Topology Homework 5

Benji Altman

December 24, 2017

18.2. Suppose that $f: X \to Y$ is continuous. If x is a limit point of the subset A of X, is it necessarily true that f(x) is a limit point of f(A)?

No, it is not true. Suppose $X = Y = \mathbb{R}$ and we give X and Y the standard topology on \mathbb{R} . Then define f to be the zero function and let A = (8,9). Then we can choose x to be a limit point of A, for example x = 9, and then $f(A) = \{0\}$ and f(x) = 0 and 0 is not a limit point of $\{0\}$.

Find a function $f: \mathbb{R} \to \mathbb{R}$ that is continuous at precisely one point.

We assume the standard topology on \mathbb{R} . Now consider

6.

$$f(x) = \begin{cases} 0 & x \notin \mathbb{Q} \\ x & x \in \mathbb{Q} \end{cases}$$

Let us first show that f is continuous at 0. f(0) = 0, so let V be an open set containing 0. Now because V is an open set in the standard topology on \mathbb{R} containing 0 there will some a > 0 such that the interval $(-a, a) \subset V$. Now let U = (-a, a), then find that $f(U) \subset V$ as for any $x \in U$, $f(x) = 0 \in V$ or $f(x) = x \in U \subset V$. Thus by our definition of point continuity f is continuous at the point 0.

Let us now consider a point $x \neq 0$ in \mathbb{R} . We will show that there exists some nhood V of f(x), such that for any nhood U of x, we have $U \not\subset V$. Now if $x \in \mathbb{Q}$ then we will let V be an nhood of x not containing 0 and because the irrational's are dense on \mathbb{R} there exists some irrational number in any nhood U of x, thus $0 \in f(U)$. If $x \notin \mathbb{Q}$ then f(x) = 0 so we may let V = (-|x|, |x|). Now we will find that any nhood, U, of x contains some rational, q, such that |q| > |x| and thus $f(q) = q \notin V$ and thus $f(U) \not\subset V$.

7.(a) First before we embark upon this little adventure let us give a rigorous definition for the limit from above, as I could not find any in this book. This definition is not complete as it does not deal with function of subsets of \mathbb{R} and it does not deal with limits that tend to ∞ or $-\infty$, however it will be all we need.

Definition 0.1 (Limit from above). Let $f: \mathbb{R} \to \mathbb{R}$, then

$$\lim_{x \to c^+} f(x) = a \in \mathbb{R}$$

if for every $\epsilon > 0$ there exists some $\delta > 0$ such that for any $x \in (c, c + \delta)$, $f(x) \in (a - \epsilon, a + \epsilon)$.

Now let $f: \mathbb{R} \to \mathbb{R}$ be continuous from above. Now choose $r \in \mathbb{R}$, and let V be a nhood of f(r). Because V is open in \mathbb{R} and contains f(r), there must be some $\epsilon > 0$ such that $(f(r) - \epsilon, f(r) + \epsilon) \subset V$. Now by definition of continuity from above we know that $\lim_{x \to r^+} f(x) = f(r)$, thus we have some $\delta > 0$ such that for any $x \in (r, r + \delta)$, $f(x) \in (f(r) - \epsilon, f(r) + \epsilon)$; this may also be written as $f((r, r + \delta)) \subset (f(r) - \epsilon, f(r) + \epsilon)$. It is also trivial that $f(r) \in (f(r) - \epsilon, f(r) + \epsilon)$ so we may say that $f([r, r + \delta)) \subset (f(r) - \epsilon, f(r) + \epsilon) \subset V$. If we consider f then as a map from \mathbb{R}_{ℓ} to \mathbb{R} we get that for any point $r \in \mathbb{R}$ and any nhood of V of f(r), there exists a nhood $U = [r, r + \delta)$ of r such that $f(U) \subset f(V)$. Now by the powers vested in me by theorem 18.1 part 4 in the book I hereby declare f continuous when thought of as a map from \mathbb{R}_{ℓ} to \mathbb{R} .

(b) Notice how this section merely asks for conjectures, not proofs nor even for the conjectures to be correct. Now I state this without proof as I really do not know how to prove it, but from what I can tell it seems to be right. First there are no continuous function from \mathbb{R} to \mathbb{R}_{ℓ} , in some sense there seems to be 'to many' open sets in \mathbb{R}_{ℓ} for each one to have an inverse that is open in \mathbb{R} . My next statement I have less of a feel for, but I feel that continuous functions from \mathbb{R} to \mathbb{R} are the same as continuous function from \mathbb{R}_{ℓ} to \mathbb{R}_{ℓ} . I

would like to talk to you more about this and see if we can't come up with a proof or a disproof of either of these statements.

19.2. Let A_{α} be a subspace of X_{α} , for each $\alpha \in J$. Show that that $\prod A_{\alpha}$ is a subspace of $\prod X_{\alpha}$ if both products are given the box topology, or if both products are given the product topology.

Box topology:

Let B be a basis element of $\prod A_{\alpha}$ as a box topology, then for each $\alpha \in J$ there exists B_{α} open in A_{α} such that $\prod B_{\alpha} = B$. For any given $\alpha \in J$ there must be some open C_{α} in X_{α} such that $B_{\alpha} = C_{\alpha} \cap A_{\alpha}$ because B_{α} is open in A_{α} which is a subspace of C_{α} . Now we find that $B = \prod B_{\alpha} = \prod [C_{\alpha} \cap A_{\alpha}] = \prod C_{\alpha} \cap \prod A_{\alpha}$ which is a basis element in $\prod A_{\alpha}$ as a subspace of $\prod X_{\alpha}$.

Let B now be a basis element of $\prod A_{\alpha}$ as a subspace of $\prod X_{\alpha}$, then there exists an open $C \in \prod X_{\alpha}$ such that $\prod A_{\alpha} \cap C = B$. By virtue of C being open in $\prod X_{\alpha}$ there exists some open $C_{\alpha} \subset X_{\alpha}$ for each $\alpha \in J$ such that $\prod C_{\alpha} = C$ Thus we have $B = \prod A_{\alpha} \cap C = \prod A_{\alpha} \cap \prod C_{\alpha} = \prod [A_{\alpha} \cap C_{\alpha}]$, which is a basis element of $\prod A_{\alpha}$ as the box topology of all A_{α} .

Product topology:

Let B be an open set in $\prod A_{\alpha}$ as a product topology, then (by theorem 19.1) for each $\alpha \in J$ there exists some B_{α} that is open in A_{α} , such that $\prod B_{\alpha} = B$. We also know (by theorem 19.1) that for only finitely many $\alpha \in J$, $B_{\alpha} \neq A_{\alpha}$. Now for any $\alpha \in J$ such that $B_{\alpha} = A_{\alpha}$ we let $C_{\alpha} = X_{\alpha}$ and for all other $\alpha \in J$ there must be some open set, C_{α} in X_{α} such that $A_{\alpha} \cap C_{\alpha} = B_{\alpha}$. Now for all but finitely many $\alpha \in J$, $C_{\alpha} = X_{\alpha}$, thus $\prod C_{\alpha}$ is an open set in $\prod X_{\alpha}$. Finally we say $B = \prod B_{\alpha} = \prod [C_{\alpha} \cap X_{\alpha}] = \prod C_{\alpha} \cap \prod X_{\alpha}$, thus B would be open in $\prod A_{\alpha}$ as a subspace topology.

Now let B be an open set in $\prod A_{\alpha}$ as a subspace of $\prod X_{\alpha}$, then there exists some open $C \subset \prod X_{\alpha}$ such that $C \cap \prod A_{\alpha} = \prod B_{\alpha}$. Because C is open in $\prod X_{\alpha}$ then for each $\alpha \in J$ there exists C_{α} open in X_{α} such that $\prod C_{\alpha} = C$ and for all but finitely many $\alpha \in J$, $C_{\alpha} = X_{\alpha}$. Now for each $\alpha \in J$ we let $B_{\alpha} = C_{\alpha} \cap A_{\alpha}$, thus B_{α} will be open in A_{α} and there may be only finitely many $B_{\alpha} \neq A_{\alpha}$. Finally we say that $B = C \cap \prod A_{\alpha} = \prod C_{\alpha} \cap \prod A_{\alpha} = \prod [C_{\alpha} \cap A_{\alpha}] = \prod B_{\alpha}$ which must be open in $\prod A_{\alpha}$ with a product topology.

3. Show that if for all $\alpha \in J$, X_{α} is Hausdorff then $\prod X_{\alpha}$ is Hausdorff given either a box or product topology. First we will state and prove a theorem to help us in this proof.

Theorem 0.1. Let a space X has two topologies T and S with S finer than T. If T is Hausdorff then so must S be.

Proof. Let us choose $x, y \in X$ such that $x \neq y$. As \mathcal{T} is Hausdorff there exists a nhood U of x and nhood V of y in \mathcal{T} such that U and V are disjoint. \mathcal{S} is finer than \mathcal{T} so U and V must also be in \mathcal{S} , thus for arbitrary point $x, y \in X$ there is are disjoint nhoods of them in \mathcal{S} .

First we notice that the box topology is finer then the product topology, thus because of theorem 0.1 if we show that the product topology on $\prod X_{\alpha}$ is Hausdorff then so is the box topology on $\prod X_{\alpha}$.

Consider $\prod X_{\alpha}$ given the product topology, with X_{α} Hausdorff for all $\alpha \in J$. Let $x, y \in \prod X_{\alpha}$ be given with $x \neq y$. For each $\alpha \in J$ there exists some $x_{\alpha}, y_{\alpha} \in X_{\alpha}$ such that $\prod x_{\alpha} = x$ and $\prod y_{\alpha} = y$. There then must be some $\beta \in J$ for which $x_{\beta} \neq y_{\beta}$ as if there was not then we would have x = y. We have that X_{β} is Hausdorff, thus we may choose an nhoods of U_{β} of x_{β} and V_{β} of y_{β} such that $U_{\beta} \cap V_{\beta} = \emptyset$. Now for all $\alpha \in J \setminus \{\beta\}$ let us define $U_{\alpha} = V_{\alpha} = X_{\alpha}$. Now we have $\prod U_{\alpha}$ and $\prod V_{\alpha}$ open in $\prod X_{\alpha}$ with $\prod U_{\alpha}$ disjoint from $\prod V_{\alpha}$, and $x \in \prod U_{\alpha}$ and $y \in \prod V_{\alpha}$. Thus $\prod X_{\alpha}$ is Hausdorff.

Now by theorem 0.1 we have $\prod X_{\alpha}$ with the box topology as Hausdorff.

5. If f is continuous then all $\alpha \in J$, f_{α} is continuous.

Proof. Let there be some $\beta \in J$ such that f_{β} is not continuous. Let us also define $B_{\alpha} = X_{\alpha}$ for all $\alpha \neq \beta$, and let B_{β} an open set in X_{β} such that $f_{\beta}^{-1}(B_{\beta})$ is not open in A. Now for each $\alpha \neq \beta$ we have $f_{\alpha}^{-1}(B_{\alpha}) = A$

by definition of a function (it must be defined at all points on A). Now we have

$$f^{-1}\left(\prod B_{\alpha}\right) = \left\{a \in A \mid f(a) \in \prod B_{\alpha}\right\}$$

$$= \left\{a \in A \mid \prod f_{\alpha}(a) \in \prod B_{\alpha}\right\}$$

$$= \left\{a \in A \mid \forall_{\alpha \in J} [f_{\alpha}(a) \in B_{\alpha}]\right\}$$

$$= \bigcap_{\alpha \in J} [\left\{a \in A \mid f_{\alpha}(a) \in B_{\alpha}\right\}]$$

$$= \bigcap_{\alpha \in J} [f_{\alpha}^{-1}(B_{\alpha})]$$

$$= \bigcap_{\alpha \in J \setminus \left\{\beta\right\}} [f_{\alpha}^{-1}(B_{\alpha})] \cap f_{\beta}^{-1}(B_{\beta})$$

$$= A \cap f_{\beta}^{-1}(B_{\beta})$$

$$= f_{\beta}^{-1}(B_{\beta})$$