Zynq를 활용한 SoC / FPGA 설계

HDL 및 HLS를 이용한 설계 이해 및 실습

CONTENTS

- **01.** SoC 설계 이론
- 02. ZYNQ를 이용한 SoC 설계 이해
- **03** ZYNQ를 이용한 설계 실습(HDL)
- 04. HLS를 이용한 FPGA 설계

SoC 설계 이론

CONTENTS

- 01. SoC(System On Chip)
- 02. IP, 재사용 기반 설계
- 03. Zynq Platform
- 04. AXI AMBA Protocol

01. SoC(System on Chip)

• 시스템을 단일 칩에 구현한 집적회로(IC)

시스템(PCB 수준) Programmable Processor, 메모리, 버스, SW

Challenges in SoC

- Time-to-market ↓
 - 빠른 시장 진입 시간
 - 개발, 검증 소요기간 단축 필요
- →주어진 시간이 짧음

- 시스템 복잡성 ↑
 - 높은 집적도, 많은 컴포넌트
- →소요되는 시간은 매우 큼

생산성 격차 (productivity gap) 증가

Gap is increasing

^{* @ \$150}K / Staff Yr. (In 1997 Dollars)

생산성 증가율 < 시스템 복잡성 증가율

02. IP, 재사용 기반 설계

- IP(Intellectual Property, 설계 자산)
- 기능 블록 단위로 HW IP와 SW IP로 나뉨
- HW IP
 - Soft IP: Verilog, VHDL 등의 HW 기술언어로 구현
 - Firm IP: 합성된 게이트 수준의 Netlist
 - Hard IP: 공정 규칙에 따라 Layout이 완성된 IP

IP 형식	설계 자료 형태	최적화 정도	공정 의존도	Reusability
Hard	GDSII	매우 높음	공정에 절대 의존	낮음
Firm	Targeted netlist	높음	공정 의존	높음
Soft	RTL	낮음	공정 의존도 없음	매우 높음

HW IP 종류

IP ReUse

- IP 재사용
 - 설계 시 검증된 IP를 사용
 - 수정, 재검증 최소화
- **→**시간, 비용 절감
- 시스템 복잡도 증가
 - IP 재사용 않을 경우 비용 매우 크게 증가

Development cost

Design Reuse

- BBD(Block-Based-Design)
 - 검증된 IP로 시스템 구성
 - IP 재사용
- IP 재사용의 한계
- →구성, 재검증 비용
- PBD(Platform-Based-Design)
 - 범용적 플랫폼 구성
 - 플랫폼 재사용

Platform Based Design

- 같은 분야(application space)일 경우 하나의 플랫폼을 여러 제품에 응용 가능
- ex) 블루투스 플랫폼
 - 이어폰/스피커
 - 마우스/키보드

source: University of British Columbia

Processor + FPGA

- 프로세서 + FPGA
 - 외부 인터페이스를 사용해 프로세서와 FPGA 간 연결
 - HW IP를 FPGA에 구현하여 높은 성능, IP 추가 변경 용이
- 단점
 - Host, FPGA 보드를 각각 사용하는 경우 많은 비용
 - 인터페이스, 부품 선정에 대한 시간적 소모

- PCIe
- AMBA

Zynq Platform

- Software & Hardware Programmable
 - 개발 시간 단축
 - Flexibility(제품의 유연성)
 - 가격, 성능 이점

Platform Comparison

- Zynq
 - 성능, 전력 소모량 이점
 - 개발 시 리스크 감소, 수정 가능해 유연성 높음

Zynq-7000 SoC Family

			Cost-Optimized Devices			Mid-Range Devices						
		Device Name	Z-7007S	Z-7012S	Z-7014S	Z-7010	Z-7015	Z-7020	Z-7030	Z-7035	Z-7045	Z-7100
		Part Number	XC7Z007S	XC7Z012S	XC7Z014S	XC7Z010	XC7Z015	XC7Z020	XC7Z030	XC7Z035	XC7Z045	XC7Z100
			Single-Core			Dual-Core ARM		Dual-Core ARM				
		Processor Core	ARM® Cortex™-A9 MPCore™ Cortex-A9 MPCore						9 MPCore			
			Up to 766MHz Up to 866MHz					Up to 1GHz ⁽¹⁾				
bS	Pr	rocessor Extensions		1	NEON™ SIM					oint Unit per p	rocessor	
Processing System (PS)		L1 Cache	32KB Instruction, 32KB Data per processor									
ter		L2 Cache	512KB									
Sys		On-Chip Memory						256KB				
ng		Memory Support ⁽²⁾					•	DR3L, DDR2				
essi	External Static	Memory Support ⁽²⁾						ad-SPI, NAN	•			
000		DMA Channels					,	dedicated t	•			
P		Peripherals	2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 4x 32b GPIO									
	Peripherals w/ built-in DMA ⁽²⁾											
	Security ⁽³⁾		RSA Authentication of First Stage Boot Loader,									
	Security		AES and SHA 256b Decryption and Authentication for Secure Boot									
	Processing System to		2x AXI 32b Master, 2x AXI 32b Slave									
	Programmable Logic Interface Ports		4x AXI 640/320 Memory									
	(Primary Interfaces & Interrupts Only)		AXI 64b ACP 16 Interrupts									
			Artix®-7	A	A	Artix-7				Vintar 7	Vintou 7	Vintou 7
	/3	Series PL Equivalent Logic Cells	23K	Artix-7 55K	Artix-7 65K	28K	Artix-7 74K	Artix-7 85K	Kintex®-7 125K	Kintex-7 275K	Kintex-7 350K	Kintex-7 444K
	Lo	ok-Up Tables (LUTs)	14,400	34,400	40,600	17,600	46,200	53,200	78,600	171,900	218,600	277,400
(PL)	LOC		28,800	68,800	81,200	35,200	92,400	106,400	157,200	343,800	437,200	554,800
gic (Flip-Flops Total Block RAM		1.8Mb	2.5Mb	3.8Mb	2.1Mb	3.3Mb	4.9Mb	9.3Mb	17.6Mb	19.2Mb	26.5Mb
Log	(# 36Kb Blocks)		(50)	(72)	(107)	(60)	(95)	(140)	(265)	(500)	(545)	(755)
ole	DSP Slices		66	120	170	80	160	220	400	900	900	2,020
mal	PCI Express®		_	Gen2 x4	_	_	Gen2 x4	_	Gen2 x4	Gen2 x8	Gen2 x8	Gen2 x8
m E	Analog Mixed Signal (AMS) / XADC ⁽²⁾											
Programmable Logic (PL)	Security ⁽³⁾		AES & SHA 256b Decryption & Authentication for Secure Programmable Logic Config									
Pro		Commercial		-1 -1				-1			-1	
	Speed Grades	Extended		-2			-2,-3		-2,-3		-2	
		Industrial		-1, -2			-1, -2, -1L		-1, -2, -2L -1, -2, -2l			-1 -2 -21

Zynq SoC Block Design

Processing System

- APU
 - ARM Cortex-A9
 - FPU
 - Cache Memory
- I/O Peripherals
- Memory Interface
- Interconnect
- Clock generation

APU

- ARM Cortex-A9 Processor
 - Up to 1GHz
- NEON(MPE) / FPU
- Memory Manage Unit(MMU)
- L1 캐시, L2 캐시
- On Chip Memory
- Snoop Control Unit(SCU)
 - 코어, L1-L2캐시, OCM 브릿지

Memory Map

- Cortex-A9 Processor
- 32bit Addressing
 - 4GB Address map
- 모든 PS, PL 주변장치
 - Cortex-A9 프로세서 메모리 매핑
- 0x4000_0000: PL AXI Slave0
- 0x0010 0000: DRAM

FFFC_0000 to FFFF_FFFF	ОСМ
FD00_0000 to FFFB_FFFF	Reserved
FC00_0000 to FCFF_FFFF	Quad SPI linear address
F8F0_3000 to FBFF_FFFF	Reserved
F890_0000 to F8F0_2FFF	CPU Private registers
F801_0000 to F88F_FFFF	Reserved
F800_1000 to F880_FFFF	PS System registers,
F800_0C00 to F800_0FFF	Reserved
F800_0000 to F800_0BFF	SLCR Registers
E600_0000 to F7FF_FFFF	Reserved
E100_0000 to E5FF_FFFF	SMC Memory
E030_0000 to E0FF_FFFF	Reserved
E000_0000 to E02F_FFFF	IO Peripherals
C000_0000 to DFFF_FFFF	Reserved
8000_0000 to BFFF_FFFF	PL (MAXI _GP1)
4000_0000 to 7FFF_FFFF	PL (MAXI_GP0)
0010_0000 to 3FFF_FFFF	DDR (address not filtered by SCU
0004_0000 to 000F_FFFF	DDR (address filtered by SCU)
0000_0000 to 0003_FFFF	ОСМ

Peripherals

- MIO PS와 54pin 연결
- EMIO PL 영역의 외부 핀 연결

- USB 2.0 OTG/Device/Host
- Tri-mode GigE (10/100/1000)
- SD/SDIO Interface
- SPI, CAN, UART, I2C

Programmable Logic

- Configurable Logic Block(CLB)
 - Slice 4 X LUT, 8 X FF
 - Look-Up Table(LUT)
 - Flip-Flop: 1'b register
- Input/Output Blocks(IOBs)

Programmable Logic

- Look-Up Table(LUT)
 - Logic Function
 - ROM(small)
 - RAM(small)
 - Shift Register
- Flip-Flop
 - Sequential circuit(순차 회로)의 1 bit 래치

Programmable Logic

- Block RAM
 - RAM
 - ROM
 - FIFO buffer

- DSP48E1(ALU)
 - 3가지 블록의 조합
 - $p = a \times (b + d) + c$
 - p += $a \times (b + d)$

PS-PL Interface

- AXI Interface
 - 32 bit Master-Slave interface
 - High Performance ports
 - 64 bit AXI Slave(ACP) port
- DMA, interrupts, event signals
- EMIO
- Clock(4 PS→PL), Resets(4 PS→PL)
- Configuration

PS-PL AXI Interface

Interface Name	Interface Description	Master	Slave
M_AXI_GP0		PS	PL
M_AXI_GP1	General Purpose (AXI_GP)	PS	PL
S_AXI_GP0		PL	PS
S_AXI_GP1	General Purpose (AXI_GP)	PL	PS
S_AXI_ACP	Accelerator Coherency Port (ACP), cache coherent transaction	PL	PS
S_AXI_HP0	High Performance Ports (AXI_HP) with	PL	PS
S_AXI_HP1	read/write FIFOs.	PL	PS
S_AXI_HP2	(Note that AXI_HP interfaces are sometimes referred to as AXI Fifo Interfaces, or AFIs).	PL	PS
S_AXI_HP3	referred to as AAI Filo litterfaces, of AFIS).	PL	PS

04. AXI AMBA Protocol

- AMBA ARM에서 발표한 버스 규격
 - Advanced Microcontroller Bus Architecture
- AMBA 2.0
 - AHB (the Advanced High-performance bus)
 - ASB (the Advanced System Bus)
 - APB (the Advanced Peripheral Bus)
- AMBA 3.0
 - AXI (the Advanced extensible Interface)
- AMBA 4.0
 - AXI-4
 - AXI-4 Lite
 - AXI-4 Stream

AXI Protocol 특징

- Address/Control phase와 data phase 구분
- Byte strobe를 이용한 unaligned data 전송
- Start address 만으로 burst-based transactions를 사용
- Read와 Write data channel이 분리되고, Direct Memory Access(DMA) 기능 제공.
- Multiple outstanding address를 발생할 수 있다.
- Out-of-order transaction을 지원

AXI4 Variation

- AXI4 Address/Data
 - Up to 256 data Transfer / 1 transaction
- AXI4-Lite Address/Data
 - 1 data transfer / 1 transaction
- AXI4-Stream Data
 - Unlimited burst

AXI4

- 5개 채널로 구성
 - Write Address Channel
 - Write Data Channel
 - Write Response Channel
 - Read Address Channel
 - Read Data Channel
- Single address, multiple data
 - Burst up to 256 cycle
- Data width
 - 8, 16,···256, 512, 1024

AXI4-Lite

- No data burst
 - Single data transaction
- Data width 32 or 64 bits only
 - Xilinx IP supports 32-bits
- Small footprint

AXI4 Stream

Write data channel only

No burst cycle limit

AXI Write Transaction

- Master
 - sets AWADDR
 - sets AWVALID up
- Slave
 - sets AWREADY
- Master
 - clear AWVALID
 - transfer WDATA
 - sets WLAST up when transfer finished

AXI Read Transaction

- Master
 - sets ARADDR
 - sets ARVALID up
- Slave
 - sets ARREADY
 - sets RDATA
 - sets RLAST

AXI4, AXI4-Lite

AXI4	AXI4-Lite		
WDATA	WDATA		
WSTORB	WSTORB		
WLAST			
WUSER			
WVALID			
WREADY			

Write Data

(14	AXI4-Lite
D	

AV14	AXI4-LITE	
BID		
BRESP	BRESP	
BUSER		
BVALID		
BREADY		

Write Resp.

AXI4	AXI4-Lite		
ARID			
ARA	DDR		
ARLEN			
ARSIZE			
ARBURST			
ARLOCK			
ARCACHE	ARCACHE		
ARPROT	ARPROT		
ARQOS			
ARREGION			
ARUSER			
ARVALID			
ARREADY			

Read Address

AXI4	AXI4-Lite			
RID				
RDATA	RDATA			
RRESP	RRESP			
RLAST				
RUSER				
RVALID				
RREADY				

Read Data

ZYNQ를 이용한 SoC 설계 이해

CONTENTS

01. ZYNQ SoC 설계

O2. Design Flow

01. Zynq SoC 설계

Xilinx VIVADO

VHDL/Verilog HLS(SDSoC)

AXI HW IP

Xilinx SDK

Xilinx, ARM 라이브러리

C/C++ SW IP

Bare Metal App freeRTOS, Linux

Design Time vs. Performance

SW/HW Partitioning

• 구현할 기능 SW/HW 구분

- HW
 - 많은 리소스 필요
 - 하드웨어 가속
 - 실시간 처리(영상)
- SW
 - OS
 - User Application
 - GUI

Profiling

- 프로그램 분석
 - Memory
 - Execution time
 - Frequency
 - Instruction usage
- Function A, C
 - Execution time of function call ↑
 - Frequency of function call ↑

Hardware - PS Configuration

- PS Configuration
 - I/O Peripherals
 - Memory controller
 - Clock generation
 - AXI Interface

• 사용할 IP 선택, 설정

Hardware - Block Design

Define PS Subsystem

Configure MIO peripherals

Design FPGA Logic

Connect PL <-> PS(Block Design)

Software Development Kit(SDK)

애플리케이션 SW 개발/디버그

SDK→ 하드웨어에 맞는 BSP, FSBL 자동 생성

Zynq Development Tool

- Zynq 7020
 - Dual ARM Cortex-A9
 - 85K Artix-7 Logic Cell
- 1GB DDR3 Memory
- Ethernet/USB
- Audio/HDMI
- 주변장치

RPS-Z7020-TK 구성도

References

- ZYNQ Technical Reference Guide(UG-585)
- THE ZYNQ BOOK(http://www.zynqbook.com)
- Vivado-Intro-FPGA-Design-HLS(UG998)

