

Electrotecnia

© José Ramón Landeras Díaz

Este trabajo se publica bajo licencia Creative Commons 3.0 BY-NC-SA

EJERCICIOS DEL TEMA 1

Ejercicio Nº-1.

En el circuito de la Fig-1. Calcular la resistencia equivalente entre los terminales A y B.

Ejercicio Nº-2.

En el circuito de la Fig-2. Calcular la resistencia equivalente entre los terminales A y B.

Ejercicio Nº-3.

En el circuito de la Fig-3. Calcular la corriente suministrada por el generador de 5 V, reduciendo previamente la red.

Ejercicio Nº-4.

En el circuito de la Fig-4. Calcular la resistencia equivalente entre los terminales A y B.

Ejercicio Nº-5.

En el circuito de la Fig-5. Las nueve resistencias son iguales de valor R Ω . Aplicamos a los terminales A y B una tensión de 300V, consumiendo la res 300W. ¿Qué valor tendrá cada una de las resistencias R?

Ejercicio Nº-6.

En el circuito de la Fig-6. Las cuatro resistencias son iguales. Aplicamos una tensión V entre los terminales A y B, consumiendo una potencia P. Si la tensión V la aplicamos entre los terminales B y C. ¿ Qué valor tendrá la potencia consumida por el circuito?

Ejercicio Nº-7.

En el circuito de la Fig-7. Calcular por el método de tensión de nudos, la potencia suministrada por el generador de corriente del circuito.

Ejercicio Nº-8.

En el circuito de la Fig-8. La intensidad l1 vale 10 A con el interruptor K cerrado. En estas condiciones ¿qué valor tiene la resistencia de entrada entre los terminales A y B?

Ejercicio Nº-9.

En el circuito de la Fig-9. Las fuentes son de c.c.. ¿Qué valor tiene la potencia generada por la fuente de intensidad de 10 A?

Ejercicio Nº-10.

En el circuito de la Fig-10. E_1 -R₁ y E_2 -R₂ son dos fuentes reales de tensión: E_1 =100V, R_1 =2 Ω , E_2 =70V, R_2 =1 Ω , R_3 =10 Ω . Estando el interruptor K abierto ¿Cuál es el régimen de funcionamiento de la fuente E_2 ?

Ejercicio Nº-11.

En el circuito de c.c de la Fig-11.

Calcular:

- 1º) Potencial del nudo 1.
- 2º) Intensidad I23.
- 3º) Potencias suministradas o consumidas por las fuentes E₁ y E₂.
- 4º) Circuito equivalente de Thévenin entre los terminales 1 y 0.

Ejercicio Nº-12.

En el circuito de la Fig-12. Calcular la corriente ia, Aplicando el principio de superposición.

Ejercicio Nº-13.

En el circuito de la Fig-13.

Calcular:

- 1º) Circuito equivalente de Thévenin entre los terminales A y B.
- 2º) Resistencia que conectada entre los terminales A y B consume la máxima potencia posible y valor de esta.
- 3°) Si cortocircuitamos los terminales A y B. Calcular las potencias que suministran las fuentes E_1 y E_2 en estas condiciones.

Ejercicio Nº-14.

En el circuito de c.c de la Fig-14.

Calcular:

- 1º) Potenciales de los nudos 1,2,3.
- 2º) Intensidades indicadas en la Figura.
- 3º) Potenciales consumidos o suministrados por las fuentes E₁ y E₂.
- 4º) Circuito equivalente de Thévenin entre los terminales 1 y 3.

Ejercicio Nº-15.

En el circuito de la Fig-15.

Calcular:

- 1º) Potenciales de los nudos A, B, C.
- 2º) Balance de potencias de las fuentes.
- 3º) Circuitos de Thevenin y Norton entre A y B.

Ejercicio Nº-16.

Una dinamo de f.e.m. 15V, resistencia interna 0,2F y una batería de f.e.m. 12V, resistencia interna 0,05 Ω . Según Fig-16. Se pide calcular:

- 1º) intensidades y balance de potencias cuando conectamos un receptor de una resistencia de 1Ω .
- 2º) Valor de una segunda resistencia a conectar para que la batería no consuma ni suministre potencia.
- 3º) Si conectamos un tercer receptor de 0.5Ω . Determinar intensidades y balance de potencias en estas condiciones.

Ejercicio Nº-17.

En el circuito de la Fig-17.

Calcular:

- 1º) Resistencia equivalente entre A y B.
- 2º) Valores de las intensidades l1 e l2.
- 3º) Circuitos de Thévenin y Norton entre los terminales A y B.

Ejercicio Nº-18.

En el circuito de la Fig-18.

Calcular:

1º) Potencia consumida en la resistencia de 3Ω , reduciendo previamente la red.

Ejercicio Nº-19.

En el circuito de la Fig-19. La potencia eléctrica suministrada por el generador de corriente del circuito es de 54W. Calcular:

- 1º) F.e.m. E del generador de tensión existente entre los nudos A y C.
- 2º) potencias eléctricas producidas por los generadores.
- 3º) Potencias eléctricas disipadas en las resistencias.
- 4º) Comprobar el balance de potencias de la red.

Ejercicio Nº20.

En el circuito de la Fig-20. Calcular la diferencia de potencial entre los nudos M y N de la red.

