Diszkrét matematika II. 9. előadás

Fancsali Szabolcs Levente nudniq@inf.elte.hu

ELTE IK Komputeralgebra Tanszék

Mérai László diái alapján

Példa (ISBN (International Standard Book Number) kódolása)

Legyen d_1,d_2,\ldots,d_n decimális számjegyek egy sorozata ($n\leq 10$). Egészítsük ki a sorozatot egy n+1-edik számjeggyel, amelynek értéke

$$d_{n+1} = \sum_{j=1}^{n} j \cdot d_j \mod 11,$$

ha az nem 10, különben d_{n+1} legyen X.

Ha valamelyik számjegyet elírjuk, akkor az összefüggés nem teljesülhet: d_{n+1} elírása esetén ez nyilvánvaló, $j \leq n$ -re d_j helyett d_j' -t írva pedig az összeg $j(d_j'-d_j)$ -vel nőtt, ami nem lehet 11-gyel osztható (Miért?).

Azt is észrevesszük, ha j < n esetén d_j -t és d_{j+1} -et felcseréljük: az összeg $jd_{j+1} + (j+1)d_j - jd_j - (j+1)d_{j+1} = d_j - d_{j+1}$ -gyel nő, ami csak

akkor lehet 11-gyel osztható, ha $d_j = d_{j+1}$.

Megjegyzés

2007 óta 13 jegyű.

A személyi számnál is használják.

Példa (Paritásbites kód)

Egy n hosszú 0-1 sorozatot egészítsünk ki egy n+1-edik bittel, ami legyen 1, ha a sorozatban páratlan sok 1-es van, különben pedig legyen 0. Ha egy bit megváltozik, akkor észleljük a hibát.

Példa (Kétdimenziós paritásellenőrzés)

Oszlopok és sorok végén paritásbit. Ha megváltozik egy bit, akkor a sor és az oszlop végén jelez az ellenőrző bit, ez alapján tudjuk javítani a hibát. Ha két bit változik meg, akkor észleljük a hibát, de nem tudjuk javítani.

Definíció

Egy kód t-hibajelző, ha minden olyan esetben jelez, ha az elküldött és megkapott szó legfeljebb t helyen tér el.

Egy kód pontosan t-hibajelző, ha t-hibajelző, de van olyan t+1-hiba, amit nem jelez.

Példa

- ISBN 1-hibajelző
- paritásbites kód 1-hibajelző
- kétdimenziós paritásellenőrzés 2-hibajelző

Hiba javításának módjai

ARQ (Automatic Retransmission Request) - újraküldés,

FEC (Forward Error Correction) - javítható, pl.: kétdimenziós paritásell.

Definíció

Legyen A véges ábécé, továbbá $u,v\in A^n$. Ekkor u és v Hamming-távolsága alatt az azonos pozícióban lévő különböző betűk számát értjük:

$$d(u,v)=|\{i:1\leq i\leq n\wedge u_i\neq v_i\}|.$$

Példa

Állítás

A Hamming-távolság rendelkezik a távolság szokásos tulajdonságaival, vagyis tetszőleges u, v, w-re

- 1) $d(u, v) \geq 0$;
- 2) $d(u, v) = 0 \iff u = v$;
- 3) d(u, v) = d(v, u) (szimmetria);
- 4) $d(u, v) \le d(u, w) + d(w, v)$ (háromszög-egyenlőtlenség).

Bizonyítás

- 1), 2) és 3) nyilvánvaló.
- 4) Ha u és v eltér valamelyik pozicióban, akkor ott u és w, illetve w és v közül legalább az egyik pár különbözik.

Definíció

A K kód távolsága (d(K)) a különböző kódszópárok távolságainak a minimuma.

Példa (*)

$$\begin{array}{c} (0,0) \mapsto & (0,0,0,0,0) \\ (0,1) \mapsto & (0,1,1,1,0) \\ (1,0) \mapsto & (1,0,1,0,1) \\ (1,1) \mapsto & (1,1,0,1,1) \\ \end{array} \right] 3 \ \, \bigg] 3 \ \, \bigg] 4$$

A kód távolsága 3.

Felmerül a kérdés, hogy vajon mi lehetett a kódszó, ha a (0,1,0,0,0) szót kapjuk.

Definíció

Minimális távolságú dekódolás esetén egy adott szóhoz azt a kódszót rendeljük, amelyik hozzá a legközelebb van. Több ilyen szó esetén kiválasztunk ezek közül egyet, és az adott szóhoz mindig azt rendeljük.

Megjegyzés

A dekódolás két részre bontható: a hibajavításnál megpróbáljuk meghatározni, hogy mi volt az elküldött kódszó, majd visszaállítjuk az üzenetet. Mivel az utóbbi egyértelmű, ezért hibajavító kódok dekódolásán legtöbbször csak a hibajavítást értjük.

Definíció

Egy kód t-hibajavító, ha minden olyan esetben helyesen javít, amikor egy elküldött szó legfeljebb t helyen változik meg.

Egy kód pontosan t-hibajavító, ha t-hibajavító, de van olyan t+1hibával érkező szó, amit helytelenül javít, vagy nem javít.

Megjegyzés

Ha a kód távolsága d, akkor minimális távolságú dekódolással $t<\frac{d}{2}$ esetén t-hibajavító.

Példa

Az előző példában szereplő kód pontosan 1-hibajavító. $(0,0,0,0,0) \rightsquigarrow (1,0,0,0,1) \rightarrow (1,0,1,0,1)$

Példa (ismétléses kód)

 $a\mapsto (a,a,a)$ d=3 1-hibajavító, $a\mapsto (a,a,a,a,a)$ d=5 2-hibajavító.

Tétel (Singleton-korlát)

Ha $K \subset A^n$, |A| = q és d(K) = d, akkor $|K| \le q^{n-d+1}$.

Bizonyítás

Ha minden kódszóból elhagyunk d-1 betűt (ugyanazokból a pozíciókból), akkor az így kapott szavak még mindig különbözőek, és n-d+1 hosszúak. Az ilyen hosszú szavak száma szerepel az egyenlőtlenség jobb oldalán.

Definíció

Ha egy kódra a Singleton-korlát egyenlőséggel teljesül, akkor azt maximális távolságú szeparábilis kódnak (MDS-kód) nevezzük.

Példa

Az *n*-szeri ismétlés kódja. Ekkor d=n, és |K|=q.

Tétel (Hamming-korlát)

Ha $K \subset A^n$, |A| = q és K t-hibajavító, akkor

$$|\mathcal{K}|\sum_{j=0}^{\tau} \binom{n}{j} (q-1)^j \leq q^n.$$

Bizonyítás

Mivel a kód t-hibajavító, ezért bármely két kódszóra a tőlük legfeljebb t távolságra lévő szavak halmazai diszjunktak (Miért?). Egy kódszótól pontosan j távolságra lévő szavak száma $\binom{n}{j}(q-1)^j$ (Miért?), így egy kódszótól legfeljebb t távolságra lévő szavak száma $\sum_{j=0}^t \binom{n}{j}(q-1)^j$. A jobb oldalon az n hosszú szavak száma szerepel (Miért?).

Definíció

Ha egy kódra a Hamming-korlát egyenlőséggel teljesül, akkor azt perfekt kódnak nevezzük.

Példa (nem perfekt kódra)

A (*) kód esetén
$$|K| = 4$$
, $n = 5$, $q = 2$ és $t = 1$.
B.O. = $4{\binom{5}{0}}(2-1)^0 + {\binom{5}{1}}(2-1)^1 = 4(1+5) = 24$, $1 \cdot O = 2^5 = 32$.

Nem perfekt kód.

Tekintsünk egy kódot, aminek a távolsága d.

Ha egy elküldött kódszó legalább 1, de d-nél kevesebb helyen sérül, akkor az így kapott szó biztosan nem kódszó, mivel két kódszó legalább d helyen különbözik. Tehát legfeljebb d-1 hiba esetén a kód jelez.

A kódban van két olyan kódszó, amelyek távolsága d, és ha az egyiket küldik, és ez úgy változik meg, hogy éppen a másik érkezik meg, akkor d hiba történt, de nem vesszük észre. Tehát van olyan d hiba, amit a kód nem tud jelezni.

Ezáltal a kód pontosan d-1-hibajelző.

A kód távolságának és hibajavító képességének kapcsolata

Legyen a kód távolsága továbbra is d, és tegyük fel, hogy minimális távolságú dekódolást használunk.

 $t < \frac{d}{2}$ hiba esetén biztosan jól javítunk, hiszen a háromszög-egyenlőtlenség miatt az eredetileg elküldött kódszótól különböző bármely kódszó biztosan $\frac{d}{2}$ -nél több helyen tér el a vett szótól (Miért?).

Másrészt legyenek u és w olyan kódszavak, amelyek távolsága d, és legyen v az a szó, amit úgy kapunk u-ból, hogy azon d pozícióból, amelyekben eltérnek, $t \geq \frac{d}{2}$ helyre a w megfelelő pozíciójában lévő betűt írjuk.

Ekkor v az u-tól t helyen, míg w-től $d-t \le \frac{d}{2} \le t$ helyen különbözik. Ha a kód t-hibajavító lenne, akkor v-t egyrészt u-ra, másrészt w-re kellene javítania.

Ezáltal a kód pontosan $\left| \frac{d-1}{2} \right|$ -hibajavító.

Definíció

Legyen $\mathbb F$ véges test. Ekkor az $\mathbb F$ elemeiből képzett rendezett n-esek a komponensenkénti összeadással, valamint az n-es minden elemének ugyanazzal az $\mathbb F$ -beli elemmel való szorzásával egy $\mathbb F$ feletti n-dimenziós $\mathbb F^n$ lineáris teret alkotnak. Ennek a térnek egy tetszőleges altere egy lineáris kód.

Megjegyzés

Itt \mathbb{F} elemei a betűk, és \mathbb{F}^n elemei a szavak, az altér elemei a kódszavak.

Jelölés

Ha az altér k-dimenziós, a kód távolsága d, a test elemeinek a száma pedig q, akkor $[n,k,d]_q$ kódról beszélünk.

Ha nem lényeges d és q értéke, akkor elhagyjuk őket a jelölésből, és [n,k]-t írunk.

15.

Megjegyzés

Egy $[n, k, d]_q$ kód esetén a Singleton-korlát alakja egyszerűsödik:

$$q^k \le q^{n-d+1} \Longleftrightarrow k \le n-d+1.$$

Példa

1) A (*) kód egy [5,2,3]₂ kód:

$$(0,0)\mapsto (0,0,0,0,0)$$

$$(0,1) \mapsto (0,1,1,1,0)$$

$$(1,0)\mapsto (1,0,1,0,1)$$

$$(1,1)\mapsto (1,1,0,1,1)$$

Példa folyt.

- 2) \mathbb{F}_q felett az ismétléses kód: pl. a háromszori ismétlés kódja: $a\mapsto (a,a,a)$. Ez egy $[3,1,3]_q$ kód.
- 3) Paritásbites kód (ha páros sok egyesre egészítünk ki): $(b_1, b_2, \dots, b_k) \mapsto (b_1, b_2, \dots, b_k, \sum_{j=1}^k b_j)$. Ez egy $[n, n-1, 2]_2$ kód.

Definíció

Az \mathbb{F} ábécé feletti n hosszú $u \in \mathbb{F}^n$ szó súlya alatt a nem-nulla koordinátáinak a számát értjük, és w(u)-val jelöljük. Egy K kód súlya a nem-nulla kódszavak súlyainak a minimuma:

$$w(K) = \min_{u \neq 0} w(u).$$

Megjegyzés

Egy szó súlya megegyezik a 0-tól vett távolságával:

$$w(u) = d(u, (0, 0, ..., 0)).$$

Állítás

Ha K lineáris kód, akkor d(K) = w(K).

Bizonyítás

d(u,v) = w(u-v) (Miért?), és mivel K linearitása miatt $u,v \in K$ esetén $u - v \in K$, ezért a minimumok is megegyeznek (Miért?).

Lineáris kód esetén a kódolás elvégezhető mátrixszorzással.

Definíció

Legyen $G: \mathbb{F}_q^k \to \mathbb{F}_q^n$ egy teljes rangú lineáris leképzés, illetve $\mathbf{G} \in \mathbb{F}_q^{n \times k}$ a hozzá tartozó mátrix. $K = \operatorname{Im}(G)$ esetén \mathbf{G} -t a K kód generátormátrixának nevezzük.

$$\begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_k \end{pmatrix}$$

$$\begin{pmatrix} g_{11} & g_{12} & \cdots & g_{1k} \\ g_{21} & g_{22} & \cdots & g_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ g_{n1} & g_{n2} & \cdots & g_{nk} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

Példa

1) A (*) kód egy generátormátrixa:

$$\mathbf{G} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}\right)$$

2) A háromszori ismétlés kódjának egy generátormátrixa:

$$\mathbf{G} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Példa folyt.

3) A paritásbites kód egy generátormátrixa:

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

Definíció

Egy $[n, k, d]_q$ kódnak $\mathbf{H} \in \mathbb{F}_q^{(n-k) \times n}$ mátrix az ellenőrző mátrixa, ha $\mathbf{H}v = 0 \iff v \text{ kódszó}.$

Megjegyzés

A G mátrixhoz tartozó kódolásnak H pontosan akkor ellenőrző mátrixa, $ha \operatorname{Ker}(\mathbf{H}) = \operatorname{Im}(\mathbf{G})$

Példa

1) A (*) kód egy ellenőrző mátrixa:

$$\mathbf{H} = \left(\begin{array}{ccccc} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{array}\right)$$

Példa folyt.

2) A háromszori ismétlés kódjának egy ellenőrző mátrixa:

$$\mathbf{H} = \left(\begin{array}{rrr} -1 & 1 & 0 \\ -1 & 0 & 1 \end{array} \right)$$

3) A paritásbites kód egy ellenőrző mátrixa:

$$\mathbf{H} = \left(\begin{array}{cccc} 1 & 1 & \cdots & 1 \end{array} \right)$$

Definíció

Ha a kódszavak első k betűje megfelel az eredeti kódolandó szónak, akkor szisztematikus kódolásról beszélünk.

Ekkor az első k karakter az üzenetszegmens, az utolsó n-k pedig a paritásszegmens.

Példa

1) A háromszori ismétlés kódja:

$$\left(\underbrace{a}_{\text{üz.sz.}}, \underbrace{a, a}_{\text{par.sz.}}\right)$$

2) A paritásbites kód:

$$(\underbrace{b_1, b_2, \dots, b_{n-1}}_{\text{"uz.sz.}}, \underbrace{\sum_{j=1}^{n-1} b_j}_{\text{par.sz.}})$$

Megjegyzés

Szisztematikus kódolás esetén könnyen tudunk dekódolni: a paritásszegmens elhagyásával megkapjuk a kódolandó szót.

Megjegyzés

Egy szisztematikus kód generátormátrixa speciális alakú:

$$\mathbf{G} = \left(\begin{array}{c} \mathbf{I}_k \\ \mathbf{P} \end{array}\right),$$

ahol $\mathbf{I}_k \in \mathbb{F}_q^{k \times k}$ egységmátrix, továbbá $\mathbf{P} \in \mathbb{F}_q^{(n-k) \times k}$.

Mérai László diái alapián

Lineáris kódok

Állítás

Kódolás

Legyen $\mathbf{G} \in \mathbb{F}_a^{n \times k}$ egy szisztematikus kód generátormátrixa:

$$\mathbf{G} = \left(\begin{array}{c} \mathbf{I}_k \\ \mathbf{P} \end{array}\right). \text{ Ekkor } \mathbf{H} = \left(\begin{array}{cc} -\mathbf{P} & \mathbf{I}_{n-k} \end{array}\right) \text{ ellenőrző mátrixa a kódnak}.$$

Bizonyítás

$$\begin{split} \mathbf{H} \cdot \mathbf{G} &= \left(\begin{array}{c} -\mathbf{P} & \mathbf{I}_{n-k} \end{array} \right) \cdot \left(\begin{array}{c} \mathbf{I}_k \\ \mathbf{P} \end{array} \right) = -\mathbf{P} + \mathbf{P} = \mathbf{0} \in \mathbb{F}_q^{(n-k) \times k} \\ (\mathbf{H} \cdot \mathbf{G})_{ij} &= \sum_{l=1}^k (-\mathbf{P})_{il} \cdot (\mathbf{I}_k)_{lj} + \sum_{l=1}^{n-k} (\mathbf{I}_{n-k})_{il} \cdot (\mathbf{P})_{lj} = -p_{ij} + p_{ij} = 0. \\ \text{Tehát bármely } u \text{ kódolandó szóra } \mathbf{H}(\mathbf{G}u) = (\mathbf{H}\mathbf{G})u = \mathbf{0}u = \underline{\mathbf{0}}, \\ \text{vagyis } \mathrm{Im}(\mathbf{G}) \subset \mathrm{Ker}(\mathbf{H}), \text{ amiből } \dim(\mathrm{Im}(\mathbf{G})) \leq \dim(\mathrm{Ker}(\mathbf{H})). \\ \dim(\mathrm{Im}(\mathbf{G})) = k \text{ és } \dim(\mathrm{Ker}(\mathbf{H})) \leq k \text{ miatt viszont} \\ \dim(\mathrm{Im}(\mathbf{G})) \geq \dim(\mathrm{Ker}(\mathbf{H})) \text{ is teljesül, fgy } \mathrm{Im}(\mathbf{G}) = \mathrm{Ker}(\mathbf{H}). \end{split}$$

Példa

Ld. korábban.

A kód távolsága leolvasható az ellenőrző mátrixból.

Állítás

Legyen **H** egy [n, k] kód ellenőrző mátrixa. A **H**-nak pontosan akkor van ℓ darab lineárisan összefüggő oszlopa, ha van olyan kódszó, aminek a súlya legfeljebb ℓ.

Bizonvítás

Legyen $\mathbf{H} = (h_1 \quad h_2 \quad \cdots \quad h_n).$

Ekkor $\sum_{i=1}^{l} u_i \cdot h_{\ell_i} = \underline{0}$. Tekintsük azt a vektort, aminek az ℓ_i -edik koordinátája u_i , a többi pedig 0. Ez egyrészt kódszó lesz (Miért?), másrészt a súlya legfeljebb ℓ .

Legyen $u = (u_1, u_2, \dots, u_n)^T$ az a kódszó, aminek a súlya ℓ . Ekkor **H**-nak az u nem-nulla koordinátáinak megfelelő oszlopai lineárisan összefüggőek.

Következmény

A kód távolsága a legkisebb pozitív egész ℓ , amire létezik az ellenőrző mátrixnak ℓ darab lineárisan összefüggő oszlopa.

Példa

A (*) kód esetén:

$$\mathbf{H} = \left(\begin{array}{ccccc} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{array}\right)$$

Egyik oszlopvektor sem a nullvektor, így nincs 1 darab lineárisan összefüggő oszlop.

Egyik oszlopvektor sem többszöröse egy másiknak, így nincs 2 darab lineárisan összefüggő oszlop.

Az 1., 3. és 5. oszlopok lineárisan összefüggőek, így a kód távolsága 3.

A H ellenőrző mátrix segítségével dekódolni is lehet.

Definíció

Adott $\underline{v} \in \mathbb{F}_q^n$ esetén az $\underline{s} = \mathbf{H}\underline{v} \in \mathbb{F}_q^{n-k}$ vektort szindrómának nevezzük.

Megjegyzés

A \underline{v} pontosan akkor kódszó, ha $\underline{s} = \underline{0}$.

Definíció

Legyen \underline{c} a kódszó, \underline{v} a vett szó. Az $\underline{e} = \underline{v} - \underline{c}$ a hibavektor.

Állítás

Hv = He.

Bizonyítás

$$\mathbf{H}\underline{v} = \mathbf{H}(\underline{c} + \underline{e}) = \mathbf{H}\underline{c} + \mathbf{H}\underline{e} = \underline{0} + \mathbf{H}\underline{e} = \mathbf{H}\underline{e}$$

30.

Lineáris kódok

A dekódolás elve: v-ből kiszámítjuk a Hv szindrómát, ami alapján megbecsüljük az e hibavektort, majd meghatározzuk c-t a c = v - eképlet segítségével.

Definíció

Valamely <u>e</u> hibavektorhoz tartozó mellékosztály az $\{e + c : c \text{ kódszó}\}\$ halmaz.

Megjegyzés

Az e = 0-hoz tartozó mellékosztály a kód.

Állítás

Az azonos mellékosztályban lévő szavak pontosan az azonos szindrómájú szavak.

Bizonyítás

Meggondolni...

Definíció

Minden s szindróma esetén legyen e_s az a minimális súlyú szó, melynek s a szindrómája. Ez az s szindrómához tartozó mellékosztály-vezető, a mellékosztály elemei $e_s + c$ alakúak, ahol $c \in K$ kódszó.

Szindrómadekódolás

Adott v esetén tekintsük az s = Hv szindrómát, és az e_s mellékosztály-vezetőt. Dekódoljuk v-t $c = v - e_s$ -nek.

Állítás

Legyen c a kódszó, v = c + e a vett szó, ahol e a hiba, és w(e) < d/2, ahol d a kód távolsága. Ekkor a szindrómadekódolás a minimális távolságú dekódolásnak felel meg.

Bizonyítás

Egyrészt a korábbi állítás alapján $\underline{s} = \mathbf{H}\underline{v} = \mathbf{H}\underline{e}$, másrészt \underline{e}_s definíciója miatt $\underline{s} = \mathbf{H}\underline{e}_s$. Ezért \underline{e} és \underline{e}_s ugyanabban a mellékosztályban van, továbbá $w(\underline{e}_s) \leq w(\underline{e})$.

$$w(\underline{e} - \underline{e_s}) = d(\underline{e}, \underline{e_s}) \le d(\underline{e}, \underline{0}) + d(\underline{0}, \underline{e_s}) = w(\underline{e}) + w(\underline{e_s}) < d.$$

De $H(\underline{e} - e_s) = \underline{0}$ miatt $\underline{e} - e_s$ kódszó (Miért?), így $\underline{e} = e_s$.

Példa

Tekintsük a (*) kódot.

$$\underline{v} = (1, 1, 0, 1, 1)^T$$
 esetén $\underline{H}\underline{v} = \underline{0}$, így \underline{v} kódszó.

$$\underline{v} = (1, 1, 0, 0, 1)^T$$
 esetén $\mathbf{H}\underline{v} = (0, 1, 0)^T = \underline{s}$.

Mi az <u>s</u>-hez tartozó mellékosztály-vezető?

A $(0,0,0,1,0)^T$ súlya 1, és a szindrómája a keresett $(0,1,0)^T$, így ez lesz a mellékosztály-vezető.

$$\underline{c} = \underline{v} - \underline{e_s} = (1, 1, 0, 0, 1)^T - (0, 0, 0, 1, 0)^T = (1, 1, 0, 1, 1)^T$$

Emlékeztető (Hamming-korlát)

Ha $K \subset A^n$, |A| = q és K t-hibajavító, akkor

$$|\mathcal{K}|\sum_{j=0}^{\tau} \binom{n}{j} (q-1)^j \leq q^n.$$

Egyenlőség esetén perfekt kódról beszélünk.

Definíció

Az 1-hibajavító perfekt lineáris kódot Hamming-kódnak nevezzük.

Emlékeztető

A kód távolsága a legkisebb pozitív egész ℓ , amire létezik az ellenőrző mátrixnak ℓ darab lineárisan összefüggő oszlopa.

33.

Ha egy olyan bináris kódot készítünk, amelyre a ${\bf H}$ ellenőrző mátrix oszlopainak a különböző nemnulla, r hosszú vektorokat választjuk, akkor egy 1-hibajavító kódot kapunk (Miért?).

Ekkor a Hamming-korlát alakja:

$$2^k(1+n)\leq 2^n.$$

Egyenlőség esetén $n=2^{n-k}-1$, és pont ennyi n-k hosszú, nemnulla vektor van.

 $n = 2^r - 1$ esetén $k = n - \log(n + 1)$, így a megfelelő (n, k) párok:

Dekódolás Hamming-kód esetén:

Ha csak 1 hiba van, akkor a hibavektornak csak egy koordinátája 1, a többi 0, így a szindróma az ellenőrző mátrix valamely oszlopa lesz. Ennek az oszlopnak megfelelő koordinátája hibás az üzenetben.

Példa

$$n = 7, k = 4$$

$$\mathbf{H} = \left(\begin{array}{ccccccc} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{array}\right)$$

és

$$\mathbf{G} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}\right)$$

 $v=(1,1,0,0,1,1,1)^T$ esetén $\mathbf{H}v=(0,1,1)^T=s$, ami a \mathbf{H} 2. oszlopa, így a 2. koordináta romlott el, vagyis a küldött kódszó $c=(1,0,0,0,1,1,1)^T$.

Megjegyzés

A [7,4]-es Hamming-kódot egy paritásbittel kiegészítve kapjuk a teletextnél használt kódolást.

A [15,11]-es Hamming-kódot egy paritásbittel kiegészítve a műholdas műsorszórásnál (DBS) használják.

Definíció

A $K \subset \mathbb{F}_q^n$ kód ciklikus, ha minden $(u_1, u_2, \dots, u_{n-1}, u_n) \in K$ esetén $(u_2, u_3, \dots, u_n, u_1) \in K$.

Példa

 $K = \{000, 101, 110, 011, 111\}$ bináris kód ciklikus.

Megjegyzés

Ez nem lineáris kód: $101 + 111 = 010 \notin K$.