Maths: DM NX

Il est important avant de commencer lire ce DM d'avoir bien compris le tableau et les exemples suivants

symbole	symbole du	prononciation
usuel	DM	
0	r	fé
1	N	ur
2	Þ	tur
3	F	an
4	R	rai
5	<	kau
6	Χ	gèb
7	P	wun
8	H	hag
9	+	nau
10	\$	je
11	1	ei
=	X	ing/i ng
+	1	ti
_	Υ	al
×	M	dag
÷	1	lag
€	ξ	so
A	۲	per
3	₿	ber
>	M	man
> < _ _ _	M	e
<u> </u>	MX	maning
<u>≤</u>	MX	ehwing
<i>≠</i>	♦	naing
C	k	suz
\supset	4	zus

 $\mathsf{XP} \uparrow \mathrel{<<} \mathsf{XNFF}$ ce qui est équivalant à 79+65=144

$$e^{\mathbf{3}}\underset{\mathbf{3}}{\overset{}{\otimes}}\underset{\rightarrow\mathbb{M}}{\overset{}{\wedge}}\mathbb{N}\uparrow\mathbf{3}\uparrow\frac{\mathbf{3}^{\,\flat}}{\,\flat\,!}\uparrow\dots\uparrow\frac{\mathbf{3}^{\,\mathbf{18}}}{\,\mathbf{18}!}\uparrow o\Big(\mathbf{3}^{\,\mathbf{18}}\Big)$$

est équivalant à

$$e^x \underset{x \to 0}{=} 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{x!} + o(x^n)$$

Problème : nombres algébrique et extensions de corps

Partie I. extensions de corps

N=° \nabla. Premiers exemples a.

il est évidant que $\mathbb R$ est un sous-corps de $\mathbb C$ et de plus $\mathbb C$ est de dimension finis, donc $\mathbb C$ est une extention finie de $\mathbb R$

de plus soit \bigstar € \mathbb{C} alors

soit igoplus un sous-corps qui contient $\Bbb R$

comme $[\mathbb{R}:\mathbb{R}]$ $\$ $\$ $\$ et que l'on vient de prouver que $[\mathbb{C}:\mathbb{R}]$ $\$ $\$

il apparait donc comme condition que, $\mathbb{N} M \times [m : \mathbb{R}] M \times \mathbb{R}$

Ainsi $[\oplus : \mathbb{R}] \$) ou $[\oplus : \mathbb{R}] \$ \rangle

Et ansi \bigoplus $X \mathbb{R}$ ou \bigoplus $X \mathbb{C}$

b.

Soit $\mathfrak{I} \leq \mathbb{Q}(\sqrt{\triangleright})$, alors $\mathfrak{I}, \mathfrak{I} \leq \mathbb{Q}, \mathfrak{I} \otimes \mathfrak{I} \cap \mathfrak{I} \wedge \mathbb{P}$, alors prenons $\mathfrak{I} \otimes \mathfrak{I} \otimes \mathbb{Q}$, donc $\mathbb{Q} \models \mathbb{Q}(\sqrt{\triangleright})$ et comme \mathbb{Q} est stable par \mathbb{I} et \mathbb{M} Ainsi \mathbb{Q} est un sous-coprs de $\mathbb{Q}(\sqrt{\triangleright})$ de plus, soit $\mathfrak{I} \leq \mathbb{Q}(\sqrt{\triangleright})$ alors $\mathbb{I} \otimes \mathbb{I}, \mathfrak{I} \leq \mathbb{Q}, \mathfrak{I} \otimes \mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I}$, soit un telle $\mathfrak{I} \otimes \mathbb{Q}$, soit $\mathbb{I} \otimes \mathbb{Q} \otimes \mathbb{I} \otimes \mathbb{Q} \otimes$

c. i.

Soit $P \leq \mathbb{Q}[X]$ tel que $P(\sqrt[h]{\flat}) \not \otimes \mathbb{P}$ prenons la divisions euclidienne de $X^{\dagger} \not \uparrow \flat$ par P ce qui nous donne $X^{\dagger} \not \uparrow \flat \not \otimes PQ \uparrow R$ avec $Q \leq \mathbb{Q}_{\hbar}[X]$ et $R \leq \mathbb{Q}[X]$ tel que deg $R \not \uparrow \flat$ En évaluant notre expression précédente en $\sqrt[h]{\flat}$ on obtient :

$$\left(\sqrt[l]{\flat}\right)^{\flat} \uparrow \flat \not \forall \not \models \not \exists \not \vdash \not \underbrace{P\left(\sqrt[l]{\flat}\right)}_{\not \exists \not \vdash} \uparrow R$$

Ainsi Comme P divise $X^{\mathbb{F}} \not \models \mathbb{F}$ et que $\deg P \not \models \mathbb{F}$, alors P et $X^{\mathbb{F}} \not \models \mathbb{F}$ possède deux racines en commun dont $\mathring{\nabla} \not \models \mathbb{F}$ et comme $X^{\mathbb{F}} \not \vdash \mathbb{F} \not \models \mathbb{F} (X \not \vdash \mathring{\nabla} \not \models \mathbb{F}) (X \not \vdash \mathring{\nabla} \not \models \mathbb{F}) (X \not \vdash \mathring{\nabla} \not \models \mathbb{F})$ donc P à en plus une racine complexe or un polynôme dans \mathbb{R} qui possède une racine complexe possède sont conjugée ce qui n'est pas le cas pour P donc $\mathbb{F} \not \models \mathbb{F} \mathbb{F}$ ce qui est absurde Donc $\mathbb{F} \not \models \mathbb{F} \mathbb{F}$ $\mathbb{F} \not \models \mathbb{F}$ $\mathbb{F} \not\models \mathbb{F}$ $\mathbb{F} \not\models$

```
ii.
```

Par un résonnement annaloge à la question
$$\mathbb{N}$$
 .b on montre que $\mathbb{Q} \models \mathbb{Q} \begin{pmatrix} \sqrt[k]{P} \end{pmatrix}$, De plus soit $\mathbf{9} \in \mathbb{Q} \begin{pmatrix} \sqrt[k]{P} \end{pmatrix}$ alors soient $\mathbb{H}, \mathbf{4}, \mathbf{7} \in \mathbb{Q}, \mathbf{9} \times \mathbb{H} \uparrow \mathbf{4} \quad \sqrt[k]{P} \uparrow \mathbf{7} \quad \binom{\mathbb{N}}{P} \uparrow \mathbf{7$

d.