Note: I only verify my source code in p3.py and gd.py.

1. a)
$$\nabla^2 f(x) = \frac{1}{2} \cdot 2 \cdot Q = Q$$
.

By second-order condition, $-LI \le Q \le LI$. $-L \le \gamma \le L$. So, the smallest L is $|\gamma| = \gamma$.

b)
$$\tilde{f}(x) = \frac{1}{2}x^TQx - \frac{m}{2}||x||^2 = \frac{1}{2}x^TQx - \frac{m}{2}x^Tx = \frac{1}{2}x^T(Q - mI)x$$
.

Because \tilde{f} is convex, $\nabla^2 \tilde{f}(x) = (Q - mI)$ is positive definite. So, the maxima of m is $\max\{1, \gamma\}$.

c)

gamma=0.1, stepsize=2.2, number of iterations=5 gamma=0.1, stepsize=1, number of iterations=88 gamma=0.1, stepsize=0.1, number of iterations=917 gamma=0.1, stepsize=0.01, number of iterations=9206

When taking 2.2 as the step size, it fails to converge. ss = 0.01

Ss = 0.1

Ss = 1

Ss = 2.2

gamma=1, stepsize=1, number of iterations=1
gamma=0.1, stepsize=1, number of iterations=88
gamma=0.01, stepsize=1, number of iterations=688
gamma=0.001, stepsize=1, number of iterations=4603

Gamma = 0.001

Gamma = 0.01

Gamma = 0.1

Gamma = 1

 $\begin{tabular}{ll} 2.\\ When using the same method as problem 1 \end{tabular}$

stepsize=0.01, number of iterations=1146 optimal point [1.5 1.99999005]

When solving the equation directly

Ignoring the errors, the answers agree with each other.

4. Because g(x) is β -smooth, $-\beta I \leq \nabla^2 g(x) \leq \beta I$.

Because f(x) is α -strongly convex, $f(x) - \frac{\alpha}{2} ||x||^2$ is convex.

Namely, $\nabla^2 (f(x)) \ge \alpha I$.

$$\nabla^2 h(x) = \nabla^2 \big(f(x) \big) - \nabla^2 g(x) \geq \alpha I - \beta I.$$

If $\alpha \geq \beta$, $\nabla^2 h(x) \geq 0$.

So, h(x) is convex.