Spazio tangente e il differenziale Corso di Laurea in Matematica A.A. 2024-2025 Docente: Andrea Loi

1. Sia $F: \mathbb{R}^2 \to \mathbb{R}^3$, $(x,y) \mapsto (x,y,xy)$. Sia $p=(x,y) \in \mathbb{R}^2$. Trovare $a,b,c \in \mathbb{R}$ tali che:

$$F_{*p}(\frac{\partial}{\partial x}|_p) = a\frac{\partial}{\partial u}|_{F(p)} + b\frac{\partial}{\partial v}|_{F(p)} + c\frac{\partial}{\partial w}|_{F(p)}.$$

- 2. Siano x,y le coordinate standard su \mathbb{R}^2 e $U=\mathbb{R}^2\setminus\{(0,0)\}$. In U le coordinate polari $(\rho,\theta),\ \rho>0,\theta\in(0,2\pi)$ sono definite come $x=\rho\cos\theta$ e $y=\rho\sin\theta$. Si scrivano $\frac{\partial}{\partial\rho}$ e $\frac{\partial}{\partial\theta}$ in funzione di $\frac{\partial}{\partial x}$ e $\frac{\partial}{\partial y}$.
- 3. Sia p = (x, y) un punto di \mathbb{R}^2 . Allora

$$c_p(t) = \begin{pmatrix} \cos 2t & -\sin 2t \\ \sin 2t & \cos 2t \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

é una curva liscia in \mathbb{R}^2 che inizia in p. Calcolare c'(0).

4. Siano M e N varietà differenziabili e $\pi_1: M \times N \to M$ e $\pi_2: M \times N \to N$ le proiezioni naturali. Dimostrare che per $(p.q) \in M \times N$ l'applicazione

$$(\pi_{1*p}, \pi_{2*q}): T_{(p,q)}(M \times N) \to T_pM \times T_qN$$

é un isomorfismo.

- 5. Calcolare il differenziale dell'applicazione antipodale $S^n \to S^n$, $x \mapsto -x$ in un punto $x \in S^n$.
- 6. Dimostrare che la struttura Vett i cui oggetti sono spazi vettoriali sui \mathbb{R} e i morfismi sono le applicazioni lineari è una categoria.
- 7. Dimostrare che la struttura $\mathcal{T}op$ i cui oggetti sono spazi topologici e i morfismi sono le applicazioni continue è una categoria.
- 8. Dimostrare che la struttura Var i cui oggetti sono le varietà differenziabli e i morfismi sono le applicazioni lisce è una categoria.
- 9. Dimostrare che la struttura $\mathcal{V}ar_p$ i cui oggetti sono le varietà differenziabli puntate e i morfismi sono le applicazioni lisce che rispettano i punti è una categoria.
- 10. Dimostrare che l'applicazione che ad uno spazio vettoriale V su \mathbb{R} associa il suo duale $V^* = \text{Hom}(V, \mathbb{R})$ e che ad $L \in \text{Hom}(V, W)$ associa $L^* \in \text{Hom}(W^*, V^*)$ definito da

$$L^*(\alpha) = \alpha \circ L, \ \forall \alpha \in W^*.$$

definisce un funtore controvariante dalla categoria Vett degli spazi vettoriali in se stessa.