Задача 1. В два сосуда разлили (не поровну) 1 л воды. Из 1-го сосуда перелили половину имеющейся в нём воды во 2-ой, затем из 2-го перелили половину оказавшейся в нём воды в 1-ый, снова из 1-го перелили половину во 2-ой, и т. д. Сколько воды (с точностью до 1 мл) будет в 1-ом сосуде после 50 переливаний?

Задача 2. На графике функции $y=x^2$ рассмотрим точки A_n и B_n с абциссами -1/n и 1/n соответственно. Пусть M_n — центр окружности, проведенной через точки A_n , B_n и начало координат. Докажите, что последовательность точек (M_n) имеет предел и найдите его.

Задача 3. Найдите пределы последовательностей:

a)
$$\sqrt[n]{2^n + 3^n}$$
:

6)
$$\sqrt{n^2 + n} - n$$
;

B)
$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \ldots + \frac{n}{2^n};$$

$$\mathbf{r}$$
) $\frac{f_n}{f_{n+1}}$, где f_n-n -е число Фибоначчи.

Задача 4. При каких натуральных k выполнено равенство $\lim_{n\to\infty}\frac{n^k-(n-1)^k}{n^{2014}}=2015$?

Задача 5. Дано m последовательностей, сумма которых стремится к $m\alpha$, и сумма квадратов которых стремится к $m\alpha^2$. Докажите, что каждая из этих последовательность стремится к α .

Задача 6. Последовательность (x_n) строится по следующему закону: первый член выбирается произвольно, а каждый следующий выражается через предыдущий по формуле $x_{n+1} = ax_n + 1$. При каких a последовательность (x_n) обязательно будет иметь предел?

Задача 7. Известно, что
$$\lim_{n\to\infty}x_n=a$$
. Найдите $\lim_{n\to\infty}\frac{x_1+\ldots+x_n}{n}$.

Задача 8. Издавна жители островов Чунга и Чанга раз в год меняются драгоценностями. Одновременно жители Чунги привозят половину своих драгоценностей на Чангу, а жители Чанги треть своих драгоценностей на Чунгу. Какая часть драгоценностей находится на каждом острове? (Общий набор драгоценностей постоянен.)

Задача 9. Петя шел из дома в школу. На полпути он решил, что плохо себя чувствует, и повернул обратно. На полпути к дому ему стало лучше, и он повернул в школу. На полпути к школе он решил, что всё-так нездоров, и повернул к дому. Но на полпути к дому снова повернул к школе, и т. д. Куда придёт Петя, если будет так идти?

Задача 10. Петя шел из дома в школу. На полпути он решил, что лучше пойти в кино, и свернул к кинотеатру. На полпути к кинотеатру он захотел покататься на коньках и пошел на каток. На полпути к катку он подумал, что надо всё-таки учиться, и повернул к школе. Но на полпути к ней снова свернул к кинотеатру, и т. д. Куда придёт Петя, если будет так идти?

Задача 11. По кругу сидят n ребят, у каждого по тарелке каши. Каждую минуту одновременно каждый из ребят берет себе по половине каши своих соседей. Сначала в тарелках было $1, 2, \ldots, n$ поварешек каши. Сколько каши будет в тарелках спустя достаточно долгое время, если

- a) n = 3;
- **6)** n=4;
- \mathbf{b})* $n \in \mathbb{N}$?
- **г)*** А если ребята сидят в вершинах графа и ежеминутно каждый делит свою кашу поровну между соседями?

1	2	3 a	3 6	3 B	3 Г	4	5	6	7	8	9	10	11 a	11 б	11 B	11 г