Wireless Systems Security

EE/NiS/TM-584-A/WS

Bruce McNair bmcnair@stevens.edu

Week 1

Basic considerations in Wireless Systems

Wireless Systems Security

Wireless Systems Security

Wireless Communications Topics

RF Spectrum

Typical ranges

Thermal Noise

Noise Figure

Example: a VHF receiver with a bandwidth of 20 kHz

- Noise figure is a measure degradation of the real system to an ideal receiver
 - Caveats!!!: operating temperature, bandwidth, impedance

Sensitivity

The full story behind receiver sensitivity:

- The full story is a link budget analysis we'll leave that until later. The simplified question:
 - What input level to the receiver will give acceptable performance?

$$P_{in} = (kTB \text{ noise}) + (NF \text{ degradation}) + (SNR_{acceptable_performance})$$

= $(-174 \text{ dBm/Hz}) + 10 \log B + NF_{dB} + (SNR_{acceptable_performance})$

Sensitivity

How do you define "acceptable performance?"

- Data: SNR at demodulator to give a particular BER or BLER
- Voice: SNR at demodulator to give a particular SINAD
- Video: SNR at demodulator to give particular picture SNR
- Assume a receiver bandwidth of 4 MHz, SNR at demodulator of 45 dB, NF=8 dB (much like a TV receiver)
 - What is the required input signal level in dBm, μ W, μ V in 75 Ω ?

$$P_{in}$$
 = (-174 dBm/Hz)+10log $B + NF_{dB} + (SNR_{acceptable_performance})$
= (-174)+10log(4•10⁶)+8+45 dBm
= -174+66.02+8+45 dBm
= -55 dBm = -25 dBμW = .003 μW = 1500 μV in 75 Ω

Noise Floor

Signals below the noise floor of a receiver are not discernable.

Modulation - baseband signals

 Consider a baseband signal, consisting of a few sinusoids. Examine the signal in the time domain and in the frequency domain:

 This signal cannot be transmitted very far in its present format, nor can we allow multiple users to share the same spectrum, so the signal has to be modulated onto a "carrier"

Modulation - passband signals

 By "translating" the previous signal to a "carrier" frequency, we obtain a passband signal:

• This signal has all of its energy near the carrier frequency, in this case 1000 Hz

Modulation - a generic communications system

Consider a simple communications system:

Modulation - a generic communications system

Consider a simple communications system:

Modulation - a generic communications system

Consider a simple communications system:

Modulation - modifiable signal parameters

 Consider a generic equation for a modulated signal m(t), generated by a baseband signal b(t). Start with an unmodulated carrier signal:

$$m(t) = A_c \cos(w_c t + \phi_c)$$

- we can modulate the carrier's
 - amplitude (as set by m_A)
 - frequency (as set by m_f), or
 - phase (as set by m_p)

Or multiple parameters could be modulated simultaneously

$$m(t) = A_c [1 + m_A b(t)] \cos((w_c + m_f b(t))t + m_p b(t) + \phi_c)$$

Analog modulation - AM

 With the baseband signal as before, set m_A to 1 (100% modulation) and the other modulation parameters to zero to obtain a purely AM signal

FM and PM

- FM and PM can be thought of as the same modulation technique with proper choice of the input signal:
 - Define the instantaneous phase of a sinusoid:

$$\phi(t) = \int_{-\infty}^{t} \omega(x) dx$$

 so, by integrating the modulating waveform presented to a phase modulation system, we have a frequency modulation system. And conversely, by differentiating the input to a frequency modulated system, we have a phase modulated system.

Bandwidth requirements of FM/PM systems

 Again, consider the earlier baseband modulating signal, this time frequency modulating the carrier.

Bandwidth requirements of FM/PM systems

• An FM signal with a simple sinusoidal modulating waveform

Sideband amplitudes for a sinusoidally modulated carrier

 The ith sideband amplitude is described by a ith order Bessel function of the 1st kind

Performance considerations for FM systems

Noise/bandwidth tradeoffs in FM

Digital Modulation

As before, the generic expression for a modulated signal

$$m(t) = A_c [1 + m_A b(t)] \cos((w_c + m_f b(t))t + m_p b(t) + \phi_c)$$

• For digital modulation, b(t) is a digital waveform – discrete in time and level:

$$b(t) = b(nT) \in \{l_1, l_2, ..., l_m\}$$

 The modulated signal "shifts" between discrete states, so digital modulation techniques are referred to differently than analog modulation:

Analog	Digital
AM	Amplitude Shift Keying (ASK)
FM	Frequency Shift Keying (FSK)
PM	Phase Shift Keying (PSK)

M-ary signaling

The size of the baseband signaling set may be binary:

$$b(t) = b(nT) \in \{l_1, l_2\} = \{0, 1\}$$

Or M-ary

$$b(t) = b(nT) \in \{l_1, l_2, ..., l_m\}$$

M-ary signaling

The size of the baseband signaling set may be binary:

$$b(t) = b(nT) \in \{l_1, l_2\} = \{0, 1\}$$

Or M-ary

$$b(t) = b(nT) \in \{l_1, l_2, ..., l_m\}$$

ASK

• Amplitude Shift Keying (ASK) = On-Off Keying (OOK) if the modulation is 100%

FSK

FSK maintains the carrier magnitude

PSK

• PSK maintains the carrier amplitude and the <u>average</u> carrier frequency

Practical examples of analog and digital modulation systems

	Analog	Digital
AM	•AM broadcast 550-1650 kHz •Shortwave broadcast 2-30 MHz •HF Amateur radio (especially SSB) •TV video	•Cable modems •DSL •4800-56k analog modems
PM	• ????	•FAX modems •HDTV •high speed amateur packet radio •212 analog modem (1200 bps) •deep-space links •spread spectrum systems
FM	•FM broadcast 88-108 MHz •TV audio •C-band satellite TV •AMPS cellular •Police/fire/public service VHF/UHF radio	 •103 analog modem (300 bps) •News & amateur HF radio teletype (RTTY) •low speed amateur packet radio (1200 bps) •Tactical military radio systems

Impairment Effects for Different Modulation Schemes

	Analog	Digital
AM	Interferer creates a "beat-tone"	Interferer can shift decision level
PM	• ????	 Interferer can shift constellation, interfering with decisions Interference can appear to be excess noise
FM	For higher modulation indices, FM capture effect suppresses weaker signal. May quiet desired signal or make interferer undetectable	Low modulation index reduces FM capture effect