Solution Section 3.1 – Inner Products

Exercise

Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (1, 1)$, $\vec{v} = (3, 2)$, $\vec{w} = (0, -1)$, and k = 3. Compute the following.

a) $\langle \vec{u}, \vec{v} \rangle$

c) $\langle \vec{u} + \vec{v}, \vec{w} \rangle$

e) $d(\vec{u}, \vec{v})$

b) $\langle k\vec{v}, \vec{w} \rangle$

d) $\|\vec{v}\|$

f) $\|\vec{u} - k\vec{v}\|$

a)
$$\langle \vec{u}, \vec{v} \rangle = 1(3) + 1(2)$$

= 5

b)
$$\langle k\vec{v}, \vec{w} \rangle = \langle 3v, w \rangle$$

= $9 \cdot 0 + 6 \cdot (-1)$
= -6

c)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$$

= $1 \cdot 0 + 1 \cdot (-1) + 3 \cdot 0 + 2 \cdot (-1)$
= -3

d)
$$\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$$

$$= \sqrt{3^2 + 2^2}$$

$$= \sqrt{13}$$

e)
$$d(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}||$$

 $= ||(-2, -1)||$
 $= \sqrt{(-2)^2 + (-1)^2}$
 $= \sqrt{5}$

f)
$$\|\vec{u} - k\vec{v}\| = \|(1, 1) - 3(3, 2)\|$$

 $= \|(-8, -5)\|$
 $= \sqrt{(-8)^2 + (-5)^2}$
 $= \sqrt{89}$

Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (1, 1)$, $\vec{v} = (3, 2)$, $\vec{w} = (0, -1)$ and k = 3. Compute the following for the weighted Euclidean inner product $\langle \vec{u}, \vec{v} \rangle = 2u_1v_1 + 3u_2v_2$.

a) $\langle \vec{u}, \vec{v} \rangle$

c) $\langle \vec{u} + \vec{v}, \vec{w} \rangle$

e) $d(\vec{u}, \vec{v})$

b) $\langle k\vec{v}, \vec{w} \rangle$

d) $\|\vec{v}\|$

f) $\|\vec{u} - k\vec{v}\|$

a)
$$\langle \vec{u}, \vec{v} \rangle = 2(1)(3) + 3(1)(2)$$

= 12 |

b)
$$\langle k\vec{v}, \vec{w} \rangle = 2(3 \cdot 3)(0) + 3(3 \cdot 2)(-1)$$

= -18 |

c)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$$

= $1 \cdot 0 + 1 \cdot (-1) + 3 \cdot 0 + 2 \cdot (-1)$
= -3

d)
$$\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$$

$$= \sqrt{2(3)(3) + 3(2)(2)}$$

$$= \sqrt{30}$$

e)
$$d(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}||$$

 $= ||\langle (-2, -1)\rangle||$
 $= \sqrt{2(-2)(-2) + 3(-1)(-1)}$
 $= \sqrt{11} |$

f)
$$\|\vec{u} - k\vec{v}\| = \|(1, 1) - 3(3, 2)\|$$

 $= \|\langle (-8, -5)\rangle\|$
 $= \sqrt{2(-8)^2 + 3(-5)^2}$
 $= \sqrt{203}$

Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (3, -2)$, $\vec{v} = (4, 5)$, $\vec{w} = (-1, 6)$, and k = -4. Verify the following.

a)
$$\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$$

d)
$$\langle k\vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$$

b)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$$

e)
$$\langle \vec{0}, \vec{v} \rangle = \langle \vec{v}, \vec{0} \rangle = 0$$

c)
$$\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$$

a)
$$\langle \vec{u}, \vec{v} \rangle = 3 \cdot 4 + (-2) \cdot (5)$$

= 2

$$\langle \vec{v}, \vec{u} \rangle = 4 \cdot 3 + (5) \cdot (-2)$$

= 2.1

$$\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$$

b)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle (7,3), (-1,6) \rangle$$

= $7(-1) + 3(6)$

$$\langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle = (3)(-1) + (-2)(6) + (4)(-1) + (5)(6)$$

= 11 |

$$\langle \vec{u} + \vec{v}, \ \vec{w} \rangle = \langle \vec{u}, \ \vec{w} \rangle + \langle \vec{v}, \ \vec{w} \rangle$$

c)
$$\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle (3, -2), (3, 11) \rangle$$

= $3(3) + (-2)(11)$

$$\langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle = (3)(4) + (-2)(5) + (3)(-1) + (-2)(6)$$

= -13 |

$$\langle \vec{u}, \ \vec{v} + \vec{w} \rangle = \langle \vec{u}, \ \vec{v} \rangle + \langle \vec{u}, \ \vec{w} \rangle$$

d)
$$\langle k\vec{u}, \vec{v} \rangle = (-4 \cdot 3) \cdot 4 + ((-4)(-2)) \cdot (5)$$

= -8 |

$$k\langle \vec{u}, \vec{v} \rangle = (-4)(3 \cdot 4 + (-2) \cdot (5))$$

$$\langle k\vec{u}, \ \vec{v} \rangle = k \langle \vec{u}, \ \vec{v} \rangle$$

Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (3, -2)$, $\vec{v} = (4, 5)$, $\vec{w} = (-1, 6)$, and k = -4. Verify the following for the weighted Euclidean inner product $\langle \vec{u}, \vec{v} \rangle = 4u_1v_1 + 5u_2v_2$.

a)
$$\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$$

d)
$$\langle k\vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$$

b)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$$

$$e$$
) $\langle \vec{0}, \vec{v} \rangle = \langle \vec{v}, \vec{0} \rangle = 0$

c)
$$\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$$

a)
$$\langle \vec{u}, \vec{v} \rangle = 4 \cdot 3 \cdot 4 + 5 \cdot (-2) \cdot (5)$$

= -2 |

$$\langle \vec{v}, \vec{u} \rangle = 4 \cdot 4 \cdot 3 + 5 \cdot (5) \cdot (-2)$$

= -2

$$\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$$

b)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle (7,3), (-1,6) \rangle$$

= $4 \cdot 7(-1) + 5 \cdot 3(6)$
= $62 \mid$

$$\langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle = 4 \cdot (3)(-1) + 5 \cdot (-2)(6) + 4 \cdot (4)(-1) + 5 \cdot (5)(6)$$

= 62 |

$$\langle \vec{u} + \vec{v}, \ \vec{w} \rangle = \langle \vec{u}, \ \vec{w} \rangle + \langle \vec{v}, \ \vec{w} \rangle$$

c)
$$\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle (3, -2), (3, 11) \rangle$$

= $4 \cdot 3(3) + 5 \cdot (-2)(11)$
= -74

$$\langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle = 4 \cdot (3)(4) + 5 \cdot (-2)(5) + 4 \cdot (3)(-1) + 5 \cdot (-2)(6)$$

$$= -74$$

$$\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$$

$$d) \langle k\vec{u}, \vec{v} \rangle = 4 \cdot (-4 \cdot 3) \cdot 4 + 5 \cdot ((-4)(-2)) \cdot (5)$$

$$= 8$$

$$k \langle \vec{u}, \vec{v} \rangle = (-4)(4 \cdot 3 \cdot 4 + 5 \cdot (-2) \cdot (5))$$

$$= 8$$

$$\langle k\vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$$

$$e) \langle \vec{0}, \vec{v} \rangle = 4 \cdot 0 \cdot 4 + 5 \cdot 0 \cdot (5)$$

$$= 0$$

$$\langle \vec{v}, \vec{0} \rangle = 4 \cdot 4 \cdot 0 + 5 \cdot (5) \cdot (0)$$

$$= 0$$

$$\langle \vec{0}, \vec{v} \rangle = \langle \vec{v}, \vec{0} \rangle = 0$$

Let $\vec{u} = (u_1, u_2)$ and $\vec{v} = (v_1, v_2)$. Show that the following are inner product on \mathbb{R}^2 by verifying that the inner product axioms hold. $\langle \vec{u}, \vec{v} \rangle = 3u_1v_1 + 5u_2v_2$

Axiom 1:
$$\langle \vec{u}, \vec{v} \rangle = 3u_1v_1 + 5u_2v_2$$

 $= 3v_1u_1 + 5v_2u_2$
 $= \langle \vec{v}, \vec{u} \rangle$ \checkmark
Axiom 2: $\langle \vec{u} + \vec{v}, \vec{w} \rangle = 3(u_1 + v_1)w_1 + 5(u_2 + v_2)w_2$
 $= 3(u_1w_1 + v_1w_1) + 5(u_2w_2 + v_2w_2)$
 $= 3u_1w_1 + 3v_1w_1 + 5u_2w_2 + 5v_2w_2$
 $= (3u_1w_1 + 5u_2w_2) + (3v_1w_1 + 5v_2w_2)$
 $= \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$ \checkmark
Axiom 3: $\langle k\vec{u}, \vec{v} \rangle = 3(ku_1)v_1 + 5(ku_2)v_2$
 $= k(3u_1v_1 + 5u_2v_2)$

$$=k\langle \vec{u}, \vec{v}\rangle$$

Axiom 4:
$$\langle \vec{v}, \vec{v} \rangle = 3v_1v_1 + 5v_2v_2$$

= $3v_1^2 + 5v_2^2 \ge 0$
 $v_1 = v_2 = 0$ iff $\vec{v} = \vec{0}$

Show that the following identity holds for the vectors in any inner product space

$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2\|\vec{u}\|^2 + 2\|\vec{v}\|^2$$

Solution

$$\|\vec{u} + \vec{v}\|^{2} + \|\vec{u} - \vec{v}\|^{2} = \langle \vec{u} + \vec{v}, \vec{u} + \vec{v} \rangle + \langle \vec{u} - \vec{v}, \vec{u} - \vec{v} \rangle$$

$$= \langle \vec{u}, \vec{u} + \vec{v} \rangle + \langle \vec{v}, \vec{u} + \vec{v} \rangle + \langle \vec{u}, \vec{u} - \vec{v} \rangle - \langle \vec{v}, \vec{u} - \vec{v} \rangle$$

$$= \langle \vec{u}, \vec{u} \rangle + \langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{u} \rangle + \langle \vec{v}, \vec{v} \rangle + \langle \vec{u}, \vec{u} \rangle - \langle \vec{u}, \vec{v} \rangle - \langle \vec{v}, \vec{u} \rangle + \langle \vec{v}, \vec{v} \rangle$$

$$= 2 \langle \vec{u}, \vec{u} \rangle + 2 \langle \vec{v}, \vec{v} \rangle$$

$$= 2 \|\vec{u}\|^{2} + 2 \|\vec{v}\|^{2}$$

Exercise

Show that the following identity holds for the vectors in any inner product space

$$\langle \vec{u}, \vec{v} \rangle = \frac{1}{4} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

$$\begin{aligned} \|\vec{u} + \vec{v}\|^2 &= \langle \vec{u} + \vec{v}, \ \vec{u} + \vec{v} \rangle = \|\vec{u}\|^2 + 2\langle \vec{u}, \ \vec{v} \rangle + \|\vec{v}\|^2 \\ \|\vec{u} - \vec{v}\|^2 &= \langle \vec{u} - \vec{v}, \ \vec{u} - \vec{v} \rangle = \|\vec{u}\|^2 - 2\langle \vec{u}, \ \vec{v} \rangle + \|\vec{v}\|^2 \\ \|\vec{u} + \vec{v}\|^2 &= \|\vec{u}\|^2 + 2\langle \vec{u}, \ \vec{v} \rangle + \|\vec{v}\|^2 \\ - \|\vec{u} - \vec{v}\|^2 &= \|\vec{u}\|^2 - 2\langle \vec{u}, \ \vec{v} \rangle + \|\vec{v}\|^2 \\ \|\vec{u} + \vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2 &= 4\langle \vec{u}, \ \vec{v} \rangle \end{aligned}$$

Prove that $||k\vec{v}|| = |k| ||\vec{v}||$

$$||k\vec{v}||^2 = \langle k\vec{v}, \vec{v} \rangle$$
$$= k^2 \langle \vec{v}, \vec{v} \rangle$$
$$= k^2 ||\vec{v}||^2$$

$$||k\vec{v}|| = k ||\vec{v}||$$

Solution Section 3.2 – Angle and Orthogonality in Inner Product Spaces

Exercise

Which of the following form orthonormal sets?

a)
$$(1, 0), (0, 2)$$
 in \mathbb{R}^2

b)
$$\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
 in \mathbb{R}^2

c)
$$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
 in \mathbb{R}^2

d)
$$\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right), \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \text{ in } \mathbb{R}^3$$

e)
$$\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right), \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right), \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) \text{ in } \mathbb{R}^3$$

f)
$$\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right), \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$$
 in \mathbb{R}^3

Solution

a)
$$(1, 0) \cdot (0, 2) = 1(0) + 0(2)$$

= 0

They are *orthonormal* sets

b)
$$\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \left(-\frac{1}{\sqrt{2}}\right) \frac{1}{\sqrt{2}}$$

$$= \frac{1}{2} - \frac{1}{2}$$

$$= 0$$

They are orthonormal sets

c)
$$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \left(-\frac{1}{\sqrt{2}}\right) \frac{1}{\sqrt{2}} + \left(-\frac{1}{\sqrt{2}}\right) \frac{1}{\sqrt{2}}$$
$$= -\frac{1}{2} - \frac{1}{2}$$
$$= -1 \neq 0$$

They are *not orthonormal* sets

d)
$$\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right) \cdot \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

$$= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{3}} \left(-\frac{1}{\sqrt{2}} \right) + 0 + \frac{1}{\sqrt{2}} \left(-\frac{1}{\sqrt{3}} \right) \frac{1}{\sqrt{2}}$$

$$= -\frac{1}{2} \frac{1}{\sqrt{3}} - \frac{1}{2} \frac{1}{\sqrt{3}}$$

$$= -\frac{1}{\sqrt{3}} \neq 0$$

They are *not orthonormal* sets

e)
$$\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) \cdot \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right) \cdot \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$$

$$= \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} + \left(-\frac{2}{3}\right) \cdot \frac{1}{3} \cdot \frac{2}{3} + \frac{1}{3} \left(-\frac{2}{3}\right) \cdot \frac{2}{3}$$

$$= \frac{4}{27} - \frac{4}{27} - \frac{4}{27}$$

$$= -\frac{4}{27} \neq 0$$

They are not orthonormal sets

$$f) \quad \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right) \cdot \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right) = \frac{1}{\sqrt{6}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}} \left(-\frac{1}{\sqrt{2}}\right) + 0$$

$$= 0$$

They are *orthonormal* sets

Exercise

Find the cosine of the angle between \vec{u} and \vec{v} .

a)
$$\vec{u} = (1, -3), \quad \vec{v} = (2, 4)$$

e)
$$\vec{u} = (1, 0, 1, 0), \quad \vec{v} = (-3, -3, -3, -3)$$

b)
$$\vec{u} = (-1, 0), \quad \vec{v} = (3, 8)$$

f)
$$\vec{u} = (2, 1, 7, -1), \quad \vec{v} = (4, 0, 0, 0)$$

c)
$$\vec{u} = (-1, 5, 2), \quad \vec{v} = (2, 4, -9)$$

g)
$$\vec{u} = (1, 3, -5, 4), \quad \vec{v} = (2, -4, 4, 1)$$

d)
$$\vec{u} = (4, 1, 8), \quad \vec{v} = (1, 0, -3)$$

h)
$$\vec{u} = (1, 2, 3, 4), \vec{v} = (-1, -2, -3, -4)$$

a)
$$\vec{u} = (1, -3), \quad \vec{v} = (2, 4)$$

$$\|\vec{u}\| = \sqrt{1^2 + (-3)^2}$$

$$= \sqrt{10} \quad |$$

$$\|\vec{v}\| = \sqrt{2^2 + 4^2}$$

$$= \sqrt{20} \quad |$$

$$\langle \vec{u}, \vec{v} \rangle = 1(2) + (-3)(4)$$

= -10

$$\cos \theta = \frac{-10}{\sqrt{10}}$$
$$= -\frac{10}{\sqrt{200}}$$
$$= -\frac{1}{\sqrt{2}}$$

$$\cos \theta = \frac{\left\langle \vec{u}, \ \vec{v} \right\rangle}{\|\vec{u}\| \ \|\vec{v}\|}$$

b)
$$\vec{u} = (-1, 0); \vec{v} = (3, 8)$$

$$\|\vec{u}\| = \sqrt{(-1)^2 + 0^2}$$
= 1 |

$$\|\vec{v}\| = \sqrt{3^2 + 8^2}$$
$$= \sqrt{73} \mid$$

$$\langle \vec{u}, \vec{v} \rangle = (-1)(3) + (0)(8)$$

= -3 |

$$\cos \theta = \frac{-3}{1\sqrt{73}}$$
$$= -\frac{3}{\sqrt{73}}$$

$$\cos \theta = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \|\vec{v}\|}$$

c)
$$\vec{u} = (-1, 5, 2); \vec{v} = (2, 4, -9)$$

$$\|\vec{u}\| = \sqrt{(-1)^2 + 5^2 + 2^2}$$

= $\sqrt{30}$

$$\|\vec{v}\| = \sqrt{2^2 + 4^2 + (-9)^2}$$
$$= \sqrt{101} \mid$$

$$\langle \vec{u}, \vec{v} \rangle = (-1)(2) + (5)(4) + (2)(-9)$$

= 0

$$\cos \theta = 0$$

$$\cos \theta = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \|\vec{v}\|}$$

d)
$$\vec{u} = (4, 1, 8); \quad \vec{v} = (1, 0, -3)$$

$$\|\vec{u}\| = \sqrt{4^2 + 1^2 + 8^2}$$

$$\cos \theta = -\frac{20}{9\sqrt{10}}$$

$$\cos \theta = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \|\vec{v}\|}$$

e)
$$\vec{u} = (1, 0, 1, 0); \vec{v} = (-3, -3, -3, -3)$$

$$\|\vec{u}\| = \sqrt{2}$$

$$\|\vec{v}\| = \sqrt{9+9+9+9}$$
$$= 12$$

$$\langle \vec{u}, \vec{v} \rangle = -3 + 0 - 3 + 0$$

= -6

$$\cos \theta = \frac{-6}{12\sqrt{2}}$$
$$= -\frac{1}{2\sqrt{2}}$$

$$\cos \theta = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \|\vec{v}\|}$$

f)
$$\vec{u} = (2, 1, 7, -1); \vec{v} = (4, 0, 0, 0)$$

$$\|\vec{u}\| = \sqrt{2^2 + 1^2 + 7^2 + (-1)^2}$$

= $\sqrt{55}$

$$\|\vec{v}\| = \sqrt{4^2 + 0}$$

$$\langle \vec{u}, \vec{v} \rangle = (2)(4) + (1)(0) + (7)(0) + (-1)(0)$$

= 8 |

$$\cos \theta = \frac{8}{4\sqrt{55}}$$

$$= \frac{2}{\sqrt{55}}$$

$$= \frac{2}{\sqrt{55}}$$

g)
$$\vec{u} = (1, 3, -5, 4), \quad \vec{v} = (2, -4, 4, 1)$$
$$\|\vec{u}\| = \sqrt{1 + 9 + 25 + 16}$$

h)
$$\vec{u} = (1, 2, 3, 4), \quad \vec{v} = (-1, -2, -3, -4)$$

$$\|\vec{u}\| = \sqrt{1 + 4 + 9 + 16}$$

$$= \sqrt{30}$$

$$\|\vec{v}\| = \sqrt{1 + 4 + 9 + 16}$$

$$= \sqrt{30}$$

$$\langle \vec{u}, \vec{v} \rangle = -1 - 4 - 9 - 16$$

$$= -30$$

$$\cos \theta = \frac{-30}{\sqrt{30}\sqrt{30}}$$

$$\cos \theta = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \|\vec{v}\|}$$

Find the cosine of the angle between A and B.

a)
$$A = \begin{pmatrix} 2 & 6 \\ 1 & -3 \end{pmatrix}$$
 $B = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$

c)
$$A = \begin{pmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$

b)
$$A = \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix}$$
 $B = \begin{pmatrix} -3 & 1 \\ 4 & 2 \end{pmatrix}$

d)
$$A = \begin{pmatrix} 1 & -2 & 7 \\ 6 & -3 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & -2 & 3 \\ 6 & 5 & -4 \end{pmatrix}$

a)
$$A = \begin{pmatrix} 2 & 6 \\ 1 & -3 \end{pmatrix} \quad B = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$$
$$\|A\| = \sqrt{\langle A, A \rangle}$$
$$= \sqrt{2^2 + 6^2 + 1^2 + (-3)^2}$$
$$= \sqrt{50}$$

b)
$$A = \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix}$$
 $B = \begin{pmatrix} -3 & 1 \\ 4 & 2 \end{pmatrix}$

$$\|A\| = \sqrt{\langle A, A \rangle}$$

$$= \sqrt{2^2 + 4^2 + (-1)^2 + 3^2}$$

$$= \sqrt{30}$$

$$\|B\| = \sqrt{\langle B, B \rangle}$$

$$= \sqrt{(-3)^2 + 1^2 + 4^2 + 2^2}$$

$$= \sqrt{30}$$

$$\langle A, B \rangle = 2(-3) + 4(1) + (-1)(4) + 3(2)$$

$$= 0$$

$$\cos \theta = \frac{0}{30}$$

$$\cos \theta = \frac{\langle A, B \rangle}{\|A\| \|B\|}$$

$$= 0$$

c)
$$A = \begin{pmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$
 $||A|| = \sqrt{81 + 64 + 49 + 36 + 25 + 16}$ $||A|| = \sqrt{\langle A, A \rangle}$
 $= \sqrt{271}$ $||B|| = \sqrt{1 + 4 + 9 + 16 + 25 + 36}$ $||B|| = \sqrt{\langle B, B \rangle}$
 $= \sqrt{91}$ $||B|| = \sqrt{1 + 4 + 9 + 16 + 25 + 36}$ $||B|| = \sqrt{\langle B, B \rangle}$

$$\langle A, B \rangle = 9 + 16 + 21 + 24 + 25 + 24$$

$$= 119 \rfloor$$

$$\cos \theta = \frac{119}{\sqrt{271}\sqrt{91}} \qquad \cos \theta = \frac{\langle A, B \rangle}{\|A\| \|B\|}$$

$$d) \quad A = \begin{pmatrix} 1 & -2 & 7 \\ 6 & -3 & 4 \end{pmatrix} \quad B = \begin{pmatrix} 1 & -2 & 3 \\ 6 & 5 & -4 \end{pmatrix}$$

$$\|A\| = \sqrt{1^2 + (-2)^2 + 7^2 + 6^2 + (-3)^2 + 4^2} \qquad \|A\| = \sqrt{\langle A, A \rangle}$$

$$= \sqrt{115} \rfloor$$

$$\|B\| = \sqrt{1^2 + (-2)^2 + 3^2 + 6^2 + 5^2 + (-4)^2} \qquad \|B\| = \sqrt{\langle B, B \rangle}$$

$$= \sqrt{91} \rfloor$$

$$\langle A, B \rangle = 1 + 4 + 21 + 36 - 15 - 16$$

$$= 31 \rfloor$$

$$\cos \theta = \frac{31}{\sqrt{115}\sqrt{91}} \qquad \cos \theta = \frac{\langle A, B \rangle}{\|A\| \|B\|}$$

Determine whether the given vectors are orthogonal with respect to the Euclidean inner product.

a)
$$\vec{u} = (-1, 3, 2), \vec{v} = (4, 2, -1)$$

a)
$$\vec{u} = (-1, 3, 2), \quad \vec{v} = (4, 2, -1)$$
 d) $\vec{u} = (-4, 6, -10, 1), \quad \vec{v} = (2, 1, -2, 9)$

b)
$$\vec{u} = (a, b), \quad \vec{v} = (-b, a)$$

b)
$$\vec{u} = (a, b), \quad \vec{v} = (-b, a)$$
 e) $\vec{u} = (-4, 6, -10, 1), \quad \vec{v} = (2, 1, -2, 9)$

c)
$$\vec{u} = (-2, -2, -2), \vec{v} = (1, 1, 1)$$

Solution

a)
$$\langle \vec{u}, \vec{v} \rangle = (-1)(4) + 3(2) + 2(-1)$$

= 0

Therefore, the given vectors are orthogonal.

b)
$$\langle \vec{u}, \vec{v} \rangle = a(-b) + b(a)$$

= 0 |

Therefore, the given vectors are orthogonal.

c)
$$\langle \vec{u}, \vec{v} \rangle = (-2)(1) + (-2)(1) + (-2)(1)$$

= -6 |

Therefore, the given vectors are *not* orthogonal.

d)
$$\langle \langle \vec{u}, \vec{v} \rangle \rangle = (-4)(2) + (6)(1) + (-10)(-2) + (1)(9)$$

= 27 $| \neq 0$

Therefore, the given vectors are *not* orthogonal.

e)
$$\|\vec{u}\| = \sqrt{(-4)^2 + 6^2 + (-10)^2 + 1^2}$$

 $= \sqrt{153}$
 $= 3\sqrt{17}$ $\|\vec{v}\| = \sqrt{2^2 + 1^2 + (-2)^2 + 9^2}$
 $= \sqrt{90}$
 $= 3\sqrt{10}$ $|\vec{v}| = (-4)(2) + 6(1) - 10(-2) + 1(9)$
 $= 27$ $|\vec{v}| = 3$ $|\vec{v}| = 3$

The vectors \vec{u} and \vec{v} are **not** orthogonal with respect to the Euclidean

Exercise

Do there exist scalars k and l such that the vectors $\vec{u} = (2, k, 6)$, $\vec{v} = (l, 5, 3)$, and $\vec{w} = (1, 2, 3)$ are mutually orthogonal with respect to the Euclidean inner product?

$$\langle \vec{u}, \vec{w} \rangle = (2)(1) + (k)(2) + (6)(3)$$

 $= 20 + 2k = 0$
 $\Rightarrow \underline{k = -10}$
 $\langle \vec{v}, \vec{w} \rangle = (l)(1) + (5)(2) + (3)(3)$
 $= l + 19 = 0$
 $\Rightarrow \underline{l = -19}$
 $\langle \vec{u}, \vec{v} \rangle = (2)(l) + (k)(5) + (6)(3)$
 $= 2l + 5k + 18 = 0$

$$2(-19) + 5(-10) + 18 = -70 \neq 0$$

Thus, there are no scalars such that the vectors are mutually orthogonal.

Exercise

Let \mathbb{R}^3 have the Euclidean inner product. For which values of k are \vec{u} and \vec{v} orthogonal?

a)
$$\vec{u} = (2, 1, 3), \quad \vec{v} = (1, 7, k)$$

b)
$$\vec{u} = (k, k, 1), \quad \vec{v} = (k, 5, 6)$$

Solution

a)
$$\langle \vec{u}, \vec{v} \rangle = (2)(1) + (1)(7) + (3)(k)$$

= $9 + 3k = 0$

 \vec{u} and \vec{v} are orthogonal for $\underline{k = -3}$

b)
$$\langle \vec{u}, \vec{v} \rangle = (k)(k) + (k)(5) + (1)(6)$$

= $k^2 + 5k + 6 = 0$

 \vec{u} and \vec{v} are orthogonal for k = -2, -3

Exercise

Let *V* be an inner product space. Show that if \vec{u} and \vec{v} are orthogonal unit vectors in *V*, then $\|\vec{u} - \vec{v}\| = \sqrt{2}$

Solution

$$\begin{aligned} \|\vec{u} - \vec{v}\|^2 &= \langle \vec{u} - \vec{v}, \ \vec{u} - \vec{v} \rangle \\ &= \langle \vec{u}, \ \vec{u} - \vec{v} \rangle - \langle \vec{v}, \ \vec{u} - \vec{v} \rangle \\ &= \langle \vec{u}, \ \vec{u} \rangle - \langle \vec{u}, \ \vec{v} \rangle - \langle \vec{u}, \ \vec{v} \rangle + \langle \vec{v}, \ \vec{v} \rangle \\ &= \|\vec{u}\|^2 - 0 - 0 + \|\vec{v}\|^2 \qquad \text{since } \vec{u} \text{ and } \vec{v} \text{ are orthogonal unit vectors} \\ &= 1 + 1 \\ &= 2 \end{aligned}$$

Thus $\|\vec{u} - \vec{v}\| = \sqrt{2}$

Let S be a subspace of \mathbb{R}^n . Explain what $\left(S^{\perp}\right)^{\perp} = S$ means and why it is true.

Solution

 $\left(S^{\perp}\right)^{\perp}$ is the orthogonal complement of , S^{\perp} , which is itself the orthogonal complement of S, so $\left(S^{\perp}\right)^{\perp} = S$ means that S is the orthogonal of its orthogonal complement.

We need to show that S is contained in $\left(S^{\perp}\right)^{\perp}$ and, conversely, that $\left(S^{\perp}\right)^{\perp}$ is contained in S to be true.

- i. Suppose $\vec{v} \in S^{\perp}$ and $\vec{w} \in S^{\perp}$. Then $\langle \vec{v}, \vec{w} \rangle = 0$ by definition of S^{\perp} . Thus, S is certainly contained is $\left(S^{\perp}\right)^{\perp}$ (which consists of all vectors in \mathbb{R}^n which are orthogonal to S^{\perp}).
- $\vec{u}. \text{ Suppose } \vec{v} \in \left(S^{\perp}\right)^{\perp} \text{ (means } \vec{v} \text{ is orthogonal to all vectors in } S^{\perp} \text{); then we need to show that } \vec{v} \in S \text{ .}$ Let assume $\left\{\vec{u}_1, \, \vec{u}_2, \, ..., \, \vec{u}_p\right\}$ be a basis for S and let $\left\{\vec{w}_1, \, \vec{w}_2, \, ..., \, \vec{w}_q\right\}$ be a basis for S^{\perp} . If $\vec{v} \notin S$, then $\left\{\vec{u}_1, \, \vec{u}_2, \, ..., \, \vec{u}_p, \, \vec{v}\right\}$ is linearly independent set. Since each vector ifs that set is orthogonal to all of S^{\perp} , the set $\left\{\vec{u}_1, \, \vec{u}_2, \, ..., \, \vec{u}_p, \, \vec{v}, \, \vec{w}_1, \, \vec{w}_2, \, ..., \, \vec{w}_q\right\}$ is linearly independent. Since there are p+q+1 vectors in this set, this means that $p+q+1 \leq n \iff p+q \leq n-1$. On the other hand, If A is the matrix whose i^{th} row is \vec{u}_i^T , then the row space of A is S and the nullspace of A is S^{\perp} .

Since S is p-dimensional, the rank of A is p, meaning that the dimension of $\operatorname{nul}(A) = S^{\perp}$ is q = n - p. Therefore,

$$p+q=p+(n-p)=n$$

Which contradict the fact that $p+q \le n-1$. From this, we see that, if $\vec{v} \in (S^{\perp})^{\perp}$, it must be the case that $\vec{v} \in S$.

The methane molecule CH_4 is arranged as if the carbon atom were at the center of a regular tetrahedron with four hydrogen atoms at the vertices. If vertices are placed at (0, 0, 0), (1, 1, 0), (1, 0, 1) and (0, 1, 1) - (note) that all six edges have length $\sqrt{2}$, so the tetrahedron is regular). What is the cosine of the angle between the rays going from the center $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ to the vertices?

Solution

Let \vec{v} be the vector of the segment (1, 0, 1) and $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

$$\vec{v} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$
$$\begin{pmatrix} \frac{1}{2} \\ \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

Let be the vector of the segment (0, 1, 1) and $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

$$\vec{v} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

 $\theta \approx 109.47^{\circ}$

We have:

$$\cos \theta = \frac{\langle \vec{v}, \vec{w} \rangle}{\|\vec{v}\| \|\vec{w}\|}$$

$$= \frac{\left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right) \cdot \left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)}{\sqrt{\frac{1}{4} + \frac{1}{4} + \frac{1}{4}} \sqrt{\frac{1}{4} + \frac{1}{4} + \frac{1}{4}}}$$

$$= \frac{-\frac{1}{4}}{\frac{3}{4}}$$

$$= -\frac{1}{3}$$

Exercise

Determine if the given vectors are orthogonal.

$$\vec{x}_1 = (1, 0, 1, 0), \quad \vec{x}_2 = (0, 1, 0, 1), \quad \vec{x}_3 = (1, 0, -1, 0), \quad \vec{x}_4 = (1, 1, -1, -1)$$

$$\vec{x}_{1} \cdot \vec{x}_{2} = (1, 0, 1, 0) \cdot (0, 1, 0, 1)$$

$$= 0$$

$$\vec{x}_{1} \cdot \vec{x}_{3} = (1, 0, 1, 0) \cdot (1, 0, -1, 0)$$

$$= 1 - 1$$

$$= 0$$

$$\vec{x}_{1} \cdot \vec{x}_{4} = (1, 0, 1, 0) \cdot (1, 1, -1, -1)$$

$$= 1 - 1$$

$$= 0$$

$$\vec{x}_{2} \cdot \vec{x}_{3} = (0, 1, 0, 1) \cdot (1, 0, -1, 0)$$

$$= 0$$

$$\vec{x}_{2} \cdot \vec{x}_{4} = (0, 1, 0, 1) \cdot (1, 1, -1, -1)$$

$$= 1 - 1$$

$$\begin{array}{c|c} = 0 \\ \vec{x}_3 \cdot \vec{x}_4 = (1, 0, -1, 0) \cdot (1, 1, -1, -1) \\ = 1 - 1 \\ = 0 \end{array}$$

The given vectors are orthogonal.

Exercise

Which of the following sets of vectors are orthogonal with respect to the Euclidean inner

a)
$$\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right) \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

b)
$$\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)$$
 $\left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$ $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$

Solution

a)
$$\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right) = \frac{1}{\sqrt{6}} + 0 - \frac{1}{\sqrt{6}}$$

$$= 0$$

$$\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \cdot \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) = -\frac{1}{2} + 0 + \frac{1}{2}$$

$$= 0$$

$$\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right) \cdot \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) = -\frac{1}{\sqrt{6}} + 0 - \frac{1}{\sqrt{6}}$$

$$= -\frac{2}{\sqrt{6}} \neq 0$$

Therefore, the given vectors are *not* orthogonal.

b)
$$\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) \cdot \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right) = \frac{4}{9} - \frac{2}{9} - \frac{2}{9}$$

$$= 0 \rfloor$$

$$\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) \cdot \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) = \frac{2}{9} - \frac{4}{9} + \frac{2}{9}$$

$$= 0 \rfloor$$

$$\left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right) \cdot \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) = \frac{2}{9} + \frac{2}{9} - \frac{4}{9}$$

$$= 0 \rfloor$$

Therefore, the given vectors are orthogonal.

Consider vectors $\vec{u} = (2, 3, 5)$ $\vec{v} = (1, -4, 3)$ in \mathbb{R}^3

- a) $\langle \vec{u}, \vec{v} \rangle$ b) $\|\vec{u}\|$ c) $\|\vec{v}\|$
- d) Cosine between \vec{u} and \vec{v}

Solution

a)
$$\langle \vec{u}, \vec{v} \rangle = (2, 3, 5) \cdot (1, -4, 3)$$

= 2-12+15
= 5

- **b**) $\|\vec{u}\| = \sqrt{4+9+25}$ $=\sqrt{38}$
- c) $\vec{v} = \sqrt{1+16+9}$ $=\sqrt{26}$
- d) $\cos \theta = \frac{5}{\sqrt{38}\sqrt{26}}$ $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$

Exercise

Consider vectors $\vec{u} = (1, 1, 1)$ $\vec{v} = (1, 2, -3)$ in \mathbb{R}^3

- a) $\langle \vec{u}, \vec{v} \rangle$ b) $\|\vec{u}\|$ c) $\|\vec{v}\|$
- d) Cosine θ between \vec{u} and \vec{v}

Solution

a)
$$\langle \vec{u}, \vec{v} \rangle = (1, 1, 1) \cdot (1, 2, -3)$$

= 1 + 2 - 3
= 0

- **b**) $\|\vec{u}\| = \sqrt{1+1+1}$
- *c*) $\|\vec{v}\| = \sqrt{1+4+9}$ $=\sqrt{14}$
- d) $\cos \theta = 0$

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

 \vec{u} and \vec{v} are orthogonal vectors.

Consider vectors $\vec{u} = (1, 2, 5)$ $\vec{v} = (2, -3, 5)$ $\vec{w} = (4, 2, -3)$ in \mathbb{R}^3

- a) $\langle \vec{u}, \vec{v} \rangle$
- d) $\|\vec{u}\|$
- g) Cosine α between \vec{u} and \vec{v}

- b) $\langle \vec{u}, \vec{w} \rangle$
- e) $||\vec{v}||$
- h) Cosine β between \vec{u} and \vec{w}

- c) $\langle \vec{v}, \vec{w} \rangle$
- f) $\|\vec{w}\|$
- *i)* Cosine θ between \vec{v} and \vec{w}

j) $(\vec{u} + \vec{v}) \cdot \vec{w}$

a)
$$\langle \vec{u}, \vec{v} \rangle = (1, 2, 5) \cdot (2, -3, 5)$$

= 2-6+25
= 21

b)
$$\langle \vec{u}, \vec{w} \rangle = (1, 2, 5) \cdot (4, 2, -3)$$

= 4 + 4 - 15
= -7

c)
$$\langle \vec{v}, \vec{w} \rangle = (2, -3, 5) \cdot (4, 2, -3)$$

= 8 - 6 - 15
= -13

$$d) \quad \|\vec{u}\| = \sqrt{1 + 4 + 25}$$
$$= \sqrt{30} \mid$$

e)
$$\|\vec{v}\| = \sqrt{4 + 9 + 25}$$

= $\sqrt{38}$

$$||\vec{w}|| = \sqrt{16 + 4 + 9}$$

$$= \sqrt{29} |$$

g)
$$\cos \alpha = \frac{21}{\sqrt{30}\sqrt{38}}$$
 $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$

h)
$$\cos \beta = \frac{-7}{\sqrt{30}\sqrt{29}}$$
 $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$

$$i) \quad \cos \theta = \frac{-13}{\sqrt{38}\sqrt{29}} \quad \cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

j)
$$(\vec{u} + \vec{v}) \cdot \vec{w} = [(1, 2, 5) + (2, -3, 5)] \cdot (4, 2, -3)$$

= $(3, -1, 10) \cdot (4, 2, -3)$
= $12 - 2 - 30$
= -20

Consider polynomial f(t) = 3t - 5; $g(t) = t^2$ in $\mathbb{P}(t)$

- a) $\langle f, g \rangle$ b) ||f|| c) ||g||
- d) Cosine between f and g

a)
$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt$$

$$= \int_0^1 (3t - 5)t^2 dt$$

$$= \int_0^1 (3t^3 - 5t^2) dt$$

$$= \frac{3}{4}t^4 - \frac{5}{3}t^3 \Big|_0^1$$

$$= \frac{3}{4} - \frac{5}{3}$$

$$= -\frac{11}{12} \Big|$$

b)
$$\langle f, f \rangle = \int_0^1 f(t) f(t) dt$$

$$= \int_0^1 (3t - 5)^2 dt$$

$$= \frac{1}{3} \int_0^1 (3t - 5)^2 d(3t - 5)$$

$$= \frac{1}{9} (3t - 5)^3 \Big|_0^1$$

$$= \frac{1}{9} (8 - 125)$$

$$= 13 \rfloor$$

$$\|f\| = \sqrt{|\langle f, f \rangle|}$$

$$= \sqrt{13} \rfloor$$

c)
$$\langle g, g \rangle = \int_0^1 g(t)g(t)dt$$

$$= \int_{0}^{1} t^{4} dt$$

$$= \frac{1}{5} t^{5} \Big|_{0}^{1}$$

$$= \frac{1}{5} \Big|$$

$$\|g\| = \sqrt{|\langle g, g \rangle|}$$

$$= \frac{1}{\sqrt{5}} \Big|$$

d)
$$\cos \theta = \frac{-\frac{11}{12}}{\sqrt{13}\frac{\sqrt{5}}{5}}$$

$$= \frac{-55}{12\sqrt{65}}$$

$$\cos\theta = \frac{f \cdot g}{\|f\| \|g\|}$$

Consider polynomial f(t) = t + 2; g(t) = 3t - 2; $h(t) = t^2 - 2t - 3$ in $\mathbb{P}(t)$

- a) $\langle f, g \rangle$
- g) Cosine α between f and g
- b) $\langle f, h \rangle$ e) $\|g\|$
- h) Cosine β between f and h

- c) $\langle g, h \rangle$
- i) Cosine θ between g and h

a)
$$\langle f, g \rangle = \int_0^1 (t+2)(3t-2)dt$$

$$= \int_0^1 (3t^2 + 4t - 4)dt$$

$$= t^3 + 2t^2 - 4t \Big|_0^1$$

$$= 1 + 2 - 4$$

$$= -1$$

$$\langle f, g \rangle = \int_{0}^{1} f(t)g(t)dt$$

b)
$$\langle f, h \rangle = \int_0^1 (t+2)(t^2-2t-3)dt$$

$$\langle f, h \rangle = \int_0^1 f(t)h(t)dt$$

$$= \int_{0}^{1} \left(t^{3} - 7t - 6\right) dt$$

$$= \frac{1}{4}t^{4} - \frac{7}{2}t^{2} - 6t \Big|_{0}^{1}$$

$$= \frac{1}{4} - \frac{7}{2} - 6$$

$$= -\frac{37}{4}$$

c)
$$\langle g, h \rangle = \int_0^1 (3t - 2) (t^2 - 2t - 3) dt$$

$$= \int_0^1 (3t^3 - 8t^2 - 5t + 6) dt$$

$$= \frac{3}{4}t^4 - \frac{8}{3}t^3 - \frac{5}{2}t^2 + 6t \Big|_0^1$$

$$= \frac{3}{4} - \frac{8}{3} - \frac{5}{2} + 6$$

$$= \frac{9}{4} \Big|_0^1$$

$$d) \langle f, f \rangle = \int_0^1 (t+2)^2 dt$$

$$= \frac{1}{3} (t+2)^3 \Big|_0^1$$

$$= \frac{1}{3} (27-8)$$

$$= \frac{19}{3}$$

$$\|f\| = \sqrt{|\langle f, f \rangle|}$$

$$= \sqrt{\frac{19}{3}}$$

e)
$$\langle g, g \rangle = \int_0^1 (3t - 2)^2 dt$$

$$= \frac{1}{3} \int_0^1 (3t - 2)^2 d(3t - 2)$$

$$= \frac{1}{9} (3t - 2)^3 \Big|_0^1$$

$$\langle f, h \rangle = \int_0^1 g(t)h(t)dt$$

$$\langle f, f \rangle = \int_0^1 f(t) f(t) dt$$

$$\langle g, g \rangle = \int_0^1 g(t)g(t)dt$$

$$= \frac{1}{9}(1+8)$$

$$= 1$$

$$\|g\| = \sqrt{|\langle g, g \rangle|}$$

$$= 1$$

$$f) \quad \langle g, g \rangle = \int_{0}^{1} (t^{2} - 2t - 3)^{2} dt \qquad \langle h, h \rangle = \int_{0}^{1} h(t)h(t)dt$$

$$= \int_{0}^{1} (t^{4} - 4t^{3} - 2t^{2} + 12t + 9)dt$$

$$= \left(\frac{1}{5}t^{5} - t^{4} - \frac{2}{3}t^{3} + 6t^{2} + 9t\right)\Big|_{0}^{1}$$

$$= \frac{1}{5} - 1 - \frac{2}{3} + 6 + 9$$

$$= \frac{203}{15}$$

$$\|h\| = \sqrt{|\langle h, h \rangle|}$$

$$= \sqrt{\frac{203}{15}}$$

$$g) \quad \cos \alpha = \frac{-1}{\sqrt{\frac{19}{3}}}$$
$$= -\sqrt{\frac{3}{19}}$$

$$\cos \alpha = \frac{f \cdot g}{\|f\| \|g\|}$$

h)
$$\cos \beta = -\frac{37}{4} \frac{1}{\sqrt{\frac{19}{3}} \sqrt{\frac{203}{15}}}$$
$$= -\frac{111}{4} \sqrt{\frac{5}{3,857}}$$

$$\cos \beta = \frac{f \cdot g}{\|f\| \|g\|}$$

i)
$$\cos \theta = \frac{9}{4} \frac{1}{\sqrt{\frac{203}{15}}}$$
$$= \frac{9}{4} \sqrt{\frac{15}{203}}$$

$$\cos\theta = \frac{f \cdot g}{\|f\| \|g\|}$$

Suppose $\langle \vec{u}, \vec{v} \rangle = 3 + 2i$ in a complex inner product space V. Find:

a)
$$\langle (2-4i)\vec{u}, \vec{v} \rangle$$

b)
$$\langle \vec{u}, (4+3i)\vec{v} \rangle$$

a)
$$\langle (2-4i)\vec{u}, \vec{v} \rangle$$
 b) $\langle \vec{u}, (4+3i)\vec{v} \rangle$ c) $\langle (3-6i)\vec{u}, (5-2i)\vec{v} \rangle$ d) $\|\vec{u}, \vec{v}\|$

$$d$$
) $\|\vec{u}, \vec{v}\|$

Solution

a)
$$\langle (2-4i)\vec{u}, \vec{v} \rangle = (2-4i)\langle \vec{u}, \vec{v} \rangle$$

= $(2-4i)(3+2i)$
= $6+4i-12i+8$
= $14-8i$

b)
$$\langle \vec{u}, (4+3i)\vec{v} \rangle = (4+3i)\langle \vec{u}, \vec{v} \rangle$$

= $(4+3i)(3+2i)$
= $12+8i+9i-6$
= $14-8i$

c)
$$\langle (3-6i)\vec{u}, (5-2i)\vec{v} \rangle = (3-6i)(5-2i)\langle \vec{u}, \vec{v} \rangle$$

 $= (15-36i-12)(3+2i)$
 $= (3-36i)(3+2i)$
 $= 9-102i+72$
 $= 81-102i$

d)
$$\|\vec{u}, \vec{v}\| = \sqrt{\langle \vec{u}, \vec{v} \rangle}$$

 $= \sqrt{9+4}$
 $= \sqrt{13}$

Exercise

Find the Fourier coefficient c and the projection $c\vec{v}$ of $\vec{u} = (3+4i, 2-3i)$ along $\vec{v} = (5+i, 2i)$ in \mathbb{C}^2

 $c = \frac{\langle \vec{u}, \vec{v} \rangle}{\langle \vec{v}, \vec{v} \rangle}$

$$c = \frac{(3+4i)(\overline{5+i}) + (2-3i)(\overline{2i})}{5^2 + 1^2 + 2^2}$$

$$= \frac{(3+4i)(5-i) + (2-3i)(-2i)}{25+1+4}$$

$$= \frac{15+17i+4-4i-6}{30}$$

$$= \frac{13+13i}{30}$$

$$=\frac{13}{30}+\frac{13}{30}i$$

$$proj(\vec{u}, \vec{v}) = c\vec{v}$$

$$= \left(\frac{13}{30} + \frac{13}{30}i\right)(5+i, 2i)$$

$$= \left(\frac{13}{6} + \frac{13}{6}i + \frac{13}{30}i - \frac{13}{30}, \frac{13}{15}i - \frac{13}{15}\right)$$

$$= \left(\frac{52}{30} + \frac{78}{30}i, -\frac{13}{15} + \frac{13}{15}i\right)$$

$$= \left(\frac{26}{15} + \frac{39}{30}i, -\frac{13}{15} + \frac{13}{15}i\right)$$

Suppose $\vec{v} = (1, 3, 5, 7)$. Find the projection of \vec{v} onto \vec{W} or find $\vec{w} \in \vec{W}$ that minimizes $||\vec{v} - \vec{w}||$, where \vec{W} is the subspace of \mathbb{R}^4 spanned by:

a)
$$\vec{u}_1 = (1, 1, 1, 1)$$
 and $\vec{u}_2 = (1, -3, 4, -2)$

b)
$$\vec{v}_1 = (1, 1, 1, 1)$$
 and $\vec{v}_2 = (1, 2, 3, 2)$

Solution

a)
$$\vec{u}_1 \cdot \vec{u}_2 = (1, 1, 1, 1) \cdot (1, -3, 4, -2)$$

= 1-3+4-2
= 0

Therefore, \vec{u}_1 and \vec{u}_2 are orthogonal.

$$\begin{split} c_1 &= \frac{\left<\vec{v}, \; \vec{u}_1\right>}{\left<\vec{u}_1, \; \vec{u}_1\right>} \\ &= \frac{\left(1, \; 3, \; 5, \; 7\right) \cdot \left(1, \; 1, \; 1, \; 1\right)}{\left\|\left(1, \; 1, \; 1, \; 1\right)\right\|^2} \\ &= \frac{1 + 3 + 5 + 7}{1 + 1 + 1 + 1} \\ &= \frac{16}{4} \\ &= 4 \; \middle\rfloor \\ c_2 &= \frac{\left<\vec{v}, \; \vec{u}_2\right>}{\left<\vec{u}_2, \; \vec{u}_2\right>} \end{split}$$

$$= \frac{(1, 3, 5, 7) \cdot (1, -3, 4, -2)}{\|(1, -3, 4, -2)\|^2}$$

$$= \frac{1 - 9 + 20 - 14}{1 + 9 + 16 + 4}$$

$$= \frac{-2}{30}$$

$$= \frac{1}{15}$$

$$w = proj(\vec{v}, W)$$

$$= c_1 \vec{u}_1 + c_2 \vec{u}_2$$

$$= 4(1, 1, 1, 1) + \frac{1}{15}(1, -3, 4, -2)$$

$$= \left(\frac{59}{15}, \frac{63}{5}, \frac{56}{15}, \frac{62}{15}\right)$$

b)
$$\vec{v}_1 \cdot \vec{v}_2 = (1, 1, 1, 1) \cdot (1, 2, 3, 2)$$

= 1 + 2 + 3 + 2
= 8 \neq 0

Therefore, \vec{v}_1 and \vec{v}_2 are not orthogonal.

Applying Gram-Schmidt algorithm

$$\vec{w}_1 = \vec{v}_1 = (1, 1, 1, 1)$$

$$\begin{split} \vec{w}_2 &= (1, \ 2, \ 3, \ 2) - \frac{(1, \ 2, \ 3, \ 2) \cdot (1, \ 1, \ 1, \ 1)}{4} (1, \ 1, \ 1, \ 1) \\ &= (1, \ 2, \ 3, \ 2) - 2(1, \ 1, \ 1, \ 1) \\ &= (-1, \ 0, \ 1, \ 0) \ \, \Big| \\ c_1 &= \frac{(1, \ 3, \ 5, \ 7) \cdot (1, \ 1, \ 1, \ 1)}{\left\|(1, \ 1, \ 1, \ 1)\right\|^2} \\ c_1 &= \frac{\left(\frac{1}{4} + \frac{3}{4} + \frac{5}{4} + \frac{7}{1 + 1 + 1 + 1}\right)}{\left\|(1, \ 1, \ 0, \ 1, \ 0)\right\|^2} \\ c_2 &= \frac{\left(\frac{1}{4}, \ 3, \ 5, \ 7\right) \cdot \left(-1, \ 0, \ 1, \ 0\right)}{\left\|(-1, \ 0, \ 1, \ 0)\right\|^2} \\ c_2 &= \frac{\left\langle\vec{v}, \ \vec{w}_1\right\rangle}{\left\langle\vec{w}_2, \ \vec{w}_2\right\rangle} \\ c_3 &= \frac{\left\langle\vec{v}, \ \vec{w}_2\right\rangle}{\left\langle\vec{w}_2, \ \vec{w}_2\right\rangle} \end{split}$$

$$= \frac{-1+0+5+0}{2}$$

$$= -3 \rfloor$$

$$w = proj(\vec{v}, W)$$

$$= c_1 \vec{w}_1 + c_2 \vec{w}_2$$

$$= 4(1, 1, 1, 1) - 3(-1, 0, 1, 0)$$

$$= (7, 4, 1, 4) \rfloor$$

Suppose $\{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$ is an orthogonal set of vectors. Prove that (*Pythagoras*)

$$\left\| \vec{u}_1 + \vec{u}_2 + \dots + \vec{u}_n \right\|^2 = \left\| \vec{u}_1 \right\|^2 + \left\| \vec{u}_2 \right\|^2 + \dots + \left\| \vec{u}_n \right\|^2$$

Solution

$$\begin{split} \left\| \vec{u}_1 + \vec{u}_2 + \dots + \vec{u}_n \right\|^2 &= \left\langle \vec{u}_1 + \vec{u}_2 + \dots + \vec{u}_n, \ \vec{u}_1 + \vec{u}_2 + \dots + \vec{u}_n \right\rangle \\ &= \left\langle \vec{u}_1, \ \vec{u}_1 \right\rangle + \left\langle \vec{u}_2, \ \vec{u}_2 \right\rangle + \dots + \left\langle \vec{u}_n, \ \vec{u}_n \right\rangle \\ &= \left\| \vec{u}_1 \right\|^2 + \left\| \vec{u}_2 \right\|^2 + \dots + \left\| \vec{u}_n \right\|^2 \end{split}$$

Exercise

Suppose *A* is an orthogonal matrix. Show that $\langle \vec{u}A, \vec{v}A \rangle = \langle \vec{u}, \vec{v} \rangle$ for any $\vec{u}, \vec{v} \in V$

Solution

A is an orthogonal matrix $\Rightarrow AA^T = I$

And
$$\langle \vec{u}, \vec{v} \rangle = \vec{u}^T \vec{v}$$

$$\langle \vec{u}A, \ \vec{v}A \rangle = (A\vec{u})^T (A\vec{v})$$

$$= \vec{u}^T (A^T A) \vec{v}$$

$$= \vec{u}^T I \ \vec{v}$$

$$= \vec{u}^T \vec{v}$$

$$= \langle \vec{u}, \ \vec{v} \rangle \quad \checkmark$$

Suppose *A* is an orthogonal matrix. Show that $\|\vec{u}A\| = \|\vec{u}\|$ for every $\vec{u} \in V$

Solution

A is an orthogonal matrix

$$\Rightarrow AA^{T} = I \text{ and } \langle \vec{u}, \vec{u} \rangle = \vec{u}^{T} \vec{u}$$

$$\|\vec{u}A\|^{2} = \langle \vec{u}A, \vec{u}A \rangle$$

$$= (A\vec{u})^{T} (A\vec{u})$$

$$= \vec{u}^{T} (A^{T} A) \vec{u}$$

$$= \vec{u}^{T} I \vec{u}$$

$$= \vec{u}^{T} \vec{u}$$

$$= \langle \vec{u}, \vec{u} \rangle \checkmark$$

Exercise

Let V be an inner product space over $\mathbb R$ or $\mathbb C$. Show that

$$\|\vec{u} + \vec{v}\| = \|\vec{u}\| + \|\vec{v}\|$$

If and only if

$$\|s\vec{u} + t\vec{v}\| = s\|\vec{u}\| + t\|\vec{v}\|$$
 for all $s, t \ge 0$

Solution

Suppose that
$$\|\vec{u} + \vec{v}\| = \|\vec{u}\| + \|\vec{v}\|$$
. For $s, t \ge 0$

$$\|s\vec{u} + t\vec{v}\|^2 = s^2 \|\vec{u}\|^2 + t^2 \|\vec{v}\|^2 + 2st \,\vec{u}\vec{v}$$

$$\leq s^2 \|\vec{u}\|^2 + t^2 \|\vec{v}\|^2$$

$$\leq s \|\vec{u}\| + t \|\vec{v}\|$$

$$\|s\vec{u} + t\vec{v}\| \leq s \|\vec{u}\| + t \|\vec{v}\|$$

$$\|s\vec{u} + t\vec{v}\| = \|s\vec{u} + t\vec{u} - t\vec{u} + t\vec{v}\|$$

$$= \|t\vec{u} + t\vec{v} - t\vec{u} + s\vec{u}\|$$

$$= \|t(\vec{u} + \vec{v}) - (t - s)\vec{u}\|$$

$$\geq |t\|\vec{u} + \vec{v}\| - (t - s)\|\vec{u}\|$$

$$\|\vec{u} + \vec{v}\| = \|\vec{u}\| + \|\vec{v}\|$$

 $= t \|\vec{u}\| + \|\vec{v}\| - t \|\vec{u}\| + s \|\vec{u}\|$

$$= t \|\vec{v}\| + s \|\vec{u}\|$$

$$\begin{cases} \|s\vec{u} + t\vec{v}\| \le s \|\vec{u}\| + t \|\vec{v}\| \\ and \Rightarrow \|s\vec{u} + t\vec{v}\| = s \|\vec{u}\| + t \|\vec{v}\| \end{cases}$$

$$\|s\vec{u} + t\vec{v}\| \ge s \|\vec{u}\| + t \|\vec{v}\|$$

Let V be an inner product vector space over \mathbb{R} .

a) If e_1 , e_2 , e_3 are three vectors in V with pairwise product negative, that is,

$$\langle e_1, e_2 \rangle < 0$$
, $i, j = 1, 2, 3$, $i \neq j$

Show that e_1 , e_2 , e_3 are linearly independent.

- b) Is it possible for three vectors on the xy-plane to have pairwise negative products?
- c) Does part (a) remain valid when the word "negative: is replaced with positive?
- d) Suppose \vec{u} , \vec{v} , and \vec{w} are three–unit vectors in the xy–plane. What are the maximum and minimum values that

$$\langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{u} \rangle$$

Can attain? And when?

Solution

a) Suppose that e_1 , e_2 , e_3 are linearly dependent.

Then, assume that \boldsymbol{e}_1 , \boldsymbol{e}_2 , \boldsymbol{e}_3 are unit vectors and that

$$e_3 = c_1 e_1 + c_2 e_2$$

Then

$$\begin{split} \left\langle e_1,\,e_3\right\rangle &= c_1 \left\langle e_1,\,e_1\right\rangle + c_2 \left\langle e_1,\,e_2\right\rangle & \left\langle e_1,\,e_1\right\rangle = 1 \\ &= c_1 + c_2 \left\langle e_1,\,e_2\right\rangle < 0 \\ c_1 &< -c_2 \left\langle e_1,\,e_2\right\rangle & \left\langle e_2,\,e_1\right\rangle + c_2 \left\langle e_2,\,e_2\right\rangle & \left\langle e_2,\,e_2\right\rangle = 1 \\ &= c_1 \left\langle e_2,\,e_1\right\rangle + c_2 < 0 & \left\langle e_2,\,e_1\right\rangle + c_2 < 0 \\ c_2 &< -c_1 \left\langle e_2,\,e_1\right\rangle & \left\langle e_2,\,e_1\right\rangle & \left\langle e_2,\,e_1\right\rangle & \left\langle e_2,\,e_2\right\rangle = 1 \end{split}$$

$$=c_{2}\left\langle e_{1},\ e_{2}\right\rangle ^{2} \qquad \qquad \left\langle e_{1},\ e_{2}\right\rangle ^{2}>1$$

$$c_{2}< c_{2} \quad Contradiction$$

Therefore, e_1 , e_2 , e_3 are linearly independent.

- **b)** To have all three vectors on the *xy*-plane which is in 2 dimensional. Therefore, it is *impossible* for three to have pairwise negative products.
- **c**) No
- d) Given: \vec{u} , \vec{v} , and \vec{w} are three—unit vectors in the xy–plane and $|\langle \vec{u}, \vec{u} \rangle| = |\langle \vec{v}, \vec{v} \rangle| = |\langle \vec{w}, \vec{w} \rangle| = 1$

$$\cos \alpha_1 = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \|\vec{v}\|} \rightarrow \cos \alpha_1 = \langle \vec{u}, \vec{v} \rangle$$

$$\cos\alpha_2 = \frac{\left\langle \vec{v}, \ \vec{w} \right\rangle}{\left\| \vec{v} \right\| \ \left\| \vec{w} \right\|} \ \rightarrow \ \cos\alpha_2 = \left\langle \vec{v}, \ \vec{w} \right\rangle$$

$$\cos \alpha_3 = \frac{\langle \vec{u}, \vec{w} \rangle}{\|\vec{u}\| \|\vec{w}\|} \rightarrow \cos \alpha_3 = \langle \vec{u}, \vec{w} \rangle$$

$$\langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{u} \rangle = \cos \alpha_1 + \cos \alpha_2 + \cos \alpha_3$$

Since $-1 \le \cos \theta \le 1$

$$\langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{u} \rangle = 1 + 1 + 1$$

$$= 3$$

Since the 3 vectors are unit vectors in the *xy*-plane and which it will divide the plane into a three equal angles $\alpha = \frac{2\pi}{3}$

$$\langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{u} \rangle = \cos \frac{2\pi}{3} + \cos \frac{2\pi}{3} + \cos \frac{2\pi}{3}$$
$$= 3\cos \frac{2\pi}{3}$$
$$= 3\left(-\frac{1}{2}\right)$$
$$= -\frac{3}{2}$$

Therefore, the minimum $\langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{u} \rangle = -\frac{3}{2}$

The maximum: $\langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{u} \rangle = 3$

Solution

Exercise

Use the Gram-Schmidt process to find an orthonormal basis for the subspaces of \mathbb{R}^m .

$$\vec{u}_1 = (1, -3), \quad \vec{u}_2 = (2, 2)$$

$$\begin{split} \vec{v}_1 &= \frac{\vec{u}_1}{\left\|\vec{u}_1\right\|} \\ &= \frac{(1, -3)}{\sqrt{1^{2+}(-3)^2}} \\ &= \frac{(1, -3)}{\sqrt{10}} \\ &= \left(\frac{1}{\sqrt{10}}, -\frac{3}{\sqrt{10}}\right) \right] \\ \vec{w}_2 &= \vec{v}_2 - \left(\vec{v}_2 \cdot \vec{u}_1\right) \vec{u}_1 \\ &= (2, 2) - \left[(2, 2) \cdot \left(\frac{1}{\sqrt{10}}, -\frac{3}{\sqrt{10}}\right)\right] \left(\frac{1}{\sqrt{10}}, -\frac{3}{\sqrt{10}}\right) \\ &= (2, 2) - \left[\frac{2}{\sqrt{10}} - \frac{6}{\sqrt{10}}\right] \left(\frac{1}{\sqrt{10}}, -\frac{3}{\sqrt{10}}\right) \\ &= (2, 2) - \left[-\frac{4}{\sqrt{10}}\right] \left(\frac{1}{\sqrt{10}}, -\frac{3}{\sqrt{10}}\right) \\ &= (2, 2) - \left(-\frac{4}{10}, \frac{12}{10}\right) \\ &= (2, 2) - \left(-\frac{2}{5}, \frac{6}{5}\right) \\ &= \frac{\left(\frac{12}{5}, \frac{4}{5}\right)}{5} \right] \\ \|w_2\| &= \sqrt{\left(\frac{12}{5}\right)^2 + \left(\frac{4}{5}\right)^2} \\ &= \sqrt{\frac{160}{25}} \\ &= \frac{4\sqrt{10}}{5} \end{split}$$

$$\vec{v}_2 = \frac{\vec{w}_2}{\|\vec{w}_2\|}$$

$$= \frac{4\sqrt{10}}{5} \left(\frac{12}{5}, \frac{4}{5}\right)$$

$$= \left(\frac{48\sqrt{10}}{25}, \frac{16\sqrt{10}}{25}\right)$$

Use the Gram-Schmidt process to find an orthonormal basis for the subspaces of \mathbb{R}^m .

$$\vec{u}_1 = (1, \ 0), \quad \vec{u}_2 = (3, \ -5)$$

$$\vec{v}_1 = \frac{\vec{u}_1}{\|\vec{u}_1\|}$$

$$= \frac{(1, 0)}{\sqrt{1^{2+0^2}}}$$

$$= (1, 0)$$

$$\vec{w}_2 = \vec{u}_2 - (\vec{u}_2 \cdot \vec{v}_1)\vec{v}_1$$

$$= (0, -5)$$

$$= (3, -5) - [(3, -5).(1, 0)](1, 0)$$

$$= (3, -5) - [3](1, 0)$$

$$= (3, -5) - (3, 0)$$

$$= (0, -5)$$

$$\|\vec{w}_2\| = \sqrt{0^2 + (-5)^2}$$

$$= 5$$

$$\vec{v}_2 = \frac{\vec{w}_2}{\|\vec{w}_2\|}$$

$$= \frac{1}{5}(0, -5)$$

$$= (0, -1)$$

Use the Gram-Schmidt process to find an orthonormal basis for the subspaces of \mathbb{R}^m .

$$\{(1, 1, 1), (-1, 1, 0), (1, 2, 1)\}$$

$$\vec{u}_{1} = \frac{(1, 1, 1)}{\sqrt{1^{2} + 1^{2} + 1^{2}}}$$

$$= \frac{(1, 1, 1)}{\sqrt{3}}$$

$$= \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

$$\begin{split} \vec{w}_2 &= \vec{v}_2 - \left(\vec{v}_2 \cdot \vec{u}_1\right) \vec{u}_1 \\ &= (-1, 1, 0) - \left[(-1, 1, 0) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \right] \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \\ &= (-1, 1, 0) - \left[-\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} + 0 \right] \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \\ &= (-1, 1, 0) - 0 \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \\ &= (-1, 1, 0) \ \, \end{split}$$

$$\begin{split} \left\| \vec{w}_{2} \right\| &= \sqrt{(-1)^{2} + 1^{2}} \\ &= \sqrt{2} \ \, \right] \\ \vec{u}_{2} &= \frac{(-1, \ 1, \ 0)}{\sqrt{2}} \qquad \qquad \vec{u}_{2} = \frac{\vec{w}_{2}}{\left\| \vec{w}_{2} \right\|} \\ &= \left(-\frac{1}{\sqrt{2}}, \ \frac{1}{\sqrt{2}}, \ 0 \right) \, \, \, \end{split}$$

$$\vec{v}_{3} \cdot \vec{u}_{1} = (1, 2, 1) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

$$= \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}}$$

$$= \frac{3}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}}$$

$$= \sqrt{3} \mid$$

$$\vec{v}_{3} \cdot \vec{u}_{2} = (1, 2, 1) \cdot \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right)$$

$$= -\frac{1}{\sqrt{2}} + \frac{2}{\sqrt{2}} + 0$$

$$= \frac{1}{\sqrt{2}}$$

$$\vec{w}_{3} = \vec{v}_{3} - (\vec{v}_{3} \cdot \vec{u}_{1}) \vec{u}_{1} - (\vec{v}_{3} \cdot \vec{u}_{2}) \vec{u}_{2}$$

$$= (1, 2, 1) - \sqrt{3} \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) - \sqrt{2} \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right)$$

$$= (1, 2, 1) - (1, 1, 1) - (-1, 1, 0)$$

$$= (1, 0, 0)$$

$$\vec{u}_{3} = \frac{(1, 0, 0)}{\sqrt{1}}$$

$$\vec{u}_{3} = \frac{\vec{w}_{3}}{\|\vec{w}_{3}\|}$$

$$= (1, 0, 0)$$

Use the Gram-Schmidt process to find an orthonormal basis for the subspaces of R^{m} .

$$\{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}$$

$$\begin{split} \vec{u}_1 &= \frac{(1, 1, 1)}{\sqrt{1 + 1 + 1}} \\ &= \frac{(1, 1, 1)}{\sqrt{3}} \\ &= \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\ \vec{w}_2 &= (0, 1, 1) - \left[(0, 1, 1) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\right] \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\ &= (0, 1, 1) - \left[\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}\right] \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\ &= (0, 1, 1) - \left[\frac{2}{\sqrt{3}}\right] \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\ &= (0, 1, 1) - \left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right) \end{split}$$

$$=\left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

$$\|\vec{w}_2\| = \sqrt{\left(-\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^2}$$

$$= \sqrt{\frac{4}{9} + \frac{1}{9} + \frac{1}{9}}$$

$$= \sqrt{\frac{6}{9}}$$

$$= \frac{\sqrt{6}}{3}$$

$$\vec{u}_{2} = \frac{\left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)}{\frac{\sqrt{6}}{3}}$$

$$= \frac{3}{\sqrt{6}} \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

$$= \left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$

$$\vec{v}_3 \cdot \vec{u}_1 = (0, 0, 1) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$
$$= \frac{1}{\sqrt{3}}$$

$$\vec{v}_3 \cdot \vec{u}_2 = (0, 0, 1) \cdot \left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right)$$
$$= \frac{1}{\sqrt{6}}$$

$$\begin{split} \vec{w}_3 &= (0,\ 0,\ 1) - \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}},\ \frac{1}{\sqrt{3}},\ \frac{1}{\sqrt{3}} \right) - \frac{1}{\sqrt{6}} \left(-\frac{2}{\sqrt{6}},\ \frac{1}{\sqrt{6}},\ \frac{1}{\sqrt{6}} \right) & \vec{w}_3 &= \vec{v}_3 - \left(\vec{v}_3 \cdot \vec{u}_1 \right) \vec{u}_1 - \left(\vec{v}_3 \cdot \vec{u}_2 \right) \vec{u}_2 \\ &= (0,\ 0,\ 1) - \left(\frac{1}{3},\ \frac{1}{3},\ \frac{1}{3} \right) - \left(-\frac{1}{3},\ \frac{1}{6},\ \frac{1}{6} \right) \\ &= \left(0,\ -\frac{1}{2},\ \frac{1}{2} \right) \end{split}$$

 $\vec{u}_2 = \frac{\vec{w}_2}{\|\vec{w}_2\|}$

$$\vec{u}_{3} = \frac{\left(0, -\frac{1}{2}, \frac{1}{2}\right)}{\sqrt{\left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2}}}$$

$$= \frac{\left(0, -\frac{1}{2}, \frac{1}{2}\right)}{\sqrt{\frac{1}{2}}}$$

$$\vec{u}_{3} = \frac{\vec{w}_{3}}{\|\vec{w}_{3}\|}$$

$$= \frac{\left(0, -\frac{1}{2}, \frac{1}{2}\right)}{\frac{1}{\sqrt{2}}}$$

$$= \sqrt{2}\left(0, -\frac{1}{2}, \frac{1}{2}\right)$$

$$= \left(0, -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

Use the Gram-Schmidt process to find an orthonormal basis for the subspaces of \mathbb{R}^m .

$$\{(1, 1, 1), (0, 2, 1), (1, 0, 3)\}$$

$$\begin{split} \vec{u}_1 &= \frac{\vec{v}_1}{\left\|\vec{v}_1\right\|} \\ &= \frac{(1, 1, 1)}{\sqrt{1 + 1 + 1}} \\ &= \frac{(1, 1, 1)}{\sqrt{3}} \\ &= \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\ \vec{w}_2 &= \vec{v}_2 - \left(\vec{v}_2 \cdot \vec{u}_1\right) \vec{u}_1 \\ &= (0, 2, 1) - \left[(0, 2, 1) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \right] \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\ &= (0, 2, 1) - \left(\frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}}\right) \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\ &= (0, 2, 1) - \frac{3}{\sqrt{3}} \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\ &= (0, 2, 1) - \sqrt{3} \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\ &= (0, 2, 1) - (1, 1, 1) \\ &= (-1, 1, 0) \end{split}$$

$$\|w_2\| = \sqrt{(-1)^2 + (1)^2 + (0)^2} \\ &= \sqrt{2} \ |$$

$$\vec{u}_{2} = \frac{\vec{w}_{2}}{\|\vec{w}_{2}\|}$$

$$= \frac{(-1, 1, 0)}{\sqrt{2}}$$

$$= \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$$

$$\vec{v}_3 \cdot \vec{u}_1 = (1, 0, 3) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$
$$= \frac{1}{\sqrt{3}} + \frac{3}{\sqrt{3}}$$
$$= \frac{4}{\sqrt{3}}$$

$$\vec{v}_3 \cdot \vec{u}_2 = (1, 0, 3) \cdot \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right)$$
$$= -\frac{1}{\sqrt{2}}$$

$$\begin{split} \vec{w}_3 &= \vec{v}_3 - \left(\vec{v}_3 \bullet \vec{u}_1\right) \vec{u}_1 - \left(\vec{v}_3 \bullet \vec{u}_2\right) \vec{u}_2 \\ &= (1, \ 0, \ 3) - \frac{4}{\sqrt{3}} \left(\frac{1}{\sqrt{3}}, \ \frac{1}{\sqrt{3}}, \ \frac{1}{\sqrt{3}}\right) + \frac{1}{\sqrt{2}} \left(-\frac{1}{\sqrt{2}}, \ \frac{1}{\sqrt{2}}, \ 0\right) \\ &= (1, \ 0, \ 3) - \left(\frac{4}{3}, \ \frac{4}{3}, \ \frac{4}{3}\right) + \left(-\frac{1}{2}, \ \frac{1}{2}, \ 0\right) \\ &= \left(-\frac{5}{6}, \ -\frac{5}{6}, \ \frac{5}{3}\right) \ \Big| \end{split}$$

$$\vec{u}_{3} = \frac{\vec{w}_{3}}{\left\|\vec{w}_{3}\right\|}$$

$$= \frac{1}{\sqrt{\left(-\frac{5}{6}\right)^{2} + \left(-\frac{5}{6}\right)^{2} + \left(\frac{5}{3}\right)^{2}}} \left(-\frac{5}{6}, -\frac{5}{6}, \frac{5}{3}\right)$$

$$= \frac{1}{\sqrt{\frac{25}{36} + \frac{25}{36} + \frac{25}{9}}} \left(-\frac{5}{6}, -\frac{5}{6}, \frac{5}{3}\right)$$

$$= \frac{1}{\frac{5}{6}} \sqrt{6} \left(-\frac{5}{6}, -\frac{5}{6}, \frac{5}{3}\right)$$

$$= \left(-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)$$

Use the Gram-Schmidt process to find an orthonormal basis for the subspaces of \mathbb{R}^m .

$$\{(2, 2, 2), (1, 0, -1), (0, 3, 1)\}$$

$$\begin{split} \vec{u}_1 &= \frac{\vec{v}_1}{\left\| \vec{v}_1 \right\|} \\ &= \frac{(2, 2, 2)}{\sqrt{2^2 + 2^2 + 2^2}} \\ &= \frac{(2, 2, 2)}{\sqrt{12}} \\ &= \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \\ \vec{w}_3 &= \vec{v}_3 - \left(\vec{v}_3 \cdot \vec{u}_1 \right) \vec{u}_1 \end{split}$$

$$\vec{w}_{3} = \vec{v}_{3} - (\vec{v}_{3} \cdot \vec{u}_{1}) \vec{u}_{1} - (\vec{v}_{3} \cdot \vec{u}_{2}) \vec{u}_{2}$$

$$= (1, 0, -1) - \left[(1, 0, -1) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \right] \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right)$$

$$= (1, 0, -1) - \left(\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} \right) \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right)$$

$$= (0, 2, 1) - (0) \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right)$$

$$= (1, 0, -1)$$

$$\vec{u}_{2} = \frac{\vec{w}_{2}}{\|\vec{w}_{2}\|}$$

$$= \frac{(1, 0, -1)}{\sqrt{2}}$$

$$= \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)$$

$$\vec{v}_3 \cdot \vec{u}_1 = (0, 3, 1) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$
$$= \frac{3}{\sqrt{3}} + \frac{1}{\sqrt{3}}$$
$$= \frac{4}{\sqrt{3}}$$

$$\vec{v}_3 \cdot \vec{u}_2 = (0, 3, 1) \cdot \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)$$

$$\begin{split} & = -\frac{1}{\sqrt{2}} \\ \vec{w}_3 = \vec{v}_3 - \left(\vec{v}_3 \cdot \vec{u}_1\right) \vec{u}_1 - \left(\vec{v}_3 \cdot \vec{u}_2\right) \vec{u}_2 \\ & = (0, 3, 1) - \frac{4}{\sqrt{3}} \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right) \\ & = (0, 3, 1) - \left(\frac{4}{3}, \frac{4}{3}, \frac{4}{3}\right) + \left(\frac{1}{2}, 0, -\frac{1}{2}\right) \\ & = \left(-\frac{5}{6}, \frac{5}{3}, -\frac{5}{6}\right) \\ & = \frac{\vec{w}_3}{\left\|\vec{w}_3\right\|} \\ & = \frac{1}{\sqrt{\left(-\frac{5}{6}\right)^2 + \left(\frac{5}{3}\right)^2 + \left(-\frac{5}{6}\right)^2}} \left(-\frac{5}{6}, \frac{5}{3}, -\frac{5}{6}\right) \\ & = \frac{1}{\sqrt{\frac{25}{36} + \frac{25}{36} + \frac{25}{9}}} \left(-\frac{5}{6}, \frac{5}{3}, -\frac{5}{6}\right) \\ & = \frac{1}{\frac{5}{6}\sqrt{6}} \left(-\frac{5}{6}, \frac{5}{3}, -\frac{5}{6}\right) \\ & = \left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right) \\ & = \left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right) \\ \end{split}$$

Use the Gram-Schmidt process to find an orthonormal basis for the subspaces of \mathbb{R}^m .

$$\{(1, -1, 0), (0, 1, 0), (2, 3, 1)\}$$

$$\vec{u}_{1} = \frac{\vec{v}_{1}}{\|\vec{v}_{1}\|}$$

$$= \frac{(1, -1, 0)}{\sqrt{2}}$$

$$= \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$$

$$\vec{w}_{2} = \vec{v}_{2} - (\vec{v}_{2} \cdot \vec{u}_{1}) \vec{u}_{1}$$

$$= (0, 1, 0) - \left[(0, 1, 0) \cdot \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0 \right) \right] \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0 \right)$$

$$= (0, 1, 0) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0 \right)$$

$$= (0, 1, 0) + \left(\frac{1}{2}, -\frac{1}{2}, 0 \right)$$

$$= \left(\frac{1}{2}, \frac{1}{2}, 0 \right)$$

$$\vec{u}_{2} = \frac{\vec{w}_{2}}{\|\vec{w}_{2}\|}$$

$$= \frac{1}{\sqrt{\frac{1}{4} + \frac{1}{4}}} \left(\frac{1}{2}, \frac{1}{2}, 0\right)$$

$$= \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$$

$$\vec{v}_3 \cdot \vec{u}_1 = (2, 3, 1) \cdot \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$$

$$= \frac{2}{\sqrt{2}} - \frac{3}{\sqrt{2}}$$

$$= -\frac{1}{\sqrt{2}}$$

$$\vec{v}_3 \cdot \vec{u}_2 = (2, 3, 1) \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$$
$$= \frac{4}{\sqrt{2}}$$
$$= 2\sqrt{2} \mid$$

$$\begin{split} \vec{w}_3 &= \vec{v}_3 - \left(\vec{v}_3 \cdot \vec{u}_1\right) \vec{u}_1 - \left(\vec{v}_3 \cdot \vec{u}_2\right) \vec{u}_2 \\ &= (2, 3, 1) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right) - 2\sqrt{2} \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) \\ &= (2, 3, 1) + \left(\frac{1}{2}, -\frac{1}{2}, 0\right) - (2, 2, 0) \\ &= \left(\frac{1}{2}, \frac{1}{2}, 1\right) \end{split}$$

$$\vec{u}_3 = \frac{\vec{w}_3}{\|\vec{w}_3\|}$$

$$= \frac{1}{\sqrt{\frac{1}{4} + \frac{1}{4} + 1}} \left(\frac{1}{2}, \frac{1}{2}, 1 \right)$$

$$= \frac{2}{\sqrt{6}} \left(\frac{1}{2}, \frac{1}{2}, 1 \right)$$

$$= \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right)$$

Use the Gram-Schmidt process to find an orthonormal basis for the subspaces of \mathbb{R}^m .

$$\{(3, 0, 4), (-1, 0, 7), (2, 9, 11)\}$$

$$\vec{u}_{1} = \frac{\vec{v}_{1}}{\|\vec{v}_{1}\|}$$

$$= \frac{(3, 0, 4)}{\sqrt{9 + 16}}$$

$$= \left(\frac{3}{5}, 0, \frac{4}{5}\right)$$

$$\vec{w}_{1} = \vec{v}_{2} - \left(\vec{v}_{1} - \vec{v}_{2}\right)$$

$$\begin{split} \vec{w}_2 &= \vec{v}_2 - \left(\vec{v}_2 \cdot \vec{u}_1\right) \vec{u}_1 \\ &= (-1, \ 0, \ 7) - \left[(-1, \ 0, \ 7) \cdot \left(\frac{3}{5}, \ 0, \ \frac{4}{5}\right) \right] \left(\frac{3}{5}, \ 0, \ \frac{4}{5}\right) \\ &= (-1, \ 0, \ 7) - \left(-\frac{3}{5} + \frac{28}{5}\right) \left(\frac{3}{5}, \ 0, \ \frac{4}{5}\right) \\ &= (-1, \ 0, \ 7) - 5 \left(\frac{3}{5}, \ 0, \ \frac{4}{5}\right) \\ &= (-1, \ 0, \ 7) - (3, \ 0, \ 4) \\ &= (-4, \ 0, \ 3) \ \ \ \end{split}$$

$$\vec{u}_2 = \frac{\vec{w}_2}{\|\vec{w}_2\|}$$

$$= \frac{1}{\sqrt{16+9}} (-4, 0, 3)$$

$$= \left(-\frac{4}{5}, 0, \frac{3}{5}\right)$$

$$\vec{v}_3 \cdot \vec{u}_1 = (2, 9, 11) \cdot \left(\frac{3}{5}, 0, \frac{4}{5}\right)$$

$$= \frac{6}{5} + \frac{44}{5}$$

$$= 10$$

$$\vec{v}_3 \cdot \vec{u}_2 = (2, 9, 11) \cdot \left(-\frac{4}{5}, 0, \frac{3}{5} \right)$$

$$= -\frac{8}{5} + \frac{33}{5}$$

$$= 5$$

$$\vec{w}_3 = \vec{v}_3 - \left(\vec{v}_3 \cdot \vec{u}_1 \right) \vec{u}_1 - \left(\vec{v}_3 \cdot \vec{u}_2 \right) \vec{u}_2$$

$$\vec{w}_3 = (2, 9, 11) - 10 \left(\frac{3}{5}, 0, \frac{4}{5} \right) - 5 \left(-\frac{4}{5}, 0, \frac{3}{5} \right)$$

$$= (0, 9, 0)$$

$$\vec{u}_3 = \frac{\vec{w}_3}{\|\vec{w}_3\|}$$

$$= \frac{1}{9} (0, 9, 0)$$

$$= (0, 1, 0)$$

Use the Gram-Schmidt process to find an orthonormal basis for the subspaces of \mathbb{R}^m .

$$\{(1, 1, 1, 1), (1, 2, 1, 0), (1, 3, 0, 0)\}$$

$$\begin{split} \vec{v}_1 &= \vec{u}_1 \\ &= (1, 1, 1, 1) \end{bmatrix} \\ \vec{q}_1 &= \frac{\vec{v}_1}{\left\| \vec{v}_1 \right\|} \\ &= \frac{(1, 1, 1, 1)}{\sqrt{4}} \\ &= \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right) \end{bmatrix} \\ \vec{v}_2 &= \vec{u}_2 - \frac{\left\langle \vec{u}_2, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 \end{split}$$

$$= (1, 2, 1, 0) - \frac{(1, 2, 1, 0) \cdot (1, 1, 1, 1)}{\|(1, 1, 1, 1)\|^2} (1, 1, 1, 1)$$

$$= (1, 2, 1, 0) - \frac{1+2+1}{4} (1, 1, 1, 1)$$

$$= (1, 2, 1, 0) - \frac{4}{4} (1, 1, 1, 1)$$

$$= (1, 2, 1, 0) - (1, 1, 1, 1)$$

$$= (0, 1, 0, -1)$$

$$= (0, 1, 0, -1)$$

$$= \frac{0}{\|v_2\|}$$

$$= \frac{(0, 1, 0, -1)}{\sqrt{1+1}}$$

$$= \frac{0}{\|v_2\|} \sqrt{\frac{1}{\|v_1\|^2}} v_1 - \frac{\sqrt{u_3}, \overline{v_2}}{\|v_2\|^2} v_2$$

$$= (1, 3, 0, 0) - \frac{(1, 3, 0, 0) \cdot (1, 1, 1, 1)}{\|(1, 1, 1, 1)\|^2} (1, 1, 1, 1) - \frac{(1, 3, 0, 0) \cdot (0, 1, 0, -1)}{\|(0, 1, 0, -1)\|^2} (0, 1, 0, -1)$$

$$= (1, 3, 0, 0) - \frac{4}{4} (1, 1, 1, 1) - \frac{3}{2} (0, 1, 0, -1)$$

$$= (1, 3, 0, 0) - (1, 1, 1, 1) - (0, \frac{3}{2}, 0, -\frac{3}{2})$$

$$= (0, \frac{1}{2}, -1, \frac{1}{2})$$

$$\vec{q}_3 = \frac{\vec{v}_3}{\left\|\vec{v}_3\right\|}$$

$$= \frac{\left(0, \frac{1}{2}, -1, \frac{1}{2}\right)}{\sqrt{\frac{1}{4} + 1 + \frac{1}{4}}}$$

$$= \frac{\left(0, \frac{1}{2}, -1, \frac{1}{2}\right)}{\frac{\sqrt{6}}{2}}$$

$$= \frac{2}{\sqrt{6}} \left(0, \frac{1}{2}, -1, \frac{1}{2}\right)$$

 $=\left(0, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$

Use the Gram-Schmidt process to find an orthonormal basis for the subspaces of \mathbb{R}^m .

$$\{(0, 2, -1, 1), (0, 0, 1, 1), (-2, 1, 1, -1)\}$$

$$\begin{split} \vec{u}_1 &= \frac{\vec{v}_1}{\|\vec{v}_1\|} \\ &= \frac{(0, \ 2, \ -1, \ 1)}{\sqrt{6}} \\ &= \left(0, \ \frac{2}{\sqrt{6}}, \ -\frac{1}{\sqrt{6}}, \ \frac{1}{\sqrt{6}}\right) \\ \vec{w}_2 &= \vec{v}_2 - \left(\vec{v}_2 \cdot \vec{u}_1\right) \vec{u}_1 \\ &= (0, \ 0, \ 1, \ 1) - \left[(0, \ 0, \ 1, \ 1) \cdot \left(0, \ \frac{2}{\sqrt{6}}, \ -\frac{1}{\sqrt{6}}, \ \frac{1}{\sqrt{6}}\right)\right] \left(0, \ \frac{2}{\sqrt{6}}, \ -\frac{1}{\sqrt{6}}, \ \frac{1}{\sqrt{6}}\right) \\ &= (0, \ 0, \ 1, \ 1) - \left[-\frac{1}{\sqrt{6}} + \frac{1}{\sqrt{6}}\right] \left(0, \ \frac{2}{\sqrt{6}}, \ -\frac{1}{\sqrt{6}}, \ \frac{1}{\sqrt{6}}\right) \\ &= (0, \ 0, \ 1, \ 1) - \left[0\right] \left(0, \ \frac{2}{\sqrt{6}}, \ -\frac{1}{\sqrt{6}}, \ \frac{1}{\sqrt{6}}\right) \\ &= \left(0, \ 0, \ 1, \ 1\right) \right] \\ \vec{u}_2 &= \frac{\vec{w}_2}{\left\|\vec{w}_2\right\|} \\ &= \frac{\left(0, \ 0, \ 1, \ 1\right)}{\sqrt{2}} \\ &= \frac{\left(0, \ 0, \ 1, \ 1\right)}{\sqrt{2}} \\ &= \frac{\left(0, \ 0, \ \frac{1}{\sqrt{2}}, \ \frac{1}{\sqrt{2}}\right)}{\sqrt{6}} \\ &= \frac{2}{\sqrt{6}} - \frac{1}{\sqrt{6}} - \frac{1}{\sqrt{6}} \\ &= 0 \ | \\ \vec{v}_3 \cdot \vec{u}_2 &= (-2, \ 1, \ 1, \ -1) \cdot \left(0, \ 0, \ \frac{1}{\sqrt{2}}, \ \frac{1}{\sqrt{2}}\right) \\ &= \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \\ &= 0 \ | \end{split}$$

$$\vec{w}_{3} = \vec{v}_{3} - (\vec{v}_{3} \cdot \vec{u}_{1}) \vec{u}_{1} - (\vec{v}_{3} \cdot \vec{u}_{2}) \vec{u}_{2}$$

$$= (-2, 1, 1, -1) - 0 - 0$$

$$= (-2, 1, 1, -1)$$

$$\vec{u}_{3} = \frac{\vec{w}_{3}}{\|\vec{w}_{3}\|}$$

$$= \frac{(-2, 1, 1, -1)}{\sqrt{(-2)^{2} + 1^{2} + 1^{2} + (-1)^{2}}}$$

$$= \frac{(-2, 1, 1, -1)}{\sqrt{7}}$$

$$= (-\frac{2}{\sqrt{7}}, \frac{1}{\sqrt{7}}, \frac{1}{\sqrt{7}}, -\frac{1}{\sqrt{7}})$$

Use the Gram-Schmidt process to find an orthonormal basis for the subspaces of \mathbb{R}^m .

$$\vec{u}_1 = (1, \ 0, \ 0), \quad \vec{u}_2 = (3, \ 7, \ -2), \quad \vec{u}_3 = (0, \ 4, \ 1)$$

$$\vec{v}_{1} = \frac{u_{1}}{\|\vec{u}_{1}\|}$$

$$= \frac{(1, 0, 0)}{\sqrt{1^{2} + 0^{2} + 0^{2}}}$$

$$= (1, 0, 0)$$

$$\vec{w}_{2} = \vec{u}_{2} - (\vec{u}_{2} \cdot \vec{v}_{1})\vec{v}_{1}$$

$$= (3, 7, -2) - [(3, 7, -2) \cdot (1, 0, 0)](1, 0, 0)$$

$$= (3, 7, -2) - 3(1, 0, 0)$$

$$= (0, 7, -2)$$

$$\vec{v}_{2} = \frac{\vec{w}_{2}}{\|\vec{w}_{2}\|}$$

$$= \frac{1}{\sqrt{53}}(0, 7, -2)$$

$$= \left(0, \frac{7}{\sqrt{53}}, -\frac{2}{\sqrt{53}}\right)$$

$$\vec{u}_3 \cdot \vec{v}_1 = (0, 4, 1) \cdot (1, 0, 0)$$

= 0 |

$$\vec{u}_3 \cdot \vec{v}_2 = (0, 4, 1) \cdot \left(0, \frac{7}{\sqrt{53}}, -\frac{2}{\sqrt{53}}\right)$$

$$= \frac{26}{\sqrt{53}}$$

$$\begin{split} \vec{w}_3 &= \vec{u}_3 - \left(\vec{u}_3 \cdot \vec{v}_1\right) \vec{v}_1 - \left(\vec{u}_3 \cdot \vec{v}_2\right) \vec{v}_2 \\ &= \left(0, \ 4, \ 1\right) - 0 - \frac{26}{\sqrt{53}} \left(0, \ \frac{7}{\sqrt{53}}, \ -\frac{2}{\sqrt{6}}\right) \\ &= \left(0, \ 4, \ 1\right) - 0 - \frac{26}{\sqrt{53}} \left(0, \ \frac{7}{\sqrt{53}}, \ -\frac{2}{\sqrt{6}}\right) \\ &= \left(0, \ 4, \ 1\right) - \left(0, \ \frac{182}{53}, \ -\frac{52}{53}\right) \\ &= \left(0, \ \frac{30}{53}, \ \frac{105}{53}\right) \, \Big| \end{split}$$

$$\vec{v}_{3} = \frac{\vec{w}_{3}}{\left\|\vec{w}_{3}\right\|}$$

$$= \frac{\left(0, \frac{30}{53}, \frac{105}{53}\right)}{\sqrt{\left(\frac{30}{53}\right)^{2} + \left(\frac{105}{53}\right)^{2}}}$$

$$= \frac{53}{\sqrt{11925}} \left(0, \frac{30}{53}, \frac{105}{53}\right)$$

$$= \frac{53}{15\sqrt{53}} \left(0, \frac{30}{53}, \frac{105}{53}\right)$$

$$= \left(0, \frac{2}{\sqrt{15}}, \frac{7}{\sqrt{15}}\right)$$

Use the Gram-Schmidt process to find an *orthonormal* basis for the subspaces of \mathbb{R}^m .

$$\vec{u}_1 = (1, 1, 1, 1), \quad \vec{u}_2 = (1, 2, 4, 5), \quad \vec{u}_3 = (1, -3, -4, -2)$$

$$\vec{v}_1 = \frac{\vec{u}_1}{\|\vec{u}_1\|}$$

$$= \frac{(1, 1, 1, 1)}{\sqrt{4}}$$

$$= (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$$

$$\vec{w}_2 = \vec{u}_2 - (\vec{u}_2 \cdot \vec{v}_1)\vec{v}_1$$

$$= (1, 2, 4, 5) - \left[(1, 2, 4, 5) \cdot (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \right] (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$$

$$= (1, 2, 4, 5) - 6(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$$

$$= (1, 2, 4, 5) - (3, 3, 3, 3)$$

$$= (-2, -1, 1, 2)$$

$$\vec{v}_2 = \frac{\vec{w}_2}{\|\vec{w}_2\|}$$

$$= \frac{1}{\sqrt{10}} (-2, -1, 1, 2)$$

$$= \left(-\frac{2}{\sqrt{10}}, -\frac{1}{\sqrt{10}}, \frac{1}{\sqrt{10}}, \frac{2}{\sqrt{10}} \right)$$

$$\vec{u}_3 \cdot \vec{v}_1 = (1, -3, -4, -2) \cdot (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$$

$$= \frac{1 - 3 - 4 - 2}{2}$$

$$= -4 \mid$$

$$\vec{u}_3 \cdot \vec{v}_2 = (1, -3, -4, -2) \cdot \left(-\frac{2}{\sqrt{10}}, -\frac{1}{\sqrt{10}}, \frac{2}{\sqrt{10}} \right)$$

$$= \frac{-2 + 3 - 4 - 4}{\sqrt{10}}$$

$$= -\frac{7}{\sqrt{10}}$$

$$\vec{w}_3 = \vec{u}_3 - (\vec{u}_3 \cdot \vec{v}_1)\vec{v}_1 - (\vec{u}_3 \cdot \vec{v}_2)\vec{v}_2$$

$$= (1, -3, -4, -2) + 4\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) + \frac{7}{\sqrt{10}}\left(-\frac{2}{\sqrt{10}}, -\frac{1}{\sqrt{10}}, \frac{1}{\sqrt{10}}, \frac{2}{\sqrt{10}}\right)$$

$$= (1, -3, -4, -2) + (2, 2, 2, 2) + \left(-\frac{7}{5}, -\frac{7}{10}, \frac{7}{10}, \frac{7}{5}\right)$$

$$= \left(\frac{8}{5}, -\frac{17}{10}, -\frac{27}{10}, \frac{7}{5}\right)$$

$$= \frac{\vec{w}_3}{\|\vec{w}_3\|}$$

$$= \frac{1}{\sqrt{\frac{64}{25} + \frac{289}{100} + \frac{289}{100} + \frac{49}{25}}} \left(\frac{8}{5}, -\frac{17}{10}, -\frac{27}{10}, \frac{7}{5}\right)$$

$$= \frac{1}{\sqrt{\frac{1030}{100}}} \left(\frac{8}{5}, -\frac{17}{10}, -\frac{27}{10}, \frac{7}{5}\right)$$

$$= \left(\frac{16}{\sqrt{1030}}, -\frac{17}{\sqrt{1030}}, -\frac{27}{\sqrt{1030}}, \frac{14}{\sqrt{1030}}\right)$$

Use the Gram-Schmidt process to find an *orthonormal* basis for the subspaces of \mathbb{R}^m .

$$\vec{u}_1 = (1, 1, 1, 1), \quad \vec{u}_2 = (1, 1, 2, 4), \quad \vec{u}_3 = (1, 2, -4, -3)$$

$$\vec{v}_{1} = \frac{u_{1}}{\left\|\vec{u}_{1}\right\|}$$

$$= \frac{(1, 1, 1, 1)}{\sqrt{4}}$$

$$= \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$

$$\vec{w}_{2} = \vec{u}_{2} - \left(\vec{u}_{2} \cdot \vec{v}_{1}\right) \vec{v}_{1}$$

$$= (1, 1, 2, 4) - \left[(1, 1, 2, 4) \cdot \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)\right] \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$

$$= (1, 1, 2, 4) - 4\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$

$$= (1, 1, 2, 4) - (2, 2, 2, 2)$$

$$= (-1, -1, 0, 2)$$

$$\vec{v}_2 = \frac{\vec{w}_2}{\|\vec{w}_2\|}$$

$$= \frac{1}{\sqrt{1+1+4}} (-1, -1, 0, 2)$$

$$= \left(-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, 0, \frac{2}{\sqrt{6}} \right)$$

$$\vec{u}_3 \cdot \vec{v}_1 = (1, 2, -4, -3) \cdot (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$$

$$= \frac{1+2-4-3}{2}$$

$$= -2 \mid$$

$$\vec{u}_3 \cdot \vec{v}_2 = (1, 2, -4, -3) \cdot \left(-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, 0, \frac{2}{\sqrt{6}} \right)$$

$$= \frac{-1 - 2 - 6}{\sqrt{6}}$$

$$= -\frac{9}{\sqrt{6}}$$

$$\begin{split} \vec{w}_3 &= \vec{u}_3 - \left(\vec{u}_3 \cdot \vec{v}_1\right) \vec{v}_1 - \left(\vec{u}_3 \cdot \vec{v}_2\right) \vec{v}_2 \\ &= (1, 2, -4, -3) + 2\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) + \frac{9}{\sqrt{6}} \left(-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, 0, \frac{2}{\sqrt{6}}\right) \\ &= (1, 2, -4, -3) + (1, 1, 1, 1) + \left(-\frac{3}{2}, -\frac{3}{2}, 0, 3\right) \\ &= \left(\frac{1}{2}, \frac{3}{2}, -3, 1\right) \end{split}$$

$$\vec{v}_3 = \frac{\vec{w}_3}{\|\vec{w}_3\|}$$

$$= \frac{1}{\sqrt{\frac{1}{4} + \frac{9}{4} + 9 + 1}} \left(\frac{1}{2}, \frac{3}{2}, -3, 1\right)$$

$$= \frac{2}{5\sqrt{2}} \left(\frac{1}{2}, \frac{3}{2}, -3, 1\right)$$

$$= \left(\frac{1}{5\sqrt{2}}, \frac{3}{5\sqrt{2}}, -\frac{6}{5\sqrt{2}}, \frac{2}{5\sqrt{2}}\right)$$

Use the Gram-Schmidt process to find an *orthonormal* basis for the subspaces of \mathbb{R}^m .

$$\vec{u}_1 = (0, 2, 1, 0); \quad \vec{u}_2 = (1, -1, 0, 0); \quad \vec{u}_3 = (1, 2, 0, -1); \quad \vec{u}_4 = (1, 0, 0, 1)$$

$$\vec{v}_1 = \frac{\vec{u}_1}{\|\vec{u}_1\|}$$

$$= \frac{(0, 2, 1, 0)}{\sqrt{5}}$$

$$= \left(0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0\right)$$

$$\vec{w}_2 = \vec{u}_2 - (\vec{u}_2 \cdot \vec{v}_1)\vec{v}_1$$

$$= (1, -1, 0, 0) - \left[(1, -1, 0, 0) \cdot \left(0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0\right) \right] \left(0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0\right)$$

$$= (1, -1, 0, 0) - \left(-\frac{2}{\sqrt{5}}\right) \left(0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0\right)$$

$$= \left(1, -\frac{1}{5}, \frac{2}{5}, 0\right)$$

$$= \frac{\vec{v}_2}{\|\vec{v}_2\|}$$

$$= \frac{\vec{v}_2}{\|\vec{v}_2\|}$$

$$= \frac{\vec{v}_2}{\sqrt{11 + \frac{1}{25} + \frac{4}{25} + 0}} \left(1, -\frac{1}{5}, \frac{2}{5}, 0\right)$$

$$= \frac{5}{\sqrt{30}} \left(1, -\frac{1}{5}, \frac{2}{5}, 0\right)$$

$$= \left(\frac{5}{\sqrt{30}}, -\frac{1}{\sqrt{30}}, \frac{2}{\sqrt{30}}, 0\right)$$

$$u_3 \cdot v_1 = (1, 2, 0, -1) \cdot \left(0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0\right)$$

$$= \frac{4}{\sqrt{5}}$$

$$u_3 \cdot v_2 = (1, 2, 0, -1) \cdot \left(\frac{5}{\sqrt{30}}, -\frac{1}{\sqrt{30}}, \frac{2}{\sqrt{30}}, 0\right)$$

$$= \frac{5}{\sqrt{30}} - \frac{2}{\sqrt{30}}$$

$$=\frac{3}{\sqrt{30}}$$

$$\begin{split} \vec{w}_3 &= \vec{u}_3 - \left(\vec{u}_3 \cdot \vec{v}_1\right) \vec{v}_1 - \left(\vec{u}_3 \cdot \vec{v}_2\right) \vec{v}_2 \\ &= (1, \ 2, \ 0, \ -1) - \left(\frac{4}{\sqrt{5}}\right) \left(0, \ \frac{2}{\sqrt{5}}, \ \frac{1}{\sqrt{5}}, \ 0\right) - \left(\frac{3}{\sqrt{30}}\right) \left(\frac{5}{\sqrt{30}}, \ -\frac{1}{\sqrt{30}}, \ \frac{2}{\sqrt{30}}, \ 0\right) \\ &= (1, \ 2, \ 0, \ -1) - \left(0, \ \frac{8}{5}, \ \frac{4}{5}, \ 0\right) - \left(\frac{1}{2}, \ -\frac{1}{10}, \ \frac{1}{5}, \ 0\right) \\ &= \left(\frac{1}{2}, \ \frac{1}{2}, \ -1, \ -1\right) \ \end{split}$$

$$\vec{v}_{3} = \frac{\vec{w}_{3}}{\|\vec{w}_{3}\|}$$

$$= \frac{\left(\frac{1}{2}, \frac{1}{2}, -1, -1\right)}{\sqrt{\left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2} + \left(-1\right)^{2} + \left(-1\right)^{2}}}$$

$$= \frac{1}{\sqrt{\frac{5}{2}}} \left(\frac{1}{2}, \frac{1}{2}, -1, -1\right)$$

$$= \frac{\sqrt{2}}{\sqrt{5}} \left(\frac{1}{2}, \frac{1}{2}, -1, -1\right) = \frac{2}{\sqrt{10}} \left(\frac{1}{2}, \frac{1}{2}, -1, -1\right)$$

$$= \left(\frac{1}{\sqrt{10}}, \frac{1}{\sqrt{10}}, -\frac{2}{\sqrt{10}}, -\frac{2}{\sqrt{10}}\right)$$

$$u_4 \cdot v_1 = (1, 0, 0, 1) \cdot \left(0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0\right)$$

= 0 |

$$u_4 \cdot v_2 = (1, 0, 0, 1) \cdot \left(\frac{5}{\sqrt{30}}, -\frac{1}{\sqrt{30}}, \frac{2}{\sqrt{30}}, 0\right)$$

$$= \frac{5}{\sqrt{30}}$$

$$u_4 \cdot v_3 = (1, 0, 0, 1) \cdot \left(\frac{1}{\sqrt{10}}, \frac{1}{\sqrt{10}}, -\frac{2}{\sqrt{10}}, -\frac{2}{\sqrt{10}}\right)$$

$$= -\frac{1}{\sqrt{10}}$$

$$\begin{split} \vec{w}_4 &= \vec{u}_4 - \left(\vec{u}_4 \cdot \vec{v}_1\right) \vec{v}_1 - \left(\vec{u}_4 \cdot \vec{v}_2\right) \vec{v}_2 - \left(\vec{u}_4 \cdot \vec{v}_3\right) \vec{v}_3 \\ &= \left(1, \ 2, \ 0, \ -1\right) - \left(0\right) - \left(\frac{5}{\sqrt{30}}\right) \left(\frac{5}{\sqrt{30}}, \ -\frac{1}{\sqrt{30}}, \ \frac{2}{\sqrt{30}}, \ 0\right) + \left(\frac{1}{\sqrt{10}}\right) \left(\frac{1}{\sqrt{10}}, \ \frac{1}{\sqrt{10}}, \ -\frac{2}{\sqrt{10}}, \ -\frac{2}{\sqrt{10}}\right) \end{split}$$

$$= (1, 2, 0, -1) - \left(\frac{5}{6}, -\frac{1}{6}, \frac{1}{3}, 0\right) + \left(\frac{1}{10}, \frac{1}{10}, -\frac{1}{5}, -\frac{1}{5}\right)$$

$$= \left(\frac{4}{15}, \frac{4}{15}, -\frac{8}{15}, \frac{4}{5}\right)$$

$$= \frac{\frac{\vec{w}_4}{\left\|\vec{w}_4\right\|}}{\left\|\vec{w}_4\right\|}$$

$$= \frac{\left(\frac{4}{15}, \frac{4}{15}, -\frac{8}{15}, \frac{4}{5}\right)}{\sqrt{\left(\frac{4}{15}\right)^2 + \left(\frac{4}{15}\right)^2 + \left(-\frac{8}{15}\right)^2 + \left(\frac{4}{5}\right)^2}}$$

$$= \frac{1}{\sqrt{\frac{240}{225}}} \left(\frac{4}{15}, \frac{4}{15}, -\frac{8}{15}, \frac{4}{5}\right)$$

$$= \frac{1}{\frac{4}{\sqrt{15}}} \left(\frac{4}{15}, \frac{4}{15}, -\frac{8}{15}, \frac{4}{5}\right)$$

$$= \frac{15}{4\sqrt{15}} \left(\frac{4}{15}, \frac{4}{15}, -\frac{8}{15}, \frac{4}{5}\right)$$

$$= \left(\frac{1}{\sqrt{15}}, \frac{1}{\sqrt{15}}, -\frac{2}{\sqrt{15}}, \frac{3}{\sqrt{15}}\right)$$

Use the Gram-Schmidt process to find an *orthogonal* basis for the subspaces of \mathbb{R}^m .

$$\{(1, 1, 0), (1, 2, 0), (0, 1, 2)\}$$

$$\begin{aligned}
\vec{v}_{1} &= (1, 1, 0) \\
\vec{v}_{2} &= \vec{u}_{2} - \frac{\left\langle \vec{u}_{2}, \vec{v}_{1} \right\rangle}{\left\| \vec{v}_{1} \right\|^{2}} \vec{v}_{1} \\
&= (0, 2, 1) - \frac{(1, 2, 0) \cdot (1, 1, 0)}{1 + 1 + 0} (1, 1, 0) \\
&= (0, 2, 1) - \frac{3}{2} (1, 1, 0) \\
&= \left(-\frac{3}{2}, \frac{1}{2}, 1 \right) \\
&\frac{\left\langle \vec{u}_{3}, \vec{v}_{1} \right\rangle}{\left\| \vec{v}_{1} \right\|^{2}} \vec{v}_{1} = \frac{(0, 1, 2) \cdot (1, 1, 0)}{2} (1, 1, 0)
\end{aligned}$$

$$\begin{split} & = \frac{\left(\frac{1}{2}, \frac{1}{2}, 0\right)}{\left\|\vec{v}_{2}\right\|^{2}} \vec{v}_{2} = \frac{1}{\frac{9}{4} + \frac{1}{4} + 1}(0, 1, 2) \cdot \left(-\frac{3}{2}, \frac{1}{2}, 1\right) \left(-\frac{3}{2}, \frac{1}{2}, 1\right) \\ & = \frac{2}{7} \frac{5}{2} \left(-\frac{3}{2}, \frac{1}{2}, 1\right) \\ & = \left(-\frac{15}{14}, \frac{5}{14}, \frac{5}{7}\right) \\ \vec{v}_{3} = \vec{u}_{3} - \frac{\left\langle\vec{u}_{3}, \vec{v}_{1}\right\rangle}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1} - \frac{\left\langle\vec{u}_{3}, \vec{v}_{2}\right\rangle}{\left\|\vec{v}_{2}\right\|^{2}} \vec{v}_{2} \\ & = (0, 1, 2) - \left(\frac{1}{2}, \frac{1}{2}, 0\right) - \left(-\frac{15}{14}, \frac{5}{14}, \frac{5}{7}\right) \\ & = \frac{\left(\frac{4}{7}, \frac{1}{7}, \frac{9}{7}\right)}{\left\|\vec{v}_{1}\right\|} \\ & = \frac{1}{\sqrt{2}}(1, 1, 0) \\ & = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) \\ \vec{q}_{2} = \frac{\vec{v}_{2}}{\left\|\vec{v}_{2}\right\|} \\ & = \frac{1}{\sqrt{2}} \left(-\frac{3}{2}, \frac{1}{2}, 1\right) \end{split}$$

$$\begin{split} \vec{q}_2 &= \frac{\vec{v}_2}{\left\| \vec{v}_2 \right\|} \\ &= \frac{1}{\sqrt{\frac{9}{4} + \frac{1}{4} + 1}} \left(-\frac{3}{2}, \ \frac{1}{2}, \ 1 \right) \\ &= \frac{2}{\sqrt{14}} \left(-\frac{3}{2}, \ \frac{1}{2}, \ 1 \right) \\ &= \left(-\frac{2}{\sqrt{14}}, \ \frac{1}{\sqrt{14}}, \ \frac{2}{\sqrt{14}} \right) \, \bigg| \end{split}$$

$$\vec{q}_3 = \frac{\vec{v}_3}{\|\vec{v}_3\|}$$

$$= \frac{1}{\sqrt{\frac{16}{49} + \frac{1}{49} + \frac{81}{49}}} \left(\frac{4}{7}, \frac{1}{7}, \frac{9}{7}\right)$$

$$= \frac{7}{\sqrt{98}} \left(\frac{4}{7}, \frac{1}{7}, \frac{9}{7}\right)$$

$$= \frac{7}{7\sqrt{2}} \left(\frac{4}{7}, \frac{1}{7}, \frac{9}{7} \right)$$
$$= \left(\frac{4}{7\sqrt{2}}, \frac{1}{7\sqrt{2}}, \frac{9}{7\sqrt{2}} \right)$$

Use the Gram-Schmidt process to find an $\mathit{orthogonal}$ basis for the subspaces of \mathbb{R}^m .

$$\{(1, -2, 2), (2, 2, 1), (2, -1, -2)\}$$

$$\begin{split} & \frac{\vec{v}_1 = \vec{u}_1 = (1, -2, 2)}{\|\vec{v}_2\|^2} \\ & \vec{v}_2 = \vec{u}_2 - \frac{\left\langle \vec{u}_2, \vec{v}_1 \right\rangle}{\|\vec{v}_1\|^2} \vec{v}_1 \\ & = (2, 2, 1) - \frac{(2, 2, 1) \cdot (1, -2, 2)}{9} (1, -2, 2) \\ & = (2, 2, 1) - \frac{0}{9} (1, -2, 2) \\ & = (2, 2, 1) \end{bmatrix} \\ & \frac{\left\langle \vec{u}_3, \vec{v}_1 \right\rangle}{\|\vec{v}_1\|^2} \vec{v}_1 = \frac{(2, -1, -2) \cdot (1, -2, 2)}{9} (1, -2, 2) \\ & = \frac{0}{9} (1, -2, 2) \\ & = \frac{0}{9} (1, -2, 2) \\ & = (0, 0, 0) \end{bmatrix} \\ & \frac{\left\langle \vec{u}_3, \vec{v}_2 \right\rangle}{\|\vec{v}_2\|^2} \vec{v}_2 = \frac{1}{9} \left[(2, -1, -2) \cdot (2, 2, 1) \right] (2, 2, 1) \\ & = (0, 0, 0) \end{bmatrix} \\ & \vec{v}_3 = \vec{u}_3 - \frac{\left\langle \vec{u}_3, \vec{v}_1 \right\rangle}{\|\vec{v}_1\|^2} \vec{v}_1 - \frac{\left\langle \vec{u}_3, \vec{v}_2 \right\rangle}{\|\vec{v}_2\|^2} \vec{v}_2 \\ & = (2, -1, -2) - (0, 0, 0) - (0, 0, 0) \\ & = (2, -1, -2) \end{bmatrix} \end{split}$$

$$\vec{q}_{1} = \frac{\vec{v}_{1}}{\|\vec{v}_{1}\|}$$

$$= \frac{1}{3}(1, -2, 2)$$

$$= \left(\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right)$$

$$\vec{q}_{2} = \frac{\vec{v}_{2}}{\|\vec{v}_{2}\|}$$

$$= \frac{1}{3}(2, 2, 1)$$

$$= \left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$$

$$\vec{q}_{3} = \frac{\vec{v}_{3}}{\|\vec{v}_{3}\|}$$

$$= \frac{1}{3}(2, -1, -2)$$

$$= \left(\frac{2}{3}, -\frac{1}{3}, -\frac{2}{3}\right)$$

Use the Gram-Schmidt process to find an *orthogonal* basis for the subspaces of \mathbb{R}^m .

$$\{(1, 0, 0), (1, 1, 1), (1, 1, -1)\}$$

$$\frac{\vec{v}_{1} = \vec{u}_{1} = (1, 0, 0)}{\vec{v}_{2} = \vec{u}_{2} - \frac{\langle \vec{u}_{2}, \vec{v}_{1} \rangle}{\|\vec{v}_{1}\|^{2}} \vec{v}_{1}}$$

$$= (1, 1, 1) - \frac{(1, 1, 1) \cdot (1, 0, 0)}{1} (1, 0, 0)$$

$$= (1, 1, 1) - (1, 0, 0)$$

$$= (0, 1, 1)
$$\frac{\langle \vec{u}_{3}, \vec{v}_{1} \rangle}{\|\vec{v}_{1}\|^{2}} \vec{v}_{1} = \frac{(1, 1, -1) \cdot (1, 0, 0)}{1} (1, 0, 0)$$

$$= (1, 0, 0)$$$$

$$\begin{split} \frac{\left\langle \vec{u}_{3}, \vec{v}_{2} \right\rangle}{\left\| \vec{v}_{2} \right\|^{2}} \vec{v}_{2} &= \frac{1}{1} \left[(1, 1, -1) \cdot (0, 1, 1) \right] (0, 1, 1) \\ &= 0 (0, 1, 1) \\ &= (0, 0, 0) \right] \\ \vec{v}_{3} &= \vec{u}_{3} - \frac{\left\langle \vec{u}_{3}, \vec{v}_{1} \right\rangle}{\left\| \vec{v}_{1} \right\|^{2}} \vec{v}_{1} - \frac{\left\langle \vec{u}_{3}, \vec{v}_{2} \right\rangle}{\left\| \vec{v}_{2} \right\|^{2}} \vec{v}_{2} \\ &= (1, 1, -1) - (1, 0, 0) - (0, 0, 0) \\ &= (0, 1, -1) \right] \\ \vec{q}_{1} &= \frac{\vec{v}_{1}}{\left\| \vec{v}_{1} \right\|} \\ &= \frac{1}{1} (1, 0, 0) \\ &= (1, 0, 0) \right] \\ \vec{q}_{2} &= \frac{\vec{v}_{2}}{\left\| \vec{v}_{2} \right\|} \\ &= \frac{1}{\sqrt{2}} (0, 1, 1) \\ &= \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) \right] \\ \vec{q}_{3} &= \frac{\vec{v}_{3}}{\left\| \vec{v}_{3} \right\|} \\ &= \frac{1}{\sqrt{2}} (0, 1, -1) \\ &= \left(0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right) \right] \end{split}$$

Use the Gram-Schmidt process to find an $\mathit{orthogonal}$ basis for the subspaces of \mathbb{R}^m .

$$\{(4, -3, 0), (1, 2, 0), (0, 0, 4)\}$$

$$\vec{v}_1 = \vec{u}_1 = (4, -3, 0)$$

$$\begin{split} \vec{v}_2 &= \vec{u}_2 - \frac{\left\langle \vec{u}_2 \,,\, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 \\ &= (1,\, 2,\, 0) - \frac{\left(1,\, 2,\, 0\right) \cdot \left(4,\, -3,\, 0\right)}{25} (4,\, -3,\, 0) \\ &= (1,\, 2,\, 0) + \frac{2}{25} (4,\, -3,\, 0) \\ &= \left(\frac{33}{25},\, \frac{44}{25},\, 0\right) \right] \\ \frac{\left\langle \vec{u}_3,\, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 &= \frac{(0,\, 0,\, 4) \cdot \left(4,\, -3,\, 0\right)}{25} (4,\, -3,\, 0) \\ &= (0,\, 0,\, 0) \right] \\ \frac{\left\langle \vec{u}_3,\, \vec{v}_2 \right\rangle}{\left\| \vec{v}_2 \right\|^2} \vec{v}_2 &= \frac{225}{3,025} \bigg[(0,\, 0,\, 4) \cdot \left(\frac{33}{25},\, \frac{44}{25},\, 0\right) \bigg] \bigg(\frac{33}{25},\, \frac{44}{25},\, 0\bigg) \\ &= (0,\, 0,\, 0) \\ \vec{v}_3 &= \vec{u}_3 - \frac{\left\langle \vec{u}_3,\, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 - \frac{\left\langle \vec{u}_3,\, \vec{v}_2 \right\rangle}{\left\| \vec{v}_2 \right\|^2} \vec{v}_2 \\ &= (0,\, 0,\, 4) - (0,\, 0,\, 0) - (0,\, 0,\, 0) \\ &= (0,\, 0,\, 4) \bigg] \\ \vec{q}_1 &= \frac{\vec{v}_1}{\left\| \vec{v}_1 \right\|} \\ &= \frac{1}{\sqrt{16+9}} (4,\, -3,\, 0) \\ &= \frac{\left(\frac{4}{5},\, -\frac{3}{5},\, 0\right)}{\sqrt{3,025}} \bigg(\frac{33}{25},\, \frac{44}{25},\, 0\bigg) \\ &= \frac{25}{55} \bigg(\frac{33}{25},\, \frac{44}{25},\, 0\bigg) \\ &= \frac{25}{55} \bigg(\frac{33}{25},\, \frac{44}{25},\, 0\bigg) \bigg| \end{aligned}$$

$$\vec{q}_{3} = \frac{\vec{v}_{3}}{\|\vec{v}_{3}\|}$$

$$= \frac{1}{4}(0, 0, 4)$$

$$= (0, 0, 1)$$

Use the Gram-Schmidt process to find an *orthogonal* basis for the subspaces of \mathbb{R}^m .

$$\{(0, 1, 2), (2, 0, 0), (1, 1, 1)\}$$

$$\begin{split} & \frac{\vec{v}_1 = \vec{u}_1 = (0, 1, 2)}{\vec{v}_2 = \vec{u}_2 - \frac{\left\langle \vec{u}_2, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1} \\ &= (2, 0, 0) - \frac{(2, 0, 0) \cdot (0, 1, 2)}{5} (0, 1, 2) \\ &= (2, 0, 0) + \frac{0}{5} (0, 1, 2) \\ &= (2, 0, 0) \right] \\ & \frac{\left\langle \vec{u}_3, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 = \frac{(1, 1, 1) \cdot (0, 1, 2)}{5} (0, 1, 2) \\ &= \frac{3}{5} (0, 1, 2) \\ &= \frac{0}{5} (0, \frac{3}{5}, \frac{6}{5}) \right] \\ & \frac{\left\langle \vec{u}_3, \vec{v}_2 \right\rangle}{\left\| \vec{v}_2 \right\|^2} \vec{v}_2 = \frac{1}{4} \left[(1, 1, 1) \cdot (2, 0, 0) \right] (2, 0, 0) \\ &= \frac{1}{2} (2, 0, 0) \\ &= \frac{(1, 0, 0)}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 - \frac{\left\langle \vec{u}_3, \vec{v}_2 \right\rangle}{\left\| \vec{v}_2 \right\|^2} \vec{v}_2 \end{split}$$

$$= (1, 1, 1) - (1, 0, 0) - \left(0, \frac{3}{5}, \frac{6}{5}\right)$$

$$= \left(0, \frac{2}{5}, -\frac{1}{5}\right) \Big|$$

$$\vec{q}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$$

$$= \frac{1}{\sqrt{5}}(0, 1, 2)$$

$$= \left(0, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right) \Big|$$

$$\vec{q}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|}$$

$$= \frac{1}{2}(2, 0, 0)$$

$$= (1, 0, 0) \Big|$$

$$\vec{q}_3 = \frac{\vec{v}_3}{\|\vec{v}_3\|}$$

$$= \frac{5}{\sqrt{5}}\left(0, \frac{2}{5}, -\frac{1}{5}\right)$$

$$= \left(0, \frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}}\right) \Big|$$

Use the Gram-Schmidt process to find an $\mathit{orthogonal}$ basis for the subspaces of \mathbb{R}^m .

$$\{(0, 1, 1), (1, 1, 0), (1, 0, 1)\}$$

$$\frac{\vec{v}_1 = \vec{u}_1 = (0, 1, 1)}{\vec{v}_2 = \vec{u}_2 - \frac{\langle \vec{u}_2, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1}$$

$$= (1, 1, 0) - \frac{(1, 1, 0) \cdot (0, 1, 1)}{2} (0, 1, 1)$$

$$= (1, 1, 0) - \frac{1}{2} (0, 1, 1)$$

$$= (1, \frac{1}{2}, -\frac{1}{2}) |$$

$$\begin{split} \frac{\left\langle \vec{u}_{3}, \vec{v}_{1} \right\rangle}{\left\| \vec{v}_{1} \right\|^{2}} \vec{v}_{1} &= \frac{\left(1, \, 0, \, 1 \right) \cdot \left(0, \, 1, \, 1 \right)}{2} \left(0, \, 1, \, 1 \right) \\ &= \frac{\left(0, \, \frac{1}{2}, \, \frac{1}{2} \right)}{\left\| \vec{v}_{2} \right\|^{2}} \\ \frac{\left\langle \vec{u}_{3}, \, \vec{v}_{2} \right\rangle}{\left\| \vec{v}_{2} \right\|^{2}} \vec{v}_{2} &= \frac{4}{6} \left[\left(1, \, 0, \, 1 \right) \cdot \left(1, \, \frac{1}{2}, \, -\frac{1}{2} \right) \right] \left(1, \, \frac{1}{2}, \, -\frac{1}{2} \right) \\ &= \frac{1}{3} \left(1, \, \frac{1}{2}, \, -\frac{1}{2} \right) \\ &= \left(\frac{1}{3}, \, \frac{1}{6}, \, -\frac{1}{6} \right) \right] \\ \vec{v}_{3} &= \vec{u}_{3} - \frac{\left\langle \vec{u}_{3}, \, \vec{v}_{1} \right\rangle}{\left\| \vec{v}_{1} \right\|^{2}} \vec{v}_{1} - \frac{\left\langle \vec{u}_{3}, \, \vec{v}_{2} \right\rangle}{\left\| \vec{v}_{2} \right\|^{2}} \vec{v}_{2} \\ &= \left(1, \, 0, \, 1 \right) - \left(0, \, \frac{1}{2}, \, \frac{1}{2} \right) - \left(\frac{1}{3}, \, \frac{1}{6}, \, -\frac{1}{6} \right) \\ &= \left(\frac{2}{3}, \, -\frac{2}{3}, \, \frac{2}{3} \right) \right] \\ \vec{q}_{1} &= \frac{\vec{v}_{1}}{\left\| \vec{v}_{1} \right\|} \\ &= \frac{1}{\sqrt{2}} \left(0, \, 1, \, 1 \right) \\ &= \left(0, \, \frac{1}{\sqrt{2}}, \, \frac{1}{\sqrt{2}} \right) \right] \\ \vec{q}_{2} &= \frac{\vec{v}_{2}}{\left\| \vec{v}_{2} \right\|} \\ &= \frac{2}{\sqrt{6}} \left(1, \, \frac{1}{2}, \, -\frac{1}{2} \right) \\ &= \left(\frac{2}{\sqrt{6}}, \, \frac{1}{\sqrt{6}}, \, -\frac{1}{\sqrt{6}} \right) \right] \\ \vec{q}_{3} &= \frac{\vec{v}_{3}}{\left\| \vec{v}_{3} \right\|} \\ &= \frac{3}{\sqrt{12}} \left(\frac{2}{3}, \, -\frac{2}{3}, \, \frac{2}{3} \right) \\ &= \left(\frac{1}{\sqrt{3}}, \, -\frac{1}{\sqrt{3}}, \, \frac{1}{\sqrt{3}} \right) \right| \end{aligned}$$

Use the Gram-Schmidt process to find an *orthogonal* basis for the subspaces of \mathbb{R}^m .

$$\{(1, 2, -2), (1, 0, -4), (5, 2, 0), (1, 1, -1)\}$$

$$\begin{split} \frac{\left\langle \vec{u}_{4}, \vec{v}_{2} \right\rangle}{\left\| \vec{v}_{2} \right\|^{2}} \vec{v}_{2} &= \frac{1}{8} \left[\left(1, 1, -1 \right) \cdot \left(0, -2, -2 \right) \right] \left(0, -2, -2 \right) \\ &= \left(0, 0, 0 \right) \right] \\ &= \left(0, 0, 0 \right) \\ \frac{\left\langle \vec{u}_{4}, \vec{v}_{3} \right\rangle}{\left\| \vec{v}_{3} \right\|^{2}} \vec{v}_{3} &= \frac{1}{18} \left[\left(1, 1, -1 \right) \cdot \left(4, -1, 1 \right) \right] \left(4, -1, 1 \right) \\ &= \frac{1}{9} \left(4, -1, 1 \right) \\ &= \left(\frac{4}{9}, -\frac{1}{9}, \frac{1}{9} \right) \right] \\ \vec{v}_{4} &= \vec{u}_{4} - \frac{\left\langle \vec{u}_{4}, \vec{v}_{1} \right\rangle}{\left\| \vec{v}_{1} \right\|^{2}} \vec{v}_{1} - \frac{\left\langle \vec{u}_{4}, \vec{v}_{2} \right\rangle}{\left\| \vec{v}_{2} \right\|^{2}} \vec{v}_{2} - \frac{\left\langle \vec{u}_{4}, \vec{v}_{3} \right\rangle}{\left\| \vec{v}_{3} \right\|^{2}} \vec{v}_{3} \\ &= \left(1, 1, -1 \right) - \left(\frac{5}{9}, \frac{10}{9}, -\frac{10}{9} \right) - \left(\frac{4}{9}, -\frac{1}{9}, \frac{1}{9} \right) \\ &= \left(0, 0, 0 \right) \right] \\ \vec{q}_{1} &= \frac{\vec{v}_{1}}{\left\| \vec{v}_{1} \right\|} \\ &= \frac{1}{3} \left(1, 2, -2 \right) \\ &= \left(\frac{1}{3}, \frac{2}{3}, -\frac{2}{3} \right) \right] \\ \vec{q}_{2} &= \frac{\vec{v}_{2}}{\left\| \vec{v}_{2} \right\|} \\ &= \frac{1}{2\sqrt{2}} \left(0, -2, -2 \right) \\ &= \left(0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right) \right] \\ \vec{q}_{3} &= \frac{\vec{v}_{3}}{\left\| \vec{v}_{3} \right\|} \\ &= \frac{1}{3\sqrt{2}} \left(4, -1, 1 \right) \\ &= \left(\frac{4}{3\sqrt{2}}, -\frac{1}{3\sqrt{2}}, \frac{1}{3\sqrt{2}} \right) \right] \\ \vec{q}_{4} &= \frac{\vec{v}_{4}}{\left\| \vec{v}_{4} \right\|} \\ &= \left(0, 0, 0, 0 \right) \right| \end{aligned}$$

Use the Gram-Schmidt process to find an *orthogonal* basis for the subspaces of \mathbb{R}^m .

$$\{(-3, 1, 2), (1, 1, 1), (2, 0, -1), (1, -3, 2)\}$$

$$\begin{split} & \frac{\vec{v}_1 = \vec{u}_1 = (-3, 1, 2)}{\vec{v}_2 = \vec{u}_2 - \frac{\left\langle \vec{u}_2, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 \\ &= (1, 1, 1) - \frac{(1, 1, 1) \cdot (-3, 1, 2)}{14} (-3, 1, 2) \\ &= (1, 1, 1) - \frac{0}{14} (1, 2, -2) \\ &= (1, 1, 1) \right] \\ & \frac{\left\langle \vec{u}_3, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 = \frac{(2, 0, -1) \cdot (-3, 1, 2)}{14} (-3, 1, 2) \\ &= -\frac{4}{7} (-3, 1, 2) \\ &= \frac{\left(\frac{12}{7}, -\frac{4}{7}, -\frac{8}{7}\right)}{\left\| \vec{v}_2 \right\|^2} \vec{v}_2 = \frac{1}{3} \left[(2, 0, -1) \cdot (1, 1, 1) \right] (1, 1, 1) \\ &= \frac{1}{3} (1, 1, 1) \\ &= \frac{\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 - \frac{\left\langle \vec{u}_3, \vec{v}_2 \right\rangle}{\left\| \vec{v}_2 \right\|^2} \vec{v}_2 \\ &= (2, 0, -1) - \left(\frac{12}{7}, -\frac{4}{7}, -\frac{8}{7}\right) - \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \\ &= \frac{\left(-\frac{1}{21}, \frac{5}{21}, -\frac{4}{21}\right)}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 = \frac{(1, -3, 2) \cdot (-3, 1, 2)}{14} (-3, 1, 2) \end{aligned}$$

$$\begin{split} &=\frac{\left(\frac{3}{7},\,-\frac{1}{7},\,-\frac{2}{7}\right)}{\left\|\vec{v}_{2}\right\|^{2}} \frac{\left\langle \vec{u}_{4},\,\vec{v}_{2}\right\rangle}{\vec{v}_{2}} = \frac{\left(1,\,-3,\,2\right) \cdot \left(1,\,1,\,1\right)}{3} \left(1,\,1,\,1\right) \\ &= \frac{\left(0,\,0,\,0\right)}{\left\|\vec{v}_{3}\right\|^{2}} \frac{\left\langle \vec{u}_{4},\,\vec{v}_{3}\right\rangle}{\vec{v}_{3}} = \frac{441}{42} \left[\left(1,\,-3,\,2\right) \cdot \left(-\frac{1}{21},\,\frac{5}{21},\,-\frac{4}{21}\right)\right] \left(-\frac{1}{21},\,\frac{5}{21},\,-\frac{4}{21}\right) \\ &= \frac{441}{42} \left(-\frac{24}{21}\right) \left(-\frac{1}{21},\,\frac{5}{21},\,-\frac{4}{21}\right) \\ &= \left(\frac{4}{7},\,-\frac{20}{7},\,\frac{16}{7}\right) \right] \\ \vec{v}_{4} = \vec{u}_{4} - \frac{\left\langle \vec{u}_{4},\,\vec{v}_{1}\right\rangle}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1} - \frac{\left\langle \vec{u}_{4},\,\vec{v}_{2}\right\rangle}{\left\|\vec{v}_{2}\right\|^{2}} \vec{v}_{2} - \frac{\left\langle \vec{u}_{4},\,\vec{v}_{3}\right\rangle}{\left\|\vec{v}_{3}\right\|^{2}} \vec{v}_{3} \\ &= \left(1,\,-3,\,2\right) - \left(\frac{3}{7},\,-\frac{1}{7},\,-\frac{2}{7}\right) - \left(0,\,0,\,0\right) - \left(\frac{4}{7},\,-\frac{20}{7},\,\frac{16}{7}\right) \\ &= \left(0,\,0,\,0\right) \right] \\ \vec{q}_{1} = \frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|} \\ &= \frac{1}{\sqrt{14}} \left(-3,\,1,\,2\right) \\ &= \left(-\frac{3}{\sqrt{14}},\,\frac{1}{\sqrt{14}},\,\frac{2}{\sqrt{14}}\right) \right] \\ \vec{q}_{2} = \frac{\vec{v}_{2}}{\left\|\vec{v}_{2}\right\|} \\ &= \frac{1}{\sqrt{3}} \left(1,\,1,\,1\right) \\ &= \left(\frac{1}{\sqrt{3}},\,\frac{1}{\sqrt{3}},\,\frac{1}{\sqrt{3}}\right) \right] \\ \vec{q}_{3} = \frac{\vec{v}_{3}}{\left\|\vec{v}_{3}\right\|} \\ &= \frac{21}{\sqrt{42}} \left(-\frac{1}{21},\,\frac{5}{21},\,-\frac{4}{21}\right) \\ &= \left(-\frac{1}{\sqrt{42}},\,\frac{5}{\sqrt{42}},\,-\frac{4}{\sqrt{42}}\right) \right| \end{split}$$

$$\vec{q}_4 = \frac{\vec{v}_4}{\|\vec{v}_4\|} = (0, 0, 0)$$

Use the Gram-Schmidt process to find an *orthogonal* basis for the subspaces of \mathbb{R}^m .

$$\{(2, 1, 1), (0, 3, -1), (3, -4, -2), (-1, -1, 3)\}$$

$$\begin{split} & \frac{\vec{v}_1 = \vec{u}_1 = (2, 1, 1)}{\vec{v}_2 = \vec{u}_2 - \frac{\left\langle \vec{u}_2, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 \\ &= (0, 3, -1) - \frac{(0, 3, -1) \cdot (2, 1, 1)}{6} (2, 1, 1) \\ &= (0, 3, -1) - \frac{1}{3} (2, 1, 1) \\ &= \left(-\frac{2}{3}, \frac{8}{3}, -\frac{4}{3} \right) \right] \\ & \frac{\left\langle \vec{u}_3, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 = \frac{(3, -4, -2) \cdot (2, 1, 1)}{6} (2, 1, 1) \\ &= \underline{(0, 0, 0)} \\ & \frac{\left\langle \vec{u}_3, \vec{v}_2 \right\rangle}{\left\| \vec{v}_2 \right\|^2} \vec{v}_2 = \frac{9}{84} \left[(3, -4, -2) \cdot \left(-\frac{2}{3}, \frac{8}{3}, -\frac{4}{3} \right) \right] \left(-\frac{2}{3}, \frac{8}{3}, -\frac{4}{3} \right) \\ &= \frac{3}{28} (-10) \left(-\frac{2}{3}, \frac{8}{3}, -\frac{4}{3} \right) \\ &= \left(\frac{5}{7}, -\frac{20}{7}, \frac{10}{7} \right) \right] \\ & \vec{v}_3 = \vec{u}_3 - \frac{\left\langle \vec{u}_3, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1 - \frac{\left\langle \vec{u}_3, \vec{v}_2 \right\rangle}{\left\| \vec{v}_2 \right\|^2} \vec{v}_2 \\ &= (3, -4, -2) - (0, 0, 0) - \left(\frac{5}{7}, -\frac{20}{7}, \frac{10}{7} \right) \\ &= \left(\frac{16}{7}, -\frac{8}{7}, -\frac{24}{7} \right) \right] \end{split}$$

$$\begin{split} \frac{\left\langle \vec{u}_{4}, \vec{v}_{1} \right\rangle}{\left\| \vec{v}_{1} \right\|^{2}} \vec{v}_{1} &= \frac{\left(-1, -1, 3\right) \cdot \left(2, 1, 1\right)}{6} (2, 1, 1) \\ &= \frac{\left(0, 0, 0\right)}{\left\| \vec{v}_{2} \right\|^{2}} \vec{v}_{2} = \frac{9}{84} \left[\left(-1, -1, 3\right) \cdot \left(-\frac{2}{3}, \frac{8}{3}, -\frac{4}{3}\right) \right] \left(-\frac{2}{3}, \frac{8}{3}, -\frac{4}{3}\right) \\ &= \frac{3}{28} \left(-\frac{18}{3}\right) \left(-\frac{2}{3}, \frac{8}{3}, -\frac{4}{3}\right) \\ &= \frac{\left(\frac{3}{7}, -\frac{12}{7}, \frac{6}{7}\right)}{\left\| \vec{v}_{3} \right\|^{2}} \vec{v}_{3} = \frac{49}{896} \left[\left(-1, -1, 3\right) \cdot \left(\frac{16}{7}, -\frac{8}{7}, -\frac{24}{7}\right) \right] \left(\frac{16}{7}, -\frac{8}{7}, -\frac{24}{7}\right) \\ &= \frac{7}{128} \left(-\frac{80}{7}\right) \left(\frac{16}{7}, -\frac{8}{7}, -\frac{24}{7}\right) \\ &= \frac{\left(-\frac{10}{7}, \frac{5}{7}, \frac{15}{7}\right)}{\left\| \vec{v}_{1} \right\|^{2}} \vec{v}_{1} - \frac{\left\langle \vec{u}_{4}, \vec{v}_{2} \right\rangle}{\left\| \vec{v}_{2} \right\|^{2}} \vec{v}_{2} - \frac{\left\langle \vec{u}_{4}, \vec{v}_{3} \right\rangle}{\left\| \vec{v}_{3} \right\|^{2}} \vec{v}_{3} \\ &= \left(-1, -1, 3\right) - \left(0, 0, 0\right) - \left(\frac{3}{7}, -\frac{12}{7}, \frac{6}{7}\right) - \left(-\frac{10}{7}, \frac{5}{7}, \frac{15}{7}\right) \\ &= \left(0, 0, 0\right) \right] \\ \vec{q}_{1} &= \frac{\vec{v}_{1}}{\left\| \vec{v}_{1} \right\|} \\ &= \frac{1}{\sqrt{6}} (2, 1, 1) \\ &= \left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right) \right] \\ \vec{q}_{2} &= \frac{\vec{v}_{2}}{\left\| \vec{v}_{2} \right\|} \\ &= \frac{3}{2\sqrt{21}} \left(-\frac{2}{3}, \frac{8}{3}, -\frac{4}{3}\right) \\ &= \left(-\frac{1}{\sqrt{21}}, \frac{4}{\sqrt{21}}, -\frac{2}{\sqrt{21}}\right) \right| \end{split}$$

$$\vec{q}_{3} = \frac{\vec{v}_{3}}{\|\vec{v}_{3}\|}$$

$$= \frac{7}{8\sqrt{14}} \left(\frac{16}{7}, -\frac{8}{7}, -\frac{24}{7} \right)$$

$$= \left(\frac{2}{\sqrt{14}}, -\frac{1}{\sqrt{14}}, -\frac{3}{\sqrt{14}} \right)$$

$$\vec{q}_{4} = \frac{\vec{v}_{4}}{\|\vec{v}_{4}\|}$$

$$= (0, 0, 0)$$

Use the Gram-Schmidt process to find an *orthogonal* basis for the subspaces of \mathbb{R}^m .

$$\vec{u}_1 = (1, 1, 0, -1), \quad \vec{u}_2 = (1, 3, 0, 1), \quad \vec{u}_3 = (4, 2, 2, 0)$$

$$\frac{\vec{v}_{1} = \vec{u}_{1} = (1, 1, 0, -1)}{\vec{v}_{2} = \vec{u}_{2} - \frac{\langle \vec{u}_{2}, \vec{v}_{1} \rangle}{\|\vec{v}_{1}\|^{2}}} \vec{v}_{1}$$

$$= (1, 3, 0, 1) - \frac{(1, 3, 0, 1) \cdot (1, 1, 0, -1)}{3} (1, 1, 0, -1)$$

$$= (1, 3, 0, 1) - (1, 1, 0, -1)$$

$$= (0, 2, 0, 2)
$$\frac{\langle \vec{u}_{3}, \vec{v}_{1} \rangle}{\|\vec{v}_{1}\|^{2}} \vec{v}_{1} = \frac{(4, 2, 2, 0) \cdot (1, 1, 0, -1)}{3} (1, 1, 0, -1)$$

$$\frac{= (2, 2, 0, -2)
\|\vec{v}_{2}\|^{2}} \vec{v}_{2} = \frac{(4, 2, 2, 0) \cdot (0, 2, 0, 2)}{8} (0, 2, 0, 2)$$

$$= \frac{1}{2} (0, 2, 0, 2)$$

$$= (0, 1, 0, 1) |$$$$

$$\vec{v}_{3} = \vec{u}_{3} - \frac{\langle \vec{u}_{3}, \vec{v}_{1} \rangle}{\|\vec{v}_{1}\|^{2}} \vec{v}_{1} - \frac{\langle \vec{u}_{3}, \vec{v}_{2} \rangle}{\|\vec{v}_{2}\|^{2}} \vec{v}_{2}$$

$$= (4, 2, 2, 0) - (2, 2, 0, -2) - (0, 1, 0, 1)$$

$$= (2, -1, 2, 1)$$

$$\vec{q}_{1} = \frac{\vec{v}_{1}}{\|\vec{v}_{1}\|}$$

$$= \frac{1}{\sqrt{3}} (1, 1, 0, -1)$$

$$= \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0, -\frac{1}{\sqrt{3}}\right)$$

$$\vec{q}_{2} = \frac{\vec{v}_{2}}{\|\vec{v}_{2}\|}$$

$$= \frac{1}{2\sqrt{2}} (0, 2, 0, 2)$$

$$= \left(0, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

$$\vec{q}_{3} = \frac{\vec{v}_{3}}{\|\vec{v}_{3}\|}$$

$$= \frac{1}{\sqrt{10}} (2, -1, 2, 1)$$

$$= \left(\frac{2}{\sqrt{10}}, -\frac{1}{\sqrt{10}}, \frac{2}{\sqrt{10}}, -\frac{1}{\sqrt{10}}\right)$$

Use the Gram-Schmidt process to find an *orthogonal* basis for the subspaces of \mathbb{R}^m .

$$\vec{u}_1 = (1, 1, 1, 1), \quad \vec{u}_2 = (1, 1, 2, 4), \quad \vec{u}_3 = (1, 2, -4, -3)$$

$$\frac{\vec{v}_{1} = \vec{u}_{1} = (1, 1, 1, 1)}{\vec{v}_{2} = \vec{u}_{2} - \frac{\langle \vec{u}_{2}, \vec{v}_{1} \rangle}{\|\vec{v}_{1}\|^{2}} \vec{v}_{1}}$$

$$= (1, 1, 2, 4) - \frac{(1, 1, 2, 4) \cdot (1, 1, 1, 1)}{4} (1, 1, 1, 1)$$

$$= (1, 1, 2, 4) - 2(1, 1, 1, 1)$$

$$= (-1, -1, 0, 2)$$

$$\frac{\langle \vec{u}_3, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 = \frac{(1, 2, -4, -3) \cdot (1, 1, 1, 1)}{4} (1, 1, 1, 1)$$

$$= (-1, -1, -1, -1)$$

$$\frac{\left\langle \vec{u}_{3}, \vec{v}_{2} \right\rangle}{\left\| \vec{v}_{2} \right\|^{2}} \vec{v}_{2} = \frac{\left(1, 2, -4, -3\right) \cdot \left(-1, -1, 0, 2\right)}{6} \left(-1, -1, 0, 2\right)$$

$$= -\frac{3}{2} \left(-1, -1, 0, 2\right)$$

$$= \left(\frac{3}{2}, \frac{3}{2}, 0, -3\right) \right|$$

$$\vec{v}_{3} = \vec{u}_{3} - \frac{\left\langle \vec{u}_{3}, \vec{v}_{1} \right\rangle}{\left\| \vec{v}_{1} \right\|^{2}} \vec{v}_{1} - \frac{\left\langle \vec{u}_{3}, \vec{v}_{2} \right\rangle}{\left\| \vec{v}_{2} \right\|^{2}} \vec{v}_{2}$$

$$= (1, 2, -4, -3) - (-1, -1, -1, -1) - \left(\frac{3}{2}, \frac{3}{2}, 0, -3 \right)$$

$$= \left(\frac{1}{2}, \frac{3}{2}, -3, 1 \right)$$

$$\vec{q}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$$

$$= \frac{1}{2}(1, 1, 1, 1)$$

$$= \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$

$$\vec{q}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|}$$

$$= \frac{1}{\sqrt{6}} (-1, -1, 0, 2)$$

$$= \left(-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, 0, \frac{2}{\sqrt{6}} \right)$$

$$\vec{q}_3 = \frac{\vec{v}_3}{\|\vec{v}_3\|}$$

$$= \frac{2}{\sqrt{50}} \left(\frac{1}{2}, \frac{3}{2}, -3, 1\right)$$

$$= \frac{2}{5\sqrt{2}} \left(\frac{1}{2}, \frac{3}{2}, -3, 1 \right)$$

$$= \left(\frac{1}{5\sqrt{2}}, \frac{3}{5\sqrt{2}}, -\frac{6}{5\sqrt{2}}, \frac{2}{5\sqrt{2}} \right)$$

Use the Gram-Schmidt process to find an *orthogonal* basis for the subspaces of \mathbb{R}^m .

$$\{(3, 4, 0, 0), (-1, 1, 0, 0), (2, 1, 0, -1), (0, 1, 1, 0)\}$$

$$\begin{split} & \frac{\vec{v}_1 = \vec{u}_1 = (3, 4, 0, 0)}{\|\vec{v}_2 = \vec{u}_2 - \frac{\left\langle \vec{u}_2, \vec{v}_1 \right\rangle}{\|\vec{v}_1\|^2} \vec{v}_1 \\ &= (-1, 1, 0, 0) - \frac{(-1, 1, 0, 0) \cdot (3, 4, 0, 0)}{25} (3, 4, 0, 0) \\ &= (-1, 1, 0, 0) - \frac{1}{25} (3, 4, 0, 0) \\ &= \left(-\frac{28}{25}, \frac{21}{25}, 0, 0 \right) \\ & \frac{\left\langle \vec{u}_3, \vec{v}_1 \right\rangle}{\|\vec{v}_1\|^2} \vec{v}_1 = \frac{(2, 1, 0, -1) \cdot (3, 4, 0, 0)}{25} (3, 4, 0, 0) \\ &= \frac{10}{25} (3, 4, 0, 0) \\ &= \frac{10}{25} (3, 4, 0, 0) \\ &= \left(\frac{6}{5}, \frac{8}{5}, 0, 0 \right) \\ & \frac{\left\langle \vec{u}_3, \vec{v}_2 \right\rangle}{\|\vec{v}_2\|^2} \vec{v}_2 = \frac{625}{1,225} \left[(2, 1, 0, -1) \cdot \left(-\frac{28}{25}, \frac{21}{25}, 0, 0 \right) \right] \left(-\frac{28}{25}, \frac{21}{25}, 0, 0 \right) \\ &= \frac{25}{49} \left(-\frac{35}{25} \right) \left(-\frac{28}{25}, \frac{21}{25}, 0, 0 \right) \\ &= \frac{\left(\frac{4}{5}, -\frac{3}{5}, 0, 0 \right)}{\left\|\vec{v}_1\|^2} \vec{v}_1 - \frac{\left\langle \vec{u}_3, \vec{v}_2 \right\rangle}{\left\|\vec{v}_2\right\|^2} \vec{v}_2 \\ &= (2, 1, 0, -1) - \left(\frac{6}{5}, \frac{8}{5}, 0, 0 \right) - \left(\frac{4}{5}, -\frac{3}{5}, 0, 0 \right) \end{split}$$

$$=(0, 0, 0, -1)$$

$$\frac{\left\langle \vec{u}_{4}, \vec{v}_{1} \right\rangle}{\left\| \vec{v}_{1} \right\|^{2}} \vec{v}_{1} = \frac{\left(0, 1, 1, 0\right) \cdot \left(3, 4, 0, 0\right)}{25} (3, 4, 0, 0)$$

$$= \frac{4}{25} (3, 4, 0, 0)$$

$$= \left(\frac{12}{25}, \frac{16}{25}, 0, 0\right)$$

$$\frac{\left\langle \vec{u}_4, \vec{v}_2 \right\rangle}{\left\| \vec{v}_2 \right\|^2} \vec{v}_2 = \frac{25}{49} \left[(0, 1, 1, 0) \cdot \left(-\frac{28}{25}, \frac{21}{25}, 0, 0 \right) \right] \left(-\frac{28}{25}, \frac{21}{25}, 0, 0 \right) \\
= \frac{25}{49} \left(\frac{21}{25} \right) \left(-\frac{28}{25}, \frac{21}{25}, 0, 0 \right) \\
= \left(-\frac{12}{25}, \frac{9}{25}, 0, 0 \right)$$

$$\frac{\left\langle \vec{u}_4, \vec{v}_3 \right\rangle}{\left\| \vec{v}_3 \right\|^2} \vec{v}_3 = \left[(0, 1, 1, 0) \cdot (0, 0, 0, -1) \right] (0, 0, 0, -1)$$

$$= (0, 0, 0, 0) \mid$$

$$\vec{v}_4 = \vec{u}_4 - \frac{\langle \vec{u}_4, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 - \frac{\langle \vec{u}_4, \vec{v}_2 \rangle}{\|\vec{v}_2\|^2} \vec{v}_2 - \frac{\langle \vec{u}_4, \vec{v}_3 \rangle}{\|\vec{v}_3\|^2} \vec{v}_3$$

$$= (0, 1, 1, 0) - \left(\frac{12}{25}, \frac{16}{25}, 0, 0\right) - \left(-\frac{12}{25}, \frac{9}{25}, 0, 0\right) - (0, 0, 0, 0)$$

$$= (0, 0, 1, 0)$$

$$\vec{q}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$$

$$= \frac{1}{5}(3, 4, 0, 0)$$

$$= \left(\frac{3}{5}, \frac{4}{5}, 0, 0\right)$$

$$\vec{q}_{2} = \frac{\vec{v}_{2}}{\|\vec{v}_{2}\|}$$

$$= \frac{25}{35} \left(-\frac{28}{25}, \frac{21}{25}, 0, 0 \right)$$

$$= \left(-\frac{4}{5}, \frac{3}{5}, 0, 0 \right)$$

$$\vec{q}_3 = \frac{\vec{v}_3}{\|\vec{v}_3\|} = (0, 0, 0, -1)$$

$$\vec{q}_4 = \frac{\vec{v}_4}{\|\vec{v}_4\|} = (0, 0, 1, 0)$$

Find the *QR*-decomposition of

$$a) \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$

$$c) \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 4 \end{bmatrix}$$

a)
$$\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$
 c) $\begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 4 \end{bmatrix}$ e) $\begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 3 & 1 \end{bmatrix}$

$$b) \begin{bmatrix} 3 & 5 \\ -4 & 0 \end{bmatrix}$$

$$d) \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 3 & 1 \end{bmatrix}$$

a) Since
$$\begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} = 5 \neq 0$$
, The matrix is invertible

$$\vec{u}_1(1, 2), \quad \vec{u}_2 = (-1, 3)$$

$$\vec{v}_1 = \vec{u}_1 = (1, 2)$$

$$\vec{q}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$$

$$= \frac{(1, 2)}{\sqrt{1^2 + 2^2}}$$

$$= \frac{(1, 2)}{\sqrt{5}}$$

$$= \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$$

$$\vec{v}_2 = \vec{u}_2 - (\vec{u}_2 \cdot \vec{v}_1) \vec{v}_1$$

$$= (-1, 3) - \left[(-1, 3) \cdot \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right) \right] \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right)$$

$$= (-1, 3) - \left(\frac{5}{\sqrt{5}}\right) \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$$

$$= (-1, 3) - (1, 2)$$

$$= (-2, 1)$$

$$\vec{q}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|}$$

$$= \frac{(-2, 1)}{\sqrt{(-2)^2 + 1^2}}$$

 $=\left(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$

$$\langle \vec{u}_2, \vec{q}_1 \rangle = (-1, 3) \cdot \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right)$$

$$= \frac{5}{\sqrt{5}}$$

$$= \sqrt{5} \mid$$

$$\left\langle \vec{u}_2, \ \vec{q}_2 \right\rangle = \left(-1, \ 3\right) \cdot \left(-\frac{2}{\sqrt{5}}, \ \frac{1}{\sqrt{5}}\right)$$
$$= \frac{2}{\sqrt{5}} + \frac{3}{\sqrt{5}}$$
$$= \sqrt{5} \mid$$

$$R = \begin{bmatrix} \left\langle \vec{u}_{1}, \ \vec{q}_{1} \right\rangle & \left\langle \vec{u}_{2}, \ \vec{q}_{1} \right\rangle \\ 0 & \left\langle \vec{u}_{2}, \ \vec{q}_{2} \right\rangle \end{bmatrix}$$
$$= \begin{bmatrix} \sqrt{5} & \sqrt{5} \\ 0 & \sqrt{5} \end{bmatrix}$$

The QR-decomposition of the matrix is

$$\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \sqrt{5} & \sqrt{5} \\ 0 & \sqrt{5} \end{bmatrix}$$

b) The column vectors of are:
$$\vec{u}_1 = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$
, $\vec{u}_2 = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$

$$\vec{v}_1 = \vec{u}_1 = (3, -4)$$

$$\vec{q}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$$

$$= \frac{(3, -4)}{\sqrt{9+16}}$$

$$= \left(\frac{3}{5}, -\frac{4}{5}\right)$$

$$\vec{v}_{2} = \vec{u}_{2} - \frac{\langle \vec{u}_{2}, \vec{v}_{1} \rangle}{\|\vec{v}_{1}\|^{2}} \vec{v}_{1}$$

$$= (5, 0) - \frac{(5, 0) \cdot (3, -4)}{25} (3, -4)$$

$$= (5, 0) - \frac{15}{25} (3, -4)$$

$$= (5, 0) - \frac{3}{5} (3, -4)$$

$$= (5, 0) - \left(\frac{9}{5}, -\frac{12}{5}\right)$$

$$= \left(\frac{16}{5}, \frac{12}{5}\right)$$

$$\begin{split} \vec{q}_2 &= \frac{\vec{v}_2}{\left\|\vec{v}_2\right\|} \\ &= \frac{\left(\frac{16}{5}, \frac{12}{5}\right)}{\sqrt{\frac{256}{25} + \frac{144}{25}}} \\ &= \frac{1}{\sqrt{\frac{400}{25}}} \left(\frac{16}{5}, \frac{12}{5}\right) \\ &= \frac{1}{\sqrt{16}} \left(\frac{16}{5}, \frac{12}{5}\right) \\ &= \frac{1}{4} \left(\frac{16}{5}, \frac{12}{5}\right) \\ &= \frac{\left(\frac{4}{5}, \frac{3}{5}\right)}{\left(\frac{16}{5}, \frac{3}{5}\right)} \end{split}$$

$$R = \begin{bmatrix} \left\langle \vec{u}_1, \ \vec{q}_1 \right\rangle & \left\langle \vec{u}_2, \ \vec{q}_1 \right\rangle \\ 0 & \left\langle \vec{u}_2, \ \vec{q}_2 \right\rangle \end{bmatrix}$$

$$= \begin{bmatrix} 3\left(\frac{3}{5}\right) - 4\left(-\frac{4}{5}\right) & 5\left(\frac{3}{5}\right) + 0\left(-\frac{4}{5}\right) \\ 0 & 5\left(\frac{4}{5}\right) - 0\left(\frac{3}{5}\right) \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 3 \\ 0 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 5 \\ -4 & 0 \end{bmatrix} = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix} \cdot \begin{bmatrix} 5 & 3 \\ 0 & 4 \end{bmatrix}$$

$$A = Q \qquad R$$

c) Since the column vectors $\vec{u}_1(1, 0, 1)$, $\vec{u}_2 = (2, 1, 4)$ are linearly independent, so has a QR-decomposition.

$$\vec{v}_1 = \vec{u}_1 = (1, 0, 1)$$

$$\vec{q}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$$

$$= \frac{(1, 0, 1)}{\sqrt{1^2 + 0 + 1^2}}$$

$$= \frac{(1, 0, 1)}{\sqrt{2}}$$

$$= \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

$$\vec{v}_{2} = \vec{u}_{2} - \langle \vec{u}_{2}, \vec{v}_{1} \rangle \vec{v}_{1}$$

$$= (2,1,4) - \left[(2,1,4) \cdot \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right) \right] \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right)$$

$$= (2,1,4) - \left(\frac{6}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right)$$

$$= (2,1,4) - (3, 0, 3)$$

$$= (-1, 1, 1)$$

$$\vec{q}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|}$$

$$= \frac{(-1, 1, 1)}{\sqrt{(-1)^2 + 1^2 + 1^2}}$$

$$\begin{split} & = \left(-\frac{1}{\sqrt{3}}, \ \frac{1}{\sqrt{3}}, \ \frac{1}{\sqrt{3}} \right) \\ & \left\langle \vec{u}_{1}, \ \vec{q}_{1} \right\rangle = (1, \ 0, \ 1) \cdot \left(\frac{1}{\sqrt{2}}, \ 0, \ \frac{1}{\sqrt{2}} \right) \\ & = \frac{2}{\sqrt{2}} \\ & = \sqrt{2} \ \rfloor \\ & \left\langle \vec{u}_{2}, \ \vec{q}_{1} \right\rangle = (2, \ 1, \ 4) \cdot \left(\frac{1}{\sqrt{2}}, \ 0, \ \frac{1}{\sqrt{2}} \right) \\ & = \frac{2}{\sqrt{2}} + \frac{4}{\sqrt{2}} \\ & = 3\sqrt{2} \ \rfloor \\ & \left\langle \vec{u}_{2}, \ \vec{q}_{2} \right\rangle = (2, \ 1, \ 4) \cdot \left(-\frac{1}{\sqrt{3}}, \ \frac{1}{\sqrt{3}}, \ \frac{1}{\sqrt{3}} \right) \\ & = -\frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}} + \frac{4}{\sqrt{3}} \\ & = \frac{3}{\sqrt{3}} \\ & = \sqrt{3} \ \rfloor \\ & R = \begin{bmatrix} \left\langle \vec{u}_{1}, \ \vec{q}_{1} \right\rangle & \left\langle \vec{u}_{2}, \ \vec{q}_{1} \right\rangle \\ & 0 & \left\langle \vec{u}_{2}, \ \vec{q}_{2} \right\rangle \end{bmatrix} \\ & = \begin{bmatrix} \sqrt{2} & 3\sqrt{2} \\ & 0 & \sqrt{3} \end{bmatrix} \end{split}$$

The *QR*-decomposition of the matrix is

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 3\sqrt{2} \\ 0 & \sqrt{3} \end{bmatrix}$$

$$A = Q \qquad R$$

$$d) \text{ Since } \begin{vmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 3 & 1 \end{vmatrix} = -4 \neq 0,$$

The matrix is invertible, so it has a *QR*-decomposition.

$$\vec{u}_1(1, 1, 0), \quad \vec{u}_2 = (2, 1, 3), \quad \vec{u}_3 = (1, 1, 1)$$

$$\vec{v}_1 = \vec{u}_1 = (1, 1, 0)$$

$$\vec{q}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$$

$$= \frac{(1, 1, 0)}{\sqrt{1^2 + 1^2 + 0}}$$

$$= \frac{(1, 1, 0)}{\sqrt{2}}$$

$$= \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$$

$$\begin{aligned} \vec{v}_2 &= \vec{u}_2 - \left(\vec{u}_2 \cdot \vec{v}_1\right) \vec{v}_1 \\ &= (2, 1, 3) - \left[(2, 1, 3) \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) \right] \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) \\ &= (2, 1, 3) - \frac{3}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) \\ &= (2, 1, 3) - \left(\frac{3}{2}, \frac{3}{2}, 0 \right) \\ &= \left(\frac{1}{2}, -\frac{1}{2}, 3 \right) \end{aligned}$$

$$\vec{q}_{2} = \frac{\vec{v}_{2}}{\left\|\vec{v}_{2}\right\|}$$

$$= \frac{\left(\frac{1}{2}, -\frac{1}{2}, 3\right)}{\sqrt{\left(\frac{1}{2}\right)^{2} + \left(-\frac{1}{2}\right)^{2} + 3^{2}}}$$

$$= \frac{\left(\frac{1}{2}, -\frac{1}{2}, 3\right)}{\sqrt{\frac{19}{2}}}$$

$$= \frac{\sqrt{2}}{\sqrt{19}} \left(\frac{1}{2}, -\frac{1}{2}, 3\right)$$

$$= \left(\frac{1}{\sqrt{38}}, -\frac{1}{\sqrt{38}}, \frac{6}{\sqrt{38}}\right)$$

$$\vec{v}_3 = \vec{u}_3 - (\vec{u}_3 \cdot \vec{v}_1) \vec{v}_1 - (\vec{u}_3 \cdot \vec{v}_2) \vec{v}_2$$

$$\begin{split} &= (1,1,1) - \left[(1,1,1) \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) \right] \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) \\ &- \left[(1,1,1) \cdot \left(\frac{1}{\sqrt{38}}, -\frac{1}{\sqrt{38}}, \frac{6}{\sqrt{38}} \right) \right] \left(\frac{1}{\sqrt{38}}, -\frac{1}{\sqrt{38}}, \frac{6}{\sqrt{38}} \right) \\ &= (1,1,1) - \frac{2}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) - \frac{6}{\sqrt{38}} \left(\frac{1}{\sqrt{38}}, -\frac{1}{\sqrt{38}}, \frac{6}{\sqrt{38}} \right) \\ &= (1,1,1) - (1,1,0) - \left(\frac{3}{19}, -\frac{3}{19}, \frac{18}{19} \right) \\ &= \left(-\frac{3}{19}, \frac{3}{19}, \frac{1}{19} \right) \right] \\ &= \left(-\frac{3}{19}, \frac{3}{19}, \frac{1}{19} \right) \\ &= \frac{19}{\sqrt{19}} \left(-\frac{3}{19}, \frac{3}{19}, \frac{1}{19} \right) \\ &= \left(-\frac{3}{\sqrt{19}}, \frac{3}{\sqrt{19}}, \frac{1}{\sqrt{19}} \right) \right] \\ &Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{2\sqrt{19}} & -\frac{3}{\sqrt{19}} \\ \frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{2\sqrt{19}} & \frac{3}{\sqrt{19}} \\ 0 & \frac{3\sqrt{2}}{\sqrt{19}} & \frac{1}{\sqrt{19}} \right] \\ &\sqrt{u}_1, \ \vec{q}_1 \right\rangle = (1, 1, 0) \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) \\ &= \frac{2}{\sqrt{2}} \\ &= \sqrt{2} \end{bmatrix} \\ &\langle \vec{u}_2, \ \vec{q}_1 \right\rangle = (2, 1, 3) \cdot \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{38}}, \frac{6}{\sqrt{38}} \right) \\ &\langle \vec{u}_2, \ \vec{q}_2 \right\rangle = (2, 1, 3) \cdot \left(\frac{1}{\sqrt{38}}, -\frac{1}{\sqrt{38}}, \frac{6}{\sqrt{38}} \right) \end{split}$$

$$\begin{split} &=\frac{2-1+18}{\sqrt{38}}\\ &=\frac{19}{\sqrt{2}\sqrt{19}}\\ &=\frac{\sqrt{19}}{\sqrt{2}}\\ &=\frac{\sqrt{19}}{\sqrt{2}}\\ &\stackrel{|}{\sqrt{2}}\\ &\stackrel{$$

The *QR*-decomposition of the matrix is

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{2\sqrt{19}} & -\frac{3}{\sqrt{19}} \\ \frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{2\sqrt{19}} & \frac{3}{\sqrt{19}} \\ 0 & \frac{3\sqrt{2}}{\sqrt{19}} & \frac{1}{\sqrt{19}} \end{bmatrix} \begin{bmatrix} \sqrt{2} & \frac{3}{\sqrt{2}} & \sqrt{2} \\ 0 & \frac{\sqrt{19}}{\sqrt{2}} & \frac{3\sqrt{2}}{\sqrt{19}} \\ 0 & 0 & \frac{1}{\sqrt{19}} \end{bmatrix}$$

$$A = \mathbf{Q} \qquad \mathbf{R}$$

e)
$$\begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \qquad \begin{array}{c} R_2 + R_1 \\ R_3 - R_1 \\ R_4 + R_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix} \qquad R_4 - R_2$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

The matrix is linearly dependent, so *doesn't* have a *QR*–decomposition.

Exercise

Verify that the Cauchy-Schwarz inequality holds for the given vectors using the Euclidean inner product

$$\vec{u} = (0, -2, 2, 1), \quad \vec{v} = (-1, -1, 1, 1)$$

$$\langle \vec{u}, \vec{v} \rangle = 0 - 2(-1) + 2(1) + 1(1)$$

$$= 5 \rfloor$$

$$\|\langle \vec{u}, \vec{v} \rangle\| = \sqrt{5} \rfloor$$

$$\|\vec{u}\| \|\vec{v}\| = \sqrt{0 + 4 + 4 + 1} \sqrt{1 + 1 + 1 + 1}$$

$$= \sqrt{9}\sqrt{4}$$

$$= 6 \rfloor$$

$$\sqrt{5} < 6 \implies \|\langle \vec{u}, \vec{v} \rangle\| \le \|\vec{u}\| \|\vec{v}\|$$

Apply the Gram-Schmidt *orthonormalization* process in $C^0[-1, 1]$ spanned by the functions, using the inner product $f_1(x) = x + 2$, $f_2(x) = x^2 - 3x + 4$

Solution

Let
$$\vec{u}_1 = f_1 = x + 2$$
, $\vec{u}_2 = f_2 = x^2 - 3x + 4$
 $\vec{v}_1 = \vec{u}_1 = x + 2$

$$\langle \vec{v}_1, \vec{v}_1 \rangle = \int_{-1}^{1} (x+2)^2 dx$$

= $\frac{1}{3} (x+2)^3 \Big|_{-1}^{1}$
= $\frac{1}{3} (27-1)$
= $\frac{26}{3}$

$$\langle \vec{u}_2, \vec{v}_1 \rangle = \int_{-1}^{1} (x^2 - 3x + 4)(x + 2) dx$$

$$= \int_{-1}^{1} (x^3 - x^2 - 2x + 8) dx$$

$$= \left(\frac{1}{4}x^4 - \frac{1}{3}x^3 - x^2 + 8x \right) \Big|_{-1}^{1}$$

$$= \frac{1}{4} - \frac{1}{3} - 1 + 8 - \frac{1}{4} - \frac{1}{3} + 1 + 8$$

$$= \frac{46}{3}$$

$$\vec{v}_2 = \vec{u}_2 - \frac{\langle \vec{u}_2, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1$$

$$\vec{v}_2 = x^2 - 3x + 4 - \frac{46}{3} \left(\frac{3}{26}\right) (x+2)$$

$$= x^2 - 3x + 4 - \frac{23}{13} x - \frac{46}{13}$$

$$= x^2 - \frac{62}{13} x + \frac{6}{13}$$

The orthogonal basis is $\left\{x+2, x^2 - \frac{62}{13}x + \frac{6}{13}\right\}$

$$\begin{split} \left\langle \vec{v}_{2}, \, \vec{v}_{2} \right\rangle &= \int_{-1}^{1} \left(x^{2} - \frac{62}{13}x + \frac{6}{13} \right)^{2} \, dx \\ &= \frac{1}{169} \int_{-1}^{1} \left(13x^{2} - 62x + 6 \right)^{2} \, dx \\ &= \frac{1}{169} \int_{-1}^{1} \left(169x^{4} + 3,844x^{2} + 36 - 1,612x^{3} + 156x^{2} - 744x \right) \, dx \\ &= \frac{1}{169} \left(\frac{169}{5}x^{5} + \frac{4,000}{3}x^{3} + 36x - 403x^{4} - 372x^{2} \right) \Big|_{-1}^{1} \\ &= \frac{1}{169} \left(\frac{169}{5} + \frac{4,000}{3} + 36 - 403 - 372 + \frac{169}{5} + \frac{4,000}{3} + 36 + 403 + 372 \right) \\ &= \frac{1}{169} \left(\frac{338}{5} + \frac{8,000}{3} + 72 \right) \\ &= \frac{3,238}{195} \end{split}$$

$$\vec{q}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$$
$$= \frac{\sqrt{3}}{\sqrt{26}}(x+2)$$

$$\vec{q}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|}$$

$$= \sqrt{\frac{195}{3238}} \left(x^2 - \frac{62}{13} x + \frac{6}{13} \right)$$

The orthonormal basis is $\left\{ \frac{\sqrt{3}}{\sqrt{26}} (x+2), \sqrt{\frac{195}{3238}} \left(x^2 - \frac{62}{13} x + \frac{6}{13} \right) \right\}$

Apply the Gram-Schmidt *orthonormalization* process in $C^0[-1, 1]$ spanned by the functions, using the inner product $f_1(x) = x$, $f_2(x) = x^3$, $f_3(x) = x^5$

Let
$$\vec{u}_1 = f_1 = x$$
, $\vec{u}_2 = f_2 = x^3$, $\vec{u}_3 = f_3 = x^5$

$$\vec{v}_1 = \vec{u}_1 = x$$

$$\left\langle \vec{v}_1, \ \vec{v}_1 \right\rangle = \int_{-1}^{1} x^2 dx$$
$$= \frac{1}{3} x^3 \Big|_{-1}^{1}$$
$$= \frac{2}{3} \ \Big|_{-1}^{1}$$

$$\left\langle \vec{u}_2, \ \vec{v}_1 \right\rangle = \int_{-1}^{1} x^4 \ dx$$
$$= \frac{1}{5} x^5 \Big|_{-1}^{1}$$
$$= \frac{2}{5} \ \Big|$$

$$\vec{v}_{2} = \vec{u}_{2} - \frac{\langle \vec{u}_{2}, \vec{v}_{1} \rangle}{\|\vec{v}_{1}\|^{2}} \vec{v}_{1}$$

$$= x^{3} - \frac{2}{5} \left(\frac{3}{2}\right)(x)$$

$$= x^{3} - \frac{3}{5}x$$

$$\langle \vec{v}_2, \vec{v}_2 \rangle = \int_{-1}^{1} \left(x^3 - \frac{3}{5} x \right)^2 dx$$

$$= \int_{-1}^{1} \left(x^6 - \frac{6}{5} x^4 + \frac{9}{25} x^2 \right) dx$$

$$= \left(\frac{1}{7} x^7 - \frac{6}{25} x^5 + \frac{3}{25} x^3 \right) \Big|_{-1}^{1}$$

$$= 2 \left(\frac{1}{7} - \frac{6}{25} + \frac{3}{25} \right)$$

$$\begin{split} & = \frac{8}{175} \\ & \left\langle \vec{u}_{3}, \vec{v}_{1} \right\rangle = \int_{-1}^{1} x^{6} \, dx \\ & = \frac{1}{7} x^{7} \Big|_{-1}^{1} \\ & = \frac{2}{7} \Big| \\ & \left\langle \vec{u}_{3}, \vec{v}_{2} \right\rangle = \int_{-1}^{1} x^{5} \left(x^{3} - \frac{3}{5} x \right) \, dx \\ & = \int_{-1}^{1} \left(x^{8} - \frac{3}{5} x^{6} \right) \, dx \\ & = \left(\frac{1}{9} x^{9} - \frac{3}{35} x^{7} \right) \Big|_{-1}^{1} \\ & = 2 \left(\frac{1}{9} - \frac{3}{35} \right) \\ & = \frac{16}{315} \Big| \\ & \vec{v}_{3} = \vec{u}_{3} - \frac{\left\langle \vec{u}_{3}, \vec{v}_{1} \right\rangle}{\left\| \vec{v}_{1} \right\|^{2}} \vec{v}_{1} - \frac{\left\langle \vec{u}_{3}, \vec{v}_{2} \right\rangle}{\left\| \vec{v}_{2} \right\|^{2}} \vec{v}_{2} \\ & = x^{5} - \frac{16}{315} \left(\frac{175}{8} \right) \left(x^{3} - \frac{3}{5} x \right) - \frac{2}{7} \left(\frac{3}{2} \right) x \\ & = x^{5} - \frac{70}{63} \left(x^{3} - \frac{3}{5} x \right) - \frac{3}{7} x \\ & = x^{5} - \frac{70}{63} x^{3} + \frac{14}{21} x - \frac{3}{7} x \\ & = x^{5} - \frac{70}{63} x^{3} + \frac{5}{21} x \Big| \end{split}$$

The orthogonal basis is $\left\{x, \ x^3 - \frac{3}{5}x, \ x^5 - \frac{70}{63}x^3 + \frac{5}{21}x\right\}$

$$\langle \vec{v}_3, \vec{v}_3 \rangle = \int_{-1}^{1} \left(x^5 - \frac{70}{63} x^3 + \frac{5}{21} x \right)^2 dx$$

= $\int_{-1}^{1} \frac{1}{3,969} \left(63 x^5 - 70 x^3 + 15 x \right)^2 dx$

$$\begin{split} &=\frac{1}{3,969}\int_{-1}^{1}\left(3,969x^{10}-8,820x^{8}+1,890x^{6}-2,100x^{4}+4,900x^{6}+225x^{2}\right)dx\\ &=\frac{1}{3,969}\left(\frac{3,969}{11}x^{11}-980x^{9}+970x^{7}-420x^{5}+75x^{3}\right)\Big|_{-1}^{1}\\ &=\frac{2}{3,969}\left(\frac{3,969}{11}-980+970-420+75\right)\\ &=\frac{2}{3,969}\left(\frac{3,969}{11}-355\right)\\ &=\frac{2}{3,969}\left(\frac{64}{11}\right)\\ &=\frac{128}{43,659}\Big]\\ \vec{q}_{1} &=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}\\ &=\frac{x}{\sqrt{2/3}}\\ &=\frac{\sqrt{3}}{2}x\Big]\\ \vec{q}_{2} &=\frac{\vec{v}_{2}}{\left\|\vec{v}_{2}\right\|}\\ &=\sqrt{\frac{175}{8}}\left(x^{3}-\frac{3}{5}x\right)\Big]\\ &=\frac{5\sqrt{7}}{2\sqrt{2}}\left(x^{3}-\frac{3}{5}x\right)\Big]\\ \vec{q}_{3} &=\frac{\vec{v}_{3}}{\left\|\vec{v}_{3}\right\|}\\ &=\sqrt{\frac{43,659}{128}}\left(x^{5}-\frac{70}{63}x^{3}+\frac{5}{21}x\right)\Big]\\ &=\frac{63\sqrt{11}}{8\sqrt{2}}\left(x^{5}-\frac{70}{63}x^{3}+\frac{5}{21}x\right)\Big] \end{split}$$

The orthonormal basis is $\left\{ \frac{\sqrt{3}}{\sqrt{2}}x, \frac{5}{2}\sqrt{\frac{7}{2}}\left(x^3 - \frac{3}{5}x\right), \frac{63}{8}\sqrt{\frac{11}{2}}\left(x^5 - \frac{70}{63}x^3 + \frac{5}{21}x\right) \right\}$

Apply the Gram-Schmidt *orthonormalization* process in $C^0[-1, 1]$ spanned by the functions, using the inner product $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = \frac{1}{2}(3x^2 - 1)$

Let
$$\vec{u}_1 = f_1 = 1$$
, $\vec{u}_2 = f_2 = x$, $\vec{u}_3 = f_3 = \frac{3}{2}x^2 - \frac{1}{2}$

$$\frac{\vec{v}_1 = \vec{u}_1 = 1}{|\vec{v}_1|}$$

$$\langle \vec{v}_1, \vec{v}_1 \rangle = \int_{-1}^{1} 1 \, dx$$

$$= x \Big|_{-1}^{1}$$

$$= 2 \Big|$$

$$\langle \vec{u}_2, \vec{v}_1 \rangle = \int_{-1}^{1} x \, dx$$

$$= \frac{1}{2}x^2 \Big|_{-1}^{1}$$

$$= 0 \Big|$$

$$\vec{v}_2 = \vec{u}_2 - \frac{\langle \vec{u}_2, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1$$

$$= x - \frac{0}{2}(1)$$

$$= x \Big|$$

$$\langle \vec{v}_2, \vec{v}_2 \rangle = \int_{-1}^{1} x^2 \, dx$$

$$= \frac{1}{3}x^3 \Big|_{-1}^{1}$$

$$= \frac{2}{3} \Big|$$

$$\langle \vec{u}_3, \vec{v}_1 \rangle = \frac{1}{2} \int_{-1}^{1} (3x^2 - 1) \, dx$$

$$= \frac{1}{2}(x^3 - x) \Big|_{-1}^{1}$$

$$v_{3} = u_{3} - \frac{1}{\|\vec{v}_{1}\|^{2}} v_{1} - \frac{1}{\|\vec{v}_{2}\|^{2}} v_{2}$$

$$= \frac{3}{2}x^{2} - \frac{1}{2} - \frac{0}{1}(1) - \frac{0}{2}(x)$$

$$= \frac{1}{2}(3x^{2} - 1)$$

The orthogonal basis is $\left\{1, x, \frac{1}{2}\left(3x^2-1\right)\right\}$

$$\langle \vec{v}_3, \vec{v}_3 \rangle = \frac{1}{4} \int_{-1}^{1} (3x^2 - 1)^2 dx$$

$$= \frac{1}{4} \int_{-1}^{1} (9x^4 - 6x^2 + 1) dx$$

$$= \frac{1}{4} \left(\frac{9}{5} x^5 - 2x^3 + x \right) \Big|_{-1}^{1}$$

$$= \frac{1}{2} \left(\frac{9}{5} - 2 + 1 \right)$$

$$= \frac{2}{5}$$

$$\vec{q}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$$

$$= \frac{1}{\sqrt{2}}$$

$$\vec{q}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|}$$
$$= \sqrt{\frac{3}{2}} x$$

$$\vec{q}_{3} = \frac{\vec{v}_{3}}{\|\vec{v}_{3}\|}$$

$$= \frac{1}{\sqrt{\frac{2}{5}}} \frac{1}{2} (3x^{2} - 1)$$

$$= \frac{1}{2} \sqrt{\frac{5}{2}} (3x^{2} - 1)$$

The orthonormal basis is $\left\{ \frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}x, \frac{1}{2}\sqrt{\frac{5}{2}}\left(3x^2-1\right) \right\}$

Exercise

Apply the Gram-Schmidt *orthonormalization* process in $C^0[-1, 1]$ spanned by the functions, using the inner product $f_1(x) = 1$, $f_2(x) = \sin \pi x$, $f_3(x) = \cos \pi x$

Let
$$\vec{u}_1 = f_1 = 1$$
, $\vec{u}_2 = f_2 = \sin \pi x$, $\vec{u}_3 = f_3 = \cos \pi x$

$$\frac{\vec{v}_1 = \vec{u}_1 = 1}{\left\langle \vec{v}_1, \vec{v}_1 \right\rangle} = \int_{-1}^{1} 1 dx$$

$$= x \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$

$$= 2 \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$

$$= 2 \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$

$$= -\frac{1}{\pi} \cos \pi x \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$

$$= 0 \begin{vmatrix} 1 \\ \vec{v}_2 = \vec{u}_2 - \frac{\left\langle \vec{u}_2, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \vec{v}_1$$

$$= \sin \pi x \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$

$$= \sin \pi x \begin{vmatrix} 1 \\ \sqrt{v}_2, \vec{v}_2 \end{vmatrix} = \int_{-1}^{1} \sin^2 \pi x \, dx$$

$$= \frac{1}{2} \int_{-1}^{1} (1 - \cos 2\pi x) \, dx$$

$$= \frac{1}{2} \left(x - \frac{1}{2\pi} \sin 2\pi x \right) \Big|_{-1}^{1}$$

$$= \frac{1}{2} \int_{-1}^{1} \cos \pi x \, dx$$

$$= \frac{1}{\pi} \sin \pi x \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \cos \pi x \sin \pi x \, dx$$

$$= \frac{1}{2} \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= \frac{1}{2} \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= 0 \int_{-1}^{1} \sin 2\pi x \, dx$$

$$= -\frac{1}{4\pi} \cos 2\pi x \, \Big|_{-1}^{1}$$

$$= \cos \pi x - 0 - 0$$

$$= \cos \pi x \, \Big|_{-1}^{1}$$

The orthogonal basis is $\left\{1, \sin \pi x - \frac{1}{\pi}, \cos \pi x\right\}$

$$\left\langle \vec{v}_3, \ \vec{v}_3 \right\rangle = \int_{-1}^{1} \cos^2 \pi x \, dx$$
$$= \frac{1}{2} \int_{-1}^{1} \left(1 + \cos 2\pi x \right) \, dx$$
$$= \frac{1}{2} \left(x + \frac{1}{2\pi} \sin 2\pi x \right) \, \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$
$$= 1 \, \begin{vmatrix} 1 \end{vmatrix}$$

$$\vec{q}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$$

$$= \frac{1}{\sqrt{2}}$$

$$\vec{q}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|}$$

$$= \sin \pi x$$

$$\vec{q}_3 = \frac{\vec{v}_3}{\left\|\vec{v}_3\right\|}$$

 $=\cos \pi x$

The orthonormal basis is $\left\{\frac{1}{\sqrt{2}}, \sin \pi x, \cos \pi x\right\}$

Exercise

Apply the Gram-Schmidt *orthonormalization* process in $C^0[-1, 1]$ spanned by the functions, using the inner product $f_1(x) = \sin \pi x$, $f_2(x) = \sin 2\pi x$, $f_3(x) = \sin 3\pi x$

Let
$$\vec{u}_1 = f_1 = \sin \pi x$$
, $\vec{u}_2 = f_2 = \sin 2\pi x$, $\vec{u}_3 = f_3 = \sin 3\pi x$

$$\frac{\vec{v}_1 = \vec{u}_1 = \sin \pi x}{\vec{v}_1} = \frac{1}{\sin^2 \pi x} dx$$

$$= \frac{1}{2} \int_{-1}^{1} (1 - \cos 2\pi x) dx$$

$$= \frac{1}{2} \left(x - \frac{1}{2\pi} \sin 2\pi x \right) \Big|_{-1}^{1}$$

$$= 1 \int_{-1}^{1} \sin \pi x \sin 2\pi x dx$$

$$\sin a \sin b = \frac{1}{2} [\cos(a+b) - \cos(a-b)]$$

$$= \frac{1}{2} \int_{-1}^{1} (\cos 3\pi x - \cos(-\pi x)) dx$$

$$\begin{split} &=\frac{1}{2}\int_{-1}^{1}(\cos 3\pi x - \cos \pi x)\ dx \\ &=\frac{1}{2}\left(\frac{1}{3\pi}\sin 3\pi x - \frac{1}{\pi}\sin \pi x\right)\Big|_{-1}^{1} \\ &=0 \ \end{bmatrix} \\ &\bar{v}_{2} = \bar{u}_{2} - \frac{\langle \dot{u}_{2},\dot{v}_{1} \rangle}{\left\| \ddot{v}_{1} \right\|^{2}} \bar{v}_{1} \\ &= \sin 2\pi x \ \end{bmatrix} \\ &\langle \ddot{v}_{2},\, \ddot{v}_{2} \rangle = \int_{-1}^{1}\sin^{2}2\pi x\ dx \\ &=\frac{1}{2}\int_{-1}^{1}(1 - \cos 4\pi x)\ dx \\ &=\frac{1}{2}\left(x - \frac{1}{4\pi}\sin 4\pi x\right)\Big|_{-1}^{1} \\ &=1 \ \end{bmatrix} \\ &\langle \ddot{u}_{3},\, \ddot{v}_{1} \rangle = \int_{-1}^{1}\sin \pi x \sin 3\pi x\ dx \qquad \sin a \sin b = \frac{1}{2}[\cos(a+b) - \cos(a-b)] \\ &=\frac{1}{2}\int_{-1}^{1}(\cos 4\pi x - \cos(-2\pi x))\ dx \\ &=\frac{1}{2}\int_{-1}^{1}(\cos 4\pi x - \cos 2\pi x)\ dx \\ &=\frac{1}{2}\left(\frac{1}{4\pi}\sin 4\pi x - \frac{1}{2\pi}\sin 2\pi x\right)\Big|_{-1}^{1} \\ &=0 \ \end{bmatrix} \\ &\langle \ddot{u}_{3},\, \ddot{v}_{2} \rangle = \int_{-1}^{1}\sin 3\pi x \sin 2\pi x\ dx \qquad \sin a \sin b = \frac{1}{2}[\cos(a+b) - \cos(a-b)] \\ &=\frac{1}{2}\int_{-1}^{1}(\cos 5\pi x - \cos \pi x)\ dx \\ &=\frac{1}{2}\left(\frac{1}{5\pi}\sin 5\pi x - \frac{1}{\pi}\sin \pi x\right)\Big|_{-1}^{1} \\ &=0 \ \end{bmatrix}$$

$$\vec{v}_{3} = \vec{u}_{3} - \frac{\langle \vec{u}_{3}, \vec{v}_{1} \rangle}{\|\vec{v}_{1}\|^{2}} \vec{v}_{1} - \frac{\langle \vec{u}_{3}, \vec{v}_{2} \rangle}{\|\vec{v}_{2}\|^{2}} \vec{v}_{2}$$

$$= \sin 3\pi x \mid$$

The orthogonal basis is $\{\sin \pi x, \sin 2\pi x, \sin 3\pi x\}$

$$\left\langle \vec{v}_3, \ \vec{v}_3 \right\rangle = \int_{-1}^{1} \sin^2 3\pi x \, dx$$
$$= \frac{1}{2} \int_{-1}^{1} \left(1 - \cos 6\pi x \right) \, dx$$
$$= \frac{1}{2} \left(x - \frac{1}{6\pi} \sin 6\pi x \right) \, \Big|_{-1}^{1}$$
$$= 1 \, \Big|_{-1}$$

$$\vec{q}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$$

$$= \sin \pi x$$

 $=\sin \pi x$

$$\vec{q}_2 = \frac{\vec{v}_2}{\left\|\vec{v}_2\right\|}$$

 $=\sin 2\pi x$

$$\vec{q}_3 = \frac{\vec{v}_3}{\|\vec{v}_3\|}$$
$$= \sin 3\pi x$$

The orthonormal basis is $\{\sin \pi x, \sin 2\pi x, \sin 3\pi x\}$

Exercise

Apply the Gram-Schmidt *orthonormalization* process in $C^0[-1, 1]$ spanned by the functions, using the $f_1(x) = \cos \pi x$, $f_2(x) = \cos 2\pi x$, $f_3(x) = \cos 3\pi x$ inner product

Let
$$\vec{u}_1 = f_1 = \cos \pi x$$
, $\vec{u}_2 = f_2 = \cos 2\pi x$, $\vec{u}_3 = f_3 = \cos 3\pi x$
 $\vec{v}_1 = \vec{u}_1 = \cos \pi x$

$$\begin{split} \left\langle \vec{v}_{1}, \, \vec{v}_{1} \right\rangle &= \int_{-1}^{1} \cos^{2} \pi x \, dx \\ &= \frac{1}{2} \int_{-1}^{1} \left(1 + \cos 2\pi x \right) \, dx \\ &= \frac{1}{2} \left(x + \frac{1}{2\pi} \sin 2\pi x \right) \Big|_{-1}^{1} \\ &= 1 \end{bmatrix} \\ \left\langle \vec{u}_{2}, \, \vec{v}_{1} \right\rangle &= \int_{-1}^{1} \cos 2\pi x \cos \pi x \, dx \\ &= \frac{1}{2} \int_{-1}^{1} \left(\cos 3\pi x + \cos \pi x \right) \, dx \\ &= \frac{1}{2} \left(\frac{1}{3\pi} \sin 3\pi x + \frac{1}{\pi} \sin \pi x \right) \Big|_{-1}^{1} \\ &= 0 \end{bmatrix} \\ \vec{v}_{2} &= \vec{u}_{2} - \frac{\left\langle \vec{u}_{2}, \, \vec{v}_{1} \right\rangle}{\left\| \vec{v}_{1} \right\|^{2}} \vec{v}_{1} \\ &= \frac{\cos 2\pi x}{\left\| \vec{v}_{2}, \, \vec{v}_{2} \right\rangle} = \int_{-1}^{1} \cos^{2} 2\pi x \, dx \\ &= \frac{1}{2} \left(x + \frac{1}{4\pi} \sin 4\pi x \right) \Big|_{-1}^{1} \\ &= 1 \end{bmatrix} \\ \left\langle \vec{u}_{3}, \, \vec{v}_{1} \right\rangle &= \int_{-1}^{1} \cos 3\pi x \cos \pi x \, dx \\ &= \frac{1}{2} \int_{-1}^{1} \left(\cos 4\pi x + \cos 2\pi x \right) \, dx \\ &= \frac{1}{2} \left(\frac{1}{4\pi} \sin 4\pi x + \frac{1}{2\pi} \sin 2\pi x \right) \Big|_{-1}^{1} \end{split}$$

$$\begin{aligned}
& = 0 \\
\left\langle \vec{u}_{3}, \vec{v}_{2} \right\rangle = \int_{-1}^{1} \cos 3\pi x \cos 2\pi x \, dx & \cos a \cos b = \frac{1}{2} \left[\cos \left(a + b \right) + \cos \left(a - b \right) \right] \\
& = \frac{1}{2} \int_{-1}^{1} \left(\cos 5\pi x + \cos \pi x \right) \, dx \\
& = \frac{1}{2} \left(\frac{1}{5\pi} \sin 5\pi x + \frac{1}{\pi} \sin \pi x \right) \, \Big|_{-1}^{1} \\
& = 0 \\
\vec{v}_{3} = \vec{u}_{3} - \frac{\left\langle \vec{u}_{3}, \vec{v}_{1} \right\rangle}{\left\| \vec{v}_{1} \right\|^{2}} \vec{v}_{1} - \frac{\left\langle \vec{u}_{3}, \vec{v}_{2} \right\rangle}{\left\| \vec{v}_{2} \right\|^{2}} \vec{v}_{2} \\
& = \cos 3\pi x \, \end{aligned}$$

The orthogonal basis is $\{\cos \pi x, \cos 2\pi x, \cos 3\pi x\}$

$$\left\langle \vec{v}_3, \ \vec{v}_3 \right\rangle = \int_{-1}^{1} \cos^2 3\pi x \, dx$$

$$= \frac{1}{2} \int_{-1}^{1} (1 + \cos 6\pi x) \, dx$$

$$= \frac{1}{2} \left(x + \frac{1}{6\pi} \sin 6\pi x \right) \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$

$$= 1$$

$$\vec{q}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$$

$$= \cos \pi x$$

$$\vec{q}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|}$$
$$= \cos 2\pi x \mid$$

$$\vec{q}_3 = \frac{\vec{v}_3}{\|\vec{v}_3\|}$$
$$= \cos 3\pi x$$

The orthonormal basis is $\{\cos \pi x, \cos 2\pi x, \cos 3\pi x\}$

For $\mathbb{P}_{3}[x]$, define the inner product over \mathbb{R} as

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx$$

- a) If f(x)=1 is a unit vector in $\mathbb{P}_3[x]$?
- b) Find an orthonormal basis for the subspace spanned by x and x^2 .
- c) Complete the basis in part (b) to an orthonormal basis for $\mathbb{P}_3[x]$ with respect to the inner product.
- *d*) Is

$$[f, g] = \int_0^1 f(x)g(x) dx$$

Also, an inner product for $\mathbb{P}_3[x]$

e) Find a pair of vectors \vec{v} and \vec{w} such that

$$\langle \vec{v}, \vec{w} \rangle = 0$$
 but $[\vec{v}, \vec{w}] \neq 0$

f) Is the basis found in part (c) are orthonormal basis for $\mathbb{P}_3[x]$ with respect to the inner product in part (d)?

Solution

$$a) \quad f(x) = 1$$

$$\langle f, f \rangle = \int_{-1}^{1} f(x) f(x) dx$$

$$= \int_{-1}^{1} dx$$

$$= x \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$

$$= 1 + 1$$

$$= 2 \neq 1$$

Therefore, when f(x) = 1 is **not** a unit vector in $\mathbb{P}_3[x]$

b) Let
$$\vec{u}_1 = f = x$$
, $\vec{u}_2 = g = x^2$

$$\vec{v}_1 = \vec{u}_1 = x$$

$$=\sqrt{\frac{3}{2}} x$$

$$\vec{q}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|}$$

$$= \frac{x^2}{\sqrt{\frac{2}{5}}}$$

$$= \sqrt{\frac{5}{2}} x^2$$

The orthonormal basis is $\left\{ \sqrt{\frac{3}{2}} x, \sqrt{\frac{5}{2}} x^2 \right\}$

c) Since
$$\vec{u}_1 = x$$
, $\vec{u}_2 = x^2$ in $\mathbb{P}_3[x]$
Then, let $\vec{u}_3 = 1$

$$\left\langle \vec{u}_3, \ \vec{v}_1 \right\rangle = \int_{-1}^{1} (1)(x) \ dx$$
$$= \int_{-1}^{1} x \ dx$$
$$= \frac{1}{2}x^2 \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$
$$= \frac{1}{2}(1-1)$$
$$= 0$$

$$\left\langle \vec{u}_3, \ \vec{v}_2 \right\rangle = \int_{-1}^{1} (1) \left(x^2 \right) dx$$

$$= \int_{-1}^{1} x^2 dx$$

$$= \frac{1}{3} x^3 \Big|_{-1}^{1}$$

$$= \frac{1}{3} (1+1)$$

$$= \frac{2}{3} \Big|_{-1}^{1}$$

$$\vec{v}_{3} = \vec{u}_{3} - \frac{\left\langle \vec{u}_{3}, \ \vec{v}_{1} \right\rangle}{\left\| \vec{v}_{1} \right\|^{2}} \vec{v}_{1} - \frac{\left\langle \vec{u}_{3}, \ \vec{v}_{2} \right\rangle}{\left\| \vec{v}_{2} \right\|^{2}} \vec{v}_{2}$$

$$=1 - \frac{0}{\frac{2}{3}}(x) - \frac{\frac{2}{3}}{\frac{2}{5}}(x^2)$$

$$=1 - \frac{5}{3}x^2$$

$$\begin{split} \left\langle \vec{v}_{3}, \ \vec{v}_{3} \right\rangle &= \int_{-1}^{1} \left(1 - \frac{5}{3} x^{2} \right)^{2} dx \\ &= \int_{-1}^{1} \left(1 - \frac{10}{3} x^{2} + \frac{25}{9} x^{4} \right) dx \\ &= \left(x - \frac{10}{9} x^{3} + \frac{5}{9} x^{5} \right) \Big|_{-1}^{1} \\ &= 2 \left(1 - \frac{10}{9} + \frac{5}{9} \right) \\ &= 2 \left(\frac{9 - 5}{9} \right) \\ &= \frac{8}{9} \ \end{split}$$

$$\vec{q}_{3} = \frac{\vec{v}_{3}}{\|\vec{v}_{3}\|}$$

$$= \left(\sqrt{\frac{9}{8}}\right) \left(1 - \frac{5}{3}x^{2}\right)$$

$$= \frac{3}{2\sqrt{2}} \left(1 - \frac{5}{3}x^{2}\right)$$

$$= \frac{3}{2\sqrt{2}} - \frac{5}{2\sqrt{2}}x^{2}$$

The orthonormal basis is

$$\left\{ \sqrt{\frac{3}{2}} x, \sqrt{\frac{5}{2}} x^2, \frac{3}{2\sqrt{2}} - \frac{5}{2\sqrt{2}} x^2 \right\}$$

d)
$$[f, g] = \int_0^1 f(x)g(x) dx$$

Let $\vec{u}_1 = 1$, $\vec{u}_2 = x$, $\vec{u}_3 = x$

Let
$$\vec{u}_1 = 1$$
, $\vec{u}_2 = x$, $\vec{u}_3 = x^2$
 $\vec{v}_1 = \vec{u}_1 = 1$

$$\langle \vec{v}_1, \vec{v}_1 \rangle = \int_0^1 1 \, dx$$

$$\begin{split} &=\frac{1}{3}x^3 \mid_0^1 \\ &=\frac{1}{3} \end{bmatrix} \\ &\langle \vec{u}_3, \vec{v}_2 \rangle = \int_0^1 (x^2) (x - \frac{1}{2}) \, dx \\ &= \int_0^1 (x^3 - \frac{1}{2}x^2) \, dx \\ &= (\frac{1}{4}x^4 - \frac{1}{6}x^3) \mid_0^1 \\ &= \frac{1}{4} - \frac{1}{6} \\ &= \frac{1}{12} \end{bmatrix} \\ \vec{v}_3 &= \vec{u}_3 - \frac{\langle \vec{u}_3, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 - \frac{\langle \vec{u}_3, \vec{v}_2 \rangle}{\|\vec{v}_2\|^2} \vec{v}_2 \\ &= x^2 - \frac{1}{3}(1) - \frac{1}{\frac{12}{12}} (x - \frac{1}{2}) \\ &= x^2 - \frac{1}{3} - x + \frac{1}{2} \\ &= x^2 - x + \frac{1}{6} \end{bmatrix} \\ &\langle \vec{v}_3, \vec{v}_3 \rangle = \int_0^1 (x^2 - x + \frac{1}{6})^2 \, dx \\ &= \int_0^1 (x^4 - 2x^3 + \frac{4}{3}x^2 - \frac{1}{3}x + \frac{1}{36}) \, dx \\ &= (\frac{1}{5}x^5 - \frac{1}{2}x^4 + \frac{4}{9}x^3 - \frac{1}{6}x^2 + \frac{1}{36}x) \mid_0^1 \\ &= \frac{1}{5} - \frac{1}{2} + \frac{4}{9} - \frac{1}{6} + \frac{1}{36} \\ &= \frac{2-5}{10} + \frac{16-6+1}{36} \\ &= -\frac{3}{10} + \frac{11}{36} \\ &= \frac{-108+110}{360} \end{split}$$

$$=\frac{1}{180}$$

$$\vec{q}_1 = \frac{\vec{v}_1}{\left\|\vec{v}_1\right\|}$$

$$= 1$$

$$\vec{q}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|}$$

$$= \frac{x - \frac{1}{2}}{\sqrt{\frac{1}{12}}}$$

$$= 2\sqrt{3} \left(x - \frac{1}{2}\right)$$

The orthonormal basis is
$$\left\{1, \ 2\sqrt{3}\left(x-\frac{1}{2}\right), \ \sqrt{5}\left(6x^2-6x+1\right)\right\}$$

Therefore, $[f, g] = \int_0^1 f(x)g(x) dx$ is an inner product for $\mathbb{P}_3[x]$

e) Let assume: $\vec{v} = 1$ and $\vec{w} = x$

$$\langle \vec{v}, \vec{w} \rangle = \int_{-1}^{1} 1(x) dx$$

$$= \int_{-1}^{1} x dx$$

$$= \frac{1}{2} x^{2} \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$

$$= \frac{1}{2} (1 - 1)$$

$$= 0$$

$$\begin{bmatrix} \vec{v}, \ \vec{w} \end{bmatrix} = \int_0^1 1(x) \, dx$$
$$= \frac{1}{2} x^2 \, \Big|_0^1$$
$$= \frac{1}{2} \neq 0 \, \Big| \qquad \checkmark$$

f) The orthonormal basis in part (c)
$$\left\{ \sqrt{\frac{3}{2}} x, \sqrt{\frac{5}{2}} x^2, \frac{3}{2\sqrt{2}} - \frac{5}{2\sqrt{2}} x^2 \right\}$$
 are **not** the same as the orthonormal basis in part (d) $\left\{ 1, 2\sqrt{3} \left(x - \frac{1}{2} \right), \sqrt{5} \left(6x^2 - 6x + 1 \right) \right\}$

 $A = \begin{vmatrix} \frac{4}{5} & 0 & -\frac{3}{5} \\ -\frac{9}{25} & \frac{4}{5} & -\frac{12}{25} \\ \frac{12}{25} & \frac{3}{5} & \frac{16}{25} \end{vmatrix}$ Show that the matrix is orthogonal

Solution

$$AA^{T} = \begin{bmatrix} \frac{4}{5} & 0 & -\frac{3}{5} \\ -\frac{9}{25} & \frac{4}{5} & -\frac{12}{25} \\ \frac{12}{25} & \frac{3}{5} & \frac{16}{25} \end{bmatrix} \begin{bmatrix} \frac{4}{5} & -\frac{9}{25} & \frac{12}{25} \\ 0 & \frac{4}{5} & \frac{3}{5} \\ -\frac{3}{5} & -\frac{12}{25} & \frac{16}{25} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

$$A^{T}A = \begin{bmatrix} \frac{4}{5} & -\frac{9}{25} & \frac{12}{25} \\ 0 & \frac{4}{5} & \frac{3}{5} \\ -\frac{3}{5} & -\frac{12}{25} & \frac{16}{25} \end{bmatrix} \begin{bmatrix} \frac{4}{5} & 0 & -\frac{3}{5} \\ -\frac{9}{25} & \frac{4}{5} & -\frac{12}{25} \\ \frac{12}{25} & \frac{3}{5} & \frac{16}{25} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

$$AA^T = A^TA = I$$

 \therefore **A** is an orthogonal

Exercise

Show that the matrix is orthogonal $A = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$

$$AA^{T} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

$$A^{T}A = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

$$AA^T = A^TA = I$$

 \therefore **A** is an orthogonal.

Exercise

Determine if the matrix is orthogonal. For those that is orthogonal find the inverse

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$\therefore \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 is orthogonal with inverse
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Determine if the matrix is orthogonal. For those that is orthogonal find the inverse

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Solution

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$\therefore \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
 is orthogonal with inverse
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
 (It is a standard matrix for a rotation of 45°)

Exercise

Determine if the matrix is orthogonal. For those that is orthogonal find the inverse

$$\begin{pmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{pmatrix}$$

$$\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}^T = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

$$\vdots \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \text{ is orthogonal with inverse } \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Determine if the matrix is orthogonal. For those that is orthogonal find the inverse

$$\begin{pmatrix}
\cos\theta & \sin\theta \\
\sin\theta & -\cos\theta
\end{pmatrix}$$

Solution

$$\begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}^{T} = \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

$$\vdots \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \text{ is orthogonal with an inverse } \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$$

Exercise

Determine if the matrix is orthogonal. For those that is orthogonal find the inverse

$$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 3 & 4 \\ 7 & -5 & 2 \end{pmatrix}$$

Determine if the matrix is orthogonal. For those that is orthogonal find the inverse

$$\begin{bmatrix} 0 & 1 & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Solution

$$\begin{pmatrix} 0 & 1 & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 & 1 & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}^{T} = \begin{pmatrix} 0 & 1 & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$
$$= \begin{pmatrix} \frac{3}{2} \\ & & & \\ & & & \\ \end{pmatrix} \neq I$$

Or
$$||r_1|| = \sqrt{0 + 1^2 + \left(\frac{1}{\sqrt{2}}\right)^2} = \sqrt{\frac{3}{2}} ≠ 1$$
 ∴ *A* is *not* orthogonal

Exercise

Determine if the matrix is orthogonal. For those that is orthogonal find the inverse

$$\begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

$$\begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Determine if the matrix is orthogonal. For those that is orthogonal find the inverse

$$\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Determine if the matrix is orthogonal. For those that is orthogonal find the inverse

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{5}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{6} & \frac{1}{6} & -\frac{5}{6} \\ \frac{1}{2} & \frac{1}{6} & -\frac{5}{6} & \frac{1}{6} \end{bmatrix}$$

Solution

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{5}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{6} & -\frac{5}{6} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{5}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{6} & -\frac{5}{6} & \frac{1}{6} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{5}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{6} & -\frac{5}{6} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{5}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{6} & -\frac{5}{6} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{5}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{6} & -\frac{5}{6} & \frac{1}{6} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Exercise

Determine if the matrix is orthogonal. For those that is orthogonal find the inverse

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & -\frac{1}{2} & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 & 1 \\ 0 & \frac{1}{\sqrt{3}} & \frac{1}{2} & 0 \end{bmatrix}$$

$$\begin{aligned} \left\| \mathbf{r}_2 \right\| &= \sqrt{\left(\frac{1}{\sqrt{3}}\right)^2 + \left(-\frac{1}{2}\right)^2} \\ &= \sqrt{\frac{1}{3} + \frac{1}{4}} \\ &= \sqrt{\frac{7}{12}} \neq 1 \end{aligned}$$

Or

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{3}} & -\frac{1}{2} & 0 \\
0 & \frac{1}{\sqrt{3}} & 0 & 1 \\
0 & \frac{1}{\sqrt{3}} & \frac{1}{2} & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{3}} & -\frac{1}{2} & 0 \\
0 & \frac{1}{\sqrt{3}} & \frac{1}{2} & 0
\end{pmatrix}^{T} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{3}} & -\frac{1}{2} & 0 \\
0 & \frac{1}{\sqrt{3}} & -\frac{1}{2} & 0 \\
0 & \frac{1}{\sqrt{3}} & 0 & 1 \\
0 & \frac{1}{\sqrt{3}} & \frac{1}{2} & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
0 & \frac{1}{\sqrt{3}} & \frac{1}{2} & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 \\
0 & \frac{1}{\sqrt{3}} & \frac{1}{2} & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{5}{6} & 0
\end{pmatrix} \neq I$$

∴ The matrix is *not* an orthogonal

Exercise

Find a last column so that the resulting matrix is orthogonal

$$\begin{vmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \cdots \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \cdots \\ -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & \cdots \end{vmatrix}$$

$$\vec{q}_{1} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \end{bmatrix}^{T}$$

$$\|\vec{q}_{1}\| = \sqrt{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}}$$

$$= 1$$

$$\vec{q}_{2} = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{bmatrix}^{T}$$

$$\begin{aligned} & \left\| \vec{q}_{2} \right\| = \sqrt{\frac{1}{6} + \frac{1}{6} + \frac{4}{6}} \\ & = 1 \end{aligned}$$

$$\text{Let } \vec{q}_{3} = \begin{bmatrix} x & y & z \end{bmatrix}^{T}$$

$$\vec{q}_{1} \cdot \vec{q}_{3} = \frac{1}{\sqrt{3}}x + \frac{1}{\sqrt{3}}y - \frac{1}{\sqrt{3}}z = 0 \quad \Rightarrow \quad x + y - z = 0$$

$$\vec{q}_{2} \cdot \vec{q}_{3} = \frac{1}{\sqrt{6}}x + \frac{1}{\sqrt{6}}y - \frac{2}{\sqrt{6}}z = 0 \quad \Rightarrow \quad x + y - 2z = 0$$

$$\begin{cases} x + y - z = 0 \\ x + y - 2z = 0 \end{cases} \Rightarrow \quad \underline{z} = 0 \quad \text{and} \quad x + y = 0 \Rightarrow \underline{x} = -y \end{bmatrix}$$

$$\vec{q}_{3} = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}^{T}$$

Determine if the given matrix is orthogonal. If it is, find its inverse

$$\begin{vmatrix} \frac{1}{9} & \frac{4}{5} & \frac{3}{7} \\ \frac{4}{9} & \frac{3}{5} & -\frac{2}{7} \\ \frac{8}{9} & -\frac{2}{5} & \frac{3}{7} \end{vmatrix}$$

Solution

$$\vec{q}_{1} = \begin{bmatrix} \frac{1}{9} & \frac{4}{9} & \frac{8}{9} \end{bmatrix}^{T} \qquad \vec{q}_{2} = \begin{bmatrix} \frac{4}{5} & \frac{3}{5} & -\frac{2}{5} \end{bmatrix}^{T} \qquad \vec{q}_{3} = \begin{bmatrix} \frac{3}{7} & -\frac{2}{7} & \frac{3}{7} \end{bmatrix}^{T}$$

$$\vec{q}_{1} \cdot \vec{q}_{2} = \frac{4}{45} + \frac{12}{45} - \frac{16}{45}$$

$$= 0$$

$$\vec{q}_{1} \cdot \vec{q}_{3} = \frac{3}{63} - \frac{8}{63} + \frac{24}{63}$$

$$= \frac{19}{63} \neq 0$$

$$\vec{q}_{2} \cdot \vec{q}_{3} = \frac{12}{35} - \frac{6}{35} + \frac{6}{35}$$

$$= \frac{12}{35} \neq 0$$

The given matrix is not orthogonal

Prove that if A is orthogonal, then A^T is orthogonal.

Solution

Since A is orthogonal then $A^T = A^{-1}$ and $A = (A^T)^T$

Then
$$(A^T)^T A^T = AA^T = I \implies A^T$$
 is orthogonal

Another word, since A is orthogonal, then both column and row vectors of A form an orthonormal set. A^T is just A with its row and column vectors are swapped.

The column vectors of A^T (which are the row vectors of A) and row vectors of A^T (which are the column vectors of A) form orthonormal sets, therefore A^T is orthogonal

Exercise

Prove that if A is orthogonal, then A^{-1} is orthogonal

Solution

Since A is orthogonal then $A^T = A^{-1}$ and $A = (A^{-1})^{-1}$

$$(A^{-1})^{-1} = (A^T)^{-1}$$

$$= (A^{-1})^T$$

$$= (A^{-1})^T$$

 A^{-1} is orthogonal

Exercise

Prove that if A and B are orthogonal, then AB is orthogonal

Solution

Since *A* is orthogonal then $A^T = A^{-1}$ and *B* is orthogonal then $B^T = B^{-1}$

$$(AB)^{T} = B^{T}A^{T}$$
$$= B^{-1}A^{-1}$$
$$= (AB)^{-1}$$

 \therefore AB is orthogonal

Let Q be an $n \times n$ orthogonal matrix, and let A be an $n \times n$ matrix.

Show that
$$\det(QAQ^T) = \det(A)$$

Solution

$$\det(QAQ^T) = \det(Q)\det(A)\det(Q^T)$$

$$= \det(A)\det(QQ^T)$$
Since Q is an orthogonal matrix $\det(QQ^T) = \det(I)$

$$= \det(A)\det(I)$$

$$= \det(A)$$

Exercise

Let
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 3 & 4 \\ 7 & -5 & 2 \end{pmatrix}$$

- a) Is matrix A an orthogonal matrix?
- b) Let B be the matrix obtained by normalizing each row of A, find B.
- c) Is B an orthogonal matrix?
- d) Are the columns of B orthogonal?

b)
$$\|(1, 1, -1)\| = \sqrt{1+1+1}$$

 $= \sqrt{3}$
 $\|(1, 3, 4)\| = \sqrt{1+9+16}$
 $= \sqrt{26}$

$$\|(7, -5, 2)\| = \sqrt{49 + 25 + 4}$$

$$= \sqrt{78}$$

$$B = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{26}} & \frac{3}{\sqrt{26}} & \frac{4}{\sqrt{26}} \\ \frac{7}{\sqrt{78}} & -\frac{5}{\sqrt{78}} & \frac{2}{\sqrt{78}} \end{pmatrix}$$

c) Yes, since the rows are orthogonal with unit vectors.

$$BB^{T} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{26}} & \frac{3}{\sqrt{26}} & \frac{4}{\sqrt{26}} \\ \frac{7}{\sqrt{78}} & -\frac{5}{\sqrt{78}} & \frac{2}{\sqrt{78}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{26}} & \frac{7}{\sqrt{78}} \\ \frac{1}{\sqrt{3}} & \frac{3}{\sqrt{26}} & -\frac{5}{\sqrt{78}} \\ -\frac{1}{\sqrt{3}} & \frac{4}{\sqrt{26}} & \frac{2}{\sqrt{78}} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

d) Yes, since the rows of B form an orthonormal set of vectors. Then, the column of B must form an orthonormal set.

$$\left\| \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{26}}, \frac{7}{\sqrt{78}} \right) \right\| = \sqrt{\frac{1}{3} + \frac{1}{26} + \frac{49}{78}}$$

$$= \sqrt{\frac{26 + 3 + 49}{78}}$$

$$= \sqrt{\frac{78}{78}}$$

$$= 1$$

$$\left\| \left(\frac{1}{\sqrt{3}}, \frac{3}{\sqrt{26}}, -\frac{5}{\sqrt{78}} \right) \right\| = \sqrt{\frac{1}{3} + \frac{9}{26} + \frac{25}{78}}$$

$$= \sqrt{\frac{26 + 27 + 25}{78}}$$

$$= \sqrt{\frac{78}{78}}$$

$$= 1$$

$$\left\| \left(-\frac{1}{\sqrt{3}}, \frac{4}{\sqrt{26}}, \frac{2}{\sqrt{78}} \right) \right\| = \sqrt{\frac{1}{3} + \frac{16}{26} + \frac{4}{78}}$$

$$= \sqrt{\frac{78}{78}}$$
$$= 1$$

Solution Section 3.5 – Least Squares Analysis

Exercise

Find the equation of the line that best fits the given points in the least-squares sense and find the error.

$$\{(0, 2), (1, 2), (2, 0)\}$$

Solution

$$\{(0, 2), (1, 2), (2, 0)\}$$

Let y = mx + b be the equation of the line that best fits the given points. Then

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$$

where
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix}$$
 $\vec{x} = \begin{bmatrix} m \\ b \end{bmatrix}$ $\vec{y} = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$

The normal equation formula: $A^T A \vec{x} = A^T \vec{y}$

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 3 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$m = \begin{vmatrix} 2 & 3 \\ 4 & 3 \\ \hline 5 & 3 \\ 3 & 3 \end{vmatrix}$$

$$=\frac{-6}{6}$$

$$=-1$$

$$b = \frac{\begin{vmatrix} 5 & 2 \\ 3 & 4 \end{vmatrix}}{6}$$

$$=\frac{7}{3}$$

Thus,
$$y = -x + \frac{7}{3}$$

$$A\vec{x} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ \frac{7}{3} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{7}{3} \\ \frac{4}{3} \\ \frac{1}{3} \end{pmatrix}$$

$$\vec{y} - A\vec{x} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} - \begin{pmatrix} \frac{7}{3} \\ \frac{4}{3} \\ \frac{1}{3} \end{pmatrix}$$

$$0$$

Error:

$$\|\vec{y} - A\vec{x}\| = \sqrt{\frac{1}{9} + \frac{4}{9} + \frac{1}{9}}$$
$$= \frac{\sqrt{6}}{3}$$
$$\approx 0.8164966$$

The **second** order equation:

$$y = -x^2 + x + 2$$

Error = 0.00000

The *third order* equation:

$$y = -.1250x^3 - 0.1250x^2 + 0.25x + 2$$

Error = 2.01556

Find the equation of the line that best fits the given points in the least-squares sense and find the error.

$$\{(1, 5), (2, 4), (3, 1), (4, 1), (5,-1)\}$$

Solution

$$\{(1, 5), (2, 4), (3, 1), (4, 1), (5,-1)\}$$

Let y = mx + b be the equation of the line that best fits the given points. Then

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \\ 1 \\ 1 \\ -1 \end{bmatrix} \qquad \text{where } A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \\ 5 & 1 \end{bmatrix} \quad \vec{x} = \begin{bmatrix} m \\ b \end{bmatrix} \quad \vec{y} = \begin{bmatrix} 5 \\ 4 \\ 1 \\ 1 \\ -1 \end{bmatrix}$$

The normal equation: $A^T A \vec{x} = A^T \vec{y}$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 1 \\ 1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 55 & 15 \\ 15 & 5 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 15 \\ 10 \end{bmatrix}$$

$$m = \frac{\begin{vmatrix} 15 & 15 \\ 10 & 5 \end{vmatrix}}{\begin{vmatrix} 55 & 15 \\ 15 & 5 \end{vmatrix}}$$
$$= \frac{-75}{50}$$
$$= -\frac{3}{2}$$

$$b = \frac{\begin{vmatrix} 55 & 15 \\ 15 & 10 \end{vmatrix}}{50}$$
$$= \frac{325}{50}$$
$$= \frac{13}{2}$$

Thus,
$$y = -\frac{3}{2}x + \frac{13}{2}$$
 or $y = -1.5x + 6.5$

$$A\vec{x} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{13}{2} \end{pmatrix}$$

$$= \begin{pmatrix} 5\\ \frac{7}{2}\\ 2\\ \frac{1}{2}\\ -1 \end{pmatrix}$$

$$\vec{y} - A\vec{x} = \begin{pmatrix} 5 \\ 4 \\ 1 \\ 1 \\ -1 \end{pmatrix} - \begin{pmatrix} 5 \\ \frac{7}{2} \\ 2 \\ \frac{1}{2} \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ \frac{1}{2} \\ -1 \\ 1 \end{pmatrix}$$

Error:

$$\|\vec{y} - A\vec{x}\| = \sqrt{\frac{1}{4} + 1 + \frac{1}{4}}$$
$$= \frac{\sqrt{6}}{2}$$
$$\approx 1.224745$$

The *second order* equation:

$$y = 0.07143x^2 - 1.92857x + 7$$

Error = 1.19523

The *third order* equation:

$$y = 0.0x^3 + 0.07143x^2 - 1.92857x + 7$$

Error = 1.19523

Find the equation of the line that best fits the given points in the least-squares sense and find the error.

$$\{(0, 1), (1, 3), (2, 4), (3, 4)\}$$

Solution

Let y = mx + b be the equation of the line that best fits the given points. Then

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 4 \\ 4 \end{pmatrix}$$

where
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix}$$
 $\vec{x} = \begin{pmatrix} m \\ b \end{pmatrix}$ $\vec{y} = \begin{pmatrix} 1 \\ 3 \\ 4 \\ 4 \end{pmatrix}$

The normal equation: $A^T A \vec{x} = A^T \vec{y}$

$$\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 4 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 14 & 6 \\ 6 & 4 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 23 \\ 12 \end{pmatrix}$$

$$\begin{pmatrix} m \\ b \end{pmatrix} = \frac{1}{20} \begin{pmatrix} 4 & -6 \\ -6 & 14 \end{pmatrix} \begin{pmatrix} 23 \\ 12 \end{pmatrix} \qquad X = A^{-1}B$$

$$= \frac{1}{20} \begin{pmatrix} 20 \\ 30 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

We have: m = 1 and $b = \frac{3}{2}$.

Thus,
$$y = x + \frac{3}{2}$$

$$A\vec{x} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ \frac{3}{2} \end{pmatrix}$$

Error:

$$\|\vec{y} - A\vec{x}\| = \sqrt{4\left(\frac{1}{4}\right)}$$

$$= 1$$

The **second order** equation:

$$y = -0.50x^2 + 2.5x + 1.0$$

Error = 0.0000

The *third order* equation:

$$y = 0.0x^3 - 0.5x^2 + 2.5x + 1$$

Error = 0.00000

Find the equation of the line that best fits the given points in the least-squares sense and find the error.

$$\{(-2, 0), (-1, 0), (0, 1), (1, 3), (2, 5)\}$$

Solution

Let y = mx + b be the equation of the line that best fits the given points. Then

$$\begin{pmatrix} -2 & 1 \\ -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 3 \\ 5 \end{pmatrix}$$

where
$$A = \begin{pmatrix} -2 & 1 \\ -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix}$$
 $\vec{x} = \begin{pmatrix} m \\ b \end{pmatrix}$ $\vec{y} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 3 \\ 5 \end{pmatrix}$

The normal equation: $A^T A \vec{x} = A^T \vec{y}$

$$\begin{pmatrix} -2 & -1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} -2 & -1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 3 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} 10 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 13 \\ 9 \end{pmatrix}$$

$$\binom{m}{b} = \frac{1}{50} \binom{5}{0} \quad \binom{13}{0} \binom{13}{9}$$
$$= \binom{\frac{13}{10}}{\frac{9}{5}}$$

We have: m = 1.3 and b = 1.8

Thus,
$$y = \frac{13}{10}x + \frac{9}{5}$$

$$A\vec{x} = \begin{pmatrix} -2 & 1 \\ -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} \frac{13}{10} \\ \frac{9}{5} \\ \frac{31}{10} \\ \frac{22}{5} \end{pmatrix} = \begin{pmatrix} -\frac{4}{5} \\ \frac{31}{10} \\ \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{9}{5} \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{9}{5} \\ \frac{31}{3} \\ \frac{10}{5} \\ \frac{22}{5} \end{pmatrix}$$
Least Square
$$\vec{y} - A\vec{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \frac{9}{5} \\ \frac{31}{3} \\ \frac{9}{5} \\ \frac{31}{10} \\ \frac{22}{5} \\ \frac{1}{2} \\ \frac{9}{5} \\ \frac{31}{3} \\ \frac{10}{5} \\ \frac{2}{5} \\ \frac{1}{2} \\ \frac{4}{5} \\ -\frac{1}{2} \\ -\frac{4}{5} \\ -\frac{1}{10} \\ \frac{3}{5} \\ \frac{3}{5} \\ \frac{1}{3} \\ \frac{3}{5} \\ \frac{1}{3} \\ \frac{3}{5} \\ \frac{3}{5} \\ \frac{1}{3} \\ \frac{3}{5} \\ \frac{3}{5} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{3}{5} \\ \frac{3}{5} \\ \frac{3}{5} \\ \frac{3}{5} \\ \frac{3}{5} \\ \frac{1}{5} \\ \frac{1}{2} \\ \frac{3}{5} \\ \frac$$

Error:
$$\|\vec{y} - A\vec{x}\| = \sqrt{\frac{16}{25} + \frac{1}{4} + \frac{16}{25} + \frac{1}{100} + \frac{9}{25}}$$

 $= \sqrt{\frac{41}{25} + \frac{26}{100}}$
 $= \frac{\sqrt{190}}{10}$
 ≈ 1.37840

The second order equation:

$$y = 0.35714x^2 + 1.30x + 1.08571$$

Error = 0.33806

The *third order* equation:

$$y = -0.08333x^3 + 0.35714x^2 + 1.58333x + 1.08571$$

Error = 0.11952

Find the equation of the line that best fits the given points in the least-squares sense and find the error.

$$\{(2, 3), (3, 2), (5, 1), (6, 0)\}$$

Solution

Let y = mx + b be the equation of the line that best fits the given points. Then

$$\begin{pmatrix} 2 & 1 \\ 3 & 1 \\ 5 & 1 \\ 6 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$

where
$$A = \begin{pmatrix} 2 & 1 \\ 3 & 1 \\ 5 & 1 \\ 6 & 1 \end{pmatrix}$$
 $\vec{x} = \begin{pmatrix} m \\ b \end{pmatrix}$ $\vec{y} = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 0 \end{pmatrix}$

The normal equation: $A^T A \vec{x} = A^T \vec{y}$

$$\begin{pmatrix} 2 & 3 & 5 & 6 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 3 & 1 \\ 5 & 1 \\ 6 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 2 & 3 & 5 & 6 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 74 & 16 \\ 16 & 4 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 17 \\ 6 \end{pmatrix}$$

$$\Delta = \begin{vmatrix} 74 & 16 \\ 16 & 4 \end{vmatrix} = 40 \quad \Delta_m = \begin{vmatrix} 17 & 16 \\ 6 & 4 \end{vmatrix} = -28 \quad \Delta_b = \begin{vmatrix} 74 & 17 \\ 16 & 6 \end{vmatrix} = 172$$

$$m = -\frac{28}{40} = -\frac{7}{10}$$

$$b = \frac{172}{40} = \frac{43}{10}$$

Thus,
$$y = -\frac{7}{10}x + \frac{43}{10}$$

$$A\vec{x} = \begin{pmatrix} 2 & 1 \\ 3 & 1 \\ 5 & 1 \\ 6 & 1 \end{pmatrix} \begin{pmatrix} -\frac{7}{10} \\ \frac{43}{10} \end{pmatrix}$$

Error:

$$\|\vec{y} - A\vec{x}\| = \sqrt{2\left(\frac{1}{100} + \frac{1}{25}\right)}$$
$$= \frac{\sqrt{10}}{10}$$
$$= 0.31623$$

The **second order** equation:

$$y = 0.0x^2 - 0.7x + 4.3$$

Error = 0.31623

The *third order* equation:

$$y = -0.08333x^3 + x^2 - 4.41667x + 8.5$$

Error = 0.00000

Find the equation of the line that best fits the given points in the least-squares sense and find the error.

$$\{(-1, 0), (0, 1), (1, 2), (2, 4)\}$$

Solution

Let y = mx + b be the equation of the line that best fits the given points. Then

$$\begin{pmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 4 \end{pmatrix}$$

where
$$A = \begin{pmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix}$$
 $\vec{x} = \begin{pmatrix} m \\ b \end{pmatrix}$ $\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 4 \end{pmatrix}$

The normal equation: $A^T A \vec{x} = A^T \vec{y}$

$$\begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 2 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 10 \\ 7 \end{pmatrix}$$

$$\Delta = \begin{vmatrix} 6 & 2 \\ 2 & 4 \end{vmatrix} = 20 \quad \Delta_m = \begin{vmatrix} 10 & 2 \\ 7 & 4 \end{vmatrix} = 26 \quad \Delta_b = \begin{vmatrix} 6 & 10 \\ 2 & 7 \end{vmatrix} = 22$$

$$m = \frac{26}{20} = \frac{13}{10}$$

$$b = \frac{22}{20} = \frac{11}{10}$$

Thus,
$$y = \frac{13}{10}x + \frac{11}{10}$$

$$A\vec{x} = \begin{pmatrix} -1 & 1\\ 0 & 1\\ 1 & 1\\ 2 & 1 \end{pmatrix} \begin{pmatrix} \frac{13}{10}\\ \frac{11}{10} \end{pmatrix}$$

$$\vec{y} - A\vec{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 4 \end{pmatrix} - \begin{pmatrix} -\frac{1}{5} \\ \frac{11}{10} \\ \frac{12}{5} \\ \frac{37}{10} \end{pmatrix}$$

$$\vec{y} - A\vec{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 4 \end{pmatrix} - \begin{pmatrix} -\frac{1}{5} \\ \frac{11}{10} \\ \frac{12}{5} \\ \frac{37}{10} \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 4 \end{pmatrix} - \begin{pmatrix} -\frac{1}{5} \\ \frac{11}{25} \\ \frac{37}{10} \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 4 \end{pmatrix} - \begin{pmatrix} -\frac{1}{5} \\ \frac{11}{25} \\ \frac{37}{10} \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 37 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} - \vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 10 \\ 10 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0$$

Error:

$$\|\vec{y} - A\vec{x}\| = \sqrt{\frac{1}{25} + \frac{1}{100} + \frac{4}{25} + \frac{9}{100}}$$

$$= \sqrt{\frac{4 + 1 + 16 + 9}{100}}$$

$$= \frac{\sqrt{30}}{10}$$

$$= 0.54772$$

The **second order** equation:

$$y = 0.25x^2 + 1.05x + 0.85$$

Error = 0.22361

The *third order* equation:

$$y = 0.16667x^3 + 0.82222x + 1$$

Error = 0.00000

Find the equation of the line that best fits the given points in the least-squares sense and find the error.

$$\{(1, 0), (2, 1), (4, 2), (5, 3)\}$$

Solution

Let y = mx + b be the equation of the line that best fits the given points. Then

$$\begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 4 & 1 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix}$$

where
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 4 & 1 \\ 5 & 1 \end{pmatrix}$$
 $\vec{x} = \begin{pmatrix} m \\ b \end{pmatrix}$ $\vec{y} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix}$

The normal equation: $A^T A \vec{x} = A^T \vec{y}$

$$\begin{pmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 4 & 1 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 46 & 12 \\ 12 & 4 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 25 \\ 6 \end{pmatrix}$$

$$\Delta = \begin{vmatrix} 46 & 12 \\ 12 & 4 \end{vmatrix} = 40 \quad \Delta_m = \begin{vmatrix} 25 & 12 \\ 6 & 4 \end{vmatrix} = 28 \quad \Delta_b = \begin{vmatrix} 46 & 25 \\ 12 & 6 \end{vmatrix} = -24$$

$$m = \frac{28}{40} = \frac{7}{10}$$

$$b = -\frac{24}{40} = -\frac{3}{5}$$

Thus,
$$y = \frac{7}{10}x - \frac{3}{5}$$

$$A\vec{x} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 4 & 1 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} \frac{7}{10} \\ -\frac{3}{5} \end{pmatrix}$$

Error:

$$\|\vec{y} - A\vec{x}\| = \sqrt{2\left(\frac{1}{100} + \frac{1}{25}\right)}$$
$$= \frac{\sqrt{10}}{10}$$
$$= 0.31623$$

The **second order** equation:

$$y = 0.0x^2 + 0.7x - .6$$

Error = 0.31623

The *third order* equation:

$$y = 0.08333x^3 - 0.75x^2 + 2.66667x - 2$$

Error = 0.00000

Find the orthogonal projection of the vector \vec{u} on the subspace of \mathbb{R}^4 spanned by the vectors

$$\vec{u} = (-3, -3, 8, 9); \quad \vec{v}_1 = (3, 1, 0, 1), \quad \vec{v}_2 = (1, 2, 1, 1), \quad \vec{v}_3 = (-1, 0, 2, -1)$$

Solution

Let
$$A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix}$$

$$A^{T}A = \begin{pmatrix} 3 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ -1 & 0 & 2 & -1 \end{pmatrix} \begin{pmatrix} 3 & 1 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} 11 & 6 & -4 \\ 6 & 7 & 0 \\ -4 & 0 & 6 \end{pmatrix}$$

$$A^{T}\vec{u} = \begin{pmatrix} 3 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ -1 & 0 & 2 & -1 \end{pmatrix} \begin{pmatrix} -3 \\ -3 \\ 8 \\ 9 \end{pmatrix}$$
$$= \begin{pmatrix} -3 \\ 8 \\ 10 \end{pmatrix}$$

The normal solution is $A^T A \vec{x} = A^T \vec{u}$

$$\begin{pmatrix} 11 & 6 & -4 \\ 6 & 7 & 0 \\ -4 & 0 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -3 \\ 8 \\ 10 \end{pmatrix}$$

$$\Delta = \begin{vmatrix} 11 & 6 & -4 \\ 6 & 7 & 0 \\ -4 & 0 & 6 \end{vmatrix} = 134 \qquad \Delta_1 = \begin{vmatrix} -3 & 6 & -4 \\ 8 & 7 & 0 \\ 10 & 0 & 6 \end{vmatrix} = -134 \qquad \Delta_2 = \begin{vmatrix} 11 & -3 & -4 \\ 6 & 8 & 0 \\ -4 & 10 & 6 \end{vmatrix} = 268$$

$$x_1 = \frac{-134}{134} = -1$$
 $x_2 = \frac{268}{134} = 2$ $x_3 = \frac{134}{134} = 1$

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$

So
$$proj_W \vec{u} = A\vec{x}$$

$$= \begin{pmatrix} 3 & 1 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 3 \\ 4 \\ 0 \end{pmatrix}$$

$$proj_W \vec{u} = (-2, 3, 4, 0)$$

Find the orthogonal projection of the vector \vec{u} on the subspace of \mathbb{R}^4 spanned by the vectors $\vec{u} = (6, 3, 9, 6); \quad \vec{v}_1 = (2, 1, 1, 1), \quad \vec{v}_2 = (1, 0, 1, 1), \quad \vec{v}_3 = (-2, -1, 0, -1)$

Solution

Let
$$A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix}$$

$$A^{T} A = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ -2 & -1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 & -2 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 7 & 4 & -6 \\ 4 & 3 & -3 \\ -6 & -3 & 6 \end{pmatrix}$$

$$A^{T} \vec{u} = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ -2 & -1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \\ 9 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} 30 \\ 21 \\ -21 \end{pmatrix}$$

The normal solution is $A^T A \vec{x} = A^T \vec{u}$

$$\begin{pmatrix} 7 & 4 & -6 \\ 4 & 3 & -3 \\ -6 & -3 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 30 \\ 21 \\ -21 \end{pmatrix}$$

$$\Delta = \begin{vmatrix} 7 & 4 & -6 \\ 4 & 3 & -3 \\ -6 & -3 & 6 \end{vmatrix} = 3$$

$$\Delta = \begin{vmatrix} 7 & 4 & -6 \\ 4 & 3 & -3 \\ -6 & -3 & 6 \end{vmatrix} = 3 \qquad \Delta_1 = \begin{vmatrix} 30 & 4 & -6 \\ 21 & 3 & -3 \\ -21 & -3 & 6 \end{vmatrix} = 18 \qquad \Delta_2 = \begin{vmatrix} 7 & 30 & -6 \\ 4 & 21 & -3 \\ -6 & -21 & 6 \end{vmatrix} = 9$$

$$\Delta_2 = \begin{vmatrix} 7 & 30 & -6 \\ 4 & 21 & -3 \\ -6 & -21 & 6 \end{vmatrix} = 9$$

$$x_1 = \frac{18}{3} = 6$$
 $x_2 = \frac{9}{3} = 3$ $x_3 = 4$

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ 4 \end{pmatrix}$$

So $proj_W \vec{u} = A\vec{x}$

$$= \begin{pmatrix} 2 & 1 & -2 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} 7 \\ 2 \\ 9 \\ 5 \end{pmatrix}$$

$$proj_W \vec{v} = (7, 2, 9, 5)$$

Exercise

Find the orthogonal projection of the vector \vec{u} on the subspace of \mathbb{R}^4 spanned by the vectors

$$\vec{u} = (-2, 0, 2, 4); \quad v_1 = (1, 1, 3, 0), \quad \vec{v}_2 = (-2, -1, -2, 1), \quad \vec{v}_3 = (-3, -1, 1, 3)$$

Let
$$A = \begin{pmatrix} 1 & -2 & -3 \\ 1 & -1 & -1 \\ 3 & -2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$$

$$A^{T} A = \begin{pmatrix} 1 & 1 & 3 & 0 \\ -2 & -1 & -2 & 1 \\ -3 & -1 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & -2 & -3 \\ 1 & -1 & -1 \\ 3 & -2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 11 & -9 & -1 \\ -9 & 10 & 8 \\ -1 & 8 & 20 \end{pmatrix}$$

$$A^{T}\vec{u} = \begin{pmatrix} 1 & 1 & 3 & 0 \\ -2 & -1 & -2 & 1 \\ -3 & -1 & 1 & 3 \end{pmatrix} \begin{pmatrix} -2 \\ 0 \\ 2 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} 4 \\ 4 \\ 20 \end{pmatrix}$$

The normal solution is $A^T A \vec{x} = A^T \vec{u}$

$$\begin{pmatrix} 11 & -9 & -1 \\ -9 & 10 & 8 \\ -1 & 8 & 20 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 20 \end{pmatrix}$$

$$\Delta = \begin{vmatrix} 11 & -9 & -1 \\ -9 & 10 & 8 \\ -1 & 8 & 20 \end{vmatrix} = 10 \qquad \Delta_1 = \begin{vmatrix} 4 & -9 & -1 \\ 4 & 10 & 8 \\ 20 & 8 & 20 \end{vmatrix} = -8 \qquad \Delta_2 = \begin{vmatrix} 11 & 4 & -1 \\ -9 & 4 & 8 \\ -1 & 20 & 20 \end{vmatrix} = -16$$

$$x_1 = \frac{-8}{10} = -\frac{4}{5}$$
 $x_2 = \frac{-16}{10} = -\frac{8}{5}$ $x_3 = \frac{8}{5}$

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\frac{4}{5} \\ -\frac{8}{5} \\ \frac{8}{5} \end{pmatrix}$$

$$proj_W \vec{u} = A\vec{x}$$

$$= \begin{pmatrix} 1 & -2 & -3 \\ 1 & -1 & -1 \\ 3 & -2 & 1 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} -\frac{4}{5} \\ -\frac{8}{5} \\ \frac{8}{5} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{12}{5} \\ -\frac{4}{5} \\ \frac{12}{5} \\ \frac{16}{5} \end{pmatrix}$$

$$proj_{W} \vec{u} = \left(-\frac{12}{5}, -\frac{4}{5}, \frac{12}{5}, \frac{16}{5}\right)$$

Find the standard matrix for the orthogonal projection P of \mathbb{R}^2 on the line passes through the origin and makes an angle θ with the positive x-axis.

Solution

Since the line 1 in 2-dimensional, than we can take $\vec{v} = (\cos \theta, \sin \theta)$ as a basis for this subspace

$$A = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

$$[P] = A^{T} A$$

$$= [\cos \theta \quad \sin \theta] \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos^{2} \theta \quad \cos \theta \sin \theta \\ \cos \theta \sin \theta \quad \sin^{2} \theta \end{bmatrix}$$

Exercise

Hooke's law in physics states that the length x of a uniform spring is a linear function of the force y applied to it. If we express the relationship as y = mx + b, then the coefficient m is called the spring constant.

Suppose a particular unstretched spring has a measured length of 6.1 *inches*.(i.e., x = 6.1 when y = 0). Forces of 2 pounds, 4 pounds, and 6 pounds are then applied to the spring, and the corresponding lengths are found to be 7.6 inches, 8.7 inches, and 10.4 inches. Find the spring constant.

$$M = \begin{pmatrix} 6.1 & 1 \\ 7.6 & 1 \\ 8.7 & 1 \\ 10.4 & 1 \end{pmatrix}, \quad \vec{y} = \begin{pmatrix} 0 \\ 2 \\ 4 \\ 6 \end{pmatrix}$$

The normal equation: $A^T A \vec{x} = A^T \vec{y}$

$$\begin{pmatrix} 6.1 & 7.6 & 8.7 & 10.4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 6.1 & 1 \\ 7.6 & 1 \\ 8.7 & 1 \\ 10.4 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 6.1 & 7.6 & 8.7 & 10.4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 4 \\ 6 \end{pmatrix}$$

$$\begin{pmatrix} 278.82 & 32.8 \\ 32.8 & 4 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 112.4 \\ 12 \end{pmatrix}$$

$$\begin{pmatrix} m \\ b \end{pmatrix} = \frac{1}{39.44} \begin{pmatrix} 4 & -32.8 \\ -32.8 & 278.2 \end{pmatrix} \begin{pmatrix} 112.4 \\ 12 \end{pmatrix}$$

$$= \frac{1}{39.44} \begin{pmatrix} 56 \\ -348.32 \end{pmatrix}$$

$$= \begin{pmatrix} 1.4 \\ -8.8 \end{pmatrix}$$

Thus, the estimated value of the spring constant is ≈ 1.4 pounds

Exercise

Prove:

If A has a linearly independent column vectors, and if \vec{b} is orthogonal to the column space of A, then the least squares solution of $A\vec{x} = \vec{b}$ is $\vec{x} = \vec{0}$.

Solution

If A has linearly independent column vectors, then A^TA is invertible and the least squares solution of $A\vec{x} = \vec{b}$ is the solution of $A^TA\vec{x} = A^T\vec{b}$, but since \vec{b} is orthogonal to the column space of A.

$$A^T \vec{b} = 0$$
, so \vec{x} is a solution of $A^T A \vec{x} = 0$.

Thus $\vec{x} = \vec{0}$ since $A^T A$ is invertible.

Exercise

Let *A* be an $m \times n$ matrix with linearly independent row vectors. Find a standard matrix for the orthogonal projection of \mathbb{R}^n onto the row space of *A*.

Solution

 A^T will have linearly independent column vectors, and the column space A^T is the row space of A. Thus, the standard matrix for the orthogonal projection of \mathbb{R}^n onto the row space of A is

$$[P] = A^T \left[\left(A^T \right)^T A^T \right]^{-1} \left(A^T \right)^T$$
$$= A^T \left(AA^T \right)^{-1} A$$

Let W be the line with parametric equations x = 2t, y = -t, z = 4t

- a) Find a basis for W.
- b) Find the standard matrix for the orthogonal projection on W.
- c) Use the matrix in part (b) to find the orthogonal projection of a point $P_0(x_0, y_0, z_0)$ on W.
- d) Find the distance between the point $P_0(2, 1, -3)$ and the line W.

a)
$$W = span\{(2, -1, 4)\}$$

So that the vector $(2, -1, 4)$ forms a basis for W (linear independence)

b) Let
$$A = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$$

$$[P] = A \left(A^T A \right)^{-1} A^T$$

$$= \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \end{bmatrix} \begin{bmatrix} 4 \\ -4 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

c)
$$\begin{bmatrix} \frac{4}{21} & -\frac{2}{21} & \frac{8}{21} \\ -\frac{2}{21} & 1 & -\frac{4}{21} \\ \frac{8}{21} & -\frac{4}{21} & \frac{16}{21} \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} = \begin{bmatrix} \frac{4}{21}x_0 - \frac{2}{21}y_0 + \frac{8}{21}z_0 \\ -\frac{2}{21}x_0 + y_0 - \frac{4}{21}z_0 \\ \frac{8}{21}x_0 - \frac{4}{21}y_0 + \frac{16}{21}z_0 \end{bmatrix}$$

$$d) \begin{bmatrix} \frac{4}{21} & -\frac{2}{21} & \frac{8}{21} \\ -\frac{2}{21} & 1 & -\frac{4}{21} \\ \frac{8}{21} & -\frac{4}{21} & \frac{16}{21} \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix} = \begin{bmatrix} -\frac{6}{7} \\ \frac{3}{7} \\ -\frac{12}{7} \end{bmatrix}$$

The distance between P_0 and W equals to the distance between P_0 and its projection on W.

The distance between (2, 1, -3) and $\left(-\frac{6}{7}, \frac{3}{7}, -\frac{12}{7}\right)$ is

$$d = \sqrt{\left(2 + \frac{6}{7}\right)^2 + \left(1 - \frac{3}{7}\right)^2 + \left(-3 + \frac{12}{7}\right)^2}$$

$$= \sqrt{\frac{400}{49} + \frac{16}{49} + \frac{81}{49}}$$

$$= \frac{\sqrt{497}}{7}$$

Exercise

In R^3 , consider the line l given by the equations x = t, y = t, z = tAnd the line m given by the equations x = s, y = 2s - 1, z = 1

Let P be the point on l, and let Q be a point on m. Find the values of t and s that minimize the distance between the lines by minimizing the squared distance $\|P - Q\|^2$

Solution

When $t = 1 \implies Let P = (1, 1, 1)$ is on line l

When $s = 1 \implies Let Q = (1, 1, 1)$ is on line m

$$||P - Q|| = \sqrt{(1-1)^2 + (1-1)^2 + (1-1)^2} = 0 \ge 0$$

Thus, these are the values P = (1, 1, 1) and Q = (1, 1, 1) are the values for s = t = 1 that minimize the distance between the lines.

Exercise

Determine whether the statement is true or false,

- a) If A is an $m \times n$ matrix, then $A^T A$ is a square matrix.
- b) If $A^T A$ is invertible, then A is invertible.
- c) If A is invertible, then $A^T A$ is invertible.
- d) If $A\vec{x} = \vec{b}$ is a consistent linear system, then $A^T A \vec{x} = A^T \vec{b}$ is also consistent.
- e) If $A\vec{x} = \vec{b}$ is an inconsistent linear system, then $A^T A \vec{x} = A^T \vec{b}$ is also inconsistent.
- f) Every linear system has a least squares solution.
- g) Every linear system has a unique least squares solution.
- h) If A is an $m \times n$ matrix with linearly independent columns and \vec{b} is in R^m , then $A\vec{x} = \vec{b}$ has a unique least squares solution.

- a) **True**; $A^T A$ is an $n \times n$ matrix
- b) False; only square matrix has inverses, but A^TA can be invertible when A is not square matrix.
- c) True; if A is invertible, so is A^T , so the product A^TA is also invertible
- d) True
- e) False; the system $A^T A \vec{x} = A^T \vec{b}$ may be consistent
- f) True
- g) False; the least squares solution may involve a parameter
- **h)** True; if A has linearly independent column vectors; then $A^T A$ is invertible, so $A^T A \vec{x} = A^T \vec{b}$ has a unique solution

A certain experiment produces the data $\{(1, 1.8), (2, 2.7), (3, 3.4), (4, 3.8), (5, 3.9)\}$.

Find the function that it will fit these data in the form of $y = \beta_1 x + \beta_2 x^2$

Solution

Given: the equation $y = \beta_1 x + \beta_2 x^2$ that best fits the given points. Then

$$\begin{pmatrix} 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ 4 & 16 \\ 5 & 25 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} 1.8 \\ 2.7 \\ 3.4 \\ 3.8 \\ 3.9 \end{pmatrix}$$

where
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ 4 & 16 \\ 5 & 25 \end{pmatrix}$$
 $\vec{x} = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ $\vec{y} = \begin{pmatrix} 1.8 \\ 2.7 \\ 3.4 \\ 3.8 \\ 3.9 \end{pmatrix}$

The normal equation formula: $A^T A \vec{x} = A^T \vec{y}$

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 9 & 16 & 25
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
2 & 4 \\
3 & 9 \\
4 & 16 \\
5 & 25
\end{pmatrix}
\begin{pmatrix}
\beta_1 \\
\beta_2
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 9 & 16 & 25
\end{pmatrix}
\begin{pmatrix}
1.8 \\
2.7 \\
3.4 \\
3.8 \\
3.9
\end{pmatrix}$$

$$\begin{pmatrix} 55 & 225 \\ 225 & 979 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} 52.1 \\ 201.5 \end{pmatrix}$$

$$\Delta = \begin{vmatrix} 55 & 225 \\ 225 & 979 \end{vmatrix} = 3,220$$

$$\Delta = \begin{vmatrix} 55 & 225 \\ 225 & 979 \end{vmatrix} = 3,220 \qquad \Delta \beta_1 = \begin{vmatrix} 52.1 & 225 \\ 201.5 & 979 \end{vmatrix} = 5,668.4 \qquad \Delta \beta_2 = \begin{vmatrix} 55 & 52.1 \\ 225 & 201.5 \end{vmatrix} = -640$$

$$\Delta \beta_2 = \begin{vmatrix} 55 & 52.1 \\ 225 & 201.5 \end{vmatrix} = -640$$

$$\beta_1 = \frac{5,668.4}{3,220}$$

$$\approx 1.76$$

$$\beta_2 = -\frac{640}{3,220} = -0.199$$

$$y = 1.76x - .2x^2$$

According to Kepler's first law, a comet should have an ellipse, parabolic, or hyperbolic orbit (with gravitational attractions from the planets ignored). In suitable polar coordinates, the position (r, υ) of a comet satisfies an equation of the form

$$r = \beta + e(r \cdot \cos \upsilon)$$

Where β is a constant and e is the eccentricity of the orbit, with $0 \le e < 1$ for an ellipse, e = 1 for a parabolic, and e > 1 for a hyperbola.

Suppose observations of a newly discovered comet provide the data below.

Determine the type of orbit, and predict where the orbit will be when v = 4.6 (radians)?

Solution

Given: the equation in the form $r = \beta + e(r \cdot \cos \upsilon)$

$$3 = \beta + e(3 \cdot \cos(.88)) = \beta + 1.911e$$

$$2.3 = \beta + e(2.3\cos(1.1)) = \beta + 1.043e$$

$$1.65 = \beta + e(1.65\cos(1.42)) = \beta + .248e$$

$$1.25 = \beta + e(1.25\cos(1.77)) = \beta - .247e$$

$$1.01 = \beta + e(1.01\cos(2.14)) = \beta - .544e$$

$$\begin{pmatrix} 1 & 1.911 \\ 1 & 1.043 \\ 1 & .248 \\ 1 & -.247 \\ 1 & -.544 \end{pmatrix} \begin{pmatrix} \beta \\ e \end{pmatrix} = \begin{pmatrix} 3 \\ 2.3 \\ 1.65 \\ 1.25 \\ 1.01 \end{pmatrix}$$

where
$$A = \begin{pmatrix} 1 & 1.911 \\ 1 & 1.043 \\ 1 & .248 \\ 1 & -.247 \\ 1 & -.544 \end{pmatrix}$$
 $\vec{v} = \begin{pmatrix} \beta \\ e \end{pmatrix}$ $\vec{r} = \begin{pmatrix} 3 \\ 2.3 \\ 1.65 \\ 1.25 \\ 1.01 \end{pmatrix}$

The normal equation formula: $A^T A \vec{v} = A^T \vec{r}$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1.911 & 1.043 & .248 & -.247 & -.544 \end{pmatrix} \begin{pmatrix} 1 & 1.911 \\ 1 & 1.043 \\ 1 & .248 \\ 1 & -.247 \\ 1 & -.544 \end{pmatrix} \begin{pmatrix} \beta \\ e \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1.911 & 1.043 & .248 & -.247 & -.544 \end{pmatrix} \begin{pmatrix} 3 \\ 2.3 \\ 1.65 \\ 1.25 \\ 1.01 \end{pmatrix}$$

$$\begin{pmatrix} 5 & 2.411 \\ 2.411 & 5.158 \end{pmatrix} \begin{pmatrix} \beta \\ e \end{pmatrix} = \begin{pmatrix} 9.21 \\ 7.683 \end{pmatrix}$$

$$\Delta = \begin{vmatrix} 5 & 2.411 \\ 2.411 & 5.158 \end{vmatrix} = 19.98 \qquad \Delta_{\beta} = \begin{vmatrix} 9.21 & 2.411 \\ 7.683 & 5.158 \end{vmatrix} = 28.98 \qquad \Delta_{e} = \begin{vmatrix} 5 & 9.21 \\ 2.411 & 7.683 \end{vmatrix} = 16.21$$

$$\beta = \frac{28.98}{19.98}$$

$$e = \frac{16.21}{19.98}$$

Therefore, the orbit is an *ellipse* type since $e \approx 0.811 < 1$

Since $r = \beta + e(r \cdot \cos \upsilon)$

Then,
$$r(v) = \frac{1.45}{1 - 0.811 \cdot \cos v}$$

$$r(4.6) = \frac{1.45}{1 - 0.811 \cdot \cos 4.6}$$

$$\approx 1.329$$

To measure the takeoff performance of an airplane, the horizontal position of the plane was measured every second, from t = 0 to t = 12

The position (in *feet*) were:

- a) Find the least square cubic curve $y = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3$ for these data.
- b) Estimate the velocity of the plane when t = 4.5 sec, using the result from part (a).

Solution

Given: the equation is in form $y = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27 \\
1 & 4 & 16 & 64 \\
1 & 5 & 25 & 125 \\
1 & 6 & 36 & 216 \\
1 & 7 & 49 & 343 \\
1 & 8 & 64 & 512 \\
1 & 9 & 81 & 729 \\
1 & 10 & 100 & 1000 \\
1 & 11 & 121 & 1331 \\
1 & 12 & 144 & 1728
\end{pmatrix}$$

$$\begin{pmatrix}
\beta_0 \\
\beta_1 \\
\beta_2 \\
\beta_3
\end{pmatrix} = \begin{pmatrix}
0 \\
8.8 \\
29.9 \\
62 \\
104.7 \\
159.1 \\
222.0 \\
294.5 \\
380.4 \\
471.1 \\
571.7 \\
686.8 \\
809.2
\end{pmatrix}$$

$$A \qquad \vec{t} = \vec{y}$$

The normal equation formula: $A^T A \vec{t} = A^T \vec{y}$

Or I use my program to find the values

Error = 3.9734

