Roznice w czasie realizacji algorytmów A star, DFS i BFS.

Arkadiusz Cyktor 200367

 $24~\mathrm{maja}~2014$

- 1. Algorytm A star służy do odnajdywania najwydajniejszej ścieżki w grafie pomiędzy wierzchołkiem A i B. Do jego poprawnej realizacji potrzbna była funkcja heurystyczna, którą zaimplementowałem przez przypisanie wierzchołkom grafu współrzędnych kartezjańskich, co umożliwiło wyliczenie wspomnianej wcześniej funkcji, jako ich wzajemnej odległości w linii prostej. Taki sposób wyznaczania funkcji heurystycznej spełnia warunek, według którego nie powinna ona przeszacowywać odległości pomiędzy wierzchołkami.
- 2. Poniższy wykres przedstawia zależność czasu potrzebnego na znalezienie zadanego wierzchołka grafu od ilości powtórzeń dla algorytmów **A star** (czerwony), **DFS** (zielony) i **BFS** (niebieski). Pomiary były przeprowadzane na grafie zawierającym 30 wierzchołków.

Jak widać, wszystkie charakterystyki zmieniają się logarytmicznie, jednak najwięcej czesu na wykonanie obliczeń potrzebuje **A star**. Różnica pomiędzy przeszukiwaniem **w szerz**, a **w głąb** jest niewielka, widać jednak, że ten drugi okazał się wydajniejszy. Takie wyniki są spowodowane zasadniczą różnicą w działaniu wyżej wymienionch algorytmów - w **BFS** oraz **DFS** nie bierze się pod uwagę wag krawędzi łączących wierzchołki, co w tak małym grafie skutkuje wyszukaniem w dużo krótszym czasie, jednak wyznaczona ścieżka jest pierwszą znalezioną, a nie najlepszą z możliwych.

Tabela z wynikami pomiarów:

zaseta z wymnami pomiarew				
Ilość powtórzeń	Czas - A star	Czas - DFS	Czas - BFS	
10	0	0	0	
100	0.0001	0	0	
1000	0.00015	0	0	
10000	0.000156	0.00001	0.000006	
100000	0.000159	0.0000101	0.0000062	

3. Poniższy wykres przedstawia zależność czasu potrzebnego na znalezienie zadanego wierzchołka grafu od ilości wierzchołków w nim zawartych dla algorytmów **A star** (czerwony), **BFS** (zielony) i **DFS** (niebieski).

Zależność czasu od ilosci wierzchołków

Jak widać, wszystkie charakterystyki zmieniają się logarytmicznie, jednak tym razem porównanie wydjaności algorytmów daje zupełnie inne wyniki najwięcej czesu na wykonanie obliczeń potrzebuje **BFS**, po środku znalazł się **DFS**, a **A star** okazał się być najwydajniejszym rozwiązaniem. Taka różnica jest spowodowana tym, że dla większych grafów algorytm **A star** musi wykonać mniej operacji, ponieważ potrafi on odrzucić te krawędzie, które na pewno nie utworzą najwydajniejszej ścieżki - znacznie zawęża to obszar poszukiwań. Natomiast przeszukiwania **w szerz** i **w głąb** przeszukują po kolei wszystkie wierzchołki, aż do natrafienia na szukany - jak widać na wykresach takie podejście wymaga dużo większej ilości operacji.

Tabela z wynikami pomiarów:

J				
Ilość wierzchołków	Czas - A star	Czas - DFS	Czas - BFS	
10	0.112	0.12	0.129	
100	0.1481	0.14563	0.15704	
1000	0.13681	0.1525	0.1643	
5000	0.14000	0.1563	0.16597	
8000	0.140496	0.1584	0.166325	