1. Problem:

A continuous random variable X was measured 21 times. The sorted measurements are shown below.

21.24	23.74	23.78	23.98	24.51	25.85	25.93
26.66	27.13	27.17	27.29	27.93	28.67	29.31
29.65	33.64	34.37	40.17	44.43	46.83	47.16

Solution: The sample size, *n*, is 21. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	Х
Q1	$\lceil 0.25 \times 21 \rceil$	6	25.85
Q2	$\lceil 0.5 \times 21 \rceil$	11	27.29
Q3	$\lceil 0.75 \times 21 \rceil$	16	33.64

We determine the IQR.

$$IQR = Q3 - Q1$$

= 33.64 - 25.85
= 7.79

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $25.85 - 1.5 \times 7.79$
= 14.165
upper boundary = Q3 + $1.5 \times IQR$
= $33.64 + 1.5 \times 7.79$

We determine the outliers.

outliers =
$$\{46.83, 47.16\}$$

=45.325

We identify the ends of the whiskers: 21.24 and 44.43. We plot the boxplot.

2. Problem:

A continuous random variable X was measured 45 times. The sorted measurements are shown below.

42 110.64
68 125.89
09 135.59
10 144.18
28 149.52

Solution: The sample size, *n*, is 45. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	Х
Q1	$\lceil 0.25 \times 45 \rceil$	12	121.07
Q2	$\lceil 0.5 \times 45 \rceil$	23	131.73
Q3	$\lceil 0.75 \times 45 \rceil$	34	143.8

We determine the IQR.

$$IQR = Q3 - Q1$$

= 143.8 - 121.07
= 22.73

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $121.07 - 1.5 \times 22.73$
= 86.975

upper boundary = Q3 + 1.5
$$\times$$
 IQR
= 143.8 + 1.5 \times 22.73
= 177.895

We determine the outliers.

outliers =
$$\{74.75, 78.43\}$$

We identify the ends of the whiskers: 90.82 and 149.52. We plot the boxplot.

3. Problem:

A continuous random variable X was measured 18 times. The sorted measurements are shown below.

30.53	30.56	30.95	31.21	31.28
32.07	32.22	32.33	32.49	32.72
33.72	35.60	36.14	37.41	38.56
	32.07	32.07 32.22	32.07 32.22 32.33	30.53 30.56 30.95 31.21 32.07 32.22 32.33 32.49 33.72 35.60 36.14 37.41

Solution: The sample size, *n*, is 18. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	[0.25 × 18]	5	31.21
Q2	$\lceil 0.5 \times 18 \rceil$	9	32.22
Q3	$\lceil 0.75 \times 18 \rceil$	14	33.72

We determine the IQR.

$$IQR = Q3 - Q1$$

= 33.72 - 31.21
= 2.51

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $31.21 - 1.5 \times 2.51$
= 27.445

upper boundary = Q3 + 1.5
$$\times$$
 IQR
= 33.72 + 1.5 \times 2.51
= 37.485

We determine the outliers.

outliers =
$$\{38.56\}$$

We identify the ends of the whiskers: 30.18 and 37.41. We plot the boxplot.

4. Problem:

A continuous random variable X was measured 63 times. The sorted measurements are shown below.

30.25	31.09	31.09	31.12	31.30	31.36	31.38	31.45	31.53
31.54	31.54	31.58	31.64	31.70	31.76	31.78	31.88	31.93
31.98	32.04	32.15	32.16	32.21	32.25	32.26	32.29	32.30
32.32	32.33	32.33	32.38	32.39	32.39	32.52	32.54	32.54
32.55	32.55	32.57	32.58	32.60	32.60	32.64	32.65	32.66
32.71	32.73	32.73	32.73	32.74	32.75	32.77	32.77	32.79
32.85	32.85	32.85	32.91	32.93	32.94	32.94	32.96	32.99

Solution: The sample size, n, is 63. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	Х
Q1	$\lceil 0.25 imes 63 \rceil$	16	31.78
Q2	$\lceil 0.5 \times 63 \rceil$	32	32.39
Q3	$\lceil 0.75 \times 63 \rceil$	48	32.73

We determine the IQR.

$$IQR = Q3 - Q1$$

= 32.73 - 31.78
= 0.95

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= 31.78 $- 1.5 \times 0.95$
= 30.355
upper boundary = Q3 + 1.5 $\times IQR$
= 32.73 + 1.5 $\times 0.95$
= 34.155

We determine the outliers.

outliers =
$$\{30.25\}$$

We identify the ends of the whiskers: 31.09 and 32.99. We plot the boxplot.

5. **Problem:**

A continuous random variable X was measured 9 times. The sorted measurements are shown below.

70.11	71.99	72.06
72.33	72.59	72.82
73.21	73.52	74.31

Solution: The sample size, n, is 9. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	Х
Q1	$\lceil 0.25 imes 9 ceil$	3	72.06
Q2	$\lceil 0.5 imes 9 \rceil$	5	72.59
Q3	$\lceil 0.75 \times 9 \rceil$	7	73.21

We determine the IQR.

$$IQR = Q3 - Q1$$

= 73.21 - 72.06
= 1.15

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $72.06 - 1.5 \times 1.15$
= 70.335
upper boundary = Q3 + $1.5 \times IQR$
= $73.21 + 1.5 \times 1.15$
= 74.935

We determine the outliers.

outliers =
$$\{70.11\}$$

We identify the ends of the whiskers: 71.99 and 74.31. We plot the boxplot.

6. Problem:

A continuous random variable X was measured 56 times. The sorted measurements are shown below.

60.05	60.06	60.07	60.08	60.09	60.11	60.16	60.16
60.17	60.20	60.22	60.23	60.29	60.32	60.32	60.35
60.36	60.38	60.41	60.42	60.44	60.46	60.47	60.48
60.51	60.52	60.55	60.56	60.57	60.58	60.58	60.60
60.62	60.65	60.68	60.68	60.71	60.80	60.85	60.88
60.88	60.92	60.92	61.11	61.18	61.27	61.36	61.40
61.42	61.47	61.55	61.59	61.62	61.74	61.79	62.12

Solution: The sample size, n, is 56. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	Х
Q1	$\lceil 0.25 \times 56 \rceil$	14	60.32
Q2	$\lceil 0.5 \times 56 \rceil$	28	60.56
Q3	$\lceil 0.75 \times 56 \rceil$	42	60.92

We determine the IQR.

$$IQR = Q3 - Q1$$

$$= 60.92 - 60.32$$

$$= 0.6$$

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $60.32 - 1.5 \times 0.6$
= 59.42
upper boundary = Q3 + $1.5 \times IQR$
= $60.92 + 1.5 \times 0.6$
= 61.82

We determine the outliers.

outliers =
$$\{62.12\}$$

We identify the ends of the whiskers: 60.05 and 61.79. We plot the boxplot.

7. **Problem:**

A continuous random variable X was measured 72 times. The sorted measurements are shown below.

70.55	72.53	73.18	74.03	74.62	76.55	76.75	78.42	78.69
79.97	83.18	83.40	84.49	84.71	85.08	85.70	85.85	86.15
86.27	87.83	87.86	88.31	88.57	88.89	89.11	89.28	89.81
90.19	90.41	90.57	90.71	91.13	91.70	91.88	92.57	92.94
92.94	93.04	93.54	93.88	94.03	94.20	94.29	94.53	94.62
95.11	95.37	95.47	95.50	95.63	95.86	96.12	96.20	96.40
96.53	96.98	97.01	97.18	97.44	97.65	97.86	97.99	98.06
98.14	98.47	98.85	98.85	99.03	99.12	99.29	99.49	99.93

Solution: The sample size, *n*, is 72. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 72 \rceil$	18	86.15
Q2	$\lceil 0.5 \times 72 \rceil$	36	92.94
Q3	$\lceil 0.75 \times 72 \rceil$	54	96.4

We determine the IQR.

$$IQR = Q3 - Q1$$

= 96.4 - 86.15
= 10.25

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $86.15 - 1.5 \times 10.25$
= 70.775

upper boundary = Q3 + 1.5
$$\times$$
 IQR
= 96.4 + 1.5 \times 10.25
= 111.775

We determine the outliers.

outliers =
$$\{70.55\}$$

We identify the ends of the whiskers: 72.53 and 99.93. We plot the boxplot.

8. Problem:

A continuous random variable X was measured 25 times. The sorted measurements are shown below.

73.00	76.82	81.49	83.06	83.18
83.67	83.86	84.23	85.38	85.45
85.89	85.95	86.04	86.05	86.81
88.00	88.10	89.22	89.24	89.52
89.53	89.59	89.67	89.68	89.82

Solution: The sample size, n, is 25. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	Х
Q1	$\lceil 0.25 imes 25 ceil$	7	83.86
Q2	$\lceil 0.5 \times 25 \rceil$	13	86.04
Q3	$\lceil 0.75 \times 25 \rceil$	19	89.24

We determine the IQR.

$$IQR = Q3 - Q1$$

= $89.24 - 83.86$
= 5.38

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $83.86 - 1.5 \times 5.38$
= 75.79
upper boundary = Q3 + $1.5 \times IQR$
= $89.24 + 1.5 \times 5.38$
= 97.31

We determine the outliers.

outliers =
$$\{73\}$$

We identify the ends of the whiskers: 76.82 and 89.82. We plot the boxplot.

