Отчёт по лабораторной работе №8

Математическое моделирование

Мухамедияр Адиль

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Вывод	13

Список иллюстраций

3.1	Случай 1 OpenModelica												8
3.2	Случай 2 OpenModelica												ç
3.3	Программа на Julia												11
3.4	Программа на Julia												12

Список таблиц

1 Цель работы

- Познакомиться с моделью конкуренции двух фирм
- Визуализировать модель с помощью Julia и OpenModelica

2 Задание

Вариант 6.

- Построить графики изменения оборотных средств двух фирм
- Рассмотреть два случая: где борьба ведется только рыночными методами и где учитываются социально-психологические факторы

3 Выполнение лабораторной работы

Код на OpenModelica

```
model Lab08
constant Real M0_1 = 2.3;
constant Real M0_2 = 1.6;
constant Real p_{cr} = 18;
constant Real N = 21;
constant Real q = 1;
constant Real tau1 = 14;
constant Real tau2 = 17;
constant Real p1 = 11;
constant Real p2 = 9;
parameter Real a1 = p_cr/(tau1^2*p1^2*N*q);
parameter Real a2 = p_cr/(tau2^2*p2^2*N*q);
parameter Real b = p_cr/(tau1^2*tau2^2*p1^2*p2^2*N*q);
parameter Real c1 = (p_cr - p1)/(tau1*p1);
parameter Real c2 = (p_cr - p2)/(tau2*p2);
Real M1(start=M0_1);
Real M2(start=M0_2);
equation
der(M1) = M1 - b/c1*M1*M2 - a1/c1*M1^2;
der(M2) = c2/c1*M2 - b/c1*M1*M2 - a2/c1*M2^2;
//der(M1) = M1 - (b/c1 + 0.00065)*M1*M2 - a1/c1*M1^2;
```

end Lab08;

Результат 1 случая: Получаем график изменения оборотных средств для двух фирм.

Рис. 3.1: Случай 1 OpenModelica

Результат 2 случая: Получаем график динамики изменения объемов продаж для двух фирм.

Рис. 3.2: Случай 2 OpenModelica

Код на *Julia*

using Plots
using DifferentialEquations

const $M0_1 = 2.3$

const $M0_2 = 1.6$

 $const p_cr = 18$

const N = 21

const q = 1

const tau1 = 14

const tau2 = 17

const p1 = 11

const p2 = 9

```
a1 = p_cr/(tau1^2*p1^2*N*q)
a2 = p_cr/(tau2^2*p2^2*N*q)
b = p_cr/(tau1^2*tau2^2*p1^2*p2^2*N*q)
c1 = (p_cr - p1)/(tau1*p1)
c2 = (p_cr - p2)/(tau2*p2)
T = (0, 30)
u0 = [M0_1, M0_2]
# 1 случай
function F1(du, u, p, t)
 du[1] = u[1] - b/c1*u[1]*u[2] - a1/c1*u[1]^2
 du[2] = c2/c1*u[2] - b/c1*u[1]*u[2] - a2/c1*u[2]^2
end
prob1 = ODEProblem(F1, u0, T)
sol1 = solve(prob1, dtmax=0.01)
plt1 = plot(sol1, vars=(0, 1), color=:red, title="Изменение оборотных средств фир
plot!(plt1, sol1, vars=(0, 2), color=:blue, label="Фирма 2")
savefig(plt1, "Julia1.png")
# 2 случай
function F2(du, u, p, t)
 du[1] = u[1] - (b/c1 + 0.00065)*u[1]*u[2] - a1/c1*u[1]^2
```

```
du[2] = c2/c1*u[2] - b/c1*u[1]*u[2] - a2/c1*u[2]^2
end

prob2 = ODEProblem(F2, u0, T)
sol2 = solve(prob2, dtmax=0.01)

plt2 = plot(sol2, vars=(0, 1), color=:red, title="Изменение оборотных средств фир
plot!(plt2, sol2, vars=(0, 2), color=:blue, label="Фирма 2")
```

savefig(plt2, "Julia2.png")

Случай 1:

Результаты сохраняем в виде графика.

Рис. 3.3: Программа на Julia

Случай 2:

Получаем график динамики изменения объемов продаж для второго случая. По графику видно, что первая фирма, несмотря на начальный рост, достигнув своего максимального объема продаж, начитает нести убытки и, в итоге, терпит банкротство. Динамика роста объемов оборотных средств второй фирмы остается без изменения: достигнув максимального значения, остается на этом уровне.

Рис. 3.4: Программа на Julia

4 Вывод

В ходе работы мы изучили модель конкуренции двух фирм и применили навыки работы с Julia и OpenModelica для построения графиков, визуализирующих эту модель. Результатом работы стали графики динамики изменения объемов продаж для двух случаев.