

Theoretische Grundlagen der Informatik

Tutorium 2

Institut für Kryntographie und Sicherheit

Übungsblatt

- Jeder muss eine eigene Abgabe anfertigen
- Lerngruppen bis 3 Personen

Semi-Thue-Systeme

Ein Semi-Thue-System besteht aus

- einem nichtleeren Alphabet *A* und
- einer Produktionsmenge $P \subset \{A^* \to A^*\}$

Beispiel:

$$A = \{a, b, c\}$$

 $P = \{ab \rightarrow c, bc \rightarrow a, aa \rightarrow \lambda, cc \rightarrow \epsilon\}$

Beispieleingaben:

Tutoriumsmaterial von Michael Fuerst

abc
$$\Rightarrow$$
 cc $\Rightarrow \varepsilon$
 \Rightarrow aa $\Rightarrow \varepsilon$
aab \Rightarrow b
 \Rightarrow ac

Produktionen sind nicht immer eindeutig.

Automaten und ihre Fehlerzustände

- Ein *vollständiger* DEA benötigt einen expliziten Fehlerzustand.
- Ein DEA mit implizitem Fehlerzustand (alle nicht eingezeichneten Überführungen führen in den Fehlerzustand) heißt unvollständig.
- Ein NEA wird i.d.R. nicht vollständig dargestellt (⇒ also kann Fehlerzustand auch implizit sein)

Äquivalenzklassen

Äquivalenz

Zwei Zustände sind äquivalent, wenn es für das Erreichen eines Endzustandes durch Abarbeiten eines Wortes w unerheblich ist, aus welchem der beiden Zustände wir starten.

Definition

Zwei Zustände p und q eines deterministischen endlichen Automaten heißen äquivalent ($p \equiv q$), wenn für alle Wörter $w \in \Sigma^*$ gilt:

$$\delta(p, w) \in F \Leftrightarrow \delta(q, w) \in F$$

Offensichtlich ist \equiv eine Äquivalenzrelation. Mit [p] bezeichnen wir die Äquivalenzklasse der zu p äquivalenten Zustände.

Gegeben sei der folgende endliche Automat:

$$\mathcal{M}=(\mathcal{Q},\Sigma,\delta,s_0,\mathcal{F}) \text{ mit } \mathcal{Q}=\{s_0,s_1,s_2,s_3,s_4\}, \Sigma=\{0,1\},\mathcal{F}=\{s_4\} \text{ und } \delta \text{ gegeben durch:}$$

- 1. Ist der gegebene endliche Automat deterministisch?
- 2. Zeichnen Sie den Äquivalenzklassenautomaten!
- 3. Geben Sie die Äquivalenzklassen der Zustände vom entstandenen Automaten an!

Automatenminimierung

- Schritt 1: nicht erreichbare Zustände entfernen
- Schritt 2: Liste mit Paaren von Zuständen erstellen (Matrixform)
- Schritt 3: Alle Paare, die einen akzeptierenden und einen nicht-akzeptierenden enthalten mit 1 markieren.
- Schritt 4: Alle Paare bei denen es eine Eingabe gibt, sodass das Paar der resultierenden Zustände bereits markiert wurde und das Paar nicht zweimal den selben Zustand enthält, mit dem Markierten Wert +1 markieren
 - Also eigentlich alle Eingaben durchspielen, ob man in ein markiertes paar kommt.
- Schritt 5: Wiederhole Schritt 4 bis nichts mehr markiert wird.
- Schritt 6: Leere Felder in der Matrix zeigen welche Zustände die selbe Äquivalenzklasse haben

Gegeben sei der folgende deterministische endliche Automat:

$$\mathcal{M} = (\mathcal{Q}, \Sigma, \delta, q_0, \mathcal{F})$$
 mit $\mathcal{Q} = \{q_0, q_1, q_2, q_3, q_4, q_5\}, \Sigma = \{0, 1\}, \mathcal{F} = \{q_3, q_5\}$ und δ gegeben durch:

- 1. Vervollständigen Sie den Automaten, d.h. führen Sie einen Fehlerzustand ein!
- 2. Minimieren Sie den vervollständigten Automaten!

Eliminierung von ε -Übergängen

Allgemein

- ightharpoonup Zu jedem nichtdeterministischen endlichen Automaten mit ε-Übergängen gibt es einen äquivalenten nichtdeterministischen endlichen Automaten ohne ε-Übergänge, der nicht mehr Zustände hat.
- Äquivalent heißt, er akzeptiert die selbe Sprache.
- Der ε-Abschluss E(q) eines Zustandes q ist definiert als die Menge aller Zustände, die von q aus durch lediglich ε-Übergänge erreichbar sind (q selbst zählt auch dazu).

Eliminierung von ε -Übergängen

Konstruktion

Zu einem NEA $A:=(Q,\Sigma,\delta,s,F)$ mit ε -Übergängen konstruieren wir einen äquivalenten NEA $\tilde{A}:=(\tilde{Q},\Sigma,\tilde{\delta},\tilde{s},\tilde{F})$ mit

- lacksquare gleicher Zustandsmenge $ilde{ extstyle Q}:= extstyle Q$
- gleichem Startzustand š := s
- neuer Endzustandsmenge $\tilde{F} := \{q \in Q \mid E(q) \cap F \neq \emptyset\}$
 - lacktriangle "alle Zustände, in deren arepsilon-Abschluss ein Endzustand liegt"
- neuer Übergangsfunktion $ilde{\delta}(m{q},m{a}) := egin{cases} \{m{q}\} & \text{falls } m{a} = m{arepsilon} \\ \delta(m{E}(m{q}),m{a}) & \text{sonst} \end{cases}$

Eigenschaften von \tilde{A}

$$L(\tilde{A}) = L(A) \text{ und } |\tilde{Q}| = |Q|.$$

Potenzmengenkonstruktion

Zu jedem nichtdeterministischen endlichen Automaten existiert ein äquivalenter deterministischer endlicher Automat.

In eine Tabelle werden die Automatenzustände und ihre Folgezustände bei jeweiliger Eingabe eingetragen.

Potenzmengenkonstruktion

Ein neuer Zustand entsteht, wenn man von einem alten Zustand durch eine Eingabe in mehrere Zustände kommt.

Potenzmengenkonstruktion

Die Einträge der ersten Spalte sind die neuen Zustände. Alle Mengen, die einen Endzustand enthalten, sind wiederum im neuen Automaten Endzustände.

Gegeben sei ein nichtdeterministischer endlicher Automat (NEA): $\mathcal{M} = (\mathcal{Q}, \Sigma, \delta, q_0, \mathcal{F})$ mit $\mathcal{Q} = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, \mathcal{F} = \{q_2\}$ und δ gegeben durch:

- Geben Sie einen entsprechenden deterministischen endlichen Automaten (DEA) an, der die gleiche Sprache akzeptiert! Benutzen Sie hierbei das Potenzmengenkonstruktionsverfahren!
- 2. Ist der entstandene Automat vollständig? Wenn nicht, wie kann man den Automaten vervollständigen? Welche Mengen stellen bei dem Potenzmengenkonstruktionsverfahren einen Fehlerzustand dar?

Gegeben seien die folgenden beiden nichtdeterministischen endlichen Automaten:

Wandeln Sie diese mittels des Potenzmengenkonstruktionsverfahrens in deterministische endliche Automaten um!

Bis zum nächsten Mal!

Lizenzen

Dieses Werk ist unter einem "Creative Commons Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland"-Lizenzvertrag lizenziert. Um eine Kopie der Lizenz zu erhalten, gehen Sie bitte zu http://creativecommons.org/licenses/by-sa/3.0/de/ oder schreiben Sie an Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Davon ausgenommen sind das Titelbild, welches aus der März-April 2002 Ausgabe von American Scientist erschienen ist und ohne Erlaubnis verwendet wird, sowie das KIT Beamer Theme, Hierfür gelten die Bestimmungen der jeweiligen Urheber,

