- 1. Известно, что $\mathbb{E}(Y \mid X) = 2 + 3X$, $\mathbb{V}ar(X) = 9$, $\mathbb{E}(X) = 6$.
 - а) [2 + 3] Найдите $\mathbb{E}(Y)$, $\mathbb{C}ov(X, Y)$.
 - б) [5] В каких пределах могут лежать $Var(Y \mid X)$ и Var(Y)?
- 2. Величины U_1 , U_2 распределены равномерно на отрезке [0,1] и независимы. Определим последовательность $X_n=n^2\cdot I[U_1\leq 1/(n+2)]+U_2\cdot n/(n+2)$.
 - а) [3] Сходится ли (X_n) почти наверное и если да, то к чему?
 - б) [2] Сходится ли (X_n) по вероятности и если да, то к чему?
 - в) [2] Сходится ли (X_n) по распределению и если да, то к чему?
 - г) [3] Сходится ли (X_n) в L^1 и если да, то к чему?

- 3. Рассмотрим стандартный винеровский процесс (W_t) .
 - а) [5] Найдите $\mathbb{C}\text{ov}(W_1, W_7 \mid W_3)$ и $\mathbb{E}(W_2^2 W_4^2)$.
 - б) [5] При каком α процесс $Y_t = (3 + \alpha W_t)^2 10t$ будет мартингалом?
- 4. Улитка стартует в точке $S_0=7$. Каждую минуту она равновероятно смещается влево или вправо на единицу.
 - а) [3] При какой константе α процесс $Y_t = \sum_{k=0}^t S_k \alpha S_t^3$ будет мартингалом?

Улитка отдыхает в точках $S_0=0$ и $S_0=20$. Обозначим τ момент времени, когда она впервые достигнет одной из точек отдыха, $\tau=\min\{t\mid S_t\in\{0,20\}\}$.

- б) [4] Слепо применяя теорему Дуба, найдите $\mathbb{E}(S_1 + S_2 + \dots + S_{\tau})$.
- в) [3] Аккуратно проверьте, что теорему Дуба можно было применять.

Уточнение: без доказательства можно пользоваться тем, что $\mathbb{P}(S_{\tau}=20)=7/20.$

- 5. Величины $X_1, X_2, ..., X_5$ независимы и экспоненциально распределены $X_i \sim \text{Expo}(\lambda_i)$. Определим $M = \min\{X_3, X_4, X_5\}$.
 - а) [3] Как распределена величина M?
 - б) [3] Найдите вероятность $\mathbb{P}(X_1 < X_2)$.
 - в) [4] Найдите функцию распределения величины $L=\ln X_1-\ln X_2$ при $\lambda_1=\lambda_2=1.$
- 6. Величины $X_1, X_2, ..., X_n$ независимы и равномерно распределены на отрезке [0,a], рассмотрим наибольшую величину $H = \max\{X_1, \ldots, X_n\}$ и наименьшую величину $L = \min\{X_1, \ldots, X_n\}$.
 - а) [3] Найдите $\mathbb{E}(L)$ любым способом.

Определим ожидание $h(a) = \mathbb{E}(L \cdot H)$.

- б) [5] Выпишите уравнение, связывающее h(a+u) и h(a), с точностью до o(u).
- в) [2] Укажите начальное условие, которому удовлетворяет функция h(a).