

Embedding Julia

As we have seen in Calling C and Fortran Code, Julia has a simple and efficient way to call functions written in C. But there are situations where the opposite is needed: calling Julia function from C code. This can be used to integrate Julia code into a larger C/C++ project, without the need to rewrite everything in C/C++. Julia has a C API to make this possible. As almost all programming languages have some way to call C functions, the Julia C API can also be used to build further language bridges (e.g. calling Julia from Python or C#).

High-Level Embedding

Note: This section covers embedding Julia code in C on Unix-like operating systems. For doing this on Windows, please see the section following this.

We start with a simple C program that initializes Julia and calls some Julia code:

```
#include <julia.h>
JULIA_DEFINE_FAST_TLS() // only define this once, in an executable (not in a shared
int main(int argc, char *argv[])
{
    /* required: setup the Julia context */
    jl_init();
    /* run Julia commands */
    jl_eval_string("print(sqrt(2.0))");
    /* strongly recommended: notify Julia that the
         program is about to terminate. this allows
         Julia time to cleanup pending write requests
         and run all finalizers
    */
    jl_atexit_hook(0);
    return 0;
}
```

In order to build this program you have to put the path to the Julia header into the include path and link against libjulia. For instance, when Julia is installed to \$JULIA_DIR, one can compile the above test

3/20/21, 09:32 1 of 12

program test.c with gcc using:

```
gcc -o test -fPIC -I$JULIA_DIR/include/julia -L$JULIA_DIR/lib -Wl,-rpath,$JULIA_DIR/l
```

Alternatively, look at the embedding.c program in the Julia source tree in the test/embedding/ folder. The file ui/repl.c program is another simple example of how to set jl_options options while linking against libjulia.

The first thing that has to be done before calling any other Julia C function is to initialize Julia. This is done by calling jl_init, which tries to automatically determine Julia's install location. If you need to specify a custom location, or specify which system image to load, use jl_init_with_image instead.

The second statement in the test program evaluates a Julia statement using a call to jl_eval_string.

Before the program terminates, it is strongly recommended to call jl_atexit_hook. The above example program calls this before returning from main.

Note

Currently, dynamically linking with the libjulia shared library requires passing the RTLD_GLOBAL option. In Python, this looks like:

```
>>> julia=CDLL('./libjulia.dylib',RTLD_GLOBAL)
>>> julia.jl_init.argtypes = []
>>> julia.jl_init()
250593296
```

Note

If the julia program needs to access symbols from the main executable, it may be necessary to add -Wl, --export-dynamic linker flag at compile time on Linux in addition to the ones generated by julia-config. jl described below. This is not necessary when compiling a shared library.

Using julia-config to automatically determine build parameters

The script <code>julia-config.jl</code> was created to aid in determining what build parameters are required by a program that uses embedded Julia. This script uses the build parameters and system configuration of the particular Julia distribution it is invoked by to export the necessary compiler flags for an embedding

program to interact with that distribution. This script is located in the Julia shared data directory.

Example

```
#include <julia.h>
int main(int argc, char *argv[])
{
    jl_init();
    (void)jl_eval_string("println(sqrt(2.0))");
    jl_atexit_hook(0);
    return 0;
}
```

On the command line

A simple use of this script is from the command line. Assuming that <code>julia-config.jl</code> is located in <code>/usr/local/julia/share/julia</code>, it can be invoked on the command line directly and takes any combination of 3 flags:

```
/usr/local/julia/share/julia/julia-config.jl
Usage: julia-config [--cflags|--ldflags|--ldlibs]
```

If the above example source is saved in the file <code>embed_example.c</code>, then the following command will compile it into a running program on Linux and Windows (MSYS2 environment), or if on OS/X, then substitute <code>clang</code> for <code>gcc.</code>:

```
/usr/local/julia/share/julia/julia-config.jl --cflags --ldflags --ldlibs | xargs gcc
```

Use in Makefiles

But in general, embedding projects will be more complicated than the above, and so the following allows general makefile support as well – assuming GNU make because of the use of the shell macro expansions. Additionally, though many times <code>julia-config.jl</code> may be found in the directory <code>/usr/local</code>, this is not necessarily the case, but Julia can be used to locate <code>julia-config.jl</code> too, and the makefile can be used to take advantage of that. The above example is extended to use a Makefile:

```
JL_SHARE = $(shell julia -e 'print(joinpath(Sys.BINDIR, Base.DATAROOTDIR, "julia"))')
CFLAGS += $(shell $(JL_SHARE)/julia-config.jl --cflags)
CXXFLAGS += $(shell $(JL_SHARE)/julia-config.jl --cflags)
LDFLAGS += $(shell $(JL_SHARE)/julia-config.jl --ldflags)
LDLIBS += $(shell $(JL_SHARE)/julia-config.jl --ldlibs)
```

```
all: embed_example
```

Now the build command is simply make.

High-Level Embedding on Windows with Visual Studio

If the JULIA_DIR environment variable hasn't been setup, add it using the System panel before starting Visual Studio. The bin folder under JULIA_DIR should be on the system PATH.

We start by opening Visual Studio and creating a new Console Application project. To the 'stdafx.h' header file, add the following lines at the end:

```
#include <julia.h>
```

Then, replace the main() function in the project with this code:

```
int main(int argc, char *argv[])
{
    /* required: setup the Julia context */
    jl_init();

    /* run Julia commands */
    jl_eval_string("print(sqrt(2.0))");

/* strongly recommended: notify Julia that the
        program is about to terminate. this allows
        Julia time to cleanup pending write requests
        and run all finalizers

*/
    jl_atexit_hook(0);
    return 0;
}
```

The next step is to set up the project to find the Julia include files and the libraries. It's important to know whether the Julia installation is 32- or 64-bits. Remove any platform configuration that doesn't correspond to the Julia installation before proceeding.

Using the project Properties dialog, go to C/C++ | General and add \$(JULIA_DIR)\include\julia\ to the Additional Include Directories property. Then, go to the Linker | General section and add \$(JULIA_DIR)\lib to the Additional Library Directories property. Finally, under Linker | Input, add libjulia.dll.a; libopenlibm.dll.a; to the list of libraries.

At this point, the project should build and run.

Converting Types

Real applications will not just need to execute expressions, but also return their values to the host program. jl_eval_string returns a jl_value_t*, which is a pointer to a heap-allocated Julia object. Storing simple data types like Float64 in this way is called boxing, and extracting the stored primitive data is called unboxing. Our improved sample program that calculates the square root of 2 in Julia and reads back the result in C looks as follows:

```
jl_value_t *ret = jl_eval_string("sqrt(2.0)");

if (jl_typeis(ret, jl_float64_type)) {
    double ret_unboxed = jl_unbox_float64(ret);
    printf("sqrt(2.0) in C: %e \n", ret_unboxed);
}
else {
    printf("ERROR: unexpected return type from sqrt(::Float64)\n");
}
```

In order to check whether ret is of a specific Julia type, we can use the jl_isa, jl_typeis, or jl_is_... functions. By typing typeof(sqrt(2.0)) into the Julia shell we can see that the return type is Float64 (double in C). To convert the boxed Julia value into a C double the jl_unbox_float64 function is used in the above code snippet.

Corresponding $j1_box_...$ functions are used to convert the other way:

```
jl_value_t *a = jl_box_float64(3.0);
jl_value_t *b = jl_box_float32(3.0f);
jl_value_t *c = jl_box_int32(3);
```

As we will see next, boxing is required to call Julia functions with specific arguments.

Calling Julia Functions

While jl_eval_string allows C to obtain the result of a Julia expression, it does not allow passing arguments computed in C to Julia. For this you will need to invoke Julia functions directly, using jl_call:

```
jl_function_t *func = jl_get_function(jl_base_module, "sqrt");
```

```
jl_value_t *argument = jl_box_float64(2.0);
jl_value_t *ret = jl_call1(func, argument);
```

In the first step, a handle to the Julia function sqrt is retrieved by calling $jl_get_function$. The first argument passed to $jl_get_function$ is a pointer to the Base module in which sqrt is defined. Then, the double value is boxed using $jl_box_float64$. Finally, in the last step, the function is called using jl_call1 . jl_call0 , jl_call2 , and jl_call3 functions also exist, to conveniently handle different numbers of arguments. To pass more arguments, use jl_call3 :

```
jl_value_t *jl_call(jl_function_t *f, jl_value_t **args, int32_t nargs)
```

Its second argument args is an array of jl_value_t* arguments and nargs is the number of arguments.

Memory Management

As we have seen, Julia objects are represented in C as pointers. This raises the question of who is responsible for freeing these objects.

Typically, Julia objects are freed by a garbage collector (GC), but the GC does not automatically know that we are holding a reference to a Julia value from C. This means the GC can free objects out from under you, rendering pointers invalid.

The GC can only run when Julia objects are allocated. Calls like $j1_box_f1oat64$ perform allocation, and allocation might also happen at any point in running Julia code. However, it is generally safe to use pointers in between $j1_...$ calls. But in order to make sure that values can survive $j1_...$ calls, we have to tell Julia that we still hold a reference to Julia root values, a process called "GC rooting". Rooting a value will ensure that the garbage collector does not accidentally identify this value as unused and free the memory backing that value. This can be done using the JL_GC_PUSH macros:

```
jl_value_t *ret = jl_eval_string("sqrt(2.0)");
JL_GC_PUSH1(&ret);
// Do something with ret
JL_GC_POP();
```

The JL_GC_POP call releases the references established by the previous JL_GC_PUSH. Note that JL_GC_PUSH stores references on the C stack, so it must be exactly paired with a JL_GC_POP before the scope is exited. That is, before the function returns, or control flow otherwise leaves the block in which the JL_GC_PUSH was invoked.

Several Julia values can be pushed at once using the JL_GC_PUSH2, JL_GC_PUSH3, JL_GC_PUSH4,

JL_GC_PUSH5, and JL_GC_PUSH6 macros. To push an array of Julia values one can use the JL_GC_PUSHARGS macro, which can be used as follows:

```
jl_value_t **args;
JL_GC_PUSHARGS(args, 2); // args can now hold 2 `jl_value_t*` objects
args[0] = some_value;
args[1] = some_other_value;
// Do something with args (e.g. call jl_... functions)
JL_GC_POP();
```

Each scope must have only one call to JL_GC_PUSH*. Hence, if all variables cannot be pushed once by a single call to JL_GC_PUSH*, or if there are more than 6 variables to be pushed and using an array of arguments is not an option, then one can use inner blocks:

```
jl_value_t *ret1 = jl_eval_string("sqrt(2.0)");

JL_GC_PUSH1(&ret1);

jl_value_t *ret2 = 0;

{
    jl_function_t *func = jl_get_function(jl_base_module, "exp");
    ret2 = jl_call1(func, ret1);
    JL_GC_PUSH1(&ret2);
    // Do something with ret2.
    JL_GC_POP();    // This pops ret2.
}

JL_GC_POP();    // This pops ret1.
```

If it is required to hold the pointer to a variable between functions (or block scopes), then it is not possible to use JL_GC_PUSH*. In this case, it is necessary to create and keep a reference to the variable in the Julia global scope. One simple way to accomplish this is to use a global IdDict that will hold the references, avoiding deallocation by the GC. However, this method will only work properly with mutable types.

```
// This functions shall be executed only once, during the initialization.
jl_value_t* refs = jl_eval_string("refs = IdDict()");
jl_function_t* setindex = jl_get_function(jl_base_module, "setindex!");
...
// `var` is the variable we want to protect between function calls.
jl_value_t* var = 0;
...
```

```
// `var` is a `Vector{Float64}`, which is mutable.
var = jl_eval_string("[sqrt(2.0); sqrt(4.0); sqrt(6.0)]");

// To protect `var`, add its reference to `refs`.
jl_call3(setindex, refs, var, var);
```

If the variable is immutable, then it needs to be wrapped in an equivalent mutable container or, preferably, in a RefValue{Any} before it is pushed to IdDict. In this approach, the container has to be created or filled in via C code using, for example, the function jl_new_struct. If the container is created by jl_call*, then you will need to reload the pointer to be used in C code.

```
// This functions shall be executed only once, during the initialization.
jl_value_t* refs = jl_eval_string("refs = IdDict()");
jl_function_t* setindex = jl_get_function(jl_base_module, "setindex!");
jl_datatype_t* reft = (jl_datatype_t*)jl_eval_string("Base.RefValue{Any}");
...

// `var` is the variable we want to protect between function calls.
jl_value_t* var = 0;
...

// `var` is a `Float64`, which is immutable.
var = jl_eval_string("sqrt(2.0)");

// Protect `var` until we add its reference to `refs`.
JL_GC_PUSH1(&var);

// Wrap `var` in `RefValue{Any}` and push to `refs` to protect it.
jl_value_t* rvar = jl_new_struct(reft, var);
JL_GC_POP();
jl_call3(setindex, refs, rvar, rvar);
```

The GC can be allowed to deallocate a variable by removing the reference to it from refs using the function delete!, provided that no other reference to the variable is kept anywhere:

```
jl_function_t* delete = jl_get_function(jl_base_module, "delete!");
jl_call2(delete, refs, rvar);
```

As an alternative for very simple cases, it is possible to just create a global container of type

Vector {Any} and fetch the elements from that when necessary, or even to create one global variable per pointer using

```
jl_set_global(jl_main_module, jl_symbol("var"), var);
```

Updating fields of GC-managed objects

The garbage collector operates under the assumption that it is aware of every old-generation object pointing to a young-generation one. Any time a pointer is updated breaking that assumption, it must be signaled to the collector with the jl_gc_wb (write barrier) function like so:

```
jl_value_t *parent = some_old_value, *child = some_young_value;
((some_specific_type*)parent)->field = child;
jl_gc_wb(parent, child);
```

It is in general impossible to predict which values will be old at runtime, so the write barrier must be inserted after all explicit stores. One notable exception is if the parent object was just allocated and garbage collection was not run since then. Remember that most $j1_-\dots$ functions can sometimes invoke garbage collection.

The write barrier is also necessary for arrays of pointers when updating their data directly. For example:

```
jl_array_t *some_array = ...; // e.g. a Vector{Any}
void **data = (void**)jl_array_data(some_array);
jl_value_t *some_value = ...;
data[0] = some_value;
jl_gc_wb(some_array, some_value);
```

Manipulating the Garbage Collector

There are some functions to control the GC. In normal use cases, these should not be necessary.

Function	Description
jl_gc_collect()	Force a GC run
<pre>jl_gc_enable(0)</pre>	Disable the GC, return previous state as int
jl_gc_enable(1)	Enable the GC, return previous state as int

```
jl_gc_is_enabled()
Return current state as int
```

Working with Arrays

Julia and C can share array data without copying. The next example will show how this works.

Julia arrays are represented in C by the datatype jl_array_t*. Basically, jl_array_t is a struct that contains:

- Information about the datatype
- A pointer to the data block
- Information about the sizes of the array

To keep things simple, we start with a 1D array. Creating an array containing Float64 elements of length 10 is done by:

```
jl_value_t* array_type = jl_apply_array_type((jl_value_t*)jl_float64_type, 1);
jl_array_t* x = jl_alloc_array_1d(array_type, 10);
```

Alternatively, if you have already allocated the array you can generate a thin wrapper around its data:

```
double *existingArray = (double*)malloc(sizeof(double)*10);
jl_array_t *x = jl_ptr_to_array_1d(array_type, existingArray, 10, 0);
```

The last argument is a boolean indicating whether Julia should take ownership of the data. If this argument is non-zero, the GC will call free on the data pointer when the array is no longer referenced.

In order to access the data of x, we can use <code>jl_array_data</code>:

```
double *xData = (double*)jl_array_data(x);
```

Now we can fill the array:

```
for(size_t i=0; i<jl_array_len(x); i++)
xData[i] = i;</pre>
```

Now let us call a Julia function that performs an in-place operation on x:

```
jl_function_t *func = jl_get_function(jl_base_module, "reverse!");
jl_call1(func, (jl_value_t*)x);
```

By printing the array, one can verify that the elements of x are now reversed.

Accessing Returned Arrays

If a Julia function returns an array, the return value of jl_eval_string and jl_call can be cast to a jl_array_t*:

```
jl_function_t *func = jl_get_function(jl_base_module, "reverse");
jl_array_t *y = (jl_array_t*)jl_call1(func, (jl_value_t*)x);
```

Now the content of y can be accessed as before using jl_array_data. As always, be sure to keep a reference to the array while it is in use.

Multidimensional Arrays

Julia's multidimensional arrays are stored in memory in column-major order. Here is some code that creates a 2D array and accesses its properties:

```
// Create 2D array of float64 type
jl_value_t *array_type = jl_apply_array_type(jl_float64_type, 2);
jl_array_t *x = jl_alloc_array_2d(array_type, 10, 5);

// Get array pointer
double *p = (double*)jl_array_data(x);
// Get number of dimensions
int ndims = jl_array_ndims(x);
// Get the size of the i-th dim
size_t size0 = jl_array_dim(x,0);
size_t size1 = jl_array_dim(x,1);

// Fill array with data
for(size_t i=0; i<size1; i++)
    for(size_t j=0; j<size0; j++)
    p[j + size0*i] = i + j;</pre>
```

Notice that while Julia arrays use 1-based indexing, the C API uses 0-based indexing (for example in calling jl_array_dim) in order to read as idiomatic C code.

Exceptions

Julia code can throw exceptions. For example, consider:

```
jl_eval_string("this_function_does_not_exist()");
```

This call will appear to do nothing. However, it is possible to check whether an exception was thrown:

```
if (jl_exception_occurred())
    printf("%s \n", jl_typeof_str(jl_exception_occurred()));
```

If you are using the Julia C API from a language that supports exceptions (e.g. Python, C#, C++), it makes sense to wrap each call into libjulia with a function that checks whether an exception was thrown, and then rethrows the exception in the host language.

Throwing Julia Exceptions

When writing Julia callable functions, it might be necessary to validate arguments and throw exceptions to indicate errors. A typical type check looks like:

```
if (!jl_typeis(val, jl_float64_type)) {
    jl_type_error(function_name, (jl_value_t*)jl_float64_type, val);
}
```

General exceptions can be raised using the functions:

```
void jl_error(const char *str);
void jl_errorf(const char *fmt, ...);
```

jl_error takes a C string, and jl_errorf is called like printf:

```
jl_errorf("argument x = %d is too large", x);
```

where in this example x is assumed to be an integer.

« Environment Variables Code Loading »

Powered by Documenter.jl and the Julia Programming Language.