

INTRODUCTION TO COMPUTER SYSTEMS (IT1020)

Year 1, Semester 1

Worksheet 03 Submission

22278944, Vikum Chathuranga Basnayaka

Y1.S1.WD.IT.17

Activity (2)

a).

b).

X	Y	Z	Y'	Z'	Y'Z	XYZ'	F = Y'Z + XYZ'
0	0	0	1	1	0	0	0
0	0	1	1	0	1	0	<mark>1</mark>
0	1	0	0	1	0	0	0
0	1	1	0	0	0	0	0
1	0	0	1	1	0	0	0
1	0	1	1	0	1	0	1
1	1	0	0	1	0	1	1
1	1	1	0	0	0	0	0

Activity (3)

a).

b).

F = A'B'C' + A'BC' + AB'C' + ABC'

A	В	C	A'	В'	<i>C</i> '	A'B'C'	A'BC'	AB'C'	ABC	1	7	SoP
0	0	0	1	1	1	1	0	0	0		1	A'B'C'
0	0	1	1	1	0	0	0	0	0	O	<mark>)</mark>	
0	1	0	1	0	1	0	1	0	0		1	A'BC'
0	1	1	1	0	0	0	0	0	0	(<mark>)</mark>	
1	0	0	0	1	1	0	0	1	0		1	AB'C'
1	0	1	0	1	0	0	0	0	0	(<mark>)</mark>	
1	1	0	0	0	1	0	0	0	1		1	ABC'
1	1	1	0	0	0	0	0	0	0	(<mark>)</mark>	

c).

$$SoP = A'B'C' + A'BC' + AB'C' + ABC'$$

$$F = A'B'C' + A'BC' + AB'C' + ABC'$$

$$= A'(B'C' + BC') + C'(AB' + AB)$$
 (By distributive law)

$$= A'C'(B'+B) + C'(AB'+AB)$$
 (By distributive law)

$$=$$
 A'C'.1 + C'(AB' + AB) (By inverse law)

$$=$$
 A'C' + C' (AB' + AB) (By identity law)

$$= A'C' + AC' (B' + B)$$
 (By distributive law)

=
$$C'(A' + A)$$
 (By distributive law)

d).

Activity (4)

a).

In Dec	A	В	С	Output $F = (A+B+C)$
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	<mark>1</mark>	1	1
4	1	0	0	0
<mark>5</mark>	1	0	1	1
6	1	1	0	0
	1		1	1

• SoP = A'BC' + A'BC + AB'C + ABC = F

$$F = A'BC' + A'BC + AB'C + ABC$$

c).

d).

$$F = A'BC' + A'BC + AB'C + ABC$$

$$= A'(BC' + BC) + AB'C + ABC (By distributive law)$$

$$= AB' + A (B'C + BC)$$
 (By distributive law)

$$= AB' + AC (B' + B) (By distributive law)$$

= A (B' + C) (By distributive law)

e)/ f).

