Trabalho 1 - Programação Linear e Inteira

João Lucas Duim Raphael Felberg Levy

11 de Abril de 2022

1 Introdução

Descrição do Problema

Sudoku é um quebra-cabeça lógico-combinatório que compreende uma tabela de números 9×9 (caso clássico) que deve ser preenchida de acordo com algumas regras:

- $\bullet\,$ Dentro de qualquer uma das 9 caixas 3×3 individuais, cada um dos números de 1 a 9 deve ser encontrado.
- Dentro de qualquer coluna da grade 9×9 , cada um dos números de 1 a 9 deve ser encontrado.
- Dentro de qualquer linha da grade 9×9 , cada um dos números de 1 a 9 deve ser encontrado.

O gerador de quebra-cabeça fornece uma grade parcialmente completa, que para um quebra-cabeça bem colocado tem uma única solução.

Os jornais franceses apresentavam variações dos quebra-cabeças de Sudoku no século 19, e o quebra-cabeça apareceu desde 1979 em livros de quebra-cabeças sob o nome de Number Place. No entanto, o Sudoku moderno só começou a ganhar popularidade em 1986, quando foi publicado pela empresa japonesa de quebra-cabeças Nikoli sob o nome Sudoku, que significa "número único". Ele apareceu pela primeira vez em um jornal dos EUA, e depois no The Times (Londres), em 2004, graças aos esforços de Wayne Gould, que desenvolveu um programa de computador para produzir rapidamente quebra-cabeças únicos.

2 Modelagem do Sudoku Clássico

Modelaremos um Sudoku 9×9 utilizando programação linear. Primeiramente, sejam as variáveis de decisão binárias:

 $x_{ijk} = \begin{cases} 1, \text{ se o elemento } (i,j) \text{ da matriz do Sudoku \'e o número inteiro } k \\ 0, \text{ caso contrário.} \end{cases}$

Agora, desejamos que a solução satisfaça as regras do jogo.

Primeiramente, para que se tenha um único elemento $k \in \{1, 2, ..., 9\}$ em cada coluna, devemos ter:

$$\sum_{i=1}^{9} x_{ijk} = 1 , j,k \in \{1,2,...,9\}$$

Para que se tenha um único elemento $k \in \{1, 2, ..., 9\}$ em cada linha, devemos ter:

$$\sum_{j=1}^{9} x_{ijk} = 1 , i, k \in \{1, 2, ..., 9\}$$

Para que cada um dos 9 quadrados 3×3 tenha todos os números de 1 a 9, fazemos:

$$\sum_{j=3q-2}^{3q} \sum_{i=3p-2}^{3p} x_{ijk} = 1 , k \in \{1, 2, ..., 9\} , p, q \in \{1, 2, 3\}$$

Apenas para garantir que toda a matriz do quebra-cabeça seja preenchida, temos:

$$\sum_{k=1}^{9} x_{ijk} = 1 , i, j \in \{1, 2, ..., 9\}$$

Finalmente, como no Sudoku não há intenção de minimizar ou maximizar algo, apenas encontrar a solução factível, podemos definir como objetivo minimizar $\mathbf{0}^T x$.

Portanto, temos a seguinte modelagem do Sudoku clássico:

Minimize $\mathbf{0}^T \boldsymbol{x}$

sujeito a:

$$\sum_{i=1}^{9} x_{ijk} = 1 , j,k \in \{1,2,...,9\}$$

$$\sum_{j=1}^{9} x_{ijk} = 1 , i,k \in \{1,2,...,9\}$$

$$\sum_{j=3q-2}^{3q} \sum_{i=3p-2}^{3p} x_{ijk} = 1 , k \in \{1,2,...,9\} , p,q \in \{1,2,3\}$$

$$\sum_{k=1}^{9} x_{ijk} = 1 , i,j \in \{1,2,...,9\}$$

$$x_{ijk} \in \{0,1\} , \forall i,j,k \in \{1,2,...,9\}$$

3 Modelagem do Sudoku Geral

Modelaremos um Sudoku $n \times n$, com $n = m^2$ quadrado perfeito, utilizando programação linear

Primeiramente, sejam as variáveis de decisão binárias:

$$x_{ijk} = \begin{cases} 1, \text{ se o elemento } (i,j) \text{ da matriz do Sudoku \'e o número inteiro } k \\ 0, \text{ caso contrário.} \end{cases}$$

Agora, desejamos que a solução satisfaça as regras do jogo.

Primeiramente, para que se tenha um único elemento $k \in \{1, 2, ..., n\}$ em cada coluna, devemos ter:

$$\sum_{i=1}^{n} x_{ijk} = 1 , j, k \in \{1, 2, ..., n\}$$

Para que se tenha um único elemento $k \in \{1, 2, ..., n\}$ em cada linha, devemos ter:

$$\sum_{i=1}^{n} x_{ijk} = 1 , i, k \in \{1, 2, ..., n\}$$

Para que cada um dos n quadrados $m \times m$ tenha todos os números de 1 a n, fazemos:

$$\sum_{j=(m-1)q+1}^{mq} \sum_{i=(m-1)p+1}^{mp} x_{ijk} = 1 , k \in \{1, 2, ..., n\} , p, q \in \{1, 2, ..., m\}$$

Apenas para garantir que toda a matriz do quebra-cabeça seja preenchida, temos:

$$\sum_{k=1}^{n} x_{ijk} = 1 , i, j \in \{1, 2, ..., n\}$$

Finalmente, como no Sudoku não há intenção de minimizar ou maximizar algo, apenas encontrar a solução factível, podemos definir como objetivo minimizar $\mathbf{0}^T \boldsymbol{x}$.

Portanto, temos a seguinte modelagem do Sudoku clássico:

Minimize $\mathbf{0}^T \boldsymbol{x}$

sujeito a:

$$\sum_{i=1}^{n} x_{ijk} = 1 , j, k \in \{1, 2, ..., n\}$$

$$\sum_{j=1}^{n} x_{ijk} = 1 , i, k \in \{1, 2, ..., n\}$$

$$\sum_{j=(m-1)q+1}^{mq} \sum_{i=(m-1)p+1}^{mp} x_{ijk} = 1 , k \in \{1, 2, ..., n\} , p, q \in \{1, 2, ..., m\}$$

$$\sum_{k=1}^{n} x_{ijk} = 1 , i, j \in \{1, 2, ..., n\}$$

$$x_{ijk} \in \{0, 1\} , \forall i, j, k \in \{1, 2, ..., n\}$$

4 Implementação

Veja em detalhes a implementação das modelagens acima descritas na linguagem R, através do solver GLPK, de forma devidamente comentada no arquivo $Sudoku_PLI.R$ anexado.

5 Resultados

Veja nas imagens a seguir, exemplos variados de sudokus resolvidos (números iniciais em preto e números preenchidos em azul para os jogos 9×9 , e números iniciais em roxo e preenchidos em preto para a 16×16) e os resultados obtidos pela implementação em R:

Observação: No caso 16 × 16, as letras de A a G substituem os números de 10 a 16, nessa ordem.

1 2 3 4 5 6 7 8 9 1 5 4 3 8 7 1 9 2 6 2 6 2 7 3 4 9 8 5 1 3 1 9 8 2 5 6 4 7 3 4 7 8 6 9 1 5 3 4 2 5 3 1 9 4 2 7 5 6 8 6 4 5 2 6 8 3 1 9 7 7 9 7 4 1 3 2 6 8 5 8 8 3 5 7 6 4 2 1 9 9 2 6 1 5 9 8 7 3 4

7

1 2 3 4 5 6 7 8 9 1 4 7 9 3 2 1 6 8 5 2 1 6 2 9 8 5 7 3 4 3 5 3 8 6 4 7 2 1 9 4 9 1 3 2 7 4 5 6 8 5 6 8 7 1 5 9 3 4 2 6 2 5 4 8 3 6 1 9 7 7 3 4 5 7 1 8 9 2 6 8 7 2 6 4 9 3 8 5 1 9 8 9 1 5 6 2 4 7 3

1 2 3 4 5 6 7 8 9 1 1 7 8 9 2 6 3 4 5 2 9 4 3 8 5 1 7 2 6 3 6 5 2 4 7 3 8 9 1 4 7 2 4 5 6 8 9 1 3 5 5 1 9 3 4 2 6 8 7 6 3 8 6 1 9 7 2 5 4 7 2 3 1 6 8 5 4 7 9 8 8 9 5 7 3 4 1 6 2 9 4 6 7 2 1 9 5 3 8

5	6	Α	С	В	F	G	3	D	8	4	1	9	2	7	Е
2	4	В	7	9	6	Е	С	G	Α	5	F	3	1	8	D
G	8	F	9	5	Α	1	D	3	2	Е	7	6	C	В	4
3	1	Е	D	7	8	4	2	6	В	9	С	G	F	Α	5
E	Α	9	В	1	5	D	G	F	3	2	6	8	4	С	7
C	F	3	G	2	7	В	4	9	1	D	8	Е	Α	5	6
8	5	D	6	3	9	C	F	4	Е	7	Α	2	G	1	В
7	2	4	1	8	Ε	Α	6	5	С	G	В	D	3	9	F
6	3	8	2	D	G	9	В	Α	7	С	4	5	E	F	1
1	С	7	Α	6	3	2	8	В	5	F	Е	4	9	D	G
F	D	G	4	С	1	5	Ε	8	9	3	2	7	В	6	Α
В	9	5	Е	F	4	7	Α	1	D	6	G	С	8	2	3
9	Е	2	3	4	С	6	1	7	F	В	D	Α	5	G	8
Α	7	1	F	Е	D	3	5	2	G	8	9	В	6	4	С
D	G	6	5	Α	В	8	9	С	4	1	3	F	7	Ε	2
4	В	С	8	G	2	F	7	Е	6	Α	5	1	D	3	9

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 6 10 12 11 15 16 3 13 8 4 9 2 7 14 1 2 4 11 7 9 6 14 12 16 10 5 15 3 1 8 13 3 16 8 15 9 5 10 1 13 3 2 14 7 6 12 11 3 1 14 13 7 8 4 2 6 11 9 12 16 15 10 5 13 16 15 3 2 6 8 4 12 14 10 9 11 1 8 14 10 5 6 12 15 3 16 2 7 11 4 9 1 13 3 9 12 15 4 14 7 10 2 16 1 11 5 13 6 7 2 1 8 14 10 6 5 12 16 11 13 3 9 15 4 9 6 3 8 2 13 16 9 11 10 7 12 4 5 14 15 1 7 10 6 3 2 8 11 5 15 14 10 1 12 4 9 13 16 11 15 13 16 4 12 1 5 14 8 9 3 2 7 11 6 10 5 14 15 4 7 10 1 13 6 16 12 8 2 3 12 11 9 2 3 4 12 6 1 7 15 11 13 10 5 16 8 13 9 14 3 5 2 16 8 14 10 7 1 15 14 13 9 11 6 4 12 15 13 16 6 5 10 11 8 9 12 4 1 3 15 7 14 16 4 11 12 8 16 2 15 7 14 6 10 5 1 13 3 9

6 Conclusão

Foi apresentada a classe de quebra-cabeças conhecidos como Sudoku, os quais estão fortemente presentes no cotidiano. Uma abordagem matemática envolvendo programação linear nos permitiu modelar o Sudoku clássico 9×9 e qualquer Sudoku geral $n \times n$, com n quadrado perfeito.

Uma grande vantagem de se ter um algoritmo de resolução de Sudokus é tornar a sua resolução mais rápida, o que pode ser interessante para gerar aplicações. Um exemplo disso, é a criptografia: dados alguns valores iniciais e algumas regras de preenchimento, pode-se decodificar toda a matriz de dados, pois a solução é única, além de permitir uma trasferência mais ágil dos dados de forma mais enxuta.

Uma desvantagem evidente dos algoritmos baseados nas modelagens aqui descritas é a complexidade dos mesmos. Valores pequenos de n já geram uma quantidade enorme de restrições para o problema a ser resolvido. Assim, para Sudokus cada vez maiores, perde-se a eficiência do método.

Portanto, foi possível descrever de forma detalhada o problema em linguagem natural, modelar matematicamente o problema, implementar algoritmos de solução para o problema e algumas de suas variações de forma devidamente documentada, além de validar exemplos resolvidos.

7 Referências

```
https://en.wikipedia.org/wiki/Sudoku
```

https://coin-or.github.io/pulp/CaseStudies/a_sudoku_problem.html

https://www.researchgate.net/profile/Amy-Langville/publication/228615106_An_integer_

programming_model_for_the_sudoku_problem/links/5c0883e7a6fdcc494fdca89d/An-integer-programming-model