

Modelação de Sistemas Físicos

Ano Académico 2021/2022 - 2º Semestre

2º TESTE - Resolução Parte Cálculo Computacional-Numérico

Data: 3 junho 2022 Duração: 1 hora Cotação: 1) 3 + 2 = 5 valores

Hora: 17H00 Disciplina: 41769 2) 1.5 + 1.5 + 2 = 5 valores

Salas: 12.1.1 e 12.2.1. **NOTE:**

a) Responda às perguntas na vossa folha de prova, justificando-as,

b) Na vossa folha de prova indique os métodos, os algoritmos, passos, ... usados.

c) Indique claramente o sistema de eixos usado.

d) Esboce os gráficos, indicando univocamente os pontos importantes. Se gravar as figuras, salve-as em formato png.

e) Os ficheiros devem ser copiados para a caneta de memória do docente presente na sala com o nome e número do aluno (para poderem ser consultados quando o docente tiver dúvidas durante a correção).

f) Os ficheiros poderão ser um por alínea e com a impressão dos resultados.

g) Tem de usar o seu computador portátil. Pode (e deve) usar os seus programas, assim como outros programas que tenha obtido.

h) É um teste de consulta, mas não pode aceder à internet, incluindo para consultar documentos do python.

As respostas não podem ser escritas a lápis

Justifique todas as respostas

- 1. Um jogador de futebol treina pontapés livres a 20 m da baliza, e diretamente perpendicular a ela, como mostra a figura. Para saber se é golo ou não
- a) Chuta a bola a 100 km/h, e a fazer um ângulo de 16° com a horizontal. Qual a altura da bola quando passa pela posição da baliza? É golo?
- b) Como como na alínea anterior, mas agora chuta a bola com um pequeno efeito de rotação descrita pelo vetor $\vec{\omega} = (0, 0, -10)$ rad/s, no sistema de eixos indicado em baixo. Qual a altura da bola quando passa pela posição da baliza? É golo?

Considere

- A resistência do ar
- O raio da bola de futebol é r = 11 cm.
- A massa da bola de futebol é 0,45 kg.
- A velocidade terminal da bola $v_T = 100$ km/h
- A massa volúmica do ar. $\rho_{ar}=$ 1.225 kg/m 3
- A força de Magnus, $\vec{F}_{Magnus} = \frac{1}{2} A \rho_{ar} r \vec{\omega} \times \vec{v}$, em que $A = \pi r^2$ é a área da secção de corte da bola. r o raio da bola e
- O sistema de eixos considerado é: OX de baliza a baliza, OY o eixo vertical (na figura é para cima) e OZ o eixo lateral, e a origem é o local onde a bola é chutada.
 - É golo quando: x > 20 e 3.75 m < z < 3.75 m e 0 < y < 2.4 m.

Resolução resumida,

a) Todas as quantidades na resolução no Sistema Internacional

$$g = 9.80 D = g/v_1^2$$

$$\begin{cases} P_x = 0 \\ P_y = -mg \end{cases}$$
 e $\begin{cases} \overline{F}_{res,x} = -m \, D | \vec{v} | v_x \\ \overline{F}_{res,y} = -m \, D | \vec{v} | v_y \end{cases}$

As forças, a posição e a velocidade inicial estão no plano OXY. Portanto o movimento está no plano OXY.

E a aceleração
$$egin{cases} a_x = -m\,D|ec{v}|v_x\ a_y = -g\,-m\,D|ec{v}|v_y \end{cases}$$

A equação de Newton
$$\begin{cases} a_x = \frac{dv_x(t)}{dt} \\ a_y = \frac{dv_y(t)}{dt} \end{cases} e \qquad \begin{cases} v_x(t) = \frac{dx(t)}{dt} \\ v_y(t) = \frac{dy(t)}{dt} \end{cases}$$
 são integradas numericamente pelo método de

Euler (também se pode integrar pelo método de Euler-Cromer).

Cálculo da altura da bola quando passa pela posição da baliza é pelo ponto em que o x está mais próximo de 20 m.

dt (s)	Método de Euler		Método de Euler-Cromer	
	x (m)	y (m)	x (m)	y (m)
0.01	19.92	2.487	20.06627	2.44019
0.001	20.004	2.4444	19.999545	2.4401
0.0001	20.0002	2.44111	19.9995452079	2.440198
0.00001	19.99995	2.440764	20.00009892	2.440657
0.000001	19.9999952	2.44072	20.00000977	2.440713
0.0000001	19.99999940	2.4407203	20.00000086	2.4407193
		Converge para 2.4407 m		Converge para 2.4407 m

A altura da bola quando passa pela posição da baliza é 2.44 m. O poste da baliza está a 2.4 m, logo a bola passa por cima da baliza e não é golo.

b)

$$\vec{F}_{Magnus} = \frac{1}{2} A \rho_{ar} r \vec{\omega} \times \vec{v} = \frac{1}{2} A \rho_{ar} r \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 0 & 0 & -10 \\ v_x & v_y & v_z \end{vmatrix}$$

$$= \frac{1}{2} A \rho_{ar} r \left(10 v_y \hat{\imath} - 10 v_x \hat{\jmath} \right)$$

A força de Magnus e as outras forças, a posição e a velocidade inicial estão no plano OXY. Portanto o movimento está no plano OXY.

$$\begin{cases} a_x = -D|\vec{v}|v_x + \frac{1}{2}A\rho_{ar} r \times 10 v_y/massa \\ a_y = -g - D|\vec{v}|v_y - \frac{1}{2}A\rho_{ar} r \times 10 v_x/massa \end{cases}$$

dt (s)	x (m)	y (m)
0.01	19.992	2.0283
0.001	19.99319	1.98742
0.0001	19.9994	1.98258
0.00001	20.000082	1.982105
0.000001	19.9999996	1.98207
		Converge para 1.98 m

A altura da bola quando passa pela posição da baliza é 1.98 m. A trave da baliza está a 2.4 m, logo a bola passa na baliza masi baixa que a trave e é golo.

- 2. Considere uma pessoa, de 60 kg, a viajar numa trotinete elétrica, de 12 kg e de potência 0.48 cv.
- a) Determine a evolução temporal da velocidade do trotinetista (pessoa a viajar em cima da trotinete) numa estrada horizontal, se a trotinete produzir continuamente a potência 0.48 cv e partir com um empurrão de 0.5 m/s?
- b) Quanto tempo leva a percorrer 2 km?
- c) Considere nesta alínea um percurso diferente, numa colina, em que nos primeiros 1500 m o trotinetista sobe com uma inclinação de 4°, e nos últimos 500 m o trotinetista desce com uma inclinação de 1°. Quanto tempo leva a percorrer os 2 km?

Dados: O coeficiente de resistência μ de um piso liso de alcatrão é de 0.01, o coeficiente de resistência do ar é $C_{res}=0.9$, de área frontal 0.50 m² e densidade do ar $\rho_{ar}=1.225$ kg/m³.

Resolução resumida,

a)

massa=
$$60 + 12 = 72 \text{ kg}$$

 $P_{o,cic} = 0.48 \text{ cv} = 353.0388 \text{ W}$
 $\vec{F} = \vec{F}_{cic} + \vec{P} + \vec{F}_{res} + \vec{F}_{rol} + \vec{N} \text{ segundo OX}$

 $m \ a_x = \frac{P_{o,cic}}{v} - \frac{c_{res}}{2} A \ \rho_{ar} v \ v_x - \mu \ m \ g$ integrada pelo método de Euler:

b) Cálculo do instante em que o trotinetista está mais perto de 2 km

Código python:

```
# O ponto mais perto de x=dist
dist=2000
dx=0.1
dd=0.2
for i in range(n):
    if x[i] < dist+dx and x[i] > dist-dx:
        ddn=np.abs(x[i]-dist)
        if ddn < dd:
            dd=ddn
            ind=i
print(' 2 km: ',ind,t[ind],x[ind],x[ind]-dist,t[ind]/60)
```

Método de		lo de Euler
dt (s)	x (m)	t(s)
0.01	1999.97	204.11
0.001	2000.0009	204.120000
0.0001	1999.99958	204.1206000
0.00001	1999.99995	204.12071
	Converge para 2 km	Converge para 204.1 s

e)
$$\vec{F} = \vec{F}_{cic} + \vec{P} + \vec{F}_{res} + \vec{F}_{rol} + \vec{N}$$
 segundo OX, a direção do movimento

Subida

Descida

$$m a_x = \frac{P_{o,cic}}{v} - P \sin 5 - \frac{c_{res}}{2} A \rho_{ar} v v_x - \mu m g$$

$$m \, a_x = \frac{P_{o,cic}}{v} - P \sin 5 - \frac{C_{res}}{2} A \, \rho_{ar} v \, v_x - \mu \, m \, g$$
 $m \, a_x = \frac{P_{o,cic}}{v} + P \sin 5 - \frac{C_{res}}{2} A \, \rho_{ar} v \, v_x - \mu \, m \, g$

Código python:

for i in range(n): t[i+1]=t[i]+dtfres=-.5*cres*area*denar*vx[i]**2 fcic=pot/vx[i] ax=(fcic+pesos+frols+fres)/m if x[i] > 1500: ax=(fcic+pesod+frold+fres)/m vx[i+1]=vx[i]+ax*dtx[i+1]=x[i]+vx[i]*dt

Cálculo do instante em que a posição obtida do trotinetista está mais perto de 2 km

	Método de Euler		
dt (s)	x (m)	t(s)	
0.01	1999.976	324.4599	
0.001	1999.994847	324.4679	
0.0001	2000.0001579	324.46910	
0.00001	2000.00001	324.46912	
	Converge para 2 km	Converge para 324.5 s	

Formulário:

$$\vec{F}_{res} = -m \; D \left| \vec{v} \right| \vec{v} \qquad \qquad \vec{F}_{res} = -\frac{c_{res}}{2} A \; \rho_{ar} \left| \vec{v} \right| \; \vec{v} \quad \left| \; \vec{F}_{rol} \right| = \mu \left| \vec{N} \right| \quad \left| \; \vec{F}_{impuls\~ao} \right| = m_{fluido} \; g$$

$$\vec{F}_{Magnus} = \tfrac{1}{2} A \; \rho_{ar} \; r \; \overrightarrow{\omega} \times \vec{v} \qquad \qquad \vec{F}_{grav} = -G \, \tfrac{m \, M}{|\vec{r}|^2} \tfrac{\vec{r}}{|\vec{r}|} \qquad \qquad \vec{F}_{elástica} = -k \; \vec{r}$$

$$\vec{F}_{elet} = -k_e \frac{q \, \varrho}{|\vec{r}|^2} \frac{\vec{r}}{|\vec{r}|} \qquad \qquad \vec{F}_{elet} = q \, \vec{E}_{elet}$$

$$\begin{split} \vec{F}_{elet} &= -k_e \frac{q \, Q}{|\vec{r}|^2} \frac{\vec{r}}{|\vec{r}|} & \qquad \qquad \vec{F}_{elet} = q \, \vec{E}_{elet} \\ F_{\chi} &= -\frac{dE_p}{d\chi} & \qquad \qquad E_p = m \, g \, y & \qquad E_p = \frac{1}{2} k \, \chi^2 & \qquad E_p = -G \, \frac{m \, M}{|\vec{r}|} \end{split}$$

$$P_o = \vec{F} \cdot \vec{v}$$

Grandezas físicas e conversões:

1 polegada = 1 in =
$$0.39370 \text{ m}$$
 1 pé = 1 ft = 2.54 cm 1 milha = 1.609344 km

Sistema Internacional de Unidades (SI):

Ouantidades básicas

Quantidade	unidade	Símbolo
Comprimento	metro	m
Massa	quilograma	kg
Tempo	segundo	S
Temperatura	kelvin	K
Corrente elétrica	ampere	Α

Outras quantidades importantes

Quantidade	unidade	Símbolo
Velocidade	metro/segundo	m/s
Aceleração	metro/segundo ²	m/s ²
Força	kilograma × metro/segundo ² = newton	N
Energia	kilograma × metro2 /segundo ² = joule	J
Potência	kilograma × metro2 /segundo ³ = watt	W