Una propuesta basada en estimadores Bootstrap robustos para la evaluación de la precisión de un modelo con la técnica de regresión lineal

Br. Irving Cupul Uc

Examen Profesional: Licenciado en Ingeniería de Software.

Asesores:

MC. Luis Colorado Martínez MC. Salvador Medina Peralta

12 de Diciembre de 2024

- Evaluación de la precisión de un modelo
- 2 Objetivos
- 3 Metodología
- 4 Resultados
- **5** Conclusiones
- **6** Referencias

- Evaluación de la precisión de un modelo
- 2 Objetivos

Evaluación de la precisión de un modelo

•0000000

- **5** Conclusiones

Validación de un modelo con regresión lineal simple

Representación simplificada de un sistema en la necesidad de explicar la realidad

Tipos de modelos:

- Conceptuales
- Físicos
- Matemáticos
- Probabilísticos Gráficos

Aplicación de los modelos:

- Ingeniería
- Física
- · Ciencias químicas
- Ciencias económicas Ciencias administrativas
- Ciencias biológicas
- Ciencias sociales

Evaluación de la precisión de un modelo

0000000

Validación de un modelo con regresión lineal simple

Exactitud y Precisión

Evaluación de la precisión de un modelo

00000000

- Exactitud: qué tan cerca están los valores reales de los valores predichos.
- Precisión: qué tan cerca están entre ellos los valores predichos por el modelo.

Precisión

Validación de un modelo con regresión lineal simple

¿Cómo evalúa la Exactitud y Precisión?

Dada la muestra pareada $(z_1, y_1), (z_2, y_2), \dots, (z_n, y_n)$ se considera el modelo de regresión lineal:

$$y_i = \beta_0 + \beta_1 z_i + \epsilon_i$$
, donde $1 \le i \le n$.

El modelo evaluado es exacto si $\beta_0 = 0$ y $\beta_1 = 1$. Y es preciso si el coeficiente de determinación R^2 está cercano a 1.

Inconvenientes:

- Las pruebas estadísticas para evaluar la exactitud dependen del supuesto de normalidad y de varianza constante de los ϵ_i .
- La precisión se mide de manera determinística.

Trabajos realizados para evaluación de la exactitud y precisión

• Balam, R. (2012). "Evaluación de la exactitud y precisión de un modelo con regresión lineal". Tesis de Maestría, Facultad de Matemáticas, Universidad Autónoma de Yucatán.

Para los casos:

- a) NVC se propuso una región de confianza con la F conjunta para evaluar la exactitud y un ICB BCa con residuales balanceados para la precisión.
- b) NNVC se emplearon ICB Percentil con sesgo corregido y un ICB BCa para evaluar la exactitud y la precisión respectivamente, ambos con los residuales balanceados.
- NVD v NNVD se emplearon ICB Percentil con sesgo corregido y un ICB BCa para evaluar la exactitud y la precisión respectivamente, ambos con las muestras pareadas balanceadas.

Trabajos realizados para evaluación de la exactitud y precisión

- Zacarías, K. (2023). "Evaluación de la exactitud de un modelo cuando no se cumplen los supuestos en la técnica de regresión lineal". Tesis de Maestría, Facultad de Matemáticas, Universidad Autónoma de Yucatán.
- a) Se propone la construcción de una región de confianza para el vector (β_0, β_1) con diferentes esquemas Bootstrap robustos. Si el punto (0,1) esta dentro de la región, el modelo es exacto, de lo contrario es inexacto.
- b) Se implementaron seis esquemas de remuestreo Bootstrap para estimar la distribución de la estadística F conjunta cuando no se cumplen los supuestos de normalidad y varianza constante:
 - i) El Bootstrap Robusto Simple.

Evaluación de la precisión de un modelo

- ii) Los tres esquemas propuestos por Wu (1986).
- iii) Y los dos esquemas propuestos por Lui (1988).
- c) Se propuso un estimador para el cuantil de la distribución F conjunta estimada.

Br. Irving Cupul Uc Universidad Autónoma de Yucatán 12/12/2024 8/45

El coeficiente de determinación R^2

¿Cómo evaluar la precisión?

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} \quad \text{y } 0 \le R^{2} \le 1,$$

Inconvenientes:

- · No se conoce su distribución.
- No se puede usar para hacer predicciones.
- En presencia de valores atípicos o agrupamientos (clustering) en los datos, R^2 puede ser engañoso, pues un valor grande podría ser el resultado de estos factores, en lugar de un ajuste verdadero.

¿Cómo evaluar la precisión?

En este trabajo se propone un método que permite evaluar la precisión de un modelo con la técnica de regresión lineal; y se basa en implementar diversos esquemas de remuestreo y estimar la precisión, a través de intervalos de confianza Bootstrap (ICB) para el coeficiente de determinación R^2 , del modelo de regresión entre los valores reales y predichos del modelo que se desea evaluar.

- 1 Evaluación de la precisión de un modelo
- Objetivos
- 3 Metodología
- 4 Resultados
- 6 Conclusiones
- 6 Referencias

Objetivo General

Determinar la precisión de un modelo con la técnica de regresión lineal por medio de intervalos de confianza basado en diferentes esquemas de remuestreo Bootstrap y medir sus eficiencias a través de un estudio de simulación.

Resultados

Objetivos

Objetivo Específicos

- Desarrollar la metodología para medir la precisión de un modelo con la técnica de regresión lineal por medio de intervalos de confianza basado en diferentes esquemas de remuestreo Bootstrap.
- Determinar la precisión de un modelo cuando se cumplan los supuestos de normalidad v varianza constante.
- Determinar la precisión de un modelo cuando no se cumplan los supuestos de normalidad y/o varianza constante.

Objetivo Específicos

- ① Diseñar e implementar un estudio de simulación para evaluar la eficiencia de la metodología propuesta.
- **S**imular modelos exactos-precisos (EP) y modelos exactos-imprecisos (EI) mediante la propuesta de Febles (2014) y Zacarías (2023); cuando se cumplan o no los supuestos de normalidad e igualdad de varianzas.
- **6** Determinar la eficiencia de los esquemas Bootstrap propuestos para medir la precisión de un modelo.

- Evaluación de la precisión de un modelo
- 2 Objetivos
- 3 Metodología
- **5** Conclusiones

16 / 45

Esquemas de remuestreo Bootstrap para la estimación de R^2 .

Para los esquemas de Wu (1986) y Liu (1988), es necesario generar una muestra Bootstrap y_i^* dado por :

$$y_i^* = z_i \hat{\beta}_{MM} + \frac{t_i^* \hat{e}_i^{WMM}}{\sqrt{1 - h_{ii}}},$$

v ajustar la regresión simple:

$$y_i^* = \beta_0^* + \beta_1^* z_i + \epsilon_i^*,$$

v obtener las nuevas \hat{R}^{2*} para estimar su distribución.

- Wu 1: $t_i^* \in N(0,1), i = 1,...,n$.
- Wu 2: Los t_i^* corresponden a una muestra con reemplazo de los residuos normalizados.
- Wu 3: El valor t_i^* se obtiene mediante un remuestreo con reemplazo al vector de residuales transformados.

$$R_{ai} = \frac{\hat{e}_i^{WMM} - Mediana(\hat{e}_i^{WMM})}{NMAD(\hat{e}_i^{WMM})} \text{ , } NMAD = \frac{1}{0.6745} Mediana\{|\hat{e}_i^{WMM} - Mediana(\hat{e}_i^{WMM})|\}.$$

- Liu 1: $t_i^* \in Gamma(4, 1/2), i = 1, ..., n$
- **Liu 2**: $t_i^* = H_i D_i E(H_i) E(D_i)$ donde $H_i \in N(0.5 \times \sqrt{17/6} + \sqrt{1/6}, 0.5) = N(1.2498, 0.5)$ $D_i \in N(0.5 \times \sqrt{17/6} - \sqrt{1/6}, 0.5) = N(0.4334, 0.5), i = 1, ..., n$. Ambas independientes entre si.

Para los otros esquemas, para la muestra Bootstrap y_i^* se obtiene remuestreando los residuales:

$$y_i^* = \hat{y}_i + e_i^*,$$

y ajustar la regresión simple:

$$y_i^* = \beta_0^* + \beta_1^* z_i + \epsilon_i^*$$

y obtener las nuevas \hat{R}^{2*} para estimar su distribución.

- Bootstrap Simple: e_i^* se obtienen de forma aleatoria con reemplazo de los residuales.
- Bootstrap de Residuales Balanceados: e_i^* se obtiene de un conjunto aleatorio de residuales seleccionados de tal forma que cada uno aparece el mismo número de veces (nB).

Bootstrap Pareado Balanceado:

Para la estimación de la distribución de la \hat{R}^{2*} se considera la muestra pareada (y_i, z_i) , y se remuestrea aleatoriamente B veces con remplazo y de forma balanceada, para obtener las muestras $\mathbf{y}_1^*, \mathbf{y}_2^*, \dots, \mathbf{y}_R^*$ y $\mathbf{z}_1^*, \mathbf{z}_2^*, \dots, \mathbf{z}_R^*$ y ajustar una regresión simple entre los vectores \mathbf{y}_{i}^{*} y \mathbf{z}_{i}^{*} , $b = 1, 2, \dots, B$.

Todos los esquemas Bootstrap se encuentran implementados en la función CalcularR2Bootstrap(y, z, yAjRob, residuales, residualesRob, residualesRP, hii, n, B, tipo) en el lenguaje R.

3 Cálculo del los intervalos de confianza para \mathbb{R}^2 .

Intervalos de confianza Bootstrap Percentil (ICB Percentil) por esquema:

- **1** Se obtienen las muestras, \hat{R}_1^{2*} , \hat{R}_2^{2*} , ..., \hat{R}_B^{2*} .
- 2 Las B muestras \hat{R}_1^{2*} , \hat{R}_2^{2*} ,..., \hat{R}_B^{2*} se ordenan de manera ascendente, tal que $\hat{R}_1^{2*} \leq \hat{R}_2^{2*} \leq \cdots \leq \hat{R}_B^{2*}$.
- 3 Determinar los cuantiles LI y LS, para el nivel de confianza del $(1 \alpha)\%$ en la muestra Bootstrap ordenada, con $LI = \hat{R}^{2*}_{(\alpha/2) \times B}$ y $LS = \hat{R}^{2*}_{(1-\alpha/2) \times B}$.
- 4 El intervalo de confianza esta dado por: $[LI_{per}, LS_{per}]$.

Intervalos de confianza Bootstrap BCa (**ICB BCa**) por esquema:

- \bullet Obtener una estimación de la \hat{R}^2 a partir de los datos originales.
- 2 Se obtienen las muestras, \hat{R}_1^{2*} , \hat{R}_2^{2*} , ..., \hat{R}_R^{2*} .
- 3 Se determina la proporción p de las \hat{R}_i^{2*} que son mayores o iguales a \hat{R}^2 .
- Determinar $Z_0 = Z_p$ donde Z_p es el cuantil en la distribución normal estándar tal que $P(Z > Z_p) = p$.
- 6 Obtener la constante de aceleración a dada por:

$$a = \frac{\sum_{i=1}^{n} (\hat{R}_{-iprom}^{2} - \hat{R}_{-i}^{2})^{3}}{6 (\sum_{i=1}^{n} (\hat{R}_{-iprom}^{2} - \hat{R}_{-i}^{2})^{2})^{3/2}},$$

donde: \hat{R}_{-i}^2 es la estimación con los datos originales quitando la *i*-ésima observación y $\hat{R}^2_{-iprom} = \frac{1}{n} \sum_{i=1}^n \hat{R}^2_{-i}$.

Intervalos de confianza Bootstrap BCa (ICB BCa) por esquema (...continuación):

- **6** Obtener $Z_L = \frac{Z_0 Z_{\alpha/2}}{1 a(Z_0 Z_{\alpha/2})} + Z_0$ y $Z_U = \frac{Z_0 + Z_{\alpha/2}}{1 a(Z_0 + Z_{\alpha/2})} + Z_0$ donde: $Z_{\alpha/2}$ es el cuantil en la distribución normal estándar tal que $P(Z > Z_{\alpha/2}) = \frac{\alpha}{2}$.
- Tencontrar $LI = INVCDF(\Phi(Z_L))$ y $LS = INVCDF(\Phi(Z_U))$ donde INVCDF es el cuantil en la muestra Bootstrap con probabilidad $\Phi(Z_L)$ y $\Phi(Z_U)$ respectivamente y Φ es la distribución acumulada de la normal estándar, siendo $P(\hat{R}^{2*} < LI) = \Phi(Z_L)$ y $P(\hat{R}^{2*} < LS) = \Phi(Z_U)$.
- 8 El intervalo de confianza esta dado por: $[LI_{bca}, LS_{bca}]$.

La construcción de los ICB está implementada en la función ContruirIntervBoot(data, R2, muestrasR2Boot, B, nivConfianza, tipo) en el lenguaje R.

Diseño del estudio de simulación

Evaluación de la precisión de un modelo

Para la simulación de los modelos se utilizaron los simuladores **ModNVC**(). ModNNVC(), ModNNVD() y ModNVD() (Febles, 2014; Zacarías, 2023). Se construyó la función SimMod(N, n, r, TipoPres, TipoSupues) en el lenguaje R para la utilización de los simuladores y respaldo de los modelos.

Exacto-Preciso (EP): 60,000 modelos	Exacto-Impreciso (EI): 60,000 modelos
 β₀ = 0 y β₁ = 1 R²: aleatorio entre 0.8 y 0.99 n = 10, 15, 20, 25, 30 y 35 	 β₀ = 0 y β₁ = 1 R²: aleatorio entre 0.1 y 0.33 n = 10, 15, 20, 25, 30 y 35
Supuestos: NVC, NVD, NNVC, NNVD	Supuestos: NVC, NVD, NNVC, NNVD
• $N = 500 \text{ modelos}$	• $N = 500$ modelos
• r=5 réplicas	• r=5 réplicas

En total se respaldaron 48 matrices que contienen los 120,000 modelos y 48 matrices que contienen las R^2 de origen correspondiente a cada modelo simulado.

Eficiencias para los ICB

Se construyó la función

ProcesarModels(archivos, caso, replicas, nivConfianza, N, MODELO, CASO) en el lenguaje R para evaluar la precisión de los modelos utilizando la función de la propuesta(EvalPrecisionModel(data, alpha, nivConfianza, caso)) y construir 2 tablas: la primera tabla para la eficiencia de los intervalos y para la eficiencia de los esquemas por réplica.

	A	В	C	D	E	F	G	Н	1	J	K
1	Replica	Esquema	NumMod	NumModEval	FrecEficIB1	FrecEficIB2	FrecEficIB1Unico	FrecEficIB2Unico	FrecEficIB1Emp2	FrecEficIB2Emp2	NingunGanador
2		1 1	500	500	479	483	5	9	449	25	12
3		1 2	500	500	466	466	10	10	427	29	24
4		1 8	500	500	443	425	45	27	189	209	30
5		1 4	500	497	139	80	139	80	0	0	278
6		1 5	500	500	496	495	1	0	339	156	4
7		1 (5 500	500	397	408	20	31	321	56	72
		1 7	7 500	500	400	410	20	30	321	59	70
9		1 8	500	500	468	463	10	5	336	122	27
10		2 1	500	500	479	480	6	7	450	23	14
11		2 2	500	500	464	467	4	7	436	24	29
12		2 3	500	496	429	427	36	34	195	198	33

En total se construyeron 96 tablas para las eficiencias, de las cuales 48 fueron para modelos EP y 48 para modelos EI. Para resumir los resultados de las tablas se construyeron 8 nuevas tablas con las eficiencias promedio.

Análisis estadísticos

Evaluación de la precisión de un modelo

Para cada supuesto (NVC, NNVC, NVD, NNVD) se utilizó ANOVA en un arreglo factorial de tres factores, donde:

- y = Eficiencia del ICB (Percentil o BCa)
- β = Efecto del tamaño de la muestra (6 niveles).
- τ = Efecto del esquema (8 niveles).
- γ = Efecto del tipo de modelo (2 niveles).

Para las comparaciones múltiples se utilizó Tukey al 5%.

En total se corrieron ocho ANOVAs, en cada comparación múltiple de Tukey se compararon 96 medias dando un total de 4,560 comparaciones de pares de medias.

- Evaluación de la precisión de un modelo
- 2 Objetivos
- 4 Resultados
- **5** Conclusiones

Comparación de la eficiencia del ICB Percentil para NVC

Cuando se tiene NVC y se utilizó el ICB Percentil para evaluar la precisión, se obtuvo interacción triple significativa ($TipoMod \times TM \times Esq: F = 11.97, P < 0.0001$). Con base en una eficiencia promedio de al menos 95%, el mejor esquema resultó Liu2 sin importar el tamaño de muestra y tipo de modelo.

Condición	Eficiencia Promedio	Grupos Homogéneos
EINVC10Liu2	0.951182	defghijk
EPNVC25Wu1	0.9516	defghijk
EPNVC35Wu1	0.9548	efghijkl
EPNVC10Liu2	0.9576	fghijklm
EINVC15Liu2	0.959163	fghijklm
EINVC30Liu2	0.964	ghijklm
EINVC25Liu2	0.9644	hijklm
EINVC20Liu2	0.9684	ijklm
EINVC35Liu2	0.9688	ijklm
EPNVC15Liu2	0.9752	jklm
EPNVC20Liu2	0.9852	klm
EPNVC30Liu2	0.99	lm
EPNVC25Liu2	0.9916	m
EPNVC35Liu2	0.992	m

Promedios con igual letra no difieren (P>0.05), prueba de Tukev.

Comparación de la eficiencia del ICB BCa para NVC

Cuando se tiene NVC y se utilizó el ICB BCa para evaluar la precisión, se obtuvo interacción triple significativa ($TipoMod \times TM \times Esq$: F = 3.60, P < 0.0001). Con base en una eficiencia promedio de al menos 95%, el mejor esquema resultó Liu2 sin importar el tamaño de la muestra, sin embargo, sólo identifica al tipo de modelo EP a priori simulado.

Condición	Eficiencia Promedio	Grupos Homogéneos
EPNVC30Wu1	0.9532	opqrstu
EPNVC25Wu1	0.9544	pqrstu
EPNVC35Wu1	0.9616	qrstu
EPNVC10Liu2	0.9644	rstu
EPNVC15Liu2	0.9736	stu
EPNVC20Liu2	0.9804	tu
EPNVC35Liu2	0.9892	u
EPNVC25Liu2	0.9896	u
EPNVC30Liu2	0.9896	u

Promedios con igual letra no difieren (P>0.05), prueba de Tukev.

Comparación de las eficiencias de los ICB para NNVC

Comparación con ICB Percentil:

Con base en una eficiencia promedio de al menos 95%, el mejor esquema resultó Liu2 sin importar el tamaño de muestra y tipo de modelo; con excepción del caso EINNVC10Liu2, sin embargo, su eficiencia promedio es 94.52%.

Comparación con ICB BCa:

Con base en una eficiencia promedio de al menos 95%, se obtuvo dos mejores esquemas Liu2 y Wu1 sin importar el tamaño de la muestra, sin embargo, ambos sólo identifican al tipo de modelo EP *a priori* simulado.

Comparación de las eficiencias de los ICB para NVD

Comparación con ICB Percentil:

Con base en una eficiencia promedio de al menos 95%, el mejor esquema resultó Liu2 sin importar el tamaño de muestra y tipo de modelo.

Comparación con ICB BCa:

Con base en una eficiencia promedio de al menos 95%, el mejor esquema resultó Liu2 sin importar el tamaño de la muestra, sin embargo, sólo identifica al tipo de modelo EP *a priori* simulado.

Referencias

Comparación de las eficiencias de los ICB para NNVD

Comparación con ICB Percentil:

Con al menos el 93.96%, los dos mejores esquemas fueron Liu2 y ParBal para todos los TM con excepción de n = 35 para Liu2 (92.72%) y n = 10 para ParBal (91.28%). Ambos esquemas sólo identifican a los EI.

Comparación con ICB BCa:

Con al menos el 88.80%, con el esquema ParBal se obtuvo la mayor eficiencia promedio en todos los TM, también bajo el esquema Liu2 con excepción de n = 35 (88.52%) cuando el tipo de modelo es EP. El esquema ParBal identifica a los EI para n = 25,30,35 y las eficiencias no difieren estadísticamente con al menos 90.4%.

En resumen: Se determinó con al menos el 88.8% que para el supuesto NNVD se utilice el ICB BCa con el esquema de remuestreo pareado balanceado; con la limitación de que para modelos EI con tamaños de muestra "pequeño" n = 10, 15, 20, no se obtuvo un buen desempeño.

Br. Irving Cupul Uc Universidad Autónoma de Vucatán 32 / 45 12/12/2024

990

33 / 45

Propuesta final para la evaluación de la precisión de un modelo

Aplicación de la propuesta final para evaluar la precisión

Caso NVC:

Evaluación de la precisión de un modelo

Para este caso se consideraron los datos experimentales de la ganancia diaria de peso (GDP) en ovinos; datos experimentales vs. los predichos obtenidos de un modelo de simulación para estimar la ganancia diaria de peso (GDP) (Osorio, 2011). Estos datos se encuentran en el apéndice B de Balam (2012).

34 / 45

Aplicación de la propuesta final: Caso NVC

Evaluación de la precisión de un modelo

PRUEBA DE NORMALIDAD

Estadistica ValorCal pValor W Shapiro-Wilk 0.98158509 0.8865120 D Liliefort 0.07458593 0.9558153

Conclusión: Se cumple el supuesto de normalidad con Shapiro y Lilliefort al 5 %.

PRUEBA T-STUDENT PARA MEDTA CERO EN LOS RESIDUALES

Estadistica ValorCal pValor t T-Student -1.816261e-16

Conclusión: Se cumple el supuesto de media cero en los residuales al 5 %.

PRUEBA DE IGUALDAD DE VARIANZAS CON BREUSH-PAGAN

Estadistica ValorCal pValor BP Breush-Pagan 1.067363 0.3015417

Conclusión: Se cumple el supuesto de varianza constante con el estadístico de Breush-Pagan al 5 %.

PRHERA DE DURRIN-WATSON PARA INDEPENDENCIA

Estadistica ValorCal nValor DW Durbin-Watson test 1.857982 0.2962045

Conclusión: Se cumple el supuesto de independencia con Durbin-Watson al 5 %.

***** CASO: NORMALIDAD - HOMOCEDASTICIDAD (NVC) *****

PRECISION (R2) CON EL ICB PERCENTIL-ESQUEMA BOOTSTRAP LIU2

Atributos Valores R2 0.7273763 R2BootMedia 0.7168087 3 DesvEstR2Boots 0.1317316 LTR2 0.3842338 LSR2 0.8992233

Conclusión: El modelo es preciso con el ICB Percentil al 95 %.

Criterio: Si el 0.7 está contenido en el ICB o es mayor igual al limite inferior del ICB.

Aplicación de la propuesta final para evaluar la precisión

Caso NNVD:

Evaluación de la precisión de un modelo

Se aplicó a los datos experimentales del volumen de una parcela en metros cúbicos a un diámetro superior (n=63) de $10 \, \mathrm{cm}$ y los simulados con el modelo PTAEDA (Reynolds & Chung, 1987), el cual es un modelo estocástico. Cada simulación con el modelo PTAEDA corresponde a la media de $10 \, \mathrm{corridas}$ del modelo para cada parcela. En cada parcela se mide la edad, el indice de sitio y el número de arboles por hectárea. Estos datos se encuentran en el apéndice B de Balam (2012).

Aplicación de la propuesta final: Caso NNVD

Estadistica ValorCal W Shapiro-Wilk 0.9090287 0.0002003722 D Liliefort 0.1395817 0.0038165826

Conclusión: No se cumple el supuesto de normalidad con Shapiro y Lilliefort al 5 %.

PRUEBA T-STUDENT PARA MEDIA CERO EN LOS RESIDUALES

ValorCal pValor Estadistica t T-Student -7 099852e-16

Conclusión: Se cumple el supuesto de media cero en los residuales al 5 %.

PRUERA DE TGUALDAD DE VARTANZAS CON WHITE

Estadistica ValorCal nValor White 23,60013 1,185793e-06

Conclusión: No se cumple el supuesto de varianza constante con el estadístico de White al 5 %.

PRUEBA DE DURBIN-WATSON PARA INDEPENDENCIA

Estadistica ValorCal pValor DW Durbin-Watson test 1.740505 0.1258351

Conclusión: Se cumple el supuesto de independencia con Durbin-Watson al 5 %.

```
***** CASO: NO NORMALIDAD - HETEROCIDASTICIDAD (NNVD) ******
```

PRECISION (R2) CON EL ICE BCa-ESQUEMA BOOTSTRAP PAREADO BALANCEADO

```
Atributos Valores
            P2 0 83505020
   R2BootMedia 0.84055856
DesvEstR2Boots 0.03684941
         LTR2 0.74039251
         LSR2 0.89089504
```

Conclusión: El modelo es preciso con el ICB BCa al 95 %.

Criterio: Si el 0.7 está contenido en el ICB o es mayor igual al limite inferior del ICB. 🔞 👩 🕟 🔞 🚍 🕟

12/12/2024

- Evaluación de la precisión de un modelo
- 2 Objetivos

- **5** Conclusiones

Conclusiones

- 1 Se propuso un método para evaluar la precisión de un modelo con la técnica de regresión lineal; basado en ocho esquemas de remuestreo, dos tipos de modelo y seis tamaños de muestra; a través de dos ICB para el coeficiente de determinación R^2 v se consideraron los cuatro escenarios posibles (NVC, NNVC, NVD v NNVD) ante el cumplimiento o no normalidad y/o varianza constante.
- 2 Se realizó un estudio de simulación para comparar las eficiencias de los intervalos de confianza para cada tipo de supuesto con respecto a los diferentes esquemas Bootstrap, tamaños de muestra y tipo de modelo.
- 3 Análisis estadísticos: se determinó con al menos un 95% que para los supuestos NVC, NNVC o NVD se utilice el ICB Percentil con el esquema de remuestreo Liu2 sin importar el tamaño de muestra. Y se determinó con al menos el 88.8% que para el supuesto NNVD se utilice el ICB BCa con el esquema de remuestreo pareado balanceado.

- Propuesta final: para los supuestos NVC, NNVC o NVD se utilice el ICB Percentil con el esquema de remuestreo Liu2 (NVC: residuales de regresión lineal simple, NNVC: residuales robustos sin ponderar y NVD: residuales robustos ponderados) y para el supuesto NNVD se utilice el ICB BCa con el esquema de remuestreo Pareado Balanceado
- 6 Se aplicó la propuesta final, para la ganancia diaria de peso en ovinos, el modelo resultó ser de tipo NVC y preciso, coincidiendo con Balam (2012), cabe señalar que usó ICB BCa con residuales balanceados y en este trabajo se usó ICB Percentil con el esquema de remuestreo Liu2. Para el volumen por parcela, el modelo resultó de tipo NNVD y preciso, coincidiendo con Balam (2012), tanto en la decisión como en el esquema e ICB que utilizó.

Trabajos a futuro:

- Desarrollar una librería en el lenguaje R que contenga la propuesta de este trabajo para la evaluación de la precisión, junto con la propuesta desarrollada por Zacarías (2023) para la evaluación de la exactitud y de esta manera tener una herramienta integral para la evaluación de un modelo con la técnica de regresión lineal.
- Integrar la propuesta al Sistema de Validación de Modelos (Mazún, 2014).
- Evaluar otros ICB que requieren cómputos más exhaustivos pero utilizando la programación en paralelo.

- Evaluación de la precisión de un modelo
- 2 Objetivos

- **5** Conclusiones
- **6** Referencias

Referencias importantes

- Balam, R. (2012). Evaluación de la Exactitud y Precisión de un Modelo con Regresión Lineal [Tesis de Maestría]. UADY, Facultad de Matemáticas.
- Febles, A. (2014). Evaluación de la eficiencia del Método de Regresión en la Validación de Modelos: Un Estudio de Simulación [Tesis de Maestría]. UADY, Facultad de Matemáticas.
- Liu, R. Y. (1988).Bootstrap Procedures under some Non-I.I.D. Models. The Annals of Statistics, 16(4), 1696–1708. https://doi.org/10.1214/aos/1176351062
- Mazún,E.(2014). Diseño e implementación en el symrl del método de freese con sus extensiones para validad modelos en web [Tesis de Licenciatura]. UADY, Facultad de Matemáticas.

- Osorio, A. I. (2011). Modelo de simulación para predecir ganancia de peso en ovinos alimentados con dietas altas en grano [Tesis de Maestría]. Universidad Autónoma Metropolitana, Unidad Xochimilco.
- Reynolds, M. R. J., & Chung, J. (1987).Regression methodology for estimating model prediction error. Canadian Journal of Forest Research, 16(5), 931–938.
- Wu,C.F. J. (1986). Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis. The Annals of Statistics, 14(4), 1261–1295. https://doi.org/10.1214/aos/1176350142
- Zacarías, K. (2023). Evaluación de la exactitud de un modelo cuando no se cumplen los supuestos en la técnica de regresión lineal [Tesis de Maestría]. UADY, Facultad de Matemáticas.

Muchas Gracias