

●原根与指数

●原根与指数

● 指数

Fuler定理: 设m是大于1的整数, a是满足 (a,m)=1的整数,则

$$a^{\varphi(m)}\equiv 1 \pmod{m}$$
.

■ 那么, $\varphi(m)$ 是使得 $a^k \equiv 1 \pmod{m}$ 的最小正整数吗?

● 指数

例 如: a=2, m=7,
 φ(m)=6, 即2⁶≡1(mod 7).

事实上,我们在计算2⁵²天后是星期几时,有计算出2³≡1(mod 7).

■ 如何寻找最小正整数k使得 $a^k \equiv 1 \pmod{m}$, 以及这样的最小正整数有哪些性质呢?

●原根与指数

定义5.1.1 设m>1是整数,a是与m互素的正整数,则使得

 $a^e \equiv 1 \pmod{m}$

成立的最小正整数e叫做a模m的指数,记作 $ord_m(a)$ 。

如果a模m的指数是 $\varphi(m)$,则a叫做模m的原根。

■ 例如:对于任意的*m*, ord_m(1)=1.

- 例 ord₂(-1)=1, 当 m>2 时, ord_m(-1)=2.
- **夕 夕** $\text{Ord}_7 2=3$, $\text{Ord}_{11}(2)=?$ $\text{Ord}_{17}(3)=?$
- $ord_{11}(2)=10$, $ord_{17}(3)=16$

• 指数

■ 例:模7的指数表

$$1^1 \equiv 1 \pmod{7}$$
 $2^3 \equiv 1 \pmod{7}$ $3^6 \equiv 1 \pmod{7}$

$$4^3 \equiv 1 \pmod{7}$$
 $5^6 \equiv 1 \pmod{7}$ $6^2 \equiv 1 \pmod{7}$

a	1	2	3	4	5	6
$\operatorname{ord}_7(a)$	1	3	6	3	6	2

■ 与7互素的整数a模7的指数有什么性质?

• 指数

■ 例:模10的指数表

$$1^1 \equiv 1 \pmod{10}$$
 $3^4 \equiv 1 \pmod{10}$

$$7^4 \equiv 1 \pmod{10}$$
 $9^2 \equiv 1 \pmod{10}$

a	1	3	7	9
$\operatorname{ord}_{10}(a)$	1	4	4	2

●指数练习

а	1	2	4	5	7	8
$\operatorname{ord}_9(a)$	1	6	3	6	3	2

а	1	3	5	7
$\operatorname{ord}_8(a)$	1	2	2	2

■ 定理5.1.1 设m>1是整数, a是与m互素的整数,则整数d使得

$$a^d \equiv 1 \pmod{m}$$

成立的充要条件 $\operatorname{ord}_m(a)|d$ 。

■ 分析: 设 $d = \operatorname{ord}_m(a) \times q + r$, $0 \le r < \operatorname{ord}_m(a)$, q, $r \in \mathbb{Z}$, 则:

$$a^d \equiv a^{\operatorname{ord} m(a) \times q + r} \equiv a^r \equiv 1 \pmod{m}$$
,

由指数定义, $\operatorname{ord}_{m}(a)$ 最小, 所以r=0。

指数性质

• 推论1 设m>1是整数,a是与m互素的整数,则ord $_m(a)|\varphi(m)$ 。

■ 证明: 5是模3与模6的原根, 也是模3², 2×3²的原根。

- > 5≡ 2(mod 3) 5²≡1(mod 3), 所以5是模3的原根;
- > 5=-1(mod 6) 5²=1(mod 6), 所以5是模6的原根;
- $5 \equiv 5 \pmod{9}$ $5^2 \equiv -2 \pmod{9}$ $5^3 \equiv -1 \pmod{9}$ $5^4 \equiv 4 \pmod{9}$
 - 55 ≡ 2(mod 9) 56 ≡ 1(mod 9), 所以5是模9的原根;
- 5≡ 5(mod 18) 5²≡ 7(mod 18) 5³≡ -1(mod 18)
 5⁴≡ -5(mod 18) 5⁵≡ -7(mod 18) 5⁵≡ 1(mod 18),
 所以5是模18的原根。

- **例** 计算整数5模17的指数ord₁₇(5).
- 解: $\varphi(17)=16$, 16的因数只有1、2、4、8、
 - 16, 所以只需要

$$5 \equiv 5 \pmod{17}$$
 $5^2 \equiv 8 \pmod{17}$

$$5^4 \equiv 13 \pmod{17}$$
 $5^8 \equiv 16 \equiv -1 \pmod{17}$,

$$5^{16} \equiv 1 \pmod{17}$$
,

因此, $ord_{17}(5)=16=\varphi(17)$,所以5是模17的原根。

练习 计算整数3模19的指数ord₁₉(3)

推论2 设p是奇素数,且(p-1)/2也是素数。如果a>1是一个不被p整除的整数,且不是模p的二次单位根,则
 ord_n(a)=p-1或(p-1)/2.

- 例 计算整数39和7模17的指数。
- \rightarrow ord₁₇(39)=16, ord₁₇(7)=16
- > 39=5(mod 17), $7 \times 5 = 1 \pmod{17}$

• 指数

■ 性质5.1.1 设m>1是整数, a是与m互素的整数。

> 若 $b \equiv a \pmod{m}$, 则ord_m(b)=ord_m(a);

设 a^{-1} 使得 $a^{-1}a\equiv 1 \pmod{m}$,则 $\operatorname{ord}_m(a^{-1})=\operatorname{ord}_m(a)$ 。

• **例:** 5模17的指数ord₁₇(5)=16, 即: 5是模 17的原根, 求所有5的幂次(模17)。

■ 什么规律?

定理5.1.2 设m>1是整数,a是与m互素的整数,则 $1=a^0$, a^1 ,…, $a^{\operatorname{ord}_m(a)-1}$

模m两两不同。特别地,当a是模m的原根,即 $ord_m(a)=\varphi(m)$ 时,这个 $\varphi(m)$ 数组成模m的简化剩余 系。

............

- 例 计算2²⁰⁰²(mod 7).
- $2^3 \equiv 1 \pmod{7}$, $2002 \equiv 1 \pmod{3}$, 所以 $2^{2002} \equiv 2^1 \equiv 2 \pmod{7}$ 。
- 定理5.1.3 设m>1是整数, a是与m互素的整数,则

$$a^d \equiv a^k \pmod{m}$$

的充分必要条件是

 $d\equiv k \pmod{\operatorname{ord}_m(a)}$.

例 5模17的指数ord₁₇(5)=16,那么
 ord₁₇(5²)=? ord₁₇(5³)=?

定理5.1.4 设m>1是整数,a是与m互素的整数, $d \ge 0$ 为整数,则 $\operatorname{ord}_m(a^d) = \operatorname{ord}_m(a)/\operatorname{gcd}(\operatorname{ord}_m(a),d).$

■ 推论 设m>1是整数,g是模m的原根, $d\ge0$ 为整数,则 g^d 是模m的原根当且仅当($d, \varphi(m)$)=1.

- 定理5.1.5 设m>1是整数, g是模m的原根, d≥0为整数,则模m有φ(φ(m))个原根。
- 哪φ(φ(m))个原根?
- 例求出模17的所有原根。

■ **例** 计算整数5模17的指数ord₁₇(5).

解: $\phi(17)=16$, $\phi(\phi(17))=\phi(16)=8$ 。所以,模 17共有8个原根。

已知5是模17的一个原根。

模16的简约剩余系为: 1,3,5,7,9,11,13,15, 所以模17的所有原根为: 5^1 , $5^3 \equiv 6 \pmod{17}$, $5^5 \equiv 14 \pmod{17}$, $5^7 \equiv 10 \pmod{17}$, $5^9 \equiv 12 \pmod{17}$,

 $5^{11} \equiv 11 \pmod{17}, 5^{13} \equiv 3 \pmod{17}, 5^{15} \equiv 7 \pmod{17}.$

- 例考虑模7的指数: 2模7的指数
 ord₇(2)=3, ord₇(6)=2,
 ord₇(2×6)=ord₇(5)=?
- **定理5.1.6** 设m>1是整数,a, b都是与m互素的整数,则(ord $_m(a)$, ord $_m(b)$)=1当且仅当ord $_m(ab)$ =ord $_m(a)$ ord $_m(b)$ 。

■ 例求模23的原根。

解: 计算整数2模23的指数: ord₂₃(2)=11,2不是模23的原根,但是23/ord₂₃(2)=2,

(2,11)=1, ord₂₃(-1)=2。所以, -2是模23

的原根。

- **定理5.1.7** 设m, n都是大于1的整数, a是与m, n互素的整数,则
- \rightarrow 若n|m, 则 $\operatorname{ord}_n(a)|\operatorname{ord}_m(a)$;
- 若(m,n)=1,则ord $_{mn}(a)=[\mathrm{ord}_{m}(a),\mathrm{ord}_{n}(a)].$
- 推论设p, q是两个不同的奇素数,a是与pq互素的整数。则 $ord_{pa}(a)=[ord_{p}(a), ord_{a}(a)]$

- 例 计算3模28的指数ord₂₈(3)。
- 解: $\varphi(28) = \varphi(4) \varphi(7) = 2 \times 6 = 12$ 本来需要计算3²(mod 28)、3³(mod 28)、 34(mod 28)、36(mod 28), 但是因为 $\operatorname{ord}_{7}(3)=6$, $\operatorname{ord}_{4}(3)=2$, (4,7)=1, 所以 $ord_{28}(3)=[6,2]=6$.

定理5.1.8 设m, n都是大于1的整数,且 (m,n)=1,则对与mn互素的任意整数 a_1 , a_2 ,存在整数a使得 $ord_{mn}(a)=[ord_m(a_1), ord_n(a_2)].$

定理5.1.9 设m>1是整数,则对与m互素的任意整数a,b,存在整数c使得

 $\operatorname{ord}_{m}(c) = [\operatorname{ord}_{m}(a), \operatorname{ord} \operatorname{ord}_{m}(b)].$

定理5.1.10 设m>1是整数, $a_1, a_2, ..., a_{\varphi(m)}$ 是模m的简化剩余系,e是使得

$$a_k^e \equiv 1 \pmod{m}, 1 \le k \le \varphi(m)$$

成立的最小正整数,则存在整数a使得

$$e=\operatorname{ord}_m(a)=[\operatorname{ord}_m(a_1), \operatorname{ord}_m(a_2), \dots, \operatorname{ord}_m(a_{\varphi(m)})].$$

定义5.1.2 定理5.1.10中的最小正整数e叫做模m的简化剩余系指数,记作
 e=ord((Z/mZ)*).

当m=p是素数时,我们有 $e=\operatorname{ord}((\mathbf{Z}/p\mathbf{Z})^*)=\operatorname{ord}((\mathbf{F}_p)^*)=\varphi(p).$

• 定理5.1.10 设m>1是整数,则模m存在原根的充要条件是 ord(($\mathbf{Z}/m\mathbf{Z}$)*)= $\varphi(m)$.

例设整数*m*=80, 求整数*e*=ord((**Z**/*m***Z**)*).

解: $m=80=2^4\times5$, 设 $m_1=2^4$, $m_2=5$, 则 $(m_1,m_2)=1$, 对任意与m互素的整数a, 有 $\operatorname{ord}_{m}(a) = \operatorname{ord}_{m_{1}m_{2}}(a) = [\operatorname{ord}_{m_{1}}(a), \operatorname{ord}_{m_{2}}(a)]_{\circ}$ ▶ 模5存在原根2和3。所以ord₅(a)=4。而 ord $((\mathbf{Z}/2^4\mathbf{Z})^*)=4$, ord₅(b)=4. 因此,存在c使得 $\operatorname{ord}_{m}(c) = [\operatorname{ord}_{m_{1}}(a), \operatorname{ord}_{m_{2}}(b)] = 4.$

\	
O.	

a	$\operatorname{ord}_{41}(a)$	a	$\operatorname{ord}_{41}(a)$	a	$\operatorname{ord}_{41}(a)$	a	$\operatorname{ord}_{41}(a)$
1	1	11	40	21	20	31	10
2	20	12	40	22	40	32	4
3	8	13	40	23	10	33	20
4	10	14	8	24	40	34	40
5	20	15	40	25	10	35	40
6	40	16	5	26	40	36	20
7	40	17	40	27	8	37	5
8	20	18	5	28	40	28	8
9	4	19	40	29	40	39	20
10	5	20	20	30	40	40	2

■ 记 \mathbf{F}_d ={a|(a,m)=1, ord $_m(a)$ =d, 1≤a≤m-1}, 我们有

$$\begin{aligned} \mathbf{F}_1 &= \{1\}, \quad \mathbf{F}_2 &= \{40\}, \quad \mathbf{F}_4 &= \{9,32\}, \quad \mathbf{F}_8 &= \{3,14,27,38\}, \\ \mathbf{F}_5 &= \{10,16,18,37\}, \quad \mathbf{F}_{10} &= \{4,23,25,31\}, \\ \mathbf{F}_{20} &= \{2,5,8,20,21,33,36,39\}, \\ \mathbf{F}_{40} &= \{6,7,11,12,13,15,17,19,22,24,26,28,29,30,34,35\} \end{aligned}$$

它们的并集构成模m的简化剩余系,且

$$|\mathbf{F}_1|=1=\phi(1), |\mathbf{F}_2|=1=\phi(2), |\mathbf{F}_4|=2=\phi(4), |\mathbf{F}_8|=4=\phi(8),$$

 $|\mathbf{F}_5|=4=\phi(5), |\mathbf{F}_{10}|=4=\phi(10), |\mathbf{F}_{20}|=8=\phi(20), |\mathbf{F}_{40}|=16=\phi(40).$

●原根与指数

• 原根存在条件

■ 模7指数表

а	1	2	3	4	5	6
$ord_7(a)$	1	3	6	3	6	2

■ 模9指数表

a	1	2	4	5	7	8
$\operatorname{ord}_9(a)$	1	6	3	6	3	2

■ 模8指数表

а	1	3	5	7
$\operatorname{ord}_8(a)$	1	2	2	2

●原根存在条件

问:对于什么样的正整数m,模m的原根是 存在?

定理5.2.1 若p是奇素数,则模p的原根存在。

• 定理5.2.2 若p是奇素数,g是模p的一个原根,则g或g+p是模 p^2 的原根。

●原根存在条件

- 定理5.2.3 设p是奇素数,则对任意的正整数 α ,模 p^{α} 的原根存在。更确切地说,如果g是模 p^{2} 的原根,则g是模 p^{α} 的原根。
- 定理5.2.4 设p是奇素数, $\alpha \ge 1$ 是正整数,g是模 p^{α} 的一个原根,则g与 $g+p^{\alpha}$ 中的奇数是模 $2p^{\alpha}$ 的原根。

• 原根存在条件

- 定理5.2.3 设p是奇素数,则对任意的正整数 α ,模 p^{α} 的原根存在。更确切地说,如果g是模 p^{2} 的原根,则g是模 p^{α} 的原根。
- 定理5.2.4 设p是奇素数, $\alpha \ge 1$ 是正整数,g是模 p^{α} 的一个原根,则g与 $g+p^{\alpha}$ 中的奇数是模 $2p^{\alpha}$ 的原根。

●原根性质

定理5.2.5 设a是一个奇数,则对任意整数α≥3,有
 a^{φ(2α)/2}=a^{2α-2}≡1(mod 2α).

■ **定理5.2.6** 设 $\alpha \ge 3$ 是一个整数,则 ord_{2 α}(5)=2 α -2= φ (2 α)/2.

• 指数性质

• 定理5.2.8 设m>1, $\varphi(m)$ 的所有不同素因数是 q_1, \ldots, q_k ,则g是模m的一个原根的充要条件是

 $g^{\varphi(m)/q_i} \neq 1 \pmod{m}, i=1,\ldots,k.$

●原根计算

■ 例 求模41的所有原根。

■ 解: 首先,找出模41的一个原根g,然后写出模 ϕ (41)的简化剩余系:

1,3,7,9,11,13,17,19,21,23,27,29,31,33,37,39共 $\varphi(\varphi(41))=16$ 个数。最后得到模41的所 有原根 $g^i \pmod{41}$,i跑遍模 $\varphi(41)$ 的简化 剩余系元素。

• 原根计算

> 寻找模41的原根g。

因为 $\varphi(m)=\varphi(41)=40=2^3\times 5$,所以 $\varphi(m)$ 的素因数为 $q_1=2$, $q_2=5$ 。进而, $\varphi(m)/q_1=20$, $\varphi(m)/q_2=8$.这样,只需验证 g^{20} , g^8 是否模m同余于1。对2,3,...逐个验证得到:

 $2^{8} \equiv 10, 2^{20} \equiv 1, 3^{8} \equiv 1, 4^{8} \equiv 18, 4^{20} \equiv 1,$ $5^{8} \equiv 18, 5^{20} \equiv 1, 6^{8} \equiv 10, 6^{20} \equiv 40 \pmod{41},$

所以6是模41的原根。

• 原根计算

 \rightarrow 当d遍历模 $\varphi(41)$ 的简化剩余系时, 6^d 遍历模41的所有原根。

$$6^{1}\equiv 10, 6^{3}\equiv 11, 6^{7}\equiv 29, 6^{9}\equiv 19, 6^{11}\equiv 28,$$
 $6^{13}\equiv 24, 6^{17}\equiv 26, 6^{19}\equiv 34, 6^{21}\equiv 35, 6^{23}\equiv 30,$
 $6^{27}\equiv 12, 6^{29}\equiv 22, 6^{31}\equiv 13, 6^{33}\equiv 17, 6^{37}\equiv 15,$
 $6^{39}\equiv 7 \pmod{41}.$

●原根计算

■ **例** 求模*m*=41²=1681的原根。

解: 已知6是模41的一个原根,所以,6
 或6+41=47是模41²=1681的一个原根。
 事实上,我们有

 $6^{40} \equiv 124 \equiv 1+41\times3\neq 1 \pmod{41^2}$,

 $47^{40} \equiv 1518 \equiv 1 + 41 \times 37 \neq 1 \pmod{41^2}$

因此,6和47都是模 $m=41^2=1681$ 的原根。它们也都是模 p^{α} 的原根。

●原根计算

- **例** 求模*m*=2×41²=3362的原根。
- 解: 6和47都是模41²=1681的原根。所以 6+41²=1687和47是模*m*=2×41²=3362的原根。

●原根与指数

Diffie-Hellman密钥协商

• 离散对数问题

- 离散对数问题
- ▶ 已知有限循环群G=<g>={g^k, k=...,-2,
 -1,0,1,2,...}及其生成元g,和群的阶
 n=|G|,则有如下数学难题:
- □ 给定整数a计算元素h=g^a很容易;
- □ 给定元素h, 计算整数x, $0 \le x \le n-1$, 使 得 $g^x = h$ 非常困难。

●离散对数问题

■ 例: 设*p*=2000000000000002559(≈2⁶⁵),

g=11是 \mathbf{F}_{p} *的生成元。

对于整数a=20050714,可快速计算 $h=g^a$;

▶ 求整数x, 使得gx

 $\equiv 14158167154104328392 \pmod{p}$.

· EIGamal公钢密码体制

- EIGamal公钥密码体制的具体描述如下:
- > 使用者产生公钥和私钥
 - ✓ 随机产生一个大素数p和模p的一个原根g;
 - \checkmark 随机选取整数a, 1 < a < p-1, 作为私钥, 计算 g^a (mod p) 作为公钥
 - ✓ 使用者A的公钥是 (p, g, g^a) ,私钥是a。

· EIGamal公钢密码体制

- EIGamal公钥加密/解密
- > B将加密的信息发送给A, A解密
- 加密过程。B做如下事情:
- 》得到确认的A的公钥 (p, g, g^a) ;
- > 将信息表示为整数m, 0<m<p;
- ▶ 秘密的随机选取整数k, 1<k<p-1;
- 计算 $u \equiv g^k \pmod{p}$ 和 $v \equiv m(g^a)^k \pmod{p}$
- 》将密文c=(u,v)发送给A。

· EIGamal公钢密码体制

■解密过程。为了将密文恢复成明文, A 做如下事情:

运用私钥a, 计算 $u^{p-1-a} \pmod{p}$

> A计算up-1-axv,并由它恢复原明文消息。

■ 分析: $u^{p-1-a} \times v \equiv g^{(p-1)k-ak} \times m \times g^{ak} \equiv m$ (mod p), 所以A可以正确解密,得到B需要发送的明文。

公开知道的消息是群G以及具有已知大阶的 元a∈G

实体A和实体B约定一个只有两个人知道的共同密钥的过程如下图所示。

用户A

选择一个随机数 x_A 计算 $y_A \equiv g^{x_A} \pmod{p}$

计算
$$k=y_B^{x_A}$$

用户B

选择一个随机数 x_B 计算 $y_B=g^{x_B}$

计算
$$k=y_A^{x_B}$$

- > Diffie-Hellman 算法:
- 》实体A秘密选定一个随机整数 X_A , $1 \le X_A \le p-2$, 并计算 $y_A \equiv g^{x_A} \pmod{p}$ 发送给实体B;
- 》类似地,实体B秘密选定一个随机整数 X_B , $1 \le X_B \le p-2$,并将 $y_B \equiv g^{xB} \pmod{p}$ 发送给实体A;
- > 计算出的k就是共享密钥。

- 假设A和B选取公共参数p=97,以及模p的原根g=5;
- ▶ A选取秘密参数X_A=36;
- ▶ B选取秘密参数X_B=58;
- 试计算A与B的共享密钥。

- **解:** Y_A≡5³⁶ (mod 97)≡50, Y_B≡5⁵⁸ (mod 97)≡44。在交换Y_A, Y_B后, A和B分别计算
- $k \equiv (Y_B)^{XA} \equiv 44^{36} \equiv 75 \pmod{97},$
- $k \equiv (Y_A)^{X_B} \equiv 50^{58} \equiv 75 \pmod{97}$.