsilon 	o \varepsilon$               |
| 97               |                                                   | $q_7 \varepsilon \to \varepsilon$              |
|                  | $[E_1 \to +.FE_1] = q_{11}$                       | $q_8+  ightarrow q_{11}$                       |
| <b>q</b> 9       |                                                   | $q_9 \varepsilon 	o \varepsilon$               |
| 910              | $[F \to (E.)] = q_{12}$                           | $\tau \in FIRST_1(FE_1FOLLOW(E))$              |
|                  | $H = \{ [E \rightarrow .FE_1] = q_2 \}$           | $q_{10}(\to q_{12}q_2($                        |
|                  |                                                   | $q_{10}i \rightarrow q_{12}q_2i$               |
| 911              | $[E_1 \to +F.E_1] = q_{13}$                       | $\tau \in FIRST_1(iFOLLOW_1(F))$               |
|                  | $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_4$     | $q_{11}i \rightarrow q_{13}q_4i$               |
|                  | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$         | $q_{11}(\to q_{13}q_5($                        |
|                  | $[F \to (E).] = q_{14}$                           | $q_{12}) \rightarrow q_{14}$                   |
| q <sub>13</sub>  | $[E_1 \to +FE_1.] = q_{15}$                       | $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$    |
|                  | $H = \{[E_1 \rightarrow .\varepsilon] = q_7$      | $q_{13}) \rightarrow q_{15}q_7)$               |
|                  |                                                   | $q_3\# \rightarrow q_6q_7\#$                   |
|                  | $[E_1 \to . + FE_1] = q_8$                        | $q_{13}+ \rightarrow q_{15}q_8+$               |
|                  |                                                   | •                                              |

|                        | stari noi                                         | tranzitii noi                                                                 |
|------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|
|                        | $q_0 = [Z \rightarrow .E; \#]$                    |                                                                               |
| 90                     | $q' = [Z \to E.; \#] = q_1$                       | $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$                                |
|                        | $H = \{[E \rightarrow .FE_1; \#] = q_2\}$         | $q_0i \rightarrow q_1q_2i$                                                    |
|                        |                                                   | $q_0(\rightarrow q_1q_2($                                                     |
| $q_1$                  |                                                   | $q_1 \varepsilon 	o \varepsilon$                                              |
| $q_2$                  | $[E \rightarrow F.E_1] = q_3$                     | $\tau \in FIRST_1(iFOLLOW_1(F))$                                              |
|                        | $H = \{ [F \rightarrow .i, FOLLOW_1(F)] = q_4 \}$ | $q_2 i \rightarrow q_3 q_4 i$                                                 |
|                        | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5 $        | $q_2(\rightarrow q_3q_5($                                                     |
| fiin                   |                                                   | mai pastram (se pot deduce din situatie)                                      |
| $q_3$                  | $[E \rightarrow FE_1.] = q_6$                     | $	au \in \mathit{FIRST}_1(\varepsilon \mathit{FOLLOW}(E_1))$                  |
|                        | $H = \{[E_1 \to .\varepsilon] = q_7$              | $q_3) \rightarrow q_6 q_7)$                                                   |
|                        |                                                   | $q_3\# \rightarrow q_6q_7\#$                                                  |
|                        | $[E_1 \rightarrow . + FE_1] = q_8\}$              | $q_3+ \rightarrow q_6q_8+$                                                    |
| 94                     | $[F \rightarrow i.] = q_9$                        | $q_4i \rightarrow q_9$                                                        |
| q <sub>5</sub>         | $[F \rightarrow (.E)] = q_{10}$                   | $q_5(\rightarrow q_{10}$                                                      |
| 96                     |                                                   | $q_6 \varepsilon \to \varepsilon$                                             |
| 97                     |                                                   | $q_7 \varepsilon 	o \varepsilon$                                              |
| _ <b>q</b> 8           | $[E_1 \rightarrow +.FE_1] = q_{11}$               | $q_8+  ightarrow q_{11}$                                                      |
| <b>q</b> 9             |                                                   | $q_9\varepsilon 	o \varepsilon$                                               |
| <i>q</i> <sub>10</sub> | $[F \rightarrow (E.)] = q_{12}$                   | $\tau \in FIRST_1(FE_1FOLLOW(E))$                                             |
|                        | $H = \{[E \rightarrow .FE_1] = q_2\}$             | $q_{10}(\rightarrow q_{12}q_2($                                               |
|                        |                                                   | $q_{10}i \rightarrow q_{12}q_2i$                                              |
| $q_{11}$               | $[E_1 \to +F.E_1] = q_{13}$                       | $	au \in \mathit{FIRST}_1(\mathit{iFOLLOW}_1(F))$                             |
|                        | $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_4$     | $q_{11}i \rightarrow q_{13}q_4i$                                              |
|                        | $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$         | $q_{11}(\rightarrow q_{13}q_5($                                               |
| 912                    | $[F \rightarrow (E).] = q_{14}$                   | $q_{12}) \rightarrow q_{14}$                                                  |
| $q_{13}$               | $[E_1 \rightarrow +FE_1.] = q_{15}$               | $	au \in \mathit{FIRST}_1(\varepsilon \mathit{FOLLOW}(E_1))$                  |
|                        | $H = \{[E_1 \to .\varepsilon] = q_7$              | $q_{13}) \rightarrow q_{15}q_7)$                                              |
|                        | $[E_1 \to . + FE_1] = q_8$                        | $q_3\# \rightarrow q_6q_7\#$                                                  |
| <i>a.</i> .            | $[L_1 \rightarrow . + I L_1] = q_8$               | $q_{13}+ \rightarrow q_{15}q_8+$                                              |
| 914<br>915             |                                                   | $q_{14}arepsilon  ightarrow arepsilon \ q_{15}arepsilon  ightarrow arepsilon$ |
| $q_{15}$               |                                                   | 4150 / 0                                                                      |

```
q_0: [Z \rightarrow \bullet E] q_8: [E_1 \rightarrow \bullet + FE_1]
q_1: [Z \rightarrow E \bullet] \qquad q_9: [F \rightarrow i \bullet]
q_2: [E \to \bullet FE_1] \quad q_{10}: [F \to (\bullet E)]
q_3: [E \rightarrow F \bullet E_1] \quad q_{11}: [E_1 \rightarrow + \bullet F E_1]
q_4: [F \rightarrow \bullet i] q_{12}: [F \rightarrow (E \bullet)]
q_5: [F \rightarrow \bullet(E)] q_{13}: [E_1 \rightarrow +F \bullet E_1]
q_6: [E \to FE_1 \bullet] \quad q_{14}: [F \to (E) \bullet]
q_7: [E_1 \to \bullet \epsilon] \qquad q_{15}: [E_1 \to +FE_1 \bullet]
q_0i \rightarrow q_1q_2i, \qquad q_0(\rightarrow q_1q_2),
q_1 \to \epsilon,
 q_2i \rightarrow q_3q_4i, \qquad q_2(\rightarrow q_3q_5),
 q_3 \# \to q_6 q_7 \#, \qquad q_3) \to q_6 q_7), \qquad q_3 \# \to q_6 q_8 \#,
q_4i \rightarrow q_9
 q_5(\rightarrow q_{10},
 q_6 \to \epsilon,
 q_7 \to \epsilon,
 q_8 + \to q_{11},
 q_0 \to \epsilon.
 q_{10}i \to q_{12}q_2i, \qquad q_{10}(\to q_{12}q_2),
 q_{11}i \to q_{13}q_4i,
                                 q_{11}(\to q_{13}q_5(,
 q_{12}) \to q_{14},
 q_{13}\# \to q_{15}q_7\#, \quad q_{13}) \to q_{15}q_7), \quad q_{13}+\to q_{15}q_8+,
q_{14} \rightarrow \epsilon,
 q_{15} \rightarrow \epsilon
```

# Algoritm derivator LL(1)

Convertirea automatului LL(1) in proceduri recursive: Descendenta recursiva ( Recursive descent)

- derivator descendent recursiv: starea automatului este o pozitie din derivator
- stiva locatii de unde derivatorul poate relua executia
- ▶ daca starea e  $[X \to \mu.B\nu; \omega]$ ,  $B \in N$ : se pune pe stiva informatia despre  $[X \to \mu B.\nu; \omega]$  inainte de a lua in considerare  $B \to \beta$ .
- daca folosim limbaje de programare cu suport pt recursivitate: procedura pt fiecare nonterminal B + mecanismul standard de recursivitate pentru a implementa stiva automatului

## Schema de program

| $	extbf{q}  ightarrow arepsilon$ | q: end                                             |
|----------------------------------|----------------------------------------------------|
| qt 	o q'                         | q: if symbol = t then next_symbol else error; $q'$ |
|                                  | q: X; q' :                                         |
|                                  |                                                    |
|                                  | proc X:                                            |
| $qt_1 \to q'q_1t_1$              | begin                                              |
|                                  | case symbol of                                     |
| $qt_m 	o q'q_mt_m$               | $t_1$ : begin $q_1$ : end;                         |
|                                  |                                                    |
|                                  | $t_m$ : begin $q_m$ : end;                         |
| unde                             | otherwise error                                    |
| $q = [Y \rightarrow \mu.X\nu;]$  | end                                                |
|                                  | end                                                |

#### Reguli de transformare

- nonterminal X procedura X; simbolul de start programul principal
- 2. corpul functiei X:
  - ▶ ramificare case pt productiile cu X in partea stanga
  - fiecare nonterminal din partea dreapta a productiei apel al procedurii corespunzatoare
  - fiecare terminal din partea dreapta a productiei verificare a presentei terminalului, urmat de apel al next\_symbol
- 3. daca niciunul dintre terminalele asteptate nu e prezent apel functia de tratare a erorilor

```
▶ Pt tranzitii qt_1 \rightarrow q'q_1t1...
  schema program indica:
     q: F(); q'
     procedura F() - case pt toate t_i

ightharpoonup q_2 i 
ightharpoonup q_3 q_4 i, q_2 (
ightharpoonup q_3 q_5 (
     q_4i \rightarrow q_9, q_9 \rightarrow \varepsilon,
     q_5(\rightarrow q_{10}, q_{10}i \rightarrow q_{12}q_2i, q_{10}(\rightarrow q_{12}q_2i,

ightharpoonup q_2 = [E \to .FE_1], q_3 = [E \to F.E_1], q_{10} = [F \to (.E)]
q2: F(); q3
procedure F()
{ case symbol of
    'i' : { q4: if (symbol == 'i') then next_symbol else
         error():
               q9: :}
    '(' : { q5: if (symbol == '(') then next_symbol else
         error():
               q10: E();
               q12: if (symbol == ')') then next_symbol else
                    error():
               q14: ;}
     otherwise error(); }
                                                       4 D > 4 A > 4 B > 4 B > B 9 9 0
```

```
derivator()
                                procedure E()
{ q0: E()
                                { q2: F();
 q1: if (symbol != '#')
                                q3: E1();
       error();
                                  q6: ;
procedure E1()
{ case symbol of
    '#' , ')' : q7: ;
    ·+ · · {
          q8: if (symbol == '+') next_symbol(); else error
            ():
          q11: F();
          q13: E1;
         q15: ;
    otherwise : error();
procedure F()
{ case symbol of
   'i' : { q4: if (symbol == 'i') then next_symbol else
      error():
         q9: ;}
   '(' : { q5: if (symbol == '(') then next_symbol else
      error():
          q10: E();
           q12: if (symbol == ')') then next_symbol else
              error();
           q14: ;}
    otherwise error(); }
                                     ◆ロト ←問 ト ← き ト → き ・ かなべ
```

## Parsing table - tabel de derivare

- ▶ Ullman 4.4 . Nonrecursive predictive parsing
- ► Table-driven predictive parsing: input, stiva, parsing table.
- ► Tabel de derivare: M[A,a] A nonterminal, a terminal sau #

#### Exemplu de tabel de derivare

|    |                     | lookahead             |            |                     |                     |                     |
|----|---------------------|-----------------------|------------|---------------------|---------------------|---------------------|
|    | i                   | +                     | *          | (                   | )                   | #                   |
| E  | $E \rightarrow TE'$ |                       |            | E 	o TE'            |                     |                     |
| E' |                     | $E' \rightarrow +TE'$ |            |                     | $E' 	o \varepsilon$ | $E' 	o \varepsilon$ |
| T  | T 	o FT'            |                       |            | T 	o FT'            |                     |                     |
| T' |                     | T' 	o arepsilon       | T' 	o *FT' |                     | T'	oarepsilon       | T'	oarepsilon       |
| F  | $F \rightarrow i$   |                       |            | $F \rightarrow (E)$ |                     |                     |

$$P = \{E \rightarrow TE' \\ E' \rightarrow +TE' | \varepsilon$$
$$T \rightarrow FT'$$
$$T' \rightarrow *FT' | \varepsilon$$
$$F \rightarrow (E) | id \}$$

#### Algoritm de derivare predictiva cu tabel de derivare

```
#S (simbol de start) pe stiva, string# la intrare
set ip to point to the first symbol of input string
repeat
 let X be the top stack symbol and a the symbol pointed to
      by ip
  if X is a terminal or # then
     if X = a then
        pop X from the stack and advance ip
     else error()
 else
     if M[X,a] = X -> Y1 Y2 ... Yk then begin
        pop X fro the stack
        push Yk, Yk-1, ... Y1 onto the stack, with Y1 on top
        output the production X-> Y1 Y2 ...Yk
     end
     else error()
unt.il X=#
```

#### Algoritm de derivare predictiva cu tabel de derivare

```
#S (simbol de start) pe stiva, string# la intrare
set ip to point to the first symbol of input string
repeat
  let X be the top stack symbol and a the symbol pointed to
      by ip
  if X is a terminal or # then
     if X = a then
        pop X from the stack and advance ip
     else error()
  else
     if M[X,a] = X -> Y1 Y2 ... Yk then begin
        pop X fro the stack
        push Yk, Yk-1, ... Y1 onto the stack, with Y1 on top
        output the production X-> Y1 Y2 ... Yk
     end
     else error()
unt.il X=#
 \{tqt \rightarrow q | t \in T\} \cup
 \{Xq \to x_n...x_1 \ q | X \to x_1x_2...x_n \in P, n > 0, X \in N, X_i \in V\}
```

Exemplu de tabel de derivare

|    |                     | lookahead             |            |                     |                      |                     |
|----|---------------------|-----------------------|------------|---------------------|----------------------|---------------------|
|    | id                  | +                     | *          | (                   | )                    | #                   |
| Ε  | $E \rightarrow TE'$ |                       |            | $E \rightarrow TE'$ |                      |                     |
| E' |                     | $E' \rightarrow +TE'$ |            |                     | $E' \to \varepsilon$ | $E' 	o \varepsilon$ |
| Τ  | T 	o FT'            |                       |            | T 	o FT'            |                      |                     |
| T' |                     | T' 	o arepsilon       | T' 	o *FT' |                     | T' 	o arepsilon      | T' 	o arepsilon     |
| F  | F 	o id             |                       |            | $F \rightarrow (E)$ |                      |                     |

| -                                                       |        |                      |                |
|---------------------------------------------------------|--------|----------------------|----------------|
| $P = \{E \rightarrow TE'$                               | simbol | $FIRST_1(X)$         | $FOLLOW_1(X)$  |
| ${m E}'  ightarrow + {m T} {m E}'   arepsilon$          | Ε      | {(, id}              | {),#}          |
| T	o FT'                                                 | E'     | $\{+, \varepsilon\}$ | $\{), \#\}$    |
|                                                         | T      | $\{(,id\}$           | $\{+,\#,)\}$   |
| ${\mathsf T}' \to *{\mathsf F}{\mathsf T}' \varepsilon$ | T'     | $\{*,arepsilon\}$    | $\{+, \#, )\}$ |
| $F 	o (E)   id \}$                                      | F      | $\{(,id\}$           | $\{*,+,\#,)\}$ |
|                                                         |        |                      |                |

- 1. for each production  $A \rightarrow \alpha$  do steps 2 and 3
- 2. for each terminal a in  $FIRST(\alpha)$ , add  $A \to \alpha$  to M[A, a]
- 3. if  $\varepsilon \in FIRST(\alpha)$ , add  $A \to \alpha$  to M[A, b] for each terminal  $b \in FOLLOW(A)$ . if  $\varepsilon \in FIRST(\alpha)$  and  $\# \in FOLLOW(A)$ , add  $A \to \alpha$  to M[A, #]
- 4. Make each undefined entry of M be error



- 1. for each production  $A \rightarrow \alpha$  do steps 2 and 3
- 2. for each terminal a in  $FIRST(\alpha)$ , add  $A \to \alpha$  to M[A, a]
- 3. if  $\varepsilon \in FIRST(\alpha)$ , add $A \to \alpha$  to  $M[A, b \text{ for each terminal } b \in FOLLOW(A)$ . if  $\varepsilon \in FIRST(\alpha)$  and  $\# \in FOLLOW(A)$ , add  $A \to \alpha$  to M[A, #]
- 4. Make each undefined entry of M be error

#### kahoot

|   |                | lookahead |   |   |   |   |   |
|---|----------------|-----------|---|---|---|---|---|
|   |                | id        | + | * | ( | ) | # |
| E | Ξ΄<br>Γ΄<br>Γ΄ |           |   |   |   |   |   |

| simbol | $FIRST_1(X)$         | $FOLLOW_1(X)$  |
|--------|----------------------|----------------|
| Ε      | {(, id}              | {),#}          |
| E'     | $\{+, \varepsilon\}$ | $\{), \#\}$    |
| T      | $\{(,id\}$           | $\{+, \#, )\}$ |
| T'     | $\{*, \varepsilon\}$ | $\{+, \#, )\}$ |
| F      | $\{(,id)\}$          | $\{*,+,\#,)\}$ |

- 1. for each production  $A \rightarrow \alpha$  do steps 2 and 3
- 2. for each terminal a in  $FIRST(\alpha)$ , add  $A \to \alpha$  to M[A, a]
- 3. if  $\varepsilon \in FIRST(\alpha)$ , add  $A \to \alpha$  to M[A, b] for each terminal  $b \in FOLLOW(A)$ . if  $\varepsilon \in FIRST(\alpha)$  and  $\# \in FOLLOW(A)$ , add  $A \to \alpha$  to M[A, #]
- 4. Make each undefined entry of M be error

