

### WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to M-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

### **Egzamin maturalny**

Formuła 2023

## MATEMATYKA Poziom rozszerzony

### **TEST DIAGNOSTYCZNY**

Symbol arkusza
MMAP-R0-100-2412

DATA: **12 grudnia 2024 г.** 

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

#### WYPEŁNIA ZESPÓŁ NADZORUJĄCY

Uprawnienia zdającego do:

dostosowania zasad oceniania.

#### Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- Jeżeli przekazano Ci niewłaściwy arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.





#### Instrukcja dla zdającego

- Sprawdź, czy arkusz egzaminacyjny zawiera 30 stron (zadania 1–13).
   Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie arkusza oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Nie wpisuj żadnych znaków w tabelkach przeznaczonych dla egzaminatora. Tabelki umieszczone są na marginesie przy każdym zadaniu.
- 8. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- Możesz korzystać z Wybranych wzorów matematycznych, cyrkla i linijki oraz z kalkulatora prostego. Upewnij się, czy przekazano Ci broszurę z okładką taką jak widoczna poniżej.





Zadania egzaminacyjne są wydrukowane na następnych stronach.

#### Zadanie 1. (0-2)

Ładunek elektryczny zgromadzony w kondensatorze można opisać zależnością

$$Q(t) = Q_0 \cdot \beta^{-t}$$
 dla  $t \ge 0$ 

gdzie:

- $Q_0$  ładunek elektryczny zgromadzony w kondensatorze w chwili początkowej (t=0) wyrażony w milikulombach
- Q ładunek elektryczny zgromadzony w kondensatorze w chwili t (licząc od chwili początkowej) wyrażony w milikulombach
- $\beta$  stała dodatnia
- t − czas wyrażony w sekundach.

Wiadomo, że w chwili  $t=4\,\mathrm{s}\,$  w kondensatorze był zgromadzony ładunek 2 milikulombów, a w chwili  $t=6\,\mathrm{s}\,$ – ładunek 18 milikulombów.



Oblicz, ile milikulombów ładunku było zgromadzone w tym kondensatorze w chwili  $t=5\,\mathrm{s.}$  Zapisz obliczenia.





#### Zadanie 2. (0-2)

Okrąg  $\mathcal O$  jest styczny do boków AC i BC trójkąta ABC oraz przecina bok AB tego trójkąta w punktach M oraz N, przy czym 0<|AM|<|AN|<|AB|.

Wykaż, że jeśli |AM|=|BN|, to trójkąt ABC jest równoramienny.





#### Zadanie 3. (0-3)

Iloczyn długości średnicy podstawy walca i wysokości walca jest równy  $12\sqrt{3}$ . Pole powierzchni całkowitej tego walca jest równe  $12\pi(\sqrt{3}+1)$ .



#### Oblicz objętość tego walca. Zapisz obliczenia.





#### Zadanie 4. (0-3)

Wykaż, że







#### Zadanie 5. (0-3)

W pewnej lokalnej społeczności 35% osób ma wyższe wykształcenie. W tej społeczności językiem niemieckim dobrze włada 70% osób mających wyższe wykształcenie i 40% osób bez wyższego wykształcenia.

Spośród członków tej społeczności wybieramy losowo jedną osobę.



Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wybierzemy osobę z wyższym wykształceniem, jeżeli wiadomo, że ta osoba dobrze włada językiem niemieckim. Wynik zapisz w postaci ułamka dziesiętnego w zaokrągleniu do części setnych. Zapisz obliczenia.





Kolejne zadania egzaminacyjne są wydrukowane na następnych stronach.



#### Zadanie 6. (0-4)

#### Rozwiąż równanie

$$|4x-8|+|x-2|=|2-x|+|x+2|+4$$

#### Zapisz obliczenia.







#### Zadanie 7. (0-4)

W kartezjańskim układzie współrzędnych (x,y) dane są: okrąg o równaniu  $(x+1)^2+(y-3)^2=50$  i punkty A=(6,4) oraz B=(-6,8). Punkt C leży na tym okręgu i |AC|=|BC|.



#### Oblicz współrzędne punktu C. Rozważ wszystkie przypadki. Zapisz obliczenia.









#### Zadanie 8. (0-4)

#### Oblicz granicę

$$\lim_{n \to +\infty} \frac{1+3+5+7+ \dots + (2n+1)}{\binom{n}{2}}$$

gdzie  $1+3+5+7+\ldots+(2n+1)$  jest sumą kolejnych liczb naturalnych nieparzystych. Zapisz obliczenia.









#### Zadanie 9. (0-4)

#### Rozwiąż równanie

 $\sin^4 x = \sin x \cdot \cos x - \cos^4 x$ 

w zbiorze  $[-\pi,2\pi]$ . Zapisz obliczenia.







#### Zadanie 10. (0-5)

Trzeci i piąty wyraz malejącego ciągu arytmetycznego  $(a_n)$ , określonego dla każdej liczby naturalnej  $n\geq 1$ , spełniają warunek  $a_3+a_5=10$ .

Trzywyrazowy ciąg  $(2a_1+4,a_4-1,-\frac{1}{8}a_7)$  jest geometryczny.

#### 10. 0-1-2-3-4-5

#### Oblicz wyrazy tego ciągu geometrycznego. Zapisz obliczenia.







#### Zadanie 11. (0-5)

Funkcja kwadratowa f zmiennej rzeczywistej x jest określona wzorem

$$f(x) = x^2 - 3x - m^2 + m + 3$$



Wyznacz wszystkie wartości parametru m, dla których funkcja f ma dwa różne miejsca zerowe  $x_1$ ,  $x_2$  spełniające warunek  $\left|x_1^2-x_2^2\right|\leq 12$ . Zapisz obliczenia.







#### Zadanie 12. (0-5)

W trójkącie ostrokątnym ABC miara kąta BAC jest dwa razy większa od miary kąta ABC. Punkt D jest środkiem boku AB. Niech  $\alpha$  oznacza miarę kąta ABC, natomiast  $\beta$  – miarę kąta ADC (zobacz rysunek).



Oblicz  $\frac{\operatorname{tg} \beta}{\sin(2\alpha)}$  . Zapisz obliczenia.













#### Zadanie 13.

Funkcja f jest określona wzorem  $f(x) = \frac{12x-84}{x-8}$  dla każdego  $x \in (-\infty, 8)$ .

W kartezjańskim układzie współrzędnych (x,y) rozważamy wszystkie czworokąty  $\mathit{OBCD}$ , w których:

- wierzchołek *0* ma współrzędne (0,0)
- wierzchołki B oraz D są punktami przecięcia wykresu funkcji f z osią odpowiednio Ox i Oy
- ullet wierzchołek  ${\cal C}$  ma obie współrzędne dodatnie i leży na wykresie funkcji f (zobacz rysunek).



#### Zadanie 13.1. (0-2)

Wykaż, że pole P czworokąta OBCD w zależności od pierwszej współrzędnej x punktu C jest określone wzorem

$$P(x) = \frac{21}{4} \cdot \frac{x^2 - 56}{x - 8}$$

13.1.

0-1-2







#### Zadanie 13.2. (0-4)

Pole P czworokąta OBCD w zależności od pierwszej współrzędnej x punktu C jest określone wzorem

$$P(x) = \frac{21}{4} \cdot \frac{x^2 - 56}{x - 8}$$

dla  $x \in (0,7)$ .

Oblicz współrzędne wierzchołka  $\it C$ , dla których pole czworokąta  $\it OBCD$  jest największe. Zapisz obliczenia.









### **BRUDNOPIS** (nie podlega ocenie)







# MATEMATYKA Poziom rozszerzony

Formula 2023



# MATEMATYKA Poziom rozszerzony

Formula 2023



# MATEMATYKA Poziom rozszerzony

Formula 2023

