

Forwarding

- Advance packets through the network
- Includes a routing decision

Routing - 5 © see page 2

E,A,B

Proactive Routing

- Independent of actual traffic
- Determine reachable destinations
- Compute best route
- Commonly referred to as "routing"

Routing - 6 © see page 2

On-the-fly Routing

- Realized when handling each packet
- Based on local information
 - Routing/forwarding table
 - Output of proactive routing or signaling
 - A.k.a. route

Routing - 7 © see page 2

On-the-fly Routing Algorithms

- Routing by Network Address
- Label Swapping
- Source Routing

Each protocol architecture adopts one or more

Routing - 8 © see page 2

Forwarding Phases

- Routing (on-the-fly)
 - Output port selection
 - Possibly next-hop selection
- Switching: transfer to output port
- Transmission

Routing - 9 © see page 2

A Proactive Routing Algorithm Classification

主动路由算法分类

- → Non-adaptive algorithms (static)
- Adaptive algorithms (dynamic)

Routing - 10 © see page 2

Non-adaptive Algorithms

不自适应算法

- Fixed Directory routing
 - → AKA static routing
 - Manual configuration
- (Selective) flooding and derivates

AKA 认证和密钥协商协议

手动配置

Routing - 12 © see page 2

Routing - 13 © see page 2

优点 和缺点

Pros and Cons

Administrator has full control

管理员完全控制

- Error prone
- It does not adapt to topology changes

拓扑结构

Routing - 15 © see page 2

Static vs. Dynamic

Routing - 16 © see page 2

适应算法

Adaptive Algorithms

中心化路由

- Centralized Routing
- → Isolated Routing 孤岛路曲
- Distributed Routing
 - Distance Vector
 - Link State

分布路由

距离向量

连接状态

Routing - 18 © see page 2

Centralized Routing

- → Routing Control Center (RCC)
- → Calculates and distributes routing tables 计算和分发路由表
- Needs information from all nodes

需要所有结点的信息

Routing - 19 © see page 2

Centralized Routing

Optimizes performance

优化了性能

Simplifies troubleshooting

简化了排错

Significant network load in proximity of RCC

RCC附近负载显著

Routing - 20 © see page 2

Centralized Routing

单点故障

- RCC is single point of failure
- → RCC is bottleneck ^{有概}
- → Not suitable for highly dynamic networks 大型动态网络

Routing - 21

Isolated Routing

节点独自决策

- Each node decides independently
- → No exchange of information

不交换数据

E.g., Backward Learning

后向学习

→ IEEE 802.1D bridges

Routing - 22

Distributed Routing

Combines advantages of isolated and centralized routing

结合孤立的和中心化的路由的优点

- → Routers co-operate 路由器间互相合作,相互交换了解数据
 in exchanging connectivity information
- Each router decides independently, but coherently

每个路由独自决定 , 但是交换信息 , 连贯

Routing - 23 © see page 2

Routing - 25 © see page 2

Distance Vector

可到达的地方

- → List of reachable destinations (all!)
- Distance from announcing router
- Generated by each router 由無人路中
- Received from neighbors

向量从邻居接收

Routing - 26 © see page 2

Sample Scenario

Routing information stored by A

Routing - 27 © see page 2

Distance Vector Merging and Generation

距离向量汇合以及生产

Received from line A1

Received from line A2

Routing - 28 © see page 2

Topology Change

拓扑结构改变

Routing - 29 © see page 2

Example: Cold Start

冷开机

RT (A) A,loc,0	RT (B) B,loc,0	<u>RT (C)</u> C,loc,0	RT (D) D,loc,0	RT (E) E,loc,0
	A	sends its	s DV	
RT (A) A,loc,0	RT (B) A,B1, 1 B,loc,0	RT (C) C,loc,0	RT (D) A,D1, 1 D,loc,0	RT (E) E,loc,0
	B ar	nd D send t	their DVs	

RT (A)	<u>RT (B)</u>	<u>RT (C)</u>	<u>RT (D)</u>	<u>RT (E)</u>
A,loc,0	A,B1, 1	A,C1 ,2	A,D1, 1	A,E2, 2
B,A1, 1	B,loc,0	B,C1 ,1	B,D2, 1	B,E2, 1
D,A2, 1	D,B2, 1	C,loc,0	D,loc,0	D,E1, 1
	A	ll send the	eir DVs	E,loc,0

A A1 B1 B B4 C1 C1 D1 E2 C2 D3 E1 E E3

<u>RT (A)</u>	<u>RT (B)</u>	<u>RT (C)</u>	<u>RT (D)</u>	<u>RT (E)</u>
A,loc,0	A,B1, 1	A,C1 ,2	A,D1, 1	A,E2, 2
B,A1, 1	B,loc,0	B,C1 ,1	B,D2, 1	B,E2, 1
C,A1, 2	C,B4, 1	C,loc,0	C,D2, 2	C,E3, 1
D,A2, 1	D,B2, 1	D,C2, 2	D,loc,0	D,E1, 1
E,A2, 2	E,B3, 1	E,C2, 1	E,D3, 1	E,loc,0

Routing - 30 © see page 2

Issues

- Several problems
 - → Black Hole

黑洞,意思是会陷入死循环

- Count to infinity
- 计算停不下来
- → Bouncing Effect (loop)

Instability

跳跃效果不稳定

Routing - 31

Count to Infinity

IS B:

B sends DV

IS C:

Loc (C)	DV (B)	RT (C)
C, 0	A, 1	A,C1 ,2
	в, 0	B,C1 ,1
	C, 1	C, loc, 0

C sends DV

Loc (B) DV (C) RT (B) B, 0 A, 4 B, 1 B, loc, 0 C, 0 C, B2, 1

Count to Infinity!

Bouncing Effect

Routing - 33 © see page 2

Issues

- Partial solutions
 - → Split Horizon 水平分裂
 - Path Hold Down
 - Route Poisoning

路由毒化

Split Horizon

"If C reaches destination A through B, it is useless for B trying to reach A through C"

如果c到达目的地A,通过B,那么B尝试通过C到达A是不可行的

Routing - 35 © see page 2

Split Horizon

防止两节点间的循环

- Prevents loops between two nodes
- → Speeds up convergence 加速了收敛
- "Personalized" DVs to neighbors
 - DV of C to B does not contain destinations reached through B
- In actual implementations, route has to expire

在实际的应用中 , 路由必须有期限

Routing - 36 © see page 2

Split Horizon on Mesh

IS B:

B sends its DV

IS C:

IS C:

Loc	(C)	DV	(B)	DV	(D)	<u>RT (</u>	C)
С,	0	A,	1	A,	2	A,C1,	2
		В,	0	В,	1	B,C1,	1
		D,	1	D,	0	C,loc	, 0
183	HI					D,C2,	1

IS D:

Loc	(D)	DV	(B)	DV	(C)	<u>RT (I</u>	<u>)</u>
D,	0	A,	1	Α,	2	A,D1,	2
		В,	0	В,	1	B,D1,	1
		С,	1	C,	0	C,D2,	1
						D,loc	, 0

IS D:

Routing - 37

Split Horizon on Mesh

IS C: (from the previous slide) Loc (C) DV (B) DV (D) C, 0 B, 0 A, 2 D, 1 B, 1 B, C1, I D, 0 C, loc, 0 D, C2, 1

C and D send their DVs

IS B:

IS C:

IS D:

IS D:

Path Hold Down

If link L fails, all destinations reachable through link L are considered unreachable for a certain period of time I.e., no routes to them are computed

© see page 2

Path Hold Down

- → High convergence time for the examined node (even with an alternative path)
- The router that noted the fault may not participate to any loop at least until the timeout of Hold Down timer

注意到错误的路由器可能不会参与任何循环,至少直到暂停计时器超时

React on Cost Increase

Routing loops happen when routes have increasing costs

- → Cost-increasing routes in DVs are not used
 - Two subsequent advertisements show a cost increase
- → Possibly with Path Hold Down 可能会和Path Hold Down 一起使用
- → Might block routes with legitimate cost increase 可能会以合理的成本封锁线路

Route Poisoning

An invalid route is advertised at infinite distance/cost 天效的路线以无限距离/无限代价进行广告

- Instead of just omitting it
 - → It would have to expire
 - → Faster convergence time
- → E.g., when link fails or cost increases
- It can substitute or complement Path Hold Down

Routing - 42 © see page 2

Split Horizon with Poisonous Reverse

- → More aggressive
- → No theoretical advantages
- Practically, no need to wait for route expiration

Routing - 43 © see page 2

The Bottom Line

Routers do not know the network topology

Based on distance vectors
B cannot distinguish

Routing - 44 © see page 2

Advantages

- → Simple to implement
- Protocols simple to deploy
 - Very little configuration

Shortcomings

- Exponential worst case complexity and convergence time
 - \rightarrow O(n²) to O(n³) $\frac{1}{2}$

Shortcomings

- → Complex troubleshooting **SAPON DEP**
- → Large routing traffic (and storage)

Not suitable for large complex networks

Routing - 48 © see page 2

Path Vector

Eliminates routing loops

IS A:

Routing - 49 © see page 2

Routing - 51 © see page 2

Basic Principles

- Information on the state of each link
 - → Link state
- A local map
- Sent by each node to all other nodes

通过有选择的泛洪的万法友给所有节点

Selective flooding

Routing - 52

Basic Principles

- Nodes build a network map
- 每个节点都会有网络拓扑<mark>图</mark>

- → The same on all nodes
- → Each node computes routes on the map 每个市点根据这个给图计算路由
 - Dijkstra (shortest path first) algorithm

最短路径优先

Link State Database

Stored by each router

<u>LS (A) LS (B)</u>	<u>LS (C)</u>	<u>LS (D)</u>	<u>LS (E)</u>
B, 1 A, 1	в, 1	A, 1	B, 1
D, 1 C, 1	E, 1	B, 1	C, 1
D, 1		E, 1	D, 1
/ E/ 1			

Routing - 54 © see page 2

Dijkstra Algorithm

- Low complexity
 - → L log (N)
 - L: number of links
 - →N: number of nodes
- Shortest Path First

最短路径优先

Routing - 55 © see page 2

Shortest Path First

- The next node "nearest" to the root is identified 下一个离根最近的节点会被标识
- Its path is inserted into the routing table

他的路径会被插入到路由表中

Routing - 56 © see page 2

Example

PATH

Routing - 57 © see page 2

Rapid Convergence

快速收敛

Link state

- LSs spread quickly
 - → No intermediate processing

Limited Routing Traffic and Storage Storage

- → Link states are small
- Fast and efficient neighbor greeting

快速且高效的邻居问候

其他优点

Other Advantages

- It rarely generates loops
- Simple to understand and troubleshoot
 - All nodes have identical databases

Routing - 60 © see page 2

Shortcoming

很高的部署复杂度

- High implementation complexity
 - → Selective flooding **MARKET**
 - → First implementation took several years 第一次部署需要花几年时间
- Protocols with complex configuration

协议要求复杂的配置

Routing - 61 © see page 2

Link State Generation (BB)

- In principle: when there is a topology change 当和外结构改变的时候
- Actual protocols: LS are generated periodically LS是周期性生成的
 - Increased reliability

增加了可靠性

Routing - 62 © see page 2