School of Computing and Information Systems The University of Melbourne

COMP90049 Knowledge Technologies (Semester 2, 2017)

Workshop exercises: Week 10

1. For the following dataset:

ID	Outl	Temp	Humi	Wind	PLAY			
Training Instances								
Α	s	h	h	F	N			
В	s	h	h	T	N			
C	0	h	h	F	Y			
D	r	m	h	F	Y			
E	r	С	n	F	Y			
F	r	С	n	T	N			
Test Instances								
G	0	С	n	T	?			
H	s	m	h	F	?			

- (a) Classify the test instances using the method of 0-R.
- (b) Classify the test instances using the method of 1-R.

For the following dataset:

_	apple	ibm	lemon	sun	CLASS			
	Training Instances							
_	4	0	1	1	FRUIT			
	5	0	5	2	FRUIT			
	2	5	0	0	COMPUTER			
	1	2	1	7	COMPUTER			

- 2. Build a contingency table for each of the four attributes on the data collection above.
 - (a) According to "Pointwise Mutual Information", which attribute has the best correlation with the class COMPUTER?
 - (b) Use the method of "Mutual Information" to rank the "goodness" of the four features in predicting this two–class problem, according to the following formula:

$$MI(A,C) = \sum_{i \in \{a,\bar{a}\}} \sum_{j \in \{c,\bar{c}\}} P(i,j) \log_2 \frac{P(i,j)}{P(i)P(j)}$$