

Quasi-Newton and Second-Order Methods for Convex Optimization

Anton Rodomanov Nikita Doikov Yurii Nesterov

Quasi-Newton (QN) Methods

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}$ is a smooth function.

QN methods: Choose $x_0 \in \mathbb{R}^n$, $H_0 \succ 0$ and iterate for $k \geq 0$:

- Set $x_{k+1} = x_k \alpha_k H_k \nabla f(x_k)$ for some $\alpha_k \ge 0$.
- Update H_k into H_{k+1} .

Standard updating rules:

- $\blacksquare \text{ (DFP) } H_{k+1} = H_k \frac{H_k \gamma_k \gamma_k^T H_k}{\langle \gamma_k, H_k \gamma_k \rangle} + \frac{u_k u_k^T}{\langle \gamma_k, u_k \rangle},$
- (BFGS) $H_{k+1} = H_k \frac{H_k \gamma_k u_k^T + u_k \gamma_k^T H_k}{\langle \gamma_k, u_k \rangle} + \left(\frac{\langle \gamma_k, H_k \gamma_k \rangle}{\langle \gamma_k, u_k \rangle} + 1\right) \frac{u_k u_k^T}{\langle \gamma_k, u_k \rangle},$ where $u_k := x_{k+1} x_k$, $\gamma_k := \nabla f(x_{k+1}) \nabla f(x_k)$.

Main result: $\frac{\|\nabla f(x_{k+1})\|}{\|\nabla f(x_k)\|} \to 0$ (superlinear convergence).

Open question: Rate of convergence? (explicit nonasymptotic estimates)

New Results on QN Methods

Main assumptions: $\exists \mu, L > 0$, $\exists M \geq 0$, $\forall x, y, z, w \in \mathbb{R}^n$:

- (1) $\mu I \preceq \nabla^2 f(x) \preceq LI$, (2) $\nabla^2 f(x) \nabla^2 f(y) \preceq M \|x y\|_z \nabla^2 f(w)$, where $\|h\|_z := \langle \nabla^2 f(z)h, h \rangle^{1/2}$ for $h \in \mathbb{R}^n$.
- Note: $(1) + (2) \iff (1) + L_2$ -Lipschitz Hessian, but (2) is affine invariant.

Theorem: Let $H_{k+1} = (1 - \tau) \operatorname{BFGS}(H_k, u_k, \gamma_k) + \tau \operatorname{DFP}(H_k, u_k, \gamma_k)$, where $\tau \in [0, 1]$, and let $\lambda_k := \|\nabla f(x_k)\|_{x_k}^*$ for each $k \geq 0$. Suppose $H_0 = \frac{1}{L}I$ and

$$M\lambda_0 \leq rac{\lnrac{3}{2}}{\left(rac{3}{2}
ight)^{rac{3}{2}}}\max\left\{rac{1}{2Q},rac{1}{K_0+9}
ight\}, \qquad K_0 \coloneqq \left\lceil 8nQ_{ au}\ln(2Q)
ight
ceil,$$

where $Q_{\tau} \coloneqq (1-\tau+ aurac{4}{9}Q^{-1})^{-1}$, $Q \coloneqq rac{L}{\mu}$ (condition number). Then, $\forall k \geq 1$:

$$\lambda_k \leq \left(1 - \frac{1}{2Q}\right)^k \sqrt{\frac{3}{2}} \lambda_0, \qquad \lambda_k \leq \left[\frac{5}{2}Q_{\tau}\left(\exp\left\{\frac{13n\ln(2Q)}{6k}\right\} - 1\right)\right]^{k/2} \sqrt{\frac{3}{2}Q} \lambda_0.$$

Discussion:

- Global convergence for quadratic functions (M = 0).
- For BFGS ($\tau = 0$), the rate is

$$\left[\exp\left\{\frac{n\ln Q}{k}\right\}-1\right]^k\lesssim \left(\frac{n\ln Q}{k}\right)^k,\quad k\gtrsim n\ln Q.$$

Region of local convergence: $M\lambda_0 \lesssim \max\{Q^{-1}, [n \ln Q]^{-1}\}.$

lacksquare For DFP (au=1), the rate is

$$\left[Q\left(\exp\left\{\frac{n\ln Q}{k}\right\}-1\right)\right]^k\lesssim \left(\frac{nQ\ln Q}{k}\right)^k,\quad k\gtrsim nQ\ln Q.$$

Region of local convergence: $M\lambda_0 \lesssim Q^{-1}$.

Ellipsoid Method (EM)

Problem: $\min_{x \in Q} f(x)$, where

■ Q is a closed convex set in \mathbb{R}^n , represented by the Separation Oracle: for any $x \notin Q$, it returns $g_Q(x) \in \mathbb{R}^n \setminus \{0\}$:

$$\langle g_Q(x), x-y\rangle \geq 0, \quad \forall y \in Q.$$

• $f: \mathbb{R}^n \to \mathbb{R}$ is a convex (possibly nonsmooth) function.

Main assumption: $B(\bar{x}, r) \subseteq Q \subseteq B(x_0, R)$ for some $\bar{x}, x_0 \in \mathbb{R}^n$, r, R > 0.

Oracle: G(x) := f'(x) if $x \in Q$ and $G(x) := g_Q(x)$ if $x \notin Q$.

EM [Yudin-Nemirovski, 1976]: Set $W_0 = R^2I$. Iterate for $k \ge 0$:

$$x_{k+1} = x_k - \frac{1}{n+1} \frac{W_k g_k}{\langle g_k, W_k g_k \rangle^{1/2}}, \quad W_{k+1} = \frac{n^2}{n^2-1} \left(W_k - \frac{2}{n+1} \frac{W_k g_k g_k^T W_k}{\langle g_k, W_k g_k \rangle}\right),$$
 where $g_k \coloneqq \mathcal{G}(x_k)$.

Complexity: EM finds $\bar{x} \in Q$ with $f(\bar{x}) - f^* \le \epsilon$ in $O(n^2 \ln \frac{\alpha V}{\epsilon})$ iterations, where $\alpha := R/r$ is the asphericity of Q and $V := \max_Q f - \min_Q f$ is the variation of f on Q.

Main problem: Does not work when $n \to \infty$: $x_{k+1} = x_k$, $W_{k+1} = W_k$.

Note: The simplest subgradient method

$$x_{k+1} = x_k - hg_k, \qquad g_k \coloneqq \mathcal{G}(x_k), \qquad k \geq 0,$$

does not have this problem. Its complexity $O(\frac{\alpha^2 V^2}{\epsilon^2})$ is independent of n.

Subgradient Ellipsoid Method

Idea: Combine Subgradient method (SM) with EM.

Algorithm: Set $\ell_0(x) \coloneqq 0$, $\omega_0(x) \coloneqq \frac{1}{2} ||x - x_0||^2$. Iterate for $k \ge 0$:

Compute $g_k \coloneqq \mathcal{G}(x_k)$ and $U_k \coloneqq \max_{x \in \Omega_k \cap L_k^-} \langle g_k, x_k - x \rangle$, where

$$\Omega_k := \{x \colon \omega_k(x) \leq \frac{1}{2}R^2\}, \qquad L_k^- := \{x \colon \ell_k(x) \leq 0\}.$$

Choose coefficients $a_k, b_k \ge 0$ and update the functions

$$\ell_{k+1}(x) := \ell_k(x) + a_k \langle g_k, x - x_k \rangle,$$

$$\omega_{k+1}(x) := \omega_k(x) + \frac{1}{2}b_k (U_k - \langle g_k, x_k - x \rangle) \langle g_k, x - x_k \rangle.$$

 $\exists \mathsf{Set} \ x_{k+1} \coloneqq \mathrm{argmin}_{x \in \mathbb{R}^n} [\ell_{k+1}(x) + \omega_{k+1}(x)].$

Geometry:

- \square Ω_k is an ellipsoid, while L_k^- is a halfspace.
- For all $k \ge 0$ and any solution x^* to our problem, we have $x^* \in \Omega_k \cap L_k^-$ and $\{x \in \Omega_k \cap L_k^- : \langle g_k, x x_k \rangle \le 0\} \subseteq \Omega_{k+1} \cap L_{k+1}^-$.

Choice of coefficients:

- $a_k > 0, b_k = 0 \implies SM.$
- $a_k = 0, b_k > 0 \implies EM.$

Iteration cost: $O(n^2)$.

Complexity: $\approx \min\{\frac{\alpha^2 V^2}{\epsilon^2}, n^2 \ln \frac{\alpha V}{\epsilon}\}\ (\approx \text{best of SM and EM}).$

Cubic Newton

■ An issue of the classical Newton method with unit step size: it has **no global convergence** guarantees.

We consider Newton's method with Cubic Regularization [Nesterov-Polyak, 2006]:

$$\begin{aligned} x_{k+1} &= \operatorname*{argmin}_{y \in \mathbb{R}^n} \left\{ \langle \nabla f(x_k), y - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k) (y - x_k), y - x_k \rangle + \frac{H \|y - x_k\|^3}{6} \right\} \\ &= x_k - \left(\nabla^2 f(x_k) + \frac{H r_k}{2} I \right)^{-1} \nabla f(x_k). \end{aligned}$$

- \blacksquare $H := 0 \Rightarrow$ the classical Newton method
- \blacksquare $H := L_2$ (Lipschitz constant for the Hessian) \Rightarrow global convergence
- adaptive strategy for choosing *H* [Nesterov-Polyak, 2006, Cartis-Gould-Toint, 2011; Grapiglia-Nesterov, 2017]

Uniformly Convex Functions

The class of **nondegenerate** problems:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\sigma}{q} ||y - x||^q, \quad \forall x, y \in \mathbb{R}^n$$

- $\mathbf{q} \geq 2$ is the degree of uniform convexity, $\sigma > 0$ is a parameter
- Arr q=2: strongly convex functions \Rightarrow the Gradient method has fast global linear rate of convergence; Second-order methods ?

Theorem: The global complexity of the adaptive Cubic Newton for $q \in [2, 3]$ is

$$\mathcal{O}\left(\boldsymbol{\omega}\log\frac{f(x_0)-f^*}{\varepsilon}\right)$$

iterations, where ω is a second-order condition number \Rightarrow Cubic Newton is better than the Gradient method.

Contraction Technique

We consider contraction of the objective: $g(x) = f(\gamma x + (1 - \gamma)\bar{x}), \ \gamma \in [0, 1]$

■ Smoothness properties of $g(\cdot)$ are better than that of $f(\cdot)$

New Contracting Newton method:

$$x_{k+1} = \underset{\mathbf{y} \in \mathbf{x}_k + \gamma_k(\mathbf{Q} - \mathbf{x}_k)}{\operatorname{argmin}} \left\{ \langle \nabla f(\mathbf{x}_k), \mathbf{y} - \mathbf{x}_k \rangle + \frac{1}{2} \langle \nabla f(\mathbf{x}_k)(\mathbf{y} - \mathbf{x}_k), \mathbf{y} - \mathbf{x}_k \rangle \right\}$$

- $\gamma_k = 1$: the classical Newton method
- Interpretation: regularization of quadratic model by the asymmetric trust region

Theorem: Set $\gamma_k = \frac{3}{3+k}$. Global convergence: $f(x_k) - f^* \leq \mathcal{O}(\frac{1}{k^2})$