

Introdução a Sistemas Embarcados

Curso Superior de Tecnologia em Sistemas Embarcados

Professor: Fernando Silvano Gonçalves fernando.goncalves@ifsc.edu.br Fevereiro de 2023

Cronograma

Encontro	Data	Nº Aulas	Conteúdo			
1	7-fev.	04	Recepção e Apresentação do Unidade / Apresentação do Plano de Ensino / Avaliação Diagnóstica / Introdução a sistemas embarcados / Conceitos, Características e Aplicações			
2	14-fev.	04	Visita Tecnica Evoluma Sistemas			
3	28-fev.	04	Histórico de Sistemas Embarcados / Conceitos de Projeto de Sistemas Embarcados			
4	7-mar.	04	Conceitos de Projeto de Sistemas Embarcados			
5	14-mar.	04	Conceitos de Projeto de Sistemas Embarcados			
6	21-mar.	04	Introdução à Linguagens de Programação			
7	28-mar.	04	Variáveis e Operadores			
8	4-abr.	04	Estruturas Condicionais			
9	11-abr.	04	Estruturas de Repetição			
10	18-abr.	04	Avaliação 01			

Cronograma

Encontro	Data	Nº Aulas	Conteúdo			
11	25-abr.	04	Microcontroladores			
12	2-mai.	04	Entradas e Saídas Digitais			
13	9-mai.	04	Conversor Analógico-Digital			
14	16-mai.	04	Sensores			
15	23-mai.	04	Comunicação Serial			
16	30-mai.	04	PWM			
17	6-jun.	04	Temporizadores			
18	13-jun.	04	Interrupções			
19	20-jun.	04	Avaliação 02			
20	27-jun.	04	Conselho de Classe / Atividades de Encerramento da UC			
		80				

Resumo

- Introdução a Sistemas Embarcados;
- Conceitos e Características;
- Aplicações;

Pauta

- Evolução dos Sistemas Embarcados;
- Complexidade de Sistemas Embarcados;
- Processo de Desenvolvimento de Sistemas Embarcados;

Evolução dos Sistemas Embarcados

Evolução dos Sistemas Embarcados

- 1960: Primeiro Sistema Embarcado:
 - Apollo Guidance Computer.

■ Até 1978: Utilizado basicamente em aplicações militares;

Controle de radares e mísseis.

- 1984: Explosão dos microcontroladores:
 - Microprocessadores otimizados para controlar dispositivos eletrônicos;
 - Memória e interfaces de E/S integrados enfatizando a autossuficiência.

Santa Catarina

- 1989: Popularização dos Application-Specific Integrated Circuit (ASICs);
 - Descritos pelas Hardware Description Language (HDL), como Verilog ou VHDL;
 - Ferramentas de Síntese;

- 1995: Criação das Field-Programmable Gate Arrays (FPGA);
 - Revolução dos System-on-a-Chip (SoCs): CPU e periféricos integrados com circuitos eletrônicos em um único chip;

■ Anos 2000: aumento da capacidade e redução dos custos dos FPGAs;

- MPSoC: Multi-processors SoC;
- NoC: Network-on-Chip;
- Sistemas Reconfiguráveis;

Por que Projetar um SE é um Processo Complexo?

- Custo limitado:
 - Normalmente agregado a outro produto;
- Tempo de projeto limitado:
 - Projetos muito longos podem significar perdas de mercado;
- Consumo de energia:
 - Geralmente movidos por fontes limitadas (baterias);
- Complexidade crescente das aplicações:
 - Ambientes exigem cada vez mais aplicações seguras e confiáveis.

Dificuldades de Projeto de SE

- Lei de Moore:
 - Número de transistores disponíveis nos circuitos dobra a cada 18 meses;
- Custos de engenharia não recorrentes:
 - Custo para preparar uma fábrica para produção de um determinado chip (próximo de USD 1 milhão).

Como Projetar um SE?

Análise detalhada do problema detalhando suas necessidades NFRs:

Desempenho;

Consumo de energia;

☐ Flexibilidade;

☐ Custo;

Conectividade.

Performance VS Flexibilidade

Como Projetar um SE?

- Dominar tecnologias disponíveis:
 - Arquitetura de processadores (CISC, RISC, DSP);
 - Modelos de computação;
 - Flexibilidade;
 - Linguagens de programação (HW e SW);
 - Ferramentas de desenvolvimento;

Atividade MULTIDISCIPLINAR!

Como domar essa Complexidade?

Como domar essa Complexidade?

Como domar essa Complexidade?

- Modelagem;

Como domar essa Complexidade?

- ☐ Uso de Metodologias de Projeto adequadas:
 - Aumenta o nível de abstração;
 - Reduz falhas de especificação;
 - Matem o "conhecimento corporativo";
 - Aumento nos índices de produtividade;
 - Aumento do reuso de software e hardware.

Processo de Desenvolvimento de Sistemas Embarcados

Definição de Requisitos

- □ Requisitos funcionais:
 - Descreve as funcionalidades que o sistema deve realizar;
- □ Requisitos não funcionais:
 - Apresentam as restrições impostas ao sistema para realização dos requisitos funcionais.

Características dos Requisitos Não Funcionais

Restrição temporal;			
Determinismo;			
Tolerância a falhas;			
Segurança;			
Interface;			
Custo;			
Etc.			

Requisitos Funcionais e Não Funcionais

Tabela de Requisitos Funcionais

- Código do Requisito Funcional;
- → Nome do Requisito;
- Descrição;
- Categoria Funcional.

Tabela de Requisitos Não Funcionais

- Código do Requisito Não Funcional;
- → Nome do Requisito;
- ☐ Restrição;
- ☐ Categoria;
- Obrigatoriedade;
- Permanência.

Tabela de Requisitos

F1 - Controle de Estabilidade em Voo

Oculto ()

Descrição: O sistema deve manter a estabilidade da aeronave durante a realização dos voos, sejam estes autônomos ou rádio controlados.

Requisitos Não Funcionais

Nome	Restrição	Categoria	Tempo Real	Permanente
Inclinacao	A aeronave não pode ultrapassar uma inclinação máxima de 20º no angulo de rolagem	Segurança	Hard	(X)
Minimo	A aeronave não pode realizar voos se o nível de tensão da bateria estiver abaixo de 14v.	Segurança	Hard	(X)
NFR1.3 - Alerta Sonoro	Se o nível de tensão da bateria estiver abaixo de 14v, a aeronave deve emitir um aviso sonoro.	Interface	Soft	(X)

Modelagem Funcional

- Expressa as funcionalidades de maneira abstrata;
- Independente de plataforma;
- Identificação dos Estados, Funções e Variáveis Relacionadas;

Modelagem Funcional

- Modelos refletem o comportamento do sistema;
 - Identificação dos modos de operação;
 - Escolha de uma linguagem e ferramenta para cada domínio;
- Modelos Continuos:
 - Blocos Funcionais (Simulink, Ptolemy);
- ☐ Modelos a Eventos Discretos:
 - State flows, Statechart (Simulink, Rational-IBM);

Modelagem Funcional - Diagrama de Classes UML

Modelagem Funcional - Diagrama de Blocos

Santa Catarina

Modelagem Funcional - Modelo a Eventos Discretos

Processo de Desenvolvimento de SEs

- □ Define a estrutura ideal de HW / SW;
- Projeta as interfaces para componentes externos (Hardware, Software e Usuário);
- Definir entre processamento centralizado ou distribuído;
- Determinar concorrência entre tarefas;
- Estratégias de armazenamento de dados, manutenção e alocação de memória;

- Projeto de algoritmos e funções de processamento de dados;
- ☐ Tratamento de erros;
- Análise de desempenho;
- Projeto detalhado dos componentes definidos na arquitetura do sistema;
- Documentação na forma de diagramas;


```
1 SYSTEM IMPLEMENTATION UAV.impl
  SUBCOMPONENTS
  --PROCESS
    pi_energy: PROCESS p_energy.impl;
    pi_control: PROCESS p_control.impl;
    pi_sensing: PROCESS p_sensing.impl;
    pi_actuation: PROCESS p_actuation.impl;
    pi communication: PROCESS p communication.impl;
    --DEVICE
10 di_gps: DEVICE d_gps.impl;
11 di_imu: DEVICE d_imu.impl;
12 di_esc_r: DEVICE d_esc.impl;
13 di esc l: DEVICE d esc.impl;
14 di sonar: DEVICE d sonar.impl;
15 di_radio: DEVICE d_radio.impl;
16 di_servo_r: DEVICE d_servo.impl;
17 di servo l: DEVICE d servo.impl;
18 CONNECTIONS
19 C1: PORT di_gps.position -> pi_sensing.position;
... Here goes all the connections (lines 20 to 45)
46 END UAV.impl;
```


Processo de Desenvolvimento de SEs

Mapeamento SW / HW

- Deve atender aos requisitos Não Funcionais:
 - Restrições temporais;
 - Determinismo;
 - Custo;
 - Etc.
- □ Permite extrair informações sobre o tempo de execu¸c~ao (WCET);

Processo de Desenvolvimento de SEs

Integração, Validação e Testes

- Integração dos componentes do sistema na arquitetura final;
- Criação de casos de testes;
- Ajustes de parâmetros
- Refinamento dos modelos;
- Análises de latência;
- Verificação formal;

Conclusões

- Desafio tecnológico:
 - Construir sistemas com qualidade, garantia de funcionalidade e custos aceitáveis;
- □ Desafio científico:
 - Consolidar o desenvolvimento de SEs como uma disciplina científica e de engenharia;
- Necessita-se de ferramentas de apoio ao projeto de SEs.

Conclusões

- □ Assim como sistemas computacionais convencionais, sistemas embarcados devem seguir um processo de desenvolvimento;
- A simulação das funcionalidades nos modelos de alto nível de abstração é importante;
- Cuidados especiais são necessários no projeto de arquitetura;
- Técnicas de Engenharia Baseada em Modelos auxiliam na transição entre diferentes visões do sistema.

Referências

- ☐ HEATH, S., Embedded Systems Design, 2 ed. Newnes, Oxford, 2003.
- □ BERGER, A. S., Embedded Systems Design, An Introduction to Processes, Tools, & Techiniques, CMP Books, Berkeley, 2002.
- MARWEDEL, P., Embedded System Design, Embedded Systems Foundations of Cyber-Physical Systems, 2 ed. Springer, New York, 2011.
- □ LEE, E. and SESHIA, S., Introduction to Embedded Systems, A Cyber-Physical Systems Approach, Berkeley, ISBN 978-0-557-70857-4, 2011.
- ☐ GANSSLE, J. G., The Art of Programming Embedded Systems, Academic Press, Califórnia, 1992.
- BECKER, L. B., FARINES, J., BODEVEIX, J., FILALI, M., e VERNADAT, F., Development process for critical embedded systems. Em Workshop de Sistemas Embarcados, Gramado. Anais. Porto Alegre: SBC, páginas 95{108, 2010.
- □ JENSEN, J. C., CHANG, D. H., e LEE, E. A., A model-based design methodology for cyber-physical systems. In Wireless Communications and Mobile Computing Conference (IWCMC), 2011.

Obrigado!

Fernando Silvano Gonçalves

fernando.goncalves@ifsc.edu.br

se.cst.tub@ifsc.edu.br