Applicant: John Cumming et al. Serial No.: To Be Assigned

Filed: Herewith Page: 3 of 9

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application.

Listing of Claims:

1. (Currently Amended) A compound of formula (I):

$$R^{1}$$
 R^{2}
 R^{3}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{4

wherein:

A is absent or is $(CH_2)_2$;

 R^{1} is C_{1-8} alkyl, $C(O)NR^{10}R^{11}$, $C(O)_{2}R^{12}$, $NR^{13}C(O)R^{14}$, $NR^{15}C(O)NR^{16}R^{17}$, $NR^{18}C(O)_{2}R^{19}$, heterocyclyl, aryl or heteroaryl;

 R^{10} , R^{13} , R^{15} , R^{16} and R^{18} are hydrogen or $C_{1\text{-}6}$ alkyl;

 R^{11} , R^{12} , R^{14} , R^{17} and R^{19} are C_{1-8} alkyl (optionally substituted by halo, hydroxy, C_{1-6} alkoxy, C_{1-6} haloalkoxy, C_{3-6} cycloalkyl (optionally substituted by halo), C_{5-6} cycloalkenyl, $S(C_{1-4}$ alkyl), $S(O)(C_{1-4}$ alkyl), $S(O)_2(C_{1-4}$ alkyl), heteroaryl, aryl, heteroaryloxy or aryloxy), aryl, heteroaryl, C_{3-7} cycloalkyl (optionally substituted by halo or C_{1-4} alkyl), C_{4-7} cycloalkyl fused to a phenyl ring, C_{5-7} cycloalkenyl, or, heterocyclyl (itself optionally substituted by oxo, $C(O)(C_{1-6}$ alkyl), $S(O)_k(C_{1-6}$ alkyl), halo or C_{1-4} alkyl); or R^{11} , R^{12} , R^{14} and R^{17} can also be hydrogen;

or R^{10} and R^{11} , and/or R^{16} and R^{17} may join to form a 4-, 5- or 6-membered ring which optionally includes a nitrogen, oxygen or sulphur atom, said ring being optionally substituted by C_{1-6} alkyl, $S(O)_1(C_{1-6}$ alkyl) or $C(O)(C_{1-6}$ alkyl);

 R^2 is C_{1-6} alkyl, phenyl, heteroaryl or C_{3-7} cycloalkyl;

 R^3 is H or C_{1-4} alkyl;

 R^4 is aryl, heteroaryl, C_{1-6} alkyl or C_{3-7} cycloalkyl;

 $X \text{ is } O \text{ or } S(O)_p;$

m and n are, independently, 0, 1, 2 or 3, provided m + n is 1 or more;

Applicant: John Cumming et al. Serial No.: To Be Assigned

Filed: Herewith Page: 4 of 9

aryl, phenyl and heteroaryl moieties are independently optionally substituted by one or more of halo, cyano, nitro, hydroxy, OC(O)NR²⁰R²¹, NR²²R²³, NR²⁴C(O)R²⁵, NR²⁶C(O)NR²⁷R²⁸, S(O)₂NR²⁹R³⁰, NR³¹S(O)₂R³², C(O)NR³³R³⁴, CO₂R³⁶, NR³⁷CO₂R³⁸, S(O)₄R³⁹, OS(O)₂R⁴⁹, C₁₋₆ alkyl (optionally mono-substituted by S(O)₂R⁵⁰ or C(O)NR⁵¹R⁵²), C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₁₀ cycloalkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy(C₁₋₆)alkyl, C₁₋₆ alkoxy (optionally mono-substituted by CO₂R⁵³, C(O)NR⁵⁴R⁵⁵, cyano, heteroaryl or C(O)NHS(O)₂R⁵⁶), NHC(O)NHR⁵⁷, C₁₋₆ haloalkoxy, phenyl, phenyl(C₁₋₄)alkyl, phenoxy, phenylthio, phenylS(O), phenylS(O)₂, phenyl(C₁₋₄)alkoxy, heteroaryl, heteroaryl(C₁₋₄)alkyl, heteroaryloxy or heteroaryl(C₁₋₄)alkoxy; wherein any of the immediately foregoing phenyl and heteroaryl moieties are optionally substituted with halo, hydroxy, nitro, S(C₁₋₄ alkyl), S(O)(C₁₋₄ alkyl), S(O)₂(C₁₋₄ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄ alkyl), C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl), CO₂H, CO₂(C₁₋₄ alkyl), NHS(O)₂(C₁₋₄ alkyl), CF₃ or OCF₃;

unless otherwise stated heterocyclyl is optionally substituted by C₁₋₆ alkyl [optionally substituted by phenyl {which itself optionally substituted by halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, cyano, nitro, CF₃, OCF₃, (C₁₋₄ alkyl)C(O)NH, S(O)₂NH₂, C₁₋₄ alkylthio, S(O)(C₁₋₄ alkyl) or S(O)₂(C₁₋₄ alkyl)} or heteroaryl {which itself optionally substituted by halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, cyano, nitro, CF₃, (C₁₋₄ alkyl)C(O)NH, S(O)₂NH₂, C₁₋₄ alkylthio, S(O)(C₁₋₄ alkyl) or S(O)₂(C₁₋₄ alkyl)}], phenyl {optionally substituted by halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, cyano, nitro, CF₃, OCF₃, (C₁₋₄ alkyl)C(O)NH, S(O)₂NH₂, C₁₋₄ alkylthio, S(O)(C₁₋₄ alkyl) or S(O)₂(C₁₋₄ alkyl)}, heteroaryl {optionally substituted by halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, cyano, nitro, CF₃, (C₁₋₄ alkyl)C(O)NH, S(O)₂NH₂, C₁₋₄ alkylthio, S(O)(C₁₋₄ alkyl) or S(O)₂(C₁₋₄ alkyl)}, S(O)₂NR⁴⁰R⁴¹, C(O)R⁴², C(O)₂(C₁₋₆ alkyl) (such as text butoxycarbonyl), C(O)₂(phenyl(C₁₋₂ alkyl)) (such as benzyloxycarbonyl), C(O)NHR⁴³, S(O)₂R⁴⁴, NHS(O)₂NHR⁴⁵, NHC(O)R⁴⁶, NHC(O)NHR⁴⁷ or NHS(O)₂R⁴⁸, provided none of these last four substituents is linked to a ring nitrogen;

k, l, p and q are, independently,0, 1 or 2;

 R^{20} , R^{22} , R^{24} , R^{26} , R^{27} , R^{29} , R^{31} , R^{33} , R^{37} , R^{40} , R^{51} and R^{54} are, independently, hydrogen or C_{1-6} alkyl;

Applicant: John Cumming et al. Serial No.: To Be Assigned

Filed: Herewith Page: 5 of 9

 R^{21} , R^{23} , R^{25} , R^{28} , R^{30} , R^{32} , R^{34} , R^{36} , R^{38} , R^{39} , R^{41} , R^{42} , R^{43} , R^{44} , R^{45} , R^{46} , R^{47} , R^{48} , R^{49} , R^{50} , R^{52} , R^{53} , R^{55} , R^{56} and R^{57} are, independently, C_{1-6} alkyl (optionally substituted by halo, hydroxy, C_{1-6} alkoxy, C_{1-6} haloalkoxy, C_{3-6} cycloalkyl, C_{5-6} cycloalkenyl, $S(C_{1-4}$ alkyl), $S(O)_2(C_{1-4}$ alkyl), heteroaryl, phenyl, heteroaryloxy or phenyloxy), C_{3-7} cycloalkyl, phenyl or heteroaryl; wherein any of the immediately foregoing phenyl and heteroaryl moieties are optionally substituted with halo, hydroxy, nitro, $S(C_{1-4}$ alkyl), $S(O)(C_{1-4}$ alkyl), $S(O)_2(C_{1-4}$ alkyl), $S(O)_2NH_2$, $S(O)_2NH(C_{1-4}$ alkyl), $S(O)_2N(C_{1-4}$ alkyl)₂, cyano, C_{1-4} alkyl, C_{1-4} alkoxy, $C(O)NH_2$, $C(O)NH(C_{1-4}$ alkyl), $C(O)N(C_{1-4}$ alkyl), $C(O)N(C_{1-4}$ alkyl), $C(O)N(C_{1-4}$ alkyl), $C(O)N(C_{1-4}$ alkyl), $C(O)(C_{1-4}$ alkyl), $C(O)(C_{1-4}$

 R^{21} , R^{23} , R^{25} , R^{28} , R^{30} , R^{34} , $[[R^{35},]]$ R^{36} , R^{41} , R^{42} , R^{43} , R^{45} , R^{46} , R^{47} , R^{52} , R^{53} , R^{55} and R^{57} may additionally be hydrogen;

or a pharmaceutically acceptable salt thereof or a solvate thereof.

- 2. (Original) A compound as claimed in claim 1 wherein R^1 is NHC(O) R^{14} , phenyl or heterocyclyl, wherein R^{14} is as defined in claim 1, and phenyl and heterocyclyl are optionally substituted as described in claim 1.
- 3. (Currently Amended) A compound as claimed in claim 1, [[or 2]] wherein R^2 is phenyl or heteroaryl, either of which is optionally substituted by halo, C_{1-4} alkyl, C_{1-4} alkoxy, $S(O)_n(C_{1-4}$ alkyl), nitro, cyano or CF_3 ; wherein n is 0, 1 or 2.
- 4. (Currently Amended) A compound as claimed in claim 1, [[2 or 3]] wherein R³ is hydrogen.
- 5. (Currently Amended) A compound as claimed in claim 1, $\frac{2}{3}$ -or 4 wherein R^4 is phenyl optionally substituted by one or more of halo, hydroxy, nitro, $S(C_{1-6} \text{ alkyl})$, $S(O)(C_{1-6} \text{ alkyl})$, $S(O)_2(C_{1-6} \text{ alkyl})$, $S(O)_2NH_2$, $S(O)_2NH(C_{1-6} \text{ alkyl})$, $S(O)_2N(C_{1-6} \text{ alkyl})$, $S(O)_2(C_{1-6} \text{ a$

Applicant: John Cumming et al. Serial No.: To Be Assigned

Filed: Herewith Page: 6 of 9

OCH₂CO₂(C₁₋₆ alkyl), OCH₂C(O)NH₂, OCH₂C(O)NH(C₁₋₆ alkyl), OCH₂CN, NH₂, NH(C₁₋₆ alkyl), N(C₁₋₆ alkyl)₂, C(O)NH₂, C(O)NH(C₁₋₆ alkyl), C(O)N(C₁₋₆ alkyl)₂, CO₂H, CO₂(C₁₋₆ alkyl), NHC(O)(C₁₋₆ alkyl), NHC(O)(C₁₋₆ alkyl), NHS(O)₂(C₁₋₆ alkyl), CF₃, CHF₂, CH₂F, CH₂CF₃, OCF₃, heteroaryl or heteroaryl(C₁₋₄ alkyl); wherein the foregoing heteroaryl groups are optionally substituted by halo, hydroxy, nitro, S(C₁₋₄ alkyl), S(O)(C₁₋₄ alkyl), S(O)₂(C₁₋₄ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄ alkyl)₂, cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy, C(O)NH₂, C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl)₂, CO₂H, CO₂(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), CF₃ or OCF₃.

- 6. (Currently Amended) A compound as claimed in claim 1, 2, 3, 4 or 5 wherein A is absent.
- 7. (Currently Amended) A compound as claimed in any one of the preceding claims claim 1, wherein n is 2.
- 8. (Currently Amended) A compound as claimed in any one of the preceding claims claim 1, wherein m is 0.
- 9. (Currently Amended) A compound as claimed in any one of the preceding claims claim 1, wherein X is $S(O)_2$.
 - 10. (Original) A process for preparing of a compound as claimed in claim 1 comprising:
- a. to prepare a compound wherein R³ is hydrogen, coupling a compound of formula (III):

$$HN \rightarrow A - (CH_2)_n - X - (CH_2)_m - R^4$$
 (III)

wherein R⁴, m, n, A and X are as defined in claim 1, with a compound of formula (IV):

Applicant: John Cumming et al. Serial No.: To Be Assigned Filed : Herewith

: 7 of 9 Page

$$\mathbb{R}^{1}$$
 \mathbb{H} \mathbb{N}^{2} \mathbb{N}^{2} \mathbb{N}^{2} \mathbb{N}^{2}

wherein R¹ and R² are as defined in claim 1, in the presence of NaBH(OAc)₃ (wherein Ac is C(O)CH₃) in a suitable solvent at room temperature;

to prepare a compound wherein R³ is hydrogen, coupling a compound of formula b. (III):

$$HN A (CH_2)_n - X - (CH_2)_m - R^4$$
 (III)

wherein R⁴, m, n, A and X are as defined in claim 1, with a compound of formula (V):

$$R^2$$
 L (V)

wherein R^1 and R^2 are as defined in claim 1 and L is a leaving group, in the presence of a base, in a suitable solvent at a temperature from 60°C to the boiling point of the solvent.

- 11. (Original) A pharmaceutical composition which comprises a compound as claimed in claim 1, or a pharmaceutically acceptable salt thereof or solvate thereof, and a pharmaceutically acceptable adjuvant, diluent or carrier.
 - 12. (Cancelled)
 - 13. (Cancelled)
- 14. (Original) A method of treating a CCR5 mediated disease state comprising administering to a patient in need of such treatment an effective amount of a compound as claimed in claim 1, or a pharmaceutically acceptable salt thereof or solvate thereof.

Applicant: John Cumming et al. Attorney's Docket No.: 06275-458US1 / 100887-1P US

Serial No. : To Be Assigned

Filed : Herewith Page : 8 of 9

15. (New) A compound as claimed in claim 2, wherein R^2 is phenyl or heteroaryl, either of which is optionally substituted by halo, C_{1-4} alkyl, C_{1-4} alkoxy, $S(O)_n(C_{1-4}$ alkyl), nitro, cyano or CF_3 ; wherein n is 0, 1 or 2.

- 16. (New) A compound as claimed in claim 2, wherein R³ is hydrogen.
- 17. (New) A compound as claimed in claim 2, wherein R⁴ is phenyl optionally substituted by one or more of halo, hydroxy, nitro, S(C₁₋₆ alkyl), S(O)(C₁₋₆ alkyl), S(O)₂(C₁₋₆ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₆ alkyl), S(O)₂N(C₁₋₆ alkyl)₂, cyano, C₁₋₆ alkyl, C₁₋₆ alkoxy, CH₂S(O)₂(C₁₋₆ alkyl), OS(O)₂(C₁₋₆ alkyl), OCH₂heteroaryl, OCH₂CO₂H, OCH₂CO₂(C₁₋₆ alkyl), OCH₂C(O)NH₂, OCH₂C(O)NH(C₁₋₆ alkyl), OCH₂CN, NH₂, NH(C₁₋₆ alkyl), N(C₁₋₆ alkyl)₂, C(O)NH₂, C(O)NH(C₁₋₆ alkyl), C(O)N(C₁₋₆ alkyl)₂, CO₂H, CO₂(C₁₋₆ alkyl), NHC(O)(C₁₋₆ alkyl), NHS(O)₂(C₁₋₆ alkyl), CF₃, CHF₂, CH₂F, CH₂CF₃, OCF₃, heteroaryl or heteroaryl(C₁₋₄ alkyl); wherein the foregoing heteroaryl groups are optionally substituted by halo, hydroxy, nitro, S(C₁₋₄ alkyl), S(O)(C₁₋₄ alkyl), S(O)₂(C₁₋₄ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄ alkyl), C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl), C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHS(O)₂(C₁₋₄ alkyl), CF₃ or OCF₃.
 - 18. (New) A compound as claimed in claim 2, wherein A is absent.
 - 19. (Currently Amended) A compound as claimed in claim 2, wherein n is 2.
 - 20. (Currently Amended) A compound as claimed in claim 2, wherein m is 0.