Machine Learning for Graphs and Sequential Data

Robustness of Machine Learning Models

Lecturer: Prof. Dr. Stephan Günnemann

cs.cit.tum.de/daml

Summer Term 2023

Roadmap

- 1. Introduction
- 2. Construction of adversarial examples
- 3. Improving robustness
- 4. Certifiable robustness
 - Exact certification
 - Convex relaxations
 - Lipschitz-continuity
 - Randomized smoothing

Lipschitz Continuity: Idea

- Roughly speaking, adversarial examples result from a small change in the input space (e.g. image) leading to a large change in the output space (logits).
- The idea of robustness via Lipschitz continuity is to bound how much the output of the network can change for a given perturbation of the input.
- More formally, a function $f: \mathcal{X} \to \mathcal{Y}$ is **Lipschitz continuous** if

$$\mathcal{D}_{\mathcal{Y}}(f(\mathbf{x}_1), f(\mathbf{x}_2)) \le k \cdot \mathcal{D}_{\mathcal{X}}(\mathbf{x}_1, \mathbf{x}_2) \quad \forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$$

- We refer to k as the **Lipschitz constant** of f, and to f as being **k-Lipschitz**.
- $\mathcal{D}_{\mathcal{X}}$ and $\mathcal{D}_{\mathcal{Y}}$ are metrics on the input and output space, respectively (e.g., L_p norms).

Lipschitz Continuity for Robustness Certification

- Idea: determine (or bound) the Lipschitz constant of a neural network F.
- Then we can compute the worst-case change of the logits given a bounded perturbation of the input.
- How can we compute the Lipschitz constant L(F)?
- Given a function $f(\mathbf{x}) = (\phi_L \circ \phi_{L-1} \circ \cdots \circ \phi_1)(\mathbf{x})$, the Lipschitz constant of f is bounded from above by:

$$L(f) \le \prod_{l=1}^{L} L(\phi_l)$$

Thus, we can compute the Lipschitz constants of the individual functions to upper bound the Lipschitz constant of f.

Lipschitz Continuity for Robustness Certification

Given a function $f(\mathbf{x}) = (\phi_L \circ \phi_{L-1} \circ \cdots \circ \phi_1)(\mathbf{x})$, the Lipschitz constant of f is bounded from above by:

$$L(f) \le \prod_{l=1}^{L} L(\phi_l)$$

- Recall: $F(\mathbf{x}) = \mathbf{W}_L f_{L-1} \circ f_{L-2} \circ \cdots \circ f_1(\mathbf{x}) + \mathbf{b}_L$
- We can compute the Lipschitz constant of the **individual layers** to upper bound the **Lipschitz constant of the neural network** *F*.
- In the following, we thus need to learn how to compute the Lipschitz constant of different layers and activation functions.

Lipschitz Constant of Fully Connected Layers

 Fully connected layers consist of an affine transformation and an activation function. We first consider the affine transformation:

$$f(\mathbf{x}) = W\mathbf{x} + \boldsymbol{b},$$

• Plugging $f(\mathbf{x})$ into the definition of the Lipschitz constant we get:

$$\|(\mathbf{W}\mathbf{x}_1 + \mathbf{b}) - (\mathbf{W}\mathbf{x}_2 + \mathbf{b})\|_p \le k\|\mathbf{x}_1 - \mathbf{x}_2\|_p$$

• Setting $a = x_1 - x_2$ and rearranging we obtain

$$L(f) = \sup_{\boldsymbol{a} \neq \boldsymbol{0}} \frac{\|\boldsymbol{W}\boldsymbol{a}\|_p}{\|\boldsymbol{a}\|_p},$$

which is the definition of the operator norm.

Lipschitz Constant of Fully Connected Layers

$$L(f) = \sup_{\boldsymbol{a} \neq \boldsymbol{0}} \frac{\|\boldsymbol{W}\boldsymbol{a}\|_p}{\|\boldsymbol{a}\|_p},$$

which is the definition of the operator norm.

- For p = 1, L(f) is the maximum L_1 norm of the columns of W.
- For $p = \infty$, L(f) is the maximum L_1 norm of the rows of W.
- For p = 2, L(f) is the maximum singular value of W.

Convolutional layers:

• Computing the Lipschitz constant of convolutional layers is a bit trickier in the case of p=2 but can be approximated relatively efficiently [Gouk+ 2018].

Lipschitz Constant of Neural Networks

Activation functions:

- Typical activation functions (ReLU, sigmoid, tanh, softmax, ...) have a Lipschitz constant of at worst 1.
- Specifically, ReLU has a Lipschitz constant of exactly 1.
- For a feed-forward neural network F with ReLU activation functions we therefore upper bound its Lipschitz constant as:

$$L(F) \le \prod_{l=1}^{L} ||\boldsymbol{W}_{l}||_{p}$$
 // note again: this is the operator norm

 By regularizing the norm of the weight matrices we can therefore enforce any desired Lipschitz constant for the network.

Certifying Robustness via the Lipschitz Constant

- Suppose we have a neural network F with Lipschitz constant k.
- Given an input sample \mathbf{x} and corresponding logits $\hat{\mathbf{y}} = F(\mathbf{x})$ we can compute the maximum norm ϵ of a perturbation $\boldsymbol{\delta}$: $\|\boldsymbol{\delta}\|_p \leq \epsilon$ for which we can guarantee robustness of the classifier.

Approach:

- 1. Compute the minimum perturbation norm $\hat{\epsilon} = \|\widehat{\delta}\|_p$ in **logit space** to change the classification.
- 2. Compute the corresponding perturbation norm $\epsilon = \|\boldsymbol{\delta}\|_p$ in **input space** based on the **Lipschitz constant**.

Certifying Robustness via the Lipschitz Constant

Approach:

1. Compute the minimum perturbation norm $\hat{\epsilon} = \|\widehat{\delta}\|_p$ in **logit space** to change the classification.

Illustration: see annotation

Determining the maximum certifiable Input Perturbation

2. Compute the corresponding perturbation norm $\epsilon = \|\boldsymbol{\delta}\|_p$ in **input space** based on the **Lipschitz constant**.

Recall

- a) $\hat{\epsilon}$ is the minimum perturbation norm in **logit space**, that is we require $||F(\mathbf{x}) F(\tilde{\mathbf{x}})||_p \leq \hat{\epsilon}$
- b) We know F is Lipschitz, that is $||F(\mathbf{x}) F(\tilde{\mathbf{x}})||_p \le k \cdot ||\mathbf{x} \tilde{\mathbf{x}}||_p$

Observation: As long as
$$\|\mathbf{x} - \tilde{\mathbf{x}}\|_p \leq \frac{\hat{\epsilon}}{k}$$
 we have $\stackrel{b)}{\Rightarrow} \|F(\mathbf{x}) - F(\tilde{\mathbf{x}})\|_p \leq k \cdot \frac{\hat{\epsilon}}{k} = \hat{\epsilon}$

$$\Rightarrow$$
 The maximum certifiable radius is $\epsilon = \frac{\hat{\epsilon}}{k}$

- We can certify that for any $\tilde{\mathbf{x}} \in \mathcal{P}(\mathbf{x}) = \{\tilde{\mathbf{x}}: \|\mathbf{x} \tilde{\mathbf{x}}\|_p \leq \frac{\hat{\epsilon}}{k}\}$ the predicted class for sample \mathbf{x} does not change.
- → If the Lipschitz constant k of the network is small, we expect to get more robustness certificates.

Practical Considerations

- We have seen that, from a robustness point of view, we want our classifiers to have small Lipschitz constant.
- Taking this to the extreme, a Lipschitz constant of 0 would mean that it is impossible to change the prediction with perturbations of the input.
- \blacksquare However, small Lipschitz constants **limit the expressiveness** of the function F.
- Therefore, we need to trade off expressiveness and robustness.
- Moreover, [Huster+ 2018] argue that there are **theoretical limitations** in using only atomic (i.e. layer-wise) Lipschitz constants to upper bound k.

Questions – Robustness (III)

1. Suppose we define a **local** variant of the Lipschitz constant around a given point \mathbf{x}_0 as follows

$$\mathcal{D}_{\mathcal{Y}}(f(\mathbf{x}_0), f(\mathbf{x})) \le k_{\mathbf{x}_0} \cdot \mathcal{D}_{\mathcal{X}}(\mathbf{x}_0, \mathbf{x}) \quad \forall \mathbf{x} \in \mathcal{X}$$

How does the local constant $k_{\mathbf{x}_0}$ relate to the global constant k of f? Which one would provide better guarantees and why?

Recommended Reading

Cisse, Moustapha, et al. "Parseval networks: Improving robustness to adversarial examples." Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017.

References

- Gouk, Henry, et al. "Regularisation of neural networks by enforcing lipschitz continuity." arXiv preprint arXiv:1804.04368(2018).
- Huster, Todd, Cho-Yu Jason Chiang, and Ritu Chadha. "Limitations of the Lipschitz constant as a defense against adversarial examples." Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Cham, 2018.