HOT-MIX WORKSHEET INDEX REPORT #: _____

Test Method	AASHTO/ASTM	Page	Technician	√ or NP
REDUCING SAMPLES OF HOT MIX	R47 /	2		
ABSON RECOVERY	R59 / D1856	4		
MECHANICAL ANALYSIS OF EXTRACTED AGGREGATE (SIEVE TEST)	T30 / D5444	6		
MOISTURE OR VOLATILE DISTILLATES	T110 / D1461	8		
QUANTITATIVE EXTRACTION	T164 / D2172	9		
BULK SPECIFIC GRAVITY	T166 / D2726	15		
UNCONFINED COMPRESSIVE STRENGTH	T167 / D1074	18		
MAXIMUM SPECIFIC GRAVITY (RICE)	T209 / D2041	21		
MARSHALL METHOD (PREPARATION AND STABILITY AND FLOW)	T245 / D6926 T245 / D6927	25		
HVEEM METHOD	T246 / D1560	31		
CALIFORNIA KNEADING COMPACTOR	T247 / D1561	34		
PERCENT AIR VOIDS	T269 / D3203	36		
BULK SP. GR. OF PARAFFIN SPECIMENS	T275 / D1188	37		
RESISTANCE TO MOISTURE (TSR)	T283 / D4867	40		
ASPHALT CONTENT BY NUCLEAR METHOD	T287 / D4125	45		
DRAINDOWN OF HMA	T305 / D6390	54		
ASPHALT CONTENT BY IGNITION OVEN	T308 / D6307	55	_ 4	
GYRATORY COMPACTOR	T312 / D6925	60		
HAMBURG WHEEL-TRACK TESTING	T324 /	63		
MOISTURE CONTENT BY OVEN	T329 /	66	0.00	
BULK SP. GR. – VACUUM SEALING METHOD (CORELOK)	T331 / D6752	67		
EFFECT OF WATER	/ D1075	70		
DENSITY OF BITUMINOUS CONCRETE IN PLACE BY NUCLEAR METHODS	/ D2950	71		
ROTAVAPOR RECOVERY	/ D5404	73		
INDIRECT TENSILE (IDT) STRENGTH	/ D6931	75		
Colorado – HVEEM	CP-L 5106	77		
Colorado – GYRATORY (4 in.)	CP-L 5115	80		
Texas – TEXAS GYRATORY (TGC)	TEX-206-F	83		
Texas – TEXAS STABILOMETER ★	TEX-208-F	86		

^{**} NP for Not Presented or use a vertical line.

^{★ -} Indicates the line has been modified since the version of the worksheets dated 2013-10-02

REDUCING SAMPLES OF HOT-MIX ASPHALT TO TESTING SIZE

(R47)

		APPARATUS Date:	
Equipn	ment for o	one of the following methods:	
Mecha	nical Spli	itter Method	
1.		nical Splitter Type A	
	(a)	Designed so that the HMA field sample will flow smoothly and freely through the divider	
	()	without restriction or loss of materials (See Figure 1).	
	(b)	Splitter has four equal width chutes.	
	(c)	Four appropriate sized containers.	
	(d)	Hopper with release handle.	
2.	Mechai	nical Splitter Type B?	
	(a)	No less than 8 equal sized openings.	
	(b)	The openings minimum width must be at least 50% larger than largest particle to be split.	
	(c)	Hopper or straightedge pan.	
3.	Approv	ved Release Agent (such as non-stick cooking spray) if used, meets the following criteria?	
	(a)	Does not contain solvents.	
	(b)	Does not contain petroleum based products that affect binder properties.	
		Note to Assessors: Products such as WD-40 contain solvents and petroleum products, and are not acceptable for this test method.	
Ouarte	ring Meth	nod:	
1.		the following:	
	(a)	Quartering template?	
	// /	(1) Forms a cross forming 90 degree angles at juncture?	
		(2) Sufficient length (1.1 times the diameter of the flattened cone of HMA to be quartered)?	
or	(b)	Straightedges?	
2.	Elet be	ttom scoop?	
2. 3.			
3. 4.	Non et	spatula, trowel, or piece of metal to be used as a straightedge?	
4.		ved Release Agent (such as non-stick cooking spray) if used, meets the following criteria?	
4.	(a)	Does not contain solvents.	
	(a) (b)	Does not contain petroleum based products that affect binder properties.	
	(0)	Note to Assessors: Products such as WD-40 contain solvents and petroleum products, and are not	
		acceptable for this test method.	
5.		deceptable for mission memon.	
Increm	ental Me	thod	
1.		ttom scoop?	
2.		ick heavy paper or heat-resistant plastic?	
3.		spatulas, trowels, metal straightedges, or a 12-in drywall taping knife?	
4.	Hot pla	ite, gloves, buckets, and cans?	
COMN	MENTS (1	R47):	(R47)

COMMENTS (R47):

REDUCING SAMPLES OF HOT-MIX ASPHALT TO TESTING SIZE

(R47)

PROCEDURE

	<u>PROCEDURE</u>	Date:
	anical Splitter Method: for a large amount of material, Method A should be used whenever pe	
1.	Optional: Splitter and accessories heated, not to exceed 110°C as determined with	
	temperature device?	
2.	Optional: All surfaces coming into contact with HMA coated with approved releas	e agent?
3.	Mechanical Splitter Method (Type A)	
	(a) Field or laboratory sample placed in hopper avoiding sample segregation?.	······ <u> </u>
	(b) Sample containers positioned to receive HMA?	
	(c) Release handle used dropping HMA through chutes?	
	(d) Samples taken from opposing corners for reintroduction into hopper?	
	(e) Split as many times as necessary for appropriate test?	······ <u> </u>
4.	Mechanical Splitter Method (Type B)	
	(a) Sample placed in hopper or straightedge pan?	
	(b) Uniformly spread edge to edge?	
	(c) Rate at which sample introduced allows free flow into sample containers?	
	(d) Steps repeated until sample size obtained?	
Note: U	Unlike C702, the half of the split sample normally regarded as trash may be set aside for reducing	tion in size for other tests.
0	of a Materia	
Quarter 1.	ering Method	
	Sample placed on a hard, non-stick, clean, level surface?	
2. 3.	Approved release agent, non-stick paper, or heat resistant plastic may be used to ma	
3. 4.	Sample mixed to uniformity by turning over four times?	
4.	Mixed using flat bottom scoop or by alternately lifting each corner of the paper or pulling toward the opposite corner?	
5.	During the last turning, entire sample formed into conical pile by depositing each so	
5.	top of previous one or by lifting two opposite corners of the paper or plastic?	
6.	Pile flattening into uniform thickness and diameter by pressing down on the apex?	
7.	Diameter approximately four to eight times the thickness?	
8.	A visual check is done to ensure that the material is homogenous?	
9.	Flattened mass divided into four quarters using quartering template or straightedges	
10.	Quartering template pressed down until it has complete contact with surface?	
11.	Two diagonally opposite quarters selected as "quartered" material?	
12.	Steps repeated until sample size obtained?	
12.	Steps repetited their sumple size obtained.	
Increme	nental Method	
1.	Sample placed on a hard, non-stick, clean level surface covered with non-stick paper	er, heat resistant
	plastic, or another suitable material?	
2.	Sample mixed to uniformity by turning over four times?	
3.	Mixed using flat bottom scoop or by alternately lifting each corner of the paper or p	plastic and
	pulling toward the opposite corner?	
4.	During the last turning, entire sample formed into conical pile by depositing each so	
	top of previous one or by lifting two opposite corners of the paper or plastic?	
5.	A visual check is done to ensure that the material is homogenous?	
6.	Paper or plastic grasped and material is rolled into a cylindrical roll (loaf) and top o	
7.	Paper pulled so that at least ¼ of the length of the loaf is off of the edge of the coun	
	overhanging the counter sliced off and placed in a container?	
or	r A straightedge used to slice off approximately ¼ of the loaf and material placed in a	a container?
8.	Additional material removed as needed to obtain test size?	······

(R47)

AMRL Hot-Mix Asphalt Worksheets OSA.F34 RECOVERY OF ASPHALT FROM SOLUTION BY ABSON METHOD

111VIA - 4	
(R59)	
(D1856)	

		APPARATUS Date:
1.	or	Centrifuge apparatus (either of the following): (a) Batch unit capable of 770 times gravity?
2.		Distillation flasks (2): (a) Wide-mouth, flat bottom, 250 mL [AASHTO only: 250 to 500 mL capacity] extraction flasks? *
3.		Suitable flask for the receiver?
4.		Delivery tube: 10 mm I.D., goose-neck shaped glass tube connects flask to condenser?
5.		Inlet aeration tube: at least 180 mm long having a 10 mm bulb with 6 staggered 1.5 mm holes?
6.	or or	Distillation flask heater: (a) Electric heating mantle with variable transformer?
7.		Water jacketed condenser with 200 mm minimum jacket length?
8.		Thermometer: ASTM 7C or 7F?
9.		Gas flow meter capable of indicating flow up to 1000 mL/min. (CO ₂)?
10.		Separatory funnel: 125 mL capacity or larger (required only if Abson apparatus is used for primary distillation)?
11.	or or or	Extraction solvent: (a) Trichloroethylene, reagent grade?
12.		Supply of carbon dioxide gas?
CO	MM]	ENTS (R59 / D1856): (R59 / D1856

COMMENTS (R59 / D1856):

RECOVERY OF ASPHALT FROM SOLUTION BY ABSON METHOD

HMA - 3	
(R59)	
(D1856)	

	PROCEDURE Date:
C 1	Dogganation
-	Preparation:
1.	Is sample a solution from an extraction of sufficient mass to provide approximately
2	75 to 100 g of recovered asphalt?
2.	AASHTO only: Asphalt mixture heated in covered container until workable at $110 ^{\circ}\mathrm{C} (230 ^{\circ}\mathrm{F})$
2	for no longer than 30 minutes?
3.	Extraction apparatus clean and free of petroleum distillates?
4.	Was all of the asphalt in the mixture extracted?
5.	
5.	Extraction method A [AASHTO only: or E] used?
Testing	
1.	Centrifuging:
1.	(a) Solution centrifuged at 770g for 30 or more minutes?
or	
01	(b) Continuously at not more than 150 m2 minute at not less than 5000g.
2.	Solution concentrated to approximately 200 to 300 mL by:
	(a) Any primary distillation that meets the following criteria:
	(1) Has a flask large enough to hold all the solution from the extraction?
	(2) Solution from primary distillation transferred to Figure 1 assembly using
	several washes of solvent?
or	(b) Distillation started in assembly shown in Figure 1:
	(1) Separatory funnel in place through cork?
	(2) Distillation made continuous by adding solution through funnel keeping flask
	approximately 1/2 full?
	(3) Solution container and funnel washed into flask with clean solvent?
3.	Bulb of aeration tube lowered to make contact with the bottom of the flask?
4.	AASHTO: Slow introduction of CO ₂ begun at the beginning of the distillation (about 100 mL/min)?
	ASTM: Aeration tube lowered and CO ₂ introduced at 135°C (275°F)?
5.	When temperature reaches 157 to 160°C (315 - 320°F), gas rate increased to 900 mL/minute?
	Time temperature reaches 160°C (320°F):
6.	Temperature at 160 to 166°C (320 - 330°F) and gas flow maintained at 900 mL/minute for
	10 minutes (minimum) or until dripping stops?
7.	Gas flow minimum times:
	(a) Gas flow and heat maintained for an additional 5 minutes after the last drop (CO ₂ flow never
	less than 15 minutes)?
	(b) If residue in flask is highly viscous and the expected penetration is less than 30, maintain the gas
	flow and temperature for 20 - 22 min., including initial 15 minutes?
8.	CO ₂ flow never less than 15 minutes? Time gas flow and heat cut off:
	Ash content of recovered asphalt determined in accordance with (T111 / D2939)?
9.	
	Elapsed time between time extraction started and time gas flow and heat cut off 8 hrs. or less?

Revised 2014-04-10

(R59 / D1856)

MECHANICAL ANALYSIS OF EXTRACTED AGGREGATE

HMA - 6	
(T30)	
(D5444)	

		<u>APPARATUS</u>	Date:
1.	Nest of sieves: Upper sieve: 2.0	00- or 1.18-mm (No. 10 or 16),	lower sieve No. 200?
2.	Mechanical Shaker, Manufacturer	/ ID #:	*
	Note: A mechanical shaker is recomm	ended for sample sizes greater than	a 20 kg (44 lb).
			?
			ng annual standardization)?
			e amount of time that the shaker will operate.
			me, or that the laboratory is aware of any offset.
			on canoration record.
		rox. 10 minutes may result in degra	
3.	Wetting agent used (such as liquid	dish soap)?	
4.			
5.			ng to 0.1 % of sample mass?
6.			e covered with water and to permit
			?
7.	Spoon or Mixing Utensil, or simila	ar device for agitating the sampl	le during the washing procedure?
0	AAGUTO I W I I I I	(0 : 1) :	I I I .
8.	AASHTO only: Mechanical washin		
	consistent with those obtained by t	ise oj manuai operations?	
	should be performed for each aggrega	nanual washing, a side-by-side com te type to be tested. If the determind washing differs by more than the a	ne if a particular mechanical washing nparison of identically prepared samples ed percentage of material finer than the cceptable range of two results given in
9.			ed, standardized, or checked according ab is not getting accredited for R18)?
		<u>PROCEDURE</u>	
Samp	ple Preparation: circle one	Extraction sample Ign	nition sample
1.	Sample consists of all aggregate at	ter extraction or ignition oven s	sample?
2.	ASTM only: Gradation analysis	only performed on aggregate ex	xtracted by ignition method in
	Test Method D6307 when the corn	rection factor is 1.0 or less?	
3.			
4.	Sample dried to constant mass?		
5.	Sample weighed to nearest 0.1g (e	nter mass below)?	
6.	Extraction samples only: Total r	nass of aggregate for percent ca	lculation includes mineral matter mass?
7.	AASHTO only: If from T308, same	ple agrees with the mass after ig	gnition from T308 (W_F) to within 0.1 %
СОМ	MENTS (T30 / D5444):		(T30 / D544

MECHANICAL ANALYSIS OF EXTRACTED AGGREGATE

HMA - 7	
(T30)	
(D5444)	

			<u>PROCEDURI</u>	E (Continued)		Date:	
sh							
	After r	nass is recorded, sa	mple placed in container and	l covered with water	?		
	After mass is recorded, sample placed in container and covered with water?						
	Note: There should be enough wetting agent to produce a small amount of suds. Excessive suds may overflow the sieves.						
	Contents of container agitated vigorously?						
	Wash	water poured through	gh proper nest of two sieves?			·····	
			icles onto the sieves avoided				
	No. 20	0 sieve not overflow	wed or overloaded?			-	
			vash water is clear?				
			d sieves returned to containe				
			han 75-μm (No. 200) dried a			_	
			n be dried to constant mass	_	npaction temr	perature + 9°F (5°C)1?	
			Mass After Washi				
			erial removed by washing ca				
			,				
e T	esting: c	circle which type(s)	were used 8-in sieves	12-in sieves	Other (s	such as square sieves)	
	Materi	al sieved on specifi	ed sieves (including 75-µm)	7			
			t more than 0.5 percent by r				
	sieve i		nand with 8 in. diameter siev				
		Sieve Size	Initial specimen mass	Mass pas	sing sieve	% Passing	
			mm) x (πr^2) [see table below This is not identical to $(T27/C)$				
		Sieve	Opening (mm)	Mass (g) – 8 in. d	ia.	Mass (g) – 12 in. dia.	
	- 70	< #4	< 4.75	200		438	
		#4 1/4 in.	4.75 6.3	385 510		867 1149	
		3/8 in.	9.5	770		1734	
		1/2 in.	12.5	1013		2281	
		3/4 in.	19.0	1539		3468	
			-		JI.		
	Each f	raction of aggregate	weighed, including minus 7	75-um (No. 200)?			
			after sieving agree with the n		n () 2 parcent	·····	
	Calcul		iter sieving agree with the h	iass arter wasii willii	n 0.2 percent	· · · · · · · · · · · · · · · · · · ·	
			olog (from T164/D2172) T	tal minus 75 (NT-	200)	ua 75 uma har ainmina	
	(a)		oles (from T164/D2172): To				
	(1.)	minus /5-µm by	wasning + mass of mineral i	natter (asn + increase		ss from extraction)?	
or	(b)					 1 · ·	
	(0)	Ignition samples	s (from T308/D6307): Total	minus 75-μm (No. 2			
	, ,	Ignition samples minus 75-μm by	s (from T308/D6307): Total washing?	minus 75-μm (No. 2			
	Sizes 1	Ignition samples minus 75-μm by arger than 75-μm (1	s (from T308/D6307): Total washing?	minus 75-μm (No. 2 1.0 percent (at least)	? ?	·····	
	Sizes l Minus	Ignition samples minus 75-μm by arger than 75-μm (? 75-μm (No. 200) m	s (from T308/D6307): Total washing?	minus 75-µm (No. 2	······································		
	Sizes l Minus	Ignition samples minus 75-μm by arger than 75-μm (? 75-μm (No. 200) m	s (from T308/D6307): Total washing?	minus 75-µm (No. 2	······································		
	Sizes 1 Minus	Ignition samples minus 75-μm by arger than 75-μm (No. 200) m TO only: If sample	s (from T308/D6307): Total washing?	minus 75-µm (No. 2	determined	in T308 applied to	
	Sizes 1 Minus	Ignition samples minus 75-μm by arger than 75-μm (No. 200) m TO only: If sample	s (from T308/D6307): Total washing?	minus 75-µm (No. 2	determined	in T308 applied to	
ЛV	Sizes I Minus AASHI final to	Ignition samples minus 75-μm by arger than 75-μm (No. 200) m TO only: If sample	s (from T308/D6307): Total washing?	minus 75-µm (No. 2	determined	in T308 applied to	

MOISTURE OR VOLATILE DISTILLATES IN PAVING MIXTURES

(T11	0)	
(D146	1)	

		<u>APPARATUS</u> Da	ate:
1.	Still:	<u></u>	
	(a)	Height: 152.4 ± 6.4 mm $(6.0 \pm 0.25$ in.) by 94.0 ± 5.1 mm $(3.7 \pm 0.2$ in.) O.D.? <i>Note:</i> Stills with a 5 in. O.D. may be used to accommodate larger samples.	······
	(b)	Still head has one hole 25.4 mm (1 in.) in inside diameter?	
	(b) (c)	Clamp for still head satisfactory?	
	(d)	Heavy paper gasket?	
2.		Tube Condenser:	······
۷.	(a)	Jacket length not less than 400 mm (15 3/4 in) and inner tube O.D. 9.5 to 12.7 mm	2 (3/8 to 1/2 in)?
	(a)	Note: It may be necessary to supplement one condenser with a second of the same	
3.	Dogging	ver, made of well-annealed glass [ASTM: conforming to Section 4.3?]?	
3. 4.	Solvent		
٠.	(a)	Xylene? or 20% toluene and 80% xylene?	
	(a) (b)	Petroleum distillate?	
	(c)	Sodium carbonate (Na ₂ CO ₃) (For Volatile Distillates)?	
5.		ng device?	
3.	пеаш	ig device?	·····
		<u>PROCEDURE</u>	
Sample	Preparat	ation:	
1.	Weighe	ned sample should be not less than 500 g for normal mixtures?	
2.	Sample	e thoroughly mixed, weighed sample broken up to avoid large lumps and placed in the	ne still?
3.	Remair	inder of the sample kept in a tightly covered container?	
		of Moisture	
1.	200 mL	L of solvent added to the sample and stirred?	
2.		t moistened with water?	
3.		actory assembly of components (all connections vapor or liquid tight, caution if the a	
4.		cotton plug inserted in top of condenser and cold water circulated in jacket of condenser	
5.		applied and refluxing starts within 5 to 10 minutes?	
6.		ate adjusted from 85 to 95 drops of distillate per minute?	
7.	Distilla	ation time does not exceed 1.5 hours?	
or		ation continued until three successive 15 minute intervals show no increase in water?	
8.	Conten	nts of receiver allowed to reach room temperature and read to the nearest scale division	on?
9.	Volume	ne of water recorded and calculated in accordance with the method?	······
		% Water = 100 (Volume of water in receiver / Mass of sample)	
Determ	ination o	of Volatile Distillates	
1.		L of water and approx. 3 g [AMRL: ± 1 g] of sodium carbonate added to the sample	and stirred?
2.		t moistened with solvent?	
3.		ver used is the dilution trap specified in Section 4.3.2 and Figure 6?	
4.		actory assembly of components, all connections vapor or liquid tight (caution if the a	
5.		cotton (or similar) plug inserted in top of condenser and cold water circulated in jack	
6.		applied and refluxing starts within 5 to 10 minutes?	
7.		ate adjusted from 85 to 95 drops of distillate per minute?	
	Note: It	It may be necessary to add a second condenser or to reduce the rate of distillation to prevent e	scape of the solvent.
8.		ation continued until three successive 15 minute intervals show no increase in upper	
		levels of the diluent?	
9.	Heat re	emoved and solvent allowed to stand for 0.5 hours?	
10.		nts of receiver read to the nearest scale division, volume of dilute recorded and calcul	
	C	% Diluent = 100 [(Volume of dilute in receiver * Sp. G. of dilute at 25° C) / Mass of	sample]
COMM	ENTS ((T110 / D1461)·	(T110 / D146

Revised 2014-04-10

пма - 9	
(T164)	
(D2172)	

		<u>APPARATUS</u>	Date:
Annoro	tus Common to all Mathas	Ic (A. R. D. and E)	
<u>Appara</u> 1.	tus Common to all Method Solvent:	IS (A, D, D, Aliu E)	
1.		ned / reused solvents should not be used for testing.	
	(a) Trichloroethyle:		
		cal grade conforming to ASTM D4080?	<u></u>
		TO only: Reagent grade is required if running R5	
	(b) Methylene chlor	ride, technical grade?	······
	(c) normal-Propyl l	Bromide, conforming to ASTM D6368?	<u></u>
		Terpene extractant, only acceptable for AASHTO	
	Note: Terpene ex	tractants that gel when exposed to water are not accept	table.
2.	Fume hood or effective s	urface exhaust system in a well-ventilated area?	
3.		ning 110 ± 5 °C (230 ± 9°F) [ASTM: 230 ± 10 °F]	
		be used when using terpene extract.	
4.		n maintain 149 to 163 $^{\circ}$ C (300 to 325 $^{\circ}$ F) for dryin,	g (if moisture not determined)?
5.		ASTM: 300 x 200 x 25 mm (12 x 8 x 1 in.)]?	
6.	Spatula or trowel?		
7.		readable to 0.1 % of sample mass, conforms to M	
		accuracy of at least 0.01 percent of sample mass?	
Annara	tus for Determining Miner	al Mattar 🖈	
		mineral matter is not presented and the lab is not runn	ing Method F. please write a
		ome accredited, but their directory listing will show the	
roncong	orning. The tab can still beec	me decreation, but their directory tishing with show the	y do not determine mineral matter.
	Ashing Method		
	(a) Graduated cylin	der: capacity 1 or 2 L or 100 mL cylinder?	
	(b) Ignition dish, m	inimum capacity of 125 mL?	
	(c) Steam bath or h	ot plate?	
	(d) Desiccator, larg	e enough to contain ignition dish?	
		bonate, reagent grade (as saturated solution or sal	
		g) analytical balance available?	
		Ignition furnace or Bunsen burner?	
or	Centrifuge Method		
		ble of 3000 g or greater, continuous flow type?	
	(b) Class G1 (0.01	g) balance available [ASTM: Class GP1]?	
or	Volumetric Method		
-		igh to hold extract?	
		rature bath (or correct volume of flask and density	
		eadable to 0.2°F (0.1°C)?	
		0.1 g) balance available?	
A dditio	nal Apparatus for Method	٨	
1.	Centrifuge Extractor:	<u> </u>	
-		l with cover?	
	(b) Can be rotated a	at variable speeds up to 3600 r/min?	
	(c) Apparatus set u	p safely (not prone to explosions and installed in f	fume hood)?
2.		to fit rim of bowl?	
		s: ash content less than 0.2 percent?	
01		aper 1.3 mm (0.05 in.) thick, ash approximately	
a o			
COMM	ENTS (T164 / D2172):		(T164 / D2172

HMA - 10	
(T164)	
(D2172)	

APPARATUS (Continued)

				APPARATUS (Continued)	Date:
A 44:4	ional Am	manatus f	or Method B		
<u>Addii</u>		paratus 10 x Extract			
1.	(a)			f scratches cracks or flaws?	<u></u>
	(a) (b)				ter cone support?
	(0)	(1)			
		(2)	If two frames, the ut	programme and he supported on the le	wer?
2.	Cond	` '			wei /
3.					
٥.					
	(a) (b)				hickness, approx. 3 mm thick?
	(0)				esistant?
Addit	ional Ap	paratus f	or Method D		
1.		ction Ket			
	(a)				<u></u>
	(b)				
	(c)				
2.	` /				
				6 · ····	
			or Method E		
1.					······
	(a)			ne type)?	······
	(b)		support plate:		
		(1)		s small enough to support the filter pa	
		9/	enough to ensure ad	equate suction?	
		(2)	Overlaps or fits just	inside "O" ring?	
		(3)	Funnel ring?		
2.					<u> </u>
3.	AASH	ITO: Sai	nple container, 3.8 L (4	qt.) capacity or greater?	
	ASTN	1: Stain	less steel beaker, appro	ximately 8 L capacity?	······
4.					
5.	Glass	graduate	with a capacity of 500	mL?	
6.	Wash	bottle fi	led with water?		
7.	Spatu	la and la	ge mixing spoon (appro	ox. 9 to 12 in. long)?	
8.					
9.					
10.	Ethyl	alcohol.	denatured [AASHTO on	ly: optional?	
10.	2011)1			,, cp,,	
11.	Optio	onal: Uli	rasonic cleaner. 4 at. m	inimum capacity with insert trav?	<u>-</u>
12.					
13.				lethod E-II (Method for slow-filtering	
10.	(a)				
	(a) (b)	Wate	h alace with a 100 mm (1 in) diameter?	
	(b) (c)	Mato	i giass will a 100 iiiii (tongs for handling wat	ch glass 150 to 200 mm (6 to 8 in) 1	ong?
		Diata	magana siliga filtari	oid conforming to requirements of A	STM D604 - Type B?
	(d)	Diato	maceous sinca mitering	aid, conforming to requirements of A	131W1 D004 - Type B!

COMMENTS (T164 / D2172):

HMA - 11	
(T164)	
(D2172)	

~		.		PROCEI	<u>OURE</u>	Dat	te:			
	nple	Preparation:		. 220 + 00F (110	. 50G) FAGENA A	20 / 10 000	1 1 11 10			
1. 2.		If necessary, mixture warmed in pan at $230 \pm 9^{\circ}F$ ($110 \pm 5^{\circ}C$) [ASTM: 230 $\pm 10^{\circ}F$] until it can be handled?								
2. 3.		Particles of mixture separated with spatula or trowel?								
٥.		Sample obtained by splitting or quartering, conforms to minimum sample mass table below?								
		No. 4 3/8 in. 1/2 in. 3/4 in. 1 in. 1.5 in.								
		1/2 kg	1 kg	1.5 kg	2 kg		4 kg			
4.			- U							
5.										
		, , , , , , , , , , , , , , , , , , ,								
	ter D	<u>Determination</u>								
1.				nined? (W_1)						
2.		Determine moistur								
	or					le, oven at either JMI				
		If recovery of bitur					ninute intervals]?			
	or						r to extraction?			
	OI									
3.							portion? (<i>W</i> ₂)			
٥.		Note to Assessors: If								
		y	r		,	<u>2</u> (, , .			
Ext	racti	on Procedure by Me	ethod A (Centrifus	ge Method)						
1.		Filter ring dried to	constant mass in c	ven [AASHTO onl	y: $at 230 \pm 9 \%$ ($110 \pm 5 \mathcal{C}$)] and we	eighed?			
2.		Weighed test portion placed into bowl?								
3.		Sample covered wa	ith solvent and allo	wed to disintegrat	e for not more tha	n 1 hr.?				
4.		Bowl with solvent	and sample placed	in extraction appa	ratus?					
5.										
6.		Container placed u	inder drain to colle	ct extract?	1 .11 0					
7. 8.		Centrifuge started	revolving slowly a	nd speed increased	gradually?					
o. 9.		Contribuga continu	ot greater than 500	oses to flow?						
9. 10.										
11.										
12.							······			
13.										
14.		Sample can be drie	ed by:	_						
		(a) Filter ring	and aggregate tra	nsferred to tared m	etal pan, then drie	d to constant mass	in an oven at			
	or	(b) Aggregate	e dried to constant	mass in an oven or	on a hot plate at	$110 \pm 5^{\circ}\text{C} (230 \pm 9)$	9°F), filter ring			
		dried sepa	arately to constant	mass in an oven at	110 ± 5 °C (230 \pm	9°F) [ASTM: 230	±10 F]?			
	or					oven at $110 \pm 5^{\circ}$				
		$(230 \pm 9^{\circ})$	F) [ASTM: 230 ±	<i>10 °F</i>]?						
		(0.1.1) 701	1 61.	1 1 1 1 011	6.1.1.1		1			
15.		(Optional) If low a								
1.0		with aggregate to a	avoid loss?							
16.		Initial dry mass of filter ring subtracted from mass of contents in pan to determine								
17.		mass of extracted aggregate? (W_3)								
1/.		matter in t	ine extract determin	nea by one of the s	pecifica procedur					

COMMENTS (T164 / D2172):

HMA - 12	
(T164)	
(D2172)	

Date: _____

PR	OCE	DITE	2F. (Contir	med)

Extrac	ction Procedure by Method B (Reflux Method)
1.	Filter paper(s) dried to constant mass in oven [AASHTO only: at 230 ± 9 °F (110 ± 5 °C)] and weighed?
2.	Mass of each frame with filter paper determined to the nearest 0.5 g and recorded?
3.	Place test portion in frame(s)?
4.	Mass of each loaded frame determined to the nearest 0.5 g and recorded?
5.	Solvent poured into glass jar?
6.	Frame with supporting legs placed in jar?
7.	Solvent level below tip of cone in lower frame?
8.	Optional: denatured alcohol used to wet filter paper?
9.	If multiple frames, upper frame(s) stacked on bottom frame?
10.	Insulating pad and cylinder placed on hot plate [AASHTO only: optional]?
11.	Gentle steady flow of cold water circulated through covered condenser?
12.	Heat adjusted so that solvent boils gently?
13.	Steady flow drips into cone?
14.	If necessary, adjust temperature of hot plate to maintain the solvent stream at a rate to keep
1 1.	test portions completely covered, but not overflowing the filter cones?
15.	Extraction continued until running from tip of lower cone appears a light straw color when
15.	viewed against white background?
16.	Heat shut off, but not condenser water?
17.	Apparatus allowed to stand until cool enough to handle?
18.	Condenser turned off and removed from cylinder?
19.	Loaded frame(s) removed from jar and dried in fume hood?
20.	Dry frame(s) to constant mass in oven at $230 \pm 9^{\circ}$ F ($110 \pm 5^{\circ}$ C) [ASTM: $230 \pm 10^{\circ}$ F]?
21.	Mass of extracted aggregate determined? (W_3)
22.	Mineral matter in solution determined by one of the procedures specified?
	mineral maker in solution determined by one of the procedures specified.
	ction Procedure by Method D (Kettle Method)
1.	Filter sack placed in extraction basket and mass determined with the tare pan and total tare mass determined?.
2.	Test portion placed in filter sack and total mass determined, then mass of test portion calculated?
3.	Suspension rod attached to loaded basket and assembly set into the extraction kettle?
4.	Approximately 600 mL [AMRL: ± 100 mL] of solvent poured over the test portion?
5.	Condenser cover placed on kettle?
6.	Cold water started through condenser cover?
7.	Basket raised to immersion level, approx. 1/2 in. above bottom of kettle?
8.	Extractor placed on hot plate and heated to a gentle boil?
9.	Heating continued for 15 to 30 minutes in immersion position?
10.	Basket raised [AASHTO only: to refluxing level]?
11.	Heat increased to maintain active boiling until solvent dripping from the basket appears light straw color?
12.	Extractor removed from plate and allowed to cool?
13.	Basket removed from kettle and filter sack removed from basket and contents distributed into tared pan?
14.	Filter sack placed on top of aggregate and dried on a steam bath and then in an oven at
	$230 \pm 9^{\circ} F (110 \pm 5^{\circ} C)$ [ASTM: 230 $\pm 10^{\circ} F$] to constant mass?
15.	Extraction transferred to a 1000-mL graduate?
16.	Extractor washed clean with solvent then washings added to the extract?
17.	Mass of extracted aggregate determined? (W_3)
18.	Mineral matter in the extract determined by one of the procedure specified?

COMMENTS (T164 / D2172):

HMA - 13	
(T164)	
(D2172)	

PROCEDURE (Co	ntinued)
---------------	----------

PROCEDURE (Continued)	Date:
raction Procedure by Method E (Vacuum Method)	
	+9°F (110 +5°C)?.
Sample mass determined and recorded?	
Stirred until bitumen visually in solution or ultrasonic cleaner used?	
Optional AASHTO only: No. 16 and No. 200 sieves used? [ASTM only: sieves are not ac	
Ontionals Additional stans for Method F II (for slow filtering samples)	
	the filter
	ine juier.
	: ?
(c) Solvent and filtering aid mixture poured over filter?	
filtering aid may be used to facilitate flow of liquid.	2010 100 8 0
Vegyum started and solution decented onto filter or through signed?	
AASH1O only: If terpene was usea, aggregate rinsea with water, preferably above 45°C (110°F), in the
vacuum stopped and aggregate transferred to tared drying pan?	·····
Funner ring and filter paper brushed to remove chinging aggregate?	
	Annicu.
Tac	ASHTO: Filter paper (more than 1 may be used) dried to constant mass in oven at 230 and ASTM: Filter paper dried to constant mass at 110 ±5 °C (230 ±10 °F)?

COMMENTS (T164 / D2172):

HMA - 14	
(T164)	
(D2172)	

Date: _____

1	D	D	1	`		C	\mathbf{r}	T	ID	E	1		_	nt	:		~	1		
ı	Р	к		'n	L,	E	IJ	ı	JK	Œ,	(L.	O	nt	ın	u	ec	11)	

Total M	lineral Matter Determination by Ashing Method					
1.	Volume [AASHTO only: or mass] of total extract and washings recorded? $(W_l \text{ or } V_l)$					
	Note to Assessors: Watch out, AASHTO labels both this volume and the original sample mass as W ₁ .					
2.	AASHTO only: Ignition dish conditioned in furnace or on Bunsen burner, at a dull red heat for at least 10					
	minutes, then cooled in a desiccator?					
3.	Ignition dish mass determined to 0.001 g?					
4.	Extract thoroughly agitated, approx. 100 mL [AASHTO: or 100 g] immediately measured into ignition dish?					
5.	ASTM only: Volume after removing ignition dish portion determined? (V ₂)					
6.	Ignition dish evaporated to dryness on steam bath or hot plate?					
7.	Residue ashed at dull red heat 500 - 600°C (932 to 1112°F) [ASTM: 930 to 1110 °F] and cooled?					
8.	Mass of the ash determined?					
9.	5 mL of saturated ammonium carbonate solution added per 1 g of ash?					
10.	Digested at room temperature for I hour?					
11.	Dried in oven to constant mass at $110 \pm 5^{\circ}$ C ($230 \pm 9^{\circ}$ F) [ASTM: $230 \pm 10^{\circ}$ F]?					
12.	Cooled in desiccator and net mass of ash determined on analytical balance to the nearest 0.001 g? (<i>G</i>)					
13.						
13.	Mass of mineral matter calculated {AASHTO: $G \times (W_1/100)$ } {ASTM: $G \times (V_1/(V_1-V_2))$ }? (W_4)					
	fineral Matter Determination by Centrifuge Method					
1.	Empty centrifuge cup mass determined to 0.01 g?					
2.	Centrifuge cup placed in centrifuge?					
3.	Container positioned at appropriate spout to catch effluent?					
4.	Extract transferred to container suitably equipped with feed control (clamp or valve)?					
5.	Extract container rinsed several times with clean solvent, and washings added to feed container?					
6.	Centrifuge started and allowed to reach a constant speed?					
7.	Feed line opened and extract fed into centrifuge at a rate of 100 to 150 mL/min.?					
8.	Feed mechanism rinsed several times with clean solvent until effluent is essentially colorless?					
9.	Centrifuge allowed to stop and cup (or bowl) removed?					
10.	Outside of cup cleaned with solvent and allowed to evaporate in a fume hood or steam hood?					
11.	Cup dried in oven at 230 ± 9°F (110 ± 5°C) [ASTM: 230 ±10 °F]?					
12.	Cup cooled and mass of the cup with residual material determined to nearest 0.01 g immediately?					
13.	Increase in mass of cup reported as the mass of the mineral matter? (W_4)					
Total M	lineral Matter Determination by Volumetric Method					
1.	Flask calibrated and tared mass recorded?					
2.	Extract placed in tared flask?					
3.	Flask brought to within ± 0.1 °C (0.2°F) of calibration temperature in controlled-temperature bath and filled					
	with solvent at the same temperature?					
4.	Extract measured and volume of flask and density of asphalt corrected?					
5.	Flask filled with solvent at same temperature?					
6.	Level of liquid in flask brought up to the neck of the flask?					
7.	Stopper inserted (liquid will overflow capillary) and flask dried?					
8.	Flask weighed to nearest 0.1 g?					
9.	Calculations made according to the book (AASHTO Section A1.3.2.2, ASTM Section 11.6.3.2) to					
	determine mineral matter? (W_4)					
Calcula	tion of Asphalt Binder Content					
1.	Asphalt binder content percentage calculated?					
1.	% Asphalt Binder Content $= (W_1 - W_2) - (W_3 + W_4)$ x 100					
	where: $(W_1 - W_2)$					
	$W_I = \text{mass of test portion}$ $W_3 = \text{mass of extracted mineral aggregate}$					
	W_1 = mass of test portion W_3 = mass of extracted fillneral aggregate W_2 = mass of water in test portion W_4 = mass of mineral matter in the extract					
	m_2 – mass of water in test portion m_4 – mass of finite at matter in the extract					

COMMENTS (T164 / D2172):

BULK SPECIFIC GRAVITY OF COMPACTED HMA USING SATURATED SURFACE-DRY SPECIMENS

HMA - 15	
(T166)	
(D2726)	

APPARATUS

		<u>APPARATUS</u>	Date:
Comme	on Annara	atus for all methods	
<u></u>	Balance		
•	$\frac{Balance}{(a)}$	AASHTO: conforms to M231, readable to 0.1% (G2 balance for sp	pecimens over 200 g)?
	(b)	ASTM: Balance conforms to D4753, sensitive to 0.1 g for 100.1	
2.	Water b	ath, maintains 25 ± 1 °C (77 ± 1.8 °F) and equipped with overflow oue holder and sample?	itlet, deep enough to completely
3.	Drving	equipment:	
	(a)	Oven, maintained at 52 ± 3 °C (125 ± 5 °F) [ASTM: 110 ± 5 °C °C	(230 ±9 %)1?
or		Equipment for vacuum drying (D7227)?	
01	(0)	24xp	
l.	ASTM:	Temperature measuring device Serial No:	
	(a)	Device of suitable range with subdivisions and maximum scale en	ror of 0.5°C (1.0°F)?
	(b)	Device presented calibrated according to interval in D3666 (12 m	
	, ,		,
	AASHT	O only: Room temperature: $25 \pm 5 \%$ (77 $\pm 9 \%$)?	
j.		wel, damp (considered damp when water is present but no water car	
' .	ASTM o	only: oven and balance standardized according to interval in D366	66 (12 months)?
		Assessors: The ASTM standardization requirements are included here beca	
		poratory is seeking accreditation, these issues will be covered in the R18 eva	
	written u	under the quality system section. Only if they are not seeking R18 accreditat	tion would you write a note here.
)	A A CITT	O Mothed A and ACTM Water Dath Symmetrican American	
٠.		O Method A and ASTM, Water Bath Suspension Apparatus AASHTO only: Suspension from center of balance pan?	B 11
	(a) (b)	Holder and sample completely immersed?	
	(b) (c)	AASHTO only: No trapped air bubble exists under specimen?	
	(d)	Can determine constant mass of specimen to 0.05 percent?	
	(d) (e)	Suspension wire of smallest practical size?	
	(0)	Note to Assessors: Ropes, strings, and sash cords are not acceptable. Wi	
		Tive to rissessors. Ropes, sirings, and sash cords are not deceptable. The	re or fishing time is suggested. Chain ok.
١.	AASHT	O Method B additional apparatus	
	(a)	Thermometer: 17C (19 to 27 °C, graduated to 0.1 °C) or 17 F (66 to	o 80°F, graduated to 0.2°F)?
	(b)	Calibrated volumeter and tapered lid with capillary bore?	
	(0)	2 cup do to the control of the control	

COMMENTS (T166 / D2726):

(T166 / D2726)

COMMENTS (T166):

BULK SPECIFIC GRAVITY OF COMPACTED HMA USING SATURATED SURFACE-DRY SPECIMENS

HMA - 10	
(T166)	

Date: _____

AASHTO PROCEDURE

1.	Dry sample used or sample dried at 52 ± 3 °C (125 ± 5 °F) to constant mass (0.05 percent)?
	Note to Assessors: Sample can either be checked for constant mass at successive 2 hr. intervals, dried overnight,
	or dried using a core vacuum-drying apparatus per D7227.
2.	Sample cooled to room temperature, $25 \pm 5 \%$ (77 $\pm 9 \%$), and dry mass recorded? (A)
3.	Sample immersed for 4 \pm 1 min.?
4.	Immersion water at $25 \pm 1 ^{\circ}\text{C}$ (77 $\pm 1.8 ^{\circ}\text{F}$) (check with AMRL thermometer)?
5.	Each specimen immersed and weighed individually?
6.	Immersed mass determined? (C)
7.	Sample removed from bath and quickly blotted with damp towel (the entire operation not to exceed 15 sec)? ★
8.	Saturated surface-dry mass determined? (B)
9.	Bulk Specific Gravity calculated as $\{A/(B-C)\}$?
10.	Percent Water Absorbed calculated $\{((B-A)/(B-C)) \times 100\}$ (should be less than 2%)?
AASH	TO Method B (sequence of steps is optional)
	Note: Method B is not acceptable for samples with air voids greater than 6 percent.
1.	Dry sample used or sample dried at 52 ± 3 °C (125 ± 5 °F) to constant mass (0.05 percent)?
	Note to Assessors: Sample can either be checked for constant mass at successive 2 hr. intervals, dried overnight, or dried using a core vacuum-drying apparatus per D7227.
2.	Sample cooled to room temperature, $25 \pm 5 \%$ (77 $\pm 9 \%$), and dry mass recorded? (A)
3.	Sample immersed at least 10 min?
4.	Immersion water at $25 \pm 1 ^{\circ}C$ (77 $\pm 1.8 ^{\circ}F$) (check with AMRL thermometer)?
5.	Volumeter filled with distilled water at 25 ± 1 °C (77 ± 1.8 °F) and mass determined? (D)
5.	Sample removed from bath and quickly blotted with damp towel (not to exceed 5 sec)?
7.	Saturated surface-dry mass determined? (B)
8.	Sample placed in water-filled volumeter and allowed to stand for 60 s?
9.	Volumeter water temperature brought to 25 \pm 1 \propto (77 \pm 1.8 \propto)?
10.	Volumeter covered and some water allowed to escape through the capillary bore of the tapered lid?
11.	Volumeter wiped dry and volumeter and contents weighed? (E)
12.	Bulk Specific Gravity calculated $\{A/(B+D-E)\}$?
13.	Percent Water Absorbed calculated $\{((B-A)/(B+D-E)) \times 100\}$ (should be less than 2%)?
AASH	TO Method C
	Method C is for samples that are not required to be saved and contain a substantial amount of moisture.
1.	Procedure same as Method A or Method B except for determination of dry mass?
2.	Dry mass determined as follows:
	(a) Sample warmed in oven $110 \pm 5 \mathcal{C} (230 \pm 9 \mathcal{F})$ until soft?
	(b) Broken down to 1/4 in. particles?
	(c) Dried in oven to constant mass (2 hr. change less than 0.05 percent)?
	(d) Cooled to room temp. $25 \pm 5 ^{\circ}$ C (77 $\pm 9 ^{\circ}$ F) and weighed? (A)
3.	Calculations same as Method A or Method B?
<u>Fina</u> l	Calculations (all methods)
1.	Percent water absorbed determined to be less than 2.0 percent?
2.	If the percent of water absorbed by the specimen exceeds 2.0 percent, T275 or T331 used to determine the bulk specific gravity instead?
3.	Bulk Specific Gravity reported to nearest 0.001, absorption to nearest 0.01?

(T166)

BULK SPECIFIC GRAVITY OF COMPACTED HMA USING SATURATED SURFACE-DRY SPECIMENS

HMA - 17	
(D2726)	

		ASTM PROCEDURE Date:
Moth	od	For Laboratory-Prepared Thoroughly Dry Specimens
<u>Mem</u> 1.	ıvu <u> </u>	Specimen allowed to stand in room temperature air for at least 1 hr.?
2.		Mass of dry specimen determined? (A)
<i>3</i> .		Specimen immersed in bath for 3 to 5 min.?
	a r	If specimen temperature differs from the water temperature by more than 2°C (3.6°F),
Č	"	is specimen immersed 10 to 15 min.?
1		Immersion water at $25 \pm 1^{\circ}C$ ($77 \pm 1.8^{\circ}F$) (check with AMRL thermometer)?
<i>4</i> . <i>5</i> .		Immersion water at 25 ± 1 °C (7/ ± 1.8 °F) (check with AMRL thermometer)?
5. 6.		
0. 7.		Sample quickly blotted with a damp towel?
/.		Saturatea surjace-ary mass determinea? (b)
Meth	od	For Specimens That Contain Moisture or Solvent, or Both
<u>1.</u>		Specimen immersed in bath for 3 to 5 min.?
(or	If specimen temperature differs from the water temperature by more than 2°C (3.6°F),
		is specimen immersed 10 to 15 min.?
2.		Immersion water at $25 \pm 1^{\circ}C$ (77 $\pm 1.8^{\circ}F$) (check with AMRL thermometer)?
3.		Immersed mass determined? (C)
4.		Sample quickly blotted with a damp towel?
5.		Saturated surface-dry mass determined? (B)
6.		Specimen dried in an oven at $110 \pm 5^{\circ}C$ ($230 \pm 9^{\circ}F$) oven to constant mass?
••		Note: Other means of drying (such as microwave) ok as long as specimen is not
		over-heated and documentation exists showing results are equivalent to oven drying.
<i>7</i> .		Specimen cooled and weighed in air? (A)
<u>Fina</u>	l C	alculations (both methods)
<i>1</i> .		Bulk Specific Gravity calculated { A / (B – C) }?
<i>2</i> .		Percent Water Absorbed calculated $\{(B-A)/(B-C)\}$ $(B-C)$ $(B$
<i>3</i> .		Density of specimen calculated { Bulk Sp. Gr. x density of water (997.0 (kg/m^3) or 62.24 (lb/ft^3)) }?
<i>4</i> .		Percent water absorbed determined to be less than 2.0 percent?
<i>5</i> .		If the percent of water absorbed by the specimen exceeds 2.0 percent, D1188 used to
		determine the bulk specific gravity instead?

COMMENTS (D2726): (D2726)

COMPRESSIVE STRENGTH OF BITUMINOUS MIXTURES

$\mathbf{H}I$	MA - 10
(T167)	
(D1074)	

			<u>APPARAT</u>	<u>US</u>		Date:	
Testing	g Machine						
1.	Maker:				Capacity:		
2.							
		having a range of controlled sp					
2		ns to 0.4 in. (10.2 mm)/min for a	8-in. (203.2-mm)	specimens?.	•••••		
3.		earing block:		(l. l	0		
	(a) (b)	Spherically seated, center of spl Block rotates freely and can be	tilted in any direc	in bearing rac	:e /		
	(c)	Diameter of bearing face slightl					
	(d)	Bearing face plane to 0.025 mm					
4.	` /	earing block:	(0.001 1111)				
	(a)	Rests on platen as seat for speci	men?				
	(b)	Diameter of bearing face greate					
	(c)	Bearing face plane to 0.025 mm	n (0.001 in.)?				
G. 1	1 11 /	(11 1 1) OD M 11 6		4: 1 4	. 6.11		
Standa 1.		see table below) OR Molds for s	-	nan 4 in. by 4	in. as follows:		
1.	(a)	or specimens other than 4 x 4 in. Diameter of alternative mold is		at least 4 tim	use that of the lar	gost partiala si	izo?
	(a) (b)	Creates a specimen with a heigh					
	(b) (c)	Unit rate of deformation can be					
	(d)	Plungers suitable for these mole					
	(u)	of mold inside diameter (standa					
			1 0				
2.	Standa	rd Molds (4 x 4 in. specimens)	1	2	3	4	5
Insid	e diameter	of molds (record diameters):					
101.6	50 - 101.73	3 mm (4.000 – 4.005 in.)					
Max.	difference	between I.D. of molds and					
diam	eter of plu	ngers is 1.27 mm (0.050 in.)?					
D 1							
	ers and sup		4	. 1).			
1.		s for 4 x 4 in. specimens (various Diameter of top and bottom plu					
	(a)	Diameter of top and bottom plus Diameter also within 0.050 in. (
	(c)	Top and bottom plunger faces a					
	(d)	Bottom plunger $50 \pm 4 \text{ mm} (2 \pm 4 \text{ mm})$					
	(u)	Dottom plunger 30 ± 4 mill (2 ±	. 1/0 m./ m neigh	i, top plunger	may be any suite	aoic neight:	
2.	Mold su	pports capable of supporting mo	ld cylinder 25.4 r	nm (1 inch) a	bove bottom of h	oottom plunge	r?
•		only: Supports are 2 steel bars 1					
			(, , , T		,	, 6
COM	MENTS (T	167 / D1074):					(T167 / D1074)

COMPRESSIVE STRENGTH OF BITUMINOUS MIXTURES

HMA - 19	
(T167)	
(D1074)	

	<u>APPARATUS (Continued)</u>	Date:
Other	· Apparatus	
1.	AASHTO: Oven capable of control within $\pm 3 ^{\circ}\text{C} (\pm 5 ^{\circ}\text{F})$?	
1.	ASTM: Oven controlled within $\pm 5^{\circ}F$ ($\pm 3^{\circ}C$) of any temperature above ambiguity.	
2		
2. 3.	Hot plate, equipped with a rheostat, for mixing bowl available? Optional: hot water bath	······
3.		
	(a) Large enough to hold 3 sets of 100 mm molds with plungers?	
	(b) Capable of being maintained at just under boiling point?	
	(c) Heater, if electric, provided with continuously variable control?	
4.	Air bath capable of being maintained at 25.0 ± 0.5 °C (77 ± 1°F) [ASTM: 77 ±	
5.	Mixing machine for sample preparation?	
6.	Spatulas, one limber and one stiff?	
7.	Ejection device, ejection head has smooth, uniform rate of travel?	
8.	Balance AASHTO: Class G2 balance available?	
_	ASTM: Balances or scales and weights meeting Specification	on D4753, GP2?
9.	ASTM only, Thermometer:	
	(a) Calibrated liquid-in-glass thermometers of suitable range with a read	
	conforming to the requirements of specification E 2251?	
or	or (b) Electronic thermometer (RTD, PRT, IPRT) of equal or better accura	cy?
	DD CCEDAIDE	
	<u>PROCEDURE</u>	
Dropor	aration of Test Mixtures (Note to Assessors: write an informational observation if mixing	o is not domonaturated)
1.	Initial batch mixed to "butter" mixing bowl and stirrers?	
2.		
2. 3.	Trial specimen molded to determine proper mass of batch?	
	Bowl emptied and batch used for trial specimen discarded?	
4.	Bowl and stirrers cleaned by scraping with limber spatula?	······
5.	Wiping with cloth or washing with solvent avoided?	
6.	AASHTO: Mixing and compacting temperatures based upon the temperature-v	
	$(170 \pm 20 \text{ cSt}, 280 \pm 30 \text{ cSt})$?	
	ASTM: Mixing temperature does not exceed 347°F (175°C)?	
7.	Aggregate and mixing bowl heated no more than 28°C (50°F) above the mixing	
8.	Aggregate added to bowl and dry-mixed?	
9.	Bituminous material quickly weighed into aggregate?	
10.	Asphalt and aggregate mixed with minimal "fanning action"?	
11.	Mixing completed within 90 to 120 seconds?	
12.	Temperature of mixture after mixing about 3 to 5°C (5 to 9°F) above the compa	
13.	If necessary, mix reheated using a hot plate, oven, or similar device?	······
	mixtures Tata (G12 C V V V V V V V V V V V V V V V V V V	
1.	Sample reduced according to T248/C136 to slightly more than amount needed to	to fabricate specimen?
2.	Mass of reduced sample adjusted to required mass by removing and discarding	
_	a small amount of the mixture?	······
3.	Both fine and coarse particles discarded to maintain proper gradation?	
4.	Mixture placed in appropriate container and heated in an oven to the established	
	Sample removed from oven and thoroughly mixed until temperature is about 3	to 5°C (5 to 9°F)
5.		
	above the compacting temperature?	······

COMMENTS (T167 / D1074):

(T167 / D1074)

COMPRESSIVE STRENGTH OF BITUMINOUS MIXTURES

HMA - 20	
(T167)	
(D1074)	

	PROCEDURE (Continued) Date:
Moldi	ng Test Specimens
<u>violuli</u> 1.	Top plungers, bottom plungers, molds, and spatula preheated?
١.	(a) In a water bath just under the boiling point for at least 1 hr.?
01	
2.	Mold and plungers removed and wiped with a clean cloth containing a few drops of oil?
2. 3.	With bottom plunger in place and molding cylinder supported on steel bars:
,.	(a) Approximately half of mixture placed in mold?
	(b) Fifteen blows with spatula struck around inside of mold?
	(c) Ten blows with spatula struck at random over mixture?
	(d) Penetration of spatula as deep as possible?
	Remaining mixture quickly placed in molding cylinder?
).	Step 3, parts (a) through (d) repeated?
,. 5.	Top of mixture left slightly rounded or cone shaped?
7.	Filled mold compressed between top and bottom plungers under about 1 MPa (150 psi) [AMRL: ~1,886 lb]?
3.	Support bars removed from under mold?
).).	Molding load increased to 20.7 MPa (3000 psi) for 2 min. [AMRL: ~37,727 lb]?
•	Note: When tested in accordance with D1075, molding load of 20.7 MPa (3000 psi) may be
	increased or decreased to achieve a target air void percentage or density percentage.
0.	AASHTO only: Alternate methods of compaction may be used, provided approximately
	7 percent air voids are achieved?
1.	7 percent air voids are achieved?
1.	
	Specimen removed from mold with ejection device?
Test S	Specimen removed from mold with ejection device?
Test S	Specimen removed from mold with ejection device?
<u>[est S</u>]	Specimen removed from mold with ejection device? Specimens Specimens 102 mm (4 in.) in diameter? Specimens 101.6 ± 2.5 mm (4 ± 0.1 in.) in height?
<u>Γest S</u>] 2.	Specimen removed from mold with ejection device?
<u>Γest S</u> j . 2. 3.	Specimen removed from mold with ejection device? Specimens Specimens 102 mm (4 in.) in diameter? Specimens 101.6 ± 2.5 mm (4 ± 0.1 in.) in height?
<u>Γest S</u> j	Specimen removed from mold with ejection device?
<u>Cest S</u> j	Specimen removed from mold with ejection device?
Test S	Specimens removed from mold with ejection device?
Cest Sp.	Specimens Specimens Specimens 102 mm (4 in.) in diameter?
Cest Sp.	Specimens Specimens Specimens 102 mm (4 in.) in diameter?
roced	Specimens 102 mm (4 in.) in diameter?
roced	Specimens 102 mm (4 in.) in diameter?
Fest S 2. 3. 4. Proced 2. 3. 4.	Specimens 102 mm (4 in.) in diameter?
Fest S 2. 3. 4. Proced 2. 3. 4.	Specimens Specimens 102 mm (4 in.) in diameter?
Γ <u>est S</u> 1. 2. 3. 4. Proceα 1. 2. 3. 4. 5.	Specimens 102 mm (4 in.) in diameter?

COMMENTS (T167 / D1074):

(T167 / D1074)

COMMENTS (T209 / D2041):

MAXIMUM SPECIFIC GRAVITY OF HMA (RICE TEST)

HMA - 21	
(T209)	
(D2041)	

				<u>APPARATUS</u>	Date:
1.	Conta	iner.			
1.	(a)		ım bowl (used for weighing i	n air and water):	
	(4)	(1)	Either metal or plastic?		<u></u>
		(2)			······································
		(3)			······
		(4)	Equipped with a transpare	ent cover with a rubber gask	et?
		(5)			
		(6)	AASHTO only: Capacity	between 2,000 and 10,000 n	nL?
or	(b)	Vacuu	ım flask (used for weighing i		
		(1)			
		(2)			vacuum line?
		(3)	Using a small in a large c	ontainer avoided?	<u>-</u>
		(4)			<u></u>
			ASTM: Approximately 4	1000 mL capacity?	
or	(c)	<u>AASH</u>	TO only: Pycnometer (for w	eighing in air only):	
		(1)	Glass, metal, or plastic p	ycnometer?	
		(2)			······
		(3)	Capacity between 2,000 a	and 10,000 mL?	
2.	Vacui	ım pump	or water aspirator?		
	(a)	or less			
	(b)		a vacuum pump is used, a si		(730 mm Hg) relative at sea level.
	(0)				and the vacuum vessel?
1.	Vacuu	ım Mage	arement Device,		
г.	(a)				<u></u>
	(4)		o assessor: A mercury manome		
	or	Pressi	re gauge Serial No.		
		AASH	TO: Pressure gauge standar	rdized every 12 months to be	accurate to 0.1 kPa (1 mm Hg)?
	If the l	o Assesso aboratory	rs: The standardization require is seeking accreditation, these is	ments are included here becaus ssues will be covered in the R18	e they are listed in the test method. 8 evaluation and the notes should be editation would you write a note here.
	(b)	conne		ssel or by using a separate o	pening in the top of the vessel?
5.		1 only: <u>1</u>		e (such as a dial-type vacuu	m gauge), connected either directly
	to the	vacuum	source or in vacuum line cl	ose to the source?	

COMMENTS (T209 / D2041):

MAXIMUM SPECIFIC GRAVITY OF HMA (RICE TEST)

HMA - 22	
(T209)	
(D2041)	

		APPARATUS (Continued)	Date:		
_					
6.	Balance:	1 CTD 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		ASTM only: readable to nearest 0.1 g]?			
		Water: Balance equipped with a suitable suspension			
		the sample while suspended in water?			
	(c) AASHTO only: \(\begin{align*} \text{V} &	Wire suspending the holder should be the smallest p	practical size?		
7.	Mechanical Agitation Dev	vice [AASHTO only: Method A only]			
		ring a gentle but consistent agitation of the sample?	,		
		neans of anchoring the sample container so that it do			
		vice?			
8.	Thermometric Device, Sen				
		-glass thermometer, with subdivisions and maximu			
or	(b) Any other thermo	ometric device of equal accuracy, precision, and se	nsitivity?		
9.	Water Dath maintains a a	onstant temperature between 20 and 30°C [ASTM	only, 25 ± 19C (77 ± 29E)19		
9.	water batti, mamtanis a c	onstant temperature between 20 and 30 C [ASTM	omy: 25 £1 C (// £2 F)]:		
10.	Bleeder Valve, attached to	the vacuum train?			
					
11.	Drying Oven, AASHTO or	nly: maintaining_135 \pm 5 °C (275 \pm 9 °F) or 105 \pm 5	5 °C (221 ± 9 °F)?		
	ASTM only	: capable of maintaining a temperature of 110 \pm	5 ℃ (230 ±9 ℉)?		
12.		tal Procedure for Mixtures Containing Porous Agg			
Note to		ries should not be demonstrating this supplemental proce			
		75µm (No. 200) sieve] for decanting water from ag			
	(b) 10wel [ASTM. /	σμιπ (140. 200) sieve] for decanting water from ag	gregate:		
Standar	dization [ASTM: Calibration	on of Container			
1.		ed to fill the container at a temperature between 20	and 30 °C?		
2.		of determined at 25 ± 0.5 °C (77.0 ± 1 °F) then proc			
2.		peratures likely to be encountered and standardiza			
3.		en to follow the same procedure in standardization			
4.		I or immerse the container at 25 ± 1 °C (77.0 ± 2 °C)			
т.	ASIM. Maier usea to jui	i or immerse the container at 25 ±1 °C (77.0 ±2 1			
5.	One of the following:				
	Weighing-in-water determ	nination (bowl):			
		water [ASTM: immersed in water] and mass-in-w	vater determined? (B)		
	Weighing-in-air determina				
		water [ASTM: immersed in water]?			
	(b) ASTM only: Lia	l placed on the bowl while submerged?	······		
		dried and mass-in-air determined? (B)			
	(d) ASTM only: Pro	ocedure repeated three times and results averaged	?? (D)		
	Weighing-in-air determina	ation (flask):			
		water?			
		e or similar smooth, flat, transparent plate used to a			
		air determined? (D)			
	(C) IVIGOS OI IIGSK III (un determined. (D)			

MAXIMUM SPECIFIC GRAVITY OF HMA (RICE TEST)

HMA - 23	
(T209)	
(D2041)	

DD	COLL	TIDE
PK	JUEL	DURE

RE	Date:	

Samp.	le Pre	eparation:

1. When necessary, samples reduced by splitting or quartering? 2.

Sample mass conforms to following tables (Note to Assessors: Please mark which sample size was used.)?..... AASHTO: Mass of sample as follows (samples larger than the capacity of the container may be divided into suitable increments, tested, and the results averaged):

ASTM: Mass of sample as follows (samples larger than about two thirds the capacity of the container shall be divided into portions that are not less than 1250 g and the results averaged):

Nominal Maximum Aggregate	AASHTO: Min. Sample Size	ASTM: Min. Sample Size
37.5 mm or greater (\geq 1.5 in.)	4000 g	5000 g
19 mm – 25 mm (3/4 to 1 in.)	2500 g	2500 g
12.5 mm or smaller ($\leq 1/2$ in.)	1500 g	1500 g

3.		AACUTO only. I shoughow many and samples and ition of and dried to constant mass (within 0.10/)
3.		AASHTO only: Laboratory prepared samples conditioned and dried to constant mass (within 0.1%)
		in an oven at 135 \pm 5 °C for a minimum of 2 hours, or as appropriate to match the mix design?
0	r	AASHTO only: Field samples dried to constant mass in oven at $105 \pm 5 ^{\circ} \mathrm{C}(221 \pm 9 ^{\circ}\mathrm{F})$?
		ASTM: Field samples dried to constant mass $110 \pm 5 $ °C $(230 \pm 10 $ °F)?
4.		Particles of sample separated while warm by hand, using care not to fracture mineral fragments?
5.		After separation, fine aggregate particles not larger than 6.3 mm (1/4 in.) [ASTM: 6 mm (1/4 in.)]?
6.		Sample cooled to room temperature?
Testin	ıg:	
1.		Placed in tared flask or bowl weighed and net mass of sample determined? (A)
2.		Water at approx. 25°C (77°F) added to cover sample?
3.		Vacuum increased until manometer reads 27.5 ± 2.5 mm Hg $(3.7 \pm 0.3 \text{ kPa})$?
4.		ASTM only: Vacuum achieved within 2 minutes of turning the vacuum system on?
5.		Container and contents agitated continuously by mechanical device [AASHTO: Method A]?
0	r	AASHTO only, Method B: Container and contents agitated during the vacuum period by vigorously
		shaking at intervals of about 2 min.?
6.		Vacuum and agitation continued for 15 ± 2 min after vacuum is achieved?
7		Vacuum released slawly [AASHTO only: at a rate not to exceed 8 kPa per second (~60 mm Ha / sec)]?

COMMENTS (T209 / D2041):

MAXIMUM SPECIFIC GRAVITY OF HMA (RICE TEST)

HMA - 24	
(T209)	
D2041)	

	PROCEDURE (Continued) Date:
Note t	• Assessors: The laboratory should demonstrate one of the following methods of determining maximum specific gravity.
AASI	HTO/ASTM Weighing-in-water determination:
1.	Bowl (without lid) and contents suspended in water?
2.	Net mass of contents in water determined after 10 ± 1 min immersion? (C)
3.	AASHTO: If temperature is not $25 \pm 1 \text{C}$ (77.0 $\pm 1.8 \text{F}$), mass corrected to 25C (77 F)?
٥.	ASTM: Temperature of the water in bath $25 \pm 1^{\circ}C$ (77.0 $\pm 2^{\circ}F$) (temperature recorded)?
4.	Theoretical maximum specific gravity calculated $\{A / (A - (C - B))\}$?
<u>AASH</u>	TO only: Weighing-in-air determination (any):
1.	Flask, pycnometer, or bowl filled with water?
2.	Contents adjusted to 25 ± 1 °C $(77.0 \pm 1.8$ °F)?
3.	Mass of filled container determined 10 ± 1 min. after removal of entrapped air completed? (E)
4.	Theoretical maximum specific gravity calculated $\{A/(A+D-E)\}$?
ASTN	I only: Weighing-in-air determination (bowl):
<u>1.</u>	Bowl and sample slowly submerged in the 25 ± 1 °C (77.0 ± 2 °F) bath for 10 ± 1 min?
2.	Lid also placed in water bath at the same time as the bowl?
3.	Lid placed on bowl without being removed from the water so as to avoid entrapping any air?
4.	Lid pressed firmly down on the bowl?
<i>5</i> .	Bowl with lid in place removed from the bath and the bowl and lid carefully dried off?
<i>6</i> .	Mass of the bowl, lid and sample determined? (E)
<i>7</i> .	Temperature of the water in bowl measured and recorded?
8.	Procedure repeated a second time (no need to wait 10 more minutes)?
9.	If mass varies by more than 1.0 g, procedure repeated until two masses are within 1.0 g?
<i>10</i> .	Theoretical maximum specific gravity calculated $\{A / (A + D - E)\}$?
ASTN	I only: Weighing-in-air determination (flask):
1.	Flask slowly filled with water taking care not to introduce air into the sample?
2.	Flask and contents placed in water bath for 10 ±1 min?
<i>3</i> .	Top of flask should not be submerged?
<i>4</i> .	Temperature of the water in flask 25 ± 1 °C (77.0 ± 2 °F) (temperature recorded)?
<i>5</i> .	Flask completely filled with water using a cover plate?
<i>6</i> .	Care taken not to entrap air beneath cover plate?
7.	Moisture wiped from the exterior of the flask and cover plate?
8.	Mass of the flask, cover plate, and contents determined? (E)
9.	Theoretical maximum specific gravity calculated $\{A/(A+D-E)\}$?
Suppl	emental Procedure for Mixtures Containing Porous Aggregate
	This procedure is only performed if the aggregates are not thoroughly sealed.
	o Assessors: Typically laboratories should not be demonstrating this supplemental procedure. It is included for reference.
1.	Water decanted from the container through towel [ASTM: through a 75µm (No. 200) sieve]?
2.	Several large pieces of aggregate broken to examine for wetness?
3.	If the aggregate has absorbed water, sample spread [ASTM only: on a flat tray] in front of a fan to
	remove surface moisture and stirred periodically?
4.	Sample weighed at 15 minute intervals until constant mass (less than 0.05%) is reached?
5.	Final surface dry mass substituted into the equation for the mass of the dry sample in air?

COMMENTS (T209 / D2041):

MARSHALL APPARATUS FOR HMA RESISTANCE TO PLASTIC FLOW SAMPLE PREPARATION (DO

OW	(T245)
(D6926	/ D6927)

						<u>A</u>	APPAR	RATUS				Da	ate:		
1.	Specim	en Mold	Assembli	ies:											
	AASHT	O: Inside	e diam.: 3	3.995 – <i>4</i>						1	2	3	4	5	6
			liam.: 3.9		005 in. ((101.3 –	- 101.7	7 mm)?	•						
	Collar a	and base j	plate fit n	nold?											
	Does la	b have at	t least thr	ee usable	e molds	s (recom	nmend	ded)?							
2.	Specim (a) (b)														·····
3.	Compa	ction Har	<u>mmer</u>												
	(a)								S	Serial N	o. (or I	D. No.)			
	(b)	(1) (2) (3) (4) (5)	AASHT ASTM: Note to a The dint the inch SI units) Sliding Note to Drop: 4 atic hamm Sliding Note to Drop: 4 AASHT flat-foo only: Hamma Face 1-4	ng face: construction of the second of the s	eircular, e 3.875 to 3.960 s: D692 listed in nits are d above. 527 to 4 s: Check 458.7 n .54 ± 0. s: Check 1.5 mm automationary 3.950 to .79 mm	r, flat, no. (98.) 7 in. (98.) 9 in. [Al 26-10 dispinch-poor regarded 1. (4545 g (4545 g) (4545 g) (18.00	ot slam 4 mm) MRL plays counds ar d as sta (9.98 to so for ha 10.00 for ha to 10.06 inter, to codels:	nted? no tol no tol no guidar contradi nd in SI andard, to 10.02 ammers 18.06 in mmer f ± 0.02 ammers in in.)? tapered ?	erance ctory inj are not of those me lib)? that are lib)? that are for use i lib)? foot ha	listed [. 0.33 to formatio equivale easurement difficult difficult	AMRL 100.58 In for the Int. Beceents (and It to assert It to assert It to assert It to assert It	: appromm]? e tamping ause the solution their committee. ase pedanting mole. 00.58 m ± 0.07 in	face of standard rect con	the hamn states the eversion t	mer. at to
4.	Compa	ction Ped	<u>lestal:</u>												
	(a)	<u>Compar</u> (1)	1. 2. 3. Steel ca	n post: 20 Post pl Attach ASTM [oak, y ap, at lea	203.3 x 2 lumb? led to so l only: A vellow p ast 304.8	203.2 x olid con- Average vine, etc 8 x 304.	457.2 crete s c dry d c.]? 8 x 25	2 mm (8 slab by density	four an of 670 -	gle bra - 770 k 2 x 1 in	ckets? . g/m³ (4)?	2 to 48 l	b/ft²)		
															······
		(3)		en holde	er moun	nted on p	pedest	tal and	holds b	ase plat	e, mold	l, and co	llar sec	urely?	

COMMENTS (T245 / D6926 & D6927):

MARSHALL APPARATUS FOR HMA RESISTANCE TO PLASTIC FLOW SAMPLE PREPARATION (D6

OW	(T245)
(D6926	6 / D6927)

		APPARATUS (Continued)	Date:
	(a) <u>Co</u>	mpaction pedestal for mechanical compactors with rotating	
		(1) Wooden post plumb (vertical with respect to floor?)	
			angle brackets
		2. Average dry density of dry density of 67	0 – 770 kg/m³ (42 to 48 lb/ft²)
		(2) Steel cap level and firmly attached to wooden po	st?
		(3) Mold holder mounted on pedestal and holds base	
		(4) Base rotation rate is 18 – 30 rpm?	
).	Breaki	ng Head	
•	(a)	Inside radius curvature in each segment is 2 in.?	
	(b)	Ends of curvature lie in chordal plane 5/8 in. from center of	
	(c)	$1/4 \times 1/4$ in. bevels on inside corners of each segment (1/2)	
	(0)	Note to Assessors: The clear plastic template should fit inside the	
		head should lie inside the two lines. Larger bevels will yield arti	
	(d)	Two guide posts perpendicular to base with minimum dian	
	(e)	Guide sleeves exhibit no appreciable play or friction?	
5 .	Loadir	g Device	
	(a)	Maker:	Serial No. (or I.D. No.)
	(b)	Produces uniform movement of 50 ± 5 mm/min (2.00 ± 0.1)	
	(c)	Load measuring device:	,
		(1) Capacity: 22.2 kN (5000 lbf) [ASTM: 20 kN (500	00 lb)]?
		(2) Sensitivity: 44.5 N up to 4.45 kN (10 lbf up to 10	
		(3) If proving ring: micrometer dial graduated to 0.00	
		(4) ASTM only: Standardized?	
	If the la	Assessors: The ASTM standardization requirements are included poratory is seeking accreditation, these issues will be covered in the under the quality system section. Only if they are not seeking R18 of the content o	e R18 evaluation and the notes should be
7.	Flow N	leasuring Devices: Maker:	SN:
	(a)	Guide sleeve and gauge (deformation indicator) graduated minimal friction?	
or	(b)	Micrometer dial graduated in increments of 0.25 mm (0.01	
or		Stress-strain recorder (LVDT) capable of indicating flow to	
3.	Ovens	and/or Hot Plates presented (for heating aggregate, asphalt, 1	molds hammers etc.)?
•	(a)	Thermostatically controlled to $\pm 2.8^{\circ}$ C ($\pm 5^{\circ}$ F) [AASHTO o	
	(b)	If a hot plate, is it provided with a suitable shield, baffle, o	
).	Water	Bath	
	(a)	AASHTO: Depth at least 152.4 mm (6 in.)?	
	` /	ASTM: Deep enough to maintain water at least 30 mm (1	1.25 in.) above top of specimens?
	(b)	ASTM only: Equipped with a mechanical circulator?	,
	(c)	Has perforated false bottom or a shelf at least 50.8 mm (2)	in.) above bottom of bath?
	(d)	Bath thermostatically controlled to $60 \pm 1^{\circ}\text{C}$ (140 $\pm 2^{\circ}\text{F}$)?	
	` /	ASTM note, cutbacks: Use an air bath that is thermostatically co	

COMMENTS (T245 / D6926 & D6927):

AMRL Hot-Mix Asphalt Worksheets OSA.F34 MARSHALL APPARATUS FOR HMA RESISTANCE TO PLASTIC FLOW

(T245)	
(D6926 / D6927)	

		MAI	SAMPLE PREPARATION	(D6926 / D6927)
			APPARATUS (Continued)	Date:
10.	Mixin	ıg Appar	ratus_	
	(a)		on, bowl, or pan for hand mixing or a mechanical mixer [AASH7] tained at the required mixing temperature and produce a homog	
	(b)	Hot p	plate, infrared lamp, or any other device for maintaining mixing	temperature?
11.	Thern	nometers	<u>s</u>	
	(a)	Then	mometers for aggregates, bitumen, and mixes presented?	<u></u>
			: Armored-glass, dial type, or digital thermometers with metal s	
		(1)	Range: 9.9 to 204°C (50 to 400°F) [ASTM: 50 to 400°F (10	0 to 200°C)]?
		(2)	Sensitivity of 2.8°C (5°F) [<i>ASTM</i> : 5°F (3°C)]?	
		(3)	ASTM only: Thermometers standardized (write any note SN:	· · · · · · · · · · · · · · · · · · ·
	(b)	Then	mometer for water bath [ASTM only; standardized], readable to	o 0.2°C (0.4°F)?
	If the l	laborator <u>.</u>	ors: The ASTM standardization requirements are included here because y is seeking accreditation, these issues will be covered in the R18 evaluate quality system section. Only if they are not seeking R18 accreditation	uation and the notes should be
12.	Balan			
	(a)		capacity, sensitive to 0.1 g, for weighing molded specimens?	
	(b)	5 kg	capacity, sensitive to 1 g, for batching mixtures?	
			on Temperatures [a temperature-viscosity chart contains this informatimes expressed as 170 ± 20 cSt and 280 ± 30 cSt.	ormation (T316/D4402)]
1.			erature based on viscosity of 0.17 ± 0.02 Pa s [ASTM: kinematic	c viscosity 170 \pm 20 mm ² /s]?
2.	Comp	action te	emperature based on viscosity of 0.28 ± 0.03 Pa s [ASTM: kine aly: the two values given are approximately equivalent for an asphalt b	matic viscosity $280 \pm 30 \text{ mm}^2/\text{s}$]?
3.			asphalts, temperatures can be based on manufacturer's recommo	
			sors: The laboratory should present a temperature-viscosity cur	

evidence that the temperatures used are based on the temperature-viscosity curve. A standard temperature for all asphalts of a certain grade is not acceptable.

COMMENTS (T245 / D6926 & D6927):

MARSHALL APPARATUS FOR HMA RESISTANCE TO PLASTIC FLOW SAMPLE PREPARATION

HMA - 28	
(T245)	
(D6926)	

	PROCEDURE Date:
Prepa	ration of Mixture (Note to Assessors: write an informational observation if mixing is not demonstrated.)
1.	AASHTO only: Initial batch prepared for "buttering" the mixing bowl and stirrers and bowl and stirrers cleaned by scraping, not wiped with cloth or solvent?
,	AASHTO only: At least 3 specimens prepared for each combination of aggregates and bitumen content?
3	Amount of each aggregate size fraction required for each specimen weighed into a pan and thoroughly mixed?
4.	Pan containing aggregate placed on a hot plate or in an oven and heated to a temperature not exceeding the mixing temperature by more than approx. 28°C (50°F)?
5.	AASHTO only: Aggregate dried to constant mass?
5.	Hot aggregate placed in bowl, mixed with spoon for approx. 5 seconds & crater formed?
7.	Required amount of preheated bituminous material added to aggregate?
	Note, cutbacks: weigh the bowl, mixing blade, aggregate, and asphalt to be mixed.
3.	Temperature of the aggregate and bituminous material still within the established mixing temperature limits?
€.	Aggregate and bituminous material rapidly mixed until thoroughly coated?
10.	If hot plate used during mixing, wire mesh (or similar material) used to prevent direct contact between hot plate and mixing bowl (to avoid localized overheating)?
	Note, cutbacks: cure the mix in a ventilated oven maintained at 11.1°C (20°F) above compaction temperature until the precalculated mass of 50% solvent loss is obtained. Weigh at 15-minute intervals at first, and then at intervals of less than 10 minutes when the desired mass is being approached.
	tioning of Mixture [ASTM only] batched samples: Samples transferred to covered metal containers and placed into an oven maintained at 8 to 11°C above the
	established compaction temperature for 1 – 2 hours?
Multi	ple batched samples:
<u>11 a a a a a</u>	Entire batch placed on clean non-absorptive surface, mixed by hand to ensure uniformity and quartered
	into appropriate sample size to yield a height of 63.5 ± 2.5 mm (2.5 ± 0.1 in.)?
,	Samples transferred to covered metal containers and placed into an oven maintained at 8 to 11°C above
	the established compaction temperature for 1 – 2 hours?
	Note, cutbacks: Cure in mixing bowl in a ventilated oven maintained at 11°C (20°F) above compaction temperature until the precalculated mass of 50% solvent loss is obtained. Masses should be obtained in 15-minute intervals at first, and then at intervals of less than 10 minutes when the desired mass is being approached.

COMMENTS (T245 / D6926 & D6927):

MARSHALL APPARATUS FOR HMA RESISTANCE TO PLASTIC FLOW SAMPLE PREPARATION

(T245)	
(D6926)	

	PROCEDURE (Continued) Date:
Compa	ction of Specimens
1.	Specimen mold assembly and face of the compaction hammer clean?
2.	Mold assembly and hammer heated in boiling water, on a hot plate,
	or in an oven at 93.3 to 148.9°C (200 to 300°F)?
3.	Filter paper or paper toweling placed in bottom of mold?
4.	Entire batch of mixture placed in mold?
5.	Mixture spaded vigorously with heated spatula or trowel?
	(a) Spaded 15 times around perimeter?
	(b) Spaded 10 times over the interior?
6.	AASHTO only: Surface of mixture smoothed to slightly rounded shape, removing collar if necessary?
7.	Temp. of the mixture immediately prior to compaction within the limits of established compacting temp.?
8.	Filter paper placed on mixture and mold assembly placed in mold holder on compaction pedestal?
9.	50 to 75 blows applied unless otherwise specified, with hammer held perpendicular to base of mold?
10.	ASTM only: No mechanical device used to restrict the handle of the manual hammer in vertical position?
11.	Mold and contents reversed?
12.	Same number of blows applied to reversed specimen?
<u>AASHT</u> 1. 2. 3. 4. 5. 6.	O only, Removal from Mold Sample extractor placed on end of specimen?
7.	Specimen mass determined and recorded?
8.	Specimen measured, height is 63.5 \pm 1.27 mm (2.5 \pm 0.05 in.)?
ASTM	only, Removal from Mold
1.	Specimen allowed sufficient time to cool prior to extruding from mold?
	Note to assessors: Cooling specimens in mold may be facilitated by immersing in cold water. To facilitate extraction
	and reduce specimen distortion, specimens in mold may be briefly immersed in a hot water bath prior to extruding.
<i>2</i> .	Specimen extruded using any suitable device provided the specimen is not distorted during the process?
<i>3</i> .	Specimen transferred to smooth, flat surface and allowed to cool (preferably overnight)?

COMMENTS (T245 / D6926 & D6927):

MARSHALL APPARATUS FOR HMA RESISTANCE TO PLASTIC FLOW STABILITY AND FLOW

1117111	50	
(T245)		
(D6927)		

PROCEDURE (Conti	nued)	Date:

1.	ASTN	I only: Minimum of three replicate specimens tested?				
2.	ASTN	I only: Bulk specific gravity of each specimen determined by D2726, D1188, or D6752?				
3.	ASTN	I only: Specimen thickness measured according to D3549 (four measurements around perimeter)?				
4.	Speci	Specimens brought to test temperature by immersing in water bath for				
	30 to	40 minutes or by placing in an oven for 2 hours?				
5.	Bath o	or oven maintained at 60 ± 1 °C (140.0 ± 1.8 °F) for asphalt?				
	Note,	cutbacks: Specimens placed in air bath maintained at $25 \pm 1^{\circ}C$ (77.0 $\pm 2^{\circ}F$) for 2 hours.				
6.	Guide	rods and inside surfaces of breaking head cleaned?				
7.		rods lubricated?				
8.	Temp	erature of breaking head maintained at 21.1 to 37.8°C (70 to 100°F)?				
9.		men removed from bath or oven and placed in lower segment of breaking head?				
10.		I only: Excess water removed with a towel?				
11.		ing head and specimen positioned on testing machine?				
12.	Flow	meter (if used) placed over guide rod and adjusted to zero?				
13.	Load	applied to specimen until maximum load is reached?				
14.	Maxii	num load applied within 30 seconds after removal of specimen from bath or oven?				
15.	Maxii	num load and flow value recorded the instant the load begins to decrease?				
16.	Load	correction:				
	(a)	For <u>core specimens</u> : load corrected when thickness of specimen is not 63.5 mm (2 1/2 in.)				
		by multiplying by factor from table 1?				
	(b)	For <u>lab-molded specimens</u> : shall conform to thickness requirement of 63.5 mm (2 1/2 in.)				
		by multiplying by factor from table 1 (specimens with a volume of 509 to 522 mm ³ no correction)?				

COMMENTS (T245 / D6926 & D6927):

HVEEM APPARATUS FOR RESISTANCE TO DEFORMATION AND COHESION OF BITUMINOUS MIXTURES

HMA - 31	
(T246)	
(D1560)	

Date: _____

Α	D	\mathbf{p}_{Δ}	P	Δ^r	ГΙ	IC
$\overline{}$	Г.	$\Gamma \Gamma$	۱ı /	. ^	ıι	1,7

	Compactor available (California kneading, gyratory, or other) capable of creating samples 102 mm (4 in.) in diameter and $64 \pm 3 \text{ mm}$ (2.5 \pm 0.1 in.) in height?				
	Note: other compactors may not have similar stabilometer or cohesiometer values.				
	bilometer, in working condition?				
Rubber b	bulb, for removing or adding air into stabilometer (during adjustment of stabilometer)?				
Compres	ssion device, Manufacturer: SN:				
	Minimum capacity of 44.5 kN (10,000 lbf)				
(b)	Capable of a rate of 1.3 mm/min (0.05 in/min)?				
Push-out	t device (or other acceptable means of removing specimen)?				
Oven, ca	spable of being maintained at 60 ± 3 °C (140 ± 5 °F)?				
Calibrati	ion cylinder, hollow metal cylinder:				
(a)	Height: 140 mm (5 1/2 in.) [ASTM: $140 \pm 6.4 mm$ (5.5 $\pm 0.25 in.$)] [AMRL: 5 to 8 in.]?				
(b)	Outside diameter: 101.47 to 101.73 mm (3.995 to 4.005 in.)?				
Solid-wall metal follower:					
(a)	Height: 133.35 to 146.05 mm (5.25 to 5.75 in.) [AMRL: 5 to 8 in.]?				
(b)	Diameter: 101.092 to 101.346 mm (3.980 to 3.990 in.)?				
	n Test Apparatus (cohesion portion of the test is optional, ASTM only Observation if not performed.				
(a)	Cohesiometer?				
	2000~g of steel shot passing 2.00 -mm (No. 10) sieve and retained on 1.40 -mm (No. 14) sieve?				
	Steel shot flows at 1800 ± 20 g/min.?				
	Note: Other materials may be used provided rate of loading is equivalent to that obtained when using steel sh				
	Oven maintained at $60 \pm 1^{\circ}\text{C} (140 \pm 2^{\circ}\text{F}) [ASTM: 60 \pm 3^{\circ}\text{C} (140 \pm 5^{\circ}\text{F})]?$				
(e)	Balance: 5 kg capacity, sensitive to 1 g [ASTM: 10 kg capacity, sensitive to 1 g?]?				

(T246 / D1560)

HVEEM APPARATUS FOR RESISTANCE TO DEFORMATION AND COHESION OF BITUMINOUS MIXTURES

HMA - 32	
(T246)	
(D1560)	

DDO	OTT	TIDE
PRO	('14')	пры
FINU	しし	UKE

			<u>PROCEDURE</u>	Date:			
<u>Adjus</u>	tment of Stabilometer			21			
l. Š				E base is 89 mm (3.5 in.)?			
2.				······ <u> </u>			
				······			
5.		izontal pressure of 34.5kPa					
_				hine?			
· .				······			
				·····			
	Pump handle turne	ed at approx. two turns per s	econd?	······			
	Turns indicator di	al reads 1.95 to 2.05 turns?		······			
0.				······			
1.	Horizontal pressur	e released and calibration cy	ylınder removed?				
Resist	ance to Deformation						
		e 102 mm (4 in.) in diameter	and 64+3 mm (2.5+0.1 in.) high?			
	Note: If specimens	are not correct height or diame	eter the stabilometer value sha	ll be corrected.			
		ixed and compacted according					
				* <u>.</u>			
	Specimen brought	to 60 ± 3 °C $(140 \pm 5$ °F) [A	STM: in an oven for 3 to 4	hours]?			
	Note: Bring specim	nen to room temperature when a	lesired to test with whatever m	oisture is present.			
				t device (or other suitable method)?			
	Tamped end of spe	ecimen is up?					
	Follower placed or	n top of specimen?					
	Vertical movemen	it of press begun?					
0.	If locking shims u	sed on spherical head of load	ding device, shims removed	l prior to stabilometer test?			
1.		e readings recorded at vertic					
		AASHTO: 2.23, 4.45, 8.90, 13.4, 17.8, 22.3, and 26.7 kN (500, 1000, 2000, 3000, 4000, 5000, and 6000 lbf)?					
	ASTM: 13.4, 22.3, and 26.7 kN (3000, 5000, and 6000 lbf)?						
2.				<u> </u>			
3.				0 kN (900 to 1100 lbf)]?			
4.				······			
		t in a further reduction of the ve					
5.	Pump handle turne	ed until the stabilometer dial	reads 689 kPa (100 psi)?	······ <u> </u>			
6.	Pump handle turne	ed at approx. two turns per s	econd?				
7.	Number of turns re	ecorded as the displacement	reading? (D)				
8.				······			
9.	If height of specin	nen is not 64 ± 3 mm (2.5 ± 0.0)	0.1 in.), is stabilometer valu	e corrected according chart?			
	S =	22.2	Where:	S = stabilometer value			
		D #D / (D D) 0.00		P_h = horizontal pressure (kPa)			
		$P_h * D / (P_v - P_h) + 0.22$	22	P_v = vertical pressure (kPa)			
				D = displacement			

COMMENTS (T246 / D1560):

(T246 / D1560)

HVEEM APPARATUS FOR RESISTANCE TO DEFORMATION AND COHESION OF BITUMINOUS MIXTURES

HMA - 33
(T246)
(D1560)

		<u>PROCEDI</u>	JRE (Continued)	Date:		
Cohe	sion (if demonstrated) [A	AASHTO only: Cohesion testiv	ng is optional and not r	equired to determine Stability]		
1.	Specimen in oven at 60 ± 1 °C (140 ± 2 °F) for minimum of 2 hours?					
2.	ASTM only: Specim	ren heated in oven at 60 \pm 3°C	$C(140 \pm 5^{\circ}F)$ for 3 to 4	1 hours?		
3.				± 5°F)]?		
4.	Specimen clamped in	n cohesiometer [ASTM: with t	amped end up]?	······································		
5.				······		
6.	Shot allowed to flow	into receiver at 1800 ± 20 g/n	nin?	······		
7.				······		
8.	Mass of shot used re-	corded?		······		
9.	Cohesiometer value	calculated from formula in (T2	246 / D1560)?			
	C =	L	Where:	C = cohesiometer value		
				L = mass of shot		
		$W * (0.20H + 0.044H^2)$		W = diameter, cm (or in.) or width, cm (or in.)		
				D = height, cm (or in.)		

COMMENTS (T246 / D1560):

(T246 / D1560)

Note to Assessors: At all (except ~5) labs across the country you must write the "Cohesion not demonstrated" note for ASTM. This is never a Nonconformity – it is always an ASTM only Observation.

CALIFORNIA KNEEDING COMPACTOR FOR PREPARATION AND TESTING OF HMA SPECIMENS

HMA - 34	
(T247)	
(D1561)	

		<u>APPARAT</u>	<u>l US</u>					Da	te:			
	Kneadii	ng Compactor										
	(a)	California kneading compactor?										
r	(b)	Other kneading compactor with calibration curv										
	Maker:					Se	erial N	lo. (or	I.D. N	No.)?		
	A 22222	oui aa										
	Accesso (a)											
	(a) (b)	Feeder trough?Paddle to fit cross section of trough?										
	(c)	Paddle to fit cross section of trough?										
	(d)	Mold holder?										
	(e)	Steel shim approximately 6.4 x 19 x 64 mm [AS						•••••	•••••	•••••	•••••	
	(0)	[AMRL: piece of steel of any convenient shape						·				
	(f)	Round-nose steel rod, 9.5 mm (3/8 in.) in diame	ter by	406 r	nm (1	6 in.)	long?					
	(g)	Heavy paper disks, 102 mm [ASTM: 101.6 mm										
		-	_									
	Molds			1 2	La		-		-			
	*	11 404 45 404 50 (0.005 4.005)	1	2	3	4	5	6	7	8	9	
	Heigh	dia.: 101.47 – 101.73 mm (3.995 – 4.005 in.)? t approx. 127 mm (5 in.)? te laboratory have three usable molds (recommend	ded)?.									
	Heigh Does th	t approx. 127 mm (5 in.)? e laboratory have three usable molds (recommend tus for Application of Static "Leveling Off" Load										
	Heigh Does th	t approx. 127 mm (5 in.)? e laboratory have three usable molds (recommendates for Application of Static "Leveling Off" Load Compression testing machine: minimum capacit										
	Heigh Does th	t approx. 127 mm (5 in.)? The laboratory have three usable molds (recommendates for Application of Static "Leveling Off" Load Compression testing machine: minimum capacit Two metal followers:	y 222	kN (5	50,000) lbf)?	·····		•••••	•••••		
	Heigh Does th Apparat (a)	t approx. 127 mm (5 in.)? The laboratory have three usable molds (recommendates for Application of Static "Leveling Off" Load Compression testing machine: minimum capacit Two metal followers: (1) Height: 140 mm (5 1/2 in.) [ASTM: 13]	y 222 9.7 m	kN (5	50,000 MRL) lbf)? : min.	 5 in.,	no ma	 ax.] hi	gh?		
	Heigh Does th Apparat (a)	t approx. 127 mm (5 in.)? tus for Application of Static "Leveling Off" Load Compression testing machine: minimum capacit Two metal followers: (1) Height: 140 mm (5 1/2 in.) [ASTM: 13 Outside diameter: 101.09 to 101.31 mm	ty 222 9.7 m n (3.9	kN (5 m] [A 80 to 3	50,000 MRL 3.990) lbf)? : min. in.) [A	 5 in., ASTM	no ma	 ax.] hi 2 mm	gh?]?		
	Heigh Does th Apparat (a)	t approx. 127 mm (5 in.)? tus for Application of Static "Leveling Off" Load Compression testing machine: minimum capacit Two metal followers: (1) Height: 140 mm (5 1/2 in.) [ASTM: 13 Outside diameter: 101.09 to 101.31 mm (2) Height: 38.1 mm (1 1/2 in.)?	ty 222 9.7 m n (3.9	kN (5 m] [A 80 to 3	50,000 MRL 3.990) lbf)? : min. in.) [<i>A</i>	 5 in., ASTM	no ma	 ax.] hi 2 mm 	gh?]?		
	Heigh Does th Apparat (a)	t approx. 127 mm (5 in.)? tus for Application of Static "Leveling Off" Load Compression testing machine: minimum capacit Two metal followers: (1) Height: 140 mm (5 1/2 in.) [ASTM: 13 Outside diameter: 101.09 to 101.31 mm	ty 222 9.7 m n (3.9	kN (5 m] [A 80 to 3	50,000 MRL 3.990) lbf)? : min. in.) [<i>A</i>	 5 in., ASTM	no ma	 ax.] hi 2 mm 	gh?]?		
	Heigh Does th Apparat (a)	t approx. 127 mm (5 in.)? tus for Application of Static "Leveling Off" Load Compression testing machine: minimum capacit Two metal followers: (1) Height: 140 mm (5 1/2 in.) [ASTM: 13 Outside diameter: 101.09 to 101.31 mm (2) Height: 38.1 mm (1 1/2 in.)?	19.7 m (3.9)	kN (5 m] [A 80 to 3	MRL 3.990) lbf)? : min. in.) [A in.) [A	5 in., ASTM	no ma : 101.	ax.] hi 2 mm 2 mm	gh?]?]?		
	Height Does th Apparat (a) (b)	t approx. 127 mm (5 in.)? The laboratory have three usable molds (recommendates for Application of Static "Leveling Off" Load Compression testing machine: minimum capacit Two metal followers: (1) Height: 140 mm (5 1/2 in.) [ASTM: 13 Outside diameter: 101.09 to 101.31 mm (2) Height: 38.1 mm (1 1/2 in.)?	9.7 m n (3.9)	kN (5 m] [A 80 to 3	MRL 3.990) lbf)? : min. in.) [A in.) [A	5 in., ASTM 	no ma: 101.	ax.] hi 2 mm 2 mm	gh?]?]?		
	Height Does th Apparat (a) (b) Miscell	t approx. 127 mm (5 in.)? tus for Application of Static "Leveling Off" Load Compression testing machine: minimum capacit Two metal followers: (1) Height: 140 mm (5 1/2 in.) [ASTM: 13 Outside diameter: 101.09 to 101.31 mm (2) Height: 38.1 mm (1 1/2 in.)?	9.7 m n (3.9)	kN (5 m] [A 80 to 3	MRL 3.990) lbf)? : min. in.) [A in.) [A	5 in., ASTM 	no ma: 101.	ax.] hi 2 mm 2 mm	gh?]?]?		
	Height Does th Apparat (a) (b) Miscell (a)	t approx. 127 mm (5 in.)? te laboratory have three usable molds (recommendates for Application of Static "Leveling Off" Load Compression testing machine: minimum capacit Two metal followers: (1) Height: 140 mm (5 1/2 in.) [ASTM: 13 Outside diameter: 101.09 to 101.31 mm (2) Height: 38.1 mm (1 1/2 in.)?	9.7 m (3.9)	kN (5 kn))))))))))))))))))))))))))}	MRL 3.990 3.990) lbf)? : min. in.) [A	5 in., ASTM	no m:: 101.	ax.] hi 2 mm 2 mm	gh?]?]?		
	Height Does th Apparat (a) (b) Miscell (a) (b)	tapprox. 127 mm (5 in.)? te laboratory have three usable molds (recommend tus for Application of Static "Leveling Off" Load Compression testing machine: minimum capacit Two metal followers: (1) Height: 140 mm (5 1/2 in.) [ASTM: 13 Outside diameter: 101.09 to 101.31 mm (2) Height: 38.1 mm (1 1/2 in.)?	9.7 m n (3.9)	kN (5 kN)(5 kN)(5 kN (5 kN)(5 kN)(5 kN (5 kN)(5	MRL 3.990 3.990) lbf)? : min. in.) [A in.) [A	5 in., ASTM	no ma: 101.	ax.] hi 2 mm 2 mm	gh?]?]?		
	Height Does th Apparat (a) (b) Miscell (a) (b) (c)	tapprox. 127 mm (5 in.)? tus for Application of Static "Leveling Off" Load Compression testing machine: minimum capacit Two metal followers: (1) Height: 140 mm (5 1/2 in.) [ASTM: 13 Outside diameter: 101.09 to 101.31 mm (2) Height: 38.1 mm (1 1/2 in.)?	9.7 m (3.9 m (3	kN (5 kN)(5 kN)(5 kN (5 kN)(5 kN)(5 kN)(5 kN)(5 kN (5 kN)(5	5 F) a) lbf)? : min. in.) [A	5 in., ASTM ASTM	no m:: 101.:: 101.:	ax.] hi 2 mm 2 mm	gh?]?]? ?F)?		
	Height Does th Apparat (a) (b) Miscell (a) (b) (c) (d)	tapprox. 127 mm (5 in.)? le laboratory have three usable molds (recommendation of Static "Leveling Off" Load Compression testing machine: minimum capacitation of Static "Leveling Off" Load Compression testing machine: minimum capacitation of Static "Leveling Off" Load Compression testing machine: minimum capacitation of Static "Leveling Off" Load Compression testing machine: minimum capacitation of Static "Leveling Off" Load Compression testing machine: minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Lev	9.7 m (3.9) (3.9) (3.9) (3.9)	kN (5 kN)(5 kN (5 kN)(5 kN)(5 kN (5 kN)(5	5°F) 6	in.) [A	5 in., ASTM ASTM 10 ± 3 15°F)?	no m: : 101. : 101. 	ax.] hi 2 mm 2 mm 30 ± 5	gh?]?]? ?F)?		
	Height Does th Apparat (a) (b) Miscell (a) (b) (c) (d) (e) (f)	tapprox. 127 mm (5 in.)? The laboratory have three usable molds (recommendates for Application of Static "Leveling Off" Load Compression testing machine: minimum capacit Two metal followers: (1) Height: 140 mm (5 1/2 in.) [ASTM: 13 Outside diameter: 101.09 to 101.31 mm (2) Height: 38.1 mm (1 1/2 in.)?	9.7 m (3.9) (3.9) ? 3°C (1) atures	kN (5 kN)(5 kN (5 kN)(5 kN (5 kN)(5 kN (5 kN)(5 kN)(5 kN)(5 kN)(5 kN)(5 kN (5 kN)(5	5 <i>F</i>) <i>i</i> to the	in.) [A	5 in., ASTM ASTM (10 ± 3) 5°F)? est 0.3	no ma : 101. : 101. mm (2 mm 2 mm 30 ± 5	gh?]?]?]?		
	Height Does th Apparat (a) (b) Miscell (a) (b) (c) (d) (e)	tapprox. 127 mm (5 in.)? le laboratory have three usable molds (recommendation of Static "Leveling Off" Load Compression testing machine: minimum capacitation of Static "Leveling Off" Load Compression testing machine: minimum capacitation of Static "Leveling Off" Load Compression testing machine: minimum capacitation of Static "Leveling Off" Load Compression testing machine: minimum capacitation of Static "Leveling Off" Load Compression testing machine: minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Leveling Off" Load Compression testing machine: 101.09 to 101.31 minimum capacitation of Static "Lev	9.7 m (3.9) (3.9) ? 3°C (2 ature: ee speed d bitun	2 kN (5 kN)(5 kN (5 kN)(5 kN)(5 kN (5 kN)(5 kN)(5%,000 MRL 3.990 3.990 5%,000 to the	in.) [A	5 in., ASTM ASTM 10 ± 3 5°F)? est 0.3	no ma : 101. : 101.	2 mm 2 mm 30 ± 5	gh?]?]? [?		

COMMENTS (T247 / D1561):

(T247 / D1561)

CALIFORNIA KNEEDING COMPACTOR FOR PREPARATION AND TESTING OF HMA SPECIMENS

HMA - 35	
(T247)	
(D1561)	

Date: __

-	_ ~	-				_
D	RC	\sim	$\mathbf{F}\mathbf{\Gamma}$	м	ΙĐ	Е

Sample	Preparation:
1.	Estimated optimum bitumen content determined?
2.	AASHTO only: Tests conducted on 3 samples of different asphalt content: one at estimated optimum,
	one above, and one below?
3.	Aggregate separated into fractions and dried?
4.	Aggregate recombined to 1200 g [ASTM: 1200 ± 10 g $(2.65 \pm 0.02 \ lbm)$] of specified grading?
5.	Asphalt and aggregate at mixing temperature, based upon the temperature-viscosity curve for the asphalt
	used, 170 ± 20 cSt for mixing (ranges listed in table below)?

Mixing Temperature Table

Temperature Range, °C (°F)

Asphalt Grade	AASHTO min.	ASTM min.	maximum
AC-2.5, AR 1000, or 200-300 Pen	107 (225)	99 (210)	121 (250)
AC-5, AR 2000, or 120-150 Pen	121 (250)	110 (230)	135 (275)
AC-10, AR 4000, or 85-100 Pen	135 (275)	121 (250)	149 (300)
AC-20, AR 8000, or 60-70 Pen	149 (300)	132 (270)	163 (325)
AC-40, AR 16000, or 40-50 Pen	149 (300)	132 (270)	163 (325)

- 6. Asphalt and aggregate rapidly and thoroughly mixed?
- 7. ASTM only: Mix transferred to flat pan and cured for 2 to 3 h at 146 ± 3 °C (295 ± 5 °F) or for 15 to 18 h at $60 \pm 3^{\circ}C$ (140 $\pm 5^{\circ}F$) in an oven equipped with air circulation?
- 8. Mixture and molds brought to correct temperature [110°C (230°F) for paving grade asphalt]?

Compaction

- Compactor foot heated before testing? 1. 2. Mold placed on mold holder and paper disk placed in bottom of mold?
- Shim placed under mold? 3.
- Mass of mixture for one specimen placed in preheated trough?..... 4.
- 5. Mixture spread uniformly in trough?______ One half of mixture pushed into mold with paddle? 6.
- 7.
- 8. Rest of mixture placed in mold and rodding repeated?..... 9.
- 10. Approx. 20 tamping blows at 1.7 MPa (250 psi) applied using heated foot?......______ [AMRL: Number of tamping blows depends on the mixture.]
- Shim removed and mold tightening screw released? 11.
- 12. 150 tamping blows at 3.4 MPa (500 psi) applied? Mold and mixture placed in oven at 60°C (140°F): 13.
- (a)

 - (b) ASTM: For 1 hour if compacted at 60 ℃ (140 ℉) [liquid grade asphalt]?......______
 - ASTM: For 1.5 hours if compacted at 110 °C (230 °F) [paving grade asphalt]?.....
- 14. Followers inserted into mold? Static load ("leveling-off load") of 6.9 MPa (1000 psi) [ASTM: 56 kN (12600 lbf)] applied to specimen 15.
- Note to Assessors: This load flattens the ends of the specimen, which may be uneven due to the tamping action of the
- compactor foot. There is no duration specified for this load, but a few seconds is usually sufficient. ASTM only: Testing machine head or platen speed 6 mm/min. (0.25 in./min)? 16.
- Note to Assessors, AMRL guidance: The machine should be set to a rate of travel of 6 mm/min. or less when applying the leveling-off load, and then stopped when it reaches the correct load. A faster rate of travel is an ASTM only finding.
- 17. Height measured to nearest 0.25 mm (0.01 in.) in mold? Specimen returned to oven at 60°C (140°F)?..... 18.
- 19. AASHTO only: If specimens to be tested according to (T246 / D1560), testing completed within 3 hours of

COMMENTS (T247 / D1561):

(T247 / D1561)

PERCENT AIR VOIDS IN COMPACTED BITUMINOUS PAVING MIXTURES

(T2	69)	
(D32)	03)	

		<u>APPARATUS</u>	Date:
1. or or	(b) Method T275 / D1188 (Bul	lk Sp. G by Paraffin Coating)?	
2.	Equipment for one of the following: (a) Method T209 / D2041 (Ma		od)?
or	(b) ASTM only: Method D683		
		<u>PROCEDURE</u>	
For De	ense Bituminous Paving Mixtures		
1.		(T166 / D2726), (T275 / D1188), or (T	T331 / D6752)?
2.			[M only: or D6857]?
For Op 1. 2. 3. 4. 5.	Height of specimen determined? Volume of specimen determined bas Density converted to bulk specific g	mined from its dry mass and its volum sed on average height and diameter me ravity?	e?asurement?
C.1. 1			
Calcul 1.		dance with method?	
		ds = 100 * [1 - (bulk sp gr / theoretical	
Note to	Assessors, alternative terminology:		
	Gmb = bulk speci Per	specific gravity (Rice Test, T209/D2041) fic gravity (Bulk Sp G Test, T166/D2726) cent Air Voids = 100 * [1 - (Gmb / Gmm)] cent Air Voids = 100 * (Max – Bulk) / Max	
COMN	MENTS (T269 / D3203):		(T269 / D3203)

BULK SPECIFIC GRAVITY OF HMA USING PARAFFIN-COATED OR PARAFILM-COATED SPECIMENS

HMA - 37	
(T275)	
(D1188)	

	APPARATUS Date:
AASHT	TO METHOD A
1.	Balance (M231), can determine constant mass of specimen to 0.1 percent?
2.	Bath for immersed weighing with overflow outlet, thermostatically controlled to 25.0 ± 0.5 °C $(77.0 \pm 0.9$ °F)?
3.	Suitable suspension and holder for immersed weighing:
	(a) Suspended from center of pan?
	(b) Holder and specimen completely immersed?
	(c) Wire suspending holder of smallest practical size?
4.	Paraffin (Specific Gravity known)?
5.	Room temperature: $25 \pm 5 ^{\circ} ^{$
	<u>O METHOD B</u>
1.	Balance (M231), can determine constant mass of specimen to 0.1 percent?
2.	Constant temperature water bath:
	(a) Thermostatically controlled to $25.0 \pm 0.5 $ °C $(77.0 \pm 0.9 $ °F)?
	(b) ASTM 17C or 17F thermometer?
3.	Calibrated volumeter with a tapered lid and capillary bore?
4.	Drying oven at $52 \pm 3 ^{\circ}\!$
5.	Paraffin (Specific Gravity known)?
6.	Room temperature: $25 \pm 5 $ °C $(77 \pm 9 $ °F)?
A STM	METHOD
1.	Balance (D4753) with ample capacity and with sufficient sensitivity to determine
	bulk specific gravity to four significant figures? (i.e. 0.1 g for 100.1 to 999.9 g) such as a GP2?
2.	Det. Contract Line Line
	(a) Constant level overflow?
or	
<i>3</i> .	Suspension and holder for completely immersed weighing?
4.	Parafilm (Specific Gravity known)?
<i>5</i> .	Polyurethane foam:
	(a) Mat with a minimum 50 x 50 cm (20 x 20 in) for working surface by 12.5 mm (0.5 in.) thick?
	(b) At least one mat with a size approx. equal to the top surface dimensions of specimen on hand?
<i>6</i> .	Calibration cylinder:
	(a) Smooth, sided aluminum cylinder?

Approximately 100-mm (4-in) diameter by 60-mm (2.5 in)?......

Sharp knife to cut parafilm?

COMMENTS (T275 / D1188):

(a) **(b)**

7.

(T275 / D1188)

COMMENTS (T275):

AMRL Hot-Mix Asphalt Worksheets OSA.F34 BULK SPECIFIC GRAVITY OF HMA USING PARAFFIN-COATED SPECIMENS

(T275)	
(12/3)	

	AASHTO PROCEDURE Date:			
<u>Specime</u>				
1.	Recommended size:			
	(a) Diameter (or side of sawed specimens) at least 4 times maximum size of aggregate?			
	(b) Thickness at least 1 1/2 times maximum size of the aggregate?			
2.	Drying to constant mass (only required for specimens containing moisture, recently-made lab samples ok):			
	(a) Distortion, bending, or cracking avoided and free of foreign material?			
	(b) For saturated samples, initially dried overnight at $52 \pm 3 \mathcal{C} (125 \pm 5 \mathcal{F})$?			
	(c) Additional 2 hr. drying intervals?			
	(d) Constant mass (change less than 0.05 percent)?			
METHO	0D A			
1.	Mass in air determined (dry; see 1 (b) above)? (A)			
2.	Allowed to cool in air at room temperature at $25 \pm 5 \text{C} (77 \pm 9 \text{F})$ for 30 minutes?			
3.	Coated with paraffin, filling all voids?			
٥.	Note: The specimen may optionally be coated with powdered talc before coating with paraffin to facilitate removal.			
	Note: The specimen may optionally be cooled to 40°F before coating.			
4.	Cooled at least 30 min., then weighed in air? (D)			
5.	Immersed in water at 25 ± 1 °C $(77 \pm 2$ °F) for 4 ± 1 minutes and weighed? (E)			
6.	Sp. Gr. of paraffin determined (if unknown)? (F)			
<i>7</i> .	Bulk Specific Gravity calculated as follows?			
	A			
	Bulk Specific Gravity =			
	D-E-((D-A)/F)			
<u>METHO</u>				
1.	Mass of dry sample in air determined? (A)			
2.	Room temperature $25 \pm 5 ^{\circ}\text{C} (77 \pm 9 ^{\circ}\text{F})$?			
<i>3</i> .	Coated with paraffin, filling all voids, and then cooled 30 min.?			
<i>4</i> .	Mass of specimen + paraffin determined? (C)			
5.	Outside of volumeter wiped dry?			
<i>6</i> .	Mass of volumeter + water at 25 ± 1 °C (77 ± 2 °F) determined? (D)			
<i>7</i> .	Mass of volumeter + water + specimen at 25 ± 1 °C $(77 \pm 2$ °F) determined? (E)			
8.	Determine specific gravity of Paraffin (if unknown)?			
9.	Bulk Specific Gravity calculated as follows?			
	Bulk Specific Gravity =			
	But specific Gravity = $D - [E - C + ((C-A)/F)]$			
	$D = [L - C + ((C - A)/\Gamma)]$			

(T275)

COMMENTS (D1188):

BULK SPECIFIC GRAVITY OF HMA USING PARAFILM-COATED SPECIMENS (D1188) _____

	ASTM PROCEDURE Date:				
Snao:	mans				
<u>Speci</u> 1.	<u>mens</u> Diameter (or side of sawed specimens) at least 4 times maximum size of aggregate?				
2.	Thickness at least 1 1/2 times maximum size of the aggregate?				
2. 3.	Drying to constant mass:				
э.	• •				
	(a) Distortion, bending, or cracking of specimen avoided?				
	(c) Dried under fan until constant mass achieved?				
Proce					
1.	Mass in air determined (dried under a fan until constant mass has been achieved)? (A)				
<i>2</i> .	On a hard surface, sharp blade used to cut two 100 x 100 mm and one 100 x 200 mm pieces of parafilm?				
<i>3</i> .	Backing taken off one of the 100 x 100 mm pieces?				
<i>4</i> .	Opposite sides of film grasped and stretched?				
	(a) Repeated on other two sides?				
	(b) Stretched to an approximately 150 x 150-mm square?				
	(c) Care taken to avoid holes in film?				
<i>5</i> .	Stretched film placed over one end of specimen and sides of film pressed around sample?				
6.	Specimen turned over, placed on foam mat, and Steps 4 - 6 repeated?				
<i>7</i> .	Another piece of foam placed on top of wrapped specimen?				
8.	Wrapped specimen pressed with another specimen of same size to eliminate air pockets from surfaces?				
9.	Sharp knife used to trim excess film from sides of sample?				
	(a) Care taken to avoid damage of sample?				
	(b) Minimum of 15 mm (approximately 1/2 in) of film remaining on each side of specimen?				
<i>10</i> .	Backing peeled off remaining piece of film and ends stretched to 400 mm (16 in.)?				
11.	One end of stretched film placed on side of specimen and rolled over so film stretched tightly over surface?				
<i>12</i> .	Edges folded and pressed over edges of specimen?				
<i>13</i> .	Mass of covered specimen in air determined? (D)				
<i>14</i> .	Mass of covered specimen in water bath at 25 \pm 1 °C (77 \pm 1.8 °F)? (E)				
,	(a) Is correction made if temperature of water differs from 25 ± 1 °C (77 ± 1.8 °F)?				
	(b) If water differs by more than $2 \mathcal{C}$ (3.6 F), specimen immersed 10 to 15 minutes?				
	(b) 1) water adjets by more than 2°C (3.0°T), specimen immersed 10 to 13 minutes:				
Calcu	elations .				
1.	Specific gravity of film determined by procedure in Sec. 8.3? (F)				
2.	If specimen contains moisture, correction made using Sec. 9?				
<i>3</i> .	Bulk Specific Gravity calculated as follows?				
•	A				
	Bulk Specific Gravity =				
	Duk Specific Gravity = $D - E - ((D-A)/F)$				
	$D - L - ((D - \Lambda) / \Gamma)$				

(D1188)

RESISTANCE OF COMPACTED BITUMINOUS MIXTURES TO MOISTURE INDUCED DAMAGE (TSR / Lottman)

HMA - 40	
(T283)	
(D4867)	

Δ	PI	Δ	R	Δ٦	ГΤ	JS
$\boldsymbol{\Gamma}$		\neg		\neg	·	,,,

		mindred Buc.
1.		Equipment for one of the following:
		(a) Method T245/D6926 (Marshall), T247/D1561 (CA kneading compactor), T312/D4013
		(Superpave Gyratory), or D3387 (US Corp of Engineers Gyratory Testing Machine)?
	or	(b) ASTM only: D1074 (Compressive strength) or D3496 (Dynamic Modulus)?
2.		Vacuum Apparatus
		(a) Vacuum container [ASTM only: preferably vacuum bowl from Rice test D2041]?
		(b) Vacuum pump or water aspirator, conforms to (T209 / D2041)?
		(c) Includes a manometer or vacuum gauge?
3.		Balance, conforming to (T166 / D2726), reads to 0.1% of sample mass, G2/GP2?
4.		Water bath(s):
		(a) Conforming to (T166 / D2726), has balance suspension apparatus, etc?
		(b) Capable of maintaining a temperature of $140.0 \pm 1.8^{\circ}F$ ($60 \pm 1^{\circ}C$) [ASTM: capable of maintaining temperature for 24 h and filled with distilled water]?
		(c) Capable of maintaining a temperature of 77.0 \pm 1°F (25.0 \pm 0.5°C) [ASTM: \pm 1.8 \pm 7 (1 \pm 0)]?
5.		<u>Freezer</u> , maintained at 0 ± 5 °F (-18 ± 3 °C) [ASTM only: optional]?
6.		AASHTO only: Oven, forced air draft, capable of maintaining any desired temperature setting from room
0.		temperature to 176 $^{\circ}$ C (350 $^{\circ}$ F) within \pm 3 $^{\circ}$ C (\pm 5 $^{\circ}$ F)?
7.		Testing Apparatus
		(a) Loading jack and ring dynamometer, conforms to (T245 / D6926)?
	or	(b) AASHTO: Mechanical or hydraulic testing machine (conforms to AASHTO T167) that provides a range of rates including 2 in. (50 mm) per minute?
		ASTM: Mechanical or hydraulic testing machine capable of maintaining the required strain rate and measuring load with equal or better precision?
8.		Loading Strips [ASTM only: conforming to D4123 - Indirect Tension Test for Resilient Modulus]
		(a) Concave surface with a radius of curvature equal to the nominal radius of the test specimen?
		(b) Width of 0.5 in. for a 4 in. diameter specimen or 0.75 in. for a 6 in. diameter specimen?
		(c) The length exceeds the thickness of the specimens and edges rounded by grinding?
9.		Miscellaneous:
		(a) Plastic film or heavy-duty plastic bags, masking tape, 10 mL graduated cylinder?
		(b) AASHTO only: Pan, bottom surface area of 75 - 200 sq. in. and depth of approximately 1 in.?
		Note to Assessors – some helpful facts
		1 atmosphere (sea level) = 14.7 psi = 760 mm Hg (or torr) = 30 in Hg = 101.3 kPa

An absolute pressure gauge reads the pressure difference between a complete vacuum (0 pressure) and the sample. Examples include mercury manometers and some electronic gauges. Absolute gauges read atmosphere pressure (see above) when the vacuum system is off.

A <u>relative</u> pressure gauge reads the pressure difference between the normal atmosphere and the sample. Examples include most "vacuum gauges close to the source." Relative gauges read 0 when the vacuum system is off.

COMMENTS (T283 / D4867):

(T283 / D4867)

COMMENTS (T283):

RESISTANCE OF COMPACTED BITUMINOUS MIXTURES TO MOISTURE INDUCED DAMAGE (TSR / Lottman)

(T283)

		AASHTO PROCEDURE Date:		
Sa	mnle	Preparation (laboratory mixed and compacted)		
1.	прис	Specimen size:		
		(a) 4 in. diameter and 2.5 ± 0.1 in. $(63.5 \pm 2.5 \text{ mm})$ thick specimens used?		
	or	(b) 6 in. diameter and 3.55 – 3.95 in. (90 – 100 mm) thick?		
		Note: 6-in. specimens should be used if aggregate larger than 1 inch is present.		
2.		After mixing:		
		(a) Mixture placed in a pan and cooled at room temperature for 2.0 ± 0.5 hours?		
		(b) Mixture placed in a 140°F (60°C) oven for 16 ± 1 hour for curing?		
_		(c) Placed on spacers if shelf is not perforated?		
3.		After curing:		
		(a) Mixture placed in an oven at compaction temperature, $\pm 3^{\circ}\text{C}$ ($\pm 5^{\circ}\text{F}$), for		
		2 hours \pm 10 min. prior to compaction?		
		(b) Mixture compacted to 7.0 ± 0.5 percent air voids, or a void level expected in the field?		
4.		After extraction from molds, test specimens are stored for 24 ± 3 hour at room temperature?		
Sa	mnla	Preparation (field mixed and laboratory compacted)		
1.	при	Specimen size:		
1.		(a) 4 in. diameter and 2.5 in. thick specimens used?		
	or	(b) 6 in. diameter and 3.55 – 3.95 in. (90 – 100 mm) thick?		
	01	Note: 6 in. specimens should be used if aggregate larger than 1 in. is presented.		
2.		Field-mixed asphalt mixtures sampled in accordance with ASTM D979?		
3.		No loose mix curing shall be performed?		
4.		After sampling, mixture placed in oven until it reaches compaction temperature to within \pm 3°C (\pm 5°F)?		
5.		Mixture compacted to 7.0 ± 0.5 percent air voids, or a void level expected in the field?		
6.		After extraction from molds, test specimens are stored for 24 ± 3 hour at room temperature?		
Sai	mple	preparation (core test specimens)		
1.		At least 6 cores for each set of mix conditions?		
2.	Separate core layers as necessary by sawing or other suitable means, and layers to be			
		stored at room temperature?		
Ev	aluat	ion of test specimens and grouping		
1.		Theoretical maximum specific gravity of mixture determined by AASHTO T209?		
2.		Specimen thickness determined by ASTM D3549 (average four thickness measurements at quarter points)?		
3.		Bulk specific gravity determined by AASHTO T166?		
4.		Volume of specimens expressed in cubic centimeters?		
5.		Air voids calculated by AASHTO T269?		
6.		Specimens sorted into two equal subsets of at least three specimens each so that average air voids of the		
	two subsets are approximately equal?			
Dr	v suh	set - Preconditioning of test specimens		
1.		Specimens stored at room temperature for 24 ± 3 hours?		
2.		Specimens wrapped with plastic or placed in a heavy duty leak proof plastic bag?		
3.		Specimens placed in a 77 \pm 1°F (25 \pm 0.5°C) water bath for at least 2 hours \pm 10 min. and then tested?		
4.		At least 1 in. of water above surface?		

(T283)

(T283)

RESISTANCE OF COMPACTED BITUMINOUS MIXTURES TO MOISTURE INDUCED DAMAGE (TSR / Lottman)

	AASHTO	PROCEDURE (Continue	ed)	Date:	
G 11.1					
<i>Conditio</i> 1. 2. 3.	Specimens placed in the vacuum container something specimens placed in the vacuum container something container filled with potable water at room to A partial vacuum 10-26 inches Hg partial proposes to Assessors: This is not the same amount of 27.5 mm Hg. A typical manometer that reads in the same amount of the same	emperature to at least one essure (13-67 kPa absolute of vacuum applied to Rice san	inch abo e) applied mples (T2)	ve specimen surface?	
4.	Vacuum applied for a short time, approximat				
_	Note to Assessors: The vacuum pressure and tim				
5.	Vacuum removed and specimens left submer				
6.	Mass of the SSD specimen after partial vacu				
7.	SSD mass of conditioned samples compared				
8.	Degree of saturation determined by comparing				
	(a) If the volume of water is less than 7 vacuum and/or more time?				
	(b) If the volume of water is more than				
	(c) If the volume of water is between 7				
G 11.1		•			
	oned subset – Temperature conditioning proce	<u>edure</u>			
1.	Vacuum saturated specimens covered tightly				
	containing 10 ± 0.5 mL of water and placed				
2.	Specimens placed into a $140 \pm 2^{\circ}F$ ($60 \pm 1^{\circ}C$) of 1 in. of water above specimen?				
3.	Plastic bag and film removed from the specia	mens as soon as possible a	fter place	ement in the water bath?	
4.	After 24 hours in the water bath, the specime	ens removed and placed in	a water l	oath,	
	at 77 \pm 1°F (25.0 \pm 0.5°C), for 2 hours \pm 10 to	min.?			
	(a) If necessary, ice used to prevent wa	ter temperature from rising	g above 7	77°F (25°C)?	
	(b) The water bath should not require n	nore than 15 minutes to rea	ach 77°F	(25°C)?	
<u>Testing</u>					
1.	The indirect tensile strength of dry and condi-				
2.	The specimens in the 77°F water bath remov				
3.	Loading strips placed between the bearing pl				
4.	Care taken that the load applied is along the				
5.	Load applied to the specimen by means of the				
	machine head of 2 in. (50 mm) per minute?				
6.	Is maximum compressive strength on the tes				
7.	Is load continued until crack appears, specim				
_	inspected for stripping, and observations reco				
8.	Calculations determined as follows (see Sect				
	Transla Grana d. (LD.)	2000 * P	P =	maximum load (N)	
	Tensile Strength (kPa) =		t =	specimen thickness (mm)	
		π * t * D	D =	specimen diameter (mm)	

 $TSR = (average \ tensile \ strength \ of \ conditioned \ subset) \ / \ (average \ tensile \ strength \ of \ dry \ subset)$

COMMENTS (T283): (T283)

(D4867)

EFFECT OF MOISTURE ON ASPHALT-CONCRETE PAVING MIXTURES ON TENSILE STRENGTH RATIO (TSR / Lottman)

		ASTM PROCEDURE Date:
Sa	mnle	Preparation (laboratory test specimens)
1.	p.cc	Sample size:
		(a) 4 in. diameter and 2.5 in. thick specimens used?
	or	(b) Specimens of other dimensions used if aggregate larger than 1 in. is presented?
2.		Six specimens made for each test: three to be tested dry and three to be tested after partial
		saturation and moisture conditioning?
3.		Mixtures prepared in batches large enough to make at least 3 specimens or a batch large
		enough for just 1 specimen?
4.		Mixing temperatures and procedures followed for the method used?
5.		If an anti-stripping additive is used, are procedures in 6.4 and 6.5 used?
6.		After mixing:
		(a) Mixture placed in a closed container and placed in an oven for 1 to 2 hours to
		stabilize the specimen at the required compaction temperature?
		(b) If preparing multi-specimen batch, split into single specimens before placing into oven?
7.		After curing, mixture compacted to 7 ± 1 percent air voids, or a void level expected in the field?
8.		After compaction, test specimens are cooled as rapid as possible in a stream of moving air, extracted from
		molds, then procedure followed in Section 8 within 24 hours?
 1. 2. 3. 	<u>mple</u>	Preparation (field specimens) Truck to be sampled selected in accordance with D3665 (Random Sampling of Construction Materials)? Sample taken from truck at plant in accordance with D979 (Sampling Bituminous Paving Mixtures)? Mixture temperature stabilized to approximately the temperature found in the field when rolling begins and temperature maintained in a closed container, in an oven for approximately the time lapse between mixing and the start of actual rolling?
5.		After compaction, test specimens are cooled as rapid as possible in a stream of moving air, extracted from
		molds, then rest of procedure followed within 24 hours (saturation, testing, etc)?
6.		If specimens are not to be compacted in the field laboratory, place the samples in a sealed
		container, transported to the laboratory, and reheated to required temperature?
Ev	aluat	ion of test specimens and grouping
1.		Theoretical maximum specific gravity of mixture determined by D2041?
2.		Specimen height determined by taking the average of four height measurements, ASTM D3549?
3.		Bulk specific gravity determined by ASTM D2726?
4.		Volume of specimens determined from Bulk specific gravity test (B - C expressed in cubic centimeters)?
5.		Air voids calculated D3203?
6.		Specimens sorted into two subsets of three specimens each so that average air voids of the

COMMENTS (D4867): (D4867)

two subsets are approximately equal?....

EFFECT OF MOISTURE ON ASPHALT-CONCRETE PAVING MIXTURES ON TENSILE STRENGTH RATIO (TSR / Lottman)

111717	1 - 44
(D4867) _	

	ASTM PROC	EDURE (Continued)		Date:
Drv cu	bset - Preconditioning of test specimens			
1.	Specimens stored at room temperature until test?			
	tioned subset – Preconditioning of test specimens			
1.	Specimens placed in the vacuum chamber?			
2.	Container filled with distilled water at room temper		• • • • • • • • • • • • • • • • • • • •	······
_	Note: The water used to saturate the specimens may be			
3.	A partial vacuum such as 20 in Hg applied for a sh			
	Note to Assessors: This is <u>not</u> the same amount of vacu which is 27.5 mm Hg.	um applied to Rice samples (T	(209 / D2)	041),
4	Volume of the partially saturated specimen determ:	inad in aggerdance D2726)	
4. 5.	Volume of the absorbed water determined by subtr			
3.				
6	surface-dry mass of the partially saturated specime			
6.	Degree of saturation determined by dividing the vo			
	air voids and expressed as a percentage (Sec. 8.6.3)			
	(a) If the volume of water is less than 55 perc			
	(b) If the volume of water is more than 80 per			
	(c) If the volume of water is between 55 and 8			
7.	Specimens placed into a 140.0 ± 1.8 °F (60 ± 1 °C)			
8.	If a freeze-thaw cycle is desired, procedure in Note			
	minimum of 15 hours, plastic wrap removed after			
9.	After 24 hours in the water or air bath, specimens a	re removed and placed in a	a water b	oath at
	77.0 ± 1.8 °F (25 ± 1 °C) for 1 hour?			·····
10.	Height of the conditioned specimens determined by	y taking 4 measurements at	quarter	points (D3549)?
11.	Volume of conditioned subset specimens determine			
12.	Water absorption and degree of saturation determine			
	saturation exceeding 80% is acceptable after water			
13.	Swell calculated for partially saturated specimens (
	moisture-conditioned specimens (after additional w			
14.	Temperature of the dry subset adjusted by soaking			
<u>Testing</u>				
1.	Height of dry specimens determined just before ten			
2.	The tensile strength of dry and conditioned specime			
3.	Specimens in the 77°F water bath removed and hei			
4.	Specimens placed into the loading apparatus and the	e loading strips positioned	so that	they are parallel and
	centered on the vertical diametral plane?			<u> </u>
5.	Load applied to the specimen by means of the cons	tant rate of movement of the	he testin	g
	machine head of 2 in. per minute?			
6.	Maximum compressive strength on the testing mac	hine recorded? (P)		
7.	Load continued until crack appears, specimen remo			
	inspected for degree of moisture damage?		r	
8.	Calculations determined by as follows (see Section			
	and the section of the following (see Section	2000 * P	P =	maximum load (N)
	Tensile Strength (kPa) =		t =	specimen thickness (mm)
	Tenone Suengui (Ki u) –			•
		$\pi * t * D$	D =	specimen diameter (mm)
	man /			1 01 1 1
	TSR = (average tensile strength of conditi	oned subset) / (average ten	sile stre	ngth of dry subset)
COMN	MENTS (D4867):			(D486
~ ~ 1111				(1)

ASPHALT CONTENT OF BITUMINOUS MIXTURES BY THE **NUCLEAR METHOD**

HMA - 45	
(T287)	
(D4125)	

Α	D	\mathbf{p}_{Δ}	P	Δ^r	ГΙ	IC
$\overline{}$	Г.	$\Gamma \Gamma$	۱ı /	. ^	ıι	1,7

			<u>APPARATUS</u>	Date:
1		N		
1.		Nuclear gauge, as specified in the method? (a) Neutron source - an encapsulated an	d sealed radioactive source (such as americium/heryllium)
		(b) Thermal neutron detector (such as he		
		(c) Read-out instrument displaying the p		
		(d) Daily standard log count.		
		(e) Factory or laboratory calibration dat		
		(f) Leak test certificate, shippers declarate		
		(g) Procedure memo for storing, transpo	rting, and handling nuclear to	esting equipment.
2.		Sample Pans, 3 or more made of stainless stee	:1?	
3.		Balance, readable to 0.1 g with at least 20 kg	capacity [ASTM: balance re	eadable to 1 g]?
4.		Heating Device		
		(a) Oven, capable of heating to $350 \pm 5^{\circ}$	F (177 ± 3°C)?	······
0	r			o. of 177 ±3 °C (350 ±5 °F) and
5.		ASTM only: straightedge, made of steel and	l approx. 18 inches long?	
		· 		
6.		<u>Leveling Plate</u> , flat and rigid plate, made of:		
	or or			mm]?
•	<i>)</i> 1	(c) AASIIIO only. piexigius, with a min	inum inickness of 12.5 min.	
7.		Thermometer, range of 50 to 500°F (10 to 26		
8.		Mechanical Mixer, with a 10 kg capacity?		
9.		Spoons and mixing bowls?		
10.		Splitting or quartering equipment?		
11.		AASHTO only: <u>Sample containers</u> , such as p can be closed to prevent contamination of the		
ASTI	M a	only: Additional apparatus for Test Method L	for compacted bituminous	s mixtures)
1.		Apparatus necessary to prepare compacted s	pecimens as specified in Tes	st Methods D6926, D1561,
2.		D3387, or Practice D4013? Molded laboratory specimen container provi		
۷.				old specimens (dia. 10.312 cm)?
				ld a specimen (dia. 15.392 cm)?
				89 x 18.161 x 6.985 cm)?
		· ·		

COMMENTS (T287 / D4125):

(T287 / D4125)

performing the calibrations.)

ASPHALT CONTENT OF BITUMINOUS MIXTURES BY THE NUCLEAR METHOD

-		
7	「つくて 」	
١,	2011	

		AASHTO CALIBRATION (page 1 of 4) Date:					
Calib	ration an	d Verification (Assessor: Check Records)					
		rs: The laboratory must be able to mix asphalt samples in-house for calibration.					
1.	Appro	eximately 50 kg (110 lbs) of aggregate and approximately 4 L (1 gal) of asphalt obtained?					
2.	If requ	If required, appropriate amount of lime hydrated onto aggregate?					
3.	Aggre	gate dried to constant mass according to T255?					
4.	Aggre	gate separated into size fractions by dry sieving, including 75-µm (No. 200) sieve?					
5.		lative mass required for each sieve size calculated as follows:					
		X = T(100-P)/100 where:					
		X = the required, cumulative batch mass for each specified sieve (g)					
		T = the initial, total aggregate mass (g)					
		$P = the \ percent \ passing \ for \ each \ specified \ sieve \ according \ to \ the \ JMF*$					
6.	Aggre	gate <u>dust correction</u> performed?					
	(a)	Sample of aggregate prepared that meets the required masses calculated above.					
	(b)	Wash gradation performed according to T27 and T11.					
	(c)	Corrected batch mass calculated for each specified sieve for the calibration points as follows:					
		$Z_n = X^2/Y$ where:					
		Z_n = the adjusted, cumulative batch mass for any sieve size, $n(g)$					
		X = the pre-wash, cumulative batch mass for each specified sieve (g)					
		Y = the post-wash, cumulative batch mass for each specified sieve (g)					
	(d)	Aggregates blended together at the proper proportion to match the JMF using the masses					

COMMENTS (T287): (T287)

(Note to Assessors: JMF = Job Mix Formula. The job mix formula is the mix design specified for

(T287)

ASPHALT CONTENT OF BITUMINOUS MIXTURES BY THE NUCLEAR METHOD

			AASH I U CALIBRATION (page 2 of 4) Date:		
Calibra	ition and	Verification (Con	ntinued)		
		Preparation			
1.	Minimum of $2 L (0.5 \text{ gal})$ of asphalt binder heated to the mid-point of the mixing temperature				
2	range in a covered container? When used, appropriate amount of liquid anti-stripping additive added to asphalt binder?				
2.					
3.			oon as it reaches the mid-point of the mixing temperature range (if this is not nore than 4 hours)?		
4.			eheated?		
5.	Amount	t of asphalt binder	r and aggregate required calculated by one of the following methods:		
	Method	l A – Asphalt bind	der percent by mass of the asphalt mixture		
	1.		ass of asphalt binder for each calibration point as follows:		
		$B = (E)(P_{bm})$	where:		
		()()	B = the mass of the asphalt binder to the nearest 0.1 g		
			E = the mass of asphalt mixture (g)		
			P_{bm} = the percent of asphalt binder by total mass of the asphalt mixture,		
			expressed as a decimal		
	2. A minimum of four samples mixed, containing the following binder contents: 0.8% below				
			imum, 0.8% above optimum, and 1.6% above optimum?		
	3.	Calculate the ma	ass of aggregate required for each calibration point (asphalt content) as follows?		
		A = E - B	where:		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A = the mass of the aggregate to the nearest 0.1 g		
			E = the mass of the asphalt mixture (g)		
			B = the mass of asphalt (from above)		
<u>OR</u>	1				
	Mathad	ID Asphalthing	down assessed by many of the aggregate		
	1.		der percent by mass of the aggregate ass of aggregate for each calibration point as follows:		
		$A = E/(1+P_{ba})$	where:		
		$II - \mathbf{L}/(I + I_{ba})$	P_{ba} = the percent of asphalt binder by mass of the aggregate, expressed as a decimal		
			E = the mass of the asphalt mixture (g)		
	2.	A minimum of fo	our samples mixed, containing the following binder contents: 0.8% below		
			imum, 0.8% above optimum, and 1.6% above optimum?		
	3.		ass of asphalt binder required for each calibration point as follows:		
		$B = (A)(P_{ba})$	where:		
		(),()	P_{ba} = the percent of asphalt binder by mass of the aggregate, expressed as a decimal A = Mass of aggregate (from above)		
COMM	IENTS (T	Γ287):	(T287)		

COMMENTS (T287):

(T287)

ASPHALT CONTENT OF BITUMINOUS MIXTURES BY THE NUCLEAR METHOD

	AASHTO CALIBRATION (page 3 of 4) Date:
Calibi	ration and Verification (Continued)
	Target Mass Determination
1.	Butter batch prepared to determine the mass to be used for the calibration samples?
2.	Mix the preheated aggregate and asphalt according to preparation of specimens section?
<i>3</i> .	Mass of a clean gauge-sample pan determined and scale tared?
4.	Asphalt mixture placed into pan until pan is half full?
5.	Asphalt sample lightly tamped with preheated spoon or spatula?
6.	Remaining asphalt mixture placed in pan until it is mounded about 13 mm (0.5 in.) above the top of the pan?
7.	Leveling plate placed on top of mixture immediately after filling the pan?
8.	Sample compacted into the pan until it is level with the top of the pan by pressing down on the plate?
9.	Sight across the top of the pan to ensure that the asphalt mixture is not above the pan?
10.	Determine and record the mass (i.e. target mass) of the filled pan?
11.	Calibration and sample specimens within ± 5 g of the target mass?
	Duran martine of California on Carolina and (Minima)
1.	Preparation of Calibration Specimens (Mixing) Mass of the aggregate and asphalt binder determined for each sample according to Aggregate Preparation
1.	and Asphalt Binder Preparation Sections of the method?
2.	A minimum of four aggregate samples prepared, containing the following binder contents: 0.8% below
۷.	optimum, at optimum, 0.8% above optimum, and 1.6% above optimum?
3.	Target mass used for each aggregate sample?
<i>3</i> . <i>4</i> .	Aggregate and asphalt binder materials heated to the mid-point of the mixing temperature range and
7.	allowed to stabilize at that temperature?
5.	Mass of heated mixing bowl determined to the nearest 0.1 g?
6.	Heated aggregate specimen placed in the mixing bowl?
<i>7</i> .	Crater formed in aggregate large enough to hold the required amount of asphalt binder?
8.	Mixing bowl placed on scale and required asphalt binder added into the crater to the nearest 0.1 g?
9.	Aggregate and asphalt mechanically mixed for a minimum of two minutes?
	Note: hand mixing is acceptable using large bowl and mixed for a minimum of five minutes.
10.	All material thoroughly coated after mixing procedure?
11.	If necessary, remix the sample by hand until it is thoroughly mixed?
<i>12</i> .	Mixture removed from mixing bowl, and the bowl weighed to ensure that all material is removed?
<i>13</i> .	Mass of bowl within ± 5 g of its original mass?
14.	If not, bowl scraped with spatula and added to sample until sample mass is within tolerance?
	Calibration (Testing Calibration Specimens)
1.	Mass of a clean gage-sample pan determined and the pan tared on the scale?
2.	Asphalt mixture place in the pan until it is half full?
<i>3</i> .	Asphalt sample lightly tamped with preheated spoon or spatula?
<i>4</i> .	Remaining asphalt mixture placed in pan so that the mixture is mounded about 13 mm (0.5 in.) above
	the top of the pan?
5.	Leveling plate placed on top of the asphalt mixture immediately after filling the pan?
6.	Sample compacted into the pan until it is level with the top of the pan by pressing down on the leveling plate?
7.	Sight across the top of the pan to ensure that the asphalt mixture does not protrude above the top of the pan?.
8.	Mass of the compacted asphalt mixture in the pan determined and recorded?
9.	Mass within ± 5 g of the target mass?
9. 10.	Pan placed into the gage, and manufacturer's instructions for operating the equipment and
10.	sequence of operations followed?
11.	Repeat steps 1 through 11 for all calibration samples?

Revised 2014-04-10

(T287)

(T287)

ASPHALT CONTENT OF BITUMINOUS MIXTURES BY THE NUCLEAR METHOD

	AASHTO CALIBRATION (page 4 of 4) Date:
Cali	bration and Verification (Continued)
	Calibration Curve
1.	Calibration curve prepared for each asphalt mixture type, aggregate blend, asphalt binder source, or addition of liquid anti-strip or hydrated lime?
2.	Calibration curve covers the range of expected values found in field samples?
3.	Do the limits for the calibration curve consider the allowable range of asphalt binder content plus the allowable aggregate moisture (which reads as asphalt binder in the gage)?
4.	At least four calibration-curve pans prepared at 0.8 below, optimum, 0.8 above, and 1.6 above the optimum asphalt binder content?
	Presentation of Calibration Data
For	Gages that generate the calibration internally to the gage:
1.	Formula coefficients, coefficient of fit, and the calculated percent difference for each calibration point printed or recorded?
2.	Calibration not acceptable if the coefficient of fit is less than 0.998 for a dense-graded asphalt mixture or 0.995 for an open-graded asphalt mixture, or any calibration point has a calculated
	difference greater than 0.09 percent?
3.	If calibrations are not acceptable are they performed again?
4.	Acceptable calibrations stored in the gages memory, using the JMF and an easily recognizable calibration number, according to the manufacturer's instructions?
For	gages that do not generate the calibration internally to the gage:
1.	Calibration curve prepared by plotting the gage readings for calibration samples versus asphalt binder content on linear graph paper, choosing convenient scale factors for the gage readings and asphalt binder content?
æ.	Cross-Calibration (When Applicable)

This process creates a relationship between the field gage and the gage used in the JMF calibration (see Section A10 of the annex for details).

COMMENTS (T287): (T287)

(b)

(c)

ASPHALT CONTENT OF BITUMINOUS MIXTURES BY THE **NUCLEAR METHOD**

IWIA	- 30
(T2)	287)

	AASHTO PROCEDURE Date:
Stand	lardization
1.	A background count performed in accordance with manufacturer's procedure each day prior to testing?
2.	Measurement times of the background count the same as testing time?
<i>3</i> .	Background count does not change by more than 1 percent; if it does are more
	background counts performed?
Proce	edure
1.	Obtain a representative sample according to T168?
2.	If required, sample reduced to appropriate size by splitting and quartering according to T248, Method B?
3.	Test performed while mixture is hot, if sample cools it may be reheated to the mid-point of the compaction temperature range for the asphalt binder used?
4.	Determine the mass of a clean gage-sample pan and tare the pan on the balance?
5.	Pan filled half full with the asphalt mixture?
6.	Asphalt mixture lightly tamped with a preheated spatula or spoon?
<i>7</i> .	Additional asphalt added to the pan until the required mass, as found in the
	Target Mass Determination, is reached within ± 5 g?
8.	Leveling plate placed on top of the asphalt mixture immediately after filling the pan?
9.	Sample compacted into the pan until it is level with the top of the pan by pressing down on the leveling plate?
10.	Sight across the top of the pan to ensure that the asphalt mixture does not protrude above the top of the pan?.
11.	Mass of asphalt mixture compacted in the pan determined and recorded?
<i>12</i> .	Mass within ± 5 g of the target mass?
<i>13</i> .	If the gage has the ability to store multiple calibrations, activate the calibration for the mixture?
14.	Pan containing mixture placed into the gage and a 4 minute count performed?
<i>15</i> .	Uncorrected asphalt binder content determined by the direct read out on the gage, calibration
	graph, or the formula supplied by the manufacturer, and recorded to the nearest 0.1 percent?
<i>16</i> .	If the sample is not dried in an oven at 110 ± 5 °C (230 ± 9°F), prior to testing:

COMMENTS (T287): (T287)

Moisture content subtracted from the uncorrected asphalt binder content and reported

Moisture correction determined by performing T110, T329, or by microwave oven at temp. of

Moisture content recorded to the nearest 0.1 percent?_______

22. 23. ASPHALT CONTENT OF BITUMINOUS MIXTURES BY THE **NUCLEAR METHOD**

HMA -	31
(D412	(5)

		ASTM CALIBRATION (page 1 of 2) Date:
Calibr	ation (ger	noval)
		s: The laboratory must be able to mix asphalt samples in-house for calibration.
1.		tion curve developed according for each mix-type and aggregate blend?
2.		allibration curve developed whenever there is a change is asphalt/aggregate source,
	signific	cant change in aggregate gradation, or new or repaired apparatus?
Calibr	ation – M	Lethod A
<u>Синог</u> А.	Blank S	Sample
	1.	Blank sample (with no asphalt) prepared to determine mass used for calibration and
		plant mix samples?
	2.	Blank prepared by filling a sample pan with aggregate in 3 layers, avoiding segregation?
	3.	Each layer settled by raising pan 1 to 2 in. (25 to 50 mm) and tapping to work surface 2 or 3 times?
	4.	Third layer filled to a point slightly above top edge of pan?
	5.	Straightedge used to make sample flush with top of pan with no compaction to sample?
	6.	Mass of blank sample determined and recorded to nearest 1 g?
	7.	This mass used for all calibration and plant mix samples?
	8.	Sample pan placed in gauge and sample count recorded?
В.	Calibra	ution Curve Samples
	1.	Enough aggregate obtained for a minimum of 3 samples [approx. 30 kg (65 lb)]?
	2.	Approx. 2.5 kg (5.5 lb) of asphalt obtained?
	3.	Minimum of 3 samples prepared to establish calibration curve?
	4.	Range of asphalt contents vary by at least 2% from lowest to highest?
	5.	Range encompasses the design asphalt content?
	6.	Masses of the samples agree within 10 g (0.02 lb) of each other?
	7.	Calibration samples prepared and tested as close as possible to temperature of test samples
		of completed mixes?
	8.	Calibration samples tested within ±5°C (9°F) of each other?
	9.	Aggregates and asphalt for the three samples heated to approx. 150°C (300°F)?
	10.	All bowls, sample pans, and tools also heated to approx. 150°C (300°F)?
	11.	Prior to mixing first sample, mixture of asphalt and aggregate fines used to butter the bowl?
	12. 13.	Aggregate placed in bowl and asphalt added to within 1 g of desired percent by mass?
	13. 14	Mixed sample placed in sample pan in 3 layers?
	15.	Each layer distributed evenly using scoop or spatula?
	15. 16.	Each layer settled by raising pan 1 to 2 in. (25 to 50 mm) and tapping to work surface 2 or 3 times?
	17.	Third layer filled to a point slightly above top edge of pan?
	18.	Material added or removed from sample until mass is within 10 g of blank sample?
	19.	Mass recorded?
	20.	Sample compacted with flat metal or wood plate until level with top of pan?
	21.	Sample pan placed in gauge and sample count recorded?
	22.	Steps 1 through 21 repeated for each of the remaining mixes?

COMMENTS (D4125): (D4125)

Bowl not completely cleaned between remaining mixes?

ASPHALT CONTENT OF BITUMINOUS MIXTURES BY THE **NUCLEAR METHOD**

(D4125)

Date: _____

	CALIDA	1 TT () ()	
ASTM	CALIBR	RATION (page 2 of 2)	

Calib	ration – Method B
1.	Aggregates sampled and prepared for blending according to method of compaction selected?
2.	Enough asphalt sampled for test?
3.	Four known asphalt contents selected?
4.	Range of asphalt contents vary by at least 2% from lowest to highest?
5.	Three specimens prepared for each of the selected asphalt contents?
6.	Specimens compacted by one of the following methods: D1561, D3387, D6926 or Practice D4013?
7.	Masses of each set of replicate specimens within 10 g (0.02 lb) of each other?
8.	Mass of each specimen determined to nearest 1 g (0.002 lb)?
9.	For 4-in. specimens: Two specimens whose masses are closest to each other selected for each of the asphalt contents?
10.	For 6-in. specimens: One specimen selected from each asphalt content such that masses
	of four specimens selected are as close as possible?
11.	Specimens not used retained for further testing?
12.	Specimens placed in molded specimen container and container placed in gauge?
13.	Sample count recorded?
14.	Process repeated for each set of calibration samples?
15.	For samples containing RAP: RAP material is of uniform gradation, asphalt content, and asphalt type?
16.	RAP calibration samples contain same percentage of RAP as samples to be tested?
17.	Method not used for job control testing if RAP material is not uniform?
<i>18</i> .	Final calibration response is in form of curve, data table, or equation for computer processing?
	Note to Assessors: Some gauges will do this on their own.
	ration Factor – Methods A and B
1.	For each calibration, correlation factor calculated according to Equation (1) of test method?
2.	Correlation factor greater than or equal to 0.995?
	ground and Stability Check
1.	Background radiation count obtained each day before taking measurements?
2.	Measurement period of background count ≥ normal measurement period?
3.	New background count taken if gauge has been moved (even within same room)?
4.	New background count taken if environment around gauge has been changed significantly?
5.	For gauges that <u>have not</u> been moved, background count within 1% of previous count for gauge to be considered stable?
6.	For gauges that <u>have</u> been moved, background count within 2 - 3% of previous count
	for gauge to be considered stable?
7.	If background counts are not within limits or if gauge stability is suspect, statistical stability test
	performed according to manufacturer's instructions?
8.	Statistical stability test also performed when gauge is new or repaired?
9.	Statistical stability test performed at least once a month otherwise?
10.	Failure of statistical stability test prompts a check for hydrogen bodies in or around gauge?
11.	Stability test repeated for longer measurement period?
12.	Further failure prompts adjustment or repair of the gauge according to manufacturer's instructions?

(D4125) COMMENTS (D4125):

COMMENTS (D4125):

ASPHALT CONTENT OF BITUMINOUS MIXTURES BY THE NUCLEAR METHOD

ПWA - ЭЭ	
(D4125)	

		ASTM PROCEDURE Date:
	nplin	
1.		Test sample obtained according to D979 (Standard Practice for Sampling HMA)?
2.		Moisture content of the test sample determined: (a) By ASTM D1461 (Moisture or Volatile Distillates Content of HMA)?
		(a) By ASTM D1401 (Moisture of Volume Distinates Content of HMA)?
	or	By drying test sample to constant mass in an oven at $110 \pm 5^{\circ}$ C (230 $\pm 9^{\circ}$ F)?
Me	thod	A
1.		Sample pan filled in three layers?
2.		Each layer distributed evenly with scoop or spatula?
3.		After each layer, pan lifted approx. 20 to 50 mm (1 to 2 in.) and tapped on working surface two
		or three times to settle contents?
4.		Last layer fills pan slightly above top edge?
5.		Material added or removed until mass of mix in pan is within 10 g (0.02 lb) of the calibration sample?
6.		Mass of mix in pan recorded?
7.		Sample compressed with flat plate until level with top edge of pan?
8.		Temperature of sample recorded?
9.		Temperature within 5°C (9°F) of calibration temperature unless the apparatus makes provision
10		for temperature correction?
10.		Sample placed in chamber?
11.		Manufacturer's instructions followed to obtain sample counts?
12. 13.		Asphalt content of mixture determined?
13.		Corrected for moisture content, it necessary?
Me	thod	R
1.		Specimens prepared using Test Method, D1561, D3387, D6926, or Practice D4013?
2.		Two specimens used for 10-cm (4 in.) diameter specimens?
3.		One specimen used for 15-cm (6 in.) diameter specimens?
4.		One of the following:
		(a) For 10-cm specimens: the mass of the two test specimens are within 10 g (0.02 lb) of each other and
		the average of the two test specimens are within 10 g (0.02 lb) of the average of the calib. samples?
	or	(b) For 15-cm specimens: the mass of the test specimen is within 10 g (0.02 lb) of the calib. sample?
5.		Sample(s) placed in the molded specimen container and then placed in the testing chamber?
6.		Manufacturer's instructions followed to obtain sample counts?
7.		Asphalt content of mixture determined?
8.		Corrected for moisture content, if necessary?

Revised 2014-04-10

(D4125)

DETERMINING THE DRAINDOWN CHARACTERISTICS OF UNCOMPACTED HMA

(T305)	
D6390)	

	APPARATUS Date:
	ATTAKATOS Datc.
1.	Standard basket, constructed out of 6.3 mm (0.25 in.) sieve cloth, meeting the dimension requirements: (a) Diameter of 108 ± 10.8 mm (4.25 ± 0.4 inches)?
	(b) Total height of basket $165 \pm 16.5 \text{ mm} (6.5 \pm 0.65 \text{ inches})$?
	(c) Basket has raised bottom shelf, so that the distance from bottom of the mesh sides to
	basket bottom is $25 \pm 2.5 \text{ mm } (1 \pm 0.1 \text{ inches})$?
2.	Forced draft oven, range of at least 120 to 175°C (250 to 350°F), and can maintain set temperature within \pm 2°C (\pm 3.6°F)?
3.	<u>Plates</u> , or other suitable containers (ex: cake pans or pie tins), that can withstand oven temperatures?
1.	Balance, accurate to 0.1 g [ASTM: and conforming to requirements of a GP2 balance]?
	<u>PROCEDURE</u>
Sample	Preparation
1.	Laboratory prepared samples:
	(a) Four samples prepared - two for tests at plant production temperature, and two for tests at
	15°C (27°F) [ASTM: 10°C (18°F)] above the plant production temperature?
	Note: When used for field production, it should only be necessary to perform test at plant production temp.
	(b) Sample prepared in accordance with standard hot-mix preparation procedure (T245/D6926)?
	(1) Aggregate dried to constant mass, sieved, and combined according to job mix formula.
	(2) Each test sample placed in a separate pan so that the individual sample will have a
	mass of 1200 ± 200 g after the asphalt binder is added.
	(3) Aggregate heated to temperature not exceeding mix temp. by more than 28°C (50°F).
	(4) Asphalt binder heated to mixing temperature or plant production temperature.
	(5) Aggregate mixed in bowl, crater formed, asphalt binder added, mixed until coated.
2.	Plant-produced samples:
	(a) Duplicate samples tested at the plant production temperature?
	the mixture leaving the plant?
	AASHTO Note: Exercise caution when sampling from storage bins as draindown may have already occurred.
	(c) Samples obtained during production reduced to testing size [AASHTO: by R47]?
<u>Festing</u>	
1.	Oven heated to test temperature (usually plant production temperature)?
2.	Mass of the empty basket tared on balance [ASTM: mass of basket recorded as Mass A]?
3.	Entire sample ($1200 \pm 200 \text{ g}$) of uncompacted mixture transferred to basket?
1.	AASHTO: Mass of sample determined to nearest 0.1 g?
_	ASTM: Mass of sample + basket recorded as Mass B?
5.	AASHTO: Sample not allowed to cool more than 25°C (77°F) below test temperature?
	ASTM: Sample not consolidated or disturbed after transfer to basket?
5.	Mass of the plate determined and recorded to the nearest 0.1 g [ASTM: Mass C]?
7. 3.	Basket placed on the plate, assembly put into the oven for 60 ± 5 minutes, then removed from oven?
) .	Or, if the sample has cooled more than 25°C (77°F) below the test temperature, the test should be conducted for 70 ± 5 minutes
€.	ASTM only: Basket, sample, and plate allowed to cool to ambient temperature?
). 10.	Mass of plate and draindown material recorded to nearest 0.1 g [ASTM: Mass D]?
٠.	
AASHT	O: % draindown = (final plate mass – initial plate mass) / (initial sample mass) X 100
ASTM:	% draindown = $(D-C)/(B-A) \times 100$
	(= 2)/(2 22)

COMMENTS (T305 / D6390):

(T305 / D6390)

1111111 - 33	
(T308)	
(D6307)	

		<u>APPARATUS</u>	Date:
Igniti	on Furnace:		
	(circle one):	Convection-type furnace	Direct Irradiation-type furnace
(a)	If convection-t	ype furnace, capable of maintaining a te	mp. of 578°C (1072°F) [ASTM: 580°C].
(b)	Dimensions ad	lequate to accommodate a 3500 g sample	e [ASTM: 2500 g sample].
(c)	Door cannot be	e opened during test (do not attempt to o	pen it during the test!).
(d)		lucing furnace emissions and vented into	a hood or to the outside.
(e)	Equipped with	a fan to pull air through the furnace.	
(f)	Sample basket	s allow sample to be thinly spread and al	llows air to flow through and around sample.
(g)	If it is a set of	two or more baskets, baskets nested (stac	cked).
(h)	Sample comple	etely enclosed with a mesh screen or per	forated stainless steel plate.
(i)	Catch pan of s	ufficient size to hold baskets.	
Interr	nal balance (Metho	od A only)?	
(a)	AASHTO only.	Thermally isolated from furnace cham	ber.
(b)	Accurate to 0.	1 g and can weigh a 3500 g [ASTM: 250	[90 g] sample in addition to the baskets.
Data	collection system	(Method A only)?	
(a)		etermined and displayed during the test.	
(b)	Built-in compu	iter program and calculates the change in	n mass.
(c)	AASHTO only.	Provides for the input of a correction f	factor.
(d)	AASHTO only.	· Audible alarm and indicator light.	
(e)	Capable of cha	inging the ending mass loss percentage to	o 0.02 percent [ASTM: 0.01%].
Printe	ed ticket (Method)	A only)?	
(a)		specimen mass.	
(b)	Records specia		
(c)		erature compensation.	
(d)	Records correc	etion factor.	
(e)	Records correc	eted asphalt content (%).	
(f)	Records test ti	me.	
(g)	Records test te	mperature.	
,	Note to assessor	rs: NCATs should be set to print the long tick	
			ch to "OFF". (2) Hold the "1" key on the oven
			ead "PRN ON" indicating that the long ticket
	will print. "PRN	OFF" indicates the short ticket will print.	
Misce	<u>ellaneous</u>		
(a)			$^{\circ}$ C (230 ± 9°F)?
(b)			G2 [ASTM: D4753, class GP2]?
(c)	AASHTO only	Protective cage capable of surroundin	g baskets?

COMMENTS (T308 / D6307):

(T308)

DETERMINING THE ASPHALT CONTENT OF HMA BY THE IGNITION METHOD

AASHTO PROCEDURE Date: _____

<u>Corre</u>	ection Factor (AASHTO only)							
(a)	Historical data or scientific studies being used to determine the correction factor(s) in lieu of the correction factor procedure listed in the method? (Write finding here)							
	Note: Historical data or scientific studies may be acceptable if the testing agency provides reference to the							
	studies/data. Write a note if the laboratory is using this method and bring evidence back.							
	Note to Assessors: Please refer to internal LAP Technical Bulletin (No. 1-11) for additional guidance.							
(b)	Determined before any acceptance testing is completed?							
(c)	A new correction factor is determined if any changes greater than 5% in stockpiled aggregate							
(1)	proportions occur?							
(d)	Unique correction factor determined for each job mix formula and for each ignition furnace in the location where testing will be performed?							
	(1) "Blank" specimen (no asphalt) mixed according to job mix formula and used for aggregate gradation (see below).							
	(2) "Butter mix" prepared and discarded to condition mixing bowl.							
	(3) Two correction factor samples mixed at the design asphalt content.							
	(4) Freshly mixed samples placed directly into basket assembly or							
	if allowed to cool, dried to constant mass at 110 ± 5 °C.							
	(5) Baskets are not preheated and specimens tested according to standard test method.							
	(6) Asphalt content determined for each correction factor sample.							
	(7) Aggregate from each correction factor saved for sieve analysis for aggregate correction factor.							
	(7) Aggregate from each correction factor saved for sieve analysis for aggregate correction factor.							
(e)	If the asphalt contents differ by more than 0.15 percent:							
	(1) Test repeated with two more samples?							
	(2) Highest and lowest result discarded from the four tests?							
	(3) Correction factor determined from the two remaining results?							
(f)	Convection-type furnace							
	(1) If correction factor exceeds 1.0 percent, test repeated at 482 ± 5 °C (900 ± 8 °F), and the resulting correction factor used for further testing?							
- 1	(2) Test temperature is the same as that of correction factor?							
(g)	<u>Direct irradiation-type furnace</u> - DEFAULT burn profile used for most materials?							
	Note: Burn profile OPTION 1 or OPTION 2 may be selected to optimize burn cycle?							
	OPTION 1 is designed for samples with correction factor greater than 1.0 percent.							
	OPTION 2 is designed for samples that may not burn completely using DEFAULT burn profile.							
	Note to Assessors: The laboratory must be able to mix asphalt samples in-house for calibration.							
Aggr	Aggregate Correction Factor (AASHTO Only)							
(a)	Aggregate correction factor determined for aggregates known for excessive							
	breakdown or from an unknown source?							
(b)	Gradation analysis performed on residual aggregate for each correction factor sample?							
	Note: residual aggregate is the aggregate removed from the ignition oven when							
	determining the asphalt content correction factor.							
(c)	Difference between percent passing a given sieve in the correction factor samples and in the "blank" sample (aggregate only) determined and the average difference calculated for each sample?							
(d)	If the average difference is greater than allowable, correction factor average for any sieve (equal to							
(u)	resultant average difference) for all sieves applied to all test results?							
	(1) Sieves larger than or equal to 2.36-mm (No. 8) allowed 5% difference?							
	(2) Sieves larger than or equal to 75-µm (No. 200) allowed 3% difference?							

COMMENTS (T308): (T308)

IIIVIA - 37	
(T308)	
(D6307)	

Sample approximately the same mass and gradation as that to be used for the HMA test sa (1) Aggregate oven dried to constant mass (no temperature specified). (2) Aggregate, asphalt cement, and all mixing bowls and tools heated to approx. 150' (3) Butter mix prepared to condition bowl. (4) Three calibration samples mixed at the design asphalt content. (5) Freshly mixed specimens placed directly into baskets. (6) Specimens tested according to method. Asphalt contents determined: Convection-type furnace (1) Test temperature is the same as that of calibration (540 ±5°C)?			<u>P</u>	ROCEDURE		Date:	
Calibration performed for each change in mix design or ingredients? Sample approximately the same mass and graduation as that to be used for the HMA test so (1) Aggregate oven dried to constant mass (no temperature specified). (2) Aggregate, asphalt cement, and all mixing bowls and tools heated to approx. 150' (3) Butter mix prepared to condition bowl. (4) Three calibration samples mixed at the design asphalt content. (5) Freshly mixed specimens placed directly into baskets. (6) Specimens tested according to method. Asphalt contents determined: Convection-type furnace (1) Test temperature is the same as that of calibration (540 ±5 °C)?	Calik	oration Factor (ASTM o	ılv)				
Sample approximately the same mass and gradation as that to be used for the HMA test sa (1) Aggregate oven dried to constant mass (no temperature specified). (2) Aggregate, asphalt cement, and all mixing bowls and tools heated to approx. 150' (3) Butter mix prepared to condition bowl. (4) Three calibration samples mixed at the design asphalt content. (5) Freshly mixed specimens placed directly into baskets. (6) Specimens tested according to method. Asphalt contents determined: Convection-type furnace (1) Test temperature is the same as that of calibration (540 ±5°C)?	$\frac{\overline{(a)}}{\overline{(a)}}$			e in mix design o	or ingredien	ts?	
(1) Aggregate oven dried to constant mass (no temperature specified). (2) Aggregate, asphalt cement, and all mixing bowls and tools heated to approx. 150: (3) Butter mix prepared to condition bowl. (4) Three calibration samples mixed at the design asphalt content. (5) Freshly mixed specimens placed directly into baskets. (6) Specimens tested according to method. Asphalt contents determined: Convection-type furnace (1) Test temperature is the same as that of calibration (540 ±5 °C)?	(b)	Sample approximately the same mass and gradation as that to be used for the HMA test sample?					
(3) Butter mix prepared to condition bowl. (4) Three calibration samples mixed at the design asphalt content. (5) Freshly mixed specimens placed directly into baskets. (6) Specimens tested according to method. Asphalt contents determined: Convection-type furnace (1) Test temperature is the same as that of calibration (540 ±5 °C)? (2) If the calibration factor exceeds 1.0 percent, lower the temperature to 482 ±5 °C a repeat. Factor obtained at 482 °C used even if it exceeds 1.0 percent? Direct irradiation—type furnace (3) Burn profile set to DEFAULT for most materials? (4) Burn profile OPTION 1 or OPTION 2 may be selected to optimize burn cycle? Note: OPTION 1 is designed for saggregates with correction factor greater than 1.0 percent. OPTION 2 is designed for samples that may not burn completely using DEFAULT burn p. Calibration factor determined by calculation below? CF = (B-A)*100 B = total mass Before ig							
(3) Butter mix prepared to condition bowl. (4) Three calibration samples mixed at the design asphalt content. (5) Freshly mixed specimens placed directly into baskets. (6) Specimens tested according to method. Asphalt contents determined: Convection-type furnace (1) Test temperature is the same as that of calibration (540 ±5 °C)? (2) If the calibration factor exceeds 1.0 percent, lower the temperature to 482 ±5 °C a repeat. Factor obtained at 482 °C used even if it exceeds 1.0 percent? Direct irradiation—type furnace (3) Burn profile set to DEFAULT for most materials? (4) Burn profile OPTION 1 or OPTION 2 may be selected to optimize burn cycle? Note: OPTION 1 is designed for saggregates with correction factor greater than 1.0 percent. OPTION 2 is designed for samples that may not burn completely using DEFAULT burn p. Calibration factor determined by calculation below? CF = (B-A)*100 B = total mass Before ig		(2) Aggregate,	asphalt cement, ai	nd all mixing bo	wls and tool	s heated to approx. 150 °C.	
(5) Freshly mixed specimens placed directly into baskets. (6) Specimens tested according to method. Asphalt contents determined: Convection-type furnace (I) Test temperature is the same as that of calibration (540 ±5 °C)?						••	
(6) Specimens tested according to method. Asphalt contents determined: Convection-type furnace (1) Test temperature is the same as that of calibration (540 ±5 °C)?		(4) Three calib	ration samples mi.	xed at the design	asphalt coi	itent.	
Convection-type furnace (1) Test temperature is the same as that of calibration (540 ±5 °C)?		(5) Freshly mix	ed specimens plac	ced directly into i	baskets.		
Convection-type furnace (1) Test temperature is the same as that of calibration (540 ±5 °C)?				method.			
(1) Test temperature is the same as that of calibration (540 ±5 °C)?	<i>(c)</i>	Asphalt contents det	ermined:				
(1) Test temperature is the same as that of calibration (540 ±5 °C)?		Convection-type fur	ıace				
(2) If the calibration factor exceeds 1.0 percent, lower the temperature to 482 ±5°C a repeat. Factor obtained at 482°C used even if it exceeds 1.0 percent?				as that of calibra	ution (540 \pm	5℃)?	
Direct irradiation —type furnace (3) Burn profile set to DEFAULT for most materials?		_					
Direct irradiation -type furnace (3) Burn profile set to DEFAULT for most materials?							
(3) Burn profile set to DEFAULT for most materials?				.		F	
(4) Burn profile OPTION 1 or OPTION 2 may be selected to optimize burn cycle? Note: OPTION 1 is designed for aggregates with correction factor greater than 1.0 percent. OPTION 2 is designed for samples that may not burn completely using DEFAULT burn p. (A) Calibration factor determined by calculation below?							
Note: OPTION 1 is designed for aggregates with correction factor greater than 1.0 percent. OPTION 2 is designed for samples that may not burn completely using DEFAULT burn points. Calibration factor determined by calculation below? CF = (B-A)*100 B Where: B = total mass Before ignored as the calibration factor? Average of the three taken and used as the calibration factor? B = total mass After ign. B = total mass After ign. A = total mass After ign. B = total mass After ign. B = total mass After ign. A = total mass After ign. B = total mass After ign. A = total mass After ign. B = total mass After ign. A = total mass After ign. B = total mass After ign. B = total mass After ign. B = total mass After ign. A = total mass Af							
OPTION 2 is designed for samples that may not burn completely using DEFAULT burn p. (d) Calibration factor determined by calculation below? C _F = (B-A)*100 B Where: B = total mass Before ig A = total mass of the total miss of the total miss of the total miss of the total miss. (e) Average of the three taken and used as the calibration factor? (a) Mixture warmed in an oven at 110 ± 5°C (230 ± 9°F) until it can be handled if necessary? (b) Sample not warmed in oven for extended period of time? (c) Particles of mixture separated with spatula or trowel? (d) Sample obtained by reducing a larger sample [ASTM: by splitting or quartering]? (e) Sample mass at least as much as indicated on table below? 1200 g for No. 4 [ASTM: 500 g for No. 4]? 1200 g for 3/8 in. [ASTM: 1000 g for 3/8 in.]? 1500 g for 1/2 in.? 2000 g for 3/4 in.? 3000 g for 1 in.? 4000 g for 1 1/2 in.?							
C _F = (B-A)*100 Where: B = total mass Before ig A = total mass After ign P = % of asphalt cement mass of the total mix Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the three taken and used as the calibration factor? Average of the total mix as the calibration factor? Average of the total mix as the calibration factor? Average of the total mix as the calibration factor? Average of the total mix as the calibration factor? Average of the total mix as the calibration factor? Average of the total mix as the calibration factor? Average of the total mix as the calibration factor? Average of the total mix as the calibration factor? Average of the total mix as the calibration factor? Average of the total mix as the calibration factor? Average of the total mix as the calibration factor? Average of the total mix as the calibration factor? Average of the total mix as the calibration factor? Average of the total							
$C_F = (B-A)*100 $, g	
Assessors: The laboratory must be able to mix asphalt samples in-house for calibration. ample Preparation		· / /	P	where.	A =	total mass <u>Be</u> fore ignition total mass <u>A</u> fter ignition % of asphalt cement by mass of the total mix	
Assessors: The laboratory must be able to mix asphalt samples in-house for calibration. ample Preparation	(e)	Average of the three	taken and used as	s the calibration	factor?		
Ample Preparation A) Mixture warmed in an oven at $110 \pm 5^{\circ}$ C ($230 \pm 9^{\circ}$ F) until it can be handled if necessary? B) Sample not warmed in oven for extended period of time?	Note	to Assessors. The laborate	rv must he able to m	ir asnhalt samnles	in-house for	calibration	
Mixture warmed in an oven at $110 \pm 5^{\circ}\text{C}$ ($230 \pm 9^{\circ}\text{F}$) until it can be handled if necessary? Sample not warmed in oven for extended period of time?			ry musi be ubie io m	іх азрнан затрієз	in-nouse joi	canoranon.	
Sample not warmed in oven for extended period of time? Particles of mixture separated with spatula or trowel? Sample obtained by reducing a larger sample [ASTM: by splitting or quartering]? Sample mass at least as much as indicated on table below? 1200 g for No. 4 [ASTM: 500 g for No. 4]? 1200 g for 3/8 in. [ASTM: 1000 g for 3/8 in.]? 1500 g for 1/2 in.? 2000 g for 3/4 in.? 3000 g for 1 in.? 4000 g for 1 1/2 in.?	-	-		G (220 : 227			
Particles of mixture separated with spatula or trowel? Sample obtained by reducing a larger sample [ASTM: by splitting or quartering]? Sample mass at least as much as indicated on table below? 1200 g for No. 4 [ASTM: 500 g for No. 4]? 1200 g for 3/8 in. [ASTM: 1000 g for 3/8 in.]? 1500 g for 1/2 in.? 2000 g for 3/4 in.? 3000 g for 1 in.? 4000 g for 1 1/2 in.?	(a)						
All Sample obtained by reducing a larger sample [ASTM: by splitting or quartering]?	(b)						
Sample mass at least as much as indicated on table below?	(c)						
1200 g for No. 4 [ASTM: 500 g for No. 4]? 1200 g for 3/8 in. [ASTM: 1000 g for 3/8 in.]? 1500 g for 1/2 in.? 2000 g for 3/4 in.? 3000 g for 1 in.? 4000 g for 1 1/2 in.?	(d)						
1200 g for 3/8 in. [ASTM: 1000 g for 3/8 in.]? 1500 g for 1/2 in.? 2000 g for 3/4 in.? 3000 g for 1 in.? 4000 g for 1 1/2 in.?	(6)						
1500 g for 1/2 in.? 2000 g for 3/4 in.? 3000 g for 1 in.? 4000 g for 1 1/2 in.?							
2000 g for 3/4 in.? 3000 g for 1 in.? 4000 g for 1 1/2 in.?		_	SIMI. IUUU g JOF.				
3000 g for 1 in.? 4000 g for 1 1/2 in.?							
4000 g for 1 1/2 in.?							
	(f)	e e	imen mass not mo	re than 500 a are	—— pater than th	e minimum recommended mass	
g) Sample divided into suitable increments and tested if necessary?	(1)						

COMMENTS (T308 / D6307):

HMA - 30	
(T308)	
(D6307)	

Date: _____

PROCEDURE ((Continued)
-------------	-------------

factor temperature [ASTM: 540 ± 5°C]? or Direct Irradiation-type furnace use the same burn profile as used to determine the correction factor?. (b) AASHTO only: Convection-type furnace, temperature recorded prior to test (can be automatic)? (c) Sample dried to constant mass at 105 ± 5°C (221 ± 9°F) [ASTM: 110 ± 5°C]? or Test specimen for moisture determination obtained if necessary and moisture content determined according to (T110 / D1461)? (d) AASHTO only: Correction factor entered for the mix or manually recorded?	(a)		Convection-type furnace preheated to 538°C (1000°F) or the correction				
or Direct Irradiation-type furnace use the same burn profile as used to determine the correction factor? (b) AASHTO only: Convection-type furnace, temperature recorded prior to test (can be automatic)? or Test specimen for moisture determination obtained if necessary and moisture content determined according to (T110 / D1461)?	(4)						
(b) AASHTO only: Convection-type furnace, temperature recorded prior to test (can be automatic)? (c) Sample dried to constant mass at 105 ± 5°C (221 ± 9°F) [ASTM: 110 ± 5°C]? or Test specimen for moisture determination obtained if necessary and moisture content determined according to (T110 / D1461)?		or					
(c) Sample dried to constant mass at 105 ± 5°C (221 ± 9°F) [ASTM: 110 ± 5°C]? or Test specimen for moisture determination obtained if necessary and moisture content determined according to (T110 / D1461)? (d) AASHTO only: Correction factor entered for the mix or manually recorded?		-					
or Test specimen for moisture determination obtained if necessary and moisture content determined according to (T110 / D1461)?							
determined according to (T110 / D1461)? (d) AASHTO only: Correction factor entered for the mix or manually recorded? (e) Basket(s) placed in catch pan and weighed with guards in place? (f) AASHTO only: Sample evenly distributed in the basket, material kept away from edges and leveled? (g) Total mass of the sample, basket, catch pan and basket guards recorded? (h) Initial mass of the specimen calculated? (i) AASHTO only: Initial mass entered into the furnace controller and verified? (j) Baskets placed in the furnace and chamber door closed? (k) AASHTO only: Furnace scale agrees within 5 g of the total mass? (l) Pressing the start button locks the door and starts the blower?. (m) Test continued until change in mass does not exceed 0.01 percent for three consecutive minutes? Note, AASHTO only: Ending mass loss percentage of 0.02 percent may be used for excessive aggregate loss.) AASHTO Only, Method A (continued) (a) Pressing the stop button unlocks the door and prints the test results? (b) Corrected asphalt content (%) from the printed ticket reported? or If asphalt content on ticket is not corrected, the asphalt binder correction factor subtracted? or Percent moisture subtracted from the printed ticket and the resultant value reported? (c) Baskets removed and allowed to cool to room temperature for approximately 30 minutes? ASTM Only, Method A (continued) (a) Final mass obtained by subtracting the mass loss by the furnace from the initial mass of the mix? (b) Corrected asphalt content calculated by the formula below? Note: The furnace may measure and record this information. %AC = (B-A)*100 Where: B = total mass Before ignition		٥r					
(d) AASHTO only: Correction factor entered for the mix or manually recorded?		OI.					
(e) Basket(s) placed in catch pan and weighed with guards in place?	(d)						
(f) AASHTO only: Sample evenly distributed in the basket, material kept away from edges and leveled? (g) Total mass of the sample, basket, catch pan and basket guards recorded? (h) Initial mass of the specimen calculated? (i) AASHTO only: Initial mass entered into the furnace controller and verified? (j) Baskets placed in the furnace and chamber door closed? (k) AASHTO only: Furnace scale agrees within 5 g of the total mass? (l) Pressing the start button locks the door and starts the blower? (m) Test continued until change in mass does not exceed 0.01 percent for three consecutive minutes? Note, AASHTO only: Ending mass loss percentage of 0.02 percent may be used for excessive aggregate loss.) AASHTO Only, Method A (continued) (a) Pressing the stop button unlocks the door and prints the test results? (b) Corrected asphalt content (%) from the printed ticket reported? (c) If asphalt content on ticket is not corrected, the asphalt binder correction factor subtracted? (c) Baskets removed and allowed to cool to room temperature for approximately 30 minutes? (c) Baskets removed and allowed to cool to room temperature for approximately 30 minutes? (d) Final mass obtained by subtracting the mass loss by the furnace from the initial mass of the mix? (b) Corrected asphalt content calculated by the formula below? Note: The furnace may measure and record this information. %AC = (B - A) *100 Where: B = total mass Before ignition	' /						
(g) Total mass of the sample, basket, catch pan and basket guards recorded? (h) Initial mass of the specimen calculated? (i) AASHTO only: Initial mass entered into the furnace controller and verified? (j) Baskets placed in the furnace and chamber door closed? (k) AASHTO only: Furnace scale agrees within 5 g of the total mass? (l) Pressing the start button locks the door and starts the blower? (m) Test continued until change in mass does not exceed 0.01 percent for three consecutive minutes? Note, AASHTO only: Ending mass loss percentage of 0.02 percent may be used for excessive aggregate loss.) AASHTO Only, Method A (continued) (a) Pressing the stop button unlocks the door and prints the test results? (b) Corrected asphalt content (%) from the printed ticket reported? or If asphalt content on ticket is not corrected, the asphalt binder correction factor subtracted? or Percent moisture subtracted from the printed ticket and the resultant value reported? (c) Baskets removed and allowed to cool to room temperature for approximately 30 minutes? (d) Final mass obtained by subtracting the mass loss by the furnace from the initial mass of the mix? (b) Corrected asphalt content calculated by the formula below? Note: The furnace may measure and record this information. %AC = (B - A) *100 Where: B = total mass Before ignition							
 (h) Initial mass of the specimen calculated?	-						
 (i) AASHTO only: Initial mass entered into the furnace controller and verified?	_						
 (j) Baskets placed in the furnace and chamber door closed?	. ,						
(k) AASHTO only: Furnace scale agrees within 5 g of the total mass? (l) Pressing the start button locks the door and starts the blower?	' /						
(I) Pressing the start button locks the door and starts the blower?	•						
(m) Test continued until change in mass does not exceed 0.01 percent for three consecutive minutes? Note, AASHTO only: Ending mass loss percentage of 0.02 percent may be used for excessive aggregate loss.) AASHTO Only, Method A (continued) (a) Pressing the stop button unlocks the door and prints the test results?	' /						
Note, AASHTO only: Ending mass loss percentage of 0.02 percent may be used for excessive aggregate loss.) AASHTO Only, Method A (continued) (a) Pressing the stop button unlocks the door and prints the test results?	` '						
AASHTO Only, Method A (continued) (a) Pressing the stop button unlocks the door and prints the test results? (b) Corrected asphalt content (%) from the printed ticket reported?	(111)						
(a) Pressing the stop button unlocks the door and prints the test results?							
 (b) Corrected asphalt content (%) from the printed ticket reported?	AAS	HT	Only, Method A (continued)				
or If asphalt content on ticket is not corrected, the asphalt binder correction factor subtracted?			Pressing the stop button unlocks the door and prints the test results?				
or Percent moisture subtracted from the printed ticket and the resultant value reported?	<i>(a)</i>		Corrected asphalt content (%) from the printed ticket reported?				
(c) Baskets removed and allowed to cool to room temperature for approximately 30 minutes?	' '		Corrected asphalt content (%) from the printed ticket reported?				
ASTM Only, Method A (continued) (a) Final mass obtained by subtracting the mass loss by the furnace from the initial mass of the mix?. (b) Corrected asphalt content calculated by the formula below?	(b)	or					
(a) Final mass obtained by subtracting the mass loss by the furnace from the initial mass of the mix?. (b) Corrected asphalt content calculated by the formula below? Note: The furnace may measure and record this information. %AC = (B-A)*100 Where: B = total mass Before ignition	(b)		Corrected asphalt content (%) from the printed ticket reported? If asphalt content on ticket is not corrected, the asphalt binder correction factor subtracted? Percent moisture subtracted from the printed ticket and the resultant value reported?				
(a) Final mass obtained by subtracting the mass loss by the furnace from the initial mass of the mix?. (b) Corrected asphalt content calculated by the formula below? Note: The furnace may measure and record this information. %AC = (B-A)*100 Where: B = total mass Before ignition	(b)		If asphalt content on ticket is not corrected, the asphalt binder correction factor subtracted?				
(a) Final mass obtained by subtracting the mass loss by the furnace from the initial mass of the mix?. (b) Corrected asphalt content calculated by the formula below? Note: The furnace may measure and record this information. %AC = (B-A)*100 Where: B = total mass Before ignition	(b)		If asphalt content on ticket is not corrected, the asphalt binder correction factor subtracted? Percent moisture subtracted from the printed ticket and the resultant value reported?				
(b) Corrected asphalt content calculated by the formula below?	(b)		If asphalt content on ticket is not corrected, the asphalt binder correction factor subtracted? Percent moisture subtracted from the printed ticket and the resultant value reported?				
(b) Corrected asphalt content calculated by the formula below?	(b) (c)	or	If asphalt content on ticket is not corrected, the asphalt binder correction factor subtracted?				
% AC = (B-A)*100 Where: $B = total mass Before ignition$	(b) (c) AST	or	If asphalt content on ticket is not corrected, the asphalt binder correction factor subtracted?				
% AC = (B-A)*100 Where: $B = total mass Before ignition$	(b) (c) <u>AST</u> (a)	or	If asphalt content on ticket is not corrected, the asphalt binder correction factor subtracted?				
	(b) (c) <u>AST</u> (a)	or	If asphalt content on ticket is not corrected, the asphalt binder correction factor subtracted?				
	(b) (c) <u>AST</u> (a)	or	If asphalt content on ticket is not corrected, the asphalt binder correction factor subtracted?				

COMMENTS (T308 / D6307):

111/111 - 57	
(T308)	
(D6307)	

Date:

PROCEDURE (Continued)

(a)	Furnace preheated to 538°C (1000°F) or the correction factor temperature [ASTM: 540 ± 5 °C]?
(b)	Sample dried to constant mass at 105 ± 5 °C (221 ± 9 °F) [ASTM: 110 ± 5 °C]?
or	AASHTO only: Test specimen for moisture determination obtained if necessary and moisture
	content determined according to (T110 / D1461) or by other suitable method?
(c)	AASHTO only: Correction factor recorded for the mix?
(d)	Basket(s) placed in catch pan and weighed with guards in place?
(e)	AASHTO only: Sample evenly distributed in the basket, material kept away from edges and leveled?
(f)	Total mass of the sample, basket, catch pan and basket guards recorded?
(g)	Initial mass of the specimen calculated?
(h)	Sample burned in the furnace for at least 45 minutes?
(i)	Sample removed and allowed to cool to room temperature at least 30 minutes [ASTM: 10 minutes]
(j)	Sample weighed after ignition to the nearest 0.1 g?
(k)	Sample placed back in the furnace?
(1)	Sample burned for at least 15 minutes after reaching set temperature?
(<i>m</i>)	Steps (i) through (l) repeated until change in mass does not exceed 0.01
	percent of the initial sample mass?
	Note, AASHTO only: Ending mass loss percentage of 0.02 percent may be used for excessive aggregate loss.)
(n)	Corrected asphalt content (%) determined by calculation listed as ASTM above?
or	AASHTO only: If a moisture content has been determined, subtract the percent moisture from
	the AC percent, and report the resultant value as the corrected asphalt binder content?
400	on (AASHTO only)
(a)	Contents emptied into a flat pan, including any residual fines?
(b)	Gradation analysis performed according to T30?
(c)	Sample allowed to cool to room temperature in sample baskets?
L	(A CITY & 1.)
	(ASTM only)
(a)	Mass of HMA sample before and after ignition (to nearest 0.1 g) included on report?

COMMENTS (T308 / D6307):

PREPARING HMA SPECIMENS BY MEANS OF THE SUPERPAVE GYRATORY COMPACTOR

HMA - 00	
(T312)	
(D6925)	

Date: _____ APPARATUS 1. **Gyratory Compactor** Manufacturer: Model: AASHTO: Capable of applying a pressure of 600 \pm 18 kPa?..... (a) ASTM: Capable of applying a constant vertical pressure of 600 \pm 60 kPa during the first five gyrations, and 600 ± 18 kPa during the remainder of the compaction process?..... ASTM only: Axis of the loading ram perpendicular to the platen of the compactor?...... (b) Gyrates specimen molds at 30.0 ± 0.5 r/min and records height of specimen to 0.1 mm during (c) compaction once per gyration [AASHTO: if density is monitored during compaction]?..... Applies an average internal angle of 20.2 ± 0.35 mrad $(1.16 \pm 0.02 \text{ degrees})$?..... (d) ASTM only: An external angle of 21.8 ± 0.4 (1.25 ± 0.02 degrees)?..... (f) or **Note to Assessors:** Some Pine gyratory models will not display the value listed here on the screen during compaction. Check the calibration records to determine any offset between the set angle and the displayed angle. Displayed angles between 1.20 and 1.29 degrees are frequently ok. Balance, AASHTO: G5 balance (readable to 1 g)?..... 2. ASTM: Minimum capacity of 10,000 grams with a sensitivity of 0.1 grams?......... Ovens – forced draft oven capable of being thermostatically controlled to ± 3°C?..... 3. ASTM: Two ovens recommended: Thermometers - armored, glass or dial-type, range of at least 10 - 232°C [ASTM: readable to 3 °C]?...... 4. 5. 150-mm (6-in.) diameter gyratory molds and base plates: as specified in T312/D6925?_________ Note to Assessors: 150-mm diameter molds are required for determination of volumetric properties of the specimen. The laboratory may use 100-mm diameter molds if volumetric properties are not determined. Indicate below and on the preliminary report if the laboratory is determining volumetric properties and 150-mm diameter molds are not available. AASHTO ONLY - GYRATORY MOLD STANDARDIZATION (ANNEX A) Note: All measurements shall be performed with the equipment at room temperature 18 to 24°C (64 to 82°F). Equipment for checking molds, Note to assessor: For records from an outside agency, verify that this equipment was used. Three-point bore gauge, minimum resolution of 0.0025 mm (0.0001 in.), standardized using the 1. 2. Calibrated master ring, a 150-mm ring calibrated at least every 36 months to a minimum resolution of 0.001 mm (0.00004 in.) (A calibrated ANSI/ASME B89.1.6 Class Z is acceptable)?...... Calipers or micrometer, min. resolution 0.025 mm (0.001 in.), standardized annually?..... 3. Mold records: (Note to assessors: per tech bulletin 2-11, write an obs. if mold was checked with a Coordinate Measuring Machine.) 9 measurements of internal diameter recorded: 3 taken 50 mm from the top of the mold, 3 taken in visible 4. wear area (approx. 100 mm from either top or bottom), and 3 taken 50 mm from the bottom?...................... 5. 90° between the 3 measurements on a level (measurements recorded at 0°, 90°, and 180°)? 6. Diameters recorded to at least the nearest 0.0025 mm (0.0001 in.) using a three-point bore gauge? 7. Each diameter compared to specified range (149.90 to 150.20 mm for in-use molds) and marked pass/fail? Molds checked in accordance with Annex A every 12 months or every 80 hours of operation? 8. End plate records: Plates visually inspected for condition – no residue, deep gouges, or raised burrs (minor scratches ok)? 9. **Note:** A small recess (on the side that does not contact the sample) can reduce rocking and is acceptable.

Point of max. diameter of the base plate determined, that diameter recorded to nearest 0.025 mm (0.001 in.)?.._____

Diameter at 90° from first measurement recorded?

Both diameter measurements compared to range of 149.50 to 149.75 mm and marked pass/fail?.....

End plates checked in accordance with Annex A every 12 months or every 80 hours of operation?.....

COMMENTS (T312 / D6925):

10.

11.

12.

13.

(T312 / D6925)

PREPARING HMA SPECIMENS BY MEANS OF THE SUPERPAVE GYRATORY COMPACTOR

HMA - 61
(T312)
(D6925)

	PROCEDURE Date:						
Standar							
	AASHTO: in accordance with AASHTO T344 (at least every 12 months)?						
ASTM:	in accordance with manufacturer's instructions (usually 12 months)?						
	Have the following been verified? Check records.						
1.	Ram pressure, angle of gyration, and gyration frequency?						
2.	AASHTO only: Has the angle calibration device (ex. RAM) been standardized every 12 months (T344)?						
3.	LVDT (or other device to continuously record height)?						
4.	Mold dimensions and base plate faces [AASHTO: see above for checks related to Annex A]?						
	Note, ASTM only: If manufacturer's instructions are not available these pieces of equipment should be checked at the following intervals: angle of gyration, vertical pressure, and height measurement system (monthly);						
	at the following intervals: angle of gyration, vertical pressure, and height measurement system (monthly); frequency of gyration (quarterly); mold and platen dimensions (annually).						
	frequency of gyranon (quarterly), mota and platen almensions (annually).						
Prepara	ion of Apparatus						
1.	Main power for compactor turned on for manufacturer's required warm-up period?						
2.	Angle, pressure and number of gyrations set?						
3.	Bearing surfaces lubricated as needed per manufacturer's instructions?						
	<u> </u>						
Mixing	and Compaction Temperatures [a temperature-viscosity chart contains this information (T316/D4402)]						
	ese values are sometimes expressed as 170 ± 20 cSt and 280 ± 30 cSt.						
1.	Mixing temperature based on viscosity of 0.17 \pm 0.02 Pa s [ASTM: kinematic viscosity 170 \pm 20 mm ² /s]?						
2.	Compaction temperature based on viscosity of 0.28 ± 0.03 Pa s [ASTM: kinematic viscosity 280 ± 30 mm ² /s]?						
	Note, ASTM only: the two values given are approximately equivalent for an asphalt binder density of 1.000 g/cm ³ .						
3.	For modified asphalts, temperatures can be based on manufacturer's recommendations?						
	ion of Mixtures (Laboratory mixed)						
	Assessors: An informational observation if mixing is not demonstrated is no longer required.)						
1.	Aggregate fractions weighed into separate pan and combined to desired batch weight?						
2.	If specimens are used for determination of volumetric properties, are the batch weights adjusted to result in a						
2	compacted specimen 150 mm in diameter and 115 mm in height?						
3.	Aggregate and binder [ASTM: and mixing implements] placed in oven and heated to required mixing temp.?						
4.	Mixing bowl charged with heated aggregate and thoroughly dry-mixed?						
5.	Crater formed in aggregate and binder added?						
6. 7.	Aggregate and binder mixed quickly and thoroughly?						
	Mix placed in pan and aged [AASHTO only: in accordance with R30]?						
8.	Mix kept in oven 2 hours \pm 5 minutes at compaction temperature \pm 3°C (Volumetric Design)?						
9.	Mixture stirred every 60 ± 5 minutes to maintain uniform aging?						
10.	AASHTO only: Mold and base plate preheated to compaction temperature for at least 30 minutes?						
1.1	ASTM only: Compaction mold assembly preheated to compaction temp. ±5 °C for at least 45 minutes?						
11.	Mix removed from oven and immediately compacted?						
12.	AASHTO only: If the compaction temperature differs from the conditioning temperature used in accordance						
	with R30, mix placed in oven at compaction temperature, maximum 30 min., to achieve the required temp.?						
Prepare	ion of Mixtures (Plant sample)						
1.	AASHTO: Loose mix brought to compaction temp. by uniform heating in an oven prior to molding?						
1.	ASTM: For samples of as-produced mixture, follow one of the following short-term aging procedures:						
	(a) No conditioning- compacted immediately as produced?						
or	(b) Condition for $2h \pm 5$ min. at the compaction temperature $\pm 3^{\circ}$ C, stirring after 60 ± 5 min?						
or	(c) Any conditioning method which has been demonstrated to replicate design conditioning?						
~.							

COMMENTS (T312 / D6925):

(T312 / D6925)

COMMENTS (T312 / D6925):

PREPARING HMA SPECIMENS BY MEANS OF THE SUPERPAVE GYRATORY COMPACTOR

HMA - 62	
(T312)	
(D6925)	

	PROCEDURE (Continued) Date:
C	Con Decret 1
1.	tion Procedure Mold, base plate, and upper plate (if required) removed from oven and paper disk placed on bottom of mold?
2.	Mixture placed into mold in one lift, mix leveled, and paper disk and upper plate (if required) placed on top of material [ASTM only: Quickly place mix into mold using a transfer bowl or other suitable device]?
3.	Mold loaded into compactor and a pressure of 600 ± 18 kPa applied?
4.	Internal angle of 20.2 ± 0.35 mrad (1.16 ± 0.02 degrees) applied to the mold and compaction started?
or	ASTM only: External angle of 1.25 \pm 0.02 °(22 \pm 0.35 mrad) applied to the mold and compaction started?.
5.	<i>AASHTO:</i> Compactor shuts off when desired number of gyrations are reached?
	ASTM: Compaction shall proceed until the desired endpoint – either a required number of gyrations (volumetric properties), or a specified height (physical property testing)?
6.	AASHTO only: No leveling off load applied (dwell gyrations, reverse gyrations, or square load), unless specified in another standard referencing T312?
	Note to Assessors: The following is guidance for certain models of gyratory compactors. If a delay is being applied a counter will often be displayed counting down [Reference: LAP technical bulletin 1-08].
	Pine Model AFGB Compactor - requires a dwell setting of "2" for no delay. This does not mean a 2-second delay. Pine Models AFG1 & AFGC125X – may indicate "Compaction Complete, Squaring specimen, please wait" but this is ok. The ram will retract immediately after the angle is removed, which is correct.
7. 8.	Mold removed and specimen extruded (may require cooling time before extruding)?
9.	If specimens are used for determination of volumetric properties, is the compacted specimen 150 mm in diameter and 115 ± 5 mm in height at the desired number of gyrations?
D	
1.	Procedure Manieuro and if a provide (T200/D2041) determined an appropriate and to some outset?
2.	Maximum specific gravity (T209/D2041) determined on companion sample aged to same extent?
3.	Height recorded to nearest 0.1 mm after each revolution (when monitored)?
	ssessors: the relative density at any given gyration of interest can be determined as follows
$G_{mbx} = G$	$_{\text{mbfinal}} (h_{\text{final}} / h_{x})$ (1) $\% G_{\text{mm}} = (G_{\text{mbx}} / G_{\text{mm}}) * 100$ (2)
$G_{mm} = m$ $h_{final} = he$ $h_x = heig$	alk specific gravity of the extruded specimen, at any gyration, x aximum theoretical specific gravity of the mixture (companion sample) ight of the specimen recorded at the final gyration, mm to the specimen recorded at any gyration, x, during the compaction process, mm
% G _{mm} =	bulk specific gravity of the extruded specimen at the final gyration relative density at any gyration, x, expressed as a percentage of the maximum theoretical specific gravity, arest 0.1 % at selected number of gyrations.

(T312 / D6925)

HAMBURG WHEEL-TRACK TESTING OF COMPACTED HMA

(T324)

		<u>APPARATUS</u>	Date:	
1	Hambo	we Wheel Tendine Medine		
1.	(a)	Electrically powered machine capable of moving a 203.2-mm (8-in.) diametrically wide steel wheel over a test specimen?		
	(b)	The load on the wheel is 705 ± 4.5 N (158 lb ± 1.0 lb) while traveling baspecimen?	ck and forth across the	
	(c)	Wheel makes 52 ± 2 passes across the specimen per minute?		
	(d)	The speed of the wheel is approximately 0.305 m/s (1 ft/sec) and is reach of the specimen?		
2.	Temper	erature Control System		
	(a)	Water bath controlled to within ± 1.0 °C (1.8°F) over a range of 25 to 70°	°C (77 to 158°F)?	
	(b)	Water bath has a mechanical circulating system to stabilize the temperatu	are in the specimen tank?	
3.	Impres	ssion Measurement System		
	(a)	An LVDT device capable of measuring the depth of the impression of the		
	(1.)	(0.0006 in.), over a minimum range of 0 to 20 mm (0.8 in.)?		
	(b)	System mounted to measure the depth of the impression at different inter the wheel's path on the slab specimen?		
	(c)	Impression measured at least every 400 passes of the wheel?		
	(d)	System capable of measuring rut depth without stopping the wheel?		
4.	Wheel	Pass Counter		
	(a)	Non-contacting solenoid that counts each wheel pass over the specimen?		
	(b)	Data from signal of counter coupled to wheel impression measurement, a expressed as a function of wheel passes?	allowing for rut depth to be	
5.	Cmaain	nen Mounting System		
5.	(a)	Stainless steel tray that can be mounted rigidly to the machine?		
	(a) (b)	Mounting restricts shifting of the specimen to within 0.5 mm (0.02 in.) d		
	(c)	System suspends the specimen, allowing for free circulation of the water		
	(d)	Minimum of 20 mm (0.8 in.) of free circulating water on all sides of the	specimen?	
	(e)	Can accommodate slab specimens and cylindrical specimens (includes tw		
	(-)	polyethylene molds inside a stainless steel tray to hold cylindrical specin		
6.	<u>Linear Kneading Compactor</u> , a hydraulic unit used to compact asphalt mixtures into rectangular slabs of predetermined thickness and density?			
7.	Balanc	ee, capacity of 12,000 g, accurate to 0.1 g?		
8.	Oven - for heating aggregate and asphalt binders?			
9.	Superp	pave Gyratory Compactor and molds, conforming to AASHTO Test Method	1 T312?	
	Note to	Assessors: this is only needed if the laboratory is testing gyratory specimens in the	e wheel tester.	
10.	<u>Plaster</u>	of Paris - mixed at approximately a 1:1 ratio of plaster to water?		
or		lensity polyethylene molds, for cylindrical specimens?		
COMM	IENTS (T324):	(T324)	

HAMBURG WHEEL-TRACK TESTING OF COMPACTED HMA

(T324)

			<u>PROCEDURE</u>	Date:	
Calibra	etion / Equipment	t Varification (Ontional)			
1. 2.	water bath temperature is verified within \pm 1.0°C (1.8°F) of the temperature readout every 6 months?				
3.	Wheel force verified, per manuf. instr., at the correct level elevation, to be $705 \pm 4.5 \text{ N}$ (158 $\pm 1.0 \text{ lb}$)?				
4.				ses per minute verified?	
Specin	nen Preparation				
1.		ecimens prepared for each	ch test?	<u></u>	
2.	Slab specimens	s or cylinders?		······	
	Circle One:	Slab Specimen	Core or Gyratory Specime	n	
3.	Either laborato	ry-produced HMA or fie	ld-produced HMA?		
Labora	ntory-Produced H	MA·			
Lucore			to compaction temp. ra	inge: to	
1.	Mixture propor	rtions batched in accorda	nce with the desired job-mix form	nula?	
2.				ieve a viscosity of 170 ± 20cSt?	
3.				d binders?	
4.					
5.				e thoroughly coated?	
٥.			vet-mixed if a lime slurry or other we		
6.	Test sample co	nditioned at the appropri	ate compaction temperature in ac		
7.				o achieve a viscosity of 280 ± 30cSt?	
8.	If using modifi	ed binders, is the compa	ction temperature recommended t	by the manufacturer used?	
Labora	tory Compaction	of Specimens – Slab Sp	ecimens		
1.				t)?	
2.	Specimens are	320 mm (12.5 in.) long a	and 260 mm (10.25 in.) wide?		
3.					
4.					
5.	Compacted specimen cooled at normal room temperature on a clean, flat surface until the specimen is cool to the touch?				
Labora	itory Compaction	of Specimens – Gyrato	ry Specimens		
1.				ng to AASHTO T312?	
2.					
3.				e?	
<i>4</i> .					
5.	Compacted spe	ecimen cooled at normal	room temperature on a clean, flat	surface until the specimen	
6.			a secant line (chord) so that whe		
0.				he two?	
COMN	MENTS (T324):			(T324)	

Date: _____

COMMENTS (T324):

HAMBURG WHEEL-TRACK TESTING OF COMPACTED HMA

(T324)

PROCEDURE (Continued)

Cor	e / S	lab Specimens
1.		Specimens are wet saw-cut compacted specimens taken from HMA pavements at least 24 h after compaction?
2.		Specimen size:
		(a) Field core is 300 mm (12 in.), 250 mm (10 in.), or 150 mm (6 in.) in diameter and is 38 mm
		(1.5 in.) to 100 mm (4 in.) high?
	or	(b) Cut slab specimen is approximately 260 mm (10.25 in.) wide and 320 mm (12.5 in.) long and
		38 mm (1.5 in. high)?
3.		Cylindrical specimens wet sawed along a secant line (chord) so that when placed together in the
		specimen holder, there is a gap no larger than 7.5 mm (0.3 in.) between the two specimens?
Dat	armi	ning air void content
1.	CIIIII	Bulk specific gravity determined in accordance with AASHTO T166?
2.		Maximum specific gravity of the mixture determined in accordance with AASHTO T209?
2. 3.		Air void of the specimens determined in accordance with AASHTO T269?
<i>3</i> . 4.		Air void of laboratory-compacted specimens is 7.0 ± 1.0 percent?
4.	or	Field specimens (cores / cut slabs) tested at the air void content at which they were obtained?
	O1	Their specimens (cores / cut stabs) tested at the air void content at which they were obtained?
Pro	cedu	re
1.	ccaa	Plaster of Paris poured so that the air space between the specimen and the tray is filled, the layer underneath the
••		specimen does not exceed 2 mm (0.08 in.), and allowed to set at least 1 hour?
	or	High-density polyethylene molds used for cylindrical specimens, molds shimmed into mounting
	0.2	tray as necessary, and bolts fastened "hand tight"?
		Note: If other mounting material is used, it should be able to withstand 890 N (200 lb) of load without cracking.
2.		Test temperature and maximum allowable rut depth selected based upon the applicable specifications?
3.		Start delay of 30 minutes entered to allow the specimen time to reach the specified test temperature?
4.		To operate in Auto Mode:
		(a) Height of the LVDT adjusted and zeroed per manufacturer's instructions?
		(b) Wheel lowered onto edge of specimen, mostly supported by the mounting tray?
		(c) Test started, shuts off automatically after 20,000 passes or when max. allowed rut depth achieved?
		(d) Wheel raised and specimen(s) removed?
5.		To operate in Manual Mode (if Auto is not available):
		(a) Drain valves closed and wheel-tracking device filled with hot water until the float device floats
		to a horizontal position?
		(b) After the water has reached the test temperature for 30 minutes, wheels lowered onto the specimens?
		(c) Wheel not in contact with specimen for more than 5 minutes prior to starting test?
		(d) Micro-control unit's LVDT reads between 10 mm (0.4 in.) and 18 mm (0.7 in.) and test started?
		(e) Wheel-tracking device shut off when (a) 20,000 passes have occurred or (b) if the average LVDT
		displacement is 40.90 mm (1.6 in.) or greater for a specimen?
		(f) Screen readout subtracts the initial LVDT reading from the total displacement?
		(g) Machine and the main power supply turned off?
		(h) Valves opened to drain the bath, and the wheels raised, rutted specimens and spacers removed?
6.		Water baths, heating coils, wheels, and temperature probe cleaned with water and scouring pads?
0. 7.		Wet-dry vacuum used to remove particles that have settled to the bottom of the baths?
8.		Filter element and spacers cleaned after every test or according to manufacturer's instructions?
9.		Calculations performed according to the test method?
<i>)</i> .		
Rep	ort	
1.		HMA production (field or lab) and compaction method used, test temperature, and specimen air voids?
2.		Number of passes at the maximum impression and maximum impression?
3.		Creep slope, strip slope, stripping inflection point, type and amount of anti-stripping additive?

(T324)

COMMENTS (T329):

MOISTURE CONTENT OF HOT-MIX ASPHALT (HMA) BY OVEN METHOD

	•	00
(Τ	32	29)

	AP	<u>PARATUS</u>		Date:
1.	Oven, maintains 163 ± 14°C (325 ± 25°F)?			<u> </u>
2.	Sample container, of sufficient size to contain the	sample without	danger of spi	lling?
3.	Balance, 2-kg (4.4-lb) capacity, readable to at least	t 0.1 g?		
4.	Thermometer, readable to the nearest 2°C (4°F), for Armored-glass, dial type, or digital thermometers			
	PRO	CEDURE		
1.	Test sample obtained by AASHTO R47?			
2.	Minimum sample mass is 1000 g?			
3.	Mass of the sample container determined to the ne			
4.	Sample placed into the container, distributed evenl			
5. 6.	Mass of the sample container and moist test sampl Mass of the moist test sample determined by subtr			
0.	total mass of the sample container and moist test s			
7.	Sample dried to constant mass within the mixing to			
8.	If a mixing temperature range is not supplied, dried			
o. 9.	Sample initially dried for 90 ± 5 minutes and mass			
9. 10.	Sample that dried at 30 ± 5 minutes and mass Sample then dried at 30 ± 5 minute intervals until			
10.	Test sample removed from oven and cooled to app			
12.	Mass of the sample container and dry test sample of			
13.	Mass of the final dry test sample determined by su			
13.	total mass of the sample container and dry test sam			
14.	Moisture content calculated according to method (
1	Worsture content carearated according to method (sec 5610 w)		
For AC	content reported as % of HMA:			
	% moisture = $M_i - M_f$	Where:	$M_i =$	initial mass (moist mass)
	x 100		$M_f =$	final mass (dry mass)
	$ m M_{i}$		1	, ,
15.	Percent change in mass calculated as % change = ($(M_n - M_n) / M_n$	* 100?	
	$M_p = $ previous mass	(pn) / 14-n	$M_n =$	

(T329)

BULK SPECIFIC GRAVITY OF COMPACTED HMA USING AUTOMATIC VACUUM-SEALING METHOD

HMA - 67	
(T331)	
(D6752)	

				- (- ,
			<u>APPARATUS</u>	Date:
1.	Balan	ce		
	(a)		TO: Readable to 0.1 percent of the sample mass or better,	conforming to M231?
	. ,		I: Has sufficient readability to determine bulk specific gro	
			s (0.1 g for 130.0 to 999.9 g) (meets D4753, GP2)?	
	(b)	Equip	ped with an apparatus for weighing specimen while suspend	ded in water?
2.	Water	Bath		
	(a)		nostatically controlled to maintain bath at $25 \pm 1^{\circ}$ C (77 ± 1.8	8°F) [<i>ASTM: 77± 2°F</i>]?
	(b)		TO only: No circulating pump active while recording sample	
	(c)	Minim	num [AASHTO: suggested] dimensions of 610 x 460 x 460 r	mm (24 x 18 x 18 in.) or a large
		cylind	rical container capable of completely submerging the specia	men while suspended?
	(d)	Equip	ped with an overflow outlet to maintain constant water leve	1?
	(e)		TO: Suspension wire of smallest practical size?	
			1: Has a cushioned specimen holder, without sharp edges	
3.	Vacuu	ım Chaml	oer .	
	(a)		ped with a pump capable of evacuating a sealed and enclose	ed chamber to a minimum
	` '		re of 5 mm Hg absolute [ASTM: 10 mm Hg] in less than 6	
	(b)		ber large enough to seal samples with dimensions of 150 x	
	(c)		natically seals bag?	
	(d)	Exhau	sts air back into chamber in a controlled manner to ensure p	plastic conforms to specimen?
	(e)	Air ex	haust and vacuum operation time calibrated at factory prior	to initial use?
	(f)	Air ex	haust system calibrated to bring chamber to atmospheric pr	ressure in 80 to 120 seconds,
			he completion of the vacuum operation?	
	(g)	Vacuu	m system provided with a latch to control the chamber doo	r opening?
		b /		
4.	Vacuu	ım Measu	rement Gauge	
	(a)	Indepe	endent from the vacuum sealing device?	
	(b)	AASH	TO: Calibrated gage capable of reading 1 mm Hg (1 torr)	pressure with a minimum
		range	of 10 to 0 mm Hg (10 to 0 torr)?	······
		ASTM	1: Gauge capable of reading 3 mm Hg (3 torr) pressure, s	tandardized every 12 months?
	Note t	o Assessor	s: The ASTM standardization requirements are included here bec	cause they are listed in the test method.
			is seeking accreditation, these issues will be covered in the R18 ever quality system section. Only if they are not seeking R18 accredit	
5.	<u>Plas</u> tio	c Bags		
	(a)		f the two following sizes:	
		(1)	Smaller bags: Openings from 235 to 260 mm (9.25 to 10	0.25 in.)
		. /	[ASTM only: 241 mm to 260 mm (9.5 to 10.25 in.)]?	
		(2)	Larger bags: Openings from 375 to 394 mm (14.75 to 1	5.5 in.)?
	(b)	Does 1	not adhere to asphalt film?	
	(c)	Capab	le of withstanding temperatures of up to 70°C (158°F)?	
	(d)	Imperi	meable to water and is puncture resistant?	

Contains no air channels for evacuation of air from bag?.....

Thickness of bags 0.100 to 0.152 mm (0.004 to 0.006 in.)?....

Specific gravity known [AASHTO: provided by manufacturer]?.....______

Note to assessors: *measure the thickness with calipers.*

COMMENTS (T331 / D6752):

(e)

(f)

(g)

(T331 / D6752)

BULK SPECIFIC GRAVITY OF COMPACTED HMA USING AUTOMATIC VACUUM-SEALING METHOD

HMA - 00	
(T331)	
(D6752)	

		APPARATUS (Continued) Date:
6.	Additi	nal Apparatus
	(a)	Specimen sliding plate with a smooth, flat surface?
	(b)	Bag cutting knife, scissors, or other type of clipping device?
	(c)	ASTM only: For bag density verification, sufficient aggregate and AC to prepare a lab-compacted
	. ,	sample of 4.75 mm design mixture with min. dimensions of 100 mm diameter by 60 mm thick?
	(d)	AASHTO only: Drying oven?
	(e)	AASHTO only: Thermometer, one of the following:
		(1) ASTM 17C (range 19 to 27 °C, subdivisions of 0.1 °C)?
		(2) ASTM 17F (range 66 to 80 °F, subdivisions of 0.2 °F)?
		(3) An electronic temperature measuring device?
		<u>PROCEDURE</u>
Samo	ling and T	st Specimens
1.		Specimens:
	(a)	Laboratory prepared specimens?
0	r (b)	Field samples [ASTM only: obtained in accordance with Practice D5361 (pavement cores)]?
2.	Diame	er of cylindrically molded or cored specimens, or the length of the sides of sawed specimens at
	least f	ur times the maximum aggregate size?
3.	Thick	ess of specimens at least 1 ½ times the maximum aggregate size?
4.		ken to avoid distortion, bending, or cracking of specimen and stored in a cool, dry place?
5.	AASH	O: Sample conforms to the requirements of T166?
Verifi	cation	
1.	Syster	Verification
	(a)	Vacuum settings of the device verified every three months, after repairs, and after
	1 7	each shipment or relocation?
	(b)	Verification performed with an absolute vacuum gage capable of being set inside the
		chamber and reading the vacuum setting of the sealing device?
	(c)	Vacuum gage indicates a reading of 10 mm Hg (10 torr) or less?
	(d)	ASTM only: Vacuum gage used for verification calibrated every 12 months?
2.	Plastic	Bag Verification (Note to assessors: verified as specified below OR by manufacturer's instructions.)
	(a)	Plastic bag apparent specific gravity provided by manufacturer verified periodically?
	(b)	Laboratory compacted sample used to verify bags?
	(0)	(1) 4.75 mm mixture compacted by Marshall compactor or Gyratory compactor?
		(2) Minimum sample diameter of 100 mm by 60 mm thick?
		(3) AASHTO: Sample compacted to produce air voids in the range of 4.0 ± 1.0 percent?
		ASTM: Sample compacted to air voids in the range of 4% to 8% at 6% AC content?
	(c)	Average of results from three bags (per size) used to measure the bulk spec. gravity of the sample?
	(d)	Bulk specific gravity of the same sample determined using (T166 / D2726)?
	(e)	AASHTO: Average bulk spec. gravity calculated for the lab-compacted specimen within 20 kg/m ³
	(0)	$(\pm 0.020 \text{ g/cm}^3)$ of the bulk spec. gravity determined by T166 for the same asphalt sample?
		ASTM: Average bulk spec. gravity calculated for the lab-compacted specimen within 10 kg/m ³
		($\pm 0.010 \text{ g/cm}^3$) of the bulk spec. gravity determined by D2726 for the same asphalt sample?
	(f)	AASHTO only: If difference between T166 and T331 bulk spec. gravity is outside of the tolerance, same
	(1)	dried and verification repeated?
	(g)	AASHTO only: Manufacturer contacted if second test fails?
	(5)	

COMMENTS (T331 / D6752):

(T331 / D6752)

BULK SPECIFIC GRAVITY OF COMPACTED HMA USING AUTOMATIC VACUUM-SEALING METHOD

IIIvin - 09	
(T331)	
(D6752)	

Date: _____

PROCEDURE (Continued)

esting		
	Mass in air determination:	0 (4)
	(a) Laboratory-prepared, dry specimens mass determined a	
or		
	[AASHTO: at $52 \pm 3^{\circ}C$ ($125 \pm 5^{\circ}F$)] or dried by D722	
	0.05% change between consecutive 15 minute drying in	
	Appropriate size bag selected and mass determined and inspecte	
	(a) Small bag used for all specimens with diameters of 100	
	(b) Small bag used for 150 mm (6 in.) diameter specimens [ASTM only: thickness less than 75 mm (3 in.)]?	
	(c) Large bag used for 150 mm (6 in.) diameter specimens	
	[ASTM only: thickness greater than 75 mm (3 in.)]?	
	Note: Use manufacturer's recommendation for specimens w	
?.	AASHTO only: If needed, filler plates added or removed before	
	Bag placed on top of specimen sliding plate inside vacuum chan	
i.	AASHTO: Specimen placed in bag, smoothest side down?	
•	ASTM: Specimen placed in bag without puncturing, dropping	
ō.	AASHTO only: End of bag pulled over the sample, centered over	er the sealing bar with at least 1 in, overlap?
	Any wrinkles in the bag straightened just prior to closing the lid	and latching the har?
	Chamber door latched to avoid automatic opening of door after	the completion of the test?
·.).	Vacuum chamber allowed to remove air from chamber and bag	
0.	Exhaust air into chamber until chamber door opens indicating at	
1.	Sealed sample removed from the vacuum chamber without punc	
2.	Bag inspected for loose areas, which indicate a poor seal, and if	
3.	AASHTO: Mass of the sealed specimen in air calculated as init	
٥.	ASTM: Sample immediately placed in water bath at $25 \pm 1^{\circ}$ C	
4.	AASHTO only: Specimen fully submerged in bath and no air bu	
5.	AASHTO only: Mass of sealed specimen in a water bath at 25 =	
٥.	Note: The time between the lid opening and putting the specimen in th	
6.	ASTM only: If temperature differs from specified range, is a c	
••	25°C made in accordance with Section 8.3?	
7.	Sample removed from bag and mass determined? (<i>C</i>)	
8.	Specimen's new mass in air (C) checked against the initial mass	
•	(a) AASHTO: check passes if less than 0.08 % is lost or no	
	(b) ASTM: check passes if dry mass after test < (the initi	
9.	AASHTO only: Specimen oven or vacuum dried to constant ma.	
0.	AASHTO only: Specimen must be vacuum dried for referee testi	
1.	ASTM only: Specimen dry mass after procedure recorded?	
2.	Bulk specific gravity calculated according to the method to four	significant figures (see formula below)?
	Note to Assessors: The formula given below is the ASTM version. The	
	different letters to designate the values. A =	initial dry mass of specimen, g
	A B =	mass of sealed specimen in air, g
	$G_{mb} = C =$	dry mass in air at end of test without bag, g
	[C+(B-A)] - E - [(B-A)/F] $E =$	mass of sealed specimen in water at 25°C, g
	$\mathbf{F} =$	spec. gravity of bag to nearest 0.001
_	$G_{\mathrm{mb}} =$	specimen bulk specific gravity
23.	Density of the specimen calculated and reported to nearest 0.00	
	$G_{ m mb} =$	specimen bulk specific gravity
	$\tilde{\mathbf{n}} = \mathbf{G}_{\mathrm{mb}} * \tilde{\mathbf{a}} \qquad \qquad \tilde{\mathbf{a}} =$	density of water at 25°C (77°F), 0.999 g/cm ³
701A1	$\tilde{n} = MMENTS (T331 / D6752):$	density of specimen kg/m³ (lb/ft³)
VIIVIV	TIVILIVI 5 (1331 / 120/34).	(T331 / D675)

COMMENTS (D1075):

EFFECT OF WATER ON COHESION OF COMPACTED HMA

(D1075)		

		<u>APPARATUS</u>	Date:
		W - D - 1 - 1000 (7707)	
1.		Water Bath at 25°C (77°F)	25 100 (77.0 1.00 [7.0]
2		(a) Sufficient size to permit total immersion of 3 specimens, to Water Bath at 49 or 60°C (120 or 140°F)	emperature: $25 \pm 1^{\circ}\text{C} (7.0 \pm 1.8^{\circ}\text{F})?$
2.			
		 (a) Automatic temperature control, capable of controlling tem (b) Lined with copper, stainless steel, or other non-reactive management 	perature to $\pm 1^{\circ}$ C ($\pm 1.8^{\circ}$ F)?
		(c) Is bath emptied, cleaned, and refilled for each series of tes(d) Water in bath: distilled or treated to eliminate electrolytes	
3.		Air Bath, capable of being maintained at $25 \pm 1^{\circ}$ C (77.0 $\pm 1.8^{\circ}$ F) for	
3. 4.		Transfer Plates	or 4 nours?
4.		(a) Flat; glass, metal, or other non-reactive material; at least 3	available?
	٥r	or (b) One large transfer plate sufficient to hold all three specime	
5.	OI.	Compressive Strength Testing Machine available [required for test	
6.		Thermometric device, readability of 1°F (0.5°C), such as a calibrate	
0.		with a suitable range OR an electronic device of equal or better acc	
7.		Apparatus for D2726 Method A (T166 Method A)?	
			
		<u>PROCEDURE</u>	
	rmi	termination of Bulk Specific Gravity (sequence of steps optional)	
1.		At least six 102 x 102 mm diameter specimens prepared in accorda	nce with (T167/D1074)?
2.		Specimens allowed to cool at least 2 hrs. after removal from curing	
3.		Each specimen immersed for 3 to 5 minutes in water at $25 \pm 1^{\circ}$ C, the	
4.		Blotted quickly with damp towel, surface-dry mass of each specime	
5.		Bulk specific gravity of each specimen calculated?	
_			
	edu	<u>cedure</u>	
1.		Each set of six specimens separated into two groups of three specimens	nens each so that the average
2		bulk specific gravity of Group 1 is essentially the same as that of G	
2.		Transfer plates kept under each specimen during immersion period	
3.		weighing and testing? Test specimens in each group tested as follows:	
э.		Group 1	
		•	r at least 4 hours?
		 (a) Specimens stored in air bath at 77.0 ± 1.8°F (25 ± 1°C) for (b) Compressive strength of each Group 1 specimen by (T167) 	
		Group 2	/ D10/4):
		(a) Specimens on transfer plates immersed in water at 140.0 ±	-1.8° F (60 + 1°C) for 24 brs?
	or	or Alternate Procedure: Specimens immersed in water at 140.0 2	
	OI		
		 (b) Specimens transferred to water bath at 77.0 ± 1.8°F (25 ± (c) Compressive strength of each Group 2 specimen by (T167 	
		(c) Compressive strength of each Group 2 specifich by (1107	/ D10/4):
Calc	บไลเ	culations	
		merical index of resistance to water calculated according to equation belo	ow?
1 (611	1011	interior mack of resistance to water calculated according to equation series	
		Index of retained strength, $\% = (S_2/S_2)$	S_1) x 100
		(-27)	•
		Where: $S_1 = Compressive strength of dry specimens (Gro$	oup 1)
		S_2 = Compressive strength of immersed specimer	
		- 1 0 1	· · · · • · · ·

(D1075)

COMMENTS (D2950):

DENSITY OF BITUMINOUS CONCRETE IN PLACE BY NUCLEAR METHODS (D2950) _____

	APPARATUS Date:
Nuclea	ar Device:
1. 2. 3.	An electronic counting instrument capable of being seated on the surface of the material to test?
Refere	nce Standard Block: A block of dense material able to produce reference count rates?
Site Pr	reparation Device:
1.	A metal plate, straightedge, or suitable leveling tool capable of conditioning the test surface to the required smoothness?
2. or	Drive Pin: (a) A steel rod of slightly larger diameter than the rod in the direct transmission instrument?
	<u>CALIBRATION</u>
	to calibrate:
1.	New gages initially calibrated?
2.	Existing gages calibrated to re-establish calibration curves, tables, or equivalent coefficients at least once each year and after all major repairs?
Calibra	ation Requirements:
1.	Calibrations completed in accordance with manufacturer's recommended procedures?
2.	Calibration produces calibration response within \pm 16 kg/m ³ (\pm 1.0 lb/ft ³) on standard blocks or material of
2	established and constant densities (can be done by manufacturer, user, or independent vendor)?
3.	One-block calibration <u>not</u> used?
4.	The densities of the materials used to establish or verify the calibration extend through a range wide enough to include the types and densities on the in-place materials to be tested?
5.	Blocks used to establish calibration identified on the calibration data sheets?
	<u>STANDARDIZATION</u>
Dagara	do:
Record	Standardization performed at the start of each day's work?
2.	Permanent records of this data retained?
Location	on:
1.	Standardization performed with apparatus located at least 10 m (33 ft) away from other radioactive sources?
2.	Area clear of large mass or other items that could affect the reference count?
<u>Ref</u> ere	ence Count:
1.	Device turned on prior to standardization and allowed to stabilize?
	Note: Follow manufacturer's instructions in order to provide the most stable and consistent results.
2.	Placed on reference standard block?
3.	At least four repetitive reading at normal measurement period obtained to determine the mean?

(D2950)

DENSITY OF BITUMINOUS CONCRETE IN PLACE BY NUCLEAR METHODS (D2950) _____

	STANDARDIZATION (Continued) Date:
4.	Are current day count ratios determined using the following equation?
	$\begin{aligned} \left N_s - N_o \right &\leq 2.0 \sqrt{(N_o)} / F) \\ N_s &= \text{ value of current standard count} \\ N_o &= \text{ average of past four values of } N_s \text{ taken} \\ &= \text{ previously} \\ F &= \text{ value of any pre-scale (a divisor supplied by the manufacturer)} \end{aligned}$
6. 7. 8.	If the value is outside of limits, is the device allowed additional stabilization time before repeating procedure? If the device fails a second time, is the device adjusted or repaired as recommended by the manufacturer? If measured densities become suspect, is another standardization count performed?
	<u>PROCEDURE</u>
	ar Device:
1.	Instrument turned on prior to use and allowed to stabilize?
2.	Power left on during the entire day's testing?
1.	reparation: If the instrument will be closer than 250 mm (10 in.) to any vertical mass, manufacturer's correction procedure followed?
 3. 	Test site leveled with the guide / scraper plate?
3. 4.	Maximum void does note exceed 6 mm (1/4 in.)?
.,	
	catter Method:
1.	Device placed on prepared test site?
 3. 	Count taken for normal measurement period?
5.	manufacturer (rare)?
4.	Ratio of the reading compared to the standard count or the air gap count?
Direc	t Transmission Method:
1.	Guide / scraper plate placed on test site?
2.	Steel rod driven to a depth of at least 25 mm (1 in.) deeper than the desired measurement depth?
3.	Guide plate removed and device placed on prepared test site?
4.	Source rod lowered to proper position?
5.	Instrument moved so that the rod is firmly against the side of the hole in the gamma measurement path?
6.	Ratio of the reading compared to the standard count?
<u>Calc</u> u	lations:
1.	In-place density (bulk or wet density) determined from the ratio and the calibration and adjustment data? Note: Some instruments may have built-in provisions to compute the ratio and density. Otherwise, calibration charts, tables, equations, or coefficients may be used.
2.	Adjustment bias may be calculated by comparing the results from instrument measurements to results D2726 (Bulk Specific Gravity of Bituminous Mixtures)?
3.	Compared to laboratory test to determine acceptability?
COM	MENTS (D2950): (D2950)

Rotavapor apparatus

(a)

(b)

(c)

(d)

1.

RECOVERY OF ASPHALT FROM SOLUTION USING THE ROTAVAPOR

(D5404)

Date: _____

APPARATUS

Note: A flask having a 2000 mL capacity is recommended.

Distillation flask, depth of approximately 40 mm (1.5 in) when fully immersed?

Variable speed motor, capable of rotating the distillation flask at least 50 rpm?

Condenser, solvent recovery flask, and heated oil bath?

Angle of distillation flask from horizontal to bath is approx. 15 degrees?

2.		Thermometric device, built-in temperature measuring device capable of displaying oil temperatures to the nearest 1°C (2°F)?	
3.	or	Centrifuge apparatus (either of the following): (a) Batch unit capable of 770g?	
4.		Manometer or vacuum gage, suitable for measuring the specified vacuum?	
5.		Gas flow meter, capable of indicating a gas flow of up to 1000 mL/min.?	
6.		Sample container, having an adequate volume to hold the sample and added solvent?	
7.		<u>Vacuum system,</u> capable of maintaining a vacuum to within ± 0.7 kPa (± 5 mm Hg) of the desired level up to and including 80 kPa (600 mm Hg)?	
8.		Nitrogen gas or carbon dioxide gas?	
9.		Oven, can maintain a temperature of 165 ± 5°C (329 ± 10°F)?	
10.		Bath liquid: (a) USP White Oil?	
	or	(b) Silicone Fluid SWS-101, with flash point above 215°C (420°F)?	
11.		Solvent (a) Reagent grade trichloroethylene or methylene chloride? Note: Trichloroethylene, Technical Grade, Type I may be used, but it is recommended that for each new supply of the solvent, a blank should be run.	
	or	(b) Normal Propyl Bromide (nPB)?	
12.		Solvents listed used only under a hood or with an effective exhaust system in a well ventilated area?	
CO	MM	ENTS (D5404): (D5404)	

(D5404)

RECOVERY OF ASPHALT FROM SOLUTION USING THE ROTAVAPOR

		<u>PROCEDURE</u>	Date:
a 1	.		
	Preparati		
1.		obtained by D2172, extraction method A?	
2.		from D2172 centrifuged by one of the following methods?	
	(a)	At least 30 min at 770 times gravity in either wide-mouth bottles or o	
	(1.)	tubes in batch apparatus?	
	(b)	At least 3000x gravity in a continuous centrifuge charged at a rate no	ot to exceed 150 mL/min?
Proced	<u>ure</u>		
1.	Oil bath	heated to 140 ± 3 °C $(285 \pm 5$ °F)?	······
2.	Cold wa	tter circulated through condenser?	······
3.	Vacuun	of 40 ± 5 mm Hg below atmospheric pressure applied?	
4.		. 600 mL of AC solution drawn from sample container into flask throu	
5.		. 500 mL/min [AMRL: \pm 50 mL/min] (check records) flow of nitroge	
6.		ion flask rotated at approx. 40 rpm?	
7.		wered into the oil bath?	
8.		controlled stream of condensed solvent maintained?	
9.		w discontinued when the amount of solution in the flask is low and mo	
10.		ing asphalt solution drawn into flask and gas flow readjusted?	
		Assessors: The equipment may be modified to allow a continuous flow of solu	
	the volur	ne in the flask should be maintained at approx. 600 mL [AMRL: ±50 mL/min]	. The gas flow should not be
		ntil all the solution has entered the flask.	
11.		nmersed to depth of 40 mm (1.5 in.) when most of the solvent has been	
		ation is occurring on the condenser?	
12.		n of 600 mm below atmospheric pressure applied slowly?	
13.	Gas flov	w increased to approx. 600 mL/min [AMRL: ± 5 rpm]?	·····
14.		e of flask increased to approx. 45 rpm (see Note 7)?	
		Assessors: A 1 or 2 min delay before applying the vacuum is recommended.	
		g occurs. Apply maximum vacuum when foaming stops.	
15.		ndition maintained for 10 ± 1 min?	
		Assessors: Due to the cooling effect of the increased nitrogen or carbon dioxi	
		ture of the oil bath is generally needed to maintain a constant sample tempera	
16		il bath temperature range of 150 to 155 $^{\circ}$ C (300 to 310 $^{\circ}$ F) is satisfactory for the flesh removed and wined closer of i 12	
16. 17.		ion flask removed and wiped clean of oil? poured (or drained) into proper size container?	
		* · · · · · · · · · · · · · · · · · · ·	
18.		d, flask inverted and placed in an oven at 165 ± 5 °C (329 ± 10 °F) for	
	aspnalt	to flow into the container?	······

COMMENTS (D5404): (D5404)

INDIRECT TENSILE (IDT) STRENGTH OF BITUMINOUS MIXTURES

пин -	13
(D693	31)

			<u>APPARATUS</u>	Date:
1	Loodi	na Davias		
1.	(a)	ng Device Maker:	Serial No. (or I.D. No	0.)?
	(b)		vement of 50 ± 5 mm/min $(2.00 \pm 0.15$ in./m	
	(c)	Calibrated load measu	`	
	. ,		minal 20 kN (5000 lb), sensitivity: minimum	50 N (10 lb)?
		(2) If ring: micro	ometer dial indicator graduated in increments	of 0.0025 mm
		*	or finer?	······
2.		ng Strips		
	(a)		a radius of curvature equal to the nominal ra-	dius of the test specimen?
	(b)	Widths:		\0
			r specimens, $12.70 \pm 0.3 \text{ mm} (0.50 \pm 0.01 \text{ in})$ r specimens, $19.05 \pm 0.3 \text{ mm} (0.75 \pm 0.01 \text{ in})$	
	(c)		e thickness of the specimens?	
	(d)	The outer edges of the	e loading strips beveled slightly to remove sh	arn edges?
	(e)		ean and slides freely on the posts?	
	(f)		endicular to base?	
	(g)		preciable binding or loose motion?	
	(8)			
3.	<u>Temp</u>	erature Control System		
	(a)	An air or water bath c	apable of maintaining the specimens at the sp	pecified test
		temperature within ±1	.0°C (±1.8°F)?	
4.		<u>nometer</u>		
	(a)	Liquid-in-glass therm	ometer of suitable range or any other thermos	static device of
	(b)	equal accuracy, precis	ion, and sensitivity, and calibrated? SN:	
	(b)		to 0.1°C (0.2°F)?	
5.	Δ tane	e ruler or set of caliners	for measuring specimens?	
<i>J</i> .	Atapo	c, ruler, or set of earipers	for measuring specimens?	
6.			to one of the following methods?	
			Strength of Bituminous Mixtures)?	
		A D1561 (California Kne		
			y Testing Machine [GTE])?	
	ASTN	A D3496 (Dynamic Mod	ulus Testing Preparation)?	
	ASTN	A D4013 (Gyratory Shear	Compactor)?	
	ASTN	Л D6925 / AASHTO Т31	2 (Superpave Gyratory Compactor)?	
	ASTN	И D6926 / AASHTO T24	5 (Marshall Method)?	<u></u>
7	C			
7.	Speci			
	(a)	Specimen size	r spacimens minimum height of 50.9 mm (2 in \2
			r specimens - minimum height of 50.8 mm (2.9 r specimens - minimum height of 75 mm (2.9	
	(b)		orepared for each mixture?	
	(0)		re suitable for mixtures with a nominal maximum	
			suitable for mixtures with a nominal maximum pe	

COMMENTS (D6931): (D6931)

(D6931)

INDIRECT TENSILE (IDT) STRENGTH OF BITUMINOUS MIXTURES

			<u>PROCEDURE</u>	Date:				
Procedu	ıre							
1.		etermination:						
	(a)	Height determined accordin	g to ASTM D3549?					
	(b)	Four measurements taken at	approximate quarter points us	sing a tape, rule, or calipers?				
	(c)	If using measurement jig, ro	esults consistently within ±0.0	5 in. (±0.13 cm) of those				
				area?				
		Note to Assessors: Used only	with dense paving mixtures (less	than 10% air voids), not open-graded.				
2.		determination:						
				······				
				······				
	(c)	Measurements taken at mid-	-height?					
3.	Condition	ning:						
			emperature $\pm 1^{\circ}$ C ($\pm 1.8^{\circ}$ F) by o	one of the following methods				
		(recommended temperature		č				
		(1) Procedure A: Place	ed in air bath for a minimum of	f four hours?				
	or	(2) Procedure B: Place	d in heavy duty leak-proof pla	stic bag and paced in water bath for				
	or	(3) Procedure C: Place	e the specimens in a water bath	n for 30 to 120 minutes?				
ĺ	Load Det	termination:						
٠.			th or oven and placed in lower	segment of loading strip?				
				segment of loading surp:				
	(c)	Breaking strips are parallel:	and centered?					
		(c) Breaking strips are parallel and centered?						
		Note: recommended rate is 50 ± 5 mm/min [2.00 ± 0.15 in./min].						
				men from bath or oven?				
	(f)	Maximum load recorded?						
,								
5.	Calculati (a)		Collower					
	(a)	IDT Strength calculated as f	onows.					
			$S_t =$	IDT strength, kPa (psi)				
		2000 * P	P =	maximum load, N (lbf)				
n kPa	S_t		t =	specimen height immed. before test mm (in.)				
		Pi * t * D	D=	specimen diameter, mm (in.)				
			$\mathbf{S_t} =$	IDT strength, kPa (psi)				
		2 * P	$\mathbf{P} =$	maximum load, N (lbf)				
n psi	S_t	=	t =	specimen height immed. before test mm (in.)				
-		Pi * t * D	D=	specimen diameter, mm (in.)				

COMMENTS (D6931): (D6931)

RESISTANCE TO DEFORMATION OF BITUMINOUS MIXTURES BY MEANS OF HVEEM APPARATUS

(CP-L 5106)

		APP	<u>ARATUS</u>	Date:
2.	Stabilon (a) (b)	neter: Stabilometer in working condition? Pressure gauges have increments to at least	1 psi?	
3.	Compre (a) (b)	ssion testing machine: Minimum capacity 44.5 kN (10,000 lbf)? Capable of applying a load at a rate of 0.05	in./min. (1.3 mm/min.)?	
4.	Oven: ca	apable of maintaining a temperature of $60 \pm$	3°C (140 ± 5°F)?	······
5.	Calibrat (a) (b)	bion Cylinder: hollow metal cylinder?	005 in.)?l in a mold of an internal diameter of 10	00 mm (3.937 in.)
6.	Followe (a)	r: solid wall metal cylinder?	10 in.)? I in a mold of an internal diameter of 10	00 mm (3.937 in.)

COMMENTS (CP-L 5106):

(CP-L 5106)

(CP-L 5106)

RESISTANCE TO DEFORMATION OF BITUMINOUS MIXTURES BY MEANS OF HVEEM APPARATUS

	PROCEDURE Date:	
Test S	ecimens:	
1.	Produced from the Superpave gyratory compactor, diameter of 100 mm (3.937 in.)?	
2.	Compacted according to CP-L 5115 (Colorado Gyratory)?	
3.	Bulk specific gravity determined according to CP 44 (similar to T166/D2726)?	
4.	Height determined to the nearest 0.1 mm (0.004 in.) (may be measured by the machine if the machine's height	
	has been calibrated that day)?	
Adjust	nent of the Stabilometer:	
1.	Distance from the top of the base to the upper tapered ring is adjusted to 89 mm (3.5 in.)?	
2.	Stabilometer base, follower, and calibration cylinder heated in an oven at 60 ± 3 °C (140 ± 5 °F)	
	for at least 1 hour?	
3.	Stabilometer placed on the heated base?	
4.	Heated <u>follower</u> inserted into the stabilometer chamber?	
5.	Handle of the stabilometer turned until the pressure gauge reads 20 psi?	
6.	Stabilometer oil temperature allowed to stabilize?	
7.	Follower removed and the heated metal calibration cylinder inserted into the chamber?	
8.	Handle of the stabilometer turned until the pressure gauge reads 100 psi and oil allowed to stabilze again?	
9.	Turns indicator dial adjusted to zero and pressure gauge reduced to 5 psi?	
10.	Pump handle turned at a rate of approximately two turns per second until the pressure gauge reads 100 psi?	
	Note: If the laboratory is following the method described in the Annex, the reading is taken backwards, i.e. by starting	
	the pressure at 100 psi and reducing it to 5 psi in two turns.	
11.	Turns indicator reads 1.95 to 2.05?	
12.	If not, amount of air in the cell adjusted and the procedure repeated?	
13.	Horizontal pressure released and calibration cylinder removed?	
14.	Approximately once a month, is the stabilometer checked to ensure that the exposed length of the piston is	
	2.8 ± 0.2 inches when the calibration cylinder is inserted and the pressure set to 5 psi?	

COMMENTS (CP-L 5106):

Date of last check of the exposed piston length:

(CP-L 5106)

RESISTANCE TO DEFORMATION OF BITUMINOUS MIXTURES BY MEANS OF HVEEM APPARATUS

(CP-L 5106)

Date:

PROCEDURE (Continued)

Resist	ance to Deformation:
1.	Specimen warmed in an oven at 60 ± 3 °C (140 ± 5 °F) for at least 2 hours (minimum 3 hours for ovens that are not forced draft), and no more than 24 hours?
2.	Talcum powder (talc/baby powder) brushed on the curved side of the sample, or directly to the membrane?
3. 4.	Specimen placed into the stabilometer chamber, ensuring that it is straight and firmly seated level on the base? Follower placed on top of the specimen?
5.	Displacement pump turned until the pressure gauge reads a horizontal pressure of 34.5 kPa (5 psi)?
6.	Vertical movement of the compression machine started at a speed of 1.3 mm/min. (0.05 in./min.)?
7.	Testing machine does not have locking shims between the machine and the platen?
8.	Compression machine stopped when the load reaches 22.4 kN (5,000 lbf)?
9.	Horizontal pressure on the stabilometer gauge read and recorded?
10.	Vertical load immediately reduced to 4.45 kN (1,000 lbf)?
11.	Horizontal pressure adjusted to 34.5 kPa (5 psi)?
	Note: Any play in the turns indicator assembly should be removed by first decreasing the horizontal pressure below
	34.5 kPa (5 psi), and then raising the pressure up to 34.5 kPa (5 psi). This process will decrease the vertical load to below 4.45 kN (1,000 lbf); this is normal and no compensation should be made.
12.	Pump handle turned to increase the horizontal pressure from 34.5 to 689 kPa (5 to 100 psi)?
	Note: This process will increase the vertical load to above 4.45 kN (1,000 lbf); this is normal and no compensation should be made.
13.	Pump handle turned in a smooth, continuous motion at a rate of approximately two turns per second?
14.	Number of turns recorded as the displacement reading? (D)

Stabilometer value calculated correctly (see below)?

 P_h = horizontal pressure in kPa (or psi)

D = displacement on the specimen

P_v = vertical pressure in kPa (or psi)

Height corrections:

For specimen heights greater than 2.5 in.

 $C = (H - 2.5) * (0.107 + 0.786 * S - 0.009886 * S^{2})$

For specimen heights less than 2.5 in.

 $C = (H - 2.5) * (0.15 + 1.10 * S - 0.01384 * S^{2})$

Where:

15.

C = Correction factor added to stability value

S = Stabilometer value

H = Specimen height (inches)

COMMENTS (CP-L 5106):

(CP-L 5106)

PREPARING AND DETERMINING THE DENSITY OF BITUMINOUS MIXTURE TEST (CP-L 5115) SPECIMENS COMPACTED BY THE SUPERPAVE GYRATORY COMPACTOR

		<u>APPARATUS</u>	Date:
1.	Gyrat	tory Compactor:	
1.	(a)	Manufacturer: Model:	
	(b)	Ram and ram heads restrained from revolving during compact	ion?
	(c)	Axis of ram perpendicular to the platen of the compactor?	
	(d)	Ram pressure of 600 ± 18 kPa?	
	(e)	Applies:	
	` '	(1) External angle of 1.25 ± 0.02 degrees (21.8 ± 0.35 mm	rad) for 100 mm molds?
		(2) Internal angle of 1.16 ± 0.02 degrees (20.2 ± 0.35 mrs	
	(f)	Gyrates specimen molds at 30.0 ± 0.5 gyrations per minute?	······
	(g)	Allows both a 100 mm and 150 mm diameter mold to revolve	freely on its tilted axis?
	(h)	Records specimen height to 0.1 mm during compaction once p	
	(i)	Standardization: performed according to the Troxler manual?	
	(j)	Are the following items verified according to the Troxler manual	al: ram pressure, angle of gyration,
	-	frequency of gyration, and height of specimen (LVDT)?	
		Note to assessors: the CP-L method specifically requires the Troxler	manual to be followed.
2.	Ram	Heads and Mold Bottoms:	
2.	(a)	Heads have a means for staying fixed to the ram perpendicular	to its axis?
	(b)	Platen side of mold bottoms is flat and parallel to its face?	
	(c)	Ram and base plate faces ground flat?	
	(d)	For 150 mm molds: diameter of 149.70 to 149.75 mm?	
	(e)	For 100 mm molds: diameter of 99.60 to 99.77 mm?	
2	α .	M 11 6 100 150	11110
3.	Spec ₁	men Molds: for 100-mm or 150-mm specimens (recommended: at	t least 3 available)?
4.	Wide	-mouth funnel:	
4.	(a)	Approximately 230 mm (9 in.) diameter and 75 mm (3 in.) dee	· · · · ·
	(a) (b)	Mouth conforms to top inside edge of corresponding mold?	
	(0)	would comornis to top inside edge of corresponding mold?	
5.	Therr	mometers: armored, glass, or dial-type; range of at least 10 to 232°	C (50 to 450°F)?
6.	Balan	nce: class G5 or better?	
7.	Oven	: forced-draft, thermostatically controlled to ±3°C (±5°F)?	
<i>'</i> .	Oven	- loreed draft, thermostatically controlled to ±5 € (±5 T)?	
8.		ellaneous: flat bottom metal pans; scoop; containers for heating as disks (150 or 100 mm diameter); Teflon grease; light lubricating of	
COM	MENTS	(CP-L 5115):	(CP-L 5115)

PREPARING AND DETERMINING THE DENSITY OF BITUMINOUS MIXTURE TEST (CP-L 5115) SPECIMENS COMPACTED BY THE SUPERPAVE GYRATORY COMPACTOR

		<u>PROCEDURE</u>	Date:
Prena	aration of Apparatus:		
1.	Power for compactor turned on for manufactor	irer's required warm-un	period (at least 5 minutes)?
2.	Previous standardization values referred to?		
	Note: this is to ensure that the compactor's pressu		-
3.	For Troxler machines, is the height verification		
<i>3</i> . 4.	Automatic counter reset and set to shut off at		
- . 5.	Surface of the rotating base and the surface o		
٥.	Surface of the rotating base and the surface of	the cams lightly grease	u:
	t Samples:		
1.	Minimum of 3 specimens per field sample co	mpacted?	<u> </u>
2.	For 100 mm diameter specimens, mass of the	material split out equal	to
	the multiplier in Table 1 x the theoretical max	imum specific gravity (I	Rice)?
	Note: The multiplier is 470 for 50 gyrations, 474		
3.	For 150 mm diameter specimens, mass of the	material split out equal	to
	1670 x the theoretical maximum specific grav	vity (Rice)?	
4.	Specimens heated in an oven at the compaction	on temperature (specified	d in Table 2)?
5.	Specimens maintained at compaction tempera		
6.	Plant material maintained at a temperature hi		
	prior to compaction (may include time spent		
		1 1	,
Laboi	oratory-Mixed Samples:		
1.	Three or more specimens compacted, one fro	m each different asphalt	cement contents?
2.	Each size fraction of aggregate weighed cum		
3.	Amount of aggregate selected so as to produc		
			the theoretical max. sp. gravity (Rice)?
			imum specific gravity (Rice)?
	Note : Specimens may exceed the recommended may		
	before compaction.	iss as tong as men mass is	corrected to the specifical sample mass
4.	Pans and asphalt binder placed in an oven at	he required mixing temr	perature (Table 2 shown below)?
	Note: The amount of time that the asphalt binder i		
	minimal as possible.	1	
5.	Mixing bowl charged with the heated aggrega	ate and thoroughly mixed	1?
6.	Crater formed in the center of the mixed aggr		
7.	Required amount of heated asphalt binder we	ighed into the aggregate	mixture?
8.	Mixing initiated immediately?		
9.	Aggregate and asphalt binder mixed quickly		
	distribution of asphalt binder?		
	distribution of aspirate officer		
	Table 2 – Laboratory Mixing and Compaction	n Temperatures	
		atory Mixing Temp.	Laboratory Compaction Temp.

Superpave Binder Grade	Laboratory Mixing Temp.	Laboratory Compaction Temp.
PG 58-28	310°F (154°C)	280°F (138°C)
PG 58-34	310°F (154°C)	280°F (138°C)
PG 64-22	325°F (163°C)	300°F (149°C)
PG 64-28	325°F (163°C)	300°F (149°C)
PG 70-28	325°F (163°C)	300°F (149°C)
PG 76-28	325°F (163°C)	300°F (149°C)

COMMENTS (CP-L 5115):

(CP-L 5115)

5. 6.

COMMENTS (CP-L 5115):

PREPARING AND DETERMINING THE DENSITY OF BITUMINOUS MIXTURE TEST (CP-L 5115) SPECIMENS COMPACTED BY THE SUPERPAVE GYRATORY COMPACTOR

	PROCEDURE (Continued) Date:
Compa	ction Procedure:
1.	Loose mix placed in a shallow, flat pan and transferred to an oven at compaction temperature for 2 to 3 hours?
	Note : Mixing and compaction temperatures are listed in Table 2.
2.	Compaction mold and base placed in the oven at compaction temperature for at least
3.	60 minutes prior to compaction?
3. 4.	
4.	For specimens used for Lottman (TSR): final sample height entered (CP-L 5109)?
5.	Heated mold and base removed from the oven and placed on a non-metallic surface?
6.	Paper disk placed in the bottom of the mold and the funnel placed onto the top of the mold?
0.	
The f	ollowing steps should be performed quickly so as to minimize the amount of time the mold is out of the oven.
7.	(Start Timer) Mixture stirred slightly to reduce segregation and then placed into the mold in one lift?
8.	Second paper disk placed on top of the mixture?
9.	Mold with the mixture loaded into the compactor?
10.	Start button pressed and ram lowered until the pressure on the specimen reaches 600 kPa ± 18 kPa?
11.	(Stop Timer) Time between removal from the oven and pressing the start button less than 60 seconds?
12.	For 100 mm molds, external angle of 1.25 ± 0.02 degrees (21.8 ± 0.35 mrad) applied?
	For 150 mm molds, internal angle of 1.16 ± 0.02 degrees (20.2 ± 0.35 mrad) applied?
13.	Compaction shuts off when the desired number of gyrations or target height is reached?
14.	Mold removed and specimen extruded (Note: may require cooling time of 5-10 minutes for some mixes)?
15.	Paper disks removed from the top and bottom of the specimen?
16.	Specimen diameters 63.5 ± 5 mm for 100 mm specimens and 100 ± 5 mm for 150 mm specimens?
Dancits	Procedure:
1.	Maximum Specific Gravity (G _{mm}) of the loose mix determined in accordance with CP 51 (T209/D2041)?
2.	Specimen height recorded to the nearest 0.1 mm (from the compactor's output)?
3.	Are specimens discarded whose height does not conform to:
٥.	(a) 63.5 ± 5.0 mm for 100 mm diameter specimens (Section 8.2)?
	(a) 03.5 ± 3.0 mm for 100 mm diameter specimens (Section 8.2)?
4.	Mass of the extruded specimen recorded to the nearest 0.1 g?
5.	Bulk Specific Gravity (G _{sb}) determined in accordance with CP 44 (T166/D2726)?

Density calculations performed according to the test method?.....

(CP-L 5115)

(TEX-206-F)

COMPACTING TEST SPECIMENS USING THE TEXAS GYRATORY COMPACTOR (TGC)

APPAR ATUS	Date:	

	Motorized gyratory-shear molding	oress, calibrated in accordance with	h TEX-914-K (see below):				
	Motorized gyratory-shear molding press, calibrated in accordance with TEX-914-K (see below): (a) Certification label, on front of gyratory press shows the serial number, date of calibration, and						
		ed the calibration?					
		ed load cell so that each hydraulic loa					
		1% of the standard pressure, whiche					
	· • ·						
		ne "leak-off" test (high pressure read					
		auge $\geq 1210 \text{ kPa} (175 \text{ psi})) \text{ OR hydr}$		rıa.			
		movement is $0.58 \pm 0.03 \text{ mm}$ (0.023)	± 0.001 in.) OR stroke				
		is centered within this range.					
	Molding assembly: gyratory-shear i	mold, base plate, and wide-mouthed	funnel?				
		ty 10 kg?					
	Oven, capable of attaining a temper	ature of at least $325 \pm 5^{\circ}$ F ($163 \pm 3^{\circ}$ C)	C)?				
	Thermometer:	`	,				
		rked in 5°F (3°C) divisions or less?					
or		le of measuring the specified temper					
OI							
	Elevible anotyle 1-1-1-4 in (100 m	required)?					
		m) long and 0.75 in. (20 mm) wide?					
	Micrometer dial assembly or calipe	rs, capable of measuring a height of a	at least 2 ± 0.06 in. $(50.8 \pm 1.5 \text{ mm})$	ı)?			
		MIXING					
ne of	the following preparations of mixto	ıre (laboratory-produced, plant-pı	roduced, or hot-mix cold-laid / Ll	RA):			
<u>aborat</u>	(a) Aggregates added to tared in mix to smallest, as indic	nous mixture prepared in accordant pan from the material stockpiles in cated by mix design (including miner	nce with TEX-205-F (as follows): order from largest sieve size al filler or hydrated lime if used)?				
	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indic (b) Dry aggregates blended the (c) Mixing temperature based	pan from the material stockpiles in cated by mix design (including miner proughly?	order from largest sieve size al filler or hydrated lime if used)?	······			
	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indic (b) Dry aggregates blended the Mixing temperature based Note: If using RAP or RAS, v	pan from the material stockpiles in cated by mix design (including miner broughly? on TEX-205-F Table 1 (below) or by use the originally specified binder grade	order from largest sieve size al filler or hydrated lime if used)?	······			
<u>iborat</u>	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indiced to both the description of the de	pan from the material stockpiles in cated by mix design (including miner proughly?	order from largest sieve size al filler or hydrated lime if used)?	······			
iborat	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indiced to both the description of the de	pan from the material stockpiles in cated by mix design (including miner broughly? on TEX-205-F Table 1 (below) or by use the originally specified binder grades by Grade and Type Asphalt Material Temp. °F (°C)	order from largest sieve size al filler or hydrated lime if used)? y WMA asphalt binder plans? when selecting the mixing temp. Mixing Temp. °F (°C)	······			
<u>borat</u>	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, using TEX-205-F Table 1 – Mixing Temperature Type-Grade PG 70-28, PG 76-22,	pan from the material stockpiles in cated by mix design (including miner broughly? on TEX-205-F Table 1 (below) or by use the originally specified binder grade is by Grade and Type Asphalt Material Temp. °F (°C) 325 (163)	order from largest sieve size al filler or hydrated lime if used)?	······			
<u>borat</u>	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, using TEX-205-F Table 1 – Mixing Temperature Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22	pan from the material stockpiles in cated by mix design (including miner broughly? on TEX-205-F Table 1 (below) or by use the originally specified binder grade is by Grade and Type Asphalt Material Temp. °F (°C) 325 (163) 300 (149)	when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149)	······			
<u>borat</u>	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, using TEX-205-F Table 1 – Mixing Temperature Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-22, PG 64-16	pan from the material stockpiles in cated by mix design (including miner broughly? on TEX-205-F Table 1 (below) or by use the originally specified binder grade is by Grade and Type Asphalt Material Temp. °F (°C) 325 (163) 300 (149) 290 (143)	when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143)	······			
iborat	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, using TEX-205-F Table 1 – Mixing Temperature Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-22, PG 64-16 AC-3, 5, 10; PG 58-28, PG 58-22	pan from the material stockpiles in cated by mix design (including miner broughly? on TEX-205-F Table 1 (below) or by use the originally specified binder grade is by Grade and Type Asphalt Material Temp. °F (°C) 325 (163) 300 (149)	when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135)	······			
orat	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, using TEX-205-F Table 1 – Mixing Temperature Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-22, PG 64-16	nous mixture prepared in accordant pan from the material stockpiles in contacted by mix design (including miner proughly? on TEX-205-F Table 1 (below) or by use the originally specified binder grade is by Grade and Type Asphalt Material Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135)	when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143)	······			
<u>borat</u>	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, using TEX-205-F Table 1 – Mixing Temperature Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-22, PG 64-16 AC-3, 5, 10; PG 58-28, PG 58-22 RC-250, MC-250	nous mixture prepared in accordant pan from the material stockpiles in contacted by mix design (including miner broughly? on TEX-205-F Table 1 (below) or by use the originally specified binder grade is by Grade and Type Asphalt Material Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 100 (38)	when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 165 (74) 190 (88)	······			
ldorat	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, using TEX-205-F Table 1 – Mixing Temperature Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-22, PG 64-16 AC-3, 5, 10; PG 58-28, PG 58-22 RC-250, MC-250 MC-800	nous mixture prepared in accordant pan from the material stockpiles in contacted by mix design (including miner broughly? on TEX-205-F Table 1 (below) or by use the originally specified binder grade is by Grade and Type Asphalt Material Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 100 (38) 140 (60)	when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 165 (74)	······			
ldorat	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, at TEX-205-F Table 1 – Mixing Temperature Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-29, PG 64-16 AC-3, 5, 10; PG 58-28, PG 58-22 RC-250, MC-250 MC-800 CMS-2, AES-300	pan from the material stockpiles in cated by mix design (including miner broughly?	mce with TEX-205-F (as follows): order from largest sieve size al filler or hydrated lime if used)? y WMA asphalt binder plans? when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 165 (74) 190 (88) 235 (113)	······			
Dorat	(a) Aggregates added to tared in mix to smallest, as indice in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, using temperature Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-22, PG 64-16 AC-3, 5, 10; PG 58-28, PG 58-22 RC-250, MC-250 MC-800 CMS-2, AES-300 Asphalt Rubber (A-R) Binder	pan from the material stockpiles in content by mix design (including miner broughly?	mce with TEX-205-F (as follows): order from largest sieve size al filler or hydrated lime if used)? y WMA asphalt binder plans? when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 165 (74) 190 (88) 235 (113) 325 (163)	······			
DOTAL	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, to TEX-205-F Table 1 – Mixing Temperatures Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-22, PG 64-16 AC-3, 5, 10; PG 58-28, PG 58-22 RC-250, MC-250 MC-800 CMS-2, AES-300 Asphalt Rubber (A-R) Binder (d) Aggregate heated in over the company of the company o	pan from the material stockpiles in content by mix design (including miner broughly?	mce with TEX-205-F (as follows): order from largest sieve size al filler or hydrated lime if used)? y WMA asphalt binder plans? when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 165 (74) 190 (88) 235 (113) 325 (163) ng temperature?				
ldorat	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, at TEX-205-F Table 1 – Mixing Temperature Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-22, PG 64-16 AC-3, 5, 10; PG 58-28, PG 58-22 RC-250, MC-250 MC-800 CMS-2, AES-300 Asphalt Rubber (A-R) Binder (d) Aggregate heated in oven to the combined of t	pan from the material stockpiles in contact by mix design (including miner broughly? on TEX-205-F Table 1 (below) or by use the originally specified binder grade is by Grade and Type Asphalt Material Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 100 (38) 140 (60) 140 (60) 325 (163) maintained at or slightly above mixing oven to mixing temperature (without attention of the contact of the co	mace with TEX-205-F (as follows): order from largest sieve size al filler or hydrated lime if used)? y WMA asphalt binder plans? when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 165 (74) 190 (88) 235 (113) 325 (163) and temperature? but overheating asphalt)?				
ldorat	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, at TEX-205-F Table 1 – Mixing Temperature Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-22, PG 64-16 AC-3, 5, 10; PG 58-28, PG 58-22 RC-250, MC-250 MC-800 CMS-2, AES-300 Asphalt Rubber (A-R) Binder (d) Aggregate heated in oven a (e) Asphalt slowly heated in a (f) If applicable, place the req	pan from the material stockpiles in coated by mix design (including miner broughly?	make with TEX-205-F (as follows): order from largest sieve size al filler or hydrated lime if used)? y WMA asphalt binder plans? when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 165 (74) 190 (88) 235 (113) 325 (163) and temperature? put overheating asphalt)? arate pan and heat to	····· _			
DOTAL	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, using Tex-205-F Table 1 – Mixing Temperature Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-22, PG 64-16 AC-3, 5, 10; PG 58-28, PG 58-22 RC-250, MC-250 MC-800 CMS-2, AES-300 Asphalt Rubber (A-R) Binder (d) Aggregate heated in oven to the company of t	pan from the material stockpiles in cated by mix design (including miner broughly?	make with TEX-205-F (as follows): order from largest sieve size al filler or hydrated lime if used)? y WMA asphalt binder plans? when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 165 (74) 190 (88) 235 (113) 325 (163) age temperature? nut overheating asphalt)? arate pan and heat to c's recommendations)?	······			
DOTAL	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, to TEX-205-F Table 1 – Mixing Temperature Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-22, PG 64-16 AC-3, 5, 10; PG 58-28, PG 58-22 RC-250, MC-250 MC-800 CMS-2, AES-300 Asphalt Rubber (A-R) Binder (d) Aggregate heated in oven to get the company of the properties of the company	pan from the material stockpiles in cated by mix design (including miner broughly? on TEX-205-F Table 1 (below) or by use the originally specified binder grade is by Grade and Type Asphalt Material Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 100 (38) 140 (60) 140 (60) 325 (163) maintained at or slightly above mixing noven to mixing temperature (without our amount of RAP or RAS in separate by Carlot of RAP or RAS in separate cycled materials if applicable) placed	make with TEX-205-F (as follows): order from largest sieve size al filler or hydrated lime if used)? y WMA asphalt binder plans? when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 165 (74) 190 (88) 235 (113) 325 (163) and temperature? but overheating asphalt)? arate pan and heat to arate pan and heat to arate pan and heat to arate secommendations)?	······			
ldorat	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, using temperature Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-29, PG 64-16 AC-3, 5, 10; PG 58-28, PG 58-22 RC-250, MC-250 MC-800 CMS-2, AES-300 Asphalt Rubber (A-R) Binder (d) Aggregate heated in oven to the company of the company o	pan from the material stockpiles in cated by mix design (including miner broughly? on TEX-205-F Table 1 (below) or by use the originally specified binder grade is by Grade and Type Asphalt Material Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 100 (38) 140 (60) 140 (60) 325 (163) maintained at or slightly above mixing the moven to mixing temperature (without wired amount of RAP or RAS in separative without exposing the bottom of the	make with TEX-205-F (as follows): order from largest sieve size al filler or hydrated lime if used)? y WMA asphalt binder plans? when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 165 (74) 190 (88) 235 (113) 325 (163) and temperature? put overheating asphalt)? arrate pan and heat to c's recommendations)? I in mixing bowl and mixed? bowl?	······			
ldorat	(a) Aggregates added to tared in mix to smallest, as indice in mix to smallest, and in mix to smallest, as indice in mix to smallest, and in mix to smallest, as indice in mix to small mix to smallest, as indice in mix to smallest, as indice in mi	pan from the material stockpiles in cated by mix design (including miner broughly? on TEX-205-F Table 1 (below) or by use the originally specified binder grade is by Grade and Type Asphalt Material Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 100 (38) 140 (60) 140 (60) 325 (163) maintained at or slightly above mixing noven to mixing temperature (without wired amount of RAP or RAS in separative without exposing the bottom of the nee and required amount of asphalt processes are and required amount of asphalt processes and required amount of asphalt processes are also as a specific processes and required amount of asphalt processes are also as a specific processes and required amount of asphalt processes are also as a specific processes and required amount of asphalt processes are also as a specific processes and required amount of asphalt processes are also as a specific processes are also as a	make with TEX-205-F (as follows): order from largest sieve size al filler or hydrated lime if used)? y WMA asphalt binder plans? when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 165 (74) 190 (88) 235 (113) 325 (163) and temperature? put overheating asphalt)? arrate pan and heat to or's recommendations)? It in mixing bowl and mixed? bowl?	······ –			
	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, at TEX-205-F Table 1 – Mixing Temperature: Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-29, PG 64-16 AC-3, 5, 10; PG 58-28, PG 58-22 RC-250, MC-250 MC-800 CMS-2, AES-300 Asphalt Rubber (A-R) Binder (d) Aggregate heated in oven to the company of the	pan from the material stockpiles in cated by mix design (including miner broughly?	make with TEX-205-F (as follows): order from largest sieve size al filler or hydrated lime if used)? y WMA asphalt binder plans? when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 165 (74) 190 (88) 235 (113) 325 (163) and temperature? put overheating asphalt)? arrate pan and heat to arrate pan and mixed? boul? bouled into crater? al mixer, fully coating aggregates?	······ —			
	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, at TEX-205-F Table 1 – Mixing Temperature Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-29, PG 64-16 AC-3, 5, 10; PG 58-28, PG 58-22 RC-250, MC-250 MC-800 CMS-2, AES-300 Asphalt Rubber (A-R) Binder (d) Aggregate heated in oven to the company of the	pan from the material stockpiles in content by mix design (including miner broughly?	make with TEX-205-F (as follows): order from largest sieve size al filler or hydrated lime if used)? y WMA asphalt binder plans? when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 165 (74) 190 (88) 235 (113) 325 (163) and temperature? put overheating asphalt)? arate pan and heat to arate pan and heat to arate pan and heat to arate pan and mixed? bowl? boured into crater? an to cure?	······ —			
	Aggregates combined and bitumin (a) Aggregates added to tared in mix to smallest, as indice (b) Dry aggregates blended the (c) Mixing temperature based Note: If using RAP or RAS, at TEX-205-F Table 1 – Mixing Temperature Type-Grade PG 70-28, PG 76-22, PG 64-28, PG 70-22 PG 64-29, PG 64-16 AC-3, 5, 10; PG 58-28, PG 58-22 RC-250, MC-250 MC-800 CMS-2, AES-300 Asphalt Rubber (A-R) Binder (d) Aggregate heated in oven to the company of the	pan from the material stockpiles in cated by mix design (including miner broughly?	make with TEX-205-F (as follows): order from largest sieve size al filler or hydrated lime if used)? y WMA asphalt binder plans? when selecting the mixing temp. Mixing Temp. °F (°C) 325 (163) 300 (149) 290 (143) 275 (135) 165 (74) 190 (88) 235 (113) 325 (163) and temperature? put overheating asphalt)? arate pan and heat to arate pan and heat to arate pan and heat to arate pan and mixed? bowl? boured into crater? an to cure?	······ —			

COMMENTS (TEX-206-F):

(TEX-206-F)

COMPACTING TEST SPECIMENS USING THE TEXAS GYRATORY COMPACTOR (TGC)

HMA - 84	
(TEX-206-F)	

٨	1	IX	M	7	(C)	oni	tin	med)	
11	/1	$I \wedge I$	IIN	. 1		OHI	ш	шен	

Date: _____

TEX-206-F Table 1 Compaction Temperatures						
Binder	Temperature, °F (°C)					
PG 76-16, PG 76-22, PG 70-28	300 (149)					
PG 70-22, PG 64-28	275 (135)					
PG 64-16, PG 64-22, PG 58-22, PG 58-28	250 (121)					

300 (149) Asphalt-Rubber (A-R) Binder Asphalt for Hot-Mix Cold-Laid mixtures 100 (38)

			Asphalt for LRA mixtures 100 (38)				
DI		, ,	C. L. P. IDAAC INDAA				
<u>Pla</u> 1.	nt-pi		nixtures (including HMAC and WMA)				
1.		_	roduced mixture sampled according to TEX-222-F (as follows, choose one of the following):				
		(a)	From trucks or railroad cars, minimum of three sections selected, dug from 12 in. below the surface				
		(1-)	and at least 10 lbs of non-segregated material removed, material from the three sections combined?				
		(b)	From a discharge chute, the bucket of a front-end loader filled with material from the chute, samples from several locations in the bucket selected and re-combined?				
		(c)	From stockpiles, equal quantities of mixture taken near the top, middle, and bottom of stockpile?				
		(d)	<u>From windrows</u> , representative sample selected at least every 500 ft (152 m), and when possible a complete cross-section of material taken approximately 1 ft (100 mm) wide?				
		(e)	From roadway cores, sampled during cool part of the day, minimum of two samples selected at				
		(0)	each location (unless otherwise specified), transported between two pieces of plywood?				
		(f)	Loose material, sampled after approx 1/2 of the truck load as passed through the laydown machine?				
		(g)	Rapid-curing patching mix, either one 50 lb. pail selected at random or sampled from 55 gal drum?				
2.			ction temperature selected from TEX-206-F Table 1 (see above) or use target discharge				
۷.			ture if it is lower than the temperature in Table 1?				
3.			molding, mixture cured at temp. for 2 hr. OR for WMA indirect tensile testing cured for 4 hr.?				
٥.		1 Hor to	mording, mixture cured at temp. for 2 m. Or for what inducet tensile testing cured for 4 m.:				
Ho	t-mis	cold-laid	d and limestone rock asphalt (LRA) mixtures				
1.	t 11117		cold-laid mixtures, placed in oven and cured to constant weight at a min. temp. of 140°F (60°C) to				
1.			moisture and/or hydrocarbon volatiles (further drying doesn't change weight by 0.05% in 2 hrs)?				
2.							
3.		<u>LRA mixtures</u> , placed in oven and cured to constant weight at $190 \pm 10^{\circ}$ F ($88 \pm 5^{\circ}$ C), stirred frequently? Hot-mix cold-laid or LRA mixtures allowed to cool to $100 \pm 5^{\circ}$ F ($38 \pm 3^{\circ}$ C) prior to compaction?					
٥.		110t-IIIIX	Cold-faid of EKA fillixtures allowed to cool to 100 ± 3 1 (38 ± 3 C) prior to compaction?				
			<u>PROCEDURE</u>				
Sar	nple	preparati	<u>on</u>				
1.		Enough	material selected to yield a 2 ± 0.06 in. $(50.8 \pm 1.5 \text{ mm})$ high specimen when molded?				
2.		If mater	ial contains particles larger than the 19-mm (3/4-in.) sieve, these particles removed using the sieve?				
3.			nd base plate preheated in oven prior to compaction:				
		(a)	For HMAC & WMA mixtures, oven at selected compaction temperature for 15 ± 2 minutes?				
	or	(b)	For HMAC & WMA mixture, oven at 140°F (60°C) for a minimum of 4 hr.?				
	or	(c)	For hot-mix cold-laid mixtures, oven at curing temperature for 3-4 min.?				
	or	(d)	For LRA mixtures, oven at $100 \pm 5^{\circ}$ F ($38 \pm 3^{\circ}$ C) for 15 ± 2 minutes?				
	01	(u)	Tot Elect mixtures, even at 100 ± 5 1 (50 ± 5 C) for 15 ± 2 minutes.				
Pre	para	tion of the	e Texas Gyratory Compactor				
1.			reedom to turn checked, TGC plugged in, reset and start buttons pushed?				
2.			lowed to go through one set of gyrations, lightweight oil placed in center of motorized platen and				
			urface of the lower bearing?				
3.			mount of oil placed around the periphery of the mold on the top surface of the hardened steel ring?				
4.		Oiling process repeated every ten to fifteen specimens, or as necessary throughout testing?					
→.		Omng p	nocess repeated every ten to inteen specimens, or as necessary unoughout testing:				

COMMENTS (TEX-206-F):

(TEX-206-F)

COMPACTING TEST SPECIMENS USING THE TEXAS GYRATORY COMPACTOR (TGC)

HMA - 03	
(TEX-206-F)	

Date: _____

PROCEDURE (Continued)

1.		ocedure				
2.	Mold removed from oven, wiped inside with a damp rag moistened with kerosene or light lube oil?					
2. 3.						
3. 4.	Sample removed from oven?(Note to assessor: Start timer)					
4. 5.		spatula moved around inside of lift using a sawing motion, then mix pressed down lightly with spoon?				
5. 6.		repeated for two more lifts of material and paper gasket placed on top?				
0. 7.		slid into place on the platen and centered beneath the ram of the TGC?				
7. 8.		pumped into mold until the low pressure gauge first registers 50 psi (345 kPa) (pressure may fall				
0.		diately, pressure not continued after the gauge has registered 50 psi)?				
9.		ore than 3 minutes passes from time mix is removed from oven to initial 50 psi pressure?				
10.		le of the cam-lever immediately pulled to horizontal position (puts mold at proper angle of gyration,				
		ever shall be pulled all the way down and the pump handle shall be held all the way up)?				
11.		ion portion of molding performed by the following:				
	(a)	Reset button pushed, then start button pressed and held, gyrating the mold three times?				
	(b)	Immediately after mold stops gyrating, the following performed as two smooth, consecutive motions:				
	(-)	(1) Cam-level handle raised to vertical (to level the mold) using left hand?				
		One full stroke of the pump handle performed with right hand, one stroke in one second?				
	(c)	If one stroke of the pump handle causes the gauge to come to rest between 50 to 150 psi				
	` /	(345 to 1,034 kPa), pressure dropped below 50 psi (345 kPa) by shifting the level on the				
		control value to the unloading position and immediately returning it to the loading position?				
	(d)	Molding process repeated until one smooth stroke of the pump handle causes the low pressure gauge				
		to indicate a pressure 150 psi (1,034 kPa) or more (indicates gyration portion of molding complete)?.				
12.	At the	e endpoint of 150 psi (1,034 kPa), pump handle brought down slowly until the automatic gauge				
		ctor valve cuts the low pressure gauge out of the system?				
13.		gone stroke per second, right hand pumps pressure to 2,500 psi (17,238 kPa) on high pressure gauge?				
14.	At 2,500 psi, right hand pumping stopped, left hand used to release pressure by slowly reversing the level on					
		ontrol value to backward position?				
15.		pumped up and out of the mold, mold slid out of the TGC, supporting the base plate underneath?				
16.		plate dropped out onto worktable, mold inverted and specimen removed (using a press, etc.)?				
17.		at of the specimen measured (if made for Hyeem it shall be 2 ± 0.06 in. (50.8 \pm 1.5 mm) or discarded)? \star _				
18.	Mold	and TGC cleaned with rag moistened with kerosene or light lube oil before next specimen?				
	Lubricati	on (using high-quality S.A.E 30 weight hydraulic oil)				
1.		3 months, setscrew removed from center of the platen spindle top and oil reservoir filled?				
2.		dically, several drops of oil placed in the two oil holes of elevating roller?				
3.	Lubri	cation instructions that are attached to the end plate of the electric motor followed?				
COMI	MENTS	(TEX-206-F): (TEX-2				

(TEX-208-F)

APPARATUS

			<u>A</u>	<u>APPARATUS</u>	Date:
1.	Specia	men Prep	aration Apparatus, prepared using	g the Texas Gyratory ap	pparatus according to TEX-206-F?
2.	Comp	ression d	evice, Manufacturer:		SN:
	(a)	Minim	um capacity 10,000 lb (45,000 N	I), calibrated according	to latest revision of E4?
3.	Rate r	neasurem	ent device, Manuf:		SN: a) or 0.0100 in. (0.254 mm)?
	(a)	Dial ir	dicator, graduated in increments	of 0.001 in. (0.025 mm	a) or 0.0100 in. (0.254 mm)?
1.	Hveer	n stabilor	neter (for Resistance to Deforma	tion test) apparatus, wit	h rubber bulb for removing or adding
	air int	o stabilor	neter (during adjustment of stabil	lometer)?	
5.					e masking tape)?
5.	Oven,	maintain	ed at $140 \pm 5^{\circ}F (60 \pm 3^{\circ}C)$?		
7.	Stop v	watch?			<u></u>
3.					
€.	Load	transfer ra	<u>m</u> ?		
10.	Powde	ered talc?			
		_	<u>P</u>	ROCEDURE	
Adjust	ment of	Stabilom	eter		
1.				nen extends into the me	tal ring at top?
2.	Pump	handle to	rned counterclockwise to retract	the flexible rubber mer	mbrane?
3.					rmly against the specimen platform?
,. I.					(kPa) applied?
5.					ings?
5.					mgs:
7.					ometer dial reads 100 psi (689 kPa)?
3.					
).					n. (0.05 mm)?
10.					(2 mm) and 0.100 in. (2.54 mm) using
	(a)		t Stabilometer:		
		(1)	If the initial value is below 0.0		
					ve pressure?
		(2)			ning the needle valve?
		(3)			pump handle turned to set the
			pressure in the cell at 10 psi (6	68.9 kPa) to 20 psi (137	.9 kPa) and open the needle valve
			momentarily to remove the ex	cess air in the system?	
	(b)	Rainha	rt Stabilometer:		
		(1)			re released until able to turn the 4 in. diaphragm?
		(2)			tor revolution 2.54 mm (0.100 in.) to
		(2)			
		(3)	Finger used to press upward to	immediately release th	ne valve core stem to open the air-in
		(-)			
		(4)			
		(5)			nm), relief valve wrapped with a rag
		(3)			ve opens (approximately 200 psi
					n?
			(157) Ki a) on the gauge, then	an canoradon test letu	

COMMENTS (TEX-208-F):

(TEX-208-F)

COMMENTS (TEX-208-F):

TEST FOR STABILOMETER VALUE OF BITUMINOUS MIXTURES ★

(TEX-208-F)

PROCEDURE CONTINUED Date:

Test specimens mixed and compacted in accordance with (TEX-206-F) and height recorded?							
Test specimens are 102 mm (4 in.) in diameter and 51 ± 1.52 mm (2 ± 0.06 in.) high?							
5 inches							
edge?							
Glued side of paper tape moistened and placed around the circumference of the specimen so the slit portion							
efore testing?							
ious page)?							
imen platform?							
platform?							
34.5 kPa (5 psi)?							
eroed?							
·····							
psi (689.5 kPa)?							
meter uncorrected							
ntal pressure (kPa)							
l pressure (kPa)							
cement*10							
neter value							
H = Actual height (inches) Before storing the instrument, stabilometer disassembled, diaphragm cleaned with naptha, diaphragm							
heavily powdered with talc, initial displacement cylinder inserted, and gauge pressure of approximately							
he ap ro							

(TEX-208-F)