Apêndices

APÊNDICE A PSpice, C++ e MathCad

APÊNDICE B Fatores de Conversão

APÊNDICE C Determinantes

APÊNDICE D Código de Cores para Capacitores de Mica (Picofarads)

APÊNDICE E Código de Cores para Capacitores Cilíndricos (Picofarads)

APÊNDICE F Alfabeto Grego

APÊNDICE G Conversões entre Parâmetros Magnéticos

APÊNDICE H Condições para a Máxima Transferência de Potência

APÊNDICE I Respostas de Problemas Ímpares Escolhidos

Apêndice A

PSpice, C++ e MathCad

PSpice

O programa de computador utilizado neste livro, o PSpice, é originário de programas desenvolvidos na Universidade da Califórnia em Berkeley durante os anos 70. SPICE é um acrônimo para Simulation Program with Integrated Circuit Emphasis — Programa de Simulação com Ênfase em Circuitos Integrados. O SPICE tem sofrido muitas mudanças desde as primeiras versões de programas para análise de circuitos, como o ECAP (Electrical Circuit Analysis Program — Programa de Análise de Circuitos Elétricos). Enquanto algumas empresas adaptaram o SPICE a suas necessidades específicas, a MicroSim desenvolveu tanto uma versão comercial como uma versão para estudantes. Como as versões comerciais ou profissionais usadas pelas empresas de engenharia são muito dispendiosas, a MicroSim autoriza a cópia da versão para estudantes dentro da comunidade universitária. Os programas apresentados neste livro foram todos desenvolvidos em uma versão para estudantes, de modo a assegurar que funcionem no ambiente estudantil. O PSpice é apenas um entre vários programas de análise e simulação de circuitos de corrente contínua e alternada capazes de analisar praticamente qualquer tipo de circuito. O pacote comercial é excessivamente complexo para a maioria das aplicações em sala de aula, além de muito caro, enquanto o pacote para estudantes foi desenvolvido de modo a permitir que os alunos se familiarizem com esta importante ferramenta por um custo mínimo. Na verdade, como já foi dito, a MicroSim autoriza a cópia da versão para estudantes como forma de facilitar a sua disseminação.

O texto deste livro foi escrito de forma a fornecer detalhes suficientes para conduzir o usuário através da análise sem necessidade de nenhum texto adicional. Entretanto, a MicroSim fornece manuais a preços acessíveis que podem ser úteis para quem desejar níveis de detalhamento superiores aos oferecidos neste livro. O PSpice é fornecido atualmente em dois formatos: DOS e Windows. No primeiro, o circuito é descrito através de parâmetros alfanuméricos que especificam os componentes que estão ligados aos diferentes nós; no segundo, o circuito é desenhado na tela do computador. Esta é a única diferença entre as duas versões; o modo como o programa analisa o circuito e o formato de saída são exatamente os mesmos nos dois casos.

Equipamentos Necessários

As análises que aparecem neste livro foram executadas com a versão 6.2 do programa PSpice. Esta versão pode ser instalada e executada nas seguintes plataformas:

Computadores PC e compatíveis (IBM, COMPAQ, TANDY, GATEWAY etc.) Estações SUN SPARC rodando Sun OS 4.1.2 (Solaris 1.0.1) Estações SUN SPARC rodando Solaris 2.3 (Sun OS 5.3) Estações de trabalho HP9000/800

Configurações Mínimas

Um computador com processador 80386 ou melhor Pelo menos 4 MB de RAM Co-processador matemático Pelo menos 20 MB de espaço livre no disco rígido Uma porta serial (para versões normais) ou uma porta paralela (para versões de rede)

Pelo menos um drive de 3,5"

Sistema operacional MS-DOS 3.3 ou posterior

Monitor monocromático ou colorido e placa de vídeo comnatível

Para a versão Windows, Windows 3.1 ou posterior Drive de CD-ROM para a versão em CD-ROM

Documentação

A documentação está disponível on-line (CD-ROM) ou em formato impresso (manuais). Para informações a respeito de como adquirir os manuais, o leitor deve ligar para (714) 837-3022 ou (800) 245-3022.

Entre os manuais disponíveis estão os seguintes:

Manuais de Instalação (DOS ou Windows)

Guia do Usuário para Análise de Circuitos (DOS ou Windows) Manual de Referência para Análise de Circuitos (DOS ou Windows)

Guias, Notas Técnicas e Sugestões Práticas (para as duas versões) Esquemas MicroSim (Windows)

Assistência Técnica

A assistência técnica está disponível através do seguinte número, de 8:30 às 17:00, Pacific Standard Time, de segunda a sextafeira: (714) 837-0790.

A MicroSim também dispõe de um Bulletin Board Service (BBS). Neste BBS, o leitor encontrará informações a respeito dos programas oferecidos pelo MicroSim e um serviço de mensagens que o usuário pode usar para apresentar comentários e sugestões. Telefone de acesso: (714) 830-1550. Configuração do modem: 1200-14, k baud, N-8-1).

O endereço da MicroSim na Internet é Tech.Support@ MicroSim.com.

C++

A versão de C++ utilizada neste livro é o Borland C++ 4.0, disponível em CD-ROM para DOS e Windows.

Configurações Mínimas

DOS versão 4.01 ou posterior

Windows 3.1 ou posterior, no modo 386-enhanced

Disco rígido com 2 MB de espaço livre para a instalação mínima a partir do CD-ROM (90 MB para a instalação completa)

Drive de CD-ROM

Pelo menos 4 MB de memória estendida (RAM)

Embora os itens a seguir não sejam essenciais, eles podem melhorar o desempenho do sistema:

8 MB de RAM

Co-processador matemático (se você for escrever programas que usem aritmética de ponto flutuante); o Borland C++4.0 emula esse co-processador se ele não estiver presente.

Documentação (Somente no CD-ROM)

Guia do Usuário
Guia do Programador
Manual das Bibliotecas
Manual do DOS
Guia do Usuário do Turbo Debugger
Guia do Programador para Windows
Guia de Referência para Windows
Exemplos de programas
Outros

MathCad

O livro utiliza a Edição para Estudantes do MathCad Versão 2.54, escrita por Richard B. Anderson e publicada por Addison-Wesley Publishing Company, Inc. e The Benjamin/Cummings Publishing Company, Inc. A Edição para Estudantes foi desenvolvida e programada por MathSoft Inc.

Podem ser obtidas informações através da Addison-Wesley Publishing Company pelo telefone (617) 944-3700 ou por carta ao Eastern Regional Office, Route 128, Reading, MA 01867, USA.

Apêndice B

FATORES DE CONVERSÃO

$\begin{array}{c} 365 \\ 8760 \\ 525.600 \\ 3,1536 \times 10^7 \\ \\ & \\ 251,996 \\ 1,054 \times 10^{10} \\ 777,649 \\ 0,000393 \\ 1054,35 \\ \\ \text{ora} \\ 0,000293 \\ 1054,35 \\ \\ \end{array}$
$\begin{array}{c} 8760 \\ 525.600 \\ 3,1536 \times 10^7 \\ \\ \\ \text{Ia} \\ & 251,996 \\ 1,054 \times 10^{10} \\ 777,649 \\ 0,000393 \\ 1054,35 \\ \\ \text{ora} \\ 0,000293 \\ 1054,35 \\ \\ \text{o} \\ & 1 \times 10^8 \\ 0,0328 \\ 0,3937 \\ 0,01 \\ 6,214 \times 10^{-6} \\ \end{array}$
$\begin{array}{c} 3,1536\times 10^{7} \\ \text{ta} \\ 251,996 \\ 1,054\times 10^{10} \\ 777,649 \\ 0,000393 \\ 1054,35 \\ \text{ora} \\ 0,000293 \\ 1054,35 \\ \end{array}$
$\begin{array}{c} 3,1536\times 10^{7} \\ \text{ta} \\ 251,996 \\ 1,054\times 10^{10} \\ 777,649 \\ 0,000393 \\ 1054,35 \\ \text{ora} \\ 0,000293 \\ 1054,35 \\ \end{array}$
$\begin{array}{c} 1,054\times 10^{10}\\ 777,649\\ 0,000393\\ 1054,35\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
$\begin{array}{c} 1,054\times10^{10}\\ 777,649\\ 0,000393\\ 1054,35\\ 0\\ 0\\ 1054,35\\ \end{array}$ or $\begin{array}{c} 0,000293\\ 1054,35\\ 0\\ 00328\\ 0,3937\\ 0,01\\ 6,214\times10^{-6}\\ \end{array}$
$\begin{array}{c} 777,649 \\ 0,000393 \\ 1054,35 \\ 0,000293 \\ 0 \\ 1054,35 \\ \end{array}$ $\begin{array}{c} 1 \times 10^8 \\ 0,0328 \\ 0,3937 \\ 0,01 \\ 6,214 \times 10^{-6} \\ \end{array}$
$\begin{array}{c} 0,000393 \\ 1054,35 \\ 0,000293 \\ 0 \\ 1054,35 \\ \\ 1 \times 10^8 \\ 0,0328 \\ 0,3937 \\ 0,01 \\ 6,214 \times 10^{-6} \\ \end{array}$
$\begin{array}{c} 1054,35 \\ 0,000293 \\ 1054,35 \\ \hline \\ 1 \times 10^8 \\ 0,0328 \\ 0,3937 \\ 0,01 \\ 6,214 \times 10^{-6} \\ \end{array}$
$\begin{array}{c} \text{ora} & 0,000293 \\ \text{o} & 1054,35 \\ \\ & 1 \times 10^8 \\ 0.0328 \\ 0.3937 \\ 0.01 \\ 6.214 \times 10^{-6} \\ \end{array}$
$ \begin{array}{c} 1 \times 10^{8} \\ 0.0328 \\ 0.3937 \\ 0.01 \\ 6.214 \times 10^{-6} \end{array} $
$\begin{array}{c} 0.0328 \\ 0.3937 \\ 0.01 \\ 6.214 \times 10^{-6} \end{array}$
$\begin{array}{c} 0.0328 \\ 0.3937 \\ 0.01 \\ 6.214 \times 10^{-6} \end{array}$
$\begin{array}{c} 0,3937 \\ 0,01 \\ 6,214 \times 10^{-6} \end{array}$
$\begin{array}{c} 0.01 \\ 6.214 \times 10^{-6} \end{array}$
$6,214 \times 10^{-6}$
- Recommendation programme and in the Bill Education State (programme 事業) Mark 1 - Education (Control Not Louise A No
and the state of t
24
1440
86,400
264,172
0,00001
$2,248 \times 10^{-6}$
1,60209 ×10 ⁻¹²
stro 1.0
$6,242 \times 10^{11}$
$7,376 \times 10^{-8}$
1×10^{-7}
ra $2,777 \times 10^{-14}$
icas 231
3,785
128
8
tímetro quadrado 1,0
etro quadrado 1,0
da quadrada 6,4516

Para Converter de	Para	Multiplique por	
Gilberts	Ampères-espira	0,7958	
Gramas	Dinas	980,665	
Oranias	Onças	0,0353	
	Libras	0,0022	
Horas	Segundos	3600	
HP	Btus/hora	2547,16	
	Ergs/segundo	$7,46 \times 10^{9}$	
	Pés-libra/segundo	550,221	
	Joules/segundo	746	
	Watts	746	
loules	Btus	0,000948	
routes	Ergs	1×10^{7}	
	Libras-pé	0,7376	
	Hps-hora	$3,725 \times 10^{-7}$	
	Quilowatts-hora	$2,777 \times 10^{-7}$	
	Watts-segundo	1,0	
		1 2252	
Libras-pé	Dinas-centímetro	$1,3558 \times 10^7$	
	Ergs	$1,3558 \times 10^{7}$	
	Hps-hora	$5,050 \times 10^{-7}$	
	Joules	1,3558	
	Newtons-metro	1,3558	
Linhas	Maxwells	1,0	
Linhas/centímetro quadrado	Gauss	0,1	
Linhas/polegada quadrada	Gauss	0,1550	
	Webers/polegada quadrada	1×10^{-8}	
Litros	Centímetros cúbicos	1000,028	
	Polegadas cúbicas	61,025	
	Galões	0,2642	
	Onças fluidas	33,815	
	Quartos (líquido nos EUA)	1,0567	
Lumens	Velas	0,0796	
Lumens/centímetro quadrado	Lamberts	1,0	
Lumens/pé quadrado	Velas-pé	1,0	
Maxwells	Linhas	1,0	
	Webers	1×10^{-8}	
Metros	Angstroms	1×10^{10}	
TANK NA NESE	Centímetros	100	
	Pés	3,2808	
	Polegadas	39,370	
	Milhas	0,000621	
Metros cúbicos	Pés cúbicos	35,315	
Mils circulares	Centímetros quadrados	$5,067 \times 10^{-6}$	
TRANS NORTHERNSON	Polegadas quadradas	$7,854 \times 10^{-7}$	

Para Converter de	Para	Multiplique por	
Milhas	Pés	5280	
ivillias	Quilômetros	1,609	
	Metros	1609,344	
Milhas/hora	Quilômetros/hora	1,609344	
Newtons-metro	Dinas-centímetro	1×10^{7}	
Newtons-Inetro	Quilogramas-metro	0,10197	
Oersteds	Ampères-espiras/polegada	2,0212	
Octowa	Ampères-espiras/metro	79,577	
	Gilberts/centímetro	1,0	
Pés	Centímetros	30,48	
	Metros	0,3048	
Polegadas	Angstroms	$2,54 \times 10^{8}$	
rolegadas	Centímetros	2,54	
	Pés	0,0833	
	Metros	0,0254	
Polegadas cúbicas	Centímetros cúbicos	16,387	
olegadas edoleas	Galões	0,00433	
Quartos	Centímetros cúbicos	946,353	
Quartos	Polegadas cúbicas	57,75	
	Galões	0,25	
	Litros	0,9463	
	Pintas	2	
	Onças fluidas	32	
Quilogramas	Dinas	980.665	
Aarro Prantino	Onças	35,2	
	Libras	2,2	
Radianos	Graus	57,2958	
Slugs	Quilogramas	14,5939	
Jugo	Libras	32,1740	
Velas-pé	Lumens/pé quadrado	1,0	
	Lumens/metro quadrado	10,764	
Watts	Btus/hora	3,4144	
	Ergs/segundo	1×10^7	
	HP	0,00134	
	Joules/segundo	1,0	
Webers	Linhas	1×10^8	
[X	Maxwells	1×10^{8}	

Apêndice C

DETERMINANTES

Os determinantes são utilizados para resolver sistemas de duas ou mais equações lineares. Uma vez que o método seja entendido perfeitamente, podemos obter as soluções de forma simples e direta.

Considere o seguinte sistema de equações, x e y são as incógnitas e a_1 , a_2 , b_1 , b_2 , c_1 e c_2 são constantes:

Col. 1 Col. 2 Col. 3

$$a_1x + b_1y = c_1$$

 $a_2x + b_2y = c_2$ (C.1a)

Uma das maneiras de resolver o problema é explicitar uma das incógnitas na Eq. (C.1a) e substituí-la na Eq. (C.1b). Assim, por exemplo, determinando o valor de x na Eq. (C.1a),

$$x = \frac{c_1 - b_1 y}{a_1}$$

e substituindo o resultado na Eq. (C.1b), temos:

$$a_2 \left(\frac{c_1 - b_1 y}{a_1} \right) + b_2 y = c_2$$

Agora é possível determinar o valor de y, a única variável que resta, e substituir o resultado na Eq. (C.1a) ou (C.1b) para obter o valor de x. Este método pode ser aceitável no caso de um sistema de duas equações, mas se torna muito longo e cansativo para sistemas de três ou mais equações.

A solução de um sistema de duas equações com o auxílio de determinantes é a seguinte:

Col. Col. Col. Col.
$$x = \frac{\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}} \quad y = \frac{\begin{vmatrix} \overline{a}_1 & c_1 \\ a_2 & c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}$$
 (C.2)

Observe, em primeiro lugar, que apenas constantes aparecem entre traços verticais e que os dois denominadores são iguais. Na verdade, cada um desses denominadores é simplesmente uma lista dos coeficientes de x e y na mesma ordem em que aparecem nas Eqs. (C.1a) e (C.1b). Na solução de x, os coeficientes de x no numerador são substituídos pelas constantes de segundo membro das Eqs. (C.1a) e (C.1b), enquanto os coeficientes de y são mantidos. Na solução de y, os coeficientes de y no numerador são substituídos pelas constantes do segundo membro das Eqs. (C.1a) e (C.1b) e os coeficientes de y são mantidos.

Os blocos que aparecem entre linhas verticais no numerador e no denominador das Eqs. (C.2) são chamados de *determinantes* (D) e podem ser calculados numericamente da seguinte forma:

Col. Col.
$$\frac{1}{a_1} \frac{2}{b_1}$$
Determinante = $D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1$
(C.3)

O valor expandido é obtido multiplicando o elemento do canto superior esquerdo pelo elemento do canto inferior direito e subtraindo do resultado o produto do dois outros elementos. Este determinante em particular é chamado de determinante de *segunda ordem* porque contém duas linhas e duas colunas.

Ao resolver sistemas de equações com o auxílio de determinantes, é importante lembrar que a ordem dos coeficientes das incógnitas nas equações deve ser respeitada na hora de escrever os determinantes. Assim, como a_1 e a_2 estão na primeira coluna das Eqs. (C.1a) e (C.1b), devem aparecer na primeira coluna. (O mesmo se aplica a b_1 e b_2 .)

Expandindo todos os determinantes, obtemos as seguintes expressões:

$$x = \frac{\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}} = \frac{c_1 b_2 - c_2 b_1}{a_1 b_2 - a_2 b_1}$$
 (C.4a)

$$y = \frac{\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}} = \frac{a_1c_2 - a_2c_1}{a_1b_2 - a_2b_1}$$
 (C.4b)

EXEMPLO C.1 Calcule os seguintes determinantes:

a.
$$\begin{vmatrix} 2 & 2 \\ 3 & 4 \end{vmatrix} = (2)(4) - (3)(2) = 8 - 6 = 2$$

b.
$$\begin{vmatrix} 4 & -1 \\ 6 & 2 \end{vmatrix} = (4)(2) - (6)(-1) = 8 + 6 = 14$$

c.
$$\begin{vmatrix} 0 & -2 \\ -2 & 4 \end{vmatrix} = (0)(4) - (-2)(-2) = 0 - 4 = -4$$

d.
$$\begin{vmatrix} 0 & 0 \\ 3 & 10 \end{vmatrix} = (0)(10) - (3)(0) = \mathbf{0}$$

EXEMPLO C.2 Resolva o sistema:

$$2x + y = 3$$
$$3x + 4y = 2$$

Solução:

$$x = \frac{\begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix}} = \frac{(3)(4) - (2)(1)}{(2)(4) - (3)(1)} = \frac{12 - 2}{8 - 3} = \frac{10}{5} = \mathbf{2}$$

$$\begin{vmatrix} 2 & 3 \end{vmatrix}$$

$$y = \frac{\begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix}}{5} = \frac{(2)(2) - (3)(3)}{5} = \frac{4 - 9}{5} = \frac{-5}{5} = -1$$

Verificação:

$$2x + y = (2)(2) + (-1)$$

= $4 - 1 = 3$ (confere)
 $3x + 4y = (3)(2) + (4)(-1)$
= $6 - 4 = 2$ (confere)

EXEMPLO C.3 Obtenha os valores de x e y no sistema a seguir:

$$-x + 2y = 3$$
$$3x - 2y = -2$$

Solução: Neste exemplo, observe o efeito do sinal negativo e o uso de parênteses para assegurar que o sinal correto seja obtido em cada produto:

$$x = \frac{\begin{vmatrix} 3 & 2 \\ -2 & -2 \end{vmatrix}}{\begin{vmatrix} -1 & 2 \\ 3 & -2 \end{vmatrix}} = \frac{(3)(-2) - (-2)(2)}{(-1)(-2) - (3)(2)}$$

$$= \frac{-6 + 4}{2 - 6} = \frac{-2}{-4} = \frac{1}{2}$$

$$y = \frac{\begin{vmatrix} -1 & 3 \\ 3 & -2 \end{vmatrix}}{-4} = \frac{(-1)(-2) - (3)(3)}{-4}$$

$$= \frac{2 - 9}{-4} = \frac{-7}{-4} = \frac{7}{4}$$

EXEMPLO C.4 Resolva o sistema:

$$x = 3 - 4y$$
$$20y = -1 + 3x$$

Solução: Neste caso, é preciso, antes de mais nada, colocar as equações na mesma forma que nas Eqs. (C.1a) e (C.1b):

$$x + 4y = 3$$

$$-3x + 20y = -1$$

$$x = \frac{\begin{vmatrix} 3 & 4 \\ -1 & 20 \end{vmatrix}}{\begin{vmatrix} 1 & 4 \\ -3 & 20 \end{vmatrix}} = \frac{(3)(20) - (-1)(4)}{(1)(20) - (-3)(4)}$$

$$= \frac{60 + 4}{20 + 12} = \frac{64}{32} = 2$$

$$y = \frac{\begin{vmatrix} 1 & 3 \\ -3 & -1 \end{vmatrix}}{32} = \frac{(1)(-1) - (-3)(3)}{32}$$

$$= \frac{-1 + 9}{32} = \frac{8}{32} = \frac{1}{4}$$

O uso de determinantes não se limita a sistemas de duas equações; os determinantes podem ser aplicados a sistemas com qualquer número de equações. Inicialmente, vamos apresentar um método que se aplica apenas a determinantes de terceira ordem, caso em que se enquadra a maioria dos problemas deste livro. Em seguida, discutiremos um método mais geral para resolver sistemas com qualquer número de equações.

Considere o seguinte sistema de equações:

$$\frac{\text{Col 1} \quad \text{Col. 2} \quad \text{Col. 3} \quad \text{Col. 4}}{a_1x + b_1y + c_1z = d_1}$$

$$a_2x + b_2y + c_2z = d_2$$

$$a_3x + b_3y + c_3z = d_3$$

onde x, y e z são incógnitas e $a_{1,2,3}$, $b_{1,2,3}$, $c_{1,2,3}$ e $d_{1,2,3}$ são constantes.

Os determinantes envolvidos no cálculo de x, y e z podem ser obtidos por um método análogo ao que foi usado no caso de um sistema de duas equações. No caso de x, por exemplo, o determinante do numerador é obtido substituindo os elementos da primeira coluna pelos elementos do segundo membro do sistema de equações. O denominador é simplesmente o determinante dos coeficientes das incógnitas. Os resultados são os seguintes:

$$x = \frac{\begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}}{D}, z = \frac{\begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}}{D}$$

onde

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

Para determinar o valor numérico de determinantes de terceira ordem, basta repetir as duas primeiras colunas de determinante à direita do determinante e somar os produtos dos elementos que pertencem a diagonais específicas, da forma indicada a seguir:

$$D = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_3 \\ a_3 & b_3 & c_4 \end{bmatrix} \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{bmatrix} \begin{bmatrix} a_2 & b_2 \\ a_3 & b_3 \\ a_4 & a_3 & b_3 \end{bmatrix}$$

Os produtos associados às diagonais 1, 2 e 3 são positivos e sua soma é dada por:

$$+a_1b_2c_3+b_1c_2a_3+c_1a_2b_3$$

Os produtos associados às diagonais 4, 5 e 6 são negativos e sua soma é dada por:

$$-a_3b_2c_1-b_3c_2a_1-c_3a_2b_1$$

O resultado final é a soma de todas as diagonais:

$$+(a_1b_2c_3+b_1c_2a_3+c_1a_2b_3)-(a_3b_2c_1+b_3c_2a_1+c_3a_2b_1)$$
 (C.5)

Atenção: Este método de expansão é válido apenas para determinantes de terceira ordem!

EXEMPLO C.5 Calcule o seguinte determinante:

$$\begin{vmatrix}
1 & 2 & 3 \\
-2 & 1 & 0 \\
0 & 4 & 2
\end{vmatrix}
\rightarrow
\begin{vmatrix}
1 & 2 & 3 \\
-2 & 1 & 2
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 2 & 3 \\
-2 & 1 & 2
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 2 & 3 \\
-2 & 1 & 2
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 2 & 3 \\
-2 & 1 & 2
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 2 & 3 \\
-2 & 1 & 2
\end{vmatrix}$$

Solução

$$[(1)(1)(2) + (2)(0)(0) + (3)(-2)(4)]$$

$$-[(0)(1)(3) + (4)(0)(1) + (2)(-2)(2)]$$

$$= (2 + 0 - 24) - (0 + 0 - 8) = (-22) - (-8)$$

$$= -22 + 8 = -14$$

EXEMPLO C.6 Obtenha o valor de x, y e z no seguinte sistema de equações:

$$1x + 0y - 2z = -1
0x + 3y + 1z = +2
1x + 2y + 3z = 0$$

Solução

$$x = \frac{\begin{vmatrix} -1 & 0 & -2 & -1 & 0 \\ 2 & 3 & 1 & 2 & 3 \\ 0 & 2 & 3 & 0 & 2 \end{vmatrix}}{\begin{vmatrix} -1 & 0 & -2 & -1 & 0 \\ 0 & 3 & 1 & 0 & 3 \\ -1 & 2 & 3 & 1 & 2 \end{vmatrix}}$$

$$= \frac{[(-1)(3)(3) + (0)(1)(0) + (-2)(2)(2)] - [(0)(3)(-2) + (2)(1)(-1) + (3)(2)(0)]}{[(1)(3)(3) + (0)(1)(1) + (-2)(0)(2)] - [(1)(3)(-2) + (2)(1)(1) + (3)(0)(0)]}$$

$$= \frac{(-9 + 0 - 8) - (0 - 2 + 0)}{(9 + 0 + 0) - (-6 + 2 + 0)}$$

$$= \frac{-17 + 2}{9 + 4} = -\frac{15}{13}$$

$$y = \frac{\begin{vmatrix} -1 & -1 & -2 & -1 \\ 0 & 2 & -1 \end{vmatrix}}{13}$$

$$= \frac{(1)(2)(3) + (-1)(1)(1) + (-2)(0)(0)] - [(1)(2)(-2) + (0)(1)(1) + (3)(0)(-1)]}{13}$$

$$= \frac{(6 - 1 + 0) - (-4 + 0 + 0)}{13}$$

$$= \frac{5 + 4}{13} = \frac{9}{13}$$

$$= \frac{(6 - 1 + 0) - (-4 + 0 + 0)}{13}$$
$$= \frac{5 + 4}{13} = \frac{9}{13}$$

$$z = \frac{\begin{vmatrix} 1 & 0 & -1 & 1 & 0 \\ 0 & 3 & 2 & 3 \\ 1 & 2 & 0 & 1 \\ 13 & & & \end{vmatrix}}{13}$$

$$= \frac{[(1)(3)(0) + (0)(2)(1) + (-1)(0)(2)] - [(1)(3)(-1) + (2)(2)(1) + (0)(0)(0)]}{13}$$

$$= \frac{(0+0+0) - (-3+4+0)}{13}$$

$$= \frac{0-1}{13} = -\frac{1}{13}$$

ou, a partir de 0x + 3y + 1z = +2,

$$z = 2 - 3y = 2 - 3\left(\frac{9}{13}\right) = \frac{26}{13} - \frac{27}{13} = -\frac{1}{13}$$

Verificação:

$$1x + 0y - 2z = -1$$

$$0x + 3y + 1z = +2$$

$$-15/13 + 0 + \frac{2}{13} = -1$$

$$0 + \frac{27}{13} + \frac{-1}{13} = +2$$

$$-15/13 + \frac{18}{13} + \frac{-3}{13} = 0$$

$$-18/13 + \frac{18}{13} = 0$$

$$-18/13 + \frac{18}{13} = 0$$

Vamos agora passar à abordagem geral do problema de expansão dos determinantes, que é válida para determinantes de qualquer ordem. Uma das formas de expandir um determinante de terceira ordem é a seguinte:

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \left(+ \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \\ \hline \\ \text{Menor} \end{vmatrix} \right) + b_1 \left(- \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \\ \hline \\ \text{Menor} \end{vmatrix} \right) + c_1 \left(+ \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \\ \hline \\ \text{Menor} \end{vmatrix} \right)$$
Fator

The properties of the propert

Esta expansão foi obtida multiplicando os elementos da primeira linha de D pelos co-fatores correspondentes. Não é necessário que os fatores multiplicadores pertençam à primeira linha; na verdade, qualquer *linha ou coluna* pode ser usada para expandir um determinante.

O sinal de cada co-fator depende da posição do fator multiplicador correspondente, de acordo com o seguinte esquema:

Observe que o sinal de cada elemento pode ser obtido atribuindo o sinal positivo ao elemento situado no canto superior esquerdo e atribuindo alternadamente sinais negativos e positivos aos elementos vizinhos, tanto no sentido horizontal como no vertical.

No caso de um determinante de terceira ordem, os elementos têm os seguintes sinais:

$$\begin{vmatrix} a_1^{(+)} & b_1^{(-)} & c_1^{(+)} \\ a_2^{(-)} & b_2^{(+)} & c_2^{(-)} \\ a_3^{(+)} & b_3^{(-)} & c_3^{(+)} \end{vmatrix}$$

Os menores complementares associados a cada fator multiplicativo são obtidos eliminando a linha e a coluna nas quais o fator multiplicativo está localizado e escrevendo um determinante de segunda ordem com os elementos restantes, nas mesmas posições relativas que tinham no determinante de terceira ordem.

Considere os co-fatores associados a a_1 e b_1 na expansão de D. O sinal é positivo para a_1 e negativo para b_1 , como vemos no esquema padrão. De acordo com o método que acabamos de descrever, podemos encontrar os menores complementares de a_1 e b_1 da seguinte forma:

$$a_{1(\text{menor})} = \begin{vmatrix} \frac{a_1}{d_1} & \frac{b_1}{d_2} & \frac{c_1}{c_2} \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix}$$

$$b_{1(\text{menor})} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix}$$

Como já dissemos, qualquer linha ou coluna pode ser usada para expandir um determinante. Usando a primeira coluna, obtemos a expansão

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \left(+ \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} \right) + a_2 \left(- \begin{vmatrix} b_1 & c_1 \\ b_3 & c_3 \end{vmatrix} \right) + a_3 \left(+ \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} \right)$$

Às vezes, a escolha de uma certa linha ou coluna pode facilitar consideravelmente o trabalho de expandir um determinante. Nos determinantes a seguir, por exemplo, a melhor escolha é, respectivamente, a primeira coluna e a terceira linha:

$$D = \begin{vmatrix} 2 & 3 & -2 \\ 0 & 4 & 5 \\ 0 & 6 & 7 \end{vmatrix} = 2\left(+\begin{vmatrix} 4 & 5 \\ 6 & 7 \end{vmatrix}\right) + 0 + 0 = 2(28 - 30)$$

$$D = \begin{vmatrix} 1 & 4 & 7 \\ 2 & 6 & 8 \\ 2 & 0 & 3 \end{vmatrix} = 2 \left(+ \begin{vmatrix} 4 & 7 \\ 6 & 8 \end{vmatrix} \right) + 0 + 3 \left(+ \begin{vmatrix} 1 & 4 \\ 2 & 6 \end{vmatrix} \right)$$
$$= 2(32 - 42) + 3(6 - 8) = 2(-10) + 3(-2)$$
$$= -26$$

EXEMPLO C.7 Expanda os seguintes determinantes de terceira ordem:

a.
$$D = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{vmatrix} = 1 \left(+ \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} \right) + 3 \left(- \begin{vmatrix} 2 & 3 \\ 1 & 3 \end{vmatrix} \right) + 2 + \left(\begin{vmatrix} 2 & 3 \\ 2 & 1 \end{vmatrix} \right)$$

$$= 1[6 - 1] + 3[-(6 - 3)] + 2[2 - 6]$$

$$= 5 + 3(-3) + 2(-4)$$

$$= 5 - 9 - 8$$

$$= -12$$
b.
$$D = \begin{vmatrix} 0 & 4 & 6 \\ 2 & 0 & 5 \\ 8 & 4 & 0 \end{vmatrix} = 0 + 2 \left(- \begin{vmatrix} 4 & 6 \\ 4 & 0 \end{vmatrix} \right) + 8 \left(+ \begin{vmatrix} 4 & 6 \\ 0 & 5 \end{vmatrix} \right)$$

$$= 0 + 2[-(0 - 24)] + 8[(20 - 0)]$$

$$= 0 + 2(24) + 8(20)$$

$$= 48 + 160$$

$$= 208$$

Apêndice D

CÓDIGO DE CORES DE CAPACITORES DE MICA (PICOFARADS)

Especificações RETMA e MIL

Cor	Algarismo Significativo	Multiplicador Decimal	Tolerância ±%	Classe	Coef. de Temp. PPM/°C Não Mais que	Variação da Cap. Não Mais que
Preto	0	1	20	Α	±1.000	$\pm (5\% + 1 \text{ pF})$
Marrom	ı	10	- 5 m (2 10) (3 M m (1)	В	±500	$\pm (3\% + 1 \text{ pF})$
Vermelho	2	100	2	C	±200	$\pm (0.5\% + 0.5 \text{ pF})$
Laranja	3	1.000	3	D	±100	$\pm (0.3\% \pm 0.1 \text{ pF})$
Amarelo	4	10.000		Е	+100 - 20	$\pm (0.1\% + 0.1 \text{ pF})$
Verde	5		5	and the second		
Azul	6		and the second			
Violeta	7		AMARAGEM .	11.50 to 60 <u></u>		
Cinza	8		and the same	I	+150 - 50	$\pm (0.03\% + 0.2 \text{ pF})$
Branco	9	, selection in		J	+100 - 50	$\pm (0.2\% + 0.2 \text{ pF})$
Dourado	negacinete:	0,1	 -		geography;	
Prateado	matisferendation	0,01	10	-		

Nota: Se as duas filas de pontos não estiverem do mesmo lado, gire o capacitor, usando os terminais como eixo, para ler a segunda fila do lado oposto.

Fig. D.1

Apêndice E

CÓDIGO DE CORES PARA CAPACITORES CILÍNDRICOS (PICOFARADS)

Cor	Algarismo Significativo	Multiplicador	Tolerância ±%	
Preto	0	1	20	
Marrom	1	10		
Vermelho	2	100		
Laranja	3	1000	30	
Amarelo	4	10.000	40	
Verde	5	105	5	
Azul	6	10^{6}	and the second second	
Violeta	7	***************************************	and a final series of the last s	
Cinza	8		-	
Branco	9	Approximation .	10	

Nota: A tensão de trabalho é identificada por um número de um algarismo para tensões até 900 V e por um número de dois algarismos para tensões maiores do que 900 V. Em ambos os casos, deve-se acrescentar dois zeros ao valor indicado.

Fig. E.1

Apêndice F

O ALFABETO GREGO

Letra	Maiúscula	Minúscula	Utilizada para Designar
Alfa	A	α	Área, ângulos, coeficientes
Beta	В	β	Ângulos, coeficientes, densidade de fluxo
Gama	Γ		Gravidade específica, condutividade
Delta	Δ	$\gamma \ \delta$	Densidade, variação
Épsilon	E	ϵ	Base dos logaritmos naturais
Zeta	Z	ζ	Coeficientes, coordenadas, impedância
Eta	Н	η	Eficiência, coeficiente de histerese
Teta	Θ	$\dot{ heta}$	Ângulo de fase, temperatura
Iota	1	ı	
Capa	K	К	Constante dielétrica, suscetibilidade
Lambda	Λ	λ	Comprimento de onda
Mi	M	μ	Fator de amplificação, prefixo micro, permeabilidade
Ni	N	ν	Relutividade
Csi	Ξ	ξ	
Ômicron	O	o	
Pi	Π	π	3,1416
Rô	P	ρ	Resistividade
Sigma	Σ	σ	Somatório
Tau	T	τ	Constante de tempo
Ípsilon	Υ	υ	
Fi	Φ	ϕ	Ângulos, fluxo magnético
Xi	X	X	
Psi	Ψ	$\hat{\psi}$	Fluxo elétrico, diferença de fase
Ômega	Ω	ώ	Ohms, velocidade angular

Apêndice G

CONVERSÕES ENTRE PARÂMETROS MAGNÉTICOS

	SI (MKS)	CGS	Inglês
Φ	webers (Wb) 1 Wb	maxwells = 10 ⁸ maxwells	linhas = 10 ⁸ linhas
B.	Wb/m²	gauss	linhas/pol.²
	1 Wb/m ²	(maxwells/cm ²) = 10 ⁴ gauss	$= 6.452 \times 10^4$ linhas/pol. ²
A	1 m ²	$= 10^4 \text{cm}^2$	$= 1.550 \text{ pol}^2$
μ_{o}	$4\pi \times 10^{-7}\mathrm{Wb/Am}$	= 1 gauss/oersted	= 3,20 linhas/Am
F	NI (ampères-espiras, l)	$0.4 \pi NI$ (gilberts) = 1,257 gilberts	<i>NI</i> (1) 1 gilbert = 0,7958 l
Н	<i>NI/l</i> (l/m) 1 l/m	$0.4 \pi NIII \text{ (oersteds)}$ = 1.26 × 10 ⁻² oersteds	NI/l (I/pol.) = 2.54 × 10 ⁻² I/pol.
H_{g}	$7,97 imes 10^{6} B_{g}$ (I/m)	B_g (oersteds)	$0.313B_g$ (l/pol.)

Apêndice H

CONDIÇÕES PARA A MÁXIMA TRANSFERÊNCIA DE POTÊNCIA

Determinação das condições para que a transferência de potência seja a maior possível quando a componente resistiva da carga é ajustável mas a componente reativa é fixa.*

No caso do circuito da Fig. H.1, a potência fornecida à carga é dada por:

Aplicando a regra dos divisores de tensão:

$$V_{R_C} = \frac{R_C \mathbf{E}_{Th}}{R_C + R_{Th} + X_{Th} \ \angle 90^{\circ} + X_C \ \angle 90^{\circ}}$$

O módulo de V_{R_C} é dado por:

$$V_{R_C} = \frac{R_C \mathbf{E}_{Th}}{\sqrt{(R_C + R_{Th})^2 + (X_{Th} + X_C)^2}}$$

logo

$$V_{R_C}^2 = \frac{R_C^2 E_{Th}^2}{\sqrt{(R_C + R_{Th})^2 + (X_{Th} + X_C)^2}}$$

e portanto

$$P = \frac{V_{R_C}^2}{R_C} = \frac{R_C E_{Th}^2}{\sqrt{(R_C + R_{Th})^2 + (X_{Th} + X_C)^2}}$$

^{*}Agradecemos ao Professor Harry J. Franz, da Pennsylvania State University, Campus de Beaver, pela sugestão.

A potência transferida à carga será máxima quando $dP/dR_{\rm C}=0$. Esta igualdade ocorre para

$$R_C = \sqrt{R_{Th}^2 + (X_{Th} + X_C)^2}$$
 [Eq. (18.21)]

O módulo da impedância tòtal do circuito é:

$$Z_T = \sqrt{(R_{Th} + R_C)^2 (X_{Th} + X_C)^2}$$

Substituindo a expressão de $R_{\mathcal{C}}$ nesta última equação, obtemos, após algumas manipulações algébricas:

$$Z_T = 2R_C(R_C + R_{Th})$$

e a potência à carga é dada por

$$P = I^{2}R_{C} = \frac{E_{Th}^{2}}{Z_{T}^{2}} R_{C} = \frac{E_{Th}^{2}R_{C}}{2R_{C}(R_{C} + R_{Th})}$$

$$= \frac{E_{Th}^{2}}{4\left(\frac{R_{C} + R_{Th}}{2}\right)}$$

$$= \frac{E_{Th}^{2}}{4R_{med}}$$

onde

$$R_{med} = \frac{R_C + R_{Th}}{2}$$

Apêndice l

RESPOSTAS DE ALGUNS PROBLEMAS SELECIONADOS COM NUMERAÇÃO IMPAR

Capítulo 1

- 5. 3 h
- 7. CGS
- 9. MKS = CGS = 20°C K = SI = 293,15
- 11. 45,72 cm
- **13.** (a) 15×10^3 (b) 30×10^{-3} (c) 7.4×10^6 (d) 6.8×10^{-6} (e) 402×10^{-6} (f) 200×10^{-12}
- **15.** (a) 10^4 (b) 10 (c) 10^9 (d) 10^{-2}

 - (e) 10 (f) 10^{31}
- 17. (a) 10^{-1} (b) 10^{-4}
 - (c) 10^9 (d) 10^{-9}
 - (e) 10^{42} (f) 10^3
- **19.** (a) 10^6 (b) 10^{-2} (c) 10^{32} (d) 10^{-63}
- **21.** (a) 10^{-6} (b) 10^{-3}
 - (c) 10^{-6} (d) 10^9
 - (e) 10^{-16} (f) 10^{-1}
- **23.** (a) 0,006 (b) 400
 - (c) 5000, 5, 0,005
 - (**d**) 0,0003, 0,3, 300
- **25.** (a) 90 s (b) 144 s
 - (c) $50 \times 10^3 \ \mu s$
 - (d) 160 mm (e) 120 ns
 - (f) 41,898 dias (g) 1,02 m
- **27.** (a) 2,54 m (b) 1,219 m
 - (c) 26,7 N (d) 0,1348 lb.
 - (e) 4921,26 ft
 - (f) 3,2187 m (g) 8530,17 jardas
- **29.** $670,62 \times 10^6$ mph
- **31.** 2,045 s
- 33. 67,06 dias
- **35.** 3600
- **37.** 345,6 m
- 39. 0,02 milhas/min
- **41.** (a) $4{,}74 \times 10^{-3}$ Btu
 - **(b)** $7,098 \times 10^{-4} \text{ m}^3$
 - (c) $1,2096 \times 10^5 \text{ s}$
 - (d) 2113,38 pints

Capítulo 2

- 3. (a) 18 mN (b) 2 mN
 - (c) $180 \mu N$
- 7. (a) 72 mN
 - **(b)** $Q_1 = 20 \mu \text{C}, Q_2 = 40 \mu \text{C}$
- **9.** 3,1 A
- 11. 90 C
- 13. 0,5 A

- **15.** 1,194 A > 1 A (sim)
- **17.** (a) 1,248 milhões
 - (b) 0,936 milhões. A opção (a).
- 19. 252 J
- 21, 4 C
- 23. 3,533 V
- 25. 5 A
- 27. 25 h
- **29.** 0,773 h
- 31. a de 60 Ah pode fornecer 50% mais corrente.
- 33, 545,45 mA, 129,6 kJ
- 43. 600 C

Capítulo3

- **1.** (a) 500 mils (b) 10 mils
 - (c) 4 mils (d) 1000 mils
 - (e) 240 mils (f) 3,937 mils
- **3.** (a) 0,04 in. (b) 0,03 in.
 - (c) 0,2 in. (d) 0,025 in.
 - (e) 0,00278 in. (f) 0,009 in.
- **5.** 73,33 Ω
- 7. 3,581 ft
- 9. (a) $R_{\text{prata}} > R_{\text{cobre}} > R_{\text{alumínio}}$
 - (**b**) prata 9,9 Ω ,
 - cobre 1,037 Ω ,
 - alumínio 0,34 Ω
- **11.** (a) 21,71 $\mu\Omega$ (b) 35,59 $\mu\Omega$
 - (c) aumenta (d) diminui
- 13. $942,28 \text{ m}\Omega$
- **15.** (a) $\#8:1,1308 \Omega,\#18:11,493 \Omega$
 - **(b)** $#18:#8 = 10,164:1 \cong 10:1,$ $#18:#8 = 1:10,164 \cong 1:10$
- 17. (a) 1,087 mA/CM
 - **(b)** 1,384 kA/in.²
 - (c) $3,6127 \text{ in.}^2$
- **19.** (a) 21,71 $\mu\Omega$ (b) 35,59 $\mu\Omega$
- **21.** 0,15 in.
- **23.** 2,409 Ω
- **25.** 3.67 Ω
- **27.** 0,046 Ω
- **29.** (a) $40,29^{\circ}$ C (b) $-195,61^{\circ}$ C
- **31.** (a) $\alpha_{20} \cong 0.00393$
 - **(b)** 83,61°C
- **33.** 1,751 Ω **35.** 142,86
- **41.** $-30^{\circ}\text{C}:10.2 \text{ k}\Omega$, 100°C:10,15 kΩ
- **43.** 6,5 k Ω
- 47. (a) Vermelho Vermelho Marrom Prateado
 - (b) Amarelo Violeta Vermelho Prateado

- (c) Azul Cinza Laranja Prateado
- (d) Branco Marrom Verde Prateado
- **49.** sim
- **51.** (a) 0,1566 S (b) 0,0955 S
 - (c) 0.0219 S
- **57.** (a) 10 fc:3 kΩ, 100 fc:0,4 kΩ
 - (b) neg. (c) não-escalas logarítmicas
 - (d) $-321,43 \Omega/\text{fc}$

Capítulo 4

- 1. 15 V
- 3. $4 k\Omega$
- 5. 72 mV
- 7. 54.55 Ω
- **9.** 28,571 Ω
- **11.** 1,2 k Ω
- **13.** (a) 12,632 Ω (b) 4,1 MJ
- 17. 800 V
- **19.** 1 W
- **21.** (a) 57.600 J
 - **(b)** $16 \times 10^{-3} \text{ kWh}$
- **23.** 2 s
- **25.** 196 μW
- 27. 4 A
- 29. 9,61 V
- **31.** 0,833 A, 144,06 Ω
- **33.** (a) 0,133 mA (b) 66,5 mAh
- 35. (c) $\approx 70.7 \text{ mA}$
- 37. (a) 12 kW
 - **(b)** 10.130 W < 12.000 W (sim)
- **39.** 16,34 A
- **41.** (a) 238 W (b) 17,36%
- **43.** (a) 1657,78 W
 - **(b)** 15,07 A
 - (c) 19.38 A
- 45. 65,25%
- 47. 80% **49.** (a) 17,9%
 - **(b)** 76,73%, 328,66% de aumento
- **51.** (a) 1350 J
 - P (b) W dobra, P permanece a mesma
- **53.** 6,67 h
- **55.** (a) 50 kW (b) 240,38 A
 - (c) 90 kWh
- **57.** \$2,19

- 1. (a) 20Ω , 3 A
 - **(b)** 1,63 M Ω , 6,135 μ A
 - (c) 110Ω , 318,2 mA
 - (d) $10 \text{ k}\Omega$, 12 mA

- **3.** (a) 16 V (b) 4,2 V
- **5.** (a) 0,388 A (CW)
 - **(b)** 2,087 A (CCW)
- 7. (a) 5 V (b) 70 V
- 9. 3,28 mA, 7,22 V
- 11. (a) 70.6Ω , 85 mA (CCW),
 - $V_1 = 2,8045 \text{ V},$
 - $V_2 = 0.4760 \text{ V},$
 - $V_3 = 0.850 \text{ V},$
 - $V_4 = 1,870 \text{ V}$
 - **(b)–(c)** $P_1 = 0.2384 \text{ W},$
 - $P_2 = 0.0405 \text{ W},$
 - $P_3 = 0.0723 \text{ W},$
 - $P_4 = 0.1590 \text{ W}$
 - (d) $\frac{1}{2}$ W (todos)
- **13.** (a) 225 Ω , 0,533 A
 - (**b**) 8 W
 - (c) 15 V
- 15. Todos V_{ab}
 - (a) 66,67 V (b) -8 V
 - (c) 20 V (d) 0,18 V
- 17. (a) 12 V (b) 24 V
 - (c) 60Ω (d) 0.4 A
 - (e) 60 Ω
- 19. (a) $R_s = 80 \Omega$
 - **(b)** $0.2 \text{ W} < \frac{1}{4} \text{ W}$
- **21.** $R_1 = 3 \text{ k}\Omega, R_2 = 15 \text{ k}\Omega$
- 23. (a) $R_1 = 0.4 \text{ k}\Omega$, $R_2 = 1.2 \text{ k}\Omega$,
 - $R_3 = 4.8 \text{ k}\Omega$ (**b**) $R_1 = 0.4 \text{ M}\Omega$,
 - $R_2 = 1.2 \text{ M}\Omega,$
 - $R_3 = 4.8 \text{ M}\Omega$
- **25.** (a) I (sentido horário) = 6,667 A, V = 20 V
 - (b) I (sentido horário) = 1 A, V = 10 V
- 27. (a) 20 V, 26 V, 35 V, -12 V, 0 V
 - **(b)** -6 V, -47 V, 9 V
 - (c) -15 V, -38 V
- **29.** $V_0 = 0 \text{ V}, V_4 = 10 \text{ V},$
 - $V_7 = 4 \text{ V}, V_{10} = 20 \text{ V},$
 - $V_{23} = 6 \text{ V}, V_{30} = -8 \text{ V},$
 - $V_{67} = 0 \text{ V}, V_{56} = -6 \text{ V},$
 - I(para cima) = 1.5 A
- **31.** 2 Ω
- **33.** 100Ω
- **35.** 1,52%

- 1. (a) 2, 3, 4 (b) 2, 3 (c) 1, 4
- 3. (a) 6Ω , 0,1667 S
 - **(b)** $1 \text{ k}\Omega$, 1 mS
 - (c) $2,076 \text{ k}\Omega$, 0,4817 mS
 - (d) 1,333 Ω , 0,75 S
 - (e) 9,948 Ω , 100,525 mS
 - (f) $0,6889 \Omega, 1,4516 S$
- **5.** (a) 18Ω (b) $R_1 = R_2 = 24 \Omega$
- 7. 120Ω
- **9.** (a) 0.8571Ω , 1.1667 S

- **(b)** $I_s = 1,05 \text{ A}, I_1 = 0,3 \text{ A},$ $I_2 = 0,15 \text{ A}, I_3 = 0,6 \text{ A}$
- (d) $P_1 = 0.27 \text{ W},$
 - $P_1 = 0.27 \text{ W},$ $P_2 = 0.135 \text{ W},$
 - $P_3 = 0.54 \text{ W},$
 - $P_{\rm del.} = 0.945 \, \rm W$
- (e) $R_1, R_2 = \frac{1}{2} W, R_3 = 1 W$
- **11.** (a) 66,67 mA (b) 225 Ω
 - (c) 8 W
- **13.** (a) $I_s = 7.5 \text{ A}, I_1 = 1.5 \text{ A}$
 - **(b)** $I_s = 9.6 \text{ mA}, I_1 = 0.8 \text{ mA}$
- 15. 1260 W
- 17. (a) 4 mA (b) 24 V
 - (c) 18,4 mA
- **19.** (a) $I_1 = 3 \text{ mA}, I_2 = 1 \text{ mA},$ $I_3 = 1.5 \text{ mA}$
 - (b) $I_2 = 4 \mu A$, $I_3 = 1.5 \mu A$, $I_4 = 5.5 \mu A$, $I_1 = 6 \mu A$
- **21.** (a) $R_1 = 5 \Omega, R_2 = 10 \Omega$
 - (b) $E = 12 \text{ V}, I_2 = 1,333 \text{ A},$ $I_3 = 1 \text{ A}, R_3 = 12 \Omega,$ I = 4,333 A
 - (c) $I_1 = 64 \text{ mA}, I_3 = 16 \text{ mA},$ $I_2 = 20 \text{ mA}, R = 3.2 \text{ k}\Omega,$ I = 36 mA
 - (d) $E = 30 \text{ V}, I_1 = 1 \text{ A},$ $I_2 = I_3 = 0.5 \text{ A},$
 - $R_2 = R_3 = 60 \ \Omega,$
 - $P_{R_2} = 15 \text{ W}$
- **23.** (a) $I_1 = 4 \text{ A}, I_2 = 8 \text{ A}$
 - **(b)** $I_1 = 2 \text{ A}, I_2 = 4 \text{ A},$
 - $I_3 = 1 \text{ A}, I_4 = 1,333 \text{ A}$
 - (c) $I_1 = 272,73 \text{ mA},$
 - $I_2 = 227,27 \text{ mA},$
 - $I_3 = 90,91 \text{ mA},$
 - $I_4 = 500 \text{ mA}$
 - (d) $I_2 = 4.5 \text{ A}, I_3 = 8.5 \text{ A},$ $I_4 = 8.5 \text{ A}$
- 25. (a) $I = 4 \text{ A}, I_2 = 4 \text{ A},$
- $I_1 = 3 \text{ A}$ 27. $R_1 = 6 \text{ k}\Omega, R_2 = 1.5 \text{ k}\Omega,$
- $R_3 = 0.5 \text{ k}\Omega$
- **29.** $I = 3 \text{ A}, R = 2 \Omega$
- **31.** (a) 6,13 V
 - **(b)** 9 V
 - (c) 9 V
- **33.** (a) 4 V (b) 3,997 V
 - (c) 3,871 V (d) 3 V
 - (e) R_m deve ser a maior possível
- 35. Não! A polaridade da fonte de 4V está invertida.

Capítulo 7

- 1. (a) em série: $E, R_1, e R_4$, em paralelo: $R_2 e R_3$
 - (b) em série: $E \in R_1$, em paralelo: $R_2 \in R_3$
 - (c) em série: E, R_1 , e R_5 ; R_3 e R_4
 - em paralelo: nenhum elemento

- (d) em série: R_6 e R_7 , em paralelo: E, R_1 , e R_4 ; R_2 e R_5
- 3. (a) sim (LKC) (b) 3 A
 - (c) sim (LKC) (d) 4 V
 - (e) 2Ω (f) 5 A
 - (g) $P_1 = 12 \text{ W}, P_2 = 18 \text{ W}, P_{\text{def.}} = 50 \text{ W}$
- 5. (a) 4Ω
 - **(b)** $I_s = 9 \text{ A}, I_1 = 6 \text{ A}, I_2 = 3 \text{ A}$
 - (c) 6 V
- 7. $I_1 = 6 \text{ A}, I_2 = 16 \text{ A}, I_3 = 0.8 \text{ A},$ I = 22 A
- 9. (a) 4 A
 - **(b)** $I_2 = 1,333 \,\mathrm{A}, I_3 = 0,6665 \,\mathrm{A}$
 - (c) $V_a = 8 \text{ V}, V_b = 4 \text{ V}$
- **11.** (a) 5 Ω , 16 A
 - **(b)** $I_{R_2} = 8 \text{ A}, I_3 = I_9 = 4 \text{ A}$
 - (c) $I_8 = 1 \text{ A}$ (d) 14 V
- **13.** (a) $V_G = 1.9 \text{ V}, V_s = 3.65 \text{ V}$
 - **(b)** $I_1 = I_2 = 7,05 \mu A,$ $I_D = 2,433 \text{ mA}$
 - (c) 6,268 V
 - (d) 8,02 V
- **15.** (a) 0,6 A
 - **(b)** 28 V
- 17. (a) $I_2 = 1,667 \text{ A}, I_6 = 1,111 \text{ A},$ $I_8 = 0 \text{ A}$
- **19.** (a) 1,882 Ω
 - **(b)** $V_1 = V_4 = 32 \text{ V}$
 - (c) 8 A ←
 - (d) 1,882 Ω
- 21. (a) 6,75 A
 - (**b**) 32 V
- **23.** 8,333 Ω
- **25.** (a) 24 A
 - **(b)** 8 A **(c)** $V_3 = 48 \text{ V}, V_5 = 24 \text{ V},$
 - $V_7 = 16 \text{ V}$ (d) $P(R_7) = 128 \text{ W}$,
- P(E) = 5760 W
- **27.** 4,44 W
- **29.** (a) 64 V (b) $R_{L_2} = 4 \text{ k}\Omega$,
 - $R_{L_3} = 3 \text{ k}\Omega$
 - (c) $R_1 = 0.5 \text{ k}\Omega$,
 - $R_2=1.2 \text{ k}\Omega,$
- $R_3 = 2 \text{ k}\Omega$ 31. (a) sim (b) $R_1 = 750 \Omega$,
 - $R_2 = 250 \ \Omega$
- (c) $R_1 = 745 \Omega$, $R_2 = 255 \Omega$ 33. (a) 1 mA (b) $R_{\text{derivação}} = 5 \text{ m}\Omega$
- 35. (a) $R_s = 300 \text{ k}\Omega$,
 - **(b)** 20.000
- **37.** 0,05 μA

- 1. 28 V
- 3. (a) $I_1 = 12 \text{ A}, I_s = 11 \text{ A}$
 - **(b)** $V_s = 24 \text{ V}, V_3 = 6 \text{ V}$

- **5.** (a) $3 \text{ A}, 6 \Omega$ (b) $4{,}091 \text{ mA},$ $2.2 \text{ k}\Omega$
- 7. (a) 8 A (b) 8 A
- 9. 9,6 V, 2,4 A
- 11. (a) 5,4545 mA, 2,2 k Ω
 - **(b)** 17,375 V **(c)** 5,375 V
 - (d) 2,443 mA
- 13. (I) para cima: $I_{R_1} = 1,445 \text{ mA}$; para baixo: $I_{R_3} = 9,958 \text{ mA};$ para a esquerda: $I_{R_2} = 8,513 \text{ mA}$
 - (II) para a direita: $I_{R_1} = 2,0316 \text{ mA};$ para a esquerda: $I_{R_2} = 0.8$ mA; para cima: $I_{R_3} = 1,2316$ mA para a esquerda: $I_{R_4} = 1,2316 \text{ mA}$
- 15. (d) para a esquerda: 63,694 mA
- 17. (a) para a esquerda: $I_{R_1} = 0.1429 \text{ A}$; para a esquerda: $I_{R_2} = 0.7143 \text{ A}$ para baixo: $I_{R_3} = 0.5714 \text{ A}$
 - (b) para baixo: $I_{R_1} = 3,0625 \text{ A};$ para baixo: $I_{R_3} = 0,1875 \text{ A}$ para cima: $I_{R_2} = 3,25 \text{ A}$
- $I_1 = 1,8701 \text{ A};$ $I_2 = -8,5484 \text{ A};$ $V_{ab} = -22,74 \text{ V}$
 - (II) $I_2 = 1,274 \text{ A};$ $I_3 = 0.26 \text{ A};$ $V_{ab} = -0.904 \text{ V}$
- 21. (a) 72,16 mA, -4,433 V
 - **(b)** 1,953 A, −7,257 V
- 23. (a) Todas no sentido horário $I_1 = 0.0321 \text{ mA}$
 - $I_2 = -0.8838 \text{ mA}$ $I_3 = -0.968 \text{ mA}$
 - $I_4 = -0.639 \text{ mA}$
 - (b) Todas no sentido horário $I_1 = -3.8 \text{ A}$ $I_2 = -4.2 \text{ A}$
 - $I_3 = 0.2 \text{ A}$
- 25. (a) No sentido horário $I_1 = -\frac{1}{7} A, I_2 = -\frac{5}{7} A$
 - (b) No sentido horário $I_1 = -3,0625 \text{ A},$ $I_2 = 0.1875 \text{ A}$
- 27. (I) (a) Sentido horário
 - **(b)** $I_1 = 1,871 \text{ A},$ $I_2 = -8,548 \text{ A}$
 - (c) $I_{R_1} = 1,871 \text{ A}$, $I_{R_2} = -8,548 \text{ A},$
 - $I_{R_3} = 10,419 \text{ A}$
- **29.** $I_{5\Omega}$ (para a direita) = 1,9535 A, $V_a = -7,26 \text{ V}$
- 31. (a) Todas no sentido horário $I_1 = 0.0321 \text{ mA},$ $I_2 = -0.8838 \text{ mA},$ $I_3 = -0.968 \text{ mA},$ $I_4 = -0.639 \text{ mA}$
 - (b) Todas no sentido horário $I_1 = 3.8 \text{ A}, I_2 = -4.2 \text{ A},$ $I_3 = 0.2 \text{ A}$
- **33.** (I) (b) $V_1 = -14,86 \text{ V}$, $V_2 = -12,57 \text{ V}$

- (c) $V_{R_1} = V_{R_4} =$ $V_1 = -14,86 \text{ V},$ $V_{R_2} = V_2 = -12,57 \text{ V},$ $V_{R_3} = 9,71 \text{ V } (+ -)$
- (II) (b) $V_1 = -2,556 \text{ V},$ $V_2 = 4,03 \text{ V}$ (c) $V_{R_1} = V_1 = -2,556 \text{ V},$
 - $V_{R_2} = V_{R_5} = V_2 = 4{,}03 \text{ V},$ $V_{R_4} = V_{R_3} = V_2 - V_1$ =6,586 V
- **35.** (I) $V_1 = 7,238 \text{ V},$ $V_2 = -2,453 \text{ V},$ $V_3 = 1,405 \text{ V}$
 - (II) $V_1 = -6,64 \text{ V},$ $V_2 = 1,288 \text{ V},$ $V_3 = 10,676 \text{ V}$
- **37.** (a) $V_1 = 10,083 \text{ V},$ $V_2 = 6,944 \text{ V},$ $V_3 = -17,056 \text{ V}$
 - **(b)** $V_1 = 48 \text{ V}, V_2 = 64 \text{ V}$
- **39.** (b) (I) $V_1 = -14,86 \text{ V},$ $V_2 = -12,57 \text{ V}$
 - (II) $V_1 = -2,556 \text{ V}$, $V_2 = 4.03 \text{ V}$
 - (c) (I) $V_{R_1} = V_{R_4} = -14,86 \text{ V},$ $V_{R_2} = -12,57 \text{ V}$ $V_{R_3} = V_1 + 12 - V_2$ = 9.71 V
 - (II) $V_{R_1} = -2,556 \text{ V},$ $V_{R_2} = V_{R_5} = 4,03 \text{ V}$ $V_{R_3} = V_{R_4} = V_2 - V_1$ = 6,586 V
- **41.** (I) $V_1 = -5{,}311 \text{ V},$ $V_2 = -0,6219 \text{ V},$ $V_3 = 3,751 \text{ V}$
 - $V_{-5A} = -5,311 \text{ V}$ (II) $V_1 = -6,917 \text{ V}$, $V_2 = 12 \text{ V},$ $V_3 = 2.3 \text{ V}$ $V_{5A} = V_2 - V_1 = 18,917 \text{ V},$ $V_{2A} = V_3 - V_2 = -9.7 \text{ V}$
- **43. (b)** $V_{R_5} = 0.1967 \text{ V}$
 - (c) não
 - (d) não
- **45. (b)** $I_{R_s} = 0$ A
 - (c) não
 - (**d**) não
- 47. (a) 3,33 mA
- **(b)** 1,177 A **49.** (a) 133,33 mA
 - **(b)** 7 A
- **51. (b)** 0,833 mA
- **53.** 4,2 Ω

- 1. (a) Sentido horário: $I_{R_1} = \frac{5}{6} A$, $I_{R_2} = 0 A$, Sentido horário: $I_{R_3} = \frac{5}{6} A$
 - **(b)** E_1 : 5,33 W, E_2 : 0,333 W
 - (c) 8,333 W (d) não
- 3. (a) para baixo: 4,4545 mA

- (b) para baixo: 3,11 A
- 5. (a) 6Ω , 6 V
 - **(b)** 2 Ω : 0,75 A, 30 Ω : 0,1667 A, 100 Ω: 0,0566 A
- 7. (I) 2 Ω , 84 V (II) 1,579 k Ω , -1.149 V
- **9.** (I) 45 Ω , -5 V (II) 2,055 k Ω , 16,772 V
- **11.** 4,041 k Ω , 9,733 V
- **13.** (I): 14Ω , 2,571 A, (II): 7.5Ω , 1.333 A
- **15.** (a) 9,756 Ω , 0,95 A
 - **(b)** 2Ω , 30 A
- **17.** (a) 10Ω , 0.2 A
 - **(b)** 4,033 k Ω , 2,9758 mA
- **19.** (**I**) (**a**) 14 Ω
 - **(b)** 23,14 W
 - (II) (a) 7.5Ω **(b)** 3,33 W
- **21.** (a) $9,756 \Omega, 2,2 W$
 - **(b)** 2Ω , 450 W
- 23. 0Ω
- **25.** 500 Ω
- 27. 39,3 μA, 220 mV
- **29.** 2,25 A, 6,075 V
- **35.** (a) 0,357 mA (b) 0,357 mA
 - (c) sim

- 1. 9×10^3 N/C
- 3. $70 \mu F$
- 5. 50 V/m
- 7. $8 \times 10^3 \text{ V/m}$
- 9. 937,5 pF
- 11. mica
- **13.** (a) 10^6 V/m (b) $4{,}96 \mu\text{C}$
 - (c) $0.0248 \mu F$
- **15.** 29.035 V
- **17.** (a) 0,5 s (b) $20(1 e^{-t/0.5})$
 - (c) 1τ : 12,64 V, 3τ : 19 V, 5τ: 19,87 V
 - (d) $i_C = 0.2 \times 10^{-3} e^{-t/0.5}$ $v_R = 20e^{-t/0.5}$
- **19.** (a) 5,5 ms
 - **(b)** $100(1 e^{-t/(5.5 \times 10^{-3})})$
 - (c) 1τ : 63,21 V, 3τ : 95,02 V, 5τ : 99,33 V
 - $i_C = 18,18 \times 10^{-3} e^{-t/(5,5 \times 10^{-3})}$ $v_R = 60 e^{-t/(5,5 \times 10^{-3})}$
- **21.** (a) 10 ms
 - **(b)** $50(1 e^{-t/(10 \times 10^{-3})})$
 - (c) $10 \times 10^{-3} e^{-t/(10 \times 10^{-3})}$

 - (d) $v_C \approx 50 \text{ V}, i_C = 0 \text{ A}$ (e) $v_C = 50e^{-t/(4 \times 10^{-3})}$ $i_C = -25 \times 10^{-3} e^{-t/(4 \times 10^{-3})}$
- **23.** (a) $80(1 e^{-t/(1 \times 10^{-6})})$
 - **(b)** $0.8 \times 10^{-3} e^{-t/(1 \times 10^{-6})}$
 - (c) $v_C = 80e^{-t/(4,9 \times 10^{-6})}$
 - $i_C = 0.163 \times 10^{-3} e^{-t/(4.9 \times 10^{-6})}$

- **25.** (a) $10 \mu s$ (b) 3 kA (c) sim
- **27.** (a) $v_C = 52 \text{ V} 40 \text{ V} e^{-t/123,8 \text{ms}}$ $i_C = 2,198 \text{ mA } e^{-t/123,8\text{ms}}$
- **29.** 1,386 μs
- **31.** $R = 54,567 \text{ k}\Omega$
- **33.** (a) $v_C = 60(1 e^{-t/0.2s})$, 0,5 s: 55,07 V, 1 s: 59,596 V $i_C = 60 \times 10^{-3} e^{-t/0.2s}$ 0,5 s: 4,93 mA, 1 s: 0,404 mA $v_{R_1} = 60 e^{-t/0.2s}$ 0,5 s: 4,93 V, 1 s: 0,404 V
 - **(b)** t = 0,405 s; mais 1,387 s
- **35.** (a) 19,634 V
 - **(b)** 2,31 s
 - (c) 1,155 s
- **37.** (a) $v_C = 3,275(1 e^{-t/52,68 \text{ms}})$ $i_C = 1,216 \times 10^{-3} e^{-t/52,68 \text{ms}}$
- **39.** (a) $v_C = 27.2 25.2 e^{-t/18.26 \text{ms}}$ $i_C = 3,04 \text{ mA } e^{-t/18,26 \text{ms}}$
- **41.** 0–4 ms: 0,3 mA,
 - 4-6 ms: 0.9 mA,
 - 6-7 ms: 3 mA,
 - 7-10 ms: 0 mA,
 - 10-13 ms: -3.2 mA,
 - 13-15 ms: 1,8 mA
- **43.** 0–4 ms: 0 V,
 - 4-6 ms: -8 V,
 - 6-16 ms: 20 V,
 - 16-18 ms: 0 V,
 - 18-20 ms: -12 V,
 - 20-25 ms: 0 V
- **45.** $V_1 = 10 \text{ V}, Q_1 = 60 \mu\text{C},$ $V_2 = 6,67 \text{ V}, Q_2 = 40 \mu\text{C},$ $V_3 = 3{,}33 \text{ V}, Q_3 = 40 \mu\text{C}$
- 47. (a) 56,54 V
 - **(b)** 42,405 V
 - (c) 14,135 V
 - (**d**) 43,46 V
 - (e) 433,44 ms
- **49.** 8640 pJ
- **51.** (a) 5 J
- **(b)** 0,1 C
 - (c) 200 A
 - (d) 10 kW
 - (e) 10 s

- **1.** Φ : 5 × 10⁴ linhas 5×10^4 linhas, B: 8 gauss, 51,616 linhas
- **3.** (a) 0,04 T
- 5. 952.4×10^3 Ae/Wb
- 7. 2624,67 Ae/m
- **9.** 2,133 A
- **11.** (a) $N_1 = 60 \text{ t}$
 - **(b)** $13,34 \times 10^{-4} \text{ Wb/Am}$
- **13.** 2,687 A
- **15.** 1,35 N
- 17. (a) 2,028 A (b) $\approx 2 \text{ N}$

Capítulo 12

- 1. 4,25 V
- 3. 14 espiras
- 5. 15,65 μ H
- 7. (a) 2.5 V (b) 0.3 V
 - (c) 200 V
- **9.** 0-3 ms: 0 V, 3-8 ms: 1,6 V,
 - 8-13 ms: -1,6 V,
 - 13-14 ms: 0 V,
 - 14-15 ms: 8 V.
 - 15-16 ms: -8 V,
 - 16-17 ms: 0 V
- 11. $0-5 \mu s$: 4 mA, 10 μs : -8 mA, 12 μ s: 4 mA, 12–16 μ s: 4 mA, 24 μs: 0 mA
- 13. (a) 2,27 μ s
 - **(b)** $5,45 \times 10^{-3} (1 e^{-t/2,27\mu_S})$
 - (c) $v_L = 12e^{-t/2,27\mu_S}$ $v_R = 12(1 - e^{-t/2,27\mu_s})$
 - (d) i_L : $1\tau = 3,45 \text{ mA}$,
 - $3\tau = 5{,}179 \text{ mA},$
 - $5\tau = 5{,}413 \text{ mA},$
 - v_I : $1\tau = 4.415 \text{ V}$
 - $3\tau = 0.598 \text{ V},$
 - $5\tau = 0.081 \text{ V}$
- **15.** (a) $i_L = 0.882 \times$ $10^{-3} (1 - e^{-t/0.735\mu_s}).$ $v_L = 6e^{-t/0,735\mu_{\rm S}}$
 - **(b)** $i_L = 0.882 \times 10^{-3} e^{-t/0.333\mu_S}$ $v_L = -13,23e^{-t/0,333\mu_{\rm S}}$
- 17. (a) $i_L = 1,765 \text{ mA} -$ 4,765 mA $e^{-t/588,24\mu_8}$ $v_L = 16.2 \text{ V } e^{-t/588,24\mu_S}$
- **19.** (a) $i_L = -0.692 \text{ mA} 0.000 \text{ mA}$ 2,308 mA $e^{-t/19,23\mu_S}$ $v_L = 24 \text{ V } e^{-t/19,23\mu_S}$
- 21. 25,68 μ s
- **23.** (a) $i_L = 3{,}638 \times$ $10^{-3} (1 - e^{-t/6,676\mu_8}).$ $v_L = 5,45 \ e^{-t/6,676\mu_{\rm S}}$
 - (b) 2,825 mA, 1,2186 V
 - (c) $i_L = 2.825 \times$ $10^{-3}e^{-t/2,128\mu_{\rm S}}$ $v_L = -13,27 \ e^{-t/2,128\mu_8}$
- **25.** (a) 0,243 V
 - **(b)** 29,47 V
 - (c) 18,96 V
 - (d) 2,025 ms
- 27. (a) 20 V
 - **(b)** 12 μ A
 - (c) $5,376 \mu s$
 - (d) 0,366 V
- **29.** $i_L = -3,478 \text{ mA} -$ 7,432 mA $e^{-t/173,9\mu_s}$ $v_L = 51,28 \text{ V } e^{-t/173,9\mu_8}$
- 31. (a) 8 H
 - **(b)** 4 H
- 33. L: 4 H, 2 H $R: 5.7 \text{ k}\Omega, 9.1 \text{ k}\Omega$
- **35.** $V_1 = 16 \text{ V}, V_2 = 0 \text{ V},$ $I_1 = 4 \text{ mA}$

- 37. $V_1 = 10 \text{ V}$
 - $I_1 = 2 \, \text{A}$
- $I_2 = 1,33 \text{ A}$ **39.** $W_C = 360 \ \mu \text{J}$
- $W_L = 12 \text{ J}$

Capítulo 13

- **1.** (a) 10 ms (b) 2 (c) 100 Hz
 - (d) amplitude = 5 V, $V_{p-p} = 6,67 \text{ V}$
- 3. 10 ms, 100 Hz
- **5.** (a) 60 Hz (b) 100 Hz
 - (c) 29,41 Hz (d) 40 kHz
- 7. 0,25 s
- **9.** $T = 50 \ \mu s$
- 11. (a) $\pi/4$ (b) $\pi/3$ (c) $\frac{2}{3}\pi$
 - (d) $\frac{3}{2}\pi$ (e) 0.989π (f) 1.228π
- 13. (a) 3,14 rad/s
 - **(b)** $20,94 \times 10^3 \text{ rad/s}$
 - (c) 1.57×10^6 rad/s
 - (d) 157,1 rad/s
- **15.** (a) 120 Hz, 8,33 ms
 - **(b)** 1,34 Hz, 746,27 ms
 - (c) 954,93 Hz, 1,05 ms
 - (d) 9.95×10^{-3} Hz, 100.5 s
- 17. 104,7 rad/s
- 23. 0,4755 A
- 25. 11,537°, 168,463°
- **29.** (a) v atrasada em relação a i de 10°
 - (b) i atrasada em relação a v de 70°
 - (c) i atrasada em relação a v de 80°
 - (d) i atrasada em relação a v de 150°
- 31. (a) $v = 25 \operatorname{sen}(\omega t + 30^{\circ})$
 - **(b)**
 - $i = 3 \times 10^{-3} \text{sen}(6.28 \times 10^{3} t 60^{\circ})$
- 33. $\frac{1}{3}$ ms
- 35. 0,388 ms
- **37.** (a) 0,4 ms
 - **(b)** 2,5 kHz
 - (c) -25 mV
- **39.** (a) 1,875 V (b) -4,778 mA
- **41.** (a) 40 μs
 - (b) 25 kHz
 - (c) 17,13 mV
- **43.** (a) 2 sen 377t
 - **(b)** 100 sen 377t
 - (c) 84.87×10^{-3} sen 377t
 - (d) $33.95 \times 10^{-6} \text{ sen } 377t$
- 45, 2.16 V
- 47. 0 V
- **49.** (a) $T = 40 \mu s$, f = 25 kHz, $V_{\rm av} = 20 \text{ mV},$
 - $V_{\rm eff} = 28,28 \text{ mV}$ **(b)** $T = 100 \ \mu \text{s}, f = 10 \ \text{kHz},$ $V_{\rm av} = -0.3 \text{ V},$ $V_{\rm eff} = 0.212 \text{ V}$

- **3.** (a) 3770 cos 377t
 - **(b)** $452.4 \cos (754t + 20^{\circ})$

- (c) $4440,63 \cos (157t 20^{\circ})$
- (d) $200 \cos t$
- **5.** (a) 210 sen 754t
 - **(b)** $14.8 \operatorname{sen}(400t 120^{\circ})$
 - (c) $42 \times 10^{-3} \operatorname{sen}(\omega t + 88^{\circ})$
 - (d) $28 \text{ sen}(\omega t + 180^{\circ})$
- 7. (a) 1,592 H (b) 2,654 H
 - (c) 0,8414 H
- **9.** (a) $100 \operatorname{sen}(\omega t + 90^{\circ})$
 - **(b)** $8 \text{ sen}(\omega t + 150^{\circ})$
 - (c) $120 \text{ sen}(\omega t 120^{\circ})$
 - (d) $60 \text{ sen}(\omega t + 190^{\circ})$
- 11. (a) $1 \operatorname{sen}(\omega t 90^{\circ})$
 - **(b)** $0.6 \text{ sen}(\omega t 70^{\circ})$

 - (c) $0.8 \text{ sen}(\omega t + 10^{\circ})$
 - (d) $1,6 \operatorname{sen}(377t + 130^{\circ})$
- **13.** (a) $\propto \Omega$ (b) 530,79 Ω
 - (c) 265,39 Ω (d) 17,693 Ω
 - (e) 1.327Ω
- **15.** (a) 9,31 Hz (b) 4,66 Hz
 - (c) 18,62 Hz (d) 1,59 Hz
- 17. (a) $6 \times 10^{-3} \operatorname{sen}(200t + 90^{\circ})$

 - (b) $33.96 \times 10^{-3} \sin(377t + 90^\circ)$ (c) $44.94 \times 10^{-3} \sin(374t + 300^\circ)$
 - (d) $56 \times 10^{-3} \operatorname{sen}(\omega t + 160^{\circ})$
- **19.** (a) $1334 \operatorname{sen}(300t 90^{\circ})$
 - **(b)** $37,17 \operatorname{sen}(377t 90^{\circ})$
 - (c) 127,2 sen 754t
 - (d) $100 \operatorname{sen} (1600t 170^{\circ})$
- **21.** (a) C (b) L = 254,78 mH
 - (c) $R = 5 \Omega$
- 25. 318,47 mH
- 27. 5,067 nF
- 29. (a) 0 W (b) 0 W
 - (c) 122,5 W
- **31.** 192 W
- **33.** 40 sen($\omega t 50^{\circ}$)
- **35.** (a) $2 \operatorname{sen}(157t 60^{\circ})$
 - **(b)** 318,47 mH **(c)** 0 W
- 37. (a) $i_1 = 2,828 \operatorname{sen}(10^4 t + 150^\circ),$ $i_2 = 11.312 \text{ sen}(10^4 t + 150^\circ)$
 - **(b)** $i_{\rm F} = 14,14 \, {\rm sen}(10^4 t + 150^\circ)$
- **39.** (a) $5 \angle 36,87^{\circ}$
 - **(b)** $2.83 \angle 45^{\circ}$
 - (c) $16,38 \angle 77,66^{\circ}$
 - (d) $806,23 \angle 82,87^{\circ}$
 - (e) $1077,03 \angle 21,80^{\circ}$
 - (f) 0,00658 ∠81,25°
 - (g) $11.78 \angle -49.82^{\circ}$
 - **(h)** $8,94 \angle 153,43^{\circ}$
 - (i) $61,85 \angle -104,04^{\circ}$
 - (i) $101,53 \angle -39,81^{\circ}$
 - (k) 4326,66 ∠123,69°
 - (1) $25,495 \times 10^{-3} \angle -78,69^{\circ}$
- **41.** (a) $15,033 \angle 86,19^{\circ}$
 - **(b)** $60,208 \angle 4,76^{\circ}$
 - (c) $0.30 \angle 88.09^{\circ}$
 - (d) $2002,5 \angle -87,14^{\circ}$
 - (e) 86,182 ∠93,73°
 - (f) $38,694 \angle -94^{\circ}$
- **43.** (a) 11.8 + j.7**(b)** 151.9 + i49.9

- (c) $4.72 \times 10^{-6} + j.71$
- (d) 5.2 + j 1.6
- (e) 209.3 + j.311
- (f) -21.2 + j 12
- (g) 7.03 + i 9.93
- **(h)** 95,698 + j 22,768
- **45.** (a) $6 \angle -50^{\circ}$
 - **(b)** $0.2 \times 10^{-3} \angle 140^{\circ}$
 - (c) $109 \angle -230^{\circ}$
 - (d) $76,471 \angle -80^{\circ}$
 - (e) 4 ∠0°
 - (f) $0.71 \angle -16.49^{\circ}$
 - (g) $4.21 \times 10^{-3} \angle 161.1^{\circ}$
 - (h) $18,191 \angle -50,91^{\circ}$
- **47.** (a) x = 4, y = 3
 - **(b)** x = 4
 - (c) x = 3, y = 6 ou x = 6, y = 3
 - (**d**) 30°
- **49.** (a) $56,569 \operatorname{sen}(377t + 20^{\circ})$
 - **(b)** 169,68 sen 377*t*

 - $11,314 \times 10^{-3} \operatorname{sen}(377t + 120^{\circ})$
 - (d) $7.07 \sin(377t + 90^\circ)$
 - (e) $1696.8 \text{ sen} (377t 120^\circ)$
 - (f) $6000 \operatorname{sen}(377t 180^{\circ})$
- **51.** $i_1 = 2,537 \times 10^{-5} \operatorname{sen}(\omega t + 96,79^{\circ})$
- **53.** $i_{\rm F} = 18 \times 10^{-3} \text{ sen } 377t$

- 1. (a) $6.8 \Omega \angle 0^{\circ}$
 - **(b)** $754 \Omega \angle 90^{\circ}$
 - (c) 15,7 $\Omega \angle 90^{\circ}$
 - (d) $265,25 \Omega \angle -90^{\circ}$
 - (e) 318,47 $\Omega \angle -90^{\circ}$
 - (f) $200 \Omega \angle 0^{\circ}$
- 3. (a) $88 \times 10^{-3} \text{ sen } \omega t$
 - **(b)** $9,045 \text{ sen}(377t + 150^\circ)$
 - (c) $2547,02 \operatorname{sen} (157t 50^{\circ})$
- 5. (a) $4.24 \Omega \angle -45^{\circ}$
 - **(b)** 3,04 k $\Omega \angle 80,54^{\circ}$
 - (c) $1617,56 \Omega \angle 88,33^{\circ}$
- 7. (a) $10 \Omega \angle 36,87^{\circ}$
 - (c) $I = 10 \text{ A} \angle -36,87^{\circ}$, $V_R = 80 \text{ V } \angle -36,87^{\circ},$ $V_L = 60 \text{ V } \angle 53,13^{\circ}$
 - (f) 800 W (g) 0,8 atrasado
- **9.** (a) $1660,27 \Omega \angle -73,56^{\circ}$
 - **(b)** $8,517 \text{ mA} \angle 73,56^{\circ}$ (c) $V_R = 4,003 \text{ V} \angle 73,56^\circ$,
 - $V_L = 13,562 \text{ V} \angle -16,44^{\circ}$
 - (d) 34,09 mW, 0,283 adiantado
- 11. (a) $3,16 \text{ k}\Omega \angle 18,43^{\circ}$
 - (c) $3,18 \mu F, 6,37 H$
 - (d) $I = 1.3424 \text{ mA } \angle 41.57^{\circ}$, $V_R = 4,027 \text{ V } \angle 41,57^{\circ},$
 - $V_L = 2,6848 \text{ V} \angle 131,57^\circ$ $V_C = 1,3424 \text{ V} \angle -48,43^{\circ}$
 - (g) 5,406 mW
 - (h) 0,9487 atrasado

- **13.** (a) 40 mH (b) 220 Ω
- **15.** (a) $V_1 = 37.97 \text{ V } \angle -51.57^\circ$, $V_2 = 113,92 \text{ V} \angle 38,43^\circ$
 - **(b)** $V_1 = 55,80 \text{ V } \angle 26,55^{\circ},$ $V_2 = 12,56 \text{ V} \angle -63,45^{\circ}$
- 17. (a) $I = 39 \text{ mA} \angle 126,65^{\circ}$, $V_R = 1.17 \text{ V} \angle 126.65^\circ$ $V_C = 25,86 \text{ V} \angle 36,65^\circ$
 - (b) 0,058 adiantado
 - (c) 45,63 mW
 - (g) $\mathbf{Z}_T = 30 \ \Omega j \ 512,2 \ \Omega$
- **19.** $\mathbf{Z}_T = 3.2 \ \Omega + j \ 2.4 \ \Omega$
- **25.** (a) $\mathbf{Z}_T = 3 \Omega + j \otimes \Omega$, $\mathbf{Y}_T = 41.1 \text{ mS} - j \ 109.5 \text{ mS}$
 - **(b)** $\mathbf{Z}_T = 60 \ \Omega j \ 70 \ \Omega$,
 - $Y_T = 7.1 \text{ mS} + j 8.3 \text{ mS}$
 - (c) $\mathbf{Z}_T = 200 \ \Omega j \ 100 \ \Omega$, $\mathbf{Y}_T = 4 \text{ mS} + j \text{ 2 mS}$
- 27. (a) $Y_T = 538,52 \text{ mS } \angle -21,8^{\circ}$
 - (c) $E = 3.71 \text{ V} \angle 21.8^{\circ}$, $I_R = 1,855 \text{ A} \angle 21,8^{\circ},$
 - $I_L = 0.742 \text{ A} \angle -68.2^{\circ}$
 - (f) 6,88 W
 - (g) 0,928 atrasado
 - **(h)** $e = 5,25 \text{ sen}(377t + 21,8^\circ),$
 - $i_R = 2,62 \text{ sen}(377t + 21,8^\circ),$
 - $i_L = 1,049 \operatorname{sen} (377t 68,2^\circ),$
 - $i_s = 2,828 \text{ sen } 377t$
- **29.** (a) $Y_T = 129,96 \text{ mS } \angle -50,31^\circ$ (c) $I_s = 7.8 \text{ A} \angle -50.31^\circ$,
 - $I_R = 5 \text{ A} \angle 0^{\circ}$
 - $I_L = 6 \text{ A} \angle -90^{\circ}$ (f) 300 W
 - (g) 0,638 atrasado
 - **(h)** e = 84.84 sen 377t,
 - $i_R = 7,07 \text{ sen } 377t$,
 - $i_L = 8,484 \text{ sen } (377t 90^\circ),$
- $i_s = 11,03 \text{ sen } (377t 50,31^\circ)$ 31. (a) $Y_T = 0.416 \text{ mS } \angle 36.897^\circ$
 - (c) $L = 10.61 \text{ H}, C = 1.326 \mu\text{F}$
 - (d) $E = 8,498 \text{ V} \angle -56,897^{\circ}$,
 - $I_R = 2,833 \text{ mA } \angle -56,897^\circ$
 - $I_L = 2.125 \text{ mA} \angle -146.897^{\circ},$ $I_C = 4,249 \text{ mA } \angle 33,103^{\circ}$

 - (g) 24,078 mW (h) 0,8 adiantado

 - $e = 12,016 \operatorname{sen} (377t 56,897^{\circ}),$

 - $i_R = 4 \operatorname{sen}(377t 56,897^\circ),$ $i_L = 3 \operatorname{sen} (377t - 146,897^\circ),$
- $i_C = 6 \operatorname{sen} (377t + 33,103^\circ)$ **33.** (a) $I_1 = 18,09 \text{ A} \angle 65,241^\circ$,
 - $I_2 = 8,528 \text{ A} \angle -24,759^{\circ}$ **(b)** $I_1 = 11,161 \text{ A} \angle 0,255^{\circ},$
- $I_2 = 6,656 \text{ A} \angle 153,690^{\circ}$ **39.** (a) $R_p = 94,73 \Omega$, $X_p = 52,1 \ \Omega \ (C)$
 - **(b)** $R_p = 4 \text{ k}\Omega$,
- $X_p = 4 \text{ k}\Omega \text{ (C)}$ **41.** (a) $E = 176,68 \text{ V} \angle 36,44^{\circ}$,
 - $I_R = 0.803 \text{ A} \angle 36,44^{\circ},$
 - $I_L = 2.813 \text{ A} \angle -53.56^{\circ}$

- **(b)** 0,804 atrasado
- (c) 141,86 W
- (f) $I_C = 1.11 \text{ A} \angle 126.43^\circ$
- (g) $\mathbf{Z}_T = 142,15 \ \Omega + j \ 104,96 \ \Omega$
- **43.** $R = 4 \Omega, X_L = 3,774 \Omega$

- **1.** (a) 1,2 $\Omega \angle 90^{\circ}$
 - **(b)** $10 \text{ A} \angle -90^{\circ}$
 - (c) $10 \text{ A} \angle -90^{\circ}$
 - (d) $I_2 = 6 \text{ A} \angle -90^\circ$, $I_3 = 4 \text{ A} \angle -90^\circ$
 - (e) 60 V ∠0°
- 3. (a) $\mathbf{Z}_T = 3.87 \ \Omega \angle -11.817^\circ$, $\mathbf{Y}_T = 0.258 \ \mathbf{S} \angle 11.817^\circ$
 - **(b)** 15,504 A ∠41,817°
 - (c) $3.985 \text{ A} \angle 82.826^{\circ}$
 - (d) $47,809 \text{ V} \angle -7,174^{\circ}$
 - (e) 910,71 W
- 5. (a) $0.375 \text{ A} \angle 25.346^{\circ}$
 - **(b)** $70,711 \text{ V} \angle -45^{\circ}$
 - (c) 33,9 W
- **7.** (a) 1,423 A ∠18,259°
 - **(b)** 26,574 V ∠4,763°
 - (c) 54,074 W
- **9.** (a) $\mathbf{Y}_T = 0.099 \text{ S } \angle -9.709^\circ$
 - **(b)** $V_1 = 20.4 \text{ V} \angle 30^\circ,$ $V_2 = 10.887 \text{ V} \angle 58.124^\circ$
 - (c) 1,933 A ∠11,109°
- **11.** 33,201 A ∠38,89°
- 13. 139,71 mW

Capítulo 17

- 3. (a) $Z = 21.93 \Omega \angle -46.85^{\circ}$,
 - **E** = $10.97 \text{ V} \angle 13.15^{\circ}$ **(b) Z** = $5.15 \Omega \angle 59.04^{\circ}$,
 - **b)** $\mathbf{Z} = 5.15 \Omega \angle 59.04^{\circ},$ $\mathbf{E} = 10.3 \text{ V} \angle 179.04^{\circ}$
- 5. (a) $5,15 \text{ A} \angle -24,5^{\circ}$
 - **(b)** $0,442 \text{ A} \angle 143,48^{\circ}$
- 7. (a) $13,07 \text{ A} \angle -33,71^{\circ}$
 - **(b)** $48,33 \text{ A} \angle -77,57^{\circ}$
- 9. $-3,165 \times 10^{-3} \text{ V} \angle 137,29^{\circ}$
- 11. $I_{1k\Omega} = 10 \text{ mA } \angle 0^{\circ}$ $I_{2k\Omega} = 1,667 \text{ mA } \angle 0^{\circ}$
- **13.** $I_L = 1,378 \text{ mA } \angle -56,31^{\circ}$
- **15.** (a) $V_1 = 19.86 \text{ V} \angle 43.8^\circ$, $V_2 = 8.94 \text{ V} \angle 106.9^\circ$
 - **(b)** $V_1 = 19,78 \text{ V} \angle 132,48^\circ,$ $V_2 = 13,37 \text{ V} \angle 98,78^\circ$
- 17. $V_1 = 220 \text{ V} \angle 0^\circ$
 - $V_2 = 96,664 \text{ V} \angle -12,426^{\circ}$
 - $V_3 = 100 \text{ V} \angle 90^\circ$
- 19. (à esquerda) $V_1 = 14,62 \text{ V} \angle -5,86^\circ$ (em cima) $V_2 = 35,03 \text{ V} \angle -37,69^\circ$ (à direita) $V_3 = 32,4 \text{ V} \angle -73,34^\circ$ (no meio) $V_4 = 5,677 \text{ V} \angle 23,53^\circ$
- **21.** 2,253 V ∠17,628°
- **23.** $-10,667 \text{ V} \angle 0^{\circ}$
- 25. $-2451,92\mathbf{E}_{i}$

- 27. (a) Não
 - **(b)** 1,76 mA $\angle -71,54^{\circ}$
 - (c) $7.03 \text{ V} \angle -18.46^{\circ}$
- 29. Sim
- **31.** $R_x = R_2 R_3 / R_1$
 - $L_x = R_2 L_3 / R_1$
- 33. (a) $11,57 \text{ A} \angle -67,13^{\circ}$
 - **(b)** $36.9 \text{ A} \angle 23.87^{\circ}$

Capítulo 18

- 1. (a) $6.095 \text{ A} \angle -32,115^{\circ}$
 - **(b)** 3,77 A \angle -93,8°
- 3. $i = 0.5 \text{ A} + 1.581 \text{ sen}(\omega t 26.565^{\circ})$
- 5. 6,261 mA \angle -63,43°
- 7. -22,09 V ∠6,34°
- 9. 19,62 V ∠53°
- 11. $V_s = 10 \text{ V} \angle 0^\circ$
- **13.** (a) $\mathbf{Z}_{Th} = 21,312 \ \Omega \ \angle 32,196^{\circ}$ $\mathbf{E}_{Th} = 2,131 \ \mathbf{V} \ \angle 32,196^{\circ}$
 - **(b)** $\mathbf{Z}_{Th} = 6.813 \ \Omega \ \angle -54.228^{\circ}$ $\mathbf{E}_{Th} = 57.954 \ \mathbf{V} \ \angle 11.099^{\circ}$
- 15. (a) $\mathbf{Z}_{Th} = 4 \Omega \angle 90^{\circ}$ $\mathbf{E}_{Th} = 4 \text{ V} + 10 \text{ V} \angle 0^{\circ}$
 - **(b)** $I = 0.5A + 1.118 \text{ A} \angle -26.565^{\circ}$
- 17. (a) $\mathbf{Z}_{Th} = 4,472 \text{ k}\Omega \angle -26,565^{\circ}$ $\mathbf{E}_{Th} = 31,31 \text{ V} \angle -26,565^{\circ}$
 - **(b)** $I = 6,26 \text{ mA } \angle 63,435^{\circ}$
- **19.** $\mathbf{Z}_{Th} = 4,44 \text{ k}\Omega \angle -0.031^{\circ}$
 - $\mathbf{E}_{Th} = -444,45 \times 10^3 \mathbf{I} \angle 0,255^{\circ}$
- **21.** $\mathbf{Z}_{Th} = 5,099 \text{ k}\Omega \angle -11,31^{\circ}$ $\mathbf{E}_{Th} = -50 \text{ V} \angle 0^{\circ}$
- **23.** $\mathbf{Z}_{Th} = -39,215 \ \Omega \angle 0^{\circ}$
 - $\mathbf{E}_{Th} = 20 \text{ V } \angle 53^{\circ}$
- **25.** $\mathbf{Z}_{Th} = 607,42 \ \Omega \ \angle 0^{\circ}$ $\mathbf{E}_{Th} = 1,62 \ \mathbf{V} \ \angle 0^{\circ}$
- **27.** (a) $\mathbf{Z}_N = 21,312 \ \Omega \ \angle 32,196^\circ,$ $\mathbf{I}_N = 0,1 \ A \ \angle 0^\circ$
 - (b) $\mathbf{Z}_N = 6,813 \ \Omega \ \angle -54,228^\circ,$ $\mathbf{I}_N = 8,506 \ A \ \angle 65,324^\circ$
- **29.** (a) $\mathbf{Z}_N = 9,66 \ \Omega \angle 14,93^\circ$, $\mathbf{I}_N = 2,15 \ A \angle -42,87^\circ$
 - **(b)** $\mathbf{Z}_N = 4,37.\ \Omega \ \angle 55,67^\circ,$ $\mathbf{I}_N = 22,83 \ A \ \angle -34,65^\circ$
- 31. (a) $\mathbf{Z}_N = 9 \ \Omega \ \angle 0^\circ$, $\mathbf{I}_N = 1{,}333 \ \mathrm{A} + 2{,}667 \ \mathrm{A} \ \angle 0^\circ$
 - **(b)** $12 \text{ V} + 2,65 \text{ V} \angle -83,66^{\circ}$
- 33. $\mathbf{Z}_N = 5.1 \text{ k}\Omega \angle -11.31^\circ,$ $\mathbf{I}_N = -1.961 \times 10^{-3} \text{ V } \angle 11.31^\circ$
- 35. $\mathbf{Z}_N = 5.1 \text{ k}\Omega \angle -11.31^\circ,$ $\mathbf{I}_N = 9.81 \text{ mA} \angle 11.31^\circ$
- **37.** $\mathbf{Z}_N = 6.63 \text{ k}\Omega \angle 0^\circ$
- $I_N = 0.792 \text{ mA } \angle 0^\circ$
- **39.** (a) $\mathbf{Z}_c = 8,32 \ \Omega \ \angle 3,18^\circ, 1198,2 \ \mathbf{W}$
 - **(b)** $\mathbf{Z}_c = 1,562 \ \Omega \ \angle -14,47^\circ, 1,614 \ \mathbf{W}$
- **41.** 40 k Ω , 25 W
- **43.** (a) 9Ω (b) 20 W
- **45.** (a) 1,414 k Ω (b) 0,518 W
- **49.** 25,77 mA ∠104,4°

Capítulo19

- 1. (a) 120 W
 - **(b)** $Q_T = 0 \text{ VAR}, S_T = 120 \text{ VA}$
 - (c) 0.5 A
 - (d) $I_1 = \frac{1}{6} A$, $I_2 = \frac{1}{3} A$
- **3.** (a) 400 W, -400 VAR(C), 565,69 VA, 0,7071 adiantado
 - (c) $5,66 \text{ A} \angle 135^{\circ}$
- **5.** (a) 500 W, -200 VAR(*C*), 538,52 VA
 - **(b)** 0,928 adiantado
 - **(d)** 10,776 A ∠21,875°
- 7. (a) R: 200 W, L,C: 0 W
 - (b) R: 0 VAR, C: 80 VAR, L: 100 VAR
 - (c) R: 200 VA, C: 80 VA, L: 100 VA
 - (d) 200 W, 20 VAR(L), 200,998 VA, 0,995 (atrasado)
 - (f) $10,05 \text{ A} \angle -5,73^{\circ}$
- 9. (a) R: 38,99 W, L: 0 W, C: 0 W
 - (b) R: 0 VAR, L: 126,74 VAR, C: 46,92 VAR
 - (c) R: 38,99 VA, L: 126,74 VA, C: 46,92 VA
 - (d) 38,99 W, 79,82 VAR(*L*), 88,83 VA, 0,439 (atrasado)
 - (**f**) 0,31 J
- (g) $W_L = 0.32 \text{ J}, W_C = 0.12 \text{ J}$
- **11.** (a) $\mathbf{Z} = 2,30 \ \Omega + j \ 1,73 \ \Omega$
 - **(b)** 4000 W
- 13. (a) 900 W, 0 VAR, 900 VA, 1
 - **(b)** 9 A ∠0°
 - (d) \mathbf{Z}_1 : $R = 0 \Omega$, $X_C = 20 \Omega$ \mathbf{Z}_2 : $R = 2,83 \Omega$, $X = 0 \Omega$ \mathbf{Z}_3 : $R = 5,66 \Omega$, $X_L = 4,717 \Omega$
- **15.** (a) 1100 W, 2366,26 VAR, 2609,44 VA, 0,4215 (adiantado)
 - **(b)** 521,89 V \angle -65,07°
 - (c) \mathbf{Z}_1 : $R = 1743,38 \ \Omega$, $X_C = 1307,53 \ \Omega$ \mathbf{Z}_2 : $R = 43,59 \ \Omega$, $X_C = 99,88 \ \Omega$
- 17. (a) 7,81 kVA
 - **(b)** 0,640 (atrasado)
 - (c) 65,08 A
 - (d) 1105 μ F
 - (e) 41,67 A
- **19.** (**a**) 128,14 W (**b**) *a*–*b*: 42,69 W, *b*–*c*: 64,03 W, *a*–*c*: 106,72 W, *a*–*d*: 106,72 W,
 - *c*–*d*: 0 W, *d*–*e*: 0 W, *f*–*e*: 21,34 W
- **21.** (a) 5 Ω , 132,03 mH
 - (b) 10Ω
 - (c) 15 Ω , 262,39 mH

- 1. (a) $\omega_s = 250 \text{ rad/s},$
 - $f_s = 39,79 \text{ Hz}$

- **(b)** $\omega_s = 3535,53 \text{ rad/s},$ $f_s = 562,7 \text{ Hz}$
- (c) $\omega_s = 21.880 \text{ rad/s}$, $f_s = 3482,31 \text{ Hz}$
- 3. (a) $X_L = 40 \ \Omega$
 - **(b)** I = 10 mA
 - (c) $V_R = 20 \text{ mV}, V_L = 400 \text{ mV},$ $V_C = 400 \text{ mV}$
 - (**d**) $Q_s = 20$ (alto)
 - (e) L = 1.27 mH, $C = 0.796 \mu$ F
 - (f) BP = 250 Hz
 - (g) $f_2 = 5{,}125 \text{ kHz},$ $f_1 = 4,875 \text{ kHz}$
- 5. (a) BP = 400 Hz
 - **(b)** $f_2 = 6200 \text{ Hz},$ $f_1 = 5800 \text{ Hz}$
 - (c) $X_L = X_C = 45 \Omega$
 - **(d)** $P_{FC} = 375 \text{ mW}$
- 7. (a) $Q_s = 10$
 - **(b)** $X_L = 20 \ \Omega$
 - (c) $L = 1.59 \text{ mH}, C = 3.98 \mu\text{F}$
 - (d) $f_2 = 2100 \text{ Hz}, f_1 = 1900 \text{ Hz}$
- **9.** L = 13,26 mH, C = 27,07 nF $f_2 = 8460 \text{ Hz}, f_1 = 8340 \text{ Hz}$
- 11. (a) $f_s = 1 \text{ MHz}$
 - **(b)** BP = 160 kHz
 - (c) $R = 720 \Omega$, L = 0.7162 mH, C = 35,37 pF
 - (**d**) $R_1 = 56,25 \Omega$
- **13.** (a) $f_p = 159,155 \text{ kHz}$
 - **(b)** $V_C = 4 \text{ V}$
 - (c) $I_L = I_C = 40 \text{ mA}$
 - **(d)** $Q_p = 20$
- **15.** (a) $f_s = 11.253,95 \text{ Hz}$
 - **(b)** $Q_l = 1,77 \text{ (não)}$
 - (c) $f_p = 9.280,24$ Hz,
 - $f_m = 10.794,41 \text{ Hz}$ (d) $X_L = 5.83 \ \Omega, X_C = 8.57 \ \Omega$
 - (e) $Z_{T_n} = 12.5 \Omega$
 - **(f)** $V_C^{\prime\prime} = 25 \text{ mV}$
 - (g) $Q_p = 1,46, BP = 6,356 \text{ kHz}$
 - **(h)** $I_C = 2.92 \text{ mA}, I_L = 3.54 \text{ mA}$
- **17.** (a) $X_C = 30 \Omega$
 - **(b)** $Z_{T_P} = 225 \ \Omega$
 - (c) $I_C = 0.6 \text{ A} \angle 90^\circ$, $I_L \cong 0.6 \text{ A} \angle -86.19^{\circ}$
 - (d) $L = 0.239 \,\text{mH}$, $C = 265,26 \,\mathrm{nF}$
 - (e) $Q_p = 7.5$, BP = 2.67 kHz
- **19.** (a) $f_s = 7{,}118 \text{ kHz},$ $f_p = 6,647 \text{ kHz}, f_m = 7 \text{ kHz}$
 - **(b)** $X_L = 20.88 \Omega, X_C = 23.94 \Omega$
 - (c) $Z_{T_P} = 55,56 \Omega$
 - (d) $Q_p = 2.32$, BP = 2.865 kHz
 - (e) $I_L = 99,28 \text{ mA},$ $I_C = 92,73 \text{ mA}$
 - (f) $V_C = 2{,}22 \text{ V}$
- **21.** (a) $f_p = 3558,81 \text{ Hz}$
 - **(b)** $V_C = 138.2 \text{ V}$
 - (c) P = 691 mW
 - (d) BP = 575,86 Hz
- **23.** (a) $X_L = 98,54 \Omega$

- **(b)** $Q_1 = 8.21$
- (c) $f_p = 8,05 \text{ kHz}$
- (d) $V_C = 4.83 \text{ V}$
- (e) $f_2 = 8,55 \text{ kHz}$, $f_1 = 7,55 \text{ kHz}$
- **25.** $R_s = 3,244 \text{ k}\Omega$, C = 31,66 nF
- **27.** (a) $f_p = 251,65 \text{ kHz}$
 - **(b)** $Z_{T_p} = 4,444 \text{ k}\Omega$
 - (c) $Q_p^{\prime\prime} = 14,05$
 - (d) BP = 17.91 kHz
 - (e) 20 nF: $f_p = 194,93$ kHz, $Z_{T_n} = 49,94 \ \Omega, \ Q_p = 2,04,$ BP = 95,55 kHz
 - (f) 1 nf: $f_p = 251,65$ kHz, $Z_{T_p} = 13,33 \text{ k}\Omega, Q_p = 21,08,$ $B\dot{P} = 11,94 \text{ kHz}$
 - (g) Circuito; $L/C = 100 \times 10^3$ parte (e): $L/C = 1 \times 10^{3}$ parte (f): $L/C = 400 \times 10^3$
 - (h) sim, $L/C \uparrow$, $BP \downarrow$

- 1. (a) esquerda: 1,54 kHz, direita: 5,623 kHz
 - **(b)** em cima: 0,2153 V, em baixo: 0,5248 V
- **3.** (a) 1000
 - **(b)** 10^{12}
 - (c) 1585 (**d**) 1,096
 - **(e)** 10^{10} (f) 1513,56
 - (g) 10,023 (h) 1.258.925,41
- **5.** 1,681
- 7. -0,301
- **9.** (a) 1,845
 - **(b)** 18,45
- **11.** 13,01
- **13.** 38,49
- 15. 24,08 dB_s
- **19.** (a) $0.1f_c$: 0.995, 0.5 f_c : 0.894, f_c : 0,707, $2f_c$: 0,447, $10f_c$: 0,0995
 - **(b)** $0.1f_c$: -5.71° , $0.5f_c$: -26.57° , f_c : -45°, $2f_c$: -63,43°, $10f_c$: $-84,29^\circ$
- **21.** $C = 0.265 \mu F$,
 - 250 Hz: $A_v = 0.895$,
 - $\theta = -26,54^{\circ},$
 - 1000 Hz: $A_v = 0,4475$,
 - $\theta = -63,41^{\circ}$
- **23.** (a) $f_c = 3,617 \text{ kHz}$,
 - f_c : $A_v = 0.707$, $\theta = 45^\circ$,
 - $2f_c$: $A_v = 0.894$, $\theta = 26.57^\circ$
 - $0.5f_c$: $A_v = 0.447$, $\theta = 63.43$ °
 - $10f_c$: $A_v = 0.995$, $\theta = 5.71^\circ$
 - $\frac{1}{10}f_c$: $A_v = 0.0995$,

 - $\theta = 84.29^{\circ}$
- **25.** $R = 795,77 \ \Omega \rightarrow 797 \ \Omega$,
 - f_c : $A_v = 0.707$, $\theta = 45^\circ$
 - 1 kHz: $A_v = 0.458$, $\theta = 63.4^\circ$
 - 4 kHz: $A_v \approx 0.9$, $\theta = 26.53^{\circ}$
- **27.** (a) $f_{c_1} = 795,77$ Hz,
 - $f_{c_2} = 1989,44 \text{ Hz}$

- f_{c_1} : $V_o = 0.656V_i$, f_{c_2} : $V_o = 0.656V_i$ $f_{\text{centro}} = 1392,60 \text{ Hz}$: $V_o =$ $0,711V_{i}$ 500 Hz: $V_o = 0.516V_i$, 4 kHz: $V_o = 0.437V_i$
- **(b)** $BP \cong 2,9 \text{ kHz},$ $f_{\text{centro}} = 1,94 \text{ kHz}$
- **29.** (a) $f_s = 100,658 \text{ kHz}$
 - **(b)** $Q_s = 18,39, BP = 5473,52 \text{ Hz}$
 - (c) f_s : $A_v = 0.93$
 - $f_1 = 97.921,24$ Hz,
 - $f_2 = 103.394,76 \text{ Hz},$
 - f = 95 kHz: $A_v = 0.392$,
 - $f = 105 \text{ kHz: } A_v = 0.5$
 - (d) $f = f_s$, $V_o = 0.93$ V, $f = f_1 = f_2$, $V_o = 0.658$ V
- **31.** (a) $Q_s = 12,195$
 - **(b)** BP = 410 Hz, $f_2 = 5205 \text{ Hz},$
 - $f_1 = 4795 \text{ Hz}$
 - (c) f_s : $V_o = 0.024V_i$
 - (d) não será modificada
- **33.** (a) $f_p = 726,44 \text{ kHz}$ (atenuação) f = 2.013 MHz (transmissão)
- **35.** (a-b) $f_c = 6772,55 \text{ Hz}$
 - (c) f_c : -3 dB, $\frac{1}{2}f_c$: -6.7 dB,
 - $2f_c$: -0,969 dB,
 - $\frac{1}{10}f_c$:-20,04 dB,
 - $10f_c$: -0.043 dB
 - (**d**) f_c : 0,707, $\frac{1}{2}f_c$: 0,4472, $2f_c$: 0,894
- (e) f_c : 45°, $\frac{1}{2}f_c$: 63,43°, $2f_c$: 26,57°
- **37.** (a-b) $f_c = 13,26 \text{ kHz}$
 - (c) f_c : -3 dB, $\frac{1}{2}f_c$: -0.97 dB,
 - $2f_c$: -6,99 dB

 - $\frac{1}{10}f_c$: -0,043 dB, $10f_c$: -20,04 dB
 - (d) f_c : 0,707, $\frac{1}{2}f_c$: 0,894,
 - $2f_c$: 0,447
- (e) f_c : -45° , $\frac{1}{2}f_c$: $-26,57^\circ$, $2f_c$: -63,43°
- **39.** (a) $f_1 = 663,15 \text{ Hz}, f_c = 468,1 \text{ Hz}$ $0 < f < f_c$: +6 dB/oitava, $f > f_c$: -3,03 dB
 - **(b)** f_1 : 45°, f_c : 54,78°, $\frac{1}{2}f_1$: 63,43°, 2f₁: 84,29°
- **41.** (a) $f_1 = 19.894,37$ Hz
 - $f_c = 1.989,44 \text{ Hz}$

 - $0 < f < f_c$: 0 dB, $f_c < f < f_1$: -6 dB/oitava,
 - $f > f_1$: -20 dB **(b)** f_c : $-39,29^{\circ}$,
- 10 kHz: -52,06°, f_1 : -39,29° **43.** (a) $f_1 = 964,58 \text{ Hz}$,
 - $f_c = 7.334,33 \text{ Hz}$ $0 < f < f_1$: -17,62 dB,
 - $f_1 < f < f_c$: +6 dB/oitava, $f > f_c$: 0 dB
 - **(b)** f_1 : 39,35°, 1,3 kHz: 43,38°, f_c : 39,35°

- **45.** (a) $f = 180 \text{ Hz} \cong -3 \text{ dB}$, f = 18 kHz: -3,105 dB
 - (b) $100 \text{ Hz: } 97^{\circ},$ $1.8 \text{ kHz: } 0.12^{\circ} \cong 0^{\circ},$ $18 \text{ kHz: } -61.8^{\circ}$
- **47.** $\mathbf{A}_v = -120/[(1 j \, 50/f)(1 j \, 200/f)(1 j \, f/36 \, \text{kHz})]$
- **49.** $f_c = 2$ kHz, $0 < f < f_c$: 0 dB, $f > f_c$: -6 dB/oitava,
- 51. $f_1 = 1 \text{ kHz}, f_2 = 2 \text{ kHz},$ $f_3 = 3 \text{ kHz}$ $0 < f < f_1$: 0 dB, $f_1 < f < f_2$: +6 dB/oitava, $f_2 < f < f_3$: +12 dB/oitava, $f > f_3$:13,06 dB
- **53.** (a) alto-falante de graves: 0,673 alto-falante de agudos: 0,678
 - (b) alto-falante de graves: 0,015 alto-falante de agudos: 0,337
 - (c) alto-falante de freqüências intermediárias: 0,998≅1

- 1. (a) positivos (b) 2 V
 - (c) 0,2 ms (d) 6 V (e) 6,5%
- 3. (a) positivos
 - (**b**) 10 mV
 - (c) 3.2 ms (d) 20 mV
 - **(e)** 3,4%
- 5. $V_2 \operatorname{de} (V_1 V_2)/V = 0.1 \text{ é}$ 13,571 mV
- 7. (a) 120 μ s (b) 8,333 kHz
 - (c) máximo = 440 mV, mínimo = 80 mV
- 9. frp = 125 kHz, Ciclo de operação = 62,5%
- 11. (a) $8 \mu s$
 - (b) $2 \mu s$
 - (c) 125 kHz
 - (d) 0 V
 - (e) 3,464 mV
- 13. 18,88 mV
- **15.** 117 mV
- **17.** $v_o = 4(1 + e^{-t/20 \text{ms}})$
- 19. $i_C = -8 \times 10^{-3} e^{-t}$
- 21. $i_C = 4 \times 10^{-3} e^{-t/0.2 \text{ms}}$
 - (a) $5\tau = T/2$ (b) $5\tau = \frac{1}{5}(T/2)$
 - (c) $5\tau = 10(T/2)$
- 23. 0 T/2: $v_C = 20 \text{ V}$, T/2 - T: $v_C = 20e^{-t/\tau}$, $T - \frac{3}{2}T$: $v_C = 20(1 - e^{-t/\tau})$ $\frac{3}{2}T - T$: $v_C = 20e^{-t/\tau}$
- **25.** $\mathbf{Z}_p = 4,573 \text{ M}\Omega \angle -59,5^{\circ},$ $\mathbf{Z}_s = 0,507 \text{ M}\Omega \angle -59,5^{\circ}$

Capítulo 23

- **1.** (a) 120,1 V (b) 120,1 V
 - (c) 12,01 A (d) 12,01 A
- 3. (a) 120,1 V (b) 120,1 V
 - (c) 16,98 A (d) 16,98 A
- 5. (a) $\theta_2 = -120^\circ$, $\theta_3 = 120^\circ$

- (b) $V_{an} = 120 \text{ V} \angle 0^{\circ},$ $V_{bn} = 120 \text{ V} \angle -120^{\circ},$ $V_{cn} = 120 \text{ V} \angle 120^{\circ}$
- (c) $I_{an} = 8 \text{ A } \angle -53,13^{\circ},$ $I_{bn} = 8 \text{ A } \angle -173,13^{\circ},$ $I_{cn} = 8 \text{ A } \angle 66,87^{\circ}$
- (e) 8 A (f) 207,85 V
- 7. $V_{\phi} = 127 \text{ V}, I_{\phi} = 8,98 \text{ A},$ $I_{L} = 8,98 \text{ A}$
- 9. (a) $\mathbf{E}_{AN} = 12.7 \text{ kV } \angle -30^{\circ},$ $\mathbf{E}_{BN} = 12.7 \text{ kV } \angle -150^{\circ},$ $\mathbf{E}_{CN} = 12.7 \text{ kV } \angle 90^{\circ}$
 - (b) $I_{an} = 11,285 \text{ A} \angle -97,54^{\circ},$ $I_{bn} = 11,285 \text{ A} \angle -217,54^{\circ},$ $I_{cn} = 11,285 \text{ A} \angle 22,46^{\circ}$
 - (c) $\mathbf{I}_L = \mathbf{I}_{\phi}$
 - (d) $V_{an} = 12.154,28 \text{ V} \angle -29,34^{\circ},$ $V_{bn} = 12.154,28 \text{ V} \angle -149,34^{\circ},$ $V_{cn} = 12.154,28 \text{ V} \angle 90,66^{\circ}$
- 11. (a) 120,1 V (b) 208 V
 - (c) 13,364 A (d) 23,15 A
- **13.** (a) $\theta_2 = -120^\circ$, $\theta_3 = +120^\circ$
 - (b) $V_{ab} = 208 \text{ V} \angle 0^{\circ},$ $V_{bc} = 208 \text{ V} \angle -120^{\circ},$ $V_{ca} = 208 \text{ V} \angle 120^{\circ}$
 - (d) $I_{ab} = 9,455 \text{ A} \angle 0^{\circ},$ $I_{bc} = 9,455 \text{ A} \angle -120^{\circ},$ $I_{ca} = 9,455 \text{ A} \angle 120^{\circ}$
 - (e) 16,376 A (f) 120,1 V
- **15.** (a) $\theta_2 = -120^\circ$, $\theta_3 = 120^\circ$
 - (b) $V_{ab} = 208 \text{ V } \angle 0^{\circ},$ $V_{bc} = 208 \text{ V } \angle -120^{\circ},$ $V_{ca} = 208 \text{ V } \angle 120^{\circ}$
 - (d) $I_{ab} = 86,67 \text{ A} \angle -36,87^{\circ},$ $I_{bc} = 86,67 \text{ A} \angle -156,87^{\circ},$ $I_{ca} = 86,67 \text{ A} \angle 83,13^{\circ}$
 - (e) 150,11 A (f) 120,1 V
- 17. (a) $I_{ab} = 15,325 \text{ A} \angle -73,30^{\circ},$ $I_{bc} = 15,325 \text{ A} \angle -193,30^{\circ},$ $I_{ca} = 15,325 \text{ A} \angle 46,7^{\circ}$
 - **(b)** $I_{Aa} = 26,54 \text{ A} \angle -103,31^{\circ},$ $I_{Bb} = 26,54 \text{ A} \angle 136,68^{\circ},$ $I_{Cc} = 26,54 \text{ A} \angle 16,69^{\circ}$
 - (c) $\mathbf{E}_{AB} = 17.013,6 \text{ V} \angle -0.59^{\circ},$ $\mathbf{E}_{BC} = 17.013,77 \text{ V} \angle -120,59^{\circ},$ $\mathbf{E}_{CA} = 17.013,87 \text{ V} \angle 119,41^{\circ}$
- **19.** (a) 208 V (b) 120,09 V (c) 7,076 A (d) 7,076 A
- **21.** $V_{\phi} = 69,28 \text{ V}, I_{\phi} = 2,89 \text{ A},$ $I_{L} = 2,89 \text{ A}$
- **23.** $V_{\phi} = 69,28 \text{ V}, I_{\phi} = 5,77 \text{ A},$ $I_L = 5,77 \text{ A}$
- 25. (a) 440 V (b) 440 V
 - (c) 29,33 A (d) 50,8 A
- **27.** (a) $\theta_2 = -120^\circ$, $\theta_3 = +120^\circ$
 - (b) $V_{ab} = 100 \text{ V } \angle 0^{\circ},$ $V_{bc} = 100 \text{ V } \angle -120^{\circ},$ $V_{ca} = 100 \text{ V } \angle 120^{\circ}$
 - (d) $I_{ab} = 5 \text{ A } \angle 0^{\circ},$ $I_{bc} = 5 \text{ A } \angle -120^{\circ},$ $I_{ca} = 5 \text{ A } \angle 120^{\circ}$
 - (e) 8,66 A

- **29.** (a) $\theta_2 = -120^\circ$, $\theta_3 = 120^\circ$
 - **(b)** $V_{ab} = 100 \text{ V} \angle 0^{\circ},$
 - **V** $_{bc} = 100 \text{ V } \angle -120^{\circ},$ **V** $_{ca} = 100 \text{ V } \angle 120^{\circ}$
 - (d) $I_{ab} = 7,072 \text{ A } \angle 45^{\circ},$ $I_{bc} = 7,072 \text{ A } \angle -75^{\circ},$ $I_{ca} = 7,072 \text{ A } \angle 165^{\circ}$
 - (e) 12,25 A
- **31.** 2160 W, 0 VAR, 2160 VA, $F_p = 1$
- **33.** 7210,67 W, 7210,67 VAR(*C*), 10.197,42 VA, 0,707 adiantado
- **35.** 7,263 kW, 7,263 kVAR, 10,272 kVA, 0,707 atrasado
- **37.** 287,93 W, 575,86 VAR(*L*), 643,83 VA, 0,4472 atrasado
- **39.** 900 W, 1200 VAR(*L*), 1500 VA, 0,6 atrasado
- **41.** $\mathbf{Z}_{\phi} = 12,98 \ \Omega j \ 17,31 \ \Omega$
- **43.** (a) 9237,6 V (b) 80 A
 - (c) 1276,8 kW
 - (d) 0,576 atrasado
 - (e) $I_{Aa} = 80 \text{ A} \angle -54,83^{\circ}$
 - (f) $V_{an} = 7773,45 \text{ V} \angle -4,87^{\circ}$
 - (g) $\mathbf{Z}_{\phi} = 62,52 \ \Omega + j \ 74,38 \ \Omega$
 - (h) F_p (de todo o sistema) = 0,576, F_p (da carga) = 0,643 (ambos atrasados)
 - (i) 93,98%
- **45. (b)** $P_T = 5899,64 \text{ W},$ $P_{\text{medidor}} = 1966,55 \text{ W}$
- **49.** (a) 120,09 V
 - **(b)** $I_{an} = 8,492 \text{ A}, I_{bn} = 7,076 \text{ A}, I_{cn} = 42,465 \text{ A}$
 - (c) 4928,5 W, 4928,53 VAR(*L*), 6969,99 VA, 0,7071 atrasado
 - (d) $I_{an} = 8,492 \text{ A} \angle -75^{\circ}$ $I_{bn} = 7,076 \text{ A} \angle -195^{\circ}$ $I_{cn} = 42,465 \text{ A} \angle 45^{\circ}$
 - (e) $I_N = 34,712 \text{ A} \angle -42,972^\circ$

- 1. (I) a. não b. não c. sim d. não
 - (II) **a.** sim **b.** sim **c.** sim **d.** sim **e.** não
 - (III) **a.** sim **b.** sim **c.** não **d.** sim **e.** sim
 - (IV) **a.** não **b.** não **c.** sim **d.** sim **e.** sim
- 7. (a) 19,04 V (b) 4,53 A
- 9. 71,872 W
- 11. (a) $i = 2 + 2.08 \operatorname{sen}(400t 33.69) + 0.5 \operatorname{sen}(800t 53.13^{\circ})$
 - **(b)** 2,508 A
 - (c) $v_R = 24 + 24,96 \text{ sen}(400t + 33,69^\circ) + 6 \text{ sen}(800t 53,13^\circ)$
 - (d) 30,092 A

- (e) $v_L = 16,64 \sin(400t +$ $56,31^{\circ}) + 8 \operatorname{sen}(800t +$ 36,87°)
- (f) 13,055 V (g) 75,481 W
- **13.** (a) $i = 1.2 \operatorname{sen}(400t + 53.13^{\circ})$
 - **(b)** 0,848 A
 - (c) $v_R = 18 \operatorname{sen}(400t + 53.13^\circ)$
 - (d) 12,73 V
 - (e) $v_C = 18 +$ $23,98 \operatorname{sen}(400t -$ 36,87°)
 - (f) 24,73 V (g) 10,79 W
- 15. $v_o = 2.257 \times 10^{-3} \operatorname{sen}(377t + 10^{-3})$ $93,66^{\circ}$) + $1,923 \times 10^{-3}$ $sen(754t + 1,64^{\circ})$
- 17. $i_T = 30 + 30.27 \operatorname{sen}(20t + 7.59^\circ)$ $+ 0.5 \operatorname{sen}(40t - 30^{\circ})$

- 1. (a) 0,2 H
 - **(b)** $e_p = 1.6 \text{ V}, e_s = 5.12 \text{ V}$
- (c) $e_p = 15 \text{ V}, e_s = 24 \text{ V}$
- **3.** (a) 158,02 mH
 - **(b)** $e_p = 24 \text{ V}, e_s = 1.8 \text{ V}$
 - (c) $e_p = 15 \text{ V}, e_s = 24 \text{ V}$
- **5.** 1,354 H
- 7. $\mathbf{I}_1 (R_1 + j X_{L_1}) + \mathbf{I}_2 (j X_m) = \mathbf{E}_1$ $\mathbf{I}_{1}(j X_{m}) + \mathbf{I}_{2}(j X_{L_{2}} + R_{L}) = 0$
- **9.** (a) 3,125 V (b) 391,02 μ Wb
- 11. 56,31 Hz
- **13.** 400 Ω
- **15.** 12,000t
- 17. (a) 20Ω
 - (b) 40Ω

- (d) $0.351 \text{ A} \angle -6.71^{\circ}$
- (e) $28,1 \text{ V} \angle -6,71^{\circ}$
- (g) 30 V
- **19.** (a) $\mathbf{Z}_p = 280,71 \ \Omega \ \angle -85,91^{\circ}$
 - **(b)** $I_p = 0.427 \text{ A} \angle 85.91^\circ$
 - (c) $V_{R_e} = 8,54 \text{ V } \angle 85,91^{\circ}$ $V_{X_{\nu}} = 17,08 \text{ V} \angle 175,91^{\circ}$ $V_{X_C} = 136,64 \text{ V} \angle -4,09^{\circ}$
- **21.** $\mathbf{Z}_i = 7980 \ \Omega \ \angle 89,98^{\circ}$
- **23.** (a) 20 (b) 83,33 A (c) 4,167 A
 - (d) $a = \frac{1}{20}$, $I_s = 4,167$ A, $I_p = 83,33 \text{ A}$
- **25.** (a) $25 \text{ V} \angle 0^{\circ}, 5 \text{ A} \angle 0^{\circ}$
 - **(b)** 80 Ω \angle 0° **(c)** 20 Ω \angle 0°
- 27. (a) $E_2 = 40 \text{ V} \angle 60^\circ$, $I_2 = 3.33 \text{ A} \angle 60^{\circ},$ $E_3 = 30 \text{ V} \angle 60^{\circ},$ $I_3 = 3 \text{ A} \angle 60^{\circ}$
- **(b)** $R_1 = 64,52 \Omega$ **29.** $[\mathbf{Z}_1 + \mathbf{X}_{L_1}] \mathbf{I}_1 - \mathbf{Z}_{M_{12}} \mathbf{I}_2 + \mathbf{Z}_{M_{13}} \mathbf{I}_3 = \mathbf{E}_1,$ $\mathbf{Z}_{M_{12}}\mathbf{I}_1 - [\mathbf{Z}_2 + \mathbf{Z}_3 + \mathbf{X}_{L_2}]\mathbf{I}_2 +$ $\mathbf{Z}_2\mathbf{I}_3=0,$ $\mathbf{Z}_{M_{13}}\mathbf{I}_{1} - \mathbf{Z}_{2}\mathbf{I}_{2} + [\mathbf{Z}_{2} + \mathbf{Z}_{4} +$ $\mathbf{X}_{L_3}]\mathbf{I}_3=0$

- 1. $Z_i = 986.84 \Omega$
- 3. (a) $I_{i_1} = 10 \ \mu \text{A}$
 - **(b)** $Z_{i_2} = 4.5 \text{ k}\Omega$
 - (c) $E_{i_3} = 6.9 \text{ V}$
- **5.** $Z_o = 44,59 \text{ k}\Omega$
- 7. $Z_o = 10 \text{ k}\Omega$ **9.** (a) $A_v = -392,98$
 - **(b)** $\mathbf{A}_{v_T} = -320,21$

- **11.** (a) $A_{v_{NL}} = -2398,8$ (b) $E_i = 50 \text{ mV}$

 - (c) $\mathbf{Z}_i = 1 \text{ k}\Omega$
- **13.** (a) $A_G = 6,067 \times 10^4$
 - **(b)** $\mathbf{A}_{G_T} = 4.94 \times 10^4$
- **15.** (a) $A_{v_T} = 1500$
 - **(b)** $\mathbf{A}_{i_T}^{-1} = 187,5$
 - (c) $\mathbf{A}_{i_1} = 15$, $\mathbf{A}_{i_2} = 12.5$
 - (d) $\mathbf{A}_{i_T} = 187,5$
- 17. (a) $\mathbf{z}_{11} = (\mathbf{Z}_1 \mathbf{Z}_2 + \mathbf{Z}_1 \mathbf{Z}_3)/$ $(\mathbf{Z}_1 + \mathbf{Z}_2 + \mathbf{Z}_3),$ $\mathbf{z}_{12} = \mathbf{Z}_1 \mathbf{Z}_3 / (\mathbf{Z}_1 + \mathbf{Z}_2 + \mathbf{Z}_3),$ $\mathbf{z}_{21} = \mathbf{z}_{12},$ $\mathbf{z}_{22} = (\mathbf{Z}_1 \mathbf{Z}_3 + \mathbf{Z}_2 \mathbf{Z}_3) /$
- $(\mathbf{Z}_1 + \mathbf{Z}_2 + \mathbf{Z}_3)$ 19. (a) $y_{11} = (Y_1Y_2 + Y_1Y_3)/$ $(\mathbf{Y}_1 + \mathbf{Y}_2 + \mathbf{Y}_3),$ $\mathbf{y}_{12} = -\mathbf{Y}_1 \mathbf{Y}_2 / (\mathbf{Y}_1 + \mathbf{Y}_2 + \mathbf{Y}_3),$ $y_{21} = y_{12},$ $\mathbf{y}_{22} = (\mathbf{Y}_1 \mathbf{Y}_2 + \mathbf{Y}_2 \mathbf{Y}_3) /$
- $(\mathbf{Y}_1 + \mathbf{Y}_2 + \mathbf{Y}_3)$ **21.** $\mathbf{h}_{11} = \mathbf{Z}_1 \mathbf{Z}_2 / (\mathbf{Z}_1 + \mathbf{Z}_2),$ $\mathbf{h}_{21} = -\mathbf{Z}_1/(\mathbf{Z}_1 + \mathbf{Z}_2),$ $\mathbf{h}_{12} = \mathbf{Z}_1/(\mathbf{Z}_1 + \mathbf{Z}_2),$ $\mathbf{h}_{22} = (\mathbf{Z}_1 + \mathbf{Z}_2 + \mathbf{Z}_3)/$ $(\mathbf{Z}_1\mathbf{Z}_3 + \mathbf{Z}_2\mathbf{Z}_3)$
- 23. $\mathbf{h}_{11} = (\mathbf{Y}_1 + \mathbf{Y}_2 + \mathbf{Y}_3)/$ $(\mathbf{Y}_1\mathbf{Y}_2+\mathbf{Y}_1\mathbf{Y}_3),$ $\mathbf{h}_{21} = -\mathbf{Y}_2/(\mathbf{Y}_2 + \mathbf{Y}_3),$ $\mathbf{h}_{12} = \mathbf{Y}_2/(\mathbf{Y}_2 + \mathbf{Y}_3),$ $\mathbf{h}_{22} = \mathbf{Y}_2 \mathbf{Y}_3 / (\mathbf{Y}_2 + \mathbf{Y}_3)$
- **25.** (a) 47,62 (b) -99
- **27.** $\mathbf{Z}_i = 9.219,5 \ \Omega \angle -139,4^{\circ},$ $\mathbf{Z}_{o} = 29,07 \text{ k}\Omega \ \angle -86,05^{\circ}$
- **29.** $\mathbf{h}_{11} = 2.5 \text{ k}\Omega, \, \mathbf{h}_{12} = 0.5,$ $\mathbf{h}_{21} = -0.75, \, \mathbf{h}_{22} = 0.25 \, \text{mS}$