

Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

Patrick Lewis^{†‡}, Ethan Perez*,

Aleksandra Piktus[†], Fabio Petroni[†], Vladimir Karpukhin[†], Naman Goyal[†], Heinrich Küttler[†],

Mike Lewis[†], Wen-tau Yih[†], Tim Rocktäschel^{†‡}, Sebastian Riedel^{†‡}, Douwe Kiela[†]

[†]Facebook AI Research; [‡]University College London; *New York University; plewis@fb.com

Outline

- Introduction
- Methodology
- Conclusion

Outline

Introduction

- Problem Definition
- Proposed Method
- ☐ Results Highlight
- ***** Methodology
- ***** Conclusion

Problem Definition

Pre-trained Neutral Language Models

- Learn a substantial amount of in-depth knowledge from data
- □ Without any access to an external memory → *parameterized* implicit knowledge base
- ☐ Achieve strong results on a variety of downstream NLP tasks

Problem Definition

Limitations

- Cannot easily expand or revise their memory
- □ Cannot straightforwardly provide insight into their predictions
- May produce "hallucinations" (generating incorrect information)

Solution

Hybrid Model (RAG)

Problem Definition

- ❖ Hybrid Model
 - Knowledge can be directly revised and expanded
 - Accessed knowledge can be inspected and interpreted

Knowledge

Proposed Method

Retrieval-augmented generation (RAG)

- ☐ Pre-trained, parametric-memory generation models with a non-parametric memory
- A general-purpose fine-tuning approach
- ☐ Can be fine-tuned on any seq2seq task

Introduction

Proposed Method

- RAG: Overview
 - Parametric memory → A pre-trained seq2seq transformer
 - Non-parametric memory → A dense vector index of Wikipedia (DPR)
 - Combination → A probabilistic model trained end-to-end

Proposed Method

RAG: Overview

- Dense Passage Retriever
 - Provide latent documents conditioned on the input
- seq2seq model (BART)
 - Condition on these latent documents together with the input to generate the output
- ☐ Marginalize the latent documents with a top-K approximation
 - Either on a per-output basis (assuming the same document is responsible for all tokens)
 - > Or a **per-token basis** (where different documents are responsible for different tokens)

Results Highlight

Generation for Knowledge-intensive tasks

- □ Tasks that humans could not reasonably be expected to perform without access to an external knowledge source
- RAG models achieve SOTA performance (General NLP Tasks)
 - > Open Natural Questions, WebQuestions and CuratedTrec
- Strongly outperform on TriviaQA (Specialised pre-training objectives)
- ☐ Generate responses that **are more factual, specific, and diverse** than a BART baseline
 - MS-MARCO and Jeopardy question generation (Knowledge-intensive tasks)
- □ One of Top SOTA models → FEVER fact verification

Non-parametric memory can be replaced to update the models' knowledge as the world changes.

Outline

- ***** Introduction
- Methodology
 - RAG-Sequence Model
 - ☐ RAG-Token Model
 - Retriever: DPR
 - Generator: BART
 - Training
 - Decoding
- ***** Conclusion

Methodology

RAG Pipeline

- \Box Use the input sequence x to retrieve text documents z
- Use them as additional context when generating the target sequence y

RAG Pipeline

Two Components

- \Box (i) a retriever $p_n(z \mid x)$ with parameters η
 - Return (top-K truncated) distributions over text passages given a query x
- \Box (ii) a generator $p_{\theta}(y_i | x, z, y_{1:i-1})$ parametrized by θ
 - Generate a current token based on a context of the previous i-1 tokens $y_{1:i-1}$, the original input x and a retrieved passage z

Figure 1: Overview of our approach. We combine a pre-trained retriever (*Query Encoder + Document Index*) with a pre-trained seq2seq model (*Generator*) and fine-tune end-to-end. For query x, we use Maximum Inner Product Search (MIPS) to find the top-K documents z_i . For final prediction y, we treat z as a latent variable and marginalize over seq2seq predictions given different documents.

RAG Pipeline

Training the retriever and generator end-to-end

- ☐ Treat the retrieved document as a latent variable
- ☐ Two models: marginalize over the latent documents to produce a distribution over generated text
 - > RAG-Sequence use the same document to predict each target token
 - > RAG-Token predict each target token based on a different document

Figure 1: Overview of our approach. We combine a pre-trained retriever ($Query\ Encoder + Document\ Index$) with a pre-trained seq2seq model (Generator) and fine-tune end-to-end. For query x, we use Maximum Inner Product Search (MIPS) to find the top-K documents z_i . For final prediction y, we treat z as a latent variable and marginalize over seq2seq predictions given different documents.

RAG-Sequence Model

$$p_{\text{RAG-Sequence}}(y|x) \approx \sum_{z \in \text{top-}k(p(\cdot|x))} p_{\theta}(y|x,z) = \sum_{z \in \text{top-}k(p(\cdot|x))} p_{\eta}(z|x) \prod_{i}^{N} p_{\theta}(y_{i}|x,z,y_{1:i-1})$$

Using the same retrieved document to generate the complete sequence

- ☐ Treat the retrieved document as a single latent variable
- \square Marginalized to get the seq2seq probability $p(y \mid x)$ via a top-K approximation
- ☐ The top K documents are retrieved using the retriever
- ☐ The generator produces the output sequence probability for each document

Figure 1: Overview of our approach. We combine a pre-trained retriever ($Query\ Encoder + Document\ Index$) with a pre-trained seq2seq model (Generator) and fine-tune end-to-end. For query x, we use Maximum Inner Product Search (MIPS) to find the top-K documents z_i . For final prediction y, we treat z as a latent variable and marginalize over seq2seq predictions given different documents.

RAG-Token Model

$$p_{ ext{RAG-Token}}(y|x) \, pprox \, \prod_i^N \, \sum_{z \in ext{top-}k(p(\cdot|x))} p_{\eta}(z|x) p_{ heta}(y_i|x,z,y_{1:i-1})$$

Drawing a different latent document for each target token

- □ Allow the generator to choose content from several documents when producing an answer
- The top K documents are retrieved using the retriever
- ☐ The generator produces a distribution for the next output token for each document,
- ☐ Then marginalizing and repeating the process

Figure 1: Overview of our approach. We combine a pre-trained retriever ($Query\ Encoder + Document\ Index$) with a pre-trained seq2seq model (Generator) and fine-tune end-to-end. For query x, we use Maximum Inner Product Search (MIPS) to find the top-K documents z_i . For final prediction y, we treat z as a latent variable and marginalize over seq2seq predictions given different documents.

RAG-Components

- Retriever: DPR (A bi-encoder architecture)
 - ☐ A pre-trained bi-encoder from DPR to initialize the retriever and to build the document index

$$p_{\eta}(z|x) \propto \exp\left(\mathbf{d}(z)^{ op}\mathbf{q}(x)
ight)$$
 Document Encoder $\mathbf{d}(z) = \mathrm{BERT}_d(z), \ \ \mathbf{q}(x) = \mathrm{BERT}_q(x)$

- □ Top-k $(p_n(\cdot|x))$ List of k documents z with highest prior probability $p_n(z|x)$
- Generator: BART (Encoder-Decoder architecture)
 - \Box Concatenate the input x with the retrieved content $z \rightarrow$ Generating from BART
 - □ BART generator parameters $\theta \rightarrow$ the parametric memory

Methodology

RAG-Components

Training

- Both the retriever (query encoder) and generator are trained jointly,
 - > Optimizing the negative marginal log-likelihood of the target sequence
- ☐ The document encoder and document index remain fixed
 - To avoid expensive periodic re-indexing
- No explicit supervision is provided regarding which document should be retrieved

Decoding

- RAG-Token:
 - Uses standard beam decoding
 - > where each token may be conditioned on a different retrieved document
- RAG-Sequence:
 - > Requires running beam search separately for each document
 - > Then marginalizing over the beams to approximate the final output probability

Conclusion

Large pre-trained language models

- ☐ Store factual knowledge in their parameters,
- Achieve SPTA results when fine-tuned on downstream NLP tasks
- ☐ Their ability to access and precisely manipulate knowledge is still limited
- ☐ Especially on knowledge-intensive tasks

Retrieval-Augmented Generation

- ☐ A general-purpose fine-tuning recipe for retrieval-augmented generation
- Models which combine pre-trained parametric and non-parametric memory for language generation

HTET ARKAR hak3601@gmail.com