

- 1. Нормований поліном $f(x) = x^3 + \alpha_2 x^2 + \alpha_1 x + \alpha_0$, $\alpha_i \in \mathbb{Z}_3$, $\alpha_0 \neq 0$. Всього $1 \cdot 3 \cdot 3 \cdot 2 = 18$ комбінацій, отже переберемо поліноми
 - $x^3 + 2$ звідний
 - $x^3 + 1$ звідний
 - $x^3 + 2x^2 + 1$ незвілний

Нормований поліном $f(x) = x^5 + \alpha_4 x^4 + \alpha_3 x^3 + \alpha_2 x^2 + \alpha_1 x + \alpha_0, \alpha_i \in \mathbb{Z}_3, \quad \alpha_0 \neq 0 \Leftrightarrow \alpha_0 = 1$. Переберемо

- $x^5 + 1$ звідний
- $\bullet \ x^5 + x + 1$ звідний
- $\bullet \ x^5 + x^2 + 1$ незвідний
- 2. Кількість примітивних елементів у F_{625} : $\varphi(624) = \varphi(2^4 \cdot 3 \cdot 13) = (2^4 2^3) \cdot 2 \cdot 12 = 192$
- 3. Кількість примітивних елементів у $F_{37}: \varphi(36) = \varphi(2^2 \cdot 3^2) = 2 \cdot 6 = 12$. Перевіримо, чи є 2 примітивним елементом поля: $h = 36 = 2^2 \cdot 3^2$, $2^{18} \mod 36 \neq 1$, $2^{12} \mod 36 \neq 1$, ord (2) = 36. 2 примітивний елемент. Знайдемо інші примітивні елементи, вони матимуть вигляд: 2^{α} , $0 \leq \alpha \leq 36$, $\gcd(36, \alpha) = 1$. Отже примітивні елементи 2^{α} , $\alpha \in \{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\}.$
- 4. Коренів буде 5, вони будуть знаходитись у полі F_{3^5} . Якщо α корінь, усі інші коріні α^3 , α^{3^2} , α^{3^3} , α^{3^4} .
- 5. Квадратичний лишок $a=x^2 \mod p$, за теоремою Ойлера, критерієм Ойлера та властивостями функції Ойлера $a^{\frac{p-1}{2}}=a^{\frac{\varphi(p)}{2}}=x^{\varphi(p)}=1 \mod p$, а отже порядок a не може дорівнювати $\varphi(p)$.