#### Lecture 2 of the

## MLArchSys Seminar

Instructor: Thaleia Dimitra Doudali

Assistant Professor at IMDEA Software Institute

Universidad Politécnica de Madrid (UPM)

March 2023



## Outline of Today's Lecture

Systems Software ML *for* Systems

Machine Learning

Today's Paper:

#### **Learning Memory Access Patterns**

Milad Hashemi <sup>1</sup> Kevin Swersky <sup>1</sup> Jamie A. Smith <sup>1</sup> Grant Ayers <sup>2\*</sup> Heiner Litz <sup>3\*</sup> Jichuan Chang <sup>1</sup> Christos Kozyrakis <sup>2</sup> Parthasarathy Ranganathan <sup>1</sup>



**for** Cache Prefetching

1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

## Outline of Today's Lecture

Systems Software ML *for* Systems

Machine Learning

Today's Paper:

#### **Learning Memory Access Patterns**

Milad Hashemi <sup>1</sup> Kevin Swersky <sup>1</sup> Jamie A. Smith <sup>1</sup> Grant Ayers <sup>2\*</sup> Heiner Litz <sup>3\*</sup> Jichuan Chang <sup>1</sup> Christos Kozyrakis <sup>2</sup> Parthasarathy Ranganathan <sup>1</sup>



**for** Cache Prefetching

#### 1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

## Cache Hierarchy

Data is allocated in memory. When accessed from memory, it gets cached.



#### Memory Access Trace



#### Data Prefetching

In addition to caching upon memory accesses, hardware prefetches data from memory into the cache, as well.



2. Cache Placement Policy



It's a prediction problem!

Predict which data will be accessed in the future and cache them.

#### What to Prefetch?

Learn various patterns.

- Sequential: A, A+1, A+2...
- Strided: A, A+4, A+8..
- Correlated: A, B, C, A, D, B, A
- More complex ones..

#### When to Prefetch?

- On every data access.
  - Overheads?
- On every cache miss.
  - Patterns filtered by cache.
- On prefetching hits.

#### Where to put the prefetched data?

- In the cache.
- In separate buffers.
  - Avoid cache pollution.

## Next Line (1) + Stride Prefetchers (2)

#### **Next Line Prefetcher**

A A+1 A+2 A+3

Prefetch data one after the other A, A+1, A+2

Data in Memory

• Very easy to implement.

Works only on sequential patterns.

#### **Stride Prefetcher**



Column in matrix

- Strided patterns are frequent.
- Need a mechanism to detect length of the stride.

## Stream Prefetcher (3)



#### Correlation Prefetcher (4)

Prefetches data based on history of memory accesses.

Memory Accesses: A B C D C A C D B C A

| Tag | 1st time | 2nd time |                            |
|-----|----------|----------|----------------------------|
| А   | С        | В        |                            |
| В   | С        |          |                            |
| С   | А        | D        | <b>←</b> Miss C - Prefetch |
| D   | В        | С        |                            |

History Table

Records the address that was next to "tag" the past 2 times.



• Captures variety of patterns.

A D

Limited size, possible conflicts due to indexing.

## Global History Buffer - GHB (5)

Decouples table indexes from the storage of prefetch-related history.

Memory Accesses: A B C D C A C D B C A



- Captures more complete history.
- Multiple table accesses.



#### **Evaluation Metrics**

True Positives: Cache hit due to prefetching.



**Timeliness** = How early data is prefetched, versus when it is actually accessed, if at all.

#### Evaluation Example



Accuracy = 
$$\frac{40}{40 + 60 + 80 + 20}$$
 = 0.2

Precision = 
$$\frac{40}{40 + 60}$$
 = 0.4

Recall = 
$$\frac{40}{40 + 20}$$
 = 0.67

## Prefetching = Forecasting Time Series

Prefetching is a prediction problem = Forecasting future values of data that are ordered in time.

= Time series of accesses to memory addresses.



## Outline of Today's Lecture

Systems Software ML *for* Systems

Machine Learning

Today's Paper:

#### **Learning Memory Access Patterns**

Milad Hashemi <sup>1</sup> Kevin Swersky <sup>1</sup> Jamie A. Smith <sup>1</sup> Grant Ayers <sup>2\*</sup> Heiner Litz <sup>3\*</sup> Jichuan Chang <sup>1</sup> Christos Kozyrakis <sup>2</sup> Parthasarathy Ranganathan <sup>1</sup>



**for** Cache Prefetching

1. Prefetching Overview

#### 2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

In the context of this lecture's paper, LSTM is a solid box, no need to understand the internals.

We'll focus on the inputs and outputs: what exactly it learns, what exactly it predicts.





... but since you're curious let's see it's internal functionality.

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.



RNNs use information from many time steps  $X_0$ ,  $X_1$  ...  $X_t$  to make a prediction  $h_t$ 

E.g., the clouds are in the .. sky.

Source: <a href="https://colah.github.io/posts/2015-08-Understanding-LSTMs/">https://colah.github.io/posts/2015-08-Understanding-LSTMs/</a>

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.



RNNs struggle to capture long-term dependencies.

E.g., I grew up in France, I speak fluent .. French.

LSTMs to the rescue!

Source: <a href="https://colah.github.io/posts/2015-08-Understanding-LSTMs/">https://colah.github.io/posts/2015-08-Understanding-LSTMs/</a>

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.



1 internal layer

4 interacting internal layers

Source: <a href="https://colah.github.io/posts/2015-08-Understanding-LSTMs/">https://colah.github.io/posts/2015-08-Understanding-LSTMs/</a>

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.





$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

 $\sigma$  = sigmoid layer  $f_t$  = "forget gate" layer

Cell State  $C_t$  can change through pointwise operations.

Take  $h_{t-1}$  and  $x_t$  and decide whether to keep (= 1), forget (= 0), or remember part of (< 1).

Source: <a href="https://colah.github.io/posts/2015-08-Understanding-LSTMs/">https://colah.github.io/posts/2015-08-Understanding-LSTMs/</a>





Pointwise Operation



Transfer

Concatenate



**Long Short Term Memory (LSTM)** networks are a type of **Recurrent Neural Networks (RNNs)** used for forecasting.



$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i
ight)$$
 = "input gate" layer = which values to update

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] \ + \ b_i\right) \ = \text{``input gate'' layer = which values to update}.$$
 
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] \ + \ b_C) = \text{new candidate values to add to the cell state}.$$

What new information are we storing in the cell state?

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/









Transfer

Concatenate



Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.



Update the old state  $C_{t-1}$  with the new one  $C_t$ .

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/









Transfer



Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.



$$o_t = \sigma\left(W_o\left[h_{t-1}, x_t\right] + b_o\right)$$
 = "output gate" layer.

 $h_t = o_t * \tanh{(C_t)}$  = push between -1..1, to output part of the cell state.

Output  $h_t$  is a filtered version of  $C_t$ .

Source: <a href="https://colah.github.io/posts/2015-08-Understanding-LSTMs/">https://colah.github.io/posts/2015-08-Understanding-LSTMs/</a>









Transfer

Concatenate



Copy

## Outline of Today's Lecture

Systems Software ML *for* Systems

Machine Learning

Today's Paper:

#### **Learning Memory Access Patterns**

Milad Hashemi <sup>1</sup> Kevin Swersky <sup>1</sup> Jamie A. Smith <sup>1</sup> Grant Ayers <sup>2\*</sup> Heiner Litz <sup>3\*</sup> Jichuan Chang <sup>1</sup> Christos Kozyrakis <sup>2</sup> Parthasarathy Ranganathan <sup>1</sup>



for Cache Prefetching

1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

#### Learning Memory Access Patterns

The data available for ML training is a *memory access trace*:



64-bit binary number

Possible values =  $2^{64}$ 

Normalizing that to [0, 1] leads to information loss.



#### Prefetching as Classification



Memory footprint is sparse means that a relatively **small**, and **consistent** set of addresses is used.

Learn address deltas, not raw addresses!

The number of uniquely occurring deltas is often orders of magnitude smaller than uniquely occurring addresses.



- 1. Go through the memory access trace.
- 2. Compute address deltas for every  $(t_N, t_{N-1})$ .
- 3. Keep the deltas that appear at least 10 times.
- 4. Create a "vocabulary" of these unique deltas.

Prefetching as Classification = Prediction will be one of these deltas.

## Approach 1: Embedding LSTM



With Classification, the LSTM predicts probability for each of the X vectors.

#### 4. Prefetching Action

Prefetch the top-10 predictions, at each timestep  $t_N$ .

## Approach 2: Clustering + LSTM (1)



Focus on *local* context, e.g., data structures are stored in contiguous memory address and accessed repeatedly.



- 1. Run k-means to cluster the addresses.
- 2. Deltas are computed within each cluster.
- Smaller "vocabulary" of unique deltas.
- Potentially missing the "global" context.

## Approach 2: Clustering + LSTM (2)



- 1. Train an LSTM per cluster of deltas.
- 2. Add cluster ID as an extra feature.
- 3. Tie weights.
- Reduced model size, faster training.
- 1 extra pre-processing step for clustering.

## Outline of Today's Lecture

Systems Software ML *for* Systems

Machine Learning

Today's Paper:

#### **Learning Memory Access Patterns**

Milad Hashemi <sup>1</sup> Kevin Swersky <sup>1</sup> Jamie A. Smith <sup>1</sup> Grant Ayers <sup>2\*</sup> Heiner Litz <sup>3\*</sup> Jichuan Chang <sup>1</sup> Christos Kozyrakis <sup>2</sup> Parthasarathy Ranganathan <sup>1</sup>



**for** Cache Prefetching

1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

## Evaluation Metrics (1)







Correct Prediction, if the *real* delta is one of the 10 predictions.

## Evaluation Metrics (2)



Records all 10 predicted deltas.

Quantifies the % of the "vocabulary" that could be predicted.

#### **Evaluation Baselines**



## Evaluation (1)



LSTM models achieve high precision, especially for complex patterns (e.g., websearch). No great difference between the embedding and clustering LSTM.

#### Evaluation



**Stream** prefetcher achieves highest recall, due to its dynamic vocabulary (set of deltas). **Clustering** LSTM better than embedding, because creates better vocabulary (set of deltas).

## Sensitivity to Feature Selection

What happens when using only PC or Deltas as input features.



**Embedding LSTM** 





For precision, *only deltas* contributes the most.

For recall, *PC* helps improve it.

## Outline of Today's Lecture

Systems Software ML *for* Systems

Machine Learning

#### Today's Paper:

#### **Learning Memory Access Patterns**

Milad Hashemi <sup>1</sup> Kevin Swersky <sup>1</sup> Jamie A. Smith <sup>1</sup> Grant Ayers <sup>2\*</sup> Heiner Litz <sup>3\*</sup> Jichuan Chang <sup>1</sup> Christos Kozyrakis <sup>2</sup> Parthasarathy Ranganathan <sup>1</sup>



**for** Cache Prefetching

#### 1. Prefetching Overview

#### 2. LSTMs Overview

#### 3. LSTMs for Prefetching

#### 4. Evaluation

#### 5. Lessons Learned

## Lessons Learned (1)

What to remember when using LSTMs for prefetching.

Don't Learn the Address, learn Address Deltas instead.

0x40001ee0: R 0xbfffe798
0x40001efd: W 0xbfffe7d4
0x40001f09: W 0xbfffe7d8
0x40001f20: W 0xbfffe864
0x40001f20: W 0xbfffe868

Memory Access Trace

Size of Trace: O(100M)

Huge.. and extremely sparce. O(10M) unique addresses.



64-bit binary number

Possible values =  $2^{64}$ 

Normalizing that to [0, 1] leads to information loss.

Record the most frequently seen

Address Delta
$$(t_{N+1}, t_N)$$

Convert each unique delta to:



- "Small" set of deltas.
- Classification: predict specific values.

## Lessons Learned (2)

What to remember when using LSTMs for prefetching.

Prefetching allows for multiple predictions, thus higher perceived model accuracy.



Prefetch the top-10 predictions, at each timestep  $t_N$ .

Correct Prediction, if the *real* delta is one of the 10 predictions.



LSTM models achieve much higher precision-at-10, not precision.

... and probably that's why observe similar performance between the Embedding and Clustering LSTMs.

## Lessons Learned (3)

What to remember when using LSTMs for prefetching.

The Clustering LSTM delivers higher recall, but similar precision to the Embedding LSTM.



**Clustering LSTM** 

The Embedding of (PC, Delta) deliver high precision due to the Deltas and high recall due to the PCs.



**Embedding LSTM** 

#### Report Due March 28 at 18.00

#### Answer / expand upon these 4 questions:

- 1. What problem is the paper addressing and why is it important?
- 2. How do they approach to solve the problem?
- 3. What are the main evaluation results?
- 4. What are 2 things you will remember from this paper?

#### Contact

• Via email: thaleia.doudali@imdea.org



https://thaleia-dimitradoudali.github.io/

# Teaching Spring 2023 MLArchSys Seminar Series. At the MUSS and EMSE Master Programs of the School of Computer Science at Universidad Politécnica de Madrid. MUSS Link EMSE Link Seminar 1: Introduction to Maching Learning for Computer Architecture and Systems. Seminar 2: Maching Learning for Cache Prefetching. Slides Paper Seminar 3: Maching Learning for Hybrid Memory Management. Slides Paper