Mathematical and Logical Foundations of Computer Science — Summary of Lecture 2 —

Achim Jung School of Computer Science University of Birmingham, UK

Autumn 2020

Integers — the highlights

- We only need to assume that for every integer a there is another integer denoted by -a for which a+(-a)=0 holds.
- From this we can prove (additive) cancellation.
- From this we can prove annihilation.
- From this we can prove double negation: -(-a) = a.
- From this we can prove minus times minus equals plus: $(-a) \times (-b) = a \times b$.

The situation is common in mathematics and computer science and is called a ring. We say, "the integers form a ring".

Multiplicative cancellation also holds for the integers but in other rings it may fail.

Computer integers

- Java's int variables are based on 32-bit registers.
- All calculations are done modulo 2^{32} .
- The bit patterns from $100 \dots 000$ to $111 \dots 111$ are interpreted as negative numbers.

General modulo arithmetic

- Computing "modulo m" can be done for any m > 1. We get the ring \mathbb{Z}_m which has exactly m different elements.
- Calculations in \mathbb{Z}_m can be thought of in two different ways:
 - 1. We can take the numbers from 0 to m-1 as the standard members of \mathbb{Z}_m , perform calculations with them as we would in \mathbb{Z} , then reduce the result to an answer between 0 and m-1 at the end. Example in \mathbb{Z}_7

$$3 \times 5 = 15$$
 in \mathbb{Z} $\equiv 1$ modulo 7

So in \mathbb{Z}_7 we have $3 \times 5 = 1$.

- 2. Alternatively, we can do all calculations in \mathbb{Z} and but use \equiv for comparisons, instead of =.
- Computer integers implement calculations in $\mathbb{Z}_{2^{32}}$ and adopt the first approach internally, but when reporting the result back to the user, the numbers between 2^{31} and $2^{32}-1$ are converted to negative numbers by subtracting 2^{32} .