In re Naffziger Serial No.: 09/497,533

APPENDIX C

A copy of a PowerPoint presentation by Kenneth Yun entitled, "Dynamic Circuits" available on the Internet at http://paradise.ucsd.edu/class/ece165/notes/lec7.pdf is enclosed as an example of evaluating digital logic signals when an input signal transitions monotonically.

Dynamic Circuits

Kenneth Yun UC San Diego

Adapted from EE271 notes,
Stanford University

THE SOURCE OF TH

Overview

- Pseudo nMOS
- Precharged logic
- Domino logic Dual-rail logic
- Circuit optimization
- Reading
- W&E 5.4

Problems with CMOS: Large **Fanin**

- All CMOS gates require series stack
- Number of transistors in the series stack is usually equal to the number of inputs
- Since the series stack is slow, must limit fanin to 3
- How are large fanin gates built?
- Use fanin tree

Pseudo nMOS

- Similar to nMOS, except depletion mode grounded) transistor replaced with pMOS (with its gate
- As in nMOS, problems with
 DC power dissipation
- Ratio rule (for 4:1 resistance ratio, $W_n=2W_p$)

Precharged Gate

- Precharge output to 1
- Discharge only if output needs to be 0
- Large fanin gates are possible
- No static power dissipation

Precharged Gate Timing

- out_B precharged high when Φ_A high
- evaluates (falls monotonically or remains high) when $\Phi_{\rm B}$ high
- in_B must be stable (or rise monotonically) during evaluation of out_B

Predischarged Gate

- Predischarge output to zero when Φ_A high
- Evaluate (keep it low or pull it up) when Φ_B
- Functions correctly but slower than precharged logic (because ?)

Logic Speed of Pre(dis)charged

- NOR fast
- NAND slow
- Require series stack

- Predischarged
- logic
- NOR slow

NAND fast

Require series

stack

Pros and Cons of Precharged Logic

Advantages

- Fast
- Less gate loading (only half the transistors)
- Only need to worry about speed of one transition (can make eval transistor bigger)
- Dense
- Only need to build pull-down trees
- Disadvantages
- Inputs must be monotonically rising
- To drive another precharged gate, output must be inverted (using a static inverter)

Domino Logic

- Cascade of precharged and static gates pairs
- a and b become low, when A' and B' precharged
- A' falls monotonically (or remains high) during evaluation, which causes a to rise (or remain low)
- If a remains low, B' remains high; however, if a rises, B' may fall, which in turn causes b to rise.

Domino Logic (Cont'd)

- Called domino because successive falling of A' and B' resembles falling domino
- Outputs rise monotonically
- Inputs must rise monotonically (during eval)
- Falling inputs have no effect on output
- So, cannot have both a signal and its complement begins and remain constant during eval. Why? as inputs, unless both have stabilized before eval
- How are non-monotonic functions, such as XOR, built in domino then?

Domino Logic (Cont'd)

- Clock the gates!
- The first XOR okay, as long as a, b, a', and b' remain stable during eval
- What about the second XOR gate?
- Requires x and x' as inputs, which change during evaluation
- x' falls during evaluation!

Solution: Dual-Rail Domino

- Build XOR as dual-rail domino
- That is, the gate generates both true and complemented versions of output

$$x^{T} = a'b + ab'$$

$$x^{F} = ab + a'b'$$

- Both x^T and x^F are monotonically rising
- Hence the second XOR gate works correctly

$$f^T = C' X^T + C X^F$$

$$f^F = CX^T + C'X^F$$

Dual-Rail XOR

Merge x^T and x^F in a single gate

a^T, b^T, a^F, and b^F, if

imitations of Dual-Rai

- Need to build both f^T and f^F
- Parallel transistors in f T become series stacks in f F and vice versa
- Cannot large fanin dual-rail gates
- Most gates, unlike XOR, don't share many transistors

Dual-Rail Signaling

- Dual-rail gates are complete (can implement any logic function)
- Indicate both value and completion status
- Before computation completed, both wires are low
- When completed, exactly one wire goes high
- Great for self-timed sequencing! Why?

тв	aF	Meaning
0	0	Reset (not yet evaluated)
0	1	Eval done with output value '0'
	0	Eval done with output value '1'
1		Cannot occur (error)

Dual-Rail Gate w/Completion

Unfooted Domino

- If all inputs come from other domino gates, explicit eval transistor not needed
- Why?
- Reduces the height of nMOS stack
- Need to make sure that the first gate's output precharged before precharging the next gate can be precharged. Why?

Gate

- Assume that C₁ and C₂ had been discharged during last eval and C_{out} precharged
- What happens, during eval, if A and B rise but C remains low?
- What are potential solutions to this problem?

NORA

- Precharged nMOS gate followed by a precharged pMOS gate
- A' normally high, keeping P₂ off, without requiring an inverter between two stages But serious noise margin problems
- What happens if the signal level on node A' is degraded?

Optimizing for Single Edge

- Can improve evaluation speed by
- making nMOS of precharged gate larger and
- making nMOS of static inverters much smaller than pMOS
- What happens to precharge speed then?
- Does it matter? Why or why not?

- A compact qualified clock generator
- Precharged AND gate
- Need to worry about clock skew

