3X03 Derivations & Results

Neelkant Teeluckdharry

October 2024

Contents

1	IEEE 754					
	1.1	Special Values in Single Precision	4			
	1.2		4			
	1.3	Definitions	4			
2	Tay	lor Series	4			
	2.1	e^x Series	4			
	2.2	Truncation Error of First Order Taylor Approximation	5			
3	Linear Algebra					
	3.1	Nullspace/Kernel of a Matrix A	5			
	3.2	Column Space of Matrix A	5			
4	Naive Gaussian Elimination					
	4.1	Algorithm	5			
	4.2	Relative Solution Error	6			
	4.3	Time Complexity	6			
5	LU Decomposition					
	5.1	LU Decomposition	6			
6	Vector Norms					
	6.1	p-∞ norm	7			
7	Matrix Norms					
	7.1	Proof of $ Ax \le A x \dots \dots \dots \dots \dots$	7			
	7.2	Proof of $ AB \le A B \dots \dots$	7			
	7.3	Proof of 1-Norm	7			
	7.4	Proof of 2-Norm	8			
	75	Proof of m-Norm	8			

8	 Eigen Results 8.1 Eigenvalue of inverse of A 8.2 Linear Independence of Eigenvectors with Distinct Eigenvalues 8.3 Eigenvectors of symmetric matrices are orthogonal 	8 8 9
9	LDL^T Transformation9.1 Product of two lower triangular matrices9.2 Diagonal Matrix9.3 Algorithm	9 9 9 10
10	Positive-Definiteness10.1 Invertibility10.2 A has real eigenvalues	10 10 10
11	Iterative Methods 11.1 Cholesky Factorization	10 10
12	Power Method	10
13	Linear Regression 13.1 Derivation 1	11 11 11
14	Singular Value Decomposition 14.1 Decomposition	12 12
15	Bauer-Fike Bound	12
16	Newton's Method	13
17	First Order Optimality	13
18	Hessian is positive definite at minimum	13
19	Polynomial Error Bound	14
20	Complexity of Evaluation of Polynomial	14
21	Newton Interpolation	14
22	Integral Form of MVT	15
23	Trapezoidal Rule	15
24	Error on Trapezoidal Rule	16
25	Composite Trapezoidal Rule	16
26	Midpoint Rule	17

27	Simpson's Rule		
28	Error Analysis of Adaptive Simpsons		
29	Error on Iteration of Adaptive Simpson		
30	Forward Euler's Method	18	
31	Backwards Euler's Method	18	
32	Forward Euler on Exponential Solution	19	
33	Backward Euler on Exponential Solution	19	
34	LTE of Forward Euler's	19	
35	LTE of Backward Euler's	20	
36	LTE of Implicit Trapezoidal Rule	20	
37	System of ODEs	20	
38	2-Stage RK with Trapezoidal Rule on Exponential Solution	20	
39	2-Stage RK with Midpoint Rule on Exponential Solution	21	
40	Error in Backward Difference Method	21	
41	Error in Central Difference Method	21	
42	Second Derivative using Central Difference	21	
43	Taylor Expansion of 2-stage Runge-Kutta Term	22	
44	Notes	22	
45	MT1 Problems 45.1 Problem 1 45.2 Problem 2 45.3 Problem 3 45.4 Problem 4 45.5 Problem 5 45.6 Problem 6	22 22 23 23 23 23 23	
	45.7 Problem 7	23	

46	Answers to Problems	23
	46.1 Problem 1	23
	46.2 Problem 2	24
	46.3 Problem 3	24
	46.4 Problem 4	24
	46.5 Problem 5	24
	46.6 Problem 6	24
	46.7 Problem 7	24
47	MT2 Problems	25
	47.1 Problem 1	25
	47.2 Problem 2	25
48	Answers	25
	48.1 Problem 1	25
	48.2 Problem 2	25

1 IEEE 754

1.1 Special Values in Single Precision

- 1. +Inf: Sign Bit = 0, Exponent = 255, Mantissa = 0
- 2. -Inf: Sign Bit = 1, Exponent = 255, Mantissa = 0
- 3. NaN: Sign Bit = 0/1, Exponent = 255, Mantissa: at least 1

1.2 "Rules"

- 1. If $e \neq 0 \implies$ normalized
- 2. If e = 0, then 1 is added to offset.

1.3 Definitions

1. ϵ_{mach} is defined as the distance from 1 to the next largest FP number.

2 Taylor Series

2.1 e^x Series

$$f(x) = f(0) + \frac{f'(0)x}{1!} + \frac{f''(0)x^2}{2!} + \frac{f^3(0)x^3}{3!} + \dots$$
$$f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

2.2 Truncation Error of First Order Taylor Approximation

Truncation error is defined as the error from truncating a series. Let $x \to x + h$, $c \to x$.

$$f(x+h) = f(x) + f'(x)h + \frac{f''(\zeta)h^2}{2!}$$

where $x < \zeta < x + h$.

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{f''(\zeta)h}{2!}$$

This implies the truncation error is $-\frac{f''(\zeta)h}{2}$.

3 Linear Algebra

3.1 Nullspace/Kernel of a Matrix A

Let $v = \alpha_1 v_1 + \alpha_2 v_2$ for any $v_1, v_2 \in Ker(A)$ with $\alpha_{1,2} \in R$. Then

$$Av = Av_1 + Av_2 = 0$$

which proves that $Ker(A) \subseteq R^n$.

3.2 Column Space of Matrix A

The column space of $A \in R^{m \times n}$ can be equivalently defined as all linear combinations of the columns s.t. $y = c_1 a_1 + c_2 a_2 + ... c_n a_n$, where a_i is a column vector where $x = [c_1 c_2 ... c_n]^T$. From here, it can easily be shown that for some vectors $y_1, y_2 \in col(A) \in R^m$ and reals $\alpha, \beta \in R$, the space is closed under addition and multiplication, which proves that col(A) is a subspace of R^m .

4 Naive Gaussian Elimination

4.1 Algorithm

```
GaussianElimination(A):
    for k = 1 to n-1:
        for i = k+1 to n:
            m_ik = A[i,k]/A[k,k]
        for j = k+1 to n:
            A[i,j] = A[i,j] - m_ik*A[k,j]
        end
        b[i] = b[i] - m_ik*b[k]
    end
end
return A (row echelon form)
```

4.2 Relative Solution Error

$$||x^* - x|| = ||A^{-1}r|| \le ||A^{-1}||r||$$

And

$$||b|| = ||Ax^*|| \le ||A|| \, ||x^*|| \implies ||x^*|| \ge \frac{||b||}{||A||}$$

$$\frac{\|x^* - x\|}{\|x^*\|} \le \frac{\|A\| \|A^{-1}\| \|r\|}{\|b\|} = \frac{\kappa(A) \|r\|}{\|b\|}$$

4.3 Time Complexity

$$\sum_{k=1}^{n-1} [2 * (n-k)^2 + (n-k)]$$

$$= \sum_{k=1}^{n-1} 2k^2 + k$$

$$= \frac{2 * (n-1) * n * (2n-1)}{6} + \frac{(n-1) * n}{2}$$

$$= \frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6} \implies O(n^3)$$

5 LU Decomposition

5.1 LU Decomposition

Let $M_k = M_{nk}M_{n-1,k}...M_{k+1,k}$. These correspond to the operations performed "clear" the column k of the matrix A. For naive gaussian elimination, the elementary matrix M_k , is a product of lower triangular matrices, meaning it is also lower triangular. Thus,

$$M_{n-1}...M_2M_1A=U$$

$$A = M_1^{-1} M_2^{-1} ... M_{n-1}^{-1} U$$

Thus,

$$L = \boxed{M_1^{-1} M_2^{-1} ... M_{n-1}^{-1}}$$

6 Vector Norms

6.1 p-∞ norm

$$\|x\|_{\infty} = \lim_{p \to \infty} \left(\sum_{i=0}^{n} \|x_i\|^p\right)^{\frac{1}{p}}$$

$$= \lim_{p \to \infty} \left(\sum_{i=0}^{n} \frac{\|x_i\|}{\max_{i=1,..n} \|x_i\|}\right) \max_{i=1,..n} \|x_i\|$$

$$= \max_{i=1,..n} \|x_i\|$$

7 Matrix Norms

7.1 **Proof of** $||Ax|| \le ||A|| \, ||x||$

By definition

$$||A|| = \max_{||x|| \neq 0} \frac{||Ax||}{||x||} \ge \frac{||Ax||}{||x||} \forall x$$

This implies

$$||A|| \, ||x|| \ge ||Ax||$$

7.2 Proof of $||AB|| \le ||A|| \, ||B||$

By definition

$$\begin{split} \|AB\| &= \max_{\|x\| \neq 0} \frac{\|ABx\|}{\|x\|} \\ &\leq \max_{\|x\| \neq 0} \frac{\|A\| \|Bx\|}{\|x\|} \\ &\leq \max_{\|x\| \neq 0} \frac{\|A\| \|B\| \|x\|}{\|x\|} \\ &= \max_{\|x\| \neq 0} \|A\| \|B\| = \|A\| \|B\| \end{split}$$

7.3 Proof of 1-Norm

By definition

$$\begin{split} \|A\|_1 &= \max_{\|x\| \neq 0} \frac{\|Ax\|_1}{\|x\|_1} \\ &= \max_{\|x\| = 1} \|Ax\|_1 \\ &= \max_{\|x\| = 1} \|a_1 \cdot x_1 + a_2 \cdot x_2 + \dots + a_n \cdot x_n\| \end{split}$$

Max is attained when $x_i = 1$ and $x_j = 0 \ \forall i \neq j$ where i is column with largest 1-norm.

$$||A||_1 = \max_{j=1...n} \sum_{i=1}^n ||a_{ij}||$$

7.4 Proof of 2-Norm

$$||A||_{2} = \max_{\|x\| \neq 0} \frac{||Ax||_{2}}{||x||_{2}}$$

$$= \max_{\|x\| = 1} ||Ax||_{2}$$

$$= \max_{\|x\| = 1} \sqrt{x^{T} A^{T} A x}$$

$$= \max_{\|x\| = 1} \sqrt{\lambda^{2} x^{T} x}$$

Since $x^T x$ is equivalent to $||x||_2$. The only parameter that will change across all such vectors is the eigenvalue with eigenvector x.

$$= \max_{i=1..n} \lambda_i$$

7.5 Proof of ∞-Norm

Similar proof to above except write each jth entry of final vector as linear combinations of the jth components of each of the column vectors multiplied by x_i s. Max element is the row sum. Keep in mind that all entries of $x=\pm 1$ will give this since $\|x\|_{\infty}=1$.

8 Eigen Results

8.1 Eigenvalue of inverse of A

Suppose A is a matrix with an eigenvalue of λ .

$$A^{-1}x = \lambda' x$$
$$\frac{1}{\lambda}x = Ax$$
$$\implies \lambda' = \frac{1}{\lambda}$$

8.2 Linear Independence of Eigenvectors with Distinct Eigenvalues

Suppose this is not the case. Then there exist $x_1, x_2...x_n \in R^n$ s.t. $0 = c_1x_1 + c_2x_2 + ...c_nx_n$, where not all $c_i = 0$. Now multiply by matrix $(A - \lambda_2I_{n \times n})(A - \lambda_3I_{n \times n})..(A - \lambda_nI_{n \times n})$.

$$0 = c_1(\lambda_1 - \lambda_2)...(\lambda_1 - \lambda_n)$$

Thus, $c_1 = 0$. It can also be shown that all $c_i = 0$, which means that all the eigenvectors are linearly independent and span \mathbb{R}^n .

8.3 Eigenvectors of symmetric matrices are orthogonal

$$x_1^T A x_2 = x_1^T \lambda_2 x_2$$
$$= \lambda_2 x_1^T x_2$$

And,

$$x_1^T A x_2 = x_1^T A^T x_2$$

$$= (Ax_1)^T x_2$$

$$= \lambda_1 x_1^T x_2$$

$$\implies (\lambda_2 - \lambda_1) x_1^T x_2 = 0 \implies x_1^T x_2 = 0$$

9 LDL^T Transformation

9.1 Product of two lower triangular matrices

Suppose j > i

$$(LL')_{ij} = \sum_{k=1}^{n} l_{ik} l'_{kj}$$

Since $l_{ik} = 0$ when k > i and $l'_{kj} = 0$ when k > j > i, this means

$$(LL')_{ij} = 0$$

9.2 Diagonal Matrix

If A is symmetric, then,

$$D = L^{-1}AL^{-T} = UL^{-T}$$
$$D^{T} = L^{-1}AL^{-T}$$

D is both upper triangular and symmetric \implies diagonal matrix.

9.3 Algorithm

$$a_{ii} = (LDL^{T})_{ii} = \sum_{k=1}^{n} l_{ik} d_{k} l_{ik}$$
$$= \sum_{k=1}^{i} l_{ik}^{2} d_{k} = \sum_{k=1}^{i-1} l_{ik}^{2} d_{k} + d_{i}$$
$$\implies d_{i} = a_{ii} - \sum_{k=1}^{i-1} d_{k} l_{ik}^{2}$$

10 Positive-Definiteness

10.1 Invertibility

Ax = 0 iff x = 0 since $(Ax = 0 \implies x^T Ax = 0$ but $x^T Ax > 0 \forall x \neq 0)$ $\implies ker(A)$ has dimension $0 \implies A$ is invertible

10.2 A has real eigenvalues

Let $\lambda \in R$ be an eigenvalue of A.

$$Av = \lambda v$$

$$v^T A v = \lambda v^T v = \lambda \|v\|^2$$

Since *A* is positive definite, this implies that $\lambda > 0$.

11 Iterative Methods

11.1 Cholesky Factorization

12 Power Method

For $A \in \mathbb{R}^{n \times n}$ with n linearly independent eigenvectors spanning \mathbb{R}^n , this means any vector $v_0 = \sum_{k=1}^n a_i x_i$. At each iteration,

$$\tilde{v_{k+1}} = \frac{v}{\|v\|}$$

$$v_{k+1} = A\tilde{v}$$

where

$$\lambda_k = v[1]/v[1], x_k = v[1]/v[1]$$

Assuming $\lambda_1 \geq \lambda_i$

$$A^k v = \lambda_1^k (a_1 x_1 + \frac{\lambda_2^k}{\lambda_1^k} \dots)$$

As $k \to \infty$, $A^k v \to (a_1 \lambda_1^k x_1)$

13 Linear Regression

13.1 Derivation 1

Let $\phi(a,b) = \sum_{k=0}^{n} (ax_i + b - y_i)^2$. Using the first order optimality conditions (prove another time)

$$\frac{\delta\phi}{\delta a} = \sum_{k=0}^{n} (ax_i + b - y_i) * x_i = \sum_{k=0}^{n} ax_i^2 + bx_i - x_i y_i = 0$$

$$\implies a \sum_{k=0}^{n} x_i^2 + b \sum_{k=0}^{n} x_i = \sum_{k=0}^{n} x_i y_i$$

$$\frac{\delta\phi}{\delta b} = \sum_{k=0}^{n} 2(ax_i + b - y_i) = 0$$

$$\implies a \sum_{k=0}^{n} x_i + (n+1)b = \sum_{k=0}^{n} y_i$$

This gives a linear system which can be solved.

13.2 Derivation 2

$$f(z) = ||Az - y|| = (Az - y)^{T} (Az - y)$$
$$= z^{T} A^{T} Az - z^{T} A^{T} y - y^{T} Az + ||y||^{2}$$
$$= z^{T} A^{T} Az - 2z^{T} A^{T} y + ||y||^{2}$$

Since transpose of a scalar is a scalar.

$$\nabla f(z) = 2A^{T}Az - 2A^{T}y = 0$$
$$A^{T}Az = A^{T}y$$
$$z = (A^{T}A)^{-1}A^{T}y$$

This is the moore-penrose pseudoinverse.

14 Singular Value Decomposition

14.1 Decomposition

Let $A \in \mathbb{R}^{m \times n}$, if A has a decomposition $U\Sigma V^T$, then

$$AA^{T} = U\Sigma V^{T} V \Sigma^{T} U^{T}$$
$$= U\Sigma \Sigma^{T} U^{T}$$

Since AA^T is $n \times n$ and symmetric, by the spectral theorem, it is equivalent to $V\Lambda V^T$, which means that $\Lambda = \Sigma \Sigma^T$. This implies that the singular values $\sigma_i = \sqrt{\lambda_i}$.

15 Bauer-Fike Bound

$$r = A\hat{x} - \hat{\lambda}\hat{x} = (A - \hat{\lambda}I)\hat{x}$$
$$\hat{x} = (A - \hat{\lambda}I)^{-1}r$$

This simplifies to

$$\begin{split} \|\hat{x}\| &= \left\| P(\Lambda - \hat{\lambda}I)P^{-1} \right\| \\ &\leq \|P\|_p \left\| \Lambda - \hat{\lambda}I \right\|_p \left\| P^{-1} \right\|_p \|r\|_p \\ \left\| (\Lambda - \hat{\lambda}I)^{-1} \right\|_p &= \max_{\|x\|_p = 1} \left\| (\Lambda - \hat{\lambda}I)x \right\| \\ &= \max_{\|x\|_p} (\sum_{i=1}^n (\frac{x_i}{\lambda_i - \hat{\lambda}})^p)^{1/p} \end{split}$$

If we pick λ_i s.t. $\lambda_i - \hat{\lambda}$ is minimized, then the rest evaluates to $\|x\|_v$.

$$=\frac{1}{\min_{\lambda_i\in\sigma(A)}|\lambda_i-\hat{\lambda}|}$$

This implies

$$\min_{\lambda_i \in \sigma(A)} |\lambda_i - \hat{\lambda}| \leq \frac{\kappa(P)_p \, \|r\|_p}{\|\hat{x}\|_p}$$

16 Newton's Method

The second order Taylor expansion of f is given by:

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + O(||x - x_k||^2)$$

$$\implies 0 \approx f(x_k) + f'(x_k)(r - x_k)$$

$$= f(x_k) + f'(x_k)(x_{k+1} - x_k)$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

17 First Order Optimality

Let x^* be a local minimum, such that if $||x^* - x|| \le \delta$, then $f(x^*) \le f(x)$, Write the taylor series about x^*

$$f(x) = f(x^*) + \nabla f(x^*)(x - x^*) + O(\|x - x^*\|^2)$$

Choose x s.t. $x - x^* = -\alpha \nabla f(x^*)$, where $\alpha > 0$. If α is chosen s.t

$$\nabla f(x^*)^T (x - x^*) = -\alpha \|x - x^*\|^2 < 0$$

Then,

Let $x_{k+1} \triangleq r$.

$$||x - x^*||^2 = \alpha^2 ||\nabla f(x^*)||^2$$

 α^2 term will be smaller in magnitude than α term.

$$f(x^*) + \nabla f(x^*)^T (x - x^*) + O(\|x - x^*\|^2) \le f(x)$$

which means $\nabla f(x^*) = 0$.

18 Hessian is positive definite at minimum

Consider the 2nd order Taylor series about x^*

$$f(x) = f(x^*) + \nabla f(x^*)^T (x - x^*) + \frac{1}{2} (x - x^*)^T \nabla^2 f(x^*) (x - x^*) + O(\|x - x^*\|^3)$$

$$f(x) = f(x^*) + \frac{1}{2} (x - x^*)^T \nabla^2 f(x^*) (x - x^*) + O(\|x - x^*\|^3)$$

$$\approx f(x^*) + \frac{1}{2} (x - x^*)^T \nabla^2 f(x^*) (x - x^*)$$

This requires that $\nabla^2 f(x^*) > 0$.

19 Polynomial Error Bound

Assume $x \neq x_i$, define $w(t) = \prod_{i=0}^n (t-x_i)$ and $c = \frac{f(x)-p_n(x)}{w(x)}$. Finally let $\phi(t) = f(t) - p_n(t) - cw(t)$. Observe that $\phi(t)$ has n+2 roots: $x_0...x_n$ and x. By Rolle's theorem $\phi'(t) = 0$ for some t between pairs of roots. By recursive logic, $\implies \phi^{n+1}(t)$ has at least one root. Thus

$$0 = \phi^{n+1}(t) = f^{n+1}(\zeta) - c(n+1)!$$

since p(t) are n degree polynomials and w(t) has a single degree t^{n+1} term.

$$0 = f^{n+1}(\zeta) - c(n+1)! = f^{n+1}(\zeta) - \frac{f(x) - p_n(x)}{w(x)}(n+1)!$$
$$\implies f(x) - p_n(x) = \frac{f^{n+1}(\zeta)}{(n+1)!} \prod_{i=0}^{n} (t - x_i)$$

Let $M \triangleq \max_{a \le t \le b}$

$$\implies ||f(x) - p_n(x)|| \le \frac{M}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

By some lemma this is also:

$$\leq \frac{M}{4(n+1)!}h^{n+1}(n!) = \frac{M}{4(n+1)}h^{n+1}$$

20 Complexity of Evaluation of Polynomial

$$p(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

Each power k will require k-1 FLOPs to compute x^k , and multiplying by coefficient gives k FLOPs for each each term of order k. Thus $\sum_{k=0}^{n} k = n(n+1)/2 \implies O(n^2)$

21 Newton Interpolation

The basis function $\phi_j(x) = (x - x_0)(x - x_1) \dots (x - x_{j-1})$. Thus

$$p_n(x_i) = c_0 + c_1(x_i - x_0) + c_2(x_i - x_0)(x_i - x_1) \dots c_n(x_i - x_0) \dots (x_i - x_{n-1}) = y_i$$

At $x = x_0$,

$$p_n(x_0) = c_0 = y_0$$

At $x = x_1$,

$$p_n(x_1) = c_0 + c_1(x_1 - x_0) = y_1$$

$$\implies c_1 = \frac{y_1 - y_0}{x_1 - x_0}$$

For further coefficients this becomes a divided difference

$$[y_i, \dots y_j] = \frac{[y_{i+1} \dots y_j] - [y_i \dots y_{j-1}]}{x_j - x_i}$$

22 Integral Form of MVT

Let $F(x) \triangleq \int_0^x f(x) dx$ for continuous f on $[a,b] \implies F(x)$ is continuous. Applying MVT

$$F'(x) = f(x) = \frac{F(b) - F(a)}{b - a}$$
$$= \frac{1}{b - a} \int_a^b f(x) dx$$

23 Trapezoidal Rule

A Lagrange interpolant takes the form:

$$p_n(x) = \sum_{j=0}^n y_j L_j(x)$$

where
$$L_j(x) = \frac{(x-x_0)(x-x_1)...(x-x_n)}{(x_j-x_0)...(x_j-x_n)}$$
.

$$\int_a^b f(x)dx \approx \int_a^b p_n(x)dx = \int_a^b \sum_{j=0}^n f(x_j)L_j(x)dx$$

$$= \sum_{j=0}^{n} f(x_j) \int_{a}^{b} L_j(x) dx$$

Since our quadrature rule uses n = 1.

$$p_1(x) = f(a)\frac{x-b}{a-b} + f(b) + f(b)\frac{x-a}{b-a}$$

$$\implies \sum_{j=0}^n f(x_j) \approx f(a) \int_a^b \frac{x-b}{a-b} dx + f(b) \int_a^b \frac{x-a}{b-a} dx$$

$$\dots \frac{b-a}{2} [f(a) + f(b)]$$

24 Error on Trapezoidal Rule

The error of first order interpolant is

$$f(x) - p_1(x) = \frac{f''(\eta)}{2}(x - x_0)(x - x_1)$$

Thus

$$I_f - I_{trap} = \int_a^b f''(\zeta(x))(x - x_0)(x - x_1)dx = \frac{1}{2}f''(\eta)\int_a^b (x - a)(x - b)dx$$
$$= \dots = -\frac{f''(\eta)(b - a)^3}{12}$$

25 Composite Trapezoidal Rule

$$\int_{t_{i-1}}^{t_i} f(x)dx \approx \frac{t_i - t_{i-1}}{2} [f(t_{i-1}) + f(t_i)] = \frac{h}{2} [f(t_{i-1}) + f(t_i)]$$

$$\implies \int_a^b f(x)dx = \sum_{i=1}^r \int_{t_{i-1}}^{t_i} f(x)dx \approx \frac{h}{2} \sum_{i=1}^r [f(t_i) + f(t_{i-1})]$$

This is equal to

$$= \frac{h}{2}[f(a) + f(b)] + h\sum_{i=1}^{r-1} f(t_i)$$

Furthermore,

$$\int_{t_{i-1}}^{t_{i}} f(x)dx = \frac{h}{2} [f(t_{i-1}) + f(t_{i})] - \frac{f''(\eta_{i})h^{3}}{12}$$

Since

$$\min_{x \in [a,b]} f''(x) \le \frac{1}{r} \sum_{i=0}^{r} f''(\eta_i) \le \max_{x \in [a,b]} f''(x)$$

By IVT

$$f''(\mu) = \frac{1}{r} \sum_{i=1}^{r} f''(\eta_i)$$

$$\implies \text{error} = -\sum_{i=1}^{r} \frac{f''(\eta_i)h^3}{12} = \frac{-f''(\mu)(b-a)h^2}{12}$$

26 Midpoint Rule

Let m = (a + b)/2, write the Taylor series

$$f(x) = f(m) + f'(m)(x - m) + \frac{f''(\zeta(x))(x - m)^2}{2}$$

Notice that

$$\int_{a}^{b} (x-m)dx = 0 \implies I_{f} = \int_{a}^{b} f(x)dx = (b-a)f(m) + \frac{1}{2} \int_{a}^{b} f''(\zeta(x))(x-m)^{2}dx$$

$$I_{f} - I_{mid} = 1/2 \int_{a}^{b} f''(\zeta(x))(x-m)^{2}dx$$

By integral MVT

$$=\frac{1}{2}f''(\eta)\int_a^b (x-m)^2 dx$$

for some $\eta \in [a, b]$

$$=\frac{f''(\eta)(b-a)^3}{24}$$

27 Simpson's Rule

Using n = 2 for Lagrange basis polynomials:

$$\implies I_{simpson} = \frac{b-a}{6} [f(a) + 4f(m) + f(b)]$$

The error is:

$$\frac{-f^4(\zeta)}{90} \frac{(b-a)^5}{2^5}$$

28 Error Analysis of Adaptive Simpsons

Applying Simpson's rule on [a, m] and [m, b]

$$E(a,m) = \frac{-1}{90} \frac{(h/2)^5}{2^5} f^4(\zeta)$$

$$= \frac{1}{32} \left(\frac{-1}{90} \frac{h^5}{2^5} f^4(\zeta) \right)$$

$$= \frac{1}{32} E_1$$

$$\implies E_2 = 2 \frac{1}{32} E_1 = \frac{E_1}{16}$$

Thus

$$I_f = S_1 + E_1 = S_2 + E_2 \implies S_1 - S_2 = E_2 - E_1 = -15E_2$$

= $E_2 \approx \frac{S_2 - S_1}{15}$
 $\implies I_f = S_2 + \frac{S_2 - S_1}{15}$

29 Error on Iteration of Adaptive Simpson

Since $I_f = I_1 + I_2$

$$|I_f - Q_1| \le \frac{\epsilon_{tol}}{2}$$
 $|I_f - Q_2| \le \frac{\epsilon_{tol}}{2}$
 $|I - Q_1| = |I_1 + I_2 - Q_1 - Q_2| \le |I_1 - Q_1| + |I_2 - Q_2| = \epsilon_{tol}$

30 Forward Euler's Method

Consider Taylor series centered at t_i at t_{i+1} .

$$y(t_{i+1}) = y(t_i) + y'(t_i)(t_{i+1} - t_i) + \frac{1}{2}y''(\zeta_i)(t_{i+1} - t_i)^2$$

For some $\zeta_i \in [t_i, t_{i+1}]$

$$\approx y(t_i) + y'(t_i)h$$

31 Backwards Euler's Method

Consider a Taylor Series centered at t_{i+1} at t_i .

$$y(t_i) = y(t_{i+1}) - y'(t_{i+1})h + \frac{1}{2}y''(\eta_i)(t_i - t_{i+1})^2$$

$$y(t_i) = y(t_{i+1}) - y'(t_{i+1})h + \frac{1}{2}y''(\eta_i)h^2 \approx y(t_{i+1}) - y'(t_{i+1})h$$

$$\implies y(t_{i+1}) = y(t_i) + y'(t_{i+1})h$$

32 Forward Euler on Exponential Solution

From $y' = \lambda y$, where $\lambda < 0$

$$y_{i+1} = y_i + h \cdot f(t_i, y_i)$$
$$= y_i + h\lambda y_i = (1 + h\lambda)y_i$$
$$= (1 + h\lambda)^{i+1}y_0$$

For stability, $||1 + h\lambda||_2 \le 1$

$$-1 \le 1 + h\lambda \le 1 \implies -2 \le h\lambda \le 0$$

Since $\lambda < 0$,

$$h \le \frac{2}{|\lambda|}$$

33 Backward Euler on Exponential Solution

From $y' = \lambda y$, where $\lambda < 0$,

$$y_{i+1} = y_i + h\lambda y_{i+1}$$

 $y_{i+1}(1 - h\lambda) = y_i \implies y_{i+1} = \frac{y_i}{1 - h\lambda}$
 $||y_{i+1}|| = \frac{||y_i||}{||1 - h\lambda||} \le ||y_i||$

Thus

$$||1 - h\lambda|| \ge 1$$

This is true for all h > 0, since $\lambda < 0$.

34 LTE of Forward Euler's

LTE is error introduced in a single step.

$$d_i \triangleq \frac{y(t_{i+1}) - y(t_i)}{h} - \phi(y(t_i), t_n) / h$$
$$d_i \triangleq \frac{y(t_{i+1}) - y(t_i)}{h} - f(t_i, y_i)$$

Using taylor series about t_i .

$$=\frac{h}{2}f''(\eta_i)$$

35 LTE of Backward Euler's

$$d_i \triangleq \frac{y(t_{i+1}) - y(t_i)}{h} - f(t_{i+1}, y_{t_{i+1}})$$

Using taylor series about t_{i+1}

$$= -\frac{h}{2}f''(\eta_i)$$

36 LTE of Implicit Trapezoidal Rule

Take two second order taylor series, one about t_{i+1} and t_i . Then

$$y(t_{i+1}) - y(t_i) = \frac{h}{2} (y'(t_i) + y'(t_{i+1})) + \frac{h^2}{4} (y''(t_i) - y''(t_{i+1})) + \frac{h^3}{12} (y'''(\eta_i) + y'''(\zeta_i))$$

$$\implies d_i = \frac{h}{4} [y''(t_i) - y''(t_{i+1})] + \frac{h^2}{12} [y'''(\eta_i) + y'''(\zeta_i)]$$

Using MVT

$$d_i = \frac{-h^2}{4}y'''(\gamma_i) + \frac{h^2}{12}[y'''(\eta_i) + y'''(\zeta_i)]$$

37 System of ODEs

Consider a diagonalizable matrix A in a system y' = Ay

$$A = P\Lambda P^{-1}$$

$$\implies y' = P\Lambda P^{-1}y \implies P^{-1}y' = \Lambda P^{-1}y$$

$$\implies z' = \Lambda z \implies z_i = \lambda_i z$$

Thus for the system to remain stable, the absolute value of the eigenvalues of *A* must be less than 0.

38 2-Stage RK with Trapezoidal Rule on Exponential Solution

By forward Euler's method

$$Y = (1 + h\lambda)y_i$$

Applying the trapezoidal update rule

$$y_{i+1} = y_i + \frac{h}{2}(f(t_i, y_i) + f(t_{i+1}, Y))$$
$$y_{i+1} = y_i + \frac{h}{2}(\lambda y_i + \lambda (1 + h\lambda)y_i)$$
$$y_{i+1} = y_i(1 + 2\lambda h + \frac{h^2\lambda^2}{2})$$

39 2-Stage RK with Midpoint Rule on Exponential Solution

By forward Euler's method

$$Y = (1 + \frac{h}{2}\lambda)y_i$$

$$y_{i+1} = y_i + hf(t_i + \frac{h}{2}, Y)$$

$$= y_i(1 + h\lambda + \frac{\lambda^2 h^2}{2})$$

40 Error in Backward Difference Method

$$f(x-h) = f(x) + f'(x)(-h) + \frac{1}{2}f''(\zeta)(-h)^2$$
$$= f(x) - h \cdot f'(x) + \frac{h^2}{2}f''(\zeta)$$
$$\frac{f(x) - f(x-h)}{h} + \frac{h}{2}f''(\zeta) = f'(x)$$

Thus error is O(h), first order.

41 Error in Central Difference Method

Write two taylor series expansions at x_{i+1} and x_{i-1} about x_i .

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{1}{2}f''(x_i)h^2 + \frac{h^3}{6}f'''(\zeta_+)$$

$$f(x_{i-1}) = f(x_i) - f'(x_i)h + \frac{1}{2}f''(x_i)h^2 - \frac{h^3}{6}f'''(\zeta_-)$$

where $\zeta_+ \in [x_i, x_{i+1}]$ and $\zeta_- \in [x_{i-1}, x_i]$. Adding both gives

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} + \frac{h^2}{12} [f'''(\zeta_+) + f'''(\zeta_-)]$$

42 Second Derivative using Central Difference

Taking the third order taylors series about x_i evaluated at x_{i+1} and x_{i-1}

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{h^2}{2}f''(x_i) + \frac{h^3}{6}f'''(x_i) + \frac{h^4}{24}f^{(4)}(\zeta_+)$$

$$f(x_{i-1}) = f(x_i) - f'(x_i)h + \frac{h^2}{2}f''(x_i) - \frac{h^3}{6}f'''(x_i) + \frac{h^4}{24}f^{(4)}(\zeta_+)$$

Adding both

$$f(x_{i+1}) + f(x_{i-1}) = 2f(x_i) + f''(x_i)h^2 + \frac{h^4}{24}[f^{(4)}(\eta_1) + f^{(4)}(\eta_2)]$$

By IVT

$$|f''(x_i) - \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2}| \le \frac{h^2}{12} \max_{\zeta \in [x_{i-1}, x_{i+1}]} |f^{(4)}(\zeta)|$$

43 Taylor Expansion of 2-stage Runge-Kutta Term

Consider a taylor series about t_i

$$f(y(t_{i+1}), t_{i+1}) = f(y_i + hf(y_i, t_{i+1}), t_i + h)$$

$$= f(y_i, t_i) + h\frac{df}{dt}|_{t=t_i, y=y_i} + O(h^2)$$

$$= y'(t_i) + hy''(t_i) + O(h^2)$$

44 Notes

- If slope is decreasing on interval, then forward difference underestimates slope.
- If slope is decreasing on interval, then backward difference overestimates slope.
- If slope is increasing on interval, then forward difference overestimates slope.
- if slope is increasing on interval, then backwards difference underestimates slope.

45 MT1 Problems

45.1 **Problem 1**

Assume x, y, z are FP numbers. Find the error bound in fl(z(x+y)).

45.2 **Problem 2**

Show that $V = [\alpha, \alpha] \subseteq R^2$ is a subspace.

45.3 **Problem 3**

Prove that the set of all eigenvectors sharing eigenvalue λ is a linear subspace.

45.4 **Problem 4**

Let $x, y \in R$. Find the upper bound on the relative error of fl(fl(x)fl(y)) when compared to x, y.

45.5 **Problem 5**

Find the bit strings for the following

- -3
- 0.25
- NaN
- Smallest positive normalized
- Unit Roundoff

45.6 **Problem 6**

Consider the IEEE single floating point system FP(2,24,-126,127).

- What is the smallest positive normalized number in this FP System?
- What is the largest positive denormalized number in this FP System?

45.7 **Problem 7**

If $x \in F$, derive a bound on the expression

$$\frac{1}{x+1}$$

46 Answers to Problems

46.1 **Problem 1**

$$fl(z(x+y)) = z(x+y)(1+\delta_z)(1+\delta_{xy})$$
$$= z(x+y)(1+\delta_{xy}+\delta_z+\delta_z\delta_{xy})$$
$$\approx z(x+y)(1+\delta_{xy}+\delta_z)$$

Thus the relative error is bounded by:

$$\|\delta_{xy} + \delta_z\| \le \|\delta_{xy}\| + \|\delta_z\| \le \frac{2\epsilon_{mach}}{2}$$

46.2 Problem 2

Consider vectors $v_1, v_2 \in V$ and $c, d \in R$.

$$cv_1 + dv_2 = \langle c\alpha_1 + d\alpha_2, c\alpha_1 + d\alpha_2 \rangle \in V$$

Since V is closed, this means it is a linear subspace of R^2 .

46.3 **Problem 3**

Let v_1, v_2 be two such eigenvectors in \mathbb{R}^n and $\alpha, \beta \in \mathbb{R}$. $v = \alpha v_1 + \beta v_2$.

$$Av = \alpha Av_1 + \beta Av_2 = \lambda(\alpha v_1 + \beta v_2) = \lambda v$$

This shows that $v \in S$, where S is the set of eigenvectors sharing the eigenvalue λ . Therefore, the set S is a linear subspace of R^n .

46.4 **Problem 4**

$$||RE|| = ||\delta_x + \delta_y + \delta_z|| \le ||\delta_x|| + ||\delta_y|| + ||\delta_z|| = \frac{3\epsilon_{mach}}{2}$$

46.5 **Problem 5**

- 1 1000 0000 10..0
- 0 0111 1101 0..0
- 0 1111 1111 10..0
- 0 0000 0001 0..0
- 0 0110 1000 0..0

46.6 Problem 6

- $000000010...0 = 2^{1-127} \approx 1.175 \times 10^{-38}$
- $0000000001...1 = 2^{0-127+1} \times (0.1111)_2 = 1.1..10 \times 2^{-127}$

46.7 **Problem 7**

Assuming $1 \in F$

$$fl(\frac{1}{x+1}) = \frac{(1+\delta_1)}{(x+1)(1+\delta_2)}$$
$$||RE|| = \dots = \frac{||\delta_1 - \delta_2||}{||1+\delta_2||}$$

Since $\|1 + \delta_2\| \ge 1 - e_{mach}/2$ and $\|\delta_1 - \delta_2\| \le \|\delta_1\| + \|\delta_2\| \le e_{mach}$ by the triangle inequality.

$$||RE|| \le \frac{e_{mach}}{1 - e_{mach}/2}$$

47 MT2 Problems

47.1 **Problem 1**

Find the SVD of $\begin{pmatrix} 5 & 5 \\ -1 & 7 \end{pmatrix}$ [Answer: $\begin{pmatrix} -3/\sqrt{10} & 1\sqrt{10} \\ 1/\sqrt{10} & 3/\sqrt{10} \end{pmatrix}$, $\Sigma = \begin{pmatrix} 2\sqrt{5} & 0 \\ 0 & 4\sqrt{5} \end{pmatrix}$, $\begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$]

47.2 **Problem 2**

Write the Lagrange basis polynomials for the data set: (1,1), (2,3), (4,3)

48 Answers

48.1 **Problem 1**

$$A = U\Sigma V^T \implies AV = U\Sigma$$

Element-wise computation gives U.

48.2 **Problem 2**

$$L_0(x) = \frac{x^2 - 6x + 8}{3}$$

$$L_1(x) = \frac{-(x^2 - 5x + 4)}{2}$$

$$L_2(x) = \frac{x^2 - 3x + 2}{6}$$