Using Multiple Imputations And Dynamic Weighted Survival Modeling To Develop An Individualized Treatment Rule For The Choice Of An Antidepressant Drug

Janie Coulombe Université de Montréal janie.coulombe@umontreal.ca

Joint work with Dr. Erica E.M. Moodie and Dr. Susan M. Shortreed

ISI WSC 2023, Ottawa July 19, 2023

In previous work

In English data from the Clinical Practice Research Datalink (CPRD), we looked for important tailoring variables (i.e., effect modification) to:

- Maximize time to a severe depression-related outcome (Coulombe et al., 2021)
- Minimize "detrimental weight changes" (Coulombe et al., 2023)

We did not find any "good" tailoring variable for the choice of an antidepressant drug, or a class.

Now, in this work...

- Access to data from Kaiser Permanente Washington (KPW)
- ► Large nonprofit healthcare organization in Washington State that has a virtual data warehouse combining electronic health records data and insurance billing information

Now, in this work...

- ► Access to data from **Kaiser Permanente Washington** (KPW)
- Large nonprofit healthcare organization in Washington State that has a virtual data warehouse combining electronic health records data and insurance billing information
- ► We focus on the choice between selective serotonin reuptake inhibitors (SSRIs) and selective norepinephrine reuptake inhibitors (SNRIs)

Now, in this work...

- ► Access to data from Kaiser Permanente Washington (KPW)
- ► Large nonprofit healthcare organization in Washington State that has a virtual data warehouse combining electronic health records data and insurance billing information
- We focus on the choice between selective serotonin reuptake inhibitors (SSRIs) and selective norepinephrine reuptake inhibitors (SNRIs)
- ► Information on patient health questionnaires (PHQ)

PHQ questionnaire (a validated tool)

- ► The DSM 5th version (Diagnostic and Statistical Manual) is a classification tool for common mental disorders
- ➤ The PHQ scores each of the 9 depression-related items from the DSM from 0 (not at all) to 3 (nearly every day)

PHQ questionnaire (a validated tool)

- ► The DSM 5th version (Diagnostic and Statistical Manual) is a classification tool for common mental disorders
- ► The PHQ scores each of the 9 depression-related items from the DSM from 0 (not at all) to 3 (nearly every day)
 - ▶ PHQ first 8 items (PHQ-8) ranging from 0 to 24, and
 - ► PHQ-9i, the 9th item, which focuses on suicidal ideation or self-harm, ranging from 0 to 3

(Kroenke et al., 2001)

Doubly-robust methods based on weighted generalized estimating equations.

Originally proposed by Wallace and Moodie (2015) and extended to survival outcomes by Simoneau et al. (2020).

Doubly-robust methods based on weighted generalized estimating equations.

Originally proposed by Wallace and Moodie (2015) and extended to survival outcomes by Simoneau et al. (2020).

Survival outcome: time to a 50% reduction in depressive symptoms.

Doubly-robust methods based on weighted generalized estimating equations.

Originally proposed by Wallace and Moodie (2015) and extended to survival outcomes by Simoneau et al. (2020).

Survival outcome: time to a 50% reduction in depressive symptoms.

Notation:

- $ightharpoonup T_i$ the survival time for individual i and A_i a binary exposure,
- lacksquare δ_i the indicator of experiencing the event before the end of study,
- \triangleright **X**_i^{\psi} the potential effect modifiers,
- \triangleright **X**_i^{β} some confounders or predictors of the outcome.

Doubly-robust methods based on weighted generalized estimating equations.

Originally proposed by Wallace and Moodie (2015) and extended to survival outcomes by Simoneau et al. (2020).

Survival outcome: time to a 50% reduction in depressive symptoms.

Notation:

- $ightharpoonup T_i$ the survival time for individual i and A_i a binary exposure,
- \triangleright δ_i the indicator of experiencing the event before the end of study,
- \triangleright \mathbf{X}_{i}^{ψ} the potential effect modifiers,
- \triangleright \mathbf{X}_{i}^{β} some confounders or predictors of the outcome.

Suppose the accelerated failure time model:

$$\mathbb{E}[\log T_i|A_i,\mathbf{X}_i] = f\left\{\mathbf{X}_i^{\beta};\boldsymbol{\beta}\right\} + A_i\psi'\mathbf{X}_i^{\psi}$$

with the "treatment-free model" $f\left\{\mathbf{X}_{i}^{\beta}; \boldsymbol{\beta}\right\}$ and the "blip" $\psi'\mathbf{X}_{i}^{\psi}$.

In the case of a one-stage treatment rule, it corresponds to solving the following equations:

$$U(\boldsymbol{\beta}, \boldsymbol{\psi}) = \sum_{i=1}^{n} \int_{0}^{\tau} w_{i} \begin{bmatrix} \frac{\partial f\left\{\mathbf{X}_{i}^{\beta}; \boldsymbol{\beta}\right\}}{\partial \boldsymbol{\beta}} \\ A_{i}(t)\mathbf{X}_{i}^{\psi} \end{bmatrix} \left[\log(T_{i}) - f\left\{\mathbf{X}_{i}^{\beta}; \boldsymbol{\beta}\right\} - A_{i}(t)\psi'\mathbf{X}_{i}^{\psi} \right] \delta_{i} = 0.$$

In the case of a one-stage treatment rule, it corresponds to solving the following equations:

$$U(\boldsymbol{\beta}, \boldsymbol{\psi}) = \sum_{i=1}^{n} \int_{0}^{\tau} w_{i} \begin{bmatrix} \frac{\partial f\left\{\mathbf{X}_{i}^{\beta}; \boldsymbol{\beta}\right\}}{\partial \boldsymbol{\beta}} \\ A_{i}(t)\mathbf{X}_{i}^{\psi} \end{bmatrix} \left[\log(T_{i}) - f\left\{\mathbf{X}_{i}^{\beta}; \boldsymbol{\beta}\right\} - A_{i}(t)\boldsymbol{\psi}'\mathbf{X}_{i}^{\psi} \right] \delta_{i} = 0.$$

The weights w_i must satisfy a balancing condition (Theorem 1, Wallace and Moodie).

In Simoneau et al., they proposed the use of inverse probability of censoring weights to account for informative censoring multiplied by overlap weights (Li et al., 2018).

Challenge

The PHQ-9 score is supposed to be measured rather regularly (months 1, 2, 3, 6, 9, 12, and other specific moments).

Challenge

The PHQ-9 score is supposed to be measured rather regularly (months 1, 2, 3, 6, 9, 12, and other specific moments).

Inspired by Shortreed et al. (2014), we use a sequential imputation approach for monthly PHQ-8, PHQ-9i and weight outcomes. Shortreed et al. call this a "Time-ordered nested conditional imputation approach".

Challenge

The PHQ-9 score is supposed to be measured rather regularly (months 1, 2, 3, 6, 9, 12, and other specific moments).

Inspired by Shortreed et al. (2014), we use a sequential imputation approach for monthly PHQ-8, PHQ-9i and weight outcomes. Shortreed et al. call this a "Time-ordered nested conditional imputation approach".

Idea: to borrow information from previous months and baseline to impute future values.

Data

- ▶ We gathered a cohort of patients, 13 years or older, with a diagnosis for depression who initiated ADs between 2008-2018 (around 90K patients)
- We focused on the first year of follow-up (12 months). Creation of monthly variables: $PHQ8_m$, $PHQ9i_m$, weight_m, m = 1, ..., 12

Data

- ▶ We gathered a cohort of patients, 13 years or older, with a diagnosis for depression who initiated ADs between 2008-2018 (around 90K patients)
- ▶ We focused on the first year of follow-up (12 months). Creation of monthly variables: $PHQ8_m$, $PHQ9i_m$, weight_m, m=1,...,12
- Other variables available:
 - demographics (age, sex, race and ethnicity, insurance type, etc.);
 - medication and treatment (psychotherapy, antipsychotics, etc.); and
 - outcomes (PHQ-8, PHQ-9i, suicide attempt, self-harm, weight, etc.).
- Other longitudinal variables can be transformed into monthly indicators (such as initiating psychotherapy during month j, j = 1, ..., 12)

Time-varying variables that were created:

- ▶ 1) Initiation and 2) continuation of SGA or FGA
- ▶ 1) Initiation and 2) continuation of psychotherapy
- ► End of the initiating treatment
- Adding a second medication during that month
- Ending the second medication
- Indicator of self-harm diagnosis, death, death by suicide, hospitalization for depression
- Psychiatric diagnoses: Autism spectrum disorder, anxiety, PTSD, schizophrenia, other psychosis, bipolar disorder, OCD, opioid use disorder, personality disorder, sedative use disorder that occurred anytime before
- Indicator of at least one psychiatric contact on a given month

Imputation

Sequential approach with multiple imputations with chained equations (MICE):

- ► Impute baseline variables first
- Impute month 1 data using the baseline information and time-varying variables measured at month 1
- ▶ Impute month j data (j=2,...,12) using the baseline information + PHQ-8, PHQ-9i and weight imputed at month j-1 and time-varying variables from month j

We created 25 such imputed datasets.

► Ultimate goal is causal inference

- Ultimate goal is causal inference
- PHQ-8 and PHQ-9i provided different information and were treated separately

- Ultimate goal is causal inference
- ▶ PHQ-8 and PHQ-9i provided different information and were treated separately
- ► Fully conditional specification Testing to find the optimal distribution or imputation approach

- Ultimate goal is causal inference
- ▶ PHQ-8 and PHQ-9i provided different information and were treated separately
- ► Fully conditional specification Testing to find the optimal distribution or imputation approach
- Treatment of loss to follow-up

- Ultimate goal is causal inference
- PHQ-8 and PHQ-9i provided different information and were treated separately
- Fully conditional specification Testing to find the optimal distribution or imputation approach
- Treatment of loss to follow-up
- Had to create 31 imputed datasets to have 25 completed (and sensible) datasets

- Ultimate goal is causal inference
- PHQ-8 and PHQ-9i provided different information and were treated separately
- Fully conditional specification Testing to find the optimal distribution or imputation approach
- Treatment of loss to follow-up
- Had to create 31 imputed datasets to have 25 completed (and sensible) datasets
- ► Post-processing and censoring

Tailoring variables (and confounders)

- Age, sex, race and ethnicity, weight at cohort entry, tobacco use, Charlson comorbidity index¹
- Psychotherapy (previous year)
- ► Anxiety or generalized anxiety disorder (GAD)
- Indicator of other psychiatric diagnosis at cohort entry (autism spectrum, obsessive-compulsive, bipolar, personality, sedative use, or alcohol use disorders, schizophrenia, PTSD²)
- Number of hospit. for mental health diagnosis or suicide attempt or self-harm (previous 6 months)
- Number of antidepressant drugs in previous 5 years
- Had a baseline PHQ score
- ► PHQ-8 and PHQ-9i at baseline

¹categorizes comorbidities based on the risk of mortality

²post-traumatic stress disorder

Missing data

- ▶ Baseline covariates: Between 0% and 24% missing values
- ▶ PHQ-8 and PHQ-9i at baseline: 58 % missing

Missing data

- ▶ Baseline covariates: Between 0% and 24% missing values
- ▶ PHQ-8 and PHQ-9i at baseline: 58 % missing
- ▶ PHQ: Between 86% and 99% missing between months 1 and 12 (roughly 3/4 of the patients have all PHQ missing from months 1 to 12)
- ► However, the correlation among PHQ scores across months was relatively high (e.g., 0.75 between months 2 and 3 when keeping complete cases)
- ▶ Naturally, months 4, 5, 7, 8, 10, and 11 not corresponding to the measurement schedule of PHQ-9 contained a lot of missing data.

Diagnostics

Imputation diagnostics, e.g.:

and causal inference - Before (left) and after imputation (right):

Figure 1: Overlap in the propensity score distributions. Blue: SSRI, Pink: SNRI

Time to 50% PHQ reduction - SSRI vs SNRI

Out of 25 imputed datasets:

- ► Sex (3)
- Anxiety or GAD (2)
- Diagnosis for a psychiatric diagnosis other than anxiety, GAD (2)
- ▶ No. of mental health inpatient stays in previous 6 months (2)
- ▶ No. mental health visits in previous 5 years (2)
- ► Had baseline PHQ (2)
- Psychotherapy (1)
- ▶ No. prior AD in previous 5 years (1)

Discussion

► The approach relies on the imputation models we choose and other assumptions (MAR assumption, confounding, visit predictors)

Discussion

- ► The approach relies on the imputation models we choose and other assumptions (MAR assumption, confounding, visit predictors)
- Smoothness in the PHQ mean and investigation of interactions for future work (congeniality)

Discussion

- ► The approach relies on the imputation models we choose and other assumptions (MAR assumption, confounding, visit predictors)
- Smoothness in the PHQ mean and investigation of interactions for future work (congeniality)
- ► Investigate the causal inference assumptions

Acknowledgements

Drs Erica E. M. Moodie and Susan M. Shortreed and the Chair of this session.

Thanks for your attention!

Funding and support:

canada canada

Contact:

janie.coulombe@umontreal.ca

References (1)

Coulombe, J., Moodie, E. E. M., Shortreed, et al. (2021) Can the risk of severe depression-related outcomes be reduced by tailoring the antidepressant therapy to patient characteristics?. *American Journal of Epidemiology*, 190(7), pp. 1210-1219.

Coulombe, J., Moodie, E. E. M., Renoux, C., et al. (2023) Estimating individualized treatment rules in longitudinal studies with covariate-driven observation times. *Statistical Methods in Medical Research*, *32*(5), pp. 868-884.

Green E., Goldstein-Piekarski, A., Schatzberg, A. F., et al. (2017) Personalizing antidepressant choice by sex, body mass index, and symptom profile: An iSPOT-D report. *Personalized medicine in psychiatry*, 1, pp. 65-73.

Iniesta, R., Malki, K., Maier, W., et al. (2016) Combining clinical variables to optimize prediction of antidepressant treatment outcomes. *Journal of psychiatric research*, 78, pp. 94-102.

Kroenke K., Spitzer, R. L., and Williams, J. BW. (2001) The PHQ-9: validity of a brief depression severity measure. *Journal of general internal medicine*, 16(9), pp. 606-613.

Li, F., Morgan, K. L., and Zaslavsky, A. M. (2018) Balancing covariates via propensity score weighting. *Journal of the American Statistical Association*, 113(521), pp. 390-400.

References (2)

Lin, H., Scharfstein, D. O., et Rosenheck, R. A. (2004). Analysis of longitudinal data with irregular, outcome-dependent follow-up. *Journal of the Royal Statistical Society:* Series B (Statistical Methodology), 66(3), pp. 791-813.

Shortreed, S. M., Laber, E., Scott Stroup, T., et al. (2014) A multiple imputation strategy for sequential multiple assignment randomized trials. *Statistics in medicine*, 33(24), pp. 4202-4214.

Simoneau, G., Moodie, E. E. M., Nijjar, J. S., et al. (2020) Estimating optimal dynamic treatment regimes with survival outcomes. *Journal of the American Statistical Association*, 115(531), pp. 1531-1539.

Taliaz, D., Spinrad, A., Barzilay, R., et al. (2021) Optimizing prediction of response to antidepressant medications using machine learning and integrated genetic, clinical, and demographic data. *Translational psychiatry*, 11(1), pp. 381.

Wallace, M. P. and Moodie, E. E. M. (2015) Doubly-robust dynamic treatment regimen estimation via weighted least squares. *Biometrics*, 71(3), pp. 636-644.