Chapter 14 Logistic Regression with Binary Response

Instructor: Li C.X.

Outline

- Binary variables
- Odds and odds ratio
- Modeling binary outcome variables
- The logistic model
- Parameter estimation
- Inferences about regression parameters

Binary response variables

- A binary response variable *Y* which takes on the values 0 or 1.
- In these situations, a parameter which is usually of interest is $\pi = P(Y=1)$

• Odds:
$$Odds(\pi) = \frac{\pi}{1-\pi} = \frac{P(Y=1)}{1-P(Y=1)}.$$

$$Odds(\pi) < 1 \iff \pi < 0.5,$$

$$Odds(\pi) = 1 \iff \pi = 0.5,$$

$$Odds(\pi) > 1 \iff \pi > 0.5.$$

• When two fair coins are flipped, P(two heads)=1/4, P(not two heads)=3/4. The odds in favor of getting two heads is: 1/3, or sometimes referred to as 1 to 3 odds.

Odds ratio

• Often in applied statistics, we are interested in comparing the probability of Y = 1, across two groups.

$$\pi_1 = P(Y = 1 | \text{group 1}),$$

 $\pi_2 = P(Y = 1 | \text{group 2}).$

• The odds ratio (OR) is simply defined as the ratio of the odds in favor of Y=1 in the two groups:

$$OR = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)} = \frac{\pi_1(1-\pi_2)}{\pi_2(1-\pi_1)} .$$

• OR take on values from 0 to ∞ .

$$OR < 1 \iff \pi_1 < \pi_2,$$
 $OR = 1 \iff \pi_1 = \pi_2,$
 $OR > 1 \iff \pi_1 > \pi_2.$

• $Y \sim B(1, \pi)$

$$E(Y) = \sum y P(Y = y)$$

$$= 1 \cdot P(Y = 1) + 0 \cdot P(Y = 0)$$

$$= 1 \cdot \pi + 0 \cdot (1 - \pi)$$

$$= \pi$$

• Based on an i.i.d. random sample Y_1 , Y_2 ,..., $Y_n \sim B(1, \pi)$, the MLE

$$\hat{\pi} = \frac{\sum_{i=1}^{n} Y_i}{n}.$$

Modeling binary outcome variables

- Until this point our dependent variable of interest of regression has been (assumed) continuous.
- Consider the simple linear regression model:

Independent
$$Y_1$$
, Y_2 ,..., Y_n , $Y_i \sim N(\mu_i, \sigma^2)$

$$\mu_i = E(Y_i) = \beta_0 + \beta_1 X_{i1} + \ldots + \beta_{p-1} X_{i,p-1}$$
 or
$$Y_i = \beta_0 + \beta_1 X_{i1} + \ldots + \beta_{p-1} X_{i,p-1} + \varepsilon_i \quad \varepsilon_i \sim N\left(0, \sigma_i^2\right), i.i.d.$$

- In applied statistics, we often encounter the situation where the dependent variable is binary.
 - Response to treatment, presence/absence of a certain genetic trait.

• Sometimes this binary response variable is dependent on some other continuous background variable, i.e. $Y \sim B(1, \pi(X))$.

• A sample: independent Y_1 , $Y_2,...,Y_n$. $Y_i \sim B(1,\pi_i)$

$$\pi_i = E(Y_i) = P(Y_i = 1) = g(X_{i1}, X_{i2}, \dots, X_{i,p-1})$$

• Function g?

Probit mean response function

• Assume that underlying the binary outcome Y is a possibly unobservable continuous variable Y

$$Y = 1 \Leftrightarrow Y' < \tau$$
,
 $Y = 0 \Leftrightarrow Y' > \tau$.
 $\pi_i = P(Y_i = 1) = P(Y_i' < \tau)$.

• Assume a linear relationship between *Y* and the predictors.

$$Y'_{i} = \beta'_{0} + \beta'_{1}X_{i1} + ... + \beta'_{p-1}X_{i,p-1} + \varepsilon_{i}$$

• Probit response function

$$\begin{split} \pi_{i} &= P(Y_{i}' < \tau) = P(\beta_{0}' + \beta_{1}'X_{i1} + \dots + \beta_{p-1}'X_{i,p-1} + \varepsilon_{i} < \tau) \\ &= P\left[\frac{\varepsilon_{i}}{\sigma} < \frac{\tau - \beta_{0}' + \beta_{1}'X_{i1} + \dots + \beta_{p-1}'X_{i,p-1}}{\sigma}\right] \\ &= \Phi(\beta_{0} + \beta_{1}X_{i1} + \dots + \beta_{p-1}X_{i,p-1}) \end{split}$$

• Then $\Phi^{-1}(\pi_i) = \beta_0 + \beta_1 X_{i1} + ... + \beta_{p-1} X_{i,p-1}$

Logistic mean response function

• Sample: independent Y_1 , Y_2 ,..., Y_n . $Y_i \sim B(1, \pi_i)$

$$\pi_i = E(Y_i) = P(Y_i = 1) = g(X_{i1}, X_{i2}, \dots, X_{i,p-1})$$

Logistic mean response function

$$\pi_{i} = E(Y_{i}) = \frac{\exp(\beta_{0} + \beta_{1}X_{i1} + \dots + \beta_{p-1}X_{i,p-1})}{1 + \exp(\beta_{0} + \beta_{1}X_{i1} + \dots + \beta_{p-1}X_{i,p-1})}$$
$$= \left[1 + \exp(-\beta_{0} - \beta_{1}X_{i1} - \dots - \beta_{p-1}X_{i,p-1})\right]^{-1}$$

• This model can be linearized, using the transformation, known as the logit transformation.

$$\ln\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1}$$

Simple Logistic model

• $\{Y_i\}$ are independent Bernoulli random variables with mean π_i

$$\pi_{i} = E(Y_{i}) = \frac{\exp(\beta_{0} + \beta_{1}X_{i})}{1 + \exp(\beta_{0} + \beta_{1}X_{i})}$$
$$\ln\left(\frac{\pi_{i}}{1 - \pi_{i}}\right) = \beta_{0} + \beta_{1}X_{i}$$

Parameter interpretation

• β_1 represents the change in the logit, or log odds, for a unit increase in the predictor.

$$\log\left(\frac{\pi_{X=x}}{1-\pi_{X=x}}\right) = \beta_0 + \beta_1 x, \qquad \log\left(\frac{\pi_{X=x+1}}{1-\pi_{X=x+1}}\right) = \beta_0 + \beta_1 (x+1) = \beta_0 + \beta_1 x + \beta_1,$$

$$\beta_1 = \log\left(\frac{\pi_{X=x+1}}{1 - \pi_{X=x+1}}\right) - \log\left(\frac{\pi_{X=x}}{1 - \pi_{X=x}}\right) = \log\left(\frac{\pi_{X=x+1}}{1 - \pi_{X=x+1}} / \frac{\pi_{X=x}}{1 - \pi_{X=x}}\right).$$

$$OR = \exp(\beta_1) = \frac{\pi_{X=x+1}}{1-\pi_{Y=x+1}} / \frac{\pi_{X=x}}{1-\pi_{Y=x}}.$$

Simple Logistic model

Log-Likelihood

$$\begin{split} \log(L) &= \log \left\{ \prod_{i=1}^{n} \pi_{i}^{Y_{i}} (1 - \pi_{i})^{1 - Y_{i}} \right\} \\ &= \sum Y_{i} \log(\pi_{i}) + \sum (1 - Y_{i}) \log(1 - \pi_{i}) \\ &= \sum Y_{i} \log(\frac{\pi_{i}}{1 - \pi_{i}}) + \sum \log(1 - \pi_{i}) \\ &= \sum Y_{i} (\beta_{0} + \beta_{1} X_{i}) - \sum \log(1 + \exp(\beta_{0} + \beta_{1} X_{i})) \end{split}$$

- Maximum likelihood estimators (MLEs) b0 and b1 of parameters do not have analytical closed formulas.
- Computer packages use iterative numerical procedures to find MLEs.
- These estimates are used to calculate

$$\hat{\pi}_i = \frac{\exp(b_0 + b_1 X_i)}{1 + \exp(b_0 + b_1 X_i)} \qquad \operatorname{logit}(\hat{\pi}_i) = \log\left(\frac{\hat{\pi}_i}{1 - \hat{\pi}_i}\right) = b_0 + b_1 X_i. \qquad \widehat{OR} = \exp(b_1).$$

Example

Dataset

Person	(1) Months of Experience	(2) Task Success	(3) Fitted Value
i	X_{i}	Y_{i}	$\hat{\pi}_I$
1	14	0	.310
2	29	0	.835
3	6	0	.110
	•••		٠٠٠ ا
23	28	1	.812
24	22	1	.621
25	8	1	.146

Estimates

(b) Maximum Likelihood Estimates

Regression Coefficient	Estimated Regression Coefficient	Estimated* Standard Deviation
$eta_0 eta_1$	-3.0597 .1615	1.259 .0650

$$logit(\hat{\pi}_i) = ln\left(\frac{\hat{\pi}_i}{1 - \hat{\pi}_i}\right) = -3.0597 + 0.1615X_i$$

$$\hat{\pi}_i = \frac{\exp(-3.0597 + 0.1615X_i)}{1 + \exp(-3.0597 + 0.1615X_i)}$$

$$\widehat{OR} = \exp(b_1) = \exp(.16\overline{15}) = 1.17\overline{5}$$

Multiple Logistic model

$$\mathbf{X} = \begin{bmatrix}
1 & X_{11} & X_{12} & \cdots & X_{1,p-1} \\
1 & X_{21} & X_{22} & \cdots & X_{2,p-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & X_{n1} & X_{n2} & \cdots & X_{n,p-1}
\end{bmatrix} = \begin{bmatrix}
X'_1 \\
X'_2 \\
\vdots \\
X'_n
\end{bmatrix}
\qquad
\mathbf{X}_i = \begin{bmatrix}
1 \\
X_{i1} \\
X_{i2} \\
\vdots \\
X_{i,p-1}
\end{bmatrix}
\qquad
\boldsymbol{\beta} = \begin{bmatrix}
\beta_0 \\
\beta_1 \\
\vdots \\
\beta_{p-1}
\end{bmatrix}$$

$$\pi_{i} = \frac{\exp\left(\beta_{0} + \beta_{1}X_{i1} + ... + \beta_{p-1}X_{i,p-1}\right)}{1 + \exp\left(\beta_{0} + \beta_{1}X_{i1} + ... + \beta_{p-1}X_{i,p-1}\right)} = \frac{\exp\left(\mathbf{X}_{i}'\boldsymbol{\beta}\right)}{1 + \exp\left(\mathbf{X}_{i}'\boldsymbol{\beta}\right)} = \frac{1}{1 + \exp\left(-\mathbf{X}_{i}'\boldsymbol{\beta}\right)}$$

The log likelihood

$$\begin{split} \log L &= \sum_{i=1}^{n} y_{i} (\beta_{0} + \beta_{1} X_{i1} + \beta_{2} X_{i2} + ... + \beta_{p-1} X_{i,p-1}) \\ &- \sum_{i=1}^{n} \log \left(1 + \exp(\beta_{0} + \beta_{1} X_{i1} + \beta_{2} X_{i2} + ... + \beta_{p-1} X_{i,p-1}) \right) \\ &= \sum_{i=1}^{n} y_{i} (X_{i}' \beta) - \sum_{i=1}^{n} \log \left(1 + \exp(X_{i}' \beta) \right) \,. \end{split}$$

Categorical predictors

Disease outbreak example:

• Socioeconomic status (3 levels) and city sectors (2 levels)

Class	X ₂	<i>X</i> ₃	$X_4 = 0$ for sector 1 and $X_4 = 1$ for sector 2.
Upper	0	0	114 — 5 101 550101 1 1114 — 1
Middle	1	0	
Lower	0	1	

Case	(1)		(3) conomic atus	(4) City Sector	(5) Disease Status	(6) Fitted Value
i	Age X _{l1}	X _{I2}	Xi3	X _{i4}	Y _i	$\hat{\pi}_i$
1	33	0	0	0	0	.209
2	35	0	0	0	0	.219
3	6	0	0	0	0	,106
4	60	0	0	0	0	.371
5	18	0	1	0	1	.111
6	26	0	1	0	0	.136
• • •	•••	•••	• • •			• • •
98	35	0	1	0	0	.171

(a) Estimated Coefficients, Standard Deviations, and Odds Ratios

Regression Coefficient	Estimated Regression Coefficient	Estimated Standard Deviation	Estimated Odds Ratio
β_0	-3.8877	.9955	
β_1	.02975	.01350	1.030
β_2	.4088	.5990	1.505
β_3	30525	.6041	.737
β_4	1.5747	.5016	4.829

$$\hat{\pi} = [1 + \exp(3.8877 - .02975X_1 - .4088X_2 + .30525X_3 - 1.5747X_4]^{-1}$$

For case i=1,

$$\hat{\pi}_1 = \{1 + \exp[2.3129 - .02975(33) - .4088(0) + .30525(0) - 1.5747(0)]\}^{-1} = .209$$

The meaning of OR values?

Inferences about Regression Parameters

• Maximum likelihood estimators for logistic regression are approximately normally distributed, with little or no bias.

$$\frac{b_k - \beta_k}{s(b_k)} \sim N(0,1)$$
, approximately

• Wald Z test for a single β_k : $H_0: \beta_k = 0$ $H_a: \beta_k \neq 0$

$$z^* = \frac{b_k}{s(b_k)}$$

If $|z^*| > z(1 - \alpha/2)$, conclude H_a

• Disease outbreak example: test $H_0: \beta_1 = 0$ vs $H_a: \beta_1 \neq 0$

$$z^* = \frac{b_1}{s(b_1)} = \frac{0.02975}{0.01350} = 2.204 > 1.96, \quad p = 0.0275 < \alpha = 0.05$$

• The approximate $1-\alpha$ confidence interval for β_k :

$$b_k \pm z(1-\alpha/2)s(b_k)$$

- The approximate $1-\alpha$ confidence interval for odds ratio $\exp(\beta_k)$ $\exp[b_k \pm z(1-\alpha/2)s(b_k)]$
- Disease outbreak example: Find 95% confidence intervals for β_2 and for the odds ratio $\exp(\beta_2)$
- Remark: Approximate joint CIs for *g* logistic paramters can be developed by Bonferroni procedure.

$$b_k \pm z(1-\alpha/(2g))s(b_k)$$

Testing a subset of parameters

• Testing a subset of parameters

$$H_0$$
: $\beta_q = \beta_{q+1} = \cdots = \beta_{p-1} = 0$
 H_a : not all of the β_k in H_0 equal zero

• Review: Likelihood ratio test (LRT)

$$\begin{split} H_0: \theta \in \Theta_0 \ \textit{versus} \ H_1: \theta \in \Theta_1 = \Theta \setminus \Theta_0 \\ \Lambda &= \frac{\sup_{\theta \in \Theta_0} L(\theta)}{\sup_{\theta \in \Theta} L(\theta)} = \frac{L(\hat{\theta} \mid H_0)}{L(\hat{\theta})} \\ -2 \ln \Lambda &= -2 \Big[\ln L(\hat{\theta} \mid H_0) - \ln L(\hat{\theta}) \Big] \dot{\sim} \ \chi^2(k) \ \text{under} \ H_0, \\ \text{where} \ k &= \dim(\Theta) - \dim(\Theta_0) \end{split}$$
 Large values support H1

LRT for testing a subset of parameters

$$H_0$$
: $\beta_q = \beta_{q+1} = \cdots = \beta_{p-1} = 0$
 H_a : not all of the β_k in H_0 equal zero

- Based on Full and Reduced Model
- Original model (Full model)

$$\pi_{i} = \left[1 + \exp\left(-\beta_{0} - \beta_{1}X_{i1} - \dots - \beta_{p-1}X_{i,p-1}\right)\right]^{-1} = \left[1 + \exp\left(-\mathbf{X}_{i}'\mathbf{\beta}_{F}\right)\right]^{-1}$$

• Under H0, the model is reduced to be:

$$\pi_{i} = \left[1 + \exp\left(-\beta_{0} - \beta_{1}X_{i1} - \dots - \beta_{q-1}X_{i,q-1}\right)\right]^{-1} = \left[1 + \exp\left(-\mathbf{X}_{i}'\mathbf{\beta}_{R}\right)\right]^{-1}$$

- It is nested within the full model.
- LR test $\chi_L^2 = -2 \left[\ln L(\hat{\beta} | H_0) \ln L(\hat{\beta}) \right]$ $= -2 \left[\ln L(\hat{\beta}_0^* ..., \hat{\beta}_{q-1}^*, 0, ..., 0) - \ln L(\hat{\beta}_0, ..., \hat{\beta}_{p-1}) \right]$ $= -2 \left[\ln L(\hat{\beta}_R) - \ln L(\hat{\beta}_F) \right] \dot{\sim} \chi^2(p-q) \text{ under } H_0$

$$\chi_L^2 = -2 \left[\ln L(\text{Reduced model}) - \ln L(\text{Full model}) \right]$$

Testing a subset of parameters

Testing a subset of parameters

$$H_0$$
: $\beta_q = \beta_{q+1} = \cdots = \beta_{p-1} = 0$
 H_a : not all of the β_k in H_0 equal zero

• LRT: $\chi_L^2 = -2 \left[\ln L(\text{Reduced model}) - \ln L(\text{Full model}) \right]$ Reject H0 if $\chi_L^2 > \chi^2 (1 - \alpha; p - q)$

• Disease outbreak example: test H_0 : β_1 =0 vs H_a : $\beta_1 \neq 0$ $\ln L(F) = \ln(b_0, b_1, b_2, b_3, b_4) = -50.527$ $\ln L(R) = \ln(b_0^*, b_2^*, b_3^*, b_4^*) = -53.502$ $\chi_L^2 = -2 \left[\ln L(R) - \ln L(F) \right] = 5.15 > 3.84, \quad p = 0.023 < 0.05$

• How to test $H_0: \beta_2 = \beta_3 = 0$ (Socioeconomic status has no effect) vs $H_1: \beta_2 \neq 0$ or $\beta_3 \neq 0$?

Model selection criteria

 $AIC_p = -2\log_e L(\mathbf{b}) + 2p$ $SBC_p = -2\log_e L(\mathbf{b}) + p\log_e(n)$

Remark: for nested models can use LRT.

(c) $-2 \log_e (\mathbf{b})$ versus p

Model selection: stepwise logistic

Logistic Regression

Block 1: Method = Forward Stepwise (Wald)

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	SECTOR	1.743	.473	13.593	1	.000	5.716
	Constant	-3.332	.765	18.990	1	.000	.036
Step 2 ^b	AGE	.029	.013	4.946	1	.026	1.030
	SECTOR	1.673	.487	11.791	1	.001	5.331
	Constant	-4.009	.873	21.060	1	.000	.018

- a. Variable(s) entered on step 1: SECTOR.
- b. Variable(s) entered on step 2: AGE.

Prediction

- For a given \mathbf{X}_h , $\hat{Y}_h = ?$ $\hat{Y}_h = 1, \text{ if } \hat{\pi}_h > p_c; \hat{Y}_h = 0, \text{ otherwise}$ $\Leftrightarrow \hat{Y}_h = 1, \text{ if } \mathbf{X}_h' \hat{\boldsymbol{\beta}} > c; \hat{Y}_h = 0, \text{ otherwise}$
- Choice of prediction rule:
- 1. Use .5 as the cutoff. With this approach, the prediction rule is:

 If $\hat{\pi}_h$ exceeds .5, predict 1; otherwise predict 0.
- Find the best cutoff for the data set.
 This approach involves evaluating different cutoffs.
 The cutoff for which the proportion of incorrect predictions is lowest
- 3. Use prior probabilities and costs of incorrect predictions in determining the cutoff.

Predict 1 if $\hat{\pi}_h \ge .316$; predict 0 if $\hat{\pi}_h < .316$ Predict 1 if $\hat{\pi}_h \ge .325$; predict 0 if $\hat{\pi}_h < .325$ (14.95) (14.96)

True	(a) Rule (14.95)			(b) Rule (14.96)		
Classification	$\hat{Y} = 0$	Ŷ = 1	Total [*]	$\hat{\mathbf{r}} = 0$	$\hat{\mathbf{r}} = 1$	Total
¥ = 0	47	20	67	50	17	67
Y=1	8	23	31	-9	22	31
Total	55	43	98	59	39.	98

For rule (14.95):

• Sensitivity (true positive rate, TPR):

$$P(\hat{Y}=1|Y=1)=\frac{23}{31}=.74$$

• 1-Specificity(false positive rate, FPR)

$$1 - P(\hat{Y} = 0|Y = 0) = 1 - \frac{47}{67} = .30$$

• Specificity(true negative rate, TNR)

ROC curve

Receiver Operating Characteristic Curve

Youden Index

J=Sensitivity+Specificity-1 =TPR-FPR

 Can use Youden Index for choice of cutoff value

Using Y = '1' to be the positive level Area Under Curve = 0.77684

Exponential Family and Generalized Linear Models

- Exponential family
 - Discrete distributions: Multinomial, Bernoulli, Binomial, Poisson,...
 - Continuous distributions: Gaussian, Exponential, Laplace, Gamma, Beta, Weibull, . . .

$$p(x|\eta) = h(x) \exp \left(\eta^{\top} t(x) - a(\eta)\right)$$

where, η is called "natural parameter", t(x) is related "sufficient statistic", h(x) is the "underlying measure" and $a(\eta)$ is called "log normalizer", which ensures that the distribution integrates to one. Hence,

$$a(\eta) = \log \int h(x) \exp \left(\eta^{\top} t(x)\right) dx.$$

Exponential Family

• Bernoulli: let $\pi = \Pr(x = 1)$.

$$p(x|\pi) = \pi^{x} (1 - \pi)^{1-x}.$$

$$= \exp\left\{x \log \frac{\pi}{1 - \pi} + \log(1 - \pi)\right\}$$

- $\eta = \log \frac{\pi}{1-\pi}$,
- \bullet t(x) = x,
- $a(\eta) = -\log(1 \pi) = \log(1 + e^{\eta}),$
- and h(x) = 1.
- Poisson: $p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!} = \frac{1}{x!} \exp\{x \log \lambda \lambda\},$
 - \bullet $\eta = \lambda$,
 - \bullet t(x) = x,

- $\bullet \ a(\eta) = \lambda = e^{\eta},$
- \bullet and $h(x) = \frac{1}{x!}$.

Moments of Exponential Family

$$\frac{d a(\eta)}{d\eta} = \frac{d}{d\eta} \left\{ \log \left(\int \exp\{\eta^{\top} t(x)\} h(x) dx \right) \right\}$$

$$= \frac{\frac{d}{d\eta} \int \exp\{\eta^{\top} t(x)\} h(x) dx}{\int \exp\{\eta^{\top} t(x)\} h(x) dx}$$

$$= \frac{\int t(x) h(x) \exp\{\eta^{\top} t(x)\} dx}{\int \exp\{\eta^{\top} t(x)\} h(x) dx}$$

$$= \frac{\int t(x) \exp\{\eta^{\top} t(x)\} h(x) dx}{\exp\{-a(\eta)\}}$$

$$= \int t(x) \exp\{\eta^{\top} t(x) - a(\eta)\} h(x) dx$$

$$= \mathbb{E} [t(x)].$$

• Likewise, it can be shown that:

$$\frac{d^2 a(\eta)}{d\eta^2} = \operatorname{Var}(t(x)) = \mathbb{E}\left[t(x)^2\right] - \mathbb{E}\left[t(x)\right]^2.$$

Exponential Family

- Overdispersed exponential families
- The pdf or pmf can be written in the form

$$f(y; \theta, \phi) = \exp\left\{\frac{y\theta - b(\theta)}{\phi} + c(y, \phi)\right\}$$

where ϕ is the dispersion parameter and θ is the canonical parameter.

• It can be shown that

$$E(Y) = b'(\theta) = \mu$$
$$var(Y) = \phi b''(\theta) = \phi V(\mu)$$

Examples

• Example 1: $Y \sim N(\mu, \sigma^2)$.

$$\theta = \mu, \ \phi = \sigma^2, \ b(\theta) = \mu^2 / 2 = \theta^2 / 2$$

$$\Rightarrow E(Y) = \mu = b'(\theta) = \theta, \ Var(Y) = b''(\theta)\phi = \phi = \sigma^2$$

• Example 2 (Poisson): $f(y,\theta,\phi) = \frac{\mu^y e^{-\mu}}{y!} = e^{y\log(\mu) - \mu - \log(y!)}$

$$\theta = \log(\mu), \ \phi = 1, \quad b(\theta) = \mu = e^{\theta}$$

$$\Rightarrow E(Y) = b'(\theta) = e^{\theta} = \mu, \ Var(Y) = b''(\theta)\phi = e^{\theta} = \mu$$

• Example 3 (Binormial) $Y \sim \frac{B(m, p)}{m}$ $f(y, \theta, \phi) = {m \choose my} p^{my} (1 - p)^{m-my}$

$$\theta = \log\left(\frac{p}{1-p}\right), \ \phi = \frac{1}{m}, \ b(\theta) = \log\left(\frac{1}{1-p}\right) = \log(1+e^{\theta})$$

$$\Rightarrow E(Y) = \mu = b'(\theta) = \frac{e^{\theta}}{1 + e^{\theta}} = p, \quad Var(Y) = b''(\theta)\phi = \frac{1}{m}p(1 - p)$$

Generalized Linear Models

- Canonical Links
- For a glm where the response follows an exponential distribution, we have

$$g(\mu_i) = g(b'(\theta_i)) = \beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi}$$

• The canonical link is defined as

$$g = (b')^{-1}$$

$$\Rightarrow g(\mu_i) = \theta_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi}$$

• The maximum likelihood estimates are obtained The log-likelihood for the sample y_1, \ldots, y_n is

$$l = \sum_{i=1}^{n} \frac{y_i \theta_i - b(\theta_i)}{\phi_i} + c(y_i, \phi_i)$$

43	连接函数₽	回归模型₽	分布₽
恒等₽	$x^{T}\beta = E(y) \Leftrightarrow$	$E(y) = x^T \beta \varphi$	正态分布₽
对数↓₽	$x^T \beta = \ln E(y) +$	$E(y) = \exp(x^T \beta) \varphi$	Poisson分布↩
Logit	$x^{T}\beta = LogitE(y) \Leftrightarrow$	$E(y) = \frac{\exp(x^{T} \beta)}{1 + \exp(x^{T} \beta)} e^{x}$	二项分布₽
逆₽	$x^T \beta = \frac{1}{E(y)} \omega$	$E(y) = \frac{1}{x^T \beta} e^{y}$	Gamma分布↩

The glm Function in R

- Generalized linear models can be fitted in R using the glm function, which is similar to the lm function for fitting linear models.
- The arguments to a glm call are as follows

```
glm(formula, family = gaussian, data, weights, subset,
    na.action, start = NULL, etastart, mustart, offset,
    control = glm.control(...), model = TRUE,
    method = "glm.fit", x = FALSE, y = TRUE,
    contrasts = NULL, ...)
```

• The formula is specified to glm as, e.g. $y \sim x1 + x2$

Family Argument

- The family argument takes (the name of) a family function which specifies
 - the link function
 - the variance function
- The exponential family functions available in R are
 - ▶ binomial(link = "logit")
 - gaussian(link = "identity")
 - ► Gamma(link = "inverse")
 - ▶ inverse.gaussian(link = "1/mu²")
 - ▶ poisson(link = "log")

Extractor Functions

- The glm function returns an object of class c("glm", "lm").
- There are several glm or lm methods available for accessing/displaying components of the glm object, including:
 - ▶ residuals()
 - ▶ fitted()
 - ▶ predict()
 - ► coef()
 - ► deviance()
 - ► formula()
 - ▶ summary()