Part III – Model Theory (Ongoing course, rough)

Based on lectures by Dr. S. Barbina Notes taken by Bhavik Mehta

$Michaelmas\ 2018$

Contents

0	Introduction	2
1	Languages and structures	2
2	Review: Terms, formulae and their interpretations	4
3	Theories and elementarity	7
4	Two relational structures	10
In	ndex	13

0 Introduction

Model theory is a part of logic that began by looking at algebraic objects such as groups and combinatorial objects such like graphs, described in formal language. The basic question in model theory is: 'how powerful is our description of these objects to pin them down'? In Logic and Set Theory, the focus was on what was provable from a theory and language, but here we focus on whether or not a model exists.

1 Languages and structures

Definition 1.1 (Language). A language L consists of

- (i) a set \mathscr{F} of function symbols, and for each $f \in \mathscr{F}$ a positive integer m_f the **arity** of f.
- (ii) a set \mathcal{R} of relation symbols, and for each $R \in \mathcal{R}$, a positive integer m_R .
- (iii) a set \mathscr{C} of constant symbols.

Note: each of \mathcal{F}, \mathcal{R} and \mathcal{C} can be empty.

Example. Take $L = \{\{\cdot,^{-1}\}, \{1\}\}$, for \cdot a binary function and $^{-1}$ an unary function, 1 a constant. This is the language of groups, call it $L_{\rm gp}$. Also, $L_{\rm lo} = \{<\}$ a single binary relation, for linear orders.

Definition 1.2 (L-structure). Given a language L, say, an L-structure consists of

- (i) a set M, the **domain**
- (ii) for each $f \in \mathscr{F}$, a function $f^{\mathcal{M}}: M^{m_f} \to M$.
- (iii) for each $R \in \mathcal{R}$, a relation $R^{\mathcal{M}} \subseteq M^{m_R}$.
- (iv) for each $c \in \mathcal{C}$, an element $c^{\mathcal{M}} \in M$.

 f^M, R^M, c^M are the **interpretations** of f, R, c respectively.

Remark 1.3. We often fail to distinguish between the symbols in L and their interpretations in a structure, if the interpretations are clear from the context.

We may write $\mathcal{M} = \langle M, \mathcal{F}, \mathcal{R}, \mathcal{C} \rangle$.

Example 1.4.

- (a) $\mathcal{R} = \langle \mathbb{R}^+, \{\cdot,^{-1}\}, 1 \rangle$ is an L_{gp} -structure.
- (b) $\mathcal{Z} = \langle \mathbb{Z}, \{+, -\}, 0 \rangle$ is an $L_{\rm gp}$ -structure.
- (c) $Q = \langle \mathbb{Q}, \langle \rangle$ is an L_{lo} -structure.

Definition 1.5 (Embedding). Let L be a language, let \mathcal{M}, \mathcal{N} be L-structures. An **embedding** of \mathcal{M} into \mathcal{N} is a one-to-one mapping $\alpha : M \to N$ such that

(i) for all $f \in \mathscr{F}$, and $a_1, \ldots, a_{m_f} \in M$,

$$\alpha(f^{\mathcal{M}}(a_1,\ldots,a_{n_f})) = f^{\mathcal{N}}(\alpha(a_1),\ldots,\alpha(a_{n_f}))$$

(ii) for all $R \in \mathcal{R}$, and $a_1, \ldots, a_{n_R} \in M$

$$(a_1, \dots, a_{n_R}) \in R^{\mathcal{M}} \iff (\alpha(a_1), \dots, \alpha(a_{n_R})) \in R^{\mathcal{N}}$$

(iii) for all $c \in \mathscr{C}$, $\alpha(c^{\mathcal{M}}) = c^{\mathcal{N}}$.

An **isomorphism** of \mathcal{M} into \mathcal{N} is a surjective embedding (onto).

Exercise 1.6. Let G_1, G_2 be groups, regarded as $L_{\rm gp}$ -structures. Check that $G_1 \simeq G_2$ in the usual algebra sense if and only if there is an isomorphism $\alpha: G_1 \to G_2$ in the sense of Definition 1.5.

2 Review: Terms, formulae and their interpretations

In addition to the symbols of L, we also have

- (i) infinitely many variables $\{x_i\}_{i\in I}$
- (ii) logical connectives \land, \neg (also expresses $\lor, \Longrightarrow, \Longleftrightarrow$)
- (iii) quantifier \exists (also expresses \forall)
- (iv) (,)
- (v) equality symbol =

Definition 2.1 (*L*-terms). *L*-terms are defined recursively as follows:

- any variable x_i is a term
- any constant symbol is a term
- for any $f \in \mathcal{F}$, $f(t_1, \ldots, t_{m_f})$ for any terms t_1, \ldots, t_{m_f} is a term
- nothing else is a term

Notation: we write $t(x_1, \ldots, x_m)$ to mean that the variables appearing in t are among x_1, \ldots, x_m .

Lecture 2 **Example.** Take $\mathcal{R} = \langle \mathbb{R}^*, \{\cdot,^{-1}\}, 1 \rangle$. Then $\cdot (\cdot(x_1, x_2), x_3)$ is a term, usually written $(x_1 \cdot x_2) \cdot x_3$. Also, $(\cdot(1, x_1))^{-1}$ is a term, written $(1 \cdot x)^{-1}$

Definition 2.2. If \mathcal{M} is an L-structure, to each L-term $t(x_1, \ldots, x_k)$ we assign a function a function $t^{\mathcal{M}}: M^k \to M$ defined as follows:

- (i) If $t = x_i, t^{\mathcal{M}}[a_1, \dots, a_k] = a_i$
- (ii) If t = c, $t^{\mathcal{M}}[a_1, \dots, a_k] = c^{\mathcal{M}}$.
- (iii) If $t = f(t(x_1, \dots, x_k), \dots, t_{m_f}(x_1, \dots, x_k)),$

$$t^{\mathcal{M}}(a_1,\ldots,a_k) = f^{\mathcal{M}}(t_1^{\mathcal{M}}(a_1,\ldots,a_k),\ldots,t_{m_f}^{\mathcal{M}}(a_1,\ldots,a_k))$$

Notice in $L_{\rm gp}$, the term $x_2 \cdot x_3$ can be described as $t_1(x_1, x_2, x_3)$ or $t_2(x_1, x_2, x_3, x_4)$, or infinitely many other ways. Then t_1 is assigned to $t_1^{\mathcal{M}}: M^3 \to M$, with $(a_1, a_2, a_3) \mapsto (a_2, a_3)$, and t_2 is assigned to $t_2^{\mathcal{M}}: M^4 \to M$, with $(a_1, a_2, a_3, a_4) \mapsto a_2 \cdot a_3$.

Fact 2.3. Let \mathcal{M}, \mathcal{N} be L-structures, and let $\alpha : \mathcal{M} \to \mathcal{N}$ be an embedding. For any L-term $t(x_1, \ldots, x_k)$ and $a_1, \ldots, a_k \in M$ we have

$$\alpha(t^{\mathcal{M}}(a_1,\ldots,a_k)) = t^{\mathcal{N}}(\alpha(a_1),\ldots,\alpha(a_k))$$

Proof. By induction on the complexity of t. Let $\bar{a}=(a_1,\ldots,a_k)$ and $\bar{x}=(x_1,\ldots,x_k)$. Then

(i) if $t = x_i$, then $t^{\mathcal{M}}(\bar{a}) = a_i$, and $t^{\mathcal{N}}(\alpha(a_1), \dots, \alpha(a_k)) = \alpha(a_i)$, so the conclusion holds.

- (ii) if t = c a constant, then $t^{\mathcal{M}}(\bar{a}) = c^{\mathcal{M}}$, and $t^{\mathcal{N}}(\alpha(\bar{a})) = c^{\mathcal{N}}$, and $\alpha(c^{\mathcal{M}}) = c^{\mathcal{N}}$, as required.
- (iii) if $t = f(t_1(\bar{x}), \dots, t_{m_f}(\bar{x}))$, then

$$\alpha(f^{\mathcal{M}}(t_1^{\mathcal{M}}(\bar{a}),\ldots,t_{m_f}^{\mathcal{M}}(\bar{a}))) = f^{\mathcal{N}}(\alpha(t_1^{\mathcal{M}}(\bar{a})),\ldots,\alpha(t_{m_f}^{\mathcal{M}}(\bar{a})))$$

since α is an embedding. $t_1(\bar{x}), \ldots, t_{m_f}(\bar{x})$ have lower complexity than t, so inductive hypothesis applies.

Example 2.4. Exercise: conclude the proof of Fact 2.3.

Definition 2.5 (Atomic formula). The set of atomic formulas of L is defined as follows

- (i) if t_1, t_2 are L-terms, then $t_1 = t_2$ is an atomic formula
- (ii) if R is a relation symbol and t_1, \ldots, t_{m_R} are terms, then $R(t_1, \ldots, t_{m_R})$ is an atomic formula
- (iii) nothing else is an atomic formula.

Definition 2.6 (Formula). The set of *L*-formulas is defined as follows

- (i) any atomic formula is an L-formula
- (ii) if ϕ is an L-formula, then so is $\neg \phi$
- (iii) if ϕ and ψ are L-formulas, then so is $\phi \wedge \psi$
- (iv) if ϕ is an L-formula, for any $i \geq 1$, $\exists x_i \ \phi$ is an L-formula
- (v) nothing else is an L-formula

Example. In $L_{\rm gp}$, $x_1 \cdot x_1 = x_2$ and $x_1 \cdot x_2 = 1$ are atomic formulas, and $\exists x_1 \ (x_1 \cdot x_2) = 1$ is an $L_{\rm gp}$ -formula.

A variable occurs freely in a formula if it does not occur within the scope of a quantifier \exists (the variable is **free**). Otherwise the variable is **bound**. For instance, in $\exists x_1 \ (x_1 \cdot x_2) = 1$, x_1 is bound and x_2 is free.

Important convention: no variable occurs both freely and as a bound variable in the same formula.

A sentence is a formula with no free variables. $\exists x_1 \exists x_2 \ (x_1 \cdot x_2 = 1)$ is an $L_{\rm gp}$ -sentence. Notation: $\phi(x_1, \dots, x_k)$ means that the free variables in ϕ are among x_1, \dots, x_k .

Definition 2.7 (\vDash). Let $\phi(x_1, \ldots, x_k)$ be an *L*-formula, let \mathcal{M} be an *L*-structure, and let $\bar{a} = (a_1, \ldots, a_k)$ be elements of M. We define $\mathcal{M} \vDash \phi(\bar{a})$ as follows.

- (i) if ϕ is $t_1 = t_2$, then $\mathcal{M} \models \phi(\bar{a})$ if and only if $t_1^{\mathcal{M}}(\bar{a}) = t_2^{\mathcal{M}}(\bar{a})$.
- (ii) if ϕ is $R(t_1, \ldots, t_{m_k})$ then $\mathcal{M} \models \phi(\bar{a})$ iff

$$(t_1^{\mathcal{M}}(\bar{a}), \dots, t_{m_k}^{\mathcal{M}}(\bar{a})) \in R^{\mathcal{M}}.$$

(iii) if ϕ is $\psi \wedge \chi$, then $\mathcal{M} \vDash \phi(\bar{a})$ iff $\mathcal{M} \vDash \psi(\bar{a})$ and $\mathcal{M} \vDash \chi(\bar{a})$.

- (iv) if $\phi = \neg \psi$ then $\mathcal{M} \models \phi(\bar{a})$ iff $\mathcal{M} \nvDash \psi(\bar{a})$. (this is well-defined since $\psi(\bar{a})$ is shorter than $\phi(\bar{a})$)
- (v) if ϕ is $\exists x_j : \chi(x_1, \dots, x_k, x_j)$ (where $x_j \neq x_i$ for $i = 1, \dots, k$). Then $\mathcal{M} \models \phi(\bar{a})$ iff there is $b \in \mathcal{M}$ such that $\mathcal{M} \models \chi(a_1, \dots, a_k, b)$.

Example. For $\mathcal{R} = \langle \mathbb{R}^*, \cdot, ^{-1}, 1 \rangle$, if $\phi(x_1) = \exists x_2 \ (x_2 \cdot x_2) = x_1 \text{ then } \mathcal{R} \vDash \phi(1) \text{ but } \mathcal{R} \nvDash \phi(-1)$.

Notation 2.8 (Useful abbreviations). We write

- $-\phi \lor \psi$ for $\neg(\neg\phi \land \neg\psi)$
- $-\phi \to \psi$ for $\neg \phi \lor \psi$
- $-\phi \leftrightarrow \psi$ for $(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$
- $\forall x_i \ \phi \text{ for } \neg \exists x_i \ (\neg \phi)$

Proposition 2.9. Let \mathcal{M}, \mathcal{N} be L-structures, let $\alpha : \mathcal{M} \to \mathcal{N}$ be an embedding. Let $\phi(\bar{x})$ be atomic and $\bar{a} \in M^{|\bar{x}|}$, then

$$M \vDash \phi(\bar{a}) \iff \mathcal{N} \vDash \phi(\alpha(\bar{a})).$$

Question: If ϕ is an L-formula, not necessarily atomic, does Proposition 2.9 hold?

Lecture 3

Proof of Proposition 2.9. Cases:

- (i) $\phi(\bar{x})$ is of the form $t_1(\bar{x}) = t_2(\bar{x})$ where t_1, t_2 are terms. (Exercise: complete this case, using Fact 2.3)
- (ii) $\phi(\bar{x})$ is of the form $R(t_1(\bar{x}), \dots, t_{m_R}(\bar{x}))$. Then $\mathcal{M} \models R(t_1(\bar{a}), \dots, t_{m_R})$ if and only if... (Exercise: complete this case)

Exercise 2.10. Show that Proposition 2.9 holds if $\phi(\bar{x})$ is a formula without quantifiers (a quantifier-free formula).

Example 2.11. Do embeddings preserve *all* formulas? No. Take $\mathcal{Z} = (\mathbb{Z}, <)$ and $\mathcal{Q} = (\mathbb{Q}, <)$ an L_{lo} -structure Then $\alpha : \mathbb{Z} \to \mathbb{Q}$ (inclusion) is an embedding, but

$$\phi(x_1, x_2) = \exists x_3 (x_1 < x_3 \land x_3 < x_2).$$

 $Q \vDash \phi(1, 2) \text{ but } Z \nvDash \phi(1, 2).$

Fact 2.12. Let $\alpha: \mathcal{M} \to \mathcal{N}$ be an isomorphism. Then if $\phi(\bar{x})$ is an L-formula and $\bar{a} \in M^{|\bar{x}|}$, then

$$\mathcal{M} \vDash \phi(\bar{a}) \iff \mathcal{M} \vDash \phi(\alpha(\bar{a})).$$

Proof. Exercise.

3 Theories and elementarity

Throughout, L is a language, \mathcal{M}, \mathcal{N} are L-structures.

Definition 3.1 (*L*-theory). An *L*-theory *T* is a set of *L*-sentences. \mathcal{M} is a **model** of *T* if $\mathcal{M} \models \sigma$ for all $\sigma \in T$. We write $\mathcal{M} \models T$. The class of all the models of *T* is written Mod(T). The theory of \mathcal{M} is the set

$$Th(\mathcal{M}) = \{ \sigma \mid \sigma \text{ is an } L\text{-structure and } \mathcal{M} \vDash \sigma \}.$$

Example 3.2. Let $T_{\rm gp}$ be the set of $L_{\rm gp}$ -sentences

- (i) $\forall x_1 x_2 x_3 (x_1 \cdot (x_2 \cdot x_3) = (x_1 \cdot x_2) \cdot x_3)$
- (ii) $\forall x_1 (x_1 \cdot 1 = 1 \cdot x_1 = x_1)$
- (iii) $\forall x_1 (x_1 \cdot x_1^{-1} = x_1^{-1} \cdot x_1 = 1)$

Clearly for a group $G, G \models T_{gp}$. For a specific G, clearly Th(G) is larger than T_{gp} !

Definition 3.3 (Elementarily equivalent). Say \mathcal{M} and \mathcal{N} are **elementarily equivalent** if $\mathrm{Th}(\mathcal{M})=\mathrm{Th}(\mathcal{N})$. We write $\mathcal{M}\equiv\mathcal{N}$. Clearly if $\mathcal{M}\simeq\mathcal{N}$, then $\mathcal{M}\equiv\mathcal{N}$ but if \mathcal{M} and \mathcal{N} are not isomorphic, establishing whether $\mathcal{M}\equiv\mathcal{N}$ can be highly non-trivial!

We'll see $(\mathbb{Q}, <) \equiv (\mathbb{R}, <)$ as L_{lo} -structures.

Definition 3.4 (Elementary substructure).

(i) an embedding $\beta: \mathcal{M} \to \mathcal{N}$ is **elementary** if for all formulas $\phi(\bar{x})$ and $\bar{a} \in M^{|\bar{x}|}$,

$$\mathcal{M} \vDash \phi(\bar{a}) \iff \mathcal{N} \vDash \phi(\beta(\bar{a}))$$

- (ii) if $M \subseteq N$ and id: $\mathcal{M} \to \mathcal{N}$ is an embedding, then \mathcal{M} is said to be a **substructure** of \mathcal{N} , written $\mathcal{M} \subseteq \mathcal{N}$.
- (iii) if $M \subseteq N$ and id: $\mathcal{M} \to \mathcal{N}$ is an elementary embedding, then \mathcal{M} is said to be an elementary substructure of \mathcal{N} , written $\mathcal{M} \preceq \mathcal{N}$.

Example 3.5. Consider $\mathcal{M} = [0,1] \subseteq \mathbb{R}$, an L_{lo} -structure, where < is the usual order, and $\mathcal{N} = [0,2] \subseteq \mathbb{R}$ in the same way. Then $\mathcal{M} \simeq \mathcal{N}$ as L_{lo} -structures.

Is $\mathcal{M} \equiv \mathcal{N}$? Yes: they are isomorphic!

Is $\mathcal{M} \subseteq \mathcal{N}$? Yes (the ordering < coincides on \mathcal{M} and \mathcal{N} .)

But $\mathcal{M} \npreceq \mathcal{N}$, since if $\phi(x) = \exists y \ (x < y)$, then

$$\mathcal{N} \vDash \phi(1)$$
 and $\mathcal{M} \nvDash \phi(1)$.

Definition 3.6. Let \mathcal{M} be an L-structure, $A \subseteq M$, then

$$L(A) := L \cup \{ c_a \mid a \in A \}$$

for c_a each constant symbols. An interpretation of \mathcal{M} as an L-structure extends to an interpretation of \mathcal{M} as an L(A)-structure in the obvious way $(c_a^{\mathcal{M}} = a)$. The elements of A are called **parameters**. If \mathcal{M}, \mathcal{N} are L-structures and $A \subseteq M \cap N$, then $\mathcal{M} \equiv_A \mathcal{N}$ when \mathcal{M}, \mathcal{N} satisfy exactly the same L(A) sentences.

Lecture 4 Exercise 3.7. $\mathcal{M} \preceq \mathcal{N} \iff \mathcal{M} \equiv_M \mathcal{N}$ (where M is the domain of \mathcal{M}).

Lemma 3.8 (Tarski-Vaught test). Let \mathcal{N} be an L-structure, let $A \subseteq N$. The following are equivalent:

- (i) A is the domain of a structure \mathcal{M} such that $M \leq N$.
- (ii) if $\phi(x) \in L(A)$, if $\mathcal{N} \models \exists x \phi(x)$, then $\mathcal{N} \models \phi(b)$ for some $b \in A$.

Proof.

- (i) \Rightarrow (ii) Suppose $\mathcal{N} \models \phi(x)$. Then by elementarity, $\mathcal{M} \models \exists x \phi(x)$, and so $\mathcal{M} \models \exists x \phi(x)$ for $b \in \mathcal{M}$, so again by elementarity $\mathcal{N} \models \phi(b)$.
- (ii) \Rightarrow (i) First we prove that A is the domain $\mathcal{M} \subseteq \mathcal{N}$. By exercise 4 on sheet 1, it is enough to check:
 - (a) for each constant $c, c^{\mathcal{N}} \in A$.
 - (b) for each function symbol f, $f^{\mathcal{N}}(\bar{a}) \in A$ (for all $\bar{a} \in A^{m_f}$).

For (a), use property (ii) with $\exists x \ (x = c)$. For (b) use property (ii) with $\exists x \ (f(\bar{a}) = x)$. So we now have $\mathcal{M} \subseteq \mathcal{N}$, and the domain of \mathcal{M} is A. Let $\chi(\bar{x})$ be an L-formula. We show that for $\bar{a} \in A^{|\bar{x}|}$.

$$\mathcal{M} \vDash \chi(\bar{a}) \iff \mathcal{N} \vDash \chi(\bar{a}). \tag{*}$$

By induction on the complexity of $\chi(\bar{x})$:

- if $\chi(\bar{x})$ is atomic (*) follows from $\mathcal{M} \subseteq \mathcal{N}$ (\mathcal{M} is a substructure).
- if $\chi(\bar{x})$ is $\neg \psi(\bar{x})$ or $\chi(\bar{x})$ is $\psi(\bar{x}) \wedge \xi(\bar{x})$: straightforward induction.
- if $\chi(\bar{x}) = \exists y \psi(\bar{x}, y)$ where $\psi(\bar{x}, y)$ is an *L*-formula, suppose that $\mathcal{M} \models \chi(\bar{a})$. Then $\mathcal{M} \models \exists y \psi(\bar{a}, y)$, hence $\mathcal{M} \models \psi(\bar{a}, b)$ for some $b \in A = \text{dom } \mathcal{M}$. But then $\mathcal{N} \models \psi(\bar{a}, b)$ by inductive hypothesis, so $\mathcal{N} \models \chi(\bar{a})$. Now let $\mathcal{N} \models \chi(\bar{a})$, i.e. $\mathcal{N} \models \exists y \psi(\bar{a}, y)$. By property (ii), $\mathcal{N} \models \psi(\bar{a}, b)$ for some $b \in A = \text{dom}(\mathcal{M})$. By inductive hypothesis, $\mathcal{M} \models \psi(\bar{a}, b)$ and so $\mathcal{M} \models \chi(\bar{a})$.

Remark 3.9. Assume the set of variables is countably infinite. Then

- the cardinality of the set of L-formulas is $|L| + \omega$. (We abuse notation and write ω for the ordinal and cardinal, and define the cardinality of L as the # of symbols in it: $|L_{\rm gp}| = 3$, $|L_{\rm lo}| = 1$).
- if A is a set of parameters in some structure, the cardinality of the set L(A)-formulas is $|A| + |L| + \omega$.

Definition 3.10. Let λ be an ordinal. Then **a chain of length** λ of sets is a sequence $\langle M_i : i < \lambda \rangle$, where $M_i \subseteq M_j$ for all $i \leq j < \lambda$. A **chain of** *L*-structures is a sequence $\langle \mathcal{M}_i : i < \lambda \rangle$ such that $\mathcal{M}_i \subseteq \mathcal{M}_j$ for $i \leq j < \lambda$.

The **union** of this chain is the L-structure \mathcal{M} is defined as follows:

- the domain of \mathcal{M} is $\bigcup_{i < \lambda} M_i$
- $-c^{\mathcal{M}} = c^{\mathcal{M}_i}$ for any $i < \lambda$ (c is a constant).

- if f is a function symbol, $\bar{a} \in M^{m_f}$, $f^{\mathcal{M}}\bar{a} = f^{\mathcal{M}_i}\bar{a}$ where i is such that $\bar{a} \in M_i^{m_f}$.
- if R is a relation symbol, then $R^{\mathcal{M}} = \bigcup_{i < \lambda} R^{\mathcal{M}_i}$

Theorem 3.11 (Downward Löwenheim-Skolem). Let \mathcal{N} be an L-structure, and $|N| \ge |L| + \omega$. Let $A \subseteq N$. Then for any cardinal λ such that $|L| + |A| + \omega \le \lambda \le |\mathcal{N}|$, there is $\mathcal{M} \preccurlyeq \mathcal{N}$ such that

- (i) $A \subseteq M$
- (ii) $|\mathcal{M}| = \lambda$.

(It helps to think about the case $|L| \le \omega$, $|A| = \omega$ and |N| is uncountable).

For instance, think of $(\mathbb{C}, +, \cdot, -, \overset{-1}{, 0}, 1)$ as a field. Then $\mathbb{Q} \subseteq \mathbb{C}$, it is a subset and a substructure. In particular, the property of being algebraically closed is in the theory of \mathbb{C} . Thus Theorem 3.11 gives a algebraically closed field, which is countable and contains \mathbb{Q} -the algebraic closure of \mathbb{Q} .

Proof. We build a chain $\langle A_i : i < \omega \rangle$, with $A_i \subseteq N$, such that $|A_i| = \lambda$. (Our goal is to define $M = \bigcup_{i < \omega} A_i$).

Let $A_0 \subseteq N$ be such that $A \subseteq A_0$ and $|A_0| = \lambda$. At stage i+1, we assume that A_i has been built, with $|A_i| = \lambda$. Let $\langle \phi_k(x) : k < \lambda \rangle$ be an enumeration of those $L(A_i)$ -formulas such that $\mathcal{N} \models \phi_k(x)$. Let a_k be such that $\mathcal{N} \models \phi_k(a_k)$ and let $A_{i+1} = A_i \cup \{a_k : k < \lambda\}$. Then $|A_{i+1}| = \lambda$.

Now let $M = \bigcup_{i < \omega} A_i$. We use Lemma 3.8 to show that M is the domain of $\mathcal{M} \preceq \mathcal{N}$, and $|M| = \lambda$: Let $\mathcal{N} \vDash \exists x \psi(x, \bar{a})$, where \bar{a} is a tuple in M. Then \bar{a} is a finite tuple, so there is an i such that \bar{a} is in A_i . Then A_{i+1} , by construction, contains b such that $\mathcal{N} \vDash \phi(b, \bar{a})$. But $A_{i+1} \subseteq M$, $b \in M$.

4 Two relational structures

Lecture 5 Definition 4.1 (Dense linear orders). A linear order is an $L_{lo} = \{<\}$ -structure such that

- (i) $\forall x \neg (x < x)$
- (ii) $\forall xyz((x < y \land y < z) \rightarrow x < z)$
- (iii) $\forall xy((x < y) \land (y < x) \lor (x = y)).$

A linear order is dense if it also satisfies

- (iv) $\exists xy(x < y)$
- (v) $\forall xy (x < y \rightarrow \exists z (x < z < y))$ (density)

A linear order has no endpoints if

(vi)
$$\forall x (\exists y (x < y) \land \exists z (z < x))$$

 $T_{\rm dlo}$ is the theory that includes axioms (i) to (vi), $T_{\rm lo}$ is the theory that includes axioms (i) to (iii) only.

Remark: (iv) and (v) imply that if $\mathcal{M} \models T_{\text{dlo}}$ then $|\mathcal{M}| \geq \omega$.

Definition 4.2 ((Finite) Partial embedding). If $\mathcal{M}, \mathcal{N} \models T_{lo}$, then an injective map $p : A \subseteq \mathcal{M} \to \mathcal{N}$ is a **partial embedding** if

$$\mathcal{M} \vDash a < b \implies \mathcal{N} \vDash p(a) < p(b).$$

If $|\operatorname{dom}(p)| < \omega$, then p is a finite partial embedding.

Lemma 4.3 (Extension lemma). Suppose $\mathcal{M} \models T_{lo}$, $\mathcal{N} \models T_{dlo}$, let $p: M \to N$ be a finite partial embedding. Then if $c \in M$, there is a finite partial embedding \hat{p} such that $p \subseteq \hat{p}$ and $c \in \text{dom}(\hat{p})$.

Proof. Split into three cases:

- 1. c > a for all $a \in \text{dom}(p)$. Then choose $d \in \mathcal{N}$ so that d > b for all $b \in \text{img}(p)$.
- 2. $a_i < c < a_{i+1}$ for some $a_i, a_{i+1} \in \text{dom}(p)$. Then $\mathcal{N} \models p(a_i) < p(a_{i+1})$, so by density, $\mathcal{N} \models p(a_i) < d < p(a_{i+1})$.
- 3. c < a for all $a \in \text{dom } p$. Similar to case 1.

Theorem 4.4. Let $\mathcal{M}, \mathcal{N} \models T_{\text{dlo}}$ such that $|\mathcal{M}| = |\mathcal{N}| = \omega$. Let $p : A \subseteq M \to N$ be a finite partial embedding. Then there is $\pi : \mathcal{M} \to \mathcal{N}$, an isomorphism such that $p \subseteq \pi$.

Proof. Enumerate M, N. Say $M = \langle a : i < \omega \rangle$, $N = \langle b_i : i < \omega \rangle$ sequences of elements. We define inductively a chain of finite partial embeddings $\langle p_i : i < \omega \rangle$ (idea: $\pi = \bigcup_{i < \omega} p_i$).

Let $p_0 = p$. At stage i + 1, p_i is given. We want to include a_i in dom (p_{i+1}) , and b_i in $img(p_{i+1})$.

Forward step: By Lemma 4.3, extend p_i to $p_{i+\frac{1}{2}}$ such that $a_i \in \text{dom}(p_{i+\frac{1}{2}})$. Backward step: By Lemma 4.3 applied to $p_{i+\frac{1}{2}}^{-1}$ to include $b_i \in \text{dom}(p_{i+\frac{1}{2}})$ (i.e. in the range of p_{i+1}). Then p_{i+1} extends p_i as required.

Let $\pi = \bigcup_{i < \omega} p_i$. Then (check) π is an isomorphism (i.e. order-preserving bijection). \square

Definition 4.5 (Consistent, complete). An L-theory is **consistent** if there is \mathcal{M} such that $\mathcal{M} \models T$. If T is a theory in L and ϕ is an L-sentence, then $T \vdash \phi$ if for all \mathcal{M} such that $\mathcal{M} \models T$, also $\mathcal{M} \models \phi$. An L-theory T is **complete** if for all L-sentences ϕ , either $T \vdash \phi$ or $T \vdash \neg \phi$.

Is $T_{\rm dlo}$ complete?

Lecture 6 **Definition 4.6** (ω -categorical). A theory T in a countable language with a countably infinite model is ω -categorical if any two countable models of T are isomorphic.

Corollary 4.7. of Theorem 4.4: $T_{\rm dlo}$ is ω -categorical.

Proof. If $\mathcal{M}, \mathcal{N} \models T_{\text{dlo}}, \mathcal{M} = \mathcal{N} = \omega$. Then \varnothing (the empty map) is a finite partial embedding. By Theorem 4.4, $\mathcal{M} \simeq \mathcal{N}$. (Can also use any $\{\langle a, b \rangle\}$ where $a \in \mathcal{M}, b \in \mathcal{N}$ as initial finite partial embedding).

Theorem 4.8. If T is an ω -categorical theory in a countable language, then T is complete.

Proof. Let $\mathcal{M} \models T$ and ϕ be an L-sentence.

If $\mathcal{M} \models \phi$, suppose $\mathcal{N} \models T$. Then by Theorem 3.11, there are $\mathcal{M}' \preccurlyeq \mathcal{M}$, $\mathcal{N}' \preccurlyeq \mathcal{N}$ such that $|\mathcal{M}'| = |\mathcal{N}'| = \omega$. By $\mathcal{M}' \simeq \mathcal{N}'$ (by ω -categoricity), so in particular $\mathcal{M}' \equiv \mathcal{N}'$ and so $\mathcal{N}' \models \phi$.

If
$$\mathcal{M} \models \neg \phi$$
, similar.

Corollary 4.9. $T_{\rm dlo}$ is complete.

Definition 4.10 ((Partial) elementary map). If \mathcal{M}, \mathcal{N} are L-structures, a map f such that $dom(f) \subseteq M$ and $img(f) \subseteq N$ is a **(partial) elementary map** if for all L-formulae $\phi(\bar{x})$ and $\bar{a} \in (dom(f))^{|\bar{x}|}$, then

$$\mathcal{M} \vDash \phi(\bar{a}) \iff \mathcal{N} \vDash \phi(f(\bar{a}))$$

Remark 4.11. A map f is elementary iff every finite restriction of f is elementary.

Proof. (\Longrightarrow) If $f_0 \subseteq f$ is a finite restriction that is not elementary, then for some $\phi(\bar{x})$, $\bar{a} \in \text{dom}(f_0)$, $\mathcal{M} \vDash \phi(\bar{a}) \iff \mathcal{N} \vDash \phi(f_0(\bar{a}))$. Then f is not elementary.

Proposition 4.12. Let $\mathcal{M}, \mathcal{N} \models T_{\text{dlo}}$ and let $p : A \subseteq M \to N$ be a partial embedding. Then p is elementary.

Proof. By Remark 4.11, it suffices to consider p finite. By Downward Löwenheim-Skolem, we choose $\mathcal{M}', \mathcal{N}'$ such that

- (i) $|\mathcal{M}'| = |\mathcal{N}'| = \omega$.
- (ii) $\mathcal{M}' \preccurlyeq \mathcal{M}, \, \mathcal{N}' \preccurlyeq \mathcal{N}$
- (iii) $dom(p) \subseteq \mathcal{M}', img(p) \subseteq \mathcal{N}'$

Now p is a finite partial embedding between countable models, so p extends to an isomorphism $\pi: \mathcal{M}' \to \mathcal{N}'$ by Theorem 4.4. In particular, π is an elementary map between \mathcal{M} and \mathcal{N} .

Corollary 4.13. $(\mathbb{Q}, <) \preceq (\mathbb{R}, <)$.

Proof. Use Proposition 4.12 with id: $\mathbb{Q} \to \mathbb{R}$.

Definition 4.14 (Random graph). Let $L_{gph} = \{R\}$, a binary relation symbol. An L_{gph} -structure is a **graph** if

- (i) $\forall x \neg R(x, x)$
- (ii) $\forall xy \ (R(x,y) \leftrightarrow R(y,x))$

An $L_{\rm gph}$ -structure is a **random graph** if it is a graph such that, for all $n \in \omega$, (r_n)

$$\forall x_0 \dots x_n, y_0 \dots y_n \left(\bigwedge_{i,j=0}^n x_i \neq y_j \to \exists z \left(\bigwedge_{i=0}^n (z \neq x_i) \land (z \neq y_i) \land R(z, x_i) \land \neg R(z, y_i) \right) \right)$$

(iii) $\exists xy \ (x \neq y)$.

Remark. A random graph is infinite. Given a finite subset, we can always find a vertex that is connected to every vertex in the subset (likewise for not connected).

Fact 4.15. There is a random graph.

Proof. Let the domain be ω , let $i, j \in \omega$ such that i < j. Write j as a sum of distinct powers of 2. Then $\{i, j\}$ is an edge iff 2^i appears in the sum.

Exercise. Prove that ω with this definition of R is a random graph.

Definition 4.16 (Graph theories, partial embedding). $T_{\rm gph}$ consists of the axioms (i),(ii) above, and $T_{\rm rg} = T_{\rm gph} \cup \{(\rm iii), (r_n) : n \in \omega\}$. If $\mathcal{M}, \mathcal{N} \models T_{\rm gph}$, a **partial embedding** is an injective map $p : A \subseteq M$ to N such that

$$\mathcal{M} \vDash R(a,b) \iff \mathcal{N} \vDash R(p(a),p(b))$$

for all a, b in the domain.

Lemma 4.17. Let $\mathcal{M} \vDash T_{\text{gph}}$, $\mathcal{N} \vDash T_{\text{rg}}$, let $p : A \subseteq M \to N$ be a finite partial embedding, and let $c \in M$. Then there is $\hat{p} : \hat{A} \subseteq M \to N$ such that \hat{p} is a partial embedding, $c \in \text{dom}(\hat{p}), p \subseteq \hat{p}$.

\mathbf{Index}

\models , 5	atomic, 5
	free variable, 5
bound variable, 5	
	L-structure, 2
ω -categorical, 11	L-term, 4
complete, 11	L-theory, 7
consistent, 11	language, 2
elementarily equivalent, 7	partial embedding, 10
elementarily equivalent, 7 elementary embedding, 7	partial embedding, 10 finite, 10
elementary embedding, 7	partial embedding, 10 finite, 10
elementary embedding, 7 elementary map, 11	1 _
elementary embedding, 7	finite, 10
elementary embedding, 7 elementary map, 11 elementary substructure, 7	finite, 10