Facile Mapping of T-DNA Insertion Sites for a Cell-type Gene Expression Toolbox of Rice

<u>Joel A. Velasco^{1,2},</u> Mauricio A. Reynoso³, Germain Pauluzzi³ & Julia Bailey-Serres³

1: Center for Plant Cell Biology REU Site: Research Experience for Undergraduates in Next Generation Plant Cell Biology.

(5) Workflow

(1) Introduction

INTACT and TRAP technologies developed in the model plant Arabidopsis allow for celltype specific gene expression analysis. To translate INTACT and TRAP to an important crop species, transgenic rice (*Oryza sativa*) lines containing the TRAP and INTACT constructs were developed. Shown here is a facile process of identifying the number and location of Transfer DNA (T-DNA) insertions containing the mentioned constructs, within genomic DNA (gDNA), of a transgenic collection. Knowledge of the insertion site and the location of INTACT /TRAP construct expression will be used to select the best lines for further use. This toolbox will be employed to study how physiology and development is perturbed by two major environmental threats: droughts and floods.

(2) TRAP and INTACT Technologies

Isolation of Nuclei Tagged in Specific Cell Types (INTACT)

- Access to nuclear chromatin and RNA
- Isolation of nuclei from specific cell types
- INTACT construct makes this possible

Translating Ribosome Affinity

- Access to polysomal RNA
- Isolation of translating ribosomes from specific cell types
- TRAP construct makes this possible

(3) Cell Types Targeted with Specific Promoters

Cell Type	Promoter	Lines
Pericycle	OsHMA5	34
Root hairs	OsEXPB5	7
Meristematic endodermis	AtSCR	18
Endo/Exodermis	OsLSI2	26
Root vasculature	OsNRAMP3	19
Root meristem	OsRSS1	40
Root cortex	OsCMZ	26
Quiescent center	OsQHB	17
Shoot meristem	OSH1	15
Endodermis	OsCASP	21
Near-constitutive	CaMV 35S	47
	Total	270

(4) T-DNA & Border-junction Capture

Transfer DNA (T-DNA) insertion

Sometimes multiple

Random

· Not always complete

Border-junction Capture

- Capture probes (▲) hybridized to border sequences
- Streptavidin beads bind capture probes

X 270 lines X 38 gDNA sheared by sonication, ~400bp fragments were selected using AMPure XP Beads X 38 Sheared gDNA Sonication AMPure XP beads Size selected gDNA 38 libraries for Illumina sequencing generated from 38 pools End repair, polyadenylation, Libraries 1 - 38 Border-junction Capture Efficiency re Efficiency for Left (LB) and Right (RB) Border seque Multiplexed **Border-junction Capture** Amplification Final library / Input □ LB □ RB □ UBCII (control)

Genomic DNA (gDNA) was extracted from young leaf tissue of 270 transgenic rice lines

(6) Sequence Analysis and T-DNA insertion mapping*

Multiplexed Library sequenced on Illumina MiSeq

oripublished data from protocol development						
Expression	Line	# of insertions	Chr Location	Nearest Gene		
Near-constitutive	35S:TRAP 1		Chr 4	LOC_Os04g18140		
Near-constitutive	35S:TRAP 2		Chr 8	LOC_Os08g31100		
Near-constitutive	35S:TRAP 3		Chr 4	LOC_Os04g55800		
Near-constitutive	35S:INTACT 1		Chr 4	LOC_Os04g08660		
Near-constitutive	35S:INTACT 2		Chr 6	LOC_ Os06g43090		
Near-constitutive	35S:INTACT 3		Chr 8	LOC_Os08g08440		
Quiescent center	QHB:TRAP 1		Chr 6	LOC_Os06g36590		
Quiescent center	QHB:TRAP 2		Chr 9	LOC_Os09g12290		
Quiescent center	QHB:TRAP 3		Chr 1, 2 , 3, 5			
Quiescent center	QHB:TRAP 4		Chr 11	LOC_Os11g38462		
Shoot meristem	OSH1:TRAP 1		Chr 3	LOC_Os03g30260		
Shoot meristem	OSH1:TRAP 2		Chr 2	LOC_Os02g40454		
Endo/Exodermis	LSI1:TRAP 1		Chr 12	LOC_Os12g02710		
Endo/Exodermis	LSI1:TRAP 2		Chr 7	LOC_Os07g10990		
Endo/Exodermis	LSI1:TRAP 3		Chr 10, 11			
Endo/Exodermis	LSI1:TRAP 4		Chr 11	LOC_Os11g04030		
Endo/Exodermis	LSI1:TRAP 5		Chr 10	LOC_Os10g08280		
Root stele	SHR1:TRAP 1		Chr 1, 3, 8			
Root stele	SHR1:TRAP 2		Chr 11	LOC_Os11g17200		
Root stele	SHR1:TRAP 3		Chr 5	LOC_Os05g07950		
Root stele	SHR1:TRAP 4	2	Chr 1	LOC Os01g57110		

(7) Conclusion: 256 transgenic lines are on queue sequencing (MiSeq). T-DNA mapping information, along with visualized expression of GFP, will be used to select lines for further analysis

