

Team – One Click

Lowe's hackathon submission

-Internal store guidance system-

Problem Statement

 Whenever you go to a store/mall for shopping, time is wasted in finding and navigating an item/shelf. There is a need to make the navigation simple and fast.

 Also, due to coronavirus many stores are operating under-capacity and often gets overcrowded which increases risk of infection.

 We need to have a solution that can enable user find items quickly so that purchases are faster, efficient and avoid overcrowding.

Solution Approach

- > Christofides algorithm finds optimal path in minimum amount of time.
- Breadth First Search (BFS)
 Algorithm find the distance in all cases in the fastest time as compared to A* and DFS algorithm.

Maze formation

Build binary maze representing the store with aisles.

Item List

stores the coordinates of items in the list

Finding distance between items

Using BFS algorithm to find minimum distance between objects & avoid obstacles.

Path Calculation

Using Christofides algorithm to find optimum path in minimum time.

Algorithms Used

Christofides Algorithm

BFS Algorithm

<u>Additional Improvements</u>

✓ Apart from the core functionality we have added *Analytics* which are useful for store owners.

- ✓ Store owners can measure :- footfall, retention rate, demographics, lifetime value of customer, Impulse purchases and gender.
- ✓ Modified Christofides Algorithm to introduce entry and exit points which makes navigation easy and optimized.
- ✓ Improved the UI and made the process of creating a store easy with just a mouse click.

Assumptions while designing

- Currently we support only horizontal and vertical aisles.
- Distance between consecutive aisles must be at least 1 unit to allow path between them.

- For ease of testing make a store with dimensions 35x35. But any rectangular store will do.
- While adding coordinates of items add the item one unit to left/right(for vertical aisle)
 or above/below(for horizontal aisle) of aisle. Do not add item directly on it.
- This only needs to be done by store manager and not by the customer.

Technology and Tools

Software used

- We have used python for building our solution.
- JSON & SQL lite for database.
- We chose python because it is easy to use and powerful.

Hardware requirements

- We recommend a computer with minimum
 8GB RAM.
- 1 TB HDD, SSD would be an added advantage.

Challenges Faced

• **GUI challenge** – Using inbuilt functions(buttons) caused the program to lag and give a bad user experience.

 Algorithm Dilemma – Out of the many algorithms out there it was a challenge to choose one which was optimal for use.

• **Hick-ups with python** - It has call by object unlike other languages like C++ which allow us to decide when to call by value or call by reference.

• **Databases** - Tried SQLlite, config.ini but it had a problem with storing complex matrices.

Learnings from the challenges

1. Fixed the GUI challenge by building the functionality from scratch which doesn't lag now. Also, were able to add zoom function.

- Learned about various algorithm and chose Christofides and BFS algorithm to find optimal solution.
- Learned about JSON and its implementation which helped in storing and retrieving complex matrices and data.
- 4. Learned about the application and importance of various metrics while implementing the **analytics** part for the store.

Build Instruction

- 1) Download Jupyter notebook as this has all required libraries inbuilt.
- 2) Copy code in a new python notebook.
- 3) Run code

OR

You can just run the .exe file which can easily be deployed.

Link:

https://drive.google.com/open?id=1evUvJUGzpcdSeAFJMPB6LwXDqqkovL38

Team

Arnav Khandekar B.Tech - ECE 3rd year IIIT Nagpur

Dhanraj Mahurkar B.Tech - ECE 3rd year IIIT Nagpur

In a nutshell

 Our solution allows customers to locate an item easily and navigate the store quickly.

 It saves time, avoids overcrowding and provides user analytics useful for the store owner.

• It uses **Christofides and BFS Algorithm** to find shortest path in minimum time and avoids obstacles.

• Simple UI - Anyone can build a store easily with a mouse click.