Package 'trafo'

October 14, 2022

Title Estimation, Comparison and Selection of Transformations

Version 1.0.1 Date 2018-11-26

Description Estimation, selection and comparison of several families of transformations. The families of transformations included in the package are the following: Bickel-Doksum (Bickel and Doksum 1981 <doi:10.2307/2287831>), Box-Cox, Dual (Yang 2006 <doi:10.1016/j.econlet.2006.01.011>), Glog (Durbin et al. 2002 <doi:10.1093/bioinformatics/18.suppl_1.S105>), gpower (Kelmansky et al. 2013 <doi:10.1515/sagmb-2012-0030>), Log, Log-shift opt (Feng et al. 2016 <doi:10.1002/sta4.104>), Manly, modulus (John and Draper 1980 <doi:10.2307/2986305>), Neglog (Whittaker et al. 2005 <doi:10.1111/j.1467-9876.2005.00520.x>), Reciprocal and Yeo-Johnson. The package simplifies to compare linear models with untransformed and transformed dependent variable as well as linear models where the dependent variable is transformed with different transformations. Furthermore, the package employs maximum likelihood approaches, moments optimization and divergence minimization to estimate the optimal transformation parameter.

Depends R (>= 3.2.4)

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Imports FNN, moments, pryr, graphics, grDevices, lmtest

Suggests testthat, R.rsp

VignetteBuilder R.rsp

NeedsCompilation no

Author Lily Medina [aut],

Piedad Castro [aut],

Ann-Kristin Kreutzmann [aut, cre],

Natalia Rojas-Perilla [aut]

Maintainer Ann-Kristin Kreutzmann <ann-kristin.kreutzmann@fu-berlin.de>

29

Index

Repository CRAN

Date/Publication 2018-11-27 16:30:04 UTC

R topics documented:

as.data.frame.trafo	3
assumptions	4
bickeldoksum	5
boxcox	6
diagnostics	7
diagnostics.trafo_compare	8
diagnostics.trafo_lm	9
dual	10
glog	11
gpower	12
logshiftopt	13
logtrafo	14
manly	15
modulus	16
neglog	17
plot.trafo_compare	18
plot.trafo_lm	18
print.diagnostics.trafo_compare	19
print.diagnostics.trafo_lm	19
print.summary.trafo_compare	20
print.summary.trafo_lm	20
print.trafo	21
print.trafo_compare	21
print.trafo_lm	22
reciprocal	22
sqrtshift	23
summary.trafo_compare	24
summary.trafo_lm	24
trafo	25
	25
trafo_lm	26
yeojohnson	27

as.data.frame.trafo 3

as.data.frame.trafo Data frame with transformed variables

Description

The data frame that is returned contains the variables that are used in the model and additionally a variable with the transformed dependent variable. To the variable name of the dependent variable a t is added for transformed.

Usage

```
## S3 method for class 'trafo'
as.data.frame(x, row.names = NULL, optional = FALSE,
    std = FALSE, ...)
```

Arguments

X	an object of type trafo.
row.names	NULL or a character vector giving the row names for the data frame. Missing values are not allowed.
optional	logical. If TRUE, setting row names and converting column names (to syntactic names: see make.names) is optional. Note that all of R's base package as.data.frame() methods use optional only for column names treatment, basically with the meaning of data.frame(*, check.names = !optional)
std	logical. If TRUE, the data is transformed by the standardized/scaled transformation. Defaults to FALSE.
	other parameters that can be passed to the function.

Value

A data frame with the original variables and the transformed variable.

See Also

 $\verb|bickeldoksum|, \verb|boxcox|, \verb|dual|, \verb|glog|, \verb|gpower|, \verb|log|, \verb|log|shiftopt|, \verb|manly|, \verb|modulus|, \verb|neglog|, \verb|sqrtshift|, \verb|yeojohnson|$

```
# Load data
data("cars", package = "datasets")

# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)

# Transform dependent variable using divergence minimization following
# Kolmogorov-Smirnov</pre>
```

4 assumptions

```
logshiftopt_trafo <- logshiftopt(object = lm_cars, method = "div.ks",
plotit = FALSE)

# Get a data frame with the added transformed variable
as.data.frame(logshiftopt_trafo)</pre>
```

assumptions

First check of assumptions to find suitable transformations

Description

Gives a first overview if a transformation is useful and which transformation is promising to fulfill the model assumptions normality, homoscedasticity and linearity.

Usage

```
assumptions(object, method = "ml", std = FALSE, ...)
```

Arguments

object an object of type lm.

method a character string. Different estimation methods can be used for the estimation of

the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-

Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml".

std logical. If TRUE, the transformed model is returned based on the standard-

ized/scaled transformation. Defaults to FALSE.

... other parameters that can be passed to the function, e.g. other lambdaranges.

Self-defined lambdaranges are given to the function as an argument that is the combination of the name of the transformation and lr and the range needs to be a numeric vector of length 2. For instance, changing the lambdarange for the Manly transformation would mean to add an argument $manly_lr = manly_lr = c(0.000005, 0.00005)$. For the default values that are used for the lamb-

daranges see the documentation for the provided transformations.

Value

A table with tests for normality and homoscedasticity. Furthermore, scatterplots are returned to check the linearity assumption.

See Also

bickeldoksum, boxcox, dual, glog, gpower, log, logshiftopt, manly, modulus, neglog, sqrtshift, yeojohnson

bickeldoksum 5

Examples

```
# Load data
data("cars", package = "datasets")

# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)

assumptions(lm_cars)
assumptions(lm_cars, method = "skew", manly_lr = c(0.000005,0.00005))</pre>
```

bickeldoksum

Bickel-Doksum transformation for linear models

Description

The function transforms the dependent variable of a linear model using the Bickel-Doksum transformation. The transformation parameter can either be estimated using different estimation methods or given.

Usage

```
bickeldoksum(object, lambda = "estim", method = "ml",
  lambdarange = c(1e-11, 2), plotit = TRUE)
```

Arguments

object an object of type lm.

lambda either a character named "estim" if the optimal transformation parameter should

be estimated or a numeric value determining a given value for the transformation

parameter. Defaults to "estim".

method a character string. Different estimation methods can be used for the estimation of

the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-

Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml".

lambdarange a numeric vector with two elements defining an interval that is used for the

estimation of the optimal transformation parameter. The Bickel-Doksum transformation is only defined for positive values of lambda. Defaults to c(1e-11,

2).

plotit logical. If TRUE, a plot that illustrates the optimal transformation parameter or

the given transformation parameter is returned. Defaults to TRUE.

Value

An object of class trafo. Methods such as as.data.frame.trafo and print.trafo can be used for this class.

6 boxcox

References

Bickel PJ, Doksum KA (1981). An analysis of transformations revisited. Journal of the American Statistical Association, 76, 296-311.

Examples

```
# Load data
data("cars", package = "datasets")

# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)

# Transform dependent variable using a maximum likelihood approach
bickeldoksum(object = lm_cars, plotit = FALSE)</pre>
```

boxcox

Box-Cox transformation for linear models

Description

The function transforms the dependent variable of a linear model using the Box-Cox transformation. The transformation parameter can either be estimated using different estimation methods or given. The Box-Cox transformation is only defined for positive response values. In case the response contains zero or negative values a shift is automatically added such that y + shift > 0.

Usage

Arguments

object	an object of type 1m.
lambda	either a character named "estim" if the optimal transformation parameter should be estimated or a numeric value determining a given value for the transformation parameter. Defaults to "estim".
method	a character string. Different estimation methods can be used for the estimation of the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml".
lambdarange	a numeric vector with two elements defining an interval that is used for the estimation of the optimal transformation parameter. Defaults to $c(-2, 2)$.
plotit	logical. If TRUE, a plot that illustrates the optimal transformation parameter or the given transformation parameter is returned. Defaults to TRUE.

diagnostics 7

Value

An object of class trafo. Methods such as as.data.frame.trafo and print.trafo can be used for this class.

References

Box GEP, Cox DR (1964). An Analysis of Transformations. Journal of the Royal Statistical Society B, 26(2), 211-252.

Examples

```
# Load data
data("cars", package = "datasets")

# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)

# Transform dependent variable using skewness minimization
boxcox(object = lm_cars, method = "skew", plotit = FALSE)</pre>
```

diagnostics

Diagnostics for fitted models

Description

Returns information about the transformation and selected diagnostics to check model assumptions.

Usage

```
diagnostics(object, ...)
```

Arguments

object an object that contains two models that should be compared.

... other parameters that can be passed to the function.

Value

The return depends on the class of its argument. The documentation of particular methods gives detailed information about the return of that method.

See Also

```
diagnostics.trafo_lm, diagnostics.trafo_compare
```

```
diagnostics.trafo_compare
```

Diagnostics for two differently transformed models

Description

Returns information about the applied transformations and selected diagnostics to check model assumptions. Two models are compared where the dependent variable is transformed by different transformations.

Usage

```
## S3 method for class 'trafo_compare'
diagnostics(object, ...)
```

Arguments

```
object an object of type trafo_compare
... additional arguments that are not used in this method
```

Value

An object of class diagnostics.trafo_compare. The method print.diagnostics.trafo_compare can be used for this class.

```
# Load data
data("cars", package = "datasets")

# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)

# Transform with Bickel-Doksum transformation
bd_trafo <- bickeldoksum(object = lm_cars, plotit = FALSE)

# Transform with Box-Cox transformation
bc_trafo <- boxcox(object = lm_cars, method = "skew", plotit = FALSE)

# Compare transformed models
compare <- trafo_compare(object = lm_cars, trafos = list(bd_trafo, bc_trafo))

# Get diagnostics
diagnostics(compare)</pre>
```

diagnostics.trafo_lm 9

Description

Returns information about the applied transformation and selected diagnostics to check model assumptions. The return helps to compare the untransformed and the transformed model with regard to model assumptions.

Usage

```
## S3 method for class 'trafo_lm'
diagnostics(object, ...)
```

Arguments

```
object an object of type trafo_lm... additional arguments that are not used in this method
```

Value

An object of class diagnostics.trafo_lm. The method print.diagnostics.trafo_lm can be used for this class.

```
# Load data
data("cars", package = "datasets")

# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)

# Compare transformed models
BD_lm <- trafo_lm(object = lm_cars, trafo = "bickeldoksum",
method = "skew", lambdarange = c(1e-11, 2))

# Get diagnostics
diagnostics(BD_lm)</pre>
```

10 dual

dual

Dual transformation for linear models

Description

The function transforms the dependent variable of a linear model using the Dual transformation. The transformation parameter can either be estimated using different estimation methods or given.

Usage

```
dual(object, lambda = "estim", method = "ml", lambdarange = c(0, 2),
   plotit = TRUE)
```

Arguments

object an object of type lm.

lambda either a character named "estim" if the optimal transformation parameter should

be estimated or a numeric value determining a given value for the transformation

parameter. Defaults to "estim".

method a character string. Different estimation methods can be used for the estimation of

the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-

Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml".

lambdarange a numeric vector with two elements defining an interval that is used for the

estimation of the optimal transformation parameter. The Dual transformation is

not defined for negative values of lambda. Defaults to c(0, 2).

plotit logical. If TRUE, a plot that illustrates the optimal transformation parameter or

the given transformation parameter is returned. Defaults to TRUE.

Value

An object of class trafo. Methods such as as.data.frame.trafo and print.trafo can be used for this class.

References

Yang Z (2006). A modified family of power transformations. Economics Letters, 92(1), 14-19.

```
# Load data
data("cars", package = "datasets")
# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)</pre>
```

glog 11

```
# Transform dependent variable using divergence minimization following
# Cramer-von-Mises
dual(object = lm_cars, method = "div.cvm", plotit = TRUE)
```

glog

Glog transformation for linear models

Description

The function transforms the dependent variable of a linear model using the Glog transformation.

Usage

```
glog(object)
```

Arguments

object

an object of type lm.

Value

An object of class trafo. Methods such as as.data.frame.trafo and print.trafo can be used for this class.

References

Durbin BP, Hardin JS, Hawkins DM, Rocke DM (2002). A Variance-stabilizing Transformation for Gene-expression Microarray Data. Bioinformatics, 18, 105-110.

```
# Load data
data("cars", package = "datasets")
# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)
# Transform dependent variable
glog(object = lm_cars)</pre>
```

12 gpower

σ	pc	714	r

Gpower transformation for linear models

Description

The function transforms the dependent variable of a linear model using the Gpower transformation. The transformation parameter can either be estimated using different estimation methods or given.

Usage

```
gpower(object, lambda = "estim", method = "ml", lambdarange = c(-2, 2), plotit = TRUE)
```

Arguments

object an object of type lm.

lambda either a character named "estim" if the optimal transformation parameter should

be estimated or a numeric value determining a given value for the transformation

parameter. Defaults to "estim".

method a character string. Different estimation methods can be used for the estimation of

the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-

Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml".

lambdarange a numeric vector with two elements defining an interval that is used for the

estimation of the optimal transformation parameter. Defaults to c(-2, 2).

plotit logical. If TRUE, a plot that illustrates the optimal transformation parameter or

the given transformation parameter is returned. Defaults to TRUE.

Value

An object of class trafo. Methods such as as.data.frame.trafo and print.trafo can be used for this class.

References

Kelmansky DM, Martinez EJ, Leiva V (2013). A New Variance Stabilizing Transformation for Gene Expression Data Analysis. Statistical applications in genetics and molecular biology, 12(6), 653-666.

```
# Load data
data("cars", package = "datasets")
# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)</pre>
```

logshiftopt 13

```
# Transform dependent variable using divergence minimization following
# Kullback-Leibler
gpower(object = lm_cars, method = "div.kl", plotit = FALSE)
```

logshiftopt

Log shift opt transformation for linear models

Description

The function transforms the dependent variable of a linear model using the Log shift opt transformation. The transformation parameter can either be estimated using different estimation methods or given.

Usage

```
logshiftopt(object, lambda = "estim", method = "ml",
lambdarange = NULL, plotit = TRUE)
```

Arguments

object	an object of type lm.
lambda	either a character named "estim" if the optimal transformation parameter should be estimated or a numeric value determining a given value for the transformation parameter. Defaults to "estim".
method	a character string. Different estimation methods can be used for the estimation of the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml".
lambdarange	a numeric vector with two elements defining an interval that is used for the estimation of the optimal transformation parameter. Defaults to NULL. In this case the lambdarange is set to the range of the data. In case the lowest value is negative the absolute value of the lowest value plus 1 is the lower bound for the range.

Value

plotit

An object of class trafo. Methods such as as.data.frame.trafo and print.trafo can be used for this class.

the given transformation parameter is returned. Defaults to TRUE.

logical. If TRUE, a plot that illustrates the optimal transformation parameter or

14 logtrafo

Examples

```
# Load data
data("cars", package = "datasets")

# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)

# Transform dependent variable using divergence minimization following
# Kolmogorov-Smirnof
logshiftopt(object = lm_cars, method = "div.ks", plotit = FALSE)</pre>
```

logtrafo

Log transformation for linear models

Description

The function transforms the dependent variable of a linear model using the Log transformation. The Log transformation is only defined for positive response values. In case the response contains zero or negative values a shift is automatically added such that y + shift > 0.

Usage

```
logtrafo(object)
```

Arguments

object

an object of type lm.

Value

An object of class trafo. Methods such as as.data.frame.trafo and print.trafo can be used for this class.

References

Box GEP, Cox DR (1964). An Analysis of Transformations. Journal of the Royal Statistical Society B, 26(2), 211-252.

```
# Load data
data("cars", package = "datasets")
# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)
# Transform dependent variable
logtrafo(object = lm_cars)</pre>
```

manly 15

ma	n	1	v
IIIa		_	v

Manly transformation for linear models

Description

The function transforms the dependent variable of a linear model using the Manly transformation. The transformation parameter can either be estimated using different estimation methods or given.

Usage

Arguments

object an object of type lm.

lambda either a character named "estim" if the optimal transformation parameter should

be estimated or a numeric value determining a given value for the transformation

parameter. Defaults to "estim".

method a character string. Different estimation methods can be used for the estimation of

the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-

Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml".

lambdarange a numeric vector with two elements defining an interval that is used for the

estimation of the optimal transformation parameter. Defaults to c(-2, 2).

plotit logical. If TRUE, a plot that illustrates the optimal transformation parameter or

the given transformation parameter is returned. Defaults to TRUE.

Value

An object of class trafo. Methods such as as.data.frame.trafo and print.trafo can be used for this class.

References

Manly BFJ (1976). Exponential data transformations. Journal of the Royal Statistical Society: Series D, 25, 37-42.

```
# Load data
data("cars", package = "datasets")
# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)</pre>
```

16 modulus

```
\# Transform dependent variable using a maximum likelihood approach manly(object = lm_cars, plotit = FALSE)
```

modulus

Modulus transformation for linear models

Description

The function transforms the dependent variable of a linear model using the Modulus transformation. The transformation parameter can either be estimated using different estimation methods or given.

Usage

```
modulus(object, lambda = "estim", method = "ml", lambdarange = c(-2, 2), plotit = TRUE)
```

Arguments

object	an object of type lm.
lambda	either a character named "estim" if the optimal transformation parameter should be estimated or a numeric value determining a given value for the transformation parameter. Defaults to "estim".
method	a character string. Different estimation methods can be used for the estimation of the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml".
lambdarange	a numeric vector with two elements defining an interval that is used for the estimation of the optimal transformation parameter. Defaults to $c(-2, 2)$.
plotit	logical. If TRUE, a plot that illustrates the optimal transformation parameter or the given transformation parameter is returned. Defaults to TRUE.

Value

An object of class trafo. Methods such as as.data.frame.trafo and print.trafo can be used for this class.

References

John JA, Draper NR (1980). An alternative family of transformations. Journal of the Royal Statistical Society: Series C, 29, 190-197.

neglog 17

Examples

```
# Load data
data("cars", package = "datasets")

# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)

# Transform dependent variable with fixed lambda
modulus(object = lm_cars, lambda = 0.8, plotit = FALSE)</pre>
```

neglog

Neg log transformation for linear models

Description

The function transforms the dependent variable of a linear model using the Neg log transformation.

Usage

```
neglog(object)
```

Arguments

object

an object of type lm.

Value

An object of class trafo. Methods such as as.data.frame.trafo and print.trafo can be used for this class.

References

Whittaker J, Whitehead C, Somers M (2005). The neglog transformation and quantile regression for the analysis of a large credit scoring database. Journal of the Royal Statistical Society. Series C (Applied Statistics), 54(4), 863-878.

```
# Load data
data("cars", package = "datasets")
# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)
# Transform dependent variable
neglog(object = lm_cars)</pre>
```

18 plot.trafo_lm

plot.trafo_compare

Plots for linear models with transformed dependent variable

Description

For the two transformed models a range of plots is returned in order to check model assumptions graphically.

Usage

```
## S3 method for class 'trafo_compare'
plot(x, ...)
```

Arguments

x an object of type trafo_compare

... additional arguments that are not used in this method

plot.trafo_lm

Plot for regression models with untransformed and transformed dependent variable

Description

For the untransformed and transformed model a range of plots is returned in order to check model assumptions graphically.

Usage

```
## S3 method for class 'trafo_lm'
plot(x, ...)
```

Arguments

x an object of type trafo_lm

. . . additional arguments that are not used in this method

```
print.diagnostics.trafo_compare

Prints diagnostics of two trafo objects
```

Description

Prints diagnostics of two trafo objects.

Usage

```
## S3 method for class 'diagnostics.trafo_compare' print(x, \ldots)
```

Arguments

```
x an object of type diagnostics.trafo_compare... additional arguments that are not used in this method
```

```
print.diagnostics.trafo_lm
```

Prints diagnostics of an untransformed and a transformed model

Description

Prints diagnostics of an untransformed and a transformed model.

Usage

```
## S3 method for class 'diagnostics.trafo_lm'
print(x, ...)
```

Arguments

```
x an object of type diagnostics.trafo_lm... additional arguments that are not used in this method
```

```
\label{lem:print.summary.trafo_compare} Prints\ summary\ of\ trafo\_compare\ objects
```

Description

Prints objects to be shown in the summary function for objects of type trafo_compare.

Usage

```
## S3 method for class 'summary.trafo_compare'
print(x, ...)
```

Arguments

```
x an object of type summary.trafo_compare... additional arguments that are not used in this method
```

Description

prints objects to be shown in the summary function for objects of type trafo_lm

Usage

```
## S3 method for class 'summary.trafo_lm'
print(x, ...)
```

Arguments

```
x an object of type summary.trafo_lm
... additional arguments that are not used in this method
```

print.trafo 21

print.trafo

Prints object of type trafo

Description

Prints object of type trafo

Usage

```
## S3 method for class 'trafo'
print(x, ...)
```

Arguments

Χ an object of type trafo.

other parameters that can be passed to the function.

Description

Prints object of type trafo_compare

Usage

```
## S3 method for class 'trafo_compare'
print(x, ...)
```

Arguments

an object of type trafo_compare. Х

other parameters that can be passed to the function.

22 reciprocal

print.trafo_lm

Prints object of type trafo_lm

Description

Prints object of type trafo_lm

Usage

```
## S3 method for class 'trafo_lm'
print(x, ...)
```

Arguments

x an object of type trafo_lm.

... other parameters that can be passed to the function.

reciprocal

Reciprocal transformation for linear models

Description

The function transforms the dependent variable of a linear model using the Reciprocal transformation.

Usage

```
reciprocal(object)
```

Arguments

object

an object of type lm.

Value

An object of class trafo. Methods such as as.data.frame.trafo and print.trafo can be used for this class.

```
# Load data
data("cars", package = "datasets")
# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)
# Transform dependent variable
reciprocal(object = lm_cars)</pre>
```

sqrtshift 23

			\sim
sa	rts	nı	Τt

Square-root shift transformation for linear models

Description

The function transforms the dependent variable of a linear model using the Square-root shift transformation. The transformation parameter can either be estimated using different estimation methods or given.

Usage

```
sqrtshift(object, lambda = "estim", method = "ml",
  lambdarange = NULL, plotit = TRUE)
```

Arguments

object an object of type lm.

lambda either a character named "estim" if the optimal transformation parameter should

be estimated or a numeric value determining a given value for the transformation

parameter. Defaults to "estim".

method a character string. Different estimation methods can be used for the estimation of

the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-

Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml".

lambdarange a numeric vector with two elements defining an interval that is used for the

estimation of the optimal transformation parameter. Defaults to NULL. In this case the lambdarange is set to the range of the data. In case the lowest value is negative the absolute value of the lowest value plus 1 is the lower bound for the

range.

plotit logical. If TRUE, a plot that illustrates the optimal transformation parameter or

the given transformation parameter is returned. Defaults to TRUE.

Value

An object of class trafo. Methods such as as.data.frame.trafo and print.trafo can be used for this class.

```
# Load data
data("cars", package = "datasets")

# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)

# Transform dependent variable using a maximum likelihood approach
sqrtshift(object = lm_cars, plotit = TRUE)</pre>
```

24 summary.trafo_lm

summary.trafo_compare Summary for two differently transformed models

Description

The summary contains the summary for two transformed models. The summary is based on the summary for objects of type 1m.

Usage

```
## S3 method for class 'trafo_compare'
summary(object, ...)
```

Arguments

object an object of type trafo_compare
... additional arguments that are not used in this method

Value

An object of class summary.trafo_compare. The method print.summary.trafo_compare can be used for this class.

summary.trafo_lm

Summary for linear models with untransformed and transformed dependent variable

Description

The summary method for class trafo_lm contains a summary for an untransformed and a transformed model. The resulting summary is based on the summary for objects of type lm.

Usage

```
## S3 method for class 'trafo_lm'
summary(object, ...)
```

Arguments

object an object of type trafo_lm
... additional arguments that are not used in this method

Value

An object of class summary.trafo_lm. The method print.summary.trafo_lm can be used for this class.

trafo 25

trafo

An R package supporting the selection of a suitable transformation

Description

Estimation, selection and comparison of several families of transformations. The families of transformations included in the package are the following: Bickel-Doksum, Box-Cox, Dual, Glog, Gpower, Log, Log-shift opt, Manly, Modulus, Neglog, Reciprocal and Yeo-Johnson. The package simplifies to compare linear models with untransformed and transformed dependent variable as well as linear models where the dependent variable is transformed with different transformations. Furthermore, the package employs maximum likelihood approaches, skewness and divergence minimization to estimate the optimal transformation parameter.

Details

An overview of all currently provided functions can be requested by library(help=trafo).

trafo_compare

Compares linear models with transformed dependent variable

Description

Function trafo_compare compares linear models where the dependent variable is transformed by different transformations.

Usage

```
trafo_compare(object, trafos, std = FALSE)
```

Arguments

object an object of type lm

trafos a list of two trafo objects based on the same model given in object.

std logical. If TRUE, the transformed models are returned based on the standard-

ized/scaled transformation. Defaults to FALSE.

Value

An object of class trafo_compare. Methods such as diagnostics.trafo_compare, print.trafo_compare, plot.trafo_compare and summary.trafo_compare can be used for this class.

See Also

bickeldoksum, boxcox, dual, glog, gpower, log, logshiftopt, manly, modulus, neglog, sqrtshift, yeojohnson

26 trafo_lm

Examples

```
# Load data
data("cars", package = "datasets")

# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)

# Transform with Bickel-Doksum transformation
bd_trafo <- bickeldoksum(object = lm_cars, plotit = FALSE)

# Transform with Box-Cox transformation
bc_trafo <- boxcox(object = lm_cars, method = "skew", plotit = FALSE)

# Compare transformed models
trafo_compare(object = lm_cars, trafos = list(bd_trafo, bc_trafo))</pre>
```

trafo_lm

Fits transformed linear models

Description

Function trafo_1m fits linear models with transformed dependent variable. The main return are two 1m objects where one is the untransformed linear model and the other one the transformed linear model.

Usage

```
trafo_lm(object, trafo = "boxcox", lambda = "estim", method = "ml",
  lambdarange = NULL, std = FALSE, custom_trafo = NULL)
```

Arguments

object	an object of type ?	l m
ob lect	an object of type.	LIII.

trafo a character string. Different transformations can be used for transforming the

dependent variable in a linear model: (i) "bickeldoksum", (ii) "boxcox", (iii) "dual", (iv) "glog", (v) "gpower", (vi) "log", (vii) "logshiftopt", (viii) "manly", (ix) "modulus", (x) "neglog", (xi) "reciprocal", (xii) "yeojohnson". Defaults to

"boxcox".

lambda either a character named "estim" if the optimal transformation parameter should

be estimated or a numeric value determining a given value for the transformation

parameter. Defaults to "estim".

method a character string. Different estimation methods can be used for the estimation of

the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-

Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml".

yeojohnson 27

lambdarange	a numeric vector with two elements defining an interval that is used for the estimation of the optimal transformation parameter. Defaults to NULL which means that the default value of the chosen transformation is used.
std	logical. If TRUE, the transformed model is returned based on the standard-ized/scaled transformation. Defaults to FALSE.
custom_trafo	a list. The list has two elements where the first element is a function specifying the desired transformation and the second element is a function specifying the corresponding standardized transformation. Defaults to NULL.

Value

An object of class trafo_lm. Methods such as diagnostics.trafo_lm, print.trafo_lm, plot.trafo_lm and summary.trafo_lm can be used for this class.

See Also

bickeldoksum, boxcox, dual, glog, gpower, log, logshiftopt, manly, modulus, neglog, sqrtshift, yeojohnson

Examples

```
# Load data
data("cars", package = "datasets")

# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)

# Compare untransformed and transformed model
trafo_lm(object = lm_cars, trafo = "bickeldoksum", method = "skew",
lambdarange = c(1e-11, 2))</pre>
```

yeojohnson

Yeo-Johnson transformation for linear models

Description

The function transforms the dependent variable of a linear model using the Yeo-Johnson transformation. The transformation parameter can either be estimated using different estimation methods or given.

Usage

```
yeojohnson(object, lambda = "estim", method = "ml",
  lambdarange = c(-2, 2), plotit = TRUE)
```

28 yeojohnson

Arguments

object an object of type lm.

lambda either a character named "estim" if the optimal transformation parameter should

be estimated or a numeric value determining a given value for the transformation

parameter. Defaults to "estim".

method a character string. Different estimation methods can be used for the estimation of

the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-

Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml".

lambdarange a numeric vector with two elements defining an interval that is used for the

estimation of the optimal transformation parameter. Defaults to c(-2, 2).

plotit logical. If TRUE, a plot that illustrates the optimal transformation parameter or

the given transformation parameter is returned. Defaults to TRUE.

Value

An object of class trafo. Methods such as as.data.frame.trafo and print.trafo can be used for this class.

References

Yeo IK, Johnson RA (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87, 954-959.

```
# Load data
data("cars", package = "datasets")

# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)

# Transform dependent variable using a maximum likelihood approach
yeojohnson(object = lm_cars, plotit = FALSE)</pre>
```

Index

```
* diagnostics
                                                   summary.trafo_lm, 24, 27
    diagnostics, 7
                                                   trafo, 25
as.data.frame.trafo, 3, 5, 7, 10-17, 22, 23,
                                                   trafo-package (trafo), 25
         28
                                                   trafo_compare, 25
assumptions, 4
                                                   trafo_lm, 26
                                                   yeojohnson, 3, 4, 25, 27, 27
bickeldoksum, 3, 4, 5, 25, 27
boxcox, 3, 4, 6, 25, 27
diagnostics, 7
diagnostics.trafo_compare, 7, 8, 25
diagnostics.trafo_lm, 7, 9, 27
dual, 3, 4, 10, 25, 27
glog, 3, 4, 11, 25, 27
gpower, 3, 4, 12, 25, 27
log, 3, 4, 25, 27
logshiftopt, 3, 4, 13, 25, 27
logtrafo, 14
manly, 3, 4, 15, 25, 27
modulus, 3, 4, 16, 25, 27
neglog, 3, 4, 17, 25, 27
plot.trafo_compare, 18, 25
plot.trafo_lm, 18, 27
print.diagnostics.trafo_compare, 8, 19
print.diagnostics.trafo_lm, 9, 19
print.summary.trafo_compare, 20, 24
print.summary.trafo_lm, 20, 24
print.trafo, 5, 7, 10-17, 21, 22, 23, 28
print.trafo_compare, 21, 25
print.trafo_lm, 22, 27
reciprocal, 22
sqrtshift, 3, 4, 23, 25, 27
summary.trafo_compare, 24, 25
```