Trường ĐHBK TPHCM Bộ môn Toán ứng dụng

ĐỀ THI HỌC KỲ MÔN XÁC SUẤT THỐNG KÊ Thời gian: 90 phút.

- Đề thi gồm 2 trang A4.
- Thí sinh được dùng các bảng tra số và máy tính bỏ túi.
- Thí sinh không được sử dụng tài liệu.

<u>Câu 1:</u> (1,5đ) Có 2 chuồng thỏ gần nhau. Chuồng thứ nhất có 5 thỏ trắng và 10 thỏ nâu. Chuồng thứ hai có 4 thỏ trắng và 6 thỏ nâu. Do người chăm sóc sơ ý nên đã có một con thỏ ở chuồng thứ hai chạy sang chuồng thứ nhất. Sau đó người ta bắt ngẫu nhiên một con thỏ ở chuồng thứ nhất ra thì được một con thỏ trắng. Tính xác suất để con thỏ trắng này không phải là con đã chạy từ chuồng thứ hai qua.

<u>Câu 2:</u> (2,5d) Có 3 hộp, mỗi hộp đựng 10 sản phẩm và trong hộp thứ i có i phế phẩm, $i=\overline{1;3}$. Người ta tung 2 đồng xu, nếu không có mặt sấp nào thì chọn hộp thứ nhất; nếu có một trong hai mặt đồng xu là sấp thì chọn hộp thứ 2; nếu cả hai mặt đồng xu là sấp thì chọn hộp thứ 3. Từ hộp được chọn lấy ra ngẫu nhiên một sản phẩm.

Gọi X là biến ngẫu nhiên chỉ số mặt sấp xuất hiện khi tung 2 đồng xu; và Y là biến ngẫu nhiên chỉ số phế phẩm được lấy ra từ hộp đã chọn.

- a) Lập bảng phân phối xác suất của X và bảng phân phối xác suất đồng thời của véc tơ ngẫu nhiên (X, Y).
- b) Tìm covarian, hệ số tương quan và ma trận tương quan của (X, Y).

<u>Câu 3:</u> (4đ) Khi khảo sát chiều dài của cùng một loại chi tiết do phân xưởng A sản xuất, người ta thu được mẫu sau:

Chiều dài chi tiết (mm)	Số chi tiết tương ứng		
30,0-30,5	2		
30,5 - 31,0	8		
31,0 –31,5	35		
31,5 - 32,0	43		
32,0 - 32,5	22		
32,5 - 33,0	15		
33,0 - 33,5	5		

Các chi tiết đạt loại I là các chi tiết có chiều dài nằm trong khoảng từ 31 mm đến 33 mm.

a) Với mức ý nghĩa 5%, hãy xét xem mẫu này có tuân theo quy luật phân phối chuẩn hay không?

- b) Hãy tìm khoảng ước lượng cho chiều dài trung bình của các chi tiết với độ tin cậy 98%.
- c) Với độ tin cậy 98%, hãy tìm khoảng ước lượng cho số chi tiết đạt loại I trong kho chứa 6000 sản phẩm cùng loại của phân xưởng A.
- d) Trước đây, tỉ lệ chi tiết đạt loại I của phân xưởng chiếm 80%. Số liệu trong mẫu trên được khảo sát sau khi phân xưởng áp dụng cải tiến quy trình sản xuất. Với mức ý nghĩa 1%, có thể xem như việc cải tiến đã làm tăng tỉ lệ chi tiết đạt loại I không?

<u>Câu 4:</u> (2đ) Người ta khảo sát một loại cây được liệu trưởng thành về chỉ số chiều cao X (cm) và chỉ số trọng lượng Y (100 gram). Dưới đây là số liệu của mẫu thu được:

Y	4	5	6	7	8
X					
100	5	5	DACA	10.	
110	4	6	7	. С	
120	N. S.	5	9	8	01
130	7		4	6	9
140			5)	5	7

Giả thiết rằng chiều cao và trọng lượng của cây tuân theo phân phối chuẩn.

- a) Hãy tìm hệ số tương quan mẫu (X, Y); viết phương trình đường hồi quy tuyến tính mẫu của Y theo X; và dự đoán trọng lượng của cây loại này có chiều cao 145 cm.
- b) Với mức ý nghĩa 1%, hãy kiểm định xem giả thiết *chiều cao trung bình của loại cây này khi trưởng thành là 120 cm* có đáng tin cậy hay không?

Chủ nhiệm Bộ môn

PGS.TS Nguyễn Đình Huy

ĐÁP ÁN

Câu 1: 1,5 đ

 H_1 là biến cố con thỏ chạy từ chuồng 2 sang chuồng 1 là thỏ trắng. $P(H_1) = 4/10$. Goi: H_2 là biến cố con thỏ chạy từ chuồng 2 sang chuồng 1 là thỏ nâu. $P(H_2) = 6/10$. $\{ H_1, H_2 \}$ là nhóm biến cố đầy đủ.

F là biến cố con thỏ bắt được ở chuồng 1 là thỏ trắng.

B là biến cố con thỏ bắt được ở chuồng 1 không phải là con đã chạy từ chuồng 2 sang.

$$P(B/F) = \frac{P(BF)}{P(F)} = \frac{P(H_1) \times P(B.F/H_1) + P(H_2) \times P(B.F/H_2)}{P(H_1) \times P(F/H_1) + P(H_2) \times P(F/H_2)} = \frac{\frac{4}{10} \times \frac{5}{16} + \frac{6}{10} \times \frac{5}{16}}{\frac{4}{10} \times \frac{6}{16} + \frac{6}{10} \times \frac{5}{16}} = \frac{25}{27} \approx 0,9259$$

Câu 2: 2,5đ

a)

X	0	1	2
P	1/4	1/2	1/4

Y	0	1
X		
0	9/40	1/40
1	4/10	1/10
2	7/40	3/40

Ma trận tương quan:
$$\begin{pmatrix} D(X) & cov(X,Y) \\ cov(X,Y) & D(Y) \end{pmatrix} = \begin{pmatrix} 0.5 & 0.05 \\ 0.05 & 0.16 \end{pmatrix}$$

Câu 3: 4đ
$$n = 130$$

Câu 3: 4đ
$$n = 130$$
 $\bar{x} = 31,7885$ $\hat{s} = 0,6373$ $s = 0,6398$

a) (1,5 d) GTKĐ Họ: Mẫu phù hợp phân phối chuẩn N (a=31,7885; $\sigma^2 = (0.6373)^2$). GT đối H₁: Mẫu không phù hợp phân phối chuẩn.

Miền bác bỏ W_{α} =(9,49; +∞).

Trình bày công thức tính pi:

Các					
khoảng		pi	Ei =n*pi	Oi	(Oi-Ei)^2/Ei
-00	30.5	0.0216	2.81	2	0.2330789
30.5	31	0.0864	11.23	8	0.9310697
31	31.5	0.2174	28.26	35	1.6068286
31.5	32	0.3046	39.60	43	0,2922921
32	32.5	0.2379	30.92	22	2.5739511
32.5	33	0.1035	13.45	15	0.1784416
33	+00	0.0287	3.73	5	0.4360532
		1		130	6.2517

Tiêu chuẩn kđ: $\chi_{qs}^2 = 6,2517$ (trình bày công thức tính) $\notin W_{\alpha} \Rightarrow$ Chưa bác bỏ được H_0 . Ta coi mẫu phù hợp phân phối chuẩn.

(Có thể dùng công thức rút gọn để tính χ_{qs}^2 nhanh hơn).

b) (0,5 d) KUL cần tìm:

$$\bar{x} \pm \varepsilon = \bar{x} \pm \frac{z_{\alpha} \times s}{\sqrt{n}} = 31,7885 \pm \frac{2,33 \times 0,6398}{\sqrt{130}} = 31,7885 \pm 0,1307 \quad hay(31,6577;31,9192)$$

c) Trước tiên ta tìm KUL cho tỉ lệ sản phẩm loại I của phân xưởng.

$$f \pm \varepsilon = f \pm \frac{z_{\alpha} \times \sqrt{f(1-f)}}{\sqrt{n}} = \frac{115}{130} \pm \frac{2,33 \times \sqrt{\frac{115}{130} \left(1 - \frac{115}{130}\right)}}{\sqrt{130}} = 0,8846 \pm 0,0653$$

hay (0,8193; 0,9499)

Suy ra khoảng UL cho số sản phẩm loại I trong kho là: (4916; 5699)

d)

Gọi p là tỉ lệ sản phẩm loại I sau khi cải tiến.

Gtkđ Ho: p = 0.8Gt H1: $p \neq 0.8$ $z_{\alpha} = 2,58$

$$z_o = \frac{f - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n} = \frac{\frac{115}{130} - 0.8}{\sqrt{0.8 \cdot 0.2}} \sqrt{130} = 2,4119$$

Do $|z_o| < z_\alpha$ nên chưa bác bỏ được H_o . Ta coi như tỉ lệ sản phẩm loại I chưa thay đổi.

C2: Gtkđ Ho:
$$p = 0.8$$
 Gt H1: $p > 0.8$
Miền bác bỏ $W_{\alpha} = (2.33; +\infty)$

$$z_o = \frac{f - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n} = \frac{\frac{115}{130} - 0.8}{\sqrt{0.8 \cdot 0.2}} \sqrt{130} = 2.4119$$

Do $z_0 \in W_{\alpha}$ nên bác bỏ H_0 , chấp nhận H_1 . Ta nói tỉ lệ sản phẩm loại I đã tăng.

TAI LIEU SƯU TAF

Câu 4: 2đ

- a) r = 0.8220; (ghi các công thức tính) T-CNCP A= -4,0227 B= 0,0848 Phương trình đường thẳng hồi quy mẫu y = -4,0227 + 0,0848xDự đoán : y(145) = 8,2680
- b) Gọi a là chiều cao trung bình của cây trưởng thành.

<u>C1:</u> Gtkđ Ho: a = 120 cmGt H1: a ≠ 120 cm

$$z_o = \frac{\overline{x} - a_0}{s} \sqrt{n} = \frac{120,75 - 120}{12,5057} \sqrt{80} = 0,5364$$

Do $|z_0| < z_\alpha$ nên chưa bác bỏ được H_0 . Ta coi như giả thiết đã cho là tin cậy.

C2: Gtkđ Ho: a = 120 cmGt H1: $a \neq 120$ cm

Miền bác bỏ $W_{\alpha} = (-\infty; -2.58) \cup (2.58; +\infty)$

$$z_o = \frac{\overline{x} - a_0}{s} \sqrt{n} = \frac{120,75 - 120}{12,5057} \sqrt{80} = 0,5364$$

Do $z_0 \notin W_{\alpha}$ nên chưa bác bỏ được H_0 . Ta coi như giả thiết đã cho là tin cậy.