

AULA 3 - Análise Exploratória

#BootcampMIA2022 #SomosMIA

Quem somos?

Bárbara Barbosa

Data Manager na Orderchamp

- Mestra em Sistemas de Informação com foco em Inteligência Artificial e NLP
- Organizadora do Rails Girls SP, Women Dev Summit e Women in Data Science SP 2019/2020/2021
- bahbbc
- in bahbbc

Quem somos?

Fernanda Wanderley

Data Scientist na NeuralMed

- Co-fundadora da MIA
- Embaixadora do WiDS Rio
- Doutora em Inteligência Computacional UFMG
- Google Developer Expert ML
- nandaw
- in nandaw

Agora acabaram as introduções...

Finalmente vamos colocar a mão na massa!

Uma inspiração...

"Para mim Programação é mais do que uma arte prática importante. É também um empreendimento gigantesco nos fundamentos do conhecimento."

(Grace Hopper)

O que veremos hoje:

- Ler, limpar e validar os dados
- Distribuições e estatísticas básicas
- Missing values e outliers
- Relações entre dados

Ler, limpar e validar os dados - Dataframes

Series

Series

DataFrame

	apples
0	3
1	2
2	0
3	1

	oranges
0	0
1	3
2	7
3	2

	apples	oranges
0	3	0
1	2	3
2	0	7
3	1	2

Ler, limpar e validar os dados - colinha

<u>Use this table for reference</u>

Ler, limpar e validar os dados - tipos de variáveis

Pandas dtype	Python type	NumPy type	Usage
object	str	string_, unicode_	Text
int64	int	int_, int8, int16, int32, int64, uint8, uint16, uint32, uint64	Integer numbers
float64	float	float_, float16, float32, float64	Floating point numbers
bool	bool	bool_	True/False values
datetime64	NA	datetime64[ns]	Date and time values
timedelta[ns]	NA	NA	Differences between two datetimes
category	NA	NA	Finite list of text values

Estatísticas Básicas - Distribuição de Dados

- É importante entender como os dados estão distribuídos para tirarmos informação deles
- Histogramas: frequência com a qual os valores aparecem, divididos em bins

Estatísticas Básicas - Medidas de tendência central

- Moda: valor mais frequente
- Média: valor resultante da soma de todos os valores dividido pela quantidade deles
- Mediana: valor que divide o conjunto dos dados em duas metades

Estatísticas Básicas - Medidas de Dispersão

- Range: diferença entre o menor e maior valor na população
- Variância: distância de cada valor até a média
- Desvio Padrão: raiz quadrada da variância
- Quartis: valores que dividem a população em 4 intervalos iguais

Normalização vs Padronização dos Dados

- Precisamos que os dados estejam todos na mesma escala
- Padronização: colocar os dados numa distribuição com média 0 e desvio padrão 1
- Normalização: colocar os dados no intervalo entre 0 e 1

Missing values e outliers

O que podemos fazer com valores faltantes (missing values)?

Delete os valores!

Pros 🗸

 Você terá um modelo mais robusto

Contras X

- Muita perda de informação
- O modelo pode ficar terrível se houverem muitos valores faltantes

Substitua pela média/mediana

Pros V

- Você não terá perda de dados
- Funciona bem com um dataset pequeno e é fácil de implementar

Contras X

- Só funciona com valores numéricos e contínuos
- Não leva em consideração a covariância dos fatores
- Pode acabar causando algum vazamento de informação (data leakage)

Substitua pela moda ou crie uma nova categoria

Pros <a>V

- Você não terá perda de dados
- Funciona bem com um dataset pequeno e é fácil de implementar
- Ao criar uma nova categoria você evita a perda de informação dos dados faltantes

Contras X

- Só funciona com valores categóricos
- Pode levar a baixa performance do modelo a depender do padrão dos valores faltantes

Crie um modelo para isso!

Pros 🗸

- Pode dar ótimos resultados
- Leva em consideração a covariância dos dados

- Muito mais trabalhoso
- É um proxy para os valores verdadeiros

Relações entre dados - Correlação

Correlação descreve como 2 variáveis se movem em conjunto.

Relações entre dados - Chi quadrado e p-valor

O teste de chi-quadrado é um teste de independência para variáveis categóricas. Você pode testar uma ou mais variáveis.

P-valor (em verde) é a probabilidade do resultado observado assumir a hipótese nula

Este teste confronta a hipótese nula: Não há relação entre as variáveis.

A hipótese nula significa que é tudo acaso, que o que você está tentando provar não acontece.

O p-valor é a probabilidade de tudo ser obra do acaso. Quanto menor maior as chances de você descartar a hipótese nula (as variáveis têm uma relação).

0.05 é um valor com relevância estatística.

Vamos praticar!!!

Para praticar...

- Boas EDAs no Kaggle:
 - <u>Existe desigualdade de gênero em</u> dados?
- Veja esse curso do Kaggle (em inglês, grátis)
- Esse curso do Udemy também é bastante interessante para se aprofundar
- Essa série de vídeos do Programação
 Dinâmica sobre análise de dados

Nossos contatos

- mulheres.em.ia@gmail.com
- in mulheres-em-ia
- @mulheres.em.ia
- mulheres.em.ia
- @MulheresemInteligenciaArtificial
- Canal: Mulheres em IA

Linktree

https://linktr.ee/mulheres.em.ia

Grupo Telegram para Mulheres

https://t.me/mulheres_em_ia

Muito obrigada!

Dúvidas? Podem nos procurar! 😉

