Term Structure Dynamics in Theory and Reality

Qiang Dai New York University

Kenneth SingletonStanford University and NBER

This article is a critical survey of models designed for pricing fixed-income securities and their associated term structures of market yields. Our primary focus is on the interplay between the theoretical specification of dynamic term structure models and their empirical fit to historical changes in the shapes of yield curves. We begin by overviewing the dynamic term structure models that have been fit to treasury or swap yield curves and in which the risk factors follow diffusions, jump-diffusion, or have "switching regimes." Then the goodness-of-fit of these models is assessed relative to their abilities to (i) match linear projections of changes in yields onto the slope of the yield curve; (ii) match the persistence of conditional volatilities, and the shapes of term structures of unconditional volatilities, of yields; and (iii) to reliably price caps, swaptions, and other fixed-income derivatives. For the case of defaultable securities we explore the relative fits to historical yield spreads.

This article is a critical survey of models designed for pricing fixed-income securities (FISs) and their associated term structures of market yields. Our primary focus is on the interplay between the theoretical specification of dynamic term structure models (DTSMs) and their empirical fit to historical changes in the shapes of yield curves. With this interplay in mind, we characterize DTSMs in terms of three primary ingredients: the risk-neutral distribution of the state variables or risk factors, the mapping between these risk factors and the short-term interest rate, and the factor risk premiums that (when combined with the first two) allow construction of the likelihood function of the historical bond yields. Then the roles of these ingredients in the goodness-of-fit of several widely

We are grateful to Andrew Ang, Pierre Collin-Dufresne, Robert Goldstein, Robert Jarrow, Suresh Sundaresen, Len Umantsev, the referees, and Maureen O'Hara (editor) for helpful comments and suggestions, and to Mariusz Rabus, Len Umantsev, and Wei Yang for research assistance; and for financial support from the Financial Research Initiative, the Stanford Program in Finance, and the Gifford Fong Associates Fund at the Graduate School of Business, Stanford University. Address correspondence to Kenneth Singleton, Graduate School of Business, Stanford University, Littlefield 247. Stanford, CA 94305, or e-mail: ken@future.stanford.edu.

¹ Fixed-income securities are contingent claims with promised cash flows that are known contractually at the inception of the contract. Issuers of FISs often have multiple securities outstanding with different maturities that are otherwise homogeneous with regard to their characteristics, in which case there is an (issuer-specific) *term structure* of market yields.

studied DTSMs are assessed based on their matching of several first- and second-moment properties of bond yields and the prices of fixed-income derivatives.

We begin in Section 1 with an introduction to arbitrage-free pricing of both default-free and defaultable FISs. This discussion is directed more toward the needs of researchers interested in the empirical implementation of pricing models than toward the mathematical details of valuation.² This is followed in Section 2 by a review of the key ingredients of several of the most widely studied continuous-time econometric specifications of DTSMs, including affine, quadratic-Gaussian, and nonaffine stochastic volatility models. For the case of defaultable bonds, we review both "reduced-form" and "structural" models. Particular attention is given to the trade-offs between analytic tractability and richness of the yield distributions that can be achieved within these modeling frameworks. We conclude this section with a discussion of pricing in the presence of "regime shifts."

The empirical fit of DTSMs to treasury and swap yield data is explored in Section 3. Using model-implied yields simulated from several popular families of DTSMs, we assess their goodness-of-fit by the degree to which they replicate (1) historical regressions, showing that holding-period returns on bonds are predictable using yield curve variables [e.g., Fama and Bliss (1987), Campbell and Shiller (1991)]; and (2) the conditional volatilities of yields, which tend to be highly persistent [e.g., Brenner, Harjes, and Kroner (1996)], and the "term structure" of unconditional volatilities, which is hump-shaped. In Section 4 we discuss the empirical fit of DTSMs for defaultable securities, placing particular emphasis on whether these DTSMs generate credit spreads consistent with historical experience.

In Section 5 we look beyond the spot market to see how well the model-implied prices of fixed-income derivatives match up with their historical counterparts (implied volatilities). In the process we are led to address the fit of DTSMs to two additional historical observations: (3) the correlations of the changes in the slopes of nonoverlapping yield curve segments are small compared to the correlations of changes in the yields themselves [e.g., Rebonato and Cooper (1997)]; and (4) implied volatilities of caps and swaptions appear to show variation that is independent of the variation in the underlying swap market [Collin-Dufresne and Goldstein (2002a) and Heidari and Wu (2003)].

There are several important segments of the fixed-income literature that we have chosen to omit from this survey in order to keep its scope

² Recent, more mathematically oriented, surveys of the theoretical term structure literature can be found Back (1996), Sundaresan (2000), Gibson, Lhabitant, and Talay (2001), and Yan (2001).

manageable. Specifically, we largely restrict our attention to dynamic pricing models that have examined features of the joint distribution of long- and short-term bond yields in estimation and testing. This means that no attempt is made to systematically review the vast literature on descriptive, time-series models of interest rates (including the literature on short-term rates).³ Similarly we discuss the literature on pricing fixed-income derivatives using DTSMs, but do not explore in depth the various specialized "pricing measures" used for pricing LIBOR-based derivatives, taking the current yield curve as given.⁴

1. Specification of DTSMs

This section overviews the conceptual foundations of modeling the dynamic properties of yield curves—specifying a DTSM in the sense used here. For ease of exposition, and because of its prominence in the theoretical literature on DTSMs, we assume that the state vector Y follows a continuous-time diffusion. Extensions of DTSMs to accommodate jumps and regime shifts are discussed in Section 2.

DTSMs are typically constructed from the following three key ingredients:

 $I_{\mathbb{M}(P)}$: the time-series process for Y under the *pricing* measure $\mathbb{M}(P)$, induced by some numeraire price P;

 $I_{\mathbb{P}}$: the time-series process for *Y* under the *actual* measure \mathbb{P} ; $I_{\mathcal{F}}$: the functional dependence of r(t) on *Y*.

 $I_{\mathbb{M}(P)}$ and I_r are used for pricing and $I_{\mathbb{P}}$ and I_r are used to construct the moments of bond returns (under \mathbb{P}) used in estimation of the unknown parameters ψ_0 , so all three ingredients are essential for econometric analyses of DTSMs. The requirement that there be no arbitrage opportunities within a DTSM places only weak restrictions on the choice of $(I_{\mathbb{M}(P)}, I_{\mathbb{P}}, I_r)$. However, the computational demands of both pricing bonds and maximizing the estimation criterion function have typically led researchers to choose $(I_{\mathbb{M}(P)}, I_r)$ so that closed- or essentially closed-form solutions are obtained for zero-coupon bond prices. In addition, with $(I_{\mathbb{M}(P)}, I_r)$ in hand, the specification of the risk premiums that link $I_{\mathbb{M}(P)}$ and $I_{\mathbb{P}}$ have often been chosen to maintain tractability in estimation, while preserving the condition of no arbitrage opportunities. We elaborate on these specification issues in Section 2.

³ See Chapman and Pearson (2001) for a survey with extensive coverage of empirical studies of short-rate models.

⁴ Musiela and Rutkowski (1997) and Dai and Singleton (2002b) survey large portions of the literature on the "forward-rate" models of Heath, Jarrow, and Morton (1992), Brace, Gatarek, and Musiela (1997), and Miltersen, Sandmann, and Sondermann (1997).

1.1 DTSMs of default-free bond yields

Throughout this survey we will use the concept of a pricing kernel, M, to describe the pricing mechanism. Initially we specialize to a setting where the state of the economy is completely described by a Markovian-state vector Y(t), with

$$dY(t) = \mu_Y^{\mathbb{P}}(Y, t)dt + \sigma_Y(Y, t)dW(t), \tag{1}$$

where $\mu_Y^{\mathbb{P}}$ is an $N \times 1$ vector of drifts under \mathbb{P} and σ_Y is an $N \times N$ state-dependent factor-volatility matrix. In this diffusion setting, M_t can be written generically as

$$\frac{dM_t}{M_t} = -r_t dt - \Lambda_t' dW(t), \tag{2}$$

where $r_t = r(Y(t), t)$ is the instantaneous riskless rate, W(t) is a vector of N independent Brownian motions, and $\Lambda_t = \Lambda(Y(t), t)$ is the N-vector of market prices of risk. For simplicity, we take the risk factors driving M and Y to be one and the same.

For a FIS with a dividend rate h(Y(t), t) for $t \le T$ and terminal payoff g(Y(T)) at date T, its price at date $t \le T$ can be expressed in terms of the pricing kernel as

$$P(Y(t),t) = E_t \left[\int_t^T \frac{M(s)}{M(t)} h(Y(s),s) ds \right] + E_t \left[\frac{M(T)}{M(t)} g(Y(T)) \right], \quad (3)$$

where E_t denotes expectation conditioned on date t information under \mathbb{P} . The solution to Equation (3) can be expressed equivalently as the solution to the following fundamental partial differential equation (PDE) [e.g., Duffie (1996)],

$$\left[\frac{\partial}{\partial t} + \mathcal{A}\right] P_t - r_t P_t + h_t = 0, \tag{4}$$

where A is the infinitesimal generator

$$\mathcal{A} = (\mu_t^{\mathbb{P}} - \sigma_{Yt}\Lambda_t)' \frac{\partial}{\partial Y_t} + \frac{1}{2}\operatorname{Trace}\left[\sigma_{Yt}\sigma_{Yt}' \frac{\partial^2}{\partial Y_t \partial Y_t'}\right]. \tag{5}$$

 Λ in this construction is interpreted as the market price of risk, because the expected excess return from holding a FIS with price P is given by

$$e_{P}(t) \equiv E \left[\frac{dP(t) + h(t)dt}{P(t)dt} - r_{t} \middle| \mathcal{F}_{t} \right] = \frac{1}{P(t)} \frac{\partial P(t)}{\partial Y(t)'} \sigma_{Y}(t) \Lambda_{t}, \tag{6}$$

where \mathcal{F}_t denotes the agents' information set at date t. The term premultiplying $\Lambda(t)$ in Equation (6) is the volatility of P induced by volatility

in Y. Thus Λ is the vector of risk premiums required for each unit of volatility of the N risk factors.

The practical problem faced by researchers pricing FISs and their associated derivatives is one of computing the expectations in Equation(3). The most widely applied approach to solving Equation (3) (and equivalently Equation (4)) involves a "change of measure" to obtain a more tractable expectation.⁵ To illustrate this approach we fix T > 0 and let Z(t) and P(t) denote the prices of two traded securities at date t < T that, for simplicity, have no cash flows prior to date T. We view P(t) as a numeraire price that defines an associated measure $\mathbb{M}(P)$ in the following sense. Letting V(t) = Z(t)/P(t), from the counterparts of Equation (4) for P(t) and Z(t) it follows that

$$0 = V_t + \mu_Y^{\mathbb{M}(P)'} V_Y + \frac{1}{2} \operatorname{Tr}[\sigma_Y \sigma_Y' V_{YY'}], \quad \text{where } \mu_Y^{\mathbb{M}(P)} = \mu_Y^{\mathbb{P}} - \sigma_Y [\Lambda - \sigma_P]$$
(7)

and $\sigma_P \equiv (\sigma'_Y \partial P / \partial Y) / P$. Under regularity, the Feynman–Kac theorem applied to Equation (7) implies

$$V(t) = E_t^{\mathbb{M}(P)}[V(T)] \Leftrightarrow \frac{Z(t)}{P(t)} = E_t^{\mathbb{M}(P)} \left[\frac{Z(T)}{P(T)} \right], \tag{8}$$

where the conditional expectation is taken with respect to a measure $\mathbb{M}(P)$ under which Y follows the process $dY(t) = \mu_Y^{\mathbb{M}(P)}(t)dt + \sigma_Y(t)dW^{\mathbb{M}(P)}(t)$, with $W^{\mathbb{M}(P)}$ a vector of standard Brownian motions under measure $\mathbb{M}(P)$. Under the measure $\mathbb{M}(P)$, the short rate r does not appear (in Equations (7) and (8)) and the relative price V(t) follows a Martingale. Different choices of P(t) lead to different $\mu_Y^{\mathbb{M}(P)}(t)$ and therefore different pricing measures, $\mathbb{M}(P)$.

Two choices of numeraire P(t), that lead to two general-purpose pricing measures, are

Risk-neutral measure $\mathbb{Q}=\mathbb{M}(e^{\int_0^t r(s)ds})$: P(t) is the price of a continuously compounded bank deposit (that is, $P(t)=e^{\int_0^t r(s)ds}$) for which $\sigma_P=0$ and the \mathbb{Q} -drift of Y is $\mu_Y^\mathbb{Q}(t)\equiv \mu_Y^\mathbb{P}(t)-\sigma_Y(t)\Lambda(t)$. From Equation (8),

$$Z(t) = E_t^{\mathbb{Q}} \left[e^{-\int_t^T r(s)ds} Z(T) \right]; \tag{9}$$

$$P(t) = \int_{-t}^{T} ds \int dy \ G(t, Y(t)|s, y) h(y, s) + \int dy \ G(t, Y(t)|T, y) g(y).$$

Unfortunately the derivation of the Green's function in analytical form or its numerical computation is often a nontrivial matter. See Steenkiste and Foresi (1999) for a discussion of the computational issues related to this approach for the case of affine jump-diffusions and Collin-Dufresne and Goldstein (1999) for the case of reflecting boundaries for the short-rate process r.

⁵ An alternative approach, besides the direct application of numerical methods, is to derive the so-called Green's function, G(t, Y(t)|T, Y), which gives the price P(t) of any FIS with dividend process h(Y(t), t) and terminal payoff g(Y(T)) as

Z(t) is the present value of Z(T) discounted by the riskless rate, so \mathbb{Q} is referred to as the *risk-neutral* measure.

Forward measure $\mathbb{Q}^T \equiv \mathbb{M}(D(t,T))$: P(t) = D(t,T), the price of a zerocoupon bond issued at date t and maturing at date T. In this case, V(t) is a "forward price" of security Z(t), so \mathbb{Q}^T is commonly referred to as the *forward measure*. Using the fact that D(T,T)=1, Equation (8) becomes

$$Z(t) = D(t, T)E_t^T[Z(T)],$$
 (10)

where $E_t^T[\cdot]$ denotes conditional expectation under the measure \mathbb{Q}^T .

Which measure is chosen in practice, either among these two or with some other numeraire, depends on a researcher's objective.

The financial industry tends to have a cross-sectional, as opposed to time-series, focus given the practical demands of "point-in-time" pricing systems. The numeraire, and associated measure $\mathbb{M}(P)$, are often chosen to give convenient closed-form or numerical solutions for Equation (8) for various option payoffs Z(T). Particularly in the case of such LIBOR-based instruments as caps, floors, and swaptions, pricing has tended to focus on forward measures \mathbb{Q}^T , with the numeraire chosen to be either the price of a LIBOR-based zero-coupon bond or a swap price. Of course, if two derivatives based on the same underlying risk factors are priced with different numeraires, then the resulting pricing models may be based implicitly on mutually inconsistent assumptions about the distributions of the risk factors [Brace, Gatarek, and Musiela (1997), Jamshidian (1997)].

Another issue that arises in practice is that trading desks often require that a model correctly "price" an entire yield curve before it will be used for pricing derivatives based on this curve. This consideration underlies in part the widespread use of forward-rate-based models, which prescribe the risk-neutral dynamics of the forward curve [as in Heath, Jarrow, and Morton (1992)]. In such models, the forward curve $f(t,\cdot)$, defined by $f(t,T)=-\partial \log D(t,T)/\partial T$, for any $T\geq t$, is an (observable) input into an arbitrage-free pricing model. As typically implemented in industry, forward-rate models are silent about the time-series behavior of yields under $\mathbb P$ and therefore are not within the family of DTSMs explored in depth in this survey.

In the DTSMs with fixed parameters explored subsequently, the dimension of Y, N, is typically small relative to the number of securities to be priced by M. One means of circumventing this limitation of dimensionality in yield-based models (those based on $(I_{\mathbb{Q}}, I_r)$), is to introduce time-dependent parameters that allow for point-in-time calibration of a low-dimensional factor model to an entire yield curve of spot yields or

volatilities. (This is an easy "add-on" in most of the DTSMs discussed subsequently.) This practice is not without controversy, since recalibrating the parameters as the shape of the underlying yield curve or option volatilities change amounts to "changing the model." Therefore the resulting models are almost surely fraught with arbitrage opportunities from a dynamic perspective [Backus, Foresi, and Zin (1998), Buraschi and Corielli (2000), Brandt and Yaron (2001)].

In principle, these issues disappear if the entire yield curve is viewed as the state vector and its dynamic properties are explicitly modeled under both \mathbb{Q} and \mathbb{P} . Such high- (possibly infinite) dimensional models, developed under the labels of "Brownian sheets" [Kennedy (1994)], "random fields" [Goldstein (2000)], and "stochastic string shocks" [Santa-Clara and Sornette (2001)], are discussed in more depth in Section 5.

1.2 DTSMs of defaultable bond yields

If the issuer of a FIS might default prior to the maturity date T, then, in addition to the risk of changes in r, both the magnitude and the timing of payoffs to investors may be uncertain. The effects of default risks on prices depends on how the default event is defined and the specification of recovery w_r in the event of a default event. At the broadest level, the two most commonly studied default processes are those of *reduced-form* and *structural* models.

1.2.1 Reduced-form models. Reduced-form models treat default as governed by a counting (jump) process z(t) with associated (possibly state-dependent) intensity process $\lambda^{\mathbb{P}}(t)$ and, as such, whether or not a issuer actually defaults is an *unpredictable* event. For pricing in this setting, we extend the formulation of Equation (2) of the pricing kernel to allow for a "jump" to the absorbing default state

$$\frac{dM_t}{M_t} = -r_t - \Lambda_t' dW_t - \Gamma_t (dz_t - \lambda_t^{\mathbb{P}} dt), \tag{11}$$

where $\Gamma_t = \Gamma(Y_t)$ is the market price of default risk, and let w(Y(t)) denote the recovery by holders of a FIS in the event of default. For a defaultable zero-coupon bond, issued at t and maturing at date T, with price B(t, T), the absence of arbitrage opportunities implies that B(t, T) M_t is a martingale. This, in turn, implies that

$$\left[\frac{\partial}{\partial t} + \mathcal{A}\right] B(t,T) - (r_t + \lambda_t^{\mathbb{Q}}) B(t,T) + w_t \lambda_t^{\mathbb{Q}} = 0, \tag{12}$$

where $\lambda_t^{\mathbb{Q}} = (1 - \Gamma_t)\lambda_t^{\mathbb{P}}$ is the "risk-neutral" intensity of arrival of default. Comparing Equation (12) with Equation (4) we see that the defaultable security is priced using the default-adjusted discount rate $r_t + \lambda_t^{\mathbb{Q}}$.

Intuitively this is a consequence of the risk-neutral probability of an issuer surviving from date t to date s (presuming survival to date t) being $E_t^{\mathbb{Q}}[\exp\{-\int_t^s \lambda_u^{\mathbb{Q}} du\}]$. Using $r_t + \lambda_t^{\mathbb{Q}}$ in discounting accounts for both the time value of money and the need for the issuer to survive to receive payments. Moreover, we see that, even though we are pricing a zero-coupon bond, the possibility of a recovery in the event of default effectively introduces a dividend that is received at the rate $w_t \lambda_t^{\mathbb{Q}}$ (compare with t in Equation (4)). Since t0 is the probability of default over the next instant of time and t1 is the recovery in the event of default, the dividend is the mean recovery rate due to default.

Of importance, as discussed in Artzner and Delbean (1995), Jarrow, Lando, and Yu (2000), Martellini and Karoui (2001), and Yu (2002), is that the requirement of no arbitrage places only weak restrictions on the risk premium $\Gamma(t)$ and hence on the mapping between $\lambda^{\mathbb{Q}}$ and $\lambda^{\mathbb{P}}$. Not only may $\lambda^{\mathbb{P}}$ and $\lambda^{\mathbb{Q}}$ differ in their current levels, they may also have different degrees of persistence, time-varying volatility, and one might jump while the other follows a continuous sample path. Thus moving between $\lambda^{\mathbb{P}}$ and $\lambda^{\mathbb{Q}}$ is not analogous to the standard adjustment to the drift of r to obtain its risk-neutral representation.

Moreover, the instantaneous excess return on a defaultable zero-coupon bond depends on $\lambda^{\mathbb{P}}$ and not on $\lambda^{\mathbb{Q}}$:

$$e_{Bt} = \frac{1}{B(t,T)} \frac{\partial B(t,T)}{\partial Y'} \sigma_Y \Lambda_t + \frac{w_t - B(t,T)}{B(t,T)} \lambda_t^{\mathbb{P}} \Gamma_t.$$
 (13)

Compared to Equation (6), e_{Bt} has an extra component, $((w_t - B(t,T))/B(t,T))\lambda_t^{\mathbb{P}}\Gamma_t$, representing compensation for the expected loss due to default. This component is the product of $(w_t - B(t,T))/B(t,T)$, the percentage loss of value due to default; $\lambda_t^{\mathbb{P}}$, the actual default intensity; and Γ_t , the market price of default risk. Since bond prices reveal information only about $\lambda^{\mathbb{Q}}$, computing $\lambda^{\mathbb{P}}$ and e_{Bt} typically requires additional information about the \mathbb{P} -likelihood of an issuer defaulting.

The solution to Equation (12) for B(t, T) depends on what one assumes about recovery, w_t . Duffie and Singleton (1999) assume that investors lose an expected (risk-neutral) fraction $L_t^{\mathbb{Q}}$ of the market value of B(t, T), measured just prior to the default event (fractional recovery of market value). In this case, $w_t = (1 - L_t^{\mathbb{Q}})B(t, T)$ and B(t, T) solves the PDE

$$\left[\frac{\partial}{\partial t} + \mathcal{A}\right] - (r(t) + L^{\mathbb{Q}}(t)\lambda^{\mathbb{Q}}(t))B(t, T) = 0. \tag{14}$$

It follows that $B(t,T) = E_t^{\mathbb{Q}}[e^{-\int_t^T R_u du}]$, where $R_t \equiv r_t + \lambda_t^{\mathbb{Q}} L_t^{\mathbb{Q}}$ denotes the "default-adjusted" discount rate. The price of the zero-recovery security studied by Lando (1998) and Madan and Unal (1998) is obtained as the special case with $L^{\mathbb{Q}} = 1$.

Alternatively, Duffie (1998) and Lando (1998) assume recovery of w_{τ} at the time of default, which (by analogy to Equation (3)) leads to the pricing relation

$$B(t,T) = E_t^{\mathbb{Q}} \left[e^{-\int_t^T (r_s + \lambda_s^{\mathbb{Q}}) ds} \right] + E_t^{\mathbb{Q}} \left[\int_t^T e^{-\int_t^u (r_s + \lambda_s^{\mathbb{Q}}) ds} \lambda_u^{\mathbb{Q}} w_u du \right]. \quad (15)$$

With the face value of this bond normalized to unity, this recovery assumption is interpretable as fractional recovery of face value. Madan and Unal (1998) derive similar pricing relations for the case of junior and senior debts with different recovery ratios.

Finally, Jarrow and Turnbull (1995) assume a constant fractional recovery of an otherwise equivalent treasury security with the remaining maturity of the defaultable instrument. This recovery assumption has been less widely applied in the empirical literature than the preceding two recovery assumptions.

1.2.2 Structural models. Structural models, in their most basic form, assume default at the first time that some credit indicator falls below a specified threshold value. The conceptual foundations for this approach were laid by Merton (1970, 1974) and Black and Scholes (1973). They supposed that default occurs at the maturity date of debt provided the issuer's assets are less than the face value of maturing debt at that time. (Default before maturity was not considered.) Black and Cox (1976) introduced the idea that default would occur at the first time that assets fall below a boundary D (which may or may not be the face value of debt), thereby turning the pricing problem into one of computing "first-passage" probabilities. For the case of exogenously given default boundary F, if in the event of default bondholders lose the fraction $L_T^{\mathbb{Q}}$ of par at maturity, then the price B(t, T) becomes

$$B(t,T) = E_t^{\mathbb{Q}} \left[e^{-\int_t^T r_u du} (1 - L_T 1_{\{\tau < T\}}) \right]$$

= $D(t,T) [1 - L_T H^T (A_t / F, r_t, T - t)],$ (16)

where $H^T(A_t/F, r_t, T-t) \equiv E_t^T[1_{\{\tau < T\}}]$ is the first-passage probability of default between dates t and T under the forward measure induced by the default-free zero price D(t, T). Thus B(t, T) is the price of a riskless zero-coupon bond minus the value of a put option on the value of the firm. The value of a coupon bond in this setting is obtained by summing the present values of the promised coupons discounted by the relevant zero prices B(t, T) on the coupon dates.

Pricing in models with endogenous default thresholds has been explored by Geske (1977), Leland (1994), Leland and Toft (1996), Anderson and Sundaresan (1996), Mella-Barral and Perraudin (1997), and Ericsson

and Reneby (2001), among others. The endogeneity of F arises (at least in part) because equity holders have an option as to whether to issue additional equity to service the promised coupon payments. With F determined by the actions of equity holders and debtors, it becomes a function of the underlying parameter of the structural model. The models of Anderson and Sundaresan (1996), Mella-Barral and Perraudin (1997), and Ericsson and Reneby (2001) accommodate violations of absolute priority rules (equity holders experience nonzero recoveries, even though bondholders recover less than the face value of their debt).

1.2.3 Pricing with two-sided default risk. For the cases of interest rate forward and swap contracts, default risk is "two sided" in the sense that a financial contract may go "into the money" to either counterparty, depending on market conditions, and so the relevant default processes for pricing change with market conditions. Duffie and Singleton (1999) show, in the context of reduced-form models, that this dependence of $\lambda^{\mathbb{Q}}$ and w_{τ} on the price P(t) of the contract being valued renders the preceding reduced-form pricing models inapplicable, at least in principle. Fortunately, for at-the-money swaps (those used most widely in empirical studies of DTSMs), these considerations are negligible [Duffie and Huang (1996) and Duffie and Singleton (1997)]. Hence standard practice within academia and the financial industry is to treat such interest rate swaps as if they are bonds trading at par (\$1), with the discount rate R chosen to reflect the credit/liquidity risk inherent in the swap market.

Using this approximate pricing framework, the resulting discount curve, $-\log B(t,T)/(T-t)$, "passes through" short-term LIBOR rates. However, there is no presumption that long-term swap rates and LIBOR contracts reflect the same credit quality. They are in fact notably different [Sun, Sundaresan, and Wang (1993), Collin-Dufresne and Solnik (2001)]. Nor is there a presumption that $R_t - r_t$ reflects only credit risk; liquidity risk may be as, if not more, important [see Grinblatt (1994) and Liu, Longstaff, and Mandell (2001) for discussions of liquidity factors in swap pricing].

2. Term Structure Models

The central role of DTSMs in financial modeling has lead to the development of an enormous number of models, many of which are not nested. Initially we focus on the case where Y follows a diffusion process and discuss four of the most widely studied families of DTSMs: affine,

⁶ Under fractional recovery of market value, one can still express B(t,T) as the solution to Equation (14), but because of the dependence of R on P, B(t,T) solves a quasi-linear equation instead of a more standard linear PDE, and prices must be obtained by numerical methods.

quadratic-Gaussian (QG), nonaffine stochastic volatility, and structural defaultable bond pricing models. Then we step outside of the diffusion framework and discuss DTSMs with jumps and multiple "regimes."

2.1 Affine term structure models

The ingredients of affine term structure models are

 $I_{\mathbb{Q}}(A)$: Under \mathbb{Q} , the drift and volatility functions of the risk factors satisfy

$$\mu_Y^{\mathbb{Q}}(t) = \kappa^{\mathbb{Q}}(\theta^{\mathbb{Q}} - Y(t)), \tag{17}$$

$$\sigma_Y(t)\sigma_Y(t)' = g_0 + \sum_{i=1}^N g_i Y_i(t),$$
 (18)

where $\theta^{\mathbb{Q}}$ is an $N \times 1$ vector and $\kappa^{\mathbb{Q}}$ and g_i , i = 0, 1, ..., N, are $N \times N$ matrices of constants. An equivalent characterization of $\sigma_Y(t)$ has $\sigma_Y(t) = \Sigma \sqrt{S(t)}$, where

$$S_{ii}(t) = \alpha_i + \beta'_i Y(t), \quad S_{ij}(t) = 0, \quad i \neq j, \quad 1 \le i, \quad j \le N,$$
 (19)

and Σ is an $N \times N$ matrix of constants.

 $I_{\mathbb{P}}(A)$: Given $\sigma_Y(t)$ satisfying Equation (18), the requirement of Equation (17) determines the drift of Y under the actual measure, $\mu_Y^{\mathbb{P}}(t)$, once the market prices of risk $\Lambda(t)$ are specified, and vice versa.

 $I_r(A)$: The short rate is an affine function of Y:

$$r(t) = \delta_0 + \delta'_Y Y(t). \tag{20}$$

Duffie and Kan (1996) show that under $(I_{\mathbb{Q}}(A), I_r(A))$, the solution to the PDE of Equation (4) for D(t, T) is exponentially affine:

$$D(t,T) = e^{\gamma_0(T-t) + \gamma_Y(T-t)'Y(t)},$$
(21)

where γ_0 and γ_Y satisfy known ordinary differential equations (ODEs). Note that, in deriving the pricing relation of Equation (21), Duffie and Kan (1996) were silent on the properties of Y under \mathbb{P} . To obtain Equation (21), essentially any specification of $\mu_Y^{\mathbb{P}}(t)$ and any arbitrage-free specification of $\Lambda(t)$ can be chosen, so long as the drift of Y under \mathbb{Q} is an affine function of Y.

In order for affine specifications to be admissible, restrictions must be imposed on the parameters to ensure that the $S_{ii}(t) \ge 0$. To address this problem, for the case of N risk factors and M ($\le N$) factors driving the $S_{ii}(t)$, Dai and Singleton (2000) (hereafter DS) introduced the "canonical" model $\mathbb{A}_M(N)$ with $S_{ii}(t) = \sqrt{Y_i(t)}$, $i = 1, \ldots, M$, and the remaining N - M $S_{ii}(t)$ being affine functions of $(Y_1(t), \ldots, Y_M(t))$. DS provide an easily verifiable set of sufficient restrictions on the parameters of $\mathbb{A}_M(N)$

to guarantee admissibility. The subfamily $A_M(N)$ ($M=0,\ldots,N$) of affine models was then defined to be all models that are nested special cases of the Mth canonical model or of invariant transformations of this model. Duffie, Filipovic, and Schachermayer (2002) show that DS's canonical affine diffusion gives the most flexible affine DTSM on the state space $\mathbb{R}^M_{\pm} \times \mathbb{R}^{N-M}$. The union $\cup_{M=0}^N A_M(N)$ does not encompass all admissible N-factor affine models, however.

DS analyze the "completely affine" class of DTSMs with

$$\mu_Y^{\mathbb{P}}(t) = \kappa^{\mathbb{P}}(\theta^{\mathbb{P}} - Y(t)) \quad \text{and} \quad \Lambda(t) = \sqrt{S(t)}\lambda_1,$$
 (22)

where λ_1 is an $N \times 1$ vector of constants. In this case both the \mathbb{P} -drift $\mu_Y^{\mathbb{P}}(t)$ and \mathbb{Q} -drift $\mu_Y^{\mathbb{Q}}(t) = \mu_Y^{\mathbb{P}}(t) - \sigma_Y(t)\Lambda(t)$ are affine in Y(t). A potentially important limitation of the specification of Equation (22) of Λ is that temporal variation in the instantaneous expected excess return on a (T-t)-period zero bond, $e_D(t,T) = \gamma_Y(T-t)'S_t\lambda_1$ (see Equation (6)), is determined entirely by the volatilities of the state variables through S(t). Moreover, the sign of each $\Lambda_i(t)$ is fixed over time by the sign of λ_{1i} .

Duffee (2002) proposed the more flexible "essentially affine" specification of $\Lambda(t)$ that has

$$\Lambda_t = \sqrt{S_t} \lambda_1 + \sqrt{S_t^-} \lambda_2 Y_t, \tag{23}$$

where λ_1 is an $N\times 1$ vector and λ_2 is an $N\times N$ matrix, and $S_{ii,t}^-=(\alpha_i+\beta_i'Y_t)^{-1}$, if $\inf(\alpha_i+\beta_i'Y_t)>0$, and zero otherwise. Within the canonical model for $A_M(N)$, the *inf* requirement implies that the first M rows of λ_2 (corresponding to the M volatility factors) can be normalized to zero. Thus when M=N (multifactor CIR models), the "completely" and "essentially" affine specifications are equivalent—excess returns vary over time only because of time variation in the factor volatilities.

However, when M < N, the essentially affine specification introduces the possibility that Y affects expected excess returns both indirectly through the $S_{ii}(t)$ and directly through the nonzero elements of $\lambda_2 Y_t$. Moreover, the signs of the $\Lambda_i(t)$ corresponding to the N-M nonvolatility factors may switch signs over time. (Those of the first M volatility factors have fixed signs as in CIR-style models.) The smaller is M, the more added flexibility is introduced by Equation (23) over Equation (22), though at the expense of less flexibility in matching stochastic volatility. The specification of Equation (23) preserves the property that the drifts of Y are affine under both $\mathbb Q$ and $\mathbb P$.

Duarte (2003) extended the specification of Λ further to

$$\Lambda(t) = \Sigma^{-1}\lambda_0 + \sqrt{S_t}\lambda_1 + \sqrt{S_t^-}\lambda_2 Y_t, \tag{24}$$

⁷ The requirement that the *i*th diagonal element of S_t^- be nonzero only if $\inf(\alpha_i + \beta_i' Y_t) > 0$ is necessary to rule out arbitrage that might arise if elements of Λ_t approach infinity as $(\alpha_i + \beta_i' Y_t)$ approaches zero [Cox, Ingersoll, and Ross (1985), Duffee (2002)].

where λ_0 is an $N \times 1$ vector of constants. The practical import of his extension is that the $\Lambda_i(t)$ corresponding to the M volatility factors in an $A_M(N)$ model may now switch signs over time. In addition, larger differences between the drifts of Y under the \mathbb{P} and \mathbb{Q} measures are accommodated, because $\mu^{\mathbb{P}}(t) = \kappa^{\mathbb{Q}}(\theta^{\mathbb{Q}} - Y(t)) + \Sigma \sqrt{S(t)}\Sigma^{-1}\lambda_0$ in Duarte's model, as prescribed by Equation (17). With this modification, Y follows a nonaffine process under \mathbb{P} —the drift involves both the level and square root of the state variables—but one that is nevertheless affine under \mathbb{Q} (so that the pricing relation of Equation (21) continues to hold).

Though the characterization of the families $A_M(N)$ using $(I_{\mathbb{Q}}(A), I_{\mathbb{P}}(A), I_r(A))$ is entirely in terms of the risk factors Y, each member of $A_M(N)$ is observationally equivalent to a multifactor model in which r remains one of the state variables, with the drift and conditional variance of r depending on other state variables (DS). For instance, the two-factor Gaussian ("Vasicek") model studied by Langetieg (1980) is equivalent to the two-factor central-tendency model of r proposed by Beaglehole and Tenney (1991) and Balduzzi, Das, and Foresi (1998).

The development of affine models of defaultable bond prices proceeds in a similar manner. In the DS framework with fractional recovery of market value, the default adjusted discount rate $R_t = r_t + \lambda_t^{\mathbb{Q}} L_t^{\mathbb{Q}}$ can be modeled as an affine function of the state Y_t . A researcher has the choice of modeling R directly or of building up a model of R from separate affine parameterizations of r and $\lambda^{\mathbb{Q}} L^{\mathbb{Q}}$.

Similarly an affine model under fractional recovery of face value is obtained by assuming that $(r_t + \lambda_t^{\mathbb{Q}})$, $\lambda_t^{\mathbb{Q}}$, and $\ln w_{\tau}$ are affine functions of Y. The price of \$1 contingent on survival to date T (the first term in Equation (15)) is known in closed form since $r_t + \lambda_t^{\mathbb{Q}}$ is an affine function of Y. The recovery claim is priced using the extended transform of Duffie, Pan, and Singleton (2000):

$$E^{\mathbb{Q}}\left[e^{-\int_{t}^{u}(r_{s}+\lambda_{s}^{\mathbb{Q}})ds}\lambda_{u}^{\mathbb{Q}}w_{u}\right]du=e^{\alpha_{B}(t,u)+\beta_{B}(t,u)\cdot Y(t)}\left[\hat{\alpha}(t,u)+\hat{\beta}(t,u)\cdot Y(t)\right],\quad(25)$$

where $\alpha_B(t,u)$ and $\beta_B(t,u)$ are the coefficients defining the price of the zero-recovery, defaultable zero-coupon bond, and $\hat{\alpha}_d(t,s)$ and $\hat{\beta}_d(t,s)$ are coefficients that are also known functions of ψ . Only the one-dimensional integral in Equation (15) is computed numerically. Moreover, an equally tractable pricing model is obtained if the fractional loss $L_{\tau}^{\mathbb{Q}}$ is incurred at T, the original maturity of the bond (the convention used in most structural models). In this case, $w_{\tau} = (1 - L_{\tau}^{\mathbb{Q}})D(\tau, T)$ is the discounted recovery

⁸ One implication of this equivalence is that many of the affine DTSMs examined in the literature are nested in the framework of Equations (17)–(22). Included in this set are those in Vasicek (1977), Langetieg (1980), Cox, Ingersoll, and Ross (1985), Brown and Dybvig (1986), Hull and White (1987), Longstaff and Schwartz (1992), Chen and Scott (1993), Hull and White (1993), Brown and Schaefer (1994), Pearson and Sum (1994), Balduzzi et al. (1996), Chen (1996), and Backus et al. (2001).

(from T to τ) and $L_{\tau}^{\mathbb{Q}}$ must be chosen judiciously to facilitate computation of Equation (25).

Whether one is modeling r alone (for pricing default-free FISs) or r and $\lambda^\mathbb{Q}$ (for pricing defaultable securities), the choice of affine models will determine whether these variables remain strictly positive over the entire state space. Strictly speaking, negative values for either of these variables are not economically meaningful. However, the only family of affine diffusions that guarantees strictly positive $(r, \lambda^\mathbb{Q})$ are those in the family $A_N(N)$. With M=N, negative correlations among the Y's are not admissible (DS), and $\lambda_2=0$ in Equation (23), thereby restricting the state dependence of $\Lambda(t)$. Thus the common practice of studying models in $A_M(N)$, with M< N, gives greater flexibility at specifying factor correlations and market prices of risk, at the expense of (typically small) positive probabilities of the realized r or $\lambda^\mathbb{Q}$ being negative.

Though Y is a latent state vector in most econometric studies of affine DTSMs, it is effectively observable if N of the $K \ge N$ bond yields used in estimation are priced perfectly by the model. The implied state Y_t^{ψ} is obtained by inverting the model for these N. In empirical implementations [see, e.g., Chen and Scott (1993), Pearson and Sun (1994), Duffie and Singleton (1997), and Honore (1998)], the remaining K-N bonds are often assumed to be priced only up to an additive "pricing error." In some cases, an alternative to introducing additive errors is to introduce a bond-specific yield factor ξ_t and to discount future cash flows for the bond in question using the adjusted short rate $r(t) + \xi(t)$ [see Duffie, Pedersen, and Singleton (2000) for an example in the context of pricing sovereign bonds].

If all K bonds are assumed to be priced with errors, then filtering methods must be used to obtain fitted states Y^{ψ} . Outside of the Gaussian case, the optimal filters are nonlinear so the Kalman filters typically used are only approximations [Duan and Simonato (1999), Duffee and Stanton (2001)]. Bobadilla (1999) finds that estimates of ψ can be sensitive to the parameterization of the pricing errors.

These extraction issues do not arise if the state variables are observed economic time series (e.g., macroeconomic and yield curve variables). Critical in choosing yield curve variables as elements of Y is that the model maintain internal consistency—it must correctly "price" the state variables when they are known functions of the prices of traded securities. Duffie and Kan (1996) present a generic example of how this can be done in affine models. Imposing internal consistency in nonaffine settings can be challenging, so internal consistency is often ignored [e.g., Boudoukh et al. (1998)]. Wu (2000, 2002), Buraschi and Jiltsov (2001), and Ang and Piazzesi (2003) incorporate macro factors (for which these consistency issues do not arise) directly into affine term structure models.

The affine structure of Y also greatly facilitates estimation of DTSMs. The conditional characteristic function (CCF) of any affine diffusion Y

(given Y_{t-1}) is known in closed form [Duffie, Pan, and Singleton (2000)]. Therefore, if Y follows an affine diffusion under \mathbb{P} , then all of its conditional moments are also known. In particular, if a vector of zero-coupon bond yields is used in estimation, then method-of-moments is a feasible estimation strategy, since these yields are affine functions of Y [Liu (1997)]. A special case is quasi-maximum likelihood estimation [Fisher and Gilles (1996)]. Estimators for affine models of zero yields that are asymptotically efficient can be constructed directly from the CCF [Singleton (2001), Carrasco et al. (2002)].

In the case of coupon bonds, ML estimation is feasible for those special cases — Gaussian [Jegadeesh and Pennacchi (1996)] and square-root [Chen and Scott (1993), Pearson and Sun (1994)] — where the conditional density of Y_t given Y_{t-1} is known. More generally, Duffie, Pedersen, and Singleton (2002) propose an approximate ML estimator for affine DTSMs.

Estimation may not be as tractable when Λ is modeled differently than as in Equation (23), even if the $\mathbb Q$ drift of Y remains affine. This is true, for example, for Duarte's formulation, which has the drift of Y being nonlinear under $\mathbb P$. In this case, as well as situations where the estimators in the preceding paragraph are not applicable, efficient estimates are obtained using the Monte Carlo maximum likelihood estimator of Pedersen (1995) [see also Brandt and Santa-Clara (2002)], the approximate ML estimator of Ait-Sahalia (2002), or the efficient simulated method-of-moments estimator proposed by Gallant and Tauchen (1996).

2.2 Quadratic-Gaussian models

The quadratic-Gaussian family of DTSMs includes the models studied by Longstaff (1989), Beaglehole and Tenney (1991), Constantinides (1992), Lu (2000), Ahn, Dittmar, and Gallant (2002), and Leippold and Wu (2002) as special cases. The ingredients of *QG* models are

 $I_{\mathbb{Q}}(QG)$: Under \mathbb{Q} , the drift and volatility functions of the risk factors satisfy

$$\mu_Y^{\mathbb{Q}}(t) = \kappa^{\mathbb{Q}}(\theta^{\mathbb{Q}} - Y(t)), \tag{26}$$

$$\sigma_Y = \Sigma$$
, a constant matrix, (27)

where $\theta^{\mathbb{Q}}$ is an $N \times 1$ vector and $\kappa^{\mathbb{Q}}$ is an $N \times N$ matrix of constants.

 $I_{\mathbb{P}}(QG)$: Given $\sigma_Y(t)$ satisfying Equation (27), the requirement of Equation (26) determines $\mu_Y^{\mathbb{P}}(t)$, once $\Lambda(t)$ is specified, and vice versa.

 $I_r(QG)$: The short rate is a quadratic function of Y:

$$r(t) = a + Y(t)'b + Y(t)'cY(t),$$
 (28)

where a is a scalar, b is an $N \times 1$ vector, and c is an $N \times N$ matrix of constants.

Ahn, Dittmar, and Gallant (2002) and Leippold and Wu (2002) show that under these conditions the solution to the PDE [Equation (4)] is an exponential quadratic function of Y:

$$D(t,T) = e^{\gamma_0(T-t) + \gamma_Y(T-t)'Y_t + Y_t'\gamma_Q(T-t)Y_t},$$
(29)

where γ_0 , γ_Y , and γ_Q satisfy known ODEs.

The drift condition of Equation (26), along with the assumption that the diffusion coefficient $\sigma_Y(t)$ is the constant matrix Σ , imply that Y follows a Gaussian process under $\mathbb Q$. These assumptions do not restrict the drift of Y under $\mathbb P$, however. Subject to preserving no arbitrage, we are free to choose essentially any functional form for $\mu_Y^{\mathbb P}(t)$, so long as $\Lambda(t)$ is chosen so that the weighted difference $(\mu_Y^{\mathbb P}(t) - \Sigma \Lambda(t))$ is affine in Y. The special case examined in Ahn, Dittmar, and Gallant (2001) has $\Lambda(t) = \lambda_0 + \lambda_Y Y(t)$, which implies that Y is Gaussian under both $\mathbb P$ and $\mathbb Q$. Of interest is that this is the same functional form as is obtained for the Gaussian affine model with $\Lambda(t)$, as in Equation (23), since in this case, S(t) is a constant matrix. The effects of $\Lambda(t)$ on prices in the QG and Gaussian affine models are not equivalent, of course, because the mappings between Y and zero-coupon bond prices are different.

The SAINTS model proposed by Constantinides (1992) is shown by Ahn, Dittmar, and Gallant (2001) to be the special case of the QG model in which Σ is diagonal and $\mu_Y^\mathbb{P}(t) = -\kappa^\mathbb{P} Y(t)$ with $\kappa^\mathbb{P}$ diagonal (the N risk factors are mutually independent); and the coefficients λ_0 and λ_Y determining $\Lambda(t)$ are constrained to be specific functions of the parameters governing the Y process. These constraints potentially render the SAINTS model much less flexible than the general QG model in representing the distributions of bond yields.

Estimation of QG models is complicated by the fact that there is not a one-to-one mapping from observed yields to the state vector Y, because of the quadratic dependence of r on Y. For example, in a one-factor QG model, the yield on a s-period, zero-coupon bond, y_s , is given by $y_s(t) = a_s + b_s Y(t) + c_s Y(t)^2$. Given $y_s(t)$ and under suitable parameter values (so that $b_s^2 - 4c_s(a_s - y_s(t)) > 0$), there are two roots to the above quadratic equation, corresponding to two possible values of the implied state variable:

$$Y(t) = \frac{-b_s \pm \sqrt{b_s^2 - 4c_s(a_s - y_s(t))}}{2c_\tau}.$$
 (30)

Given this indeterminacy, filtering methods are called upon to estimate the model-implied Y. Ahn, Dittmar, and Gallant circumvent this problem by using simulated method of moments (which effectively gives observable Y through simulation). Then they use the reprojection methods proposed by Gallant and Tauchen (1998) to estimate $E[Y(t) | y(t-1), \ldots, y(t-L)]$, with Y being the vector of bond yields used in estimation. Lu (2000) uses the filtering density $f(Y(t) | y(t), y(t-1), \ldots, y(1))$ to compute the

conditional expectation of Y(t). Though the likelihood function for QG models can in principle be written down in closed form, we are not aware of any studies that directly implement the ML estimator.

QG models are also easily adapted to the problem of pricing defaultable securities by having both r and $\lambda^{\mathbb{Q}}$ be quadratic functions of Y. In this setting, QG models offer the flexibility, absent from affine models, of having strictly positive $(r, \lambda^{\mathbb{Q}})$ and negatively correlated state variables [see, e.g., Duffie and Liu (2001)].

2.3 Nonaffine, stochastic volatility models

Andersen and Lund (1997, 1998) studied various special cases of the following nonaffine three-factor model:⁹

$$d \log v(t) = \mu(\bar{v} - \log v(t))dt + \eta dW_v(t),$$

$$d\theta(t) = \nu(\bar{\theta} - \theta(t))dt + \sqrt{\alpha_{\theta} + \beta_{\theta}\theta(t)}dW_{\theta}(t),$$

$$dr(t) = \kappa(\theta(t) - r(t))dt + r(t)^{\gamma}v(t)dW_r(t),$$
(31)

where (W_v, W_θ, W_r) are independent Brownian motions. In this model the volatility factor v(t) follows a lognormal process and the instantaneous stochastic volatility of r, $r(t)^{\gamma}v(t)$, is affected both by v and r. These models do not have known, closed-form solutions for bond prices. Largely for this reason, this formulation of stochastic volatility has been studied primarily in the context of econometric modeling of the short rate and not as a DTSM.

Another nonaffine, one-factor DTSM has [Cox, Ingersoll, and Ross (1980), Ahn and Gao (1999)]

$$dr(t) = \kappa(\theta - r(t))r(t)dt + r(t)^{1.5}dW_r(t). \tag{32}$$

This "three-halves" model gives a stationary r so long as κ and σ are greater than zero, and the conditional density $f(r_{t+1} \mid r_t)$ is known in closed form [Ahn and Gao (1999)]. For this model, the market price of risk of r (as specified by Ahn and Gao) is $\Lambda(t) = \lambda_1/\sqrt{r(t)} + \lambda_2\sqrt{r(t)}$. Therefore, unlike in CIR-style affine models, $\Lambda(t)$ may change signs over time if λ_1 and λ_2 have opposite signs. Moreover, the $\mathbb P$ and $\mathbb Q$ drifts of r may be quite different. Thus this model may achieve added flexibility for fitting yields relative to many affine DTSMs, though correlated, multifactor extensions have yet to be worked out.

⁹ Another nonaffine model that has received considerable attention in the financial industry (but relatively little attention in academic research) has $\log r(t)$ following a Gaussian process. Perhaps the most well-known version is the Black, Derman, and Toy (1990) model, along with its continuous-time limit in Black and Karasinski (1991). A two-factor (multinomial) extension was studied by Peterson, Stapleton, and Subramanyam (1998). An important limitation of this class of models, first noted by Hogan and Weintraub (1993), is that, for any positive time interval, expected rollovers of r are infinite, because the continuous compounding involves an exponential of an exponential. To circumvent this problem, Sandmann and Sondermann (1997) propose that one construct a "money market" account as the numeraire for risk-neutral pricing using rates with a finite accrual period like a three-month rate.

2.4 Parametric structural models of defaultable bond prices

Structural models of default combine an arbitrage-free specification of the default-free term structure with an explicit definition of default in terms of balance sheet information. The former is typically taken to be a standard affine DTSM. The new, nontrivial practical consideration that arises in implementing structural models is the computation of the forward, first-passage probability \mathbb{Q}^T .

A representative structural model has firm value A following a lognormal diffusion with constant variance and nonzero (constant) correlation between A and the instantaneous riskless rate r:

$$\frac{dA_t}{A_t} = (r - \gamma)dt + \sigma_A dW_{At},\tag{33}$$

$$dr = \kappa(\mu - r)dt + \sigma_r dW_{rt}, \tag{34}$$

where $\operatorname{corr}(dW_A, dW_r) = \rho$ and γ is the payout rate. Kim, Ramaswamy, and Sundaresan (1993) and Cathcart and El-Jahel (1998) adopt the same model for A, but assume that r follows a one-factor square-root ($A_1(1)$) process. Related structural models are studied by Nielsen, SaaRequejo, and Santa-Clara (1993) and Briys and de Varenne (1997).

The basic "Merton model" has (i) the firm capitalized with common stock and one bond that matures at date T, (ii) a constant net payout rate γ and a constant interest rate r, and (iii) default occurs when $A_T < F$, where F is constant. (Firms default only at maturity of the bond.) In actual applications of this model, a coupon bond is typically assumed to be a portfolio of zero-coupon bonds, each of which is priced using the Merton model. Geske (1977) extended Merton's model to the case of multiple bonds maturing at different dates.

Building on Black and Cox (1976), Longstaff and Schwartz (1995) allowed the issuer to default at any time prior to maturity of the bonds (not just at maturity) and replaced the assumption of constant r with the one-factor Vasicek (1977) model of Equation (34). Though the Longstaff–Schwartz model is in many respects more general than the Merton model, the latter is not nested in the former.¹⁰

In the Leland and Toft (1996) model, a firm continuously issues new debt with coupons that are paid from the firm's payout γA . The default boundary is endogenous because equity holders can decide whether or not to issue new equity to service the debt in the event that the payout is not large enough to cover the dividends. Their model gives a closed-form expression for B(t,T) under the assumption of constant r. Anderson

¹⁰ The Merton model gives a closed-form solution for defaultable zero-coupon bond prices. Longstaff and Schwartz provided an approximate numerical solution for B(t, T) in their setting. Subsequently Collin-Dufresne and Goldstein (2001a) provided an efficient numerical method for computing B(t, T) exactly.

and Sundaresan (1996) and Mella-Barral and Perraudin (1997) solve simplified bargaining games to obtain closed-form expressions for their default boundaries.

A typical feature of structural pricing models is that the value of the firm diffuses continuously over time. This has the counterfactual implication that yield spreads on short-maturity, defaultable bonds will be near zero, since it is known with virtual certainty whether or not an issuer will default over the next short interval of time. As shown by Duffie and Lando (2001), more plausible levels of short-term spreads are obtained in structural models by making the assumption that bondholders measure a firm's assets with error. Once measurement errors are introduced, this basic structural model becomes mathematically equivalent to an intensity-based, reduced-form model.

Equally important is that many structural models also imply that credit spreads tend to asymptote to zero with increasing maturity. This is a consequence of the fact that (risk neutrally) A drifts away from the default boundary at the rate r so the forward probability of default, $H^T(A_l/F, r_t, T-t)$, converges to zero as $T \to \infty$. To address this counterfactual implication, Tauren (1999) and Collin-Dufresne and Goldstein (2001a) attribute a target debt-to-equity ratio to issuers, and Ericsson and Reneby (2001) assume a positive growth rate of total nominal debt.

2.5 Bond pricing with jumps

There is growing evidence that jumps are an important ingredient in modeling the distribution of interest rates. For instance, Johannes (2000), Zhou (2001b), and Das (2002), find that jump-diffusion models fit the conditional distribution of short-term interest rates better than the nested diffusion models they examine. Reduced-form models for the pricing of bonds (defaultable or default-free) are easily extended to allow *Y* to follow a jump-diffusion

$$dY(t) = \mu_Y(Y)dt + \sigma_Y(Y)dW(t) + \Delta YdZ(t), \tag{35}$$

where Z is a Poisson counter, with state-dependent intensity $\{\lambda^{\mathbb{P}}(Y(t)): t \geq 0\}$ that is a positive, affine function of Y, $\lambda^{\mathbb{P}}(Y) = l_0 + l_Y'Y$; and ΔY is the jump amplitude with distribution $\nu^{\mathbb{P}}$ on \mathbb{R}^N . If the jump risk is priced, then a compensated jump term also appears in the pricing kernel with a possibly state-dependent coefficient $\Gamma(\Delta Y, Y)$ representing the market price of jump risk:

$$\frac{dM_t}{M_t} = -r(Y)dt - \Lambda(Y)'dW(t)
- [\Gamma(\Delta Y, Y)dZ(t) - \gamma(Y)\lambda^{\mathbb{P}}(Y)dt],$$
(36)

where $\gamma(Y) = \int \Gamma(x, Y) d\nu^{\mathbb{P}}(x)$ is the conditional \mathbb{P} mean of Γ . From Equation (36), the risk-neutral distribution of the jump size and the risk-neutral jump arrival rate are given by

$$d\nu^{\mathbb{Q}}(x) = \frac{1 - \Gamma(x, Y)}{1 - \gamma(Y)} d\nu^{\mathbb{P}}(x), \quad \lambda^{\mathbb{Q}}(Y) = (1 - \gamma(Y))\lambda^{\mathbb{P}}(Y). \quad (37)$$

Although in general $\Gamma(x, Y)$ may depend on both Y and the jump amplitude x, and therefore $\gamma(Y)$ may be state dependent, in most implementations Γ is assumed to be a constant.

These expressions simplify further if we can write $M_t = M(Y_t, t)$. This is possible, for example, in equilibrium pricing models where M represents marginal utility that depends only on the current state. In this case, Ito's lemma implies that

$$r_{t} = -\frac{1}{M_{t}} \left[\frac{\partial}{\partial t} + \mathcal{A}^{\mathbb{P}} \right] M_{t}, \quad \Lambda_{t} = -\sigma'_{t} \frac{\partial}{\partial Y_{t}} \log M_{t},$$

$$\Gamma_{t}(x) = 1 - \frac{M(Y_{t} + x, t)}{M(Y_{t}, t)}.$$
(38)

Note in particular the link between the market price of jump risk Γ and M: the sign of M (read "marginal utility") depends on whether a jump in Y raises or lowers marginal utility relative to the prejump value. Moreover, the risk-neutral jump arrival rate and the risk-neutral distribution of the jump size are given by

$$\lambda(Y_t, t) = \frac{\int M(Y_t + x, t) d\nu_t^{\mathbb{P}}(x)}{M(Y_t, t)} \lambda^{\mathbb{P}}(Y_t, t),$$

$$d\nu_t^{\mathbb{Q}}(x) = \frac{M(Y_t + x, t)}{\int M(Y_t + x', t) d\nu_t^{\mathbb{P}}(x')} d\nu_t^{\mathbb{P}}(x).$$

If Y is an affine jump diffusion under the risk-neutral measure, with the risk-neutral drift and volatility specifications being affine as in Equations (17)–(19), and the "jump transform" $\varphi(c) = \int_{\mathbb{R}}^{N} \exp(c \cdot sx) d\nu^{\mathbb{Q}}(x)$, for c an N-dimensional complex vector, is known in closed form, then the PDE defining the zero prices D(t, T) admits a closed-form solution (up to ODEs) as an exponential affine function of Y, just as in the case of affine diffusions [Duffie, Pan, and Singleton (2000)]. Care must be taken in specifying $\varphi(c)$ to make sure that Y remains an admissible process. For instance, for those risk factors that follow square-root diffusions in the absence of jumps, it appears that any added jumps must be positive to ensure that these factors never become negative. Das and Foresi (1996) and Chacko and Das (2002) present illustrative examples of affine bond and bond-option pricing models with jumps.

State variables with jumps have received relatively less attention in the empirical literature on DTSMs. One of the earliest affine models with jumps is that of Ahn and Thompson (1988), who extend the equilibrium framework of Cox, Ingersoll, and Ross (1985) to the case of Y following a square-root process with jumps. Brito and Flores (2001) develop an affine jump-diffusion model and Piazzesi (2001) develops a mixed affine-QG model, in which the jumps are linked to the resetting of target interest rates by the Federal Reserve [see also Das (2002)].

Within a reduced-form model of defaultable bonds, Collin-Dufresne and Solnik (2001) have the mean loss rate $s=\lambda^{\mathbb{Q}}L^{\mathbb{Q}}$ following a Gaussian jump-diffusion model with constant arrival intensity for jumps in $\lambda^{\mathbb{Q}}L^{\mathbb{Q}}$. This formulation allows credit spreads to be negative, even without the jump component.

In a structural pricing model, Zhou (2001a) added the possibility of a jump in assets A with i.i.d. amplitudes at independent Poisson arrival times, thereby allowing for A to pass through the default threshold (F in our basic formulation) either through continuous fluctuations of the Brownian motion or by jumps.

2.6 DTSMs with regime shifts

A potential limitation of diffusion models of the risk factors Y is that the resulting DTSMs may not match the higher-order moments of bond yields. While adding jumps would help in this regard, jump-diffusions may not generate persistent periods of "turbulent" and "quiet" bond markets. To fit such patterns in historical yields, Hamilton (1988), Gray (1996), and Ang and Bekaert (2002), among others, have had some success using switching-regime models.

Motivated by these descriptive studies, this section introduces the possibility of multiple economic regimes into the affine family of DTSMs. We begin by presenting a continuous-time treatment of regime-switching in affine DTSMs that allows for changes over time in the distribution of the state vector and in the market prices of risk. This discussion extends the complementary treatment in Landen (2000) by parameterizing the pricing kernel under the measure $\mathbb P$ (in addition to under $\mathbb Q$) and allowing for state-dependent probabilities of transitioning between regimes.

The evolution of "regimes" is described by an (S+1)-state continuous-time conditionally Markov chain s_t : $\Omega \to \{0,1,\ldots,S\}$ with a state-dependent $(S+1) \times (S+1)$ rate or generator matrix $R_t^{\mathbb{P}} = [R_{ij,t}^{\mathbb{P}}]$ in which all rows sum to zero. [See Bielecki and Rutkowski (2001) for formalities.] Intuitively, $R_{ij,t}^{\mathbb{P}}dt$, $i \neq j$ represents the probability of moving from regime i to regime j over the next short interval of time. The subsequent discussion is simplified notationally by introducing (S+1) regime indicator functions $z_t^j = 1_{\{s_t = j\}}, \ j = 0, 1, \ldots, S$, with the property that $E[dz_t^j | s_t, Y_t] = R_t^{\mathbb{P}^j}dt$, where $R_t^{\mathbb{P}^j} \equiv R_t^{\mathbb{P}^j}(s_t; Y_t, t) = \sum_{i=0}^S z_t^i R_{ij,t}^{\mathbb{P}}$.

To introduce regime switching into a bond pricing model, we extend our formulation of the pricing kernel M to

$$\frac{dM_t}{M_t} = -r_t dt - \Lambda_t' dW_t - \sum_{j=0}^{S} \Gamma_t^j (dz_t^j - R_t^{\mathbb{P}^j} dt). \tag{39}$$

 $\Lambda(s_t; Y_t, t)$ is the market price of diffusion risk and $\Gamma^j(s_t; Y_t, t)$ is the market price of a shift from the current regime s_t to regime j an instant later. The risk-neutral distribution of the short rate is governed by the relations $r_t^i \equiv r(s_t = i; Y_t, t) = \delta_0^i + Y_t^i \delta_Y^i$, and the assumption that (risk neutrally) Y follows an affine diffusion with regime-dependent drifts and volatilities

$$\mu^{\mathbb{Q}}(s_t; Y_t, t) \equiv \sum_{j=0}^{S} z_t^j \kappa^{\mathbb{Q}j} (\theta^{\mathbb{Q}j} - Y_t),$$

$$\sigma(s_t; Y_t, t) = \sum_{j=0}^{S} z_t^j \operatorname{diag}(\alpha_k^j + Y_t' \beta_k^j)_{k=1,2,\dots,N},$$
(40)

where δ_0^i and α_k^i are constants, $\kappa^{\mathbb{Q}^i}$ is a constant $N \times N$ matrix, and δ_Y^i , $\theta^{\mathbb{Q}^i}$, and β_k^i are constant $N \times 1$ vectors. When a regime shifts, the conditional moments of Y change, but its sample path remains continuous.

Letting $D(t, T) \equiv D(s_t, Y_i; t, T)$, we can write $D(t, T) \equiv \sum_{j=0}^{S} z_t^j D^j(t, T)$, where $D^j(t, T) \equiv D(s_t = j, Y_i; t, T)$. Since Equation (39) is a pricing kernel (the existence of which ensures that there are no arbitrage opportunities), D(t, T) M_t must be a martingale. It follows that the $D^j(t, T)$ satisfy the (S+1) PDEs

$$\left[\frac{\partial}{\partial t} + \mathcal{A}^{i}\right] D^{i}(t,T) + \sum_{j=0}^{S} R_{ij,t}^{\mathbb{Q}} D^{j}(t,T) - r^{i}(Y_{t},t) D^{i}(t,T) = 0,$$

$$0 \le i \le S, \tag{41}$$

where \mathcal{A}^i is the counterpart to Equation (5) for regime $s_t = i$, $R_{ij,t}^{\mathbb{Q}} = (1 - \Gamma^j(s_t = i; Y_t, t))R_{ij,t}^{\mathbb{P}}$ if $j \neq i$, and $R_{ii,t}^{\mathbb{Q}} = -\sum_{j \neq i} R_{ij,t}^{\mathbb{Q}}$. ($R_t^{\mathbb{Q}}$ is the rate matrix of the conditionally Markov chain under the risk-neutral measure \mathbb{Q} .) In general, the matrix $R_t^{\mathbb{Q}}$ is not diagonal. Therefore these S+1 PDEs are coupled, and the $(D^i(t, T): 0 \leq i \leq S)$ must be solved for jointly. The boundary condition is D(T, T) = 1 for all s_T , which is equivalent to (S+1) boundary conditions: $D^i(T, T) = 1: 0 \leq i \leq S$.

$$(1 - \Gamma^{i}(s_{t} = j; Y_{t}, t))(1 - \Gamma^{j}(s_{t} = i; Y_{t}, t)) = 1, \quad 0 \le i, j \le S.$$

Thus there are only (1/2)S(S+1) free market prices of risk for regime shifts.

¹¹ In the special case where (i) the pricing kernel can be written as $M_t \equiv M(s_t; Y_t, t) = \sum_{j=0}^{S} z_j^j M(s_t = j; Y_t, t)$ (an assumption that, as noted before, implicitly constrains the state dependence of M), and (ii) Y follows a continuous sample path even across regime shifts (an assumption that we have maintained throughout), $\Gamma^j(s_t = i; Y_t, t) = [I - M(s_t = j; Y_t, t)/M(s_t = i; Y_t, t)]$. Therefore $\Gamma^i(s_t = i; Y_t, t) = 0$ and

An affine regime-switching model with a closed-form solution for zero-coupon bond prices is obtained by specializing further to the case where $R_l^{\mathbb{Q}}$ is a constant matrix and $\kappa^{\mathbb{Q}i}$, δ^i , and β^i_k are independent of i. Under these assumptions,

$$D^{i}(t,T) = e^{\gamma_{0i}(T-t) + \gamma_{Y}(T-t)'Y_{t}}, \quad 0 \le i \le S,$$
(42)

where the $\gamma_{0i}(\cdot)$ and $\gamma_{Y}(\cdot)$ are explicitly known up to a set of ODEs. Note that in this specialized environment, regime dependence under $\mathbb Q$ enters only through the "intercept" term $\gamma_{0i}(T-t)$; the derivative of zero-coupon bond yields with respect to Y does not depend on the regime. Though admittedly strong, these assumptions do allow for Y to follow a general affine diffusion and for the $\mathbb P$ -rate matrix $R^{\mathbb P}$ to be state dependent.

In both respects, this formulation extends the one-factor, continuous-time formulation of Naik and Lee (1997) [as well as Proposition 3.2 of Landen (2000)]. Even with regime switching, it may be empirically more plausible to allow for multiple, correlated risk factors. Moreover, Naik and Lee assume constant market prices of regime-shift risk ($\Gamma^{j}(t)$) are constants) and obtain regime independence of the risk-neutral feedback matrix $\kappa^{\mathbb{Q}^{j}}$ under the stronger assumption that the actual matrix $\kappa^{\mathbb{P}^{j}}$ is independent of j.

In sorting out the added econometric flexibility of these models relative to single-regime, affine DTSMs, it is instructive to examine the implied excess returns on a (T - t)-period zero-coupon bond. Based on the pricing kernel of Equation (39), for current regime $s_t = i$, we have

$$\mu_{Dt}^{i} - r_{t}^{i} = \sigma_{Dt}^{j} \Lambda_{t}^{i} - \sum_{j=0}^{S} \Gamma^{j}(s_{t} = i) \left[1 - \frac{D^{j}(t, T)}{D^{j}(t, T)} \right] R_{t}^{\mathbb{P}_{j}}, \tag{43}$$

where σ_{Dt}^i is the diffusion vector in regime i for $D^i(t,T)$. If $\Gamma^j(s_t=i)=0$, for all $j=0,1,\ldots,S$, then excess returns may still be time varying for two reasons: (i) state dependence of Λ_t and/or $\sigma_Y(t)$ (as in single-regime models), and (ii) the possibility that either of these constructs might shift across regimes. It is the latter added source of flexibility that the previous literature on DTSMs with regime shifts has relied on to improve goodness-of-fit over single-regime DTSMs.

By allowing for priced regime-shift risk $(\Gamma^j(s_t) \neq 0)$, we see from Equation (43) that our formulation introduces an additional source of variation in excess returns. This is true even if $R^{\mathbb{P}}$ is a constant (non-state dependent) matrix. Of course, allowing $R^{\mathbb{P}}$ to be state dependent, while maintaining the assumption of constant $R^{\mathbb{Q}}$ for computational tractability, would add additional flexibility to this model.

2.7 Discrete-time DTSMs

There is a limited amount of (mostly) academic research that takes a relatively nonparametric approach to specifying M in discrete time. A sequence of cash flows is then priced under \mathbb{P} using Equation (3). Backus and Zin (1994) parameterize $-\log{(M_t/M_{t-1})}$ as an infinite order, moving average process with i.i.d. normal innovations. This formulation accommodates richer dynamics than a Gaussian diffusion model and is easily extended to multiple factors, but it abstracts from time-varying volatility. More recently, Brandt and Yaron (2001) parameterize $-\log{(M_t/M_{t-1})}$ as a Hermite polynomial function of (Y_t, Y_{t-1}) , where Y_t is an observable state vector. Their model extends the Backus and Zin specification of M by allowing for nonnormality and time-varying conditional moments, but it is more restrictive in requiring that the pricing kernel depend only on (Y_t, Y_{t-1}) and that Y be observable. Similarly Lu and Wu (2000) model the state-price density using a seminonparametric density based on Hermite polynomial expansions.

These semiparametric approaches, though flexible, often present their own challenges. Specifically, it may be difficult to verify that the parameters of the pricing kernel are identified from bond yield series. Also, if the state variables are taken to be functions of observable bond yields, then internal consistency requires that the same functions of the model-implied yields must recover the state vector. This consistency is not always easily imposed.

Sun (1992) and Backus and Foresi, and Telmer (1998) develop discretetime counterparts to Gaussian and CIR-style affine DTSMs by working with an Euler approximation to the state vector. In the latter case, these models are approximate in that the conditional distribution of Y must be truncated to ensure nonnegativity of the conditional variance of Y. Gourieroux, Monfort, and Polimenis (2002) develop exact, discrete-time versions of affine DTSMs by modeling the conditional distributions of Y and M directly, potentially as functions of a long history of Y. Ang and Piazzesi (2003) develop an exact Gaussian discrete-time DTSM that allows for the extended market prices of risk of Equation (23).

The family of discrete-time, affine DTSMs is extended further in Dai, Singleton, and Yang (2003) to allow for stochastic volatility factors, the market prices of risk of Equation (23), and regime switching. To obtain closed-form solutions for bond prices in the presence of regime switching with priced regime-shift risk, they imposed restrictions on the parameters analogous to those in our continuous-time formulation in Section 2.6. Bansal and Zhou (2002) also develop discrete-time, regime-switching models that relax the assumptions that $\kappa^{\mathbb{Q}^i}$ and β^i_t are regime independent, while maintaining the assumption that $R^{\mathbb{P}} = R^{\mathbb{Q}}$, a constant matrix (regime-shift risk is not priced). Their model does not admit a closed-form exponential affine solution, so they proceed by linearizing the

Table 1 The estimated slope coefficients ϕ_{nT} in the regression of $y_{t+1}^{(n-1)} - y_t^n$ on $(y_t^n - r_t)/(n-1)$

Maturity	12	24	36	48	60	120
Campbell-Shiller	-0.672	-1.031	-1.210	-1.272	-1.483	-2.263
(1991), 1952–1978	(.598)	(.986)	(1.187)	(1.326)	(1.442)	(1.869)
Campbell-Shiller	-1.381	-1.815	-2.239	-2.665	-3.099	-5.024
(1991), 1952-1987	(.683)	(1.151)	(1.444)	(1.634)	(1.749)	(2.316)
Backus et al.	-1.425	-1.705	-1.190	-2.147	-2.433	-4.173
(2001), 1970-1995	(.825)	(1.120)	(1.295)	(1.418)	(1.519)	(1.985)
Backus et al. data,	0.206	-0.001	-0.295	-0.478	-0.566	-0.683
1984–1995	(.527)	(1.013)	(1.358)	(1.610)	(1.811)	(2.593)

The maturities n are given in months and estimated standard errors of the ϕ_{nT} are given in parentheses.

discrete-time Euler equations and then solving the resulting linear relations for prices.

3. Fitting DTSMs to Swap and Treasury Yields

We begin our more in-depth exploration of the empirical fit of DTSMs by reviewing applications to the treasury and swap yield curves. As a means of organizing our discussion, we focus on the following empirical observations:

LPY. Letting $y^n \equiv -\log D(t, t+n)/n$ denote the yield on an *n*-period zero-coupon bond, linear projections of $y_{t+1}^{(n-1)} - y_t^n$ on the slope of the yield curve, $(y_t^n - r_t)/(n-1)$, give fitted coefficients ϕ_{nT} that are negative, often increasingly so for longer maturities.

Campbell and Shiller (1991) and Backus et al. (2001), among others, document significantly negative ϕ_{nT} , particularly for large n, using U.S. Treasury bond data over the past 50 years (see Table 1). Using U.S. data, the pattern LPY is most pronounced (and statistically significant) for sample periods that include the change in monetary operating procedures during 1979–1983. However, notably, ϕ_{nT} is consistently negative across sample periods prior and subsequent to this monetary "experiment," though (no doubt due in part to the shorter sample period) the standard error bands are also larger. ¹²

Looking outside the United States, the pattern LPY is not nearly so pronounced. Among the studies that document different patterns, primarily for European countries, are Hardouvelis (1994), Gerlach and Smets (1997), Kugler (1997), Evans (2000), and Bekaert and Hodrick (2001). Taken together, findings suggest that the economic policy

¹² Note that the Monte Carlo studies in Bekaert, Hodrick, and Marshall (1997) and Backus et al. (2001) suggest that small-sample bias, due to the highly persistent nature of yields, is toward larger values of ϕ_{nT} , thereby reinforcing the conclusion that $\phi_n < 0$ for large n.

environment and investors' attitudes toward the associated risks may be key factors underlying cross-country and cross-time differences in the pattern LPY.

While these projections have been discussed most widely in the context of tests of the "expectations theory" of the term structure, we follow the recent literature on DTSMs and treat these projections as descriptive statistics that an empirically successful DTSM should match. ¹³ Specifically we survey the evidence (most of which is for the U.S. market) on whether the dynamic specifications of Y and Λ are such that DTSMs generate ϕ_{nT} consistent with the historical patterns.

CVY. Conditional volatilities of changes in yields are time varying and persistent. Moreover, the term structures of unconditional volatilities of U.S. swap and Treasury yields have recently been hump-shaped.

There is substantial evidence that bond yields exhibit time-varying conditional second moments [e.g., Ait-Sahalia (1996), Brenner, Harjes, and Kroner (1996), Gallant and Tauchen (1998)]. Other than in the case of the Gaussian affine and basic lognormal models, DTSMs typically build in time-varying volatility, a property that is naturally central to the reliable valuation of many fixed-income derivatives. Thus a challenge to CVY is not whether yields exhibit time-varying volatility, but rather whether there is enough model-implied variation in volatility (both in magnitude and persistence) to match historical experience.

Another important dimension of CVY is that the term structure of unconditional volatilities of (changes in) bond yields has tended to be humpshaped over the past 10 to 15 years [see, e.g., Litterman, Scheinkman, and Weiss (1988)]. Plotting the volatilities of zero-coupon Treasury bond yields against maturity over the period 1983–1998 shows a hump that peaks around two to three years in maturity (Figure 1). A very similar pattern of volatilities is obtained using U.S. dollar fixed-for-variable rate swap yields for the post-1987 period (for which data are available). Of interest is that it appears that this hump at two years was not a phenomenon observed for the entire post-World War II period in the United States. Figure 1 also displays the term structure of volatilities for the subperiod 1954–1978 (the period of the "monetary experiment" from 1979 to 1981 was omitted), during which the volatilities were both smaller and their term structure was less humped.

¹³ There is substantial empirical evidence that the assumption of constant risk premiums maintained in the expectations theory is inconsistent with historical data; see, for example, Fama (1984a,b), Fama and Bliss (1987), and Campbell and Shiller (1991). Bekaert and Hodrick (2001) argue that the past use of large-sample critical regions, instead of their small-sample counterparts, may have overstated the evidence against the expectations theory.

¹⁴ Annualized volatility is measured as the standard deviation of changes in the logarithms of bond yields, scaled up by the number of observations per year.

Figure 1Term structures of volatilities in yields on zero-coupon U.S. Treasury bonds based on monthly data from 1954 through 1998.

Single-factor models, as traditionally formulated, are unlikely to be successful in matching these patterns [see Brown and Dybvig (1986), Brown and Schaefer (1994b), Backus et al. (2001)]. 15

3.1 DTSMs and challenge LPY

Fisher (1998), Roberds and Whiteman (1999), Backus et al. (2001), Duffee (2002), and Dai and Singleton (2002a), among others, have examined whether affine DTSMs provide an explanation for the failure of the "expectations theory." ¹⁶ Drawing on the analysis in Dai and Singleton

Another issue is whether the linear drift specifications in one-factor models are appropriate. Evidence supporting a nonlinear conditional mean for the short rate is discussed in Ait-Sahalia (1996) and Stanton (1997). In principle, the finding of nonlinear drifts for one-factor models could be a consequence of misspecifying the number of factors. However, the nonparametric analyses in Boudoukh et al. (1998) and Balduzzi and Eom (2000) suggest that the drifts in both two- and three-factor models of Treasury yields are also nonlinear. In spite of this evidence, it does seem that having multiple factors in linear models is more important, at least for hedging purposes, than introducing nonlinearity into models with a smaller number of factors [see, e.g., Balduzzi and Eom (2001)]. Perhaps for this reason, or because of the computational demands of pricing in the presence of nonlinear drifts, attention continues to focus primarily on DTSMs with linear drifts for the state variables.

¹⁶ Wachter (2002) and Dai (2003) examine the puzzle LPY in the context of nonaffine macroeconomic models in which agents preferences exhibit habit formation. McCallum (1994) and Kugler (1997) propose resolutions of the puzzle LPY in the context of linear monetary policy rules.

Figure 2 Unadjusted sample and model-implied population projection coefficients ϕ_n Risk-adjusted sample projection coefficients ϕ^R . Source: Dai and Singleton (2002).

(2002a), Figure 2 displays the population 17 ϕ_n implied by canonical three-factor Gaussian ($A_{0C}(3)$) and square-root or CIR-style ($A_{3C}(3)$) models, along with the ϕ_{nT} (label LPY) estimated with the Fama and Bliss dataset. Model $A_{0C}(3)$ was estimated using the extended risk-premium specification of Equation (23), while model $A_{3C}(3)$ was fit with the more restrictive specification of Equation (22) as required by the no arbitrage condition.

Model $A_{3C}(3)$ embeds the most flexible specification of factor volatilities (within the affine family), but requires the relatively restrictive risk premium specification of Equation (22). From Figure 2 we see that the fitted ϕ_{nT} form (approximately) a horizontal line at unity, implying that the multifactor CIR model fails to reproduce the downward sloping pattern LPY. The empirical analysis in Duffee and Stanton (2001) suggests that this failure of CIR-style models extends to the special case of

 $^{^{17}}$ Population ϕ_n are computed using a long simulated time series from the estimated DTSM. Monte Carlo evidence reported in Dai and Singleton (2002a) suggests that similar patterns are obtained by computing the average estimates of the ϕ_n from simulated samples of lengths equal to that of the Fama and Bliss dataset.

Equation (24) with $\lambda_2 = 0$. Thus it seems that it is not enough to free up the mean of $\Lambda(t)$ in "completely affine" DTSMs to match LPY; the dynamics of Λ must also be changed as in Equation (23). On the other hand, the Gaussian $A_{0C}(3)$ model, which gives maximum flexibility both in specifying the dynamic properties of the market prices of risk and the factor correlations, is successful in generating ϕ_n that closely resemble LPY.

Whether a DTSM matches LPY speaks to whether it matches the \mathbb{P} -dynamics of yields, but it does not directly address whether a DTSM matches the \mathbb{Q} dynamics. The latter is addressed by introducing the yield (c_t) and forward (p_t) "term premiums"

$$c_t^n \equiv y_t^n - \frac{1}{n} \sum_{i=0}^{n-1} E_t[r_{t+i}], \quad p_t^n \equiv f_t^n - E_t[r_{t+n}], \tag{44}$$

and regressing $(y_{t+1}^{n-1} - y_t^n - (c_{t+1}^{n-1} - c_t^{n-1}) + p_t^{n-1}/(n-1))$ onto $(y_t^n - r_t)/(n-1)$. A correctly specified DTSM should produce a coefficient $\phi_{nT}^{\mathcal{R}}$ of unity, for all n [Dai and Singleton (2002a)]. From Figure 2 it is seen that model $A_{3C}(3)$ gives $\phi_{nT}^{\mathcal{R}}$ that are nearly the same as the historical estimates of LPY; it is as if model $A_{3C}(3)$ has constant risk premiums. In contrast, the $\phi_{nT}^{\mathcal{R}}$ implied by model $A_{0C}(3)$ are approximately unity, at least for $n \geq 2$ years.

These findings highlight the demands placed on risk premiums in matching the first-moment properties of bond yields. Though the risk premium specification of Equation (22) has been widely adopted in econometric studies of affine DTSMs, it appears to be grossly inconsistent with LPY. Even with Duffee's extended specification of Equation (23), only the Gaussian model appears to match both LPY and the requirement that $\phi^{\mathcal{R}} = 1$.

Turning to multifactor QG models, they share essentially the same market prices of risk as the extended Gaussian model, so we would expect them to be equally successful at matching LPY. Lu (2000) computes the ϕ_n implied by a three-factor SAINTS model and, while they become increasingly negative with larger n, they appear to be too small relative to the ϕ_{nT} . This may be a consequence of the restrictive nature of $\Lambda(t)$ in the SAINTS model. Using LIBOR/swap data over a more recent sample period, Leippold and Wu (2001) find that a general two-factor QG model generates patterns of forward-rate projections consistent with history.

The structure of risk premiums in regime-switching models also appears to be central to their flexibility in matching LPY. All of the empirical studies we are aware of adopt the relatively restrictive risk premium specification of Equation (22) within each regime and assume that regime-shift risk is not priced. Naik and Lee (1997) and Evans (2000) have the market price of risk being proportional to volatility, with the

same proportionality constant across regimes. In Naik and Lee, this implies that regime dependence of the bond risk premium is driven entirely by the regime-dependence of volatility. Evans only allows the long-run means, and not the volatility, of the state variables to vary across regimes. In contrast, Bansal and Zhou (2002) allow the market price of risk to vary across regimes, through both the regime dependence of volatility and the regime dependence of the proportionality constant.

Of interest is that Evans' two-factor CIR-style model (an $A_2(2)$ model with two regimes) fails to reproduce the historical estimates of ϕ_n from U.K. data (see his Table 6). In contrast, Bansal and Zhou, who study a two-factor CIR model with two regimes using U.S. data, generate projection coefficients consistent with the pattern LPY in Figure 2. Taken together, these findings suggest that having multiple regimes may overcome the limitations of $A_N(N)$ models in matching LPY outlined above, so long as the factor volatilities and risk premiums vary independently of each other across regimes. Yet unaddressed in this literature is whether having the market prices of diffusion risk changing across regimes would be as empirically important in the presence of priced regime-shift risk.

3.1.1 DTSMs and challenge CVY. A hump-shaped term structure of yield volatilities is inconsistent with the theoretical implications of both one-factor affine and QG DTSMs. This is essentially a consequence of mean reversion of the state.

In multifactor models, a humped-shaped volatility curve can be induced either by negative correlation among the state variables or hump-shaped loadings on the state variables Y in the mapping between zero coupon yields and Y. Fitted yields from both affine and QG DTSMs typically fit the volatility hump [e.g., DS, and Leippold and Wu (2001)], so long as yields on bonds with maturities that span the humps are used in estimation.

The economic reasons for the different shapes in Figure 1 remain largely unexplored, though the differing patterns pre- and post-1979 are suggestive. In a study of U.S. Treasury yields over the period 1991–1995, Fleming and Remolona (1999) found that the term structure of "announcement effects"—the responses of Treasury yields to macroeconomic announcements—also have a hump-shaped pattern that peaks around two to three years. Moreover, they fit two-factor affine models in which *r* mean reverts to a stochastic long-run mean and found that the model-implied announcement impact curves were also hump-shaped. Might it be that investors' attitudes toward macroeconomic surprises following the monetary experiment in the late 1970s changed, much like what happened in option markets following the "crash" of October 1987? Bekaert, Hodrick, and Marshall (2001) explore the possibility of associated "peso" effects on yield curve behavior.

Table 2

ML estimates of GARCH(1,1) parameters using historical and simulated time series of swap and Treasury yields

GARCH(1,1)	$\overline{\sigma}$	α	β
Swap sample	0.005 (.001)	0.126 (.038)	0.657 (.062)
Model $A_{1C}(2)$	0.012 (.003)	0.102 (.040)	0.235 (.209)
Model $A_{1C}(3)$	0.008 (.000)	0.126 (.027)	0.793 (.024)
Treasury sample	0.016 (.005)	0.165 (.058)	0.749 (.069)
Model $A_{1C}(3)$.000 (.000)	0.146 (0.075)	0.605 (.188)
Model $A_{1R}(3)$.000.) 000.	0.164 (0.070)	NA

The GARCH model has $\sigma_l^2 = \overline{\sigma} + \alpha u_l^2 + \beta \sigma_{l-1}^2$, where u_t is the innovation from an AR(1) representation of the level of the five-year yield. Standard errors are given in parentheses.

Piazzesi's (2001) analysis lends support to a monetary interpretation of the volatility hump. Her econometric model, which is essentially a four-factor mixed affine-QG model with jumps, not only matches the hump-shaped volatility pattern in Figure 1, but also the "snake" shape of volatility between zero and two years (steeply declining volatility from zero to six months and then rising volatility to two years). This study provides a rich structural (monetary) interpretation of the need for a fourth factor to capture the very short end of the LIBOR curve [on the need for four factors, see also Liu, Longstaff, and Mandell (2001)].

The second aspect of CVY is the degree of model-implied time-varying volatility relative to what we find in the historical data. To set a historical benchmark for comparing models we estimated GARCH(1,1) [Bollerslev (1986)] models for the five-year yields using historical data. Next we computed ML estimates of the canonical $A_{1C}(N)$ models (N=2,3), based on the risk premium specification of Equation (23), with the 6-month and 2- and 10-year yields (2- and 10-year yields when N=2) assumed to be fit perfectly by the model. Then we refit the same GARCH model using simulated yields from these models. In the case of swaps, we simulated 20 years of weekly data (1040 observations); while in the case of Treasury zero-coupon data, we simulated 20 years of monthly data (240 observations). We selected the 5-year yield because it lies between the 2- and 10-year yields that are matched perfectly at the implied state variables. The results are displayed in Table 2.

The swap sample, 1987–2000, covers a period of relative tranquility in interest rates compared to the period of the late 1970s and early 1980s. The five-year yields implied by model $A_{1C}(3)$ exhibit comparable volatility

¹⁸ Clearly one could use a much richer parameterization of conditional volatility than a GARCH(1,1) model — the seminonparametric density proposed by Gallant and Tauchen (1996) is one such parameterization. Our goal here was to simply compute a descriptive measure of persistence in volatility that could be used to compare models. Going beyond this basic comparison is an interesting topic for future research.

characteristics to the historical data. In contrast, the model $A_{1C}(2)$ substantially understates the degree of volatility persistence in the five-year swap yield. So moving from two to three factors makes a substantial difference in matching the persistence in stochastic volatility during this period, even though in both cases only Y_1 drives the factor volatilities.

The Fama and Bliss sample of Treasury zero-coupon bond yields covers a 25-year period that includes the monetary experiment in the late 1970s. Nevertheless, we see that the implied GARCH(1,1) estimates from model $A_{1C}(3)$ again match those in the sample quite closely. To see whether the specification $\Lambda(t)$ affects these results, we reestimated model $A_{1C}(3)$ with $\Lambda(t)$ given by Equation (22) instead of Equation (23). The results for Treasury data — model $A_{1R}(3)$ in Table 2 — are striking, with the volatility in model $A_{1R}(3)$ showing almost no persistence. The best-fitting model was an ARCH(1).

The structure of conditional volatility in QG models has been explored extensively in Ahn et al. (2000) and Ahn, Dittmar, and Gallant (2001) [see also Lu (2000)]. They argue that there is a significant difference between three-factor QG and affine models along this dimension, with QG models doing a much better job of matching the conditional variation in the historical U.S. Treasury data as captured in their descriptive (seminon-parametric auxiliary) model. However, their reference affine model was the preferred affine $A_1(3)$ model examined in DS which is based on the specification of Equation (22) of $\Lambda(t)$. As we have just seen, using instead the specification of Equation (23) substantially affects the model-implied yield volatilities. Their analysis does not permit an assessment of the relative fits of essentially affine and QG models. Evidence on this relative performance is presented in Brandt and Chapman (2002), who conclude that QG models do in fact give better fits to historical volatility than essentially affine models.

4. Empirical Studies of Credit Spreads

The empirical literature on corporate bond pricing is relatively in its infancy. Besides overall assessments of goodness-of-fit, this literature has tended to focus on reproducing the negative correlation between Treasury rates and corporate spreads observed historically [Duffee (1998)], and on understanding the determinants of spread variation.

4.1 Reduced-form models

Within the family of reduced-form models with fractional recovery of market value, Duffee (1999) examined corporate spreads to the U.S.

¹⁹ We repeated this calculation for several simulated time series of length 20 years and obtained qualitatively similar results.

Treasury curve, with D(t, T) described by an $A_2(2)$ affine model for (Y_1, Y_2) and the instantaneous credit spread $s_t = \lambda_t^{\mathbb{Q}} L_t^{\mathbb{Q}}$ given by an affine function of (Y_1, Y_2, Y_3) . For Lehman Brothers data on trader quotes for noncallable corporate bonds, he found a model-implied negative correlation between corporate yield spreads and U.S. Treasury rates, consistent with his earlier descriptive analysis. The average error in fitting noncallable corporate bond yields was less than 10 basis points. Similarly Collin-Dufresne and Solnik (2001) have r_t following a Gaussian $A_0(2)$ model and s_t following a Gaussian jump-diffusion model with constant jump intensity. Treating the U.S. Treasury curve as the reference curve and using yields on LIBOR contracts as the defaultable securities, they find that the correlation between r_t and s_t is also negative.

Though the preceding studies treated s_t as a purely latent process, observable state variables are easily incorporated into reduced-form models by letting one or more of the Y's be an observable economic time series. In this manner, it is possible to capture part of the "spirit" of structural models within a reduced-form setting by having $\lambda^{\mathbb{Q}}L^{\mathbb{Q}}$ depend on information about the balance sheet of an issuer. For instance, Bakshi, Madan, and Zhang (2001a) examine a fractional recovery of market value, reduced-form model in which the default-adjusted discount rate R is an affine function of r and Y_t = firm leverage, $R_t = \alpha_0 + \alpha_r r_t + \alpha_Y Y_t$. The reference rate r was determined by a Gaussian $A_0(2)$ model and the credit factor Y was assumed to follow a mean-reverting Gaussian diffusion. Upon estimating the models using Lehman Brothers data, they found that (after accommodating interest rate risk) higher leverage increases the default-adjusted discount rate, with leverage-related credit risk being more pronounced for long- than for short-dated corporate bonds. Bakshi, Madan, and Zhang (2001b) compare the relative fits of reduced-form models under various recovery timing conventions in a recovery of face value model. Janosi, Jarrow, and Yildirim (2000) also study a two-factor model for R in which r follows a one-factor Gaussian process and the credit factor is related to the level of the S&P 500 equity index.

Affine models have also been used in the pricing of sovereign bonds. Merrick (1999) calibrates a discrete-time model (to Russian and Argentinian bonds) that can be reinterpreted as a model with a constant (state-independent) intensity. More generally, Pagès (2000) and Keswani (2002) apply special cases of the recovery of market value model to data on Latin American Brady bonds, and Dullmann and Windfuhr (2000) apply a similar framework to price European government credit spreads under the EMU.

These models presume that holders of sovereign debt face a single credit event — default with liquidation upon default — and, in particular, do not allow for restructurings and the associated write-downs of face value. Duffie, Pedersen, and Singleton (2002) develop a model allowing for

both write-downs and for bonds to have idiosyncratic credit factors. After fitting this model to data on Russian MinFin bonds around the Russian default in August 1998, they found substantial evidence for significant write-downs after the 1998 default.

4.2 Structural models

Empirical implementation of structural models requires one to confront more directly the (often very) complex capital structures of issuers. Among the issues that must be addressed are the components of the capital structure to be included in A and F, measurement of asset volatility σ_A and the correlation ρ between A and r, and the choice of recovery ratios. The empirical implementations of structural models have varied widely in their resolutions of these issues. ²⁰

Jones, Mason, and Rosenfeld (1984) implemented the Merton model for a sample of callable coupon bonds for the sample period 1977–1981. They found absolute pricing errors of 8.5%: model prices were too high so spreads were too narrow. Ogden (1987) looked at primary market prices for bonds over the period 1973–1985. The Merton model underpredicted spreads by an average of 104 basis points. A major limitation of both of these studies was their use of callable bond prices.

More recently, Lyden and Sariniti (2000) used Bridge data, which provides actual transaction prices on noncallable bonds for both financial and nonfinancial firms. For the Merton model they found mean absolute errors in yield spreads of 80+ basis points. The model-implied spreads were particularly low (bonds were overpriced) for small firms and long maturities. For a two-factor Longstaff and Schwartz model, in which default occurs when A falls below the par value of outstanding bonds and any recovery is a constant fraction w of par value, they obtained roughly the same results. Moreover, the findings for the Longstaff and Schwartz model were largely insensitive to the assumed value of ρ . In interpreting these results, one should perhaps bear in mind that their sample included both financial and nonfinancial firms, with quite heterogeneous leverage ratios.

Ericsson and Reneby (2001) reach a more optimistic conclusion about the fit of a structural model with endogenous default and leverage ratios that reflect growth in both debt and equity values. Using maximum likelihood methods to estimate the parameters of their firm-value process, they obtain unbiased out-of-sample spread predictions of yield spreads for the noncallable debt of a small sample of 50 industrial firms.

²⁰ As a precursor to econometric implementation of structural models, Huang and Huang (2002) inquire whether the credit risk inherent in structural models is likely to account for the observed spreads in investment-grade bonds. Calibrating a structural model to both balance sheet information and historical default rates simultaneously, they conclude that, within their models, credit risk accounts for a small fraction of the observed spreads for investment-grade bonds. Their models are more successful at explaining the larger spreads for junk bonds.

The most comprehensive empirical comparison of structural models to date is provided by Eom, Helwege, and Huang (2003), who examine versions of the Merton, Geske (1977), Longstaff and Schwartz (1995), Leland and Toft (1996), and Collin-Dufresne and Goldstein (2001a) models. They restrict their sample to industrial firms with relatively simple capital structures, comprised largely of equity and noncallable debt. Consistent with previous studies, the Merton model predicts spreads that are too small, as does Geske's model though to a lesser extent. Of interest is that the Leland and Toft, Longstaff and Schwartz, and Collin-Dufresne and Goldstein models all tend to overpredict spreads, though in different ways. The Leland and Toft model overpredicts spreads for virtually all ratings and maturities; the Longstaff and Schwartz model gives excessive spreads for relatively risky bonds, while yielding spreads that are too small for relatively safe bonds: and the Collin-Dufresne and Goldstein model with mean-reverting leverage ratios reduces the underprediction of spreads on safe bonds, while still overpredicting spreads on average. Eom, Helwege, and Huang (2003) conclude that the major challenge to improving the fit of structural models is to "raise the average predicted spread relative to the Merton (1974) model, without overstating the risks associated with volatility, leverage or coupon."

5. DTSMs and Derivatives Prices

With the growing availability of time-series data on the implied volatilities of fixed-income derivatives, comparisons of DTSM-implied to market prices of derivatives is increasingly being used in assessing goodness-of-fit. Particular attention has been given to the pricing of caps/floors and swaptions in the LIBOR/swap markets, no doubt in part because of the size and importance of these markets.

5.1 Risk-factor distributions and derivatives pricing

Much of the recent literature applying DTSMs to the pricing of derivatives has focused on two features of the distributions of swap rates and implied volatilities on LIBOR-based derivatives. First, Heidari and Wu (2003) and Collin-Dufresne and Goldstein (2002a) find that there is substantial variation in the implied volatilities of swaptions that appears to be unrelated to variation in the underlying swap rates. That is, it appears as if there are risk factors underlying changes in derivatives prices that are independent of those underlying shifts in the swap curve. To some the presence of "unspanned factors" is puzzling, because swaptions are derivative contracts based on the underlying swap rates.

Second, though financial theory predicts a close link between the prices of caps and swaptions (as they are both LIBOR-based derivatives), developing a model that simultaneously prices both contracts has proved

Table 3
Correlations of changes in swap yield spreads for various yield-curve segments

Segment	3 - 2/4 - 3	4 - 3/5 - 4	5 - 4/7 - 5	7 - 5/10 - 7
Historical	0.34	0.09	0.13	0.14
2 PC	0.99	0.99	0.99	0.99
4 PC	0.81	0.96	0.84	0.32

challenging. Explanations for this "swaption/cap puzzle" often focus on the nature of the model-implied factor volatilities and/or correlations and their roles in determining prices. For instance, Rebonato and Cooper (1997) and Longstaff, Santa-Clara, and Schwartz (1999) compare the correlations among forward swap rates with those implied by low-dimensional factor models and find that the correlations implied by the models are much larger than those in the data. Brown and Schaefer (1999) and Carverhill (2002) find similar results using Treasury strip yields.²¹

We can anticipate the difficulty standard DTSMs will have in matching yield correlations by comparing historical and model-implied correlations among weekly changes in the yield spreads for nonoverlapping segments of the U.S. dollar swap yield curve. The correlation "3-2/4-3," for example, in Table 3 represents the correlation of daily changes in the 3 year–2 year swap spread with changes in the 4 year–3 year spread. The rows labeled "2 PC" and "4 PC" present the corresponding correlations for fitted spreads from projections onto the first two and four principal components (PCs), respectively. Notably, even using four PCs, the segment correlations are larger than their sample counterparts, and the match is much worse using only two PCs (in the spirit of a two-factor DTSM).

Not surprisingly, when we compute model-implied segment correlations from the affine $A_M(N)$ models with $N \le 3$, using swap data, they are all substantially larger than their historical counterparts. The same is true for the fitted, relative to the historical, Treasury yields from Ahn, Dittmar, and Gallant's (2002) study of QG models.

If swaptions and caps have different sensitivities to a model's (in)ability to match yield curve segment or forward-rate correlations, then this could resolve the pricing puzzles. However, the literature is not fully in agreement about the relative responses of the prices of caps and swaptions to changes in factor volatilities or correlations. After addressing the pricing of swaptions in DTSMs, we take up in more depth the relative pricing of caps and swaptions.

²¹ It is well known that a small number of principal components explains well over 90% of the variation in yields across the maturity spectrum for U.S. Treasury yields [e.g., Litterman and Scheinkman (1991)], as well as for many foreign bond markets [e.g., Singleton (1995), Driessen, Melenberg, and Nijman (2000)]. This evidence serves as a primary motivation for examining low-dimensional-state vectors in empirical studies of DTSMs.

5.2 Implications for pricing swaptions

Focusing first on the "unspanned factors" puzzle, this finding is not, of course, logically inconsistent with arbitrage-free pricing. Indeed, Collin-Dufresne and Goldstein (2002a) provide one explanation within an arbitrage-free, affine DTSM based on the possibility that some elements of $\gamma_Y(T-t)$ in Equation (21) are zero for all T-t. This possibility, which requires that $N \geq 3$, arises when there are factors driving the volatility of r that are not "spanned" by the term structure of swap yields. The structure of volatility risk premiums might provide an alternative explanation.

Empirical work addressing the fit of DTSMs to the joint distributions of swap and swaption prices has been limited. Upon fitting an $A_3(3)$ model (with independent factors) to historical swap yields, Jagannathan, Kaplan, and Sun (2001) find that their model is incapable of accurately pricing caps and swaptions. However, in light of the preceding discussion, reliable pricing of swaptions would seem to depend on using swaption data in estimation in order to "pick up" the effectively unspanned factors. This is confirmed by Umantsev (2001), who estimated $A_M(3)$ models using data on swap rates and swaption volatilities simultaneously. He finds that $A_M(3)$ models, for M=1,2, fit the data notably better than an $A_3(3)$ model. Moreover, as anticipated by the descriptive findings of Heidari and Wu (2003), the third factor is related more to volatility in the swaption market than to "curvature" in the swap curve (the more typical third factor in DTSMs fit to yield data alone).

The latter evidence suggests that low-dimensional DTSMs (say *N* equal to 3 or 4) may well be capable of reliably pricing swaptions. This appears to be at odds with the arguments in Rebonato (1999) and Driessen, Klaassen, and Meleberg (2000).

5.3 Implications for the relative pricing of caps and swaptions

Where matching the correlation structure does seem to matter is in resolving the "swaptions/caps" pricing puzzle. Elaborating on the nature of this puzzle, many have found that model-implied volatilities extracted from cap prices tend to be larger than those backed out from swaption prices. One interpretation of this puzzle is based on the observation that a cap can be viewed as a portfolio of options on forward LIBOR rates, whereas a swaption can be viewed as an option on a portfolio of forward LIBOR rates. As such, cap prices are relatively insensitive to the correlation structure of forward LIBOR rates, whereas the swaption prices depend

 $^{^{22}}$ Since swaptions are effectively options on coupon-paying bonds, closed-form solutions for the relevant exercise probabilities are generally not known, even in the affine case. Chen and Scott (1995) develop pricing relations that are specific to multifactor $A_N(N)$ (CIR) models, and are used by Jagannathan, Kaplan, and Sun (2001). Singleton and Umantsev (2002) and Collin-Dufnesne and Goldstein (2002b) develop accurate, approximate pricing formulas for the entire family of affine diffusion models.

crucially on the correlation structure. Indeed, a one-factor model can be calibrated exactly to all at-the-money cap prices, but it will likely misprice swaptions because forward rates are perfectly correlated in such a model.

Hull and White (1999) and Longstaff, Santa-Clara, and Schwartz (2001) calibrate multifactor forward-rate-based models to (select portions of) the historical correlation structure of the forward rates²³ and explore the relative pricing of caps and swaptions. Hull and White (1999) find that (for a single trading day) at least three factors are needed in order to rationalize observed caps and swaptions prices, whereas Longstaff, Santa-Clara, and Schwartz (2001) find that, in order to explain caps and swaptions prices over a window of several months, at least four factors are needed. Both studies document periods of significant relative mispricings of caps and swaptions relative to the predictions of their models. Similar findings are reported by Fan. Gupta, and Ritchken (2001) and Jagannathan, Kaplan, and Sun (2001). The ultimate resolution of this "swaptions/caps puzzle" may require time-varying correlations and possibly factors affecting the volatility of yields that do not affect bond prices. Collin-Dufresne and Goldstein (2001b) posit a "switching correlation" affine model with both of these features and find that it has features consistent with historical swaption and cap volatilities, but they do not formally calibrate their model to historical data.

6. Concluding Remarks

Our overview of the empirical fit of DTSMs has underscored several successes, while highlighting several challenges for future research. Specifically, affine and quadratic-Gaussian DTSMs are evidently capable of resolving the puzzles associated with the rejections of the expectations hypothesis. At the same time, for both families of models, there appears to be a "tension" between matching properties of (i) the conditional mean, (ii) the conditional volatilities, and (iii) the risk premiums [Duffee (2002), Dai and Singleton (2002a)]. Within the family of affine DTSMs, clearly we must have M>0 in order for there to be stochastic volatility. However, accommodating stochastic volatility in this manner seems to conflict with matching the first-moment properties of yields. Duarte (2003) finds that further extending the specification of the market price of risk to Equation (24) does not resolve this tension.

Similarly, Ahn, Dittmar, and Gallant found that their most flexible QG model exhibited less volatility than was observed historically (as reflected in their seminonparametric model), both in terms of level and persistence.

²³ Hull and White (1999) is based on the LIBOR Market Model, whereas Longstaff, Santa-Clara, and Schwartz (2001) is based on a discrete approximation of the string model proposed by Santa-Clara and Sornette (2001). Both studies use a calibration method similar to a principal components analysis.

Thus it seems that still undiscovered is a tractable DTSM that simultaneously matches LPY and CVY at maximum-likelihood estimates of the parameters.

We also find it interesting that regime-switching paired with Equation (22) and single-regime, affine, and OG models paired with Equation (23) seem to perform comparably in matching the pattern LPY. It seems that, implicitly, the structure of preferences, and the economy more generally, in these formulations are quite different, and a better understanding of these differences would likely improve our understanding of interest rate determination. Some hints about the links between model formulation and the macroeconomy come from several recent studies. Duffee (2001) explores various macroeconomic interpretations of the finding that the slope of the yield curve forecasts excess returns, the finding that underlies the need for richer risk premiums than Equation (22) in affine models. Bansal and Zhou (2002) find that the regime-switching process inferred from bond prices appears to be strongly associated with National Bureau of Economic Research (NBER) business cycle indicators for the United States. This is consistent with the findings of Ang and Bekaert (2002) from a regime-switching model estimated without the structure of a pricing model. Further exploration of the links between factor risk premiums, regime identities, and the business cycle seems warranted.

The recent efforts at developing discrete-time DTSMs, motivated by extant continuous-time formulations, also raise interesting questions for future research. Along some dimensions, the discrete-time models offer more flexibility in specifying the dynamics of the state process. Does more flexibility in modeling Y reduce the need for richer specifications of Λ ?

Turning to the recent empirical work on reduced-form models of defaultable bonds, a natural next step in this literature would be to estimate a model in which $\lambda^{\mathbb{Q}}L^{\mathbb{Q}}$ is an affine function of (possibly multiple) observed credit factors, as well as latent factors. The findings in Collin-Dufresne, Goldstein, and Martin (2001) that most of the variation in credit spreads is independent of a long list of observed macroeconomic and balance sheet variables suggests that supply/demand factors indigenous to the corporate market may be playing a key role in spread variation. Duffie and Singleton (1997) report a similar result for swap spreads. Latent factors would allow modelers to capture the substantial residual variation in the spread s_t that is not captured by the various observable economic factors examined in these studies.

As better fitting models are developed, further analysis of economic forces underlying variation in spreads would also be beneficial. We have, in the end, a quite limited understanding of the determinants of spreads, particularly those in swap and high-grade corporate bond markets. The findings in Huang and Huang (2002) and Eom, Helwege, and Huang (2003) clarify some of the challenges facing structural modeling. Looking

beyond the default process, are there unmodeled supply and demand forces affecting spreads and, if so, what are these forces? And what is the role of "liquidity" in spread determination?

Finally, the recent literature on pricing derivatives using DTSMs illustrates the enormous potential for new insights from using derivatives data in model estimations.

References

Ahn, C., and H. Thompson, 1988, "Jump Diffusion Processes and Term Structure of Interest Rates," *Journal of Finance*, 43, 155–174.

Ahn, D., and B. Gao, 1999, "A Parametric Nonlinear Model of Term Structure Dynamics," *Review of Financial Studies*, 12, 721–762.

Ahn, D.-H., R. F. Dittmar, and A. R. Gallant, 2002, "Quadratic Term Structure Models: Theory and Evidence," *Review of Financial Studies*, 15, 243–288.

Ahn, D.-H., R. F. Dittmar, B. Gao, and A. R. Gallant, 2000, "Purebred or Hybrid? Reproducing the Volatility in Term Structure Dynamics," working paper, University of North Carolina.

Ait-Sahalia, Y., 1996, "Testing Continuous-Time Models of the Spot Interest Rate," *Review of Financial Studies*, 9, 385–426.

Ait-Sahalia, Y., 2002, "Closed-Form Likelihood Expansions for Multivariate Diffusions," working paper, Princeton University.

Andersen, T. G., and J. Lund, 1997, "Estimating Continuous-Time Stochastic Volatility Models of the Short-Term Interest Rate," *Journal of Econometrics*, 72, 343–377.

Andersen, T. G., and J. Lund, 1998, "Stochastic Volatility and Mean Drift in the Short Term Interest Rate Diffusion: Sources of Steepness, Level and Curvature in the Yield Curve," working paper, Northwestern University.

Anderson, R. W., and S. M. Sundaresan, 1996, "The Design and Valuation of Debt Contracts," *Review of Financial Studies*, 9, 37–68.

Ang, A., and G. Bekaert, 2002, "Regime Switches in Interest Rates," *Journal of Business and Economic Statistics*, 20, 163–182.

Ang, A., and M. Piazzesi, 2003, "A No-Arbitrage Vector Autoregression of Term Structure Dynamics with Macroeconomic and Latent Variables." forthcoming in *Journal of Monetary Economics*.

Artzner, P., and F. Delbaen, 1995, "Default Risk Insurance and Incomplete Markets," *Mathematical Finance*, 5, 187–195.

Back, K., 1996, "Yield Curve Models: A Mathematical Review," in I. Nelkin (ed.), Option Embedded Bonds: Price Analysis, Credit Risk, and Investment Strategies, Irwin, McGraw-Hill.

Backus, D., S. Foresi, A. Mozumdar, and L. Wu, 2001, "Predictable Changes in Yields and Forward Rates," *Journal of Financial Economics*, 59, 281–311.

Backus, D., S. Foresi, and C. Telmer, 1998, "Discrete-Time Models of Bond Pricing," working paper, New York University.

Backus, D., S. Foresi, and S. Zin, 1998, "Arbitrage Opportunities in Arbitrage-Free Models of Bond Pricing," *Journal of Business and Economic Statistics*, 16, 13–26.

Backus, D. K., and S. E. Zin, 1994, "Reverse Engineering the Yield Curve," Working Paper 4676, NBER.

Bakshi, G., D. Madan, and F. Zhang, 2001a, "Investigating the Sources of Default Risk: Lessons from Empirically Evaluating Credit Risk Models," working paper, University of Maryland.

Bakshi, G., D. Madan, and F. Zhang, 2001b, "Understanding the Role of Recovery in Default Risk Models: Empirical Comparisons and Implied Recovery Rates," working paper, Federal Reserve Board.

Balduzzi, P., S. R. Das, and S. Foresi, 1998, "The Central Tendency: A Second Factor in Bond Yields," *Review of Economics and Statistics*, 80, 62–72.

Balduzzi, P., S. R. Das, S. Foresi, and R. K. Sundaram, 1996, "A Simple Approach to Three Factor Affine Term Structure Models," *Journal of Fixed Income*, 6, 43–53.

Balduzzi, P., and Y. Eom, 2000, "Non-Linearities in U.S. Treasury Rates: A Semi-Nonparametric Approach," working paper, Boston College.

Bansal, R., and H. Zhou, 2002, "Term Structure of Interest Rates with Regime Shifts," *Journal of Finance*, 57, 1997-2043.

Beaglehole, D. R., and M. S. Tenney, 1991, "General Solutions of Some Interest Rate-Contingent Claim Pricing Equations," *Journal of Fixed Income*, 1, 69–83.

Bekaert, G., and R. Hodrick, 2001, "Expectations Hypotheses Tests," Journal of Finance, 56, 1357-1394.

Bekaert, G., R. Hodrick, and D. Marshall, 1997, "On Biases in Tests of the Expectations Hypothesis of the Term Structure of Interest Rates," *Journal of Financial Economics*, 44, 309–348.

Bekaert, G., R. Hodrick, and D. Marshall, 2001, "Peso Problem Explanations for Term Structure Anomalies," *Journal of Monetary Economics*, 48, 241–270.

Bielecki, T., and M. Rutkowski, 2001, "Modeling of the Defaultable Term Structure: Conditionally Markov Approach," working paper, Northeastern Illinois University and Warsaw University of Technology.

Black, F., and J. Cox, 1976, "Valuing Corporate Securities: Liabilities: Some Effects of Bond Indenture Provisions," *Journal of Finance*, 31, 351–367.

Black, F., E. Derman, and W. Toy, 1990, "A One-Factor Model of Interest Rates and Its Application to Treasury Bond Options," *Financial Analysts Journal*, January–February, 33–39.

Black, F., and P. Karasinski, 1991, "Bond and Option Pricing When Short Rates are Lognormal," *Financial Analysts Journal*, July-August, 52-59.

Black, F., and M. Scholes, 1973, "The Pricing of Options and Corporate Liabilities," *Journal of Political Economy*, 81, 637–654.

Bobadilla, G., 1999, "Choose the Right Error in Term Structure Models," working paper, CEMFI.

Bollerslev, T., 1986, "Generalized Autoregressive Conditional Heteroskedasticity," *Journal of Econometrics*, 31, 307–327.

Boudoukh, J., M. Richardson, R. Stanton, and R. F. Whitelaw, 1998, "The Stochastic Behavior of Interest Rates: Implications from a Multifactor, Nonlinear Continuous-Time Model," working paper, New York University.

Brace, A., D. Gatarek, and M. Musiela, 1997, "The Market Model of Interest Rate Dynamics," *Mathematical Finance*, 7, 127–154.

Brandt, M., and D. Chapman, 2002, "Comparing Multifactor Models of the Term Structure," working paper, Wharton School.

Brandt, M., and P. Santa-Clara, 2002, "Simulated Likelihood Estimation of Diffusions with an Application to Exchange Rate Dynamics in Incomplete Markets," *Journal of Business and Economic Statistics*, 20, 321–324.

Brandt, M., and A. Yaron, 2001, "Time-Consistent, No-Arbitrage Models of the Term Structure," working paper, Wharton School.

Brenner, R. J., R. H. Harjes, and K. F. Kroner, 1996, "Another Look at Models of the Short Term Interest Rate," *Journal of Financial & Quantitative Analysis*, 31, 85–107.

Brito, R., and R. Flores, 2001, "A Jump-Diffusion Yield-Factor Model of Interest Rates," working paper, EPGE/FGV.

Briys, E., and F. de Varenne, 1997, "Valuing Risky Fixed Rate Debt: An Extension," *Journal of Financial and Quantitative Analysis*, 32, 239–248.

Brown, R., and S. Schaefer, 1999, "Why Long Forward Interest Rates (Almost) Always Slope Downwards," working paper, London Business School.

Brown, R., and S. M. Schaefer, 1994, "The Term Structure of Real Interest Rates and the Cox, Ingersoll and Ross Model," *Journal of Financial Economics*, 35, 3–42.

Brown, S. J., and P. H. Dybvig, 1986, "Empirical Implications of the Cox, Ingersoll, Ross Theory of the Term Structure of Interest Rates," *Journal of Finance*, 41, 143–172.

Buraschi, A., and F. Corielli, 2000, "Staying Ahead of the Curve: Model Risk and the Term Structure," working paper, London Business School.

Buraschi, A., and A. Jiltsov, 2001, "How Large is the Inflation Risk Premium? A Monetary Model of the Term Structure," working paper, London Business School.

Campbell, J., and R. Shiller, 1991, "Yield Spreads and Interest Rate Movements: A Bird's Eye View," Review of Economic Studies, 58, 495-514.

Carrasco, M., M. Chernov, J. Florens, and E. Ghysels, 2002, "Efficient Estimation of Jump Diffusions and General Dynamic Models with a Continuum of Moment Conditions," working paper, University of North Carolina.

Carverhill, A., 2002, "Predictability and the Dynamics of Long Forward Rates," working paper, University of Hong Kong.

Cathcart, L., and L. El-Jahel, 1998, "Valuation of Defaultable Bonds," *Journal of Fixed Income*, June, 66-78.

Chacko, G., and S. Das, 2002, "Pricing Interest Rate Derivatives: A General Approach," *Review of Financial Studies*, 15, 195–241.

Chapman, D., and N. Pearson, 2001, "What can be Learned from Recent Advances in Estimating Models of the Term Structure?" *Financial Analysts Journal*, July/August, 77–95.

Chen, L., 1996, Stochastic Mean and Stochastic Volatility — A Three-Factor Model of the Term Structure of Interest Rates and Its Application to the Pricing of Interest Rate Derivative, Blackwell Publishers,

Chen, R., and L. Scott, 1993, "Maximum Likelihood Estimation for a Multifactor Equilibrium Model of the Term Structure of Interest Rates," *Journal of Fixed Income*, 3, 14–31.

Chen, R., and L. Scott, 1995, "Interest Rate Options in Multifactor Cox-Ingersoll-Ross Models of the Term Structure," *Journal of Fixed Income*, Winter, 53–72.

Collin-Dufresne, P., and R. Goldstein, 2001a, "Do Credit Spreads Reflect Stationary Leverage Ratios?" *Journal of Finance*, 56, 1929–1958.

Collin-Dufresne, P., and R. S. Goldstein, 1999, "On the Term Structure of Interest Rates in the Presence of Reflecting Boundaries," working paper, Washington University.

Collin-Dufresne, P., and R. S. Goldstein, 2001b, "Stochastic Correlation and the Relative Pricing of Caps and Swaptions in a Generlized Affine Framework," working paper, Carnegie Mellon University.

Collin-Dufresne, P., and R. S. Goldstein, 2002a, "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," *Journal of Finance*, 57, 1685–1730.

Collin-Dufresne, P., and R. S. Goldstein (2002b), "Pricing Swaptions within the Affine Framework," *Journal of Derivatives*, 10, 1–18.

Collin-Dufresne, P., R. S. Goldstein, and J. Martin, 2001, "The Determinants of Credit Spread Changes," *Journal of Finance*, 56, 2177–2208.

Collin-Dufresne, P., and B. Solnik, 2001, "On the Term Structure of Default Permia in the Swap and LIBOR Markets," *Journal of Finance*, 56, 1095–1115.

Constantinides, G., 1992, "A Theory of the Nominal Term Structure of Interest Rates," *Review of Financial Studies*, 5, 531–552.

Cox, J., J. Ingersoll, and S. Ross, 1980, "An Analysis of Variable Loan Contracts," *Journal of Finance*, 35, 389-403.

Cox, J., J. Ingersoll, and S. Ross, 1985, "A Theory of the Term Structure of Interest Rates," *Econometrica*, 53, 385-407.

Dai, Q., 2003, "Term Structure Dynamics in a Model with Internal Habit," working paper, New York University.

Dai, Q., and K. Singleton, 2000, "Specification Analysis of Affine Term Structure Models," *Journal of Finance*, 55, 1943–1978.

Dai, Q., and K. Singleton, 2002a, "Expectations Puzzles, Time-Varying Risk Premia, and Affine Models of the Term Structure," *Journal of Financial Economics*, 63, 415–441.

Dai, Q., and K. Singleton, 2002b, "Fixed-Income Pricing," working paper, forthcoming in *Handbook of Economics and Finance*.

Dai, Q., K. Singleton, and W. Yang, 2003, "Is Regime-Shift Risk Priced in the US Treasury Market?" working paper, New York University.

Das, S., 2002, "The Surprise Element: Jumps in Interest Rates," Journal of Econometrics, 106, 27-65.

Das, S., and S. Foresi, 1996, "Exact Solutions for Bond and Option Prices with Systematic Jump Risk," *Review of Derivatives Research*, 1, 7–24.

Driessen, J., P. Klaassen, and B. Meleberg, 2000, "The Performance of Multi-Factor Term Structure Models for Pricing and Hedging Caps and Swaptions," working paper, Tilburg University.

Driessen, J., B. Melenberg, and T. Nijman, 2000, "Common Factors in International Bond Returns," working paper, Tilburg University.

Duan, J.-C., and J.-G. Simonato, 1999, "Estimating and Testing Exponential-Affine Term Structure Models by Kalman Filter," *Review of Quantitative Finance and Accounting*, 13, 111–135.

Duarte, J., 2003, "Evaluating Alternative Risk Preferences in Affine Term Structure Models," forthcoming in *Review of Financial Studies*.

Duffee, G., 1998, "The Relation Between Treasury Yields and Corporate Bond Yield Spreads," *Journal of Finance*, 53, 2225–2242.

Duffee, G., 1999, "Estimating the Price of Default Risk," Review of Financial Studies, 12, 197-226.

Duffee, G., 2001, "Why Does the Slope of the Yield Curve Forecast Excess Returns?" working paper, University of California, Berkeley.

Duffee, G., and R. Stanton, 2001, "Estimation of Dynamic Term Structure Models," working paper, University of California, Berkeley.

Duffee, G. R., 2002, "Term Premia and Interest Rate Forecasts in Affine Models," *Journal of Finance*, 57, 405–443.

Duffie, D., 1996, Dynamic Asset Pricing Theory, 2nd ed., Princeton University Press, Princeton, NJ.

Duffie, D., 1998, "Defaultable Term Structure Models with Fractional Recovery of Par," working paper, Stanford University.

Duffie, D., D. Filipovic, and W. Schachermayer, 2002, "Affine Processes and Applications in Finance," working paper, forthcoming in *Annals of Applied Probability*.

Duffie, D., and M. Huang, 1996, "Swap Rates and Credit Quality," Journal of Finance, 51, 921-949.

Duffie, D., and R. Kan, 1996, "A Yield-Factor Model of Interest Rates," *Mathematical Finance*, 6, 379–406

Duffie, D., and D. Lando, 2001, "Term Structures of Credit Spreads with Incomplete Accounting Information," working paper, Stanford University; forthcoming in *Econometrica*.

Duffie, D., and J. Liu, 2001, "Floating-Fixed Credit Spreads," Financial Analysts Review, 57, 76-87.

Duffie, D., J. Pan, and K. Singleton, 2000, "Transform Analysis and Asset Pricing for Affine Jump-Diffusion," *Econometrica*, 68, 1343–1376.

Duffie, D., L. Pedersen, and K. Singleton, 2002, "Modeling Credit Spreads on Sovereign Debt: A Case Study of Russian Bonds," forthcoming in *Journal of Finance*.

Duffie, D., and K. Singleton, 1997, "An Econometric Model of the Term Structure of Interest Rate Swap Yields," *Journal of Finance*, 52, 1287–1321.

Duffie, D., and K. Singleton, 1999, "Modeling Term Structures of Defaultable Bonds," Review of Financial Studies, 12, 687-720.

Dullmann, K., and M. Windfuhr, 2000, "Credit Spreads Between German and Italian Sovereign Bonds—Do Affine Models Work?" working paper, University of Mannheim.

Eom, Y., J. Helwege, and J.-Z. Huang, 2003, "Structural Models of Corporate Bond Pricing: An Empirical Analysis," forthcoming in *Review of Financial Studies*.

Ericsson, J., and J. Reneby, 2001, "The Valuation of Corporate Liabilities: Theory and Tests," working paper, McGill University.

Evans, M. D., 2000, "Regime Shifts, Risk and the Term Structure," working paper, Georgetown University.

Fama, E., 1984a, "The Information in the Term Structure," Journal of Financial Economics, 13, 509-528.

Fama, E., 1984b, "Term Premiums in Bond Returns," Journal of Financial Economics, 13, 529-546,

Fama, E. F., and R. R. Bliss, 1987, "The Information in Long-Maturity Forward Rates," *American Economic Review*, 77, 680-692.

Fan, R., A. Gupta, and R. Ritchken, 2001, "On Pricing and Hedging in the Swaption Market: How Many Factors Really?" working paper, Case Western Reserve University.

Fisher, M., 1998, "A Simple Model of the Failure of the Expectations Hypothesis," working paper, Federal Reserve Board.

Fisher, M., and C. Gilles, 1996, "Estimating Exponential Affine Models of the Term Structure," working paper, Federal Reserve Board, Washington, DC.

Fleming, M. J., and E. M. Remolona, 1999, "The Term Structure of Announcement Effects," Staff Report 76, Federal Reserve Board, New York.

Gallant, A. R., and G. Tauchen, 1996, "Which Moments to Match?" Econometric Theory, 12, 657-681.

Gallant, A. R., and G. Tauchen, 1998, "Reprojecting Partially Observed Systems with Application to Interest Rate Diffusions," *Journal of American Statistical Association*, 93, 10–24.

Gerlach, S., and F. Smets, 1997, "The Term Structure of Euro-Rates: Some Evidence in Support of the Expectations Hypothesis," *Journal of International Money and Finance*, 16, 305–321.

Geske, R., 1977, "The Valuation of Corporate Securities as Compound Options," *Journal of Financial and Quantitative Analysis*, 12, 541–552.

Gibson, R., F. Lhabitant, and D. Talay, 2001, "Modeling the Term Structure of Interest Rates: A Review of the Literature," working paper, HEC.

Goldstein, R., 2000, "The Term Structure of Intesest Rates as a Random Field," *Review of Financial Studies*, 13, 365–384.

Gourieroux, C., A. Monfort, and V. Polimenis, 2002, "Affine Term Structure Models," working paper, CREST

Gray, S., 1996, "Modeling the Conditional Distribution of Interest Rates as a Regime Switching Process," *Journal of Financial Economics*, 42, 27–62.

Grinblatt, M., 1994, "An Analytic Solution for Interest Rate Swap Spreads," working paper, UCLA.

Hamilton, J., 1988, "Rational-Expectations Econometric Analysis of Changes in Regime: An Investigation of the Term Structure of Interest Rates," *Journal of Economic Dynamics and Control*, 12, 385–423.

Hardouvelis, G., 1994, "The Term Structure Spread and Future Changes in Long and Short Rates in the G7 Countries," *Journal of Monetary Economics*, 33, 255–283.

Heath, D., R. Jarrow, and A. Morton, 1992, "Bond Pricing and the Term Structure of Interest Rates: A New Methodology," *Econometrica*, 60, 77–105.

Heidari, M., and L. Wu, 2003, "Are Interest Rate Derivatives Spanned by the Term Structure of Interest Rates?" forthcoming in *Journal of Fixed Income*.

Hogan, M., and K. Weintraub, 1993, "The Lognormal Interest Rate Model and Eurodollar Futures," working paper, Citibank, New York.

Honore, P., 1998, "Five Essays on Financial Econometrics in Continuous-Time Models" (Ph.D. dissertation), Aarhus School of Business.

Huang, J., and M. Huang, 2002, "How Much of the Corporate-Treasury Yield Spread is Due to Credit Risk? A New Calibration Approach," working paper, Stanford University.

Hull, J., and A. White, 1987, "The Pricing of Options on Assets with Stochastic Volatilities," *Journal of Finance*, 42, 281–300.

Hull, J., and A. White, 1993, "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," *Journal of Financial and Quantitative Analysis*, 28, 235–254.

Hull, J., and A. White, 1999, "Forward Rate Volatilities, Swap Rate Volatilities, and the Implementation of the LIBOR Market Model," working paper, University of Toronto.

Jagannathan, R., A. Kaplan, and S. Sun, 2001, "An Evaluation of Multi-factor CIR Models Using LIBOR, Swap Rates, and Swaption Prices," working paper, Northwestern University.

Jamshidian, F., 1997, "Libor and Swap Market Models and Measures," Finance Stochastics, 1, 293-330.

Janosi, T., R. Jarrow, and Y. Yildirim, 2000, "Estimated Expected Losses and Liquidity Discounts Implicit in Debt Prices," working paper, Cornell University.

Jarrow, R., and S. Turnbull, 1995, "Pricing Options on Financial Securities Subject to Default Risk," *Journal of Finance*, 50, 53-86.

Jarrow, R. A., D. Lando, and F. Yu, 2000, "Default Risk and Diversification: Theory and Applications," working paper, Cornell University.

Jegadeesh, N., and G. Pennacchi, 1996, "The Behavior of Interest Rates Implied by the Term Structure of Eurodollar Futures," *Journal of Money, Credit, and Banking*, 28, 426–446.

Johannes, M., 2000, "A Nonparametric View of the Role of Jumps to Interest Rates," working paper, Columbia University.

Jones, E., S. Mason, and E. Rosenfeld, 1984, "Contingent Claims Analysis of Corporate Capital Structures: An Empirical Investigation," *Journal of Finance*, 39, 611–625.

Kennedy, D. 1994, "The Term Structure of Interest Rates as a Gaussian Random Field," *Mathematical Finance*, 4, 247–258.

Keswani, A., 2002, "Estimating a Risky Term Structure of Brady Bonds," working paper, Lancaster University.

Kim, J., K. Ramaswamy, and S. Sundaresan, 1993, "Does Default Risk in Coupons Affect the Valuation of Corporate Bonds? A Contingent Claims Model," *Financial Management*, 22, 117–131.

Kugler, P., 1997, "Central Bank Policy Reaction and Expectations Hypothesis of the Term Structure," *International Journal of Financial Economics*, 2, 217–224.

Landen, C., 2000, "Bond Pricing in a Hidden Markov Model of the Short Rate," *Finance and Stochastics*, 4, 371–389.

Lando, D., 1998, "Cox Processes and Credit-Risky Securities," Review of Derivatives Research, 2, 99-120.

Langetieg, T., 1980, "A Multivariate Model of the Term Structure," Journal of Finance, 35, 71-97.

Leippold, M. and L. Wu, 2001, "Design and Estimation of Quadratic Term Structure Models," working paper, Fordham University.

Leippold, M., and L. Wu, 2002, "Asset Pricing Under the Quadratic Class," *Journal of Financial and Quantitative Analysis*, 37, 271–295.

Leland, H., and K. Toft, 1996, "Optimal Capital Structure, Endogenous Bankruptcy, and the Term Structure of Credit Spreads," *Journal of Finance*, 51, 987–1019.

Leland, H. E., 1994, "Corporate Debt Value, Bond Covenants, and Optimal Capital Structure," *Journal of Finance*, 49, 1213–1252.

Litterman, R., and J. Scheinkman, 1991, "Common Factors Affecting Bond Returns," *Journal of Fixed Income*, 1, 54-61.

Litterman, R., J. Scheinkman, and L. Weiss, 1988, "Volatility and the Yield Curve," working paper, Goldman Sachs

Liu, J., 1997, "Generalized Method of Moments Estimation of Affine Diffusion Processes," working paper, Stanford University.

Liu, J., F. Longstaff, and R. Mandell, 2001, "The Market Price of Credit Risk: An Empirical Analysis of Interest Rate Swap Spreads," working paper, UCLA.

Longstaff, F., P. Santa-Clara, and E. Schwartz, 1999, "Throwing Away a Billion Dollars," working paper, UCLA.

Longstaff, F. A., 1989, "A Nonlinear General Equilibrium Model of the Term Structure of Interest Rates," *Journal of Financial Economics*, 2, 195–224.

Longstaff, F. A., P. Santa-Clara, and E. S. Schwartz, 2001, "The Relative Valuation of Caps and Swaptions: Theory and Empirical Evidence," *Journal of Finance*, 56, 2067–2109.

Longstaff, F. A., and E. S. Schwartz, 1992, "Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model," *Journal of Finance*, 47, 1259–1282.

Longstaff, F. A., and E. S. Schwartz, 1995, "A Simple Approach to Valuing Risky Fixed- and Floating-Rate Debt," *Journal of Finance*, 50, 789–819.

Lu, B., 2000, "An Empirical Analysis of the Constantinides Model of the Term Structure," working paper, University of Michigan.

Lu, B., and G. Wu, 2000, "Implied Bivariate State Price Density," working paper, University of Michigan.

Lyden, S., and D. Sariniti, 2000, "An Empirical Examination of the Classical Theory of Corporate Security Valuation," working paper, Barclays Global Investors.

Madan, D., and H. Unal, 1998, "Pricing the Risks of Default," Review of Derivatives Research, 2, 121-160

Martellini, L., and N. E. Karoui, 2001, "A Theoretical Inspection of the Market Price for Default Risk," working paper, University of Southern California.

McCallum, B. T., 1994, "Monetary Policy and the Term Structure of Interest Rates," Working Paper 4938, NBER.

Mella-Barral, P., and W. Perraudin, 1997, "Strategic Debt Service," Journal of Finance, 52, 531-556.

Merrick, J. J., 1999, "Crisis Dynamics of Implied Default Recovery Ratios: Evidence from Russia and Argentina," working paper, New York University.

Merton, R., 1970, "A Dynamic General Equilibrium Model of the Asset Market and its Application to the Pricing of the Capital Structure of the Firm," working paper, MIT.

Merton, R., 1974, "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," *Journal of Finance*, 29, 449–470.

Miltersen, K. R., K. Sandmann, and D. Sondermann, 1997, "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," *Journal of Finance*, 52, 409–430.

Musiela, M., and M. Rutkowski, 1997, Martingale Methods in Financial Modelling, Springer,

Naik, V., and M. H. Lee, 1997, "Yield Curve Dynamics with Discrete Shifts in Economic Regimes: Theory and Estimation," working paper, University of British Columbia.

Nielsen, L. T., J. SaaRequejo, and P. Santa-Clara, 1993, "Default Risk and Interest Rate Risk: The Term Structure of Default Spreads," working paper, INSEAD, Fontainebleau, France.

Ogden, J., 1987, "Determinants of the Relative Interest Rate Sensitivities of Corporate Bonds," *Financial Management*, 10, 22–30.

Pagès, H., 2000, "Estimating Brazilian Sovereign Risk from Brady Bond Prices," working paper, Bank of France.

Pearson, N. D., and T. Sun, 1994, "Exploiting the Conditional Density in Estimating the Term Structure: An Application to the Cox, Ingersoll, and Ross Model," *Journal of Finance*, 49, 1279–1304.

Pedersen, A., 1995, "A New Approach to Maximum Likelihood Estimation for Stochastic Differential Equations Based on Discrete Observations," *Scandanavian Journal of Statistics*, 22, 55–71.

Peterson, S., R. Stapleton, and M. Subrahmanyam, 1998, "An Arbitrage-free Two-Factor Model of the Term Structure of Interest Rates: A Multivariate Binomial Approach," working paper, New York University.

Piazzesi, M., 2001, "An Econometric Model of the Term Structure with Macroeconomic Jump Effects," working paper, UCLA.

Rebonato, R., 1999, "On the Simultaneous Calibration of Multifactor Lognormal Interest Rate Models to Black Volatilities and to the Correlation Matrix," *Journal of Computational Finance*, 2, 5–27.

Rebonato, R., and I. Cooper, 1997, "The Limitations of Simple Two-Factor Interest Rate Models," *Journal of Financial Engineering*, 5, 1–16.

Roberds, W., and C. Whiteman, 1999, "Endogenous Term Premia and Anamolies in the Term Structure of Interest Rates: Explaining the Predictability Smile," *Journal of Monetary Economics*, 44, 555–580.

Sandmann, K., and D. Sondermann, 1977, "A Note on the Stability of Lognormal Interest Rate Models and the Pricing of Eurodollar Futures," *Mathematical Finance*, 7, 119–125.

Santa-Clara, P., and D. Sornette, 2001, "The Dynamics of the Forward Interest Rate Curve with Stochastic String Shocks," *Review of Financial Studies*, 14, 149–185.

Singleton, K., 1995, "Yield Curve Risk Management for Government Bond Portfolios: An International Comparison," in W. Beaver and G. Parker, (eds.), *Risk Management Problems and Solutions*, McGraw Hill, New York.

Singleton, K., 2001, "Estimation of Affine Asset Pricing Models Using the Empirical Characteristic Function," *Journal of Econometrics*, 102, 111–141.

Singleton, K., and L. Umantsev, 2002, "Pricing Coupon-Bond Options and Swaptions in Affine Term Structure Models," *Mathematical Finance*, 12, 427–446.

Stanton, R., 1997, "A Nonparametric Model of Term Structure Dynamics and the Market Price of Interest Rate Risk," *Journal of Finance*, 52, 1973–2002.

Steenkiste, R. J. V., and S. Foresi, 1999, "Arrow-Debreu Prices for Affine Models," working paper, Soloman Smith Barney and Goldman Sachs.

Sun, T., 1992, "Real and Nominal Interest Rates: A Discrete-Time Model and Its Continuous-Time Limit," *Review of Financial Studies*, 5, 581–611.

Sun, T., S. Sundaresan, and C. Wang, 1993, "Interest Rate Swaps—An Empirical Investigation," *Journal of Financial Economics*, 34, 77–99.

Sundaresan, S., 2000, "Continuous-Time Methods in Finance: A Review and an Assessment," *Journal of Finance*, 55, 1569–1622.

Tauren, M., 1999, "A Model of Corporate Bond Prices with Dynamic Capital Structure," working paper, Indiana University.

Umantsev, L., 2001, "Econometric Analysis of European LIBOR-Based Options with Affine Term Structure Models," (Ph.D. dissertation), Stanford University.

Vasicek, O., 1977, "An Equilibrium Characterization of the Term Structure," *Journal of Financial Economics*, 5, 177–188.

Wachter, J., 2002, "Habit Formation and Returns on Bonds and Stocks," working paper, New York University.

Wu, S., 2002, "How Do Changes In Monetary Policy Affect the Term Structure of Interest Rates?" working paper, University of Kansas.

Wu, T., 2000, "Macro Factors and the Affine Term Structure of Interest Rates," working paper, Yale University.

Yan, H., 2001, "Dynamic Models of the Term Structured," Financial Analysts Journal, July/August, 60-75

Yu, F., 2002, "Modeling Expected Return on Defaultable Bonds," Journal of Fixed Income, 12, 69-81.

Zhou, C., 2001a, "The Term Structure of Credit Spreads with Jump Risk," *Journal of Banking and Finance*, 25, 2015–2040.

Zhou, H., 2001b, "Jump-Diffusion Term Structure and Ito Conditional Moment Generator," working paper, Federal Reserve Board.