AN6884

5-Dot LED Driver Circuit

Description

The AN6884 is a monolithic integrated circuit driving 5-LED and is capable of logarithmic (dB) bar graph display for input signal. Incorporating high gain rectification amp. enable to apply AC (UV meter, etc.) / DC (signal meter, etc.) level meter widely.

Features

- Wide range of operating voltage: V_{CC(opr.)} = 3.5V ~ 16V
- Constant current output: I_{LED} =15mA
- Built-in high gain amp.: Gy = 26dB typ.
- Low noise when LED ON
- 5-dot LED bar logarithmic response: -10, -5, 0, 3, 6dB
- Fewer external components

Block Diagram

■ Absolute Maximum Ratings (Ta=25°C)

Item		Symbol	Rating		Unit
Voltage	Supply Voltage	v _{cc}	18		V
	Circuit Voltage	V ₇₋₅			V
	Op. Amp. Input Voltage	V ₈₋₅	-0.5	V _{CC}	V
	LED Output Pin Voltage	V _{1, 2, 3, 4, 6-5}	v_{cc}		V
Current	Supply Current	I _{CC}	12		mA
	LED Output Pin Current	I _{1, 2, 3, 4, 6}	20		mA
Power Dissipation *		P _D	1100		mW
Operating Ambient Temperature		Topr	-25 ~ +75		°C
Storage Temperature		Tstg	-55 ~ +125		°C

Operating Supply Voltage Range: $V_{CC} = 3.5V \sim 16.0V$

■ Electrical Characteristics (V_{CC}=3V, Ta=25°C)

Item	Symbol	Test Circuit	Condition		min.	typ.	max.	Unit
Supply Current	Icc	1	$V_{8-5} = 0V$			6	8.5	mA
Input Bias Current	I _{Bias8}	2			-1	!	0	μΑ
Output Sink Current	I(SINK)1, 2, 3, 4, 6	3	$V_{8-5} = 0.15V$		11	15	18.5	mA
Voltage Gain	Gv	4	$V_{8.5} = 0.1V$, $R_7 = 10k\Omega$		24	26	28	dB
	GD ₁	5	Pin 1		-12	-10	-8	dB
	GD_2	5	Pin 2		-6	-5	-4	dB
Comparator Level	GD_3	5	Pin 3	$V_{8-5} = 0V$		0		dB
	GD ₄	5	Pin 4		2.5	3	3.5	dB
	GD ₅	5	Pin 6	}	5	6	7	dB

^{*} G_{D3} LED ON level adjusting point = 0dB, equivalent to $V_{7-5} = 1.1 V$ typ. ($V_{8-5} = 57 \text{mV}$)

■ Pin

Pin No.	Pin Name
1	LED 1 Output
2	LED 2 output
3	LED 3 Output
4	LED 4 Output
5	GND
6	LED 5 Output
7	AMP. Output
8	AMP. Input
9	V _{CC}

^{*}Under Ta > 25°C, reduce at -11mW/°C

Test Circuit 1 (I_{CC})

Test Circuit 2 (IBias8)

Test Circuit 3 (I_(SINK)1, 2, 3, 4, 6)

Test Circuit 4 (G_V)

Test Circuit 5 (GD₁₋₅)

Note) Measure input voltage V_{7-5} of comparator that I_1 - I_5 flow more than 11mA.

Application Circuit

In case of $Ta(max) = 60^{\circ}C$

V _{CC} (V)	R(Ω)		
8 ~ 12	47		
10 ~ 14	68		
12 ~ 16	91		

In case of $Ta(max.) = 75^{\circ}C$

R(Ω)
27
39
51
62
75
82
100
110

P_D and V_CC

When maximun ambient temperature $Ta(max.) = 60^{\circ}C$, $V_{CC} > 9V / Ta(max.) = 75^{\circ}C$, $V_{CC} > 7V$, P_{D} is over at the application circuit above. Select R value from the right list. And determine R watt by resistance value and total LED current.

Characteristics Curve

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.