PHY-112

Principles of Physics-II

PRINCIPLES OF PHYSICS-II
AKIFUL ISLAM (AZW)

Spring-24 | Class-16

COMBINATIONS OF RESISTORS: SERIES

The voltage across each resistor is not the same. The total voltage across the series combination equals the sum of the voltages across each resistor.

$$R_{\text{eq}} = R_1 + R_2 + R_3 = \sum_{i=1}^{n} R_i$$

COMBINATIONS OF RESISTORS: PARALLEL

The voltage across each resistor is the same. The total current through the parallel combination is the sum of the currents through each individual resistor.

$$\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \sum_{i=1}^{n} \frac{1}{R_i}$$

Kirchhoff's Two Rules for Circuits

KIRCHHOFF'S 1ST RULE: CURRENT RULE OR JUNCTION RULE

Because **electric charge is conserved**, the total current into the junction must equal the total current leaving the junction. That is,

$$\sum I_{\mathsf{in}} = \sum I_{\mathsf{out}}$$

KIRCHHOFF'S 2ND RULE: VOLTAGE RULE OR LOOP RULE

Because **energy is conserved**, a charge that moves around a closed path has $\Delta U_{\rm elec}=0$. In a circuit, the algebraic sum of all potential differences sum to zero.

$$\Delta V_{\mathsf{loop}} = \sum_{i} (\Delta V)_i = 0$$

How to use Kirchhoff's 2ND Rule: Convention

- Draw a circuit diagram: Label all known and unknown quantities.
- Assign a direction to the current: Draw and label a current arrow *I* to show your choice.
- Travel around the loop: Choose any direction.
 Resistance Rule: For a move through resistance in the direction of the current, the change in potential is -iR; in the opposite direction, it is +iR.
 EMF Rule: For a move through an ideal EMF device in the direction of the EMF arrow (- to +), the change in

potential is $+\mathcal{E}$; in the opposite direction, it is $-\mathcal{E}$.

■ Apply the loop law: $\sum (\Delta V_i) = 0$.

TESTING CONCEPTS (1): SINGLE LOOP CIRCUITS

Q: Find the current and potential differences across each resistor.

TESTING CONCEPTS (2): SINGLE LOOP CIRCUITS

Q: What is ΔV across the unspecified circuit element? Does the potential increase or decrease when traveling through this element in the direction assigned to I?

Testing Concepts (3)

Q: Rank in order, from largest to smallest, the currents I_A to I_D through the four resistors.

TESTING CONCEPTS (4): MULTI LOOP CIRCUITS

Q: Find the current through and the potential difference across each of the four resistors in the circuit.

ENERGY AND POWER IN ELECTRIC CIRCUITS

Energy Dissipation in Resistors:

$$E_{\text{chemical}} \to U \to K \to E_{\text{thermal}}$$

The battery's chemical energy is transferred to the thermal energy of the resistors, raising their temperature.

Energy exchanged per unit time is **Power**.

Provide Energy

Power delivered by the EMF:

$$P_{\text{battery}} = rac{\Delta U}{\Delta t} = rac{\Delta q}{\Delta t} \mathcal{E} = I \mathcal{E}.$$

It is measured in Js^{-1} , or commonly, W.

For example, a $120\,\mathrm{V}$ battery that generates $2\,\mathrm{A}$ of current is delivering $240\,\mathrm{W}$ of power to the circuit.

EXTRACT ENERGY

Power dissipation through Resistors:

$$P_R = \frac{\Delta U}{\Delta t} = \frac{\Delta q}{\Delta t} V_R = I \Delta V_R = I^2 R = \frac{(\Delta V)^2}{R}.$$

It is also measured in $J s^{-1}$, or commonly, W.

Electric Bills are measured in terms of Kilowatt hours (kW h).

TESTING CONCEPTS (5)

Q: Rank in order, from largest to smallest, the powers P_A to P_D dissipated in resistors A to D.

TESTING CONCEPTS (6)

Q: A $6\,\Omega$ flashlight bulb is powered by a $3\,V$ battery with an internal resistance of $1\,\Omega$. What are the power dissipation of the bulb and the terminal voltage of the battery?

EXTRACT ENERGY

Electric Bills are measured in terms of Kilowatt hours (kW h).

$$E_{\text{thermal}} = P_R \Delta t.$$

With great power comes massive electricity bills!