Automation

State Machines

Prof. Francesco Maurelli

f.maurelli@jacobs-university.de

State Machines

State Machines

- Functional decomposition into states of operation
- Typical domains of application:
 - control functions
 - o protocols (telecom, computers, ...)
- Finite-State Machines or Finite-State *Automata* (*Automaton*)

State Machines / example seat belt alarm

- If the driver
 - turns on the key, and
 - o does not fasten the seat belt within 5 seconds
- then an alarm beeps
 - o for 5 seconds, or
 - until the driver fastens the seat belt, or
 - o until the driver turns off the key

State Machines / example seat belt alarm

State Machines - formalism

```
- FSM = (I, O, S, r, δ, λ)

- I = { KEY_ON, KEY_OFF, BELT_ON, END_TIMER_5, END_TIMER_10 }

- O = { START_TIMER, ALARM_ON, ALARM_OFF }

- S = { OFF, WAIT, ALARM }

- r = OFF

δ : 2^I \times S \rightarrow S

e.g. ({ KEY_OFF }, WAIT ) = OFF

λ: 2^I \times S \rightarrow 2^O

e.g. ({ KEY_ON }, OFF ) = { START_TIMER }
```

- A vending machine accepts nickels, dimes, and quarters.
- Only 1 drink
- Cost is 30 ¢
- If >30¢ is deposited, change is immediately returned.
- When there is 30¢ deposited, if the "dispense" button is pressed, the machine drops a drink.
- It can then accept a new payment

- Input symbol set:
 - I = {nickel, dime, quarter, button}
- Output symbol set:

$$O = \{ E, 5 , 10 , 15 , 20 , 25 , coke \}$$

State set:

Old state	Input	New state	2.000	Old state	Input	New state	Output	Old state	Input	New state	Output	Old state		New state	Output
0	n	5	Ø	10	n	15	Ø	20	n	25	Ø	30	n	30	5¢
0	d	10	Ø	10	d	20	Ø	20	d	30	Ø	30	d	30	10¢
0	q	25	Ø	10	q	30	5¢	20	q	30	15¢	30	q	30	25¢
0	-	0	Ø	10		10	Ø	20	b	20	Ø	30	b	0	coke
5	n	10	Ø	15	n	20	Ø	25	n	30	Ø				
5	d	15	Ø	15	d	25	Ø	25	d	30	5¢				
5	q	30	Ø	15	q	30	10¢	25	q	30	20¢				
5	b	5	Ø	15	b	15	Ø	25	b	25	Ø				

Quite long representation... anything more compact?

Old	Input Symbol									
state	n	d	q	b						
0	5,Ø	10,Ø	25,Ø	0,Ø						
5	10,Ø	15,Ø	30,Ø	5,Ø						
10	15,Ø	20,Ø	30,5¢	10,Ø						
15	20,Ø	25,Ø	30,10¢	15,Ø						
20	25,Ø	30,∅	30,15¢	20,Ø						
25	30,∅	30,5¢	30,20¢	25,Ø						
30	30,5¢	30,10¢	30,25¢	0,coke						

Each pair shows new state, output symbol

String Example

Build a FSM to determine whether the number of As in a string is even or odd

String Example

Deterministic vs. Non-Deterministic

Non-deterministic useful to model:

- an unspecified behavior (incomplete specification)
- an unknown behavior (environment modeling)

δ λ relations instead of functions

```
Deterministic: \delta: 2^I \times S \times S e.g. ( { KEY_OFF }, WAIT ) = OFF Non-Deterministic: \delta\subseteq 2^I \times S \to S e.g. \delta(\{KEY_OFF, END_TIMER_5\}, WAIT) = \{\{OFF\}, \{ALARM\}\}\}
```

Deterministic: λ : $2^{I} \times S \rightarrow 2^{O}$

Non-Deterministic: $\lambda \subseteq 2^{l} \times S \times 2^{O}$

State-Machines in Robotics

State-Machines in Robotics

Summary

- State machines
- FSM = $(I, O, S, r, \delta, \lambda)$
- Deterministic vs Non-deterministic
- Examples

