Calcule

$$\lim_{(x,y)\to(0,0)} \frac{x^4 \operatorname{sen}(x^2 + y^2)}{x^4 + y^2}.$$

Solução: A função p(t) = sen(t) é contínua para todo $t \in \mathbb{R}$ e a função $g(x,y) = x^2 + y^2$ é uma função polinômica, portanto é continua para todo $(x,y) \in \mathbb{R}^2$. Logo a função $f(x,y) = p(g(x,y)) = sen(x^2 + y^2)$ é continua para todo $(x,y) \in \mathbb{R}^2$, por tanto

$$\lim_{(x,y)\to(0,0)} \operatorname{sen}(x^2 + y^2) = \operatorname{sen}(0^2 + 0^2) = 0.$$

Como sabemos

$$x^4 < x^4 + y^2$$

pois $y^2 \ge 0$, portanto

$$\frac{x^4}{x^4 + y^2} \le 1.$$

Além disso $x^4 \ge 0$ e $x^4 + y^2 \ge 0$, então

$$0 \le \frac{x^4}{x^4 + y^2} \le 1.$$

Lembrando que para qualquer (x,y) próximo de $(0,0), x^2+y^2 \ge 0$, logo $\mathrm{sen}(x^2+y^2) \ge 0$. Multiplicando a desigualdade por $\mathrm{sen}(x^2+y^2)$ temos

$$0 \le \frac{x^4 \operatorname{sen}(x^2 + y^2)}{x^4 + y^2} \le \operatorname{sen}(x^2 + y^2)$$

Usando o teorema do confronto, como $\lim_{(x,y)\to(0,0)}0=0$ e $\lim_{(x,y)\to(0,0)}\sin(x^2+y^2)=0$. provamos que

$$\lim_{(x,y)\to(0,0)} \frac{x^4 \operatorname{sen}(x^2 + y^2)}{x^4 + y^2} = 0.$$

De forma parecida podemos provar o seguinte resultado:

Consequência do Teorema do Confronto: Sejam f e g duas funções tais que f é limitada (perto do ponto a) e $\lim_{x\to a} g(x) = 0$. Então $\lim_{x\to a} f(x)g(x) = 0$.

Esse resultado pode ser estendido para funções de duas variáveis.