10

15

20

Ligand-binding domain of the ultraspiracle (USP) protein

The invention relates to the spatial structure of the ligand-binding domain of the ultraspiracle protein, to the use of this structure for generating protein models of this protein in various conformations and of related proteins, and to methods of finding ligands of the ultraspriracle protein and of related proteins.

The ultraspiracle protein (termed USP hereinbelow) is the insect orthologue of the vertebrate retinoid X receptor (RXR). Like RXR, it belongs to the family of the nuclear receptors (NR). These nuclear receptors are located in the interior of the cell. They bind to responsive elements on the DNA as homo- or heterodimers and regulate the expression of genes. In order to be active they must bind specific small, frequently hydrophobic, ligands (for example steroids, retinoids, vitamin D). Nuclear receptors have a modular structure with functional domains for transactivation, DNA-binding and ligand-binding. While the DNA-binding domain of the nuclear receptors is highly conserved, the ligand-binding domains only show moderate homologies among each other. The spatial structures of various ligand-binding domains have already been determined (summary in 2) and allow an insight into the mechanism on which the activation is based, which comprises pronounced changes in the conformation of the ligand-binding domains. The binding of agonists leads to activation owing to the displacement of bound corepressors and the binding of coactivators, while the binding of antagonists prevents the interaction with the coactivator.

25

30

No spatial structures are available yet of insect nuclear receptors. In insects, for example the development from the larva to the adult insect is governed by nuclear receptors and involves the steroid hormone ecdysone and the isoprenoid juvenile hormone (3, 4, 5, 6). The ecdysone receptor, a nuclear receptor composed of two different subunits, EcR and USP, plays a key role in this process (7, 8, 9). It has been

"Express Mail" mailing label number ET14639

Date of Deposit July 20, 2001

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Assistant Commissioner of Patents and Trademarks, Washington, D.C. 20231

ÉTÍ46894705US

known for a long time that the hormone ecdysone (in its active form 20-hydroxy-ecdysone) acts as ligand for the EcR subunit.

The ecdysone receptor constitutes an important insecticide target. If it is activated outside the windows in the period provided for insect development, this leads to severe damage or even to the death of the insects. The insecticidal action of ecdysone agonists is based on this mechanism (10, 11). Non-steroidal ligands of the EcR subunit which act specifically on Lepidoptera are already being used commercially as insecticides (12).

10

5

USP is an orphan receptor for which no ligand is known as yet. While various authors have assumed that USP constitutes a receptor for juvenile hormones, this has never been proven by actual experiments (9). Indeed, it has been assumed that USP has no ligand at all, as this is described for some other nuclear receptors known from animals.

15

It was therefore an object of the present invention to provide the spatial structure of the ligand-binding domain (termed LBD hereinbelow) of the USP and to describe the possible ligand-binding pocket.

20

The object was achieved by providing a USP-LBD in crystalline form and by successfully carrying out the X-ray structure analysis of the crystals thus obtained.

25

The crystalline LBD according to the invention is preferably an LBD of the Heliothis virescens USP. The LBD according to the invention especially preferably has an amino acid sequence shown in SEQ ID NO: 1.

The subject-matter of the present invention is also a crystalline complex of a USP-LBD with a ligand.

10

15

20

25

30

The LBD according to the invention preferably has the structure coordinates defined in Table 1. The three-dimensional structure was solved and fully refined with the aid of protein crystals which are accessible to X-ray structure analysis at high resolution by means of molecular replacement. Subject-matter of the present invention is thus also the three-dimensional structure of the USP-LBD which can be determined with the aid of these structure coordinates.

- 3 -

A ligand-binding pocket, into which - like in the case of the other known structures of nuclear receptors - the ligands bind, has been identified in the three-dimensional structure according to the invention of the USP-LBD described herein. This is the first actual confirmation for the fact that USP has a functional ligand-binding pocket.

Subject-matter of the present invention is furthermore a USP-LBD comprising a ligand-binding pocket which is defined by the amino acids LEU230, VAL238, PRO239, PHE242, LEU249, LEU291, ILE294, MET323, LEU331, GLN338, ALA339, VAL341, PHE345, SER431, HIS434, LEU435, PHE438 and LEU440 as shown in SEQ ID NO: 2 and Table 1.

Subject-matter of the present invention is furthermore a USP-LBD comprising a ligand-binding pocket defined by the amino acids LEU230, VAL238, PRO239, PHE242, PRO245, VAL246, LEU249, CYS250, GLY253, ASN287, LEU290, LEU291, ILE294, MET323, LEU325, LEU331, SER335, ALA336, GLN338, ALA339, VAL341, ILE344, PHE345, VAL348, SER431, HIS434, LEU435, PHE438 and LEU440 as shown in SEQ ID NO: 2 and Table 1.

Subject-matter of the present invention is furthermore a USP-LBD comprising a ligand-binding pocket which is defined by the above-described amino acids and in which one or more of these amino acids are mutated. These are preferably conservative mutations, where an amino acid is exchanged for an amino acid with similar physical properties.

Such conservative substitutions encompass variations in which an amino acid is replaced by another amino acid from amongst the following group:

- Small aliphatic residues, nonpolar residues or residues of little polarity: Ala,
 Ser, Thr, Pro and Gly;
- 2. Polar, negatively charged residues and their amides: Asp, Asn, Glu and Gln;
- 3. Polar, positively charged residues: His, Arg and Lys;
- 4. Large aliphatic nonpolar residues: Met, Leu, Ile, Val and Cys; and
- 5. Aromatic residues: Phe, Tyr and Trp.

10

5

Preferred conservative substitutions can be seen from the following list:

Original residue	Substitution
Ala	Gly, Ser
Arg	Lys
Asn	Gln, His
Asp	Glu
Cys	Ser
Gln	Asn
Glu	Asp
Gly	Ala, Pro
His	Asn, Gln
Ile	Leu, Val
Leu	Ile, Val
Lys	Arg, Gln, His
Met	Leu, Tyr, Ile
Phe	Met, Leu, Tyr
Ser	Thr
Thr	Ser
Trp	Tyr, Phe
Tyr	Trp, Phe
Val	Ile, Leu

The three-dimensional structure described herein of a USP-LBD is of great importance for the search for ligands with practical application. Such ligands can be used, for example, as insecticides with a novel mechanism of action. The ecdysone/juvenile hormone-governed development is only found in invertebrates and not in vertebrates; thus, it constitutes an insecticidal mechanism which is safe for the user and the environment.

Using the three-dimensional structure according to the invention of the USP-LBD, databases which contain the structures of a large number of compounds can be screened

with the aid of established, automated computer protocols (virtual screening). Algorithms such as FLEXX (13) or GOLD (14) are examples which can be used for virtual screening. With this procedure, compounds can be identified whose three-dimensional structure makes it possible to enter the binding pocket and to bind there, for example by forming hydrogen bonds, by hydrophobic interaction, by electrostatic interactions, by van-der-Waals interactions or by dipole interactions. The compounds identified thus can be synthesized and then used as, for example, insecticides or as effectors in expression systems (gene switch) based on the USP.

Another application of the three-dimensional structure according to the invention of the USP-LBD is the generation of new ligands. To this end, structural formulae for new ligands are generated on the computer using this structure and with the aid of established *de-novo* design programs, and these new ligands can enter the binding pocket, where they can bind, for example by forming hydrogen bonds, by hydrophobic interaction, by electrostatic interactions, by van-der-Waals interactions or by dipole interactions. Examples of *de-novo* design programs which are possible are LUDI (15), LEGEND (16) or GROW (17). Compounds generated thus can be synthesized and then also be used as, for example, insecticides or as effectors in expression systems (gene switch) based on the USP.

20

25

30

5

10

15

The three-dimensional structure according to the invention of the USP-LBD also makes it possible to predict the three-dimensional structure of a USP-LBD from other organisms by means of modelling methods. Such protein models can be used in the same manner as the three-dimensional structure solved herein. Comparison of the differences in the amino acid sequences makes it possible to predict differences in the ligand-binding pockets of various organisms. This is of use when specific ligands are searched for for specific organisms, or, conversely, when it is precisely unspecific ligands that are searched for. In addition, the three-dimensional structure according to the invention can be used for establishing protein models of other nuclear receptors with related sequences.

The present invention encompasses in particular the following subject matters and methods:

A computer-readable data storage medium comprising a data storage material on which the structure coordinates of an LBD according to the present invention are stored.

A computer-readable data storage medium in a form which makes it possible to generate a three-dimensional image of an LBD according to the present invention on a computer screen.

A method of generating protein models of USP-LBDs, characterized by the computer-aided generation of a three-dimensional image of an LBD according to the present invention.

15

10

A method of generating protein models of USP-LBDs in an agonistic conformation, characterized by the computer-aided generation of a three-dimensional image of an LBD according to the present invention in an agonistic conformation.

- A method of generating protein models of nuclear receptors which have homologies with USP-LBDs, characterized by the computer-aided generation of a three-dimensional image of an LBD according to the present invention with a mutated amino acid sequence.
- A method for generating protein models of nuclear receptors which have homologies with USP-LBDs in an agonistic conformation, characterized by the computer-aided generation of a three-dimensional image of an LBD according to the present invention with a mutated amino acid sequence in an agonistic conformation.
- A method of finding USP ligands, characterized by the following steps:

- (a) the computer-aided generation of a three-dimensional image of an LBD according to the present invention, and
- (b) the computer-aided (virtual) screening of databases which contain structural data of chemical compounds for those structures which are capable of undergoing specific interactions with an LBD according to the present invention.

A method of finding USP ligands, characterized by the following steps:

10

5

(a) the computer-aided generation of a three-dimensional image of an LBD according to the present invention, and

15

(b) the computer-aided modelling of chemical compounds with structures which are capable of undergoing specific interactions with an LBD according to the present invention.

A method of finding USP-LBD ligands in an agonistic conformation, characterized by the following steps:

20

(a) the computer-aided generation of a three-dimensional image of an LBD according to the present invention in an agonistic conformation, and

(b) the computer-aided (virtual) screening of databases which contain structural data of chemical compounds for those structures which are capable of undergoing specific interactions with an LBD in an agonistic conformation.

A method of finding USP-LBD ligands in an agonistic conformation, characterized by the following steps:

10

15

20

25

- (a) the computer-aided generation of a three-dimensional image of an LBD according to the present invention in an agonistic conformation, and
- (b) the computer-aided modelling of chemical compounds with structures which are capable of undergoing specific interactions with an LBD in an agonistic conformation.

A method of finding active compounds for crop protection, in particular chemical compounds which, owing to binding to an LBD according to the present invention, bring about the activation or inhibition of USP, with the following steps:

- (a) carrying out one of the abovementioned methods for finding USP ligands,
- (b) synthesizing the compound(s) identified as ligands, and
- (c) detecting the bioactivity of the compound synthesized in step (b) by transactivation assays, displacement assays or bioassays.

A method of finding active compounds for crop protection, in particular chemical compounds which, owing to binding to an LBD according to the present invention in an agonistic conformation, bring about the activation or inhibition of USP, with the following steps:

- (a) carrying out one of the abovementioned methods for finding USP-LBD ligands in an agonistic conformation,
- (b) synthesizing the compound(s) identified as ligands, and
- (c) detecting the bioactivity of the compound synthesized in step (b) by transactivation assays, displacement assays or bioassays.

A method of finding effectors for systems for the inducible expression of target genes by means of USP, with the following steps:

- carrying out one of the abovementioned methods for finding USP ligands, (a)
- synthesizing the compound(s) identified as ligands, (b)
- applying a compound synthesized in step (b) to host cells or host organisms (c) which contain a USP-based expression system, and
- (d) detecting an induction or inhibition of the expression system.

The use of an LBD according to the present invention or of a computer-readable data storage medium according to the present invention for finding active compounds for 15 crop protection or effectors for the controlled expression of target genes in host cells or intact host organisms.

The present invention is described in greater detail with reference to the examples which follow.

5

10

20

25

10

The Heliothis virescens USP-LBD (AS Val-205 to Met 466) was cloned in a pET-15b expression vector as N-terminal fusion protein with a His-tag and overexpressed in the E. coli strain BL21(DE3). The cells were cultured in 2x LB medium at 37°C and induced for 2 hours with 0.8 mM isopropyl-β-D-thiogalactopyranoside at 24°C. The protein extract was purified over a cobalt chelate column with subsequent gel filtration over a Superdex 200 16/60 column. The His-tag was then removed by digestion with thrombin and the protein was removed by gel filtration. A homogeneous monomeric protein species was present in the solution and was confirmed by means of SDS and native polyacrylamide gel electrophoresis and by denaturing and native electrospray ionization mass spectrometry.

-11-

Crystallization

Crystallization was effected by gas diffusion on hanging drops. The protein concentration employed was 3-9 mg/ml. Crystals 200 x 200 x 400 mm³ in size formed within 10 days from a solution containing 10% of polyethylene glycol (PEG) 4000, 50 mM Tris (pH 7.5), 100 mM NaCl and 5 mM dithiothreitol and which was equilibrated in the reservoir against a solution of 20% polyethylene glycol (PEG) 4000 and 100 mM Tris (pH 7.5). The crystals belong to the tetragonal P4₃22 spatial group with one monomer per asymmetric unit. The parameters of the standard cell are a=58.21 Å, b=58.21 Å, c=144.69 Å and $\alpha=\beta=\gamma=90^{\circ}$. The solvent content is 32%, and the B-factor estimated in the Wilson Plot is 27 Å².

10

15

20

25

30

Data gathering, structure determination and refining

Crystals were immersed briefly in a 10% glycerol solution and shock-frozen in liquid nitrogen. The native data set was produced with a single crystal at measuring station ID14-EH2 at the ESRF (Grenoble, France). The data were processed with the aid of HKL programs (18). The crystal structure was solved by the molecular replacement method (19) by means of a partial hRXRa structure (20) as search model. A poor solution was achieved with a correlation of 24.8% and R_{free}=54.5% after refining as a rigid body. The phasing power of the model was low and required a number of manual generateing cycles with O (21). The wARP method (22) was used to verify the correctness of the partially-built structures. Refining was performed with CNS (23) using a maximum likelihood target function and solvent correction. Cycles of manual modelling and least-square minimization with subsequent simulated annealing and individual anisotropic B-factor refining gave rise to the final model. Solvent molecules were contoured in an $F_o - F_c$ map at a surface of 3σ . The final model, refined to a resolution of 1.65 Å, comprises 246 amino acid residues, 259 water molecules and one ligand molecule. A large portion of the connecting loop between Helix H5 and the beginning of the β-pleated sheet (amino acid residues 306-315) and the C-terminal extension of H12 (amino acid residues 459-466) could not be shown, owing to the poor electron density in these regions. The quality of the final model was checked with Procheck (24).

Characterization of the USP-LBD crystals by electrospray time-of-flight mass spectrometry (ESI TOF-MS) under natural conditions shows a heterogeneous mass distribution around 740 ± 50 Da in addition to the peak of the pure protein (30.2 kDa). This suggested that a ligand is present which is bound in LBD. The presence of a ligand was confirmed by the electron density. Various complementary techniques were used to characterize the ligand. The ligand, which is located in the binding pocket of the USP-LBD, was characterized as a phospholipid molecule. A phosphatidylglycerol or a phosphatidylethanolamine or a phosphatidylcholine would match the crystallographic data and are consistent with the results from mass

spectroscopy and chemical analysis. These amphiphilic molecules have a head group consisting of a phosphorylglycerol or a phosphorylethanolamine group and a tail of two different fatty acids which are bonded to the glycerol-3-phosphate by ester bonds. A detailed description of the ligand and its interactions with the USP-LBD residues are given in the following text.

Example 2

5

10

15

20

25

30

Architecture of the Heliothis virescens USP-LBD

In general, the architecture of the USP-LBD exhibits canonic NR folding with 11 αhelices (H1, H3-H12) and two short β-strands (s1-s2). This structure was compared with two other crystal structures which have essential properties of NRs and which are closely related to the Heliothis virescens USP: the binding pocket of agonistbound RXRα (hRXRα/9-cis RA) and antagonist-bound mice RXRα (msRXRα/oleic acid). Superposing the USP-LBD with the structure of the holo-RXRα -LBD was carried out with the aid of a least-square fit [LSQ]. In total, the secondary structural elements of the USP-LBD are capable of reasonably good superposition by those of the holo-RXR\alpha-LBD. The root mean square deviation (r.m.s.d.) is 1.22 Å for 183 out of 246 superposed Ca atoms. Seven helices are accessible to reasonably good superposition (r.m.s.d. 1.13, 0.88, 0.57, 1.18, 0.67, 0.69, 0.75 Å for H4, H5, H7-H11). The C-terminus of H1 is curved by approximately 2 Å relative to helix H3, and its r.m.s.d. is 1.63 Å. H3, H6 and the β-pleated sheet show larger deviations. The structure of the USP-LBD demonstrates that the activation helix H12 assumes a conformation which is similar to that of the antagonist-RXRa. The antagonistic AF-2 conformation of the USP-LBD is discussed further below.

The connecting loop L1-3 of most NRs usually behaves as a highly flexible region. In the case of hRXRα, the crystal structures of both the apo and the holo conformations show substantial differences in the regions which connect helices H1 and H3. In the holo-LDB structure, L1-3 consists of an extended loop which extends

D9909556.07201

5

10

15

20

25

30

beyone the β -pleated sheet and a Ω -loop. The apo form contains an additional helix in this region which unfolds in the holo-form. During the transition from the apoform to the holo-form, L1-3 undergoes substantial movement. In particular, the Ω -loop becomes oriented towards the opposite side of the protein centre. As has been proposed on the basis of the comparison of the two structures, L1-3 might act as a molecular spring which accompanies the conformational changes which are linked to ligand binding. For the ligand-bound RAR γ -LBD, the conformation of L1-3 resembles that of the holo-RXR α . Interestingly, L1-3 for ER-LBDs follows a path other than in the case of holo-RXR α . It runs between helix H3 and the β -pleated sheet, packed tightly to the protein centre.

In the case of the USP-LBD, L1-3 assumes none of the conformations which are otherwise found in the other NRs. Its course (Val-220 to Pro-239) was derived unambiguously from the electron density maps. Only few residues at the beginning of the loop, namely Asp-222, Pro-223 and Ser-224, were treated as alanins owing to the poor electron density of the side chains. The temperature factors of these residues are therefore higher (60-64 Ų) than those of the other amino acids of L1-3 (on average 36 Ų over L1-3). The first residues of L1-3 form a path which crosses helix H3 in the region Gln-256 to Val-262. The next residues (Glu-226 to Pro-234) form an extended loop which runs along H3, and, finally, the last five residues of L1-3 (Asp-235 to Pro-239) form a loop which has substantial similarity with the Ω -loop observed in the LBDs of RXR α and RAR γ . L1-3 assumes quite a tight conformation which makes it possible to establish direct contacts with the residues of helices H3, H11 and H12 and to stabilize their actual positions. This is important in as far as these helices are those structural elements which are subject to the greatest conformational changes owing to ligand binding.

The particular conformation of L1-3 is not based on crystal packing effects. In the region of the loop L1-3 of RXR α -LBD, the USP-LBD interacts with its symmetry-equivalent molecule via the β -pleated sheets. It is extremely likely that this interaction takes place since L1-3 does not already occupy this region when the protein is

10

15

20

in solution. If, owing to packing effects, L1-3 would be forced to swing and to move away from a conformation which is similar to the actual conformation of RXRα, several elements of the secondary structure would have to move drastically from this hypothetical conformation to their final position. It is therefore highly unlikely that this drastic reorganization of all of the LBD takes place, in particular because L1-3 lies in a region of the LBD in which L1-3 establishes very specific interactions with adjacent elements of the secondary structure.

Directly linked to loop L1-3, helix H3 differs from its counterparts in RXRa both regard to length and with regard to the position of the N- and C-terminal portion. In Heliothis virescens USP, H3 starts at Pro-240 and is therefore one turn longer than H3 in the ligand-bound RXRα (start at RXRα-Pro-264). The residues of H3 in the middle portion of the helix assume almost identical positions compared with the positions of the corresponding residues in the apo- and holo-RXRα-LBDs. However, both N- and C-terminal regions are curved towards the exterior of the protein centre. The N-terminal region of H3 (Pro-240 to Cys-250) is shifted substantially towards H11. It is tilted by approximately 24° in comparison with the same region in the holo-RXRα (approx. 7.2 Å between USP-Pro-245 and holo-RXRα-Pro-264). This position lies between those of the N-terminal regions in the apo-RXRa and the holo-RXRα-LBD structure. The outwardly curved C terminus of H3 (by approx. 10°) has effects on the arrangement of the adjacent loops L3-4 and L8-9. Loop L3-4, which is part of the signature region of NRs, is shifted laterally by approximately 1.8 Å and curved towards L8-9, while loop L8-9 itself is shifted outwardly by approximately 1.5 Å.

25

Example 3

The ligand-binding pocket

The ligand-binding pocket of Heliothis virescens USP is formed by residues of loop L1-3, helices H3, H5, H6 and H7, the β-pleated sheet and loop L11-12. As described

above, the N-terminal portion of helix H3 is markedly shifted outwardly compared with its opposite number in RXR α . Two other secondary structures which contribute to the binding pocket also differ from those in RXR α : 1) Helix 6 has moved inwardly by approximately 1.9 Å, and 2) the curvature of the β -pleated sheet points towards H1. The shift of the three structural elements which this entails lead to a widening of the ligand-binding pocket compared with that of the RXR α -LBD. The edge of the binding pocket is formed by the Ω -loop of L1-3, the N terminus of H3 and H6, while in the case of RXR α the opening of the pocket is formed by loop L11-12 and H6. At its opening, the binding pocket is approximately 13.5 Å wide (distance between Lys-241 in H3 and Gln-338 in H6). This opening is much wider than in the case of RXR α (7,1 Å from Pro-264 in H3 to Ala-340 in H6). The topology of the ligand-binding pocket is relatively unusual with a gap between H3 and H6. In RXR α and other NRs, this region forms fixed contacts with the connecting loop L1-3. The volume of the cavity of the USP-LBD achieves that of the hRXR α -LBD by a factor of 2.5 (1256 Å³ in the case of USP compared with 489 Å³ in the case of hRXR α).

Example 4

The putative ligand of USP in the crystal structure

20

25

5

10

15

Unexpectedly, the ligand-binding pocket of Heliothis virescens USP contains a molecule which was copurified and cocrystallized together with the USP-LBD. The fit of the electron density agrees well with the characterization of the molecules by mass spectroscopy and analytical chemistry. Similarly, recent crystallographic studies of the heterodimeric RARα/RXRα-LBD show an E.coli-endogenous oleic acid (C18) or a similar compound (stearic (C18) or palmitic (C16) acid) in the RXRα subunit. Even though this molecule is not the natural ligand of vertebrate NR, it induces and stabilizes an antagonistic AF-2 conformation which in all probability is very similar to the actual antagonist-bound RXRα.

10

15

20

25

30

In the present case, the best fit of the electron density was assumed with the assumption of a phospholipid whose first tail consists of a fatty acid with a length of 18 carbon atoms at C1 and a second chain at C2 which is 16 carbon atoms in length. The longer fatty acid of the two has a relatively twisted shape with two largish peaks, while the other fatty acid assumes a more normal form within the pocket. The tail of the phospholipid is hidden within the ligand-binding pocket. The glycerol moiety and the two fatty acids form van-der-Waals contacts with the residues in L1-3 (Leu-230, Val-238), H3 (Phe-242, Leu-249), H5 (Leu-291), L6-7 (Ala-339), H7 (Phe-345), H11 (Ser-431, His-434, Phe-438) and L11-12 (Leu-440). The head group of the phospholipid is positioned at the front at the opening of the pocket between H3 and H6. A strong hydrogen bond with Gln-338 (H6) is formed by the carbonyl group of the phosphorylglycerol in the case of phosphatidylglycerol and by the amino group of the ethanolamine in the case of phosphatidylethanolamine. In addition, an oxygen of the phosphate group is bound to a residue L1-3 (Cγ of Pro-239) by a hydrogen bridge.

It is assumed that the phospholipid found herein constitutes no natural USP ligands. However, it is shown unambiguously that USP ligands exist.

The residues which interact with the ligands are highly conserved within lepidopteran USPs, with the exception of Ser-431, which is replaced by a cysteine in msUSP. In contrast, among the 16 residues of the RXR α -LBD which interact with 9-cis RA, only 3 of the corresponding USP residues interact with the phospholipid (Leu-249, Ser-431 and His-434). The reason for this behaviour is mainly the different position of the ligands in the corresponding pockets. The 9-cis RA is very deep within the pocket, where its carboxylate group forms a salt bridge to Arg-316 of helix H5 of the hRXR α . In contrast, the phospholipid does not penetrate far into the inside of the pocket. For example the tail of the longer fatty acid lies approximately at atom C9 of 9-cis RA in hRXR α -LBD, while the tail of the other fatty acid extends almost to the β -ionone ring of 9-cis RA. As a consequence, Arg-297 does not participate in the anchorage of the ligand, as is observed in the case of the agonistic RXR α -, RAR γ -

and other NR-LBDs. Nevertheless, it assumes almost the same position as Arg-316 of the holo-RXRα and not the position of the apo-RXRα conformation, which is exposed to the solvent. Instead of interacting with the ligand, Arg-297 forms hydrogen bonds with the backbone carbonyl group of Leu-325 (β-pleated sheet) and participates in a hydrogen bond network with Leu-290 (H5) and the side chain of Gln-256 (H3), with participation of water. In particular, two water molecules which are positioned spatially approximately at the two oxygen atoms of the carboxylate group of 9-cis RA participate in these interactions.

10 Example 5

5

15

20

The antagonistic conformation of the USP-LBD

The AF-2 domain in the structure of the USP-LBD exhibits an antagonistic conformation generated by the ligands in the ligand-binding pocket. H12 assumes the same conformation which has been found in the case of other antagonist-bound nuclear receptors such as RXRα/oleic acid, RARα/BMS614 and ER. In all these cases, it is observed that the groove in which H12 is positioned corresponds to the binding site for the helical nuclear receptor box of nuclear receptor coactivators. This helical nuclear receptor box is distinguished by the consensus sequence LXXLL, as has been shown for the ligand-binding domain of PPARY, TR β and ER α . In the case of the Heliothis virescens USP, Ile-450, Ala-453 and Leu-454 of H12 are approximately in the same position as the first, second and third leucin residue of the LXXLL binding motif (IXXAL instead of LXXLL). As in other antagonistic conformations of nuclear receptors, H12 is packed into a groove of residues of H3 and H4 and of L3-4 (Val-261, Arg-265, Met-275, Glu-276, Ile-279, Ile-282, Lys-283). However, in the case of the USP-LBD, L1-3 is also involved in the groove entopology and, with the residues Phe-227, Gln-228 and Phe-229, has van-der-Waals contacts with H12.

25

The length of H12 in the USP-LBD is identical to that of H12 in the antagonistbound form of the RXRα-LBD. However, the structural principle which has been observed in another case of an antagonistic conformation of a nuclear receptor ligandbinding pocket is not found in its entirety in the case of the USP-LBD. Indeed, it has been found there that H11 coils up and thus permits H12 to bind to the binding groove of the nuclear receptor coactivator binding motif LXXLL. H11 is located in the extension of H10 and superposes very readily with H11 in the holo-RXRα-LBD structure, with the exception that the H11 of the USP-LBD is shorter by two residues. This is followed by a region 6 residues in length which connects H11 and H12 (His-439 to Thr-444). These amino acids of loop L11-12 span, in an extended conformation, a strand 12 Å in length. The C terminus of H11 contains three phenylalanins which are also found in RXR α . In apo-RXR α , the first two phenylalanins point towards the hydrophobic ligand-binding pocket while the third phenylalanin faces the solvent. In the agonist-bound form, the phenylalanins swap roles. In the USP-LBD, the situation is similar to the agonist-bound form of the RXRα-LBD: Phe-436 and Phe-437 face the solvent, while Phe-438 contributes to the ligandbinding pocket. In comparison with its counterpart in RXRa, the side chain of Phe-438 is rotated slightly and touches the ligand at the level of its shorter fatty acid. In the antagonist-bound form of RXRa, the first residue of the phenylalanin triplet corresponds to the end of H11. This residue is in approximately the position of the Cα atom of Phe-437. In the ligand-binding pocket, the two other phenylalanin residues, which are already part of L11-12, are orientated inwardly towards the inside of the protein. In a superposition of the Heliothis virescens USP and the antagonistbound RXRα-LBD, these two residues collide with the phospholipid ligands.

- 19 -

5

10

15

20

15

20

25

30

Example 6

The connecting region L1-3 interacts with H3 and L11-12 and prevents an agonistic conformation

The binding of the phospholipid in the ligand-binding pocket of the USP-LBD probably generates important structural rearrangements in the USP-LBD. The comparison with apo- and holo-RXRα-LBD structures allows the assumption that in the USP-LBD, too, the molecular mechanisms which bring about the ligand-bound LBD conformation comprise the displacement of H3 and H11. However, in contrast to all other nuclear receptor LBDs known to date, the structural element L1-3 plays an essential role in the Heliothis virescens USP.

Loop L1-3 interacts with H3, H11, L11-12 and H12. These structural elements are most effective by the ligand binding. L1-3 stabilizes the N-terminus of H3 via a hydrogen bridge network with Arg-243 and Asn-254 of H3. The guanidinium moiety of the Arg-243 is anchored to the backbone carbonyls of Gly-233, Ser-236 and Val-238 by strong hydrogen bridges (distances 2.61, 2.97 and 2.78 Å, respectively) and shows a van-der-Waals contact with the side chain of Val-232. In addition, the backbone amide group of the Arg-243 is bound to the carbonyl group of Pro-239 (3.20 Å) by a hydrogen bond. The side chain of Asn-254 forms hydrogen bonds with the carbonyl group of Leu-230 (2.83 Å), to the amide group of Phe-229 (3.10 Å) and, via a water molecule, to the side chain of Gln-228. Moreover, it is in van-der-Waals contact with the carbonyl group of Phe-227. The backbone carbonyl group of Asn-254 forms a strong hydrogen bridge to the side chain of Glu-226 (2.74 Å).

L1-3 (Gln-228 to Arg-231, Asp-235 and Ser-236) is also in contact with N-terminal region of H11 and with L11-12. The backbone carbonyl group of Gln-228 forms a hydrogen bond with Ala-442 (3.20 Å), and the backbone carbonyl group of Phe-229 forms a strong hydrogen bridge with the amide group of Ala-442 (2.88 Å). In addition, Arg-231 stabilizes the loop L11-12 by means of strong interactions: the

backbone amide group forms a strong hydrogen bond with the carbonyl group of Leu-440 (2.90 Å), while the side chain forms a strong hydrogen bond with the carbonyl group of His-439 (3.00 Å) and shows van-der-Waals contacts with Val-441 and Ala-442. Other interactions concern the backbone carbonyl of Asp-235 with the side chain of His-439 and a water-mediated interaction with Val-441. The hydroxyl group of Ser-236 forms a van-der-Waals contact with the side chain of Leu-440.

It is important to state that a high degree of sequence conservation exists in all residues which participate in the interaction of L1-3 with H3 and with L11-12. The main interaction partners of H3, Arg-243 and Asn-254, are conserved strictly in all lepidopteran USPs. Likewise all interaction partners in L1-3 (Glu-226, Phe-227, Gln-228, Phe-229, Leu-230, Val-232, Gly-233, Ser-236, Val-238, Pro-239) are conserved strictly in all lepidopteran USPs, with the exception of Phe-227 and Phe-229, which are replaced by leucine and isoleucine in the Bombyx mori USP. In the case of the interactions of L1-3 with L11-12, too, the residues involved (L1-3: Gln-228 to Arg-231, Asp-235 and Ser-236; L11-12: His-439 to Ala-442) are conserved strictly in all lepidopteran USPs, with the exception of Phe-229 and Asp-235. This strongly suggests that interaction patterns of L1-3 with H3 and of L1-3 with L11-12 are similar in all lepidopteran USPs.

20

25

5

10

15

In the superposition of Heliothis virescens USP with the holo-RXRα-LBDs, it can be observed that some residues from L1-3 are approximately in the same position in the Heliothis virescens USP (Asn-237, Ser-236 and Phe-229), such as residues from L11-12 of holo-RXRα (Asp-444, Thr-445 and Phe-450). This comparison permits the informative conclusion that L1-3 in its actual conformation excludes the existence of an agonistic conformation since this would be hindered at loop L11-12. In any case, this is no crystallization artefact and reflects the particular role of this structural element in the lepidopteran USPs.

30

The sterical hindering of the agonistic position of H12 here is a constitutive component of the receptor structure and not the consequence of the bulky shape of

the ligand, as is the case in other nuclear receptor LBDs which are occupied by fully antagonistic ligands.

- 22 -

It can be predicted that ligand binding of agonists generates a change in the conformation of the USP-LBD, which makes L1-3, H12 and the other LBD residues which have been described jump into an antagonistic position.

In any case, this is not a crystallization artefact and constitutes the particular role of this structural element in the lepidopteran USPs.

Example 7

Agonistic conformation of the Heliothis virescens USP-LBD by homology modelling, based on the RXRa/9-cis-RA complex

In order to generate a 3D model of the Heliothis virescens USP-LBD, the lacking residues of the loop between helices H1 and H3 (L1-3) were complemented from the hRXRa crystal structure in such a way that a continuous backbone is formed. The resulting structure is the experimental hRXRa reference model.

Two hRXRa monomers were observed in the hRXRa standard cell, and the L1-3 region was poorly resolved in each of these monomers. Superposition of the two structures, which had been refined independently of one another, led to a suggestion as to where this loop should be modelled. A complete 3D model of hRXRa based on crystal structure and in which the residues in L1-3 are completed was built. The hydrogen atoms were completed with the aid of the Hgenerate option of the Charmm program.

The L1-3 region was relaxed by Powell minimization of the Charmm program (1000 optimization steps, dielectric constant: 4, gradient tolerance: 10⁻⁶, step width 0.02. cutoff for non-binding interactions: 15 Å).

20

25

5

10

15

30

15

This optimized structure was used as template for the homology model of the Heliothis virescens USP-LBD.

- 23 -

5 The amino acid sequences of the Heliothis virescens USP-LBD and of hRXRa were assigned in accordance with Table 2.

With the aid of the software package Modeller and its standard settings, a 3D model was built with the aid of the assignment. The USP-LBD sequence shows a few insertions in loop 1-3 and in the loop before the first \(\beta \)-pleated sheet. In order to establish meaningful conformations for these two regions, the option lego-loop of the software package O was used. The USP model structure was subsequently subjected to Powell minimization (2000 optimization steps, dielectric constant: 4, gradient tolerance: 10⁻⁶, step width 0.02, cutoff for non-binding interactions: 15 Å). The quality of the structure thus obtained is analyzed with the program PROCHECK. Accordingly, 97% of the residues are in permitted regions and less than 2% of the residues are in prohibited regions. The latter are in the above-described modified regions.

20 Example 8

Comparison between the agonistic USP-LBD structure obtained from the hRXRa/9cis RA complex and the USP-LBD crystal structure

25 The largest differences between these two structures are in the position of the activation helix (H12) and the path of the loop between the helices H1 and H3. The activation helix H12 is located in the experimental structure in the antagonistic position, while in the model structure it assumes an agonistic conformation which closes the ligand-binding niche. In the experimental structure, the loop L1-3 lies 30 above the helix H3 and stabilizes the antagonistic position of H12 by hydrophobic contact. In contrast, this loop lies at a considerable distance from the central AFS-AD

B-pleated sheet.

5

20

helix in the agonistic homology model. Loop L1-3 is separated from helix H3 by the

Moreover, the size of the ligand-binding niche differs substantially between the two structures. The presence of the large fatty acid residue in the USP-LBD crystal structure causes a great cavity by shifting helices H3, H6 and H11. In the USP agonistic conformation, these helices are packed densely and produce a smaller ligand-binding niche.

The regions of the C-terminal ends of H3, H4, H5, H8 and H9 are rigid and capable of very good superposition in the two structures. In contrast, loop L1-3 and the C-termini of H3, H6 and H11 in the two structures are displaced relative to each other. These segments form the most mobile region of the ligand-binding domain of nuclear receptors. This movement is probably specific for each receptor and the ligand-generated displacement.

Information on the sequence listing

SEQ ID NO: 1 shows the amino acid sequence of the Heliothis virescens USP-LBD.

SEQ ID NO: 2 shows the amino acid sequence of the Heliothis virescens USP.

- 25 -

Information on the Tables

Table 1 shows the structure coordinates of the LBD of the Heliothis virescens USP.

Table 2 shows the amino acid sequence assignment for hRXRα and USP of Heliothis virescens and of further nuclear receptor LBDs for generateing a homology model of the agonistic USP conformation.

Table 1

10 REMARK coordinates from restrained individual B-factor refinement

REMARK refinement resolution: 20.0 - 1.65 A

REMARK starting r= 0.2151 free r= 0.2506

REMARK final r= 0.2112 free r= 0.2459

REMARK B rmsd for bonded mainchain atoms= 1.437 target= 1.5

15 REMARK B rmsd for bonded sidechain atoms= 2.272 target= 2.0

REMARK B rmsd for angle mainchain atoms= 2.299 target= 2.0

REMARK B rmsd for angle sidechain atoms= 3.310 target= 2.5

REMARK rweight= 0.1000 (with wa= 1.12122)

REMARK target= mlf steps= 30

20 REMARK sg= P4(3)22 a= 58.211 b= 58.211 c= 144.687 alpha= 90 beta= 90 gamma= 90

REMARK parameter file 1: CNS_TOPPAR:protein_rep.param

REMARK parameter file 2 : CNS_TOPPAR:water_rep.param

REMARK parameter file 3: eph.par

REMARK molecular structure file: alternate.mtf

25 REMARK input coordinates: anneal 2.pdb

REMARK reflection file= /home/billas/USP/SCALE0400/merge1A65/usp_20a1a65.10.cv

REMARK ncs= none

REMARK B-correction resolution: 6.0 - 1.65

REMARK initial B-factor correction applied to fobs :

30 REMARK B11= -1.985 B22= -1.985 B33= 3.970

REMARK B12= 0.000 B13= 0.000 B23= 0.000

REMARK B-factor correction applied to coordinate array B: -0.193

REMARK bulk solvent: density level= 0.33501 e/A^3, B-factor= 48.7849 A^2

REMARK reflections with |Fobs|/sigma F < 0.0 rejected

35 REMARK reflections with |Fobs| > 10000 * rms(Fobs) rejected

ATOM

26 CA GLU 207

REMARK theoretical total number of refl. in resol. range: 30842 (100.0 %) REMARK number of unobserved reflections (no entry or |F|=0): 1417 (4.6 %) REMARK number of reflections rejected: 0(0.0%) 29425 (95.4%) REMARK total number of reflections used: 26453 (85.8%) 5 REMARK number of reflections in working set: REMARK number of reflections in test set: 2972 (9.6 %) CRYST1 58.211 58.211 144.687 90.00 90.00 90.00 P 43 2 2 REMARK FILENAME="/home/billas/LUC/13cns/bind_2.pdb" REMARK DATE: 4-Jun-00 14:33:10 created by user: billas **REMARK VERSION:1.0** 10 16.114 28.799 41.997 1.00 66.21 **ATOM** 1 CB ALA 203 **ATOM** 2 C ALA 203 15.029 28.899 39.746 1.00 66.49 MOTA 3 O ALA 203 14.609 30.031 39.487 1.00 66.58 4 N ALA 203 17.364 29.707 40.068 1.00 66.33 **ATOM** 15 **ATOM** 5 CA ALA 203 16.347 28.703 40.490 1.00 66.40 **ATOM** 6 N ALA 204 14.387 27.790 39.393 1.00 66.05 MOTA 7 CA ALA 204 13.106 27.833 38.698 1.00 65.56 MOTA 8 CB ALA 204 12.933 26.584 37.843 1.00 65.11 9 C ALA 204 12.028 27.888 39.776 1.00 64.97 MOTA 20 MOTA 10 O ALA 204 12.259 27.413 40.890 1.00 65.54 MOTA 11 N ALA 205 10.872 28.478 39.463 1.00 63.97 MOTA 12 CA ALA 205 9.773 28.563 40.431 1.00 62.46 MOTA 13 CB ALA 205 8.437 28.736 39.705 1.00 62.71 9.798 27.243 41.190 1.00 61.33 MOTA 14 C ALA 205 25 15 O ALA 205 9.426 26.199 40.647 1.00 61.43 MOTA MOTA 16 N GLN 206 10.251 27.285 42.439 1.00 59.43 MOTA 17 CA GLN 206 10.372 26.060 43.211 1.00 57.60 MOTA 18 CB GLN 206 11.198 26.298 44.472 1.00 58.55 **ATOM** 19 CG GLN 206 11.976 25.062 44.863 1.00 60.08 30 MOTA 20 CD GLN 206 12.831 24.542 43.712 1.00 61.69 **ATOM** 21 OE1 GLN 206 13.892 25.094 43.411 1.00 62.30 **ATOM** 12.360 23.486 43.053 1.00 61.64 22 NE2 GLN 206 **MOTA** 23 C GLN 206 9.072 25.355 43.567 1.00 55.19 MOTA 24 O GLN 206 8.089 25.972 43.983 1.00 55.16 35 **MOTA** 25 N GLU 207 9.099 24.040 43.382 1.00 52.39

7.970 23.165 43.644 1.00 49.47

10

15

20

25

30

35

- 27 -27 CB GLU 207 7.755 22.243 42.447 1.00 52.06 **ATOM** 6.603 21.264 42.591 1.00 55.45 **ATOM** 28 CG GLU 207 5.266 21.897 42.275 1.00 57.54 29 CD GLU 207 **ATOM** 4.249 21.167 42.254 1.00 58.63 30 OE1 GLU 207 **ATOM** 5.235 23.125 42.043 1.00 58.53 **ATOM** 31 OE2 GLU 207 8.273 22.311 44.861 1.00 45.64 32 C GLU 207 **ATOM** 9,419 21.945 45.089 1.00 44.54 33 O GLU 207 **ATOM** 34 N LEU 208 35 CA LEU 208 36 CB LEU 208 37 CG LEU 208 38 CD1 LEU 208 39 CD2 LEU 208

7.244 21.996 45.637 1.00 41.48 **ATOM** 7.408 21.142 46.810 1.00 38.35 **MOTA** 6.204 21.323 47.752 1.00 36.20 **ATOM** 6.211 20.671 49.134 1.00 34.07 MOTA 7.495 21.026 49.867 1.00 32.61 **MOTA** 5.003 21.158 49.926 1.00 33.18 ATOM 40 C LEU 208 7.472 19.709 46.267 1.00 38.07 **ATOM** 6.443 19.122 45.919 1.00 38.80 41 O LEU 208 **ATOM** 8.682 19.155 46.174 1.00 34.84 42 N SER 209 **ATOM** 8.882 17.803 45.647 1.00 33.19 43 CA SER 209 **ATOM** 9.257 17.883 44.165 1.00 32.93 44 CB SER 209 **ATOM** 10.582 18.382 44.024 1.00 33.12 **ATOM** 45 OG SER 209 10.005 17.062 46.393 1.00 32.84 46 C SER 209 **ATOM** 10.824 17.685 47.057 1.00 32.20 47 O SER 209 **ATOM** 10.048 15.736 46.261 1.00 32.33 **ATOM** 48 N ILE 210 11.092 14.945 46.917 1.00 34.10 49 CA ILE 210 **ATOM** 10.961 13.438 46.613 1.00 35.86 50 CB ILE 210 **ATOM** 12.017 12.667 47.387 1.00 37.65 51 CG2 ILE 210 **ATOM** 9.565 12.929 46.980 1.00 36.30 52 CG1 ILE 210 **ATOM** 9.239 13.004 48.447 1.00 35.19 **ATOM** 53 CD1 ILE 210 12.478 15.370 46.436 1.00 33.53 54 C ILE 210 **ATOM**

ATOM 54 C ILE 210 12.478 15.370 46.436 1.00 33.53

ATOM 55 O ILE 210 13.420 15.467 47.225 1.00 30.63

ATOM 56 N GLU 211 12.607 15.609 45.136 1.00 33.07

ATOM 57 CA GLU 211 13.898 16.012 44.587 1.00 33.86 ATOM 58 CB GLU 211 13.797 16.199 43.066 1.00 36.35

ATOM 58 CB GLU 211 15.797 10.199 45.000 1.00 00.50

ATOM 60 CD GLU 211 14.880 17.104 40.941 1.00 43.91

ATOM 61 OE1 GLU 211 15.777 17.748 40.348 1.00 45.56 ATOM 62 OE2 GLU 211 13.857 16.667 40.365 1.00 44.68

- 28 -

	ATOM	63 C GLU 211	14.396 17.299 45.246 1.00 32.93
	ATOM	64 O GLU 211	15.552 17.395 45.637 1.00 32.96
	ATOM	65 N ARG 212	13.524 18.292 45.365 1.00 31.58
	ATOM	66 CA ARG 212	13.914 19.545 45.994 1.00 30.93
5	ATOM	67 CB ARG 212	12.799 20.579 45.850 1.00 31.30
	ATOM	68 CG ARG 212	13.111 21.897 46.547 1.00 34.79
	ATOM	69 CD ARG 212	14.482 22.417 46.130 1.00 36.82
	ATOM	70 NE ARG 212	14.880 23.599 46.886 1.00 40.98
	ATOM	71 CZ ARG 212	16.109 24.103 46.876 1.00 41.42
10	ATOM	72 NH1 ARG 212	17.055 23.527 46.148 1.00 43.03
	ATOM	73 NH2 ARG 212	16.395 25.178 47.596 1.00 43.71
	ATOM	74 C ARG 212	14.277 19.375 47.478 1.00 29.92
	ATOM	75 O ARG 212	15.218 20.000 47.970 1.00 30.04
	ATOM	76 N LEU 213	13.529 18.541 48.195 1.00 28.52
15	ATOM	77 CA LEU 213	13.819 18.322 49.612 1.00 27.44
	ATOM	78 CB LEU 213	12.711 17.471 50.272 1.00 25.96
	ATOM	79 CG LEU 213	11.361 18.184 50.410 1.00 27.73
	ATOM	80 CD1 LEU 213	10.306 17.200 50.892 1.00 24.70
	ATOM	81 CD2 LEU 213	11.492 19.344 51.358 1.00 27.22
20	ATOM	82 C LEU 213	15.172 17.625 49.757 1.00 27.41
	ATOM	83 O LEU 213	15.895 17.861 50.722 1.00 27.85
	ATOM	84 N LEU 214	15.510 16.761 48.802 1.00 28.81
	ATOM	85 CA LEU 214	16.792 16.068 48.874 1.00 30.82
	ATOM	86 CB LEU 214	16.863 14.926 47.851 1.00 29.94
25	ATOM	87 CG LEU 214	16.112 13.655 48.272 1.00 30.12
	ATOM	88 CD1 LEU 214	16.047 12.663 47.117 1.00 30.68
	ATOM	89 CD2 LEU 214	16.820 13.015 49.467 1.00 31.09
	ATOM	90 C LEU 214	17.914 17.067 48.646 1.00 33.09
	ATOM	91 O LEU 214	18.954 16.985 49.297 1.00 32.71
30	ATOM	92 N GLU 215	17.700 18.018 47.736 1.00 35.01
	ATOM	93 CA GLU 215	18.702 19.046 47.471 1.00 36.86
	ATOM	94 CB GLU 215	18.274 19.977 46.319 1.00 38.74
	ATOM	95 CG GLU 215	18.045 19.310 44.962 1.00 42.50
	MOTA	96 CD GLU 215	17.655 20.307 43.862 1.00 44.43
35	ATOM	97 OE1 GLU 215	17.034 21.350 44.174 1.00 44.44
	ATOM	98 OE2 GLU 215	17.957 20.039 42.674 1.00 46.05

	ATOM	99 C GLU 215	18.881 19.886 48.735 1.00 36.72
	ATOM	100 O GLU 215	19.996 20.278 49.082 1.00 37.76
	ATOM	101 N MET 216	17.779 20.159 49.430 1.00 35.08
	ATOM	102 CA MET 216	17.814 20.970 50.644 1.00 34.20
5	ATOM	103 CB MET 216	16.393 21.402 51.018 1.00 32.09
	ATOM	104 CG MET 216	15.820 22.514 50.188 1.00 31.14
	MOTA	105 SD MET 216	14.067 22.656 50.591 1.00 29.63
	MOTA	106 CE MET 216	14.187 23.383 52.223 1.00 30.33
	ATOM	107 C MET 216	18.447 20.309 51.868 1.00 33.78
10	ATOM	108 O MET 216	18.955 20.998 52.755 1.00 32.43
	ATOM	109 N GLU 217	18.381 18.982 51.923 1.00 34.02
	ATOM	110 CA GLU 217	18.908 18.212 53.046 1.00 35.35
	ATOM	111 CB GLU 217	18.470 16.745 52.919 1.00 33.44
	ATOM	112 CG GLU 217	18.729 15.871 54.148 1.00 32.91
15	ATOM	113 CD GLU 217	17.999 16.372 55.389 1.00 32.03
	ATOM	114 OE1 GLU 217	17.001 17.104 55.242 1.00 33.02
	MOTA	115 OE2 GLU 217	18.419 16.032 56.511 1.00 34.58
	ATOM	116 C GLU 217	20.421 18.293 53.105 1.00 37.01
	ATOM	117 O GLU 217	21.006 18.276 54.190 1.00 37.08
20	ATOM	118 N SER 218	21.036 18.406 51.928 1.00 39.66
	ATOM	119 CA SER 218	22.491 18.476 51.795 1.00 42.68
	ATOM	120 CB SER 218	22.913 18.001 50.408 1.00 43.25
	ATOM	121 OG SER 218	22.571 16.640 50.214 1.00 46.19
	ATOM	122 C SER 218	23.083 19.856 52.027 1.00 44.17
25	ATOM	123 O SER 218	24.250 19.978 52.395 1.00 43.66
	ATOM	124 N LEU 219	22.291 20.895 51.797 1.00 46.04
	ATOM	125 CA LEU 219	22.773 22.254 51.982 1.00 48.34
	ATOM	126 CB LEU 219	21.706 23.265 51.556 1.00 49.36
	ATOM	127 CG LEU 219	21.670 23.631 50.072 1.00 50.71
30	ATOM	128 CD1 LEU 219	21.879 22.395 49.219 1.00 51.07
	ATOM	129 CD2 LEU 219	20.341 24.307 49.760 1.00 51.61
	MOTA	130 C LEU 219	23.183 22.530 53.416 1.00 49.65
	ATOM	131 O LEU 219	22.501 22.140 54.363 1.00 49.02
	ATOM	132 N VAL 220	24.318 23.205 53.552 1.00 51.55
35	ATOM	133 CA VAL 220	24.868 23.592 54.843 1.00 53.29
	ATOM	134 CB VAL 220	26.250 22.945 55.085 1.00 52.35

- 30 -

	ATOM	135 CG1 VAL 220	26.774 23.341 56.456 1.00 51.60
	ATOM	136 CG2 VAL 220	26.142 21.426 54.965 1.00 50.84
	ATOM	137 C VAL 220	25.030 25.106 54.770 1.00 55.56
	ATOM	138 O VAL 220	25.929 25.613 54.097 1.00 56.16
5	ATOM	139 N ALA 221	24.147 25.823 55.450 1.00 57.83
	ATOM	140 CA ALA 221	24.190 27.278 55.428 1.00 60.51
	ATOM	141 CB ALA 221	22.782 27.845 55.601 1.00 60.73
	ATOM	142 C ALA 221	25.108 27.838 56.499 1.00 61.87
	ATOM	143 O ALA 221	25.475 27.143 57.452 1.00 62.13
10	ATOM	144 N ALA 222	25.490 29.100 56.326 1.00 62.85
	ATOM	145 CA ALA 222	26.345 29.756 57.295 1.00 63.37
	ATOM	146 CB ALA 222	26.612 31.196 56.871 1.00 63.59
	ATOM	147 C ALA 222	25.564 29.719 58.601 1.00 63.51
	ATOM	148 O ALA 222	24.422 30.176 58.659 1.00 63.95
15	ATOM	149 N ALA 223	26.173 29.150 59.636 1.00 63.63
	ATOM	150 CA ALA 223	25.532 29.044 60.939 1.00 63.10
	ATOM	151 CB ALA 223	26.558 28.627 61.984 1.00 63.64
	MOTA	152 C ALA 223	24.874 30.365 61.339 1.00 62.58
	MOTA	153 O ALA 223	25.557 31.333 61.678 1.00 63.33
20	MOTA	154 N ALA 224	23.544 30.399 61.290 1.00 61.31
	MOTA	155 CA ALA 224	22.789 31.599 61.644 1.00 59.25
	ATOM	156 CB ALA 224	21.323 31.440 61.220 1.00 58.51
	ATOM	157 C ALA 224	22.878 31.880 63.143 1.00 58.07
	ATOM	158 O ALA 224	22.988 30.943 63.939 1.00 58.18
25	ATOM	159 N GLU 225	22.844 33.159 63.528 1.00 56.07
	ATOM	160 CA GLU 225	22.909 33.507 64.950 1.00 54.05
	ATOM	161 CB GLU 225	22.498 34.969 65.221 1.00 54.53
	MOTA	162 CG GLU 225	22.700 35.401 66.703 1.00 55.83
	ATOM	163 CD GLU 225	21.439 35.872 67.407 1.00 56.62
30	ATOM	164 OE1 GLU 225	21.407 35.822 68.663 1.00 57.35
	ATOM	165 OE2 GLU 225	20.464 36.314 66.743 1.00 57.42
	ATOM	166 C GLU 225	21.901 32.594 65.611 1.00 52.71
	ATOM	167 O GLU 225	20.737 32.557 65.201 1.00 52.66
	ATOM	168 N GLU 226	22.334 31.840 66.612 1.00 50.26
35	ATOM	169 CA GLU 226	21.391 30.960 67.256 1.00 47.92
	ATOM	170 CB GLU 226	21.858 29.513 67.196 1.00 49.61

	ATOM	171 CG GLU 226	20.778 28.525 67.641 1.00 49.78
	ATOM	172 CD GLU 226	19.333 28.959 67.359 1.00 51.91
	ATOM	173 OE1 GLU 226	18.452 28.312 67.956 1.00 50.08
	ATOM	174 OE2 GLU 226	19.039 29.909 66.543 1.00 51.77
5	ATOM	175 C GLU 226	21.015 31.344 68.670 1.00 46.28
	ATOM	176 O GLU 226	21.839 31.794 69.476 1.00 47.17
	ATOM	177 N PHE 227	19.733 31.155 68.942 1.00 41.52
	ATOM	178 CA PHE 227	19.138 31.503 70.206 1.00 38.73
	ATOM	179 CB PHE 227	17.723 32.022 69.963 1.00 40.03
10	ATOM	180 CG PHE 227	17.640 33.061 68.876 1.00 40.91
	ATOM	181 CD1 PHE 227	17.775 32.703 67.542 1.00 40.72
	ATOM	182 CD2 PHE 227	17.464 34.402 69.192 1.00 42.62
	ATOM	183 CE1 PHE 227	17.739 33.661 66.535 1.00 42.04
	ATOM	184 CE2 PHE 227	17.426 35.374 68.188 1.00 42.27
15	ATOM	185 CZ PHE 227	17.564 34.996 66.857 1.00 42.02
	ATOM	186 C PHE 227	19.119 30.339 71.174 1.00 34.83
	ATOM	187 O PHE 227	19.218 29.178 70.778 1.00 34.52
	ATOM	188 N GLN 228	18.982 30.687 72.445 1.00 33.69
	ATOM	189 CA GLN 228	18.979 29.735 73.540 1.00 32.01
20	ATOM	190 CB GLN 228	19.290 30.468 74.847 1.00 34.80
	ATOM	191 CG GLN 228	20.680 31.080 74.935 1.00 39.39
	ATOM	192 CD GLN 228	21.768 30.029 74.916 1.00 40.63
	ATOM	193 OE1 GLN 228	22.117 29.504 73.860 1.00 44.27
	ATOM	194 NE2 GLN 228	22.301 29.706 76.093 1.00 42.65
25	ATOM	195 C GLN 228	17.678 28.974 73.736 1.00 28.92
	ATOM	196 O GLN 228	17.035 29.174 74.750 1.00 28.29
_	ATOM	197 N PHE 229	17.283 28.120 72.794 1.00 28.04
	ATOM	198 CA PHE 229	16.056 27.340 72.996 1.00 25.30
	ATOM	199 CB PHE 229	15.767 26.411 71.821 1.00 27.02
30	ATOM	200 CG PHE 229	15.066 27.055 70.680 1.00 28.71
	ATOM	201 CD1 PHE 229	15.599 28.170 70.052 1.00 28.96
	ATOM	202 CD2 PHE 229	13.903 26.480 70.173 1.00 30.61
	ATOM	203 CE1 PHE 229	14.991 28.708 68.918 1.00 29.32
	ATOM	204 CE2 PHE 229	13.284 26.998 69.046 1.00 31.44
35	ATOM	205 CZ PHE 229	13.829 28.117 68.412 1.00 31.43
	ATOM	206 C PHE 229	16.276 26.434 74.195 1.00 23.81

	ATOM	207 O PHE 229	15.385 26.202 75.014 1.00 22.15
	ATOM	208 N LEU 230	17.487 25.899 74.263 1.00 20.44
	ATOM	209 CA LEU 230	17.848 24.964 75.302 1.00 21.42
	ATOM	210 CB LEU 230	18.255 23.631 74.650 1.00 20.34
5	ATOM	211 CG LEU 230	17.191 22.855 73.834 1.00 22.70
	ATOM	212 CD1 LEU 230	17.860 21.762 73.013 1.00 23.14
	ATOM	213 CD2 LEU 230	16.130 22.252 74.773 1.00 21.55
	MOTA	214 C LEU 230	19.017 25.540 76.094 1.00 20.71
	ATOM	215 O LEU 230	19.977 26.038 75.524 1.00 20.61
10	ATOM	216 N ARG 231	18.931 25.467 77.411 1.00 20.48
	ATOM	217 CA ARG 231	20.018 25.997 78.211 1.00 20.62
	ATOM	218 CB ARG 231	20.023 27.525 78.176 1.00 20.50
	ATOM	219 CG ARG 231	18.907 28.184 79.017 1.00 24.52
	MOTA	220 CD ARG 231	17.560 28.025 78.342 1.00 27.62
15	ATOM	221 NE ARG 231	16.465 28.674 79.060 1.00 28.14
	ATOM	222 CZ ARG 231	15.846 28.165 80.118 1.00 28.35
	ATOM	223 NH1 ARG 231	16.208 26.986 80.598 1.00 27.27
	ATOM	224 NH2 ARG 231	14.856 28.835 80.692 1.00 28.94
	ATOM	225 C ARG 231	19.957 25.585 79.663 1.00 20.62
20	MOTA	226 O ARG 231	18.884 25.350 80.219 1.00 20.08
	ATOM	227 N VAL 232	21.138 25.549 80.265 1.00 20.70
	ATOM	228 CA VAL 232	21.276 25.244 81.684 1.00 23.23
	ATOM	229 CB VAL 232	22.596 24.499 81.961 1.00 24.57
	ATOM	230 CG1 VAL 232	22.800 24.335 83.460 1.00 24.88
25	MOTA	231 CG2 VAL 232	22.565 23.135 81.289 1.00 23.34
	ATOM	232 C VAL 232	21.306 26.619 82.359 1.00 25.86
	ATOM	233 O VAL 232	22.284 27.349 82.225 1.00 29.87
	ATOM	234 N GLY 233	20.232 26.960 83.062 1.00 24.64
	ATOM	235 CA GLY 233	20.137 28.249 83.730 1.00 26.40
30	ATOM	236 C GLY 233	20.170 28.129 85.240 1.00 27.72
	ATOM	237 O GLY 233	20.449 27.041 85.755 1.00 26.07
	ATOM	238 N PRO 234	19.863 29.206 85.980 1.00 28.00
	ATOM	239 CD PRO 234	19.340 30.507 85.515 1.00 30.45
	ATOM	240 CA PRO 234	19.886 29.158 87.447 1.00 28.48
35	ATOM	241 CB PRO 234	19.772 30.627 87.833 1.00 30.42
	ATOM	242 CG PRO 234	18.804 31.123 86.802 1.00 32.04

	47014	040 0 000 004	40.750.00.000.00.007.4.00.07.04	
	ATOM		18.752 28.323 88.037 1.00 27.91	
			18.781 27.975 89.229 1.00 28.03	
			17.757 27.996 87.210 1.00 26.13	
	ATOM	246 CA ASP 235	16.636 27.186 87.680 1.00 23.93	
5	ATOM	247 CB ASP 235	15.333 27.686 87.064 1.00 28.77	
	MOTA	248 CG ASP 235	15.405 27.820 85.544 1.00 31.24	
	ATOM	249 OD1 ASP 235	16.519 27.836 84.964 1.00 32.56	
	MOTA	250 OD2 ASP 235	14.327 27.922 84.919 1.00 34.70	
	ATOM	251 C ASP 235	16.828 25.700 87.362 1.00 20.99	
10	ATOM	252 O ASP 235	16.019 24.881 87.751 1.00 19.94	
	ATOM	253 N SER 236	17.914 25.369 86.666 0.50 20.63	AC1
	ATOM	254 CA SER 236	18.208 23.979 86.280 0.50 20.15	AC1
	ATOM	255 CB SER 236	19.196 23.969 85.111 0.50 19.44	AC1
	ATOM	256 OG SER 236	18.708 24.734 84.013 0.50 19.16	AC1
15	ATOM	257 C SER 236	18.787 23.137 87.425 0.50 21.81	AC1
	MOTA	258 O SER 236	19.849 23.457 87.946 0.50 20.58	AC1
	ATOM	259 N ASN 237	18.125 22.037 87.782 1.00 21.94	
	ATOM	260 CA ASN 237	18.621 21.202 88.886 1.00 25.34	
	MOTA	261 CB ASN 237	17.498 20.331 89.450 1.00 30.84	
20	ATOM	262 CG ASN 237	17.020 19.301 88.472 1.00 34.04	
	MOTA	263 OD1 ASN 237	17.786 18.838 87.623 1.00 39.37	
	ATOM	264 ND2 ASN 237	15.748 18.913 88.588 1.00 39.05	
	ATOM	265 C ASN 237	19.843 20.325 88.581 1.00 26.93	
	ATOM	266 O ASN 237	20.180 19.405 89.339 1.00 32.05	
25	ATOM	267 N VAL 238	20.537 20.621 87.503 1.00 23.03	
	ATOM	268 CA VAL 238	21.713 19.862 87.114 1.00 20.81	
	ATOM	269 CB VAL 238	22.096 20.241 85.663 1.00 20.25	
	ATOM	270 CG1 VAL 238	23.336 19.495 85.207 1.00 19.20	
	ATOM	271 CG2 VAL 238	20.919 19.922 84.741 1.00 20.14	
30	ATOM	272 C VAL 238	22.844 20.185 88.106 1.00 20.62	
	ATOM	273 O VAL 238	23.147 21.343 88.363 1.00 18.94	
	ATOM	274 N PRO 239	23.428 19.153 88.719 1.00 20.32	
	ATOM	275 CD PRO 239	23.144 17.726 88.541 1.00 20.40	
	ATOM	276 CA PRO 239	24.515 19.328 89.688 1.00 21.49	
35	ATOM	277 CB PRO 239	24.911 17.892 90.023 1.00 22.13	
	ATOM	278 CG PRO 239	23.696 17.174 89.847 1.00 20.51	

- 34 -

	АТОМ	279 C PRO 239	25.663 20.039 89.023 1.00 24.59
		280 O PRO 239	
	АТОМ	281 N PRO 240	26.388 20.879 89.777 1.00 24.92
	ATOM	282 CD PRO 240	26.142 21.311 91.167 1.00 26.02
5	ATOM	283 CA PRO 240	27.524 21.603 89.202 1.00 26.88
	ATOM	284 CB PRO 240	28.222 22.161 90.438 1.00 26.73
	ATOM	285 CG PRO 240	27.039 22.543 91.299 1.00 29.18
	ATOM	286 C PRO 240	28.434 20.733 88.363 1.00 26.35
	ATOM	287 O PRO 240	28.847 21.125 87.259 1.00 27.72
10	ATOM	288 N LYS 241	28.745 19.533 88.838 1.00 28.50
	ATOM	289 CA LYS 241	29.642 18.682 88.071 1.00 28.19
	ATOM	290 CB LYS 241	30.073 17.457 88.878 1.00 32.48
	ATOM	291 CG LYS 241	28.970 16.508 89.292 1.00 34.64
	ATOM	292 CD LYS 241	29.627 15.241 89.832 1.00 37.47
15	ATOM	293 CE LYS 241	28.627 14.162 90.157 1.00 39.69
	ATOM	294 NZ LYS 241	29.359 12.932 90.578 1.00 42.50
	ATOM	295 C LYS 241	29.144 18.233 86.700 1.00 27.86
	ATOM	296 O LYS 241	29.935 17.790 85.868 1.00 27.57
	MOTA	297 N PHE 242	27.840 18.335 86.459 1.00 25.10
20	ATOM	298 CA PHE 242	27.309 17.953 85.154 1.00 22.57
	ATOM	299 CB PHE 242	26.161 16.954 85.319 1.00 24.91
	ATOM	300 CG PHE 242	26.600 15.619 85.856 1.00 28.41
	ATOM	301 CD1 PHE 242	27.411 14.790 85.102 1.00 30.20
	ATOM	302 CD2 PHE 242	26.194 15.191 87.108 1.00 28.96
25	ATOM	303 CE1 PHE 242	27.813 13.544 85.583 1.00 31.58
	ATOM	304 CE2 PHE 242	26.594 13.943 87.596 1.00 30.20
	ATOM	305 CZ PHE 242	27.400 13.127 86.832 1.00 32.03
	ATOM	306 C PHE 242	26.837 19.151 84.330 1.00 19.63
	ATOM	307 O PHE 242	26.386 18.991 83.190 1.00 20.79
30	ATOM	308 N ARG 243	26.971 20.350 84.873 1.00 19.69
	ATOM	309 CA ARG 243	26.513 21.529 84.153 1.00 20.41
	ATOM	310 CB ARG 243	26.538 22.749 85.066 1.00 20.87
	ATOM	311 CG ARG 243	25.523 22.602 86.208 1.00 23.08
	ATOM	312 CD ARG 243	25.562 23.759 87.130 1.00 26.38
35	ATOM	313 NE ARG 243	24.725 24.856 86.687 1.00 27.91
	ATOM	314 CZ ARG 243	23.394 24.873 86.728 1.00 28.35

- 35 -

I	=
1	=
Ä,	=
E. C. E. E. III. E. E. III.	
107	
U	-
Ú	-
Ū	
£	
C	1
	-
L	

ATOM	315 NH1 ARG 243	22.697 23.825 87.192 1.00 26.91	
ATOM	316 NH2 ARG 243	22.764 25.975 86.343 1.00 28.11	
ATOM	317 C ARG 243	27.238 21.813 82.846 1.00 20.13	
ATOM	318 O ARG 243	26.596 22.114 81.836 1.00 19.71	
ATOM	319 N ALA 244	28.564 21.734 82.838 1.00 20.90	
ATOM	320 CA ALA 244	29.273 21.974 81.577 1.00 22.06	
ATOM	321 CB ALA 244	30.773 21.896 81.796 1.00 21.20	
ATOM	322 C ALA 244	28.842 20.984 80.492 1.00 21.05	
ATOM	323 O ALA 244	28.527 21.365 79.366 1.00 21.57	
ATOM	324 N PRO 245	28.783 19.696 80.822 1.00 21.63	
ATOM	325 CD PRO 245	29.335 19.087 82.049 1.00 25.65	
ATOM	326 CA PRO 245	28.377 18.672 79.861 1.00 22.28	٠
ATOM	327 CB PRO 245	28.516 17.380 80.666 1.00 24.91	
ATOM	328 CG PRO 245	29.614 17.694 81.605 1.00 25.26	
ATOM	329 C PRO 245	26.943 18.859 79.329 1.00 19.49	
ATOM	330 O PRO 245	26.691 18.778 78.118 1.00 21.31	
ATOM	331 N VAL 246	26.013 19.123 80.230 1.00 20.18	
ATOM	332 CA VAL 246	24.624 19.294 79.805 1.00 18.44	
ATOM	333 CB VAL 246	23.693 19.269 81.028 1.00 18.35	
ATOM	334 CG1 VAL 246	22.221 19.536 80.620 1.00 18.11	
ATOM	335 CG2 VAL 246	23.766 17.845 81.678 1.00 17.69	
ATOM	336 C VAL 246	24.501 20.568 78.968 1.00 18.23	
ATOM	337 O VAL 246	23.773 20.603 77.977 1.00 18.23	
ATOM	338 N SER 247	25.234 21.609 79.351 0.50 20.08	AC1
ATOM	339 CA SER 247	25.198 22.858 78.599 0.50 21.19	AC1
ATOM	340 CB SER 247	26.058 23.910 79.289 0.50 21.37	AC1
ATOM	341 OG SER 247	25.484 24.292 80.517 0.50 23.67	AC1
ATOM	342 C SER 247	25.712 22.621 77.189 0.50 21.32	AC1
ATOM	343 O SER 247	25.180 23.161 76.217 0.50 21.62	AC1
ATOM	344 N SER 248	26.756 21.811 77.076 1.00 20.43	
ATOM	345 CA SER 248	27.322 21.502 75.766 1.00 21.62	
ATOM	346 CB SER 248	28.541 20.594 75.916 1.00 24.31	
ATOM	347 OG SER 248	29.660 21.350 76.354 1.00 24.89	
ATOM	348 C SER 248	26.271 20.800 74.903 1.00 22.36	
ATOM	349 O SER 248	26.158 21.061 73.697 1.00 22.32	
ATOM	350 N LEU 249	25.513 19.895 75.519 1.00 22.35	

- 36 -

	ATOM	351 CA LEU 249 24.462 19.185 74.791 1.00 22.28
	ATOM	352 CB LEU 249 23.904 18.046 75.668 1.00 22.23
	ATOM	353 CG LEU 249 24.970 16.972 75.954 1.00 25.52
	ATOM	354 CD1 LEU 249 24.441 15.919 76.922 1.00 26.39
5	ATOM	355 CD2 LEU 249 25.398 16.341 74.643 1.00 27.01
	ATOM	356 C LEU 249 23.358 20.152 74.352 1.00 21.63
	ATOM	357 O LEU 249 22.822 20.039 73.231 1.00 19.99
	ATOM	358 N CYS 250 23.012 21.102 75.217 1.00 21.10
	ATOM	359 CA CYS 250 21.995 22.098 74.856 1.00 21.22
10	ATOM	360 CB CYS 250 21.701 23.044 76.019 1.00 20.65
	ATOM	361 SG CYS 250 20.853 22.249 77.396 1.00 22.08
	ATOM	362 C CYS 250 22.471 22.932 73.684 1.00 22.49
	ATOM	363 O CYS 250 21.687 23.302 72.828 1.00 23.08
	ATOM	364 N GLN 251 23.765 23.239 73.656 1.00 22.61
15	ATOM	365 CA GLN 251 24.313 24.064 72.577 1.00 24.50
	ATOM	366 CB GLN 251 25.738 24.482 72.925 1.00 26.13
	ATOM	367 CG GLN 251 25.827 25.428 74.123 1.00 31.89
	ATOM	368 CD GLN 251 27.270 25.602 74.609 1.00 36.32
	ATOM	369 OE1 GLN 251 28.146 26.020 73.846 1.00 38.70
20	MOTA	370 NE2 GLN 251 27.520 25.275 75.883 1.00 36.33
	ATOM	371 C GLN 251 24.290 23.309 71.255 1.00 23.96
	ATOM	372 O GLN 251 24.080 23.899 70.200 1.00 25.04
	ATOM	373 N ILE 252 24.506 21.998 71.323 1.00 23.74
	ATOM	374 CA ILE 252 24.475 21.143 70.140 1.00 24.05
25	ATOM	375 CB ILE 252 24.877 19.690 70.493 1.00 25.71
	ATOM	376 CG2 ILE 252 24.385 18.727 69.419 1.00 25.12
	ATOM	377 CG1 ILE 252 26.405 19.596 70.658 1.00 26.17
	ATOM	378 CD1 ILE 252 26.874 18.335 71.359 1.00 27.45
	ATOM	379 C ILE 252 23.032 21.183 69.642 1.00 25.30
30	ATOM	380 O ILE 252 22.760 21.312 68.448 1.00 25.88
	ATOM	381 N GLY 253 22.101 21.105 70.580 1.00 25.76
	ATOM	382 CA GLY 253 20.698 21.167 70.213 1.00 24.72
	ATOM	383 C GLY 253 20.327 22.497 69.573 1.00 24.98
	ATOM	384 O GLY 253 19.611 22.527 68.561 1.00 24.56
35	ATOM	385 N ASN 254 20.779 23.600 70.165 1.00 23.66
	ATOM	386 CA ASN 254 20.483 24.929 69.642 1.00 24.18

- 37 -

	ATOM	387 CB ASN 254 21.063 25.999 70.566 1.00 23.04
	ATOM	388 CG ASN 254 20.336 26.061 71.884 1.00 24.90
	ATOM	389 OD1 ASN 254 19.147 25.729 71.954 1.00 22.87
	ATOM	390 ND2 ASN 254 21.020 26.511 72.934 1.00 25.39
5	ATOM	391 C ASN 254 20.990 25.142 68.215 1.00 25.59
	ATOM	392 O ASN 254 20.349 25.832 67.418 1.00 25.49
	ATOM	393 N LYS 255 22.154 24.575 67.915 1.00 24.87
	ATOM	394 CA LYS 255 22.718 24.669 66.572 1.00 26.12
	ATOM	395 CB LYS 255 24.121 24.061 66.518 1.00 29.40
10	ATOM	396 CG LYS 255 25.162 24.983 67.112 1.00 33.68
	ATOM	397 CD LYS 255 26.481 24.293 67.392 1.00 34.86
	ATOM	398 CE LYS 255 27.280 24.027 66.150 1.00 35.57
	ATOM	399 NZ LYS 255 28.719 23.853 66.527 1.00 33.75
	ATOM	400 C LYS 255 21.816 23.924 65.608 1.00 26.04
15	ATOM	401 O LYS 255 21.539 24.415 64.507 1.00 25.57
	ATOM	402 N GLN 256 21.358 22.741 66.009 1.00 24.02
	ATOM	403 CA GLN 256 20.498 21.967 65.121 1.00 23.89
	ATOM	404 CB GLN 256 20.325 20.546 65.658 1.00 25.47
	ATOM	405 CG GLN 256 21.676 19.880 65.887 1.00 28.63
20	ATOM	406 CD GLN 256 21.565 18.517 66.534 1.00 30.93
	ATOM	407 OE1 GLN 256 20.710 18.301 67.387 1.00 32.63
	ATOM	408 NE2 GLN 256 22.439 17.599 66.149 1.00 30.18
	ATOM	409 C GLN 256 19.156 22.658 64.915 1.00 24.45
	ATOM	410 O GLN 256 18.596 22.598 63.828 1.00 24.20
25	ATOM	411 N ILE 257 18.662 23.338 65.942 1.00 23.21
	ATOM	412 CA ILE 257 17.390 24.059 65.816 1.00 22.41
	ATOM	413 CB ILE 257 16.895 24.535 67.180 1.00 20.26
	ATOM	414 CG2 ILE 257 15.636 25.401 67.021 1.00 21.15
	ATOM	415 CG1 ILE 257 16.607 23.298 68.039 1.00 22.12
30	ATOM	416 CD1 ILE 257 16.309 23.620 69.517 1.00 21.36
	ATOM	417 C ILE 257 17.558 25.253 64.877 1.00 23.91
	ATOM	418 O ILE 257 16.677 25.544 64.060 1.00 21.49
	ATOM	419 N ALA 258 18.684 25.949 64.994 1.00 23.86
	ATOM	420 CA ALA 258 18.939 27.081 64.103 1.00 25.37
35	ATOM	421 CB ALA 258 20.313 27.705 64.416 1.00 26.26
٠.	ATOM	422 C ALA 258 18.906 26.588 62.656 1.00 25.01

- 38 -

	ATOM	423 O ALA 258 1	8.306 27.238 61.783 1.00 25.91
	ATOM	424 N ALA 259 19	9.555 25.450 62.403 1.00 23.72
	ATOM	425 CA ALA 259 1	19.602 24.865 61.063 1.00 24.51
	ATOM	426 CB ALA 259 2	20.442 23.613 61.058 1.00 24.62
5	ATOM	427 C ALA 259 18	8.187 24.525 60.623 1.00 24.36
	ATOM	428 O ALA 259 17	7.846 24.693 59.464 1.00 23.27
	ATOM	429 N LEU 260 17	7.374 24.015 61.544 1.00 23.02
	ATOM	430 CA LEU 260 1	5.986 23.685 61.188 1.00 24.75
	ATOM	431 CB LEU 260 1	5.237 23.070 62.366 1.00 26.22
10	ATOM	432 CG LEU 260 1	15.550 21.633 62.742 1.00 31.27
	ATOM	433 CD1 LEU 260	14.906 21.342 64.082 1.00 32.20
	ATOM	434 CD2 LEU 260	15.054 20.679 61.658 1.00 33.32
	ATOM	435 C LEU 260 15	5.214 24.902 60.750 1.00 25.40
	ATOM	436 O LEU 260 14	4.391 24.821 59.834 1.00 23.40
15	ATOM	437 N VAL 261 15	5.439 26.031 61.419 1.00 25.21
	ATOM	438 CA VAL 261 1	4.735 27.247 61.055 1.00 26.95
	ATOM	439 CB VAL 261 1	5.050 28.411 62.036 1.00 25.46
	ATOM	440 CG1 VAL 261	14.386 29.700 61.544 1.00 27.40
	ATOM	441 CG2 VAL 261	14.520 28.075 63.434 1.00 27.42
20	ATOM	442 C VAL 261 15	5.104 27.671 59.640 1.00 26.53
	ATOM	443 O VAL 261 14	.232 28.035 58.850 1.00 25.34
	ATOM	444 N VAL 262 16	.396 27.611 59.320 1.00 27.29
	ATOM	445 CA VAL 262 16	6.874 27.995 57.993 1.00 28.11
	ATOM	446 CB VAL 262 18	8.430 27.910 57.905 1.00 30.08
25	ATOM	447 CG1 VAL 262 1	18.883 27.872 56.441 1.00 33.75
	ATOM	448 CG2 VAL 262 1	9.051 29.104 58.606 1.00 32.97
	ATOM	449 C VAL 262 16	.267 27.075 56.939 1.00 26.73
	ATOM	450 O VAL 262 15	.909 27.511 55.840 1.00 26.28
	ATOM	451 N TRP 263 16	.177 25.794 57.286 1.00 24.38
0	ATOM	452 CA TRP 263 15	5.623 24.775 56.402 1.00 25.26
	ATOM	453 CB TRP 263 15	5.831 23.406 57.052 1.00 23.10
	ATOM	454 CG TRP 263 1	5.102 22.286 56.409 1.00 24.27
	ATOM	455 CD2 TRP 263 1	3.881 21.697 56.873 1.00 24.86
	ATOM	456 CE2 TRP 263 1	3.536 20.681 55.962 1.00 25.93
5	ATOM	457 CE3 TRP 263 1	3.051 21.936 57.974 1.00 24.53
	ATOM	458 CD1 TRP 263 1	5.441 21.624 55.267 1.00 24.80

	ATOM	459 NE1 TRP 263 1	4.501 20.655 54.990 1.00 27.16
	ATOM	460 CZ2 TRP 263 1	2.391 19.895 56.115 1.00 26.26
	ATOM	461 CZ3 TRP 263 1	1.911 21.151 58.132 1.00 23.32
	MOTA	462 CH2 TRP 263 1	1.598 20.144 57.204 1.00 23.73
5	MOTA	463 C TRP 263 14	.125 25.047 56.175 1.00 24.66
	ATOM	464 O TRP 263 13	.645 25.081 55.037 1.00 25.81
	ATOM	465 N ALA 264 13.	.391 25.278 57.252 1.00 24.56
	ATOM	466 CA ALA 264 11	1.949 25.506 57.103 1.00 25.04
	ATOM	467 CB ALA 264 11	1.304 25.733 58.464 1.00 26.00
10	ATOM	468 C ALA 264 11.	.675 26.701 56.205 1.00 27.22
	MOTA	469 O ALA 264 10.	.838 26.640 55.293 1.00 24.71
	ATOM	470 N ARG 265 12	2.372 27.794 56.489 1.00 28.16
	ATOM	471 CA ARG 265 1	2.227 29.024 55.724 1.00 32.11
	ATOM	472 CB ARG 265 1	3.250 30.066 56.218 1.00 33.47
15	ATOM	473 CG ARG 265 1	3.155 31.408 55.520 1.00 36.25
	ATOM	474 CD ARG 265 1	4.169 32.397 56.078 1.00 39.06
	ATOM	475 NE ARG 265 1	5.545 31.972 55.823 1.00 42.06
	MOTA	476 CZ ARG 265 10	6.609 32.534 56.391 1.00 43.94
	MOTA	477 NH1 ARG 265 1	16.447 33.541 57.244 1.00 44.49
20	MOTA	478 NH2 ARG 265 1	17.827 32.092 56.110 1.00 43.52
	ATOM	479 C ARG 265 12	2.424 28.767 54.225 1.00 32.76
	ATOM	480 O ARG 265 11	1.843 29.460 53.392 1.00 35.61
	ATOM	481 N ASP 266 13	.227 27.771 53.872 1.00 33.71
	ATOM	482 CA ASP 266 13	3.465 27.492 52.466 1.00 34.17
25	ATOM	483 CB ASP 266 14	4.931 27.106 52.236 1.00 37.32
	MOTA	484 CG ASP 266 1	5.879 28.293 52.374 1.00 40.62
	ATOM	485 OD1 ASP 266 1	5.556 29.392 51.866 1.00 40.66
	ATOM	486 OD2 ASP 266 1	6.959 28.128 52.985 1.00 43.94
	ATOM	487 C ASP 266 12	.544 26.447 51.833 1.00 33.93
30	ATOM	488 O ASP 266 12	.664 26.156 50.646 1.00 32.38
	ATOM	489 N ILE 267 11.6	540 25.869 52.619 1.00 32.18
	ATOM	490 CA ILE 267 10.	.694 24.897 52.077 1.00 30.21
	ATOM	491 CB ILE 267 9.8	820 24.279 53.210 1.00 29.16
	ATOM	492 CG2 ILE 267 8	.586 23.588 52.620 1.00 31.21
35	ATOM		0.643 23.291 54.038 1.00 29.01
	ATOM	494 CD1 ILE 267 11	.069 22.051 53.278 1.00 28.89

	ATOM	495 C ILE 267	9.800 25.670 51.093 1.00 30.06
	ATOM	496 O ILE 267	9.256 26.715 51.421 1.00 29.41
	ATOM	497 N PRO 268	9.653 25.164 49.862 1.00 31.41
	ATOM	498 CD PRO 268	10.216 23.921 49.300 1.00 31.06
5	ATOM	499 CA PRO 268	8.813 25.857 48.879 1.00 31.62
	ATOM	500 CB PRO 268	8.686 24.830 47.755 1.00 31.63
	ATOM	501 CG PRO 268	10.012 24.126 47.811 1.00 34.16
	ATOM	502 C PRO 268	7.459 26.286 49.444 1.00 31.83
	ATOM	503 O PRO 268	6.762 25.483 50.051 1.00 31.61
10	ATOM	504 N HIS 269	7.128 27.566 49.267 1.00 31.08
	ATOM	505 CA HIS 269	5.867 28.164 49.715 1.00 31.47
**:	ATOM	506 CB HIS 269	4.677 27.277 49.300 1.00 33.82
	ATOM	507 CG HIS 269	4.710 26.845 47.865 1.00 36.44
	ATOM	508 CD2 HIS 269	4.694 25.611 47.305 1.00 37.13
15	ATOM	509 ND1 HIS 269	4.734 27.740 46.816 1.00 39.48
	ATOM	510 CE1 HIS 269	4.731 27.078 45.672 1.00 37.91
	ATOM	511 NE2 HIS 269	4.706 25.785 45.941 1.00 39.31
	ATOM	512 C HIS 269	5.745 28.465 51.210 1.00 30.01
	ATOM	513 O HIS 269	4.796 29.133 51.638 1.00 28.74
20	ATOM	514 N PHE 270	6.693 27.994 52.012 1.00 28.26.
	ATOM	515 CA PHE 270	6.607 28.222 53.454 1.00 27.87
	ATOM	516 CB PHE 270	7.728 27.468 54.178 1.00 26.66
	MOTA	517 CG PHE 270	7.661 27.563 55.684 1.00 24.18
	ATOM	518 CD1 PHE 270	6.867 26.683 56.415 1.00 24.15
25	ATOM	519 CD2 PHE 270	8.385 28.536 56.372 1.00 26.34
	ATOM	520 CE1 PHE 270	6.792 26.775 57.822 1.00 22.45
	ATOM	521 CE2 PHE 270	8.316 28.637 57.778 1.00 24.45
	ATOM	522 CZ PHE 270	7.516 27.754 58.494 1.00 23.03
	ATOM	523 C PHE 270	6.650 29.707 53.811 1.00 28.65
30	ATOM	524 O PHE 270	5.866 30.175 54.634 1.00 29.19
	MOTA	525 N SER 271	7.558 30.448 53.184 0.50 29.83 AC1
	ATOM	526 CA SER 271	7.676 31.876 53.463 0.50 31.34 AC1
			8.959 32.432 52.839 0.50 31.74 AC1
			10.104 31.869 53.460 0.50 31.64 AC1
35			6.458 32.663 52.974 0.50 32.85 AC1
	ATOM	530 O SER 271	6.301 33.839 53.296 0.50 33.99 AC1

	ATOM	531 N GLN 272	5.599 32.009 52.197 1.00 33.79
	ATOM	532 CA GLN 272	4.378 32.642 51.696 1.00 35.22
		533 CB GLN 272	3.910 31.928 50.423 1.00 39.02
		534 CG GLN 272	4.777 32.210 49.191 1.00 43.59
5	ATOM	535 CD GLN 272	4.608 31.169 48.086 1.00 45.89
J	ATOM	536 OE1 GLN 272	3.488 30.794 47.727 1.00 47.68
	ATOM	537 NE2 GLN 272	5.729 30.703 47.534 1.00 48.15
	ATOM	538 C GLN 272	3.255 32.633 52.742 1.00 35.20
	ATOM	539 O GLN 272	2.288 33.397 52.648 1.00 33.55
10	ATOM	540 N LEU 273	
10	ATOM	541 CA LEU 273	2.402 31.651 54.811 1.00 31.26
	ATOM	542 CB LEU 273	2.695 30.398 55.653 1.00 30.14
	ATOM	543 CG LEU 273	2.671 29.015 54.988 1.00 29.04
		544 CD1 LEU 273	3.273 27.989 55.930 1.00 28.99
15	ATOM	545 CD2 LEU 273	1.231 28.638 54.645 1.00 29.21
13	ATOM	546 C LEU 273	2.500 32.880 55.722 1.00 30.95
	ATOM	547 O LEU 273	3.556 33.513 55.793 1.00 30.58
	ATOM	548 N GLU 274	1.416 33.208 56.420 1.00 31.28
	ATOM	549 CA GLU 274	1.435 34.332 57.355 1.00 32.85
20	ATOM	550 CB GLU 274	0.154 34.378 58.195 1.00 35.60
	ATOM	551 CG GLU 274	-1.039 35.022 57.511 1.00 40.50
	ATOM	552 CD GLU 274	-0.954 36.543 57.494 1.00 43.35
	ATOM	553 OE1 GLU 274	-1.788 37.171 56.807 1.00 44.88
	ATOM	554 OE2 GLU 274	-0.062 37.109 58.169 1.00 45.29
25	АТОМ	555 C GLU 274	2.615 34.079 58.287 1.00 32.91
	ATOM	556 O GLU 274	2.867 32.936 58.693 1.00 31.56
	ATOM	557 N MET 275	3.331 35.136 58.632 1.00 31.54
	ATOM	558 CA MET 275	4.483 35.010 59.507 1.00 31.78
	ATOM	559 CB MET 275	5.094 36.392 59.748 1.00 34.73
30	ATOM	560 CG MET 275	6.288 36.403 60.673 1.00 37.61
	ATOM	561 SD MET 275	7.574 35.262 60.158 1.00 39.49
	ATOM	562 CE MET 275	7.940 35.869 58.496 1.00 39.54
	ATOM	563 C MET 275	4.149 34.351 60.838 1.00 31.91
	ATOM	564 O MET 275	4.885 33.474 61.305 1.00 31.90
35	ATOM	565 N GLU 276	3.052 34.764 61.458 1.00 31.07
	ATOM	566 CA GLU 276	2.684 34.184 62.736 1.00 30.79

567 CB GLU 276 1.499 34.938 63.341 1.00 35.06 **ATOM ATOM** 568 CG GLU 276 1.866 36.382 63.755 1.00 37.66 **ATOM** 569 CD GLU 276 3.043 36.434 64.731 1.00 40.34 570 OE1 GLU 276 2.978 35.751 65.774 1.00 41.45 **ATOM** 5 **ATOM** 571 OE2 GLU 276 4.034 37.157 64.464 1.00 42.59 572 C GLU 276 2.388 32.693 62.596 1.00 29.05 **ATOM** 2.529 31.946 63.559 1.00 28.93 MOTA 573 O GLU 276 574 N ASP 277 1.973 32.250 61.411 1.00 26.93 **ATOM** 1.716 30.817 61.223 1.00 24.95 **ATOM** 575 CA ASP 277 10 0.817 30.565 60.005 1.00 26.30 576 CB ASP 277 MOTA MOTA 577 CG ASP 277 -0.656 30.768 60.320 1.00 26.04 **ATOM** 578 OD1 ASP 277 -0.984 31.102 61.476 1.00 29.19 579 OD2 ASP 277 -1.492 30.596 59.410 1.00 26.42 MOTA MOTA 580 C ASP 277 3.056 30.089 61.069 1.00 25.34 15 MOTA 581 O ASP 277 3.226 28.967 61.579 1.00 25.43 **ATOM** 582 N GLN 278 4.007 30.721 60.373 1.00 23.47 **ATOM** 583 CA GLN 278 5.338 30.132 60.203 1.00 23.93 MOTA 584 CB GLN 278 6.275 31.094 59.467 1.00 23.08 585 CG GLN 278 5.931 31.265 57.999 1.00 26.36 MOTA 20 586 CD GLN 278 ATOM 6.858 32.238 57.324 1.00 26.00 587 OE1 GLN 278 8.075 32.122 57.439 1.00 26.10 **ATOM ATOM** 588 NE2 GLN 278 6.293 33.210 56.609 1.00 28.94 **ATOM** 589 C GLN 278 5.917 29.850 61.588 1.00 22.78 **ATOM** 590 O GLN 278 6.445 28.765 61.857 1.00 20.87 25 **MOTA** 591 N ILE 279 5.821 30.849 62.461 1.00 23.32 592 CA ILE 279 **MOTA** 6.322 30.719 63.825 1.00 22.80 **ATOM** 593 CB ILE 279 6.125 32.046 64.591 1.00 24.62 **MOTA** 594 CG2 ILE 279 6.449 31.868 66.076 1.00 24.08 595 CG1 ILE 279 **ATOM** 6.997 33.125 63.943 1.00 27.52 30 **ATOM** 596 CD1 ILE 279 6.728 34.543 64.464 1.00 27.69 **ATOM** 597 C ILE 279 5.638 29.560 64.573 1.00 22.81 598 O ILE 279 MOTA 6.294 28.758 65.215 1.00 23.50 599 N LEU 280 MOTA 4.318 29.463 64.498 1.00 20.16 MOTA 600 CA LEU 280 3.653 28.382 65.186 1.00 18.30 35 **ATOM** 601 CB LEU 280 2.125 28.553 65.113 1.00 19.64 MOTA 602 CG LEU 280 1.589 29.739 65.931 1.00 22.60

	ATOM	603 CD1 LEU 280	0.093 29.931 65.623 1.00 24.59
			1.759 29.496 67.399 1.00 25.05
			4.045 27.028 64.653 1.00 17.14
	ATOM	606 O LEU 280	4.160 26.084 65.436 1.00 18.84
5	ATOM	607 N LEU 281	4.225 26.905 63.335 1.00 17.52
	ATOM	608 CA LEU 281	4.586 25.591 62.773 1.00 19.05
	ATOM	609 CB LEU 281	4.550 25.618 61.241 1.00 19.60
	ATOM	610 CG LEU 281	3.167 25.782 60.595 1.00 21.40
	ATOM	611 CD1 LEU 281	3.324 25.870 59.073 1.00 23.62
10	ATOM	612 CD2 LEU 281	2.266 24.621 60.975 1.00 21.20
	ATOM	613 C LEU 281	5.968 25.143 63.255 1.00 19.84
	ATOM	614 O LEU 281	6.164 23.977 63.620 1.00 19.38
	ATOM	615 N ILE 282	6.923 26.067 63.269 1.00 20.43
	ATOM	616 CA ILE 282	8.270 25.740 63.731 1.00 19.64
15	ATOM	617 CB ILE 282	9.274 26.881 63.361 1.00 20.44
	MOTA	618 CG2 ILE 282	10.619 26.706 64.102 1.00 20.04
	ATOM	619 CG1 ILE 282	9.486 26.873 61.839 1.00 20.45
	ATOM	620 CD1 ILE 282	10.278 28.076 61.323 1.00 22.03
	ATOM	621 C ILE 282	8.255 25.496 65.239 1.00 19.41
20	ATOM	622 O ILE 282	8.894 24.574 65.717 1.00 19.21
	MOTA	623 N LYS 283	7.533 26.322 65.992 1.00 17.59
	ATOM	624 CA LYS 283	7.480 26.148 67.446 1.00 19.01
	ATOM	625 CB LYS 283	6.624 27.246 68.103 1.00 19.89
	ATOM	626 CG LYS 283	6.596 27.154 69.613 1.00 23.82
25	ATOM	627 CD LYS 283	5.948 28.388 70.243 1.00 26.99
	ATOM	628 CE LYS 283	5.645 28.183 71.731 1.00 30.98
	ATOM	629 NZ LYS 283	6.837 27.917 72.599 1.00 34.38
	ATOM	630 C LYS 283	6.873 24.791 67.778 1.00 19.44
	ATOM	631 O LYS 283	7.274 24.120 68.729 1.00 19.31
30	ATOM	632 N GLY 284	5.882 24.390 66.983 1.00 19.18
	ATOM	633 CA GLY 284	5.240 23.124 67.254 1.00 18.56
	ATOM	634 C GLY 284	5.981 21.885 66.806 1.00 18.31
	ATOM	635 O GLY 284	5.731 20.805 67.328 1.00 19.56
	ATOM	636 N SER 285	6.941 22.024 65.895 1.00 18.65
35	ATOM	637 CA SER 285	7.633 20.844 65.384 1.00 17.51
	ATOM	638 CB SER 285	7.453 20.755 63.870 1.00 19.70

- 44 -

	ATOM	639 OG SER 285	8.063 21.874 63.212 1.00 18.48
	ATOM	640 C SER 285	9.136 20.728 65.663 1.00 15.25
	ATOM	641 O SER 285	9.705 19.673 65.406 1.00 15.43
	ATOM	642 N TRP 286	9.770 21.759 66.203 1.00 15.99
5	ATOM	643 CA TRP 286	11.221 21.642 66.395 1.00 16.28
	ATOM	644 CB TRP 286	11.812 22.920 67.007 1.00 17.10
	ATOM	645 CG TRP 286	11.458 23.226 68.414 1.00 17.32
	ATOM	646 CD2 TRP 286	12.117 22.736 69.592 1.00 18.06
	ATOM	647 CE2 TRP 286	11.440 23.291 70.709 1.00 20.12
10	ATOM	648 CE3 TRP 286	13.208 21.882 69.815 1.00 17.92
	ATOM	649 CD1 TRP 286	10.445 24.033 68.850 1.00 18.61
	ATOM	650 NE1 TRP 286	10.427 24.076 70.227 1.00 18.32
	ATOM	651 CZ2 TRP 286	11.816 23.020 72.027 1.00 17.23
	ATOM	652 CZ3 TRP 286	13.580 21.608 71.136 1.00 18.42
15	ATOM	653 CH2 TRP 286	12.889 22.172 72.219 1.00 19.75
	ATOM	654 C TRP 286	11.668 20.443 67.219 1.00 16.59
	MOTA	655 O TRP 286	12.655 19.766 66.886 1.00 17.31
	ATOM	656 N ASN 287	10.938 20.167 68.282 1.00 15.26
	MOTA	657 CA ASN 287	11.301 19.059 69.157 1.00 14.41
20	ATOM	658 CB ASN 287	10.508 19.180 70.456 1.00 17.68
	MOTA	659 CG ASN 287	10.894 18.145 71.474 1.00 19.61
	ATOM	660 OD1 ASN 287	11.757 18.374 72.348 1.00 23.92
	ATOM	661 ND2 ASN 287	10.251 16.991 71.384 1.00 18.83
	ATOM	662 C ASN 287	11.096 17.718 68.448 1.00 14.74
25	MOTA	663 O ASN 287	11.954 16.846 68.508 1.00 16.16
	ATOM	664 N GLU 288	9.966 17.555 67.752 1.00 15.22
	ATOM	665 CA GLU 288	9.745 16.319 66.986 1.00 16.77
	ATOM	666 CB GLU 288	8.367 16.358 66.288 1.00 17.55
	ATOM	667 CG GLU 288	7.213 16.044 67.224 1.00 18.68
30	ATOM	668 CD GLU 288	5.868 16.134 66.548 1.00 23.02
	ATOM	669 OE1 GLU 288	5.786 15.849 65.342 1.00 28.18
	ATOM	670 OE2 GLU 288	4.887 16.461 67.243 1.00 29.07
	ATOM	671 C GLU 288	10.838 16.122 65.921 1.00 17.49
	ATOM	672 O GLU 288	11.338 15.014 65.743 1.00 16.93
35	ATOM	673 N LEU 289	11.193 17.204 65.220 1.00 14.56
	ATOM	674 CA LEU 289	12.196 17.130 64.173 1.00 15.76

- 45 -

ATOM	675 CB LEU 289	12.248 18.451 63.390 1.00 14.77
ATOM	676 CG LEU 289	11.006 18.639 62.483 1.00 16.67
ATOM	677 CD1 LEU 289	10.932 20.093 62.002 1.00 18.25
ATOM	678 CD2 LEU 289	11.083 17.667 61.287 1.00 15.71
ATOM	679 C LEU 289	13.555 16.784 64.752 1.00 16.05
ATOM	680 O LEU 289	14.301 16.022 64.138 1.00 16.56
ATOM	681 N LEU 290	13.884 17.312 65.929 1.00 16.37
ATOM	682 CA LEU 290	15.190 16.951 66.529 1.00 16.68
ATOM	683 CB LEU 290	15.477 17.734 67.809 1.00 17.02
MOTA	684 CG LEU 290	15.786 19.219 67.684 1.00 22.29
ATOM	685 CD1 LEU 290	16.294 19.726 69.046 1.00 23.74
ATOM	686 CD2 LEU 290	16.865 19.454 66.604 1.00 25.08
ATOM	687 C LEU 290	15.229 15.471 66.868 1.00 16.18
ATOM	688 O LEU 290	16.214 14.803 66.605 1.00 17.45
ATOM	689 N LEU 291	14.142 14.958 67.465 1.00 16.16
ATOM	690 CA LEU 291	14.088 13.553 67.826 1.00 17.64
ATOM	691 CB LEU 291	12.828 13.289 68.666 1.00 17.32
ATOM	692 CG LEU 291	12.824 13.961 70.046 1.00 20.40
ATOM	693 CD1 LEU 291	11.405 13.964 70.627 1.00 22.18
ATOM	694 CD2 LEU 291	13.789 13.222 70.971 1.00 23.46
ATOM	695 C LEU 291	14.087 12.662 66.595 1.00 15.65
ATOM	696 O LEU 291	14.645 11.569 66.611 1.00 17.39
ATOM	697 N PHE 292	13.434 13.116 65.520 1.00 14.81
MOTA	698 CA PHE 292	13.360 12.330 64.311 1.00 15.62
ATOM	699 CB PHE 292	12.392 12.993 63.314 1.00 16.43
ATOM	700 CG PHE 292	12.003 12.113 62.167 1.00 16.59
ATOM	701 CD1 PHE 292	11.588 10.812 62.389 1.00 18.96
ATOM	702 CD2 PHE 292	12.002 12.607 60.875 1.00 19.01
ATOM	703 CE1 PHE 292	11.170 10.011 61.332 1.00 20.62
ATOM	704 CE2 PHE 292	11.581 11.805 59.805 1.00 18.46
ATOM	705 CZ PHE 292	11.166 10.499 60.060 1.00 18.06
ATOM	706 C PHE 292	14.761 12.191 63.713 1.00 15.70
ATOM	707 O PHE 292	15.132 11.119 63.236 1.00 15.72
ATOM	708 N ALA 293	15.526 13.278 63.760 1.00 16.34
ATOM	709 CA ALA 293	16.906 13.267 63.232 1.00 16.73
ATOM	710 CB ALA 293	17.464 14.702 63.207 1.00 17.74

713 N ILE 294

ATOM

5

20

30

- 46
ATOM 711 C ALA 293 17.802 12.368 64.090 1.00 17.09

ATOM 712 O ALA 293 18.668 11.654 63.570 1.00 17.27

ATOM 714 CA ILE 294 18.389 11.569 66.312 1.00 16.22 ATOM 715 CB ILE 294 18.032 11.857 67.768 1.00 15.67

17.623 12.423 65.407 1.00 16.09

ATOM 716 CG2 ILE 294 18.584 10.765 68.679 1.00 16.66 ATOM 717 CG1 ILE 294 18.615 13.218 68.160 1.00 17.00

ATOM 718 CD1 ILE 294 18.206 13.635 69.535 1.00 20.77

ATOM 719 C ILE 294 18.070 10.111 65.971 1.00 16.74

10 ATOM 720 O ILE 294 18.954 9.296 65.833 1.00 16.38 ATOM 721 N ALA 295 16.791 9.791 65.774 1.00 16.15

ATOM 721 N ALA 295 16.791 9.791 65.774 1.00 16.15
ATOM 722 CA ALA 295 16.452 8.420 65.424 1.00 16.99

ATOM 723 CB ALA 295 14.937 8.273 65.332 1.00 16.54

ATOM 724 C ALA 295 17.083 7.993 64.088 1.00 17.97

15 ATOM 725 O ALA 295 17.563 6.870 63.954 1.00 18.01

ATOM 726 N TRP 296 17.071 8.881 63.102 1.00 18.59 ATOM 727 CA TRP 296 17.625 8.570 61.782 1.00 18.81

ATOM 728 CB TRP 296 17.321 9.740 60.835 1.00 20.21

ATOM 729 CG TRP 296 17.849 9.622 59.451 1.00 22.61

ATOM 730 CD2 TRP 296 17.398 8.716 58.433 1.00 25.62 ATOM 731 CE2 TRP 296 18.125 9.007 57.265 1.00 26.25

ATOM 732 CE3 TRP 296 16.448 7.683 58.402 1.00 25.95

ATOM 733 CD1 TRP 296 18.807 10.403 58.871 1.00 26.23

ATOM 734 NE1 TRP 296 18.975 10.043 57.556 1.00 26.50

25 ATOM 735 CZ2 TRP 296 17.934 8.297 56.063 1.00 27.77

ATOM 736 CZ3 TRP 296 16.257 6.977 57.206 1.00 27.65

ATOM 737 CH2 TRP 296 16.996 7.289 56.061 1.00 25.35

ATOM 738 C TRP 296 19.133 8.299 61.878 1.00 19.53 ATOM 739 O TRP 296 19.647 7.296 61.345 1.00 21.43

ATOM 740 N ARG 297 19.833 9.147 62.623 1.00 18.58

ATOM 741 CA ARG 297 21.280 8.974 62.748 1.00 18.22

ATOM 741 CA ARG 297 21.200 6.974 62.746 1.00 16.22 ATOM 742 CB ARG 297 21.923 10.208 63.376 1.00 18.92

ATOM 743 CG ARG 297 21.886 11.465 62.525 1.00 20.63

ATOM 744 CD ARG 297 22.792 12.530 63.137 1.00 26.15

35 ATOM 745 NE ARG 297 22.219 13.002 64.381 1.00 29.32

ATOM 746 CZ ARG 297 21.393 14.040 64.462 1.00 28.97

	АТОМ	747 NH1 ARG 297	21.066 14.720 63.373 1.00 29.81
	ATOM	748 NH2 ARG 297	20.872 14.372 65.628 1.00 31.03
	ATOM	749 C ARG 297	21.643 7.776 63.605 1.00 18.87
	ATOM	750 O ARG 297	22.738 7.225 63.473 1.00 19.01
5	ATOM	751 N SER 298	20.749 7.404 64.511 1.00 17.52
	ATOM	752 CA SER 298	21.023 6.293 65.414 1.00 18.09
	ATOM	753 CB SER 298	20.134 6.407 66.655 1.00 18.94
	ATOM	754 OG SER 298	20.412 7.606 67.381 1.00 18.16
	ATOM	755 C SER 298	20.865 4.929 64.770 1.00 20.63
10	ATOM	756 O SER 298	21.310 3.925 65.336 1.00 24.22
	ATOM	757 N MET 299	20.270 4.868 63.582 1.00 20.01
	ATOM	758 CA MET 299	20.106 3.558 62.953 1.00 22.16
	MOTA	759 CB MET 299	19.367 3.682 61.610 1.00 24.42
	ATOM	760 CG MET 299	17.940 4.159 61.735 1.00 24.29
15	ATOM	761 SD MET 299	17.091 4.052 60.130 1.00 31.30
	MOTA	762 CE MET 299	18.221 4.950 59.082 1.00 31.06
	MOTA	763 C MET 299	21.431 2.825 62.725 1.00 25.30
	MOTA	764 O MET 299	21.493 1.600 62.859 1.00 26.84
	MOTA	765 N GLU 300	22.485 3.565 62.414 1.00 28.43
20	MOTA	766 CA GLU 300	23.775 2.944 62.117 1.00 32.11
	ATOM	767 CB GLU 300	24.736 3.949 61.472 1.00 34.60
	ATOM	768 CG GLU 300	25.355 4.941 62.420 1.00 40.06
	ATOM	769 CD GLU 300	26.689 5.477 61.910 1.00 43.56
	ATOM	770 OE1 GLU 300	27.622 4.666 61.729 1.00 46.83
25	ATOM	771 OE2 GLU 300	26.812 6.703 61.688 1.00 45.34
	ATOM	772 C GLU 300	24.467 2.304 63.300 1.00 32.94
	ATOM	773 O GLU 300	25.389 1.517 63.123 1.00 32.67
	ATOM	774 N PHE 301	24.033 2.649 64.507 1.00 31.51
	ATOM	775 CA PHE 301	24.632 2.094 65.710 1.00 32.60
30	ATOM	776 CB PHE 301	24.822 3.214 66.736 1.00 32.49
	ATOM	777 CG PHE 301	25.879 4.203 66.349 1.00 34.07
	ATOM	778 CD1 PHE 301	27.223 3.838 66.358 1.00 33.32
	ATOM	779 CD2 PHE 301	25.537 5.483 65.929 1.00 33.10
	ATOM	780 CE1 PHE 301	
35	ATOM	781 CE2 PHE 301	26.506 6.385 65.519 1.00 34.69
	ATOM	782 CZ PHE 301	27.854 6.008 65.530 1.00 33.21

- 48 -

	ATOM	783 C PHE 301	23.820 0.940 66.301 1.00 33.77
	ATOM	784 O PHE 301	24.127 0.441 67.377 1.00 34.55
	ATOM	785 N LEU 302	22.780 0.516 65.589 1.00 34.80
	ATOM	786 CA LEU 302	21.966 -0.593 66.045 1.00 36.81
5	ATOM	787 CB LEU 302	20.641 -0.645 65.287 1.00 34.98
	ATOM	788 CG LEU 302	19.779 0.596 65.488 1.00 31.61
	ATOM	789 CD1 LEU 302	18.551 0.528 64.577 1.00 31.62
	ATOM	790 CD2 LEU 302	19.386 0.717 66.955 1.00 31.48
	ATOM	791 C LEU 302	22.744 -1.869 65.775 1.00 40.52
10	MOTA	792 O LEU 302	23.333 -2.038 64.701 1.00 40.16
	MOTA	793 N THR 303	22.733 -2.764 66.753 1.00 44.10
	ATOM	794 CA THR 303	23.422 -4.037 66.634 1.00 48.80
	ATOM	795 CB THR 303	23.126 -4.933 67.850 1.00 49.83
	ATOM	796 OG1 THR 303	23.211 -4.151 69.050 1.00 51.18
15	ATOM	797 CG2 THR 303	24.132 -6.076 67.924 1.00 51.25
	ATOM	798 C THR 303	22.932 -4.731 65.368 1.00 50.84
	ATOM	799 O THR 303	21.739 -4.703 65.052 1.00 50.20
	ATOM	800 N ALA 304	23.864 -5.341 64.644 1.00 53.24
	ATOM	801 CA ALA 304	23.538 -6.040 63.410 1.00 55.88
20	ATOM	802 CB ALA 304	24.739 -6.867 62.946 1.00 56.05
	ATOM	803 C ALA 304	22.317 -6.942 63.575 1.00 57.61
	ATOM	804 O ALA 304	22.133 -7.583 64.617 1.00 58.45
	MOTA	805 N ALA 305	21.481 -6.972 62.540 1.00 59.51
	ATOM	806 CA ALA 305	20.282 -7.797 62.535 1.00 60.68
25	ATOM	807 CB ALA 305	19.548 -7.651 61.205 1.00 60.98
	ATOM	808 C ALA 305	20.714 -9.245 62.744 1.00 61.71
	ATOM	809 O ALA 305	19.925 -10.029 63.319 1.00 62.15
	ATOM	810 OXT ALA 305	21.848 -9.572 62.316 1.00 61.88
	ATOM	811 CB ALA 316	17.484 -11.402 70.435 1.00 59.02
30	ATOM	812 C ALA 316	15.833 -9.781 71.403 1.00 57.95
	ATOM	813 O ALA 316	15.469 -9.327 70.316 1.00 58.69
	ATOM	814 N ALA 316	15.341 -12.224 71.375 1.00 58.18
	ATOM	815 CA ALA 316	16.413 -11.191 71.510 1.00 58.61
	ATOM	816 N ALA 317	15.747 -9.096 72.539 1.00 56.79
35	ATOM	817 CA ALA 317	15.218 -7.739 72.587 1.00 54.70
	ATOM	818 CB ALA 317	13.813 -7.745 73.174 1.00 54.73

10

15

20

25

30

35

MOTA

854 CD1 LEU 322

- 49 -

819 C ALA 317 16.142 -6.871 73.437 1.00 52.91 MOTA **ATOM** 820 O ALA 317 15.697 -5.935 74.111 1.00 53.06 17.430 -7.207 73.404 1.00 49.42 821 N SER 318 ATOM **ATOM** 822 CA SER 318 18.449 -6.478 74.151 1.00 46.14 823 CB SER 318 19.830 -7.056 73.835 1.00 46.72 **ATOM ATOM** 824 OG SER 318 20.834 -6.462 74.639 1.00 47.98 18.378 -5.009 73.723 1.00 43.02 **ATOM** 825 C SER 318 **ATOM** 826 O SER 318 18.543 -4.686 72.541 1.00 44.27 **ATOM** 827 N PRO 319 18.122 -4.100 74.676 0.50 41.03 AC1 17.740 -4.342 76.079 0.50 40.29 **ATOM** 828 CD PRO 319 AC₁ **MOTA** 829 CA PRO 319 18.033 -2.672 74.351 0.50 38.31 AC₁ **ATOM** 830 CB PRO 319 17.690 -2.032 75.694 0.50 38.96 AC1 **ATOM** 831 CG PRO 319 16.927 -3.116 76.402 0.50 39.34 AC1 **ATOM** 832 C PRO 319 19.310 -2.080 73.756 0.50 35.85 AC1 833 O PRO 319 20.394 -2.240 74.319 0.50 35.73 AC1 **ATOM ATOM** 834 N PRO 320 19.197 -1.403 72.599 1.00 33.69 **ATOM** 835 CD PRO 320 18.041 -1.404 71.692 1.00 32.09 836 CA PRO 320 20.362 -0.784 71.952 1.00 30.83 **ATOM** 837 CB PRO 320 19.769 -0.083 70.722 1.00 30.11 **ATOM** 18.279 -0.174 70.892 1.00 32.74 **ATOM** 838 CG PRO 320 **ATOM** 839 C PRO 320 21.008 0.185 72.949 1.00 27.19 **ATOM** 840 O PRO 320 20.317 0.824 73.756 1.00 27.36 841 N GLN 321 **ATOM** 22.328 0.297 72.890 1.00 25.76 **ATOM** 842 CA GLN 321 23.060 1.121 73.847 1.00 25.85 843 CB GLN 321 24.262 0.329 74.357 1.00 29.20 **ATOM ATOM** 844 CG GLN 321 23.925 -1.090 74.757 1.00 34.12 **ATOM** 845 CD GLN 321 23.408 -1.197 76.163 1.00 38.11 846 OE1 GLN 321 24.127 -0.916 77.123 1.00 40.85 **ATOM** 847 NE2 GLN 321 22.150 -1.617 76.302 1.00 40.57 **ATOM** 23.546 2.495 73.423 1.00 23.90 **ATOM** 848 C GLN 321 **ATOM** 849 O GLN 321 23.914 3.297 74.275 1.00 24.18 850 N LEU 322 MOTA 23.536 2.790 72.128 1.00 22.59 851 CA LEU 322 MOTA 24.050 4.080 71.666 1.00 21.41 852 CB LEU 322 MOTA 25.291 3.879 70.775 1.00 22.86 **ATOM** 853 CG LEU 322 26.560 3.362 71.432 1.00 25.45

27.625 3.130 70.345 1.00 28.06

- 50 -

	ATOM	855 CD2 LEU 322	27.036 4.384 72.497 1.00 24.21
	ATOM	856 C LEU 322	23.079 4.942 70.891 1.00 22.08
	MOTA	857 O LEU 322	22.435 4.478 69.961 1.00 23.11
	ATOM	858 N MET 323	23.003 6.205 71.270 1.00 20.81
5	ATOM	859 CA MET 323	22.145 7.157 70.590 1.00 21.91
	ATOM	860 CB MET 323	21.213 7.835 71.598 1.00 23.20
	ATOM	861 CG MET 323	20.325 8.922 70.978 1.00 22.36
	ATOM	862 SD MET 323	19.196 9.636 72.187 1.00 22.04
	ATOM	863 CE MET 323	18.026 8.314 72.302 1.00 22.12
10	ATOM	864 C MET 323	23.054 8.187 69.914 1.00 25.54
	ATOM	865 O MET 323	24.002 8.691 70.530 1.00 25.31
	ATOM	866 N CYS 324	22.781 8.506 68.650 1.00 22.41
	ATOM	867 CA CYS 324	23.619 9.483 67.941 1.00 24.83
	ATOM	868 CB CYS 324	23.854 9.029 66.512 1.00 23.91
15	ATOM	869 SG CYS 324	24.921 10.185 65.588 1.00 27.74
	ATOM	870 C CYS 324	22.995 10.873 67.950 1.00 24.34
	ATOM	871 O CYS 324	22.010 11.148 67.249 1.00 24.90
	ATOM	872 N LEU 325	23.560 11.758 68.749 1.00 24.49
	ATOM	873 CA LEU 325	23.038 13.114 68.843 1.00 25.66
20	ATOM	874 CB LEU 325	23.421 13.746 70.183 1.00 26.79
	ATOM	875 CG LEU 325	22.935 12.964 71.421 1.00 27.19
	ATOM	876 CD1 LEU 325	23.256 13.744 72.704 1.00 29.28
	MOTA	877 CD2 LEU 325	21.423 12.732 71.320 1.00 27.92
	ATOM	878 C LEU 325	23.513 13.990 67.682 1.00 28.10
25	ATOM	879 O LEU 325	22.860 14.978 67.344 1.00 31.20
	ATOM	880 N MET 326	24.650 13.618 67.094 1.00 28.83
	ATOM	881 CA MET 326	25.253 14.311 65.947 1.00 30.95
	ATOM	882 CB MET 326	25.726 15.721 66.350 1.00 31.86
	ATOM	883 CG MET 326	26.894 15.710 67.335 1.00 31.84
30	ATOM	884 SD MET 326	27.648 17.333 67.693 1.00 34.98
	ATOM	885 CE MET 326	29.085 16.800 68.706 1.00 30.77
	ATOM	886 C MET 326	26.462 13.453 65.513 1.00 33.06
	ATOM	887 O MET 326	26.882 12.565 66.242 1.00 32.71
	ATOM	888 N PRO 327	27.013 13.682 64.307 1.00 35.54
35	ATOM	889 CD PRO 327	26.511 14.545 63.227 1.00 35.87
	ATOM	890 CA PRO 327	28.180 12.896 63.857 1.00 36.24

- 51 -

	ATOM	891 CB PRO 327 28.508 13.519 62.503 1.00 37.87
	ATOM	892 CG PRO 327 27.159 13.932 62.001 1.00 35.11
	ATOM	893 C PRO 327 29.353 13.035 64.836 1.00 38.75
	ATOM	894 O PRO 327 29.754 14.154 65.155 1.00 38.99
5	ATOM	895 N GLY 328 29.890 11.908 65.314 1.00 38.52
	ATOM	896 CA GLY 328 31.001 11.933 66.257 1.00 38.65
	ATOM	897 C GLY 328 30.606 12.217 67.700 1.00 38.39
	ATOM	898 O GLY 328 31.431 12.604 68.545 1.00 39.05
	ATOM	899 N MET 329 29.326 12.020 67.994 1.00 36.32
10	ATOM	900 CA MET 329 28.830 12.251 69.326 1.00 34.24
	ATOM	901 CB MET 329 28.343 13.693 69.451 1.00 38.91
	ATOM	902 CG MET 329 27.462 13.991 70.649 1.00 44.24
	ATOM	903 SD MET 329 28.233 13.696 72.235 1.00 50.95
	ATOM	904 CE MET 329 26.854 12.835 73.089 1.00 48.58
15	ATOM	905 C MET 329 27.700 11.271 69.603 1.00 30.52
	ATOM	906 O MET 329 26.647 11.331 68.975 1.00 28.92
	ATOM	907 N THR 330 27.960 10.324 70.490 1.00 26.42
	ATOM	908 CA THR 330 26.933 9.370 70.865 1.00 23.65
	ATOM	909 CB THR 330 27.338 7.895 70.542 1.00 24.12
20	ATOM	910 OG1 THR 330 28.672 7.654 71.005 1.00 27.18
	ATOM	911 CG2 THR 330 27.269 7.622 69.034 1.00 26.34
	ATOM	912 C THR 330 26.685 9.475 72.360 1.00 23.23
	ATOM	913 O THR 330 27.572 9.802 73.146 1.00 23.91
	MOTA	914 N LEU 331 25.450 9.211 72.748 1.00 20.37
25	ATOM	915 CA LEU 331 25.082 9.213 74.142 1.00 21.33
	ATOM	916 CB LEU 331 23.773 9.986 74.340 1.00 24.38
	ATOM	917 CG LEU 331 23.113 9.731 75.696 1.00 25.70
	ATOM	918 CD1 LEU 331 23.979 10.317 76.825 1.00 30.48
	ATOM	919 CD2 LEU 331 21.723 10.348 75.694 1.00 29.64
30	ATOM	920 C LEU 331 24.892 7.737 74.489 1.00 21.13
	ATOM	921 O LEU 331 24.158 7.026 73.819 1.00 19.21
	ATOM	922 N HIS 332 25.582 7.262 75.525 1.00 18.80
	MOTA	923 CA HIS 332 25.472 5.864 75.901 1.00 18.64
	ATOM	924 CB HIS 332 26.740 5.417 76.658 1.00 18.77
35	ATOM	925 CG HIS 332 26.826 3.938 76.862 1.00 21.68
	MOTA	926 CD2 HIS 332 27.533 2.991 76.205 1.00 22.97

	ATOM	927 ND1 HIS 332 26.092 3.273 77.824 1.00 22.38
	ATOM	928 CE1 HIS 332 26.340 1.978 77.745 1.00 23.74
	ATOM	929 NE2 HIS 332 27.213 1.778 76.769 1.00 25.26
	ATOM	930 C HIS 332 24.262 5.721 76.820 1.00 18.95
5	ATOM	931 O HIS 332 23.981 6.620 77.616 1.00 19.91
	ATOM	932 N ARG 333 23.594 4.581 76.715 1.00 19.39
	ATOM	933 CA ARG 333 22.394 4.282 77.509 1.00 19.71
	АТОМ	934 CB ARG 333 21.930 2.850 77.235 1.00 20.65
	ATOM	935 CG ARG 333 20.582 2.512 77.896 1.00 21.54
10	ATOM	936 CD ARG 333 20.018 1.212 77.353 1.00 21.69
	ATOM	937 NE ARG 333 18.703 0.862 77.899 1.00 20.98
	ATOM	938 CZ ARG 333 18.501 0.034 78.921 1.00 22.46
	ATOM	939 NH1 ARG 333 19.535 -0.547 79.531 1.00 24.12
	ATOM	940 NH2 ARG 333 17.255 -0.241 79.309 1.00 20.87
15	ATOM	941 C ARG 333 22.643 4.463 79.018 1.00 21.14
	ATOM	942 O ARG 333 21.782 4.926 79.755 1.00 18.39
	ATOM	943 N ASN 334 23.832 4.107 79.484 1.00 21.27
	ATOM	944 CA ASN 334 24.114 4.259 80.910 1.00 23.47
	ATOM	945 CB ASN 334 25.486 3.653 81.244 1.00 24.93
20	ATOM	946 CG ASN 334 25.504 2.119 81.158 1.00 25.59
	ATOM	947 OD1 ASN 334 24.467 1.461 81.054 1.00 26.24
	ATOM	948 ND2 ASN 334 26.707 1.544 81.204 1.00 29.08
	ATOM	949 C ASN 334 24.048 5.718 81.380 1.00 22.91
	ATOM	950 O ASN 334 23.649 6.000 82.530 1.00 22.99
25	ATOM	951 N SER 335 24.441 6.657 80.524 1.00 22.89
	MOTA	952 CA SER 335 24.378 8.059 80.904 1.00 22.41
	ATOM	953 CB SER 335 25.178 8.915 79.930 1.00 27.35
	ATOM	954 OG SER 335 26.517 8.437 79.856 1.00 31.39
	ATOM	955 C SER 335 22.908 8.484 80.939 1.00 23.03
30	ATOM	956 O SER 335 22.496 9.260 81.809 1.00 22.21
	ATOM	957 N ALA 336 22.126 7.970 79.989 1.00 21.81
	ATOM	958 CA ALA 336 20.703 8.255 79.952 1.00 21.09
	ATOM	959 CB ALA 336 20.060 7.595 78.718 1.00 21.81
	ATOM	960 C ALA 336 20.044 7.744 81.232 1.00 21.37
35	ATOM	961 O ALA 336 19.209 8.425 81.830 1.00 19.40
	ATOM	962 N LEU 337 20.423 6.540 81.660 1.00 19.77

	ATOM	963 CA LEU 337 19.860 5.960 82.865 1.00 19.5
	ATOM	964 CB LEU 337 20.374 4.517 83.039 1.00 19.2
	ATOM	965 CG LEU 337 19.835 3.502 82.031 1.00 20.9
	ATOM	966 CD1 LEU 337 20.702 2.280 82.055 1.00 23.4
5	ATOM	967 CD2 LEU 337 18.391 3.164 82.329 1.00 21.0
	ATOM	968 C LEU 337 20.206 6.777 84.089 1.00 20.54
	ATOM	969 O LEU 337 19.364 6.997 84.985 1.00 19.57
	ATOM	970 N GLN 338 21.454 7.226 84.131 1.00 21.36
	ATOM	971 CA GLN 338 21.920 7.994 85.264 1.00 22.3
10	MOTA	972 CB GLN 338 23.439 8.206 85.179 1.00 22.4
	ATOM	973 CG GLN 338 23.973 8.755 86.488 1.00 27.1
	ATOM	974 CD GLN 338 25.467 9.026 86.481 1.00 29.2
	ATOM	975 OE1 GLN 338 25.955 9.827 87.278 1.00 30.3
	MOTA	976 NE2 GLN 338 26.196 8.360 85.596 1.00 30.7
15	ATOM	977 C GLN 338 21.200 9.331 85.381 1.00 23.40
	ATOM	978 O GLN 338 20.894 9.790 86.490 1.00 21.75
	ATOM	979 N ALA 339 20.899 9.935 84.227 1.00 22.63
	ATOM	980 CA ALA 339 20.215 11.217 84.191 1.00 24.4
	ATOM	981 CB ALA 339 20.430 11.903 82.832 1.00 23.4
20	ATOM	982 C ALA 339 18.727 11.082 84.463 1.00 24.73
	ATOM	983 O ALA 339 18.059 12.084 84.641 1.00 27.16
	ATOM	984 N GLY 340 18.218 9.850 84.499 1.00 22.58
	ATOM	985 CA GLY 340 16.803 9.622 84.754 1.00 23.8
	ATOM	986 C GLY 340 15.898 9.580 83.531 1.00 25.09
25	ATOM	987 O GLY 340 14.666 9.607 83.666 1.00 25.54
	ATOM	988 N VAL 341 16.492 9.479 82.346 1.00 23.51
	ATOM	989 CA VAL 341 15.719 9.473 81.095 1.00 20.92
	ATOM	990 CB VAL 341 16.134 10.677 80.211 1.00 21.8
	ATOM	991 CG1 VAL 341 15.838 11.981 80.942 1.00 21.9
30	ATOM	992 CG2 VAL 341 17.621 10.577 79.858 1.00 21.9
	MOTA	993 C VAL 341 15.891 8.185 80.300 1.00 20.24
	ATOM	994 O VAL 341 15.803 8.182 79.083 1.00 19.53
	ATOM	995 N GLY 342 16.132 7.079 80.999 1.00 19.65
	ATOM	996 CA GLY 342 16.324 5.827 80.301 1.00 18.76
35	ATOM	997 C GLY 342 15.104 5.352 79.541 1.00 19.27
	ATOM	998 O GLY 342 15.230 4.771 78.470 1.00 18.82

ATOM	999 N GLN 343	13.922 5.598 80.088 0.50 18.31	AC1
ATOM	1000 CA GLN 343	12.706 5.163 79.422 0.50 19.11	AC1
ATOM	1001 CB GLN 343	11.507 5.485 80.305 0.50 19.94	AC1
ATOM	1002 CG GLN 343	10.200 4.866 79.867 0.50 22.91	AC1
MOTA	1003 CD GLN 343	9.082 5.177 80.852 0.50 24.13	AC1
ATOM	1004 OE1 GLN 343	8.669 6.326 80.995 0.50 26.85	AC1
ATOM	1005 NE2 GLN 343	8.606 4.154 81.555 0.50 25.40	AC1
ATOM	1006 C GLN 343	12.542 5.813 78.043 0.50 19.14	AC1
ATOM	1007 O GLN 343	12.318 5.127 77.050 0.50 18.83	AC1
ATOM	1008 N ILE 344	12.664 7.136 77.977 1.00 17.95	
ATOM	1009 CA ILE 344	12.506 7.812 76.693 1.00 17.74	
ATOM	1010 CB ILE 344	12.348 9.372 76.875 1.00 18.47	
ATOM	1011 CG2 ILE 344	13.700 10.010 77.231 1.00 20.66	
ATOM	1012 CG1 ILE 344	11.754 9.984 75.596 1.00 19.04	
ATOM	1013 CD1 ILE 344	11.445 11.499 75.662 1.00 21.07	
ATOM	1014 C ILE 344	13.641 7.448 75.718 1.00 17.34	
ATOM	1015 O ILE 344	13.440 7.389 74.499 1.00 16.12	
ATOM	1016 N PHE 345	14.844 7.210 76.248 1.00 16.60	
ATOM	1017 CA PHE 345	15.976 6.826 75.417 1.00 17.63	
ATOM	1018 CB PHE 345	17.208 6.636 76.322 1.00 17.86	
ATOM	1019 CG PHE 345	18.455 6.189 75.613 1.00 18.24	
ATOM	1020 CD1 PHE 345	18.657 4.848 75.273 1.00 18.20	
ATOM	1021 CD2 PHE 345	19.470 7.090 75.363 1.00 20.10	
ATOM	1022 CE1 PHE 345	19.854 4.412 74.706 1.00 19.01	
ATOM	1023 CE2 PHE 345	20.663 6.673 74.798 1.00 17.96	
ATOM	1024 CZ PHE 345	20.861 5.328 74.469 1.00 18.58	
ATOM	1025 C PHE 345	15.603 5.522 74.710 1.00 18.98	
ATOM	1026 O PHE 345	15.756 5.389 73.491 1.00 18.15	
ATOM	1027 N ASP 346	15.072 4.568 75.480 1.00 18.04	
ATOM	1028 CA ASP 346	14.695 3.300 74.894 1.00 18.83	
ATOM	1029 CB ASP 346	14.285 2.302 75.988 1.00 19.96	
ATOM	1030 CG ASP 346	15.467 1.768 76.786 1.00 24.04	
MOTA	1031 OD1 ASP 346	16.630 2.038 76.430 1.00 24.95	
MOTA	1032 OD2 ASP 346	15.232 1.043 77.784 1.00 24.86	
ATOM	1033 C ASP 346	13.550 3.462 73.872 1.00 18.04	
ATOM	1034 O ASP 346	13.549 2.782 72.841 1.00 19.39	

	ATOM	1071 CD GLU 351	7.434 3.650 71.303 1.00 28.97	
	ATOM	1072 OE1 GLU 351	7.473 3.544 72.548 1.00 31.85	
	ATOM	1073 OE2 GLU 351	6.581 4.330 70.691 1.00 32.68	
	ATOM	1074 C GLU 351	10.133 3.708 67.132 1.00 22.11	
5	ATOM	1075 O GLU 351	9.348 3.766 66.183 1.00 22.30	
	ATOM	1076 N LEU 352	11.309 4.328 67.113 1.00 19.99	
	ATOM	1077 CA LEU 352	11.696 5.083 65.934 1.00 19.01	
	ATOM	1078 CB LEU 352	12.043 6.555 66.293 1.00 18.64	
	ATOM	1079 CG LEU 352	10.911 7.365 66.950 1.00 19.12	
10	ATOM	1080 CD1 LEU 352	11.445 8.742 67.339 1.00 19.51	
	ATOM	1081 CD2 LEU 352	9.703 7.505 66.018 1.00 19.25	
	ATOM	1082 C LEU 352	12.859 4.467 65.163 1.00 19.51	
	ATOM	1083 O LEU 352	12.704 3.977 64.038 1.00 21.10	
	ATOM	1084 N SER 353	14.052 4.464 65.754 0.50 18.72	AC1
15	ATOM	1085 CA SER 353	15.203 3.933 65.034 0.50 18.55	AC1
	ATOM	1086 CB SER 353	16.473 4.032 65.883 0.50 16.66	AC1
	ATOM	1087 OG SER 353	16.782 5.378 66.160 0.50 11.47	AC1
	ATOM	1088 C SER 353	15.045 2.500 64.546 0.50 19.60	AC1
	ATOM	1089 O SER 353	15.207 2.236 63.355 0.50 20.26	AC1
20	ATOM	1090 N LEU 354	14.746 1.579 65.455 1.00 21.67	
	ATOM	1091 CA LEU 354	14.602 0.181 65.051 1.00 23.55	
	ATOM	1092 CB LEU 354	14.360 -0.715 66.278 1.00 24.35	
	ATOM	1093 CG LEU 354	14.284 -2.222 66.012 1.00 30.18	
	ATOM	1094 CD1 LEU 354	15.388 -2.664 65.055 1.00 31.88	
25	ATOM	1095 CD2 LEU 354	14.392 -2.944 67.345 1.00 31.36	
	ATOM	1096 C LEU 354	13.489 -0.011 64.009 1.00 24.82	
	ATOM	1097 O LEU 354	13.696 -0.684 63.004 1.00 25.66	
	ATOM	1098 N LYS 355	12.324 0.587 64.234 1.00 26.97	
	ATOM	1099 CA LYS 355	11.236 0.454 63.272 1.00 26.95	
30	ATOM	1100 CB LYS 355	10.003 1.226 63.735 1.00 29.30	
	ATOM	1101 CG LYS 355	9.228 0.572 64.843 1.00 34.34	
	ATOM	1102 CD LYS 355	8.440 -0.616 64.321 1.00 38.57	
	ATOM	1103 CE LYS 355	7.365 -1.007 65.319 1.00 39.54	
	ATOM	1104 NZ LYS 355	7.883 -0.958 66.713 1.00 40.20	
35	ATOM	1105 C LYS 355	11.637 0.964 61.899 1.00 27.30	
	ATOM	1106 O LYS 355	11.281 0.369 60.883 1.00 28.58	

	MOTA	1107 N MET 356	12.362 2.080 61.860 1.00 25.41
	ATOM	1108 CA MET 356	12.787 2.641 60.594 1.00 25.37
	ATOM	1109 CB MET 356	13.279 4.071 60.778 1.00 27.04
	ATOM	1110 CG MET 356	12.126 5.017 60.918 1.00 26.57
5	ATOM	1111 SD MET 356	12.669 6.671 60.768 1.00 36.72
	ATOM	1112 CE MET 356	13.015 6.835 62.357 1.00 16.80
	ATOM	1113 C MET 356	13.836 1.808 59.896 1.00 26.93
	ATOM	1114 O MET 356	13.907 1.807 58.676 1.00 25.41
	ATOM	1115 N ARG 357	14.672 1.114 60.661 1.00 27.88
10	ATOM	1116 CA ARG 357	15.656 0.281 60.003 1.00 29.75
	ATOM	1117 CB ARG 357	16.733 -0.214 60.961 1.00 31.09
	ATOM	1118 CG ARG 357	17.748 -1.056 60.213 1.00 35.17
	ATOM	1119 CD ARG 357	18.840 -1.607 61.112 1.00 38.46
	ATOM	1120 NE ARG 357	18.313 -2.543 62.097 1.00 41.53
15	ATOM	1121 CZ ARG 357	19.066 -3.164 63.003 1.00 43.38
	ATOM	1122 NH1 ARG 357	20.376 -2.942 63.037 1.00 42.92
	ATOM	1123 NH2 ARG 357	18.512 -3.995 63.879 1.00 43.48
	ATOM	1124 C ARG 357	14.926 -0.925 59.422 1.00 29.63
	ATOM	1125 O ARG 357	15.218 -1.353 58.310 1.00 29.83
20	ATOM	1126 N THR 358	13.966 -1.452 60.171 1.00 29.51
	ATOM	1127 CA THR 358	13.204 -2.609 59.704 1.00 30.65
	ATOM	1128 CB THR 358	12.273 -3.117 60.812 1.00 31.00
	ATOM	1129 OG1 THR 358	13.071 -3.609 61.895 1.00 32.46
	ATOM	1130 CG2 THR 358	11.374 -4.260 60.306 1.00 34.28
25	MOTA	1131 C THR 358	12.408 -2.281 58.438 1.00 30.73
	ATOM	1132 O THR 358	12.286 -3.114 57.533 1.00 32.33
	ATOM	1133 N LEU 359 1	11.895 -1.056 58.359 1.00 29.40
	ATOM	1134 CA LEU 359	11.124 -0.610 57.201 1.00 29.68
	ATOM	1135 CB LEU 359	10.242 0.583 57.605 1.00 30.32
30	ATOM	1136 CG LEU 359	8.732 0.609 57.321 1.00 34.26
	ATOM	1137 CD1 LEU 359	8.197 2.038 57.529 1.00 33.77
	ATOM	1138 CD2 LEU 359	8.452 0.142 55.900 1.00 34.08
	ATOM	1139 C LEU 359 1	12.046 -0.168 56.066 1.00 28.77
	ATOM	1140 O LEU 359	11.585 0.164 54.974 1.00 27.98
35	ATOM	1141 N ARG 360	13.349 -0.130 56.327 1.00 30.53
	ATOM	1142 CA ARG 360	14.315 0.310 55.327 1.00 30.15

		143 CB ARG 360	14.381 -0.695 54.178 1.00 33.80
		144 CG ARG 360	14.798 -2.076 54.625 1.00 36.43
	ATOM 1	145 CD ARG 360	14.018 -3.165 53.900 1.00 39.56
		146 NE ARG 360	12.588 -3.168 54.226 1.00 41.14
5	ATOM 1	147 CZ ARG 360	11.618 -2.942 53.340 1.00 42.18
	ATOM 1	148 NH1 ARG 360	11.918 -2.688 52.071 1.00 41.02
	ATOM 1	149 NH2 ARG 360	10.345 -2.983 53.717 1.00 42.86
	ATOM 1	150 C ARG 360	13.975 1.699 54.787 1.00 29.92
	ATOM 1	151 O ARG 360	14.073 1.958 53.592 1.00 28.84
10	ATOM 1	152 N VAL 361	13.569 2.600 55.677 1.00 27.64
	ATOM 1	153 CA VAL 361	13.261 3.956 55.267 1.00 25.17
	ATOM 1	154 CB VAL 361	12.909 4.819 56.480 1.00 24.00
	ATOM 1	155 CG1 VAL 361	12.684 6.254 56.066 1.00 24.37
	ATOM 1	156 CG2 VAL 361	11.688 4.249 57.166 1.00 23.19
15	ATOM 1	157 C VAL 361	14.504 4.525 54.594 1.00 25.34
	ATOM 1	158 O VAL 361	15.613 4.407 55.133 1.00 25.79
	ATOM 1	159 N ASP 362	14.344 5.109 53.404 1.00 24.62
	ATOM 1	160 CA ASP 362	15.481 5.712 52.718 1.00 24.80
	ATOM 1	161 CB ASP 362	15.540 5.316 51.223 1.00 27.01
20	ATOM 1	162 CG ASP 362	14.307 5.720 50.433 1.00 29.25
	ATOM 1	163 OD1 ASP 362	13.697 6.764 50.731 1.00 27.58
	ATOM 1	164 OD2 ASP 362	13.963 4.987 49.479 1.00 32.41
	ATOM 1	165 C ASP 362	15.520 7.226 52.863 1.00 25.99
	ATOM 1	166 O ASP 362	14.631 7.823 53.486 1.00 25.65
25	ATOM 1	167 N GLN 363	16.561 7.845 52.312 1.00 24.73
	ATOM 1	168 CA GLN 363	16.742 9.286 52.405 1.00 26.50
	ATOM 1	169 CB GLN 363	18.044 9.682 51.690 1.00 31.84
	ATOM 1	170 CG GLN 363	18.339 11.179 51.662 1.00 36.89
	ATOM 1	171 CD GLN 363	19.008 11.689 52.921 1.00 40.13
30	ATOM 1	172 OE1 GLN 363	18.615 11.346 54.047 1.00 42.87
	ATOM 1	173 NE2 GLN 363	20.013 12.536 52.743 1.00 40.44
	ATOM 1	174 C GLN 363	15.540 10.070 51.855 1.00 25.17
	ATOM 1	175 O GLN 363	15.077 11.020 52.480 1.00 22.69
	ATOM 1	176 N ALA 364	15.023 9.659 50.701 1.00 24.53
35	ATOM 1	177 CA ALA 364	13.863 10.340 50.099 1.00 22.80
	ATOM 1	178 CB ALA 364	13.524 9.691 48.753 1.00 22.91

10

15

20

25

30

35

ATOM 1213 O ALA 368

ATOM 1214 N LEU 369

- 59 -

ATOM 1179 C ALA 364 12.631 10.326 51.022 1.00 21.81 ATOM 1180 O ALA 364 11.946 11.336 51.178 1.00 21.88 ATOM 1181 N GLU 365 12.362 9.188 51.636 1.00 22.72 ATOM 1182 CA GLU 11.218 9.062 52.532 1.00 21.63 365 10.990 7.585 52.856 1.00 22.68 ATOM 1183 CB GLU 365 10.724 6.806 51.583 1.00 23.15 ATOM 1184 CG GLU 365 10.797 5.303 51.723 1.00 28.04 ATOM 1185 CD GLU 365 ATOM 1186 OE1 GLU 365 11.632 4.813 52.501 1.00 26.39 ATOM 1187 OE2 GLU 365 10.034 4.607 51.010 1.00 27.63 ATOM 1188 C GLU 365 11.454 9.881 53.798 1.00 22.43 10.557 10.570 54.298 1.00 22.18 ATOM 1189 O GLU 365 12.681 9.822 54.304 1.00 22.10 ATOM 1190 N TYR 366 ATOM 1191 CA TYR 366 13.026 10.580 55.506 1.00 22.15 14.494 10.316 55.871 1.00 22.04 ATOM 1192 CB TYR 366 ATOM 1193 CG TYR 15.010 11.209 56.986 1.00 22.63 366 ATOM 1194 CD1 TYR 366 14.580 11.030 58.307 1.00 21.87 ATOM 1195 CE1 TYR 366 15.023 11.864 59.328 1.00 22.24 ATOM 1196 CD2 TYR 366 15.903 12.246 56.715 1.00 20.88 ATOM 1197 CE2 TYR 366 16.366 13.092 57.731 1.00 22.98 15.913 12.899 59.041 1.00 22.25 ATOM 1198 CZ TYR 366 ATOM 1199 OH TYR 366 16.315 13.752 60.054 1.00 23.04 12.797 12.095 55.332 1.00 19.98 ATOM 1200 C TYR 366 ATOM 1201 O TYR 366 12.209 12.731 56.199 1.00 19.55 ATOM 1202 N VAL 367 13.260 12.676 54.225 1.00 20.09 ATOM 1203 CA VAL 367 13.080 14.106 54.034 1.00 19.12 ATOM 1204 CB VAL 367 13.955 14.666 52.891 1.00 20.38 15.446 14.473 53.249 1.00 21.37 ATOM 1205 CG1 VAL 367 ATOM 1206 CG2 VAL 367 13.609 14.009 51.554 1.00 19.90 11.607 14.458 53.784 1.00 18.65 ATOM 1207 C VAL 367 ATOM 1208 O VAL 367 11.165 15.538 54.178 1.00 18.48 ATOM 1209 N ALA 368 10.868 13.552 53.147 1.00 20.47 ATOM 1210 CA ALA 368 9.447 13.787 52.893 1.00 19.05 ATOM 1211 CB ALA 368 8.854 12.668 51.988 1.00 18.93 ATOM 1212 C ALA 368 8.714 13.813 54.240 1.00 19.17

> 7.863 14.682 54.487 1.00 18.81 9.048 12.871 55.112 1.00 19.43

	ATOM	1215 CA LEU 369	8.417 12.819 56.428 1.00 17.85
	ATOM	1216 CB LEU 369	8.807 11.526 57.147 1.00 20.14
	ATOM	1217 CG LEU 369	8.153 10.250 56.565 1.00 21.25
	ATOM	1218 CD1 LEU 369	8.810 9.041 57.154 1.00 22.02
5	ATOM	1219 CD2 LEU 369	6.626 10.219 56.856 1.00 21.64
	ATOM	1220 C LEU 369	8.772 14.076 57.235 1.00 19.07
	ATOM	1221 O LEU 369	7.945 14.606 57.965 1.00 17.17
	ATOM	1222 N LYS 370	10.007 14.567 57.120 1.00 18.01
	ATOM	1223 CA LYS 370	10.363 15.799 57.826 1.00 19.26
10	ATOM	1224 CB LYS 370	11.819 16.199 57.522 1.00 18.97
	ATOM	1225 CG LYS 370	12.888 15.349 58.203 1.00 21.31
	ATOM	1226 CD LYS 370	14.304 15.860 57.845 1.00 25.49
	ATOM	1227 CE LYS 370	14.445 17.367 58.009 1.00 25.79
	ATOM	1228 NZ LYS 370	15.878 17.841 57.879 1.00 29.87
15	ATOM	1229 C LYS 370	9.440 16.949 57.388 1.00 17.68
	ATOM	1230 O LYS 370	8.950 17.717 58.203 1.00 17.05
	ATOM	1231 N ALA 371	9.209 17.075 56.081 1.00 17.98
	ATOM	1232 CA ALA 371	8.368 18.154 55.596 1.00 17.26
	ATOM	1233 CB ALA 371	8.344 18.154 54.065 1.00 19.00
20	ATOM	1234 C ALA 371	6.957 17.957 56.140 1.00 15.65
	ATOM	1235 O ALA 371	6.299 18.909 56.533 1.00 17.13
	ATOM	1236 N ILE 372	6.492 16.713 56.151 1.00 14.92
	ATOM	1237 CA ILE 372	5.146 16.450 56.673 1.00 16.38
	ATOM	1238 CB ILE 372	4.743 14.956 56.430 1.00 15.28
25	ATOM	1239 CG2 ILE 372	3.477 14.602 57.245 1.00 17.98
	ATOM	1240 CG1 ILE 372	4.566 14.730 54.915 1.00 18.14
	ATOM	1241 CD1 ILE 372	4.413 13.271 54.530 1.00 18.13
	ATOM	1242 C ILE 372	5.038 16.795 58.163 1.00 16.98
	ATOM	1243 O ILE 372	4.028 17.317 58.606 1.00 16.87
30	ATOM	1244 N ILE 373	6.089 16.522 58.942 1.00 14.47
	ATOM	1245 CA ILE 373	6.080 16.829 60.369 1.00 15.13
	ATOM	1246 CB ILE 373	7.392 16.251 61.042 1.00 13.81
	ATOM	1247 CG2 ILE 373	7.530 16.783 62.463 1.00 15.08
	ATOM	1248 CG1 ILE 373	7.340 14.717 61.052 1.00 14.66
35	ATOM	1249 CD1 ILE 373	8.709 14.031 61.219 1.00 17.60
	ATOM	1250 C ILE 373	5.962 18.350 60.604 1.00 15.01

	АТОМ	1251 O ILE 373	5.212 18.817 61.477 1.00 15.67
	ATOM	1252 N LEU 374	6.702 19.109 59.796 1.00 16.23
	ATOM	1253 CA LEU 374	6.688 20.557 59.880 1.00 15.91
	ATOM	1254 CB LEU 374	7.738 21.160 58.942 1.00 18.27
	ATOM	1255 CG LEU 374	7.702 22.700 58.759 1.00 19.49
	ATOM	1256 CD1 LEU 374	8.184 23.403 60.044 1.00 18.70
	ATOM	1257 CD2 LEU 374	8.596 23.092 57.597 1.00 19.61
	ATOM	1258 C LEU 374	5.316 21.128 59.490 1.00 17.14
	ATOM	1259 O LEU 374	4.765 21.980 60.167 1.00 16.72
	ATOM	1260 N LEU 375	4.803 20.662 58.367 1.00 17.78
	ATOM	1261 CA LEU 375	3.561 21.202 57.831 1.00 17.01
	ATOM	1262 CB LEU 375	3.573 21.071 56.301 1.00 19.06
	ATOM	1263 CG LEU 375	4.788 21.715 55.581 1.00 18.84
	MOTA	1264 CD1 LEU 375	4.903 21.197 54.151 1.00 18.22
	ATOM	1265 CD2 LEU 375	4.644 23.234 55.610 1.00 19.41
	ATOM	1266 C LEU 375	2.349 20.514 58.422 1.00 19.26
	MOTA	1267 O LEU 375	1.603 19.823 57.705 1.00 19.50
	MOTA	1268 N ASN 376	2.178 20.727 59.723 1.00 16.95
	MOTA	1269 CA ASN 376	1.087 20.136 60.510 1.00 19.78
	MOTA	1270 CB ASN 376	1.605 19.772 61.912 1.00 18.97
	ATOM	1271 CG ASN 376	0.537 19.124 62.780 1.00 23.13
	ATOM	1272 OD1 ASN 376	-0.527 18.732 62.289 1.00 19.72
	ATOM	1273 ND2 ASN 376	0.827 18.989 64.081 1.00 21.10
	ATOM	1274 C ASN 376	-0.088 21.080 60.641 1.00 17.80
	ATOM	1275 O ASN 376	-0.043 22.028 61.412 1.00 18.77
			-1.188 20.820 59.909 1.00 20.03
			-1.463 19.684 59.010 1.00 19.34
			-2.342 21.728 60.011 1.00 20.40
			-3.239 21.293 58.858 1.00 18.78
)			-2.979 19.796 58.774 1.00 19.22
			-3.086 21.705 61.336 1.00 21.89
			-3.922 22.583 61.594 1.00 22.57
			-2.771 20.723 62.177 1.00 20.09
			-3.444 20.609 63.463 1.00 22.47
i			-3.608 19.131 63.809 1.00 23.71
	ATOM	1286 CG ASP 378	-4.555 18.426 62.847 1.00 25.43

-5.579 19.028 62.487 1.00 28.35 ATOM 1287 OD1 ASP 378 ATOM 1288 OD2 ASP 378 -4.289 17.283 62.443 1.00 30.58 -2.823 21.403 64.603 1.00 22.30 ATOM 1289 C ASP 378 -3.265 21.309 65.760 1.00 22.98 ATOM 1290 O ASP 378 -1.793 22.181 64.279 1.00 22.51 5 ATOM 1291 N VAL 379 -1.167 23.053 65.266 1.00 21.52 ATOM 1292 CA VAL 379 0.044 23.807 64.662 1.00 20.60 ATOM 1293 CB VAL 379 ATOM 1294 CG1 VAL 379 0.424 25.004 65.532 1.00 22.27 1,226 22.848 64.516 1.00 22.31 ATOM 1295 CG2 VAL 379 -2.255 24.048 65.658 1.00 23.83 10 ATOM 1296 C VAL 379 -2.918 24.655 64.793 1.00 25.06 ATOM 1297 O VAL 379 -2,460 24,212 66,958 1,00 23,33 ATOM 1298 N LYS 380 -3.490 25.124 67.430 1.00 24.49 ATOM 1299 CA LYS 380 ATOM 1300 CB LYS 380 -3.797 24.829 68.904 1.00 25.21 -4.182 23.365 69.131 1.00 28.03 ATOM 1301 CG LYS 380 15 ATOM 1302 CD LYS 380 -4.460 23.035 70.594 1.00 30.82 -4.728 21.536 70.758 1.00 31.68 ATOM 1303 CE LYS 380 -4.904 21.079 72.177 1.00 33.50 ATOM 1304 NZ LYS 380 -3.055 26.573 67.250 1.00 24.85 ATOM 1305 C LYS 380 20 ATOM 1306 O LYS 380 -1.874 26.891 67.408 1.00 25.55 -3.988 27.445 66.861 1.00 24.69 ATOM 1307 N GLY 381 -3.647 28.852 66.704 1.00 26.29 ATOM 1308 CA GLY 381 ATOM 1309 C GLY 381 -3.384 29.378 65.295 1.00 25.30 ATOM 1310 O GLY 381 -3.246 30.598 65.093 1.00 27.29 25 ATOM 1311 N LEU 382 -3.313 28.490 64.311 1.00 26.35 ATOM 1312 CA LEU 382 -3.054 28.914 62.941 1.00 26.95 -2.997 27.706 61.995 1.00 25.01 ATOM 1313 CB LEU 382 -1.865 26.700 62.265 1.00 24.87 ATOM 1314 CG LEU 382 ATOM 1315 CD1 LEU 382 -2.011 25.507 61.314 1.00 24.53 -0.518 27.384 62.064 1.00 24.40 30 ATOM 1316 CD2 LEU 382 -4.120 29.885 62.428 1.00 28.77 ATOM 1317 C LEU 382 ATOM 1318 O LEU 382 -5.310 29.719 62.695 1.00 28.39 ATOM 1319 N LYS 383 -3.660 30.881 61.681 1.00 30.83 ATOM 1320 CA LYS 383 -4.518 31.894 61.078 1.00 32.60 -3.670 33.104 60.699 1.00 35.65 35 ATOM 1321 CB LYS 383 -4.352 34.121 59.788 1.00 40.31 ATOM 1322 CG LYS 383

	ATOM	1323 CD LYS 383	-5.044 35.203 60.589 1.00 42.92
	ATOM	1324 CE LYS 383	-5.436 36.376 59.702 1.00 43.80
	ATOM	1325 NZ LYS 383	-6.040 37.476 60.505 1.00 44.52
	ATOM	1326 C LYS 383	-5.159 31.313 59.819 1.00 32.46
5	ATOM	1327 O LYS 383	-6.374 31.411 59.620 1.00 33.42
	ATOM	1328 N ASN 384	-4.332 30.700 58.977 1.00 30.19
	ATOM	1329 CA ASN 384	-4.794 30.118 57.720 1.00 29.86
	ATOM	1330 CB ASN 384	-4.154 30.854 56.549 1.00 32.74
	ATOM	1331 CG ASN 384	-4.460 32.336 56.570 1.00 36.46
10	ATOM	1332 OD1 ASN 384	-5.625 32.730 56.585 1.00 39.59
	ATOM	1333 ND2 ASN 384	-3.418 33.166 56.583 1.00 37.88
	ATOM	1334 C ASN 384	-4.466 28.636 57.636 1.00 26.29
	ATOM	1335 O ASN 384	-3.558 28.229 56.912 1.00 26.38
	ATOM	1336 N ARG 385	-5.218 27.845 58.387 1.00 24.62
15	ATOM	1337 CA ARG 385	-5.005 26.406 58.431 1.00 24.85
	ATOM	1338 CB ARG 385	-5.994 25.779 59.413 1.00 24.62
	ATOM	1339 CG ARG 385	-5.910 24.275 59.561 1.00 27.77
	ATOM	1340 CD ARG 385	-6.705 23.839 60.785 1.00 30.37
	ATOM	1341 NE ARG 385	-5.976 24.188 62.004 1.00 31.78
20	ATOM	1342 CZ ARG 385	-6.329 25.148 62.849 1.00 31.80
	ATOM	1343 NH1 ARG 385	-7.432 25.867 62.629 1.00 31.71
	ATOM	1344 NH2 ARG 385	-5.542 25.426 63.886 1.00 28.60
	ATOM	1345 C ARG 385	-5.079 25.727 57.070 1.00 24.38
	ATOM	1346 O ARG 385	-4.289 24.824 56.783 1.00 24.23
25	ATOM	1347 N GLN 386	-6.003 26.165 56.214 1.00 24.39
	ATOM	1348 CA GLN 386	-6.128 25.542 54.906 1.00 25.99
	ATOM	1349 CB GLN 386	-7.320 26.124 54.128 1.00 29.68
	ATOM	1350 CG GLN 386	-7.256 27.619 53.863 1.00 34.93
	ATOM	1351 CD GLN 386	-7.246 28.442 55.136 1.00 37.35
30	ATOM	1352 OE1 GLN 386	-8.016 28.183 56.072 1.00 39.44
	ATOM	1353 NE2 GLN 386	-6.373 29.443 55.183 1.00 39.95
	ATOM	1354 C GLN 386	-4.867 25.646 54.067 1.00 24.30
	ATOM	1355 O GLN 386	-4.561 24.727 53.318 1.00 25.10
	ATOM	1356 N GLU 387	-4.140 26.752 54.182 1.00 25.50
35	ATOM	1357 CA GLU 387	-2.907 26.905 53.413 1.00 25.38
	ATOM	1358 CB GLU 387	-2.358 28.328 53.594 1.00 29.21

- 64 -

ATOM 1359 CG GLU 387 -3.234 29.420 52.915 1.00 33.12	
ATOM 1360 CD GLU 387 -2.845 30.838 53.284 1.00 37.28	
ATOM 1361 OE1 GLU 387 -1.634 31.125 53.407 1.00 40.75	
ATOM 1362 OE2 GLU 387 -3.750 31.691 53.436 1.00 38.95	
ATOM 1363 C GLU 387 -1.877 25.841 53.852 1.00 25.54	
ATOM 1364 O GLU 387 -1.097 25.329 53.030 1.00 24.67	
ATOM 1365 N VAL 388 -1.897 25.476 55.132 1.00 24.28	
ATOM 1366 CA VAL 388 -0.960 24.447 55.617 1.00 21.40	
ATOM 1367 CB VAL 388 -0.845 24,439 57,168 1.00 19.68	
ATOM 1368 CG1 VAL 388 0.182 23.410 57.597 1.00 22.22	
ATOM 1369 CG2 VAL 388 -0.477 25.824 57.691 1.00 20.28	
ATOM 1370 C VAL 388 -1.444 23.076 55.178 1.00 22.10	
ATOM 1371 O VAL 388 -0.666 22.211 54.782 1.00 21.10	
ATOM 1372 N GLU 389 -2.750 22.859 55.243 1.00 22.00	
ATOM 1373 CA GLU 389 -3.284 21.577 54.825 1.00 21.41	
ATOM 1374 CB GLU 389 -4.801 21.538 54.987 1.00 22.76	
ATOM 1375 CG GLU 389 -5.358 20.146 54.988 1.00 31.47	
ATOM 1376 CD GLU 389 -6.793 20.093 55.471 1.00 36.14	
ATOM 1377 OE1 GLU 389 -7.160 20.927 56.334 1.00 39.74	
ATOM 1378 OE2 GLU 389 -7.540 19.204 55.006 1.00 39.63	
ATOM 1379 C GLU 389 -2.936 21.294 53.382 1.00 19.32	
ATOM 1380 O GLU 389 -2.653 20.155 53.025 1.00 21.32	
ATOM 1381 N VAL 390 -3.001 22.313 52.534 1.00 19.72	
ATOM 1382 CA VAL 390 -2.685 22.148 51.125 1.00 19.82	
ATOM 1383 CB VAL 390 -2.950 23.447 50.316 1.00 19.77	
ATOM 1384 CG1 VAL 390 -2.307 23.344 48.919 1.00 22.22	
ATOM 1385 CG2 VAL 390 -4.442 23.652 50.169 1.00 23.95	
ATOM 1386 C VAL 390 -1.231 21.744 50.924 1.00 20.27	
ATOM 1387 O VAL 390 -0.924 20.894 50.093 1.00 20.79	
ATOM 1388 N LEU 391 -0.334 22.345 51.699 1.00 21.06	
ATOM 1389 CA LEU 391 1.078 22.004 51.552 1.00 19.84	
ATOM 1390 CB LEU 391 1.951 22.982 52.328 1.00 20.90	
ATOM 1391 CG LEU 391 1.895 24.438 51.836 1.00 21.65	
ATOM 1392 CD1 LEU 391 2.846 25.283 52.673 1.00 23.70	
ATOM 1393 CD2 LEU 391 2.260 24.515 50.351 1.00 25.56	
ATOM 1394 C LEU 391 1.327 20.583 52.031 1.00 19.59	

	ATOM	1395 O LEU 391	2.090 19.837 51.421 1.00 19.63	
	ATOM	1396 N ARG 392	0.680 20.192 53.130 0.50 19.30	AC1
	ATOM	1397 CA ARG 392	0.862 18.823 53.628 0.50 19.65	AC1
	ATOM	1398 CB ARG 392	0.212 18.620 55.016 0.50 19.22	AC1
5	ATOM	1399 CG ARG 392	0.060 17.123 55.382 0.50 18.74	AC1
	ATOM	1400 CD ARG 392	-0.380 16.857 56.840 0.50 19.04	AC1
	ATOM	1401 NE ARG 392	0.710 17.001 57.811 0.50 18.30	AC1
	ATOM	1402 CZ ARG 392	0.739 16.427 59.020 0.50 18.32	AC1
	ATOM	1403 NH1 ARG 392	-0.262 15.660 59.432 0.50 18.09	AC1
10	ATOM	1404 NH2 ARG 392	1.783 16.606 59.826 0.50 13.08	AC1
	ATOM	1405 C ARG 392	0.259 17.833 52.624 0.50 19.79	AC1
	ATOM	1406 O ARG 392	0.768 16.730 52.453 0.50 19.90	AC1
	ATOM	1407 N GLU 393	-0.839 18.220 51.976 1.00 19.51	
	ATOM	1408 CA GLU 393	-1.484 17.355 50.979 1.00 21.32	
15	ATOM	1409 CB GLU 393	-2.858 17.922 50.575 1.00 23.83	
	ATOM	1410 CG GLU 393	-3.631 17.066 49.588 1.00 29.44	
	ATOM	1411 CD GLU 393	-4.209 15.767 50.173 1.00 34.23	
	ATOM	1412 OE1 GLU 393	-3.940 15.434 51.348 1.00 34.71	
	ATOM	1413 OE2 GLU 393	-4.952 15.071 49.433 1.00 37.12	
20	ATOM	1414 C GLU 393	-0.556 17.210 49.763 1.00 21.12	
	ATOM	1415 O GLU 393	-0.486 16.147 49.157 1.00 20.35	
	ATOM	1416 N LYS 394	0.143 18.287 49.395 1.00 19.98	
	ATOM	1417 CA LYS 394	1.102 18.186 48.302 1.00 21.24	
	ATOM	1418 CB LYS 394	1.787 19.519 48.048 1.00 22.05	
25	ATOM	1419 CG LYS 394	0.903 20.468 47.258 1.00 24.02	
	ATOM	1420 CD LYS 394	1.608 21.778 46.964 1.00 25.62	
	ATOM	1421 CE LYS 394	0.690 22.711 46.199 1.00 28.47	
	ATOM	1422 NZ LYS 394	1.369 24.012 45.959 1.00 30.41	
	ATOM	1423 C LYS 394	2.153 17.137 48.667 1.00 22.08	
30	ATOM	1424 O LYS 394	2.555 16.341 47.825 1.00 20.82	
	ATOM	1425 N MET 395	2.590 17.136 49.932 1.00 21.43	
	ATOM	1426 CA MET 395	3.607 16.166 50.369 1.00 21.13	
	ATOM	1427 CB MET 395	4.177 16.520 51.746 1.00 24.05	
	ATOM	1428 CG MET 395	5.100 17.680 51.738 1.00 24.66	
35	ATOM	1429 SD MET 395	6.457 17.503 50.571 1.00 27.36	
	ATOM	1430 CE MET 395	6.985 15.797 50.738 1.00 23.91	

-	66	-

ATOM	1431 C MET 395	3.121 14.744 50.417 1.00 20.46
ATOM	1432 O MET 395	3.872 13.832 50.095 1.00 22.42
ATOM	1433 N PHE 396	1.862 14.542 50.827 1.00 20.87
ATOM	1434 CA PHE 396	1.285 13.202 50.858 1.00 21.65
ATOM	1435 CB PHE 396	-0.176 13.203 51.374 1.00 20.90
ATOM	1436 CG PHE 396	-0.320 13.286 52.875 1.00 22.60
ATOM	1437 CD1 PHE 396	0.733 12.996 53.727 1.00 22.79
ATOM	1438 CD2 PHE 396	-1.544 13.640 53.436 1.00 23.58
ATOM	1439 CE1 PHE 396	0.570 13.063 55.116 1.00 20.29
ATOM	1440 CE2 PHE 396	-1.712 13.702 54.826 1.00 23.72
ATOM	1441 CZ PHE 396	-0.655 13.416 55.669 1.00 22.24
ATOM	1442 C PHE 396	1.281 12.652 49.429 1.00 22.43
ATOM	1443 O PHE 396	1.635 11.494 49.215 1.00 21.80
ATOM	1444 N LEU 397	0.844 13.462 48.458 1.00 22.96
ATOM	1445 CA LEU 397	0.813 13.022 47.061 1.00 21.97
ATOM	1446 CB LEU 397	0.139 14.099 46.176 1.00 22.88
ATOM	1447 CG LEU 397	-1.385 14.161 46.354 1.00 23.93
ATOM	1448 CD1 LEU 397	-1.981 15.078 45.315 1.00 25.27
ATOM	1449 CD2 LEU 397	-1.972 12.759 46.190 1.00 25.99
ATOM	1450 C LEU 397	2.233 12.705 46.560 1.00 24.94
ATOM	1451 O LEU 397	2.450 11.692 45.873 1.00 25.61
ATOM	1452 N CYS 398	3.195 13.548 46.924 1.00 23.80
ATOM	1453 CA CYS 398	4.593 13.333 46.519 1.00 26.51
ATOM	1454 CB CYS 398	5.509 14.454 47.041 1.00 28.87
ATOM	1455 SG CYS 398	5.551 15.910 46.032 1.00 39.48
ATOM	1456 C CYS 398	5.111 12.027 47.090 1.00 25.35
ATOM	1457 O CYS 398	5.738 11.221 46.399 1.00 25.03
ATOM	1458 N LEU 399	4.861 11.821 48.371 1.00 24.81
ATOM	1459 CA LEU 399	5.366 10.620 49.009 1.00 24.04
ATOM	1460 CB LEU 399	5.232 10.739 50.530 1.00 24.26
ATOM	1461 CG LEU 399	5.806 9.580 51.344 1.00 24.01
ATOM	1462 CD1 LEU 399	7.281 9.343 50.985 1.00 22.08
ATOM	1463 CD2 LEU 399	5.672 9.931 52.821 1.00 22.85
ATOM	1464 C LEU 399	4.715 9.352 48.518 1.00 26.35
ATOM	1465 O LEU 399	5.398 8.363 48.267 1.00 25.02
ATOM	1466 N ASP 400	3.391 9.377 48.361 1.00 27.30

Ē	-
Œ	1
Œ	
	2
1	4,410
L	
Ű	-
ij	
3	
	ì
i wa	1
ñ	
Ē	1
7	
H	<u>.</u>

	ATOM	1467 CA ASP 400	2.680 8.200 47.874 1.00 29.09
	ATOM	1468 CB ASP 400	1.179 8.490 47.772 1.00 31.25
	ATOM	1469 CG ASP 400	0.379 7.258 47.400 1.00 34.75
	ATOM	1470 OD1 ASP 400	0.236 6.356 48.252 1.00 35.16
5	ATOM	1471 OD2 ASP 400	-0.091 7.188 46.250 1.00 38.49
	ATOM	1472 C ASP 400	3.217 7.816 46.497 1.00 28.91
	ATOM	1473 O ASP 400	3.436 6.642 46.212 1.00 29.66
	ATOM	1474 N GLU 401	3.420 8.813 45.644 1.00 28.16
	ATOM	1475 CA GLU 401	3.936 8.577 44.299 1.00 29.87
10	ATOM	1476 CB GLU 401	4.052 9.895 43.533 1.00 32.50
	ATOM	1477 CG GLU 401	4.735 9.751 42.180 1.00 38.83
	ATOM	1478 CD GLU 401	4.784 11.048 41.406 1.00 42.93
	ATOM	1479 OE1 GLU 401	5.449 12.003 41.865 1.00 45.46
	ATOM	1480 OE2 GLU 401	4.147 11.114 40.334 1.00 45.87
15	MOTA	1481 C GLU 401	5.308 7.911 44.360 1.00 31.19
	ATOM	1482 O GLU 401	5.574 6.926 43.650 1.00 31.37
	ATOM	1483 N TYR 402	6.171 8.444 45.224 1.00 28.55
	ATOM	1484 CA TYR 402	7.516 7.918 45.365 1.00 29.01
	ATOM	1485 CB TYR 402	8.314 8.737 46.384 1.00 27.40
20	ATOM	1486 CG TYR 402	9.667 8.134 46.659 1.00 27.45
	MOTA	1487 CD1 TYR 402	9.849 7.238 47.709 1.00 27.18
	ATOM	1488 CE1 TYR 402	11.087 6.635 47.933 1.00 28.15
	ATOM	1489 CD2 TYR 402	10.747 8.419 45.834 1.00 27.22
	ATOM	1490 CE2 TYR 402	11.996 7.820 46.050 1.00 30.03
25	ATOM	1491 CZ TYR 402	12.147 6.936 47.097 1.00 30.78
	ATOM	1492 OH TYR 402	13.374 6.358 47.316 1.00 31.66
	ATOM	1493 C TYR 402	7.503 6.453 45.769 1.00 30.16
	ATOM	1494 O TYR 402	8.206 5.641 45.187 1.00 29.67
	MOTA	1495 N CYS 403	6.700 6.113 46.763 1.00 30.42
30	ATOM	1496 CA CYS 403	6.616 4.739 47.215 1.00 34.32
	ATOM	1497 CB CYS 403	5.691 4.650 48.430 1.00 33.37
	ATOM	1498 SG CYS 403	6.357 5.485 49.920 1.00 31.63
	ATOM	1499 C CYS 403	6.116 3.820 46.104 1.00 36.81
	ATOM	1500 O CYS 403	6.612 2.703 45.936 1.00 36.95
35	ATOM	1501 N ARG 404	5.140 4.289 45.335 1.00 39.50
	ATOM	1502 CA ARG 404	4.597 3.453 44.271 1.00 42.67

ATOM 1503 CB ARG 404 3.280 4.045 43.746 1.00 43.44 2.135 3.802 44.718 1.00 46.08 ATOM 1504 CG ARG 404 ATOM 1505 CD ARG 404 0.746 4.164 44.188 1.00 46.89 ATOM 1506 NE ARG 404 0.490 5.602 44.159 1.00 46.69 5 ATOM 1507 CZ ARG 404 0.733 6.386 43.116 1.00 47.48 1.241 5.874 42.002 1.00 48.94 ATOM 1508 NH1 ARG 404 ATOM 1509 NH2 ARG 404 0.462 7.684 43.181 1.00 48.22 ATOM 1510 C ARG 404 5.578 3.206 43.137 1.00 43.67 ATOM 1511 O ARG 404 5.640 2.102 42.598 1.00 44.97 10 ATOM 1512 N ARG 405 6.356 4.220 42.785 1.00 45.45 ATOM 1513 CA ARG 405 7.330 4.098 41.710 1.00 47.72 ATOM 1514 CB ARG 405 7.700 5.481 41.167 1.00 49.80 ATOM 1515 CG ARG 405 6.535 6.298 40.624 1.00 53.09 ATOM 1516 CD ARG 405 7.005 7.695 40.233 1.00 56.62 15 ATOM 1517 NE ARG 405 5.931 8.506 39.661 1.00 59.35 ATOM 1518 CZ ARG 405 5.356 8.263 38.488 1.00 60.20 ATOM 1519 NH1 ARG 405 5.753 7.231 37.756 1.00 61.80 ATOM 1520 NH2 ARG 405 4.382 9.049 38.046 1.00 60.75 ATOM 1521 C ARG 405 8.609 3.410 42.166 1.00 48.23 20 9.078 2.464 41.528 1.00 48.90 ATOM 1522 O ARG 405 ATOM 1523 N SER 406 9.163 3.891 43.278 1.00 47.66 ATOM 1524 CA SER 406 10.421 3.382 43.819 1.00 48.66 ATOM 1525 CB SER 406 11.099 4.477 44.638 1.00 49.49 11.118 5.698 43.919 1.00 51.64 ATOM 1526 OG SER 406 25 ATOM 1527 C SER 406 10.336 2.112 44.656 1.00 48.77 ATOM 1528 O SER 406 11.355 1.507 44.968 1.00 48.91 ATOM 1529 N ARG 407 9.129 1.711 45.026 1.00 49.27 ATOM 1530 CA ARG 407 8.948 0.500 45.813 1.00 50.47 ATOM 1531 CB ARG 407 9.106 0.811 47.302 1.00 52.25 30 ATOM 1532 CG ARG 407 10.476 0.434 47.849 1.00 54.88 ATOM 1533 CD ARG 407 10.942 1.401 48.918 1.00 55.39 12.157 0.927 49.573 1.00 56.11 ATOM 1534 NE ARG 407 ATOM 1535 CZ ARG 407 12.885 1.653 50.416 1.00 56.40 ATOM 1536 NH1 ARG 407 12.524 2.895 50.707 1.00 56.21 35 ATOM 1537 NH2 ARG 407 13.973 1.133 50.972 1.00 55.90 ATOM 1538 C ARG 407 7.586 -0.110 45.535 1.00 50.00

- 70 -

_	•
ΨĒ	
	۰
ű	=
_	•
Ξ	
ıī	=
-	•
C. C. C. F. F. F. F. F. F.	2
U	١
-	
Ū	
#	
_	
۳,	
-	
,	
H	Ė

	ATOM 1575 CA ARG 413	4.413 1.286 52.407 1.00 27.65
	ATOM 1576 CB ARG 413	5.513 1.319 51.348 1.00 29.50
	ATOM 1577 CG ARG 413	6.850 1.839 51.905 1.00 29.56
	ATOM 1578 CD ARG 413	8.004 1.721 50.903 1.00 32.68
5	ATOM 1579 NE ARG 413	9.242 2.244 51.484 1.00 34.48
	ATOM 1580 CZ ARG 413	9.951 1.632 52.433 1.00 35.49
	ATOM 1581 NH1 ARG 413	9.569 0.454 52.914 1.00 34.87
	ATOM 1582 NH2 ARG 413	11.036 2.221 52.929 1.00 35.73
	ATOM 1583 C ARG 413	4.153 2.715 52.874 1.00 27.61
10	ATOM 1584 O ARG 413	4.656 3.142 53.911 1.00 26.64
	ATOM 1585 N PHE 414	3.377 3.447 52.091 1.00 27.23
	ATOM 1586 CA PHE 414	3.025 4.829 52.406 1.00 25.72
	ATOM 1587 CB PHE 414	2.109 5.368 51.290 1.00 27.69
	ATOM 1588 CG PHE 414	1.553 6.756 51.552 1.00 26.95
15	ATOM 1589 CD1 PHE 414	2.359 7.882 51.454 1.00 28.43
	ATOM 1590 CD2 PHE 414	0.217 6.921 51.891 1.00 29.19
	ATOM 1591 CE1 PHE 414	1.842 9.165 51.692 1.00 28.49
	ATOM 1592 CE2 PHE 414	-0.315 8.199 52.134 1.00 29.46
	ATOM 1593 CZ PHE 414	0.503 9.325 52.033 1.00 28.75
20	ATOM 1594 C PHE 414	2.336 4.891 53.777 1.00 26.40
	ATOM 1595 O PHE 414	2.691 5.702 54.637 1.00 26.65
	ATOM 1596 N ALA 415	1.355 4.027 53.997 1.00 25.07
	ATOM 1597 CA ALA 415	0.652 4.002 55.271 1.00 24.63
	ATOM 1598 CB ALA 415	-0.531 3.028 55.193 1.00 23.72
25	ATOM 1599 C ALA 415	1.572 3.622 56.436 1.00 24.02
	ATOM 1600 O ALA 415	1.433 4.142 57.547 1.00 23.15
	ATOM 1601 N ALA 416	2.518 2.722 56.174 1.00 24.35
	ATOM 1602 CA ALA 416	3.448 2.270 57.205 1.00 24.54
	ATOM 1603 CB ALA 416	4.313 1.143 56.666 1.00 24.42
30	ATOM 1604 C ALA 416	4.319 3.436 57.639 1.00 23.97
	ATOM 1605 O ALA 416	4.544 3.646 58.832 1.00 25.89
	ATOM 1606 N LEU 417	4.799 4.192 56.664 1.00 23.99
	ATOM 1607 CA LEU 417	5.638 5.348 56.952 1.00 23.65
	ATOM 1608 CB LEU 417	6.056 6.013 55.651 1.00 23.88
35	ATOM 1609 CG LEU 417	6.940 5.132 54.768 1.00 22.81
	ATOM 1610 CD1 LEU 417	7.104 5.745 53.381 1.00 25.97

	ATOM	1611 CD2 LEU 417	8.313 4.978 55.464 1.00 24.86
	MOTA	1612 C LEU 417	4.894 6.346 57.843 1.00 23.64
	ATOM	1613 O LEU 417	5.434 6.825 58.851 1.00 24.26
	ATOM	1614 N LEU 418	3.635 6.632 57.517 1.00 22.96
5	ATOM	1615 CA LEU 418	2.896 7.617 58.305 1.00 22.78
	ATOM	1616 CB LEU 418	1.555 7.961 57.622 1.00 22.19
	ATOM	1617 CG LEU 418	1.632 8.536 56.193 1.00 22.93
	ATOM	1618 CD1 LEU 418	0.232 8.983 55.715 1.00 23.88
	ATOM	1619 CD2 LEU 418	2.554 9.749 56.179 1.00 23.65
10	ATOM	1620 C LEU 418	2.646 7.201 59.762 1.00 24.12
	ATOM	1621 O LEU 418	2.372 8.046 60.620 1.00 22.61
	ATOM	1622 N LEU 419	2.706 5.901 60.049 1.00 25.06
	ATOM	1623 CA LEU 419	2.496 5.440 61.404 1.00 27.92
	ATOM	1624 CB LEU 419	2.406 3.909 61.451 1.00 31.65
15	ATOM	1625 CG LEU 419	1.114 3.343 60.884 1.00 34.11
	ATOM	1626 CD1 LEU 419	1.026 1.848 61.218 1.00 36.06
	ATOM	1627 CD2 LEU 419	-0.068 4.081 61.480 1.00 34.83
	ATOM	1628 C LEU 419	3.594 5.891 62.360 1.00 29.85
	MOTA	1629 O LEU 419	3.400 5.885 63.574 1.00 31.55
20	ATOM	1630 N ARG 420	4.736 6.296 61.828 1.00 31.33
	ATOM	1631 CA ARG 420	5.801 6.725 62.718 1.00 31.87
	MOTA	1632 CB ARG 420	7.145 6.755 61.985 1.00 32.74
	ATOM	1633 CG ARG 420	7.648 5.387 61.490 1.00 33.67
	ATOM	1634 CD ARG 420	7.856 4.364 62.622 1.00 36.93
25	ATOM	1635 NE ARG 420	6.709 3.481 62.820 1.00 35.35
	ATOM	1636 CZ ARG 420	6.179 3.194 64.003 1.00 37.82
	ATOM	1637 NH1 ARG 420	6.692 3.714 65.116 1.00 39.26
	ATOM	1638 NH2 ARG 420	5.112 2.408 64.079 1.00 39.04
	ATOM	1639 C ARG 420	5.477 8.092 63.303 1.00 32.15
30	ATOM	1640 O ARG 420	5.995 8.456 64.362 1.00 31.60
	ATOM	1641 N LEU 421	4.591 8.845 62.655 1.00 30.38
	ATOM	1642 CA LEU 421	4.278 10.175 63.164 1.00 29.53
	ATOM	1643 CB LEU 421	3.519 10.976 62.121 1.00 30.72
	ATOM	1644 CG LEU 421	4.322 11.027 60.808 1.00 31.31
35	ATOM	1645 CD1 LEU 421	3.645 12.019 59.885 1.00 32.38
	ATOM	1646 CD2 LEU 421	5.800 11.411 61.053 1.00 31.74

	ATOM	1647 C LEU 421	3.582 10.256 64.521 1.00 28.39
	ATOM	1648 O LEU 421	3.977 11.061 65.363 1.00 26.36
	ATOM	1649 N PRO 422	2.533 9.446 64.762 1.00 27.69
	ATOM	1650 CD PRO 422	1.678 8.672 63.839 1.00 27.47
5	ATOM	1651 CA PRO 422	1.915 9.559 66.090 1.00 26.04
	ATOM	1652 CB PRO 422	0.717 8.603 66.005 1.00 28.29
	ATOM	1653 CG PRO 422	0.350 8.664 64.557 1.00 28.91
	ATOM	1654 C PRO 422	2.906 9.143 67.198 1.00 25.36
	ATOM	1655 O PRO 422	2.832 9.637 68.322 1.00 24.06
10	ATOM	1656 N ALA 423	3.821 8.228 66.872 1.00 24.34
	ATOM	1657 CA ALA 423	4.817 7.779 67.840 1.00 22.88
	ATOM	1658 CB ALA 423	5.589 6.599 67.273 1.00 26.29
	ATOM	1659 C ALA 423	5.765 8.942 68.158 1.00 24.20
	ATOM	1660 O ALA 423	6.094 9.197 69.315 1.00 22.14
15	ATOM	1661 N LEU 424	6.212 9.640 67.119 1.00 22.92
	ATOM	1662 CA LEU 424	7.103 10.773 67.309 1.00 22.78
	ATOM	1663 CB LEU 424	7.512 11.306 65.936 1.00 23.40
	ATOM	1664 CG LEU 424	8.405 12.531 65.875 1.00 24.54
	ATOM	1665 CD1 LEU 424	9.777 12.226 66.517 1.00 22.52
20	ATOM	1666 CD2 LEU 424	8.589 12.892 64.405 1.00 22.78
	ATOM	1667 C LEU 424	6.422 11.861 68.153 1.00 22.46
	ATOM	1668 O LEU 424	7.036 12.468 69.038 1.00 21.68
	ATOM	1669 N ARG 425	5.136 12.101 67.900 1.00 22.38
	ATOM	1670 CA ARG 425	4.386 13.095 68.663 1.00 23.67
25	ATOM	1671 CB ARG 425	2.969 13.240 68.087 1.00 26.56
	ATOM	1672 CG ARG 425	2.066 14.140 68.903 1.00 30.90
	ATOM	1673 CD ARG 425	0.977 14.732 68.031 1.00 36.25
	ATOM	1674 NE ARG 425	0.469 13.774 67.044 1.00 40.86
	ATOM	1675 CZ ARG 425	-0.070 12.592 67.339 1.00 42.76
30	ATOM	1676 NH1 ARG 425	-0.183 12.196 68.604 1.00 46.63
	MOTA	1677 NH2 ARG 425	-0.498 11.800 66.367 1.00 44.97
	MOTA	1678 C ARG 425	4.309 12.737 70.150 1.00 21.12
	ATOM	1679 O ARG 425	4.418 13.604 71.021 1.00 21.30
	ATOM	1680 N SER 426	4.124 11.452 70.436 1.00 19.60
35	ATOM	1681 CA SER 426	4.021 10.989 71.820 1.00 19.49
	ATOM	1682 CB SER 426	3.534 9.539 71.855 1.00 20.63

			0.404 0.000 70.400 4.00.00.47	
			3.491 9.086 73.198 1.00 23.17	
			5.374 11.096 72.535 1.00 17.38	
			5.458 11.496 73.698 1.00 18.97	
			6.419 10.742 71.812 1.00 18.11	
5			7.770 10.812 72.368 1.00 15.88	
	ATOM	1688 CB ILE 427	8.763 10.095 71.449 1.00 15.75	
	ATOM	1689 CG2 ILE 427	10.213 10.351 71.913 1.00 17.78	
	MOTA	1690 CG1 ILE 427	8.479 8.591 71.526 1.00 18.23	
	ATOM	1691 CD1 ILE 427	9.082 7.789 70.440 1.00 20.33	
10	MOTA	1692 C ILE 427	8.146 12.272 72.599 1.00 16.69	
	ATOM	1693 O ILE 427	8.779 12.589 73.606 1.00 16.41	
	ATOM	1694 N SER 428	7.767 13.159 71.685 1.00 17.02	
	ATOM	1695 CA SER 428	8.059 14.590 71.884 1.00 17.37	
	ATOM	1696 CB SER 428	7.636 15.393 70.633 1.00 18.11	
15	ATOM	1697 OG SER 428	7.745 16.794 70.876 1.00 19.14	
	ATOM	1698 C SER 428	7.377 15.138 73.154 1.00 18.08	
	ATOM	1699 O SER 428	7.968 15.916 73.928 1.00 16.98	
	ATOM	1700 N LEU 429	6.134 14.741 73.425 1.00 18.84	
	ATOM	1701 CA LEU 429	5.518 15.249 74.633 1.00 19.23	
20	ATOM	1702 CB LEU 429	4.054 14.807 74.723 1.00 22.17	
	ATOM	1703 CG LEU 429	3.187 15.432 73.625 1.00 25.96	
	ATOM	1704 CD1 LEU 429	1.800 14.809 73.624 1.00 28.92	
	ATOM	1705 CD2 LEU 429	3.087 16.943 73.855 1.00 29.57	
	ATOM	1706 C LEU 429	6.296 14.782 75.860 1.00 17.99	
25	ATOM	1707 O LEU 429	6.465 15.527 76.816 1.00 18.52	
	ATOM	1708 N LYS 430	6.778 13.544 75.830 1.00 18.39	
	ATOM	1709 CA LYS 430	7.540 13.047 76.957 1.00 17.66	
	ATOM	1710 CB LYS 430	7.780 11.544 76.826 1.00 19.73	
	ATOM	1711 CG LYS 430	8.539 10.975 78.020 1.00 23.74	
30	ATOM	1712 CD LYS 430	7.625 11.004 79.260 1.00 27.95	
	ATOM	1713 CE LYS 430	8.192 10.194 80.414 1.00 34.36	
	ATOM	1714 NZ LYS 430	7.167 10.122 81.490 1.00 36.64	
	ATOM	1715 C LYS 430	8.865 13.795 77.077 1.00 18.37	
	ATOM	1716 O LYS 430	9.346 14.034 78.191 1.00 18.47	
35	ATOM	1717 N SER 431	9.435 14.174 75.936 0.50 17.09	AC1
	ATOM	1718 CA SER 431	10.693 14.931 75.919 0.50 18.08	AC1

- 74 -

			11.102 15.238 74.471 0.50 17.50	
	ATOM	1720 OG SER 431	12.180 16.159 74.413 0.50 19.63	AC1
	ATOM	1721 C SER 431	10.472 16.244 76.663 0.50 18.02	AC1
	ATOM	1722 O SER 431	11.297 16.668 77.464 0.50 17.75	AC1
5	ATOM	1723 N PHE 432	9.326 16.875 76.415 1.00 17.68	
	ATOM	1724 CA PHE 432	9.020 18.162 77.057 1.00 17.81	
	ATOM	1725 CB PHE 432	7.778 18.817 76.425 1.00 18.74	
	ATOM	1726 CG PHE 432	8.099 19.713 75.249 1.00 17.54	
	ATOM	1727 CD1 PHE 432	8.649 20.976 75.448 1.00 18.72	
10	ATOM	1728 CD2 PHE 432	7.851 19.290 73.958 1.00 17.78	
	ATOM	1729 CE1 PHE 432	8.941 21.800 74.351 1.00 18.20	
	ATOM	1730 CE2 PHE 432	8.135 20.093 72.863 1.00 18.04	
	ATOM	1731 CZ PHE 432	8.684 21.358 73.060 1.00 19.15	
	ATOM	1732 C PHE 432	8.817 17.989 78.550 1.00 18.32	
15	ATOM	1733 O PHE 432	9.170 18.872 79.330 1.00 20.66	
	ATOM	1734 N GLU 433	8.249 16.852 78.964 1.00 17.15	
	ATOM	1735 CA GLU 433	8.073 16.592 80.382 1.00 20.50	
	ATOM	1736 CB GLU 433	7.520 15.192 80.613 1.00 19.84	
	ATOM	1737 CG GLU 433	6.045 15.053 80.320 1.00 27.71	
20	MOTA	1738 CD GLU 433	5.533 13.688 80.744 1.00 31.07	
	ATOM	1739 OE1 GLU 433	5.964 13.224 81.823 1.00 34.98	
	ATOM	1740 OE2 GLU 433	4.714 13.094 80.006 1.00 34.76	
	ATOM	1741 C GLU 433	9.437 16.691 81.052 1.00 19.32	
	ATOM	1742 O GLU 433	9.574 17.322 82.106 1.00 20.27	
25	ATOM	1743 N HIS 434	10.438 16.059 80.435 1.00 18.45	
	ATOM	1744 CA HIS 434	11.810 16.086 80.972 1.00 19.10	
	ATOM	1745 CB HIS 434	12.708 15.091 80.247 1.00 20.67	
	ATOM	1746 CG HIS 434	12.346 13.662 80.495 1.00 21.88	
	ATOM	1747 CD2 HIS 434	12.196 12.621 79.642 1.00 22.64	
30	ATOM	1748 ND1 HIS 434	12.153 13.151 81.763 1.00 24.64	
	ATOM	1749 CE1 HIS 434	11.901 11.857 81.678 1.00 26.38	
	ATOM	1750 NE2 HIS 434	11.924 11.509 80.403 1.00 25.49	
	ATOM	1751 C HIS 434	12.448 17.471 80.900 1.00 19.47	
	ATOM	1752 O HIS 434	13.029 17.930 81.868 1.00 20.51	
35	ATOM	1753 N LEU 435	12.360 18.122 79.749 1.00 17.30	
	ATOM	1754 CA LEU 435	12.926 19.464 79.614 1.00 17.70	

ATOM		12.660 20.017 78.219 1.00 17.54
ATOM	1756 CG LEU 435	13.350 19.239 77.100 1.00 17.06
	1757 CD1 LEU 435	
	1758 CD2 LEU 435	14.874 19.343 77.242 1.00 19.09
ATOM	1759 C LEU 435	12.334 20.411 80.653 1.00 17.96
ATOM	1760 O LEU 435	13.034 21.260 81.193 1.00 18.73
ATOM	1761 N PHE 436	11.035 20.302 80.921 1.00 17.35
ATOM	1762 CA PHE 436	10.460 21.192 81.936 1.00 18.85
ATOM	1763 CB PHE 436	8.920 21.188 81.897 1.00 19.91
ATOM	1764 CG PHE 436	8.340 21.916 80.720 1.00 22.43
ATOM	1765 CD1 PHE 436	8.885 23.113 80.288 1.00 23.77
ATOM	1766 CD2 PHE 436	7.243 21.399 80.040 1.00 23.20
ATOM	1767 CE1 PHE 436	8.353 23.783 79.202 1.00 25.60
ATOM	1768 CE2 PHE 436	6.703 22.063 78.942 1.00 22.41
ATOM	1769 CZ PHE 436	7.250 23.249 78.521 1.00 26.06
ATOM	1770 C PHE 436	10.916 20.802 83.332 1.00 20.10
ATOM	1771 O PHE 436	11.195 21.670 84.161 1.00 22.89
MOTA	1772 N PHE 437	11.001 19.500 83.605 1.00 19.98
MOTA	1773 CA PHE 437	11.412 19.023 84.922 1.00 21.11
ATOM	1774 CB PHE 437	11.364 17.484 84.974 1.00 21.57
ATOM	1775 CG PHE 437	11.628 16.913 86.339 1.00 25.91
MOTA	1776 CD1 PHE 437	10.633 16.924 87.313 1.00 27.17
ATOM	1777 CD2 PHE 437	12.881 16.419 86.665 1.00 27.22
ATOM	1778 CE1 PHE 437	10.891 16.447 88.599 1.00 30.66
ATOM	1779 CE2 PHE 437	13.153 15.942 87.944 1.00 31.40
ATOM	1780 CZ PHE 437	12.158 15.957 88.910 1.00 29.78
MOTA	1781 C PHE 437	12.807 19.496 85.305 1.00 22.67
ATOM	1782 O PHE 437	13.046 19.895 86.464 1.00 24.17
ATOM	1783 N PHE 438	13.724 19.453 84.346 1.00 19.58
ATOM	1784 CA PHE 438	15.103 19.888 84.567 1.00 22.15
ATOM	1785 CB PHE 438	16.038 19.027 83.718 1.00 22.90
MOTA	1786 CG PHE 438	16.093 17.595 84.171 1.00 23.82
ATOM	1787 CD1 PHE 438	16.725 17.262 85.361 1.00 24.00
ATOM	1788 CD2 PHE 438	15.509 16.584 83.419 1.00 27.39
ATOM	1789 CE1 PHE 438	16.773 15.942 85.795 1.00 25.11
ATOM	1790 CE2 PHE 438	15.557 15.253 83.847 1.00 27.37

- 77 -

	ATOM	1827 CG ASP 443 7.208 27.218 77.581 1.00 34.98
	ATOM	1828 OD1 ASP 443 6.856 26.945 76.404 1.00 37.47
	ATOM	1829 OD2 ASP 443 6.404 27.346 78.524 1.00 31.58
	ATOM	1830 C ASP 443 8.873 29.320 76.318 1.00 31.97
5	ATOM	1831 O ASP 443 8.426 29.453 75.180 1.00 30.41
	ATOM	1832 N THR 444 8.854 30.304 77.205 1.00 32.53
	ATOM	1833 CA THR 444 8.236 31.586 76.891 1.00 32.98
	ATOM	1834 CB THR 444 7.965 32.371 78.198 1.00 34.53
	ATOM	1835 OG1 THR 444 9.196 32.581 78.900 1.00 37.04
10	ATOM	1836 CG2 THR 444 7.020 31.577 79.102 1.00 35.95
	ATOM	1837 C THR 444 8.981 32.486 75.901 1.00 32.99
	ATOM	1838 O THR 444 8.399 33.436 75.370 1.00 32.71
	ATOM	1839 N SER 445 10.248 32.179 75.639 1.00 30.56
	ATOM	1840 CA SER 445 11.071 32.977 74.727 1.00 29.90
15	ATOM	1841 CB SER 445 12.481 33.132 75.313 1.00 29.52
	ATOM	1842 OG SER 445 12.418 33.766 76.576 1.00 31.76
	ATOM	1843 C SER 445 11.199 32.429 73.308 1.00 29.39
	ATOM	1844 O SER 445 11.580 33.153 72.387 1.00 28.30
	ATOM	1845 N ILE 446 10.875 31.151 73.133 1.00 26.98
20	ATOM	1846 CA ILE 446 11.010 30.511 71.840 1.00 25.95
	ATOM	1847 CB ILE 446 10.656 29.013 71.961 1.00 26.36
	MOTA	1848 CG2 ILE 446 10.295 28.431 70.595 1.00 24.39
	ATOM	1849 CG1 ILE 446 11.864 28.300 72.575 1.00 27.57
	ATOM	1850 CD1 ILE 446 11.637 26.869 72.971 1.00 27.13
25	ATOM	1851 C ILE 446 10.312 31.144 70.640 1.00 25.28
	ATOM	1852 O ILE 446 10.917 31.247 69.571 1.00 23.47
	ATOM	1853 N ALA 447 9.058 31.549 70.809 1.00 26.37
	ATOM	1854 CA ALA 447 8.316 32.183 69.725 1.00 28.80
	ATOM	1855 CB ALA 447 6.932 32.606 70.219 1.00 30.52
30	ATOM	1856 C ALA 447 9.114 33.394 69.218 1.00 28.51
	ATOM	1857 O ALA 447 9.229 33.608 68.005 1.00 29.41
	ATOM	1858 N GLY 448 9.675 34.164 70.155 1.00 28.53
	ATOM	1859 CA GLY 448 10.474 35.337 69.811 1.00 27.89
	ATOM	1860 C GLY 448 11.762 34.993 69.095 1.00 28.77
35	MOTA	1861 O GLY 448 12.167 35.692 68.162 1.00 28.23
	ATOM	1862 N TYR 449 12.435 33.927 69.536 1.00 27.26

	ATOM 1863 CA TYR 449	13.666 33.502 68.872 1.00 28.14
	ATOM 1864 CB TYR 449	14.262 32.267 69.553 1.00 26.16
	ATOM 1865 CG TYR 449	14.683 32.492 70.990 1.00 28.82
	ATOM 1866 CD1 TYR 449	14.913 33.782 71.482 1.00 29.84
5	ATOM 1867 CE1 TYR 449	15.336 33.988 72.802 1.00 32.66
	ATOM 1868 CD2 TYR 449	14.881 31.412 71.853 1.00 29.90
	ATOM 1869 CE2 TYR 449	15.306 31.604 73.173 1.00 30.71
	ATOM 1870 CZ TYR 449	15.532 32.887 73.641 1.00 32.74
	ATOM 1871 OH TYR 449	15.979 33.070 74.939 1.00 36.98
10	ATOM 1872 C TYR 449 1	3.361 33.150 67.420 1.00 27.51
	ATOM 1873 O TYR 449	14.116 33.491 66.513 1.00 27.99
	ATOM 1874 N ILE 450 12	2.254 32.442 67.207 1.00 27.41
	ATOM 1875 CA ILE 450 1	1.876 32.053 65.861 1.00 27.70
	ATOM 1876 CB ILE 450 1	0.662 31.102 65.863 1.00 26.64
15	ATOM 1877 CG2 ILE 450	10.292 30.744 64.413 1.00 26.88
	ATOM 1878 CG1 ILE 450	11.003 29.846 66.690 1.00 27.46
	ATOM 1879 CD1 ILE 450	9.811 28.956 67.032 1.00 24.45
	ATOM 1880 C ILE 450 11	.534 33.295 65.041 1.00 29.34
	ATOM 1881 O ILE 450 11	.994 33.440 63.911 1.00 30.32
20	ATOM 1882 N ARG 451 1	10.735 34.187 65.617 1.00 30.43
	ATOM 1883 CA ARG 451	10.351 35.416 64.923 1.00 33.00
	ATOM 1884 CB ARG 451	9.514 36.306 65.851 1.00 32.56
	ATOM 1885 CG ARG 451	8.874 37.519 65.161 1.00 34.91
	ATOM 1886 CD ARG 451	7.955 38.328 66.076 1.00 36.14
25	ATOM 1887 NE ARG 451	6.768 37.599 66.518 1.00 37.46
	ATOM 1888 CZ ARG 451	6.669 36.943 67.672 1.00 40.02
	ATOM 1889 NH1 ARG 451	7.690 36.921 68.521 1.00 41.16
	ATOM 1890 NH2 ARG 451	5.547 36.299 67.976 1.00 40.59
	ATOM 1891 C ARG 451 1	1.629 36.138 64.472 1.00 34.57
30	ATOM 1892 O ARG 451 1	1.761 36.516 63.298 1.00 34.59
	ATOM 1893 N ASP 452 1:	2.578 36.304 65.392 1.00 36.05
	ATOM 1894 CA ASP 452	13.837 36.975 65.070 1.00 39.88
	ATOM 1895 CB ASP 452	14.690 37.184 66.331 1.00 42.41
	ATOM 1896 CG ASP 452	14.004 38.065 67.364 1.00 46.01
35	ATOM 1897 OD1 ASP 452	13.162 38.897 66.961 1.00 46.57
	ATOM 1898 OD2 ASP 452	14.315 37.934 68.576 1.00 48.55

14.657 36.212 64.039 1.00 40.80 ATOM 1899 C ASP 452 15.219 36.805 63.112 1.00 42.52 1900 O ASP 452 1901 N ALA 453 14.730 34.896 64.197 1.00 41.16 **ATOM** 15.493 34.071 63.272 1.00 42.41 1902 CA ALA 453 **ATOM** 15.585 32.643 63.796 1.00 41.71 ATOM 1903 CB ALA 453 5 ATOM 1904 C ALA 453 14.904 34.070 61.863 1.00 44.06 15.635 33.910 60.887 1.00 44.96 ATOM 1905 O ALA 453 13.590 34.259 61.759 1.00 45.34 ATOM 1906 N LEU 454 12.921 34.261 60.460 1.00 47.12 ATOM 1907 CA LEU 454 11.419 33.989 60.631 1.00 42.61 10 ATOM 1908 CB LEU 454 11.078 32.514 60.884 1.00 38.89 ATOM 1909 CG LEU 454 ATOM 1910 CD1 LEU 454 9.576 32.329 60.950 1.00 36.29 11.660 31.657 59.764 1.00 36.23 ATOM 1911 CD2 LEU 454 ATOM 1912 C LEU 454 13.149 35.544 59.669 1.00 50.37 13.255 35.506 58.443 1.00 51.61 15 ATOM 1913 O LEU 454 13.218 36.679 60.360 1.00 54.48 ATOM 1914 N ARG 455 13.486 37.951 59.688 1.00 58.31 ATOM 1915 CA ARG 455 ATOM 1916 CB ARG 455 13.128 39.147 60.582 1.00 59.22 11.635 39.352 60.806 1.00 60.97 ATOM 1917 CG ARG 455 11.318 40.787 61.228 1.00 62.50 ATOM 1918 CD ARG 455 20 10.998 40.919 62.648 1.00 64.04 ATOM 1919 NE ARG 455 11.873 40.784 63.640 1.00 64.71 ATOM 1920 CZ ARG 455 1921 NH1 ARG 455 13.146 40.511 63.378 1.00 64.92 **MOTA** 11.470 40.923 64.897 1.00 64.48 ATOM 1922 NH2 ARG 455 14.988 37.938 59.452 1.00 60.72 25 ATOM 1923 C ARG 455 15.597 38.964 59.147 1.00 61.55 ATOM 1924 O ARG 455 15.557 36.743 59.597 1.00 63.01 ATOM 1925 N ASN 456 ATOM 1926 CA ASN 456 16.983 36.482 59.463 1.00 64.82 ATOM 1927 CB ASN 456 17.434 36.512 57.987 1.00 66.21 17.254 37.871 57.327 1.00 67.51 30 ATOM 1928 CG ASN 456 17.901 38.850 57.702 1.00 68.69 ATOM 1929 OD1 ASN 456 16.377 37.930 56.326 1.00 68.01 ATOM 1930 ND2 ASN 456 ATOM 1931 C ASN 456 17.795 37.442 60.317 1.00 65.37 ATOM 1932 O ASN 456 17.456 37.680 61.480 1.00 65.63 18.858 37.997 59.749 1.00 65.99 1933 N GLY 457 35 MOTA 19.704 38.896 60.510 1.00 66.46 ATOM 1934 CA GLY 457

	ATOM 1935 C GLY 457	20.739 38.015 61.176 1.00 66.78
	ATOM 1936 O GLY 457	21.568 38.471 61.968 1.00 67.21
	ATOM 1937 N GLY 458	20.669 36.728 60.844 1.00 66.86
	ATOM 1938 CA GLY 458	21.594 35.753 61.384 1.00 66.84
5	ATOM 1939 C GLY 458	22.018 34.761 60.315 1.00 66.86
	ATOM 1940 O GLY 458	21.450 34.801 59.199 1.00 66.65
	ATOM 1941 OXT GLY 458	22.922 33.943 60.593 1.00 65.49
	ATOM 1942 OH2 TIP 1003	30.252 23.128 74.386 1.00 27.69
	ATOM 1943 OH2 TIP 1005	14.203 25.558 89.644 1.00 25.22
10	ATOM 1944 OH2 TIP 1006	8.388 25.042 72.262 1.00 22.81
	ATOM 1945 OH2 TIP 1008	8.367 21.538 69.460 1.00 19.23
	ATOM 1946 OH2 TIP 1009	-7.350 22.030 52.884 1.00 80.11
	ATOM 1947 OH2 TIP 1010	-4.017 19.644 67.897 1.00 33.26
	ATOM 1948 OH2 TIP 1011	8.365 3.022 77.974 1.00 47.93
15	ATOM 1949 OH2 TIP 1012	30.690 8.779 67.839 1.00 26.30
	ATOM 1950 OH2 TIP 1013	12.264 8.843 80.249 1.00 26.01
	ATOM 1951 OH2 TIP 1014	-1.764 16.382 62.652 1.00 44.82
	ATOM 1952 OH2 TIP 1015	20.301 34.946 75.498 1.00 51.92
	ATOM 1953 OH2 TIP 1016	14.443 15.693 61.296 1.00 22.04
20	ATOM 1954 OH2 TIP 1017	12.487 31.635 78.951 1.00 36.76
	ATOM 1955 OH2 TIP 1018	16.579 6.557 83.739 1.00 27.86
	ATOM 1956 OH2 TIP 1019	-0.626 26.615 50.499 1.00 30.82
	ATOM 1957 OH2 TIP 1021	3.543 20.127 64.859 1.00 23.80
	ATOM 1958 OH2 TIP 1022	4.772 0.996 47.855 1.00 40.67
25	ATOM 1959 OH2 TIP 1023	9.799 29.451 51.621 1.00 30.93
	ATOM 1960 OH2 TIP 1024	7.476 19.030 68.589 1.00 22.30
	ATOM 1961 OH2 TIP 1025	20.355 7.131 58.551 1.00 52.44
	ATOM 1962 OH2 TIP 1026	-0.829 29.526 57.153 1.00 31.90
	ATOM 1963 OH2 TIP 1027	11.560 -6.342 53.442 1.00 52.29
30	ATOM 1964 OH2 TIP 1028	15.278 0.625 72.808 1.00 27.12
	ATOM 1965 OH2 TIP 1029	22.593 26.832 76.012 1.00 35.56
	ATOM 1966 OH2 TIP 1031	3.001 25.878 68.078 1.00 22.76
	ATOM 1967 OH2 TIP 1032	13.489 25.800 47.958 1.00 47.50
	ATOM 1968 OH2 TIP 1033	-7.554 18.088 60.905 1.00 30.53
35	ATOM 1969 OH2 TIP 1034	24.742 18.595 64.446 1.00 44.88
	ATOM 1970 OH2 TIP 1035	13.751 37.059 78.800 1.00 60.77

-	81	-

	ATOM 1971 OH2 TIP 1036	-0.515 10.167 75.163 1.00 36.51
	ATOM 1972 OH2 TIP 1037	12.373 35.911 72.901 1.00 32.65
	ATOM 1973 OH2 TIP 1039	23.543 26.270 78.523 1.00 24.40
	ATOM 1974 OH2 TIP 1040	17.896 20.961 59.259 1.00 39.57
5	ATOM 1975 OH2 TIP 1041	8.248 15.187 89.930 1.00 59.85
	ATOM 1976 OH2 TIP 1042	7.418 31.128 73.133 1.00 34.33
	ATOM 1977 OH2 TIP 1043	21.123 8.890 53.894 1.00 67.39
	ATOM 1978 OH2 TIP 1045	15.162 18.243 53.355 1.00 28.26
	ATOM 1979 OH2 TIP 1050	4.216 23.224 44.827 1.00 46.56
10	ATOM 1980 OH2 TIP 1051	17.523 1.262 73.909 1.00 23.12
	ATOM 1981 OH2 TIP 1052	-0.169 20.149 67.166 1.00 67.45
	ATOM 1982 OH2 TIP 1053	20.135 12.837 55.866 1.00 51.70
	ATOM 1983 OH2 TIP 1054	10.612 35.387 77.215 1.00 57.20
	ATOM 1984 OH2 TIP 1055	14.587 38.805 73.912 1.00 56.14
15	ATOM 1985 OH2 TIP 1056	22.658 15.094 55.769 1.00 63.46
	ATOM 1986 OH2 TIP 1057	8.196 1.415 39.058 1.00 55.65
	ATOM 1987 OH2 TIP 1058	10.807 2.725 77.173 1.00 22.15
	ATOM 1988 OH2 TIP 1059	19.013 20.604 62.130 1.00 32.43
	ATOM 1989 OH2 TIP 1061	2.388 16.861 45.084 1.00 25.70
20	ATOM 1990 OH2 TIP 1063	5.229 6.816 86.424 1.00 59.99
	ATOM 1991 OH2 TIP 1501	18.919 15.965 66.146 1.00 24.36
	ATOM 1992 OH2 TIP 1502	2.744 33.258 66.246 1.00 30.10
	ATOM 1993 OH2 TIP 1503	4.527 17.244 77.877 1.00 23.98
	ATOM 1994 OH2 TIP 1504	-0.815 22.723 68.903 1.00 24.06
25	ATOM 1995 OH2 TIP 1506	22.697 1.204 69.760 1.00 28.71
	ATOM 1996 OH2 TIP 1507	12.438 25.185 81.547 1.00 28.20
	ATOM 1997 OH2 TIP 1508	17.107 31.275 76.636 1.00 33.34
	ATOM 1998 OH2 TIP 1509	17.900 15.686 59.270 1.00 37.88
	ATOM 1999 OH2 TIP 1510	7.197 12.183 44.002 1.00 29.62
30	ATOM 2000 OH2 TIP 1511	-4.834 15.832 60.463 1.00 33.76
	ATOM 2001 OH2 TIP 1512	11.093 1.186 74.736 1.00 29.08
	ATOM 2002 OH2 TIP 1513	-0.145 2.568 51.845 1.00 30.78
	ATOM 2003 OH2 TIP 1514	-6.100 23.488 73.541 1.00 27.96
	ATOM 2004 OH2 TIP 1515	8.298 14.512 44.198 1.00 34.89
35	ATOM 2005 OH2 TIP 1516	0.418 26.098 68.989 1.00 28.71
	ATOM 2006 OH2 TIP 1517	-7.177 16.116 59.030 1.00 32.04

	ATOM 2007 OH2 TIP 1519	18.000 18.387 62.314 1.00 32.49
	ATOM 2008 OH2 TIP 1520	21.777 20.403 61.898 1.00 38.66
	ATOM 2009 OH2 TIP 1521	-1.379 32.714 63.883 1.00 40.86
	ATOM 2010 OH2 TIP 1522	1.931 22.610 68.721 1.00 31.49
5	ATOM 2011 OH2 TIP 1523	-3.158 9.157 64.790 1.00 46.08
	ATOM 2012 OH2 TIP 1524	2.081 4.709 65.432 1.00 38.87
	ATOM 2013 OH2 TIP 1525	3.829 11.325 75.940 1.00 34.36
	ATOM 2014 OH2 TIP 1527	21.845 33.747 71.839 1.00 51.86
	ATOM 2015 OH2 TIP 1528	12.196 0.941 78.760 1.00 46.53
10	ATOM 2016 OH2 TIP 1529	30.316 21.478 85.009 1.00 28.49
	ATOM 2017 OH2 TIP 1530	9.786 2.798 91.182 1.00 58.36
	ATOM 2018 OH2 TIP 1531	16.571 8.007 48.772 1.00 38.32
	ATOM 2019 OH2 TIP 1532	3.764 24.595 70.409 1.00 31.40
	ATOM 2020 OH2 TIP 1533	-0.952 5.111 57.996 1.00 39.42
15	ATOM 2021 OH2 TIP 1534	8.395 29.793 48.733 1.00 45.92
	ATOM 2022 OH2 TIP 1535	18.190 -0.943 54.382 1.00 55.57
	ATOM 2023 OH2 TIP 1536	4.583 13.859 64.203 1.00 30.44
	ATOM 2024 OH2 TIP 1538	12.012 14.232 84.365 1.00 33.97
	ATOM 2025 OH2 TIP 1539	-1.284 36.017 69.736 1.00 57.91
20	ATOM 2026 OH2 TIP 1540	2.454 15.898 79.022 1.00 40.22
	ATOM 2027 OH2 TIP 1544	2.719 2.670 49.088 1.00 32.00
	ATOM 2028 OH2 TIP 1545	13.537 37.410 71.136 1.00 41.29
	ATOM 2029 OH2 TIP 1546	22.697 0.071 79.248 1.00 32.01
	ATOM 2030 OH2 TIP 1548	-0.239 7.542 39.851 1.00 52.37
25	ATOM 2031 OH2 TIP 1549	0.076 10.603 44.453 1.00 41.67
	ATOM 2032 OH2 TIP 1550	31.157 3.039 59.611 1.00 43.66
	ATOM 2033 OH2 TIP 1551	4.226 34.045 72.549 1.00 53.58
	ATOM 2034 OH2 TIP 1554	10.022 33.359 56.088 1.00 41.48
	ATOM 2035 OH2 TIP 1555	-1.058 37.708 61.917 1.00 54.81
30	ATOM 2036 OH2 TIP 1556	-4.583 15.870 53.480 1.00 37.02
	ATOM 2037 OH2 TIP 1557	23.851 8.517 92.595 1.00 36.91
	ATOM 2038 OH2 TIP 1558	-7.204 28.744 59.955 1.00 35.72
	ATOM 2039 OH2 TIP 1560	19.483 16.334 88.331 1.00 34.61
	ATOM 2040 OH2 TIP 1561	1.968 8.086 38.648 1.00 57.90
35	ATOM 2041 OH2 TIP 1562	32.430 -4.459 71.625 1.00 63.22
	ATOM 2042 OH2 TIP 1563	7.819 12.682 83.368 1.00 47.71

	ATOM	2043 OH2 TIP 1564	-5.435 18.376 72.810 1.00 41.90
	ATOM	2044 OH2 TIP 1565	19.550 17.394 63.917 1.00 31.79
	ATOM	2045 OH2 TIP 1566	24.069 28.502 85.703 1.00 50.24
	ATOM	2046 OH2 TIP 1568	26.854 12.830 56.392 1.00 51.68
5	ATOM	2047 OH2 TIP 1570	3.595 32.325 68.760 1.00 45.07
	ATOM	2048 OH2 TIP 1571	24.805 8.300 62.036 1.00 28.27
	ATOM	2049 OH2 TIP 1572	4.194 17.554 63.640 1.00 26.21
	ATOM	2050 OH2 TIP 1573	2.589 20.195 67.352 1.00 34.52
	ATOM	2051 OH2 TIP 1574	15.713 17.937 61.017 1.00 52.03
10	ATOM	2052 OH2 TIP 1575	-9.321 14.210 59.772 1.00 33.92
	ATOM	2053 OH2 TIP 1576	13.215 7.332 82.542 1.00 31.45
	ATOM	2054 OH2 TIP 1577	10.470 24.539 83.194 1.00 35.29
	ATOM	2055 OH2 TIP 1578	25.712 17.999 53.496 1.00 41.46
	ATOM	2056 OH2 TIP 1579	9.445 -0.239 41.882 1.00 41.51
15	ATOM	2057 OH2 TIP 1580	6.603 16.005 42.611 1.00 32.35
	ATOM	2058 OH2 TIP 1581	-1.523 7.654 59.739 1.00 50.11
	ATOM	2059 OH2 TIP 1582	8.397 34.515 72.891 1.00 33.81
	ATOM	2060 OH2 TIP 1583	2.742 39.191 60.949 1.00 39.77
	ATOM	2061 OH2 TIP 1584	18.933 6.009 52.002 1.00 45.27
20	ATOM	2062 OH2 TIP 1585	-1.653 20.171 69.665 1.00 37.15
	ATOM	2063 OH2 TIP 1586	-2.633 4.655 52.475 1.00 49.05
	ATOM	2064 OH2 TIP 1587	36.297 28.180 83.444 1.00 41.56
	ATOM	2065 OH2 TIP 1588	-0.851 31.806 55.808 1.00 34.41
	ATOM	2066 OH2 TIP 1589	4.002 34.625 70.007 1.00 46.13
25	ATOM	2067 OH2 TIP 1590	32.711 20.152 84.581 1.00 53.56
	ATOM	2068 OH2 TIP 1591	19.998 6.099 87.630 1.00 31.12
	ATOM	2069 OH2 TIP 1593	-0.189 3.637 35.682 1.00 54.58
	ATOM	2070 OH2 TIP 1594	12.455 12.705 39.358 1.00 55.12
	ATOM	2071 OH2 TIP 1596	-2.554 -6.074 47.925 1.00 55.01
30	ATOM	2072 OH2 TIP 1597	5.017 28.176 75.017 1.00 42.02
	ATOM	2073 OH2 TIP 1598	28.617 32.433 80.891 1.00 65.40
	ATOM	2074 OH2 TIP 1599	8.680 7.258 78.481 1.00 52.56
	ATOM	2075 OH2 TIP 1600	18.188 12.950 87.437 1.00 47.03
	ATOM	2076 OH2 TIP 1601	-11.532 19.931 55.756 1.00 48.92
35	ATOM	2077 OH2 TIP 1602	22.073 14.215 52.571 1.00 49.32
	ATOM	2078 OH2 TIP 1603	-3.860 34.262 53.170 1.00 48.97

	ATOM 2079 OH2 TIP 1604	1.118 10.847 82.180 1.00 44.11
	ATOM 2080 OH2 TIP 1605	19.335 32.031 77.782 1.00 48.61
	ATOM 2081 OH2 TIP 1606	19.174 9.955 48.654 1.00 40.42
	ATOM 2082 OH2 TIP 1607	23.632 -1.631 71.300 1.00 37.97
5	ATOM 2083 OH2 TIP 1608	26.622 26.695 85.361 1.00 44.14
	ATOM 2084 OH2 TIP 1609	22.586 -1.769 57.526 1.00 48.15
	ATOM 2085 OH2 TIP 1610	21.977 5.567 60.712 1.00 37.76
	ATOM 2086 OH2 TIP 1611	21.634 2.725 67.903 1.00 41.42
	ATOM 2087 OH2 TIP 1612	4.046 4.187 75.513 1.00 55.86
10	ATOM 2088 OH2 TIP 1614	0.807 25.979 47.960 1.00 38.30
	ATOM 2089 OH2 TIP 1615	17.333 37.351 72.160 1.00 55.70
	ATOM 2090 OH2 TIP 1616	2.475 15.902 62.566 1.00 38.40
	ATOM 2091 OH2 TIP 1618	0.658 14.983 64.592 1.00 60.57
	ATOM 2092 OH2 TIP 1619	-6.509 17.844 52.643 1.00 41.17
15	ATOM 2093 OH2 TIP 1621	27.000 -1.287 80.946 1.00 51.49
	ATOM 2094 OH2 TIP 1622	3.271 9.154 86.392 1.00 55.17
	ATOM 2095 OH2 TIP 1627	3.433 19.409 44.225 1.00 50.54
	ATOM 2096 OH2 TIP 1628	2.390 26.629 72.360 1.00 42.60
	ATOM 2097 OH2 TIP 1629	9.893 39.104 69.833 1.00 54.40
20	ATOM 2098 OH2 TIP 1630	2.709 14.153 43.455 1.00 34.37
	ATOM 2099 OH2 TIP 1631	11.049 12.448 88.232 1.00 45.81
	ATOM 2100 OH2 TIP 1632	4.576 31.506 72.757 1.00 39.34
	ATOM 2101 OH2 TIP 1634	6.784 36.285 71.148 1.00 51.53
	ATOM 2102 OH2 TIP 1635	6.667 43.335 56.568 1.00 51.21
25	ATOM 2103 OH2 TIP 1636	-5.771 9.260 60.442 1.00 44.79
	ATOM 2104 OH2 TIP 1638	0.052 33.418 66.937 1.00 47.03
	ATOM 2105 OH2 TIP 1641	0.354 1.055 46.133 1.00 54.03
	ATOM 2106 OH2 TIP 1642	24.406 30.113 88.300 1.00 48.82
	ATOM 2107 OH2 TIP 1643	26.619 20.182 66.495 1.00 38.01
30	ATOM 2108 OH2 TIP 1644	17.492 7.024 42.815 1.00 65.02
	ATOM 2109 OH2 TIP 1645	25.942 26.481 82.676 1.00 49.52
	ATOM 2110 OH2 TIP 1646	20.601 16.199 68.672 1.00 37.35
	ATOM 2111 OH2 TIP 1649	27.616 9.156 63.460 1.00 37.92
	ATOM 2112 OH2 TIP 1650	0.428 -3.038 44.190 1.00 54.50
35	ATOM 2113 OH2 TIP 1652	-7.028 20.462 59.299 1.00 33.58
	ATOM 2114 OH2 TIP 1653	-2.848 32.314 67.354 1.00 49.02

	ATOM	2115 OH2 TIP	1654	-0.686 17.762 66.362 1.00 46.03
	ATOM	2116 OH2 TIP	1655	19.583 17.275 60.162 1.00 41.00
	ATOM	2117 OH2 TIP	1656	13.719 36.618 75.139 1.00 51.89
	ATOM	2118 OH2 TIP	1657	9.386 -0.422 71.399 1.00 43.15
5	ATOM	2119 OH2 TIP	1659	23.690 28.880 79.578 1.00 42.62
	MOTA	2120 OH2 TIP	1660	22.069 3.800 58.682 1.00 46.06
	MOTA	2121 OH2 TIP	1661	20.671 13.353 58.841 1.00 57.05
	ATOM	2122 OH2 TIP	1662	27.473 10.135 82.332 1.00 47.43
	ATOM	2123 OH2 TIP	1664	9.564 26.542 84.601 1.00 44.55
10	ATOM	2124 OH2 TIP	1666	29.122 9.606 65.764 1.00 45.20
	ATOM	2125 OH2 TIP	1668	13.135 20.507 41.865 1.00 59.09
	ATOM	2126 OH2 TIP	1669	22.639 11.672 58.999 1.00 54.98
	ATOM	2127 OH2 TIP	1670	-1.845 6.027 76.197 1.00 48.89
	ATOM	2128 OH2 TIP	1672	4.883 25.252 42.734 1.00 51.13
15	ATOM	2129 OH2 TIP	1675	1.329 39.322 66.763 1.00 68.30
	ATOM	2130 OH2 TIP	1676	12.783 29.313 87.079 1.00 54.62
	ATOM	2131 OH2 TIP	1679	25.035 18.339 57.364 1.00 54.53
	ATOM	2132 OH2 TIP	1682	29.392 -1.856 57.721 1.00 37.30
	ATOM	2133 OH2 TIP	1683	28.780 9.970 58.622 1.00 54.22
20	ATOM	2134 OH2 TIP	1685	4.741 39.274 62.499 1.00 46.58
	ATOM	2135 OH2 TIP	1686	-3.084 6.977 49.478 1.00 57.17
	ATOM	2136 OH2 TIP	1687	26.519 30.868 83.197 1.00 64.53
	ATOM	2137 OH2 TIP	1688	-2.784 37.278 67.289 1.00 59.53
	ATOM	2138 OH2 TIP	1689	18.691 10.604 88.296 1.00 52.44
25	ATOM	2139 OH2 TIP	1690	27.919 6.703 82.226 1.00 44.84
	ATOM	2140 OH2 TIP	1691	-4.338 11.103 48.033 1.00 55.91
	ATOM	2141 OH2 TIP	1692	-7.853 9.429 46.864 1.00 63.74
	ATOM	2142 OH2 TIP	1693	10.901 -1.686 67.477 1.00 41.21
	ATOM	2143 OH2 TIP	1694	-2.114 6.315 55.259 1.00 56.21
30	ATOM	2144 OH2 TIP	1695	17.482 15.932 44.391 1.00 41.18
	ATOM	2145 OH2 TIP	1696	-12.326 38.088 61.786 1.00 53.30
	ATOM	2146 OH2 TIP	1697	-2.176 40.471 68.230 1.00 68.88
	MOTA	2147 OH2 TIP	1700	6.514 -1.974 53.366 1.00 51.67
	ATOM	2148 OH2 TIP	1701	21.800 10.610 55.773 1.00 60.93
35	ATOM	2149 OH2 TIP	1702	3.975 27.046 41.446 1.00 44.88
	ATOM	2150 OH2 TIP	1703	26.678 -3.660 64.081 1.00 62.42

	ATOM 2151 OH2 TIP 1704	2.958 12.027 86.133 1.00 53.52
	ATOM 2152 OH2 TIP 1705	4.264 22.050 63.018 1.00 16.96
	ATOM 2153 OH2 TIP 1706	22.999 26.329 63.006 1.00 32.17
	ATOM 2154 OH2 TIP 1707	5.614 2.688 68.201 1.00 42.08
5	ATOM 2155 OH2 TIP 1708	-2.967 17.730 54.394 1.00 38.89
	ATOM 2156 OH2 TIP 1709	25.853 10.594 62.118 1.00 43.50
	ATOM 2157 OH2 TIP 1711	13.060 12.966 86.563 1.00 41.22
	ATOM 2158 OH2 TIP 1712	19.784 15.472 45.489 1.00 58.17
	ATOM 2159 OH2 TIP 1713	10.567 14.806 42.991 1.00 43.48
10	ATOM 2160 OH2 TIP 1714	24.079 30.190 83.477 1.00 47.61
	ATOM 2161 OH2 TIP 1715	23.927 21.975 63.464 1.00 44.77
	ATOM 2162 OH2 TIP 1716	15.801 20.193 58.769 1.00 34.32
	ATOM 2163 OH2 TIP 1717	23.867 27.717 72.712 1.00 40.47
	ATOM 2164 OH2 TIP 1718	24.567 27.201 69.884 1.00 45.97
15	ATOM 2165 OH2 TIP 1719	32.141 -1.375 73.278 1.00 62.31
	ATOM 2166 OH2 TIP 1720	19.799 24.122 57.454 1.00 35.07
	ATOM 2167 OH2 TIP 1721	18.297 23.286 53.598 1.00 43.88
	ATOM 2168 OH2 TIP 1722	8.617 1.105 73.470 1.00 48.55
	ATOM 2169 OH2 TIP 1723	28.598 25.728 64.296 1.00 46.24
20	ATOM 2170 OH2 TIP 1725	19.225 33.547 73.276 1.00 44.07
	ATOM 2171 OH2 TIP 1726	1.762 4.546 47.584 1.00 50.27
	ATOM 2172 OH2 TIP 1727	10.895 28.774 83.657 1.00 54.87
	ATOM 2173 OH2 TIP 1728	9.989 36.628 73.713 1.00 46.56
	ATOM 2174 OH2 TIP 1729	-1.331 8.332 70.133 1.00 46.76
25	ATOM 2175 OH2 TIP 1730	24.262 12.802 55.386 1.00 59.24
	ATOM 2176 OH2 TIP 1731	28.623 25.788 86.798 1.00 51.87
	ATOM 2177 OH2 TIP 1732	-0.501 4.843 68.521 1.00 47.96
	ATOM 2178 OH2 TIP 1736	18.422 4.635 54.793 1.00 51.00
	ATOM 2179 OH2 TIP 1737	-5.388 27.319 50.727 1.00 46.53
30	ATOM 2180 OH2 TIP 1738	-2.286 20.842 72.915 1.00 45.95
	ATOM 2181 OH2 TIP 1739	0.996 4.268 39.511 1.00 52.67
	ATOM 2182 OH2 TIP 1740	-10.886 28.616 64.116 1.00 45.22
	ATOM 2183 OH2 TIP 1741	20.353 -4.883 70.512 1.00 61.31
	ATOM 2184 OH2 TIP 1742	22.491 16.164 60.365 1.00 58.19
35	ATOM 2185 OH2 TIP 3001	15.272 21.419 87.789 1.00 27.44
	ATOM 2186 OH2 TIP 3002	13.055 32.876 52.925 1.00 53.35

	ATOM 2187 OH2 TIP 3006	16.014 18.841 64.083 1.00 56.45
	ATOM 2188 OH2 TIP 3008	16.802 30.100 54.388 1.00 48.87
	ATOM 2189 OH2 TIP 3009	13.673 27.099 82.740 1.00 32.07
	ATOM 2190 OH2 TIP 3010	30.041 24.325 84.969 1.00 41.40
5	ATOM 2191 OH2 TIP 3007	-2.102 35.612 60.958 1.00 52.05
	ATOM 2192 OH2 TIP 3011	7.242 14.501 40.017 1.00 51.46
	ATOM 2193 OH2 TIP 3012	1.031 36.834 60.593 1.00 49.05
	ATOM 2194 OH2 TIP 3013	0.026 24.244 72.355 1.00 42.35
	ATOM 2195 OH2 TIP 3015	-7.871 31.986 57.037 1.00 46.09
10	ATOM 2196 OH2 TIP 3019	8.655 -3.490 62.423 1.00 44.56
	ATOM 2197 OH2 TIP 3020	-0.191 30.553 51.677 1.00 54.31
· .	ATOM 2198 OH2 TIP 3023	3.107 37.905 57.599 1.00 48.07
	ATOM 2199 OH2 TIP 3024	26.217 6.182 84.277 1.00 47.75
	ATOM 2200 OH2 TIP 3025	2.594 16.520 65.838 1.00 40.67
15	ATOM 2201 C1 EPH 4000	23.874 12.843 85.264 1.00 42.79
	ATOM 2202 C2 EPH 4000	23.099 13.772 86.129 1.00 44.39
	ATOM 2203 C4 EPH 4000	24.923 13.000 83.062 1.00 45.55
	ATOM 2204 O2 EPH 4000	24.221 13.543 84.059 1.00 44.96
	ATOM 2205 O4 EPH 4000	25.350 11.876 83.028 1.00 47.53
20	ATOM 2206 C18 EPH 4000	25.126 14.045 81.931 1.00 47.05
	ATOM 2207 C19 EPH 4000	24.674 13.569 80.547 1.00 46.98
	ATOM 2208 C20 EPH 4000	23.168 13.412 80.473 1.00 49.00
	ATOM 2209 C21 EPH 4000	22.772 12.939 79.111 1.00 51.06
	ATOM 2210 C22 EPH 4000	21.365 12.327 79.073 1.00 52.88
25	ATOM 2211 C23 EPH 4000	20.291 13.230 78.423 1.00 54.24
	ATOM 2212 C24 EPH 4000	20.651 13.777 77.022 1.00 55.08
	ATOM 2213 C25 EPH 4000	19.987 15.129 76.704 1.00 56.13
	ATOM 2214 C26 EPH 4000	20.807 16.375 77.147 1.00 56.19
	ATOM 2215 C27 EPH 4000	19.981 17.687 77.287 1.00 56.74
30	ATOM 2216 C28 EPH 4000	19.188 18.077 76.015 1.00 56.93
	ATOM 2217 C29 EPH 4000	20.055 18.393 74.792 1.00 57.07
	ATOM 2218 C30 EPH 4000	19.294 18.387 73.442 1.00 58.24
	ATOM 2219 C31 EPH 4000	19.391 17.124 72.550 1.00 58.70
	ATOM 2220 C32 EPH 4000	18.019 16.479 72.198 1.00 59.07
35	ATOM 2221 C33 EPH 4000	16.762 17.158 72.768 1.00 59.61
	ATOM 2222 C34 EPH 4000	15.463 16.541 72.231 1.00 60.17

	ATOM	2223 C37 EPH 4000	22.780 13.059 87.421 1.00 47.03	
	ATOM	2224 O5 EPH 4000	22.047 13.939 88.273 1.00 53.23	
	ATOM	2225 P1 EPH 4000	21.699 13.222 89.578 1.00 56.71	
	ATOM	2226 O6 EPH 4000	20.350 13.536 89.939 1.00 58.07	
5	ATOM	2227 O7 EPH 4000	22.579 12.360 90.311 1.00 56.72	
	ATOM	2228 O8 EPH 4000	22.167 14.340 90.336 1.00 55.93	
	ATOM	2229 C3 EPH 4000	21.561 15.394 85.253 1.00 42.20	
	ATOM	2230 O1 EPH 4000	21.886 14.117 85.454 1.00 40.69	
	ATOM	2231 O3 EPH 4000	22.221 16.347 85.571 1.00 40.97	
10	ATOM	2232 C5 EPH 4000	20.215 15.530 84.546 1.00 40.77	
	ATOM	2233 C6 EPH 4000	20.313 15.776 83.050 1.00 42.19	
	ATOM	2234 C7 EPH 4000	18.924 15.916 82.453 1.00 43.05	
	ATOM	2235 C8 EPH 4000	18.900 15.944 80.947 1.00 44.57	
	ATOM	2236 C9 EPH 4000	17.477 16.101 80.445 1.00 45.49	
15	ATOM	2237 C10 EPH 4000	17.167 15.209 79.273 1.00 47.18	
	ATOM	2238 C11 EPH 4000	16.561 15.987 78.117 1.00 47.85	
	ATOM	2239 C12 EPH 4000	15.158 15.514 77.781 1.00 49.75	
	ATOM	2240 C13 EPH 4000	15.158 14.254 76.932 1.00 49.27	
	ATOM	2241 C14 EPH 4000	14.899 14.563 75.454 1.00 51.41	
20	ATOM	2242 C15 EPH 4000	14.958 13.341 74.490 1.00 51.93	
	ATOM	2243 C16 EPH 4000	16.376 12.870 74.074 1.00 52.39	
	ATOM	2244 C17 EPH 4000	16.681 11.465 74.554 1.00 52.37	
	ATOM	2245 C35 EPH 4000	17.830 11.518 75.525 1.00 52.96	
	ATOM	2246 C36 EPH 4000	17.968 10.168 76.193 1.00 53.00	
25	ATOM	2247 C38 EPH 4000	22.197 10.885 90.057 1.00 56.75	
	ATOM	2248 C39 EPH 4000	23.458 10.026 89.911 1.00 56.42	
	ATOM	2249 N1 EPH 4000	24.546 10.825 89.334 1.00 54.45	
	ATOM	2250 N SER 236 1	7.914 25.370 86.674 0.50 20.48	AC2
	ATOM	2251 CA SER 236	18.176 23.976 86.323 0.50 19.91	AC2
30	ATOM	2252 CB SER 236	19.157 23.889 85.166 0.50 18.72	AC2
	ATOM	2253 OG SER 236	19.325 22.538 84.787 0.50 17.70	AC2
	ATOM	2254 C SER 236 1	8.741 23.171 87.483 0.50 21.62	AC2
	ATOM	2255 O SER 236 1	9.744 23.549 88.075 0.50 20.94	AC2
	ATOM	2256 N SER 247 2	25.235 21.608 79.357 0.50 19.68	AC2
35	ATOM	2257 CA SER 247	25.203 22.865 78.619 0.50 20.48	AC2
	ATOM	2258 CB SER 247	26.051 23.917 79.337 0.50 19.95	AC2

- 89 -

	ATOM	2259 OG SER 247	26.032 25.152 78.637 0.50 20.60	AC2
	ATOM	2260 C SER 247	25.725 22.638 77.203 0.50 20.84	AC2
	ATOM	2261 O SER 247	25.203 23.202 76.238 0.50 21.05	AC2
	ATOM	2262 N SER 271	7.551 30.448 53.176 0.50 29.97	AC2
5	ATOM	2263 CA SER 271	7.680 31.880 53.442 0.50 31.61	AC2
	ATOM	2264 CB SER 271	8.888 32.443 52.695 0.50 32.22	AC2
	ATOM	2265 OG SER 271	8.666 32.395 51.295 0.50 32.71	AC2
	ATOM	2266 C SER 271	6.432 32.648 53.010 0.50 32.99	AC2
	ATOM	2267 O SER 271	6.229 33.796 53.408 0.50 34.05	AC2
10	ATOM	2268 N PRO 319	18.143 -4.099 74.681 0.50 41.20	AC2
	ATOM	2269 CD PRO 319	18.070 -4.311 76.139 0.50 40.63	AC2
	ATOM	2270 CA PRO 319	18.053 -2.673 74.356 0.50 38.50	AC2
	ATOM	2271 CB PRO 319	17.702 -2.038 75.699 0.50 39.26	AC2
	ATOM	2272 CG PRO 319	18.406 -2.938 76.680 0.50 39.94	AC2
15	ATOM	2273 C PRO 319	19.321 -2.077 73.756 0.50 35.96	AC2
	ATOM	2274 O PRO 319	20.410 -2.230 74.313 0.50 35.87	AC2
	ATOM	2275 N GLN 343	13.913 5.584 80.085 0.50 18.73	AC2
	MOTA	2276 CA GLN 343	12.714 5.137 79.387 0.50 19.83	AC2
	ATOM	2277 CB GLN 343	11.463 5.365 80.243 0.50 21.34	AC2
20	ATOM	2278 CG GLN 343	10.903 4.078 80.837 0.50 26.09	AC2
	ATOM	2279 CD GLN 343	9.539 4.244 81.488 0.50 27.02	AC2
	ATOM	2280 OE1 GLN 343	9.412 4.823 82.562 0.50 29.15	AC2
	ATOM	2281 NE2 GLN 343	8.508 3.730 80.829 0.50 29.67	AC2
	ATOM	2282 C GLN 343	12.545 5.813 78.025 0.50 19.53	AC2
25	ATOM	2283 O GLN 343	12.317 5.141 77.022 0.50 19.10	AC2
	ATOM	2284 N SER 353	14.027 4.461 65.783 0.50 19.97	AC2
	ATOM	2285 CA SER 353	15.191 3.950 65.107 0.50 20.43	AC2
	ATOM	2286 CB SER 353	16.391 4.058 66.033 0.50 20.57	AC2
	ATOM	2287 OG SER 353	17.540 4.234 65.262 0.50 19.64	AC2
30	ATOM	2288 C SER 353	15.054 2.524 64.574 0.50 21.08	AC2
	MOTA	2289 O SER 353	15.234 2.291 63.378 0.50 21.51	AC2
	ATOM	2290 N ARG 392	0.696 20.186 53.122 0.50 19.50	AC2
	ATOM	2291 CA ARG 392	0.935 18.822 53.549 0.50 19.96	AC2
	ATOM	2292 CB ARG 392	0.325 18.551 54.925 0.50 19.99	AC2
35	ATOM	2293 CG ARG 392	0.603 17.129 55.384 0.50 19.08	AC2
	ATOM	2294 CD ARG 392	0.140 16.884 56.805 0.50 19.85	AC2

5

10

- 90 -

ATOM	2295	NE	ARG	392	-1.315	16.885	5 56.925	0.50 19	.23	AC2
MOTA	2296	CZ	ARG	392	-1.962	16.577	58.046	0.50 21	.63	AC2
ATOM	2297	NH	1 ARG	392	-1.28	3 16.24	2 59.13	8 0.50 1	9.92	AC2
MOTA	2298	NH	2 ARG	392	-3.28	9 16.61	1 58.08	6 0.50 2	2.19	AC2
ATOM	2299	С	ARG	392	0.338	17.878	52.501	0.50 19.	95	AC2
ATOM	2300	0	ARG	392	0.940	16.867	52.149	0.50 20.	64	AC2
ATOM	2301	Ν	SER	431	9.466	14.172	75.955	0.50 16.9	96	AC2
ATOM	2302	CA	SER	431	10.735	14.900	76.047	0.50 17	7.25	AC2
ATOM	2303	СВ	SER	431	11.346	15.109	74.659	0.50 17	7.09	AC2
ATOM	2304	OG	SER	431	10.76	5 16.21	1 73.99	8 0.50 16	6.93	AC2
ATOM	2305	С	SER	431	10.466	16.249	76.719	0.50 17.	.71	AC2
ATOM	2306	0	SER	431	11.267	16.716	77.521	0.50 17	.14	AC2
END										

- 91 -

Table 2:

Table 2:	
bdrxra	FNEEMPVEKILDAELAVEPKTEAYME
murxra	ANEDMPVEKILEAELAVEPKTETYVE
rnrxra	ANEDMPVEKILEAELAVEPKTETYVE
horxra	ANEDMPVERILEAELAVEPKTETYVE
xlrxra	ANEDMPVEKILEAEHAVEPKTETYTE
surxrb	
aeuspa	VRDVTIERIHEAEQLSEQKSGDNAIPYLR
dmusp	MTNSVSRDFSIERIIEAEORAETQCGDRALTFLR
horxrb	APEEMPVDRILEAELAV
murxrb	APEEMPVDRILEAELAVEQKSDQGVEGP
rnrxrb	APEEMPVDRILEAELAV
xlrxrbb	INEEMPVEKILEAELAVEQKSDQSLE
xlrxrba	INEEMPVEKILEAELAVEQKSDQSLE
murxrg	SHEDMPVERILEAELAVEPKTESYGD
horxrg	GHEDMPVERILEAELAVEPKTESYGD
garxrg	GSEDMPVERILEAELAVEPKTEAYSD
xlrxrg	TSEEMPVERILEAELAV
pmrxr	PNDDMPVDKILEAELISDPKVEQVVP
lmrxr	LHTDMPVERILEAEKRVEE
smrxr	TDLPNLTLRCLLSAELSMDPKLAVSERG
amusp	LHSDMPIERILEAEKRVECKMEQQGN
tmusp	MQAEMPLDRIIEAEKRIECTPAGGSG
aarxr	GAPPEMPLERILEAELRVESQTGTLSES
aarxr2	P-GSPDMPLERILEAEMRVEQPAPSVLAQ
uprxr	AISDMPIASIREAELSVDPIDEQPLDQGVRLQVPLAPPDSEK
cfusp	VQVSDELSIERLTEMESLVADPSEEFQFLR
msusp	VQELSIERLLEIESLVADPPEEFQFLR
bmusp	VQELSIERLLELEALVADSAEELQILR
ctusp	NGPGRDITVERLMEADQMSEARCGDKSIQYLRV
uspx	AAAQELSIERLLEMESLVAAAAEEFQFLR
rxrmin	-ASSANEDMPVEKILEAELAVEPKTETYVE
bdrxra	SSMSNSTNDPVTNICQAADKQLFTLVEWAKRIPHFSDLPLDDQVI
murxra	ANMGLNPSSPNDPVTNICQAADKQLFTLVEWAKRIPHFSELPLDDQVI
rnrxra	ANMGLNPSSPNDPVTNICQAADKQLFTLVEWAKRIPHFSELPLDDQVI
horxra	ANMGLNPSSPNDPVTNICQAADKQLFTLVEWAKRIPHFSELPLDDQVI
xlrxra	ANMGLAPNSPSDPVTNICQAADKQLFTLVEWAKRIPHFSDVPLDDQVI
surxrb	GSGSSPNDPVTNICQAADKQLFTLVEWAKRIPHFSSLPLDDQVI
aeuspa	VGSNSMIPPEYKGAVSHLCQMVNKQIYQLIDFARRVPHFINLPRDDQVM
dmusp	VGPYSTVQPDYKGAVSALCQVVNKQLFQMVEYARMMPHFAQVPLDDQVI
horxrb	GATGGGGSSPNDPVTNICQAADKQLFTLVEWAKRIPHFSSLPLDDQVI
murxrb	GATGGGGSSPNDPVTNICQAADKQLFTLVEWAKRIPHFSSLPLDDQVI
rnrxrb	GATGGGGSSPNDPVTNICQAADKQLFTLVEWAKRIPHFSSLPLDDQVI
xlrxrbb	GGGSPSDPVTNICQAADKQLFTLVEWAKRIPHFSELALDDQVI
xlrxrba	GGGSPSDPVTNICQDADKQLFTLVEWAKRIPHFSELPELPLDDQVI
murxrg	MNVENSTNDPVTNICHAADKQLFTLVEWAKRIPHFSDLTLEDQVI
horxrg	MNMENSTNDPVTNICHAADKQLFTLVEWAKRIPHFSDLTLEDQVI
garxrg	VNTESSTNDPVTNICHAADKQLFTLVEWAKRIPHFSDLTLEDQVI
xlrxrg	AGLPNSTNDPVTNICHAADKQLFTLVEWAKRIPYFSDLPLEDQVI
pmrxr	FEQVNENDPVSNICKAADRQLVTLVEWAKRIPHFSSLPLEDQVI
lmrxr	
smrxr	EAIYEDIPGDDTGLHPLTIICQSIEQQLPRIVNWARQLPVFSSVY-LSFDDQFC
smrxr amusp	EAIYEDIPGDDTGLHPLTIICQSIEQQLPRIVNWARQLPVFSSVY-LSFDDQFC EAIYEDIPGDDTGLHPLTIICQSIEQQLPRIVNWARQLPVFSSVY-LSFDDQFC YENAVSHICNATNKQLFQLVAWAKHIPHFTSLPLEDQVL
	EAIYEDIPGDDTGLHPLTIICQSIEQQLPRIVNWARQLPVFSSVY-LSFDDQFCEAIYEDIPGDDTGLHPLTIICQSIEQQLPRIVNWARQLPVFSSVY-LSFDDQFC
amusp	EAIYEDIPGDDTGLHPLTIICQSIEQQLPRIVNWARQLPVFSSVY-LSFDDQFCEAIYEDIPGDDTGLHPLTIICQSIEQQLPRIVNWARQLPVFSSVY-LSFDDQFC
amusp tmusp	
amusp tmusp aarxr	EAIYEDIPGDDTGLHPLTIICQSIEQQLPRIVNWARQLPVFSSVY-LSFDDQFCEAIYEDIPGDDTGLHPLTIICQSIEQQLPRIVNWARQLPVFSSVY-LSFDDQFC

pmrxr

lmrxr

smrxr

amusp

- 92 -

6	VGPDSNVPPRYRAPVSSLCQIGNKQIAALVVWARDIPHFGQLELDDQVV
cfusp	VGPESGVPAKYRAPVSSLCOIGNKOIAALVVWARDIPHFGQLELEDQIL
msusp	VGDESGVPAKYRAPVSSLCOIGNKOIAALIVWARDIPHFGQLEIDDQIL
bmusp	AASNTMIPPEYRAPVSAICAMVNKQVFQHMDFCRRLPHFTKLPLNDQMY
ctusp	VGPDSNVPPKFRAPVSSLCOIGNKOIAALVVWARDIPHFSQLEMEDQLL
uspx rxrmin	ANMGLNPSSPNDPVTNICQAADKQLFTLVEWAKRIPHFSELPLDDQVI
LXLIIII	* ::::* * .: .*:
bdrxra	LLRAGWNELLIASFSHRSVTVKDGILLATGLHVH
murxra	TIDACINIELT TACECURCIAVENC
rnrxra	II DACUMEI I TACECUBCIAVKDGILLATGLHVH
horxra	TIDACENTELLIA CECUPCIA VVDCILLA TGLHVH
xlrxra	TIDACENTELLIA CECUDETAVENG.
surxrb	I.I.DACWNELI.TASESHRSTDVRDG
aeuspa	I.I.P.C.CWNEMI.TAAVAWRSMEYTETERSSDGSRITVRQPQLMCLGPNFTLH
dmusp	II KAAMIRI I TANVAMOSTVSI DDGGGGGGGGGGGHDGSFERRSPGLOPOOLFLNQSFSYH
horxrb	II BACKWELLTASESHESTDVRDG
murxrb	II DAGWARLI.TA SESHRSIDVRDGILLATGLHVH
rnrxrb	LLRAGWNELLIASFSHRSIDVRDGILLATGLHVH
xlrxrbb	LLRAGWNELLIASFSHRSISVKDGILLATGLHVH
xlrxrba	LLRAGWNELLIASFSHRSISEKDGILLATGLHVH
murxrg	TARREST TARREST CHECKING CHECKODE TLLATGLHVH
horxrg	LLRAGWNELLIASFSHRSVSVQDGILLATGLHVH
garxrg	T T D A CUNICIT T A CECUDOVICUADO
xlrxrg	T T D A CUMBET T T A CECHD CVCVODG
pmrxr	TIDACINETITACECHECITURES
lmrxr	LLRAGWNELLIAAFSHRSVDVKDGIVLATGLTVH
smrxr	LIKAAWPELVLISSAYHSTVIRDGLLLSIGRHLG
amusp	LLRAGWNELLIASFSHRSIDVKDGIVLATGITVH
tmusp	LLRAGWNELLIAAFSHRSIQAQDAIVLATGLTVN
aarxr	1.1.KAGWME1.1.TAAFSHRSVDVRDG
aarxr2	LLKAGWNELLIAAFSHRSVAVRDGIVLATGLVVQ
uprxr	LLKAGWNELLIASFSHRSMGVEDGIVLATGLVIH
cfusp	LIKASWNELLLFAIAWRSMEYLEDERENGDGTRSTTQPQLMCLMPGMTLH
msusp	LIKNSWNELLLFAIAWRSMEYLTDERENVD-SRSTAPPQLMCLMPGMTLH
bmusp	LIKGSWNELLLFAIAWRSMEFLNDERENVD-SRNTAPPQLICLMPGMTLH LLKQSLNELLILNIAYMSIQYVEPDRRNADGSLERRQISQQMCLSRNYTLG
ctusp	LLKQSLNELLILNIAYMSIQYVEPDRRNADGSLERRQISQQMCBSRNIIBG LIKGSWNELLLFAIAWRSMEFLTAAAASPPQLMCLMPGMTLH
uspx	LIKGSWNELLIFATAWRSMEFLTAAAAS
rxrmin	
	*::. *::: : *
	RSSAHSAGVGSIFDRVLTELVSKMRDMQMDKTELGCLRAIVLFNPDAKGLSNPSEVEALR
bdrxra	RSSAHSAGVGSIFDRVLTELVSKMRDMQMDKTELGCLRAIVLFNPDSKGLSNPAEVEALR
murxra	RNSAHSAGVGAIFDRVLTELVSKMRDMQMDKTELGCLRAIVLFNPDSKGLSNPAEVEALR
rnrxra	RNSAHSAGVGAIFDRVLTELVSKMRDMQMDKTELGCLRAIVLFNPDSKGLSNPAEVEALR
horxra	RNSAHSAGVGAIFDRVLTELVSKMRDMQMDKTELGCLRAIVLFNPDSKGLSNPLEVEALR
xlrxra	RNSAHSAGVGAIFDRVLTELVSKMRDMRMDKTELGCLRAIILFNPDAKGLSNPSEVEVLR
surxrb	RNSANGAGVGAIFDRULCELGIKMKRLDVTRAELGVLKAIILFNPDIRGLKCQKEIDGMR
aeuspa	RNSAIKAGVSAIFDRILSELSVKMKRLNLDRRELSCLKAIILYNPDIRGIKSRAEIEMCR
dmusp	RNSAHSAGVGAIFDRVLTELVSKMRDMRMDKTELGCLRAIILFNPDAKGLSNPGEVEILR
horxrb	RNSAHSAGVGAIFDRVLTELVSKMRDMRMDKTELGCLRAIILFNPDAKGLSNPGEVEILR
murxrb	RNSAHSAGVGAIFDRVLTELVSKMRDMRMDKTELGCLRAIILFNPDAKGLSNPGEVEILR
rnrxrb xlrxrbb	RNSAHSAGVGAIFDRVLTELVSKMRDMRMDKTELGCLRAIILFNPDAKGLSNPGDVEVLR
xirxrbb xlrxrba	RNSAHSAGVGAIFERVLTELVSKMRDMRMDKTELGCLRAIILFNPDAKGLSNPGDVEVLR
	RSSAHSRGVGSIFDRVLTELVSKMKDMOMDKSELGCLRAIVLFNPDAKGLSNPSEVETLR
murxrg horxrg	RSSAHSAGVGSTFDRVLTELVSKMKDMOMDKSELGCLRAIVLFNPDAKGLSNPSEVETLR
garxrg	RSSAHSAGVGSIFDRVLTELVSKMKDMOMDKSELGCLRAIVLFNPDAKGLSSPSEVESLR
xlrxrq	RSSAHNAGVGSTFDRVLTELVSKMKDMDMDKSELGCLRAIVLFNPDAKGLSNAAEVEALR
nmrvr	RHSAHOAGVGPIFDRVLTELVSKMRDMMMDKTELGCLRAIVLFNPDVKNLSDSAHIESLR

 ${\tt RHSAHQAGVGPIFDRVLTELVSKMRDMMMDKTELGCLRAIVLFNPDVKNLSDSAHIESLR}$

RNSAHQAGVGTIFDRVLTELVAKMREMKMDKTELGCLRSVILFNPEVRGLKSAQEVELLR

REVAKSHGLGPLVDRILHELVARFRDLSLQRTELALLRAIILFNPDANGLSSRHRVEAVR

RNSAQQAGVGTIFDRVLSELVSKMREMKMDRTELGCLRSIILFNPEVRGLKSIQEVTLLR

KTSAHAVGVGNIYDRVLSELVNKMKEMKMDKTELGCLRAIILYNPTCRGIKSVQEVEMLR tmusp RHSAHGAGVGAIFDRVLTELVAKMREMKMDRTELGCLLAVVLFNPEAKGLRTCPSGGPEG aarxr RHSAHGAGVGDIFDRVLAELVAKMRDMKMDKTELGCLRAVVLFNPDAKGLRNATRVEALR aarxr2 RSSAHQAGVGAIFDRVLSELVAKMKEMKIDKTELGCLRSIVLFNPDAKGLNCVNDVEILR uprxr RNSAQQAGVGAIFDRVLSELSLKMRTLRMDQAEYVALKAIVLLNPDVKGLKNRQEVDVLR cfusp msusp RNSALQAGVGQIFDRVLSELSLKMRTLRMDQAEYVALKAIILLNPDVKGLKNKPEVVVLR RNSALQAGVGQIFDRVLSELSLKMRSLRMDQAECVALKAIILLNPDVKGLKNKQEVDVLR bmusp RNMAVQAGVVQIFDRILSELSVKMKRLDLDATELCLLKSIVVFNPDVRTLDDRKSIDLLR ctusp uspx RNSALQAGVGQIFDRVLSELSLKMRTLRVDQAEYVALKAIILLNPDVKGLKNRQEVEVLR RNSAHSAGVGAIFDRVLTELVSKMRDMQMDKTELGCLRAIVLFNPDSKGLSNPAEVEALR rxrmin

: * *: ::*:* * * :::: * * :::: * . :

EKVYASLEGYTKHNYPDOPGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLME bdrxra EKVYASLEAYCKHKYPEQPGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLME murxra rnrxra EKVYASLEAYCKHKYPEQPGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLME EKVYASLEAYCKHKYPEQPGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLME horxra EKVYASLEAYCKQKYPEQPGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLME xlrxra surxrb EKVYASLETYCKOKYPEOOGRFAKLLLRLPALRSIGLKCLEHLFFFKLI-------EKIYACLDEHCKQQHPSEDGRFAQLLLRLPALRSISLKCLDHLNFIRLLSDKHLDSFIVE aeuspa dmusp EKVYACLDEHCRLEHPGDDGRFAQLLLRLPALRSISLKCQDHLFLFRITSDRPLEELFLE EKVYASLETYCKQKYPEQQGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLME horxrb EKVYASLETYCKQKYPEQQGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLME murxrb rnrxrb EKVYASLETYCKOKYPEOOGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLME xlrxrbb EKVYASLESYCKQKYPDQQGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLME EKVYACLESYCKQKYPDQQGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLME xlrxrba EKVYATLEAYTKQKYPEQPGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDSFLME murxrg EKVYATLEAYTKQKYPEQPGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLME horxrg EKVYATLEAYTKOKYPEOPGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLME garxrg xlrxrg EKVYATLESYTKQKYPDQPGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLME EKVYASLEAYCRSKYPDQPGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDKFLMN pmrxr EKVYAALEEYTRTTHPDEPGRFAKLLLRLPSLRSIGLKCLEHLFFFRLIGDVPIDTFLME lmrxr EOLYSALHSYCTTNOPODTSRFTKLLLRLPPLRSIASKCLEHLVFVKLAAEDPTSCRLIN smrxr amusp **EKIYGALEGYCRVAWPDDAGRFAKLLLRLPAIRSIGLKCLEYLFFFKMIGDVPIDDFLVE** EKIYGVLEEYTRTTHPNEPGRFAKLLLRLPALRSIGLKCSEHLFFFKLIGDVPIDTFLME tmusp ESV-SALEEHCRQQYPDQPGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDNFLLS aarxr EKVYAALEEHCRRHHPDQPGRFGKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDSFLLN aarxr2 EKVYAALEEYTRTTYPDEPGRFAKLLLRLPALRSIGLKCLEYLFLFKLIGDTPLDSYLMK uprxr **EKMFSCLDDYCRRSRSNEEGRFASLLLRLPALRSISLKSFEHLYFFHLVAEGSISGYIRE** cfusp msusp EKMFSCLDEYVRRSRCAEEGRFAALLLRLPALRSISLKCFEHLYFFHLVADTSIASYIHD EKMFLCLDEYCRRSRGGEEGRFAALLLRLPALRSISLKSFEHLYLFHLVAEGSVSSYIRD bmusp SRIYASLDEYCROKHPNEDGRFAQLLLRLPALRSISLKCLDHLFYFQLIDDKNVENSVIE ctusp uspx EKMFLCLDEYCRRSRSSEEGRFAALLLRLPALRSISLKSFEHLFFFHLVADTSIAGYIRD rxrmin EKVYASLEAYCKHKYPEQPGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLME : .** *****.:***. *. ::* .::

MLEAPHOIT bdrxra MLEAPHOAT murxra rnrxra MLEAPHQTT horxra MLEAPHQMT xlrxra MLEAPHOMT surxrb MLDMPI - - aeuspa dmusp QLEAPPPPG horxrb MLEAPHQLA MLEAPHOLA murxrb rnrxrb MLEAPHQLA xlrxrbb MLEAPHOLS xlrxrba MLEAPHQLS MLETPLQIT murxrg horxra MLETPLQIT MLETPLQVT garxrg MLETPHQIS xlrxrg

- 94 -

pmrxr	MLETTSDFP
lmrxr	MLESPSDS-
smrxr	LVEHGVWPI
amusp	MLESRSDP-
tmusp	MLESPADA-
aarxr	MLEAPSDP-
aarxr2	MLEAPADP-
uprxr	MLVDNPNTS
cfusp	ALRNHAPPI
msusp	ALRNHAPSI
bmusp	ALCNHAPPI
ctusp	EFHKLN
uspx	ALRNGG
rxrmin	MLEAP

References

5

10

20

25

1. Oro A.E. et al. (1990): Relationship between the product of the Drosophila ultraspiracle locus and the vertebrate retinoid X receptor. Nature 347, 298-301

- 95 -

- 2. Moras D. & Gronemeyer H. (1998): The nuclear receptor ligand-binding domain: structure and fiction. Current Opinion in Cell Biology 10, 384-391
- 3. Segraves W.A. (1994): Steroid Receptors and Other Transcription Factors in Ecdysone Response. Recent Progress in Hormone Research, 49, 167-195
- Henrich V.C. & Brown N.E. (1995): Insect Nuclear Receptors: A
 Developmental and Comparative Perspective. Insect Biochem. Mol. Biol. 25
 (8), 881-897
- 5. Thummel C.S. (1995): From Embryogenesis to Metamorphosis: The Regulation and Function of Drosophila Nuclear Receptor Superfamily Members. Cell 83, 871-877
 - 6. Truman J.W. (1996): Ecdysis Control Sheds Another Layer. Science 271, 40-41
 - 7. Yao T. et al. (1993): Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366, 476-479
 - 8. Hall B.L. & Thummel C.S. (1998): The RXR homolog Ultraspiracle is an essential component of the Drosophila ecdysone receptor. Development 125, 4709-4717
 - 9. Lezzi M. et al. (1999): The Ecdysone Receptor Puzzle. Arch. Insect Biochem. Physiol. 41, 99-106
 - 10. Mikitani K. (1996): Ecdysteroid Receptor Binding Activity and Ecdysteroid Agonist Activity at the Level of Gene Expression are Correlated with the Activity of Dibenzoyl Hydrazines in Larvae of Bombyx mori. J. Insect Physiol. 42 (10), 937-941
- 30 11. Dhadialla T.S. et al. (1998): New Insecticides with Ecdysteroidal and Juvenile Hormone Activity. Annu. Rev. Entomol. 43, 545-569

5

30

12. Sundaram M. et al. (1998): Basis for selective action of a synthetic molting hormone agonist, RH-5992 on lepidopteran insects. Insect Biochem. Mol. Biol. 28, 693-704

- 96 -

- 13. Rarey M. et al. (1996): Predicting Receptor-Ligand Interactions by an Incremental Construction Algorithm. J. Mol. Biol. 261(3), 470-489
- 14. Jones G. et al. (1997): Development and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. 267 (3), 727-748
- 15. Böhm H.J. (1992): LUDI: Rule-Based Automatic Design of New Substituents for Enzyme Inhibitor Leads. J. Comp.-Aided Mol. Design 6, 593-606
- 16. Nishibata Y. & Itai A. (1991): Automatic creation of drug candidate structures based on receptor structure. Starting point for artificial lead generation. Tetrahedron 47, 8985-8990
 - 17. Moon J.B. & Howe W.J. (1991): Computer design of bioactive molecules: a method for receptor-based de novo ligand design. Proteins 11 (4), 314-328
- 15 18. Otwinowski Z. & Minor W. (1997): Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326
 - Navaza J. (1994): Amore: an automated package for molecular replacement.
 Acta Cryst. A 50, 157-163
- 20. Egea P.F. et al. (2000): Crystal structure of the human RXRalpha ligandbinding domain bound to its natural ligand 9-cis retinoic acid. EMBO J. 19, 2592-2601
 - Jones T.A. et al. (1991): Improved methods for generateing protein models in electron density maps and the location of errors in these models. Acta Cryst. A 47, 110-119
- 25 22. Perrakis A. et al (1997): wARP: improvement and extension of crystallographic phases by weighted averaging of multiple-refined dummy atomic models. Acta Cryst. D 53, 448-455
 - 23. Brünger A.T. et al. (1998): Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination. Acta Cryst. D 54, 905-921

24. Laskowski R.A. et al. (1993): PROCHECK:a programme to check the stereochemical quality of protein structure coordinates. J. Appl. Crystallogr. 26, 283-291

- 97 -