Plano tangente, Aproximação Linear, Incremento e Diferenciais

Priscila Bemm

UEM

Ideia geométrica

Suponha que uma superfície S tenha a equação z=f(x,y), onde f tenha derivadas parciais contínuas de primeira ordem, e seja $P(x_0,y_0,z_0)$ um ponto em S. Sejam C_1 e C_2 as curvas obtidas pela interseção dos planos verticais $y=y_0$ e $x=x_0$ com a superfície S. Então o ponto P fica em C_1 e C_2 . Sejam T_1 e T_2 as retas tangentes à curva C_1 e C_2 no ponto P. Então o plano tangente à superfície S no ponto P é definido como o plano que contém as retas da tangente T_1 e T_2 .

O plano tangente a S em P é o plano que contém todas as retas tangentes a curvas contidas em S que passam pelo ponto P.

O plano tangente em P é o plano que melhor aproxima a superfície S perto do ponto P. Qualquer plano passando pelo ponto $P(x_0,y_0,z_0)$ tem equação da forma

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0.$$

Dividindo essa equação por C e tomando a=-A/C e b=-B/C, podemos escrevê-la como

$$z - z_0 = a(x - x_0) + b(y - y_0)$$

- Se $y=y_0$ obtermos $z-z_0=a(x-x_0)$ que representa a equação da reta tangente ao ponto (x_0,y_0) , contida no plano $y=y_0$, portanto, a é o coeficiente angular da reta e $a=f_x(x_0,y_0)$.
- Se $x=x_0$ obtermos $z-z_0=b(y-y_0)$ que representa a equação da reta tangente ao ponto (x_0,y_0) , contida no plano $x=x_0$, portanto, b é o coeficiente angular da reta e $b=f_y(x_0,y_0)$.

Contudo temos a seguinte definição:

Plano tangente

Definição

Seja $f: \mathbb{R}^2 \to \mathbb{R}$ com derivadas parciais em (a,b). O plano tangente ao gráfico de f em (a,b,f(a,b)) é dado por

$$z = f(a,b) + f_x(a,b) (x - a) + f_y(a,b) (y - b).$$

Exemplos

Determine a equação dos planos tangentes, as expessões a seguir, nos pontos dados.

②
$$z = xe^{xy}$$
 em $(2,0,2)$.

Observe que quanto mais próximo a um ponto (a,b,f(a,b)), mais próximo o plano tangente ao mesmo ponto está do gráfico de uma função z=f(x,y).

Portanto, baseado em evidência visual, a equação do plano tangente $f(x,y)=f(a,b)+f_x(a,b)\,(x-a)+f_y(a,b)\,(y-b)$ é uma boa aproximação de z=f(x,y) quando (x,y) está próximo de (a,b).

Linearização e aproximação linear

Definição

A **linearização** de f em (a,b) é a função linear

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b).$$

Dizemos que $f(x,y) \approx L(x,y)$ perto de (a,b).

Exemplo

Para
$$f(x,y)=2x^2+y^2$$
 e $(a,b)=(1,1)$, estime $f(1.1,0.95)$ com L .
$$L(1.1,0.95)=3+4(0.1)+2(-0.05)=3.3.$$

$$f(1.1,0.95)=2(1.1)^2+(0.95)^2=3.3225 \text{ (erro }\approx 0.0225\text{)}.$$

Exemplos

Determine a linearização, e o valor aproximado que se pede nos itens a seguir:

- \bullet A linearização de $z=xe^x$ no ponto (1,1) e estime o valor para $0,9e^{0,9\cdot 1,1}$ e y=1,1.
- A linearização de $z=\sqrt{y+\cos^2(x)}$ em (0,0,1) e estime o valor de $\sqrt{-0,99+\cos^2(0,1)}$

Definimos o plano tangente para as superfícies z=f(x,y), onde f tem derivadas parciais de primeira ordem contínuas. O que acontece se f_x e f_y não são contínuas?

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

Podemos verificar que suas derivadas parciais existem na origem e são $f_x(0,0)=0$ e $f_y(0,0)=0$, mas f_x e f_y não são contínuas.

A aproximação linear seria $f(x,y)\approx 0$, mas $f(x,y)=\frac{1}{2}$ em todos os pontos na reta y=x. Portanto a função de duas variáveis pode comportar-se mal mesmo se ambas as derivadas parciais existirem.

Para evitar esse comportamento, introduzimos a ideia de função diferenciável de duas variáveis.

Lembremo-nos de que para uma função de uma variável, y = f(x), se x varia de a para $a + \Delta x$, definimos o incremento de y como

$$\Delta y = f(a + \Delta x) - f(a).$$

Foi visto no cálculo de função de uma variável que se f é diferenciável em a, então

$$\Delta y = f'(a) \, \Delta x + \varepsilon \Delta x$$
 onde $\varepsilon \to 0$ quando $\Delta x \to 0$.

Considere agora uma função de duas variáveis, z=f(x,y), e suponha que x varia de a para $a+\Delta x$ e y varia de b para $b+\Delta y$. Então, o incremento correspondente de z é

$$\Delta z = f(a + \Delta x, b + \Delta y) - f(a, b).$$

Definição de incremento

Definição

Dado z=f(x,y), quando x varia de a para $a+\Delta x$ e y de b para $b+\Delta y$, o incremento de z é

$$\Delta z = f(a + \Delta x, b + \Delta y) - f(a, b).$$

Observação

O incremento Δz representa a variação do valor de f quando (x,y) varia de (a,b) para $(a+\Delta x,b+\Delta y)$.

Por analogia a definição de diferenciabilidade visto em cálculo de uma variável, definimos a diferenciabilidade de uma função de duas variáveis como segue.

Definição

Se z=f(x,y), então f é **diferenciável** em (a,b) se Δz puder ser expresso na forma

$$\Delta z = f_x(a, b)\Delta x + f_y(a, b)\Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$$

onde ε_1 e $\varepsilon_2 \to 0$ quando $(\Delta x, \Delta y) \to (0, 0)$.

Observação

A definição diz que uma função diferenciável quando o plano tangente aproxima bem o gráfico de f perto do ponto de tangência.

Algumas vezes é difícil usar a definição diretamente para verificar a diferenciabilidade da função, mas o próximo teorema nos dá uma condição suficientemente conveniente para a diferenciabilidade.

Teorema

Se as derivadas parciais f_x e f_y existirem perto do ponto (a,b) e forem contínuas em (a,b), então f é diferenciável em (a,b).

Exemplo

Exemplo

Mostre que $f(x,y) = xe^{xy}$ é diferenciável em (1,0).

Solução. As derivadas parciais são

$$f_x(x,y) = e^{xy} + xye^{xy}, \qquad f_y(x,y) = x^2e^{xy}$$

$$f_x(1,0) = 1,$$
 $f_y(1,0) = 1$

Tanto f_x quanto f_y são funções contínuas; portanto, f é diferenciável

Diferenciais

Para uma função de uma única variável, y=f(x), definimos a diferencial dx como uma variável independente; ou seja, dx pode valer qualquer número real. A diferencial de y é definida como

$$dy = f'(x) dx$$

- Δy representa a variação de altura da curva y = f(x)
- dy representa a variação de altura da reta tangente quando x varia da quantidade $dx = \Delta x$.

Diferenciais

Para uma função de duas variáveis, z=f(x,y), definimos as diferenciais dx e dy como variáveis independentes; ou seja, podem ter qualquer valor. Então a diferencial dz, também chamada de **diferenciação total**, é definida por

$$dz = f_x(x, y) dx + f_y(x, y) dy = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

Algumas vezes a notação df é usada no lugar de dz. Se tomamos $dx = \Delta x = x - a$ e $dy = \Delta y = y - b$, então a diferencial de z é

$$dz = f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

$$dz = f_x(a,b) dx + f_y(a,b) dy$$

. Assim,

$$f(x,y) \approx L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

 $L(x,y) = f(a,b) + dz$

E assim, com a notação de diferencial, a aproximação linear pode ser escrita como

$$f(x,y) \approx f(a,b) + dz$$
.

Exercícios

Exercícios

- Se $z = f(x, y) = x^2 + 3xy y^2$, determine o differencial dz.
- ② Se x varia de 2 para 2,05 e y varia de 3 a 2,96, compare os valores de Δz e dz.