Fuzzy ILP classifier for Weka

Jan Dědek

Department of Software Engineering, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

Tools Demo Session, WDS, 2nd June 2010, MFF UK, Troja, Prague 8

http://www.ksi.mff.cuni.cz/~dedek/fuzzyILP/

Fuzzy ILP

Fuzzy ILP

- Introd. example, theory, architecture and an experiment
- Fuzzy ILP Implementation
- Evaluation

Introd, example, theory, architecture and an experiment

ILP Example

Types of ground variables

```
animal(dog). animal(dolphin) ... animal(penguin).
class(mammal). class(fish). class(reptile). class(bird).
covering(hair). covering(none). covering(scales).
habitat(land). habitat(water). habitat(air).
```

Background knowledge

```
has_covering(dog, hair). has_covering(crocodile, scales). has_legs(dog,4)... has_legs(penguin, 2). etc. has_milk(dog)... has_milk(platypus). etc. homeothermic(dog)... homeothermic(penguin). etc. habitat(dog, land)... habitat(penguin, water). etc. has_eggs(platypus)... has_eggs(eagle). etc. has_gills(trout)... has_gills(eel). etc.
```

Introd. example, theory, architecture and an experiment

ILP Example

Positive examples

```
class(lizard, reptile).
class(trout, fish).
class(bat, mammal).
```

Negative examples

```
class(trout, mammal).
class(herring, mammal).
class(platypus, reptile).
```

Induced rules

Classical ILP and Fuzzy ILP principles

- Learning examples $E = P \cup N$ (Positive and Negative)
- Background knowledge B
- ILP task to find hypothesis H such that:

$$(\forall e \in P)(B \cup H \models e) \& (\forall n \in N)(B \cup H \not\models n).$$

- Fuzzy learning examples $\mathcal{E}: E \longrightarrow [0,1]$
- Fuzzy background knowledge $\mathcal{B}: B \longrightarrow [0, 1]$
- Fuzzy ILP task to find hyp. $\mathcal{H}: H \longrightarrow [0,1]$ such that:

$$(\forall e_1, e_2 \in E)(\forall \mathcal{M})(\mathcal{M} \models_f \mathcal{B} \cup \mathcal{H}) \ : \ \mathcal{E}(e_1) > \mathcal{E}(e_2) \Rightarrow \|e_1\|_{\mathcal{M}} \geq \|e_2\|_{\mathcal{M}}$$

Generalized Annotated Programs

- Fuzzy ILP is equivalent to Induction of Generalized Annotated Programs¹
- For implementation we use GAP or strictly speaking:
 Definite Logic Programs with monotonicity axioms (also equivalent)
- Basic paradigm: deal with values as with degrees.
 - We don't have to normalize values, they order is enough.
- For example with monotonicity axioms we can use rule: serious(A, 4) ← fatalities(A, 10). and from the fact fatalities(id_123, 1000) deduce serious_alt(id_123, 4).

¹See in S. Krajci, R. Lencses and P. Vojtas: "A comparison of fuzzy and annotated logic programming", Fuzzy Sets and Systems, vol.144, pp.173–192, 2004.

Schema of the whole system

- Web Crawling
- Information Extraction and User Evaluation
- Logic representation
 - Construction of background knowledge
 - Construction of learning examples
- ILP Learning
 - Crisp
 - Fuzzy
- Comparison of results

Accident attributes

	distinct	missing	
attribute name	values	values	monotonic
size (of file)	49	0	yes
type (of accident)	3	0	no
damage	18	30	yes
dur_minutes	30	17	yes
fatalities	4	0	yes
injuries	5	0	yes
cars	5	0	yes
amateur_units	7	1	yes
profesional_units	6	1	yes
pipes	7	8	yes
lather	3	2	yes
aqualung	3	3	yes
fan	3	2	yes
ranking	14	0	yes

- Information that could be extracted.
- Missing values.
- Almost all attributes are numeric.
 - So monotonic
 - This will be used for "fuzzyfication"
- Artificial target attribute seriousness ranking.

Fuzzy ILP

Introd. example, theory, architecture and an experiment

Histogram of the seriousness ranking attribute

- 14 different values, range 0.5 8
- Divided into four approximately equipotent groups.

- Fuzzy ILP
 - Introd. example, theory, architecture and an experiment
 - Fuzzy ILP Implementation
 - Evaluation

Essential difference between learning examples

Crisp learning examples

```
serious_2(id_47443). *positive
serious_0(id_47443). *negative
serious_1(id_47443). *negative
serious_3(id_47443). *negative
```

Monotonized learning examples

```
serious_atl_0(id_47443). *positive serious_atl_1(id_47443). *positive serious_atl_2(id_47443). *positive serious_atl_3(id_47443). *negative
```

For one evidence (occurrence):

- Crisp:
 Always one positive and three negative learning examples
- Monotonized:
 Up to the observed degree positive, the rest negative.

Monotonization of attributes

damage_atl ← damage

- We infer all lower values as sufficient.
- Treatment of unknown values.
- Negation as failure.

- Introd. example, theory, architecture and an experiment
- Fuzzy ILP Implementation
- Evaluation

```
serious_0(A):-type(A,fire),pipes(A,0).
serious_0(A):-fatalities(A,0),pipes(A,1),lather(A,0).
serious_1(A):-amateur_units(A,1).
serious_1(A):-amateur_units(A,0),pipes(A,2),aqualung(A,1).
serious_1(A):-damage(A,300000).
serious_1(A):-damage(A,unknown),type(A,fire),prof_units(A,1).
```

serious_1(A):-dur_minutes(A,unknown), fatalities(A,0), cars(A,1). serious_2(A):-lather(A,unknown). serious_2(A):-lather(A,0), aqualung(A,1), fan(A,0). serious_2(A):-amateur_units(A,2),prof_units(A,2). serious_2(A):-dur_minutes(A,unknown),injuries(A,2).

serious_3(A):-fatalities(A,1).
serious_3(A):-fatalities(A,2).
serious_3(A):-injuries(A,2).
serious_3(A):-injuries(A,2).

serious O(A):-dur minutes(A,8).

serious_3(A):-injuries(A,2), cars(A,2). serious_3(A):-pipes(A,4).

serious_atl_0(A). serious_atl_1(A):-injuries_atl(A,1). serious_atl_1(A):-lather_atl(A,1).

serious_atl_1(A):-pipes_atl(A,3). serious_atl_1(A):-dur_minutes_atl(A,unknown).

serious_atl_1(A):-size_atl(A,764),pipes_atl(A,1). serious_atl_1(A):-damage_atl(A,8000),amateur_units_atl(A,3). serious_atl_1(A):-type(A,car_accident).

serious_attl_1(A):-pipes_attl(A,unknown), randomized_order_attl(A,35).
serious_attl_2(A):-pipes_attl(A,3), aqualung_attl(A,1).
serious_attl_2(A):-type(A,car_accident), cars_attl(A,2),prof_units_attl(A,2).

serious_atl_2(A):-injuries_atl(A,1),prof_units_atl(A,3),fan_atl(A,0). serious_atl_2(A):-type(A,other), aqualung_atl(A,1). serious_atl_2(A):-dur_minutes_atl(A,59), pipes_atl(A,3).

serious_atl_2(A):-dur_minutes_atl(A,59), pipes_atl(A,3) serious_atl_2(A):-injuries_atl(A,2),cars_atl(A,2). serious_atl_2(A):-fatalities_atl(A,1).

serious_atl_3(A):-fatalities_atl(A,1). serious_atl_3(A):-dur_minutes_atl(A,unknown),pipes_atl(A,3). Crisp hypothesis

- Monotonized hypothesis
 - Monotonicity axioms
 - Monotonized learning examples

Evaluation and Comparison of Results – graph

	Fuzzy	Crisp	MultPerc	SMO	J48	JRip	LBoost		
Corr	$0.61 \pm .19$.22±.17 •	.41±.19 •	.36±.24 ●	.41±.22 ●	.44±.17 ●	.59±.26		
Incor	$.39 \pm .19$	$.27 \pm .24$.59±.19 ∘	.64±.24 o	.59±.22 ∘	.56±.17 ∘	.41±.26		
Uncl	$.00 \pm .00$.51±.29 ∘	$.00 \pm .00$	$.00 \pm .00$	$.00 \pm .00$	$.00 \pm .00$.00±.00		
Prec	$.56 \pm .24$	$.53 \pm .37$.35±.20 ●	$.33 {\pm} .26$	$.39 \pm .22$.34±.21 ●	.56±.28		
Rec	$.61 \pm .19$	$.49 {\pm} .32$.41±.19 ●	.36±.24 ●	.41±.22 ●	.44±.17 ●	$.59 \pm .26$		
F	$.56 \pm .20$	$.49 {\pm} .33$.36±.19 ●	.32±.24 ●	$.39 \pm .21$.36±.19 ●	.56±.27		
o, ◆ statistically significant improvement or degradation									
Fuzzyczsem.ILP.FuzzyILPClassifier " Crispczsem.ILP.CrispILPClassifier " MultPercfunctions.MultilayerPerceptron '-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a' SMOfunctions.SMO '-C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K \"functions.supportVector.PolyKernel -C 250007 -E 1.0\"' J48trees.J48 '-C 0.25 -M 2' JRiprules.JRip '-F 3 -N 2.0 -O 2 -S 1' LBoostmeta.LogitBoost '-P 100 -F 0 -R 1 -L -1.7976931348623157E308 -H 0.1 -S 1 -I 10 -W trees.DecisionStump'									
CorrPercent correct InorPercent incorrect UnclPercent unclassified PrecWeighted avg IR precision RecWeighted avg IR recall FWeighted avg F measure									

Conversion of Results

crisp ← **monotone** (**select max**)

monotone ← crisp

```
serious_atl_0(ID) :- serious_2(ID).
serious_atl_1(ID) :- serious_2(ID).
serious atl 2(ID) :- serious 2(ID).
```