Topology Problems Q2

Mayer Vietoris (Sheet 7)

1. Compute the homology of:

1.
$$\mathbb{RP}^2=M\bigcup_{\partial}D^2$$
2. $T^2=S^1\times S^1=(S^1\times I)\bigcup_f(S^1\times I)$ where $(x,0)\sim (x,1)\sim (\bar x,0)\in \mathbb{C}$
3. $S^1\bigcup_f B^2$ attached along ∂B^2 using $z\mapsto z^n$

- 2. Show $ilde{H}_i(\Sigma X)\cong ilde{H}_{i-1}(X)$
 - 1. Show $\Sigma S^n \cong S^{n+1}$
- 3. For $f:S^n$ (), show $\deg f=\deg \Sigma f$
 - 1. Conclude $\pi_n(S^n) = \mathbb{Z}$
- 4. Let $\{A_i\}^n \in \mathbf{Ab}$ be finitely generated, show $\exists X \mid H_i(X) \cong A_i$ for $i \leq n$ and 0 otherwise.
- 5. Suppose $X = \bigcup_i^n A_i$ such that for any $1 \le k \le n$, $\bigcap_i^k A_i$ is either empty or contractible, show $i \ge n 1 \implies \tilde{H}_i(X) = 0$ and that this bound is sharp.
- 6. Compute $H_*(X \times S^n)$ in terms of $H_*(X)$
 - 1. Compute $H_*(T^n)$
- 7. Let $M=(S^1 imes B^2)igcup_{\mathrm{id}_ heta}(S^1 imes B^2)$ and compute $H_*(M;\mathbb{Z})$
- 8. Let $X = S^n \times I$ with its ends glued together by a map $S^n \circlearrowleft$ of degree d, calculate $H_*(X)$.
- 9. Compute $H_*(X)$ for $X = S^3 N$, with N a knotted solid torus and $\partial N = T$ its boundary torus
- 10. Let CA be the cone on A, show that $ilde{H}_*(X\bigcup CA)\cong ilde{H}_*(X,A)$.
- 11. Show that the Mayer-Vietoris sequence is natural, i.e. If $X \stackrel{f}{\to} Y$ where $f(A) \subset C$ and $f(B) \subset D$, then this commutes:

$$H_n(X) \longrightarrow H_n(A \cap B) \longrightarrow H_n(A) \oplus H_n(B) \longrightarrow H_{n-1}(X)$$

$$\downarrow f_* \qquad \qquad \downarrow f_* \qquad \qquad \downarrow f_* \qquad \qquad \downarrow f_*$$

$$H_n(Y) \longrightarrow H_n(C \cap D) \longrightarrow H_n(C) \oplus H_n(D) \longrightarrow H_{n-1}(Y)$$

Cellular Homology (Sheet 8)

Compute the homology of these spaces

- 1. $S_m \vee S_n$ 1. $S^m \times S^n$
- 2. A hexagon with the identifications a + b + c a b c

3. Orientable surface of genus g

1.
$$g = 2$$
 is given by $a + b - a - b + c + d - c - d$

- 4. Nonorientable surface of genus g Obtain by removing g discs from S^2 and attaching g mobius strips
- 5. $S_1 \vee S_1$ with two discs attached via $(ab)^3$ and $(ab)^6$
- 6. This identification space:

7. This identification space:

8. This identification space:

a natural number) is defined by the

9. Describe a CW complex structure for the lens space L(p,1) and compute π_1,H_* for it.

Degree

- 1. Let $p(x) = \sum_{i=1}^{n} a_i x^i$, view $p: \mathbb{C} \bigcup \infty \circlearrowleft$ and determine its topological degree 2. Let $p(z) = \frac{\prod_{i=1}^{n} z a_i}{\prod_{j=1}^{m} z b_j}$ with all a_i, b_j distinct. What is its topological degree?
- 3. Show that if $f:S^m o S^n$ and $\exists U\subset S^m$ such that $f|_U\cong f(U)$, then m=n and f is surjective.

Universal Coefficient Theorem (Sheet 10)

- 1. Identify the following groups up to isomorphism
 - 1. $\mathbb{Z}_m \otimes \mathbb{Z}_n$
 - 2. $\mathbb{Z}_{60}^4 \otimes (\mathbb{Z}_{24}^3 \oplus \mathbb{Z}_8^4 \oplus \mathbb{Z}_{120})$
 - 3. $\mathbb{Z}_n \otimes \mathbb{Q}$
 - 4. $(\mathbb{Z} \oplus \mathbb{Z}_n) \otimes (\mathbb{Q}/\mathbb{Z})$
- 2. Compute:
 - 1. $\operatorname{Tor}(\mathbb{Z} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_8, \mathbb{Z} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4)$
 - 2. $\operatorname{Ext}(\mathbb{Z} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3, \mathbb{Z} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_5)$
- 3. Compute the following directly from chain complexes and check using UCT:
 - 1. $H_*(\mathbb{RP}^n; \mathbb{Z}_2)$
 - 2. $H_*(\mathbb{RP}^n, \mathbb{Z}_3)$
 - 3. $H^*(\mathbb{RP}^n, \mathbb{Z}_6)$
- 4. For any space X, show that $H^1(X)$ is free abelian
- 5. Show that $H_*(X;\mathbb{Q})=H_*(X;\mathbb{Z})\otimes \mathbb{Q}$ $H^*(X;\mathbb{Z})=\mathrm{Hom}(H_*(X;\mathbb{Z}),\mathbb{Q})$
- 6. Construct a space X such that $H_*(X;\mathbb{Z})=(\mathbb{Z},\mathbb{Z}_6,\mathbb{Z}_{12},\mathbb{Z}\oplus\mathbb{Z}_4,0\cdots)$ Compute $H^*(X;\mathbb{Z})$
- 7. Compute $H_*(\mathbb{RP}^2 \times \mathbb{RP}^2; \mathbb{Z}_2)$
- 8. Compute $H_*(\Sigma \mathbb{RP}^2 \times \mathbb{RP}^2; \mathbb{Z})$
- 9. Compute $H_*(\mathbb{RP}^2 \times \mathbb{RP}^3; \mathbb{Z})$
- 10. Let G be a topological group. Show that $H_*(G)$ is an algebra. Show that $G \curvearrowright H_*(G)$, which factors through the homomorphism $G \to \pi_0(G)$ yielding a trivial action if G is path-connected.

Homological Algebra (Sheet 11)

- 1. Show that $\ker A \to A \otimes \mathbb{Q}$ given by $a \mapsto a \otimes 1$ is the torsion subgroup of A.
- 2. Show that $A \hookrightarrow B \implies A \otimes \mathbb{Q} \hookrightarrow B \otimes \mathbb{Q}$
- 3. Find a free resolution of \mathbb{Q} as a \mathbb{Z} -module.
- 4. Compute $Tor(\mathbb{Q}, A)$
 - 1. Compute $\operatorname{Tor}(\mathbb{Q}/\mathbb{Z}, A)$

5.

- 6. Let $R = \mathbb{Z}[x,y]$, and M = R/(x-y), N = R/(x,y). Construct free resolutions of M,N to compute:
 - $\circ \operatorname{Ext}_R^*(M,M)$
 - $\circ \operatorname{Ext}_{R}^{*}(M,N)$
 - $\circ \operatorname{Ext}_{R}^{*}(N,M)$
 - $\circ \operatorname{Ext}_R^*(N,N)$
- 7. Let Λ_* be the exterior algebra generated by the symbols $\{dx_i\}^n$ over a field k. Show that letting $d=\cdot\vee dx_1$ yields a chain complex $0\to\Lambda^0\to\Lambda^1\to\cdots\to\Lambda^n\to 0$ with trivial homology. Compute what happens when dx_1 is replaced with an arbitrary non-zero element in Λ^1 .
- 8. Define M as the group ring $R = \mathbb{Z}[\mathbb{Z}_2]$ with the action $(\cdot) \times -1$. Construct a free resolution of M and compute $\operatorname{Tor}_R^*(M,M)$.

- 9. Show $\operatorname{Tor}_R^*(\cdot,\cdot)$ is symmetric in the following way: Given M,N, take free resolutions, view $M_* \to M$ as a chain map and tensor with N_* to get a chain map $\psi: M_* \otimes_R N_* \to M \otimes_R N_*$. Show that ψ is a quasi-isomorphism using the exact sequence $0 \to (Z_n,0) \to (N_n,0) \to (B_{n-1},0) \to 0$, then switch the roles of M,N.
- 10. Prove that for a SES $0 \to A \to B \to C$, the group $\operatorname{Ext}(C,A)$ classifies extensions of C by A up to isomorphism.

Cohomology Ring (Sheet 12)

1.