Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/019741

International filing date: 24 December 2004 (24.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-431629

Filing date: 25 December 2003 (25.12.2003)

Date of receipt at the International Bureau: 17 February 2005 (17.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

24.12.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年12月25日

出 願 番 号 Application Number: 特願2003-431629

[ST. 10/C]:

[JP2003-431629]

出 願 人
Applicant(s):

武田薬品工業株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 2月 3日

1) [1]

特許願 【書類名】 【整理番号】 A6181

平成15年12月25日 【提出日】 特許庁長官殿 【あて先】 CO7C 53/122

【国際特許分類】 CO7C 69/102

【発明者】

大阪府茨木市高田町20-5 【住所又は居所】 安間 常雄

【氏名】 【発明者】

大阪府大阪市天王寺区小宮町3-8-1501 【住所又は居所】 北村 周治

【氏名】

【発明者】

大阪府箕面市百楽荘4-4-35 【住所又は居所】

根来 伸行 【氏名】

【特許出願人】

000002934 【識別番号】

武田薬品工業株式会社 【氏名又は名称】

【代理人】

100080791 【識別番号】

【弁理士】

高島 一 【氏名又は名称】 06-6227-1156

【電話番号】

【手数料の表示】 006965 【予納台帳番号】

21,000円 【納付金額】

【提出物件の目録】

特許請求の範囲 1 【物件名】

【物件名】 明細書 1 要約書 1 【物件名】 【包括委任状番号】 0109317

【書類名】特許請求の範囲 【請求項1】

尤

【化1】

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{5}$$

$$\mathbb{R}^{4}$$

$$\mathbb{R}^{5}$$

$$\mathbb{R}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{4}$$

$$\mathbb{R}^{5}$$

$$\mathbb{R}$$

$$\mathbb{R}^{4}$$

$$\mathbb{R}^{5}$$

$$\mathbb{R}^{4}$$

$$\mathbb{R}^{5}$$

[式中、 R^1 、 R^3 、 R^4 および R^5 は同一または異なって、それぞれ水素原子、ハロゲ ン原子、置換されていてもよい炭化水素基または置換されていてもよいヒドロキシ基を、 R^2 は、ハロゲン原子、置換されていてもよい炭化水素基、置換されていてもよいヒドロ キシ基、置換されていてもよいアミノ基、置換されていてもよいメルカプト基または置換 されていてもよい複素環基を、

Eは結合手、置換されていてもよい C_{1-4} アルキレン基、 $-W^1-O-W^2-、-W^1$ $-S-W^2-$ または $-W^1-N(R^6)-W^2-(W^1)$ および W^2 は同一または異なって、 それぞれ結合手または置換されていてもよい C_{1-3} アルキレン基を、 R^6 は水素原子、 置換されていてもよいアシル基または置換されていてもよい炭化水素基を示す)を、 環 \mathbf{S}^{1} はハロゲン原子、置換されていてもよい炭化水素基、置換されていてもよいヒドロ キシ基および置換されていてもよいアミノ基から選ばれる置換基をさらに有していてもよ いベンゼン環を、

Rは置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基を示す。た だし、 R^1 と R^3 とは同時に水素原子でない。]

で表わされる化合物またはその塩。

【請求項2】

請求項1記載の化合物またはその塩のプロドラッグ。

【請求項3】

 R^4 および R^5 が同一または異なって、それぞれ水素原子またはハロゲン原子である請求 項1記載の化合物またはその塩。

【請求項4】

Eが結合手である請求項1記載の化合物またはその塩。

【請求項5】

Rがヒドロキシ基である請求項1記載の化合物またはその塩。

【請求項6】

請求項1記載の化合物もしくはその塩またはそのプロドラッグを含有してなるGPR40 受容体機能調節剤。

【請求項7】

請求項1記載の化合物もしくはその塩またはそのプロドラッグを含有してなる医薬。

【請求項8】

糖尿病治療剤である請求項7記載の医薬。

【書類名】明細書

【発明の名称】 3- (4-ベンジルオキシフェニル)プロパン酸誘導体

【技術分野】

[0001]

本発明は、GPR40受容体機能調節作用を有する、糖尿病治療剤として有用な新規化 合物に関する。

【背景技術】

[0002]

近年、G蛋白質共役型受容体 (G Protein-coupled Receptor; GPCR) の1つであるGP R~4~0~0リガンドが脂肪酸であり、膵臓の β 細胞にあるG~P~R~4~0がインスリン分泌作用 と深く関わっていることが報告されており(非特許文献1)、GPR40アゴニストはイ ンスリン分泌を促進し、GPR40アンタゴニストはインスリン分泌を阻害し、これらの アゴニストおよびアンタゴニストは2型糖尿病、肥満症、耐糖能異常、インスリン抵抗性 、神経退縮症(アルツハイマー病)などの治療薬として有用である(特許文献1および2 参照)。

[0003]

一方、糖尿病の治療薬として有用な化合物が多数報告されている。 例えば、特許文献3には、式:

[0004]

【化1】

HOOC
$$(CR^1R^2)m$$
 X^1 R^3 R^4 R^6 R^7 R^8

[0005]

 $[X^1: C_{1-3}$ アルキル等; R^1 、 $R^2: H$ 等; R^3 、 R^4 、 $R^5: H$ 、 CH_3 等; $R^{2.6}$ 、 $R^{2.7}: H$ 等; m: 0-3; X^2 : 0等; R^6 、 R^7 : H等; Y、Z: 一方がCH、他方がSまたは0; R^8 : フェニル等; R^9 : C_{1-6} ア ルキル等〕

で表わされるペルオキシソーム増殖因子活性化受容体(PPAR)調節剤がPPAR媒介 疾患(例えば、糖尿病)の予防・治療剤として有用であることが開示されている。

[0006]

特許文献4には、式:

[0007]

【化2】

[0008]

 $[R^1:$ 置換されていてもよい5員芳香族複素環基;X: 結合手、0、S、 $-NR^6-(R^6:H$ 、置換 されていてもよい炭化水素基等)等; Q: C₁₋₂₀の2価の炭化水素基; Y: 結合手、0、S、-NR 7 - $(R^{7}: H、置換されていてもよい炭化水素基等)等; 環<math>A: 1$ ないし3個の置換基をさらに 有していてもよい芳香環; Z: -(CH₂)n-Z¹-(n: 1~8、Z₁: 0等)等; 環B: 1ないし3個の 置換基をさらに有していてもよいベンゼン環等; U: 結合手等; W: C1-20の2価の炭化水素 基; R^3 : $-0R^8$ - $(R^8$: H、置換されていてもよい炭化水素基)または $-NR^9R^{10}$ - $(R^9$ 、 R^{10} : H、 置換されていてもよい炭化水素基等)等;ただし、環Bが1ないし3個の置換基をさらに有 していてもよいベンゼン環の時、Uは結合手を示す〕

で表わされるアルカン酸誘導体が、糖尿病、高脂血症、耐糖能異常などの予防・治療剤と

して有用であることが開示されている。

[0009]

特許文献5には、式:

[0010]

[0011]

 $[R^1: C_{1-8}$ アルキル、 C_{1-8} アルコキシ、ハロゲン原子、トリフルオロメチル等; R^2 : -COOR³ (R³: H、C₁₋₄アルキル)等; A: C₁₋₈アルキレン等; G: C₁₋₈アルキル、C₁₋₈アルコキ シ、ハロゲン原子、トリフルオロメチルまたはニトロで置換されてよい炭素環等; E^1 : C_1 - 8アルキレン等; E²: -0-等; E³: 単結合等; n: 0、1; Cyc1環: 存在しない等] で表わされる化合物がPPAR受容体の制御作用を有し、糖尿病、肥満、シンドロームX 、高コレステロール血症、高リポ蛋白血症などの代謝異常疾患などの予防・治療剤として 有用であることが開示されている。

[0012]

特許文献6には、式:

[0013]

【化4】

$$\begin{array}{c|c}
\hline
 & & \\
\hline
 & & & \\
\hline
 & & \\$$

[0014]

[環ArI、環ArII、環ArIII: 置換していてもよいアリール等; A: -O-、-S-、結合、-NR₁₃ -(R₁₃: H、アルキル等)等; B: -O-等; D: 結合、エチレン; E: 結合、エチレン; X: H等; Z: $R_{21}O_2C$ -、 $(R_{21})_2NCO$ - $(R_{21}$: H、アルキル等)等; a、b、c、e: 0-4; d: 0-5; f: 0-6; $R_1 \sim R_{12}$: H等〕

で表わされる化合物がPPARリガンド受容体結合剤、PPAR受容体アゴニスト、PP AR受容体アンタゴニストとして有用であることが開示されており、糖尿病治療剤として 用いることができる。

[0015]

特許文献7には、式:

[0016]

【化5】

$$\begin{array}{c|c} X & X^1 & R^2 \\ \hline & & & \\ & &$$

[0017]

[X: COOH(エステル含む)等; X^1 : CH₂等; 点線は X^1 がCHの時のみ、描かれた結合が二重結 合であることを示す; X^2 : 0等; R^1 、 R^2 : H、Me等; n: 1、2; Y、Z: 一方がN、他方がSま たは0; y: 0-5の整数; R³: CF₃等]

で表わされる化合物がPPAR&アゴニストとして用いられ、PPAR&媒介疾患(例え ば高脂血症、動脈硬化症、1または2型糖尿病など)の予防・治療剤として有用であるこ とが開示されている。

[0018]

特許文献8には、式:

[0019]

【化6】

[0020]

[A: ハロゲン等で置換されていてよいフェニル等; B: C_{1-6} アルキレン等; ALK: C_{1-3} ア ルキレン; R^1 : H、 C_{1-3} アルキル; Z: ハロゲンで置換されていてよい $-(C_{1-3}$ アルキレン) フェニル等〕

で表わされる化合物が $PPAR\gamma$ アゴニストとして有用であり、高血糖、1または2型糖 尿病、高脂血症等の予防・治療剤として用いることができることが開示されている。

[0021]

特許文献9には、式:

[0022]

【化7】

$$Ar-(CH_2)m-O \xrightarrow{R^4} (CH_2)n \xrightarrow{COOH} R^2$$

[0023]

[Ar: 1-5個の同一又は異なったハロゲン原子等で置換されたフェニル等; R^1 : ハロゲン原 子等; R²: H等; R³、R⁴: H、ハロゲン原子; m: 1、2; n: 2-7]

で表わされる化合物が優れたインスリン抵抗性改善作用、血糖低下作用、脂質低下作用、 抗炎症作用、免疫調節作用、過酸化脂質生成抑制作用、PPAR活性化作用を有し、糖尿 病治療薬として有用であることが開示されている。

[0024]

特許文献10には、式:

[0025]

【化8】

[0026]

- [A: OH等で置換されていてもよいアリール; X^1 、 $X^2: H$ 等; Y、Z: H等; n: 0-3; m: 0、1 ; Q: O等; Ar: アリーレン等; R¹-R⁴: H等]

で表わされる化合物がPPAR関連疾患の治療薬として有用であり、例えば2型糖尿病、 耐糖能異常、インスリン抵抗性、高トリグリセリド血症等の治療薬として有用であること が開示されている。

しかしながら、これら公知の糖尿病治療薬がGPR40受容体機能調節作用を有することは全く開示がなく、これまでGPR40受容体機能調節作用を有する化合物(GPR40アゴニストおよびGPR40アンタゴニストとして有用な化合物)について報告されておらず、GPR40受容体機能調節作用を有する化合物の開発が望まれている。

【非特許文献1】ネイチャー (Nature) 、2003年、422巻、173-176頁

【特許文献1】国際公開第03/068959号パンフレット

【特許文献2】 国際公開第02/057783号パンフレット

【特許文献3】国際公開第02/092590号パンフレット

【特許文献4】国際公開第02/053547号パンフレット

【特許文献5】国際公開第99/11255号パンフレット

【特許文献6】国際公開第00/64876号パンフレット

【特許文献7】国際公開第01/00603号パンフレット

【特許文献8】国際公開第97/31907号パンフレット

【特許文献9】国際公開第02/083616号パンフレット

【特許文献10】国際公開第01/55085号パンフレット

【発明の開示】

【発明が解決しようとする課題】

[0027]

本発明は、インスリン分泌促進薬や糖尿病などの予防・治療薬として有用なGPR40 受容体機能調節作用を有する新規化合物を提供することを目的とする。

【課題を解決するための手段】

[0028]

本発明者らは、種々鋭意研究を重ねた結果、後記式(I)で表わされる化合物が予想外にも優れたGPR40受容体アゴニスト活性を有し、更に安定性等の医薬品としての物性においても優れた性質を有しており、哺乳動物のGPR40受容体関連病態または疾患の予防・治療薬として安全でかつ有用な医薬となることを見出し、これらの知見に基づいて本発明を完成した。

[0029]

すなわち、本発明は以下のとおりである。

(1)式

[0030]

【化9】

$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{1}} \mathbb{S}^{1} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{4} \qquad (I)$$

[0031]

[式中、 R^1 、 R^3 、 R^4 および R^5 は同一または異なって、それぞれ水素原子、ハロゲン原子、置換されていてもよい炭化水素基または置換されていてもよいヒドロキシ基を、 R^2 は、ハロゲン原子、置換されていてもよい炭化水素基、置換されていてもよいヒドロキシ基、置換されていてもよいアミノ基、置換されていてもよいメルカプト基または置換されていてもよい複素環基を、

Eは結合手、置換されていてもよい C_{1-4} アルキレン基、 $-W^1-O-W^2-$ 、 $-W^1-S-W^2-$ または $-W^1-N(R^6)-W^2-(W^1$ および W^2 は同一または異なって、それぞれ結合手または置換されていてもよい C_{1-3} アルキレン基を、 R^6 は水素原子、置換されていてもよいアシル基または置換されていてもよい炭化水素基を示す)を、

環S¹ はハロゲン原子、置換されていてもよい炭化水素基、置換されていてもよいヒドロキシ基および置換されていてもよいアミノ基から選ばれる置換基をさらに有していてもよいベンゼン環を、

Rは置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基を示す。ただし、 R^1 と R^3 とは同時に水素原子でない。]

で表わされる化合物またはその塩。

- (2) 上記(1) の化合物またはその塩のプロドラッグ。
- (3) R^4 および R^5 が同一または異なって、それぞれ水素原子またはハロゲン原子である上記(1)の化合物またはその塩。
- (4) Eが結合手である上記(1)の化合物またはその塩。
- (5) Rがヒドロキシ基である上記(1)の化合物またはその塩。
- (6)上記(1)の化合物もしくはその塩またはそのプロドラッグを含有してなるGPR40受容体機能調節剤。
- (7)上記(1)の化合物もしくはその塩またはそのプロドラッグを含有してなる医薬。
- (8)糖尿病治療剤である上記(7)の医薬。

【発明の効果】

[0032]

本発明の化合物は、優れたGPR40受容体機能調節作用を有しており、糖尿病などの 予防・治療剤として用いることができる。

【発明を実施するための最良の形態】

[0033]

本明細書中の「ハロゲン原子」としては、特に断りのない限り、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。

[0034]

本明細書中の「置換されていてもよい炭化水素基」としては、特に断りのない限り、例えば、「置換されていてもよい C_{1-6} アルキル基」、「置換されていてもよい C_{2-6} アルケニル基」、「置換されていてもよい C_{2-6} アルケニル基」、「置換されていてもよい C_{3-8} シクロアルキル基」、「置換されていてもよい C_{6-14} アリール基」、「置換されていてもよい C_{7-16} アラルキル基」などが挙げられる。

[0035]

本明細書中の「 C_{1-6} アルキル基」としては、特に断りのない限り、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシルなどが挙げられる。

[0036]

本明細書中の「 C_{2-6} アルケニル基」としては、特に断りのない限り、例えばビニル、プロペニル、イソプロペニル、2-ブテン-1-イル、4-ペンテン-1-イル、5- ヘキセン-1-イルなどが挙げられる。

[0037]

本明細書中の「 C_{2-6} アルキニル基」としては、特に断りのない限り、例えば2- ブチンー1-イル、4-ペンチンー1-イル、5-ヘキシンー1-イルなどが挙げられる。

[0038]

本明細書中の「C3-8シクロアルキル基」としては、特に断りのない限り、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどが挙げられる。

[0039]

本明細書中の「 C_{6-14} アリール基」としては、特に断りのない限り、例えばフェニル、1-ナフチル、2-ナフチル、2-ビフェニリル、3-ビフェニリル、4-ビフェニリル、2-アンスリルなどが挙げられる。該 C_{6-14} アリールは、部分的に飽和されていてもよく、部分的に飽和された C_{6-14} アリールとしては、例えばテトラヒドロナフチルなどが挙げられる。

[0040]

本明細書中の「C₇₋₁₆アラルキル基」としては、特に断りのない限り、例えばベン ジル、フェネチル、ジフェニルメチル、1-ナフチルメチル、2-ナフチルメチル、2, 2-ジフェニルエチル、3-フェニルプロピル、4-フェニルブチル、5-フェニルペン チル、2ービフェニリルメチル、3ービフェニリルメチル、4ービフェニリルメチルなど が挙げられる。

[0041]

本明細書中の「置換されていてもよいヒドロキシ基」としては、特に断りのない限り、 例えば、「ヒドロキシ基」、「置換されていてもよいC₁₋₁₀アルコキシ基」、「置換 されていてもよい複素環オキシ基」、「置換されていてもよいC₆₋₁₄アリールオキシ 基」、「置換されていてもよいC7-16アラルキルオキシ基」などが挙げられる。

[0042]

本明細書中の「C1-6アルコキシ基」としては、特に断りのない限り、例えばメトキ シ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、tert-ブトキシ 、ペンチルオキシ、ヘキシルオキシなどが挙げられる。また、本明細書中の「Cı-ıo アルコキシ基」としては、上記С1-6アルコキシ基に加えて、ヘプチルオキシ、オクチ ルオキシ、ノニルオキシ、デシルオキシなどが挙げられる。

[0043]

本明細書中の「複素環オキシ基」としては、後述の「複素環基」で置換されたヒドロキ シ基が挙げられる。該複素環オキシ基の好適な例としては、テトラヒドロピラニルオキシ 、チアゾリルオキシ、ピリジルオキシ、ピラゾリルオキシ、オキサゾリルオキシ、チエニ ルオキシ、フリルオキシなどが挙げられる。

[0044]

本明細書中の「C6-14アリールオキシ基」としては、特に断りのない限り、例えば 、フェノキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。

[0045]

本明細書中の「C₇₋₁₆アラルキルオキシ基」としては、特に断りのない限り、例え ばベンジルオキシ、フェネチルオキシなどが挙げられる。

[0046]

本明細書中の「置換されていてもよいメルカプト基」としては、特に断りのない限り、 例えば、「メルカプト基」、「置換されていてもよいC₁₋₁₀アルキルチオ基」、「置 換されていてもよい複素環チオ基」、「置換されていてもよいC6-14アリールチオ基 」、「置換されていてもよいCィ−16 アラルキルチオ基」などが挙げられる。

[0047]

本明細書中の「C₁₋₆アルキルチオ基」としては、特に断りのない限り、例えばメチ ルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、sec-ブチルチオ、 tert-ブチルチオなどが挙げられる。また、本明細書中の「Cı-10アルキルチオ基」 としては、上記С1-6アルキルチオ基に加えて、ヘプチルチオ、オクチルチオ、ノニル チオ、デシルチオなどが挙げられる。

[0048]

本明細書中の「複素環チオ基」としては、後述の「複素環基」で置換されたメルカプト 基が挙げられる。該複素環チオ基の好適な例としては、テトラヒドロピラニルチオ、チア ゾリルチオ、ピリジルチオ、ピラゾリルチオ、オキサゾリルチオ、チエニルチオ、フリル チオなどが挙げられる。

[0049]

本明細書中の「С6-14アリールチオ基」としては、特に断りのない限り、例えばフ エニルチオ、1ーナフチルチオ、2ーナフチルチオなどが挙げられる。

[0050]

本明細書中の「C₇₋₁₆アラルキルチオ基」としては、特に断りのない限り、例えば ベンジルチオ、フェネチルチオなどが挙げられる。

[0051]

本明細書中の「複素環基」としては、特に断りのない限り、例えば、環構成原子として 、炭素原子以外に窒素原子、硫黄原子及び酸素原子から選ばれる1又は2種、1ないし4 個のヘテロ原子を含む5ないし14員(単環、2環又は3環式)複素環基、好ましくは(i) 5ないし14員 (好ましくは5ないし10員) 芳香族複素環基、 (ii) 5ないし10 員非芳香族複素環基などが挙げられる。なかでも5または6員芳香族複素環基が好ましい 。具体的には、例えばチエニル(例:2-チエニル、3-チエニル)、フリル(例:2-フリル、3-フリル)、ピリジル(例:2-ピリジル、3-ピリジル、4-ピリジル)、 チアゾリル (例:2ーチアゾリル、4ーチアゾリル、5ーチアゾリル)、オキサゾリル(例:2-オキサゾリル、4-オキサゾリル、5-オキサゾリル)、キノリル(例:2-キ ノリル、3 ーキノリル、4 ーキノリル、5 ーキノリル、8 ーキノリル)、イソキノリル(例:1-イソキノリル、3-イソキノリル、4-イソキノリル、5-イソキノリル)、ピ ラジニル、ピリミジニル(例:2-ピリミジニル、4-ピリミジニル)、ピロリル(例: 1-ピロリル、2-ピロリル、3-ピロリル)、イミダブリル(例:1-イミダブリル、 2-イミダゾリル、4-イミダゾリル)、ピラゾリル(例:1-ピラゾリル、3-ピラゾ リル、4-ピラゾリル)、ピリダジニル(例:3-ピリダジニル、4-ピリダジニル)、 インチアゾリル (例:3-イソチアゾリル、4-イソチアゾリル、5-イソチアゾリル) 、イソキサゾリル(例:3-イソキサゾリル、4-イソキサゾリル、5-イソキサゾリル)、インドリル(例:1-インドリル、2-インドリル、3-インドリル)、2-ベンゾ チアゾリル、2-ベンゾオキサゾリル、ベンゾイミダゾリル(例:1-ベンゾイミダゾリ ル、2-ベンゾイミダゾリル)、ベンゾ [b] チエニル (例:2-ベンゾ [b] チエニル 、3-ベンゾ [b] チエニル)、ベンゾ [b] フラニル(例:2-ベンゾ [b] フラニル 、3-ベンゾ [b] フラニル)などの芳香族複素環基;例えばピロリジニル(例:1-ピ ロリジニル、2-ピロリジニル、3-ピロリジニル)、オキサゾリジニル(例:2-オキ サゾリジニル)、イミダゾリニル (例:1-イミダゾリニル、2-イミダゾリニル、4-イミダゾリニル)、ピペリジニル(例:1-ピペリジニル、2-ピペリジニル、3-ピペ リジニル、4-ピペリジニル)、ピペラジニル(例:1-ピペラジニル、2-ピペラジニ ル)、モリホリニル(例:2-モルホニリル、3-モルホニリル、4-モルホニリル)、 チオモルホリニル (例:2-チオモルホニリル、3-チオモルホニリル、4-チオモルホ ニリル)、テトラヒドロピラニルなどの非芳香族複素環基などが挙げられる。

[0052]

本明細書中の「C1-6アルキルスルホニル基」としては、特に断りのない限り、例え ばメチルスルホニル、エチルスルホニル等が挙げられる。

[0053]

本明細書中の「С1-6アルキルスルフィニル基」としては、特に断りのない限り、例 えばメチルスルフィニル、エチルスルフィニル等が挙げられる。

[0054]

本明細書中の「С6-14アリールスルホニル基」としては、特に断りのない限り、例 えば、フェニルスルホニル、1-ナフチルスルホニル、2-ナフチルスルホニルなどが挙 げられる。

[0055]

本明細書中の「С6-14 アリールスルフィニル基」としては、特に断りのない限り、 例えば、フェニルスルフィニル、1-ナフチルスルフィニル、2-ナフチルスルフィニル などが挙げられる。

[0056]

本明細書中の「エステル化されていてもよいカルボキシル基」としては、特に断りのな い限り、例えばカルボキシル、Cı-6アルコキシーカルボニル基(例:メトキシカルボ ニル、エトキシカルボニル、プロポキシカルボニル、tert-ブトキシカルボニル等)、C 6-14 アリールオキシーカルボニル基(例:フェノキシカルボニル等)、C7-16 ア ラルキルオキシーカルボニル基(例:ベンジルオキシカルボニル、フェネチルオキシカル ボニル等) などが挙げられる。

[0057]

本明細書中の「ハロゲン化されていてもよいC1-6アルキル基」としては、特に断り のない限り、1ないし5個の上記「ハロゲン原子」で置換されていてもよい上記「 C_1 -6 アルキル基」が挙げられる。例えば、メチル、エチル、プロピル、イソプロピル、ブチ ル、tert-ブチル、イソブチル、トリフルオロメチルなどが挙げられる。

[0058]

本明細書中の「ハロゲン化されていてもよいC1-6アルコキシ基」としては、特に断 りのない限り、1ないし5個の上記「ハロゲン原子」で置換されていてもよい上記「C₁ - 6 アルコキシ基」が挙げられる。例えば、メトキシ、エトキシ、イソプロポキシ、tert -ブトキシ、トリフルオロメトキシなどが挙げられる。

[0059]

本明細書中の「モノー又はジーC1-6アルキルーアミノ基」としては、特に断りのな い限り、上記「C₁₋₆アルキル基」でモノー又はジー置換されたアミノ基が挙げられる 。例えば、メチルアミノ、エチルアミノ、プロピルアミノ、ジメチルアミノ、ジエチルア ミノなどが挙げられる。

[0060]

本明細書中の「モノー又はジーC6-14アリールーアミノ基」としては、特に断りの ない限り、上記「C6-14アリール基」でモノー又はジー置換されたアミノ基が挙げら れる。例えば、フェニルアミノ、ジフェニルアミノ、1ーナフチルアミノ、2ーナフチル アミノなどが挙げられる。

[0061]

本明細書中の「モノー又はジーC7-16アラルキルーアミノ基」としては、特に断り のない限り、上記「С7-16アラルキル基」でモノー又はジー置換されたアミノ基が挙 げられる。例えば、ベンジルアミノ、フェネチルアミノなどが挙げられる。

[0062]

本明細書中の「 $N-C_{1-6}$ アルキルー $N-C_{6-14}$ アリールーアミノ基」としては 、特に断りのない限り、上記「Cı-6アルキル基」及び上記「C6-14アリール基」 で置換されたアミノ基が挙げられる。例えば、N-メチル-N-フェニルアミノ、N-エ チルーN-フェニルアミノなどが挙げられる。

[0063]

本明細書中の「N-C1-6アルキル-N-C7-16アラルキル-アミノ基」として は、特に断りのない限り、上記「С1-6アルキル基」及び上記「С7-16アラルキル 基」で置換されたアミノ基が挙げられる。例えば、N-メチル-N-ベンジルアミノ、N エチルーNーベンジルアミノなどが挙げられる。

[0064]

本明細書中の「モノー又はジーC₁₋₆アルキルーカルバモイル基」としては、特に断 りのない限り、上記「C₁₋₆アルキル基」でモノー又はジー置換されたカルバモイル基 が挙げられる。例えば、メチルカルバモイル、エチルカルバモイル、ジメチルカルバモイ ル、ジエチルカルバモイル、エチルメチルカルバモイル等が挙げられる。

[0065]

本明細書中の「モノー又はジーC6-14アリールーカルバモイル基」としては、特に 断りのない限り、上記「C₆₋₁₄アリール基」でモノー又はジー置換されたカルバモイ ル基が挙げられる。例えば、フェニルカルバモイル、1-ナフチルカルバモイル、2-ナ フチルカルバモイル等が挙げられる。

[0066]

本明細書中の「モノー又はジー5ないし7員複素環ーカルバモイル基」としては、特に 断りのない限り、5ないし7員複素環基でモノー又はジー置換されたカルバモイル基が挙 げられる。ここで、5ないし7員複素環基としては、環構成原子として、炭素原子以外に 窒素原子、硫黄原子及び酸素原子から選ばれる1又は2種、1ないし4個のヘテロ原子を 含む複素環基が挙げられる。「モノー又はジー5ないし7員複素環ーカルバモイル基」の 好適な例としては、2ーピリジルカルバモイル、3ーピリジルカルバモイル、4ーピリジ ルカルバモイル、2ーチエニルカルバモイル、3ーチエニルカルバモイル等が挙げられる

[0067]

本明細書中の「モノー又はジーC₁₋₆アルキルースルファモイル基」としては、特に 断りのない限り、上記「C₁₋₆アルキル基」でモノー又はジー置換されたスルファモイ ル基が用いられ、例えば、メチルスルファモイル、エチルスルファモイル、ジメチルスル ファモイル、ジエチルスルファモイルなどが挙げられる。

[0068]

本明細書中の「モノー又はジーC6-14アリールースルファモイル基」としては、特 に断りのない限り、上記「C6-14 アリール基」でモノー又はジー置換されたスルファ モイル基が用いられ、例えば、フェニルスルファモイル、ジフェニルスルファモイル、1 - ナフチルスルファモイル、2-ナフチルスルファモイルなどが挙げられる。

[0069]

本明細書中の「置換されていてもよいC₁₋₆アルキル基」、「置換されていてもよい С2-6アルケニル基」、「置換されていてもよいС2-6アルキニル基」、「置換され ていてもよいС1-10アルコキシ基(置換されていてもよいС1-6アルコキシ基を含 む)」および「置換されていてもよいС1-10アルキルチオ基(置換されていてもよい C₁₋₆ アルキルチオ基を含む)」としては、例えば(1) ハロゲン原子;(2) ヒドロキ シ基; (3) アミノ基; (4) ニトロ基; (5) シアノ基; (6) ハロゲン原子、ヒドロキシ 基、アミノ基、ニトロ基、シアノ基、ハロゲン化されていてもよいC₁₋₆アルキル基、 モノー又はジーC1-6アルキルーアミノ基、С6-14アリール基、モノー又はジーC 6-14 アリールーアミノ基、C3-8 シクロアルキル基、C1-6 アルコキシ基、C1 - 6 アルキルチオ基、C 1 - 6 アルキルスルフィニル基、C 1 - 6 アルキルスルホニル基 、エステル化されていてもよいカルボキシル基、カルバモイル基、チオカルバモイル基、 モノー又はジーC1-6アルキルーカルバモイル基、モノー又はジーС6-14アリール -カルバモイル基、スルファモイル基、モノ-又はジ-C₁₋₆アルキル-スルファモイ ル基及びモノー又はジーC6-14アリールースルファモイル基から選ばれる1ないし3 個の置換基で置換されていてもよい複素環基(好ましくはフリル、ピリジル、チエニル、 ピラゾリル、チアゾリル、オキサゾリル);(7)モノー又はジーC1-6アルキルーア ミノ基; (8) モノー又はジーC6-14 アリールーアミノ基; (9) モノー又はジーC7 - 1 6 アラルキルーアミノ基;(10)N-C₁₋₆ アルキル-N-C₆₋₁₄ アリールー アミノ基; (11) $N-C_{1-6}$ アルキル $-N-C_{7-16}$ アラルキル-アミノ基; (12) $C_{3}-8$ シクロアルキル基; (13) ハロゲン化されていてもよい $C_{1}-6$ アルコキシ基; (14) C₁₋₆ アルキルチオ基; (15) C₁₋₆ アルキルスルフィニル基; (16) C₁₋ 6 アルキルスルホニル基; (17) エステル化されていてもよいカルボキシル基; (18) カ ルバモイル基; (19) チオカルバモイル基; (20) モノー又はジーC1 - 6 アルキルーカ ルバモイル基; (21) モノー又はジーC6-14 アリールーカルバモイル基; (22) モノ -又はジー5ないし7員複素環-カルバモイル基; (23) カルボキシル基で置換されてい てもよいС1-6アルキルーカルボニルアミノ基(例:アセチルアミノ、プロピオニルア ミノ);(24)ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン 化されていてもよいC₁₋₆アルキル基、モノー又はジーC₁₋₆アルキルーアミノ基、 C6-14 アリール基、モノー又はジーC6-14 アリールーアミノ基、C3-8 シクロ アルキル基、С1-6アルコキシ基、С1-6アルキルチオ基、С1-6アルキルスルフ ィニル基、C1-6アルキルスルホニル基、エステル化されていてもよいカルボキシル基 、カルバモイル基、チオカルバモイル基、モノー又はジーC1 – 6 アルキルーカルバモイ ル基、モノー又はジーC6-14アリールーカルバモイル基、スルファモイル基、モノー 又はジーC1-6アルキルースルファモイル基及びモノー又はジーC6-14アリールー スルファモイル基から選ばれる1ないし3個の置換基で置換されていてもよいС6-14 アリールオキシ基; (25) ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基 、ハロゲン化されていてもよいCi‐ 6 アルキル基、モノー又はジーCi‐ 6 アルキルー アミノ基、С6-14アリール基、モノー又はジーС6-14アリールーアミノ基、С3 - 8 シクロアルキル基、C₁₋₆ アルコキシ基、C₁₋₆ アルキルチオ基、C₁₋₆ アル キルスルフィニル基、C₁₋₆アルキルスルホニル基、エステル化されていてもよいカル ボキシル基、カルバモイル基、チオカルバモイル基、モノー又はジーC1-6アルキルー カルバモイル基、モノー又はジーC6-14アリールーカルバモイル基、スルファモイル 基、モノー又はジーC1-6アルキルースルファモイル基及びモノー又はジーС6-14 アリールースルファモイル基から選ばれる1ないし3個の置換基で置換されていてもよい C₆₋₁₄ アリール基; (26) 複素環オキシ基; (27) スルファモイル基; (28) モノー 又はジーC1-6アルキルースルファモイル基; (29) モノー又はジーC6-14アリー ルースルファモイル基; (30) ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シア ノ基、ハロゲン化されていてもよいC1-6アルキル基、モノー又はジーC1-6アルキ ルーアミノ基、С6-14アリール基、モノー又はジーС6-14アリールーアミノ基、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、 C_{1-6} アルキルスルフィニル基、C₁₋₆アルキルスルホニル基、エステル化されていてもよい カルボキシル基、カルバモイル基、チオカルバモイル基、モノー又はジーС1-6アルキ ルーカルバモイル基、モノー又はジーC6-14アリールーカルバモイル基、スルファモ イル基、モノー又はジーC1-6アルキルースルファモイル基及びモノー又はジーС6-14アリールースルファモイル基から選ばれる1ないし3個の置換基で置換されていても よいС7-16アラルキルオキシ基などから選ばれる1ないし5個の置換基をそれぞれ置 換可能な位置に有していてもよい、「C1-6アルキル基」、「C2-6アルケニル基」 、「C₂₋₆アルキニル基」、「C₁₋₁₀アルコキシ基(C₁₋₆アルコキシ基を含む) 」および「C 1 - 1 0 アルキルチオ基(C 1 - 6 アルキルチオ基を含む)」が挙げられ る。

[0070]

本明細書中の「置換されていてもよいC₃₋₈シクロアルキル基」、「置換されていて もよいCi-14アリール基」、「置換されていてもよいCi-16アラルキル基」、「 置換されていてもよい複素環基」、「置換されていてもよい複素環オキシ基」、「置換さ れていてもよいC6-14アリールオキシ基」、「置換されていてもよいC7-16アラ ルキルオキシ基」、「置換されていてもよい複素環チオ基」、「置換されていてもよいC 6-14 アリールチオ基」および「置換されていてもよいC7-16 アラルキルチオ基」 としては、例えば(1)ハロゲン原子;(2)ヒドロキシ基;(3)アミノ基;(4)ニトロ 基; (5) シアノ基; (6) 置換されていてもよい C_{1-6} アルキル基; (7) 置換されて いてもよい C2-6 アルケニル基; (8) 置換されていてもよい C2-6 アルキニル基; (9) ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン化されて いてもよいC1 - 6 アルキル基、モノー又はジーC1 - 6 アルキルーアミノ基、С6 - 1 4 アリール基、モノー又はジーC6-14 アリールーアミノ基、C3-8 シクロアルキル 基、C₁₋₆アルコキシ基、C₁₋₆アルキルチオ基、C₁₋₆アルキルスルフィニル基 、C₁₋₆アルキルスルホニル基、エステル化されていてもよいカルボキシル基、カルバ モイル基、チオカルバモイル基、モノー又はジーC1-6アルキルーカルバモイル基、モ ノー又はジーC6-14アリールーカルバモイル基、スルファモイル基、モノー又はジー С1-6 アルキルースルファモイル基及びモノー又はジーС6-14 アリールースルファ モイル基から選ばれる1ないし3個の置換基で置換されていてもよいС6-14アリール 基; (10) ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン化さ れていてもよいС1-6アルキル基、モノー又はジーС1-6アルキルーアミノ基、С6 - 1 4 アリール基、モノー又はジーC6-14 アリールーアミノ基、C3-8 シクロアル キル基、C1-6アルコキシ基、C1-6アルキルチオ基、C1-6アルキルスルフィニ ル基、C1-6アルキルスルホニル基、エステル化されていてもよいカルボキシル基、カ ルバモイル基、チオカルバモイル基、モノー又はジーC1-6アルキルーカルバモイル基 、モノー又はジーC6-14アリールーカルバモイル基、スルファモイル基、モノー又は ジーC1-6アルキルースルファモイル基及びモノー又はジーC6-14アリールースル ファモイル基から選ばれる1ないし3個の置換基で置換されていてもよいС6-14アリ ールオキシ基;(11)ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハ ロゲン化されていてもよいС1-6アルキル基、モノー又はジーС1-6アルキルーアミ ノ基、C6-14アリール基、モノー又はジーC6-14アリールーアミノ基、C3-8 シクロアルキル基、C₁₋₆アルコキシ基、C₁₋₆アルキルチオ基、C₁₋₆アルキル スルフィニル基、C1-6アルキルスルホニル基、エステル化されていてもよいカルボキ シル基、カルバモイル基、チオカルバモイル基、モノー又はジーС1-6アルキルーカル バモイル基、モノー又はジーC6-14アリールーカルバモイル基、スルファモイル基、 モノー又はジーC1-6アルキルースルファモイル基及びモノー又はジーC6-14アリ ールースルファモイル基から選ばれる1ないし3個の置換基で置換されていてもよいC7 - 1 6 アラルキルオキシ基; (12) ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、 シアノ基、ハロゲン化されていてもよいC1-6アルキル基、モノー又はジーC1-6ア ルキルーアミノ基、С6-14アリール基、モノー又はジーС6-14アリールーアミノ 基、С3-8シクロアルキル基、С1-6アルコキシ基、С1-6アルキルチオ基、С1 - 6 アルキルスルフィニル基、C1 - 6 アルキルスルホニル基、エステル化されていても よいカルボキシル基、カルバモイル基、チオカルバモイル基、モノー又はジーС1-6ア ルキルーカルバモイル基、モノー又はジーС6-14アリールーカルバモイル基、スルフ ァモイル基、モノー又はジーC1-6アルキルースルファモイル基及びモノー又はジーC 6-14アリールースルファモイル基から選ばれる1ないし3個の置換基で置換されてい てもよい複素環基(好ましくはフリル、ピリジル、チエニル、ピラゾリル、チアゾリル、 オキサゾリル);(13)モノー又はジー C_1 - 6 アルキルーアミノ基;(14)モノー又は ジーC6-14アリールーアミノ基; (15) モノー又はジーC7-16アラルキルーアミ ノ基; (16) N-C₁₋₆ アルキル-N-C₆₋₁₄ アリール-アミノ基; (17) N-C 1-6アルキル-N-C7-16アラルキル-アミノ基; (18) C3-8シクロアルキル 基; (19) 置換されていてもよいC₁₋₆ アルコキシ基; (20) C₁₋₆ アルキルチオ基 ; (21) C₁₋₆ アルキルスルフィニル基; (22) C₁₋₆ アルキルスルホニル基; (23) エステル化されていてもよいカルボキシル基; (24) カルバモイル基; (25) チオカル バモイル基; (26) モノー又はジーC1-6 アルキルーカルバモイル基; (27) モノー又 はジーC6-14アリールーカルバモイル基; (28) モノー又はジー5ないし7員複素環 - カルバモイル基; (29) スルファモイル基; (30) モノー又はジーC₁₋₆ アルキルー スルファモイル基; (31) モノー又はジーC6-14 アリールースルファモイル基などか ら選ばれる1ないし5個の置換基をそれぞれ置換可能な位置に有していてもよい、「C3 - 8 シクロアルキル基」、「C 6 - 1 4 アリール基」、「C 7 - 1 6 アラルキル基」、「 複素環基」、「複素環オキシ基」、「С6-14 アリールオキシ基」、「С7-16 アラ ルキルオキシ基」、「複素環チオ基」、「C 6 - 1 4 アリールチオ基」および「C 7 - 1 6 アラルキルチオ基」が挙げられる。

[0071]

本明細書中の「置換されていてもよいアミノ基」としては、特に断りのない限り、(1)置換されていてもよい C_{1-6} アルキル基;(2)置換されていてもよい C_{2-6} アル ケニル基; (3) 置換されていてもよいC2-6 アルキニル基; (4) 置換されていてもよ いС3-8シクロアルキル基; (5) 置換されていてもよいС6-14アリール基; (6) 置換されていてもよい C_{1-6} アルコキシ基; (7) 置換されていてもよいアシル基; (8) 置換されていてもよい複素環基(好ましくはフリル、ピリジル、チエニル、ピラゾリル 、チアゾリル、オキサゾリル);(9)スルファモイル基;(10)モノ-又はジ-C₁₋ 6 アルキルースルファモイル基;(11)モノー又はジーC6-14 アリールースルファモ イル基などから選ばれる1または2個の置換基で置換されていてもよいアミノ基が挙げら れる。また、「置換されていてもよいアミノ基」が2個の置換基で置換されたアミノ基で ある場合、これらの置換基は、隣接する窒素原子とともに、含窒素複素環を形成していて もよい。該「含窒素複素環」としては、例えば、環構成原子として炭素原子以外に少なく

とも1個の窒素原子を含み、さらに酸素原子、硫黄原子及び窒素原子から選ばれる1ない し2個のヘテロ原子を含有していてもよい5ないし7員の含窒素複素環が挙げられる。該 含窒素複素環の好適な例としては、ピロリジン、イミダゾリジン、ピラゾリジン、ピペリ ジン、ピペラジン、モルホリン、チオモルホリン、チアゾリジン、オキサゾリジンなどが 挙げられる。

[0072]

本明細書中の「置換されていてもよいアシル基」としては、特に断りのない限り、式: $-COR^{8}$, $-CO-OR^{8}$, $-SO_{2}R^{8}$, $-SOR^{8}$, $-PO(OR^{8})$ (OR⁹) 、-CO-NR^{8 a} R^{9 a} 及び-CS-NR^{8 a} R^{9 a} [式中、R⁸およびR⁹は、同一 または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよ い複素環基を示し、 R^{8a} および R^{9a} は、同一または異なって、水素原子、置換されて いてもよい炭化水素基または置換されていてもよい複素環基を示すか、R^{8 a} およびR⁹ a は、隣接する窒素原子とともに、置換されていてもよい含窒素複素環を形成していても よい]で表される基などが挙げられる。

[0073]

R⁸ a およびR⁹ a が隣接する窒素原子とともに形成する「置換されていてもよい含窒 素複素環」における「含窒素複素環」としては、例えば、環構成原子として炭素原子以外 に少なくとも1個の窒素原子を含み、さらに酸素原子、硫黄原子及び窒素原子から選ばれ る1ないし2個のヘテロ原子を含有していてもよい5ないし7員の含窒素複素環が挙げら れる。該含窒素複素環の好適な例としては、ピロリジン、イミダゾリジン、ピラゾリジン 、ピペリジン、ピペラジン、モルホリン、チオモルホリン、チアゾリジン、オキサゾリジ ンなどが挙げられる。

[0074]

該含窒素複素環は、置換可能な位置に1ないし2個の置換基を有していてもよい。この ような置換基としては、ヒドロキシ基、ハロゲン化されていてもよいС1-6アルキル基 、С6-14 アリール基、С7-16 アラルキル基などが挙げられる。

[0075]

「置換されていてもよいアシル基」の好適な例としては、ホルミル基、カルボキシル基 、カルバモイル基、C1-6アルキルーカルボニル基(例:アセチル、イソブタノイル、 イソペンタノイル)、С1-6アルコキシーカルボニル基(例:メトキシカルボニル、エ トキシカルボニル、プロポキシカルボニル、tertーブトキシカルボニル)、C3-8シク ロアルキルーカルボニル基(例:シクロペンチルカルボニル、シクロヘキシルカルボニル)、С6-14アリールーカルボニル基(例:ベンゾイル、1-ナフトイル、2-ナフト イル)、C7-16アラルキルーカルボニル基(例:フェニルアセチル、2-フェニルプ ロパノイル)、С6-14アリールオキシーカルボニル基(例:フェニルオキシカルボニ ル、ナフチルオキシカルボニル)、С 7 - 1 6 アラルキルオキシーカルボニル基(例:ベ ンジルオキシカルボニル、フェネチルオキシカルボニル)、モノー又はジーС1-6アル キルカルバモイル基、モノー又はジーC6-14アリールーカルバモイル基、С3-8シ クロアルキルーカルバモイル基(例:シクロプロピルカルバモイル)、C₇₋₁₆アラル キルーカルバモイル基 (例:ベンジルカルバモイル)、C1-6アルキルスルホニル基、 C6-14アリールスルホニル基、含窒素複素環ーカルボニル基(例:ピロリジニルカル ボニル、ピペリジノカルボニル)、С1-6アルキルスルフィニル基、С6-14アリー ルスルフィニル基、チオカルバモイル基、スルファモイル基、モノー又はジーC1-6ア ルキルースルファモイル基、モノー又はジーC6-14アリールースルファモイル基、モ ノー又はジーC7-16アラルキルースルファモイル基(例:ベンジルスルファモイル) などが挙げられる。

[0076]

本明細書中の「置換されていてもよいC₁₋₄ アルキレン基」における「C₁₋₄ アル キレン基」は、直鎖状または分岐鎖状であり、例えばメチレン、エチレン、1ーメチルエ チレン、プロピレン、1-エチルエチレン、1-メチルプロピレン、2-メチルプロピレ ン、ブチレンなどが挙げられる。該 C_{1-4} アルキレン基は、置換可能な位置に、1 ないし3個の置換基を有していてもよい。このような置換基としては、例えばハロゲン原子、ヒドロキシ基、アミノ基、モノー又はジー C_{1-6} アルキルーアミノ基、モノー又はジー C_{6-14} アリールーアミノ基、モノー又はジー C_{7-16} アラルキルーアミノ基、ニトロ基、シアノ基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基などが挙げられる。

[0077]

本明細書中の「置換されていてもよい C_{1-3} アルキレン基」における「 C_{1-3} アルキレン基」としては、前記「 C_{1-4} アルキレン基」のうち、炭素数が1 ないし3 のものが挙げられる。該 C_{1-3} アルキレン基は、置換可能な位置に、1 ないし3 個の置換基を有していてもよい。このような置換基としては、上記 C_{1-4} アルキレン基の置換基として例示したものが挙げられる。

[0078]

本発明の式(I)で表わされる化合物(以下、化合物(I)と略する場合がある)およびその塩について説明する。

- 式(I)中の R^2 はハロゲン原子、置換されていてもよい炭化水素基、置換されていてもよいヒドロキシ基、置換されていてもよいアミノ基、置換されていてもよいメルカプト基または置換されていてもよい複素環基を示し、好ましくは置換されていてもよい炭化水素基または置換されていてもよいヒドロキシ基を示す。
- 式(I)中の R^1 及び R^3 は同一(R^1 及び R^3 が共に水素原子の場合を除く)または異なって、それぞれ水素原子、ハロゲン原子、置換されていてもよい炭化水素基または置換されていてもよいヒドロキシ基を示し、好ましくは水素原子、ハロゲン原子または C_1 6 アルキル基を示し、より好ましくはハロゲン原子または C_1 6 アルキル基を示す。
- 式(I)中の R^4 および R^5 は同一または異なって、それぞれ水素原子、ハロゲン原子、置換されていてもよい炭化水素基または置換されていてもよいヒドロキシ基を示し、好ましくは水素原子またはハロゲン原子を示す。
- 式(I)中のEは結合手、置換されていてもよい C_{1-4} アルキレン基、 $-W^1-O-W^2-N^1-S-W^2-E$ は同一または異なって、それぞれ結合手または置換されていてもよい C_{1-3} アルキレン基を、R は水素原子、置換されていてもよいアシル基または置換されていてもよい炭化水素基を示す)を示し、好ましくは結合手を示す。

[0079]

式(I)中の環 S^1 はハロゲン原子、置換されていてもよい炭化水素基、置換されていてもよいヒドロキシ基および置換されていてもよいアミノ基から選ばれる置換基をさらに有していてもよいベンゼン環を示し、好ましくは C_1-6 アルコキシ基をさらに有していてもよいベンゼン環を示す。これら置換基の数は、例えば1または2個である。

式(I)中のRは置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基を示し、好ましくは置換されていてもよいヒドロキシ基を示し、さらに好ましくはヒドロキシ基またはC1-6アルコキシ基を示す。なかでも、ヒドロキシ基が好ましい。

[0800]

「化合物 (I) の好適な例」としては、以下の化合物が挙げられる。 R^2 が (1) ハロゲン原子、

- (2) ハロゲン原子で置換されていてもよい C_{6-14} アリールオキシ基で置換されていてもよい C_{1-6} アルキル基、
- (3) ヒドロキシ基、
- (4) (a) ハロゲン化されていてもよい C_{1-6} アルキル基で置換されていてもよい、炭素原子以外に窒素原子、硫黄原子及び酸素原子から選ばれる1又は2種、1ないし4個のヘテロ原子を含む5ないし7 員複素環基(好ましくは、ピリジル、チアゾリル)、(b) C_{3-8} シクロアルキル基)、(c)ヒドロキシ基、(d)ハロゲン化されていてもよい C_{1-6} アルコキシ基、(e)アミノ基および(f)モノー又はジー C_{1-6} アルキルーアミノ基から選ばれる1ないし3の置換基で置換されていてもよい C_{1-10} アルコキ

シ基、

- (5) 複素環オキシ基(好ましくはテトラヒドロピラニルオキシ)、または
- (6) C₇₋₁₆ アラルキルオキシ基;

 R^{1} 及び R^{3} が同一(R^{1} 及び R^{3} が共に水素原子の場合を除く)または異なって、それ ぞれ水素原子、ハロゲン原子またはC1-6アルキル基;

 R^4 および R^5 が同一または異なって、それぞれ水素原子またはハロゲン原子;

Eが結合手;

環 S^1 が C_{1-6} アルコキシ基をさらに有していてもよいベンゼン環;かつ Rがヒドロキシ基またはC₁₋₆ アルコキシ基(好ましくはヒドロキシ基)である化合物

[0081]

本発明で用いられる化合物の塩としては、例えば金属塩、アンモニウム塩、有機塩基と の塩、無機酸との塩、有機酸との塩、塩基性又は酸性アミノ酸との塩等が挙げられる。金 属塩の好適な例としては、例えばナトリウム塩、カリウム塩等のアルカリ金属塩;カルシ ウム塩、マグネシウム塩、バリウム塩等のアルカリ土類金属塩;アルミニウム塩等が挙げ られる。有機塩基との塩の好適な例としては、例えばトリメチルアミン、トリエチルアミ ン、ピリジン、ピコリン、2,6ールチジン、エタノールアミン、ジエタノールアミン、 トリエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、N, N'ージ ベンジルエチレンジアミン等との塩が挙げられる。無機酸との塩の好適な例としては、例 えば塩酸、臭化水素酸、硝酸、硫酸、リン酸等との塩が挙げられる。有機酸との塩の好適 な例としては、例えばギ酸、酢酸、トリフルオロ酢酸、フタル酸、フマル酸、シュウ酸、 酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスル ホン酸、pートルエンスルホン酸等との塩が挙げられる。塩基性アミノ酸との塩の好適な 例としては、例えばアルギニン、リジン、オルニチン等との塩が挙げられ、酸性アミノ酸 との塩の好適な例としては、例えばアスパラギン酸、グルタミン酸等との塩が挙げられる

[0082]

このうち、薬学的に許容し得る塩が好ましい。例えば、化合物内に酸性官能基を有する 場合にはアルカリ金属塩(例:ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(例 :カルシウム塩、マグネシウム塩、バリウム塩等)等の金属塩、アンモニウム塩等が、ま た、化合物内に塩基性官能基を有する場合には、例えば塩酸、臭化水素酸、硝酸、硫酸、 リン酸等の無機酸との塩;又は酢酸、フタル酸、フマル酸、シュウ酸、酒石酸、マレイン 酸、クエン酸、コハク酸、メタンスルホン酸、p-トルエンスルホン酸等の有機酸との塩 が好ましい。

[0083]

化合物(I)およびその塩のプロドラッグは、生体内における生理条件下で酵素や胃酸 等による反応により化合物(I)に変換する化合物、すなわち酵素的に酸化、還元、加水 分解等を起こして化合物(Ⅰ)に変化する化合物、胃酸等により加水分解等を起こして化 合物(I)に変化する化合物をいう。

[0084]

化合物(I)のプロドラッグとしては、化合物(I)のアミノ基がアシル化、アルキル 化またはリン酸化された化合物(例えば、化合物(I)のアミノ基がエイコサノイル化、 アラニル化、ペンチルアミノカルボニル化、(5-メチルー2-オキソー1,3-ジオキ ソレンー4ーイル)メトキシカルボニル化、テトラヒドロフラニル化、ピロリジルメチル 化、ピバロイルオキシメチル化、tert-ブチル化された化合物等);化合物(I)の水酸 基がアシル化、アルキル化、リン酸化またはホウ酸化された化合物(例えば、化合物(I)の水酸基がアセチル化、パルミトイル化、プロパノイル化、ピバロイル化、スクシニル 化、フマリル化、アラニル化、ジメチルアミノメチルカルボニル化された化合物等);化 合物(I)のカルボキシ基がエステル化またはアミド化された化合物(例えば、化合物(I) のカルボキシ基がC1-6アルキルエステル化、フェニルエステル化、カルボキシメ チルエステル化、ジメチルアミノメチルエステル化、ピバロイルオキシメチルエステル化、エトキシカルボニルオキシエチルエステル化、フタリジルエステル化、(5-メチルー2ーオキソー1,3-ジオキソレンー4-イル)メチルエステル化、シクロヘキシルオキシカルボニルエチルエステル化、メチルアミド化された化合物等)等が挙げられ、なかでも化合物(I)のカルボキシ基がメチル、エチル、tertーブチルなどの C_1-6 アルキル基でエステル化された化合物が好ましい。これらの化合物は自体公知の方法によって化合物(I)から製造することができる。

[0085]

また、化合物 (I) のプロドラッグは、広川書店1990年刊「医薬品の開発」第7巻 分子設計163頁から198頁に記載されているような生理的条件で化合物 (I) に変化 するものであってもよい。

[0086]

以下に、化合物(I)またはその塩の製造法を説明する。

以下の反応式における略図中の化合物の各記号は、特に記載のないかぎり前記と同意義を示す。反応式に記載された各化合物は、反応を阻害しないのであれば、塩を形成していてもよく、かかる塩としては、化合物(I)の塩と同様なものが挙げられる。

化合物 (I) は、例えば、以下の反応式1-4に示す方法により製造することができる

Eが E^1 (E^1 は結合手、置換されていてもよい C_{1-4} アルキレン基、 $-W^1-N$ (R^6)-(W^1 および R^6 は前記と同義を示す)または-O-を示す)である化合物(I)(下式(Ia')および(Ia)で表わされる化合物(それぞれ化合物(Ia')、化合物(Ia)と略す))は、例えば以下の反応式1で示される方法またはこれに準じた方法に従って製造することができる。

【0087】 【化10】

反応式1

$$R^{2} \xrightarrow{R^{1}} E^{1} \xrightarrow{S^{1}} O \xrightarrow{R^{4}} COR'$$

$$R^{2} \xrightarrow{R^{3}} E^{1} \xrightarrow{S^{1}} O \xrightarrow{R^{4}} COOH$$
(la')
(la)

[0088]

[式中、R,は置換されていてもよい C_{1-6} アルコキシ基を、L は脱離基もしくはヒドロキシ基を、L,は脱離基を、Mは金属(例えば、カリウム、ナトリウム、リチウム、マグネシウム、銅、水銀、亜鉛、タリウム、ホウ素、スズなどを示し、これらは錯体化して

いてもよい)を、 G^1 は結合手または置換されていてもよい C_{1-4} アルキレン基(Eで 示される置換されていてもよいС1-4アルキレン基と同義)を、他の記号は前記と同義 を示す〕

[0089]

LおよびL'で示される「脱離基」としては、例えばハロゲン原子(例:フッ素、塩素 、臭素、ヨウ素)、ハロゲン化されていてもよいC1-6アルキルスルホニルオキシ基(例:メタンスルホニルオキシ、エタンスルホニルオキシ、トリクロロメタンスルホニルオ キシ、トリフルオロメタンスルホニルオキシ)、置換基を有していてもよいС6-10ア リールスルホニルオキシ基(例えば、C₁₋₆アルキル基(例:メチル、エチル)、C₁ - 6 アルコキシ基(例:メトキシ、エトキシ)およびニトロから選ばれる置換基を 1 ない し3個有していてもよいС6-10アリールスルホニルオキシ基(例:フェニルスルホニ ルオキシ、ナフチルスルホニルオキシ)など;具体例としては、フェニルスルホニルオキ シ基、m-ニトロフェニルスルホニルオキシ基、p-トルエンスルホニルオキシ基など) などが挙げられる。

[0090]

式 (II) 、 (III) 、 (V-1) 、 (V-2) および (V-3) で表わされる化合物 (順に、化合 物 (II) 、 (III) 、 (V-1) 、 (V-2) および (V-3) と略す) は市販品として容易に入手 でき、また、自体公知の方法またはこれに準じた方法に従って製造することもできる。

[0091]

式 (IV) で表わされる化合物 (化合物 (IV) と略す) は、化合物 (II) と化合物 (III)とを反応させることにより製造することができる。

(i) Lがヒドロキシ基の場合、化合物(IV)は、化合物(II)と化合物(III)とを光 延反応(シンセシス(Synthesis)、1981年、1-27頁)に付すことにより製造す ることができる。該反応では、化合物(II)と化合物(III)とを、アゾジカルボン酸ジ エチル、アゾジカルボン酸ジイソプロピル、1,1'-(アゾジカルボニル)ジピペリジン などのアゾジカルボキシラート類およびトリフェニルホスフィン、トリブチルホスフィン などのホスフィン類の存在下で反応させる。

[0092]

本反応は反応に不活性な溶媒を用いて行うのが有利である。このような溶媒としては反 応が進行する限り特に限定されないが、例えばジエチルエーテル、ジイソプロピルエーテ ル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキ シエタンなどのエーテル類;ベンゼン、トルエンなどの芳香族炭化水素類;シクロヘキサ ン、ヘキサンなどの飽和炭化水素類;N, N-ジメチルホルムアミド、N, N-ジメチル アセトアミド、ヘキサメチルホスホリックトリアミドなどのアミド類;ジクロロメタン、 クロロホルム、四塩化炭素、1,2-ジクロロエタンなどのハロゲン化炭化水素類;アセ トニトリル、プロピオニトリルなどのニトリル類;アセトン、エチルメチルケトンなどの ケトン類;ジメチルスルホキシドなどのスルホキシド類などの溶媒あるいはそれらの混合 溶媒などが好ましい。

[0093]

反応時間は通常約5分~約48時間、好ましくは約10分~約24時間である。反応温 度は通常約−20~約200℃、好ましくは約0~約100℃である。

化合物 (III) の使用量は、化合物 (II) 1モルに対し、約1~約5モル、好ましくは 約1~約2モルである。

該「アゾジカルボキシラート類」および「ホスフィン類」の使用量は、それぞれ化合物 (II) 1 モルに対し、約1~約5モル、好ましくは約1~約2モルである。

[0094]

(i i) Lが脱離基の場合、化合物 (IV) は、化合物 (II) と化合物 (III) とを塩基の 存在下に反応させることにより製造できる。

該塩基としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどの水 酸化アルカリ金属;水酸化バリウムなどの水酸化アルカリ土類金属;炭酸ナトリウム、炭 酸カリウム、炭酸セシウムなどの炭酸アルカリ金属;炭酸水素ナトリウムなどの炭酸水素 アルカリ金属;酢酸ナトリウム、酢酸アンモニウムなどの酢酸塩;ピリジン、ルチジンな どの芳香族アミン類;トリエチルアミン、トリプロピルアミン、トリブチルアミン、Nー エチルジイソプロピルアミン、シクロヘキシルジメチルアミン、4 ージメチルアミノピリ ジン、N, N-ジメチルアニリン、N-メチルピペリジン、N-メチルピロリジン、N-メチルモルホリンなどの第3級アミン類;水素化ナトリウム、水素化カリウムなどのアル カリ金属水素化物;ナトリウムアミド、リチウムジイソプロピルアミド、リチウムヘキサ メチルジシラジドなどの金属アミド類;ナトリウムメトキシド、ナトリウムエトキシド、 ナトリウム tert-ブトキシド、カリウム tert-ブトキシドなどの炭素数1ないし6のアル カリ金属アルコキシドなどが挙げられる。

[0095]

本反応は反応に不活性な溶媒を用いて行うのが有利である。このような溶媒としては反 応が進行する限り特に限定されないが、例えばジエチルエーテル、ジイソプロピルエーテ ル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキ シエタンなどのエーテル類;ベンゼン、トルエンなどの芳香族炭化水素類;シクロヘキサ ン、ヘキサンなどの飽和炭化水素類;N,Nージメチルホルムアミド、N,Nージメチルア セトアミド、ヘキサメチルホスホリックトリアミドなどのアミド類;ジクロロメタン、ク ロロホルム、四塩化炭素、1,2-ジクロロエタンなどのハロゲン化炭化水素類;アセト ニトリル、プロピオニトリルなどのニトリル類;酢酸メチル、酢酸エチル、酢酸ブチルな どのエステル類;ジメチルスルホキシドなどのスルホキシド類;水などの溶媒あるいはこ れらの混合溶媒などが好ましい。

化合物 (III) の使用量は、、化合物 (II) 1 モルに対し、約0. $8\sim1$ 0 モル、好ま しくは約 $0.9\sim2$ モルである。また、塩基の使用量は、化合物(II) 1 モルに対し、約 1~10モル、好ましくは約1~3モルである。

反応時間は通常約10分~約12時間、好ましくは約20分~約6時間である。反応温 度は通常約-50~約150℃、好ましくは約-20~約100℃である。

[0096]

化合物 (Ia') は、化合物 (IV) と、化合物 (V-1) もしくは化合物 (V-2) もしくは化 合物 (V-3) (特に限定しない限り、これらを化合物 (V) と総称する)とを反応させるこ とにより製造することができる。

化合物(IV)と化合物(V)との反応は通常、塩基の存在下に行う。当該塩基としては 、例えば水素化ナトリウム、水素化カリウムなどの水素化アルカリ金属;例えば水酸化リ チウム、水酸化ナトリウム、水酸化カリウムなどの水酸化アルカリ金属;水酸化マグネシ ウム、水酸化カルシウムなどの水酸化アルカリ土類金属;炭酸ナトリウム、炭酸カリウム などの炭酸アルカリ金属;例えば炭酸水素ナトリウム、炭酸水素カリウムなどの炭酸水素 アルカリ金属;例えばナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド等の炭素数1ないし6のアルカリ金属アルコキシド;例えばトリメチルアミン 、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、ピコリン、N-メチルピ ロリジン、N-メチルモルホリン、1, 5-ジアザビシクロ[4.3.0]-5-ノネン、 1, 4 - ジアザビシクロ [2.2.2] オクタン、1, 8 - ジアザビシクロ [5.4.0] -7-ウンデセンなどの有機塩基類;メチルリチウム、n-ブチルリチウム、sec-ブチル リチウム、tertーブチルリチウムなどの有機リチウム類;リチウムジイソプロピルアミド 等のリチウムアミド類等が挙げられる。

[0097]

化合物(IV)と化合物(V)との反応は反応に不活性な溶媒を用いて行うのが有利であ る。このような溶媒としては反応が進行する限り特に限定されないが、例えばメタノール 、エタノール、プロパノール、イソプロパノール、ブタノール、tertーブタノール等のア ルコール類;例えばジオキサン、テトラヒドロフラン、ジエチルエーテル、tertーブチル メチルエーテル、ジイソプロピルエーテル、エチレングリコールージメチルエーテル等の エーテル類;例えばギ酸エチル、酢酸エチル、酢酸nーブチル等のエステル類;例えばジ

クロロメタン、クロロホルム、四塩化炭素、トリクロロエチレン等のハロゲン化炭化水素 類;例えばn-ヘキサン、ベンゼン、トルエン等の炭化水素類;例えばホルムアミド、N ,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;例えばアセト ニトリル、プロピオニトリル等のニトリル類等;ジメチルスルホキシドなどのスルホキシ ド類;スルホラン;ヘキサメチルホスホルアミド;水などの溶媒あるいはこれらの混合溶 媒などが好ましい。

[0098]

化合物 (IV) と化合物 (V) との反応は、一般に金属触媒を用いて促進させることがで きる。該金属触媒としては、さまざまな配位子を有する金属複合体が用いられ、例えばパ ラジウム化合物〔例:パラジウム(II) アセテート、テトラキス(トリフェニルホスフィン)パラジウム(0)、塩化ビス(トリフェニルホスフィン)パラジウム(II)、ジクロロビス(ト リエチルホスフィン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウムー2 , 2 ' - ビス(ジフェニルホスフィノ) - 1 , 1 ' - ビナフチル、酢酸パラジウム(II)と 11'ービス(ジフェニルホスフィノ)フェロセンの複合体など〕、ニッケル化合物〔例: テトラキス(トリフェニルホスフィン)ニッケル(0)、塩化ビス(トリエチルホスフィン)ニ ッケル(II)、塩化ビス(トリフェニルホスフィン)ニッケル(II)など〕、ロジウム化合物〔 例:塩化トリス(トリフェニルホスフィン)ロジウム(III)など]、コバルト化合物、銅化 合物 [例:酸化銅、塩化銅(II)など]、白金化合物などが挙げられる。なかでも、パラジ ウム化合物、ニッケル化合物および銅化合物が好ましい。これらの金属触媒の使用量は、 化合物(IV)1モルに対し、約0.00001~5モル、好ましくは約0.0001~1 モルである。本反応で酸素に不安定な金属触媒を用いる場合には、不活性なガス(例えば アルゴンガスもしくは窒素ガス)気流中で反応を行うことが好ましい。

[0099]

化合物 (V) の使用量は、化合物 (IV) 1 モルに対し、約0. $8\sim1$ 0 モル、好ましく は約0.9~2モルである。また、塩基の使用量は、化合物 (IV) 1モルに対し、約1~ 約20モル、好ましくは約1~約5モルである。

反応温度は約-10 \mathbb{C} ~約250 \mathbb{C} 、好ましくは約0 \mathbb{C} ~約150 \mathbb{C} である。

反応時間は化合物(IV)、化合物(V)、金属触媒、塩基又は溶媒の種類、反応温度等 により異なるが、通常約1分間~約200時間、好ましくは約5分間~約100時間であ る。

[0100]

化合物 (Ia) は、化合物 (Ia') を加水分解反応に付すことにより製造される。該加水 分解反応は、酸あるいは塩基を用い、常法にしたがって行われる。

酸としては、例えば塩酸、硫酸などの鉱酸類;三塩化ホウ素、三臭化ホウ素などのルイ ス酸類;トリフルオロ酢酸、pートルエンスルホン酸などの有機酸類などが挙げられる。 ここで、ルイス酸は、チオールまたはスルフィドと併用することもできる。

[0101]

塩基としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化バリウムなどの水酸 化アルカリ金属;炭酸ナトリウム、炭酸カリウムなどの炭酸アルカリ金属;ナトリウムメ トキシド、ナトリウムエトキシド、カリウム tert-ブトキシドなどの炭素数1ないし6の アルカリ金属アルコキシド;トリエチルアミン、イミダゾール、ホルムアミジンなどの有 機塩基類などが挙げられる。これら酸および塩基の使用量は、化合物(Ia') 1 モルに対 し、約 $0.5 \sim 10$ モル、好ましくは約 $0.5 \sim 6$ モルである。

$[0\ 1\ 0\ 2\]$

加水分解反応は、無溶媒で行うか、反応に不活性な溶媒を用いて行われる。このような 溶媒としては反応が進行する限り特に限定されないが、例えばメタノール、エタノール、 プロパノールなどのアルコール類;ベンゼン、トルエンなどの芳香族炭化水素類;シクロ ヘキサン、ヘキサンなどの飽和炭化水素類;ギ酸、酢酸などの有機酸類;テトラヒドロフ ラン、ジオキサン、1,2-ジメトキシエタンなどのエーテル類;N,N-ジメチルホル ムアミド、N, N-ジメチルアセトアミドなどのアミド類;ジクロロメタン、クロロホル ム、四塩化炭素、1,2-ジクロロエタンなどのハロゲン化炭化水素類;アセトニトリル 、プロピオニトリルなどのニトリル類;アセトン、メチルエチルケトンなどのケトン類; ジメチルスルホキシドなどのスルホキシド類;水などの溶媒あるいはそれらの混合溶媒な どが好ましい。

反応時間は通常10分~60時間、好ましくは10分~12時間である。反応温度は通 常-10~200℃、好ましくは0~120℃である。

[0103]

Eが E^2 (E^2 は G^1 (G^1 は前記と同義を示す)、 $-N(R^6)-W^2-(R^6$ および W^2 は前記と同義を示す)または-O-を示す)である化合物(I)(下式(Ib')およ び (Ib) で表わされる化合物 (それぞれ化合物 (Ib')、化合物 (Ib) と略す)) は、例 えば以下の反応式2で示される方法またはこれに準じた方法に従って製造することができ る。

式 (VII) 、 (VIII-1) 、 (VIII-2) および (VIII-3) で表わされる化合物 (順に、化 合物 (VII) 、化合物 (VIII-1) 、化合物 (VIII-2) および化合物 (VIII-3) と略す) は 市販品として容易に入手でき、また、自体公知の方法またはこれらに準じた方法に従って 製造することもできる。

[0104] 【化11】

反応式 2
$$R^{-1} = R^{-1} + R^{$$

[0105]

(lb')

[式中、 R^7 は置換されていてもよい C_{1-4} アルコキシカルボニル基もしくはホルミル 基を示し、他の記号は前記と同義を示す]

 R^7 で示される「置換されていてもよい C_{1-4} アルコキシカルボニル基」としては、 フェニル基、ハロゲン原子、С1-6アルコキシ基などの置換基を1ないし3個有してい てもよいC1-4 アルコキシカルボニル基 (例:メトキシカルボニル、エトキシカルボニ ル、ベンジルオキシカルボニル、2-(エトキシ)エトキシカルボニル) などが挙げられる

[0106]

式(IX)で表わされる化合物(化合物(IX)と略す)は、反応式1における化合物(IV 出証特2005-3006399

)と化合物(V)との反応と同様にして、化合物(VII)と、化合物(VIII-1)もしくは化 合物 (VIII-2) もしくは化合物 (VIII-3) (特に限定しない限り、これらを化合物 (VIII)と総称する)とを反応させることにより製造することができる。

[0107]

式(X)で表わされる化合物(化合物(X)と略す)は、化合物(IX)を還元反応に付す ことによって製造することができる。

還元反応は、還元剤を用い、常法にしたがって行われる。該還元剤としては、例えば水 素化アルミニウム、水素化ジイソブチルアルミニウム、水素化トリブチルすずなどの金属 水素化物;水素化リチウムアルミニウム、水素化ホウ素ナトリウムなどの金属水素錯化合 物;ボランテトラヒドロフラン錯体、ボランジメチルスルフィド錯体などのボラン錯体; テキシルボラン、ジシアミルボランなどのアルキルボラン類;ジボラン;亜鉛、アルミニ ウム、すず、鉄などの金属類;ナトリウム、リチウムなどのアルカリ金属/液体アンモニ ア(バーチ還元)などが挙げられる。還元剤の使用量は、還元剤の種類によって適宜決定 される。例えば金属水素化物または金属水素錯化合物の使用量は、化合物(IX) 1モルに 対し、それぞれ約0.25~約10モル、好ましくは約0.5~約5モルであり、ボラン 錯体、アルキルボラン類またはジボランの使用量は、化合物 (IX) 1モルに対し、それぞ れ約1~約10モル、好ましくは約1~約5モルであり、金属類(バーチ還元で使用する アルカリ金属を含む)の使用量は、化合物(IX)1当量に対し、約1~約20当量、好ま しくは約1~約5当量である。

[0108]

還元反応は該反応に不活性な溶媒を用いて行うのが有利である。このような溶媒として は反応が進行する限り特に限定されないが、例えばメタノール、エタノール、1ープロパ ノール、2-プロパノール、tert-ブチルアルコールなどのアルコール類;ジエチルエー テル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジ オキサン、1,2-ジメトキシエタンなどのエーテル類;ベンゼン、トルエンなどの芳香 族炭化水素類;シクロヘキサン、ヘキサンなどの飽和炭化水素類;N,N-ジメチルホル ムアミド、N, N-ジメチルアセトアミド、ヘキサメチルホスホリックトリアミドなどの アミド類;ギ酸、酢酸、プロピオン酸、トリフルオロ酢酸、メタンスルホン酸などの有機 酸類などの溶媒あるいはそれらの混合溶媒などが好ましい。

反応時間は用いる還元剤の種類や量あるいは触媒の活性および量によって異なるが、通 常約1時間~約100時間、好ましくは約1時間~約50時間である。反応温度は通常約 - 20~約120℃、好ましくは約0~約80℃である。

[0109]

化合物 (Ib') は、反応式1における化合物 (II) と化合物 (III) との光延反応と同 様にして、化合物(II)と化合物(X)とを反応させることにより製造することができる

化合物 (Ib) は、反応式1における化合物 (Ia') の加水分解反応と同様の方法により 、化合物 (Ib') から製造することができる。

[0110]

 \bar{E} が \bar{E} 3 (\bar{E} 3 は $-W^1 - O - W^2 - C - W^1 - S - W^2 - または <math>-W^1 - N(R^6) - W^2$ $W^2-(W^1,W^2$ 及び R^6 は前記と同義を示す)を示す)である化合物(I)(下式 (Ic') および (Ic) で表わされる化合物(それぞれ化合物(Ic')、化合物(Ic)と略 す))は、例えば以下の反応式3で示される方法またはこれに準じた方法に従って製造す ることができる。

[0111]

【化12】

反応式3

$$PG-X-W^{2}-S^{1}$$

$$R^{4}$$

$$COR'$$

$$(XII)$$

$$PG-X-W^{2}-S^{1}$$

$$(XIII)$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{5}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{5}$$

$$R^{6}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{5}$$

$$R^{5}$$

$$R^{6}$$

$$R^{6}$$

$$R^{5}$$

$$R^{6}$$

$$R^{6}$$

$$R^{7}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{5}$$

$$R^{5}$$

$$R^{6}$$

$$R^{5}$$

$$R^{6}$$

$$R^{6}$$

$$R^{5}$$

$$R^{6}$$

$$R^{6}$$

$$R^{6}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

[0112]

(IC')

[式中、PGは保護基を、Xは-O-、-S-もしくは-N(R^6)-(R^6 は前記と同 義を示す)を示し、他の記号は前記と同義を示す]

P G で示される保護基としては、後述するヒドロキシ基の保護基、アミノ基の保護基お よびメルカプト基の保護基を利用できる。

[0113]

式 (XI) 、 (XIV-1) および (XIV-2) で表わされる化合物 (順に、化合物 (XI) 、化合 物(XIV-1)および化合物(XIV-2)と略す)は市販品として容易に入手でき、また、自体 公知の方法またはこれに準じた方法に従って製造することもできる。

式(XII)で表わされる化合物(化合物(XII)と略す)は、反応式1における化合物(II) と化合物 (III) との反応と同様にして、化合物 (II) と化合物 (XI) とを反応させ ることにより製造することができる。

式(XIII)で表わされる化合物(化合物(XIII)と略す)は、自体公知の脱保護反応ま たはそれに準じる方法に従って、化合物(XII)を脱保護することによって製造できる。

[0114]

 E^{3} が $-W^{1}$ $-O-W^{2}$ - 、 $-W^{1}$ $-S-W^{2}$ - または $-W^{1}$ $-N(R^{6})-W^{2}$ - であ り、 $\mathrm{W}^{\,2}$ 及び $\mathrm{R}^{\,6}$ は前記と同義であり、かつ $\mathrm{W}^{\,1}$ が置換されていてもよい $\mathrm{C}_{\,1}$ - $_{\,3}$ アルキ レン基である化合物(Ic')は、反応式1における化合物(II)とLが脱離基である化合 物 (III) との反応と同様にして、化合物 (XIII) と化合物 (XIV-1) とを反応させること により製造することができる。

また、 E^3 が $-W^1-O-W^2-もしくは<math>-W^1-S-W^2-$ であり、かつ W^1 及びW 2 の少なくとも一方が結合手である化合物(Ic')は、反応式 1 における化合物(II)と 化合物 (III) との光延反応と同様にして、Xが-O-もしくは-S-である化合物 (XII I) と化合物 (XIV-2) とを反応させることにより製造することもできる。

化合物 (Ic) は、反応式1における化合物 (Ia') の加水分解反応と同様の方法により 、化合物(Ic')から製造することができる。

[0115]

 \mathbb{R}^2 が置換されたヒドロキシ基、置換されたアミノ基または置換されたメルカプト基で ある化合物 (I) 、すなわち、 R^2 が R^2 , $-Y-[Yt-O-、-S-stct-N(R^A)]$ $)-(R^A$ は水素原子または R^2 で示される「置換されていてもよいアミノ基」のアミノ 基が有する置換基を示す)を示し、 R^2 ,はYが-O-である場合、 R^2 で示される「置 換されていてもよいヒドロキシ基」のヒドロキシ基が有する置換基を、Yが-S-である 場合、R²で示される「置換されていてもよいメルカプト基」のメルカプト基が有する置 換基を、Yが-N (R^A) -である場合、R² で示される「置換されていてもよいアミノ 基」のアミノ基が有する置換基を示す]である化合物(I)(下式(If')および(Id)で 表わされる化合物(それぞれ化合物(If')、化合物(Id)と略す))は、例えば以下の 反応式4で示される方法またはこれに準じた方法に従って製造することができる。

[0116] 【化13】

反応式4

$$PG-Y \longrightarrow \begin{array}{c} R^1 \\ R^3 \end{array} \longrightarrow \begin{array}{c} R^4 \\ R^5 \end{array} \longrightarrow \begin{array}{c} R^4 \\ COR' \end{array} \longrightarrow \begin{array}{c} R^1 \\ R^3 \end{array} \longrightarrow \begin{array}{c} R^4 \\ R^5 \end{array} \longrightarrow \begin{array}{c} R^4 \\ COR' \end{array} \longrightarrow \begin{array}{c} R^4 \\ R^5 \end{array} \longrightarrow \begin{array}{c} R^4 \\ R^4 \end{array} \longrightarrow \begin{array}{c} R^4 \\ R^5 \end{array} \longrightarrow \begin{array}{c} R^4 \\ R^5 \end{array} \longrightarrow \begin{array}{c} R^4 \\ R^5 \end{array} \longrightarrow \begin{array}{$$

$$R^2-L'$$
 $\frac{1}{8}L < Id$
 R^2-OH
 R^2-Y
 R^3
 $E-S^1$
 R^4
 R^5
 R^5

(ld)

[0117]

[式中、各記号は前記と同義を示す]

式(Id')で表わされる化合物(化合物(Id')と略す)は、前記した化合物(Ia') 、化合物(Ib')および化合物(Ic')と同様にして製造することができる。

式 (Ie') で表わされる化合物 (化合物 (Ie') と略す) は、化合物 (Id') を自体公 知の脱保護反応に付すことにより製造することができる。

化合物 (If') は、反応式1における化合物 (II) とLが脱離基である化合物 (III) との反応と同様にして、化合物(Ie')と式: R^2 ー L で表わされる化合物とを反応 させることにより製造することができる。

また、Yが-O-もしくは-S-である化合物(If')は、反応式1における化合物(II) と化合物 (III) との光延反応と同様にして、Yが-O-もしくは-S-である化合 物 (Ie') と式: R^2 ' -OHで表わされる化合物とを反応させることにより製造するこ ともできる。

化合物(Id)は、反応式1における化合物(Ia')の加水分解反応と同様の方法により

、化合物(If')から製造することができる。

[0118]

また、前記した各反応において、原料化合物が置換基としてアミノ基、カルボキシル基 、ヒドロキシ基、メルカプト基を有する場合、これらの基にペプチド化学などで一般的に 用いられるような保護基が導入されたものであってもよく、反応後に必要に応じて保護基 を除去することにより目的化合物を得ることができる。

アミノ基の保護基としては、例えば、ホルミル、置換基を有していてもよい、C₁₋₆ アルキルカルボニル(例えば、アセチル、エチルカルボニルなど)、フェニルカルボニル 、С1-6アルキルーオキシカルボニル(例えば、メトキシカルボニル、エトキシカルボ ニル、tert-ブトキシカルボニル(Boc)など)、アリルオキシカルボニル(Aloc)、フェニルオキシカルボニル、フルオレニルメチルオキシカルボニル(Fmoc)、C 7-10アラルキルーカルボニル(例えば、ベンジルカルボニルなど)、C7-10アラ ルキルーオキシカルボニル (例えば、ベンジルオキシカルボニル (Z) など)、C7-1 o アラルキル (例えば、ベンジルなど)、トリチル、フタロイル、ジチアスクシノイルま たはN, N - ジメチルアミノメチレンなどが挙げられる。これらの置換基としては、フェニル基、ハロゲン原子 (例えば、フッ素、塩素、臭素、ヨウ素など)、C1-6アルキル ーカルボニル(例えば、メチルカルボニル、エチルカルボニル、ブチルカルボニルなど) 、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよいC 1-6アルコキシ基(例えば、メトキシ、エトキシ、トリフルオロメトキシなど)、ニト 口基などが用いられ、置換基の数は1ないし3個程度である。

[0119]

カルボキシル基の保護基としては、例えば、置換基を有していてもよい、C1-6アル キル (例えば、メチル、エチル、nープロピル、イソプロピル、nーブチル、tertーブチ ルなど)、アリル、ベンジル、フェニル、トリチルまたはトリアルキルシリルなどが挙げ られる。これらの置換基としては、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素 など)、ホルミル、C1-6アルキル-カルボニル (例えば、アセチル、エチルカルボニ ル、ブチルカルボニルなど)、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい C_{1-6} アルコキシ基(例えば、メトキシ、エトキシ、トリフ ルオロメトキシなど)、ニトロ基などが用いられ、置換基の数は1ないし3個程度である

[0120]

ヒドロキシ基の保護基としては、例えば、置換基を有していてもよい、С1-6アルキ ル (例えば、メチル、エチル、nープロピル、イソプロピル、nーブチル、tertーブチル など)、C₇₋₁₀アラルキル (例えば、ベンジルなど)、ホルミル、C₁₋₆アルキル - カルボニル (例えば、アセチル、エチルカルボニルなど) 、ベンゾイル、C 7 - 1 0 ア ラルキルーカルボニル(例えば、ベンジルカルボニルなど)、テトラヒドロピラニル、フ ラニルまたはシリル(例えば、トリメチルシリル、tert-ブチルジメチルシリル、ジイソ プロピルエチルシリルなど)などが挙げられる。これらの置換基としては、ハロゲン原子 (例えば、フッ素、塩素、臭素、ヨウ素など)、C1-6アルキル(例えば、メチル、エ チル、n-プロピルなど)、フェニル、C7-10アラルキル (例えば、ベンジルなど) 、Cı-6アルコキシ(例えば、メトキシ、エトキシ、n-プロポキシなど)、ニトロ基 などが用いられ、置換基の数は1ないし4個程度である。

[0121]

メルカプト基の保護基としては、例えば、置換基を有していてもよい、C1-6アルキ ル (例えば、tertーブチルなど)、C₇₋₂₀アラルキル (例えば、ベンジル、トリチル など)などが挙げられる。これらの置換基としては、ハロゲン原子(例えば、フッ素、塩 素、臭素、ヨウ素など)、C₁₋₆アルキル(例えば、メチル、エチル、n-プロピルな ど)、フェニル、C₇₋₁₀アラルキル(例えば、ベンジルなど)、C₁₋₆アルコキシ (例えば、メトキシ、エトキシ、n-プロポキシなど)、ニトロ基などが用いられ、置換 基の数は1ないし4個程度である。

また、保護基の除去方法としては、それ自体公知またはそれに準じた方法が用いられる が、例えば酸、塩基、還元、紫外光、ヒドラジン、フェニルヒドラジン、N-メチルジチ オカルバミン酸ナトリウム、テトラブチルアンモニウムフルオリド、酢酸パラジウムなど で処理する方法が用いられる。

[0122]

このようにして得られる化合物(I)、その他の反応中間体及びその原料化合物は、反 応混合物から自体公知の方法、例えば抽出、濃縮、中和、濾過、蒸留、再結晶、カラムク ロマトグラフィー、薄層クロマトグラフィー、分取用高速液体クロマトグラフィー(分取 用HPLC)、中圧分取液体クロマトグラフィー(中圧分取LC)等の手段を用いること によって、単離、精製することができる。

化合物(I)の塩は、それ自体公知の手段に従い、例えば化合物(I)が塩基性化合物 である場合には無機酸又は有機酸を加えることによって、あるいは化合物(Ⅰ)が酸性化 合物である場合には有機塩基または無機塩基を加えることによって製造することができる

化合物(I)に光学異性体が存在し得る場合、これら個々の光学異性体及びそれら混合 物のいずれも当然本発明の範囲に包含されるものであり、所望によりこれらの異性体をそ れ自体公知の手段に従い光学分割したり、個別に製造することもできる。

[0123]

化合物(I)が、コンフィギュレーショナル アイソマー(配置異性体)、ジアステレ オマー、コンフォーマー等として存在する場合には、所望により、前記の分離、精製手段 によりそれぞれを単離することができる。また、化合物(I)がラセミ体である場合には 、通常の光学分割手段によりS体及びR体に分離することができる。

化合物(I)に立体異性体が存在する場合には、この異性体が単独の場合及びそれらの 混合物の場合も本発明に含まれる。

また、化合物(Ⅰ)は、水和物又は非水和物であってもよい。

化合物(I)は同位元素(例: 3 H、 1 C、 3 S)等で標識されていてもよい。

[0124]

化合物(I)、その塩、およびそのプロドラッグ(以下、本発明の化合物と略記する場 合がある)は、GPR40受容体機能調節作用(GPR40受容体アゴニスト活性および GPR40受容体アンタゴニスト活性)、特にGPR40受容体アゴニスト活性を有して おり、また毒性が低く、かつ副作用(例:急性毒性、慢性毒性、遺伝毒性、生殖毒性、心 毒性、薬物相互作用、癌原性)も少ないため、安全なGPR40受容体機能調節剤、好ま しくはGPR40作動剤として有用である。

本発明の化合物を含有してなる医薬は、哺乳動物(例えば、マウス、ラット、ハムスタ ー、ウサギ、ネコ、イヌ、ウシ、ヒツジ、サル、ヒト等)に対して、優れたGPR40受 容体機能調節作用を有しているので、GPR40受容体が関与する生理機能の調節剤また はGPR40受容体が関与する病態または疾患の予防・治療剤として有用である。

[0125]

具体的には、本発明の化合物を含有してなる医薬は、インスリン分泌調節剤(好ましく はインスリン分泌促進剤)、血糖低下剤、膵β細胞保護剤として有用である。

さらに、本発明の化合物を含有してなる医薬は、例えば、糖尿病、耐糖能異常、ケトー シス、アシドーシス、糖尿病性神経障害、糖尿病性腎症、糖尿病性網膜症、黄班浮腫、高 脂血症、性機能障害、皮膚疾患、関節症、骨減少症、動脈硬化、血栓性疾患、消化不良、 記憶学習障害、肥満、低血糖症、高血圧、浮腫、インスリン抵抗性、不安定糖尿病、脂肪 萎縮、インスリンアレルギー、インスリノーマ、脂肪毒性、高インスリン血症、癌などの 疾患;特に、糖尿病、耐糖能異常、ケトーシス、アシドーシス、糖尿病性神経障害、糖尿 病性腎症、糖尿病性網膜症、黄班浮腫、高脂血症、性機能障害、皮膚疾患、関節症、骨減 少症、動脈硬化、血栓性疾患、消化不良、記憶学習障害などの疾患に対する予防・治療剤 として有用である。ここで、糖尿病には、1型糖尿病、2型糖尿病および妊娠糖尿病が含 まれる。また、高脂血症には、高トリグリセリド血症、高コレステロール血症、低HDL

血症、食後高脂血症などが含まれる。

[0126]

糖尿病の判定基準については、1999年に日本糖尿病学会から新たな判定基準が報告 されている。

この報告によれば、糖尿病とは、空腹時血糖値(静脈血漿におけるグルコース濃度)が 126mg/d1以上、75g経口ブドウ糖負荷試験(75gOGTT)2時間値(静脈 血漿におけるグルコース濃度)が200mg/dl以上、随時血糖値(静脈血漿における グルコース濃度)が200mg/d1以上のいずれかを示す状態である。また、上記糖尿 病に該当せず、かつ、「空腹時血糖値(静脈血漿におけるグルコース濃度)が110mg / d 1 未満または75 g経口ブドウ糖負荷試験(75 g O G T T) 2 時間値(静脈血漿に おけるグルコース濃度)が140mg/dl未満を示す状態」(正常型)でない状態を、 「境界型」と呼ぶ。

[0127]

また、糖尿病の判定基準については、1997年にADA(米国糖尿病学会)から、1 9 9 ·8 年にWHOから、新たな判定基準が報告されている。

これらの報告によれば、糖尿病とは、空腹時血糖値(静脈血漿におけるグルコース濃度)が126mg/d1以上であり、かつ、75g経口ブドウ糖負荷試験2時間値(静脈血 漿におけるグルコース濃度)が200mg/d1以上を示す状態である。

また、上記報告によれば、耐糖能異常とは、空腹時血糖値(静脈血漿におけるグルコー ス濃度)が126mg/d1未満であり、かつ、75g経口ブドウ糖負荷試験2時間値(静脈血漿におけるグルコース濃度)が140mg/d1以上200mg/d1未満を示す 状態である。さらに、ADAの報告によれば、空腹時血糖値(静脈血漿におけるグルコー ス濃度) が110mg/dl以上126mg/dl未満の状態をIFG (Impaired Fast ing Glucose) と呼ぶ。一方、WHOの報告によれば、該IFG (Impaired Fasting G lucose)のうち、75g経口ブドウ糖負荷試験2時間値(静脈血漿におけるグルコース濃 度)が140mg/dl未満である状態をIFG(Impaired Fasting Glycemia)と呼 స్ట్

本発明の化合物は、上記した新たな判定基準により決定される糖尿病、境界型、耐糖能 異常)、IFG(Impaired Fasting Glucose)およびIFG(Impaired Fasting Gly cemia)の予防・治療剤としても用いられる。さらに、本発明の化合物は、境界型、耐糖 能異常)、IFG (Impaired Fasting Glucose) またはIFG (Impaired Fasting G lycemia)から糖尿病への進展を防止することもできる。

[0128]

本発明の化合物を含有してなる医薬は、毒性が低く、医薬製剤の製造法として一般的に 用いられている自体公知の手段に従って、本発明の化合物をそのままあるいは薬理学的に 許容される担体と混合して医薬製剤とした後に、経口的又は非経口的(例:局所、直腸、 静脈投与等) に安全に投与することができる。

前記医薬製剤の剤形としては、例えば、錠剤(舌下錠、口腔内崩壊錠を含む)、カプセ ル剤(ソフトカプセル、マイクロカプセルを含む)、顆粒剤、散剤、トローチ剤、シロッ プ剤、乳剤、懸濁剤などの経口剤;および注射剤(例:皮下注射剤、静脈内注射剤、筋肉 内注射剤、腹腔内注射剤、点滴剤)、外用剤(例:経皮製剤、軟膏剤)、坐剤(例:直腸 坐剤、膣坐剤)、ペレット、経鼻剤、経肺剤(吸入剤)、点眼剤等の非経口剤が挙げられ

これらの製剤は、速放性製剤または徐放性製剤などの放出制御製剤(例:徐放性マイク ロカプセル)であってもよい。

[0129]

本発明の化合物の医薬製剤中の含有量は、製剤全体の約0.01ないし約100重量% である。本発明の化合物の投与量は、投与対象、投与ルート、疾患、症状等により異なる が、例えば成人の糖尿病患者(体重約60kg)に経口投与する場合、1日当たり、約0 .01ないし約30mg/kg体重、好ましくは約0.1ないし約20mg/kg体重を、更に好

[0130]

前記した薬理学的に許容される担体としては、製剤素材として慣用の各種有機あるいは 無機担体物質が挙げられ、例えば固形製剤における賦形剤、滑沢剤、結合剤及び崩壊剤、 あるいは液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤及び無痛化剤 等が挙げられる。更に必要に応じ、防腐剤、抗酸化剤、着色剤、甘味剤、吸着剤、湿潤剤 等の添加物を用いることもできる。

賦形剤としては、例えば乳糖、白糖、D-マンニトール、デンプン、コーンスターチ、 結晶セルロース、軽質無水ケイ酸等が挙げられる。

滑沢剤としては、例えばステアリン酸マグネシウム、ステアリン酸カルシウム、タルク 、コロイドシリカ等が挙げられる。

[0131]

結合剤としては、例えば結晶セルロース、白糖、D-マンニトール、デキストリン、ヒ ドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリ ドン、デンプン、ショ糖、ゼラチン、メチルセルロース、カルボキシメチルセルロースナ トリウム等が挙げられる。

崩壊剤としては、例えばデンプン、カルボキシメチルセルロース、カルボキシメチルセ ルロースカルシウム、カルボキシメチルスターチナトリウム、L-ヒドロキシプロピルセ ルロース等が挙げられる。

溶剤としては、例えば注射用水、アルコール、プロピレングリコール、マクロゴール、 ゴマ油、トウモロコシ油、オリーブ油等が挙げられる。

溶解補助剤としては、例えばポリエチレングリコール、プロピレングリコール、Dーマ ンニトール、安息香酸ベンジル、エタノール、トリスアミノメタン、コレステロール、ト リエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム等が挙げられる。

$[0\ 1\ 3\ 2]$

懸濁化剤としては、例えばステアリルトリエタノールアミン、ラウリル硫酸ナトリウム 、ラウリルアミノプロピオン酸、レシチン、塩化ベンザルコニウム、塩化ベンゼトニウム 、モノステアリン酸グリセリン等の界面活性剤;例えばポリビニルアルコール、ポリビニ ルピロリドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシ メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の親 水性高分子等が挙げられる。

等張化剤としては、例えばブドウ糖、 D-ソルビトール、塩化ナトリウム、グリセリ ン、D-マンニトール等が挙げられる。

[0133]

緩衝剤としては、例えばリン酸塩、酢酸塩、炭酸塩、クエン酸塩等の緩衝液等が挙げら れる。

無痛化剤としては、例えばベンジルアルコール等が挙げられる。

防腐剤としては、例えばパラヒドロキシ安息香酸エステル類、クロロブタノール、ベン ジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸等が挙げられる。

[0134]

抗酸化剤としては、例えば亜硫酸塩、アスコルビン酸、αートコフェロール等が挙げら れる。

着色剤としては、例えば水溶性食用タール色素 (例:食用赤色2号および3号、食用黄 色4号および5号、食用青色1号および2号などの食用色素)、水不溶性レーキ色素(例 :前記水溶性食用タール色素のアルミニウム塩)、天然色素(例: β ーカロチン、クロロ フィル、ベンガラ)等が挙げられる。

甘味剤としては、例えばサッカリンナトリウム、グリチルリチン酸二カリウム、アスパ ルテーム、ステビア等が挙げられる。

[0135]

本発明の化合物は、糖尿病治療剤、糖尿病性合併症治療剤、高脂血症治療剤、降圧剤、 抗肥満剤、利尿剤、化学療法剤、免疫療法剤、抗炎症薬、抗血栓剤、骨粗鬆症治療剤、ビ タミン薬、抗痴呆薬、頻尿・尿失禁治療薬、排尿困難治療剤などの薬剤(以下、薬物Xと 略記する場合がある)と組み合わせて用いることができる。

[0136]

上記糖尿病治療剤としては、インスリン製剤(例:ウシ、ブタの膵臓から抽出された動 物インスリン製剤;大腸菌、イーストを用い、遺伝子工学的に合成したヒトインスリン製 剤;インスリン亜鉛;プロタミンインスリン亜鉛;インスリンのフラグメントまたは誘導 体(例: INS-1等)、経口インスリン製剤など)、インスリン感受性増強剤(例:ピ オグリタゾンまたはその塩(好ましくは塩酸塩)、ロシグリタゾンまたはその塩(好まし くはマレイン酸塩)、レグリキサン(Reglixane)(JTT-501)、ネトグリタゾン(Neto glitazone) (MCC-555), GI-262570, FK-614, CS-011, W099 /58510に記載の化合物 (例えば(E)-4-[4-(5-メチル-2-フェニル-4-オキサゾリルメトキ シ)ベンジルオキシイミノ]-4-フェニル酪酸)、WOO1/38325に記載の化合物、テサグリタ ザール (Tesaglitazar) (AZ-242)、BM-13-1258、LM-4156、MBX-102、LY-519818、MX-6 054、LY-510929、バラグリタゾン(Balaglitazone)(NN-2344)、T-131またはその塩、THR-0 921)、 α ーグルコシダーゼ阻害剤(例:ボグリボース、アカルボース、ミグリトール、 エミグリテート等)、ビグアナイド剤(例:フェンホルミン、メトホルミン、ブホルミン またはそれらの塩(例:塩酸塩、フマール酸塩、コハク酸塩)等)、インスリン分泌促進 剤[スルホニルウレア剤(例:トルブタミド、グリベンクラミド、グリクラジド、クロル プロパミド、トラザミド、アセトヘキサミド、グリクロピラミド、グリメピリド等)、レ パグリニド、セナグリニド、ミチグリニドまたはそのカルシウム塩水和物、ナテグリニド 等]、GLP-1受容体アゴニスト [例:GLP-1、GLP-1MR剤、NN-2211、AC-2993(exendin -4)、BIM-51077、Aib(8,35)hGLP-1(7,37)NH2、CJC-1131等]、ジペプチジルペプチダーゼ IV阻害剤(例:NVP-DPP-278、PT-100、P32/98、P93/01、NVP-DPP-728、LAF237、TS-021等)、 β 3 アゴニスト(例:C L - 3 1 6 2 4 3 、S R - 5 8 6 1 1 - A、UL-TG-3 0 7、AJ-9 6 7 7、AZ4 0 1 4 0 等)、アミリンアゴ ニスト(例:プラムリンチド等)、ホスホチロシンホスファターゼ阻害剤(例:バナジン 酸ナトリウム等)、糖新生阻害剤(例:グリコーゲンホスホリラーゼ阻害剤、グルコース -6-ホスファターゼ阻害剤、グルカゴン拮抗剤等)、SGLT (sodium-glucose cotr ansporter) 阻害剤(例:T-1095等)、 $11\beta-$ ヒドロキシステロイドデヒドロゲナ ーゼ阻害薬(例:BVT-3498等)、アジポネクチンまたはその作動薬、IKK阻害薬(例:AS-2868等)、レプチン抵抗性改善薬、ソマトスタチン受容体作動薬(W001/25228、W003/422 04、W098/44921、W098/45285、W099/22735に記載の化合物等)、グルコキナーゼ活性化薬 (例:Ro-28-1675) 等が挙げられる。

[0137]

糖尿病性合併症治療剤としては、アルドース還元酵素阻害剤(例:トルレスタット、エ パルレスタット、ゼナレスタット、ゾポルレスタット、フィダレスタット (SNK-86 0)、AS-3201、ミナルレスタット(ARI-509)、CT-112等)、神経 栄養因子およびその増加薬 (例:NGF、NT-3、BDNF、W001/14372に記載のニューロ トロフィン産生・分泌促進剤 (例えば4-(4-クロロフェニル)-2-(2-メチル-1-イミダゾリ ル)-5-[3-(2-メチルフェノキシ)プロピル]オキサゾールなど)等)、プロテインキナーゼ C (PKC) 阻害薬 (例:LY-333531等)、AGE阻害剤 (例:ALT-945 、ピマゲジン、ピラトキサチン、 N -フェナシルチアゾリウムブロミド(ALT -766)、EXO-226、ALT-711、ピリドリン(Pyridorin)、ピリドキサミン等)、活性酸 素消去薬(例:チオクト酸等)、脳血管拡張剤(例:チオプリド等)、ソマトスタチン受 容体作動薬 (BIM23190)、アポトーシスシグナルレギュレーティングキナーゼ-1 (ASK-1) 阻害薬等が挙げられる。

[0138]

高脂血症治療剤としては、HMG-CoA還元酵素阻害剤(例:プラバスタチン、シン

バスタチン、ロバスタチン、アトルバスタチン、フルバスタチン、ビタバスタチン、ロス バスタチンまたはそれらの塩(例:ナトリウム塩等)等)、スクアレン合成酵素阻害剤(例:W097/10224に記載の化合物、例えばN-[[(3R,5S)-1-(3-アセトキシ-2,2-ジメチル プロピル)-7-クロロ-5-(2,3-ジメトキシフェニル)-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル]アセチル]ピペリジン-4-酢酸など)、フィブラート系化合 物(例:ベザフィブラート、クロフィブラート、シムフィブラート、クリノフィブラート 等)、抗酸化剤(例:リポ酸、プロブコール)等が挙げられる。

[0139]

降圧剤としては、アンジオテンシン変換酵素阻害剤(例:カプトプリル、エナラプリル 、デラプリル等)、アンジオテンシンII拮抗剤(例:ロサルタン、カンデサルタン シレ キセチル、エプロサルタン、バルサルタン、テルミサルタン、イルベサルタン、オルメサ ルタン メドキソミル、タソサルタン、1-[[2'-(2,5-ジヒドロ-5-オキソ-4H-1,2,4-オキサジアゾール-3-イル)ビフェニル-4-イル]メチル]-2-エトキシ-1H-ベンズイミダゾール-7 -カルボン酸等)、カルシウム拮抗剤(例:マニジピン、ニフェジピン、アムロジピン、 エホニジピン、ニカルジピン等)、クロニジン等が挙げられる。

[0140]

抗肥満剤としては、例えば中枢性抗肥満薬(例:デキスフェンフルアミン、フェンフル ラミン、フェンテルミン、シブトラミン、アンフェプラモン、デキサンフェタミン、マジ ンドール、フェニルプロパノールアミン、クロベンゾレックス;MCH受容体拮抗薬(例:S B-568849; SNAP-7941; W001/82925およびW001/87834に記載の化合物等);ニューロペプ チドY拮抗薬(例:CP-422935等);カンナビノイド受容体拮抗薬(例:SR-141716、SR-14 7778等);グレリン拮抗薬; 11β -ヒドロキシステロイドデヒドロゲナーゼ阻害薬(例: アゴニスト (例: CL-316243、SR-58611-A、UL-TG-307、A J-9677、AZ40140等)、ペプチド性食欲抑制薬(例:レプチン、CNTF(毛様体神経栄養因子)等)、コレシストキニンアゴニスト(例:リンチトリプト、FPL -15849等)、摂食抑制薬(例:P-57等)等が挙げられる。

[0141]

利尿剤としては、例えばキサンチン誘導体(例:サリチル酸ナトリウムテオブロミン、 サリチル酸カルシウムテオブロミン等)、チアジド系製剤(例:エチアジド、シクロペン チアジド、トリクロルメチアジド、ヒドロクロロチアジド、ヒドロフルメチアジド、ベン ジルヒドロクロロチアジド、ペンフルチジド、ポリチアジド、メチクロチアジド等)、抗 アルドステロン製剤(例:スピロノラクトン、トリアムテレン等)、炭酸脱水酵素阻害剤 (例:アセタゾラミド等)、クロルベンゼンスルホンアミド系製剤(例:クロルタリドン 、メフルシド、インダパミド等)、アゾセミド、イソソルビド、エタクリン酸、ピレタニ ド、ブメタニド、フロセミド等が挙げられる。

[0142]

化学療法剤としては、例えばアルキル化剤(例:サイクロフォスファミド、イフォスフ ァミド等)、代謝拮抗剤(例:メソトレキセート、5-フルオロウラシルおよびその誘導 体等)、抗癌性抗生物質(例:マイトマイシン、アドリアマイシン等)、植物由来抗癌剤 (例:ビンクリスチン、ビンデシン、タキソール等)、シスプラチン、カルボプラチン、 エトポキシドなどが挙げられる。なかでも5-フルオロウラシル誘導体であるフルツロン あるいはネオフルツロンなどが好ましい。

[0143]

免疫療法剤としては、例えば微生物または細菌成分(例:ムラミルジペプチド誘導体、 ピシバニール等)、免疫増強活性のある多糖類(例:レンチナン、シゾフィラン、クレス チン等)、遺伝子工学的手法で得られるサイトカイン(例:インターフェロン、インター ロイキン(IL)等)、コロニー刺激因子(例:顆粒球コロニー刺激因子、エリスロポエ チン等) などが挙げられ、なかでも I L-1、 I L-2、 I L-12 などのインターロイ キンが好ましい。

抗炎症薬としては、例えばアスピリン、アセトアミノフェン、インドメタシンなどの非 ステロイド抗炎症薬等が挙げられる。

[0144]

抗血栓剤としては、例えばヘパリン(例:ヘパリンナトリウム、ヘパリンカルシウム、 ダルテパリンナトリウム(dalteparin sodium)など)、ワルファリン(例:ワルファリン カリウムなど)、抗トロンビン薬(例:アルガトロバン(aragatroban)など)、血栓溶解 薬 (例:ウロキナーゼ(urokinase)、チソキナーゼ(tisokinase)、アルテプラーゼ(altepl ase)、ナテプラーゼ(nateplase)、モンテプラーゼ(monteplase)、パミテプラーゼ(pamite plase)など)、血小板凝集抑制薬(例:塩酸チクロピジン(ticlopidine hydrochloride) 、シロスタゾール(cilostazol)、イコサペント酸エチル、ベラプロストナトリウム(berap rost sodium)、塩酸サルポグレラート(sarpogrelate hydrochloride)など) などが挙げら れる。

[0145]

骨粗鬆症治療剤としては、例えばアルファカルシドール(alfacalcidol)、カルシトリ オール (calcitriol) 、エルカトニン (elcatonin) 、サケカルシトニン (calcitonin s almon)、エストリオール (estriol) 、イプリフラボン (ipriflavone) 、パミドロン酸 二ナトリウム(pamidronate disodium)、アレンドロン酸ナトリウム水和物(alendronat e sodium hydrate)、インカドロン酸ニナトリウム(incadronate disodium)等が挙げら れる。

ビタミン薬としては、例えばビタミンB1、ビタミンB12等が挙げられる。

[0146]

抗痴呆剤としては、例えばタクリン (tacrine)、ドネペジル (donepezil)、リバスチ グミン (rivastigmine)、ガランタミン (galantamine) 等が挙げられる。

頻尿・尿失禁治療薬としては、例えば塩酸フラボキサート(flavoxate hydrochloride)、塩酸オキシブチニン(oxybutynin hydrochloride)、塩酸プロピベリン(propiverin e hydrochloride) 等が挙げられる。

排尿困難治療剤としては、アセチルコリンエステラーゼ阻害薬(例:ジスチグミン)等 が挙げられる。

[0147]

さらに、動物モデルや臨床で悪液質改善作用が認められている薬剤、すなわち、シクロ オキシゲナーゼ阻害剤(例:インドメタシン等)、プロゲステロン誘導体(例:メゲステ ロールアセテート)、糖質ステロイド(例:デキサメサゾン等)、メトクロプラミド系薬 剤、テトラヒドロカンナビノール系薬剤、脂肪代謝改善剤(例:エイコサペンタエン酸等) 、成長ホルモン、IGF-1、あるいは悪液質を誘導する因子であるTNF-lpha 、LI F、IL-6、オンコスタチンMに対する抗体なども本発明の化合物と併用することがで きる。

[0148]

さらに、糖化阻害剤(例:ALT-711等)、神経再生促進薬(例:Y-128、VX853、prosaptide 等)、抗うつ薬(例:デシプラミン、アミトリプチリン、イミプラミン)、抗てんかん薬(例:ラモトリジン、トリレプタル(Trileptal)、ケプラ(Keppra)、ゾネグラン(Zoneg ran)、プレギャバリン (Pregabalin)、ハーコセライド (Harkoseride)、カルバマゼピ ン)、抗不整脈薬(例:メキシレチン)、アセチルコリン受容体リガンド(例:ABT-594) 、エンドセリン受容体拮抗薬(例:ABT-627)、モノアミン取り込み阻害薬(例:トラマド ル)、麻薬性鎮痛薬(例:モルヒネ)、GABA受容体作動薬 (例:ギャバペンチン、ギャバペ ンチンMR剤)、 α 2受容体作動薬(例:クロニジン)、局所鎮痛薬(例:カプサイシン) 、抗不安薬(例:ベンゾチアゼピン)、ホスホジエステラーゼ阻害薬(例:シルデナフィ ル)、ドーパミン受容体作動薬(例:アポモルフィン)なども本発明の化合物と併用する ことができる。

上記薬物 X は、2種以上を適宜の割合で組み合せて用いてもよい。

[0149]

本発明の化合物と薬物Xとを組み合わせることにより、

- (1) 本発明の化合物または薬物 X を単独で投与する場合に比べて、本発明の化合物およ び/または薬物Xの投与量を低減することができる、
- (2) 本発明の化合物と作用機序が異なる薬物 X を選択することにより、治療期間を長く 設定することができる、
- (3) 本発明の化合物と作用機序が異なる薬物 X を選択することにより、治療効果の持続 を図ることができる、
- (4) 本発明の化合物と薬物Xとを併用することにより、相乗効果が得られる、などの優 れた効果を得ることができる。

[0150]

本発明の化合物と薬物Xを組み合わせて使用する際、本発明の化合物と薬物Xの投与時 期は限定されず、本発明の化合物と薬物Xとを、投与対象に対し、同時に投与してもよい し、時間差をおいて投与してもよい。薬物Xの投与量は、臨床上用いられている投与量に 準ずればよく、投与対象、投与ルート、疾患、組み合わせ等により適宜選択することがで きる。

また、本発明の化合物と薬物Xの投与形態は、特に限定されず、投与時に、本発明の化 合物と薬物Xとが組み合わされていればよい。このような投与形態としては、例えば、(1) 本発明の化合物と薬物 X とを同時に製剤化して得られる単一の製剤の投与、(2) 本 発明の化合物と薬物Xとを別々に製剤化して得られる2種の製剤の同一投与経路での同時 投与、(3)本発明の化合物と薬物 X とを別々に製剤化して得られる 2 種の製剤の同一投 与経路での時間差をおいての投与、(4)本発明の化合物と薬物Xとを別々に製剤化して 得られる2種の製剤の異なる投与経路での同時投与、(5)本発明の化合物と薬物Xとを 別々に製剤化して得られる2種の製剤の異なる投与経路での時間差をおいての投与(例え ば、本発明の化合物;薬物Xの順序での投与、あるいは逆の順序での投与)などが挙げら れる。

【実施例】

[0151]

本発明は、更に以下の参考例、実施例、製剤例及び実験例によって詳しく説明されるが 、これらの例は単なる実施であって、本発明を限定するものではなく、また本発明の範囲 を逸脱しない範囲で変化させてもよい。

以下の参考例、実施例中の「室温」は通常約10 ℃ないし約35 ℃を示す。%は、収 率はmol/mol%を、クロマトグラフィーで用いられる溶媒は体積%を、その他は重量%を 示す。プロトンNMRスペクトルで、OHやNHプロトン等ブロードで確認できないもの についてはデータに記載していない。

[0152]

その他の本文中で用いられている略号は下記の意味を示す。

: シングレット (singlet)

ダブレット (doublet) d :

トリプレット (triplet)

クァルテット (quartet) q

マルチプレット (multiplet)

ブロード(broad)

J : カップリング定数 (coupling constant)

Hz: ヘルツ (Hertz)

CDC13 : 重クロロホルム

¹H NMR : プロトン核磁気共鳴

[0153]

以下の参考例および実施例において、マススペクトル(MS)及び核磁気共鳴スペクトル (NMR)は以下の条件により測定した。

MS測定機器:ウオーターズ社 ZMD、ウオーターズ社 ZQ2000またはマイクロマス社 プ

出証特2005-3006399

ラットフォームIIイオン化法:電子衝撃イオン化法(Electron Spray Ionization : ESI)、または大気圧化学イオン化法(Atmospheric Pressure Chemical Ionization: APCI)。特記なき場合、ESIを用いた。

NMR測定機器:バリアン社 Varian Gemini 200(200MHz)、Varian Gemini 300(300MHz)、 ブルカー・バイオスピン社 AVANCE 300。

[0154]

また、参考例および実施例における分取HPLCによる精製は以下の条件により行った。 分取HPLC機器:ギルソン社ハイスループット精製システム

カラム:YMC Combiprep ODS-A S-5 μ m, 20 X 50 mm

トリフルオロ酢酸 含有水、 0.1%溶媒:A液;

トリフルオロ酢酸 含有アセトニトリル 0.1% B液;

グラジエントサイクルA: 0.00分(A液/B液=90/10), 1.20分(A液/B液=90/10), 4.75 分(A液/B液=0/100),7.30分(A液/B液=0/100),7.40分(A液/B液=90/10),7.50分 (A液/B液=90/10).

グラジエントサイクルB: 0.00分(A液/B液=95/5), 1.00分(A液/B液=95/5), 5.20分 (A液/B液=5/95) , 6.40分 (A液/B液=5/95) , 6.50分 (A液/B液=95/5) , 6.60分 (A液 /B液=95/5).

流速:25 ml/min、検出法:UV 220nm

[0155]

参考例 1 2-(4-ブロモ-3-メチルフェノキシ)テトラヒドロ-2H-ピラン

[0156]

【化14】

[0157]

4-ブロモ-3-メチルフェノール(4.72~g、25.2~mmo1)、3,4-ジヒドロ-2H-ピラン(3.18g、37.8 mmol) および p-トルエンスルホン酸ピリジニウム (0.628 g、2.50 mmol) のジ クロロメタン(100 mL) 溶液を、室温で 24 時間攪拌した。反応液を水で洗浄し、無水硫 酸ナトリウムで乾燥後、減圧下で溶媒を留去して、表題化合物(7.11 g、未反応の 3,4-ジヒドロ-2H-ピランを含む)を黄色油状物として得た。

 $^{1}\text{H NMR (CDCl}_{3})$ δ : 1.58-2.06(6H, m), 2.35(3H, s), 3.56-3.63(1H, m), 3.83-3.91(1H) , m), 5.37(1H, t, J=3.1Hz), 6.77(1H, dd, J=8.8, 3.0Hz), 6.95(1H, d, J=3.0Hz), 7.39(1H, d, J=8.8Hz).

[0158]

2'-メチル-4'-(テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェニル-3-カルバ 参考例 2 ルデヒド

[0159]

【化15】

[0160]

2-(4-ブロモ-3-メチルフェノキシ)テトラヒドロ-2H-ピラン(7.11 g、25.2 mmol、3,4-ジヒドロ-2H-ピランを含む)および(3-ホルミルフェニル)ボロン酸 (4.50 g、30.0 mmol) を 1 M 炭酸ナトリウム水溶液(60 mL)、エタノール (30 mL) およびトルエン (60 mL) の 混液に溶解し、アルゴン置換した後、テトラキス(トリフェニルホスフィン)パラジウム(0) (1.73 g、1.50 mmol) を加えた。反応液をアルゴン雰囲気下、80 ℃ で 15 時間攪拌し た。反応液を冷却後、水と酢酸エチルを加え、不溶物をセライト濾過した。濾液の有機層

を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲル カラムクロマトグラフィー(5%~30%酢酸エチル/ヘキサン)で精製し、表題化合物(6. 16 g、収率 82%、2 工程) を淡黄色油状物として得た。

 1 H NMR (CDC1₃) δ : 1.53–1.77(3H, m), 1.86–1.91(2H, m), 1.98–2.09(1H, m), 2.25(3 H, s), 3.61-3.68(1H, m), 3.91-3.99(1H, m), 5.48(1H, t, J=3.2Hz), 6.95-7.00(2H, m)), 7.15(1H, d, J=8.3Hz), 7.53-7.60(2H, m), 7.82-7.86(2H, m), 10.06(1H, s).

[0161]

参考例 3 [2'-メチル-4'-(テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェニル-3-イル] メタノール

[0162]

【化16】

[0163]

2'-メチル-4'-(テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェニル-3-カルバルデヒド (13.6 g、45.9 mmol) を 1,2-ジメトキシエタン (70 mL) およびテトラヒドロフラン (70 mL) の混液に溶解し、氷冷下で水素化ホウ素ナトリウム (0.870 g、23.0 mmol) を加え た後、同温で 3 時間撹拌した。反応液に塩化アンモニウム水溶液を加え、酢酸エチルで 抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。 残渣をシリカゲルカラムクロマトグラフィー(15%~50% 酢酸エチル/ヘキサン)で精製 し、表題化合物 (12.2 g、収率 89%) を無色油状物として得た。

 1 H NMR (CDC1₃) δ : 1.59–1.76(4H, m), 1.85–1.90(2H, m), 1.97–2.11(1H, m), 2.25(3) H, s), 3.60-3.67(1H, m), 3.91-3.99(1H, m), 4.73(2H, d, J=5.8Hz), 5.46(1H, t, J=3.8Hz).1Hz), 6.92-6.97(2H, m), 7.14(1H, d, J=8.1Hz), 7.22-7.41(4H, m).

[0164]

参考例 4 2-(4-ブロモ-3,5-ジメチルフェノキシ)テトラヒドロ-2H-ピラン

[0165]

【化17】

[0166]

4-ブロモ-3,5-ジメチルフェノール(10.5 g、52.2 mmol)、3,4-ジヒドロ-2H-ピラン(8 .83 g、105 mmol)および p-トルエンスルホン酸ピリジニウム(2.64 g、10.5 mmol)の ジクロロメタン(160 mL) 溶液を、室温で 80 時間攪拌した。減圧下で溶媒を留去して、 残渣をシリカゲルカラムクロマトグラフィー(ヘキサン~20% 酢酸エチル/ヘキサン)で 精製し、表題化合物 (11.5 g、収率 77%) を無色油状物として得た。 1 H NMR (CDC1₃) δ : 1.56-1.75(3H, m), 1.80-2.07(3H, m), 2.37(6H, s), 3.55-3.64(1 H, m), 3.83-3.93(1H, m), 5.37(1H, t, J=3.1Hz), 6.80(2H, s).

[0167]

参考例 5 2',6'-ジメチル-4'-(テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェニル-3-カ ルバルデヒド

[0168]

【化18】

[0169]

参考例 2 と同様にして、2-(4-ブロモ-3,5-ジメチルフェノキシ)テトラヒドロ-2H-ピラ ンおよび (3-ホルミルフェニル)ボロン酸から表題化合物を黄色油状物として得た。収率8

 1 H NMR (CDC1₃) δ : 1.57–1.78(3H, m), 1.82–1.93(2H, m), 1.99(6H, s), 2.04(1H, m) , 3.65(1H, m), 3.97(1H, m), 5.47(1H, t, J=3.0Hz), 6.84(2H, s), 7.42(1H, m), 7.58(1H, t, J=7.5Hz), 7.67(1H, s), 7.86(1H, m), 10.05(1H, s).

[0170]

参考例 6 [2',6'-ジメチル-4'-(テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェニル-3-イル]メタノール

[0171]

【化19】

[0172]参考例3と同様にして、2',6'-ジメチル-4'-(テトラヒドロ-2H-ピラン-2-イルオキシ) ビフェニル-3-カルバルデヒドから表題化合物を無色油状物として得た。収率 83%。 $^{1}\text{H NMR (CDC1}_{3})$ δ : 1.55-1.79(4H, m), 1.80-1.93(2H, m), 2.00(6H, s), 2.03(1H, m) , 3.64(1H, m), 3.97(1H, m), 4.73(2H, d, J=5.7Hz), 5.45(1H, t, J=3.0Hz), 6.81(2H, t)s), 7.07(1H, d, J=7.5Hz), 7.13(1H, s), 7.33(1H, d, J=7.5Hz), 7.40(1H, t, J=7.8Hz)z).

[0173]

参考例7 2,6-ジメチル-3'-[(テトラヒドロ-2H-ピラン-2-イルオキシ)メチル]ビフェニ ル-4-オール

[0174]

【化20】

[0175]

2',6'-ジメチル-4'-(テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェニル-3-カルバルデ ヒド (9.05 g、29.2 mmol) を 1,2-ジメトキシエタン (50 mL) およびテトラヒドロフラ ン (50 mL) の混液に溶解し、氷冷下で水素化ホウ素ナトリウム (0.567 g、15.0 mmol) を加えた後、同温で 3 時間撹拌した。反応液に 10% クエン酸水溶液を加え、酢酸エチル で抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した 。残渣をシリカゲルカラムクロマトグラフィー(15%~50% 酢酸エチル/ヘキサン)で精 製し、表題化合物 (3.24 g、収率 36%) を無色結晶として得た。

 $^{1}\text{H NMR (CDC1}_{3})$ δ : 1.47-1.93(6H, m), 1.98(3H, s), 1.99(3H, s), 3.50-3.58(1H, m) , 3.88-3.96(1H, m), 4.54(1H, d, J=12.1Hz), 4.68(1H, s), 4.73(1H, t, J=3.4Hz), 4.68(1H, s)83(1H, d, J=12.1Hz), 6.59(2H, s), 7.04(1H, d, J=7.3Hz), 7.13(1H, s), 7.30-7.34(1H, d)H, m), 7.38(1H, t, J=7.3Hz).

[0176]

参考例8 2- {[4'-(ベンジルオキシ)-2', 6'-ジメチルビフェニル-3-イル]メトキシ} テト ラヒドロ-2H-ピラン

[0177]

【化21】

[0178]

2,6-ジメチル-3'-[(テトラヒドロ-2H-ピラン-2-イルオキシ)メチル]ビフェニル-4-オー ル (1.78 g、5.70 mmol)、ベンジルアルコール (0.885 mL、8.55 mmol) およびトリブチ ルホスフィン (2.13 mL、8.55 mmol) のトルエン (80 mL) 溶液を氷冷下攪拌し、1,1'-(アゾジカルボニル)ジピペリジン (2.16 g、8.55 mmol) を少量ずつ加え、室温まで昇温し て 24 時間撹拌した。反応液にヘキサン (40 mL) を加え、析出した不溶物を濾別して、 濾液を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン~10% 酢酸 エチル/ヘキサン) で精製して、表題化合物を無色油状物 (1.71 g、収率 75%) として得 た。

 1 H NMR (CDCl₃) δ : 1.47–1.93(6H, m), 2.01(3H, s), 2.02(3H, s), 3.50–3.57(1H, m) , 3.88-3.96(1H, m), 4.54(1H, d, J=12.2Hz), 4.73(1H, t, J=3.5Hz), 4.83(1H, d, J=12.2Hz)2.2Hz), 5.07(2H, s), 6.75(2H, s), 7.05(1H, d, J=7.2Hz), 7.14(1H, s), 7.30-7.48(7)H, m).

[0179]

参考例 9 [4'-(ベンジルオキシ)-2',6'-ジメチルビフェニル-3-イル]メタノール

[0180]

【化22】

[0181]

2-{[4'-(ベンジルオキシ)-2',6'-ジメチルビフェニル-3-イル]メトキシ}テトラヒドロ-2H-ピラン(1.71 g、4.25 mmol)および p-トルエンスルホン酸 一水和物(80.8 mg、0.4 25 mmol) のメタノール (15 mL) 溶液を室温で 20 時間攪拌した。反応溶媒を減圧留去し た後、残渣を酢酸エチルで希釈し、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、 減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(20%~50% 酢酸エチル/へ キサン) で精製して、表題化合物 (1.13 g、収率 84%) を無色油状物として得た。 $^{1}\text{H NMR}$ (CDC1₃) δ : 1.65(1H, t, J=5.9Hz), 2.01(6H, s), 4.73(2H, d, J=5.9Hz), 5.0 7(2H, s), 6.75(2H, s), 7.07(1H, d, J=7.3Hz), 7.13(1H, s), 7.30-7.48(7H, m).

[0182]

参考例10 2-{[4'-(2-エトキシエトキシ)-2',6'-ジメチルビフェニル-3-イル]メトキシ ├テトラヒドロ-2H-ピラン

[0183]

【化23】

出証特2005-3006399

参考例8と同様にして、2,6-ジメチル-3'-[(テトラヒドロ-2H-ピラン-2-イルオキシ)メ チル]ビフェニル-4-オールおよび 2-エトキシエタノールから表題化合物を無色油状物と して得た。収率 74%。

 $^{1}\text{H NMR (CDC1}_{3})$ δ : 1.25(3H, t, J=7.1Hz), 1.48-1.94(6H, m), 2.00(3H, s), 2.01(3H) , s), 3.50-3.57(1H, m), 3.62(2H, q, J=7.1Hz), 3.80(2H, t, J=5.0Hz), 3.88-3.96(1H, m), m), 4.14(2H, t, J=5.0Hz), 4.54(1H, d, J=12.1Hz), 4.72(1H, t, J=3.5Hz), 4.82(1H, t, J=3.5Hz), d, J=12.1Hz), 6.69(2H, s), 7.04(1H, d, J=7.3Hz), 7.13(1H, s), 7.32(1H, d, J=7.3Hz)3Hz), 7.38(1H, t, J=7.3Hz).

[0185]

参考例11 [4'-(2-エトキシエトキシ)-2',6'-ジメチルビフェニル-3-イル]メタノール

[0186]

【化24】

[0187]

参考例9と同様にして、2-{[4'-(2-エトキシエトキシ)-2',6'-ジメチルビフェニル-3-イル]メトキシ|テトラヒドロ-2H-ピランから表題化合物を無色油状物として得た。収率 8 2%。

 $MS m/z 301(MH^{+})$.

[0188]

参考例12 (2E)-3-(2-フルオロ-4-メトキシフェニル)アクリル酸エチル

[0189]

【化25】

[0190]

氷冷したジエチルホスホノ酢酸エチル (9.45 g、42.1 mmol) のテトラヒドロフラン (5 0 mL) 溶液に水素化ナトリウム (60% 油性、1.54 g、38.5 mmol) を加えて 15 分間撹拌 した後、2-フルオロ-4-メトキシベンズアルデヒド(5.00 g、32.4 mmol)のテトラヒド ロフラン (30 mL) 溶液を滴下した。混合物を室温で 2 時間撹拌した後、水を加え、酢酸 エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧 濃縮した。残渣をシリカゲルカラムクロマトグラフィー(20%酢酸エチル/ヘキサン)で 精製し、表題化合物(7.07 g、収率 97%) を無色油状物として得た。

 $^{1}\text{H NMR (CDCl}_{3})$ δ : 1.33(3H, t, J=7.1Hz), 3.83(3H, s), 4.26(2H, q, J=7.1Hz), 6.4 1(1H, d, J=16.2Hz), 6.61-6.73(2H, m), 7.45(1H, t, J=8.6Hz), 7.75(1H, d, J=16.2Hz)).

[0191]

参考例13 3-(2-フルオロ-4-メトキシフェニル)プロパン酸エチル

[0192]

【化26】

$$H_3C$$
 O
 CH_3

[0193]

(2E)-3-(2-フルオロ-4-メトキシフェニル)アクリル酸エチル (7.07 g、31.5 mmol)、テ

トラヒドロフラン (50 mL)、エタノール (5 mL) および酸化白金 (300 mg) の混合物を水 素雰囲気下、室温で一晩撹拌した。触媒を濾別した後、濾液を濃縮した。残渣をシリカゲ ルカラムクロマトグラフィー (20% 酢酸エチル/ヘキサン) で精製し、表題化合物(5.97 g、収率 84%)を無色油状物として得た。

 1 H NMR (CDCl₃) δ : 1.23(3H, t, J=7.2Hz), 2.58(2H, t, J=7.6Hz), 2.90(2H, t, J=7. 6Hz), 3.77(3H, s), 4.12(2H, q, J=7.2Hz), 6.57-6.63(2H, m), 7.07-7.13(1H, m).

[0194]

参考例14 3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エチル

[0195]

【化27】

[0196]

3-(2-フルオロ-4-メトキシフェニル)プロパン酸エチル (57.4 g, 254 mmol)および塩化 アルミニウム (101 g, 761 mmol) のジクロロメタン (250 mL) 溶液にオクタンチオール (74.3 g, 508 mmol) を滴下した後、室温下で 2 時間撹拌した。反応液を氷水に注ぎ、30 分間撹拌した。有機層を分離した後、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾 燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(20% 酢酸エチル/へ キサン) で精製し、表題化合物(44.6 g、収率 83%) を無色油状物として得た。 1 H NMR (CDCl₃) δ : 1.23(3H, t, J=7.2Hz), 2.58(2H, t, J=8.1Hz), 2.89(2H, t, J=8. 1Hz), 4.12(2H, q, J=7.2Hz), 6.51-6.56(2H, m), 7.01-7.06(1H, m).

[0197]

参考例15 2',4'-ジメチルビフェニル-3-カルボン酸エチル

[0198]

【化28】

[0199]

(2,4-ジメチルフェニル)ボロン酸 (3.0g, 20.0mmol)、3-ブロモ安息香酸エチル(4.3g, 18.8mmol)および炭酸セシウム(9.8g, 30.0mmol)をエタノール (20mL) およびトルエン (8 OmL) の混合溶液に加え、アルゴン置換した後、テトラキス(トリフェニルホスフィン)パ ラジウム(0) (0.30g、0.26mmol) を加えた。反応液をアルゴン雰囲気下、70 $^{\circ}$ で 18時 間攪拌した。反応液を冷却後、不溶物をセライトで濾過し、濾液を減圧濃縮した。得られ た残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:10)に付し 、表題化合物(5.0g)を無色油状物として得た。 収率 100%。

 1 H NMR (CDC1₃) δ : 1.39(3H, t, J=7.0Hz), 2.23(3H, s), 2.37(3H, s), 4.38(2H, q, J=7.0Hz)), 7.02-7.54(5H,m), 8.00-8.05(2H,m).

[0200]

参考例 1 6 (2',4'-ジメチルビフェニル-3-イル)メタノール

[0201]

【化29】

[0202]

2',4'-ジメチルビフェニル-3-カルボン酸エチル(5.0g, 19.7mmol)の無水テトラヒドロ フラン溶液(50ml)に氷冷下、水素化リチウムアルミニウム(0.91g, 24.0mmol)を加え、室 温で3時間攪拌した。反応溶液を氷冷した後、硫酸ナトリウム10水和物(8.0g, 24.8mmol) を加え、室温で1時間攪拌した。析出した不溶物をセライトで濾過し、濾液を減圧濃縮し 、表題化合物を無色油状物として得た。収率 96%。

 1 H NMR (CDCl₃) δ : 2.24(3H,s), 2.36(3H,s), 4.73(2H,d,J=6.0Hz), 7.00-7.45(7H,m).

[0203]

参考例 1 7 2',4',6' -トリメチルビフェニル-3-カルバルデヒド

[0204]

【化30】

[0205]

参考例15と同様にして、(2,4,6-トリメチルフェニル)ボロン酸と3-ブロモベンズアル デヒドより表題化合物を無色油状物として得た。収率 76%。

 $MS m/z 225(MH^{+}).$

[0206]

参考例18 (2',4',6'-トリメチルビフェニル-3-イル)メタノール

[0207]

【化31】

[0208]

2',4',6'-トリメチルビフェニル-3-カルバルデヒド(2.36g, 10.5mmol)をエタノール(2 Oml)に溶解し、この溶液に水素化ホウ素ナトリウム(0.40g, 10.6mmol)を加えた。氷冷下 で3時間攪拌した後、反応溶液にクエン酸水溶液を加え、酢酸エチルで抽出し、塩化ナト リウム水溶液で洗浄後、硫酸マグネシウムで乾燥、減圧濃縮した。得られた残渣をシリカ ゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:5~1:2)に付し、表題化 合物(1.66g)を無色油状物として得た。

収率 70%。

 1 H NMR (CDCl₃) δ : 2.00(6H, s), 2.33(3H, s), 4.73(2H, d, J=6.2Hz), 6.94(2H, s), 7.00-7.42(4H, m).

[0209]

参考例19 6-メトキシ-2',4'-ジメチルビフェニル-3-カルバルデヒド

[0210]

【化32】

[0211]

参考例15と同様にして、1-ブロモ-2,4-ジメチルベンゼンと(5-ホルミル-2-メトキシ フェニル)ボロン酸より表題化合物を無色油状物として得た。収率 87%。 $MS m/z 241(MH^{+})$.

[0212]

参考例20 (6-メトキシ-2',4'-ジメチルビフェニル-3-イル)メタノール

[0214]

参考例18と同様にして、6-メトキシ-2',4'-ジメチルビフェニル-3-カルバルデヒド より表題化合物を無色油状物として得た。収率 88%。

 1 H NMR (CDCl₃) δ : 2.01(6H,s), 3.74(3H,s), 4.65(2H,d,J=5.2Hz), 6.97(1H,d,J=8.4H) z), 7.03(1H, d, J=2.2Hz), 7.06-7.24(3H, m), 7.35(1H, dd, J=2.6 & 8.4Hz).

[0215]

参考例21 2',4',6' -トリメチルビフェニル-3-カルボン酸エチル

[0216]

【化34】

[0217]

参考例15と同様にして、(2,4,6-トリメチルフェニル)ボロン酸と3-ブロモ安息香酸エ チルより表題化合物を無色油状物として得た。収率 80%。

 $MS m/z 269 (MH^{+}).$

[0218]

参考例22 4'-ブロモメチル-2',6'-ジメチルビフェニル-3-カルボン酸エチル及び2' -ブロモメチル-4',6'-ジメチルビフェニル-3-カルボン酸エチル

[0219]

[0220]

2',4',6'-トリメチルビフェニル-3-カルボン酸エチル(1.0g, 3.73mmol)、N-ブロモこ はく酸イミド(0.70g, 3.93mmo1)および2,2'-アゾビス(イソブチロニトリル)(65mg, 0.40 mmol)の四塩化炭素溶液(30ml)を80℃で5時間攪拌した。反応溶液を室温まで冷却し、析出 した不溶物を濾別した。濾液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグ ラフィー(酢酸エチル: ヘキサン= 1:10~1:5)に付し、表題化合物の混合物(0.82g)を無色油状物として得た。混合物は分離せずに、次の反応に用いた。収率 64%。 $MS m/z 348 (MH^{+})$.

[0221]

参考例23 [4'-[(4-フルオロフェノキシ)メチル]-2',6'-ジメチルビフェニル-3-イル]メタノール及び[2'-[(4-フルオロフェノキシ)メチル]-4',6'-ジメチルビフェニル-3-イル]メタノール

[0222]

[0223]

p-フルオロフェノール(0.32g, 2.85mmol)と水素化ナトリウム(89mg, 2.60mmol)の無水 テトラヒドロフラン(20ml)-N,N-ジメチルホルムアミド(10ml)の混合溶液を、氷冷下20分 間攪拌した。その溶液に、参考例22で得られた混合物(0.82g, 2.36mmol)を加え、室温で1 8時間攪拌した。反応溶液を酢酸エチルで希釈し、クエン酸水溶液、水、塩化ナトリウム 水溶液で順次洗浄後、硫酸マグネシウムで乾燥、減圧濃縮した。得られた淡黄色油状物を 無水テトラヒドロフラン(30ml)に溶解し、氷冷した。この溶液に1.5mol/l-水素化ジイソ ブチルアルミニウムトルエン溶液(5.0ml, 7.5mmol)を滴下した。この溶液を氷冷下で5時 間攪拌した後、反応溶液に希塩酸を加え、酢酸エチルで抽出し、塩化ナトリウム水溶液で 洗浄後、硫酸マグネシウムで乾燥、減圧濃縮した。得られた残渣をシリカゲルカラムクロ マトグラフィー(酢酸エチル: ヘキサン=1:10~1:5~1:3~1:1)に付し、表 題化合物の混合物(0.74g)を無色油状物として得た。混合物は分離せずに、次の反応に用 いた。収率 93%。

MS m/z 319 (M-OH).

[0224]

参考例24 3-[4-[(3-ブロモベンジル)オキシ]フェニル]プロパン酸メチル

[0225]

【化37】

3-(4-ヒドロキシフェニル) プロパン酸メチル <math>(0.3 g, 1.67 mmol)のN, N-ジメチルホルムアミド溶液(4.0 mL)に、0℃撹拌下60%水素化ナトリウム(0.073 g, 1.83 mmol)を加え 、同温にて15分間撹拌した。次いで、本混合物に、0℃撹拌下3-ブロモベンジルブロミド (0.44 g, 1.75 mmol) を加え、室温で2時間撹拌した。反応液を酢酸エチルにて希釈し、 5%硫酸水素カリウム水溶液及び飽和食塩水にて洗浄した。酢酸エチル層を硫酸マグネシウ ムにて乾燥した後、減圧濃縮し、無色粉末の表題化合物(0.84 g, 収率72%)を得た。 1 H NMR (CDCl₃) δ : 2.60(2H, t, J=7.8Hz), 2.90(2H, t, J=7.8Hz), 3.67(3H, s), 5.0 1(2H, s), 6.88(2H, d, J=8.4Hz), 7.12(2H, d, J=8.4Hz), 7.25(1H, m), 7.35(1H, d, J=8.4Hz)=7.5Hz), 7.45(1H, d, J=7.5Hz), 7.59(1H, s).

[0227]

実施例 1 $3-(4-\{[2'-メチル-4'-(テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェニル-3-$ イル]メトキシ} フェニル) プロパン酸メチル

[0228]

3-(4-ヒドロキシフェニル)プロパン酸メチル (1.43 g、7.94 mmol)、[2'-メチル-4'-(

テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェニル-3-イル]メタノール(2.37 g、7.94 m mol) およびトリブチルホスフィン (2.97 mL、11.9 mmol) のトルエン(120 mL) 溶液を氷 冷下攪拌し、1,1'-(アゾジカルボニル)ジピペリジン (3.00 g、11.9 mmol) を少量ずつ加 え、室温まで昇温して 24 時間撹拌した。反応液にヘキサン(60 ㎡)を加え、析出した 不溶物を濾別して、濾液を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン~20% 酢酸エチル/ヘキサン)で精製して、表題化合物を無色油状物 (3.05 g、 収率 83%)として得た。

 1 H NMR (CDCl₃) δ : 1.58-1.75(3H, m), 1.85-1.90(2H, m), 1.97-2.08(1H, m), 2.23(3) H, s), 2.60(2H, t, J=7.8Hz), 2.89(2H, t, J=7.8Hz), 3.61-3.66(4H, m), 3.91-3.99(1)H, m), 5.07(2H, s), 5.46(1H, t, J=3.1Hz), 6.88-6.97(4H, m), 7.08-7.16(3H, m), 24-7.27(1H, m), 7.35-7.43(3H, m).

[0230]

実施例 2 3-(4-1[2'-メチル-4'-(テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェニル-3-イル]メトキシ| フェニル) プロパン酸

[0231]

【化39】

[0232]

3-(4-{[2'-メチル-4'-(テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェニル-3-イル]メ トキシ}フェニル)プロパン酸メチル (0.599 g、1.30 mmol) のメタノール(6 mL) および テトラヒドロフラン(6 mL)混合溶液に 2 M 水酸化ナトリウム水溶液(2 mL)を加え、 室温で 24 時間撹拌した。反応液に水を加え、10% クエン酸水溶液で中和して、酢酸エチ ルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮し た。残渣を酢酸エチルーヘキサンから再結晶し、表題化合物 (0.436 g、収率 75%) を無 色針状晶として得た。

 1 H NMR (CDC1₃) δ : 1.58–1.76(3H, m), 1.85–1.90(2H, m), 1.97–2.10(1H, m), 2.23(3 H, s), 2.65(2H, t, J=7.6Hz), 2.91(2H, t, J=7.6Hz), 3.60-3.66(1H, m), 3.91-3.99(1)H, m), 5.08(2H, s), 5.46(1H, t, J=3.1Hz), 6.89-6.97(4H, m), 7.11-7.16(3H, m), 7.80-6.97(4H, m), 7.11-7.16(3H, m), 24-7.27(1H, m), 7.35-7.43(3H, m).

[0233]

実施例3 3-{4-[(4'-ヒドロキシ-2'-メチルビフェニル-3-イル)メトキシ]フェニル}プロ パン酸メチル

[0234]

【化40】

[0235]

3-(4-{[2'-メチル-4'-(テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェニル-3-イル]メ トキシ}フェニル)プロパン酸メチル (3.78 g、8.21 mmol) および p-トルエンスルホン酸 一水和物 (0.156 g、0.821 mmol) のメタノール (60 mL) 溶液を室温で 2 時間攪拌した 。反応溶媒を減圧留去した後、残渣を酢酸エチルで希釈し、飽和食塩水で洗浄、無水硫酸 マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(20 %~60% 酢酸エチル/ヘキサン)で精製して、表題化合物(3.04 g、収率 98%)を無色粘

稲性油状物として得た。

 $MS m/z 377 (MH^{+}).$

[0236]

実施例 4 3-{4-[(4'-ヒドロキシ-2'-メチルビフェニル-3-イル)メトキシ]フェニル}プロ パン酸

[0237]

【化41】

[0238]

実施例2と同様にして、3-{4-[(4'-ヒドロキシ-2'-メチルビフェニル-3-イル)メトキシ]フェニル}プロパン酸メチルから表題化合物を無色プリズム晶として得た。収率 31%(へ キサンー酢酸エチルから再結晶)。

 1 H NMR (CDCl₃) δ : 2.21(3H, s), 2.65(2H, t, J=7.7Hz), 2.91(2H, t, J=7.7Hz), 5.0 $7\,(2\text{H, s})\,,\,\,6.\,69-6.\,75\,(2\text{H, m})\,,\,\,6.\,92\,(2\text{H, d, J=8.\,7Hz})\,,\,\,7.\,09-7.\,15\,(3\text{H, m})\,,\,\,7.\,23-7.\,26\,(1\text{H, m})\,$, m), 7.35-7.43(3H, m).

[0239]

実施例 5 3- {4-[(4'-メトキシ-2'-メチルビフェニル-3-イル)メトキシ]フェニル} プロパ ン酸メチル

[0240]

【化42】

[0241]

実施例 1 と同様にして、 $3-\frac{1}{4}-[(4'-ヒドロキシ-2'-メチルビフェニル-3-イル)メトキシ$]フェニル}プロパン酸メチルおよびメタノールから表題化合物を淡黄色油状物として得た 。収率 92%。

 1 H NMR (CDCl₃) δ : 2.24(3H, s), 2.60(2H, t, J=7.8Hz), 2.89(2H, t, J=7.8Hz), 3.6 6(3H, s), 3.83(3H, s), 5.07(2H, s), 6.77-6.82(2H, m), 6.91(2H, d, J=8.7Hz), 7.10-7.17(3H, m), 7.24-7.27(1H, m), 7.35-7.43(3H, m).

[0242]

実施例 6 3-{4-[(4'-メトキシ-2'-メチルビフェニル-3-イル)メトキシ]フェニル} プロパ ン酸

[0243]

【化43】

[0244]

実施例 2 と同様にして、3- {4-[(4'-メトキシ-2'-メチルビフェニル-3-イル)メトキシ] フェニル プロパン酸メチルから表題化合物を無色針状晶として得た。収率 56% (ヘキサ ンー酢酸エチルから再結晶)。

 $^{-1}$ H NMR (CDCl₃) δ : 2.24(3H, s), 2.65(2H, t, J=7.7Hz), 2.91(2H, t, J=7.7Hz), 3.8 3(3H, s), 5.08(2H, s), 6.77-6.81(2H, m), 6.92(2H, d, J=8.7Hz), 7.11-7.18(3H, m), 7.24-7.27(1H, m), 7.36-7.44(3H, m).

[0245]

実施例7 3-(4-{[4'-(シクロプロピルメトキシ)-2'-メチルビフェニル-3-イル]メトキシ |フェニル)プロパン酸メチル

[0246]

【化44】

[0247]

実施例 1 と同様にして、 $3-\frac{1}{4}-[(4'-ヒドロキシ-2'-メチルビフェニル-3-イル)メトキシ$]フェニル} プロパン酸メチルおよびシクロプロピルメタノールから表題化合物を無色油状 物として得た。収率 85%。

$MS m/z 431(MH^+)$.

[0248]

実施例8 3-(4-{[4'-(シクロプロピルメトキシ)-2'-メチルビフェニル-3-イル]メトキシ **∤フェニル)プロパン酸**

[0249]

【化45】

[0250]

実施例 2 と同様にして、 $3-(4-\{[4'-(シクロプロピルメトキシ)-2'-メチルビフェニル-3$ -イル]メトキシ}フェニル)プロパン酸メチルから表題化合物を無色針状晶として得た。収 率 43% (ヘキサンー酢酸エチルから再結晶)。

$MS m/z 417(MH^{+})$.

[0251]

実施例 9 3-{4-[(4'-イソプロポキシ-2'-メチルビフェニル-3-イル)メトキシ]フェニル} プロパン酸メチル

[0252]

【化46】

[0253]

実施例1と同様にして、3-{4-[(4'-ヒドロキシ-2'-メチルビフェニル-3-イル)メトキシ]フェニル|プロパン酸メチルおよび2-プロパノールから表題化合物を無色油状物として得 た。収率 78%。

$MS m/z 419(MH^{+}).$

[0254]

実施例10 3-{4-[(4'-イソプロポキシ-2'-メチルビフェニル-3-イル)メトキシ]フェニ

ル プロパン酸

[0255]

【化47】

[0256]

実施例2と同様にして、3- 4-[(4'-イソプロポキシ-2'-メチルビフェニル-3-イル)メト キシ]フェニル}プロパン酸メチルから表題化合物を無色針状晶として得た。収率 56%(へ キサンー酢酸エチルから再結晶)。

 $MS m/z 405(MH^{+})$.

[0257]

実施例 1 1 3-(4-{[4'-(ベンジルオキシ)-2'-メチルビフェニル-3-イル]メトキシ}フェ ニル)プロパン酸メチル

[0258]

【化48】

[0259]

実施例 1 と同様にして、 $3-\frac{1}{4}-[(4'-ヒドロキシ-2'-メチルビフェニル-3-イル)メトキシ$]フェニル プロパン酸メチルおよびベンジルアルコールから表題化合物を無色油状物とし て得た。収率 79%。

 $MS m/z 467 (MH^{+})$.

[0260]

実施例12 3-(4-{[4'-(ベンジルオキシ)-2'-メチルビフェニル-3-イル]メトキシ}フェ ニル)プロパン酸

[0261]

【化49】

[0262]

実施例 2 と同様にして、 $3-(4-\{[4'-(ベンジルオキシ)-2'-メチルビフェニル-3-イル]メ$ トキシ}フェニル)プロパン酸メチルから表題化合物を無色針状晶として得た。収率 45% (ヘキサンー酢酸エチルから再結晶)。

 $MS m/z 453(MH^{+})$.

[0263]

実施例13 3-[4-({2'-メチル-4'-[2-(4-メチル-1,3-チアゾール-5-イル)エトキシ]ビフ ェニル-3-イル}メトキシ)フェニル]プロパン酸メチル

[0264]

【化50】

[0265]

実施例 1 と同様にして、 $3-\{4-[(4'-ヒドロキシ-2'-メチルビフェニル-3-イル)メトキシ$]フェニル} プロパン酸メチルおよび2-(4-メチル-1,3-チアゾール-5-イル)エタノールから 表題化合物を茶色油状物として得た。収率 62%。

$MS m/z 502(MH^{+})$.

[0266]

実施例14 3-[4-({2'-メチル-4'-[2-(4-メチル-1,3-チアゾール-5-イル)エトキシ]ビフ ェニル-3-イル メトキシ)フェニル]プロパン酸

[0267]

【化51】

[0268]

実施例 2 と同様にして、3-[4-({2'-メチル-4'-[2-(4-メチル-1,3-チアゾール-5-イル) エトキシ]ビフェニル-3-イル メトキシ)フェニル]プロパン酸メチルから表題化合物を無 色板状晶として得た。収率 77% (ヘキサン-酢酸エチルから再結晶)。 $MS m/z 488 (MH^{+})$.

[0269]

実施例15 3-(4-{[2'-メチル-4'-(3-(ピリジン-2-イル)プロポキシ)ビフェニル-3-イル]メトキシ}フェニル)プロパン酸メチル

[0270]

【化52】

[0271]

3- {4-[(4'-ヒドロキシ-2'-メチルビフェニル-3-イル)メトキシ]フェニル} プロパン酸メ チル (0.602 g、1.60 mmol)、3-(ピリジン-2-イル)プロパン-1-オール (0.822 g、6.00 m mol) およびトリフェニルホスフィン (1.57 g、6.00 mmol) のテトラヒドロフラン (20 m L) 溶液を氷冷下攪拌し、アゾジカルボン酸ジエチル (40%トルエン溶液、2.72 mL、6.00 mmol) を加え、室温まで昇温して 42 時間撹拌した。反応液を減圧濃縮し、残渣をシリカ ゲルカラムクロマトグラフィー(20%~60% 酢酸エチル/ヘキサン)および分取HPLCで精 製して、表題化合物を黄色粘稠性油状物 (0.446 g、収率 56%) として得た。 $MS m/z 496(MH^{+})$.

[0272]

実施例16 3-(4-{[2'-メチル-4'-(3-(ピリジン-2-イル)プロポキシ)ビフェニル-3-イル]メトキシ}フェニル)プロパン酸

[0273]

[0274]3-(4-{[2'-メチル-4'-(3-(ピリジン-2-イル)プロポキシ)ビフェニル-3-イル]メトキシ フェニル)プロパン酸メチル(0.401 g、0.809 mmol)のメタノール(5 mL)およびテトラ ヒドロフラン (5 mL) 混合溶液に 2 M 水酸化ナトリウム水溶液 (1.5 mL) を加え、室温 で 75 時間撹拌した。反応液に水を加え、10% クエン酸水溶液で中和して、酢酸エチルで 抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。 残渣をシリカゲルカラムクロマトグラフィー(50% 酢酸エチル/ヘキサン~酢酸エチル) で精製し、酢酸エチルーヘキサンから再結晶して、表題化合物(0.186 g、収率 48%)を 無色プリズム晶として得た。

$MS m/z 482(MH^+)$.

[0275]実施例 1 7 3-(4-{[2'-メチル-4'-(1-プロピルブトキシ)ビフェニル-3-イル]メトキシ} フェニル)プロパン酸メチル

[0276]【化54】

[0277]

実施例 1 と同様にして、 $3-\frac{1}{4}-[(4'-ヒドロキシ-2'-メチルビフェニル-3-イル)メトキシ$]フェニル|プロパン酸メチルおよび4-ヘプタノールから表題化合物を無色油状物として得 た。収率 65%。

 1 H NMR (CDC1₃) δ : 0.94(6H, t, J=7.2Hz), 1.31-1.81(8H, m), 2.22(3H, s), 2.60(2H) , t, J=7.8Hz), 2.89(2H, t, J=7.8Hz), 3.66(3H, s) 4.23-4.31(1H, m), 5.07(2H, s), 6.74-6.80(2H, m) 6.88-6.93(2H, m), 7.10-7.16(3H, m), 7.25-7.28(1H, m), 7.36-7.43 (3H, m).

[0278]

実施例18 3-(4-{[2'-メチル-4'-(1-プロピルブトキシ)ビフェニル-3-イル]メトキシ} フェニル)プロパン酸

[0279]

【化55】

[0280]

実施例 2 と同様にして、3-(4-{[2'-メチル-4'-(1-プロピルブトキシ)ビフェニル-3-イ ル]メトキシ}フェニル)プロパン酸メチルから表題化合物を無色針状晶として得た。収率 77% (ヘキサンー酢酸エチルから再結晶)。

 $^{1}\text{H NMR (CDCl}_{3})$ δ : 0.94(6H, t, J=7.3Hz), 1.33-1.76(8H, m), 2.22(3H, s), 2.65(2H) , t, J=7.7Hz), 2.91(2H, t, J=7.7Hz), 4.23-4.31(1H, m), 5.07(2H, s), 6.73-6.80(2H, t, J=7.7Hz) , m), 6.92(2H, d, J=8.6Hz), 7.13(3H, d, J=8.6Hz), 7.24-7.28(1H, m), 7.35-7.43(3H, m), m).

[0281]

実施例19 3-(4-{[4'-(ベンジルオキシ)-2',6'-ジメチルビフェニル-3-イル]メトキシ} -2-フルオロフェニル) プロパン酸エチル

[0282]

【化56】

[0283]

実施例1と同様にして、3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エチルおよ び[4'-(ベンジルオキシ)-2',6'-ジメチルビフェニル-3-イル]メタノールから表題化合物 を無色油状物として得た。収率 76%。

$MS m/z 513(MH^{+})$.

[0284]

実施例20 3-(4-{[4'-(ベンジルオキシ)-2',6'-ジメチルビフェニル-3-イル]メトキシ} -2-フルオロフェニル)プロパン酸

[0285]

【化57】

[0286]

実施例 2 と同様にして、 $3-(4-\{[4'-(ベンジルオキシ)-2',6'-ジメチルビフェニル-3-イ$ ル]メトキシ}-2-フルオロフェニル)プロパン酸エチルから表題化合物を無色プリズム晶と して得た。収率 57% (ヘプタン-酢酸エチルから再結晶)。

$MS m/z 485(MH^+)$.

[0287]

実施例21 3-(4-{[4'-(2-エトキシエトキシ)-2',6'-ジメチルビフェニル-3-イル]メト キシ}-2-フルオロフェニル)プロパン酸エチル

[0288]

【化58】

[0289]

実施例1と同様にして、3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エチルおよ び[4'-(2-エトキシエトキシ)-2',6'-ジメチルビフェニル-3-イル]メタノールから表題化 合物を無色油状物として得た。収率 93%。

$MS m/z 495(MH^{+})$.

[0290]

実施例22 3-(4-{[4'-(2-エトキシエトキシ)-2',6'-ジメチルビフェニル-3-イル]メト キシ}-2-フルオロフェニル)プロパン酸

[0292]

実施例 2 と同様にして、3-(4-{[4'-(2-エトキシエトキシ)-2',6'-ジメチルビフェニル-3-イル]メトキシ}-2-フルオロフェニル)プロパン酸エチルから表題化合物を無色プリズム 晶として得た。収率 77% (ヘキサンー酢酸エチルから再結晶)。 $MS m/z 467(MH^{+})$.

[0293]

実施例23 3-(4-{[2',6'-ジメチル-4'-(テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェ ニル-3-イル]メトキシ}-2-フルオロフェニル)プロパン酸エチル

[0294]

【化60】

[0295]

実施例1と同様にして、3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エチルおよ び[2',6'-ジメチル-4'-(テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェニル-3-イル]メタ ノールから表題化合物を無色油状物として得た。収率 89%。

$MS m/z 507 (MH^{+})$.

[0296]

実施例24 3-{2-フルオロ-4-[(4'-ヒドロキシ-2',6'-ジメチルビフェニル-3-イル)メト キシ]フェニル| プロパン酸エチル

[0297]

【化61】

[0298]

実施例3と同様にして、3-(4-{[2',6'-ジメチル-4'-(テトラヒドロ-2H-ピラン-2-イル オキシ)ビフェニル-3-イル]メトキシ}-2-フルオロフェニル)プロパン酸エチルから表題化 合物を無色油状物として得た。収率 97%。

$MS m/z 423(MH^+)$.

[0299]

実施例25 3-{2-フルオロ-4-[(4'-ヒドロキシ-2',6'-ジメチルビフェニル-3-イル)メト キシ]フェニル プロパン酸

[0300]

[0301]

実施例2と同様にして、3-{2-フルオロ-4-[(4'-ヒドロキシ-2',6'-ジメチルビフェニル -3-イル)メトキシ]フェニル プロパン酸エチルから表題化合物を無色プリズム晶として得 た。収率 82% (ヘキサン-酢酸エチルから再結晶)。

$MS m/z 395(MH^+)$.

[0302]

実施例 2 6 3-(4-{[2',6'-ジメチル-4'-(1-プロピルブトキシ)ビフェニル-3-イル]メト キシ}-2-フルオロフェニル)プロパン酸エチル

[0303]

【化63】

[0304]

実施例 1 と同様にして、 $3-\frac{1}{2}$ -フルオロ-4-[(4'-ヒドロキシ-2',6'-ジメチルビフェニル-3-イル)メトキシ]フェニル} プロパン酸エチルおよび 4-ヘプタノールから表題化合物を 無色油状物として得た。収率 88%。

 $^{1}\text{H NMR (CDCl}_{3})$ δ : 0.94(6H, t, J=7.2Hz), 1.23(3H, t, J=7.2Hz), 1.33-1.76(8H, m) , 1.98(6H, s), 2.57(2H, t, J=7.6Hz), 2.89(2H, t, J=7.6Hz), 4.12(2H, q, J=7.2Hz), $4.21 - 4.29(1 \text{H, m}), \ 5.06(2 \text{H, s}), \ 6.62 - 6.70(4 \text{H, m}), \ 7.05 - 7.12(2 \text{H, m}), \ 7.18(1 \text{H, s}), \ 6.62 - 6.70(4 \text{H, m}), \ 7.05 - 7.12(2 \text{H, m}), \ 7.18(1 \text{H, s}), \ 6.62 - 6.70(4 \text{H, m}), \ 7.05 - 7.12(2 \text{H, m}), \ 7.18(1 \text{H, s}), \ 6.62 - 6.70(4 \text{H, m}), \ 7.05 - 7.12(2 \text{H, m}), \ 7.18(1 \text{H, s}), \ 6.62 - 6.70(4 \text{H, m}), \ 7.05 - 7.12(2 \text{H, m}), \ 7.18(1 \text{H, s}), \ 7.18(1 \text{H$ 7.33-7.38(1H, m), 7.42(1H, t, J=7.5Hz).

[0305]

実施例 2 7 3-(4-{[2',6'-ジメチル-4'-(1-プロピルブトキシ)ビフェニル-3-イル]メト キシ} -2-フルオロフェニル) プロパン酸

[0306]

【化64】

[0307]

実施例 2 と同様にして、 $3-(4-\{[2',6'-ジメチル-4'-(1-プロピルブトキシ) ビフェニル-$ 3-イル]メトキシ}-2-フルオロフェニル)プロパン酸エチルから表題化合物を無色針状晶と して得た。収率 62% (ヘプタン-酢酸エチルから再結晶)。

 $^{1}\text{H NMR (CDCl}_{3})$ δ : 0.94(6H, t, J=7.3Hz), 1.33-1.76(8H, m), 1.97(6H, s), 2.64(2H) , t, J=7.6Hz), 2.91(2H, t, J=7.6Hz), 4.21-4.29(1H, m), 5.06(2H, s), 6.63-6.71(4H, s), m), 7.06-7.13(2H, m), 7.18(1H, s), 7.33-7.38(1H, m), 7.42(1H, t, J=7.4Hz).

[0308]

実施例 2 8

3-[4-[[2',6'-ジメチル-4'-(テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェニル-3-イル]メトキシ]フェニル]プロパン酸メチル

[0310]

3-(4-ヒドロキシフェニル)プロパン酸メチル(3.28 g, 18.2 mmol)、[2', 6'-ジメチル-4]'-(テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェニル-3-イル]メタノール(5.15 g, 16.5 mmol) およびトリフェニルホスフィン (5.63 g, 21.5 mmol) のテトラヒドロフラン (10 0 mL) 溶液に、0℃撹拌下アゾジカルボン酸ジエチル(40%トルエン溶液, 9.7 mL) を滴 下し、室温にて48時間撹拌した。反応液を減圧濃縮し、残渣をシリカゲルカラムクロマト グラフィー(ヘキサン/酢酸エチル=10/1~ヘキサン/酢酸エチル=3/1)にて精製し、黄色 油状の表題化合物 (2.92 g、収率 37%) を得た。

 1 H NMR (CDCl₃) δ : 1.57-1.78(3H, m), 1.82-1.90(2H, m), 1.98(6H, s), 2.02(1H, m), 2.59(2H, t, J=7.8Hz), 2.89(2H, t, J=7.8Hz), 3.62(1H, m), 3.66(3H, s), 3.97(1H, m), 3.97(1H, m)m), 5.08(2H, s), 5.45(1H, t, J=3.0Hz), 6.81(2H, s), 6.89(2H, d, J=8.4Hz), 7.05-7.14(3H, m), 7.18(1H, s), 7.34-7.47(2H, m).

[0311]

実施例 2 9

3-[4-[(4'-ヒドロキシ-2',6'-ジメチルビフェニル-3-イル)メトキシ]フェニル]プロパン酸メチル

[0312]

【化66】

[0313]

3-[4-[[2',6'-ジメチル-4'-(テトラヒドロ-2H-ピラン-2-イルオキシ)ビフェニル-3-イ ル]メトキシ]フェニル]プロパン酸メチル(2.92 g, 6.15 mmol)、p-トルエンスルホン酸ー 水和物(0.12 g, 0.62 mmol)及びメタノール(60 mL)の混合物を室温にて2時間攪拌し、減 圧下に濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=10 /1~ヘキサン/酢酸エチル=1/2)にて精製し、赤色油状の表題化合物(2.12 g、収率 88%) を得た。

 1 H NMR (CDC1₃) δ : 1.96(6H, s), 2.59(2H, t, J=7.8Hz), 2.89(2H, t, J=7.8Hz), 3.66 (3H, s), 4.63(1H, s), 5.08(2H, s), 6.59(2H, s), 6.89(2H, d, J=8.7Hz), 7.05-7.13(3H, m), 7.17(1H, s), 7.35-7.45(2H, m).

[0314]

実施例30

3-[4-[(4'-メトキシ-2',6'-ジメチルビフェニル-3-イル)メトキシ]フェニル]プロパン酸

[0315]

【化67】

[0316]

3-[4-[(4'-ヒドロキシ-2',6'-ジメチルビフェニル-3-イル)メトキシ]フェニル]プロパ ン酸メチル (0.20 g, 0.51 mmol)、メタノール (0.041 mL, 1.02 mmol) およびトリフェ ニルホスフィン (0.18 g, 0.67 mmol) のテトラヒドロフラン (4.0 mL) 溶液に、0℃撹拌 下アゾジカルボン酸ジエチル (40%トルエン溶液, 0.30 mL) を滴下し、室温にて12時間 撹拌した。反応液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン /酢酸エチル=10/1~ヘキサン/酢酸エチル=3/1) にて精製し、黄色油状物(0.13 g、収率6 5%) を得た。

ついで、本品、メタノール(2 mL)及びテトラヒドロフラン(4 mL)の混合物に、室温攪拌 下、1規定水酸化ナトリウム水溶液(0.66 mL)を加え、同温にて1時間攪拌した。反応液を1 規定塩酸にてpH3に調整し、酢酸エチルにて分液抽出した。酢酸エチル層を水及び飽和食 塩水にて洗浄し、硫酸マグネシウムにて乾燥後、減圧下に濃縮した。残渣をシリカゲルカ ラムクロマトグラフィー (ヘキサン/酢酸エチル=4/1~ヘキサン/酢酸エチル=1/2) にて精 製し、無色結晶の表題化合物 (0.12 g、収率 89%) を得た。

MS(APCI-): 389(M-H).

[0317]

実施例31

3-[4-[(4'-ヒドロキシ-2',6'-ジメチルビフェニル-3-イル)メトキシ]フェニル]プロパン

[0318]【化68】

[0319]

3-[4-[(4'-ヒドロキシ-2',6'-ジメチルビフェニル-3-イル)メトキシ]フェニル]プロパ ン酸メチル (0.18 g, 0.46 mmol)のメタノール(2 mL)及びテトラヒドロフラン(4 mL)混合 溶液に、1規定水酸化ナトリウム水溶液(0.91 mL)を加え、室温にて1時間撹拌した。反応 液を濃縮後、残留物を酢酸エチルにて希釈し、1規定塩酸及び飽和食塩水にて洗浄、乾燥 後、減圧濃縮した。残渣をヘキサン/酢酸エチル=4/1より結晶化させ、無色結晶の表題化 合物 (0.13 g、収率 74%) を得た。

MS(APCI-): 375(M-H).

[0320]

実施例32

3-[4-[(4'-クロロ-2'-メチルビフェニル-3-イル)メトキシ]フェニル]プロパン酸メチル

[0321]【化69】

[0322]

3-[4-[(3-ブロモベンジル)オキシ]フェニル]プロパン酸メチル <math>(0.5 g, 1.43 mmol)、4 -クロロ-2-メチルフェニルボロン酸 (0.30 g, 1.72 mmol)、テトラキス (トリフェニルホ スフィン) パラジウム(0) (0.083 g, 0.072 mmol)、炭酸ナトリウム (0.46 g, 4.29 mmol)、水 (5 mL)、エタノール (5 mL)及びトルエン (25 mL)の混合物を、アルゴン雰囲気下9 0℃にて16時間撹拌した。反応液を冷却後、反応液を酢酸エチルにて希釈し、水及び飽和

食塩水にて洗浄、乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル= $10/1\sim4/1$)にて精製し、無色油状の表題化合物(0.50~g、収率 88%) を得た。

 1 H NMR (CDC1₃) δ : 2.22(3H, s), 2.60(2H, t, J=7.8Hz), 2.90(2H, t, J=7.8Hz), 3.66 (3H, s), 5.08(2H, s), 6.91(2H, d, J=8.7Hz), 7.08-7.28(6H, m), 7.34(1H, br), 7.38(2H, s), 5.08(2H, s), 6.91(2H, d, J=8.7Hz), 7.08-7.28(6H, m), 7.34(1H, br), 7.38(2H, s), 6.91(2H, d, J=8.7Hz), 7.08-7.28(6H, m), 7.34(1H, br), 7.38(2H, s), 6.91(2H, d, J=8.7Hz), 7.08-7.28(6H, m), 7.34(1H, br), 7.38(2H, s), 6.91(2H, d, J=8.7Hz), 7.08-7.28(6H, m), 7.34(1H, br), 7.38(2H, s), 6.91(2H, d, J=8.7Hz), 7.08-7.28(6H, m), 7.34(1H, br), 7.38(2H, s), 6.91(2H, d, J=8.7Hz), 7.08-7.28(6H, m), 7.34(1H, br), 7.38(2H, s), 6.91(2H, s), 6.91(-7.46(2H, m).

[0323]

実施例 3 3

3-[4-[(4'-クロロ-2'-メチルビフェニル-3-イル)メトキシ]フェニル]プロパン酸

[0324]

【化70】

[0325]

実施例31と同様にして、3-[4-[(4'-クロロ-2'-メチルビフェニル-3-イル)メトキシ] フェニル]プロパン酸メチルから表題化合物を得た。無色結晶(収率73%)。

MS(APCI-): 379(M-H), 381.

[0326]

実施例34

3-[4-[(4'-フルオロ-2'-メチルビフェニル-3-イル)メトキシ]フェニル]プロパン酸メチル

[0327]

【化71】

[0328]

実施例32と同様にして、3-[4-[(3-ブロモベンジル)オキシ]フェニル]プロパン酸メチ ル及び4-フルオロ-2-メチルフェニルボロン酸から表題化合物を得た。無色結晶(収率 94

 $^{1}\text{H NMR (CDC1}_{3})$ δ : 2.23(3H, s), 2.60(2H, t, J=7.8Hz), 2.90(2H, t, J=7.8Hz), 3.66 (3H, s), 5.08(2H, s), 6.86-7.00(4H, m), 7.07-7.28(4H, m), 7.31-7.46(3H, m).

[0329]

実施例35

3-[4-[(4'-フルオロ-2'-メチルビフェニル-3-イル)メトキシ]フェニル]プロパン酸

[0330]

【化72】

[0331]

実施例31と同様にして、3-[4-[(4'-フルオロ-2'-メチルビフェニル-3-イル)メトキシ

]フェニル]プロパン酸メチルから表題化合物を得た。無色結晶(収率81%)。 MS(APCI-): 363(M-H).

[0332]

実施例36

3-[4-[[4'-(2-エトキシエトキシ)-2',6'-ジメチルビフェニル-3-イル]メトキシ]フェニル]プロパン酸メチル

[0333]

【化73】

[0334]

3-[4-[(4'-ヒドロキシ-2',6'-ジメチルビフェニル-3-イル)メトキシ]フェニル]プロパ ン酸メチル (0.20 g, 0.51 mmol)、2-エトキシエタノール (0.099 mL, 1.02 mmol) およ びトリフェニルホスフィン (0.18 g, 0.67 mmol) のテトラヒドロフラン (4.0 mL) 溶液 に、0℃撹拌下アゾジカルボン酸ジエチル(40%トルエン溶液, 0.30 mL)を滴下し、室温 にて12時間撹拌した。反応液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=10/1~ヘキサン/酢酸エチル=3/1) にて精製し、無色油状物の表 題化合物(0.12 g、収率 51%)を得た。

 1 H NMR (CDC1₃) δ : 1.25(3H, t, J=6.9Hz), 1.98(6H, s), 2.59(2H, t, J=7.8Hz), 2.89 $(2H, t, J=7.8Hz), \ 3.62(2H, q, J=6.9Hz), \ 3.66(3H, s), \ 3.80(2H, t, J=5.1Hz), \ 4.14(3H, s), \ 4.14(3H, s$ 2H, t, J=5.1Hz), 5.08(2H, s), 6.68(2H, s), 6.89(2H, d, J=8.4Hz), 7.04-7.14(3H, m)), 7.17(1H, s), 7.35-7.45(2H, m).

[0335]

実施例37

3-[4-[[4'-(2-エトキシエトキシ)-2',6'-ジメチルビフェニル-3-イル]メトキシ]フェニル]プロパン酸

[0336]

【化74】

[0337]

3-[4-[[4'-(2-エトキシエトキシ)-2',6'-ジメチルビフェニル-3-イル]メトキシ]フェニ ル]プロパン酸メチル(0.12 g, 0.26 mmol)をメタノール(2 mL)及びテトラヒドロフラン(4 mL)の混合溶液に溶解し、室温攪拌下、1規定水酸化ナトリウム水溶液(0.52 mL)を加え、 同温にて2時間攪拌した。反応終了後、反応液を酢酸エチルにて希釈し、1規定塩酸、水 及び飽和食塩水にて順次洗浄、乾燥後、減圧濃縮した。残渣をヘキサン/酢酸エチル=4/1 より結晶化し、無色結晶の表題化合物(0.087 g、収率 75%) を得た。 MS(APCI-): 447(M-H).

[0338]

実施例38

3-[4-[[4'-(ベンジルオキシ)-2',6'-ジメチルビフェニル-3-イル]メトキシ]フェニル]プロパン酸メチル

[0340]

実施例36と同様にして、3-[4-[(4'-ヒドロキシ-2',6'-ジメチルビフェニル-3-イル) メトキシ]フェニル]プロパン酸メチル及びベンジルアルコールから表題化合物を得た。無 色油状物(収率 63%)。

 $^{1}\text{H NMR (CDC1}_{3})$ δ : 1.99(6H, s), 2.59(2H, t, J=7.8Hz), 2.89(2H, t, J=7.8Hz), 3.66 (3H, s), 5.07(2H, s), 5.08(2H, s), 6.75(2H, s), 6.89(2H, d, J=8.7Hz), 7.05-7.13(3H, m), 7.18(1H, s), 7.30-7.49(7H, m).

[0341]

実施例39

3-[4-[[4'-(ベンジルオキシ)-2',6'-ジメチルビフェニル-3-イル]メトキシ]フェニル]プ ロパン酸

[0342]

【化76】

[0343]

実施例37と同様にして、3-[4-[[4'-(ベンジルオキシ)-2',6'-ジメチルビフェニル-3-イル]メトキシ]フェニル]プロパン酸メチルから表題化合物を得た。無色結晶(収率 91%)

MS(APCI-): 465(M-H).

[0344]

実施例40

3-[4-[[4'-(シクロプロピルメトキシ)-2',6'-ジメチルビフェニル-3-イル]メトキシ]フェ ニル]プロパン酸メチル

[0345]

【化77】

[0346]

実施例36と同様にして、3-[4-[(4'-ヒドロキシ-2',6'-ジメチルビフェニル-3-イル) メトキシ]フェニル]プロパン酸メチル及びシクロプロピルメタノールから表題化合物を得 た。無色油状物(収率 69%)。

 $^{1}\text{H NMR (CDC1}_{3})$ δ : 0.31-0.39(2H, m), 0.60-0.69(2H, m), 1.27(1H, m), 1.98(6H, s), 2.59(2H, t, J=7.8Hz), 2.89(2H, t, J=7.8Hz), 3.66(3H, s), 3.81(2H, d, J=6.9Hz),5.08(2H, s), 6.66(2H, s), 6.89(2H, d, J=8.7Hz), 7.05-7.13(3H, m), 7.18(1H, s), 7.18(1H, s).35-7.45(2H, m).

[0347]

実施例41

3-[4-[[4'-(シクロプロピルメトキシ)-2',6'-ジメチルビフェニル-3-イル]メトキシ]フェ ニル]プロパン酸

[0348]

【化78】

[0349]

実施例37と同様にして、3-[4-[[4'-(シクロプロピルメトキシ)-2',6'-ジメチルビフ ェニル-3-イル]メトキシ]フェニル]プロパン酸メチルから表題化合物を得た。無色結晶(収率 76%)。

MS(APCI-): 429(M-H).

[0350]

実施例 4 2

3-[4-[[4'-[2-(ジメチルアミノ)エトキシ]-2',6'-ジメチルビフェニル-3-イル]メトキシ] フェニル]プロパン酸メチル

[0351]

【化79】

[0352]

実施例36と同様にして、3-[4-[(4'-ヒドロキシ-2',6'-ジメチルビフェニル-3-イル) メトキシ]フェニル]プロパン酸メチル及びN, N-ジメチルエタノールアミンから表題化合物 を得た。無色油状物(収率 38%)。

 $^{1}\text{H NMR (CDC1}_{3})$ δ : 1.98(6H, s), 2.35(6H, s), 2.59(2H, t, J=7.8Hz), 2.75(2H, t, J=7.8Hz) =5.7Hz), 2.89(2H, t, J=7.8Hz), 3.66(3H, s), 4.09(2H, t, J=5.7Hz), 5.08(2H, s), 6 .68(2H, s), 6.89(2H, d, J=8.7Hz), 7.05-7.13(3H, m), 7.18(1H, s), 7.35-7.45(2H, m)).

[0353]

実施例 4 3

3-[4-[[4'-[2-(ジメチルアミノ)エトキシ]-2',6'-ジメチルビフェニル-3-イル]メトキシ] フェニル]プロパン酸 トリフルオロ酢酸塩

[0354]

【化80】

[0355]

実施例37と同様にして、3-[4-[[4'-[2-(ジメチルアミノ)エトキシ]-2',6'-ジメチル ビフェニル-3-イル]メトキシ]フェニル]プロパン酸メチルから表題化合物を得た(本化合 物は分取HPLCを用いて精製した)。無色結晶(収率 87%)。

MS(APCI-): 446(M-H、フリー体として).

[0356]

実施例 4 4

3- |4-[(2',4'-ジメチルビフェニル-3-イル)メトキシ]フェニル プロパン酸メチル

[0357]

【化81】

[0358]

実施例1と同様にして、3-(4-ヒドロキシフェニル)プロパン酸メチルと(2',4'-ジメチ ルビフェニル-3-イル)メタノールより表記化合物を合成した。収率 83%。

 $MS m/z 375 (MH^{+}).$

[0359]

実施例 4 5

3-{4-[(2',4'-ジメチルビフェニル-3-イル)メトキシ]フェニル} プロパン酸

[0360]

【化82】

[0361]

実施例 2 と同様にして、 $3-\frac{1}{4}-[(2',4'-ジメチルビフェニル-3-イル)メトキシ]フェニル$ トプロパン酸メチルより表記化合物を合成した。収率 91%。

 $^{1}\text{H NMR (CDC1}_{3}) \quad \delta: \ 2.22(3\text{H,s}), \ 2.36(3\text{H,s}), \ 2.65(2\text{H,t,J=7.6Hz}), \ 2.91(2\text{H,t,J=7.6Hz})$), 5.08(2H, s), 6.91(2H, d, J=8.4Hz), 7.00-7.46(9H, m).

[0362]

実施例 4 6

3-{4-[(2',4',6'-トリメチルビフェニル-3-イル)メトキシ]フェニル}プロパン酸メチル

[0363]

【化83】

[0364]

実施例 1 と同様にして、3-(4-ヒドロキシフェニル)プロパン酸メチルと(2',4',6'-ト リメチルビフェニル-3-イル)メタノールより表記化合物を合成した。収率71%。

 $^{1}\text{H NMR (CDCl}_{3})$ δ : 1.98(6H,s), 2.32(3H,s), 2.59(2H,t,J=7.6Hz), 2.89(2H,t,J=7.6Hz)), 3.66(3H,s), 5.08(2H,s), 6.88(2H,d,J=8.8Hz), 6.93(2H,s), 7.05-7.48(6H,m).

[0365]

実施例 4 7

3-{4-[(2',4',6'-トリメチルビフェニル-3-イル)メトキシ]フェニル プロパン酸

[0366]

[0367]

実施例2と同様にして、3-{4-[(2',4',6'-トリメチルビフェニル-3-イル)メトキシ]フ ェニル}プロパン酸メチルより表記化合物を合成した。収率 88%。

 $^{1}\text{H NMR (CDC1}_{3})$ δ : 1.98(6H,s), 2.32(3H,s), 2.64(2H,t,J=7.4Hz), 2.90(2H,t,J=7.4Hz)), 5.08(2H,s), 6.89(2H,d,J=8.8Hz), 6.93(2H,s), 7.04-7.48(6H,m).

[0368]

実施例 4 8

3-(4-((6-メトキシ-2',4'-ジメチルビフェニル-3-イル)メトキシ)フェニル)プロパン酸 メチル

[0369]

【化85】

[0370]

実施例1と同様にして、3-(4-ヒドロキシフェニル)プロパン酸メチルと(6-メトキシ-2 ',4'-ジメチルビフェニル-3-イル)メタノールより表記化合物を合成した。収率68%。 1 H NMR (CDCl₃) δ 2.10(3H,s), 2.36(3H,s), 2.59(2H,t,J=7.6Hz), 2.90(2H,t,J=7.6Hz)), 3.66(3H, s), 3.77(3H, s), 4.98(2H, s), 6.90(2H, d, J=8.8Hz), 6.95(1H, d, J=8.4Hz), 7.86(3H, s).00-7.17(5H,m), 7.20(1H,d,J=2.2Hz), 7.39(1H,dd,J=2.2 & 8.4Hz).

[0371]

実施例 4 9

3-(4-((6-メトキシ-2',4'-ジメチルビフェニル-3-イル)メトキシ)フェニル)プロパン酸

[0372]

【化86】

$$H_3C$$
 CH_3 OH

[0373]

実施例 2 と同様にして、3-(4-((6-メトキシ-2',4'-ジメチルビフェニル-3-イル)メト キシ)フェニル)プロパン酸メチルより表記化合物を合成した。収率100%。

 $^{1}\text{H NMR (CDCl}_{3}) \quad \delta : \ 2.10(3\text{H},\text{s}), \ 2.36(3\text{H},\text{s}), \ 2.65(2\text{H},\text{t},\text{J=7.6Hz}), \ 2.91(2\text{H},\text{t},\text{J=7.6Hz})$), 3.77(3H, s), 4.99(2H, s), 6.84-7.18(8H, m), 7.20(1H, d, J=2.2Hz), 7.39(1H, dd, J=2.6)& 8.4Hz).

[0374]

実施例 5 0 3- {2-フルオロ-4-[(2',4',6'-トリメチルビフェニル-3-イル)メトキシ]フェニル プロパ ン酸エチル

[0375]

[0376]

実施例1と同様にして、3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エチルと(2' ,4',6'-トリメチルビフェニル-3-イル)メタノールより表記化合物を合成した。収率74%

 $MS m/z 421 (MH^{+}).$

[0377]

実施例51

3-{2-フルオロ-4-[(2',4',6'-トリメチルビフェニル-3-イル)メトキシ]フェニル} プロパ ン酸

[0378]

【化88】

[0379]

実施例2と同様にして、3-{2-フルオロ-4-[(2',4',6'-トリメチルビフェニル-3-イル) メトキシ]フェニル}プロパン酸エチルより表記化合物を合成した。収率77%。 APCI(-) 391 (M-H).

[0380]

実施例52及び53 3-{2-フルオロ-4-[(2'-(4-フルオロフェノキシメチル)-4',6'-ジ メチルビフェニル-3-イル)メトキシ]フェニル} プロパン酸エチル(実施例52)及び3-{2 -フルオロ-4-[(4'-(4-フルオロフェノキシメチル)-2',6'-ジメチルビフェニル-3-イル) メトキシ]フェニル| プロパン酸エチル (実施例53)

[0381] 【化89】

[0382]

参考例 2 3 で得られた混合物(0.74g, 2.20mmol)、3-(2-フルオロ-4-ヒドロキシフェニ ル)プロパン酸エチル(0.47g, 2.21mmol)、及びトリブチルホスフィン(0.71ml, 2.85mmol) の無水テトラヒドロフラン(40ml)溶液に1,1'-(アゾジカルボニル)ジピペリジン(0.72g, 2 .85mmol)を少量ずつ加え、室温で 18時間撹拌した。反応溶液をジエチルエーテル(40ml) で希釈し、析出物を濾別した後、濾液を減圧濃縮した。得られた残渣をシリカゲルカラム クロマトグラフィー(酢酸エチル:ヘキサン=1:10~1:5)に付し、表題化合物の混 合物(1.08g)を淡黄色油状物として得た。混合物は分離せずに、次の反応に用いた。収率 93%。

 $MS m/z 531(MH^{+}).$ 実施例54及び55 3-{2-フルオロ-4-[(2'-(4-フルオロフェノキシメチル)-4',6'-ジメチルビフェニル-3-イ ル)メトキシ]フェニル} プロパン酸(実施例 5 4)及び3-{2-フルオロ-4-[(4'-(4-フルオ ロフェノキシメチル)-2',6'-ジメチルビフェニル-3-イル)メトキシ]フェニル} プロパン酸 (実施例55)

実施例 5 2 及び 5 3 で得た3- $\{2-フルオロ-4-[(2'-(4-フルオロフェノキシメチル)-4',$ 6'-ジメチルビフェニル-3-イル)メトキシ]フェニル} プロパン酸エチル及び3-{2-フルオロ -4-[(4' -(4-フルオロフェノキシメチル)-2',6'-ジメチルビフェニル-3-イル)メトキシ] フェニル プロパン酸エチルの混合物(1.08g, 2.04 mmol)をテトラヒドロフラン(10 mL)と エタノール(10 mL)の混合溶媒に溶解した。この溶液に85%水酸化カリウム(0.34g, 5.15 mmol)の水溶液(5 mL)を加え、室温で18時間攪拌した。反応溶液を酢酸エチルで希釈し、 クエン酸水溶液、水、塩化ナトリウム水溶液で順次洗浄後、硫酸マグネシウムで乾燥、減 圧濃縮した。得られた残渣をキラルカラム(CHIRALPAK)クロマトグラフィー(ヘキサン:2-プロパノール:酢酸=94:6:0.1)に付し、各位置異性体を精製した。

3- |2-フルオロ-4-[(2'-(4-フルオロフェノキシメチル)-4',6'-ジメチルビフェニル-3-イル)メトキシ]フェニル}プロパン酸(657mg)を淡黄色油状物として得た。収率 64%。 1 H NMR (CDC1₃) δ : 2.03(3H,s), 2.38(3H,s), 2.63(2H,t,J=7.4Hz), 2.90(2H,t,J=7.4Hz) z), 4.59(2H,s), 5.00(2H,s), 6.57-7.18(9H,m), 7.23(2H,br s), 7.30-7.44(2H,m).

[0383] 【化90】

[0384]

3-{2-フルオロ-4-[(4'-(4-フルオロフェノキシメチル)-2',6'-ジメチルビフェニル-3-イル)メトキシ]フェニル}プロパン酸(141mg)を無色プリズム晶として得た。収率 14%。 1 H NMR (CDC1₃) δ : 2.02(6H,s), 2.05-3.00(4H,m), 4.97(2H,s), 5.07(2H,s), 6.62-6. 72(2H, m), 6.90-7.14(7H, m), 7.16(2H, s), 7.36-7.50(2H, m).

[0385]

【化91】

[0386]

3) 乳糖

製剤例1(カプセルの製造)

1) 実施例1の化合物

2) 微粉末セルロース

4) ステアリン酸マグネシウム

3 0 mg

1 0 mg

1 9 mg

1 mg

60 mg

上記1)、2)、3)および4)を混合して、ゼラチンカプセルに充填する。

製剤例2 (錠剤の製造) 1) 実施例1の化合物

2) 乳糖50 g3) トウモロコシデンプン15 g4) カルボキシメチルセルロースカルシウム4 4 g5) ステアリン酸マグネシウム1 g

1000錠 計140g

上記 1)、2) および 3) の全量と 3 0 gの 4) とを水で練合し、真空乾燥後、整粒を行う。この整粒末に 14 gの 4) および 1 gの 5) を混合し、打錠機により打錠する。このようにして、 1 錠あたり実施例 1 の化合物 3 0 m gを含有する錠剤 1 0 0 0 錠を得る。

[0387]

実験例1 ヒト由来GPR40に対する脂肪酸のEC5 0 値の決定

EC50値の決定にはヒト由来GPR40を安定発現したCHO細胞株を用いた。特に記載が無い限りこれらのCHO細胞株は10%牛胎児血清(Invitrogen)を含む $\alpha-MEM$ 培地(Invitrogen)を用いて培養した。

アッセイ前日に、ほぼコンフルエントになるまで培養した細胞を、PBS(Invitrogen)を用いてリンスした後、0.05%Trypsin·EDTA溶液(Invitrogen)を用いて剥がし、遠心操作にて回収した。得られた細胞の数を測定し、培地1mLあたり 3×10^5 個の細胞が含まれるように希釈し、Black welled 96-well plate (coster)に1穴あたり 100μ Lずつ分注後、 CO_2 培養器にて一晩培養した。このように調製したCHO細胞に各種試験サンプルを添加し、この際の細胞内カルシウム濃度の変動をFLIPR(Molecular Device)を用いて測定した。FLIPRにて細胞内カルシウム濃度の変動を測定するために、以下の前処置を施した。

まず、細胞に蛍光色素Fluo3-AM(DOJIN)を添加するため、あるいはFL IPRアッセイを行う直前に細胞を洗浄するためのアッセイバッファーを作成した。HB SS (Invitrogen, 1000mL) & 1M HEPES (pH 7.4, (D OJIN、20mL)を加えた溶液(以下、HBSS/HEPES溶液)に、プロベネシ ド (Sigma、710mgiを1N NaOH (5mL) に溶解後、さらにHBSS/ HEPES溶液 (5 m L) を加えて混合した溶液 (10 m L) を添加し、この溶液をアッ セイバッファーとした。次にFluo3-AM(50μg)をDMSO(Wako、21 μL) に溶解し、さらに等量の20%プルロン酸 (Molecular Probes) を加え混合後、牛胎児血清(105μ L)を添加したアッセイバッファー(10.6mL)に加え、蛍光色素溶液を調製した。アッセイ前日にBlack welled 96well plateにまきなおしたCHO細胞の培地を除き、直ちに蛍光色素溶液を1 穴あたり100μLずつ分注後、CO2培養器にて1時間培養し、細胞に蛍光色素を取り 込ませた。培養後の細胞は上記のアッセイバッファーを用いて洗浄した後、FLIPRに セットした。試験サンプルは、事前にDMSOを用いて希釈し、ポリプロピレン製96well plate (サンプルプレート) に 2μ 1 ずつ分注、-20° Cで凍結保存し た。解凍したサンプルプレートに 0.015% CHAPS (DOJIN) 入りアッセイバ ッファーを198μ 1 ずつ添加し、細胞プレートと同時にFLIPRにセットした。以上 の前処置を施した後、FLIPRにて各種試験サンプル添加後の細胞内カルシウム濃度の 変動を測定した。そしてそれらの結果より、各脂肪酸での容量反応曲線を作成し、EC5 0 値を算出した。その結果を表1に示した。

[0388]

【表1】

GPR40に対する受容体機能調節作用	
化合物番号	EC ₅₀ (μM)
実施例 14	0.010
実施例 33	0.0061
実施例 39	0.032
実施例 49	0.011
実施例 52	0.049

【産業上の利用可能性】

[0389]

化合物(I)およびその塩並びにそのプロドラッグは、優れたGPR40受容体機能調 節作用を有しており、糖尿病などの予防・治療剤として用いることができる。

【書類名】要約書

【要約】

【課題】インスリン分泌促進薬や糖尿病などの予防・治療薬として有用なGPR40受容体機能調節作用を有する新規化合物の提供。

【解決手段】 式(I)

【化1】

$$R^{2} \xrightarrow{E \parallel S^{1}} O \xrightarrow{R^{4}} R$$

$$R^{3} \qquad R^{5} \qquad (I)$$

(式中、各記号は明細書と同義である)で表わされる化合物およびその塩並びにそのプロドラッグは、予想外にも優れたGPR40受容体アゴニスト活性を有し、更に安定性等の医薬品としての物性においても優れた性質を有しており、哺乳動物のGPR40受容体関連病態または疾患の予防・治療薬として安全でかつ有用な医薬となる。

【選択図】 なし

特願2003-431629

出願人履歴情報

識別番号

[000002934]

1. 変更年月日

1992年 1月22日

[変更理由]

住所変更

住所

大阪府大阪市中央区道修町四丁目1番1号

氏 名 武田薬品工業株式会社