21-484 Notes JD Nir jnir@andrew.cmu.edu January 27, 2012

Recall: A graphical sequence.

- Want to prove: $S = d_1, d_2, \ldots, d_n, d_1 \ge 1, n \ge 2, s$ monotonically non increasing is graphical iff $s_1 = d_2 1, d_3 1, \ldots, d_{d_1+1} 1, d_{d_1+2}, \ldots, d_n$ is graphical.
- need to show that if s is graphical then there is a graph G with vertex set $\{v_1, \ldots, v_n\}$ such that
 - the degree sequence of G is S
 - $\deg_G(v_1) = d_1$
 - the degrees of the neighbors of v_1 are d_2, \ldots, d_{d_1+1}
- Assume that there is no such graph. Let G be the graph with $V(G) = \{v_1, \dots, v_n\}$ such that
 - 1. the degree sequence of G is s
 - 2. $\deg_G(v_1) = d_1$
 - 3. $\sum_{v \in N_G(v_1)} \deg_G(v)$ is maximal (over all vertices of degree d_1 in G and over all graphs satisfying 1 and 2)
- \rightarrow There is a neighbor of v_1, v_2 , and a nonneighbor of v_1, v_t , such that $\deg(v_t) > \deg(v_s)$
- $\rightarrow \exists v_r : v_r v_t \in E(G) \text{ and } v_r v_s \notin E(G).$

- \rightarrow Define G' by removing v_1v_s and v_tv_r and adding v_sv_r, v_1v_t
- Notice:
 - 1. $V(G') = \{v_1, \dots, v_n\}$
 - 2. $d'_G(v_1) = d_1$
 - 3. The degree sequence of G' is s

4.
$$\sum_{v \in N_{G'}(v_1)} \deg_{G'}(v) > \sum_{v \in N_G(v_1)} \deg_G(v)$$

Example (like 2.12 but shorter)

Is 3,3,2,2,1,1 graphical?

 $2,1,1,1,1 \\ 0,0,1,1 \rightarrow 1,1,0,0 \\ 0,0,0$

Graphical sequences:

Do not define a graph

Do not define connectivity