IBM HR Analysis

Group 3 Python Final Project

Justin Ghazi Nicholas Laudadio Nien-Thing Chiang Duke (Xinyu) Li In [75]: df = pd.read_csv('HR.csv')
 df.head()

Out[75]:

0 <u>0</u>	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber	EnvironmentSatist
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	2	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	4	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	5	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	7	

In [76]: df.shape

Out[76]: (1470, 35)

Explore the missing value

In [78]:	df.isnull().sum().head(20)							
Out[78]:	Age	0						
100000000000000000000000000000000000000	Attrition	0						
	BusinessTravel	0						
	DailyRate	0						
	Department	0						
	DistanceFromHome	0						
	Education	0						
	EducationField	0						
	EmployeeCount	0						
	EmployeeNumber	0						
	EnvironmentSatisfaction	0						
	Gender	0						
	HourlyRate	0						
	JobInvolvement	0						
	JobLevel	0						
	JobRole	0						
	JobSatisfaction	0						
	MaritalStatus	0						
	MonthlyIncome	0						
	MonthlyRate	0						
	dtype: int64							
In [77]:	df.isnull().sum().sum()							
Out[77]:	0							

Data Cleaning

- first replace Yes and No in Attrition with 1 and 0.

```
In [33]: dfl.replace(to_replace='Yes', value=1.0, inplace=True)
    dfl.replace(to_replace='Y', value=1.0, inplace=True)
    dfl.replace(to_replace='No', value= 0.0, inplace=True)
    dfl.replace(to_replace='N', value= 0.0, inplace=True)
```

- For Gender column, transfer Female into 0, Male into 1

```
In [35]: df1.replace(to_replace='Male', value= 1.0, inplace=True)
df1.replace(to_replace='Female', value= 0.0, inplace=True)
```

```
In [84]: dfl.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1470 entries, 0 to 1469
         Data columns (total 35 columns):
                                      1470 non-null int64
         Age
         Attrition
                                      1470 non-null float64
         BusinessTravel
                                      1470 non-null object
                                      1470 non-null int64
         DailyRate
         Department
                                      1470 non-null object
         DistanceFromHome
                                      1470 non-null int64
         Education
                                      1470 non-null int64
         EducationField
                                      1470 non-null object
         EmployeeCount
                                      1470 non-null int64
         EmployeeNumber
                                      1470 non-null int64
         EnvironmentSatisfaction
                                      1470 non-null int64
         Gender
                                      1470 non-null float64
                                      1470 non-null int64
         HourlyRate
         JobInvolvement
                                      1470 non-null int64
         JobLevel
                                      1470 non-null int64
         JobRole
                                      1470 non-null object
                                      1470 non-null int64
         JobSatisfaction
         MaritalStatus
                                      1470 non-null object
         MonthlyIncome
                                      1470 non-null int64
         MonthlyRate
                                      1470 non-null int64
```

Data Exploration

```
In [39]: df2['Age1'] = pd.cut(df2.Age,5)
In [40]: sns.countplot(y='Agel', data=df2)
Out[40]: <matplotlib.axes._subplots.AxesSubplot at 0x1260a90b8>
             (17.958, 26.4)
               (26.4, 34.8]
               (34.8, 43.2]
               (43.2, 51.6]
               (51.6, 60.0]
                               100
                                         200
                                                  300
                                                          400
                                                                    500
                                             count
```

In [28]: sns.distplot(df1.MonthlyIncome)

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x1184fbe80>


```
df2['satisfaction'] = df2.RelationshipSatisfaction + df2.EnvironmentSatisfaction + df2.JobSatisfaction
df2.groupby(by=['Department'])[['OverTime', 'WorkLifeBalance', 'satisfaction', 'MonthlyIncome', \
                                     'PercentSalaryHike', 'StockOptionLevel', 'Attrition']].mean()
                      OverTime WorkLifeBalance satisfaction MonthlyIncome PercentSalaryHike StockOptionLevel
                                                                                                         Attrition
           Department
      Human Resources
                       0.269841
                                      2.920635
                                                 8.174603
                                                             6654.507937
                                                                               14.761905
                                                                                                0.777778 0.190476
Research & Development
                       0.281998
                                      2.725286
                                                 8.178980
                                                             6281.252862
                                                                               15.291363
                                                                                                0.804370
                                                                                                        0.138398
                                                                                                0.773543 0.206278
                Sales
                       0.286996
                                      2.816143
                                                 8.125561
                                                             6959.172646
                                                                               15.096413
```

One-hot encoding

```
1 = ['BusinessTravel', 'Department', 'EducationField', 'JobRole', 'MaritalStatus']

def one_hot(df,1):
    for n in 1:
        df = pd.get_dummies(df,columns = [n])
    return df

df2 = one_hot(df1,1)
```



```
In [104]: dt2.feature_importances_
Out[104]: array([0.
                           , 0.08079671, 0.
                                                   , 0.
                                                               , 0.
                           , 0.
                                                   , 0.
                                                               , 0.
                 0.30299613, 0.
                                                               , 0.28944502,
                                       , 0.
                                                   , 0.
                                                   , 0.
                                       , 0.
                                                               , 0.
                 0.11702951, 0.
                                       , 0.0351275 , 0.
                                                               , 0.
                 0.
                                                               , 0.
                           , 0.
                                                   , 0.
                 0.
                                                                , 0.
                 0.
                           , 0.
                                       , 0.
                                                   , 0.
                                                                , 0.
                           , 0.
                                       , 0.
                                                   , 0.
                                                                , 0.
                 0.06576693, 0.
                                       , 0.
                                                   , 0.
                                                                , 0.
                 0.1088382 1)
In [105]: d = {X.columns[i] : dt2.feature importances [i] for i in range(0,len(X.columns))}
In [109]: s = pd.Series(d)
          s.nlargest(5)
Out[109]: MonthlyIncome
                                  0.302996
          OverTime
                                  0.289445
          TotalWorkingYears
                                  0.117030
          MaritalStatus Single
                                  0.108838
          DailyRate
                                  0.080797
          dtype: float64
```


Point 1: How to attract more young talents?

K-means: Cluster all the employees to 3 groups

```
K-Means Model
In [27]: from sklearn.cluster import KMeans
In [29]: clu = KMeans(n clusters=3, random state=0)
In [30]: clu
Out[30]: KMeans(algorithm='auto', copy x=True, init='k-means++', max iter=300,
                n clusters=3, n init=10, n jobs=None, precompute distances='auto',
                random_state=0, tol=0.0001, verbose=0)
         Normalization
In [31]: from sklearn.preprocessing import StandardScaler
          ss = StandardScaler()
         df2nol =ss.fit transform(df2)
In [33]: clu.fit(df2nol)
Out[33]: KMeans(algorithm='auto', copy x=True, init='k-means++', max iter=300,
                n clusters=3, n init=10, n jobs=None, precompute distances='auto',
                random state=0, tol=0.0001, verbose=0)
In [34]: clu.labels
Out[34]: array([2, 1, 1, ..., 1, 2, 1], dtype=int32)
```

- 1. Build the Model
- 2. Normalization

K-means: Cluster all the employees to 3 groups

	Age	Attrition	DailyRate	DistanceFromHome	Education	EnvironmentSatisfaction	Gender	HourlyRate	JobInvolvement
cluster									
0	46.039841	0.055777	809.717131	8.928287	3.087649	2.713147	0.513944	66.123506	2.717131
1	34.996341	0.164634	801.456098	9.178049	2.859756	2.745122	0.629268	66.159756	2.750000
2	35.150376	0.220551	800.052632	9.388471	2.912281	2.679198	0.593985	65.192982	2.696742

Attrition rate is different, but other part are very similar.

Group Demography:

MonthlyIncome	TotalWorkingYears	Department_Human Resources	Department_Research & Development	Department_Sales
15035.039841	23.561753	0.051793	0.760956	0.187251
4178.826829	8.476829	0.060976	0.939024	0.000000
5911.969925	9.313283	0.000000	0.000000	1.000000

Group 0 - Senior Manager Group 1 - Young Talent (R&D) Group 2 - Young Talent (Sales)

Group Demography:

0 1

If you are the boss, which group should you look at?

Of course Young Talent!

1. Subset Young Talent

100000	<pre>dfyoungtalent = df1[df1.cluster != 0] dfyoungtalent.head()</pre>											
	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EnvironmentSatisfaction	Gender	HourlyRate	Joblnv
0	41	1.0	Travel_Rarely	1102	Sales	1	2	Life Sciences	2	0.0	94	
1	49	0.0	Travel_Frequently	279	Research & Devel	8	1	Life Sciences	3	1.0	61	
2	37	1.0	Travel_Rarely	1373	Research & Devel	2	2	Other	4	1.0	92	
3	33	0.0	Travel_Frequently	1392	Research & Devel	3	4	Life Sciences	4	0.0	56	
4	27	0.0	Travel_Rarely	591	Research & Devel	2	1	Medical	1	1.0	40	

2. Pcut Monthly Income

dfyoungtalent['binned_income'] = pd.qcut(dfyoungtalent.MonthlyIncome,5)

U shape:

If we plot for everyone:

U shape:

Other companies have higher salary level!!!!

Suggestion for boss

We should increase monthly income for the young talent whose monthly income between 5000 - 20000

Point 2: Money is The Root of All Decisions...Right?

Research & Development

Department

Human Resources

sns.catplot(x='Department', y='MonthlyIncome', hue = 'Attrition', data=df, kind ='bar', aspect = 2)

R&D attrition is high in comparison with total attrition

Sales

2000

```
sns.catplot(x='RelationshipSatisfaction',y='MonthlyIncome', hue='Attrition', \
col='Department', kind='point', data=df, aspect=2)
```


Relationship Satisfaction is high, monthly income is similar. But still attrition?

```
sns.catplot(x='RelationshipSatisfaction',y='YearsAtCompany', hue='Attrition', \
col='Department', kind='point', data=df, aspect=2)
```


Working for moderate amount of time, yet attrition still?

Job satisfaction is fairly low....Interesting

Suggestions for Decision Makers

- Scale the R&D Department:
 - More strategic projects
 - Increase budget
 - Create more higher-tier roles
 - Create more promotion opportunities
 - Create more workshops
- Important: Ensure changes do not compromise high relationship satisfaction

Point 3: Why are Research Directors Quitting?

Who is quitting when making higher Monthly Income?

JobRole	Attrition	
Healthcare Representative	0	7453.557377
	1	8548.222222
Human Resources	0	4391.750000
	1	3715.750000
Laboratory Technician	0	3337.223350
	1	2919.258065
Manager	0	17201.484536
	1	16797.400000
Manufacturing Director	0	7289.925926
	1	7365.500000
Research Director	0	15947.346154
	1	19395.500000
Research Scientist	0	3328.122449
	1	2780.468085
Sales Executive	0	6804.617100
	1	7489.000000
Sales Representative	0	2798.440000
	1	2364.727273
Name: MonthlyIncome, dtype	·	2304./2/2/3

Employees Who Quit made, on average, ___% more in Monthly Income than those who didn't quit

Healthcare Representative - 15% more

Manufacturing Director - 1% more

Research Director - 22% more

Sales Executive - 10% more

df4 = df[df2.JobRole == 'Research Director']

Possible reasons attrition is occuring

Marital Status

sns.catplot(x='Attrition', y='MonthlyIncome', hue='binned_distancefromhome', data=df4, kind='bar')

Business Travel

Job Satisfaction

sns.catplot(x='Attrition', y='MonthlyIncome', hue='JobSatisfaction', data=df4, kind='bar')

sns.catplot(x='Attrition', y='MonthlyIncome', hue='OverTime', data=df4, kind='bar')

Work Life Balance

Years with Current Manager

df4['binned_YearsWithCurrManager'] = pd.cut(df4.YearsWithCurrManager,5)

sns.catplot(x='Attrition', y='MonthlyIncome', hue='binned YearsWithCurrManager', data=df4, kind='bar')

Environment Satisfaction

Stock Option Level

sns.catplot(x='Attrition', y='MonthlyIncome', hue='StockOptionLevel', data=df4, kind='bar')

Executive Recommendation

Recommendations to help reduce Attrition from Research Director Employees

- 1) Gather additional information regarding "Job Satisfaction" & "Environment Satisfaction" from Research Director employees to understand what could be improved to help raise these scores, to help reduce attrition
 - a) Use insights gathered to identify actionable steps to reduce attrition
- 2) Look into making revisions to the business travel policies
 - a) Offer higher salary or additional perks for business travelers
 - b) Look for opportunities to eliminate all business travel if possible
- 3) Re-Evaluate overtime requirements and compensation
 - a) Hire additional employees to help reduce total overtime needed
 - b) Adjust compensation/perks for Research Directors who work overtime

Provide Stock Options to all Research Director Employees