21-127 Homework 11

Christian Broms Section J

Thursday 19th April, 2018

Complete the following problems. Fully justify each response.

1. Let $(X, 0, 1, +, \cdot)$ be a field, where X is a finite set. Prove that there is no ordering \leq on X under which X is an ordered field.

Proof. If X is finite, then |X| = b. We know that $0 \le 1$, and by axiom F1 that $0 \ne 1 \Rightarrow 0 < 1$. By extension, it holds that a < a + 1 by OF2 for some $a \in X$. However, since X is finite, that means that there exists one element that cannot be compared with anything; the maximum of X. Consider the field ordering

$$0 < 1 < 1 + 1 < 1 + 1 + 1 < 1 + 1 + 1 + \dots$$

Since X is finite, the final element in the ordering is the maximum. Let this max value be b. Thus, b < b+1, but notice that $b+1 \notin X$ since the set is finite. So to be ordered, it must hold that $b \le a$ for some $a \in X$. But we have shown that $b \ne a$ by F1. And $b \not< a$ because by definition b is the maximum value in X. Thus, X cannot be an ordered field since $b+1 \notin X$ and b cannot be compared to any element.

- 2. Let $(X, 0, 1, +, \cdot, \leq)$ be an ordered field. Prove each of the following basic ordered field properties, from axioms.
 - (a) For all $x \in X$, $x^2 > 0$.

Proof. Assuming $x \neq 0$, there are two cases, x > 0 or x < 0.

Case 1: x > 0. We use the fact that $x \cdot 0 = 0$, as previously proven. So,

$$x > 0$$
$$x \cdot x > x \cdot 0$$
$$x^2 > 0$$

Case 2: x < 0. We use the additive inverse and the fact above. So,

$$-x > 0$$
$$-x \cdot -x > 0 \cdot -x$$
$$x^2 > 0$$

and we are done.

(b) For all $w, x, y, z \in X$, if $w \le x$ and $y \le z$, then $w + y \le x + z$.

Proof. If $w \le x$ and $y \le z$, then we have $z - y \ge 0$ and $x - w \ge 0$. Rearranging, we get $w - x \le 0$ and $z - y \ge 0$. Thus, it follows that

$$z - y \ge w - x$$
$$z \ge w - x + y$$
$$z + x \ge w + y$$

Thus, $w + y \le x + z$. and we are done.

(c) For all $x, y, z \in X$, if $x \ge 0$ and $y \le z$, then $xy \le xz$.

Proof. Since $x \ge 0$ and $y \le z$ then $y - z \le 0$. So,

$$x \cdot (y - z) \le 0$$
$$xy - xz \le 0$$
$$xy \le xz$$

and we are done.

(d) For all $x, y, z \in X$, if $x \le 0$ and $y \le z$, then $xy \ge xz$.

Proof. Since $x \le 0$ and $y \le z$, then $y - z \le 0$. Then since $x \le 0$, we have two negative numbers and thus

$$x \cdot (y - z) \ge 0 \cdot x$$
$$xy - xz \ge 0$$
$$xy \ge xz$$

and we are done.

3. Let $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$. Prove that $\|\vec{x} - \vec{z}\| \le \|\vec{x} - \vec{y}\| + \|\vec{y} - \vec{z}\|$.

Proof. Recall the triangle inequality: ||a+b|| = ||a|| + ||b||. Let $a = \vec{x} - \vec{y}$ and let $b = \vec{y} - \vec{z}$. Then we have

$$\|\vec{x} - \vec{y} + \vec{y} - \vec{z}\| \le \|\vec{x} - \vec{y}\| + \|\vec{y} - \vec{z}\|$$
$$\|\vec{x} - \vec{z}\| \le \|\vec{x} - \vec{y}\| + \|\vec{y} - \vec{z}\|$$

and we are done.

4. Let $x_n = \frac{n+2}{n+1}$. Prove that x_n converges to 1.

Proof. Let $\epsilon > 0$ and let $N \in \mathbb{N}$ with $N > \frac{1}{\epsilon} - 1$. Let $n \geq N$. Then $\left|\frac{n+2}{n+1} - 1\right| = \frac{1}{n+1} < \frac{1}{N+1} < \frac{1}{\frac{1}{\epsilon} - 1 + 1} = \epsilon$. Therefore, by definition, $\left(\frac{n+2}{n+1}\right) \to 1$.

5. Let (x_n) and (y_n) be sequences of real numbers, with $(x_n) \to a$ and $(y_n) \to b$. Let $z_n = x_n y_n$ for all $n \in \mathbb{N}$. Prove that $(z_n) \to ab$.

Proof. Let $\epsilon > 0$. Since every convergent sequence of real numbers must be bounded, there exists some M > 0, $N_1 \in \mathbb{N}$, where

$$\forall n \ge N_1, |x_n| < M$$

In addition, since (x_n) and (y_n) both converge, then there exists $N_2, N_3 \in \mathbb{N}$ such that

$$\forall n \ge N_2, |x_n - a| < \frac{\epsilon}{2|b|}$$

$$\forall n \geq N_3, |y_n - b| < \frac{\epsilon}{2M}$$

So $\forall n \geq N, N = \max\{N_1, N_2, N_3\}.$

Now,

$$|(x_n - y_n) - ab| = |x_n y_n - x_n b + x_n b - ab|$$

$$\leq |x_n y_n - x_n b| + |x_n b - ab|$$

$$\leq |x_n (y_n - b)| + |b(x_n - a)|$$

Substituting, we have

$$M \cdot \frac{\epsilon}{|2M|} + |b| \cdot \frac{\epsilon}{|2b|} = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Hence, $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that if $n \geq N$, $|x_n y_n - ab| < \epsilon$. Thus, we conclude $x_n y_n \to ab$.

6. Prove that if (x_n) is a monotonically decreasing sequence, having a lower bound, then (x_n) converges.

Proof. First, we must show that x_n has a greatest lower bound; that it has an infimum.

Consider the set bounded between two values, given by $X = \{x \in \mathbb{R} \mid m < x < n\}$, where $m, n \in \mathbb{R}$. So, we have that $m \leq x \ \forall x \in X$. Hence, m is by defintion a lower bound. Now we show that for some b, if m < b then $\exists a \in X$ so a < b, to prove m is the greatest lower bound. There are two cases, either m < b < n or $n \leq b$. In both cases, we need to choose values $a \in X$ such that a < b.

In the first case, we set $a = \frac{b+m}{2}$. In the second case, set $a = \frac{n+m}{2}$. Notice, in both cases, a < b holds, so the properties of infimum are fufilled. Therefore, we conclude that the infimum of X is m.

Now, we know that any arbitrary bounded set has an greatest lower bound.

Next, we show that x_n converges.

Since \mathbb{R} is complete, $\{x_n \mid n \in \mathbb{N}\}$ has a greatest lower bound, say a. Fix $\epsilon > 0$. Note that by defintion, $a + \epsilon$ is not a lower bound for

 x_n since a is the greatest lower bound. Thus, there must be some x_n having $x_N < a + \epsilon$. For any $n \ge N$, we therefore have

$$a - \epsilon < a \le x_n \le x_N < a + \epsilon$$

Thus, $a - \epsilon < x_n < a + \epsilon$, so $|x_n - a| < \epsilon$, so $(x_n) \to a$. Therefore, we conclude that the monotonically decreasing bounded sequence x_n converges.