VECTOR SPACE

REFERENCE: INTRODUCTION TO LINEAR ALGEBRA (GILBERT STRANG)

VECTOR SPACE

Any subset $E \subseteq \mathbb{C}^N$ coupled with addition and multiplication operations that satisfies:

- Commutation: x + y = y + x
- Association: (x + y) + z = x + (y + z)
- Distribution: $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$
- Additive identity: x + 0 = x
- Additive inverse: $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$
- Multiplicative identity: $\mathbf{1} \cdot \mathbf{x} = \mathbf{x}$

where $\mathbf{x}, \mathbf{y}, \mathbf{z} \in E$ and $\alpha, \beta \in \mathbb{C}$

 $(\alpha\beta)\mathbf{x} = \alpha(\beta\mathbf{x})$

 $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$

SUBSPACE

- Any set $M \subseteq E$ for which the following properties hold:
 - Closure under addition: $x, y \in M \rightarrow x + y \in M$
 - Closure under scalar multiplication: $\mathbf{x} \in M$, $\alpha \in \mathbb{C} \to \alpha \mathbf{x} \in M$

LINEAR INDEPENDENCE

- Given $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ in vector space V
- S is a linearly independent set if $\sum_i \alpha_i \mathbf{v}_i = 0$ is true only when $\alpha_i = 0 \ \forall \ i$

SPAN

- Given $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ in vector space V
- S spans V if every vector in V can be written as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$

BASIS

- $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is a basis for subspace V iff
 - S spans V
 - S is linearly independent
- Orthogonal basis: $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \begin{cases} \neq 0 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$
- Orthonormal basis is an orthogonal basis where $\|\mathbf{v}_i\| = 1 \ \forall \ i$
 - Hence, $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$
 - Good for coordinate systems