Contents

Pı	Preface				
1	Intr	oduction	1		
2	Alge	ebraic Preliminaries	2		
	2.1	Groups	2		
		2.1.1 Criterion for Subgroups	3		
		2.1.2 Cyclic Groups	4		
		2.1.3 Cosets	4		
		2.1.4 Conjugate Elements and Classes	4		
	2.2	The geometry of the three-dimensional rotation group. The Rodrigues-Hamilton theorem	5		
	2.3	The n-dimensional vector space $V(n)$	8		
	2.4	How to multiply vectors? Heuristic considerations	11		
	2.5	A Short Survey of Linear Groups	12		
	2.6	The unimodular group $\mathcal{SL}(n,R)$ and the invariance of volume	14		
	2.7	On "alias" and "alibi". The Object Group	16		
3	The	Lorentz Group and the Pauli Algebra	18		
	3.1	Introduction	18		
	3.2	The corpuscular aspects of light	18		
	3.3	On circular and hyperbolic rotations	21		
	3.4	The Pauli Algebra	28		
		3.4.1 Introduction	28		
		3.4.2 Basic Definitions and Procedures	29		
		3.4.3 The restricted Lorentz group	35		
		3.4.4 Similarity classes and canonical forms of active transformations	40		

4	Paul	li Algebra and Electrodynamics	47
	4.1	Lorentz transformation and Lorentz force	47
	4.2	The Free Maxwell Field	52
5	Spin	or Calculus	55
	5.1	From triads and Euler angles to spinors. A heuristic introduction	55
	5.2	Rigid Body Rotation	67
	5.3	Polarized light	72
	5.4	Relativistic triads and spinors. A preliminary discussion	81
	5.5	Review of SU(2) and preview of quantization	83
A	Sup	plementary material on the Pauli algebra	88
	A.1	Useful formulas	88
	A.2	Lorentz invariance and bilateral multiplication	89
	A.3	Typical Examples	90
	A.4	On the use of Involutions	91
	A.5	On Parameterization and Integration	91
В	Prob	olems	93
	R 1	Assignments 1–7	93

List of Figures

2.1	Composition of the Rotations of the Sphere	7
2.2	Translational congruence and equal area	15
3.1	Area in (x_0, x_3) -plane	24
5.1	Euler Angles	66
5.2	Progressive and Retrograde Precession	71
5.3	Representation of Polarization in the Poincaré Sphere	86
5.4	Representation of Polarization in the Poincaré Sphere (contd)	87
B.1	Mirror Planes	93
B.2	Problem 8 coordinate frame and angles	95

List of Tables

3.1	Summary of the rotational transformations. (The signs of the angles correspond to	
	the passive interpretation.)	23
3.2	Canonical Forms for the Simlarity classes of A_2	46
B.1	Table for Problem 8	94