INF100 – Introdução à Programação I **Roteiro Prática 02 a 05 de abril de 2018**

Introdução

Nesta aula usaremos o comando condicional **if..elif..else** para introduzir conjuntos maiores de decisões em um programa. A tabela abaixo resume a sintaxe desse comando:

Algoritmo	Sintaxe Python	Exemplo
<pre>se condição_1 então:</pre>	<pre>if condição_1:</pre>	<pre>if x > 0: x = x + 1 print(x) elif x < 0: y = x - 1 print(y) else: print('x nulo')</pre>

Nesse caso, se a "condição 1" for verdadeira, o bloco **<comando(s)** 1> será executado. Caso contrário, se a "condição 2" for verdadeira, o bloco **<comando(s)** 2> será executado, e assim por diante. Se nenhuma das condições dadas forem verdadeiras, o programa executará o bloco **<outro(s)** comando(s)>. Repare que o termo elif é apenas uma contração de "else if", que significa "senão se".

Veja o exemplo mais completo a seguir:

```
x = int( input('Entre com um número inteiro qualquer: '))
if x > 0:
    x = x + 1
    print( x )
elif x < 0:
    y = x - 1
    print( y )
else:
    print('o valor digitado é igual a zero')</pre>
```

O que será escrito na tela pelo programa acima se você digitar o valor -5? E se você entrar com 0? Se estiver em dúvida, execute esse programa dentro do IDLE para ver o que acontece.

Agora suponha que você queira testar se um valor inteiro x está em um dos seguintes intervalos:

```
x \le 0 \text{ ou } x > 30  1 \le x \le 10  11 \le x \le 20  21 \le x \le 30
```

Poderíamos implementar isso assim:

```
if x <= 0 or x > 30:
    print('Valor <= 0 ou > 30')
if 1 <= x <= 10:
    print('Valor entre 1 e 10')
if 11 <= x <= 20:
    print('Valor entre 11 e 20')
if 21 <= x <= 30:
    print('Valor entre 21 e 30')</pre>
```

```
Prática 5 – INF100 – 2018/I – Valor: 1 ponto
```

Apesar de funcionar bem, repare que, se x for igual a 5, o computador imprimirá a mensagem do primeiro **if** e depois continuará testando as outras três condições desnecessariamente. Sabemos que, uma vez encontrada a condição verdadeira nesse caso, as outras não precisam mais ser testadas.

Poderíamos então implementar isso de forma mais eficiente, assim:

```
if x <= 0 or x > 30:
    print('Valor <= 0 ou > 30')
elif 1 <= x <= 10:
    print('Valor entre 1 e 10')
elif 11 <= x <= 20:
    print('Valor entre 11 e 20')
elif 21 <= x <= 30:
    print('Valor entre 21 e 30')</pre>
```

Desse modo, assim que o computador encontrar a primeira condição verdadeira (correspondente ao intervalo desejado), irá imprimir a mensagem correspondente e depois continuar a execução no comando encontrado após esse trecho todo (se houver).

Podemos simplificar ainda mais essas condições. Veja que, se a primeira condição for falsa, então obviamente o valor de x é maior ou igual a 1. Pois se não fosse, a primeira condição seria verdadeira, já que, se x não for maior ou igual a 1, então $x \le 0$.

Podemos então implementar isso de forma ainda mais simples e eficiente, assim:

```
if x <= 0 or x > 30:
    print('Valor <= 0 ou > 30')
elif x <= 10:
    print('Valor entre 1 e 10')
elif x <= 20:
    print('Valor entre 11 e 20')
else:
    print('Valor entre 21 e 30')</pre>
```

Dicas de Indentação no IDLE

Ao digitar os dois-pontos no final da condição do **if** e apertar **Enter**, o IDLE já faz a indentação da linha de baixo automaticamente. Para remover a indentação, basta usar a tecla **Backspace** (seta para a esquerda acima da tecla **Enter**). Seguem mais alguns atalhos:

Efeito	Tecla	
Indentar a linha atual	Tab	ı ← i
Des-indentar a linha atual	Backspace	←
Indentar várias linhas (já selecionadas)	ar várias linhas (já selecionadas) Tab ou Ctrl +]	
Des-indentar várias linhas (já selecionadas)	Ctrl + [

Roteiro de Prática

Nome do arquivo a ser entregue: p05.py

Entre os Cristãos, a Páscoa é a celebração da ressurreição de Jesus Cristo.

Obs.: Recomenda-se salvar o arquivo com certa frequência para não perder a digitação já feita em caso de uma falha na rede elétrica.

O <u>Dia da Páscoa</u>, por definição, é o primeiro Domingo após a primeira lua cheia que ocorre depois do equinócio da Primavera (no hemisfério norte, Outono no hemisfério sul), e pode cair entre 22 de março e 25 de abril. As fórmulas existentes calculam o que se convencionou chamar de "Cálculo Eclesiástico", definido pelo Concílio de Nicéia (325 d.C.).

Existem diversas fórmulas para se determinar o Domingo de Páscoa, entretanto uma das mais simples é a fórmula de Gauss, descrita a seguir.

Para calcular o dia da Páscoa (Domingo), primeiro obtemos o valor do ANO, que deve ser lido como um valor inteiro de 4 dígitos. Depois usamos a tabela abaixo para determinar o valor de X e Y:

ANO	X	Y
1582 a 1699	22	2
1700 a 1799	23	3
1800 a 1899	23	4
1900 a 2099	24	5
2100 a 2199	24	6
2200 a 2299	25	0
2300 a 2399	26	1
2400 a 2499	25	1

Veja que os valores de X e Y podem ser obtidos usando o comando if/elif/else, como foi mostrado na revisão da matéria acima, assim:

Em seguida, usamos as fórmulas abaixo. O operador **MOD** se refere ao resto da divisão inteira, que em Python pode ser obtido com o operador **%**.

$$a = AN0 \text{ MOD } 19$$

 $b = AN0 \text{ MOD } 4$
 $c = AN0 \text{ MOD } 7$
 $d = (19 * a + X) \text{ MOD } 30$
 $e = (2 * b + 4 * c + 6 * d + Y) \text{ MOD } 7$

Em seguida:

Calcula-se o valor de P dado por P = (22 + d + e).

Se ${\cal P}$ for menor ou igual a 31, a Páscoa será no dia ${\cal P}$ de março.

Caso contrário:

Calcula-se P' = (d + e - 9).

Se P' for menor ou igual a 25 a Páscoa será no dia P' de abril.

Caso contrário:

Calcula-se P'' = (P' - 7) e a Páscoa será a P'' de abril.

Determinar dia e mês da páscoa

Prática 5 – INF100 – 2018/I – Valor: 1 ponto

Faça um programa que leia um valor para o ano, e diga o dia e mês que ocorreu ou ocorrerá a Páscoa naquele ano. O programa deve verificar se o ano digitado está presente na tabela acima, conforme mostrado nos exemplos adiante. Segue o algoritmo completo do programa:

```
Leia ano
Se ano estiver fora do intervalo 1582 a 2499:
Escreva a mensagem de erro
Senão:
Obter x e y
Calcular a, b, c, d, e
Determinar e escrever na tela o dia e o mês da páscoa
```

Lembre-se que cada um dos 3 últimos passos desse algoritmo estão apresentados em detalhes na página anterior.

Segue vários exemplos da "tela" de execução desse programa. As entradas de dados do usuário (pelo teclado) estão destacadas.

Exemplo 1:

```
Digite um ano (1582 a 2499): <mark>2011</mark>
Em 2011 a Páscoa foi ou será em 24 de abril
```

Exemplo 2:

```
Digite um ano (1582 a 2499): <mark>2016</mark>
Em 2016 a Páscoa foi ou será em 27 de março
```

Exemplo 3:

```
Digite um ano (1582 a 2499): <mark>1981</mark>
Em 1981 a Páscoa foi ou será em 19 de abril
```

Exemplo 4:

```
Digite um ano (1582 a 2499): <mark>1500</mark>
1500 está fora do intervalo previsto
```

Exemplo 5:

```
Digite um ano (1582 a 2499): <mark>2500</mark>
2500 está fora do intervalo previsto
```

- A saída do programa deve obedecer à formatação **exata** mostrada nos exemplos acima.
- Não esqueça de preencher o <u>cabeçalho</u> com seus dados e uma breve descrição do programa.

Após certificar-se que seu programa está correto, envie o arquivo do programa fonte (**p05.py**) através do sistema do LBI.