ECE 6310 - Advanced Electromagnetic Fields: Homework Set #1

Miguel Gomez

8 days - 7 hours - 44 min until deadline

ABCDEFGHIJKLMNOPQRSTUVWXYE ABCDEFGHIJKLMNOPQRSTUVWXYL

1 Preliminaries

In this document, we use standard notation for electromagnetic theory. Key equations and concepts are summarized below:

Vector Notation

- E: Electric field intensity
- H: Magnetic field intensity
- **D**: Electric flux density
- B: Magnetic flux density
- **J**: Current density
- ρ_v : Volume charge density

Differential Operators

- $\nabla \cdot$: Divergence of a vector field
- $\nabla \times$: Curl of a vector field

 \bullet ∇ : Gradient of a scalar field

ullet ∂_i : Partial derivative with respect to the independent basis element i

Maxwell's Equations

In integral form, Maxwell's equations are given by:

$$\oint_{\partial V} \mathcal{E} \cdot d\mathcal{\ell} = -\frac{d}{dt} \int_{V} \mathcal{B} \cdot d\mathcal{S} \qquad \text{(Faraday's Law of Induction)}$$

$$\oint_{\partial V} \mathcal{H} \cdot d\mathcal{\ell} = \int_{V} \mathcal{J} \cdot d\mathcal{S} + \frac{d}{dt} \int_{V} \mathcal{D} \cdot d\mathcal{S} \qquad \text{(Ampère's Circuital Law)}$$

$$(2)$$

$$\iint_{\partial V} \mathcal{D} \cdot d\mathcal{S} = \int_{V} \rho_{v} dV \qquad \text{(Gauss's Law for Electricity)}$$

$$\iint_{\partial V} \mathcal{B} \cdot d\mathcal{S} = 0 \qquad \text{(Gauss's Law for Magnetism)}$$

$$(3)$$

Other Relevant Equations

• Continuity Equation: $\nabla \cdot \mathbf{J} + \partial_t \rho_v = 0$

• Relationship between \mathbf{E} , \mathbf{D} : $\mathbf{D} = \epsilon \mathbf{E}$

- Relationship between H, B: B = μ H

Boundary Conditions

Discuss the boundary conditions for \mathbf{E} , \mathbf{H} , \mathbf{D} , and \mathbf{B} at interfaces between different media.

Problem 1.3

The electric flux density inside a cube is given by:

(a)
$$\vec{D} = \hat{a}_x(3+x)$$

(b)
$$\vec{D} = \hat{a}_y(4+y^2)$$

Find the total electric charge enclosed inside the cubical volume when the cube is in the first octant with three edges coincident with the x, y, z axes and one corner at the origin. Each side of the cube is 1 m long.

Ok, this one we can do by using the following expressions from the text [1]:

$$\iint_{s} \mathcal{D}ds = \iiint_{v} \mathcal{Q}_{ev}dv = \mathcal{Q}_{e}$$
 (5)

$$q_{ev} = \Delta \cdot \mathbf{D} \tag{6}$$

We apply expression 6 then plug into expression 5 to get the total electric charge.

$$\iiint_{V} \varphi_{ev} = \iiint_{V} \Delta \cdot (\hat{a}_{x}(3+x))dV = \iiint_{V} \partial_{x}(\hat{a}_{x}(3+x))dV = \iiint_{0}^{1} 1dV = 1$$

$$\iiint_{V} \varphi_{ev} = \iiint_{V} \Delta \cdot (\hat{a}_{y}(4+y^{2}))dV = \iiint_{V} \partial_{y}(\hat{a}_{y}(4+y^{2}))dV = \iiint_{0}^{1} 2y \ dV$$

$$\iiint_{0}^{1} 2y \ dV = \iint_{0}^{1} \int_{0}^{1} 2y \ dy \ ds = \iint_{0}^{1} y^{2}|_{0}^{1} ds = \iint_{0}^{1} (1-0) \ ds = 1$$

Problem 1.4

An infinite planar interface between media, as shown in the figure, is formed by having air (medium #1) on the left of the interface and lossless polystyrene (medium #2) to the right of the interface. An electric surface charge density $\sigma_{es} = 0.2 \,\mathrm{C/m^2}$ exists along the entire interface. The static electric flux density inside the polystyrene is given by $\vec{D}_2 = 6\hat{a}_x + 3\hat{a}_z \,\mathrm{C/m^2}$. Determine the corresponding vector:

- (a) Electric field intensity inside the polystyrene.
- (b) Electric polarization vector inside the polystyrene.
- (c) Electric flux density inside the air medium.

- (d) Electric field intensity inside the air medium.
- (e) Electric polarization vector inside the air medium.

Leave your answers in terms of ε_0, μ_0 .

Problem 1.13

The instantaneous magnetic flux density in free space is given by:

$$\vec{\mathscr{B}} = \hat{a}_x B_x \cos(2y) \sin(\omega t - \pi z) + \hat{a}_y B_y \cos(2x) \cos(\omega t - \pi z)$$

where B_x and B_y are constants. Assuming there are no sources at the observation points x, y, determine the electric displacement current density.

Problem 1.20

The instantaneous electric field inside a conducting rectangular pipe (waveguide) of width a is given by:

$$\vec{\mathscr{E}} = \hat{a}_y E_0 \sin\left(\frac{\pi x}{a}\right) \cos(\omega t - \beta_z z)$$

where β_z is the waveguide's phase constant. Assuming there are no sources within the free-space-filled pipe determine the:

- (a) Corresponding instantaneous magnetic field components inside the conducting pipe.
- (b) Phase constant β_z .
- (c) The height of the waveguide is b.

Problem 2.18

The time-varying electric field inside a lossless dielectric material of polystyrene, of infinite dimensions and with a relative permittivity (dielectric constant) of 2.56, is given by:

$$\vec{\mathscr{E}} = \hat{a}_x 10^{-3} \sin(2\pi \times 10^7 t) \,\mathrm{V/m}$$

Determine the corresponding:

- (a) Electric susceptibility of the dielectric material.
- (b) Time-harmonic electric flux density vector.
- (c) Time-harmonic electric polarization vector.
- (d) Time-harmonic displacement current density vector.
- (e) Time-harmonic polarization current density vector defined as the partial derivative of the corresponding electric polarization vector.

Leave your answers in terms of ε_0, μ_0 .

Problem 2.25

Aluminum has a static conductivity of about $\sigma = 3.96 \times 10^7 \,\mathrm{S/m}$ and an electron mobility of $\mu_e = 2.2 \times 10^{-3} \,\mathrm{m^2/(V-s)}$. Assuming that an electric field of $\vec{E} = \hat{a}_x 2 \,\mathrm{V/m}$ is applied perpendicularly to the square area of an aluminum wafer with cross-sectional area of about $10 \,\mathrm{cm^2}$, find the:

- (a) Electron charge density q_{ve} .
- (b) Electron drift velocity v_e .
- (c) Electric current density J.
- (d) Electric current flowing through the square cross section of the wafer.
- (e) Electron density N_e .

Leave your answers in terms of ε_0, μ_0 .

References

[1] Constantine A. Balanis. advanced engineering electromagnetics, chapter 1, page 2–3. John Wiley & Sons, 2024.