Orbital profile and orbit algebra of oligomorphic permutation groups Conjecture of Macpherson

Justine Falque joint work with Nicolas M. Thiéry

Laboratoire de Recherche en Informatique Université Paris-Sud (Orsay)

February 22nd of 2018

Age and profile : example on a finite group (1)

Age and profile : example on a finite group (1)

Age and profile : example on a finite group (1)

Action of the cyclic group $G = C_5$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age and profile : example on a finite group (1)

Action of the cyclic group $G = C_5$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age and profile : example on a finite group (1)

Action of the cyclic group $G = C_5$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit: the cardinality shared by all subsets in that orbit

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n, \quad \mathcal{A}(G)_n = \{\text{orbits of degree } n\}$

Profile of $G: \varphi_G: n \mapsto \operatorname{card}(\mathcal{A}(G)_n)$

Action of the cyclic group $G = C_5$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n, \quad \mathcal{A}(G)_n = \{\text{orbits of degree } n\}$ **Profile** of $G: \varphi_G: n \mapsto \operatorname{card}(\mathcal{A}(G)_n)$

$$\varphi_G(0)=1$$

Action of the cyclic group $G = C_5$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n, \quad \mathcal{A}(G)_n = \{\text{orbits of degree } n\}$ **Profile** of $G: \varphi_G: n \mapsto \operatorname{card}(\mathcal{A}(G)_n)$

$$\varphi_G(0) = 1$$
$$\varphi_G(1)$$

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n, \quad \mathcal{A}(G)_n = \{\text{orbits of degree } n\}$ **Profile** of $G: \varphi_G: n \mapsto \operatorname{card}(\mathcal{A}(G)_n)$

$$\varphi_G(0) = 1$$
$$\varphi_G(1)$$

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n, \quad \mathcal{A}(G)_n = \{\text{orbits of degree } n\}$ **Profile** of $G: \varphi_G: n \mapsto \operatorname{card}(\mathcal{A}(G)_n)$

$$\varphi_G(0) = 1$$

$$\varphi_G(1) = 1$$

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n, \quad \mathcal{A}(G)_n = \{\text{orbits of degree } n\}$ **Profile** of $G: \varphi_G: n \mapsto \operatorname{card}(\mathcal{A}(G)_n)$

$$arphi_G(0) = 1$$

 $arphi_G(1) = 1$
 $arphi_G(2)$

Action of the cyclic group $G=C_5$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n$, $\mathcal{A}(G)_n = \{\text{orbits of degree } n\}$ **Profile** of $G: \varphi_G: n \mapsto \operatorname{card}(\mathcal{A}(G)_n)$

$$\varphi_G(0) = 1$$
 $\varphi_G(1) = 1$
 $\varphi_G(2)$

Action of the cyclic group $G = C_5$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n, \quad \mathcal{A}(G)_n = \{\text{orbits of degree } n\}$ **Profile** of $G: \varphi_G: n \mapsto \operatorname{card}(\mathcal{A}(G)_n)$

$$\varphi_G(0) = 1$$
 $\varphi_G(1) = 1$
 $\varphi_G(2)$

Action of the cyclic group $G = C_5$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n, \quad \mathcal{A}(G)_n = \{\text{orbits of degree } n\}$

$$\varphi_G(0)=1$$

$$\varphi_G(1)=1$$

$$\varphi_G(2)=2$$

Action of the cyclic group $G=C_5$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n, \quad \mathcal{A}(G)_n = \{\text{orbits of degree } n\}$

$$\varphi_G(0) = 1$$
 $\varphi_G(1) = 1$
 $\varphi_G(2) = 2$
 $\varphi_G(3)$

Action of the cyclic group $G=C_5$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n, \quad \mathcal{A}(G)_n = \{\text{orbits of degree } n\}$

$$\varphi_G(0) = 1$$
 $\varphi_G(1) = 1$
 $\varphi_G(2) = 2$
 $\varphi_G(3)$

Action of the cyclic group $G=C_5$ on the five pearl necklace \rightarrow induced action on subsets of pearls

 $\label{eq:Degree of an orbit: the cardinality shared by all subsets in that orbit$

Age of G: $\mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n$, $\mathcal{A}(G)_n = \{\text{orbits of degree } n\}$

$$\varphi_G(0) = 1$$
 $\varphi_G(1) = 1$
 $\varphi_G(2) = 2$
 $\varphi_G(3)$

Action of the cyclic group $G=C_5$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age of G: $\mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n$, $\mathcal{A}(G)_n = \{\text{orbits of degree } n\}$

$$\varphi_G(0)=1$$

$$\varphi_G(1)=1$$

$$\varphi_G(2)=2$$

$$\varphi_G(3)=2$$

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n, \quad \mathcal{A}(G)_n = \{\text{orbits of degree } n\}$

Profile of $G: \varphi_G: n \mapsto \operatorname{card}(\mathcal{A}(G)_n)$

$$\varphi_G(0)=1$$

$$\varphi_G(1)=1$$

$$\varphi_G(2)=2$$

$$\varphi_G(3)=2$$

$$\varphi_G(4) = 1$$

Action of the cyclic group $G = C_5$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n, \quad \mathcal{A}(G)_n = \{\text{orbits of degree } n\}$

Profile of $G: \varphi_G: n \mapsto \operatorname{card}(\mathcal{A}(G)_n)$

$$\varphi_G(0)=1$$

$$\varphi_G(1)=1$$

$$\varphi_G(2)=2$$

$$\varphi_G(3)=2$$

$$\varphi_G(4)=1$$

$$\varphi_G(5)=1$$

Action of the cyclic group $G = C_5$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit: the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G) = \sqcup_n \mathcal{A}(G)_n, \quad \mathcal{A}(G)_n = \{\text{orbits of degree } n\}$

Profile of $G: \varphi_G: n \mapsto \operatorname{card}(\mathcal{A}(G)_n)$

$$\varphi_G(0)=1$$

$$\varphi_G(1)=1$$

$$\varphi_G(2)=2$$

$$\varphi_G(3)=2$$

$$\varphi_G(4)=1$$

$$\varphi_G(5)=1$$

$$\varphi_G(n) = 0 \text{ si } n > 5$$

Generating polynomial of the profile :

$$\mathcal{H}_G(z) = \sum_{n>0} \varphi_G(n) z^n = 1 + z + 2z^2 + 2z^3 + z^4 + z^5$$

Can be calculated using Pólya's theory

Age and profile of infinite permutation groups

• G: a permutation group acting on a countably infinite set E

- G: a permutation group acting on a countably infinite set E
- The generating polynomial becomes a generating series \mathcal{H}_G

Age and profile of infinite permutation groups

- G: a permutation group acting on a countably infinite set E
- The generating polynomial becomes a generating series \mathcal{H}_G
- The profile may take infinite values

Age and profile of infinite permutation groups

- G: a permutation group acting on a countably infinite set E
- The generating polynomial becomes a generating series \mathcal{H}_G
- The profile may take infinite values

Age, profile; conjecture of Cameron

→ Oligomorphic groups:

$$\varphi_G(n) < \infty \quad \forall n \in \mathbb{N}$$

Wreath product of two permutation groups

$$G \leq \mathfrak{S}_M, H \leq \mathfrak{S}_N$$

 $G \wr H$ has a natural action on $E = \bigsqcup_{i=1}^{N} E_i$, with card $E_i = M$.

Examples

• $G=\mathfrak{S}_\infty\wr\mathfrak{S}_\infty$ (action on a denumerable set of copies of \mathbb{N})

An orbit of degree $n \longleftrightarrow$ a partition of n $\varphi_G(n) = \mathscr{P}(n)$, the number of partitions of n

$$\mathcal{H}_G = \frac{1}{\prod_{i=1}^{\infty} (1 - z^i)}$$

Examples

• $G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_{\infty}$ (action on a denumerable set of copies of \mathbb{N}) An orbit of degree $n \longleftrightarrow$ a partition of n $\varphi_G(n) = \mathscr{P}(n)$, the number of partitions of n

$$\mathcal{H}_{G} = \frac{1}{\prod_{i=1}^{\infty} (1 - z^{i})}$$

• $G = \mathfrak{S}_m \wr \mathfrak{S}_\infty$ $\varphi_G(n) = \mathscr{P}_m(n)$, number of partitions into parts of size $\leq m$

$$\mathcal{H}_G = \frac{1}{\prod_{i=1}^m (1-z^i)}$$

• $G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_m$ $\varphi_G(n) = \mathscr{P}_m(n)$, number of partitions into at most m parts

$$\mathcal{H}_G = \frac{1}{\prod_{i=1}^m (1-z^i)}$$

Conjecture of Cameron

Conjecture (Cameron, 70s)

Age, profile; conjecture of Cameron

If a profile is bounded by a polynomial it is quasi-polynomial:

$$\varphi_{G}(n) = a_{s}(n)n^{s} + \cdots + a_{1}(n)n + a_{0}(n),$$

where the a_i 's are periodic functions.

Conjecture (Cameron, 70s)

If a profile is bounded by a polynomial it is quasi-polynomial:

$$\varphi_{G}(n) = a_{s}(n)n^{s} + \cdots + a_{1}(n)n + a_{0}(n),$$

where the a_i 's are periodic functions.

Note

$$\mathcal{H}_G = \frac{P(z)}{(1-z^{d_1})\cdots(1-z^{d_k})} \implies \varphi_G$$
 quasi-polynomial of degree at most $k-1$

Graded algebras

Definition: Graded algebra

 $A = \bigoplus_n A_n$ such that $A_i A_i \subseteq A_{i+1}$.

Example

 $A = \mathbb{K}[x_1, \dots, x_m]$ is a graded algebra.

 A_n : homogeneous polynomials of degree n

Graded algebras

Definition: Graded algebra

 $A = \bigoplus_n A_n$ such that $A_i A_i \subseteq A_{i+1}$.

Example

 $A = \mathbb{K}[x_1, \dots, x_m]$ is a graded algebra.

 A_n : homogeneous polynomials of degree n

Hilbert series

Hilbert $(A) = \sum_{n} \dim(A_n) z^n$

Graded algebras

Definition: Graded algebra

 $A = \bigoplus_{n} A_n$ such that $A_i A_i \subseteq A_{i+1}$.

Example

 $A = \mathbb{K}[x_1, \dots, x_m]$ is a graded algebra.

 A_n : homogeneous polynomials of degree n

Hilbert series

 $\mathsf{Hilbert}\,(A) = \sum_n \dim(A_n) z^n$

Proposition

A is finitely generated \implies Hilbert $(A) = \frac{P(z)}{(1-z^{d_1})\cdots(1-z^{d_k})}$

Example

Hilbert $(\mathbb{Q}[x, y, t^3]) = \frac{1}{(1-z)^2(1-z^3)}$

A strategy to prove Cameron's conjecture?

- G: an oligomorphic permutation group with polynomial profile
- Find a graded algebra $\mathbb{Q}\mathcal{A}(G) = \bigoplus_{n \geq 0} A_n$ such that

$$\mathcal{H}_{G} = \mathsf{Hilbert}\left(\mathbb{Q}\mathcal{A}(G)\right)$$

A strategy to prove Cameron's conjecture?

- G: an oligomorphic permutation group with polynomial profile
- Find a graded algebra $\mathbb{Q}\mathcal{A}(G) = \bigoplus_{n \geq 0} A_n$ such that

$$\mathcal{H}_G = \mathsf{Hilbert}\left(\mathbb{Q}\mathcal{A}(G)\right)$$

• Try to show that $\mathbb{Q}\mathcal{A}(G)$ is finitely generated

A strategy to prove Cameron's conjecture?

- G: an oligomorphic permutation group with polynomial profile
- Find a graded algebra $\mathbb{Q}\mathcal{A}(G) = \bigoplus_{n \geq 0} A_n$ such that

$$\mathcal{H}_G = \mathsf{Hilbert}\left(\mathbb{Q}\mathcal{A}(G)\right)$$

- Try to show that $\mathbb{Q}\mathcal{A}(G)$ is finitely generated
- Deduce:

$$\mathcal{H}_G = \frac{P(z)}{(1-z^{d_1})\cdots(1-z^{d_k})}$$

and thus the quasi-polynomiality of $\varphi_G(n)$

Cameron, 1980: the orbit algebra $\mathbb{Q}\mathcal{A}(G)$

- a commutative connected graded algebra $\mathbb{Q}\mathcal{A}(G) = \bigoplus_{n \geq 0} A_n$
- $\dim(A_n) = \varphi_G(n)$

Cameron, 1980: the orbit algebra $\mathbb{Q}\mathcal{A}(G)$

- a commutative connected graded algebra $\mathbb{Q}\mathcal{A}(G) = \bigoplus_{n \geq 0} A_n$
- $\dim(A_n) = \varphi_G(n)$

Vector space structure

- finite formal linear combinations of orbits (ex: $2o_1 + 5o_2 o_3$)
- graded by degree, with $\dim(A_n) = \varphi_G(n)$ by construction

Cameron, 1980: the orbit algebra $\mathbb{Q}A(G)$

Conjecture of Macpherson

- a commutative connected graded algebra $\mathbb{Q}\mathcal{A}(G) = \bigoplus_{n \geq 0} A_n$
- $\dim(A_n) = \varphi_G(n)$

Vector space structure

- finite formal linear combinations of orbits (ex: $2o_1 + 5o_2 o_3$)
- graded by degree, with $\dim(A_n) = \varphi_G(n)$ by construction

Product?

Defined on subsets:

$$ef = \begin{cases} e \cup f & \text{if } e \cap f = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

• $o = \{e_1, e_2, \ldots\} \longleftrightarrow e_1 + e_2 + \cdots$

Age, profile; conjecture of Cameron

Age, profile; conjecture of Cameron

$$= 0 +$$

Age, profile; conjecture of Cameron

$$=$$
 0 + 0 + $\frac{5}{4}$

$$=$$
 0 + 0 + $\frac{5}{4}$ + $\frac{5}{4}$ $\frac{2}{3}$

$$= 0 + 0 + \frac{5}{4} + \frac{5}{3} + \frac{5}{3} + \frac{5}{4} + \frac{5}{4} + \frac{5}{3} + \frac{5}{4} + \frac{5}{4} + \frac{5}{3} + \frac{5}$$

$$=$$
 2 (5) (2) (4) (3)

Age, profile; conjecture of Cameron

$$= 2 \frac{5}{4} + 2 \frac{5}{4} + \cdots$$

$$= 2 \frac{5}{4} \frac{1}{3} + 2 \frac{5}{4} \frac{1}{3} + \cdots + 1 \frac{5}{4} \frac{1}{3} + \cdots$$

In the end:

In the end:

Non trivial fact

Product well defined (and graded) on the space of orbits.

In the end:

Non trivial fact

Product well defined (and graded) on the space of orbits.

The orbit algebra of a permutation group

Conjecture of Macpherson

Example 1

If
$$G = \mathfrak{S}_{\infty}$$
, $\varphi_G(n) = 1$ for all n , and $\mathbb{Q}\mathcal{A}(G) = \mathbb{K}[x]$.

Example 1

If
$$G = \mathfrak{S}_{\infty}$$
, $\varphi_G(n) = 1$ for all n , and $\mathbb{Q}\mathcal{A}(G) = \mathbb{K}[x]$.

Example 2

$$G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_3$$
, recall that $\varphi_G(n) = \mathscr{P}_3(n)$.

Example 1

If
$$G = \mathfrak{S}_{\infty}$$
, $\varphi_G(n) = 1$ for all n , and $\mathbb{Q}\mathcal{A}(G) = \mathbb{K}[x]$.

Example 2

$$G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_3$$
, recall that $\varphi_G(n) = \mathscr{P}_3(n)$.

 $A_n =$ homogeneous symmetric polynomials of degree n in x_1, x_2, x_3

Conjecture of Macpherson

Example 1

If
$$G = \mathfrak{S}_{\infty}$$
, $\varphi_G(n) = 1$ for all n , and $\mathbb{Q}\mathcal{A}(G) = \mathbb{K}[x]$.

Example 2

$$G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_3$$
, recall that $\varphi_G(n) = \mathscr{P}_3(n)$.

 A_n = homogeneous symmetric polynomials of degree n in x_1, x_2, x_3

$$A o \mathbb{Q}\mathcal{A}(\mathfrak{S}_{\infty} \wr \mathfrak{S}_{3}) = \mathbb{K}[x_{1}, x_{2}, x_{3}]^{\mathfrak{S}_{3}}$$

Example 1

If
$$G = \mathfrak{S}_{\infty}$$
, $\varphi_G(n) = 1$ for all n , and $\mathbb{Q}\mathcal{A}(G) = \mathbb{K}[x]$.

Example 2

$$G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_3$$
, recall that $\varphi_G(n) = \mathscr{P}_3(n)$.

 A_n = homogeneous symmetric polynomials of degree n in x_1, x_2, x_3

$$ightarrow \mathbb{Q}\mathcal{A}(\mathfrak{S}_{\infty}\wr\mathfrak{S}_{3})=\mathbb{K}[x_{1},x_{2},x_{3}]^{\mathfrak{S}_{3}}$$

More generally, for H subgroup of \mathfrak{S}_m , $\mathbb{Q}\mathcal{A}(\mathfrak{S}_{\infty} \wr H) = \mathbb{K}[x_1, \dots, x_m]^H$, the algebra of invariants of H

Overview and conjecture of Macpherson

Overview and conjecture of Macpherson

Conjecture (Macpherson, 1985)

Profile of G polynomial $\iff \mathbb{Q}\mathcal{A}(G)$ finitely generated

Proof

Finite index subgroups

Theorem

Let H be a finite index subgroup of G.

- The profiles of G and H are asymptotically equivalent
- $\mathbb{Q}A(H)$ finitely generated $\implies \mathbb{Q}A(G)$ finitely generated

Finite index subgroups

Theorem

Let H be a finite index subgroup of G.

- The profiles of G and H are asymptotically equivalent
- $\mathbb{Q}\mathcal{A}(H)$ finitely generated $\implies \mathbb{Q}\mathcal{A}(G)$ finitely generated

Proof.

Uses invariant theory, and the ideas of the proof of Hilbert's theorem.

Finite index subgroups

Theorem

Let H be a finite index subgroup of G.

- The profiles of G and H are asymptotically equivalent
- $\bullet \ \mathbb{Q} \mathcal{A}(H) \ \text{finitely generated} \quad \Longrightarrow \quad \mathbb{Q} \mathcal{A}(G) \ \text{finitely generated}$

Proof.

Uses invariant theory, and the ideas of the proof of Hilbert's theorem.

Application: reduction of Macpherson's conjecture

Without loss of generality, we may assume for instance that G has no finite orbit.

But there will be more...

Definition: Block system

Partition of E such that each part is globally mapped onto another one (or itself) by every element of *G* (see previous examples)

Definition: Block system

Partition of E such that each part is globally mapped onto another one (or itself) by every element of G (see previous examples)

Relevant notion?

Definition: Block system

Partition of E such that each part is globally mapped onto another one (or itself) by every element of G (see previous examples)

Relevant notion?

Theorem (Macpherson)

If G is **primitive** (i.e. admits no non trivial block system) then G has its profile equal to 1 or exponential.

Definition: Block system

Partition of E such that each part is globally mapped onto another one (or itself) by every element of G (see previous examples)

Relevant notion?

Theorem (Macpherson)

If G is **primitive** (i.e. admits no non trivial block system) then G has its profile equal to 1 or exponential.

ightarrow The groups we are interested in have a constantly equal to 1 profile or have a block system.

The complete primitive groups

Theorem (Classification, Cameron)

There are exactly 5 complete groups of constantly equal to 1 profile.

The complete primitive groups

Theorem (Classification, Cameron)

There are exactly 5 complete groups of constantly equal to 1 profile.

- $\operatorname{Aut}(\mathbb{Q})$: automorphisms of the rational chain (increasing functions)
- $Rev(\mathbb{Q})$: generated by $Aut(\mathbb{Q})$ and one reflection
- Aut(\mathbb{Q}/\mathbb{Z}), preserving the circular order
- ullet Rev (\mathbb{Q}/\mathbb{Z}) : generated by Aut (\mathbb{Q}/\mathbb{Z}) and one reflection
- ullet \mathfrak{S}_{∞} : the symmetric group

The complete primitive groups

Theorem (Classification, Cameron)

There are exactly 5 complete groups of constantly equal to 1 profile.

- Aut(Q): automorphisms of the rational chain (increasing functions)
- ullet Rev($\mathbb Q$) : generated by Aut($\mathbb Q$) and one reflection
- Aut(\mathbb{Q}/\mathbb{Z}), preserving the circular order
- ullet Rev (\mathbb{Q}/\mathbb{Z}) : generated by Aut (\mathbb{Q}/\mathbb{Z}) and one reflection
- ullet \mathfrak{S}_{∞} : the symmetric group

Well known, nice groups.

In particular, their orbit algebra is finitely generated.

Proof

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system B(G)

Finite blocks as big as possible, and some infinite (smallest) ones

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system B(G)

Finite blocks as big as possible, and some infinite (smallest) ones

E divided into G-orbits of blocks:

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system B(G)

Finite blocks as big as possible, and some infinite (smallest) ones

E divided into G-orbits of blocks:

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system B(G)

Finite blocks as big as possible, and some infinite (smallest) ones

E divided into G-orbits of blocks:

Or

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system B(G)

Finite blocks as big as possible, and some infinite (smallest) ones

E divided into G-orbits of blocks:

- Reduction \rightarrow orbits instead of blocks

Proof 00**00000**000000

Or

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system B(G)

Finite blocks as big as possible, and some infinite (smallest) ones

E divided into G-orbits of blocks:

- Reduction \rightarrow orbits instead of blocks
- $B(G) \rightarrow$ restrictions are primitive groups

Or

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system B(G)

Finite blocks as big as possible, and some infinite (smallest) ones

E divided into G-orbits of blocks:

- Reduction → orbits instead of blocks
- $B(G) \rightarrow$ restrictions are primitive groups

Or

- $B(G) \rightarrow$ action on the blocks is primitive

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system B(G)

Finite blocks as big as possible, and some infinite (smallest) ones

E divided into G-orbits of blocks:

- Reduction \rightarrow orbits instead of blocks
- $B(G) \rightarrow$ restrictions are primitive groups

Or

- $B(G) \rightarrow$ action on the blocks is primitive Actually, G acts on the blocks as \mathfrak{S}_{∞}

Case of 2 infinite orbits

$$E_1 \sqcup E_2$$
 , $G_{|E_1} = G_1$, $G_{|E_2} = G_2$

Synchronization between them ?

Case of 2 infinite orbits

$$E_1 \sqcup E_2$$
 , $G_{|E_1} = G_1$, $G_{|E_2} = G_2$

Synchronization between them?

Evaluated by
$$G_1/N_1 = G_2/N_2$$
, where $N_i = \text{Fix}(G, E_j)_{|E_i}$

Case of 2 infinite orbits

$$E_1 \sqcup E_2$$
 , $G_{|E_1} = G_1$, $G_{|E_2} = G_2$

Synchronization between them ?

Evaluated by
$$G_1/N_1 = G_2/N_2$$
, where $N_i = Fix(G, E_j)_{|E_i|}$

Lemma

The five complete groups of profile 1 have at most one non trivial normal subgroup.

 \rightarrow very few possibilities

Case of 2 infinite orbits

$$E_1 \sqcup E_2$$
 , $G_{|E_1} = G_1$, $G_{|E_2} = G_2$

Synchronization between them ?

Evaluated by
$$G_1/N_1 = G_2/N_2$$
, where $N_i = Fix(G, E_j)_{|E_i|}$

Lemma

The five complete groups of profile 1 have at most one non trivial normal subgroup.

 \rightarrow very few possibilities

Example

If $G_1 = G_2 = \mathfrak{S}_{\infty}$, the actions are either independant or totally synchronized. One may assume safely, for our purposes, the same about the other four groups.

Proof

Works on orbits of blocks \rightarrow essentially independant in B(G)

Proof 00000000000

Works on orbits of blocks \rightarrow essentially independant in B(G)

Convenient fact if $E = E_1 \sqcup E_2$

 G_1 and G_2 not synchronized $\Longrightarrow \mathbb{Q}\mathcal{A}(G) = \mathbb{Q}\mathcal{A}(G_1) \otimes \mathbb{Q}\mathcal{A}(G_2)$

Works on orbits of blocks \rightarrow essentially independant in B(G)

Convenient fact if $E = E_1 \sqcup E_2$

 G_1 and G_2 not synchronized $\Longrightarrow \mathbb{Q}\mathcal{A}(G) = \mathbb{Q}\mathcal{A}(G_1) \otimes \mathbb{Q}\mathcal{A}(G_2)$

ightarrow Orbits of blocks could be treated separately !

Proof 0000000000000

Application to the canonical block system

Works on orbits of blocks \rightarrow essentially independant in B(G)

Convenient fact if
$$E = E_1 \sqcup E_2$$

 G_1 and G_2 not synchronized $\Longrightarrow \mathbb{Q} \mathcal{A}(G) = \mathbb{Q} \mathcal{A}(G_1) \otimes \mathbb{Q} \mathcal{A}(G_2)$

 \rightarrow Orbits of blocks could be treated separately!

Only essential remaining case: infinite number of finite blocks

Proof 0000000000000

Works on orbits of blocks \rightarrow essentially independent in B(G)

Convenient fact if
$$E = E_1 \sqcup E_2$$

 G_1 and G_2 not synchronized $\Longrightarrow \mathbb{Q}\mathcal{A}(G) = \mathbb{Q}\mathcal{A}(G_1) \otimes \mathbb{Q}\mathcal{A}(G_2)$

 \rightarrow Orbits of blocks could be treated separately!

Only essential remaining case: infinite number of finite blocks

• Wreath products \rightarrow OK

Works on orbits of blocks \rightarrow essentially independent in B(G)

Convenient fact if
$$E = E_1 \sqcup E_2$$

$$G_1$$
 and G_2 not synchronized $\Longrightarrow \mathbb{Q}\mathcal{A}(G) = \mathbb{Q}\mathcal{A}(G_1) \otimes \mathbb{Q}\mathcal{A}(G_2)$

 \rightarrow Orbits of blocks could be treated separately!

Only essential remaining case: infinite number of finite blocks

- Wreath products \rightarrow OK
- Direct products → OK

Works on orbits of blocks \rightarrow essentially independent in B(G)

Convenient fact if
$$E = E_1 \sqcup E_2$$

$$G_1$$
 and G_2 not synchronized $\Longrightarrow \mathbb{Q}\mathcal{A}(G) = \mathbb{Q}\mathcal{A}(G_1) \otimes \mathbb{Q}\mathcal{A}(G_2)$

 \rightarrow Orbits of blocks could be treated separately!

Only essential remaining case: infinite number of finite blocks

- Wreath products \rightarrow OK
- Direct products → OK
- General case ?

The "hard case": transitive block system of finite blocks

Proof

Definition: Tower of G

 H_0 H_1 H_2 ... where H_i is the restriction to the block i+1 of the subgroup of G that stabilizes all the blocks and acts trivially on the first i blocks.

The "hard case": transitive block system of finite blocks

Definition: Tower of G

 H_0 H_1 H_2 ... where H_i is the restriction to the block i+1 of the subgroup of G that stabilizes all the blocks and acts trivially on the first i blocks.

Proposition 1

Same tower \Longrightarrow Same orbit algebra

Proof

The "hard case": transitive block system of finite blocks

Definition: Tower of G

 H_0 H_1 H_2 ... where H_i is the restriction to the block i+1 of the subgroup of G that stabilizes all the blocks and acts trivially on the first i blocks.

Proposition 1

Same tower \Longrightarrow Same orbit algebra

Proposition 2

The tower of G must be of shape : $H_0 H H H \dots$

The "hard case": transitive block system of finite blocks

Proof 000000000000

Definition: Tower of G

 H_0 H_1 H_2 ... where H_i is the restriction to the block i+1 of the subgroup of G that stabilizes all the blocks and acts trivially on the first i blocks.

Proposition 1

Same tower \Longrightarrow Same orbit algebra

Proposition 2

The tower of G must be of shape : $H_0 H H H \dots$ Thus, G has the same orbit algebra as $\frac{H_0}{H} \times H \wr \mathfrak{S}_{\infty}$, which is of finite index over $H \wr \mathfrak{S}_{\infty}$.

Proof

The "hard case": transitive block system of finite blocks

Sketch of proof.

1. Finite case of four blocks only : G has tower H_0 H_1 H_2 H_3 \Rightarrow H_1 = H_2

Proof

The "hard case": transitive block system of finite blocks

Sketch of proof.

- 1. Finite case of four blocks only : G has tower H_0 H_1 H_2 H_3 \Rightarrow H_1 = H_2
- 2. Prove the infinite case by restricting to every subset of four consecutive blocks

The "hard case": transitive block system of finite blocks

Proof 0000000**0**0000

Sketch of proof.

- 1. Finite case of four blocks only: G has tower H_0 H_1 H_2 $H_3 \Rightarrow H_1 = H_2$
- 2. Prove the infinite case by restricting to every subset of four consecutive blocks

Conclusion about this case

Proof 0000000**0**0000

The "hard case": transitive block system of finite blocks

Sketch of proof.

- 1. Finite case of four blocks only: G has tower H_0 H_1 H_2 $H_3 \Rightarrow H_1 = H_2$
- 2. Prove the infinite case by restricting to every subset of four consecutive blocks

Conclusion about this case

 Restrictions to orbits of finite blocks may be thought of as wreath products for the sake of proving the conjecture

Proof

The "hard case": transitive block system of finite blocks

Sketch of proof.

- 1. Finite case of four blocks only: G has tower H_0 H_1 H_2 $H_3 \Rightarrow H_1 = H_2$
- 2. Prove the infinite case by restricting to every subset of four consecutive blocks

Conclusion about this case

- Restrictions to orbits of finite blocks may be thought of as wreath products for the sake of proving the conjecture
- Solves the issue of possible finite synchronizations between different orbits of blocks

Proof

Proof

Recap: proof of the conjecture of Macpherson

1. B(G) canonical block system

- 1. B(G) canonical block system
- 2. Successive reductions to a subgroup of final index

- 1. B(G) canonical block system
- 2. Successive reductions to a subgroup of final index
 - "no" finite orbit of elements

Proof

- 1. B(G) canonical block system
- 2. Successive reductions to a subgroup of final index
 - "no" finite orbit of elements
 - infinite blocks are primitive orbits

- 1. B(G) canonical block system
- 2. Successive reductions to a subgroup of final index
 - "no" finite orbit of elements
 - infinite blocks are primitive orbits
 - G acts as a wreath product on the orbits of finite blocks

- 1. B(G) canonical block system
- 2. Successive reductions to a subgroup of final index
 - "no" finite orbit of elements
 - infinite blocks are primitive orbits
 - G acts as a wreath product on the orbits of finite blocks
- 3. After reduction, the orbits of blocks of B(G) can be treated separately

- 1. B(G) canonical block system
- 2. Successive reductions to a subgroup of final index
 - "no" finite orbit of elements
 - infinite blocks are primitive orbits
 - G acts as a wreath product on the orbits of finite blocks
- 3. After reduction, the orbits of blocks of B(G) can be treated separately

Conclusion

The orbit algebra of the reduced group is a tensor product of algebras of type $\mathbb{K}[x]$, $\mathbb{K}[X]^{G'}$ with some G' finite, and possibly a finite dimensional algebra.

- 1. B(G) canonical block system
- 2. Successive reductions to a subgroup of final index
 - "no" finite orbit of elements
 - infinite blocks are primitive orbits
 - G acts as a wreath product on the orbits of finite blocks
- 3. After reduction, the orbits of blocks of B(G) can be treated separately

Conclusion

The orbit algebra of the reduced group is a tensor product of algebras of type $\mathbb{K}[x]$, $\mathbb{K}[X]^{G'}$ with some G' finite, and possibly a finite dimensional algebra.

The orbit algebra of the initial group is thus finitely generated (using Hilbert's theorem).

- 1. B(G) canonical block system
- 2. Successive reductions to a subgroup of final index
 - "no" finite orbit of elements
 - infinite blocks are primitive orbits
 - G acts as a wreath product on the orbits of finite blocks
- 3. After reduction, the orbits of blocks of B(G) can be treated separately

Conclusion

The orbit algebra of the reduced group is a tensor product of algebras of type $\mathbb{K}[x]$, $\mathbb{K}[X]^{G'}$ with some G' finite, and possibly a finite dimensional algebra.

The orbit algebra of the initial group is thus finitely generated (using Hilbert's theorem).

→ The conjectures of Macpherson and Cameron hold!

Stronger result: Cohen-Macauley algebra

Proof 0000000000000

• Finite generation of the orbit algebra $\Rightarrow \mathcal{H}_G = \frac{P(z)}{(1-z^{d_1})\cdots(1-z^{d_k})}$

Stronger result : Cohen-Macauley algebra

- Finite generation of the orbit algebra $\Rightarrow \mathcal{H}_G = \frac{P(z)}{(1-z^{d_1})\cdots(1-z^{d_k})}$
- Case of Cohen-Macauley algebras (free finite module over a free finitely generated algebra) : $\exists P(z)$ with positive coefficients

Stronger result : Cohen-Macauley algebra

- Finite generation of the orbit algebra $\Rightarrow \mathcal{H}_G = \frac{P(z)}{(1-z^{d_1})\cdots(1-z^{d_k})}$
- Case of Cohen-Macauley algebras (free finite module over a free finitely generated algebra) : $\exists P(z)$ with positive coefficients
- Once again, it is possible to adapt a proof of invariant theory to obtain that the orbit algebra is indeed a Cohen-Macauley algebra

Thank you for your attention!

Context

- G permutation group of a countably infinite set E
- Profile φ_G : counts the orbits of finite subsets of E
- **Hypothesis** : $\varphi_G(n)$ bounded by a polynomial
- Conjecture (Cameron) : quasi-polynomiality of φ_G
- Conjecture (Macpherson): finite generation of the orbit algebra

Results

- Both conjectures hold
- The orbit algebra is a Cohen-Macauley algebra

Question

On what algebra?

"Speak, friend..."

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

 \rightarrow C_3 acts on monomials

"Speak, friend..."

Example 3

$$G' = C_3$$
 acting on (non empty) subsets

$$\mathbb{K}[\ x\]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} \ ?$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

 $G' = C_3$ acting on (non empty) subsets

$$\mathbb{K}[\ x\]^{G'} \quad \longleftrightarrow \quad \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} \ ?$$

x

 $x \stackrel{\bullet}{\circ}$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

 $G' = C_3$ acting on (non empty) subsets

$$\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$$
?

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

 $G' = C_3$ acting on (non empty) subsets

$$\mathbb{K}[\ x\]^{G'} \quad \longleftrightarrow \quad \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} \ ?$$

"Speak, friend..."

Example 3

$$G'=C_3$$
 acting on (non empty) subsets $\mathbb{K}[\ x\]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 imes \mathfrak{S}_{\infty}$?

$$O(x_{\begin{subarray}{c} \end{subarray}})$$

$$O(x_{\begin{subarray}{c} \end{subarray}})$$

"Speak, friend..."

Example 3

$$G' = C_3$$
 acting on (non empty) subsets $\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$?

"Speak, friend..."

Example 3

$$G'=C_3$$
 acting on (non empty) subsets $\mathbb{K}[x]^{G'}\longleftrightarrow \mathsf{Orbit}$ algebra of $C_3\times\mathfrak{S}_\infty$?

$$\mathsf{O}(\ x \ \bigcirc).\mathsf{O}(\ x \ \bigcirc) = \ \mathsf{O}(\ x \ \bigcirc)$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

 $G' = C_3$ acting on (non empty) subsets $\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$?

$$\mathsf{O}(\ x \ \bigcirc) . \mathsf{O}(\ x \ \bigcirc) = \ \mathsf{O}(\ x \ \bigcirc x \ \bigcirc) + \ \mathsf{O}(\ x \ \bigcirc x \ \bigcirc)$$

"Speak, friend..."

Example 3

$$G' = C_3$$
 acting on (non empty) subsets

$$\mathbb{K}[\ x\]^{G'} \quad \longleftrightarrow \quad \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} \ ?$$

$$\mathsf{O}(\ x \ \bigcirc).\mathsf{O}(\ x \ \bigcirc) = \ \mathsf{O}(\ x \ \bigcirc x \ \bigcirc) + \mathsf{O}(\ x \ \bigcirc x \ \bigcirc) + \mathsf{O}(\ x \ \bigcirc x \ \bigcirc)$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

 $G' = C_3$ acting on (non empty) subsets

$$\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$$
?

$$O(x \stackrel{\bullet}{\otimes}).O(x \stackrel{\bullet}{\otimes}) = O(x \stackrel{\bullet}{\otimes} x \stackrel{\bullet}{\otimes}) + O(x \stackrel{\bullet}{\otimes} x \stackrel{\bullet}{\otimes}) + O(x \stackrel{\bullet}{\otimes} x \stackrel{\bullet}{\otimes})$$

"Speak, friend..."

Example 3

$$G' = C_3$$
 acting on (non empty) subsets

$$\mathbb{K}[\ x\]^{G'} \quad \longleftrightarrow \quad \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} \ ?$$

$$O(x \circ) \cdot O(x \circ) = O(x \circ x \circ) + O(x \circ x \circ) + O(x \circ x \circ)$$

"Speak, friend..."

Example 3

$$G' = C_3$$
 acting on (non empty) subsets

$$\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$$
?

$$O(x \stackrel{\bullet}{\otimes}).O(x \stackrel{\bullet}{\otimes}) = O(x \stackrel{\bullet}{\otimes} x \stackrel{\bullet}{\otimes}) + O(x \stackrel{\bullet}{\otimes} x \stackrel{\bullet}{\otimes}) + O(x \stackrel{\bullet}{\otimes} x \stackrel{\bullet}{\otimes})$$

"Speak, friend..."

Example 3

$$G' = C_3$$
 acting on (non empty) subsets

$$\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$$
?

$$O(x \circ) \cdot O(x \circ) = O(x \circ x \circ) + O(x \circ x \circ) + O(x \circ x \circ)$$

$$O(\begin{picture}(60,0)(10,0$$

"Speak, friend..."

Example 3

$$G' = C_3$$
 acting on (non empty) subsets

$$\mathbb{K}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$$
?

$$\mathsf{O}(\ x \ \bigcirc) . \mathsf{O}(\ x \ \bigcirc) = \ \mathsf{O}(\ x \ \bigcirc x \ \bigcirc) + \mathsf{O}(\ x \ \bigcirc x \ \bigcirc) + \mathsf{O}(\ x \ \bigcirc x \ \bigcirc)$$

$$O(\begin{tabular}{c} \bigcirc (\begin{tabular}{c} \bigcirc (\begin{tabular}{c}$$

Examples of orbit algebras (2)

More generally, for H subgroup of \mathfrak{S}_m :

• $G = \mathfrak{S}_{\infty} \wr H$: $\mathbb{Q}\mathcal{A}(G) = \mathbb{K}[x_1,\ldots,x_m]^H$, the algebra of invariants of H $\mathbb{Q}\mathcal{A}(G)$ is finitely generated by Hilbert's theorem.

• $G = H \wr \mathfrak{S}_{\infty}$: $\mathbb{Q}A(G)$ = the free algebra generated by the age of H

The "hard" case: case of four blocks

Lemma to prove

G has tower H_0 H_1 H_2 $H_3 \Rightarrow H_1 = H_2$

Lemma

In the general case:

 $Fix_G(B_1, \ldots, B_n)$ acts on the remaining blocks as \mathfrak{S}_{∞} (due to the absence of normal subgroup of finite index of \mathfrak{S}_{∞}).

Proof.

An element $s \in G$ stabilizing the blocks \leftrightarrow a quadruple $g \in H_1 \rightarrow \exists (1, g, h, k), h, k \in H_1.$

Let σ be an element of G that permutes the first two blocks and fixes the other two.

Conjugation of x by σ in $G \rightarrow y = (g', 1, h, k)$ Then: $x^{-1}y = (g', g^{-1}, 1, 1)$

By arguing that the tower does not depend on the ordering of the blocks, g^{-1} and therefore g are in H_2 .