(32). 对任意 $k \geq 1$,设 $E_k \subset E$ 为可测集, $c_k \geq 0$, $f = \sum_{k=1}^{\infty} c_k \mathbb{1}_{E_k}$. 请证明

$$\int f \, d\lambda = \sum_{k=1}^{\infty} c_k \lambda(E_k).$$

(33). 设 $(f_n)_{n\geq 1}$ 为 E 上非负单调递减可积函数列,且 f_n 收敛到可测函数 f,求证

$$\lim_{n\to\infty}\int f_n d\lambda = \int f d\mu.$$

- (34). 设 E 为测度空间, $\{A_k\}_{k\geq 1}$ 为 E 中可测集.
 - (a) 请证明

$$\mu\left(\liminf_{n\to\infty}A_n\right)\leq \liminf_{n\to\infty}\mu(A_n).$$

(b) 若 $\lambda(E)$ < ∞,请证明

$$\mu\left(\limsup_{n\to\infty}A_n\right)\geq \limsup_{n\to\infty}\mu(A_n).$$

(35). 设g为E上非负可积函数,则对任意 $\varepsilon > 0$,存在可测集 $A \subset E$ 满足 $\lambda(A) < \infty$ 使得

$$\int_{E \setminus A} g \, d\lambda < \varepsilon.$$

- (36). 设 f, g 为 E 上的可积函数,求证 $f \vee g, f \wedge g$ 也可积,其中 $f \vee g := \max\{f, g\}, f \wedge g := \min\{f, g\}.$
- (37). 设 $\{f_n\}_{n\geq 1}$ 为 E 上的可测函数列,且存在可积函数 g 使得 $f_n+g\geq 0$. 求证

$$\liminf_{n\to\infty} \int f_n d\mu \ge \int \liminf_{n\to\infty} f_n d\mu.$$

(38). 设 $\lambda(E) < \infty$, $\{f_n\}_{n \ge 1}$ 为 E 上的可测函数列,且 $\{f_n\}$ 依测度收敛到 f,同时存在常数 M > 0 使得对任意 $n \ge 1$, $|f_n| \le M$. 求证

$$\lim_{n\to\infty}\int f_n d\mu = \int f d\mu.$$

(39). 设f为 \mathbb{R} 上勒贝格可积函数,求证对任意 $a \in \mathbb{R}$,有

$$\int_{\mathbb{R}} f(x+a) \, d\lambda = \int_{\mathbb{R}} f(x) \, d\lambda.$$

(40). 设 f 为 E 上的可积函数. 求证对任何 $\varepsilon > 0$,存在 $\delta > 0$,使对任何可测集 $A \subset E$,只要 $\lambda(A) < \delta$,就有

$$\left| \int_A f \, d\lambda \right| < \varepsilon.$$

- (41). 设 $C \subset [0,1]$ 为康托尔集, $\mathbb{1}_C$ 在 [0,1] 上是否黎曼可积?若可积,求其积分.
- (42). 设 F 为 [0,1] 上的 Cantor-Lebesgue 函数. 求 $\int_0^1 F(x) dx$.
- (43). 设 $p \ge 1$, 求证

$$\int_0^1 \frac{x^p}{1-x} \log \frac{1}{x} \, dx = \sum_{n=1}^\infty \frac{1}{(p+n)^2}.$$

- (44). 设 $G \subset [0,1]$ 为开集. 求证或用反例否证 $\mathbb{1}_G$ 是黎曼可积的.
- (45). 设 $f \in L^1(\mathbb{R})$. 对任意 $t \in \mathbb{R}$, 定义函数 $f_t : \mathbb{R} \to \mathbb{R}$; $x \mapsto f_t(x) = f(x-t)$. 求证

$$\lim_{t \to 0} ||f - f_t||_1 = 0.$$

(46). 设 a > 0, f 为 [0, a] 上的勒贝格可积函数, 求证

$$\int_0^a \int_x^a \frac{f(y)}{y} dy dx = \int_0^a f(x) dx.$$

(47). (I). 求证

$$\int_{[0,1]} \left[\int_{[0,1]} \frac{x^2 - y^2}{(x^2 + y^2)^2} dy \right] dx = \frac{\pi}{4},$$

$$\int_{[0,1]} \left[\int_{[0,1]} \frac{x^2 - y^2}{(x^2 + y^2)^2} dx \right] dy = -\frac{\pi}{4}.$$

- (II). 请解释为何上述结论与 Tonelli 定理和 Fubini 定理均不矛盾.
- (48). 设 $f \in BV([a,b])$, 且 $V_a^b(f) = 0$. 求证 f 为常值函数.
- (49). 设 $f, g \in BV([a, b])$. 求证 $f + g \in BV([a, b])$.
- (50). 证明若 $f,g \in AC([a,b])$,则 $fg \in AC([a,b])$.
- (51). 设f为[a,b]上的可微函数,若f^f在[a,b]上黎曼可积,求证

$$V_a^b(f) = \int_a^b |f'(x)| dx.$$

- (52). 设 $f \in AC([a,b])$, 且 $f' \ge 0$ 几乎处处成立,证明 f 是单调递增的.
- (53). 设 f 是 [a,b] 上的单调递增函数,且

$$\int_a^b f'(t)dt = f(b) - f(a),$$

求证 $f \in AC([a,b])$.

- (54). 设 [a,b] 为有界区间, $0 , 求证 <math>\mathcal{L}^q([a,b]) \subset \mathcal{L}^p([a,b])$.
- (55). 设[a,b]为有界区间, $1 \le p \le \infty$, $f,g \in \mathcal{L}^p([a,b])$. 求证

$$\|f+g\|_p \leq \|f\|_p + \|g\|_p.$$