MAT436 Problem Set 1

 $\begin{array}{c} {\rm Jack\ Ceroni} \\ {\rm (Dated:\ Saturday\ 7^{th}\ September,\ 2024)} \end{array}$

I. Suggested Problem 1

Part A. Suppose every absolutely summable sequence is summable. Let $x_n \in X$ be Cauchy. For each n, pick some M_n such that for $j, k \geq M_n$, $||x_j - x_k|| < 1/2^n$. Assume WLOG M_1, M_2, \ldots is strictly increasing. Define $y_1 = x_{M_1}$ and $y_n = x_{M_n} - x_{M_{n-1}}$ for $n \geq 2$. Note that $||y_n|| < 1/2^n$, so that the sequence of y_n is absolutely summable, and thus summable. Let y be this sum. Of course, the partial sums $y_1 + \cdots + y_n = x_{M_n}$ get arbitrarily close to y. Since the sequence of M_n approaches ∞ , it follows that x_n is a Cauchy sequence with a convergent subsequence, so it converges, and X is complete.

Conversely, suppose X is complete. Suppose y_n is absolutely summable. Let $x_n = y_n + \cdots + y_1$, and note that for n > m,

$$||x_n - x_m|| = ||y_n + \dots + y_{m+1}|| \le ||y_n|| + \dots + ||y_{m+1}||$$

$$\tag{1}$$

Thus, for n and m chosen sufficiently large, the tails of the absolute sum of the above form can be made arbitrarily small (since y_n is absolutely summable), so that x_n is Cauchy, and thus converges to a limit in X. This immediately means that y_n is summable.

Part B. Note that $\operatorname{Ker}(T) = T^{-1}(\{0\})$. Since normed vector spaces are obviously Hausdorff, $\{0\}$ is closed, so if T is continuous, $\operatorname{Ker}(T)$ must be closed. Conversely, suppose the kernel is closed. Let e_1, \ldots, e_n be a basis for Y. We pick f_1, \ldots, f_n such that $T f_j = e_j$ for each j. Note that for any $x \in X$, we have $Tx = \sum_j c_j e_j$, so that $T\left(\sum_j c_j f_j\right) = Tx$. It follows that $x - \sum_j c_j f_j \in \operatorname{Ker}(T)$. Since $x = x - \sum_j c_j f_j + \sum_j c_j f_j$, it follows that any element of X can be written as some linear combination of the f_1, \ldots, f_n , plus an element of the kernel.

Since $\operatorname{Ker}(T)$ is closed, $X/\operatorname{Ker}(T)$ is a normed vector space with the infimum norm, and from the above argument, it is finite-dimensional as it is spanned by $[f_1], \ldots, [f_n]$. Let us define $\widetilde{T}: X/\operatorname{Ker}(T) \to Y$ as $\widetilde{T}[x] = Tx$. This is a linear map between finite-dimensional vector spaces, and is thus continuous. It follows that $T = \widetilde{T} \circ \pi$, where π is the quotient map, is continuous as well.

Part C. Suppose X is finite-dimensional. Then X is homeomorphic to \mathbb{R}^n for some n via a linear map. Let Φ be the linear homeomorphism, let B be the unit ball in X. Then $\Phi^{-1}(B)$ is closed in \mathbb{R}^n as Φ is continuous. Moreover, since $\Phi^{-1}: X \to \mathbb{R}^n$ is continuous, it is bounded, so $||\Phi^{-1}(x)|| \leq M||x||$ for some M, implying that $\Phi^{-1}(B)$ is bounded in \mathbb{R}^n . Thus, $\Phi^{-1}(B)$ is closed and bounded in Euclidean space, so it compact. Then $B = \Phi\Phi^{-1}(B)$ is the continuous image of a compact space and thus is compact.

Conversely, suppose $B \subset X$ is compact. Suppose B is not finite-dimensional, so we can choose a sequence x_1, x_2, \ldots such that for each set $S_n = \{x_1, \ldots, x_n\}$, we cannot write x_{n+1} as a linear combination of the elements of S_n . I want to show that such a sequence, constructed n the right way, cannot have a convergent subsequence, but I'm a bit stumped right now. I will keep thinking about this and if I make more progress will include in the next problem set submission.

II. Suggested Problem 2

Part A. Since X is Banach, note that B(X) is also Banach. Let $S_n = \sum_{k=0}^n T^k$. Note that for m > n, we have

$$||S_m - S_n|| = \left| \left| \sum_{k=n+1}^m T^k \right| \right| \le \sum_{k=n+1}^m ||T||^k = ||T||^{n+1} \sum_{k=0}^{m-n-1} ||T||^k \le \frac{||T||^{n+1}}{1 - ||T||}$$
(2)

which can be made arbitrarily small for choice of n (and thus m) sufficiently large. It follows that the sequence of partial sums S_n is Cauchy, this converges. In addition, note that

$$S_n(I-T) = (I-T)S_n = S_n - S_{n+1} + I$$
(3)

It is then easy to see that $\lim S_n \cdot (I - T) = (I - T) \cdot \lim S_n = I$, as desired.

Part B. Consider $GL(B(X)) \subset B(X)$. Given invertible $Y \in B(X)$, suppose $||T - Y|| < ||Y^{-1}||^{-1}$, so that $||I - Y^{-1}T|| \le ||Y^{-1}|| ||Y - T|| < 1$, implying that $Y^{-1}T$ is invertible. Thus, T is invertible. It follows that there is an open ball around Y which is contained in GL(B(X)), so it is an open set.

III. Suggested Problem 3

Part A. First, note that

$$T(v+w) = T\left(\frac{2v+2w}{2}\right) = \frac{T(2v) + T(2w)}{2}$$
 (4)

Moreover, since T(0) = 0,

$$T(2^{n}v) = T\left(\frac{2^{n+1}v + 0}{2}\right) = \frac{T(2^{n+1}v) + T(0)}{2} \Longrightarrow T(2^{n+1}v) = 2T(2^{n}v) \tag{5}$$

for any n. In the case that n=0, we have T(2v)=2T(v), so that T(v+w)=T(v)+T(w). Moreover, via induction, it is easy to see that $T(2^nv)=2^nT(v)$ for any $n\in\mathbb{Z}$. Let α be a rational number with a finite binary expansion, so that $\alpha=\sum_{n\in\mathbb{Z}}x_n2^n$ where $x_n=1$ for finitely many n and is 0 for the remaining n. We then have

$$T(\alpha v) = T\left(\sum_{n \in \mathbb{Z}} x_n 2^n v\right) = \sum_{n \in \mathbb{Z}} x_n 2^n T(v) = \alpha T(v)$$
(6)

Clearly, the collection of α with this property is dense in the reals, so since T is continuous, we have $T(\alpha v) = \alpha T(v)$ for all $\alpha \in \mathbb{R}$. It follows that T is linear.

Part B. Note that

$$\operatorname{mdef}_{v_1, v_2}(A) = \left| \left| \frac{1}{2} A\left(\frac{v_1 + v_2}{2}\right) - \frac{A(v_1)}{2} + \frac{1}{2} A\left(\frac{v_1 + v_2}{2}\right) - \frac{A(v_2)}{2} \right| \right|$$
 (7)

$$\leq \left| \left| \frac{1}{2} A \left(\frac{v_1 + v_2}{2} \right) - \frac{A(v_1)}{2} \right| \right| + \left| \left| \frac{1}{2} A \left(\frac{v_1 + v_2}{2} \right) - \frac{A(v_2)}{2} \right| \right| \tag{8}$$

$$= \frac{1}{2} \left| \left| \frac{v_1 + v_2}{2} - \frac{2v_1}{2} \right| \right| + \frac{1}{2} \left| \left| \frac{v_1 + v_2}{2} - \frac{2v_2}{2} \right| \right| = \frac{1}{2} ||v_1 - v_2||. \tag{9}$$

which completes the proof.

Part C. Note that $R_z(v) = z + (z - v) = 2z - v$. Since A is an isometry, it is injective, as if Av = Aw, then Av - Aw = 0, so v - w = 0. Since it is also surjective, it is a bijection. Moreover, A^{-1} is also an isometry, as $||A^{-1}v - A^{-1}w|| = ||AA^{-1}v - AA^{-1}w|| = ||v - w||$. It follows that

$$B(v) = A^{-1}R_zA(v) = A^{-1}(A(v_1) + A(v_2) - A(v))$$
(10)

which immediately means that

$$B\left(\frac{v_1+v_2}{2}\right) = A^{-1}\left(A(v_1) + A(v_2) - A\left(\frac{v_1+v_2}{2}\right)\right)$$
(11)

as well as

$$\frac{B(v_1) + B(v_2)}{2} = \frac{1}{2} \left[A^{-1}(A(v_2)) + A^{-1}(A(v_1)) \right] = \frac{v_1 + v_2}{2} = A^{-1} \left(A \left(\frac{v_1 + v_2}{2} \right) \right). \tag{12}$$

We then have

$$\mathrm{mdef}_{(v_1, v_2)}(B) = \left| \left| B\left(\frac{v_1 + v_2}{2}\right) - \frac{B(v_1) + B(v_2)}{2} \right| \right|$$
 (13)

$$= \left| \left| A^{-1} \left(A(v_1) + A(v_2) - A\left(\frac{v_1 + v_2}{2}\right) \right) - A^{-1} \left(A\left(\frac{v_1 + v_2}{2}\right) \right) \right|$$
 (14)

$$= \left| \left| A(v_1) + A(v_2) - 2A\left(\frac{v_1 + v_2}{2}\right) \right| \right| = 2 \operatorname{mdef}_{(v_1, v_2)}(A)$$
 (15)

as desired, and the proof is complete.

Part D. Part B implied that the midpoint defect is bounded above by the quantity $\frac{1}{2}||v_1+v_2||$. However, it also follows from Part C that given surjective isometry A, we can let $A_1 = A$ and choose a sequence A_k of surjective isometries such that

$$\operatorname{mdef}_{(v_1, v_2)}(A_{k+1}) = 2\operatorname{mdef}_{(v_1, v_2)}(A_k) \Longrightarrow \operatorname{mdef}_{(v_1, v_2)}(A_{k+1}) = 2^k \operatorname{mdef}_{(v_1, v_2)}(A)$$
 (16)

If $\operatorname{mdef}_{(v_1,v_2)}(A) \neq 0$, then it follows that $\operatorname{mdef}_{(v_1,v_2)}(A_{k+1})$ can be made arbitrarily large for sufficiently large k, thus contradicting the fact that each element of this sequence must be bounded above by $\frac{1}{2}||v_1+v_2||$. It follows that $\operatorname{mdef}_{(v_1,v_2)}(A)=0$.

Part E. Note that since A is an isometry, it is automatically continuous. Let $w_0 = A(0)$. Then it is clear that $A'(v) = A(v) - w_0$ is a surjective isometry with A'(0) = 0. Since A' is also continuous, and it preserves midpoints, from Part D, it follows from Part A that it is linear, and the proof is complete.

IV. Suggested Problem 4

We must show that the "derivative norm" is both a valid norm, and that it makes $C_b^k(U)$ into a Banach space. First, note that

$$||f+g|| = \max_{|\alpha| \le k} ||\partial_{\alpha}(f+g)||_{\infty} = \max_{|\alpha| \le k} ||\partial_{\alpha}f + \partial_{\alpha}g||_{\infty}$$

$$\tag{17}$$

$$\leq \max_{|\alpha| < k} ||\partial_{\alpha} f||_{\infty} + \max_{|\alpha| < k} ||\partial_{\alpha} g||_{\infty} \tag{18}$$

$$= ||f|| + ||g|| \tag{19}$$

as well as

$$||\beta f|| = \max_{|\alpha| \le k} ||\partial_{\alpha}(\beta f)||_{\infty} = |\beta| \max_{|\alpha| \le k} ||\partial_{\alpha} f||_{\infty} = |\beta| ||f||. \tag{20}$$

Both of these results follow from the fact that we know the standard uniform norm on functions is in fact a norm. Finally, note that if f = 0, then ||f|| = 0. Moreover, if ||f|| = 0, then from the case $\alpha = (0, ..., 0)$, we have

$$||\partial_{(0,\dots,0)}f||_{\infty} = ||f||_{\infty} \le \max_{|\alpha| \le k} ||\partial_{\alpha}f||_{\infty} = ||f|| = 0$$
 (21)

which means that $||f||_{\infty} = 0$, so f = 0. It follows that $||\cdot||$ is in fact a norm.

To prove that $(C_b^k(U), ||\cdot||)$ is in fact a Banach space, let f_j be a Cauchy sequence. We already know that $(C_b(U), ||\cdot||_{\infty})$ is a Banach space, which is the k=0 case of the statement we are trying to prove. If f_j is Cauchy

realative to $||\cdot||$, it follows that each of the sequences of derivatives $\partial_{\alpha} f_j$ for $|\alpha| \leq k$ is Cauchy relative to the standard infinity-norm, as

$$||\partial_{\alpha} f_m - \partial_{\alpha} f_n||_{\infty} \le \max_{|\alpha| \le k} ||\partial_{\alpha} f_m - \partial_{\alpha} f_n||_{\infty} = ||f_m - f_n||. \tag{22}$$

Thus, each of the sequences $\partial_{\alpha} f_j$ converge uniformly to a bounded continuous function $f^{(\alpha)}$. Let $f = f^{(0...0)}$. It is a basic fact from real analysis that given a sequence of C^k functions converging uniformly, with uniformly converging derivatives of all orders, the resulting limit, in this case f, is also C^k , with its derivatives given by the limits of the derivative sequences.

Thus, it follows that the Cauchy sequence f_j does in fact converge to a C^k function f in the norm $||\cdot||$ (as we showed all derivatives $\partial_{\alpha} f_j$ converge uniformly to derivatives $\partial_{\alpha} f$, which exist). It follows immediately that our space is Banach, and we are done.

V. Suggested Problem 5

The existence of β follows immediately. Let e_1, \ldots, e_d be the standard normalized basis for \mathbb{R}^d :

$$\left\| \sum_{j=1}^{d} \alpha_{j} e_{j} \right\| \leq \sum_{j=1}^{d} |\alpha_{j}| ||e_{j}|| \leq M \sum_{j=1}^{d} |\alpha_{j}| = M \left\| \sum_{j=1}^{d} \alpha_{j} e_{j} \right\|_{1}$$
(23)

where $M = \max_j ||e_j||$. This immediately implies that the function $F : \mathbb{R}^d \to \mathbb{R}$ given by F(x) = ||x|| is continuous in the topology generated by $||\cdot||_1$, as fixing some y and some $\varepsilon > 0$, note that if we set $||x-y||_1 < \varepsilon/M$, then

$$|F(x) - F(y)| = |||x|| - ||y||| \le ||x - y|| \le M||x - y||_1 < \varepsilon \tag{24}$$

as desired.

Of course, the unit ball B in the norm $||\cdot||_1$ is compact. It follows from the extreme value theorem that $F = ||\cdot||$ takes on a minimum. Moreover, this minimum must be greater than 0, as $0 \notin B$. In other words, there exists $\alpha > 0$ such that $\alpha \le ||x||$ for all x with $||x||_1 = 1$. It then follows that for arbitrary x,

$$||x|| = ||x||_1 \cdot \left| \left| \frac{x}{||x||_1} \right| \right| \ge \alpha ||x||_1.$$
 (25)

We have therefore shown that $\alpha ||x||_1 \leq ||x|| \leq M||x||_1$ for all $x \in \mathbb{R}^d$.

VI. Suggested Problem 6

Part A. This follows immediately from the Leibniz integral rule. Indeed,

$$f'(x) = -\sin(x) + \int_0^x \cos(x - t)g(t) dt$$
 (26)

and

$$f''(x) = -\cos(x) + \cos(0)g(x) - \int_0^x \sin(x - t)g(t) dt$$
 (27)

so that

$$f''(x) + f(x) = -\cos(x) + g(x) - \int_0^x \sin(x - t)g(t) \ dt + \cos(x) + \int_0^x \sin(x - t)g(t) \ dt = g(x)$$
 (28)

as desired. Checking that f satisfies the initial conditions is trivial.

Part B. Suppose f is a function satisfying the equation

$$f(x) = \cos(x) + \int_0^x \sin(x - t)\sigma(t)f(t) dt$$
(29)

Then, from Part A, f solves the given ODE with the given initial conditions.

Thus, we let $u(x) = \cos(x)$ (which is smooth) and we define K as the operator taking f(x) to $\int_0^x \sin(x-t)\sigma(t)f(t) dt$. Clearly, the new function is twice-differentiable. Of course, K is linear, and it is also bounded. Let $||\cdot||$ denote the usual uniform norm on function space, we have

$$||Kf|| = \sup_{x \in [0,1]} \left| \left| \int_0^x \sin(x-t)\sigma(t)f(t) \right| \right| \le \sup_{x \in [0,1]} \int_0^x |\sin(x-t)\sigma(t)f(t)| \ dt \le \sup_{t \in [0,1]} |\sigma(t)||f(t)| \le M||f|| \quad (30)$$

where $M = \sup_{t \in [0,1]} |\sigma(t)|$.

Part C. It is easy to see that

$$(K^{n}f)(x) = \int_{0 \le t_{n} \le \dots \le t_{t} \le x} \sin(x - t_{1}) \sin(t_{1} - t_{2}) \dots \sin(t_{n-1} - t_{n}) \sigma(t_{1}) \dots \sigma(t_{n}) f(t_{n}) dt_{1} \dots dt_{n}$$
(31)

which means that, since $\sin(x) \le x$ for $x \in [0, 1]$, we will have

$$|(K^n f)(x)| \le \int_{0 \le t_n < \dots < t_t \le x} |\sin(x - t_1)\sin(t_1 - t_2) \cdots \sin(t_{n-1} - t_n)\sigma(t_1) \cdots \sigma(t_n)f(t_n)| dt_1 \cdots dt_n$$
(32)

$$\leq M^{n}||f||\int_{0\leq t_{n}\leq \cdots\leq t_{t}\leq x}|\sin(x-t_{1})(t_{1}-t_{2})\cdots(t_{n-1}-t_{n})|\,dt_{1}\cdots dt_{n} \tag{33}$$

$$\leq M^n ||f|| \int_{0 \leq t_n \leq \dots \leq t_t \leq x} t_1 \dots t_{n-1} dt_1 \dots dt_n \tag{34}$$

$$\leq M^n ||f|| \int_{0 < t_n < \dots < t_1 < x} t_1^{n-1} dt_1 \dots dt_n$$
 (35)

$$\leq M^n ||f|| \int_0^x \cdots \int_0^x t_1^{n-1} dt_1 \cdots dt_n \tag{36}$$

$$= \frac{M^n ||f|| t_1^n x^{n-1}}{n!} \le \frac{M^n ||f||}{n!} \tag{37}$$

where $M = \max_{[0,1]} \sigma$, which achieves its maximum as a continuous function on a compact domain. We also know that $0 \le x \le 1$ (we use this fact in the last inequality). It follows that $||K^n f|| \le \frac{M^n ||f||}{n!}$, so immediately we have $||K^n|| \le \frac{M^n}{n!}$, by definition of the operator norm.

Part D. Note that f = u + Kf if and only if (1 - K)f = u. Moreover, the operator $K' = \sum_{n=0}^{\infty} K^n$ is well-defined as the space of bounded operators B(C[0,1]) is Banach, and the partial sums $S_N = \sum_{n=0}^M K^n$ are Cauchy, since

$$||S_M - S_N|| = \left| \left| \sum_{n=N+1}^M K^n \right| \right| \le ||K^{N+1}|| \sum_{n=0}^{M-N-1} ||K^n|| \le \frac{C^{N+1}}{(N+1)!} \sum_{n=0}^{\infty} \frac{C^n}{n!} = \frac{\exp(C)C^{N+1}}{(N+1)!}$$
(38)

which eventually becomes arbitrarily small for sufficiently large N and thus $M \ge N$. Thus, the limit K' is well-defined, and by the same logic as Problem 2, K' is the inverse of 1 - K. It follows immediately that setting f = K'u is a well-defined solution to f = u + Kf. We showed that a solution to this equation solves the desired ODE with the desired initial conditions, so the proof is complete.