Higher Category Theory

Labix

November 17, 2024

Abstract

Contents

1	ntroduction to Infinity Categories	3
	.1 Infinity Categories as Simplicial Sets	. 3
	.2 Natural Transformations	
	.3 The Homotopy Category of Infinite Categories	. 5
	.4 Equivalence of Infinity Categories	. 6
2	nfinity Categorical Constructions	8
	.1 Joins and Slices	. 8
3	The Joyal Model Structure	10
	.1 Homotopy Pullbacks and Pushouts	. 10
4	Simplicial Categories as Models for Infinity Categories	11
	.1 Simplicial Categories	. 11
	.2 The Homotopy Coherent Nerve	. 13
	.3 The Comparison between Simplicial Categories and Infinity Categories	. 14
	.4 The Infinity Category of Spaces	. 15
5	space of Morphisms between Vertices	17
	.1 The Mapping Spaces	
	.2 Composition of Morphisms in Infinity Categories	. 18
6	imits and Colimits	19
	.1 Terminal and Initial Objects	. 19
	.2 Limits and Colimits	. 19
	.3 Equivalent Formulations of the (Co)Limit	. 20
7	Relation to Model Categories	21
	1.1 Inverting Morphisms in an Infinity Category	. 21
	2. Exhibiting a Model Category as an Infinity Category	
	3	00

1 Introduction to Infinity Categories

1.1 Infinity Categories as Simplicial Sets

We recall some basic facts about simplicial sets. If $S:\Delta\to \mathbf{Set}$ is a simplicial set, then by Yoneda's emebdding we know that the n-simplices of S are given by

$$S([n]) = \operatorname{Hom}_{\mathbf{sSet}}(\Delta^n, S)$$

In other words, specifying an *n*-simplex is the same as specifying a map of simplicial sets

$$\Delta^n \to S$$

The foundations of infinity categories lay on the simplicial sets. Intuitively, any face $\partial_k \Delta$ of an n-simplex Δ captures a homotopy of the faces of $\partial_k \Delta$.

Definition 1.1.1: Infinity Categories

An infinity category is a simplicial set C such that each inner horn admits a filler. In other words, for all 0 < i < n, the following diagram commutes:

$$\begin{array}{ccc} \Lambda_i^n & \xrightarrow{\forall} & C \\ \downarrow & & & \\ \Delta^n & & & \end{array}$$

Definition 1.1.2: Objects and Morphisms

Let C be an infinity category. Define the following notions for C.

- Define the objects of C to be the 0-simplices of C.
- Define the morphisms of C to be the 1-simplices of C.

Definition 1.1.3: Functors

Let \mathcal{C}, \mathcal{D} be infinity categories. A functor from \mathcal{C} to \mathcal{D} is a morphism $F: \mathcal{C} \to \mathcal{D}$ of simplicial sets.

Definition 1.1.4: The Category of Infinity Categories

Define the category ∞ -Cat of infinity categories to be the full subcategory of sSet consisting of infinity categories.

Lemma 1.1.5

Let \mathcal{C}, \mathcal{D} be infinity categories. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor. Then the following are true.

- F sends an object of C to an object of D.
- F sends a morphism in C to a morphism in D.
- F sends the identity morphism of $X \in \mathcal{C}$ to the identity morphism of $F(X) \in \mathcal{D}$.
- If $f: X \to Y$ and $g: Y \to Z$ are morphisms in \mathcal{C} , then $F(g \circ f) = F(g) \circ F(f)$

Explicitly, morphisms of infinity categories behave exactly what we want it to be like: A generalization of functors between ordinary categories. However, note that it is not enough to specify a morphism of infinity categories just from specifying it on objects. This is because we also need to tell the functor where to map the n-simplices. In other words, we need to tell the functor where to send the homotopy data.

Proposition 1.1.6

Let \mathcal{C} be a category. Then the nerve $N_{\bullet}(\mathcal{C})$ of \mathcal{C} is an infinity category.

In other words, the nerve functor $N_{\bullet}(-)$ actually lands in N_{\bullet} .

Proposition 1.1.7

The nerve functor $N_{\bullet}: \mathbf{Cat} \to \infty - \mathbf{Cat}$ is fully faithful. This means that there is a bijection

{Functors from
$$\mathcal{C}$$
 to \mathcal{D} } $\stackrel{1:1}{\longleftrightarrow}$ {Functors from $N_{\bullet}(\mathcal{C})$ to $N_{\bullet}(\mathcal{D})$ }

given by N_{\bullet} .

Recall that $s\mathbf{Set}$ is closed monoidal. Moreover, we can identify functors from two infinity categories \mathcal{C} to \mathcal{D} as the zero simplicies of the simplicial set $\mathrm{Hom}_{s\mathbf{Set}}(\mathcal{C},\mathcal{D})$ defined by

$$[n] \mapsto \operatorname{Hom} \mathbf{sSet}(\mathcal{C} \times \Delta^n, \mathcal{D})$$

In fact, we can show that $\operatorname{Hom}_{\mathbf{sSet}}(\mathcal{C}, \mathcal{D})$ is an infinity category.

Proposition 1.1.8

Let C, D be infinity categories. Then

$$\mathsf{Hom}_{\mathbf{sSet}}(\mathcal{C}, \mathcal{D})$$

is an infinity category.

1.2 Natural Transformations

Definition 1.2.1: Natural Transformations

Let \mathcal{C}, \mathcal{D} be infinity categories. Let $F, G : \mathcal{C} \to \mathcal{D}$ be functors. A natural transformation from F to G is a morphism $\mathcal{C} \times \Delta^1 \to \mathcal{D}$ such that the following diagram commutes:

Lemma 1.2.2

Let C, D be infinity categories. Let $F, G \in \operatorname{Hom}_{\mathbf{sSet}}(C, D)$ be functors. Then the following are equivalent.

- $\eta: \mathcal{C} \times \Delta^1 \to \mathcal{D}$ is a natural transformation from F to G
- η is an 1-simplex in $\operatorname{Hom}_{\mathbf{sSet}}(\mathcal{C}, \mathcal{D})$.
- η is a homotopy from F to G.

Lemma 1.2.3

Let \mathcal{C}, \mathcal{D} be categories. Let $F, G : \mathcal{C} \to \mathcal{D}$ be functors. Then $\alpha : F \Rightarrow G$ is a natural transformation if and only if $N(\alpha) : N(\mathcal{C}) \to N(\mathcal{D})$ is a natural transformation of infinity categories.

Definition 1.2.4: Natural Isomorphisms

Let C, D be infinity categories. Let $F, G : C \to D$ be functors. We say that F and G are naturally isomorphic if

1.3 The Homotopy Category of Infinite Categories

Definition 1.3.1: Homotopic Morphisms

Let $\mathcal C$ be an infinity category. Two morphisms $f,g:C\to D$ are said to be homotopic if there exists a 2-simplex σ in $\mathcal C$ such that

- $d_0(\sigma) = \mathrm{id}_D$
- $d_1(\sigma) = g$
- $d_2(\sigma) = f$

In this case we write $f \simeq g$.

Pictorially, we denote the existence of such a σ by

This diagram here does not denote commutative, but instead denotes the existence of a 2-simplex σ that has the above as vertices and edges. Rewriting the above definition, we can say that $g \circ f : C \to E$ is homotopic to $h : C \to E$ if there exists a 2-simplex of the form

By definition of an infinity category, every inner horn admits a filler. This means that for any composable morphisms f and g giving $g \circ f$, we can always find a morphism h such that $g \circ f$ is homotopic to h. However, this h may not be unique, so we cannot conclude that infinity categories have a well defined notion of composition.

Lemma 1.3.2

Let $\mathcal C$ be an infinity category. Then the relation of homotopic between morphisms is an equivalence relation.

QUESTION: IS THE FOLLOWING TRUE (Kerodon 1.4.3.7)

Proposition 1.3.3

Let \mathcal{C} be an infinity category. Let $f,g:X\to Y$ be morphisms in \mathcal{C} . Then f and g are homotopic if and only if $\Delta^1\xrightarrow{f,g}\mathcal{C}$ are homotopic as morphisms of simplicial sets.

Proposition 1.3.4

Let C be an infinity category. Let $f, f': C \to D$ and $g, g': D \to E$ be morphisms in C. If $f \simeq f'$ and $g \simeq g'$, then

$$g \circ f \simeq g' \circ f'$$

We can explicitly write out the homotopy category of an infinity category as follows.

Proposition 1.3.5

Let $\mathcal C$ be an infinity category. Then the homotopy category $h(\mathcal C)$ is isomorphic (as categories) to the category defined as follows.

- The objects of h(C) are the objects of C
- For $A, B \in \mathcal{C}$ two objects, the morphisms are the equivalence classes of morphisms [f] for $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$.
- Composition is defined by

$$[g] \circ [f] = [g \circ f]$$

which is well defined by .2

Definition 1.3.6: Isomorphisms in Infinity Categories

Let $\mathcal C$ be an infinity category. Let $f:X\to Y$ be a morphism in $\mathcal C$. We say that f is an isomorphism if [f] is an isomorphism in $h(\mathcal C)$. Equivalently, f is an isomorphism if there exists a morphism $g:Y\to X$ such that $g\circ f\simeq \operatorname{id}_X$ and $f\circ g\simeq \operatorname{id}_Y$.

Because the data of a functor between infinity categories carry 2-simplicies to 2-simplicies, we can easily deduce the following.

Lemma 1.3.7

Let C, D be infinity category. Let $F : C \to D$ be a functor. Then the following are true.

- If $f \simeq g$ are homotopic in \mathcal{C} , then $F(f) \simeq F(g)$ are homotopic in \mathcal{D} .
- If f is an isomorphism in C, then F(f) is an isomorphism in D.

When \mathcal{C} , \mathcal{D} are ordinary categories, we can talk about diagrams of shape \mathcal{C} in \mathcal{D} . This just means that we only care about the shape of \mathcal{C} , and we consider this shape inside \mathcal{D} . This was the foundations for limits and colimits of a category. We can also do this for infinity categories, but recall that a functor between infinity categories carries much more data than just the shape of the domain infinity category: it also carries homotopy information.

1.4 Equivalence of Infinity Categories

Definition 1.4.1: Natural Isomorphisms

Let \mathcal{C},\mathcal{D} be infinity categories. Let $F,G:\mathcal{C}\to\mathcal{D}$ be functors. Let η be a natural transformation from F to G. We say that η is a natural isomorphism if η is an isomorphism as a morphism in $\mathrm{Hom}_{\mathbf{sSet}}(\mathcal{C},\mathcal{D})$.

We say that F and G are naturally isomorphic if there exists a natural isomorphism from F to G.

Kerodon 4.4.4.1

Definition 1.4.2: Homotopy Inverses

Let C, D be infinity categories. Let $F: C \to D$ an $G: C \to D$ be functors. We say that G is a homotopy inverse of F

- $G \circ F$ is naturally isomorphic to $id_{\mathcal{C}}$ in $Hom_{\mathbf{sSet}}(\mathcal{C}, \mathcal{C})$
- $F \circ G$ is naturally isomorphic to $id_{\mathcal{D}}$ in $Hom_{\mathbf{sSet}}(\mathcal{D}, \mathcal{D})$

Kerodon 4.5.1.10

Definition 1.4.3: Equivalence of Infinity Categories

Let \mathcal{C}, \mathcal{D} be infinity categories. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. We say that F is an equivalence of infinity categories if F admits a homotopy inverse. In this case, we say that \mathcal{C} and \mathcal{D} are equivalent.

Recall that two objects in an infinity category $\mathcal C$ is isomorphic if they are isomorphic in $h(\mathcal C)$ in the ordinary sense. In our case, this means that we consider $G\circ F$ and $\mathrm{id}_{\mathcal C}$ to be objects of the infinity category $\mathrm{Hom}_{\mathbf s\mathbf S\mathbf e\mathbf t}(\mathcal C,\mathcal C)$, and they are isomorphic if $[G\circ F]=[\mathrm{id}_{\mathcal C}]$. This is the same as saying that $G\circ F$ and $\mathrm{id}_{\mathcal C}$ are homotopic. (It is also the same as saying $\mathcal C$ and $\mathcal D$ are homotopy equivalent as simplicial sets)

Lemma 1.4.4

Let \mathcal{C}, \mathcal{D} be infinity categories. If \mathcal{C} and \mathcal{D} are naturally isomorphic, then \mathcal{C} and \mathcal{D} are equivalent.

Proposition 1.4.5

Let \mathcal{C},\mathcal{D} be ordinary categories. Let $F:\mathcal{C}\to\mathcal{D}$ be functor. Then $F:\mathcal{C}\to\mathcal{D}$ induces an equivalence of categories if and only if $N(F):N(\mathcal{C})\to N(\mathcal{D})$ induces an equivalence of categories.

Proposition 1.4.6

Let \mathcal{C}, \mathcal{D} be infinity categories. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. If F is an equivalence of infinity categories, then $h(F): h(\mathcal{C}) \to h(\mathcal{D})$ is an equivalence of ordinary categories.

Proposition 1.4.7

Let C, D be infinity categories. Let $F: C \to D$ be a functor. Then F is an equivalence of infinity categories if and only if

$$F \circ - : \operatorname{Hom}_{\mathbf{sSet}}(K, \mathcal{C}) \to \operatorname{Hom}_{\mathbf{sSet}}(K, \mathcal{D})$$

is an equivalence of infinity categories for all simplicial sets K.

2 Infinity Categorical Constructions

2.1 Joins and Slices

We begin by rewriting the definition of a simplex category as follows. Instead of having distinguished names [n] for the objects, we instead just think of the simplex category with objects as finite and totally ordered sets. Indeed any of these sets will be in bijection to [n] for some $n \in \mathbb{N}$. This language will help us define the join.

Definition 2.1.1

Let J be a finite and totally ordered set. A cut of J consists of two subsets $I,I'\subseteq J$ such that

$$J = I \coprod I'$$

and i < i' for all $i \in I$ and i' < I'.

Definition 2.1.2: Joins

Let X,Y be simplicial sets. Define the join of X and Y to be the simplicial set $X\ast Y$ as follows

• Denote $J \neq \emptyset$ any finite and totally ordered set. Define

$$X*Y(J) = \coprod_{\substack{I \amalg \Pi I' = J \\ i < i' \text{ for } i \in I, i' \in I'}} X(I) \times Y(I') \coprod_{I, I' \text{ cuts of } J} X(I) \times Y(I')$$

where by convention, $X(\emptyset) = Y(\emptyset) = *$.

ullet For two finite and totally ordered sets J and J' and a morphism $J \to J'$ preserving order, the map

$$(X*Y)[J'] \to (X*Y)[J]$$

is defined as follows. Let K, K' be a cut of J'. Then α restricts to two well defined maps

$$\alpha|_{\alpha^{-1}(K)}:\alpha^{-1}(K)\to K \quad \text{ and } \quad \alpha|_{\alpha^{-1}(K')}:\alpha^{-1}(K')\to K'$$

In particular these are order preserving, and each are morphisms in the simplex category Δ . Thus this gives us a unique morphism

$$X(K) \times X(K') \to X(\alpha^{-1}(K)) \times X(\alpha^{-1}(K'))$$

By taking the product of these maps, we thus obtain a morphism $(X * Y)[J'] \to (X * Y)[J]$, turning the above definition into a simplicial set.

Concrete examples:

• When J = [0], we have that

$$(X * Y)[0] = X[0] \times Y(\emptyset) \coprod X(\emptyset) \times Y[0]$$

= $X_0 \coprod Y_0$

which means that the vertices of X * Y are the vertices of X and Y combined disjointly.

• When J = [1], we have that

$$\begin{split} (X*Y)[1] &= X[1] \times Y(\emptyset) \amalg X(\{0\}) \times Y(\{1\}) \amalg X(\emptyset) \times Y[1] \\ &= X_1 \amalg X_0 \times Y_0 \amalg Y_1 \end{split}$$

TBA: The join of ordinary categories.

Lemma 2.1.3

Let X and Y be simplicial sets. Then $N(X * Y) \cong N(X) * N(Y)$

TBA: functoriality of join

Proposition 2.1.4

Let X,Y be simplicial sets. Then X*Y is an infinity category if and only if X and Y are infinity categories.

Recall that the over category \mathcal{C}/X consists of pairs $(Y,f:Y\to X)$ and morphism are given by commutative diagrams. Let us rephrase the definition as follows. The over category is the unique category such that if $\mathcal D$ is another category, there is a bijection

$$\operatorname{Hom}_{\mathbf{CAT}}(\mathcal{D}, \mathcal{C}/X) \cong \operatorname{Hom}_X(\mathcal{D} * [0], \mathcal{C})$$

where the right hand side indicates that we only consider morphisms $\mathcal{D}*[0] \to \mathcal{C}$ in which [0] is mapped to X. This characterization is due to the fact that a morphism $[0] \to \mathcal{C}$ is essentially a choice of object in \mathcal{C} , in which case we choose to be X.

Definition 2.1.5: Over Category for Infinity Categories

Let K, X be simplicial sets. Let $f: K \to X$ be a map. Define the over category (which is a simplicial set)

$$f/X:\Delta\to\mathbf{Set}$$

as follows.

 \bullet For each n, we have

$$(f/X)_n = \operatorname{Hom}_{K/\mathbf{sSet}}(K * \Delta^n, X)$$

TBA: Adjunction of join and slice.

3 The Joyal Model Structure

3.1 Homotopy Pullbacks and Pushouts

Because the standard model structure on sSet and the Joyal model structure are not Quillen equivalent, there are differences also in homotopy limits and colimits.

Definition 3.1.1: Homotopy Pullbacks

Let the following be a diagram of infinity categories and functors.

$$\mathcal{C}_0 \xrightarrow{F} \mathcal{C} \xleftarrow{G} \mathcal{C}_1$$

Let $\mathsf{Isom}(\mathcal{C})$ denote the full subcategory of $\mathsf{Hom}_{\mathbf{sSet}}(\Delta^1,\mathcal{C})$ consisting of isomorphisms. Define the homotopy limit of the diagram with respect to the Joyal structure to be the two times pullback

$$\mathcal{C}_0 \times_{\mathcal{C}}^{hJ} \mathcal{C}_1 = \mathcal{C}_0 \times_{\mathrm{Hom}_{\mathbf{sSet}}(\{0\},\mathcal{C})} \mathrm{Isom}(\mathcal{C}) \times_{\mathrm{Hom}_{\mathbf{sSet}}(\{1\},\mathcal{C})} \mathcal{C}_1$$

Here we identify the vertices of Δ^1 as 0 and 1, and we use the isomorphism $\mathcal{C}\cong \mathrm{Hom}_{\mathbf{sSet}}(\Delta^0,\mathcal{C})$.

Kerodon 4.5.2.1

4 Simplicial Categories as Models for Infinity Categories

4.1 Simplicial Categories

Definition 4.1.1: Simplicial Categories

A simplicial category \mathcal{C} is a category enriched over sSet. Explicitly, it consists of the following data:

- ullet C is a category (and so consisting of objects, morphisms that satisfy associativity and unitality)
- For each $X, Y \in \mathcal{C}$, $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ is a simplicial set.
- For each $XZ, Y, Z \in \mathcal{C}$, the composition rule

$$\circ : \operatorname{Hom}_{\mathcal{C}}(Y, Z) \times \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{C}}(X, Z)$$

is a morphism of simplicial sets.

These data are organized such that the following coherence diagrams are commutative:

• Associativity:

$$\operatorname{Hom}_{\mathcal{C}}(Z,W) \times \operatorname{Hom}_{\mathcal{C}}(Y,Z) \times \operatorname{Hom}_{\mathcal{C}}(X,Y) \xrightarrow{\operatorname{id} \times \circ} \operatorname{Hom}_{\mathcal{C}}(Z,W) \times \operatorname{Hom}_{\mathcal{C}}(X,Z)$$

$$\circ \times \operatorname{id} \downarrow \qquad \qquad \downarrow \circ$$

$$\operatorname{Hom}_{\mathcal{C}}(Y,W) \times \operatorname{Hom}_{\mathcal{C}}(X,Y) \xrightarrow{\circ} \operatorname{Hom}_{\mathcal{C}}(X,W)$$

• Unitality:

$$\{\operatorname{id}_Y\} \times \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \xrightarrow{\operatorname{proj}} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \times \{\operatorname{id}_X\} \longleftrightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \times \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,X) \\ \downarrow \circ \\ \operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,Y) \times \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \xrightarrow{\circ} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$$

Given an ordinary category, one can construct a simplicial category in which the higher morphisms are trivial.

Definition 4.1.2: The Constant Simplicial Category

Let C be a category. Define a simplicial category C as follows.

- The objects of \mathcal{C} are the objects of \mathcal{C}
- For $X, Y \in \mathcal{C}$, define $\operatorname{Hom}_{\mathcal{C}} X, Y$ to be the simplicial set given by

$$\Delta^{\mathrm{op}} \to \{ \mathrm{Hom}_{\mathcal{C}}(X,Y) \} \hookrightarrow \mathbf{Set}$$

• For $X, Y, Z \in \mathcal{C}$, define the composition law

$$\circ : \operatorname{Hom}_{\mathcal{C}}(Y, Z) \times \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{C}}(X, Z)$$

by the composition law $\operatorname{Hom}_{\mathcal{C}}(Y,Z) \times \operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{C}}(X,Z)$

Conversely, if we start with a simplicial category, we can recover a family of ordinary categories.

Definition 4.1.3: The Ordinary Categories Associated to a Simplicial Category

Let \mathcal{C} be a simplicial category. Let $n \in \mathbb{N}$. Define a category \mathcal{C}_n as follows.

- The objects of C_n are the objects of C
- For $X, Y \in \mathcal{C}_n$, the set of morphisms are given by

$$\operatorname{Hom}_{\mathcal{C}_n}(X,Y) = (\operatorname{Hom}_{\mathcal{C}}(X,Y))_n$$

are given by the *n*-simplicies of the simplicial set $\operatorname{Hom}_{\mathcal{C}}(X,Y)$. In particular, the

identity morphism is given by the n-simplex corresponding to the map $\Delta^n \to \Delta^0 \xrightarrow{\mathrm{id}_X} \mathrm{Hom}_{\mathcal{C}}(X,X)$

• For $f: X \to Y$ and $g: Y \to Z$ two morphisms in \mathcal{C}_n , the composition $g \circ f$ is given by the image of (g, f) in the composition law

$$\circ : \operatorname{Hom}_{\mathcal{C}}(Y, Z) \times \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{C}}(X, Z)$$

We call C_0 the underlying category of the simplicial category. Indeed, there is a forgetful functor that sends every simplicial category to its underlying category. (It should be adjoint to constant simplicial category?)

Definition 4.1.4: Simplicial Functors

Let C, D be simplicial categories. Let $F: C \to D$ be a functor. We say that F is a simplicial functor if the induced map

$$F: \operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X),F(Y))$$

for each $X,Y \in \mathcal{C}$ is a morphism of simplicial sets.

Definition 4.1.5: Simplicial Categories

Define the category of simplicial categories

 Cat_{sSet}

by the following data.

- The objects are the simplicial categories
- The morphisms are the simplicial functors
- Composition is given by the usual composition of functors.

Proposition 4.1.6

Let \mathcal{C} be a category. Then \mathcal{C} is a simplicial category if and only if \mathcal{C} is a simplicial object in Cat such that the underlying simplicial set of objects is constant.

1.1.4.2 HTT

Definition 4.1.7: Weakly Equivalent Simplicial Categories

Let C, D be simplicial categories. Let $F : C \to D$ be a simplicial functor. We say that F is a weak equivalence if the following are true.

• For all $A, B \in \mathcal{C}$, the induced map of simplicial sets

$$F: \operatorname{Hom}_{\mathcal{C}}(A, B) \to \operatorname{Hom}_{\mathcal{C}}(F(A), F(B))$$

is weakly equivalent.

• For all $D \in \mathcal{D}$, there exists some $C \in \mathcal{C}$ such that $F(C) \cong D$

Note: Markus land says this is weak equivalence, HTT says that this equivalence.

4.2 The Homotopy Coherent Nerve

Definition 4.2.1: Simplicial Path Category

Let (P, \leq) be a partially ordered set. Define the simplicial path category

$$\mathbf{Path}[P]$$

to consist of the following data.

- The objects of Path[P] are the elements of P.
- Let $x, y \in P$ be objects. Define a partially ordered set $\mathbf{FinLin}(x, y)$ where elements are given by finite linearly ordered subsets

$$\{x = x_0 < \dots < x_m = y\} \subseteq P$$

of P with start point x and end point y and ordering given by reverse inclusion. Denote by the same name its associated category. Define the set of morphisms from x to y to be

$$\operatorname{Hom}_{\mathbf{Path}[P]}(x,y) = N_{\bullet}\left(\mathbf{FinLin}(x,y)\right)$$

In particular, the identity morphism is $id_x \in Hom_{\mathbf{Path}[P]}(x, x)$.

• Let $x, y, z \in P$ be objects. The composition law

$$\circ \operatorname{Hom}_{\mathbf{Path}[P]}(y,z) \times \operatorname{Hom}_{\mathbf{Path}[P]}(x,y) \to \operatorname{Hom}_{\mathbf{Path}[P]}(x,z)$$

is given on vertices by $S \circ T = S \cup T$.

Note: the assignment $\Delta \to \mathbf{Path}[\Delta]$ defines a cosimplicial set given by

$$[n] \mapsto \mathbf{Path}[\Delta^n] = \mathbf{Path}[n]$$

Definition 4.2.2: The Homotopy Coherent Nerve

Let C be a simplicial category. Define the homotopy coherent nerve

$$N_{\bullet}^{\mathrm{hc}}(\mathcal{C}):\Delta^{\mathrm{op}}\to\mathbf{Set}$$

to be the simplicial set given at the n level by

$$[n] \mapsto \operatorname{Hom}_{\mathbf{sSet}}(\mathbf{Path}[n], \mathcal{C})$$

By the Yoneda embedding, we obtain a natural isomorphism

$$\operatorname{Hom}_{\mathbf{sSet}}(\Delta^n, N^{\operatorname{hc}}_{\bullet}(\mathcal{C})) \cong \operatorname{Hom}_{\mathbf{sSet}}(\mathbf{Path}[n], \mathcal{C})$$

Definition 4.2.3: The Homotopy Coherent Nerve Functor

Define the homotopy coherent nerve functor

$$N_{ullet}^{ ext{hc}}: \mathbf{Cat_{sSet}}
ightarrow \mathbf{sSet}$$

to consist of the following data.

- For each simplicial category C, $N_{\bullet}^{hc}(C)$ is the homotopy coherent nerve of C
- For each simplicial functor $F: \mathcal{C} \to \mathcal{D}$, the morphism

$$N^{\mathrm{hc}}_{\bullet}(F): N^{\mathrm{hc}}_{\bullet}(\mathcal{C}) \to N^{\mathrm{hc}}_{\bullet}(\mathcal{D})$$

is defined on the level of n simplicies by

$$\operatorname{Hom}_{\mathbf{sSet}}(\mathbf{Path}[n], \mathcal{C}) \xrightarrow{F \circ -} \operatorname{Hom}_{\mathbf{sSet}}(\mathbf{Path}[n], \mathcal{D})$$

Proposition 4.2.4

Let \mathcal{C} be a simplicial category. Let \mathcal{C}_0 denote the underlying ordinary category of \mathcal{C} . Let P be a partially ordered set. Let $\pi: \mathbf{Path}[P] \to \underline{P}$ be the simplicial functor given by the identity on objects. Then there is a monomorphism

$$\{F \mid F: P \to \mathcal{C}_0 \text{ is a functor }\} \hookrightarrow \{G: \mathbf{Path}[P] \to \mathcal{C}\}$$

given by sending an ordinary functor F to the simplicial functor

$$\mathbf{Path}[P] \xrightarrow{\pi} P \xrightarrow{F} \mathcal{C}_0 \hookrightarrow \mathcal{C}$$

Lemma 4.2.5

Let $\mathcal C$ be an ordinary category. Let $\underline{\mathcal C}$ denote the constant simplicial category. Then there is an isomorphism of simplicial sets

$$N_{\bullet}(\mathcal{C}) \cong N_{\bullet}^{\mathrm{hc}}(\underline{\mathcal{C}})$$

induced by the above monomorphism.

Theorem 4.2.6: Cordier-Porter

Let \mathcal{C} be a simplicial category. If $\operatorname{Hom}_{\mathcal{C}}(X,Y)$ is a Kan complex for all $X,Y\in\mathcal{C}$, then $N^{\operatorname{hc}}_{\bullet}(\mathcal{C})$ is an infinity category.

4.3 The Comparison between Simplicial Categories and Infinity Categories

Definition 4.3.1: The Generalized Path Category

Let S be a simplicial set. Define the generalized path category of S to be the limit

$$\mathbf{Path}[S]_{\bullet} = \lim_{\Delta} \mathbf{Path}[-]$$

where $\mathbf{Path}[\Delta^n] = \mathbf{Path}[n]$.

Kerodon 2.4.4.3

Theorem 4.3.2: The Nerve-Path Adjunction

The homotopy coherent nerve and the path category forms an adjunction

$$\mathbf{Path}[-]_{\bullet}: \mathbf{sSet} \rightleftarrows \mathbf{Cat_{sSet}}: N^{\mathsf{hc}}_{\bullet}$$

Explicitly, this means that there is an isomorphism

$$\operatorname{Hom}_{\mathbf{Cat_{sSet}}}(\mathbf{Path}[S]_{\bullet}, \mathcal{C}) \cong \operatorname{Hom}_{\mathbf{sSet}}(S, N^{\mathsf{hc}}_{\bullet}(\mathcal{C}))$$

Infinity categorise are fibrant objects of the Joyal model structure. In order to show that simplicial categories also give a theory of infinity categories, we need to show that all of its homotopy data and constructions are equivalent. We show this using a Quillen equivalence type theorem.

4.4 The Infinity Category of Spaces

Definition 4.4.1: The Category of Kan Complexes

Define the category of Kan complexes

Kan

to be the full subcategory of sSet consisting of Kan complexes. Explicitly, it consists of the following data.

- The objects are the Kan complexes
- For X,Y two Kan complexes, a morphism $f:X\to Y$ is a morphism of simplicial sets
- Composition is given by the composition of morphisms of simplicial sets

Lemma 4.4.2

The category \mathbf{Kan} is a simplicial category. Moreover, $\mathrm{Hom}_{\mathbf{Kan}}(X,Y)$ is a Kan complex.

Lurie def vs Dwyer-Kan def is different.

Definition 4.4.3: ∞ -Category of Spaces

Define the ∞ -category of spaces to be the simplicial set

$$S = N_{\bullet}^{\text{hc}}(\mathbf{Kan})$$

Lemma 4.4.4

The ∞ -category of spaces S is an ∞ -category.

Digression: We began with two pairs of adjoint functors in Simplicial Methods in Topology:

We have introduced the notion of Kan complexes and ∞ -categories, which are also simplicial sets. We also saw that the two pairs of adjunction descend to these special simplicial sets:

Finally in the last section we introduced another pair of adjunction from simplicial categories. Together with the forgetful functor sending a simplicial category C to C_0 we obtain:

5 Space of Morphisms between Vertices

5.1 The Mapping Spaces

For an ordinary category C, we have the notion of Hom sets (at least for locally small categories). We would like to reproduce this notion for infinity categories.

Definition 5.1.1: Mapping Spaces

Let $\mathcal C$ be an infinity category. Let $x,y\in\mathcal C$ be objects. Define the mapping space from x to y to be the homotopy pullback

$$\operatorname{Hom}_{\mathcal{C}}(x,y) = \{x\} \times_{\mathcal{C}}^{h} \{y\}$$

Recall that the homotopy pullback is defined to be an iterated pullback. Explicitly, we can write the mapping space as

$$\operatorname{Hom}_{\mathcal{C}}(x,y) = \{x\} \times_{\operatorname{Hom}_{\mathbf{sSet}}(\{0\},\mathcal{C})} \times \operatorname{Hom}_{\mathbf{sSet}}(\Delta^{1},\mathcal{C}) \times_{\operatorname{Hom}_{\mathbf{sSet}}(\{1\},\mathcal{C})} \{y\}$$

Note: Land 1.3.47, Kerodon 4.6

Recall that a an n-simplex x is degenerate if any two of its consecutive vertices are given by the same element. Explicitly, this means that x lies in the image of some degeneracy map s_k .

Definition 5.1.2: The Right Mapping Space

Let \mathcal{C} be an infinity category. Let $x,y\in\mathcal{C}$ be objects. Define the right mapping space from x to y to be the simplicial set defined by

$$\operatorname{Hom}_{\mathcal{C}}^{R}(x,y)([n]) = \left\{ h \in \mathcal{C}_{n+1} \mid d_{n+1}(h) = \underbrace{(s_{0} \circ \cdots \circ s_{0})}_{n \text{ times}}(x) \text{ and } (d_{0} \circ \cdots \circ d_{n})(h) = y \right\}$$

for each $n \in \mathbb{N}$.

In plain English, the hom set from x to y on the nth level consists of n+1-simplices h for which the face of h with the first n-vertices are given by the n simplex $[x, \ldots, x]$, while the last vertex of h is given by y.

Definition 5.1.3: The Left Mapping Space

Let $\mathcal C$ be an infinity category. Let $x,y\in\mathcal C$ be objects. Define the left mapping space from x to y to be the simplicial set defined by

$$\operatorname{Hom}_{\mathcal{C}}^{L}(x,y)([n]) = \left\{ h \in \mathcal{C}_{n+1} \mid d_{n+1}(h) = \underbrace{(s_{0} \circ \cdots \circ s_{0})}_{n \text{ times}}(y) \text{ and } (d_{0} \circ \cdots \circ d_{n})(h) = x \right\}$$

for each $n \in \mathbb{N}$.

These two notions are equivalent up to homotopy (Land) Also pullbacks (Land)

Proposition 5.1.4

Let \mathcal{C} be an infinity category. Let $x,y\in\mathcal{C}$. Then both mapping spaces $\mathrm{Hom}_{\mathcal{C}}^R(x,y)$ and $\mathrm{Hom}_{\mathcal{C}}^L(x,y)$ are Kan complexes.

Proposition 5.1.5

Let \mathcal{C} be an infinity category. Let $x,y\in\mathcal{C}$. Then the following are true.

• The right mapping space is isomorphic to the pullback

$$\operatorname{Hom}_{\mathcal{C}}^{R}(x,y) \cong \{x\} \times_{\operatorname{Hom}_{\mathbf{sSet}}(\{0\},\mathcal{C})} \mathcal{C}/y$$

• The left mapping space is isomorphic to the pullback

$$\operatorname{Hom}_{\mathcal{C}}^{L}(x,y) \cong x/\mathcal{C} \times_{\operatorname{Hom}_{\mathbf{sSet}}(\{1\},\mathcal{C})} \{y\}$$

5.2 Composition of Morphisms in Infinity Categories

Definition 5.2.1

Let \mathcal{C} be an infinity category. Let $x, y, z \in \mathcal{C}$ be objects. Define the ???

$$\operatorname{Map}_{\mathcal{C}}(x, y, z)$$

of x, y, z to be the pullback of the diagram:

$$\begin{array}{c} \operatorname{Hom}_{\mathbf{sSet}}(\Delta^2,\mathcal{C}) \\ \downarrow \\ \Delta^0 \xrightarrow{(x,y,z)} \operatorname{Hom}_{\mathbf{sSet}}(\Delta^0 \times \Delta^0 \times \Delta^0,\mathcal{C}) \simeq \mathcal{C} \times \mathcal{C} \times \mathcal{C} \end{array}$$

in sSet, where the vertical map is given by the inclusion of each Δ^0 to a vertex of Δ^2 .

Rewriting notation: $\operatorname{Map}_{\mathcal{C}}(x, y) = \operatorname{Hom}_{\mathcal{C}}(x, y)$.

Lemma 5.2.2

Let \mathcal{C} be an infinity category. Let $x,y,z\in\mathcal{C}$ be objects. Then the map

$$\mathsf{Map}_{\mathcal{C}}(x,y,z) \xrightarrow{d_0 \times d_2} \mathsf{Map}_{\mathcal{C}}(y,z) \times \mathsf{Map}_{\mathcal{C}}(x,y)$$

is a trivial Kan fibration.

Definition 5.2.3: Composition of Morphisms

Let $\mathcal C$ be an infinity category. Let $x,y,z\in \mathcal C$ be objects. Let $f:x\to y$ and $g:y\to z$ be morphisms in $\mathcal C$. Define the composite of f and g to be the image of (g,f) in the following:

$$\operatorname{Map}_{\mathcal{C}}(y,z) \times \operatorname{Map}_{\mathcal{C}}(x,y) \xrightarrow{\quad k \quad} \operatorname{Map}_{\mathcal{C}}(x,y,z) \xrightarrow{\quad d_1 \quad} \operatorname{Map}_{\mathcal{C}}(x,z)$$

where k is a choice of the homotopy inverse of $d_0 \times d_2 : \operatorname{Map}_{\mathcal{C}}(x,y,z) \to \operatorname{Map}_{\mathcal{C}}(y,z) \times \operatorname{Map}_{\mathcal{C}}(x,y)$.

Upshot: Composition of morphisms are only well defined up to an equivalence class of homotopic maps.

6 Limits and Colimits

6.1 Terminal and Initial Objects

Definition 6.1.1: Initial and Terminal Objects

Let \mathcal{C} be an infinity category. Let $x \in \mathcal{C}$ be an object.

• We say that x is initial if for all objects $y \in \mathcal{C}$, there is a homotopy equivalence

$$\operatorname{Hom}_{\mathcal{C}}(x,y) \simeq \Delta^0$$

• Dually, we say that x is terminal if for all objects $y \in \mathcal{C}$, there is a homotopy equivalence

$$\operatorname{Hom}_{\mathcal{C}}(y,x) \simeq \Delta^0$$

Proposition 6.1.2

Let \mathcal{C} be an infinity category. Let $x \in \mathcal{C}$ be an object. Then the following are equivalent.

- \bullet x is terminal.
- For all $n \ge 1$, every lifting problem of the form

has a solution.

initial / terminal carries over by equivalence

initial in i-cat imply initial in hCat

6.2 Limits and Colimits

Definition 6.2.1: Functor of Constant Diagrams

Let K be a simplicial set. Let $\mathcal C$ be an infinity category. Define the functor of constant diagram

$$\Delta: \mathcal{C} \to \operatorname{Hom}_{\mathbf{sSet}}(K, \mathcal{C})$$

to be the morphism of simplicial sets defined by

$$C_n \cong \operatorname{Hom}_{\mathbf{sSet}}(\Delta^n, \mathcal{C}) \longrightarrow \operatorname{Hom}_{\mathbf{sSet}}(K \times \Delta^n, \mathcal{C})$$

induced by the projection map $K \times \Delta^n \to \Delta^n$.

In particular, notice that for $X \in \mathcal{C}$ an object, ΔX is precisely the unique morphism from K to the simplicial set $\{X\}$.

Definition 6.2.2: Limits in Infinity Categories

Let K, \mathcal{C} be infinity categories. Let $F: K \to \mathcal{C}$ be a morphism. We say that X is the limit of F exhibited by $u: \Delta X \Rightarrow F$ if for all $Z \in \mathcal{C}$, the following composite:

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \xrightarrow{\Delta} \operatorname{Hom}_{\operatorname{Hom}_{\mathbf{sSet}}(K,\mathcal{C})}(\Delta X, \Delta Y) \xrightarrow{[u] \circ -} \operatorname{Hom}_{\operatorname{Hom}_{\mathbf{sSet}}(K,\mathcal{C})}(\Delta X, F)$$

is a homotopy equivalence of simplicial sets.

TBA: If K, \mathcal{C} are nerves of ordinary category, then the above definition recovers the usual notion of limits.

6.3 Equivalent Formulations of the (Co)Limit

Proposition 6.3.1

Let K be a Kan complex. Let $\mathcal C$ be an infinity category. Let $F:K\to \mathcal C$ be a functor. Let $X\in \mathcal C$ be an object.

• X the limit of F exhibited by $u: \Delta X \Rightarrow F$ if and only if u is the final object in

$$\mathcal{C} \times_{\mathrm{Hom}_{\mathbf{sSet}}(\{0\}, \mathrm{Hom}_{\mathbf{sSet}}(K, \mathcal{C}))} \mathrm{Hom}_{\mathbf{sSet}}(\Delta^{1}, \mathrm{Hom}_{\mathbf{sSet}}(K, \mathcal{C})) \times_{\mathrm{Hom}_{\mathbf{sSet}}(\{1\}, \mathrm{Hom}_{\mathbf{sSet}}(K, \mathcal{C}))} \{u\}$$

7 Relation to Model Categories

7.1 Inverting Morphisms in an Infinity Category

Definition 7.1.1

Let C be an infinity category. Let W be a collection of morphisms in C. Define the category

$$\mathcal{C}[W^{-1}]$$

together with its canonical functor $F: \mathcal{C} \to \mathcal{C}[W^{-1}]$ by the following universal property.

For every infinity category $\mathcal D$ together with a functor $G:\mathcal C\to\mathcal D$ such that G(f) is an equivalence for $f\in W$, there exists a unique functor $H:\mathcal C[W^{-1}]\to\mathcal D$ such that the following diagram commutes:

$$C \xrightarrow{F} C[W^{-1}]$$

$$\downarrow \exists : H$$

$$D$$

Proposition 7.1.2

Let \mathcal{C} be an infinity category. Let W be a collection of morphisms in \mathcal{C} . Then $\mathcal{C}[W^{-1}]$ exists and is unique up to equivalence of infinity categories.

Given a category C with weak equivalences W, we now have a way to systematically construct an infinity category associated to C. Namely,

$$(\mathcal{C}, \mathcal{W}) \mapsto N(\mathcal{C})[\mathcal{W}^{-1}]$$

7.2 Exhibiting a Model Category as an Infinity Category

Up until now, we have two ways of associating different types of categories with its homotopy category. Namely, if $\mathcal C$ is a model category, then we can associate to it the homotopy category $Ho(\mathcal C)$. Similarly, if $\mathcal D$ is an infinity category, we can also associate to it a homotopy category $Ho(\mathcal D)$. This constructions are highly related. In particular, there is a functor sending every model category to an infinity category such that the most important notions such as homotopy limits and colimits coincide.

Recall that for a model category C, we denote the full subcategory spanned by cofibrant objects by C_c .

Definition 7.2.1

Let (\mathcal{C},W) be a model category. Let \mathcal{D} be an infinity category. Let $F:N(\mathcal{C}_c)\to\mathcal{D}$ be a functor. We say that F exhibits the underlying category \mathcal{C} as \mathcal{D} if the functor induces an equivalence of categories

$$N(\mathcal{C}_c)[W^{-1}] \simeq \mathcal{D}$$

Ref:1.3.4.20 HA

Theorem 7.2.2: [Dwyer-Kan]

Let (C, W) be a model category. ??? determines a map $N(C_c) \to N(C_{cf})$ that induces an equivalence of infinity categories

$$N(\mathcal{C}_c)[\mathcal{W}^{-1}] \simeq N(\mathcal{C}_{cf})$$

TBA: Left Quillen equivalence implies equivalence of infinity categories.

7.3

Presentable iff $\mathcal{D} \simeq N(\mathcal{C}_c f)$ where \mathcal{C} is a combinatorial simplicial model category.