G-Computation Malcolm Barrett

2021-09-01

Normal regression estimates associations. But we want causal estimates: what would happen if everyone in the study were exposed to x vs if no one was exposed.

G-Computation/G-Formula

- Fit a model for y ~ x + z where z is all covariates
- Create a duplicate of your data set for each level of x
- Set the value of x to a single value for each cloned data set (e.g x = 1 for one, x = 0 for the other)

G-Computation/G-Formula

Advantages of the parametric G-formula

Often more statistically precise than propensity-based methods Incredibly flexible

Basis of other important causal models, e.g. causal survival analysis and TMLE

Greek Pantheon data (greek_data)

The name of a Greek god	A prognostic factor	The treatment, a heart transplant	The outcome, death
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1

+ 10 more rows

1. Fit a model for $y \sim a + 1$

```
1 greek_model <- lm(y ~ a + l, data = greek_data)</pre>
```

2. Create a duplicate of your data set for each level of a

The name of a Greek god	A prognostic factor	The treatment, a heart transplant	The outcome, death
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1

2. Create a duplicate of your data set for each level of a

The name of a Greek god	A prognostic factor	The treatment, a heart transplant	The outcome, death
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1

The name of a Greek god	A prognostic factor	The treatment, a heart transplant	The outcome, death
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1

3. Set the value of a to a single value for each cloned data set

The name of a Greek god	A prognostic factor	а	The outcome, death
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	0	0
Poseidon	0	0	0
Hera	0	0	0
Zeus	0	0	1
Artemis	1	0	1
Apollo	1	0	1
Тропо	<u> </u>		

The name of a Greek god	A prognostic factor	а	The outcome, death
Rheia	0	1	0
Kronos	0	1	1
Demeter	0	1	0
Hades	0	1	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	1	1
Apollo	1	1	1

3. Set the value of a to a single value for each cloned data set

```
1 # set all participants to have a = 0
2 untreated_data <- greek_data |>
3    mutate(a = 0)
4
5 # set all participants to have a = 1
6 treated_data <- greek_data |>
7    mutate(a = 1)
```

4. Make predictions using the model on the cloned data sets

```
1 # predict under the data where everyone is untreated
2 predicted untreated <- greek model |>
     augment(newdata = untreated data) |>
     select(untreated = .fitted)
   # predict under the data where everyone is treated
   predicted treated <- greek model |>
     augment(newdata = treated data) |>
     select(treated = .fitted)
10
   predictions <- bind cols(</pre>
12
   predicted untreated,
13 predicted treated
14 )
```

5. Calculate the estimate you want

0.5

0.5

Your Turn

Work through Your Turns 1-3 in 07-g-computation-exercises.qmd

10:00

Detour: Colliders, selection bias, and loss to follow-up

Confounders and chains

Colliders

Colliders

Let's prove it!

```
1 set.seed(1234)
2 collider_data <- collider_triangle() |>
3  simulate_data(-.6)
```

Let's prove it!

```
1 collider data
# A tibble: 500 \times 3
        m
                 X
    <dbl> <dbl> <dbl>
 1 -0.829 0.359 1.75
 2 \quad 0.184 \quad 0.619 \quad -1.11
 3 \quad 1.47 \quad -0.940 \quad 0.0642
 4 -2.43 1.55 1.39
 5 0.219 -1.69 0.832
 6 1.01 0.199
                   -0.145
 7 -0.811 1.29
                   -0.872
 8 - 0.464 \quad 0.0675 \quad 0.763
 9 -0.357 0.264 0.766
10 -0.978 0.531 0.506
```

Let's prove it!

correct effect size: 0

Loss to follow-up

Adjusting for selection bias

- Fit a probability of censoring model, e.g. glm(censoring ~ predictors, family = binomial())
- Create weights using inverse probability strategy
- 3 Use weights in your causal model

We won't do it here, but you can include many types of weights in a given model. Just take their product, e.g. multiply inverse propensity of treatment weights by inverse propensity of censoring weights.

Your Turn

Work through Your Turns 4-6 in 07-g-computation-exercises.qmd

10:00