2.5 Proof by contradiction

2.5.1 Review practice

Question 1

For the statement, "if n%3=1, then $n\%9\neq 5$ ", where % stands for "modulus"...

- a. What is the hypothesis p?
- b. What is the conclusion q?
- c. Using $\neg(p \to q) \equiv p \land \neg q$, write out the negation of this implication in English.

This negation can be used to build the counter-example, which we will use for the proof by contradiction.

There is extra space on the page

2.5.2 Proof by contradiction

Prove by contradiction: If n^2 is even, then n is even

- Step 1: Identify the hypothesis and conclusion: Here, our hypothesis is " n^2 is even", and our conclusion is "n is even".
- Step 2: Identify the negation: The negation of an implication is **not** an implication. A counter-example of this would be if we have $p \wedge \neg q$, or " n^2 is even and n is odd".
- Step 3: Build a counter-example: Our counter-example is the scenario where the hypothesis is true and the conclusion is false... or in other words, the negation. Counter-example: " n^2 is even and n is odd"
- Step 4: Write the hypothesis & conclusion symbolically: (For our counter-example implication) $n^2 = 2k$ (some even integer) n = 2j + 1 (some odd integer)
- **Step 5: Write equation:** Using the statement, we are going to turn this into an equation. n is odd, and n^2 is even, so if we square the odd n to get the even n^2 , we would have... to get the even n^2 , we would have... $(2j+1)^2 = 2k$

Step 6: Simplify until we have a contradiction:

$$(2j+1)^2 = 2k$$

$$\Rightarrow 4j^2 + 4j + 1 = 2k$$

$$\Rightarrow 1 = 2k - 4j^2 - 4j$$

$$\Rightarrow \frac{1}{2} = k - 2j^2 - 2j$$

Since k and j are both integers, through the closure property of integers $(+, -, \text{ and } \times \text{ results in an integer})$, we can show that $k - 2j^2 - 2j$ results in something that is *not an integer* – this is a contradiction. It shows that our counter-example is **false**, and no counter-example can exist.

Question 2

Prove by contradiction: If n^2 is odd, then n is odd.

Step 1: Identify the hypothesis and conclusion:

Hypothesis p:

Conclusion q:

Step 2: Identify the negation (counter-example):

p:	AND	$\neg a$:	

Step 3: Write the hypothesis & conclusion-negation symbolically:

(Make sure you use different variables for n^2 and n.)

$$(p)$$
 $n^2 =$

$$(\neg q)$$
 $n =$

Step 5: Write equation: Set the equation for n-squared equal to the equation for n^2 .

Step 6: Simplify until we have a contradiction:

Result:

Question 3

Use proof by contradiction to explain why it is impossible for a number n to be of the form 5k + 3 and of 5j + 1 for integers k and j.

Hint

n = 5k + 3 is one statement, and n = 5j + 1 is the other statement, so 5k + 3 = 5j + 1 is your starting point.

This isn't in an implication form, so we begin at Step 5...

Step 5: Write equation: 5k + 3 = 5j + 1

Step 6: Simplify until we have a contradiction:

Result: