Feature Attribution:

Introduction to the Classic Methodologies

2024-07-19

Li Peng-Hsuan 李朋軒

Agenda

- Why feature attribution
- Classic methodologies—the general, the good and the sound
- The SOTA and the limit

Agenda

- Why feature attribution
- Classic methodologies—the general, the good and the sound
- The SOTA and the limit

Why Feature Attribution

- Model validation
- Knowledge discovery

Cats and Dogs

dog dog

dog

Sequence & Motif

Input: trained BPnet model

Output: profile contribution scores for each TF

Agenda

- Why feature attribution
- Classic methodologies—the general, the good and the sound
- The SOTA and the limit

The General, the Good and the Sound

- The shapley methodology
- The *inversion* methodology
- The gradient methodology

The General

Signature:

Signature:

Signature:

Signature:

\$100B > \$50B

.....drill oil from the Arctic Oceansend dissidents to the moon

Signature:

\$100B \$10B

We contributed \$90B!

Signature order

Order 1

Order 2

Economics vs. ML

The Shapley Methodology

Sample $\boldsymbol{\mathcal{X}}$

Sample $\boldsymbol{\mathcal{X}}$

Reference **T**

The Good

Attribution for a linear function

$$y = f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{w} + b$$

Attribution for ReLU

Attribution for Max-Pooling

Attribution for CNN

$$y = f(x) = g_3(g_2(g_1(x))) = g_3 \circ g_2 \circ g_1(x)$$

$$x = f^{-1}(y) = g_1^{-1} \circ g_2^{-1} \circ g_3^{-1}(y)$$

$$y = f(x) = g_3(g_2(g_1(x))) = g_3 \circ g_2 \circ g_1(x)$$

$$x = f^{-1}(y) = g_1^{-1} \circ g_2^{-1} \circ g_3^{-1}(y)$$

Hey! But functions are not generally invertible!

The *Inversion* Methodology

Given a model *f*

$$g_i^{-1}$$

$$g_i^{-1}(y|\mathbf{x}) = g_i^L(y)$$

 $f = g_n \circ \cdots \circ g_2 \circ g_1$

$$\mathbf{c} = f^L(y) = g_1^L \circ g_2^L \circ \cdots \circ g_n^L(y)$$

The Sound

Cat!

Still cat!

No cat (

How about using gradient as contribution?

$$c = \frac{\partial f(x)}{\partial x}$$

How about using gradient as contribution?

$$c = \frac{\partial f(x)}{\partial x}$$

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_A} > \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_B}$$

95%

Totally sun

80%

Still sun

50%

Maybe not sun

100%

$$\frac{\partial f(\mathbf{x})}{\partial A} = 0$$

50%

$$\frac{\partial f(\mathbf{x}^{50\%})}{\partial A} > 0$$

How about adding up gradients at different percentages from reference?

$$c = \sum_{\alpha} \frac{\partial f(\mathbf{x}^{\alpha})}{\partial \mathbf{x}}$$

The *Gradient* Methodology

$$c = (x - r) \cdot \int_{\alpha=0}^{1} \frac{\partial f(r + \alpha(x - r))}{\partial x} d\alpha$$

50

Agenda

- Why feature attribution
- Classic methodologies—the general, the good and the sound
- The SOTA and the limit

The SOTA and the Limit

- SOTA methods
- The general limit to feature attribution
- Remarks

Shapley methodology	Inversion methodology	Gradient methodology
SHAP ¹	DeepLIFT ²	Integrated Gradients ³
For every function	For CNN	For deep networks
 Has variants with different niche Kernel SHAP → general functions Deep SHAP → CNN Tree SHAP → decision trees 	 Tailored inverse for CNN, for which it is empirically powerful Not theoretically sound, no robustness guarantee for other model types 	 Has soundness and robustness guarantee Powerful for deep differentiable functions Weak for non-differentiable functions, e.g., max-pooling Has a tunable parameter for tradeoff between speed and accuracy
[1] A Unified Approach to Interpreting Model Predictions. https://arxiv.org/abs/1705.07874	[2] Learning Important Features Through Propagating Activation Differences. https://arxiv.org/abs/1704.02685	[3] Axiomatic Attribution for Deep Networks. https://arxiv.org/abs/1703.01365

$$y = f(x) = x_1 + x_2 + x_3$$

$$c_1 = x_1$$

$$c_2 = x_2$$

$$c_3 = x_3$$

$$y = f(\mathbf{x}) = x_1 x_2 + x_3$$

 $c_1 = ?$

 $c_2 = ?$

 $c_3 = x_3$

$$y = f(\mathbf{x}) = x_1 x_2 + x_3$$

$$c_1 = c_2 = \frac{x_1 x_2}{2} \qquad \textcircled{2}$$

$$c_3 = x_3$$

$$y = f(\mathbf{x}) = x_1^{x_2} + x_3$$

$$c_2 = ???$$

$$c_3 = x_3$$

Various sound, robust, powerful methods exist for many popular model types.

A generally *correct* linear attribution doe not exist.

Large *generative* foundation models have started a new chapter.