Дата:22.03.2022 Клас: 9-А,Б

Тема уроку. Площа круга та його частин.

Нагадаємо, що кругом називається частина площини, обмежена колом.

Круг обмежений колом. Його не можна розбити на многокутники і обчислити площу як суму многокутників. Дамо означення площі круга таким чином.

Площею круга називається величина, до якої наближається площа вписаного в це коло правильного многокутника за умови, що число його сторін необмежено збільшується.

$$S_{\text{KP}} = \pi R^2$$
.

Формула дозволяє знаходити площу круга за його радіусом, а також знаходити радіус круга за відомою площею круга.

Знаходження кругового сектора

Користуючись формулою площі круга, можна вивести формули для знаходження площі частин круга, зокрема кругового сектора і кругового сегмента.

Рис. 99

Круговим сектором називається частина круга, яка лежить усередині центрального кута (рис. 100).

Спираючись на формулу площі круга, виведемо формулу для площі сектора, кутова величина дуги якого дорівнює n° (рис. 101).

Рис. 100

Рис, 101

Площа сектора, кутова величина дуги якого дорівнює 1° , дорівнює $\frac{\pi R^2}{360}$, а

площа сектора, кутова величина дуги якого n° , дорівнює $\frac{\pi R^2 n}{360}$, тобто

$$S_{\text{cek}} = \frac{\pi R^2 n}{360}.$$

Знаходження кругового сегмента

Круговим сегментом називається спільна частина круга і пів-площини (рис. 102).

Рис. 102

Рис. 103

Площа сегмента, який дорівнює півкругу, дорівнює $\frac{\pi R^2}{2}$. Площа сегмента,

який не дорівнює півкругу, обчислюється за формулою $S_{\text{сегм}} = \frac{\pi R^2}{360} \cdot \alpha \pm S_{\Delta}$, де α

— градусна міра центрального кута, який містить дугу кругового сегмента, а S_{Δ} — площа трикутника з вершинами в центрі круга і на кінцях радіусів, які обмежують даний сектор (рис. 102 і 103). Знак «+» треба брати, якщо $\alpha > 180^{\circ}$, а знак «-» — якщо $\alpha < 180^{\circ}$.

Розв'язування задач

1. Дано коло радіуса R. Знайдіть площу сектора, що відповідає дузі довжиною l.

Розв'язання

Оскільки за умовою задачі довжина дуги AB (рис. 104) дорівнює l, то $l=\frac{\pi Rn}{180}$, звідси $n=\frac{180l}{\pi R}$.

Тоді площа сектора
$$S_{\text{сек}} = \frac{\pi R^2 n}{360} = \frac{\pi R^2 \cdot 108l}{360 \cdot \pi R} = \frac{Rl}{2}$$
.

 $Bi\partial noвiдь.$ $\frac{Rl}{2}$.

- 2. Радіус круга дорівнює R. Знайдіть площу тієї частини круга, яка розміщена поза вписаним у нього:
 - а) правильним трикутником (рис. 105, а);
 - б) правильним шестикутником (рис. 105, б).

Рис. 104

а

Рис. 105

Розв'язання

а)
$$S_{\kappa p} = \pi R^2$$
 (рис. 106).

$$S_{\Delta ABC} = 3S_{\Delta AOB} = 3 \cdot \frac{1}{2} R^2 \sin 120^\circ = 3 \cdot \frac{1}{2} R^2 \sin 60^\circ = \frac{3}{2} R^2 \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{4} R^2.$$

$$S_{
m \phi irypm} = S_{
m \kappa p} - S_{
m \Delta ABC} = \pi R^2 - \ rac{3\sqrt{3}}{4} \, R^2 = R^2 \left(\pi - rac{3\sqrt{3}}{4}
ight).$$

Biдnовідь. $\left(\pi - \frac{3\sqrt{3}}{4}\right)R^2$.

б) $S_{\kappa p} = \pi R^2$ (рис. 107).

Рис. 106

Рис. 107

$$S_{\text{IIIECT}} = 6 \cdot S_{\Delta AOB} = 6 \cdot \frac{R^2 \sqrt{3}}{4} = \frac{3\sqrt{3}}{2} R.$$

$$S_{
m \phi irypu} = S_{
m \kappa p} - \ S_{
m mecr} = \pi R^2 - \ rac{3\sqrt{3}}{2} \ R^2 = R^2 igg(\pi - rac{3\sqrt{3}}{2} igg).$$

$$Biдnoвiдь.$$
 $\left(\pi - \frac{3\sqrt{3}}{2}\right)R^2.$

V. Домашнє завдання

№ 799(1,3), 801, 807, 811 (1;4)

799. Знайдіть площу круга, радіус якого дорівнює:

- 1) 4 дм; 2) 7 см; 3) $\frac{1}{3}$ см;
- 4) 0,8 м.

801. Знайдіть площу круга, діаметр якого дорівнює:

- 1) 12 дм; 2) 1,6 дм.

807. Площа круга дорівнює 121π см². Знайдіть радіус круга.

811. Знайдіть площу сектора круга радіуса 6 см, якщо відповідний йому центральний кут дорівнює:

- 1) 18°;
- 2) 75°;
- 3) 150°:
- 4) 240°.