

7 March 2016 Lecture 5 Production of Portland Cement

CE 344
Materials of Construction

Çağla Meral, Ph.D., cmeral@metu.edu.tr

Department of Civil Eng., METU - Ankara

Week	Dates		Торіс	
1	22-Feb	26-Feb	Introduction to materials of construction Gypsum	
2	29-Feb	4-Mar	3. Lime	
3	7-Mar	11-Mar	4. Portland cement	
4	14-Mar	18-Mar	(1st Lab around these dates)	
5	21-Mar	25-Mar		
6	28-Mar	1-Apr	5. Pozzolans	
	Specific date TBA		1st MIDTERM EXAMINATION	
7	4-Apr	8-Apr	6. Aggregates	
8	11-Apr	15-Apr	(2 nd Lab around these dates)	
9	18-Apr	22-Apr	7. Concrete	
10	25-Apr	29-Apr	(3 rd Lab around these dates)	
11	2-May	6-May		
12	9-May	13-May		
	Specific date TBA		2 nd MIDTERM EXAMINATION	
13	16-May	20-May	8. Ferrous metals, alloys and concrete reinforcement	
14	23-May	27-May	9. Polymers	
			10. Clay bricks e schedule is available at the course web page.	

Reactions in lime production

Calcining:

$$CaCO_3 \xrightarrow{>900^{\circ}C} CaO + CO_2 \uparrow$$
Calcium Quicklime
Carbonate

Hydration or Slaking:

CaO +
$$H_2O \rightarrow Ca(OH)_2$$
 + Heat (i.e. exothermic)

(volume expansion)

Carbonation of hydrated lime:

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3$$

Monday, March 7, 2016

Cagla Meral - cmeral@metu.edu.tr

Strength of lime mortars

- Chemical composition of lime
 - Magnesian Limes > Calcium Limes
- Sand amount & properties
 - Adding sand decreases strength
 - Too little sand → shrinkage cracks in the mortar → reduced strength
 - Mortars with fine sand > Mortars with coarse sand
- Amount of water
 - Voids are formed after evaporation
- Setting conditions
 - o Lower humidity & higher CO₂ → higher strength

Monday, March 7, 2016

Cagla Meral – cmeral@metu.edu.tr

E-choice - Text to 4660

- Which country produced the highest amount of portland cement in 2014?
 - A) USA
 - B) Brazil
 - C) Turkey
 - D) China
 - E) India

Manday March 7 201

Cagla Meral – cmeral@metu.edu.tr

Overview

- Why we use concrete?
- History
- Raw materials
- Production steps
- Rotary kiln reactions
- Major compounds in portland cement
- Methods of determining compound composition
- Life cycle assessment of Turkish Cement Production

Monday, March 7, 201

Cagla Meral – cmeral@metu.edu.tr

Portland Cement

 A hydraulic cement capable of setting, hardening and remaining stable under water. It consists essentially of hydraulic calcium silicates, usually containing calcium sulfate.

Monday, March 7, 201

Cagla Meral - cmeral@metu.edu.tr

15

Hydraulic Cement

O

Portland cements are "hydraulic cements." What is the meaning of the term "hydraulic cement"?

Monday, March 7, 2010

Cagla Meral - cmeral@metu.edu.tr

Portland Cement

 Aspdin heated a mixture of finely ground *limestone* and *clay* in a furnace and ground the mixture into a powder to create a hydraulic cement.

Limestone source of lime

Clay source of silica, alumina, iron

Monday, March 7, 2016

Cagla Meral - cmeral@metu.edu.tr

17

Raw materials of portland cement

mix substances containing $CaCO_3$ with substances containing SiO_2 , Al_2O_3 , Fe_2O_3 and heat them to a clinker which is subsequently ground to powder and mixed with 2-6% gypsum

- 1) Calcareous Rocks (CaCO₃ > 75%)
 - Limestone, marl, chalk, marine shell deposits
- 2) Argillocalcareous Rocks (40%<CaCO₃<75%)
 - o Cement rock, clayey limestone, clayey marl, clayey chalk
- 3) Argillaceous Rocks (CaCO₃ < 40%)
 - Clays, shales, slates

Monday, March 7, 2016

Cagla Meral – cmeral@metu.edu.tr

Calcium	Iron	Silica	Alumina	Sulfate
Alkali waste Aragonite Calcite Cement-kiln dust Cement rock Chalk Clay Fuller's earth Limestone Marble Marl Seashells	Blast-furnace flue dust Clay Iron ore Mill scale Ore washings Pyrite cinders Shale	Calcium silicate Cement rock Clay Fly ash Fuller's earth Limestone Loess Marl Ore washings Quartzite Rice-hull ash Sand	Aluminum-ore refuse Bauxite Cement rock Clay Copper slag Fly ash Fuller's earth Granodiorite Limestone Loess Ore washings Shale	Anhydrite Calcium sulfate Gypsum
<u>Shale</u>		Sandstone	Slag	
Slag		<u>Shale</u>	Staurolite	
		Slag		

- Fineness of raw materials & their intermixing
- 2) Temperature & time that mix is held in the critical zone of the kiln
- 3) Grade of cooling of clinker may also be effective on the internal structure of major compounds

Monday, March 7, 2016

Cagla Meral – cmeral@metu.edu.tr

Note 1: Cement kiln dust

- Release of cement kiln dust (CKD) is carefully controlled
- Can be precipitated and used in concreting
- Very high alkali content

Note 2: Fuels Used

- Fuel used for cement manufacture = 6-8% of the world's fuel consumption!
- Fuel costs = ~40-60% of the manufacturing costs → fuels are often selected on an economic basis, although other considerations may also be made.
- Acquisition of the raw materials =~10% of the cost
- Fuels used include:
 - o natural gas (2%)
 - o oil (7%)
 - o coal (70%+)
 - trash, including wood chips, tires, rice husks, oil-soaked Fuller's earth, etc. (20%+)

Monday, March 7, 2016

Cagla Meral – cmeral@metu.edu.tr

Note 3: Clinker cooling rate

 As the clinker cools, the main liquid phase crystallizes to form aluminate phase, ferrite and a little belite.

10 cm

- Fast cooling:
 - more hydraulically-reactive silicates and lots of small, intergrown, aluminate and ferrite crystals.
- Slow cooling:
 - less hydraulically-reactive silicates and produces coarse crystals of aluminate and ferrite - over-large aluminate crystals can lead to erratic cement setting characteristics.
- Very slow cooling:
 - Alite (C_3S) to decompose to belite (C_2S) and free lime (CaO).

Monday, March 7, 2016

Cagla Meral - cmeral@metu.edu.tr

29

Note 4: Too hot clinker

- Dehydration of gypsum when it is interground with too hot clinker can produce hemihydrate or anhydrite.
- When such cements are mixed with water the hemihydrate and anhydrite hydrate to gypsum.
- A plaster set takes place with resulting stiffening of the paste

© geology.com

Monday, March 7, 2016

Cagla Meral - cmeral@metu.edu.tr

_	
	Next lecture
	Hydration of portland cement
	Manday Marsh 7 2000