Grundlagen

- Grundlagen
- $-Y = f(x) + \epsilon$
- -Y = Zielgröße, f() = unbekannte/wahre Beziehung, X =Prädiktoren, ϵ Nicht reduzierbarer Fehler
- $\hat{Y} = \hat{f}(X) + \epsilon$
- \hat{Y} = Schätzung der Zielgröße, \hat{f} = Schätzung des Modells
- Ziel: Möglichst genaue Schätzung finden
- Ziel:
 - Prediction (Vorhersage von Werten)
 - Inference (Ursachenanalyse, wie wirken sich Änderungen aus)
- Bias-Variance Tradeoff
- Bias: Fehler des Modells durch falsche Annahmen der Realität
- Variance: F\u00e4higkeit des Models auf anderen Subsets gleich gute Modelle zu erzeugen bzw. Fehleranfälligkeit bei Änderungen in Traningsdaten
- TrainingsError: Wird immer kleiner, da Modell sich immer besser anpasst
- TestError: Wird erst kleiner, steigt dann aber wieder (Over-
- Nichtreduzierbarer Error: Bleibt immer gleich (Messfehler etc.)

Regression

- Modellgüte:
- Schätzung der Parameter $\beta_0 und \beta_1$ über kleinste Quadrate

*
$$\hat{\beta_1} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) * (y_i - \overline{y})}{\sum_{i=1}^{n} (x_1 - \overline{x})^2}$$

- * $\hat{\beta_0} = \overline{y} \beta_1 \overline{x}$
- * Erwartungstreue: $E(\hat{\beta}_0) = \beta_0$ und $E(\hat{\beta}_1) = \beta_1$
- $RSS = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$

- $RSE = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i \hat{y}_i)^2}$ = Residual Standard Error (Zielgröße weicht im Durchschnitt RSE Einheiten von der Regressionsgeraden ab)
- $R^2 = 1 \frac{RSS}{TSS}$, je größer desto besser 0 ≤ R^2 ≤ 1 (Var(Zielwert) wird durch R^2 % der Prädiktoren erklärt)
- $R_{adj}^2 = 1 \frac{(1-R^2)(N-1)}{N-p-1}$ Adjustiert mit Anzahl der Prädiktoren
- Standardfehler und Intervalle
 - * $Var(\epsilon) = \frac{1}{n-2} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - * $(SE(\hat{\beta}_0))^2 = Var(\epsilon) * (\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i \overline{x})^2})$
- * $(SE(\hat{\beta}_1))^2 = \frac{Var(\epsilon)}{\sum_{i=1}^{n} (x_i \overline{x})^2}$
- * Intervallschätzung: $[\hat{\beta}_1 2 * SE(\hat{\beta}_1), \hat{\beta}_1 + 2 * SE(\hat{\beta}_1)]$
- * Interpret: Aus 100 Proben liegt β_1 in 95 Fällen im Interval
- * 95%-Konfidenzinterval: bezieht sich auf den durchschnittlichen Y Wert
- * 95%-Prognoseinterval: bezieht sich auf den konkreten Wert Y von Ausgangswerten X1...
- t-Test
 - * $H_0: \beta_i = 0; H_1: \beta_i \neq 0$
 - * X_i Hat keinen Einfluss auf Y
- * $t = \frac{\hat{\beta}_1}{SE(\hat{\beta}_1)}$
- * Einfach den p-Wert ablesen, wenn < als bspw. 0.05 dann H_0 verwerfen
- F-Test
 - * $H_0: \beta_0 = \beta_1 = \beta_i = ... = 0$ * $F = \frac{(TSS RSS)/p}{RSS/(n-p-1)}$
- * Alle Prädiktoren haben keinen Einfluss auf Y
- Oualitative Prädiktoren:
- Prädiktoren mit 2 Ausprägungen:
- DummyVariable aka 0(No) oder 1 (Yes)
- Achte auf Normalausprägung von R
- $\hat{y} = \beta_0 + \beta_1 * x_i$
- Koeffizient β_1 kürzt sich je nach Ausprägung raus
- Prädiktoren mit *k* Ausprägungen:
- Erstelle k-1 Dummyvariablen
- Andere ist Normalzustand
- Interaktionseffekte:
- Synergieeffekte zwischen zwei oder mehreren Variablen
- $-\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon$
- Auswirkung erkennen durch Umformung:
- $\hat{y} = \beta_0 + \beta_2 x_2 + (\beta_1 + \beta_3 x_2) * x_1$
- Erhöht man x_1 um eine Einheit erhöht sich \hat{y} um $\beta_1 + \beta_3 x_2$ Einheiten

- Interaktion zwischen Qauli und Quanti Variablen:

- $-x_1$ moderiert x_2 und Vice versa
- Signifikanz über p-value feststellen

3 Klassifikation

• Grundlagen:

- Klassifikation ist Zuordnung von bedingten Wahrscheinlichkeiten anhand von Ausprägungen
- -P(Y=k|X=x)
- Klasse mit höchster Wahrscheinlichkeit wird gewählt

- Kürzt sich komplett raus (wenn 0) oder ist *1 (wenn 1)

- Bpsw: Y = 1 (Yes) und 0 (No)
 - * Lineare Regression, die die Wahrscheinlichkeitausgibt funktioniert nicht!
- * Reg.Gerade wird unter 0 fitten und auch nicht bis 1
- Funktion finden, die 0 ≤ p(x) ≤ 1 für alle X
- Logistic Regression:
- $p(x) = \frac{e^{\beta_0 + \beta_1 * X}}{1 + e^{\beta_0 + \beta_1 * X}}$
- $-0 \le p(x) \le 1$, da immer $e^x \ge 0$ und $\frac{X}{1+X} \le 1$
- Odds:
 - $* \frac{p(x)}{1-p(x)} = e^{\beta_0 + \beta_1 * X}$
 - $* 0 \le odds \le \infty$
 - * Möglichkeit Wahrscheinlichkeit anzugeben:
 - * Odds= $\frac{4}{3}$ -> "Siegchancen stehen 4 zu 3"
 - * Umrechnung:
 - * $p = \frac{odds}{1 + odds} = \frac{e^{logit}}{1 + e^{logit}}$
 - * $odds = \frac{p}{1-p} = e^{logit}$
- Logits:
 - * $log(\frac{p(x)}{1-p(x)}) = \beta_0 + \beta_1 * X$
 - * $-\infty \leq logits \leq \infty$
 - * Logits hängen Linear von X ab

· Schätzung der Koeffizienten

- Schätzung von β_0 und β_1 über Maximum-Likelihood
- $l(\beta_0, \beta_1) = \prod_{i: \gamma_i = 1} p(x_i) * \prod_{i: \gamma_i = 0} (1 p(x_i))$
- Funktion wird maximiert = da wo Likelihood am größten ist, sind Parameter am besten
- Validierung:
- Gleiche Werte/ Tests, wie bei lineare Regression

Confounding:

- Zusammenhang zwischen zwei Prädiktoren
- Trugschluss, wenn man nur einzelne Variable in Abhängigkeit zu Y betrachtet
- In der Gesamtmasse wird es dann gut
- Confounder beeinflusst gleichzeitig Zielgröße und anderen Prädiktor

4 Resampling

- Grundlagen:
- TestError wird mit ungesehenen Daten berechnet.

- Meist aber keine vorhanden -> TestError muss über Trainingsdaten geschätzt werden
- Verfahren für Regression/Klassifikation anwendbar

• Einfache Valididerung:

- Teile Trainingsdaten in zwei gleiche große Mengen auf
- Menge1: für Training / Menge2: für Testing
- $-MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- MSE variiert stark in Abhängikeit der Traininsgmenge
- Modelle sollten möglichst mit hoher Trainingsmenge trainiert werden
- Hoher Bias, geringe Varianz

• LeaveOneOut Validierung:

- n-Modelle werden mit n-1 Datensätze trainiert
- Letzter Datensatz ist Testdatensatz
- Durchschnitt aller MSEs ist finaler Wert
- $-CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- Vorteil: Größere Trainingsmenge
- Nachteil: Hoher Rechenaufwand für n Modelle, größere Varianz als bei einfacher Val, durch Autokorrelation
- geringer Bias, hohe Varianz

k-fold Validierung

- Teile Datensatz in k gleich große Mengen (5, 10..)
- Trainiere k Modelle, wobei immer eine Teilmenge als Test genutzt wird
- $-CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \frac{1}{n} \sum_{j=1}^{n} (y_j \hat{y}_j)^2$
- geringere Streuung des MSEs
- Guter Kompromiss zwischen Rechenaufwand und guter Abschätzung
- Für Klassifikation wird der Anteil falsch klassifizierter Objekte genommen!

Modellauswahl

- p (# Prädiktoren), n (# Beobachtungen)
- Steigende Varianz und sinkender Prognosegüte, wenn p -> n
- Hohe Anzahl an Prädiktoren: Steigende Wahrscheinlichkeit von Multikollinearitär (Abhängige Prädiktoren) und unnötige Komplexität
- Wenn $p \ge n$, ist Methode der kleinsten Quadrate gar nicht möglich

• Best Subset Selection:

- Berechne alle Modelle mit k Parametern (Speicher das beste (Min. RSS oder Max. R^2))
- Berechne für k = 0.1.2 .. x alle besten Modelle
- Wähle beste aus Besten aus (siehe unten)
- Hoher Rechenaufwand (2^p Modelle), Gefahr von Overfit-

ting, findet optimales Modell

• Forward Stepwise Selection:

- Berechne bestes Modell mit 0 Prädiktoren, dann mit 1, etc.
- Wähle für k immer das beste Modell und gehe von dort aus weiter
- Wähle beste aus Besten aus
- Weniger Rechenaufwand (p² Modelle), Overfitting unwahrscheinlich, findet nur lokales Optimum

Backward Stepwise Selection:

- Wie Forward Stepwise Selection nur rückwärts
- Starte mit Modell mit k Prädiktoren und nimm immer den schlechtesten Weg
- Wähle beste aus Besten aus
- Weniger Rechenaufwand (p² Modelle), Overfitting unwahrscheinlich, findet nur lokales Optimum

Bestes Modell?

- R² und RSS ist nicht aussagekräftig, da es mit steigender Anzahl an Prädiktoren besser wird.
- Testfehler indirekt messbar durch $(C_p, AIC, BICundR_{adi}^2)$ oder direkt durch Kreuzvalidierung
- Anwendbar bei linearen Modellen
- $-RSS = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- n: Anzahl der Beobachtungen, d: Anzahl der Prädiktoren
- $-\sigma^2 = Var(\epsilon) = \frac{1}{n-p-1} * RSS$
- Mallows $C_p = \frac{1}{n}(RSS + 2d\sigma^2)$
- $AIC = \frac{1}{n\sigma^2}(RSS + 2d\sigma^2)$ (Proportional zu C_p) $BIC = \frac{1}{n\sigma^2}(RSS + ln(n)d\sigma^2)$ (Höheres Gewicht auf Strafterm für viel Prädiktoren)
- $-R_a^2 = R^2 \frac{p}{n-p-1}(1-R^2)$ kann bei Hinzunahme einer Variable auch kleiner und oder negativ werden

R - Hilfe

• Grundlagen:

- set.seed(X) Setzt Seed für random Number Generator
- -c(1,2,3,4) Vektor mit Zahlen 1-4
- rep(1:10,100) Erzeugt Vektor mit zahlen 1-10, 100 mal
- rnorm(100) Erzeugt Vektor mit 100 normalverteilten Werten
- runif(X, a, b)Erzeugt X Zufallszahlen zwischen a und b
- -df[2,3] Greift auf Element der 2.Reihe und 3.Spalte des DFs
- df[, -3] Entfernt 3. Spalte
- head() Zeigt erste X Zeilen von DF an
- summary() gibt Zusammenfassung von Modellen (DF, Modelle etc.)

- table(X, Y) gibt Tabelle bzw. Konfusionsmatrix aus
- -nrow(X) gibt Anzahl der Zeilen in X
- sample(n, n/2) gibt 50% Subsetvektor
- is.na(X) findet/zählt null Values
- na.omit(X) entfernt null Values
- -var(X), mean(X) Varianz und Durchschnitt von X

Modelle:

- $lm(A \sim poly(C,2) + B : D, data = ..., subset =)$ Lineare Regression für A mit Interaktivität von BD und C mit Exponent
- $-glm(A \sim B + C, data = ..., family = binomial, subset =)$ Logistic Regression Modell
- predict(Modell, DataFrame, interval =, type =)
 - * DF: data.frame(x1 = c(2), x2 = c(3))
 - * interval Konfidenzinterval (confidence), Prognoseinterval(prediction)
 - Wahrscheinlichkeit(response), * type Loggits(ohne Angabe)
- coef() Zeigt Koeffizienten des Modells
- confint()Zeigt Konfidenzintervalle f
 ür Koeff.
- chisq.test(X,Y) Macht ChiquadratTest auf Unabhängigkeit von X und Y (H_0 : Merkmale sind unabhängig)

Validierung:

- $mean((pred_true-predict(Modell, Datenatz))[-train]^2)$ Berechnet die mittlere quadratische Abweichung
- Bei Klassifikation vorher Wahrscheinlichkeiten umwandeln in Ouali-Werte
- aus dem boot package
- cv.glm(Data, Modell)\$delta[1] LeaveOneOut (\$delta[1] liefert nur ersten Wert also MSE)
- cv.glm(Data, Modell, k = X)\$delta[1] k-fold mit k Folds
- $regsubsets(Y \sim ., data =, nvmax =, method =)$ SubsetSelection (nvmax = Anzahl Attribute, methode= forward/backward/none)

• Plots:

- par(mfrow = c(2,2)) Zeigt 2x2 Matrix mit Plots
- pairs() Zeigt Pärchenplott aller quantitativer Variabeln
- plot(x, y, xlab =, ylab =) Zeigt X/Y Plot zweier Variablen mit Achsenbeschriftung
- plot(modell) Zeigt Plots zu Residuen etc.
- *hist*() Zeigt Histogram
- points() Erzeugt Punkt im Plot
- *abline*(*Modell*, *col* = "*red*") Zeigt Regressionslinie
- *qplot*() aus *ggplot*2 für quickplot