LISTA DE EXERCÍCIOS - MATRIZ (Variável Indexada Homogênea Multidimensional)

- 1. Escreva um algoritmo que, para uma matriz quadrada A_{nXn} (1 \leq n \leq 10) de inteiros, faça:
 - 1. leia a matriz
 - 2. some os elementos da 2ª coluna
 - 3. multiplique os elementos de cada linha e armazene-os em um vetor
 - 4. some todos os elementos da matriz
 - 5. some os elementos da diagonal principal
 - 6. permute os elementos das linhas p e q
- 2. Faça um algoritmo que leia uma matriz A_{nXm} (1 \leq n \leq 15, 1 \leq m \leq 25) de números inteiros e calcule o vetor resultante da soma dos elementos de cada linha da matriz.
- 3. Elabore um algoritmo que inicialize de forma otimizada a matriz A_{nXn} (1 \leq n \leq 10) desta forma:

10 0	2 1	2			2	Ou seja, valores acima da diagonal serão 2,
0	0	1		2		abaixo da diagonal serão 0, da diagonal serão 1, com exceção das pontas (que serão 10 e 20).
0	0		U	0	20	Não faça declaração com inicialização direta. Utilize laços.

- 4. Faça um algoritmo que leia uma matriz A_{nXm} (1 \leq n \leq 15, 1 \leq m \leq 25) de números reais e:
 - 1. gere uma matriz B que seja a matriz transposta de A;
 - 2. verifique se a matriz A é simétrica (uma matriz é simétrica quando é quadrada e quando $a_{ii} = a_{ii}$).
- 5. Faça um algoritmo que leia duas matrizes de inteiros A_{nXm} e B_{pXq} ($2 \le n,m,p,q \le 10$), e calcule a matriz resultante da multiplicação de AxB. Caso não seja possível realizar a multiplicação deve-se dar uma mensagem de erro.
- 6. Durante um período contínuo de 28 dias (4 semanas), foi anotada a temperatura diária em uma cidade e os dados estão armazenados em uma matriz 4x7. Faça um algoritmo que:
- leia os valores das temperaturas;
- calcule, para cada semana, a temperatura média, a máxima e a mínima;
- determine o dia mais quente e o dia mais frio do período observado;
- determine a quantidade de dias em que a temperatura esteve acima dos 25°C e a quantidade de dias em que a temperatura esteve abaixo dos 25°C.
- ao final, apresente os resultados.
- 7. Uma fábrica produz n $(1 \le n \le 10)$ tipos de motores $(M_1, M_2, ... M_n)$. A fábrica tem em uma tabela a quantidade de cada tipo de motor produzido em cada mês do ano:

	M_1	M_2	•••	M_n
janeiro				
dezembro				

Para cada tipo de motor, a fábrica também tem tabelado o custo de fabricação e o preço de venda (armazenados em outros 2 vetores).

Faça um algoritmo que calcule, para cada mês, o custo de fabricação dos motores, a receita bruta e a receita líquida. Ao final, apresente todos os resultados.