Optimal mixing for two-state anti-ferromagnetic spin systems

Weiming Feng University of Edinburgh

joint work with

Xiaoyu Chen (Nanjing University)

Yitong Yin (Nanjing University)

Xinyuan Zhang (Nanjing University)

FOCS, Denver, CO, US, 2nd Nov 2022

Sampling, counting and phase transition

Boolean variables set V, weight function $w: \{-, +\}^V \to \mathbb{R}_{\geq 0}$ joint distribution μ :

$$\forall X = (X_v)_{v \in V} \in \{-, +\}^V, \qquad \mu(X) \propto w(X)$$

Sampling problem

Draw (approximate) random samples from distribution μ

Computational phase transition

computational complexity of sampling problem changes sharply around some parameters of μ

Hardcore gas model

- Graph G = (V, E): n-vertex and max degree Δ ;
- Fugacity parameter $\lambda \in \mathbb{R}_{\geq 0}$;
- Configuration $X \in \{-, +\}^V$
 - $X_v = +$: vertex v is **occupied**
 - $X_v = -$: vertex v is **unoccupied**
- $X \in \Omega$ if occupied vertices form an independent set
- Gibbs distribution μ :

$$\forall X \in \Omega, \quad \mu(X) \propto w(X) = \lambda^{|X|_+}.$$

 $|X|_+ = number\ of\ occupied\ vertices\ (X_v = +)$

Partition function
$$Z = 1 + 4\lambda + \lambda^2$$

Uniqueness Threshold

$$\lambda_c(\Delta) = \frac{(\Delta - 1)^{(\Delta - 1)}}{(\Delta - 2)^{\Delta}} \approx \frac{e}{\Delta}$$

Δ: maximum degree

Computational phase transition

- $\lambda < \lambda_c$: poly-time algorithm for sampling [Weitz06]
- $\lambda > \lambda_c$: no poly-time algorithm unless NP = RP [Sly10]

Uniqueness Threshold

$$\lambda_c(\Delta) = \frac{(\Delta - 1)^{(\Delta - 1)}}{(\Delta - 2)^{\Delta}} \approx \frac{e}{\Delta}$$

Δ: maximum degree

Computational phase transition

- bounded degree $\Delta = O(1)$
- δ in the exponent of n
- $\lambda \leq (1 \delta)\lambda_c \cdot \left(n^{O\left(\frac{\log \Delta}{\delta}\right)}\right)$ -time algorithms for sampling (via approx. counting) [Weitz06]
- $\lambda > \lambda_c$: no poly-time algorithm unless NP = RP [Sly10]

Glauber dynamics for hardcore model

Start from an arbitrary independent set *X*;

For each transition step do

- Lazy w.p. $\frac{1}{2}$, otherwise do as follows:
- Pick a vertex v uniformly at random;
- If $X_u = -$ for all neighbors u then $X_v = \begin{cases} + & \text{w. p. } \lambda/(1+\lambda) \\ & \text{w. p. } 1/(1+\lambda) \end{cases}$
- Else $X_v \leftarrow -$

Mixing time:
$$T_{\text{mix}} = \max_{X_0 \in \Omega} \min \left\{ t \mid d_{TV}(X_t, \mu) \leq \frac{1}{4e} \right\}$$
,

 $d_{TV}(X_t, \mu)$: the *total variation distance* between X_t and μ .

Previous works

Work	Condition	Mixing Time
Dobrushin 1970	$\lambda \le \frac{1-\delta}{\Delta-1}$	$O\left(\frac{1}{\delta}n\log n\right)$
Luby, Vigoda, 1999	$\lambda \le \frac{2(1-\delta)}{\Delta - 2}$	$O\left(\frac{1}{\delta}n\log n\right)$
Efthymiou <i>et al,</i> 2016	$\lambda \leq (1 - \delta)\lambda_c(\Delta)$ $\Delta \geq \Delta_0(\delta)$, girth ≥ 7	$O\left(\frac{1}{\delta}n\log n\right)$

Previous works

Work	Condition	Mixing Time
Dobrushin 1970	$\lambda \le \frac{1-\delta}{\Delta-1}$	$O\left(\frac{1}{\delta}n\log n\right)$
Luby, Vigoda, 1999	$\lambda \le \frac{2(1-\delta)}{\Delta - 2}$	$O\left(\frac{1}{\delta}n\log n\right)$
Efthymiou <i>et al,</i> 2016	$\lambda \leq (1 - \delta)\lambda_c(\Delta)$ $\Delta \geq \Delta_0(\delta)$, girth ≥ 7	$O\left(\frac{1}{\delta}n\log n\right)$
Anari, Liu, Oveis Gharan, 2020 improved by Chen, Liu, Vigoda, 2020	$\lambda \leq (1 - \delta)\lambda_c(\Delta)$	$n^{O(1/\delta)}$
Chen, Liu, Vigoda, 2021	$\lambda \leq (1 - \delta)\lambda_c(\Delta)$	$\Delta^{O(\Delta^2/\delta)} n \log n$
Chen, F. Yin, Zhang, 2021	$\lambda \le (1 - \delta)\lambda_c(\Delta)$	$e^{O(1/\delta)}n^2\log n$

Open question: Can we prove the optimal $O(n \log n)$ mixing for all degrees ?

Work	Mixing Time when $\lambda \leq (1 - \delta)\lambda_c(\Delta)$
Anari, Jain, Koehler, Pham, Vuong, 2021	$e^{O(1/\delta)}n\log n$ Balanced Glauber dynamics
Chen, F. Yin, Zhang (this work), 2022	$e^{O(1/\delta)}n\log n$
Chen, Eldan (this conference), 2022	$e^{O(1/\delta)}n\log n$

Theorem (hardcore model) [this work]

For any $\delta \in (0,1)$, any hardcore model satisfying $\lambda \leq (1-\delta)\lambda_c(\Delta)$, Glauber dynamics mixing time: $C(\delta)$ $n \log n$.

Optimal mixing for two-state anti-ferro spin systems in the uniqueness regime

- Ising model
- general spin systems on regular graphs
- strictly anti-ferro spin systems (both parameters β , $\gamma \leq 1$)

Hardcore model in uniqueness regime

- If λ is *close* to $\lambda_c(\Delta)$, e.g., $\lambda = 0.999 \lambda_c$ (near-critical) analyzing mixing time is *hard*
- If λ is *far-away* from $\lambda_c(\Delta)$, e.g., $\lambda \leq 0.1\lambda_c$ (sub-critical) analyzing mixing time is *easy*

Results for general joint distributions

A boosting result of modified log-Sobolev constant

for distributions satisfying

complete spectral independence and complete marginal stability

Anti-ferro 2-spin systems: guaranteed by the uniqueness condition

Modified log-Sobolev contant

 μ : a joint distribution over $\Omega \subseteq \{-, +\}^n$, e.g., the Gibbs distribution of hardcore model P: transition matrix of (lazy) Glauber dynamics on μ

Modified log-Sobolev (MLS) constant of Glauber dynamics : $\rho = \rho(P, \mu)$ such that

$$T_{\min} \le O\left(\frac{1}{\rho}\left(\log\log\frac{1}{\mu_{\min}}\right)\right) = O\left(\frac{\log n}{\rho}\right), \quad \mu_{\min} = \min_{\sigma \in \{-,+\}^V} \mu(\sigma) = \frac{1}{2^{O(n)}}$$

$$\rho = \Omega(1/n)$$

$$\rho = \inf \left\{ \frac{\mathcal{E}_{P}(f, \log f)}{\operatorname{Ent}_{\mu}[f]} \mid f : \Omega \to \mathbb{R}_{>0}, \operatorname{Ent}_{\mu}[f] > 0 \right\}$$

$$\mathcal{E}_{P}(f, \log f) = \sum_{x,y \in \Omega} \mu(x) P(x,y) \left(f_{x} - f_{y} \right) (\log f_{x} - \log f_{y})$$

$$\operatorname{Ent}_{\mu}[f] = \sum_{x} \mu(x) f_{x} \log f_{x} - \sum_{x} \mu(x) f_{x} \log \sum_{y} \mu(y) f_{y}$$

formal definition MLS constant

$$T_{\min} = O(n \log n)$$

t: time in **continuous-time** Glauber dynamics

d: KL-divergence between current and stationary distribution

Influence matrix and spectral independence

influence on v caused by a disagreement on u

 μ : a distribution over $\Omega \subseteq \{-1, +1\}^V$ $|V| \times |V|$ influence matrix $\Psi \in \mathbb{R}^{V \times V}$ such that

$$\Psi(u, v) = \left| \Pr_{\mu} [v = + | u = +] - \Pr_{\mu} [v = + | u = -] \right|$$

Influence matrix and spectral independence

Influence from u to v for conditional distribution

For any subset $S \subseteq V$, any feasible $\sigma \in \{-1, +1\}^{V \setminus S}$ μ_S^{σ} distribution on S conditional on σ

influence matrix $\Psi_s^{\sigma} \in \mathbb{R}^{S \times S}$ for conditional distribution

$$\Psi_{S}^{\sigma}(u,v) = \left| \Pr_{\mu_{S}^{\sigma}}[v = + | u = +] - \Pr_{\mu_{S}^{\sigma}}[v = + | u = -] \right|$$

Spectral independence (SI) [ALO20, CGŠV21, FGYZ21]

There is a constant C > 0 s.t. for all conditional distribution μ_S^{σ} , spectral radius of influence matrices $\rho(\Psi_S^{\sigma}) \leq C$.

Marginal stability [This work]

For any pinning $\sigma \in \{-, +\}^{\Lambda}$ and $v \notin \Lambda$, let

marginal ratio
$$R_v^{\sigma} = \frac{\mu_v^{\sigma}(+)}{\mu_v^{\sigma}(-)},$$

- $R_v^{\sigma} \leq \zeta$
- $R_v^{\sigma} \le \zeta R_v^{\sigma_S}$ for any $S \subseteq \Lambda$

Distribution with local fields

Magnetising joint distribution with local fields

Joint distribution μ over $\{-,+\}^V$, local fields $\phi=(\phi_v)_{v\in V}\in\mathbb{R}^V_{>0}$

local fields
$$\phi = (\phi_v)_{v \in V} \in \mathbb{R}^V_{>0}$$

$$(\boldsymbol{\phi} * \mu)(\sigma) \propto \mu(\sigma) \prod_{v \in V: \sigma_v = +} \phi_v$$

Hardcore model: $\mu(S) \propto \lambda^{|S|}$

Hardcore mode with local fields $\mu^{(\phi)}(S) \propto \lambda^{|S|} \prod_{v \in S} \phi_v = \prod_{v \in S} \lambda \phi_v$

Complete Spectral independence

There is constants C > 0 and $\epsilon > 0$ s.t.

for all local fields
$$\phi \in (0,1+\epsilon]^V$$
 (for all $v \in V$, $0 < \phi_v \le 1+\epsilon$),

 $(\phi * \mu)$ is spectrally independent with parameter C

Complete marginal stability

There is constants $\zeta > 0$ and $\epsilon > 0$ s.t.

for all local fields
$$\phi \in (0.1 + \epsilon]^V$$
 (for all $v \in V$, $0 < \phi_v \le 1$),

 $(\phi * \mu)$ is marginally stable with parameter ζ

Example: hardcore model (G, λ) :

any hardcore models $(G, (\lambda_v)_{v \in V})$ with $\lambda_v \leq (1 + \epsilon)\lambda$

are *spectrally independent and marginally stable*

spectral independence & marginal stability for *all* subcritical local fields

Boosting result for modified log-Sobolev constant [This work]

If μ is completely spectrally independent with parameter $C, \epsilon > 0$ and completely marginally stable with parameter $\zeta > 0$

then for any $\theta \in (0,1)$

$$\rho_{\text{mls}}^{\text{GD}}(\mu) \ge f(\theta, C, \epsilon, \zeta) \cdot \rho_{\text{minmls}}^{\text{GD}}(\theta * \mu), \qquad \theta_v = \theta \text{ for all } v \in V$$

 $\rho_{\text{minmls}}^{\text{GD}}(\boldsymbol{\theta} * \mu)$: minimum MLS constant of Glauber dynamics for all conditional distributions induced by $\boldsymbol{\theta} * \mu$.

Boosting result for modified log-Sobolev constant [This work]

If μ is completely spectrally independent with parameter $C, \epsilon > 0$ and completely marginally stable with parameter $\zeta > 0$

then for any $\theta \in (0,1)$

$$\rho_{\text{mls}}^{\text{GD}}(\mu) \ge f(\theta, C, \epsilon, \zeta) \cdot \rho_{\text{minmls}}^{\text{GD}}(\theta * \mu), \qquad \theta_v = \theta \text{ for all } v \in V$$

Boosting modified log-Sobolev constant with cost $\Theta(1)$

$$\rho_{\text{minmls}}^{\text{GD}}(\boldsymbol{\theta} * \boldsymbol{\mu}) = \Omega\left(\frac{1}{n}\right)$$

optimal mixing time bound

Boosting result for modified log-Sobolev constant [This work]

If μ is completely spectrally independent with parameter $C, \epsilon > 0$ and **completely marginally stable** with parameter $\zeta > 0$

then for any $\theta \in (0,1)$

$$\rho_{\mathrm{mls}}^{\mathrm{GD}}(\mu) \ge f(\theta, C, \epsilon, \zeta) \cdot \rho_{\mathrm{minmls}}^{\mathrm{GD}}(\theta * \mu), \qquad \theta_v = \theta \text{ for all } v \in V$$

 $\lambda \leq (1 - \delta)\lambda_c(\Delta)$

correlation decay marginal recursion [Weitz06,LLY13, ALO20 CLV20]

Complete SI & complete marginal stable with

•
$$C = O(1/\delta)$$

•
$$\epsilon = \Theta(1/\delta)$$

$$\bullet \quad \eta = O(1)$$

$$\theta \lambda \leq \frac{1}{2\Delta} \ll \lambda_c$$

Ricci curvature [EHMT17]

$$\rho_{\min}^{\text{GD}}(\boldsymbol{\theta} * \mu) \ge \frac{1}{4n}$$

$$\rho_{\text{mls}}^{\text{GD}}(\mu) = \Omega(1/n)$$

$$T_{\text{mix}} = O(n \log n)$$

$$T_{\min} = O(n \log n)$$

Proof Overview

θ -down up walk on μ

Transition step: given configuration $X \in \{-, +\}^V$

- pick θ fraction of variables $S \subseteq V$ uniformly at random
- resample $X_S \sim \mu_S(\cdot | X_{\overline{S}})$

down walk P_{down} up walk P_{up}

Glauber dynamics on μ : $\theta = \frac{1}{n}$ Block dynamics: $\theta = \Theta(1)$

distribution μ

complete SI complete MS

k-transformation

[Chen, F, Yin, Zhang, 2021]

distribution sequence

 $\mu_1,\mu_2,\mu_3,\mu_4,\dots$

complete SI MS

for all μ_k with large k

for all large k, down-walk of block dynamics on μ_k has KL divergence decay

[Anari, Jain, Koehler, Pahm, Vuong 2021 & this work]

boost modified log-Sobolev constant for Glauber dynamics on μ

 μ : distribution over $\{-, +\}^{[n]}$; probability generating function (PGF):

$$g_{\mu}(z_1, z_2, \dots, z_n) = \sum_{X \in \{-, +\}^{[n]}} \mu(X) \prod_{i \in [n]: X(i) = +} z_i$$

Product domination (PD): there exists a constant $0 < \alpha < 1$ such that

$$\forall (z_1, z_2, ..., z_n) \in \mathbb{R}^n_{>0}, \qquad g_{\mu}(z_1^{\alpha}, z_2^{\alpha}, ..., z_n^{\alpha})^{\frac{1}{\alpha}} \leq \prod_{i=1}^n (\mu_i(+1)z_i + \mu_i(-1))$$

α-fractional PGF

PGF of a **product distribution**, $X_i \sim \mu_i$ for each $i \in [n]$

product domination

∀ conditional distributions

Entropic independence

[Anari, Jain, Koehler, Pahm, Vuong 2021] block factorisation of entropy

[Caputo, Parisi, 2020]

block dynamics down-walk KL-decay complete spectral independence(SI)

marginal stability (MS)

product
domination
[this work]

$$\forall \mathbf{z} > 0 , R_{\alpha}(\mathbf{z}) = \frac{g_{\mu}(z_{1}^{\alpha}, z_{2}^{\alpha}, ..., z_{n}^{\alpha})^{\frac{1}{\alpha}}}{\prod_{i \in [n]} (\mu_{i}(+)z_{i} + \mu_{i}(-))} \le 1$$

- Complete SI: $\forall x > 0$ with $|x|_{\infty} \le (1 + \epsilon)^{1/\alpha}$ $R_{\alpha}(x) \le 1$
- MS: $\forall x > 0, \forall i \in [n] \text{ with } x_i \ge (1 + \epsilon)^{1/\alpha}$ $\frac{\partial R_{\alpha}}{\partial z_i} \Big|_{z=x} \le 0$ $R_{\alpha}(x) \le 1 \text{ for all } x > 0 \text{ with } |x|_{\infty} > (1 + \epsilon)^{1/\alpha}$
- Complete SI & MS product domination

Summary

- *Optimal* $O(n \log n)$ *mixing time* for Glauber dynamics on
 - hardcore / anti-ferro Ising model in the uniqueness regime
 - some general anti-ferro 2-spin systems in the uniqueness regime
- Boosting modified log-Sobolev constant for distributions satisfying
 - complete spectral independence
 - complete marginal stability
- Technique: *product domination*

Open problems

- Optimal $O(n \log n)$ mixing time for **all** 2-spin systems in the uniqueness regime
 - potential way: other sufficient condition for product domination?
- Beyond the *Boolean* distributions
- More applications of product domination