An Improvement of the Lucas-Kanade Optical-Flow Algorithm for every Circumstance

Lorenz Gerstmayr

Computer Engineering Group Faculty of Technology University of Bielefeld

2008-06-11

Corrected version: 2008-08-05

Today's talk

- Basics about optical flow
- Standard Lucas-Kanade method
- 3 Improvements
- 4 Discussion

Definition of optical flow

Image Brightness Constancy Constraint (IBCC)

A:

Image brightness constancy constraint:

$$A(\mathbf{p} + \mathbf{u}(\mathbf{p})) = B(\mathbf{p})$$

Common problems

Common problems

Optic flow equation

Image brightness constancy constraint:

$$A(\mathbf{p} + \mathbf{u}(\mathbf{p})) = B(\mathbf{p})$$

Optic flow equation:

First order Taylor approximation (with $\mathbf{u} = [u_x, u_y]^{\top}$):

$$A(\mathbf{p}) + A_x(\mathbf{p})u_x(\mathbf{p}) + A_y(\mathbf{p})u_y(\mathbf{p}) = B(\mathbf{p})$$

$$A + [A_x, A_y] \begin{pmatrix} u_x \\ u_y \end{pmatrix} = B$$

$$[A_x, A_y] \begin{pmatrix} u_x \\ u_y \end{pmatrix} + \underbrace{(A - B)}_{A_x} = 0$$

Optic flow equation:

$$[A_x, A_y] \begin{pmatrix} \mathbf{u}_x \\ \mathbf{u}_y \end{pmatrix} + A_t = 0$$

Underdetermined problem (aperture problem)

Approach:

Assuming optical flow to be locally constant

Weighting w.r.t. distance to center pixel ${\bf p}$ of image patch Ω :

$$e(\mathbf{u}) = \sum_{\mathbf{x} \in \Omega} w^2(\mathbf{x}) \left([A_x(\mathbf{x}), B_x(\mathbf{x})] \begin{pmatrix} u_x(\mathbf{x}) \\ u_y(\mathbf{x}) \end{pmatrix} + A_t(\mathbf{x}) \right)^2 \stackrel{!}{=} \min$$

Derivation

Weighted least squares approach

$$e(\mathbf{u}) = \sum_{\mathbf{x} \in \Omega} w^2 \left([A_x, A_y] \begin{pmatrix} u_x \\ u_y \end{pmatrix} + A_t \right)^2 \stackrel{!}{=} \min$$

Partial derivatives:

$$\frac{\partial e}{\partial u_x} = 2 \sum_{\mathbf{x} \in \Omega} w^2 \left([A_x, A_y] \begin{pmatrix} u_x \\ u_y \end{pmatrix} + A_t \right) A_x \stackrel{!}{=} \min$$

$$\frac{\partial e}{\partial u_y} = 2 \sum_{\mathbf{x} \in \Omega} w^2 \left([A_x, A_y] \begin{pmatrix} u_x \\ u_y \end{pmatrix} + A_t \right) A_y \stackrel{!}{=} \min$$

Weighted least squares approach:

$$\frac{\partial e}{\partial u_x} = 2 \sum_{\mathbf{x} \in \Omega} w^2 \left([A_x, A_y] \begin{pmatrix} u_x \\ u_y \end{pmatrix} + A_t \right) A_x \stackrel{!}{=} \min$$

$$\frac{\partial e}{\partial u_y} = 2 \sum_{\mathbf{x} \in \Omega} w^2 \left([A_x, A_y] \begin{pmatrix} u_x \\ u_y \end{pmatrix} + A_t \right) A_y \stackrel{!}{=} \min$$

Sorting:

$$\underbrace{\begin{pmatrix} \langle A_x A_x \rangle & \langle A_x A_y \rangle \\ \langle A_x A_y \rangle & \langle A_y A_y \rangle \end{pmatrix}}_{\mathbf{G}} \begin{pmatrix} u_x \\ u_y \end{pmatrix} = \underbrace{-\begin{pmatrix} \langle A_x A_t \rangle \\ \langle A_y A_t \rangle \end{pmatrix}}_{\mathbf{b}}$$
$$\langle a \rangle = \sum_{\mathbf{x} \in \mathbf{Q}} w^2(\mathbf{x}) a(\mathbf{x})$$

Solution

Weighted least squares approach:

$$\begin{aligned} \textbf{G} \textbf{u} &= \textbf{b} \\ \textbf{u} &= \textbf{G}^{-1} \textbf{b} \end{aligned}$$

Aperture problem

Eigenvalues λ_1, λ_2 of **G**:

$$\lambda_1, \lambda_2 > 0$$

$$\lambda_1 > 0, \lambda_2 \approx 0$$

$$\lambda_1, \lambda_2 \approx 0$$

Limitations and possible improvements

Standard LK

- baseline
- most efficient

Illumination Tolerance

illumination changes

Iterated LK

more accurate

LK with flowfield constraints

types of flowfields

Multiscale <u>LK</u>

large displacements

Global LK

global flow computation

Sketch

Motivation

- Deviations due to first order approximation
- Large displacements within aperture
- Iteratively refine the flow vector

Improvement:

Sketch

Motivation

- Deviations due to first order approximation
- Large displacements within aperture
- Iteratively refine the flow vector

Improvement:

Sketch

Motivation

- Deviations due to first order approximation
- Large displacements within aperture
- Iteratively refine the flow vector

Improvement:

Sketch

Motivation

- Deviations due to first order approximation
- Large displacements within aperture
- Iteratively refine the flow vector

Improvement:

Sketch

Motivation

- Deviations due to first order approximation
- Large displacements within aperture
- Iteratively refine the flow vector

Improvement:

Sketch

Motivation

- Deviations due to first order approximation
- Large displacements within aperture
- Iteratively refine the flow vector

Improvement:

Image brightness constancy constraint:

$$A(\mathbf{p} + \mathbf{u}(\mathbf{p})) = B(\mathbf{p})$$

Refined IBCC:

$$A(\mathbf{p} + \mathbf{u}^{(\kappa-1)}(\mathbf{p}) + \mathbf{t}^{(\kappa)}(\mathbf{p})) = B(\mathbf{p})$$

Iterations $1 \le \kappa \le k$

Recursion: $\mathbf{u}^{(\kappa)}$ from $\mathbf{u}^{(\kappa-1)}$ and $\mathbf{t}^{(\kappa)}$

Initial estimate: $\mathbf{u}^0 = \mathbf{0}$

Weighted least squares approach

$$e^{(\kappa)}\left(\mathbf{t}^{(\kappa)}\right) = \sum_{\mathbf{x} \in \Omega} w^{2}(\mathbf{x}) \left(A\left(\underbrace{\mathbf{x} + \mathbf{u}^{(\kappa-1)}}_{\eta} + \mathbf{t}^{(\kappa)}\right) - B(\mathbf{x}) \right)^{2} \stackrel{!}{=} 0$$

$$e(\mathbf{t}) = \sum_{\mathbf{x} \in \Omega} w^{2} \left(A\left(\eta + \mathbf{t}\right) - B\right)^{2}$$

Taylor-approximation of $A(\eta + \mathbf{t})$ (omitting \mathbf{x}):

$$= \sum_{\mathbf{x} \in \Omega} w^2 \left(\underbrace{A(\eta) - B}_{A_t(\eta)} + [A_x(\eta), A_y(\eta)] \begin{pmatrix} t_x \\ t_y \end{pmatrix} \right)^2$$

Weighted least squares approach

$$e(\mathbf{t}) = \sum_{\mathbf{x} \in \Omega} w^2 \left(A_t(\eta) + [A_x(\eta), A_y(\eta)] \begin{pmatrix} t_x \\ t_y \end{pmatrix} \right)^2$$

Partial derivatives:

$$\left[\frac{\partial e}{\partial t_x}, \frac{\partial e}{\partial t_y}\right]^{\top} = 2 \sum_{\mathbf{x} \in \Omega} w^2 \left(A_t(\eta) + \left[A_x(\eta), A_y(\eta)\right] \begin{pmatrix} t_x \\ t_y \end{pmatrix}\right) \begin{pmatrix} A_x(\eta) \\ A_y(\eta) \end{pmatrix}$$

Solution (with $\eta = \mathbf{x} + \mathbf{u}^{(\kappa-1)}$):

$$\begin{pmatrix} \langle A_x(\eta) A_x(\eta) \rangle & \langle A_x(\eta) A_y(\eta) \rangle \\ \langle A_x(\eta) A_y(\eta) \rangle & \langle A_y(\eta) A_y(\eta) \rangle \end{pmatrix} \begin{pmatrix} t_x \\ t_y \end{pmatrix} = - \begin{pmatrix} \langle A_x(\eta) A_t(\eta) \rangle \\ \langle A_y(\eta) A_t(\eta) \rangle \end{pmatrix}$$

Simplified solution

Solution

$$\underbrace{\begin{pmatrix} \langle A_{x}(\eta)A_{x}(\eta) \rangle & \langle A_{x}(\eta)A_{y}(\eta) \rangle \\ \langle A_{x}(\eta)A_{y}(\eta) \rangle & \langle A_{y}(\eta)A_{y}(\eta) \rangle \end{pmatrix}}_{=\mathbf{G}(\eta)} \begin{pmatrix} t_{x} \\ t_{y} \end{pmatrix} = \underbrace{-\begin{pmatrix} \langle A_{x}(\eta)A_{t}(\eta) \rangle \\ \langle A_{y}(\eta)A_{t}(\eta) \rangle \end{pmatrix}}_{=\mathbf{b}(\eta)}$$

Problem

- **G** depends on $\eta = \mathbf{x} + \mathbf{u}^{(\kappa-1)}$ \Rightarrow Recomputation of \mathbf{G}^{-1} needed for each iteration
- A and B contain identical gradient information
- Compute B_x and B_y instead of A_x and A_y

Simplified solution

Solution

$$\underbrace{\begin{pmatrix} \langle A_{x}(\eta)A_{x}(\eta) \rangle & \langle A_{x}(\eta)A_{y}(\eta) \rangle \\ \langle A_{x}(\eta)A_{y}(\eta) \rangle & \langle A_{y}(\eta)A_{y}(\eta) \rangle \end{pmatrix}}_{=\mathbf{G}(\eta)} \begin{pmatrix} t_{x} \\ t_{y} \end{pmatrix} = \underbrace{-\begin{pmatrix} \langle A_{x}(\eta)A_{t}(\eta) \rangle \\ \langle A_{y}(\eta)A_{t}(\eta) \rangle \end{pmatrix}}_{=\mathbf{b}(\eta)}$$

Simplified solution

$$\underbrace{\begin{pmatrix} \langle B_{x}B_{x} \rangle & \langle B_{x}B_{y} \rangle \\ \langle B_{x}B_{y} \rangle & \langle B_{y}B_{y} \rangle \end{pmatrix}}_{=\mathbf{G}} \underbrace{\begin{pmatrix} t_{x} \\ t_{y} \end{pmatrix}}_{=\mathbf{b}(\eta)} = \underbrace{- \begin{pmatrix} \langle B_{x}A_{t}(\eta) \rangle \\ \langle B_{y}A_{t}(\eta) \rangle \end{pmatrix}}_{=\mathbf{b}(\eta)}$$

Building blocks

Refinement vector

$$\mathbf{t}^{(\kappa)} = \mathbf{G}^{-1}\mathbf{b}^{(\kappa)}$$

Image mismatch vector

$$\mathbf{b}^{(\kappa)} = -\left[\langle B_{\mathsf{x}} A_t^{(\kappa)} \rangle, \langle B_{\mathsf{y}} A_t^{(\kappa)} \rangle\right]^{\top}$$

Temporal derivative

$$A_t^{(\kappa)} = B(\mathbf{p}) - A(\mathbf{p} + \mathbf{u}^{(\kappa-1)})$$

Recursion

$$\mathbf{u}^{(\kappa)} = \mathbf{u}^{(\kappa-1)} + \mathbf{t}^{(\kappa)}$$

Sketch

Motivation and approach

- IBCC and Taylor only valid for small movements
- Larger displacements are common
- Multi-scale approach
- Coarse-to-fine propagation
- Identical aperture sizes but shifted center position

Improvement

Motivation and approach

- IBCC and Taylor only valid for small movements
- Larger displacements are common
- Multi-scale approach
- Coarse-to-fine propagation
- Identical aperture sizes but shifted center position

Improvement

Sketch

Motivation and approach

- IBCC and Taylor only valid for small movements
- Larger displacements are common
- Multi-scale approach
- Coarse-to-fine propagation
- Identical aperture sizes but shifted center position

Improvement

Sketch

Motivation and approach

- IBCC and Taylor only valid for small movements
- Larger displacements are common
- Multi-scale approach
- Coarse-to-fine propagation
- Identical aperture sizes but shifted center position

Improvement

Sketch

Motivation and approach

- IBCC and Taylor only valid for small movements
- Larger displacements are common
- Multi-scale approach
- Coarse-to-fine propagation
- Identical aperture sizes but shifted center position

Improvement

Sketch

Motivation and approach

- IBCC and Taylor only valid for small movements
- Larger displacements are common
- Multi-scale approach
- Coarse-to-fine propagation
- Identical aperture sizes but shifted center position

Improvement

Sketch

Motivation and approach

- IBCC and Taylor only valid for small movements
- Larger displacements are common
- Multi-scale approach
- Coarse-to-fine propagation
- Identical aperture sizes but shifted center position

Improvement

Gaussian image pyramid

Theory

Pyramidal images: $I^{(\kappa)}$

Pixel positions: $\mathbf{p}^{(\kappa)} = \frac{1}{2^{\kappa}}\mathbf{p}$

Gaussian image pyramid

Theory

Pyramidal images: $I^{(\kappa)}$

Pixel positions: $\mathbf{p}^{(\kappa)} = \frac{1}{2^{\kappa}}\mathbf{p}$

Algorithm

Input:

Two image pyramides $A^{(\lambda)}$ and $B^{(\lambda)}$, $0 \le \lambda \le \ell - 1$

Coarse-to-fine recursion (at level λ)

- Flow estimate $\mathbf{u}^{(\lambda)}$ is given (initial estimate: $\mathbf{u}^{(\ell-1)} = \mathbf{0}$)
- Compute refinement vector $\mathbf{t}^{(\lambda)}$:

$$e\left(\mathbf{t}^{(\lambda)}\right) = \sum_{\mathbf{x} \in \Omega} w(\mathbf{x})^2 \left(A\left(\mathbf{x} + \mathbf{u}^{(\lambda)} + \mathbf{t}^{(\lambda)}\right) - B(\mathbf{x}) \right)^2$$

• Propagation to finer level $\lambda - 1$:

$$\mathbf{u}^{(\lambda-1)} = 2\left(\mathbf{u}^{(\lambda)} + \mathbf{t}^{(\lambda)}\right)$$

Sketch

Improvement

Tolerance against illumination changes

IBCC

$$A(\mathbf{p} + \mathbf{u}(\mathbf{p})) = B(\mathbf{p})$$

Refined IBCC

$$A(\mathbf{p} + \mathbf{u}(\mathbf{p})) = \alpha(\mathbf{p})B(\mathbf{p}) + \beta(\mathbf{p})$$

Brigthness change model

- Linear gray value changes
- ullet α and β locally constant
- Compute $\mathbf{t} = [u_x, u_y, \alpha, \beta]^{\top}$

Sketch

Improvement

Tolerance against illumination changes

IBCC

$$A(\mathbf{p} + \mathbf{u}(\mathbf{p})) = B(\mathbf{p})$$

Refined IBCC

$$A(\mathbf{p} + \mathbf{u}(\mathbf{p})) = \alpha(\mathbf{p})B(\mathbf{p}) + \beta(\mathbf{p})$$

Brigthness change model

- Linear gray value changes
- ullet α and β locally constant
- Compute $\mathbf{t} = [u_x, u_y, \alpha, \beta]^{\top}$

Sketch

Improvement

Tolerance against illumination changes

IBCC

$$A(\mathbf{p} + \mathbf{u}(\mathbf{p})) = B(\mathbf{p})$$

Refined IBCC

$$A(\mathbf{p} + \mathbf{u}(\mathbf{p})) = \alpha(\mathbf{p})B(\mathbf{p}) + \beta(\mathbf{p})$$

Brigthness change model

- Linear gray value changes
- ullet α and β locally constant
- Compute $\mathbf{t} = [u_x, u_y, \alpha, \beta]^{\top}$

Sketch

Improvement

Tolerance against illumination changes

IBCC

$$A(\mathbf{p} + \mathbf{u}(\mathbf{p})) = B(\mathbf{p})$$

Refined IBCC

$$A(\mathbf{p} + \mathbf{u}(\mathbf{p})) = \alpha(\mathbf{p})B(\mathbf{p}) + \beta(\mathbf{p})$$

Brigthness change model

- Linear gray value changes
- ullet α and β locally constant
- Compute $\mathbf{t} = [u_x, u_y, \alpha, \beta]^{\top}$

Sketch

Improvement

Tolerance against illumination changes

IBCC

$$A(\mathbf{p} + \mathbf{u}(\mathbf{p})) = B(\mathbf{p})$$

Refined IBCC

$$A(\mathbf{p} + \mathbf{u}(\mathbf{p})) = \alpha(\mathbf{p})B(\mathbf{p}) + \beta(\mathbf{p})$$

Brigthness change model

- Linear gray value changes
- ullet α and β locally constant
- Compute $\mathbf{t} = [u_x, u_y, \alpha, \beta]^{\top}$

Tolerance against illumination changes

Derivation

Error function (omitting x)

$$e(\mathbf{t}) = \sum_{\mathbf{x} \in \Omega} w^2 \left([A_x, A_y]^\top \begin{pmatrix} u_x \\ u_y \end{pmatrix} + A - \alpha B - \beta \right)^2$$

Derivation

Partial derivatives (omitting x)

$$\frac{\partial e}{\partial u_x} = 2 \sum_{\mathbf{x} \in \Omega} w^2 \left([A_x, A_y]^\top \begin{pmatrix} u_x \\ u_y \end{pmatrix} + A - \alpha B - \beta \right) A_x$$

$$\frac{\partial e}{\partial u_y} = 2 \sum_{\mathbf{x} \in \Omega} w^2 \left([A_x, A_y]^\top \begin{pmatrix} u_x \\ u_y \end{pmatrix} + A - \alpha B - \beta \right) A_y$$

$$\frac{\partial e}{\partial \alpha} = -2 \sum_{\mathbf{x} \in \Omega} w^2 \left([A_x, A_y]^\top \begin{pmatrix} u_x \\ u_y \end{pmatrix} + A - \alpha B - \beta \right) B$$

$$\frac{\partial e}{\partial \beta} = -2 \sum_{\mathbf{x} \in \Omega} w^2 \left([A_x, A_y]^\top \begin{pmatrix} u_x \\ u_y \end{pmatrix} + A - \alpha B - \beta \right)$$

Solution

Error function (omitting x)

$$e(\mathbf{t}) = \sum_{\mathbf{x} \in \Omega} w^2 \left([A_x, A_y]^\top \begin{pmatrix} u_x \\ u_y \end{pmatrix} + A - \alpha B - \beta \right)^2$$

Solution

$$\mathbf{t} = \mathbf{G}^{-1}\mathbf{b}$$

$$\begin{pmatrix} u_{x} \\ u_{y} \\ \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \langle A_{x}A_{x} \rangle & \langle A_{x}A_{y} \rangle & \langle -A_{x}B \rangle & \langle -A_{x} \rangle \\ \langle A_{x}A_{y} \rangle & \langle A_{y}A_{y} \rangle & \langle -A_{y}B \rangle & \langle -A_{y} \rangle \\ \langle -A_{x}B \rangle & \langle -A_{y}B \rangle & \langle BB \rangle & \langle B \rangle \\ \langle -A_{x} \rangle & \langle -A_{y} \rangle & \langle B \rangle & \langle -1 \rangle \end{pmatrix}^{-1} \begin{pmatrix} \langle -A_{x}A \rangle \\ \langle -A_{y}A \rangle \\ \langle AB \rangle \\ \langle -A \rangle \end{pmatrix}$$

Tolerance against illumination changes

Discussion

Properties of **G**

- Full rank → invertible
- III-conditioned
 - Areas of weak/regular texture
 - Multiple interpretations of motion and illuminance

Radiometric cues α and β

- Discontinuous at motion boundaries or occlusions
 - ⇒ errouneous estimates
 - ⇒ large residuals
- Physical interpretations possible:
 - e.g. irradiance, surface normals, reflectance

Motivation

- Known camera motion
- Known object motion
- Flowfield "patterns"

Approach

Parameterize the flowfields:

$$\mathbf{u}(\mathbf{x}) = \mathbf{f}(\mathbf{x}, \mathbf{a})$$

Solve for a

Improvements

- More accurate flow fields
- Uses available knowledge about flow fields
- Derive motion parameters
- Flowfield segmentation

Motivation

- Known camera motion
- Known object motion
- Flowfield "patterns"

Approach

Parameterize the flowfields:

$$\mathbf{u}(\mathbf{x}) = \mathbf{f}(\mathbf{x}, \mathbf{a})$$

Solve for a

Example: motion segmentation

Motion models

Translational model

Affine model

$$\begin{pmatrix} u_x \\ u_y \end{pmatrix} = \begin{pmatrix} a_1x + a_2y + a_3 \\ a_4x + a_5y + a_6 \end{pmatrix}$$

Solution

Refined image brightness constancy constraint

$$A(\mathbf{p} + \mathbf{f}(\mathbf{p}, \mathbf{a})) = B(\mathbf{p})$$

Example: Taylor approximation for affine model

$$A(\mathbf{p}) + A_x(\mathbf{p})(a_1p_x + a_2p_y + a_3) + A_y(\mathbf{p})(a_4p_x + a_5p_y + a_6) = B(\mathbf{p})$$

Properties and discussion

No interesting properties mentioned

From local to global optical flow

Local vs. global optical flow

Local optical flow

- "Lucas-Kanade"
- Sparse flow fields
- Analytical solution
- Parsimonious
- Robust against noise

Global optical flow

- "Horn-Schunck"
- Dense flow fields (fill-in)
- Iterative solution
- Computationally cheap
- Less robust

Horn-Schunck in a nutshell

Global error functional (omitting x)

$$e(\mathbf{u}) = \sum_{\mathbf{x} \in \Gamma} \left(\underbrace{(A_{x}u_{x} + A_{y}u_{y} + A_{t})^{2}}_{\mathsf{IBCC}} + \varphi \underbrace{\left(|\nabla u_{x}|^{2} + |\nabla u_{y}|^{2}\right)}_{\mathsf{Divergence}} \right)$$

Smoothness weight $\varphi > 0$, Γ is the whole image

Solution

Compute optimal \mathbf{u} which minimizes $e(\mathbf{u})$

- Euler-Lagrange mechanism ⇒ system of equations
- Numerical solution (Gauss-Seidel, SOR, ...)

Lucas-Kanade meets Horn-Schunck

Horn-Schunck error functional

$$e(\mathbf{u}) = \sum_{\mathbf{x} \in \Gamma} \left((A_{\mathbf{x}} u_{\mathbf{x}} + A_{\mathbf{y}} u_{\mathbf{y}} + A_{\mathbf{t}})^{2} + \varphi \left(|\nabla u_{\mathbf{x}}|^{2} + |\nabla u_{\mathbf{y}}|^{2} \right) \right)$$

Combined error functional

$$e(\mathbf{u}) = \sum_{\mathbf{x} \in \Gamma} \left(\sum_{\mathbf{x}' \in \Omega} \mathbf{w}^2 \left([A_{\mathbf{x}}, A_{\mathbf{y}}] \begin{pmatrix} u_{\mathbf{x}} \\ u_{\mathbf{y}} \end{pmatrix} + A_t \right)^2 + \dots \right.$$
$$\varphi(|\nabla u_{\mathbf{x}}|^2 + |\nabla u_{\mathbf{y}}|^2))$$

Lucas-Kanade meets Horn-Schunck

Combined error functional

$$e(\mathbf{u}) = e_{\mathsf{LKHS}}(\mathbf{u}) + \varphi e_{\mathsf{R}}(\mathbf{u})$$

Euler-Lagrange solutions

$$0 = \Delta u_{x} - \frac{1}{\varphi} \left(\langle A_{x} A_{x} \rangle u_{x} + \langle A_{x} A_{y} \rangle u_{y} + \langle A_{x} A_{t} \rangle \right)$$
$$0 = \Delta u_{y} - \frac{1}{\varphi} \left(\langle A_{x} A_{y} \rangle u_{x} + \langle A_{y} A_{y} \rangle u_{y} + \langle A_{y} A_{t} \rangle \right)$$

Laplaceans Δu_x , Δu_y Discrete approximation Standard solvers for sparse sets of linear equations (SOR) Summary

Limitations and possible improvements

Standard LK

- baseline
- most efficient

Illumination Tolerance

illumination changes

Iterated LK

more accurate

LK with flowfield constraints

types of flowfields

Multiscale LK

large displacements

Global LK

global flow computation

Results?!?

Unifying review

Does not exist

Reviewing myself

- Different data sets
- Unclear parameters
- Missing visualizations for parameters
- From some papers only a small subset was presented
- Quality of figures

Benchmarking myself

- Availability of implementations
- Costs and benefits?

Relevance for my work

Standard LK

- tested
- 12° to 15°

Illumination Tolerance

TODO

Iterated LK

- tested
- 8° to 11°

LK with flowfield constraints

- motion seg.?
- parameters?

Multiscale LK

- tested
- 5° to 8°

Global LK

role of fill-in effects?