```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [14]:

```
df = pd.read_excel("C:\Data Analytics\Data analyst Data.xlsx")
df.head()
```

Out[14]:

	First Name	Email ID	Quantity	Events	Attendee Status	College Name	How did you come to know about this event?	Specify in "Others" (how did you come to know about this event)	Designation	Yea Gradua
C) ANIKET	aniket@xyz.com	1	Art of Resume Building	Attending	D Y PATIL INSTITUTE OF MCA AND MANAGEMENT AKUR	Email	NaN	Students	2
1	Dhanshree	dhanshree@xyz.com	1	Art of Resume Building	Attending	AP SHAH INSTITUTE OF TECHNOLOGY	Others	College	Students	2
2	2 Dhiraj	dhiraj@xyz.com	1	Art of Resume Building	Attending	Don Bosco College of Engineering Fatorda Goa	Email	NaN	Students	2
3	B Pooja	pooja@xyz.com	1	Art of Resume Building	Attending	Pillai College of Engineering New Panvel	Email	NaN	Students	2
4	Aayush	aayush@xyz.com	1	Art of Resume Building	Attending	St Xavier's College	Instagram LinkedIn Cloud Counselage Website	NaN	Students	2
4										Þ

In [15]:

```
df.columns
```

Out[15]:

In [20]:

```
# Distribution of students across different graduation years
graduation_year_distribution = df['Year of Graduation'].value_counts()
print(graduation_year_distribution)
```

```
Year of Graduation
2023
        1536
2024
        1511
       1292
2025
2026
        555
Name: count, dtype: int64
In [21]:
#Average family income of the student
income_mapping = {
    '0-2 Lakh': 1,
    '2-5 Lakh': 3.5,
    '5-7 Lakh': 6,
    '7 Lakh+': 7
df['Family Income (Numeric)'] = df['Family Income'].map(income mapping)
average family income = df['Family Income (Numeric)'].mean()
print(f"Average Family Income: {average family income} Lakh")
Average Family Income: 1.2930118512464241 Lakh
In [28]:
#How many unique students are in the dataset
no of unique students = df['Email ID'].nunique()
print(f"Number of unique students: {no of unique students}")
unique students = df['Email ID'].unique()
print("Unique students:", unique students)
Number of unique students: 2157
Unique students: ['aniket@xyz.com' 'dhanshree@xyz.com' 'dhiraj@xyz.com' ...
 'suryaprakash@xyz.com' 'saifali@xyz.com' 'lankesh@xyz.com']
In [29]:
#Average GPA of the students
average_gpa = df['CGPA'].mean()
print(f"Average GPA: {average_gpa}")
Average GPA: 8.038475684511647
In [31]:
#Are there any outliers in the quantity attribute
quantity outliers = df['Quantity'].describe()
print(quantity outliers)
         4894.0
count
mean
            1.0
std
            0.0
min
            1.0
25%
           1.0
50%
           1.0
75%
           1.0
            1.0
Name: Quantity, dtype: float64
In [32]:
#Distribution of students' experience with Python programming
experience distribution = df['Experience with python (Months)'].value counts()
print(experience distribution)
Experience with python (Months)
```

```
5
     1242
3
     1008
      800
8
6
      738
7
      640
4
      466
Name: count, dtype: int64
In [34]:
#Average GPA of the students from each city
average gpa city = df.groupby('City')['CGPA'].mean()
print(average_gpa_city)
City
Agartala
              7.660714
              8.046429
Agra
Ahemdabad
             8.190385
Ajmer
              8.284314
Akola
             8.021429
             7.738095
Vidisha
Vijaywada
             7.986364
Wardha
             8.328571
konark
             8.071429
kullu
             7.878571
Name: CGPA, Length: 177, dtype: float64
In [33]:
#Can we identify any relationship between family income and GPA
relationship income gpa = df[['Family Income (Numeric)', 'CGPA']].corr()
print(relationship_income_gpa)
                           Family Income (Numeric)
                                                          CGPA
Family Income (Numeric)
                                           1.000000 0.015311
CGPA
                                           0.015311 1.000000
In [35]:
sns.heatmap(relationship income gpa)
Out[35]:
<Axes: >
                                                           - 1.0
 Family Income (Numeric)
                                                           - 0.8
                                                           - 0.6
                                                           - 0.4
                                                           - 0.2
                                       CGPA
     Family Income (Numeric)
```

```
In [38]:
```

```
sns.scatterplot(x ='Family Income (Numeric)', y='CGPA', data = df, color = 'red')
plt.plot()
```

Out[38]:

[]

In []: