本节主题

高速缓存的 工作原理

北京大学。嘉课

计算机组成

制作人:随後旅

存储层次结构 (Memory Hierarchy)

程序的局部性原理

- ② 这是一个经验性的结论
 - 。 计算机程序从时间和空间都表现出 "局部性"
- 时间局部性 (Temporal Locality)
 - 。最近被访问的存储器单元(指令或数据)很快还会被访问
- ❷ 空间局部性 (Spatial Locality)
 - 。正在被访问的存储器单元附近的单元很快会被访问

```
for (i=0; i<1000; i++)
for (j=0; j<200; j++)
sum += a[i][j];
```

典型程序段

Cache的基本原理

- © Cache对空间局部性的利用
 - 。从主存中取回待访问数据时,会同时取回与位置相邻的主存单元的数据
 - 。以数据块(Block)为单位和主存进行数据交换

- © Cache对时间局部性的利用
 - 。保存近期频繁被访问的主存单元的数据

Cache的访问过程

Cache组织结构示例

	有效位	标签	数据						
表项0	0								
表项1	0			这是一么	一 个高速缓	存行(C	ache Lin	e)	
表项2	0								
表项3	0								
表项4	0								
表项5	0								
	0		每	行可存放	女16字节	的数据块	(Block		
表项15	0		字节0	字节1	字节2	字节3		字节15	

Cache读操作过程示例

MOV AL, [2011H]
MOV BL, [4011H]
MOV CL, [3732H]
MOV DL, [401FH]

注:为简化描述,不考虑段基址

表项0	
表项1	

表项2

表项3

.

有效位	标签		数据						
0									
0									
0									
0									
0		字节0	字节1	字节2	字节3		字节15		

Cache读操作过程示例(1)

MOV AL, [2011H]

MOV BL, [4011H]

MOV CL, [3732H]

MOV DL, [401FH]

表项0 表项1

表项2

表项3

.

表项15

有效位	标签		数据 ····································						
0									
0									
0									
0									
0		字节0	字节1	字节2	字节3		字节15		

1. 未命中

Cache读操作过程示例(1) 第1条指令完成

MOV AL, [2011H]

MOV BL, [4011H]

MOV CL, [3732H]

MOV DL, [401FH]

1. 未命中,读主存地址2010H,分配表项1,返回A1H

MOV AL, [2 0 1 1 H]

表项0 表项1⁴

表项2

表项3

.....

	有效位	标签				数	据	
	0				5			
K	1	20H	A0H	A1H		A2H	АЗН	 AFH
	0							
	0							
5	0		字节0	字节1		字节2	字节3	 字节15

Cache读操作过程示例(2)

MOV AL, [2011H]

MOV BL, [4011H]

MOV CL, [3732H]

MOV DL, [401FH]

1. 未命中,读主存地址2010H,分配表项1,读出A1H

2. 未命中

MOV BL, [4 0 1 1 H

表项0 表项1

表项2 表项3

.....

	有效位	标签			数	据	
	0						
K	1	201	A0H	A1H	A2H	АЗН	 AFH
	0						
	0						
5	0		字节0	字节1	字节2	字节3	 字节15

Cache读操作过程示例(2) 第2条指令完成

MOV AL, [2011H]

MOV BL, [4011H]

MOV CL, [3732H]

MOV DL, [401FH]

1. 未命中,读主存地址2010H,分配表项1,读出A1H

2. 未命中,读内存地址4010H,替换表项1,读出B1H

MOV BL, [4 0 1 1 H

	有效位	标签			数	据	
表项0 表项1 <i><</i>	0						
	1	40H	ВОН	B1H	B2H	взн	 BFH
表项2	0						
表项3	0						
表项15	0		字节0	字节1	字节2	字节3	 字节15

Cache读操作过程示例(3)

MOV AL, [2011H]

MOV BL, [4011H]

MOV CL, [3732H]

MOV DL, [401FH]

- 1. 未命中,读主存地址2010H,分配表项1,读出A1H
- 2. 未命中,读内存地址4010H,替换表项1,读出B1H
- 3. 未命中

表项0 表项1 表项2

.....

表项3

有效位	标签		数据						
0									
1	40H	В0Н	B1H	B2H	взн		BFH		
0									
0									
0		字节0	字节1	字节2	字节3		字节15		

Cache读操作过程示例(3) 第3条指令完成

MOV AL, [2011H]

MOV BL, [4011H]

MOV CL, [3732H]

MOV DL, [401FH]

- 1. 未命中,读主存地址2010H,分配表项1,读出A1H
- 2. 未命中,读内存地址4010H,替换表项1,读出B1H
- 3. 未命中,读内存地址3730H,分配表项3,读出C2H

表项0 表项1 表项2

.....

表项3

有效位	标签		数据							
0										
1	40H	вон	B1H	B2H	взн		BFH			
0										
1	37H	C0H	C1H	C2H	СЗН		CFH			
0		字节0	字节1	字节2	字节3		字节15			

Cache读操作过程示例(4) 第4条指令完成

MOV AL, [2011H]

MOV BL, [4011H]

MOV CL, [3732H]

MOV DL, [401FH]

- 1. 未命中,读主存地址2010H,分配表项1,读出A1H
- 2. 未命中,读内存地址4010H,替换表项1,读出B1H
- 3. 未命中,读内存地址3730H,分配表项3,读出C2H
- 4. 命中表项1,读出BFH

表项0 表项1 表项2 表项3

.....

4	有效位	标签		数据							
	0										
	1	40H	вон	B1H	B2H	взн		BFH			
	0										
	1	37H	C0H	C1H	C2H	СЗН		CFH			
	0		字节0	字节1	字节2	字节3		字节15			

Cache的写策略

- № "Cache命中"时的写策略
 - ① 写穿透(Write Through):数据同时写入Cache和主存
 - ② 写返回(Write Back):数据只写入Cache,仅当该数据块被替换时 才将数据写回主存
- № "Cache失效"时的写策略
 - ① 写不分配(Write Non-Allocate):直接将数据写入主存
 - ② 写分配(Write Allocate):将该数据所在的块读入Cache后,再将数据写入Cache

写返回 写分配

写穿透写不分配

本节小结

高速缓存的 工作原理

北京大学。嘉课

计算机组成

制作人:随後旅

