АЛКЕНИ

(доц. Г.Велинов)

ОПРЕДЕЛЕНИЕ, ХОМОЛОЖЕН РЕД, НАИМЕНОВАНИЯ

Алкените са въглеводороди, в чийто молекули два от въглеродните атоми са свързани с двойна връзка. Тяхната обща молекулна формула е C_nH_{2n} , т.е. молекулите им съдържат по два водородни атома по-малко отколкото алканите със същия брой въглеродни атоми. Алкените са **ненаситени** въглеводороди.

Подобно на алканите , алкените също образуват хомоложен ред от съединения със сходни свойства. Наименованията им се получават от тези на съответните алкани, като се поставя окончание "ен". Мястото на двойната връзка се означава с арабска цифра:

алкани		алкени	
CH ₃ -CH ₃	етан	CH ₂ =CH ₂	етен
CH ₃ -CH ₂ -CH ₃	пропан	CH ₂ =CH-CH ₃	пропен
CH ₃ -CH ₂ -CH ₂ -CH ₃	бутан	CH ₂ =CH-CH ₂ -CH ₃	1-бутен

Забележка: Първият член от хомоложния ред на алкените съдържа два С-атома, поради което в общата формула С_пН_{2п} n ≥ 2 .

изомерия

За алкените, след третия член, е възможна освен верижна и позиционна изомерия. Тя се определя от мястото на двойната връзка във въглеродната верига:

С увеличаване на броя на въглеродните атоми броят на възможните изомерни съединения нараства. При пентена изомерните въглеводороди са следните:

1-пентен и 2-пентен са позиционни изомери. Те се различават по мястото на функционалната група - двойната връзка. Съществуват и верижни изомери на пентените с права въглеродна верига.

CH₃-C=CH-CH₃

От гледна точка на тетраедричния модел на въглеродния атом, пространственият модел на двойната връзка може да се представи с два тетраедъра, които имат общ ръб:

От този модел се вижда, че не е възможно каквото и да е въртене на въглеродните атоми при двойната връзка. Тази стабилност на пространствената постройка на двойната връзка обуславя вид пространствена изомерия, наречена **геометрична** изомерия или **цис-трансизомерия**. Такива изомери има при следните алкени:

При други производни като:

не е наблюдавана изомерия.

Следователно: геометрична изомерия има само в случаите, когато двата заместителя при въглеродните атоми на двойната връзка са различни. Така например при 2-бутена са възможни два пространствени геометрични изомера, в зависимост от разположението на заместителите относно

равнината на π -връзката. Когато двата **СН**₃-радикала се намират от едната страна на равнината на π -връзката изомерът се нарича **цис-** , а когато те са от двете страни на тази равнина - той се нарича **транс-** :

По аналогичен начин се означават цис- и транс-изомерите на 2-пентена:

$$H_3C$$
 $C = C_2H_5$ H_3C C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5

Геометричните изомери имат поне една равнина на симетрия, поради което те не са оптически активни.

Трябва да се отбележи, че геометрична изомерия има и при четири различни заместителя около двойната връзка - например:

но в този случай определянето на цис- и транс-формите не е така просто и става по специални правила.

СТРОЕЖ НА МОЛЕКУЛИТЕ

Въглеродните атоми в молекулите на алкените , които са свързани с двойната връзка са в *sp*²-хибридно състояние и притежават по три *sp*²-хибридни орбитали и една нехибридизирана *p*-орбитала (2p_z-орбиталата):

$$\stackrel{\uparrow}{ }$$
 Е $\stackrel{\uparrow}{ }$ \stackrel

Чрез припокриване на хибридните орбитали се реализират σ -връзките между въглеродните атоми и водородните атоми, които образуват σ -скелета на етена, който се разполага в една равнина:

Двете нехибридизирани **р-орбитали** при двата въглеродни атома се припокриват под и над равнината на **о-връзките** и образуват **при двата** на двойната връзка между двата въглеродни атома:

Следователно двойната **C=C** връзка в молекулите на алкените се изгражда от една σ —връзка, образувана от припокриване на sp^2 -хибридните орбитали и от една π —връзка, осъществена от припокриване на **р-атомни** орбитали.

В резултат на това двойната **C=C** връзка е по-къса от простата **C-C** връзка, а енергията й е по-малка от енергията на две **σ-връзки**.

В **етена** двойната връзка е неполярна, но поради значителната подвижност на π -електроните може лесно да се поляризира от въздействието на полярни реагенти. При **хомолозите** на етена двойната връзка в една или друга степен

е поляризирана под въздействието на положителния индукционен ефект на алкиловите радикали.

ФИЗИЧНИ СВОЙСТВА

Основните физични свойства на алкените са близки до тези на съответните алкани. Първите членове при обикновени условия са газове, средните течности, а висшите - твърди вещества. Някои средни алкени и циклоалкани имат приятна миризма на етерични масла.

химични свойства

За всички алкени са характерни присъединителни реакции, което се дължи на наличието на сложна двойна връзка в молекулите им.

Реакции при които молекулите на едно съединение се свързват с молекулите на друго съединение, в резултат на което възникват нови химични връзки и се образува единствен реакционен продукт, се наричат присъединителни.

1. Бромиране.

Ако се пропусне етен през бромна вода, той я обезцветява (за разлика от алканите). Извършва се химично взаимодействие, при което молекула бром се присъединява към молекулата на етена и се образува единствен продукт - 1,2-дибромоетан:

$$H_{2}C = CH_{2} + Br$$

$$\downarrow Br$$

$$\downarrow H_{2}C - CH_{2}$$

$$\downarrow Br$$

$$\downarrow Br$$

$$\downarrow Br$$

Обезцветяването на бромна вода е качествена реакция за сложна (в случая двойна) връзка в права верига, с която могат да се различат алкени от алкани и арени.

По аналогичен начин алкените присъединяват хлор и йод.

Незадължителна част - начало!

Механизъм на реакцията на халогениране:

Първи етап:

Молекулата на халогена се поляризира под действието на богатата на електрони π–**връзка**, в резултат на което единият от атомите на халогенната молекула получава частичен положителен заряд, реагира с

 π -системата на двойната връзка и образува неустойчив π -комплекс:

Втори етап:

Нестабилният π -комплекс се разрушава и образува σ -комплекс:

$$C \xrightarrow{C} C \xrightarrow{Br} C + :Br:$$
 π -комплекс σ -комплекс

Трети етап:

Свободната р-орбитала на sp²-хибридния въглероден атом се припокрива с неподелената електронна двойка на **Вг-атом** и образува **цикличен бромониев йон** - катион, в който основният положителен заряд е съсредоточен върху атома на брома:

Четвърти етап:

Нуклеофилът (анионът Br^-) атакува бромониевия йон откъм противната страна, към един от двата C-атома, на които Br^+ придава частичен положителен заряд. При това обикновено се извършва транс-присъединяване на втория Br-атом:

$$\begin{array}{c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Поради това че двойната връзка се атакува от положително заредената частица (катиона) на реагента, това присъединяване се нарича електрофилно или катионоидно, а механизмът - механизъм на електрофилно присъединяване с полярен донорно-акцепторен характер.

Край на незадължителната част.

2. Хидрохалогениране.

Халогеноводороди се присъединяват към двойната връзка като се образуват съответните монохалогеноалкани:

$$H_2C = CH_2 + HBr \longrightarrow CH_3 - CH_2Br$$

Реакцията протича също по механизъм на електрофилно присъединяване, но значително по-лесно, поради това че молекулата на реагента е полярна. Освен това фактът, че електрофилно се присъединява първо водородния атом, определя известни различия в механизма на процеса, в сравнение с броморането:

Първи етап:

Полярната молекула на халогеноводорода атакува с положителната си част (**H-атом**) π -**системата** от двойната връзка и образува нестабилен π -комплекс:

π-комплекс

Втори етап:

π–комплексът се разрушава и се образува **σ–комплекс**, като **H-атом** от **HBr** се свързва с единия **C-атом**, а другият **C-атом** придобива положителен заряд. Така образуваната частица се нарича **карбокатион** и е много реактивоспособна:

Трети етап:

Карбокатионът реагира с нуклеофила - бромидния анион и се получава крайния продукт.

+

$$H_3C \longrightarrow CH_2 + Br^- \longrightarrow H_3C \longrightarrow CH_2Br$$

Трябва да се отбележи, че вторият етап - образуването на карбокатиона, е побавен и той е скоростоопределящият етап на реакцията.

Интерес представлява присъединяването на **HBr** и на други съединения с полярни молекули към алкени, чиято молекула е несиметрична по отношение на двойната връзка - например **пропен** или **2-метил пропен**. В този случай се получават два изомера:

Този резултат илюстрира известното правило на Марковников: H-атом от полярната молекула на НХ се присъединява към този С-атом от групата С = С, който е свързан с по-голям брой H-атоми.

Едно по-точно обяснение на това правило може да се даде с положителния индукционен ефект на алкиловите заместители при двойната връзка, които я поляризират и улесняват електрофилната атака на **H-атома** от молекулата на **HX**:

3. Водата като полярен реагент се присъединява по аналогичен механизъм към двойната връзка на алкени, като при несиметрични молекули се следва правилото Марковников. Присъединяването на вода към алкени се нарича **хидратация**:

$$H_2C = CH_2 + H_2O \xrightarrow{p,t} \longrightarrow H_3C - CH_2 - OH$$

$$H_2C = CH - CH_3 + H_2O \xrightarrow{p,t} CH_3 - CH - CH_3$$
 $H^+ \qquad | \qquad 2$ -пропанол

Реакцията протича при температура и налягане, в присъствие на катализатор \mathbf{H}^+ - йони (от $\mathbf{H}_3\mathbf{PO}_4$ или от $\mathbf{H}_2\mathbf{SO}_4$).

$$H_2SO_4 \longrightarrow H^+ + HSO_4^ H_2C = CH_2 + H^+ \longrightarrow H_2C - CH_3 + H_2O \longrightarrow H_3C - CH_2 - OH + H^+$$
 $H^+ + HSO_4^- \longrightarrow H_2SO_4$

В края на процеса катализаторът - водороден катион, се възстановява.

Хидратирането на етен при налягане, температура и катализатор сярна киселина е в основата на промишления метод за синтетичното получаване на алкохол - вж. **АЛКОХОЛИ**.

- **4. Циановодордът** се присъединява към алкени по аналогичен механизъм. Получените съединения могат да се наименоват по два начина:
 - а) като **производни** на **органични киселини** и тогава се наричат **нитрили**:

б) като производни на циановодородната киселина, в която един **Н-атом** е заместен с алкилов радикал и тогава те се наричат алкилцианиди:

$$H_3C - CH_2 - CN$$
 етилцианид

При несиметрични алкени присъединяването на циановодород става по правилото на Марковников:

Важно: При присъединяването на HCN става увеличаване броя на Сатоми - <u>това е метод за удължаване на въглеродната верига!</u> **5. Хидриране (хидрогениране).** При висока температура и налягане, в присъствие на катализатор никел, водородът се присъединява към двойната връзка и алкените се превръщат в алкани:

$$H_2C = CH_2 + H_2 \xrightarrow{t,p} H_3C - CH_3$$

Двойната връзка се "насища" - разкъсва се и се образуват две нови **С-Н** връзки, като **σ-връзката** между въглеродните атоми остава непроменена. Присъединяването на водород към химичните съединения се нарича **хидриране** или **хидрогениране**.

Тази реакция при алкените е израз на родствената (генетична) връзка между двата хомоложни реда:

$$C_nH_{2n} \xrightarrow{+H_2} C_nH_{2n+2}$$

Забележка: Присъединителните реакции на алкените стават с **промяна** на **хибридизацията** на **С-атоми** при двойната връзка от sp^2 на sp^3 .

- 6. Окисление.
 - а) <u>деструктивно</u> в кислородна атмосфера алкените изгарят до **CO**₂ и **H**₂**O**:

$$H_2C = CH_2 + 3O_2 = 2CO_2 + 2H_2O + Q$$

 $2C^{2-} - 12e \rightarrow 2C^{4+} \mid .1$
 $O_2 + 4e \rightarrow 2O^{2-} \mid .4$

Реакцията е екзотермична - така например с въздуха или кислорода етенът образува взривоопасни смеси!

б) <u>умерено окисление</u> - при обикновена температура силни окислители като разредени разтвори на **КМпО**₄ , H_2O_2 и др., окисляват алкените, като получените съединения се наричат **диоли**. Реакцията се нарича **окислително хидратиране**:

1,2-етандиол (етиленгликол)

Обезцветяването на разреден разтвор на **КМпО**₄ (както и на **Вr₂-вода**) се използва за доказване на двойна връзка!

в) <u>енергично окисление</u> - концентриран разтвор на **KMnO**₄ , в сярнокисела среда при нагряване, разкъсва молекулите на алкените при двойната връзка, като се получава смес от органични киселини:

$$R_1 - CH = CH - R_2 + O(KMnO_4) \longrightarrow R_1COOH + R_2COOH$$

 $H_3C - CH = CH - CH_3 + O(KMnO_4) \longrightarrow 2CH_3COOH$

Ако двойната връзка е в началото на въглеродната верига, едната органична киселина е метанова (мравчена) , която в тази среда по-нататък се окислява до въглеродна киселина H_2CO_3 , а последната се разпада и като крайни продукти дава CO_2 и H_2O .

Следователно при енергичното окисление на етен крайните продукти са ${\bf CO_2}$ и ${\bf H_2O}$.

Ако непосредствено до двойната връзка има третичен въглероден атом, то той се окислява до кетон, който по-нататък търпи окисление до смес от киселини. Например:

$$CH_{2} = C - CH_{3} \xrightarrow{O(KMnO_{4})} + CH_{3} \xrightarrow{CH_{3}COOH} + CO_{2} + H_{2}O$$

$$CH_{3} \xrightarrow{CH_{3}COOH} + CH_{3} \xrightarrow{CH_{3}COOH} + CO_{2} + H_{2}O$$

7. Полимеризация.

При определени условия - температура, налягане и катализатори, нискомолекулните алкени се свързват помежду си като образуват макромолекули с голяма молекулна маса. Процесът се нарича **полимеризация**, а продуктът **полимер**:

мономер полимер
$$n H_2C = CH_2 \xrightarrow{t,p,cat} - (H_2C - CH_2 -)_n$$
 етен (етилен) полиетилен

$$n \ H_2C = CH - CH_3 \ ^{t,p,cat} \longrightarrow \ - (H_2C - CH -)_n \ |$$
 пропен (пропилен) CH_3 полипропилен

8. Каталитично алкилиране на бензен:

По този начин се получават две важни за органичния синтез съединения:

суровина за получаване на стирен (стирол) и от там на полистирол;

$$CH_3$$
 + $CH_2 = CH - CH_3$ $CAT + CH_3$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

или 2-фенилпропан (кумен или кумол)

Куменът (кумолът) се използва за промишления синтез на фенол и ацетон по т.нар. кумолов метод - вж. АЛКОХОЛИ и КЕТОНИ.

ПОЛУЧАВАНЕ НА АЛКЕНИ

- **1. Промишлено** алкени се получават при преработката на нефта при крекингпроцесите - вж. **АЛКАНИ**.
- **2. Алкени** се получават при **каталитично дехидрогениране на алкани**. По този начин промишлено се получава **етен** от **етан**:

$$C_2H_6$$
 $t,cat \longrightarrow H_2C = CH_2 + H_2$

- 3. Лабораторно алкени могат да се получат по няколко начина:
 - а) от монохалогенопроизводни на алкани под действието на алкохолен разтвор на калиева основа реакция на елиминиране:

б) **Етен** се получава при **дехидратиране на етанол** при нагряване, в присъствие на сярна киселина **H₂SO**₄:

в) При нагряване на **вицинални** ,т.е. **съседни** (**1,2-дихалогенни** или β-дихалогенни) алкани с цинков прах:

Октомври, 2002 г.