Virtualization

Aula Teórica nº7

2020/2021

Definition

Virtualization is the technology used to run multiple operating systems (OSs) or applications on top of a single physical infrastructure by providing each of them an abstract view of the network

History

- **1964** IBM CP-40
- **1972** IBM VM/370
- **1988** SoftPC (x86 emulator)
- 1997 VirtualPC for Mac
- 1999 VMWare Workstation
- 2003 Xen
- 2005 Intel VT-x, AMD-V
- 2007 VirtualBox, KVM
- 2008 Microsoft Hyper-V
- 2014 Linux Containers

Virtualization Benefits

- Improve server utilization
- Flexible growth
- Reduced space requirement
- Quick provisioning
- Lower operational overhead and cost
- Higher availability

Areas of Virtualization

- Server virtualization
- Network virtualization
- Network functions virtualization

Server Virtualization

Network Virtualization

- VLANs
- L3VPNs/L2VPNs
- VXLANs

Network Functions Virtualization

Virtual Machines Components

- Host Operating System
- Virtual Machine Manager (VMM or hypervisor)
- Guest Operating System

Type-1 Hypervisor

Also called a bare-metal implementation

VMWare ESXi, Xen, Microsoft Hyper-V, KVM

Type-2 Hypervisor

• Qemu, VMWare Workstation/Fusion, Oracle VirtualBox

Resource Allocation for VMs

• CPU, memory, Disk, I/O

Disk Thick versus Thin Provisioning

Network Communication

- Create virtual NIC (vNIC)
 instances and present those as
 NICs to the guest OS
- A vSwitch is used to achieve the vNIC to NIC connectivity (managed using brctl command in Linux)
- For a separate set of vNIC to NIC mappings, an additional virtual bridge or vSwitch can be defined

Network Communication

- In a move of a VM from on host to another (load balancing, redundancy, physical proximity) the new virtual port must replicate the config of the original (VLAN, QoS, etc.)
- To ensure consistency, a multi-server environment may require a centralized controller to manage the several switches policies and configs
- The led to the development of Open vSwitch (OVS) in Linux
- OVS supports:
 - OpenFlow for centralized management by a software-defined networking (SDN) controller
 - Optimized switching performance

Open vSwitch (OVS)

Containers vs Processes

Containers vs. Virtual Machines

What typically goes in Containers?

Usually 1 application per container - Microservices

Changing landscape From Monolith to Microservices

Some perspective...

Virtualization vs Containerization

Virtual Machines

Containers

Virtual Machines vs Docker Engine

Virtual Machines: Each virtualized application includes not only the application – which may be only 10s of MB – and the necessary binaries and libraries, but also an entire guest OS – which may weigh 10s of GB

Docker Engine: The Docker Engine container comprises just the application and its dependencies. It runs as an isolated process in userspace on the host OS, sharing the kernet with other containers. Thus, it enjoys the resource isolation and allocation benefits of VMs but is much more portable and efficient.

Docker

Traditional vs Cloud Native

BRKCLD-2148 25

Container are great, but they need orchestration

Container runtimes are not multi-host aware

BRKCLD-2148 26

Introducing...Kubernetes

BRKCLD-2148 27