

Содержание

- Постановка задачи глобальной оптимизации
- Редукция размерности
- Метод глобальной оптимизации
- Задачи конкурса GenOpt
- Ускорение сходимости алгоритма глобальной оптимизации
- Результаты решения задач
- Параллельный метод глобальной оптимизации
- Результаты применения параллельного метода

Постановка задачи глобальной оптимизации

$$D = \{ y \in R^N : a_i \leqslant x_i \leqslant b_i, 1 \leqslant i \leqslant N \}$$
$$\varphi(y^*) = \min\{ \varphi(y) : y \in D \}$$

Предполагается, что целевая функция удовлетворяет условию Липшица в D:

$$|\varphi(y_1) - \varphi(y_2)| \leq L||y_1 - y_2||, y_1, y_2 \in D, 0 < L < \infty$$

Сложность построения численной оценки решения:

$$O(a^N), a > 1$$

Простейший метод: перебор по равномерной сетке

Современные подходы: divide-the-best методы (метод Пиявского, DIRECT), эволюционные алгоритмы

Редукция размерности

Основные подходы:

• Использование разверток

$$\{y \in R^N : -2^{-1} \leqslant y_i \leqslant 2^{-1}, 1 \leqslant i \leqslant N\} = \{y(x) : 0 \leqslant x \leqslant 1\}$$

$$\varphi(y(x^*)) = \min\{\varphi(y(x)) : x \in [0, 1]\}$$

• Многошаговая схема

$$\min \varphi(y) : y \in D = \min_{a_1 \leqslant y_1 \leqslant b_1} \min_{a_2 \leqslant y_2 \leqslant b_2} \dots \min_{a_1 \leqslant y_N \leqslant b_N} \varphi(y)$$

• Блочная многошаговая схема

$$u_1 = (y_1, y_2, \dots, y_{N_1}), u_2 = (y_{N_1+1}, y_{N_1+2}, \dots, y_{N_1+N_2}), \dots,$$

$$u_M = (y_{N-N_M+1}, y_{N-N_M+2}, \dots, y_N)$$

$$\min \varphi(y)_{y \in D} = \min_{u_1 \in D_1} \min_{u_2 \in D_2} \dots \min_{u_M \in D_M} \varphi(y)$$

Метод глобальной оптимизации

Общая схема характеристического метода:

пусть имеется k результатов испытаний

1) Упорядочить поисковую информацию по возрастанию координат точек испытаний:

$$a = x_0 < x_1 < \ldots < x_{k+1} = b$$

- 2)Вычислить для каждого интервала $(x_{i-1}, x_i), 1 \le i \le k$ величину R(i), называемую характеристикой.
- 3)Выбрать интервал номер t с наибольшей характеристикой и провести в нем испытание:

$$x^{k+1} = d(t) \in (t_{t-1}, x_t)$$

Критерий остановки: $||x_t - x_{t-1}|| < \varepsilon$

Метод глобальной оптимизации

Формулы для вычисления характеристик:

Формулы для вычисления характеристик:
$$R(1) = 2\Delta_1 - 4\frac{z_1}{M}, R(k+1) = 2\Delta_{k+1} - 4\frac{z_k}{M}$$

$$R(i) = \Delta_i + \frac{(z_i - z_{i-1})^2}{M^2\Delta_i} - 2\frac{z_i + z_{i-1}}{M}, 1 < i < k+1$$

$$\Delta_i = (x_i - x_{i-1})^{\frac{1}{N}}$$

Правило выбора очередной точки:

$$x_{k+1} = \frac{x_t + x_{t-1}}{2}, t = 1, t = k+1$$

$$x_{k+1} = \frac{x_t + x_{t-1}}{2} - (z_t - z_{t-1}) \frac{1}{2r} \left[\frac{|z_t - z_{t-1}|}{\mu} \right]^N, 1 < t < k+1$$

Задачи конкурса GenOpt

- 18 классов задач по 100 функций в каждом
- Лимит на количество вычислений: 10⁶
- Для решения применялся последовательный метод с разверткой

Index	Family	Type	Dimension
0	GKLS	1: (f	10
1		non-differentiable	30
2		differentiable	10
3		differentiable	30
4		twice differentiable	10
5			30
6	High condition	Rosenbrock	10
7		Rosenbrock	30
8		Rastrigin	10
9			30
10		Zakharov	10
11			30
12 + 2n	G ::		10
13 + 2n	Composite		30

Ускорение сходимости

1. Смешанный глобально-локальный алгоритм

$$R_{\alpha}(i) = \frac{R(i)}{\sqrt{(z_i - \varphi_k^*)(z_{i-1} - \varphi_k^*)} + \mu(1.5)^{-\alpha}}$$

- 2. Локальное уточнение после каждого обновления текущего минимума (локальный метод Хука-Дживса)
- 3. Сепарабельная оптимизация
- 4. Мультистартовая схема

Результаты решения конкурсных задач

Класс GKLS: улучшение результатов за счёт мультистартовой схемы

Остальные классы: локальное уточнение и сепарабельная оптимизация

Класс	Решилось без мультистартовой схемы	Решилось с мультистартовой схемой
GKLS_nd_10	78	99
GKLS_nd_30	0	15
GKLS_cd_10	67	96
GKLS_cd_30	0	1
GKLS_td_10	65	94
GKLS_td_30	0	0

Класс	Решилось
GKLS_nd_10	99
GKLS_nd_30	15
GKLS_cd_10	96
GKLS_cd_30	1
GKLS_td_10	94
GKLS_td_30	0
Rosenbrock_10	100
Rosenbrock_30	100
Rastrigin_10	100
Rastrigin_30	100
Zakharov_10	100
Zakharov_30	100
Composite_10	100
Composite_30	100

Параллельный метод оптимизации

Общая схема параллельного метода:

пусть имеется k результатов испытаний

1) Упорядочить поисковую информацию по возрастанию координат точек испытаний:

$$a = x_0 < x_1 < \ldots < x_{k+1} = b$$

- 2)Вычислить для каждого интервала $(x_{i-1}, x_i), 1 \le i \le k$ величину R(i), называемую характеристикой.
- 3)Выбрать *р* интервалов с наибольшими характеристиками и параллельно провести в них испытания:

$$x^{k+j} \in (x_{t_j-1}, x_{t_j}), 1 \leq j \leq p$$

Критерий остановки: $\exists j : \|x_{t_j-1} - x_{t_j}\| < \varepsilon$

Результаты применения параллельного метода

• Количество решенных задач

Класс	P = 2	P = 4	P = 8	P = 16
GKLS_nd_10	81	88	84	82
GKLS_cd_10	78	85	85	78
GKLS_td_10	73	81	82	78

• Среднее время решения задачи

Класс	P = 2	P = 4	P = 8	P = 16
GKLS_nd_10	15,80	16,30	15,01	12,55
GKLS_cd_10	38,09	50,89	46,23	38,42
GKLS_td_10	57,99	65,29	62,35	51,79

• Среднее ускорение по времени

Класс	P = 2	P = 4	P = 8	P = 16
GKLS_nd_10	1,48	1,43	1,56	1,86
GKLS_cd_10	1,40	1,04	1,15	1,38
GKLS_td_10	1,20	1,06	1,11	1,34

Результаты применения параллельного метода

Использовалась параллельная многошаговая схема.
 Разбиение переменных: 8 + 2

Класс	Решилось задач	Среднее время	Ускорение
GKLS_nd_10	87	10,75	2,18
GKLS_cd_10	86	19,49	2,73
GKLS_td_10	80	21,37	3,25

Спасибо за внимание

