Water Technology

Permanent/Non carbonate Hardness:

Total hardness= Temporary Hardness +Permanent Hardness

Disodium EDTA:

Reaction of Di-Sodium EDTA and metal ion:

$$\begin{array}{c} \text{HOOCH}_2\text{C} \\ \text{HOOCH}_2\text{C} \\ \end{array} \text{N-CH}_2\text{-CH}_2\text{-N} \\ \end{array} \begin{array}{c} \text{CH}_2\text{COOH} \\ \text{CH}_2\text{COOH} \\ \end{array} \begin{array}{c} \text{HOOCH}_2\text{C} \\ \end{array} \begin{array}{c} \text{CH}_2 \\ \text{CH}_2 \\ \end{array} \begin{array}{c} \text{CH}_2 \\ \text{COOH} \\ \end{array}$$

Titration of EDTA:

Total hardness of water sample:

Hardness of water sample = (Y x Z x100 x 1000) / V ppm CaCO3 equivalent

Where, Y=Volume of EDTA

Z=Molarity of EDTA

V=Volume of Water sample

Amount of alkalinities due to OH-, CO3-2, HCO3-

Alkalinity	Quantity of OH	Quantity of CO ₃ -2	Quantity of HCO ₃
P =0	0	0	M
P = 1/2M	0	2P	0
P = M	P	0	0
P < 1/2M	0	2P	M-2P
P > 1/2M	(2P-M)	2(M-P)	0

Where P = Phenolphthalein alkalinity

M= Methyl Orange Alkalinity or Total Alkalinity

Requirements of hardness of water to be used in Boilers:

Types of boilers, Steam pressure	Permitted hardness of feed water	
Low pressure: Below 15 Kg/cm ²	25-50 ppm CaCO ³ equivalent	
Medium pressure: 15-30 Kg/cm ²	10-25 ppm CaCO ³ equivalent	
High pressure: Greater than 30 Kg/cm ²	0-10 ppm CaCO ³ equivalent	

Efficiency parameters for Reactions:

Atom economy = Molecular wt of desired product X 100
Molecular wt of all products

Conversion (%)

Amount of reactant taken – Amount of reactant unconsumed

Amount of reactant taken

X 100

Reaction yield: Yield (%)

Yield (%) = Amount of product formed

Amount of reactant taken

X 100

Reaction selectivity:

Environmental load factor (E):

E = Total mass of effluent generated / Mass of desired product

Mass intensity:

Mass intensity (MI) = Mass of reactants used /mass of product desired.

Green Chemistry

Twelve principles of green chemistry:

- 1. Prevention of waste.
- 2. High atom economy
- 3. Less hazardous chemical synthesis.
- 4. Designing safer chemicals
- 5. Use of safer solvents & auxiliaries.
- 6. Design for energy efficiency.
- 7. Use of renewable feed stock.
- 8. Reducing derivatives.
- 9. Catalysis
- 10. Design for degrading products.
- 11. New analytical methods.
- 12. Accident prevention.