次序关系

Lijie Wang

哈斯图

特殊元素

哈斯图及特殊元素

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

引言

哈斯图及特殊元

Lijie Wan

哈斯图

持殊元素

3F

在偏序集的关系图中,许多有向边可以不用显示出来.例如,偏序关系满足自反性,所以每个结点都有环,因此可以不必显示这些环;又如,偏序关系满足传递性,我们不必显示由于传递性而必须出现的边;另外,由于其反对称的特性,我们可以规定边的方向.从而省去箭头.

按照以上方法对关系图进行简化而得到的图形叫做哈斯图,哈斯图对于判断元素之间的先后顺序以及确定特殊元素非常方便.

哈斯图

哈斯图

Definition

设 R 是非空集合 A 上的偏序关系, 使用如下方法对 R 的关系图进行简化:

- 取消每个结点的自环; (因自反性)
- 取消所有由于传递性出现的边. 即若 $x \longrightarrow y, y \longrightarrow z$, 则去掉 $x \longrightarrow z$ 这条边;(因传递性)
- 重新排列每条边,使得边的箭头方向全部向上,然后去掉这些箭头.(因反对称性)以上步骤可以得到一个包含足够偏序信息的图,这个图称为偏序关系 R 的哈斯图(Hasse diagram).

哈斯图

Lijie Wang

设 $A = \{2, 3, 6, 12, 24, 36\}, \text{``} \leqslant \text{''}$ 是 A 上的整除关系 R。

哈斯图

最大元和最小元

特殊元素

Definition

设 $< A, \le >$ 是偏序集, $B \neq A$ 的任何一个子集, 若存在元素 $b \in B$, 使得

- 对任意 $x \in B$, 都有 $x \le b$, 则称 b 为 B 的最大元;
- 对任意 x ∈ B, 都有 b ≤ x, 则称 b 为 B 的最小元.

Example					
24.0 0.26		{6,12}	{2,3}	{24,36}	{2,3,6,12}
24 9 36	最大元	12			12
2 6 3	最小元	6	 无	 无	无

极大元和极小元

Lijie Wang

哈斯隆

特殊元素

Definition

设 $< A, \le >$ 是偏序集, $B \neq A$ 的任何一个子集, 若存在元素 $b \in B$, 使得

- 对任意 $x \in B$, 满足 $b \le x \Rightarrow x = b$, 则称 b 为 B 的极大元;
- 对任意 $x \in B$, 满足 $x \le b \Rightarrow x = b$, 则称 b 为 B 的极小元.

Example				
24 g \(\rho 36 \)	{6,12}	{2,3}	{24,36}	{2,3,6,12}
极大元	12	2,3	24,36	12
极小元	6	2,3	24,36	2,3

总结

哈斯圖及特殊元 表

Lijie Wang

哈斯图

特殊元素

3

- B 的最大元、最小元、极大元和极小元如果存在,一定在 B中;
- ② b 是 B 的最大元 ⇔ B 中所有的元素都比 b 小;
 - b 是 B 的最小元 \Leftrightarrow B 中所有的元素都比 b 大;
 - b 是 B 的极大元 ⇔ B 中没有比 b 大的元素;
 - b 是 B 的极小元 ⇔ B 中没有比 b 小的元素.

上界和上确界

哈斯图及特殊元 素

Lijie Wang

哈斯图

特殊元素

Definition

设 $< A, \le >$ 是偏序集, $B \neq A$ 的任何一个子集, 若存在元素 $a \in A$, 使得

- 对任意 x ∈ B, 满足 x ≤ a, 则称 a 为 B 的上界;
- 若元素 $a' \in A$ 是 B 的上界, 元素 $a \in A$ 是 B 的任何一个上界, 若均有 $a' \leq a$, 则称 a' 为 B 的最小上界或上确界.

下界和下确界

哈斯图及特殊方

Lijie Wang

哈斯图

特殊元素

Definition

设 $< A, \le >$ 是偏序集, $B \neq A$ 的任何一个子集, 若存在元素 $a \in A$, 使得

- 对任意 $x \in B$, 满足 $a \le x$, 则称 a 为 B 的下界;
- 若元素 $a' \in A$ 是 B 的下界, 元素 $a \in A$ 是 B 的任何一个下界, 若均有 $a \leq a'$, 则称 a' 为 B 的最大下界或下确界.

总结

哈斯圖及特殊元 表

Lijie Wang

n A H C TO 1

特殊元素

38 ● 子集 B 的 L、下界和 L、下确界可在集合 A 中寻找: ② 子集 B 的上、下界不一定存在, 如果存在可能多个: ③ 子集 B 的上、下确界不一定存在. 如果存在一定唯一: ● 子集 B 有上 (下) 确界, 一定有上 (下) 界, 反之不然. 上界 上确界 下界 下确界 无 $\{x_1, x_2\}$ 无 X_3, X_4 无 $\{x_3, x_4\}$ 无 无 x_1, x_2

哈斯图及特殊元 素

Lijie Wang

哈斯图

特殊元素

THE END, THANKS!