Universidade Estadual de Campinas

Departamento de Estatística — IMECC

Disciplina: MI420 – Mineração de Dados

Professor: Dr. Ronaldo Dias

Acadêmicos: André Felipe B. Menezes (RA:229296)

Carolina da Silveira Bueno (RA:150282)

Daniel Marques P. de Oliveira (RA:155083)

Classificadores Binários: Um estudo para classificação de pacientes com doença no coração

Campinas Setembro de 2019

Resumo

Uma tarefa muito usual de um analista de dados é o desenvolvimento de modelos preditivos, em particular modelos para classificar uma nova observação em um determinada categoria. Devido o advento computacional, diferentes métodos de classificação foram propostos. No presente trabalho, foram discutidos aspectos teóricos de três classificadores binários – regressão logística, analise de discriminante linear e quadrática – e suas performances foram avaliadas em uma análise de dados reais, cujo objetivo é classificar pacientes com doença no coração. Métodos de validação cruzada e Bootstrap foram empregados para estimar o erro de predição esperado.

Palavras chave: regressão logística, análise discriminante, validação cruzada, Bootstrap.

Sumário

1	Introdução						
2	Metodologia						
	2.1	Regressão Logística	3				
	2.2	Análise Discriminante Linear	4				
	2.3	Análise Discriminante Quadrática	5				
	2.4	Comparação dos Classificadores	5				
3	Apl	icação	6				
Re	eferêi	ncias	9				
Aı	Apêndice						

1 Introdução

Devido ao advento computacional, uma recente área na estatística, o Aprendizado Estatístico (*Statistical Learning*), ganhou maior notoriedade em diversas áreas do conhecimento. Combinando descobertas em paralelo com a ciência da computação, em particular o Aprendizado de Maquina (*Machine Learning*), os métodos dessa nova área são imprescindíveis para o analista de dados moderno.

De acordo com Hastie, Tibshirani e Friedman (2009), os problemas de aprendizagem podem ser grosseiramente categorizados em supervisionado e não supervisionado. No primeiro, o objetivo é predizer valores da variável resposta com base em um conjunto de covariáveis. Por outro lado, no aprendizado não supervisionado não há uma variável resposta e objetivo é descrever as associações e padrões entre um conjunto de variáveis.

O presente trabalho discute métodos de aprendizagem supervisionada. Em particular, é apresentada uma discussão teórica dos classificadores binários baseado na regressão logística e análise de discriminante. Também são discutidas técnicas para avaliar o desempenho dos classificadores. Finalmente, é mostrada uma aplicação detalhada dos métodos discutidos em um problema para classificação de pacientes com doença no coração.

2 Metodologia

2.1 Regressão Logística

Seja Y uma variável resposta dicotômica com dois níveis representados pelos valores 0 e 1. No modelo de regressão logistica, assume-se que $Y_i \mid \mathbf{x}_i \sim \mathrm{Bernoulli}(\pi_i)$, em que o parâmetro $\pi_i = \Pr(Y_i = 1 \mid \mathbf{x}_i)$ é relacionado com os preditores $\mathbf{x}_i = (x_{1i}, \dots, x_{pi})^{\mathsf{T}}$ por meio da função de ligação logit. O modelo pode ser especificado por

$$Y_i \mid \mathbf{x}_i \sim \text{Bernoulli}(\pi_i), \quad \text{em que} \quad \pi_i = \frac{\exp\left(\beta_0 + \mathbf{x}_i^{\top} \boldsymbol{\beta}\right)}{1 + \exp\left(\beta_0 + \mathbf{x}_i^{\top} \boldsymbol{\beta}\right)}$$
 (1)

em que *i* representa a característica do *i*-ésimo individuo, i = 1, ..., n e $\beta = (\beta_1, ..., \beta_p)^{\top}$ são os coeficientes de regressão associados as p covariáveis.

A estimação dos coeficientes de regressão, β_0 e β , é realizada maximizando a função verossimilhança do modelo, a qual é definida por

$$\mathcal{L}(\beta_0, \boldsymbol{\beta} \mid \boldsymbol{y}) = \prod_{i=1}^n \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}.$$
 (2)

Infelizmente não existe uma solução analítica para obter as estimativas dos coefici-

entes, β_0 e β , sendo assim necessário utilizar algoritmos numéricos para maximização da função (2) de forma a obtê-las.

Com as estimativas $\widehat{\beta}_0$ e $\widehat{\beta}$ dos parâmetros é possível calcular as probabilidades preditas $\widehat{\pi}_i$ utilizando (1). Assim, a classificação do *i*-ésimo individuo é dada por

$$\widehat{y}_i = \begin{cases} 0, & \text{se } \widehat{\pi}_i < c \\ 1, & \text{se } \widehat{\pi}_i \ge c \end{cases}$$

em que 0 < c < 1 é denominado ponto de corte. Usualmente considera-se c = 0.5, porém pode-se atribuir um valor para c conforme algum critério. Por exemplo, aquele que atinge a maior especificidade e sensibilidade.

2.2 Análise Discriminante Linear

Seja Y a variável resposta qualitativa com K classes distintas e seja $X=(X_1,\ldots,X_p)$ um vetor aleatório. Considere que π_k representa a probabilidade a priori de uma observação pertencer a k-ésima categoria de Y. Se $f_k(x)=\Pr(X=x\mid Y=k)$ denota a função densidade de probabilidade de X dado que Y=k, pelo teorema de Bayes temos que

$$p_k(x) = \Pr(Y = k \mid X = x) = \frac{\pi_k f_k(x)}{\sum_{i=1}^K \pi_i f_i(x)}.$$
 (3)

Em geral, estimar π_k é trivial, com uma amostra aleatória da população Y uma estimativa natural para π_k é a proporção de observações na k-ésima classe. Por outro lado, estimar $f_k(x)$ tende a ser mais desafiador.

Conforme James et al. (2013) na análise discriminante linear (LDA) assume-se que a densidade $f_k(x)$ segue uma distribuição Normal multivariada $\mathrm{NM}_p(\pmb{\mu}_k, \pmb{\Sigma})$, em que $\pmb{\mu}_k$ é o vetor de médias da classe k e $\pmb{\Sigma}$ é a matriz de covariância comum entre as K classes. Substituindo a densidade Normal multivariada em (3) e realizando algumas manipulações algébricas, pode-se mostrar que o classificador LDA atribui uma observação X=x à classe para qual

$$\delta_k(x) = x^{\mathsf{T}} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_k - \frac{1}{2} \boldsymbol{\mu}_k^{\mathsf{T}} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_k + \log \pi_k$$
 (4)

é maior. Nota-se que $\delta_k(x)$ é uma função linear de x, este é o motivo do termo linear no nome deste método.

2.3 Análise Discriminante Quadrática

Ao contrário da LDA, a Análise Discriminante Quadrática (QDA) propõe que cada classe possua uma matriz de covariância diferente (MURPHY, 2012). Ou seja, assume-se que uma observação da k-ésima classe tenha distribuição normal multivariada com vetor de médias μ_k e matriz de covariância Σ_k . Com isso, o classificador de Bayes (3) atribue uma observação x à uma classe para qual

$$\delta_k^*(x) = -\frac{1}{2} \log |\mathbf{\Sigma}_k| - \frac{1}{2} (x - \boldsymbol{\mu}_k)^{\top} \mathbf{\Sigma}_k (x - \boldsymbol{\mu}_k) + \log \pi_k$$
 (5)

é maior. Nota-se que $\delta_k^*(x)$ é uma função quadrática de x, e não mais linear.

Conforme discute James et al. (2013), a escolha entre LDA e QDA vai depender da troca entre viés e variância. No cenário com p preditores, é necessário estimar K(p+1) parâmetros no primeiro método, enquanto que, no segundo, precisa-se de Kp(p+1)/2+k. Consequentemente, LDA é muito menos flexível do que QDA, e portanto possui uma variância menor. Além disso, caso a suposição de homocedásticidade das K classes não seja válida, o método linear apresentará grande viés.

2.4 Comparação dos Classificadores

Apesar de possuirem motivações diferentes, regressão logística e LDA possuem um estreita relação (JAMES et al., 2013). Considere um problema com duas classes e um preditor. Sejam $p_1(x)$ e $1-p_1(x)=p_2(x)$ as probabilidades de X=x pertencer à classe 1 e 2, respectivamente. Na LDA, o logit é dado por $log\left(\frac{p_1(x)}{1-p_1(x)}\right)=log\left(\frac{p_1(x)}{p_2(x)}\right)=c_0+c_1x$, em que c_0 e c_1 são funções de μ_1 , μ_2 e σ^2 . Por outro lado, na regressão logística (1) tem-se que $log\left(\frac{p_1(x)}{p_2(x)}\right)=\beta_0+\beta_1x$.

Ambas estas equações são funções lineares de x, dessa forma produzem fronteiras de decisão lineares. A única diferença reside no fato de que os coeficientes da regressão logística são estimados por máxima verossimilhança, e na análise de discriminante as estimativas são obtidas estimando os parâmetros da distribuição normal. Essa relação também vale quando p é maior do que 1 (JAMES et al., 2013).

Como LDA e regressão logística diferem-se apenas na forma do ajuste, eles tendem a a apresentar resultados semelhantes. No entanto, isso nem sempre é verdade. LDA assume que as observações são retiradas de uma distribuição Normal, com variância comum entre as classes. Caso essa suposição seja verdadeira, ela pode exibir resultados melhores do que o método concorrente, e vice-versa. Comparando estes métodos com o KNN (*K-Nearest Neighbor*), é evidente que eles apresentam performance inferior quando a fronteira de decisão for extremamente não linear. Por outro lado, o KNN não mostra quais variáveis preditoras são importantes, dificultando seu uso para objetivos inferenciais.

Conforme James et al. (2013) ressaltam, a QDA possui maior flexibilidade do que os métodos linear (LDA e regressão logística), uma vez que assume que os limites de decisão são quadráticos.

3 Aplicação

Nesta seção é apresentada uma aplicação real e os classificadores discutidos nas seções anteriores são comparados. O conjunto de dados considerado refere-se a informações hospitalares e características pessoais de 303 pacientes, sendo 207 (68%) homens e 96 (32%) mulheres com idade entre 29 e 77 anos. Foram observadas 14 variáveis para cada paciente, sendo a característica de interesse (variável resposta) a presença de doença no coração. Um descrição detalhada das variáveis disponíveis é apresentada na Tabela A1. O conjunto de dados encontra-se disponível em https://www.kaggle.com/ronitf/heart-disease-uci.

Dos 303 pacientes 54% foram diagnosticados com doença no coração, ao passo que 46% não o foram. O objetivo desta análise é avaliar a performance dos métodos de regressão logística e análise de discriminante para classificar se determinado indivíduo apresenta doença no coração.

Conforme sugere Hastie, Tibshirani e Friedman (2009) separamos o conjunto em duas amostras aleatórias: amostra treino com 75% das observações e a amostra teste com 25% das observações restantes. A análise foi conduzida seguindo as etapas descritas a seguir:

- 1. **Seleção das Variáveis:** Com a amostra de treino, para cada modelo e método de classificação foi aplicada validação cruzada com k=10 partições e calculadas várias medidas de performance.
- 2. **Performance dos Classificadores:** Utilizando a base de treino e com o "melhor" modelo para cada classificador foram utilizadas amostras Bootstrap para avaliar a acurácia das medidas de performance.
- Desempenho na Amostra Teste: Por fim, com o modelo ajustado na amostra de treino o desempenho dos classificadores na amostra teste foi avaliado considerando várias medidas.

Para seleção do melhor subconjunto das variáveis preditoras foi conduzido um estudo de validação cruzada com k=10 partições da amostra treino e calculadas algumas medidas para avaliar a performance dos classificadores. Este processo foi realizado para as 2^p-1 combinações de preditores (modelos). Importante destacar que nos modelos de regressão logística foram consideradas todas as p=13 preditoras, resultando em 8.191 diferentes modelos distintos. Enquanto que nos classificadores

baseados na análise de discriminante tem-se apenas p=5 preditores contínuos, logo um total de 31 modelos.

Na Tabela A2 estão reportadas as medidas de performance para os três melhores modelos conforme o classificador. Para cada classificador, o modelo com menor valor do erro de predição esperado $\left(\widehat{\operatorname{Err}}\right)$ e maior AUC foi selecionado. Interessante notar que as variáveis thalach e oldpeak foram selecionadas nos três métodos de classificação.

Após a seleção das variáveis, avaliamos a acurácia das medidas de performance pelo método Bootstrap (EFRON; TIBSHIRANI, 1993). Foi utilizada B=2,000 amostras Bootstrap da base de treino. Os resultados apresentados na Figura 1 apontam que o classificador com melhor desempenho é a regressão logística, a qual obteve menor valor mediano do erro de predição esperado (Err) e maiores valores medianos para AUC, sensibilidade e especificidade. Percebe-se também que a distribuição Bootstrap das medidas para os classificadores LDA e QDA são visualmente parecidas, com o LDA possuindo uma sutil vantagem.

Figura 1: Distribuição Bootstrap das medidas de performance conforme classificador.

Finalmente, foi avaliado o desempenho dos classificadores na amostra teste. Na Figura 2 está apresentada a curva ROC dos classificados aplicados na amostra teste. Percebe-se que o classificador logístico se destaca dos classificadores LDA e QDA.

A Tabela 1 reporta as medidas de performance dos classificadores para a amostra teste. Observa-se que a regressão logística apresentou menor erro de predição (${\rm Err}_{\mathcal T}$), aproximadamente 0,13. Sob o ponto de vista prático este resultado significa que 13% dos individuos presentes na amostra teste foram classificados de forma errada em relação a presença ou não da doença no coração.

Figura 2: Curva ROC dos classificadores construída na amostra teste.

Tabela 1: Medidas de performance dos classificadores na amostra teste.

Modelo	$\mathrm{Err}_{\mathcal{T}}$	AUC	Sens.	Espec.
Logística	0,1333	0,9067	0,8529	0,8780
LDA	0,3200	0,7120	0,5294	0,8049
QDA	0,3333	0,7109	0,6176	0,7073

Tendo em vista o estudo apresentado podemos concluir que para este conjunto de dados em específico, o método de classificação baseado na regressão logística demonstrou desempenho significativamente superior em relação aos métodos LDA e QDA, quando o objetivo é classificar indivíduos com doença no coração. Ressalta-se também que toda a análise foi realizada no software R e os códigos estão disponíveis em https://github.com/AndrMenezes/dm2019.

Referências

EFRON, B. Bootstrap methods: Another look at the jackknife. **The Annals of Statistics**, The Institute of Mathematical Statistics, v. 7, n. 1, p. 1–26, 01 1979.

EFRON, B.; TIBSHIRANI, R. An Introduction to the Bootstrap. Chapman & Hall/CRC, 1993.

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. The Elements of Statistical Learning: Data Mining Inference and Prediction. 2nd. ed. Springer, 2009.

JAMES, G. et al. An Introduction to Statistical Learning. Springer, 2013.

MURPHY, K. P. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

Apêndice

Tabela A1: Descrição das variáveis disponíveis.

Informação provida	Variável	Tipo
Doenção no coração (variável resposta)	target	$(1 = \operatorname{Sim}, 0 = \operatorname{N}\tilde{\operatorname{ao}})$
Idade em anos	age	Numérica
Sexo	sex	Binária ($1 = male, 0 = female$)
Tipo de dor no peito	ср	Categórica (4 categorias)
Pressão arterial (mmHg)	trestbps	Numérica
Colesterol sérico (mg/dl)	chol	Númerica
Nível de açucar no sangue maior que 120 mg/dl	fbs	Binária ($1 = \sin$, $0 = não$)
Resultado eletrocardiográfico em repouso	restecg	Categórica (3 categorias)
Frequência cardiáca máxima	thalach	Numérica
Angina induzida pelo exercício	exang	Categórica (1 = Sim, $0 = Não$)
Nível de depressão ST induzido por exercício em repouso	oldpeak	Numérica
Inclinação do segmento ST no pco do exercício	slope	Categórica (3 categorias)
Número de vasos principais	ca	Inteira
Talassemia	thal	Categórica $(1 = Fixa, 2 = Reversível, 3 = Normal)$

Tabela A2: Medidas de performance dos melhores modelos conforme o classificador.

Classificador	$\widehat{\operatorname{Err}}$	$\overline{\mathrm{err}}$	Sens.	Espec.	AUC	Preditores	p
Logística	0.1307	0.1213	0.8173	0.9128	0.9200	<pre>sex + cp + trestbps + fbs + restecg + thalach + oldpeak + ca + thal</pre>	9
Logistica	0.1307	0.1218	0.8173	0.9128	0.9185	<pre>sex + cp + trestbps + restecg + thalach + oldpeak + ca + thal</pre>	8
	0.1311	0.1296	0.8164	0.9128	0.9115	sex + cp + trestbps + thalach + ca + thal	6
	0.2473	0.2486	0.6318	0.8538	0.7918	thalach + oldpeak	2
LDA	0.2523	0.2500	0.6309	0.8455	0.7906	age + thalach + oldpeak	3
	0.2644	0.2583	0.6318	0.8224	0.7881	chol + thalach + oldpeak	3
	0.2723	0.2758	0.6145	0.8224	0.7982	trestbps + thalach + oldpeak	3
QDA	0.2777	0.2783	0.5755	0.8455	0.7869	thalach + oldpeak	2
	0.2814	0.2705	0.6145	0.8058	0.7970	age + trestbps + thalach + oldpeak	4

Err: estimativa do erro de predição esperado (expected test error).

err: estimativa do erro de predição de treinamento (training error).

p: número de preditores.

Avaliação da Performance do Classificador

Na amostra de treinamento, seguindo a recomendação de Hastie, Tibshirani e Friedman (2009) o erro de predição esperado (Err) e o erro de predição de treinamento (err), para cada classificador, foram estimados utilizando o método Bootstrap proposto por Efron (1979). Além disso, a área sob a curva ROC (AUC), sensibilidade e especificidade também foram estimadas.

Considere a seguinte matriz de confusão construída a partir da amostra de teste.

Observado	Predito		
Observado	0	1	
0	A	С	
1	В	D	

Então, as medidas mencionadas são calculadas para a amostra de teste da seguinte forma

$$Err = \frac{C+B}{A+B+C+D}, \quad Sens. = \frac{A}{A+C}, \quad Espec. = \frac{A}{A+C}$$
 (6)

enquanto que a AUC foi calculada utilizando o método de integração por trapézios.