Licenciatura em Engenharia Informática Sistemas Operativos 1- 2ª frequência – 19 de Maio de 2016 Departamento de Informática - Universidade de Évora

Justifique cuidadosamente todas as suas respostas

1. Considere um sistema com as seguintes matrizes de alocação; matriz dos pedidos; vector dos recursos totais; e vector das disponibilidades:

Request Matrix (Pedidos)

•	A	В	C	D
P1	0	1	0	0
P2	3	4	0	0
Р3	0	0	0	3
P4	1	1	4	1

Aloc	Matrix	(a	locacão)

A	В	C	D
1	0	2	1
0	3	3	3
2	2	2	0
0	2	2	1
	1 0 2	1 0 0 3 2 2	1 0 2 0 3 3 2 2 2

Rec	tot		
3	8	9	7
Disp			

Indique se existe deadlock

- a) Indique os recursos disponíveis.
- b) Indique se existe deadlock.
- c) Após a detecção de deadlocks que acções e que critérios podem ser aplicados, de modo a resolver a situação ?
- 2. Usando semáforos, e indicando a sua inicialização, implemente um solução para o seguinte problema: considere um elevador panoramico com uma lotação de 15 pessoas, onde existe uma máquina de bilhetes. com um máquina e com espaço para 20 sandes. Cada pessoa entra no elevador, vai à máquina, e, se houver bilhetes na máquina paga e retira um; a máquina imprime os bilhetes sempre que é retirado uma. Implemente em pseudo-código os processos "máquina" e "cliente", cumprindo as restrições enunciadas. Considere os seguintes procedimentos que pode usar: entrar_elevador(), sair_elevador(), tirar_e_pagar_bilhete(), imprimir_bilhete().
- **3.** Considere um sistema de gestão de memória paginado com page table de 4 níveis; com TLB de 10 ns de tempo de acesso, com um *Hit Ratio de 99%*, qual o tempo de acesso da RAM que garante um tempo médio de acesso inferior a 100 ns?
- **4.** Num sistema de gestão de memória virtual com paginação, admita que o número de frames reservadas para as páginas é de 4 por processo.
- 1 2 3 4 2 1 6 4 2 6 4 2 3 1 4 6 2 4 1 3
- a)Aplique o algoritmo de substituição algoritmo LRU aos pedidos.
- b)Aplique o algoritmo de substituição algoritmo ótimo aos pedidos.
- **5.** Consider um sistema de ficheiros indexado com i-nodes, com: blocos de 1024 Bytes; dimensão de endereços (de i-nodes e blocos) de 2 bytes; cada entrada num diretório tem 14 bytes para o nome e 2 para o endereço.
- a) proponha uma estrutura para o i-node de modo que cada diretório comporte pelo menos 2500 ficheiros ou subdiretórios.
- b) qual a dimensão máxima de um ficheiro no sistema que propôs ?
- **6.** Indique a hipótese **correta**. Um sistema de memória paginada...
- A pode ter fragmentação interna
- **B** tem processos com dimensão superior à memória física RAM.
- C usa ou, o algoritmo BEST FIT ou o NEXT FIT
- D pode ter uma TLB (Table Lookaside Buffer) para diminuir a diensão das tabelas de paginação multinível