Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

Group Name: **NOIDEA**

1 Broken Chessboard and Jumping With Coins

1.1 Tiling a Damaged Checkerboard

Exercise 1.1. Re-write the proof in your own way, using simple English sentences.

Proof. Let's color the board black and beige, just like a typical chessboard. In this case, there are 32 black and 30 beige squares.

Figure 1: The Chessboard

Since a domino stone placed in the board will cover both a black square and a beige square, it's obviously that we can't fully tile the board with 1×2 domino stones.

Exercise 1.2. Look at the seriously damaged 8×8 checkerboard. For convenience I already colored it black and white (or rather black and beige):

Try to tile it with domino stones and you will fail. However, since there are 24 black and 24 beige squares, the simple argument from the lecture will fail.

Prove that the above board cannot be tiled. Try to nd a short and simple argument!

Proof. To prove the claim, let's start by focusing on the "corridor" in the chessboard.

Figure 2: The "Corridor"

There are 7 ways to tile the "corridor" with domino stones:

Figure 3: Tiling the Corridor

In the case (a) and (b), each of the two remaining parts of the chessboard contains 21 square. Since a domino stone tiles 2 squares, the (a) and the case (b) are ruled out.

How about (c), (d), (e), (f) and (g)? We consider the possible remaining parts in these cases:

Figure 4: The Remaining Parts

Becasue the number of black squares and beige squares is not equal, all of the possible remaining parts cannot be tiled.

1.2 Jumping with Coins

Exercise 1.3. You jump around with two coins. Show that you cannot increase the distance between the two coins.

Proof. Clearly, the distance between two coins is fixed in one jump.

Figure 5: Two Coins

Exercise 1.4. You jump around with three coins. Show that you cannot start with an equilateral triangle and end up with a bigger equilateral triangle. Give a simple proof!

Proof. During a jump, either the side or the height of the triangle will not change, thus the area stays the same.

Figure 6: Three Coins

You jump around with four coins which in the beginning form a square of side length 1.

Exercise 1.5. Show that you cannot form a square of side length 2.

Proof. We use the coordinate to express the position of coins. The initial coordinate will be

$$(odd, odd), (odd, even), (even, even), (even, odd).$$

If a coin at (a, b) jump over the coin at (c, d), the new position (e, f) will be

$$e = 2c - a, f = 2d - b$$

Both 2c and 2d are even, so the parity of e, f will be the same as a, b. It means that the parity of coordinate of a coin will not change during a jump.

If a square of side lenth 2 is formed, the parity of the coordinate will be dierent with the initial one, which is impossible. \Box

Exercise 1.6. Show that you cannot achieve a position in which two coins are at the same position.

Proof. We have proved that the parity of coordinate of a coin will not change during a jump. Hence two coins with different initial parity of the coordinate can not be at the same position.

And we know the all the four coins have different initial parity, so there won't be any coins at the same position. \Box

Exercise 1.7. Show that you cannot form a larger square.

Proof. If we can make the four coins form a larger square with side length n > 1 in a few jumps. Then if the initial side length is 1/n we can use the same steps of jump to form a square of side length 1.

It means that with the converse steps, We can form a smaller square with side length 1/n < 1 with initial side length 1, which requiring that the coordinates of coins are not integer.

Obviously, it's impossible. \Box

2 Exclusion-Inclusion

2.1 Sets

Exercise 2.1. Let A, B, C be nite sets.

1. Prove that $|A \cup B| = |A| + |B| - |A \cap B|$.

- 2. What about $|A \cup B \cup C|$? Find a formula in terms of pairwise and three-wise intersections.
- 3. What about $|A \cup B \cup C \cup D|$? Find a formula in terms of pairwise, three-wise, and four-wise intersections.
- 1. Proof. As is shown in the Venn diagram below, |A| + |B| add the common part $|A \cap B|$ twice. So it should be subtracted once if we want to count $|A \cup B|$.

Figure 7: Venn Diagram

- 2. Solution. $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$
- 3. Solution. $|A \cup B \cup C \cup D| = |A| + |B| + |C| + |D| |A \cap B| |A \cap C| |A \cap D| |B \cap C| |B \cap D| |C \cap D| + |A \cap B \cap C| + |A \cap B \cap D| + |A \cap C \cap D| + |B \cap C \cap D| |A \cap B \cap C \cap D|$

Exercise 2.2.

Solution.
$$|A_1 \cup \ldots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{i,j:1 \le i < j \le n} |A_i \cap A_j| + \sum_{i,j,k:1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n-1} |A_1 \cap \ldots \cap A_n|$$

Exercise 2.3.

 \square

1. proof using induction on n

First, let $A_{n,k} = \sum_{1 \leq i_1 < i_2 < \dots \leq n} |A_{i_1} \cap A_{i_2} \dots \cap A_{i_k}|$, which denotes the sum of all the possible k-wise intersections in $\{A_1, A_2, \dots, A_n\}$.

Then the Inclusion-exclusion principle which we want to prove is as follows:

$$|A_1 \cup \ldots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} A_{n,k}$$

The theorem holds for n = 1, obviously.

The theorem holds for n = 2, as is showed in the 2.1.1

For the induction step, we want to show if it holds for n-1, then it holds for n.

$$|A_{1} \cup \ldots \cup A_{n}| = |A_{1} \cup \ldots \cup A_{n-1}| + |A_{n}| - |(A_{1} \cup \ldots \cup A_{n-1}) \cap A_{n}|$$

$$= \sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_{n}| - |(A_{1} \cup \ldots \cup A_{n-1}) \cap A_{n}|$$

$$= \sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_{n}| - |(\bigcup_{i=1}^{i=n-1} (A_{i} \cap A_{n})|$$

$$(1)$$

Let $B_i = (A_i \cap A_n)$.

Similarly, let $B_{n-1,k} = \sum_{1 \le i_1 < i_2 < \dots \le n-1} |B_{i_1} \cap B_{i_2} \dots \cap B_{i_k}|$, which denotes the sum of all the possible k-wise intersections in $\{B_1, B_2, \dots, B_n-1\}$.

(1) now becomes

$$\sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_n| - \left| \left(\bigcup_{i=1}^{i=n-1} B_i \right| \right|$$
 (2)

Similarly, it holds:

$$|B_1 \cup \ldots \cup B_{n-1}| = \sum_{k=1}^{n-1} (-1)^{k+1} B_{n-1,k}$$
(3)

(2) now becomes

$$\sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_n| + \sum_{k=1}^{n-1} (-1)^k B_{n-1,k}$$
 (4)

In addition,

$$|A_n| = (-1)^{1+1} |A_n| (5)$$

Thus.

$$|A_n| + \sum_{k=1}^{n-1} (-1)^k B_{n-1,k} = \sum_{k=1}^n (-1)^{k+1} A_{n,k} - \sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k}$$
 (6)

Then equation (4) finally becomes: $\sum_{k=1}^{n} (-1)^{k+1} A_{n,k}$

2. proof not using induction on n

First, let $A = |A_1 \cup ... \cup A_{n-1}|$. Function $P_S(x)$ defined as if set S includes element x, then $P_S(x) = 1$, else $P_S(x) = 0$.

- (1) If $P_A(x) = 1$, there must exist an i that $P_{A_i}(x) = 1$. In this way: $(P_A(x) P_{A_1}(x))(P_A(x) P_{A_2}(x)) \dots (P_A(x) P_{A_n}(x)) = 0$
- (2) According to the properities of set, $P_{A_i}(x)P_{A_j}(x) = P_{A_i \cap A_j}(x)$.
- (3) Let $P_{n,k}$ denotes $P_{A_{i_1} \cap A_{i_2} \dots \cap A_{i_k}} (1 \le i_1 < i_2 < \dots \le n)$. Then decompose the first equation, we can have:

$$P_A(x) = \sum_{k=1}^n P_{n,k}$$
 which can be demonstrated as:
$$|A_1 \cup \ldots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} A_{n,k}$$

3 Feasible Intersection Patterns

Exercise 3.1. Find sets A1; A2; A3; A4 such that all pairwise intersections have size 3 and all three-wise intersections have size 1. Formally, $1.|A_i \cap A_j| = 3 foralli, j \in {[4] \choose 2}, \ 2.|A_i \cap A_j \cap A_k| = 1 \text{ for all } \{i,j,k\} \in {[4] \choose 3}.$

Figure 8: Area Diagram

Proof. As is shown in figure 2. From $|A_i \cap A_j| = 3$ for all $i, j \in \binom{[4]}{2}$. We can infer that Domain $\{3, 10, 12, 5\}, \{4, 5, 10, 13\}, \{5, 6, 12, 14\}, \{5, 8, 13, 14\}$ has each 3 elements.

From $|A_i \cap A_j \cap A_k| = 1$ for all $\{i, j, k\} \in \binom{[4]}{3}$

We can infer that $Domain\{5,10\}, \{5,12\}, \{5,13\}, \{5,14\}$ has each 1 elements. $\{5,8,13,14\}$ have 3 elements, and $\{5,13\}, \{5,14\}$ has each 1 element. For one thing, $Domain\{8\}\{13\}\{14\}$ is empty and $Domain\ 5$ has one element. Then it is obvious that there is $1\inf\{5\}, 0\inf\{10\}\{12\}\{13\}\{14\}, 2\inf\{3\}\{4\}\{6\}\{8\},$ and arbitrary number in $\{1\}\{2\}\{7\}\{8\}$.

As it is shown in the left figure in Figure 3.

Figure 9: Distribution

For another thing, Domain {5} has no element. And then $Domain\{10\}\{12\}\{13\}\{14\}\{3\}\{4\}\{6\}\{8\}$ has each 1 element. It is shown in the right one in Figure 3.

Exercise 3.2. In the spirit of the previous questions, let us call a sequence $(a_1, a_2, ..., a_n) \in \mathbb{N}_0$ feasible if there are sets $A_1, ..., A_n$ such that all k-wise intersections have size a_k . That is, $|Ai| = a_1$ for all i, $|A_i \cap A_j| = a_2$ for all $i \neq j$ and so on. The previous exercise would thus state that (5,3,1,0) is not feasible, but (6, 3, 1, 0) is, as one solution of Exercise 3.1 shows.

Proof. Because $|A_1 \cap A_2 \cap A_3 \cap A_4| = 0$. It is the same as the second situation. From picture 3 in 3.1 we can know that there are at least 6 elements in A_i . So (5,3,1,0) is not feasible.

Exercise 3.3. Suppose I give you a sequence $(a_1,...,a_n)$. Find a way to determine whether such a sequence is feasible or not.

Proof. Given $A_1, ..., A_n I \subseteq 1, ..., n$ define $A_i = \bigcap_{i \in I} A_i$. Given $B_1, ..., B_n I \subseteq 1, ..., n$ define $B_i = \bigcap_{i \in I} A_i \bigcup_{j \notin A_i} ...$ Use A_1, A_2, A_3 as an example, draw the picture below.

Figure 10: Example

Obviously, iff for every $i, B_i \geq 0$, the B-table is feasible. For given $(a_1, ..., a_n)$, $A1 = a_1, Ai, j (i \neq j) a_2, ..., Ai, 2, ..., n = a_n$. Besides, for all $i, i, j (i \neq j), i, j ... k (i, j, ... k$ are different) Ahas the same value. So we can infer that $A_i = A \sum_{j=1}^{i-1} A_j$. $A_1, ..., A_n = a_1, ..., a_n$. So iff $A_i = A \sum_{j=1}^{i-1} A_j$, the sequence is feasible.