Graceful Labeling Algorithms

Jay Bagga

Ball State University Muncie, Indiana, USA

June 11, 2008

Definition

A *graph labeling* is an assignment of integers to vertices or edges, or both, subject to certain conditions.

Definition

A *graph labeling* is an assignment of integers to vertices or edges, or both, subject to certain conditions.

Graph Labelings were introduced in the 1960s.

Definition

A *graph labeling* is an assignment of integers to vertices or edges, or both, subject to certain conditions.

- ▶ Graph Labelings were introduced in the 1960s.
- Since then many different types of graph labeling techniques have been investigated.

Definition

A *graph labeling* is an assignment of integers to vertices or edges, or both, subject to certain conditions.

- ▶ Graph Labelings were introduced in the 1960s.
- Since then many different types of graph labeling techniques have been investigated.
- ▶ Over 800 papers have been published in this area.

A Graceful Cycle

Applications

Graceful Labeling

For a connected graph G with q edges, a vertex labeling $f:V(G) \rightarrow \{0,1,2,...,q\}$ such that distinct vertices have distinct labels induces an edge labeling where an edge uv gets the label |f(u)-f(v)|.

Graceful Labeling

- For a connected graph G with q edges, a vertex labeling $f:V(G) \rightarrow \{0,1,2,...,q\}$ such that distinct vertices have distinct labels induces an edge labeling where an edge uv gets the label |f(u)-f(v)|.
- ► Such a labeling is called *graceful* if the edges are labeled 1, 2, ..., q.

Graceful Labeling

- For a connected graph G with q edges, a vertex labeling $f:V(G) \to \{0,1,2,...,q\}$ such that distinct vertices have distinct labels induces an edge labeling where an edge uv gets the label |f(u)-f(v)|.
- ► Such a labeling is called *graceful* if the edges are labeled 1,2,..., q.
- ▶ G is called *graceful* if it has a graceful labeling.

An Example

Another Example

Nongraceful Examples

Theorem

The complete graph K_n is graceful iff $n \leq 4$.

▶ Ringel-Kotzig's long standing conjecture (1963, 1967) states that all trees are graceful.

- ▶ Ringel-Kotzig's long standing conjecture (1963, 1967) states that all trees are graceful.
- ▶ With the help of a computer program Aldred and McKay (1998) showed that all trees up to order 27 are graceful.

- ▶ Ringel-Kotzig's long standing conjecture (1963, 1967) states that all trees are graceful.
- ▶ With the help of a computer program Aldred and McKay (1998) showed that all trees up to order 27 are graceful.
- Extended to n=28 by Nikoloski et al, and to n=29 by M. Horton (2003)

- ▶ Ringel-Kotzig's long standing conjecture (1963, 1967) states that all trees are graceful.
- ▶ With the help of a computer program Aldred and McKay (1998) showed that all trees up to order 27 are graceful.
- Extended to n=28 by Nikoloski et al, and to n=29 by M. Horton (2003)
- Some results are known. For example, paths and caterpillars are graceful.

Unlabeled rootless trees

Tree size (n)	Number of unlabeled rootless trees of this size	Otter (Ann. Math. 1948)
` 7	11	,
8	23	
9	47	
10	106	
11	235	
12	551	
13	1,301	
14	3,159	
15	7,741	
16	19,320	
17	48,629	
18	123,867	
19	317,955	
20	823,065	
21	2,144,505	
22	5,623,756	
23	14,828,074	
24	39,299,897	
25	104,636,890	
26	279,793,450	
27	751,065,460	
28	2,023,443,032	
29	5,469,566,585	
30	14,830,871,802	
31	40,330,829,030	
32	109,972,410,221	

Paths, Caterpillars

Paths, Caterpillars

Paths, Caterpillars

Lobsters

Lobsters

Graph Decomposition

▶ A decomposition of a graph G = (V, E) is a partition of the edge set E into subsets $E_1, E_2, ..., E_r$.

Graph Decomposition

- ▶ A decomposition of a graph G = (V, E) is a partition of the edge set E into subsets $E_1, E_2, ..., E_r$.
- ▶ If H_i is the subgraph of G induced by E_i , then we also say the G decomposes into subgraphs

Graph Decomposition

- ▶ A decomposition of a graph G = (V, E) is a partition of the edge set E into subsets $E_1, E_2, ..., E_r$.
- If H_i is the subgraph of G induced by E_i, then we also say the G decomposes into subgraphs
- ▶ If the subgraphs H_i are all isomorphic to a single graph (say) H then we say that G is H-decomposable and we write H|G.

Graph Decompositions and Graceful Labelings

▶ Conjecture (Ringel, 1963) If T is a tree with m edges, then K_{2m+1} decomposes into 2m+1 copies of T.

Graph Decompositions and Graceful Labelings

▶ Conjecture (Ringel, 1963) If T is a tree with m edges, then K_{2m+1} decomposes into 2m+1 copies of T.

Graph Decompositions and Graceful Labelings

▶ Theorem (Rosa) If a tree T with m edges has a graceful labeling, then K_{2m+1} decomposes into 2m + 1 copies of T.

Graceful Cycles

► We are interested in studying properties of graceful labelings of unicyclic graphs.

Graceful Cycles

- ► We are interested in studying properties of graceful labelings of unicyclic graphs.
- ▶ Rosa (1967) showed that the cycle C_n is graceful iff n is 0 or 3 ($mod\ 4$).

Graceful Cycles

- We are interested in studying properties of graceful labelings of unicyclic graphs.
- ▶ Rosa (1967) showed that the cycle C_n is graceful iff n is 0 or 3 ($mod\ 4$).
- ▶ He gave a constructive proof by showing one explicit graceful labeling for each such *n*.

An example

▶ The figure shows a graceful labeling of C_{19}

An example

- ▶ The figure shows a graceful labeling of C_{19}
- ▶ In any graceful labeling of C_n exactly one of the vertex labels from $\{0, 1, 2, ..., n\}$ is missing.

An example

- ▶ The figure shows a graceful labeling of C_{19}
- ▶ In any graceful labeling of C_n exactly one of the vertex labels from $\{0, 1, 2, ..., n\}$ is missing.
- ▶ We call this missing value m. In the above example, m = 9.

Unicyclic Graphs

Cycles are special cases of unicyclic graphs.

Unicyclic Graphs

- ► Cycles are special cases of unicyclic graphs.
- ▶ Truszczyński conjectured in 1984 that all unicyclic graphs, except cycles C_n with $n \equiv 1 (mod\ 4)$ or $n \equiv 2 (mod\ 4)$, are graceful.

Unicyclic Graphs

- Cycles are special cases of unicyclic graphs.
- ▶ Truszczyński conjectured in 1984 that all unicyclic graphs, except cycles C_n with $n \equiv 1 (mod\ 4)$ or $n \equiv 2 (mod\ 4)$, are graceful.
- Barrientos studied graceful labelings of a special class of unicyclic graphs. He defined a *hairy cycle* to be a unicyclic graph in which the deletion of any edge in the cycle results in a caterpillar.

Unicyclic Graphs

- Cycles are special cases of unicyclic graphs.
- ▶ Truszczyński conjectured in 1984 that all unicyclic graphs, except cycles C_n with $n \equiv 1 \pmod{4}$ or $n \equiv 2 \pmod{4}$, are graceful.
- Barrientos studied graceful labelings of a special class of unicyclic graphs. He defined a *hairy cycle* to be a unicyclic graph in which the deletion of any edge in the cycle results in a caterpillar.
- ▶ Barrientos showed that all hairy cycles are graceful.

An Algorithm

▶ We have developed an algorithm to generate all possible graceful labelings of C_n when n is 0 or 3 $(mod\ 4)$.

An Algorithm

- ▶ We have developed an algorithm to generate all possible graceful labelings of C_n when n is 0 or 3 (mod 4).
- ► We discovered several more graceful labelings and observed that they all satisfy interesting properties.

An example

▶ The figure shows a graceful labeling of C_{19}

An example

- ▶ The figure shows a graceful labeling of C_{19}
- ▶ In any graceful labeling of C_n exactly one of the vertex labels from $\{0, 1, 2, ..., n\}$ is missing.

An example

- ▶ The figure shows a graceful labeling of C_{19}
- ▶ In any graceful labeling of C_n exactly one of the vertex labels from $\{0, 1, 2, ..., n\}$ is missing.
- ▶ We call this missing value m. In the above example, m = 9.

Graceful Labeling data

	Т	n											
		3	4	7	8	11	12	15	16	19	20	23	24
lumber		2	2	12	24	208	492	7,764	20,464	424,784	1,204,540	33,492,078	107,399,400
	0												
	1	1	1										
	2	1		3	3								
	3		1	3	6	26	26						
	4			3	6	42	80	299	299				
	5			3	6	36	80	789	1,476	5,932	5,932		
	6	Т			3	36	120	1,301	3,190	22,210	39,692	162,634	162,634
	7					42	80	1,493	3,494	49,714	104,688	787,218	1,393,740
	8					26	80	1,493	3,646	61,758	162,606	2,218,596	4,813,618
m	9						26	1,301	3,494	72,778	191,238	3,690,788	9,785,048
	10							789	3,190	72,778	196,228	4,633,029	13,567,488
	11							299	1,476	61,758	191,238	5,252,774	15,837,020
	12								299	49,714	162,606	5,253,774	16,280,304
	13									22,210	104,688	4,633,029	15,837,020
	14									5,932	39,692	3,690,788	13,567,488
	15										5,932	2,218,596	9,785,048
	16		T									787,218	4,813,618
	17											162,634	1,393,740
	18												162,634
	19												
	20												

Algorithm - Details

```
Level n 0 n

Level n-1 n-1 0 n 0 n 1

Level n-2 1 n-1 0 n n-1 0 n 2 n-2 0 n 1 0 n 1 n-1

Level n-3 ...

Level n-k ...
```

Possible Differences

Edge Label	n		n-1		n-2		n-3	
Adjacent Vertex Label	n	0	n-1	0	n-2	0	n-3	0
			n	1	n-1	1	n-2	1
					n	2	n-1	2
							n	3

General Step

Given the following sublabeling S at step k:

$$a_2 \ a_3 \ a_4 \ \dots \ 0 \ n \ \dots \ a_{k-1} \ a_k$$

Where next edge label is *e* Find two labels a and b such that

- ▶ |a b| = e
- ▶ a, b ∉ S
- ▶ $0 \le a, b \le n$

General Step - 2

Where X_1 and X_2 are sublabelings between b a_2 and a a_2 respectively.

Description of Algorithm

- ightharpoonup | a $-a_2$ | = e or | a $-a_i$ | = e or | a $-a_k$ | = e
 - ightharpoonup a a_2 a_3 a_4 ... 0 n ... a_{k-1} a_k
 - $ightharpoonup a_2 \ a_3 \ a_4 \ \dots \ a_i \ \mathsf{a} \ X_1 \ \dots \ \mathsf{0} \ n \ \dots \ a_{k-1} \ a_k$
 - $ightharpoonup a_2 \ a_3 \ a_4 \ \dots \ X_1 \ \mathsf{a} \ a_i \ \dots \ \mathsf{0} \ n \ \dots \ a_{k-1} \ a_k$
 - $ightharpoonup a_2 \ a_3 \ a_4 \ \dots \ 0 \ n \ \dots \ a_{k-1} \ a_k$ a

Description of Algorithm

- ightharpoonup | a $-a_2$ | = e or | a $-a_i$ | = e or | a $-a_k$ | = e
 - ▶ a a_2 a_3 a_4 ... 0 n ... a_{k-1} a_k
 - $ightharpoonup a_2 \ a_3 \ a_4 \ \dots \ a_i \ a \ X_1 \ \dots \ 0 \ n \ \dots \ a_{k-1} \ a_k$
 - $ightharpoonup a_2 \ a_3 \ a_4 \ \dots \ X_1 \ \mathsf{a} \ a_i \ \dots \ \mathsf{0} \ n \ \dots \ a_{k-1} \ a_k$
 - $ightharpoonup a_2 \ a_3 \ a_4 \ \dots \ 0 \ n \ \dots \ a_{k-1} \ a_k \ a_k$
- ▶ | a b | = e
 - ightharpoonup a b X_1 a_2 a_3 a_4 ... 0 n ... a_{k-1} a_k
 - ightharpoonup ba X_1 a_2 a_3 a_4 ... 0 n ... a_{k-1} a_k
 - $ightharpoonup a_2 \ a_3 \ a_4 \ ... X_1 \ a \ b \ X_2 \ ... \ 0 \ n \ ... \ a_{k-1} \ a_k$
 - $ightharpoonup a_2 \ a_3 \ a_4 \ ... X_1 \ b \ a \ X_2 \ ... \ 0 \ n \ ... \ a_{k-1} \ a_k$

Description of Algorithm

- ightharpoonup | a $-a_2$ | = e or | a $-a_i$ | = e or | a $-a_k$ | = e
 - ightharpoonup a a_2 a_3 a_4 ... 0 n ... a_{k-1} a_k
 - $ightharpoonup a_2 \ a_3 \ a_4 \ \dots \ a_i \ a \ X_1 \ \dots \ 0 \ n \ \dots \ a_{k-1} \ a_k$
 - $ightharpoonup a_2 \ a_3 \ a_4 \ \dots \ X_1 \ \mathsf{a} \ a_i \ \dots \ \mathsf{0} \ n \ \dots \ a_{k-1} \ a_k$
 - $ightharpoonup a_2 \ a_3 \ a_4 \ \dots \ 0 \ n \ \dots \ a_{k-1} \ a_k \ a_k$
- ▶ | a b | = e
 - ightharpoonup a b X_1 a_2 a_3 a_4 ... 0 n ... a_{k-1} a_k
 - ightharpoonup ba X_1 a_2 a_3 a_4 ... 0 n ... a_{k-1} a_k
 - $ightharpoonup a_2 \ a_3 \ a_4 \ ... \ X_1 \ a \ b \ X_2 \ ... \ 0 \ n \ ... \ a_{k-1} \ a_k$
 - $ightharpoonup a_2 \ a_3 \ a_4 \ ... X_1 \ b \ a \ X_2 \ ... \ 0 \ n \ ... \ a_{k-1} \ a_k$
- lacksquare $|a_i-a_{i+1}|=e$ where $a_i,\ a_{i+1}\in(\ ...\ a_i\ X_1\ a_{i+i}\ ...)$

Sample Output

```
8 - 0 8
7 — 7 0 8
6 - 1708
5 - 61708
4 - 261708
3 - 5261708
2 - 3 5 2 6 1 7 0 8
3 - 2617085
* 2 — 4 2 6 1 7 0 8 5 [1] \rightarrow 3 H(\#3;21) = \{6 7 8\}; L(\#3;3) = \{0 1 2\}; I(\#2;9) = \{4 5\} * 2 — 2 6 1 7 0 8 5 3 [2] \rightarrow 4 H(\#3;21) = \{6 7 8\}; L(\#3;3) = \{0 1 2\}; I(\#2;8) = \{3 5\}
4 - 617084
3 - 3617084
* 2 — 5 3 6 1 7 0 8 4 [3] \rightarrow 2 H(\#4;26)=\{5 6 7 8\}; L(\#4;8)=\{0 1 3 4\}; L(\#0;0)=\{\}
* 2 — 3 6 1 7 0 8 4 2 [4] \rightarrow 5 H(\#3:21) = \{6,7,8\}: L(\#3:3) = \{0,1,2\}: I(\#2:7) = \{3,4\}
3 - 5 2 - 2 6 1 7 0 8 4
2 - 3 5 2 - 2 6 1 7 0 8 4
3 - 25 - 2617084
* 2 — 6 1 7 0 8 4 2 5 [5] \rightarrow 3 H(\#3;21)=\{6 7 8\}; L(\#3;3)=\{0 1 2\}; I(\#2;9)=\{4 5\}
2 - 2 5 3 - 2 6 1 7 0 8 4
5 - 17083
4 - 5 1 7 0 8 3
3 - 2517083
* 2 — 4 2 5 1 7 0 8 3 [6] \rightarrow 6 H(\#4;24)=\{4578\}; L(\#4;6)=\{0123\}; L(\#0;0)=\{\}
2 - 6 4 - 2 2 5 1 7 0 8 3
2 - 46-22517083
```

▶ Given a graceful labeling $f = \langle x_1, x_2, ..., x_n \rangle$ of C_n we want to show that it is achieved exactly once by our algorithm

- ▶ Given a graceful labeling $f = \langle x_1, x_2, ..., x_n \rangle$ of C_n we want to show that it is achieved exactly once by our algorithm
- We define a sub labeling S_k of f such that S_k is contained in f in the same order and produces edge labels from k to n
- lacksquare Note that $S_n=\{0,n\}$ and $S_1=f$

- ▶ Given a graceful labeling $f = \langle x_1, x_2, ..., x_n \rangle$ of C_n we want to show that it is achieved exactly once by our algorithm
- ▶ We define a sub labeling S_k of f such that S_k is contained in f in the same order and produces edge labels from k to n
- ▶ Note that $S_n = \{0, n\}$ and $S_1 = f$
- ► Example: $f = <4, 15, 0, 16, 2, 11, 3, 13, 1, 14, 7, 9, 12, 6, 10, 5 > S_{13} = <15, 0, 16, 2 > <1, 14 >$
- ▶ Note that sub labeling S_k is a set of paths

- ▶ Given a graceful labeling $f = \langle x_1, x_2, ..., x_n \rangle$ of C_n we want to show that it is achieved exactly once by our algorithm
- ▶ We define a sub labeling S_k of f such that S_k is contained in f in the same order and produces edge labels from k to n
- ▶ Note that $S_n = \{0, n\}$ and $S_1 = f$
- ► Example: $f = <4, 15, 0, 16, 2, 11, 3, 13, 1, 14, 7, 9, 12, 6, 10, 5 > S_{13} = <15, 0, 16, 2 > <1, 14 >$
- ightharpoonup Note that sub labeling S_k is a set of paths
- ▶ The proof of the correctness of the algorithm is carried out using induction on the edge label k = n, n 1, ..., 2, 1

- ▶ Base Case: $S_n = \{0, n\}$ which is trivially true for any f
- ▶ Now at n-1 we have two alternatives
 - $S_{n-1} = \langle n-1, 0, n \rangle$
 - $S_{n-1} = <0, n, 1>$
- ▶ Induction Hypothesis: The algorithm achieves S_{k+1}
- \triangleright We will now show that the algorithm achieves S_k

lacksquare By definition S_k produces edge label n through k. Suppose |a-b|=k

- ▶ By definition S_k produces edge label n through k. Suppose |a-b|=k
- ► There are three possibilities

Algorithm for Paths(1)

- ▶ We have modified our cycle algorithm for paths and obtained graceful labelings of paths up to order 16.
- Abrham and Kotzig (1990) showed that the number of graceful labelings of paths grows exponentially.

Algorithm for Paths(2)

▶ Aldred et al (2003) showed that for large n, the number of graceful labelings of P_n is at least $\left(\frac{5}{3}\right)^n$.

Algorithm for Paths(2)

▶ Aldred et al (2003) showed that for large n, the number of graceful labelings of P_n is at least $\left(\frac{5}{3}\right)^n$.

n	#	$(\frac{5}{3})^n$	Ratio
6	16	21	0.75
7	20	36	0.56
8	60	60	1.01
9	148	99	1.49
10	324	165	1.96
11	664	276	2.41
12	1600	459	3.48
13	4956	766	6.47
14	12796	1276	10.03
15	27960	2127	13.15
16	71596	3545	20.20

Comparison with Other Cycle Algorithms

n	Performance (s)						
	E & A ¹	Ours					
8	< 0.01	< 0.01					
15	< .65	< 0.01					
20	< 105.32	< 0.01					
55	N/A	< 0.03					
72	N/A	< 0.04					
112	N/A	< 0.15					

¹[E & A] Eshghi and Azimi (2003)

Graceful Labeling data

	Т	n											
		3	4	7	8	11	12	15	16	19	20	23	24
lumber		2	2	12	24	208	492	7,764	20,464	424,784	1,204,540	33,492,078	107,399,400
	0												
	1	1	1										
	2	1		3	3								
	3		1	3	6	26	26						
	4			3	6	42	80	299	299				
	5			3	6	36	80	789	1,476	5,932	5,932		
	6				3	36	120	1,301	3,190	22,210	39,692	162,634	162,634
	7					42	80	1,493	3,494	49,714	104,688	787,218	1,393,740
	8					26	80	1,493	3,646	61,758	162,606	2,218,596	4,813,618
m	9						26	1,301	3,494	72,778	191,238	3,690,788	9,785,048
	10							789	3,190	72,778	196,228	4,633,029	13,567,488
	11							299	1,476	61,758	191,238	5,252,774	15,837,020
	12								299	49,714	162,606	5,253,774	16,280,304
	13									22,210	104,688	4,633,029	15,837,020
	14									5,932	39,692	3,690,788	13,567,488
	15										5,932	2,218,596	9,785,048
	16		T									787,218	4,813,618
	17											162,634	1,393,740
	18												162,634
	19												
	20												

Graceful Cycles

- ▶ J. Bagga, A. Heinz, M. Majumder, An Algorithm for Graceful Labelings of cycles, Congressus Numerantium 186 (2007), pp. 57-63.
- ▶ J. Bagga, A. Heinz, M. Majumder, Properties of Graceful Labelings of cycles, Congressus Numerantium 188 (2007), pp. 109-115.

Graceful Paths and Hairy Cycles

► C. Barrientos, *Graceful graphs with pendant edges*, Australasian J. of Comb. **33** (2005), pp. 99-107.

Graceful Paths and Hairy Cycles

- ► C. Barrientos, *Graceful graphs with pendant edges*, Australasian J. of Comb. **33** (2005), pp. 99-107.
- All hairy cycles are graceful.

Graceful Paths and Hairy Cycles

- ► C. Barrientos, *Graceful graphs with pendant edges*, Australasian J. of Comb. **33** (2005), pp. 99-107.
- All hairy cycles are graceful.
- Hairy cycle: A unicyclic graph in which the deletion of any edge in the cycle yields a caterpillar.

Sun graphs

▶ Sun graph: The vertices of degree at least two induce a cycle.

Sun graphs

- ▶ Sun graph: The vertices of degree at least two induce a cycle.
- ▶ Corona $G_1 \odot G_2$ (Frucht and Harary, 1970)

Sun graphs

- ▶ Sun graph: The vertices of degree at least two induce a cycle.
- ▶ Corona $G_1 \odot G_2$ (Frucht and Harary, 1970)
- ightharpoonup Corona $C_n \odot mK_1$

Sun graphs

- ▶ Sun graph: The vertices of degree at least two induce a cycle.
- lacktriangle Corona $G_1\odot G_2$ (Frucht and Harary, 1970)
- ightharpoonup Corona $C_n \odot mK_1$
- Algorithm to generate graceful labelings for the 1-Sun (m=1).

Graceful Labeling Algorithm for 1-Sun

Given SUN_n a 1-Sun

 $c_1, c_2,, c_{n/2}$ the vertex labels in the cycle $r_1, r_2,, r_{n/2}$ the vertex labels in the rays such as ray r_i is attached to c_i .

A given a labeling $f=< c_1, c_2,, c_{n/2}, r_1, r_2,, r_{n/2}>$ of SUN_n can be considered an ordered sequence of labels.

A sublabeling is an ordered union of disjoint subsequences of f. If f is graceful, there are n sublabelings S_k of f, where S_k generates edge labels k, k+1, ..., n.

This sublabeling S_k is the ordered union of sublabelings in SUN_n containing edges with labels k through n.

Graceful Labeling Algorithm for 1-Sun

For instance, given the graceful labeling f=<3,5,13,2,14,1,6,10,9,4,8,0,11,7> of SUN_{14} , we observe that $S_7=<3,10><5,13,2,14,1,\Phi,4,\Phi,0,11>$ and therefore, S_7 is the ordered union of two sublabelings. We also observe that for any graceful labeling $f=S_1$.

General Step

For a given level l, denote the previous sublabeling S_{l+1} by S_{l+1} by $< s_1 > < s_2 > ... < s_p >$.

Now we wish to add two labels v_i and v_j such that $|v_i - v_j| = l$.

General Step - Cases

There are three cases to consider.

- (i) $v_i \in S_{l+1}$ and $v_j \in S_{l+1}$. In this case, two subsequences are merged into a single subsequence.
- (ii) $v_i \notin S_{l+1}$ and $v_j \notin S_{l+1}$. In this case, $\langle v_i, v_j \rangle$ is added between $\langle s_{r-1} \rangle$ and $\langle s_r \rangle$, for every $2 \leq r \leq p$. The computation splits into several branches for all these cases.
- (iii) $v_i \notin S_{l+1}$ and $v_j \in S_{l+1}$. In this case, if v_j is an end label of some s_r we then obtain S_l be adding v_i to that end. Also, if the ray adjacent to v_i is free, another computation branch is created by placing v_j as a ray of v_i .

If none of these cases occur at a given branch, then that computation branch dies.

General Step - Case (i)

Figure: Case (i)

General Step - Case (ii)

Figure: Case (ii)

General Step - Case (iii)

Figure: Case (iii)

Execution Branches

Figure: Execution branches

Proof of Correctness

Theorem

Suppose $f = \langle x_1, x_2,, x_n \rangle$ is a graceful labeling of SUN_n . The algorithm achieves f exactly once.

Proof of Correctness

- (i) $v_i \in S_{l+1}$ and $v_i \in S_{l+1}$.
- (ii) $v_i \notin S_{l+1}$ and $v_j \notin S_{l+1}$.
- (iii) $v_i \notin S_{l+1}$ and $v_j \in S_{l+1}$.

A Graceful Cycle

