Abdul Hanan Sheikh

CCSIS, IoBM

Analyzing convergence of two-level deflation preconditioner

Research Colloquia-2023, SMCS, IBA, Karachi, 29-30 May 2023 Abdul Hanan Sheikh

What is Preconditioner

Linear system

$$Ax = b$$

Is this

$$P^{-1}Ax = P^{-1}b$$

equivalent? P is the preconditioner(matrix) What P should be

- cheap to perform $P^{-1}r$.
- better spectral properties of $P^{-1}A$
- can we choose $P = A^{-1}$?

Chosen Problem

The Helmholtz equation without damping

$$-\Delta \mathbf{u}(x_i) - k^2(x_i)\mathbf{u}(x_i) = \mathbf{g}(x_i) \text{ in } \Omega$$

 $\mathbf{u}(x_i)$ is the pressure field

 $\mathbf{k}(x_i)$ is the wave number

 $\mathbf{g}(x_i)$ is the source function and

 Ω is domain, bounded by absorbing boundary conditions

$$\frac{\partial \mathbf{u}}{\partial n} - \iota \mathbf{u} = 0$$

n is the unit normal vector pointing outwards on the boundary.

Why this problem?

People in following areas look for solution

- Acoustics (sound waves)
- Seismic imaging
- Optix and Electromagnetic waves
- Medical Imaging (ultrasound etc)
- Radars

Application: Geophysical Survey

Seismic Imaging

Application: Radars

Radar system

Discretization

Second order Finite Difference stencil:

$$\begin{bmatrix} -1 & \\ -1 & 4 - k^2 h^2 & -1 \\ -1 & \end{bmatrix}$$

- Linear system Au = g
- Properties

Sparse & complex valued

Symmetric & Indefinite for large *k*

- High resolution requires very fine grid; fine grid ⇒ extremely large linear system!
- Is traditionally solved by a Krylov subspace method, which exploits the sparsity.

Solvers

Brief survey

- Iterative Methods (BIM)
 They fail to converge for sufficient large system.
- Krylov subspace solvers
 - CGNR Paige and Saunders, 1975
 - Short recurrences

```
Bi-CGSTAB van der Vorst, 1992
```

IDR(s) Van Gijzen and Sonneveld, 2008

Minimal residual

GMRES Saad and Schultz, 1986

GCR Eisenstat, Elman and Schultz, 1983

Preconditioning

Equivalent linear system

$$P^{-1}Ax = P^{-1}b$$

where P is the preconditioning matrix

Requisite for a preconditioner

- cheap to perform $P^{-1}r$.
- better spectral properties of $P^{-1}A$

Preconditioning

ILU Meijerink and van der Vorst, 1977

ILU(tol) Saad, 2003

Multigrid Lahaye, 2001

Elman, Ernst and O' Leary, 2001

AILU Gander and Nataf, 2001

analytic parabolic factorization

ILU-SV Plessix and Mulder, 2003

separation of variables

Preconditioning

Laplace operator $M_0 := \Delta$

Bayliss and Turkel, 1983

Definite Helmholtz $M_1 := \Delta + 1.I$

Laird, 2000

Complex Shifted Laplace $M_{\iota} = \Delta - \iota I$ Y.A. Erlangga et al, 2003

Complex Shifted Laplace preconditioner

$$M(\beta_1, \beta_2) \equiv -\Delta - (\beta_1 - i\beta_2)k^2I, \quad \beta_1, \beta_2 \in \mathbb{R}$$
.

What we gained?

Helmholtz equation with constant k in Ω

Iterative solver: Bi-CGSTAB

Preconditioner: Shifted-Laplace operator

k	ILU(0.01)	M_0	M_1	M_i
5	9	13	13	13
10	25	29	28	22
15	47	114	45	26
20	82	354	85	34
30	139	> 1000	150	52

What we gained? (2)

Wedge problem; k in three layers.

\overline{k}	10	20	40	50	100
grid	32^{2}	64^{2}	128^{2}	192^{2}	384^{2}
No-Prec	201(0.56)	1028(12)	5170(316)	_	_
ILU(A, 0)	55(0.36)	348(9)	1484(131)	2344(498)	_
ILU(A, 1)	26(0.14)	126(4)	577(62)	894(207)	_
ILU(M, 0)	57(0.29)	213(8)	1289(122)	2072(451)	_
ILU(M, 1)	28(0.28)	116(4)	443(48)	763(191)	2021(1875)
MG(V(1,1))	13(0.21)	38(3)	94(28)	115(82)	252(850)

CSL Preconditioning

How exactly CSLP doing with spectrum?

CSL Preconditioning

- Introduces damping; better Multigrid approximation
- Absolute eigenvalues are bounded by 1
- Small eigenvalues rush to zero, as k increases.

Spectrum of $M^{-1}(1, 0.5)A$ for

$$k = 30$$

0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 and

k = 120

CSLP Results

Number of Krylov iterations. Shifts in the preconditioner are (1,0.5)

Grid	k = 10	k = 20	k = 30	k = 40	k = 50	k = 100
n = 32	10	17	28	44	70	14
n = 64	10	17	28	36	45	163
n = 96	10	17	27	35	43	97
n = 128	10	17	27	35	43	85
n = 160	10	17	27	35	43	82
n = 320	10	17	27	35	42	80

Number of iterations highly depend upon k.

Magic Numbers?

Number of Krylov iterations. Shifts in the preconditioner are (1, 0.5)

Grid	k = 10	k = 20	k = 30	k = 40	k = 50	k = 100
n = 32	5/10	8/17	14/28	26/44	42/70	13/14
n = 64	4/10	6/17	8/28	12/36	18/45	173/163
n = 96	3/10	5/17	7/27	9/35	12/43	36/97
n = 128	3/10	4/17	6/27	7/35	9/43	36/85
n = 160	3/10	4/17	5/27	6/35	8/43	25/82
n = 320	3/10	4/17	4/27	5/35	5/42	10/80

with / without deflation.

Magic Explained

That was Deflation Preconditioner.

Deflation

For any deflation subspace matrix

$$Z \in \mathbb{R}^{n \times r}$$
, with deflation vectors $Z = [z_1, ..., z_r], rank Z = r$

$$P = I - AQ$$
, with $Q = ZE^{-1}Z^T$ and $E = Z^TAZ$

Solve PAu = Pb preconditioned by M^{-1} or $M^{-1}PA = M^{-1}Pg$ For e.g. say,

$$spec(A) = \{\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n\}$$

and if Z is the matrix with columns the r eigenvectors then

$$spec(PA) = \{0, ..., 0, \lambda_{r+1}, ... \lambda_n\}$$

Deflation

Multigrid inter-grid transfer operator (Prolongation) as deflation matrix

Setting $Z=I_h^{2h}$ and $Z^T=I_{2h}^h$ then

$$P_{h,2h} = I_h - A_h Q_h$$
, with $Q = I_h^{2h} A_{2h}^{-1} I_{2h}^h$ and $A_{2h} = I_{2h}^h A_h I_h^{2h}$

where

 $P_{h,2h}$ can be interpreted as a coarse grid correction and Q_h as the coarse grid operator

Deflation: Approximate solve A_{2h}^{-1}

0.25

Exact inversion of A_{2h}

In-exact inversion of A_{2h}

Deflation: Shifting Spectrum

Shift term

$$Q_h = I_h^{2h} A_{2h}^{-1} I_h^{2h}$$

Strategy: Solve A_{2h} iteratively to required accuracy on certain levels, and shift the deflated spectrum to λ_h^n by adding shift in deflation preconditioner, call it **ADEF1** preconditioner

$$P_{(h,ADEF1)} = M_h^{-1} P_h + \lambda_h^n Q_h$$

It is theoretically proved that term Q_h shifts the spectrum to λ_h^n

Deflation: Shifting Spectrum

Without Shift Q_{2h}

With Shift Q_{2h}

NEXT: $\lambda_h(B_{h,2h})$ where $B_{h,2h} = P_{(h,ADEF1)}M_h^{-1}A_h$

Deflation: Changing CSLP shifts

Analysis shows that an increase in the imaginary shift does not change the spectrum.

$$(\beta_1, \beta_2) = (1, 0.5)$$

$$(\beta_1, \beta_2) = (1, 1)$$

Number of Krylov iterations with/without deflation to solve a Wedge problem. Shifts in the preconditioner are (1,0.5)

Grid	freq = 10	freq = 20	freq = 30	freq = 40	freq = 50
74×124	7/33	20/60	79/95	267/156	490/292
148×248	5/33	9/57	17/83	42/112	105/144
232×386	5/33	7/57	10/81	25/108	18/129
300×500	4/33	6/57	8/81	12/105	18/129
374×624	4/33	5/57	7/80	9/104	13/128

Adapted Marmousi Problem

Reduced velocity contrast: $2587 \le c(x,y) \le 3325$

Adapted geomegry convenient for geometric vectors.

Mamousi Problem: Solve time and iterations; discretization 20 gp/wl

Frequency f	Solve Time		Iterations	
	CSLP DEF		CSLP	DEF
f=1	1.23	5.08	13	7
f = 10	40.01	21.83	106	8
f = 20	280.08	131.30	177	12
f = 40	20232.6	3997.7	340	21

Three Dimensional Helmholtz on unit cube domain with sommerfeld boundary conditions on all faces. Grid size h is such that $kh \approx 0.3125$

Wave number	Solve Time		Iterations	
k	CSLP	DEF	CSLP	DEF
5	0.04	0.32	7	8
10	0.48	2.32	9	9
20	8.14	17.28	20	9
40	228.29	155.52	70	10
60	1079.99	607.45	97	11

Solve time per grid points . 10gp/wl

20gp/wl

Three Dimensional Layered Helmholtz on unit cube domain with sommerfeld boundary conditions on all faces. Grid size h is such that $kh \approx 0.625$

Wave number k	Solve Time		Iterations	
	CSLP	DEF	CSLP	DEF
5	0.09	0.24	9	11
10	1.07	1.94	15	12
20	16.70	18.89	32	16
30	73.82	78.04	43	21
40	1304.2	214.7	331	24
60	_	989.5	500+	34

Conclusions

- Parameter independent scheme
- Flexibility to increase imaginary shift, when deflation is combined with CSLP.
- Near null space modes appear, require testing
- Works with FEM too. (no results here in)

Thank you for your attention!

Please visit http://ahsheikh.github.io