; enumeration No need to discuss! (define (enumerate-interval low high) (if (> low high) '() (cons low (enumerate-interval (+ low 1) high)))) ; previously called this (define (enumerate-tree tree) (cond ((null? tree) '()) ((not (pair? tree)) (list tree)) (else (append (enumerate-tree (car tree)) (enumerate-tree (cdr tree)))))) Let's look at 2 versions of postcondition for enumerate - tree. The first: ; post; returns list of the leaves of tree.

(no mention of the order of these) ; post 2: returns the list of The legues of True, in the same order as They occur in true. I want to look at proofs appropriate for each version isoTh are tree recursions, so we know we need to carry out tree inductions. the recursive calls each return a list of leaves, one of the leaves in (contree) and the other of the leaves in (colottee).

given two lists, ne see That append is The IS; right combiner, since (append l, lz) is just The concatenation of l, and lz. But the program as written actually satisfies
The stronger specification given with Postz:
The reason for this, of course, is implappend preserves he element-wise order of its anymmis so the guestim is: can the program be made more efficient (or more claim) if we used a combiner other than append? For example, if we require that a tree not have duplicate leaves, so that the fringe is a set instead of a multiset, perhaps some version of set-union could be more efficient perhaps multiset union could be upaful. The point I am making is most the program is overspecified relative to post, - suggesting that one wants to consider alternatives.

	This kind of thing happens frequently -
	· . • • • • • • • • • • • • • • • • • •
	consider, for example, the gap between many
	graph algorithms and their implementions
	Spanning Tree Algarithm
	implementation improvessed with unprocessed
	1.0(1.2 2) (1.6(1.1.0)
	0 1049
	anc rould say hat when he algorithm states, at
	N Sy
	select am un processe d no de
_	mut it actually doesn't are how this section
	That it actually doesn't care how this selection is done. Not the algorithm is non-deterministic.
	in thinking - at a high level - about computationa
	Non-determinism is actually used by all of us in thinking — at a high level—about computational Processes. Consider, for example, the process

of sending email from point A to point B. HIGH- level view $A \longrightarrow B$ In reality we have no idea (without Using your favorite net utilities) what hops The message makes on a dint

with the the thing it

touchny it

where the thing it is a second to the th But may be A B1-3B2 ---- B1 an entrely different set at another time. retire benguor - at the top level - appens

The convenience of This kind of abstraction is evident— and very much like the kind we seek as functional programmens. So: are non-deterministic programming languages a thing? YES - eg, see (part of) Ch A. in A\$5, where They build an interpreter for one. See also the A&S discussion of amb, which was used by McCanthy (Inventor of LISP) for non-determination programming. As it is not example suggests, what appears non-det. at one level must be in deterministic at a buen level. So amb is advally nothing more than a one-word trigger for BFS Juli see some amazingly elegant solutions to puzzles, using amb, in AUES.

```
; signal processing approach to some problems
(define tree-2 (list 1 (list (list 2 3) (list 4 5)) (list (list 6))))
(define (sum-odd-square tree)
 (accumulate +
         (map square
            (filter odd?
                 (enumerate-tree tree)))))
(define (fib n)
 (define (aux curr prev count)
  (if (= count 0)
     prev
     (aux (+ curr prev) curr (- count 1))))
 (aux 1 0 n))
(define (even-fibs n)
 (accumulate cons
         '()
         (filter even?
              (map fib
                 (enumerate-interval 0 n)))))
```

proved the correctness of map filter, accumulate -> SO THERE IS NO NEED TO DO IT AGAIN! All one needs to do is to describe The data flow (after hat the compused functions are compatible), perhaps with a diagram (as I have done)

1e, nested for-loops in Scheme

; nested mappings
; given a positive integer n, find all ordered pairs of distinct positive integers i and j, ; where $1 <= i < j <= n$
(define (ordered-pairs-of-distinct-integers n)
(accumulate append
(map (lambda (i) (map (lambda (j) (list i j)) (enumerate-interval (+ i 1) n))) (enumerate-interval 1 (- n 1))))
(enumerate-interval 1 (- II 1)))))
Realize that - once again - throng is no top-level
Realize that - once again - there is no top-level recursion or looping. So our interest is directed at the data flow, or for the previous example.
at the data flow, or for the previous example,
so mot me co de appenes
(map (lambda (i) (fi)
(enumerate-interval) (-1)
It's easy to see that The flow is
J 1 2 1/4/ 1/42) W 1 13
(1 2 · · · · n-1) 1 - · · ((f) (f 2) - · · · (f (- n 1))
Now we look at (fi) - eg
(f)=((12)(13)·(1 n))
$(fz)^{2}((z^{3})(z^{4})(z^{n}))$
and so on. So when mis completes

Mov have (fi) replaced by

((i i+1) (i i+2) --- (i n) and This me intermediate output is a list of lists of pairs (((12) --- (11)) ((23) ---· (2 A)) ((N-1 N) Prohemashofor a lot of pairs, not a (15) of (15)5 of pairs - so we flatten using the usual acrumulate - appoint ambination

```
; flatmap allows a simplification
(define (flatmap proc seq)
 (accumulate append '() (map proc seq)))
(define (ordered-pairs-of-distinct-integers n)
 (flatmap (lambda (i)
        (map (lambda (j) (list i j))
            (enumerate-interval (+ i 1) n)))
       (enumerate-interval 1 (- n 1))))
; flatmap turns out to be quite useful - next we use it to compute
; all permutations of a set S
; for example, the permutations of {1,2,3} are given --
; first, list all permutations with 1 in the first position
; next, list all permutations with 2 in the first position
; finally, list all permutations with 3 in the first position
(define (permutations s)
 (if (null? s)
    (list '())
    (flatmap
     (lambda (x)
      (map (lambda (p) (cons x p))
         (permutations (remove x s))))
     s)))
; where
(define (remove item sequence)
 (filter (lambda (x) (not (= x item)))
       sequence))
```