# Quicksort

Julián García

## Sorting

#### Input:

A sequence of *n* elements

$$\langle a_1, a_2, ..., a_n \rangle$$



#### Output:

A permutation of the input sequence

$$\langle a_1', a_2', ..., a_n' \rangle$$

do it efficiently.

such that 
$$a_1' \leq a_2' \leq \ldots \leq a_n'$$

### Quicksort

- Divide and conquer algorithm.
- Recursive
- Sorts in place (no extra arrays!).
- Popular: Top-10 algorithms 20th century (SIAM).

## Quicksort strategy

<u>Input:</u> A: \_\_\_\_\_\_ m

Conquer: Recursively solve two smaller problems.



Combine: In-place! so we are done.



QUICKSORT
$$(A, p, r)$$
 [s it non-trivial?]

1 if  $p < r$ 

2  $q = \text{PARTITION}(A, p, r)$   $\Rightarrow$  A:  $extit{A} = extit{A} = exti$ 

partition really does all the work!

## Partition(A, p, r)





```
Partition(A, p, r)
 1 x = A[p] -----
 2 \quad i = p - 1 \longrightarrow
 3 \quad j = r + 1 \longleftarrow
 4 while TRUE
 5
         repeat
 6
            j = j - 1
         until A[j] \leq x
                                    A:
 8
         repeat
 9
            i = i + 1
         until A[j] \ge x
10
         if i < j
11
              exchange A[i] with A[j]
12
         else return j ..... A:
                                                \leq x
13
```

## Key points

- Several ways to do the partition (check lecture handout, experiment)
- Number of comparisons depends on the choice of the pivot, i.e., data.
  - Best case: we partition in halves all along
  - Worst case: ordered list (partition sizes: I, n-I)
- The best case is to be expected.
   On average quicksort is very efficient.

## Summing up

- Divide and conquer
  - <u>Divide</u>: Partition in-place
  - Conquer: Order each partition recursively
- Partition algorithms <u>vary</u>, and affect the process dramatically
- Efficient on average

# Thank you.

More info: lecture handout

#### Literature:

- Leiserson, Charles E., Ronald L. Rivest, and Clifford Stein.
   Introduction to algorithms. Edited by Thomas H. Cormen.
   The MIT press, 2001.
- Sedgewick, Robert. and Wayne, Kevin. *Algorithms*. Pearson Education, 2011.

garcia@evolbio.mpg.de

http://garciajulian.com