THESIS PROPOSAL

MELANIE VINING

1. Introduction

1.1. Fourier Continuation. Fourier Continuation (FC) is an approximation method used to extend the computational abilities of a Fourier Series to non-periodic functions.

1.2. Past Work.

2. Current Work

2.1. **Application to the Heat Equation.** We study the Boundary Value Problem $(I - \alpha \frac{\partial^2}{\partial x^2})u = f$ with boundary values $u(a) = u_0$ and $u(b) = u_1$. As a motivating example, consider f(x) = x on [0,1]. Let $\mathcal{L} = (I - \alpha \frac{\partial^2}{\partial x^2})$. When we solve $u = \mathcal{L}^{-1}f$ using Fourier Continuation approximations, some energy from the continuation domain can be spread back into the system. Since we know analytically for $\alpha > 0$ the system is stable, using the Fourier Continuation approximation can be a computationally inaccurate approach. Our goal is to find an additional constraint that would preserve the accuracy of the Fourier Continuation approximation while ensuring the stability of the operation.

2.2. Green's Functions.

2.3. **Results.** For the individual Gram Polynomials, we saw accuracy of $\mathcal{O}(10^{-14})$. In the following figure, we see the accuracy as a function of parameter α

3. Future Work

- 3.1. **Computational Work.** We are going to use this to put as a time step of the heat equation and solve that PDE. Our goal is to show that we have a stable approximation that can be used.
- 3.2. **Analytical Work.** The result that yields the same Fourier coefficients for any given Gram polynomial independent of choice of α is unexpected. Our goal is to develop an analytic proof that justifies this result in general.