

Algoritmo e Estrutura de Dados II COM-112

Aula 17

Vanessa Souza

Árvore B de Ordem m

- Cada página tem no máximo m descendentes
- A raiz tem pelo menos 2 descendentes
- Todas as folhas estão no mesmo nível
- O número máximo de elementos em um nó é m-1
- O número **mínimo** de elementos em um nó é $\left\lfloor \frac{m}{2} \right\rfloor_{-1}$
- A ordem de uma árvore B é escolhida de forma que o tamanho de um nó cheio seja menor que o tamanho de bloco de disco, mas o mais próximo que for possível
- Existem diversas variantes de árvore B

▶ Árvore B+ e B* são <u>variações</u> da árvore B

Árvores B*

Proposta por Knuth em 1973

- Uma árvore B* possui as mesmas propriedades de uma árvore B, mais a seguinte propriedade:
 - Exige-se que todos os nós, exceto a raiz, estejam pelo menos
 2/3 cheios (em vez de 1/2 cheios).
- ▶ Posterga o split
 - estende a noção de redistribuição durante a inserção para incluir novas regras para o particionamento de nós.

- Conceito de 'rotação' da remoção em árvores B.
- Representa uma ideia inovadora
 - diferente do split ou da concatenação
- Não se propaga para os nós superiores
 - apenas efeito local na árvore
- Baseada no conceito de nós irmãos adjacentes
 - dois nós logicamente adjacentes, mas com pais diferentes não são irmãos

- Não fixa a forma na qual as chaves devem ser redistribuídas
 - possibilidade 1: mover somente uma chave, mesmo que a distribuição das chaves entre as páginas não seja uniforme
 - possibilidade 2: mover k chaves
 - possibilidade 3: distribuição uniforme das chaves entre os nós

- A redistribuição durante a inserção permite melhorar a taxa de utilização do espaço alocado para a árvore
 - Evita, ou pelo menos adia, a criação de novas páginas
 - Tende a tornar a árvore-B mais eficiente em termos de utilização do espaço em disco
 - Garante um melhor desempenho na busca já que pode reduzir a altura da árvore, por exemplo

Split

divide uma página com overflow em duas páginas semi-vazias.

Redistribuição

 a chave que causou overflow (além de outras chaves)
 pode ser colocada em outra página

- Cada página da árvore deve conter no mínimo 2/3 de chaves
 - Dada uma árvore B* de ordem m
 - Nro_máximo de chaves no nó: m-1
 - Nro_mínimo de chaves no nó : $\frac{2m-1}{3}$
- Para conseguir isto, o algoritmo deve executar sempre a redistribuição de chaves entre duas páginas irmãs até ambas ficarem cheias.
- Somente neste caso haverá uma divisão de páginas.
- Mas, ao invés de duas, três páginas com 2/3 chaves serão geradas
 - ► Split 2-to-3

Somente split na inserção

- no pior caso, a utilização do espaço é de cerca de 50%
 - ▶ em média, para árvores grandes, o índice de ocupação é de ≈69%
- Com redistribuição na inserção
 - ▶ em média, para árvores grandes, o índice de ocupação é de
 ≈ 86%

- Mudança na taxa de ocupação
 - afeta as rotinas de remoção e redistribuição
- Particionamento da raiz
 - Problema
 - raiz não possui nó irmão
 - Soluções
 - dividir a raiz usando a divisão convencional (1-to-2 split);
 ou
 - permitir que a raiz seja maior

Árvores B+

- Uma árvore B+ possui algumas características diferentes da árvore B:
 - Em uma árvore B+, todos os registros são armazenados no último nível (páginas folhas)
 - Os níveis acima do último nível constituem um <u>índice</u> cuja organização é a organização de uma árvore B

Uma árvore B+ possui algumas características diferentes da árvore B:

Separação lógica entre o índice e os registros que constituem o arquivo

A principal diferença é que na árvore B+, os nós intermediários (índice) não possuem ponteiros para dados, mas apenas as chaves.

As folhas são interligadas

Exemplo - Relação

Relação depósito no banco de dados bancário.

Registro	Nome-agência	Numero-conta	Nome-cliente	saldo
0	Perryridge	102	Hayes	400
1	Round Hill	305	Turner	350
2	Mianus	215	Smith	700
3	Downtown	101	Johnson	500
4	Redwood	222	Lindsay	700
5	Round Hill	201	Willians	900
6	Brighton	217	Green	750
7	Clearview	218	Lyle	700

A árvore B gerencia o espaço usado por seus blocos para que eles sempre estejam ocupados com pelo menos a metade de sua capacidade.

Exemplo - Relação

Relação depósito no banco de dados bancário.

Registro	Nome-agência	Numero-conta	Nome-cliente	saldo
0	Perryridge	102	Hayes	400
1	Round Hill	305	Turner	350
2	Mianus	215	Smith	700
3	Downtown	101	Johnson	500
4	Redwood	222	Lindsay	700
5	Round Hill	201	Willians	900
6	Brighton	217	Green	750
7	Clearview	218	Lyle	700

Exemplo – Árvore B+

 A separação lógica afeta as rotinas de inserção e remoção

Inserção

Quando uma folha é dividida em duas, o algoritmo promove uma cópia da chave que pertence ao registro do meio para a página pai no nível anterior, retendo o registro do meio na página folha da direita

Árvore B+ -- Inserção

 A separação lógica afeta as rotinas de inserção e remoção

Remoção

- Mais simples do que a remoção de uma árvore B.
- O registro a ser removido reside sempre em uma página folha, o que torna sua remoção simples
- Tratar apenas a cópia do pai para a folha

Remover: 5, 19, 22, 60 e 9

Vantagens da Árvore B sobre a B+

Ausência de armazenamento redundante de chaves de busca;

- Possibilidade de encontrar uma chave sem chegar até um nó folha;
 - Busca mais rápida

Vantagens da Árvore B+ sobre a B

- Nó folha e não-folha são do mesmo tamanho
 - Facilita o gerenciamento do armazenamento para o índice;

A remoção é mais simples, pois a entrada a ser removida sempre estará numa folha.

B+ - Aplicações

▶ Indexação em Banco de Dados

Exercícios

Qual a diferença entre uma árvore-B e uma B*? Que melhoras a B* oferece sobre a árvore-B, e que complicações ela introduz?

Dada as três variações da árvore B, compare a profundidade de uma em relação a outra.

Fonte dos exemplos e exercícios

- http://wiki.icmc.usp.br/images/8/8e/SCC578920131-B.pdf
- http://www.inf.ufrgs.br/~irmmenezes/lib/exe/fetch.php? media=user:trabalho final cpd.pdf
- http://homepages.dcc.ufmg.br/~rainerpc/cursos/pa/aula s/10arvoresb+.pdf
- http://www.ic.unicamp.br/~sandro/cursos/mc202/web/d ocumentos/lista2/lista2.html

