스마트시스텝입문

2018년 1학기

프로젝트 조편성

• "조편성 결과" 게시판 사용

강의 개요

Q&A

과목공자

질의응답
조편성 결과

- 오늘 자정까지 결과 게시
- 조편성이 아직 완료되지 않은 학생 → 수업
 종료 후 확인

중간고사 공지 (A)

- 일시: 4월 25일
 - 필기고사 없음
 - 오후 3시: 326호
 - 아두이노 반드시 지참
- 범위: 아두이노 관련 수업 자료 (이번주 수업 포함)
- Cheat sheet: A4 1장 (앞뒷면)의 cheat sheet 작성가능.
 단, 복사, 출력 금지, 반드시 필기로 직접 작성할 것.
 시험 시간 중 검색이 불가할 수 있음.

중간고사 공지 (B)

- 일시: 4월 25일
 - 필기고사 없음
 - 오후 5시: 326호
 - 아두이노 반드시 지참
- 범위: 아두이노 관련 수업 자료 (이번주 수업 포함)
- Cheat sheet: A4 1장 (앞뒷면)의 cheat sheet 작성가능.
 단, 복사, 출력 금지, 반드시 필기로 직접 작성할 것.
 시험 시간 중 검색이 불가할 수 있음.

Breadboard

https://www.tweaking4all.com/wp-content/uploads/2013/12/basic_breadboard_lavout.png

https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard

 $https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQVr2BtZ8enjA-ZTOF_HIvY0yTD5LTdsiOpa7-6rPuPEAoXy3pSLA$

PWM

Control duty cycle

control average voltage

https://electrosome.com/pwm-pulse-width-modulation/

https://www.wayneandlayne.com/projects/video-game-shield/design/

PWM from Arduino

Can Arduino generate analog signal?

Digital in/out

Analog in

Where's analog out? ~ 11, ~10, ~9, ~6, ~5, ~3 (PWM)

digitalWrite()

```
const int LED=9;

void setup() {
    pinMode(LED,OUTPUT);
    digitalWrite(LED,HIGH);
}

void loop() {
    // put your main code here, to run repeatedly:
}
```

- A variable type must be declared.
- General variables can be changed.
- "const": constant variable → no change
- pinMode: OUTPUT or INPUT
- digitalWrite: HIGH = 5V, LOW = 0V

digitalRead()

- digitalRead(): read HIGH or LOW
- Example: pushbutton, switch
- Noise by unstable button → floating
- Use pull-up or pull-down resistor

digitalRead(): Floating & Pull-down registor

https://www.youtube.com/watch?v=abWCy_aOSwY&t=770s

Button/switch	ON	OFF	
Without pull down	5 V (HIGH)	Floating	
With pull down	5 V (HIGH)	0 V (LOW)	

digitalRead(): Control LED with button / switch

```
int switchPin = 8;
int ledPin = 13;
void setup()
  pinMode(switchPin, INPUT);
  pinMode(ledPin, OUTPUT);
void loop()
  if (digitalRead(switchPin) == HIGH)
    digitalWrite(ledPin, HIGH);
  else
    digitalWrite(ledPin, LOW);
```

버튼을 찾아 연결 → pin 13 LED를 제어

Bouncing issue will be covered later

https://www.jeremyblum.com/2011/01/10/ar duino-tutorial-2-now-with-more-blinky-things/

analogRead: Voltage divider & potentiometer

https://www.arduino.cc/en/tutorial/potentiometer

https://www.quora.com/Wha t-is-potentiometer

analogRead: ADC (analog to digital converter)

What is "resolution"? For example, 10-bit resolution.

□ Resolution: Examples

	Formula	4-bit DAC
Number of bits	n	4
Number of output codes	2 ⁿ	16
Number of steps in the output	2"-1	15
Percentage resolution	1 / (2 ⁿ -1)	1/15
Step size (assuming 5 V reference voltage)	$V_{ref}/2^n-1$	V _{ref} / 15

http://www.globalspec.com/learnmore/data_acquisiti on_signal_conditioning/signal_converting/digital_to_a nalog converters

https://image.slidesharecdn.com/group1-141018102550-conversion-gate01/95/dacdigital-toanalog-converter-11-638.jpg?cb=1486790152

Serial monitor

- Baud rate: 9600
- Speed of communication

디버깅할 때 유용하게 사용됨

Serial Communication: functions

- Serial.begin (baud rate): define the baud rate
- Serial.print("text")
- Serial.println("text"): new line
- \n : new line
- \t : tab
- \\n : print \n
- \\ t : print \t
- Exmpale:
 - Serial.println("\nOut1\tOut2\tOut3");

Serial Communication: functions

- Serial.begin (baud rate): define the baud rate
- Serial.print("text")
- Serial.println("text") : new line
- \n : new line
- \t : tab
- \\n : print \n
- \\ t : print \t
- Exmpale:
 - Serial.println("\nOut1\tOut2\tOut3");

함수

구분	함수	매개변수	주요 기능
Digital I/O	pinMode(pin, mode)	pin : 핀 번호 mode : INPUT/OUTPUT	특정 핀을 INPUT/ OUTPUT으로 설정
	digitalWrite(pin, value)	pin : 핀 번호 value : HIGH/LOW	Digital pin에 HIGH/LOW를 출력
	digitalRead(pin)	pin : 핀 번호	특정 핀의 값 HIGH/LOW로 읽기
Analog I/O	analogRead(pin)	pin : 핀 번호 (Arduino Uno 경우 : #3, #5, #6, #9, #10, #11 핀 해당)	아날로그 핀의 값 읽기(0~1023) 6-channel 10-bit A/D converter 아날로그 입력 1개 100µs (1초 최대 10,000개 입력)
	analogWrite(pin, value) - PWM	pin : 핀 번호 (Arduino Uno 경우 : #3, #5, #6, #9, #10, #11 핀 해당) value : duty cycle (0~255)	아날로그 값(PWM)을 출력 (주파수 : 약 490Hz, 단, #5, #6 핀 980Hz)

함수

Library	함수	매개변수	기능
Time	millis()	unsigned long 형으로 return	Arduino board가 현재 프로그램을 시작한 후의 시간(msec) 약 50일 이후는 0값 return (overflow)
	micros()	unsigned long 형으로 return	Arduino board가 현재 프로그램을 시작한 후의 시간(μs) 약 70분 이후는 0값 리턴 (overflow)
	delay(ms)	ms : 정지하는 msec 수	지정 시간만큼 프로그램을 정지
	delayMicroseconds(μs)	μs: 정지하는 msec 수	지정 시간만큼 프로그램을 정지

함수

Library	함수	매개변수	기능
	min(x, y)	x, y : 숫자	2개 수 가운데 더 작은 값 리턴
	max(x, y)	x, y : 숫자	2개 수 가운데 더 큰 값 리턴
	abs(x)	x : 숫자	절대값 리턴
	constrain(x, a, b)	x : 제한될 숫자 a : 제한 범위의 하한 b : 제한 범위의 상한	수를 범위에 제한되어 리턴 a <x<b a="" x="" x<a="" 경우="" 리턴="" 리턴<br="">b<x b="" td="" 경우="" 리턴<=""></x></x
Math	map(value, fromLow, fromHigh, toLow, toHigh	value : 매핑할 숫자	현 범위에서 다른 범위로 재매핑 fromLow : 현 범위의 하한 fromHigh : 현 범위의 상한 toLow : 다른 범위의 하한 toHigh : 다른 범위의 상한
	pow(base, exponent)	base : 숫자(float) exponent : 지수(float)	지수 값을 계산
	sqrt(x)	x : 숫자	제곱근 값을 계산

연산자

- 산술연산자
 - = (assignment operator)
 - + (addition)
 - - (subtraction)
 - * (multiplication)
 - / (division)
 - % (modulo)
- 관계연산자
 - == (equal to)
 - != (not equal to)
 - < (less than)</p>
 - > (greater than)
 - <= (less than or equal to)</p>
 - >= (greater than or equal to)
- 논리연산자
 - && (and)
 - || (or)
 - ! (not)

제어문

- 선택문
 - if
 - if...else
 - switch case
- 반복문
 - for
 - while
 - do...while
- 점프문
 - break
 - continue
 - return
 - goto

선택문: if

- 비교연산자(comparison operator) : == != < , >
 - x == y (equal to)
 - x != y (not equal to)
 - x < y (less than)
 - x > y (greater than)
 - x <= y (less than or equal to)
 - x >= y (greater than or equal to

```
if (x > 500) digitalWrite(LEDpin, HIGH);

if (x > 500)
  digitalWrite(LEDpin, HIGH);

if (x > 500){ digitalWrite(LEDpin, HIGH); }

if (x > 500){
  digitalWrite(LEDpin1, HIGH);
  digitalWrite(LEDpin2, HIGH);
  }
```

```
bracket { } 생략 가능
```

```
if (x > 500)
{
    // do A
}
else
{
    // do B
}
```

```
if (x > 500)
{
    // do A
}
else if (x <= 1000)
{
    // do B
}
else
{
    // do C</pre>
```

선택문: switch - case

• switch – case

```
Syntax

switch (var) {
   case label1:
     // statements
     break;
   case label2:
     // statements
     break;
   default:
     // statements
}
```

https://www.arduino.cc/reference/en/language/structure/control-structure/switchcase/

```
switch (inByte) {
  case 'a':
    digitalWrite(2, HIGH);
    break;
  case 'b':
    digitalWrite(3, HIGH);
    break;
  case 'c':
    digitalWrite(4, HIGH);
    break:
  case 'd':
    digitalWrite(5, HIGH);
    break;
  case 'e':
    digitalWrite(6, HIGH);
    break:
  default:
    // turn all the LEDs off:
    for (int thisPin = 2; thisPin < 7; thisPin++) {</pre>
      digitalWrite(thisPin, LOW);
```

https://www.arduino.cc/en/Tutorial/SwitchCase2

반복문: for

Syntax

```
for (initialization; condition; increment) {
       //statement(s);
// Dim an LED using a PWM pin
int PWMpin = 10; // LED in series with 470 ohm resistor on pin 10
void setup()
  // no setup needed
void loop()
  for (int i=0; i <= 255; i++){
      analogWrite(PWMpin, i);
      delay(10);
```

https://www.arduino.cc/reference/en/language/structure/control-structure/for/

반복문: while

Syntax while(condition){ // statement(s) }

```
var = 0;
while(var < 200){
   // do something repetitive 200 times
   var++;
}</pre>
```

https://www.arduino.cc/reference/en/language/structure/control-structure/while/

do...while

Description: The do...while loop works in the same manner as the while loop, with the exception that the **condition is tested at the end of the loop**, so the do loop will always run at least once.

```
Syntax

do
{
    // statement block
} while (condition);
```