

概述

ICN2026 是一款专为 LED 模块和显示器设计的驱动 IC, 具有 16 路恒定的电流输出驱动能力。并可选用不同的外接电阻对输出级电流大小进行任意调节,精确控制 LED 的发光亮度。

ICN2026 内部设计了 16 位移位寄存器和锁存器,可以将串行输入数据转化为并行输出数据格式,通过外部使能信号控制 LED 的关断。同时内部采用了电流精确控制技术,可使片间误差低于±2.5%,通道间误差低于±2.3%。

特性

- ◇ 16 路等电流输出通道
- ◇ 输出电流设定范围:
 - 3~45mA×16@V₀=5V 路恒定电流输出 3~30mA×16@V₀=3. 3V 路恒定电流输出
- ◆ 电流精度

通道间的电流精度: <± 2.3% 芯片间的电流精度: <± 2.5%

- ♦ 快速输出电流响应 \overline{OE} (最小值): 80ns@ V_{DD} =5V
- ♦ 16 通道最大耐压可达 20V
- ♦ I/0 施密特触发器触发输入
- ♦ ESD HBM PASS 8KV
- → 工作温度范围: T_{op}=-40~85°C

引脚说明

Pin 名称	功能
GND	芯片接地引脚
SIN	输入到移位寄存器的串行数据输入端
CLK	时钟信号输入端,上升沿采样数据
LE	数据锁存输入端
LE	LE 高电平时,数据被传入到锁存器中 LE 低电平时,数据被锁存到锁存器中
OUT0 ~ OUT15	等电流输入端
	输出使能信号输入端
ŌE	ŌE 高电平时,关断ŌUT0~ŌUT15
	<u>o</u> E 低电平时,打开 outo ~ outi5
SOUT	串行数据输出端,可接到下一个驱动芯片的 SIN 端
R-EXT	外接调节电阻的输入端,可调节所有通道的输出电流大小
VDD	3. 3V/5V 电源输入端

ICN2026 框图

1/0 等效电路

时序图

Note 1: 当 LE 引脚设定为 L,锁存电路保持数据;当 LE 引脚设定为 H,则锁存电路不保持数据,数据直接输出。

当 \overline{OE} 引脚为 L 时, \overline{OUTO} 到 $\overline{OUT15}$ 输出引脚将变为 ON 和 OFF 以响应数据;设定 \overline{OE} 引脚为 H,不论数据如何,所有输出引脚将为 OFF。

真值表

CLK	LE	ŌĒ	SIN	OUTO ··· OUT7 ··· OUT15	SOUT
_	Н	L	D _n	$D_n \cdots D_{n-7} \cdots D_{n-15}$	D _{n-15}
<u></u>	L	L	D _{n+1}	无变化	D _{n-14}
	Н	L	D _{n+2}	$D_{n+2} \ \cdots \ D_{n-5} \ \cdots \ D_{n-13}$	D _{n-13}
Ŧ	×	L	D _{n+3}	$D_{n+2} \ \cdots \ D_{n-5} \ \cdots \ D_{n-13}$	D _{n-13}
Ŧ	×	Н	D _{n+3}	0FF	D _{n-13}

绝对最大额定值(Ta=25℃)

特性		符号	额定值	单位	
电源电压		$V_{ exttt{DD}}$	0~7.0	٧	
输出电流		I _o	45	mA	
输入电压		V _{IN}	-0. 4~V _{DD} +0. 4	٧	
输出耐受电压		V_{out}	20V		
时钟频率		F _{CLK}	30	MHz	
接地端电流		GND	+1000	mA	
消耗功耗	CSA-type	P _D	1.9	W	
(印刷电路板上,25℃)	CSB-type	I D	1.4	"	
热阻抗	CSA-type	D	66. 66	°C/W	
然性が	CSB-type	$R_{th(j-a)}$	88. 39	C/W	
工作温度		Topr	-40 ~ 85	°C	
存储温度		T_{stg}	−55 [~] 150	°C	

直流特性 (如果不另外说明, T₄=-40℃~85℃)

特性	符号	测试条件	最小值	典型值	最大值	单位
电源电压	V_{DD}	-	4. 5	5	5. 5	٧
ON 时的输出电压	$V_{o(on)}$	OUTn	0. 7	1	4	V
高电平逻辑输入电压	V _{IH}	_	0. 7*V _{DD}	-	V _{DD}	٧
低电平逻辑输入电压	V _{IL}	_	GND	1	0. 3*V _{DD}	V
SOUT 高电平输出电流	I _{OH}	V _{DD} =5V	-	-	-1	mA
SOUT 低电平输出电流	I _{OL}	V _{DD} =5V	-	-	1	mA
恒流输出	I _o	OUTn	3	_	45	mA

动态特性 (如果不另外说明, V₀=4.5~5.5V, T₄=-40°C~85°C)

特性	符号	测试电路	测试条件	最小值	典型值	最大值	单位
串行数据传输频率	Fclk	6	-	-	_	30	MHz
时钟脉冲宽度	t _{wCLK}	6	SCK=H 或者 L	20	ı	ı	ns
锁存脉冲宽度	$t_{\mathtt{wLE}}$	6	LE=H	20	İ	ı	ns
使能脉冲宽度	使能脉冲宽度 t _{we} 6			80	1	-	ns
保持时间	t _{HOLD1}	6	1	5	1	1	ns
冰红柱山口	t _{HOLD2}	6	1	5	1	1	ns
建立时间	t _{SETUP1}	6	1	5	1	1	ns
连业时间	t _{SETUP2}	6	ı	5	1	1	ns
最大时钟上升时间	t,	6		_	1	500	ns
最大时钟下降时间	t _f	6		_	_	500	ns

电气特性 (如果不另外说明, V₀=4.5~5.5V, T₄=25°C)

特性	符号	测试 电路	测试条件	最小值	典型值	最大值	单位
高电平逻辑输出电压	V_{OH}	1	I _{OH} =-1mA, SOUT	V _{DD} -0. 4	_	$V_{ exttt{DD}}$	٧
低电平逻辑输出电压	V_{OL}	1	I _{OH} =+1mA, SOUT	-	-	0.4	٧
高电平逻辑输入电流	Lin	2	$V_{IN}=V_{DD}, \overline{OE}, SIN, CLK$		_	1	μА
低电平逻辑输入电流	Lin	3	V _{IN} =GND, LE, SIN, CLK		_	-1	μА
	I _{DD1}	4	Rext=未接, OUT off	_	2. 5	5. 0	mA
	I DD2	4	Rext=1240, OUT off	_	4. 5	7. 0	mA
电源电流	I DD3	4	Rext=620, OUT off	_	6	9. 0	mA
	l _{DD4}	4	Rext=1240, OUT on	-	5. 2	8. 5	mA
	I _{DD5}	4	Rext=620, OUT on	_	6. 5	9.5	mA
		5	$V_{DD}=5.0V$, $V_0=1.0V$,	_	15	-	mA
恒流输出	I 01		$R_{EXT}=1.24k \Omega$	_	15		IIIA
1旦/ル7制 山	I ₀₂	5	$V_{DD}=5.0V$, $V_0=1.0V$,	_	30	_	mA
	▮ 02	7	$R_{EXT}=620 \Omega$		30		IIIA
			$V_{DD}=5.0V$, $V_0=1.0V$,				
恒流误差	ΔI_0	5	$R_{EXT}=1.24 \text{ k}\Omega$, $\overline{OUT0}^{*}$	-	±1.5	±2.3	mA
			OUT15				
			$V_{DD}=4.5^{5}.5V, V_{0}=1.0V,$				
恒流电源电压调节	\mathbf{WV}_{DD}	5	$R_{EXT}=1.24 \text{ k}\Omega$, $\overline{OUT0}^{*}$	-	±1	_	%/V
			OUT15				
			$V_{DD}=5.0V$, $V_0=1.0^3.0V$,				
恒流输出电压调节	$%V_{ ext{out}}$	5	$R_{EXT}=1.24 \text{ k}\Omega$, $\overline{OUT0}^{*}$	-	±0.1		%/V
			OUT15				
上拉电阻	R_{UP}	3	ŌE	250	500	800	kΩ
下拉电阻	R_{down}	2	LE	250	500	800	kΩ

开关特性(如果不另外说明, T₄=25℃, V₀=5.0V)

特性		符号	测试 电路	测试条件	最 小 值	典 型 值	最大值	单 位
	CLK-OUTO	t _{pLH1}	6	LE=H, OE=L	_	80	100	
	LE-OUTO	t _{pLH2}	6	ŌE =L	_	80	100	
	OE - OUTO	t _{pLH3}	6	LE=H	_	115	135	
传输	CLK-SOUT	t _{pLH}	6	_	_	20	40	
延迟时间	CLK-OUTO	t _{pHL1}	6	LE=H, OE=L	_	80	100	ns
	LE-OUTO	t _{pHL2}	6	ŌE =L	_	80	100	
	OE - OUTO	t _{pHL3}	6	LE=H	_	115	135	
	CLK-SOUT	t _{pHL}	6	_	_	20	40	
输出端上升时间		t _{or}	6	电压波形的 10 [~] 90%	_	42	70	ns
输出端下降时间		t_{of}	6	电压波形的 90 [~] 10%	_	52	80	ns

测试电路

测试电路 1: 高电平逻辑输入电压/低电平逻辑输入电压

测试电路 2: 高电平逻辑输入电流/下拉电阻

测试电路 3: 低电平逻辑输入电流/上拉电阻

测试电路 4: 电源电流

测试电路 5: 恒流输出/输出 0FF 漏电流/恒流误差 恒流电源电压调节/恒流输出电压调节

测试电路 6: 开关特性

时序波形

1. CLK, SIN, SOUT

2. CLK, SIN, LE, \overline{OE} , \overline{OUTO}

3. OUT0

应用信息

ICN2026采用了精确电流驱动控制技术,同一芯片的不同通道间,不同芯片之间的电流差异极小。

- 1) 通道间电流差异<±2.3%, 芯片间的电流差异<±2.5%。
- 2) 具有不受负载端电压影响的电流输出特性,如下图所示。输出电流将不随LED 顺向电压V_F的变化而变化。

调节输出电流

ICN2026 通过外接电阻 Rext 来调节输出电流 (lout), 计算公式为:

 $V_{R-EXT}=1.24V$;

 $Iout=(V_{R-EXT}/Rext)*15$

封装尺寸

(1) SS0P24-P-150-0.65

(2) SS0P24-P-300-1.0

声明:

- □□北京集创北方科技有限公司保留说明书的更改权, 恕不另行通知!
- ⑤ 任何半导体产品在特定条件下都有一定的失效或发生故障的可能,用户有责任在使用Chipone产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险及可能造成人身伤害或财产损失情况的发生!

集智创芯, 我公司将竭诚为客户提供更优秀的产品!