Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Учебно-исследовательская работа №5 по дисципение Сети ЭВМ и телекоммуникации Технологии QoS в компьютерных сетях

Студент: Саржевский Иван

Группа: Р3302

Содержание

1	Цель	2
2	Исходные данные	2
3	Ход работы	2
	3.1 FIFO	5
	3.2 PQ	10
	3.3 WFQ	14

1 Цель

Изучение эффективности приоритезации трафика для управления качеством обслуживания (Quality of Service, QoS) в компьютерных сетях.

2 Исходные данные

S 10 Kб N 4 Kб K 2

3 Ход работы

С использованием программы Wireshark было захвачено по 10000 пакетов для трафика Skype и ВПЗ. Для трансляции ВПЗ был выбран сайт webinar.ru. Примеры захваченного трафика можно увидеть на рисунках 1 и 2.

No.	Time	Source	Destination	Protocol	Length	Info
1	. 0	192.168.0.105	91.108.29.170	UDP	155	1703 > 58415 Len=113
2	0.009094	192.168.0.105	91.108.29.170	UDP	1154	1703 > 58415 Len=1112
3	0.009286	192.168.0.105	91.108.29.170	UDP	1154	1703 > 58415 Len=1112
4	0.009376	192.168.0.105	91.108.29.170	UDP	1154	1703 > 58415 Len=1112
5	0.00949	192.168.0.105	91.108.29.170	UDP	1153	1703 > 58415 Len=1111
6	0.009573	192.168.0.105	91.108.29.170	UDP	1174	1703 > 58415 Len=1132
7	0.009667	192.168.0.105	91.108.29.170	UDP	1174	1703 > 58415 Len=1132
8	0.010158	91.108.29.170	192.168.0.105	UDP	957	58415 > 1703 Len=915
9	0.01055	91.108.29.170	192.168.0.105	UDP	948	58415 > 1703 Len=906
10	0.010553	91.108.29.170	192.168.0.105	UDP	959	58415 > 1703 Len=917
11	0.010555	91.108.29.170	192.168.0.105	UDP	959	58415 > 1703 Len=917
12	0.011696	91.108.29.170	192.168.0.105	UDP	126	58415 > 1703 Len=84
13	0.020492	192.168.0.105	91.108.29.170	UDP	152	1703 > 58415 Len=110
14	0.027963	192.168.0.105	91.108.29.170	UDP	1120	1703 > 58415 Len=1078
15	0.028346	192.168.0.105	91.108.29.170	UDP	1120	1703 > 58415 Len=1078
16	0.028544	192.168.0.105	91.108.29.170	UDP	1120	1703 > 58415 Len=1078
17	0.028723	192.168.0.105	91.108.29.170	UDP	1120	1703 > 58415 Len=1078
18	0.028883	192.168.0.105	91.108.29.170	UDP	1120	1703 > 58415 Len=1078
19	0.029025	192.168.0.105	91.108.29.170	UDP	1115	1703 > 58415 Len=1073
20	0.034254	91.108.29.170	192.168.0.105	UDP	133	58415 > 1703 Len=91

Рис. 1: Skype-трафик.

No.	0	Source	Destination	Protocol	Length	Info
1	0	37.130.194.56	192.168.0.105	TCP	54	443 > 55539 [ACK] Seq=1 Ack=1 Win=16391 Len=0
2	0.003956	192.168.0.105	37.130.194.56	SSL	143	Continuation Data
3	0.016085	192.168.0.105	37.130.194.56	SSL	1108	Continuation Data
4	0.01841	37.130.194.56	192.168.0.105	TCP	54	443 > 55539 [ACK] Seq=1 Ack=1213 Win=16391 Len=0
5	0.021984	192.168.0.105	37.130.194.56	SSL	1109	Continuation Data
6	0.028012	192.168.0.105	37.130.194.56	SSL	139	Continuation Data
7	0.039131	37.130.194.56	192.168.0.105	TCP	54	443 > 55539 [ACK] Seq=1 Ack=3322 Win=16391 Len=0
8	0.04591	192.168.0.105	37.130.194.56	SSL	139	Continuation Data
9	0.051895	192.168.0.105	37.130.194.56	SSL	1135	Continuation Data
10	0.057848	192.168.0.105	37.130.194.56	SSL	1135	Continuation Data
11	0.063975	192.168.0.105	37.130.194.56	SSL	136	Continuation Data
12	0.064963	37.130.194.56	192.168.0.105	TCP	54	443 > 55539 [ACK] Seq=1 Ack=3492 Win=16391 Len=0
13	0.073935	37.130.194.56	192.168.0.105	TCP	54	443 > 55539 [ACK] Seq=1 Ack=5654 Win=16391 Len=0
14	0.087769	192.168.0.105	37.130.194.56	SSL	134	Continuation Data
15	0.088028	192.168.0.105	37.130.194.56	SSL	1158	Continuation Data
16	0.093754	192.168.0.105	37.130.194.56	SSL	1159	Continuation Data
17	0.102214	37.130.194.56	192.168.0.105	TCP	54	443 > 55539 [ACK] Seq=1 Ack=5816 Win=16391 Len=0
18	0.105721	192.168.0.105	37.130.194.56	SSL	129	Continuation Data
19	0.106096	192.168.0.105	37.130.194.56	SSL	1221	Continuation Data
20	0.108332	37.130.194.56	192.168.0.105	TCP	54	443 > 55539 [ACK] Seq=1 Ack=8025 Win=16391 Len=0

Рис. 2: ВПЗ-трафик.

По полученным данным были построены фукции распределения для интервалов между пакетами и размеров пакетов для каждого вида трафика. Полученные функции распределения представлены на рисунках 3-6.

Рис. 3: Функция распределения для интервалов между пакетами Skype

Рис. 4: Функция распределения для размеров пакетов Skype

Рис. 5: Функция распределения для интервалов между пакетами ВПЗ

Рис. 6: Функция распределения для размеров пакетов ВПЗ

Значения интервалов между пакетами во всех случаях были округлены до пятого знака после запятой и умножены на 1000 (перевод в мс.).

Затем, с использованием полученных распределений и предложенной AnyLogic-модели, был произведен поиск такого минимального значения пропускной способности канала связи, при котором характеристики передачи данных все еще соответствуют нормам ITU-T Y.1541, которые можно увидеть в таблице 1.

Таблица 1: Нормы ITU-T Y.1541

10001111140 11 110 pm21 = 10 1 11 10 11						
Характеристика	Skype	VoD				
Задержка, мс	100	1000				
Джиттер, мс	50	-				
Потеря пакетов, %	0.1	0.1				

3.1 FIFO

Очередь без приоритезации. Настройки AnyLogic-модели можно увидеть на рисунке 7.

Параметры сетевого устройства

Дисцип	пина об	служива	ания –	БП	Параметры БП			
БП	АΠ	WRR	WTB		отсутствуют			
ОП	WFQ	DWRR	LQF					
Закон р	Закон распределения интервалов между поступлениями пакетов							
Пакеты	первого кл	acca						
O равно	мерный 🔘) экспоненці	иальный	треугольный	табличная функция			
задаетс	я в файле ех	celFileInterva	IDistr.xIs	на листе 1				
Пакеты	второго кл	acca						
равно	мерный 🔘) экспоненци	иальный	О треугольный	табличная функция			
задаетс	я в файле ех	celFileInterva	IDistr.xIs	на листе 2				
Закон р	аспреде	еления ј	разме	ров пакето	В			
	первого кла мерный С		иальный	т реугольный	табличная функция			
задаетс	я в файле ех	celFileSizeDi	str.xIs на	листе 1				
Пакеты в	второго кла	acca						
равно	мерный 🔘) экспоненці	иальный	треугольный	табличная функция			
задаетс	я в файле ех	celFileSizeDi	str.xIs на	листе 2				
Пропус	Пропускная способность							
С = 4000 Кбит/с								
Емкость накопителя								
Е = 10000 байт неограниченная емкость								
Запуст	Запустить эксперимент							

Рис. 7: Настройки модели, FIF0

Значения характеристик при параметрах, заданных в варианте, можно увидеть на рисунке 8.

Параметры

```
закон распределения интервалов между поступлениями пакетов Т, мин=0.1, мода=0.2, макс=0.3 мс Т, мин=0.3, мода=0.4, макс=0.5 мс закон распределения размеров пакетов Т, мин=100, мода=728, макс=200 байт Т, мин=45, мода=728, макс=1500 байт пропускная способность канала связи С, Кбит/с 4,000 дисциплина обслуживания ДО БП емкость накопителя E, байт
```

Характеристики

загрузка р
0.882 +- 6.287E-4
вероятность потери т
0.085 +- 6.685E-6
среднее время ожидания W, мс
8.792 +- 0.015
среднее время пребывания U, мс
10.273 +- 0.015
текущая длина очереди, пакетов
4
средняя длина очереди I, пакетов
5.238 +- 0.008

Рис. 8: Характеристики при параметрах, заданных в варианте, FIFO

В процессе варьирования пропускной способности было установлено, что её минимальное значение, при котором все характеристики не превышают норму равно 25750 Кб/с. Вероятность потери при этом равна 0.001 (0.1%), а задержка 0.32 мс. (при норме в 100 мс). Это можно увидеть на рисунке 9.

Так же, во время варьирования были зафиксированы все промежуточные значения вероятности потери заявок и задержки, по которым были построены графики, представленные на рисунках 10 и 11.

Параметры

```
закон распределения интервалов между поступлениями пакетов
Т, мин=0.1, мода=0.2, макс=0.3 мс
Т, мин=0.3, мода=0.4, макс=0.5 мс

закон распределения размеров пакетов
Т, мин=100, мода=728, макс=200 байт
Т, мин=45, мода=728, макс=1500 байт
пропускная способность канала связи С, Кбит/с
ср
25,750

дисциплина обслуживания ДО
БП

емкость накопителя E, байт
0
0
```

Характеристики

```
загрузка р
0.156 +- 7.077E-4
вероятность потери т
0.001 +- 3.711E-7
среднее время ожидания W, мс
0.32 +- 0.001
среднее время пребывания U, мс
0.558 +- 0.001
текущая длина очереди, пакетов
0
средняя длина очереди I, пакетов
0.208 +- 0.002
```

Рис. 9: Характеристики при параметрах, полученных в результате варьирования, FIFO

Рис. 10: Зависимость вероятности потери от пропускной способности, FIFO

Рис. 11: Зависимость задержки от пропускной способности, FIFO

В целом можно отметить, что при увеличении пропускной способности канала, как и ожидалось, вероятность потери и задержка падают, при этом они начинают соответсвовать поставленным требованиям начиная с 25750 ${\rm K}6/{\rm c}.$

3.2 PQ

ДО с относительными приоритетами. Трафик низкоприоритетного класса передается только в случае, когда нет ни одного пакета высокоприоритетного класса, который бы претендовал на передачу. Такой подход улучшает качество передачи пакетов высокоприоритетного класса, но в тоже время делает это за счет низкоприоритетных пакетов.

Настройки AnyLogic-модели можно увидеть на рисунке 12.

Параме	тры с	етево	го уст	ройств	a			
Дисцип	пина об	служива	ния – С	ОΠ	Параметры ОП			
БП	АΠ	WRR	WTB		отсутствуют			
ОП	WFQ	DWRR	LQF					
Закон р	аспреде	еления і	интерва	лов межд	цу поступлениями пакетов			
Пакеты в	высокопри	оритетног	о класса					
равно	мерный () экспоненці	іальный 🔘) треугольный	табличная функция			
задается	я в файле ех	celFileInterva	lDistr.xls на	листе 1				
Пакеты н	низкоприо	ритетного	класса					
равно	мерный () экспоненци	іальный 🔘) треугольный	табличная функция			
задается	я в файле ех	celFileInterva	lDistr.xls на	листе 2				
Закон р	Закон распределения размеров пакетов							
_	_	оритетного) экспоненци	_) треугольный	табличная функция			
задается	я в файле ех	celFileSizeDi	str.xIs на лис	сте 1				
Пакеты н	изкоприор	оитетного н	иасса					
равно	мерный () экспоненци	іальный 🔘) треугольный	📵 табличная функция			
задается	задается в файле excelFileSizeDistr.xls на листе 2							
Пропускная способность C = 4000 Кбит/с								
Емкость накопителя								
E = 100	000 байт	неогра	ниченная еі	мкость				
Запуст	ить эксперим	іент						

Рис. 12: Настройки модели, PQ

Значения характеристик при параметрах, заданных в варианте, можно увидеть на рисунке 13.

Рис. 13: Характеристики при параметрах, заданных в варианте, РQ

6.622 +- 0.01

В процессе варьирования пропускной способности было установлено, что её минимальное значение, при котором все характеристики не превышают норму равно 25500 Кб/с. Вероятность потери при этом равна 0.001 (0.1%), а задержка 0.41 мс и 0.125 мс для скайпа и ВПЗ соответственно (при норме в 100 мс). Это можно увидеть на рисунке 14.

Так же, во время варьирования были зафиксированы все промежуточные значения вероятности потери заявок и задержки, по которым были построены графики, представленные на рисунках 15 и 16.

Характеристики

Параметры

```
закон распределения интервалов между поступлениями пакетов
                                                                               загрузка р
Т, мин=0.1, мода=0.2, макс=0.3 мс
Т, мин=0.3, мода=0.4, макс=0.5 мс
                                                                               0.157 +- 7.104E-4
                                                                               вероятность потери π
закон распределения размеров пакетов
                                                                               0.001 +- 7.84E-7
Т, мин=100, мода=728, макс=200 байт
Т, мин=45, мода=728, макс=1500 байт
                                                                               среднее время ожидания W, мс
                                                                               0.41 +- 0.001
                                                                                                   0.125 +- 0.002
пропускная способность канала связи С, Кбит/с
                                                                               среднее время пребывания U, мс
                                                                               0.692 +- 0.001 0.262 +- 0.002
дисциплина обслуживания ДО
                                                                               текущая длина очереди, пакетов
емкость накопителя E, байт
10,000
                                                                               средняя длина очереди I, пакетов
                                                                               0.215 +- 0.002
```

Рис. 14: Характеристики при параметрах, полученных в результате варьирования, РQ

Рис. 15: Зависимость вероятности потери от пропускной способности, РQ

Рис. 16: Зависимость задержки от пропускной способности, РQ

В целом можно отметить, что при увеличении пропускной способности канала, как и ожидалось, вероятность потери и задержка падают для обоих типов пакетов, при этом они начинают соответсвовать поставленным требованиям начиная с $25500~{
m K}{
m f/c}$.

3.3 WFQ

ДО со взвешенным честным обслуживанием. Каждому виду трафика назначается некий вес, при этом из очереди выбирается такое количество пакетов, что их суммарные размеры соотносятся как заданные веса. Таким образом, с одной стороны, есть гарантия, что пакеты с большим весом будут иметь приоритет, но в то же время, в условиях перегрузок низкоприоритетные пакеты будут обслуживаться за конечное время.

Настройки AnyLogic-модели можно увидеть на рисунке 17. Вес пакетов Skype равен 0.67, что в K = 2 раза больше, чем вес пакетов ВПЗ, равный 0.33.

Параметры сетевого устройства Дисциплина обслуживания - WFQ Параметры WFQ БΠ АΠ WRR W₁ = 0.67 W₂= 0.33 ОП WFQ **DWRR** LOF Закон распределения интервалов между поступлениями пакетов Пакеты высокоприоритетного класса равномерный экспоненциальный треугольный табличная функция задается в файле excelFileIntervalDistr.xls на листе 1 Пакеты низкоприоритетного класса равномерный экспоненциальный треугольный табличная функция задается в файле excelFileIntervalDistr.xls на листе 2 Закон распределения размеров пакетов Пакеты высокоприоритетного класса равномерный экспоненциальный треугольный табличная функция задается в файле excelFileSizeDistr.xls на листе 1 Пакеты низкоприоритетного класса равномерный экспоненциальный треугольный табличная функция задается в файле excelFileSizeDistr.xls на листе 2 Пропускная способность С = 4000 Кбит/с Емкость накопителя Е,= 10000 байт неограниченная емкость E₂= 10000 байт неограниченная емкость Запустить эксперимент

Рис. 17: Настройки модели, WFQ

Значения характеристик при параметрах, заданных в варианте, можно увидеть на рисунке 18.

Рис. 18: Характеристики при параметрах, заданных в варианте, WFQ

В процессе варьирования пропускной способности было установлено, что её минимальное значение, при котором все характеристики не превышают норму равно 26950 ${\rm K}6/{\rm c}$. Вероятность потери при этом равна 0.001 (0.1%), а задержка 0 мс и 0.302 мс для скайпа и ВПЗ соответственно (при норме в 100 мс). Это можно увидеть на рисунке 19.

Так же, во время варьирования были зафиксированы все промежуточные значения вероятности потери заявок и задержки, по которым были построены графики, представленные на рисунках 20 и 21.

Рис. 19: Характеристики при параметрах, полученных в результате варьирования, WFQ

Рис. 20: Зависимость вероятности потери от пропускной способности, WFQ

Рис. 21: Зависимость задержки от пропускной способности, WFQ

В целом можно отметить, что при увеличении пропускной способности канала, как и ожидалось, вероятность потери и задержка падают для обоих типов пакетов, при этом они начинают соответсвовать поставленным требованиям начиная с $26950~{
m K}6/{
m c}$.

Помимо прочего, было проведено варьирование весов классов заявок. В результате этого варьирования было установлено, что если установить w1 = 0.95 и w2 = 0.05 (K = 19), то можно добиться уменьшения необходимой пропускной способности до 26575 Кб/с, что можно увидетьь на рисунке 22.

Рис. 22: Характеристики при параметрах, полученных в результате варьирования K, WFQ