Trigonometric Functions 6E

1 a $\arccos(0)$ is the angle α in $0 \le \alpha \le \pi$ for which $\cos \alpha = 0$

Refer to graph of $y = \cos \theta \implies \alpha = \frac{\pi}{2}$

So $\arccos(0) = \frac{\pi}{2}$

b $\arcsin(1)$ is the angle α in $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ for which $\sin \alpha = 1$

Refer to graph of $y = \sin \theta \implies \alpha = \frac{\pi}{2}$

So $\arcsin(1) = \frac{\pi}{2}$

c $\arctan(-1)$ is the angle α in $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$ for which $\tan \alpha = -1$

So $\arctan(-1) = -\frac{\pi}{4}$

d $\arcsin\left(-\frac{1}{2}\right)$ is the angle α

in $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ for which $\sin \alpha = -\frac{1}{2}$

So $\arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$

e $\arccos\left(-\frac{1}{\sqrt{2}}\right)$ is the angle α in $0 \le \alpha \le \pi$

for which $\cos \alpha = -\frac{1}{\sqrt{2}}$

So $\arccos\left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4}$

f $\arctan\left(-\frac{1}{\sqrt{3}}\right)$ is the angle α

in $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$ for which $\tan \alpha = -\frac{1}{\sqrt{3}}$

So $\arctan\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6}$

g $\arcsin\left(\sin\frac{\pi}{3}\right)$ is the angle α

in $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ for which $\sin \alpha = \sin \frac{\pi}{3}$

So $\arcsin\left(\sin\frac{\pi}{3}\right) = \frac{\pi}{3}$

1 **h** $\arcsin\left(\sin\frac{2\pi}{3}\right)$ is the angle α in $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ for which $\sin\alpha = \sin\frac{2\pi}{3}$ So $\arcsin\left(\sin\frac{2\pi}{3}\right) = \frac{\pi}{3}$

2 a
$$\arcsin\left(\frac{1}{2}\right) + \arcsin\left(-\frac{1}{2}\right) = \frac{\pi}{6} + \left(-\frac{\pi}{6}\right) = 0$$

b
$$\arccos\left(\frac{1}{2}\right) - \arccos\left(-\frac{1}{2}\right) = \frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}$$

$$\mathbf{c}$$
 $\arctan(1) - \arctan(-1) = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2}$

3 a
$$\sin\left(\arcsin\frac{1}{2}\right)$$

 $\arcsin\frac{1}{2} = \alpha \text{ where } \sin\alpha = \frac{1}{2},$
 $\operatorname{and} -\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$
So $\arcsin\frac{1}{2} = \frac{\pi}{6}$
 $\Rightarrow \sin\left(\arcsin\frac{1}{2}\right) = \sin\frac{\pi}{6} = \frac{1}{2}$

b
$$\sin\left(\arcsin\left(-\frac{1}{2}\right)\right)$$

 $\arcsin\left(-\frac{1}{2}\right) = \alpha$
where $\sin\alpha = -\frac{1}{2}$, $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$
So $\arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$
 $\Rightarrow \sin\left(\arcsin\left(-\frac{1}{2}\right)\right) = \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$

- c $\tan(\arctan(-1))$ $\arctan(-1) = \alpha$ where $\tan \alpha = -1$, $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$ So $\arctan(-1) = -\frac{\pi}{4}$ $\Rightarrow \tan(\arctan(-1)) = \tan(-\frac{\pi}{4}) = -1$
- **d** $\cos(\arccos 0)$ $\arccos 0 = \alpha \text{ where } \cos \alpha = 0, \ 0 \le \alpha \le \pi$ So $\arccos 0 = \frac{\pi}{2}$ $\Rightarrow \cos(\arccos 0) = \cos \frac{\pi}{2} = 0$
- 4 a $\sin\left(\arccos\frac{1}{2}\right)$ $\arccos\frac{1}{2} = \frac{\pi}{3}$ $\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$

4 **b** $\cos\left(\arcsin\left(-\frac{1}{2}\right)\right)$ $\arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$ $\cos\left(-\frac{\pi}{6}\right) = +\frac{\sqrt{3}}{2}$

c $\tan\left(\arccos\left(-\frac{\sqrt{2}}{2}\right)\right)$ $\arccos\left(-\frac{\sqrt{2}}{2}\right) = \alpha$ where $\cos\alpha = -\frac{\sqrt{2}}{2}$, $0 \le \alpha \le \pi$

So
$$\arccos\left(-\frac{\sqrt{2}}{2}\right) = \frac{3\pi}{4}$$

 $\tan\frac{3\pi}{4} = -1$

d $\sec(\arctan\sqrt{3})$ $\arctan\sqrt{3} = \frac{\pi}{3}$ (the angle whose $\tan is \sqrt{3}$) $\sec\frac{\pi}{3} = \frac{1}{\cos\frac{\pi}{3}} = \frac{1}{\frac{1}{2}} = 2$

- e $\operatorname{cosec}(\operatorname{arcsin}(-1))$ $\operatorname{arcsin}(-1) = \alpha$ where $\sin \alpha = -1$, $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ So $\operatorname{arcsin}(-1) = -\frac{\pi}{2}$ $\Rightarrow \operatorname{cosec}(\operatorname{arcsin}(-1)) = \frac{1}{\sin(-\frac{\pi}{2})}$ $= \frac{1}{-1} = -1$
 - $\mathbf{f} \quad \sin\left(2\arcsin\left(\frac{\sqrt{2}}{2}\right)\right)$ $\arcsin\frac{\sqrt{2}}{2} = \frac{\pi}{4}$ So $\sin\left(2\arcsin\left(\frac{\sqrt{2}}{2}\right)\right) = \sin\frac{\pi}{2} = 1$
- 5 As k is positive, the first two positive solutions of $\sin x = k$ are $\arcsin k$ and $\pi \arcsin k$ i.e. α and $\pi \alpha$ (Try a few examples, taking specific values for k).
- 6 a $\arcsin x$ is the angle α in $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ such that $\sin \alpha = x$ In this case $x = \sin k$ where $0 < k < \frac{\pi}{2}$ As \sin is an increasing function $\sin 0 < x < \sin \frac{\pi}{2}$ $\Rightarrow 0 < x < 1$
 - **b** i $\cos k = \pm \sqrt{1 \sin^2 k} = \pm \sqrt{1 x^2}$ k is in the 1st quadrant $\Rightarrow \cos k > 0$ So $\cos k = \sqrt{1 - x^2}$
 - $ii \quad \tan k = \frac{\sin k}{\cos k} = \frac{x}{\sqrt{1 x^2}}$

- **6 c** k is now in the 4th quadrant, where $\cos k$ is positive. So the value of $\cos k$ remains the same and there is no change to $\tan k$.
- 7 a The graph of $y = \frac{\pi}{2} + 2 \arcsin x$ is $y = \arcsin x$ stretched by a scale factor 2 in the y direction and then translated by

the vector $\begin{pmatrix} 0 \\ \frac{\pi}{2} \end{pmatrix}$

b The graph of $y = \pi - \arctan x$ is $y = \arctan x$ reflected in the x-axis and then translated by the vector $\begin{pmatrix} 0 \\ \pi \end{pmatrix}$

7 **c** The graph of $y = \arccos(2x+1)$ is $y = \arccos x$ translated by the vector $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$ and then stretched by scale factor $\frac{1}{2}$ in the x direction

d The graph of $y = -2\arcsin(-x)$ is $y = \arcsin x$ reflected in the y-axis, then reflected in the x-axis and then stretched by a scale factor 2 in the y direction

8 a
$$y = \arcsin x$$

Range is
$$-\frac{\pi}{2} \le f(x) \le \frac{\pi}{2}$$

b The graph of y = f(2x) is the graph of y = f(x) stretched in the x direction by scale factor $\frac{1}{2}$

$$y = g(x)$$

$$\frac{y}{\frac{\pi}{2}}$$

$$-\frac{1}{2}$$

$$\frac{1}{2}$$

$$x$$

- c $g: x \mapsto \arcsin 2x$ The domain is $-\frac{1}{2} \le x \le \frac{1}{2}$
- **d** Let $y = \arcsin 2x$ $\Rightarrow 2x = \sin y$ $\Rightarrow x = \frac{1}{2}\sin y$ So $g^{-1}: x \mapsto \frac{1}{2}\sin x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$

9 a Let $y = \arccos x$

As
$$0 \le x \le 1 \Rightarrow 0 \le y \le \frac{\pi}{2}$$

 $\cos y = x$, and using $\cos^2 y + \sin^2 y \equiv 1$

$$\Rightarrow \sin^2 y = 1 - \cos^2 y$$

$$\Rightarrow \sin y = \sqrt{1 - \cos^2 y} = \sqrt{1 - x^2}$$

Note, $\sin y \ge 0$ since $0 \le y \le \frac{\pi}{2}$

so
$$\sin y \neq -\sqrt{1-x^2}$$

$$\sin y = \sqrt{1 - x^2}$$

$$\Rightarrow y = \arcsin \sqrt{1 - x^2}$$

Therefore, $\arccos x = \arcsin \sqrt{1 - x^2}$ for $0 \le x \le 1$

b For $-1 \le x \le 0$, $\frac{\pi}{2} \le \arccos x \le \pi$

But arcsin has a range of $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

So $\arccos x \neq \arcsin \sqrt{1-x^2}$,

for
$$-1 \le x \le 0$$

An alternative approach is to provide a counterexample.

Let
$$x = -\frac{1}{\sqrt{2}}$$

$$\arccos x = \frac{3\pi}{4}$$

$$\arcsin\sqrt{1-x^2} = \arcsin\frac{1}{\sqrt{2}} = \frac{\pi}{4}$$

So $\arccos x \neq \arcsin \sqrt{1-x^2}$

Challenge

a $y = \sec x$

b Reflect the graph drawn for part (a) in the line y = x

$$y = \operatorname{arc} \sec x, x \le -1, x \ge 1$$

Range is $0 \le \operatorname{arc} \sec x \le \pi$, for $\operatorname{arc} \sec x \ne \frac{\pi}{2}$