

INTRODUCTION TO LOGISTIC REGRESSION

Stefan Jansen DAT-NYC

INTRODUCTION TO LOGISTIC REGRESSION

LEARNING OBJECTIVES

- ▶ Build a Logistic regression classification model using the scikit learn library
- ▶ Describe a sigmoid function, odds, and the odds ratio as well as how they relate to logistic regression
- ▶ Evaluate a model using metrics such as classification accuracy/error, confusion matrix, ROC/AUC curves, and loss functions

REGULARIZATION: REVIEW

WHAT IS OVERFITTING?

- ▶ The first model poorly explains the data.
- The second model explains the general curve of the data.
- ▶ The third model drastically overfits the model, bending to every point.
- ▶ Regularization helps prevent the third model, which is overly complex.

WHAT IS REGULARIZATION? AND WHY DO WE USE IT?

- Regularization protects against over-fitting by adding a penalty to the sum of squared residuals that depends on the size of the parameters
- ▶ This 'penalty for complexity' shrinks coefficients closer to zero.
 - ▶ Lasso => some coefficients to zero
 - ▶ Ridge => proportionally closer to zero
- ▶ Scale matters standardize inputs!
- ▶ Use Lasso when # features > # observations, Ridge otherwise.

$$L1 = \alpha \sum_{p=1}^{P} |\beta_{p}|$$

$$L2 = \lambda \sum_{p=1}^{P} |\beta_{p}|^{2}$$

CLASSIFICATION: REVIEW

WHAT IS CLASSIFICATION?

Problem to assign one of 2 or more discrete values (categories) to observations using other information on these data points.

Linear regression fits a line or hyper plane to the data; classification identifies one or more **decision boundaries**.

WHAT IS K NEAREST NEIGHBORS?

- **K Nearest Neighbors (KNN)** is a classification algorithm that makes a prediction based upon the closest data points as follows:
 - For a given point, calculate the distance to all other points.
 - Given these distances, pick the *k* closest points.
 - Calculate the probability of each class label given these points.
- The original point is classified as the class label with the largest probability ("votes").

WHAT IS K NEAREST NEIGHBORS?

- ▶ KNN uses distance as a measure of similarity to predict a class label.
- Think of using shared traits to identify the most likely class label.
- \blacktriangleright Optimization concerns the choice of k, the size of the neighborhood.

WHAT HAPPENS IN HIGH DIMENSIONALITY?

- Since KNN works with distance, higher dimensionality of data (i.e. more features) requires *significantly* more samples for the same predictive power.
- ▶ With a single feature measured on a scale 0-100, you need 100 data points to be on average within one unit of a new data point. With two such features, you need 100 * 100, or 10,000 data points. And so on.
- Hence: keep the feature space limited and KNN will do well. Exclude extraneous features when using KNN.

KNN IN SCIKIT-LEARN

- ▶ scikit-learn provides KNeighborsClassifier and RadiusNeighborsClassifier (if data not uniformly sampled).
- The weights parameter impacts how votes are cast by the k neighbors.

INTRODUCTION TO CLASSIFICATION METRICS

- ▶ We'll use two primary metrics: accuracy and misclassification rate.
- **Accuracy** is the number of *correct* predictions out of all predictions in the sample. This is a value we want to *maximize*.
- ▶ **Misclassification rate** is the number of *incorrect* predictions out of all predictions in the sample. This is a value we want to *minimize*.
- ▶ These two metrics are directly opposite of each other.
- ▶ 1 misclassification rate = accuracy

INTRODUCTION TO LOGISTIC REGRESSION

INTRODUCTION TO LOGISTIC REGRESSION

ANSWER THE FOLLOWING QUESTIONS (5 min)

Read through the following questions and brainstorm answers for each:

- 1. What are the main differences between linear and KNN models? What is different about how they approach solving the problem?
 - a. For example, what is *interpretable* about OLS compared to what's *interpretable* in KNN?
- 1. What would be the advantage of using a linear model like OLS to solve a classification problem, compared to KNN?
 - a. What are some challenges for using OLS to solve a classification problem (say, if the values were either 1 or 0)?

DELIVERABLE

Answers to the above questions

FROM LINEAR TO LOGISTIC REGRESSION

LOGISTIC REGRESSION

- ▶ Logistic regression is a *linear* approach to solving a *classification* problem.
- ▶ That is, we can use a Linear Model, similar to linear regression, in order to decide if an item *belongs* or *does not belong* to a class label.
- Linear Model means that the prediction is a linear function of parameters that we need to estimate.
- It also implies that the decision boundaries that we use to separate classes are linear.

LINEAR REGRESSION RESULTS FOR CLASSIFICATION

- ▶ Regression results can range from -∞ to ∞.
- ▶ Classification is used when predicted values (i.e. class labels) assume a limited number of values, and cannot be ordered in a meaningful way.

LINEAR REGRESSION RESULTS FOR CLASSIFICATION

- ▶ But, since most classification problems are binary (o or 1) and 1 does not mean 'greater than o', does it make sense to apply the concept of regression to solve classification?
- ▶ How might we contain our predictions with [0, 1] bounds and align our modeling approach more closely with the outcome of categories as opposed to quantities?
- Let's review some elements of our approach to make classification 'compatible' with a linear input function.

ELEMENT 1: PREDICTING CLASS PROBABILITY

- One approach is predicting the probability that an observation belongs to a certain class.
- ▶ We could assume the *prior probability* (the *bias*) of a class is the class frequency.
- ▶ For example, suppose we know that roughly 700 of 2200 people from the Titanic survived. Without knowing anything about the passengers or crew, the probability of survival would be ~0.32 (32%).

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

- 1. Recall the ordinary least squares formula.
- 1. The prior probability is most similar to which value in the ordinary least squares formula?

DELIVERABLE

Answers to the above questions

ELEMENT 2: PROBABILITY AS A FUNCTION OF INPUTS

- ▶ However, we would still like to use a (linear) function to increase or decrease the probability of an observation given the data about it.
- So we need a function that produces values between 0 and 1 from arbitrary inputs to relate our linear predictors to the response variable.
- One such function is the logistic function that produces an S-shaped sigmoid curve.
- ▶ It varies between [0, 1] as x varies $\overset{0.2}{\overset{0.1}{\overset{$

PLOTTING A SIGMOID FUNCTION

ACTIVITY: PLOTTING A SIGMOID FUNCTION

INSTRUCTIONS (5 min):

- ▶ Write Python code to evaluate the sigmoid function definition with values of x between -6 and 6 and plot it on a graph.
- ▶ Do we get the "S" shape we expect?

DELIVERABLE

Answers to the above questions

MORE ON LOGISTIC REGRESSION

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

- 1. What was the distribution most aligned with Linear Regression?
- 2. Where did the 'random' element appear in our Linear Regression model?
- 3. Which distribution could we use to model a binary outcome?

DELIVERABLE

Answers to the above questions

BUILDING A MODEL FOR CLASS PROBABILITIES

We have two classes, labeled as 0 and 1. We are now modeling the class probabilities according to the Bernoulli distribution for binary variables:

$$P(y=1 \mid x) = h(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1)}}$$

$$P(y=0 | x) = 1 - h(x)$$

We can't use least squares to find the parameters. Instead, we use a more general method called 'Maximum Likelihood' that finds parameters that make the sample 'most likely' given our probability model.

BUILDING A LINEAR MODEL FOR CLASSIFICATION

- ▶ Problem: Classify observations into 2 (or more) categories given the information provided by various features
- Solution: Model the probability of observations belonging to either class by mapping a linear combination of the features to values [0, 1] that also sum to 1 for each observation. The logistic function does this for us:

LOGISTIC CURVE AS LINEAR FUNCTION OF FEATURES

 $z = f(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$

- ▶ Linear Regression: increase of x_1 by 1 unit changes y by β_1 .
- ▶ Logistic Regression: increase of x_1 by 1 unit changes input z to logistic function. How can we interpret the input?

Input:

$$Z = f(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Class Probability:

$$p = P(y=1 \mid x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)}} = \frac{1}{1 + e^{-z}}$$
Probability that y is in class 1

Linear function of x_1, x_2, \dots, x_p

Let's invert the logistic function to get a mathematical expression for z:

$$p = \frac{1}{1 + e^{-z}} \qquad \frac{()^{-1}}{p} = 1 + e^{-z} \qquad \frac{-1}{p} - 1 = e^{-z}$$

$$\left(\begin{array}{c} \right)^{-1}$$

$$\frac{1}{p} = 1 + e^{-z}$$

$$\frac{1}{p} - 1 = e^{-z}$$

$$\frac{1}{p} - 1 = e^{-z}$$

$$\frac{p}{p} = 1$$

$$\frac{1}{p}-1=e^{-z} \qquad \frac{\frac{p}{p}-1}{p} = e^{-z} \qquad \frac{\left(\right)^{-1}}{1-p} = e^{z}$$

$$\frac{p}{1-p} = e^z$$

$$\frac{p}{1-p} = e^{2}$$

$$\frac{p}{1-p} = e^z \qquad \qquad \ln(1-p) = \ln(e^z) \qquad = \ln\left(\frac{p}{1-p}\right)$$

$$Z = \ln\left(\frac{p}{1-p}\right)$$

The linear function models the log odds:

odds: y in class 1

$$z = f(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p = \ln\left(\frac{p}{1-p}\right)$$
Log odds

Converting probability to odds and back

$$p = 0.8$$
 $\Rightarrow odds = \frac{0.8}{1 - 0.8} = \frac{0.8}{0.2} = \frac{4}{1}$

odds =
$$\frac{4}{1}$$
 $p = \frac{4}{4+1} = \frac{4}{5} = 0.8$

Try for yourself converting p=0.6 to odds and back!

Odds vs Probability

$$P(x) = \frac{\text{Probability for x}}{\text{Total Probability}} \Rightarrow [0\%, 100\%]$$

Odds(x) =
$$\frac{\text{Probability for x}}{\text{Probability against x}} \implies [0,+\infty]$$

$$odds = \frac{p}{1 - p} \qquad p = \frac{odds}{odds + 1}$$

The linear function models the log odds: $z = f(x) = \beta_0 + \beta_1 x_1 + ... + \beta_p x_p = \ln\left(\frac{p}{1-p}\right)$

Hence - holding all other variables constant - a unit change in x_i changes:

- the log odds by β_i
- the odds by e^{β_i}

The impact of x_i on the actual class probability is non-linear and depends on the current value of the (log) odds; hence, it depends on the values of all x!

Log odds

ODDS AND LOG-ODDS

▶ With these coefficients, we get our overall probability: the logistic regression draws a linear *decision line* which divides the classes.

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

- 1. How did we interpret the coefficients in a linear regression model?
- 2. How would you interpret a coefficient in a logistic regression model?

DELIVERABLE

Answers to the above questions

GUIDED PRACTICE

WAGER THOSE ODDS!

CODING ACTIVITY 01: WAGER THOSE ODDS!

DIRECTIONS (15 minutes)

1. Given the odds below for some football games, use the *logit* function and the *sigmoid* function to solve for the *probability* that the "better" team would win.

b. Alabama: Michigan State, 20:1

c. Clemson: Oklahoma, 1.1:1

d. Houston: Florida State, 1.8:1

e. Ohio State: Notre Dame, 1.6:1

DELIVERABLE

The desired probabilities

CODING ACTIVITY 01: WAGER THOSE ODDS!

STARTER CODE

```
def logit_func(odds):
    # uses a float (odds) and returns back the log odds (logit)
    return None

def sigmoid_func(logit):
    # uses a float (logit) and returns back the probability
    return None
```

DELIVERABLE

The desired probabilities

LOGISTIC REGRESSION IMPLEMENTATION

CODING ACTIVITY 02: LOGISTIC REGRESSION

DIRECTIONS (15 minutes)

Use the data collegeadmissions.csv and the LogisticRegression estimator in sklearn to predict the target variable admit.

- 1. What is the bias, or prior probability, of the dataset?
- 2. Build a simple model with one feature and explore the coef_value. Does this represent the odds or logit (log odds)?
- 3. Build a more complicated model using multiple features. Interpreting the odds, which features have the most impact on admission rate? Which features have the least?
- 4. What is the accuracy of your model?

DELIVERABLE

Answers to the above questions

- Accuracy is only one of several metrics used when solving a classification problem.
- ► Accuracy = total predicted correct / total observations in dataset
- ▶ Accuracy alone doesn't always give us a full picture.
- If we know a model is 75% accurate, it doesn't provide *any* insight into why the 25% was wrong.
- ▶ Was it wrong across all labels? Did it just guess one class label for all predictions?
- ▶ It's important to look at other metrics to fully understand the problem.

EVALUATING OUTCOMES FOR BINARY CLASSIFICATION

	Outcome (Truth)		For all cases:		Correct Predictions	TD . TN
	Class 1	Class 0	Accuracy =	=	All Cases	TP + TN = TP + FP + TN + FN
			For true Class 1 cases:			
Class 1	True Positive	False Positive	True Positive Rate (Sensitivity, Recall)	=	Correct Class 1 Predictions	TP
	(TP)	(FP)			All Class 1 Cases	TP + FN
Prediction			False Negative Rate (Miss Rate)	=	1 - True Positive Rate	
Class 0	False Negative (FN)	True Negative (TN)	For true Class 0 cases:	= .	Correct Class 0 Predictions	
			True Negative Rate (Specificity)			TN
					All Class 0 Cases	TN + FP
			False Positive Rate (Fall-Out)	=	1 - True Negative Rate	e

- A good classifier would have a true positive rate approaching 1 and a false positive rate approaching o.
- In our smoking problem, this model would accurately predict *all* of the smokers as smokers and not accidentally predict any of the nonsmokers as smokers.

- We can **vary the classification threshold** for our model to get different predictions. But how do we know if a model is better overall than another model?
- ▶ We can compare the FPR and TPR of the models, but it can often be difficult to optimize two numbers at once.
- ▶ Logically, we like a single number for optimization.
- ▶ Can you think of any ways to combine our two metrics?

- ▶ This is where the Receiver Operation Characteristic (ROC) curve comes in handy.
- The curve is created by plotting the true positive rate against the false positive rate at various model threshold settings.
- ▶ Area Under the Curve (AUC) summarizes the impact of TPR and FPR in one single value.

▶ There can be a variety of points on an ROC curve.

▶ We can begin by plotting an individual TPR/FPR pair for one threshold.

▶ We can continue adding pairs for different thresholds

▶ We can continue adding pairs for different thresholds

▶ Finally, we create a full curve that is described by TPR and FPR.

▶ With this curve, we can find the Area Under the Curve (AUC).

▶ This <u>interactive visualization</u> can help practice visualizing ROC curves.

- If we have a TPR of 1 (all positives are marked positive) and FPR of 0 (all negatives are not marked positive), we'd have an AUC of 1. This means everything was accurately predicted.
- If we have a TPR of o (all positives are not marked positive) and an FPR of 1 (all negatives are marked positive), we'd have an AUC of o. This means nothing was predicted accurately.
- An AUC of 0.5 would suggest randomness (somewhat) and is an excellent benchmark to use for comparing predictions (i.e. is my AUC above 0.5?).

GUIDED PRACTICE

WHICH METRIC SHOULD I USE?

ACTIVITY: WHICH METRIC SHOULD I USE?

DIRECTIONS (15 minutes)

While AUC seems like a "golden standard", it could be *further* improved depending upon your problem. There will be instances where error in positive or negative matches will be very important. For each of the following examples:

- 1. Write a confusion matrix: true positive, false positive, true negative, false negative. Then decide what each square represents for that specific example.
- 2. Define the *benefit* of a true positive and true negative.
- 3. Define the *cost* of a false positive and false negative.
- 4. Determine at what point does the cost of a failure outweigh the benefit of a success? This would help you decide how to optimize TPR, FPR, and AUC.

Examples:

- 1. A test is developed for determining if a patient has cancer or not.
- 2. A newspaper company is targeting a marketing campaign for "at risk" users that may stop paying for the product soon.
- 3. You build a spam classifier for your email system.

INDEPENDENT PRACTICE

EVALUATING LOGISTIC REGRESSION WITH ALTERNATIVE METRICS

ACTIVITY: EVALUATING LOGISTIC REGRESSION

DIRECTIONS (35 minutes)

<u>Kaggle's common online exercise</u> is exploring survival data from the Titanic.

1. Spend a few minutes determining which data would be most important to use in the prediction problem. You may need to create new features based on the data available. Consider using a feature selection aide in sklearn. For a worst case scenario, identify one or two strong features that would be useful to include in this model.

DELIVERABLE

Answers to the above question and a Logistic model on the Titanic data

ACTIVITY: EVALUATING LOGISTIC REGRESSION

DIRECTIONS (35 minutes)

- 1. Spend 1-2 minutes considering which *metric* makes the most sense to optimize. Accuracy? FPR or TPR? AUC? Given the business problem of understanding survival rate aboard the Titanic, why should you use this metric?
- 1. Build a tuned Logistic model. Be prepared to explain your design (including regularization), metric, and feature set in predicting survival using any tools necessary (such as a fit chart). Use the starter code to get you going.

DELIVERABLE

Answers to the above question and a Logistic model on the Titanic data

CONCLUSION

TOPIC REVIEW

REVIEW QUESTIONS

- ▶ What's the link function used in logistic regression?
- ▶ What kind of machine learning problems does logistic regression address?
- ▶ What do the *coefficients* in a logistic regression represent? How does the interpretation differ from ordinary least squares? How is it similar?

REVIEW QUESTIONS

- ▶ How does True Positive Rate and False Positive Rate help explain accuracy?
- ▶ What would an AUC of 0.5 represent for a model? What about an AUC of 0.9?
- ▶ Why might one classification metric be more important to tune than another? Give an example of a business problem or project where this would be the case.

COURSE

BEFORE NEXT CLASS

BEFORE NEXT CLASS

DUE DATE:

▶ Project: Unit Project o3 – Logistic Regression

LESSON

Q&A

LESSON

EXIT TICKET

DON'T FORGET TO FILL OUT YOUR EXIT TICKET