Frühjahr 23 Themennummer 2 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Entscheiden Sie, ob die folgenden Aussagen über holomorphe Funktionen gelten. Geben Sie jeweils eine Begründung oder ein Gegenbeispiel an.

a) Die Funktion

$$f: \{z \in \mathbb{C} : |\text{Re } z| < 1\} \to \mathbb{C}, \quad f(z) := e^z$$

ist beschränkt.

b) Die Funktion

$$f: \{z \in \mathbb{C} : |\text{Im } z| < 1\} \to \mathbb{C}, \quad f(z) := \frac{1}{1+z^2}$$

ist beschränkt.

- c) Ist $\Omega := \{z \in \mathbb{C} : |\text{Re } z| > 1\}$ und $f : \Omega \to \mathbb{C}$ holomorph mit $f^{(n)}(2) = 0$ für alle $n \in \mathbb{N}_0$, so ist f die Nullfunktion.
- d) Ist $f:\mathbb{C}\to\mathbb{C}$ holomorph und nicht konstant, so stimmt der Abschluss von $f(\mathbb{C})$ mit \mathbb{C} überein.

Lösungsvorschlag:

- a) Diese Aussage ist wahr, denn für alle $z \in \{z \in \mathbb{C} : |\text{Re } z| < 1\}$ gilt $|e^z| = e^{\text{Re } z} < e^1 = e$, also ist f durch e beschränkt.
- b) Diese Aussage ist falsch. Wir betrachten die im Definitionsbereich liegende Folge $(z_n)_{n\in\mathbb{N}} \coloneqq (\sqrt{(1-\frac{1}{n})}i)_{n\in\mathbb{N}}$ und berechnen

$$\lim_{n \to \infty} f(z_n) = \lim_{n \to \infty} \frac{1}{1 - 1 + \frac{1}{n}} = \lim_{n \to \infty} n = \infty$$

nach dem Satz von Archimedes. Das heißt die natürlichen Zahlen liegen im Bild von f und damit muss das Bild und folglich die Funktion unbeschränkt sein.

- c) Diese Aussage ist falsch. Die Funktion $f: \Omega \to \mathbb{C}$, $f(z) := 1 \operatorname{sgn}(\operatorname{Re} z)$ ist lokalkonstant und damit holomorph mit $f^{(n)} \equiv 0$ für alle $n \in \mathbb{N}$ und erfüllt f(2) = 0, ist aber nicht die Nullfunktion, weil $f(-2) = 2 \neq 0$ gilt.
- d) Diese Aussage ist wahr. Falls f ein Polynom ist, gilt nach dem Fundamentalsatz der Algebra schon $f(\mathbb{C}) = \mathbb{C}$, da f als nicht konstant vorausgesetzt wurde. Ist f transzendent, so betrachten wir die Potenzreihendarstellung um 0:

Für gewisse $a_n \in \mathbb{C}$ ist $f(z) = \sum_{n=0}^{\infty} a_n (z-0)^n$ und wir betrachten für $z \neq 0$ die

Funktion $g(z) := f(\frac{1}{z}) = \sum_{n=0}^{\infty} a_n z^{-n}$. Die Singularität bei 0 ist isoliert und wesentlich,

weil der Hauptteil der Laurentreihe nicht abbricht (f ist transzendent), nach dem Satz von Casorati ist $g(B_1(0)\setminus\{0\})$ dicht in \mathbb{C} .

Wegen $g(B_1(0)\setminus\{0\}) \subset f(\{z \in \mathbb{C} : |z| > 1\} \subset f(\mathbb{C})$ ist dann natürlich auch das Bild von f dicht.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$