

For the non-homogeneous system Ax = b, we want to show that $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$ is always consistent.

Proof:

Assume that AE Matrix mxn, x ∈ Matrix nx1,

⇒ ATE Matrix nxm, ATA ∈ Matrix nxn.

 \Rightarrow Col(ATA) = $\{A^TA \cdot \times, \text{ for an } x \in IR^n\}$. col(AT) = { AT b, for all b \in IRM }.

Hence, we want to show $A^TAx = A^Tb$ is always consistent.

 $\Leftrightarrow col(A^TA) = col(A^T).$

 \iff $Col(A^TA) \subseteq Col(A^T)$, and $dim(Col(A^TA)) = dim(Col(A^T))$. Part II PartI

Part I:

for any $x \in \mathbb{R}^n$, $A^T A x = A^T (A x) \in \infty (A^T)$,

⇒ col(ATA) 드 col(AT).

 $Part II : Claim I : Null(A) = Null(A^TA)$

proof of claim 1:

PICK RE NULL (A),

 $\Rightarrow Ax = 0$

 $\Rightarrow A^{T}Ax = A^{T}O = O$

⇒ XE Null (ATA)

> Null(A) = Null(ATA)

(2) PICK y & NUW(ATA),

 $\Rightarrow A^T A y = 0$

> y TATAy = y To = 0

 \Rightarrow $(Ay)^{\mathsf{T}}$. Ay = 0

$$\Rightarrow Ay = 0$$

So,
$$Null(A) = Null(A^TA)$$
.

Hence,
$$nullity(A) = nullity(A^TA)$$
.

Since nullity (A) +
$$dim(col(A)) = n$$
,

$$\Rightarrow$$
 dim(col(A)) = n-nullity(A).

and nullity
$$(A^TA) + dim((ollA^TA)) = n$$
,

$$\Rightarrow$$
 dim(col(ATA)) = n - nullity(ATA).

$$\Rightarrow$$
 dim(col(A)) = dim(col(A⁷A))

Lastly,
$$dim(col(A)) = dim(row(A^T)) = dim(col(A^T))$$

Hence, $\dim(\operatorname{Col}(A^T)) = \dim(\operatorname{Col}(A^TA))$.