Politechnika Poznańska, Wydział Automatyki, Robotyki i Elektrotechniki

Lista zagadnień na egzamin dyplomowy

Kierunek studiów: Automatyka i robotyka Stopień studiów: pierwszy
Specjalność: -

Nr	Zagadnienie
1	Pojęcia programowania obiektowego: dziedziczenie, abstrakcja, hermetyzacja oraz polimorfizm. [Podstawy Informatyki]
2	Algebra w technice: przekształcenia macierzy, liczby zespolone, operacje na wektorach, przestrzenie liniowe, rozwiązywanie równań. [Algebra z geometrią]
3	Metody analizy obwodów (symboliczna, superpozycji, prądów oczkowych, potencjałów węzłowych, Thevenina, Nortona), zjawiska rezonansu i stany nieustalone. [Teoria obwodów]
4	Zasady zachowania w fizyce. Pola: grawitacyjne, elektryczne, magnetyczne (opis wektorowy i skalarny). [Fizyka]
5	Przekształcenie Laplace'a funkcji ciągłych oraz Z funkcji dyskretnych: definicje, własności, metody transformaty
<u></u>	odwrotnej, zastosowania [Równania różniczkowe i przekształcenia całkowe]
6	Budowa, właściwości i wykorzystanie elementów elektronicznych (w tym półprzewodnikowych); podstawowe układy elektroniczne: zasilacze, wzmacniacze, wzmacniacze operacyjne. [Podstawy elektroniki]
7	Problem stabilności układów regulacji. [Podstawy automatyki]
8	Zadanie proste i odwrotne kinematyki manipulatora. Przestrzeń zadaniowa robota i jej współrzędne. [Podstawy robotyki]
9	Parametry kinematyczne DH ogniwa manipulatora; notacja Denavita-Hartenberga DH i ZDH. Transformacje jednorodne. [Podstawy robotyki]
10	Statyka, zasady statyki i warunki równowagi układów; kinematyka i dynamika punktu materialnego i ciała sztywnego. [Mechanika i wytrzymałość materiałów]
11	Sygnały ciągłe, dyskretne, próbkowanie i kwantyzacja sygnałów analogowych; ciągła i dyskretna transformacja Fouriera; splot i korelacja sygnałów; wielkości charakteryzujące sygnały losowe. [Teoria i przetwarzanie sygnałów]
12	Kryteria klasyfikacji czujników; czujniki i przetworniki położenia liniowego i kątowego. [Elementy i urządzenia automatyki]
13	Model dynamiki manipulatora robota. Sterowanie robota z obliczanym momentem; hybrydowe sterowanie wywieraniem siły i położeniem narzędzia robota. [Modelowanie i sterowanie robotów]
14	Układy sekwencyjne (przerzutniki, liczniki, rejestry), bloki realizujące funkcje boolowskie (kodery, dekodery, multipleksery, demultipleksery, sumatory, komparatory, pamięć), przetworniki analogowo-cyfrowe i cyfrowo-analogowe. [Technika cyfrowa]
15	Impulsowe układy regulacji automatycznej; regulatory cyfrowe PID. [Sterowanie procesami ciągłymi i dyskretnymi]
16	Elementy nieliniowe w układach regulacji automatycznej; metody analizy prostych układów nieliniowych; regulatory przekaźnikowe. [Sterowanie procesami ciągłymi i dyskretnymi]
17	Niedokładność pomiarów wielkości elektrycznych; graniczny błąd pomiaru miernikami analogowymi, cyfrowymi, oscyloskopem; niepewność pomiaru. Oscyloskop jako przetwornik napięcia na obraz. [Metrologia i miernictwo techniczne]
18	Stan układu dynamicznego i wybór zmiennych stanu; przestrzeń stanu; transmitancja wielowymiarowa; równanie stanu i wyjścia; postaci normalne równania stanu; stabilność, sterowalność i obserwowalność układów dynamicznych; kryteria Kalmana; obserwatory stanu. [Teoria sterowania]
19	Budowa, programowanie i zastosowania systemów mikroprocesorowych, interfejsów cyfrowych i mikrokontrolerów. [Systemy mikroprocesorowe]
20	Mikroprocesorowy system automatycznej regulacji z cyfrową filtracją sygnału pomiarowego. [Systemy mikroprocesorowe]
21	Języki programowania sterowników PLC, typy danych, struktury programów, zasady programowania. [Programowanie sterowników PLC i regulatorów przemysłowych]
22	Budowa i zasada działania sterowników PLC oraz ich podstawowych bloków funkcjonalnych, konfigurowalność, cykliczność pracy programu, programy obsługi przerwań, struktura i implementacja regulatorów (w tym PID). [Programowanie sterowników PLC i regulatorów przemysłowych]
23	Sterowanie odporne i optymalne. [Układy sterowania optymalnego]
24	Zasady i metody projektowania układów regulacji automatycznej o jednym i dwóch stopniach swobody. [Projektowanie układów regulacji]
25	Fundamentalne ograniczenia dla sterowania w liniowych układach regulacji automatycznej. [Projektowanie układów regulacji]
26	Zasady uczenia nadzorowanego, nienadzorowanego i uczenia ze wzmocnieniem. [Wprowadzenie do sztucznej inteligencji]
27	Algorytmy przeszukiwania wszerz (BFS) i w głąb (DFS). Filtr Kalmana i jego zastosowania. [Wprowadzenie do sztucznej inteligencji]
28	Model oprogramowania czasu rzeczywistego; szeregowanie zadań (testy szeregowalności i algorytmy szeregowania). [Systemy czasu rzeczywistego]

Politechnika Poznańska, Wydział Automatyki, Robotyki i Elektrotechniki

29	Procesy i komunikacja międzyprocesowa, zarządzanie procesami i wątkami, synchronizacja procesów, obsługa
	przerwań w systemach czasu rzeczywistego. [Systemy czasu rzeczywistego]
30	Synchroniczne i asynchroniczne silniki AC, silniki DC, serwonapędy i przemienniki częstotliwości - budowa, własności i
	sterowanie. [Automatyka układów napędowych, Serwonapędy w automatyce]
31	Przemysłowe sieci komunikacyjne, rodzaje sieci, konfiguracja i zasady funkcjonowania; protokoły komunikacyjne,
	relacje komunikacyjne, interfejsy aplikacyjne, wbudowane funkcje interfejsu. [Systemy rozproszone automatyki]
32	Identyfikacja systemów jako paradygmat modelowania na podstawie danych pomiarowych. Zasady identyfikacji
	systemów statycznych i dynamicznych oraz wybrane metody estymacji parametrycznej. [Identyfikacja systemów]
33	Kategorie systemów automatyki w technice systemowej budynku. Integracja i rozproszenie, otwartość i
	interoperacyjność w systemach zarządzania budynkiem. [Automatyka w budynkach inteligentnych]
34	Rozkazy ruchowe robotów manipulacyjnych i ich parametry. [Programowanie robotów i planowanie zadań]
35	Osobliwości kinematyczne manipulatorów. [Programowanie robotów i planowanie zadań]
36	Architektura klient-serwer w ujęciu interfejsu WWW. Realizacja aplikacji serwerowej (python, PHP, C) oraz aplikacji
	klienta (HTML, CSS, JS). Obsługa układów peryferyjnych w systemie Linux [Aplikacje Internetu rzeczy]
37	Mechanizmy komunikacji pomiędzy węzłami w systemie ROS. Biblioteki naukowe dostępne w Pythonie. [Narzędzia i
	oprogramowanie dla systemów robotycznych]
38	Sieci Petriego - definicja, reprezentacje. Blokady w systemach procesów współbieżnych. [Zautomatyzowane systemy
	wytwórcze]
39	Rodzaje i metody przeciwdziałania EMI. Techniki dopasowania impedancyjnego linii transmisyjnych - zasady
	stosowania, przykłady technik. [Projektowanie układów elektronicznych i elektrycznych]
40	Elementy sieci komputerowych, ich konfiguracja i zastosowanie; protokoły (Ethernet, IP, ARP, DNS, DHCP, UDP, TCP,
	TLS, HTTP, MQTT); adresacja w sieci Internet. [Sieci komputerowe]