Predicting Donors and Donation Amounts

ADTA 5230 Data Analytics II Section 410

Group 6

Sana Ambreen, Ashley Chesser, Yitian Liu, & Kiera Wingo

Introduction

Our team has been hired by a nonprofit organization in need of cost-savings solutions for their direct marketing campaigns soliciting donations. Their response rate is currently around 10%, with the average donation being \$14.50. However, each mailer, which includes a personalized gift, costs the nonprofit \$2.00. With all costs factored in, sending a piece of mail to everyone is actually losing them about \$0.55 per mailer. This is why the nonprofit has reached out for help in developing predictive models to improve how they run their mailing campaigns.

The first step will be building three classification models that predict whether someone is likely to donate or not. The goal here is to maximize the number of donors who receive the mailer, while also minimizing the mailer recipients who do not end up donating.

Next, we will have three regression models that estimate how much someone might give if they do donate. These models will help the organization avoid spending money on people who are unlikely to give, while spending on those who are more likely to contribute. We will be working with a pre-processed dataset where donors and non-donors are equally represented. All the data preparation, modeling, and evaluation will be done using SAS Enterprise Miner.

By the end of this project, we hope to provide the nonprofit with useful data they can use to make more informed mailing decisions for campaigns. Even small improvements in targeting the right people could lead to significant profit increases and less wasted money and efforts.

Exploratory Data Analysis

Data Overview

The nonprofit data consists of 6002 rows and 20 columns, and contains two target variables: donr, a binary variable detailing whether an individual has donated or not, and damt, a

numerical variable detailing the amount each donor has given. Figure 1 showcases the first five rows of data from the dataset and Table 1 gives a detailed account of each variable and its description.

<pre>data.head()</pre>																				
	ID	region	ownd	kids	inc	sex	wlth	hv	incmed	incavg	low	npro	gifdol	gifl	gifr	mdon	lag	gifa	donr	damt
0	1	ter3	1	1	4	1	8	302	76	82	0	20	81	81	19	17	6	21.05	0	0
1	2	ter3	1	2	4	0	8	262	130	130	1	95	156	16	17	19	3	13.26	1	15
2	5	ter3	1	0	4	1	4	295	39	71	14	85	132	15	10	10	6	12.07	1	17
3	6	ter2	1	1	5	0	9	114	17	25	44	83	131	5	3	13	4	4.12	1	12
4	7	ter5	1	3	4	0	8	145	39	42	10	50	74	6	5	22	3	6.50	0	0

Figure 1

Table 1

Variable Name	Data Type	Description
id number	Integer	Do NOT use this as a predictor variable in any models
region	Object	five geographic regions including ter1, ter2, ter3, ter4, ter5
ownd	Binary	(1 = homeowner, 0 = not a homeowner)
kids	Integer	Number of children
inc	Object	Household income (7 categories)
sex	Object	Gender (0 = Male, 1 = Female)
wlth	Integer	Wealth Rating (Wealth rating uses median family income and population statistics from each area to index relative wealth within each state. The segments are denoted 0-9, with 9 being the highest wealth group and 0 being the lowest.)
hv	Numeric	Average Home Value in potential donor's neighborhood in \$ thousands
incmed	Numeric	Median Family Income in potential donor's neighborhood in \$ thousands
incavg	Numeric	Average Family Income in potential donor's neighborhood in \$ thousands
low	Numeric	Percent categorized as "low income" in potential donor's neighborhood
npro	Integer	Lifetime number of promotions received to date
gifdol	Numeric	Dollar amount of lifetime gifts to date
gifl	Numeric	Dollar amount of largest gift to date
gifr	Numeric	Dollar amount of most recent gift
mdon	Integer	Number of months since last donation
lag	Integer	Number of months between first and second gift
gifa	Numeric	Average dollar amount of gifts to date
donr	Binary	Classification Response Variable (1 = Donor, 0 = Non-donor)

damt	Numeric	Prediction Response Variable (Donation Amount in \$).
------	---------	---

Descriptive Statistics

Figure 2 showcases the descriptive statistics of each numerical variable in the data. From the 6002 total observations, incmed, low, gifdol, and gifl have high averages while hv and gifdol show the highest maximum values.

	Count	Mean	Median	Std	Min	Max
ID	6002	3978.91	3945.5	2301.81	1.00	8009.00
ownd	6002	0.88	1.0	0.32	0.00	1.00
kids	6002	1.58	2.0	1.41	0.00	5.00
inc	6002	3.94	4.0	1.40	1.00	7.00
sex	6002	0.61	1.0	0.49	0.00	1.00
with	6002	7.02	8.0	2.33	0.00	9.00
hv	6002	183.91	170.0	72.77	51.00	710.00
incmed	6002	43.95	38.0	24.66	3.00	287.00
incavg	6002	56.79	52.0	24.83	14.00	287.00
low	6002	13.89	10.0	13.10	0.00	87.00
npro	6002	61.35	59.0	30.31	2.00	164.00
gifdol	6002	115.80	91.0	86.54	23.00	1974.00
gifl	6002	22.98	16.0	29.40	3.00	642.00
gifr	6002	15.65	12.0	12.42	1.00	173.00
mdon	6002	18.79	18.0	5.60	5.00	40.00
lag	6002	6.32	5.0	3.64	1.00	34.00
gifa	6002	11.68	10.2	6.53	1.89	72.27
donr	6002	0.50	0.0	0.50	0.00	1.00
damt	6002	7.21	0.0	7.36	0.00	27.00

Figure 2

Data Quality Inspection & Univariate Analysis

Missing Values

As Figure 3 details, there are no missing values in the dataset and no action was taken to impute any data.

Figure 3

Univariate Analysis

According to Table 1, there are several core variables that need to be analyzed. In the categorical variables, these variables need to be analyzed first: inc, wlth, donr.

Variable: donr

As we can see from Figure 4, the proportion of donation and non-donation population are very similar. Donation population is 49.9% and non-donation population is 50.1%, which indicates that, in the market, these two types of people are comparable.

Figure 4

Variable: inc

As we can see from Figure 5, the household income level 4 is in the dominant position at 45.9%. The second and third are level 5 at 14.8% and level 3 at 10.1%, respectively. This is interesting that the sample dataset is concentrated in the middle level of household income.

Figure 5
Variable: wlth

According to Figure 6, the dominant wealth rate is level 8 at 38.6%, and the second and third are level 9 at 27.1% and level 6 at 6.9%, respectively. Besides, levels 0, 1, 2, and 3 all account for a very small proportion of the wealth rate. The high level of wealth population is much more than the low level of wealth, which should influence the model training.

OBJ

Figure 6

Outlier Detection

Outliers sometimes will heavily impact on the accuracy of data analysis. There are 2 core data that we need to check because they are prone to have outliers which may influence business understanding. After the inspection (Figure 7), for hv (average home value), the majority part of hv concentrates in 150,000-200,000, but some outliers at the right tail are over 700,000. These outliers are reasonable because it belongs to the high-end market Luxury housing range.

Figure 7

For the gifdol (Lifetime Gift Amount, Figure 8), the majority is concentrated below 250, but some outliers at the right tail are over 2,000. Both of these outliers are needed to care about the overfitting issue.

Figure 8

Two Variable Analysis

There are three pairs of variables that necessitated further analysis to determine preliminary relationships between them. The first was Hv versus gifdol, which showed that the population of lower- and middle-class homes are most prone to donation. Secondly was Wlth versus donr, which revealed that the proportion of donations among high wealth people is higher than non-donation, meaning the wealthy population is more prone to donate. Finally, looking at region versus damt, Figure 9 determined that the distribution of donations in regions discovered Ter4 has the highest donations and Ter5 has the lowest one. Region also proved to be an influencing factor on donation amount.

Figure 9

Data Preparation

After initial exploration into the dataset, it was determined that no missing values were present. While there were a few outliers for the variables hv and gifdol, analysis revealed that they are not significant enough to disrupt calculations. As we can see from Figure 10, the formation of each column is accurate and does not need to be modified.

Range Data	eIndex: (columns	6002 ((tota	re.frame.Da entries, 0 m al 20 column	to 6001 ns):
#	Column	Non-N	Null Count	Dtype
0	ID	6002	non-null	int64
1	region	6002	non-null	object
2	ownd	6002	non-null	int64
3	kids	6002	non-null	int64
4			non-null	int64
5	sex	6002	non-null	int64
6	wlth	6002	non-null	int64
7	hv	6002	non-null	int64
8	incmed	6002	non-null	int64
9	incavg	6002	non-null	int64
10	low	6002	non-null	int64
11	npro	6002	non-null	int64
12	gifdol	6002	non-null	int64
13	gifl	6002	non-null	int64
14	gifr	6002	non-null	int64
15	mdon	6002	non-null	int64
			non-null	
17			non-null	
18	donr	6002	non-null	int64
19	damt		non-null	
dtype	es: float	t64(1)), int64(18)), object(1)

Figure 10

Modeling

Classification

The Classification variable we want to predict here is donr (0 = non donor and 1 = donr). Various classification models can be applied to predict the outcome. Here, three classification models have been chosen for predicting the target variable. They are Logistic Regression, Neural Networks, and Random Forest.

Classification Model Selection

Chosen for being a generalized linear model, Logistic Regression was employed to predict the binary target variable donr. The benefits of utilizing the algorithm include its independent observations, exclusion of irrelevant predictors, and its assumption of linearity between the log-odds of the outcome and each continuous predictor (GeeksforGeeks, 2025). Logistic Regression's ease of implementation, accuracy for simple data, and lack of required standardization were also factors in its selection for this project.

The second classification model, Neural Networks, was selected for its ability to model nonlinear data, speed of predictions, and ability to handle big data. The potential downsides of

this model include the inability to understand the influence of each independent variable on the dependent variables, the lack of variable selection, and the time computational power required to build and train this model.

The final classification model selected was Random Forest. This nonparametric model was selected for its ability to model continuous and categorical data, lack of required standardization or normalization, and insensitivity to outliers. The potential downside to using this method is the complexity as trees increase in size and an extended training period.

Classification Modelling Process

After the data was cleaned and prepared, the dataset was imported into the File Node of SAS EM. The target variable (donr) was defined and the measurement levels of all the predictors were determined as shown in Figure 11. After that, the data partition node was added to divide the imported dataset into Train (70%) and Validation (30%).

Name	Role	Level	Report	Order	Drop	Lower Limit	Upper Limit
damt	Rejected	Interval	No		No		
donr	Target	Binary	No		No		
gifa	Input	Interval	No		No		
gifdol	Input	Interval	No		No		
gifl	Input	Interval	No		No		
gifr	Input	Interval	No		No		
hv	Input	Interval	No		No		
ID	Rejected	Nominal	No		No		
nc	Input	Ordinal	No		No		
incavg	Input	Interval	No		No		
inomed	Input	Interval	No		No		
kids	Input	Interval	No		No		
ag	Input	Interval	No		No		
low	Input	Interval	No		No		
mdon	Input	Interval	No		No		
npro	Input	Interval	No		No		
ownd	Input	Binary	No		No		
region	Input	Nominal	No		No		
sex	Input	Binary	No		No		
with	Input	Ordinal	No		No		

Figure 11

Logistic Regression. For the Logistic Regression, a stepwise regression with interactions and polynomials was selected with a maximum of 20 steps, 2nd degree polynomial, and an entry significance level of 0.1. The model's misclassification rate was 9% (Figure 12) on the validation data. From Figure 13, it can be interpreted that the stepwise function continued to improve the model's misclassification rate until the last step.

Figure 12 Figure 13

Figure 14 showcases the model's confusion matrix, which was used to calculate the sensitivity, specificity, and accuracy. Each calculation was as follows: Sensitivity(Validation) =827/899=91.9%, Specificity (Validation)=816/903=90.4%, and Accuracy=1643/1802=91.2%.

Data Role=	VALIDATE Tar	get=donr Tar	get Label=don	t
False	True	False	True	
Negative	Negative	Positive	Positive	
72	816	87	827	

Figure 14

Neural Network. The Neural Network first required data partitioning, after which a Transform Variable node was selected to perform standardization (rescaling) of the interval variables, following which the standardized inputs were connected to the neural networks' node. The model selection criteria was misclassification rate with 3 hidden units, training technique was back propagation, max time was 30 minutes, and the learning rate was set to 0.1. The model's misclassification rate was 12% (Figure 15) on the validation data. From the iteration plot (Figure 16), it can be noted that both training and validation misclassification rates decreased over time showing the model learned and improved with each iteration.

The consistency between the training and validation misclassification rates suggests there is no overfitting.

Fit Statisti	cs		
Target=donr	Target Label=donr		
Fit			
Statistics	Statistics Label	Train	Validation
DFT	Total Degrees of Freedom	4200.00	
DFE	Degrees of Freedom for Error	4094.00	
DFM	Model Degrees of Freedom	106.00	
NU	Number of Estimated Weights	106.00	
AIC	Akaike's Information Criterion	2816.26	
SBC	Schwarz's Bayesian Criterion	3488.60	
ASE	Average Squared Error	0.09	0.09
MAX	Maximum Absolute Error	0.96	0.95
DIA	Divisor for ASE	8400.00	3604.00
NOBS	Sum of Frequencies	4200.00	1802.00
RASE	Root Average Squared Error	0.31	0.30
SSE	Sum of Squared Errors	796.77	320.87
SUMW	Sum of Case Weights Times Freq	8400.00	3604.00
FPE	Final Prediction Error	0.10	
MSE	Mean Squared Error	0.10	0.09
RFPE	Root Final Prediction Error	0.32	
RMSE	Root Mean Squared Error	0.31	0.30
AVERR	Average Error Function	0.31	0.30
ERR	Error Function	2604.26	1068.71
MISC	Misclassification Rate	0.13	0.12
WRONG	Number of Wrong Classifications	562.00	213.00

Figure 15 Figure 16

Figure 17 showcases the model's confusion matrix, which was used to calculate the sensitivity, specificity, and accuracy. Each calculation was as follows; Sensitivity (Validation)= 819/899=91.1%, Specificity (Validation)=770/903=85.3%, and Accuracy=1589/1802=88.2%.

Data Role=	VALIDATE Tar	get=donr Tar	get Label=don:
False Negative	True Negative	False Positive	True Positive
80	770	133	819

Figure 17

Random Forest. To create the Random Forest, an HPDM node was created and connected to the partition node. The validation misclassification rate was 11% (Figure 18). As seen in Figure 19, there is not a huge gap between the training and validation errors, indicating the model is not overfitting the data.

Figure 18

Figure 19

Figure 20 showcases the model's confusion matrix, which was used to calculate the sensitivity, specificity, and accuracy. Each calculation was as follows; Sensitivity (Validation) = 809/899 = 90.0%, Specificity (Validation) = 796/903 = 88.2%, and Accuracy = 1605/1802 = 89.1%.

Data Role=	VALIDATE Tar	get=donr Tar	get Label=donr
False Negative	True Negative	False Positive	True Positive
90	796	107	809

Figure 20

Regression

The target variable for regression here is damt. To accurately predict this variable the regression models KNN, regression trees, and multiple linear regression were chosen.

Regression Model Selection

The first model employed for predicting the target variable damt was the parametric model K nearest Neighbors (KNN). Referred to as the lazy learner, this model does not learn from the training set immediately but it stores the dataset and at the time of prediction it performs an action on the dataset. The benefits to using the model include its ability to not make assumptions about the underlying data, its ease of implementation, and its ability to handle

nonlinearity. The potential downside of this model includes the selection of the appropriate K value, it is susceptible to outliers, and it produces a complex prediction formula with slow prediction ability.

The second model selected was Regression Trees. The benefits to choosing this model include its ease to build, implement, and interpret, its lack of need for underlying assumptions or standardization, and its ability to handle missing data. The downsides of this model include its tendency to overfit the data and it requires large amounts of data, since the trees do not make assumptions.

The third and final model employed for predicting the regressor variable was multiple linear regression. The assumptions of this model include its ability to identify a relationship between the predictor and outcome variables, constant variance of residuals, independence of residuals, and lack of multicollinearity make it an appropriate choice for this dataset (LinkedIn, 2023). The weakness of this model comes in the form of difficulty in interpreting its results and misleading results if the assumption were to be violated.

Regression Modelling Process

Using the file import node the dataset was imported, and the target variable was set to damt for prediction while donr and id were rejected. Figure 21 showcases this in more detail. A data partition node was created and connected to divide the data into Training (70%) and Validation (30%).

Columns: (Label				Mining		
Name	Role	Level	Report	Order	Drop	Lower Limit	Upper Limit
damt	Target	Interval	No		No		
donr	Rejected	Binary	No		No		
gifa	Input	Interval	No		No		
gifdol	Input	Interval	No		No		
gifl	Input	Interval	No		No		
gifr	Input	Interval	No		No		
hv	Input	Interval	No		No		
ID	Rejected	Nominal	No		No		
inc	Input	Ordinal	No		No		
incavg	Input	Interval	No		No		
inamed	Input	Interval	No		No		
kids	Input	Interval	No		No		
ag	Input	Interval	No		No		
low	Input	Interval	No		No		
mdon	Input	Interval	No		No		
npro	Input	Interval	No		No		
ownd	Input	Binary	No		No		
region	Input	Nominal	No		No		
sex	Input	Binary	No		No		
with	Input	Ordinal	No		No		

Figure 21

KNN. The VARIABLEXPLORE node was created with the Target Model as R square. Figure 22 shows the combination of each variable to overall R Square in predicting damt. Kids are the most important predictor of damt as it explains 30% of the variance. The transform Variables node was selected for standardization of all interval variables to a common scale. Here damt was selected to none as the target variable is already standardized. The Model was built with K = 12 as the MBR nodes.

Figure 22

Decision Trees. The decision tree regressor was implemented with a significance level of 0.2, maximum branch of 6 and maximum depth of 20. It was then connected to the control point node which gives the control to halt before automatic pruning happens. The assessment mode was selected to prune the tree with absolute squared error (ASE) as the pruning measure. From Figure 23 it can been seen that the ASE was initially high for both training and validation data

but as the number of leaves increased, both ASE decreased sharply. After 75 leaves, the validation ASE started to worsen even though the training ASE kept decreasing. The use of pruning aided in avoiding overfitting by selecting the optimal value of leaves to be 75.

Figure 23

Multiple Linear Regression. An MLR model was built with the selection method as stepwise, an entry significance level of 0.1, and the number of steps set to 10.

Model Evaluation

Classification

The results from the classification model comparison were evaluated using the Model Comparison node within SAS EM, where model selection was based on the misclassification rate of the validation data. The logistic regression model with stepwise interactions and polynomial terms demonstrated the best performance (Figure 24), achieving the lowest misclassification rate on the validation set (0.097) and a similarly low rate on the training set (0.088). This consistency across the training and validation data suggests that the model generalizes well and is not overfitted. The next best performing model was the random forest model with a slightly higher misclassification rate of 0.105, indicating reduced accuracy in classifying donors. The neural network model, while more complex in structure, yielded the highest misclassification rate of

0.134 on the validation data, suggesting that it is less effective for predicting the target variable. Together, these results indicate that the logistic regression model is for identifying the target variable donr with accuracy and efficiency.

Figure 24

Regression

The results from the regression model comparison were evaluated using the Model Comparison node in SAS Enterprise Miner, with model selection based on the average squared error (ASE) from the validation dataset. The decision tree model, consisting of six branches and a depth of 20, performed the best showcasing (Figure 25) the lowest ASE (23.122) on the validation data and a comparably low ASE (20.591) on the training data. The closeness of these two metrics indicates that the model adequately captured the data's patterns without overfitting. The stepwise linear regression model was the next best with an ASE of 23.204 for the validation data but showed higher training error suggesting reduced generalization from training to validation data. All variations of the memory-based reasoning (MBR) models produced substantially higher validation ASE values, with the best-performing MBR variant (K = 12) yielding an ASE of 32.443. These findings indicate that the decision tree model is best suited to predict the target variable damt to determine donation amounts.

31				**- 1 / 1-	m	
32				Valid:	Train:	
33				Average	Average	
34	Selected	Model	Model	Squared	Squared	
35 36	Model	Node	Description	Error	Error	
37	Y	Tree	6 Branch 20 deep	23.1226	20.5907	
38		Reg2	Amount- Stepwise	23.2047	23.2170	
39		MBR4	MBR K = 12	32.4425	30.3668	
40		MBR3	MBR k= 11	32.7341	30.2215	
41		MBR12	MBR k = 9	32.8496	29.4675	
42		MBR2	MBR k = 10	32.9220	29.8596	
43		MBR11	MBR K = 8	33.5459	29.0488	
44		MBR10	MBR k = 7	33.9137	28.4723	
45		MBR9	MBR K= 6	34.4821	27.8970	
46		MBR8	MBR k =5	35.5132	27.1451	
47		MBR7	MBR K= 4	36.1005	25.7148	
48		MBR6	MBR k= 3	37.1099	23.7597	
49		MBR5	MBR k= 2	40.3045	21.4528	
50		MBR	MBR k =1	45.3634	15.9244	
50		MBR	MBR k =1	45.3634	15.9244	

Figure 25

Model Deployment

Classification

For the deployment phase, the Score node was used to apply the best-performing classification model to the unlabeled score data (nonprofit_score.xlsx). This Score node automatically selected the stepwise logistic regression model based on its lowest misclassification rate on the validation data. The logistic regression model was then applied to generate predicted donor classifications for each observation in the new dataset.

To determine the expected profit from mailing based on model predictions, individuals who were classified as likely donors (I_donr = 1) were selected for targeted solicitation. Using the confusion matrix (Figure 26) from the validation dataset, the logistic regression model showed a precision of 90.3%, meaning that 827 of the 914 individuals predicted to be donors were actual donors. Based on this precision, the prior knowledge that each mailer cost \$2.00 to send, and the average donation of \$14.05, we can expect the profit per mailer to be calculated as follows:

Expected Profit per Mailing =
$$(14.50 \times 0.903) - 2 = \$11.12$$

Figure 26

This projected profit represents a significant improvement over the baseline mass mailing strategy, which produced an expected loss of \$0.55 per mailing due to the low 10% response rate. By applying the model to score new contacts and mailing only to those predicted as likely donors, the nonprofit organization can more effectively allocate its resources and improve the cost-effectiveness of its campaign efforts.

From a business perspective, this model proves to be a useful tool for devising efficient and effective donation strategies. The ability to focus on individuals with a high likelihood of donating will ultimately reduce costs and increase donation amounts. The Score node's output can be utilized to generate direct mailing lists and support data-driven decisions for future marketing campaigns. As a result, this model supports the nonprofit's goal of enhancing donor engagement while maintaining financial efficiency in its outreach efforts.

Regression

In addition to identifying likely donors, the client requested an estimate of expected donation amounts to further refine mailing decisions. The Score node was used to apply the best-performing regression model, selected by Model Comparison node, to the new unlabeled dataset. The decision tree model with six branches and a depth of 20 produced the lowest average squared error on validation data and was used to generate predicted donation amounts (P_damt) for individuals classified as likely donors (I_donr = 1). Using the scored data output, the average donation amount was found by filtering all rows for I_donr = 1, then averaging the P_damt

values for rows equal to $I_{donr} = 1$. The resulting value (\$11.13) and the cost to send a mailer (\$2.00), can be used to determine the average donation amount as follows:

Average Predicted Donation = 11.13 - 2.00 = \$9.13

Where the classification models resulted in an average expected profit of \$11.12, this average donation amount of \$9.13 further refines the expected amount by utilizing a real average (11.13) from the data created by only looking at actual donor observations. Applied to our calculation, the resulting average donation amount of \$9.13 is a data-driven result that is more accurate than averaging all values. Utilizing this targeted approach over the mass mailing strategy, which produces a loss of \$0.55 per mailer, the organization can prioritize donors based not only on likelihood to give, but also on expected donation size. This strategy supports cost-effective fundraising and enables informed resource allocation for future campaigns.

Conclusion

We passed along our results and recommendations for review after compiling all the data and modeling outcomes. We were able to find several meaningful indicators of highest and lowest potential donors. For example, prospects with middle or lower home values are more prone to donate. Region also seems to have an influence on who is more likely to donate. Unsurprisingly, high wealth people are also more likely to donate.

After piecing the whole puzzle together, we predict that by better targeting potential donors and removing less likely donors from their mailing list, the organization stands to make quite a profit. Using the classification model to estimate profit, we found that if they keep the cost per mailing at \$2.00, they could stand to make a profit per mailer of \$11.12, compared to their current loss of \$0.55 each. This could also increase their response rate from 10% to 90% -- a substantial improvement in engagement. Using the regression model to predict average gift

amount per donor, we found that this amount could be increased to \$11.13, which still nets \$9.13 per donor after factoring in the cost per mailing.

With these new data-driven predictions and estimates, we believe that the nonprofit will be able to make their fundraising campaigns more efficient and effective by better targeting the prospects most likely to donate.

References

GeeksforGeeks. (2025, January 2). Advantages and disadvantages of logistic regression.

https://www.geeksforgeeks.org/advantages-and-disadvantages-of-logistic-regression/

LinkedIn. (2023, February 15). What are the benefits and drawbacks of using stepwise methods

for variable selection in multiple regression? https://www.linkedin.com/advice/0/whatbenefits-drawbacks-using-stepwise

Appendix A

Project Part	Work Done By	Drafted By	Edited By
Introduction	Ashley Chesser	Ashley Chesser	Kiera Wingo
EDA	Yitian Liu	Yitian Liu	Ashley Chesser,
			Kiera Wingo
Data Preparation	Yitian Liu	Yitian Liu	Ashley Chesser,
			Kiera Wingo
Modeling -	Sana Ambreen	Sana Ambreen	Ashley Chesser,
Classification			Kiera Wingo
Modeling -	Sana Ambreen	Sana Ambreen	Ashley Chesser,
Regression			Kiera Wingo
Model Evaluation	Sana Ambreen	Sana Ambreen	Ashley Chesser,
			Kiera Wingo
Model Deployment	Kiera Wingo	Kiera Wingo	Ashley Chesser,
			Kiera Wingo
Conclusion	Ashley Chesser	Ashley Chesser	Ashley Chesser