補題 2.3 < A , \lor , \land , $^- >$ を有限ブール代数とする。b を 0 でない A の要素とし, $a_1,a_2,...,a_k$ を $a_i \le b$ であるような A のすべての原子とする。このとき, $b=a_1 \lor a_2 \lor ... \lor a_k$ は原子の結びによる b の一意な表現である。

【証明】

bに対して別の表現 $b=a_1'\vee a_2'\vee ... \vee a_j'$ (ここで、 $a_1',a_2',...,a_j'$ はA の原子である)が存在するとき、明らかに、b は $a_1',a_2',...,a_j'$ の上限であるから、 $a_1'\leqslant b$ 、 $a_2'\leqslant b$ 、…、 $a_j'\leqslant b$ である。 $a_1,a_2,...,a_k$ は $a_i\leqslant b$ であるようなA のすべての原子であるから、集合 $M'=\{a_1',a_2',...,a_j'\}$ は集合 $M=\{a_1,a_2,...,a_k\}$ の部分集合である。よって、 $j\leq k$ である。j< k と仮定すると、ある M の要素 $a_i\notin M'$ である。よって、 $0=(a_i\wedge a_1')\vee (a_i\wedge a_2')\vee ... \vee (a_i\wedge a_j')$

$$= a_i \wedge (a_1 \vee a_2 \vee ... \vee a_j')$$

= $a_i \wedge b$

 $=a_i \wedge (a_1 \vee a_2 \vee ... \vee a_k)$

 $= a_i$

となり、 a_i が原子であることに矛盾する。ゆえに、j=k でなければならない。 すなわち、 $b=a_1\vee a_2\vee ...\vee a_k$ は原子の結びによるbの一意な表現である。