lab7: machine learning I

Elsa Chen (A16632961)

Table of contents

Clustering	1
Starting with "k-means" clustering (kmeans())	1
Hierarchical Clustering	6
Principal Component Analysis	8

Today we're exploring first part of machine learing, clustering - finding patterns in data and dimensionality reduction $\frac{1}{2}$

Clustering

Starting with "k-means" clustering (kmeans())

```
# making up data
hist(rnorm(1000))
```

Histogram of rnorm(1000)


```
temp <- c(rnorm(30, -3), rnorm(30, 3))

x \leftarrow cbind(x = temp, y = rev(temp))

plot(x)
```


now running kmeans()

```
km <- kmeans(x, centers = 2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

Clustering vector:

Within cluster sum of squares by cluster: [1] 50.80205 50.80205

(between_SS / total_SS = 89.9 %)

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
```

[6] "betweenss" "size" "iter" "ifault"

```
attributes(km)
```

\$names

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

\$class

[1] "kmeans"

Q. How many points in each cluster?

km\$size

[1] 30 30

Q. What component of your result object details cluster assignment/membership?

km\$cluster

Q. What are centers/mean values of each cluster?

km\$centers

```
x y
1 -2.732907 2.764193
2 2.764193 -2.732907
```

Q. Make a plot of your data showing your clustering results (groupings/clusters and cluster centers)

```
plot(x, col = km$cluster)
points(km$centers, col = "blue", pch = 15)
```


Q. Run kmeans() again and cluster in 4 groups and plot results

```
km2 <- kmeans(x, centers = 4)
plot(x, col = km2$cluster)</pre>
```


Hierarchical Clustering

reveal structure in data by grouping points into a smaller number of clusters hclust() this function does not take our imput data directly but wants a "distance matrix" that details how (dis)similar all our input points are to each other.

```
hc <- hclust(dist(x)) # dist() measures distance pairwise between each point
plot(hc)
abline(h = 10, col = "red")</pre>
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

to get my main result, main cluster

```
grps <- cutree(hc, h = 10)

plot(x, col = grps)</pre>
```


Principal Component Analysis

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)</pre>
```

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

```
dim(x)
```

[1] 17 5

head(x)

	Х	England	Wales	${\tt Scotland}$	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	${\tt Other_meat}$	685	803	750	586
4	Fish	147	160	122	93

```
5 Fats_and_oils 193 235 184 209
6 Sugars 156 175 147 139
```

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

```
x <- read.csv(url, row.names = 1)
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))</pre>
```


Q3: Changing what optional argument in the above barplot() function results in the following plot?

```
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```


Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

pairs(x, col=rainbow(10), pch=16)

if the points lie on the diagonal, there is an association between the country on the \mathbf{x} and \mathbf{y} axes

hard to understand even for small data set, so let's use PCA prcomp()

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

pca\$x

	PC1	PC2	PC3	PC4
England	-144.99315	-2.532999	105.768945	-4.894696e-14
Wales	-240.52915	-224.646925	-56.475555	5.700024e-13
Scotland	-91.86934	286.081786	-44.415495	-7.460785e-13
N.Ireland	477.39164	-58.901862	-4.877895	2.321303e-13

the "rotation" component tells us how much the original variables contribute to the new PCs

```
barplot( pca$rotation[,1], las=2 )
```


PCA is useful for gaining insight into high dimensional data that is difficult to examine in other ways