Aggregate Forecasting and Microsimulation

Moshe Ben-Akiva

1.202 Demand Modeling

March 31, 2025

Outline

- Aggregate Forecasting
- Methods
 - Average Individual
 - Sample Enumeration
 - Microsimulation
- Conclusion

Appendix: Demand Indicators

Aggregate Forecasting

- Analyze impact of changes in policy variables and/or demographics
- Make aggregate predictions for population p with N_p members
 - Using a disaggregate model, $P(i|x_n)$
 - x_n includes both individual characteristics and attributes
- If we knew the value of x_n for every member of the population, an aggregate prediction would be:

$$D_p(i) = \sum_{n=1}^{N_p} P(i \mid x_n)$$

Disaggregate Probabilities

Population		Total			
i opulation	1	2	•••	J	Total
1	$P(1 x_1)$	$P(2 x_1)$	•••	$P(J x_1)$	1
2	$P(1 x_2)$	$P(2 x_2)$	•••	$P(J x_2)$	1
:	•••	•	•	•	•
N_p	$P(1 \mathbf{x}_{N_p})$	$P(2 \mathbf{x}_{N_p})$	•••	$P(J x_{N_p})$	1
Total	$D_p(1)$	$D_p(2)$	•••	$D_p(J)$	N_p

Aggregate shares by market segment

• Aggregate share of alternative i in population p with N_p members:

$$W_{p}(i) = \frac{D_{p}(i)}{N_{p}} = \frac{1}{N_{p}} \sum_{n=1}^{N_{p}} P(i \mid x_{n})$$

• Aggregate share of alternative *i* by market segment g in population p with N_{pg} members:

$$W_g(i) = \frac{1}{N_{pg}} \sum_{n=1}^{N_{pg}} P(i \mid x_n)$$

• But we do not know x_n for everyone in population

Outline

- Aggregate Forecasting
- Methods
 - Average Individual
 - Sample Enumeration
 - Microsimulation
- Conclusion

Appendix: Demand Indicators

1. Use an "Average" Individual

• \bar{x} leads to bias in $W_p(i)$ unless population is homogenous. Binary Logit Example

n	X _n	$P(i \mid x_n) = \frac{1}{1 + \exp(-x_n)}$
1	.5	.62
2	2	.88
Average	$\bar{x} = 1.25$	$\overline{P}(i \mid x_n) = 0.75$ $P(i \mid \overline{x}) = 0.78$

aggregation bias = 0.03

Aggregation Bias I

Aggregation Bias II

Average Individual

• A "representative individual"

- Reasonable if:
 - Variance in x_n is small,
 - or if applied to market segments
 - Called classification (BAL pages 138-140)
 - (e.g.) Low, medium and high incomes
- Other techniques described in BAL are not used frequently

2. Use Sample Enumeration

- To approximate aggregate shares, use a "representative" sample of the population
- The **share of alternative** *i* is estimated by:

$$\hat{W}(i) = \frac{1}{N_s} \sum_{n=1}^{N_s} \hat{P}(i \mid x_n)$$

- N_s is the number of individuals in the sample
- The share of alternative i in group g is estimated by:

$$\hat{W}_{g}(i) = \frac{1}{N_{sg}} \sum_{n=1}^{N_{sg}} \hat{P}(i \mid x_{n})$$

• N_{sg} is the number of individuals in group g in the sample

Extension to Stratified Samples

- Different individuals (groups) have different weights
- Weight of each individual *n* is determined based on his/her segment *g*:

$$\omega_{g(n)} = \frac{N_{pg}}{N_{sg}} = \frac{\text{\# individuals in segment } g \text{ in the population}}{\text{\# individuals in segment } g \text{ in the sample}}$$

• Calculate weighted averages:

$$\hat{W}_{p}(i) = \sum_{n=1}^{N_{s}} \frac{\omega_{g(n)} \hat{P}(i \mid x_{n})}{\sum_{n=1}^{N_{s}} \omega_{g(n)}}$$

- In random sample: $\omega_{g(n)} = 1$
- How to get weights? Iterative proportional fitting (IPF)

Example: Telephone Choice

- **Price Increase**: BM + \$0, SM + \$4, LF + \$6, EF + \$7 and MF + \$11.
- Calculate fitted probabilities for Base Case and for Price Increase (Python Biogeme)

$$\hat{P}(i \mid x_n, \text{Base Case})$$
 $\hat{P}(i \mid x_n, \text{Price Increase})$

 Calculate average probability by income group (equal weights)

$$\hat{W}_{lowInc}(i \mid \text{Base Case}) = \frac{1}{N_{lowInc}} \sum_{n \in lowInc} \hat{P}(i \mid x_n, \text{Base Case})$$

$$\hat{W}_{lowInc}(i \mid \text{Price Increase}) = \frac{1}{N_{lowInc}} \sum_{n \in lowInc} \hat{P}(i \mid x_n, \text{Price Increase})$$

Example: Telephone Choice (cont.)

	Base Case			Price Increase		
	IowINC	medINC	hilNC	IowINC	medINC	hilNC
BM	19%	14%	13%	34%	26%	23%
SM	30%	28%	23%	22%	21%	18%
LF	40%	43%	41%	34%	39%	37%
EF	0%	1%	2%	0%	1%	2%
MF	11%	14%	21%	10%	13%	19%

3. Use Microsimulation

- Sample enumeration requires keeping track of all probabilities (not always practical)
 - Large model systems with high dimensionality of decisions
 - Traffic simulators with sequences of decisions
- Microsimulation generates a realization for each individual in sample
 - For each person, make a draw from his/her probability distribution:

 \hat{y}_{in} = 1 if realization for *n* is alternative *i*, 0 otherwise

Estimated shares are based on sums of realizations

$$\hat{W}_{p}(i) = \frac{1}{N_{s}} \sum_{n=1}^{N_{s}} \hat{y}_{in}$$

Microsimulation example

- Let $P_n(bike) = 0.5$, $P_n(walk) = 0.2$, $P_n(bus) = 0.3$
- To make realization, draw a number $d_n \sim U(0,1)$
 - if $d_n \le 0.5$ then realization for individual n is bike
 - If $0.5 < d_n <= 0.7$ then realization for individual *n* is walk
 - If $d_n > 0.7$ then realization for individual n is bus
- For example, $d_n = 0.52 \Rightarrow individual \ n \ walks$
- Repeat it many times and end up with 50% bike, 20% walk, 30% bus
- NOTE: Requires larger sample

Outline

- Aggregate Forecasting
- Methods
 - Average Individual
 - Sample Enumeration
 - Microsimulation
- Conclusion

Appendix: Demand Indicators

Conclusion

- Aggregation bias can be large if
 - Disaggregate model is nonlinear, and population is heterogeneous $(Var(x_n)$ is large)
- Average individual ignores aggregation bias
- Classification (average individual by market segment)
 - Reduces bias by forming homogeneous groups
 - Ignores aggregation bias within group
- Sample enumeration eliminates aggregation bias (sampling error)
- Microsimulation sums realizations instead of probabilities (requires a larger sample or a synthetic population)

Additional Readings

- Ben-Akiva, M. and S. Lerman (1985) Discrete Choice Analysis: Theory and Application to Travel Demand, MIT Press, Cambridge MA, USA, chapter 6 (pp. 131-153).
- Ben-Akiva, M., Bierlaire, M., McFadden D. and Walker, J. (2014), Discrete Choice Analysis, chapter 10, draft version, September 2014.
- Glerum, A., Stankovikj, L., Thémans, M., and Bierlaire, M. (2014). Forecasting the demand for electric vehicles: accounting for attitudes and perceptions, Transportation Science 48(4):483-499.

Appendix: Demand Indicators

- Willingness to Pay
- Elasticity

Willingness to Pay

- If the model contains a cost or price of alternatives
- The trade-off between any attribute and a money attribute is a willingness to pay
- It reflects the money value of one unit of an attribute
- Typical example in transportation: value of travel time

Willingness to Pay (cont.)

- c_{in} is the cost of alternative i for individual n
- x_{in} is the value of an attribute (e.g. travel time)
- $V_{in}(c_{in}, x_{in})$ is the value of the utility function
- Consider a change in the attribute value: $x'_{in} = x_{in} + \delta^x_{in}$
- δ^c_{in} is the additional cost that would achieve the same utility

$$V_{in}(c_{in} + \delta_{in}^c, x_{in} + \delta_{in}^x) = V_{in}(c_{in}, x_{in})$$

• The willingness to pay is the additional cost per unit of x $\delta_{in}^c/\delta_{in}^x$

Example: Telephone Choice

Costs for a given individual

Alternative	BM	SM	LF	EF	MF
Cost (\$)	13.46	15.05	17.75	19.75	38.28

Estimated Parameters

	eta_{BM}	eta_{SM}	eta_{LF}	$eta_{\it EF}$	eta_{MF}	eta_c
Value	-2.46	-1.74	-0.535	-0.737	0	-2.03

• Willingness to pay when switching from BM to LF

$$V_{LF} - V_{BM} = 0$$

$$\beta_{LF} + \beta_c \ln(\cot(BM) + \delta) - \beta_{BM} - \beta_c \ln(\cot(BM)) = 0$$

$$\ln(\frac{\cos t(BM) + \delta}{\cos t(BM)}) = \frac{\beta_{BM} - \beta_{LF}}{\beta_c}$$

$$\delta = 13.46*(\exp(2.46 - 0.535)/2.03)) - 1) = 21.28$$

Elasticity for discrete choice models

- **Disaggregate elasticity:** The responsiveness of an individual's choice probability to a change in the value of some attribute.
- **Aggregate elasticity:** The responsiveness of some group of decision makers rather than that of any individual.
- Direct vs cross elasticity

	Point	Arc
Direct	$E_{ink}^{P_n(i)} = \frac{\partial P_n(i)}{\partial x_{ink}} \frac{x_{ink}}{P_n(i)}$	$\frac{\Delta P_n(i)}{\Delta x_{ink}} \frac{x_{ink}}{P_n(i)}$
Cross	$E_{jnk}^{P_n(i)} = \frac{\partial P_n(i)}{\partial x_{jnk}} \frac{x_{jnk}}{P_n(i)}$	$\frac{\Delta P_n(i)}{\Delta x_{jnk}} \frac{x_{jnk}}{P_n(i)}$

Example: Telephone Choice

• Price elasticity across the sample

price elasticity of BM

