CS5222 Computer Networks and Internets Tutorial 7 (Week 8)

Prof Weifa Liang

Weifa.liang@cityu.edu.hk

Slides based on book *Computer Networking: A Top-Down Approach.*

Recipe for defining subnets:

detach each interface from its host or router, creating

each isolated network is called a *subnet*

"islands" of isolated networks

■ Subnet mask/24:

```
      255
      255
      255
      0

      11111111
      111111111
      111111111
      000000000
```


(high-order 24 bits: subnet part of IP address)

Network Layer: 4-2

IP addressing: CIDR

CIDR: Classless InterDomain Routing (pronounced "cider")

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # of bits in subnet portion of address

Network Layer: 4-3

Working with Addresses

Write down the IP address.	11000000 192	10101000 168	01100100 100	01010000 80
If you have a prefix length, just write down the number of 1's. If you have a network mask, compute the binary as with the IP address.	11111111 8 Subnet ma	+8	11111111 +8 255.255.19	+2 = 26
AND these two.	11000000	10101000	01100100	01000000
Convert back to dotted decimal. This is the network address.	192	168	100	64

Working with Addresses

Write down the IP address.	11000000 192	10101000 168	01100100 100	01010000 80
If you have a prefix length, just write down the number of 1's. If you have a network mask, compute the binary as with the IP address.	1111111	11111111 +8	11111111 +8	11000000 +2 = 26
Inverse every bit in the mask	0000000	0000000	0000000	00111111
AND IP address with the inversed mask	0000000	0000000	0000000	00010000
Convert back to dotted decimal. This is the host address.	0	0	0	16

Work on questions

1. Consider a datagram network using 8-bit host addresses. Suppose a router uses the longest prefix matching and has the following forward table:

Prefix Match	Interface		
00	0		
010	1		
011	2		
10	2		
11	3		

For each of the four interfaces, give the associated range of destination addresses and the number of addresses in the range.

Answer:

- Interface 0: 000000000 to 001111111,
 - 64 in total (62 for hosts, one for the subnetwork address, one for broadcast address)
- Interface 1: 01000000 to 01011111,
 - 32 in total
- Interface 2: 01100000 to 011111111, 32; and 10000000 to 101111111, 64;
 - in total 96=32+64
- Interface 3: 110000000 to 111111111, 64 in total

2. Suppose that an IP address in a network is 10.16.3.65/23. What is the lowest host address in this subnet? What is the broadcast address of this subset?

Answer: As the network mask of this subset is: 255.255.254.0, the address space of this network is 10.16.2.0 to 10.16.3.255.

Thus, the lowest host address is 10.16.2.1/23. The broadcast address is 10.16.3.255/23

3. What is the maximum number of IP addresses that can be assigned to hosts on a local subnet that uses the subnet mask 255.255.255.224?

Answer: 255.255.255.224 is 111111111111111111111111111111111100000.

Thus, the number of bits used for hosts is 5. Thus, at most $2^5 - 2 = 30$ hosts can be supported. (0-subnet and 1-broadcast)

4. You have an interface on a router with the IP address of 192.168.192.10/29. Including the router interface, how many hosts can have IP addresses on the LAN attached to the router interface?

Answer: Only 3 bits in the last octet are used for hosts in the network.

Thus, it can support $2^3 - 2 = 6$ hosts.

5. Suppose that an enterprise obtains a block of IP addresses where the network address is 212.1.18.0/23. The enterprise would like to partition the network into 5 subnets where the number of hosts to be supported in these 5 subnets are as follows: 230, 125, 60, 30, 30. Show your design of address allocation.

Answer: There are 9 bits (=32-23) for host addresses.

- To support 230 hosts, we need at least 8 bits for hosts.
- To support 125 hosts, we need at least 7 bits for hosts.
- To support 60 hosts, we need at least 6 bits for hosts.
- To support 30 hosts, we need at least 5 bits for hosts.

Therefore, the network can be partitioned as follows (we only show the last two bytes):

```
      00010010. xxxxxxxxx
      (for the first subnet)
      212.1.18.0/24

      00010011. 0xxxxxxxx
      (for the second subnet)
      212.1.19.0/25

      00010011. 10xxxxxxx
      (for the third subnet)
      212.1.19.128/26

      00010011. 110xxxxxx
      (for the forth subnet)
      212.1.19.192/27

      00010011. 111xxxxxx
      (for the fifth subnet)
      212.1.19.224/27
```

Therefore, the network addresses of 5 subnets are: 212.1.18.0/24, 212.1.19.0/25, 212.1.19.128/26, 212.1.19.192/27, 212.1.19.224/27