# We can learn state-of-the-art axis-aligned

## Decision Trees with Gradient Descent!



Figure 1: **Greedy vs. Gradient-Based DT.** Two DTs trained on the Echocardiogram dataset. The CART DT (left) makes only locally optimal splits, while GradTree (right) jointly optimizes all parameters, leading to significantly better performance.





Class 0



### GradTree: Learning Axis-Aligned Decision Trees with Gradient Descent



### **Arithmetic Decision Tree Formulation**



1.  $\mathbb{S}_{0} * \mathbb{S}_{1} * \lambda_{1}$ 2.  $\mathbb{S}_{0} * (1 - \mathbb{S}_{1}) * \lambda_{2}$ 3.  $(1 - \mathbb{S}_{0}) * \mathbb{S}_{2} * \lambda_{3}$ 4.  $(1 - \mathbb{S}_{0}) * (1 - \mathbb{S}_{2}) * \lambda_{4}$ 

## $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

#### **Dense DT Representation**

We propose a dense representation relaxing split indices and thresholds

→ Allow reasonable optimization of parameters with gradient descent





#### **GradTree in Action**

```
Projekte suchen
from GradTree import GradTree
params = {
                                                                     GradTree 0.0.1
          'depth': 5,
                                                                      pip install GradTree 🕒
          'learning_rate_index': 0.01,
          'learning_rate_values': 0.01,
          'learning_rate_leaf': 0.005,
                                                                      ✓ <u>Neueste Version</u>
          'loss': 'crossentropy',
                                                                     Veröffentlicht am: 3. Nov. 2023
args = {
                                                                     A novel method for learning hard, axis-aligned decision trees with gradient descent
     'cat_idx': categorical_feature_indices,
     'objective': 'binary',
                                                                   Projekt-Beschreibung
                                                                    GradTree: Gradient-Based Decision Trees
model_gradtree = GradTree(params=params, args=args)
                                                                    GradTree is a novel approach for learning hard, axis-aligned decision trees with gradient descent!
model_gradtree.fit(X_train=X_train,
                                                                    What's new?
                      y_train=y_train,
                      X_val=X_valid,

    Reformulation of decision trees to dense representations

                      y_val=y_valid)
                                                                     · Approximation of step function with sigmoids and entmax function
                                                                     · ST operator to retain inductive bias of hard, axis-aligned splits
model_gradtree = model_gradtree.predict(X_test)
```

#### Straight-Through Operator for non-differentiable operations

- (1) Hardmax to enforce one-hot encoded split index vectors → univariate DTs
- (2) Discretization of the split function (round the sigmoid output) -> hard splits

```
Algorithm 1: Tree Pass Function
   1: function PASS(I, T, L, \boldsymbol{x})
               I \leftarrow \operatorname{entmax}(I)
                I \leftarrow I - c where c = I_1^* - \text{hardmax}(I)

⊳ ST operator

              \hat{\boldsymbol{y}} \leftarrow [0]^c
              for l = 0, \dots, 2^d - 1 do p \leftarrow 1
                      for j = 1, \ldots, d do
                          i \leftarrow 2^{j-1} + \left| \frac{l}{2^{d-(j-1)}} \right| - 1
                             \mathfrak{p} \leftarrow \left\lfloor \frac{l}{2^{d-j}} \right\rfloor \bmod 2
                          s \leftarrow S\left(\sum_{i=0}^{n} T_{i,i} I_{i,i} - \sum_{i=0}^{n} x_{i} I_{i,i}\right)
s \leftarrow s - c \text{ where } c = \text{ } - \lfloor s \rfloor
p \leftarrow p\left((1-p)s + p\left(1-s\right)\right)

⊳ ST operator

                      end for
                      \hat{m{y}} \leftarrow \hat{m{y}} + L_l \, p
                end for
                                                                         \triangleright Softmax \sigma to get probability distribution
               return \sigma(\hat{\boldsymbol{y}})
17: end function
```

Table 1: **Binary Classification Performance.** We report macro F1-scores (mean  $\pm$  stdev over 10 trials) on test data with optimized hyperparameters. The rank of each method is presented in brackets.

|                              | Gradient-Based       |                      | Non-Greedy           |                      | Greedy               |  |
|------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|
|                              | GradTree (ours)      | DNDT                 | GeneticTree          | DL8.5 (Optimal)      | CART                 |  |
| Blood Transfusion            | $0.628 \pm .036$ (1) | $0.543 \pm .051$ (5) | $0.575 \pm .094$ (4) | $0.590 \pm .034$ (3) | $0.613 \pm .044$ (2) |  |
| Banknote Authentication      | $0.987 \pm .007$ (1) | $0.888 \pm .013$ (5) | $0.922 \pm .021$ (4) | $0.962 \pm .011$ (3) | $0.982 \pm .007$ (2) |  |
| Titanic                      | $0.776 \pm .025$ (1) | $0.726 \pm .049$ (5) | $0.730 \pm .074$ (4) | $0.754 \pm .031$ (2) | $0.738 \pm .057$ (3) |  |
| Raisins                      | $0.840 \pm .022$ (4) | $0.821 \pm .033$ (5) | $0.857 \pm .021$ (1) | $0.849 \pm .027$ (3) | $0.852 \pm .017$ (2) |  |
| Rice                         | $0.926 \pm .007$ (3) | $0.919 \pm .012$ (5) | $0.927 \pm .005$ (2) | $0.925 \pm .008$ (4) | $0.927 \pm .006$ (1) |  |
| Echocardiogram               | $0.658 \pm .113$ (1) | $0.622 \pm .114(3)$  | $0.628 \pm .105$ (2) | $0.609 \pm .112$ (4) | $0.555 \pm .111 (5)$ |  |
| Wisconcin Breast Cancer      | $0.904 \pm .022$ (2) | $0.913 \pm .032$ (1) | $0.892 \pm .028$ (4) | $0.896 \pm .021$ (3) | $0.886 \pm .025$ (5) |  |
| Loan House                   | $0.714 \pm .041$ (1) | $0.694 \pm .036$ (2) | $0.451 \pm .086 (5)$ | $0.607 \pm .045$ (4) | $0.662 \pm .034(3)$  |  |
| Heart Failure                | $0.750 \pm .070 (3)$ | $0.754 \pm .062$ (2) | $0.748 \pm .068$ (4) | $0.692 \pm .062 (5)$ | $0.775 \pm .054$ (1) |  |
| Heart Disease                | $0.779 \pm .047$ (1) | n > 12               | $0.704 \pm .059$ (4) | $0.722 \pm .065$ (2) | $0.715 \pm .062$ (3) |  |
| Adult                        | $0.743 \pm .034$ (2) | n > 12               | $0.464 \pm .055$ (4) | $0.723 \pm .011$ (3) | $0.771 \pm .011$ (1) |  |
| Bank Marketing               | $0.640 \pm .027$ (1) | n > 12               | $0.473 \pm .002$ (4) | $0.502 \pm .011$ (3) | $0.608 \pm .018$ (2) |  |
| Congressional Voting         | $0.950 \pm .021$ (1) | n > 12               | $0.942 \pm .021$ (2) | $0.924 \pm .043$ (4) | $0.933 \pm .032$ (3) |  |
| Absenteeism                  | $0.626 \pm .047$ (1) | n > 12               | $0.432 \pm .073$ (4) | $0.587 \pm .047$ (2) | $0.564 \pm .042$ (3) |  |
| Hepatitis                    | $0.608 \pm .078$ (2) | n > 12               | $0.446 \pm .024$ (4) | $0.586 \pm .083$ (3) | $0.622 \pm .078$ (1) |  |
| German                       | $0.592 \pm .068$ (1) | n > 12               | $0.412 \pm .006$ (4) | $0.556 \pm .035$ (3) | $0.589 \pm .065$ (2) |  |
| Mushroom                     | $1.000 \pm .001$ (1) | n > 12               | $0.984 \pm .003$ (4) | $0.999 \pm .001$ (2) | $0.999 \pm .001$ (3) |  |
| Credit Card                  | $0.674 \pm .014$ (4) | n > 12               | $0.685 \pm .004$ (1) | $0.679 \pm .007$ (3) | $0.683 \pm .010$ (2) |  |
| Horse Colic                  | $0.842 \pm .039$ (1) | n > 12               | $0.496 \pm .169$ (4) | $0.708 \pm .038$ (3) | $0.786 \pm .062$ (2) |  |
| Thyroid                      | $0.905 \pm .010$ (2) | n > 12               | $0.605 \pm .116$ (4) | $0.682 \pm .018$ (3) | $0.922 \pm .011$ (1) |  |
| Cervical Cancer              | $0.521 \pm .043$ (1) | n > 12               | $0.514 \pm .034$ (2) | $0.488 \pm .027$ (4) | $0.506 \pm .034(3)$  |  |
| Spambase                     | $0.903 \pm .025$ (2) | n > 12               | $0.863 \pm .019$ (3) | $0.863 \pm .011$ (4) | $0.917 \pm .011$ (1) |  |
| Mean Relative Diff. (MRD) ↓  | $0.008 \pm .012$ (1) | $0.056 \pm .051$ (3) | $0.211 \pm .246$ (5) | $0.084 \pm .090$ (4) | $0.035 \pm .048$ (2) |  |
| Mean Reciprocal Rank (MRR) † | $0.758 \pm .306$ (1) | $0.370 \pm .268$ (3) | $0.365 \pm .228$ (4) | $0.335 \pm .090 (5)$ | $0.556 \pm .293$ (2) |  |

#### **Sascha Marton**

sascha.marton@uni-mannheim.de University of Mannheim

#### Dr. Christian Bartelt

christian.bartelt@uni-mannheim.de
University of Mannheim



Jun.-Prof. Dr. Stefan Lüdtke stefan.luedtke@uni-rostock.de Institute for Visual and Analytic Computing

### Prof. Dr. Heiner Stuckenschmidt

heiner.stuckenschmidt@uni-mannheim.de
University of Mannheim







Follow-Up Work @ICLR'24



https://github.com/ s-marton/GradTree