

DataRobot

Massive Business Impact from Extreme Automation

\$1Bn Invested

Most comprehensive end-to-end Al platform on the market

750 + Data Scientists and Engineers

Applied ML experience

Extensible Platform

Models from Code, GUI or Converted from Legacy, Deployed and Operated Anywhere

For Everyone

From Business Users, to IT From novice to expert

Clear and Trusted

Business outcomes driven by understandable Al

Scale

Over one million projects and greater than one trillion predictions

+ Category Creator of AutoML and MLOps

Realizing the benefits from Al

HIGH PERFORMERS **EVERYONE ELSE**

DEMONSTRATION

Six Use Cases & Over 200 Models in an Afternoon

- 1. Predict late delivery of critical medical aid shipments Binary Classification
- 2. Predict home prices in Utah Regression with Multi-model Data
- 3. Classify leaf images as healthy or one of 10 plant diseases Multiclass Classification
- 4. Detect anomalies in network intrusion monitoring systems Anomaly Detection
- 5. Predict Sales at 10 stores for the next 7 days Time Series Forecasting with derivation of features
- 6. Predict banana purchases Binary Classification with derivation of features

Late Shipments for Medical Aid

Shipment Scenario Planner - No Code Al App

DataRobot				
Simulate Compare (3)				
Scenario "Late_delivery"	Scenario 2 Scenario 3 No (81%) Yes (24%)		Scenario 5 No (95%)	
	+++ Brand +++ Dosage +++ Vendor INCO Term +++ Pack Price +++ Unit Price	+++ Brand +++ Dosage +++ Vendor INCO Term +++ Pack Price +++ Shipment Mode	+++ Brand +++ Dosage +++ Vendor INCO Term +++ Pack Price Vendor	
Inputs				
Vendor	Aurobindo Pharma Limited	Aurobindo Pharma Limited	HETERO LABS LIMITED	
Item Description	Zidovudine 300mg	Zidovudine 300mg	Zidovudine 300mg	
Molecule/Test Type	Zidovudine	Zidovudine	Zidovudine	
Pack Price	7	7	7	
Line Item Quantity	500	5000	5000	
Brand	Generic	Generic	Generic	
Dosage	300mg	300mg	300mg	
Line Item Insurance (USD)	100	1000	1000	
Product Group	ARV	ARV	ARV	
Sub Classification	Adult	Adult	Adult	
Managed By	PMO - US	PMO - US	PMO - US	
First Line Designation	Yes	Yes	Yes	
Manufacturing Site	Micro labs, Verna, Goa, India	Micro labs, Verna, Goa, India	Hetero Unit III Hyderabad IN	
Dosage Form	Tablet	Tablet	Tablet	
Weight (Kilograms)	500	5000	5000	
Country	Congo, DRC	Congo, DRC	Congo, DRC	
Shipment Mode	Air	Air	Air	

Home Prices using Text, Images and Geospatial Inputs

Classifying Fifteen Plant Diseases from Leaf Images

Classifying Fifteen Plant Diseases from Leaf Images

Network Intrusion Anomaly Detection

Store Sales at 10 Locations for Next 7 Days

Grocery Purchase Propensity from Transaction Tables

MORE SCALE AND SPEED

Model Factory Set-up


```
project prefix = 'TS Fctry'
In [14]:
         date col = 'Date'
         series id = 'Store'
         target = 'Sales'
         metric = 'RMSE'
In [17]: def run project(dataID, derive start, derive end, forecast start, forecast end):
                                                                                                                    Function that takes derivation
             # create a project
                                                                                                                    windows and forecast
             project = dr.Project.create from dataset(project name=f'{project prefix} Derive {derive start}/{derive
                                                                                                                    distances as inputs.
                                                      dataset id=dataID)
             # define time-series project specs
             ts specs = dr.DatetimePartitioningSpecification(
                 datetime partition column=date col,
                 use time series=True,
                 multiseries id columns=[series id],
                 feature derivation window start=derive start,
                 feature derivation window end=derive end,
                                                                                                                    Same dataset and backtest
                 forecast window start=forecast start,
                                                                                                                    period for all experiments.
                 forecast window end=forecast end,
                 validation duration='POYOM60DT0H0M0S', #backtesting period of 60 days
                 number of backtests = 2)
             # kickoff autopilot
                                                                                                                    Two DataRobot workers
             project.set target(
                 target=target,
                                                                                                                    allocated per project.
                 metric=metric,
                 partitioning method=ts specs,
                 worker count=2)
                                                         #2 workers per project
             return project
```

Model Factory Run


```
Ten DataRobot projects
                                                                                       initiated. Progress can be
In [18]: #Experiment A - To forecast the next day very accurately is it better to us
                                                                                                                      eatures?
                                                                                       monitored in the UI. These will
                                                                                       complete in about 2.5 hours
          run project(sourcedata, -35, -1, 1, 1)
         run project(sourcedata, -65, -1, 1, 1)
                                                                                       with about 500 models in total.
         run project(sourcedata, -100, -1, 1, 1)
Out[18]: Project(TS Fctry Derive -100/-1 Frcst 1/1)
In [19]: #Experiment B - To forecast 7 to 13 days out, is it better to use 36, 65 or 100 days of lagged features?
         #Forecasting 7 to 13 days out is useful to set staffing levels and provide employee schedules a week in advance.
         projB35 = run project(sourcedata, -35, -1, 7, 13)
         projB65 = run project(sourcedata, -65, -1, 7, 13)
         projB100 = run project(sourcedata, -100, -1, 7, 13)
In [*]: #Experiment C - Using no information from the last 7 days, how well can we forecast the upcoming week?
        #Is it better to forecast each day individually in a project or create a single project for the week
        #Forecasting without the most recent information is relevant if you receive batch data feeds from partners
        projC65 1 = run project(sourcedata, -65, -7, 1, 1)
        projC65 2 = run project(sourcedata, -65, -7, 2, 2)
        projC65 3 = run project(sourcedata, -65, -7, 3, 3)
        projC65 123 = run project(sourcedata, -65, -7, 1, 3)
```

Mass Model Automation

Time stamp 5:42 PM

Mass Model Automation

Time stamp 6:36 PM

Mass Model Automation

Time stamp 8:21 PM

₽D	ataRobot Use Cases AIC	atalog Data Models	5 Deployments	Model Registry App	lications		TS Fctry Derive -65/	7-7 Frcst 1/3 🕶 🙎 🙎
≣м	enu + Create new project Q Sear	ch T Filter Projects	Tags				1-20 of 51 🗦	WORKERS Using 0 of 20 total workers
	Project Name	Dataset	Model type	Target	# of models	Time-aware	Created by	across all projects
	TS Fctry Derive -65/-7 Frcst 1/3	Datasource jdbc DE	Regression	Sales (actual)	51	TS	andrea.krop;	STATUS Autopilot has finished
	TS Fctry Derive -65/-7 Frcst 3/3	Datasource jdbc DE	Regression	Sales (actual)	51	тѕ	andrea.krop;	ACTIONS
	TS Fctry Derive -65/-7 Frcst 2/2	Datasource jdbc DE	Regression	Sales (actual)	51	TS	andrea.kropį	Get More Accuracy Next Modeling Mode: Custom
	TS Fctry Derive -65/-7 Frcst 1/1	Datasource jdbc DE	Regression	Sales (actual)	51	TS	andrea.kropį	Feature List: Time Series Informative Features (Multiple Feature Lists)
	TS Fctry Derive -100/-1 Frcst 7/	Datasource jdbc DE	Regression	Sales (actual)	51	TS	andrea.kropį	Configure modeling settings
	TS Fctry Derive -65/-1 Frcst 7/13	Datasource jdbc DE	Regression	Sales (actual)	51	TS	andrea.kropį	← Unlock project Holdout for all models
	TS Fctry Derive -35/-1 Frcst 7/13	Datasource jdbc DE	Regression	Sales (actual)	51	TS	andrea.kropį	
	TS Fctry Derive -100/-1 Frcst 1/1	Datasource jdbc DE	Regression	Sales (actual)	51	TS	andrea.kropį	
	TS Fctry Derive -65/-1 Frcst 1/1	Datasource jdbc DE	Regression	Sales (actual)	51	TS	andrea.kropp	
	TS Fctry Derive -35/-1 Frcst 1/1	Datasource jdbc DE	Regression	Sales (actual)	50	TS	andrea.krop;	

Aggregate Results across Experiments

Create a summary dataframe with all models across all projects (~500)

Create a summary dataframe with the lowest MAE in each project (10)

```
all scores = pd.DataFrame()
minimum scores = pd.DataFrame()
for proj in proj list:
    minimum project score = pd.DataFrame()
    project scores = pd.DataFrame()
    #get all models for a project; most of them have 50 models
    model list = proj.get datetime models()
    for m in model list:
        backtest scores = pd.DataFrame(
                     'Project Name': proj.project name,
                    'Model Type': m.model type,
                    'Featurelist': m.featurelist name,
                     'Backtest MAE': m.metrics['MAE']['backtesting'],
                     'Backtest MASE': m.metrics['MASE']['backtesting'],
                     'Backtest RMSE': m.metrics['RMSE']['backtesting'],
                     'Model ID': m.id,
        project scores = project scores.append(backtest scores, sort=False).reset index(drop=True)
    minimum project score = project scores[project scores.Backtest MAE == project scores.Backtest MAE.min()]
    #gather the minimum MAE from each project
    minimum scores = minimum scores.append(minimum project score, sort=False).reset index(drop=True)
    #gather all models across all projects
    all scores = all scores.append(project scores, sort=False).reset index(drop=True)
```

Loop across the ten completed projects and retrieve all the models into a dataframe called 'all' and the best model from each project into a dataframe called 'minimum'.

Examine Top Performing Model Types

#dataframe containing the lowest MAE model from each project minimum_scores

Out[7]:

U	S Fctry Derive -65/-7 Frcst 1/3 S Fctry Derive -65/-7	AVG Blender	With Differencing (average			Backtest_RMSE	MAE) from each project.
1 TS	S Fctry Derive -65/-7		With Differencing (average baseline)	10820.38350	0.61737	20142.38791	
	Frcst 3/3	Keras DeepAR LSTM Regressor with Student's T P	Baseline Only (latest)	12360.58726	0.67644	22856.17261	Notice that the top-performing model type and feature list varies
2 TS	Fctry Derive -65/-7 Frcst 2/2	Eureqa Generalized Additive Model (250 Generat	With Differencing (average baseline)	12152 50138	0.68710	23456.95418	greatly across experiments.
3 TS	Fctry Derive -65/-7 Frcst 1/1	AVG Blender	With Differencing (7 day)	11856.36516	0.70188	20970.97479	Notice that ensemble models (Blenders) are often the top
4 TS F	Fctry Derive -100/-1 Frcst 7/13	AVG Blender	No Differencing	11003.92908	0.60493	20841.73936	performer.
5 TS	Fctry Derive -65/-1 Frcst 7/13	AVG Blender	With Differencing (nonzero average baseline)	10818.51987	0.58817	19717.89076	617612dc2aee95eb2281674a
6 TS	Fctry Derive -35/-1 Frcst 7/13	Zero-Inflated eXtreme Gradient Boosted Trees R	DR Reduced Features M46	9972.72674	0.54300	18493.85678	6176120934b94bd35a18b9bc
7 TS F	Fctry Derive -100/-1 Frcst 1/1	Performance Clustered eXtreme Gradient Boosted	DR Reduced Features M17	9264.97918	0.60343	18864.50680	61760efa2193c115989ea5eb
8 TS	Fctry Derive -65/-1 Frcst 1/1	AVG Blender	With Differencing (average baseline)	9358.14896	0.60745	18653.02359	61760db715cfc0e16418b988
9 TS	Fctry Derive -35/-1 Frcst 1/1	AVG Blender	With Differencing (latest)	9552.11368	0.61496	18612.55056	617607ace86af0b9558fae28

+ PLATFORM OVERVIEW

DataRobot

Al Cloud Platform

DataRobot