الشبكة التربوية التونسية www.edunet.tn

REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION ET DE LA FORMATION

SESSION

EXAMEN DU BACCALAURÉAT SESSION DE JUIN 2009

SECTION: SCIENCES DE L'INFORMATIQUE

EPREUVE : SCIENCES PHYSIQUES | DURÉE : 3 Heures

COEFFICIENT: 2

CHIMIE (5 points)

Soit un alcool (A) de formule brute C₃H₈O.

- 1) Écrire les formules semi-développées des alcools isomères de (A) et donner leurs noms.
- 2) Pour identifier l'alcool (A), on réalise son oxydation ménagée par le dichromate de potassium en milieu acide. On obtient un composé (B), qui s'oxyde à son tour pour donner un produit (D). Le composé (B) réagit avec le réactif de Schiff.
 - a- Préciser, pour chacun des composés (B) et (D), la famille à laquelle il appartient.
 - b- Déduire la classe de l'alcool (A) et sa formule semi-développée.
 - c- Donner les formules semi-développées des composés (B) et (D).
- 3) On fait dissoudre le composé (D) dans l'eau pure afin d'obtenir une solution aqueuse (S), de volume V = 40 mL et de concentration molaire C = 5.10⁻² mol.L⁻¹. Déterminer la quantité de matière dissoute du composé (D).
- 4) La solution (S) réagit avec un excès de fer (Fe). Le mélange obtenu est filtré. La teinte verdâtre du filtrat prouve l'existence des ions Fe2+. Préciser, en le justifiant, s'il s'agit d'une oxydation ou d'une réduction du fer.
- 5) On dose un volume V₁ = 20 mL, du filtrat de concentration molaire C₁, par une solution acidifiée de permanganate de potassium (KMnO₄) de concentration molaire $C_2 = 2.10^{-2}$ mol.L⁻¹. L'équivalence est atteinte pour un volume versé V2 = 9,6 mL de la solution de permanganate de potassium. L'équation chimique de la réaction de dosage est :

$$5 \text{ Fe}^{2+} + \text{MnO}_4^- + 8 \text{ H}_3\text{O}^+ \longrightarrow \text{Mn}^{2+} + 5 \text{ Fe}^{3+} + 12 \text{ H}_2\text{O}$$

- a- Donner un schéma annoté du dispositif expérimental permettant la réalisation de ce dosage.
- b- Comment peut-on repérer expérimentalement l'équivalence au cours de ce dosage ?
- c- Établir la relation entre C1, C2, V1 et V2 à l'équivalence. En déduire la valeur expérimentale de C1.

الشبكة التربوية التونسية www.edunet.tn

PHYSIQUE (15 points)

Exercice 1 (6 points) :

On réalise un circuit électrique comportant en série, un générateur basse fréquence délivrant une tension sinusoïdale $\mathbf{u}(\mathbf{t}) = \mathbf{U}_m \sin(2\pi N \mathbf{t})$ de valeur maximale \mathbf{U}_m et de fréquence \mathbf{N} réglable, un conducteur ohmique de résistance \mathbf{R} , une bobine d'inductance $\mathbf{L} = \mathbf{0,52}$ \mathbf{H} et de résistance \mathbf{r} , un condensateur de capacité \mathbf{C} et un ampèremètre de résistance négligeable.

Pour une valeur $N = N_1$ de la fréquence du générateur, on visualise à l'aide d'un oscilloscope bicourbe, les tensions $\mathbf{u}_c(t)$ aux bornes du condensateur et $\mathbf{u}(t)$ aux bornes du générateur. Les courbes \mathscr{C}_1 et

 \mathscr{C}_2 de la figure 1 représentent les variations, au cours du temps, des deux tensions $u_c(t)$ et u(t).

I- 1) Proposer un schéma du montage électrique, permettant de visualiser simultanément les tensions, u(t) et u_c(t), en précisant les connexions nécessaires.

- Montrer que la courbe \(\mathbb{C}_1\) correspond à u(t).
- 3) Déterminer graphiquement :
 - a- la valeur de la période T₁ et en déduire celle de la fréquence N₁ du générateur ;
 - b- le déphasage Δφ = φ_u- φ_{u_c} de u(t) par rapport à u_c(t) et montrer que le circuit est le siège d'une résonance d'intensité.
- 4) Sachant que l'ampèremètre indique une intensité I = 21,2 mA, déterminer :
 - a- la valeur de l'impédance Z1 du circuit. En déduire la valeur de sa résistance totale.
 - b- la valeur E de l'énergie totale emmagasinée dans le circuit.

II- L'équation différentielle régissant les variations de l'intensité i(t) du courant dans le circuit est :

$$L\frac{di}{dt} + (R+r)i + \frac{1}{C} \int i \, dt = u(t). \text{ Elle admet une solution de la forme } i(t) = I_m \sin(2\pi Nt + \phi_i).$$

Pour une valeur $N = N_2$ de la fréquence du générateur, une construction de Fresnel relative à cette équation différentielle est représentée sur la figure 2 de la page 5/5. Les vecteurs associés à cette construction ne sont pas précisés.

- Compléter le tableau relatif à la construction de la figure 2 de la page 5 / 5 ; Feuille à remettre avec la copie.
- 2) En exploitant la construction de Fresnel:
 - a- montrer que la valeur de l'intensité maximale du courant est pratiquement : Im = 26,0 mA;
 - b- déterminer la valeur N2 de la fréquence du générateur ;
 - c- déterminer la valeur de la capacité C du condensateur.

الشبكة التربوية التونسية www.edunet.tn

Exercice 2 (6 points):

A l'aide d'un amplificateur opérationnel, dont la sortie est rebouclée sur l'entrée par un dipôle RC, on réalise un multivibrateur astable schématisé par la figure 3.

Figure 3

- 1) En appliquant la loi des mailles :
 - a- établir la relation entre les tensions $u_c(t)$ aux bornes du condensateur, $u_{R_1}(t)$ aux bornes du résistor de résistance R_1 et la tension différentielle ϵ ;
 - b- exprimer $u_{R_1}(t)$ en fonction de R_1 , R_2 et $u_s(t)$;
 - c- déduire la relation : $\varepsilon = \frac{R_1}{R_1 + R_2} u_s(t) u_c(t)$.
- 2) En régime saturé la tension de sortie $u_s(t) = U_{sat}$ pour $\varepsilon > 0$ et $u_s(t) = -U_{sat}$ pour $\varepsilon < 0$, montrer que les expressions des seuils de basculement U_{HB} et U_{BH} du multivibrateur considéré sont respectivement : $U_{HB} = \frac{R_1}{R_1 + R_2} U_{sat}$ et $U_{BH} = -\frac{R_1}{R_1 + R_2} U_{sat}$, avec U_{sat} la tension de saturation de l'amplificateur opérationnel.
- 3) Sachant que le condensateur de capacité C, chargé initialement sous une tension U_i qui croit au cours du temps en visant une tension U_f , atteindra une tension de valeur U_0 au bout d'une durée Δt donnée par la relation : $\Delta t = RC.Log \frac{U_f U_i}{U_f U_0}$,
 - a- exprimer, en fonction de C, R, R₁ et R₂, les durées T₁ et T₂ correspondant respectivement aux états haut et bas du multivibrateur.
 - **b-** en déduire le rapport cyclique δ du multivibrateur.
- 4) Dans un tel montage, quel est le composant électronique qui peut remplacer l'amplificateur opérationnel?
- 5) On se propose de déterminer expérimentalement les valeurs des résistances des résistors R₁, R₂ et de la capacité C du condensateur. Pour cela et à l'aide d'un système d'acquisition approprié, on obtient les courbes de la figure 4 traduisant l'évolution au cours du temps des tensions u_c(t) et u_s(t) du multivibrateur considéré.

الشبكة التربوية التونسية www.edunet.tn

Déterminer graphiquement les valeurs :

- a- E_H de l'état haut et E_B de l'état bas de la tension de sortie du multivibrateur ;
- b- des seuils de basculement U_{HB} et U_{BH} du multivibrateur et en déduire la valeur de la résistance R_2 . On donne R_1 = 10 k Ω .
- c- des durées T1 et T2 correspondant respectivement aux états haut et bas du multivibrateur.
- d- En déduire la valeur de la capacité C du condensateur. On donne R = 4,7 kΩ.

Exercice 3: Etude d'un document scientifique (3 points)

L'ennemi honnête des fous de la route

Pour mesurer la vitesse des voitures circulant sur la voie publique et intercepter celles en excès de vitesse, la police routière fait appel à des radars. Le radar, abréviation de « RAdio Détection And Ranging » que l'on peut traduire par « détection et estimation de la distance par ondes radio » est un système utilisé pour localiser des objets dans l'espace et en déterminer certaines caractéristiques telles que la position, la vitesse et la forme.

Les ondes utilisées ne sont pas sonores mais électromagnétiques, de très courtes longueurs d'onde. Un radar est composé principalement d'un émetteur, d'une antenne et d'un récepteur muni d'un système de visualisation.

L'émetteur envoie sur l'obstacle, au moyen de l'antenne, un faisceau d'ondes électromagnétiques par impulsions brèves. Celles-ci réfléchies, formant ce qu'on appelle un « écho-radar », sont captées par le récepteur. Un ordinateur calcule le temps mis par l'onde pour revenir à l'antenne et envoie sur un écran des informations. Il est alors possible de localiser l'obstacle et de calculer sa vitesse s'il est mobile.

Synthèse de ressources Internet

Questions:

- 1) Quels sont les éléments essentiels constituant le radar ?
- 2) En quoi consiste la fonction du radar ?
- Préciser le principe de fonctionnement du radar.
- Comparer les ondes émise et reçue par le radar au niveau de la célérité, de la longueur d'onde et de la direction de propagation.

الشبكة التربوية التونسية www.edunet.tn

FEUILLE A RENDRE AVEC LA COPIE

Tension	Vecteur de Fresnel associé	Tension maximale
u(t)	_{OA}	
(R+ r) i(t)		(R+r) I _m
$\frac{1}{C} \int i(t) dt$	\overrightarrow{BA}	
L di(t)	<u> </u>	

Tableau