Fundamental Limit (Mathematics Extension 1)

Fundamental Limit

The sector OAB is taken from a circle of unit radius. Area of $\triangle AOB <$ Area of sector AOB < area of $\triangle OAC$

Area of triangle = $\frac{1}{2}ab\sin\theta$

Area of sector = $\frac{1}{2}r\theta$

Note also that $AC = \tan \theta$

Hence,

$$\frac{1}{2}\sin\theta < \frac{1}{2}\theta < \frac{1}{2}\tan\theta$$

 $\sin \theta < \theta < \tan \theta$ (Multiplying all the terms by two)

$$\frac{1}{\sin \theta} > \frac{1}{\theta} > \frac{1}{\tan \theta}$$
 (By taking the reciprocals)

$$1 > \frac{\sin \theta}{\theta} > \cos \theta$$
 (Multiplying all the terms by $\sin \theta$)

As $\theta \to 0$, $\cos \theta \to 1$, and because $\sin \theta$ gets sandwiched between 1 and $\cos \theta \to 1$:

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Example

$$\lim_{x \to 0} \frac{\sin 4x}{2x}$$

$$= 2 \times \lim_{x \to 0} \frac{\sin 4x}{4x}$$

$$= \lim_{x \to 0} \frac{\sin x}{x} \div \lim_{x \to 0} \cos x$$

$$= 2 \times 1$$

$$= 2$$

$$= 1 \div 1$$

$$= 1$$