Exercise 1

Solution:

For transistor T to be in saturation, at least 0.5 V must be between the base & emitter. For $D_3 \& D_4$ both to be on, 0.6+0.6=1.4 V is required. Thus, the required voltage for D_3 , D_4 & T to be on, at P,

$$V_P = 0.6 \times 2 + 0.5 = 1.7 V$$

Case (0,0):

Assuming $D_1 \& D_2$ to be on (since low voltage 0.2 V at cathode), we get,

$$V_P = 0.2 + 0.7 = 0.9 V < 1.7 V$$

Thus, D_3 , D_4 & T will be off. This leads to an open circuit-

Thus,
$$V_o = 5 V$$

$$I_{5 k\Omega} = \frac{5 - V_P}{5} = \frac{5 - 0.9}{5} = 0.82 mA$$

$$I_{D_1} = I_{D_2} = \frac{I_{5 k\Omega}}{2} = 0.41 mA$$

$$I_{D_1} = I_{D_2} = \frac{I_{5 k\Omega}}{2} = 0.41 \, mA$$

Case (0,1):

Assuming D_1 on & D_2 off,

$$V_P = 0.2 + 0.7 = 0.9 < 1.7 V$$
 again.

Thus, D_3 , D_4 & T will be off. This leads to an open circuit-

$$V_o = 5 V$$

$$I_{5 k\Omega} = \frac{5 - 0.9}{5} = 0.82 mA$$

$$I_{D_1} = I_{5 k\Omega} = 0.82 mA$$

$$I_{D_1} = I_{5 k\Omega} = 0.82 \, mA$$

Case (1,0): Same as (0,1)

Case (1,1):

Assuming both D_1 & D_2 off, D_3 , D_4 & T can be assumed on, since there is no bound of V_P from the input diodes. Each diode will have 0.7 V & there will be 0.8 V between the base and emitter of T.

Thus,
$$V_P = 0.7 + 0.7 + 0.8 = 2.2 V$$

The circuit looks like:

$$V_o = V_{CE_T} = 0.2 V$$

$$I_{5V} = I_1 + I_{2.2 k\Omega} = \frac{5-2.2}{5} + \frac{5-0.2}{2.2} = 2.74 mA$$

$$I_{R_3} = \frac{0.8}{5} = 0.16 mA$$

Exercise 2

Solution:

a)
$$D_1$$
, D_2 , D_3 all off. $V_P = 0.7 \times 2 + 0.8 = 2.2 V$

$$I_{R_1} = \frac{10 - V_P}{2} = \frac{10 - 2.2}{2} = 3.9 \text{ mA}$$

$$I_2 = \frac{0.8}{5} = 0.16 \, mA$$

$$I_B = I_{R_1} - I_B = 3.9 - 0.16$$
$$= 3.74 \, mA$$

$$I_C = I_{R_3} = \frac{10 - 0.1}{6} = 1.65 \, mA$$

 $\therefore \beta_{min} = \frac{I_C}{I_B} = 0.441$

$$\therefore \beta_{min} = \frac{I_C}{I_B} = 0.441$$

This is the minimum value of β to keep T in saturation.

b) Let V_N be the noise voltage at A, that would cause the malfunction.

Thus, total voltage at input $A = 10 + V_N$

It will malfunction if D_A turns on. The marginal voltage across the diode for this situation is the cut-in voltage (0.6 V) of the diode.

Thus,
$$V_{D_A} = 0.6 = V_P - (10 + V_N)$$

Now, we found in (a), $V_P = 2.2 V$ when all inputs are high.

So,
$$V_N = 2.2 - 0.6 - 10 = -8.4 V$$

Magnitude of $V_N = |-8.4| = 8.4 V$

c) If at least one input is low, it will cause D_4 , D_5 & T_1 to be off.

Thus, $V_P = 0.1 + 0.7 = 0.8 V$ when no noise is present.

Let, V_N is the noise voltage.

Then, malfunction will happen when due to V_N , V_P will be high enough to turn D_4 , D_5 & T_1 on.

$$V_{P_{malfunction}} = \left(V_{D_1}\right)_{cut-in} + \left(V_{D_2}\right)_{cut-in} + V_{T_{1\gamma}} = 0.6 \times 2 + 0.5 = 1.7 \ V$$
 $V_P = V_N + 0.1 + 0.7 = V_N + 0.8$
Considering marginal condition,
 $V_P = V_{P_{malfunction}} \to V_N + 0.8 = 1.7 \to V_N = 0.9$

Exercise 3

Solution:

a) Case (at least one input low) [(0,0,0), (0,0,1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)]:

As we found in Exercise 2,

$$V_P = 0.1 + 0.7 = 0.8 V$$

 D_4 , D_5 , T_1 all off

Case (1,1,1):

From **Exercise 2**, we found that for this case, $V_P = 2.2 V$

 D_4 , D_5 , T_1 all on

$$P = (10 - 0) \times I_{R_1} + (10 - 0) \times I_{R_3}$$
$$= 10 \times \frac{10 - 2.2}{2} + 10 \times \frac{10 - 0.1}{6} = 55.5 \text{ mW}$$

b)
$$P_{max} = \max(55.5, 45.54) = 55.5 \ mW$$

$$P_{avg} = \frac{7 \times 45.54 + 55.5}{8} = 46.785 \ mW$$

Exercise 4

Solution:

a) **Step 1**:

Current flows from loads toward the driver circuit. Thus, the condition for maximum fanout is the marginal case, when T_1 transitions from saturation to forward active.

Step 2:

Case (at least 1 input low at the driver):

Output V_Y is high, which turns D_6 of loads off. Thus, no current enters the driver circuit.

$$\therefore$$
 Fanout = ∞

Case (all inputs high):

Output V_Y is low, D_6 is on. KCL at Y,

$$I_{c1} = I_3 + I_R = \frac{10 - 0.1}{6} + \frac{10 - 0.8}{2} \times N = 1.65 + 4.6N$$

Here, we have considered the case (1,0,0) at all N loads connected. This is because maximum current will flow through D_6 in this situation, as all other diodes & T_2 will be off. The anode node voltage of D_6 will be 0.8 V for the same reasons described in previous examples (0.1+0.7).

$$I_B = I_1 - I_2 = \frac{10-2.2}{2} - \frac{0.8}{5} = 3.74 \, mA$$

Now, $\beta_{forced} = \frac{I_C}{I_B} = \beta_F = 30 \rightarrow \frac{1.65+4.6N}{3.74} = 30 \rightarrow N = floor $\left(\frac{3.74\times30-1.65}{4.6}\right) = 24$$

Step 3:

 $\therefore Maximum \ fanout = \min(\infty, 24) = 24$

b) We see, the difference in this case from the previous problem is that, the load currents will add to the collector current of T_1 . The load currents I_R will flow between V_V & ground. Thus,

$$P_{max} = (10 - 0) \times I_1 + (10 - 0) \times I_3 + (V_Y - 0) \times I_R \times N$$

= $10 \times \frac{10 - 2.2}{2} + 10 \times \frac{10 - 0.1}{6} + (0.1 - 0) \times 24 \times \frac{10 - 0.8}{2} = 66.54 \text{ mW}$

Exercise 5

Solution:

a) When all inputs are high,

 T_1 in forward active mode, D_2 on, T_2 in saturation mode, and load diodes are off. Hence, loads are disconnected.

Thus,
$$I_{C_{T_2}} = I_1' = \frac{12 - 0.1}{2.2} = 5.41 \, mA$$

$$I_{B_{T_2}} = i_1 - \frac{0.8}{100} = (\beta_F + 1) \times I_{C_{T_1}} - 0.008 = (30 + 1) \times \frac{V_{C_{T_1}} - 2.2}{15} - 0.008$$
Now, KCL at $V_{C_{T_1}}$,
$$\frac{V_{C_{T_1}} - 2.2}{15} + 30 \times \frac{V_{C_{T_1}} - 2.2}{15} = \frac{(12 - V_{C_{T_1}})}{15} \rightarrow V_{C_{T_1}} = 2.51 \, V$$
Thus, $I_{B_{T_2}} = 0.625 \, mA$

$$\therefore \beta_{forced} = \frac{I_{C_{T_2}}}{I_{B_T}} = 8.654 < \beta_F(30)$$

b) Step 1:

The current flows from the loads toward the driver. Thus, the condition for maximum fanout is the marginal condition when T_2 transitions from saturation to forward active.

Step 2:

Cases with at least one low input:

 T_1, D_2, T_2 all of f

Output is high, and all load diodes will be off.

 \therefore Fanout = ∞

Case (1,1,1):

 T_1 in forward active mode, D_2 on, T_2 in saturation mode

$$I_{C_{T_2}} = I_1' + N \times I_L = \frac{12 - 0.1}{2.2} + N \times \frac{12 - 0.1 - 0.7}{15 + 15} = 5.41 + 0.373N$$

$$I_{B_{T_2}} = 0.625 \, mA$$

$$\therefore \frac{5.41 + 0.373N}{0.625} = 30 \rightarrow N = 35$$

c) $P_{at\ least\ one\ input\ is\ low\ cases} = (12 - 0.1) \times I_1 = 11.9 \times \frac{12 - 0.7 - 0.1}{15 + 15} = 4.4387\ mW$

$$P_{1,1,1} = (12 - 0) \times \frac{{}^{12 - V_{C_{T_1}}}}{{}^{15}} + (0.1 - 0) \times N \times I_1 = 12 \times \frac{{}^{12 - 2.51}}{{}^{15}} + 0.1 \times 35 \times 0.373 = 73.82 \ mW$$

d)
$$V_A + V_{D_A} = V_P = 2.2 \rightarrow 12 + V_N + 0.6 = 2.2 \rightarrow V_N = -10.4 V$$

 $\therefore |V_N| = 10.4 V$

Exercise 6

Solution:

- a) Y = AB
- b) Step 1:

Current flows from driver to loads. Hence, the condition for maximum fanout is supply-demand balance.

Step 2:

Case (1,1):

$$D_3$$
, D_4 , Q_1 on, D_1 & D_2 of f

Maximum supply current from the driver, $I_{2.2k} = \frac{12-0.2}{2.2} = 5.363 \, mA$ Demand current by each load, $I_L = \frac{0.2}{115} = 1.74 \, \mu A$

:
$$Fanout = floor(\frac{5.363}{1.74 \times 10^{-3}}) = 3082$$

Case (0,0)/(0,1)/(1,0):

$$D_3$$
, D_4 , Q_1 of f , $D_1 \& D_2$ on

Maximum supply current from the driver, $I_{2.2k} = \frac{12-10}{2.2} = 0.91 \, mA$ Since the output of the driver is high, loads will be in saturation. Thus demand current,

$$I_L = \frac{10 - 0.8}{15} = 0.613 \, mA$$

$$\therefore Fanout = floor\left(\frac{0.91}{0.613}\right) = 1$$

Step 3:

- \therefore *Maximum fanout* = min (1, ∞)
- c) N=1 load will be in saturation mode when driver output is high. Thus, maximum power dissipation in the single load,

$$P_{max} = (10 - 0) \times I_L + (12 - 0) \times I_{C_{load}} = 10 \times \frac{(10 - 0.8)}{15} + 12 \times \frac{12 - 0.2}{2.2} = 70.5 \, mW$$