Chapitre 11

Calcul intégral

I. Aire sous la courbe

1) Unité d'aire

 $(O; \overrightarrow{OI}, \overrightarrow{OJ})$ est un repère orthogonal. K est le point de coordonnées (1;1).

L'unité d'aire est l'aire du rectangle OIKJ.

Exemple:

L'aire du rectangle ABCD ci-contre est de 2 unités d'aire.

OI=1 cm et OJ =1,5 cm, donc l'aire de ABCD est $2 \times 1 cm \times 1,5 cm$ soit $3 cm^2$.1

2) Cas d'une fonction en escalier

Exemple:

f est la fonction en escalier définie sur [-1;5] et représentée ci-contre.

L'aire \mathcal{A} sous cette courbe est la somme des aires des rectangles colorés.

En unités d'aire :

$$A = 2 \times (0 - (-1)) + 1 \times (2 - 0) + 3(5 - 2) = 13$$

3) <u>Cas d'une fonction positive</u>

Exemple:

f est la fonction définie sur [0;2] par $f(x)=0.5x^2$ et représentée par la courbe \mathscr{C} dans un repère orthonormal (unité graphique : 1cm).

On se propose d'approcher l'aire, en cm^2 , sous la courbe $\mathscr C$. Dans chaque cas, l'aire $\mathscr A$ est comprise entre l'aire sous la courbe en escalier « verte » et l'aire sous la courbe en escalier « rouge ».

Propriété:

On admet que, si \mathscr{C} est la courbe représentative d'une **fonction positive** sur [a;b], alors l'**aire** sous la courbe \mathscr{C} (en unité d'aire) peut être **approchée** d'aussi près que l'on veut par les aires sous deux courbes en escalier qui encadrent \mathscr{C} , en réduisant de plus en plus finement le pas.

II. Intégrale d'une fonction

1) <u>Intégrale de f entre a et b</u>

Définition:

Soit f une fonction **continue** sur un intervalle [a;b].

F étant une primitive de f sur [a;b], alors l'**intégrale** de la fonction f **entre** a **et** b est le nombre F(b)-F(a).

On note $F(b)-F(a)=\int_{a}^{b}f(x)dx$ et on lit somme de a à b de f(x)dx.

Remarques:

- Si ${\it F}$ est une primitive de ${\it f}$, alors toutes les primitives s'écrivent :

$$G(x)=F(x)+k \text{ avec } k \in \mathbb{R}.$$

Donc
$$G(b)-G(a)=F(b)+k-(F(a)+k)=F(b)-F(a)=\int_{a}^{b} f(x)dx$$
.

Ainsi l'intégrale ne dépend pas de la primitive de $\,f\,$ choisie.

- x est une variable muette, on peut écrire $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt$
- On dit que l'on intègre la fonction f sur [a;b].

Exemple:

$$\int_{2}^{1} x^{2} dx = \left[\frac{x^{3}}{3} \right]_{2}^{1} = \frac{1^{3}}{3} - \frac{2^{3}}{3} = -\frac{7}{3}$$

Propriétés:

$$\bullet \quad \int_{0}^{a} f(x) \, \mathrm{d}x = 0$$

•
$$\int_{a}^{a} f(x) dx = 0$$
•
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx.$$

Démonstrations:

•
$$\int_{a}^{a} f(x) dx = F(a) - F(a) = 0$$
.

•
$$\int_{a}^{a} f(x) dx = F(a) - F(a) = 0.$$
•
$$\int_{b}^{a} f(x) dx = F(a) - F(b) = -(F(b) - F(a)) = -\int_{a}^{b} f(x) dx.$$

Lien entre intégrale et aire

Soit $(O: \overrightarrow{OI}, \overrightarrow{OJ})$ un repère orthogonal du plan, l'unité d'aire est donc $1u.a. = OI \times OJ$.

Idée:

Pour une fonction constante et positive f(x)=k $(k \ge 0)$ avec a < b, on vérifie que :

On considère donc que pour toute fonction positive g en escalier, $\int g(x) dx$ correspond à l'aire sous la courbe entre a et b.

Théorème :

Soit f une **fonction continue** et **positive** sur un intervalle I.

L'aire du domaine limité par la courbe C_f , l'axe des abscisses et les droites verticales d'équation

$$x=a$$
 et $x=b$ est égale à l'**intégrale** $\int_{a}^{b} f(x) dx$, exprimée en unités d'aire :

$$\mathcal{A} = \int_{a}^{b} f(x) dx \text{ en } u.a.$$

Exemples:

 • \$\mathscr{C}_f\$ est la courbe représentative de la fonction \$f:x \long e^x\$ dans un repère orthogonal.

 • f est continue et positive donc l'aire \$\mathscr{A}\$, en unité d'aire,

sous la courbe \mathcal{C}_f pour $x \in [0;1]$ est égale à $\int_0^1 e^x dx$,

c'est-à-dire $e^1 - e^0$.

Donc $\mathcal{A} = e - 1$ unités d'aire.

- \mathscr{C}_g est la courbe représentative de la fonction $g: x \mapsto \frac{1}{x}$ sur $]0; + \infty[$ dans un repère orthogonal. g est continue et positive donc l'aire $\mathscr{A}(t)$, en unité d'aire, sous la courbe \mathscr{C}_g entre 1 et t est égale à :
 - o Si $t \ge 1$, $\mathcal{A}(t) = \int_{1}^{t} \frac{1}{x} dx = \ln(t)$.
 - $\circ \text{ Si } 0 < t \leq 1, \mathcal{A}(t) = \int_{t}^{1} \frac{1}{x} dx = -\ln(t).$

4

3) Valeur moyenne

Définition:

f est une fonction continue sur l'intervalle [a;b] (avec a < b).

La valeur moyenne de f sur [a;b] est le réel $\frac{1}{b-a}\int_a^b f(x) dx$.

Remarques:

• Nous admettrons que lorsque f est une fonction continue sur un intervalle [a;b], il existe un réel c de [a;b] tel que f(c) est égal à la valeur moyenne de f sur [a;b]. On a alors :

$$(b-a) f(c) = \int_{a}^{b} f(x) dx.$$

• Supposons que f soit positive sur [a;b]. L'égalité ci-dessus signifie que l'aire sous la courbe entre a et b est égale à l'aire du rectangle.

Exemple:

La valeur moyenne de la fonction $x \mapsto e^x \text{ sur } [-1;1] \text{ est }:$

$$V_m = \frac{1}{1 - (-1)} \int_{-1}^{1} e^x dx = \frac{1}{2} \left[e^x \right]_{-1}^{1} = \frac{1}{2} \left(e - \frac{1}{e} \right)$$

 $V_m \simeq 1,18$.

Cherchons un réel c tel que $e^t = V_m$. Donc $c \simeq \ln 1,18$.

Remarque:

Si x et y sont deux grandeurs liées par une relation du type y = f(x), l'intégrale $\int_a^b f(x) dx$ est une grandeur homogène au produit des grandeurs x et y.

Comme (b-a) est homogène à x, la valeur moyenne $\frac{1}{b-a}\int_a^b f(x) \, \mathrm{d} x$ est homogène à $\frac{1}{x}xy$, c'est-à-dire à la grandeur y.

Exemple:

Le débit en $m^3 \times h^{-1}$ d'une pompe d'arrosage qui fonctionne en été de 6 h à 20 h est modélisé par : $f(x) = 5 e^{0.002 x}$, où x est un instant en h, avec $6 \le x \le 20$.

Le débit moyen de cette pompe entre 6 h et 20 h est :

$$d_m = \frac{1}{20 - 6} \int_{6}^{20} 5 e^{0.002 x} dx = \frac{1}{14} \left[\frac{5}{0.002} e^{0.002 x} \right]_{6}^{20}.$$

Donc ce débit moyen est d'environ $5,13 \, m^3 \times h^{-1}$.

$$\int_{6}^{20} f(x) dx = (20-6) d_m \text{ est donc exprimé en } (m^3 \times h^{-1}) \times h \text{, c'est-à-dire en } m^3.$$

En fait, $\int_{6}^{20} f(x) dx$ est le volume total V d'eau débité par cette pompe entre 6 h et 20 h. Ainsi :

$$V \simeq 14 \times 5,13 \, m^3$$
, c'est-à-dire $V \simeq 71,8 \, m^3$

III. Propriétés de l'intégrale

1) Relation de Chasles

Propriété (relation de Chasles) :

Soit f une fonction continue sur un intervalle I.

Pour tous réels a, b et c de I, on a la relation de Chasles :

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$

Démonstration :

Notons F une primitive de f sur I.

$$\int_{a}^{c} f(x) dx = F(c) - F(a)$$
et
$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = F(b) - F(a) + F(c) - F(b) = F(c) - F(a).$$

D'où le résultat.

Remarque:

Lorsque f est positive et lorsque les réels a,b,c sont tels que $a \le b \le c$, la relation de Chasles traduit l'additivité des aires : l'aire de la réunion de deux domaines adjacents est la somme des aires de chacun.

Exemple:

On se propose de calculer :

$$I = \int_{-2}^{2} f(x) dx \text{ avec } \begin{cases} f(x) = x^{2} \text{si } x < 0 \\ f(0) = 0 \\ f(x) = x^{3} \text{si } x > 0 \end{cases}$$

On peut constater que la fonction représentée ci-dessous est continue sur [-2;2].

En utilisant la relation de Chasles:

$$I = \int_{-2}^{0} f(x) dx + \int_{0}^{2} f(x) dx = \int_{-2}^{0} x^{2} dx + \int_{0}^{2} x^{3} dx$$

$$I = \left[\frac{x^{3}}{3}\right]_{-2}^{0} + \left[\frac{x^{4}}{4}\right]_{0}^{2} = \frac{8}{3} + \frac{16}{4} = \frac{20}{3}$$

2) Linéarité

Propriété:

Soit f et g deux fonctions continues sur [a;b] est α un réel :

$$\int_{a}^{b} \alpha f(x) dx = \alpha \int_{a}^{b} f(x) dx \text{ et } \int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Démonstrations:

- Notons F une primitive de f sur I, alors αF est une primitive de αf sur I, donc : $\int_{0}^{b} \alpha f(x) dx = \alpha F(b) - \alpha F(a) = \alpha [F(b) - F(a)] = \alpha \int_{0}^{b} f(x) dx$
- Notons F et G des primitives respectivement de f et g sur I, alors F+G est une primitive de f + g sur I.

Donc:

$$\int_{a}^{b} [f(x)+g(x)] dx = \int_{a}^{b} (f+g)(x) dx = (F+G)(b) - (F+G)(a) = F(b) + G(b) - F(a) - G(a)$$
Or
$$\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx = F(b) + G(b) - F(a) - G(a)$$

D'où le résultat

Exemple:

On se propose de calculer $I = \int_{0}^{3} (2e^{x} - 3x) dx$.

$$I = \int_{0}^{3} 2e^{x} dx - \int_{0}^{3} 3x dx = 2 \int_{0}^{3} e^{x} dx - 3 \int_{0}^{3} x dx$$
$$I = 2 \left[e^{x} \right]_{0}^{3} - 3 \left[\frac{x^{2}}{2} \right]_{0}^{3} = 2 \left(e^{3} - 1 \right) - 3 \left(\frac{9}{2} \right) = 2 e^{3} - \frac{32}{2}.$$

Interprétation graphique :

3) Ordre

Propriété:

Si f est **positive** sur [a;b], alors $\int_a^b f(x) dx$ est un nombre **positif**.

Démonstration:

Si f est positive sur [a;b], alors F est croissante sur [a;b], car sa dérivée est positive, donc :

$$F(b) \geqslant F(a) \Leftrightarrow F(b) - F(a) \geqslant 0 \Leftrightarrow \int_a^b f(x) dx \geqslant 0$$

Remarques:

- La réciproque n'est pas vraie.
- Cette propriété est parfois appelée propriété de positivité de l'intégrale.

Théorème:

Soit f et g deux fonctions continues sur [a;b], avec $a \le b$, telles que : pour tout réel x de [a;b], on a $f(x) \le g(x)$.

Alors
$$\int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$$
.

Démonstration :

Si, pour tout réel x de [a;b], on a $f(x) \le g(x)$, alors g(x) - f(x) > 0 et l'intégrale

$$\int_{a}^{b} [g(x) - f(x)] dx \text{ est positive.}$$

Donc
$$\int_{a}^{b} [g(x) - f(x)] dx \ge 0 \iff \int_{a}^{b} g(x) dx - \int_{a}^{b} f(x) dx \ge 0 \iff \int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$$

Ce théorème permet d'encadrer une intégrale lorsque la fonction f est connue par sa courbe \mathscr{C}_{f} .

Remarque:

Ainsi, si $0 \le f(x) \le g(x)$ sur [a;b], alors l'aire sous la courbe de f entre a et b est inférieure à l'aire sous la courbe de g entre a et b.

8

Exemples:

- Si $a \le b$, alors $\int_a^b \frac{dt}{1+t^2} \ge 0$. En effet, pour tout réel t, $\frac{1}{1+t^2} \ge 0$.
- $\int_{\frac{1}{2}}^{1} \ln x \, dx \le 0$. En effet, $\frac{1}{2} \le 1$ et pour tout réel x de $\left[\frac{1}{2}; 1\right]$, $\ln x \le 0$.
- Sur l'intervalle [0;1], $t^3 \le t^2$, donc $\int_0^1 t^3 dt \le \int_0^1 t^2 dt$.