

Estudo de transferência de massa gás-líquido em sistemas biológicos

Universidade Nova de Lisboa – Faculdade de Ciências e Tecnologias

Engenharia da Biorreação

Engenharia Química e Bioquímica

Docentes:

Cristina Torres

Joana Fradinho

Carolina Fonseca, 59917

Fernando Pereira, 59291

Jéssica Brazuna, 60166

Mariana Machado, 60499

P8, G18

2022/2023

Índice

1.	Resumo	.3
2.	Introdução Teórica	4
3.	Procedimento Experimental	6
4.	Montagem Experimental	.6
5.		
	A. Determinação do valor de k _L a' e da velocidade de transferência oxigénio no meio biológico antes inoculação	de da
	B. Determinação da concentração celular máxima que poderia alcançar sistema estudado (válida a equação logística). Simular a curva crescimento e comparar com os dados experimentais	de
	C. Representar a velocidade específica e volumétrica de consumo oxigénio em função do tempo. Calcular o coeficiente de rendimento crescimento (Y _{O2/X})	de
	D. Estimar o valor de k _L a' durante a fase de crescimento celular	25
	E. Comparar a velocidade máxima de transferência de massa com velocidade máxima de consumo de oxigénio	
	F. Estimar a velocidade de consumo de acetato ao longo do tempo com ba na estequiometria de reação de oxidação do acetato	
	G. Estimar o rendimento verdadeiro (Y' X/S) e o coeficiente de manutenço de acetato e compare com o rendimento observado (YX/S)	ão
6.	Conclusão.	34
7.	Bibliografia	34
8.	Anexos	35

1. Resumo

O objetivo deste trabalho é pôr em prática a teoria relacionada com o estudo de transferência de oxigénio em sistemas biológicos dada nas aulas teóricas.

Foi usado um reator descontínuo com agitação e arejamento onde foi adicionada uma cultura de leveduras (microrganismos heterotróficos aeróbios). Foi acoplado um respirómetro com um elétrodo de oxigénio e a concentração de oxigénio foi adquirida ao longo da experiência usando um programa chamado BioCTR. O reator também se encontra associado a uma bomba peristáltica que faz que haja um fluxo para que o meio seja reciclado.

No início da experiência foi feito o desarejamento do reator com azoto, até a concentração de oxigénio se aproximar de zero. De seguida, foi feito o arejamento com ar atmosférico (21% de oxigénio) e através da monitorização do aumento da concentração de oxigénio e linearizando alguns parâmetros, conseguimos obter o valor de KLa′ = 2.123 min⁻¹, antes da inoculação e o valor de C* = 8.440 mg_O₂/L, que comparámos com o valor teórico C* = 7.795 mg_O₂/L. E obtemos também a velocidade de transferência do oxigénio: Q_{O₂} = 12.053 mg/(L.min).

Depois da inoculação, foi feita a recolha de amostras do meio, e em cada recolha desligámos a bomba para que fosse medido o consumo de O2, e através de um espectrofotómetro medimos a densidade ótica (600 nm), o que nos permitiu quantificar o crescimento celular ao longo do tempo. Usámos vários métodos para estudar o crescimento celular e comparando todos os métodos, concluímos que o que se adequava melhor com os nossos resultados é o método dos 3 pontos. Obtemos o valor de μ_{max} = 0,0191 min⁻¹ e X_{max} = 955 mg_X/L

Foi possível observar as diferentes fases do crescimento ao longo da experiência e, assim, conseguimos obter o valor de K_La' na fase exponencial ($K_La' = 0.3875$ min-1) e determinar os coeficientes de rendimento de consumo de oxigénio ($Y_{O2/X} = 0.0417$ mg_O2/mg_X) e de crescimento celular, tanto o verdadeiro como o aparente ($Y'_{X/S} = 54,645 \frac{mg X}{mg Ac}$ e $Y_{X/S} = 2.985 \frac{mg X}{mg Ac}$).

2. Introdução Teórica

Ao longo deste trabalho é estudado o crescimento microbiano num reator descontínuo com a agitação de pás acoplado a um elétrodo de oxigénio com um respirómetro, que faz variar a concentração de oxigénio. Tem como fonte carbono um acetato (KCH₃COO) e os diversos meios de cultura e o extrato de leveduras fornecem vários micronutrientes. Logo, é necessário conhecer as diferentes fases de crescimento:

Figura 1 – Curva de crescimento celular em função do tempo

Fase "lag": não há crescimento celular, pois as células estão a adaptar-se ao meio de cultura. Quanto mais curta a sua duração, melhor, já que não é uma fase produtiva. Esta fase é influenciada por diversos fatores como: a quantidade de inóculo (5 a 10% do volume líquido do reator); o inóculo deve estar em fase exponencial quando transferido para o meio; e o meio de cultura do reator deve ter uma composição semelhante ao do inóculo.

Fase Exponencial: ocorre crescimento celular, isto é, existe um aumento do número de células. É a fase produtiva, pois a velocidade de crescimento celular é proporcional ao número de células.

Fase Estacionária: o número de células a se formarem é igual ao número de células a morrer, logo, a concentração celular é constante e a velocidade de crescimento é nula. Esta fase ocorre devido a: esgotamento de substrato essencial (azoto, carbono, oxigénio); acumulação de um metabolito ou então esgotamento de micronutrientes imprescindíveis.

Fase de morte: ocorre quando o número de células a sofrer lise celular é maior que o número de células a se formarem, logo ocorre um decréscimo da concentração celular. É a última fase do crescimento.

Precisamos também de perceber os modelos de crescimento não estruturado para simular a curva de crescimento em função do tempo. O Modelo de Malthus não prevê o aparecimento da fase estacionária e relaciona a velocidade de crescimento com a concentração celular. O Modelo de Verhulst (modelo logístico) propõe a adição de um termo de inibição que é dependente da concentração celular e este modelo não prevê o aparecimento da fase de morte.

Para determinar a taxa de crescimento, µ, de forma a aplicar estes modelos, iremos fazer quatro simulações utilizando o modelo de Malthus, o método de Euler, o método dos três pontos e o método polinomial, para perceber qual deles nos fornece uma melhor curva de crescimento com os dados recolhidos.

Neste trabalho vamos considerar o modelo de duplo filme para a transferência de massa gás-líquido por difusão do gás no líquido. Esta transferência é feita através da interface das bolhas de ar com o líquido, pois é o passo determinante (passo 3 na figura 2), apesar de encontrar diversas resistências como está representado a seguir:

Figura 2 – Difusão da bolha de ar até à célula através das interfaces e do meio

Neste modelo, na interface é originada uma força motriz devido à diferença de concentrações no estado líquido e gasoso, o que possibilita a transferência de massa.

Este fenómeno é descrito através da seguinte equação: $Q_{02} = k_L a' (C^* - C_L)$.

Sendo Q_{02} a velocidade de transferência de gás no líquido, $(C^* - C_L)$ a força motriz do gás definida pela diferença entre a concentração de saturação e a concentração no meio e $k_L a'$ o coeficiente de transferência de massa volumétrico que é influenciado pelas características das bolhas e do meio.

A velocidade volumétrica de consumo de oxigénio (r_{02}) é descrita através da equação:

$$r_{02} = V_{02}X$$

Já a velocidade específica de consumo de oxigénio (V_{02}) pode ser descrita segundo a equação seguinte:

$$V_{O2} = Y'_{O2/X} \mu + m_{O2}$$

Sendo μ a taxa de crescimento celular, $Y_{O2/X}$ o coeficiente de rendimento de crescimento e m_{O2} o coeficiente de manutenção celular.

Assumindo a velocidade específica de consumo de O2 igual à velocidade de transferência de O2 e desprezando a manutenção celular, obtém-se a equação:

$$k_L a (C^* - C_L) = Y_{O2/X} \mu + m_{O2}$$

Quando não é fornecido oxigénio suficiente, não é atingido o máximo de produtividade ao que denominamos limitação por transferência de massa. Quando a velocidade de transferência é superior à de consumo, há energia a ser desperdiçada, uma vez que o O2 não vai ser consumido mais rapidamente.

3. Procedimento Experimental

- 1 Encheu-se o reator com 500 mL do meio de cultura e introduziu-se o elétrodo de oxigénio no reator. Desarejou-se com azoto o meio de cultura até a concentração de oxigénio ser próxima de zero. Depois, arejou-se o meio com ar e mediu-se o aumento da concentração de oxigénio ao longo do tempo através de um programa chamado BioCTR.
- 2 Introduziu-se o elétrodo de oxigénio no respirómetro.
- 3 Adicionou-se ao reator 2 mL da fonte de carbono e 0.5 g de extrato de levedura.
- 4 Inoculou-se o reator com 100 mL (20%) com uma cultura em crescimento exponencial.
- 5 Ligou-se a bomba peristáltica e fez-se recircular o meio através do respirómetro.
- 6 Retirou-se aproximadamente 1mL do meio reacional e mediu-se a densidade ótica a 600 nm.
- 7 Após a recolha da amostra, parou-se a bomba de recirculação e mediu-se o consumo de hidrogénio durante 2 a 3 minutos (redução de 20 a 30% da concentração de oxigénio).
- 8 Repetiu-se os passos 5-7 com intervalos de 10 minutos até se atingir o estado estacionário.

4. Montagem Experimental

Figura 3 – Montagem Experimental

5. Resultados Experimentais

A - Determinar o valor de $k_L a$ e a velocidade de transferência de oxigénio no meio biológico antes da inoculação.

Através do software utilizado, foi possível obter as concentrações de oxigénio, em percentagem, ao longo da experiência. Nesta parte queremos calcular o valor de k_L a` antes da inoculação, isto é, quando estávamos a arejar o sistema, depois do meio sofrer um desarejamento com azoto. O arejamento é iniciado quando a concentração de O2 é muito próxima de zero.

Sabemos que a velocidade de transferência de O2 é dada por:

$$Q_{02} = K_L a (C_{02}^* - C_{02})$$
 (1)

Então, como o programa registou as concentrações de oxigénio em curtos espaços de tempo, vamos utilizar a expressão seguinte para tratar os dados experimentais e calcular KLa`:

$$Q_{02} = \frac{dC_{02}}{dt}$$

$$K_{L}a` (C_{02}^{*} - C_{02}) = \frac{dC_{02}}{dt}$$

(A concentração inicial de oxigénio é zero)

$$K_{L}a^{\hat{}} \int_{0}^{t} dt = \int_{0}^{C_{O2}} \frac{dC_{O2}}{(C_{O2}^{*} - C_{O2})}$$

$$\ln (C_{O2}^{*} - C_{O2}) = \ln (C_{O2}^{*}) - K_{L}a^{\hat{}} \cdot t$$
 (2)

Logo, através da equação (2) podemos representar $\ln (C_{O2}^* - C_{O2})$ em função do tempo (t), e assim, o nosso declive será o valor negativo de K_L a' e a ordenada na origem corresponde a $\ln C_{O2}^*$.

Para essa representação precisamos do valor da concentração de oxigénio na fase líquida em equilíbrio (C_{O2}^*) Para o seu cálculo, retirámos o valor da solubilidade do O2 a 1 atm e a 30 °C da literatura (anexo 1) que corresponde a 1.16 mmol/L e como o arejamento foi feito com ar atmosférico (21% de oxigénio), fizemos o seguinte cálculo:

$$C_{02}^* = 1.16 \frac{mmol}{L} \times 0.21 \times \frac{32mg}{mmol}$$

Então
$$C_{02}^* = 7.795 \frac{mg}{L}$$
.

Precisamos também de converter as concentrações de oxigénio que estão em percentagem, obtidas pelo programa, para mg/L. Logo, aplicámos:

$$C_{O2} = \frac{C_{O2}(\%)}{100} \times C_{O2}^*$$

Assim, aplicando esta fórmula às concentrações selecionadas para a fase de arejamento do reator e linearizando ln $(C_{02}^* - C_{02})$ com o tempo (anexos – Tabela 1), obtemos o seguinte gráfico:

Figura 4 – Gráfico de ln(C*-CL) em função do tempo

Obtemos então um valor de K_{La} ' = 2.292 min-1. Pela ordenada na origem podemos perceber o nosso valor de C^* se distancia do valor teórico ($C^* = e^{2.144} = 8.534 \frac{mg}{L}$). Logo, com o intuito de aproximar este valor ao teórico, desprezámos alguns pontos (anexos - tabela 1) e obtemos o seguinte gráfico:

Figura 5 – Gráfico de ln(C*-CL) em função do tempo

Neste caso temos um K_La ' = 2.123 min⁻¹ e um valor de $C^* = e^{2.133} = 8.440 \frac{mg}{L}$. É um valor um pouco mais próximo do teórico.

Como já sabemos o valor de K_{La} , podemos representar a velocidade de transferência do oxigénio (Q_{O2}) em função do tempo (anexos - tabela 1), através da equação (1) e obtemos:

Figura 6 – Gráfico de Q_{O2} em função do tempo

Representando a concentração de oxigénio ao longo do tempo de arejamento (anexos – tabela 1), temos:

Figura 7 – Gráfico de C_{O2} em função do tempo

Então pela expressão:

$$Q_{O2} = \frac{dC_{O2}}{dt}$$

O declive do gráfico acima corresponde ao valor de Q_{O2} , logo, a velocidade de transferência de O_2 no meio é de 12.053 mg/(L.min).

Discussão:

Através da reta que relaciona ln $(C_{O2}^* - C_{O2})$ com o tempo, retirámos um valor de $C_{O2}^* = 8,440 \text{ mg} \cdot \text{O2/L}$. Este tem um desvio percentual de $\frac{|8.440-7.795|}{7.795}x$ 100 = 8.3% do valor teórico. Como temos uma boa proximidade do valor teórico com o experimental, podemos concluir que fízemos um ajuste acertado dos pontos.

Podemos comprovar que fizemos um bom ajuste também, porque o valor de K_La' (= 2.123 min⁻¹) está compreendido no intervalo de valores aceitáveis para fermentadores industriais, 1.2 a 15 min⁻¹ [1], apesar de estarmos a trabalhar numa escala mais reduzida. No entanto, continua a ser um valor muito baixo, evidenciado a baixa transferência de oxigénio par o meio. Isto deve-se ao facto do trabalho se ter realizado a pressão atmosférica, o que influencia a solubilidade do oxigénio, e para além disso, o arejamento foi feito com ar atmosférico e não com oxigénio puro. Outros fatores que influenciam o valor de K_La' são: o diâmetro e a velocidade terminal das bolhas (apesar de haver agitação, estas podem não ter sido suficientemente reduzidas), a reologia do líquido e o seu regime de fluxo, ...

No gráfico da figura 6 podemos ver o decréscimo da velocidade de transferência de oxigénio ao longo do tempo até estabilizar, o que era expectável, pois a força motriz (C* - C) vai decrescendo. Isto porque a concentração de O₂ aumenta com o passar do tempo até o meio ficar saturado, como podemos verificar no gráfico da figura 7.

B - Determinação da concentração celular máxima que poderia alcançar no sistema estudado (válida a equação logística). Simular a curva de crescimento e comparar com os dados experimentais.

Com o reator inoculado, a bomba peristáltica ligada e o meio a recircular pelo respirómetro foram recolhidas amostras com cerca de 10 minutos de intervalo entre elas durante, aproximadamente, 3 horas e 35 minutos. Para cada uma das amostras foi medida a respetiva absorvância a 600 nm, estes resultados encontram-se na tabela 2. A medição da absorvância tem como objetivo posterior o cálculo da concentração celular, X dada em mg_X/L, que corresponde ao peso seco. A conversão da absorvância (abs) em concentração celular é dada pela equação (anexo 2):

$$X = 1171.8 \ abs + 1.5$$

Com o cálculo das concentrações celulares, resultados da tabela 2, ao longo tempo obteve-se o seguinte gráfico da concentração celular em função do tempo:

Figura 8 – Gráfico representativo do peso seco em mg X/L em função do tempo em minutos.

A curva original, representada a azul, sofreu um ajuste aos pontos, representado a laranja, para efeitos da realização dos cálculos, uma vez que a curva observada primeiramente parece representativa de um meio com consumo de 2 fontes de carbono, o que não faz sentido neste caso uma vez que só há uma fonte de carbono. Os pontos desprezados encontram-se sinalizados a vermelho na tabela 2.

A partir das concentrações celulares é possível calcular a velocidade de crescimento celular, µ. Este cálculo pode ser realizado perante 4 métodos distintos: modelo de Malthus, método de Euler, método dos 3 pontos e método do polinómio.

• Modelo de Malthus

$$\frac{dX}{dt} = \mu X$$

Desenvolvendo a fórmula:

$$\int_{X0}^{X} \frac{1}{X} dX = \mu \int_{0}^{t} dt \ (=) \ln X - \ln Xo = \mu t \ (=) \ln X = \mu t + \ln Xo$$

Onde
$$\mu = \mu_{max}$$

Este modelo é válido para a fase exponencial, representada a verde na figura 9.

Figura 9 – Gráfico representativo do peso seco em mg_X/L em função do tempo em minutos.

Realizando o gráfico do logaritmo do peso seco em mg x/L pelo tempo em minutos, o declive dar-nos-á o valor da velocidade de crescimento celular.

Figura 10 – Gráfico representativo de ln (X) em função do tempo em minutos.

Assim, com a linearização da zona de crescimento exponencial, $\mu = \mu_{max} = 0.0082 \text{ min}^{-1}$ e pelos dados recolhidos $X_{max} = 878 \text{ mg X/L}$.

• Método de Euler

$$\mu_i = \frac{x_i - x_{i-1}}{t_i - t_{i-1}} \times \frac{1}{x_i}$$

Com o cálculo das diferentes velocidades de crescimento celular, podemos obter o gráfico destas velocidades em relação ao peso seco, representado em seguida.

Tabela 2:

T(min)	DO	X (mg X/L)	μ (min-1) Euler
0	0,1744	206	
10	0,2138	252	0,01832
20	0,2273	268	0,00591
30	0,2409	284	0,00562
40	0,2769	326	0,01294
50	0,3186	375	0,01304
60	0,3841	452	0,01700
70	0,3892	458	0,00131
74	0,3767	443	-0,00827
84	0,3744	440	-0,00061
94	0,3798	447	0,00142
104	0,4319	508	0,01203
114	0,483	567	0,01055
124	0,5282	620	0,00854
134	0,5853	687	0,00973
144	0,6585	773	0,01109
154	0,7477	878	0,01191
164	0,7885	925	0,00517
174	0,8289	973	0,00487
184	0,8833	1037	0,00615
194	0,9094	1067	0,00287
199	0,9269	1088	0,00377
204	0,9525	1118	0,00537
209	0,9777	1147	0,00515
214	0,978	1148	0,00006

Realizando o gráfico da velocidade de crescimento celular, μ , em função do peso seco, X:

Figura 11 - Gráfico de μ em função de X (método de Euler)

Aplicando a aproximação realizada no início da alínea, excluindo os pontos a vermelho da tabela e os pontos a azul do gráfico da figura 12 para feitos de cálculos, obtêm-se o seguinte gráfico:

Figura 12 - Gráfico de μ em função de X (desprezando pontos – método de Euler)

De maneira a obter uma linearização correta, foi necessário optar por utilizar alguns pontos específicos (pontos representados a laranja).

Com a equação de
$$\mu = \mu$$
, max $-\frac{\mu max}{x max} X$

Assim, podemos concluir que $\mu_{max} = 0,0249 \text{ min}^{-1} \text{ e } X_{max} = 830 \text{ mgX/L}.$

• Método dos 3 pontos

$$\mu_i = \frac{x_{i+1} - x_{i-1}}{t_{i+1} - t_{i-1}} \times \frac{1}{x_i}$$

Tal como no método de Euler, obtivemos o gráfico das velocidades de crescimento celular pelo peso seco.

Tabela 3:

Tempo	DO	X (mg	μ 3 pontos
(min)		biomassa/L)	(min-1)
0	0,1744	206	
10	0,2138	252	0,01230
20	0,2273	268	0,00593
30	0,2409	284	0,01024
40	0,2769	326	0,01397
50	0,3186	375	0,01676
60	0,3841	452	0,00916
70	0,3892	458	-0,00135
74	0,3767	443	-0,00280
84	0,3744	440	0,00041
94	0,3798	447	0,00754
104	0,4319	508	0,01191
114	0,483	567	0,00994
124	0,5282	620	0,00966
134	0,5853	687	0,01111
144	0,6585	773	0,01231
154	0,7477	878	0,00868
164	0,7885	925	0,00514
174	0,8289	973	0,00571
184	0,8833	1037	0,00455
194	0,9094	1067	0,00319
199	0,9269	1088	0,00464
204	0,9525	1118	0,00533
209	0,9777	1147	0,00260
214	0,978	1148	

Figura 13 - Gráfico de μ em função de X (Método dos 3 pontos)

Aplicando a aproximação realizada no início da alínea e excluindo os pontos a vermelho da tabela 3 e os pontos a azul no gráfico da figura 14, tal como se realizou no método anterior, obtêm-se o seguinte gráfico:

Figura 14 - Gráfico de μ em função de X (desprezando pontos – Método dos 3 pontos)

Tal como realizado no método anterior, de maneira a obter uma linearização correta, foi necessário optar por utilizar alguns pontos específicos.

Com a equação de
$$\mu = \mu$$
, max $-\frac{\mu max}{X,max}X$
Assim, $\mu_{max} = 0.0191$ min⁻¹ e $X_{max} = 955$ mgX/L.

Método do polinómio

O método do polinómio tem por base o gráfico do peso seco em mg X/L em função do tempo em minutos.

Figura 15 – Gráfico representativo do peso seco em mg_X/L em função do tempo em minutos.

Após se aplicar uma linha de tendência polinomial, obtém-se a equação que melhor se adequa aos pontos selecionados, neste caso, de grau 4, tem-se: $X = -2E-06t^4 + 0,0008t^3 - 0,0815t^2 + 5,0169t + 204,36$

Para obter as velocidades de crescimento celular é necessário moldar a equação a esse propósito. Como,

$$\frac{dX}{dt} = \mu X (=) \mu = \frac{dX}{dt} \times \frac{1}{X}$$

Derivando então a equação retirada a partir da linha de tendência:

$$\frac{dX}{dt} = -8 \times 10^{-6}t^3 + 0,0024t^2 - 0,163t + 5,0169$$

Logo,
$$\mu = \frac{-8 \times 10^{-6} t^3 + 0.0024 t^2 - 0.163 t + 5.0169}{X}$$

Tabela 4:

Tempo	DO	X (mg	μ (min-1)
(min)		biomassa/L)	polinómio
0	0,1744	206	0,024370219
10	0,2138	252	0,014358957
20	0,2273	268	0,009904419
30	0,2409	284	0,007297384
40	0,2769	326	0,005598344
50	0,3186	375	0,004980585
94	0,3798	447	0,009532262
104	0,4319	508	0,009898313
114	0,483	567	0,010172965

124	0,5282	620	0,010402712
134	0,5853	687	0,010213751
144	0,6585	773	0,009601781
154	0,7477	878	0,008676746
164	0,7885	925	0,008155634
174	0,8289	973	0,007373634
184	0,8833	1037	0,006216065
194	0,9094	1067	0,004976154
199	0,9269	1088	0,004208655
204	0,9525	1118	0,003333801
209	0,9777	1147	0,002396917
214	0,978	1148	0,001431389

Figura 16 - Gráfico de μ em função do peso seco

Utilizando a parte linear, assinalada a laranja, temos que μ = -1E-05X + 0,0169, como utilizada nos métodos anteriores, $\mu = \mu$, max $-\frac{\mu max}{X,max}X$. Assim pelo método do polinómio, μ_{max} =0,0169 min⁻¹ e X_{max} = 1690 mgX/L

Comparação dos valores (tabela 5):

	Malthus	Euler	3 pontos	Polinómio
μ max (min ⁻¹)	0,0082	0,0249	0,0191	0,0169
X max (mg X/L)	878	830	955	1690

Pelo modelo logístico (Modelo de Verhulst):
$$X = \frac{X_{max}X_0e^{\mu_{max}t}}{X_{max} - X_0(1 - e^{\mu_{max}t})}$$

Comparando o peso seco em função do tempo de todos os métodos realizados anteriormente e dos dados experimentais, formando o gráfico da figura 17, os dados para este estão na tabela 6-anexos.

Figura 17 - Gráfico do peso seco em função do tempo para os diferentes métodos consoante a fórmula do método logístico

Para uma melhor análise e comparação dos dados de todos os métodos, o modo mais eficaz é realizar a soma dos quadrados das diferenças ((*X experimental–X Teórico*)²) para cada um dos métodos em relação ao valor experimental dos respetivos pesos secos, o método com menor valor de soma é o mais correto, pois é o que tem menos diferença com o experimental. Estas diferenças estão calculadas na tabela 7.

Tabela 7:

malthus	euler	3	Polinomial
		pontos	
0	0	0	0
1077	26	182	181
1217	591	42	56
1333	3255	860	1073
4080	4324	816	1322
9490	4691	539	1438
9339	38439	22176	56336
19683	28447	16789	60549
33324	18925	11843	66170
47396	11838	8466	75959
71124	3837	3366	78014
111875	55	3	68882
177252	9731	5844	50301

	203303	18432	10236	57360
	230804	30472	16492	63147
	277236	53601	30560	58742
	291290	65910	36295	68674
	304287	75619	41786	70198
	328443	91806	52133	66148
	353065	109399	63630	61880
	343627	108596	61229	72022
Soma	2819244	677992	383289	978453

Com a observação dos valores retirados, a menor soma corresponde ao **método dos 3 pontos**. Pelo que os valores que serão utlizados nas seguintes alíneas são:

$$\mu_{\text{max}} = 0.0191 \text{ min}^{-1} \text{ e } X_{\text{max}} = 955 \text{ mgX/L}.$$

Discussão:

Após o tratamento dos dados pelos 4 métodos diferentes, observou-se que o que melhor se adequa é o método dos 3 pontos. Apesar de matematicamente este método se ter mostrado o mais representante, pela observação do gráfico comparando as curvas do experimental e o método escolhido, vê-se que não representa na totalidade corretamente o crescimento celular.

Pelo que a velocidade de crescimento celular máxima observada é 0,0191 min-1 e a concentração máxima observada é 955 mg_X/L.

C - Representar a velocidade específica e volumétrica de consumo de oxigénio em função do tempo. Calcular o coeficiente de rendimento de crescimento $(Y_{O2/X})$.

Através do software retirámos os valores de velocidade de consumo de O_2 em percentagem, logo, com o mesmo raciocínio da alínea a), convertemos em velocidade volumétrica de consumo (r_{O2}) em mg_O2/(L*min) através da equação:

$$r_{O2} = \frac{r_{O2}(\%)}{100} \times C_{O2}^*$$

E através da expressão:

$$V_{02} = \frac{r_{02}}{X}, \quad (3)$$

onde X são os valores de concentração celular calculados na alínea b), calculamos as velocidades especificas de consumo ($V_{\rm O2}$).

Assim, podemos construir a tabela 8 e representar graficamente a velocidade de consumo e a especifica em função do tempo:

Tabela 8:

Tempo (min)	rO2 (mgO2 L-1 min-1)	VO2 (mg_02/(mg_X.min))
0	0,563826816	0,002738859
10	0,593838336	0,002356213
20	0,669841536	0,002500807
30	0,766034304	0,002699332
40	0,841335936	0,002581011
50	0,983910144	0,002624912
60	1,092341376	0,002418887
70	1,20903552	0,002642328
74	1,116584448	0,002520979
84	1,198667904	0,002722872
94	1,269214464	0,00284227
104	1,354416	0,002668272
114	1,517491584	0,002674091
124	1,714710144	0,002763679
134	1,684776576	0,002451103
144	2,026752	0,002621488
154	2,067754752	0,002356
164	2,245173504	0,002425997
174	2,339417472	0,002404816
184	0,755276928	0,000728644
194	0,756368256	0,000708784
199	0,764553216	0,000702946

204	0,734619648	0,000657296
209	0,700320768	0,000610477
214	0,749820288	0,000653427

Figura 18 – Gráfico da velocidade especifica e volumétrica de consumo de oxigénio em função do tempo

A velocidade volumétrica de consumo de oxigénio também pode ser definida pela seguinte expressão:

$$r_{O2} = Y'_{O2/X} \mu X + mX$$

Então pela expressão (3), temos:

$$V_{O2} = Y'_{O2/X} \mu + m$$
 (4)

Fazendo uma linearização da velocidade especifica de consumo (VO2) em função da taxa especifica de crescimento (μ) , obtemos uma reta em que o seu declive é $Y'_{O2/X}$ e a ordenada na origem é m, o coeficiente de manutenção.

As taxas de crescimento usadas para esta linearização são os valores encontrados na alínea b) através do método dos 3 pontos, então podemos contruir a tabela e o gráfico seguinte.

Tabela 9:

VO2 (mg_02/(mg_X.min))	μ 3 pontos (min-1)	μ 3 pontos (min-1) (série pontos considerados)
0,002738859		
0,002356213	0,0123	
0,002500807	0,00593	0,00593
0,002699332	0,01024	0,01024
0,002581011	0,01397	

5	0,01676	0,002624912
5	0,00916	0,002418887
5	-0,00135	0,002642328
3	-0,0028	0,002520979
	0,00041	0,002722872
l	0,00754	0,00284227
0,01191	0,01191	0,002668272
ļ	0,00994	0,002674091
	0,00966	0,002763679
	0,01111	0,002451103
	0,01231	0,002621488
3	0,00868	0,002356
0,00514	0,00514	0,002425997
0,00571	0,00571	0,002404816
	0,00455	0,000728644
	0,00319	0,000708784
	0,00464	0,000702946
	0,00533	0,000657296
	0,0026	0,000610477
		0,000653427

Figura 19 – Gráfico da velocidade especifica de consumo de oxigénio (V_{O2}) em função da taxa especifica de crescimento (μ) .

Ao desprezar pontos tivemos em conta que pela expressão (4) $V_{\rm O2}$ e μ são diretamente proporcionais. Assim, chegámos a um declive que corresponde a $Y'_{\rm O2/X}$ (coeficiente de rendimento de crescimento verdadeiro) e a uma ordenada na origem que corresponde ao

coeficiente de manutenção (m). Como este valor é muito baixo (m = 0.0022 mg_O2/(mg_X.min)), podemos admitir que $Y'_{O2/X} = Y_{O2/X} = 0.0417$ mg_O2/mg_X.

Discussão:

No gráfico da figura 18 podemos observar que a velocidade especifica de consumo de oxigénio se mantém praticamente constante ao longo do tempo, permanecendo sempre no mesmo intervalo de valores. Isto acontece, pois esta velocidade retrata a quantidade de oxigénio necessária às células. Por isso, como estamos na fase exponencial, as células necessitam da máxima quantidade de O2 para crescimento celular. No entanto, quando atingimos a fase estacionária, podemos ver a descida abrupta da velocidade especifica. Isto porque, como se esgotou o substrato, não há crescimento, apenas manutenção celular, ou seja, a necessidade de oxigénio diminui abruptamente.

Nesse mesmo gráfico, está representado também o aumento da velocidade volumétrica de consumo de O2 ao longo do tempo. Este efeito era esperado, pois ao estarmos na fase exponencial o consumo de O2 é cada vez maior de forma a ocorrer crescimento celular. De seguida, temos uma queda abrupta destes valores, pois foi atingida a fase estacionária. Como explicado antes, nesta fase não existe grande quantidade de oxigénio a ser consumida, pois apenas está a ocorrer manutenção celular.

Através do gráfico da figura 19, retirámos um valor baixo de coeficiente de rendimento de crescimento, o que mostra que nesta cultura houve um baixo crescimento. Obtivemos também o valor do coeficiente de manutenção (m = 0.0022 mg_O2/(mg_X.min)), que é muito baixo, evidenciando a pouca manutenção celular ocorrida. Logo, o oxigénio foi utilizado principalmente para o crescimento celular. Para a construção deste gráfico foi necessário o desprezo de alguns pontos, tendo sempre em conta a relação de proporcionalidade direta dos parâmetros, pois, como podemos observar, existia uma grande dispersão de valores. Feito isto, conseguimos a melhor linearização possível, mas sabemos que estes valores estão distanciados dos verdadeiros.

D - Estimar o valor de Kla' durante a fase de crescimento celular.

Durante a fase de crescimento exponencial é atingido o máximo de consumo de oxigénio por parte dos microrganismos presentes no reator, fazendo com que este não se acumule, já que é todo consumido.

Este consumo máximo de oxigénio deve-se ao facto de se registar um aumento do metabolismo celular.

Pela alínea a) sabe-se que: $Q_{O_2} = K_L \alpha' (C^* - C_L)$

Assumindo
$$Q_{O_2} = r_{O_2}$$
, conclui-se que $r_{O_2} = K_L a'(C^* - C_L)$

Para a determinação de $K_L a'$ através da representação gráfica de r_{O_2} em função de (C^*-C_L) (valores retirados da alínea c)), vamos considerar apenas os pontos em que o aumento da força motriz faz aumentar a velocidade volumétrica de consumo de oxigénio, já que queremos fazer um estudo da fase exponencial.

É possível obtermos o valor de coeficiente de transferência de massa global $(K_L a')$ através do declive da reta de ajuste aos nossos pontos, já que é a nossa constante de proporcionalidade direta.

Os pontos que consideramos para a linha de tendência linear estão representados a azul e os pontos desprezados encontram-se a laranja. Desprezamos estes pontos pelo facto de não se adequarem ao ajuste linear representado a tracejado, de forma a aproximar o R^2 de 1.

Tabela 10: Dados para a construção do gráfico da figura 20

(C*-CL)/(mg O2/L)	rO2 (mgO2 L-1 min-1)
0,563437056	0,043921045
0,766891776	0,059780748
0,869710464	0,06779567
1,029200256	0,080228218
1,257833472	0,098050635
1,485998976	0,115836592
1,789933824	0,139528921
2,120216448	0,165275113
2,164649088	0,168738726
2,297323392	0,179080953
2,488695552	0,193998796
2,672896128	0,208357599
3,1258752	0,243668224
3,587428992	0,279647265
3,835706112	0,299000963
4,20044352	0,327432973

Figura 20- Velocidade volumétrica de consumo de O2 em função do tempo

Obtém-se, assim, um valor de $K_L a' = 0.3875$ min-1 e equação da reta obtida é $r_{O_2} = 0.3875$ (C^* - C_L) + 0.3466

Discussão:

O valor de $K_L a'$ obtido para a alínea a), ou seja, antes da inoculação é de 2,213 min^{-1} , o que significa que o valor durante a fase exponencial é cerca de 6 vezes menor ($K_L a' = 0.3875 \ min^{-1}$).

Como o $K_L a'$ varia consoante as propriedades do fluido, as condições do fluxo e a geometria física do sistema, esta diminuição do valor pode ser explicada por um aumento da viscosidade no reator (provocada pela espuma, bolhas e células inoculadas), o que fez com que houvesse uma maior resistência à transferência de oxigénio da fase gasosa para a líquida, dificultando-a. Por outro lado, a existência de microrganismos no sistema durante a fase de crescimento também pode dificultar esta transferência.

Como o volume do reator e a agitação não variaram não são fatores que possam justificar esta diminuição.

E – Comparar a velocidade máxima de transferência de massa com a velocidade máxima de consumo de oxigénio.

Tal como já foi anteriormente mencionado, a velocidade de transferência de massa é dada por $Q_{O_2} = K_L a'$ ($C^* - C_L$). Quando não existe O_2 no meio ($C_L = 0$), sabe-se que a força motriz é máxima, mais concretamente, a diferença entre a concentração de saturação e a concentração do meio são máximas, por isso simplificamos a nossa equação para: $Q_{O_2} = K_L a'$ C^* .

Pela alínea a): $C^* = 7,795 \text{ mg}O_2/L$

Pela alínea d): $K_L a' = 0.3875 \ min^{-1}$

Logo, pela equação acima descrita, obtém-se:

$$Q_{O_2} = 0.3875 \ min^{-1} * 7.7952 \ mgO2/L = 3.0206 \ mg/ (L. \ min)$$

O valor da velocidade de consumo de oxigénio é máximo, quando tanto a velocidade volumétrica como a concentração celular são máximas, já que as células vão necessitar cada vez mais de consumir oxigénio ao longo do tempo.

Iremos utilizar a equação abaixo de forma a calcular a velocidade máxima de consumo de oxigénio:

$$\frac{1}{X} * \frac{dO_2}{dt} = \frac{1}{Y'_{X/O_2}} * \mu + m$$

Como se tem que $\frac{dO_2}{dt} = -r_{O_2}$

Obtém-se:

$$\frac{1}{X} * (-r_{O_2}) = \frac{1}{Y'_{X/O_2}} * \mu + m <=> -r_{O_2} = \frac{1}{Y'_{X/O_2}} * \mu X + mX$$

A velocidade volumétrica máxima de consumo de oxigénio é atingida quando $\mu = \mu_{max}$ e $X = X_{max}$. Como o oxigénio consumido para efeitos de manutenção é quase nulo, vamos desprezar o valor de m.

$$(-r_{O_2 max}) = \frac{1}{Y'_{X/O_2}} * \mu_{max} X_{max} <=> -r_{O_2 max} = Y'_{O_2/X} * \mu_{max} X_{max}$$

Considerando: $Y'_{O_2/X} = Y_{O_2/X}$

Pela alínea b): $\mu_{max} = 0.0191 \text{ min}^{-1} \text{ e } X_{max} = 955 \text{ mgX/L}.$

Pela alínea c): $Y_{O_2/X} = Y'_{O_2/X} = 0.0417 \text{ mgO}2/\text{mgX}$

Logo, substituindo estes valores na equação:

$$(-r_{O_2 max}) = 0.0417 * 0.0191 * 955 = 0.7606 mgO_2/L.min$$

Discussão:

O objetivo desta alínea é comparar a velocidade de transferência de massa máxima com a velocidade de consumo de oxigénio máxima. Os valores que obtivemos foram $Q_{O_2max}=3,0206 \,\mathrm{mg/}\,(\mathrm{L.\,min})\,\mathrm{e}\,-r_{O_2\,max}=0,7606\,mgO_2/\mathrm{L.\,min}.$

É possível afirmar que Q_{O_2max} é cerca de 4 vezes maior que $-r_{O_2max}$, o que significa que a maior parte do oxigénio transferido não está a ser consumido pela cultura (para crescimento ou manutenção). De forma a não desperdiçar oxigénio, deve-se tentar igualar o Q_{O_2max} ao $-r_{O_2max}$, diminuindo Q_{O_2max} e, otimizando, deste modo, o sistema.

Como nesta situação, $K_L a' C^* > \frac{1}{Y_{X/O_2}} \mu_{max} x$, trata-se de uma limitação cinética por metabolismo celular.

F - Estimar a velocidade de consumo de acetato ao longo do tempo com base na estequiometria de reação de oxidação do acetato.

Em meio aquoso o acetato sofre hidrólise formando ácido acético:

$$KCH_3COO + H_2O \rightarrow CH_3COOH + KOH$$

Que por sua vez a reação de oxidação do ácido acético dá-se segundo a equação química abaixo:

$$CH_3COOH(aq) + 2O_2(g) \rightarrow 2CO_2(g) + 2H_2O(l)$$

Pela estequiometria da reação observamos que a reação apresenta uma estequiometria de 1:2, portanto, a velocidade volumétrica de consumo de acetato **r**_{AC} será <u>metade</u> da velocidade volumétrica de consumo de O₂, **r**_{O2}.

Os valores das velocidades volumétricas encontradas na alinea C para o consumo de oxigénio não estão nas unidades corretas, pelo que teremos primeiro de converter estes valores para unidades molares de modo a aplicarmos a razão corretamente. Logo, converteram-se os valores das velocidades volumétricas de O₂ de mg_{O2}/(L.min) para mmol_{O2}/(L.min) dividindo-se pela massa molar do oxigénio.

 $M(O_2) = 32 \text{ mg/mmol}$

$$r_{02} \left(\frac{mmol_{02}}{L.\min} \right) = \frac{r_{02} \left(\frac{mg_{02}}{L.\min} \right)}{M(O_2) \left(\frac{mg}{mmol} \right)}$$

$$r_{O2}\left(\frac{mmol_{O2}}{L.\min}\right) = \frac{r_{O2}\left(\frac{mg_{O2}}{L.\min}\right)}{32}$$

E divindindo estes valores por dois, obtemos as velocidades volumétricas do acetato nas unidades mmol Ac/(L.min).

Como a massa molar do acetato é $M(CH_3COOH) = 60.052$ mg/mmol, multiplicamos as velocidades obtidas por este valor, passando para unidades de mg_Ac/(L.min).

Tabela 11: Dados utilizados para o grafico de velocidade volumétrica de O2 e acetato em função do tempo (figura 21)

Tempo (min)	r ₀₂ (mg O2 L ⁻¹ min ⁻¹)	r _{CH3OOH} (mg CH3OOH L ⁻¹ min ⁻¹)	
0	0,563826816	0,529045749	
10	0,593838336	0,557205934	
20	0,669841536	0,628520686	
30	0,766034304	0,718779563	
40	0,841335936	0,789436025	
50	0,983910144	0,923215187	
60	1,092341376	1,024957567	
70	1,20903552	1,134453141	
74	1,116584448	1,047705145	

84	1,198667904	1,124725078
94	1,269214464	1,190919797
104	1,354416	1,270865463
114	1,517491584	1,423881322
124	1,714710144	1,608933962
134	1,684776576	1,580846921
144	2,026752	1,901726736
154	2,067754752	1,940200131
164	2,245173504	2,106674363
174	2,339417472	2,195104657
184	0,755276928	0,708685783
194	0,756368256	0,709709789
199	0,764553216	0,717389839
204	0,734619648	0,689302798
209	0,700320768	0,657119731
214	0,749820288	0,703565749

Figura 21 – Gráfico da velocidade volumétrica de oxigénio e de acetato em função do tempo.

Discussão:

Observando o gráfico da figura 21 observamos que a velocidade de consumo do acetato aumenta bem como a velocidade de consumo de oxigénio aumentam até atingir um ponto máximo, a partir do qual diminui bruscamente. Esta alteração brusca marca o momento em que o substrato (acetato) esgotou-se (fase estacionária). O acetato é então exclusivamente consumido apenas para efeitos de manutenção celular, tal como o oxigénio.

Através da estequiometria da reação concluiu-se que há uma proporção de 2:1, ou seja, por cada duas moles consumidas de oxigénio, é consumida uma mole de acetato, o que

se verifica e pode ser confirmado no gráfico da figura 21 onde estão representadas as velocidade de consumo de substrato e oxigénio.

G - Estimar o rendimento verdadeiro $(Y'_{X/S})$ e o coeficiente de manutenção de acetato e compare com o rendimento observado $(Y_{X/S})$.

O rendimento verdadeiro do substrato $(Y'_{X/S})$ é calculado com recurso aos valores do acetato consumido, crescimento celular e coeficiente de manutenção, representando-se a velocidade específica de consumo de acetato $(V_{acetato})$ em função da velocidade específica de crescimento celular (μ) .

$$r_S = \frac{1}{Y'_{\frac{X}{S}}} \times r_X \times mX$$
 $\frac{r_S}{X} = v_S \times r_X = \frac{dX}{dt}$ $\frac{dX}{dt} \times \frac{1}{X} = \mu \iff \mu = \frac{r_X}{X}$

Portanto,

$$\frac{r_S}{X} = \frac{1}{Y'_{X/S}} \times \frac{r_X}{X} + m \quad \Leftrightarrow \quad v_S = \frac{1}{Y'_{X/S}} \times \mu + m$$

Assim, podemos descrever a velocidade de consumo de substrato de uma forma linear dando uso aos valores das velocidades de crescimento celular.

Tabela 12: Tabela necessária para o V_{acetato} em função de μ (gráfico da figura 22).

μ (min-1) (3 pontos)	V_CH3OOH (mg CH3OOH mg X-1 min-1)			
0,01230	0,002210864			
0,00593	0,002346539			
0,01024	0,002532817			
0,01397	0,002421795			
0,01676	0,002462988			
0,00754	0,002666937			
0,01191	0,002503673			
0,00994	0,002509133			
0,00966	0,002593195			
0,01111	0,0022999			
0,01231	0,002459775			
0,00868	0,002210664			
0,00514	0,002276343			
0,00571	0,002256469			
0,00455	0,000683696			
0,00319	0,000665061			
0,00464	0,000659583			
0,00533	0,000616749			
0,00260	0,000572819			

Figura 22 – Gráfico da velocidade específica de consumo de acetato ($V_CH3COOH$) em função da velocidade específica de crescimento (μ).

Tabela 13: Tabela com os dados para o V em função de μ ajustado (figura 23)

μ (min ⁻¹) (3 pontos)	V_CH3OOH (mg CH3OOH mg X-1 min-1)
0,01397	0,002421795
0,01676	0,002462988
0,01111	0,0022999
0,01231	0,002459775
0,00514	0,002276343
0,00571	0,002256469

Figura 23 - Gráfico da velocidade específica de consumo de acetato em função da velocidade específica de crescimento (μ) (Ajustado)

$$\frac{1}{Y'_{X/S}} = 0.0183 \frac{mg_{Ac}}{mg_X} \Leftrightarrow Y'_{X/S} = 54,6448 \frac{mg X}{mg Ac}$$

$$m = 0.0022 \frac{mg Ac}{mg X.min}$$

$$Para Y_{X/S} = \frac{\Delta X}{\Delta S} = \frac{Xf - Xi}{Si - Sf}$$

O substrato assumimos que irá ser todo consumido pelo que a sua concentração final vai ser igual a 0.

$$\Delta X = X_f - X_i = 1148 \text{ mg/L} - 206 \text{ mg/L} = 942 \text{ mg/L}$$

A concentração de acetato no meio E era de $\frac{9,5g}{100mL}$ (dados fornecidos no protocolo) e foram adicionados ao reator apenas 2 mL, portanto a massa de acetato utilizado pode ser obtida.

$$m_{Acetato} = \frac{9.5 \times 2}{100} \times 10^3 = 190 \text{ mg Acetato}$$
 $V_{reator} = 0.5 + 0.002 + 0.1 \text{ (inóculo)} = 0.602 \text{ L}$
 $S_i = \frac{mAcetato}{Vtotal} = \frac{190}{0.602} = 315.61 \text{ mgAc/L}$
 $Y_{X/S} = \frac{942}{315.61 - 0} = 2.985 \frac{mg \text{ X}}{mg \text{ S}}$

Discussão:

O valor que se obteve para o coeficiente de rendimento verdadeiro (Y'_{X/S}) é de 54,645 $\frac{mg\ X}{mg\ Ac}$, o coeficiente de manutenção (m) é de 0,0022 $\frac{mg\ Ac}{mg\ X.min}$ e o coeficiente de rendimento aparente (Y_{X/S}) é 2,985 $\frac{mg\ X}{mg\ Ac}$.

Comparando-se ambos os valores verifica-se que o valor do coeficiente de rendimento verdadeiro é superior ao aparente, algo esperado, pois o coeficiente de rendimento verdadeiro tem em conta o acetato consumido para fins de crescimento celular, manutenção e formação de produtos enquanto o aparente apenas tem em conta o crescimento celular.

No entanto para a obtenção deste valor (Y'x/s) através dos dados obtidos laboratorialmente foi necessário um grande ajuste aos pontos de modo a obter uma regressão que fizesse sentido tendo em conta o objetivo da experiência. Posto isto, o valor do coeficiente de rendimento verdadeiro tem um valor tão superior ao coeficiente de rendimento aparente possivelmente devido aos ajustes feitos.

6. Conclusão

Com este trabalho, foi possível aplicarmos matéria lecionada nas aulas teóricas sobre bioreatores com arejamento e agitação, aprofundando e consolidando, deste modo, a mesma e, por isso, foram cumpridos os principais objetivos.

Analisamos as necessidades de oxigénio das leveduras e identificamos as diversas fases de crescimento.

Verificamos que o sistema não estava otimizado, pelo que, caso fosse utilizado a nível industrial, haveria desperdícios. De forma a melhorar a eficiência, é necessário reajustar determinados valores, como a velocidade de transferência de oxigénio, já que esta era bastante superior à de consumo, tratando-se de um caso de limitação por metabolismo.

Conseguimos, ainda, perceber que os coeficientes de rendimento dependem da temperatura, da pressão e da velocidade da agitação. Reajustes nestes fatores, provocariam variações nos valores nestes coeficientes.

Os valores obtidos são pouco concordantes com a teoria, isto deveu-se principalmente a erros experimentais, erros de medição e a erros de cálculo. Mesmo assim, foi possível realizar todos os cálculos e chegar às conclusões pretendidas.

7. Bibliografia

- [1] Slides das aulas teóricas de Engenharia da Biorreação na plataforma CLIP.
- [2] Bailey, J.E.; & Ollis, D.F. "Biochemical Engineering Fundamentals", 2nd edition, MCGraw-Hill.

Figura 1 – Up, Page Title (up.pt), acessado a 3 de dezembro

Figura 2 – Wikiversity, https://pt.wikiversity.org/wiki/Aula_4_- Agita%C3%A7%C3%A3o e Aera%C3%A7%C3%A3o, acessado a 3 de dezembro

8. Anexos

Anexo 1 – [2]

Temp, °C	Water, O ₂ mmol/L	Temp. °C	Water, O ₂ mmol/L
0	2.18	25	1.26
10	1.70	30	1.16
15	1.54	35	1.09
20	1.38	40	1.03
Electrolyte		O ₂ , mmol/L	
	HCl	H ₂ SO ₄	NaCl
conc, M	HCl		NaCl
Electrolyte conc, M 0.0 0.5		$\mathrm{H_2SO_4}$	
0.0	1.26	H ₂ SO ₄	1.26

Anexo 2 – Gráfico fornecido no protocolo que nos permite relacionar a absorvância com o peso seco (mg/L) a 600 nm.

Tabela 1 – Tabela de dados que correspondem à fase antes da inoculação usados para a construção dos gráficos da figura 3, figura 4, figura 5 e figura 6. Na figura 4, 5 e 6 foram usados os pontos a vermelho desta tabela.

Tempo	Time elapsed (min)	% de O2	cO2 (mg/L)	In(c*-cL)	QO2 (mg O2/(L.min)
0	2,471773	0,509017	0,039679	2,048404991	17,16184208
0,000881	2,472654	0,165109	0,012871	2,051855705	17,221165
0,001762	2,473535	0,079132	0,006168	2,052716526	17,23599572
0,002643	2,474416	0,639575	0,049856	2,047091869	17,13932129
0,003524	2,475297	0,169885	0,013243	2,051807865	17,22034115
0,004438	2,476211	0,028182	0,002197	2,0532263	17,24478442
0,005319	2,477092	0,59181	0,046133	2,047572478	17,14756058
0,0062	2,477973	0,144411	0,011257	2,052063006	17,22473533
0,007081	2,478854	0,196952	0,015353	2,051536698	17,21567219
0,007962	2,479735	0,663458	0,051718	2,046851473	17,13520156
0,008843	2,480616	0,130081	0,01014	2,052206503	17,2272072
0,009724	2,481497	0,375275	0,029253	2,04974835	17,1849121

0,010605	2,482378	0,594994	0,046381	2,047540448	17 14701126
0,010003	2,483259	0,0043	0,040381	2,053465159	17,14701136
0,011480	2,483239	0,402342	0,000333	2,033403139	17,24890398
0,012367	2,485021	2,077303	0,031363	2,049476624	17,18024314
		-			16,8913183
0,014129	2,485902	2,047052	0,159572	2,032825215	16,8965365
0,01501	2,486783	2,675958	0,208596	2,026384024	16,78805244
0,015891	2,487664	2,336826	0,18216	2,029862532	16,84655151
0,016772	2,488545	2,137805	0,166646	2,031898289	16,88088192
0,017669	2,489442	2,7285	0,212692	2,025844011	16,77898913
0,01855	2,490323	2,387776	0,186132	2,029340705	16,83776281
0,019431	2,491204	2,155319	0,168011	2,031719307	16,87786082
0,020312	2,492085	2,703025	0,210706	2,026105873	16,78338348
0,021193	2,492966	2,191939	0,170866	2,031344971	16,871544
0,022074	2,493847	2,33205	0,181788	2,029911434	16,84737535
0,022972	2,494745	2,753975	0,214678	2,025582081	16,77459478
0,023869	2,495642	2,330458	0,181664	2,029927734	16,84764996
0,02475	2,496523	2,266771	0,176699	2,030579587	16,85863575
0,025631	2,497404	2,768304	0,215795	2,025434723	16,77212308
0,026512	2,498285	2,269955	0,176948	2,030547008	16,85808652
0,027393	2,499166	2,478529	0,193206	2,028410543	16,82210824
0,028274	2,500047	2,749198	0,214305	2,025631203	16,7754188
0,029155	2,500928	2,113923	0,164785	2,032142297	16,88500148
0,030052	2,501825	2,504004	0,195192	2,028149284	16,81771389
0,030933	2,502706	2,715762	0,211699	2,025974956	16,78118639
0,031814	2,503587	2,137805	0,166646	2,031898289	16,88088192
0,032695	2,504468	2,609087	0,203384	2,027070884	16,79958745
0,033576	2,505349	2,499228	0,19482	2,02819827	16,81853774
0,034457	2,50623	2,075711	0,161806	2,032532593	16,89159292
0,035338	2,507111	2,575652	0,200777	2,027414133	16,80535487
0,036219	2,507992	2,311352	0,180175	2,030123334	16,85094568
0,0371	2,508873	2,136213	0,166522	2,031914557	16,88115654
0,037981	2,509754	2,712578	0,211451	2,026007684	16,78173562
0,038862	2,510635	2,174425	0,169501	2,03152402	16,8745651
0,039743	2,511516	2,33205	0,181788	2,029911434	16,84737535
0,040624	2,512397	2,758751	0,21505	2,025532968	16,77377094
0,041505	2,513278	2,260402	0,176203	2,030644753	16,85973438
0,042403	2,514176	2,376631	0,185263	2,029454875	16,83968529
0,043284	2,515057	4,819017	0,375652	2,004118137	16,41838235
0,044165	2,515938	5,338064	0,416113	1,99864995	16,32884858
0,045046	2,516819	5,747251	0,44801	1,994317967	16,25826528
0,045927	2,5177	5,970154	0,465385	1,991950216	16,2198153
0,046808	2,518581	5,387421	0,41996	1,998128411	16,32033468
0,047689	2,519462	5,986076	0,466627	1,991780873	16,21706881
0,048603	2,520376	6,02588	0,469729	1,991357399	16,21020276
0,049484	2,521257	5,432002	0,423435	1,997657105	16,31264461
0,050365	2,522138	5,906468	0,460421	1,992627283	16,23080091

0,051246	2,523019	5,830044	0,454464	1,993439166	16,24398378
0,052127	2,5239	5,377868	0,419216	1,998229376	16,32198254
0,053008	2,524781	5,971747	0,46551	1,991933275	16,21954051
0,053889	2,525662	5,608732	0,437212	1,995786543	16,28215931
0,054803	2,526576	5,403343	0,421201	1,997960111	16,31758819
0,055684	2,527457	5,935127	0,462655	1,992322656	16,22585733
0,056565	2,528338	5,755212	0,44863	1,994233499	16,25689203
0,057446	2,529219	5,376276	0,419091	1,998246201	16,32225715
0,058327	2,5301	6,021104	0,469357	1,99140822	16,2110266
0,059208	2,530981	5,600771	0,436591	1,995870879	16,28353256
0,060089	2,531862	5,506833	0,429269	1,996865499	16,29973653
0,060987	2,53276	6,019512	0,469233	1,99142516	16,21130122
0,061868	2,533641	5,517979	0,430137	1,996747536	16,29781388
0,062749	2,534522	5,567336	0,433985	1,996225004	16,28929998
0,06363	2,535403	6,073645	0,473453	1,990848991	16,20196347
0,064511	2,536284	5,517979	0,430137	1,996747536	16,29781388
0,065392	2,537165	5,724961	0,446272	1,99455443	16,26211022
0,066273	2,538046	6,048171	0,471467	1,991120167	16,20635764
0,067187	2,53896	5,538677	0,431751	1,996528444	16,29424355
0,068068	2,539841	5,715408	0,445527	1,994655757	16,26375808
0,068949	2,540722	6,081606	0,474073	1,99076423	16,20059022
0,06983	2,541603	5,465437	0,426042	1,997303487	16,30687719
0,070711	2,542484	5,903283	0,460173	1,992661131	16,23135031
0,071592	2,543365	5,954233	0,464144	1,99211952	16,22256162
0,072473	2,544246	5,389013	0,420084	1,998111585	16,32006006
0,073387	2,54516	5,77591	0,450244	1,994013855	16,2533217
0,074268	2,546041	9,729264	0,758416	1,951151306	15,57138214
0,075149	2,546922	9,617812	0,749728	1,952385186	15,59060722
0,07603	2,547803	10,1289	0,789568	1,946714417	15,50244669
0,076911	2,548684	10,06362	0,784479	1,947440516	15,51370709
0,077792	2,549565	9,606667	0,748859	1,952508488	15,59252969
0,078673	2,550446	10,15278	0,79143	1,946448635	15,49832696
0,079587	2,55136	10,13368	0,78994	1,946661262	15,50162268
0,080468	2,552241	9,622589	0,7501	1,952332332	15,5897832
0,081349	2,553122	10,08113	0,785844	1,94724576	15,51068599
0,08223	2,554003	9,934654	0,774426	1,948873447	15,5359531
0,083111	2,554884	9,597114	0,748114	1,952614165	15,59417755
0,083992	2,555765	10,20851	0,795773	1,945828223	15,4887146
0,084873	2,556646	9,831163	0,766359	1,950021853	15,55380493
0,085787	2,55756	9,584376	0,747121	1,952755058	15,59637481
0,086668	2,558441	10,21965	0,796642	1,945704083	15,48679195
0,087549	2,559322	9,858229	0,768469	1,949721638	15,54913614
0,08843	2,560203	9,670354	0,753823	1,951803686	15,58154391
0,089311	2,561084	10,2515	0,799125	1,945349344	15,48129915
0,090192	2,561965	9,724487	0,758043	1,951204223	15,57220616
0,091073	2,562846	9,888481	0,770827	1,949385977	15,54391777

0,091971	2,563744	10,26742	0,800366	1,945171921	15 47055366
0,091971	2,564625	9,732448	0,758664	1,943171921	15,47855266
0,092832		9,96172	0,776536	1,948572887	15,57083291
0,093732	2,565505	10,27219	0,800738	1,946372667	15,53128431
	2,566387		-	•	15,47772881
0,095494	2,567267	9,649655	0,75221	1,952032809	15,58511441
0,096375	2,568148	9,988787	0,778646	1,948272225	15,52661534
0,097256	2,569029	10,1496	0,791181	1,946484083	15,49887636
0,098171	2,569944	9,754738	0,760401	1,950869071	15,56698797
0,099051	2,570824	10,03337	0,782121	1,94777682	15,51892528
0,099933	2,571706	10,22284	0,796891	1,945668618	15,48624272
0,100814	2,572587	9,633734	0,750969	1,952209008	15,58786073
0,101695	2,573468	10,09546	0,786962	1,947086381	15,50821411
0,102575	2,574348	10,04611	0,783114	1,947635235	15,51672819
0,103456	2,575229	9,606667	0,748859	1,952508488	15,59252969
0,104371	2,576144	11,6335	0,906854	1,929830946	15,2429087
0,105252	2,577025	14,743	1,149246	1,894008174	14,7065301
0,106133	2,577906	14,50258	1,130505	1,896824127	14,74800135
0,107014	2,578787	15,02482	1,171214	1,890697235	14,65791818
0,107895	2,579668	14,8242	1,155576	1,893055306	14,69252339
0,108775	2,580548	14,51214	1,13125	1,896712386	14,74635349
0,109657	2,58143	15,14104	1,180275	1,889328511	14,63786927
0,110571	2,582344	14,92451	1,163395	1,891876965	14,67522079
0,111452	2,583225	14,48666	1,129264	1,897010326	14,75074767
0,112333	2,584106	15,02482	1,171214	1,890697235	14,65791818
0,113214	2,584987	14,74778	1,149619	1,893952154	14,70570626
0,114095	2,585868	14,58697	1,137083	1,895836651	14,73344524
0,114976	2,586749	15,1697	1,182509	1,888990729	14,63292569
0,115857	2,58763	14,60767	1,138697	1,895594293	14,72987491
0,116771	2,588544	14,53284	1,132864	1,896470229	14,74278299
0,117652	2,589425	15,11079	1,177917	1,889684933	14,64308746
0,118533	2,590306	14,73345	1,148502	1,894120218	14,70817796
0,119414	2,591187	14,68887	1,145027	1,894642924	14,71586802
0,120295	2,592068	15,20792	1,185487	1,888540175	14,62633426
0,121176	2,592949	14,62677	1,140186	1,895370524	14,72657919
0,122057	2,59383	14,86719	1,158927	1,89255047	14,68510794
0,122954	2,594727	15,22224	1,186604	1,888371171	14,62386255
0,123835	2,595608	14,61085	1,138945	1,895556994	14,72932551
0,124716	2,596489	14,88152	1,160044	1,892382142	14,68263624
0,125597	2,59737	15,14264	1,180399	1,88930975	14,63759465
0,126478	2,598251	14,53284	1,132864	1,896470229	14,74278299
0,127359	2,599132	14,96591	1,166622	1,891390267	14,66808012
0,12824	2,600013	14,93565	1,164264	1,891745956	14,67329831
0,129154	2,600927	14,54717	1,133981	1,89630256	14,74031129
0,130035	2,601808	14,94839	1,165257	1,891596211	14,67110123
0,130916	2,602689	15,04392	1,172704	1,890472367	14,65462247
0,131797	2,60357	14,49462	1,129885	1,896917237	14,7493746

0,132678	2,604451	15,13308	1,179654	1,889422321	14,63924251
0,133559	2,605332	14,77962	1,152101	1,893578557	14,70021328
0,13444	2,606213	14,51055	1,131126	1,896731009	14,74662811
0,135355	2,607128	15,00412	1,169601	1,890940794	14,66148869
0,136235	2,608008	19,5004	1,520095	1,836590177	13,88589563
0,137116	2,608889	19,6835	1,534368	1,834313053	13,8543117
0,137110	2,60977	20,33151	1,584882	1,826212099	
0,138878	2,610651	19,94621	1,554847	1,831036782	13,74253192
0,139759	2,611532	19,8252	1,545414	1,832547187	13,8089955 13,82986843
0,14064	2,612413	20,40157	1,590343	1,825332368	
0,141554	2,613327	20,40137	1,560308	1,8301613	13,73044751
0,141334	2,614209	19,76789	1,540946	1,833261845	13,79691126
0,143317	·	20,34743	1,586123	1,833201843	13,83975559
	2,61509				13,73978544
0,144197	2,61597	19,97009	1,556708 1,554226	1,830738413	13,80487594
0,145078	2,616851	19,93825		1,831136223	13,81036874
0,14596 0,14684	2,617733	20,42704	1,592329 1,552737	1,825012273	13,72605317
	2,618613	19,91914		1,831374835	13,81366446
0,147755	2,619528	19,87138	1,549014	1,831971117	13,82190375
0,148636	2,620409	20,41431	1,591336	1,825172339	13,72825043
0,149517	2,62129	19,85227	1,547524	1,83220953	13,82519947
0,150398	2,622171	20,04174	1,562294	1,829842747	13,79251691
0,151278	2,623051	20,41431	1,591336	1,825172339	13,72825043
0,15216	2,623933	19,90163	1,551372	1,831593515	13,81668556
0,153041	2,624814	20,17548	1,572719	1,828168699	13,76944689
0,153955	2,625728	20,435	1,592949	1,824912234	13,72468009
0,154836	2,626609	19,84431	1,546904	1,832308855	13,82657272
0,155717	2,62749	20,16434	1,57185	1,828308308	13,77136936
0,156598	2,628371	20,36176	1,58724	1,825832303	13,73731356
0,157479	2,629252	19,77107	1,541194	1,833222159	13,83920636
0,15836	2,630133	20,23598	1,577435	1,827410474	13,75901051
0,159241	2,631014	20,16274	1,571726	1,828328249	13,77164398
0,160122	2,631895	19,72171	1,537347	1,833837172	13,84772026
0,161002	2,632775	20,28056	1,58091	1,826851407	13,75132045
0,161884	2,633657	19,93825	1,554226	1,831136223	13,81036874
0,162765	2,634538	19,79336	1,542932	1,832944278	13,83536124
0,163646	2,635419	20,36813	1,587737	1,825752338	13,7362151
0,164526	2,636299	19,94302	1,554599	1,831076567	13,8095449
0,165407	2,63718	19,9876	1,558074	1,830519546	13,80185484
0,166305	2,638078	20,39042	1,589474	1,825472373	13,73236999
0,167203	2,638976	24,27054	1,891937	1,775505266	13,06306407
0,168084	2,639857	25,15419	1,960819	1,763768104	12,91063706
0,168965	2,640738	25,73533	2,006121	1,755973281	12,81039212
0,169862	2,641635	25,30545	1,97261	1,761745158	12,88454593
0,170743	2,642516	25,32614	1,974224	1,761468018	12,8809756
0,171624	2,643397	25,78469	2,009968	1,75530845	12,80187821
0,172505	2,644278	25,25609	1,968763	1,762405724	12,89305984

0,173403	2,645176	25,39302	1,979436	1,760572109	12,86944059
0,174284	2,646057	25,77673	2,009348	1,755415713	12,80325146
0,175164	2,646937	25,15897	1,961192	1,763704278	12,90981304
0,176046	2,647819	25,56975	1,993213	1,758200473	12,83895512
0,176927	2,6487	25,67961	2,001777	1,75672337	12,82000466
0,177808	2,649581	25,08891	1,955731	1,764639904	12,92189745
0,178689	2,650462	25,54746	1,991475	1,758499903	
0,179586	2,651359	25,60637	1,996067	1,757708347	12,84280006
0,180467	2,65224	25,0507	1,952752	1,765149872	12,8326383 12,92848889
0,181348	2,653121	25,62547	1,997557	1,757451491	12,82934258
0,182229	2,654002	25,37073	1,977699	1,76087083	12,87328554
0,18311	2,654883	25,04911	1,952628	1,765171113	12,9287635
0,183991	2,655764	25,67165	2,001156	1,756830481	12,8213779
0,184872	2,656645	25,23061	1,966777	1,762746497	12,89745419
0,185786	2,657559	25,06821	1,954117	1,764916167	12,92546778
0,186667	2,65844	25,67642	2,001528	1,756766224	12,82055406
0,187548	2,659321	25,28156	1,970748	1,762064836	12,88866549
0,188429	2,660202	25,1319	1,959082	1,764065872	12,88800349
0,18931	2,661083	25,73056	2,005748	1,756037603	12,81121614
0,190191	2,661964	25,73030	1,967521	1,762618722	12,89580633
0,191072	2,662845	25,3564	1,976582	1,761062814	12,87575724
0,19197	2,663743	25,75444	2,00761	1,755715979	12,8070964
0,192851	2,664624	25,18126	1,962929	1,763406402	12,90596809
0,193732	2,665505	25,38824	1,979064	1,760636123	12,87026443
0,194612	2,666385	25,76081	2,008106	1,755630205	12,80599795
0,195494	2,667267	25,15419	1,960819	1,763768104	12,91063706
0,196375	2,668148	25,56179	1,992592	1,758307426	12,84032836
0,197256	2,669029	25,6191	1,99706	1,757537122	12,83044121
0,19817	2,669943	29,30179	2,284133	1,706758242	12,19519092
0,199051	2,670824	30,74748	2,396827	1,686097551	11,94581486
0,199932	2,671705	31,10572	2,424753	1,680911202	11,88402008
0,200813	2,672586	30,53254	2,380072	1,689196487	11,9828916
0,201694	2,673467	30,93535	2,411473	1,683380953	11,91340692
0,202575	2,674348	30,94809	2,412466	1,6831965	11,91120966
0,203456	2,675229	30,48318	2,376225	1,689906754	11,99140568
0,20437	2,676143	30,98312	2,415196	1,682689115	11,90516763
0,205251	2,677024	30,9863	2,415444	1,682642966	11,90461823
0,206132	2,677905	30,48636	2,376473	1,689860937	11,99085628
0,207013	2,678786	31,09298	2,42376	1,681096062	11,88621717
0,207894	2,679667	30,73474	2,395834	1,686281455	11,94801195
0,208774	2,680547	30,50547	2,377962	1,689586047	11,98756056
0,209656	2,681429	31,09457	2,423884	1,681072958	11,88594255
0,21057	2,682343	30,81913	2,402412	1,685062425	11,93345584
0,211451	2,683224	30,46407	2,374735	1,690181557	11,9947014
0,212332	2,684105	31,03248	2,419044	1,681973701	11,89665355
0,213213	2,684986	30,7029	2,393352	1,686741075	11,95350476

0,214094	2,685867	30,56438	2,382554	1,688737995	11,97739879
0,214975	2,686748	31,13915	2,427359	1,680425761	11,87825249
0,215856	2,687629	30,58348	2,384044	1,688462796	11,97410308
0,21677	2,688543	30,50547	2,377962	1,689586047	11,98756056
0,217651	2,689424	31,09139	2,423636	1,681119166	11,88649178
0,218532	2,690305	30,60577	2,385781	1,688141639	11,97025813
0,219413	2,691186	30,67901	2,39149	1,687085662	11,95762449
0,220294	2,692067	31,16144	2,429097	1,680102012	11,87440754
0,221175	2,692948	30,55483	2,38181	1,688875566	11,97904665
0,222056	2,693829	30,94013	2,411845	1,683311783	11,9125829
0,222954	2,694727	31,18851	2,431207	1,67970874	11,86973858
0,223834	2,695607	30,59622	2,385037	1,688279292	11,97190599
0,224715	2,696488	30,91306	2,409735	1,683703642	11,91725187
0,225596	2,697369	31,08502	2,423139	1,681211588	11,88759041
0,226477	2,69825	30,50865	2,37821	1,689540229	11,98701133
0,227358	2,699131	30,98153	2,415072	1,682712182	11,90544224
0,228239	2,700012	30,886	2,407625	1,684095347	11,92192083
0,229154	2,700927	34,20248	2,666152	1,634920076	11,34983857
0,230035	2,701808	35,76918	2,788279	1,610821194	11,07958958
0,230916	2,702689	35,96183	2,803296	1,607817301	11,04635762
0,231796	2,703569	35,47144	2,76507	1,615445875	11,13094781
0,232677	2,70445	35,96661	2,803669	1,607742718	11,04553378
0,233558	2,705331	35,80102	2,790761	1,610325296	11,0740966
0,234439	2,706212	35,49532	2,766931	1,615075706	11,12682825
0,235354	2,707127	36,02711	2,808385	1,60679742	11,03509739
0,236235	2,708008	35,86152	2,795477	1,609382438	11,06366022
0,237116	2,708889	35,47144	2,76507	1,615445875	11,13094781
0,237997	2,70977	36,04462	2,80975	1,606523611	11,03207629
0,238878	2,710651	35,72619	2,784928	1,611490244	11,08700486
0,239759	2,711532	35,59722	2,774875	1,613494742	11,10925103
0,240639	2,712412	36,17996	2,8203	1,604405284	11,00873148
0,241553	2,713326	35,66887	2,78046	1,612381625	11,09689201
0,242435	2,714208	35,53194	2,769786	1,614507834	11,12051143
0,243316	2,715089	36,14493	2,817569	1,604953989	11,01477369
0,244197	2,71597	35,73096	2,7853	1,611415934	11,08618101
0,245078	2,716851	35,72141	2,784555	1,611564563	11,08782887
0,245959	2,717732	36,20543	2,822286	1,604006051	11,00433731
0,24684	2,718613	35,69434	2,782446	1,611985564	11,09249783
0,247754	2,719527	35,64021	2,778226	1,612827017	11,10183558
0,248635	2,720408	36,17996	2,8203	1,604405284	11,00873148
0,249516	2,721289	35,58926	2,774254	1,613618348	11,11062428
0,250397	2,72217	35,887	2,797463	1,608985172	11,05926587
0,251277	2,72305	36,16244	2,818935	1,604679674	11,01175259
0,252159	2,723932	35,56697	2,772517	1,613964348	11,11446922
0,25304	2,724813	35,98571	2,805158	1,607444298	11,04223806
0,253954	2,725727	36,20702	2,82241	1,603981095	11,00406269

0.354035	2.720000	25 50767	2 77/12	1 (12(420(4	44.44000000
0,254835	2,726608	35,58767	2,77413	1,613643064	11,11089889
0,255715	2,727488	35,87744	2,796719	1,609134163	11,06091373
0,256597	2,72837	36,10831	2,814715	1,605527311	11,02109051
0,257478	2,729251	35,53513	2,770034	1,614458444	11,1199622
0,258359	2,730132	35,95068	2,802428	1,607991338	11,04828026
0,25924	2,731013	35,88859	2,797587	1,60896034	11,05899126
0,260154	2,731927	36,89802	2,876275	1,593090058	10,8848673
0,261035	2,732808	40,54409	3,160493	1,53357302	10,255934
0,261916	2,733689	40,86889	3,185812	1,528095139	10,19990681
0,262797	2,73457	40,42945	3,151557	1,535499248	10,27570831
0,263678	2,735451	41,01059	3,196858	1,525695842	10,17546354
0,264559	2,736332	40,74152	3,175883	1,5302469	10,2218782
0,26544	2,737213	40,44378	3,152674	1,53525868	10,2732366
0,266354	2,738127	40,88959	3,187425	1,527745042	10,19633648
0,267235	2,739008	40,71764	3,174021	1,530649849	10,22599793
0,268116	2,739889	40,42149	3,150936	1,535632879	10,27708155
0,268997	2,74077	41,07269	3,201698	1,524642641	10,16475238
0,269878	2,741651	40,61733	3,166202	1,532340423	10,24330036
0,270759	2,742532	40,52658	3,159128	1,533867548	10,25895511
0,27164	2,743413	41,11409	3,204925	1,523939902	10,15761171
0,272537	2,74431	40,63644	3,167691	1,532018628	10,24000464
0,273418	2,745191	40,59504	3,164464	1,532715732	10,24714548
0,274299	2,746072	41,10135	3,203932	1,524156178	10,1598088
0,27518	2,746953	40,52976	3,159376	1,53381401	10,25840588
0,276061	2,747834	40,85138	3,184447	1,528391284	10,20292791
0,276942	2,748715	41,0711	3,201574	1,524669657	10,16502699
0,277823	2,749596	40,47403	3,155032	1,534750611	10,26801841
0,278737	2,75051	40,73197	3,175138	1,530408096	10,22352606
0,279618	2,751391	41,09657	3,20356	1,52423728	10,16063282
0,280499	2,752272	40,49314	3,156521	1,534429574	10,26472252
0,28138	2,753153	40,90392	3,188542	1,527502585	10,1938646
0,282261	2,754034	41,009	3,196734	1,52572283	10,17573816
0,283142	2,754915	40,43582	3,152053	1,535392344	10,27460985
0,284023	2,755796	40,98353	3,194748	1,526154582	10,1801325
0,284921	2,756694	40,95009	3,192142	1,526720958	10,18589992
0,285802	2,757575	40,41512	3,15044	1,535739774	10,27818018
0,286683	2,758456	40,888	3,187301	1,527771974	10,19661109
0,287563	2,759336	40,74789	3,176379	1,530139432	10,22077974
0,288444	2,760217	40,43105	3,151681	1,535472523	10,27543369
0,289325	2,761098	41,05836	3,200581	1,524885792	10,16722425
0,290206	2,761979	40,55842	3,16161	1,533331989	10,2534623
0,291121	2,762894	42,79542	3,335988	1,494972026	9,867588244
0,292002	2,763775	45,45752	3,543505	1,447317821	9,408384563
0,292883	2,764656	45,16775	3,520916	1,452616571	9,458369551
0,293764	2,765537	45,10884	3,516324	1,45369038	9,46853149
0,294645	2,766418	45,6852	3,561253	1,443134723	9,36911057

0.00==0.0	2.767200	45.00604	2 525252	4 454067004	
0,295526	2,767299	45,23621	3,526253	1,451367201	9,446559926
0,296407	2,76818	45,33015	3,533576	1,449650398	9,430355954
0,297321	2,769094	45,67087	3,560136	1,443398502	9,371582271
0,298202	2,769975	45,19322	3,522902	1,452151883	9,453975377
0,299083	2,770856	45,26646	3,528611	1,450814658	9,441341736
0,299964	2,771737	45,74093	3,565597	1,442108215	9,359498032
0,300845	2,772618	45,20596	3,523895	1,451919439	9,451778117
0,301726	2,773499	45,41612	3,540278	1,448076501	9,415525226
0,302607	2,77438	45,70908	3,563114	1,442694912	9,364990837
0,303521	2,775294	45,2187	3,524888	1,45168696	9,449581029
0,304402	2,776175	45,38428	3,537795	1,448659727	9,421018203
0,305283	2,777056	45,72182	3,564107	1,442460278	9,362793749
0,306164	2,777937	45,09928	3,515579	1,4538644	9,470179349
0,307045	2,778818	45,46548	3,544125	1,447171851	9,407011319
0,307926	2,779699	45,58012	3,553061	1,445067557	9,387237015
0,308807	2,78058	45,04674	3,511484	1,454820961	9,479242485
0,309721	2,781494	45,59126	3,55393	1,44486274	9,385314542
0,310602	2,782375	45,65654	3,559019	1,44366223	9,374054146
0,311483	2,783256	45,06107	3,512601	1,454560178	9,476770783
0,312364	2,784137	45,60718	3,555171	1,44457006	9,382568053
0,313245	2,785018	45,46389	3,544001	1,447201043	9,407285933
0,314126	2,785899	45,01808	3,50925	1,455342341	9,484186061
0,315007	2,78678	45,5642	3,55182	1,445360073	9,389983331
0,315921	2,787694	45,53713	3,54971	1,445857177	9,394652293
0,316802	2,788575	45,02445	3,509746	1,455226515	9,483087604
0,317683	2,789456	45,52917	3,54909	1,446003339	9,396025537
0,318564	2,790337	45,30786	3,531838	1,450058053	9,434201073
0,319445	2,791218	45,06585	3,512973	1,454473223	9,475946768
0,320326	2,792099	45,68839	3,561501	1,443076082	9,368561168
0,321207	2,79298	45,21551	3,52464	1,45174508	9,450130258
0,322121	2,793894	47,7598	3,722972	1,404190364	9,01125011
0,323002	2,794775	49,80414	3,882332	1,364270527	8,658608012
0,323883	2,795656	49,59397	3,865949	1,368448725	8,694861075
0,324764	2,796537	49,46023	3,855524	1,371098505	8,717931097
0,325645	2,797418	50,02545	3,899584	1,359851829	8,620432649
0,326526	2,798299	49,44431	3,854283	1,371413475	8,720677413
0,327407	2,79918	49,69906	3,874141	1,366361798	8,676734458
0,328321	2,800094	49,9745	3,895612	1,360870809	8,629221171
0,329202	2,800975	49,60193	3,86657	1,368290775	8,693487831
0,330083	2,801856	49,5892	3,865577	1,368543471	8,695684918
0,330964	2,802737	50,04137	3,900825	1,359533177	8,61768616
0,331845	2,803618	49,43157	3,85329	1,371665403	8,722874673
0,332726	2,804499	49,80255	3,882208	1,364302242	8,658882627
0,333607	2,80538	49,98724	3,896605	1,360616167	8,627024084
0,334521	2,806294	49,54302	3,861978	1,369458986	8,703649597
0,335402	2,807175	49,72453	3,876127	1,365855238	8,672340283
-					

0.226202	2 000056	FO 04127	2 000025	1 250522177	0.64760646
0,336283	2,808056	50,04137	3,900825	1,359533177	8,61768616
0,337164	2,808937	49,38062	3,849318	1,372672421	8,731663195
0,338045	2,809818	49,88375	3,888538	1,36268332	8,644875915
0,338926	2,810699	49,86464	3,887049	1,363064481	8,648171632
0,339807	2,81158	49,32808	3,845223	1,373709865	8,740726503
0,340721	2,812494	49,76274	3,879105	1,365094896	8,665748848
0,341602	2,813375	49,9554	3,894123	1,361252661	8,632516888
0,342483	2,814256	49,37903	3,849194	1,372703871	8,731937809
0,343364	2,815137	49,84713	3,885683	1,363413755	8,651192735
0,344245	2,816018	49,70224	3,874389	1,366298497	8,676185229
0,345126	2,816899	49,33604	3,845843	1,373552744	8,739353259
0,346007	2,81778	49,9745	3,895612	1,360870809	8,629221171
0,346921	2,818694	49,85031	3,885932	1,363350247	8,650643334
0,347802	2,819575	49,33127	3,845471	1,373647008	8,740177102
0,348683	2,820456	49,92833	3,892013	1,361793373	8,63718585
0,349564	2,821337	49,66085	3,871162	1,367121177	8,683325892
0,350445	2,822218	49,3647	3,848077	1,372986915	8,734409683
0,351326	2,823099	49,93151	3,892261	1,361729782	8,636636621
0,352207	2,82398	49,53029	3,860985	1,369711387	8,705846685
0,353088	2,824861	50,32478	3,922917	1,353844211	8,56879963
0,353969	2,825742	53,7973	4,193607	1,281376255	7,969802405
0,35485	2,826623	53,46135	4,167419	1,288621124	8,027752245
0,355731	2,827504	53,78615	4,192738	1,281617445	7,971724878
0,356612	2,828385	54,03931	4,212472	1,276124505	7,92805671
0,357494	2,829267	53,4518	4,166674	1,288826373	8,029400103
0,358375	2,830148	53,80207	4,193979	1,281272879	7,968978562
0,359255	2,831028	53,87054	4,199316	1,27978983	7,957168937
0,360153	2,831926	53,40244	4,162827	1,289886153	8,037914011
0,361034	2,832807	54,0202	4,210983	1,276540122	7,931352427
0,361915	2,833688	53,79571	4,193483	1,281410711	7,970077019
0,362796	2,834569	53,369	4,160221	1,290603444	8,043681602
0,363677	2,83545	53,89283	4,201054	1,279306486	7,953323818
0,364558	2,836331	53,55051	4,17437	1,286703416	8,012372115
0,365439	2,837212	53,43588	4,165433	1,289168347	8,032146419
0,366337	2,83811	53,98358	4,208128	1,277336241	7,937669247
0,367218	2,838991	53,58076	4,176728	1,286051937	8,007153925
0,368099	2,839872	53,50593	4,170894	1,28766273	8,02006218
0,368979	2,840752	54,0616	4,21421	1,275639386	7,924211591
0,36986	2,841633	53,53459	4,173128	1,287046138	8,015118604
0,370741	2,842514	53,68585	4,184919	1,28378559	7,98902748
0,371622	2,843395	54,0807	4,215699	1,275223395	7,920915874
0,37252	2,844293	53,5537	4,174618	1,286634866	8,011822887
0,373401	2,845174	53,78456	4,192614	1,281651915	7,971999665
0,374282	2,846055	54,0616	4,21421	1,275639386	7,924211591
0,375162	2,846935	53,49319	4,169901	1,287936641	8,022259267
0,376044	2,847817	53,95492	4,205894	1,277958847	7,942612823
	·				

0,376925 2,848698 53,91034 4,20219 1,27892656 7,950302715 0,377806 2,849579 53,39607 4,162331 1,290022825 8,039012641 0,37872 2,850493 53,84666 4,197454 1,280307413 7,961288497 0,380482 2,852255 53,44065 4,165806 1,289065774 8,031322576 0,381363 2,853136 53,96129 4,206391 1,277820516 7,941514193 0,38244 2,854017 53,76864 4,191373 1,281996351 7,974745981 0,384006 2,855779 54,27813 4,231089 1,270914647 7,8666071 0,384904 2,855677 57,28415 4,465414 1,202908113 7,368333478 0,385785 2,854988 57,35124 4,55112 1,205997037 7,39112885 0,385406 2,855438 57,7224 4,50316 1,191399174 7,2846890 0,385406 2,856431 57,35212 4,452112 1,20599737 7,39112885 0,38542 2,861081						
0,37872 2,850493 53,84666 4,197454 1,280307413 7,961288497 0,379601 2,851374 53,99473 4,208997 1,277093994 7,935746602 0,380482 2,852255 53,44065 4,165806 1,289065774 8,031322576 0,381363 2,8513136 53,96129 4,206991 1,277820516 7,941514193 0,38244 2,854017 53,76864 4,191373 1,281996351 7,94745981 0,384906 2,855779 54,27813 4,231089 1,277914647 7,868680071 0,384904 2,856677 57,28415 4,465112 1,205997037 7,39112885 0,385785 2,858338 57,7529 4,455112 1,205997037 7,39112885 0,388427 2,8602 57,29688 4,466407 1,202609865 7,36138016 0,389108 2,861081 57,8621 4,510467 1,189285476 7,268637943 0,39104 2,865877 57,26388 4,46169 1,204025691 7,37657271 0,39162 2,864039	0,376925	2,848698	53,91034	4,202419	1,27892656	7,950302715
0,379601 2,851374 53,99473 4,208997 1,277093994 7,935746602 0,380482 2,852255 53,44065 4,165806 1,289065774 8,031322576 0,381363 2,853136 53,96129 4,206391 1,277820516 7,941514193 0,382244 2,854017 53,76864 4,191373 1,281996351 7,974745981 0,383125 2,854898 53,38015 4,161089 1,29036439 8,041758957 0,384904 2,856775 57,28415 4,465414 1,202908113 7,368333478 0,385785 2,857558 57,152 4,455112 1,20599037 7,39112885 0,386665 2,858438 57,77294 4,503516 1,191399174 7,2840179 0,387566 2,859319 57,38127 4,472985 1,200631825 7,351580105 0,389308 2,861081 57,8621 4,510467 1,189285476 7,26863793 0,39194 2,86792 57,84141 4,60697 1,201154721 7,355425223 0,39194 2,867252	0,377806	2,849579	53,39607	4,162331	1,290022825	8,039012641
0,380482 2,852255 53,44065 4,165806 1,289065774 8,031322576 0,381363 2,853136 53,96129 4,206391 1,277820516 7,941514193 0,382244 2,854017 53,76864 4,191373 1,281996351 7,974745981 0,384006 2,855779 54,27813 4,231089 1,270914647 7,886860071 0,384006 2,855759 57,28415 4,465414 1,02098113 7,388333478 0,385785 2,857558 57,152 4,455112 1,205997037 7,39112885 0,386665 2,858438 57,7294 4,503516 1,191399174 7,2840179 0,387546 2,859319 57,38127 4,472985 1,20063865 7,361128810 0,389308 2,861962 57,35888 4,471247 1,201697865 7,366136218 0,393104 2,862975 57,84141 4,508853 1,189276552 7,376572771 0,3934628 2,866401 57,87066 4,511087 1,189096531 7,376572771 0,397287 2,869126		2,850493	53,84666	4,197454	1,280307413	7,961288497
0,381363 2,853136 53,96129 4,206391 1,277820516 7,941514193 0,382124 2,854017 53,76864 4,191373 1,281996351 7,974745981 0,383125 2,854898 53,38015 4,161089 1,29036439 8,041758957 0,384006 2,855779 54,27813 4,231089 1,270914647 7,886860071 0,384904 2,856677 57,28415 4,465414 1,202998113 7,363333478 0,386665 2,858438 57,77294 4,503516 1,191399174 7,2840179 0,38746 2,859319 57,38127 4,472985 1,200631825 7,36136218 0,388427 2,8602 57,29688 4,466407 1,20260985 7,366136218 0,389308 2,86102 57,35898 4,471247 1,201154721 7,355425223 0,391940 2,862875 57,84141 4,508853 1,18928546 7,26637943 0,391942 2,863757 57,84141 4,508853 1,18906531 7,376572771 0,391945 2,866401	0,379601	2,851374	53,99473	4,208997	1,277093994	7,935746602
0,382244 2,854017 53,76864 4,191373 1,281996351 7,974745981 0,384125 2,858898 53,38015 4,161089 1,29036439 8,041758957 0,384906 2,855677 54,27813 4,231089 1,270914647 7,886860071 0,385785 2,856775 57,28415 4,465414 1,202908113 7,368333478 0,385786 2,859319 57,38127 4,472985 1,200631825 7,351580105 0,388746 2,859319 57,38127 4,472985 1,200631825 7,351580105 0,389308 2,861081 57,86211 4,510467 1,189285476 7,266837943 0,390189 2,861962 57,35898 4,471247 1,201154721 7,355425223 0,391104 2,862877 57,23638 4,46169 1,204025691 7,376572771 0,392866 2,864639 57,34141 4,508853 1,189776552 0,3934628 2,866401 57,87046 4,511087 1,189096531 0,3937287 2,869945 57,26823 4,461194 <th>0,380482</th> <th>2,852255</th> <th>53,44065</th> <th>4,165806</th> <th>1,289065774</th> <th>8,031322576</th>	0,380482	2,852255	53,44065	4,165806	1,289065774	8,031322576
0,383125 2,854898 53,38015 4,161089 1,29036439 8,041758957 0,384904 2,855677 54,27813 4,231089 1,270914647 7,886860071 0,384904 2,855675 57,28415 4,465112 1,202908113 7,368333478 0,385785 2,857558 57,152 4,455112 1,205997037 7,39112885 0,386665 2,858438 57,77294 4,503516 1,191399174 7,2840179 0,387546 2,859319 57,38127 4,472985 1,200631825 7,351580105 0,389308 2,861081 57,86288 4,466407 1,20260865 7,366136218 0,399104 2,862877 57,23638 4,471247 1,201154721 7,355425223 0,391404 2,862877 57,23638 4,46169 1,204025691 7,376572771 0,394286 2,864639 57,34147 4,467772 1,202199671 0,394628 2,866401 57,87006 4,511087 1,189096531 0,394628 2,866401 57,87006 4,511087 1,189096531 0,3	0,381363	2,853136	53,96129	4,206391	1,277820516	7,941514193
0,384006 2,855779 54,27813 4,231089 1,270914647 7,886860071 0,384904 2,856757 57,28415 4,465414 1,202908113 7,368333478 0,385785 2,857558 57,152 4,455112 1,205997037 7,391128885 0,386665 2,858438 57,77294 4,503516 1,191399174 7,2840179 0,387546 2,859319 57,38127 4,472985 1,200631825 7,366136218 0,389308 2,861081 57,8621 4,510467 1,189285476 7,268637943 0,391980 2,861962 57,35888 4,471247 1,201154721 7,355425223 0,391984 2,863757 57,28638 4,46169 1,204025691 7,376572771 0,391984 2,863757 57,84141 4,508853 1,189776552 0,394628 2,866403 57,3414 4,467772 1,202199671 0,395509 2,867162 57,56437 4,487258 1,19632636 0,397287 2,86906 57,87006 4,511087 1,189096531 <th>0,382244</th> <th>2,854017</th> <th>53,76864</th> <th>4,191373</th> <th>1,281996351</th> <th>7,974745981</th>	0,382244	2,854017	53,76864	4,191373	1,281996351	7,974745981
0,384904 2,856677 57,28415 4,465414 1,202908113 7,368333478 0,385785 2,857558 57,152 4,455112 1,205997037 7,391128885 0,386665 2,858438 57,77294 4,503516 1,191399174 7,2840179 0,387546 2,859319 57,38127 4,472985 1,2006031825 7,351580105 0,388427 2,8602 57,29688 4,466407 1,202609865 7,366136218 0,389308 2,861962 57,35898 4,471247 1,201154721 7,355425223 0,391984 2,863757 57,34414 4,508853 1,189776552 7,376572771 0,392866 2,864639 57,3414 4,467772 1,202199671 0,393747 2,86552 57,4417 4,477701 1,199211206 0,3936389 2,866401 57,87006 4,511087 1,189096531 0,395509 2,867822 57,25001 4,461194 1,204174592 0,397287 2,86906 57,87066 4,95183 1,19932366 0,3993	0,383125	2,854898		4,161089	1,29036439	8,041758957
0,385785 2,857558 57,152 4,455112 1,205997037 7,391128885 0,386665 2,858438 57,77294 4,503516 1,191399174 7,2840179 0,387546 2,859319 57,38127 4,47285 1,200631825 7,351580105 0,388427 2,8602 57,2688 4,466407 1,202609865 7,36613621 0,389308 2,861081 57,8621 4,510467 1,189285476 7,268637943 0,390189 2,861962 57,35898 4,471247 1,201154721 7,355425223 0,391104 2,862877 57,23638 4,46169 1,204025691 7,376572771 0,39184 2,863757 57,84141 4,508853 1,189776552 7,376572771 0,394628 2,866401 57,87006 4,511087 1,189096531 7,376572771 0,394628 2,868162 57,56437 4,487258 1,19632636 7,4776552 0,397287 2,86906 57,87006 4,511087 1,189096531 7,479344 0,399049 2,870822 <th< th=""><th>0,384006</th><th>2,855779</th><th>54,27813</th><th>4,231089</th><th>1,270914647</th><th>7,886860071</th></th<>	0,384006	2,855779	54,27813	4,231089	1,270914647	7,886860071
0,386665 2,858438 57,77294 4,503516 1,191399174 7,2840179 0,387546 2,859319 57,38127 4,472985 1,200631825 7,351580105 0,388427 2,8602 57,29688 4,466407 1,202609865 7,366136218 0,389308 2,861962 57,35888 4,471247 1,201154721 7,355425223 0,391104 2,862877 57,23638 4,46169 1,204025691 7,376572771 0,391984 2,863757 57,84141 4,508853 1,189776552 7,376572771 0,392866 2,864639 57,3144 4,467772 1,202199671 1,3736572771 0,393747 2,86552 57,4417 4,477701 1,199211206 1,363283 0,395899 2,866401 57,87006 4,511087 1,189096531 1,461194 0,396389 2,868162 57,56437 4,487258 1,19632636 1,3938168 0,397287 2,869961 57,6806 4,496318 1,1938346 1,4948621 0,399049 2,870822 5	0,384904	2,856677	57,28415	4,465414	1,202908113	7,368333478
0,387546 2,859319 57,38127 4,472985 1,200631825 7,351580105 0,388427 2,8602 57,29688 4,466407 1,202609865 7,366136218 0,389308 2,861981 57,8621 4,510467 1,189285476 7,268637943 0,390189 2,861962 57,35898 4,471247 1,201154721 7,355425223 0,391944 2,862877 57,23638 4,46169 1,204025691 7,376572771 0,39184 2,8636757 57,34141 4,508853 1,189776552 7 0,392866 2,864639 57,3144 4,467772 1,202199671 0,393747 2,86525 57,44177 4,477701 1,199211206 0,393638 2,867282 57,23001 4,461194 1,204174592 0,399387 2,869606 57,87006 4,511087 1,189096531 0,399388 2,871203 57,25823 4,462131 1,203280762 0,399393 2,871703 57,5543 4,962131 1,20318486 0,401692 2,873465	0,385785	2,857558	57,152	4,455112	1,205997037	7,391128885
0,388427 2,8602 57,29688 4,466407 1,202609865 7,366136218 0,389308 2,861961 57,8621 4,510467 1,189285476 7,268637943 0,390189 2,861962 57,35898 4,471247 1,201154721 7,355425223 0,391104 2,862877 57,23638 4,46169 1,204025691 7,376572771 0,39186 2,864639 57,31441 4,0687772 1,202199671 0,393747 2,86552 57,44177 4,47701 1,199211206 0,393509 2,867282 57,23001 4,461194 1,204174592 0,396389 2,868162 57,56437 4,487258 1,19632636 0,397287 2,86904 57,26823 4,464173 1,203280762 0,399049 2,870822 57,6693 4,496131 1,19362136 0,399049 2,870825 57,6793 4,96194 1,193621296 0,401692 2,873465 57,679 4,496194 1,193621296 0,402572 2,874345 57,6223 4,481633	0,386665	2,858438	57,77294	4,503516	1,191399174	7,2840179
0,389308 2,861081 57,8621 4,510467 1,189285476 7,268637943 0,390189 2,861962 57,35898 4,471247 1,201154721 7,355425223 0,391104 2,862877 57,23638 4,46169 1,204025691 7,376572771 0,391984 2,863757 57,84141 4,508853 1,189776552 7,376572771 0,393747 2,865639 57,34147 4,477701 1,199211206 0,394628 2,866401 57,87006 4,511087 1,189096531 0,395509 2,867282 57,23001 4,461194 1,204174592 0,396389 2,868162 57,56437 4,487258 1,19632636 0,397287 2,86906 57,87006 4,511087 1,189096531 0,3998168 2,869941 57,26823 4,644173 1,203280762 0,399939 2,871703 57,5543 4,502151 1,191813846 0,400811 2,872845 57,19021 4,488091 1,205104835 0,401692 2,873465 57,679 4,496194 1,19	0,387546	2,859319	57,38127	4,472985	1,200631825	7,351580105
0,390189 2,861962 57,35898 4,471247 1,201154721 7,355425223 0,391104 2,862877 57,23638 4,46169 1,204025691 7,376572771 0,391984 2,863757 57,84141 4,508853 1,189776552 0,3932866 2,864639 57,3144 4,467772 1,202199671 0,393747 2,8656401 57,87006 4,511087 1,189096531 0,395509 2,867282 57,23001 4,461194 1,204174592 0,395389 2,868162 57,56437 4,487258 1,19632636 0,397287 2,86906 57,87006 4,511087 1,189096531 0,3993893 2,868162 57,56437 4,487258 1,199632636 0,399949 2,870822 57,6806 4,496318 1,193583678 0,39993 2,871703 57,75543 4,502151 1,191813846 0,400611 2,873465 57,679 4,496194 1,193621296 0,402572 2,874345 57,49272 4,481673 1,198013329	0,388427	2,8602	57,29688	4,466407	1,202609865	7,366136218
0,391104 2,862877 57,23638 4,46169 1,204025691 7,376572771 0,391984 2,863757 57,84141 4,508853 1,189776552 1,202199671 0,392866 2,864639 57,3144 4,467772 1,202199671 1,393747 0,393747 2,8656401 57,87006 4,511087 1,189096531 1,389096531 0,395509 2,867282 57,23001 4,461194 1,204174592 1,3963639 0,396389 2,868162 57,56437 4,487258 1,189096531 1,38909631 0,397287 2,86906 57,87006 4,511087 1,189096531 1,3893636 0,397287 2,86906 57,87006 4,511087 1,189096531 1,393280762 0,39949 2,870822 57,6806 4,496318 1,193183846 1,493280762 0,39993 2,871703 57,75543 4,502151 1,191813846 1,491813846 0,401692 2,873465 57,6792 4,496194 1,193621296 1,205104835 0,403487 2,87526	0,389308	2,861081	57,8621	4,510467	1,189285476	7,268637943
0,391984 2,863757 57,84141 4,508853 1,189776552 0,392866 2,864639 57,3144 4,467772 1,202199671 0,393747 2,86552 57,44177 4,477701 1,199211206 0,394628 2,866401 57,87006 4,511087 1,189096531 0,395509 2,867282 57,23001 4,461194 1,204174592 0,396389 2,868162 57,56437 4,487258 1,19632636 0,397287 2,86906 57,87006 4,511087 1,189096531 0,399188 2,869941 57,26823 4,464173 1,203280762 0,399049 2,870822 57,6806 4,496318 1,193583678 0,39993 2,871703 57,75543 4,502151 1,191813846 0,400811 2,872584 57,19021 4,458091 1,295104835 0,401692 2,873465 57,6979 4,496194 1,193621296 0,402572 2,874345 57,49272 4,481673 1,198013329 0,403487 2,87526 57,	0,390189	2,861962	57,35898	4,471247	1,201154721	7,355425223
0,392866 2,864639 57,3144 4,467772 1,202199671 0,393747 2,86552 57,44177 4,477701 1,199211206 0,394628 2,866401 57,87006 4,511087 1,189096531 0,395509 2,867282 57,23001 4,461194 1,204174592 0,396389 2,868162 57,56437 4,487258 1,19632636 0,397287 2,86906 57,87006 4,511087 1,189096531 0,398168 2,869941 57,26823 4,464173 1,203280762 0,39993 2,871703 57,75543 4,502151 1,191813846 0,400811 2,872584 57,19021 4,458091 1,205104835 0,401692 2,873465 57,679 4,496194 1,193621296 0,403487 2,87526 57,24434 4,462311 1,203839511 0,404368 2,876141 57,64238 4,493339 1,194486213 0,40613 2,877022 57,66099 4,490112 1,195463034 0,407011 2,8787685 57,	0,391104	2,862877	57,23638	4,46169	1,204025691	7,376572771
0,393747 2,86552 57,44177 4,477701 1,199211206 0,394628 2,866401 57,87006 4,511087 1,189096531 0,395509 2,867282 57,23001 4,461194 1,204174592 0,396389 2,868162 57,56437 4,487258 1,19632636 0,397287 2,86906 57,87006 4,511087 1,189096531 0,3991868 2,869941 57,26823 4,464173 1,203280762 0,39993 2,871032 57,6806 4,496318 1,193583678 0,39993 2,871703 57,75543 4,502151 1,191813846 0,400811 2,872584 57,19021 4,458091 1,205104835 0,401692 2,873465 57,679 4,496194 1,193621296 0,402572 2,874345 57,49272 4,481673 1,198013329 0,403487 2,87526 57,24434 4,462311 1,203839511 0,404368 2,876141 57,64238 4,493339 1,194486213 0,405249 2,877022 57,	0,391984	2,863757	57,84141	4,508853	1,189776552	
0,394628 2,866401 57,87006 4,511087 1,189096531 0,395509 2,867282 57,23001 4,461194 1,204174592 0,396389 2,868162 57,56437 4,487258 1,19632636 0,397287 2,86906 57,87006 4,511087 1,189096531 0,39948 2,869941 57,26823 4,464173 1,203280762 0,399049 2,870822 57,6806 4,496318 1,193583678 0,39993 2,871703 57,75543 4,502151 1,191813846 0,400811 2,872584 57,19021 4,458091 1,205104835 0,401692 2,873465 57,679 4,496194 1,193621296 0,402572 2,874345 57,6792 4,481673 1,198013329 0,403487 2,87526 57,24434 4,462311 1,203839511 0,404368 2,876141 57,64238 4,493339 1,194486213 0,40613 2,877902 57,6009 4,492843 1,194636565 0,407892 2,879665 57,513	0,392866	2,864639	57,3144	4,467772	1,202199671	
0,395509 2,867282 57,23001 4,461194 1,204174592 0,396389 2,868162 57,56437 4,487258 1,19632636 0,397287 2,86906 57,87006 4,511087 1,189096531 0,398168 2,869941 57,26823 4,464173 1,203280762 0,39993 2,871703 57,75543 4,502151 1,191813846 0,400811 2,872584 57,19021 4,458091 1,205104835 0,401692 2,873465 57,679 4,496194 1,193621296 0,402572 2,874345 57,49272 4,481673 1,198013329 0,403487 2,87526 57,24434 4,462311 1,203839511 0,404368 2,876141 57,64238 4,493339 1,194486213 0,405249 2,877022 57,66099 4,490112 1,195463034 0,407011 2,878784 57,63602 4,492843 1,194636565 0,407892 2,879665 57,51342 4,483286 1,197526259 0,408773 2,880546 5	0,393747	2,86552	57,44177	4,477701	1,199211206	
0,396389 2,868162 57,56437 4,487258 1,19632636 0,397287 2,86906 57,87006 4,511087 1,189096531 0,398168 2,869941 57,26823 4,464173 1,203280762 0,399049 2,870822 57,6806 4,496318 1,193583678 0,39993 2,871703 57,75543 4,502151 1,191813846 0,400811 2,872584 57,19021 4,458091 1,205104835 0,401692 2,873465 57,679 4,496194 1,193621296 0,402572 2,874345 57,6792 4,481673 1,198013329 0,403487 2,87526 57,24434 4,462311 1,203839511 0,403488 2,876141 57,64238 4,493339 1,194486213 0,405249 2,877022 57,60099 4,490112 1,195463034 0,40613 2,878784 57,63602 4,492843 1,194636565 0,407892 2,879665 57,51342 4,483286 1,197526259 0,409687 2,88146 57,64	0,394628	2,866401	57,87006	4,511087	1,189096531	
0,397287 2,86906 57,87006 4,511087 1,189096531 0,398168 2,869941 57,26823 4,464173 1,203280762 0,399049 2,870822 57,6806 4,496318 1,193583678 0,39993 2,871703 57,75543 4,502151 1,191813846 0,400811 2,872584 57,19021 4,458091 1,205104835 0,401692 2,873465 57,679 4,496194 1,193621296 0,402572 2,874345 57,49272 4,481673 1,198013329 0,403487 2,87526 57,24434 4,462311 1,203839511 0,403487 2,87526 57,24434 4,462311 1,203839511 0,40368 2,876141 57,64238 4,493339 1,194486213 0,40613 2,877903 57,16633 4,456229 1,205662543 0,407011 2,878784 57,63602 4,492843 1,197526259 0,408773 2,880546 57,20295 4,459084 1,204807242 0,410568 2,88140 57,47	0,395509	2,867282	57,23001	4,461194	1,204174592	
0,398168 2,869941 57,26823 4,464173 1,203280762 0,399049 2,870822 57,6806 4,496318 1,193583678 0,39993 2,871703 57,75543 4,502151 1,191813846 0,400811 2,872584 57,19021 4,458091 1,205104835 0,401692 2,873465 57,679 4,496194 1,193621296 0,402572 2,874345 57,49272 4,481673 1,198013329 0,403487 2,87526 57,24434 4,462311 1,203839511 0,404368 2,876141 57,64238 4,493339 1,194486213 0,405249 2,877022 57,60099 4,490112 1,195463034 0,40613 2,877903 57,16633 4,456229 1,205662543 0,407892 2,879665 57,51342 4,483286 1,197526259 0,408773 2,880546 57,20295 4,459084 1,204807242 0,410568 2,8812341 57,47998 4,48068 1,198312927 0,411449 2,883222 5	0,396389	2,868162	57,56437	4,487258	1,19632636	
0,399049 2,870822 57,6806 4,496318 1,193583678 0,39993 2,871703 57,75543 4,502151 1,191813846 0,400811 2,872584 57,19021 4,458091 1,205104835 0,401692 2,873465 57,679 4,496194 1,193621296 0,402572 2,874345 57,49272 4,481673 1,198013329 0,403487 2,87526 57,24434 4,462311 1,203839511 0,404368 2,876141 57,64238 4,493339 1,194486213 0,405249 2,877022 57,60099 4,490112 1,195463034 0,40613 2,877903 57,16633 4,456229 1,205662543 0,407011 2,878784 57,63602 4,492843 1,194636565 0,407892 2,879665 57,51342 4,483286 1,197526259 0,408773 2,88146 57,64238 4,493339 1,194486213 0,410568 2,882341 57,47998 4,48068 1,198312927 0,411449 2,883222 57,	0,397287	2,86906	57,87006	4,511087	1,189096531	
0,39993 2,871703 57,75543 4,502151 1,191813846 0,400811 2,872584 57,19021 4,458091 1,205104835 0,401692 2,873465 57,679 4,496194 1,193621296 0,402572 2,874345 57,49272 4,481673 1,198013329 0,403487 2,87526 57,24434 4,462311 1,203839511 0,404368 2,876141 57,64238 4,493339 1,194486213 0,405249 2,877022 57,60099 4,490112 1,195463034 0,40613 2,877903 57,16633 4,456229 1,205662543 0,4077011 2,878784 57,63602 4,492843 1,194636565 0,407892 2,879665 57,51342 4,483286 1,197526259 0,408773 2,880546 57,62295 4,459084 1,204807242 0,410568 2,88146 57,47998 4,48068 1,198312927 0,411449 2,883222 57,16473 4,456105 1,205699709 0,41233 2,884984 57	0,398168	2,869941	57,26823	4,464173	1,203280762	
0,400811 2,872584 57,19021 4,458091 1,205104835 0,401692 2,873465 57,679 4,496194 1,193621296 0,402572 2,874345 57,49272 4,481673 1,198013329 0,403487 2,87526 57,24434 4,462311 1,203839511 0,404368 2,876141 57,64238 4,493339 1,194486213 0,405249 2,877022 57,60099 4,490112 1,195463034 0,40613 2,877903 57,16633 4,456229 1,205662543 0,407011 2,878784 57,63602 4,492843 1,194636565 0,407892 2,879665 57,51342 4,483286 1,197526259 0,408773 2,880546 57,20295 4,459084 1,204807242 0,410568 2,882341 57,47998 4,48068 1,198312927 0,411449 2,883222 57,16473 4,456105 1,205699709 0,41233 2,884984 57,33828 4,469634 1,201640005 0,414092 2,885865 5	0,399049	2,870822	57,6806	4,496318	1,193583678	
0,401692 2,873465 57,679 4,496194 1,193621296 0,402572 2,874345 57,49272 4,481673 1,198013329 0,403487 2,87526 57,24434 4,462311 1,203839511 0,404368 2,876141 57,64238 4,493339 1,194486213 0,405249 2,877022 57,60099 4,490112 1,195463034 0,40613 2,877903 57,16633 4,456229 1,205662543 0,407011 2,878784 57,63602 4,492843 1,194636565 0,407892 2,879665 57,51342 4,483286 1,197526259 0,408773 2,880546 57,20295 4,459084 1,204807242 0,409687 2,88146 57,64238 4,493339 1,194486213 0,410568 2,882341 57,47998 4,48068 1,198312927 0,411449 2,883222 57,16473 4,456105 1,205699709 0,41233 2,884984 57,33828 4,469634 1,201640005 0,414092 2,885865 57	0,39993	2,871703	57,75543	4,502151	1,191813846	
0,402572 2,874345 57,49272 4,481673 1,198013329 0,403487 2,87526 57,24434 4,462311 1,203839511 0,404368 2,876141 57,64238 4,493339 1,194486213 0,405249 2,877022 57,60099 4,490112 1,195463034 0,40613 2,877903 57,16633 4,456229 1,205662543 0,407011 2,878784 57,63602 4,492843 1,194636565 0,407892 2,879665 57,51342 4,483286 1,197526259 0,408773 2,880546 57,20295 4,459084 1,204807242 0,409687 2,88146 57,64238 4,493339 1,194486213 0,410568 2,882341 57,47998 4,48068 1,198312927 0,411449 2,883222 57,16473 4,456105 1,205699709 0,41233 2,884103 57,74588 4,501406 1,192039956 0,413211 2,884984 57,33828 4,469634 1,201640005 0,414092 2,885865 57,31599 4,467896 1,202162351 0,415887 2,88766<	0,400811	2,872584	57,19021	4,458091	1,205104835	
0,403487 2,87526 57,24434 4,462311 1,203839511 0,404368 2,876141 57,64238 4,493339 1,194486213 0,405249 2,877022 57,60099 4,490112 1,195463034 0,40613 2,877903 57,16633 4,456229 1,205662543 0,407011 2,878784 57,63602 4,492843 1,194636565 0,407892 2,879665 57,51342 4,483286 1,197526259 0,408773 2,880546 57,20295 4,459084 1,204807242 0,409687 2,88146 57,64238 4,493339 1,194486213 0,410568 2,882341 57,47998 4,48068 1,198312927 0,411449 2,883222 57,16473 4,456105 1,205699709 0,41233 2,884103 57,74588 4,501406 1,192039956 0,413211 2,884984 57,33828 4,469634 1,201640005 0,414092 2,885865 57,31599 4,467896 1,202162351 0,415887 2,88766 5	0,401692	2,873465	57,679	4,496194	1,193621296	
0,404368 2,876141 57,64238 4,493339 1,194486213 0,405249 2,877022 57,60099 4,490112 1,195463034 0,40613 2,877903 57,16633 4,456229 1,205662543 0,407011 2,878784 57,63602 4,492843 1,194636565 0,407892 2,879665 57,51342 4,483286 1,197526259 0,408773 2,880546 57,20295 4,459084 1,204807242 0,409687 2,88146 57,64238 4,493339 1,194486213 0,410568 2,882341 57,47998 4,48068 1,198312927 0,411449 2,883222 57,16473 4,456105 1,205699709 0,41233 2,884103 57,74588 4,501406 1,192039956 0,413211 2,884984 57,33828 4,469634 1,201640005 0,414973 2,88565 57,31599 4,467896 1,202162351 0,415887 2,88766 59,66762 4,65121 1,145492544	0,402572	2,874345	57,49272	4,481673	1,198013329	
0,405249 2,877022 57,60099 4,490112 1,195463034 0,40613 2,877903 57,16633 4,456229 1,205662543 0,407011 2,878784 57,63602 4,492843 1,194636565 0,407892 2,879665 57,51342 4,483286 1,197526259 0,408773 2,880546 57,20295 4,459084 1,204807242 0,409687 2,88146 57,64238 4,493339 1,194486213 0,410568 2,882341 57,47998 4,48068 1,198312927 0,411449 2,883222 57,16473 4,456105 1,205699709 0,41233 2,884103 57,74588 4,501406 1,192039956 0,413211 2,884984 57,33828 4,469634 1,201640005 0,414092 2,885865 57,31599 4,467896 1,202162351 0,415887 2,88766 59,66762 4,65121 1,145492544	0,403487	2,87526	57,24434	4,462311	1,203839511	
0,40613 2,877903 57,16633 4,456229 1,205662543 0,407011 2,878784 57,63602 4,492843 1,194636565 0,407892 2,879665 57,51342 4,483286 1,197526259 0,408773 2,880546 57,20295 4,459084 1,204807242 0,409687 2,88146 57,64238 4,493339 1,194486213 0,410568 2,882341 57,47998 4,48068 1,198312927 0,411449 2,883222 57,16473 4,456105 1,205699709 0,41233 2,884103 57,74588 4,501406 1,192039956 0,413211 2,884984 57,33828 4,469634 1,201640005 0,414092 2,885865 57,31599 4,467896 1,202162351 0,415887 2,88766 59,66762 4,65121 1,145492544	0,404368	2,876141	57,64238	4,493339	1,194486213	
0,407011 2,878784 57,63602 4,492843 1,194636565 0,407892 2,879665 57,51342 4,483286 1,197526259 0,408773 2,880546 57,20295 4,459084 1,204807242 0,409687 2,88146 57,64238 4,493339 1,194486213 0,410568 2,882341 57,47998 4,48068 1,198312927 0,411449 2,883222 57,16473 4,456105 1,205699709 0,41233 2,884103 57,74588 4,501406 1,192039956 0,413211 2,884984 57,33828 4,469634 1,201640005 0,414092 2,885865 57,31599 4,467896 1,202162351 0,414973 2,88766 59,66762 4,65121 1,145492544	0,405249	2,877022	57,60099	4,490112	1,195463034	
0,407892 2,879665 57,51342 4,483286 1,197526259 0,408773 2,880546 57,20295 4,459084 1,204807242 0,409687 2,88146 57,64238 4,493339 1,194486213 0,410568 2,882341 57,47998 4,48068 1,198312927 0,411449 2,883222 57,16473 4,456105 1,205699709 0,41233 2,884103 57,74588 4,501406 1,192039956 0,413211 2,884984 57,33828 4,469634 1,201640005 0,414092 2,885865 57,31599 4,467896 1,202162351 0,414973 2,88766 59,66762 4,65121 1,145492544	0,40613	2,877903	57,16633	4,456229	1,205662543	
0,408773 2,880546 57,20295 4,459084 1,204807242 0,409687 2,88146 57,64238 4,493339 1,194486213 0,410568 2,882341 57,47998 4,48068 1,198312927 0,411449 2,883222 57,16473 4,456105 1,205699709 0,41233 2,884103 57,74588 4,501406 1,192039956 0,413211 2,884984 57,33828 4,469634 1,201640005 0,414092 2,885865 57,31599 4,467896 1,202162351 0,414973 2,886746 57,86051 4,510343 1,189323256 0,415887 2,88766 59,66762 4,65121 1,145492544	0,407011	2,878784	57,63602	4,492843	1,194636565	
0,409687 2,88146 57,64238 4,493339 1,194486213 0,410568 2,882341 57,47998 4,48068 1,198312927 0,411449 2,883222 57,16473 4,456105 1,205699709 0,41233 2,884103 57,74588 4,501406 1,192039956 0,413211 2,884984 57,33828 4,469634 1,201640005 0,414092 2,885865 57,31599 4,467896 1,202162351 0,414973 2,88766 57,86051 4,510343 1,189323256 0,415887 2,88766 59,66762 4,65121 1,145492544	0,407892	2,879665	57,51342	4,483286	1,197526259	
0,410568 2,882341 57,47998 4,48068 1,198312927 0,411449 2,883222 57,16473 4,456105 1,205699709 0,41233 2,884103 57,74588 4,501406 1,192039956 0,413211 2,884984 57,33828 4,469634 1,201640005 0,414092 2,885865 57,31599 4,467896 1,202162351 0,414973 2,886746 57,86051 4,510343 1,189323256 0,415887 2,88766 59,66762 4,65121 1,145492544	0,408773	2,880546	57,20295	4,459084	1,204807242	
0,411449 2,883222 57,16473 4,456105 1,205699709 0,41233 2,884103 57,74588 4,501406 1,192039956 0,413211 2,884984 57,33828 4,469634 1,201640005 0,414092 2,885865 57,31599 4,467896 1,202162351 0,414973 2,886746 57,86051 4,510343 1,189323256 0,415887 2,88766 59,66762 4,65121 1,145492544	0,409687	2,88146	57,64238	4,493339	1,194486213	
0,41233 2,884103 57,74588 4,501406 1,192039956 0,413211 2,884984 57,33828 4,469634 1,201640005 0,414092 2,885865 57,31599 4,467896 1,202162351 0,414973 2,886746 57,86051 4,510343 1,189323256 0,415887 2,88766 59,66762 4,65121 1,145492544	-	2,882341	57,47998	4,48068	1,198312927	
0,413211 2,884984 57,33828 4,469634 1,201640005 0,414092 2,885865 57,31599 4,467896 1,202162351 0,414973 2,886746 57,86051 4,510343 1,189323256 0,415887 2,88766 59,66762 4,65121 1,145492544	0,411449	2,883222	57,16473	4,456105	1,205699709	
0,414092 2,885865 57,31599 4,467896 1,202162351 0,414973 2,886746 57,86051 4,510343 1,189323256 0,415887 2,88766 59,66762 4,65121 1,145492544		2,884103	57,74588	4,501406	1,192039956	
0,414973 2,886746 57,86051 4,510343 1,189323256 0,415887 2,88766 59,66762 4,65121 1,145492544	-	2,884984	57,33828	4,469634	1,201640005	
0,415887 2,88766 59,66762 4,65121 1,145492544	0,414092	2,885865	57,31599	4,467896	1,202162351	
	0,414973	2,886746	57,86051	4,510343	1,189323256	
0,416768 2,888541 60,71049 4,732504 1,119295485	0,415887	2,88766	59,66762	4,65121	1,145492544	
	0,416768	2,888541	60,71049	4,732504	1,119295485	

0,417649	2,889422	61,37602	4,784383	1,102211327	
0,41853	2,890303	60,90951	4,748018	1,114217112	
0,419411	2,891184	61,0353	4,757823	1,11099421	
0,420292	2,892065	61,42538	4,788231	1,100932625	
0,421173	2,892946	60,8522	4,74355	1,115682328	
0,422087	2,89386	60,92384	4,749135	1,113850459	
0,422968	2,894741	61,43811	4,789224	1,100602379	
0,423849	2,895622	60,96683	4,752486	1,11274972	
0,42473	2,896503	61,1563	4,767256	1,107883875	
0,425611	2,897384	61,39194	4,785625	1,101799037	
0,426492	2,898265	60,79806	4,739331	1,117064158	
0,427373	2,899146	61,19451	4,770235	1,106899654	
0,428288	2,900061	61,43652	4,7891	1,100643662	
0,429168	2,900941	60,82354	4,741316	1,116414132	
0,430049	2,901822	61,14515	4,766387	1,108170779	
0,43093	2,902703	61,32029	4,780039	1,103653069	
0,431811	2,903584	60,74234	4,734987	1,11848466	
0,432692	2,904465	61,22954	4,772965	1,105996616	
0,433573	2,905346	61,08306	4,761547	1,109767605	
0,434488	2,906261	60,76781	4,736972	1,117835531	
0,435369	2,907142	61,22636	4,772717	1,106078737	
0,43625	2,908023	61,19929	4,770607	1,106776571	
0,43713	2,908903	60,71527	4,732877	1,119173893	
0,438011	2,909784	61,33144	4,780908	1,103364892	
0,438892	2,910665	60,97957	4,753479	1,112423354	
0,439773	2,911546	60,77577	4,737593	1,117632616	

Tabela 6: Dados usados para o gráfico da figura 16

T(min)	DO	X (mg X/L) experimental	X (mg X/L) malthus	X (mg X/L) euler	X (mg X/L) 3 pontos	X (mg X/L) polinomial
0	0,1744	206	206	206	206	206
10	0,2138	252	219,2087619	246,917537	238,5261477	238,574412
20	0,2273	268	232,9708499	292,157221	274,30713	275,344044
30	0,2409	284	247,2726378	340,8404571	313,1099091	316,5447622
40	0,2769	326	262,0956482	391,7275452	354,5426837	362,3314664
50	0,3186	375	277,4164097	443,3264895	398,0581317	412,7507083
94	0,3798	447	349,9118044	642,6070691	595,466368	683,9019487
104	0,4319	508	367,3045312	676,2613838	637,1736766	753,6671259
114	0,483	567	384,9316171	705,0468938	676,3071752	824,7153401
124	0,5282	620	402,7375275	729,2456972	712,456392	896,051691
134	0,5853	687	420,6643864	749,2945313	745,3700847	966,6650844
144	0,6585	773	438,6527134	765,7056341	774,9460938	1035,584875
154	0,7477	878	456,6422066	779,0067194	801,2102756	1101,932786
164	0,7885	925	474,5725487	789,7009257	824,2895379	1164,964403

174	0,8289	973	492,3842128	798,2437914	844,3834681	1224,096492
184	0,8833	1037	510,0192468	805,032939	861,7378857	1278,918861
194	0,9094	1067	527,4220131	810,4062648	876,6223292	1329,19177
199	0,9269	1088	536,0197099	812,6520009	883,2245639	1352,59054
204	0,9525	1118	544,5398645	814,6452188	889,3123252	1374,831681
209	0,9777	1147	552,9764612	816,4132526	894,9188663	1395,925492
214	0,978	1148	561,3237406	817,9807089	900,0764344	1415,888999