

Cortex-M0

가장 작고, 가장 적은 전력 소모를 가지는 프로세서로서 에너지 효율성이 높다.

WIC (Wake-up Interrupt Controller)

저전력 상태에서 프로세서 외부의 소형 블록이 인터럽트 감지 기능을 수행하도록 하는 컴포넌트 (Cortex-M의 저전력 지원 기능)

NVIC (Nested Vectored Interrupt Controller)

중첩된 인터럽트를 제어하는 컴포넌트

모든 인터럽트에는 우선순위가 있다. 만약 인터럽트 수행 중에 보다 높은 우선순위를 가진 인터럽트가 발생했을 경우, NVIC를 통해 현재 인터럽트를 중단하고 해당 인터럽트를 처리할 수 있다. (NVIC를 사용

Cortex-M0 1

하기 위해서는 Peripheral의 인터럽트 뿐만 아니라, NVIC의 레지스터에도 해당 인터럽트를 가리키는 비트를 설정하여 둘 다 Enable(할 수있게 하다) 해줘야 한다)

• **AMBA** (Advanced Microcontroller Bus Architecture)

ARM 프로세서에 사용되는 On-chip 버스 통신 규격으로, 그 종류는 AHB, APB, AXI 등이 있다.

• AHB (Advanced High performance Bus)

AHB 방식은 고속통신을 지원하고, 데이터를 전송할때 MUX를 기반으로 여러개의 버스를 활성화한다. 또한 클럭 단위로 데이터를 보내는 것이 아닌, 한 번에 많은 양의 데이터를 계속 보내는 Burst mode도 지원한다.

L 고속 통신은 파이프라인을 통해 매 클럭마다 데이터를 보낸다는 의미 새로운 Instruction 주소를 읽는 것과 이전에 읽은 Instruction 주소를 보내는 것을 동시

에 수행할 수 있어 데이터 전송 시에 2 클럭이 아닌 1 클럭을 소모하므로 고속 통신을 할수 있다.

AHB-lite

AHB는 동시에 여러개의 버스 마스터를 활성화 하지만, **AHB-lite는 하 나의 버스 마스터만** 활성화한다.

Cortex-M0 2