USA RAINFALL PREDICTION

#importing required libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import warnings

warnings.filterwarnings("ignore")

import tensorflow as tf

from tensorflow import keras
from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense,Flatten,Dropout

from sklearn.preprocessing import StandardScaler

Reading data from source

df=pd.read_csv("weatherAUS.csv")

df

₽

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustD
0	2008- 12-01	Albury	13.4	22.9	0.6	NaN	NaN	
1	2008- 12-02	Albury	7.4	25.1	0.0	NaN	NaN	WN
2	2008- 12-03	Albury	12.9	25.7	0.0	NaN	NaN	WS
3	2008- 12-04	Albury	9.2	28.0	0.0	NaN	NaN	1
4	2008- 12-05	Albury	17.5	32.3	1.0	NaN	NaN	
						•••		
145455	2017- 06-21	Uluru	2.8	23.4	0.0	NaN	NaN	
145456	2017- 06-22	Uluru	3.6	25.3	0.0	NaN	NaN	NN
145457	2017- 06-23	Uluru	5.4	26.9	0.0	NaN	NaN	
145458	2017- 06-24	Uluru	7.8	27.0	0.0	NaN	NaN	٤
145459	2017- 06-25	Uluru	14.9	NaN	0.0	NaN	NaN	Nε

145460 rows × 23 columns

Understanding the Data

Descriptive Statistics

df.describe(include="all")

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGu
count	145460	145460	143975.000000	144199.000000	142199.000000	82670.000000	75625.000000	1
unique	3436	49	NaN	NaN	NaN	NaN	NaN	
top	2013- 11-12	Canberra	NaN	NaN	NaN	NaN	NaN	
freq	49	3436	NaN	NaN	NaN	NaN	NaN	
mean	NaN	NaN	12.194034	23.221348	2.360918	5.468232	7.611178	
etd	NaN	MaN	6 308105	7 110040	Q /7Q060	A 10270A	2 705/02	
nfo()								

<class 'pandas.core.frame.DataFrame'> RangeIndex: 145460 entries, 0 to 145459 Data columns (total 23 columns):

Data	COTAMINS (COCAT	25 COTUMNS).	
#	Column	Non-Null Count	Dtype
0	Date	145460 non-null	object
1	Location	145460 non-null	object
2	MinTemp	143975 non-null	float64
3	MaxTemp	144199 non-null	float64
4	Rainfall	142199 non-null	float64
5	Evaporation	82670 non-null	float64
6	Sunshine	75625 non-null	float64
7	WindGustDir	135134 non-null	object
8	WindGustSpeed	135197 non-null	float64
9	WindDir9am	134894 non-null	object
10	WindDir3pm	141232 non-null	object
11	WindSpeed9am	143693 non-null	float64
12	WindSpeed3pm	142398 non-null	float64
13	Humidity9am	142806 non-null	float64
14	Humidity3pm	140953 non-null	float64
15	Pressure9am	130395 non-null	float64
16	Pressure3pm	130432 non-null	float64
17	Cloud9am	89572 non-null	float64
18	Cloud3pm	86102 non-null	float64
19	Temp9am	143693 non-null	float64
20	Temp3pm	141851 non-null	float64
21	RainToday	142199 non-null	object
22	RainTomorrow	142193 non-null	object
dtype	es: float64(16)	, object(7)	

memory usage: 25.5+ MB

There are 145460 observations with 23 columns where the column named "RainTomorrow" is the target column and other columns are the explanatory/ independent columns.

There are many missing values which needs to be filled.

To fill missing values we will use imputer

from sklearn.impute import SimpleImputer

```
\verb|numsi=SimpleImputer(missing\_values=np.nan, \verb|strategy="mean"|) | \#| creating an object of class
catsi=SimpleImputer(missing_values=np.nan,strategy="most_frequent")
```

for numerical data we use mean of the column to impute in place of null values and for categorical data mode is to be imputed.

```
numcol,catcol=df.select_dtypes([float]).columns,df.select_dtypes([object]).columns
df[numcol]=numsi.fit_transform(df[numcol])
df[catcol]=catsi.fit_transform(df[catcol])
```

df.isnull().sum()

Date Location MinTemp MaxTemp Rainfall 0 Evaporation Sunshine 0 WindGustDir 0 ${\tt WindGustSpeed}$ 0 WindDir9am WindDir3pm WindSpeed9am 0 WindSpeed3pm0 Humidity9am Humidity3pm

 Pressure9am
 0

 Pressure3pm
 0

 Cloud9am
 0

 Cloud3pm
 0

 Temp9am
 0

 Temp3pm
 0

 RainToday
 0

 RainTomorrow
 0

 dtype: int64
 0

Encoding Categorical Data

from sklearn.preprocessing import OrdinalEncoder
oe=OrdinalEncoder()
df[catcol]=oe.fit_transform(df[catcol])

df

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpee
0	396.0	2.0	13.4	22.900000	0.6	5.468232	7.611178	13.0	44.0000
1	397.0	2.0	7.4	25.100000	0.0	5.468232	7.611178	14.0	44.0000
2	398.0	2.0	12.9	25.700000	0.0	5.468232	7.611178	15.0	46.0000
3	399.0	2.0	9.2	28.000000	0.0	5.468232	7.611178	4.0	24.0000
4	400.0	2.0	17.5	32.300000	1.0	5.468232	7.611178	13.0	41.0000
145455	3431.0	41.0	2.8	23.400000	0.0	5.468232	7.611178	0.0	31.0000
145456	3432.0	41.0	3.6	25.300000	0.0	5.468232	7.611178	6.0	22.0000
145457	3433.0	41.0	5.4	26.900000	0.0	5.468232	7.611178	3.0	37.0000
145458	3434.0	41.0	7.8	27.000000	0.0	5.468232	7.611178	9.0	28.0000
145459	3435.0	41.0	14.9	23.221348	0.0	5.468232	7.611178	13.0	40.0352

145460 rows × 23 columns

df["RainTomorrow"]=df["RainTomorrow"].astype(int)

df["RainTomorrow"].value_counts()

0 113583 1 31877

Name: RainTomorrow, dtype: int64

We can see that it is an IMBALANCED DATA ,so we need to perform SMOTE

SPLITTING DATA INTO TARGET AND FEATURES

x=df.iloc[:,:-1]
y=df.iloc[:,-1]

Training and testing data

```
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.2,random_state=3)
```

 $\label{prop:model} \mbox{from imblearn.combine import SMOTETomek}$

st=SMOTETomek(random_state=0)
xtrainn,ytrainn=st.fit_resample(xtrain,ytrain)

sc=StandardScaler()
xtrainn=sc.fit_transform(xtrainn)
xtest=sc.transform(xtest)

```
#Step 1: init the model
ann=Sequential()
#Step 2: add layers into the model
# Hidden Layer 1
ann.add(Dense(units=64,activation="relu"))
#Dropout Layer for Hidden Layer 1
ann.add(Dropout(rate=0.2))
#Hidden Layer 2:
ann.add(Dense(units=64,activation="relu"))
#dropout layer for Hidden Layer 2
ann.add(Dropout(rate=0.1))
#Output Layer
ann.add(Dense(units=1,activation="sigmoid"))
                                                 #since its binary classification
#Step 3:Establish connection between layers
ann.compile(optimizer="adam",loss="binary_crossentropy",metrics=["accuracy"])
```

early_stop=EarlyStopping(monitor="val_loss",mode="min",verbose=1,min_delta=1,patience=13)

from tensorflow.keras.callbacks import EarlyStopping

#step 4: Train the model ann.fit(xtrainn,ytrainn,epochs=800,validation_data=(xtest,ytest),verbose=1,callbacks=[early_stop])

```
Epoch 1/800
Epoch 2/800
        ===========] - 16s 3ms/step - loss: 0.4148 - accuracy: 0.8083 - val_loss: 0.4150 - val_accuracy: 0.81
5655/5655 [=
Epoch 3/800
           :========] - 15s 3ms/step - loss: 0.4045 - accuracy: 0.8134 - val_loss: 0.4013 - val_accuracy: 0.81
5655/5655 [=
Epoch 4/800
5655/5655 [===========] - 15s 3ms/step - loss: 0.3984 - accuracy: 0.8157 - val_loss: 0.4059 - val_accuracy: 0.81
Epoch 5/800
          5655/5655 [=
Epoch 6/800
5655/5655 [==
         Epoch 7/800
5655/5655 [=
         Epoch 8/800
Epoch 9/800
5655/5655 [==
         Fnoch 10/800
5655/5655 [=====
        Epoch 11/800
5655/5655 [===========] - 16s 3ms/step - loss: 0.3776 - accuracy: 0.8261 - val_loss: 0.4029 - val_accuracy: 0.81
Epoch 12/800
         5655/5655 「===
Epoch 13/800
5655/5655 [============] - 17s 3ms/step - loss: 0.3733 - accuracy: 0.8278 - val_loss: 0.4022 - val_accuracy: 0.81
Epoch 14/800
5655/5655 [=====
       Epoch 14: early stopping
<keras.callbacks.History at 0x7f06b7ad48b0>
```

df2=pd.DataFrame(ann.history.history)
df2.plot()
plt.show()

Step 5: Predicting using model
ypred=ann.predict(xtest)

```
910/910 [========] - 1s 1ms/step
```

ypred

These are nothing but probablistic value that lies within the logit function, so we need to convert them to binary class by specifing the condition(threshold value)

EVALUATING THE MODEL

 $from \ sklearn.metrics \ import \ accuracy_score, classification_report$

print(classification_report(ytest,ypred))

	precision	recall	f1-score	support
0 1	0.92 0.56	0.84 0.73	0.88 0.64	22714 6378
accuracy macro avg weighted avg	0.74 0.84	0.79 0.82	0.82 0.76 0.82	29092 29092 29092

•