Stable algorithms: Insertian sout, menge sont.
Not stable algorithms: Heap sont, quide sont.

To make algorithm stable, we should stone the element with its index (original order), as a secondary way of sorting elements with equal primary value. This schame takes O(rlgn) additional space.

# 2. By Dangnhi Ngo



### By Vlad Gordiyevsky



# By Shraddha Kharche



### 3. By Duyen Tran

(1)

using radix sort we have 3 digits in base n so we call counting sort three times

4.

O(n³) because the range of the input is
n³-1
O(n+K) K=range of input

$$=0\left(n^3\right)$$

#### By Karamel Quitayen

**4. Sorting** – Explain why the worst-case running time for bucket sort is  $\theta(n^2)$ . What simple change to the algorithm preserves its linear average-case running time and makes its worst-case running time  $O(n \lg n)$ ?

The worst-case running time for bucket sort occurs when a single bucket contains all n elements of the original array. After placing the elements into their appropriate bucket, Insertion-Sort is called to sort them in the bucket which has a worst-case running time of  $O(n^2)$ . The dominating cost of Bucket-Sort is in sorting each bucket so that can be easily fixed by replacing Insertion-Sort with a different sorting algorithm that has a better worst-case running time. For instance, merge sort has a worst-case running time of  $O(n \lg n)$  and can be called to sort each bucket to give Bucket-Sort a worst-case running time also of  $O(n \lg n)$ .