Fundamentals of Wireless Communication

Capacity of Wireless Channels

Edward Kwao

Hanbat National University

24th October, 2022

Contents

☐ Introduction: Channel Performance

- **□** 5.1 AWGN Channel Capacity
- Repetition Coding
- Packing Spheres
- ☐ 5. 2 Resources of the AWGN Channel
- Capacity of AWGN Channel
- Power and Bandwidth
- Example 5.2

Introduction

Problem of communication over wireless fading channels **Techniques to achieve Optimal performance** such optimal achievable on a given performance channel

• The basic measure of performance is the *capacity* of a channel.

5.1 AWGN Channel Capacity

Real AWGN Channel:

$$y[m] = x[m] + w[m]$$

Importance:

I. Fundamental building block of all wireless channels

II. Insightful meaning to operational capacity and reliable communication at strictly positive data rate

Repetition Coding 1/2

Using Uncoded BPSK symbols:

$$x[m] = \pm \sqrt{P}$$

Error Probability is:

$$P_e = Q\left(\sqrt{P/\sigma^2}\right)$$

How can P_e be reduced?

Repetition code of block length *N* with codewords:

$$\mathbf{x}_{A} = \sqrt{P}[1, ..., 1]^{t}$$
 and $\mathbf{x}_{B} = \sqrt{P}[-1, ..., -1]^{t}$

If \mathbf{x}_A is transmitted, the received vector is:

$$y = \mathbf{x}_A + \mathbf{w}$$
Where, $\mathbf{w} = (w[1], ..., w[N])^t$

Repetition Coding 2/2

When does error occur?

When y is closer to x_B than x_A

Error Probability is:

Reliable Communication: **Possible with large N**

Rate: **1**/*N*

$$P_e = Q(\|\mathbf{x}_A - \mathbf{x}_B\|/2\sigma) = Q(\sqrt{NP/\sigma^2})$$

Improvement: —

M-level PAM

$$P_e = Q\left(\frac{\sqrt{NP}}{(M-1)\sigma}\right)$$

Reliable Communication: $M < \sqrt{N}$

Rate: log M/N

Data Rate bound: $(log(\sqrt{N}))/N$

Packing Spheres 1/3

Geometrically, repetition coding puts all the codewords (the *M* levels) in one dimension

By the law of large numbers, the *N*-dimensional received vector, $\mathbf{y} = \mathbf{x} + \mathbf{w}$ will, with high probability, lie within a *y*-sphere of radius $\sqrt{N(P + \sigma^2)}$.

Packing Spheres 2/3

On the other hand,

$$\lim_{N\to\infty} \frac{1}{N} \sum_{m=1}^{N} w^2[m] \to \sigma^2$$

- So, for large N, the received vector \mathbf{y} , lies with high probability, near the surface of a *noise sphere* of radius $\sqrt{N\sigma^2}$ around the transmitted codeword.
- Reliable communication ⇒ Noise spheres around codewords do not overlap

Packing Spheres 3/3

What is the maximum number of codewords that can be packed with non-overlapping noise spheres?

$$\frac{\left(\sqrt{N(P+\sigma^2)}\right)^N}{\left(\sqrt{N\sigma^2}\right)^N}$$

Maximum number of bits per symbol that can be reliably communicated is:

$$\frac{1}{N}\log\left(\frac{\left(\sqrt{N(P+\sigma^2)}\right)^N}{\left(\sqrt{N\sigma^2}\right)^N}\right) = \frac{1}{2}\log\left(1+\frac{P}{\sigma^2}\right)$$

This is the Capacity of real AWGN channel

5.2 Resources of the AWGN Channel

Capacity of AWGN Channel

The capacity of the channel is:

$$C_{awgn} = \log(1 + \text{SNR}) \dots (1) \text{ bps/Hz}$$

If average received power constraint is \overline{P} watts and noise psd N_0 watts/Hz

- (2) suggests that capacity of the channel depends on the basic resources:
- Received power $\overline{m{P}}$
- Bandwidth $oldsymbol{W}$

Bandwidth limited regime SNR \gg 1: Capacity logarithmic in received power but approximately linear in bandwidth.

Power limited regime SNR $\ll 1$: Capacity linear in received power but insensitive to bandwidth.

$$W\log\left(1+\frac{\bar{P}}{N_0W}\right) \approx W\left(\frac{\bar{P}}{N_0W}\right)\log_2 e = \frac{\bar{P}}{N_0}\log_2 e \dots \dots \dots \dots (3)$$

• From (4), the capacity is finite even if there is no bandwidth constraint.

The main objective is to minimize the required energy per bit ε_b

The minimum ε_b , $\frac{\bar{P}}{c_{awgn}(\bar{P},W)}$ is achieved when $\bar{P} \to 0$

$$\Rightarrow \left(\frac{\varepsilon_b}{N_0}\right)_{min} = \lim_{\bar{P}\to 0} \frac{\bar{P}}{C_{awgn}(\bar{P},W)N_0} = \frac{\bar{P}}{Wlog\left(1 + \frac{\bar{P}}{N_0W}\right)N_0} = \frac{1}{log_2e} = -1.59dB$$

30

• Narrowband systems are ill suited for universal frequency reuse since they do not average interference.

Wideband OFDM systems achieve universal frequency reuse.

• The main parameter of interest: $\rho \leq 1$

• In both systems, users within the cell are orthogonal and do not interfere.

Big Question: How about users at the edge of a cell?

The received SINR at the base-station for a cell edge user:

$$SINR = \frac{SNR}{\rho + f_{\rho}SNR}$$

SNR for the cell edge user:

$$\mathbf{SNR} \coloneqq \frac{\frac{P}{d^{\alpha}}}{N_o W} = \frac{P}{N_o W d^{\alpha}}$$

 f_{ρ} = the amount of total out-of-cell interference at a base-station

In one-dimensional linear array of base-stations: f_{ρ} decays roughly as ρ^{α} In two-dimensional hexagonal array of base-stations: f_{ρ} decays roughly as $\rho^{\alpha/2}$

In a simple model where the interference is considered to come from the center of the cell reusing the same frequency band,

Linear cellular system: f_{ρ} can be taken to be $2(\rho/2)^{\alpha}$

Hexagonal cellular system: f_{ρ} is taken as $6(\rho/4)^{\alpha/2}$

• The operating value of **SNR** is decided by the coverage of the cell.

Rate of reliable communication for a user at the edge of a cell:

$$R_{\rho} = \rho W \log_2(1 + SINR) = \rho W \log_2\left(1 + \frac{SNR}{\rho + f_{\rho}SNR}\right) \text{ bits/s...}$$
 (5)

What is the importance of (5)?

At low SNR: f_{ρ} is small relative to N_o , hence, rate is insensitive to ρ .

At high SNR: f_{ρ} grows and SINR peaks at $\frac{1}{f_{\rho}}$

General rule of thumb in practice:

Set SNR such that f_{ρ} is of the same order as the background noise

The largest rate is:

$$\rho W \log_2 \left(1 + \frac{1}{f_\rho} \right)$$

Figure 5.7 Rates in bits/s/Hz as a function of the SNR for a user at the edge of the cell for universal reuse and reuse ratios of 1/2 and 1/3 for the linear cellular system. The power decay rate α is set to 3.

Figure 5.8 Rates in bits/s/Hz as a function of the SNR for a user at the edge of the cell for universal reuse, reuse ratios 1/2 and 1/7 for the hexagonal cellular system. The power decay rate α is set to 3.

