BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI Hyderabad Campus

SECOND SEMESTER 2018-2019 Course Handout Part II

Date: 7-1-2019

In addition to Part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : ECE F344

Course Title : Information Theory and Coding

Instructor-in-charge : P.K.Thiruvikraman

1. Course description: 3 0 3

Random variables and random processes; Information sources and source coding theorem, Kraft inequality, Shannon-Fano codes, Huffman codes, Arithmetic Codes, Lempel-Ziv-Welch algorithm, universal source codes; channel capacity: channel capacity; noisy channel coding theorem for discrete memoryless channels; error control coding: linear block codes and their properties, low density-parity-check codes, BCH codes, Reed-Solomon codes, cryptography: basic concepts on cryptography and cryptoanalysis, security issues; private-key encryption algorithms- stream ciphers, block ciphers, introduction to number theory - modular arithmetic, public-key encryption algorithms- Diffie-Hellman public-key distribution scheme, RSA public-key cryptosystem; Message authentication, digital signatures.

2. Scope & Objective:

- 1. To apply the concepts of random processes and probability theory to communication subsystems
- 2. To implement security measures in communication systems using cryptographic principles

3. Text Books

1. Information Theory, Coding and Cryptography, 3rd Ed., Dr. Ranjan Bose, Tata McGrawHill, 2016

4. Reference Books

- 1. Elements of information theory, Thomas M.Cover and Joy A.Thomas, Wiley-India
- 2. Foundations of Coding, Jiri Adamek, John Wiley, 1991
- 3. The Mathematics of Coding Theory, Paul Garrett, Pearson Education, 2005
- 4. Information Theory, Inference and Learning Algorithms, David Mackay, Cambridge University Press, 2003
- 5. Coding Theory A First course, Ling and Xing, Cambridge University press, 2004

5. Course Plan

Lect. No.	Topics to be covered	Learning Objectives	Chapter in the Text Book
1-2	Introduction to Information Theory	Measure of Information	1.1 to 1.2
3-4	Average Mutual Information and Entropy	Concept of Binary Symmetric channel, conditional\l entropy	1.3
5-6	Source coding theorem	Fundamentals of source coding	1.5

7-8	Huffman Coding, Shannon- Fano-Elias Coding		1.6,1.7
9-10	Arithmetic Coding,The Lempel-Ziv algorithm, run length encoding		1.8-1.10
11-13	Introduction to Image Compression	To understand JPEG compression format and lossy compression	1.14 to 1.17
14-15	Wavelets and wavelet transform	Using the wavelet transform for compression	Class notes
16-19	Channel Capacity and Models	To understand Channel capacity & noisy coding theorem	2.1 to 2.9
20-21	Block codes for error correction	Introduction to error correcting codes	3.1 to 3.2
22-23	Matrix description of linear block codes	Parity check matrix, decoding of a linear code	3.3 to 3.6
24-25	Syndrome decoding		3.7 to 3.9
26-27	Hamming codes		3.10 to 3.16
28-29	Cyclic codes	Division algorithm for cyclic codes	4.1 to 4.3
30-33	Matrix description of cyclic codes		4.4 to 4.12
34-37	BCH codes	Generator polynomials, Minimal polynomials	5.1 to 5.10
38-40	Cryptography	Overview of encryption techniques, symmetric key cryptography,	8.1 to 8.4
41-42	Asymmetric key cryptography	The RSA algorithm	8.8 to 8.9

6. Evaluation Scheme

Component	Durati on	Weightage	Marks	Date & Time	Nature of Component
Mid-semester test	90 min	35%	105	14/3 9.00 - 10.30AM	Open book
Programming test (MATLAB)		10%	30	TBA	Open Book
Surprise tests*	15 min	10%	30		Open Book
Comprehensive ecamination	3 hrs	45%	135	08/05 FN	Closed Book

^{*} A total of 4 surprise tests will be conducted and the best two scores will be used.

- 7. Chamber Consultation Hour: Will be announced in the class.
- 8. Notices: Notices concerning this course will be displayed on CMS.
- **9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.