A Walk on the Side an introduction to R for data analysis

GW Libraries Workshop Spring 2024

go.gwu.edu/rworkshop

FAQ

Q: Will you sign my form for Professional Enhancement hours?

A: Yes, email me!

Q: Can I get a copy of your R code?

A: Yes, email me

Q: Will this workshop be recorded?

A: No, so hang on for the ride!

Logistics

Schedule

9:30-2:15 with a ~1 hr break for lunch

Upcoming R workshops

Feb. 1 (Thurs., 9:30am-2:15pm)
 This workshop, AGAIN! ← tell your friends!

• Feb. 6 (Tues., 1-3:30pm)
Farther into R: *More* R for Data Analysis

Learning Objectives

[Hopefully] You will learn how to do some of the following:

- Set up your laptop with R & RStudio (done!)
- Write and run an R program in RStudio
- Use variables of different types in R
- Use vectors and data frames in R to represent data
- Import & export data files
- "Wrangle" data in R
- Explore data in R with basic statistics and data visualizations
- Learn how to look for help to overcome obstacles

Agenda

- About R and RStudio
- Along the way: How to get help
- Hands-on:
 - variables
 - logical expressions
 - o values, vectors, and data frames
 - R Studio projects
 - reading in data
 - exploring data

- data wrangling:cleaning and reshaping
- o data visualization
- data analysis
- functions
- o R Markdown / reports
- Resources for further learning

Acknowledgments

Teaching basic lab skills for research computing

Hadley Wickham & Garrett Grolemund

r4ds.had.co.nz

Workshop Housekeeping

Ask questions! Either via voice or chat

Use chat to help each other out

If something is confusing in the workshop, let us know.

About R

- Free/Open source
- Cross-platform (Mac, Windows, Linux)
- For statistical computing (and data visualization)
- CRAN r-project.org
 - o <u>R packages</u>
 - o <u>R journal</u>

Reasons researchers prefer R

- Scripted language (vs. point/click)
- Features built around working with data
- Reproducibility
- Interdisciplinary
- Extensible
- Beautiful data visualization
- RStudio (Posit) is a well-liked R development app
- Community RStudio Community, Stack Overflow

R Studio

Variables/Objects

A WALK DIVITHE R SIDE

"Binding" data to a named object/variable allows you to store data in memory and access it later.

$$x < -5$$

y <- c("Washington", "Chicago", "Washington", "Boston")

 $z < -data.frame(pt_id = c("A001", "B204"), bpm = c(60, 72))$

Variables

A WALK DIN THE R SIDE

- Try using R as a "calculator" in the Console
 - Try some mathematical functions, too
- Create some variables
 - variable naming
 - <- for assigning values to variables (Option on Mac, Alt on Win)
 - numeric, character, logical
 - Watch the Environment pane!
 - o typeof()
 - Coercion w/ as.integer, as.character, as.logical, as...

Logical Expressions

Operators include:

```
==, <, >, ! (not), & (and), | (or), etc.
```


Basic Data Structures

Atomic Vector

10.2

Vector

1 10.2
 2 11.3
 3 11.5
 4 12.0

Data Frame

Vectors

Vectors

- A vector is
 - A sequence of data elements (components) all of the same type.
- Create vectors with **c()** (short for "combine")

Data Frames

Data Frames

A WALK ON THE R SIDE

- A data.frame stores a data table
- Comprised of vectors of equal length.
 Vectors become columns.
- Columns and rows can have names.
- **tibble** (from the tibble package) has some advantages over **data.frame**

A brief word on list and matrix

Projects in RStudio

Projects in RStudio

Recommendations:

- Use [Github for] version control!
- Create folders to keep things organized

It's time to import some data!

Data Importing

A WALK ON THE R SIDE

- Prepare data as "tidy"
 - rectangular
 - one table per file
 - rows are observations, columns are variables
- Formats: CSV, TSV, Excel, Fixed-Width, JSON... and with the right packages: Stata, SPSS, SAS... (using **rio** or **haven**)

A word about "big data" (consider data.table)

Installing and loading R packages

- install.packages('mypackage')
- library(mypackage)

Tidyverse Core Packages

- ggplot2 graphics
- dplyr data manipulation
- tidyr tidying data
- readr reading in data
- tibble modern data frame
- purrr functional programming

tidyverse.org

Other often-used R packages

Loading in various data file types - haven, readxl

Mapping → rgdal, tmap, leaflet

Analyzing 2D and 3D shapes → geomorph

Genomic data • bioconductor

Cluster analyses

cluster

Time series data ◆ forecast

Text mining → qdap, sentimentr, tidytext

graph/network analysis → igraph, sna

Interactive web visualizations → shiny

Web scraping ◆ rvest

Exploring Data

- head, tail
- subsetting
- slicing and dicing

Data Transformation using the dplyr package

A WALK ON THE R SIDE

- select() # keep only certain columns
- filter() # keep only certain rows
- mutate() # add/modify variables
- group_by() %>% summarize()# compute summary statistics per group
- arrange() # order by a variable
- dropna() # drop rows with NAs in specified vars.

You will want to use a "pipe": %>%

(shortcut: control-shift-M)

Joining with dplyr

"Merge" tables together

- left_join()
- right_join()
- ..

Data Tidying/Reshaping with tidyr

- pivot_wider()
- pivot_longer()
- ...

Data Visualization with "base R" and ggplot

Data Analysis

Functions

R Markdown

R Markdown

- A format for writing reproducible, dynamic reports with R (as HTML, PDF, MS Word, and more)
- <u>rmarkdown.rstudio.com</u>
- # Header 1
 ## Header 2
 Italic **bold**
- Insert R code directly into your document

```
'``{r setup}
# your R code goes here
'``
```

Include LaTeX code with \$ or \$\$

R Shiny

Parting thoughts

Recommended practices

A WALK ON THE R SIDE

- Use Projects in RStudio
 - Set up folders
- Use tidyverse packages (dplyr, tidyr, etc.) to wrangle your data
- Leave raw data raw
- Empty out your variables, then make sure your script runs from the top
- Learn by finding and using working examples

Some Handy R Links

NEW for 2024!! R "libguide"

Only the best R links:

<u>libguides.gwu.edu/Rstats</u>

Thanks!

Dan Kerchner <u>kerchner@gwu.edu</u>

These slides: go.gwu.edu/rworkshop

<u>Statistics</u> focused (+ R/Python/SAS/etc.) appointments w/graduate student consultants: <u>go.gwu.edu/dataconsulting</u>

Appointments with me: <u>calendly.com/kerchner</u>

Coding consultations (**R**, Python, HTML/CSS, etc.): calendly.com/gwul-coding