Лекция 9

Спектральный анализ: оператор скалярного типа

Содержание лекции:

В настоящей лекции мы рассмотрим простейший случай спектрального анализа оператора скалярного типа - оператора, все собственные подпространства которого одномерны. Мы получим вид спектральной теоремы для этого случая, а также обсудим ее применение для решения задач функционального анализа.

Ключевые слова:

Оператор скалярного типа, простой спектр, оператор с простым спектром, спектральный проектор, операторное разложение единицы, спектральная теорема, функция от оператора.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

9.1 Простой спектр

Оператором скалярного типа называется эндоморфизм $\varphi \in \operatorname{End}_{\Bbbk}(X)$ собственные векторы которого образуют базис пространства X.

Пример 9.1. Пусть $X = \mathbb{R}^n$ и $\varphi = A$, тогда

$$A = diag\{\lambda_1, \lambda_2, \dots, \lambda_n\} \Rightarrow \sigma_A = \{\lambda_1, \lambda_2, \dots, \lambda_n\}, \quad Ae_i = \lambda_i e_i. \tag{9.1}$$

Пример 9.2. Пусть $X = L_1 \dot{+} L_2$ и $\mathcal{P}_{L_1}^{||L_2|} : X \to X$, так что

$$\mathcal{P}_{L_1}^{\parallel L_2} \leftrightarrow P_{L_1}^{\parallel L_2} = diag\{1, 1, \dots, 1_k; 0, 0, \dots, 0_{n-k}\} \quad \Leftrightarrow \quad \sigma_{\mathcal{P}} = \{0, 1\},$$
 (9.2)

и собственный базис формируется из базиса L_1 и его дополнения L_2 .

Собственное значение λ называется **простым**, если оно является корнем $\chi_{\varphi}(\lambda)$ единичной кратности. Иными словами, λ_0 - простое, если:

$$\chi_{\varphi}(\lambda) = 0$$
 и $\chi_{\varphi}(\lambda) = (\lambda - \lambda_0) \cdot \tilde{\chi}_{\varphi}(\lambda), \quad \tilde{\chi}_{\varphi}(\lambda_0) \neq 0.$

Линейный оператор, у которого все собственные значения простые называется **оператором с простым спектром**.

Nota bene В Примере (9.1) спектр оператора φ простой, а в Примере (9.2) - нет.

Лемма 9.1. В алгебраически замкнутом поле все собственные подпространства линейного оператора c простым спектром одномерны.

Пусть $\varphi\in \mathrm{End}_\Bbbk(X)$ и спектр $\sigma_\varphi=\{\lambda_i\})_{i=1}^n$ - простой. Рассмотрим инвариантные подпространства

$$L_i = \{x \in X : \varphi x = \lambda_i x\}, \quad \lambda_i \in \sigma_{\varphi}, \quad \dim L_i = n_i.$$

Имеет место

$$X = \bigoplus_{i=1}^{n} L_i \quad \Rightarrow \quad \dim X = \sum_{i=1}^{n} \dim L_i = \sum_{i=1}^{n} n_i = n, \quad n_i \ge 1,$$

откуда сразу следует, что $n_i = 1$.

СПЕКТРАЛЬНЫЙ АНАЛИЗ: ...

 ${\it Nota \ bene}$ Инвариантные подпространства L_i имеют вид

$$L_i = \ker(\varphi - \lambda_i \mathcal{I}).$$

Теорема 9.1. Пусть $\varphi \in \operatorname{End}_{\Bbbk}(X)$ - линейный оператор c простым спектром

$$\sigma_{\varphi} = \{\lambda_i\}_{i=1}^n, \quad \varphi x_i = \lambda_i x_i,$$

тогда матрица A_{φ} линейного оператора φ , заданная в базисе $\{e_i\}_{i=1}^n$ может быть приведена к диагональной форме A_{φ}^d посредством преобразования подобия:

$$A^d = T^{-1}AT,$$

где T - матрица перехода от базиса $\left\{e_i\right\}_{i=1}^n$ к базису $\left\{x_i\right\}_{i=1}^n$

Утверждение следует из замечания о том, что столбцами матрицы T являются собственные векторы оператора $\varphi.$

Пусть λ_i - собственное значение линейного оператора $\varphi \in \operatorname{End}_{\Bbbk}(X)$. Спектральным проектором \mathcal{P}_i называется оператор проектирования на подпространство L_i , отвечающее собственному значению λ_i .

 $oldsymbol{Nota bene}$ Если $\{x_i\}_{i=1}^n$ - базис X и $\{x_j\}_{j=1}^k$ - базис L_i , тогда

$$X = L_i \oplus \mathcal{L} \left\{ x_{k+1}, x_{k+2}, \dots, x_n \right\}.$$

Лемма 9.2. Пусть $\varphi \in \operatorname{End}_{\Bbbk}(X)$ - линейный оператор c простым спектром $\sigma_{\varphi} = \{\lambda_i\}_{i=1}^n, \, \lambda_j \neq \lambda_{i\neq j}$. Тогда спектральные проекторы φ имеют вид:

$$\mathcal{P}_i(y) = (f^i, y) x_i, \quad \forall y \in X,$$

где $\{x_i\}_{i=1}^n$ - базис пространства X из собственных векторов φ и $\{f^k\}_{k=1}^n$ - сопряженный ему базис.

Положим, $x_i \in L_i$ и $y \in \mathcal{L}\{x_{k+1}, x_{k+2}, \dots, x_n\}$, и значит нам требуется доказать, что:

$$\mathcal{P}_i x_i = x_i$$
, и $\mathcal{P}_i y = 0$.

Действительно,

$$\mathcal{P}_i x_i = (f^i, x_i) x_i = \delta_i^i x_i = x_i, \quad i = 1, \dots, k,$$

$$\mathcal{P}_i x_{k \neq i} = (f^i, x_k) x_i = \delta_i^k x_i = 0.$$

Nota bene Легко увидеть, что спектральный проектор, как и вообще любой проектор, обладает свойством $\mathcal{P}_i^2 = \mathcal{P}_i$, которое называется идемпотентностью.

СПЕКТРАЛЬНЫЙ АНАЛИЗ: ...

Лемма 9.3. В условиях предыдущей леммы справедливо

$$X = L_{\lambda_1} \oplus L_{\lambda_2} \oplus \ldots \oplus L_{\lambda_n},$$

то есть для любого $x \in X$ существует единственное разложение:

$$x = x_1 + x_2 + \ldots + x_n$$
, так что $x_i \in L_i$.

Пусть $\{e_i\}_{i=1}^n$ - базис X, так что $\varphi e_i = \lambda_i e_i$. Тогда существует единственное разложение

$$x = \sum_{i=1}^{n} \xi^{i} e_{i} = \sum_{i=1}^{n} x_{i},$$

что доказывает лемму.

◀

Лемма 9.4. Для любого элемента $x \in X$ линейного пространства X справедливо разложение

$$x = \sum_{i=1}^{n} \mathcal{P}_i(x)$$

Пусть $\{e_i\}_{i=1}^n$ и $\{f_k\}_{k=1}^n$ - сопряженные базисы пространств X и X^* соответственно, тогла

$$x = \sum_{i=1}^{n} \xi^{i} e_{i} = \sum_{i=1}^{n} (f^{i}, x) e_{i} = \sum_{i=1}^{n} \mathcal{P}_{i}(x).$$

4

Теорема 9.2. (спектральная теорема) Пусть $\varphi \in \operatorname{End}_{\Bbbk}(X)$ - оператор с простым спектром, тогда имеет место разложение (спектральное)

$$\varphi = \sum_{i=1}^{n} \lambda_i \mathcal{P}_i \quad \Leftrightarrow \quad \forall x \in X \quad \varphi x = \sum_{i=1}^{n} \lambda_i \mathcal{P}_i(x)$$

▶

$$\varphi x = \varphi\left(\sum_{i=1}^{n} \mathcal{P}_{i} x\right) = \sum_{i=1}^{n} \varphi\left(\mathcal{P}_{i} x\right) = \sum_{i=1}^{n} \lambda_{i} \mathcal{P}_{i}(x).$$

9.2 Кратные собственные числа

Nota bene Пусть теперь $\sigma_{\varphi} = \{\lambda_1, \lambda_2, \dots, \lambda_k\}$, причем $k < n = \dim X$. Каждому собственному значению λ_i отвечает собственное подпространство L_i , $\dim L_i = m_i$, и в силу свойства оператора скалярного типа

$$L_i = \mathcal{L}\left\{e_1^{(i)}, e_2^{(i)}, \dots, e_{m_i}^{(i)}\right\}, \quad \sum_{i=1}^k m_i = n.$$

Лемма 9.5. Спектрального проектор на инвариантные подпространства линейного оператора скалярного типа имеет вид

$$\mathcal{P}_{i}* = \sum_{j=1}^{m_{i}} \left(f_{(i)}^{j}; *\right) e_{j}^{(i)}$$

Доказательство аналогично случаю с простым спектром.

Nota bene Сохраняется также свойство идемпотентности

$$\mathcal{P}_i^2 = \mathcal{P}_i$$
.

 $oldsymbol{Nota}$ bene Базис линейного пространства X

$$\left\{e_1^1, e_2^1, \dots, e_{m_1}^1; e_1^2, e_2^2, \dots, e_{m_2}^2; \dots; e_1^k, e_2^k, \dots, e_{m_k}^k\right\}.$$

Лемма 9.6. Разложение пространства X в прямую сумму инвариантных подпространств L_i

$$X = \dot{+} \sum_{i=1}^{k} L_i \quad \Leftrightarrow \quad x = \sum_{i=1}^{k} \mathcal{P}_i.$$

Теорема 9.3. (спектральная теорема для оператора скалярного типа)

$$\varphi = \sum_{i=1}^{k} \lambda_i \mathcal{P}_i \quad \Leftrightarrow \quad \forall x \in X \quad \varphi x = \sum_{i=1}^{k} \lambda_i \mathcal{P}_i(x)$$

Лемма 9.7. Число $m_i = \dim L_i$ равно кратности характеристического корня λ_i полинома $\chi_{\varphi}(\lambda)$ и называется спектральной (геометрической) кратностью собственного значения λ_i .

$$\chi_{\varphi}(\lambda) = \det (\varphi - \lambda \mathcal{I}) = \prod_{i=1}^{k} (\lambda_i - \lambda)^{m_i}.$$

СПЕКТРАЛЬНЫЙ АНАЛИЗ: ...

Теорема 9.4. (полная система инвариантов) Пусть $\sigma_{\varphi} = \{\lambda_1, \lambda_2, \dots, \lambda_k\}$ - спектр скалярного линейного оператора φ . Каждому собственному значению λ_i отвечает собственное подространство $L_i = \ker (\varphi - \lambda_i \mathcal{I})$. Положим $\dim L_i = m_i$. Тогда $\{\lambda_i, m_i\}_{i=1}^k$ - полная система инвариантов линейного оператора φ .

Характеристический полином линейного оператора φ

$$\chi_{\varphi}(\lambda) = \prod_{i=1}^{k} (\lambda - \lambda_i)^{m_i}.$$

является его инвариантом. Следовательно все его корни также являются его инвариантами. С другой стороны, имея данный набор инвариантов легко построить матрицу оператора в собственном базисе, в котором она будет иметь вид:

$$\varphi \leftrightarrow A = diag \{\lambda_1, \dots, \lambda_1; \lambda_2, \dots, \lambda_2; \dots; \lambda_k, \dots, \lambda_k\}.$$

9.3 Функциональное исчисление

Теорема 9.5. Пусть $p(\lambda)$ - скалярный полином $(\lambda \in \mathbb{R}, \mathbb{C})$. Тогда

$$p(\varphi) = \sum_{i=1}^{k} p(\lambda i) \mathcal{P}_i, \quad p(\lambda) = \sum_{j} \alpha_j \lambda^j.$$

Для доказательства достаточно проверить три свойства:

$$\varphi + \varphi = \sum_{i=1}^{k} (\lambda_i + \lambda_i) \mathcal{P}_i = 2\varphi;$$

$$\alpha \varphi = \sum_{i=1}^{k} (\alpha \lambda_i) \mathcal{P}_i;$$

$$\varphi \cdot \varphi = \left(\sum_{i=1}^{k} \lambda_i \mathcal{P}_i\right) \left(\sum_{j=1}^{k} \lambda_j \mathcal{P}_{\lambda_j}\right) = \sum_{i,j=1}^{k} \lambda_i \lambda_j \mathcal{P}_i \mathcal{P}_{\lambda_j} =$$

$$= \sum_{i,j=1}^{k} \lambda_i \lambda_j \delta_{ij} \mathcal{P}_{\lambda_j} = \sum_{i=1}^{k} \lambda_i \lambda_i \mathcal{P}_i = \sum_{i=1}^{k} \lambda_i^2 \mathcal{P}_i = \varphi^2.$$

 $Nota\ bene$ Для произвольной функции f имеет место

$$f(\varphi) = \sum_{i=1}^{k} f(\lambda_i) \mathcal{P}_i.$$