HOMEWORK 2

ALGEBRAIC GEOMETRY 2021

- (1) Let $\phi: X \to Y$ be a regular map between quasi-affine varieties. Prove that ϕ is continuous in the Zariski topology.
- (2) Let $U \subset \mathbb{A}^n$ be an open set. Show that the restriction map $k[x_1, \ldots, x_n] \to k[U]$ is injective. Using this, show that we have an injective map

$$k[U] \to k(x_1, \ldots, x_n).$$

- (3) Let $f \in k[x_1, \ldots, x_n]$ be non-zero, and let U_f be the complement in \mathbb{A}^n of V(f). Identify the ring k[U] as a sub-ring of the fraction field $k(x_1, \ldots, x_n)$.
- (4) Let $U = \mathbb{A}^2 \setminus \{(0,0)\}$. Show that the restriction map $k[x,y] \to k[U]$ is an isomorphism. Hint: Observe that U is the union $U_x \cup U_y$.
- (5) Let $S \subset \mathbb{P}^3$ be the Fermat cubic

$$S = V(X^3 + Y^3 + Z^3 + W^3).$$

Let $L \subset S$ be the line defined by

$$L = V(X + Y, Z + W).$$

Consider the regular map

$$\phi \colon S \setminus L \to \mathbb{P}^1$$

defined by

$$[X:Y:Z:W] \mapsto [X+Y:Z+W].$$

Prove that ϕ extends to a regular map

$$\phi \colon S \to \mathbb{P}^1$$
.

Not to be turned in, but highly recommended.

What are the fibers of the map $\phi \colon S \to \mathbb{P}^1$? Can you picture this over the real numbers?