- 3 以下の問いに答えよ。
- (1) 平面上の 2 点 P , Q の座標をそれぞれ (a,b) , (c,d) とし , O を原点とする。また , 複素数 α , β を $\alpha=a+ib$, $\beta=c+id$ と定める。このとき , ベクトル \overrightarrow{OP} と \overrightarrow{OQ} の内積 $\overrightarrow{OP}\cdot\overrightarrow{OQ}$ は $\frac{\alpha\overline{\beta}+\overline{\alpha}\beta}{2}$ に等しいことを示せ。ただし , i は虚数単位 , $\overline{\alpha}$, $\overline{\beta}$ は , それぞれ , α , β の共役な複素数である。
- 原点 O を中心とする半径 1 の円を単位円という。単位円に内接する正 n 角形 $(n \ge 3)$ の頂点を $P_0, P_1, \cdots, P_{n-1}$ とする。このとき , 単位円上の点 A に対して , $S_n = (\overrightarrow{OP_0} \cdot \overrightarrow{OA})^p + (\overrightarrow{OP_1} \cdot \overrightarrow{OA})^p + \cdots + (\overrightarrow{OP_{n-1}} \cdot \overrightarrow{OA})^p$

とする。ただし,pは0 を満たす整数とする。

- (a) $S_1 = 0$ が成り立つことを示せ。
- (b) $S_2=rac{n}{2}$ が成り立つことを示せ。
- (c) S_p の値は点 A によらないことを示せ。