Lecture12

Saturday, October 30, 2021 4:27 PM

Lecture12

Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

Fall, 2021

(Department of CE

Lecture #12

1 / 15

Review: Inner products on real linear space

An inner product on V is a function $\langle,\rangle:V\times V\to\mathbb{R}$ such that

- $\langle v, v \rangle = 0$ if and only if v = 0.

(Department of CE)

Lecture #12

Review: Euclidean inner product

• The Euclidean inner product on \mathbb{R}^n :

$$\begin{cases} \langle , \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \\ \\ \langle x, y \rangle = y^T x = y_1 x_1 + \dots + y_n x_n. \end{cases}$$

where
$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 and $y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$.

(Department of CE)

Lecture #12

3 / 15

Review

• Suppose that V is an inner product space. For $v \in V$, we define the norm of v, denoted ||v||, by $||v|| = \sqrt{\langle v, v \rangle}$.

(Department of CE

Lecture #12

Review

- Suppose that V is an inner product space. For $v \in V$, we define the norm of v, denoted $\|v\|$, by $\|v\| = \sqrt{\langle v, v \rangle}$.
- Two vectors $u, v \in V$ are said to be orthogonal if $\langle u, v \rangle = 0$.

(Department of CE)

Lecture #12

4/15

Review

- Suppose that V is an inner product space. For $v \in V$, we define the norm of v, denoted $\|v\|$, by $\|v\| = \sqrt{\langle v,v \rangle}$.
- Two vectors $u, v \in V$ are said to be orthogonal if $\langle u, v \rangle = 0$.

Department of CE

Lecture #1

Review

• Cauchy-Schwarz Inequality: Let V be an inner product and $u, v \in V$. Then

$$|\langle u, v \rangle| \leq ||u|| ||v||$$

(Department of CE)

Lecture #12

5/15

Review

• Cauchy-Schwarz Inequality: Let V be an inner product and $u, v \in V$. Then

$$|\left\langle u,v\right\rangle |\leqslant \|u\|\|v\|$$

• Triangle Inequality: Let V be an inner product. If $u, v \in V$, then

$$||u + v|| \le ||u|| + ||v||$$

(Department of CE)

Lecture #12

Review

• If nonzero vectors v_1, \ldots, v_n are mutually orthogonal (every vector is perpendicular to every other), then those vectors are linearly independent.

(Department of CE.)

Lecture #12

6/15

Orthonormal vectors

Definition

۹: ۱۹

Vectors g_1, \ldots, g_n are orthonormal if

$$q_i^T q_j = \begin{cases} 0 & \text{whenever} & \underline{i \neq j} \\ 1 & \text{whenever} & i = j \end{cases}$$
 (for orthogonality)

A matrix with orthonormal columns will be denoted by Q.

• Example. The standard vectors e_1, \ldots, e_n .

@= [q, -- · q,]

(Department of CE)

Lecture #12

7 / 15

Orthogonal Subspaces

Definition

Two subspaces W_1 and W_2 of the same space V are orthogonal, denoted by $W_1 \perp W_2$, if and only if each vector $w_1 \in W_1$ is orthogonal to each vector $w_2 \in W_2$:

$$\langle w_1, w_2 \rangle = 0.$$

for all w_1 and w_2 in W_1 and W_2 , respectively.

W2 = Spar ([N])

W2 = Spar ([N])

Orthogonal Subspaces

Definition

Two subspaces W_1 and W_2 of the same space V are orthogonal, denoted by $W_1 \perp W_2$, if and only if each vector $w_1 \in W_1$ is orthogonal to each vector $w_2 \in W_2$:

$$\langle w_1, w_2 \rangle = 0.$$

for all w_1 and w_2 in W_1 and W_2 , respectively.

8/15

Orthogonal complement of a subspace

Definition

Given a subspace W in linear space V, the space of all vectors orthogonal to W is called the orthogonal complement of V. It is denoted by W^{\perp}

- We emphasize that W_1 and W_2 can be orthogonal without being
- $W_{\perp} = \operatorname{span}((1,0,0))$ and $W_{\underline{p}} = \operatorname{span}((0,1,0))$. Where ∇

W1= Span(lel) wison Wz = 5pm/(eze3)

Fundamental theorem of orthogonality

Fundamental theorem of orthogonality

Let
$$\Lambda \in M_{\underline{mn}}(\mathbb{R})$$
. $A = \begin{bmatrix} A_1 \\ \vdots \\ A_m \end{bmatrix}$ $W = \operatorname{Spen}(\{A_1, ..., A_m\}) = C(A^T)$

- The row space is orthogonal to the nullspace (in \mathbb{R}^n).
- 2 The column space is orthogonal to the left nullspace (in \mathbb{R}^m).

integrated of a subspace

$$V_1 = V_2 = V_3 = V_4 = V_$$

- The row space is orthogonal to the numspace (in IX.").
- ② The column space is orthogonal to the left nullspace (in \mathbb{R}^m).

$$A2 = \left(\frac{1}{A} \right)^{2} =$$

·= <1 [] > 5 (· 1 3 - 2) x AZ r (A) X = [A, x] = [] (Agrenies)=W= NIA)

Fundamental theorem of orthogonality

Let $A \in M_{mn}(\mathbb{R})$.

N(A)

- The nullspace is the orthogonal complement of the row space in

MEJE

2 The left nullspace is the orthogonal complement of the column

NC C(AT) = NIA)

$$(c(A))^{\perp} = \lambda(A^{\mathsf{T}})$$

din NIATI + din CIATI=M

Column space and row spase of

ACMmn (R)

dim c/A) + det N/A) = 1

 \bullet $N(A) + N(A)^{\perp} = \mathbb{R}^n$.

- $\bullet \ N(A) \cap N(A)^{\perp} = \{0\}.$
- Direct Sum: $\mathbb{R}^n = N(A) \oplus N(A)^{\perp}$. $\mathbb{R}^n = N(A) \oplus \mathbb{C}(A^T)$.

- Thus, for each $\underline{x} \in \mathbb{R}^n$, there are $\underline{x_r} \in C(\underline{A^T})$ and $\underline{x_n} \in N(A)$ such that $x = x_n + x_r$.
- $\bullet \ Ax = Ax_r + Ax_n.$
 - **1** The nullspace component goes to zero: $Ax_n = 0$.
 - ② The row space component goes to the column space: $Ax = Ax_r$.

$$w \in W$$
, $w \in W^{\dagger}$
 $w = N(A)$
 $w = N(A)$

Department of CE

Lecture #12

N(A)= (e?

Column space and row space | P = NIA) (C(AT) = C(AT)

Proposition

From the row space to the column space, A is actually invertible. Every vector in the column space comes from exactly one vector in the row space.

$$+: \underline{C(A^{1})} = \overline{R} \xrightarrow{A} \underline{C(A)}$$

$$x = x_{r} \in C(A^{1}) \xrightarrow{x_{r}} Ax_{r}$$

$$x = Ax_{r}$$

(Department of CE

Lecture #12

13 / 15

Column space and row space

Corollary

Every matrix transforms its row space onto its column space.

- $A \in M_{mn}(\mathbb{R})$ is invertible on those r-dimensional spaces.
- A on its nullspace is zero.
- Thus A^{-1} exists if and only if r = m = n.
- When A^{-1} fails to exist, the best substitute is the pseudoinverse A^{+}
- One formula for A^+ depends on the singular value decomposition under some conditions.

Department of CE

Lecture #1

