At page 4, please delete the paragraph starting on line 3 and replace with the following paragraph.

System 10 includes a feed water source 30 which is coupled to steam generator 16 by a feed water line 32. Feed water source 30 can be, for example, a body of water, a desalination plant, a water clean-up system, a steam turbine condenser, or a combination thereof. The water from feed water source 30 is heated in steam generator 16 and converted to steam. A portion of the heated feed water, or steam, from steam generator 16 is directed to cracking system 18 and a portion of the steam is directed to a steam turbine and generator assembly 34. A condenser 36 is coupled to steam turbine and generator assembly 34. The spent steam from steam turbine 34 is condensed in condenser 36. A condenser output line 38 is connected to feed water line 32 so that the condensed steam can be added to the feed water. Condenser 36 includes water circulating lines 37, and a water line 39 connects water circulating lines 37 with desalination plant 30 to supply make-up water to plant 30.

At page 4, please delete the paragraph starting on line 15 and replace with the following paragraph.

Topping heater 20 is a gas fired heater. However, in alternative embodiments, as shown in Figures 2 and 3, topping heater 20 can be an electric heater. A portion of the oxygen and hydrogen produced in water cracking system 18 is directed to topping heater 20 and used as fuel for heater 20. Exhaust from gas fired topping heater 20 is directed to a regenerative heat exchanger 40 through exhaust line 42. Regenerative heat exchanger 40 further heats the portion of the steam output from steam generator 16 that is directed to cracking system 18. A steam line 44 connects regenerative heat exchanger 40 to steam generator 16. The output from regenerative

 B^3