Organização de Sistemas Computacionais

Prof. Dr. Márcio Castro marcio.castro@ufsc.br

Introdução

- Componentes básicos de um sistema computacional
 - CPU, memória, dispositivos de E/S, ...
 - Conexão entre componentes: barramento

Processador

- Busca instruções da memória principal e as executa
- Possui memórias internas (registradores)
- Possui um conjunto de instruções específico (ISA)
- Exemplos de instruções
 - Carregamento de palavras da memória para registradores e salvamento de dados de registradores na memória
 - Operações aritméticas e lógicas em registradores

Processador

Registradores

- De propósito geral
- Especiais: PC, SP, ...

Pipeline

Otimizações:

- Superescalar
- Execução fora de ordem

Processador

Multicores

- Replicação de componentes da CPU
- Registradores, caches, pipeline, ...

Impacto em diversos níveis do SO

- Gerenciamento de memória
- Escalonamento
- E/S

- Segundo maior componente de um computador
- Idealmente precisa ser:
 - 1. Mais rápida do que executar uma instrução (evitar subutilização do processador)
 - 2. Grande (para guardar muitos dados)
 - 3. Baixo custo
- Problema: nenhuma tecnologia de memória satisfaz todos esses objetivos

Desempenho: Processador vs. DRAM

Estimativas baseadas em David A. Patterson and John L. Hennessy. 1990. Computer architecture: a quantitative approach. Morgan Kaufmann Publishers Inc., USA.

Prof. Dr. Márcio Castro

Exemplo

- Processador de 2 GHz executa uma instrução por ciclo
- Cada acesso à memória leva 100 ciclos
- Se 20% das instruções acessam a memória, qual o tempo médio das instruções por ciclo?

Exemplo

- Processador de 2 GHz executa uma instrução por ciclo
 - 2 GHz = 2x10⁹ ciclos por segundo = 0,5 ns/ciclo
 - Tempo de cada instrução: 0,5 ns
- Cada acesso à memória leva 100 ciclos
 - Acesso à memória: 100 * 0,5 ns = 50 ns
- Se 20% das instruções acessam a memória, qual o tempo médio de instruções por ciclo?
 - Cálculo: 0,8*0,5 + 0,2*50
 - Resultado: 10,4 ns/ciclo (96 MHz)

Como melhorar o desempenho?

- E se nós tivéssemos uma memória intermediária que reduzisse o tempo de acesso?
- Exemplo: se 95% dos acessos levassem 5 ciclos na memória intermediária

```
= 0,8*0,5 + 0,2*(0,95*2,5 + 0,05*50)
= 0,4 + 0,2*(2,375 + 2,5)
= 0,4 + 0,975 = 1,375 ns/ciclo
```

Resultado: 727 MHz ou 7,5x melhor do que antes

- Organizada em uma hierarquia de memórias
- Desempenho (e custo) vs. capacidade

Exemplo: máquina c/ 24 processadores (Intel)

Processador

Carregamento de um programa

Início da execução do programa

Início da execução do programa

Processador

Localidade temporal

Processador

Localidade temporal

Processador

Localidade espacial

Processador

Localidade espacial

Processador

Evolução da execução

Dispositivos de E/S

- Geralmente possuem duas partes
 - Controlador e dispositivo
- Controlador: é um chip ou um conjunto de chips que controlam fisicamente o dispositivo
 - S.O. envia comandos para o controlador que, por sua vez, se comunica com o dispositivo
 - O software que se comunica com o controlador do dispositivo é chamado de driver de dispositivo

Dispositivos de E/S

Discos

- Armazenamento permanente
- Mais barato do que RAM, mas muito mais lento
- Discos magnéticos (ainda muito comuns) ou SSDs
- Exemplo: disco magnético

Obrigado pela atenção!

Dúvidas? Entre em contato:

- marcio.castro@ufsc.br
- www.marciocastro.com

