Anticipez les besoins en consommation électrique de bâtiments

•••

Juillet 2019

Démarche

Contexte:

- La ville de Seattle s'intéresse aux émissions des bâtiments non destinés à l'habitation pour atteindre son objectif de ville neutre.
- De coûteux relevés ont été effectués dans de nombreux bâtiments de la ville.

Objectif:

• Prédire les émissions de CO2 et la consommation totale d'énergie de bâtiments pour lesquels elles n'ont pas encore été mesurées.

Données:

• Prédire les émissions de CO2 et la consommation totale d'énergie de bâtiments pour lesquels elles n'ont pas encore été mesurées.

Démarche:

- Nettoyage
- Exploration
- Préprocessing
- Recherche de la meilleure modélisation

Nettoyage

• • •

Nettoyage des données

Description	Nombre d'immeubles	Nombre de variables
Data Source	3 340	42
Filtre sur les bâtiments non résidentiels	1 529	ı
Choix des variables	ı	20
7 Valeurs manquantes pour <i>numberofFloors</i> => Estimations à partir du type de batiment (mediane de la classe)	I	ı
1 valeur manquante pour les données Energétique et rejet C02 => Suppression du bâtiment	1 528	1
Regroupement des 24 types de bâtiments (15 types au final) => harmonisation de la casse => regroupement selon les "comportements" identiques	ı	21
Segmentation d'un dictionnaire pour récupérer la latitude et la longitude	I	23
Transformation de la date de construction en âge du bâtiment	ı	24

Nettoyage des données

Description	Nombre d'immeubles	Nombre de variables
Suppression de la variable <i>NumberofBuildings</i> qui n'est pas assez variée	I	23
Suppression de la variable CouncilDistrictCode qui est redondante avec Neighborhood	I	22
Modification des 99 étages d'une église chinoise en 1 étage	I	1
Modification de NumberofFloors de 5 batiments initiallement à 0 étage	I	1
Suppression de 2 bâtiments avec des valeurs =0 pour les variables consommation énergie et rejet CO2	1526	1
Suppression de 4 outliers avant la modélisation	1522	22

Premier choix des variables

- Métadonnées :
 - OSEBuildingID
 - PropertyName:
 - ComplianceStatus
 - Outlier
- Variables qualitatives :
 - PrimaryPropertyType
 - Location :
 - CouncilDistrictCode
 - Neighborhood
- Variables quantitatives :
 - $\circ \qquad \text{Number of Floors: nombre d'étages}$
 - PropertyGFATotal : surface de plancher Total
 - o PropertyGFAParking : surface de plancher parking
 - o PropertyGFABuilding(s) : surface de plancher immeuble
 - YearBuilt
 - NumberofBuildings

- Energy Star :
 - YearsENERGYSTARCertified
 - ENERGYSTARScore
- Variables quantitatives à expliquer :
 - SiteEnergyUse(kBtu) :
 - SiteEUI(kBtu/sf):
 - GHGEmissions(MetricTonsCO2e)
 - GHGEmissionsIntensity(kgCO2e/ft2)

Regroupement des types de bâtiments

- Regroupements:
 - Self-Storage Facility & Non-Refrigerated Warehouse
 - K-12 School & College/University
 - Worship Facility' & Residence Hall/Dormitory

Suppression des 4 outliers

- Les algorithmes de modélisation de données peuvent être très sensibles aux outliers
 - GHGEmissions(MetricTonsCO2e) > 6000
 - SiteEnergyUse(kBtu) > 150 000 000

Exploration

• • •

1 522 bâtiments non résidentiels

Localisation des bâtiments

• 23 % sont Downtown

Rejets de CO2

Informations sur les bâtiments

Consommations en énergie

- Hôpitaux et supermarchés présentent les plus grande consommations en énergie par ft²
- Le double des autres types de bâtiments

Rejets en CO2

• *Hôpitaux* et *supermarchés* sont les bâtiments qui rejettent le plus de CO2 par ft²

Corrélations

Corrélations linéaires positives fortes entre :

- NumberofFloors et PropertyGFATotal (0.74)
- SiteEnergyUse(kBtu) et *PropertyGFATotal -* (0.66)
- GHGEmissions(MetricTonsCO2e) et SiteEnergyUse(kBtu) (0.87)
- GHGEmissionsIntensity(kgCO2e/ft2) et SiteEUI(kBtu/sf) (0.70)

Etonnant:

• Pas de corrélation entre Age_batiment et SiteEUI(kBtu/sf) - (-0.16)

Préprocessing

•••

Choix des variables

Variables explicatives

Exprimer la taille du bâtiment

- NumberofFloors
- PropertyGFAParking
- PropertyGFABuilding(s)

Exprimer la location

- Lattitude
- Longitude

Exprimer l'ancienneté du bâtiment

Age_batiment

Exprimer le type d'utilisation du bâtiment

• PrimaryPropertyType

Variables dépendantes

- SiteEnergyUse(kBtu)
- *GHGEmissions(MetricTonsCO2e)*

Test/Train sets

Test/train set

- Train set : entrainement du modèle 75% des données
- Test : évaluation du modèle

Transformations des variables

Transformations essayées:

- Pas de standardisation
- Passage au logarithme de la variable dépendante

Transformations retenues:

- Encodage en variables binaires de *PrimaryPropertyType* (variable qualitative)
- Standardisation de l'ensemble des données (variables explicatives et dépendantes)
 - standardisation de la variable dépendante permet d'avoir des résultats cohérents sur les régressions non linéaires.

Modélisations

•••

Stratégie

Objectif : Modéliser les données afin de prédire les consommations d'énergie et les rejets de CO2 pour un nouveau bâtiment.

Modèles testés :

- Régressions linéaires : classique, Ridge, Lasso
- Régressions non linéaires : SVR, MLPRegressor
- Méthode ensembliste : Random Forest Regressor

Recherche du meilleur paramètre:

GridSearch

Stratégie de CrossValidation:

- Crossvalidation sur le training set
- 10 folds

Evaluation de la performance sur le training set

- RMSE
- R²

Evaluation de la généralisation sur le test set

Régressions linéaires

Prédictions des consommations d'énergie

	Classique	Ridge	Lasso
RMSE	0.579	0.579	0.578
R ²	0.647	0.647	0.650

Régressions linéaires avec transformations des variables

Régressions non linéaires - SVR

	SVR Linear	SVR rbf	SVR poly
RMSE	0.582	0.597	0.676
R ²	0.646	0.633	0.509

Régressions non linéaires - Réseau de neurones

Plusieurs fonctions d'activations sont possibles

• La fonction *tanh* est la meilleure

Performances

RMSE: 0.576
 R²: 0.642

Pas d'amélioration notable par rapport aux précédents modèles

Méthode ensembliste - Random Forest Regressor

Utilisation de GridSearchCV pour trouver les meilleurs paramètres

```
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV

# Perform Grid-Search to find best parameters
gsc = GridSearchCV(estimator=RandomForestRegressor(), param_grid={'max_depth': range(3,7), 'n_estimators': (10, 50, 100, 1000)},

| grid_result = gsc.fit(X_train, y_train)
| best_params = grid_result.best_params_
best_params
| 'max_depth': 6, 'n_estimators': 100}
```

Performances

• RMSE : 0.557

• $R^2: 0.665$

Meilleur modèle a priori

Choix du meilleur modèle

Grande variabilité des résultats (quand on relance le code)

• Mesure des intervalles de confiance sur les 10 résultats de la CV pour les metriques de performance

modèle minimisant les erreurs

Généralisation du meilleur modèle

On applique le modèle entraîné au test set pour mesurer la performance de la généralisation du modèle

• Mesure des intervalles de confiance sur les 10 résultats de la CV pour les métriques de performance

Performances

• RMSE : 0.533

• R²: 0.715

Visualisation des erreurs

- données autour de 0 de manière aléatoire
- pas de structure

Bonne généralisation du modèle Random Forest regressor

Intérêt de la variable EnergyStar Score

On applique le meilleur modèle aux données incluant la variable *EnergyStarScore*.

Malgré son coût à calculer, connaitre la variable EnergyStarScore améliore sensiblement la qualité du modèle ainsi que ses prédictions.

Conclusion

Pour aller plus loin :

- essayer la transformation au logarithme des variables explicatives avec le RandomForest
- Appliquer le modèle choisi aux données de 2016 pour voir son comportement