Метрические методы классификации

K.B. Воронцов, A.B. Зухба vokov@forecsys.ru a__1@mail.ru

февраль 2015

Содержание

- 1 Метрические алгоритмы классификации
 - Гипотеза компактности
 - Метод ближайших соседей и его обобщения
 - Метод парзеновского окна
 - Метод потенциальных функций
- 2 Отбор эталонов и оптимизация метрики
 - Понятие отступа
 - Алгоритм отбора эталонных объектов STOLP
- Профиль компактности и скользящий контроль
 - Полный скользящий контроль CCV
 - Понятие профиля компактности
 - Отбор эталонов по функционалу ССV

Гипотеза компактности Метод ближайших соседей и его обобщения Метод парзеновского окна Метод потенциальных функций

Гипотеза компактности

Задача классификации:

X — объекты, Y — ответы (идентификаторы классов); $X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$ — обучающая выборка;

Гипотеза компактности:

Схожие объекты, как правило, лежат в одном классе.

Формализация понятия «сходства»:

Задана функция расстояния $\rho: X \times X \to [0, \infty)$.

Например, евклидово расстояние:

$$\rho(u,x_i) = \left(\sum_{j=1}^n |u^j - x_i^j|^2\right)^{1/2},$$

где $u = (u^1, \dots, u^n)$, $x_i = (x_i^1, \dots, x_i^n)$ — признаковые описания объектов.

Гипотеза компактности Метод ближайших соседей и его обобщения Метод парзеновского окна Метод потенциальных функций

Пример: задача классификации цветков ириса [Фишер, 1936]

n=4 признака, |Y|=3 класса, длина выборки $\ell=150$.

Обобщённый метрический классификатор

Для произвольного $u \in X$ отсортируем объекты x_1, \dots, x_ℓ :

$$\rho(u,x_u^{(1)}) \leqslant \rho(u,x_u^{(2)}) \leqslant \cdots \leqslant \rho(u,x_u^{(\ell)}),$$

 $x_u^{(i)} - i$ -й сосед объекта u среди x_1, \dots, x_ℓ ; $y_u^{(i)}$ — ответ на i-м соседе объекта u.

Метрический алгоритм классификации:

$$a(u; X^{\ell}) = \arg \max_{y \in Y} \underbrace{\sum_{i=1}^{\ell} \left[y_u^{(i)} = y \right] w(i, u)}_{\Gamma_Y(u, X^{\ell})},$$

w(i, u) — вес (степень важности) i-го соседа объекта u, неотрицателен, не возрастает по i. $\Gamma_{v}(u, X^{\ell})$ — оценка близости объекта u к классу y.

Метод ближайшего соседа

$$w(i, u) = [i=1].$$

Преимущества:

- простота реализации;
- интерпретируемость решений, вывод на основе прецедентов (case-based reasoning, CBR)

Недостатки:

- неустойчивость к погрешностям (шуму, выбросам);
- отсутствие настраиваемых параметров;
- низкое качество классификации;
- приходится хранить всю выборку целиком.

Mетод k ближайших соседей

$$w(i, u) = [i \leqslant k].$$

Преимущества:

- менее чувствителен к шуму;
- \bullet появился параметр k.

Оптимизация числа соседей k:

функционал скользящего контроля leave-one-out

$$\mathsf{LOO}(k,X^{\ell}) = \sum_{i=1}^{\ell} \left[a(x_i;X^{\ell} \setminus \{x_i\},k) \neq y_i \right] \to \min_{k}.$$

Проблема:

• неоднозначность классификации при $\Gamma_{V}(u, X^{\ell}) = \Gamma_{s}(u, X^{\ell}), \ y \neq s.$

Пример зависимости LOO(k)

Пример. Задача UCI: Breast Cancer (Wisconsin)

- смещённое число ошибок, когда объект учитывается как сосед самого себя
- несмещённое число ошибок LOO

В реальных задачах минимум редко бывает при k=1.

Метод к взвешенных ближайших соседей

$$w(i,u)=[i\leqslant k]w_i,$$
 где w_i — вес, зависящий только от номера соседа;

Возможные эвристики:

$$w_i = \frac{k+1-i}{k}$$
 — линейное убывающие веса; $w_i = q^i$ — экспоненциально убывающие веса, $0 < q < 1$;

Проблемы:

- как более обоснованно задать веса?
- возможно, было бы лучше, если бы вес w(i, u) зависел не от порядкового номера соседа i, а от расстояния до него $\rho(u, x_u^{(i)})$.

Гипотеза компактности
Метод ближайших соседей и его обобщения
Метод потенциальных функций

Метод парзеновского окна

$$w(i,u) = K\Big(\frac{\rho(u,x_u^{(i)})}{h}\Big),$$
 где $K(r)$ — ядро, невозрастающее, положительное на $[0,1]$.

Метод парзеновского окна фиксированной ширины:

$$a(u; X^{\ell}, h, K) = \arg\max_{y \in Y} \sum_{i=1}^{\ell} [y_u^{(i)} = y] \underbrace{K\left(\frac{\rho(u, x_u^{(i)})}{h}\right)}_{w(i, u)}.$$

Метод парзеновского окна переменной ширины:

$$a(u; X^{\ell}, \mathbf{k}, K) = \arg\max_{y \in Y} \sum_{i=1}^{\ell} [y_u^{(i)} = y] \underbrace{K\left(\frac{\rho(u, x_u^{(i)})}{\rho(u, x_u^{(k+1)})}\right)}_{w(i, u)}.$$

Гипотеза компактности
Метод ближайших соседей и его обобщения
Метод парзеновского окна

Часто используемые ядра

$$E(r)=rac{3}{4}(1-r^2)ig[|r|\leqslant 1ig]$$
 — оптимальное (Епанечникова); $Q(r)=rac{15}{16}(1-r^2)^2ig[|r|\leqslant 1ig]$ — квартическое; $T(r)=(1-|r|)ig[|r|\leqslant 1ig]$ — треугольное; $G(r)=(2\pi)^{-1/2}\exp(-rac{1}{2}r^2)$ — гауссовское; $\Pi(r)=rac{1}{2}ig[|r|\leqslant 1ig]$ — прямоугольное.

Метод потенциальных функций

$$w(i, u) = \gamma_u^{(i)} K\left(\frac{\rho(u, x_u^{(i)})}{h_u^{(i)}}\right)$$

Более простая запись:

$$a(u; X^{\ell}) = \arg \max_{y \in Y} \sum_{i=1}^{\ell} [y_i = y] \gamma_i K\left(\frac{\rho(u, x_i)}{h_i}\right),$$

где γ_i — веса объектов, $\gamma_i \geqslant 0$, $h_i > 0$.

Физическая аналогия:

 γ_i — величина «заряда» в точке x_i ;

 h_i — «радиус действия» потенциала с центром в точке x_i ;

 y_i — знак «заряда» (предполагается, что $Y = \{-1, +1\}$);

в электростатике $K(r) = \frac{1}{r}$ или $\frac{1}{r+a}$.

Алгоритм настройки весов объектов

Простой эвристический алгоритм настройки γ_i .

Вход:

 X^{ℓ} — обучающая выборка;

Выход:

Коэффициенты γ_i , $i=1,\ldots,\ell$;

- 1: Инициализация: $\gamma_i = 0$ для всех $i = 1, ..., \ell$;
- 2: повторять
- 3: выбрать объект $x_i \in X^{\ell}$;
- 4: если $a(x_i) \neq y_i$ то
- 5: $\gamma_i := \gamma_i + 1$;
- 6: пока число ошибок на выборке $Q(a, X^{\ell}) > \varepsilon$.

Анализ преимуществ и недостатков

Преимущества:

- простота реализации;
- не надо хранить выборку (потоковый алгоритм обучения);
- разреженность: не все обучающие объекты учитываются.

Недостатки:

- медленная сходимость;
- результат обучения зависит от порядка просмотра объектов;
- слишком грубо настраиваются веса γ_i ;
- вообще не настраиваются параметры h_i ;
- вообще не настраиваются центры потенциалов;
- может, некоторые γ_i можно было бы обнулить?

Понятие отступа

Рассмотрим классификатор $a\colon X \to Y$ вида

$$a(u) = \arg \max_{y \in Y} \Gamma_y(u), \quad u \in X.$$

Отступом (margin) объекта $x_i \in X^\ell$ относительно классификатора a(u) называется величина

$$M(x_i) = \Gamma_{y_i}(x_i) - \max_{y \in Y \setminus y_i} \Gamma_y(x_i).$$

- Отступ показывает степень типичности объекта: чем больше $M(x_i)$, тем «глубже» x_i в своём классе;
- $M(x_i) < 0 \Leftrightarrow a(x_i) \neq y_i$;

Типы объектов, в зависимости от отступа

- Э *эталонные* (можно оставить только их);
- H неинформативные (можно удалить из выборки);
- П *пограничные* (их классификация неустойчива);
- O *ошибочные* (причина ошибки плохая модель);
- Ш *шумовые* (причина ошибки плохие данные).

Отбор эталонов (prototype selection)

Задача: выбрать оптимальное подмножество эталонов $\Omega \subseteq X^\ell$

Классификатор будет иметь вид:

$$a(u; \Omega) = \arg \max_{y \in Y} \sum_{x_i \in \Omega} [y_u^{(i)} = y] w(i, u),$$

 $x_u^{(i)} - i$ -й сосед объекта u среди Ω ;

 $y_u^{(i)}$ — ответ на i-м соседе объекта u;

w(i,u) — произвольная функция веса i-го соседа.

Алгоритм STOLP:

- 💿 исключить выбросы и, возможно, пограничные объекты;
- 2 найти по одному эталону в каждом классе;
- 🔞 добавлять эталоны, пока есть отрицательные отступы;

Алгоритм STOLP

```
Вход: X^{\ell}; параметры \delta, \ell_0; Выход: Множество опорных объектов \Omega \subseteq X^{\ell};
```

- 1: для всех $x_i \in X^{\ell}$ проверить, является ли x_i выбросом:
- 2: если $M(x_i, X^{\ell}) < \delta$ то
- 3: $X^{\ell-1} := X^{\ell} \setminus \{x_i\}; \quad \ell := \ell 1;$
- 4: Инициализация: взять по одному эталону от каждого класса:

$$\Omega := \left\{ \arg\max_{x_i \in X_y^\ell} M(x_i, X^\ell) \mid y \in Y \right\};$$

- 5: пока $\Omega \neq X^{\ell}$;
- 6: Выделить множество объектов с ошибкой $a(u; \Omega)$: $E := \{x_i \in X^{\ell} \setminus \Omega : M(x_i, \Omega) < 0\};$
- 7: если $|E| < \ell_0$ то выход;
- 8: Присоединить к Ω объект с наименьшим отступом:

$$x_i := \arg\min_{x \in F} M(x, \Omega); \quad \Omega := \Omega \cup \{x_i\};$$

Алгоритм STOLP: преимущества и недостатки

Преимущества отбора эталонов:

- сокращается число хранимых объектов;
- сокращается время классификации;
- объекты распределяются по величине отступов;

Недостатки алгоритма STOLP:

- необходимость задавать параметр δ ;
- относительно низкая эффективность $O(|\Omega|^2\ell)$.

Другие методы отбора:

- стратегия последовательного удаления не-эталонов;
- минимизация полного скользящего контроля (CCV);
- FRiS-STOLP на основе оценок конкурентного сходства.

Полный скользящий контроль CCV

Функционал *полного* скользящего контроля (complete cross-validation, CCV):

$$\mathsf{CCV}(X^L) = \frac{1}{C_L^{\ell}} \sum_{X^{\ell} \sqcup X^k} \frac{1}{k} \sum_{x_i \in X^k} \left[a(x_i, X^{\ell}) \neq y_i \right],$$

где $X^\ell \sqcup X^k$ — все C_L^ℓ разбиений выборки X^L на обучающую подвыборку X^ℓ и контрольную X^k .

Замечание 1. При k=1 имеем: $\mathsf{CCV}(X^L) = \mathsf{LOO}(X^L)$.

Замечание 2. CCV характеризует лишь среднюю частоту ошибок, но не учитывает её разброс.

Понятие профиля компактности

Определение

Профиль компактности выборки X^L — это функция доли объектов x_i , у которых m-й сосед $x_i^{(m)}$ лежит в другом классе:

$$K(m, X^L) = \frac{1}{L} \sum_{i=1}^{L} [y_i \neq y_i^{(m)}]; \quad m = 1, \dots, L-1,$$

где $x_i^{(m)}$ — m-й сосед объекта x_i среди X^L ; $y_i^{(m)}$ — ответ на m-м соседе объекта x_i .

Теорема (точное выражение CCV для метода 1NN)

$$CCV(X^{L}) = \sum_{m=1}^{k} \frac{K(m, X^{L})}{C_{L-1}^{\ell}} \frac{C_{L-1-m}^{\ell-1}}{C_{L-1}^{\ell}}.$$

Профили компактности для серии модельных задач

средний ряд: профили компактности, нижний ряд: зависимость CCV от длины контроля k.

Свойства профиля компактности и оценки ССУ

$$CCV(X^{L}) = \sum_{m=1}^{k} K(m, X^{L}) \frac{C_{L-1-m}^{\ell-1}}{C_{L-1}^{\ell}}.$$

- $K(m, X^L)$ формализует гипотезу компактности, связывая свойства выборки с качеством классификации.
- CCV практически не зависит от длины контроля k.
- Для минимизации CCV важен только начальный участок профиля, т. к. $\frac{C_{l-1-m}^{\ell-1}}{C_{l-1}^{\ell}} o 0$ экспоненциально по m.
- Минимизация ССV позволяет делать отбор эталонов.

Модельные данные

Модельная задача классификации: 1000 объектов. Алгоритм 1NN

Последовательное добавление эталонных объектов

Последовательный отсев не-эталонных объектов

Последовательный отсев не-эталонных объектов

Зависимость CCV от числа удаленных неэталонных объектов.

При отборе эталонов по критерию CCV переобучения нет.

Резюме в конце лекции

- Метрические классификаторы одни из самых простых.
 Качество классификации определяется качеством метрики.
- Что можно обучать:
 - число ближайших соседей k;
 - набор эталонов (prototype selection);
 - как вариант веса объектов;
 - метрику (distance learning, similarity learning);
 - как частный случай веса признаков.
- *Распределение отступов* делит объекты на эталонные, неинформативные, пограничные, ошибки и выбросы.
- *Профиль компактности* выборки позволяет судить о том, насколько удачно метрика подобрана под задачу.