Introduction to Machine Learning Jennifer Listgarten & Stella Yu

DIS0

1 Unitary invariance

- (a) Prove that the regular Euclidean norm (also called the ℓ^2 -norm) is unitary invariant; in other words, the ℓ^2 -norm of a vector is the same, regardless of how you apply a rigid linear transformation to the vector (i.e., rotate or reflect). Note that rigid linear transformation of a vector $\mathbf{v} \in \mathbb{R}^d$ means multiplying by an orthogonal $\mathbf{U} \in \mathbb{R}^{d \times d}$.
- (b) Now show that the Frobenius norm of matrix **A** is unitary invariant. The Frobenius norm is defined as $\|\mathbf{A}\|_F = \sqrt{\sum_{i,j=1}^n |a_{ij}|^2} = \sqrt{tr(\mathbf{A}^{\mathsf{T}}\mathbf{A})}$.

2 Vector Calculus

Below, $\mathbf{x} \in \mathbb{R}^d$ means that \mathbf{x} is a $d \times 1$ (column) vector with real-valued entries. Likewise, $\mathbf{A} \in \mathbb{R}^{d \times d}$ means that \mathbf{A} is a $d \times d$ matrix with real-valued entries. In this course, we will by convention consider vectors to be column vectors.

Consider $\mathbf{x}, \mathbf{w} \in \mathbb{R}^d$ and $\mathbf{A} \in \mathbb{R}^{d \times d}$. In the following questions, $\frac{\partial}{\partial \mathbf{x}}$ denotes the derivative with respect to \mathbf{x} , while $\nabla_{\mathbf{x}}$ denote the gradient with respect to \mathbf{x} . Compute the following:

- (a) $\frac{\partial \mathbf{w}^T \mathbf{x}}{\partial \mathbf{x}}$ and $\nabla_{\mathbf{x}}(\mathbf{w}^T \mathbf{x})$
- (b) $\frac{\partial (\mathbf{w}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}}$ and $\nabla_{\mathbf{x}} (\mathbf{w}^T \mathbf{A} \mathbf{x})$
- (c) $\frac{\partial (\mathbf{w}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{w}}$ and $\nabla_{\mathbf{w}} (\mathbf{w}^T \mathbf{A} \mathbf{x})$
- (d) $\frac{\partial (\mathbf{w}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{A}}$ and $\nabla_{\mathbf{A}} (\mathbf{w}^T \mathbf{A} \mathbf{x})$
- (e) $\frac{\partial (\mathbf{x}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}}$ and $\nabla_{\mathbf{x}} (\mathbf{x}^T \mathbf{A} \mathbf{x})$
- (f) $\nabla_{\mathbf{x}}^2(\mathbf{x}^T \mathbf{A} \mathbf{x})$

3 Eigenvalues

- (a) Let **A** be an invertible matrix. Show that if **v** is an eigenvector of **A** with eigenvalue λ , then it is also an eigenvector of \mathbf{A}^{-1} with eigenvalue λ^{-1} .
- (b) A square and symmetric matrix **A** is said to be positive semidefinite (PSD) ($\mathbf{A} \ge 0$) if $\forall \mathbf{v} \ne 0$, $\mathbf{v}^T \mathbf{A} \mathbf{v} \ge 0$. Show that **A** is PSD if and only if all of its eigenvalues are nonnegative.

Hint: Use the eigendecomposition of the matrix A.