个人选择理论

李林静

E-Mail: linjing.li@ia.ac.cn

中国科学院自动化研究所 (CASIA) 复杂系统管理与控制国家重点实验室 (SKLMCCS) 互联网大数据与安全信息学研究中心 (iBasic)

中国科学院大学人工智能学院

Version: April 13, 2021

1 基本设定

在微观经济学中,对个人的选择行为 (Choice behavior) 进行建模,通常是假定存在一个选择集合 (Choice set, the set of alternatives):

$$X = \{x, y, z, \cdots\}$$

从手段上看,存在以下两种不同的方法:

- 基于偏好 (preference-based), 假设个人对选择集 X 中的各选项存在偏好序关系。
- 基于选择 (choice-based),即直接对观测到的选择行为进行建模。

2 偏好, Preference

基于偏好的方法,通常假设个人存在理性的 (Rational) 偏好关系,同时可以用效用函数 (Utility function) 来表示这个理性的偏好关系 (通常还需对选择集 X 作进一步的假设,在选择集 X 有限的情况下,理性的偏好关系总可以由一个效用函数来表示)。

2.1 偏好关系

偏好关系 (Preference relation), \succeq , 定义了选择集 X 上的一种比较关系。 $\forall x, y \in X$, $x \succeq y$ 表示选项 x 至少跟选项 y 一样好。两种派生关系:

- 严格偏好关系 (Strict preference relation), \succ , $\forall x, y \in X$, $x \succ y \Leftrightarrow x \succeq y$, $y \not\succeq x$.
- 无差异关系 (Indifference), \sim , $\forall x, y \in X$, $x \sim y \Leftrightarrow x \succeq y$, $y \succeq x$.

称选择集 X 上的偏好关系 \succ 为理性的,若其同时满足完全性和传递性:

- 完全性 (Completeness), $\forall x, y \in X$, $x \succeq y$ 和 $y \succeq x$ 至少一个成立。
- 传递性 (Transitivity), $\forall x, y, z \in X$, 若 $x \succeq y$ 且 $y \succeq z$, 则 $x \succeq z$.

完全性和传递性都是对偏好关系施加的很强约束,现实中,个人的行为极有可能违背这两条假设。相关讨论可以参考行为经济学相关文献。

2.2 效用函数

现代意义上的效用函数,一般是指序数效用 (Ordinal),即只有效用函数值的大小关系有意义。更一般的说,序数特性是指在严格单调增变换 (Strictly increasing transformation) 中保持不变的性质。在传统意义上的,基数效用 (Cardinal) 还跟具体的效用值相关。

称函数 $u: X \to \mathbb{R}$ 为表示 X 上偏好关系 \succeq 的效用函数,若 $\forall x, y \in X$

$$x \succeq y \quad \Leftrightarrow \quad u(x) \ge u(y)$$

通常,表示同一个偏好关系的效用函数并不唯一。因为序数特性在增变换下保持不变,故若 u 是一个效用函数,函数 $f: \mathbb{R} \to \mathbb{R}$ 为严格单调增函数,则 $f \circ u$ 为效用函数,且 跟效用函数 u 表示同一个偏好关系。

偏好关系能够被效用函数表示的必要条件是其为理性偏好。在选择集有限的情况下,容易证明这就是充分必要条件(构造一个效用函数)。

直观解释: 假设 $u(\cdot)$ 表示 X 上的偏好 \succeq 。首先,因为 $u(\cdot)$ 在 X 上定义,故 $\forall x,y \in X$,u(x) 和 u(y) 有定义,且为实数值。注意到,在实数集 $\mathbb R$ 上, $u(x) \ge u(y)$ 和 $u(y) \ge u(x)$ 必有一个成立,故有 $x \succeq y$ 或 $y \succeq x$,即完全性成立。其次, $\forall x,y,z \in X$,若 $x \succeq y$ 且 $y \succeq z$,因为 $u(\cdot)$ 表示 \succeq ,故有 $u(x) \ge u(y)$ 且 $u(y) \ge u(z)$ 。而在实数集上,显然有 $u(x) \ge u(z)$,亦即 $x \succ z$,故传递性成立。

3 选择, Choice

基于选择的方法最先由 Samuelson 提出,通过在选择集上定义选择结构 (Choice structure) 来描述观测到的个体选择行为。利用这一结构,可以定义显示偏好关系 (revealed preference relation)。通常,基于选择的方法要求的知识要少于基于偏好的方法,其只需要个人已观测到的选择行为。

3.1 选择结构与显示偏好

选择集 X 上的选择结构 $(\mathcal{B}, C(\cdot))$:

- 预算集族 \mathcal{B} ,由 X 的子集构成, $\forall B \in \mathcal{B}$ 称为预算集 (budget set), \mathcal{B} 不一定包含 X 的全部子集。
- 选择规则 (对应, correpondence) $C(\cdot)$, Choice rule, $\forall B \in \mathcal{B}$, $C(B) \subset B$ 。即个体面临预算集 B 时, C(B) 表示其可能做出的选择。

给定选择集 X 上的选择结构 $(\mathcal{B}, C(\cdot))$,则可以诱导如下的显示偏好关系 (Revealed preference relation) \succ *:

$$x \succeq^{\star} y \iff \exists B \in \mathcal{B}, x, y \in B, x \in C(B)$$

即 x 显示出至少跟 y 一样好。称 x 显示出偏好于 y,若 $\exists B \in \mathcal{B}, x, y \in B, x \in C(B)$,但 $y \notin C(B)$ 。

3.2 显示偏好弱公理

称选择结构 $(\mathcal{B}, C(\cdot))$ 满足显示偏好弱公理 (Weak axiom of revealed preference) τ 若其具有如下特性:

- 对某 (些) $B \in \mathcal{B}$,若 $x, y \in B$ 有 $x \in C(B)$;
- 则对 $\forall B' \in \mathcal{B}$,且 $x, y \in B'$,若 $y \in C(B')$,必有 $x \in C(B')$ 。

即当 y 存在时,x 被选择,则满足弱公理的选择结构不能存在包含 x,y 的预算集,选择规则在其上包含 y 而不包含 x。利用显示偏好关系,弱公理可以表述为: 若 $x \succeq^* y$ (x 显示出至少跟 y 一样的好),则 y 不能显示出偏好于 x。

弱公理也等价于以下表述,对 $B, B' \in \mathcal{B}$, $x, y \in B$, $x, y \in B'$, 若 $x \in C(B)$, $y \in C(B')$, 则必有 $\{x, y\} \subset C(B)$ 和 $\{x, y\} \subset C(B')$ 。进一步可得, $\forall B, B' \in \mathcal{B}$,若 $C(B) \cap B' \neq \emptyset$,且 $C(B') \cap B \neq \emptyset$,则有 $C(B) \cap B' \subset C(B')$ 和 $C(B') \cap B \subset C(B)$ 。若选择规则为单值,则有 C(B') = C(B),而且条件 $C(B) \cap B' \neq \emptyset$,等价于 $C(B) \in B'$ 。 $C(B') \cap B \neq \emptyset$,等价于 $C(B') \in B$ 。

4 偏好与选择间的关系

对于上述两种方法,一个疑问是他们是否等价?通常而言,二者是不等价的,基于选择的方法所要求的知识要少于基于偏好的方法。若选择结构的预算集族包含选择集的全体子集,则二者等价。

首先考虑由偏好关系生成的 (generate) 选择结构。设在选择集 X 上有定义好的偏好关系 \succeq 和预算集族 \mathcal{B} ,则可以由 \succeq 生成 X 上的一个选择结构,记为 $(\mathcal{B}, C^*(\cdot,\succeq))$,其选择规则定义为:

$$\forall B \in \mathcal{B}, \ C^{\star}(B, \succeq) = \{x \in B \mid x \succeq y, \ \forall y \in B\}$$

选择集 X 上的偏好关系 \succeq 是理性的,则其生成的选择结构 $(\mathcal{B}, C^{\star}(\cdot,\succeq))$ 满足弱公理。

直观解释: 若 $\exists B \in \mathcal{B}, x, y \in B, x \in C^*(B,\succeq)$,则按照生成规则的定义有 $x \succeq y$ 。现假设 $\exists B' \in \mathcal{B}, x, y \in B', y \in C^*(B',\succeq)$,为说明生成的选择结构满足弱公理,还需要证明 $x \in C^*(B',\succeq)$ 。注意到,按生成规则可得 $\forall z \in B', y \succeq z$,前面已经得到 $x \succeq y$,故由传递性 (理性偏好) 可得 $\forall z \in B', x \succeq z$,即 $x \in C^*(B',\succeq)$ 。

另一方面,考虑选择结构的理性化。给定选择集 X 上的选择结构 ($\mathcal{B}, C(\cdot)$) 和理性偏好 \succeq ,称 \succeq 是选择规则 $C(\cdot)$ 相对于预算集族 \mathcal{B} 的理性化 (\succeq 在预算集族 \mathcal{B} 上理性化选择规则 $C(\cdot)$),若 \succeq 生成选择结构 ($\mathcal{B}, C(\cdot)$),即

$$\forall B \in \mathcal{B}, \ C(B) = C^{\star}(B, \succeq)$$

因为理性偏好生成的选择结构满足弱公理,故一个选择结构可理性化的必要条件就是 其必须满足弱公理。但这并不充分,选择结构能否理性化还依赖于其预算集族。

若选择集 X 上的选择结构 $(\mathcal{B},C(\cdot))$ 满足弱公理,且 \mathcal{B} 包含 X 的所有不超过三个元素的子集,则其可被唯一的理性偏好关系理性化,且这一偏好关系就是选择结构诱导的显示偏好关系 \succeq^* 。

直观解释: 首先说明唯一性,因为 \mathcal{B} 包含所有的二元子集,故理性化偏好若存在的话必定唯一,否则将会跟 $C(\cdot)$ 在二元子集上的行为矛盾。

其次,说明显示偏好 \succeq 生成选择结构 ($\mathcal{B}, C(\cdot)$),利用证明集合相等的方法。 $\forall B \in \mathcal{B}$,若 $x \in C(B)$,则 $\forall y \in B$,根据显示偏好关系的定义,可得 $x \succeq^* y$ 。根据生成规则,可得 $x \in C^*(B, \succeq^*)$,从而有 $C(B) \subset C^*(B, \succeq^*)$ 。若有 $x \in C^*(B, \succeq^*)$,则根据生成规则,可得 $\forall y \in B, x \succeq^* y$,从而 $x \in C(B)$,即 $C^*(B, \succeq^*) \subset C(B)$ 。

最后,说明显示偏好关系 \succeq 是理性的。因为 \mathcal{B} 包含所有的二元子集,故 $\forall \{x,y\} \in \mathcal{B}$,要么 $x \in C(\{x,y\})$,要么 $y \in C(\{x,y\})$,或者 $x,y \in C(\{x,y\})$ 。所以,要么 $x \succeq^* y$,要么 $y \succeq^* x$,或者 $x \sim y$,即显示偏好关系满足完全性,以下说明其满足传递性。假设有 $x \succeq^* y$, $y \succeq^* z$,需要证明 $x \succeq^* z$ 。注意到预算集族包含所有三元子集,故 $\{x,y,z\} \in \mathcal{B}$ 。若 $x \in C(\{x,y,z\})$,则有 $x \succeq^* z$ 。若 $y \in C(\{x,y,z\})$,因为 $x \succeq^* y$,弱公理保证 $x \in C(\{x,y,z\})$,从而 $x \succeq^* z$ 。若 $z \in C(\{x,y,z\})$,因为 $y \succeq^* z$,弱公理保证 $y \in C(\{x,y,z\})$,从而由上面的推理同样可得 $x \succeq^* z$ 。