Data Sheet No. PD-2.030D

INTERNATIONAL RECTIFIER

1N3879, 1N3889, 6FL, 12FL, 16FL SERIES

6A, 12A and 16A Fast Recovery Rectifiers

Major Ratings and Characteristics

		1N3879 -1N3883	1N3889 -1N3893	6FL	12FL	16FL	Unit				
F(AV)		6*	12*	6	12	16	Α				
	50Hz	72	145	110	145	180	А				
FSM	60Hz	75*	150*	115	150	190	А				
.2.	50Hz	26	103	60	103	160	A ² s				
l²t	60Hz	23	94	55	94	150	A ² s				
13 T		363	1452	855	1452	2290	A ² √s				
t _{rr} range			see table								
VRRN	√ range	50 —	50 - 400* 50 - 1000								
T _J ran			-65 to 150								

^{*}JEDEC registered values.

Description

This range of fast recovery diodes is designed for applications in DC power supplies, inverters, converters, choppers, ultrasonic systems and for use as free wheel diodes.

Features

- Short reverse recovery time
- Low stored charge
- Wide current range
- Excellent surge capabilities
- Standard JEDEC types
- Stud cathode and stud anode versions
- Types up to 1000V VRRM
- Fully characterised reverse recovery conditions

20.32 (0.800) MAX. 11.00 (0.433) MAX. ACROSS FLATS

[†] At max. T_C = 100°C.

REVERSE VOLTAGE RATINGS

			VRRM - Max.	VRRM - Max. Non-Repetitive Peak	IR — Max. Reverse Current At Rated VR				
	_		Repetitive Peak Reverse Voltage	Reverse Voltage to ≤ 5 ms	Tj = 25°C Tj = 100°C		T _J = 150°C		
	Part Number	00	V	V	mA	mA	mA		
	1N3879 1N3880 1N3881 1N3882 1N3883		50 100 200 300 400	75 150 250 350 450	0.015* 0.015* 0.015* 0.015* 0.015*	1.0* 1.0* 1.0* 1.0*	3.0* 3.0* 3.0* 3.0*		
	1N3889 1N3890 1N3891 1N3892 1N3893		50 100 200 300 400	75 150 250 350 450	0.025* 0.025* 0.026* 0.025* 0.025*	3.0* 3.0* 3.0* 3.0* 3.0*	5.0* 5.0* ① 5.0* 5.0* 5.0*		
**6FL5S02 6FL10S02 6FL20S02 6FL40S02 6FL60S02	6FL5S05 6FL10S05 6FL20S05 6FL40S05 6FL60S05 6FL80S05 6FL80S05	6FL5S10 6FL10S10 6FL2OS10 6FL4OS10 6FL6OS10 6FL8OS10 6FL10OS10	50 100 200 400 600 800 1000	75 150 275 500 725 950 1250	0.050 0.050 0.050 0.050 0.050 0.050 0.050		6.0 6.0 6.0 6.0 6.0 6.0 6.0		
**12FL5S02 12FL10S02 12FL2OS02 12FL4OS02 12FL6OS02	12FL5S05 12FL10S05 12FL2OS05 12FL4OS05 12FL6OS05 12FL8OS05 12FL8OS05 12FL10OS05	12FL5S10 12FL10S10 12FL20S10 12FL40S10 12FL60S10 12FL80S10 12FL100S10	50 100 200 400 600 800 1000	75 150 275 500 725 950 1250	0.050 0.050 0.050 0.050 0.050 0.050 0.050		6.0 6.0 6.0 6.0 6.0 6.0		
**16FL5S02 16FL10S02 16FL2OS02 16FL4OS02 16FL6OS02	16FL5SD5 16FL10S05 16FL20S05 16FL40S05 16FL60S05 16FL80S05 16FL10OS05	16FL5S10 16FL10S10 16FL20S10 16FL40S10 16FL60S10 16FL80S10 16FL100S10	50 100 200 400 600 800 1000	75 150 275 500 725 950 1250	0.050 0.050 0.050 0.050 0.050 0.050 0.050	-	6.0 6.0 6.0 6.0 6.0 6.0 6.0		

REVERSE RECOVERY CHARACTERISTICS

				6FL 12FL			16F L							
		1N3879 - 1N3883	1N3889- 1N3893	502	S05	S10	S02	S05	S10	502	S05	S10		
t _{rr}	Max. reverse re- covery time	150	150	110	285	490	100	250	430	90	225	390	113	T _J = 25°C, I _F = 1A to V _R = 30V dI _{F/dt} = 100 A/μs
		300*	300*	200	500	1000	200	500	1000	200	500	1000	ns	T _J = 25°C, dI _{F/dt} = 25 A/μs,
RM(REC) Max. peak re- covery current	4*	5*	-		-	-		-	-	-	-		IFM = π x rated IF(AV)
QRR	Max, reverse re- covered charge	400	350	230	1700	5000	200	1300	3800	150	1100	3000		$T_J = 25^{\circ}C$, $I_F = 1A$ to $V_R = 30V$ $dI_{F/dt} = 100 A/\mu s$
		400	400	200	1200	5000	200	1200	5000	200	1200	5000	nC	$T_J = 25^{\circ}C$, $d F/dt = 25 A/\mu s$ $ FM = \pi \times rated F(AV)$

ELECT	TRICAL SPECIFICATION	SNC								
		1N3879 1N3883	6FL	1N3889- 1N3893 12FL	16FL	Unit	Conditions			
	FORWARD CONDUCTION									
IF(AV)	Max. average forward current	6*	6	12*	16	Α	180° conduction, half sine wave, T _C = 100°C			
) Max, r.m.s. forward current	9.5	9.5	19	25	Α				
IFSM	Max. peak one-cycle non- repetitive forward current	72 75°	110	145 150*	180 190		t = 10 ms t = 8.3 ms With rated VRRM Sinusoidal half w	Sinusoidal half wave initial T _J = 150°C		
		85	130	170	215	Α.	t = 10 ms Vppm = 0 initial Tj = 15000			
		90	135	180	225		t = 8.3 ms			
12t	Max. i2t for fusing	26 23	60 55	103 94	160		t = 10 ms With rated VRRM Initial T _J = 15000	C		
	Max. I ² t for individual device fusing	36 33	86 78	145 130	230 210	A ² s	t = 10 ms t = 8.3 ms VRHM = 0	Initial 1j = 150-C		
ı²√t	Max. 12√t for Individual (1)	363	856	1452	2290	$12\sqrt{s}$	t = 0.1 to 10 ms			
VEM	Max. peak forward voltage	1,4*	1.4	1.4*	1.4	V	$T_J = 25^{\circ}C$, $I_F = \text{rated } I_F(AV)$ (D.C.) $T_C = 100^{\circ}C$, $I_{FM} = \pi \times \text{rated } I_F(AV)$			
		1.5*	1.5	1.5*	1.5	7 '				

^{*}JEDEC registered value

**Suffix "S02" may be omitted, i.e., 12FL10 implies 12FL10S02,
12FL860 implies 12FL860S02.

¹⁾ Types listed are cathode to case; for anode-to-case include "R" in code, i.e., 1N3879R, 6FLR20S10, 16FLR40S02.

Thermal and mechanical specifications

			1N3879 1N3883 6FL	1N3889 -1N3893 12FL	16FL	Units	Conditions
Т	Junction operating tem	i	-65 to 150		°C		
T _{stq}	Storage temperature ra		-65 to 175		°C		
R _{thJC}	Maximum internal ther junction to case	mai resistance,	2.5	2.0	1.6	deg C/W	DC operation
R _{thCS}	Maximum thermal resis heatsink	tance, case to		0.5		deg C/W	Mounting surface flat, smooth an greased.
Т	Mounting torque to nut			10.5		lbf.in	Lubricated threads
	±.10%			0.12		kgf,m	(Non-lubricated threads)
				1.2		Nm	
	to device			11.5 (13.5)		lbf,in	Ī
				0.13 (0.155)	kgf.m	
				1.3 (1.35)		Nm	
wt	Approximate weight		7		9		
				0.25		OZ	
	Case style	D	0-203AA (DO	4)		JEDEC	

Fig. 1 - Average Forward Current Vs. Maximum Allowable Case Temperature,

Fig. 3 - Average Forward Current Vs. Maximum Allowable Case Temperature, 16FL Series

Fig. 2 - Average Forward Current Vs. Maximum Allowable Case Temperature, 1N3889 and 12FL Series

Peak forward current prior to commutation IF, IFM =

Rate of fall of forward current

Peak reverse recovery current RM(REC)=

Reverse recovery time trr

QRR

Reverse recovered charge Fig. 4 - Reverse Recovery Time Test Waveform

0

3 4 5 6

AVERAGE FORWARD CURRENT - A

10 Fig. 7 - Current Rating Nomogram (Sinusoidal Waveforms), 1N3889 and 12FL Series

20 30 40 50

60 70

MAXIMUM ALLOWABLE AMBIENT TEMPERATURE - °C

12

Fig. 8 - Current Rating Nomogram (Rectangular Waveforms), 1N3889 and 12FL Series

Fig. 9 — Current Rating Nomogram (Sinusoidal Waveforms), 16FL Series

Fig. 10 - Current Rating Nomogram (Rectangular Waveforms), 16FL Series

Fig. 11 - Maximum Forward Voltage Vs. Forward Current, 1N3879 and 6FL Series

Fig. 13 - Maximum Forward Voltage Vs. Forward Current, 1N3889 and 12FL Series

Fig. 15 - Maximum Forward Voltage Vs. Forward Current, 16FL Series

Fig. 12 - Maximum High Level Forward Power Loss Vs. Average Forward Current, 1N3879 and 6FL Series

Maximum High Level Forward Power Loss Vs. Average Forward Current, 1N3889 and 12FL Series

Fig. 16 - Maximum High Level Forward Power Loss Vs. Average Forward Current, 16FL Series

Fig. 17A - Maximum Reverse Recovery Time Vs. Rate of Fall of Forward Current, All Series ___S02

Fig. 18A - Maximum Reverse Recovery Time Vs. Rate of Fall of Forward Current, All Series ___S05

Fig. 19A - Maximum Reverse Recovery Time Vs. Rate of Fall of Forward Current, All Series __S10

Fig. 17B - Maximum Recovered Charge Vs. Rate of Fall of Forward Current, All Series __S02

Fig. 18B - Maximum Recovered Charge Vs. Rate of Fall of Forward Current, All Series __S05

RATE OF FALL OF FORWARD CURRENT - A/JJS Fig. 19B - Maximum Recovered Charge Vs. Rate of Fall of Forward Current, All Series ___S10

Fig. 20 — Maximum Non-Repetitive Surge Current Vs. Number of Current Pulses, 1N3879 Series

Fig. 21 — Maximum Non-Repetitive Surge Current Vs. Number of Current Pulses, 6FL Series

Fig. 22 — Maximum Non-Repetitive Surge Current Vs. Number of Current Pulses, 1N3889 and 12FL Series

Fig. 23 — Maximum Non-Repetitive Surge Current Vs. Number of Current Pulses, 16FL Series

Fig. 24 — Maximum Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration, All Series.