Energia interna ed Entalpia

Energia

- L'energia è la misura di di un sistema fisico (un oggetto) di compiere lavoro.
- Il lavoro è lo scambio di energia relativo ad uno spostamento risultante da una forza.
- LI calore è l'energia relativa al moto microscopico delle molecole.

Energia

- Stabilire il contenuto assoluto di energia è molto difficile.
 Parleremo sempre di scambi di energia ovvero di energia che passa da un sistema ad un altro: ΔE.
- L'energia si conserva (non si crea, non si distrugge), può essere solo scambiata.
- L'energia in chimica si misura in Joule 1 J = 1 Kg m²s⁻², in KJ=1000 J, in Kcal
- 1Kcal è il calore che serve per scaldare di 1 grado un Kg di acqua. 1Kcal=4186J.
- Spesso si usano le energie molari: KJ/mole, Kcal/mole.

Calore e Lavoro

- Calore e lavoro sono fra le forme più comuni di energia.
- Il calore è l'energia relativa al moto microscopico delle molecole. Il calore può essere scambiato.
- Il lavoro è lo scambio di energia relativo ad uno spostamento risultante da una forza.

Sistema ed Ambiente

- Il sistema è l'oggetto del nostro esperimento. Su cui concentriamo la nostra attenzione e di cui cerchiamo di conoscere il più possibile.
- L'ambiente è quello che circonda il sistema: per esempio il laboratorio o un bagno di acqua termostatato. Ci interessa solo relativamente ai suoi scambi di energia col sistema.

AMBIENTE

SISTEMA

Tipi di sistema

- Isolato: non scambia materia, non scambia energia.
- Chiuso: Scambia energia ma non materia.
- Aperto: Scambia sia materia che energia.

Segni di calore e lavoro

Energia interna ed Entalpia

- La variazione di energia interna può essere definita come il calore scambiato a volume costante: ΔE=Q_V.
- La variazione di entalpia può essere definita come il calore scambiato a pressione costante: ΔH=Q_P.
- Entalpia ed Energia interna sono funzioni di stato.
- Le funzioni di stato sono molto più facili da calcolare perché dipendono solo dai punti iniziali e finali della trasformazione.
- Calore e lavoro non sono funzioni di stato: dobbiamo conoscere tutto il percorso della trasformazione.

Capacità termica dei gas

- Si definisce capacità termica la quantità di calore necessaria per aumentare di un grado la temperatura di un certo sistema.
- Normalmente si usa la capacità termica molare, misurata in J/mole o Kcal/mole.
- Nella teoria cinetica dei gas abbiamo visto che il calore corrisponde all'energia cinetica del gas:
 - Ecin=3/2nRT
- Passando da una temperatura a un altra ΔE_{cin}=3/2nRΔT
- Possiamo definire la capacità termica come C=ΔE_{cin}/ΔT
- In realtà questo è vero solo per gas ideali monoatomici.

Capacità termica dei gas

- Un gas monoatomico come He, Ar può solo traslare nello spazio.
- Un gas poliatomico può traslare e ruotare.
- Ad ogni grado di libertà della molecola corrisponde una capacità termica molare di 1/2RT.
- Questo si chiama principio di equipartizione
 dell'energia. L'Energia termica è la forma di energia più
 disordinata e si ripartisce in modo uguale fra tutti i gradi di
 libertà.

Gradi di libertà

- Un gas monoatomico si può muovere nelle tre direzioni dello spazio: x, y, z. Possiede tre gradi di libertà. C=3/2R
- Un gas poliatomico non lineare può anche ruotare attorno a tre assi: Possiede sei gradi di libertà. C=6/2R=3R.
- Un gas poliatomico lineare può ruotare attorno a solo due assi: Possiede cinque gradi di libertà. C=5/2R.

Entalpia ed Energia interna nel caso dei gas ideali.

- Consideriamo un sistema chiuso, costituito da un gas ideale in cui non avvengano reazioni chimiche (per esempio un contenitore che contenga He).
- Il solo lavoro che può compiere questo sistema è il lavoro espansivo: espandendosi compie lavoro sull'ambiente.

Entalpia ed Energia interna nel caso dei gas ideali.

- A volume costante la parete superiore è bloccata: il lavoro espansivo vale zero:
 - W=0
 - ΔE=Q-W
 - Quindi ΔE=Q_V
 - Per un gas ideale ΔE=nCΔT
- Scaldare He richiede meno energia che scaldare H₂ che richiede meno energia che scaldare H₂O.
- A volume costante aumentare la temperatura vuol dire aumentare la pressione e viceversa.

Entalpia ed Energia interna nel caso dei gas ideali.

- A pressione costante aumentare la temperatura vuol dire aumentare lil volume e viceversa.
- Per rimanere a pressione costante dobbiamo sbloccare la parete mobile.

• La pressione è data da una forza su una superficie: la forza è la forza peso del peso sulla parete più il peso della parete stessa, più tutta la colonna d'aria sulla verticale (pressione atmosferica). Questa forza è pari alla massa di tutti questi oggetti per l'accelerazione di gravità F=mg

• Se il recipiente che qui vediamo in sezione è cilindrico:

• $P=F/S=mg/S=mg/(\pi r^2)$.

• La variazione di volume è $\Delta V = \Delta a^*S = \Delta a^*\pi r^2$

- II lavoro espansivo vale PΔV W=PΔV=mg/(πr²)*Δa*πr²=mgΔa.
 - L'ambiente acquista energia potenziale perché sollevo la parete, il peso e la colonna d'aria: E=mgΔa. Conservo l'energia!

Entalpia come calore a volume costante

- ΔE=Q_P-PΔV. Il segno "-" perché ΔE=Q-W.
- $\Delta H = Q_P = \Delta E + P\Delta V$
- Se scaldo di ΔT a pressione costante ho:
- ΔH=nCΔT+PΔV ma PΔV=nRΔT allora
 - $\Delta H = nC\Delta T + nR\Delta T = n(C + R)\Delta T$.
- Scaldare a pressione costante richiede più energia che a volume costante perché devo obbligatoriamente compiere un lavoro espansivo.

ΔΗ e ΔΕ

- ΔE=nCΔT=nC_VΔT
- $\Delta H = n(C + R)\Delta T = nC_P\Delta T$
- $C_P = C_V + R$
- Queste formule valgono solo per i gas ideali.
- In generale ΔE dipende anche dalla variazione di volume e ΔH dipende anche dalla variazione di pressione.
- Ma dato che scaldando un qualunque sistema esso si espande abbiamo sempre C_p>C_v.

Tipo di gas	C_{v}	C_p
Monoatomico	3/2R	5/2R
Poliatomico lineare	5/2R	7/2R
Poliatomico non lineare	3R	4R

come misurare l'entalpia?

- Per misurare l'entalpia di una reazione questa deve avvenire con completezza ovvero si devono consumare tutti i reagenti.
- Deve essere univoca, ovvero deve avvenire solo quella reazione ma non altre in concorrenza.
- Ci occuperemo brevemente delle entalpie delle reazioni organiche.
- Le reazioni più facili da far avvenire sono quelle di combustione.

reazioni di combustione

- Un composto organico contenente solo C, H, O reagisce con O₂ per dare CO₂ ed H₂O
- metano: $CH_{4(g)} + 2 O_{2(g)} -> CO_{2(g)} + 2 H_2O_{(g)}$
- glucosio: $C_6H_{12}O_{6(s)} + 6 O_{2(g)} -> 6 CO_{2(g)} + 6 H_2O_{(g)}$
- genericamente:

 $C_nH_mO_{k(s)}+(n+m/4-k/2)O_{2(g)} -> nCO_{2(g)} + m/2 H_2O_{(g)}$

la bomba di Mahler

- È lo strumento usato comunemente in laboratorio per misurare le entalpie di combustione.
- Consiste della bomba propriamente detta e di un calorimetro.
- 1. agitatore meccanico.
- 2. bomba di Mahler.
- 3. parete isolante.
- 4. recipiente per l'acqua.
- 5. termometro.
- 6. contatti per l'innesco.
- 7. coperchio.

la Bomba di Mahler

- Si pesa una certa quantità di sostanza (solida ed essiccata).
- si fa passare un filo metallico.
- si appoggia sull'anellino.
- si collega il filo ai contatti
- si chiude
- si carica ossigeno a 20 atm (eccesso per completezza).

la Bomba di Mahler

- Si mette la bomba nel calorimetro.
- si collegano i contatti.
- si chiude.
- si lascia stabilizzare la temperatura.
- si fa partire la combustione premendo il pulsante di innesco.
- si osserva la variazione di temperatura.

la bomba di Mahler.

la bomba di Mahler.

 Usando una sostanza standard 1 per cui é nota l'entalpia di combustione si misura la capacità termica del calorimetro:

$$C\Delta T_1 = n_1 Q_{1comb}$$

 Misurando il ΔT₂ della sostanza 2 si risale alla sua entalpia di combustione:

$$C\Delta T_2 = n_2 \mathbf{Q_{2comb}}$$

Attenzione!!!!

- La Bomba é un recipiente rigido. Siamo in condizioni di volume costante. Misuriamo un ΔΕ!!!!!!!!
- $\Delta H = \Delta E + P \Delta V = \Delta E + \Delta n R T$
- Δn é la variazione di numero di molecole di gas fra reagenti e prodotti:

$$C_6H_{12}O_{6(s)} + 6 O_{2(g)} -> 6 CO_{2(g)} + 6 H_2O_{(g)}$$

• $\Delta n = 6 + 6 - 6 = 6$.

le calorie degli alimenti

- Sono misurate con questo sistema.
- Il nostro metabolismo genera energia usando l'ossigeno per "bruciare"gli alimenti a CO₂ ed H₂O.
- La reazione di trasformazione in vivo avviene in molti stadi e senza fiamme... (ed a pressione ambiente).

capacità termica di liquidi e solidi (C_P~C_V)

- I liquidi sono sistemi complessi. Non esistono modelli semplici.
 Dobbiamo misurare le capacità termiche molari.
- Esempio: H₂O: 1cal g⁻¹ K⁻¹ =

18 cal mole-1 K-1=

75.4 J mole-1 K-1.

- Metanolo: 81.0 J mole-1 K-1.
- Etanolo: 112.0 J mole-1 K-1.
- Propanolo: 144.0 J mole-1 K-1.

la legge di Dulong e Petit

- Vale per i solidi cristallini.
- Esempio: sali (NaCl, etc...) ma anche metalli o altri materiali regolari.
- Non vale per i solidi amorfi (vetro) che sono, da questo punto di vista più simili ai liquidi.
- Per un solido C_p~C_v=C. Un solido si espande poco. La differenza fra pressione costante e volume costante é meno importante. Si parla, genericamente, di capacità termica molare.
- C~3R.
- Una molecola (od uno ione) in reticolo cristallino presenta 6 gradi di libertà vibrazionali.

la legge di Dulong e Petit C~3R

- Per esempio: il cristallo di NaCl.
- Ogni ione ha 6 primi vicini ovvero sei ioni che gli stanno accanto nel reticolo.
- In questa struttura molto rigida gli unici gradi di libertà sono vibrazionali ovvero gli ioni oscillano intorno alla posizione di equilibrio.
- È come se ogni coppia di vicini fosse collegata da una molla.
- Ho sei molle per ogni ione/molecola ovvero sei gradi di libertà.

reazioni termochimiche

- Una reazione termochimica é una reazione in cui una molecola cambia di stato:
- $H2O_{(I)}->H2O_{(g)}$
- Troviamo tabulate le entalpie di fusione ed evaporazione o di sublimazione.

Elementi

ΔH_f (reagenti)

 ΔH_f (prodotti)

reagenti

 $\Delta H_{R->P}$

prodotti

Entalpia di reazione

- Ogni reazione chimica produce calore o richiede calore. Dato che la maggior parte delle reazioni chimiche avviene a pressione costante in genere si parla di entalpia di reazione ΔH_{R->P}.
- Se ΔH_{R->P}<0 la reazione produce calore ovvero riscalda l'ambiente e si dice esotermica.
- Se ΔH_{R->P}>0 la reazione richiede caloredall'ambiente e si dice endotermica.

•

Entalpia di reazione

- Non esistono equazioni semplici per calcolare il ΔH di reazione.
- Per la reazione inversa vale $\Delta H_{R->P}=-\Delta H_{P->R}$.
- Nella pratica sono tabulate le entalpie di classi particolari di reazioni.

•

esempio

1. Calculate ΔH for the reaction $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$, from the following data.

$$C_2H_4(g) + 3 O_2(g) \rightarrow 2 CO_2(g) + 2 H_2O(1)$$

$$\Delta H = -1411$$
. kJ/mole

$$C_2H_6(g) + 7/2 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(l)$$

$$\Delta H = -1560$$
. kJ/mole

$$H_2(g) + 1/2 O_2(g) \rightarrow H_2O(1)$$

 $\Delta H = -285.8 \text{ kJ/mole}$

passo 0: controllare che siano bilanciate e gli stati di aggregazione. Numerare le reazioni.

$$C_2H_4(g) + 3 O_2(g) \rightarrow 2 CO_2(g) + 2 H_2O(1)$$

$$C_2H_6(g) + 7/2 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(1)$$

$$H_2(g) + 1/2 O_2(g) \rightarrow H_2O(1)$$

$$\begin{array}{c} 1 \\ \end{array} \Delta H = -1411. \text{ kJ/mole} \end{array}$$

$$\Delta H = -1560$$
. kJ/mole

$$\Delta H = -285.8 \text{ kJ/mole}$$

passo 1: individuare prodotti e reagenti della reazione finale

$$C_2H_4(g) + 3 O_2(g) \rightarrow 2 CO_2(g) + 2 H_2O(l)$$

$$C_2H_6(g) + 7/2 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(l)$$

$$D_2H_6(g) + 1/2 O_2(g) \rightarrow H_2O(l)$$

$$D_3H = -1411. \text{ kJ/mole}$$

$$D_4H = -1560. \text{ kJ/mole}$$

$$D_4H = -285.8 \text{ kJ/mole}$$

- Osservazioni:
 - 1. Abbiamo le reazioni di combustione di tutti i prodotti e reagenti.
 - 2. Dobbiamo eliminare O₂, CO₂ ed H₂O.

passo 2: determinare i coefficienti delle varie reazioni.

$$+1$$
 $C_2H_4(g)+3 O_2(g) \rightarrow 2 CO_2(g)+2 H_2O(1)$

$$\left(\begin{array}{c}1\end{array}\right)\Delta H=-1411.\ kJ/mole$$

$$-1$$
 $(C_2H_6(g)) + 7/2 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(l)$

$$\Delta H = -1560$$
. kJ/mole

+1
$$(H_2(g))+1/2 O_2(g) \rightarrow H_2O(1)$$

$$3 \Delta H = -285.8 \text{ kJ/mole}$$

$$\Delta H = \Delta H_1 - \Delta H_2 + \Delta H_3 = -1411 - (-1560) + (-285.8) = -1411 + 1560 - 285.8 = -136.9 \text{ KJ/mole}$$

passo 3: controllare i coefficienti stechiometrici.

+1
$$C_2H_4(g)+3 O_2(g) \rightarrow 2 CO_2(g)+2 H_2O(1)$$

$$\begin{pmatrix} 1 \end{pmatrix} \Delta H = -1411. \text{ kJ/mole}$$

$$-1$$
 $C_2H_6(g)+7/2O_2(g) \rightarrow 2CO_2(g)+3H_2O(l)$

$$\Delta H = -1560$$
. kJ/mole

+1
$$(H_2(g))+1/2 O_2(g) \rightarrow H_2O(1)$$

$$(3) \Delta H = -285.8 \text{ kJ/mole}$$

- $O_2(g)$: 3-7/2+1/2=(6-7+1)/2=0.
- $CO_2(g)$: 2-2=0.
- $H_2O(I)=2-3+1=0$.

equazione di Kirkchoff

- La capacità termica a pressione costante é la derivata dell'entapia rispetto alla temperatura.
- Se C_p~costante (vero per piccoli intervalli di temperatura) allora

$$\Delta H(T_2) = \Delta H(T_1) + \Delta Cp (T_2-T_1)$$

 ΔC_p é la differenza di capacità termica fra prodotti e reagenti.

equazione di Kirkchoff come ciclo termodinamico

Esempio 1

Esempio 2