NONE SHALL PASS REDES NEURONALES CON KERAS

Juan Pedro Fisanotti

OBJETIVO DE LA CHARLA:

- Aprender a utilizar Keras para construir y entrenar una NN básica.
- Verlo todo aplicado a un ejemplo.

REDES NEURONALES

QUÉ SON?

- Un tipo de modelo de machine learning
- O sea que aprenden a partir de datos
- Generalmente aprendizaje supervizado: a partir de ejemplos de entradas y salidas
- Regresión o clasificación

APRENDIZAJE SUPERVISADO

nuevas
entradas
$$\rightarrow$$
 f(x) = 2*x + 3 \rightarrow

nuevas salidas

MAGIA

AHORA SÍ, REDES NEURONALES

UNA NEURONA

$$f(x1,x2,x3) = Act(p1*x1+p2*x2+p3*x3+p4)$$

UNA RED DE NEURONAS

QUÉ COSAS TENGO QUE DECIDIR?

Cuántas capas? Cuántas neuronas en cada capa? Cómo son las conexiones entre capas?

Arquitectura.

Y ALGUNOS CONSEJOS MÁS

- Normalizar las entradas.
- Como siempre, entrenar y testear con sets separados.
- Probar cambios de a una cosa a la vez.

ALGUNAS COSAS EXTRAS ÚTILES

DROPOUT

Capa que "apaga" conexiónes de forma aleatoria.

Para evitar que partes de la red se "memoricen" resultados que tienen que dar para determinados inputs.

REGULARIZACIÓN DE PESOS

Castigar los pesos muy grandes.

Para evitar que cosas únicas muy específicas de algunos ejemplos sean determinantes del resultado (otra forma de "memorizar").

DATA AUGMENTATION

Inventar datos a partir de los pocos datos que tenemos (generalmente: modificaciones random a imágenes)

Para evitar sobreentrenamiento, y también para lidiar con poca data.

CONVOLUCIONES

Es una forma distinta de armar las conexiones.

Para aprovechar mejor el hecho de que las imágenes son datos en 2D.

KERAS

- Biblioteca para armar y entrenar redes neuronales en python.
- Banda de cosas ya resueltas.
- Corre sobre **TensorFlow** (default) o Theano.
- Soporte para correr en GPU.

STACK

```
keras
tensor flow
cuda + cudnn
cpu
         gpu
```

DEMO

?

Slides: https://github.com/fisadev/talks/tree/master/keras-neural-networks-2

Instalación de dependencias: http://blog.fisadev.com/posts/using-keras-and-tensorflow-with-nvidia-gpus-under-ubuntu/)
tensorflow-with-nvidia-gpus-under-ubuntu/)

Keras: http://keras.io/ (http://keras.io/)

Taggeador de espadas: https://github.com/fisadev/manuscriptminiatures-tagger)

Yo: @fisadev en twitter, gmail y github.