https://powcoder.com

The University of Manchester

Add WeChat powcoder

- Linear regression model https://powcoder.com
 Binary response models

Developed targe striple inference procedures based on assumptions about how the data are generated. POWCOCEI

Overview of course

Linear regression model

Assignment Project Exam Help

- OLS efficient (CS/TS)
- · https://poweoder.com
 - OLS inefficient
 - CS: heteroscedasticity robust inference ("White's se's")

 Add S: senal Critation aut to inference ("White's se's")
 - GLS
 - ullet Efficient but need model for Σ CS/TS

Overview of course

Linear regression model

Assignment Project Exam Help

CS: heteroscedasticity robust inference

https://poweoder.com

Add WeChat powcoder • LPM - OLS with heteroscedasticity robust inference

- Logit/Probit MLE

Consistency:

Assignment Project Exam Help

- Mitapascon/matrix: WLN-detsky. com. finite
- h_T is a random vector: WLLN $\Rightarrow h_T \stackrel{p}{\rightarrow} 0$

Add WeChat powcoder

$$\hat{\beta} \stackrel{p}{\rightarrow} \beta_0$$

- M_T is a random matrix: WLLN + Slutsky $\Rightarrow M_T \stackrel{p}{\rightarrow} M$, finite constant $N_T = N_T \stackrel{p}{\rightarrow} N_T$ is a random vector: $N_T \stackrel{p}{\rightarrow} N_T \stackrel{p}{\rightarrow} N_$
 - $n_T = 1^{1/2} h_T$ is a random vector: CLT $\Rightarrow n_T \rightarrow N(0, \Omega)$, where Ω pd, constant

Add WeChat powcoder

$$\Rightarrow T^{1/2}(\hat{\beta} - \beta_0) \stackrel{d}{\rightarrow} N(0, V_{\beta})$$
 where $V_{\beta} = M\Omega M'$

Common structure - OLS, GLS, WLS & IV

Assignments Project Exam Alelp

Form of $\hat{\Omega}$ depends on assumptions about data.

https://powcoder.com
use knowledege of Σ i.e. conventional OLS se's or GLS

- $\begin{array}{c} \bullet \ \ \text{unknown form of heteroscedasticity} \to \text{White-type estimator} \\ \bullet \ \ \text{Land for Well Corlegat} \text{packet Catalogr} \end{array}$

And binary response

Logit/probit models estimated via MLE.

Score equations (FOC) cannot be solved to obtain explicit formula

SSP TOPING CONTROL OF THE PROPERTY OF THE P

But given $\hat{\beta} \stackrel{P}{\rightarrow} \beta_0$ can show that via first order Taylor series argument typical to compare the property of $T^{1/2}(\hat{\beta} - \beta_0) = M_T n_T + \xi_T$

where

- Acode Wecishartingowooder
- M_T is random matrix: WLLN + Slutsky $\Rightarrow M_T \stackrel{p}{\rightarrow} M$, constant
- n_T is random vector: $CLT \Rightarrow n_T \stackrel{d}{\rightarrow} N(0,\Omega)$, where Ω pd, constant

And binary response

So similar arguments to $\ensuremath{\mathsf{OLS}}/\ensuremath{\mathsf{GLS}}/\ensuremath{\mathsf{IV}}$

Assignment Project Exam Help

where

https://poweroder.etom

This general structure Chat powcoder
$$T^{1/2}(\hat{\beta}-\beta_0) = M_T n_T + \xi_T,$$

holds in many nonlinear models.

Estimation based on population moment conditions

• OLS based on $E[x_t u_t(\beta_0)] = 0$

Assignment Project Exam Help MLE solves score equations

 $\frac{\text{https://powcoder.com}}{\text{owcoder.com}}$ - if data are iid then

Add
$$\mathbf{WeCh} = \sum_{t=1}^{T} \frac{\partial \ln[p(v_t, \theta)]}{\mathbf{powcoder}}$$

So MLE is MoM based on

$$E\left[\left. \frac{\partial \textit{ln}[p(v_t, \theta)]}{\partial \theta} \right|_{\theta = \theta_0} \right] = 0$$
 (see Lecture Notes Ch 6.4)

Alastair R. Hall

ECON 61001: Lecture 10

Generalized Method of Moments

So OLS, IV and MLE can all be interpreted as estimation based on Assignment Project Exam Help

These are all examples of a more general approach to estimation

called Generalized Method of Moments (GMM).

https://powcoder.com

GMM provides method to translate information about θ_0 , a $p \times 1$ vector of parameters, in Population Moment Condition

Add WeChat powcoder

into estimator of θ_0

Generalized Method of Moments

Hansen (1982) defines the GMM estimator as:

Assignment Project Exam Help

where

$$\underset{Q_{\mathcal{T}}(\theta)}{\text{https://powcoder.}} \underset{f(v_t,\theta)'W_{\mathcal{T}}}{\text{Total}} \underset{t=1}{\overset{\mathcal{T}com}{\sum_{t=1}^{t}}} f(v_t,\theta),$$

Add We Chat powcoder

- W_T is positive semi-definite (psd),
- $W_T \stackrel{p}{\to} W$, a pd matrix of constants.

Generalized Method of Moments

Note:

Assignment Project Exam Help $Q_{\tau(\theta)} \geq 0$

https://powicoder.com

• $W_T \stackrel{p}{\rightarrow} W$ (pd) \Rightarrow Add WeChat powcoder $Q_T(\hat{\theta}_{GMM}) = 0$ iff $T^{-1} \sum_{i=1}^{n} f(v_t, \hat{\theta}_{GMM}) = 0$ in the limit as $T \rightarrow \infty$

Comparison of GMM to Method of Moments (MM)

 $\hat{\theta}_{MM}$ is solution to $T^{-1}\sum_{t=1}^{T}f(\mathbf{v}_{t},\hat{\theta}_{MM})=0.$

A smanner of parameters, p, because if q>p then no solution (even though holds in population at θ_0) due to sampling variation.

GMM https://powcoder.com

• q = p then $\hat{\theta}_{GMM} = \hat{\theta}_{MM}$.
• And $\hat{\theta}_{MM}$ exclusive that $\hat{\theta}_{MM}$ exclusive that $\hat{\theta}_{MM}$ is ample moments.

This is sense in which GMM generalizes MM.

```
\begin{array}{ll} \hat{\theta}_{GMM} \stackrel{P}{\rightarrow} \theta_0 \\ \text{https://pow.coder.com} \end{array}
```

There is a large array of GVIM-based inference procedured available and the method is widely applied in empirical available.

By manipulating the FOC fo GMM estimation, it can be shown that

Assignment Project Exam Help

- ullet large sample behaviour is determined by $M_T n_T$
- https://powcoder=com.
- n_T is random vector: $CLT \Rightarrow n_T \stackrel{d}{\rightarrow} N(0,\Omega)$, where Ω pd, contain $N(0,\Omega)$ pd, where $N(0,\Omega)$ pd, $N(0,\Omega)$ pd,

So $V_{GMM}=M\Omega M'$ and M depends on the weighting matrix, the Jacobian matrix (derivative of the sample moment wrt θ and Ω is (LR) variance of $f(v_t,\theta_0)$.

Assignment Project Exam Help Material on GMM is non-examinable but FYI:

- https://poweoder.com
- Greene: Chapters 13.4-13.6

 Add WeChat powcoder