Results on ${\mathcal N}$ poset

Shanise Walker

Clark Atlanta University
Department of Mathematical Sciences

May 29, 2024

Notation: $[n] := \{1, 2, ..., n\}$

Definition

A partially ordered set (poset) is a set P and a binary relation " \preceq " such that for all $a,b,c\in P$

- $a \leq a$ (reflexivity).
- if $a \leq b$ and $b \leq a$, then a = b (antisymmetry).
- if $a \leq b$ and $b \leq c$, then $a \leq c$ (transitivity).

Examples

- $P = \{1, 2, ..., \}$ with binary relation $a \leq b$ if a divides b.

Notation:
$$[n] := \{1, 2, ..., n\}$$

• The *n*-dimensional Boolean lattice, \mathcal{B}_n , denotes the partially ordered set (poset) $(2^{[n]}, \subseteq)$. $2^{[n]}$ denotes the set of subsets of [n].

Shanise Walker (CAU)

3-dimensional Boolean Lattice

Figure: Hasse diagram of \mathcal{B}_3

Example of a subposet

Figure: Hasse diagram of \mathcal{B}_3

Figure: subposet of \mathcal{B}_3

Notation:
$$[n] := \{1, 2, ..., n\}$$

• The *n*-dimensional Boolean lattice, \mathcal{B}_n , denotes the partially ordered set (poset) $(2^{[n]}, \subseteq)$. $2^{[n]}$ denotes the set of subsets of [n].

Definition

For posets, $\mathcal{P}=(P, \preceq_{\mathcal{P}})$ and $\mathcal{P}'=(\mathcal{P}', \preceq_{\mathcal{P}'})$, we say \mathcal{P}' is a subposet of \mathcal{P} if there exists an injection $f:\mathcal{P}'\to\mathcal{P}$ that preserves the partial ordering, meaning that whenever $u\leq' v$ in \mathcal{P}' , we have $f(u)\leq f(v)$ in \mathcal{P} .

Problems of Interest

Goal

Estimate the maximum size of a family of subsets of \mathcal{B}_n which does not contain the subposet \mathcal{P} .

• If \mathcal{F} is a family that lies in \mathcal{B}_n such that \mathcal{F} contains no subposet \mathcal{P} , we say \mathcal{F} is \mathcal{P} -free.

- If \mathcal{F} is a family that lies in \mathcal{B}_n such that \mathcal{F} contains no subposet \mathcal{P} , we say \mathcal{F} is \mathcal{P} -free.
- La(n, P) denotes the largest size of a P-free family of subsets of [n].

8 / 24

- If \mathcal{F} is a family that lies in \mathcal{B}_n such that \mathcal{F} contains no subposet \mathcal{P} , we say \mathcal{F} is \mathcal{P} -free.
- La(n, P) denotes the largest size of a P-free family of subsets of [n].
- $\mathcal{B}(n, k)$ denotes the collection of subsets of [n] of the k middle layers of \mathcal{B}_n .
 - ▶ k^{th} layer of \mathcal{B}_n is the collection of all subsets of [n] of size k, denoted by $\binom{[n]}{k}$.

- If \mathcal{F} is a family that lies in \mathcal{B}_n such that \mathcal{F} contains no subposet \mathcal{P} , we say \mathcal{F} is \mathcal{P} -free.
- La(n, P) denotes the largest size of a P-free family of subsets of [n].
- $\mathcal{B}(n, k)$ denotes the collection of subsets of [n] of the k middle layers of \mathcal{B}_n .
 - ▶ k^{th} layer of \mathcal{B}_n is the collection of all subsets of [n] of size k, denoted by $\binom{[n]}{k}$.
- If n is a fixed integer, $\sum (n, k)$ denotes the sum of the k largest binomial coefficients of the form $\binom{n}{\ell}$.

$$\sum (n,k) := |\mathcal{B}(n,k)|$$

The 4-dimensional Boolean Lattice \mathcal{B}_4

The Boolean Lattice

Figure: The *n*-dimensional Boolean lattice \mathcal{B}_n .

${\cal N}$ poset

Definition

The $\mathcal N$ poset consists of four distinct sets W,X,Y,Z such that $W\subset X$, $Y\subset X$, and $Y\subset Z$ where W is not necessarily a subset of Z.

Question

Consider the \mathcal{N} poset in the n-dimensional Boolean lattice \mathcal{B}_n . What can we say about the size of a largest \mathcal{N} -free family?

12 / 24

Definitions-Coding Theory Background

- A binary word is a $\{0,1\}$ -vector of length n.
- A binary code of length n, say C, is a subset of all binary words of length n. An element of C is called a codeword.
- If |C| = m, then C is of order m.
- The weight of a codeword is the number of ones in the codeword.

$$a=[0,1,0,0,1]$$
 $b=[1,1,1,1,0]$

Figure: a and b are binary words of length 5. The weight of a=2 and the weight of b=4.

Definitions-Coding Theory Background

- The Hamming distance between two codewords of equal length is the number of positions at which the corresponding entries differ.
- The Hamming distance of a code is the smallest Hamming distance over all pairs of codewords in that code.

Figure: $C = \{[0, 1, 0, 0, 1], [1, 1, 1, 1, 0], [0, 1, 0, 0, 0], [1, 0, 1, 1, 0]\}$ The Hamming distance of C is 1.

$A(n, 2\delta, k)$

Let $A(n, 2\delta, k)$ denote the maximum number of codewords in any binary code of length n, such that:

- all codewords have constant weight k,
- ullet and the Hamming distance between any two codewords is at least 2δ .

Theorem (Graham and Sloane (1980))

$$A(n,4,k) \geq \frac{1}{n} \binom{n}{k}$$
.

Note: A(n, 4, k) computes the size of a single-error-correcting (SEC) code with constant weight k.

Bounds for \mathcal{N} -free families

Theorem (Griggs and Katona (2008))

$$\binom{n}{\lfloor n/2\rfloor}\left(1+\frac{1}{n}+\Omega\left(\frac{1}{n^2}\right)\right) \leq \operatorname{La}(n,\mathcal{N}) \leq \binom{n}{\lfloor n/2\rfloor}\left(1+\frac{2}{n}+\mathit{O}\left(\frac{1}{n^2}\right)\right).$$

Theorem (Katona and Tarján (1980))

$$\operatorname{La}(n,\mathcal{N}) \geq \binom{n}{\lfloor n/2 \rfloor} + A(n,4,\lfloor n/2 \rfloor + 1).$$

Shanise Walker (CAU)

Bounds for \mathcal{N} -free families

Theorem (Martin and W., 2017)

$$\operatorname{La}(n,\mathcal{N}) \geq \binom{n}{\lfloor n/2 \rfloor} + A(n,4,\lfloor n/2 \rfloor).$$

Theorem (Katona and Tarján, 1980)

$$\operatorname{La}(n,\mathcal{N}) \geq \binom{n}{\lfloor n/2 \rfloor} + A(n,4,\lfloor n/2 \rfloor + 1).$$

Note: When n is odd, the results are the same by symmetry.

Lower bound for \mathcal{N} -free families

Theorem (Martin and W., 2017)

$$\operatorname{La}(n,\mathcal{N}) \geq \binom{n}{\lfloor n/2 \rfloor} + A(n,4,\lfloor n/2 \rfloor).$$

Proof: Given k = n/2, let C be a constant weight SEC code of size A(n,4,k). Define $C_{\rm up} := \{c \cup \{i\} : c \in C, i \notin c\}$ and $C_{\rm down} := \{c - \{i\} : c \in C, i \in c\}$.

Lower bound for \mathcal{N} -free families

Theorem (Martin and W., 2017)

$$\operatorname{La}(n,\mathcal{N}) \geq \binom{n}{\lfloor n/2 \rfloor} + A(n,4,\lfloor n/2 \rfloor).$$

Proof: Given k = n/2, let C be a constant weight SEC code of size A(n,4,k). Define $C_{\rm up} := \{c \cup \{i\} : c \in C, i \notin c\}$ and $C_{\rm down} := \{c - \{i\} : c \in C, i \in c\}$.

Observe the following:

- lacktriangle Both $C_{
 m up}$ and $C_{
 m down}$ are SEC codes with constant weight k+1 and k-1, respectively.
- $\qquad \text{If } c'' \in \textit{C}_{\rm up} \text{ and } c' \in \textit{C}_{\rm down} \text{, } c' \not\subseteq c''.$

Proof continued

Claim: The family $\mathcal{F} := \binom{[n]}{k} \cup C_{\text{up}} \cup C_{\text{down}}$ is \mathcal{N} -free.

Proof: Suppose there is a subposet $\mathcal N$ with elements W,X,Y,Z where

 $W \subset X$, $Y \subset X$ and $Y \subset Z$.

Proof continued

Claim: The family $\mathcal{F}:=\binom{[n]}{k}\cup C_{\mathrm{up}}\cup C_{\mathrm{down}}$ is \mathcal{N} -free. **Proof:** Suppose there is a subposet \mathcal{N} with elements W,X,Y,Z where $W\subset X,Y\subset X$ and $Y\subset Z$.

• Where is the element *X*?

Proof continued

Claim: The family $\mathcal{F}:=\binom{[n]}{k}\cup C_{\mathrm{up}}\cup C_{\mathrm{down}}$ is \mathcal{N} -free. **Proof:** Suppose there is a subposet \mathcal{N} with elements W,X,Y,Z where $W\subset X,Y\subset X$ and $Y\subset Z$.

• Where is the element *X*?

 $X \not\in C_{\mathrm{down}}$ because it has to have elements below it and the elements of C_{down} are all minimal in \mathcal{F} .

Claim: The family $\mathcal{F}:=\binom{[n]}{k}\cup C_{\mathrm{up}}\cup C_{\mathrm{down}}$ is \mathcal{N} -free. **Proof:** Suppose there is a subposet \mathcal{N} with elements W,X,Y,Z where $W\subset X,Y\subset X$ and $Y\subset Z$.

• Where is the element X?

 $X \notin {[n] \choose k}$ because that would force $W, Y \in C_{\text{down}}$ and have symmetric difference of size 2.

Claim: The family $\mathcal{F} := \binom{[n]}{k} \cup C_{\mathrm{up}} \cup C_{\mathrm{down}}$ is \mathcal{N} -free.

Proof: Suppose there is a subposet \mathcal{N} with elements W, X, Y, Z where $W \subset X, Y \subset X$ and $Y \subset Z$.

• Where is the element *X*?

Claim: The family $\mathcal{F}:=\binom{[n]}{k}\cup C_{\mathrm{up}}\cup C_{\mathrm{down}}$ is \mathcal{N} -free.

Proof: Suppose there is a subposet \mathcal{N} with elements W, X, Y, Z where $W \subset X, Y \subset X$ and $Y \subset Z$.

• Where is the element *Y*?

 $Y \not\in C_{\mathrm{up}}$ because $Y \subset X$.

Claim: The family $\mathcal{F}:=\binom{[n]}{k}\cup C_{\mathrm{up}}\cup C_{\mathrm{down}}$ is \mathcal{N} -free. **Proof:** Suppose there is a subposet \mathcal{N} with elements W,X,Y,Z where $W\subset X,Y\subset X$ and $Y\subset Z$.

• Where is the element *Y*?

 $Y \notin {[n] \choose k}$ because that would force $X, Z \in C_{\mathrm{up}}$ and have symmetric difference of size 2.

Claim: The family $\mathcal{F}:=\binom{[n]}{k}\cup C_{\mathrm{up}}\cup C_{\mathrm{down}}$ is \mathcal{N} -free. **Proof:** Suppose there is a subposet \mathcal{N} with elements W,X,Y,Z where

 $W \subset X$, $Y \subset X$ and $Y \subset Z$.

• Where is the element Y?

Claim: The family $\mathcal{F}:=\binom{[n]}{k}\cup C_{\mathrm{up}}\cup C_{\mathrm{down}}$ is \mathcal{N} -free. **Proof:** Suppose there is a subposet \mathcal{N} with elements W,X,Y,Z where $W\subset X,\ Y\subset X$ and $Y\subset Z$.

• For \mathcal{N} to exist, $Y \subset X$ implies that $Y \subset X - \{i\}$.

Note that $Y \cup \{i\}$ and $X - \{i\}$ have symmetric difference of size 2, but both are elements of C.