

Projet 6 Classification des Biens de Consommation

Eva Bookjans

Etude de Faisabilité d'un Moteur de Classification

Photo

Description

"Rockmantra Water Fire Ceramic Mug (5.5 1) Price: Rs.199 Give a thrilling yet fresh start to your day. An exclusive creation by Rockmantra,..."

Baby Care

Beauty & Personal Care

Computers

Home Decor & Festive Needs

Home Furnishing

Kitchen & Dining

Watches

• • •

Automatisation

- Passage à l'échelle
- Expérience utilisateur fluide
 - Vendeurs : faciliter la mise en ligne de nouveaux articles
 - Acheteurs : faciliter la recherche de produits

Le Jeu des Données

principals Catégories

Baby Care

Beauty & Personal Care

Computers

Home Decor & Festive Needs

Home Furnishing

Kitchen & Dining

Watches

- 150 entrées par catégorie
- 1050 données en totale
- Petit jeu de données
- Equilibré entre catégories
- Complète (photo + description)
- Suffisant pour une première étude de faisabilité

Outils et Méthodes NLP

Natural Language Processing

- Tokenisation
- Lemmatisation
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

La **Description** du Produit

Traitement de Texte

- Tokenisation
- Lemmatisation
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

WordCloud – technique de visualisation des données textuelles

> la taille du mot indique sa fréquence

Simple Traitement de Texte (inclus dans le module):

- Tokenisation le texte est coupé en mots (simples ou/et en paires) —> 'tokens'
- Lemmatisation traitement des pluriels (oui/non)
- Vectorisation la fréquence du 'token' dans le texte
- Réduction de Dimension
 - Élimination des 'stopwords' (= mots/tokens sans signifiance)
 - Maximum nombre de mots/tokens à afficher

La Description du Produit avec WordCloud

- Stopwords métier
- Mots-clés

- Tokenisation
- Lemmatisation
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

Bibliothèques NLP

NLTK +

WordNet (base de données lexicale)

faite pour la recherche / enseignement

SpaCy

plus robuste

Bases de données lexicales :

- 'stopwords' standards
- fonction sémantique des mots

- Tokenisation
- Lemmatisation
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

Les Tokens

Fréquence moyenne des token : 12 Tokens par document en moyenne : 53

Tokens uniques: 4799

tokens le plus fréquents 22 es-

TOKEN Count		
rs	911	
free	618	
cm	594	
buy	583	
products	577	
delivery	567	
cash	564	
genuine	564	
replacement	559	
day	549	
price	541	
flipkart	481	
guarantee	473	
com	473	
mug	406	
online	396	
shipping	381	
color	343	
features	337	
watch	336	
pack	328	
baby	321	

Les Tokens

p-value du token vis-à-vis les catégories (Chi2)

7 Catégories

Fréq.	min. p-Value
1	0.423190
2	0.061969
3	0.006232
4	0.000522
5	0.000039

Stopwords du corpus

Les fréquences de document le plus élevées

free	6.5e-13	e-13 618	
buy	1.3e-13	583	578
products	1.3e-14	577	569
delivery	1.4e-15	1.4e-15 567	
cash	1.8e-15 564		564
genuine	1.8e-15 564		564
price	2.1e-38	541	525
day	6.3e-30	549	512
replacement	1.2e-61	559	489
guarantee	7.8e-43	473	471
flipkart	3.3e-68	481	392
online	4.4e-44	le-44 396	
com	1.1e-68	473	385
shipping	3.0e-54	381	381
specifications	3.1e-18	321	309
general	2.0e-20	2.0e-20 288	
box	1.1e-09	297	251
features	8.1e-12	337	241
type	1.5e-10	318	237
color	1.8e-05	343	221

3.7e-27

261

218

p-Value

6.0e-02

TOKEN

sales

Doc.

Fréq.

911

Fréq.

911

Règles de Sélection:

- p-Value ≤ 0.01
- Max. DF = 2/7 (≤ 300 documents)
- Min. DF = 0.03/7 (≥ 4.5 documents)

- Tokenisation
- Lemmatisation
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

Buy Nagar Handloom Floral Double Quilts & Comforters Multicolor at Rs. 1350 at Flipkart.com. Only Genuine Products. Free Shipping. Cash On Delivery!

- Suppression des signes de ponctuation et des chiffres
- Tokenisation (NLTK et Wordnet / SpaCy)
- Transformation en minuscule

buy nagar handloom floral double quilts comforters multicolor
at rs at flipkart com only genuine products free shipping
cash on delivery

- Lemmatisation (NLTK et Wordnet / SpaCy)
- Suppression des 'Stopwords'
 - TLTK et Wordnet / SpaCy
 - Stopwords du corpus (e.g. 'buy', 'rs', 'flipkart', 'com', 'product', 'free', 'shipping', 'cash', 'delivery', ...)

nagar handloom floral double quilts comforters multicolor

- Tokenisation
- Lemmatisation
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

Key Features of Lula Baby Girl's Dark Blue Bodysuit Fabric: cotton spandex Brand Color: ROYAL BLUE, Lula Baby Girl's Dark Blue Bodysuit Price: Rs. 330 Lula babywear is designed to caress the baby like rose petals. Softest and safest cotton wear made for the comfort of the babies.

- Suppression des signes de ponctuation et des chiffres
- Tokenisation (NLTK et Wordnet / SpaCy)
- Transformation en minuscule

key features of lula baby girl s dark blue bodysuit fabric cotton spandex brand color royal blue lula baby girl s dark blue bodysuit price rs lula babywear is designed to caress the baby like rose petals softest and safest cotton wear made for the comfort of the babies

- Lemmatisation (NLTK et Wordnet / SpaCy)
- Suppression des 'Stopwords'
 - TLTK et Wordnet / SpaCy
 - Customisés (e.g. 'features', 'rs', 'flipkart', 'com', 'price', ...)

key lula baby girl dark blue bodysuit fabric cotton spandex royal blue lula baby girl dark blue bodysuit lula babywear caress baby like rise petal softest safe cotton wear make comfort baby

- Tokenisation
- Lemmatisation
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

Les Tokens

4799 Tokens (après tokenisation et lemmatisation)

Vectorisation + Règles de Sélection

- CountVectorizer(max_df = 2/7, min_df = 0.03/7)
- SelectorFpr(chi2, alpha = 0.01)
- TfidfTransformer()

814 Tokens

Réduction de Dimensions

• PCA(n_components = 0.99)

440 Features

- Tokenisation
- Lemmatisation
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

Projection en 2D – PCA

- Baby Care
- Beauty and Personal Care
- Computers
- Home Decor & Festive Needs
- Home Furnishing
- Kitchen & Dining
- Watches

Market at the Population (19 and 1 may 1 m) a

- Tokenisation
- Lemmatisation
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

Projection en 2D - t-SNE

- Tokenisation
- Lemmatisation
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

KMeans Clustering

KMeans Clustering – Evaluation

KMeans Clustering – Evaluation

Rapport de Classification

	precision	recall	f1-score	support
Baby Care	1.00	0.54	0.70	150
Beauty and Personal Care	1.00	0.45	0.62	150
Computers	1.00	0.31	0.47	150
Home Decor & Festive Needs	0.81	0.54	0.65	150
Home Furnishing	0.28	0.99	0.44	150
Kitchen & Dining	0.99	0.49	0.66	150
Watches	1.00	0.98	0.99	150
accuracy			0.62	1050
macro avg	0.87	0.62	0.65	1050
weighted avg	0.87	0.62	0.65	1050

Matrice de Confusion

Accuracy: 0.62

- Tokenisation
- Lemmatisation
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

Clustering autres modèles

Tokenisation et Lemmatisation

NLTK et Wordnet, Spacy

Version1

- CountVectorizer(max_df = 2/7, min df = 0.03/7)
- SelectorFpr(chi2, alpha = 0.01)
- TfidfTransformer()
- PCA(n_components = 0.99)

Version2

- CountVectorizer(max_df = 2/7, min_df = 0.03/7, stop_words = [...])
- SelectorFpr(chi2, alpha = 0.01)
- TfidfTransformer()
- **TruncatedSVD**(n_components = 450)

Algorithme de Clustering

KMeans, GaussianMixture,
 AgglomerativeClustering, SpectralClustering

- Tokenisation
- Lemmatisation
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

SpectralClustering()

Score de RAND ajusté: 0.48

Accuracy: 0.74

SpectralClustering – Evaluation

SpectralClustering - Evaluation

Rapport de Classification

	precision	recall	f1-score	support
Baby Care	0.93	0.61	0.74	150
Beauty and Personal Care	0.84	0.47	0.60	150
Computers	0.42	1.00	0.59	150
Home Decor & Festive Needs	0.88	0.71	0.79	150
Home Furnishing	0.82	0.89	0.85	150
Kitchen & Dining	0.96	0.50	0.66	150
Watches	1.00	0.99	1.00	150
accuracy			0.74	1050
macro avg	0.84	0.74	0.75	1050
weighted avg	0.84	0.74	0.75	1050

Matrice de Confusion

Accuracy: 0.74

- Tokenisation
- Lemmatisation
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

Classification

Modèles Testés

- KNeighborsClassifier()
- ComplementNB()
- MultinomialNB()

Accuracy: 0.90-0.92

un moteur de classification basé sur la description du produit doit être **faisable**

Résumé de Traitement de Texte

Un Moteur de Classification est faisable

- Un simple Clustering montre déjà les différentes catégories avec une accuracy > 0.6
- Des premiers classifications donnent une accuracy de 0.90-0.92

Axes d'Amélioration

- Stopwords customisés : best, good, perfect, ...
- Meilleur dictionnaire pour la lemmatisation : quilt(s), conforter(s), ...
- Inclure des Mots composés (n grams) : e.g. hair spray, ...

Outils et Méthodes CV

Computer Vision

- Keypoints
- Descripteurs
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

Les **Images** du Produit

Computer Vision

- Keypoints
- Descripteurs
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

Bibliothèque OpenCV

SIFT / ORB / SURF

- algorithmes pour la détection et la description des caractéristiques/features (locales) dans les images
- outils de computer vision (e.g. détection d'objets)

Manipulation d'images

- filtres, transformations, couleurs, affichage, ...
- Computer Vison
- détection des features, objects, ...

Les Keypoints et Descripteurs SIFT

Image originale En Gris Egalisation Keypoints Descripteurs

"Mots virtuels"

1216 points clés décrits par un descripteur SIFT

(= vecteur de longueur 128)

- Keypoints
- Descripteurs
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

Création de Features

989655 Descripteurs SIFT (longueur = 128, max. features = 1000)

MiniBatchKMeans Clustering

• nb. clusters = sqrt(nb. Descripteurs)

995 Descripteur Clusters ("Sacs de Mots Virtuels")

Vectorisation des Descripteurs d'Image

- affectation aux clusters
- nombre de descripteurs par cluster (histogramme)

995 Features

Réduction de Dimensions

PCA(n_components = 0.99)

440 Features

- Keypoints
- Descripteurs
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

Projection en 2D – PCA

- Keypoints
- Descripteurs
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

Projection en 2D - t-SNE

- Keypoints
- Descripteurs
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

KMeans Clustering

Nb. de Clusters = Nb. de Catégories Score de RAND ajusté 0.027 + / - 0.006(10 implémentations)

- Keypoints
- Descripteurs
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

SpectralClustering

Nb. de Clusters = Nb. de Catégories

- Keypoints
- Descripteurs
- Vectorisation
- Réduction de Dimension
- Clustering
- Classification

Classification

Modèles Testés

- KNeighborsClassifier()
- SVC()

Accuracy: 0.43

Accuracy: 0.54

un moteur de classification basé sur les descripteurs SIFT de l'image du produit beaucoup plus difficile

Examples des Images

Résumé de Traitement d'Image

Les Descripteurs SIFT ne sont pas adaptés

- Pas de clusters évidents
- Pas de regroupement en fonction des catégories
- Des premiers classifications donnent une accuracy faible: 0.43-0.54

Un Moteur de Classification n'est pas évident

- Tester autre algorithmes de reconnaissance d'image
 - CNN Transfer Learning

Etude de Faisabilité d'un Moteur de Classification

Résumé

Un moteur de classification basée sur

- > Description --> faisable
 - Dictionnaire customisé / adapté
- Image --> pas évident!
 - CNN Transfer learning (?)

Faisable

- Combiner Features
- Méthodes Ensemblistes