2. Mô hình ngôn ngữ

Viện Công nghệ Thông tin và Truyền thông

Mô hình ngôn ngữ

- Là phân bố xác suất trên các tập văn bản
- Cho biết xác suất của 1 câu (hoặc 1 cụm từ) thuộc 1 ngôn ngữ là bao nhiêu
- Mô hình ngôn ngữ tốt sẽ đáng giá đúng các câu đúng ngữ pháp, trôi chảy hơn các từ có thứ tự ngẫu nhiên.
- vd: P("hôm nay trời đẹp") > P("trời đẹp nay hôm")

Mô hình ngôn ngữ N-gram

• Mục tiêu: tính xác suất của 1 câu hoặc một cụm từ:

$$P(W) = P(w_1, w_2, w_3, w_4, w_5, ..., w_m)$$

• Theo công thức Bayes:

$$P(AB) = P(B|A)*P(A)$$

• Ta có:

```
P(w_1, w_2, w_3, w_4, w_5, ..., w_m) = P(w1)*P(w2|w1)*P(w3|w1w2)*...*P(wm|w1w2w3 ... wm-1)
```

P("hôm nay trời đẹp") =

P(hôm) * P(nay|hôm) * P(trời|hôm nay) * P(đẹp |hôm nay trời)

Mô hình ngôn ngữ N-gram

Cách tính xác suất:
$$P(\text{đẹp} | h \hat{0} m \ nay \ tr \hat{v} i) = \frac{P(h \hat{0} m \ nay \ tr \hat{v} i)}{P(h \hat{0} m \ nay \ tr \hat{v} i)}$$

- không thể lưu hết các xác suất trên, đặc biệt với m là độ dài văn bản ngôn ngữ tự nhiên
- sử dụng chuỗi Markov bậch với giả thiết 1 từ chỉ phụ thuộc n từ đứng trước nó (mô hình n-gram)

$$P(w_m|w_1w_2w_3..w_{m-1}) = P(w_m|w_1, w_2, w_3, ..., w_{m-1})$$
$$= P(w_m|w_{m-n}w_{m-n+1}w_{m-n+2}...w_{m-1})$$

Các mô hình ngram

Mô hình unigram:

$$P(w_1w_2...wn) \sim \prod_i P(w_i)$$

• Mô hình bigram:

$$P(w_1w_2...wn) \sim \prod_i P(w_i|wi_{-1})$$

• Mô hình trigram:

$$P(w_1w_2...wn) \sim \prod_i P(w_i|w_{i-1}w_{i-2})$$

Tính xác suất bigram

• Đánh giá Maximum Likelihood

$$P(w_{i} | w_{i-1}) = \frac{count(w_{i-1}, w_{i})}{count(w_{i-1})}$$

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Tính xác suất bigram – ví dụ 1

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$
 ~~I am Sam~~ ~~Sam I am~~ ~~I do not like green eggs and ham~~

$$P({\tt I}|{\tt ~~}) = \tfrac{2}{3} = .67 \qquad P({\tt Sam}|{\tt ~~}) = \tfrac{1}{3} = .33 \qquad P({\tt am}|{\tt I}) = \tfrac{2}{3} = .67 \\ P({\tt~~ }|{\tt Sam}) = \tfrac{1}{2} = 0.5 \qquad P({\tt Sam}|{\tt am}) = \tfrac{1}{2} = .5 \qquad P({\tt do}|{\tt I}) = \tfrac{1}{3} = .33~~$$

Tính xác suất bigram – ví dụ 2 Berkeley Restaurant Project sentences

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Đếm các bigram

• Trên tổng số 9222 câu

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Tính xác suất bigram

• Chuẩn hóa theo unigrams:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

• Kết quả:

		i	want	to	eat	chinese	food	lunch	spend	
	i	0.002	0.33	0	0.0036	0	0	0	0.00079	
	want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011	
	to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087	
	eat	0	0	0.0027	0	0.021	0.0027	0.056	0	
V	chinese	0.0063	0	0	0	0	0.52	0.0063	0	
	food	0.014	0	0.014	0	0.00092	0.0037	0	0	
	lunch	0.0059	0	0	0	0	0.0029	0	0	
	spend	0.0036	0	0.0036	0	0	0	0	0	

Tính xác suất câu dựa trên các bigram

```
P(<s> I want english food </s>) =
  P(I|<s>)
  × P(want|I)
```

- × P(english | want)
- × P(food|english)
- $\times P(</s>|food)$
 - = .000031

Các xác suất đã tính được

- P(english | want) = .0011
- P(chinese | want) = .0065
- P(to | want) = .66
- P(eat | to) = .28
- P(food | to) = 0
- P(want | spend) = 0
- P (i | $\langle s \rangle$) = .25

Triển khai thực tế

- Sử dụng log thay cho phép nhân
 - Tránh được kết quả về 0
 - Nhanh hơn nhân

$$\log(p_1 \ p_2 \ p_3 \ p_4) = \log p_1 + \log p_2 + \log p_3 + \log p_4$$

Các mô hình ngôn ngữ có sẵn

- Google Book N-grams
 - http://ngrams.googlelabs.com/
- KenLM
 - https://kheafield.com/code/kenlm/

Google N-Gram Release

- serve as the incoming 92
- serve as the incubator 99
- serve as the independent 794
- serve as the index 223
- serve as the indication 72
- serve as the indicator 120
- serve as the indicators 45
- serve as the indispensable 111
- serve as the indispensible 40
- serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Đánh giá các mô hình ngôn ngữ

- Gán xác suất cao cho các câu thực hoặc các câu có tần suất xuất hiện lớn
 - Hơn các câu sai ngữ pháp hoặc các câu ít xuất hiện?
- Huấn luyện mô hình trên một tập huấn luyện (training set)
- Đánh giá trên một tập dữ liệu mới (test set)
- Sử dụng ma trận độ đo để đánh giá mức độ tốt của mô hình trên tập test

Đánh giá mô hình N-gram

- So sánh 2 mô hình A và B
 - Sử dụng mỗi mô hình cho một nhiệm vụ cụ thể:
 - sửa lỗi chính tả, nhận dạng tiếng nói, dịch máy, ...
 - Thử nghiệm (chạy) nhiệm vụ đó, tính độ chính xác khi sử dụng mô hình A và B
 - Bao nhiêu từ sai được sửa đúng
 - Bao nhiêu từ được dịch đúng
 - So sánh độ chính xác khi sử dụng A và B

Đánh giá mô hình N-gram – Đánh giá trong

- Đánh giá trong sử dụng độ đo perplexity (độ phức tạp)
 - Đánh giá xấp xỉ không tốt
 - Chỉ khi dữ liệu test giống dữ liệu train (về bộ từ vựng)
 - Tốt cho thí nghiệm nhưng không tốt cho thực tế

Ý tưởng của Perplexity

- Shannon Game:
 - Ta có thể tiên đoán từ tiếp theo không?

I always order pizza with cheese and _____
The 33rd President of the US was _____
I saw a

- Có thể dùng unigram không?
- Mô hình tố sẽ gán xác suất cao cho từ thường xuyên xuất hiện ở vị trí dự đoán

mushrooms 0.1
pepperoni 0.1
anchovies 0.01
....
fried rice 0.0001
....
and 1e-100

Độ phức tạp (Perplexity)

Mô hình tốt nhất là mô hình dự đoán từ chưa nhìn thấy tốt nhất

• Cho xác suất câu cao nhất P(sentence)

$$PP(W) = P(w_1w_2...w_N)^{-\frac{1}{N}}$$

 Perplexity là nghịch đảo xác suất trên tập test, chuẩn hóa theo số từ

Luật chuỗi:
$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1 \dots w_{i-1})}}$$

Với bigrams:
$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

Độ phức tạp (Perplexity)

- Độ phức tạp tương đương số trường hợp rẽ nhánh
- Giả thiết 1 câu gồm các chữ số ngẫu nhiên. Khi đó độ phức tạp của câu dựa trên 1 mô hình sẽ gán P=1/10

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= (\frac{1}{10}^N)^{-\frac{1}{N}}$$

$$= \frac{1}{10}^{-1}$$

$$= 10$$

Hiện tượng quá khớp dữ liệu (overfitting)

- N-grams chỉ tiên đoán từ tốt nếu tập test giống tập train.
 - Ta cần tạo ra mô hình có tính tổng quát, nghĩa là có thể xử lý các trường hợp xác suất = 0 (những TH không có trong tập train nhưng có trong tập test)

TH xác suất = 0

- Tập train:
 - ... denied the allegations
 - ... denied the reports
 - ... denied the claims
 - ... denied the request

- Tập test
 - ... denied the offer
 - ... denied the loan

- P("offer" | denied the) = 0
- > xác suất của 1 câu hoặc một cụm từ về 0
- >Sử dụng các phương pháp làm mịn

Ý tưởng của phương pháp làm mịn

Xác suất trên tập train:

P(w | denied the)

3 allegations

2 reports

1 claims

1 request

7 total

 Giảm xác suất các n-gram có xác suất lớn hơn 0 để bù cho các n-gram có xác suất bằng 0.

P(w | denied the)

2.5 allegations

1.5 reports

0.5 claims

0.5 request

2 other

7 total

Đánh giá kiểu add-one

- Gọi là phép làm mịn Laplace
- Giả thiết mỗi từ xuất hiện nhiều hơn 1 lần so với thực tếd
- Cộng 1 vào tất cả các giá trị đếm

• Đánh giá MLE :

$$P_{MLE}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

• Đánh giá add-1:

$$P_{Add-1}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}$$

