Chapitre 4 Les relations binaires

1 Approche intuitive

Soit A et B deux ensembles. On définit une relation binaire de A vers B en associant certains éléments de A à certains éléments de B.

Exemple : A est l'ensemble des employés d'une entreprise

B est l'ensemble des véhicules de service de cette entreprise

On définit une relation \mathcal{R} grâce au lien verbal " \cdots est autorisé à conduire le véhicule \cdots ".

Représentation sagittale de \mathcal{R}

La personne a est autorisée à conduire les véhicules j et k. On dit que les couples (a, j) et (a, k) vérifient la relation \mathcal{R} et on note, par exemple :

La personne c n'est pas autorisée à conduire le véhicule k. On dit que le couple (c, k) ne vérifie pas la relation \mathcal{R} et on note :

Représentation cartésienne de ${\cal R}$

A	i	j	k
a		×	×
b			
c	×		
d			×

On place une croix dans les cases correspondant aux couples qui vérifient la relation \mathcal{R} . Cette relation est donc une partie du produit cartésien $A \times B$:

$$\mathcal{R} = \{(a, j), (a, k), (c, i), (d, k)\}$$

2 Définition mathématique

Définition 1. Soit A et B deux ensembles. Une relation binaire de A vers B est une **partie** du produit cartésien $A \times B$. C'est donc un élément de $\mathcal{P}(A \times B)$.

Notations: $\mathcal{R} \subset A \times B$ ou $\mathcal{R} \in \mathcal{P}(A \times B)$.

Lorsqu'un couple (x,y) vérifie la relation $\mathcal R$ on note $(x,y)\in\mathcal R$ ou $\mathcal R(x,y)$ ou $x\mathcal Ry$. $\mathcal R$ est une relation d'**arité** 2. Sinon on écrit $(x,y)\notin\mathcal R$ ou $\mathcal R(x,y)$ ou $x\mathcal Ry$.

Définition 2. Si A = B on dit que \mathcal{R} est une relation binaire dans A.

3 Généralisation

Exemple: A est l'ensemble des habitants de la ville de Metz

B est l'ensemble des livres d'une médiathèque

C est l'ensemble des dates comprises entre le 01/01/2014 et le 31/12/2014

On définit une relation de la façon suivante :

(a, b, c) vérifie la relation \mathcal{R} si la personne a a emprunté le livre b à la date c.

On note alors $(a, b, c) \in \mathcal{R}$ ou $\mathcal{R}(a, b, c)$. \mathcal{R} est une relation d'arité 3.

Définition 3. Soit $n \in \mathbb{N}^*$, et A_1, A_2, \dots, A_n , n ensembles appelés **domaines**. On appelle relation n-aire définie sur les domaines A_1, A_2, \dots, A_n , toute partie du produit cartésien $A_1 \times A_2 \times \dots \times A_n$. Si $(x_1, x_2, \dots, x_n) \in \mathcal{R}$ on note $\mathcal{R}(x_1, x_2, \dots, x_n)$. \mathcal{R} est une relation d'arité n.

Remarques:

- 1. Le mot "arité" représente le nombre de places de variables dans le lien verbal.
- 2. Dans le cas particulier n=2 on retrouve la notion de relation binaire.
- 3. Cas particulier n=1: on parle de relation unaire ou d'arité 1. Exemple : "être pair" dans \mathbb{N} . On a $\mathcal{R}(8)$ mais $\mathcal{R}(11)$.

Exemple 2: On considère la table ADHERENT(<u>nom-adh</u>, <u>prenom-adh</u>, <u>tel-adh</u>, ad-adh, iban-adh, date-adh, date-fin, cereale) dont un extrait est donné ci-dessous.

no	nom_adh	prenom_adh	tel_adh	ad_adh	iban	date_adh	date_fin	cereale
1	ANDRE	Marc	0301090807	Grand Pre 57222 Saint-Pierre	FR101000000106729450762	01/02/2022	01/02/2023	mais
2	BARNABE	Hippolyte	0301020304	Grand Champ 57111 Saint-Jean	FR101000000108138423562	05/01/2022	05/01/2023	ble
3	BARNABE	Lucien	0301020304	Grand Champ 57111 Saint-Jean	FR101000000108639178074	07/01/2022	07/01/2023	orge
4	CHRISTIAN	Andre	0301181917	Rue de la Fontaine 57333 Saint-Michel	FR102000000292348721501	03/01/2022	03/01/2023	ble
5	DUMONT	Jacques	0301171819	Grand Fosse 57111 Saint-Jean	FR102000000465198627014	05/01/2022	05/01/2023	ble
6	EUDES	Pascal	0301102030	Grand Pre 57222 Saint-Pierre	FR102000000479284361820	03/02/2022	03/02/2023	orge
7	EUDES	Pascal	0301112131	Les Etangs 57444 Saint-Germain	FR102000000412816348279	03/03/2022	03/03/2023	orge
8	FAYARD	Jules	0301203040	Grand Rue 57111 Saint-Jean	FR102000000893762459241	04/01/2022	04/01/2023	mais
9	GEORGES	Aime	0301191817	Place du Marche 57444 Saint-Germain	FR102000000281627496821	15/02/2022	15/02/2023	epeautre
10	GRAND	Laurent	0301304050	Rue Longue 57333 Saint-Michel	FR101000000107652497831	02/01/2022	02/01/2023	mais
11	HUGUES	Michel	0301405060	Grand Pre 57222 Saint-Pierre	FR101000000105289673109	01/03/2022	01/03/2023	epeautre
12	IVAN	Sophie	0301181917	Rue de la Fontaine 57333 Saint-Michel	FR102000000274592830182	03/01/2022	03/01/2023	ble
13	JACQUES	Jean	0301403020	Rue Haute 57444 Saint-Germain	FR101000000105267831042	08/04/2022	08/04/2023	orge
14	LUCIEN	Vincent	0301718191	La Chaume 57111 Saint-Jean	FR101000000104286913572	10/01/2022	10/01/2023	epeautre
15	PIERRE	Andre	0301202122	Grand Fosse 57111 Saint-Jean	FR102000000192837465823	08/03/2022	08/03/2023	ble

Cette table ADHERENT est une relation 8-aire définie sur les domaines :

 A_1 l'ensemble des noms des adhérents, A_2 l'ensemble de leurs prénoms, A_3 l'ensemble de leurs adresses, A_4 l'ensemble de leurs numéros de téléphone, A_5 l'ensemble de leurs Iban, A_6 l'ensemble de leurs dates d'adhésion, A_7 l'ensemble de leurs dates de fin d'adhésion, et A_8 l'ensemble des noms de céréales qu'ils commercialisent.

C'est une partie du produit cartésien $A_1 \times A_2 \times \cdots \times A_8$.

4 Relations binaires dans un ensemble

Soit $\mathcal R$ une relation binaire dans un ensemble E, donnée par sa représentation sagittale :

On préfèrera la représentation :

Exemples mathématiques:

- 1. L'égalité dans un ensemble $E: x\mathcal{R}y \Leftrightarrow x=y$.
- 2. La relation \leq dans \mathbb{R} .
- 3. La relation < dans \mathbb{R} .
- 4. La divisibilité dans \mathbb{Z} , notée |. "a divise b" se note a|b.
- 5. Soit X un ensemble. L'inclusion \subset dans $\mathcal{P}(X)$ est une relation binaire.

Illustrations

\mathcal{R}	$x\mathcal{R}y$	$x\mathcal{R}y$
égalité		
\leq		
C		

5 Propriétés éventuelles d'une relation dans E

5.1 La réflexivité

Définition 4. Une relation \mathcal{R} dans un ensemble E est dite réflexive si $\forall x \in E, x \mathcal{R} x$.

- 1. L'égalité dans un ensemble $E : \forall x \in E, \ x = x$.
- 2. La relation \leq dans \mathbb{R} : $\forall x \in \mathbb{R}$, $x \leq x$.
- 3. La divisibilité dans \mathbb{Z} : $\forall a \in \mathbb{Z}, a | a$.
- 4. L'inclusion \subset dans $\mathcal{P}(X)$: $\forall A \in \mathcal{P}(X), A \subset A$.

Illustration : la réflexivité se traduit par une flèche qui boucle sur chaque élément de E.

5.2 La symétrie

Définition 5. Une relation \mathcal{R} dans un ensemble E est dite symétrique si

$$\forall (x,y) \in E^2, \ x\mathcal{R}y \Rightarrow y\mathcal{R}x.$$

Exemple: l'égalité dans un ensemble $E: \forall (x,y) \in E^2$, si x=y alors y=x.

Illustration: la symétrie se traduit par le fait que s'il y a une flèche de x vers y alors il y a une flèche "retour" de y vers x.

Remarque: les relations \subset , \mid , et \leq ne sont pas symétriques.

En effet, $\{1,2\} \subset \{1,2,3\}$ mais $\{1,2,3\} \mathbb{Z} \{1,2\}$, 3|6 mais $6|3,2 \le 5$ mais $5 \nleq 2$.

5.3 La transitivité

Définition 6. Une relation $\mathcal R$ dans un ensemble E est dite transitive si

$$\forall (x, y, z) \in E^3, (x\mathcal{R}y \text{ et } y\mathcal{R}z) \Rightarrow x\mathcal{R}z.$$

- 1. L'égalité dans un ensemble $E: \forall (x,y,z) \in E^3$, si x=y et y=z, alors x=z.
- 2. La relation \leq dans \mathbb{R} : $\forall (x, y, z) \in \mathbb{R}^3$, si $x \leq y$ et $y \leq z$, alors $x \leq z$.
- 3. La divisibilité dans \mathbb{Z} : $\forall (x,y,z) \in \mathbb{Z}^3$, si x|y et y|z alors x|z.
- 4. L'inclusion \subset dans $\mathcal{P}(X)$: $\forall (A, B, C) \in \mathcal{P}(X)^3$, si $A \subset B$ et $B \subset C$ alors $A \subset C$.

Illustration:

S'il y a une flèche de x vers y et une flèche de y vers z alors il y a une flèche de x vers z.

Si $\ensuremath{\mathcal{R}}$ est transitive alors la configuration ci-dessous n'est pas possible :

5.4 L'antisymétrie

Définition 7. Une relation \mathcal{R} dans un ensemble E est dite antisymétrique si

$$\forall (x,y) \in E^2, (x\mathcal{R}y \text{ et } y\mathcal{R}x) \Rightarrow x = y.$$

Exemples:

- 1. L'égalité dans un ensemble $E: \forall (x,y) \in E^2$, si x=y et y=x, alors x=y.
- 2. La relation \leq dans \mathbb{R} : $\forall (x,y) \in \mathbb{R}^2$, si $x \leq y$ et $y \leq x$, alors x = y.
- 3. L'inclusion \subset dans $\mathcal{P}(X): \forall (A,B) \in \mathcal{P}(X)^2$, si $A \subset B$ et $B \subset A$ alors A = B (c'est le théorème de la double inclusion).

Illustration: Le seul cas où il y a une flèche de x vers y et une flèche de y vers x est celui où x=y. Il y a alors une boucle sur x.

Si $\mathcal R$ est antisymétrique alors la configuration ci-dessous n'est pas possible :

6 Relations d'équivalence

Définition 8. Une relation \mathcal{R} dans un ensemble E est une relation d'équivalence si elle est à la fois **réflexive**, **symétrique** et transitive.

- 1. L'égalité dans un ensemble E
- 2. La relation "avoir même parité que" dans IN
- 3. Plus généralement, une relation définie par un lien verbal de la forme "avoir même · · · que"

Illustration:

On distingue clairement 3 parties de E disjointes 2 à 2.

Définition 9. Soit \mathcal{R} une relation d'équivalence dans un ensemble E, et $x \in E$. On appelle classe d'équivalence de x l'ensemble des éléments y de E tels que $x\mathcal{R}y$.

On la note $\mathcal{C}\ell(x)$. Ainsi $\mathcal{C}\ell(x) = \{y \in E/x\mathcal{R}y\}$.

Exemple : dans l'exemple illustré ci-dessus la relation $\mathcal R$ possède trois classes d'équivalence :

$$\mathcal{C}\ell(a) =$$
 , $\mathcal{C}\ell(c) =$ et $\mathcal{C}\ell(e) =$

Théorème 6.1. Les classes d'équivalence d'une relation d'équivalence \mathcal{R} dans un ensemble E forment une partition de E:

- 1. $\forall x \in E, \ \mathcal{C}\ell(x) \neq \emptyset$
- 2. $\forall (x, x') \in E^2$, $\mathcal{C}\ell(x) \neq \mathcal{C}\ell(x') \Leftrightarrow \mathcal{C}\ell(x) \cap \mathcal{C}\ell(x') = \emptyset$ (2 classes d'équivalence distinctes sont disjointes et réciproquement)
- 3. $\bigcup_{x \in E} \mathcal{C}\ell(x) = E$

Définition 10. Soit \mathcal{R} une relation d'équivalence dans un ensemble E. L'ensemble des classes d'équivalence de \mathcal{R} s'appelle ensemble quotient de E par \mathcal{R} . On le note E/\mathcal{R} .

Dans l'exemple précédent, $E/R = \{C\ell(a), C\ell(c), C\ell(e)\}.$

7 Relations d'ordre

Définition 11. Une relation \mathcal{R} dans un ensemble E est une relation d'ordre si elle est à la fois **réflexive**, antisymétrique et transitive.

Exemples:

- 1. L'égalité dans un ensemble E
- 2. La relation " \leq " dans \mathbb{R}
- 3. L'inclusion dans $\mathcal{P}(X)$

Définition 12. Soit \mathcal{R} une relation d'ordre dans un ensemble E, et $(x,y) \in E^2$.

On dit que x est **comparable** à y pour \mathcal{R} si $x\mathcal{R}y$ ou $y\mathcal{R}x$.

Définition 13. On dit qu'une relation d'ordre \mathcal{R} dans un ensemble E est totale si

 $\forall (x,y) \in E^2$, x est comparable à y.

Sinon on dit que la relation d'ordre est partielle.

(On dit aussi relation d'ordre total (resp. partiel))

- 1. L'égalité dans un ensemble E est une relation d'ordre partiel. (Par exemple 2 et 6 ne sont pas comparables)
- 2. La relation " \leq " dans \mathbb{R} est une relation d'ordre total.
- 3. L'inclusion dans $\mathcal{P}(X)$ est une relation d'ordre partiel. (Par exemple [0,2] $\not \subset [1,3]$ et [1,3] $\not \subset [0,2]$)

Feuille d'exercices nº 3 Relations binaires

Les questions ou exercices précédés d'une étoile (*) sont plus difficiles.

Vous ne les traiterez qu'avec l'accord de votre enseignant(e) de TD.

Exercice 1: Soit $A = \{a, b, c\}$ et $B = \{1, 2, 3\}$.

On définit la relation \mathcal{R} de A vers B par $\mathcal{R} = \{(a, 1), (b, 1), (b, 3)\}.$

Donner la présentation cartésienne de $\mathcal R$ puis sa représentation sagittale.

Exercice 2: Définition : Soit a et b deux nombres entiers relatifs. On dit que **a divise b** s'il existe un entier relatif k tel que b = ka. On note alors $a \mid b$.

On considère les relations \mathcal{R} suivantes de A vers B.

Donner pour chacune d'elles une présentation sagittale (ou cartésienne si elle est trop lourde).

1.
$$A = \{1, 2, 3, 4, 8\}$$
; $B = \{1, 4, 6, 9\}$ et $aRb \Leftrightarrow a \text{ divise b}$

2.
$$A = \{1, 2, 3, 4, 8\}; B = \{1, 4, 6, 9\} \text{ et } a\mathcal{R}b \Leftrightarrow b = a^2$$

Exercice 3: Soit $A = \{a, b\}$ et $B = \{1, 2\}$.

- 1) Combien existe-t-il de relations binaires de A vers B? (Indication : revenir à la définition mathématique)
- 2) Représenter toutes les relations de A vers B. (On s'attachera à travailler méthodiquement)

Pour chacune d'elles préciser s'il s'agit d'une application ou non de A vers B.

Pour celles qui ne correspondent pas à une application, le prouver en donnant une raison suffisante.

Définition: Soit \mathcal{R} une relation de A vers B. On dit que le triplet $f = (A, B, \mathcal{R})$ est une application de A dans B si, pour tout x de A, il existe y unique de B tel que x \mathcal{R} y. On note alors y = f(x). L'application f est notée:

$$f: A \to B \\ x \mapsto f(x)$$

Exercice 4: Soit $A = \{a, b, c, d\}$. Combien y a-t-il de relations dans A? Représenter sous forme sagittale trois d'entre elles.

Exercice 5: Soit X un ensemble. On considère la relation d'inclusion dans $\mathcal{P}(X)$ (l'ensemble des parties de X). Rappeler les propriétés de l'inclusion, démontrées dans un cours précédent, qui font de cette relation une relation d'ordre dans $\mathcal{P}(X)$.

Exercice 6: On définit une relation dans l'ensemble des mots de la langue française de la façon suivante : un mot x est en relation avec un mot y s'il est écrit avec les mêmes lettres (on dit que x est un anagramme de y). Montrer qu'il s'agit d'une relation d'équivalence. Déterminer la classe du mot "chien".

Exercice 7: On rappelle la définition suivante : un entier $n \in \mathbb{N}$ est un carré parfait s'il existe un entier a tel que $n=a^2$. Par exemple 1,4, 9 et 16 sont des carrés parfaits car $1=1^2,\ 4=2^2,\ 9=3^2$ et $16=4^2$. On considère la relation \mathcal{R} définie dans \mathbb{N}^* par :

 $\forall x, y \in \mathbb{N}^*, \ x\mathcal{R}y \Leftrightarrow xy \text{ est un carr\'e parfait.}$

Dans la suite de l'exercice on restreint la relation \mathcal{R} à l'ensemble $E = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

1. Donnez la représentation cartésienne de la relation \mathcal{R} , puis sa représentation sagittale à côté.

\mathcal{R}	1	2	3	4	5	6	7	8
1								
2								
3								
4								
5								
6								
7								
8								

- 2. En vous appuyant sur la représentation cartésienne de la relation \mathcal{R} , déterminez si celle-ci est réflexive et symétrique.
- 3. On souhaite étudier si la relation \mathcal{R} est transitive. En vous appuyant sur la représentation sagittale, complétez le tableau ci-dessous en 2 parties, en ne reportant dans les trois colonnes à gauche, que les triplets (x, y, z) tels que $x\mathcal{R}y$ et $y\mathcal{R}z$. Ecrire alors Vrai ou Faux en-dessous de $x\mathcal{R}z$, puis en-dessous du connecteur \to .

x	$\mid y \mid$	z	$(x\mathcal{R}y)$	ET	$y\mathcal{R}z)$	\rightarrow	$x\mathcal{R}z$
1	1	1		V		V	V

x	y	z	$(x\mathcal{R}y)$	ET	$y\mathcal{R}z)$	\rightarrow	$x\mathcal{R}z$

- 4. Que peut-on dire de la relation \mathcal{R} d'après les questions 2. et 3.?
- 5. Donner les classes d'équivalence de \mathcal{R} .
- 6. (*) Démontrer la transitivité de la relation \mathcal{R} dans \mathbb{N} (et non plus dans E).

Exercice 8: (*) Soit a et b deux nombres entiers relatifs. On dit que **a divise b** s'il existe un entier relatif k tel que b = ka. On note alors $a \mid b$.

Démontrer que la relation de divisibilité est réflexive et transitive dans \mathbb{Z} . Est-elle antisymétrique dans \mathbb{Z} ? Démontrer que sa restriction à \mathbb{N} est antisymétrique.