南京大学工程管理学院____级___专业

2018-2019 学年第一学期

《概率论》期末试卷 A(闭)

<u> </u>	名	分
以下每题 10 分, 共 100 分。		
' ' ' '	中任取 $2r(2r < n)$ 只,求下) 恰有两对鞋子,(3) 有 r 对	

得分 2. 将 A、B、C三个字母之一输入信道,输出为原字母的概率为 α ,而输出为 其他一字母的概率都是 $(1-\alpha)/2$ 。今将字母串AAAA,BBBB,CCCC之

一输入信道,输入它们的概率分别为 p_1 , p_2 p_3 ($p_1 + p_2 + p_3 = 1$, 已知输出为 ABCA 问输入的是 AAAA 的概率是多少? (设信道传输各个字母的工作是相互独立的)

得 分

3. 随机变量 X 服从泊松分布,分布律为 $P\{X=k\}=\frac{\lambda^k \mathrm{e}^{-\lambda}}{k!}$, $\lambda>0$,

 $k=0,1,2,\cdots$ 。问k为何值时 $P\{X=k\}$ 达到最大。

得 分

4. 设随机变量(X,Y)的概率密度为 $f(x,y) = \begin{cases} \frac{1}{2}(x+y)e^{-(x+y)}, & x > 0, y > 0\\ 0, & 其他 \end{cases}$

(1) X 和 Y 是否相互独立? (2) 求 Z = X + Y 的概率密度。

得分 5. 设随机变量 $X_{\rm p}$..., X_{m+n} (n>m) 相互独立,同分布且均值为零,方 差有限非零,记 $S=X_1+\cdots+X_n$, $T=X_{m+1}+\cdots+X_{m+n}$,求 S和 T 的相关系数 ρ_{ST} 。

得 分

6. 从一副 52 张牌(不含大小王)内抽取 3 张牌(无放回),记X 表示选中 A 的张数,求 E[X]黑桃A已选中].

得分 7. 设某箱子中有两种灯泡,第 i 种灯泡的寿命均值为 μ_i ,标准差为 σ_i ,i=1,2.现从箱中随机抽取一灯泡,抽到第一种的概率为 p,抽到第二种的概率为 1-p,记抽出的灯泡寿命为 X,求(1)E[X],(2)Var[X].

得分 8. 设 X_1, X_2, \cdots, X_n 相互独立,服从相同的分布 $N(0, \sigma^2)$,求 $X = \frac{1}{n} \sum_{k=1}^n X_k \text{ 的特征函数}.$

得分 9. 设随机变量 X 服从参数为 $\lambda>0$ 的指数分布,密度函数为 $f(x) = \lambda e^{-\lambda x}, x>0$,求(1)特征函数 $\varphi(t)$;(2)用特征函数求随机变量的期望和方差。