

AKADEMIA GÓRNICZO HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Technika cyfrowa

Transkoder

Dulewicz Antoni Smyda Tomasz

14 kwietnia 2024

Spis treści

1	Tres	ść ćwie	czenia	2
2	Opi	s rozw	viązania	2
3	Pro. 3.1 3.2	Tabela	ogiczny la prawdy	
		3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 4 . 5 . 6 . 7
4	Bu d 4.1 4.2 4.3	Transl Komp	ıkładu skoder	. 14
5	Test 5.1 5.2		ie rator słów oraz analizator stanów logicznych	
6	Pod	lsumov	wanie	21

1 Treść ćwiczenia

Bazując wyłącznie na bramkach NAND, zaprojektować, zbudować i przetestować układ kombinacyjny realizujący transkoder czterobitowej liczby naturalnej (wraz z zerem) na sześciobitową liczbę pierwszą. Układ taki powinien zatem zamieniać kolejne liczby: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 na odpowiednie kolejne liczby pierwsze: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53. Do przetestowania układu należy wykorzystać m.in.: wyświetlacze siedmiosegmentowe, generator słów i analizator stanów logicznych. Do minimalizacji potrzebnych funkcji należy wykorzystać tablice Karnaugh.

2 Opis rozwiązania

Na początku tworzymy tabelę prawdy, a następnie przy pomocy tabel Karnaugh oraz praw de Morgana wyprowadzamy funkcje logiczne transkodujące czterobitową liczbę, na odpowiednią sześciobitową liczbę pierwszą i na ich podstawie tworzymy schemat układu, a następnie przechodzimy do części projektowania układu w programie Multisim oraz testujemy go za pomocą generatora słów, analizatora stanów logicznych, komparatora i przerzutnika.

Rysunek 1: Makieta układu transkodera

Rysunek 2: Makieta układu komparatora

3 Projekt logiczny

3.1 Tabela prawdy

A	В	\mathbf{C}	D	Y_1	Y_2	Y_3	Y_4	Y_5	Y_6
0	0	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	1	$\mid 1 \mid$
0	0	1	0	0	0	0	1	0	1
0	0	1	1	0	0	0	1	1	1
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	0	0	0	0	1	0	1	1 1 1
0	1	0	1	0	0	1	1	0	$\mid 1 \mid$
0	1	1	0	0	1	0	0	0	1
0	1	1	1	0	1	0	0	1	$\mid 1 \mid$
1	0	0	0	0	1	0	1	1	$\mid 1 \mid$
1	0	0	1	0	1	1	1	0	1 1
1	0	1	0	0	1	1	1	1	1 1
1	0	1	1	1	0	0	1	0	$\mid 1 \mid$
1	1	0	0	1	0	1	0	0	$\mid 1 \mid$
1	1	0	1	1	0	1	0	1	1
1	1	1	0	1	0	1	1	1	1
1	1	1	1	1	1	0	1	0	1

Tabela 1: Tabela prawdy

3.2 Minimalizacja funkcji logicznych

Aby zminimalizować potrzebne funkcje logiczne, dla każdego wyjścia tworzymy tabele Karnaugh oraz zaznaczamy największe grupy pól zawierających tylko wartości 1 (ich liczba musi być potęgą dwójki) i zapisujemy powstałą formułę. Następnie korzystając z prawa podwójnej negacji oraz II prawa De Morgana doprowadzamy formułę do postaci zanegowanych iloczynów.

3.2.1 Minimalizacja dla wyjścia Y_1

AB/CD	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	0	0	1	0

Tabela 2: Karnaugh dla Y_1

AB/CD	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	0	0	1	0

Tabela 3: Karnaugh dla Y_1

$$Y_1 = \overline{AB} + \overline{ACD}$$

 $Y_1 = \overline{\overline{AB} + \overline{ACD}}$
 $Y_1 = \overline{\overline{AB} \cdot \overline{ACD}}$

Rysunek 3: Schemat dla wyjścia Y_1

3.2.2 Minimalizacja dla wyjścia Y_2

AB/CD	00	01	11	10
00	0	0	0	0
01	0	0	1	1
11	0	0	1	0
10	1	1	0	1

Tabela 4: Karnaugh dla Y	Tabela	4:	Karnaugh	dla	Y_2
--------------------------	--------	----	----------	-----	-------

AB/CD	00	01	11	10
00	0	0	0	0
01	0	0	1	1
11	0	0	1	0
10	1	1	0	1

Tabela 5: Karnaugh dla Y_2

$$Y_{2} = \overline{AB\overline{D}} + \overline{AB\overline{C}} + \overline{BCD} + \overline{\overline{A}BC}$$

$$Y_{2} = \overline{\overline{AB\overline{D}} + \overline{AB\overline{C}} + BCD + \overline{\overline{A}BC}}$$

$$Y_{2} = \overline{\overline{AB\overline{D}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{BCD}} \cdot \overline{\overline{A}BC}}$$

$$Y_{2} = \overline{\overline{AB\overline{D}} \cdot \overline{\overline{DD}} \cdot \overline{\overline{ABB}} \cdot \overline{\overline{CC}} \cdot \overline{\overline{BCD}} \cdot \overline{\overline{AABC}}}$$

Rysunek 4: Schemat dla wyjścia Y_2

3.2.3 Minimalizacja dla wyjścia Y_3

AB/CD	00	01	11	10
00	0	0	0	0
01	1	1	0	0
11	1	1	0	1
10	0	1	0	1

Tabela 6: Karnaugh dla ${\cal Y}_3$

AB/CD	00	01	11	10
00	0	0	0	0
01	1	1	0	0
11	1	1	0	1
10	0	1	0	1

Tabela 7: Karnaugh dla Y_3

$$Y_{3} = \overline{AC\overline{D}} + \overline{AC\overline{D}} + \overline{BC}$$

$$Y_{3} = \overline{\overline{AC\overline{D}} + \overline{AC\overline{D}} + \overline{BC}}$$

$$Y_{3} = \overline{\overline{AC\overline{D}} \cdot \overline{AC\overline{D}} \cdot \overline{BC}}$$

$$Y_{3} = \overline{\overline{AC\overline{D}} \cdot \overline{AC\overline{D}} \cdot \overline{BC}}$$

Rysunek 5: Schemat dla wyjścia Y_3

3.2.4 Minimalizacja dla wyjścia Y_4

AB/CD	00	01	11	10
00	0	0	1	1
01	0	1	0	0
11	0	0	1	1
10	1	1	1	1

Tabela 8: Karnaugh dla ${\cal Y}_4$

AB/CD	00	01	11	10
00	0	0	1	1
01	0	1	0	0
11	0	0	1	1
10	1	1	1	1

Tabela 9: Karnaugh dla ${\cal Y}_4$

AB/CD	00	01	11	10
00	0	0	1	1
01	0	1	0	0
11	0	0	1	1
10	1	1	1	1

Tabela 10: Karnaugh dla ${\cal Y}_4$

$$Y_{4} = \overline{A}B\overline{C}D + A\overline{B} + AC + \overline{B}C$$

$$Y_{4} = \overline{\overline{A}B\overline{C}D + A\overline{B} + AC + \overline{B}C}$$

$$Y_{4} = \overline{\overline{A}B\overline{C}D} \cdot \overline{A}\overline{B} \cdot \overline{A}\overline{C} \cdot \overline{\overline{B}C}$$

$$Y_{4} = \overline{\overline{A}AB\overline{C}D} \cdot \overline{A}\overline{B} \cdot \overline{A}\overline{C} \cdot \overline{\overline{B}B}\overline{C}$$

Rysunek 6: Schemat dla wyjścia Y_4

3.2.5 Minimalizacja dla wyjścia Y_5

AB/CD	00	01	11	10
00	1	1	1	0
01	1	0	1	0
11	0	1	0	1
10	1	0	0	1

	Tabela	11:	Karnaugh	dla	Y_{5}
--	--------	-----	----------	-----	---------

AB/CD	00	01	11	10
00	1	1	1	0
01	1	0	1	0
11	0	1	0	1
10	1	0	0	1

Tabela 12: Karnaugh dla Y_5

$$Y_{5} = \overline{AB\bar{C}D} + \overline{A\bar{B}\bar{D}} + \overline{A\bar{B}D} + \overline{AC\bar{D}} + \overline{ACD} + \overline{A\bar{C}\bar{D}}$$

$$Y_{5} = \overline{AB\bar{C}D + A\bar{B}\bar{D} + \bar{A}\bar{B}D + AC\bar{D} + \bar{A}CD + \bar{A}\bar{C}\bar{D}}}$$

$$Y_{5} = \overline{AB\bar{C}D \cdot \bar{A}\bar{B}\bar{D} \cdot \bar{A}\bar{B}D \cdot \bar{A}C\bar{D} \cdot \bar{A}\bar{C}\bar{D}} \cdot \overline{A\bar{C}D} \cdot \overline{A\bar{C}D} \cdot \overline{A\bar{C}D} \cdot \overline{A\bar{C}D}}$$

$$Y_{5} = \overline{AB\bar{C}\bar{C}D \cdot \bar{A}\bar{B}\bar{B}} \ \overline{DD} \cdot \overline{A\bar{A}} \ \overline{B\bar{B}D} \cdot \overline{AC\bar{D}D} \cdot \overline{A\bar{A}CD} \cdot \overline{A\bar{A}\bar{C}\bar{C}} \ \overline{DD}}$$

Rysunek 7: Schemat dla wyjścia Y_5

3.2.6 Minimalizacja dla wyjścia Y_6

AB/CD	00	01	11	10
00	0	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

Tabela 13: Karnaugh dla $Y_{\rm 6}$

AB/CD	00	01	11	10
00	0	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

Tabela 15: Karnaugh dla Y_{6}

AB/CD	00	01	11	10
00	0	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

Tabela 14: Karnaugh dla Y_6

AB/CD	00	01	11	10
00	0	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

Tabela 16: Karnaugh dla Y_6

$$Y_{6} = \overline{A} + \overline{B} + \overline{C} + \overline{D}$$

$$Y_{6} = \overline{\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}}$$

$$Y_{6} = \overline{\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}}$$

$$Y_{6} = \overline{AA} \cdot \overline{BB} \cdot \overline{CC} \cdot \overline{DD}$$

Rysunek 8: Schemat dla wyjścia Y_6

4 Budowa układu

Rysunek 9: Schemat całego układu

4.1 Transkoder

Rysunek 10: Transkoder

Rysunek 11: Schemat podukładów transkodera

Rysunek 12: Schemat podukładu transkodera dla wyjścia ${\cal Y}_1$

Rysunek 13: Schemat podukładu transkodera dla wyjścia ${\cal Y}_2$

Rysunek 14: Schemat podukładu transkodera dla wyjścia ${\cal Y}_3$

Rysunek 15: Schemat podukładu transkodera dla wyjścia ${\cal Y}_4$

Rysunek 16: Schemat podukładu transkodera dla wyjścia $Y_{\rm 5}$

Rysunek 17: Schemat podukładu transkodera dla wyjścia $Y_{\rm 6}$

4.2 Komparator

Rysunek 18: Komparator

Rysunek 19: Schemat komparatora

4.3 Przerzutnik i wyświetlacz

Rysunek 20: Przerzutnik JK

Rysunek 21: Cyfrowy wyświetlacz heksadecymalny, siedmosegmentowy

5 Testowanie

5.1 Generator słów oraz analizator stanów logicznych

Rysunek 22: Generator słów

Rysunek 23: Analizator stanów logicznych

Rysunek 24: Ustawienia generatora słów

Rysunek 25: Wykres analizatora stanów logicznych dla poprawnego transkodera

Rysunek 26: Symulacja niepoprawnego transkodera

Rysunek 27: Wykres analizatora stanów logicznych dla niepoprawnego transkodera

5.2 Cały układ

Rysunek 28: Schemat układu dla poprawnego transkodera

Rysunek 29: Schemat układu dla niepoprawnego transkodera w dla złej konwersji

Rysunek 30: Schemat układu dla niepoprawnego transkodera dla dobrej konwersji

6 Podsumowanie

- Liczby Pierwsze: Znajdują zastosowanie w kryptografii, np. w algorytmach szyfrowania asymetrycznego RSA, gdzie są używane do generowania kluczy prywatnych i publicznych.
- Transkodery: Są używane w komunikacji między różnymi systemami liczbowymi, np. zamiana liczby dziesiętnej na binarną lub odwrotnie.
- Bramki NAND Są uniwersalnymi bramkami logicznymi, co oznacza, że można ich użyć do zbudowania dowolnej innej bramki logicznej. Ich zastosowania obejmują implementację różnych funkcji logicznych. W stosunku do pamięci NOR pamięć NAND ma krótszy czas zapisu i kasowania, większą gęstość upakowania danych, korzystniejszy stosunek kosztu pamięci do jej pojemności oraz około dziesięciokrotnie większą wytrzymałość.
- Tablice Karnaugh: Wykorzystywane do uproszczenia funkcji logicznych. Pozwalają na graficzną reprezentację i minimalizację funkcji logicznych, co przekłada się na uproszczenie układów cyfrowych.

7 Wnioski