

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment

Number Theory

Author: Adam J. Gray Student Number: 3329798

Question 1

Suppose x > 2 and let m be the largest integer such that $2^m \le x$.

Part a

Use the definition of $\psi(x)$ to deduce that $\psi(x) \geq \vartheta(x)$ and conclude from Tutorial problem 1 that $\vartheta(x) \leq 2x$.

Part c

Show that $\frac{\log(x)}{x^{\alpha}}$ has a maximum of $\frac{1}{\alpha e}$

Part d

Deduce that $psi(x) - \vartheta(x) \le 9x^{\frac{1}{2}}$.

Part e

Conclude that, as $x \longrightarrow \infty$, $\frac{\psi(x)}{x} \longrightarrow 1 \Leftrightarrow \frac{\vartheta(x)}{x} \longrightarrow 1$.

Solution

Part a

We have that

$$\psi(x) = \sum_{m \le \log_2(x)} \vartheta(x^{\frac{1}{m}})$$

$$= \vartheta(x) + \underbrace{\sum_{2 \le m \le \log_2(x)} \vartheta(x^{\frac{1}{m}})}_{\ge 0}$$

so it is obvious that $\psi(x) \geq \vartheta(x)$.

From the tutorial problems we have that $\psi(x) \leq 2x$ so it must also be that $\vartheta(x) \leq 2x$.

Part b

See that

$$\frac{d}{dx} \frac{\log(x)}{x^{\alpha}} = \frac{\frac{1}{x}x^{\alpha} - \alpha \log(x)x^{\alpha-1}}{x^{2\alpha}}$$
$$= \underbrace{\frac{x^{\alpha-1}(1 - \alpha \log(x)}{x^{2\alpha}}}_{\circledast}.$$

Now setting $\circledast = 0$ we have that

$$\log(x) = \frac{1}{\alpha}$$
$$x = e^{\frac{1}{\alpha}}$$

Now checking

$$\frac{d^2}{dx^2} \frac{\log(x)}{x^{\alpha}} \Big|_{x=e^{\frac{1}{\alpha}}} = e^{\frac{-2-\alpha}{2}} (1-\alpha)(1-1) + e^{\frac{-1-\alpha}{\alpha}} \left(\frac{-\alpha}{e^{-\alpha}}\right)$$

$$< 0$$

so there must be a maximum at $x = e^{\frac{1}{\alpha}}$. Then evaluating we get that

$$\frac{\log(x)}{x^{\alpha}}\Big|_{x=e^{\frac{1}{\alpha}}} = \frac{1}{e\alpha}.$$

Part c

We can write

$$\psi(x) - \vartheta(x) = \sum_{1 \le m \le \log_2(x)} \vartheta(x^{\frac{1}{m}}) - \vartheta(x)$$
$$= \sum_{2 \le m \le \log_2(x)} \vartheta(x^{\frac{1}{m}}).$$

Now using the result of \mathbf{part} \mathbf{a} we can write

$$\begin{split} \sum_{2 \leq m \leq \log_2(x)} \vartheta(x^{\frac{1}{m}}) &\leq \sum_{2 \leq m \leq \log_2(x)} 2x^{\frac{1}{m}} \\ &\leq 2x^{\frac{1}{2}} + \sum_{3 \leq m \leq \log_2(x)} 2x^{\frac{1}{m}} \\ &\leq 2x^{\frac{1}{2}} + \sum_{3 \leq m \leq \log_2(x)} 2x^{\frac{1}{3}} \\ &\leq 2x^{\frac{1}{2}} + \frac{2}{\log(2)} \frac{\log(x)}{x^{\frac{1}{6}}} x^{\frac{1}{2}}. \end{split}$$

Adam J. Gray

Now by applying the result of **part b** we can see that

$$\frac{\log(x)}{x^{\frac{1}{6}}} \le \frac{6}{e}$$

so we have that

$$2x^{\frac{1}{2}} + \frac{2}{\log(2)} \frac{\log(x)}{x^{\frac{1}{6}}} x^{\frac{1}{2}} \le x^{\frac{1}{2}} \left(2 + \frac{2}{\log(2)} \frac{6}{e}\right).$$

Now by numerical evaluation we see that

$$\left(2 + \frac{2}{\log(2)} \frac{6}{e}\right) < 9$$

and so

$$\psi(x) - \vartheta(x) \le 9x^{\frac{1}{2}}.$$

Part d

By exploiting the result of part c we see that

$$0 \le \lim_{x \to \infty} \left(\frac{\psi(x)}{x} - \frac{\vartheta(x)}{x} \right) \le \lim_{x \to \infty} \frac{9x^{\frac{1}{2}}}{x}$$
$$= 0$$

so

$$\lim_{x\longrightarrow\infty}\frac{\psi(x)}{x}=\lim_{x\longrightarrow\infty}\frac{\vartheta(x)}{x}$$

which means that

$$\lim_{x\longrightarrow\infty}\frac{\psi(x)}{x}=1\Leftrightarrow\lim_{x\longrightarrow\infty}\frac{\vartheta(x)}{x}=1.$$

Question 2

Part a

Assuming that

$$\lim_{x \longrightarrow \infty} \frac{\pi(x) \log(x)}{x} = 1$$

show that

$$\lim_{x \longrightarrow \infty} \frac{\log(\pi(x))}{\log(x)} = 1.$$

Adam J. Gray

Part b

Deduce that

$$\lim_{x \longrightarrow \infty} \frac{\pi(x) \log(pi(x))}{x} = 1.$$

Part c

If p_n denotes that nth prime, show that the PNT implies

$$\lim_{n \longrightarrow \infty} \frac{n \log(n)}{p_n} = 1.$$

(This says that the *n*th primes is 'roughly' $n \log(n)$ for large n.)

Solutions

Part a

Given

$$\lim_{x \to \infty} \frac{\pi(x) \log(x)}{x} = 1$$

we take the *log* of both sides to get

$$\lim_{x \to \infty} \log(\pi(x)) + \log(\log(x)) - \log(x) = 0$$

and dividing by log(x) we get that

$$\lim_{x \longrightarrow \infty} \frac{\log(\pi(x)) + \log(\log(x)) - \log(x)}{\log(x)} = 0.$$

Now see that

$$\lim_{x \to \infty} \frac{\log(\log(x))}{\log(x)} = \lim_{x \to \infty} \frac{\frac{1}{x \log(x)}}{\frac{1}{x}}$$
$$= \lim_{x \to \infty} \frac{1}{\log(x)}$$
$$= 0.$$

and

$$\lim_{x \to \infty} \frac{\log(\pi(x)) + \log(\log(x)) - \log(x)}{\log(x)} = \lim_{x \to \infty} \frac{\log(\pi(x))}{\log(x)} - 1$$

$$= 0$$

and so the result follows.

Part b

The assumption of part a is essentially that

$$\pi(x) \sim \frac{x}{\log(x)}$$

or equivelently

$$\frac{\pi(x)}{x} \sim \frac{1}{\log(x)}$$

so we can deduce that from part a that

$$\lim_{x \longrightarrow \infty} \frac{\log(\pi(x))}{\log(x)} = \lim_{x \longrightarrow \infty} \frac{\pi(x)\log(\pi(x))}{x}$$
 and so
$$\lim_{x \longrightarrow \infty} \frac{\pi(x)\log(\pi(x))}{x} = 1.$$

Part c

The prime number theorem asserts that the assumption in ${\bf part}$ ${\bf a}$ is infact correct.

We can write the result of **part b** as

$$\lim_{p_n \longrightarrow \infty} \frac{n \log(n)}{p_n} = 1$$

or equivelently as

$$\lim_{n\longrightarrow\infty}\frac{n\log(n)}{p_n}=1$$

Question 3

Use the PNT to show heuristically that there should be about $\pi(n)$ primes between n^2 and $(n+1)^2$.

Solution

THe prime number theorem states that

$$\pi(x) \sim \frac{x}{\log(x)}$$

5

June 2, 2014

so we can write

$$\pi(n^2) \sim \frac{n^2}{2\log(n)}$$

and

$$\pi((n+1)^2) \sim \frac{(n+1)^2}{2\log(n+1)}$$

so we can say that "heuristically"

$$\pi((n+1)^2) - \pi(n^2) \sim \frac{(n+1)^2}{2\log(n+1)} - \frac{n^2}{2\log(n)}.$$

Now as $\log(n) \sim \log(n+1)$ we can write

$$\frac{(n+1)^2}{2\log(n+1)} \sim \frac{(n+1)^2}{2\log(n)}$$

and so

$$\pi((n+1)^2) - \pi(n^2) \sim \frac{(n+1)^2}{2\log(n)} - \frac{n^2}{2\log(n)}$$

$$= \frac{2n+1}{2\log(n)}$$

$$\sim \frac{n}{\log(n)}$$

$$\sim \pi(n)$$