	posti.				
SALAR10 ANUAL	NUMERO DE FUNCIONARIOS	$\alpha_{\rm i}$	fac	aifi	$(x_{\lambda}-\overline{x})^{2}$
<0.10]	250	5	250 *	1250	285,61
<10,20]	300 ¥	15	550	4500	47,61
(20,30]	200	25	750	5000	2,61
(30,40]	120	35	870	4200	174,61
(40,50]	60	45	930	2700	533,61
(50,60]	40_	55	970	2200	1095,61
<60,70]	50	65	990	1300	1857.61
< 70,80]	10	75	1000	750	2819,61
TOTAL	1000	_		01000	1

ii)
$$M_0 = 10 + \frac{300 - 250}{(300 - 250) + (300 - 200)} \cdot 10 = 10 + \frac{50}{150} \cdot 10 = 10 + \frac{500}{150} = \frac{206}{15}$$

1_

iii)
$$P_1 = 1000 = 250$$
 $Q_1 = 0 + (250 - 0) = 10 = 250 = 10 = 10$

$$5^{\circ} = \frac{8}{12} (x - x)^{2} = \frac{1}{12} (x - \frac{1}{12})^{2} = \frac{1$$

V=Tomon vacina = 0,8

$$V = Nace tomon vacina = 0,2$$

 $C = Gran curada$
 $P(C/V) = \frac{1}{2}$ $P(C/V) = \frac{1}{30}$

R. 0,4067 ou 90.67%

$$P(c) = P(c/v)P(v) + P(c/v)P(v^{c})$$

$$= \frac{1}{2} \cdot 0.8 + \frac{1}{30} \cdot 0.21 = \frac{0.8}{2} + \frac{0.8}{30} = \frac{19+0.9}{30} = \frac{19.9}{30} = 0.3067 = \frac{19.9}{30} = \frac{19.9}{30} = 0.3067 = \frac{19.9}{30} = \frac{19.9}{$$

R:0,9836 ou 98,36%

$$3-i)$$
 $P(400) = 10 = 0.001 \text{ on } 0.1%$

$$\frac{10000 + 50 + 400}{10000 + 10000} = 1 - \frac{460}{10000} = 0,954 \text{ on } 95,4%$$

$$4-2)9(x=0)=(10)(0,3)^{9}(6,7)^{10}=1.1.0,028=0,028$$

R:0,008 ou

$$P(X=1)=\begin{pmatrix} 10\\1 \end{pmatrix}(0,3)^{1}(0,7)^{9}=10.0,3.0,7^{9}=0,121$$

$$P(X=0) = \begin{pmatrix} 3 \\ 0 \end{pmatrix} (0.75)^{0} \cdot (0.25)^{0} = 0.0039$$

$$P(X=1) = \begin{pmatrix} 3 \\ 0 \end{pmatrix} (0.75)^{1} \cdot (0.25)^{2} = 0.0368$$

$$N=9$$

$$P(X=1) = \begin{pmatrix} 3 \\ 1 \end{pmatrix} (0.75)^{1} \cdot (0.25)^{2} = 0.0368$$

$$P(X=2) = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \cdot (0.75)^{2} \cdot (0.95)^{2} = 0.0309$$

$$P(X \le 2) = P(X=0) + P(X=1) + P(X=2) = 0,2616 = 26,16%$$

ii)
$$E(x) = m.p = 4.0,75 = 31 <= A cada personsLoago, $3.500 = 1500$ persons$$

$$6_{-1} = P(x=0) = \frac{4}{30} = \frac{46}{8} = 0.486 P(x=1) = \frac{4}{4} = 0.398$$

$$\frac{1}{2} P(x_{3}) = 1 - P(x_{3}) - P(x_{3}) = 0.116$$

$$= 1 - 0.486 - 0.398 = 0.116$$

$$\frac{1111}{1111} \sqrt{|x|} = mpq \left(\frac{N-m}{N-1} \right) = 8. \left(\frac{21}{50} \right) \left(\frac{26}{50} \right) \left(\frac{30-8}{29} \right) = 0.50.5 + 1 \text{ ou } 50.5\%$$

7-i)
$$P(x=0) = \frac{(5)^{\circ} \cdot e^{-5}}{0!} = \frac{0.067}{1} = 0.0067$$
 on 0,67%

$$P(X=1) = 5^{1}e^{-5} = 5e^{-5} = 0.0337$$
 ou 3,37%

$$P(X_{7}A) = 1 - P(X=0) - P(X=1)$$

= 1 - 0,0067 - 0,0337
= 0,9596 on 95,96%