EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

Common-Base Configuration

Alpha (α)

Current gain in CB configuration.

$$\alpha = I_C/I_E$$

$$\approx 1 = 0.9 \sim 0.998$$

 I_C and I_E = levels of current at point of operation

 α is defined solely for majority carriers \rightarrow

$$I_C = \alpha I_E + I_{CBO}$$

Most frequently encountered configuration \rightarrow

emitter is common to both input and output common to both base and collector

Two sets of characteristics → one for input or base-emitter circuit one for output or collector-emitter circuit.

Current relations for common-base configuration are applicable \rightarrow

$$I_E = I_C + I_B$$
$$I_C = \alpha I_E$$

Input characteristics \rightarrow

input current (I_B) versus input voltage (V_{BE}) range of values of output voltage (V_{CE}) .

Output characteristics \rightarrow

output current (I_C) versus output voltage (V_{CE}) range of values of input current (I_B) .

Output characteristics →

 $V_{\it CE}$ influences $I_{\it C}$

Active region \rightarrow

region in which curves for I_B are nearly straight and equally spaced.

base-emitter junction is forward-biased, collector-base junction is reverse-biased.

(Saturation region) 5

voltage, current, or power amplification.

Cutoff region \rightarrow

 $I_C \neq \text{o when } I_B = \text{o.}$

CB configuration \rightarrow

 $I_E = 0$, $I_C = I_{CO}$, curve $I_E = 0 ==$ voltage axis.

Cutoff region \rightarrow

$$I_C = \alpha I_E + I_{CBO} = \alpha (I_C + I_B) + I_{CBO}$$
 $I_C = \frac{\alpha I_B}{1-\alpha} + \frac{I_{CBO}}{1-\alpha}$
 $I_B = 0 \text{ and } \alpha = 0.996$
 $I_C = \frac{\alpha (0)}{1-\alpha} + \frac{I_{CBO}}{1-0.996} = 250 I_{CBO}$
 $I_C = I_{CEO} = \frac{I_{CBO}}{1-\alpha} \Big|_{I_B=0 \text{ } \mu\text{A}}$
If $I_{CBO} = 1 \text{ } \mu\text{A}$, $I_B = 0 \text{ } A \rightarrow I_C = 250 (1 \text{ } \mu\text{A}) = 0.25 \text{ } \text{mA}$

region below I_B = 0 mA is to be avoided if undistorted output signal is required.

Beta (β):

Common-emitter, forward-current, amplification factor.

 $\beta = I_C/I_B \approx 50$ to over 400 referred to as h_{FE} [h = hybrid equivalent circuit]

Relationship between β and α :

$$\beta = I_C/I_B \Rightarrow I_B = I_C/\beta$$

$$\alpha = I_C/I_E \Rightarrow I_E = I_C/\alpha$$

$$I_E = I_C + I_B$$

$$I_C/\alpha = I_C + I_C/\beta \Rightarrow 1/\alpha = 1 + 1/\beta$$

$$\Rightarrow \beta = \alpha\beta + \alpha = \alpha(\beta+1)$$

$$\alpha = \frac{\beta}{\beta+1} \text{ and } \beta = \frac{\alpha}{1-\alpha}$$

$$I_C = \beta I_B$$

$$I_E = I_C + I_B = \beta I_B + I_B = (\beta + 1)I_B$$

Biasing in active region:

Common-Collector Configuration

Used for impedance-matching purposes. High input impedance and low output impedance.

Input characteristics →

 I_B decreases as V_{BC} is increased Drop in I_B is delayed if V_{EC} is increased

 $V_{EC} = V_{EB} + V_{BC} \rightarrow V_{EB} = V_{EC} - V_{BC}$ IB (uA)

Increasing V_{BC} with V_{EC} = const.

Reduces $V_{EB} \rightarrow \text{reduces } I_B$

Common-Collector Configuration

Output characteristics of CC configuration = Output characteristics for CE configuration.

Output characteristics \rightarrow plot of I_E versus V_{CE} range of values of I_B .

