

INTELIGÊNCIA ARTIFICIAL

REDES NEURAIS ARTIFICIAIS

Krigor R. Rosa da Silva krigor.silva@edu.udesc.br

Complexidade de RNA

- <u>Bias</u> tem a ver com as simplificações feitas pelo modelo para facilitar o aprendizado, a tendência do modelo em prever erroneamente.
- Variância se refere a sensibilidade do modelo às variações nos dados, quão espalhadas estão as respostas

Complexidade de RNA

Interação entre a estrutura da rede e os parâmetros ajustáveis

Complexidade de RNA

- Interação entre a estrutura da rede e os parâmetros ajustáveis
 - Arquitetura da rede
 - Parâmetros ajustáveis
 - Número de camadas
 - Número de neurônios por camadas
 - Funções de ativação
 - Base de Dados
 - Dimensionalidade
 - Dados desbalanceados
 - Relações não lineares

$$y = g(x_1w_1 + x_2w_2 + x_3w_3 + \theta_1)$$

$$y = g(g((x_1w_1 + x_2w_2 + \theta_1))w_5 + g((x_1w_3 + x_2w_4 + \theta_1))w_6 + \theta_2)$$

- Técnicas aplicadas no treinamento com o objetivo de evitar o overfitting
- Objetivo é melhorar a generalização do modelo
- Principais técnicas:
 - Regularização L1 e L2
 - Dropout
 - Aumento dos dados

Regularização L1 e L2

- Adicionam termos de penalidade na função de perda durante o treinamento do modelo
- A regularização L1 introduz uma penalidade proporcional ao valor absoluto dos pesos do modelo
- A regularização L2 introduz uma penalidade proporcional ao quadrado dos coeficientes.
 - Isso ajuda a evitar que os pesos do modelo se tornem muito grandes.

$$\begin{aligned} \text{RSS} \ = \sum_{i=1}^n \big[y_i - (\mathbf{w} \cdot \mathbf{x}_i + b) \big]^2, \\ + \alpha \sum_{j=1}^p \big| w_j \big| \end{aligned}$$
regularização ℓ_1

$$\begin{aligned} \text{RSS} \ = \sum_{i=1}^n \left[y_i - (\mathbf{w} \cdot \mathbf{x}_i + b) \right]^2 \boxed{ + \alpha \sum_{j=1}^p w_j^2} \\ \text{regularização} \ \ell_2 \end{aligned}$$

Dropout

- Desativa aleatoriamente um número especificado (pelo usuário) de neurônios durante cada passagem do treinamento
- Objetivo reduzir dependência entre neurônios

(a) Standard Neural Net

(b) After applying dropout.

Aumento dos dados (Data augmentation)

- Usado para imagens
- Envolve a criação de novos dados de treinamento artificialmente por meio de pequenas alterações ou transformações nas amostras de dados existentes
 - Rotações, reflexões, zoom, deslocamentos, alterações de brilho e contraste, entre outros.
- Objetivo é expor o modelo a mais variações nos dados de treinamento
 - Ajuda a melhorar a capacidade de generalização do modelo
 - Permite que o modelo aprenda características mais gerais em vez de características específicas dos dados de treinamento existentes

- É importante usar métricas para avaliar um modelo de machine learning
 - Até agora vimos somente a função de custo (Erro)
 - Outras métricas podem ser usadas para melhor avaliação e entendimento do modelo

- Para Classificação
 - Acuracidade, precisão, sensibilidade, F1-score, Curvas ROC, ...
- Para Regressão
 - MAE, MSE, RMSE, ...

Acuracidade

Medida do grau de aproximação de um determinado conjunto de dados do nosso modelo do seu verdadeiro valor.

$$Acuracidade = \frac{Classificações\ corretas}{Todas\ as\ classificações}$$

Ex.: Se um modelo faz 10 predições e 9 corretas, sua acuracidade é de 90%

 É a proporção de previsões corretas entre o número total de casos examinados

Acuracidade

- Para classes enviesadas/desbalanceado, a métrica de precisão pode ser enganadora
- Se tivermos um conjunto de dados (95% classe A e 5% classe B) o modelo pode prever todas as instâncias como pertencentes à classe A e ainda assim ter uma acurácia de 95%. No entanto, isso não significa que o modelo esteja realmente funcionando bem, uma vez que ele não está identificando corretamente as instâncias da classe B.

Matriz de Confusão

 Busca entender a relação entre acertos e erros que o modelo apresenta

		Valor Predito		
		Sim	Não	
Real	Sim	Verdadeiro Positivo	Falso Negativo	
		(TP)	(FN)	
	Não	Falso Positivo	Verdadeiro Negativo	
		(FP)	(TN)	

- Verdadeiro Positivo(True Positive TP) Classe prevista e observada originalmente fazem parte da classe positiva;
- Falso Positivo (False Positive FP) Classe predita retornou positivo mas a original observada era negativa;
- Verdadeiro Negativo (True Negative TN) Valores preditos e observados fazem parte da categoria negativa;
- Falso Negativo (False Negative FN) Representa que o valor predito resultou na classe negativa mas o original observado era da classe positivo.

Matriz de Confusão

		Valor Predito	
		Sim	Não
	Sim	Verdadeiro Positivo	Falso Negativo
Real		(TP)	(FN)
₹	Não	Falso Positivo	Verdadeiro Negativo
		(FP)	(TN)

Precisão: Quantidade Positiva classificada corretamente

O De todos os dados classificados como A, que fração é realmente da classe A?

$$Precisão = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

Sensibilidade: Taxa de valores classificada como Positivo, comparada com quantos deveriam ser

De todos os dados que são da classe A, que fração detectámos corretamente como pertencendo a classe?

$$Sensibilidade = \frac{True\ Positive}{True\ Positive + False\ Negative}$$

Matriz de Confusão

		Valor Predito		
		Sim	Não	
Real	Sim	Verdadeiro Positivo	Falso Negativo	
		(TP)	(FN)	
	Não	Falso Positivo	Verdadeiro Negativo	
		(FP)	(TN)	

F1-Score: É calculado como a média harmônica entre Precisão e Recall

$$F1 \, Score = \frac{2 * Precisão * Sensibilidade}{Precisão + Sensibilidade}$$

 É benéfico quando se lida com conjuntos de dados desequilibrados, em que uma classe é significativamente mais frequente do que a outra.

Curva ROC (Receiver Operating Characteristic)

- A curva ROC mostra o quão bom o modelo criado pode distinguir entre duas coisas
- Regressão logística
 - Calcular a probabilidade de uma determinada classe
 - Variação do valor de corte

Curva ROC (Receiver Operating Characteristic)

- Possui dois parâmetros:
 - Taxa de verdadeiro positivo = Precisão
 - Taxa de falso positivo = sensibilidade

Curva ROC (Receiver Operating Characteristic)

- Possui dois parâmetros:
 - O Taxa de verdadeiro positivo = Precisão
 - Taxa de falso positivo = sensibilidade

MAE (Mean Absolute Error)

- O erro absoluto médio é a média da diferença entre os valores originais e os valores previstos
- Ele nos dá a medida de quão longe as previsões estavam do resultado real

$$MAE = \frac{\sum (y_i - \hat{y}_i)}{n}$$

MSE (Mean Squared Error)

- Considera a média do quadrado da diferença entre os valores originais e os valores previstos
- Usar o erro ao quadrado aumenta o impacto dos erros maiores. Esta propriedade é essencial quando se pretende que o modelo tenha erros mais pequenos.

$$MSE = \frac{\sum (y_i - \hat{y}_i)^2}{n}$$

RMSE (Root Mean Squared Error)

- É a raiz do erro médio quadrático
- Conforme os valores de erros das instâncias aumentam o índice do RMSE aumenta consideravelmente.
- Se houver um outlier no conjunto de dados, seu peso será maior para o cálculo do RMSF

$$RMSE = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n}}$$

Obrigado!

Perguntas?

krigor.silva@edu.udesc.br