Signals and Circuits

ENGR 35500

Mesh Analysis

Chapter 3: 3-2 (Mesh-Current Method) pp. 100-105; 3-5 (Thevenin and Norton Equivalent circuits) pp. 113-119;

Ulaby, Fawwaz T., and Maharbiz, Michael M., *Circuits*, 2nd Edition, National Technology and Science Press, 2013.

Mesh Analysis

- > Sometimes also called Loop analysis;
- Based on KVL;
- Based on distinguishing types of loops.

Mesh Analysis

Step 1: Identify all the meshes and assign each of them an unknown mesh current (Usually clockwise).

Step 2: KVL+Ohm's law

$$-V_0 + I_1 R_1 + (I_1 - I_2) R_3 = 0 (Mesh 1)$$

$$V_0 + I_1 R_1 + (I_1 - I_2) R_3 = 0$$
 (Mesh 1)

$$(I_2 - I_1)R_3 + I_2R_2 = 0$$
 (Mesh 2)

$$(I_2 - I_1)R_3 + I_2R_2 = 0$$
 (Mesh 2)

$$I_a = I_1$$

$$I_c = I_2$$

$$I_b = I_1 - I_2$$

3: Solve the simultaneous Step equations to get the mesh current.

Step 4: Transfer mesh current to actual current

Mesh Analysis

Practice

Step 1: Identify all the meshes and assign each of them an unknown mesh current (Usually clockwise).

Step 2: KVL+Ohm's law

Step 3: Solve the simultaneous equations to get the mesh current.

Step 4: Transfer mesh current to actual current

Note: sometimes some mesh current can be expressed directly by some current source

Original Method VS Nodal Method VS Mesh Method

Original method (KL)

- 1. Labels
- 2. Distinguish loops
- 3. Creat current equations using KVL+Ohm's law
- 4. KCL
- 5. Simultaneous solution of equations

Nodal Method

- O. Supernodes and quasi-super node
- Identify extraordinary nodes, label (nex - 1) extraordinary nodes and one ground node.
- 2. At (nex 1) extraordinary nodes, label current as leaving the nodes.
- 3. At each (*nex* 1) extraordinary node, appy KCL
- 4. Try to substitute the currents with the terms of voltages
- 5. Simultaneous solution of equations

Mesh method

0. ?

- 1. Identify all the meshes and assign each of them an unknown mesh current (Usually clockwise).
- 2. KVL+Ohm's law
- 3. Solve the simultaneous equations to get the mesh current.
- 4. Transfer mesh current to actual current

Mesh analysis

Supermesh

Two adjoining meshes that share a current source constitute a supermesh. The current source may be of the independent or dependent type, and it may include a resistor in series with it.

Mesh method

- 0. supermesh, mesh current directly from current
- 1. Identify all the meshes and assign each of them an unknown mesh current (Usually clockwise).
- 2. KVL+Ohm's law
- 3. Solve the simultaneous equations to get the mesh current.
- 4. Transfer mesh current to actual current

$$-V_0 + R_1 I_1 + (I_1 - I_2)R_2 + (I_1 - I_3)R_5 = 0 (Mesh 1)$$

$$(I_3-I_1)R_5 + (I_2-I_1)R_2 + I_2R_3 + I_3R_6 = 0$$
 (Super Mesh)

$$I_0 = I_2 - I_3$$
 (auxiliary eq.)

Mesh analysis

Determine Vx

Thevenin's and Norton's Theorems

Thevenin's Theorem

A **linear** circuit can be represented at its output terminals by an equivalent circuit consisting of a series combination of a voltage source V_{Th} and a resistors R_{Th} .

Thevenin's and Norton's Theorems

Open-circuit/short-circuit method

The Thevenin voltage V_{Th} is obtained by removing the load R_L (replacing it with an open circuit), and then measuring or computing the open-circuit voltage at the same terminals. The short-circuit current isc is obtained by replacing the load with a short circuit and then measuring or computing the short-circuit current flowing the through it.

Thevenin's and Norton's Theorems Open-circuit/short-circuit method

Find R_L could make I_L as 0.5 A

Note: This method is applicable to any circuit with at least one independent source, regardless of whether or not it contains dependent sources.

Step 1:

Replacing $R_{\rm L}$ with open circuit

Step 2:

$$R_{Th} = V_{Th}/I_{sc}$$

Step 3:

$$I_L = V_{Th}/(R_L + R_{Th})$$

$$\underbrace{\text{KENT STATE}}_{\text{UNIVERSITY}}$$

Thevenin's and Norton's Theorems Equivalent-resistant method for R_{Th}

E.g.

- 1. Replace voltage sources with short circuits
- 2. Replace current sources with open circuits

Note: This method is not applicable to circuit with that contain dependent sources.

Thevenin's and Norton's Theorems

External-source method for R_{Th}

- 1. Replace independent voltage sources with short circuits
- 2. Replace independent current sources with open circuits
- 3. Left the dependent sources alone
- 4. Add an external voltage source v_{ex} , and calculate v_{ex} and v_{ex}

Note: This method is applicable to circuit with that contain dependent sources.

E.g.

calculate Vex and iex

$$R_{\mathrm{Th}} = v_{\mathrm{ex}}/i_{\mathrm{ex}}$$

Thevenin and Norton Equivalency

