Name:	
J#:	Dr. Clontz
Date:	

$\begin{array}{c} {\rm MASTERY~QUIZ~DAY~15} \\ {\rm Version~5} \end{array}$

Math 237 – Linear Algebra Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d V2.	Mark:							
Determine if	$\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix} $ can	oe writte	en as a linear combination of the vectors	$\begin{bmatrix} 5\\2\\-3\\2 \end{bmatrix}$,	$\begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, and	$\begin{bmatrix} 8 \\ 3 \\ 5 \\ -1 \end{bmatrix}$	

Standard S1. $\begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$ is linearly dependent or linearly independent

Mark:

Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix} -3\\ -8\\ 0\end{bmatrix}, \begin{bmatrix} 1\\ 2\\ 2\end{bmatrix}, \begin{bmatrix} 0\\ -1\\ 3\end{bmatrix}\right\}\right)$$
. Find a basis for W .

Standard S4.

Mark:

Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix} -3\\ -8\\ 0\end{bmatrix}, \begin{bmatrix} 1\\ 2\\ 2\end{bmatrix}, \begin{bmatrix} 0\\ -1\\ 3\end{bmatrix}\right\}\right)$$
. Compute the dimension of W .

 ${\bf Additional\ Notes/Marks}$