Distribuciones continuas

Distribución Normal o Gaussiana

$X \sim Normal(\mu, \sigma)$ $X \sim Normal(\mu, \tau)$

 $\tau = 1/\sigma$

Dominio: $X \in (-\infty, \infty)$ $\mu \in (-\infty, \infty)$ $\sigma > 0$ (reales)

R/NIMBLE:

dnorm(mean, sd)

Distribución Beta

$X \sim Beta(\alpha, \beta)$ $X \sim Beta(\mu, \sigma)$ $\mu = \alpha/(\alpha + \beta)$

Dominio: $X \in [0, 1]$ $\alpha > 0 (real)$

 $\beta > 0(real)$

dbeta(alpha, beta)

R/NIMBLE:

$(\alpha + \beta)^2(\alpha + \beta + 1)$

αβ

Distribución Gamma

Dominio:

R/NIMBLE:

$$X \sim Gamma(\alpha, \beta)$$

 $X \sim Gamma(\mu, \sigma)$
 $\mu = \alpha/\beta$

$$X \in (0, \infty)$$

 $\alpha > 0(real)$

 $\sigma = \alpha/\beta^2$

 $\beta > 0(real)$

Distribución Uniforme

Dominio:

R/NIMBLE: $X = (-\infty, \infty)$

 $X \sim Unif(min, max) min \in (-\infty, \infty)(real)$ $\max \in (-\infty, \infty)(\text{real})$ dunif(min, max)

Distribuciones discretas

Distribución de Poisson

$X \sim Poisson(\lambda)$ $X \in (0, \infty)$ (naturales) $\lambda \in (0, \infty)$ (reales)

dpois(lambda)

Distribución de Bernoulli

Dominio: $X \in \{0, 1\}$

R/NIMBLE: dbinom(1, prob)

dbern(prob)

 $p \in [0, 1]$

Distribución Binomial

Dominio: $X \in \{0, n\}$

dbinom(size, prob) dbern(prob, size)

R/NIMBLE:

 $p \in [0, 1]$

 $n \in [0, \infty)$ (natural)

