Problem Set 11

Economemtrics

1a.

```
library(AER)
## Loading required package: car
## Loading required package: carData
## Loading required package: lmtest
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: sandwich
## Loading required package: survival
data("Affairs")
Affairs$regular <- ifelse(Affairs$affairs == 12, 1, 0)
Affairs$female <- ifelse(Affairs$gender == "female", 1, 0)
Affairs$religious <- ifelse(Affairs$religiousness > 2, 1, 0)
head(Affairs)
```

```
affairs gender age yearsmarried children religiousness education occupation
##
## 4
                male 37
                                 10.00
                                                              3
                                                                       18
                                              no
## 5
                                  4.00
                                                              4
            0 female 27
                                                                       14
                                              no
## 11
            0 female 32
                                 15.00
                                             yes
                                                              1
                                                                       12
## 16
            0
                male 57
                                 15.00
                                                              5
                                                                       18
                                             yes
## 23
            0
                male 22
                                  0.75
                                                              2
                                                                       17
                                              no
## 29
            0 female 32
                                   1.50
                                                              2
                                                                       17
                                              no
##
      rating regular female religious
           4
                   0
                           0
## 4
## 5
           4
                    0
                           1
                                      1
## 11
           4
                    0
                           1
                                      0
## 16
           5
                    0
                           0
                                      1
## 23
           3
                    0
                           0
                                      0
## 29
           5
                    0
                           1
                                      0
model <- glm(</pre>
    regular ~ education + yearsmarried + age + children + female + religious,
    data = Affairs, family = binomial(link = "logit")
)
model summary <- summary(model)</pre>
print(model summary)
##
## Call:
## glm(formula = regular ~ education + yearsmarried + age + children +
##
       female + religious, family = binomial(link = "logit"), data = Affairs)
##
## Deviance Residuals:
                       Median
##
       Min
                  10
                                     30
                                             Max
## -0.9898 -0.3928 -0.2806 -0.1961
                                          3.0559
```

7

6

1

6

6

5

```
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
                0.40522
                           1.52063
                                    0.266 0.789868
## (Intercept)
## education
               -0.15178
                           0.07286 -2.083 0.037237 *
                           0.05863 3.862 0.000113 ***
## yearsmarried 0.22642
## age
                -0.05121
                           0.02957 -1.732 0.083261 .
## childrenyes -0.49653
                           0.53300 -0.932 0.351554
## female
                           0.38746 -1.101 0.271057
               -0.42646
                           0.35903 -2.632 0.008481 **
## religious
               -0.94506
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 283.38 on 600 degrees of freedom
## Residual deviance: 255.83 on 594 degrees of freedom
## AIC: 269.83
##
## Number of Fisher Scoring iterations: 6
1b.
p_values <- model_summary$coefficients[</pre>
    c("female", "religious", "childrenyes"), "Pr(>|z|)"
]
significant <- p values < 0.05
print(significant)
##
        female
                religious childrenyes
##
         FALSE
                      TRUE
                                FALSE
```

1c.

```
library(margins)

marginal_effects <- margins(model, variables = c("education", "yearsmarried"))
summary(marginal_effects)

## factor AME SE z p lower upper
## education -0.0085 0.0041 -2.0487 0.0405 -0.0166 -0.0004
## yearsmarried 0.0127 0.0035 3.6236 0.0003 0.0058 0.0195</pre>
```

Both education and yearsmarried seem to have a significant effect on the probability of having a regular affair. More education seems to have a negative effect while yearsmarried seems to have a positive effect.

2a.

```
simualte <- function(n) {
    x <- rnorm(n)
    u <- rnorm(n)
    y <- ifelse(1 + x + u > 0, 1, 0)
    return(data.frame(x, y))
}

ame_df <- data.frame(ols = numeric(), probit = numeric())

for (i in 1:1000) {
    data <- simualte(1000)
    ols <- lm(y ~ x, data = data)
    probit <- glm(y ~ x, data = data, family = binomial(link = "probit"))
    ame_df[i, "ols"] <- summary(ols)$coefficients[2, "Estimate"]
    ame_df[i, "probit"] <- summary(margins(probit))$AME
}</pre>
```

```
ols_average <- mean(ame_df$ols, na.rm = TRUE)
probit_average <- mean(ame_df$probit, na.rm = TRUE)

print(paste("Average OLS AME: ", ols_average))

## [1] "Average OLS AME: 0.219811951418305"

print(paste("Average Probit AME: ", probit_average))

## [1] "Average Probit AME: 0.219733143855364"

hist(ame_df$ols, main = "Histogram of OLS AMEs", xlab = "AME")</pre>
```

Histogram of OLS AMEs

hist(ame_df\$probit, main = "Histogram of Probit AMEs", xlab = "AME")

Histogram of Probit AMEs

LPM and AMEs look to be similar. In terms of their distributions, they both look similar as well.

2b.

```
simualte <- function(n) {
    x <- rchisq(n, df = 1)
    u <- rnorm(n)
    y <- ifelse(1 + x + u > 0, 1, 0)
    return(data.frame(x, y))
}
ame_df <- data.frame(ols = numeric(), probit = numeric())
options(warn = -1)</pre>
```

```
for (i in 1:1000) {
    data <- simualte(1000)
    ols <- lm(y ~ x, data = data)
    probit <- glm(y ~ x, data = data, family = binomial(link = "probit"))
    ame_df[i, "ols"] <- summary(ols)$coefficients[2, "Estimate"]
    ame_df[i, "probit"] <- summary(margins(probit))$AME
}

ols_average <- mean(ame_df$ols, na.rm = TRUE)
probit_average <- mean(ame_df$probit, na.rm = TRUE)

print(paste("Average OLS AME: ", ols_average))

## [1] "Average OLS AME: 0.0298830165933"

print(paste("Average Probit AME: ", probit_average))</pre>
```

[1] "Average Probit AME: 0.128152611166883"

The estimated AMEs from probit and LPM are very different in this case.

2c.

The LPM looks to be able to reliably approximate the true AMEs when data is generated from the probit model. This is likely because the LPM is a linear approximation of the probit model.