Stochastic Modelling and Random Processes

Example sheet 2

1 Visualisation of the Gershgorin disk theorem and lazy Markov chains

Recall, from handout 1, that given a matrix $A \in \mathbb{R}^{n \times n}$, the Gershgorin disk theorem states that all eigenvalues lie in a least one Gershgorin disk, D_i , where D_i is centered on $a_{i,i}$ with radius

$$R_i = \sum_{j \neq i} a_{i,j}.$$

- (a) Visualise this for a couple of examples (e.g. the weather DTMC from last week, or a simple random walk with periodic boundary conditions and state space $\{1, 2, 3, 4, 5\}$).
- (b) Let $(X_n : n \in \mathbb{N}_0)$ be a DTMC with transition matrix p(x,y) (e.g. the simple random walk from (a)). The DTMC with transition matrix

$$p^{\epsilon}(x,y) = \epsilon \delta_{x,y} + (1-\epsilon) p(x,y) , \quad \epsilon \in (0,1)$$

is called a lazy version of the original chain.

- i. Check that P^{ϵ} has the same eigenvectors as P with eigenvalues $\lambda_i^{\epsilon} = \lambda_i(1-\epsilon) + \epsilon$.
- ii. In particular, check that this implies $|\lambda_i^\epsilon| < |\lambda_i| \le 1$ unless $\lambda_i = 1$. Since all diagonal elements are bounded below by $\epsilon > 0$, the Gershgorin theorem now also implies for the eigenvalues of P^ϵ

$$|\lambda_i| = 1 \quad \Rightarrow \quad \lambda_i = 1.$$

Such a matrix P^{ϵ} is called **aperiodic**, and there are no persistent oscillations (because there are not any eigenvalues $\mathbb{C} \ni \lambda \neq 1$ with $|\lambda| = 1$). Visualise this for the lazy versions of the DTMCs in (a) for a couple of values of ϵ .

(c) Consider a Markov chain with state space $S = \{1, 2, 3, 4, 5, 6, 7\}$ and the following transition matrix:

$$P = \begin{bmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 & \frac{2}{3} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{3}{4} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- i. Draw a graph representation of this chain.
- ii. Compute its eigenvalues (and visualise them) and conclude that there are persistent oscillations. What is the stationary distribution?
- iii. Simulate 100 realisations of this DTMC up to T=1000 to get an idea of its behaviour.
- (d) Come up with an example of a DTMC which is not irreducible and find its stationary distributions.

2 Geometric random walk

Let X_1, X_2, \ldots be a sequence of iidrv's with $X_i \sim \mathcal{N}(\mu, \sigma^2)$ where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Consider the discrete-time random walk (DTRW) on state space \mathbb{R}

$$(Y_n : n \ge 0)$$
 with $Y_{n+1} = Y_n + X_{n+1}$ and $Y_0 = 0$.

- (a) State the weak law of large numbers and the central limit theorem for Y_n .
- (b) Using that sums of Gaussian random variables are again Gaussian, what is the distribution of Y_n for any arbitrary $n \ge 0$?

Now consider the discrete-time process $(Z_n : n \ge 0)$ on the state space $[0, \infty)$ with $Z_n = \exp(Y_n)$, which is called a **geometric random walk**.

- (c) Give a recursive definition of $(Z_n : n \ge 0)$ analogous to the above. Show that Z_n has a log-normal distribution for all $n \ge 1$ by deriving the PDF. Give the mean, variance and median of Z_n (you can look this up on the web).
- (d) Simulate M=500 realizations of Z_n for $n=0,\ldots,100$ with $\mu=0$ and $\sigma=0.2$. Plot the **empirical average** $\hat{\mu}_n^M:=\frac{1}{M}\sum_{i=1}^M Z_n^i$ as a function of time n, with error bars indicating the standard deviation.

At times n=10 and 100 produce boxplots, plot the empirical PDF using a kernel density estimation, and compare it to the theoretical prediction.

For a single realization, plot the **ergodic average** $\bar{\mu}_N := \frac{1}{N} \sum_{n=1}^N Z_n$ as a function of N up to N=100.

We will see more about this when we look at the Geometric Brownian motion in a week or so