K-Nearest Neighbors (KNN)

Aspect	Details
Advantag es	 Non-parametric, making no assumptions about data distribution and suitable for various dataset types. Simple to implement and interpret, handling both numerical and categorical data.
Disadvan tages	 Computationally expensive for large datasets due to O(n) storage and prediction time. Suffers from the curse of dimensionality in high-dimensional spaces and is
When to Use	 Small to medium-sized datasets where anomalies are defined by deviation from local neighborhoods. Scenarios with non-linear patterns or when simplicity is prioritized over

Local Outlier Factor (LOF)

Aspect	Details
Advanta ges	 Excels at detecting local outliers in varying density regions without a global threshold. Robust to noise and handles complex, irregular data structures effectively.
Disadvan tages	- High computational complexity (up to $O(n^2)$), making it slow for large datasets Prone to the curse of dimensionality and sensitive to the choice of neighborhood size (k).
When to Use	 Datasets with clustered anomalies in low-density areas or irregular densities. Structured tabular data where local deviations matter more than global ones, such as fraud detection in transaction clusters.

Isolation Forest

Aspect	Details
Advantages	 Highly efficient and scalable for large, high-dimensional datasets with low memory usage. No distributional assumptions; isolates rare anomalies quickly via random
Disadvantag es	Less effective when anomalies closely resemble normal data or in noisy environments.Prone to overfitting with too many trees and struggles with temporal
When to Use	High-volume, high-dimensional data with rare, distinct anomalies.Real-time applications like network security or fraud detection on structured

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

Aspect	Details
Advantage s	Automatically detects clusters of arbitrary shapes without specifying the number of clusters.Inherently robust to outliers, labeling isolated points as noise for easy anomaly
Disadvant ages	Highly sensitive to parameters (epsilon and minPts), requiring domain knowledge for tuning.Performs poorly in high-dimensional spaces due to the curse of dimensionality
When to Use	- Datasets with unknown cluster counts and non-spherical shapes where outliers are sparse noise.