MATH 651: PROBLEM SET 5 SOLUTIONS ARE IN CLASS ON MON. NOV 5.

- 1. (10 points) Let (X, τ) be a $T_{3\frac{1}{2}}$ space. Show that X is homeomorphic to a subset of $Y = [0, 1]^I$ for some index set I. The topology on Y is the product topology where on [0, 1] we consider the standard topology.
- 2. (10 points) Let (X, τ) be a normal space.
 - (i) Prove that given a proper set closed set $C \subset X$, there exists a continuous function $f: X \to [0,1]$ such that $f \equiv 0$ in C and f > 0 in $X \setminus C$ if and only if C is a G_{δ} set (i.e. a countable intersection of open sets).
 - (ii) Let $C_1, C_2 \subset X$ be two disjoint closed sets. Prove that there exists a continuous function $f: X \to [0,1]$ such that $f \equiv 1$ in C_1 , $f \equiv 0$ in C_2 , and 0 < f < 1 in $X \setminus (C_1 \cup C_2)$ if and only if C_1, C_2 are G_δ sets.
- 3. (10 points) Let (Y, τ_Y) and (Z, τ_Z) be topological spaces, with Z Hausdorff and let $f : E \to Z$ be a continuous function, where $E \subset Y$. Then there is at most one extension of f to \overline{E} .
- 4. (10 points) A function $f: X \to \mathbb{R}$ is sequentially lower semicontinuous (sLSC) if for every convergent sequence $x_n \to a$ in X as $n \to \infty$ it holds that

$$\liminf_{n \to \infty} f(x_n) \ge f(a).$$

Show that if f LSC then f is sLSC. Find an example of a topological space and a function which is sLSC, but not LSC.

- 5. (10 points) Let (X, τ) be a topological space satisfying the first axiom of countability and let $f: E \to \mathbb{R}$ be a function, where $E \subset X$.. If f is sequentially lower semicontinuous on E, then f is lower semicontinuous on E.
- 6. (10 points) Let (X, τ) be a topological space and let $f: X \to \mathbb{R}$. The *epigraph* of f is the set

$$\mathrm{epi}\, f := \left\{ (x,t) \in X \times \mathbb{R} : \, f\left(x\right) \leq t \right\}.$$

Show that f is LSC if and only epi f is closed.