一、选择题

1. 在下面哪个区间内,函数 $f(x) = x^3 + 3x - 5$ 一定有零点 ()

A. (-1,0) B. (0,1) C.(1,2) D. (2,3)

2. 已知函数 f(x)的图形是连续不断的,且有如下函数值对应表:

х	1	2	3	4	5	6
f(x)	23	9	-7	11	-5	-12

那么函数 f(x)在区间[1,6]上的零点至少有()个

A. 1 B. 2 C. 3 D. 4

二、证明题(写出过程)

1. 证明方程 $x = a \sin x + b$,其中 a > 0, b > 0,至少有一个正根,并且它不超过 a + b。

2. 设 f(x) 在 [a,b] 上连续,且 f(a) < a, f(b) > b,试证,在 (a,b) 内至少有一点 C,使得 f(C) = C。