

The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A process for preparing tetrahydropterin of the following formula

or a tetrahydropterin compound of said tetrahydropterin that is substituted at the 6-, or 7- or 6- and 7- position or positions,

comprising hydrogenating pterin of the following formula

or a pterin compound of said pterin that is monosubstituted at the 6-, or 7- or 6- and 7- position or positions,

with hydrogen in a polar reaction medium in the presence of a hydrogenation catalyst that is a metal complex that is soluble in the reaction medium, wherein the catalyst contains a ligand which is (i) triarylphosphine, (ii) tetramethylene phenylphosphine (iii) pentamethylene

phenylphosphine, or (iv) a bidentate ligand with a tertiary amine group and a phosphine group or with two ditertiary tertiary diphosphine groups as complexing groups, wherein the bidentate ligands form together with a metal atom a five- to ten membered ring.

2. (Previously Presented) A process according to claim 1, wherein the polar reaction medium is an aqueous or alcoholic reaction medium.

3. (Previously Presented) A process according to claim 1, wherein the pterin compound is folic acid, a folic acid salt, a folic acid ester, a folic acid ester salt or a dihydro form thereof, with the proviso that in the event of using folic acid, a carboxylic acid thereof or a dihydro form thereof, the reaction medium is aqueous, and in the event of using a folic acid ester, a folic acid ester salt or a dihydro form thereof, the reaction medium is an alcohol.

4. (Previously Presented) A process according to claim 1, wherein the metal complex contains a chiral ligand.

5. (Previously Presented) A process according to claim 3, wherein the metal complex contains a chiral ligand.

6. (Previously Presented) A process according to claim 5, wherein the folic acid ester salt is of formula III and is in the form of a single enantiomer or a mixture of enantiomers of formula III,

in which

one of R₁ or R₂ is H, and the other one of R₁ or R₂ is a monovalent hydrocarbon radical or a hydrocarbon radical attached via a carbon atom in which one or more carbon atoms are each independently replaced by oxygen, sulfur, NH, -N=, or -N(C₁-C₄ Alkyl)-, or both R₁ and R₂ independently of one another represent a monovalent hydrocarbon radical or a hydrocarbon radical attached via a carbon atom in which one or more carbon atoms are each independently replaced by oxygen, sulfur, NH, -N=, or -N(C₁-C₄ Alkyl)-.

HA stands for a monobasic to tribasic inorganic or organic acid, and

x denotes an integer from 1 to 6 or a fractional number between 0 and 6.

7. (Previously Presented) A process according to claim 6, wherein HA is

unsubstituted or substituted phenylsulphonic acid.

8. (Previously Presented) A process according to claim 1, wherein said process is

carried out at a hydrogen pressure of 1 to 500 bars.

9. (Previously Presented) A process according to claim 1, wherein said process is

carried out at a temperature is 0 to 150° C.

10. (Previously Presented) A process according to claim 1, wherein the molar ratio of pterin or pterin compound to catalyst is 10 to 100,000.

11. (Previously Presented) A process according to claim 1, wherein the reaction medium is water or water in admixture with an organic solvent.

12. (Previously Presented) A process according to claim 2, wherein the alcoholic reaction medium is an alcohol, or an alcohol in admixture with an organic solvent.

13. (Previously Presented) A process according to claim 1, wherein the metal complex contains a d-8 metal.

14. (Currently Amended) A process for preparing tetrahydropterin of the following formula

or a tetrahydropterin compound of said tetrahydropterin that is substituted at the 6-, or 7- or 6- and 7- position or positions,

comprising hydrogenating pterin of the following formula

or a pterin compound of said pterin that is monosubstituted substituted at the 6-, or 7- or 6- and 7- position or positions,

with hydrogen in a polar reaction medium in the presence of a hydrogenation catalyst that is a metal complex that is soluble in the reaction medium, wherein the catalyst has a ligand that is an achiral or chiral ditertiary diphosphine, or a compound of the following formulae

wherein R₁₁₁ and R₁₁₂ are each independently H or methyl.

15. (Previously Presented) A process according to claim 14, wherein the reaction medium is an alcoholic reaction medium, and wherein in the ditertiary diphosphines the phosphine groups are attached (a) to various carbon atoms of a hydrocarbon chain having 2 to 4 carbon atoms, or (b) directly or via a bridging group $-CR_aR_b-$ in the ortho positions of a cyclopentadienyl ring or to a cyclopentadienyl ring of a ferrocenyl, wherein R_a and R_b are the same or different and stand for H, C₁-C₈ alkyl, C₁-C₄ fluoroalkyl, C₅-C₆ cycloalkyl, phenyl, benzyl, or phenyl or benzyl substituted with 1 to 3 C₁-C₄ alkyl or C₁-C₄ alkoxy.

16. (Previously Presented) A process according to claim 14, wherein the reaction medium is an alcoholic reaction medium, and the diphosphine is of formula IV,

in which

R₄, R₅, R₇ and R₈ independently of one another represent a hydrocarbon radical with 1 to 20 carbon atoms, which is unsubstituted or substituted with halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, (C₆H₅)₃Si, (C₁-C₁₂ alkyl)₃Si, -NH₂, -NH(C₁-C₁₂ alkyl), -NH(phenyl), -NH(benzyl), -N(C₁-C₁₂ alkyl)₂, -N(phenyl)₂, -N(benzyl)₂, morpholinyl, piperidinyl, pyrrolidinyl, piperazinyl, -ammonium-X₃⁻, -SO₃M₁, -CO₂M₁, -PO₃M₁, or -CO₂C₁-C₆ alkyl, in which M₁ represents an alkali metal or hydrogen and X₃⁻ is the anion of a monobasic acid; or R₄ and R₅, and/or R₇ and R₈ together denote tetramethylene, pentamethylene, or 3-oxa-pentane-1,5-diyl, which is unsubstituted or substituted with halogen, C₁-C₆ alkyl or C₁-C₆ alkoxy; and R₆ is C₂-C₄ alkylene, which is unsubstituted or substituted with C₁-C₆ alkyl, C₁-C₆

alkoxy, C₅ or C₆ cycloalkyl, phenyl, napthyl, or benzyl; 1,2 or 1,3-cycloalkylene, 1,2- or 1,3-cycloalkylenylene, 1,2- or 1,3-bicycloalkylene or 1,2- or 1,3-bicycloalkenylene with 4 to 10 carbon atoms, which is unsubstituted or substituted with C₁-C₆ alkyl, phenyl, or benzyl; 1,2- or 1,3-cycloalkylene, 1,2- or 1,3-cycloalkylene, 1,2- or 1,3-bicycloalkylene or 1,2- or 1,3-bicycloalkylene with 4 to 10 carbon atoms, which is unsubstituted or substituted with C₁-C₆ alkyl, phenyl, or benzyl, at whose 1 and/or 2 positions or at whose 3-position methylene or C₂-C₄ alkylidene is attached; 1,4-butylene substituted in the 2,3 positions with R₉R₁₀C(O-)₂, and which in the 1 and/or 4 positions is unsubstituted or substituted with C₁-C₆ alkyl, phenyl, or benzyl, and where R₉ and R₁₀ independently of one another represent hydrogen, C₁-C₆ alkyl, phenyl or benzyl; 3,4- or 2,4-pyrrolidinylene or methylene-4-pyrrolidine-4-yl whose nitrogen atom is substituted with hydrogen, C₁-C₁₂ alkyl, phenyl, benzyl, C₁-C₁₂ alkoxy carbonyl, C₁-C₈ acyl, C₁-C₁₂ alkylaminocarbonyl; or denotes 1,2-phenylene, 2-benzylene, 1,2-xylylene, 1,8-naphthylene, 2,2'-dinaphthylene or 2,2'-diphenylene, which is unsubstituted or substituted with halogen, -OH, C₁-C₆ alkyl, C₁-C₆ alkoxy, phenyl, benzyl, phenoxy or benzyloxy; or R₆ stands for a radical of the formulas

in which R₉ denotes hydrogen, C₁-C₈ alkyl, C₁-C₄ fluoroalkyl, unsubstituted phenyl or phenyl substituted with 1 to 3 F, Cl, Br, C₁-C₄ alkyl, C₁-C₄ alkoxy or fluoromethyl.

17. (Currently Amended) A process according to claim 14, wherein the reaction medium is an aqueous reaction medium, and the diphosphine contains one or more water-solubilising polar substituents, which are attached either ~~direct~~ directly or via a bridging group to substituents of the phosphine group, wherein the bridging group is of formula

wherein

X₅ is a direct bond, O, NH, Si(CH₃)₂, N(C₁-C₄-alkyl), NH-CO, N(C₁-C₄-alkyl)CO, CO-NH, CON(C₁-C₄-alkyl), NH-CO-O, N(C₁-C₄-alkyl)CO-O, O-CO-NH, O-CON(C₁-C₄-alkyl), NH-CO-NH, N(C₁-C₄-alkyl)CO-NH or N(C₁-C₄-alkyl)CO-N(C₁-C₄-alkyl), and

R_{41} is a divalent hydrocarbon radical with 1 to 40 carbon atoms.

18. (Currently Amended) A process according to claim 14, wherein the reaction medium is an aqueous reaction medium, and the diphosphine is of formula XLIII,

in which M_1 stands for H, an alkali metal cation or an ammonium cation, R_{42} denotes C_1-C_4 alkyl or H, and R_{41} is a monovalent radical of a chiral ditertiary diphosphine, with the CO group being attached direct to a carbon or nitrogen atom of the monovalent radical, or to an oxygen or nitrogen atom or to a carbon atom of a bridging group of the monovalent radical $\underline{R_{41}}$.

19. (Currently Amended) A process for preparing tetrahydropterin of the following formula

or a tetrahydropterin compound of said tetrahydropterin that is substituted at the 6-, or 7- or 6- and 7- position or positions,

comprising hydrogenating pterin of the following formula

or a pterin compound of said pterin that is monosubstituted substituted at the 6-, or 7- or 6- and 7- position or positions,

with hydrogen in a polar reaction medium in the presence of a hydrogenation catalyst that is a metal complex that is soluble in the reaction medium of formula XLIV, XLIVa or XLIVb,

in which

Y stands for monoolefin ligands or a diene ligand;

X_7 represents an achiral or chiral ditertiary diphosphine that forms a 5 to 7 membered ring with the metal atom Me_2 or Ru;

Me_2 denotes Ir(I) or Rh(I);

Z represents -Cl, -Br, or -I; and

A_2 is an anion of an oxy-acid, BF_4^- , $B(\text{Phenyl})_4^-$, PF_6^- , $SbCl_6^-$, AsF_6^- or SbF_6^- or complex acid;

X_8 and X_9 are the same or different and have the meaning of Z or A_2 , or X_8 has the meaning of Z or A_2 and X_9 stands for hydride.

20-28. (Cancelled)

29. (Currently Amended) A process for preparing tetrahydropterin of the following formula

or a tetrahydropterin compound of said tetrahydropterin that is substituted at the 6-, or 7- or 6- and 7- position or positions,

comprising hydrogenating pterin of the following formula

or a pterin compound of said pterin that is monosubstituted at the 6-, or 7- or 6- and 7- position or positions,

with hydrogen in alcohol or in alcohol in admixture with an organic solvent in the presence of a hydrogenation catalyst that is a metal complex that is soluble in the reaction medium.

30. (Currently Amended) A process for preparing tetrahydropterin of the following formula

or a tetrahydropterin compound of said tetrahydropterin that is substituted at the 6-, or 7- or 6- and 7- position or positions,

comprising hydrogenating pterin of the following formula

or a pterin compound of said pterin that is monosubstituted at the 6-, or 7- or 6- and 7- position or positions,

with hydrogen in a polar reaction medium in the presence of a hydrogenation catalyst that is a metal complex that is and contains an achiral or chiral ditertiary diphosphine.

31. (Currently Amended) A process for preparing tetrahydropterin of the following formula

or a tetrahydropterin compound of said tetrahydropterin that is substituted at the 6-, or 7- or 6- and 7- position or positions,
comprising hydrogenating pterin of the following formula

or a pterin compound of said pterin that is monosubstituted substituted at the 6-, or 7- or 6- and 7- position or positions,
with hydrogen in an alcoholic reaction medium in the presence of a hydrogenation catalyst—that is a metal complex that is soluble in the reaction medium and contains an achiral or chiral ditertiary diphosphine that is attached (a) to various carbon atoms of a hydrocarbon chain having 2 to 4 carbon atoms, or (b) directly or via a bridging group $-\text{CR}_a\text{R}_b-$ in the ortho positions of a cyclopentadienyl ring or to a cyclopentadienyl ring of a ferrocenyl, wherein R_a and R_b are the same or different and stand for H, C₁-C₈ alkyl, C₁-C₄ fluoroalkyl, C₅-C₆ cycloalkyl, phenyl, benzyl, or phenyl or benzyl substituted with 1 to 3 C₁-C₄ alkyl or C₁-C₄ alkoxy.

32. (Cancelled)

33. (Previously Presented) A process according to claim 3, wherein the hydrogenation is carried out at elevated pressure.

34. (Previously Presented) A process according to claim 1, wherein the metal complex contains iridium, rhodium or ruthenium.

35 (Previously Presented) A process according to claim 14, wherein the reaction medium is an alcoholic reaction medium, and wherein in the ditertiary diphosphines the phosphine groups are attached (a) to various carbon atoms of a hydrocarbon chain having 2 to 4 carbon atoms, or (b) directly or via a bridging group $-CR_aR_b-$ in the ortho positions of a cyclopentadienyl ring or to a cyclopentadienyl ring of a ferrocenyl, wherein R_a and R_b are the same or different and stand for H, C₁-C₈ alkyl, C₁-C₄ fluoroalkyl, C₅-C₆ cycloalkyl, benzyl, or phenyl.

36. (Previously Presented) A process according to claim 18, wherein R₄₂ denotes H.

37. (Previously Presented) A process according to claim 31, wherein R_a and R_b are the same or different and stand for H, C₁-C₈ alkyl, C₁-C₄ fluoroalkyl, C₅-C₆ cycloalkyl, benzyl, or phenyl.

38. (Previously Presented) A process according to claim 14, wherein the pterin compound is folic acid, a folic acid salt, a folic acid ester, a folic acid ester salt or a dihydro form thereof, with the proviso that in the event of using folic acid, a carboxylic acid thereof or a dihydro form thereof, the reaction medium is aqueous, and in the event of using a folic acid ester, a folic acid ester salt or a dihydro form thereof, the reaction medium is an alcohol.

39. (Previously Presented) A process according to claim 19, wherein the pterin compound is folic acid, a folic acid salt, a folic acid ester, a folic acid ester salt or a dihydro form thereof, with the proviso that in the event of using folic acid, a carboxylic acid thereof or a dihydro form thereof, the reaction medium is aqueous, and in the event of using a folic acid ester, a folic acid ester salt or a dihydro form thereof, the reaction medium is an alcohol.

40. (Currently Amended) A process for preparing tetrahydropterin of the following formula

or a tetrahydropterin compound of said tetrahydropterin that is substituted at the 6-, or 7- or 6- and 7- position or positions,
comprising hydrogenating pterin of the following formula

or a pterin compound of said pterin that is monosubstituted substituted at the 6-, or 7- or 6- and 7- position or positions,

with hydrogen in alcohol or in alcohol in admixture with an organic solvent in the presence of a hydrogenation catalyst that is a metal complex that is soluble in the reaction medium, wherein the pterin compound is folic acid, a folic acid salt, a folic acid ester, a folic acid ester salt or a dihydro form thereof, with the proviso that in the event of using folic acid, a carboxylic acid thereof or a dihydro form thereof, the reaction medium is aqueous, and in the event of using a folic acid ester, a folic acid ester salt or a dihydro form thereof, the reaction medium is an alcohol.

41. (Previously Presented) A process according to claim 30, wherein the pterin compound is folic acid, a folic acid salt, a folic acid ester, a folic acid ester salt or a dihydro form thereof, with the proviso that in the event of using folic acid, a carboxylic acid thereof or a dihydro form thereof, the reaction medium is aqueous, and in the event of using a folic acid ester, a folic acid ester salt or a dihydro form thereof, the reaction medium is an alcohol.

42. (Previously Presented) A process according to claim 31, wherein the pterin compound is folic acid, a folic acid salt, a folic acid ester, a folic acid ester salt or a dihydro form thereof, with the proviso that in the event of using folic acid, a carboxylic acid thereof or a

dihydro form thereof, the reaction medium is aqueous, and in the event of using a folic acid ester, a folic acid ester salt or a dihydro form thereof, the reaction medium is an alcohol.

43. (Previously Presented) A process according to claim 6, wherein R₁ and/or R₂ are, each independently, an aliphatic radical with 1-20 carbon atoms, a cycloaliphatic radical with 3-8 carbon atoms, a cycloaliphatic-aliphatic radical with 3-8 cyclic carbon atoms and 1 to 6 carbon atoms in the aliphatic part of the radical, an aromatic hydrocarbon radical with 6-14 carbon atoms, an aromatic-aliphatic radical with 7-15 carbon atoms, a alkyl radical with 2-16 carbon atoms in which one or more carbon atoms are each independently replaced by oxygen, sulfur, NH, or -N(C₁-C₄ Alkyl)-, a heterocycloaliphatic radical with 3-8 ring links, a heterocycloaliphatic-aliphatic radical with 3-8 ring links and 1 to 6 carbon atoms in the aliphatic part of the radical, a heteroaromatic radical with 4 to 13 carbon atoms, a heteroaromatic-aliphatic radical with 4 to 13 cyclic carbon atoms and 1 to 6 carbon atoms in the aliphatic part of the radical, wherein the hetero part of each group means that the radical contains one or more oxygen, sulfur or nitrogen atoms.

44. (Cancelled)

45. (Previously Presented) A process according to claim 1, wherein the pterin compound is a pterin that is substituted in the 6- and/or 7- positions.

46. (Previously Presented) A process according to claim 1, wherein the pterin compound is of formula (A)

in which

- R₁₀₁ is H or independently has the meaning of R₁₀₀,
- R₁₀₀ is an organic radical attached via a C, O or N atom and having 1 to 50 carbon atoms,
- M₁₀₀ is Li, K, Na, NH₄⁺, or ammonium with 1 to 16 carbon atoms,
- R₁₀₂ is C₁-C₈-alkyl, C₅- or C₆-cycloalkyl, phenyl or benzyl, and
- R₁₀₃ is C₁-C₄-alkyl, phenyl or benzyl.

47. (Previously Presented) A process according to claim 46, wherein R₁₀₀ is not interrupted or is interrupted by one or more of -O-, -NH-, -N(C₁-C₄-alkyl)-, -C(O)-, -C(O)O-, -OC(O)-, -OC(O)O-, -C(O)NH-, -NHC(O)-, -NHC(O)O-, -OC(O)NH-, -NHC(O)NH-, -C(O)N(C₁-C₄-alkyl)-, -N(C₁-C₄-alkyl)C(O)-, -N(C₁-C₄-alkyl)C(O)O-, -OC(O)N(C₁-C₄-alkyl)-, -N(C₁-C₄-alkyl)C(O)N(C₁-C₄-alkyl)-, and which is unsubstituted or is substituted with F, Cl, Br, -CN, -OCN, -NCO, -OH, -NH₂, -NHC₁-C₄-alkyl, -N(C₁-C₄-alkyl)₂, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-hydroxyalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, -C(O)OH, -C(O)OM₁₀₀, -C(O)OC₁-C₄-alkyl, -C(O)NH₂, -C(O)NHC₁-C₄-alkyl, -C(O)N(C₁-C₄-alkyl)₂, R₁₀₂-C(O)O-, R₁₀₂-OC(O)O-, R₁₀₂-C(O)NH-, R₁₀₂-C(O)N(C₁-C₄-alkyl)-, R₁₀₂-NHC(O)NH-, R₁₀₃C(O)- or -CH(O).

48. (Previously Presented) A process according to claim 19, wherein A₂ is ClO₄⁻, CF₃SO₃⁻, CH₃SO₃⁻, HSO₄⁻, BF₄⁻, B(Phenyl)₄⁻, PF₆⁻, SbCl₆⁻, AsF₆⁻ or SbF₆⁻.

49. (New) A process according to claim 6, wherein R₁ and/or R₂ are, each independently,

pyrrolidinyl, piperidinyl, morpholinyl, tetrahydropyranyl, piperazinyl, pyrrolidinyl methyl, pyrrolidinyl ethyl, piperidinyl methyl, piperidinyl ethyl, morpholinyl methyl,

morpholinyl ethyl, tetrahydropyranyl methyl, tetrahydropyranyl ethyl, piperazinyl methyl or piperazinyl ethyl.