STAT UN2104 – Take Home Quiz

Steven Francis

May 2, 2018

```
job_sat_data <- read.table("jobsat-data.txt", header = T)</pre>
#Changing numerical variables region and age(groups) into factor variables
job_sat_data$region <- factor(job_sat_data$region)</pre>
job_sat_data$age <- factor(job_sat_data$age)</pre>
job_sat_data.logit <- glm(cbind(sat,unsat) ~ region + race + age + gender +</pre>
                             race*gender,
                          data = job_sat_data, family = binomial)
summary(job_sat_data.logit)
##
## Call:
## glm(formula = cbind(sat, unsat) ~ region + race + age + gender +
##
       race * gender, family = binomial, data = job_sat_data)
##
## Deviance Residuals:
      Min
                     Median
                                  3Q
## -2.4630 -0.5681
                     0.1558
                              0.7102
                                        2.4220
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                -0.005388 0.091138 -0.059 0.95286
## region2
                 0.436366 0.103868
                                      4.201 2.66e-05 ***
## region3
                 0.175139 0.073084
                                       2.396 0.01656 *
                                      1.307 0.19108
## region4
                 0.086916 0.066481
## region5
                 0.123197 0.067601
                                      1.822 0.06839 .
## region6
                 0.288263 0.073567
                                       3.918 8.91e-05 ***
                 0.411842 0.096729
                                       4.258 2.07e-05 ***
## region7
## racew
                 0.213454 0.090890
                                       2.348 0.01885 *
                                       2.463 0.01377 *
## age2
                 0.127823 0.051895
## age3
                 0.363392 0.051602
                                       7.042 1.89e-12 ***
## genderm
                 0.490254
                            0.111201
                                       4.409 1.04e-05 ***
                            0.123149 -3.087 0.00202 **
## racew:genderm -0.380160
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 204.141 on 83 degrees of freedom
## Residual deviance: 87.941 on 72 degrees of freedom
## AIC: 476.95
## Number of Fisher Scoring iterations: 4
anova(job_sat_data.logit)
```

```
## Analysis of Deviance Table
##
## Model: binomial, link: logit
## Response: cbind(sat, unsat)
##
## Terms added sequentially (first to last)
##
##
              Df Deviance Resid. Df Resid. Dev
##
## NULL
                                       204.141
               6
                   34.558
                                 77
                                       169.583
## region
                    3.547
                                 76
                                       166.036
## race
               1
               2 54.202
                                 74
## age
                                    111.834
## gender
               1
                   14.317
                                 73
                                       97.516
## race:gender 1
                    9.575
                                 72
                                        87.941
```

To test the model's goodness of fit

```
pchisq(q=87.941, df=72, lower.tail = F)

## [1] 0.09748707

#Proving that the residuals follow a relatively follow a standard normal
#distribution

library('car')

## Warning: package 'car' was built under R version 3.4.1

qqPlot(job_sat_data.logit$residuals)
```


Adding observed satisfaction probability percentage, fitted satisfaction probability percentage and fitted satisfaction odds percentage

```
job_sat_data.obs.prop <- job_sat_data$sat/(job_sat_data$sat + job_sat_data$unsat)
cbind(job_sat_data, job_sat_data.obs.prop, fitted(job_sat_data.logit))</pre>
```

```
##
      region race age gender sat unsat job_sat_data.obs.prop
## 1
            1
                      1
                              m 288
                                       177
                                                          0.6193548
## 2
            1
                      1
                                 60
                              f
                                        57
                                                          0.5128205
## 3
            1
                      2
                              m 224
                                       166
                                                          0.5743590
            1
                      2
## 4
                                  35
                                        19
                                                          0.6481481
## 5
            1
                      3
                              m
                                337
                                       172
                                                          0.6620825
                      3
## 6
            1
                                  70
                                        30
                                                          0.700000
## 7
            1
                                  38
                                        33
                                                          0.5352113
                      1
                  0
## 8
                                  19
                                        35
            1
                      1
                                                          0.3518519
## 9
            1
                      2
                                  32
                                                          0.7441860
                                        11
                              m
## 10
            1
                      2
                              f
                                  22
                                         20
                                                          0.5238095
## 11
            1
                      3
                              m
                                  21
                                         8
                                                          0.7241379
## 12
            1
                      3
                                  15
                                         10
                                                          0.6000000
## 13
            2
                                  90
                                         45
                                                          0.666667
                      1
            2
  14
                      1
                                  19
                                        12
                                                          0.6129032
            2
                      2
                                  96
                                         42
                                                          0.6956522
## 15
                  W
## 16
                      2
                                  12
                                          5
                                                          0.7058824
```

##	17	2	W	3	m	124	39	0.7607362
##	18	2	W	3	f	17	2	0.8947368
##	19	2	0	1	m	18	6	0.7500000
##	20	2	0	1	f	13	7	0.6500000
##	21	2	0	2	m	7	2	0.777778
##	22	2	0	2	f	0	3	0.000000
##	23	2	0	3	m	9	2	0.8181818
##	24	2	0	3	f	1	1	0.5000000
##	25	3	W	1	m	226	128	0.6384181
##	26	3	W	1	f	88	57	0.6068966
##	27	3	W	2	m	189	117	0.6176471
##	28	3	W	2	f	44	34	0.5641026
##	29	3	W	3	m	156	73	0.6812227
##	30	3	W	3	f	70	25	0.7368421
##	31	3	0	1	m	45	31	0.5921053
##	32	3	0	1	f	47	35	0.5731707
##	33	3	0	2	m	18	3	0.8571429
##	34	3	0	2	f	13	7	0.6500000
##	35	3	0	3	m	11	2	0.8461538
##	36	3	0	3	f	9	2	0.8181818
##	37	4	W	1	m	285	179	0.6142241
##	38	4	w	1	f	110	93	0.5418719
##	39	4	W	2	m	225	141	0.6147541
##	40	4	W	2	f	53	24	0.6883117
##	41	4	w	3	m	324	140	0.6982759
##	42	4		3	f	60	47	0.5607477
##	43	4	W	1	m	40	25	0.6153846
##	44	4	0	1	f	66	56	0.5409836
##	45	4	0	2		19	11	0.6333333
##	46	4	0	2	m f	25	19	0.5681818
	47		0				2	
##		4	0	3	m f	22 11		0.9166667
##	48	4	0	3			12	0.4782609
##	49	5	W	1	m	270	180	0.6000000
##	50	5	W	1	f	176	151	0.5382263
##	51	5	W	2	m	215	108	0.6656347
##	52	5	W	2	f	80	40	0.6666667
##	53	5	W	3	m	269	136	0.6641975
##	54	5	W	3	f	110	40	0.7333333
##	55	5	0	1	m	36	20	0.6428571
##	56	5	0	1	f	25	16	0.6097561
##	57	5	0	2	m	9	7	0.5625000
##	58	5	0	2	f	11	5	0.6875000
##	59	5	0	3	m	16	3	0.8421053
##	60	5	0	3	f	4	5	0.444444
##	61	6	W	1	m	252	126	0.6666667
##	62	6	W	1	f	97	61	0.6139241
##	63	6	W	2	m	162	72	0.6923077
##	64	6	W	2	f	47	27	0.6351351
##	65	6	W	3	m	199	93	0.6815068
##	66	6	W	3	f	62	24	0.7209302
##	67	6	0	1	m	69	27	0.7187500
##	68	6	0	1	f	45	36	0.555556
##	69	6	0	2	m	14	7	0.666667
##	70	6	0	2	f	8	4	0.666667

```
## 71
            6
                      3
                                 14
                                         5
                                                         0.7368421
                  0
                              m
## 72
            6
                      3
                              f
                                  2
                                         0
                                                         1.000000
                  0
            7
## 73
                  W
                      1
                              m 119
                                        58
                                                         0.6723164
            7
                                 62
## 74
                                        33
                                                         0.6526316
                  W
                      1
                              f
            7
## 75
                  W
                      2
                              m
                                 66
                                        20
                                                         0.7674419
## 76
            7
                      2
                                 20
                                                         0.666667
                              f
                                        10
                  W
## 77
            7
                      3
                                 67
                                        21
                                                         0.7613636
                  W
                              m
            7
                                 25
## 78
                  W
                      3
                              f
                                        10
                                                         0.7142857
## 79
            7
                      1
                              m
                                 45
                                        16
                                                         0.7377049
                  0
## 80
            7
                                 22
                      1
                              f
                                        15
                                                         0.5945946
## 81
            7
                      2
                                 15
                                        10
                                                         0.6000000
                  0
                              \mathbf{m}
            7
                      2
## 82
                              f
                                 10
                                         8
                  0
                                                         0.555556
            7
                      3
## 83
                                  8
                                         6
                                                         0.5714286
                  0
                              m
## 84
            7
                      3
                                   6
                                         2
                                                         0.7500000
                              f
##
      fitted(job_sat_data.logit)
## 1
                         0.5788758
## 2
                         0.5518297
## 3
                         0.6096837
## 4
                         0.5831915
## 5
                         0.6640850
## 6
                         0.6390995
## 7
                         0.6188964
## 8
                         0.4986531
## 9
                         0.6485540
## 10
                         0.5305705
## 11
                         0.7002016
## 12
                         0.5885571
## 13
                         0.6801643
## 14
                         0.6557548
## 15
                         0.7073088
## 16
                         0.6840085
## 17
                         0.7536024
## 18
                         0.7325941
## 19
                         0.7152933
## 20
                         0.6061073
## 21
                         0.7405935
## 22
                         0.6361751
## 23
                         0.7832360
## 24
                         0.6887689
## 25
                         0.6208833
## 26
                         0.5946459
## 27
                         0.6504736
## 28
                         0.6250473
## 29
                         0.7019688
## 30
                         0.6784366
## 31
                         0.6592616
## 32
                         0.5423361
## 33
                         0.6873648
## 34
                         0.5738493
## 35
                         0.7356338
## 36
                         0.6302158
## 37
                         0.5999066
## 38
                         0.5732154
## 39
                         0.6301590
```

```
## 40
                         0.6041542
## 41
                         0.6831894
## 42
                         0.6588949
## 43
                         0.6391744
## 44
                         0.5203707
## 45
                         0.6681002
## 46
                         0.5521474
## 47
                         0.7181238
## 48
                         0.6094307
## 49
                         0.6085823
## 50
                         0.5820666
## 51
                         0.6385738
## 52
                         0.6127972
## 53
                         0.6909893
## 54
                         0.6670015
## 55
                         0.6474989
## 56
                         0.5294182
## 57
                         0.6760956
## 58
                         0.5611010
## 59
                         0.7254094
## 60
                         0.6180313
## 61
                         0.6471245
## 62
                         0.6215963
## 63
                         0.6757363
## 64
                         0.6511622
## 65
                         0.7250826
## 66
                         0.7026023
## 67
                         0.6841975
## 68
                         0.5702510
## 69
                         0.7111452
## 70
                         0.6012552
## 71
                         0.7570404
## 72
                         0.6561687
## 73
                         0.6748057
## 74
                         0.6501976
## 75
                         0.7022060
## 76
                         0.6786840
## 77
                         0.7490202
## 78
                         0.7277624
## 79
                         0.7102726
## 80
                         0.6002373
## 81
                         0.7358543
## 82
                         0.6304800
## 83
                         0.7790433
## 84
                         0.6834875
logit.fit.prob <- fitted(job_sat_data.logit)</pre>
logit.fit.odds <- logit.fit.prob/(1-logit.fit.prob)</pre>
#Creation of a new data frame with added columns
sat_data <- cbind(job_sat_data, logit.fit.prob, logit.fit.odds)</pre>
sat_data_region1 <- subset(sat_data, region=="1")</pre>
sat_data_region2 <- subset(sat_data, region=="2")</pre>
```

```
sat_data_region3 <- subset(sat_data, region=="3")
sat_data_region4 <- subset(sat_data, region=="4")
sat_data_region5 <- subset(sat_data, region=="5")
sat_data_region6 <- subset(sat_data, region=="6")
sat_data_region7 <- subset(sat_data, region=="7")</pre>
```

Contingency Tables by Race and Region

```
sat_data_race_w <- subset(sat_data, race=="w")
sat_data_race_o <- subset(sat_data, race=="o")</pre>
```

Contingency Tables by Age Group, and Region

```
sat_data_age1 <- subset(sat_data, age=="1")
sat_data_age2 <- subset(sat_data, age=="2")
sat_data_age3 <- subset(sat_data, age=="3")</pre>
```

Contingency Table by Gender and Region

```
sat_data_f <- subset(sat_data, gender=="f")
sat_data_m <- subset(sat_data, gender=="m")

sat_data_w_m <- subset(sat_data, race=="w" & gender =="m")
sat_data_w_f <- subset(sat_data, race=="w" & gender =="f")
sat_data_o_m <- subset(sat_data, race=="o" & gender =="m")
sat_data_o_f <- subset(sat_data, race=="o" & gender =="f")</pre>
```