

Car Insurance Claim Predictor

On The Road Car Insurance

The Car Insurance Claim Predictor dashbpard provides insight for managers on the underwriter's risk assessing abilities and the profitability of the business. It aims to give an overview of a simple model (one feature) to predict whether a customer will make a claim on their insurance during the policy period.

Industry

Insurance

Persona/Audience

- Pricing, UW Managers

Key Business Problem & Mandate

- Which customer characteristic in the current database (aka feature) can be used to predict accurately the likelihood of making a claim during the policy period?
- Mandate: To build a simple model with a single predictor feature, due to constraints in machine learning expertise and deployment capabilities.
- Key metrics for model evaluation: Accuracy
- Business impacts: A crucial role in the Pricing and Underwriting strategies of the company

Data Sources:

- Encoded client dataset in csv
- Data from Datacamp

Technical

Version: 2023.1

Supported Layouts: Desktop
Contact: www.ontheroadinsurance.com

Claim Predictor Model Approach

Two candidate models using Logistic Regression:

$$p_{outcome} = \frac{1}{1 + e^{-(0.6438193 - 1.11448209 \times (age))}}$$

$$p_{outcome} = rac{1}{1 + e^{-(0.38132064 - 1.2841026 imes (driving_experience))}}$$

Tools used for machine learning and dashboard:

Claim Predictor Model Evaluation

Some features are highly correlated with each other, thus the team built a simple logistic regression model for each feature to choose the best candidates for business stakeholders.

As the company has very little expertise and infrastructure for deploying and and monitoring machine learning models, accuracy score is used to measure the performance of each model.

Accuracy Scores of all Prediction Features

 $0.02\ 0.04\ 0.06\ 0.08\ 0.10\ 0.12\ 0.14\ 0.16\ 0.18\ 0.20\ 0.22\ 0.24\ 0.26\ 0.28\ 0.30\ 0.32\ 0.34\ 0.36\ 0.38\ 0.40\ 0.42\ 0.44\ 0.46\ 0.48\ 0.50\ 0.52\ 0.54\ 0.56\ 0.58\ 0.60\ 0.62\ 0.64\ 0.66\ 0.68\ 0.70\ 0.72\ 0.74\ 0.76\ 0.78\ 0.80\ 0.82\ 0.84$

Pred Accuracy Score

Claim Predictor Model Candidates

Which candidate model to choose from?

The underlying theme of car insurance contracts are based on **risk assumptions** of how likely the insured will claim on the insurance to determine the rates charged. Predicting more people claiming the auto insurance is better and less risky than predicting less than the actual number.

With business in mind, using 'driving_experience' as the main predictor for claims is recommmended.

Claim Predictor Model Monitor & Control

Claim? (Actual) ✓ Yes

Model monitor and control per client id for the claim prediction model using "Driving Experience": Two candidate models using Logistic Regression:

Claim? (Actual) Claim? (Predicted by Driving Experience)

Yes

No

Actual Claims vs. Predicted Claims using Driving Experience

Claim? (Predicted by Drivi.. ✓ No

Yes

Claim?

1,626

910

Distinct Count of Id =

No Yes

Predicted Diff. from Actual Claims (using Driving Experience)

Actual Claim Id

78.68%

Yes

Predicted Claim Id (using Driving Experience)

Id	Claim? (Actual)		Id	Claim? (Predicted by Driving Experience)	
101	No		101	No	
125	No	•	125	No	
166	No	•	166	No	
186	No	•	186	Yes	•
226	Yes	•	226	No	
244	No	•	244	No	
286	Yes	•	286	Yes	
381	No	•	381	Yes	•
775	No	•	775	No	•
793	No	•	793	No	
864	Yes	•	864	No	
938	No	•	938	No	
1063	No	•	1063	No	
1126	No	•	1126	No	
1860	Yes	•	1860	No	
1924	No	•	1924	Yes	
2087	No	•	2087	No	
2375	Yes	•	2375	Yes	
2387	Yes	•	2387	Yes	•
2590	No	•	2590	No	
2654	Yes	•	2654	Yes	•
2698	Yes	•	2698	No	
2743	Yes	•	2743	No	
2906	No	•	2906	No	
3004	No	•	3004	No	=
3025	No	•	3025	Yes	•
3038	Yes	•	3038	No	
3114	No	•	3114	No	
3131	No	•	3131	Yes	•
3141	Yes	•	3141	No	
3170	No		3170	Yes	•