快糙猛GPU编程入门: NVIDIA-CUDA篇

- GPU硬件结构概览
- CUDA语言扩展概览
- GPU编程优化加速核心思想
- GPU编程实例
- GPU编程实用工具概览

什么是GPU

- •相比CPU,核心数目更多,单核性能更弱(价格更贵)的计算设备
- 核数多: 并行吞吐量大
- 单核弱: 单个核心效率并不高
- 从PCIe实现数据传输和通信

如何使用GPU实现通用计算

- CUDA-Compute Unified Device Architecture
- 什么是CUDA?
 - 入门级理解:加入了语言扩展以操作GPU硬件的C语言

CUDA硬件基础-GPU简化结构

NVIDIA Tesla Architecture

TPCs: Texture/Processor Clusters SMs: Stream Multiprocessors SPs: Streaming Processors SFU: Special Function Unit (4 floating-point multipliers)

NVIDIA Tesla Architecture

TPCs: Texture/Processor Clusters

SMs: Stream Multiprocessors

SPs: Streaming Processors SFU: Special Function Unit (4 floating-point multipliers)

CUDA硬件基础-GPU简化结构

- SM-流多处理器
- 核心-SP流处理器(可以看成CPU中的thread)
- L1缓存,常量缓存,共享内存

CUDA硬件基础-更深入SM

- SM-流多处理器
- SP-流处理器(可以看成CPU中的thread)
- L1缓存,常量缓存,共享内存

CUDA并行本质-SIMT

- SIMT (Single Instruction Multiple Thread)
- 和SIMD (Single Instruction Multiple Data)的区分
- SIMT: 多个SP执行一个函数(核函数Kernel)

CUDA编程模型-硬件资源抽象

- 划分层级从小到大Thread-Block-Grid
- Block和Grid以及Warp的大小因设备而异
- 计算资源调度的最细粒度-Warp(线程束)
- 即便如此还是可以进行Warp层面的优化

- 查询设备信息(非常重要)
- 见src/example_01.cu
- •注:全部代码可见GitHub

CUDA语言扩展

- 函数限定符
 - __host___,
 - __device___,
 - _global__
- 变量限定符__constant__, __shared__
 - 一般用于控制数据的存储布局


```
#include <cuda runtime.h>
#include <cuda.h>
#include <device launch parameters.h>
#include <cassert>
#include "example 02.h"
 qlobal void kernel vec add(float *a, float *b, float *c, int n);
 host void vec add(float *a, float *b, float *c, int n)
    float *dev a, *dev b, *dev c;
    int size = sizeof(float) * n;
    cudaMalloc(&dev a, size);
    cudaMalloc(&dev b, size);
    cudaMalloc(&dev c, size);
    cudaMemcpy(dev a, a, size, cudaMemcpyHostToDevice);
    cudaMemcpy(dev b, b, size, cudaMemcpyHostToDevice);
    cudaMemcpy(dev c, c, size, cudaMemcpyHostToDevice);
    kernel vec add << / / 32 + 1, 32>>> (dev a, dev b, dev c, n);
    cudaMemcpy(c, dev c, size, cudaMemcpyDeviceToHost);
    cudaFree(dev a);
    cudaFree(dev b);
    cudaFree(dev c);
 global void kernel vec add(float *a, float *b, float *c, int n)
    int idx = threadIdx.x + blockDim.x * blockIdx.x;
    if (idx < n)
        c[idx] = a[idx] + b[idx];
```


CUDA语言扩展-函数限定符

- __device__
 - 这个限定符声明的函数: a、在设备上运行; b、只能被设备调用;
- __host__
 - 这个限定符声明的函数: a、在主机上运行; b、只能被主机调用;
- _global__
 - 这个限定符声明的函数: a、在设备上运行; b、可以从主机上被调用; c、可以被计算能力为3.x的设备调用
 - 这个限定符声明的函数也就是核函数,需要传入特殊的参数

CUDA语言扩展-核函数

- 被__global__修饰的函数(外表)
- 在GPU SP上执行的指令序列(本质)
- 形如kernel_func<<<numBlocks,threadsPerBlock>>>(args…)
 - 尖括号内是GPU的硬件资源调度参数

- 高维向量的并行二元操作(向量相加)
- 见src/example_02.h, src/example_02.cu, src/example_02.cc

CUDA硬件-逻辑对应关系

NVIDIA Tesla Architecture

TPCs: Texture/Processor Clusters SMs: Stream Multiprocessors SPs: Streaming Processors SFU: Special Function Unit (4 floating-point multipliers)

CUDA默认流的基本操作

- 向GPU传入数据(cudaMemcpy等)
- 在GPU完成计算(kernel function)
- 向HOST传回数据(cudaMemcpy等)

Stream1 → H2D → Kernel1 → Kernel2 → D2H

CUDA默认流的基本操作

```
cudaMalloc(&dev a, size);
cudaMalloc(&dev b, size);
cudaMalloc(&dev c, size);
cudaMemcpy(dev a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev b, b, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev c, c, size, cudaMemcpyHostToDevice);
kernel vec add<<n / 32 + 1, 32>>>(dev a, dev b, dev c, n);
cudaMemcpy(c, dev c, size, cudaMemcpyDeviceToHost);
cudaFree(dev a);
cudaFree(dev b);
cudaFree(dev c);
```


CUDA事件-基础概念

- CUDA中Event用于在流的执行中添加标记点,用于检查正在执行的流是否到达给定点。
 - 可以用于统计时间,在需要测量的函数前后插入Event。调用 cudaEventElapseTime()查看时间间隔
 - 还有更重要的作用(流同步),见CUDA多流并发

- 在CPU和GPU上向量相加,并且记录时间
- 见src/example_03.cu

性能分析-Nsight

性能分析-Nsight

CUDA-Shared Memory初探

• 十分重要的概念

- 矩阵乘法
- 见src/example_04.cu

Exploiting data reuse

```
__global___ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width) {
    int Row = blockIdx.y*blockDim.y+threadIdx.y;
    int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
    float Pvalue = 0;
    for (int k = 0; k < Width; ++k)
        Pvalue += d_M[Row*Width+k] * d_N[k*Width+Col];
        d_P[Row*Width+Col] = Pvalue; } }</pre>
```

- P_{tile} contains a block of TILE_WIDTH² threads.
- Every thread loads all data it needs by itself.
 - □ TILE_WIDTH² threads in P_{tile} each loads $2*TILE_WIDTH$ data $\Rightarrow 2*TILE_WIDTH^3$ global memory reads.
- But notice all threads in P_{tile} need data from purple tiles.
 - □ Purple data can be reused!
- Threads in P_{tile} cooperate to load purple tiles, eliminating redundant global memory reads.
 - Only 2*TILE_WIDTH² global memory reads in total. A factor of TILE_WIDTH less!

CUDA原子操作

synchronization.

Programming Guide :: CUDA Toolkit Documentation (nvidia.com)

Can perform atomics on global or shared memory variables. int atomicInc(int *addr) ☐ Reads value at addr, increments it, returns old value. ☐ Hardware ensures all 3 instructions happen without interruption from any other thread. int atomicAdd(int *addr, int val) ☐ Reads value at addr, adds val to it, returns old value. int atomicMax(int *addr, int val) ☐ Reads value at addr, sets it to max of current value and val, returns old value. int atomicExch(int *addr1, int val) ☐ Sets val at addr to val, returns old value at val. int atomicCAS(int *addr, old, new) ☐ "Compare and swap", a conditional atomic. ☐ Reads value at addr. If value equals old, sets value to new. Else does nothing. □ Indicates whether state changed, i.e. if your view is up to date. ☐ Universal operation, i.e. can be used to perform any other kind of

- 数组求和
- 见src/example_05.cu

CUDA并行规约

对于N个输入数据和操作符+, 规约可表示为:

$$\sum_{i} a_{i} = a_{0} \oplus a_{1} \oplus a_{2} \oplus a_{3} \oplus a_{4} \oplus a_{5} \oplus a_{6} \oplus a_{7}$$

下图展示了一些处理8个元素规约操作的实现:

从图中可以看到,不同的实现其时间复杂度也是不一样的,其中串行实现完成计算需要7步,性能比较差。成对的方式是典型的分治思想,只需要IgN步来计算结果,由于不能合并内存事务,这种实现在CUDA中性能较差。

在CUDA中,无论是对全局内存还是共享内存,基于交替策略效果更好。对于全局内存,使用blockDim.x*gridDim.x的倍数作为交替因子有良好的性能,因为所有的内存事务将被合并。对于共享内存,最好的性能是按照所确定的交错因子来累计部分结果,以避免存储片冲突,并保持线程块的相邻线程处于活跃状态。

CUDA并行规约

- 高维向量的并行规约(基于thrust)
- 见src/example_06.cu
- CUDA Webinar 2 (nvidia.cn)

```
template <unsigned int blockSize>
device void warpReduce(volatile int *sdata, unsigned int tid) {
  if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
                                                                                     DVIDIA
  if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
  if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
  if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
                                                          Final Optimized Kernel
  if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
  if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
template <unsigned int blockSize>
global void reduce6(int *g_idata, int *g_odata, unsigned int n) {
  extern shared int sdata[];
  unsigned int tid = threadldx.x;
  unsigned int i = blockldx.x*(blockSize*2) + tid;
  unsigned int gridSize = blockSize*2*gridDim.x;
  sdata[tid] = 0;
  while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; }</pre>
  syncthreads();
  if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
  if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } syncthreads(); }
  if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } syncthreads(); }
  if (tid < 32) warpReduce(sdata, tid);
  if (tid == 0) g_odata[blockldx.x] = sdata[0];
                                                                                        35
```

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x
Kernel 5: unroll last warp	0.536 ms	31.289 GB/s	1.8x	15.01x
Kernel 6: completely unrolled	0.381 ms	43.996 GB/s	1.41x	21.16x
Kernel 7: multiple elements per thread	0.268 ms	62.671 GB/s	1.42x	30.04x

Kernel 7 on 32M elements: 73 GB/s!

• CUDA异步流

- CUDA异步流Slide 1 (nvidia.cn)
- 见src/example_07.cu

```
cudaStream_t stream1, stream2, stream3, stream4;
cudaStreamCreate ( &stream1);
cudaMalloc ( &dev1, size );
cudaMallocHost ( &host1, size );
                                                             // pinned memory required on host
cudaMemcpyAsync ( dev1, host1, size, H2D, stream1 );
kernel2 <<< grid, block, 0, stream2 >>> ( ..., dev2, ... );
                                                                      potentially
kernel3 <<< grid, block, 0, stream3 >>> ( ..., dev3, ... );
                                                                      overlapped
cudaMemcpyAsync ( host4, dev4, size, D2H, stream4 );
some_CPU_method();
Fully asynchronous / concurrent
Data used by concurrent operations should be independent
```

总结-加速原则

- 设计并且应用合适的并行算法
- 同时利用尽可能多的计算单元
- 减小访存操作
- 针对GPU结构优化

更多展望

- 更多基础并行算法(sort, prefix_sum…)
- 分布式并行算法(非PRAM模型)
- Warp级别的优化-Intrinsics
- 其他官方库
 - cuBlas(基础线性代数)
 - tensorRT(神经网络加速)
 - cuSparse(稀疏矩阵计算)
 - nccl(多卡通信)