COMS 4771 Machine Learning (Spring 2015) Problem Set #5

Solutions - coms4771@machinelearning.nyc Discussants: None

April 28, 2015

Problem 1

Let $x \in \{0,1\}^{m \times n}$ denote the matrix of labels provided by the workers.

Let $\hat{\boldsymbol{\theta}}$ be the current parameters. Define $q_i := \Pr_{\hat{\boldsymbol{\theta}}}(Y_i = 1 \mid \boldsymbol{X} = \boldsymbol{x})$ for each item $i \in [m]$. First, observe that independence assumptions imply that $q_i = \Pr_{\hat{\boldsymbol{\theta}}}(Y_i = 1 \mid \boldsymbol{X}_i = \boldsymbol{x}_i)$, where $\boldsymbol{X}_i = (X_{i,1}, X_{i,2}, \dots, X_{i,n})$ and $\boldsymbol{x}_i = (x_{i,1}, x_{i,2}, \dots, x_{i,n})$. By Bayes' rule,

$$q_i = \frac{\Pr_{\hat{\boldsymbol{\theta}}}(\boldsymbol{X}_i = \boldsymbol{x}_i \mid Y_i = 1) \Pr_{\hat{\boldsymbol{\theta}}}(Y_i = 1)}{\Pr_{\hat{\boldsymbol{\theta}}}(\boldsymbol{X}_i = \boldsymbol{x}_i \mid Y_i = 0) \Pr_{\hat{\boldsymbol{\theta}}}(Y_i = 0) + \Pr_{\hat{\boldsymbol{\theta}}}(\boldsymbol{X}_i = \boldsymbol{x}_i \mid Y_i = 1) \Pr_{\hat{\boldsymbol{\theta}}}(Y_i = 1)}.$$

The numerator is

$$\Pr_{\hat{\boldsymbol{\theta}}}(\boldsymbol{X}_i = \boldsymbol{x}_i | Y_i = 1) \Pr_{\hat{\boldsymbol{\theta}}}(Y_i = 1) = \hat{\pi}_i \prod_{j=1}^m \hat{r}_j^{x_{i,j}} (1 - \hat{r}_j)^{1 - x_{i,j}}.$$

The term in the denominator that isn't the same as the numerator is

$$\Pr_{\hat{\boldsymbol{\theta}}}(\boldsymbol{X}_i = \boldsymbol{x}_i \mid Y_i = 0) \Pr_{\hat{\boldsymbol{\theta}}}(Y_i = 0) = \hat{\pi}_i \prod_{j=1}^m \hat{p}_j^{1-x_{i,j}} (1 - \hat{p}_j)^{x_{i,j}}.$$

Therefore

$$q_i = \frac{\hat{\pi}_i \prod_{j=1}^m \hat{r}_j^{x_{i,j}} (1 - \hat{r}_j)^{1 - x_{i,j}}}{\hat{\pi}_i \prod_{j=1}^m \hat{r}_j^{x_{i,j}} (1 - \hat{r}_j)^{1 - x_{i,j}} + \hat{\pi}_i \prod_{j=1}^m \hat{p}_j^{1 - x_{i,j}} (1 - \hat{p}_j)^{x_{i,j}}}.$$

The complete log-likelihood of $\boldsymbol{\theta}$ given \boldsymbol{x} and true labels $\boldsymbol{Y} = (Y_1, Y_2, \dots, Y_m)$ is

$$\sum_{i=1}^{m} \left\{ Y_i \ln \pi_i + (1 - Y_i) \ln(1 - \pi_i) + \sum_{j=1}^{n} Y_i [x_{i,j} \ln r_j + (1 - x_{i,j}) \ln(1 - r_j)] + (1 - Y_i) [(1 - x_{i,j}) \ln p_j + x_{i,j} \ln(1 - p_j)] \right\}.$$

So the expected complete log-likelihood is

$$\sum_{i=1}^{m} \left\{ q_i \ln \pi_i + (1 - Y_i) \ln(1 - \pi_i) + \sum_{j=1}^{n} q_i [x_{i,j} \ln r_j + (1 - x_{i,j}) \ln(1 - r_j)] + (1 - q_i) [(1 - x_{i,j}) \ln p_j + x_{i,j} \ln(1 - p_j)] \right\}.$$

The maximizing parameters are

$$\hat{\pi}_i = q_i,$$

$$\hat{p}_j = \frac{\sum_{i=1}^m (1 - q_i)(1 - x_{i,j})}{\sum_{i=1}^m (1 - q_i)},$$

$$\hat{r}_j = \frac{\sum_{i=1}^m q_i x_{i,j}}{\sum_{i=1}^m q_i}.$$

So here are the E and M steps.

• E-step:

$$q_i := \frac{\hat{\pi}_i \prod_{j=1}^m \hat{r}_j^{x_{i,j}} (1 - \hat{r}_j)^{1 - x_{i,j}}}{\hat{\pi}_i \prod_{j=1}^m \hat{r}_j^{x_{i,j}} (1 - \hat{r}_j)^{1 - x_{i,j}} + \hat{\pi}_i \prod_{j=1}^m \hat{p}_j^{1 - x_{i,j}} (1 - \hat{p}_j)^{x_{i,j}}} \quad \forall i \in [m].$$

• M-step:

$$\hat{\pi}_{i} = q_{i} \quad \forall i \in [m],$$

$$\hat{p}_{j} = \frac{\sum_{i=1}^{m} (1 - q_{i})(1 - x_{i,j})}{\sum_{i=1}^{m} (1 - q_{i})} \quad \forall j \in [n],$$

$$\hat{r}_{j} = \frac{\sum_{i=1}^{m} q_{i} x_{i,j}}{\sum_{i=1}^{m} q_{i}} \quad \forall j \in [n].$$

Problem 2

This problem is just a matter of writing down the log partition function $G(\eta)$, taking its derivatives, and then solving some equations.

(a) Our domain is $\mathcal{X} = \{1, 2, ..., 6\}$. Let the first feature function be $T_1(x) = \mathbb{1}\{x = 4\}$, and let the second feature function be $T_2(x) = \mathbb{1}\{x \leq 3\}$. I'm going to use $\pi(x) = 1$ as the base distribution. (Using $\pi(x) = 1/6$ will give the same result.)

Then the log partition function $G(\eta)$ is

$$G(\eta) = \ln(e^{\eta_2} + e^{\eta_2} + e^{\eta_2} + e^{\eta_1} + e^0 + e^0) = \ln(e^{\eta_1} + 3e^{\eta_2} + 2).$$

Now take derivatives with respect to η_1 and η_2 :

$$\frac{\partial G(\boldsymbol{\eta})}{\partial \eta_1} = \frac{e^{\eta_1}}{e^{\eta_1} + 3e^{\eta_2} + 2}, \quad \frac{\partial G(\boldsymbol{\eta})}{\partial \eta_2} = \frac{3e^{\eta_2}}{e^{\eta_1} + 3e^{\eta_2} + 2}.$$

We now just solve the system of equations

$$\frac{\partial G(\boldsymbol{\eta})}{\partial \eta_1} = \frac{e^{\eta_1}}{e^{\eta_1} + 3e^{\eta_2} + 2} = 0.2, \quad \frac{\partial G(\boldsymbol{\eta})}{\partial \eta_2} = \frac{3e^{\eta_2}}{e^{\eta_1} + 3e^{\eta_2} + 2} = 0.2$$

for η_1 and η_2 . (I find it easier to solve for e^{η_1} and e^{η_2} .) Eventually you get $\eta_1 = -\ln(1.5)$ and $\eta_2 = -\ln(4.5)$. Now get p_1, p_2, \ldots, p_6 by plugging-in: you should get $\mathbf{p} = (1/15, 1/15, 1/15, 1/15, 1/15, 3/10, 3/10)$.

(b) This is similar. You should get p = (1/4, 1/4, 1/8, 1/8, 1/8, 1/8).

Problem 3

- 1. This is the binomial distribution Bin(m, p) where $p = 1/(1 + e^{-\eta})$. The domain is $\mathcal{X} = \{(x_1, x_2) \in \mathbb{Z}_+^2 : x_1 + x_2 = m\}$. The base measure is $\pi(x_1, x_2) = \binom{m}{x_1}$, and the sole feature function is $T_1(x_1, x_2) = x_1$. The natural parameter space is $\mathcal{N} = \mathbb{R}$ and the log partition function is $G(\eta) = m \ln(1 + e^{\eta})$.
- 2. Recall that AdaBoost can be interpreted as a descent algorithm for minimizing the exponential loss. Also, recall that for all x, the minimizer of $\hat{y} \mapsto \mathbb{E}[\ell_{\exp}(Y\hat{y})|X=x]$ is

$$\hat{y} = \frac{1}{2} \ln \frac{\eta(x)}{1 - \eta(x)}$$

where $\eta(x) := \Pr[Y = +1 | X = x].$

Therefore, for a given x, the prediction of $\eta(x)$ is

$$\frac{\exp(2g(x))}{1 + \exp(2g(x))}$$

where $g(x) := \sum_{t=1}^{T} \alpha_t f_t(x)$.

3. We should pick a value of λ such that $\lambda_k \geq \lambda$, as this guarantees

$$\operatorname{risk}(\hat{\boldsymbol{w}}_{\mathrm{pc}\,\lambda}) = \frac{\sigma^2 k}{n},$$

which goes to zero as $n \to \infty$. For such values of λ , the ratio $\operatorname{risk}(\hat{\boldsymbol{w}}_{\lambda})/\operatorname{risk}(\hat{\boldsymbol{w}}_{\mathrm{pc}\,\lambda})$ is at least

$$\frac{1}{k} \sum_{j=1}^{p} \left(\frac{\lambda_j}{\lambda_j + \lambda} \right)^2.$$

If all λ_i are at least λ , then the ratio is at least

$$\frac{1}{k} \sum_{j=k+1}^{p} \left(\frac{\lambda_j}{\lambda_j + \lambda} \right)^2 \ge \frac{p-k}{4k} = \Omega\left(\frac{p}{k}\right).$$

- 4. No. If π is the marginal distribution of Y_1 , and A is the transition matrix, then $\boldsymbol{\nu} := \boldsymbol{A}^{\top} \boldsymbol{\pi}$ is the marginal distribution of Y_2 . These need not be the same (unless $\boldsymbol{\pi}$ is a stationary distribution for the hidden state Markov chain), and hence the marginal distributions for X_1 and X_2 need not be the same. (If the conditional distribution of X_t given $Y_t = i$ is P_i , then the marginal distribution of X_1 is the mixture distribution $\pi_1 P_1 + \pi_2 P_2 + \cdots + \pi_k P_k$, while the marginal distribution of X_2 is $\nu_1 P_1 + \nu_2 P_2 + \cdots + \nu_k P_k$.)
- 5. Only (d) is uniquely defined.
 - (a) Let W_{pca} be the rank 10 PCA subspace for \boldsymbol{X} . Note that W_{pca} is a ten-dimensional subspace of \mathbb{R}^d . Each non-zero $\boldsymbol{v} \in W_{pca}$ is an eigenvalue of $\boldsymbol{X}^{\top}\boldsymbol{X}$ with eigenvalue one—hence, each is a "top eigenvector" of $\boldsymbol{X}^{\top}\boldsymbol{X}$.

- (b) Each non-zero $\mathbf{v} \in W_{\text{pca}}$ also determines a one-dimensional subspace which has the minimum squared reconstruction error among all one-dimensional subspaces.
- (c) Any orthonormal basis for W_{pca} is a set of ten unit-length eigenvectors for $X^{\top}X$ which are mutually orthogonal and each has corresponding eigenvalue one—hence, it is a set of top 10 unit-length eigenvectors for $X^{\top}X$.
- (d) Any other subspace of dimension ten (besides W_{pca}) must contain a unit-vector $\boldsymbol{u} \notin W_{\text{pca}}$ for which the empirical variance of the data points in direction \boldsymbol{u} is less than one: indeed, the residual vector $\boldsymbol{r} := (\boldsymbol{I} \boldsymbol{\Pi}_{W_{\text{pca}}}) \boldsymbol{u} \neq \boldsymbol{0}$ is orthogonal to W_{pca} , and hence the empirical variance of the data points in direction \boldsymbol{u} is $1 \|\boldsymbol{r}\|_2^2 < 1$. Hence, such a subspace cannot minimize the squared reconstruction error among all ten-dimensional subspaces.
- 6. The ordinary least squares optimization problem is

$$\min_{\boldsymbol{w} \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n (\langle \boldsymbol{w}, \boldsymbol{x}^{(i)} \rangle - y^{(i)})^2.$$

We start with some initial vector $\boldsymbol{w}^{(1)} \in \mathbb{R}^p$. Then for t = 1, 2, ..., n:

- (a) Compute $\boldsymbol{\lambda}^{(t)} := 2(\langle \boldsymbol{w}^{(t)}, \boldsymbol{x}^{(\pi(i))} \rangle y^{(\pi(i))}) \boldsymbol{x}^{(\pi(i))}$.
- (b) Update $\boldsymbol{w}^{(t+1)} := \boldsymbol{w}^{(t)} \eta_t \boldsymbol{\lambda}^{(t)}$.

Return $\boldsymbol{w}^{(n+1)}$.