Trabajo Final

Tema: Dinámica de Circuitos

Cátedra: Teoría de Circuitos II

Año: 2020

Docentes: Ing. Pires, Eduardo. Ing. Costa, Nicolás

Alumnos: Rodriguez, Ana Victoria. Ulloa, Daniel Alejandro

Fecha: 13/02/2020

Índice

1.	Introducción	2
	1.1. Obtención de las ecuaciones de estado	2
	1.2. Solución analítica utilizando Matlab	
	1.3. Solución por método numérico	
2.	Guía de Problemas	5
	2.1. Ejercicio 1	5
	2.2. Ejercicio 2	
	2.3. Ejercicio 3	
	2.4. Ejercicio 4	
	2.5. Ejercicio 5	
	2.6. Ejercicio 6	
	2.7. Ejercicio 7	
	2.8. Ejercicio 8	
	2.9. Ejercicio 9	
	2.10. Ejercicio 10	
3.	Conclusión	38
4.	Bibliografía	38

1. Introducción

Este trabajo se enfoca en estudiar la dinámica de circuitos presentados en la Unidad 3 del libro CLASSICAL CIRCUIT THEORY, para esto es necesario encontrar la solución de Sistemas de Ecuaciones Diferenciales Algebraicas en forma analítica y aplicando los métodos numéricos de Euler.

Analizar los circuitos a partir de sus ecuaciones de estado permite obtener la respuesta transitoria y estacionaria, mientras que trabajando en el plano de Laplace sólo obtenemos la respuesta de estado estacionario y únicamente es válido si las condiciones iniciales son nulas.

A partir de las trayectorias de estado en distintos planos (X-Y, Y-Z, X-Z) es posible representar la relación existente entre las variables de estado del circuito, por ejemplo representar corriente versus tensión, a este tipo de diagramas se los conoce como Phase Portrait. Estas trayectorias dependen de las condiciones iniciales.

1.1. Obtención de las ecuaciones de estado

Representando las ecuaciones de nodos modificados de la siguiente forma:

$$M\frac{d\vec{x}(t)}{dt} + N\vec{x}(t) = E\mathbf{u}(t) \tag{1}$$

podemos observar que el vector $\vec{x}(t)$ está compuesto por las variables de estado, M es la matriz que expresa las relaciones constitutivas de los componentes dinámicos, N es la matriz de admitancias, E una matriz de fuentes y $\mathbf{u}(t)$ una función vectorial.

Despejando $\frac{d\vec{x(t)}}{dt}$ de 1:

$$M^{-1}M\frac{d\vec{x}(t)}{dt} = M^{-1} \left(E\mathbf{u}(t) - N\vec{x}(t) \right)$$
$$I\frac{d\vec{x}(t)}{dt} = M \setminus E\mathbf{u}(t) - M \setminus N\vec{x}(t)$$
(2)

De 2 se obtiene la expresión:

$$\frac{d\vec{x}(t)}{dt} = A\vec{x}(t) + B\mathbf{u}(t) \tag{3}$$

Resolviendo 3 se obtiene $\vec{x}(t)$ que satisface 1

Para expresar las salidas del circuito es necesario que estén en función de las variables de estado y se consideren las fuentes de excitación:

$$\vec{y}(t) = C\vec{x}(t) + Du(t) \tag{4}$$

Ahora en 4 la función vectorial $\mathbf{u}(t)$ queda expresada como una función escalar u(t)

1.2. Solución analítica utilizando Matlab

La respuesta temporal de la tensión de salida V_R del siguiente circuito RLC se puede representar utilizando las soluciones del sistema 3, para esto debemos expresar las matrices C y D de la ecuacion 4

En donde la tensión inicial del capacitor C es de 1V y la corrienteinicial del inductor L es de 1A.

Planteando las ecuaciones y ordenandolas con la forma de 1:

$$C\frac{dV_C}{dt} + \frac{V_C}{R} - il = 0 (5)$$

$$-L\frac{di_L}{dt} + \frac{V_C}{R} = 0 ag{6}$$

Expresando en forma matricial:

$$\begin{pmatrix} 0 & L \\ C & 0 \end{pmatrix} \frac{d}{dt} \begin{bmatrix} V_C \\ i_L \end{bmatrix} + \begin{pmatrix} -1 & 0 \\ \frac{1}{R} & 1 \end{pmatrix} \begin{bmatrix} V_C \\ i_L \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \mathbf{u}(t)$$
 (7)

El vector salida es:

$$V_R = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{bmatrix} V_c \\ i_L \end{bmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \mathbf{u}(t) \tag{8}$$

Utilizando Matlab se encuentra la solución

$$\begin{array}{ll} V_R &=& \\ \frac{e^{-\frac{t(L-\sigma_1)}{2CLR}}(L+\sigma_1+2CR)}{2\sigma_1} - \frac{e^{-\frac{t(L+\sigma_1)}{2CLR}}(L-\sigma_1+2CR)}{2\sigma_1} \end{array}$$

En dónde

$$\sigma_1 = \sqrt{L(L - 4CR^2)}$$

1.3. Solución por método numérico

Partiendo de 2 la derivada en un tiempo t_n se aproxima por la pendiente de una linea recta pasando por la incógnita \vec{x}_n y su último valor conocido \vec{x}_{n-1} :

$$\left. \frac{d\vec{x}}{dt} \right|_{t_n} \approx \frac{\vec{x}_n - \vec{x}_{n-1}}{h} \tag{9}$$

Se obtiene el método BACKWARD EULER en forma vectorial:

$$\vec{x}_n = \left\lceil \frac{1}{h}M + N \right\rceil \setminus \mathbf{u}(t_n) + \left\lceil \frac{1}{h}M + N \right\rceil \setminus \left(\frac{1}{h}M\vec{x}_{n-1} \right)$$
(10)

Valores de los componentes

$$R = 1;$$

 $L = 1;$
 $C = 1;$

Condiciones iniciales

$$vc01 = 1;$$
 $il01 = 0;$

Valores de tiempo y paso

$$egin{array}{l} {
m t}\,{
m i}\,=\,0\,; \ {
m t}\,{
m f}\,=\,1\,0\,; \ {
m h}\,=\,0\,.\,0\,0\,1\,; \end{array}$$

Matrices de forma generalizadas

```
\mathbf{M} = \begin{bmatrix} 0 & \mathbf{L} ; \mathbf{C} & \mathbf{0} \end{bmatrix}
M\ =\ 2x2
 0
              1
               0
  1
N = [-1 \ 0; 1/R \ 1]
 N\ =\ 2x2
 - 1
                 0
   1
                 1
Xant = [vc01; il01]
 Xant = 2x1
  0.0
u = [0; 0]
 u\ =\ 2x1
  0.0
  0.0
 solu = [];
 \quad for \quad i = \quad t\,i:h:t\,f
X = (\left.\left(\left.\left(\left.\left(\left.\left(1\right/h\right).*M\right) + N\right)\right.\right.\right) + \left.\left(\left.\left(\left.\left(\left.\left(1\right/h\right).*M\right) + N\right)\right.\right) \cdot ...
 ((1/h).*M)*Xant);
solu = [solu X];
Xant = X;
end
 solu = solu';
```

2. Guía de Problemas

2.1. Ejercicio 1

Escribir las ecuaciones de estado de un circuito formado por un inductor L en paralelo con un capacitor C. Obtener la solución en términos de la corriente inicial del inductor $i_L(0)$ y del voltaje inicial del capacitor $v_C(0)$. Mostrar que la trayectoria es una elipse en el espacio de estados.

Se definen simbólicas las variables

Se plantean las ecuaciones y se obtienen las matrices de la forma generalizada

$$M = [-C \ 0; 0 \ -L]$$

$$M = \begin{pmatrix}
-C & 0 \\
0 & -L
\end{pmatrix}$$

$$N = \begin{bmatrix} 0 & 1; -1 & 0 \end{bmatrix}$$

$$\begin{array}{rcl}
 N & = & 2x2 \\
 0 & & 1 \\
 -1 & & 0
 \end{array}$$

$$u = [0; 0];$$

$$u = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Se expresan las matrices de la forma normalizada $\,$

$$A = -1.*(M\N)$$

Se definen las variables de estado

$$x = [vc; il]$$

$$\begin{array}{l}
\mathbf{x}(\mathbf{t}) = \\
\begin{pmatrix}
\mathbf{vc}(t) \\
\mathbf{il}(t)
\end{pmatrix}$$

Expresando el sistema en forma diferencial

odes =
$$diff(x) = A*x$$

$$\begin{array}{ll} \operatorname{odes}\left(\mathbf{t}\right) &= \\ \left(\begin{array}{ll} \frac{\partial}{\partial t} \operatorname{vc}\left(t\right) = \frac{\mathrm{il}\left(t\right)}{C} \\ \frac{\partial}{\partial t} \operatorname{il}\left(t\right) = -\frac{\mathrm{vc}\left(t\right)}{L} \end{array}\right) \end{array}$$

Resolviendo el sistema con el comando dsolve

$$[vSol(t), iSol(t)] = dsolve(odes);$$

Tensión del capacitor

$$vSol(t) = simplify(vSol(t))$$

$$v \operatorname{Sol}(t) = C_5 e^{\frac{t\sqrt{-CL}}{CL}} + C_6 e^{-\frac{t\sqrt{-CL}}{CL}}$$

Corriente del inductor

$$iSol(t) = simplify(iSol(t))$$

$$\begin{array}{ll} \mathrm{i}\,\mathrm{S}\,\mathrm{o}\,\mathrm{l}\,\left(\,\mathrm{t}\,\right) &= \\ e^{-\frac{t\sqrt{-CL}}{CL}} \Bigg(C_6 - C_5 e^{\frac{2t\sqrt{-CL}}{CL}}\Bigg) \sqrt{-CL} \\ \hline C \end{array}$$

Reemplazando los valores de R, L y C

```
clear C L;

syms C1 C2;

R = 1;L = 1;C = 1;

A = subs(A);
```

Las ecuaciones diferenciales son

odes =
$$diff(x) = A*x$$

odes (t) =
$$\begin{pmatrix} \frac{\partial}{\partial t} \operatorname{vc}(t) = \operatorname{il}(t) \\ \frac{\partial}{\partial t} \operatorname{il}(t) = -\operatorname{vc}(t) \end{pmatrix}$$

Definiendo las condiciones iniciales y tiempo de simulacion

```
\begin{array}{l} v0 = 2; \\ i0 = 1; \\ ti = 0; \\ tf = 4*pi; \\ Xant = [v0; i0]; \\ constantes = x(0) = = Xant; \\ [vSol(t), iSol(t)] = dsolve(odes, constantes) \end{array}
```

```
vSol(t) = \sqrt{5}\cos(t + atan(2))
iSol(t) = \sqrt{5}\cos\left(t - atan\left(\frac{1}{2}\right)\right)
```

```
clf;
fplot(iSol,[ti,tf],'-g')
hold on
fplot(vSol,[ti,tf],'-b')
title('Respuesta temporal')
xlabel('tiempo [s]')
ylabel('Voltaje [V] Corriente [A]')
legend({'Corriente IL1','Voltaje VC1'})
hold off
```



```
fplot(iSol, vSol)
title('Phase Portrait')
xlabel('Corriente [A]')
ylabel('Voltaje [V]')
hold off
```


2.2. Ejercicio 2

Mostrar que los valores propios del circuito de la Figura 2.2 son $-1 \pm j$. Encontrar la solución completa para condiciones iniciales arbitrarias y una excitación arbitraria E(t). Sea C=1F, L=1H, $R_1=R_2=1\Omega$. Graficar la trayectoria de la solución homogénea para dos condiciones iniciales en el espacio de estados.

Se definen simbólicas las variables

$$syms t vc(t) il(t) C L R1 R2 E;$$

Se plantean las ecuaciones y se obtienen las matrices de la forma generalizada

$$M = [-C \ 0; 0 \ L]$$

$$M = \begin{pmatrix}
-C & 0 \\
0 & L
\end{pmatrix}$$

$$N = [-1/R1 - 1; -1 R2]$$

$$\begin{array}{rcl}
N & = \\
\left(\begin{array}{ccc}
-\frac{1}{R_1} & -1 \\
-1 & R_2
\end{array} \right)$$

$$\mathbf{u} = \left[\, \text{-E/R1} \, ; 0 \, \right]$$

$$\begin{array}{cc}
\mathbf{u} & = \\
\left(\begin{array}{c}
-\frac{\mathbf{E}}{R_1} \\
0
\end{array} \right)$$

Se expresan las matrices de la forma normalizada

$$A = -1.*(M\N)$$

$$A = \begin{pmatrix}
-\frac{1}{CR_1} & -\frac{1}{C} \\
\frac{1}{L} & -\frac{R_2}{L}
\end{pmatrix}$$

$$B\!=\!M\!\backslash u$$

$$\begin{array}{ccc}
B & = \\
\left(\begin{array}{c} \frac{E}{CR_1} \\ 0 \end{array} \right)$$

Se definen las variables de estado

$$x = [vc; il]$$

$$x(t) = \begin{pmatrix} vc(t) \\ il(t) \end{pmatrix}$$

Expresando el sistema en forma diferencial

$$odes = diff(x) = = A*x + B$$

odes (t) =
$$\begin{pmatrix} \frac{\partial}{\partial t} \operatorname{vc}(t) = \frac{E}{CR_1} - \frac{\operatorname{vc}(t)}{CR_1} - \frac{\operatorname{il}(t)}{C} \\ \frac{\partial}{\partial t} \operatorname{il}(t) = \frac{\operatorname{vc}(t)}{L} - \frac{R_2 \operatorname{il}(t)}{L} \end{pmatrix}$$

Resolviendo el sistema con el comando dsolve

$$[vSol(t), iSol(t)] = dsolve(odes);$$

Tensión del capacitor

$$vSol(t) = simplify(vSol(t))$$

$$vSol(t) = \frac{e^{-\sigma_1}(Ee^{\sigma_1} + C_{23}R_1 + C_{23}R_2 + C_{24}R_1\sigma_2 + C_{24}R_2\sigma_2)}{R_1 + R_2}$$
where
$$\sigma_1 = \frac{t(L + \sqrt{C^2R_1^2R_2^2 - 4CLR_1^2 - 2CLR_1R_2 + L^2} + CR_1R_2)}{2CLR_1}$$

$$\sigma_2 = e^{\frac{t\sqrt{C^2R_1^2R_2^2 - 4CLR_1^2 - 2CLR_1R_2 + L^2}}{CLR_1}}$$

Corriente del inductor

$$\begin{split} & \text{iSol}(\mathsf{t}) = \text{simplify}(\text{iSol}(\mathsf{t})) \\ & \text{iSol}(\mathsf{t}) = \\ & e^{-\frac{t\sigma_4}{2CLR_1}} \Big(R_2 - \frac{\sigma_4}{2CR_1} \Big) \Big(C_{23} - \frac{2CELR_1\sigma_1e^{\sigma_5}\sigma_2}{\sigma_4\sigma_6} \Big) + e^{-\frac{t\sigma_3}{2CLR_1}} \Big(R_2 - \frac{\sigma_3}{2CR_1} \Big) \Big(C_{24} + \frac{2CELR_1\sigma_1e^{-\sigma_5}\sigma_2}{\sigma_3\sigma_6} \Big) \\ & \text{where} \\ & \sigma_1 = e^{\frac{R_2t}{2L}} \\ & \sigma_2 = e^{\frac{t}{2CR_1}} \\ & \sigma_3 = L - \sigma_6 + CR_1R_2 \\ & \sigma_4 = L + \sigma_6 + CR_1R_2 \\ & \sigma_5 = \frac{t\sigma_6}{2CLR_1} \\ & \sigma_6 = \sqrt{C^2R_1^2R_2^2 - 4CLR_1^2 - 2CLR_1R_2 + L^2} \end{split}$$

Reemplazando los valores de E,R1, R2, L y C

```
clear C L R1 R2 E;

syms C1 C2;

R1 = 1; R2 = 1; L = 1; C = 1; E = 1;

A = subs(A);

B = subs(B);
```

Autovalores del circuito

autovalores =
$$eig(A)$$

$$autovalores = \begin{pmatrix} -1-i \\ -1+i \end{pmatrix}$$

Las ecuaciones diferenciales son

$$odes = diff(x) = = A*x + B$$

```
odes (t) = \begin{pmatrix} \frac{\partial}{\partial t} \operatorname{vc}(t) = 1 - \operatorname{vc}(t) - \operatorname{il}(t) \\ \frac{\partial}{\partial t} \operatorname{il}(t) = \operatorname{vc}(t) - \operatorname{il}(t) \end{pmatrix}
```

Estableciendo condiciones iniciales y tiempo de simulación

Para el primer par de condiciones iniciales

```
 \begin{array}{c} v0 = 1; \\ i0 = 1; \\ ti = 0; \\ tf = 4*pi; \\ Xant = [v0; i0]; \\ constantes = x(0) = = Xant; \\ [vSol(t), iSol(t)] = dsolve(odes, constantes) \\ \\ \hline \\ \frac{e^{-t}\cos(t)}{2} + \frac{e^{-t}\sin(t)}{2} + \frac{1}{2} \\ iSol(t) = \\ \frac{e^{-t}\cos(t)}{2} - \frac{e^{-t}\sin(t)}{2} + \frac{1}{2} \\ \end{array}
```

Para el segundo par de condiciones iniciales

```
clear t;

syms t;

v0 = -1;

i0 = -1;

ti = 0;

tf = 4*pi;

Xant = [v0; i0];

constantes = x(0) = Xant;

[v2Sol(t), i2Sol(t)] = dsolve(odes, constantes)
```

$$\begin{array}{ll} {\rm v2Sol}\left({\rm t}\right) & = \\ \frac{1}{2} - \frac{3e^{-t}\sin\left(t\right)}{2} - \frac{3e^{-t}\cos\left(t\right)}{2} \\ {\rm i2Sol}\left({\rm t}\right) & = \\ \frac{3e^{-t}\sin\left(t\right)}{2} - \frac{3e^{-t}\cos\left(t\right)}{2} + \frac{1}{2} \end{array}$$

Gráfico de las soluciones

```
h = 0.1;
t = ti:h:tf;
b = plot(i2Sol(t), v2Sol(t), '-b', iSol(t), vSol(t), '-r');
title('Phase portrait')
xlabel('Corriente en el inductor [A]')
ylabel('Voltaje en el capacitor [V]')
grid on
legend({'[vo = 1; io = 10]', '[vo = 1; i0 = 1]'})
xlim([-1.00 1.00])
ylim([-1.00 1.00])
```


2.3. Ejercicio 3

Para el circuito de la Figura 2.3, $C_1 = C_2 = C_3 = 1F$, $R_1 = R_2 = 1\Omega$. Mostrar que los valores propios son -1 y $-\frac{1}{3}$. Asumir que la excitación $E(t) = 10\cos(\omega t)$. Encontrar la respuesta de estado estacionario.

Se definen simbólicas las variables

Se plantean las ecuaciones y se obtienen las matrices de la forma generalizada

$$M = [C3 - C2; C1 + C3 C1]$$

$$M = \begin{pmatrix}
C_3 & -C_2 \\
C_1 + C_3 & C_1
\end{pmatrix}$$

$$N = [0 - 1/R2; 1/R1 1/R1]$$

$$\begin{array}{ccc}
N & = & \\
\begin{pmatrix}
0 & -\frac{1}{R_2} \\
\frac{1}{R_1} & \frac{1}{R_1}
\end{pmatrix}$$

$$u = [0; 10*cos(w*t)/R1];$$

Se expresan las matrices de la forma normalizada

$$A = \text{-} \ 1.*(M \backslash N)$$

$$A = \begin{pmatrix}
 -\frac{C_2}{\sigma_2} & \frac{C_1 R_1 - C_2 R_2}{\sigma_1} \\
 -\frac{C_3}{\sigma_2} & -\frac{C_1 R_1 + C_3 R_1 + C_3 R_2}{\sigma_1}
\end{pmatrix}$$

where

$$\sigma_1 = R_1 R_2 (C_1 C_2 + C_1 C_3 + C_2 C_3)$$

$$\sigma_2 = R_1(C_1C_2 + C_1C_3 + C_2C_3)$$

$$B = M \setminus u$$

$$B = \begin{pmatrix} \frac{10C_2\cos(tw)}{R_1(C_1C_2 + C_1C_3 + C_2C_3)} \\ \frac{10C_3\cos(tw)}{R_1(C_1C_2 + C_1C_3 + C_2C_3)} \end{pmatrix}$$

Se definen las variables de estado

$$x = [vc1; vc2]$$

$$\begin{array}{l}
\mathbf{x}(\mathbf{t}) = \\
\begin{pmatrix}
\mathbf{vc}_1(t) \\
\mathbf{vc}_2(t)
\end{pmatrix}$$

Expresando el sistema en forma diferencial

$$odes = diff(x) = = A*x + B$$

$$\begin{array}{ll} \operatorname{odes}\left(\,t\,\right) &= \\ &\left(\begin{array}{c} \frac{\partial}{\partial t} \operatorname{vc}_{1}\left(t\right) = \frac{10C_{2} \cos(tw)}{R_{1}\sigma_{1}} - \frac{C_{2} \operatorname{vc}_{1}\left(t\right)}{R_{1}\sigma_{1}} + \frac{\operatorname{vc}_{2}\left(t\right)\left(C_{1}R_{1} - C_{2}R_{2}\right)}{R_{1}R_{2}\sigma_{1}} \\ \frac{\partial}{\partial t} \operatorname{vc}_{2}\left(t\right) = \frac{10C_{3} \cos(tw)}{R_{1}\sigma_{1}} - \frac{C_{3} \operatorname{vc}_{1}\left(t\right)}{R_{1}\sigma_{1}} - \frac{\operatorname{vc}_{2}\left(t\right)\left(C_{1}R_{1} + C_{3}R_{1} + C_{3}R_{2}\right)}{R_{1}R_{2}\sigma_{1}} \end{array} \right) \end{array}$$

where

$$\sigma_1 = C_1 C_2 + C_1 C_3 + C_2 C_3$$

Reemplazando los valores de R1, R2 y los capacitores

```
clear C1 C2 C3 R1 R2 w;

syms C11 C12;

R1 = 1; R2 = 1; C1 = 1; C2 = 1; C3 = 1; w = 1;

A = subs(A);

B = subs(B);
```

Autovalores del circuito

```
\begin{array}{ll} \text{autovalores} = & \text{eig}\left(A\right) \\ \\ \text{autovalores} & = \\ \left(\begin{array}{c} -1 \\ -\frac{1}{3} \end{array}\right) \end{array}
```

Las ecuaciones diferenciales son

odes = diff(x) = A*x + B

$$des(t) = \begin{pmatrix} \frac{\partial}{\partial t} vc_1(t) = \frac{10\cos(t)}{3} - \frac{vc_1(t)}{3} \\ \frac{\partial}{\partial t} vc_2(t) = \frac{10\cos(t)}{3} - \frac{vc_1(t)}{3} - vc_2(t) \end{pmatrix}$$

Estableciendo condiciones iniciales y tiempo de simulación

Para el primer par de condiciones iniciales

```
\begin{array}{c} \text{vc}01 = 0;\\ \text{vc}02 = 0;\\ \text{ti} = 0;\\ \text{tf} = 6*\text{pi};\\ \text{Xant} = \left[\text{vc}01;\text{vc}02\right];\\ \text{constantes} = \text{x}(0) = \text{Xant};\\ \left[\text{vc}1\text{Sol}(\texttt{t}), \text{vc}2\text{Sol}(\texttt{t})\right] = \text{dsolve}(\text{odes}, \text{constantes}) \end{array}
\begin{array}{c} \text{vc}1\text{Sol}(\texttt{t}) = \\ \sqrt{10}\cos\left(t - \text{atan}(3)\right) - \frac{1}{\left(e^t\right)^{1/3}} \\ \text{vc}2\text{Sol}(\texttt{t}) = \\ \frac{1}{2\left(e^t\right)^{1/3}} - \frac{5e^{-t}}{2} + \sqrt{5}\cos\left(t - \text{atan}\left(\frac{1}{2}\right)\right) \end{array}
```

Las exponenciales se extinguen pasado cierto tiempo y la respuesta de estado estacionario es:

$$VC_1(t) = \sqrt{10}\cos(t - \arctan 3)$$

$$VC_2(t) = \sqrt{5}\cos(t - \arctan\frac{1}{2})$$

2.4. Ejercicio 4

En el circuito de la figura 2.4, sea $v_{out}(t)$ el voltaje a traves de la resistencia R_2 y $E(t) = 2e^-2t$ para $t \ge 0$ y E(t) = 0 caso contrario. Mostrar que:

$$v_{out}(t) = \begin{cases} e^{-t} - \frac{8}{9}e^{-t} - \frac{1}{9}e^{-\frac{1}{5}t} & si \qquad t \ge 0\\ 0 & otros \ casos. \end{cases}$$
 (11)

Se definen simbólicas las variables

Se plantean las ecuaciones y se obtienen las matrices de la forma generalizada

$$M = [L1 L1 + L3; L2 - L3]$$

$$M = \begin{pmatrix}
L_1 & L_1 + L_3 \\
L_2 & -L_3
\end{pmatrix}$$

$$N = [R1 R1; R2 0]$$

$$\begin{array}{ccc}
N & = \\
\begin{pmatrix}
R_1 & R_1 \\
R_2 & 0
\end{pmatrix}$$

$$\mathbf{u} = [\mathbf{E}; \mathbf{0}]$$

$$u = \begin{pmatrix} E \\ 0 \end{pmatrix}$$

Se expresan las matrices de la forma normalizada

$$A = -1.*(M\backslash N)$$

$$A = \begin{pmatrix}
-\frac{L_1R_2 + L_3R_1 + L_3R_2}{L_1L_2 + L_1L_3 + L_2L_3} & -\frac{L_3R_1}{L_1L_2 + L_1L_3 + L_2L_3} \\
\frac{L_1R_2 - L_2R_1}{L_1L_2 + L_1L_3 + L_2L_3} & -\frac{L_1L_2 + L_1L_3 + L_2L_3}{L_1L_2 + L_1L_3 + L_2L_3}
\end{pmatrix}$$

$$B = M \setminus u$$

$$\begin{array}{ll} \mathbf{B} & = & \\ & \left(\begin{array}{c} \mathbf{E}L_3 \\ \overline{L_1L_2 + L_1L_3 + L_2L_3} \\ \overline{EL_2} \\ \overline{L_1L_2 + L_1L_3 + L_2L_3} \end{array} \right) \end{array}$$

Se definen las variables de estado

$$x = [il2;il3]$$

$$\begin{array}{l}
\mathbf{x}(\mathbf{t}) = \\
\begin{pmatrix} \mathbf{i} \mathbf{l}_2(t) \\
\mathbf{i} \mathbf{l}_3(t) \end{pmatrix}
\end{array}$$

Expresando el sistema en forma diferencial

$$odes = diff(x) = = A*x + B$$

$$\begin{array}{ll} \operatorname{odes}\left(\right. t \left. \right) &= \\ \left(\begin{array}{l} \frac{\partial}{\partial t} \, \operatorname{il}_2\left(t \right) = \frac{\operatorname{E}L_3}{\sigma_1} - \frac{\operatorname{il}_2(t)(L_1R_2 + L_3R_1 + L_3R_2)}{\sigma_1} - \frac{L_3R_1\operatorname{il}_3(t)}{\sigma_1} \\ \frac{\partial}{\partial t} \, \operatorname{il}_3\left(t \right) = \frac{\operatorname{il}_2(t)(L_1R_2 - L_2R_1)}{\sigma_1} + \frac{\operatorname{E}L_2}{\sigma_1} - \frac{L_2R_1\operatorname{il}_3(t)}{\sigma_1} \end{array} \right) \end{array}$$

where

$$\sigma_1 = L_1 L_2 + L_1 L_3 + L_2 L_3$$

Resolviendo el sistema con el comando dsolve

```
[i2Sol(t), i3Sol(t)] = dsolve(odes);
```

Reemplazando los valores de E,R1, R2, L y C

```
clear L1 L2 L3 R1 R2 E;

syms C1 C2;

R1 = 1; R2 = 1; L1 = 1; L2 = 1; L3 = 2;

E = 2*exp(-2*t);

A = subs(A);

B = subs(B);

odes = diff(x) = = A*x + B;
```

Estableciendo condiciones iniciales y tiempo de simulación

```
\begin{array}{l} i012 = 0;\\ i013 = 0;\\ ti = 0;\\ ti = 4*pi;\\ Xant = [\,i012\,;\,i013\,];\\ constantes = x\,(0) = = Xant\,;\\ [\,i2Sol\,(t\,)\,,\,\,i3Sol\,(t\,)\,] = dsolve\,(odes\,,constantes\,)\,; \end{array}
```

Voltaje en la resistencia R2

$$VR2 = simplify (i2Sol*R2)$$

$$VR2(t) = \frac{e^{-2t} \left(e^{\frac{9t}{5}} - 9e^t + 8\right)}{9}$$

2.5. Ejercicio 5

La fuente E(t) del circuito de la figura 2.5 se define como $E(t)=1V \ \forall t \leq 0$ y caso contrario E(t)=0. Mostrar que el valor a través de la resistencia R_2 para $t \geq 0$ es

$$v_2(t) = \frac{1}{2}e^{-t} + \frac{\sqrt{3}}{3}e^{-\frac{t}{2}}\sin\frac{\sqrt{3}}{3}t\tag{12}$$

Los valores de los elementos son $R_1=R_2=1\Omega, C_1=C_2=1F$ y L=2H. Graficar la salida $v_2(t)$ para el intervalo de tiempo $0\leq t\leq 10s.$

Se definen simbólicas las variables

Se plantean las ecuaciones y se obtienen las matrices de la forma generalizada

$$M = [C1 \ 0 \ 0; \ 0 \ C2 \ 0; \ 0 \ 0 \ L1]$$

$$M = \begin{pmatrix}
C_1 & 0 & 0 \\
0 & C_2 & 0 \\
0 & 0 & L_1
\end{pmatrix}$$

$$N = [\,1\,/\,\mathrm{R1}\ 0\ 1\,;\ 0\ 1\,/\,\mathrm{R2}\ \text{-}1\,;\ \text{-}1\ 1\ 0\,]$$

$$\begin{pmatrix}
\frac{1}{R_1} & 0 & 1 \\
0 & \frac{1}{R_2} & -1 \\
-1 & 1 & 0
\end{pmatrix}$$

$$u = [0; 0; 0; 0];$$

$$u = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Se expresan las matrices de la forma normalizada

$$A = -1.*(M\backslash N)$$

$$\begin{pmatrix}
 -\frac{1}{C_1 R_1} & 0 & -\frac{1}{C_1} \\
 0 & -\frac{1}{C_2 R_2} & \frac{1}{C_2} \\
 \frac{1}{L_1} & -\frac{1}{L_1} & 0
\end{pmatrix}$$

Se definen las variables de estado

$$x = [vc1; vc2; il1]$$

$$\begin{array}{l}
\mathbf{x}(t) = \\
\begin{pmatrix}
\mathbf{vc}_1(t) \\
\mathbf{vc}_2(t) \\
\mathbf{il}_1(t)
\end{pmatrix}$$

Expresando el sistema en forma diferencial

$$odes = diff(x) = = A*x$$

$$\begin{array}{ll} \operatorname{odes}\left(\,\mathbf{t}\,\right) &= \\ \left(\begin{array}{ll} \frac{\partial}{\partial t}\,\operatorname{vc}_{1}\left(t\right) = -\frac{\operatorname{il}_{1}\left(t\right)}{C_{1}} - \frac{\operatorname{vc}_{1}\left(t\right)}{C_{1}R_{1}} \\ \frac{\partial}{\partial t}\,\operatorname{vc}_{2}\left(t\right) = \frac{\operatorname{il}_{1}\left(t\right)}{C_{2}} - \frac{\operatorname{vc}_{2}\left(t\right)}{C_{2}R_{2}} \\ \frac{\partial}{\partial t}\,\operatorname{il}_{1}\left(t\right) = \frac{\operatorname{vc}_{1}\left(t\right)}{L_{1}} - \frac{\operatorname{vc}_{2}\left(t\right)}{L_{1}} \end{array}\right) \end{array}\right)$$

Reemplazando los valores de los componentes

```
clear C1 C2 L1 R1 R2;

syms C1 C2;

R1 = 1; R2 = 1; C1 = 1; C2 = 1; L1 = 2;

A = subs(A);

odes = diff(x) = = A*x;
```

Definiendo las condiciones iniciales y tiempo de simulacion

```
 \begin{array}{l} vc01 = 1/2; \\ vc02 = 1/2; \\ il0 = 1/2; \\ ti = 0; \\ tf = 10; \\ Xant = [vc01; vc02; il0]; \\ constantes = x(0) = = Xant; \\ [vc1Sol(t), vc2Sol(t), il1Sol(t)] = ... \\ dsolve(odes, constantes); \end{array}
```

Tensión sobre R2

ans =
$$\frac{e^{-t}}{2} - \frac{\sqrt{3}\sin\left(\frac{\sqrt{3}t}{2}\right)}{3\sqrt{e^t}}$$

Respuesta temporal vR2(t)

```
clf;
fplot(vc2Sol,[ti,tf],'-g')
title('Respuesta temporal')
xlabel('tiempo [s]')
ylabel('Voltaje [V]')
legend({'Voltaje R2'})
```


2.6. Ejercicio 6

Aplicar el metodo $Backward\ Euler$ para resolver las ecuaciones de estado del problema anterior siendo $E(t)=\sin t+r(t)$ dónde r(t) es un ruido aleatorio cuya amplitud se encuentra uniformemente distribuida en el rango [-0.1,0.1]. Graficar la salida.

Valores de los componentes

```
R1 = 1;
R2 = 1;
L1 = 2;
C1 = 1;
C2 = 1;
w = 1;
```

Condiciones iniciales

```
v01 = 0.5;

v02 = 0.5;

i01 = 0.5;
```

Valores de tiempo y paso

```
ti = 0;

tf = 10;

h = 0.001;
```

Matrices de forma generalizadas

```
M = [C1 \ 0 \ 0; 0 \ C2 \ 0; 0 \ 0 \ L1]
M = 3x3
                0
1
        0
0
                0
        1
        0
N = [1/R1 \ 0 \ 1; 0 \ 1/R2 \ -1; -1 \ 1 \ 0]
N = 3x3
        0
                1
1
        1
               - 1
 - 1
        1
Xant = [v01; v02; i01]
Xant = 3x1
 0.5000
 0.5000
 0.5000
solu = [];
```

Método Backward Euler

```
it = 1;
for i = ti:h:tf
% Fuente variable
E(it,1) = awgn(0.5*sin(w*i),30);

% Se calcula el valor de la matriz u para cada punto
B = [E(it,1)/R1;0;0];

X = ((((1/h).*M)+N)\ B) + ((((1/h).*M)+N)\ ...
((1/h).*M)*Xant);

solu = [solu X];
Xant = X;
```

```
it = it + 1; end
```

```
solu = solu';
```

Gráfico

```
t = ti:h:tf;
plot(t,E,'-.m',t,solu(:,2),'-b')
title('óSolucin respuesta temporal');
xlabel('Tiempo [s]');
ylabel('óTensin [V]');
ylim([-0.7,0.7])
grid
```


2.7. Ejercicio 7

En el circuito de la figura 2.7, suponer que el voltaje inicial del capacitor C_1 es 1V, y que todas las condiciones iniciales restante son nulas. Mostrar que el voltaje a traves de g_4 para todo $t \ge 0$ está dado por la siguiente ecuación:

$$v_{4_n}(t) = 0.225e^{\alpha t}\cos\beta t - 0.0087e^{\alpha t}\sin\beta t - 0.1434e^{\lambda_3 t} - 0.0791e^{\lambda_4 t}$$
(13)

Dónde $\alpha=-0,5563,\ \beta=0,9145,\ \lambda_3=-1,1255$ y $\lambda_4=-0,6786.$ Los valores de los elementos son $g_1=1S,\ g_2=2S,\ g_3=3S,\ g_4=4S,\ C_1=C_2=1F,\ L_1=L_2=1H.$ Graficar la proyección de la trayectoria de estado en distintos planos 2D para estudiar la dinámica del circuito.


```
syms \ t \ vc1(t) \ vc2(t) \ il1(t) \ il2(t);
```

Valores de los componentes

```
g1 = 1;

g2 = 2;

g3 = 3;

g4 = 4;

L1 = 1;

L2 = 1;

C1 = 1;

C2 = 1;
```

Se plantean las ecuaciones y se obtienen las matrices de la forma generalizada

```
 \begin{aligned} M &= \begin{bmatrix} C1*(1/g1 \ + \ 1/g3) \ 0 \ 0 \ 0; 0 \ 0 \ L1 \ -L2; -C1/g3 \ C2/g4 \ 0 \ L2; 0 \ \dots \\ &C2*(-1/g2-1/g4) \ 0 \ 0]; \\ N &= \begin{bmatrix} 1 \ 0 \ 1/g1 \ -1/g3; -1 \ 1 \ 0 \ 0; 0 \ 0 \ 1/g4 + 1/g3; \ 0 \ -1 \ 1/g2 \ -1/g4]; \\ u &= \begin{bmatrix} 0; 0; 0; 0; 0 \end{bmatrix}; \end{aligned}
```

Se expresan las matrices de la forma normalizada

```
A = -1.*(M\backslash N)
A = 4x4
-0.7500
                        -0.7500
                    0
                                      0.2500
                           -0.3333
0 -1.3333
                   0.6667
0.7500
           -0.6667
                       -0.4167
                                    -0.4167
-0.2500
              0.3333
                         -0.4167
                                     -0.4167
B = M \setminus u
```

```
B = 4x1
0
0
0
vc01 = 1;
vc02 = 0;
i101 = 0;
il02 = 0;
Xant = [vc01; vc02; il01; il02]
Xant = 4x1
1
0
0
[T, lambda] = eig(A);
syms t;
elambda = diag(exp(eig(A).*t));
vpa (elambda, 4)
ans =
   e^{t(-0.5563+0.9145i)}
                           0
                                        0
                    e^{t(-0,5563-0,9145i)}
                                      e^{-1,125t}
H = T * elambda * inv(T);
```

Expresando la tensión vg4 en función de las corrientes IL2 e IC2 $\,$

```
Ic2 = C2* diff(v(2,:),t); 
Vg4 = (v(4,:) + Ic2)/g4; 
vpa(Vg4,4)
ans =
```

```
e^{-1,125t} \left(-0,1434+1,62510^{-17}i\right) + e^{-0,6786t} \left(-0,07908+1,43110^{-17}i\right) + e^{t(-0,5563-0,9145i)} (0,1112-0,00434+1,62510^{-17}i) + e^{t(-0,5563-0,9145i)} (0,1112-0,00434+1,0045i) + e^{t(-0,5563-0,9145i)} (0,1112-0,0045i) + e^{t(-0,5563-0,9145i)} (0,112
```

Trayectorias de estado

v = H * Xant;

```
% Valores de los componentes
g1 = 1; g2 = 2; g3 = 3; g4 = 4; L1 = 1; L2 = 1; C1 = 1; C2 = 1;
% Condiciones Iniciales
vc1 = 1; vc2 = 0; il1 = 0; il2 = 0;

% Valores de tiempo y paso
ti = 0; tf = 10;
h = 0.01;

% Matrices del circuito
% Lleva la forma de:
```

```
%M*(dx/dt) + N*x = u(t);
M = [C1*(1/g1 + 1/g3) \ 0 \ 0 \ 0; 0 \ 0 \ L1 \ -L2; -C1/g3 \ C2/g4 \ 0 \ L2; 0 \ \dots]
    C2*(-1/g2-1/g4) 0 0;
N = \begin{bmatrix} 1 & 0 & 1/g1 & -1/g3; -1 & 1 & 0 & 0; 0 & 0 & 0 & 1/g4 + 1/g3; & 0 & -1 & 1/g2 & -1/g4 \end{bmatrix};
u = [0; 0; 0; 0; 0];
% Condiciones iniciales
Xant = [vc1; vc2; il1; il2];
\% Se lleva a la forma
\% dx/dt = q(t) - P*x
P = -1.*(M\backslash N);
solu = [];
% éMtodo RK4
it = 1:
for i = ti:h:tf
k1 = (q + P * Xant) . * h;
Xant2 = Xant + (k1.*0.5);
k2 = (q + P*Xant2) .*h;
Xant3 = Xant + (k2.*0.5);
k3 = (q + P*Xant3).*h;
Xant4 = Xant + k3;
k4 = (q + P*Xant4).*h;
X = Xant + (k1 + 2.*k2 + 2.*k3 + k4)/6;
solu = [solu X];
Xant = X:
it = it + 1;
end
solu = solu ';
t = ti : h : tf;
```

```
plot(solu(:,3),solu(:,1),'-b');
hold on
plot(solu(:,3),solu(:,2),'-g');
hold on
plot(solu(:,4),solu(:,1),'-r');
hold on
plot(solu(:,4),solu(:,2),'-m');
hold off
title('Phase portrait');
xlabel('Corriente');
ylabel('ŏTensin');
legend({'VC1 vs iL1','VC2 vs iL1','VC1 vs iL2','VC2 vs iL2'})
```


2.8. Ejercicio 8

Mostar que en el circuito de la figura 2.8 el voltaje a través de R_2 es, con una precision de 4 dígitos:

$$v_2(t) = \int_0^t \left[0.4813e^{\lambda_1(t-\tau)} - 0.0440e^{\lambda_2(t-\tau)} \right] E(\tau) d\tau \tag{14}$$

Dónde $\lambda_1=-0.9645$ y $\lambda_2=-0.0882$. Asumir que todas las condiciones iniciales son cero. Sea la entrada un pulso $E(t)=\sin^2(\frac{\pi t}{5})$ para el intervalo de tiempo $0\leq t\leq 5,\, E(t)=0$ caso contrario. Encontrar el valor de $v_2(t)$ para el intervalo $0\leq t\leq 10$. Usar convolución numérica y comparar la solución con la obtenida por $Backwar\ Euler$. Los valores de los elementos son $C_1=1F,\, C_2=2F,\, C_3=3F,\, C_4=4F,\, C_5=5F,\, C_6=6F,\, y\, R_1=R_2=1\Omega$

Respuesta al impulso

La matriz de admitancias

$$Y = \begin{bmatrix} 1/R1 + s*C1 + s*C5 - s*C5 - s*C1 & 0; & -s*C5 & \dots \\ s*C5 + s*C2 + 1/R2 & 0 & -s*C2; -s*C1 & 0 & s*C1 + s*C3 + s*C6 & -\dots \\ s*C6; 0 & -s*C2 & -s*C6 & s*C6 + s*C4 + s*C2 \end{bmatrix}$$

$$Y = \begin{pmatrix} C_1 s + C_5 s + \frac{1}{R_1} & -C_5 s & -C_1 s & 0 \\ -C_5 s & C_2 s + C_5 s + \frac{1}{R_2} & 0 & -C_2 s \\ -C_1 s & 0 & C_1 s + C_3 s + C_6 s & -C_6 s \\ 0 & -C_2 s & -C_6 s & C_2 s + C_4 s + C_6 s \end{pmatrix}$$

$$Is = [E1/R1;0;0;0]$$

$$\begin{array}{ccc}
\operatorname{Is} & = \\
\begin{pmatrix} \frac{E_1}{R_1} \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$egin{aligned} & x = [\,v1\,;v2\,;v3\,;v4\,]\,; \ & Y ackslash (\,I\,s\,) = = x\,; \ & e\,q\,s = Y * x = = I\,s\,; \ & s\,ol\,u = s\,ol\,v\,e\,(\,e\,q\,s\,)\,; \end{aligned}$$

Reemplazando los valores del circuito

$$C1 = 1; C2 = 2; C3 = 3; C4 = 4; C5 = 5; C6 = 6; R1 = 1; R2 = 1; E1 = 1;$$

La función de transferencia H(s) = V2(s)/E(s)

$$v2s = subs(solu.v2)$$

$$v2s = \frac{432s}{988s^2 + 1040s + 84}$$

La respuesta al impulso es

$$ext{vpa(rewrite(ilaplace(v2s),'exp'),4)}$$

ans =
$$0.4372e^{-0.5263t} (1.101e^{-0.4382t} - 0.1006e^{0.4382t})$$

 $v2(t) = 0.4813e^{-0.9645t} - 0.04398e^{-0.0881t}$

Solución con Backward-Euler

```
clear all;
% Valores de los componentes
R1 = 1; R2 = 1; C1 = 1; C2 = 2; C3 = 3; C4 = 4; C5 = 5; C6 = 6;
% Matrices forma general
M = [C1*R1 \ 0 \ C5*R1 \ 0; -R2*C2 \ 0 \ (C5*R2 + R2*C2) \ -R2*C2; \ C1 \ ...
     -C3 \ 0 \ -C6; C2 \ -C4 \ -C2 \ C6 + C4 + C2];
N = \begin{bmatrix} 1 & 1 & 0 & 0; -1 & -1 & 1 & 0; 0 & 0 & 0; 0 & 0 & 0 \end{bmatrix};
% Matriz forma normal
A = -1.*(M\backslash N);
% Condiciones iniciales
v01 = 0; v02 = 0; v03 = 0; v04 = 0; v05 = 0; v06 = 0;
Xant = [v01; v03; v05; v06];
clear t
solu = [];
ti = 0;
tf = 10;
h = 0.1;
for t = ti:h:tf
if t < 5
E = (\sin(0.2*pi*t))^2;
else
E = 0;
\quad \text{end} \quad
u = [E; 0; 0; 0];
X = ((((1/h).*M) + N) \setminus u) + ((((1/h).*M) + N) \setminus ...
     ((1/h).*M)*Xant);
solu = [solu X];
Xant = X;
end
t=\,t\,i:h\colon t\,f\;;
```

```
vr2 = solu(1,:) + solu(2,:) - solu(3,:);
plot(t, vr2)
hold on;
```

Solución convolución numérica

```
clear all;
syms t tau
E = sin(pi/5*tau)^2*(heaviside(tau)-heaviside(tau-5));
imp = 0.4813*exp(-0.9645*(t-tau))-0.0440*exp(-0.0882*(t-tau));
v2int = int(imp*E,tau,0,t);
fplot(v2int,[0,10])
hold off;

legend({'Euler', '6Convolucin'})
title('Respuesta temporal VR2')
xlabel('tiempo [s]')
ylabel('Voltaje [V]')
```


2.9. Ejercicio 9

Mostrar que la respuesta al impulso de una escalera de 5 secciones de la figura 2.9, que modela una longitud de interconexión en un circuito integrado, teniendo en cuenta que la salida es el último nodo, que $R = 1\Omega$ y C = 0.1F y la expresión es:

$$v_{out}(t) = 0.554e^{\lambda_1 t} - 1.788e^{\lambda_2 t} + 2.720e^{\lambda_3 t} - 2.500e^{\lambda_4 t} + 1.014e^{\lambda_5 t}$$
(15)

Dónde los valores de λ_n son los siguientes:

$$\lambda_1 = -36,8250$$
 $\lambda_2 = -28,3083$ $\lambda_3 = -17,1537$ $\lambda_4 = -6,9028$ $\lambda_5 = -0,8101$

Respuesta al impulso

syms C1 C2 C3 C4 C5 s R1 R2 R3 R4 R5 E1 v1 v2 v3 v4 v5;

La matriz de admitancias

$$Y = \begin{bmatrix} 1/R1 + s*C1 + 1/R2 & -1/R2 & 0 & 0 & 0; & -1/R2 & 1/R2 + s*C2 + 1/R3 & -1/R3 & \dots \\ 0 & 0;0 & -1/R3 & 1/R3 + s*C3 + 1/R4 & -1/R4 & 0; & 0 & 0 & -1/R4 & \dots \\ 1/R4 + s*C4 + 1/R5 & -1/R5; & 0 & 0 & 0 & -1/R5 & 1/R5 + s*C5 \end{bmatrix}$$

```
\begin{split} & Is = [\,E1/R1\,;0\,;0\,;0\,;0\,]\,; \\ & x = [\,v1\,;v2\,;v3\,;v4\,;v5\,]\,; \\ & Y\backslash \ (\,Is\,) = = x\,; \\ & eqs = Y*x = = Is\,; \\ & solu = solve\,(\,eqs\,)\,; \end{split}
```

Reemplazando los valores del circuito

$$C1 = 0.1; C2 = 0.1; C3 = 0.1; C4 = 0.1; C5 = 0.1; R1 = 1; R2 = 1; R3 = 1; R4 = 1; R5 = 1; E1 = 1; R1 = 1; R2 = 1; R3 = 1; R4 = 1; R5 = 1; R1 = 1; R1 = 1; R2 = 1; R3 = 1; R4 = 1; R5 = 1; R5 = 1; R1 = 1; R1 = 1; R1 = 1; R2 = 1; R3 = 1; R4 = 1; R5 = 1; R5 = 1; R1 = 1; R2 = 1; R3 = 1; R4 = 1; R5 = 1; R1 = 1; R2 = 1; R3 = 1; R4 = 1; R1 = 1; R1$$

La función de transferencia H(s) = V5(s)/E(s)

$$v5s = subs (solu.v5)$$

$$v5s = \frac{1}{\frac{s^5}{100000} + \frac{9s^4}{10000} + \frac{7s^3}{250} + \frac{7s^2}{20} + \frac{3s}{2} + 1}$$

$$v5t = vpa (rewrite (ilaplace (v5s), 'exp'), 4)$$

$$v5t = \frac{2.72e^{-17,15t} + 0.5539e^{-36,83t} + 1.014e^{-0.8101t} - 2.5e^{-6,903t} - 1.788e^{-28,31t}$$

Respuesta al pulso con método Backward Euler

```
 \begin{array}{l} vc1=0; vc2=0; vc3=0; vc4=0; vc5=0; \\ Xant=\left[vc1; vc2; vc3; vc4; vc5\right]; \\ ti=0; \\ tf=10; \\ h=0.01; \\ M=\left[C1\ 0\ 0\ 0\ 0;\ 0\ C2\ 0\ 0\ 0;\ 0\ 0\ C3\ 0\ 0;\ 0\ 0\ 0\ C4\ 0;\ 0\ 0\ 0\ 0\ C5\right]; \\ N=\left[1/R1+1/R2\ -1/R2\ 0\ 0\ 0;\ -1/R2\ 1/R2+1/R3\ -1/R3\ 0\ 0;\ 0\ -\dots \right. \\ 1/R3\ 1/R3+1/R4\ -1/R4\ 0;\ 0\ 0\ -1/R4\ 1/R4+1/R5\ -1/R5;\ 0\ 0\ 0\ -\dots \\ 1/R5\ 1/R5\right]; \\ solu=\left[\right]; \\ it=1; \\ for\ i=\ ti:h:tf \\ \%\ Fuente\ variable \\ if\ i<1 \end{array}
```

```
E(it, 1) = 1;
e\,l\,s\,e
E(it, 1) = 0;
end
\% Se calcula el valor de la matriz u para cada punto
u = [E(it, 1)/R1; 0; 0; 0; 0; 0];
X = \left( \left( \left( \left( \left( 1/h \right).*M \right) + N \right) \setminus \ u \right) \ + \ \left( \left( \left( \left( \left( 1/h \right).*M \right) + N \right) \setminus \ \left( \left( 1/h \right).*M \right) *Xant \right); \right.
solu = [solu X];
Xant = X;
it = it + 1;
end
t = ti : h : tf;
clf;
plot(t, solu(5,:),'--b')
hold on
fplot(v5t,[0,10],'-b')
ylim ([0,0.7])
grid;
legend ({ 'Rta. Pulso', 'Rta. Impulso'})
title ('Respuesta temporal VC5(t)')
xlabel('tiempo [s]')
ylabel ('Voltaje [V]')
```


2.10. Ejercicio 10

Considerar un circuito LC de cuarto orden que consiste en un inductor L_1 en serie con un capacitor C_1 y con una combinación paralelo de un inductor L_2 y un capacitor C_2 . Sea $L_1 = 1H$, $C_1 = \frac{1}{25}F$, $L_2 = 18H$ y $C_2 = \frac{1}{72}F$. Sean las variables de estado i_{L1} , i_{L2} , v_{C1} , v_{C1} . Mostrar que las respuestas a una condición inicial $v_{C1} = 1V$ son:

$$i_{L1} = \frac{-16}{165}\sin(10t) - \frac{1}{33}\sin(t)$$
 $v_{C1} = \frac{25}{33}\cos(t) + \frac{8}{33}\cos(10t)$

$$i_{L2} = \frac{-4}{99}\sin(t) + \frac{2}{495}\sin(10t)$$
 $v_{C2} = \frac{8}{11}\cos(10t) - \frac{8}{11}\cos(t)$

Se definen simbólicas las variables

$$syms \ t \ vc1(t) \ vc2(t) \ il1(t) \ il2(t) \ L1 \ L2 \ K1 \ K2;$$

Se plantean las ecuaciones y se obtienen las matrices de la forma generalizada

$$M = [-K1 \ 0 \ 0 \ 0; 0 \ K2 \ 0 \ 0; 0 \ 0 \ L1 \ L2; 0 \ 0 \ 0 \ -L2]$$

$$\begin{pmatrix}
-K_1 & 0 & 0 & 0 \\
0 & K_2 & 0 & 0 \\
0 & 0 & L_1 & L_2 \\
0 & 0 & 0 & -L_2
\end{pmatrix}$$

$$N = [0 \ 0 \ 1 \ 0; \ 0 \ 0 \ -1 \ 1; 1 \ 0 \ 0 \ 0; 0 \ 1 \ 0 \ 0]$$

$$u = [0; 0; 0; 0]$$

$$u = 4x1$$

0

0

0

Se expresan las matrices de la forma normalizada

$$A = -1.*(M\backslash N)$$

Se definen las variables de estado

$$x = [vc1; vc2; il1; il2]$$

$$x(t) = \begin{cases} vc_1(t) \\ vc_2(t) \\ il_1(t) \\ il_2(t) \end{cases}$$

Expresando el sistema en forma diferencial

```
\begin{aligned} \operatorname{odes} &= \operatorname{diff}(\mathbf{x}) &= = \operatorname{A} * \mathbf{x} \\ \operatorname{odes}(\mathbf{t}) &= \\ &\left( \begin{array}{c} \frac{\partial}{\partial t} \operatorname{vc}_1(t) = \frac{\mathrm{il}_1(t)}{K_1} \\ \frac{\partial}{\partial t} \operatorname{vc}_2(t) = \frac{\mathrm{il}_1(t)}{K_2} - \frac{\mathrm{il}_2(t)}{K_2} \\ \frac{\partial}{\partial t} \operatorname{il}_1(t) = -\frac{\operatorname{vc}_1(t)}{L_1} - \frac{\operatorname{vc}_2(t)}{L_1} \\ \frac{\partial}{\partial t} \operatorname{il}_2(t) = \frac{\operatorname{vc}_2(t)}{L_2} \end{array} \right) \end{aligned}
```

Reemplazando los valores de los componentes

```
clear K1 K2 L1 L2;

syms C1 C2 C3 C4;

K1 = 1/25; K2 = 1/72; L1 = 1; L2 = 18;

A = subs(A);
```

Las ecuaciones diferenciales son

```
odes = diff(x) = = A*x;
```

Definiendo las condiciones iniciales y tiempo de simulacion

```
 \begin{array}{l} vc01 = 1; \\ vc02 = 0; \\ i101 = 0; \\ i102 = 0; \\ ti = 0; \\ tf = 10; \\ Xant = [vc01; vc02; i101; i102]; \\ constantes = x(0) = Xant; \\ [i11Sol(t), i12Sol(t), vc1Sol(t), vc2Sol(t)] = ... \\ dsolve(odes, constantes); \end{array}
```

Tensión en C1

```
vc1Sol
```

$$\frac{\text{vc1Sol(t)}}{33} + \frac{25\cos(t)}{33}$$

Tensión en C2

vc2Sol

$$\frac{\operatorname{vc} 2 \operatorname{Sol}(t)}{11} - \frac{8 \cos(10t)}{11}$$

Corriente en L1

illSol

$$\begin{array}{ll} {\rm i} \, 11 \, {\rm S} \, {\rm o} \, {\rm I} \, (\, t\,) & = \\ - \frac{16 \, {\rm sin} \, (10 t)}{165} \, - \frac{{\rm sin} \, (t)}{33} \end{array}$$

Corriente en L2

il2Sol

$$\frac{112 \,\mathrm{Sol}\,(\,\mathrm{t}\,)}{495} = \frac{2 \sin{(10t)}}{495} - \frac{4 \sin{(t)}}{99}$$

```
fplot(il1Sol,vc1Sol,[ti,tf])
title('Phase Portrait')
xlabel('iL1[A]')
ylabel('VC1 [V]')
```



```
fplot(il1Sol, vc2Sol,[ti,tf])
title('Phase Portrait')
xlabel('iL1[A]')
ylabel('VC2 [V]')
```



```
fplot(il2Sol, vc1Sol, [ti, tf])
title('Phase Portrait')
xlabel('iL2[A]')
ylabel('VC1 [V]')
```



```
fplot(il2Sol, vc2Sol, [ti, tf])
title('Phase Portrait')
xlabel('iL2[A]')
ylabel('VC2 [V]')
```


3. Conclusión

Se encontró una herramienta muy útil para estudiar la dinámica de circuitos eléctricos que puede ser implementada de forma muy sencilla, plantear las ecuaciones de estado y obtener soluciones rápidamente. Se aumentó la noción sobre el funcionamiento de software de simulación SPICE, ya que las ecuaciones se pueden plantear de forma sistemática y con los métodos vistos se vuelve trivial su resolución. En este trabajo se aplicaron conceptos de métodos numéricos, álgebra lineal, ecuaciones diferenciales, teoría de grafos y convolución de señales adquiridos en la carrera, lo que muestra que la Teoría de Circuitos es una rama multidisciplinaria dentro de la matemática aplicada y no sólo una base para simplificar cálculos en temas más avanzados de Ingeniería Electrónica.

4. Bibliografía

- Wing, O. (2008). Classical circuit theory (Vol. 773). Springer Science & Business Media.
- Strogatz, S. (2001). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (studies in nonlinearity).
- Najm, F. N. (2010). Circuit simulation. John Wiley & Sons.
- Bendtsen, C., & Thomsen, P. G. (1999). Numerical solution of differential algebraic equations. IMM, Department of Mathematical Modelling, Technical University of Denmark.
- Zelenkov, A. A. (2011). Transient Analysis using state variables in the examples.
- Sander, K. F., & Hammond, P. (1964). Linear network theory. Pergamon Press.
- Chapra, S. C., & Canale, R. P. (2011). Numerical methods for engineers (Vol. 2). New York: Mcgraw-hill.
- Grossman, S. I., Godoy, J. J. F., & Ernesto, D. S. A. (1983). Álgebra lineal (No. 968-422-984-4. 04-A1 LU. CG-01.). Grupo editorial iberoamericana.