Теория и реализация языков программирования. Задание 9: преобразование контекстно-свободных языков

Сергей Володин, 272 гр.

задано 2013.10.30

Упражнение 1

Упражнение 2

N-автомат $M=(\Sigma,\Gamma,Q,q_0,Z_0,\delta,\varnothing)$. $G=(N,\Sigma,P,S)$ — построена по алгоритму. Докажем, что $L(G)\subseteq L(M)$. Будем рассматривать только левые выводы.

- 1. $\forall w \colon S \overset{\text{левый}}{\Rightarrow^*} w, \ w \in (\Sigma \cup N)^*, \ w \notin \Sigma^* \hookrightarrow w = u[r_0Y_1r_1][r_1Y_2r_2]...[r_{n-1}Y_nr_n], \ u \in \Sigma^*, \ r_i \in Q, \ Y_i \in \Gamma$ доказывается индукцией по длине левого вывода из свойств добавленных правил (слева всегда, возможно, нетерминалы, затем, возможно, терминалы. $[qZp] \to ...[...Yp]$, поэтому соседние состояния, отделенные скобками совпадают: ...r[r...).
- $2. \ P(k) \stackrel{\text{\tiny def}}{=} \big[\forall n \ \forall w \colon S \stackrel{\text{\tiny левый вывод}}{\underset{k \text{ independent of the proper states}}{*}} w \hookrightarrow w = u[r_0Y_1r_1]...[r_{n-1}Y_nr_n] \Rightarrow (q_0, u, Z_0) \vdash^* (r_0, \varepsilon, Y_1...Y_n) \big].$
 - (a) n=1. Из определения P могут быть только правила $S \to [q_0 Z_0 p]$, и $(q_0, \varepsilon, Z_0) \equiv (q_0, \varepsilon, Z_0) \Rightarrow P(1)$
 - (b) Пусть P(k). Рассмотрим левый вывод длины k+1: $S\Rightarrow^*y\equiv u[r_0Y_1r_1][r_1Y_2r_2]...[r_{n-1}Y_nr_n]$. Пусть начальная часть этого вывода длины k имеет вид $S\Rightarrow^*x\equiv u_l[s_0Z_1s_1][s_1Z_2s_2]...[s_{m-1}Z_ms_m]$. На последнем, k+1-м шаге был раскрыт первый нетерминал $[s_0Z_1s_1]\to z$:

і.
$$[s_0Z_1s_1] \to z \equiv u_r[t_0W_1t_1][t_1W_2t_2]...[t_{l-1}W_lt_l].$$
 Тогда $y = \underbrace{u_l}_{\text{префикс }x}\underbrace{u_r[t_0W_1t_1][t_1W_2t_2]...[t_{l-1}W_lt_l]}_{z}\underbrace{[s_1Z_2s_2]...[s_{m-1}Z_ms_m].}_{\text{суффикс }x}$ Отсюда $W_1...W_lZ_2...Z_m = Y_1...Y_n, \ u = u_lu_r, \ t_0 = r_0.$ $P(k) \Rightarrow (q_0, u_l, Z_0) \vdash^* (s_0, \varepsilon, Z_1...Z_m).$ Применено правило $[s_0Z_1s_1] \to z \Rightarrow (s_0, u_r, Z_1) \vdash (t_0, \varepsilon, W_1...W_l).$ Тогда $(q_0, u, Z_0) \equiv (q_0, u_lu_r, Z_0) \vdash^* (s_0, u_r, Z_1...Z_m) \vdash (t_0, \varepsilon, W_1...W_lZ_2...Z_m) \equiv (r_0, \varepsilon, Y_1...Y_n).$ іі. $[s_0Z_1s_1] \to z \equiv u_r \in \Sigma^*.$ Тогда $y = \underbrace{u_l}_{\text{префикс }x}\underbrace{u_r}_{z}\underbrace{[s_1Z_2s_2]...[s_{m-1}Z_ms_m]}_{\text{суффикс }x}.$ Отсюда $Z_2...Z_m = Y_1...Y_n, \ s_1 = r_0,$ $u = u_lu_r. \ [s_0Z_1s_1] \to u_r \in P \Rightarrow (s_0, u_r, Z_1) \vdash (s_1, \varepsilon, \varepsilon) - \text{из определения }P.$ $(q_0, u, Z_0) \equiv (q_0, u_lu_r, Z_0) \vdash^* (s_0, u_r, Z_1...Z_m) \vdash (s_1, \varepsilon, Z_2...Z_m) \equiv (r_0, \varepsilon, Y_1...Y_n).$

3. Пусть $\underline{w \in L(G)} \Rightarrow \exists n \colon S \overset{\text{левый вывод}}{\underset{\text{п шагов}}{\Rightarrow^*}} w \in \Sigma^*$. На последнем, n-1 шаге был раскрыт нетерминал $[qZp] \to w_r$, поэтому этот левый вывод имеет вид $S \Rightarrow^* w_l[qZp] \Rightarrow w_lw_r$. Имеем $w = w_lw_r$. $[qZp] \to w_r \in P \Rightarrow (q, w_r, Z) \to (p, \varepsilon, \varepsilon)$. $(q_0, w, Z_0) \equiv (q_0, w_lw_r, Z_0) \overset{P(n-1)}{\vdash^*} (q, w_r, Z) \vdash (p, \varepsilon, \varepsilon) \Rightarrow w \in L(M)$

Упражнение 3

Упражнение 4

Задача 1

$$L \stackrel{\text{\tiny def}}{=} \{xcy | x, y \in \{a, b\}^*, x \neq y^R\} \subset \Sigma^*, \ \Sigma \stackrel{\text{\tiny def}}{=} \{a, b, c\}.$$

1. Определим МП-автомат $\mathcal{A} \stackrel{\text{def}}{=} (\Sigma, \Gamma, Q, q_0, Z, \delta, F)$, допускающий по принимающему состоянию:

- 1. $\Gamma \stackrel{\text{def}}{=} \{a, b, A, B, Z\}$
- 2. $Q \stackrel{\text{def}}{=} \{q_0, q_1, q_2, q_3, q_4\}$
- 3. δ изображена справа
- 4. $F \stackrel{\text{def}}{=} \{q_1, q_2, q_4\}$
- 2. \mathcal{A} детерминированный, так как из каждой конфигурации (q, w, γ) переход определен однозначно, и ε -переходов нет.
- 3. Определим $U\colon \{a,b\} \to \{A,B\}\colon U(a) = A,\, U(b) = B.$ Определим $U_r\colon \{a,b\}^* \to \{a,b,A,B\}^*\colon U_r(w) = \begin{cases} \varepsilon, & w = \varepsilon \\ w_1...w_{n-1}U(w_n), & w = w_1...w_n,\, \forall i \in \overline{1,n} \hookrightarrow w_i \in \{a,b\} \end{cases}$ заменяет последний символ на заглавный.
- 4. Докажем, что $L \subseteq L(\mathcal{A})$:
 - (а) Пусть $w \in \{a,b\}^*$. Докажем, что $(q_0,w,Z) \vdash^* (q_0,\varepsilon,U_r(w^R)Z)$ индукцией по |w|: $P(n) \stackrel{\text{def}}{=} [\forall w \in \{a,b\}^* \colon |w| = n \hookrightarrow (q_0,w,Z) \vdash^* (q_0,\varepsilon,U_r(w^R)Z)]$
 - i. $n=0 \Rightarrow |w|=0 \Rightarrow w=\varepsilon$. Тогда $U_r(w^R) \equiv \varepsilon$, и $(q_0,w,Z) \equiv (q_0,\varepsilon,Z) \equiv (q_0,\varepsilon,U_r(w^R)Z) \Rightarrow P(0)$.
 - іі. $n=1\Rightarrow w=\sigma\in\Sigma$. Рассмотрим переходы из (q_0,σ,Z) . В стек будет добавлен $U_r(\sigma)\Rightarrow (q_0,w,Z)\equiv (q_0,\sigma,Z)\vdash (q_0,\varepsilon,U_r(\sigma)Z)\equiv (q_0,\varepsilon,U_r(w^R)Z)\Rightarrow P(1)$.
 - ііі. Фиксируем $n \geqslant 1$, пусть $\underline{P(n)}$. Пусть $w \in \{a,b\}^*, |w| = n+1$. Тогда $w = w_0 \sigma, |w_0| = n > 0$. $P(n) \Rightarrow (q_0, w_0, Z) \vdash^* (q_0, \overline{\varepsilon}, U_r(w_0^R)Z)$. Тогда $(q_0, w, Z) \equiv (q_0, w_0 \sigma, Z) \vdash^* (q_0, \sigma, U_r(w_0^R)Z)$. \Leftrightarrow переходы из $(q_0, \sigma, U(w_0^R)Z)$. На верхушке стека $\gamma \in \{a, b, A, B\}$ первый символ $U_r(w_0^R)$, входной символ $\sigma \in \{a, b\}$. Во всех случаях он будет добавлен в стек (см. определение δ), значит, $(q_0, \sigma, U_r(w_0^R)Z) \vdash (q_0, \varepsilon, \sigma U_r(w_0^R)Z) \stackrel{|w_0|>0}{=} (q_0, \varepsilon, U_r(w^R)Z) \Rightarrow P(n+1)$.
 - (b) Из определения δ имеем $(q_0, cw, \gamma) \vdash^* (q_1, w, \gamma), |\gamma| > 0, \gamma \neq Z$.
 - (c) Докажем $(q_1,x,xZ) \vdash^* (q_1,\varepsilon,Z)$ индукцией по |x|: $P(n) \stackrel{\text{def}}{=} \left[\forall x \in \{a,b\}^* \colon |x| = n \hookrightarrow (q_1,x,xZ) \vdash^* (q_1,\varepsilon,Z) \right]$
 - і. $n=0 \Rightarrow |x|=0 \Rightarrow x=\varepsilon$. Тогда $(q_1,x,xZ)\equiv (q_1,\varepsilon,Z)\Rightarrow P(0)$
 - іі. Фиксируем $n \geqslant 0$. Пусть P(n). Пусть $x \in \{a,b\}^*: |x| = n+1 \Rightarrow x = x_0\sigma, |x_0| = n \stackrel{P(n)}{\Rightarrow} (q_1,x_0,x_0Z) \vdash^* (q_1,\varepsilon,Z)$. Тогда $(q_1,x,xZ) \equiv (q_1,x_0\sigma,x_0\sigma Z) \vdash^* (q_1,\sigma,\sigma Z)$. Входной символ совпадает с символом на верхушке стека, из определения δ получаем, что символ будет удален из стека: $(q_1,\sigma,\sigma Z) \vdash (q_1,\varepsilon,Z) \Rightarrow P(n)$.
 - (d) Пусть $\sigma_1, \sigma_2 \in \{a, b\}, \ \sigma_1 \neq \sigma_2$. Тогда $(q_1, \sigma_1, U_r(\sigma_2)\gamma) \vdash (q_2, \varepsilon, \sigma_2\gamma)$ и $(q_1, \sigma_1, \sigma_2\gamma) \vdash (q_2, \varepsilon, \sigma_2\gamma)$ из определения δ .
 - (e) Пусть $x \in \{a,b\}^*$, $\gamma \in \{a,b\}$. Тогда $(q_2,x,\gamma\kappa) \vdash^* (q_2,\varepsilon,\gamma\kappa)$ доказывается очевидно по индукции (переходы из q_2 в q_2 определены для всех символов a,b на входе и в стеке и не изменяют стек).
 - (f) Пусть $\sigma \in \{a, b\}$. Тогда $(q_1, \sigma, U_r(\sigma)\gamma) \vdash (q_3, \varepsilon, \gamma)$ из определения δ .
 - (g) Пусть $\sigma \in \{a,b\}$. Тогда $(q_3,\sigma,Z) \vdash (q_4,\varepsilon,Z)$ из определения δ
 - (h) Пусть $x \in \{a,b\}^*$. Тогда $(q_4,x,Z) \vdash^* (q_4,\varepsilon,Z)$ доказывается очевидно по индукции (из q_4 есть переходы в q_4 по a и b при Z на верхушке стека)
 - (i) Из определения δ имеем $(q_0, c, Z) \vdash (q_3, \varepsilon, Z)$.
 - (j) Пусть $\underline{w \in L} \Rightarrow w = xcy, x \neq y^R; x, y \in \{a,b\}^*. \ x \neq y^R \Leftrightarrow x^R \neq y.$ Выделим максимальную по длине общую часть τ длины i у слов x^R и y: $x^R = \tau x_1, y = \tau y_1, \ x_1 \neq y_1.$ Тогда $x = x_1^R \tau^R, w = xcy = x_1^R \tau^R c \tau y_1.$
 - i. Пусть $|x_1| > 0$. $(q_0, w, Z) \equiv (q_0, x_1^R \tau^R c \tau y_1, Z) \overset{4a}{\underset{|x_1| > 0}{\vdash}} (q_0, c \tau y_1, U_r(\tau x_1) Z) \overset{4b}{\vdash} (q_1, \tau y_1, U_r(\tau x_1) Z) \overset{|x_1| > 0}{\equiv}$
 - $\equiv (q_1, \tau y_1, \tau U_r(x_1)Z) \stackrel{4c}{\vdash}^* (q_1, y_1, U_r(x_1)Z).$
 - $\begin{array}{l} -(q_1,y_1, v_{Cr}(x_1)Z) \vdash (q_1,y_1, v_{Cr}(x_1)Z). \\ \text{A. Пусть } |y_1| > 0, \ x_1[1] \neq y_1[1]. \ \text{Обозначим} \ y_1 = y^1...y^l, \ \forall i \in \overline{1,l} \hookrightarrow y^i \in \{a,b\}^* \ \text{Тогда} \ (q_1,y_1,U_r(x_1)Z) \equiv \\ (q_1,y^1...y^l,U_r(x_1)Z) \stackrel{4d}{\vdash} (q_2,y^2...y^l,U_r(x_1)Z) \stackrel{4e}{\vdash} (q_2,\varepsilon,U_r(x_1)Z). \ q_2 \in F \Rightarrow w \in L(\mathcal{A}). \end{array}$

В. Пусть
$$|y_1|=0$$
. Тогда $w=x_1^R\tau^Rc\tau y_1\equiv x_1^R\tau^Rc\tau\Rightarrow (q_0,w,Z)\equiv (q_0,x_1^R\tau^Rc\tau,Z)\stackrel{4a}{\underset{|x_1|>0}{\vdash}}(q_0,c\tau,\tau U_r(x_1)Z)\stackrel{4b}{\underset{|x_1|>0}{\vdash}}(q_1,\tau,\tau U_r(x_1)Z)\stackrel{4e}{\underset{|x_1|>0}{\vdash}}(q_1,\varepsilon,U_r(x_1)Z).$

- іі. Пусть $|x_1|=0$. Тогда $w=\tau^R c \tau y_1,\ y_1\in \{a,b\}^*.\ x^{\overline{R}}\neq y\Rightarrow \tau\neq \tau y_1\Rightarrow |y_1|>0\Rightarrow y_1=\varkappa \varPsi,\ \varkappa\in \{a,b\}$
 - А. $|\tau| > 0 \Rightarrow \tau = \tau_0 \sigma$, $\sigma \in \{a,b\}$. Получаем $(q_0, w, Z) \equiv (q_0, \tau^R c \tau y_1, Z) \overset{4a}{\underset{|\tau| > 0}{\vdash}} (q_0, c \tau y_1, U_r(\tau) Z) \overset{4b}{\underset{|\tau| > 0}{\vdash}} (q_1, \tau y_1, U_r(\tau) Z) \equiv (q_1, \tau_0 \sigma y_1, \tau_0 U_r(\sigma) Z) \overset{4c}{\vdash} (q_1, \sigma y_1, U_r(\sigma) Z) \overset{4f}{\vdash} (q_3, y_1, Z) \equiv (q_3, \varkappa \Psi, Z) \overset{4g}{\vdash} (q_4, \Psi, Z) \overset{4h}{\vdash} (q_4, \varepsilon, Z)$. $q_4 \in F \Rightarrow \underline{w \in L(\mathcal{A})}$
 - B. $|\tau| = 0 \Rightarrow w = x_1^R \tau^R c \tau y_1 \equiv c y_1 \Rightarrow (q_0, w, Z) \equiv (q_0, c y_1, Z) \stackrel{4i}{\vdash} (q_3, y_1, Z) \equiv (q_3, \varkappa \Psi, Z) \stackrel{4g}{\vdash} (q_4, \Psi, Z) \stackrel{4h}{\vdash} (q_4, \varepsilon, Z).$ $q_4 \in F \Rightarrow w \in L(\mathcal{A})$
- 5. Докажем, что $L(\mathcal{A}) \subseteq L$. Пусть $w \in L(\mathcal{A}) \Rightarrow (q_0, w, Z) \vdash^* (q, \varepsilon, \gamma), q \in F$:
 - (а) $q=q_1$. В q_1 прочитываются a,b. Переходы в q_1 есть только из q_0 по c. В q_0 прочитываются символы a,b. Значит, $w=xcy,\,x,y\in\{a,b\}^*$. Если $x=\varepsilon$, то был совершен переход $q_0\overset{c,Z/Z}{\longrightarrow}q_3$ противоречие. Автомат детерминированный, поэтому цепочка конфигураций при выводе w имеет вид $(q_0,w,Z)\equiv (q_0,xcy,Z)\overset{4a}{\models}(q_0,cy,U_r(x^R)Z)\overset{4b}{\models}(x|>0)$ $(q_1,y,U_r(x^R)Z)$. Выделим максимальную общую часть от начала для слов x^R и y: $x^R=\tau x_1,\,y=\tau y_1,\,x_1\neq y_1$.
 - і. $| au|=0, |x_1|=0 \Rightarrow |x|=0$ противоречие
 - ії. $|\tau|>0, |x_1|=0\Rightarrow \tau=\tau_0\sigma,\,\sigma\in\{a,b\}.$ $\equiv (q_1,\tau_0\sigma y_1,\tau_0U_r(\sigma)Z)\overset{4c}{\vdash^*}(q_1,\sigma y_1,U_r(\sigma)Z)\overset{4f}{\vdash}(q_3,\ldots)-$ противоречие, из q_3 нет переходов в q_1 .
 - ііі. $|\tau| \geqslant 0, |x_1| > 0$. Тогда $= (q_1, \tau y_1, \tau U_r(x_1)Z) \stackrel{4c}{\vdash^*} (q_1, y_1, U_r(x_1)Z) = 1$. а. $|y_1| = 0 \Rightarrow = 1 (q_1, \varepsilon, U_r(x_1))$. Тогда $w = \underbrace{x_1^R \tau^R}_x c \underbrace{\tau y_1^R}_y, x^R = \tau x_1 \neq \tau = y \Rightarrow \underline{w \in L}$.
 - b. $|y_1|>0$. Тогда $x_1[1]\neq y_1[1]$, и $\overline{=_1}(q_1,y_1,U_r(x_1)Z) \overset{4d}{\underset{x_1[1]\neq y_1[1]}{\vdash}}(q_3,\ldots) \underline{\text{противоречие}},$ из q_3 нет переходов в q_1 .
 - (b) $q=q_2$. В q_2 есть переходы только из q_1 , в q_2 прочитываются a,b. $5a\Rightarrow w=xcy, |x|\neq 0, x,y\in \{a,b\}^*$. При переходе в q_2 прочитывается символ, поэтому |y|>0. Аналогично 5a выделим общую часть $x^R=\tau x_1,y=\tau y_1$. Аналогично 5a (|x|>0) получаем $(q_0,w,Z)\vdash^* (q_1,\tau y_1,U_r(\tau x_1)Z)$. Рассмотрим случаи:
 - і. $|\tau|=0, |x_1|=0 \Rightarrow |x|=0$ противоречие
 - іі. $|\tau| > 0, |x_1| = 0 \Rightarrow \tau = \tau_0 \sigma, \ \sigma \in \{a,b\}$. $\boxed{=} (q_1, \tau_0 \sigma y_1, \tau_0 U_r(\sigma) Z) \overset{4c}{\vdash} (q_1, \sigma y_1, U_r(\sigma) Z) \overset{4f}{\vdash} (q_3, \ldots) \underline{\text{противоречие}}, \ \text{из} \ q_3$ нет переходов в q_2 .
 - і
іі. $|\tau|\geqslant 0, |x_1|>0$. Тогда $\boxed{=}(q_1,\tau y_1,\tau U_r(x_1)Z)\overset{4c}{\vdash^*}(q_1,y_1,U_r(x_1)Z)\boxed{=_1}.$
 - а. $|y_1|=0 \Rightarrow \boxed{=_1}(q_1,\varepsilon,U_r(x_1))$. В 5a было показано, что автомат остановится в q_1 противоречие.
 - b. $|y_1| > 0$. Тогда $x_1[1] \neq y_1[1]$. Обозначим $x_1 = \sigma_1 x_1^0$, $y_1 = \sigma_2 y_1^0$, и $=_1$ $(q_1, \sigma_1 y_1^0, U_r(\sigma_2 x_1^0) Z) \overset{4d}{\vdash} (q_3, y_1^0, U_r(x_1^0) Z) \overset{4e}{\vdash} (q_3, \varepsilon, U_r(x_1^0) Z)$ (последние переходы возможны только при $x_1^0 \neq \varepsilon$). Получаем $x_1 \neq y_1 \Rightarrow x^R \neq y \Rightarrow \underline{w} \in \underline{L}$.
 - (c) $q = q_4$. В q_4 прочитываются a, b; в q_4 есть переходы только из $q_3 \xrightarrow{b,Z/Z} q_4$, в q_3 есть переходы только из $p \in \{q_0,q_1\}$. Рассмотрим случаи:
 - і. $p=q_0$. Если в q_0 были прочитаны символы из $\{a,b\}$, то на верхушке стека не $Z\Rightarrow$ переход в q_3 не мог быть совершен. Получаем, что $w=cy,\,y\in\{a,b\}^*$. Но при переходе в q_4 из q_3 прочитывается хотя бы один символ, поэтому $|y|>0\Rightarrow\underline{w}\in\underline{L}$
 - іі. $p = q_1$. $5b \Rightarrow w = xcy$, |x| > 0, $x, y \in \{a, b\}^*$. Аналогично 5b разобьем $x^R = \tau x_1$, $y = \tau y_1$, рассмотрим случаи: A. $|\tau| = 0$, $|x_1| = 0 \Rightarrow |x| = 0$ противоречие
 - В. $|\tau| > 0, |x_1| = 0 \Rightarrow \tau = \tau_0 \sigma, \sigma \in \{a,b\}$. Аналогочино 5b получим $(q_0, w, Z) \vdash^* (q_1, \tau_0 \sigma y_1, \tau_0 U_r(\sigma) Z) \vdash^{4c} (q_1, \sigma y_1, U_r(\sigma) Z) \vdash^* (q_3, y_1, Z)$. При переходе из q_3 в q_4 был прочитан символ, поэтому $|y_1| > 0$. Имеем $x^R \equiv \tau x_1 \equiv \tau \neq \tau y_1 \equiv y \Rightarrow \underline{w \in L}$.
 - C. $|\tau| \ge 0, |x_1| > 0.$
 - а. $|y_1| = 0$. В 5a было показано, что автомат остановится в q_1 противоречие.
 - b. $|y_1| > 0$. В 5b было показано, что автомат остановится в q_2 противоречие.

Задача 2

Схема доказательства:

 $L \in \mathsf{CFL} \Rightarrow \exists n, \varphi, R \colon R \in \mathsf{REG}, \varphi - \mathsf{морфизм} \colon \Sigma^* \longrightarrow \Delta^*, L = \varphi(D_n \cap R)$. Из доказательства теоремы XIII следует, что φ может быть таким, что $|\varphi(\sigma)| \leqslant 1$, $\sigma \in \{[1, ..., [n,]_1, ...,]_n\} \equiv \Sigma$. Тогда $\forall w \in \Sigma^* \hookrightarrow \mathsf{Pref}(\varphi(w)) = \varphi(\mathsf{Pref}(w))$. Значит, $\mathsf{Pref}(L) = \mathsf{Pref}(\varphi(D_n \cap R)) = \varphi(\mathsf{Pref}(D_n \cap R)) = \varphi(\mathsf{Pref}(D_n) \cap \mathsf{Pref}(R)) = \varphi(\mathsf{Pref}(D_n)) \cap \varphi(\mathsf{Pref}(R)) = \varphi(D_n) \cap \varphi(\mathsf{Pref}(R))$. Но $\mathsf{Pref}(R) \in \mathsf{REG}$: пусть $\mathcal{A} - \mathsf{ДKA}, L(\mathcal{A}) = R$. $\mathcal{A}' - \mathsf{автомат} \ \mathcal{A}$ со всеми принимающими состояниями. Тогда $L(\mathcal{A}') = \mathsf{Pref}(R)$. Получаем $\mathsf{Pref}(L) = \varphi(D_n \cap R'), R' = \mathsf{Pref}(R) \in \mathsf{REG} \Rightarrow \mathsf{Pref}(L) \in \mathsf{CFL}$.

- 1. Докажем, что $x \in \Sigma^* \Rightarrow \operatorname{Pref}(\varphi(x)) = \varphi(\operatorname{Pref}(x))$: если $w = \varepsilon$, то $\varphi(x) = \varepsilon$. Тогда $\operatorname{Pref}(\varphi(x)) \equiv \operatorname{Pref}(\varepsilon) = \varepsilon = \varphi(\varepsilon) = \varphi(\operatorname{Pref}(\varepsilon))$. Если $w = w_1...w_n$, то $\operatorname{Pref}(\varphi(w_1...w_n)) = \operatorname{Pref}(\varphi(w_1)...\varphi(w_n)) = \{\varepsilon, \varphi(w_1), \varphi(w_1), \varphi(w_1), \varphi(w_1), \ldots, \varphi(w_n)\} = \varphi(\{\varepsilon, w_1, w_1w_2, ..., w_1...w_n\}) = \varphi(\operatorname{Pref}(w))$.
- 2. Докажем, что $X \subset \Sigma^* \Rightarrow \operatorname{Pref}(\varphi(X)) = \varphi(\operatorname{Pref}(X))$: $\operatorname{Pref}(\varphi(X)) = \{\operatorname{Pref}(\varphi(X)) | x \in X\} \stackrel{1}{=} \{\varphi(\operatorname{Pref}(x)) | x \in X\} = \varphi(\operatorname{Pref}(X))$.
- 3. Докажем, что $\operatorname{Pref}(X \cap Y) = \operatorname{Pref}(X) \cap \operatorname{Pref}(Y)$: $x \in \operatorname{Pref}(X \cap Y) \Leftrightarrow xy \in X \cap Y \Leftrightarrow xy \in X, xy \in Y \Leftrightarrow xy \in \operatorname{Pref}(X), xy \in \operatorname{Pref}(Y) \Leftrightarrow xy \in \operatorname{Pref}(X) \cap \operatorname{Pref}(Y)$
- 4. Докажем, что $\varphi(\operatorname{Pref}(D_n))=\varphi(D_n)$: $\varphi(\sigma)\neq \varepsilon$ только если $\sigma=]_a$. Уберем открывающую [a]

(не дописано).

Задача 3

$$\begin{split} \Sigma &\stackrel{\text{def}}{=} \{a,b\}, \ \Gamma \stackrel{\text{def}}{=} (N,\Sigma,P,S). \ N \stackrel{\text{def}}{=} \{A,B,C,D,E,F,G\} \ P: \\ S &\rightarrow A|B|C|E|AG & C \rightarrow BaAbC|aGD|\varepsilon \\ A &\rightarrow C|aABC|\varepsilon & F \rightarrow aBaaCbA|aGE \\ B &\rightarrow bABa|aCbDaGb|\varepsilon & E \rightarrow A \end{split}$$

- 1. Удалим бесплодные символы (для упрощения):
 - (a) $V_0 \stackrel{\text{def}}{=} \{a, b\}$
 - (b) $V_1 = V_0 \cup \{A, B, C\} = \{a, b, A, B, C\}$
 - (c) $V_2 = V_1 \cup \{S, F, E\} = \{a, b, S, A, B, C, F, E\}$
 - (d) $V_3 = V_2 \cup \varnothing$

Тогда $V_3 \setminus \Sigma = \{S, A, B, C, F, E\}$. Удалим нетерминалы $N \setminus V_3 = \{D, G\}$ и правила, их содержащие: $N' \stackrel{\text{def}}{=} N \setminus V_3 = \{S, A, B, C, F, E\}, P'$:

$$\begin{array}{ll} S \rightarrow A|B|C|E|\mathcal{AG} & C \rightarrow BaAbC|a\mathcal{GD}|\varepsilon \\ A \rightarrow C|aABC|\varepsilon & F \rightarrow aBaaCbA|a\mathcal{GE} \\ B \rightarrow bABa|aCbDa\mathcal{Gb}|\varepsilon & E \rightarrow A \end{array}$$

- 2. Удалим недостижимые символы (для упрощения):
 - (a) $V_0 \stackrel{\text{def}}{=} \{S\}$
 - (b) $V_1 = V_0 \cup \{A, B, C, E\}$
 - (c) $V_2 = V_1 \cup \varnothing$

 $N'' \stackrel{\text{def}}{=} \{A, B, C, E, S\}, P''$:

$$\begin{array}{ll} S \rightarrow A|B|C|E|\mathcal{AG} & C \rightarrow BaAbC|a\mathcal{GD}|\varepsilon \\ A \rightarrow C|aABC|\varepsilon & F \rightarrow \underline{aBaaCbA}|aGE \\ B \rightarrow bABa|aCbDaGb|\varepsilon & E \rightarrow A \end{array}$$

1,2. Имеем P'':

$$S \to A|B|C|E$$

$$A \to C|aABC|\varepsilon$$

$$B \to bABa|\varepsilon$$

$$C \to BaAbC|\varepsilon$$

$$E \to A$$

- 3. Удалим ε -правила:
 - (a) $A, B, C \varepsilon$ -порождающие.
 - (b) $S, E \varepsilon$ -порождающие $(S \to A, E \to A)$

Перепишем правила, содержащие ε -порождающие нетерминалы справа (2^k правил для каждого правила, содержащего $k \varepsilon$ -порождающих нетерминалов). P''':

$$\begin{split} S &\to A|B|C|E \\ A &\to C|a|aC|aB|aBC|aA|aAC|aAB|aABC \\ B &\to ba|bBa|bAa|bABa \end{split}$$

 $C \rightarrow ab|abC|aAb|aAbC|Bab|BabC|BaAbC$ $E \rightarrow A$

Грамматика с такими правилами порождает язык $L(\Gamma) \setminus \{\varepsilon\}$.

- 4. Найдем цепные пары (множества пар соответствуют добавлениям на шагах алгоритма):
 - (a) (S,S), (A,A), (B,B), (C,C), (E,E)
 - (b) (S, A), (S, B), (S, C), (S, E); (A, C); (E, A)
 - (c) (S,C); (S,A); (E,C)
- 5. Выпишем новое множество правил P'''':

Цепная пара		Правила
(S,S)		Ø
(A,A)	$A \rightarrow a$	aC aB aBC aA aAC aAB aABC
(B,B)		a bBa bAa bABa
(C,C)	$C \rightarrow ab$	b abC aAb aAbC Bab BabC BaAbC
(E,E)		Ø
(S,A)	$S \rightarrow a$	aC aB aBC aA aAC aAB aABC
(S,B)	$S \rightarrow ba$	a bBa bAa bABa
(S,C)	$S \rightarrow ab$	b abC aAb aAbC Bab BabC BaAbC
(S,E)		Ø
(A,C)	$A \rightarrow ab$	b abC aAb aAbC Bab BabC BaAbC
(E,A)	$E \rightarrow a$	aC aB aBC aA aAC aAB aABC
(S,C)	$S \rightarrow ab$	b abC aAb aAbC Bab BabC BaAbC
(E,C)	$E \rightarrow ab$	b abC aAb aAbC Bab BabC BaAbC

- 6. Нетерминалы A, B, C, E, S не являются бесплодными: $A \to a, B \to ba, C \to ab, E \to a, S \to ab$.
- 7. Удалим недостижимые:
 - (a) $V_0 \stackrel{\text{\tiny def}}{=} \{S\}$
 - (b) $V_1 \stackrel{\text{def}}{=} \{S, A, B, C\}$
 - (c) $V_2 = V_1$

Удаляем $E. P^{(5)}$:

 $B \rightarrow ba|bBa|bAa|bABa$

 $C \rightarrow ab|abC|aAb|aAbC|Bab|BabC|BaAbC$

8. Приведем к нормальной форме Хомского. Добавим нетерминалы $A', B', A' \to a, B' \to b$. Заменим в правилах a на A', b на B'. Подчеркнем слова из нетерминалов длины 2 в правых частях правил, которые заменим на новые нетерминалы:

- $B \rightarrow B'A'|\underline{B'B}A'|\underline{B'A}A'|\underline{B'A}BA'$
- $C \rightarrow A'B'|A'B'C|A'AB'|A'AB'C|BA'B'|BA'B'C|BA'AB'C$
- $S \rightarrow a|A'C|A'B|\underline{A'B}C|A'A|\underline{A'A}C|\underline{A'A}B|\underline{A'A}\underline{BC}|B'A'|\underline{B'B}A'$
- $S \to \underline{B'A}A'|\underline{B'A}\,\underline{BA'}|A'B'|\underline{A'B'}\,C|\underline{A'A}B'|\underline{A'A}\,\underline{B'C}|\underline{BA'}\,\underline{B'}|\underline{BA'}\,\underline{B'C}|\underline{BA'}\,\underline{AB'}C$

 $A' \to a$

 $B' \to b$

Заменим подчеркнутые слова на новые нетерминалы, получим

Ответ:

 $A \to a|A'C|A'B|X_0C|A'A|X_1C|X_1B|X_1X_2|A'B'|X_3C|X_1B'|X_1X_4|X_5B'|X_5X_4|X_9C$

 $B \to B'A'|X_7A'|X_8A'|X_8X_5$

 $C \to A'B'|X_3C|X_1B'|X_1X_4|X_5B'|X_5X_4|X_9C$

 $S \to a|A'C|A'B|X_0C|A'A|X_1C|X_1B|X_1X_2|B'A'|X_7A'|X_8A'|X_8X_5|A'B'|X_3C|X_1B'|X_1X_4|X_5B'|X_5X_4|X_9C$

$A' \to a$	$X_2 o BC$
B' o b	$X_3 \to A'B'$
$X_0 \to A'B$	$X_4 \to B'C$
$X_1 \to A'A$	$X_5 o BA'$

 $X_7 \to B'B$ $X_8 \to B'A$ $X_9 \to X_5 X_6$

 $X_6 \to AB'$

Задача 5

 $\Sigma_2 \stackrel{\text{def}}{=} \{[1,[2],\,\overline{\Sigma}_2 \stackrel{\text{def}}{=} \{]_1,]_2\}.\ D_2 \stackrel{\text{def}}{=} \text{ язык ПСП над }\Sigma \stackrel{\text{def}}{=} \Sigma_2 \cup \overline{\Sigma}_2.\ \Delta \stackrel{\text{def}}{=} \{a,b\}.\ \varphi\colon \Sigma^* \longrightarrow \Delta^*,\ \varphi([1] \stackrel{\text{def}}{=} a,\ \varphi([2] \stackrel{\text{def}}{=} b,\ \varphi([1]) \stackrel{\text{de$

- 1. Докажем, что $L\subseteq L'$. Пусть $\underline{y}\in L\equiv \varphi(D_2)$. Тогда $\exists x\in D_2\colon y=\varphi(x)$. $x-\Pi C\Pi\Rightarrow \forall i\in\overline{1,2}\hookrightarrow |x|_{[i}=|x|_{]i}$. Сложим равенства, получим: $|x|_{[1}+|x|_{]2}=|x|_{]1}+|x|_{[2}$. Пусть $x=x_1...x_m,\ \forall i\in\overline{1,m}\hookrightarrow x_i\in\Sigma$. Тогда $y=\varphi(x)=\varphi(x_1)...\varphi(x_m)=y_1...y_m,\ \forall i\in\overline{1,m}\hookrightarrow y_i=\varphi(x_i)\in\Delta$. Но из определения φ имеем $[1,]_2\stackrel{\varphi}{\to}a;\]_1,[2\stackrel{\varphi}{\to}b.$ Тогда $|y|_a=|x|_{[1}+|x|_{]2}\equiv |x|_{]1}+|x|_{[2}=|y|_b\Rightarrow y\in L'$
- 2. Докажем, что $L'\subseteq L$ индукцией по длине $y\in L'$: $P(n)\stackrel{\text{def}}{=} \left[\forall y\in L'\colon |y|\leqslant n\hookrightarrow y\in L\right]$. Заметим, что $y\in L\Leftrightarrow y\in \varphi(D_2)\Leftrightarrow \varphi^{-1}(y)\cap D_2\neq\varnothing$. Поэтому будем искать прообраз слова y, принадлежащий D_2 .
 - (a) $n=0 \Rightarrow |y|=0 \Rightarrow y=\varepsilon \in L'$. Пусть $x\stackrel{\text{def}}{=} \varepsilon \in D_2$ (так как пустое слово ПСП). Тогда $y=\varepsilon \equiv \varphi(x) \Rightarrow y \in \varphi(D_2) \equiv L \Rightarrow P(0)$
 - (b) Фиксируем n > 0. Пусть P(n-1). Пусть $y \in L'$: |y| = n. Поскольку |y| = n > 0, и |y| четно (см. решение задачи 3 из задания 6), то $|y| \geqslant 2$. Рассмотрим первый и последний символы σ_l и σ_r слова $y \equiv \sigma_l y_1 \sigma_r$:
 - і. $\sigma_l = a, \, \sigma_r = b$. Тогда $y = ay_1b$. $|y_1| = n 2 \leqslant n 1 \stackrel{P(n-1)}{\Rightarrow} \exists x_1 \in D_2 \colon \varphi(x_1) = y_1$. Определим $x = [{}_1x_1]_1$. $x_1 \in D_2 \Rightarrow x_1 \Pi C \Pi \Rightarrow x \Pi C \Pi$, так как получен из $\Pi C \Pi$ добавленим скобок типа 1 слева и справа $\Rightarrow x \in D_2$. Но $\varphi(x) \equiv \varphi([{}_1x_1]_1) = \varphi([{}_1)\varphi(x_1)\varphi(]_1) = ay_1b \equiv y$. Получаем $\varphi^{-1}(y) \cap D_2 \ni x \Rightarrow \varphi^{-1}(y) \cap D_2 \neq \varnothing$.
 - іі. $\sigma_l = b, \, \sigma_r = b$. Тогда $y = by_1 a. \, |y_1| = n 2 \leqslant n 1 \stackrel{P(n-1)}{\Rightarrow} \exists x_1 \in D_2 \colon \varphi(x_1) = y_1$. Определим $x = [{}_2x_1]_2$. $x_1 \in D_2 \Rightarrow x_1 \Pi C \Pi \Rightarrow x \Pi C \Pi$, так как получен из $\Pi C \Pi$ добавленим скобок типа 2 слева и справа $\Rightarrow x \in D_2$. Но $\varphi(x) \equiv \varphi([{}_2x_1]_2) = \varphi([{}_2)\varphi(x_1)\varphi(]_2) = by_1 a \equiv y$. Получаем $\varphi^{-1}(y) \cap D_2 \ni x \Rightarrow \varphi^{-1}(y) \cap D_2 \neq \varnothing$.
 - ііі. $\sigma_l = \sigma_r$. Тогда $y = \sigma y_1 \sigma \in L'$. Воспользуемся утверждением в рамочке из решения задачи 3 задания 6:

$$y = \sigma y_1 \sigma \in L' \Rightarrow \exists y_l, y_r \colon y = y_l y_r, |y_l|, |y_r| \in \overline{1, |y| - 2}, y_l, y_r \in L'$$

Ho $|y_l|, |y_r| \leqslant |y| - 2 = n - 2 \leqslant n - 1 \overset{P(n-1)}{\Rightarrow} \exists x_l, x_r \in D_2 \colon y_l = \varphi(x_l), y_r = \varphi(x_r).$ Определим $x \overset{\text{def}}{=} x_l x_r$. Тогда $x \in D_2$ (конкатенация $\Pi \subset \Pi - \Pi \subset \Pi$), и $\varphi(x) = \varphi(x_l x_r) = \varphi(x_l) \varphi(x_r) = y_l y_r = y \Rightarrow \varphi^{-1}(y) \cap D_2 \ni x \Rightarrow \varphi^{-1}(y) \cap D_2 \neq \varnothing$

Ответ: Верно, что $L = \{w | |w|_a = |w|_b\}.$

Задача 6

Автомат $\mathcal{A} = (\Sigma, \Gamma, Q, q_0, Z_0, \delta, \varnothing)$ из 7-го задания:

- 1. $\Sigma = \{a, b\}$
- 2. $\Gamma = \{a, Z_0\}$
- 3. $Q = \{q_0, q_1\}$

 $a, Z_0/aZ_0 \ a, a/aa \qquad b, a/\varepsilon \ \varepsilon, Z_0/$ $b, a/\varepsilon \qquad q_1$

4. δ изображена справа

Определим грамматику $G = (N, \Sigma, P, S)$. $N = \{S\} \cup \{[qZp] | q, p \in Q, Z \in \Gamma\}$

- 1. Добавим правила $S \to [q_0 Z_0 q_0] | [q_0 Z_0 q_1]$
- 2. Рассмотрим переходы из δ , добавим правила
 - $\text{(a)} \ \ \delta\ni q_0 \overset{a,Z_0/aZ_0}{\longrightarrow} q_0 \colon [q_0Z_0q_0] \to a[q_0aq_0][q_0Z_0q_0] \\ \big| a[q_0aq_1][q_1Z_0q_0], \ [q_0Z_0q_1] \to a[q_0aq_0][q_0Z_0q_1] \\ \big| a[q_0aq_1][q_1Z_0q_1] \\ \big| a[q_0aq_1][q_0aq_1][q_0aq_1] \\ \big| a[q_0aq_1][q_0aq_1][q_0aq_1][q_0aq_1] \\ \big| a[q_0aq_1][q_0aq_1][q_0aq_1][q_0aq_1][q_0aq_1] \\ \big| a[q_0aq_1][q_0aq_1][q_0aq_1][q_0aq_1][q_0aq_1][q_0aq_1][q_0aq_1] \\ \big| a[q_0aq_1][q_0$
 - $\text{(b)} \ \ \delta\ni q_0 \overset{a,a/aa}{\longrightarrow} q_0 \colon [q_0aq_0] \to a[q_0aq_0][q_0aq_0][q_0aq_1][q_1aq_0], \ [q_0aq_1] \to a[q_0aq_0][q_0aq_1][q_1aq_1]$
 - (c) $\delta \ni q_0 \xrightarrow{b,a/\varepsilon} q_1 \colon [q_0 a q_1] \to b$
 - (d) $\delta \ni q_1 \stackrel{b,a/\varepsilon}{\longrightarrow} q_1 \colon [q_1 a q_1] \to b$
 - (e) $\delta \ni q_0 \stackrel{\varepsilon, Z_0/\varepsilon}{\longrightarrow} q_1 : [q_1 Z_0 q_1] \to \varepsilon$
- 3. Удалим бесплодные нетерминалы:
 - (a) $V_0 = \{a, b\}$
 - (b) $V_1 = V_0 \cup \{[q_0 a q_1], [q_1 a q_1], [q_1 Z_0 q_1]\}$
 - (c) $V_2 = V_1 \cup \{[q_0 Z_0 q_1]\}$
 - (d) $V_3 = V_2 \cup \{S\}$
 - (e) $V_4 = V_3$.

Имеем правила $S \to [q_0 Z_0 q_1], [q_0 Z_0 q_1] \to a[q_0 a q_1][q_1 Z_0 q_1], [q_0 a q_1] \to a[q_0 a q_1][q_1 a q_1][b, [q_1 a q_1] \to b, [q_1 Z_0 q_1] \to \varepsilon$

4. Удалим недостижимые нетерминалы:

(a)
$$V_0 = \{S\}$$

(b)
$$V_1 = V_0 \cup \{[q_0 Z_0 q_1]\}$$

(c)
$$V_2 = V_1 \cup \{[q_0 a q_1], [q_1 Z_0 q_1]\}$$

(d)
$$V_3 = V_2 \cup \{[q_1 a q_1]\}$$

(e)
$$V_4 = V_3$$

(все достижимы)

5. Переобозначим:

$$S \to \underbrace{[q_0 Z_0 q_1]}_A, \underbrace{[q_0 Z_0 q_1]}_A \to a\underbrace{[q_0 a q_1]}_B \underbrace{[q_1 Z_0 q_1]}_C, \underbrace{[q_0 a q_1]}_B \to a\underbrace{[q_0 a q_1]}_B \underbrace{[q_1 a q_1]}_D \big| b, \underbrace{[q_1 a q_1]}_D \to b, \underbrace{[q_1 Z_0 q_1]}_C \to \varepsilon,$$

получим

$$S \to A, A \to aBC, B \to aBD|b, D \to b, C \to \varepsilon$$

6. Из D, C есть только правила $D \to b, C \to \varepsilon$, поэтому они раскрываются единственным образом. Уберем их, получим грамматику G', причем G' — однозначная $\Leftrightarrow G$ — однозначная:

$$S \to A, A \to aB, B \to aBb|b$$

Аналогично для $S \to A$ (раскрывается единственным образом). Получим G'': G'' — однозначная $\Leftrightarrow G'$ — однозначная:

$$S \to aB, B \to aBb|b$$

После примения правила $B \to b$ нельзя применить правило $B \to aBb$, и каждое применение $B \to aBb$ увеличивает количество символов a и b на 1. Поэтому количество его применений фиксировано для каждого $w \in L(G'')$. Отсюда получаем, что грамматика G'' — однозначная $\Rightarrow G'$ — однозначная $\Rightarrow G$ — однозначная.

Ответ:

$$1. \ \ G \colon S \to \underbrace{[q_0 Z_0 q_1]}_A, \underbrace{[q_0 Z_0 q_1]}_A \to a\underbrace{[q_0 a q_1]}_B\underbrace{[q_1 Z_0 q_1]}_C, \underbrace{[q_0 a q_1]}_B \to a\underbrace{[q_0 a q_1]}_B\underbrace{[q_1 a q_1]}_D \Big| b, \underbrace{[q_1 a q_1]}_D \to b, \underbrace{[q_1 Z_0 q_1]}_C \to e$$

- 2. После переобозначения $S \to A, A \to aBC, B \to aBD|b, D \to b, C \to \varepsilon$
- 3. G однозначная.