homellc

December 12, 2023

Data Collecting

```
[123]: import numpy as np
      import pandas as pd
[124]: #Reading CASE-SHILLER Index into a dataframe
      df_CS = pd.read_csv(r"C:\Users\Prachi\Downloads\CSUSHPISA (1).csv")
       #Changing dtype of date column
      df_CS["DATE"] = pd.to_datetime(df_CS["DATE"])
      #Selecting data post JUNE 2001
      mask = df_CS["DATE"] >= "2001-07-01"
      df_CS = df_CS[mask]
      #Resetting Index
      df_CS.reset_index(inplace = True)
      df_CS.drop(columns = ["index"], inplace = True)
      # Creating "Year" and "Month" columns
      df_CS["Year"] = pd.DatetimeIndex(df_CS["DATE"]).year
      df_CS["Month"] = pd.DatetimeIndex(df_CS["DATE"]).month
      print(df_CS.shape)
      df_CS.tail()
      (247, 4)
[124]:
                DATE CSUSHPISA Year Month
      242 2022-02-01
                        291.153 2022
      243 2022-03-01
                        296.445 2022
                                           3
                                            4
      244 2022-04-01
                        300.573 2022
      245 2022-05-01
                        303.762 2022
      246 2022-06-01
                        304.724 2022
[125]: # Reading Unemployment Rate Data into a dataframe
      df_unemp = pd.read_csv(r"C:\Users\Prachi\Downloads\UNRATE (2).csv", names = __
       ⇔["DATE", "UNRATE"], skiprows = 1)
      df_unemp.drop(df_unemp.index[267:912], inplace = True)
```

```
print(df_unemp.shape)
      df_unemp.tail()
      (247, 2)
[125]:
                 DATE UNRATE
      242 2022-02-01
                          3.8
      243 2022-03-01
                          3.6
      244 2022-04-01
                          3.6
      245 2022-05-01
                          3.6
      246 2022-06-01
                          3.6
[126]: # Reading Per Capita GDP Data into a dataframe
      df pcgdp = pd.read csv(r"C:\Users\Prachi\Downloads\A939RXOQ048SBEA.csv", names__
       print(df_pcgdp.shape)
      df_pcgdp.tail()
      (83, 2)
[126]:
                DATE Per_Capita_GDP
      78 2021-04-01
                             64157.0
      79 2021-07-01
                             64615.0
      80 2021-10-01
                             65651.0
      81 2022-01-01
                             65286.0
      82 2022-04-01
                             65127.0
[127]: # Interest Rate Data
      df_Fed_rate = pd.read_csv(r"C:\Users\Prachi\Downloads\FEDFUNDS (1).csv")
      df_Fed_rate.drop(df_Fed_rate.index[267:1828], inplace = True)
      print(df_Fed_rate.shape)
      df_Fed_rate.tail()
      (247, 2)
[127]:
                 DATE FEDFUNDS
      242 2022-02-01
                           0.08
      243 2022-03-01
                           0.20
      244 2022-04-01
                           0.33
      245 2022-05-01
                           0.77
      246 2022-06-01
                           1.21
[128]: # Reading Per Capita GDP Data into a dataframe
      df_cons_price_index = pd.read_csv(r"C:\Users\Prachi\Downloads\WPUSI012011.csv",_
       ⇔names = ["DATE", "Cons_Materials"], skiprows = 1)
      df_cons_price_index.drop(df_cons_price_index.index[267:611], inplace = True)
      print(df_cons_price_index.shape)
```

```
df_cons_price_index.tail()
      (247, 2)
[128]:
                 DATE Cons_Materials
      242 2022-02-01
                              343.583
      243 2022-03-01
                              345.852
      244 2022-04-01
                              343.786
      245 2022-05-01
                              353.015
      246 2022-06-01
                              349.800
[129]: # Consumer Price Index
      df_CPI = pd.read_csv(r"C:\Users\Prachi\Downloads\CPIAUCSL (1).csv", names = __
       df_CPI.drop(df_CPI.index[267:923], inplace = True)
      print(df_CPI.shape)
      df_CPI.tail()
      (247, 2)
[129]:
                 DATE
                           CPI
      242 2022-02-01 284.610
      243 2022-03-01 287.472
      244 2022-04-01 288.611
      245 2022-05-01 291.268
      246 2022-06-01 294.728
[130]: # Monthly new house supply
      df_house = pd.read_csv(r"C:\Users\Prachi\Downloads\MSACSR (1).csv", names = __
       ⇔["DATE", "Houses"], skiprows = 1)
      df_house.drop(df_house.index[267:731], inplace = True)
      print(df_house.shape)
      df_house.tail()
      (247, 2)
[130]:
                 DATE Houses
      242 2022-02-01
                          6.2
      243 2022-03-01
                          7.0
      244 2022-04-01
                          8.5
      245 2022-05-01
                          8.3
      246 2022-06-01
                          9.5
[131]: # Population above 65
      df_oldpop = pd.read_csv(r"C:\Users\Prachi\Downloads\SPPOP65UPTOZSUSA (1).csv", __
        ⇔names = ["DATE", "old_percent"], skiprows = 1)
```

```
print(df_oldpop.shape)
      df_oldpop.tail()
      (22, 2)
[131]:
               DATE old_percent
      17 2018-01-01
                       15.397698
      18 2019-01-01
                       15.791801
      19 2020-01-01
                      16.223400
      20 2021-01-01
                       16.678895
      21 2022-01-01 17.128121
[132]: # Urban Population Percent
      df_urban = pd.read_csv(r"C:\Users\Prachi\Downloads\LREM64TTUSM156S.csv", names_
      df_urban.drop(df_urban.index[267:851], inplace = True)
      print(df_urban.shape)
      df_urban.tail()
      (247, 2)
[132]:
                DATE Urban_pop
      242 2022-02-01 70.900503
      243 2022-03-01 71.266867
      244 2022-04-01 71.222821
      245 2022-05-01 71.370775
      246 2022-06-01 71.228684
[133]: # Housing Subsidies
      df_subsidy = pd.read_csv(r"C:\Users\Prachi\Downloads\L312051A027NBEA (1).csv", __
       onames = ["DATE", "Subsidy"], skiprows = 1)
      print(df subsidy.shape)
      df_subsidy.tail()
      (22, 2)
[133]:
               DATE Subsidy
      17
          2018-01-01
                      38.859
      18 2019-01-01 40.185
      19 2020-01-01 44.147
      20 2021-01-01 45.299
      21 2022-01-01 48.021
[134]: # Working age population
```

```
df_working = pd.read_csv(r"C:\Users\Prachi\Downloads\LFWA64TTUSM647S (2).csv",_
       →names = ["DATE", "Working_Population"], skiprows = 1)
      df_working.drop(df_working.index[267:563], inplace = True)
      print(df working.shape)
      df_working.tail()
      (247, 2)
[134]:
                DATE Working_Population
      242 2022-02-01
                            2.071042e+08
      243 2022-03-01
                            2.070130e+08
                            2.070650e+08
      244 2022-04-01
      245 2022-05-01
                            2.072705e+08
      246 2022-06-01
                            2.073947e+08
[135]: # Real Median Household Income
      df_income = pd.read_csv(r"C:\Users\Prachi\Downloads\MEHOINUSA672N.csv", names = __
       print(df income.shape)
      df_income.tail()
      (22, 2)
[135]:
               DATE Income
      17
          2018-01-01
                      73030
      18 2019-01-01
                      78250
      19 2020-01-01
                      76660
      20 2021-01-01
                      76330
      21 2022-01-01
                      74580
[136]: # Number of households
      df_households = pd.read_csv(r"C:\Users\Prachi\Downloads\TTLHH (1).csv", names =__
       print(df_households.shape)
      df_households.tail()
      (22, 2)
[136]:
                    Num_Households
               DATE
      17 2018-01-01
                           127586.0
      18 2019-01-01
                           128579.0
      19 2020-01-01
                           128451.0
      20
         2021-01-01
                           129224.0
      21 2022-01-01
                           131202.0
     Data Preprocessing
```

```
[137]: # Merging Per Capita GDP (Quarterly data)
      df_pcgdp["DATE"] = pd.to_datetime(df_pcgdp["DATE"])
      df_CS = pd.merge(df_CS,df_pcgdp, how = "left")
      df_CS.head()
[137]:
              DATE CSUSHPISA Year Month Per_Capita_GDP
      0 2001-12-01
                      116.455 2001
      1 2002-01-01
                      117.144 2002
                                         1
                                                   50091.0
      2 2002-02-01
                      117.845 2002
                                         2
                                                       NaN
      3 2002-03-01
                      118.687 2002
                                         3
                                                       NaN
      4 2002-04-01
                                         4
                                                   50286.0
                      119.611 2002
[138]: df = pd.DataFrame()
      df_bymonth = [df_CS, df_working, df_house, df_CPI, df_unemp,_
        →df_cons_price_index, df_Fed_rate]
      for df1 in df_bymonth:
          df1["DATE"] = pd.to_datetime(df1["DATE"])
          df1 = df1.set index("DATE")
          df = pd.concat([df,df1], axis = 1)
      print(df.shape)
      df.head(5)
      (247, 10)
[138]:
                  CSUSHPISA Year Month Per Capita GDP Working Population \
      DATE
                    116.455 2001
      2001-12-01
                                       12
                                                                 1.826419e+08
                                                     NaN
                    117.144 2002
                                                 50091.0
      2002-01-01
                                       1
                                                                 1.825664e+08
                                       2
      2002-02-01
                    117.845 2002
                                                     NaN
                                                                 1.827984e+08
      2002-03-01 118.687 2002
                                                                 1.830783e+08
                                       3
                                                     NaN
      2002-04-01
                    119.611 2002
                                       4
                                                 50286.0
                                                                 1.832605e+08
                  Houses
                            CPI UNRATE Cons_Materials FEDFUNDS
      DATE
      2001-12-01
                     3.8 177.4
                                     5.7
                                                  141.7
                                                              1.82
                                     5.7
                                                   142.0
      2002-01-01
                     4.2 177.7
                                                              1.73
      2002-02-01
                     4.0 178.0
                                     5.7
                                                  142.2
                                                              1.74
      2002-03-01
                     4.1 178.5
                                                  143.2
                                    5.7
                                                             1.73
      2002-04-01
                     4.3 179.3
                                    5.9
                                                   143.5
                                                             1.75
[139]: # Merging other dataframes
      others = [df_urban, df_households, df_income, df_subsidy, df_oldpop]
      for df1 in others:
           if "Year" not in df1.columns:
              df1["Year"] = pd.DatetimeIndex(df1["DATE"]).year
              df1.set_index("DATE", inplace = True)
              df = pd.merge(df, df1, how = "left", on = "Year")
```

```
else:
               df1.set_index("DATE", inplace = True)
               df = pd.merge(df, df1, how = "left", on = "Year")
       df["DATE"] = df_CS["DATE"]
       df.set_index("DATE", inplace = True)
       df.head()
[139]:
                   CSUSHPISA Year Month Per_Capita_GDP Working_Population \
      DATE
       2001-12-01
                     116.455
                              2001
                                       12
                                                       NaN
                                                                  1.826419e+08
                     117.144 2002
       2002-01-01
                                        1
                                                  50091.0
                                                                  1.825664e+08
       2002-02-01
                     117.144 2002
                                        1
                                                  50091.0
                                                                  1.825664e+08
       2002-03-01
                     117.144 2002
                                        1
                                                  50091.0
                                                                  1.825664e+08
       2002-04-01
                     117.144 2002
                                        1
                                                  50091.0
                                                                  1.825664e+08
                   Houses
                             CPI UNRATE Cons_Materials FEDFUNDS Urban_pop \
      DATE
       2001-12-01
                      3.8 177.4
                                     5.7
                                                    141.7
                                                               1.82
                                                                     72.226108
                      4.2 177.7
                                     5.7
                                                    142.0
       2002-01-01
                                                               1.73 72.016140
       2002-02-01
                      4.2 177.7
                                     5.7
                                                    142.0
                                                               1.73
                                                                    72.333005
       2002-03-01
                      4.2 177.7
                                     5.7
                                                   142.0
                                                               1.73 72.131883
       2002-04-01
                                     5.7
                      4.2 177.7
                                                    142.0
                                                               1.73 71.914847
                   Num_Households Income
                                           Subsidy old_percent
      DATE
       2001-12-01
                         108209.0
                                    66360
                                            20.573
                                                       12.296945
                                    65820
       2002-01-01
                         109297.0
                                            24.183
                                                       12.287458
       2002-02-01
                         109297.0
                                            24.183
                                                       12.287458
                                    65820
       2002-03-01
                                            24.183
                         109297.0
                                    65820
                                                       12.287458
       2002-04-01
                         109297.0
                                    65820
                                            24.183
                                                       12.287458
[140]: print(df.shape)
      (2917, 15)
[141]: df.isna().sum()
[141]: CSUSHPISA
                                0
       Year
                                0
      Month
                                0
      Per_Capita_GDP
                             1945
      Working Population
                                0
      Houses
                                0
       CPI
                                0
      UNRATE.
                                0
       Cons_Materials
                                0
       FEDFUNDS
                                0
```

Urban_pop	0
Num_Households	0
Income	0
Subsidy	0
old_percent	0
dtvpe: int64	

The "Per_Capita_GDP" column has missing values because the data was quarterly, We will first fill in the missing values in the "Per_Capita_GDP" column using linear interpolation.

[142]: # Filling missing values in the Per_Capita_GDP column using linear interpolation df["Per_Capita_GDP"] = df["Per_Capita_GDP"].interpolate()

[143]: df

[143]:		CSUSHPIS	SA Year	Month	Per_Capi	ta_GDP	Working_Po	pulation	\
	DATE								
	2001-12-01	116.45	55 2001	12		NaN	1.82	6419e+08	
	2002-01-01	117.14	14 2002	1	5	0091.0	1.82	5664e+08	
	2002-02-01	117.14	14 2002	1	5	0091.0	1.82	5664e+08	
	2002-03-01	117.14	14 2002	1	5	0091.0	1.82	5664e+08	
	2002-04-01	117.14	14 2002	1	5	0091.0	1.82	5664e+08	
	•••	•••			•••		•••		
	NaT	304.72	24 2022	6	6	5127.0	2.07	3947e+08	
	NaT	304.72	24 2022	6	6	5127.0	2.07	3947e+08	
	NaT	304.72	24 2022	6	6	5127.0	2.07	3947e+08	
	NaT	304.72	24 2022	6	6	5127.0	2.07	3947e+08	
	NaT	304.72	24 2022	6	6	5127.0	2.07	3947e+08	
		Houses	CPI	UNRATE	Cons_Ma	terials	FEDFUNDS	Urban_pop	\
	DATE								
	2001-12-01	3.8	177.400	5.7		141.7	1.82	72.226108	
	2002-01-01	4.2	177.700	5.7		142.0	1.73	72.016140	
	2002-02-01	4.2	177.700	5.7		142.0	1.73	72.333005	
	2002-03-01	4.2	177.700	5.7		142.0	1.73	72.131883	
	2002-04-01	4.2	177.700	5.7		142.0	1.73	71.914847	
	•••	•••			•••	•••	•••		
	NaT	9.5	294.728	3.6		349.8	1.21	70.900503	
	NaT	9.5	294.728	3.6		349.8	1.21	71.266867	
	NaT	9.5	294.728	3.6		349.8	1.21	71.222821	
	NaT	9.5	294.728	3.6		349.8	1.21	71.370775	
	NaT	9.5	294.728	3.6		349.8	1.21	71.228684	
		Num_Hous	acholda	Income	Subsidy	old_per	cont		
	DATE	Nulli_110us	Penorag	THCOME	Substay	ord_ber	Cent		
	2001-12-01	1(08209.0	66360	20.573	12.29	6945		
	2001-12-01		09297.0	65820	24.183	12.29			
	2002-01-01	10	19231.0	00020	Z 1 .103	12.20	11 -100		

```
2002-02-01
                                      24.183
                                                 12.287458
                   109297.0
                              65820
2002-03-01
                   109297.0
                              65820
                                      24.183
                                                 12.287458
                                      24.183
                                                 12.287458
2002-04-01
                   109297.0
                              65820
                                      48.021
NaT
                  131202.0
                              74580
                                                 17.128121
NaT
                   131202.0
                              74580
                                      48.021
                                                 17.128121
NaT
                                      48.021
                                                 17.128121
                   131202.0
                              74580
NaT
                   131202.0
                              74580
                                      48.021
                                                 17.128121
NaT
                   131202.0
                                      48.021
                                                 17.128121
                              74580
```

[2917 rows x 15 columns]

```
[144]: df.dropna(inplace = True)
```

```
[145]: df.isna().sum()
```

```
[145]: CSUSHPISA
                               0
                               0
       Year
                               0
       Month
       Per_Capita_GDP
                               0
       Working_Population
                               0
       Houses
                               0
       CPI
                               0
       UNRATE
                               0
       Cons_Materials
                               0
       FEDFUNDS
                               0
       Urban_pop
                               0
       Num_Households
                               0
       Income
                               0
       Subsidy
                               0
       old_percent
                               0
       dtype: int64
```

[146]: df

[146]:		CSUSHPISA	Year	Month	Per_Capita_GDP	Working_Population	\
	DATE						
	2002-01-01	117.144	2002	1	50091.0	1.825664e+08	
	2002-02-01	117.144	2002	1	50091.0	1.825664e+08	
	2002-03-01	117.144	2002	1	50091.0	1.825664e+08	
	2002-04-01	117.144	2002	1	50091.0	1.825664e+08	
	2002-05-01	117.144	2002	1	50091.0	1.825664e+08	
			•••		•••	•••	
	NaT	304.724	2022	6	65127.0	2.073947e+08	
	NaT	304.724	2022	6	65127.0	2.073947e+08	
	NaT	304.724	2022	6	65127.0	2.073947e+08	
	NaT	304.724	2022	6	65127.0	2.073947e+08	

NaT		304.724	2022	6	6	55127.0	2.	073947e+08	
		Houses	CPI	UNRATE	Cons_Ma	terials	FEDFUND	S Urban_pop	\
DATI	Ε								
2002	2-01-01	4.2 1	77.700	5.7	•	142.0	1.7	3 72.016140	
2002	2-02-01	4.2 1	77.700	5.7	•	142.0	1.7	3 72.333005	
	2-03-01	4.2 1				142.0		3 72.131883	
	2-04-01		77.700			142.0		3 71.914847	
	2-05-01		77.700			142.0			
•••						•••	•••		
NaT		9.5 2				349.8		1 70.900503	
NaT		9.5 2				349.8			
NaT		9.5 2				349.8			
NaT		9.5 2				349.8			
NaT		9.5 2				349.8			
Nai		9.0 2	34.120	3.0		343.0	1.2	1 71.220004	
		Num_House	holds	Income	Subsidy	old_pe	rcent		
DATI									
	2-01-01		297.0	65820	24.183		87458		
	2-02-01		297.0	65820	24.183		87458		
2002	2-03-01	109	297.0	65820	24.183	12.2	87458		
2002	2-04-01	109	297.0	65820	24.183	12.2	87458		
2002	2-05-01	109	297.0	65820	24.183	12.2	87458		
			•••		•	•••			
NaT		131	202.0	74580	48.021	17.1	28121		
NaT		131	202.0	74580	48.021	17.1	28121		
NaT		131	202.0	74580	48.021	17.1	28121		
NaT		131	202.0	74580	48.021	17.1	28121		
NaT		131	202.0	74580	48.021	17.1	28121		
[29:	16 rows	x 15 colum	ns]						
[147]: df.	to_csv("	prepared_d	lataset	.csv")					
_		rice_df = p rice_df.hea		_csv("pr	epared_da	ataset.c	sv").set_	index("DATE")
[148]:		CSUSHPISA	Year	Month	Per_Capi	ta_GDP	Working_	Population	\
DATI									
	2-01-01	117.144				50091.0		825664e+08	
	2-02-01	117.144	2002	1	5	50091.0	1.	825664e+08	
2002	2-03-01	117.144	2002	1	5	50091.0	1.	825664e+08	
2002	2-04-01	117.144	2002	1	5	50091.0	1.	825664e+08	
2002	2-05-01	117.144	2002	1	5	50091.0	1.	825664e+08	
		Houses	CPI	UNRATE	Cons_Mate	erials	FEDFUNDS	Urban_pop	\
DATE	Ε								

```
4.2 177.7
                                     5.7
                                                   142.0
                                                              1.73
                                                                    72.333005
       2002-02-01
       2002-03-01
                      4.2 177.7
                                     5.7
                                                   142.0
                                                              1.73
                                                                    72.131883
                                     5.7
                      4.2 177.7
                                                              1.73
       2002-04-01
                                                   142.0
                                                                    71.914847
       2002-05-01
                      4.2 177.7
                                     5.7
                                                   142.0
                                                              1.73
                                                                    72.026012
                   Num_Households Income
                                           Subsidy old_percent
      DATE
       2002-01-01
                                            24.183
                                                      12.287458
                         109297.0
                                    65820
       2002-02-01
                         109297.0
                                    65820
                                            24.183
                                                      12.287458
                                            24.183
       2002-03-01
                         109297.0
                                    65820
                                                      12.287458
       2002-04-01
                         109297.0
                                    65820
                                            24.183
                                                      12.287458
       2002-05-01
                         109297.0
                                    65820
                                            24.183
                                                      12.287458
[149]: #Importing necessary libraries
       import numpy as np
       import pandas as pd
       import matplotlib.pyplot as plt
       import seaborn as sns
       from sklearn.model_selection import train_test_split
       from sklearn.metrics import r2_score, mean_squared_error
[150]: us_house_price_df = pd.read_csv("prepared_dataset.csv").set_index("DATE")
       us house price df.head()
[150]:
                   CSUSHPISA Year Month Per Capita GDP Working Population \
      DATE
       2002-01-01
                     117.144 2002
                                        1
                                                  50091.0
                                                                 1.825664e+08
       2002-02-01
                     117.144 2002
                                        1
                                                  50091.0
                                                                 1.825664e+08
                     117.144 2002
       2002-03-01
                                        1
                                                  50091.0
                                                                 1.825664e+08
       2002-04-01
                     117.144 2002
                                        1
                                                  50091.0
                                                                 1.825664e+08
                     117.144 2002
                                        1
       2002-05-01
                                                  50091.0
                                                                 1.825664e+08
                   Houses
                             CPI UNRATE Cons_Materials FEDFUNDS
                                                                    Urban_pop \
       DATE
       2002-01-01
                      4.2 177.7
                                     5.7
                                                   142.0
                                                              1.73
                                                                    72.016140
                                     5.7
                                                   142.0
       2002-02-01
                      4.2 177.7
                                                              1.73 72.333005
       2002-03-01
                      4.2 177.7
                                     5.7
                                                   142.0
                                                              1.73
                                                                    72.131883
                      4.2 177.7
                                     5.7
       2002-04-01
                                                   142.0
                                                              1.73 71.914847
       2002-05-01
                      4.2 177.7
                                     5.7
                                                   142.0
                                                              1.73 72.026012
                   Num Households Income
                                           Subsidy old_percent
      DATE
       2002-01-01
                         109297.0
                                    65820
                                            24.183
                                                      12.287458
       2002-02-01
                         109297.0
                                    65820
                                            24.183
                                                      12.287458
       2002-03-01
                                            24.183
                         109297.0
                                    65820
                                                      12.287458
       2002-04-01
                         109297.0
                                    65820
                                            24.183
                                                      12.287458
```

2002-01-01

4.2 177.7

5.7

142.0

1.73

72.016140

2002-05-01 109297.0 65820 24.183 12.287458

```
[151]: # Dropping year and month columns
us_house_price_df.drop(columns = ["Year", "Month"], inplace = True)
```

Exploratory Data Analysis (EDA) Summary Statistics: Calculate and display summary statistics for each variable, including mean, median, standard deviation, minimum, and maximum values. This gives you an overview of the data's central tendencies and variability.

```
[152]: # Summary statistics
       summary_stats = us_house_price_df.describe()
       summary_stats
[152]:
                CSUSHPISA
                            Per_Capita_GDP
                                              Working_Population
                                                                        Houses
              2916.000000
                                2916.000000
                                                    2.916000e+03
                                                                   2916.000000
       count
       mean
                173.393158
                               56733.444444
                                                    1.990766e+08
                                                                      5.939300
       std
                35.656839
                                3894.028787
                                                    6.902281e+06
                                                                      1.900553
       min
                117.144000
                               50091.000000
                                                    1.825664e+08
                                                                      3.300000
       25%
                146.394000
                               54100.000000
                                                    1.949518e+08
                                                                      4.500000
       50%
                168.634000
                               55575.500000
                                                    2.011083e+08
                                                                      5.400000
       75%
                187.993000
                               59440.540000
                                                    2.053709e+08
                                                                      6.700000
       max
                304.724000
                               65651.000000
                                                    2.073947e+08
                                                                     12.200000
                       CPI
                                  UNRATE
                                          Cons_Materials
                                                               FEDFUNDS
                                                                            Urban_pop
       count
               2916.000000
                            2916.000000
                                              2916.000000
                                                           2916.000000
                                                                          2916.000000
       mean
                225.173831
                                6.089300
                                               204.752848
                                                               1.290226
                                                                            69.550604
       std
                26.279576
                                                39.039207
                                                               1.538251
                                1.963623
                                                                             2.079692
       min
                177.700000
                                3.500000
                                               142.000000
                                                               0.050000
                                                                            60.193856
       25%
               203.800000
                                4.700000
                                               182.500000
                                                               0.120000
                                                                            67.699590
       50%
               228.329000
                                5.600000
                                               205.500000
                                                               0.650000
                                                                            70.097404
       75%
                244.004000
                                7.300000
                                               219.700000
                                                               1.910000
                                                                            71.363247
       max
                294.728000
                               14.700000
                                               353.015000
                                                               5.260000
                                                                            72.333005
               Num_Households
                                                            old_percent
                                      Income
                                                   Subsidy
                  2916.000000
                                 2916.000000
                                               2916.000000
                                                            2916.000000
       count
       mean
                120384.419753
                                68561.728395
                                                 33.665000
                                                               13.828983
       std
                  6278.891569
                                 4444.196095
                                                  5.771877
                                                                1.436413
                109297.000000
                                63350.000000
       min
                                                 24.183000
                                                               12.277934
       25%
                116011.000000
                                65760.000000
                                                 29.512000
                                                               12.507804
       50%
                121084.000000
                                66780.000000
                                                 33.283000
                                                               13.584437
       75%
                126224.000000
                                72090.000000
                                                 37.550000
                                                               15.066290
                131202.000000
                                78250.000000
                                                 48.021000
                                                               17.128121
       max
```

Correlation Analysis: Calculate the correlation matrix to measure the linear relationships between variables.

```
[153]: # Correlation matrix
corr_matrix = us_house_price_df.corr()
```

corr_matrix

[153]:	CSUSHPISA P	er_Capita_GDF) Monking	Population	Houses	\
CSUSHPISA	1.000000	0.895990	_	0.612680	0.034838	`
	0.895990	1.00000			-0.033405	
Per_Capita_GDP				1.000000	0.118453	
Working_Population		0.853468				
Houses	0.034838	-0.033405		0.118453	1.000000	
CPI	0.772845	0.937533		0.947566	0.048284	
UNRATE	-0.429101	-0.378423		-0.034271	0.138918	
Cons_Materials	0.855816	0.913280		0.822703	0.099472	
FEDFUNDS	0.072644	-0.160404		-0.398701	0.182683	
Urban_pop	0.121200	-0.087122		-0.445005		
${\tt Num_Households}$	0.729666	0.932990			-0.022643	
Income	0.860906	0.841389			-0.100339	
Subsidy	0.809054	0.917536	5	0.881389	0.015319	
old_percent	0.816216	0.943933	3	0.845728	-0.141864	
	CDT	IINDATE Cond	Motomiola	EEDEIMDG	IImhon non	\
adidib.ta v			_Materials		Urban_pop	\
CSUSHPISA	0.772845 -0.		0.855816	0.072644	0.121200	
Per_Capita_GDP	0.937533 -0.			-0.160404	-0.087122	
Working_Population				-0.398701	-0.445005	
Houses		138918	0.099472	0.182683	-0.051654	
CPI	1.000000 -0.			-0.399932	-0.354494	
UNRATE		000000	-0.148995		-0.680275	
Cons_Materials	0.944273 -0.			-0.333749	-0.249286	
FEDFUNDS	-0.399932 -0.		-0.333749	1.000000	0.678694	
Urban_pop	-0.354494 -0.	680275	-0.249286	0.678694	1.000000	
Num_Households	0.983142 -0.	149748	0.885856	-0.396254	-0.335645	
Income	0.696503 -0.	458376	0.676953	0.060167	0.198227	
Subsidy	0.965424 -0.	044436	0.929830	-0.402370	-0.352257	
old_percent	0.951391 -0.	202771	0.902977	-0.381224	-0.222611	
	Num_Househol	ds Income	Cubaider	old nomeon	.+	
adidib.ta v	-		Subsidy	old_percer 0.81621		
CSUSHPISA	0.7296		0.809054			
Per_Capita_GDP	0.9329		0.917536	0.94393		
Working_Population			0.881389	0.84572		
Houses		43 -0.100339	0.015319	-0.14186		
CPI	0.9831		0.965424	0.95139		
UNRATE		48 -0.458376		-0.20277		
Cons_Materials	0.8858		0.929830	0.90297	77	
FEDFUNDS	-0.3962		-0.402370	-0.38122		
Urban_pop	-0.3356		-0.352257	-0.22261		
Num_Households	1.0000	00 0.713021	0.946049	0.95263	33	
Income	0.7130	21 1.000000	0.760592	0.82815	54	
Subsidy	0.9460	49 0.760592	1.000000	0.96028	30	
old_percent	0.9526	33 0.828154	0.960280	1.00000	00	

correlation matrix using a heatmap to identify strong positive and negative correlations

```
[154]: # Visualize correlations using a heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.show()
```



```
[157]: # Separating the target variable and the independent variable
y = df.pop("CSUSHPISA")
X = df
[158]: # Plotting scatter plots of the CASE-SHILLER index us features
```

```
[158]: # Plotting scatter plots of the CASE-SHILLER index vs features

for feature in X.columns:
    plt.figure()
    plt.scatter(x = X[feature], y = y)
    plt.xlabel(feature)
    plt.ylabel("CASE-SHILLER index")
    plt.title(f"CASE-SHILLER index vs {feature}")
```


Calculate correlation coefficients

```
[159]: correlations = X.apply(lambda column: np.abs(column.corr(y)))

# Sort correlations in ascending order
sorted_correlations = correlations.sort_values()

# Display features with lower correlation
print("Features with Lower Correlation to Target:")
print(sorted_correlations)
```

Features with Lower Correlation to Target:

Month	0.030893
Houses	0.034838
FEDFUNDS	0.072644
Urban_pop	0.121200
UNRATE	0.429101
Working_Population	0.612680
Num_Households	0.729666
Year	0.748704
CPI	0.772845
Subsidy	0.809054
old_percent	0.816216
Cons_Materials	0.855816

Income 0.860906 Per Capita_GDP 0.895990

dtype: float64

Based on the provided correlation coefficients:

Highest Correlation:

The variable with the highest correlation with the target variable ('CSUSHPISA') is 'Per_Capita_GDP' with a correlation coefficient of 0.895990. This feature shows a strong positive linear relationship with home prices.

Other Strong Correlations:

'Cons_Material' (0.855), 'Subsidy' (0.809), 'old_percent' (0.816), 'income' (0.860), and 'CPI' (0.772) also have strong positive correlations.

Moderate Correlations:

'year' (0.748), 'Num_Households' (0.729), and 'working_age_pop' (0.612) have moderate positive correlations.

Lower Correlations:

'UNRATE' (0.429), 'EmpRate' (0.121), 'Houses' (0.034), and 'FEDFUNDS' (0.072) have lower correlations.

Data science models

```
[160]: from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression, ElasticNet from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.svm import SVR from sklearn.feature_selection import SelectFromModel from xgboost import XGBRegressor
```

We will drop the columns which has lower correlation with the target

```
[163]: mult_col = ["CSUSHPISA"]
us_house_price_df.drop(columns = mult_col, inplace = True)
X = us_house_price_df
```

[164]: X

```
[164]: Per_Capita_GDP CPI Cons_Materials Income Subsidy \
DATE
2002-01-01 50091.0 177.700 142.0 65820 24.183
2002-02-01 50091.0 177.700 142.0 65820 24.183
```

```
2002-03-01
                   50091.0 177.700
                                               142.0
                                                       65820
                                                                24.183
                   50091.0 177.700
                                               142.0
                                                                24.183
2002-04-01
                                                       65820
2002-05-01
                   50091.0 177.700
                                               142.0
                                                       65820
                                                                24.183
                                                 •••
                   65127.0 294.728
                                               349.8
                                                       74580
                                                                48.021
NaN
                                                                48.021
NaN
                   65127.0 294.728
                                               349.8
                                                       74580
NaN
                   65127.0 294.728
                                               349.8
                                                       74580
                                                                48.021
                                                                48.021
NaN
                   65127.0 294.728
                                               349.8
                                                       74580
NaN
                   65127.0 294.728
                                               349.8
                                                       74580
                                                                48.021
```

old_percent

DATE	
2002-01-01	12.287458
2002-02-01	12.287458
2002-03-01	12.287458
2002-04-01	12.287458
2002-05-01	12.287458
•••	***
 NaN	 17.128121
 NaN NaN	 17.128121 17.128121
NaN	17.128121

[2916 rows x 6 columns]

Models building

```
[165]: # Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, □
→random_state=42)
```

```
[166]: # Standardize features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

Explored various regression models, including Linear Regression, ElasticNet, Random Forest, Gradient Boosting, Support Vector Regression (SVR), and XGBoost.

```
[167]: # Models
models = {
    'Linear Regression': LinearRegression(),
    'ElasticNet': ElasticNet(),
    'Random Forest': RandomForestRegressor(),
    'Gradient Boosting': GradientBoostingRegressor(),
    'SVR': SVR(),
    'XGBoost': XGBRegressor()
```

}

```
[168]: best model = None
       best mse = float('inf')
       # Visualize actual vs. predicted values for all models
       fig, axs = plt.subplots(2, 3, figsize=(12, 10))
       axs = axs.flatten()
       # Training and evaluation
       for i, (name, model) in enumerate(models.items()):
           model.fit(X_train_scaled, y_train)
           y_pred = model.predict(X_test_scaled)
           mse = mean_squared_error(y_test, y_pred)
           r2 = r2_score(y_test, y_pred)
           print(f"Model: {name}")
           print(f"Mean Squared Error: {mse}")
           print(f"R-squared: {r2}")
           # Display coefficients and intercept for linear models
           if hasattr(model, 'coef_'):
               print("Coefficients:")
               for feature, coef in zip(X_train.columns, model.coef_):
                   print(f"{feature}: {coef}")
               print(f"Intercept: {model.intercept_}")
           else:
               # For non-linear models, display feature importance
               if hasattr(model, 'feature_importances_'):
                   print("Feature Importance Analysis:")
                   for feature, importance in zip(X_train.columns, model.
        →feature_importances_):
                       print(f"{feature}: {importance}")
           print()
           # Update best model if current model has lower MSE
           if mse < best_mse:</pre>
               best_mse = mse
               best_model = model
           # Plot actual vs. predicted values
           axs[i].scatter(y_test, y_pred, label=name)
           axs[i].set_xlabel("Actual Home Prices")
           axs[i].set_ylabel("Predicted Home Prices")
```

```
axs[i].set_title(f"Actual vs. Predicted ({name})")
axs[i].legend()

# Tight layout for better spacing
plt.tight_layout()
plt.show()

print(f"\nBest Model: {type(best_model).__name__} with MSE: {best_mse}")
```

Model: Linear Regression

Mean Squared Error: 74.18452882567686

R-squared: 0.9451223045627271

Coefficients:

Per_Capita_GDP: 25.195084141906495

CPI: -29.80554396241202

Cons_Materials: 30.426026363980412

Income: 15.585526032060551
Subsidy: 10.012732712039767
old_percent: -16.530491384178426
Intercept: 173.04170411663813

Model: ElasticNet

Mean Squared Error: 236.08466961827202

R-squared: 0.8253573514342188

Coefficients:

Per_Capita_GDP: 7.189679460588254

CPI: 1.10770259546806

Cons_Materials: 7.393487551522559

Income: 9.508278763748645
Subsidy: 2.827837275944486
old_percent: 2.1648706326975447
Intercept: 173.04170411663807

Model: Random Forest

Mean Squared Error: 0.04241438239332628

R-squared: 0.9999686241377281 Feature Importance Analysis:

Per_Capita_GDP: 0.07217230563800532

CPI: 0.39311869485581263

Cons_Materials: 0.3172877694273253

Income: 0.16605733301024092
Subsidy: 0.027379924158911814
old_percent: 0.023983972909703985

Model: Gradient Boosting

Mean Squared Error: 0.8136942960218423

R-squared: 0.9993980730421425

Feature Importance Analysis:

Per_Capita_GDP: 0.07377514701356544

CPI: 0.415706437558178

Cons_Materials: 0.29024999237356064

Income: 0.1891072770282319
Subsidy: 0.006044303156424081
old_percent: 0.025116842870039822

Model: SVR

Mean Squared Error: 45.93430224276296

R-squared: 0.9660202917170851

Model: XGBoost

Mean Squared Error: 0.28790605085363796

R-squared: 0.9997870227010484 Feature Importance Analysis:

Per_Capita_GDP: 0.009511047974228859

CPI: 0.13317523896694183

Cons_Materials: 0.18667054176330566

Income: 0.6679704785346985
Subsidy: 0.0026727155782282352

old_percent: 0.0

Best Model: RandomForestRegressor with MSE: 0.04241438239332628

```
ax.axis('off')
# Create a table and add data
table = ax.table(cellText=df.values, colLabels=df.columns, cellLoc = 'center', __
 ⇒loc='center', colColours=['#f3f3f3']*len(df.columns), colWidths=[0.
 ⇒25]*len(df.columns))
# Style the table
table.auto_set_font_size(False)
table.set_fontsize(10)
table.scale(1.2, 1.2) # Adjust the table size if needed
# Highlight specific values (e.g., minimum and maximum MSE)
min_mse_index = np.argmin(df['MSE'])
max_mse_index = np.argmax(df['MSE'])
for i in range(len(df)):
   for j in range(len(df.columns)):
        if (i == min_mse_index or i == max_mse_index) and j == df.columns.

¬get_loc('MSE'):
            color = '#ffcccb' if i == min_mse_index else '#b0e57c' # Light red_
 →for min and light green for max MSE
            table[(i + 1, j)].set_facecolor(color)
# Highlight min and max R-squared
min_r2_index = np.argmin(df['R-squared'])
max_r2_index = np.argmax(df['R-squared'])
for i in range(len(df)):
   for j in range(len(df.columns)):
        if (i == min_r2_index or i == max_r2_index) and j == df.columns.

get_loc('R-squared'):
            color = '#ffcccb' if i == min_r2_index else '#b0e57c' # Light red_
→for min and light green for max R-squared
            table[(i + 1, j)].set_facecolor(color)
plt.title('Model Evaluation Metrics')
plt.show()
```

Model Evaluation Metrics

Model	MSE	R-squared
Linear Regression	84.65	0.93
ElasticNet	205.67	0.83
Random Forest	2.21	0.998
Gradient Boosting	4.81	0.996
SVR	477.15	0.61
XGBoost	3.17	0.997

Decision:

Random Forest and XGBoost appear to be strong contenders, as they have low MSE and high R-squared values. Additionally, both models provide insights into feature importance.

Gradient Boosting also performs well but with a slightly higher MSE compared to Random Forest and XGBoost.

Linear Regression and ElasticNet have higher MSE values, indicating potential limitations in predictive accuracy.

SVR has a considerably higher MSE and lower R-squared, suggesting lower performance compared to other models.

Champion model: In summary, based on the provided metrics, Random Forest appear to be a strong candidate for the best model, with a low MSE and a high R-squared value.

Low MSE: The low MSE indicates that the model's predictions are close to the actual values on average, suggesting good predictive accuracy.

High R-squared: The high R-squared value suggests that a significant portion of the variance in home prices is explained by the model. This indicates strong explanatory power.

Feature Importance: The feature importance analysis provides transparency into the factors driving the predictions. In my case, features like 'CPI', 'Cons_Material', and 'median_income' are identified as influential.

This means that, according to the model, changes in these features have a notable impact on the predictions of U.S. home prices. For example, if 'CPI' increases, it suggests that changes in the cost of living might influence home prices.

[]: