MAC 2312 CALCULUS II CRN 83557 MWF

Final Exam

Term Fall, 2024

Full Name:

Instructions

- 1. Total time: 2 hour 15 minutes.
- 2. Write the information requested above.
- 3. Switch off any electronic devices.
- 4. Calculators are not allowed.
- 5. Write the solution in the given space.
- 6. Show all your work for full credit.
- 7. Scratch papers are provided but will not be graded.

Q.N.	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
Bonus	10	
Total	90	

1. (10 points) Find the area of the region bounded by the curves:

$$x = 2y^2, \qquad x = 4 + y^2$$

2. (10 points) Find the volume of the solid obtained by rotating the region bounded by

$$y = x^2$$
, $y = 2x$; about the y-axis.

3. (10 points) Determine whether the series is **convergent** or **divergent**. If it is convergent, find its **sum**.

$$5 + \frac{2}{5} + \frac{4}{25} + \frac{8}{125} + \frac{16}{625} + \dots$$

4.	(10)	points)	Find the	e average	value	of the	function	on th	e given	interval	:
	(- 0	POILION	1 11101 0110	2 4401450	, cor cr	OI OII	I GIII COIOII	OII UII	0 51,011	IIIOOI VOI	•

$$g(\theta) = \cos^4 \theta \sin \theta, \quad [0, \pi].$$

5. (10 points) Determine whether the series **converges** or **diverges**. Also, write the test you are using.

(a) (5 pts)
$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$$

(b) (5 pts) $\sum_{n=1}^{\infty} \frac{4^n}{3^n - 2}$

6. (10 points) Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

(a) (4 pts)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^4 + 2}$$

(b) (6 pts)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{5n+1}$$

7. (10 points) Find the exact \mathbf{length} of the curve:

$$y = (x+5)^{3/2}, \quad 0 \le x \le 3.$$

8	(10	noints)	Find	the exact	area o	f the	surface	obtained	by	rotating	the	CHTVO	ahout	the	r_{-} avis
ο.	(IU	pomes	т ша	the exact	area o	т ипе	surface	obtamed	ν	rotating	une	curve	about	une	x-axis:

$$y = 3 - 2x, \quad 0 \le x \le 2.$$

9. (10 points) Find the radius of convergence and interval of convergence of the power series.

$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{n}$$

Bonus Problem (Extra 10 points) [Use: $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$]

(a) (5 points) Find a power series representation for the function and determine the radius of convergence.

$$f(x) = \ln(1+x)$$

(b) (5 points) Use part (a) to find a power series for

$$f(x) = x \ln(1 + 2x)$$