Nonstandard Normal Distributions

Math 122

Normal Distributions

The most important distribution for statistics.

Normal Distribution with mean μ and standard deviation σ

$$y = \frac{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}}{\sigma\sqrt{2\pi}}$$

Standard Normal Distribution

• Has mean μ =0 and standard deviation σ =1

$$y = \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}}$$

Usually use z for a standard normal distribution

Standard Normal Distribution

Inverse Normal Function

To find a number a so that P(x<a)=α use invnorm(α)

What about normal distributions that are not standard normal?

M7000 J4/

Z Scores

If x has a normal distribution then

$$z = \frac{x - \mu}{\sigma}$$

Has a standard normal distribution

To work with nonstandard normal distributions, convert to Z scores

Conversions

To convert to Z scores:

$$z = \frac{x - \mu}{\sigma}$$

To convert from Z scores:

$$x = \mu + z\sigma$$

Know!

Some normal distributions

Measure	Female		Male	
	Mean	St. Dev.	Mean	St. Dev.
Height	63.8	2.7	69.6	3.2
Weight	154.7	43.0	179.7	47.7
Waist	35.2	6.7	35.2	6.3
Pulse	79.1	13.2	70.5	10.7

	Mean	Standard Deviation
Annual Snowfall in Lincoln	26.7	11.1
IQ	100	15
Infant Birth Weight	7.5lb	1.1lb
SAT Area Test	500	100
ACT	18	6

Heights of college age males are normally distributed with mean 69.6 in and standard deviation 3.2 in.

What is the probability that a randomly chosen college age male is between 5'10 and 6'2?

X= height of random male in inches
$$P(70 < x < 74) = P(\frac{70-69.6}{3.2} < z < \frac{74-69.6}{3.2})$$

$$= P(0.125 < z < 1.375)$$

$$= normalcof(6.125, 1.375)$$

=0.3657

Find a height taller than 95% of college age males.

$$= \frac{15.6}{2}$$

$$= 2 = inv Norm(.95)$$

$$= 1.6449$$

$$X = M + 20$$

$$= 69.6 + 1.6449 \times 3.2$$

$$= 74.86$$

Heights of college age males are normally distributed with mean 69.6 in and standard deviation 3.2 in.

What is the probability that a randomly chosen college age male is between 5'10 and 6'2?

$$T=3.2$$

Find a height taller than 95% of college age males.

$$\mu = 65.6$$

