ME951 1S 2019

ME951 - Estatística e Probabilidade I

Profa.: Larissa Avila Matos 6^a Lista de Exercícios - Intervalo de confianca

- Q1. Uma organização anuncia que, em uma determinada pesquisa, 43% responderam "sim" à pergunta "Você preferiria ter um emprego chato do que não ter um emprego?", com uma margem de erro de \pm 1%. O que a organização não revelou?
- **Q2.** Ao tomar uma amostra para estimar uma proporção populacional, por que é melhor relatar um intervalo de confiança do que \hat{p} , a melhor estimativa pontual para essa proporção?
- **Q3.** Encontre o intervalo de confiança para uma proporção se $\hat{p} = 0,222$ e a margem de erro é 0,044.
- **Q4.** Suponha que p = 30% dos estudantes de uma escola sejam mulheres. Colhemos uma amostra aleatória simples de n = 10 estudantes e calculamos $\hat{p} =$ proporção de mulheres na amostra. Qual a probabilidade de que \hat{p} difira de p em menos de 0.01? E se n = 50? Calcule um IC de nível 99% para p.
- **Q5.** O projetista de uma indústria tomou uma amostra de 50 funcionários para verificar o tempo médio gasto para montar um determinado brinquedo. Lembrando que foi verificado que $\overline{X} = 20.5$ e $\sigma = 2$.
- a. Construa um intervalo de confiança de nível 99% para μ .
- **b.** Qual deverá ser o tamanho da amostra para que o erro máximo cometido, a 99% de confiança, ao estimar μ por \overline{X} , não exceda $\epsilon = 0.1$?
- **Q6.** Foram realizados testes glicêmicos em 25 pacientes após um jejum de 8 horas. Os resultados são apresentados na tabela abaixo. Encontre um intervalo de confiança de nível 95% para a média μ .

Teste glicêmico (mg/dL)												
80	118	100	90	83	117	95	84	102	80	112	78	102
121	82	77	88	73	104	88	132	91	103	140	101	

- **Q7.** Seja X a duraçção da vida de uma peça de equipamento tal que $\sigma = 5$ horas. Admita que 100 peças foram ensaiadas fornecendo uma duração de vida média de 500 horas. Construa um intervalo de 95% para a verdadeira média populacional.
- **Q8.** Seja X_1, X_2, \ldots, X_n uma amostra aleatória de uma distribuição normal com média μ , desconhecida e variância σ^2 , conhecida. Qual deve ser o tamanho da amostra n, tal que exista um intervalo de confiança para μ com coeficientes de confiança de 90% e comprimento menor do que 0.2σ ?
- **Q9.** A seguinte amostra: 9, 8, 12, 7, 9, 6, 11, 6, 10, 9 foi extraída de uma população normal. Calcule o intervalo de confiança para σ^2 ao nível de 90% de confiança.
- **Q10.** Sendo X uma população em que μ e σ^2 são desconhecidos. Uma amostra de tamanho 15 forneceu os valores $\sum_{i=1}^{15} x_i = 8.7$ e $\sum_{i=1}^{15} x_i^2 = 27.3$. Determine um intervalo de confiança de 95% para σ^2 .
- **Q11.** Uma turma de 36 alunos é dividida ao acaso em dois grupos de 18. Para o primeiro grupo o ensino de Matemática é feito usando elementos de multimídia. Enquanto isso, no segundo grupo o ensino é feito pelo método tradicional (quadro negro e giz). No final do período é aplicado um teste, comum aos dois grupos, com os seguintes resultados:

```
Grupo 1:
                                      8.0
                                            6.1
                                                  5.6
                                                               5.9
                                                               6,5
                                5,1
                                      8,0
                                            7,6
Grupo 2:
                                4,4
                                      4,7
                                                  5,0
                                                               6,5
                         5,1
                               5,5
                                      6,0
                                            5,8
                                                               7,5
```

Considerando os dois grupos como amostras aleatórias de duas populações independentes e normalmente distribuídas, determine um intervalo de confiança de 95% para a verdadeira diferença das médias populacionais dos dois grupos.