Esponenziali e logaritmi

- 1. Funzione esponenziale
- 2. Funzione logaritmica
- 3. Equazioni e disequazioni esponenziali e logaritmiche

La funzione esponenziale

Consideriamo la funzione

$$f: x \to 2^x$$

(posso anche scrivere $f(x) = 2^x$ oppure $y = 2^x$).

Questa funzione risulta definita per tutti i numeri reali?

Proviamo:

• se $x = -n \in \mathbb{Z}$ $2^{-n} = \frac{1}{2^n}$

• se $x = \frac{m}{n} \in Q$ $2^{\frac{m}{n}} = \sqrt[n]{2^m}$

• se x è un numero irrazionale, per esempio $x = \sqrt{2}$ possiamo definire $2^{\sqrt{2}}$ come l'elemento "separatore" delle due classi "contigue" di numeri reali

 $2^{1,4}$ $2^{1,41}$ $2^{1,414}$

 $2^{1,5}$ $2^{1,42}$ $2^{1,415}$

(dove si sono considerate le approssimazioni per eccesso e per difetto di $\sqrt{2}$). Quindi $f(x) = 2^x$ risulta definita $\forall x \in \Re$ cioè il suo dominio è \Re .

Chiamiamo funzione esponenziale una funzione del tipo

$$y = a^x$$

La variabile x si trova all'esponente e **a è un numero reale positivo e diverso da 1** e si chiama **base** della funzione esponenziale.

Per quello che abbiamo visto prima la funzione esponenziale ha come dominio (insieme di definizione) l'insieme \Re dei numeri reali.

Osservazione 1

Si considera la base a > 0 perché la base a=0 non avrebbe nessun interesse e con basi negative non avrei sempre risultati reali: per esempio $a^{\frac{1}{2}}$ con a < 0 non è un numero reale.

Osservazione 2

Non si considera la base a = 1 perché avremmo la funzione costante y=1.

Come risulta il grafico di $y = 2^x$?

Consideriamo per esempio a = 2: possiamo fare una tabella assegnando vari valori alla variabile x e otteniamo

Х	у
-3	$2^{-3} = 1/8$
-2	$2^{-2} = 1/4$
-1	$2^{-1} = 1/2$
0	$2^0 = 1$
1	$2^1 = 2$
2	$2^2 = 4$

Osservazioni

La funzione $y = 2^x$ ha le seguenti caratteristiche:

- è crescente cioè se $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$;
- è iniettiva cioè ad elementi distinti corrispondono immagini distinte (se $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$);
- è sempre positiva e quindi il grafico si trova sempre sopra all'asse x;
- ha come asintoto l'asse x.

Consideriamo adesso $y = \left(\frac{1}{2}\right)^x$. Come risulta il suo grafico?

у
8
4
2
1
1/2
1/4

Osserviamo che in questo caso la funzione è decrescente, ma per il resto ha le stesse caratteristiche.

In conclusione quindi avremo che

$$y = a^x$$

è una funzione

- crescente quando la base a > 1,
- decrescente per 0 < a < 1.

Il codominio (insieme delle immagini) di $y = a^x$ è in ogni caso l'insieme dei reali positivi y > 0.

Funzioni esponenziali nella realtà

Colonie di batteri

La mitosi è un processo legato alla divisione cellulare: **una cellula si divide in due cellule** figlie che risultano geneticamente e morfologicamente identiche tra loro e alla cellula madre.

La maggior parte dei batteri si riproduce mediante il meccanismo della mitosi: una volta che una cellula ha raggiunto una certa dimensione, si divide in due cellule identiche, di massa pari a circa la metà di quella originaria.

Intanto anche le due cellule figlie crescono fino a dividersi ulteriormente e così via....

Supponiamo di poter osservare l'evoluzione di una popolazione di questi batteri le cui cellule ogni ora si duplicano e che all'inizio della nostra osservazione ci siano $N_0 = 100$ batteri vediamo come risulta il numero N(t) dei batteri che popolano la colonia al tempo t (misurando t in ore).

numero iniziale di batteri : N(0) = 100

numero di batteri dopo 1 ora : $N(1) = 100 \cdot 2$

numero di batteri dopo 2 ore : $N(2) = 100 \cdot 2 \cdot 2 \rightarrow 100 \cdot 2^2$

ecc.

Quindi $N(t) = 100 \cdot 2^t$

La crescita del numero dei batteri ha come "curva di sostegno" il grafico di una funzione esponenziale del tipo $y = N_o \cdot 2^x$ in cui x rappresenta il tempo t e si ha $y(0) = N_0$ cioè il valore della funzione per x=0 risulta N_0 : naturalmente avrà senso considerare solo alcuni punti corrispondenti a t=0, t=1, t=2 ecc.

Disegniamo il grafico partendo da t = 0.

Decadimento radioattivo

Alcune sostanze, dette radioattive, si trasformano in altre sostanze (si dice che "decadono") e il tempo in cui la sostanza si dimezza (metà della sua massa iniziale si è trasformata) viene chiamato "tempo di dimezzamento" ed è diverso da sostanza a sostanza radioattiva.

Supponiamo per semplicità di considerare 100 grammi di una sostanza radioattiva che ha un tempo di dimezzamento di 1 giorno: se misuriamo il tempo in giorni e indichiamo con m(t) la massa (in grammi) della sostanza al giorno t possiamo scrivere che:

massa iniziale
$$m(0) = 100$$

massa dopo 1 giorno:
$$m(1) = 100 \cdot \frac{1}{2}$$

massa dopo 2 giorni:
$$m(2) = 100 \cdot \frac{1}{2} \cdot \frac{1}{2} \rightarrow 100 \cdot \left(\frac{1}{2}\right)^2$$

ecc.

Quindi avremo che $m(t) = 100 \cdot \left(\frac{1}{2}\right)^t$ cioè la massa sarà rappresentata dall'andamento di una funzione esponenziale di base $a = \frac{1}{2}$ e valore iniziale m(0) = 100 (naturalmente dovremo considerare solo i punti del grafico corrispondenti a t=0, t=1 ecc.(t misurato in giorni).

Interesse bancario composto

Quando versiamo dei soldi in banca riceviamo un compenso che è l'interesse.

L'interesse è il prezzo che la banca paga per poter disporre del nostro denaro e quasi sempre si tratta di quello che si chiama interesse composto cioè l'interesse è calcolato alla fine di ogni anno e si capitalizza, cioè si aggiunge al capitale depositato.

Quindi se abbiamo depositato 100 euro e l'interesse è del 5% composto il primo anno guadagneremo 5 euro ma il secondo anno guadagneremo il 5% di 100+5=105 euro quindi 5,25 euro ecc.

Supponiamo di aver depositato in banca 100 euro e che la banca applichi un interesse composto del 10%.

Calcoliamo il capitale C(1), C(2) ... C(t) dopo 1, 2 annit anni

$$C(1) = 100 + 100 \cdot \frac{1}{10} \rightarrow 100 \cdot \left(1 + \frac{1}{10}\right)$$

$$C(2) = C(1) + C(1) \cdot \frac{1}{10} \to C(1) \cdot \left(1 + \frac{1}{10}\right) \to 100 \cdot \left(1 + \frac{1}{10}\right)^2 \text{ ecc.}$$

Quindi avremo:
$$C(t) = 100 \cdot \left(1 + \frac{1}{10}\right)^t$$

Si tratta di una funzione esponenziale che ha valore iniziale C(0)=100 e base $a=\frac{11}{10}$ (maggiore di 1).

Funzione logaritmica

Definizione di logaritmo

Si definisce logaritmo in base a di un numero x e si indica con la scrittura $\log_a x$, l'esponente da dare alla base a per ottenere x.

Per esempio $\log_{10} 1000 = 3$ perché $10^3 = 1000$

La base a deve essere positiva cioè a > 0 e $a \ne 1$ così come avevamo visto per la funzione esponenziale.

La funzione $f: x \to \log_a x$ cioè $y = \log_a x$ viene detta funzione logaritmica ed è la "funzione inversa" della funzione esponenziale: infatti per esempio, considerando la base a = 10

$$3 \xrightarrow{10^x} 10^3$$

$$10^3 \xrightarrow{\log_{10} x} 3$$

Nota

Prova a fare alcune prove di calcolo di logaritmi in base 10 con la calcolatrice: il tasto **log** indica il logaritmo in base 10 ed è presente in tutte le calcolatrici:

$$\log_{10} 10 = 1$$
 $\log_{10} 100 = 2$ ecc.

Nota storica

L'idea su cui si basa il concetto di logaritmo è molto antica e se ne trova già traccia nelle opere di Archimede.

Consideriamo per esempio la base 2 (la base veniva chiamata *ragione*) e facciamo una tabella in cui mettiamo in una colonna le potenze del 2 e nella colonna accanto l'esponente corrispondente (che veniva chiamato *indice*): nel sedicesimo secolo il matematico scozzese **John Napier**, noto con il nome italianizzato di Giovanni Nepero, coniò il termine ancora oggi utilizzato di logaritmo, dal greco *logon arithmos*, cioè *numero della ragione* intendendo l'indice, cioè l'esponente, per avere il numero della tabella.

Numero	Logon arithmos
2	1
4	2
8	3
16	4
32	5
64	6
	•••

Grafico della funzione logaritmica

1) Consideriamo per esempio la funzione $y = \log_2 x$: per tracciarne il grafico facciamo prima la tabella e poi riportiamo i vari punti.

x	$y = \log_2 x$
1/4	-2
1/2	-1
1	0
1	Ü
2	1
4	2
8	3

- Osserviamo che il dominio della funzione logaritmica è x > 0, mentre il codominio sono tutti i numeri reali: dominio e codominio sono scambiati rispetto alla funzione esponenziale.
- Il grafico ha come asintoto verticale l'asse y (l'esponenziale aveva invece l'asse x)
- Se, come in questo caso, la base a > 1 otteniamo una funzione crescente (come nel caso della funzione esponenziale).
- Il grafico interseca l'asse x in (1;0)

Osservazione

Poiché la funzione logaritmica è la funzione inversa della funzione esponenziale i grafici di $y = \log_2 x$ e $y = 2^x$ sono simmetrici rispetto alla bisettrice del I e III quadrante perché i loro punti hanno ascissa e ordinata scambiate (vedi figura).

Funzione logaritmica

2) Consideriamo una funzione logaritmica con base minore di 1: tracciamo per esempio il grafico di $y = \log_{\frac{1}{2}} x$:

X	$log_{1/2}x$
1/4	2
1/2	1
1	0
2	-1
4	-2

- Osserviamo che anche in questo caso il dominio della funzione logaritmica è x > 0, mentre il codominio sono tutti i numeri reali: dominio e codominio sono scambiati rispetto alla funzione esponenziale.
- Il grafico ha come asintoto verticale l'asse y (l'esponenziale aveva invece l'asse x)
- Se, come in questo caso, la base 0 < a < 1 otteniamo la funzione è **decrescente** (come accadeva anche per la funzione esponenziale con base minore di 1).
- Il grafico interseca l'asse *x* in (1;0)

Vediamo alcune proprietà dei logaritmi.

.

Proprietà dei logaritmi

$$\log_a(m \cdot n) = \log_a m + \log_a n$$

Dimostrazione

Poniamo $\log_a m = x$ cioè $a^x = m$ e $\log_a n = y$ cioè $a^y = n$ allora $m \cdot n = a^x \cdot a^y = a^{x+y}$ e quindi

$$x + y = \log_a(m \cdot n)$$

Esempio: $\log_{10} 10 \cdot 100 = \log_{10} 10 + \log_{10} 100$

 $\log_{10} 10 \cdot 100 = \log_{10} 1000 = 3$ e $\log_{10} 10 + \log_{10} 100 = 1 + 2 = 3$ Infatti

$$\log_a \left(\frac{m}{n} \right) = \log_a m - \log_a n$$

Dimostrazione

Ponendo $\log_a m = x$ e $\log_a n = y$ abbiamo che $\frac{m}{n} = \frac{a^x}{a^y} = a^{x-y}$ e quindi $x - y = \log_a \left(\frac{m}{n}\right)$

Esempio: $\log_{10} \frac{1000}{10} = \log_{10} 1000 - \log_{10} 10$

 $\log_{10} \frac{1000}{10} = \log_{10} 100 = 2$ e $\log_{10} 1000 - \log_{10} 10 = 3 - 1 = 2$ Infatti

$$\log_a(m^n) = n \cdot \log_a m$$

Dimostrazione

Poniamo $\log_a m = x$ cioè $a^x = m$ avremo che $m^n = (a^x)^n = a^{x \cdot n}$ e quindi

$$n \cdot x = \log_a(m^n)$$

Esempio: $\log_{10}(10^3) = 3 \cdot \log_{10} 10$ Infatti $\log_{10}(10^3) = 3$ e $3 \cdot \log_{10} 10 = 3 \cdot 1 = 3$

$$\log_a m = \frac{\log_b m}{\log_b a}$$

Dimostrazione

Poniamo $a^x = m$: se a^x è uguale a m allora saranno uguali anche i loro logaritmi in base b:

$$\log_b a^x = \log_b m \Rightarrow x \cdot \log_b a = \log_b m \Rightarrow x = \frac{\log_b m}{\log_b a}$$

(abbiamo applicato la proprietà 3 dei logaritmi e poi ricavato x).

$$\log_3 5 = \frac{\log_{10} 5}{\log_{10} 3} \cong \frac{0,699}{0,477} \cong 1,47$$

Calcolo di un logaritmo

Alcuni logaritmi possono essere calcolati a mente utilizzando la conoscenza delle potenze.

Per esempio $\log_2 8 = 3$ perché $2^3 = 8$.

Ma quanto vale, per esempio, log, 3?

Essendo il numero 3 compreso tra 2 e 4 il suo logaritmo sarà compreso tra $\log_2 2 = 1$ e $\log_2 4 = 2$: per trovare il valore approssimato di $\log_2 3$ possiamo utilizzare la calcolatrice.

In alcune calcolatrici è presente anche il tasto che permette di calcolare il logaritmo in una base qualunque ma se non fosse presente possiamo cambiare base e riportarci alla base 10.

Abbiamo quindi:

$$\log_2 3 = \frac{\log_{10} 3}{\log_{10} 2} \cong \frac{0,477}{0,301} \cong 1,58$$

Nota: in genere nelle calcolatrici è presente anche il tasto **ln** che permette di calcolare il logaritmo in base e (e è un numero irrazionale molto importante in matematica per la descrizione di numerosi fenomeni ed il cui valore approssimato è 2,7).

Funzioni logaritmiche nella realtà

Logaritmi e chimica

In chimica la concentrazione molare di ioni H^+ presenti in una soluzione viene indicata con il simbolo $[H^+]$ e si ha:

 $[H^+]$ = 1 per una soluzione di massima acidità;

 $[H^+] = 10^{-7}$ per una soluzione neutra;

 $[H^+] = 10^{-14}$ per una soluzione di minima acidità (basica).

Il pH di una soluzione si definisce come

$$pH = -\log_{10}[H^+]$$

e quindi abbiamo che:

se $[H^+] = 1 \Rightarrow pH = 0$ soluzione di massima acidità;

se $[H^+] = 10^{-7} \Rightarrow pH = 7$ soluzione neutra;

se $[H^+] = 10^{-14} \Rightarrow pH = 14$ soluzione di minima acidità (basica)

Esempio

Se la concentrazione di ioni di una soluzione è per esempio $[H^+]=10^{-8}$ avrà pH=8.

Logaritmi e livello sonoro

Ricordiamo che l'intensità I di un'onda sonora è definita come la quantità di energia che attraversa in 1 secondo una superficie di 1 m^2 disposta perpendicolarmente alla superficie di propagazione dell'onda e si misura quindi in W/m^2 .

L'intensità minima percepita da un orecchio "normale" (alla frequenza di riferimento di 1000 Hz) è $I_0 = 10^{-12} W / m^2$ (soglia di udibilità).

Si definisce livello sonoro, che indichiamo con l_s , misurato in decibel (dB):

$$l_s = 10 \cdot \log_{10} \left(\frac{I}{I_0} \right)$$
 (dB)

Quindi se
$$I = I_0 \Rightarrow l_s = 0$$
 dB
se $I = 10 \cdot I_0 \Rightarrow l_s = 10$ dB
se $I = 100 \cdot I_0 \Rightarrow l_s = 20$ dB
ecc.

Esempio

L'intensità del suono (per la frequenza di riferimento di 1000 Hz) che provoca una sensazione di dolore al timpano è $I = 1W/m^2$ e il livello sonoro corrispondente risulta $10 \cdot \log_{10} \left(\frac{1}{10^{-12}}\right) = 120$

Equazioni esponenziali

Equazioni esponenziali elementari

L'equazione esponenziale elementare è

$$a^x = k$$

con k > 0 altrimenti non ci sono soluzioni e per la definizione di logaritmo la soluzione dell'equazione è:

$$x = \log_a k$$

Esempio: $2^x = 3 \rightarrow x = \log_2 3$

Equazioni esponenziali riconducibili a quelle elementari

Esempi

1.
$$2^{x-1} = 3 \rightarrow x-1 = \log_2 3 \rightarrow x = 1 + \log_2 3$$

2.
$$2^{x-1} = 2^{3x} \rightarrow x - 1 = 3x \rightarrow 2x = -1 \rightarrow x = -\frac{1}{2}$$

3.
$$2^{x-1} = 3^x$$

Se due numeri sono uguali allora sono uguali anche i loro logaritmi in una base qualsiasi: se scegliamo la base 10 abbiamo

$$\log_{10} 2^{x-1} = \log_{10} 3^x$$

Applichiamo la proprietà dei logaritmi relativa alla potenza ed abbiamo:

$$(x-1) \cdot \log_{10} 2 = x \cdot \log_{10} 3 \rightarrow x \cdot \log_{10} 2 - \log_{10} 2 = x \cdot \log_{10} 3 \rightarrow x (\log_{10} 2 - \log_{10} 3) = \log_{10} 2$$

Infine ricaviamo la x

$$x = \frac{\log_{10} 2}{\log_{10} 2 - \log_{10} 3}$$

Nota: applicando la proprietà del quoziente possiamo scrivere la soluzione anche così: $x = \frac{\log_{10} 2}{\log_{10} \frac{2}{3}}$

4.
$$3^{2x} - 12 \cdot 3^x - 13 = 0$$

Poniamo
$$3^x = y \to y^2 - 12y - 13 = 0 \to y_1 = -1 \cup y_2 = 13$$

Quindi: $3^x = -1$ non ha nessuna soluzione; $3^x = 13 \rightarrow x = \log_3 13$

Disequazioni esponenziali

Disequazioni esponenziali elementari

Esempi

• $2^x > 4 \rightarrow x > \log_2 4$ cioè x > 2

 $\bullet \qquad \left(\frac{1}{2}\right)^x > 4 \to x < \log_{\frac{1}{2}} 4 \text{ cioè } x < -2$

In generale se k > 0 abbiamo

• se a > 1 poiché a^x è una funzione crescente si mantiene il verso della diseguaglianza

$$a^x > k \to x > \log_a k$$

• se 0 < a < 1 poiché a^x è in questo caso una funzione decrescente si inverte il verso della diseguaglianza

$$\boxed{a^x > k \to x < \log_a k}$$

Nota 1

Se k < 0 e dobbiamo risolvere $a^x > k$ la disequazione è verificata $\forall x \in \Re$ dal momento che a^x è sempre positivo e quindi è maggiore di un numero negativo.

Esempio: $2^x > -3 \rightarrow \forall x \in \Re$

Nota 2

Considerazioni analoghe valgono per la risoluzione della disequazione di $a^x < k \text{ con } k > 0$. Se k < 0 non ci sarà nessuna soluzione di $a^x < k$ poiché a^x è sempre positivo.

Disequazioni esponenziali riconducibili a quelle elementari

Esempi

1.
$$2^{x-1} > 3 \rightarrow x - 1 > \log_2 3 \rightarrow x > 1 + \log_2 3$$

2.
$$\left(\frac{1}{2}\right)^{x-1} > 3 \to x - 1 < \log_{\frac{1}{2}} 3 \to x < 1 + \log_{\frac{1}{2}} 3$$

3.
$$2^{x-1} > 2^{3x} \to x-1 > 3x \to 2x < -1 \to x < -\frac{1}{2}$$

4.
$$\left(\frac{1}{2}\right)^{x-1} > \left(\frac{1}{2}\right)^{3x} \to x-1 < 3x \to 2x > -1 \to x > -\frac{1}{2}$$

5.
$$2^{x-1} > 3^x \rightarrow \log_{10} 2^{x-1} > \log_{10} 3^x \rightarrow (x-1) \cdot \log_{10} 2 > x \cdot \log_{10} 3 \rightarrow x \cdot \log_{10} 2 - \log_{10} 2 > x \cdot \log_{10} 3$$

$$x \cdot (\log_{10} 3 - \log_{10} 2) < -\log_{10} 2 \rightarrow x < -\frac{\log_{10} 2}{\log_{10} \frac{3}{2}}$$

Poiché $\log_{10} \frac{3}{2} = -\log_{10} \frac{2}{3}$ possiamo scrivere la soluzione anche così: $x < \frac{\log_{10} 2}{\log_{10} \frac{2}{3}}$

6.
$$3^{2x} - 12 \cdot 3^x - 13 > 0$$

Possiamo risolvere questa disequazione ponendo $3^x = y$ e sostituendo otteniamo :

$$y^2 - 12y - 13 > 0 \Rightarrow y < -1 \cup y > 13$$

Quindi abbiamo $3^x < -1$ che non ha nessuna soluzione e $3^x > 13 \rightarrow x > \log_3 13$

7.
$$4^x - 3 \cdot 2^x + 2 < 0 \rightarrow 2^{2x} - 3 \cdot 2^x + 2 < 0$$

Poniamo $2^x = y \Rightarrow y^2 - 3y + 2 < 0 \Rightarrow 1 < y < 2$ e quindi

$$1 < 2^x < 2 \Rightarrow 2^0 < 2^x < 2^1 \rightarrow 0 < x < 1$$

Equazioni logaritmiche

Equazioni logaritmiche elementari

Si dice equazione logaritmica ogni equazione in cui l'incognita x compare come argomento di un logaritmo. L'equazione logaritmica elementare è quindi:

$$\log_a x = k \ (x > 0) \to x = a^k$$

Esempio: $\log_2 x = 3 \rightarrow x = 2^3$

Equazioni logaritmiche riconducibili a quelle elementari

Esempi

1.
$$\log_3(x-2) = 2 \rightarrow x-2 = 3^2 \rightarrow x = 2+9=11$$

2.
$$\log_2(2x-1) = \log_2(3x-5)$$

In questo caso è importante determinare la condizione di accettabilità delle soluzioni ricordando che l'argomento di un logaritmo deve essere strettamente positivo. Quindi nel nostro caso avremo:

$$\begin{cases} 2x-1>0\\ 3x-5>0 \end{cases} \Rightarrow \begin{cases} x>\frac{1}{2}\\ x>\frac{5}{3} \end{cases} \Rightarrow x>\frac{5}{3}$$

Risolvendo l'equazione logaritmica abbiamo:

$$2x-1=3x-5 \rightarrow x=4$$
 accettabile

Quindi la soluzione dell'equazione è x = 4.

3.
$$\log_2(x-1) = \log_2(2x+1)$$

$$\begin{cases} x-1>0\\ 2x+1>0 \end{cases} \Rightarrow \begin{cases} x>1\\ x>-\frac{1}{2} \Rightarrow x>1 \end{cases}$$

 $x-1=2x+1 \Rightarrow x=-2$ che non è accettabile e quindi l'equazione non ha soluzioni.

4.
$$\log_2 x + 3 \cdot \log_4 x = 10$$

In questo caso occorre operare un cambiamento di base per avere i logaritmi nella stessa base. Per esempio possiamo portare tutto in base 2 e poiché

$$\log_4 x = \frac{\log_2 x}{\log_2 4} = \frac{\log_2 x}{2}$$
abbiamo:
$$\log_2 x + \frac{3}{2} \cdot \log_2 x = 10 \Rightarrow \frac{5}{2} \cdot \log_2 x = 10 \Rightarrow \log_2 x = 4 \Rightarrow x = 2^4$$

5.
$$\log(4x-5) + \log x = 2 \cdot \log(x+4)$$

Se la base non viene indicata si intende che ci si riferisce sempre ad una stessa base e che non è importante conoscerla per risolvere l'equazione.

Impostiamo innanzitutto il sistema per avere le condizioni di accettabilità delle soluzioni:

$$\begin{cases} 4x - 5 > 0 \\ x > 0 \\ x + 4 > 0 \end{cases} \Rightarrow \begin{cases} x > \frac{5}{4} \\ x > 0 \\ x > -4 \end{cases} \Rightarrow x > \frac{5}{4}$$

Possiamo in questo caso applicare le proprietà dei logaritmi:

$$\log[(4x-5) \cdot x] = \log(x+4)^{2}$$

$$(4x-5) \cdot x = (x+4)^{2}$$
.....
$$x_{1} = \frac{16}{3} \text{ accettabile}$$

$$x_{2} = -1 \text{ non accettabile}$$

Quindi l'unica soluzione è $x = \frac{16}{3}$.

Disequazioni logaritmiche

Disequazioni logaritmiche elementari

La disequazione logaritmica elementare del tipo $\log_a x > k$

si risolve così:

- se $a > 1 \implies x > a^k$ poiché essendo $\log_a x$ crescente si mantiene il verso della diseguaglianza
- se $0 < a < 1 \implies 0 < x < a^k$ poiché essendo $\log_a x$ decrescente si inverte il verso della diseguaglianza e inoltre dobbiamo prendere solo valori positivi della x

Esempi

1)
$$\log_2 x > 1 \Rightarrow x > 2$$

У

 $\log_a x < k$ avrò: **Nota:** se devo risolvere

• se
$$a > 1 \Rightarrow 0 < x < a^k$$

• se
$$0 < a < 1 \Rightarrow x > a^k$$

Esempi

1)
$$\log_2 x < 1 \Rightarrow 0 < x < 2$$

$$2) \quad \log_{\frac{1}{2}} x < 1 \Rightarrow x > \frac{1}{2}$$

Disequazioni logaritmiche riconducibili a quelle elementari

Esempi

1.
$$\log_5(x-1) > 1 \rightarrow x-1 > 5 \rightarrow x > 6$$

2.
$$\log_{\frac{1}{2}}(2x-3) < 1 \rightarrow 2x-3 > \frac{1}{2} \rightarrow x > \frac{7}{4}$$

3.
$$\log_2(x+1) > \log_2(3x+2)$$

In questo caso possiamo risolvere un unico sistema in cui mettiamo il dominio dei logaritmi e la risoluzione della disequazione (la base è maggiore di 1 e quindi si mantiene il verso della diseguaglianza) cioè:

$$\begin{cases} x+1>0\\ 3x+2>0\\ x+1>3x+2 \end{cases} \Rightarrow \begin{cases} x>-1\\ x>-\frac{2}{3}\\ x<-\frac{1}{2} \end{cases}$$

La soluzione è: $-\frac{2}{3} < x < -\frac{1}{2}$

4.
$$\log_{\frac{1}{2}}(x+1) > \log_{\frac{1}{2}}(3x+2)$$

$$\begin{cases} x+1 > 0 \\ 3x+2 > 0 \\ x+1 < 3x+2 \end{cases} \Rightarrow \begin{cases} x > -1 \\ x > --\frac{2}{3} \\ x > -\frac{1}{2} \end{cases}$$

Nota: in questo caso la base è minore di 1 e quindi nella terza disequazione del sistema abbiamo invertito il verso della diseguaglianza.

La soluzione è : $x > -\frac{1}{2}$

ESERCIZI

EQUAZIONI E DISEQUAZIONI ESPONENZIALI E LOGARITMICHE

I) Equazioni esponenziali

1)
$$4^x = 8$$
 [$x = \frac{3}{2}$]

2)
$$9^x = 6 + 3^x$$

3)
$$15 + 4^x = 2^{x+3}$$
 [$x_1 = \log_2 3 \cup x_2 = \log_2 5$]

4)
$$2^{2x+1} - 17 \cdot 2^x + 8 = 0$$
 [$x_1 = 3 \cup x_2 = -1$]

5)
$$4^x = \frac{1}{2}$$

6)
$$3^x - 9^x = 0$$
 [$x = 0$]

7)
$$4^x - 5 \cdot 2^x + 6 = 0$$
 $[x_1 = 1 \cup x_2 = \log_2 3]$

8)
$$3^{x-1} = 5^{x-2}$$

$$\left[x = \frac{\log_{10} \frac{25}{3}}{\log_{10} \frac{5}{3}}\right]$$

9)
$$\frac{5}{2^x + 1} + \frac{9}{2^x - 1} = \frac{15}{2^x + 1} + 1$$
 [x = 2]

$$[x = \log_3 4]$$

11)
$$4^x - 10 \cdot 2^x + 16 = 0$$
 [$x_1 = 1 \cup x_2 = 3$]

12)
$$3^{2-8x} = 9^{3x+1}$$

II) Disequazioni esponenziali

16)
$$5^x > 25$$
 [$x > 2$]

$$17)\left(\frac{1}{7}\right)^x \ge 7^3$$

$$[x \ge -2]$$

$$[x < 2]$$

$$20) \ 1 \ge 7^{1+x}$$

21)
$$(2^x - 4) \cdot (3^{2x} - 3^x) \ge 0$$
 [$x \le 0 \cup x \ge 2$]

$$22) \ 2^{\frac{x^2 - x}{x + 1}} \le 1$$
 [$x < -1 \cup 0 \le x \le 1$]

$$[x \ge \log_{10} \frac{5}{2}]$$

24)
$$25^x - 13 \cdot 5^x + 30 \ge 0$$
 [$x \le \log_5 3 \cup x \ge \log_5 10$]

25)
$$8 \cdot \left(\frac{1}{4}\right)^x - 6 \cdot \left(\frac{1}{2}\right)^x + 1 > 0$$
 [$x < 1 \cup x > 2$]

$$[x \ge 1]$$

27)
$$2 \cdot 3^x - 9^x > 1$$
 [nessuna soluzione]

$$[x \neq 0]$$

29)
$$4^x - 2^x > 0$$
 [$x > 0$]

III) Equazioni logaritmiche

$$30) \log_4 x = 2$$
 [$x = 4^2$]

31)
$$\log_3(2x+4) = 2$$
 [$x = \frac{5}{2}$]

32)
$$\log_{\frac{1}{2}}(x-1) = -1$$

33)
$$\log_2(x-2) + \log_2 x = \log_2(9-2x)$$
 [$x = 3$]

34)
$$\log(x+8) = 2 \cdot \log 3 - \log x$$
 [$x = 1$]

35)
$$4 \cdot \log_{\frac{1}{2}}^2 x - 5 \cdot \log_{\frac{1}{2}} x + 1 = 0$$
 $\left[x_1 = \frac{1}{2} \cup x_2 = \sqrt[4]{\frac{1}{2}} \right]$

36)
$$3 \cdot \log_2(x+2) - 3 \cdot \log_2(2x-1) + \log_2 4 - \log_3 9 = 0$$
 [$x = 3$]

37)
$$\log_2(x^2 - 5x) - \log_2(1 - x) = 1$$
 [$x = \frac{3 - \sqrt{17}}{2}$]

38)
$$\log_a(3x-5) + \log_a(x-2) = \log_a 2$$
 [$x = \frac{8}{3}$]

39)
$$2 \cdot \log(x-1) + \log(x-2) = \log(x^2-3x+2)$$
 [nessuna soluzione]

40)
$$2 \cdot \log x + \log(x^2 + 1) = \log(3 - x^2)$$
 [x = 1]

41)
$$\log x + \log(x+1) = \log(1-x)$$
 [$x = \sqrt{2} - 1$]

42)
$$3 \cdot \log_2^2 x + 5 \cdot \log_2 x - 2 = 0$$
 [$x_1 = \sqrt[3]{2} \cup x_2 = \frac{1}{4}$]

43)
$$\log_2(x-1) = \log_2(3x+5)$$
 [nessuna soluzione]

44)
$$\log_2^2(x-1) - 5 \cdot \log_2(x-1) + 6 = 0$$
 [$x_1 = 5 \cup x_2 = 9$]

IV) Disequazioni logaritmiche

$$45) \log_{\frac{1}{3}}(x-2) < 1$$
 [$x > \frac{7}{3}$]

$$46) \log_{2}(2x+5) > 0$$
 [x > -2]

$$47) \log_{\frac{1}{2}}(3x-1) > 1$$
 [\frac{1}{3} < x < \frac{1}{2}]

48)
$$\log_3 x < 0$$

49)
$$\log_3^2 x - \log_3 x < 0$$
 [1 < x < 3]

50)
$$\log_3 x + \log_3 (x - 8) \ge 2$$
 [$x \ge 9$]

51)
$$\log_3^2 x + 2 \cdot \log_3 x - 3 < 0$$
 [$\frac{1}{27} < x < 3$]

52)
$$\log_{\frac{1}{2}}(x-3) > \log_{\frac{1}{2}}(20-3x)$$
 [3 < x < $\frac{23}{4}$]

53)
$$\log_{\frac{1}{3}}(6x-x^2)+2<0$$
 [nessuna soluzione]

54)
$$\log_{\frac{1}{3}}(x^2+4) + \log_3(x-3) \le \log_{\frac{1}{3}}(x+1)$$
 [x > 3]

$$55) \log_{\frac{3}{4}} (1 - x^2) \le 0$$
 [x = 0]

56)
$$\log_2(1-x^2)-1<0$$
 [-1

57)
$$\log_5^2 x + \log_5 x - 2 > 0$$
 [$0 < x < \frac{1}{25} \cup x > 5$]

58)
$$\log_2 x + \log_2 (1+x) < \log_2 (1-x)$$
 [0 < x < $\sqrt{2}$ -1]

59)
$$\log_2^2 (1-x) - \log_2 (1-x) > 0$$
 [$x < -1 \cup 0 < x < 1$]

$$60) \frac{\log_2^2 x - \log_2 x}{\log_3 x} < 0 \qquad [0 < x < 2 \text{ con } x \neq 1]$$

PROBLEMI

EQUAZIONI E DISEQUAZIONI ESPONENZIALI E LOGARITMICHE

1) Supponiamo che nella sterilizzazione del latte alla temperatura costante di 120°C il numero n(t) delle spore del microrganismo Bacillus Stearothermophilus sia regolato dalla legge

$$n(t) = 100 \cdot 0.98^t$$

dove t è la durata in secondi del processo di sterilizzazione.

Rappresenta l'andamento di n(t) e determina il tempo di dimezzamento del numero delle spore cioè dopo quanti secondi il loro numero è dimezzato rispetto a quello iniziale.

Svolgimento

Per rappresentare l'andamento di n(t) possiamo utilizzare Geogebra: basterà digitare nella barra di inserimento $y = 100 \cdot (0.98)^x$ e poi indicare sull'asse x il tempo t e sull'asse y n(t).

Si tratta di una funzione esponenziale con base minore di 1 e quindi decrescente e che al tempo t = 0 vale 100 cioè all'istante iniziale ci sono 100 spore.

Per determinare il tempo di dimezzamento dobbiamo risolvere l'equazione esponenziale:

$$100 \cdot (0.98)^t = 50 \rightarrow (0.98)^t = \frac{1}{2} \rightarrow t = \log_{0.98} \frac{1}{2}$$

Utilizzando infine la formula del cambiamento di base e calcolando i logaritmi con la calcolatrice avremo: $\log_{0.98} \frac{1}{2} = \frac{\log_{10} \frac{1}{2}}{\log_{10} 0.98} \cong 34.2$ e quindi in conclusione il tempo di dimezzamento è circa 34,2 s.

Equazioni e disequazioni esponenziali e logaritmiche

2) Un biologo ha scoperto che il numero N(t) di un dato tipo di batteri presenti al tempo t (misurato in ore) in una coltura raddoppia ogni ora. Sapendo che all'inizio (t=0) il numero dei batteri era 50 scrivi l'espressione di N(t). Dopo quanto tempo (in ore) il numero di batteri è maggiore di 1 milione?

$$[N(t) = 50 \cdot 2^{t}; 15 \text{ h}]$$

3) Se sappiamo che il nostro capitale iniziale raddoppierà in 10 anni, qual è il tasso di interesse composto applicato dalla nostra banca?

[7%]

- 4) Dopo la fecondazione, per scissione della cellula madre nel processo chiamato mitosi, si hanno due cellule figlie ogni 30 ore.
 - a) Quante cellule si hanno dopo 5 giorni dalla fecondazione?
 - b) quanti giorni devono passare dalla fecondazione per avere circa 2^{20} (circa un milione) cellule?

- 5) a)Una banca applica un tasso di interesse composto del 4% con capitalizzazione ad 1 anno (ogni anno l'interesse viene aggiunto al capitale). Scrivi quanto risulta il capitale, partendo da un capitale iniziale $C_0 = 100$ (euro), dopo 5 anni.
 - b) Un'altra banca applica lo stesso tasso composto del 4% ma con capitalizzazione a 6 mesi cioè ogni 6 mesi l'interesse si somma al capitale. In questo caso, sempre partendo da 100 euro, quanto risulta il capitale dopo 5 anni?

6) Abbiamo bisogno di un prestito e confrontiamo le proposte di due banche: la prima ci propone un tasso composto del 4% con durata di 15 anni (cioè dovremo restituire quanto abbiamo avuto in prestito con l'interesse maturato in 15 anni), la seconda un tasso del 3% con durata 20 anni. Qual è la proposta migliore?Quanto dobbiamo restituire alla prima banca? E alla seconda? (Indica con C_0 il valore iniziale del prestito)

[la prima;
$$1,801 \cdot C_0$$
; $1,806 \cdot C_0$]

7) Il numero di batteri in una certa coltura raddoppia in 20' (20 minuti). Sapendo che il numero iniziale è $N_0 = 500$ scrivi come risulta il numero N(t) di batteri presenti dopo t minuti . Dopo quanto tempo i batteri sono 1 milione?

[
$$N(t) = 500 \cdot 2^{\frac{t}{20}}$$
 ; 220']

SCHEDA DI VERIFICA

EQUAZIONI E DISEQUAZIONI ESPONENZIALI E LOGARITMICHE

1)
$$9^{x+1} - 3^{3x-1} = 0$$
 [$x = 3$]

2)
$$2^{x-1} = 3^{1+x}$$

$$\left[x = \frac{\log_{10} 6}{\log_{10} \frac{2}{3}}\right]$$

3)
$$25^x - 5^{x+1} + 6 = 0$$
 [$x = \log_5 2 \cup x = \log_5 3$]

4)
$$(2^x - 4) \cdot \left(\left(\frac{1}{9} \right)^x - 1 \right) > 0$$
 [0 < x < 2]

5)
$$2 \cdot 5^x - 25^x + 8 > 0$$
 [$x < \log_5 4$]

6)
$$\log_5(x+2) - \log_5(x-1) = \log_5 x$$
 [$x = 1 + \sqrt{3}$]

7)
$$\log_2^2(5x-4) - \log_2(5x-4) = 0$$
 [$x_1 = 1 \cup x_2 = \frac{6}{5}$]

8)
$$\log_{\frac{1}{2}}(x+3) + \log_2(2x-1) = 2$$
 [nessuna soluzione]

9)
$$\log_{\frac{1}{2}}(x+1) - \log_{\frac{1}{2}} 3x > 0$$
 [$x > \frac{1}{2}$]

10)
$$\log_{\frac{1}{3}}(x-4) - \log_{\frac{1}{3}}^{2}(x-4) < 0$$
 [4 < x < $\frac{13}{3}$ \cup x > 5]

SCHEDA DI VERIFICA ESPONENZIALI E LOGARITMI

1)
$$9^x + 9 = 10 \cdot 3^x$$
 [$x = 0$, $x = 2$]

2)
$$3^{x-2} = 5^{x-1}$$

$$\left[x = \frac{\log_{10} \frac{5}{9}}{\log_{10} \frac{5}{3}} \right]$$

3)
$$49^x - 6 \cdot 7^x - 7 > 0$$
 [x > 1]

$$4)\log_2 x = \log_{\frac{1}{2}}(2x - 1)$$
 [$x = 1$]

5)
$$\log_3(x-1) + \log_3(x+1) > 1$$
 [x > 2]

6)
$$\log_3^2(x+2) - \log_3(x+2) = 0$$
 [$x_1 = -1, x_2 = 1$]

7) Una sostanza radioattiva si dimezza ogni ora. Supponendo che inizialmente si abbiano 100 g della sostanza , determina l'espressione della massa quantità m(t) in grammi di sostanza radioattiva al tempo t misurando t in ore. Dopo quanto tempo la quantità di sostanza radioattiva è ridotta a meno di 1 grammo?

$$[m(t) = 100 \cdot \left(\frac{1}{2}\right)^t; 7 \text{ h}]$$

8) In quanti anni raddoppia un capitale iniziale C_0 se la banca applica un interesse composto del 2%?

[35 anni]

- 9) Se una soluzione ha la concentrazione molare di ioni H^+ $[H^+]=10^{-9}$, qual è il suo pH? [pH=9]
- 10) Qual è l' intensità sonora di un suono di livello sonoro 100 dB?

$$[I = 10^{-2} W / m^2]$$