What is claimed is:

1. A fluorochemical composition comprising a major amount of organic solvent and 0.05% by weight to 5% by weight of fluorochemical oligomer dispersed or dissolved in said organic solvent and said fluorochemical oligomer being represented by the general formula:

$$X-M_n^fM_m^hM_r^a-G$$

wherein X represents the residue of an initiator or hydrogen;

M^f represents units derived from fluorinated monomers;

10 M^h represents units derived from a non-fluorinated monomers; M^a represents units having a silyl group represented by the formula:

wherein each of Y^4, Y^5 and Y^6 independently represents an alkyl group, an aryl group or a hydrolyzable group;

- G is a monovalent organic group comprising the residue of a chain transfer agent; n represents a value of 1 to 100; m represents a value of 0 to 100; r represents a value of 0 to 100; and n+m+r is at least 2;
- with the proviso that at least one of the following conditions is fulfilled: (a) G is a monovalent organic group that contains a silyl group of the formula:

wherein Y^1 , Y^2 and Y^3 each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y^1 , Y^2 and Y^3 representing a hydrolyzable group; or (b) r is at least 1 and at least one of Y^4 , Y^5 and Y^6 represents a hydrolyzable group.

- 5 2. Fluorochemical composition according to claim 1 wherein at least one of Y¹, Y² and Y³ and/or at least one of Y⁴, Y⁵ and Y⁶ is a hydrolyzable group selected from the group consisting of halogen, an alkoxy group, an acyloxy group, an acyloxy group and an aryloxy group.
- 3. Fluorochemical composition according to claim 1 wherein said monovalent organic group G corresponds to the general formula:

$$\begin{array}{c} Y^1 \\ \mid \\ \text{-S-Q}^1\text{-Si-Y}^2 \\ \mid \\ Y^3 \end{array}$$

wherein Y^1, Y^2, Y^3 have the meaning as defined in claim 1 or 2 and wherein Q^1 represents an organic divalent linking group.

- Fluorochemical composition according to claim 1 wherein M^f comprises a unit derived from a fluorinated monomer of the formula: C₄F₉-Q²-E¹
- wherein E¹ represents a free radical polymerizable group and Q² represents an organic divalent linking group.
 - 5. Fluorochemical composition according to claim 1 wherein M^a is a unit derived corresponding to the formula:

10

15

25

6. Fluorochemical composition according to claim 1 wherein G corresponds to the formula:

$$O Y^1$$
| | | | |
-S-Q^1-T^2-C-NH-Q^5-Si-Y^2
| Y^3

wherein Q^1 and Q^5 each independently represents an organic divalent linking group, T^2 represents O or NR with R being hydrogen, an aryl or a C_1 - C_4 alkyl group, and Y^1 , Y^2 and Y^3 have the meaning as defined in claim 1.

- 7. Fluorochemical composition according to claim 1 wherein the composition is a homogeneous composition further comprising water and an organic or inorganic acid.
- 8. Fluorochemical composition according to claim 1 wherein the units derived from non-fluorinated monomers are units derived from non-fluorinated monomers corresponding to the general formula:
- 20 R^h-Q⁶_s-E³
 wherein R^h represents a hydrocarbon group, Q⁶ is a divalent linking group, s is 0 or 1 and E³ is a free radical polymerizable group.
 - 9. Method of treating a substrate comprising applying to said substrate a composition according to claim 1.
 - 10. Method of treating a substrate comprising applying to said substrate a composition according to claim 1 and exposing a thus obtained coated substrate to water and an organic or inorganic acid.

- 5 12. Method according to claim 9 wherein said substrate is selected from the group consisting of plastics, ceramics and glass.
 - 13. Substrate comprising a coating derivable from the coating composition of any of claim 1 wherein the substrate is selected from the group consisting of plastics, ceramics and glass.
 - 14. Fluorochemical oligomer corresponding to the formula:

$$X-M_n^fM_m^hM_r^a-G$$

wherein X represents the residue of an initiator or hydrogen;

15 M^f represents units derived from fluorinated monomers having the formula:

$$C_4F_9-Q^2-E^1$$

wherein E^1 represents a free radical polymerizable group and Q^2 represents an organic divalent linking group;

M^h represents units derived from non-fluorinated monomers;

20 M^a represents units having a silyl group represented by the formula:

wherein each of Y^4 , Y^5 and Y^6 independently represents an alkyl group, an aryl group or a hydrolyzable group, with the proviso that at least one of Y^4 , Y^5 and Y^6 represents a hydrolyzable group;

G represents a monovalent organic group comprising the residue of a chain transfer agent; n represents an integer of 1 to 100;

m represents an integer of 0 to 100;

10

20

r represents an integer of 0 to 100;

and n+m+r is at least 2;

with the proviso that at least one of the following conditions is fulfilled: (a) G is a monovalent organic group that contains a silyl group of the formula:

wherein Y^1 , Y^2 and Y^3 each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y^1 , Y^2 and Y^3 representing a hydrolyzable group; or (b) r is at least 1 and at least one of Y^4 , Y^5 and Y^6 represents a hydrolyzable group.

15. Fluorochemical oligomer having the formula:

$$X-M_n^fM_m^hM_r^a-G$$

wherein X represents the residue of an initiator or hydrogen;

M^f represents units derived from fluorinated monomers;

M^h represents units derived from non-fluorinated monomers;

15 M^a represents units having the formula:

wherein R^1 , R^2 and R^3 each independently represents hydrogen, an alkyl group, an aryl group or halogen, Q^3 represents an organic divalent linking group, T represents O or NR with R being hydrogen, an aryl or a C_1 - C_4 alkyl group, and wherein each of Y^4 , Y^5 and Y^6 independently represents an alkyl group, an aryl group or a hydrolyzable group, with the proviso that at least one of Y^4 , Y^5 and Y^6 represents a hydrolyzable group;

G represents a monovalent organic group comprising the residue of a chain transfer agent;

n represents an integer of 1 to 100; m represents an integer of 0 to 100; r represents an integer of 1 to 100; and n+m+r is at least 2.

5

16. Fluorochemical oligomer according to claim 15 wherein G corresponds to the formula:

$$O Y^1$$
| | | | |
-S-Q^1-T^2-C-NH-Q^5-Si-Y^2
| Y^3

10

wherein Q^1 and Q^5 each independently represents an organic divalent linking group, T^2 represents O or NR with R being hydrogen, an aryl or a C_1 - C_4 alkyl group, and Y^1 , Y^2 and Y^3 each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y^1 , Y^2 and Y^3 representing a hydrolyzable group.

10

/ 17. Fluorochemical oligomer having the formula:

$$X-M_n^fM_m^hM_r^a-G$$

15

wherein X represents the residue of an initiator or hydrogen;

M^f represents units derived from fluorinated monomers;

M^h represents units derived from a non-fluorinated monomers;

M^a represents units having a silyl group represented by the formula:

20

wherein each of Y⁴, Y⁵ and Y⁶ independently represents an alkyl group, an aryl group or a hydrolyzable group, with the proviso that at least one of Y⁴, Y⁵ and Y⁶ represents a hydrolyzable group;

G corresponds to the formula:

10

wherein Q^1 and Q^5 each independently represents an organic divalent linking group, T^2 represents O or NR with R being hydrogen, an aryl or a C_1 - C_4 alkyl group, and Y^1 , Y^2 and Y^3 each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y^1 , Y^2 and Y^3 representing a hydrolyzable group; expresents an integer of 1 to 100.

n represents an integer of 1 to 100; m represents an integer of 0 to 100; r represents an integer of 0 to 100; and n+m+r is at least 2.