Decomposition of Graphs: Exploring Graphs

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Graph Algorithms

Data Structures and Algorithms

Learning Objectives

- Implement the explore algorithm.
- Figure out whether or not one vertex of a graph is reachable from another.

Outline

- 1 Problem Discussion
- 2 Ideas
- 3 Explore
- 4 Correctness
- 5 DFS

Motivation

You're playing a video game and want to make sure that you've found everything in a level before moving on.

How do you ensure that you accomplish this?

This notion of exploring a graph has many applications:

- Finding routes
- Ensuring connectivity
- Solving puzzles and mazes

Paths

We want to know what is reachable from a given vertex.

Definition

A path in a graph G is a sequence of vertices v_0, v_1, \ldots, v_n so that for all i, (v_i, v_{i+1}) is an edge of G.

Formal Description

Reachability

Input: Graph G and vertex s

Output: The collection of vertices v of G so

that there is a path from s to v.

Problem

Which vertices are reachable from A?

Solution

A, C, D, F, H, I.

Outline

- Problem Discussion
- 2 Ideas
- 3 Explore
- 4 Correctness
- 5 DFS

Basic Idea

We want to make sure that we have explored every edge leaving every vertex we have found

Pseudocode

Component(s)

```
DiscoveredNodes \leftarrow \{s\}
while there is an edge e leaving
Discovered Nodes that has not been
explored:
  add vertex at other end of e to
  DiscoveredNodes
return DiscoveredNodes
```

Formal Specification

We need to do some work to handle the bookkeeping for this algorithm.

- How do we keep track of which edges/vertices we have dealt with?
- What order do we explore new edges in?

Outline

- 1 Problem Discussion
- 2 Ideas
- 3 Explore
- 4 Correctness
- 5 DFS

Visit Markers

To keep track of vertices found: Give each vertex boolean visited(v).

Unprocessed Vertices

Keep a list of vertices with edges left to check.

This will end up getting hidden in the program stack.

Depth First Ordering

We will explore new edges in Depth First order. We will follow a long path forward, only backtracking when we hit a dead end.

Explore

Explore(v)

```
visited(v) \leftarrow true
for (v, w) \in E:
if not visited(w):
Explore(w)
```

Explore

Explore(v)

```
	ext{visited}(v) \leftarrow 	ext{true} \\ 	ext{for } (v,w) \in E : \\ 	ext{if not visited}(w) : \\ 	ext{Explore}(w) \\ 	ext{}
```

Need adjacency list representation!

For Adacency list this multiple exploration happens in a recursion

This red segments means visited and black segment means the Vertex has been popped into the stack (which is the stack of all the explored Vertices/ Nodes)

Outline

- 1 Problem Discussion
- 2 Ideas
- 3 Explore
- 4 Correctness
- 5 DFS

Result

Theorem

If all vertices start unvisited, Explore(v) marks as visited exactly the vertices reachable from v.

Proof

Proof.

- \blacksquare Only explores things reachable from \boldsymbol{v} .
- w not marked as visited unless explored.
- If w explored, all neighbors explored.

Proof (continued)

Proof.

- \blacksquare *u* reachable from *v* by path.
- Assume w furthest along path explored.

Must explore next item.

Outline

- 1 Problem Discussion
- 2 Ideas
- 3 Explore
- 4 Correctness
- 5 DFS

Reach all Vertices

Sometimes you want to find all vertices of G, not just those reachable from v.

DFS

DFS(G)

```
for all v \in V: mark v unvisited for v \in V: if not visited(v): Explore(v)
```


Let's say this node was unvisited to we visit this node and then we explore all it's neighbors

Now we will look for the other vertices which are unvisited

Runtime

Number of calls to explore:

- Each explored vertex is marked visited.
- No vertex is explored after visited once.
- Each vertex is explored exactly once.

Runtime

Checking for neighbors:

- Each vertex checks each neighbor.
- Total number of neighbors over all vertices is O(|E|).

Runtime

Total runtime:

- O(1) work per vertex.
- O(1) work per edge.
- Total O(|V| + |E|).

To Understand total runtime. think in terms of adjacency list

```
A adjacent to B, C, D
B adjacent to A
C adjacent to A, D
D adjacent to A, C
```

Next Time

- More on reachability in graphs.
- Application of DFS.