Stable Marriage

 $\Rightarrow O(|M||N|)$ • Brute force complexity: O(n!)

• Worst case scenario we check every man and every woman

- Observation 1: Men propose to women in decreasing order of
- Observation 2: Once a woman is matched, she never becomes
- unmatched, she only "trades up" • Thm (Man-Optimality): The GS algorithm always pairs a
- man with his best valid partner, say m prefers w_0 to w_1 since GS matched m with w_0
- Thm (Woman-Pessimality): The GS algorithm always pairs a woman with her worst valid partner. This means that out of all the men that w could have been matched with that produces a stable matching, GS will match w with the least preferred out of these.

Complexity

there are positive constants c and n_0 such that $f(n) \leq cg(n)$ for $n \ge n_0$. $\Omega(g(n))$ if $f(n) \ge cg(n)$. $\Theta(g(n))$ if both O(g(n))and $\Omega(q(n))$

• Given functions f(n) and g(n), we say that f(n) is O(g(n)) if

- f(n) is O(g(n)) if f(n) is asymptotically less than or equal
- f(n) is o(g(n)) if f(n) is asymptotically **less than** g(n)• f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or
- equal to q(n)• f(n) is $\omega(g(n))$ if f(n) is asymptotically greater than g(n)
- f(n) is $\Theta(q(n))$ if f(n) is asymptotically equal to q(n)

Formulas to calculate bounds

- $\lim_{n \to \infty} [f(n)/g(n)] = 0 \Rightarrow f(n) \in o(g(n))$
- $\lim_{n \to \infty} [f(n)/g(n)] < \infty \Rightarrow f(n) \in O(g(n))$
- $0 < \lim_{n \to \infty} [f(n)/g(n)] < \infty \Rightarrow f(n) \in \Theta(g(n))$
- $0 < \lim_{n \to \infty} [f(n)/g(n)] \Rightarrow f(n) \in \Omega(g(n))$
- $\lim_{n \to \infty} [f(n)/g(n)] = \infty \Rightarrow f(n) \in \omega(g(n))$

Properties

- $f(n) = \Theta(f(n)), f(n) = O(f(n)), f(n) = \Omega(f(n))$
 - $f(n) = \Theta(g(n)) \& g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$, etc
 - $f(n) = \Theta(g(n))$ iff $g(n) = \Theta(f(n))$
 - f(n) = O(g(n)) iff $g(n) = \Omega(f(n))$, f(n) = o(g(n)) iff $q(n) = \omega(f(n))$

Growth Rate

 $\log n \quad \sqrt{n} \quad n \quad n \log n \quad n^2 \quad n^3 \quad \dots \quad n^c \quad 2^n \quad 3^n$ n! n^n

Logarithm and Exponent Rules • Natural $\log \ln a = \log_e a$

- Binary $\log lqa = \log_2 a$ • $lq^2a = (lq \ a)^2$ • $lg \ lg \ a = lg(lg \ a)$ • $a = b^{\log_b a}$
- $\log_c(ab) = \log_c a + \log_c + b$
- $\log_b a^n = n \log_b a$
- $\log_b a = \frac{\log_c a}{\log_a b}$ • $\log_b(1/a) = -\log_b a$
- $\log_b a = \frac{1}{\log_b b}$
- $a^{\log_b c} = c^{\log_b a}$
- Taking the log to compare the complexity of exponential functions is not always a good idea - Consider 3^n and 2^n
 - if you take log of both sides then you get $n \log 3$ and $n \log 2$ but this can be simplified and means that they both have proportional growth rate which is wrong - but if you use limit

• $a^{-1} = \frac{1}{2}$

 $\bullet (a^m)^n = a^{mn}$

 \bullet $a^m a^n = a^{m+n}$

 $\bullet \lim_{\substack{n \to \infty \\ o(a^n)}} \frac{n^b}{a^n} = 0 \Rightarrow n^b \Rightarrow$

- $-\lim_{n\to\infty}\frac{2^{n\log 3}}{2^{n\log 2}}=2^{n(\log 3-\log 2)}=\infty$
- Graphs • n = |V|, m = |E|

- Complete Graph: every pair of distinct vertices is connected by a unique edge
 - Max n Undirected: $\frac{n(n-1)}{2}$ - Max n Directed: n(n-1)
- Adjacency Matrix
 - $-n \times n$ matrix with $A_{uv} = 1$ if (u, v) is an edge
 - two representations of each edge
 - Space proportional to n^2
 - Checking if (u, v) is an edge takes O(1)
 - Identifying all edges takes $O(n^2)$
- Adjacency List
 - Node indexed array of lists
 - two representations of each edge
 - Space proportional to m+n
 - Checking if (u, v) is an edge takes O(1 + deg(u)) where
 - Identifying all edges takes O(2m+n)
 - * n: total number of nodes (number of pointers in list)

deg(u) is the degree = number of neighbors of u

- * 2m: since we are counting each edge twice
- \bullet Let G be an undirected graph on n nodes. Any two of the following statements imply the third.
 - G is connected
 - G does not contain a cycle

-G has n-1 edges

- The height of a tree is the number of edges in the longest level. Height of empty tree is -1
- level of root is 0
- every n node tree has n-1 edges
- \bullet Can determine if G is strongly connected (every pair nodes mutually reachable) in O(m+n) time
 - Pick an node s
 - Run BFS from s in G
 - Run BFS from s in G^{rev} (rev = reverse orientation of every edge in G)

- Return true iff all nodes reached in both BFS executions

- An undirected graph G = (V, E) is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end
- A graph G is bipartite iff it contain no odd length cycle • A DAG (directed acyclic graph) is a directed graph that
- contains no directed cycles • A topological order of a directed graph G is an ordering of
- they have some natural ordering • if G has a topological order, then G is a DAG
- if G is a DAG then G has a topological ordering
- If G is a DAG then G has a node with no incoming edges

its nodes so that for every edge (v_i, v_j) we have i < j, i.e.

Paths

- BFS
 - O(m+n) if graph given by it's adjacency representation
 - total time processing edges is $\sum_{u \in V} deg(u) = 2m$
 - Use a PQ, dequeue, loop through neighbors, if not visited then mark as visited, set distance to parent.currdistance + 1 and enqueue
- DFS
 - Use a stack, pop, if popped not visited, mark as visited, loop through neighbors and push neighbors to stack
- Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds:
 - No edge of G joins two nodes of the same layer, and G is bipartite
- An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite)

Greedy Algorithms

- Exchange Argument: Every algorithm can be gradually transformed to the greedy one without hurting it's quality
- Stays Ahead: In every step the greedy is no worse than the optimal
- Interval Scheduling Problem:
 - We have some set of jobs each with a start, s_i , and a finish, f_i time. Two jobs are compatible if they don't overlap
 - Obtain maximum number of mutually compatible jobs
 - Optimal Solution: Earliest Finish Time
 - $-O(n\log n)$
- Interval Partitioning Problem:
 - Given a set of lectures where each lecture j has start time s_j and finish time f_j
 - each lecture needs a classroom
 - each classroom can have one lecture at same time
 - Obtain the minimum number of classrooms to schedule all lectures such that no two lectures occur at the same time
 - Depth of a set of open intervals: maximum number that passes over any single point in the time-line
 - key observation: number of classrooms needed \geq depth
 - If the interval under consideration overlaps with all preceding intervals we need to allocate a new classroom
 - $-O(n\log n)$
 - greedy never scheduled two incompatible lectures in same room
- Scheduling to Minimize Lateness:
 - We have a single resource which processes one job at a time, job j requires t_j units of processing time and is due at time d_j
 - if j starts at s_j and finishes at $f_j = s_j + t_j$ time. **Lateness** is measured using the formula $\max(0, f_i - d_i)$
 - Schedule all jobs in such a way as to minimize the lateness $L_j = \max(0, f_j d_j)$
 - Earliest Deadline First
 - Lateness does not change if you swap jobs with the same deadline
 - deadlines are arbitrary and might be less then the processing times
 - there exists an optimal schedule with no idle time
 - The schedule produced by the greedy has no inversions
 - **Inversions**: The next deadline d+1 should never be less than d. A schedule A' has an inversion if a job i with a deadline d_i is scheduled before another job j with an earlier deadline such that $d_i < d_i$
 - All scheduled with no inversions and no idle time have the same lateness
- Dijkstra's Algorithm
 - Single-source shortest path algorithm

- Assumes:
 - * The start node s has a path to every other node
 - * All edge weights are ≥ 0
- d(u): the distance of the shortest path from s to u
- $-\ell(u,v)$: the length of the edge $\ell \in E$
- O(mn), using priority heap can get to $O(m \log n)$
- Bellman-Ford algorithm can be used if graph has negative edges (involved DP)

MST

- Given a graph G = (V, E) find a subset of the edges T such that $T \subseteq E$ so that G is connected and the total cost of all edges $\sum c_e \in T$ is as small as possible
- Assumptions:
 - G is connected
 - All edges have non-negative weights
 - G is undirected
 - All edges have distinct weights
- Cut Lemma: Assume that the cost of all edges is distinct. Let S be a subset of nodes that is neither empty nor equal to all of V, and let edge e = (v, w) be a minimum cost edge with one node in S and the other in V S. Then every minimum spanning tree will contain (v, w)