Lecture 15

Topic 11: Unbalanced Designs (missing data)

In the real world, things fall apart:

plants are destroyed/trampled/eaten

animals get sick

volunteers quit

assistants are sloppy

accidents happen

The assumptions:

Data loss is due to accidents, not to treatments.

Missing values (e.g. Y_{ij}) follow the same mathematical model as all other observations in the experiment (e.g. $Y_{ij} = \mu + \tau_i + \epsilon_{ij}$).

Missing data in single-factor designs = not a big deal

$$w = q_{\alpha, p, df_{MSE}} \sqrt{\frac{MSE}{r}}$$
 for equal r

Tukey's Studentized Range (HSD) Test for Nlevel									
Minimum Significant Difference 5.0499									
Tukey Group	ping	Mean	N	Culture					
	A	28.800	5	3DOk1					
В	A	23.940	5	3DOk5					
В	С	19.880	5	3DOk7					
D	С	18.700	5	Comp					
D	E	14.600	5	3DOk4					
	E	13.260	5	3DOk13					

1

$$w = q_{\alpha, p, df_{MSE}} \sqrt{\frac{MSE}{2} \left(\frac{1}{r_1} + \frac{1}{r_2}\right)}$$
 for unequal r

Tuk	cey's Stude	entized Range (HSD) Test fo	or Nlevel	
Comparisons	significa	ant at the 0.05	level are	indicated	by ***
		Difference			
Cul	Lture	Between	Simultan	eous 95%	
Compa	arison	Means	Confidence	e Limits	
3DOk1	- 3DOk5	4.450	-2.052	10.952	
3DOk1	- Comp	9.325	3.305	15.345	***
3DOk1	- 3DOk7	10.450	3.077	17.823	***
	- 3DOk4	13.250	7.539	18.961	***
3DOk1	- 3DOk13	14.850	8.830		***
3DOk5	- 3DOk1	-4.450	-10.952	2.052	
3DOk5	- Comp	4.875	-1.627	11.377	
3DOk5	- 3DOk7	6.000	-1.772	13.772	
3DOk5	- 3DOk4	8.800	2.583	15.017	***
3DOk5	- 3DOk13	10.400	3.898	16.902	***
Comp	- 3DOk1	-9.325	-15.345	-3.305	***
Comp	- 3DOk5	-4.875	-11.377	1.627	
Comp	- 3DOk7	1.125	-6.248	8.498	
Comp	- 3DOk4	3.925	-1.786	9.636	
Comp	- 3DOk13	5.525	-0.495	11.545	
3DOk7	- 3DOk1	-10.450	-17.823	-3.077	***
3DOk7	- 3DOk5	-6.000	-13.772	1.772	
3DOk7	- Comp	-1.125	-8.498	6.248	
3DOk7	- 3DOk4	2.800	-4.323	9.923	
3DOk7	- 3DOk13	4.400	-2.973	11.773	
3DOk4	- 3DOk1	-13.250	-18.961	-7.539	* * *
3DOk4	- 3DOk5	-8.800	-15.017	-2.583	* * *
3DOk4	- Comp	-3.925	-9.636	1.786	
3DOk4	- 3DOk7	-2.800	-9.923	4.323	
3DOk4	- 3DOk13	1.600	-4.111	7.311	
3DOk13	- 3DOk1	-14.850	-20.870	-8.830	* * *
3DOk13	- 3DOk5	-10.400	-16.902	-3.898	***
3DOk13	- Comp	-5.525	-11.545	0.495	
3DOk13	- 3DOk7	-4.400	-11.773	2.973	
3DOk13	- 3DOk4	-1.600	-7.311	4.111	

Missing data in crossed designs = a big deal

Loss of symmetry

Loss of orthogonal partitioning of sums of squares

Loss of simplicity of analysis

The two-factor case...the historical approach

Example: Comparing the yields of four breeding lines of wheat (RCBD).

			Block				
Line	1	2	3	4	5	Means	Totals
A	32.3	34.0	34.3	35.0	36.5	34.42	172.1
В	33.3	33.0	36.3	36.8	34.5	34.78	173.9
C	30.8	34.3	35.3	32.3	35.8	33.70	168.5
D		26.0	29.8	28.0	28.8	28.15	112.6
Means	32.13	31.83	33.93	33.03	33.90	32.76	
Totals	96.4	127.3	135.7	132.1	135.6		627.1

The basic strategy:
Replace the missing value with its best estimate and analyze the data

If the missing value is in row i and column j, and "t" is the number of treatments and "b" is the number of blocks, the best estimate is given by the following formula:

Estimated
$$Y_{ij} = (tY_{i.} + bY_{.j} - Y_{..}) / [(t-1)(b-1)]$$

For this particular dataset, the value to be inserted is:

Estimated
$$Y_{41} = [4 * 112.6 + 5 * 96.4 - 627.1] / (3 * 4) = 25.44$$

This is called the "least-squares" estimate of the missing value because it minimizes the SSE.

25.44 is the least-squares estimate of the missing value.

Once this value has been determined, it is entered into the data table and the ANOVA is computed as usual:

	Sum of							
Source	DF	Squares	Mean Square	F Value	Pr > F			
Model	7	206.1710600	29.4530086	20.39	<.0001			
Error	12	17.3299600	1.4441633					
Corrected Total	19	223.5010200						
Block	4	35.2113200	8.8028300	6.10	0.0065			
Treatment	3	170.9597400	56.9865800	39.46	<.0001			

At this point, two additional corrections are required:

- 1. df_{Total} and df_{Error} must be corrected
- 2. SST and SSB must be corrected

Correction for SST =
$$[Y_{.j} - (t-1)^*$$
estimated $Y_{ij}]^2 / t^*(t-1)$
Correction for SSB = $[Y_{i.} - (b-1)^*$ estimated $Y_{ij}]^2 / b^*(b-1)$

In this case:

Correction for SST =
$$[96.4 - 3*25.44]^2 / 4*3 = 33.601$$

So, Corrected SST = $170.95974 - 33.601 = 137.36$

Correction for SSB =
$$[112.6 - 4*25.44]^2 / 5*4 = 5.875$$

So, Corrected SSB = $35.21132 - 5.875 = 29.34$

And the corrected ANOVA:

Sum of							
Source	DF	Squares	Mean Square	F Value	Pr > F		
Model	7	206.1710600	29.4530086	20.39	<.0001		
Error	11	17.3299600	1.5754509				
Corrected Total	18	223.5010200					
Block	4	29.34	7.335	4.66	0.0191		
Treatment	3	137.36	45.79	29.06	<.0001		

The two-factor case...the modern approach

Missing data are indicated in R by "NA"

The data, in a form R can interpret (shown here in a table -- saved as the .csv file):

trtmt	block	yield
1	1	32.3
1	2	34.0
1	3	34.3
1	4	35.0
1	5	36.5
2	1	33.3
2	2	33.0
2	3	36.3
2	4	36.8
2	5	34.5
3	1	30.8
3	2	34.3
3	3	35.3
3	4	32.3
3	5	35.8
4	1	NA
4	2	26.0
4	3	29.8
4	4	28.0
4	5	28.8

Some results to consider:

miss1_mod<-lm(yield ~ trtmt + block, miss_dat)
anova(miss1_mod)</pre>

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
trtmt	3	122.46	40.82	25.911	2.75e-05	***
block	4	29.34	7.33	4.655	0.0192	*
Residuals	11	17.33	1.58			

miss2_mod<-lm(yield ~ block + trtmt, miss_dat)
anova(miss2_mod)</pre>

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
block	4	14.44	3.61	2.291	0.125	
trtmt	3	137.36	45.79	29.062	1.59e-05	***
Residuals	11	17.33	1.58			

Recall, from the historical, "least squares" approach:

Block	4	<u>29.34</u>	7.335	4.66	0.0191
Treatment	3	137.36	45.79	29.06	<.0001

For the factor listed last in each model, we obtain *exactly the same result* as when we replaced the missing value with its least-squares estimate!

Type I SS vs. Type II SS

Type I = sequential or incremental SS

Any variance that is common to two or more variables will be attributed to *one* variable (either the first variable listed in the model or the variable of lowest order [e.g. main effects before interactions]).

Type II = partial SS

The effect of each variable is evaluated *after* all other factors have been accounted for.

In R, partial (or Type II) SS can be obtained with the Anova() function in the "car" package:

#library(car)

miss1_mod<-lm(yield ~ trtmt + block, miss_dat)
Anova(miss1_mod, type=2)</pre>

	Sum Sq Df	F value	Pr(>F)	
trtmt	137.4 3	29.0624	1.586e-05	***
block	29.3 4	4.6552	0.01919	*
Residuals	17.3 11			

miss2_mod<-lm(yield ~ block + trtmt, miss_dat)
Anova(miss2_mod, type=2)</pre>

	Sum Sq D	f F	value	Pr(>F)	
block	29.3	4	4.6552	0.01919	*
trtmt	137.4	3 <mark>2</mark>	9.0624	1.586e-05	***
Residuals	17.3 1	1			

Recall, from the historical, "least squares" approach:

Block	4	29.34	7.335	4.66	0.0191
Treatment	3	137.36	45.79	29.06	<.0001

Effects of unbalanced data on the estimation of differences between means

Missing data → Loss of balance → Loss of orthogonality

(i.e. SS become contaminated by other parameters in the model)

Data	I			
		1	2	
	1	7, 9	5	7
A	2	8	4, 6	6
		8	5	

$$7-6=1\neq 0$$

There is an effect of factor A.

Means		I		
		1	2	
	1	8	5	6.5
A	2	8	5	6.5
		8	5	

$$6.5 - 6.5 = 0$$

There isn't an effect of factor A.

The design is unbalanced

Orthogonality is broken

Factor B influences the calculation of the effect of factor A

Imagine the underlying linear model:

$$y_{ij} = \mu + \alpha_i + \beta_i$$

Data		В			
		1	2		
	1	$7 = \mu + \alpha_1 + \beta_1$	5 = u + a. + B.		
A	1	$9 = \mu + \alpha_1 + \beta_1$	$5 = \mu + \alpha_1 + \beta_2$		
11	2	$8 = \mu + \alpha_2 + \beta_1$	$4 = \mu + \alpha_2 + \beta_2$		
	2	$\mathbf{o} = \mathbf{\mu} + \mathbf{\alpha}_2 + \mathbf{p}_1$	$6 = \mu + \alpha_2 + \beta_2$		

Mean A₁ – Mean A₂ = 1/3 (7 + 9 + 5) – 1/3 (8 + 4 + 6)
= 1/3 [(
$$\alpha_1 + \beta_1$$
) + ($\alpha_1 + \beta_1$) + ($\alpha_1 + \beta_2$)]
– 1/3[($\alpha_2 + \beta_1$)+ ($\alpha_2 + \beta_2$)+ ($\alpha_2 + \beta_2$)]
= (α_1 - α_2) + 1/3 (β_1 - β_2)

The difference between the marginal means for the two levels of A is a measure of the effect of factor A *PLUS* an effect of factor B.

The null hypothesis about A we typically wish to test:

$$H_0$$
: $\alpha_1 - \alpha_2 = 0$.

The null hypothesis actually tested using the Type I SS for factor A:

$$H_0$$
: $\alpha_1 - \alpha_2 + 1/3 (\beta_1 - \beta_2) = 0$

The problem with unbalanced designs in multifactor analyses:

The factors get mixed up with each other in the calculations

Effects of unbalanced data on the estimation of marginal means

We usually want to estimate the marginal means of A:

$$(\mu_{11} + \mu_{12})/2$$
 and $(\mu_{21} + \mu_{22})/2$

In this particular dataset, the A marginal means actually estimate:

$$(2\mu_{11} + \mu_{22})/3$$
 and $(\mu_{21} + 2\mu_{22})/3$

The expected marginal mean for A_1 :

$$[(\mu + \alpha_1 + \beta_1) + (\mu + \alpha_1 + \beta_1) + (\mu + \alpha_1 + \beta_2)] / 3$$

$$[3\mu + 3\alpha_1 + 2\beta_1 + \beta_2] / 3 = \mu + \alpha_1 + 2/3\beta_1 + 1/3\beta_2$$

Consider the following table of calculated means, under two situations:

	Missing value as "25.44166"		Missing value as "NA"
Treatment A	34.4200		34.4200
Treatment B	34.7800		34.7800
Treatment C	33.7000		33.7000
Treatment D	27.6083	\neq	28.1500
Block 1	30.4604	\neq	32.1333
Block 2	31.8250		31.8250
Block 3	33.9250		33.9250
Block 4	33.0250		33.0250
Block 5	33.9000		33.9000

The means on the left are referred to as "least-squares means" (LSMeans). They are least-squares estimates of the means, adjusted for contamination due to loss of balance/orthogonality.

The means on the right are simple, unadjusted means, cross-contaminated by other factors due to the loss of balance/orthogonality.

Means of unbalanced data are functions of cell frequencies; LSMeans are not

Computing LSMeans in R

To compute LSMeans in R, use the lsmeans() function found in the "lsmeans" library:

```
#library(lsmeans)
lsmeans(miss1_mod, "trtmt")
lsmeans(miss1_mod, "block")
```

trtmt	lsmean	CE	4F	lower CI	uppor CI
CT CIIIC	Isiliean	SE	uт	lower.CL	upper.cr
1	34.42000	0.5613289	11	33.18452	35.65548
2	34.78000	0.5613289	11	33.54452	36.01548
3	33.70000	0.5613289	11	32.46452	34.93548
4	27.60833	0.6481668	11	26.18173	29.03494
block	lsmean	SE	df	lower.CL	upper.CL
block 1		SE 0.7469753			upper.CL 32.1045
			11	28.81634	
1	30.46042	0.7469753	11 11	28.81634 30.44370	32.1045
1 2	30.46042 31.82500	0.7469753 0.6275848 0.6275848	11 11 11	28.81634 30.44370	32.1045 33.2063

Easy. Now if we compare everything in one table:

	Missing value as "25.44166" Means LS Means		Missing va	lue as "NA"	
			Means	LS Means	
Treatment A	34.4200	34.4200	34.4200	34.4200	
Treatment B	34.7800	34.7800	34.7800	34.7800	
Treatment C	33.7000	33.7000	33.7000	33.7000	
Treatment D	27.6083	27.6083	28.1500	<i>≠</i> 27.6083	
Block 1	30.4604	30.4604	<mark>32.1333</mark>	<i>≠</i> 30.4604	
Block 2	31.8250	31.8250	31.8250	31.8250	
Block 3	33.9250	33.9250	33.9250	33.9250	
Block 4	33.0250	33.0250	33.0250	33.0250	
Block 5	33.9000	33.9000	33.9000	33.9000	

Left columns: The design is "balanced," so Means = LSMeans.

Right columns: The design is unbalanced, so Means \neq LSMeans for affected classes.

Comparing LSMeans in R

Since ordinary means are contaminated by other factors in unbalanced crossed designs, all comparisons should be made among *adjusted* means. The "Ismeans" package makes all this fairly convenient:

For such means comparison, you must first assign the computed Ismeans to an object. Here, I assign it to an object called "miss.lsm":

```
miss_lsm <- lsmeans(miss1_mod, "trtmt")</pre>
```

This object can then be acted upon by the contrast() function within the "Ismeans" package.

To perform Tukey (HSD) pairwise comparisons among the adjusted means:

```
contrast(miss_lsm, method = "pairwise", adjust = "tukey")
```

contrast	estimate	SE	df	t.ratio	p.value
1 - 2	-0.360000	0.7938390	11	-0.453	0.9676
1 - 3	0.720000	0.7938390	11	0.907	0.8016
1 - 4	6.811667	0.8574441	11	7.944	<.0001
2 - 3	1.080000	0.7938390	11	1.360	0.5469
2 - 4	7.171667	0.8574441	11	8.364	<.0001
3 - 4	6.091667	0.8574441	11	7.104	0.0001

To perform a Dunnett test (comparisons to a control) among the adjusted means:

```
contrast(miss_lsm, method = "trt.vs.ctrl")
```

contrast	estimate	SE	df	t.ratio	<pre>p.value</pre>
2 - 1	0.360000	0.7938390	11	0.453	0.9604
3 - 1	-0.720000	0.7938390	11	-0.907	0.7661
4 - 1	-6.811667	0.8574441	11	-7.944	<.0001

To compare the adjusted means using orthogonal contrasts (group comparisons):

```
contrast(miss_lsm, list("A vs. B" = c(1,-1,0,0), "AB vs. CD" = c(1,1,-1,-1), "C vs. D" = c(0,0,1,-1))
```

```
contrastestimateSE df t.ratio p.valueA.vs..B-0.360000 0.7938390 11 -0.453 0.6590AB.vs..CD7.891667 1.1684993 11 6.754 <.0001</td>C.vs..D6.091667 0.8574441 11 7.104 <.0001</td>
```

In all cases, notice that the estimates are the differences in the LSMeans.

To conduct a trend analysis among the levels of the factor of interest:

```
contrast(miss.lsm, method = "poly")
```

contrast	estimate	SE	df	t.ratio	p.value
linear	-21.515000	2.692039	11	-7.992	<.0001
quadratic	-6.451667	1.168499	11	-5.521	0.0002
cubic	-3.571667	2.531172	11	-1.411	0.1859

Package "multcomp"

One can obtain the same results using the "multcomp" (multiple comparisons) package in R. Within this package, the glht() function (general linear hypotheses) can be used to compare LSMeans in unbalanced datasets. Sample code is below:

```
#Comparing LSMeans, using the "multcomp" package (function glht())
#library(multcomp)
#library(sandwich)
summary(glht(miss1_mod,linfct=mcp(trtmt="Tukey")))
summary(glht(miss1_mod,linfct=mcp(trtmt="Dunnett")))
```

In the above two lines, the glht() function is being used to carry out pairwise comparisons of LSMeans. mcp refers to "multiple comparison procedures," of which Tukey and Dunnett are options. linfct is a specification of the linear hypothesis to be tested, in this case pairwise comparisons.

You may also perform group comparisons and trend analyses using orthogonal contrasts. In the example below, I am building a contrast matrix K, containing 3 separate orthogonal contrasts. This contrast matrix is then called by the mcp option within glht:

```
K<-rbind("A vs. B"=c(1,-1,0,0), "AB vs. CD" = c(1,1,-1,-1), "C vs. D"=c(0,0,1,-1)) 

summary(glht(miss1_mod,linfct=mcp(trtmt=K)))
```

The Problem

Loss of balance leads to the contamination of SS, means, and differences among means by effects of other factors in the model.

The Solutions

Adjust factor SS to remove contaminating effects by using **partial sums of squares** [Anova()].

Adjust means to remove the contaminating effects by using least-squares (adjusted) means [lsmeans()].