Copyright © Copyright University of New South Wales 2020. All rights reserved.

Course materials subject to Copyright

UNSW	Sydney	owns	copyrigl	nt	in	these	materia	ls	(unless	stated	otherwi	se).
	The	materia	lis	subject	to	copyrig	ht	under	Australi	an	law	and
	oversea	S	under	internat	ional	treaties	.The	materia	ls	are	provide	d
	for	use	by	enrolled	lunsw	student	s.	The	materia	ls,	or	any
	part,	may	not	be	copied,	shared	or	distribu	ted,	in	print	or
	digitally	' ,	outside	the	course	without	permiss	ion.	Student	S	may	only
	copy	a	reasona	ble	portion	of	the	materia	lfor	persona	l	
	researcl	1	or	study	or	for	criticisn	n	or	review.	Under	no
	circums	tances	may	these	materia	ls	be	copied	or	reprodu	ced	for
	sale	or	commer	cial	purpose	es	without	prior	written	permiss	ion	of
	UNSW	Sydney.										

Statement on class recording

Financial Econometrics ECON3206/5206

Tutorial 8

Sample Answers/Hints to Tutorial 11

- 1. (Miscellaneous questions)
- (a) The conditional variance matrix of a vector of returns is useful for designing "mean-variance efficient" portfolios. A mean-variance efficient portfolio on a given set of assets is one that has the minimum variance for a desired mean return. Consider one-day ahead problem with n assets. Let $r = [r_1, ..., r_n]'$ be the vector of the 1-day returns for the assets. The mean of r, $\mu = E(r) = [\mu_1, ..., \mu_n]'$, is also an n dimensional vector. The variance of r,

$$V = \operatorname{Var}(r) = \begin{bmatrix} V_{11} & \cdots & V_{1n} \\ \vdots & \ddots & \vdots \\ V_{n1} & \cdots & V_{nn} \end{bmatrix} = \begin{bmatrix} \operatorname{Var}(r_1) & \cdots & \operatorname{Cov}(r_1, r_n) \\ \vdots & \ddots & \vdots \\ \operatorname{Cov}(r_n, r_1) & \cdots & \operatorname{Var}(r_n) \end{bmatrix},$$

is an $n \times n$ dimensional matrix. Because the covariances are symmetric $\operatorname{Cov}(r_i, r_j) = \operatorname{Cov}(r_j, r_i)$ the matrix V is symmetric with $V_{i:j} = V_{j:j}$ for all i and j. Suppose that you invest a portion of you wealth, w_i , in asset i, for i = 1, ..., n, where $\sum_{i=1}^n w_i = 1$. Then your portfolio is determined by the weight vector $w = [w_1, ..., w_n]'$ and your portfolio return is given by $r_p = \sum_{i=1}^n w_i r_i = w$ with the mean-variance efficient portfolio, you choose w to minimise the variance w'Vw for an analysis of numbers with $\sum_{i=1}^n w_i = 1$ and the portfolio return variance σ_p^2 must be non-negative, a variance matrix V must be such that $w'Vw \geq 0$ for any w with $\sum_{i=1}^n w_i = 1$ (ie, V must be semi-positive definite). Hence a variance matrix V is required to be symmetric and semi-positive definite.

- (b) The daily realised variance (RV) of an asset return is constructed from the intraday returns, eg, intraday 5-minute returns. Originally, the RV is computed as the sum of the squared intraday returns. However, there are alternative (and better) ways to compute the RV. The daily RV is an estimate of the integrated variance, which can be regarded as the spot or instantaneous variance of the return.
- 2. (Realised volatility, data source: http://realized.oxford-man.ox.ac.uk/data)
- (a) The time series plots show that the variations in R are accurately mirrored in the levels of RSD. The difference between the plots of R and SR provides a sharp contrast: the

clustering in R is mostly attributable to RSD. The histogram and descriptive statistics of R show the usual return characteristics: close-to-zero mean, large standard deviation, negative skewness, large kurtosis, and decisively non-normal. However, the histogram and descriptive statistics of SR are much close to those of a standard normal random variable, although the null hypothesis of normality is still rejected at the 5% level (p-value 0.033). Notice that SR is standardised by using the spot or instantaneous realised variance, which is NOT the conditional variance. The histogram of LRV indicates that it is positively skewed with a kurtosis greater than 3, roughly bell-shaped but non-normal.

(b) There are statistically significant (with small magnitudes) autocorrelations in R according to correlations to the correlations in LRV do not appear to converge to zero quickly as the lag increases. That is, the decay of the autocorrelations does not appear to be exponential.

The augment of Eley-interiest on Riving the full hypothesis of a unit-root. (c) Hence, the evidence suggests that LRV is still stationary despite its large and long-lasting autocorrelations. To fit an ARMA model to LRV, the partial autocorrelations suggest that an AR(11) would be a candidate (2 standard error band $2/\sqrt{T} \approx 0.035$, any AC or PAC within the bands are statistically zero). Here, maybe incorrectly, we assume the autocorrelations exponentially decay to zero. The estimation results show that most of the AR coefficients are statistically significant (except lags 6,7,9 and 10). More than 70% of the variations in LRV are explained by the AR(11) model. The actual-fitted-residual plot demonstrates that the model fits the data well. The correlogram of the residuals shows little autocorrelation. Hence the AR(11) model has done a good job in capturing the autocorrelations in LRV, although the true data-generating-process could be a long-memory ARFIMA model. From the residual histogram below, the residual distribution is not normal with positive skewness and heavy tails, although it is roughly bell-shaped. The main point of this part is that the long-lasting autocorrelations of LRV can be approximately captured by an AR(p) with a moderately large p (here we have p = 11).

Augmented Dickey-Fuller Unit Root Test on LRV

Null Hypothesis: LRV has a unit root

Exogenous: Constant Lag Length: 7 (Automatic based on SIC, MAXLAG=28)

		t-Statistic	Prob.*
Augmented Dickey-F		-6.074429	0.0000
Test critical values:	1% level	-3.432221	
	5% level	-2.862252	
	10% level	-2.567193	

^{*}MacKinnon (1996) one-sided p-values.

Correlogram of Residuals

Sample: 12 3183 Included observations: 3172 Q-statistic probabilities adjusted for 11 ARMA term(s)

a statistic production of the statistic and the										
					Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
Dependent Variable: Method: Least Square	ssig	nme	ent	Pro	ject E	xam]	1 -0.002 2 -0.001 3 -0.002 4 - 003 5 -0.004 6 -0.003	-0.001 -0.002 -1.003 -004	0.0108 0.0284 0.0521 0.1025	
Sample (adjusted): 12 Included observations Convergence achieved	2 3183 : 3172 after a d after 3 it ra	ttps	://tı	uto	rcs.co	m	7 -0.007 8 -0.008 9 -0.008 10 -0.015 11 -0.026	-0.008 -0.008 -0.015	0.4907 0.7091 1.4392	
Variable	Coefficient	Std. Error	t-Statistic	Prob.	i)]	12 0.007	0.006	3.7442	
C	-0.3127 <u>5</u> 1	0.171904	1.819333	0.0690	()	1	13 -0.012 14 0.002			
AR(1)	0.35255	0.047767	11.84354	0.0000	stutore		15 0.002	0.001	4.1998	0.380
AR(2)	0.20517	0.118839	11.0076	0.0000	StuiOtt	∤ >			4.2101	
AR(3)	0.082500	0.019186	4.300025	0.0000	91	4			6.6871	
AR(4)	0.092932	0.019229	4.833018	0.0000	•	•			7.3904	
AR(5)	0.071244	0.019304	3.690581	0.0002	•	l			8.9368	
AR(6)	0.003165	0.019346	0.163608	0.8700	ll l	"	20 -0.001			
AR(7)	0.005566	0.019303	0.288337	0.7731	•	l 🖞	21 -0.009			
AR(8)	0.040333	0.019233	2.097080	0.0361	ų.	"	22 0.028			
AR(9)	0.024005	0.019185	1.251233	0.2109	1	"			11.977	
AR(10)	0.014099	0.018835	0.748551	0.4542	<u>"</u>	<u>"</u>	24 -0.017			
AR(11)	0.049803	0.017761	2.804105	0.0051	1.	l <u>"</u>			18.199	
R-squared	0.704864	Mean deper	dont	-0.295525	<u>"</u>	l <u>"</u>			18.603	
Adjusted R-squared	0.704664	S.D. depen		1.042723		"			18.614	
S.E. of regression	0.703637	Akaike info		1.708479	I.	<u> </u>	28 -0.006 29 -0.009			
Sum squared resid	1017.551	Schwarz cri		1.731413	,,	"	30 0.027			
Log likelihood	-2697.648	F-statistic	telloll	686.0859	ľ	"	31 0.005			
Durbin-Watson stat	2.002453	Prob(F-stati	stic)	0.000000	Ï.		32 -0.037			
Darbin-vvacour stat	2.002433	100(i -3tati	01101	0.000000	li .	"			28.908	
Inverted AR Roots	.98	.6639i	.66+.39i	.29+.67i	ï				29.566	
	.2967i			50+.56i	Ĭ]			29.603	
	5056i		7120i		ij		36 0.005			

- (d) The scatter plot above shows the connection and difference between the conditional volatility estimates (CSD) and the spot or instantaneous volatility estimates (RSD). The CSD can be regarded as a point forecast of RSD.
- represented the clustering in the return Reschi are the conditional. The time series and scatter plots show the similarities and differences between the conditional standard deviation from EGARCH and the conditional standard deviation based on LRV. While EGSD and CSD differ markedly, they have extremely strong cross-correlations (see the cross-correlogram below). For example the static or all tion is all post to the time series and scatter plots

Dependent Variable: R

Method: ML - ARCH (Marquardt) - Normal distribution

Sample (adjusted): 3 3183

Included observations: 3181 after adjustments Convergence achieved after 16 iterations

Bollerslev-Wooldrige robust standard errors & covariance

Variance backcast: ON

Inverted AR Roots

LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(5)*ABS(RESID(-2)/@SQRT(GARCH(-2))) + C(6)*RESID(-1)

/@SQR	T(GA	RCH(-1))	+ C(7)*LOG	(GARCH(-1))	1

	,	•	. "		ı
	Coefficient	Std. Error	z-Statistic	Prob.	٧
C AR(1)	-0.000747 -0.051799	0.015103 0.016694	-0.049470 -3.102858	0.9605 0.0019	-
	Variance	Equation			
C(3) C(4) C(5) C(6) C(7)	-0.100653 -0.106205 0.239996 -0.136642 0.976230	0.014989 0.070985 0.067293 0.013501 0.004232	-6.715242 -1.496157 3.566442 -10.12120 230.7022	0.0000 0.1346 0.0004 0.0000 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.005709 0.003829 1.347388 5762.255 -4642.394 2.064707	Mean deper S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	dent var criterion terion	0.001357 1.349975 2.923228 2.936574 3.037228 0.005791	F / 5 5

ARCH Test:

F-statistic	0.571744	Probability	0.853196
Obs*R-squared	6.300539	Probability	0.852578

Test Equation:

Dependent Variable: STD_RESID^2

Method: Least Squares

Sample (adjusted): 14 3183

Included observations: 3170 after adjustments

White Heteroskedasticity-Consistent Sta	andard Errors & Covariance
---	----------------------------

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C STD_RESID^2(-1) STD_RESID^2(-2) STD_RESID^2(-3) STD_RESID^2(-4) STD_RESID^2(-5) STD_RESID^2(-6) STD_RESID^2(-7) STD_RESID^2(-7) STD_RESID^2(-9) STD_RESID^2(-10) STD_RESID^2(-11)	0.943109 0.005062 0.008608 -0.023500 -0.003841 0.012061 -0.006952 0.023840 0.002116 0.009801 0.018366 0.012033	0.064534 0.035266 0.017323 0.013776 0.014189 0.015728 0.013672 0.022081 0.014556 0.017094 0.017243 0.014944	14.61414 0.143540 0.496885 -1.705877 -0.270678 0.766866 -0.508474 1.079664 0.145408 0.573384 1.065147 0.805208	0.0000 0.8859 0.6193 0.0881 0.7867 0.4432 0.6112 0.2804 0.8844 0.5664 0.2869
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.001988 -0.001489 1.796327 10190.20 -6348.832 2.000136	Mean deper S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	dent var criterion terion	1.000805 1.794991 4.013143 4.036089 0.571744 0.853196

ssignment Project Exam H

Cross Correlogram of CSD and EGSD

Sample: 1 3183 Included observations: 3172

Correlations are asymptotically consistent approximations

CSD,EGSD(-i)	CSD,EGSD(+i)	i	lag	lead
		0 1 2 3 4 5 6 7	0.9285 0.9256 0.9141 0.8996 0.8846 0.8683 0.8526 0.8385	0.9285 0.9265 0.9139 0.9033 0.8915 0.8783 0.8665 0.8556
		8 9 10 11 12 13 14 15 16	0.8250 0.8250 0.8118 0.7985 0.7846 0.7702 0.7566 0.7428 0.7302 0.7180	0.8442 0.8326 0.8208 0.8086 0.7940 0.7806 0.7661 0.7538 0.7415

Series: Standardized Residuals Sample 3 3183 Observations 3181 0.003251 0.076611 Median Maximum Minimum 3.629484 -6.069213 Std. Dev. Skewness 1.000745 -0.408280 Kurtosis 4 214804 283.9731 Jarque-Bera

(f) The estimation results below confirms that the dependence structure of R is well captured by the extended AR(1)-EGARCH(2,1). No statistically-significant autocorrelations are observed in either the standardised residuals or their squares (see ARCH test as well as correlograms below). The coefficient on LRV(-1) is large and statistically significant, implying that LRV_{t-1} carries useful volatility information that is not available in either v_{t-1} , v_{t-2} or $\ln(\sigma_{t-1}^2)$. The in-sample fit is materially improved with the likelihood ratio being LR = 2[(-4548.36) – (-4642.39)] = 188.06 (compared against $\chi_{(1)}^2$ 5% critical value 3.84). The AIC and SIC criteria also favour the inclusion of LRV(-1) in the variance equation. The point estimate of β_1 is 0.7719, much smaller than the estimate 0.9762 in part (e). However, the persistence in the conditional variance of EGARCH that includes LRV(-1) should be measured differently. It should depend on both β_1 and the coefficient on LRV(-1), ψ , probably in a complicated way.

Correlogram of Standardized Residuals

Sample: 3 3183 Included observations: 3181 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.001	-0.001	0.0050	
dı .	d	2	-0.030	-0.030	2.8065	0.094
•	•	3	0.010	0.010	3.1159	0.211
ψ.		4	0.006	0.005	3.2383	0.356
•	•	5	-0.023	-0.023	4.9848	0.289
•	•	6	-0.014	-0.014	5.6503	0.342
ф		7	-0.006	-0.008	5.7685	0.450
•	•	8	-0.017	-0.018	6.6961	0.461
ų.	4	9	-0.007	-0.007	6.8599	0.552
•	•	10	0.019	0.018	8.0284	0.531
•	•	11	0.015	0.015	8.7620	0.555
ф	1	12	0.038	0.039	13.442	0.265
ı j	1	13	0.026	0.026	15.546	0.213
•	•	14	-0.017	-0.016	16.488	0.224
•	ļ (15	-0.015	-0.014	17.206	0.245
•	•	16	0.018	0.017	18.231	0.251

Correlogram of Standardized Residuals Squared

Sample: 3 3183

Included observations: 3181
Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
•	•	1	-0.008	-0.008	0.2175	
•	•	2	0.018	0.018	1.2584	0.262
ф		3	-0.007	-0.007	1.4114	0.494
•	•	4	-0.008	-0.009	1.6299	0.653
ψ		5	0.001	0.001	1.6335	0.803
•	•	6	-0.018	-0.018	2.6985	0.746
ψ		7	0.004	0.004	2.7575	0.839
•	•	8	-0.012	-0.012	3.2457	0.861
ψ		9	-0.000	-0.001	3.2462	0.918
•	•	10	0.014	0.015	3.9169	0.917
•	•	11	0.016	0.016	4.7643	0.906
•	•	12	0.015	0.014	5.4752	0.906
ψ		13	-0.007	-0.007	5.6275	0.934
•	•	14	0.012	0.012	6.1028	0.942
ф	•	15	-0.055	-0.054	15.793	0.326
•	•	16	0.010	0.009	16.128	0.374

WeChat: cstutorcs