Kínai karakterek felismerése generált minták alapján

Szilvási Péter

TDK konferencia, Miskolci Egyetem, 2018. április 25.

Kínai karakterek felismerése

Vonások, vonás sorrend

- A vízszintes vonások megelőzik a függőleges vonásokat.
- A balra lejtő vonások megelőzik a jobbra lejtő vonásokat.
- Az írásjegyek írását felülről kell kezdeni.
- Az írásjegyet balról jobbra haladva építik fel.
- A felülről keretezett írásjegyeknél előbb a keretet kell meghúzni.
- 6 Az alulról keretezett írásjegyeknél a keretet legvégül kell meghúzni.
- 🛮 A teljes keretet mindig legvégül kell bezárni.

OCR megvalósítások

- Dokumentumok digitalizálása
- OCR részei: szekennelő fej + szoftver
- Feldolgozási szintek:
 - lacktriangle Alacsony szintű: zajos kép ightarrow előfeldolgozás ightarrow javított kép
 - \blacksquare Középső szintű: kép \to szegmentálás \to kép jellemzők
 - \blacksquare Magas szintű: jellemzők \to osztályozás \to osztálycímke

OCR megvalósítások

- OCR típus:
 - Online
 - Offline

Kínai karakter felismerés

- Zaj szűrés: pontszerű, elmosódás, forgatás, kontraszt
- Jellemző kivonás

OCR megvalósítások

Song Fang Kai Hei 多体汉字识别 多体汉字识别 多体汉字识别 外体汉字识别

Használt algoritmus

Funkció kivonás

$$d_i = \frac{l_i}{\sqrt{\sum_{k=1}^8 l_k^2}}$$

- Tanítás
- Tesztelés

Font	Song	Fang	Kai	Hei		
Train	99.82	99.64	99.81	99.57		
Test	99.71	99.50	99.80	99.09		

Minták generálása

- Tanító mintapontok előállítása (sorrend, vonal vastagság)
- Képernyő

```
img = np.zeros((512,512,3),np.uint8)
img[0:512] = (255,255,255)
```

Ecset

```
cv2 . ellipse (img , center , axes , angle , start \_ angle , end \_ angle , color , thickness=1, lineType=8, shift=0)
```

Karakterek kirajzolása

- Poligonos közelítés
- Procedurális rajzolás

- Hermit iv: $\mathbf{H}(u) = \mathbf{a}_0 u^3 + \mathbf{a}_1 u^2 + \mathbf{a}_2 u + \mathbf{a}_3$
- Pontonkénti színszámítás

Tanítóminták zajosítása

- Pontszerű: zaj mátrix (M ⊕ N)
- **2** Elmosódás: normalizált szűrő, gauss szűrő, medián szűrő $g(i,j) = \sum_{k,l} f(i+k,j+l)h(k,l)$
- Forgatás: $M = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}$. (cv2.getRotationMatrix2D())
- Vágás: crop_img = img[y:y+h, x:x+w]
- Takarás: festő algoritmus

Mesterséges neurális hálók

- Neurális hálózatok
 - Rétegek
 - Elemei
- Backpropagation
 - Hiba $E_{total} = \sum \frac{1}{2} (target output)^2$.
 - Láncszabály $\frac{\partial E_{total}}{\partial w_{\mathbf{5}}} = \frac{\partial E_{total}}{\partial out_{o1}} \cdot \frac{\partial out_{o1}}{\partial net_{o1}} \cdot \frac{\partial net_{o1}}{\partial w_{\mathbf{5}}}$.

Konvolúciós neurális háló

- Bevezetés
- Hálózat felépítése (konvolúciós rétegek -> hagyományos ANN)
- Bemenet->(Konvolúció->RELU->POOL)->Kimenet(FC)

1x1	1x0	1x1	0	0										
0x0	1x1	1x0	1	0	4				Sing	gle d	epth	slice		
0x1	0x0	1x1	1	1				x	1	1	2	4	max pool with 2x2 filters	
0	0	1	1	0					5	6	7	8	and stride 2	(
0	1	1	0	0					3	2	1	0		3
0	1	1	U						1	2	3	4		
	Inpi	ıt x F	ilter		F	eature	Map		_			у		

- Hálózat tanítás
 - 1. Előre terjsztés

- 3. Hiba visszaterjesztés
- 2. Veszteség számítás
- 4. Súly frissítés

Dropout

A háló felépítése

- Tesztelés
- Transfer learning

A hálózat architektúrája

A hálózat architektúrája

```
model.add(MaxPooling2D(pool\_size = (2,2)))
```

```
model.compile(loss='mean_squared_error', # Hiba
optimizer='adam', metrics=['accuracy'])

model.fit_generator(generator=training_data,
steps_per_epoch=1000, epochs=10) # Tanitas
```

Az offline adatbázis

Adathalmaz: nyomtatott, kézzel írott, generált

- Tanító/Teszt(80/20) random.shuffle(self.images)
- Tanító minták változatossága
- Tesztelés módja
- Helyesség ellenőrzése

A felismerés hatékonysága

Összegzés

- Kínai karakterek
 - stroke
 - vonásrend
- OCR
 - részei
 - használt OCR bemutatás
- Minta generálás
 - vonal vastagság
 - görbe rajzolás
 - zajok hozzáadása
- Neurális hálózatok
 - hagyományos neurális háló (ANN)
 - konvolúciós neurális háló (CNN)
- Valídáció
 - adathalmaz előállítás
 - hálózat osztályozása

Hivatkozások

Köszönöm szépen a figyelmet!