Causal Mediation

Mark Andrews Psychology Department, Nottingham Trent University

mark.andrews@ntu.ac.uk

Establishing causal effects

► We hypothesize that x causes y, and we aim to establish its causal effect.

- ► For example, y could be getting lung cancer, x could be smoking 20 cigarettes a day every day from an early age.
- For person i, $y_i \in \{0, 1\}$ is whether they get lung cancer and $x_i \in \{0, 1\}$ is whether they are a smoker (as just defined).

Confounds

► Of course, a third variable (or set of variables) *z* may also affect the value of *x* and *y*.

- ▶ For example, $z \in (-\infty, \infty)$ could be bad attitude towards healthy lifestyles generally. For example, if z is high, the person may have poor diet, lack of exercise, drink heavily, and smoke heavily.
- ▶ We will assume that we do not know *z*.

Potential outcomes framework

- In the *potential outcomes framework*, we consider what would have happened to any person i had they been *assigned* $x_i = 0$ or $x_i = 1$.
- ▶ If x_i was assigned the value of 0, then we say the potential outcomes of y_i is $y_i(0)$. Likewise, if x_i was assigned the value of 1, then we say the potential outcomes of y_i is $y_i(1)$.
- For person i, they always have two potential outcomes, $(y_i(0), y_i(1))$ and the causal effect of x_i is

$$\delta_{\mathfrak{i}}=y_{\mathfrak{i}}(1)-y_{\mathfrak{i}}(0).$$

► However, for any person i we observe

$$y_i = \begin{cases} y_i(0) & \text{if } x_i = 0, \\ y_i(1) & \text{if } x_i = 1. \end{cases}$$

▶ We only ever observe either $y_i(1)$ or $y_i(0)$ and never both, and so can never know δ_i . This is known as the *fundamental problem of causal inference*.

The power of randomization

- ▶ In observational studies, $(y_i(0), y_i(1))$ is not statistically independent of x_i .
- ► However, if x_i is assigned randomly, then $(y_i(0), y_i(1))$ is statistically independent of x_i .
- ► We can write this as follows:

$$(y_i(0), y_i(1)) \perp x_i$$

which means

$$P(y_i(1)|x_i) = P(y_i(1)),$$

 $P(y_i(0)|x_i) = P(y_i(0)).$

Average treatment effect (ATE)

► The average treatment effect (ATE) is the difference of average of the two potential outcomes.

$$\begin{split} \langle \delta \rangle &= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{i}, \\ &= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left(y_{i}(1) - y_{i}(0) \right), \\ &= \left(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} y_{i}(1) \right) - \left(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} y_{i}(0) \right), \\ &= \langle y(1) \rangle - \langle y(0) \rangle \end{split}$$

Average treatment effect under randomization

 \blacktriangleright When x_i is randomly assigned

$$\langle \mathbf{y}(0) \rangle = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} P(\mathbf{y}_i | \mathbf{x}_i = 0) = \hat{\mathbf{y}}_{[\mathbf{x}_i = 0]}$$

and

$$\langle y(1) \rangle = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} P(y_i | x_i = 1) = \hat{y}_{[x_i = 1]}$$

► Therefore,

$$\langle \mathbf{y}(1) \rangle - \langle \mathbf{y}(0) \rangle = \hat{\mathbf{y}}_{[\mathbf{x}_{i}=1]} - \hat{\mathbf{y}}_{[\mathbf{x}_{i}=0]}$$

Mediation

► In a mediation model, we hypothesize that the effect of x on y is, at least partially, mediated by m.

For example, to use a new example, attending a university (x) leads to high income (y) partially because it increases a person's social network (m).

Mediation and potential outcomes

- Assuming that x_i is binary, the potential values of the mediator are $(m_i(0), m_i(1))$.
- ► Thus, the potential outcomes are

$$y_i(0, m_i(0)), y_i(0, m_i(1)), y_i(1, m_i(0)), y_i(1, m_i(1)).$$

- For example, $y_i(1, m_i(0))$ is the value that y_i would take if $x_i = 1$ and m_i had the value it would take if $x_i = 0$.
- ▶ Using the concrete example, $y_i(1, m_i(0))$ is the income that person i would obtain had they been assigned to attend university, i.e. $x_i = 1$, but their social network is that which would have obtained had they not attended university.

Causal mediation, or indirect, effect

▶ The effect of the mediator when $x_i = 0$ is

$$\delta_{\mathfrak{i}}(0) = y_{\mathfrak{i}}(0, \mathfrak{m}_{\mathfrak{i}}(1)) - y_{\mathfrak{i}}(0, \mathfrak{m}_{\mathfrak{i}}(0))$$

which is the difference in the outcome that person i would have obtained had they not gone to university and \mathfrak{m}_i took the value of $\mathfrak{m}_i(1)$ rather than $\mathfrak{m}_i(0)$.

▶ The effect of the mediator when $x_i = 1$ is

$$\delta_{i}(1) = y_{i}(1, m_{i}(1)) - y_{i}(1, m_{i}(0))$$

which is the difference in the outcome that person i would have obtained had they gone to university and m_i took the value of $m_i(1)$ rather than $m_i(0)$.

► The *no-interaction* assumption is that

$$\delta_i = \delta_i(0) = \delta_i(1).$$

The direct effect

▶ The effect of the treatment when $m_i = m_i(0)$ is

$$\zeta_{i}(0) = y_{i}(1, m_{i}(0)) - y_{i}(0, m_{i}(0))$$

which is the difference in the outcome that person i would have obtained had they gone to university compared to if they had not, assuming m_i took the value of $m_i(0)$.

▶ The effect of the treatment when $m_i = m_i(1)$ is

$$\zeta_{i}(1) = y_{i}(1, m_{i}(1)) - y_{i}(0, m_{i}(1))$$

which is the difference in the outcome that person i would have obtained had they gone to university compared to if they had not, assuming m_i took the value of $m_i(1)$.

▶ Again, the *no-interaction* assumption is that

$$\zeta_i = \zeta_i(0) = \zeta_i(1).$$

Confounders

► In general, there may be observed confounders *z* that affect *x*, m, and y.

► In our example, family background or intelligence etc might be examples of such confounders.

Sequential ignorability

- Sequential ignorability assumes:
 - Potential outcomes and potential mediators are independent of treatment, conditional on covariates.
 - Potential outcomes are independent of the mediators, conditional on the treatment.
- ightharpoonup The first part holds if the treatment x is randomized.
- ► The second part does not necessarily even when x is randomized because the mediator is not randomized.

A general estimating algorithm

- ► Under sequential ignorability, we may estimate the average causal mediation effects (ACME) and average direct effect (ADE).
- ► Fit separate models outcome and mediator:
 - 1. Outcome model: $P(y_i|x_i, m_i, z_i)$.
 - 2. Mediator model: $P(m_i|x_i,z_i)$.

where z_i are covariates.

► There is no restriction, e.g. no linearity, normality, etc, restrictions, on the nature of these regression models.

A general estimating algorithm

▶ Using the mediator model, predict $m_i(0)$ and $m_i(1)$ as follows:

- 1. $m_i(0) = P(m_i|x_i = 0, z_i)$
- 2. $m_i(1) = P(m_i|x_i = 1, z_i)$
- ► Using the outcome model, predict $y_i(1, m_i(0))$ and $y_i(1, m_i(1))$ as follows:
 - 1. $y_i(1, m_i(0)) = P(y_i|x_i = 1, m_i = m_i(0), z_i)$
 - 2. $y_i(1, m_i(1)) = P(y_i|x_i = 1, m_i = m_i(1), z_i)$
- Calculate $\hat{\delta}_i = y_i(1, m_i(1)) y_i(1, m_i(0))$ and then

$$\hat{\delta} = \frac{1}{n} \sum_{i=1}^{n} \delta_i$$

is our estimator of δ , the average causal mediation effect (ACME).

A general estimating algorithm

▶ Using the outcome model, predict $y_i(1, m_i)$ and $y_i(0, m_i)$ as follows:

1.
$$y_i(1, m_i) = P(y_i|x_i = 1, m_i, z_i)$$

2. $y_i(0, m_i) = P(y_i|x_i = 0, m_i, z_i)$

Calculate $\hat{\zeta}_i = y_i(1, m_i) - y_i(0, m_i)$ and then

$$\hat{\zeta} = \frac{1}{n} \sum_{i=1}^{n} \zeta_i$$

is our estimator of ζ , the average direct effect (ADE).