# Práctica de Electronica con ABACUS-Nanohub

Daniel Vázquez Lago

18 de marzo de 2025

#### Overview

- 1. Objetivos
- 2. Modelo teórico: región de vaciamiento
- 3. Modelo teórico: diodo ideal
- 4. Modelo teórico versus simulación: polarización directa
- 5. Conclusiones

#### Objetivos

Nuestros objetivo es la comparación entre la teoría (ecuaciones del diodo ideal) y una simulación (proporcionada por ABACUS-Nanohub versión old) de las principales características de la unión PN para dos diodos diferentes con los siguientes valores:

|         | $m_p^*/m_e$ | $m_n^*/m_e$ | $\mu_{m p}$ [cm $^2/(	extsf{V}\cdot	extsf{s})]$ | $\mu_{\it n}$ [cm $^2$ /(V·s)] | T [K] | $E_{g}$ [eV] |
|---------|-------------|-------------|-------------------------------------------------|--------------------------------|-------|--------------|
| Diodo 1 | 0.81        | 1.19        | 460                                             | 1360                           | 300   | 1.12         |
| Diodo 2 | 0.81        | 1.19        | 460                                             | 1360                           | 300   | 1.12         |

|         |            |            |    |    | $N_D$ [cm $^{-3}$ ] |                     |
|---------|------------|------------|----|----|---------------------|---------------------|
| Diodo 1 | $10^{-10}$ | $10^{-10}$ | 10 | 10 | $3.5 \cdot 10^{16}$ | $3.5 \cdot 10^{16}$ |
| Diodo 2 | $10^{-10}$ | $10^{-10}$ | 10 | 10 | $3.5\cdot 10^{17}$  | $3.5\cdot 10^{16}$  |

donde  $m_p^*$  es la masa efectiva del hueco,  $m_n^*$  la masa efectiva del electrón,  $\mu_p$  la movilidad del hueco,  $\mu_n$  la movilidad del electrón, T la temperatura,  $E_g$  la energía del gap,  $\tau_n$  la vida media del electrón,  $\tau_p$  la movilidad del hueco,  $x_{1n}$  el tamaño de la zona N,  $x_{1p}$  el tamaño de la zona P,  $N_D$  el dopado de dadores en la zona N y  $N_A$  el dopado de aceptores en la zona P.

#### Marco teórico: zona de vaciamiento

La aproximación de la zona de vaciamiento consiste en consdierar que alrededor de la unión de los dopados P y N (denotada por x=0) existe una región delimitada por dos puntos  $(-x_p$  y  $x_n$ ) en los cuales tanto n como p son mucho más pequeños que los valores  $N_D^+$  y  $N_A^-$ . Así en esta región existirá una densidad de carga no nula  $\rho$  lo que generará un campo eléctrico y potencial eléctrico no nulo (en virtud de las ecuacioens de Maxwell). Las condiciones para poder realizar esta aproximación son:

- En las regiones  $x < -x_p$  y  $x_n < x$  llamadas regiones masivas P y N respectivamente, se verifica que todas las impurezas están ionizadas y que la densidad de carga neta es cero.
- En la región  $-x_p < x < 0$  tenemos que  $n_p, p_p \ll N_A$  tal que  $\rho = -qN_A^-$ .
- En la región  $0 < x < x_n$  tenemos que  $n_n, p_n \ll N_D$  tal que  $\rho = qN_D^-$ .

#### Marco teórico: zona de vaciamiento

Llamamos al diodo 1 diodo simétrico y al diodo 2 diodo no simétrico. Los valores de  $x_n$  y  $x_p$  vienen dados por

$$x_{p} = \left[\frac{2K_{S}\varepsilon_{0}}{q} \frac{N_{D}}{N_{A}(N_{A} + N_{D})} V_{bi}\right] \qquad x_{n} = \left[\frac{2K_{S}\varepsilon_{0}}{q} \frac{N_{A}}{N_{D}(N_{A} + N_{D})} V_{bi}\right]$$
$$V_{bi} = \frac{kT}{q} \ln \left(\frac{N_{A}N_{D}}{n_{i}^{2}}\right)$$

siendoo  $V_{bi}$  el voltaje entre la región P y N en el equilibrio (no se le aplica voltaje al diodo). En la siguiente imagen representamos en gris la región de vaciamiento, separadas de las zonas masvias por  $x_p$  y  $x_n$ :



#### Marco teórico: diodo ideal

El modelo del diodo ideal nos permite obtener de manera analítica valores para las corrientes  $J_N$  y  $J_P$  a lo largo del dispositivo cuando aplicamos un voltaje  $V_A$  externo entre el diodo P y N, a través de las siguientes ecuaciones:

- Podemos hacer la aproximación de la zona de vaciamiento.
- Estado estacionario.
- No existe recombinación ni generación de portadores en la región de vaciamiento.
- Bajo nivel de inyección en todo el dispositivo.
- No hay degeneración.
- Toda la tensión cae en las zona de vaciamiento. Contactos óhmicos perfectos y conductor perfecto en zonas masivas.
- Las regiones masivas y la región de vacimineto están dopadas uniformemente.
- Los cuasi-niveles de Fermi son constantes en la zona de transición.

#### Densidad de carga

La denisdad de carga  $\rho$  viene dada por:

$$\rho(x) = \begin{cases} -qN_A & -x_p \le x \le 0 \\ qN_D & 0 \le x \le x_n \end{cases}$$

siendo cero en las zonas masivas. El campo eléctrico se calcula a partir de la ecuación de Maxwell

$$\nabla \cdot \mathcal{E} = \frac{\rho}{K_S \epsilon_0}$$

### Campo y potencial eléctrico

El campo eléctrico viene dado por la siguiente ecuación:

$$\mathcal{E}(x) = \begin{cases} -\frac{qN_A}{K_S\varepsilon_0} (x_p - x) & -x_p \le x \le 0\\ -\frac{qN_D}{K_S\varepsilon_0} (x_n - x) & 0 \le x \le x_n \end{cases}$$

siendo 0 en las regiones masivas. El potencial elétrico viene dado por:

$$V(x) = \begin{cases} 0 & x \le -x_p \\ \frac{qN_A}{2K_S\varepsilon_0} (x_p + x)^2 & -x_p \le x \le 0 \\ -\frac{qN_D}{2K_S\varepsilon_0} (x_n - x)^2 + V_J & 0 \le x \le x_n \\ V_J & x_n \le 0 \end{cases}$$

## Bandas de energía

En cálculo de las bandas de energía se realiza de la siguiente manera. Primero calculamos los valores para la zona P:

$$|E_i|_P = kT \ln \left( \frac{N_A}{n_i} \right)$$
  $|E_c|_P = |E_i|_P + \frac{3kT}{4} \ln \left( \frac{m_p^*}{m_n^*} \right)$   $|E_v|_P = |E_c|_P - |E_g|_P$ 

donde  $|_P$  indica que se ha calculado en la región masiva P. Dado que las bandas deben verificar:

$$\frac{\mathrm{d}E_i}{\mathrm{d}x} = \frac{\mathrm{d}E_c}{\mathrm{d}x} = \frac{\mathrm{d}E_v}{\mathrm{d}x} = -q\frac{\mathrm{d}V}{\mathrm{d}x} \tag{1}$$

Entonces simplemente, para cualquier otra región:

$$E_i(x) = E_i|_P - V(x)$$
  $E_c(x) = E_c|_P - V(x)$   $E_v(x) = E_v|_P - V(x)$  (2)

Para el calculo de los valores simulados hemos obtado por coger los valores de las bandas en las posiciones  $x_{1n}$  y  $x_{1p}$ , respecto  $E_{fn}$  en la zona N.

### Pseudoniveles de Fermi bajo polarización

En la región de vaciamiento, cuando estamos bajo polarización no nula, los pseudonielves de Fermi se desdoblan, tal que  $E_{Fp}$  (psudonivel de fermi de huecos) y  $E_{Fn}$  (psudonivel de fermi de electrones) están a una distancia igual que  $V_A$ :

$$E_{Fn}-E_{Fp}=V_A$$

Dado que estamos en un diodo PN polarizado el nivel  $E_{Fn}$  está fijado a cero, mientras que en el equilibrio como  $E_{Fn}=E_{Fp}=E_{F}$  están ambos fijados a cero.

#### Portadores minoritarios y relacion I-V

Los portadores minoritarios en las regiones masivas en el equlibrio vienen dados por

$$n_{p0} = \frac{n_i^2}{N_A} \qquad p_{n0} = \frac{n_i^2}{N_D}$$

Y su valor en el caso de polarizaciones viene dado por

$$n_p = n_{p0} + \Delta n_p$$
  $p_n = p_{n0} + \Delta p_n$ 

$$\Delta n_p = n_{p0} \left( \mathrm{e}^{qV_A/kT} - 1 \right) \mathrm{e}^{(x+x_p)/L_N} \qquad \qquad \Delta p_n = p_{n0} \left( \mathrm{e}^{qV_A/kT} - 1 \right) \mathrm{e}^{(x-x_n)/L_P}$$

Dado que  $\Delta n_p$  y  $\Delta p_n$  dependen de la posición, nosotros representaremos sus valores en  $x=-x_p$  y  $x=x_n$  respectivamente. En el caso simulado la manera de calcularlo es sencilla: ver cual es el valor mas cercano a estos  $x_P$  y  $x_n$ . En el modelo teórico la relación IV viene dada por:

$$I = I_0 \left( e^{qV_A/kT} - 1 \right) \qquad I_0 = qA \left( \frac{D_N}{L_N} \frac{n_i^2}{N_A} + \frac{D_P}{L_P} \frac{n_i^2}{N_D} \right)$$
(3)

#### Valores teóricos de interés

Dado que la mayor parte de las ecuaciones implican valores numéricos comunes, aquí recogemos en una tabla los más importantes:

|         | $D_{P}$ [cm $^2/s$ ] |      |       |       |           |      |
|---------|----------------------|------|-------|-------|-----------|------|
| Diodo 1 | 35.2                 | 1.19 | 0.593 | 0.345 | $10^{10}$ | 11.7 |
| Diodo 2 | 11.9                 | 1.19 | 0.593 | 0.345 | $10^{10}$ | 11.7 |

|         |       |        | ${\it X_p^{eq}}_{[\mu m]}$ |        |         |
|---------|-------|--------|----------------------------|--------|---------|
| Diodo 1 | 0.779 | 0.1200 | 0.1200                     | 0.0989 | 0.0989  |
| Diodo 2 | 0.839 | 0.1678 | 0.01678                    | 0.1868 | 0.01868 |

Tabla: Tablas con valores teóricos relevantes para los cálculos.

#### Polarización Directa Diodo Simétrico: bandas de energía



Bandas de Energía Simétrica Simulación 0.25 (eV) 0.00 --0.25-0.50 --0.75-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 x (µm)

Tabla: bandas en el equilibrio.

|      | $E_c$ (P N) [eV] | $E_i$ (P N) [eV] | $E_v$ (P N) [eV] |
|------|------------------|------------------|------------------|
| Teo. | 0.955 0.176      | 0.391 -0.391     | -0.162 -0.944    |
| Sim. | 0.956 0.176      | 0.390 -0.390     | -0.165 -0.944    |

Tabla: bandas en polarización directa.

|      | $E_c$ (P N) [eV] | $E_i$ (P N) [eV] | $E_v$ (P N) [eV] | $E_{fp}$ [eV] (P) | $E_{fn}$ [eV] (N) |
|------|------------------|------------------|------------------|-------------------|-------------------|
| Teo. | 0.705 0.176      | 0.140 -0.390     | -0.412 -0.944    | -0.25             | 0.0               |
| Sim. | 0.706 0.176      | 0.140 -0.390     | -0.414 -0.944    | -0.25             | 0.0               |

#### Polarización Inversa Diodo No Simétrico: bandas de energía



Tabla: bandas en el equilibrio.

|      | $E_c$ (P N) [eV] | $E_i$ (P N) [eV] | $E_{v}$ (P N) [eV] |
|------|------------------|------------------|--------------------|
| Teo. | 1.015 0.176      | 0.449 -0.390     | -0.105 -0.944      |
| Sim. | 1.015 0.176      | 0.449 -0.390     | -0.105 -0.944      |



Tabla: bandas en polarización inversa

|      | rabia: band      |                  |                    |                   |                  |
|------|------------------|------------------|--------------------|-------------------|------------------|
|      | $E_c$ (P N) [eV] | $E_i$ (P N) [eV] | $E_{v}$ (P N) [eV] | $E_{fp}$ [eV] (P) | $E_{fn}$ [eV] (N |
| Teo. | 1.215 0.176      | 0.649 -0.390     | 0.095 -0.944       | 0.2               | 0.0              |
| Sim. | 1.215 0.176      | 0.649 -0.390     | 0.095 -0.944       | 0.2               | 0.0              |

### ¿Degeneración en las bandas?

Como podemos observar ninguna de las bandas está degenerada, ya que

$$3kT = 0.078 \text{ eV}$$
 (4)

y tanto  $E_c$  como  $E_v$  están a una distancia mayor de  $E_F$ . El valor más cercano se da en la polarización inversa, tanto para  $E_v$  en la zona masiva P con una distancai de 0.105 eV respecto  $E_F$  y para  $E_c$  en la zona masiva N con una distancia de 0.176 eV respecto  $E_F$ .

## Polarización directa: campo eléctrico





Tabla: Valores del campo eléctrico

|          | $\mathcal{E}_{min}(\mathit{V}_{A}=0)\;[V/cm]$ | $\mathcal{E}_{min}(\mathit{V_A} = 0.25) \; [V/cm]$ |
|----------|-----------------------------------------------|----------------------------------------------------|
| Teórico  | -64940                                        | -53516                                             |
| Simulado | -62474                                        | -50609                                             |

## Polarización inversa: campo eléctrico





Tabla: Valores del campo eléctrico

## Polarización directa: potencial eléctrico





Tabla: Valores del potencial eléctrico

|          | $V_J(V_A=0)$ [V] | $V_J(V_A = 0.20)$ [V] |
|----------|------------------|-----------------------|
| Teórico  | 0.779            | 0.529                 |
| Simulado | 0.779            | 0.530                 |

## Polarización inversa: potencial eléctrico





Tabla: Valores del potencial eléctrico

|          | $V_J(V_A=0)$ [V] | $V_J(V_A = -0.25)$ [V] |
|----------|------------------|------------------------|
| Teórico  | 0.839            | 1.039                  |
| Simulado | 0.839            | 1.038                  |

## Polarización directa: densidad de carga





Tabla: Valores de la densidad de carga. El interior indica  $V_A$ , i.e.  $ho(V_A=0.0)\equiv 
ho(0)$ . El superíndice máx indica que es el valor máximo de ho.

|          | $ ho_p^{máx}(0)$ [C/cm³] | $ ho_p^{\sf máx}(0.2)$ [C/cm $^3$ ] | $ ho_n^{máx}(0)$ [C/cm³] | $ ho_n^{\sf máx}(0.2)$ [C/cm³] |
|----------|--------------------------|-------------------------------------|--------------------------|--------------------------------|
| Teórico  | -0.00561                 | - 0.00561                           | 0.00561                  | 0.00561                        |
| Simulado | -0.00561                 | -0.00561                            | 0.0561                   | 0.0561                         |

## Polarización inversa: densidad de carga





Tabla: Valores de la densidad de carga. El interior indica  $V_A$ , i.e.  $\rho(V_A=0.0)\equiv\rho(0)$ . El superíndice máx indica que es el valor máximo de  $\rho$ .

|          | $ ho_p^{	extsf{máx}}(0)$ [C/cm $^3$ ] | $ ho_{p}^{máx}(0.2)$ [C/cm $^3$ ] | $ ho_n^{máx}(0)$ [C/cm <sup>3</sup> ] | $ ho_n^{máx}(0.2)$ [C/cm³] |
|----------|---------------------------------------|-----------------------------------|---------------------------------------|----------------------------|
| Teórico  | -0.0561                               | -0.0561                           | 0.00561                               | 0.00561                    |
| Simulado | -0.05466                              | -0.05537                          | 0.00690                               | 0.00630                    |

## Polarización directa: portadores minoritarios





Tabla: Valores de los portadores minoritarios. Los  $\Delta n_p$  y  $\Delta p_n$  los evaluamos en  $x_n$  y  $x_p$  obtenidos usando las bandas de energías (simuladas).

|          | $n_{p0}$ [cm $^{-3}$ ] | $\Delta n_p$ [cm $^{-3}$ ] | $p_{n0}$ [cm $^{-3}$ ] | $\Delta p_n$ [cm $^{-3}$ ] |
|----------|------------------------|----------------------------|------------------------|----------------------------|
| Teórico  | 2857                   | $4.53 \cdot 10^7$          | 2857                   | $4.53 \cdot 10^7$          |
| Simulado | 2835                   | $4.72 \cdot 10^7$          | 2835                   | $4.44 \cdot 10^7$          |

## Polarización directa: portadores minoritarios



Cabe destacar que para el cálculo de las



## Polarización inversa: portadores minoritarios





Tabla: Valores de los portadores minoritarios. Los  $\Delta n_p$  y  $\Delta p_n$  los evaluamos en  $x_n$  y  $x_p$  obtenidos usando las bandas de energías (simuladas).

|          | $n_{p0}$ [cm $^{-3}$ ] | $\Delta n_p$ [cm $^{-3}$ ] | $p_{n0}$ [cm $^{-3}$ ] | $\Delta p_n$ [cm $^{-3}$ ] |
|----------|------------------------|----------------------------|------------------------|----------------------------|
| Teórico  | 2857                   | -285.59                    | 2857                   | 2855.9                     |
| Simulado | 283.58                 | -270.17                    | 2835                   | -2393                      |

## Polarización inversa: portadores minoritarios





#### Curva I-V: directa





Tabla: Valores de las intensidades

|          | $I(V_A=0.25)$ [A/cm <sup>2</sup> ] |
|----------|------------------------------------|
| Teórico  | $6.80 \cdot 10^{-6}$               |
| Simulado | $1.74 \cdot 10^{-3}$               |

#### Curva I-V: inversa





Tabla: Valores de las intensidades

#### Otros valores obtenibles

Otros valores que podríamos calcular/obtener con los valores de la simulación podrían ser:  $x_n, x_p, I_0, L_N, L_P$ . Para obtenerlos bastaría con hacer algún tipo de regresión.

- Por ejemplo,  $x_n$  y  $x_p$  podríamos obtenero realizando regresiones lineales en las regiones lineles de  $\mathcal{E}(x)$  y viendo en que punto se corta, o por ejemplo ver en que punto comienza a crecer V(x) o  $\rho(x)$ .
- Otros como  $I_0$  serían un poco más difícil de calcular, ya que el comportamiento ideal de IV no es tan preciso, mientras que  $L_N$  y  $L_P$  sí (a partir de  $n_{p0}(x)$  y pn0).

Sin embargo esto excede los objetivos de esta presentación.

#### Conclusiones

#### Las conclusiones son:

- El diodo ideal predice el orden de todos los resultados (con una diferencia relativa de entre el 10 % y menos del 1 %), salvo la relación IV en el que falla varios órdendes de magnitud.
- En casos particulares como bandas de energías y voltaje máximo la diferencia es mínima.
- Las funciones analíticas que se observan del diodo ideal devuelven valores similares a los que da la simulación.
- Las principales diferncias entre modelo y simulación se da en los bordes de la región de vaciamiento.

Con todo, hemos podido observar que para los voltajes de polarización y dopantes dados, el diodo ideal es una buena aproximación (con un margen de error del  $10\,\%$ ) del diodo PN, excepto para la relación IV.

## Fin