Isabelle/HOL Exercises Logic and Sets

Elimination of Connectives

In classical propositional logic, the connectives =, \vee , \neg can be replaced by \longrightarrow , \wedge , False. Define corresponding simplification rules as lemmas and prove their correctness. (You may use automated proof tactics.)

```
lemma equiv_conel: "(A = B) = ((A \longrightarrow B) \land (B \longrightarrow A))"
by iprover
lemma or_conel: "(A \lor B) = (\neg (\neg A \land \neg B))"
by blast
lemma not_conel: "(\neg A) = (A \longrightarrow False)"
by blast
```

What is the result of your translation for the formula $A \lor (B \land C) = A$? (You can use Isabelle's simplifier to compute the result by using the simplifier's only option.)

```
Stating A \lor (B \land C) = A as a lemma and application of (simp only: equiv_conel or_conel not_conel) results in the simplified goal (A \longrightarrow False) \land ((B \land C \longrightarrow A) \land (A \longrightarrow B \land C) \longrightarrow False) \longrightarrow False.
```