Automatique linéaire I

Examen 5 Janvier 2022

Durée : 1h30, 1 feuille A4 recto-verso et calculatrice type collège autorisées

Exercice1: Un système ayant un comportement oscillatoire faiblement amorti est défini par la fonction de transfert

$$H(p) = \frac{K\omega_n^2}{p^2 + 2\xi\omega_n p + \omega_n^2}$$

avec: ξ =0.1; ω_n =6.2×10⁴ et K=10.

Nous souhaitons contrôler ce système en boucle fermée. La stratégie de commande consiste à utiliser une boucle interne rapide pour l'amortissement des vibrations et une boucle externe lente pour le suivi de trajectoire (voir Fig.1).

Рис. 1: Schéma de commande.

Boucle de commande interne: Le contrôleur $C_i(p)$ est de type PID:

$$C_i(p) = K_p(1 + \frac{1}{T_i p} + T_d p)$$

Un filtre passe-bas F(p) est également utilisé:

$$F(p) = \frac{1}{1 + \tau_d p}$$

Le cahier des charges de la boucle interne est le suivant:

- Le dépassement de la réponse indicielle de la boucle fermée doit être 50 % plus faible que celui du système H(p). Cette performance peut être obtenue en garantissant une marge de phase égale à $\frac{\pi}{4}$;
- L'erreur statique doit être nulle;
- La pulsation de coupure à zéro dB de la fonction de transfert en boucle ouverte (FTBO), $\omega_{c,0}$, doit être égale à la pulsation naturelle de H(p).
- 1. Traduire le cahier des charges sous forme d'un système d'équations;
- 2. Pour le calcul du correcteur, nous allons considérer $T_d=\frac{1}{2\xi\omega_n}$. Pour quelle raison ce choix est intéressant?
- 3. Calculer les paramètres du correcteur permettant de satisfaire le cahier des charges;
- 4. Déduire la pulsation de coupure du filtre F adaptée pour répondre au cahier des charges.

Boucle de commande externe: L'objectif du contrôleur $C_e(p)$ est que la sortie y(t) puisse suivre une trajectoire $y_d(t)$:

$$y_d(t) = 15.\sin(2\pi f_0 t)$$
, avec $f_0 = 10$ kHz.

Avec $C_e(p)$ calculé précédemment, la fonction de transfert $G_{ibf}=\frac{Y(p)}{Y_i(p)}$ est la suivante:

1

$$G_{ibf} = \frac{K_f \omega_{nf}^2}{p^2 + 2\xi_f \omega_{nf} p + \omega_{nf}^2}$$

avec:
$$\xi_f{=}4.2{\times}10^{-1};\;\omega_{nf}{=}7.47{\times}10^4$$
 et $K_f{=}1.$

- 5. Tracer les asymptotes du diagramme de Bode (gain et phase) de G_{ibf} . En se basant sur ce diagramme, est il possible qu'un correcteur $C_e(p)$ puisse assurer le suivi de la consigne $y_d(t)$ à $f_0=10$ kHz? Expliquer?
- 6. Proposer une fonction de transfert pour $C_e(p)$;
- 7. Proposer un cahier des charges pour le calcul des paramètres de $C_e(p)$;
- 8. Expliquer (sans calcul) comment les paramètres de $C_e(p)$ peuvent être calculés afin de répondre au cahier des charges;
- 9. Est-ce que le choix d'une structure PID pour $C_i(p)$ était la plus pertinente ? Si oui, expliquer pourquoi, si non, proposer une structure mieux adaptée.

Exercice2: Un système défini par les fonctions $H_1(p)$ et $H_2(p)$, ayant pour entrée utile $U_0(p)$ et étant soumis à une perturbation $C_r(p)$ est représenté par le schéma ci-dessous (Fig. 2):

Рис. 2: Schéma de commande.

$$H_1(p) = \frac{K_m}{1 + \tau_m p}; \quad H_2(p) = \frac{1}{Jp}$$

p: variable de Laplace.

L'objectif est de rejeter l'effet de la perturbation C_r sur la sortie Y.

- 1. Exprimer les fonctions $F_1(p) = \frac{Y(p)}{U(p)}$ et $F_2(p) = \frac{Y(p)}{C_r(p)}$
- 2. Comment doit être définie G(p) afin d'assurer un rejet de perturbation?
- 3. Proposer une fonction G(p) et calculer ses paramètres?
- 4. Tracer les asymptotes de gain du diagramme de Bode de $F_2(p)$ et expliquer l'influence des paramètres de G(p) sur les performances du rejet de perturbation.
- 5. Est-il possible de rejeter complètement l'effet de la perturbation sur la sortie Y en régime permanent ? Expliquer.

Une condition nécessaire pour implémenter le schéma de Fig. 2 est que la perturbation C_r soit mesurable.

Le schéma ci dessous (Fig. 3) illustre un observateur pour estimer la perturbation C_r . Cet observateur nécessite uniquement une connaissance des signaux d'entrée U_0 et Y. La sortie de l'observateur \hat{C}_r est une estimation de la perturbation C_r . Idéalement, dans une bande de fréquence d'intérêt, nous souhaitons obtenir $\hat{C}_r = C_r$

Рис. 3: Schéma de l'observateur de perturbation.

6. Définir les fonctions $C_1(p)$, $C_2(p)$ et Q(p).

- 7. Quel est le rôle de Q(p)? Comment ses paramètres doivent être calculés ?
- 8. Quel est selon vous le principal inconvénient de cette structure d'observation?
- 9. Tracer le schéma de commande complet de rejet de perturbation avec un observateur.