Advanced Agribusiness Management

Rodney Beard

March 28, 2017

Advanced Agribusiness Management

Rodney Beard

The Diet Problem

reea-mix problems

Crop rotation

Feed-mix problem

Crop rotation

- Stigler, George J. The Cost of Subsistence. *Journal of Farm Economics*, vol. 27, no. 2, 1945, pp. 303?314
- Dantzig, G. (1990). The Diet Problem. *Interfaces*, 20(4), 43-47. Retrieved from http://www.jstor.org/stable/25061369
- ► El-Nazer, T., McCarl, B. A., 1986. The choice of crop rotation: A modeling approach and case study. American Journal of Agricultural Economics 68 (1), 127?136. (available on http://chla.mannlib.cornell.edu/).
- ▶ Throsby, C.D. (1967) STATIONARY-STATE SOLUTIONS IN MULTI-PERIOD LINEAR PROGRAMMING PROBLEMS, Australian Journal of Agricultural Economics¿ Volume 11, Number 02, December 1967

Stigler's 1939 Diet											
Food Annual	Quantities	Annual Cost									
Wheat Flour	370 lb.	\$13.33									
Evaporated Milk	57 cans	\$3.84									
Cabbage	111 lb.	\$4.11									
Spinach	23 lb.	\$1.85									
Dried Navy Beans	285 lb.	\$16.80									
Total Annual Cost		\$ 39.93									

The Diet Problem

Table of nutrients considered in Stigler's diet

Nutrient	Daily Recommended Intake
Calories	3,000 Calories
Protein	70 grams
Calcium	.8 grams
Iron	12 milligrams
Vitamin A	5,000 IU
Thiamine (Vitamin B1)	1.8 milligrams
Riboflavin (Vitamin B2)	2.7 milligrams
Niacin	18 milligrams
Ascorbic Acid (Vitamin C)	75 milligrams

Advanced Agribusiness Management

Rodney Beard

The Diet Problem

Feed-mix problems

rop rotation

The MOTAD (Minimization of Total Absolute Deviations) model

Nutritive content and price of ingredients

Ingredient	Calcium	Protein	Fiber	Unit Cost		
	(kg/kg)	(kg/kg)	(kg/kg)	(cents/kg)		
Limestone	0.38	0.0	0.0	10.0		
Corn	0.001	0.09	0.02	30.5		
Soybean meal	0.002	0.50	0.08	90.0		

The mixture must meet the following restrictions:

- ► Calcium at least 0.8% but not more than 1.2%.
- Protein at least 22%.
- ► Fiber at most 5%.

http://www.me.utexas.edu/~jensen/or_site/models/unit/lp_model/blending/blend1.html

Crop rotation

Minimize $Z = 10L +$	· 30.5 <i>C</i> ·	+ 90 <i>S</i>		
Minimum calcium:	0.38L	+ 0.001C	+ 0.002S	> 0.008
Maximum calcium:	0.38L	+ 0.001C	+ 0.002S	< 0.012
Minimum protein:		+ 0.09C	+ 0.50S	> 0.22
Maximum fiber:		+ 0.02C	+ 0.08S	< 0.05
Conservation:	L	+ C	+ S	= 1

Feed-mix problem

Crop rotations

- Multi-period linear programming
- Dynamic programming
- Repeated (annual timeless) cropping cycle (using LP)

Problem a farm grows N crops and crop yield depends on what was grown on the farm in the previous three years. Current year is i, previous years are j, k, r.

$$\max \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{r=1}^{N} C_{ijkr} X_{ijkr}$$

subject to

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{r} X_{ijkr} \leq TA$$

$$\sum_{i=1}^{N} X_{ijkr} - \sum_{m=1}^{N} X_{jkrm} \leq 0, i, j, k = 1, \dots, N$$

$$X_{ijkr} \geq 0$$

The second constraint is a rotation constraint that is equal to zero when continuous cropping occurs, i.e. no rotation takes place.

Advanced Agribusiness Management

Rodney Beard

The Diet Problem

Feed-mix problems

Crop rotations

Feed-mix problem

Crop rotations

```
Possible rotations plans
```

C	C	C	C	C	C	C	C	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
C	C	C	C	Ρ	Ρ	Ρ	Ρ	C	C	C	C	Ρ	Ρ	Р	Ρ
C	C	Ρ	Р	C	C	Ρ	Ρ	C	C	Ρ	Ρ	C	C	Ρ	Р
C	Ρ	C	Ρ	C	Ρ	C	Ρ	C	Ρ	C	Ρ	C	Ρ	C	Ρ

Rodney Beard

The Diet Problem

Feed-mix problem

 ${\sf Crop\ rotations}$

Land	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	\leq TA
CCC	0	-1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	≤ 0
CCP	0	1	-1	-1	0	0	0	0	0	1	0	0	0	0	0	0	≤ 0
CPC	0	0	1	0	-1	-1	0	0	0	0	1	0	0	0	0	0	≤ 0
CPP	0	0	0	1	0	0	-1	-1	0	0	0	1	0	0	0	0	≤ 0
PCC	0	0	0	0	1	0	0	0	-1	-1	0	0	1	0	0	0	≤ 0
PCP	0	0	0	0	0	1	0	0	0	0	-1	-1	0	1	0	0	≤ 0
PPC	0	0	0	0	0	0	1	0	0	0	0	0	-1	-1	1	0	≤ 0
PPP	0	0	0	0	0	0	0	1	0	0	0	0	0	0	-1	0	≤ 0

- ▶ Gives area of land to be planted to each crop for each sequence. so X_{CCCP} is the area of land to be planted to corn following two corn crops and one potato crop.
- ▶ i have not provided gross margins for this problem but nor do the authors.
- ► Think about where gross margins *C_{ijkr}* might be obtained from.
- ► How might one infer the rotation sequence in an area from aggregate data?
- ► How would you go about setting this model up in Jupyter using SciPy?

$$\min \sum_{j=1}^{n} \sum_{k=1}^{n} x_j x_k \sigma_{jk}$$

such that

$$\sum_{j=1}^{n} f_j x_j = \lambda$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i$$

$$x_i \ge 0$$

Advanced Agribusiness Management

Rodney Beard

The Diet Problem

Feed-mix problem

The MOTAD

Crop rotation

- x_i level of the i-th farm activity
- $ightharpoonup f_j$ the expected or forecast gross margin
- $ightharpoonup \sigma_{jk}$ the covariance of the gross margin between the j-th and k-th farm activity
- a_{ij} how much the j-th activity utilizes of the i-th resource
- ▶ b_i availability of the i-th resource

Feed-mix problems

Crop rotation

- consistent with probability if gross margins are normally distributed
- subjective probability values may be used
- consistent with the separation theorem

Replace variance with

$$\sum_{j=1}^{n} \sum_{k=1}^{n} x_{j} x_{k} \left[\frac{1}{s-1} \sum_{k=1}^{n} (c_{hj} - g_{j})(c_{hk} - g_{k}) \right]$$

s observations in a random sample of gross margins c, $g_j = \frac{1}{s} \sum_{h=1}^s c_{hj}$, j indicates the activity out of a total of n activities. Hazell notes that the eman gross margin may differ from the forecast if subjective information is used. Alternatively,

$$\frac{1}{s-1} \sum_{h=1}^{s} \left[\sum_{j=1}^{n} c_{hj} x_{j} - \sum_{j=1}^{n} g_{j} x_{j} \right]^{2}$$

Feed-mix problems

Crop rotation

The MOTAD (Minimization of Total Absolute Deviations) model

$$A = \frac{1}{s} \sum_{h=1}^{s} |\sum_{j=1}^{n} (c_{hj} - g_j) x_j|$$

Define

$$y_h = \sum_{j=1}^{n} c_{hj} x_j - \sum_{j=1}^{n} g_j x_j$$

such that $y_h = y_h^+ - y_h^-$

Advanced Agribusiness Management

Rodney Beard

The Diet Problem

Feed-mix problem

Crop rotation

min
$$sA = \sum_{i=1}^{s} (y_h^+ + y_h^-)$$

subject to

$$\sum_{j=1}^{n}(c_{hj}-g_{j})x_{j}-y_{h}^{+}+y_{y}^{-}=0, h=1,\ldots,s$$

$$\sum_{j=1}^{n} f_j x_j = \lambda$$

$$\sum_{i=1}^{n} a_{ij} x_j \leq b_i, i = 1, \dots, m$$

$$x_{j}, y_{h}^{+}, y_{h}^{-} \geq 0, \forall h, j$$

Feed-mix problem

Crop rotation

$$\min \sum_{h=1}^{s} y_h^-$$

$$\sum_{i=1}^{n} (c_{hj} - g_j) x_j + y_h^- \ge 0$$

$$\sum_{j=1} f_j x_j = \lambda$$

$$\sum_{i=1}^n a_{ij}x_j \leq b_i, i=1,\ldots,m$$

$$x_i, y_h^- \geq 0, \forall h, j$$

- Activities: carrots x_1 , celery x_2 , cucumbers x_3 and peppers x_4
- ▶ Resources: acreage of land b₁, hours of labor b₂, rotational and marketing constraint b₃

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 25 & 36 & 27 & 87 \\ -1 & 1 & -1 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} 200 \\ 10,000 \\ 0 \end{bmatrix}$$

Other data time series of gross margins needed.

Gross margins

	dollars									
1	292	-128	420	579						
2	179	560	187	639						
3	114	648	366	379						
4	247	544	249	924						
5	426	182	322	5						
6	259	850	159	569						
Average	253	443	284	516						

Advanced Agribusiness Management

Rodney Beard

The Diet Problem

Feed-mix problem

Crop rotation

MOTAD Table

Row and unit	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>y</i> ₁	<i>y</i> ₂ ⁻	<i>y</i> ₃	y ₄	<i>y</i> ₅	<i>y</i> ₆	Constraint
Α					1	1	ĩ	1	Ĭ	ĺ	Minimize
b_1	1	1	1	1							≤ 200
b_2	25	36	27	87							$\leq 10,000$
b_3	-1	1	-1	1							≤ 0
t_1	39	-571	136	63	1						≥ 0
t_2	-74	117	-97	123		1					≥ 0
t_3	-139	205	82	-137			1				≥ 0
t_4	-6	101	-35	408				1			≥ 0
t_5	173	-261	38	-511					1		≥ 0
t_6	6	407	-125	53						1	≥ 0
E	253	443	284	516							$=\lambda$

Advanced Agribusiness Management

Rodney Beard

The Diet Problem

cca mix problem