Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Лабораторная работа № 1

по дисциплине «Низкоуровневое программирование» по теме «Машина Тьюринга-Поста»

Вариант 11

Выполнил студент гр. 3530901/90002		Сергиенко Н.И.
	(подпись)	Сергиснко 11.11.
Руководитель —	(подпись)	Степанов Д.С.
	« <u> </u>	2021 г.

Санкт-Петербург 2021

Задача

В соответствии с условием 11 варианта требуется построить машину Тьюринга, осуществляющая перевод двоичного кода в унарный, выполнить моделирование работы в симуляторе.

Алфавит

Алфавит машины состоит из 3 символов: единицы(1), ноля(0), и пробельного символа(для удобства обозначим как).

Кодирование чисел

Двоичное число будет записано в привычном формате. Результат будет представлен в унарном коде.

Например, число 5 в унарном коде будет выглядеть как 111110.

Формат данных

Перед началом работы на входной ленте должно быть представлено двоичное число X. Остальные ячейки должны быть заполнены пробельными символами. Головка доолжна указывать на младщий разряд числа X.

В результате работы машины на ленте кроме пробельных символов будет находиться представление нашего числа в унарном коде. Головка будет указывать на младший разряд числа.

Примеры

В следующей таблицы (табл. 1) представлены входных и выходных лент.

Табл. 1 – Примеры работы устройства

Входная лента	Выходная лента	Комментарий
11	1110	Обычный перевод из
↑	↑	двоичного в унарный
0	0	Ноль в унарном коде
↑	↑	представляется так же
		как в двоичном
		На вход не поданы
↑	<u> </u>	числа, машина ничего
		не выводит
1_1_00	Неопределенность	Необходимо чтобы
↑		лента была заполнена
		пробелами

Описание работы

Алгоритм работы машины достаточно прост — вычесть единицу из двоичного числа, прибавить ее к унарному. Головка стоит напротив ячейки с младшим разрядом, из которого производится вычитание единицы, далее добавляется единица к унарному коду. Далее опять происходит вычитание и прибавление, пока исходное число не обратится в ноль. После этого оставшиеся от него нули стираются, а в конец унарного числа ставится 0, что является признаком конца числа, в итоге головка стоит на младшем разряде унарного числа (того, в котором находится 0).

Описание функций состояний

- Q1 отвечает за вычитание младшей единицы двоичного числа и за переход к состоянию Q4
- Q2 Отвечает за контроль переноса, при этом двоичное число является некорректным
- Q3 Осуществляет коррекцию двоичного числа после состояния Q2
- Q4 Инкрементация числа в унарном коде
- Q5 Возвращение к работе с двоичным числом
- Q6 Очистка ленты от оставшихся нулей после обращения исходного числа в ноль
- Q7 Добавление нуля в конце унарного числа и останов

Пример работы

Перевод числа 111(7 в десятичной системе) в унарный код

Рис. 1 Лента машины

Вывод

В ходе работы были проведены синтез и моделирование машины Тьюринга, по результатам которых можно утверждать, что машина работает согласно заданию для заданного варианта.