Twierdzenie. Niech $k \in \mathbb{N}_1$ i niech G bdzie k-regularnym grafem dwudzielnym. Krawdzie G mona podzieli na k skojarze doskonaych.

Dowód. Niech podzia wierzchoków w grafie dwudzielnym to $\{A,B\}$. Dla $S \subseteq A$ mamy $E_A \subseteq E_{N(S)}$, bo kada krawd z E_S jest przylega do ssiada czego z S. Mamy $|E_S| = k|S|$ i $|E_{N(S)}| = k|N(S)|$, wic $|S| \le |N(S)|$ i z twierdzenia Halla istnieje skojarzenie nasycajce A, a e $k|A| = |E| = k|B| \implies |A| = |B|$, to skojarzenie jest doskonae. Po usuniciu go mamy graf (k-1)-regularny – indukcja.

Twierdzenie. Niech k bdzie parzyst i dodatni liczb naturaln, a G grafem k-regularnym. Istnieje $H \subseteq G$ taki, e V(H) = V(G) i H jest sum rozcznych cykli.

Dowód. Spójne skadowe G maj cykle Eulera, tworzymy graf G' o wierzchokach v^-, v^+ : jeli w cyklu Eulera jest $v \to w$, to $v^+w^- \in E(G')$. Graf G' jest dwudzielny (podzia na wierzchoki z plusem i minusem) i $\frac{k}{2}$ -regularny (dla kadego wierzchoka poowa krawdzi jest wchodzca, a poowa wychodzca), a wic ma skojarzenie doskonae. Po scaleniu wierzchoków v^-, v^+ (powrocie do G) to skojarzenie daje rozczne cykle (kady wierzchoek ma dokadnie dwie krawdzie).

Twierdzenie. Niech G bdzie grafem 3-regularnym bez mostów. G ma skojarzenie doskonae.

Dowód. Wemy $S \subseteq V(G)$ i H bdce skadow G-S takie, e 2 ∤ |H|. Jeli w G jest parzycie wiele krawdzi midzy H a S (powiedzmy 2ℓ), to w G[H] jest $\sum \deg(v) = 3|H| - 2\ell$, co jest nieparzyste. Zatem jest nieparzycie wiele krawdzi midzy S i H, ale nie jedna, bo nie ma mostów. S wic co najmniej 3. Zatem wszystkich krawdzi wychodzcych do S z nieparzystych skadowych G-S jest co najmniej 3 odd(G-S), ale co najwyej 3|S|, wic odd $(G-S) \le |S|$ i z twierdzenia Tutte'a istnieje skojarzenie doskonae.

Twierdzenie. Niech G bdzie grafem i $k \in \mathbb{N}_1$. G zawiera skojarzenie licznoci k wtedy i tylko wtedy, gdy dla kadego $S \subseteq V(G)$ zachodzi odd $(G - S) \le |S| + |V(G)| - 2k$.

Dowód. Niech $d = \max\{odd(G-S) - |S|\}$. Bdziemy wykazywa równowano z nierównoci $2k \leq |V(G)| - d$. (\Longrightarrow) Co najmniej jeden wierzchoek kadej z odd(G-S) nieparzystych skadowych musi by skojarzony z czym z S (wewntrz jego skadowej nie mona zrobi par, bo jest nieparzycie wiele wierzchoków), wic d wierzchoków musi pozosta bez skojarzenia i skada si ono z co najwyej |V(G)| - d wierzchoków.

(←) Widzimy, e $d \ge 0$ (wiadczy o tym $S = \emptyset$), a d jest tej samej parzystoci, co |V(G)| (parzysto odd(G-S)-|S| nie zostanie zmieniona przez adn z parzystych skadowych). Tworzymy graf G', dodajc do G zbiór D o d wierzchokach tworzcych klik i poczonych ze wszystkim z V(G). G' spenia warunek Tutte'a: dla $S' = \emptyset$ jest odd(G' - S') = 0, bo jest tylko jedna skadowa z parzyst iloci wierzchoków (V(G) + d parzyste); jak $D \subseteq S'$, to G' - S' ma jedn skadow i $1 \le |S'|$; jak $D \subset S'$, to dla $S = S' \setminus D$ jest odd(G' - S') =odd $(G - S) \le |S| + d = |S'|$, gdzie nierówno wynika z definicji d. Zatem G' ma skojarzenie doskonae, a po usuniciu z niego D dalej jest w nim V(G) - d wierzchoków.

Twierdzenie. G jest k-spójny wtedy i tylko wtedy, gdy pomidzy dowolnymi dwoma wierzchokami $x, y \in V(G)$ istnieje k wierzchokowo rozcznych cieek z x do y.

Dowód. (\Longrightarrow) Zaómy, e istnieje mniej cieek. Dla nieprzylegych x,y twierdzenie Mengera odpalone na ich ssiedztwach daje, e wielko minimalnego separatora jest równa iloci rozcznych cieek, wic musi istnie krawd xy (inaczej istnieje separator mniejszy ni k). Rozwamy graf G' = G - xy. Istnieje w nim co najwyej k-2 rozdzielnych cieek $x \leadsto y$ (w G byo ich co najwyej k-1), zatem z twierdzenia Mengera istnieje separator X: |X| = k-2, a e |G'| > k, to istnieje wierzchoek $w \notin X \cup \{x,y\}$. X rozdziela w od x lub y (inaczej nowa cieka przez w), bez straty ogólnoci od x. Teraz $X \cup \{y\}$ oddziela w od x w G i ma liczno k-1, co daje sprzeczno.

 (\Leftarrow) Do odseparowania x i y potrzeba co najmniej po jednym wierzchoku z kadej z tych cieek.

Twierdzenie. Graf G jest 2-spójny wtedy i tylko wtedy, gdy dla dowolnych trzech rónych wierzchoków x, y, z w G istnieje cieka z x do z przechodzca przez y.

Dowód. (\Longrightarrow) Dodajmy wierzchoek w przylegy tylko do x,z. Graf dalej jest dwuspójny, bo w zawsze ma drugiego ssiada, który czy go z reszt grafu. w i y s nieprzylege, wie odpalaje twierdzenie Mengera na ich ssiedztwach dostajemy, e istniej co najmniej 2 rozczne cieki czee y i w. Jedna musi i przez x, a druga przez z, zatem mamy ciek $x \dots y \dots z$.

(\Leftarrow) Dla dowolnych trzech wierzchoków x,y,z istnieje cieka $x\ldots y\ldots z$, zatem po usuniciu x dalej istnieje cieka $y\leadsto z$. Wobec ich dowolnoci graf jest dwuspójny.