ah

RaphBi*

30 mars 2024

Exercice 1. Minimisation d'une fonction par dichotomie. Soit $f \in \mathcal{C}^0([a,b],\mathbb{R})$. On dit que f est unimodale sur l'intervalle [a,b] si il existe un point $\overline{x} \in [a,b]$ tel que f soit strictement décroissante sur $[a,\overline{x}]$ et strictement croissante sur $[\overline{x},b]$.

Pour chercher \overline{x} , nous allons générer une suite strictement décroissante d'intervalles dont le diamètre tend vers 0 et qui encadrent le minimum recherché.

Supposons connus cinq point $a = x_1 < x_2 < x_3 < x_4 < x_5 = b$. Cinq situations se présentent :

- (i) $f(x_1) < f(x_2) < f(x_3) < f(x_4) < f(x_5) : \overline{x}$ appartient alors à $]x_1, x_2[$,
- (ii) $f(x_1) > f(x_2)$, $f(x_2) < f(x_3) < f(x_4) < f(x_5) : \overline{x}$ appartient alors à $]x_1, x_3[$,
- (iii) $f(x_1) > f(x_2) > f(x_3)$, $f(x_3) < f(x_4) < f(x_5) : \overline{x}$ appartient alors à $]x_2, x_4[$,
- (iv) $f(x_1) > f(x_2) > f(x_3) > f(x_4)$, $f(x_4) < f(x_5) : \overline{x}$ appartient alors à $[x_3, x_5]$,
- (v) $f(x_1) > f(x_2) > f(x_3) > f(x_4) > f(x_5) : \overline{x}$ appartient alors à $]x_4, x_5[$.
 - 1. Utiliser ces propriétés pour construire un algorithme permettant de générer une suite d'intervalles $([a_k, b_k])_{k \in \mathbb{N}}$ telle que
 - $\overline{x} \in [a_k, b_k]$
 - $b_k a_k = \frac{b_{k-1} a_{k-1}}{2}$
 - mis à part pour le premier pas, 2 évaluations de f sont nécessaires à chaque itération.
 - 2. Montrer que $a_k \to \overline{x}$ et $b_k \to \overline{x}$.

Solution. 1. On notera $\{x_1, x_2, x_3, x_4, x_5\}$ plutôt $\{a_i, y_i, z_i, t_i, b_i\}$ à la *i*-ème itération.

Pour n'évaluer f que deux fois à chaque itération on regroupera également les cas (i) et (ii), soit

$$\underline{x} \in \left] a_k, z_k \right[$$

et les cas (iv) et (v), soit

$$\underline{x} \in]z_k, b_k[$$

le dernier cas est alors (iii)

$$\underline{x} \in]y_k, t_k[$$

Les valeurs deviennent alors dans le cas (i) et (ii),

$$a_{k+1} = a_k$$

$$b_{k+1} = z_k$$

dans le cas (iii),

$$a_{k+1} = y_k$$

$$b_{k+1} = t_k$$

et dans le cas (iv) et (v),

$$a_{k+1} = z_k$$

$$b_{k+1} = b_k$$

^{*}Cours inspiré de M. Marche

2. On a $\frac{L_{k+1}}{L_k} = \frac{1}{2}$ donc

$$L_{k+1} = \frac{1}{2}L_k$$
$$= \left(\frac{1}{2}\right)^{k+1}L_0$$

Soit que $L_k \underset{k \to \infty}{\to} 0$, et même que (a_k) est strictement croissante, (b_k) strictement décroissante et $\forall k, a_k < b_k$.

 (a_k) et (b_k) sont alors adjacentes et convergent vers la même limite.

Par construction, $a_k \le l \le b_k$ pour tout k. Or, on sait que $\forall k, a_k \le \underline{x} \le b_k$ donc nécessairement $l = \underline{x}$.

Exercice 2. Méthode de la section dorée. Nous reprenons le principe de la méthode de la dichotomie précédente mais à chaque itération, nous allons maintenant chercher à diviser l'intervalle d'approximation en 3 parties (au lieu de 4 pour la dichotomie).

Plus précisément, nous allons construire une suite décroissante d'intervalles $[a_k, b_k]$ qui contiennent tous le minimum \overline{x} . Pour passer de $[a_k, b_k]$ à $[a_{k+1}, b_{k+1}]$, on introduit deux nombres x_2^k et x_3^k de l'intervalle $[a_k, b_k]$.

On calcule alors les valeurs $f(x_2^k)$ et $f(x_3^k)$ et deux possibilités se présentent :

- (i) Si $f(x_2^k) \le f(x_3^k)$, alors le minimum se trouve nécessairement à gauche de x_3^k . Ceci définit alors le nouvel intervalle en posant $a_{k+1} = a_k$ et $b_{k+1} = x_3^k$.
- (ii) Si $f(x_2^k) \ge f(x_3^k)$, alors le minimum se trouve nécessairement à droite de x_2^k . Ceci définit alors le nouvel intervalle en posant $a_{k+1} = x_2^k$ et $b_{k+1} = b^k$.

La question suivant se pose alors : comment choisir x_2^k et x_3^k en pratique? Il faut privilégier deux aspects :

(i) On souhaite que le facteur de réduction γ , qui représente le ratio de la longueur du nouvel intervalle, noté L_{k+1} , par rapport à la longueur du précédent, notée L_k , soit constant :

$$\frac{L_{k+1}}{L_k} = \gamma$$

- (ii) On désire, comme pour la méthode de la dichotomie, réutiliser le point qui n'a pas été choisi dans l'itération précédente afin de diminuer les coûts de calcul : ceci permettra de n'évaluer f qu'une fois par itération au lieu de deux (sauf pour la première itération, où deux évaluations sont nécessaires). Rappelons que pour la dichotomie, il est nécessaire d'évaluer f deux fois par itération.
 - 1. Traduire ces contraintes permettant de choisir $x_2^k, x_3^k, a_{k+1}, b_{k+1}$, proposer un algorithme et montrer qu'il n'y a qu'une seule valeur possible pour γ ,

2

2. Montrer que pour tout k, on a $b_k - a_k = \gamma^k (b - a)$. Conclure.