Programmierparadigmen Wintersemester 2019/2020

Zusammenfassung

Autor: Frieder Haizmann

Inhaltsverzeichnis

1 Haskell			1
	1.1	Listen	1
	1.2	Funktionsanwendungen	1
		Lokale Namensbindung	
		Folds	
		Typen	
	1.6	Monaden	3
2 λ-Kalkül			3
	2.1	untypisiertes λ-Kalkül	3
	2.2	Church-Zahlen	4
	2.3	Regelsysteme	4
	2.4	Typsysteme	5
	2.5	Typinferenz	6

1 Haskell

Linear Rekursiv: In jeden Definitionszweig kommt nur ein rekursiver Aufruf vor. Endrekursiv: Linear rekursiv in jeden Zweig ist der rekursive Aufruf nicht in andere Aufrufe eingebettet.

1.1 Listen

```
[], x:xs, head[1,2,3] => 1, tail[1,2,3] => [2,3], init xs -- Alle elemente bis auf das l null[1,2,3] => False, length, isIn, a ++ b, take n l -- erste n Elemente von l, drop n l -- l ohne erste n Elemente, xs !! n -- Nte Listenelement,

reverse xs
map f (x:xs) -- wendet f auf alle Listenelemente an filter pred (x:xs) -- behalte alle Elemente, die Prädikat erfüllen
```

1.2 Funktionsanwendungen

```
Funktionskomposition f \circ g: comp f g = (\x -> f (g x)) Infix: f.g n-Fache Funktionsanwendung f^n: iter f n Funktionstypen sind rechts-assoziativ, Funktionsanwendung ist links-assoziativ f x = y + x Variable x Gebunden, Variable y frei.
```

1.3 Lokale Namensbindung

Einrückung hat semantische Bedeutung. Bei Schachtelung: Inneres **let** bindet stärker.

1.4 Folds

```
foldr operator initial [] = initial
foldr operator initial (x:xs) = operator x (foldr operator initial xs)
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f`...(xn `f` z)...)
foldl op i [] i
foldl op i (x:xs) = foldl op (op i x) xs
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...)`f` xn
Beispiel: length list = foldr (\x n -> n + 1) 0 list
```

```
concat [xs, ys, zs] = xs ++ ys ++ zs concat == foldr app []
zipWith f(x:xs)(y:ys) = f x y : zipWith f xs ys
zipWith f xs ys = []
zip = zipWith (,) -- zip[1,2,3],[7,8,9] = [(1,7),(2,8),(3,9)]
Kurznotation Intervalle [a..b] = >^+ [a, a+1, a+2, ..., b]
List Comprehensions [e | q1, ..., qm], q_i Tests oder Generatoren der Form p \leftarrow list
mit Muster p und Listenausdruck list
Beispiel: squares n = [x * x | x < -[0..n]]
Im Muster p gebundene Variablen können in e und in qi verwendet werden
Beispiel: evens n = [x \mid x < [0..n], x \mod 2 == 0] Unendliche Listen: odds = 1 : map (+2)
                        Generator
iterate f a = a : iterate f (f a)
odds = iterate (+2) 1
iterate f x !! 23 -- führt "Schleife" 23 mal aus
1.5 Typen
type neuerName = [Integer]
               = String
               = (a, b)
               = ...
                                      Konstruktoren
  Algebraische Datentypen
data Shape = Circle Double
                                      Circle :: Double -> Shape
                                      Rectangle :: Double -> Double -> Shape
        | Rectangle Double Double
Aufzählungstypen
data Season = Spring | Summer | Autumn | Winter
Polymorphe Datentypen (Optionale Werte)
data Maybe t = Nothing | Just t
data Either s t = Left s | Right t
data Matrix t = Dense [[t]] -- Liste von Zeilen
        | Sparse [(Integer, Integer t)] t -- Einträge (i,j,v) und Defaultwert
data Stack t = Empty | Stacked t (Stack t)
Polymorphe Funktion mit Typeinschränkung
qsort :: Ord t => [t] -> [t]
                                      Instanzen von Ord implementieren
qsort [] = []
                                      <=, <, >, >=, ...
qsort (p:ps) = ...
```

```
Typklassen-Definitionen

instance Eq Bool where

True == True = True

True == False = False

:

data shape = Circle Double

| Rectangle Double Double

deriving Eq -- Keine eigene (==) Funktion mehr notwendig
```

Automatische Instanziierung auch für Show,Ord,Enum

1.6 Monaden

2 λ-Kalkül

2.1 untypisiertes λ-Kalkül

	Notation	Beispiele	
Variablen	x	x	y
Abstraktion	$\lambda x.t$	$\lambda y.0$	$\lambda f.\lambda x.\lambda y.f \ y \ x$
Funktionsanwendung	t_1t_2	f42	$\lambda x.x + 5) 7$

Funktionsanwendung linksassoziativ, bindet stärker als Abstraktion

α-Äquivalenz	t_1 und t_t heißen α -äquivalent $t_1\stackrel{\alpha}{=}t_2$, wenn t_1 in t_2 durch konsistente Umbenennung der λ -gebundenen Variablen überführt werden kann			
η-Äquivalenz	Terme $\lambda x.f$ x und f heißen η -äquivalent $(\lambda x.f$ $x \stackrel{\eta}{=} f)$ falls x nicht freie Variable vob f			
Redex	Ein λ -Term der Form $(\lambda x.t_1)$ t_2 heißt Redex			
β -Reduktion	β -Reduktion entspricht der Ausführung der Funktionsanwendung auf einen Redex			
	$(\lambda x.t_1)t_2 \Rightarrow t_1[x \mapsto t_2]$			
Substitution	$t_1[x \mapsto t_2]$ erhält man aus den Term t_1 , wenn man alle freien Vorkommen von x durch t_2 ersetzt			
Normalform	Ein Term, der nicht weiter reduziert werden kann			
Volle β-Reduktion	Jeder Redex kann jederzeit reduziert werden			
Normalreihenfolge	Immer der linkeste äußerste Redex wird Reduziert			

 $let x = t_1 in t_2 wird zu (\lambda x.t_2) t_1$

2.2 Church-Zahlen

Eine (natürliche) Zahl drückt aus, wie oft die funktion s angewendet wurde

Nachfolgefunktion
$$c_0 = \lambda s. \lambda z. z$$

$$c_1 = \lambda s. \lambda z. s \ z$$

$$c_2 = \lambda s. \lambda z. s \ (s \ z)$$

$$\vdots$$

$$c_n = \lambda s. \lambda z \ s^n \ z$$
Nachfolgefunktion
$$succ = \lambda n. \lambda s. \lambda z. s \ (n \ s \ z)$$

$$\text{wobei } n \text{ Church Zahl}$$

Addition
$$plus = \lambda m.\lambda n.\lambda z.m \ s \ (n \ s \ z)$$

$$times = \lambda m.\lambda n.\lambda s.n(m \ s)$$

$$\stackrel{\eta}{=} \lambda m.\lambda n.\lambda s.\lambda z.n(m \ s) \ z$$

$$exp = \lambda m.\lambda n.n \ m$$

$$\stackrel{\eta}{=} \lambda m.\lambda n.\lambda s.\lambda z.n \ m \ s \ z$$

$$c_{true} = \lambda t.\lambda f.t \quad c_{false} = \lambda t.\lambda f.f$$

$$isZero = \lambda n.n \ (\lambda x.c_{false}) \ c_{true}$$

Rekursionsoperator
$$y = \lambda f.(\lambda x.f~(x~x))(\lambda x.f~(x~x))$$

 $f~(y~f) \stackrel{\eta}{=} y~f$
 $y~f$ ist Fixpunkt von f

Church-Rosser: Wenn $t \Rightarrow t_1$ und $t_1 \stackrel{*}{\Rightarrow} t_2$, dann gibt es t' mit $t_1 \stackrel{*}{\Rightarrow} t'$ und $t_2 \stackrel{*}{\Rightarrow} t'$

Call-by-name $\,$ Reduziere linkesten äußersten Redex aber nicht, falls von einem λ

umgeben \rightarrow Reduziere Argumente erst, wenn benötigt

Call-by-Value $\,$ Reduziere linkesten Redex, der nicht von einem λ umgeben und dessen

Argument ein Wert \rightarrow Argument vor Funktionsaufruf ist auszuwerten

2.3 Regelsysteme

Fregescher Schlussstrich

$$\frac{\varphi_1 \quad \varphi_2 \quad \varphi_3 \quad \dots \quad \varphi_n}{\varphi}$$

Jede Regel stellt Implikation dar, φ_i Voraussetzungen, φ Konklusion

Introduktionsregel

Eliminationsregel

Konjunktion

$$\wedge I \frac{\psi \ \varphi}{\psi \wedge \varphi}$$

$$\wedge E_1 \frac{\psi \wedge \varphi}{\psi} \quad \wedge E_2 \frac{\psi \wedge \varphi}{\varphi}$$

All-Quantor

$$\forall I \frac{P(y) \ y \ ist \ frei \ in \ P}{\forall x. P(x)}$$

$$\forall E \frac{\forall x. P(x)}{P(y)}$$

Implikation

$$\psi$$

$$\vdots^{1}$$

$$\to I \frac{\varphi}{\psi \longrightarrow \varphi}$$

$$MP \frac{\psi \longrightarrow \varphi \quad \psi}{\varphi}$$

Alternative Notation

$$\frac{\Gamma_1 \vdash \varphi_1 \quad \dots \quad \Gamma_n \vdash \varphi_n}{\vdash \varphi}$$

Regelsysteme alternative Notation

Introduktionsregeln

Eliminationsregeln

$$\wedge I \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi}$$

$$\wedge E_1 \frac{\Gamma \vdash \psi \wedge \psi}{\Gamma \vdash \varphi} \quad \wedge E_2 \frac{\Gamma \vdash \varphi \wedge \psi}{\Gamma \vdash \psi}$$

$$\to I \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \longrightarrow \psi} \quad \text{AssmI} \frac{\Gamma}{\Gamma, \varphi \vdash \varphi}$$

$$\mathrm{MP} \frac{\Gamma \vdash \varphi \longrightarrow \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

$$\wedge I_1 \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \land \psi} \quad \cdots$$

$$VE\frac{\Gamma \vdash \varphi \land \psi \quad \Gamma, \varphi \vdash \omega \quad \Gamma, \psi \vdash \omega}{\Gamma \vdash \omega}$$

2.4 Typsysteme

Funktionstypen rechtsassoziativ Typsystem $\Gamma \vdash t : \tau$ im Typkontext Γ hat Term t Typ τ . Γ ordnet freien Variablen x ihren Typ $\Gamma(x)$ zu.

 $^{^{1}\}mathrm{Herleitung}$ gemäß Regeln verbindet Implikation der Regeln mit prädikatenlogischer Implikation

Const
$$\frac{c \in Const}{\Gamma \vdash c : \tau_2}$$
 $VAR \frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau}$

$$ABS \frac{\Gamma, x : \tau_1 \vdash t : \tau_2}{\Gamma \vdash \lambda x.t : \tau_1 \longrightarrow \tau_2}$$

$$APP \frac{\Gamma \vdash t_1 : \tau_2 \longrightarrow \tau \quad \Gamma \vdash t_2 : \tau_2}{\Gamma \vdash t_1 \ t_2 : \tau}$$

Typisierung von λ-Term t: Paar (Γ, τ) , sodass $\Gamma \vdash t : \tau$ herleitbar β-Reduktion: Substitution von x $(\lambda x.t_1)$ $t_2 \Rightarrow t_1[x \mapsto t_2]$

Substitutionslemma Wenn $\Gamma, x : \tau_2 \vdash t_1 : \tau_1 \text{ und } \Gamma \vdash t_2 : \tau_2 \text{ dann}$

 $\Gamma \vdash t_1[x \mapsto t_2] : \tau_1$

Typerhaltungstheorem Wenn $\Gamma \vdash t : \tau \text{ und } t \Rightarrow t' \text{ dann } \Gamma \vdash t' : \tau$

Typschema Typ der Gestalt $\forall \alpha_1. \forall \alpha_2. \cdots \forall \alpha_n$ heißt Typschema.

Es bindet freie Typvariablen $\alpha_1 \dots \alpha_n$ in τ

Instanziierung eines Typschemas Für nicht-Schema-Typen τ_2 ist der Typ $\tau[\alpha \mapsto \tau_2]$

eine Instanzieierung vom Typschema $\forall \alpha. \tau$

Schreibweise $(\forall \alpha. \tau) \succeq \tau[\alpha \to \tau_2]$

Beispiele $\forall \alpha. \alpha \rightarrow \alpha \succeq int \rightarrow int$

 $\forall \alpha. \alpha \rightarrow \alpha \succeq (int \rightarrow int) \rightarrow (int \rightarrow int) \quad int \succeq$

int

 $\alpha \rightarrow \alpha \not\succeq int \rightarrow int \quad \alpha \not\succeq bool$

 $\forall \alpha. \alpha \rightarrow \alpha \not\succeq bool$

2.5 Typinferenz

 $ta(\tau, \Gamma)$ bindet alle in Γ freien Typvariablen mit einem \forall in τ Bsp.: $ta(\alpha \to \beta, x : \beta, y : \delta) = \forall \alpha. \alpha \to \beta$

$$\mathrm{Let}\frac{\Gamma \vdash y : \pi \quad \Gamma' \vdash b : \beta}{\Gamma \vdash let \ x = y \ in \ b : \tau}$$

Constraints: Finde Unifikator $\sigma_{\text{\tiny LET}}$ und allg. Typ π für y

- 1. Sei C_0 die bisherige Constraintmenge inklusive $\{\tau = \beta\}$
- 2. Sammle Constraints aus linken Teilbaum in $C_{\text{\tiny LET}}$
- 3. Berechne $mgu \sigma_{\text{LET}}$ von C_{LET}
- 4. Berechne $\Gamma' := \sigma_{\text{LET}}(\Gamma), x : ta(\sigma_{\text{LET}}(\pi), \sigma_{\text{LET}}(\Gamma))$
- 5. Benutze Γ' in rechten Teilbaum, sammle Constraints in C_1

6. Ergebnisscontraints sind $C_0 \cup C'_{\text{LET}} \cup C_1$ mit $C'_{\text{LET}} := \{\alpha_i = \sigma_{\text{LET}}(\alpha_i) | \sigma_{\text{LET}} \text{ definiert für } \alpha_i \}$