

Progettazione Elettronica Digitale

2024–2025 © Mario Casu, Mihai Lazarescu, Paolo Pasini

L00 - Sommario

- →Introduzione al corso
- → Obiettivi
- →Organizzazione del corso
- **→**Esami

Introduzione

- Obiettivi di questo corso
- Argomenti
- Materiale didattico
- Organizzazione dei laboratori
- Modalità di esame
- Organizzazione dei contenuti
 - Prerequisiti (richiami da corsi precedenti)

Obiettivi di questo corso

- Apprendimento analisi e progettazione di circuiti elettronici digitali
 - Saper descrivere hardware digitale tramite schemi e linguaggi specifici
 - Saper simulare tramite opportuni strumenti software
 - Saper prevedere il comportamento del circuito (forme d'onda, massima frequenza, ecc.)
- Componenti elementari
 - Comportamento, tecnologia di realizzazione
- Circuiti e sistemi digitali basati sui componenti elementari

Macroargomenti

- Porte logiche e circuiti logici elementari
- Circuiti di base e macchine a stati finiti
- Transistori MOS e modelli semplificati per la progettazione e l'analisi
- Memorie
- Linguaggio Verilog per la descrizione dell'hardware
- Flusso di progettazione
- Esempi di progetto di sistema

Modalità di erogazione della didattica

- Tre corsi paralleli ITA (prof. Casu, prof. Lazarescu, prof. Pasini)
- Un corso ENG (prof. Crovetti)
- Lezioni, esercitazioni e laboratori in presenza
 - Saranno utilizzate le medesime aule per tutte e tre le tipologie di attività
 - Almeno per le lezioni «di laboratorio» è necessario portare con sé un PC personale
- Per essere efficaci, i laboratori richiedono un lavoro preliminare
 - Utile lavorare in gruppo per la preparazione
 - Verifica durante le ore di laboratorio in aula

Materiale didattico – siti web

- Portale della didattica
 - Informazioni e materiale "personale" (voti scritti e laboratori)
 - Materiale didattico riservato agli studenti iscritti
 - Copie delle slide
 - Guide di laboratorio, esempi di esercizi ed esami, ...
- Poiché il corso è alla sua prima edizione, il materiale è «in fase di rodaggio», per cui sicuramente subirà modifiche e correzioni in corso d'opera
 - Rappresenta di sicuro un disagio per lo studente...
 - ...ma cercheremo di fare il possibile per venirvi incontro!

Testi consigliati

- S. Brown, Z. Vranesic:
 - Fundamentals of Digital Logic with Verilog Design
 - McGraw Hill LLC, 2025, ISBN: 978-1-265-48096-7
 - Versioni precedenti disponibili per il prestito https://pico.polito.it
- F. Maloberti:
 - Understanding Microelectronics: A Top-Down Approach
 - Wiley, December 2011, ISBN: 978-0-470-74555-7
 - Disponibile on line sul sito http://www.biblio.polito.it (ricerca per titolo)

Esempi, test, esercizi

- Esempi presentati durante la lezione
- Esercizi: esercitazioni in aula
 - o Testi disponibili prima dell'esercitazione in aula
 - o Risolti e commentati passo-passo in aula
 - Due modi di utilizzo:
 - Provare a risolverli da soli; verifica delle soluzioni in aula
 - Massima utilità ed efficacia, richiede lavoro autonomo
 - Aspettare la soluzione in aula
 - Minimo lavoro e minimo apprendimento...

Modalità di esame

- Prova scritta al PC su piattaforma Moodle
- Voto massimo : 30L
 - Domande/esercizi con risposta numerica o testo, tipicamente a risposta multipla, sull'intero programma del corso
 - Punteggio positivo (100% dei punti della domanda) se risposta corretta, nullo (0%) se risposta errata
 - Possibili domande sulle attività di laboratorio [0 3pt]
 - Stessa modalità di punteggio
 - Domande extra su argomenti di approfondimento individuale (ben indicati nelle slide)
 - Si può arrivare a 30L anche senza le parti di approfondimento ma danno punti in più
 - Punteggio positivo se risposta corretta (100% dei punti), negativo (-25% dei punti) se risposta errata
- Non è previsto un orale integrativo
 - A discrezione del docente il candidato è convocato in caso di situazioni dubbie

Sistemi elettronici e moduli

- Un sistema elettronico è fatto di moduli interconnessi
- La maggior parte dei progettisti utilizza moduli e componenti costruiti da altri
- Cosa occorre sapere per usare i moduli?
 - Funzione
 - Segnali I/O
 - Alimentazione
 - 0 ...

Segnali analogici

- Il segnale analogico è continuo su due assi
 - o Tempo: è definito per qualsiasi istante di tempo entro un certo intervallo
 - Ampiezza: può assumere qualsiasi valore entro un certo intervallo

Parametri :

- Intervallo di ampiezza
 - Valore max e min (dinamica),
 - Eventuale DC
- Contenuto spettrale
 - Banda, forma dello spettro

Segnali digitali

- Il segnale digitale è una sequenza di numeri, generalmente in base 2
 - o Discreto in tempo: definito solo per alcuni istanti di tempo entro un certo intervallo
 - Discreto in ampiezza: può assumere solo alcuni valori entro un certo intervallo
- Parametri:
 - Dinamica di ampiezza
 - Legata al numero di bit
 - Banda (in frequenza)
 - Legata alla cadenza dei campioni
- Formato: parallelo o seriale

Ricostruzione del segnale digitale

- Ogni operazione aggiunge rumore
- Segnali analogici:
 - Il rumore determina un degrado non recuperabile dell'informazione
- Segnali digitali:
 - il degrado dovuto al rumore è recuperabile, se contenuto entro certi limiti

Perché usare segnali digitali?

- Il segnale digitale può essere ripristinato, quindi
 - Gli effetti del rumore non sono cumulativi
 - È possibile eseguire sul segnale operazioni complesse, impossibili con tecnica analogica per il cumulo del rumore
- Sono disponibili strumenti automatici per il progetto e la realizzazione di moduli digitali
 - Il progetto di un circuiti digitale è rapido e «automatico»
 - I circuiti integrati digitali hanno costi più bassi
- Il comportamento dei circuiti digitali è facilmente modificabile
 - SW o altra programmazione

Come usare i segnali digitali?

- Con un segnale digitale, perché non vi sia perdita di informazione occorrono
 - o Corretto interfacciamento, statico e dinamico
 - Verifica dei limiti operativi
 - Corretta scelta della tecnologia di sistema
 - Periodica ricostruzione del segnale

Esistono segnali solo «digitali»?

• Gli **stati logici** sono rappresentati con **tensioni** (*Volt*)

- Le tensioni sono affette da rumore, disturbi, richiedono tempo per spostarsi, consumano energia, irradiano onde elettromagnetiche, ...
- L'elettronica digitale ha una base analogica

Analogico - digitale - analogico

- Un sistema elettronico comprende:
 - interfacce verso il mondo esterno (front-end) analogico
 - conversione A/D
 - o trattamento del segnale numerico
 - conversione D/A
 - interfacce verso il mondo esterno (back-end) analogico

