Отчет по лабораторным работам 1-4 по дисциплине: «Методы вычислений» Вариант 8

Поиск минимума функции одной переменной

Студент	Кочуркин И.А.
Группа	ИУ7-104
Проточереточ	Two you C.F.

1. Описание задачи

Функция:
$$y = \arcsin\left(\frac{35x^2-30x+9}{20}\right) + \cos\left(\frac{10x^3+185x^2+340x+103}{50x^2+100x+30}\right) + 0.5$$
 Отрезок поиска: $x \in [0,1]$

1.1. Лабораторная работа №1

Метод поразрядного поиска.

N	заданная точность	количество вычислений функции	x^{\star}	$f(x^{\star})$
1	1e-2	20	4.140625e-001	-3.224396e-001
2	1e-4	35	4.177246e-001	-3.224625e-001
3	1e-6	51	4.176331e-001	-3.224625e-001

1.2. Лабораторная работа №2

Метод золотого сечения.

N	заданная точность	количество вычислений функции	x^{\star}	$f(x^{\star})$
1	1e-2	11	4.179607e-001	-3.224624e-001
2	1e-4	20	4.176145e-001	-3.224625e-001
3	1e-6	30	4.176343e-001	-3.224625e-001

1.3. Лабораторная работа №3

Метод квадратичной интерполяции в сочетании с методом золотого сечения.

N	заданная точность	количество вычислений функции	x^{\star}	$f(x^{\star})$
1	1e-2	14	4.108223e-001	-3.223791e-001
2	1e-4	18	4.176343e-001	-3.224625e-001
3	1e-6	18	4.176343e-001	-3.224625e-001

1.4. Лабораторная работа №4

Модифицированный метод Ньютона с конечно-разностной апроксимацией производных.

N	заданная точность	количество вычислений функции	x^{\star}	$f(x^{\star})$
1	1e-2	12	4.126301e-001	-3.224175e-001
2	1e-4	12	4.126301e-001	-3.224175e-001
3	1e-6	15	4.126345e-001	-3.224176e-001

1.5. Сводная таблица для решения задачи при точности 1е-6

Метод	количество вычислений функции	x^{\star}	$f(x^{\star})$
1	51	4.176331e-001	-3.224625e-001
2	30	4.176343e-001	-3.224625e-001
3	18	4.176343e-001	-3.224625e-001
4	15	4.126345e-001	-3.224176e-001