Session 1: Multiomic Analysis of Frailty

Resources

Discord

Link

Raw data

Analysis code

Visualization

Amazon SageMaker

Resources

Slides

Notebooks

QA

Support

Interact

https://github.com/PriceLab/Aging_Workshop_24

Goals for session 1

Session 1: Exploratory data analysis

- Define our aging phenotype of interest: Frailty Index
- Overview of the Arivale dataset
- Look at a systems approach to single omics
- Compare to a standard single feature analysis
- And finally- Explore a multi-omics (metabolomic, proteomic, clinical labs) network with our frailty outcome

Session 2: Explore the outcome

Session 3: Machine learning

Multiomics & Systems Biology

Frailty Index (FI)

- FI is used to measure the health status of older individuals;
- A proxy measure of aging and vulnerability to poor outcomes/resilience
- Males have lower mean frailty index values than females of the same age, whereas females show better mean survival than males with the same frailty index value

Howlett, Rutenberg & Rockwood, Nature Aging, 2021

How to calculate a Frailty Index (FI)?

FI score = sum of health deficits/total number of health deficits measured

0 = no frailty, 0.7 = maximum frailty observed, 1= theoretical maximum

Traits of a frailty index:

- 1. Associated with health status
- 2. Prevalence increases with age, generally
- 3. Doesn't saturate too early
- 4. As a group, cover a range of systems
- Minimum 30 items included
- 6. Coded such that 0=absence of deficit, 1=presence of deficit

The Arivale Dataset

FI health deficits for the Arivale dataset:

- Self-Report FI (35 items)
 - Disease (15 items)
 - Activity (9 items)
 - Satisfaction (6 items)
 - Medication (3 items)
 - Digestion (2 items)
- Lab FI (34 items, cut-offs used to establish deficits)
 - Blood test items (29 items)
 - Blood pressure items (5 items)
- Combined FI (69 items)
 - The combination of the above two

Data cleaning

- Missingness
 - Various reasons for missingness that can be omic dependent.
 - Is missingess random? Correlated with other features?
- Normalization
- Imputation
 - Technique to deal with missing features. The method used should consider the omics.
- Removing features/participants
 - Are any features outliers? Why?
 - Are any participants outliers? Why?

"Data science is **80**% data cleaning and **20**% complaining about data cleaning." -Anonymous

What is Principal Component Analysis (PCA) anway?

Dimensionality reduction technique:

- Explore data
- Analyze outliers
- Visualize high dimensional data
- Extraction features
- Reduce Noise

Feature 2

Feature 1

Systems Analysis - Weighted Correlation Network Analysis (WGCNA)

- Unsupervised clustering method
- around for 19+ years
- Increasingly applied to proteomics and metabolomics data

RESEARCH ARTICLE

Co-regulatory networks of human serum proteins link genetics to disease

```
© Valur Emilsson<sup>1,2,*,†</sup>, © Marjan Ilkov<sup>1,*</sup>, John R. Lamb<sup>3,*,†</sup>, © Nancy Finkel<sup>4</sup>, © Elias F. Gudmundss + See all authors and affiliations

Science 03 Aug 2018:
eaaq1327
DOI: 10.1126/science.aaq1327
```

ARTICLE I VOLUME 4, ISSUE 1, P60-72.E4, JANUARY 25, 2017

WGCNA framework

Construct a network

Rationale: make use of interaction patterns between genes

Identify modules

Rationale: module (pathway) based analysis

Relate modules to external information

Array Information: Clinical data, SNPs, proteomics

Gene Information: gene ontology, EASE, IPA

Rationale: find biologically interesting modules

Study Module Preservation across different dataRationale:

- Same data: to check robustness of module definition
- Different data: to find interesting modules.

Find the key drivers in *interesting* modules

Tools: intramodular connectivity, causality testing Rationale: experimental validation, therapeutics, biomarkers

Langfelder, P., Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics **9**, 559 (2008).

Why not just correlation?

Coexpression network, measure of correlation between features

Scale-free network, a network whose connections follow a power law

Topological Overlap, Indirect associations

Scale-free network

Transform coexpression into adjacency network

Unsigned network, absolute value of coefficient

$$a_{ij} = |cor(x_i, x_j)|^{\beta}$$

Signed network, preserves sign

$$a_{ij} = |0.5 + 0.5 \times cor(x_i, x_j)|^{\beta}$$

β is identified using the correlation of node connectivity and the log transformation of connectivity frequency

Soft-thresholding preserves information and tends to be more robust

Reduce noise by topological overlap

What about spurious or missing correlations?

The topological overlap is a measure of shared connectivity that normalizes the adjacency matrix based on shared nodes.

Identify modules by clustering

- 1. Calculate pairwise distances between nodes
- Combine nodes with smallest distance
- 3. Repeat for combined nodes

A dendrogram identifies cluster distances and cut-height determines modules. WGCNA uses a Dynamic Tree Cut.

How to summarize a module? The eigengene

The module eigengene is defined as the first principal component of a given module. It can be considered a representative of the expression profiles in a module.

- Relate modules to each other
- Relate modules to phenotypes of interest
- Define module membership measure

Multiomic integration

- Early integration: Concatenate omics and analyze
 - Requires consideration of data distribution
 - Preserves preserving correlation between omics
- Late integration: Analyze each omic separately and merge results
 - Straightforward by modeling each omic type
 - Does not capture interomic relationships
 - Correlation between omic eigengenes is commonly used to identify multiomic signatures

Why do we need to transform the distributions?

Which β to pick?

Attempting a scale-free network after concatenation would find a β that poorly fits all the omics, resulting in different adjacencies for interomic feature pairs.

Transform the distributions

- 1. Model each correlation matrix as a beta distribution.
- 2. Adjust the model to capture the peak, leaving room for positive correlation outliers
- Center all models to a standard beta distribution (z-score)
- 4. Compare modeling results

