WHAT IS CLAIMED IS:

1	1. A computer-implemented method of automatically re-arranging nodes
2	in a display, the method comprising:
3	displaying a plurality of nodes in a first configuration on a display, wherein
4	each node has associations with one or more nodes, each association being represented by a
5	physical connector between the associated nodes on the display; and
6	automatically re-arranging the displayed nodes to a second configuration such
7	that a total length of all connectors is minimized and such that a number of overlapping
8	connectors is minimized.
1	2. The method of claim 1, wherein the nodes represent objects in a UML
2	diagram.
1	3. The method of claim 2, wherein the connectors represent associations
2	between objects.
1	4. The method of claim 1, wherein automatically re-arranging the
2	displayed nodes to a second configuration includes:
3	iteratively, for each node:
4	a) re-positioning the node to one of a plurality of pre-designated
5	coordinates so as to form a temporary configuration;
6	b) performing a relaxation process on the temporary configuration;
7	c) determining a number of overlapping connectors in the temporary
8	configuration;
9	d) if the number of overlapping connectors is less than a previous
10	number of overlapping connectors, storing the pre-designated coordinates as new
11	coordinates for the node;
12	e) repeating a) through d) for each of the remaining plurality of pre-
13	designated coordinates, wherein the coordinates for all other nodes in the first
14	configuration are used during steps a) through d); and thereafter
15	determining the second configuration using the new coordinates stored in d), if
16	any, for each node.

5. The method of claim 4, wherein performing a relaxation process includes, iteratively, for each of said plurality of nodes to be displayed (first node):

Client Reference No.: OID-2003-092-01

1

2

3	i) iteratively, for each remaining node (second node):
4	calculating a first distance between the first node and the second node;
5	and
6	if the first distance is not equal to a target length, calculating a
7	displacement in each of the pair of display coordinates for the first node that would
8	reduce a difference between the target length and the first distance; and thereafter
9	ii) moving the first node according to the calculated displacement.
1	6. The method of claim 5, wherein calculating a displacement includes:
2	if the first distance is greater than a target length and if the first node and the
3	second node have an association, calculating a displacement in each of the pair of display
4	coordinates for the first node that would reduce the first distance; and
5	if the first distance is less than the target length, calculating a displacement in
6	each of the pair of display coordinates for the first node that would increase the first distance.
1	7. The method of claim 5, wherein the calculated displacement in each of
2	the pair of coordinates is proportional to the equation (1/target length - target length /(first
3	distance) ²).
1	8. The method of claim 5, wherein the calculated displacement in each of
2	the pair of coordinates is proportional to the number of associations between the first node
3	and the second node, if any.
1	9. The method of claim 5, further including calculating a cumulative
2	displacement, and if the cumulative displacement is smaller than a target displacement value,
3	repeating steps i) and ii) for each node.
1	10. A computer-implemented method of automatically arranging a
2	plurality of nodes in a display, wherein each node has associations with one or more nodes,
3	each association being represented by a physical connector between the associated nodes on
4	the display, the method comprising:
5	determining an original configuration of a plurality of nodes to be displayed,
6	each node having a pair of display coordinates;
7	determining the associations for each node, each association to be represented
8	on the display as a physical connector between the associated nodes;

9	determining a node configuration wherein a total length of all connectors is
10	minimized and wherein a number of overlapping connectors is minimized; and
11	displaying the plurality of nodes in said node configuration on the display.
1	11. The method of claim 10, wherein determining a node configuration
2	includes:
3	iteratively, for each node to be displayed:
4	a) re-positioning the node to one of a plurality of pre-designated
5	coordinates in the original configuration so as to form a temporary configuration;
6	b) performing a relaxation process on the temporary configuration;
7	c) determining a number of overlapping connectors in the temporary
8	configuration;
9	d) if the number of overlapping connectors is less than a previous
10	number of overlapping connectors, storing the pre-designated coordinates as new
11	coordinates for the node;
12	e) repeating a) through d) for each of the remaining plurality of pre-
13	designated coordinates, wherein the coordinates for all other nodes in the original
14	configuration are used during steps a) tthrough d); and thereafter
15	determining the node configuration using the new coordinates stored in d), if
16	any, for each node.
1	12. The method of claim 11, wherein performing a relaxation process
2	includes, iteratively, for each of said plurality of nodes to be displayed (first node):
3	i) iteratively, for each remaining node (second node):
4	calculating a first distance between the first node and the second node;
5	and
6	if the first distance is not equal to a target length, calculating a
7	displacement in each of the pair of display coordinates for the first node that would
8	reduce a difference between the target length and the first distance; and thereafter
9	ii) moving the first node according to the calculated displacement.
1	13. The method of claim 12, wherein calculating a displacement includes:
2	if the first distance is greater than a target length and if the first node and the
3	second node have an association, calculating a displacement in each of the pair of display
4	coordinates for the first node that would reduce the first distance; and

Client Reference No.: OID-2003-092-01

5 if the first distance is less than the target length, calculating a displacement in each of the pair of display coordinates for the first node that would increase the first distance. 6 1 14. The method of claim 12, wherein the calculated displacement in each 2 of the pair of coordinates is proportional to the equation (1/target length - target length /(first distance)²). 3 15. The method of claim 12, wherein the calculated displacement in each 1 of the pair of coordinates is proportional to the number of associations between the first node 2 3 and the second node, if any. 1 16. The method of claim 12, further including calculating a cumulative 2 displacement, and if the cumulative displacement is smaller than a target displacement value, 3 repeating steps i) and ii) for each node. 17. The method of claim 10, wherein the nodes represent objects in a UML 1 2 diagram. 18. The method of claim 17, wherein the connectors represent associations 1

2 between objects.

19. A computer system configured to automatically re-arrange nodes in a display, the system comprising:

a display for displaying node configurations, wherein a plurality of nodes is displayed in a first configuration on the display, wherein each node has associations with one or more nodes, each association being represented by a physical connector between the associated nodes on the display; and

means for automatically re-arranging the displayed nodes to a second configuration on the display such that a total length of all connectors is minimized and such that a number of overlapping connectors is minimized.

20. The system of claim 19, wherein the nodes represent objects in a UML diagram and wherein the connectors represent associations between objects.

21. A computer system configured to automatically arrange nodes in a display, wherein each node has associations with one or more nodes, each association being

Client Reference No.: OID-2003-092-01

1

2

3

4 5

6

7

8

9

1

2

1 2

3	represented by a physical connector between the associated nodes on the display, the system
4	comprising:
5	means for determining an original configuration of a plurality of nodes to be
6	displayed, each node having a pair of display coordinates;
7	means for determining the associations for each node, each association to be
8	represented on the display as a physical connector between the associated nodes;
9	means for determining a node configuration wherein a total length of all
10	connectors is minimized and wherein a number of overlapping connectors is minimized; and
11	a display for displaying node configurations, wherein the plurality of nodes are
12	displayed in said node configuration on the display.
1	22. The system of claim 21, wherein the nodes represent objects in a UML

diagram and wherein the connectors represent associations between objects.

Client Reference No.: OID-2003-092-01

2