Computer Vision

Prof. Po-Yueh Chen (陳伯岳)

E-mail: pychen@cc.ncue.edu.tw

Ext: 8440

NCUE CSIE

Instructor:

Prof: Po-Yueh Chen (陳伯岳)

Office: E-232 (Ext: 8440)

E-mail: pychen@cc.ncue.edu.tw

Office hours: Mon. 13:00~15:00

Tue. 13:00~15:00

References:

OpenCV Open Source Computer Vision

https://docs.opencv.org/4.0.1/

Learning OpenCV Bradski & Kaehler

OpenCV By Example Prateek Joshi David Millan Escriva

Computer Vision P.Y. Chen NCUE CSIE

Outline:

Ch1. Computer Vision Introduction

Ch2. OpenCV introduction

Ch3. Color Spaces

Ch4. Object Segmentation

Ch5. Filtering

Ch6. Morphological Operations

Ch7. Connected Component Labeling & Contours

Ch8. Image Smoothing

Ch9. Object Detection

Instruction of installation

Grading:

Exercise 30% (*.exe, *.cpp, *.ppt - 3 files)

Midterm Exam 30%

Final Project 40%

TA:

TA: Shao-Chi Fu (傅紹齊)

Lab: E-106

E-mail: 20511asdfghjkl@gmail.com

TA office hours: Wed.16:00~17:00

Exercise: Upload to 彰師大雲端學院

Computer Vision

Ch.1 Introduction

Prof. Po-Yueh Chen (陳伯岳)

E-mail: pychen@cc.ncue.edu.tw

Ext: 8440

What is Computer Vision? (1/4)

Computer Vision (CV)

Image

Videos

What is Computer Vision? (2/4)

> Analysis

- ✓ Security surveillance
- ✓ Traffic surveillance
- ✓ Sports video analysis
- ✓ Vehicle Technology
- ✓ Factory production line
- ✓ Road analysis
 - . . . etc.

What is Computer Vision? (3/4)

✓ Interdisciplinary

- Artificial intelligence (AI)
- Information engineering
- Signal processing
- Physics
- Neurobiology
- ... etc.

What is Computer Vision? (4/4)

Human Vision VS. Computer Vision

> Low frequency content

Lena

> High frequency content

11

Computer Vision Introduction (1/6)

Tasks:

- Detection
- Recognition
- Analysis
- Image Restoration

Computer Vision Introduction (2/6)

> Detection

Source: Python with OpenCV Testing by Y.J. Dai

Computer Vision Introduction (3/6)

Recognition

YOLO (You Only Look Once)

- Joseph Redmon

Official Website: https://pjreddie.com/darknet/yolo/

2020 Yolo v4 Paper:

https://arxiv.org/pdf/2004.10934.pdf

Computer Vision Introduction (4/6)

Motion Analysis

Source: https://www.researchgate.net/publication/318141412_Three-Dimensional_Reconstruction_of_the_Human_Skeleton_in_Motion

16

Computer Vision Introduction (5/6)

Motion Analysis

OpenPose: Hand, Face, and Body Keypoint Detection in Realtime

Source: https://blog.techbridge.cc/2019/01/18/openpose-installation

Computer Vision Introduction (6/6)

How does the Computer Vision determine the object?

- > Features
- Morphology
- Geometry
- > Color
- > Shape
- > Motion

- Light
- Other signal...

NCUE CSIE Computer Vision

Computer Vision Introduction (6/6)

Dlib - Face Recognition

Website: http://dlib.net/

First look at StrongTrack, a free face tracking tool for UE4/Blender

Strong Track v0.6

Extended Research (1/2)

> Image Restoration

• Image De-hazing

Haze-free image

Atmospheric light

Transmission

Extended Research (2/2)

- > Image Analysis
 - Pavement Crack Detection

Results comparing on CFD (from left to right: original image, ground truth, Canny, local thresholding, CrackForest, the proposed method)

Source: https://arxiv.org/pdf/1802.02208.pdf

Photo forming (1/7)

Camera

Human eyes

Pinhole - obscura box

Photo forming (2/7) One Point Perspective (z-axis vanishing point) Three Point Perspective (z, x, and y-axis vanishing points) Two Point Perspective

NCUE CSIE Computer Vision P.Y. Chen

z, and x-axis vanishing points

Photo forming (3/7)

24

NCUE COMPUTER VISION P. I. CHEN

Photo forming (4/7)

Pinhole - obscura box

Pinhole camera -a box with a small hole in it.

- Image is upside down.
- We usually use a virtual plane on the opposite side of the image plane

NCUE CSIE Computer Vision

Photo forming (5/7)

- > Pinhole image problem
 - Pinhole too big: brighter, but blurred.
 - Pinhole right size: sharp, but dark.

• Pinhole too small: blurred due to diffraction.

Photo forming (6/7)

> Optical aberration

In optical aberration is a property of optical systems such as lenses that causes light to be spread out over some region of space rather than focused to a point.

Spherical aberration

Chromatic aberration

Website: https://en.wikipedia.org/wiki/Optical_aberration

Photo forming (7/7)

> Human eye and refraction

Large part of refraction occurs at air-cornea interface.

It is fine tune through the crystalline lens.

Website: https://opencv.org/

Website: https://visualstudio.microsoft.com/zh-hant/vs/

Any questions?