Machine Learning Homework 2

資工碩一 r09922055 陳柏妤

1. **(c)**

(a) (7, 8, 9), (17, 18, 19), (27, 28, 29) 三點共線, 無法 shatter (b)(c)(d)(e)

用 (7, 8, 9), (15, 16, 17), (21, 23, 25) 三個點解平面公式

得到
$$x_1 - 2x_2 + x_3 = 0$$

(b)
$$(1, 1, 1)$$
 $\stackrel{.}{=}$ $x_1 - 2x_2 + x_3 = 0$ $\stackrel{.}{=}$

(c)
$$(1, 1, 3)$$
 不在 $x_1 - 2x_2 + x_3 = 0$ 上

(d)
$$(1, 3, 5) \times x_1 - 2x_2 + x_3 = 0 \perp$$

(e)
$$(1, 2, 3)$$
 $(4, 5, 6)$ 在 $x_1 - 2x_2 + x_3 = 0$ 上

by 2D perceptron 的 $d_{vc}=3$,(b)(d)(e) 無法 shatter

2. **(d)**

2D perceptron 的 $d_{vc}=3$,當 N=4 的時候 $m_h(N)<2^N$,因此 (a)(b)(c) 一定錯 $w_1w_2=0\Rightarrow w_1=0$ (垂直或水平的線)

說明: growth function of axis-aligned perceptrons $\leq 4N-2$

假設有一組 N 個 input (x_1,y_1) , (x_2,y_2) , ..., (x_N,y_N) , 其中 N 個 x 座標不重複、N 個 y 座標不重複。把這些點投影到 x 軸和 y 軸後,by " growth function of 1D perceptron" 可分別在 x 軸和 y 軸找到 2N 種 perceptron 的組合 \Rightarrow 共 4N 種

而全部圈和全部叉的組合會被重複計算,扣掉之後會變成 4N-2 種

因此,growth function of axis-aligned perceptrons $\leq 4N-2$ (因為可能有重複)

說明:可以找到一組點使得 growth function of axis-aligned perceptrons =4N-2 若能找到一組點符合以下條件:「在 x 座標形成的 2N 種 perceptron」與「在 y 座標形成的 2N 種 perceptron」,除了全部圈和全部叉的組合之外,其他的 dichotomy 都不重複。則可以說 growth function of axis-aligned perceptrons =4N-2

考慮下圖四點的排列,6條灰色虛線為不同的 hypothesis,可以產生 14種 dichotomy

垂直線(由左到右):

OXXX XOOO (正負邊相反)

OOXX XXOO

OOOX XXXO

水平線(由上到下):

OOXO XXOX

XOXO OXOX

XOXX OXOO

再加上全部都圈、全部都叉兩種組合,共14種(4N-2)

3. (c)

(a) 證: $d_{vc} \geq 2$ (There are some 2 inputs we can shatter)

$$x-y+5=0$$
 point(2, 14) = -, point(5, 13) = -

$$x-y+10 = 0$$
 point(2, 14) = -, point(5, 13) = +
 $x-y+15 = 0$ point(2, 14) = +, point(5, 13) = +

$$x-y+15=0$$
 point(2, 14) = +, point(5, 13) = +

$$-x-y+17=0$$
 point(2, 14) = +, point(5, 13) = -

(b) 證: $d_{vc} \le 2$ (We can not shatter any set of 3 inputs) 假設有三個 input point $(x_1^{(1)}, x_1^{(2)}), (x_2^{(1)}, x_2^{(2)}), (x_3^{(1)}, x_3^{(2)})$

$$X = \begin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} \\ 1 & x_2^{(1)} & x_2^{(2)} \\ 1 & x_3^{(1)} & x_3^{(2)} \end{bmatrix}, \overrightarrow{x_1} = (1, x_1^{(1)}, x_1^{(2)}), \overrightarrow{x_2} = (1, x_2^{(1)}, x_2^{(2)}), \overrightarrow{x_3} = (1, x_3^{(1)}, x_3^{(2)})$$

- ·如果 $\overrightarrow{x_1}$, $\overrightarrow{x_2}$, $\overrightarrow{x_3}$ linear dependent \Rightarrow by 上課證明,一定不能 shatter
- ·如果 $\overrightarrow{x_1}$, $\overrightarrow{x_2}$, $\overrightarrow{x_3}$ linear independent(可作為三維空間的 basis) 則存在唯一一組 $(a_1,\,a_2,\,a_3)$ 使得三維向量 \vec{z} 被表示為: $\vec{z}=a_1\overrightarrow{x_1}+a_2\overrightarrow{x_2}+a_3\overrightarrow{x_3}$ 左右同乘 $w^T \Rightarrow w^T \vec{z} = a_1 w^T \vec{x_1} + a_2 w^T \vec{x_2} + a_3 w^T \vec{x_3}$

此時若
$$\vec{z} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
,上式會變 $w_0 = a_1 w^T \vec{x_1} + a_2 w^T \vec{x_2} + a_3 w^T \vec{x_3} = a_1 y_1 + a_2 y_2 + a_3 y_3$

因此,當 $w_0 > 0$ 時,三個點無法 shatter

(如:設 $a_1,\,a_2,\,a_3$ 皆大於零,必無法產生 $(y_1,\,y_2,\,y_3)=(\,-\,,-\,,-\,)$ 這種 dichotomy)

4. **(b)**

 $x_1^2 + x_2^2 + x_3^2$ 可看作是三維空間中的點到原點距離的平方,而此時 ring hypothesis 就可看作是課 堂上 "Growth Function for Positive Intervals"的問題。即:在數線上畫 N 個點(每個點的值是 x_n 到原點距離的平方),求 Positive Intervals 的 Growth Function。 by 課堂上的推導, $m_H(N) = C_2^{N+1} + 1$,答案為 (b)

5. **(b)**

承上題與課堂講義 "The VC Dimension, P.5", Positive Intervals 的 VC dimension=2。因此 ring hypothesis set 的 VC dimension=2。

6. (d)

(a) 證:
$$|E_{out}(g) - E_{out}(g^*)| \le |E_{out}(g) - E_{in}(g)| + |E_{in}(g^*) - E_{out}(g^*)|$$

 $|E_{out}(g) - E_{out}(g^*)| = |E_{out}(g) - E_{in}(g) + E_{in}(g) - E_{out}(g^*)|$
 $\le |E_{out}(g) - E_{in}(g) + E_{in}(g^*) - E_{out}(g^*)|$
 $\le |E_{out}(g) - E_{in}(g)| + |E_{in}(g^*) - E_{out}(g^*)|$ (三角不等式)

(b)證:For every g, with probability more than $1-\delta$, $|E_{in}(g)-E_{out}(g)| \leq \sqrt{\frac{8}{N}ln(\frac{4m_H(2N)}{\delta})}$

VC Bound : For any $g = A(D) \in H$ and statistical large D,

$$P[|E_{in}(h) - E_{out}(h)| > \epsilon] \le 4m_H(2N)exp(-\frac{1}{8}\epsilon^2N)$$

$$set \delta = 4m_H(2N)exp(-\frac{1}{8}e^2N)$$

$$\Rightarrow \frac{\delta}{4m_H(2N)} = exp(-\frac{1}{8}e^2N)$$

$$\Rightarrow ln(\frac{4m_H(2N)}{\delta}) = \frac{1}{8}e^2N$$

$$\Rightarrow \sqrt{\frac{8}{N}ln(\frac{4m_H(2N)}{\delta})} = \epsilon$$

by Lecture7 P.21 , For every g , with probability more than $1-\delta$, $|E_{in}(g)-E_{out}(g)|\leq \epsilon$

$$\Rightarrow |E_{in}(g) - E_{out}(g)| \leq \sqrt{\frac{8}{N}ln(\frac{4m_H(2N)}{\delta})}$$

(c)證:
$$|E_{out}(g) - E_{out}(g^*)| \leq 2\sqrt{\frac{8}{N}ln(\frac{4m_H(2N)}{\delta})}$$

$$\begin{split} \text{by (a) , } &|E_{out}(g) - E_{out}(g^*)| \leq |E_{out}(g) - E_{in}(g)| + |E_{in}(g^*) - E_{out}(g^*)| \\ &\leq \sqrt{\frac{8}{N}ln(\frac{4m_H(2N)}{\delta})} + \sqrt{\frac{8}{N}ln(\frac{4m_H(2N)}{\delta})} \\ &\leq 2\sqrt{\frac{8}{N}ln(\frac{4m_H(2N)}{\delta})} \end{split}$$

7. **(d)**

a. 希望 d_{vc} 最大 \Rightarrow M 個 hypothesis 各產生不同的 M 種 dichotomy 時, d_{vc} 會最大 b. d_{vc} 的意含:最多可 shatter d_{vc} 個點 \Rightarrow 可對 d_{vc} 個點產生 $2^{d_{vc}}$ 種不同的 dichotomy 綜合以上兩點,可知 $M \geq 2^{d_{vc}} \Rightarrow d_{vc} \leq \lfloor log_2 M \rfloor$

8. (d)

boolean function 輸出的值只和 input 中 1 的數量有關,而 $\{-1,+1\}^k$ 是 k-dimensional 的資料點,因此 1 的數量只會介於 0~k 之間(k+1 種不同的 input)。此時若這 k+1 個 input 在不同的 h 中皆有 -1 和 +1 兩種輸出,則可以對 k+1 個 點產生 2^{k+1} 種 dichotomy \Rightarrow shattered!
(因為只有 k+1 種不同的 input,若 N>k+1,則必有兩個點的 output 會相同 \Rightarrow 無法 shatter)

9. (c)

 $d_{vc}=d\Rightarrow$ 最大的 non-break point = d(d+1 是最小的 break point) \Rightarrow $d_{vc}\geq d$ 且 $d_{vc}\leq d$

- · maximum non-break point = d $(d_{vc} \ge d)$: There are 'some d inputs' we can shatter
- · minimum break point = d+1 $(d_{vc} \le d)$: We can't not shatter any set of d+1 input

而 "any set of d+1 distinct inputs is not shattered by H" 也包含了 "some set of d+1 distinct inputs is not shattered by H"

所以第一點、第六點和最後一點是 necessary condition

10. (c)

(c) by https://cs.nyu.edu/~mohri/ml16/sol2.pdf 2(b)

$$\{h_{\alpha}: h_{\alpha}(x) = sign(sin(\alpha \cdot x))\}$$

設有
$$m (m \in N)$$
 個 inputs $(x_1, x_2, \ldots, x_m) = (2^{-1}, 2^{-2}, \ldots, 2^{-m})$

輸出的 labels $(y_1, y_2, ..., y_m) \in \{-1, +1\}^m$

此時造一個
$$\alpha = \pi (1 + \sum_{i=1}^{m} 2^{i} y_{i}'), y_{i}' = \frac{1 - y_{i}}{2}$$
 (即: $y_{i}' \begin{cases} 1, & \text{if } y_{i} = -1 \\ 0, & \text{if } y_{i} = 1 \end{cases}$)

for any $j \in [1, m] (j \in N)$,

$$\alpha \cdot x_j = \alpha \cdot 2^{-j} = \pi (1 + \sum_{i=1}^m 2^i y_i') \cdot 2^{-j} = \pi (2^{-j} + \sum_{i=1}^m 2^{i-j} y_i')$$

$$= \pi (2^{-j} + \sum_{i=1}^{j-1} 2^{i-j} y_i' + y_j' + \sum_{i=j+1}^m 2^{i-j} y_i') = \pi (\sum_{i=1}^{j-1} 2^{-i} y_i' + 2^{-j} + y_j')$$

(橘色區的 i>j ,此時 $\pi \sum_{i=i+1}^m 2^{i-j} y_i'$ 為 2π 的倍數,對 $sin(\alpha \cdot x)$ 沒影響。省略)

可以得到 $\alpha \cdot x_j = \pi(\sum_{i=1}^{j-1} 2^{-i}y_i' + 2^{-j} + y_j')$ 的 upper 和 lower bound :

$$\cdot \pi(\sum_{i=1}^{j-1} 2^{-i} y_i' + 2^{-j} + y_j') \le \pi(\sum_{i=1}^{j} 2^{-i} + y_j') \quad (\boxtimes A \ y_i' = 0 \ or \ 1) < \pi(1 + y_j')$$

$$\cdot \pi(\sum_{i=1}^{j-1} 2^{-i} y_i' + 2^{-j} + y_j') > \pi(y_j')$$

因此,
$$\begin{cases} \pi < \alpha \cdot x_j < 2\pi, \ if \ \ y_j' = 1, \ y_j = -1 \\ 0 < \alpha \cdot x_j < \pi, \ if \ \ y_j' = 0, \ y_j = 1 \end{cases}, \ \text{則} \ h_\alpha(x) \begin{cases} -1, \ if \ \ y_j = -1 \\ 1, \ if \ \ y_j = 1 \end{cases}$$

 $\forall m \in N$,無論 $(y_1,\,y_2,\,\ldots,\,y_m)$ 長怎樣,都能造出 α s.t $sign(sin(\alpha \cdot x_i)) = y_i,\,i \in [1,\,m]$

11. (d)

$$E_{out}(h,\tau) = (1 - E_{out}(h,0)) \cdot \tau + E_{out}(h,0) \cdot (1 - \tau)$$
 $\cdot (1 - E_{out}(h,0)) \cdot \tau$: 原本預測正確的資料有 τ 的機率預測錯誤 $\cdot E_{out}(h,0) \cdot (1 - \tau)$: 原本預測錯誤的資料有 $1 - \tau$ 的機率仍然是錯的 $E_{out}(h,\tau) = \tau - E_{out}(h,0) \cdot \tau + E_{out}(h,0) - E_{out}(h,0) \cdot \tau = \tau + E_{out}(h,0) \cdot (1 - 2\tau)$ $E_{out}(h,0) = \frac{E_{out}(h,\tau) - \tau}{1 - 2\tau}$

12. **(b)**

如右圖,using squared error 計算 $y \neq f(x)$ 時的 $E_{out}(f)$

$$E_{out}(f) = \frac{1}{3} \cdot (0.1 \cdot (2-1)^2 + 0.2 \cdot (3-1)^2) + \frac{1}{3} \cdot (0.1 \cdot (3-2)^2 + 0.2 \cdot (1-2)^2)$$

$$+ \frac{1}{3} \cdot (0.1 \cdot (1-3)^2 + 0.2 \cdot (2-3)^2)$$

$$= \frac{1}{3} \cdot (0.1 + 0.8) + \frac{1}{3} \cdot (0.1 + 0.2) + \frac{1}{3} \cdot (0.4 + 0.2)$$

$$= \frac{1}{3} \cdot (1.8) = 0.6$$

$$f(x) = \frac{1}{3} \cdot (1.8) = 0.6$$

13. **(b)**

$$f(x) = 1$$
 時, $f_*(x) = 1 \cdot 0.7 + 2 \cdot 0.1 + 3 \cdot 0.2 = 0.7 + 0.2 + 0.6 = 1.5$
 $f(x) = 2$ 時, $f_*(x) = 2 \cdot 0.7 + 3 \cdot 0.1 + 1 \cdot 0.2 = 1.4 + 0.3 + 0.2 = 1.9$
 $f(x) = 3$ 時, $f_*(x) = 3 \cdot 0.7 + 1 \cdot 0.1 + 2 \cdot 0.2 = 2.1 + 0.1 + 0.4 = 2.6$
 $\Delta(f, f_*) = \frac{1}{3} \cdot (1 - 1.5)^2 + \frac{1}{3} \cdot (2 - 1.9)^2 + \frac{1}{3} \cdot (3 - 2.6)^2 = \frac{0.25 + 0.01 + 0.16}{3} = 0.14$

14. (d)

$$\text{VC bound}: P[|E_{in}(h) - E_{out}(h)| > \epsilon] \leq 4m_H(2N)exp(-\frac{1}{8}\epsilon^2N)$$

by 題目敘述,decision stump model 的 growth function 是 2N、 $d_{vc}=2$

$$4m_H(2N)exp(-\frac{1}{8}\epsilon^2N) = 4(4N)exp(-\frac{1}{8}\epsilon^2N) = 16Nexp(-\frac{1}{8}\epsilon^2N)$$

帶入
$$\epsilon = 0.1$$
, $\delta = 0.1 \Rightarrow 16Nexp(-\frac{1}{8}\epsilon^2N) = 16Nexp(-0.00125N)$

依序帶入 N=6000, 8000, 10000, 12000, 14000

$$16Nexp(-0.00125N) = 53.096, 5.811, 0.596, 0.059, 0.006$$

找最小的 N 使得 $16Nexp(-0.00125N) \le 0.1$,答案為 12000

15. **(b)**

因為
$$f(x) = sign(x)$$
 (即: $f(x \le 0) = -1 \cdot f(x > 0) = +1$) θ 介於 -1 到 1 之間, $h_{+1,\theta}(x \le \theta) = -1 \cdot h_{+1,\theta}(x > \theta) = +1$

因此會有以下兩種錯誤的情形:

$$\cdot \theta < 0$$
 時, $-\theta < x \le 0$ 會預測錯誤 $\Rightarrow E_{out}(h_{+1,\theta}, 0) = \frac{|\theta|}{2}$

$$\cdot \theta \ge 0$$
 時, $0 < x \le \theta$ 會預測錯誤 $\Rightarrow E_{out}(h_{+1,\theta}, 0) = \frac{|\theta|}{2}$

- 16. **(d)**
- 17. **(b)**
- 18. **(e)**
- 19. (c)
- 20. (a)

ML_hw2_program 2020/11/5 下午9:22

```
In [219]: import numpy as np
          def train(times, set size, tau):
               out minus in = 0
               for T in range(times):
                   print(T, end='\r')
                   ## get x set, y set
                   x set = np.sort(np.random.uniform(-1, 1, set size))
                   y set = np.zeros([set size])
                   num negative = 0
                   for i in range(set size):
                       y set[i] = np.sign(x set[i])
                       if y set[i]==0:
                           y set[i] = -1
                       temp = np.random.uniform(0, 1)
                       if temp<=tau:</pre>
                           y_set[i] *= -1
                       if y set[i]==-1:
                           num negative += 1
                   ##dp table, E in
                   dp table = np.zeros([2, set size])
                   dp table[0][0] = set size-num negative ## s=-1 預測錯的個數
                   dp_table[1][0] = num_negative ## s=1 預測錯的個數
                   for i in range(1, set size):
                       if y set[i-1]==-1:
                           dp_table[0][i] = dp_table[0][i-1] + 1
                           dp table[1][i] = dp table[1][i-1] -1
                       elif y set[i-1]==1:
                           dp_table[0][i] = dp_table[0][i-1] - 1
                           dp_table[1][i] = dp_table[1][i-1] + 1
                   E in = np.min(dp table) / set size
                   ##s, theta
                   index = np.unravel index(np.argmin(dp table, axis=None), dp
           table.shape)
                   if index[0] == 0:
                       s = -1
                   elif index[0] == 1:
                       s = 1
                   which theta = index[1]
                   if which theta == 0:
                       theta = -1
                   else:
                       theta = (x set[which theta-1] + x set[which theta]) / 2
                    ##E out
                   if s == -1:
                       E \text{ out} = 1 - (0.5 * abs(theta))
                   elif s == 1:
                       E \text{ out} = 0.5 * abs(theta)
                   E \text{ out} = E \text{ out*}(1-(2*tau))+tau
                   out minus in += (E out-E in)
               mean = out minus in/times
               return mean
```

ML_hw2_program 2020/11/5 下午9:22

```
In [220]: mean_16 = train(10000, 2, 0)
    print("mean_16", mean_16)

    mean_16 0.2907575302757793

In [221]: mean_17 = train(10000, 20, 0)
    print("mean_17", mean_17)

    mean_17 0.024181985529829673

In [222]: mean_18 = train(10000, 2, 0.1)
    print("mean_18", mean_18)

    mean_18 0.36722770808211214

In [223]: mean_19 = train(10000, 20, 0.1)
    print("mean_19", mean_19)

    mean_19 0.05157750106317468

In [224]: mean_20 = train(10000, 200, 0.1)
    print("mean_20", mean_20)
```