

Corn Donor Plants and R0 Plant Production in Controlled Environments

Bayer Russia Biotechnology Conference

July 2023

Corn Production in Controlled Environments: Agenda

Overview of Corn Production: LH244 Germplasm

- Donor corn production from verified seed source
- Donor corn must be grown separate from all other corn to maintain purity
- Donor corn plants may be used for immature embryo or seed production
- R0 corn production from transformed plantlets that pass molecular screening
- R0 plantlets are slower at beginning but catch up to seed propagated material
- R0 population pollination window longer than Inbred population

Environmental Control Parameters: Climate & Fertigation

- During rapid growth phase target even environment and increasing water/nutrients
- Plant growth slows with reproductive development
- As plant senescence (grain fill) occurs, target cooler and drier environment with less water/nutrients

Climate Controls	Vegetative	Reproductive	Range of Control Values
Average Daily Setpoint Temperature	Lower	Higher	26 – 28° C: higher temperatures at higher light levels
Day-Night Temperature Difference	Smaller	Larger	0 – 8° C
Start time for heating in the morning	Earlier	Later	4 hours before sunrise to sunrise
Afternoon temperature increase	None or small	Larger	0 – 2.5° C
Start Time for Day-Night Temperature Decrease	Earlier	Later	2 hours before to 2 hours after sunset
Speed of Day-Night Temperature Decrease	Slower	Faster	0 - 4° C per hour
Humidity deficit	Decrease	Increase	8 - 15 mB
Vapor Pressure Deficit	Lower	Higher	0.8 – 1.5 kPa
CO ₂ enrichment	More	Less	350 – 1500 ppm: Higher CO ₂ at higher light levels

Watering Controls	Vegetative	Reproductive	Range of Control Values
EC Growing Medium	Decrease	Increase	2.8 - 4.5 EC
EC Irrigation Water	Decrease	Increase	2.0 - 2.5 EC
Substrate Water Content	Increase	Decrease	45 - 65%
Day-Night Water Content Decrease	Decrease	Increase	2 - 10% (5 - 15% with Rockwool)
Irrigation cycle length and frequency	Short and Higher	Long and Lower	50 - 150 ml per dripper
Start time first irrigation	Earlier	Later	1 - 3 hours after sunrise/lights on
Stop time last irrigation	Later	Earlier	3 - 5 hours before sunset/lights off

Corn Donor Plant Production: LH244 Germplasm

Items of Special Interest

- All atypical plants should be discarded immediately
- Soil based media as a rooting substrate is undesirable for LH244 production in pots
- LH244 germplasm is highly sensitive to overwatering, especially before V8 stage

Corn Donor Plant Production: Pre-Pollination

Seed planted 3 - 5 days/week and Germinated in peat based media

29.4/21.1 C (85/70 F) D/N 16 hour photoperiod No Fertilizer until V2 then 15-5-15 at 2,000 µS

Plugs Ready to Transplant

V3-V4 Transplant Corn 12-16 DAP

Transplanting 1 – 2 times/week

Pot filled with peatbased media Plant transplanted Plants watered in with fertilizer 15-5-15 at $2,000 \mu S$

Early Production

Middle Production

29.4/21.1 C (85/70 F) D/N 16 hour photoperiod Fertilizer 15-5-15 at 2,000 μS Wet/Dry cycles until first ear shoots appear then flush pots

Corn Donor Plant Production: Pre-Pollination

Suggested watering schedule with peat-based media

- 400 ml per minute with spray emitters
- Wet/Dry
 cycles early
 then even
 moisture
- Flush = hand watering with plain water 2

 3 times to
 field capacity
- Avoid water stress after flush

		Approx. Irrigation	
Time	Approx. developmental stage	Time	Days
		Hand water – Plain	
week 1	Germination – V2	water	Every 2-3 days
		Sub-irrigation or hand	
week 2	V3-V4 by day 14	water	Every 1-2 days
		0:20 - 0:30, two times	
week 3	Transplant at end of week 2 or start of week 3. V5 by day 18-21.	(8am and 4pm)	Every day (ED)
		0:30 - 0:40, two times	
week 4	V7 by day 28	(8am and 4pm)	Every day (ED)
		0:45 - 1 min, two times	
week 5	V9 by day 35	(8am and 4pm)	Every day (ED)
		1 min - 1:15, two times	
week 6	V11 by day 42	(8am and 4pm)	Every day (ED)
	V14-V15 by day 49. Tassel beginning to emerge. Flush plant when tassel is first felt or visible and increase irrigation so that pots	2 min, two times (8am	
week 7	have constant moisture.	and 4pm)	Every day (ED)
		3 min, two times (8am,	
week 8	VT and pollen shed by day 56; Possible pollination.	4pm)	Every day (ED)
		3 min, two times (8am,	
week 9	Pollination (day 56-63)	4pm)	Every day (ED)

Corn Donor Plant Production: Pollination

85/70 F (29.4/21.1 C) D/N 16 hour photoperiod Fertilizer 15-5-15 at 2,000 μS

Pollination

Bagging

Tassel Set Up

Ear Cut

Pollen Collection Ear Silk Brush

Pollination

Corn Donor Plant Production: Immature Embryo Path

Immature Embryo Harvest

85/70 F (29.4/21.1 C) D/N 16 hour photoperiod Fertilizer 15-5-15 at 2,000 μS

Peel Back

Embryo Ear Collection

Sizing

Short-term Ear storage

Embryo Harvest

Corn Donor Plant Production: Post-Pollination

Suggested watering schedule with peat-based media

- 400 ml per minute with spray emitters
- Avoid water stress after flush until R4
- Lower water frequency as seed matures to promote drying
- Plants should not exhibit water stress visually until week 14

		Approx. Irrigation	
Time	Approx. developmental stage	Time	Days
		3 min, two times (8am,	
week 8	VT and pollen shed by day 56; Possible pollination.	4pm)	Every day (ED)
		3 min, two times (8am,	
week 9	Pollination (day 56-63)	4pm)	Every day (ED)
		3 min, two times (8am,	
week 10	Immature embryo harvest 9-11 days after pollination	4pm)	Every day (ED)
		3 min, two times (8am,	
week 11	Bag lift two weeks after pollination (end of week 11).	4pm)	Every day (ED)
	Peel back three weeks after pollination – R4 to R5 (end of week 12	2 min, two times (8am,	
week 12	or beginning of week 13).	4pm)	Every day (ED)
		1 min, two times, then	
week 13	Stop water 30 days after pollination (end of week 13).	stop.	Every day (ED)
week 14	R6	none	Every day (ED)
week 15	Harvest 42 days after pollination/Dry/ Processing	none	Every day (ED)

Corn Donor Plant Production: Mature Seed Path

Late Production -**Seed Production**

85/70 F (29.4/21.1 C) D/N 16 hour photoperiod Fertilizer 15-5-15 at 2,000 μS

Bag Lift

Peel Back

Seed Maturation

Ear Harvest

Seed Processing

Corn Donor Plant Summary: LH244 Germplasm

- Sequential plantings provide ears of correct age for immature embryo harvest weekly
- Donor plants should be isolated from all other corn plantings
- Environmental management early in crop cycle impacts later developmental stages
 - Atypical phenotypes should be removed as soon as detected
 - LH244 is extremely sensitive to overwatering during lag and rapid growth phase
 - Slight leaf curl is acceptable until ear shoots are evidenced
 - Water deficit should be avoided once ear shoot are evidenced
- If self pollination is not possible, sib pollinations are acceptable
- Immature embryo harvest occurs approximately 10 days after pollination
- Pollinated ears not used for immature embryo harvest may be advanced to mature seed if needed for future plantings.
 - Must maintain isolation throughout life cycle to ensure LH244 purity

Corn R0 Plant Production: LH244 Germplasm

Items of Special Interest

- All atypical plants should be discarded immediately
 - Off types rarely produce sufficient seed to test in the next generation
 - Rouging should occur before pollination
- LH244 germplasm is highly sensitive to overwatering, especially before V8 stage
- Self pollination is preferred but nicking issues may exist with R0 plants
 - Contingency crosses are possible if female support plants are available

Corn R0 Plant Production: LH244 Germplasm

Items of Special Interest

- Inbred and R0 plants from same genetic background have different phenotypes
 - R0 plants will have more off types than Inbred plants
 - R0 plants often lack vigor
- Self pollination is preferred but nicking issues may exist with R0 plants
 - Tassel and ear health are especially difficult to maintain in R0 plants
 - Ears push late with minimal silk brush
 - Tassels shed early
 - Low quantity and low quality pollen is possible

Inbred R0 Inbred R0

Corn R0 Plant Production: Pre-Transplant

Plugs from **Transformation**

Sampling

Molecular

Plugs Ready to Transplant

Plug Selection

28.3/22.8 C (83/73 F) D/N 16 hour photoperiod Fertilizer 15-5-15 + Fe at 2,000 μ S Optional Shade 30-40% Mist first 3-5 days

7-10 DAP

V3-V4 Transplant Corn 14-21 DAP

14-21 DAP

Transplant

Pot filled with peatbased media Plant transplanted Plants watered in with fertilizer 15-5-15 at $2,000 \mu S$

Corn R0 Plant Production: Pre-Transplant

Suggested watering schedule with peat-based media

- Slow transition from tissue culture to greenhouse
- Day 1-5 mist and shade optional
- Sub-irrigation
 with 15-5-15 +
 Fe at 2,000 μS
- Frequency varies by plant size and season

	Approx. developmental		
Time	stage	Irrigation Type	Irrigation Time, Duration, & Frequency
Day 1-3	Plugging to V1	Sub-irrigation + Mist + Shade	0 x Daily + 15 sec. every 15 min + 30-40% shade
Day 3-5	V1	Sub-irrigation + Mist + Shade	1 x Daily + 15 sec. every 30 min + 30-40% shade
Day 6-8	V1-V2	Sub-irrigation	1-2 x Daily
Day 9-14	V2-V3	Sub-irrigation	2-3 x Daily
Day 15-21	V4 by Day 21. Transplant at end of week 3.	Sub-irrigation	Up to 4 x Daily

Corn R0 Plant Production: Pre-Transplant Phenotypes

Corn R0 Plant Production: Post-Transplant

Early Production - Rouging

Middle Production -Rouging

Tassel and Ear Health

Pollination

Post Pollination -Rouging

29.4/21.1 C (85/70 F) D/N 16 hour photoperiod Fertilizer 15-5-15 at 2,000 µS

Poor Pollen

Skeletonized Tassel

Feminized Tassel

Corn R0 Plant Production: Post-Transplant Phenotypes

No Ear/Did Not Nick

Smut

Mold

Corn R0 Plant Production: Post-Transplant

Suggested watering schedule with peat-based media before pollination is complete

- 400 ml per minute with spray emitters
- Wet/Dry cycles early to promote root development
- Visible ear shoot/tassels is stage for flush (week 6)
- Flush = hand watering with plain water 2 – 3 times to field capacity

		Approx. Irrigation	
Time	Approx. developmental stage	Time	Days
			At transplant then as needed to
week 3	Transplant at end of week 3. V4 by Day 21	Hand water	V6
			Every other day (EOD); Every
week 4	V5-V6 by day 28	0:20 sec (8 am)	day (ED) by end of week 4
		0:20 sec (8 am) then	
week 5	V6-V8 by day 35	0:20 sec (8 am, 4pm)	Every day (ED)
	V9-V11 by day 40. Some events may start to show a	0:30 - 0:40 sec (8 am, 4	
	tassel by day 35; Other early-developing events may	pm) plus end of week	
week 6	need self-pollination.	flush	Every day (ED)
	VT-R1 by day 49. About 50% of events will require	0:40 sec, 2-3 x, (8 am,	
week 7	pollination	12 pm, 4 pm)	Every day (ED)
	VT-R1 by day 56. Remainder of events will require	0:50 - 0:60 sec, (8 am,	
week 8	pollination (40-50%). Week 6 pollinations = bag lift.	12 pm, 4pm)	Every day (ED)
	VT-R1. A few events may will require pollination (5-		
	10%). Week 6 pollinations = peel back. Week 7	0:50 - 0:60 sec, (8 am,	
week 9	pollinations = bag lift	12 pm, 4pm)	Every day (ED)

 Avoid water stress after flush

Corn R0 Plant Production: Post-Transplant

Suggested watering schedule with peat-based media after pollination

- 400 ml per minute with spray emitters
- R0 maturation will vary by pollination date.
- Irrigation management to pot level.
- Lower water frequency as seed matures to promote drying

		Approx. Irrigation	
Time Approx. dev	velopmental stage	Time	Days
VT-R1. A few 6	events may will require pollination (5-10%). Week 6	0:50 - 0:60 sec, (8 am,	
week 9 pollinations = p	peel back. Week 7 pollinations = bag lift	12 pm, 4pm)	Every day (ED)
Week 6 pollina	ations = reduced watering. Week 7 pollinations = peel	0:50 - 0:60 sec, (8 am,	
week 10 back. Week 8	pollinations = bag lift.	12 pm, 4pm)	Every day (ED)
Week 6 pollina	itions = no water. Week 7 pollinations = reduced		
watering. Wee	k 8 pollinations = peel back. Week 9 pollinations =	0:50 - 0:60 sec, (8 am,	
week 11 bag lift.		12 pm, 4pm)	Every day (ED)
Week 6 pollina	tions = harvest. Week 7 pollinations = no water.		
Week 8 pollina	ations = reduced watering. Week 9 pollinations = peel	0:50 - 0:60 sec, (8 am,	
week 12 back.		12 pm, 4pm)	Every day (ED)
Week 7 pollina	tions = harvest. Week 8 pollinations = no water.	0:50 - 0:60 sec, (8 am,	
week 13 Week 9 pollina	ations = reduced water.	4pm)	Every day (ED)
		0:50 - 0:60 sec, (8 am)	
week 14 Week 8 pollina	tions = harvest. Week 9 pollinations = no water	then none	Every day (ED)
Week 9 pollina	tions = harvest. All seed now drying or being		
week 15 processed.		none	Every day (ED)

Corn R0 Plant Production: Mature Seed

Late Production – **Seed Production**

85/70 F (29.4/21.1 C) D/N 16 hour photoperiod Fertilizer 15-5-15 at 2,000 μS

Bag Lift

Peel Back

Seed Maturation

Ear Harvest

Seed Processing

R0 Production Summary: R0 Plants are different than Inbred Plants

- R0 Plants are less vigorous than Inbred plants of same genetic background
- R0 plant phenotypes are highly variable
- Early management decisions will impact large plant health
 - Water management
 - Light levels
 - Fertility levels
- Selection is essential for successful pollinations and quality seed
- Expect less than 40% of transformed plants to pass molecular, pass phenotypic rouging, and generate seed for next generation

Inbred

R0

DISCLAIMER

THE INFORMATION CONTAINED HEREIN IS EXPERIMENTAL IN NATURE AND IS PROVIDED "AS IS". BAYER MAKES NO REPRESENTATIONS AND EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO THE MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE INFORMATION WILL NOT INFRINGE ANY THIRD-PARTY PATENT, COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS.

Thank you!

Any questions?

