Langages formels (sujet B) Examen du 03/04/2023

Durée: 1h15

Nom:					

Consignes:

Prénom:

- Seule une feuille manuscrite recto-verso de taille A4 est autorisée. La calculatrice est interdite.
- Toute question admet au moins une réponse.
- Les mauvaises réponses seront sanctionnées par des points négatifs.
- 1. Soit l'automate à pile A suivant qui accepte par état final :

- (a) (1 point) L'automate A est-il déterministe? non oui
- (b) (2 points) Quels sont les mots reconnus par l'automate \mathcal{A} ? \bigcirc aaba **aabbba** \bigcirc baabba **aabbaa**
- (c) (1 point) Quel est le langage accepté par l'automate A?

l'ensemble des mots de la forme
$$a^nb^pa^q$$
 avec $p+q=2n$ et $n\geq 1$

2. Soit la grammaire suivante décrivant des mots bien parenthésés :

$$S \rightarrow () \mid S(S)S$$

(a) (1 point) Donner un arbre de dérivation pour le mot ()(())().

(b) (3 points) Calculer l'automate des items LR(0) puis compléter la suite :

Solution: L'automate des items LR(0) est donné par les états et la table de transition suivants :

$$\begin{array}{c}
q_0 \\
S \to \bullet S(S)S \\
S \to \bullet ()
\end{array}$$

$$\begin{array}{c}
q_1 \\
S \to S \bullet (S)S
\end{array}$$

$$g_2 \ S o$$
 ($ullet$)

$$\begin{array}{c} q_3 \\ S \to S(\bullet S)S \\ S \to \bullet S(S)S \\ S \to \bullet () \end{array}$$

$$g_4 \\ S \to () \bullet$$

$$\begin{array}{c}
q_5 \\
S \to S(S \bullet)S \\
S \to S \bullet (S)S
\end{array}$$

$$\begin{array}{c} q_6 \\ S \to S(S) \bullet S \\ S \to \bullet S(S) S \\ S \to \bullet \bullet () \end{array}$$

$$\begin{array}{c}
q_7 \\
S \to S(S)S \bullet \\
S \to S \bullet (S)S
\end{array}$$

- Nombre d'états obtenus :
- Liste des items de l'état présentant le conflit :

$$S \to S(S)S \bullet$$
 et $S \to S \bullet (S)S$

(c) (1 point) Montrer que la grammaire est ambigüe en donnant deux arbres de dérivation différents pour un même mot :

Solution: Par exemple le mot S(S)S(S)S admet les deux arbres de dérivation suivants :

D'où on peut déduire que le mot ()(())()())() composé uniquement de terminaux admet aussi deux arbres de dérivations différents.

(d) (1 point) Donner l'état obtenu sur le symbole (à partir de l'état suivant de l'automate des items LR(1) :

$$S \rightarrow S(S \bullet)S, \$$$

$$S \rightarrow S(S \bullet)S, ($$

$$S \rightarrow S \bullet (S)S,)$$

$$S \rightarrow S \bullet (S)S, ($$

Solution:

$S \to S(\bullet S)S,$
$\begin{vmatrix} S \to S(\bullet S)S, (\\ S \to \bullet S(S)S,) \end{vmatrix}$
$S \to \bullet(),)$
$S \to \bullet S(S)S,$ (
$S \rightarrow \bullet$ (), (

(e) (1 point) L'automate des items LR(1) présente t'il un conflit ? O non oui

Solution: La grammaire étant ambigüe (infinité de mots concernés), elle ne peut être LR(1): nécessairement un conflit aura lieu puisque au moins un mot possède plusieurs dérivations droites. À un moment de l'analyse, plusieurs possibilités devront donc s'offrir, générant soit un conflit Reduce/Reduce (des règles différentes applicables), soit un conflit Shift/Reduce (une règle applicable immédiatement et une autre plus tard).

(f) (1 point) Donner un mot bien parenthésé de 4 lettres qui n'est pas engendré par la grammaire :

()() ou aussi (())

(g) (2 points) Dessiner un automate à pile acceptant par état final et pile vide à deux états permettant de reconnaître tous les mots bien parenthésés (sauf le mot vide ϵ) :

3. (2 points) On rappelle qu'un langage algébrique est un langage reconnaissable par un automate à pile, et aussi pouvant être engendré par une grammaire hors-contexte. On rappelle aussi que l'union de deux langages algébriques est algébrique, mais pas l'intersection en général.

L'affirmation suivante est-elle vraie : « le complémentaire d'un langage algébrique est algébrique » ? Justifier.

ou ou

Solution: Supposons l'affirmation vraie. Soit L_1 et L_2 deux langages algébriques. Alors on aurait $\overline{L_1} \cup \overline{L_2} = L_1 \cap L_2$ est algébrique, ce qui n'est pas vérifié en général, contradiction.

4. (1 point) Donner une grammaire avec seulement deux symboles non terminaux pour le langage des mots de la forme a^nb^m où $0 \le m \le n \le 2m$:

Solution:

 $S \to ASb \mid \epsilon$

 $A \to a \ | \ aa$