Deep Learning for object detection

2016. 08. 01

Hyejeong Nam

Today topic

- Deep learning for object recognition
- Deep learning for object segmentation
- Deep learning for object detection
- Pedestrian Detection
- Human part localization
- General object detection

R-CNN → SPPnet → Fast-RCNN → Faster-RCNN Framework Summary

= Region-based Convolutional Neural Network

Detection

Unlike image classification, detection requires localizing (likely many) objects within an image. One approach frames localization as a regression problem. However, work from Szegedy et al. [38], concurrent with our own, indicates that this strategy may not fare well in practice (they report a mAP of 30.5% on VOC 2007 compared to the 58.5% achieved by our method). An alternative is to build a sliding-window detector. CNNs have been used in this way for at least two decades, typically on constrained object categories, such as faces [32, 40] and pedestrians [35].

Classification

Instead, we solve the CNN localization problem by operating within the "recognition using regions" paradigm [21], which has been successful for both object detection [39] and semantic segmentation [5]. At test time, our method generates around 2000 category-independent region proposals for the input image, extracts a fixed-length feature vector from each proposal using a CNN, and then classifies each region with category-specific linear SVMs. We use a simple technique (affine image warping) to compute a fixed-size CNN input from each region proposal, regardless of the region's shape. Figure 1 presents an overview of our method and highlights some of our results. Since our system combines region proposals with CNNs, we dub the method R-CNN: Regions with CNN features.

Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik / CVPR 2014

In the paper, a simple and scalable detection algorithm is proposed. Two key points:

- 1. localizing objects with a deep network
- 2. training a high-capacity model with a small quality of annotated detection data

Rich feature hierarchies for accurate object detection and semantic segmentation

Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik / CVPR 2014

- Pretrain for the 1000-way ILSVRC image classification task (1.2 million images)
- Fine-tune the CNN for detection
 - Transfer the representation learned from ILSVRC Classification to PASCAL (or ImageNet) detection

Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik / CVPR 2014

Object detection system overview

1. Input image: Nothing special to say, any images as inputs.

Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik / CVPR 2014

Object detection system overview

2. Extract region proposals : extracts (around 2000 bottom-up) region proposals & generates category-independent region proposals

(using selective search's "fast mode" in all experiments)

Rich feature hierarchies for accurate object detection and semantic segmentation

Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik / UC Berkeley / CVPR 2014

Object detection system overview

3. Compute CNN features: 5 Convolution Layers, 2 Fully Connected layers Any architecture, not just AlexNet

Extracts a fixed-length feature vector from each region

Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik / CVPR 2014

Object detection system overview

4. Classify Regions : score each extracted feature vector using the linear SVM trained for that class.

Rich feature hierarchies for accurate object detection and semantic segmentation

Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik / CVPR 2014

Object detection system overview

Detection system

Rich feature hierarchies for accurate object detection and semantic segmentation

Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik / CVPR 2014

Why efficient?

- 1. CNN shared features (parameters), original characteristic of CNN
- 2. CNN low-dimensional computing. (Reduced number of features extracted)

Conclusion

Achieved performance through:

- 1. apply high-capacity CNN works to bottom-up region proposals in order to localize and segment objects.
- 2. paradigm for training large CNNs when labeled training data is scarce

- Advantage : Good performance level
- Weakness:
 - When region proposal was classified in CNN, performance level is low due to image modify/loss.
 - Velocity is low because CNN computation was practiced after classifying region proposals.
 - Algorithm using in region proposal is not beneficial for fast-calculation on GPU.

SPPnet solve

Fast-RCNN solve

Faster-RCNN solve

SPPnet

= Spatial Pyramid Pooling in

Deep Convolutional Networks for Visual Recognition

Why?

- Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g., 224×224) input image. This requirement is "artificial" and may reduce the recognition accuracy for the images or sub-images of an arbitrary size/scale.
- To eliminate the above requirement, research team equips the networks with another pooling strategy, "spatial pyramid pooling"

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun / ECCV2014

∴ the fixed size constraint comes only from the fully-connected layers, which exist at a deeper stage of the network

Key Point

→ introduce a spatial pyramid pooling (SPP) layer to remove the fixed-size constraint of the network

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun / ECCV2014

↑ SPP layer on top of the last convolutional layer

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun / ECCV2014

SPPnet

- a new network structure
- Classification : improves all CNNs
- Detection: 20-60x faster than R-CNN, as accurate
 - variable input size/scale
 - multi-size training
 - · multi-scale testing
 - full-image view
 - multi-level pooling
 - · robust to deformation
 - operates on feature maps
 - · pooling in regions

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun / ECCV2014

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition (2014)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun / ECCV2014

Visualization of the feature maps

- (a) Two images in Pascal VOC 2007.
- (b) The feature maps of some conv5 filters. The arrows indicate the strongest responses and their corresponding positions in the images.
- (c) The ImageNet images that have the strongest responses of the corresponding filters. The green rectangles mark the receptive fields of the strongest responses.

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun / ECCV2014

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition (2014)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun / ECCV2014

R-CNN vs. SPPnet

image regions vs. feature map regions

R-CNN 2000 nets on image regions

SPP-net

1 net on full image

- When region proposal was classified in CNN, performance level is low due to image modify/loss.
- Velocity is low because CNN computation was practiced after classifying region proposals.
- Algorithm using in region proposal is not beneficial for fast-calculation on GPU.

Fast-RCNN solve

Faster-RCNN solve

= Fast Region-based Convolutional Networks for object detection

Fast R-CNN is a fast framework for object detection with deep ConvNets. Fast R-CNN

- trains state-of-the-art models, like VGG16, 9x faster than traditional R-CNN and 3x faster than SPPnet,
- runs 200x faster than R-CNN and 10x faster than SPPnet at test-time,
- has a significantly higher mAP on PASCAL VOC than both R-CNN and SPPnet,
- and is written in Python and C++/Caffe

Fast R-CNN

Ross Girshick / ICCV2015

R-CNN, however, has notable drawbacks:

1. Training is a multi-stage pipeline.

R-CNN first finetunes a ConvNet on object proposals using log loss. Then, it fits SVMs to ConvNet features. These SVMs act as object detectors, replacing the softmax classi- fier learnt by fine-tuning. In the third training stage, bounding-box regressors are learned.

2. Training is expensive in space and time.

For SVM and bounding-box regressor training, features are extracted from each object proposal in each image and written to disk. With very deep networks, such as VGG16, this process takes 2.5 GPU-days for the 5k images of the VOC07 trainval set. These features require hundreds of gigabytes of storage.

3. Object detection is slow.

At test-time, features are extracted from each object proposal in each test image. Detection with VGG16 takes 47s / image (on a GPU).

Fast R-CNN

Ross Girshick / ICCV2015

Four key points:

- 1. Higher detection quality (mAP) than R-CNN, SPPnet
- 2. Training is single-stage, using a multi-task loss
- 3. Training can update all network layers
- 4. No disk storage is required for feature caching

Fast R-CNN

Ross Girshick / ICCV2015

Fast R-CNN architecture and training

* RoI pooling layer = for fixing output vector size when input image size is various

Fast R-CNN

Ross Girshick / ICCV2015

Fast R-CNN architecture and training

- An input image and multiple regions of interest (RoIs) are input into a fully convolutional network.
- Each RoI is pooled into a fixed-size feature map and then mapped to a feature vector by fully connected layers (FCs).
- The network has two output vectors per RoI: softmax probabilities and per-class bounding-box regression offsets.
- The architecture is trained end-to-end with a multi-task loss.

Fast R-CNN

Ross Girshick / ICCV2015

Zooming into the net

= Faster Region-based Convolutional Networks for object detection

How?

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun / NIPS2015

Different schemes for addressing multiple scales and sizes.

- (a) Pyramids of images and feature maps are built, and the classifier is run at all scales.
- (b) Pyramids of filters with multiple scales/sizes are run on the feature map.
- (c) Using pyramids of reference boxes in the regression functions.

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun / NIPS2015

Architecture of Faster R-CNN

Faster R-CNN

- a deep fully convolutional network
- the Fast R-CNN detector

Sharing Features for RPN and Fast R-CNN

- adopt Fast R-CNN
- describe algorithms that learn network composed of RPN and Fast R-CNN with shared convolutional layers

Three ways for training networks with features shared:

- (1) Approximate joint training
- (2) Non-approximate joint training

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun / NIPS2015

Region Proposal Networks

- When region proposal was classified in CNN, performance level is low due to image modify/loss.
- Velocity is low because CNN computation was practiced after classifying region proposals.
- Algorithm using in region proposal is not beneficial for fast calculation on GPU.

Fast-RCNN solve

Faster-RCNN solve

Thanks for your attention

Reference

- [1] Chen, Matthew. "Pedestrian Detection with RCNN.
- [2] Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2014.
- [3] He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." *European Conference on Computer Vision*. Springer International Publishing, 2014.
- [4] Girshick, Ross. "Fast r-cnn." *Proceedings of the IEEE International Conference on Computer Vision*. 2015.
- [5] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." *Advances in neural information processing systems*. 2015.