

In the claims:

This listing of claims will replace all prior versions and listings of claims in the application:

1 1. (canceled).

1 2. (previously presented) An automated method for designing an integrated circuit layout
2 with a computer, comprising:

3 (a) selecting a plurality of cells that are intended to be used in the integrated circuit
4 layout;

5 (b) determining initial delay values associated with the cells prior to determining an
6 initial placement of the cells; and

7 (c) performing an initial placement of the cells, including determining an initial size or
8 area of the cells in response to the initial placement.

1 3. (canceled).

1 4. (previously presented) The automated method of claim 2 further comprising:
2 adjusting the initial delay values of the cells if necessary to meet predetermined timing
3 constraints.

1 5. (previously presented) The automated method of claim 4 further comprising:
2 determining a size or area of the cells that will approximately maintain the adjusted delay
3 values.

1 6. (previously presented) The automated method of claim 2 further comprising:
2 after determining the initial size or area of the cells, further adjusting the size or area of
3 the cells in order to approximately maintain the initial_delay values.

1 7. (previously presented) The automated method of claim 2 further comprising:
2 routing the digital circuit to generate the integrated circuit layout using a finalized size or
3 area of the selected plurality of cells.

1 8. (previously presented) The automated method of claim 2 wherein the initial delay
2 values are determined using gain.

1 9. (previously presented) The automated method of claim 2 wherein the initial delay
2 values are determined using logical effort.

1 10. (previously presented) The automated method of claim 2 wherein the initial delay
2 values are determined by finding a preferred gain of the cells.

1 11. (previously presented) The automated method of claim 10 wherein the preferred gain
2 of the cells is determined using a continuous buffering assumption.

1 12. (previously presented) The automated method of claim 2 wherein the initial delay
2 values are determined during library analysis.

1 13. (previously presented) The automated method of claim 2 wherein the initial delay
2 values are determined using a typical load of the cells.

1 14. (previously presented) The automated method of claim 13 wherein the typical load is
2 determined based on gain considerations.

1 15. (previously presented) The automated method of claim 2 wherein the size or area of
2 the cells is variable and not fixed at the time the cells are selected.

1 16. (new) An automated method for designing an integrated circuit layout with a
2 computer of a circuit specified by a netlist, comprising:
3 (a) providing a library of cells;

4 (b) determining initial delay values for a plurality of cells from said library of cells to be
5 used in the integrated circuit layout of the circuit before determining an initial size or area of the
6 cells, and using a timing driven covering method to map said plurality of cells to the circuit; and
7 (c) performing an initial placement of the cells, including assigning net lengths to nets on
8 the cells, and determining the initial size or area of the cells in response to the initial placement.

1 17. (new) The automated method of claim 16, including
2 inserting buffers based on an estimation of area savings in the circuit prior to determining
3 said initial size or area of the cells.

1 18. (new) The automated method of claim 16, including
2 compressing or stretching delay values associated with cells prior to determining said
3 initial delay values for the cells.

///