Corrigé: mots de Lukasiewicz

Partie I. Quelques propriétés

Question 1. (-1) est le seul mot de Lukasiewicz de longueur 1 ; il n'y en a pas de longueur 2, et un seul de longueur 3 : le mot (+1,-1,-1).

Si $u = (u_1, u_2, ..., u_{2p})$ est un mot de longueur paire, la somme $\sum_{i=1}^{2p} u_i$ est paire donc u ne peut être un mot de Lukasiewicz.

Question 2. La fonction suivante utilise un accumulateur égal au poids du mot parcouru.

```
let luka u =
let rec aux acc = function
| [] -> acc = -1
| t::q -> acc >= 0 && aux (acc + t) q
in aux 0 u ;;
```

Question 3. Un mot est de Lukasiewicz lorsque son poids est égal à -1 et le poids de tous ses préfixes stricts, positifs. Considérons donc deux mots de Lukasiewicz u et v, et posons $w = (+1) \cdot u \cdot v$.

```
On a p(w) = 1 + p(u) + p(v) = 1 - 1 - 1 = -1.
```

Passons maintenant en revue les différents préfixes stricts w' de w:

- si w' = (+1) alors $p(w') = 1 \ge 0$;
- si w' = (+1) · u' où u' est un préfixe strict de u, alors p(w') = 1 + p(u') ≥ 1;
- si $w' = (+1) \cdot u$ alors p(w') = 1 + p(u) = 0;
- enfin, si $w' = (+1) \cdot u \cdot v'$ où v' est un préfixe strict de v, alors $p(w') = 1 + p(u) + p(v') = p(v') \ge 0$.

Dans tous les cas on a $p(w') \ge 0$ donc w est bien un mot de Lukasiewicz.

Question 4. Soit w un mot de Lukasiewicz de longueur supérieure ou égale à 3. On a $p(w_1) \ge 0$ donc $w_1 = (+1)$. Posons $w = (+1) \cdot w'$ et notons u le plus petit préfixe strict de w' vérifiant p(u) = -1. Un tel préfixe existe puisque $p(w_1') \ge -1$ et p(w') = -2. Notons alors $w = (+1) \cdot u \cdot v$, et vérifions que u et v sont des mots de Lukasiewicz.

```
Par construction, p(u) = -1 et p(w) = 1 + p(u) + p(v) donc p(v) = p(w) = -1.
```

Si u' est un préfixe strict de u, alors $(+1) \cdot u'$ est préfixe strict de w donc $p(u') \ge -1$. Mais par définition de u, p(u') ne peut être égal à -1, donc $p(u') \ge 0$.

Si v' est un préfixe strict de v, alors $(+1) \cdot u \cdot v'$ est préfixe strict de w donc $1 + p(u) + p(v') \ge 0$ soit $p(v') \ge 0$. u et v sont donc bien des mots de Lukasiewicz.

Supposons maintenant l'existence de deux décompositions $w = (+1) \cdot u \cdot v$ et $w = (+1) \cdot x \cdot y$. Sans perte de généralité on peut supposer que x est un préfixe de u. Mais s'il s'agissait d'un préfixe strict de u on aurait $p(x) \ge 0$, ce qui ne se peut. On a donc x = u et par suite y = v. La décomposition est bien unique.

Question 5. On utilise le critère obtenu à la question précédente pour caractériser *u*. Dans cette question encore on utilise un accumulateur égal au poids du préfixe parcouru.

Question 6. Un algorithme récursif calculant l'ensemble des mots de longueur 2n + 1 à partir d'un appel récursif sur tous les mots de longueurs 2p + 1 et 2(n - p - 1) + 1 imposerait de recalculer les mêmes mots un très grand nombre de fois et serait donc très coûteux (de complexité exponentielle); il est préférable de procéder à une mémoïsation des mots de longueurs inférieures pour ne les calculer qu'une fois; c'est la démarche qui est suivie dans la question suivante, en suivant le principe de la programmation dynamique.

Question 7. Le seul mot de Lukasiewicz de longueur 1 est égal à (-1); tout mot de longueur 2n+1 s'écrit de manière unique sous la forme $(+1) \cdot u \cdot v$ avec |u| = 2p+1, |v| = 2q+1 et p+q=n-1. Ainsi, pour obtenir tous les mots de longueur inférieure ou égale à 2n+1, nous allons construire un tableau t de taille n+1, la case t. (k) contenant la liste des mots de taille 2k+1.

Nous avons tout d'abord besoin d'une fonction qui à deux listes de mots $[u_1,...,u_p]$ et $[v_1,...,v_q]$ associe la liste des mots de la forme $(+1) \cdot u_i \cdot v_j$:

Cette fonction est de type mot list -> mot list -> mot list. Elle nous permet de construire le tableau t :

```
let tab n =
let t = make_vect (n+1) [] in
t.(0) <- [[-1]] ;
for k = 1 to n do
   for p = 0 to k-1 do
      t.(k) <- t.(k) @ (merge t.(p) t.(k-1-p))
   done
done ;
t ;;</pre>
```

Cette fonction est de type *int* -> *mot list vect*.

Enfin, pour obtenir la liste des mots de Lukasiewicz il reste à réunir les cases de ce tableau :

Cette fonction est de type int -> mot list.

Question 8. Notons \mathscr{L} l'ensemble des mots de Lukasiewicz et \mathscr{B} l'ensemble des arbres binaires. Grâce à la question 4 on définit une application φ de \mathscr{L} dans \mathscr{B} en posant :

```
\phi((-1)) = \text{Vide} et \phi((+1) \cdot u \cdot v) = \text{Noeud}(\phi(u), \phi(v)).
```

Par induction structurelle cette application est bijective, d'application réciproque :

```
\phi^{-1}(\mathsf{Vide}) = (-1) et \phi^{-1}(\mathsf{Noeud}(g,d)) = (+1) \cdot \phi^{-1}(g) \cdot \phi^{-1}(d).
```

Ces deux fonctions se définissent sans peine en CAML:

Partie II. Dénombrement

Question 9. Considérons le plus petit des entiers $i \in [1,n]$ pour lesquels $p(u_1,...,u_i)$ est minimal, et considérons $v = (u_{i+1},...,u_n,u_1,...,u_i)$. Nous avons déjà p(v) = -1; il reste à considérer les préfixes stricts v' de v. Pour simplifier les notations, posons $u' = (u_1,...,u_i)$ et $u'' = (u_{i+1},...,u_n)$.

- Si v' est un préfixe de u'', alors $u' \cdot v'$ est un préfixe de u et par définition de i, $p(u' \cdot v') \ge p(u')$ donc $p(v') \ge 0$.

- Si $v' = u'' \cdot v''$, où v'' est un préfixe strict de u', alors par définition de i, p(v'') > p(u') donc p(v') > p(u') + p(u'') = p(u) = -1, et $p(v') \ge 0$.

De ceci il résulte que v est un mot de Lukasiewicz.

Réciproquement, si $w = (u_{j+1}, ..., u_n, u_1, ..., u_j)$ est un mot de Lukasiewicz, alors pour tout $k \in [[j+1,n]], p(u_{j+1}, ..., u_k) \ge 0$ donc $p(u_1, ..., u_k) \ge p(u_1, ..., u_j)$. Ceci prouve que $p(u_1, ..., u_j)$ est minimal. Par définition de i nous avons $i \le j$ et $p(u_1, ..., u_i) = p(u_1, ..., u_i)$.

Mais si i < j nous aurions $p(u_{i+1}, ..., u_j) = 0$, et puisque p(w) = -1 ceci impliquerait que $p(u_{j+1}, ..., u_n, u_1, ..., u_i) = -1$. Puisque w ne peut avoir de préfixe strict de poids négatif, ceci est absurde et i = j, ce qui prouve l'unicité du conjugué.

Question 10. Il s'agit donc de calculer le couple (u', u'') de telle sorte que p(u') soit minimal. L'algorithme qui suit repose sur le fait que si $u = u_1 \cdot v$ avec $v = v' \cdot v''$ et p(v') minimal, alors :

$$\begin{cases} u' = u_1 \text{ et } p(u') = u_1 & \text{si } p(v') \ge 0 \\ u' = u_1 \cdot v' \text{ et } p(u') = u_1 + p(v') & \text{si } p(v') < 0 \end{cases}$$

La fonction aux calcule le couple (p(u'), (u', u'')) (avec les notations de la question précédente).

Question 11. Notons \mathscr{E} l'ensemble des mots u de longueur 2n+1 qui vérifient p(u)=-1, et \mathscr{L} l'ensemble des mots de Lukasiewicz de longueur 2n+1.

 \mathscr{E} est l'ensemble des mots composés de n+1 lettres (-1) et de n lettres (+1), donc $|\mathscr{E}| = \binom{2n+1}{n}$.

L'application qui à un mot associe son conjugué réalise une application surjective de $\mathscr E$ vers $\mathscr L$. De plus, pour tout $u \in \mathscr L$, l'ensemble des antécédents de u est égal à l'ensemble des permutations circulaires de ses lettres. Nous allons montrer que celles-ci sont toutes distinctes, ce qui permettra d'affirmer que u possède exactement 2n+1 antécédents, et le lemme des

bergers permettra de conclure que $|\mathcal{L}| = \frac{1}{2n+1} \binom{2n+1}{n}$.

Supposons donc qu'un mot $u \in \mathcal{E}$ possède deux permutations circulaires v et w identiques. Alors w est aussi une permutation circulaire des lettres de v, donc il existe deux mots x et y tels que $v = x \cdot y$ et $w = y \cdot x$, et donc $x \cdot y = y \cdot x$. D'après le résultat admis, il existe un mot z et deux entiers non nuls i et j tels que $x = z^i$ et $y = z^j$, et alors $v = z^{i+j}$. Mais dans ce cas, p(v) = (i+j)p(z) = -1, ce qui est absurde car $i+j \ge 2$ ne peut diviser -1.

Partie III. Capsules

Question 12. La suite $(|\rho^n(u)|)_{n\in\mathbb{N}}$ est une suite d'entiers décroissante et minorée par 0, donc stationnaire. Il en est donc de même de la suite $(\rho^n(u))_{u\in\mathbb{N}}$.

Question 13.

Question 14.

```
let rec rholim u =
let v = rho u in if u = v then u else rholim v ;;
```

Question 15. Montrons tout d'abord que si u est un mot de Lukasiewicz, il en est de même de $\rho(u)$:

- -p(+1,-1,-1) = -1 donc $p(\rho(u)) = p(u) = -1$.
- Notons v le préfixe qui précède la première capsule de u : $u = v \cdot (+1, -1, -1) \cdot w$. Alors $\rho(u) = v \cdot (-1) \cdot w$. Quel que soit le préfixe strict w' de w, on a $p(v \cdot (-1) \cdot w') = p(v) 1 + p(w') = p(v \cdot (+1, -1, -1) \cdot w') \ge 0$ car u est un mot de Lukasiewicz. Ceci prouve que tout préfixe strict de $\rho(u)$ est de poids positif ou nul.

De ces deux points il résulte que $\rho(u)$ est encore un mot de Lukasiewicz. Par un raisonnement analogue on prouve la réciproque : si $\rho(u)$ est un mot de Lukasiewicz, il en est de même de u.

Montrons maintenant par récurrence sur $n \in \mathbb{N}^*$ que tout mot u de Lukasiewicz de longueur 2n+1 contient au moins une capsule :

- C'est clair lorsque n = 1 puisque le seul mot de Lukasiewicz vaut dans ce cas (+1, -1, -1).
- Si $n \ge 2$ et si le résultat est acquis jusqu'au rang n-1, on utilise la question $1.4 : u = (+1) \cdot v \cdot w$, où v et w sont deux mots de Lukasiewicz, l'un au moins étant de longueur supérieure ou égale à 3. Par hypothèse de récurrence ce dernier contient une capsule, et donc u aussi.

Ainsi, si u est un mot de Lukasiewicz alors $\rho^*(u)$ doit être un mot de Lukasiewicz sans capsule, autrement dit (-1). Réciproquement, (-1) est un mot de Lukasiewicz donc si $\rho^*(u) = -1$ alors u est aussi un mot de Lukasiewicz.