

Course Overview

Dr.Mamatha.H.R ProfessorDepartment of Computer Science and Engineering

Course Overview

Dr.Mamatha H R

Department of Computer Science and Engineering

What is Biologically-Inspired Computation?

- Computer systems, devices, and algorithms based, more or less closely, on biological systems
- Biomimicry applied to computing
- Approximately synonymous with: bio-inspired computation, organic computing

Two Kinds of Computation Motivated by Biology

- Computation applied to biology
 - bioinformatics
 - computational biology
 - modeling DNA, cells, organs, populations, etc.
- Biology applied to computation
 - biologically-inspired computation
 - neural networks
 - artificial life
 - etc.

Natural Computation

PES UNIVERSITY ONLINE

- "Computation occurring in nature or inspired by that occurring in nature"
- Information processing occurs in natural systems from the DNAlevel up through the brain to the social level
- We can learn from these processes and apply them in CS (bioinspired computing)
- In practice, can't do one without the other

Biological Computation

PES UNIVERSITY

- Refers to the use of biological materials for computation
- e.g. DNA, proteins, viruses, bacteria
- Sometimes called "biocomputing"
- Goal: Biocomputers
- Bio-inspired computing need not be done on biocomputers

Classical Computation vs Bio-Inspired Computation

- How do you tell the difference between dog and cat?
- How do you tell the difference between male and female face?
- How do you design a perfect flying machine?
- How would we design the software for a robot that could make a cup of tea in your kitchen?
- What happens if you:
 - Cut off a salamander's tail?
 - Cut off a section of a CPU?

Classical Computation vs Bio-Inspired Computation

Classical computing is good at:

Number-crunching

Thought-support (glorified pen-and-paper)

Rule-based reasoning

Constant repetition of well-defined actions.

Classical computing is bad at:

Pattern recognition

Robustness to damage

Dealing with vague and incomplete information;

Adapting and improving based on experience

Why don't we have software that can do the following things well?

- Automatically locate a small outburst of violent behaviour in a football crowd
- Classify a plant species from a photograph of a leaf.
- Design robust railway timetables
- Make a cup of tea?

Pattern Recognition and Optimization

- These two things tend to come up a lot when we think
 of what we would like to be able to do with software,
 but usually can't do.
- But these are things that seems to be done very well indeed in Biology.
- So it seems like a good idea to study how these things are done in biology – i.e. (usually) how computation is done by biological machines

Why Do Bio-inspired Computation?

• Biological systems are:

- efficient
- robust
- adaptive
- flexible
- parallel
- decentralized

- self-organizing
- self-repairing
- self-optimizing
- self-protecting
- etc.

Some of the Natural Systems We have

- adaptive path minimization by ants
- wasp and termite nest building
- army ant raiding
- fish schooling and bird flocking
- pattern formation in animal coats
- coordinated cooperation in slime molds

- synchronized firefly flashing
- soft constraint satisfaction in spin glasses
- evolution by natural selection
- game theory and the evolution of cooperation
- computation at the edge of chaos
- information processing in the brain

Some of the Artificial Systems We have

- artificial neural networks
- simulated annealing
- cellular automata
- ant colony optimization
- artificial immune systems
- particle swarm optimization
- genetic algorithms
- other evolutionary computation systems

Top Algorithms in BIC

DATA ANALYTICS

Data Analytics is Omnipresent

DATA ANALYTICS

Skills Required

Course Contents

Other BIC methods

	Title	What it's about
	Intro to BIC	The differences between BIC and 'ordinary' computing, the kinds of problems we need BIC for (including basics of classification, optimisation, and problem complexity), motivation for BIC, and a broad overview of many BIC techniques and the kinds of problems they can solve.
	Evolutionary Algorithms	Algorithms based on natural evolution, for solving real-world problems; various different algorithms based on this idea, several example applications
	Swarm Intelligence	Algorithms inspired by natural swarming behaviour, with various applications (ant systems, particle swarm optimisation)

A selection of other prominent BIC methods, e.g. Artificial Immune

Systems, Cellular Computing, Foraging algorithms.

Takeaway from this Course:

- What `classical computing' is, and what kinds of tasks it is naturally suited for.
- What classical computing is not good at.
- An appreciation of how computation and problem solving are manifest in biological systems.
- Appreciation of the fact that many examples of computations done by biological systems are not yet matched by what we can do with computers.
- An understanding of the motivation (consequent on the above) for studying how computation is done in nature.
- A first basic knowledge of the main currently and successfully used BIC methods

Course Evaluation (tentative)

Evaluation Scheme(Weightage will be announced later)
ISA1
ISA2
Assignments
Project(Research Paper Implementation)
ESA
Total= 100

DATA ANALYTICS

Course References

Text Book:

 "Natural Computing Algorithms", Anthony Brabazon, Michael O'Neill, Seán McGarraghy, Springer, Natural Computing Series, 2015

Reference Books:

- 1. "Fundamentals of Natural Computing": Basic Concepts, Algorithms, and Applications. Nunes de Castro, Leandro, Chapman & Hall/ CRC, Taylor and Francis Group, 2007
- 2. "Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies", Floreano D. and Mattiussi C., MIT Press, Cambridge, MA, 2008.
- 3. Research papers

THANK YOU

Dr. Mamatha H RProfessor, Department of Computer Science
mamathahr@pes.edu