数字逻辑第四章时序线路分析

信息科学与工程学院计算机系

杨永全

yangyq@ouc.edu.cn

组合线路

组合线路

这是一个有U个输入和V个输出的组合线路,可以看出,某一时刻的输出仅与该时刻的输入有关。

时序线路

时序线路

外部输入 $X_1(t_k)...X_U(t_k)$ (输入 函数) 时序线路包括两组输入 内部输入 Y₁(t_k)...Y_N(t_k) (状态 函数) 外部输出 $Z_1(t_k)...Z_V(t_k)$ (输出 函数) 两组输出 内部输出 $W_1(t_k)...W_M(t_k)$ (控 制函数)

时序线路的表示方法

输出函数
$$Z_i(t_k)=f_i[X_1(t_k)...X_u(t_k),y_1(t_k)...y_n(t_k)]$$

次态函数
$$Y_j(t_k)=q_j[X_1(t_k)...X_u(t_k),y_1(t_k)...y_n(t_k)]$$

总结一下

输出函数仅 由门电路组 用输出函数 组合线路 与该时刻输 成 描述 入有关 由门电路及 输出函数与 用输出及次 时序线路 记忆元件构 输入及线路 态函数描述 成 状态有关

现态与次态关系

	t=0	t=1	t=2
输入函数	$X_1(0)X_u(0)$	$X_1(1)X_u(1)$	$X_1(2)X_u(2)$
现态函数	$y_1(0)y_n(0)$	$y_1(1)y_n(1)$	$y_1(2)y_n(2)$
控制函数	$W_1(0)W_m(0)$	y ₁ (1)y _n (1) W ₁ (1)W _m (1)	$W_1(2)W_m(2)$
次态函数	Y ₁ (0)Y _n (0)	$Y_1(1)Y_n(1)$	$Y_1(2)Y_n(2)$
输出函数	$Z_1(0)Z_u(0)$	$Z_1(1)Z_u(1)$	$Z_1(2)Z_u(2)$

触发器

触发器的特点:

- 1、触发器必须具备两个稳态,用以记忆两个特征值"0"和"1"。
- 2、触发器的状态要能够预置,即具有置位(置1)复位(置0)控制端。
- 3、触发器必须能在外部信号激励下进行状态的转 换。

基本触发器

基本触发器

交叉连接:一个与非门的输出恰好是另一个与非门 的输入,Q与Q状态相反,也就是互斥。

Sp.直接置位端,Q=1为置位状态 R_{D:}直接复位端,Q=0为复位状态

$$2)S_D=1,R_D=0$$
 Q=0

$$3)S_D=1,R_D=1$$
 Q保持原来状态

$$4)S_D=0,R_D=0$$
 Q=Q不允许,所以为约束条件

基本触发器的特征函数表

S _D	R_{D}	Q	Qn+1
0	1	ф	1
1	0	ф	0
1	1	0	0
1	1	1	1
0	0	ф	ф

S _D	R_{D}	Qn+1
0	1	1
1	0	0
1	1	Q
0	0	ф

基本触发器的特征函数表

S _D	R_{D}	Qn+1
0	1	1
1	0	0
1	1	Q
0	0	ф

$$Q^{n+1} = R_D \overline{S_D} + \overline{R_D} \overline{S_D} + R_D S_D Q$$

= $\overline{S_D} + R_D Q (\overline{S_D} \overline{R_D} = 0)$

激励表与状态图

Q	Qn+1	S _D	R_{D}
0	0	1	Ф
0	1	0	1
1	0	1	0
1	1	Ф	1

基本触发器的逻辑符号

缺点: R_{D,} S_D 不一定同时到来。

RS触发器

RS触发器的特征函数表和激励表

R	S	Qn+1
0	0	Q
0	1	1
1	0	0
1	1	ф

Q	Qn+1	R	S
0	0	ф	0
0	1	0	1
1	0	1	0
1	1	0	ф

$$Q^{n+1} = \overline{R} \, \overline{S} \, Q + \overline{R}S + RS = S + \overline{R}Q \, (RS = 0)$$

特征表达式和状态图

$$Q^{n+1} = \overline{R} \, \overline{S} \, Q + \overline{R}S + RS = S + \overline{R}Q \, (RS = 0)$$

R	S	Qn+1
0	0	Q
0	1	1
1	0	0
1	1	ф

逻辑符号

D触发器

D触发器

1) 当D=0时 在CP为0时刻, G3=G4=1, G5=1, G6=0; 当CP跳变为1时, G3=0, \overline{Q} =1,Q=0,G3送0 到G5,因此G5维持1不变,D 发生改变不影响Q的取值。 2) 当D=1时 在CP为0时刻, G3=G4=1, G5=0, G6=1; 当CP跳变为1时, G4=0,Q=1, $\overline{Q}=0$,G4送0到G6,因此G6维持1不变,D 发生改变不影响Q的取值。

D触发器的逻辑符号

特征表达式、状态图与激励表

$$Q^{n+1} = D (R_D = S_D = 1 CP = 1)$$

Q	Qn+1	D=D ₁ D ₂
0	0	0
0	1	1
1	0	0
1	1	1

D触发器的计数功能

$$Q^{n+1}=D=\overline{Q}$$

JK触发器

JK触发器

特征表达式: $K = K_1K_2 J = J_1J_2$ 根据逻辑图相当于: R = KQ S = JQ且RS不可能同时为1, 所以:

$$Q_m^{n+1} = S + \overline{R}Q = J\overline{Q} + \overline{KQ}Q = J\overline{Q} + \overline{K}Q$$

$$Q^{n+1} = Q_m^{n+1} = J\overline{Q} + \overline{K}Q$$

特征函数表

J	K	Qn+1
0	0	Q
0	1	0
1	0	1
1	1	\overline{Q}

状态图和激励表

Q	Qn+1	J	K
0	0	0	Ф
0	1	1	Ф
1	0	Ф	1
1	1	Ф	0

JK触发器逻辑符号

T触发器

Q	Qn+1	т
0	0	0
0	1	1
1	0	1
1	1	0

$$Q^{n+1}=T\overline{Q}+\overline{T}Q$$

总结一下所有的触发器

$$Q^{n+1} = R_D \overline{S_D} + \overline{R_D} \overline{S_D} + R_D S_D Q$$

= $\overline{S_D} + R_D Q (\overline{S_D} \overline{R_D} = 0)$

$$Q^{n+1} = \overline{R} \, \overline{S} \, Q + \overline{R}S + RS = S + \overline{R}Q \, (RS = 0)$$

$$Q^{n+1}=D=\overline{Q}$$

$$Q^{n+1} = Q_m^{n+1} = J\overline{Q} + \overline{K}Q$$

$$Q^{n+1} = T\overline{Q} + \overline{T}Q$$

同步时序线路的分析方法

1、列输出函数及控制函数的表达式

$$Z = \overline{\overline{X}\overline{y_2}} \, \overline{\overline{y_1}} \, \overline{\overline{x}} \overline{y_2} \overline{y_1} = X \overline{y_2} \, \overline{y_1} + \overline{X} y_2 y_1$$

$$J_1 = K_1 = 1$$

$$J_2 = K_2 = X \oplus y_1$$

2、建立次态表达式及状态转移发器

$$Q^{n+1} = J\overline{Q} + \overline{K}Q$$

$$y_1^{n+1} = J_1\overline{y_1} + \overline{K_1}y_1 = \overline{y_1}$$

$$y_2^{n+1} = J_2 \overline{y_2} + \overline{K_2} y_2$$

= $(X \oplus y_1) \overline{y_2} + \overline{X \oplus y_1} y_2 = X \oplus y_1 \oplus y_2$

状态转移表

X	y ₂	y ₁	y ₂ ⁿ⁺¹	y ₁ ⁿ⁺¹	Z
0	0	0	0	1	0
0	0	1	1	0	0
0	1	0	1	1	0
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	0	1	0
1	1	1	1	0	0

把y₂y₁的所有状态用字母表示

a 00

b 01

c 10

d 11

S X	0	1	
а	b 0	d 1	
b	c 0	a 0	
С	d 0	b 0	
d	a 1	c 0	

状态图

逻辑功能

故此电路为能对CP脉冲计数的模4可逆计数器 波形图:

设y₂y₁初态为: 00

时序线路的分析步骤

列控制函数、输出函数表达式

列次态表达式及画状态转移表

画状态表及状态图

画波形图

分析逻辑功能

时序逻辑电路分类

时序逻辑电路分为:

Mealy型电路和Moore型电路

Mealy型电路:输出与外部输入有关

Moore型电路:输出与外部输入无关

看一个Moore型电路

Moore型电路举例

1、列输出函数、控制函数

$$Z = \overline{y_2 y_1}$$

$$J_1 = K_1 = 1$$

$$J_2 = K_2 = X \oplus y_1$$

2、列次态表达式式及状态转移表

$$y_1^{n+1} = J_1 \overline{y_1} + \overline{K_1} y_1 = \overline{y_1}$$

$$y_2^{n+1} = J_2 \overline{y_2} + \overline{K_2} y_2 = X \oplus y_1 \oplus y_2$$

状态表

X	y ₂	y ₁	y ₂ ⁿ⁺¹	y ₁ ⁿ⁺¹	Z
0	0	0	0	1	1
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	0	0	1
1	1	0	0	1	1
1	1	1	1	0	0

a 00b 01c 10d 11

S X	0	1		
а	b 1	d 1		
b	c 1	a 1		
С	d 1	b 1		
d	a 0	c 0		

逻辑功能

无论x=0或x=1,以d为初态都是四个脉冲回到初态,输出为0。x=0时为进位,x=1时为借位。为模四可逆计数器。

再来一个栗子

请大家写出控制函数(不要慌,镇定)。

控制函数

$$D_4 = y_3$$

$$D_3 = y_2$$

$$D_2 = y_1$$

$$D_1 = \overline{y_3 \cdot \overline{y_1}} \cdot \overline{y_4} = (\overline{y_3} + y_1) \cdot \overline{y_4} = y_1 \overline{y_4} + \overline{y_3} \overline{y_4}$$

请大家写出次态表达式和状态转移表。

列次态表达式,状态转移表

$$y_4^{n+1} = D_4 = y_3$$

$$y_3^{n+1} = D_3 = y_2$$

$$y_2^{n+1} = D_2 = y_1$$

$$y_1^{n+1} = D_1$$

$$= \overline{y_3 \cdot \overline{y_1} \cdot \overline{y_4}}$$

$$= (\overline{y_3} + y_1) \cdot \overline{y_4}$$

$$= y_1 \overline{y_4} + \overline{y_3} \overline{y_4}$$

请大家画出状态图。

y ₄	y ₃	У2	₂ y ₁	y ₄ ⁿ⁺¹	y ₃ ⁿ⁺¹	y ₂ ⁿ⁺¹	y ₁ ⁿ⁺¹
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	1
0	1	0	0	1	0	0	0
0	1	0	1	1	0	1	1
0	1	1	0	1	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	1	0
1	1	1	0	1	1	0	0
1	1	1	1	1	1	1	0

状态图

更改上述例子

假设:

$$D_1 = \overline{y_4}$$

请大家写出状态表 和状态图。

更改上述例子

假设:

$$D_1 = \overline{y_4}$$

请大家写出状态表 和状态图。

y ₄	y ₃	y ₂	y ₁	y ₄ n+1	y ₃ r	1+1 y ₂ n+1	y ₁ ⁿ⁺¹	
0	0	0	0	0	0	0	1	a ₁
0	0	0	1	0	0	1	1	a_3
0	0	1	0	0	1	0	1	a ₅
0	0	1	1	0	1	1	1	a ₇
0	1	0	0	1	0	0	1	a_9
0	1	0	1	1	0	1	1	a ₁₁
0	1	1	0	1	1	0	1	a ₁₃
0	1	1	1	1	1	1	1	a ₁₅
1	0	0	0	0	0	0	0	a_0
1	0	0	1	0	0	1	0	a_2
1	0	1	0	0	1	0	0	a_4
1	0	1	1	0	1	1	0	a_6
1	1	0	0	1	0	0	0	a ₈
1	1	0	1	1	0	1	0	a ₁₀
1	1	1	0	1	1	0	0	a ₁₂
1	1	1	1	1	1	1	0	a ₁₄

状态图

常用的同步时序线路

一、寄存器

作用: 用来寄存二进制代码。

具有如下功能

接收代码: 将代码送入寄存器;

寄存代码:保持所接收的代码不变;

代码移位: 使寄存器中的代码移位(左移, 右移);

发送代码: 把寄存器中寄存的代码发送出去;

清除代码:清除寄存器中的内容,给寄存器置一个

初始值。

三位寄存器

计数器

鉴于我们已经列举了N个计数器,此处将不再赘述。

节拍发生器

留给大家自学。