Name: Shubham Sapkal

Roll No.: 2012118

Subject: KR AI ML DI

Class: SYMCA

Assignment: Assignment 03

Dummy variables

Import the relevant libraries

import numpy as np

import pandas as pd

 $import\ stats models. api\, as\, sm$

import matplotlib.pyplot as plt

import seaborn as sns

sns.set()

Load the data

raw_data = pd.read_csv("1.03.+Dummies.csv")

raw_data

	SAT	GPA	Attendance
0	1714	2.40	No
1	1664	2.52	No
2	1760	2.54	No
3	1685	2.74	No
4	1693	2.83	No
79	1936	3.71	Yes
80	1810	3.71	Yes
81	1987	3.73	No
82	1962	3.76	Yes

```
83 2050 3.81 Yes
```

Map the data

data = raw_data.copy()

 $\label{eq:data} \verb|data['Attendance'] = \verb|data['Attendance'].map(\{'Yes':1,'No':0\})||$

data

SAT	GPA	Attendance	
0	1714	2.40	0
1	1664	2.52	0
2	1760	2.54	0
3	1685	2.74	0
4	1693	2.83	0
•••			
79	1936	3.71	1
80	1810	3.71	1
81	1987	3.73	0
82	1962	3.76	1
83	2050	3.81	1

data.describe()

SAT	GPA	Attend	dance	
count	84.000	000	84.000000	84.000000
mean	1845.2	73810	3.330238	0.464286
std	104.53	0661	0.271617	0.501718
min	1634.0	00000	2.400000	0.000000
25%	1772.0	00000	3.190000	0.000000
50%	1846.0	00000	3.380000	0.000000
75%	1934.0	00000	3.502500	1.000000
max	2050.0	00000	3.810000	1.000000

```
## Regression
```

y = data['GPA']

x1 = data[['SAT','Attendance']]

 $x = sm.add_constant(x1)$

results = sm.OLS(y,x).fit()

results.summary()

OLS Regression Results

Dep. Variable: GPA R-squared: 0.565

Model: OLS Adj. R-squared: 0.555

Method: Least Squares F-statistic: 52.70

Date: Sat, 29 Jan 2022 Prob (F-statistic): 2.19e-15

Time: 21:35:03 Log-Likelihood: 25.798

No. Observations: 84 AIC: -45.60

Df Residuals: 81 BIC: -38.30

Df Model: 2

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

const 0.6439 0.358 1.797 0.076 -0.069 1.357

SAT 0.0014 0.000 7.141 0.000 0.001 0.002

Attendance 0.2226 0.041 5.451 0.000 0.141 0.304

Omnibus: 19.560 Durbin-Watson:1.009

Prob(Omnibus):0.000 Jarque-Bera (JB): 27.189

Skew: -1.028 Prob(JB): 1.25e-06

Kurtosis: 4.881 Cond. No. 3.35e+04

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 3.35e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
## Plot the regression line(s) on the scatter plot

plt.scatter(data['SAT'],y)

yhat_no = 0.6439 + 0.0014*data['SAT']

yhat_yes = 0.2226 + 0.0014*data['SAT']

fig = plt.plot(data['SAT'],yhat_no, lw=2, c='#006837')

fig = plt.plot(data['SAT'],yhat_yes, lw=2, c='#a50026')

plt.xlabel('SAT', fontsize = 20)

plt.ylabel('GPA', fontsize = 20)

plt.show()
```



```
plt.xlabel('SAT', fontsize = 20)
plt.ylabel('GPA', fontsize = 20)
plt.show()
```



```
## Add the original regression line for comparison

plt.scatter(data['SAT'],data['GPA'], c=data['Attendance'],cmap='RdYlGn_r')

yhat_no = 0.6439 + 0.0014*data['SAT']

yhat_yes = 0.2226 + 0.0014*data['SAT']

yhat = 0.0017*data['SAT'] + 0.275

fig = plt.plot(data['SAT'],yhat_no, lw=2, c='#006837', label ='regression line1')

fig = plt.plot(data['SAT'],yhat_yes, lw=2, c='#a50026', label ='regression line2')

fig = plt.plot(data['SAT'],yhat, lw=3, c='#4C72B0', label ='regression line')

plt.xlabel('SAT', fontsize = 20)

plt.ylabel('GPA', fontsize = 20)

plt.show()
```


 $\mbox{\tt\#}$ How to make predictions based on the regressions we create

Χ

const	SAT	Attendance	
0	1.0	1714	0
1	1.0	1664	0
2	1.0	1760	0
3	1.0	1685	0
4	1.0	1693	0
79	1.0	1936	1
80	1.0	1810	1
81	1.0	1987	0
82	1.0	1962	1
83	1.0	2050	1

84 rows × 3 columns

```
new_data = pd.DataFrame({'const': 1, 'SAT': [1540, 1840], 'Attendance': [0, 1]})
new_data = new_data[['const','SAT','Attendance']]
new_data
       const SAT
                      Attendance
0
              1540
1
       1
              1840
                    1
new_data.rename(index={0: 'Ram',1:'Balram'})
const SAT
              Attendance
Ram
       1
              1540 0
Balram 1
              1840 1
predictions = results.predict(new_data)
predictions
0 2.799545
1 3.442129
dtype:float64
predictionsdf = pd.DataFrame({'Predictions':predictions})
joined = new_data.join(predictionsdf)
joined.rename(index={0: 'Ram',1:'Balram'})
const SAT
              Attendance
                             Predictions
Ram
       1
              1540
                      0
                             2.799545
```

3.442129

Balram 1

1840 1