

การพัฒนาโมเดลพยากรณ์สำหรับปริมาณการรับส่งข้อมูลอินเทอร์เน็ต โดยใช้เทคนิคโครงข่ายประสาทเทียม DEVELOPMENT FORECASTING MODEL FOR INTERNET DATA TRANSFER USING NEURAL NETWORK TECHNIQUE

นัทวุฒิ ขันธกสิกรรม, ศรันย์ นาคถนอม และ เตชค์ฐสิณป์ เพียซ้าย สาขาวิชาวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสุโขทัยธรรมาธิราช Nattawut.kha@stou.ac.th

1.บทนำ

การวิจัยนี้เป็นการศึกษาและพัฒนารูปแบบการพยากรณ์สำหรับ ปริมาณการรับส่งข้อมูลอินเทอร์เน็ตโดยใช้เทคนิคโครงข่ายประสาทเทียมซึ่งใช้ปริมาณการรับ-ส่งข้อมูลอินเทอร์เน็ตเดือนมกราคม ถึงธันวาคม พ.ศ.2564 เป็นข้อมูลสำหรับการพัฒนาโมเดลซึ่งการ วิเคราะห์ลักษณะของข้อมูลมีลักษณแนวโน้วเป็นเส้นตรงและไม่มี อิทธิพลตามช่วงเวลา โดยโมเดลพยากรณ์ที่พัฒนาขึ้นนี้ได้ทำการ พิจารณาจากค่าเฉลี่ยความผิดพลาดยกกำลังสอง(MSE) และวัดค่า เฉลี่ยของร้อยละความผิดพลาดสัมบูรณ์(MAPE) ที่ต่ำที่สุดในระดับ ความแม่นยำไม่ต่ำกว่า 90%

2.วัตถุประสงค์

1.เพื่อศึกษารูปแบบการพยากรณ์ปริมาณการรับส่งข้อมูลอินเทอร์ เน็ตโดยใช้เทคนิคโครงข่ายประสาทเทียม

2.เพื่อพัฒนาโมเดลพยากรณ์ปริมาณการรับส่งข้อมูลอินเทอร์เน็ต โดยเทคนิคโครงข่ายประสาทเทียม

3.เพื่อประเมินประสิทธิภาพของโมเดลที่ใช้ในการพยากรณ์โดย เทคนิคโครงข่ายประสาทเทียม

3.กรอบแนวคิด

4.ชั้นตอนการวิจัย

การพัฒนาโมเดลพยากรณ์ด้วยวิธีโครงข่ายประสามเทียมจะ ดำเนินการแบ่งข้อมูลของปริมาณการรับ-ส่งอินเทอร์เน็ตออกเป็น 2 ส่วน ส่วนแรกเป็นข้อมูลสำหรับการนำเข้าเพื่อฝึกสอนโมเดล 80 เปอร์เซ็นต์ ส่วนที่สองเป็นเป็นข้อมูลสำหรับนำเข้าเพื่อการทด สอบโมเดล 20 เปอร์เซ็นต์ เกณฑ์วัดประสิทธิภาพ

จากโมเดลการพยากรณ์ที่สร้างขึ้นจะใช้วิธีการคำนวนหาค่า MSE และ MAPE ที่ต่ำที่สุดในการวัดประสิทธิภาพของโมเดลที่ได้ดัง

สถานที่	INPUT (Download Data)				OUTPUT (Upload Data)			
	MAPE	R	MSE	EPOCH	MAPE	R	MSE	EPOCH
ศูนย์ลำปาง	0.3296	0.6929	7.3484	7	6.3325	0.77375	4660.1037	5
ศูนย์สุโขทัย	4.5794	0.68633	713.5121	1	0.5963	0.79195	24.0634	8
ศูนย์นครสวรรค์	1.4968	0.98351	51.9565	1	0.0030	0.97322	0.13746	3
ศูนย์อุตรธานี	1.3693	0.72674	3.2381	1	0.6102	0.69589	8.0153	6
ศูนย์อุลราชธานี	1.1628	0.68812	13.9186	8	0.6014	0.6543	2.6908	3
ศูนย์นครนายก	2.8658	0.79476	1062.5638	7	4.3126	0.50048	356.484	3
ศูนย์เพชรบุรี	1.7597	0.61281	116.8104	2	0.9530	0.64238	26.8822	2
ศูนย์จันทบุรี	0.8521	0.81596	12.9491	4	0.5640	0.67647	18.457	12
ศูนย์นครศรีธรรมราช	8.2212	0.77443	2.6673	1	5.9441	0.9981	0.078411	1
ศูนย์ยะลา	1.4215	0.99976	9.6721	1	0.4744	0.99488	1.6964	2
ชุมสายที่ 1	5.1377	0.9716	21.0445	3	8.9210	0.99027	0.16757	1
ชุมสายที่ 2	3.2139	0.98811	5637.5107	2	8.2696	0.92276	486.6521	1
ชุมสายที่ 3	5.3292	0.81518	0.028496	8	8.6749	0.79136	2.5692	4

6.สรุปและอภิปลาย

การใช้เทคนิคโครงข่ายประสาทเทียมเป็นวิธีที่ใช้ในการสร้าง โมเดลการพยากรณ์ที่สามารถใช้งานในหลากหลายสาขาวิชาโดย เฉพาะด้านการพยากรณ์ที่สามารถจำลองการทำงานของระบบประ-สาทของมนุษย์ที่สามารถมีการเรียนรู้และฝึกฝนได้ทั้งมีความเหมาะ สมกับปริมาณข้อมูลที่มีจำนวนมากและไม่เปลี่ยนแปลงตามช่วงเวลา และสามารถวัดค่าประสิทธิภาพความแม่นยำในการพยากรณ์ได้ผ่าน ทางการเขียนภาษาโปรแกรมคอมพิวเตอร์เพื่อให้มีการวนรอบการ คำนวณในการหาค่าประสิทธิภาพซึ่งผลการวิจัยจำแนกเป็นปริมาณ การรับข้อมูลอินเทอร์เน็ต คือ ศูนย์ลำปาง มี ค่า MAPE ดีที่สุด เท่ากับ 0.3296 ศูนย์ยะลามีค่า R ดีที่สุด เท่ากับ 0.99976 ชุมสายที่ 3 มีค่า MSE ดีที่สุดเท่ากับ 0.028496 และ EPOCH ที่ดีเท่ากับ 1 มีจำนวน 5 แห่งได้แก่ ศูนย์สุโขทัย,ศูนย์นครสวรรค์ ,ศูนย์อุดรธานี, ศูนย์นครศรีธรรมราช, และศูนย์ยะลา และปริมาณ การส่งข้อมูลอินเทอร์เน็ต คือ ศูนย์นครสวรรค์มีค่า MAPE ดีที่สุด เท่ากับ 0.0030 ศูนย์นครนายกมีค่า R ดีที่สุดเท่ากับ 0.50048 ศูนย์นครศรีธรรมราชมีค่า MSE ดีที่สุดเท่ากับ 0.078411 และ EPOCH ที่ดีเท่ากับ 1 มีจำนวน 3 แห่งได้แก่ ศูนย์นครศรีธรรม -ราช, ชุมสายที่ 1 และชุมสายที่ 2