Analog Circuits

Operational Amplifiers (Opamps) DC Power Supplies Oscillators

Operational Amplifiers

- High-gain differential amplifier, using voltage feedback, providing stabilized voltage gain
- Symbol of differential amplifier
 - inputs
 - Inverting input (IN-)
 - Non-inverting input (IN+)
 - output (OUT)
 - dc power supplies
 - Positive supply (V+)
 - Negative supply (V-)

Characteristics

- Very high input impedance (ideal ∞ infinite input resistance)
- Very small input currents (ideal 0)
- Very high amplification (voltage gain) (A_V -ideal ∞)
- Outut voltage bounded by power supplies values
- Very small difference between the absolute values of input voltages (ideal 0)
- Very small output impedance (ideal 0 – zero output resistance)
- Two operation modes:
 - -differential mode: $V_d = V_{IN+} V_{IN-}$
 - -common mode: $V_c = (V_{IN+} + V_{IN-})/2$

(useful mode for rejecting noise signals); common mode rejection ratio CMRR parameter defined; expressed logarithmically in decibells dB:

 $CMRR[dB] = 20log_{10}(A_d/A_c)$

Negative Reaction (feedback)

 An amount of the output signal is fed back to circuit's input, with a phase shift of 180° from input signal, implying a decrease of the output signal

Constant-Gain OpAmp

- V₁=0VI_{R1}=I_{R2}

$$I = \frac{V_{IN}}{R_1} = -\frac{V_{OUT}}{R_2}$$

$$V_{OUT} = -\frac{R_2}{R_1}V_{IN}$$

Noninverting OpAmp

- $V_{IN}=V_1$
- I_{R1}=I_{R2}

$$V_{IN} = V_1 = \frac{R_1}{R_1 + R_2} V_{OUT}$$

$$V_{OUT} = (1 + \frac{R_2}{R_1})V_{IN}$$

Summing OpAmp

•
$$V_1 = 0V$$

•
$$I_{R2} = I_{R11} + ... + I_{R1n}$$

$$I_{R2} = -\frac{V_{OUT}}{R_2} = \frac{V_{IN1}}{R_{11}} + ... + \frac{V_{INn}}{R_{1n}}$$

$$V_{OUT} = -(\frac{R_2}{R_{11}}V_{IN1} + ... + \frac{R_2}{R_{1n}}V_{INn})$$

Integrator

$$Z_{c} = \frac{1}{j\omega C} = \frac{1}{sC}$$
• $V_{1} = 0V$
• $I_{R} = I_{C}$

$$I = \frac{V_{IN}}{R_1} = -\frac{V_{OUT}}{Z_C} = -sCV_{OUT}$$

$$V_{OUT} = -\frac{1}{sCR}V_{IN}$$

Differentiator

$$Z_C = \frac{1}{j\omega C} = \frac{1}{sC}$$

- $V_1=0V$
- I_R=I_C

$$I = -\frac{V_{OUT}}{R} = \frac{V_{IN}}{Z_C} = sCV_{IN}$$

$$V_{OUT} = -sCRV_{IN}$$

Power Supply Circuits

Convert analog supply voltage into desired regulated do voltage

Circuit consists on:

- transformer: separates circuit from ac power supply network and steps input ac voltage to a desired ac level, conform to the needed dc voltage level to be obtained
- rectifier: to half-wave or full-wave rectify the ac signal, getting a dc component non zero
- filter: attenuation of ac voltage irregularities (as coming from rectifier)
- voltage regulator: regulates the filtered dc voltage to a desired value for output voltage

Half-Wave Rectifier

 D₁ is open for positive polarities and off for negative polarities of the applied input voltage

Full-Wave Bridge Rectifier

Four diodes in a bridge configuration

- D₁ and D₃ are open for positive waves
- D₂ and D₄ are open for negative waves of applied input voltage

Rectifier with filtered output

A capacitor C₁ in parallel with load resistance R_L

- If rectifier provides a higher voltage than the voltage drop on capacitance, it stores energy
- If rectifier provides a lower voltage than capacitor's voltage drop, C₁ will generate energy

Voltage Regulators

Zener diode shunt regulator

Output voltage must stay fixed, for different loads (R_L values)
Filtered output voltage has a dc component and some ac variations (ripple voltage)

- Zener diode shunt regulator based on non-linearity of the current-voltage characteristics for a Zener diode
- Allows for high variations of output currents, for small variations of diode's reverse voltage drop

Voltage regulator with negative feedback and without error amplifier

- without error amplifier
 Negative feedback from collector to base circuit of Q1
- Output voltage (v_{OUT}) compared with a reference voltage (v_Z)
- comparison generates an error signal applied to a control element
- if v_{OUT} increases, control element (negative reaction) will impose voltage decrease, and vice-versa
- For transistor Q1: v_{BE}=v_Z-v_{OUT}
- if v_{OUT} goes higher -> v_{BE} lows -> v_{CE} higher -> v_{OUT} lower
- if v_{OUT} lower -> v_{BE} higher -> v_{CE} lower -> v_{OUT} higher
- V_{OUT}=V_Z-V_{BE}

Voltage regulator with feedback and error amplifier

$$v_1 = \frac{R_3}{R_2 + R_3} v_{OUT}$$

- if v_{OUT} lower -> v_1 lower -> v_2 higher -> v_{BE} higher -> v_{CE} lower-> v_{OUT} higher
- if v_{OUT} higher -> v_1 lower -> v_2 lower -> v_{BE} lower -> v_{CE} higher-> v_{OUT} lower
- Because $V_1 = V_Z$

Integrated Circuits (IC Regulators)

- 7800 series provides positive output regulated voltages
- 7900 series provides negative output regulated voltages
- Last two digits from code show regulated voltage value
- Input capacitance avoids oscillations due to stray inductances of supply line
- Output capacitance acts as filter

Oscillators

- Generates a repetitive waveform, without any input stimulus
- Amplifier and positive feedback
- Positive feedback: an amount of output voltage is fed back to input with zero phase shift, providing a gain of the output voltage
- Conditions for having oscillations:
 - Total phase shift must be zero
 - Voltage gain must be greater than 1 for obtaining desired oscillations amplitude. After gaining desired amplitude for oscillations, voltage amplification must stay at 1

Wien bridge Oscillator

 Positive feedback circuit, made up by an op-amp and RC bridge circuit

Wien bridge

- RC high-pass and RC low-pass filters
- Each filter operates over 'edge' frequencies (frequency adjustment)
- $-R_1=R_2=R, C_1=C_2=C$
- attenuation is minimum for oscillation frequency

$$f_{osc} = \frac{1}{2\pi RC}$$

$$\frac{V_{IN}}{V_{OUT}} = 3$$

Base circuit

- Op-amp with negative feedback
- For having a unit voltage gain for oscillator, amplification for base circuit must be 3

$$\frac{V_{OUT}}{V_{IN}} = 1 + \frac{R_2}{R_1}$$
 $R_2 = 2R_1$

 For lower oscillation amplitudes the two Zener diodes are off (no direct diode current)

$$\frac{V_{OUT}}{V_{IN}} = 1 + \frac{R_2 + R_3}{R_1} = 3 + \frac{R_3}{R_1}$$

 When having desired amplitude, the diodes go conducting, shorting R3 and giving a voltage gain for the base circuit of 3, and a voltage gain for oscillator of 1

Wien bridge oscillator

Problem

Design a current source, being voltage driven

- AO2 repeater
- For calculus of V₋ superposition paradigm is used

$$V_{-} = \frac{R_{2}}{R_{1} + R_{2}} V_{1} + \frac{R_{1}}{R_{1} + R_{2}} V_{2}$$

$$V_{+} = \frac{R_{3}}{R_{3} + R_{4}} V_{3}$$

$$V_{-} = V_{+}$$

$$\frac{R_{2}}{R_{1} + R_{2}} V_{1} + \frac{R_{1}}{R_{1} + R_{2}} V_{2} = \frac{R_{3}}{R_{3} + R_{4}} V_{3}$$

$$I_{S} = I_{5} = \frac{V_{2} - V_{3}}{R_{5}}$$

$$V_{2} = I_{S} R_{5} + V_{3}$$

$$\frac{R_2}{R_1 + R_2} V_1 = \frac{R_3}{R_3 + R_4} V_3 - \frac{R_1}{R_1 + R_2} (I_S R_5 + V_3)$$

$$I_S = -\frac{R_2}{R_5 R_1} V_1 + \frac{R_1 + R_2}{R_5 R_1} (\frac{R_3}{R_3 + R_4} - \frac{R_1}{R_1 + R_2}) V_3$$

- I_S must depend only on V₁
- V₃ coefficient must be 0

$$\frac{R_{1}+R_{2}}{R_{5}R_{1}}(\frac{R_{3}}{R_{3}+R_{4}}-\frac{R_{1}}{R_{1}+R_{2}})=0$$

$$R_{2}R_{3}=R_{1}R_{4}$$

$$I_{S}=-\frac{R_{2}}{R_{5}R_{1}}V_{1}$$

