Chapter 1

Linear Regression with One Predictor Variable

Outline

- Relations between Variables
- Concepts in Regression Models
 - random error, residuals, fitted value,
- Simple Linear Regression Model with Distribution of Error Terms Unspecified
 - Least square estimators (LSEs)
 - Properties of LSEs
- Normal Error Regression Model
 - Maximum likelihood estimators (MLEs)
 - Properties of MLEs

1.1 Relations between Variables

- Functional Relation between Two Variables
 - $\bullet \ \ Y = f(X)$
- Statistical Relation between Two Variables
 - $Y = f(X) + \varepsilon$

FIGURE 1.3 Curvilinear Statistical Relation between Age and Steroid Level in Healthy Females Aged 8 to 25.

1.2 Regression Models and Their Uses

Historical Origins

- First developed by Sir Francis Galton in the 19th century.
- The relation between heights of parents and children.

Sir Francis Galton's study in 1877

Basic concepts

- There is a probability distribution of *Y* for each level of *X*.
- The means of these probability distributions vary in some fashion with *X*.
- e.g. $Y \sim N(\alpha + \beta X, \sigma^2)$ $\Leftrightarrow Y = \alpha + \beta X + \varepsilon,$ $\varepsilon \sim N(0, \sigma^2)$

Goals of Regression Analysis

- ullet Regression model describes an association between X and Y
 - model a statistical relationship between an "predictor variable" (input, independent variable, etc.) and a "response variable" (output, dependent variable, etc.)
- Two distinct goals
 - (Estimation) Understanding the relationship between predictor variables and response variables
 - (Prediction) Predicting the future response given the new observed predictors.

Use of regression analysis

- Description
- Control
- Prediction

- Always need to consider scope of the model.
- Statistical relationship generally does **not** imply **causality.**

1.3 Simple Linear Regression Model with Distribution of Error Terms Unspecified

Model - Error Distribution Unspecified

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, i=1,2,...n$$
 (1.1)

- Y_i : value of the response variable in the i-th trial
- X_i : a fixed known constant, the value of the predictor variable in the i-th trial
- \mathcal{E}_i : a random error term with $E(\mathcal{E}_i) = 0$, $var(\mathcal{E}_i) = \sigma^2$, \mathcal{E}_i and \mathcal{E}_i are uncorrelated.
- β_0 , β_1 , and σ^2 are unknown parameters (constants).

Model - Error Distribution Unspecified

- The response Y_i = deterministic term + random term
 - deterministic term $\beta_0 + \beta_1 X_i$;
 - random term ε_i with $E(\varepsilon_i) = 0$, $Var(\varepsilon_i) = \sigma^2$, ε_i and ε_j are uncorrelated
- \Rightarrow Implies Y_i is a random variable

$$E\{Y_i\} = E\{\beta_0 + \beta_1 X_i + \varepsilon_i\} = \beta_0 + \beta_1 X_i + E\{\varepsilon_i\} = \beta_0 + \beta_1 X_i + 0 = \beta_0 + \beta_1 X_i$$

 $\operatorname{var}\left\{Y_{i}\right\} = \operatorname{var}\left\{\beta_{0} + \beta_{1}X_{i} + \varepsilon_{i}\right\} = \operatorname{var}\left\{\varepsilon_{i}\right\} = \sigma^{2}$

$$cov\{Y_i, Y_j\} = cov\{\beta_0 + \beta_1 X_i + \varepsilon_i, \beta_0 + \beta_1 X_j + \varepsilon_j\} = cov\{\varepsilon_i, \varepsilon_j\} = 0 \ \forall \ i \neq j$$

Alternative Form:

$$Y_{i} = \beta_{0} + \beta_{1} \left(X_{i} - \overline{X} \right) + \beta_{1} \overline{X} + \varepsilon_{i} = \beta_{0}^{*} + \beta_{1} \left(X_{i} - \overline{X} \right) + \varepsilon_{i} \qquad \beta_{0}^{*} = \beta_{0} + \beta_{1} \overline{X}$$

1.4 Data for Regression Analysis

- Observational Data
 - Example: relation between age of employee (*X*) and number of days of illness last year (*Y*)
 - Cannot be controlled!
- Experimental Data
 - Example: an insurance company wishes to study the relation between productivity of its analysts in processing claims (*Y*) and length of training *X*.
 - Treatment: the length of training
 - Experimental Units: the analysts included in the study.
- Completely Randomized Design: Most basic type of statistical design

Simple Linear Regression

• Dataset: $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$

Why is it called *SLR*?

Simple: only one predictor X

Linear: regression function is linear

1.5 Overview of Steps in Regression Analysis

1.6 Estimation of Regression Function

Example

• An experimenter gave three subjects a very difficult task.

Data on the age of the subject (*X*) and on the number of attempts to accomplish the task before giving up (*Y*) follow:

Subject <i>i</i>	1	2	3
Age X_i	20	55	30
Number of Attempts Y_i	5	12	10

Want to find parameters for a function of the form

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

Least Squares Estimation

- Goal: make Y_i and $\beta_0 + \beta_1 X_i$ close for all i.
- Proposal 1: minimize $Q = \sum_{i=1}^{n} \varepsilon_i = \sum_{i=1}^{n} (Y_i \beta_0 \beta_1 X_i)$
- Proposal 2: minimize $Q = \sum_{i=1}^{n} |\varepsilon_i| = \sum_{i=1}^{n} |Y_i \beta_0 \beta_1 X_i|$
- Proposal 3 (Final Proposal): minimize

$$Q = \sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \beta_{0} - \beta_{1} X_{i})^{2}$$

- Choose b_0 and b_1 as estimators for β_0 and β_1 .
- b_0 and b_1 will minimize the criterion Q for the given sample observations $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$.

Comparison

Repetition- The Summation Operator

$$\sum_{i=1}^{n} \left(X_{i} - \overline{X} \right) = \sum_{i=1}^{n} X_{i} - n\overline{X} = 0$$

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} (\beta_0 + \beta_1 X_i + \varepsilon_i) = \beta_0 + \beta_1 \overline{X} + \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i$$

$$SS_{XX} = \sum_{i=1}^{n} (X_i - \overline{X})^2 = \sum_{i=1}^{n} X_i^2 - n\overline{X}^2$$

$$SS_{YY} = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} Y_i^2 - n\overline{Y}^2$$

$$SS_{XY} = \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right) \left(Y_{i} - \overline{Y}\right) = \sum_{i=1}^{n} X_{i}Y_{i} - n\overline{X}\overline{Y}$$

Question: The expectations of random variables \overline{Y} , SS_{yy} , SS_{yy} ?

$$E(\overline{Y}) = E\left(\beta_0 + \beta_1 \overline{X} + \frac{1}{n} \sum_{i=1}^n \varepsilon_i\right) = \beta_0 + \beta_1 \overline{X}, \quad \text{var}(\overline{Y}) = \frac{1}{n^2} \text{var}\left(\sum_{i=1}^n \varepsilon_i\right) = \frac{\sigma^2}{n}$$

Least Squares Estimation

$$Q = \sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \beta_{0} - \beta_{1} X_{i})^{2}$$

Find least square estimators b_0, b_1 that minimize Q

$$Q(b_0, b_1) = \min_{\beta_0, \beta_1} Q(\beta_0, \beta_1)$$

$$\frac{\partial Q}{\partial \beta_0} = 2\sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i)(-1) \stackrel{\text{set}}{=} 0 \Longrightarrow \sum_{i=1}^n Y_i = nb_0 + b_1 \sum_{i=1}^n X_i$$
 (1)

$$\frac{\partial Q}{\partial \beta_1} = 2\sum_{i=1}^n \left(Y_i - \beta_0 - \beta_1 X_i \right) \left(-X_i \right) \stackrel{\text{set}}{=} 0 \Rightarrow \sum_{i=1}^n X_i Y_i = b_0 \sum_{i=1}^n X_i + b_1 \sum_{i=1}^n X_i^2 \quad (2)$$

Least Squares Estimation

(1):
$$\sum_{i=1}^{n} Y_i = nb_0 + b_1 \sum_{i=1}^{n} X_i$$
; (2): $\sum_{i=1}^{n} X_i Y_i = b_0 \sum_{i=1}^{n} X_i + b_1 \sum_{i=1}^{n} X_i^2$

Solving by multiplying (1) by $\frac{1}{n}\sum_{i=1}^{n}X_{i}$ and taking (2)-(1):

$$\sum_{i=1}^{n} X_{i} Y_{i} - \frac{1}{n} \left(\sum_{i=1}^{n} X_{i} \right) \left(\sum_{i=1}^{n} Y_{i} \right) = b_{1} \left(\sum_{i=1}^{n} X_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} X_{i} \right)^{2} \right)$$

$$\Rightarrow SS_{XY} = b_1 SS_{XX}$$

$$\Rightarrow b_1 = \frac{SS_{XY}}{SS_{XX}} = \frac{\sum_{i=1}^{n} \left(X_i - \overline{X}\right) \left(Y_i - \overline{Y}\right)}{\sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2}$$

From (1):
$$b_0 = \overline{Y} - b_1 \overline{X}$$

Fitted line goes through $(\overline{X}, \overline{Y})$

Toluca Company Example

- The Toluca Company manufactures refrigeration equipment as well as many replacement parts.
- Company officials wished to determine the relationship between lot size and labor hours required to produce the lot.

LS Estimation for the example

Run <i>i</i>	(1) Lot Size <i>X</i> ,	(2) Work Hours Y _I	(3) $X_{l} - \bar{X}$	(4) Y ₁ - Ÿ	(5) $(X_I - \bar{X})(Y_I - \bar{Y})$	(6) $(X_I - \bar{X})^2$	(7) $(Y_l - \overline{Y})^2$
1 2 3	80 30 50	399 121 221	10 -40 -20	86.72 -191.28 -91.28	867.2 7,651.2 1,825.6	100 1,600 400	7,520.4 36,588.0 8,332.0
23 24 25 Total	40 80 70 1,750	244 342 323 7,807	-30 10 0	-68.28 29.72 10.72	2,048.4 297.2 0.0 70,690	900 100 0 19,800	4,662.2 883.3 114.9 307,203
Mean	70.0	312.28	U	O	70,090	19,000	307,203

$$b_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2} = \frac{70,690}{19,800} = 3.5702$$
$$b_0 = \bar{Y} - b_1 \bar{X} = 312.28 - 3.5702(70.0) = 62.37$$

$$\hat{Y} = 62.37 + 3.5702X$$

Fitted Values and Residuals

- True regression line $E(Y) = \beta_0 + \beta_1 X$.
- Using the estimated parameters, the fitted regression line is

$$\hat{Y} = b_0 + b_1 X \qquad \widehat{\mathsf{E}(Y)} = b_0 + b_1 X$$

- **Residual:** the difference between the observed and fitted predicted value. $e = Y \hat{Y}$
- The fitted value for the ith case $\hat{Y}_i = b_0 + b_1 X_i$ i = 1,...,n
- The *i*th *residual*

$$e_i = Y_i - \hat{Y}_i = Y_i - (b_0 + b_1 X_i)$$
 $i = 1, ..., n$

• Distinguish between the model error term value

$$\varepsilon_i = Y_i - E(Y_i) = Y_i - (\beta_0 + \beta_1 X_i)$$
 $i = 1, ..., n$

• Sum of the squared residuals

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Fitted Values, Residuals, and Squared Residuals—Toluca Company Example

$$\hat{Y}_1 = 62.37 + 3.5702(80) = 347.98$$

Run	(1) Lot Size	(2) Work Hours	(3) Estimated Mean Response Ŷ;	(4) Residual $Y_i - \hat{Y}_i = e_i$	(5) Squared Residual $(Y_i - \hat{Y}_i)^2 = e_i^2$
1	Xi	<i>Y_i</i>	•		•
1	80	399	347.98	51.02	2,603.0
2	30	121	169.47	-48.47	2,349.3
3	50	221	240.88	-19.88	395.2
					• • •
23	40	244	205.17	38.83	1,507.8
24	80	342	347.98	-5.98	35.8
25	70	323	312.28	10.72	114.9
Total	1,750	7,807	7,807	0	54,825

$$|\hat{Y}_i = b_0 + b_1 X_i = \left(\overline{Y} - \frac{SS_{XY}}{SS_{XX}}\overline{X}\right) + \frac{SS_{XY}}{SS_{XX}}X_i = \overline{Y} + \frac{SS_{XY}}{SS_{XX}}\left(X_i - \overline{X}\right)$$

Alternative Model

• Using the alternative format of linear regression model:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} = \beta_{0}^{*} + \beta_{1}\left(X_{i} - \overline{X}\right) + \varepsilon_{i}, \quad \beta_{0}^{*} = \beta_{0} + \beta_{1}\overline{X}$$

The least squares estimators

$$b_1 = \frac{SS_{XY}}{SS_{XY}}, \qquad b_0 = \overline{Y}$$

• b_1 for β_1 remains the same as before, and

$$b_0^* = \overline{Y} = (\overline{Y} - b_1 \overline{X}) + b_1 \overline{X} = b_0 + b_1 \overline{X}$$

Hence the estimated regression function is

$$\left| \hat{Y}_i = b_0^* + b_1 \left(X_i - \overline{X} \right) = \overline{Y} + \frac{SS_{XY}}{SS_{XX}} \left(X_i - \overline{X} \right) \right|$$

• In the Toluca Company example, $\bar{Y} = 312.28$ and $\bar{X} = 70.0$ $\hat{Y} = 312.28 + 3.5702(X - 70.0)$

Properties of Fitted regression line

- (1) $\sum e_i = 0$
- (2) $\sum e_i^2$ is minimized
- (3) $\sum Y_i = \sum \hat{Y}_i$
- $(4) \sum X_i e_i = 0$
- (5) $\sum \hat{Y}_i e_i = 0$
- (6) The regression line always goes through the point (X,Y).
- These properties follow directly from the least squares criterion and normal equations (pg 23-24)

Proof:

(1)
$$\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (Y_i - \hat{Y}_i) = \sum_{i=1}^{n} [Y_i - \overline{Y} - b_1(X_i - \overline{X})] = 0$$

$$\Rightarrow (3) \sum_{i=1}^{n} Y_{i} = \sum_{i=1}^{n} \hat{Y}_{i}$$

$$(4) \sum_{i} X_{i} e_{i} = \sum_{i} (X_{i} - \overline{X}) e_{i}$$

$$= \sum (X_i - \bar{X})[Y_i - \bar{Y} - b_1(X_i - \bar{X})] = SS_{xy} - b_1SS_{xx} = 0$$

(5)
$$\sum_{i} \hat{Y}_{i} e_{i} = \sum_{i} e_{i} [\overline{Y} + b_{1}(X_{i} - \overline{X})]$$

$$= \overline{Y} \sum_{i} e_{i} + b_{1} \sum_{i} e_{i} (X_{i} - \overline{X}) = 0$$

1.7 Estimation of Error Terms Variance σ^2

$$\sigma^{2} = \operatorname{var}\left\{\varepsilon\right\} = E\left\{\left(\varepsilon - E(\varepsilon)\right)^{2}\right\} = E\left\{\left(\varepsilon - 0\right)^{2}\right\} = E\left\{\varepsilon^{2}\right\}$$

$$\varepsilon$$
 unobservable since $\varepsilon = Y - (\beta_0 + \beta_1 X)$

We use residual e to "estimate" ε

$$e = Y - \hat{Y} = Y - (b_0 + b_1 X)$$

Obtain the "average" squared residual to estimate σ^2 :

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} e_{i}^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} = \frac{SSE}{n-2} = MSE$$

• Toluca Company example, we obtain: SSE = 54825,

$$s^2 = MSE = \frac{54,825}{23} = 2,384$$

Under linear regression model (1.1) in which the errors have expectation zero and are uncorrelated and have equal variances σ^2 .

- (1) Least squares estimators b_0 and b_1 are linear combinations of $\{Y_i\}$
- (2) (Gauss-Markov theorem) Least squares estimators b_0 and b_1 are BLUE (best linear unbiased estimators) of β_0 and β_1 respectively.
 - Best: have minimum variance among all unbiased linear estimators
- (3) MSE is an unbiased estimator of σ^2 , i.e. $E(MSE) = \sigma^2$.

(1) Proof:

$$b_{1} = \frac{SS_{XY}}{SS_{XX}} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} = \sum_{i=1}^{n} \frac{(X_{i} - \overline{X})}{SS_{XX}} Y_{i} = \sum_{i=1}^{n} k_{i} Y_{i}$$

$$b_{0} = \overline{Y} - b_{1} \overline{X} = \sum_{i=1}^{n} \left(\frac{1}{n} - k_{i} \overline{X}\right) Y_{i} = \sum_{i=1}^{n} l_{i} Y_{i}$$

(2) Proof:
$$k_i = \frac{X_i - \overline{X}}{SS_{xx}}$$

Note
$$\sum_{i=1}^{n} k_i = 0$$
, $\sum_{i=1}^{n} k_i X_i = 1$, $\sum_{i=1}^{n} k_i^2 = \frac{1}{SS_{XX}}$

$$E(b_1) = \sum_{i=1}^{n} k_i E(Y_i) = \sum_{i=1}^{n} k_i \left(\beta_0 + \beta_1 X_i \right) = \beta_0 \sum_{i=1}^{n} k_i + \beta_1 \sum_{i=1}^{n} k_i X_i = \beta_1$$

$$E\left\{b_{0}\right\} = E\left\{\overline{Y} - b_{1}\overline{X}\right\} = \left(\beta_{0} + \beta_{1}\overline{X}\right) - \beta_{1}\overline{X} = \beta_{0}$$

So b_0 and b_1 unbiased estimators of β_0 and β_1 respectively. Next, consider variances of b_0 and b_1 .

$$\operatorname{var}(b_1) = \operatorname{var}\left(\sum_{i=1}^{n} k_i Y_i\right) = \sum_{i=1}^{n} k_i^2 \operatorname{var}(Y_i) = \sigma^2 \sum_{i=1}^{n} k_i^2 = \frac{\sigma^2}{SS_{XX}}$$

$$cov\{b_{1}, Y_{i}\} = cov\left\{\sum_{i=1}^{n} k_{i}Y_{i}, Y_{i}\right\} = \sum_{j=1}^{n} cov\{k_{j}Y_{j}, Y_{i}\} = cov\{k_{i}Y_{i}, Y_{i}\}_{i} = k_{i}\sigma^{2}$$

$$\operatorname{cov}\{b_1, \overline{Y}\} = \operatorname{cov}\{b_1, \sum_{i=1}^n \frac{1}{n}Y_i\} = \frac{1}{n}\sum_{i=1}^n k_i\sigma^2 = 0$$

$$\operatorname{var}\left\{b_{0}\right\} = \operatorname{var}\left\{\overline{Y} - b_{1}\overline{X}\right\} = \operatorname{var}\left\{\overline{Y}\right\} + \overline{X}^{2} \operatorname{var}\left\{b_{1}\right\} - 2\overline{X} \operatorname{cov}\left\{\overline{Y}, b_{1}\right\}$$

$$= \operatorname{var}\left\{\overline{Y}\right\} + \overline{X}^{2} \operatorname{var}\left\{b_{1}\right\} = \sigma^{2} \left(\frac{1}{n} + \frac{\overline{X}^{2}}{SS_{XX}}\right) = \frac{\sum X_{i}^{2}}{nSS_{XX}} \sigma^{2}$$

$$cov(b_0, b_1) = cov(\overline{Y} - b_1 \overline{X}, b_1) = -\overline{X} var(b_1) = -\frac{\overline{X}}{SS_{vv}} \sigma^2$$

Variance matrix of (b_0, b_1)

$$\frac{\sigma^2}{SS_{XX}} \left(\begin{array}{cc} \frac{1}{n} \sum X_i^2 & -\overline{X} \\ -\overline{X} & 1 \end{array} \right)$$

Among all unbiased linear estimators of the form

$$\hat{\beta}_1 = \sum c_i Y_i$$

As this estimator must be unbiased we have

$$\mathbb{E}(\hat{\beta}_1) = \sum c_i \, \mathbb{E}(Y_i) = \sum c_i (\beta_0 + \beta_1 X_i)$$
$$= \beta_0 \sum c_i + \beta_1 \sum c_i X_i = \beta_1$$

- Clearly it must be the case that $\sum c_i = 0$ and $\sum c_i X_i = 1$
- Now define

$$d_i = c_i - k_i$$
 where $k_i = \frac{X_i - X}{SS_{XX}}$

• The variance of this estimator

$$Var(\hat{\beta}_1) = \sum_i c_i^2 Var(Y_i) = \sigma^2 \sum_i (k_i + d_i)^2$$
$$= \sigma^2 (\sum_i k_i^2 + \sum_i d_i^2 + 2\sum_i k_i d_i)$$

- Note we just demonstrated that $\sigma^2 \sum k_i^2 = \text{Var}(b_1)$
- Recall $\sum c_i = 0$ and $\sum c_i X_i = 1$
- Now by showing that

$$\sum k_i d_i = \sum k_i (c_i - k_i) = \sum k_i c_i - \sum k_i^2$$

$$= \sum_{i} c_{i} \left(\frac{X_{i} - \bar{X}}{\sum_{i} (X_{i} - \bar{X})^{2}} \right) - \frac{1}{\sum_{i} (X_{i} - \bar{X})^{2}} = \frac{\sum_{i} c_{i} X_{i} - X \sum_{i} c_{i}}{\sum_{i} (X_{i} - \bar{X})^{2}} - \frac{1}{\sum_{i} (X_{i} - \bar{X})^{2}} = 0$$

• So we are left with

$$Var(\hat{\beta}_1) = Var(b_1) + \sigma^2(\sum d_i^2)$$

- It is minimized when all the $d_i = 0$. This means that the least squares estimator b_1 is BLUE of β_1 .
- Similarly, we can show b_0 is BLUE of β_0 .

(3) Proof:

$$e_i = Y_i - \hat{Y}_i = Y_i - b_0 - b_1 X_i = Y_i - (\overline{Y} - b_1 \overline{X}) - b_1 X_i = (Y_i - \overline{Y}) - b_1 (X_i - \overline{X})$$

$$E(e_i) = E(Y_i - b_0 - b_1 X_i) = EY_i - Eb_0 - E(b_1) X_i = \beta_0 + \beta_1 X_i - \beta_0 - \beta_1 X_i = 0$$

$$var(e_i) = var[Y_i - Y - b_1(X_i - X)]$$

$$= \operatorname{var}(Y_i) + \operatorname{var}(\overline{Y}) + \operatorname{var}(b_1)(X_i - \overline{X})^2 - 2\operatorname{cov}(Y_i, \overline{Y}) - 2(X_i - \overline{X}) \left[\operatorname{cov}(Y_i, b_1) - \operatorname{cov}(\overline{Y}, b_1) \right]$$

$$= \sigma^{2} + \frac{\sigma^{2}}{n} + \frac{(X_{i} - \overline{X})^{2} \sigma^{2}}{SS_{XX}} - \frac{2\sigma^{2}}{n} - \frac{2(X_{i} - \overline{X})^{2} \sigma^{2}}{SS_{XX}} + 0$$

$$= \frac{(n-1)\sigma^{2}}{n} - \frac{(X_{i} - \overline{X})^{2} \sigma^{2}}{SS_{XX}}$$

$$\frac{X_i X_j U}{SS_{XX}}$$

$$E(SSE) = E\left(\sum_{i=1}^{n} e_i^2\right) = \sum_{i=1}^{n} E(e_i^2) = \sum_{i=1}^{n} \text{var}(e_i)$$

$$= \sum_{i=1}^{n} \left[\frac{(n-1)\sigma^2}{n} - \frac{(X_i - \overline{X})^2 \sigma^2}{SS_{xx}} \right] = (n-1)\sigma^2 - \sigma^2 = (n-2)\sigma^2$$

$$E(MSE) = \frac{E(SSE)}{n-2} = \sigma^2$$

• Question: For any $i\neq j$, \mathcal{E}_i and \mathcal{E}_i are uncorrelated.

Are e_i and e_i uncorrelated?

$$0 = \operatorname{var}\left(\sum_{i=1}^{n} e_i\right) \neq \sum_{i=1}^{n} \operatorname{var}(e_i) = (n-2)\sigma^2, \text{ for } n > 2$$

$$0 = \operatorname{var}\left(\sum_{i=1}^{n} e_{i}\right) = \sum_{i=1}^{n} \operatorname{var}(e_{i}) + \sum_{\substack{i,j=1\\i\neq i}}^{n} \operatorname{cov}(e_{i}, e_{j})$$

$$\Rightarrow \sum_{i,j=1}^{n} \operatorname{cov}(e_i, e_j) = -\sum_{i=1}^{n} \operatorname{var}(e_i) = -(n-2)\sigma^2$$

In fact, we can get $cov(e_i, e_j) = -\frac{\sigma^2}{n} - \frac{(X_i - X)(X_j - X)\sigma^2}{SS_{vv}}$

for
$$i \neq j$$
. Then $\sum_{\substack{i,j=1 \ j \neq i}}^{n} \text{cov}(e_i, e_j) = -(n-1)\sigma^2 + \sigma^2 = -(n-2)\sigma^2$,

$$\sin \operatorname{ce} \ 0 = \left[\sum_{i=1}^{n} (X_i - \overline{X})\right]^2 = SS_{XX} + \sum_{\substack{i,j=1 \ i \neq i}}^{n} (X_i - \overline{X})(X_j - \overline{X})$$

1.8 Normal Error Regression Model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad i=1,2,...n$$
 with ε_i are i.i.d and $\varepsilon_i \sim N(0, \sigma^2)$.

• $Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$, and $\{Y_i, i=1,2,...n\}$ are independent

$$f(y_i) = f_i = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{\left(y_i - \left(\beta_0 + \beta_1 X_i\right)\right)^2}{2\sigma^2}\right\} \quad i = 1, ..., n$$

• Likelihood:

$$L(\beta_0, \beta_1, \sigma^2) = \prod_{i=1}^n f(y_i) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 X_i))^2\right\}$$

Maximum Likelihood estimators (MLEs)

Goal: select β_0 , β_1 , σ^2 to maximize L(or equivalently $\ln L$)

$$l = \ln L = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}[y_i - (\beta_0 + \beta_1 X_i)]^2$$

We must select β_0 , β_1 to minimize

$$\sum_{i=0}^{n} [y_{i} - (\beta_{0} + \beta_{1}x_{i})]^{2}$$

Method of least square

$$(\hat{\beta}_0, \hat{\beta}_1) = \arg\max_{\beta_0, \beta_1}(l) = \arg\min_{\beta_0, \beta_1} \sum_{i=1}^n [y_i - (\beta_0 + \beta_1 X_i)]^2 = (b_0, b_1)$$

$$\frac{\partial l}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n \left(y_i - \left(\beta_0 + \beta_1 X_i \right) \right)^2 \stackrel{set}{=} 0 \implies$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \left(\hat{\beta}_0 + \hat{\beta}_1 X_i \right) \right)^2 = \frac{1}{n} \sum_{i=1}^{n} e_i^2 = \frac{n-2}{n} MSE$$

MLEs

$$\hat{\beta}_1 = b_1 = \frac{SS_{XY}}{SS_{XX}} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (X_i - \overline{X})^2}$$

$$\hat{\beta}_0 = b_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} e_i^2 = \frac{SS_E}{n} = \frac{n-2}{n} MSE$$

Properties of MLEs

In normal error regression model,

- (1) MLEs of β_0 and β_1 are same with LSE estimators b_0 and b_1 . They are linear combinations of $\{Y_i\}$.
- (2) MLEs of β_0 and β_1 are BLUEs and normal distributed

$$\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix} \sim N \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, \frac{\sigma^2}{SS_{XX}} \begin{pmatrix} \frac{1}{n} \sum X_i^2 & -\overline{X} \\ -\overline{X} & 1 \end{pmatrix}$$

(3) MSE of σ^2 is a biased estimator with

$$\frac{n\hat{\sigma}^2}{\sigma^2} = \frac{SSE}{\sigma^2} \sim \chi^2(n-2) \quad \text{and} \quad E(\hat{\sigma}^2) = \frac{n-2}{n}\sigma^2 \to \sigma^2$$

(4) $(\hat{\beta}_0, \hat{\beta}_1, \overline{Y})$ and $\hat{\sigma}^2$ (or *SSE*) are independent.

Fisher's Theorem

(Fisher's Theorem) Let $X_1, X_2, ..., X_n$ be independent $N(\mu_i, \sigma^2)$ distributed random variables, and $Q = Q_1 + Q_2 + ... + Q_k$, where $Q, Q_1, Q_2, ..., Q_k$ are quadratic forms in $X_1, X_2, ..., X_n$, i.e., $Q = \mathbf{X'AX}$, and $Q_i = \mathbf{X'A}$, i = 1, 2, ..., k. If $Q/\sigma^2 \sim \chi^2(r), Q_1/\sigma^2 \sim \chi^2(r_1), ..., Q_{k-1}/\sigma^2 \sim \chi^2(r_{k-1}),$ then

- (1) $Q_1, Q_2, ..., Q_k$ are independent.
- (2) $Q_k / \sigma^2 \sim \chi^2(r_k)$, where $r_k = r (r_1 + \dots + r_{k-1})$.

Fisher's Theorem is valid even if the quadratic forms are noncentral chi-square distributed.

Properties (3-4) of MLEs can be derived by Fisher's theorem.

$$\mu_{i} = E(Y_{i}) = \beta_{0} + \beta_{1}X_{i} = \beta_{0}^{*} + \beta_{1}(X_{i} - \overline{X}), \quad \beta_{0}^{*} = \beta_{0} + \beta_{1}\overline{X}$$

$$\hat{\beta}_{0}^{*} = \overline{Y} \sim N(\beta_{0}^{*}, \sigma^{2} / n), \quad \hat{\beta}_{1} = SS_{XY} / SS_{XX} \sim N(\beta_{1}, \sigma^{2} / SS_{XX}),$$

$$\sum (Y_{i} - \mu_{i})^{2} = \sum [(Y_{i} - \hat{Y}_{i}) + (\hat{Y}_{i} - \mu_{i})]^{2}$$

$$= \sum (\hat{Y}_{i} - \mu_{i})^{2} + \sum (Y_{i} - \hat{Y}_{i})^{2}$$

$$= \sum [\hat{\beta}_{0}^{*} + \hat{\beta}_{1}(X_{i} - \overline{X}) - \beta_{0}^{*} - \beta_{1}(X_{i} - \overline{X})]^{2} + SS_{E}$$

$$= n(\hat{\beta}_{0}^{*} - \beta_{0}^{*})^{2} + (\hat{\beta}_{1} - \beta_{1})^{2}SS_{XX} + n\hat{\sigma}^{2}$$

$$\boxed{Q_{1}} \qquad \boxed{Q_{2}}$$

$$Q/\sigma^{2} = Q_{1}/\sigma^{2} + Q_{2}/\sigma^{2} + Q_{3}/\sigma^{2}$$

$$\chi^{2}(n) \qquad \chi^{2}(1) \qquad \chi^{2}(1) \qquad \chi^{2}(n-2)$$

then Q_3 is chi-square distributed and Q_1 , Q_2 , Q_3 are independent.

$$\blacksquare$$
 $(\hat{\beta}_0, \hat{\beta}_1)$ is independent with $\hat{\sigma}$

$$\hat{\sigma}^2$$
 is biased estimator with

$$\frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-2), \qquad E(\hat{\sigma}^2) = \frac{\sigma^2}{n} E\left(\frac{n\hat{\sigma}^2}{\sigma^2}\right) = \frac{n-2}{n} \sigma^2.$$

R code

```
toluca = read.table('D:\Reg_licx\Data_4e\CH01TA01.txt',header=F)
names(toluca)<-c("Size", "Hours") ##Change the column names
plot(toluca,xlim=c(0,150),ylim=c(0,600)) ##Scatter Plot
####Doing linear regression using R function lm()
fit = lm(Hours~Size, data=toluca); summary(fit)
resi = fit$residuals ##Residuals
yfit = predict(fit) ##fitted values
####Verify the property of residuals
x = toluca[,1]
sum(resi); sum(x*resi); sum(yfit*resi)
```

Homework

- Under the linear regression model (1.1) with error distribution unspecified (in which the errors have expectation zero and are uncorrelated and have equal variances σ^2), calculate

 (1) the expectations of random variables SS_{yy} and SS_{xy}
 - (1) the expectations of random variables SS_{YY} and SS_{XY} (2) $cov(e_i, e_j), i \neq j$.
- pg 35~39: 1.21, 1.33, 1.34, 1.39, 1.41
- Optional: Show least square estimator b_0 is BLUE of β_0 in model (1.1) with error distribution unspecified.