DATASTREAM

Back-end development for a real-time platform calculating taxi fare prices based on a selected comfort level.

1. Introduction

Objective

Calculate the distance between a driver and a customer to determine the price of a trip based on the selected comfort type.

2. Data Model

Incoming Data in Kafka via Python 'KafkaProducer'

3. TravelProcessor Development

Development based on defined architecture and unit tests.

4. Data Model

Transformation Examples

Custom TravelProcessor

```
View as: original
         {"data": [{
                "properties-client": {
    "nomclient": "FALL",
    "telephoneClient": "060786575",
    "location": "2.3522,48.8566"
    6
                 "distance": 944.494,
                 "properties-driver": {
                        "nomDriver": "DIOP",
"location": "3.7038,40.4168",
"telephoneDriver": "0760786575"
    9
  10
  11
  12
                 "prix_base_per_km": 2,
"confort": "standard",
  13
  14
                 "prix_travel": 1888.99
  15
  16
         }]}
```

JoltTransformJSON

```
View as: original

1 v {
2     "nomclient" : "FALL",
3     "telephoneClient" : "060786575",
4     "locationClient" : "2.3522,48.8566",
5     "distance" : 944.494,
6     "confort" : "standard",
7     "prix_travel" : 1888.99,
8     "nomDriver" : "DIOP",
9     "locationDriver" : "3.7038,40.4168",
10     "telephoneDriver" : "0760786575",
11     "agent_timestamp" : "2024-09-17T18:06:39Z"
```

5. Indexing & monitoring

Indexing and mapping via *ElasticSearch*

Definition of data indexing and mapping.

Performance analysis

Monitoring of data streams.

Data analysis via *Kibana*

Detailed real-time visualization.

6. Datawarehouse and BigQuery

Merge all 10,000 records and compress data (.parquet*) with timestamp agent.

7. DataWarehouse Configuration

8. Revenue Calculation by Cluster and Comfort Level

Analysis process with BigQuery ML

Using BigQuery ML to create a K-Means model.

Clustering Methodology

Identification of 8 clusters based on geographical coordinates.

Revenue Calculation

Calculation of revenue per cluster and comfort type.

9. Data visualization

Visualizing the model results via Looker Studio

CA per Cluster per Confort			
	CENTROID_ID *	confort	chiffre_affaire
1.		medium	441,971.95
2.		high	786,545.55
3.		low	319,625.6
4.	7	low	51,618
5.	7	medium	79,086.15
6.	7	high	132,403.2
7.	6	medium	313,253.1
8	6	high	532,184.2
9.	6	low	204,806.7
10.	5	medium	777,765.85
11.	5	high	1,312,043.2
12.	5	low	543,749.6
13.	4	medium	585,117.75
14.	4	low	395,745.5
15.	4	high	920,887.5
16.	3	high	4,122,687,65
17.	3	medium	2,420,476
18.	3	low	1,574,100
19.	2	medium	239,049.3
20.	2	high	384,546.8
21.	2	low	157,390.65
22.	1	medium	241,871.7
23.	1	high	381,482.55