Теория Параллелизма

Отчет

Уравнение теплопроводности на Cuda

Цель работы:

Реализовать уравнение теплопроводности (пятиточечный шаблон). Перенести программу на GPU используя CUDA. Редукцию реализовать с использованием библиотеки CUB. Сравнить скорость выполнения с предыдущими реализациями.

Используемый компилятор:

nvcc: NVIDIA (R) Cuda compiler driver V11.0.221 для компиляции: /usr/local/cuda/bin/nvcc net.cu -o prog

для запуска: ./prog

Используемый профилировщик:

nsys: NVIDIA Nsight System с флагом –trace cuda для профилирования: nsys profile -t cuda ./prog

Как производился замер времени работы:

Замер производился с использованием библиотеки chrono

Прошлые результаты выполнения на **CPU**:

1.1 Onecore

Размер сетки	Время выполнения, сек	Точность	Количество итераций
128*128	2.62	9.98e-07	30080
256*256	64.21	9.98e-07	102912
512*512	2067.725	9.93e-07	339968

1.2 Multicore

Размер сетки	Время выполнения	Точность	Количество итераций
128*128	1.5	9.98e-07	30080
256*256	12.8	9.98e-07	102912
512*512	76.17	9.93e-07	339968
1024*1024	689.576	1.37e-06	1000000

1.3 GPU с использованием CuBLAS

Размер сетки	Время выполнения, сек	Точность	Количество итераций
128*128	0.6	9.98e-07	30080
256*256	0.86	9.98e-07	102912
512*512	2.92	9.93e-07	339968
1024*1024	34.2	1.37e-06	1000000

Этапы оптимизации программы:

Этап	Время выполнения,	Точность	Количество	Комментарии
	сек		итераций	
1	0.1	0.01	1000	Код переписан на Cuda с
				параметрами ядра:
				<< <net_size, net_size="">>></net_size,>
2	0.075	0.01	1000	Оптимальные параметры ядра
3	0.075	0.01	1000	Переход на cuda graph

На вычисления матриц ушло суммарно 40 сек.

Переход на графы никак не повлиял на скорость работы

Тест программы на сетке размерность 8000*8000

Итог:

Размер сетки	Время выполнения, сек	Точность	Количество итераций
128*128	0.272	9.98e-07	30080
256*256	0.340	9.98e-07	102912
512*512	1.470	9.93e-07	339968
1024*1024	24.373	1.36e-06	1000448

Сравнение скорости выполнения программ: _{Time, s}

Для удобства сравнения на диаграмме не приведены некоторые данные.

Вывод:

Cuda показывает неплохие результаты использованием любой размерности сетки.

Приложение:

Ссылка на GitHub: https://github.com/MegaSear/parallelism/tree/master/task4