Dustin Newman

CS 181, Discussion 1A

Campbell, Mathur

Assignment Four

1

 L_1 is a finite state (FS) language which can be represented with the regular expression below.

$$R_1 := (b \, | \, c)^* \cdot [a \cdot (b \, | \, c) \cdot (b \, | \, c)^* \cdot a \cdot (b \, | \, c) \cdot (b \, | \, c)^*]^* \cdot (b \, | \, c)^*$$

 L_2 is **not** a finite state language, but is a context-free language. Below, I prove by contradiction that L_2 is not a regular language and then present a context-free grammar for the language.

Assume that L_2 is regular. By the pumping lemma, there exists some pumping length p>0 such that for every string $w\in L_2$ of at least length p (i.e. $|w|\geq p$), w can be partitioned in the form $w:=xy^iz$. Per the pumping lemma, we know that (1) $|xy|\leq p$, that (2) |y|>0, and that (3) all these properties hold for all values of $i\geq 0$. Effectively, this allows us to "pump" (up or down) w and still have the string remain in L_2 .

Let our $w:=a^{p+1}b^{p+1}c^0$. $w\in L_2$ because our predicate k=m+n holds when k=p+1 and m=p+1 (i.e. p+1=p+1+0).

 $|w| \ge p$ because it contains one more "a" and one more "b" than each value of $p \ge 0$ and thus has a specific length of 2p+2>p.

Since $|xy| \le p$, we know that xy consists of some fraction of the "a"s in w. Maximally, there must be at least one "a" not in the xy partition.

More formally, we say that $x:=a^{\alpha}$ and $y:=a^{\beta}$ and $z:=a^{p+1-\alpha-\beta}b^{p+1}$ where $(\alpha+\beta)\leq p$ and $\beta>0$.

No matter the partition of xy^iz , consider the case when i:=2. Then we have $w_2:=xyyz:=a^\alpha a^\beta a^\beta a^{p+1-\alpha-\beta}b^{p+1}$.

However, $w_2 \notin L_2$ because the number of occurrences of "a" does not equal the number of occurrences of "b" i.e. $\#(a, w) \neq \#(b, w)$. We can see that illustrated below:

$$\alpha + \beta + \beta + p + 1 - \alpha - \beta = p + 1$$
$$\beta + p + 1 = p + 1$$

This can only hold when $\beta := 0$. However, since the length of y must be greater than $0, \beta > 0$. Thus, the above does not hold and $w_2 \notin L_2$.

This is a contradiction since, by the pumping lemma, $w_2 \in L_2$ since it is of the form xy^iz .

 $\therefore L_2$ is not a regular language.

The context-free grammar is given below:

$$S
ightarrow XY \ X
ightarrow aXb\,|\,arepsilon \ Y
ightarrow bYc\,|\,arepsilon$$

The parse tree:

b

The right-most derivation:

$$\underline{E} \Rightarrow E + T$$

$$E + \underline{T} \Rightarrow E + F$$

$$E + \underline{F} \Rightarrow E + v$$

$$\underline{E} + v \Rightarrow E + T + v$$

$$E + \underline{T} + v \Rightarrow E + F + v$$

$$E + \underline{F} + v \Rightarrow E + v + v$$

$$\underline{E} + v + v \Rightarrow T + v + v$$

$$\underline{T} + v + v \Rightarrow F + v + v$$

$$\underline{F} + v + v \Rightarrow v + v + v$$

The left-most derivation:

$$\underline{E} \Rightarrow E + T$$

$$\underline{E} + T \Rightarrow E + T + T$$

$$\underline{E} + T + T \Rightarrow T + T + T$$

$$\underline{T} + T + T \Rightarrow F + T + T$$

$$\underline{F} + T + T \Rightarrow v + T + T$$

$$v + \underline{T} + T \Rightarrow v + F + T$$

$$v + \underline{F} + T \Rightarrow v + v + T$$

$$v + v + \underline{T} \Rightarrow v + v + F$$

$$v + v + F \Rightarrow v + v + v + v$$