

Article

Confidence Intervals for Assessing Non-Inferiority with Assay Sensitivity in a Three-Arm Trial with Normally Distributed Endpoints

Niansheng Tang * and Fan Liang

Yunnan Key Laboratory of Statistical Modeling and Data Analysis, Yunnan University, Kunming 650091, China; fional 1217@sina.com

* Correspondence: nstang@ynu.edu.cn

Abstract: Various approaches including hypothesis test and confidence interval (CI) construction have been proposed to assess non-inferiority and assay sensitivity via a known fraction or prespecified margin in three-arm trials with continuous or discrete endpoints. However, there is little work done on the construction of the non-inferiority margin from historical data and simultaneous generalized CIs (SGCIs) in a three-arm trial with the normally distributed endpoints. Based on the generalized fiducial method and the square-and-add method, we propose two simultaneous CIs for assessing non-inferiority and assay sensitivity in a three-arm trial. For comparison, we also consider the Wald-type Bonferroni simultaneous CI and parametric bootstrap simultaneous CI. An algorithm for evaluating the optimal sample size for attaining the pre-specified power is given. Simulation studies are conducted to investigate the performance of the proposed CIs in terms of their empirical coverage probabilities. An example taken from the mildly asthmatic study is illustrated using the proposed simultaneous CIs. Empirical results show that the proposed generalized fiducial method and the square-and-add method behave better than other two compared CIs.

Keywords: assay sensitivity; confidence interval; fiducial approach; square-and-add method; three-arm non-inferiority trial

check for

Citation: Tang, N.; Liang, F.
Confidence Intervals for Assessing
Non-Inferiority with Assay
Sensitivity in a Three-Arm Trial with
Normally Distributed Endpoints.
Mathematics 2022, 10, 167. https://doi.org/10.3390/math10020167

Academic Editors: María del Carmen Pardo and Ying Lu

Received: 6 December 2021 Accepted: 28 December 2021 Published: 6 January 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

In modern clinical trials, it is extremely interesting to demonstrate whether a new treatment that is less toxic, less expensive or easier to administer is not inferior to an expensive and technical pathological reference treatment by more than a pre-specified margin. This is usually called a two-arm non-inferiority trial that does not include a placebo. Two-arm non-inferiority trials have been widely studied. For example, see [1–3]. However, two-arm non-inferiority trials have some shortcomings, such as the selection of the non-inferiority margin and the assessment of assay sensitivity (i.e., the ability to differentiate between an effective treatment and a less effective or ineffective treatment). If ethically acceptable and practically feasible, it is generally recognized that three-arm non-inferiority trials including a placebo can surmount the difficulties mentioned above [4].

There has been a growing interest in developing statistical inference on three-arm non-inferiority trials. For example, see [5], and [6] for the fractional margin, i.e., the non-inferiority margin is taken as a pre-specified fraction of unknown effect size of reference treatment. In particular, Tang, Yu and Tang [7] developed the exact and approximate unconditional test approaches for the assessment of the non-inferiority in a three-arm trial with binary endpoints. However, the aforementioned literature did not consider the assessment of assay sensitivity. To this end, simultaneously assessing non-inferiority and assay sensitivity via a fixed margin has received considerable attention in recent years. For example, Hide and Tango [8] investigated simultaneous testing for both non-inferiority and assay sensitivity via a pre-specified margin, which is defined as a difference between two treatment effects in the considered historical placebo-controlled trial with normally

Mathematics 2022, 10, 167 2 of 23

distributed endpoints in the presence of homoscedasticity. Here endpoint represents the observation of random variable, and the normally distributed endpoint means that endpoint comes from a normal distribution. Hida and Tango's method may be improper due to the usage of the same margins for testing both non-inferiority and assay sensitivity. To solve the problem, Kwong et al. [9] considered a modified version of Hida and Tango's testing procedure based on different margins for assessing both non-inferiority and assay sensitivity. Mütze, Munk and Friede [10] presented a Wald-type test procedure for assessing both non-inferiority and assay sensitivity in a three-arm trial with negative binomially distributed endpoints.

The aforementioned literature mainly focuses on the non-inferiority testing problem in a three-arm trial. However, there is little work on simultaneously considering the construction of non-inferiority margin from the historical data and confidence interval for simultaneously testing both non-inferiority and assay sensitivity. Moreover, it is difficult to invert to find simultaneous confidence intervals for simultaneously testing both non-inferiority and assay sensitivity based on the aforementioned test procedures. To address these issues, here we consider the construction problem of simultaneous confidence intervals (CIs) for assessing both non-inferiority and assay sensitivity based on the square-and-add method and the generalized fiducial method in a three-arm trial.

CI construction via the square-and-add method [11], which is also called the method of variance estimates recovery, has received considerable attention over the past years in that it does not depend on the large sample theory and has a computationally simple and closed expression. For example, Li et al. [12] proposed an interval for the difference between two poisson rates based on the square-and-add method. Tang et al. [13] proposed five simultaneous CIs for risk differences in stratified matched-pair designs via the square-and-add method. Tang et al. [14] studied the problem of CI construction for the difference between two correlated proportions in the presence of incomplete paired binary data based on the square-and-add method. Zhang and Tang [15] extended the square-and-add method to CI construction of difference between two correlated areas under ROC curves in a matched-pair experiment. However, to our knowledge, there is little work done on simultaneous CI construction for assessing both non-inferiority and assay sensitivity in a three-arm trial using the square-and-add method.

Generalized CIs (GCIs) via generalized fiducial method [16] are widely studied in that it has been shown to be a useful tool for making inference in many practical problems. For example, see [17,18]. In particular, Schaarschmidt [19] discussed simultaneous CI construction for multiple comparisons among expected values of log-normal variables via the generalized fiducial method; Gamalo et al. [20] investigated the generalized CI construction problem for assessing non-inferiority in a three-arm trial with normally distributed endpoints in the presence of heteroscedasticity. However, Gamalo et al. [20] did not consider the assay sensitivity assessment problem. Moreover, to our knowledge, there is little work developed on simultaneous GCIs for assessing both non-inferiority and assay sensitivity in a three-arm trial with normally distributed endpoints. Hence, this paper proposes two simultaneous GCIs for simultaneously assessing non-inferiority and assay sensitivity by incorporating generalized fiducial pivotal quantity of [21] and the square-and-add approach in a three-arm non-inferiority trial with normally distributed endpoints, and presents their corresponding algorithms for evaluating GCIs. For comparison, we also consider Waldtype Bonferroni simultaneous CIs and parametric bootstrap simultaneous CIs introduced in [22]. In addition, we also discuss the problem of sample size determination, and present approximate formulae for determining sample size for attaining a pre-specified power.

The rest of this paper is organized as follows. Section 2 introduces the hypothesis testing problem for assessing both non-inferiority and assay sensitivity in a three-arm trial, discusses the problem of non-inferiority margin construction from historical data, presents four simultaneous CIs for assessing both non-inferiority and assay sensitivity based on generalized fiducial method, square-and-add approach, Wald-type Bonferroni method and parametric bootstrap method and gives the sample size formulae. Simulation studies and

Mathematics 2022, 10, 167 3 of 23

an example from the mildly asthmatic study are illustrated in Section 3. A brief discussion is given in Section 4. Technical details are presented in the Appendix A.

2. Materials and Methods

Following [9], we consider a one-way fixed effect model for endpoints in a three-arm non-inferiority trial with experimental, reference and placebo treatments. For notational simplicity, we denote experimental, reference and placebo treatments as E, R and P, respectively. Throughout this paper, we assume

$$X_{ij} = \mu_i + \epsilon_{ij}, \ i = E, R, P, \ j = 1, ..., n_i,$$
 (1)

where X_{ij} is the endpoint of the jth individual for the ith treatment, μ_i is the fixed effect of the ith treatment, measurement errors $\varepsilon_{ij} \overset{\text{i.i.d}}{\sim} \mathcal{N}(0, \sigma_i^2)$, and n_i is the sample size of the ith treatment for i = E, E, E. Without loss of generality, it is assumed that a larger value of μ_i indicates the better efficacy for the ith treatment. Under the above assumption, we have

$$X_{ij} \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \quad i = E, R, P, \quad j = 1, \dots, n_i,$$
 (2)

To assess the non-inferiority (NI) and the assay sensitivity in a three-arm trial, Kwong et al. [9] considered the following modified HT hypotheses:

$$\begin{cases}
H_{\text{NI}}^{0}: \mu_{E} - \mu_{R} \leq -r\Delta & \text{versus} \quad H_{\text{NI}}^{1}: \mu_{E} - \mu_{R} > -r\Delta, \\
K_{\text{AS}}^{0}: \mu_{R} - \mu_{P} \leq \Delta & \text{versus} \quad K_{\text{AS}}^{1}: \mu_{R} - \mu_{P} > \Delta,
\end{cases}$$
(3)

where $\Delta>0$ is a pre-specified margin, and r is some pre-specified constant and satisfies the restricted condition: $0< r \leq 1$. In particular, when r=1, the hypotheses considered above are just those given in [8]. When r<1, the testing procedure for hypotheses (3) is more stringent than the testing procedure of [8] because of requiring assay sensitivity to be established. Clearly, if $H_{\rm NI}^0$ and $K_{\rm AS}^0$ are simultaneously rejected by some two-tailed test at the significance level α or two one-tailed tests at the significance level $\alpha/2$, we may draw a conclusion: $\mu_P + \Delta < \mu_R < \mu_E + r\Delta$, which indicates that (i) the NI of experimental treatment to reference one with respect to $r\Delta$ and (ii) the superiority of reference treatment to placebo by more than Δ . Here Δ is the entire effect size of reference treatment over placebo, and $\Delta_{\rm NI} = r\Delta$ is the NI margin showing the NI of experimental treatment to reference one.

Generally, one can construct two appropriate statistics for testing hypotheses $H_{\rm NI}^0$ and $K_{\rm AS}^0$. Here, rather than hypothesis testing, we consider the problem of constructing simultaneous CIs for $\phi = \mu_E - \mu_R$ and $\psi = \mu_R - \mu_P$ due to the duality of hypothesis testing and CI estimation. If the lower limits of the resultant $100(1-\alpha)\%$ one-sided simultaneous CIs for ϕ and ψ are larger than $-r\Delta$ and Δ , respectively, we can simultaneously reject the null hypotheses $H_{\rm NI}^0$ and $K_{\rm AS}^0$ at the significance level α . However, in clinical studies, $\Delta_{\rm NI}$ is usually unknown. In what follows, we consider the construction problem of the NI margin, denoted as $\Delta_{\rm NI}$, via the lower bound of the credible interval of treatment effect of reference treatment in historical trials.

2.1. Construction of NI Margin

In what follows, a historical-trial-based approach and the generalized fiducial method are adopted to determine the NI margin Δ_{NI} . To this end, we first consider the generalized fiducial CI construction problem as follows.

Let $S \in \mathcal{R}^k$ be a random vector whose distribution is indexed by parameter vector $\xi \in \mathcal{R}^p$. Suppose we are interested in making inference on $\theta = \pi(\xi) \in \mathcal{R}^q$. Let S^* be an independent copy of S, and S and S^* represent the observed values of S and S^* , respectively. A generalized fiducial pivotal quantity (GFPQ) for parameter θ , denoted as $G_{\theta}(S, S^*, \xi)$, is a function of (S, S^*, ξ) , and satisfies the following conditions:

(i) The conditional distribution of $G_{\theta}(S, S^*, \xi)$, given S = s, is free of ξ .

Mathematics 2022, 10, 167 4 of 23

(ii) For every allowable $s \in \mathcal{R}^k$, $G_{\theta}(s, s, \xi) = \theta$.

Approximate percentiles of $G_{\theta}(S, S^*, \xi)$ form a $100(1 - \alpha)\%$ generalized fiducial CI for θ . To wit, if the above conditions hold and there exist two statistics L(s) and U(s) such that

$$\Pr\{L(s) \le G_{\theta}(S, S^*, \xi) \le U(s)|S = s\} = 1 - \alpha,$$
 (4)

thus the interval (L(s), U(s)) is called the $100(1-\alpha)\%$ generalized fiducial CI for θ . In what follows, we adapt the above definition of generalized fiducial CI to determine NI margin via a historical placebo-controlled trial for the reference treatment, which is a superiority trial for establishing the efficacy of the reference treatment.

Let Y_{ij}^h be the endpoint of the jth individual for the ith treatment in the historical trial for i = R, P and $j = 1, ..., m_i$. Following the aforementioned one-way fixed effect model, we assume that Y_{Pj}^h and Y_{Rj}^h follow the normal distributions, i.e.,

$$Y_{Pj}^{h}|\nu_{P},\xi_{P}^{2}\sim\mathcal{N}(\nu_{P},\xi_{P}^{2}),\ j=1,\ldots,m_{P},$$
 (5)

$$Y_{Rj}^{h}|\nu_{R}, \xi_{R}^{2} \sim \mathcal{N}(\nu_{R}, \xi_{R}^{2}), \quad j = 1, \dots, m_{R},$$
 (6)

where ν_P and ν_R denote the treatment effects for placebo and reference treatments in the considered historical trial, respectively, ξ_P^2 and ξ_R^2 denote their corresponding variances to be estimated, and m_P and m_R are their corresponding sample sizes. Our purpose is to construct GFPQ for mean difference $\eta = \nu_R - \nu_P$. To this end, we denote $\bar{Y}_k^h = m_k^{-1} \sum_{j=1}^{m_k} Y_{kj}^h$ and $S_{kh}^2 = (m_k - 1)^{-1} \sum_{j=1}^{m_k} (Y_{kj}^h - \bar{Y}_k^h)^2$ for k = R, P. It is easily shown that $\hat{\nu}_k = \bar{Y}_k^h$ and $\hat{\xi}_k^2 = S_{kh}^2$ are unbaised estimators of ν_k and ξ_k^2 , respectively. Thus, an unbaised estimator of η is given by $\hat{\eta} = \hat{\nu}_R - \hat{\nu}_P = \bar{Y}_R^h - \bar{Y}_P^h$. It is well known that \bar{Y}_k^h and S_{kh}^2 are sufficient statistics of ν_k and ξ_k^2 , respectively, and $\bar{Y}_k^h \sim \mathcal{N}(\nu_k, \xi_k^2/m_k)$ and $(m_k - 1)S_{kh}^2 \sim \xi_k^2 \chi^2(m_k - 1)$ for k = R, P. Let

$$W_k^h = \frac{\bar{Y}_k^{h*} - \nu_k}{\xi_k / \sqrt{m_k}}, \quad V_k^h = \frac{(m_k - 1)S_{kh}^{2*}}{\xi_k^2}$$
 (7)

where \bar{Y}_k^{h*} and S_{kh}^{2*} are independent copies of \bar{Y}_k^h and S_{kh}^2 , respectively. Then, we have $W_k^h \sim \mathcal{N}(0,1)$, $V_k^h \sim \chi^2(m_k-1)$, and W_k^h is independent of V_k^h . Hence, the GFPQs for ν_k and ξ_k^2 are

$$R_{\nu_k} = \bar{Y}_k^h - \sqrt{\frac{S_{kh}^2}{S_{kh}^{2*}}} (\bar{Y}_k^{h*} - \nu_k) = \bar{Y}_k^h - W_k^h \sqrt{\frac{(m_k - 1)S_{kh}^2}{m_k V_k^h}},$$
 (8)

$$R_{\xi_k^2} = \frac{S_{kh}^2}{S_{kh}^{2*}} \xi_k^2 = \frac{(m_k - 1)S_{kh}^2}{V_k^h},\tag{9}$$

respectively. Using the GFPQs of ν_R and ν_P leads to

$$R_{\eta} = (\bar{Y}_{R}^{h} - \bar{Y}_{P}^{h}) - \left(W_{R}^{h} \sqrt{\frac{(m_{R} - 1)S_{Rh}^{2}}{m_{R}V_{R}^{h}}} - W_{P}^{h} \sqrt{\frac{(m_{P} - 1)S_{Ph}^{2}}{m_{P}V_{P}^{h}}}\right)$$

$$= (\bar{Y}_{R}^{h} - \bar{Y}_{P}^{h}) - \left(\sqrt{\frac{S_{Rh}^{2}}{m_{R}}} \frac{W_{R}^{h}}{\sqrt{V_{R}^{h}/(m_{R} - 1)}} - \sqrt{\frac{S_{Ph}^{2}}{m_{P}}} \frac{W_{P}^{h}}{\sqrt{V_{P}^{h}/(m_{P} - 1)}}\right)$$

$$\stackrel{\Delta}{=} (\bar{Y}_{R}^{h} - \bar{Y}_{P}^{h}) - \left(\sqrt{\frac{S_{Rh}^{2}}{m_{R}}} T_{m_{R} - 1} - \sqrt{\frac{S_{Ph}^{2}}{m_{P}}} T_{m_{P} - 1}\right), \tag{10}$$

Mathematics 2022, 10, 167 5 of 23

where $T_{m_R-1} \sim t(m_R-1)$ and $T_{m_P-1} \sim t(m_P-1)$. From Equation (10), it is easily shown that R_{η} is a GFPQ of η . The 100(1 – α)% two-sided GFCI for η is $(R_{\eta,\alpha/2}, R_{\eta,1-\alpha/2})$, where $R_{\eta,\gamma}$ is the 100 γ % percentile point of sample observations of R_{η} .

Denote $\Delta_h=R_{\eta,\alpha/2}$. Following the frequentist's approach, we take the NI margin as $\Delta_{\rm NI}=(1-\lambda)\Delta_h$, where $\lambda\in[0,1]$ is a fraction representing the preservation level or desired proportion of the reference effect to the retained. Thus, the assay sensitivity margin can be expressed as $\Delta=\Delta_{\rm NI}/r=(1-\lambda)\Delta_h/r$. This shows that when $r<1-\lambda$ (i.e., $\Delta>\Delta_h>\Delta_{\rm NI}$), the assay sensitivity margin results in a more stringent rejection criterion than the historical placebo-controlled trial; when $r=1-\lambda$ and $\lambda\neq0$ (i.e., $\Delta=\Delta_h>\Delta_{\rm NI}$), the assay sensitivity margin is equal to Δ_h and the NI margin is set as $(1-\lambda)\Delta_h$; when r=1 and $\lambda=0$, the hypothesis (3) reduces to the HT hypothesis.

2.2. Simultaneous CIs for ϕ and ψ

2.2.1. Wald-Type Bonferroni Simultaneous CI

Generally, to construct simultaneous CI for ϕ and ψ , one can consider the widely used and simple Bonferroni method based on the Wald-type statistics.

For the current trial data $X=\{X_{ij}:i=P,R,E,j=1,\ldots,n_i\}$ generated from model (2), we denote $\bar{X}_i=n_i^{-1}\sum_{j=1}^{n_i}X_{ij}$ and $S_i^2=(n_i-1)^{-1}\sum_{j=1}^{n_i}(X_{ij}-\bar{X}_i)^2$. The unbiased estimators of μ_i and σ_i^2 are given by $\hat{\mu}_i=\bar{X}_i$ and $\hat{\sigma}_i^2=S_i^2$, respectively, i.e., $E(\hat{\mu}_i)=\mu_i$ and $E(\hat{\sigma}_i^2)=\sigma_i^2$ for i=P,R,E. The unbiased estimators of ϕ and ψ are $\hat{\phi}=\bar{X}_E-\bar{X}_R$ and $\hat{\psi}=\bar{X}_R-\bar{X}_P$, respectively, whose variances are $\mathrm{var}(\hat{\phi})=\sigma_E^2/n_E+\sigma_R^2/n_R$ and $\mathrm{var}(\hat{\psi})=\sigma_R^2/n_R+\sigma_P^2/n_P$, respectively. The estimated variances of $\hat{\phi}$ and $\hat{\psi}$ have the forms: $\mathrm{var}(\hat{\phi})=\hat{\sigma}_E^2/n_E+\hat{\sigma}_R^2/n_R$ and $\mathrm{var}(\hat{\psi})=\hat{\sigma}_R^2/n_R+\hat{\sigma}_P^2/n_P$, respectively. It is easily shown that the Wald-type statistics $T_{\phi}=(\hat{\phi}-\phi)/\sqrt{\mathrm{var}(\hat{\phi})}$ and $T_{\psi}=(\hat{\psi}-\psi)/\sqrt{\mathrm{var}(\hat{\psi})}$ asymptotically follow the standard normal distribution. Thus, an approximate $100(1-\alpha)\%$ one-sided Wald-type Bonferroni simultaneous confidence region for ϕ and ψ is given by

$$\{(\phi,\psi):\phi\in(L_{\phi}^{WB},\infty),\ \psi\in(L_{\psi}^{WB},\infty)\},\tag{11}$$

where $L_{\phi}^{WB} = \hat{\phi} - z_{1-\alpha/2} \sqrt{\hat{\mathrm{var}}(\hat{\phi})}$, and $L_{\psi}^{WB} = \hat{\psi} - z_{1-\alpha/2} \sqrt{\hat{\mathrm{var}}(\hat{\psi})}$. The above defined simultaneous confidence region is called the WB-SCI.

As Tang et al. [13] pointed out, the Bonferroni simultaneous confidence region may behave poorly when $\min\{n_E, n_R, n_P\}$ is small. To address the issue, three new simultaneous confidence regions are developed as follows.

2.2.2. Generalized Fiducial Simultaneous CI

For k=E, P, R, let \bar{X}_k^* and S_k^{2*} be independent copies of \bar{X}_k and S_k^2 , respectively, and define $W_k=\sqrt{n_k}(\bar{X}_k^*-\mu_k)/\sigma_k$ and $V_k=(n_k-1)S_k^{2*}/\sigma_k^2$. It is easily shown that $W_k\sim\mathcal{N}(0,1)$, $V_k\sim\chi^2(n_k-1)$ and W_k is independent of V_k . It follows from Section 2.1 that the GFPQs for σ_k^2 and μ_k can be expressed as

$$R_{\sigma_k^2} = \frac{(n_k - 1)S_k^2}{V_k}, \ R_{\mu_k} = \bar{X}_k - W_k \sqrt{\frac{(n_k - 1)S_k^2}{n_k V_k}},$$
 (12)

respectively. Thus, the GFPQs of ϕ and ψ are

$$R_{\phi} = \bar{X}_E - \bar{X}_R - \left(W_E \sqrt{\frac{(n_E - 1)S_E^2}{n_E V_E}} - W_R \sqrt{\frac{(n_R - 1)S_R^2}{n_R V_R}} \right), \tag{13}$$

$$R_{\psi} = \bar{X}_R - \bar{X}_P - \left(W_R \sqrt{\frac{(n_R - 1)S_R^2}{n_R V_R}} - W_P \sqrt{\frac{(n_P - 1)S_P^2}{n_P V_P}} \right), \tag{14}$$

Mathematics 2022, 10, 167 6 of 23

respectively. Define

$$R_D = \max\left(\frac{\hat{\phi} - R_{\phi}}{\sqrt{\hat{\text{var}}(\hat{\phi})}}, \frac{\hat{\psi} - R_{\psi}}{\sqrt{\hat{\text{var}}(\hat{\psi})}}\right). \tag{15}$$

Thus, the $100(1-\alpha)\%$ one-sided simultaneous generalized fiducial confidence region for (ϕ, ψ) is

$$\{(\phi,\psi): \phi \in (L_{\phi}^F,\infty), \psi \in (L_{\psi}^F,\infty)\}$$
(16)

where $L_{\phi}^F = \hat{\phi} - d_{1-\alpha} \sqrt{\hat{\text{var}}(\hat{\phi})}$, $L_{\psi}^F = \hat{\psi} - d_{1-\alpha} \sqrt{\hat{\text{var}}(\hat{\psi})}$, and $d_{1-\alpha}$ is the $1-\alpha$ percentile point of statistic R_D 's distribution given sample observations. The above defined simultaneous confidence region is referred to as GF-SCI method.

Theorem 1. Let X_{k1}, \ldots, X_{kn_k} be an independent and identically distributed sample from $\mathcal{N}(\mu_k, \sigma_k^2)$ for k=P, R, E. Suppose that $r_k = \lim_{n \to \infty} n_k/n$ holds, where $n = n_E + n_R + n_P$ and $0 < r_k < 1$ for k=P, R, E. Then, we have

$$\Pr(\phi \ge L_{\phi}^F, \psi \ge L_{\psi}^F) \approx 1 - \alpha. \tag{17}$$

The proof of Theorem 1 is given in Appendix A. Theorem 1 shows that the proposed GF-SCI can asymptotically attain the pre-specified coverage probability.

Combining the above argument, we form the following computing Algorithm 1 for evaluating empirical coverage probability (ECP) of the proposed GF-SCI.

Algorithm 1: Evaluating ECP of GF-SCI.

```
Input: Parameters \phi_0, \psi_0, M, r, \Delta_{\text{NI}}, \mathcal{T}, \mu_R, \sigma_k^2 and n_k for k = E, R, P
     Output: ECP of GF-SCI
 1 Initialize: \mu_E = \mu_R - \Delta_{NI}, \mu_P = \mu_R - \Delta_{NI}/r, ECP = 0;
 2 for t \in \{1, \ldots, \mathcal{T}\} do
           Generate X_{k1}, \ldots, X_{kn_k} from \mathcal{N}(\mu_k, \sigma_k^2) for k = E, R, P; \bar{X}_k \leftarrow n_k^{-1} \sum_{j=1}^{n_k} X_{kj} for k = E, R, P;
            S_k^2 \leftarrow (n_k - 1)^{-1} \sum_{j=1}^{n_k} (X_{kj} - \bar{X}_k)^2 for k = E, R, P;
 5
            for \ell ∈ {1, . . . , M} do
                  Generate W_k \sim \mathcal{N}(0,1) and V_k \sim \chi^2(m_P - 1) for k = E, R, P;
 7
                  b_{\phi} \leftarrow W_E \sqrt{(n_E - 1)S_E^2/(n_E V_E) - W_R \sqrt{(n_R - 1)S_R^2/(n_R V_R)}};
 8
                  b_{\psi} \leftarrow W_R \sqrt{(n_R - 1)S_R^2/(n_R V_R)} - W_P \sqrt{(n_P - 1)S_P^2/(n_P V_P)};
               \begin{aligned} \vartheta_{\phi}^2 &\leftarrow S_E^2/n_E + S_R^2/n_R; \\ \vartheta_{\psi}^2 &\leftarrow S_R^2/n_R + S_P^2/n_P; \\ R_{\ell} &\leftarrow \max\{b_{\phi}/\vartheta_{\phi}, b_{\psi}/\vartheta_{\psi}\}; \end{aligned}
10
11
12
13
            Sort R_1, ..., R_M into R_{(1)} \le ... \le R_{(M)};
14
            L_{\phi}^{F} \leftarrow \bar{X}_{E} - \bar{X}_{R} - R_{[M*(1-\alpha)]} \sqrt{S_{F}^{2}/n_{E} + S_{R}^{2}/n_{R}};
15
           L_{\psi}^{F} \leftarrow \bar{X}_{R} - \bar{X}_{P} - R_{[M*(1-\alpha)]} \sqrt{S_{R}^{2}/n_{R} + S_{P}^{2}/n_{P}};
16
            while (\phi_0 > L_\phi^F \text{ and } \psi_0 > L_\psi^F) do
17
              ECP\leftarrow ECP + 1:
18
19
20 end
21 ECP \leftarrow ECP/\mathcal{T};
22 return ECP
```

Mathematics 2022, 10, 167 7 of 23

2.2.3. Hybrid Generalized Fiducial Simultaneous CI

The above presented GF-SCI for ϕ and ψ is computationally intensive in determining the percentile point of statistic R_D 's distribution. To solve this problem, we develop a hybrid generalized fiducial simultaneous CI by incorporating the square-and-add method and generalized fiducial method as follows.

The lower limits of the approximate $100(1-\alpha)\%$ Wald-type CIs for ϕ and ψ are given by

$$L_{\phi}^{W} = \hat{\phi} - z_{1-\alpha} \sqrt{\hat{\operatorname{var}}(\hat{\phi})}, \quad L_{\psi}^{W} = \hat{\psi} - z_{1-\alpha} \sqrt{\hat{\operatorname{var}}(\hat{\psi})}, \tag{18}$$

respectively, where $var(\hat{\phi}) = var(\hat{\mu}_E) + var(\hat{\mu}_R)$, $var(\hat{\psi}) = var(\hat{\mu}_R) + var(\hat{\mu}_P)$, and $z_{1-\alpha}$ is the $1-\alpha$ percentile point of the standard normal distribution. It is easily shown that $var(\hat{\phi})$ and $var(\hat{\psi})$ are consistent estimators of $var(\hat{\phi})$ and $var(\hat{\psi})$ when the sample sizes n_R and n_P are sufficiently large, respectively. Hence, to recovery variances $var(\hat{\phi})$ and $var(\hat{\psi})$ so that the resultant simultaneous CI behaves satisfactorily for small to moderate sample sizes, we develop the following hybrid method, which is similar to that given in [14].

Let l_k and u_k be the lower and upper limits of an approximate $100(1-\alpha)\%$ one-sided CI for μ_k for k=E, R, P. It follows from the Slutsky's theorem that statistic $T_k=(\hat{\mu}_k-\mu_k)/\sqrt{\text{var}(\hat{\mu}_k)}$ asymptotically follows the standard normal distribution for k=E, R, P. Thus, for k=E, R, P, we have $l_k=\hat{\mu}_k-z_{1-\alpha}\sqrt{\text{var}(\hat{\mu}_k)}$ and $u_k=\hat{\mu}_k+z_{1-\alpha}\sqrt{\text{var}(\hat{\mu}_k)}$, which lead to $\text{var}(\hat{\mu}_k)=(\hat{\mu}_k-l_k)^2/Z_{1-\alpha}^2$ for l_k and $\text{var}(\hat{\mu}_k)=(u_k-\hat{\mu}_k)^2/Z_{1-\alpha}^2$ for u_k , respectively. Following the argument of Howe [23] and Newcombe [11], we substitute the above equations into (18) and define the lower limits of the approximate $100(1-\alpha)\%$ one-sided hybrid CIs for ϕ and ψ as

$$L_{\phi}^{H} = \hat{\phi} - \sqrt{(\hat{\mu}_{E} - l_{E})^{2} + (u_{R} - \hat{\mu}_{R})^{2}}, \quad L_{\psi}^{H} = \hat{\psi} - \sqrt{(\hat{\mu}_{R} - l_{R})^{2} + (u_{P} - \hat{\mu}_{P})^{2}},$$
 (19)

respectively, which imply that it is necessary to first evaluate the lower and upper limits l_k and u_k (k = E, R, P) for computing L_{ϕ}^H and L_{ψ}^H . In what follows, the generalized fiducial method introduced above is employed to calculate l_k and u_k for k = E, R, P.

The lower and upper limits of an approximate $100(1 - \alpha)\%$ one-sided GFCI of μ_k adjusted for multiplicity using the Bonferroni method have the forms

$$l_k = R_{\mu_k, \alpha/2}, \ u_k = R_{\mu_k, 1-\alpha/2},$$
 (20)

where $R_{\mu_k,\alpha}$ represents the α percentile point of sample observations of R_{μ_k} , which is the GFPQ of μ_k with $R_{\mu_k} = \bar{X}_k - W_k \sqrt{(n_k - 1)S_k^2/(n_k V_k)}$, $W_k \sim \mathcal{N}(0,1)$ and $V_k \sim \chi^2(n_k - 1)$ for k = E, R, P.

Plugging the above defined lower and upper limits l_k and u_k (k = E, R, P) into L_{ϕ}^H and L_{ψ}^H defined in (19) leads to an approximate $100(1 - \alpha)\%$ one-sided hybrid generalized fiducial simultaneous confidence region of (ϕ, ψ) :

$$\{(\phi,\psi): \phi \in (L_{\phi}^H,\infty), \psi \in (L_{\psi}^H,\infty)\}. \tag{21}$$

The above defined simultaneous confidence region is referred to as HG-SCI method.

The approach to evaluate empirical coverage probability (ECP) of the defined HG-SCI is summarized as the Algorithm 2.

Mathematics 2022, 10, 167 8 of 23

Algorithm 2: Evaluating ECP of HG-SCI.

```
Input: Parameters \phi_0, \psi_0, M, r, \Delta_{\text{NI}}, \mathcal{T}, \mu_R, \sigma_k^2 and n_k for k = E, R, P
     Output: ECP of GF-SCI
 1 Initialize: \mu_E = \mu_R - \Delta_{NI}, \mu_P = \mu_R - \Delta_{NI}/r, ECP = 0;
 2 for t \in \{1, ..., T\} do
            Generate X_{k1}, \ldots, X_{kn_k} from \mathcal{N}(\mu_k, \sigma_k^2) for k = E, R, P; \bar{X}_k \leftarrow n_k^{-1} \sum_{j=1}^{n_k} X_{kj} for k = E, R, P;
 4
            S_k^2 \leftarrow (n_k - 1)^{-1} \sum_{j=1}^{n_k} (X_{kj} - \bar{X}_k)^2 \text{ for } k = E, R, P;
            for \ell \in \{1, \ldots, M\} do
                   Generate W_k \sim \mathcal{N}(0,1) and V_k \sim \chi^2(m_P - 1) for k = E, R, P;
                R_{\ell}^k \leftarrow \bar{X}_k - W_k \sqrt{(n_k - 1)S_k^2/(n_k V_k)} for k = E, R, P;
            Sorting R_1^k, \ldots, R_M^k yields R_{(1)}^k \leq \ldots \leq R_{(M)}^k for k = E, R, P;
10
            l_k \leftarrow R_{([M*\alpha/2])}^k \text{ for } k = E, R, P;
11
           u_{k} \leftarrow R_{([M*(1-\alpha/2)])}^{k} \text{ for } k = E, R, P;
L_{\phi}^{H} \leftarrow \bar{X}_{E} - \bar{X}_{R} - \sqrt{(\bar{X}_{E} - l_{E})^{2} + (u_{R} - \bar{X}_{R})^{2}};
13
            L_{\psi}^{H} \leftarrow \bar{X}_{R} - \bar{X}_{P} - \sqrt{(\bar{X}_{R} - l_{R})^{2} + (u_{P} - \bar{X}_{P})^{2}};
14
            \begin{aligned} &\textbf{while } \phi_0 > L_\phi^H \textit{ and } \psi_0 > L_\psi^H \textit{ do} \\ &| \quad \text{ECP} \leftarrow \text{ECP} + 1; \end{aligned}
15
17
18 end
19 ECP \leftarrow ECP/\mathcal{T};
20 return ECP
```

2.2.4. Parametric Bootstrap Simultaneous CI

From Section 2.2.3, it is easily seen that the current data are repeatedly used in calculating hybrid generalized fiducial simultaneous confidence region. To address the issue, following [22], we consider the following parametric bootstrap simultaneous confidence region for ϕ and ψ .

To this end, we denote

$$T_{\phi} = \frac{\hat{\phi} - \phi}{\sqrt{\hat{\text{var}}(\hat{\phi})}}, \quad T_{\psi} = \frac{\hat{\psi} - \psi}{\sqrt{\hat{\text{var}}(\hat{\psi})}}, \quad T_{B} = \max(T_{\phi}, T_{\psi}). \tag{22}$$

Let $q_{1-\alpha}$ be the approximate $1-\alpha$ percentile point of statistic T_B 's distribution. Then, the lower limits of an approximate $100(1-\alpha)\%$ one-sided simultaneous confidence region for ϕ and ψ are given as

$$L_{\phi}^{B} = \hat{\phi} - q_{1-\alpha} \sqrt{\hat{\operatorname{var}}(\hat{\phi})}, \quad L_{\psi}^{B} = \hat{\psi} - q_{1-\alpha} \sqrt{\hat{\operatorname{var}}(\hat{\psi})}, \tag{23}$$

Mathematics 2022, 10, 167 9 of 23

respectively. Clearly, the challenge for evaluating L_{ϕ}^{B} and L_{ψ}^{B} is to calculate $q_{1-\alpha}$. While T_{ϕ} and T_{ψ} are asymptotically distributed as the standard normal distribution, it is rather difficult to compute $q_{1-\alpha}$ from the joint distribution of T_{ϕ} and T_{ψ} in that T_{ϕ} is not independent of T_{ψ} . To solve the problem, the parametric bootstrap approach given in [22] is adopted to approximate the distribution of statistic T_{B} .

Let s_k^2 denote the observed values of S_k^2 for k=E,P,R. Note that the distribution of T_B depends on the nuisance parameters σ_k^2 , but it dose not depend on the values of μ_k for k=E,R,P. Therefore, when inducing the distribution of T_B , we can take $\mu_k=0$ for k=E,R,P. The parametric bootstrap distribution of T_B can be obtained from its resampling distribution when the values of σ_k^2 's are replaced by s_k^2 and the values of μ_k 's are taken as zero. It follows from Equation (22) that the parametric bootstrap pivotal quantity for statistic T_B is

$$T_B^{PI} = \max\left(\frac{\bar{X}_E^B - \bar{X}_R^B}{\sqrt{\hat{var}_B(\hat{\phi})}}, \frac{\bar{X}_R^B - \bar{X}_P^B}{\sqrt{\hat{var}_B(\hat{\psi})}}\right), \tag{24}$$

where

$$\hat{\text{var}}_B(\hat{\phi}) = \frac{S_{E,B}^2}{n_E} + \frac{S_{R,B}^2}{n_R}, \quad \hat{\text{var}}_B(\hat{\psi}) = \frac{S_{R,B}^2}{n_R} + \frac{S_{P,B}^2}{n_P}, \tag{25}$$

$$\bar{X}_k^B \sim \mathcal{N}\left(0, \frac{s_k^2}{n_k}\right), \ S_{k,B}^2 \sim \frac{s_k^2}{n_k - 1} \chi^2(n_k - 1).$$
 (26)

The distribution of T_B^{PI} provides a parametric bootstrap approximation to the distribution of T_B . Let $q_{1-\alpha}^B$ be the $1-\alpha$ percentile point of bootstrap sample observations of T_B^{PI} . Thus, an approximate $100(1-\alpha)\%$ one-sided parametric bootstrap simultaneous confidence region for (ϕ, ψ) is given by

$$\{(\phi,\psi):\phi\in(L_{\phi}^B,\infty),\ \psi\in(L_{\psi}^B,\infty)\},\tag{27}$$

where $L_{\phi}^B = \hat{\phi} - q_{1-\alpha}^B \sqrt{\text{var}(\hat{\phi})}$, and $L_{\psi}^B = \hat{\psi} - q_{1-\alpha}^B \sqrt{\text{var}(\hat{\psi})}$. The above defined simultaneous confidence region is referred to as PB-SCI method.

Theorem 2. Let X_{k1}, \ldots, X_{kn_k} be an independent and identically distributed sample from $\mathcal{N}(\mu_k, \sigma_k^2)$ for k = P, R, E. Let $n = n_E + n_R + n_P$. Assume that there is a $r_k \in (0,1)$ such that $r_k = \lim_{n \to \infty} n_k / n$ holds for k = E, R, P. Then, we have

$$\Pr(\phi \ge L_{\phi}^{B}, \psi \ge L_{\psi}^{B}) \approx 1 - \alpha. \tag{28}$$

Proof of Theorem 2 is given in Appendix B. Theorem 2 shows that the preceding proposed parametric bootstrap simultaneous confidence region can asymptotically attain the pre-specified confidence level $1-\alpha$.

Mathematics 2022, 10, 167 10 of 23

2.3. Sample Size Determination

Due to the duality of hypothesis testing and interval estimation, we can obtain the rejection regions at the significance level $\alpha = 0.05$ from the above proposed four simultaneous confidence regions, which are given as $\mathbb{D}_W = \{(x_E, x_R, x_P) : \bar{x}_E - \bar{x}_R > \}$ $-\hat{\Delta}_{NI} + z_{1-\alpha/2} \sqrt{\hat{var}(\hat{\phi})} \cup \bar{x}_R - \bar{x}_P > \hat{\Delta} + z_{1-\alpha/2} \sqrt{\hat{var}(\hat{\psi})}, \mathbb{D}_F = \{(x_E, x_R, x_P) : \bar{x}_E - \bar{x}_R > \hat{x}_F = (x_E,$ $-\hat{\Delta}_{\mathrm{NI}} + d_{1-\alpha}\sqrt{\mathrm{var}(\hat{\phi})} \cup \bar{x}_R - \bar{x}_P > \hat{\Delta} + d_{1-\alpha}\sqrt{\mathrm{var}(\hat{\psi})}\}, \, \mathbb{D}_H = \{(x_E, x_R, x_P) : \bar{x}_E - \bar{x}_R > 0\}$ $-\hat{\Delta}_{NI} + \sqrt{(\hat{\mu}_E - l_E)^2 + (u_R - \hat{\mu}_R)^2} \cup \bar{x}_R - \bar{x}_P > \hat{\Delta} + \sqrt{(\hat{\mu}_R - l_R)^2 + (u_P - \hat{\mu}_P)^2} \}, \, \mathbb{D}_B =$ $\{(x_E, x_R, x_P) : \bar{x}_E - \bar{x}_R > -\hat{\Delta}_{NI} + q_{1-\alpha}^B \sqrt{\hat{var}(\hat{\phi})} \cup \bar{x}_R - \bar{x}_P > \hat{\Delta} + q_{1-\alpha}^B \sqrt{\hat{var}(\hat{\psi})} \}, \text{ respec-}$ tively, where \bar{x}_k denotes the sample mean for k = E, R, P, and \mathbb{D}_W , \mathbb{D}_F , \mathbb{D}_H and \mathbb{D}_B correspond to the WB-SCI, GF-SCI, HG-SCI and PB-SCI, respectively. The family wise error rate can be controlled at the significance level α via $\Pr(\mathbb{D}_{\ell}|H^0_{NI},K^0_{AS}) \approx \alpha$, and the power of $1 - \beta$ can be computed by $\Pr(\mathbb{D}_{\ell}|H^1_{NI},K^1_{AS}) \approx 1 - \beta$ for $\ell = W$, F, H and B. The required sample size $n = n_E + n_R + n_P$ for attaining the pre-specified power $1 - \beta$ at the given significance level α can be obtained by finding the solution to $\Pr(\mathbb{D}_{\ell}|H^1_{NI},K^1_{AS})\approx 1-\beta$ with respect to n for $\ell = W$, F, H and B. There is not a closed-form for n. To this end, Algorithm 3 is presented to compute the sample size n with the assumption: $n_E: n_R: n_P = c_1: c_2: 1$ as follows.

Algorithm 3: Computing sample size.

```
Input: Parameters r, \Delta_{NI}, \mu_R, \beta_0 = 1 - \beta, \epsilon_1, \epsilon_2, c_1, c_2 and \sigma_k^2 for k = E, R, P
    Output: The required sample size
 1 Initialize: \mu_E = \mu_R - \Delta_{NI} + \epsilon_1, \mu_P = \mu_R - \Delta_{NI}/r - \epsilon_2, a_0 = 0.2,
    n^{\ell} = (c_1 + c_2 + 1)n_p for \ell = W, F, H and B with n_E = c_1 n_P, n_R = c_2 n_P and n_p = 1;
 2 while a_0 > 0.01 do
          Generate X_{k1}, \ldots, X_{kn_k} from \mathcal{N}(\mu_k, \sigma_k^2) for k = E, R, P;
          \bar{X}_k \leftarrow n_k^{-1} \sum_{j=1}^{n_k} X_{kj} \text{ for } k = E, R, P;
         S_k^2 \leftarrow (n_k - 1)^{-1} \sum_{j=1}^{n_k} (X_{kj} - \bar{X}_k)^2 for k = E, R, P;
          p_{\ell}^* \leftarrow \Pr(\mathbb{D}_{\ell}|H_{\text{NI}}^1, H_{\text{AS}}^1) \text{ for } \ell = \text{W, F, H, B;}
 6
          if p_{\ell}^* \leq \beta_0 then
          n^{\ell} \leftarrow n^{\ell} + 1 \text{ for } \ell = W, F, H, B;
 8
10
          n^{\ell} \leftarrow n^{\ell} - 1 \text{ for } \ell = W, F, H, B;
11
12
         a_0 \leftarrow |p_\ell^* - \beta_0| for \ell = W, F, H, B;
13
15 return n^{\ell} for \ell = W, F, H, B
```

3. Results

Simulation examples and a real example are provided to illustrate the efficiency of the preceding proposed methods in terms of empirical coverage probabilities. The lower limits of the approximate 95% one-sided simultaneous confidence region for the proposed methods are given in an application to mildly asthmatic study. Empirical results demonstrated that the GF-SCI and HG-SCI perform better than the WB-SCI and PB-SCI.

3.1. Simulation Results

In this section, two simulation studies are conducted to investigate the performance of the preceding proposed methodologies. Mathematics 2022, 10, 167 11 of 23

To compare the performance of the proposed simultaneous confidence regions in terms of their empirical coverage probabilities (ECPs), we conduct the first simulation study for $\mathcal{T}=5000$ replications. In this simulation study, we take $v_R=4$, $v_P=1.5$, $\xi_R^2=1$, $\xi_P^2=2$ and $m_P=m_R=20$ in generating historical data for determining Δ_{NI} and $\Delta=\Delta_{NI}/r$ with M=5000, and $\sigma_P^2=2.0$, $\sigma_E^2=1.5$, $\sigma_R^2=0.5$, 1.0 and 3.0, $\mu_R=3.0$, 4.0 and 5.0, $\mu_E=\mu_R-\Delta_{NI}$ and $\mu_P=\mu_R-\Delta$ indicating that the true values ϕ_0 and ψ_0 of ϕ and ψ are $\phi_0=-\Delta_{NI}$ and $\psi_0=\Delta$, respectively, in sampling the current trial data. We set r=0.3 together with $\lambda=0.6$ and 0.7, and r=0.6 together with $\lambda=0.3$ and 0.4, corresponding to the cases that $\Delta>\Delta_h>\Delta_{NI}$ and $\Delta=\Delta_h>\Delta_{NI}$, respectively; and r=1.0 together with $\lambda=0.0$ corresponding to the case that $\Delta=\Delta_h=\Delta_{NI}$. We consider $n=n_E+n_R+n_P=60$, 150 and 300 with the following three allocation proportions: (L1) the balanced design $n_E:n_R:n_P=1:1:1$, (L2) the unbalanced design $n_E:n_R:n_P=2:2:1$ and (L3) the unbalanced design $n_E:n_R:n_P=3:2:1$.

For each of the aforementioned settings, the preceding proposed three algorithms for evaluating simultaneous confidence regions for ϕ and ψ are used to compute ECPs at the significance level $\alpha=0.05$. Results for n=60, 150 and 300 are given in Tables 1–3, respectively. Inspection of Tables 1–3 indicates that (i) the GF-SCI and HG-SCI methods behave better than the WB-SCI and PB-SCI methods regardless of the values of r, λ , μ_R and σ_R^2 and the sample sizes in that the ECPs of the former are quite closer to the pre-specified confidence level 95% than those of the latter; (ii) when the sample size n is small, the PB-SCI and WB-SCI methods are liberal regardless of the balanced and unbalanced designs in that their ECPs are less than the pre-specified confidence level 95%, but the PB-SCI method behaves better than the WB-SCI method in that the ECPs for the former are closer to the pre-specified confidence level than those for the latter; (iii) when the sample size is large (e.g., n=150 and 300), the PB-SCI method has the same performance as the GF-SCI and HG-SCI methods, but the WB-SCI method is liberal.

To investigate the performance of the sample size determination method introduced above (i.e., Algorithm 3), we conduct the second simulation study. Here the same settings as those given in the first simulation study including r and λ are used to generate the historical data in determining the NI margin: $\Delta_{\rm NI}=(1-\lambda)\Delta_h$ and $\Delta=(1-\lambda)\Delta_h/r$, i.e., $\nu_R=4$, $\nu_P=1.5$, $\xi_R^2=1$, $\xi_P^2=2$, $m_P=m_R=20$, M=5000, r=0.3 and $\lambda=0.6$ and 0.7, r=0.6 and $\lambda=0.3$ and 0.4, and r=1.0 and $\lambda=0.0$. To calculate the required sample size for attaining the power $\beta_0=1-\beta=0.95$, we consider the following settings: $\sigma_P^2=2.0$, $\sigma_E^2=1.5$, $\sigma_R^2=0.5$, 1.0 and 3.0, $\mu_R=3$, 4 and 5, $\mu_E=\mu_R-\Delta_{\rm NI}+\epsilon_1$, $\mu_P=\mu_R-\Delta-\epsilon_2$ with $2\epsilon_1=\epsilon_2=0.4$ and 0.6, and four allocation proportions: $n_E:n_R:n_P=1:1:1$ (the balanced design), and 2:1:1, 2:2:1 and 3:2:1 (the unbalanced design).

For each of the aforementioned settings, the above introduced Algorithm 3 is adopted to calculate the required sample sizes for the WB-SCI, GF-SCI, HG-SCI and PB-SCI methods. The powers $\Pr(\mathbb{D}_{\ell}|H_{\mathrm{NI}}^1,H_{\mathrm{AS}}^1)$ for $\ell=W$, F, H and B are computed by Monte Carlo method with $\mathcal{T}=5000$ random observations. Based on the required sample size, we also compute its corresponding empirical power for comparing the accuracy of the proposed sample size determination. Results for $\alpha=0.05$ are presented in Tables 4 and 5. Examination of Tables 4 and 5 shows that (i) the derived sample size formulae are rather accurate regardless of the values of r, λ and ϵ_2 , the balanced and unbalanced designs in that their corresponding empirical powers are quite close to the pre-specified true powers; (ii) the sample size increases as σ_R^2 increases; (iii) the value of μ_R has little effect on the sample size; (iv) the sample size decreases as ϵ_2 increases.

Table 1. Empirical coverage probabilities of four 95% simultaneous confidence regions for ϕ and ψ under various settings with n=60.

				n_E	$: n_R : n_1$	p = 1:1	:1	n_E	$: n_R : n$	p = 2:2	2:1	n_E	$:n_R:n_I$	P = 3:2	2:1
r	λ	μ_R	σ_R^2	GF	HG	WB	PB	GF	HG	WB	PB	GF	HG	WB	PB
0.3	0.6	3	0.5	95.00	95.06	93.90	94.68	95.16	95.14	93.26	94.62	95.22	95.36	93.42	94.78
			1	95.34	95.44	94.02	94.66	95.34	95.28	93.34	94.66	95.52	95.60	93.62	94.98
			3	95.44	95.42	94.10	94.80	95.70	95.86	94.34	95.18	96.02	96.04	94.48	95.36
		4	0.5	94.98	95.10	93.62	94.50	95.42	95.66	93.82	95.14	95.20	95.32	93.38	94.74
			1	95.22	95.36	93.64	94.48	95.50	95.60	93.92	95.12	95.80	95.78	93.74	95.16
			3	95.44	95.60	94.26	95.04	95.58	95.64	94.26	95.04	95.72	95.76	93.90	95.14
		5	0.5	95.52	95.66	94.16	95.16	95.44	95.48	93.98	94.98	95.64	95.44	93.46	95.06
			1	95.70	95.74	94.40	95.12	95.54	95.44	93.90	94.98	95.86	95.88	93.98	95.28
			3	95.94	95.88	94.44	95.20	96.00	96.12	94.42	95.22	96.12	96.10	94.18	95.38
	0.7	3	0.5	95.46	95.56	94.16	95.00	95.60	95.70	94.10	95.24	95.64	95.52	93.84	95.14
			1	95.38	95.48	93.88	94.66	95.22	95.38	93.68	94.66	95.58	95.64	93.78	94.92
			3	95.50	95.62	94.18	95.04	95.36	95.46	93.86	94.88	96.20	96.44	94.46	95.42
		4	0.5	95.58	95.58	94.22	95.24	94.54	94.72	92.80	94.18	95.64	95.74	93.66	95.10
			1	95.86	95.92	94.28	95.12	95.82	95.76	94.12	95.32	95.36	95.42	93.50	94.70
			3	95.30	95.42	93.86	94.76	95.44	95.56	93.96	94.82	95.82	95.86	94.38	95.12
		5	0.5	95.68	95.82	94.38	95.42	95.26	95.46	93.76	95.06	95.34	95.46	93.32	95.12
			1	95.90	95.94	94.42	95.36	95.26	95.38	93.54	94.58	95.54	95.76	93.72	95.16
			3	95.92	95.94	94.46	95.34	95.64	95.62	93.94	94.86	95.82	95.82	94.06	95.10
0.6	0.3	3	0.5	94.80	94.96	93.48	94.32	94.84	95.00	93.26	94.42	95.12	95.16	93.16	94.44
			1	95.34	95.48	94.20	94.74	95.62	95.82	93.96	95.10	95.22	95.28	93.36	94.68
			3	95.62	95.64	94.24	95.10	96.08	96.26	94.76	95.54	95.40	95.46	93.40	94.90
		4	0.5	95.66	95.80	94.38	95.22	95.52	95.68	93.78	95.16	95.18	95.38	93.34	94.52
			1	95.26	95.52	93.72	94.74	95.06	95.24	93.36	94.60	95.86	95.98	94.26	95.38
		_	3	95.64	95.80	94.26	94.96	95.78	95.80	94.18	95.18	95.38	95.62	93.56	94.74
		5	0.5	94.60	94.70	93.44	94.18	94.90	95.16	93.46	94.62	95.04	95.00	92.86	94.42
			1	95.32	95.36	93.88	94.76	95.54	95.52 05.74	93.72	94.72	95.94	96.04	93.98	95.44
	0.4	3	3 0.5	95.18 94.84	95.26 94.92	93.68 93.56	94.60	95.66 95.68	95.74 95.74	94.38 94.08	95.10	95.66 95.48	95.58 95.58	93.80 93.48	94.94 95.02
	0.4	3	1	94.64 95.14	95.36	93.94	94.42 94.78	95.08	95.74	94.08	95.28 94.96	95.48	95.36	93.46	93.02
			3	95.14	95.94	93.94	95.52	95.26	95.26	94.12	95.18	95.60	95.60	93.86	95.10
		4	0.5	95.92 95.28	95.94	93.88	93.32	95.04	95.04	93.26	93.18	95.80	95.16	93.46	93.10
		4	1	95.28	95.98	94.26	95.22	95.10	96.04	94.28	95.46	95.50	95.50	93.40	94.70
			3	95.50	95.64	94.00	94.82	95.72	95.90	94.58	95.40	95.58	95.60	93.92	94.98
		5	0.5	95.82	95.84	94.42	95.34	95.38	95.48	93.84	95.00	95.28	95.30	93.40	94.72
		3	1	94.56	94.66	93.56	94.08	95.66	95.78	94.00	95.00	95.16	95.36	93.44	94.76
			3	96.02	96.04	94.52	95.38	95.08	95.26	93.82	94.44	95.48	95.32	93.82	94.58
1.0	0.0	3	0.5	95.52	95.60	94.20	95.08	95.38	95.38	93.86	95.00	95.68	95.88	94.00	95.16
1.0	0.0	3	1	95.64	95.70	94.10	95.02	94.98	95.16	93.54	94.44	95.46	95.58	93.28	94.74
			3	95.64	95.68	94.20	94.92	95.36	95.46	94.00	94.82	95.56	95.44	93.74	94.80
		4	0.5	95.32	95.46	93.90	94.90	95.52	95.60	94.08	95.26	95.10	95.52	93.20	94.78
		•	1	95.54	95.54	94.18	94.92	95.34	95.52	93.88	94.98	95.04	95.06	93.20	94.42
			3	95.68	95.68	94.32	95.02	95.28	95.46	94.14	94.78	95.68	95.62	94.06	94.88
		5	0.5	95.22	95.42	93.72	94.64	95.92	96.04	94.34	95.58	95.70	95.68	93.76	95.18
		0	1	95.66	95.62	94.38	95.18	95.46	95.52	93.84	94.90	95.30	95.36	93.60	94.96
			3	95.86	96.02	94.56	95.26	95.62	95.60	93.92	94.92	96.40	96.30	94.44	95.58
				, , , , , ,	, o.o <u>-</u>	, 1.00	70.20	70.02				, 0.10	, 0.00	,	

Table 2. Empirical coverage probabilities of four 95% simultaneous confidence regions for ϕ and ψ under various settings with n=150.

				$\frac{n_E:n_R:n_P=1:1:1}{\text{GF HG WB PB}}$			n_E	$: n_R : n_1$	p = 2:2	2:1	$n_E:n_R:n_P=3:2:1$				
r	λ	μ_R	σ_R^2	GF	HG	WB	PB	GF	HG	WB	PB	GF	HG	WB	PB
0.3	0.6	3	0.5	95.26	95.24	94.88	95.22	95.56	95.60	95.16	95.54	94.72	94.88	93.90	94.66
			1	94.66	94.70	94.10	94.46	94.68	94.86	94.06	94.44	95.24	95.32	94.42	94.88
			3	95.44	95.50	95.02	95.30	95.46	95.64	95.04	95.30	95.74	95.74	94.96	95.54
		4	0.5	95.02	95.08	94.50	94.76	94.78	94.92	94.26	94.70	95.42	95.38	94.72	95.38
			1	96.02	96.16	95.56	95.76	95.44	95.42	94.72	95.18	95.90	95.88	95.12	95.56
			3	95.42	95.42	94.74	95.10	95.02	95.06	94.48	94.88	95.20	95.34	94.66	94.98
		5	0.5	95.20	95.22	94.80	95.10	94.96	95.12	94.60	94.98	95.24	95.44	94.66	95.06
			1	94.66	94.76	94.26	94.54	95.08	95.20	94.52	94.90	95.50	95.48	94.86	95.30
			3	94.82	94.82	94.12	94.42	95.50	95.56	94.84	95.24	95.80	95.66	95.20	95.58
	0.7	3	0.5	95.16	95.28	94.74	95.00	95.70	95.66	95.02	95.64	95.04	95.14	94.50	94.96
			1	94.92	94.96	94.18	94.70	94.92	94.94	94.38	94.62	94.76	94.86	93.98	94.46
			3	95.48	95.42	94.94	95.20	95.08	95.14	94.60	94.88	95.40	95.52	94.98	95.26
		4	0.5	94.82	94.88	94.20	94.68	94.96	94.92	94.34	94.80	94.60	94.78	93.94	94.28
			1	94.50	94.56	94.08	94.30	95.46	95.50	94.78	95.08	95.10	95.22	94.32	94.88
			3	94.98	95.06	94.50	94.70	95.32	95.30	94.66	95.22	95.76	95.68	95.06	95.38
		5	0.5	95.14	95.20	94.64	95.06	95.36	95.32	94.78	95.08	95.22	95.26	94.54	95.08
			1	95.36	95.56	95.00	95.26	95.04	95.18	94.64	94.96	95.38	95.32	94.56	95.12
			3	95.16	95.06	94.56	94.88	95.24	95.26	94.62	94.86	95.42	95.52	94.86	95.12
0.6	0.3	3	0.5	95.46	95.52	94.86	95.28	95.24	95.24	94.46	95.00	94.82	94.88	94.16	94.82
			1	95.06	95.20	94.58	94.94	95.08	95.08	94.56	94.98	95.16	95.04	94.42	94.86
			3	95.14	95.04	94.70	94.92	94.84	94.78	94.22	94.54	95.46	95.54	94.78	95.26
		4	0.5	95.08	95.20	94.80	95.14	95.24	95.38	94.74	95.14	95.04	95.02	94.36	94.92
			1	95.40	95.42	94.92	95.10	95.50	95.62	94.92	95.28	95.30	95.24	94.40	95.08
			3	95.28	95.34	94.78	95.22	95.00	95.18	94.38	94.82	95.18	95.28	94.62	95.06
		5	0.5	95.52	95.44	94.98	95.34	94.72	94.66	93.98	94.42	94.84	94.86	94.22	94.58
			1	95.20	95.26	94.66	95.00	95.54	95.48	94.76	95.08	95.30	95.20	94.66	95.04
			3	95.32	95.32	94.82	95.08	95.60	95.66	94.94	95.32	95.58	95.60	95.02	95.36
	0.4	3	0.5	95.46	95.52	94.94	95.16	94.76	94.80	94.08	94.68	94.48	94.48	93.68	94.30
			1	94.82	94.84	94.32	94.56	94.68	94.80	93.82	94.54	95.64	95.64	94.88	95.38
			3	95.16	95.28	94.46	94.92	94.86	94.94	94.32	94.66	95.26	95.32	94.68	94.94
		4	0.5	95.54	95.70	94.92	95.32	94.82	94.82	94.22	94.56	94.68	94.64	94.10	94.50
			1	95.04	95.12	94.48	94.88	95.04	95.06	94.52	94.94	94.84	94.82	93.90	94.40
		_	3	95.06	95.06	94.62	94.88	95.40	95.36	94.86	95.04	95.38	95.46	94.82	95.14
		5	0.5	95.68	95.62	95.22	95.62	94.90	94.98	94.20	94.64	95.74	95.72	95.12	95.58
			1	95.22	95.32	94.90	95.10	95.16	95.20	94.46	94.86	94.52	94.54	93.96	94.40
1.0	0.0	2	3	94.88	95.08	94.50	94.78	95.54	95.64	95.08	95.36	94.92	94.94	94.14	94.50
1.0	0.0	3	0.5	95.36	95.54	94.80	95.22	95.12	95.10	94.42	94.92	95.06	95.14	94.44	95.00
			1	94.60	94.78	93.94	94.46	95.20	95.40	94.80	95.12	95.14	95.24	94.34	94.86
			3	95.48	95.58	95.08	95.32	95.66	95.64	95.10	95.40	95.60	95.44	94.74	95.28
		4	0.5	95.36	95.32	94.78	95.06	95.00	95.02	94.40	94.80	95.04	95.16	94.44	94.86
			1	95.18	95.14	94.66	94.90	95.08	95.14	94.48	94.96	95.22	95.34	94.66	95.18
		_	3	95.64	95.60	95.26	95.50	95.06	95.10	94.78	94.92	95.38	95.44	94.88	95.18
		5	0.5	95.00	95.00	94.50	94.80	95.26	95.30	94.54	95.22	95.34	95.44	94.72	95.22
			1	95.54	95.66	95.18	95.44	95.40	95.54	94.66	95.04	95.34	95.34	94.68	95.10
			3	95.04	95.12	94.44	94.70	95.12	95.20	94.62	94.88	95.44	95.48	94.80	95.16

Table 3. Empirical coverage probabilities of four 95% simultaneous confidence regions for ϕ and ψ under various settings with n=300.

				n _E	$:n_R:n_1$	p = 1:1	:1	n _E	$:n_R:n_1$	p = 2:2	2:1	n _E	$:n_R:n_1$	p = 3:2	2:1
r	λ	μ_R	σ_R^2	GF	HG	WB	PB	GF	HG	WB	PB	GF	HG	WB	PB
0.3	0.6	3	0.5	95.08	95.02	94.92	94.96	95.02	95.02	94.66	95.02	95.22	95.34	94.98	95.20
			1	95.58	95.64	95.40	95.46	94.84	94.82	94.54	94.76	95.16	95.20	94.94	95.12
			3	94.48	94.50	94.14	94.24	95.26	95.30	95.04	95.20	95.56	95.58	95.22	95.38
		4	0.5	95.40	95.38	95.12	95.28	94.76	94.84	94.42	94.72	94.18	94.38	93.92	94.18
			1	94.94	94.92	94.70	94.88	94.60	94.64	94.32	94.44	95.50	95.42	95.10	95.32
			3	95.32	95.32	94.88	95.16	95.24	95.28	95.10	95.16	94.74	94.82	94.50	94.70
		5	0.5	95.08	95.14	94.88	95.02	94.94	94.92	94.60	94.86	95.08	95.16	94.76	94.98
			1	95.18	95.18	94.84	95.00	95.42	95.32	95.14	95.36	95.72	95.72	95.40	95.60
			3	94.74	94.82	94.48	94.78	95.28	95.28	94.96	95.12	94.92	94.84	94.62	94.80
	0.7	3	0.5	95.04	95.08	94.86	94.92	94.84	94.84	94.54	94.76	95.28	95.26	95.04	95.16
			1	95.58	95.62	95.30	95.44	95.10	94.98	94.86	94.94	95.46	95.44	95.12	95.36
			3	95.32	95.34	94.98	95.14	95.50	95.48	95.28	95.40	95.48	95.46	95.12	95.30
		4	0.5	94.94	94.92	94.70	94.80	94.78	94.90	94.54	94.76	95.22	95.12	94.86	95.16
			1	95.42	95.46	95.32	95.42	95.12	95.16	94.92	95.20	95.18	95.18	94.92	95.12
			3	95.14	95.34	95.02	95.02	94.72	94.74	94.66	94.72	95.22	95.18	94.96	95.10
		5	0.5	94.86	94.92	94.76	94.92	94.98	95.00	94.78	94.90	95.20	95.26	94.80	95.14
			1	95.10	95.14	94.88	95.10	95.22	95.16	94.98	95.12	95.02	95.04	94.52	94.80
			3	95.40	95.32	95.08	95.38	95.26	95.40	94.94	95.08	94.94	94.94	94.62	94.72
0.6	0.3	3	0.5	95.56	95.70	95.36	95.66	94.92	95.06	94.68	94.94	94.46	94.60	94.08	94.34
			1	95.30	95.26	95.06	95.22	95.68	95.76	95.34	95.58	95.06	95.24	94.90	95.12
			3	94.88	95.00	94.76	94.86	95.14	95.20	94.90	95.06	94.88	94.94	94.64	94.92
		4	0.5	95.38	95.40	95.08	95.24	95.04	95.20	94.82	95.06	94.98	94.94	94.58	94.72
			1	94.92	95.00	94.64	94.82	94.84	94.92	94.60	94.86	95.04	95.10	94.82	94.96
			3	95.50	95.52	95.26	95.32	95.24	95.26	95.10	95.24	94.84	94.86	94.56	94.72
		5	0.5	95.50	95.56	95.34	95.36	94.94	94.86	94.72	94.84	95.02	95.16	94.80	94.96
			1	95.10	94.92	94.92	94.92	95.38	95.40	95.14	95.26	94.72	94.82	94.38	94.66
			3	95.00	95.06	94.84	94.88	94.92	94.96	94.68	94.88	94.94	95.00	94.52	94.66
	0.4	3	0.5	95.18	95.26	94.86	95.02	95.10	95.20	94.86	95.04	94.92	94.94	94.48	94.72
			1	95.16	95.18	94.94	95.10	94.92	94.98	94.70	94.80	94.72	94.76	94.42	94.64
			3	94.52	94.66	94.30	94.24	94.88	94.98	94.74	94.72	95.36	95.34	95.06	95.14
		4	0.5	95.26	95.24	94.96	95.18	95.12	95.06	94.82	95.02	95.06	95.10	94.78	95.06
			1	95.34	95.38	95.22	95.22	95.22	95.18	94.88	95.18	94.96	94.94	94.56	94.76
		_	3	94.96	94.80	94.62	94.78	94.52	94.64	94.26	94.52	95.20	95.18	94.94	95.02
		5	0.5	94.46	94.58	94.38	94.48	95.42	95.38	94.94	95.30	95.02	95.08	94.66	94.94
			1	95.26	95.38	95.06	95.26	94.74	94.92	94.30	94.44	94.56	94.74	94.34	94.54
		_	3	95.20	95.34	94.88	95.08	95.12	95.14	94.82	94.90	94.70	94.80	94.32	94.56
1.0	0.0	3	0.5	95.26	95.42	94.98	95.20	95.14	95.24	94.76	94.96	95.42	95.50	95.18	95.36
			1	95.48	95.46	95.28	95.36	94.30	94.30	93.90	94.16	94.96	95.00	94.56	94.80
			3	94.92	94.98	94.88	95.06	94.96	94.96	94.70	94.94	94.68	94.72	94.36	94.54
		4	0.5	94.90	94.86	94.56	94.72	95.30	95.34	95.06	95.16	95.32	95.48	95.00	95.22
			1	95.38	95.48	95.30	95.38	94.98	95.02	94.82	95.02	94.82	95.04	94.58	94.90
		_	3	95.04	95.06	94.82	95.02	94.88	94.98	94.68	94.76	95.12	95.20	94.64	94.82
		5	0.5	95.24	95.32	95.00	95.14	95.06	95.06	94.80	95.02	95.16	95.20	94.94	95.18
			1	94.50	94.50	94.26	94.36	95.10	95.10	94.78	95.04	94.60	94.68	94.42	94.48
			3	94.82	94.78	94.48	94.66	94.64	94.60	94.40	94.56	94.58	94.60	94.08	94.38

Mathematics **2022**, 10, 167 15 of 23

Table 4. The required sample sizes n for true power $1 - \beta = 95\%$ and its empirical powers p^* under various settings with $\epsilon = 0.4$.

				$n_E: n_R: n_P = 1:1:1$							$n_E: n_R: n_P = 2:1:1$								
				GF-	-SCI	HG	-SCI	WB	-SCI	PB-	·SCI	GF-	SCI	HG-	-SCI	WB-	SCI	PB-	SCI
r	λ	μ_R	σ_R^2	n_0	<i>p</i> *	n_0	<i>p</i> *	n_0	p^*	n_0	p^*	n_0	p^*	n_0	p^*	n_0	p^*	n_0	<i>p</i> *
0.3	0.6	3	0.5	486	95.78	486	95.70	450	94.92	468	95.00	548	95.20	548	95.08	548	95.20	548	95.22
			1	525	94.74	525	94.86	525	95.06	525	94.98	648	95.64	648	95.60	600	94.04	600	94.20
			3	786	94.84	786	94.70	750	94.32	786	95.38	1000	95.64	1000	95.56	948	94.88	1000	95.70
		4	0.5	486	95.52	486	95.48	450	94.12		94.40	548	95.26	548	95.28	500	94.18	548	95.54
			1	525	94.60	525	94.68	525	95.10	525	95.22	600	94.34	600	94.32	600	94.58	600	94.34
			3	750	94.36	750	94.40	750	94.42	786	94.88	1000	95.76	1000	95.74	1000	95.74	948	94.64
		5	0.5	450	94.20	450	94.06	450	94.08	450	94.40	500	94.10	548	95.52	500	94.40	548	95.38
			1	525	94.72	525	94.76	525	94.94	525	94.76	600	94.42	596	94.06	600	94.42	600	94.82
			3	825	95.96	786	94.88		95.92	825	95.86	1000	95.90	948	94.80	948	95.12	1000	95.48
	0.7	3	0.5	450	94.12	468	94.90		94.30		94.04		95.18		95.28	524	94.04	500	94.14
			1	525	94.40	525	94.50	525	94.38	525	94.56		94.10	600	94.48	600	94.42	600	94.66
			3	786	95.46		95.90		95.90		95.08			1000		1000	95.58	948	94.82
		4	0.5	486	95.44		95.52		94.70	450	94.38	548	95.52	548	95.48	500	94.18	548	95.00
			1	525	94.92	525	94.86	525	94.58	525	94.04	648	95.46		95.50	600	95.00	600	94.08
			3	825	95.86	825	95.78		94.24		95.86	1000	95.62	1000		1000	95.88	1000	95.78
		5	0.5	450	94.46	450	94.32		94.68	450	94.02		94.38	548	95.66	500	94.40	548	95.58
			1	525	94.22	561	95.54		94.66	525	94.34		94.04	600	94.66	600	94.18	600	94.40
			3	825	95.64		94.02		94.64				95.72	1000		1000	95.36	1000	95.46
0.6	0.3	3	0.5	450	94.12	450	94.04		94.60		94.36	548	94.88	548	94.88	548	95.78	548	95.48
			1	525	95.10	525	95.04		94.78	525	94.20		94.34		94.40	600	94.64		95.48
			3	825	95.98	825	95.92		95.72	786	95.18	1000	95.62	1000		1000	95.92	1000	
		4	0.5	486	95.76	486	95.72			450	94.26	500	94.36	500	94.26	500	94.18	548	95.20
			1	525	94.72	525	94.60		94.52		95.06		94.18	600	94.36	600		600	94.14
			3	786	94.80	786	94.62		95.92		94.10	1000	95.90	1000		1000	95.74		95.14
		5	0.5	450	94.04	486	95.44		94.54	486	95.68	548	95.52	548	95.62	524	94.76		94.72
			1	525	95.02	525	94.74		94.88		94.42		95.62	648	95.50	600	94.06		95.56
			3	825	95.62	825	95.74		94.24		94.32		95.12	1000		948	94.94	1000	95.56
	0.4	3	0.5	486	95.24	486	95.18		94.48	450	94.46	500	94.12	548	95.34	500	94.26	548	94.98
			1	525	94.50	525	94.42		94.62		94.90	600	94.04	648	95.54	600	94.36		95.86
			3	825	95.56	825	95.70		95.92		95.20	1000	95.98	1000		1000	95.84		95.70
		4	0.5	450	94.74	450	94.66	450	94.44		94.34		95.24	548	95.20	548	95.50	548	95.52
			1	525	94.50	525	94.56		95.34		94.90	600	94.44		94.34	648	95.66	600	94.16
		_	3	786		786	94.76			750			95.60			1000			95.90
		5	0.5	486	95.18		95.08		94.44		94.14		95.48		95.46	548	95.62		95.32
			1	525	94.78		94.82		94.66		94.42		94.36		94.36	600	94.32		94.42
		_	3	786	95.54		95.58		95.38		95.96		95.74			1000	95.94		94.14
1.0	0.0	3	0.5	450	94.22	450	94.08		94.40		94.88		95.06		95.02	548	95.50		94.06
			1	525	94.52		94.52		95.18		94.64		94.20	600	94.20	600	94.72	600	94.44
			3	825	95.72		95.68		95.36		94.80		95.94		94.66	900	94.42	1000	95.54
		4	0.5	450	94.70	450	94.66		94.82		94.04		94.92		95.18	500	94.02		95.22
			1	525	94.32		94.20		94.92		94.38			648	95.74	600	94.48		94.36
		_	3	825	95.90		94.88		94.34		95.36		95.80	1000	95.96	1000	95.46	1000	95.82
		5	0.5	486	95.14		95.08		94.46		95.84		95.30	548	95.20	500	94.10	548	95.24
			1	525	94.84		94.78		94.98		94.34		95.80	648	95.70	600	94.48	600	94.28
			3	825	95.74	825	95.64	750	94.54	825	95.74	1000	95.86	1000	95.88	1000	95.94	1000	95.88

Table 4. Cont.

				$n_E:n_R:n_P=1:1:1$ CE SCI HC SCI WB SCI BB SCI										n_E :	$n_R:n_I$	P = 2:	1:1		
			•	GF	-SCI	HG	-SCI	WB	-SCI	PB-	·SCI	GF-	SCI	HG-	-SCI	WB-	SCI	PB-	SCI
r	λ	μ_R	σ_R^2	n_0	<i>p</i> *	n_0	<i>p</i> *	n_0	p^*	n_0	<i>p</i> *	n_0	p^*	n_0	<i>p</i> *	n_0	<i>p</i> *	n_0	<i>p</i> *
0.3	0.6	3	0.5	625	95.42	625	95.44	625	95.68	625	95.62	672	95.78	672	95.74	672	95.20	672	95.46
			1	685	95.48	685	95.50	685	95.44	655	94.68	750	95.62	750	95.46	750	95.80	750	95.98
			3	875	95.12	875	95.14	875	95.20	875	94.28	1050	95.24	1050	95.32	972	94.34	1050	95.10
		4	0.5	625	95.30	625	95.22	625	95.46	625	94.98	672	95.48	672	95.36	672	95.92	636	94.72
			1	685	95.34	685	95.36	625	94.12	685	95.12	750	95.08	750	95.06	750	95.60	750	95.82
			3	875	94.82	875	94.84	875	94.48	875	94.42	1050	95.92	1050	95.96	972	94.70	1050	95.74
		5	0.5	625	95.36	625	95.36	625	95.48	625	95.02	672	95.48	672	95.52	672	95.70	672	95.86
			1	685	95.52	685	94.76	685	95.56	685	95.44	750	95.54	750	95.58	750	95.42	750	95.42
			3	875	94.76	875	94.70	875	94.88	875	94.74	972	94.60	1050	95.76	1050	95.88	1014	95.46
	0.7	3	0.5	625	95.18	625	95.28	625	95.40	625	95.10	672	95.62	672	95.68	672	95.50	636	94.74
			1	685	95.52	685	95.62	685	95.48	685	95.60	750	95.66	750	95.52	750	95.92	750	95.78
			3	875	94.72	875	94.88	875	94.68	875	94.46	1050	95.26	1050	95.38	1050	95.80	1050	95.82
		4	0.5	625	95.46	625	95.54	625	95.18	625	95.94	672	95.42	672	95.38	600	94.02	672	95.22
			1	685	94.92	685	95.04	685	94.86	685	95.46	750	95.26	750	95.22	750	95.54	750	95.56
			3	875	94.72	875	94.54	875	94.58	875	94.38	1050	95.44	1050	95.58	1050	95.94	1014	95.46
		5	0.5	625	95.00	625	95.24	625	95.26	625	95.96	672	95.12	672	95.38	600	94.24	672	95.46
			1	625	94.10	685	95.58	685	95.92	685	95.30	750	95.26	750	95.20	750	95.72	750	95.64
			3	875	94.14	875	94.54	875	94.78	875	95.04	1050	95.66	1050	95.96	972	94.42	972	94.20
0.6	0.3	3	0.5	625	95.14	625	94.98	625	95.48	625	95.82	672	95.72	672	95.66	672	95.56	672	95.60
			1	655	94.66	685	95.86	685	95.52	620	94.08	750	95.58	750	95.18	750	95.44	750	95.34
			3	875	94.16	875	95.04	875	95.34	875	95.34	1050	95.22	1050	95.94	1050	95.96	972	94.82
		4	0.5	625	95.26	625	95.24	625	95.36	625	95.26	672	95.14	672	95.18	672	95.42	672	95.42
			1	625	94.50	625	94.48	685	95.64	685	95.52	750	95.76	750	95.64	750	95.28	750	95.64
			3	875	94.84	875	94.62	875	95.20	875	95.24	1050	95.30	1050	95.36	1014	95.36	1050	95.68
		5	0.5	625	95.32	625	95.62	625	95.74	625	95.34	600	94.20	672	94.88	672	95.70	672	95.76
			1	625	94.20	685	95.26	685	95.48	685	95.42	750	95.36	750	95.52	714	94.56	750	94.90
			3	875	94.72	875	94.60	875	94.44	875	94.70	1050	95.98	972	94.40	972	94.20	972	94.34
	0.4	3	0.5	625	95.06	625	94.88	625	95.68	625	95.52	672	95.40	672	95.68	672	95.78	672	95.58
			1	685	95.44	685	95.88	685	95.10	685	95.42	750	95.02	750	95.70	750	95.82	750	95.28
			3	875	95.24	875	94.98	875	95.38	875	95.28	972	94.06	1050	95.92	972	94.62	1050	95.86
		4	0.5	625	95.16	625	94.96	625	95.86	625	95.46	672	95.48	672	95.38	672	95.54	672	95.42
			1	685	95.68	685	95.60	685	95.56	685	95.64	750	95.30	750	95.14	750	95.44	750	94.52
			3	875	95.04	875	94.88	875	95.54	875	94.74	1050	95.92	1050	95.80	972	95.18	1050	95.76
		5	0.5	625	95.10	625	95.04	625	95.12	625	95.42	672	95.80	672	95.74	636	94.68	672	95.54
			1	685	95.72	685	95.66	685	95.36	685	95.52	750	95.48	750	95.48	750	95.62	750	95.76
			3	875	94.76	875	94.68	875	94.12	875	94.74	1050	95.76	1050	95.60	1014	95.44	1050	95.94
1.0	0.0	3	0.5	625	95.48	625	94.76	625	95.48	625	95.34	672	95.06	672	95.20	672	95.66	600	94.22
			1	685	95.12	685	95.54	685	95.80	685	95.32	750	95.24	750	95.18	750	95.82	750	95.56
			3	875	94.44	875	95.24	875	94.92	875	95.22	1014	94.82	1050	95.00	972	94.16	972	94.48
		4	0.5	625	95.64	625	95.34	625	95.98	625	95.26	672	95.40	672	95.22	672	95.88	672	95.54
			1	685	95.80	685	95.12	685	95.14	685	95.14	750	95.78	750	95.60	750	95.20	750	95.82
			3	875	95.42		94.94		94.58	875			95.20	1050	95.68	972	94.16	972	94.76
		5	0.5	625	95.18		95.16	625	95.52		95.80	672	95.56	672	95.52	600	94.08	672	95.84
			1	685	95.54	685	95.62	685	95.96		95.36	750	95.44		95.38	750	95.56	750	95.24
			3	875	95.04		95.02		95.10	875						1050	95.66	972	94.20

Mathematics **2022**, 10, 167 17 of 23

Table 5. The required sample sizes n for true power $1 - \beta = 95\%$ and its empirical powers p^* under various settings with $\epsilon = 0.6$.

				$n_E:n_R:n_P=1:1:1$							$n_E: n_R: n_P = 2:1:1$ GF-SCI HG-SCI WB-SCI PB-SCI								
				GF-	-SCI	HG	-SCI	WB	-SCI	PB-	-SCI	GF	-SCI	HG	-SCI	WB	-SCI	PB-	-SCI
r	λ	μ_R	σ_R^2	n_0	<i>p</i> *	n_0	<i>p</i> *	n_0	p^*	n_0	<i>p</i> *	n_0	<i>p</i> *	n_0	p^*	n_0	p^*	n_0	<i>p</i> *
0.3	0.6	3	0.5	207	94.90	207	94.82	225	95.98	207	94.14	248	95.34	248	95.42	248	95.64	248	95.80
			1	225	94.02	225	94.10	225	94.04	222	94.26	300	95.84	300	95.90	300	95.54	300	95.98
			3	357	95.10	375	95.86	336	94.38	375	95.68	448	95.54	448	95.90	448	95.74	448	95.54
		4	0.5	225	95.86	225	95.96		95.10	207	94.22	248	95.00	248	94.90	248	95.78	248	95.10
			1	243	95.54	243	95.50	222	94.18	243	95.70	276	94.68	276	94.62	276	95.36	300	95.92
			3	357	95.08		94.96		94.38	357	94.94	448	95.14	448	95.18	424	95.18	424	94.66
		5	0.5	225	95.80	207	94.48		94.96	216	95.62	252	95.74		94.84	248	95.72	248	95.90
			1	243	94.64		95.66		94.44		95.58		94.52		94.80	276	94.74		94.32
			3	357	94.96		95.68		94.04		95.10		95.48		95.88	424	94.98		95.56
	0.7	3	0.5	225	95.70		94.30		94.60		95.00		95.74		95.26	248	95.92		94.86
			1	243	95.18		94.86		95.22		95.04		95.88		94.04	276	95.28		94.18
			3	357	94.98		95.14		95.32		94.22		95.58		95.62	424	94.86		94.70
		4	0.5	225	95.92		95.88		95.10		94.22		95.32		95.26	248	95.56		95.14
			1	243	95.28		95.16		94.68		94.18		94.64		94.54	276	95.18		95.00
			3	375	95.98		95.98		94.04		94.14		95.54		95.48	448	95.74		94.82
		5	0.5	225	95.78		95.76		94.46		95.88		95.64		95.26	248	95.72		95.52
			1	243	94.72		94.94		95.44		95.82		94.60		95.94	276	95.24		94.92
			3	357	95.22		95.94		94.04		94.48		95.74		95.64	448	95.96		94.60
0.6	0.3	3	0.5	207	94.52		95.56		95.94		94.98		95.50		95.72	248	95.66		95.78
			1	225	94.14		95.92		95.50		95.20		95.24		95.98	276	94.90		94.46
			3	357	95.08		95.26		95.68		95.78		95.94		95.56	424	95.34		94.34
		4	0.5	225	95.96		95.94		94.92		94.80		95.34		95.26	248	95.84		95.02
			1	243	95.42		95.50		94.28		95.24		94.02		94.08	276	95.04		94.82
			3	375	95.72		95.64		94.68		95.40			448	95.90	448	95.68	448	95.92
		5	0.5	207	94.24		95.80		95.14		94.82		95.44		95.24	248	95.56		95.76
			1	243	95.14		95.64		94.24		95.08		95.90		94.58	300	95.98		94.26
			3	357	95.58		95.10		94.14		95.96		95.62	448	95.80	448	95.56	448	95.14
	0.4	3	0.5	207			95.58		95.14		94.60		95.28	248	95.54	248	95.28	248	95.72
			1	243			95.18		95.42		95.48		94.06		95.94	276	95.48		94.48
			3	375	95.90	375	95.86		95.82		94.20		95.70	424	94.66	448	95.98	448	95.22
		4	0.5	216	95.22	216	95.26		94.78		94.08		94.90	248	95.86	248	95.92		95.70
			1	222	94.26	222	94.18		94.92		95.00			276	94.72	276	95.38		94.02
		_	3	375	95.96		94.30		94.26		95.56		95.76		95.66	424	95.16		94.56
		5	0.5	225	95.90		95.74		94.78		94.32		95.26		95.04	248	95.52		95.38
			1	243	95.36		95.36		94.02		95.16		94.22		94.12	276	95.08		95.36
1.0	0.0	_	3	357	95.38		95.40		94.02		94.06		95.72		95.66	424	94.72		95.52
1.0	0.0	3	0.5	225	95.96		95.92		94.68		95.10		95.38		95.42	248	95.48		95.26
			1	243	95.20		95.24		95.58		95.60			300	95.88	276	95.08		94.66
		4	3 0.5	357	95.26		94.94		94.12		95.34		95.82 05.70		95.62	424	94.92		94.86
		4	0.5	207	94.18		95.84 05.24		94.80		94.90		95.70		95.46	248	95.92		95.48
			1	243	94.82		95.24		95.32		95.34		95.96 05.04		94.82	276	95.28		95.18 05.72
		F	3	375	95.86 05.53		95.90 05.48		94.38		95.68		95.94		95.78 05.22	424	94.94		95.72
		5	0.5	225	95.52 05.04		95.48		94.52		94.92		95.28		95.32	224	94.20	248	95.06
			1	243	95.04		94.86		94.86		95.18		94.68		94.26	276	95.38		95.86 05.70
			3	336	94.04	337	95.28	<i>33</i> 0	94.34	3/3	95.94	440	95.78	448	95.64	424	95.08	448	95.70

Mathematics **2022**, 10, 167 18 of 23

Table 5. Cont.

						n_E :	$n_R:n_P$	=1	:1:1					n_E :	$n_R:n_I$	p=2	:1:1		
				GF-	-SCI	HG	-SCI	WB	-SCI	PB-	-SCI	GF-	-SCI	HG	-SCI	WB	-SCI	PB-	-SCI
r	λ	μ_R	σ_R^2	n_0	<i>p</i> *	n_0	<i>p</i> *	n_0	p^*	n_0	p^*	n_0	<i>p</i> *	n_0	p^*	n_0	p^*	n_0	<i>p</i> *
0.3	0.6	3	0.5	280	95.40	280	95.10	280	95.86		95.32		95.70	300	95.26	300	95.60	300	95.68
			1	310	95.78	310	94.94		95.70		95.74		95.50	336	95.24	336	95.78	336	95.38
			3	405	95.58	405	95.26	370	94.22	405	95.32		95.08	450	95.30	450	95.42	450	95.04
		4	0.5	280	95.22	280		280	95.68	280	95.32		95.54		95.42	300	95.72	300	95.70
			1	310	94.70	310	94.60		95.44		95.86		95.84		95.70	336		336	95.16
			3	405	95.36	405	95.22		94.56	405	95.50		94.54		94.60	450	95.26	450	94.80
		5	0.5	280	95.02		95.72			280	95.44		94.90	300	95.06	300	95.72		95.58
			1	310	95.76	310		310		310	95.66		95.44		95.22	336	95.82		95.86
			3	405	95.60	405		385	94.60	405	95.52		94.78	450	94.74	450	94.86	450	94.94
	0.7	3	0.5	280	95.16	280	95.12		95.80	280	95.34		95.40	300	95.96	300	95.76	300	95.42
			1	310	95.70	310		310	95.48	310	95.84		95.26	336	95.58	336	95.66	336	95.36
			3	405	95.76		95.36		95.76	375	94.16	450	94.68	450	95.14	450	95.66	450	95.00
		4	0.5	280	95.22		95.10		95.88	280	94.88	300	94.72	300	94.66	300	95.42		95.28
			1	310	94.86	310	94.66		95.68	310	95.16	336	95.16	336	95.14	312	94.34		95.52
			3	405	95.22		95.28		94.16	405	95.56		95.28	450	95.34	450	95.24		95.54
		5	0.5	280	95.02		95.24		95.60	280	95.14		95.48	300	95.40	300		300	95.32
			1	310	95.74		95.42		95.90	310	95.70				94.80	336	95.36	336	95.22
			3	370	94.12		95.90		95.66	375	94.44		94.58	450	94.96	450		450	94.76
0.6	0.3	3	0.5	280	95.10		95.22		95.36	280	95.08	300	95.24		95.48	300	95.58	300	95.08
			1	310	95.12	310	95.96	310	95.36	310	95.92	336	94.80	336	95.12	336	95.66	336	95.60
			3	405	95.44	405	95.00	395	94.96	405	95.64	450	95.04	450	94.92	450	95.56	450	94.92
		4	0.5	280	94.62		94.60	280	95.16	280	95.18	300	95.18	300	95.12	300	95.94	300	95.34
			1	310	95.54	310	95.42	280	94.06	310	95.42	336	95.62	336	95.64	336	95.68	336	95.22
			3	405	95.42		95.36		95.24	405	95.38	450	95.16	450	95.20	450	95.84	450	94.60
		5	0.5	280	94.16		94.88	280	95.62	280	95.54	300	95.46	300	95.12	300	95.70	300	95.24
			1	310	95.62		95.46	310	95.66	280	94.06	336	95.72	336	95.12	336	95.26	336	95.34
			3	405	94.96		94.38	375		375	94.24		94.84		95.22	450	95.20	450	95.44
	0.4	3	0.5	280	95.74		95.16	280	95.16	280	95.38	300	95.56	300	95.26	300	95.92	300	95.26
			1	310	95.50	310	95.14			310	95.38	336	95.74	336	95.38	336	95.66	336	95.40
			3	370	94.08	405	95.24	385		375	94.08	450	94.94	450	94.90	450	94.96	450	94.68
		4	0.5	280	95.06	280	95.42		95.48	280	94.88	300	95.26	300	95.36	300	95.36	300	95.38
			1	310	95.54		95.00		95.54		94.26		95.10		94.82	336	95.52		95.52
			3	405	94.96	405	95.24	375	94.52	375	94.10	450	94.74	450	95.40	450	95.20	450	95.62
		5	0.5	280	95.00	280	94.94	280	95.56	280	94.74	300	95.44	300	95.30	300	95.62	300	95.22
			1	310	95.84	310	95.74		95.78	310	95.40	336	95.38	336	95.28	336	95.38	336	95.90
			3	405	95.08	405	95.00	375	94.08	370	94.32	450	94.66	450	94.60	450	94.96	450	94.36
1.0	0.0	3	0.5	280	95.06		95.00		95.68	280	94.96	300	95.42	300	94.90	300	95.72	300	95.62
			1	310	95.84	315	95.82	310	95.32	310	95.72	336	95.84	336	95.50	336	95.34	336	95.38
			3	405	95.74	405	95.40	405	95.40	405	95.58	450	95.26	450	94.90	450	95.36	450	95.42
		4	0.5	280	94.82		95.34	280	95.98		95.44	300	94.98	300	94.54	300	95.94	300	95.18
			1	310	95.28	310	95.86	310	95.64	310	95.38	336	94.50	336	95.78	336	95.86		94.12
			3	405	95.54	405	95.80	375	94.02	375	94.24	450	94.74	450	94.86	450	95.38	450	95.32
		5	0.5	280	95.26	280	95.82	280	94.96	280	95.40	300	95.00	300	95.46	300	95.76	300	95.30
			1	310	95.84	310	95.30	310	95.72	315	95.92	336	95.08	336	95.58	300	94.02	336	95.28
			3	405	95.58	405	95.60	370	94.48	405	95.46	450	94.84	450	94.84	456	95.10	450	95.06

3.2. Application to Mildly Asthmatic Study

As an illustration of the preceding proposed simultaneous confidence region, we consider a data set on "Mildly Asthmatic Study" taken from [5]. In the mildly asthmatic study, the primary outcome variable is the forced vital capacity (FVC), and the data set

Mathematics 2022, 10, 167 19 of 23

consists of experimental ($n_E = 35$), reference ($n_R = 19$), and placebo ($n_P = 20$) groups. The means, standard deviations, minimum and maximum values for the FVC are 4.32, 1.16, 0.8 and 6.52 for E group, respectively; 4.86, 1.03, 2.94 and 6.90 for R group, respectively; and 3.14, 0.97, 1.41 and 4.99 for placebo group, respectively. Since [5] did not present the details on the historical trial, Ghosh et al. [24] independently simulated 5000 historical data sets from the normal distribution with the specified parameters and sample sizes in applying their proposed approach to the assessment of the NI of experimental to reference in a three-arm trial. Unlike [24], we here divide the considered data set into the historical and current data sets, its 30% is taken as the historical data randomly sampled from the considered data set without replacement, and the rest is regarded as the current data. Thus, the above developed approach to determine NI margin is applied to the historical data, and the preceding proposed four simultaneous confidence regions for ϕ and ψ are applied to the current data for simultaneously assessing both NI and assay sensitivity with the following specification: $\lambda=0.0, 0.25, 0.5, 0.6, 0.75$ and 0.9 together with $r=1-\lambda$ and M = 5000. The lower limits of the approximate 95% one-sided simultaneous confidence region of (ϕ, ψ) for the GF-SCI, HG-SCI, WB-SCI and PB-SCI methods are presented in Table 6. Examination of Table 6 shows that (i) the assay sensitivity can be established at the significance level $\alpha = 5\%$ in that lower limits of four confidence regions are greater than Δ regardless of the values of λ ; (ii) the NI cannot be established at the significance level 5% for the GF-SCI, HG-SCI, WB-SCI and PB-SCI methods in that lower limits of their corresponding confidence intervals are less than $-\Delta_{NI}$ regardless of the values of λ , which is consistent with those given in [5].

Table 6. Lower limits of the approximate 95% one-sided simultaneous confidence regions of (ϕ, ψ) for the GF-SCI, HG-SCI, WB-SCI and PB-SCI methods in the mildly asthmatic study.

			GF-S	CI	HG-S	CI	WB-S	CI	PB-SCI		
λ	Δ_{NI}	Δ	φ	ψ	φ	ψ	φ	ψ	φ	ψ	
0	0.5359	0.5359	-0.7413	1.7744	-0.9295	1.4548	-1.0836	1.3523	-0.7403	1.7756	
0.25	0.9563	0.7172	-0.5438	1.3784	-0.7607	1.1330	-0.8785	0.9472	-0.5466	1.3748	
0.5	0.9288	0.4644	-0.4105	1.5093	-0.6439	1.2028	-0.7676	1.0585	-0.4095	1.5106	
0.6	0.9608	0.3843	-0.3641	1.1416	-0.6101	0.8457	-0.7305	0.7259	-0.3677	1.1376	
0.75	0.4707	0.1177	-0.8854	1.7782	-1.0603	1.4066	-1.2334	1.3435	-0.8849	1.7789	
0.9	0.7461	0.0746	-0.5859	1.6179	-0.7757	1.2700	-0.9613	1.1762	-0.5889	1.6145	

4. Discussion

This paper studied the confidence interval construction problem for simultaneously assessing the non-inferiority and assay sensitivity in a three-arm trial with normally distributed endpoints, in which the non-inferiority margin is defined as a pre-specified fixed difference between treatment effects of experimental and reference treatments in the considered historical placebo-controlled trial. The generalized fiducial pivotal quantity method together with the historical-trial-based approach were utilized to determine the non-inferiority margin. However, there was no closed-form for the non-inferiority margin via the historical-trial-based approach. To overcome the difficulty, a Monte Carlo resampling method was adopted to determine the non-inferiority margin based on the percentile point of the drawn observations. Based on the constructed non-inferiority margin, we developed four simultaneous confidence intervals for parameters (ϕ, ψ) based on the Waldtype statistic together with the Bonferroni method, generalized fiducial pivotal quantity method, hybrid generalized fiducial method incorporating the square-and-add method and generalized fiducial method, and parametric bootstrap resampling method. The flexible algorithms for computing empirical coverage probabilities for the proposed four simultaneous confidence intervals were also given. Simulation studies were conducted to investigate the performance of the proposed four simultaneous confidence intervals under various settings including the moderate and large sample sizes, balanced and unbalanced designs, different hypotheses including the HT hypothesis. Empirical results demonstrated that the

Mathematics 2022, 10, 167 20 of 23

GF-SCI and HG-SCI methods perform better than the WB-SCI and PB-SCI methods, and the GF-SCI, PB-SCI and HG-SCI methods had the same performance when the sample size was large (i.e., n = 150 and 300) in terms of their empirical coverage probabilities. Hence, we recommended the usage of the hybrid generalized fiducial simultaneous confidence interval because its computational burden was less than that for the PB-SCI method, and the usage of the Wald-type Bonferroni simultaneous confidence interval when the sample size was large.

This paper did not consider the simultaneous confidence interval construction problem for simultaneously assessing both non-inferiority and assay sensitivity in a three-arm trial with normally distributed endpoints in the presence of missing endpoints, which are commonly encountered in the modern drug studies. We did not consider the usage of the prior information in determining the non-inferiority margin from the placebo-controlled data, which may improve the efficiency of the estimation for the non-inferiority margin.

Author Contributions: Conceptualization, N.T.; methodology, N.T. and F.L.; software, F.L.; validation, N.T.; formal analysis, N.T. and F.L.; investigation, F.L.; resources, N.T. and F.L.; data curation, N.T.; writing—original draft preparation, F.L.; writing—review and editing, N.T.; visualization, F.L.; supervision, N.T.; project administration, N.T.; funding acquisition, N.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the grants from the Key Projects of the National Natural Science Foundation of China (Grant No.: 11731101).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated and analysed are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CI Confidence interval
GFPQ Generalized fiducial pivotal quantity
WB-SCI Wald-type Bonferroni simultaneous confidence region
GF-SCI Simultaneous generalized fiducial confidence region
ECP empirical coverage probability
HG-SCI Hybrid generalized fiducial simultaneous confidence region
PB-SCI Parametric bootstrap simultaneous confidence region

Appendix A. Proof of Theorem 1

Proof. Denote $\mathbf{S_n} = (\bar{X}_E, \bar{X}_R, \bar{X}_P, S_E^2, S_R^2, S_P^2)$, $\mathbf{m} = (\mu_E, \mu_R, \mu_P, \sigma_E^2, \sigma_R^2, \sigma_P^2)$, and $\mathbf{\Omega} = \mathrm{diag}(\sigma_E/\sqrt{r_E}, \sigma_R/\sqrt{r_R}, \sigma_P/\sqrt{r_P}, \sqrt{2}\sigma_E^2/\sqrt{r_E}, \sqrt{2}\sigma_R^2/\sqrt{r_R}, \sqrt{2}\sigma_P^2/\sqrt{r_P})$. The central limit theorem implies that $\sqrt{n}(\mathbf{S_n} - \mathbf{m}) \overset{\mathrm{D}}{\longrightarrow} \mathbf{\Omega} \mathbf{Z}$ where $\mathbf{Z} = (Z_1, \ldots, Z_6)$ are i.i.d. N(0,1) variables. By Skorohod's theorem (see Billingsley 1995) we can find a sequence $\bar{\mathbf{S_n}}$ independent of $\mathbf{S^*}$ such that $\bar{\mathbf{S_n}}$ has the same distribution as \mathbf{S} and $\sqrt{n}(\bar{\mathbf{S_n}} - \mathbf{m}) \to \mathbf{\Omega} \mathbf{Z}$ almost surely, where \mathbf{S} denote observable random vector and $\mathbf{S^*}$ represent an independent copy of \mathbf{S} . In what follows we can therefore assume without loss of generality that

$$\sqrt{n}(\mathbf{S_n} - \mathbf{m}) \to \mathbf{\Omega}\mathbf{Z} \ a.s.$$
 (A1)

Mathematics 2022, 10, 167 21 of 23

It follows from the Sluctsky's theorem that as $n \to \infty$

$$\max\left(\frac{\hat{\phi} - R_{\phi}}{\sqrt{\hat{var}(\hat{\phi})}}, \frac{\hat{\psi} - R_{\psi}}{\sqrt{\hat{var}(\hat{\psi})}}\right) \\
\rightarrow \max\left(\frac{\frac{\sigma_{E}}{\sqrt{r_{E}}} Z_{E} - \frac{\sigma_{R}}{\sqrt{r_{R}}} Z_{R}}{\sqrt{\frac{\sigma_{E}^{2}}{r_{E}} + \frac{\sigma_{R}^{2}}{r_{R}}}}, \frac{\frac{\sigma_{R}}{\sqrt{r_{R}}} Z_{R} - \frac{\sigma_{P}}{\sqrt{r_{P}}} Z_{P}}{\sqrt{\frac{\sigma_{R}^{2}}{r_{R}} + \frac{\sigma_{P}^{2}}{r_{P}}}}\right) a.s. \tag{A2}$$

where Z_k denotes the standard normal distribution, for k = E, R, P and the a.s. comes from the a.s. convergence in (A1).

Recall the definition of the percentile $d_{1-\alpha}$ above. Since the limiting distribution in (A2) is continuous, we have by the definition of convergence in distribution

$$d_{1-\alpha} \to q_{1-\alpha} \tag{A3}$$

where $q_{1-\alpha}$ is the $1-\alpha$ percentile point of the limiting distribution in (A2). Finally, realize that (A1) implies

$$\frac{\hat{\phi} - \phi}{\sqrt{\hat{\text{var}}(\hat{\phi})}} \to \frac{\frac{\sigma_E}{\sqrt{r_E}} Z_E - \frac{\sigma_R}{\sqrt{r_R}} Z_R}{\sqrt{\frac{\sigma_E^2}{r_E} + \frac{\sigma_R^2}{r_R}}} \ a.s. \tag{A4}$$

$$\frac{\hat{\psi} - \psi}{\sqrt{\hat{\text{var}}(\hat{\psi})}} \to \frac{\frac{\sigma_R}{\sqrt{r_R}} Z_R - \frac{\sigma_P}{\sqrt{r_P}} Z_P}{\sqrt{\frac{\sigma_R^2}{r_R} + \frac{\sigma_P^2}{r_P}}} \quad a.s. \tag{A5}$$

This, together with (A3) and some algebra gives

$$P(\phi \ge L_{\phi}^{F}, \psi \ge L_{\psi}^{F})$$

$$= P\left(\max\left(\frac{\hat{\phi} - \phi}{\sqrt{\text{var}(\hat{\phi})}}, \frac{\hat{\psi} - \psi}{\sqrt{\text{var}(\hat{\psi})}}\right) \le d_{1-\alpha}\right)$$

$$\to P\left(\max\left(\frac{\frac{\sigma_{E}}{\sqrt{r_{E}}}Z_{E} - \frac{\sigma_{R}}{\sqrt{r_{R}}}Z_{R}}{\sqrt{\frac{\sigma_{E}^{2}}{r_{E}} + \frac{\sigma_{R}^{2}}{r_{R}}}}, \frac{\frac{\sigma_{R}}{\sqrt{r_{R}}}Z_{R} - \frac{\sigma_{P}}{\sqrt{r_{P}}}Z_{P}}{\sqrt{\frac{\sigma_{R}^{2}}{r_{R}} + \frac{\sigma_{P}^{2}}{r_{P}}}}\right) \le q_{1-\alpha}\right)$$

$$= 1 - \alpha \tag{A6}$$

as $n \to \infty$.

Appendix B. Proof of Theorem 2

Proof. Note that

$$P(\phi \ge L_{\phi}^B, \psi \ge L_{\psi}^B) = P(T \le q_{1-\alpha}^B) \tag{A7}$$

where $T=\max\left(\frac{\hat{\phi}-\phi}{\sqrt{\mathrm{var}(\hat{\phi})}},\frac{\hat{\psi}-\psi}{\sqrt{\mathrm{var}(\hat{\psi})}}\right)$ and $q_{1-\alpha}^B$ be the $1-\alpha$ percentile point of bootstrap sample observations of T_B^{PI} , where T_B^{PI} is given by (24). To show the above simultaneous CI has correct coverage probability asymptotically, it is sufficient to show that T has the same limiting distribution as T_B^{PI} when $n\to\infty$. This can be justified, according to

Mathematics 2022, 10, 167 22 of 23

continuous mapping theorem if we can show that t_{ϕ} , t_{ψ} and t_{ϕ}^{B} , t_{ψ}^{B} have the same limiting joint distribution, respectively. Note that

$$t_{\phi} = \frac{\hat{\phi} - \phi}{\sqrt{\hat{\text{var}}(\hat{\phi})}} = \frac{\sqrt{n}\hat{\phi} - \sqrt{n}\phi}{\sqrt{n}\sqrt{\hat{\text{var}}(\hat{\phi})}}, \quad t_{\psi} = \frac{\hat{\psi} - \psi}{\sqrt{\hat{\text{var}}(\hat{\psi})}} = \frac{\sqrt{n}\hat{\psi} - \sqrt{n}\psi}{\sqrt{n}\sqrt{\hat{\text{var}}(\hat{\psi})}}$$
(A8)

$$t_{\phi}^{B} = \frac{(\bar{X}_{E}^{B} - \bar{X}_{R}^{B})}{\sqrt{\text{vâr}_{B}(\hat{\phi})}} = \frac{\sqrt{n}(\bar{X}_{E}^{B} - \bar{X}_{R}^{B})}{\sqrt{n}\sqrt{\text{vâr}_{B}(\hat{\phi})}}, \quad t_{\psi}^{B} = \frac{(\bar{X}_{R}^{B} - \bar{X}_{P}^{B})}{\sqrt{\text{vâr}_{B}(\hat{\psi})}} = \frac{\sqrt{n}(\bar{X}_{R}^{B} - \bar{X}_{P}^{B})}{\sqrt{n}\sqrt{\text{vâr}_{B}(\hat{\psi})}}$$
(A9)

From condition $\frac{n_k}{n} \to r_k$, we can obtain that $\sqrt{n}(\hat{\mu}_k - \mu_k) \to \mathcal{N}(0, \sigma_k^2/r_k)$ and $\sqrt{n}(\hat{\sigma}_k^2 - \sigma_k^2) \to \mathcal{N}(0, 2\sigma_k^4/r_k)$, for k = P, R, E. Therefore, by Slutsky's theorem, it follows that

$$T \to \max\left\{\frac{\frac{\sigma_E}{\sqrt{r_E}} Z_E - \frac{\sigma_R}{\sqrt{r_R}} Z_R}{\sqrt{\frac{\sigma_E^2}{r_E} + \frac{\sigma_R^2}{r_R}}}, \frac{\frac{\sigma_R}{\sqrt{r_R}} Z_R - \frac{\sigma_P}{\sqrt{r_P}} Z_P}{\sqrt{\frac{\sigma_R^2}{r_R} + \frac{\sigma_P^2}{r_P}}}\right\}$$
(A10)

where Z_k denotes the standard normal distribution, for k=E,R,P. To show that t_ϕ^B,t_ψ^B also weakly converges to the same joint distribution, we first note that $\bar{X}_k^B\sim\frac{s_k}{\sqrt{n_k}}\mathcal{N}(0,1)$, $S_{k,B}^2\sim\frac{s_k^2}{n_k-1}\chi^2(n_k-1)$ for k=P,R,E and they are independent. Therefore, by using the similar approach, we can obtain that

$$T_B^{PI} \to \max\{\frac{\frac{\sigma_E}{\sqrt{r_E}} Z_E - \frac{\sigma_R}{\sqrt{r_R}} Z_R}{\sqrt{\frac{\sigma_E^2}{r_E} + \frac{\sigma_R^2}{r_R}}}, \frac{\frac{\sigma_R}{\sqrt{r_R}} Z_R - \frac{\sigma_P}{\sqrt{r_P}} Z_P}{\sqrt{\frac{\sigma_R^2}{r_R} + \frac{\sigma_P^2}{r_P}}}\}$$
(A11)

Finally, because the distribution of T_B^{PI} and its limiting distribution are both continuous, so $q_{1-\alpha}^B \to q_{1-\alpha}$ as $n \to \infty$, where $q_{1-\alpha}$ be the $1-\alpha$ percentile point of T. This completes the proof. \square

References

- 1. Tango, T. Equivalence test and confidence interval for the difference in proportions for the paired-sample design. *Stat. Med.* **1998**, 17, 891–908. [CrossRef]
- 2. Tang, N.S.; Tang, M.L.; Chan, S.F. On tests of equivalence via non-unity relative risk for matached-pair design. *Stat. Med.* **2003**, 22, 1217–1233. [CrossRef]
- 3. Tang, M.L.; Tang, N.S.; Chan, S.F. Confidence interval construction for proportion difference in small-sample paired studies. *Stat. Med.* **2005**, 24, 3565–3579. [CrossRef]
- 4. ICH E10. Harmonised Tripartite Guideline. Choice of Control Group and Related Issues in Clinical Trials, International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use; ICH Steering Committee: Geneva, Switzerland, 2000.
- 5. Pigeot, I.; Schafer, J.; Rohmel, J.; Hauschke, D. Assessing non-inferiority of a new treatment in a three-arm clinical trial including a placebo. *Stat. Med.* **2003**, 22, 883–899. [CrossRef]
- Tang, M.L.; Tang, N.S. Tests of Noninferiority via Rate Difference for Three-Arm Clinical Trials with Placebo. *J. Biopharm. Stat.* 2004, 14, 337–347. [CrossRef]
- 7. Tang, N.S.; Yu, B.; Tang, M.L. Testing non-inferiroty of a new treatment in three-arm clinical trials with binary endpoints. *BMC Med. Res. Methodol.* **2014**, *14*, 134. [CrossRef] [PubMed]
- 8. Hida, E.; Tango, T. On the three-arm non-inferiority trial including a placebo with a prespecified margin. *Stat. Med.* **2011**, *30*, 224–231. [CrossRef] [PubMed]
- 9. Kwong, K.S.; Cheung, S.H.; Hayter, A.J.; Wen, M. Extension of three-arm non-inferiority studies to trials with multiple new treatments. *Stat. Med.* **2012**, *31*, 2833–2843. [CrossRef] [PubMed]
- 10. Mütze, T.; Konietschke, F.; Munk, A.; Friede, T. A studentized permutation test for three-arm trials in the 'gold standard' design. *Stat. Med.* **2017**, *36*, 883–898. [CrossRef] [PubMed]
- 11. Newcombe, R.G. Interval estimation for the difference between independent proportions: Comparison of eleven methods. *Stat. Med.* **1998**, 17, 873–890. [CrossRef]
- 12. Li, H.Q.; Tang, M.L.; Poon, W.Y.; Tang, N.S. Confidence Intervals for Difference Between Two Poisson Rates. *Commun. Stat.—Simul. Comput.* **2011**, 40, 1478–1493. [CrossRef]

Mathematics 2022, 10, 167 23 of 23

13. Tang, N.S.; Qiu, S.F.; Tang, M.L.; Zou, G.Y.; Yu, D. Simultaneous Confidence Intervals of Risk Differences in Stratified Paired Designs. *J. Biopharm. Stat.* **2013**, 23, 361–377. [CrossRef]

- 14. Tang, N.S.; Li, H.Q.; Tang, M.L.; Li, J. Confidence interval construction for the difference between two correlated proportions with missing observations. *J. Biopharm. Stat.* **2016**, *26*, 323–338. [CrossRef] [PubMed]
- 15. Zhang, Y.Q.; Tang, N.S. Confidence intervals of the difference between areas under two ROC curves in matched-pair experiments. *Stat. Med.* **2020**, 39, 2621–2638. [CrossRef]
- 16. Weerahandi, S. Generalized confidence intervals. J. Am. Stat. Assoc. 1993, 88, 899–905. [CrossRef]
- 17. Hanning, J.; Iyer, H.; Patterson, P. Fiducial generalized condifence intervals. J. Am. Stat. Assoc. 2006, 101, 254–269. [CrossRef]
- 18. Hanning, J.; Iyer, H.; Lai, R.C.S.; Lee, T. Generalized fiducial inference: A review and new results. *J. Am. Stat. Assoc.* **2016**, 111, 1346–1361. [CrossRef]
- 19. Schaarschmidt, F. Simultaneous confidence intervals for multiple comparisons among expected values of log-normal variables. *Comput. Stat. Data Anal.* **2013**, *58*, 265–275. [CrossRef]
- 20. Gamalo, M.A.; Muthukumarana, S.; Ghosh, P.; Tiwari, R.C. A generalized p-value approach for assessing noninferiority in a three-arm trial. *Stat. Methods Med. Res.* **2013**, 22, 261–277. [CrossRef] [PubMed]
- 21. Abdel-Karim, A. Applications of Generalized Inference. Doctoral Dissertation, Colorado State University, Fort Collins, CO, USA, 2005.
- 22. Sadooghi-Alvandi, S.M.; Malekzadeh, A. Simultaneous confidence intervals for ratios of means of several lognormal distributions: A parametric bootstrap approach. *Comput. Stat. Data Anal.* **2014**, *69*, 133–140. [CrossRef]
- 23. Howe, W.G. Approximate confidence limits on the mean of *X* + *Y* where *X* and *Y* are two tabled independent random variables. *J. Am. Stat. Assoc.* **1974**, *69*, 789–794. [CrossRef]
- 24. Ghosh, S.; Ghosh, S.; Tiwari, R.C. Bayesian approach for assessing non-inferiority in a three-arm trial with pre-specified margin. *Stat. Med.* **2016**, *35*, 695–708. [CrossRef] [PubMed]