538-25 159243

NASA/DOD FLIGHT EXPERIMENTS TECHNICAL INTERCHANGE MEETING

ELECTROLYSIS PERFORMANCE IMPROVEMENT AND VALIDATION EXPERIMENT

Life Systems, Inc.

Franz H. Schubert

Principal Investigator

Gene M. Lee, Ph.D.

Systems Engineer

NASA/JSC

Robert Cusick Technical Monitor

October 5-9, 1992 Monterey, California N93- 28737

OVERALL SUMMARY

- Phase B (Project Definition) Study has shown:
 - Experiment objectives are achievable
 - Safety requirements are satisfied, no "showstoppers" identified
 - Phase C/D schedule satisfactory for November 1994 launch
- Ready to begin Phase C/D

EPICS EXPERIMENT PROGRAM SCHEDULE

EPICS SCHEDULE

- Authorization to Proceed with Phase C/D Anticipated for November 1992 Start
- Unit Available for Launch in Late CY 1994 or Earlier

ELECTROLYZER/RECOMBINER CONCEPT TEST

EPICS EXPERIMENT TEST SEQUENCE

TEST SEQUENCE

Each Electrolysis Unit is Tested at a Combination of Three Temperatures and Five Current Densities

EPICS INTERFACES

Interface Requirements	Source	
Water Supply	Self-contained in experiment	
Coolant (air cooled)	Space Shuttle Cabin	
Electrical Power	Space Shuttle	
Data Acquisition/Storage	Self-contained in experiment	
Crew Involvement	Single activation of experiment by operator.	
Tools	No tools required	

EPICS OPERATING CONDITIONS

Vehicle Conditions

Middeck Total Pressure, kPa (psia)

 $101.3 \pm 1.4 (14.7 \pm 0.2)$

Middeck Temperature, K (F)

292 to 300 (65 to 80)

Nominal Operating Conditions

Number of Units

3

Current Density mA/cm² (ASF)

34 to 171 (32 to 160)

Operating Pressure, kPa (psia)

 $108.3 \pm 1.4 \ (15.7 \pm 0.2)$

Operating Temperatures, Nominal, K (F)

319, 331 and 344 (115,135 and 160)

EPICS^(a) EXPERIMENT PACKAGING CONCEPT (IN LOCKER)

⁽a) Electrolysis Performance Improvement Concept Studies

EXPERIMENT HARDWARE

- Packaged in One Shuttle Orbiter Middeck Locker
- Simple Operational Requirements
- Minimum Interfaces

INTEGRATED ELECTROLYSIS UNIT (IEU) CELL CONFIGURATIONS

	IEU No.		
Parameter	1	2	3
Matrix Thickness ^(a)	Baseline	0.010 inch	Baseline
Electrode Thickness ^(b) Pore Size ^(c) Porosity ^(d)	Baseline Baseline Baseline	Baseline Baseline Baseline	Baseline 15 to 20 micron ^(e) 85-90 ^(e)

⁽a) Baseline matrix thickness is 0.015 inch

⁽b) Baseline electrode thickness is 0.030 ±0.002 inch

⁽c) Baseline pore size is 10 to 12 micron

⁽d) Baseline porosity is 80 to 85%

⁽e) Actual pore size to be determined by manufacturer's capability

EPICS MECHANICAL/ELECTROCHEMICAL ASSEMBLY

FUNCTIONAL SCHEMATIC OF IEU

EPICS EXPERIMENT APPROACH

- Safety is Key
 - Use fuel cell based recombiner to consume H₂ and O₂ immediately after generation
- Enhance Experiment Success
 - Design EPICS with Three Independent Integrated Electrolysis Units (IEU) For Redundancy
 - Build and test engineering model before finalizing flight unit
- Increase Technology Base in Key Microgravity Impacted Areas
 - Include multiple combinations of electrode/separator (matrix) configurations

EPICS EXPERIMENT DESCRIPTION

- Approach
- Hardware
- Test Sequence
- Schedule

MAGNIFICATION OF GRAVITY EFFECTS ON ELECTROLYTE DENSITY DISTRIBUTION

Nominal Electrolyte Level (at Nominal Load)

Increased Electrolyte Level (at Low Load)

Low Electrolyte Level (at High Load)

MAGNIFICATION OF GRAVITY EFFECTS ON GAS-LIQUID INTERFACE

NOTE:

- Capillary effects in one-G are not strong enough to completely counteract gravity effects.
- The smaller pores will have stronger capillary force, which may be able to completely counteract gravity.
- There is a gravity force gradient, from top to bottom in one-G. Resulting in a liquid distribution gradient.
- In 0-G the gravity gradient is eliminated and therefore the liquid will be distributed evenly.
- The gravity force gradient will also result in a density difference.

(a) All pores will not be the same size.

EPICS EXPERIMENT OBJECTIVES

- Demonstrate and validate the Static Feed Electrolyzer (SFE) concept in microgravity
- Investigate ways a microgravity environment may improve SFE process efficiency since "absence" of gravity will result in:
 - A more uniform electrolyte volume distribution governed primarily by capillary forces and surface tension
 - A more uniform electrolyte density distribution

The Electrolysis Performance Improvement Concepts Study (EPICS) Has Two Objectives

SFE-1 ILLUSTRATION OF SFE SUBSYSTEM

TYPICAL SFE PROCESS SCHEMATIC

ELECTROLYZER CELL SCHEMATIC AND REACTIONS

The Static Feed Electrolysis (SFE) Concept Was Developed For Space Application

SFE APPLICATIONS MEET NASA MISSION NEEDS/GOALS

Space Station Freedon.

- Propulsion
- Life Support
- EVA

- Propellant Production
- Life Support
- Energy Storage
- EVA

- Propellant Production
- Life Support
- Energy Storage
- EVA

Water Electrolysis Will Play An Ever Increasing Role In Space Missions

PRESENTATION OVERVIEW

- Water Electrolysis: An ever increasing need/role for space missions
- Static Feed Electrolysis (SFE) Technology: A concept developed for space applications
- Experiment Objectives: Why test in microgravity environment
- Experiment Description: Approach, hardware description, test sequence and schedule
- Summary: Successfully completed Phase B, ready for Phase C/D