Analisi Matematica 2 - prof. E.Maluta - 15 giugno 2020

Ogni risposta va scritta nello spazio individuato dal numero del corrispondente quesito sul foglio delle risposte e va motivata con calcoli o/e spiegazioni sintetiche.

- 1. Calcolare $\int_Q \frac{1}{x^2 + y^2} dx dy$ dove $Q = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 2 \land 0 \le x \le \sqrt{3}y\}$
- 2. Calcolare $\int_0^1 \sin x^2 dx$ a meno di 10^{-3} ;
- 3. Un'equazione lineare omogenea del II ordine ha tra le proprie soluzioni $\phi_1(t) = e^{-2t}$ e $\phi_2(t) = te^{-2t}$. Quante soluzioni dell'equazione passano per il punto (0,3)? Determinarle.
- 4. Determinare tutte le soluzioni dell'equazione $y' = 10y y^2$;
- 5. Dato il sistema

$$y'(t) = Ay(t)$$

con

$$A = \begin{pmatrix} 3 & 2 \\ 0 & -1 \end{pmatrix}$$

stabilire se esistono soluzioni non nulle limitate in un intorno di $+\infty$ e in caso affermativo determinarle.

- 6. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ la funzione definita da $f(x,y) = y^2 8x^2 + x^4$. Dopo aver giustificato la differenziabilità di f su tutto \mathbb{R}^2 scrivere l'equazione del piano tangente al grafico di f nel punto (2,1,f(2,1)).
- 7. Per la f del punto precedente, determinare gli eventuali punti di massimo o di minimo locale su \mathbb{R}^2 .
- 8. Per la f del punto precedente, determinare $\operatorname{Sup}(f)$ e $\operatorname{Inf}(f)$ su \mathbb{R}^2 , precisando se sono Massimo e Minimo assoluto.
- 9. Per la f del punto precedente, disegnare la curva di livello 0 di f.
- 10. Scrivere un'equazione parametrica della curva γ arco della parabola di equazione $y=1-x^2$ percorso dal punto (0,1) al punto (2,-3) e determinare il relativo vettore tangente.
- 11. Sia **F** il campo vettoriale piano definito da $\mathbf{F}(x,y) = 2xy\mathbf{i} + (1+x^2)\mathbf{j}$. Scrivere, come integrale di una sola variabile t, il lavoro

$$\int_{\gamma} \mathbf{F} \cdot (dx, dy)$$

dove γ è la curva parametrizzata nel precedente esercizio e calcolarlo.

- 12. Con riferimento alla domanda precedente, stabilire se \mathbf{F} ammette potenziale su \mathbb{R}^2 .
- 13. Scrivere il generico problema di Cauchy per un'equazione lineare del II ordine y'' + a(t)y' + b(t)y = f(t) ed enunciare per tale problema il teorema di esistenza e unicità della soluzione.