版权归福州大学数学公共基础课教学研究中心所有,翻印必究-2021版

(A) A, <u>B</u> 独立

(A) $\overline{3}$

1. 设 A与 B相互独立,则下列结论错误的是 ()

(B) $\frac{1}{2}$

(B) $AB = \phi$

福州大学概率论与数理统计期末试卷 A(2021 年 6 月 19 日)

一. 单项选择(每小题 3 分, 共 30 分, 请用铅笔在另一份答题卷选项框处涂黑, 否则影响自动评分)

2. 若在区间(0,1)上随机地取两个数u,v,则关于x的一元二次方程 $x^2-2vx+u=0$ 有正实根的概率是()

(C) Q 7

(C) $P(\overline{A}B) = P(\overline{A})P(B)$ (D) $\overline{A}, \overline{B}$ 独立

(D) 1

3. 设随机变量	X 的概率密度函数为 f_X ((x), Y = -5X + 1, 则 Y 的概	率密度函数为 ().
$(A) \frac{1}{5} f_X \left(\frac{1-y}{5}\right)$	(B) $-\frac{1}{5}f_X(\frac{1-y}{5})$	$(C) -\frac{1}{5}f_X(\frac{y-1}{5})$	$(D) f_X(\frac{1-y}{5})$
4. 已知离散型	随机变量 X 的分布律为 B	$P(X=k) = C \frac{\lambda^k}{k!}$ $(k=1, 2, \cdots)$	·; $\lambda > 0$ 为常数),则 $C = ($)
(A) $e^{-\lambda}$	(B) e^{λ}	(C) $\frac{1}{e^{\lambda}-1}$	(D) 1
5. 将一枚均匀	硬币连续抛 1000 次,用	切比雪夫不等式估计在 100	0 次试验中出现正面的次数在 400 至
600 次之间的 (A) 大于 0.9°	7概率力() 75 (B) 0.975	(() 小于 0.975	(D) 不小于 0.975
		为 $f(x,y) = \begin{cases} 6x, & 0 < x < y \\ 0, & 其他 \end{cases}$	y < 1, 则 $P(X + Y > 1) = ($
(A) 0.5	J (B) 1	(C) 0.25	(D) 0.75
7. 设随机变量/	字列{X"}满足(),且每个	·随机变量 X_i 的数学期望存	在($i=1,2,\cdots$),则 $\{X_n\}$ 服从大数定律。
(A) 同分布,	, (B) 相互独立	(C) 独立同分布	(D) 两两不相关
8. 设 X ₁ , X ₂ , ····	X 是总体、 $N(\mu,\sigma^2)$ 的-	$-$ 个样本, \overline{X} 和 S^2 分别为样	(D) 两两不相关 本均值和样本方差,设 $T = \overline{X}^2 - \frac{1}{S}S^2$,
侧下列结论正确			n
(A) T 是 μ 的	无偏估计量	(B) $T \in \mu^2$ 的无偏估	计量
(C) T 是 σ 的	无偏估计量	(D) T 是 σ^2 的无偏估证	十量
9. 设随机变量	$X \sim N(0,1), Y \sim N(0,1), X$	Y与Y 相互独立,有 4 个结论	(1) $Y + Y \sim N(0,2)(2)^{2}X^{2} \sim \chi^{2}(1)$,
$Y^2 \sim \chi^2(1)$ (3)	$X^2 + Y^2 \sim \chi^2(Q)$ (4)	$\frac{X^2}{Y^2} \sim F(1,1)$ 分布,其中正确	的结论个数有 ()
(A) 1个	(B) ⁻ 2 ↑	- (C) 3 个	(D) 4 ↑
10. 设二维随机	· 变量(X,Y)服从正态分布	$N(\mu,\mu,\sigma^2,\sigma^2,0)$,则 $E(XY)$	(2)为()
(A) μ	(B) σ^2	(C) $\mu(\sigma^2 + \mu)$	(D) $\mu(\sigma^2 + \mu^2)$
		115 72	
, , ,	· ·	• •	, it to a 2

、(8分)某仓库有同样规格的产品六箱,其中三箱是甲厂生产的,两箱是乙厂生产的, 产的,且它们的次品率分别为 $\frac{1}{10}$, $\frac{1}{15}$, $\frac{1}{20}$,现从中任取一件产品,试求取的一件产品是正品的概率。

三、(8分)在一个汽车站上,某路公共汽车每5分钟有一辆到达,而乘客在5分钟内任一时间。 到达是等可能的, 求在此车站的 10 位乘客中只有 1 位等待时间超过 4 分钟的概率。

四、(10 分) 随机变量 X,Y 独立同分布,且均服从U(0,2),求 Z=X+Y 的概率密度。

五、(10) 随机变量(X,Y)的分布函数为 $F(x,y) = \begin{cases} x^2(1-e^{-y}), & 0 < x < 1, y > 0 \\ 1-e^{-y}, & x > 1, y > 0 \end{cases}$ 求解以刊问题:

(1)随机变量(X,Y)的联合概率密度f(x,y) (2) 关于X,Y的边缘概率密度,并判断X,Y 门思、性.

六、(10 分) 设随机变量 X 的概率密度函数为 $f(x) = \frac{1}{2}e^{-|x|}$, $-\infty < x < +\infty$

- (1) 求 X的数学期望 E(X) 和方差 D(X); (2) 求 cov(X,|X|), 并问: X与|X|是否相关?
- (3) 问: X与|X|是否相互独立? 为什么?

七、 $(8\, \mathcal{G})$ 一盒同型号螺丝钉共 $100\, \mathcal{G}$,已知该型号的螺丝钉的重量是一个随机变量,期望值是 $100\, \mathcal{G}$ 标准差是 $10\, \mathcal{G}$,求一盒螺丝钉的重量超过 $10.2\, \mathcal{G}$ 的概率。 $(\Phi(2)=0.9772)$

八、 $(10 \, f)$ (1) 设总体 X 以等概率 θ^{-1} 取值 $1,2,\cdots$, θ ,求未知参数 θ 的矩法估计量。

(2) 总体 X 服从参数为 λ 的指数分布,其中 λ 为未知参数,且 $\lambda > 0$, X_1, X_2, \cdots, X_n 为X 的一个样本,求未知参数 λ 的极大似然估计量。

九、(直接写出答案)(共6分)

- (1) 设总体 $X \sim N(\mu, \sigma^2)$,其中 σ^2 未知, X_1, X_2, \cdots, X_n ,IX 的一个样本,永总体均值 μ 的置信度为 $1-\alpha$ (0 < α < 1) 的置信区间长度。
- (2) 在假设检验中,为了同时减少犯第一类错误和第二类错误的概率,最好的方法是什么?
- (3) 请叙述随机变量 X 的分布函数的定义。