香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九九八年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1998

數學 試卷一 MATHEMATICS PAPER I

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對,但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。

After the examinations, marking schemes will be available for reference at the Teachers' Centres.

© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1998

98-CE-MATHS I-1

只限教師參閱 FOR TEACHERS' USE ONLY

Hong Kong Certificate of Education Examination Mathematics Paper I

NOTES FOR MARKERS

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, provided that the method used is sound.
- 2. In a question consisting of several parts each depending on the previous parts, marks may be awarded to steps or methods correctly deduced from previous erroneous answers. However, marks for the corresponding answers should NOT be awarded. In the marking scheme, marks are classified as:

'M' marks

awarded for correct methods being used;

'A' marks

awarded for the accuracy of the answers;

Marks without 'M' or 'A'

awarded for correctly completing a proof or arriving at

an answer given in a question.

- 3. Use of notation different from those in the marking scheme should not be penalized.
- 4. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.

IA

- 5. Each mark deducted for poor presentation (p.p.) should be denoted by [pp-1]:
 - a. At most deduct 1 mark for (p.p.) in each question, up to a maximum of 2 marks for Sections A(1) and A(2).
 - b. For similar (p.p.), deduct 1 mark for the first time that it occurs.
 i.e. do not penalize candidates twice for the same p.p
- 6. Each Mark deducted for wrong/no unit (u.) should be denoted by [u-1]. At most deduct 1 mark for questions in Sections A(1) and A(2).
- 7. Marks entered in the Question Total Box should be the NET total scored on that question.

ΙB

Each mark deducted for *poor presentation* (p.p.) should be denoted by [pp-1]. At most deduct 1 mark for Section B.

Each Mark deducted for $wrong/no\ unit\ (u.)$ should be denoted by [u-1]. At most deduct 1 mark for Section B.

Marks entered in the Page Total Box should be the NET total scored on that page.

	Solution	Marks	Remarks
1. Area of cross-section = $\frac{(6)^{10}}{100}$	$\frac{(5+4)\times 3}{2}$ (cm ²)	1M	or $4 \times 3 + \frac{2 \times 3}{2}$, $6 \times 3 - \frac{2 \times 3}{2}$ can be omitted
Volume of the prism = 15 = 12	20 cm ³	1M —1A —(3)	
2. $x = 180 - 120$ = 60 y = 360 - 140 - 80 - 60 = 80		1A 1M 1A (3)	$pp-1$ for $x^\circ = 60^\circ$, $\angle x = 60$
3. $\tan x^{\circ} = \frac{7}{5}$ $x \approx 54.5$ $y = 90 - x$		1M 1A	or $\tan y^{\circ} = \frac{5}{7}$ etc. r.t. 54.5, $u-1$ for 54°28'
y = 30 = x ≈ 35.5		1A (3)	r.t. 35.5, <i>u</i> -1 for 35°32′
$4. \qquad \frac{a^3 a^4}{b^{-2}} = a^{3+4} b^{-(-2)}$	(or $\frac{a^{3+4}}{\frac{1}{b^2}}$)	IM+IM	1M for applying $x^m x^n = x^{m+n}$ 1M for applying $x^{-n} = \frac{1}{x^n}$ can be omitted
$= a^7 b^2$ 5. $b = 2x + (1-x)a$		<u>1A</u> (3)	
$b = 2x + a - ax$ $ax - 2x = a - b$ $x = \frac{a - b}{a - 2}$	(or $x = \frac{b-a}{2-a}$)	1A 1M 1A	for putting terms involving x on one side (can be omitted)
u-2 6. (a) ΔΕΒΑ	2 – <i>a</i>	(3) 1A	accept EBA or ABE etc.
(b) $\frac{y}{6} = \frac{3}{4}$		1M+1A	1M for setting up equation
$y = \frac{9}{2}$	(or 4.5)	1A(4)	do not accept 4.50
98-CE-MATHS I–3			

/ Nr.	只限教師參阅 FUR TEACHERS USE UNLT			
	Solution	Marks	Remarks	
(a) Selling price = (\$) 29		1A		
= \$ 23	3.2	1A	accept \$ 23.20	
(b) Percentage profit = 2	$\frac{23.2-18}{18} \times 100 $ (%)	1M	for $\frac{23.2-18}{18}$	
≈ 2	28.9 (%)	1A	r.t. 28.9 or $28\frac{8}{9}$	
		(4)		
4 – 1	I	(2.4) (2.4) (2.4) (2.4) (2.4)		
(a) Slope of $AB = \frac{4-1}{0-(-1)}$	2)	IM	can be omitted	
$=\frac{3}{2}$		1A		
(b) Equation of the line:				
	$\left(\text{ or } \left(\frac{y-3}{x-1}\right)\left(\frac{3}{2}\right)=-1\right)$	1M+1A	1M for the slope	
2x + 3y - 11 = 0	(or $y = -\frac{2}{3}x + \frac{11}{3}$)	1A	or equivalent	
	3 3	(5)		
$f(2) = 2^3 + 2(2^2) - 5$	5(2) – 6	1M	or by long division	
0		1A	pp-1 for missing f(2) 1A only for just writing f(2)=0	
$= 0$ $\therefore x - 2 \text{ is a factor}$	of $f(x)$		1A only for just writing i(2)—	
(b) $f(x) = (x-2)(x^2 + 4)$	(x + 3)	1A	1A for $x^2 + 4x + 3$	
= (x-2)(x+1)(x+1)(x+1)		<u>1A+1A</u>	1A for $(x+1)(x+3)$	
		(5)		
8-CE-MATHS I–4				

Test score (x) $x \le 50$	Cumulative frequency	12 No. 10 No			
1000 3000 0000		Test score (x)	Frequency		
A = JU	8	$40 < x \le 50$	8		
<i>x</i> ≤ 60	50	50 < <i>x</i> ≤ 60	42		
<i>x</i> ≤ 70	102	$60 < x \le 70$	52	1A+1A+1A	1A for any correct entry
<i>x</i> ≤ 80	158	$70 < x \le 80$	56		in c.f. column 1A for any correct entry
<i>x</i> ≤ 90	188	$80 < x \le 90$	30		in f. column 1A for all being correct
<i>x</i> ≤ 100	200	$90 < x \le 100$	12		
		<u> </u>		(3)	
Number of stud = 29				IA	can be omitted (refer to the graph)
	_				1M for the numerator 1M for the denominator
= 85.5 (%)	(or 86	, 85)		<u>1A</u> (4)	
The probability $= \frac{8}{14} \times \frac{7}{13}$ $= \frac{4}{13}$			nite	1A+1M 1A	1A for $\frac{8}{14}$, 1M for $p_1 \times p_2$ r.t. 0.308 (p_3)
-	$\frac{2}{14} \times \frac{1}{13}$		ame colour	1M+1A+1A 1A	1M for $p_3 + p_4 + p_5$ 1A for $\frac{4}{14} \times \frac{3}{13}$ or $\frac{2}{14} \times \frac{1}{13}$ r.t. 0.385
Alternatively, $1 - 2\left(\frac{8}{14} \times \frac{4}{13}\right)$	$+\frac{4}{14} \times \frac{2}{13} + \frac{2}{14} \times \frac{8}{13}$	5)		1M+1A+1A	1M for $1-2(p_6 + p_7 + p_8)$ 1A for $\frac{8}{14} \times \frac{4}{13}$ etc. (must have $1 - \cdots$)
$= \frac{5}{13}$	(or 0.2	385)		1A	
				(4)	
	$x \le 80$ $x \le 90$ $x \le 100$ Number of studies 29 Passing percered 200 - 29 \times 100 85.5 (%) The probability $= \frac{8}{14} \times \frac{7}{13}$ $= \frac{4}{13}$ The probability $= \frac{4}{13} + \frac{4}{14} \times \frac{3}{13} + \frac{5}{13}$ Alternatively, $1 - 2\left(\frac{8}{14} \times \frac{4}{13}\right)$	$x \le 80$ 158 $x \le 90$ 188 $x \le 100$ 200 Number of students whose score (or 28) Passing percentage $\frac{200 - 29}{200} \times 100$ (%) 85.5 (%) (or 86) The probability that the socks take $= \frac{8}{14} \times \frac{7}{13}$ $= \frac{4}{13}$ (or 0.3) The probability that the socks take $= \frac{4}{13} + \frac{4}{14} \times \frac{3}{13} + \frac{2}{14} \times \frac{1}{13}$ $= \frac{5}{13}$ (or 0.3) Alternatively, $1 - 2\left(\frac{8}{14} \times \frac{4}{13} + \frac{4}{14} \times \frac{2}{13} + \frac{2}{14} \times \frac{8}{13} +$	$x \le 80$	$x \le 80$ 158 $x \le 90$ 188 $x \le 100$ 200 Number of students whose score is below 55 29 $(0 \le 28, 30)$ Passing percentage $200 - 29$ $200 = 29$ $200 = 20$	$x \le 80 \qquad 158 \qquad 70 < x \le 80 \qquad 56 \qquad 80 < x \le 90 \qquad 30 \qquad 90 < x \le 100 \qquad 12 \qquad (3)$ Number of students whose score is below 55 29 (or 28, 30) 1M+1M

	Solution	Marks	Remarks	
12. (a)	S = a + bt for some constants a and b . $\begin{cases} 230 = a + 100b & \dots & $	1M } 1A 1M — 1A — (4)	or $a = 50, b = 1.8$	
(b)	 When t = 110, (i) the monthly service charge of network A = (\$) (50 + 1.8 × 110) = (\$) 248 (ii) the monthly service charge of network B 	1M	or $230 + \frac{1}{3}(284 - 230)$	
	= (\$) 2.2×110 = (\$) 242 Alternatively, (ii) The cost of using network A when $t = 110$ is \$2.25 per minute.	1A 1A	r.t. 2.25	
	The man should join network B as the monthly service charge (alternatively, the cost per minute) is less.	_1(3)	the values in (i) and (ii) must be correct	
3. (a)	$A_2 B_2 = \sqrt{6^2 + 8^2}$ (cm) = 10 cm	IM 1A (2)	can be omitted	
(b)	$A_2 A_3 : A_1 A_2 = 10 \times \frac{3}{7} : 6$ = 5:7	1M 1A	for $10 \times \frac{3}{7}$ accept $\frac{5}{7}$, $1:\frac{7}{5}$ or $\frac{5}{7}:1$	
(c)	$A_1 A_2 + A_2 A_3 + A_3 A_4 + \dots$ $= 6 \left[1 + \frac{5}{7} + (\frac{5}{7})^2 + \dots \right] \text{ (cm)}$ $= \frac{6}{1 - \frac{5}{7}} \text{ (cm)}$ $= 21 \text{ (cm)}$ $\therefore \text{ The total distance crawled by the ant cannot exceed 21 cm.}$	1M 1A 1 (3)	for the first 3 terms can be omitted $pp-1$ for missing '' no marks for using 0.714 instead of $\frac{5}{7}$	

) \ PL	(子文中)学 区(TEMORIE		
	**************************************		Solution		Marks	Remarks
1 . ::	OB =	OD				
÷.		$D = \angle ODB$	(base \angle s, isos. Δ)			[等腰Δ底角]
:			(11 1 1 ()			
∴ He		$B = \angle ODB$ $DBD = \angle CDB$	(equal chords, equal \angle s)			[等弦對等角]或[等角對等弦]
110		// CD	(alt. ∠s equal)			[(內)錯角等]
- 1	ternative					
::	BC = A	AB C = ∠ADB	(equal chards equal (s)			[学法验各] 录 [学会类学社
		. = ∠ADB C = ∠ADB + ∠BB	(equal chords, equal ∠s) OC			[等弦對等角] 或 [等角對等弦]
		$=2\angle ADB$				
	D .O	= ∠AOB	(∠ at centre twice ∠ at circumfer	ence)		[圓心角=2×圓周角]
Не	ence BO	// CD	(corr. ∠s equal)			[同位角等]
;	Marking	Scheme :				
١	Case 1		of with correct reasons.		5	
	Case 2		of without reasons.		3	
		reason.	relevant correct argument with corre	ect	1	Maximum 1 mark
	Case 3	Any relevant co	orrect argument with correct reason.		1	Maximum 2 marks
į			e above 5 arguments with reasons an	d		
!_		$\angle AOB = \angle OD$	$B + \angle OBD$ (ext. \angle of Δ)			[Δ的外角]
0 ~=						
8-CE-	MATHS I	- -7				

	具限教師參閱 FOR TEACHERS' USE UNLY				
	Solution	Marks	Remarks		
5. (a)	Distance between the centres of C_1 and C_2 $= \sqrt{(11-5)^2 + (-8-0)^2}$	1A			
	= 10 Radius of $C_1 = 10 - 7 = 3$	1M			
	Equation of C_1 : $(x-5)^2 + y^2 = 9$ (or $(x-5)^2 + y^2 = 3^2$)	1 <u>A</u> (3)	or $x^2 + y^2 - 10x + 16 = 0$		
(b)	Let $y = mx$ be a tangent to C_1 from the origin. Sub. $y = mx$ into the equation of C_1 , then $(x-5)^2 + (mx)^2 = 9$ $(1+m^2)x^2 - 10x + 16 = 0$	1M	for constant term = 0		
	Since the discriminant is zero, therefore $100 - 64(1 + m^2) = 0$	1M+1A			
	$1 + m^2 = \frac{25}{16}$ $m^2 = \frac{9}{16}$				
	$m=\pm\frac{3}{4}$	1A			
	The tangents to C_1 from the origin are $y = \pm \frac{3}{4}x$.				
	Alternatively,		у ₄		
	Consider the right-angled triangle in the figure.		$A C_1$		
	OA is one of the tangents. Slope of $OA = \frac{3}{4}$	1A	$ \begin{array}{c c} \hline O & 5 \\ \hline \end{array} $		
	Slope of the other tangent = $-\frac{3}{4}$	IM	can be omitted		
	The tangents to C_1 from the origin are $y = \pm \frac{3}{4}x$.	1M+1A	1M for constant term = 0		
	C_1 C_2 C_2 Figure 8	(4)			

 			
Solution	Marks	Remarks	
(c) The tangent $y = -\frac{3}{4}x$ cuts C_2 at two points.	1M		
Sub. $y = -\frac{3}{4}x$ into the equation of C_2 , then			
$(x-11)^{2} + (-\frac{3}{4}x+8)^{2} = 49$ $(-\frac{4}{3}y-11)^{2} + (y+8)^{2} = 49$: 49		
$\frac{25}{16}x^2 - 34x + 136 = 0$ $\frac{25}{9}y^2 + \frac{136}{3}y + 136 = 0$	1A		
$25x^{2} - 544x + 2176 = 0$ $25y^{2} + 408y + 1224 = 0$			
Let (x_0, y_0) be the mid-point of AB , then			
$x_0 = \frac{1}{2}(\frac{544}{25}) = \frac{272}{25}$ (10\frac{22}{25} or 10.9)	1M		
$y_0 = -\frac{3}{4}(\frac{272}{25}) = -\frac{204}{25}$ (-8\frac{4}{25} \text{ or -8.16})	1A	r.t. (10.9, -8.16)	
Alternatively,			
Solving the equation for x : Solving the equation for y : $x \approx 5.282$ or 16.48 Solving the equation for y $y \approx -12.36$ or -3.962	·:		
$\therefore x_0 \approx \frac{5.282 + 16.48}{2} \approx 10.9 \text{ (10.88)} \therefore y_0 \approx \frac{-12.36 - 3.962}{2} \approx .$	-8.16 1M		
$y_0 \approx -\frac{3}{4} \times 10.88 \approx 8.16$ $x_0 \approx -\frac{4}{3} \times (-8.161) \approx 10$		r.t. (10.9, -8.16)	
$\therefore \text{The mid-point of } AB = (\frac{272}{25}, -\frac{204}{25})$ Alternatively,			
(c) The tangent $y = -\frac{3}{4}x$ cuts C_2 at two points.	1M		
The line passing through (11, -8) and perpendicular to $y = -\frac{3}{4}x$	has eqtn.		
$\frac{y+8}{x-11} = \frac{4}{3}$	1A		
4x-3y-68=0			
Sub. $y = -\frac{3}{4}x$ into the equation, we have	1 M		
$4x + \frac{9}{4}x - 68 = 0$	1141		
$x = \frac{272}{25}, y = -\frac{204}{25}$	1A	r.t. (10.9, -8.16)	
	(4)		

	只限教師參閱 FOR TEACHERS' USE ONLY			
	Solution	Marks	Remarks	
6. (a)	Let r cm be the radius of the surface of the melted ice-cream.		do not pp for not defining r	
	By considering the volume of the ice-cream, $\frac{4}{3}\pi(2^3) + \frac{4}{3}\pi x^3 = \frac{1}{3}\pi r^2(2x+3)$	1A+1M	1A for the volume of the ice-cream balls 1M for equating the volumes (provided that 1A is awarded)	
	Using similar triangles, $\frac{r}{2x+3} = \frac{4}{8}$	2A		
	$r = \frac{1}{2}(2x+3)$ Volume of the liquid = $\frac{1}{3}\pi \left[\frac{1}{2}(2x+3)\right]^2 (2x+3)$ $= \frac{1}{12}\pi(2x+3)^3$	1M+1A		
	Alternatively, $ \frac{\text{Volume of the liquid}}{\frac{1}{3}\pi(4^2)(8)} = \left(\frac{2x+3}{8}\right)^3 $	1A+1M+1A	1A for the ratio in length 1M for the ratio in volume 1A for the volume of the cone	
	Volume of the liquid = $\frac{1}{3}\pi(4^2)(8)\left(\frac{2x+3}{8}\right)^3$ = $\frac{1}{12}\pi(2x+3)^3$	1A		
	Hence $\frac{4}{3}\pi(2^3) + \frac{4}{3}\pi x^3 = \frac{1}{12}\pi(2x+3)^3$ $16(8+x^3) = (2x+3)^3$ $128+16x^3 = 8x^3 + 36x^2 + 54x + 27$ $8x^3 - 36x^2 - 54x + 101 = 0$			
(b)	$4(2x^3 - 9x^2) - 54x + 101 = 0$			
	$4y - 54x + 101 = 0$ (or $y = \frac{27}{2}x - \frac{101}{4}$) Adding the line in Figure 9.2, we have	2A 1A	for the graph (±1 grid at margin)	
	$x \approx 1.2$	<u>1A</u> (4)		
	4 cm →		\rightarrow	

Figure 9.1

Solution Solution	Marks	Remarks
17. (a) $AF = 4 \sin 72^{\circ}$ (m)	1A	accept $\sin 72^\circ = \frac{AF}{4}$
≈ 3.80423 (m) ≈ 3.80 m	1A	r.t. 3.80 (withhold 1A for 3.8)
$FD \approx \frac{3.80423}{\tan 35^{\circ}} (m)$	1M	accept $\tan 35^\circ = \frac{3.80}{FD}$
≈ 5.43300 (m) ≈ 5.43 m	<u>1A</u>	r.t. 5.43

Figure 10	$\neg D$	
$CF = 4 \cos 72^{\circ} \text{ (m)}$ (or $\sqrt{4^2 - 3.80423^2}$)	1 A	accept $\cos 72^\circ = \frac{CF}{4}$
≈ 1.23607 (m) Area of ΔDBC = Area of ΔBFD + Area of ΔFCD		
_		
$\approx \left[\frac{1}{2}(6-1.23607)(5.43300)\sin 140^{\circ}\right]$		
$+\frac{1}{2}(1.23607)(5.43300)\sin 40^{\circ}$ (m ²)	1M+1M	
$\approx 10.5 \text{ m}^2$	2A	r.t. 10.5
Alternatively,		
Let h m be the height of $\triangle DBC$ with BC as the base.		h
$h \approx 5.43300 \sin 40^{\circ}$	1M+1A	accept $\sin 40^\circ = \frac{h}{5.43}$
≈ 3.49227		
6×3.49227		
Area of $\triangle DBC \approx \frac{6 \times 3.49227}{2}$ (m ²)	1M	
$\approx 10.5 \text{ m}^2$	2A	r.t. 10.5

(b)

	一 大伙伙叫学园 ION ILNO	只限教師參阅 FUR TEACHERS USE UNLY			
	Solution	Marks	Remarks		
Alterna	tively,				
	= 4 cos 72° (m) ≈ 1.23607 (m)	1A	accept $\cos 72^\circ = \frac{CF}{4}$		
	$\approx [(1.23607)^2 + (5.43300)^2 - 2(1.23607)(5.43300)\cos 40^\circ]$ \approx 4.55593 (m)	(m ²) 1M	for applying cosine rule		
In 2	ΔDCF , $\frac{\sin \angle DCF}{5.43300} \approx \frac{\sin 40^{\circ}}{4.55593}$ $\sin \angle DCF \approx 0.76653$				
Are	a of $\triangle DBC \approx \frac{1}{2} \times 6 \times 4.55593 \times 0.76653$ (m ²)	1M			
	$\approx 10.5 \text{ m}^2$	2A	r.t. 10.5		
		(5)			
(a) A af	the dead on 1 and ED in COED				
	the shadow = $\frac{1}{2} \times BC \times FD \sin \angle CFD$				
	$x < 90$, $\angle CFD$ will be smaller (or less than 40°). C, FD remain unchanged and $\sin \angle CFD$ is smaller	1A	or $\sin \angle CFD$ will be smaller		
	ne area of the shadow will be smaller than the area obtained in	1 (b). (2)			
			,		
F-MATHS I-1	_				

	Solution	Marks	Remarks
18. (a)	The inequalities representing the constraints for x and y :		
	$0.32x + 0.28y \le 4.48 \qquad (8x + 7y \le 112)$	1A	deduct 1 mark for any strict
	$0.24x + 0.36y \le 4.32 \qquad (2x + 3y \le 36)$	1A	inequality sign
	$2x + 10y \le 100 \qquad (x + 5y \le 50)$	1A	
	$x \ge 0$, $y \ge 0$		optional
	Drawing the 3 straight lines.	1A+1A+1A	$\pm \frac{1}{2}$ grid
	Shading the region R .	1A (7)	accept marking all lattice points
(b)	Let \$ P be the profit.		
	P = 90x + 120y	1A	
	=30(3x+4y)		
	On the graph paper, draw the line $3x + 4y = c$ for some constant c.	1M+1A	1M for +/- slope
	From the graph, the maximum possible profit is obtained at (6, 8).		•
	The maximum possible profit = $(90 \times 6 + 120 \times 8)$		
	= \$ 1500	1A	
	Alternatively,		
	P(0,10) = 1200, P(4,9) = 1440, P(6,8) = 1500 and P(14,0) = 1260		1M for testing these 4 points
	The maximum profit is \$ 1500.	1A	
		(4)	

