Robust Prediction

Introduction
Motivation
Problem

Related Work Direct

LQG Background

Background LQG

Motivation

Imitation Motivation Adversarial

Conclusion

Robust Structured Prediction for Process Data

Xiangli Chen

Computer Science Department University of Illinois at Chicago

Committee: Brian D.Ziebart (Chair and advisor, UIC CS)
Piotr J.Gmytraisewicz (UIC CS), Tanya Y.Berger-Wolf (UIC CS)
Byron Boots (Georgia Tech IC), Umar Ali Syed (Google)

April 14, 2017

Outline

Robust Prediction

Introduction Motivation Problem

Direct

LQG Background

Motivation Robust

Imitation Motivation Adversarial Experiment

Conclusion

- 1 Introduction
 - Motivation
 - Problem Formulation
- 2 Related Work
 - Direct Estimation
 - Inverse Reinforcement Learning
- 3 Predictive IOC for LQG
 - Background
 - Predictive IOC for LQG
- 4 Robust Covariate Shift Regression
 - Covariate Shift
 - Robust Bias-Aware Regression
 - Experiment Validation
- 5 Adversarial Imitation Learning
 - Adversarial Imitation Learning-Motivation
 - Adversarial Imitation Learning-Method
 - Experiment Validation
- 6 Conclusion

What is process?

Robust Prediction

Introduction

Motivation

Related Wor

Direct Inverse

LQG Background

Regressio Motivation

Robust Experimen

Imitation

Motivation

Adversarial

Experiment

Conclusion

process

noun [C] • US (1) /'pras-es, 'prov-ses/

a series of actions or events performed to make something or achieve a particular result, or a series of changes that happen naturally:

Completing his degree at night was a long process.

Graying hair is part of the aging process.

We are still in the process of redecorating the house (= working to decorate it).

A process is also a method of doing or making something, as in industry:

A new process has been developed for removing asbestos.

Why is it important?

Robust Prediction

Introducti

Motivation

Related Work

Direct Inverse

LQG

Background LQG

Motivation Robust

Imitation Motivation Adversarial

Conclusion

Problem Formulation-An Interaction

Robust Prediction

Introduction Motivation Problem

Related Work

LQG Background

Regression Motivation Robust

Robust Experimen

Motivation Adversarial

Conclusion

A process often arises within an **interaction** between an **agent** and its **environment**.

Problem Formulation - Concepts

Robust Prediction

Introduction

Motivation Problem

Related Work Direct

LQG Background

Background LQG

Motivation Robust

Imitation

Motivation

Adversarial

Experiment

Conclusion

Performing a process:

$$s_1, a_1, \cdots, a_{T-1}, s_T$$

- State s contains necessary information
- Policy $\pi(a_t|s_t)$
- **Dynamics** $\tau(s_t|a_{1:t-1}, s_{1:t-1})$

Figure 1: Process

Problem Formulation-Process Prediction

Robust Prediction

Introduction Motivation Problem

Related Wor

LQG Background

Regression Motivation Robust Experiment

Imitation Motivation Adversarial Experiment

Conclusion

Definition

A **process prediction** problem is an estimation task that given a list of training samples

$$\{s_1, a_1, \cdots, s_{T_{n-1}}, a_{T_n-1}, s_{T_n}\}_{n=1}^N$$

we want to estimate a policy $\hat{\pi}_t(a_t|s_t)$ with respect to a performance evaluation method.

Evaluation - empirical loss on test samples

- Log loss how likely
- $lue{0}$ 0 1 loss, square or absolute loss

Related Work

Robust Prediction

Introduction

Motivation Problem

${\sf Related}\ {\sf Work}$

Direct

1111001

LQG

Background LQG

Regression Motivation

Robust

Imitation

Motivation Adversarial

Conclusion

Direct Estimation

Robust Prediction

Introduction Motivation Problem

Related Work

Direct

Invers

Background LQG

Motivation Robust

Robust Experimen

Motivation

Adversarial Experiment

Conclusion

Direct estimation (Behavioral Cloning) - using classical supervised learning methods (Pomerleau 1989;Sammut+ 1992)

$$p_{H^*}(a|s)$$

 $H^* = \arg\min_{H \in \mathcal{H}} \mathsf{Empirical} \ \mathsf{training} \ \mathsf{Loss} \ (H)$

- Discrete case: classification, e.g. logistic regression, SVM, neural network
- Continuous case: linear regression

Direct Estimation

Robust Prediction

Introduction Motivation

Related Wor

Direct

Invers

LQG Background

Backgroun LQG

Motivatio

Imitation

Motivation

Adversarial

Experiment

Conclusion

Direct estimation

can't fully experss the structure of the process

not adaptive - lack of generalization ability
 E.g. driving learning task - driving circumstance changes

Inverse Reinforcement Learning

Robust Prediction

Inverse

Background

Inverse reinforcement learning (IRL) (inverse optimal control (IOC))- model learning using reinforcement learning (Russell, 1998)

Background

Robust Prediction

Introduction Motivation Problem

Related Worl

LQG Background

LQG Regression

Motivation Robust Experimen

Motivation Adversarial

Conclusion

Process is performed to achieve a particular result **Maximizing reward or minimizing cost** - succinct, robust and natural description

Primates limb movement (Hogan, 1984)

Minimum hiring cost

Firm's hiring behavior (Sargent, 1978)

Minimum torque change

Human multijoint arm movement (Uno, 1989)

Infinite-Horizon Markov Decision Process

Robust Prediction

Inverse

Background

Infinite-Horizon Markov decision process (MDP)

- dynamics $\tau(s_{t+1}|s_t,a_t)$
- reward function R(s, a) immediate payoff
- policy $\pi(a|s)$

Value Function and other Decision models

Robust Prediction

Introduction Motivation

Related Work Direct Inverse

LQG Background

LQG Regression

Motivation Robust

Imitation Motivatio

Motivation Adversarial Experimen

Conclusion

Value function - expected long term reward

$$v_{\pi}(s) = \mathbb{E}\left[\sum_{k=1}^{\infty} \gamma^{k-1} R_{t+k-1} \middle| s_t = s\right] \quad (\gamma \in (0,1))$$

Optimal policy

$$\hat{\pi} = rg \max_{\pi} V^{\pi}(s), (orall s)$$

A planning problem - dynamic programming

Finite-Horizon MDP - non stationary (time dependent)

Partially Observable MDP (POMDP) - states unknown

- \blacksquare $\pi(a_t|a_{1:t-1},o_{1:t})$ computation intractable
- $\blacksquare \pi(a_t|b_t)$ belief state b summaries historical information

Reinforcement Learning-Overview

Robust Prediction

Inverse

Background

Reinforcement learning (Sutton, Barto, 1998)

- Infinite-Horizon MDP
- dynamics is unknown

Learn optimal policy from interaction

Challenge

Robust Prediction

Introduction Motivation Problem

Related Work
Direct
Inverse

LQG

Background LQG

Regression
Motivation
Robust
Experiment

Imitation Motivation Adversarial

Conclusio

Specifying reward/cost functions is challenging (Russell, 1998)

- Prior hypothesis may be wrong (horses' gait selection)
- Hard to weight and combine multiattribute reward (running, bee nectar ingestion)

Horses' gait selection -Not for energetic economy

Running - speed, efficiency, stability against perturbations, wear and tear on muscles, etc

Bee nectar ingestion - flight distance, time and risk from wind and predators, etc

Inverse Reinforcement Learning-Principle

Robust Prediction

Motivation

Related Wor

Inverse

LQG Background

Regression

Motivation Robust Experimen

Imitation

Adversaria Experimen

Conclusion

Inverse reinforcement learning (IRL) (inverse optimal control(IOC)) (Kalman,1964;Boyd+ 1994;Ng, Russell 2000)

- Assumption expert is optimal
- Approach find a reward function R^* that explains the expert's behavior π^* :

$$\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi^*\right] \geq \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi\right] \ \forall \pi$$

Challenging

Robust Prediction

Inverse

Background

Find a reward function R^* that explains the expert policy π^* :

$$\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi^*\right] \geq \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi\right] \ \forall \pi$$

Challenges:

- Ambiguity many optimal reward functions e.g. R=0
- Complexity need enumerate all policies
- Infeasibility imperfect expert policy
- \blacksquare π^* unknown only expert demonstration

Feature Based Reward Function

Robust Prediction

Introduction Motivation

Related Work

Direct Inverse

LQG

Background LQG

Motivation Robust

Robust Experimen

Motivation Adversaria

Conclusion

Feature based reward function $\Leftrightarrow R(s) = \omega^T \phi(s)$:

$$\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) | \pi\right] = \omega^{T} \mu(\pi)$$

Finding R^* equals to finding ω^* such that:

$$\omega^{*T}\mu_{E} \ge \omega^{*T}\mu(\pi) \quad \forall \pi$$

Only expert demonstration $\{s_0^i, s_1^i, \dots\}_{i=1}^m$ in practice:

$$\mu_E = \frac{1}{m} \sum_{i=1}^{m} \sum_{t=0}^{\infty} \gamma^t \phi(s_t^i)$$

Feature Matching-Principle

Robust Prediction

Inverse

Background

Feature matching (Abbeel, Ng, 2004) - solve the infeasibility Assume $||\omega||_1 < 1$ (optimal policies of $k\omega^T\phi(s)$ are the same for k>0)

$$||\mu(\pi) - \mu_E||_2 \le \epsilon \Longrightarrow ||\omega^T \mu(\pi) - \omega^T \mu_E||_2 \le \epsilon$$

Algorthim

Feature Matching-Issue

Robust Prediction

Optimal stochstic π^* - mixed by deterministic ones π_0, π_1, π_2

Inverse

Background

Issue

 π_0, π_1, π_2 - on the convex hull of π 's (extrem points) performance of π^* has high variance

Min-Max Feature Expectation Matching

Robust Prediction

Inverse

Background

Matching imperfect expert may not be appropriate

A Game-Theoretic approach (min-max) (Syed, Schapire. 2008) Assume $\omega \geq 0, \sum_{i} \omega_{i} = 1$ - form a zero-sum game

Maximum Margin Planning

Robust Prediction

Introduction Motivation Problem

Related Work

Direct Inverse

LQG

Background LQG

Motivation Robust

Imitation

Adversaria Experimen

Conclusion

Max margin planning (MMP) (Taskar+ 2005; Ratliff, Bagnell, Zinkevich 2006) - solve the ambiguity

- $\bullet \omega^{*T} \mu_{E} \ge \omega^{*T} \mu(\pi) \quad \forall \pi$
- maximize margin

Figure 2: Convex set of π 's

MMP-Imperfect Expert Demonstration

Robust Prediction

Imperfect expert demonstration $\mu_{\it E}$ - within the interior

infeasibility exists

Figure 3: Convex set of π 's

Introduction Motivation

Related Work

Inverse

Background

LQG

Motivation Robust

Imitation Motivation Adversaria

Conclusion

MMP-Methods to Imperfect Expert Demonstration

Robust Prediction

Inverse

Background

Methods to imperfect expert demonstration

• Project feature vector $\phi(s)$ to high dimensional space

Soft maximum margin - add slack variables $\xi^{(i)}$'s

$$\begin{split} \min_{\omega,\xi} \parallel \omega \parallel_2^2 + C \sum_i \xi^{(i)} \\ \text{s.t. } \omega^T \mu_E^{(i)} \geq \omega^T \mu(\pi^{(i)}) + m(\pi_E^{(i)}, \pi^{(i)}) - \xi^{(i)} \quad \forall i, \pi^{(i)} \end{split}$$

MMP-Issues

Robust Prediction

Inverse

Background

Maximum margin planning

$$\begin{split} \min_{\omega,\xi} \parallel \omega \parallel_{2}^{2} + C \sum_{i} \xi^{(i)} \\ \text{s.t. } \omega^{T} \mu_{E}^{(i)} \geq \omega^{T} \mu(\pi^{(i)}) + m(\pi_{E}^{(i)}, \pi^{(i)}) - \xi^{(i)} \quad \forall i, \pi^{(i)} \end{split}$$

Issues

- Feature projection leads to poor generalization
- Tradeoff between maximum margin and slackness
- Very large number of constraints
- Sensitive to imperfect expert demonstration

Robust Structure

Robust Prediction

Inverse

Background

Model interaction process via **Maximum Causal Entropy** (Ziebart, Bagnell, Dev 2010)

$$p(s_{1:T}, a_{1:T}) = \underbrace{\prod_{t=1}^{T} p(s_t | s_{1:t-1}, a_{1:t-1})}_{\text{provided process}} \times \underbrace{\prod_{t=1}^{T} p(a_t | a_{1:t-1}, s_{1:t})}_{\text{unknown process}}$$

Optimal policy $\{p_t(a_t|a_{1:t-1}, s_{1:t})\}_{t=1}^T$:

$$\max \mathbb{E}_{p} \left[-\sum_{t=1}^{T} \log p(a_{t}|a_{1:t-1}, s_{1:t}) \right]$$

$$\sum_{t=1}^{T} H(a_{t}|a_{1:t-1}, s_{1:t})$$
Under $\mathbb{E}_{p} \left[\mathcal{F}(A_{1:T}, S_{1:T}) \right] = \tilde{\mathbb{E}}_{p} \left[\mathcal{F}(A_{1:T}, S_{1:T}) \right]$

Contribution Work

Robust Prediction

Introduction
Motivation
Problem

Related Wor Direct

LQG

Background LQG

Motivation Robust

Experime

Motivation Adversarial

Conclusion

Research Contribution

Robust Prediction

Introduction Motivation

Related Work

LQG

Background I QG

Motivation Robust

Imitation Motivation

Motivation Adversarial Experiment

Conclusion

Develop **robust** structure prediction models for **process** data that

- allows partially observable continuous environments (Chen, Ziebart 2015)
- deals with covariate shift (Chen, Monfort, Liu, Ziebart 2016)
- enables various imitation learning evaluation measures and embodiment transfer

(Chen, Carr, Ziebart 2015; Chen, Monfort, Ziebart, Carr 2016)

Principle of Robustness

Robust Prediction

Motivation Problem

Background

Motivation

Robust

Motivation Adversarial

What does **robustness** mean?

Principle of Robustness

Robust Prediction

Background

What does robustness mean?

- As uncertain as possible (Jaynes 1957)
- Best estimation under the worst case (Topφse 1979; Grünwald+ 2004)

Maximum Uncertainty

Robust Prediction

Introduction Motivation Problem

Related Worl

LOG

Background

Regression

Motivation Robust Experiment

Motivation Adversarial

Conclusion

H measures uncertainty of a random event p requires

continuity, monotonic increasing and consistency

The only H is known as **Shannon Entropy** (Shannon 1948)

$$H = -K \sum_{i=1}^{n} p_i \log p_i$$
 (K is just a constant)

Estimate p

$$\max_{p \in \Delta} H(p)$$
 (Δ represents constraint)

Maximum entropy - as uncertain as possible - prevent bias

Optimal Encoding

Robust Prediction

Optimal prefix-free encoding of sending messages a, b, c, d:

distribution	1/2	1/4	1/8	1/8
prefix-free code	0	10	110	111

Length of optimal prefix-free encoding is close to

$$-\log p(x)$$

Minimum expected prefix-free encoding length

$$\mathbb{E}_p[-\log p(X)] \leq \underbrace{\mathbb{E}_p[-\log q(X)]}_{ ext{expected log loss}}$$

Expected log loss measures the "distance" of p and q

Introduction Motivation Problem

Related Work

LQG

Background LQG

Regression Motivation Robust

Imitation Motivation Adversarial

Conclusion

Min-Max Estimation Approach

Robust Prediction

Introduction Motivation

Related Wor

1.00

Background

LQG

Motivation Robust

Imitation Motivation Adversarial Experiment

Conclusion

Best estimation under the worst case

$$q^* = \arg\min_{q \in \Xi} \max_{p \in \Gamma} \mathbb{E}_p[-\log q(X)]$$

Choosing q^* achieves the minimum loss bound

$$\mathbb{E}_{p\in\Gamma}[-\log q^*(x)] \leq \min_{q\in\Xi} \max_{p\in\Gamma} \mathbb{E}_p[-\log q(X)] \leq \max_{p\in\Gamma} \mathbb{E}_p[-\log q_{\in\Xi}(X)]$$

Strong duality holds (if Γ is closed and convex)

$$\max_{p \in \Gamma} H(p) = \max_{p \in \Gamma} \min_{q \in \Xi} \mathbb{E}_p[-\log q(X)] = \min_{q \in \Xi} \max_{p \in \Xi} \mathbb{E}_p[-\log q(X)]$$

and

$$p^* = \arg\max_{p \in \Gamma} H(p) = q^*$$

Problem Formulation

Robust Prediction

Introduction
Motivation

Related Work Direct

LQG Background

LQG

Motivation Robust

Imitation Motivation Adversarial Experiment

Conclusion

Linear qudratic Gaussian system

(X : state; U : action; Z : observation)

$$X_1 \sim N(\mu, \Sigma_{d_1})$$
 $X_{t+1}|x_t, u_t \sim N(Ax_t + Bu_t, \Sigma_d)$
 $Z_t|x_t \sim N(Cx_t, \Sigma_o)$

Need to obtain the control policy $f(u_t|u_{1:t-1}, z_{1:t})$

Optimal Control Apporach

Robust Prediction

Introduction Motivation

Related Work

LQG Background

LQG Regression

Motivation Robust

Imitation

Motivation Adversarial Experiment

Conclusion

Optimal control - minimize the expected cost (**cost matrix** M):

$$\min \mathbb{E}\left[\sum_{t=1}^{T+1} \boldsymbol{X}_t^T \boldsymbol{M} \boldsymbol{X}_t\right]$$

Optimal control policy (closed form):

$$u_t = -L_t \hat{x}_t(+) \quad \hat{x}_t(+) = \mathbb{E}[X_t|\zeta_t]$$

- ζ_t : sufficient statistics of $z_{1:t}, u_{1:t-1}$
- L_t: feedback gain recursively defined

Optimal Control Apporach

Robust Prediction

Introduction Motivation

Related Work

Direct

LQG Background LQG

Regression Motivation

Motivation Robust Experimen

Motivation Adversarial

Conclusion

What if the cost matrix M is not given ? Our approach - learn the policy from training samples

Maximum Uncertainty Approach

Robust Prediction

Introduction

Motivation

Problem

Related Work Direct

LQG Background

LQG

Motivation Robust Experiment

Imitation Motivation Adversarial Experiment

Conclusion

$$f(x_{1:T}, z_{1:T}, u_{1:T}) = \underbrace{\prod_{t=1}^{T} f(x_t, z_t | x_{1:t-1}, z_{1:t-1}, u_{1:t-1})}_{\text{provided process}} \times \underbrace{\prod_{t=1}^{T} f(u_t | u_{1:t-1}, x_{1:t}, z_{1:t})}_{\text{unknown process}}$$

Causal conditional probability

$$f(u_{1:T}||x_{1:T},z_{1:T}) = \prod_{t=1}^{I} f(u_t|u_{1:t-1},x_{1:t},z_{1:t})$$

The **causal entropy** measures the uncertainty over the interaction process.

$$H(U_{1:t}||X_{1:T},Z_{1:T}) = \mathbb{E}[-\log f(U_{1:T}||X_{1:T},Z_{1:T})] = \sum_{t=1}^{T} H(U_{t}|X_{1:t},Z_{1:t},U_{1:t-1})$$

Principle of Maximum Causal Entropy

Robust Prediction

Introduction Motivation

Related Work

Inverse

Background LQG

Motivation Robust Experiment

Imitation

Motivation

Adversarial

$$H(U_{1:T}||X_{1:T},Z_{1:T})$$

- nonconvex function of $f(u_t|u_{1:t-1},x_{1:t},z_{1:t})_{t=1}^T$
- convex function of $f(u_{1:T}||x_{1:T}, z_{1:T})$

Causal Simplex of LQG

Robust Prediction

Introduction Motivation

Related Work

Direct Inverse

LQG

Background LQG

LQG

Motivation Robust

Motivation

Adversarial Experiment

Conclusion

Causal simplex Ξ of $f(u_{1:T}||x_{1:T},z_{1:T})$ (Chen Ziebart 2015):

$$f(u_{1:T}||x_{1:T},z_{1:T}) \in \Xi$$

is equivalent to

$$f(u_{1:T}||x_{1:T},z_{1:T}) = \prod_{t=1}^{I} f(u_t|u_{1:t-1},x_{1:t},z_{1:t})$$

 Ξ is a convex set of $f(u_{1:T}||x_{1:T},z_{1:T})$ Formulate a convex optimization problem (Γ is convex)

$$\max_{f\in\Gamma}H(U_{1:T}||X_{1:T},Z_{1:T})\ (\Xi\subseteq\Gamma)$$

Min-Max Interpretation

Robust Prediction

Introductio Motivation Problem

Related Work Direct

LQG Background

LQG Regression

Motivation Robust Experiment

Imitation Motivation Adversarial Experiment

Conclusion

Minimum expected prefix-free encoding length over the interaction process

$$\begin{split} \mathbb{E}_f \left[-\sum_{t=1}^T \log f(U_t | U_{1:t-1}, X_{1:t}, Z_{1:t}) \right] &= \mathbb{E}_f \left[-\log f(U_{1:T} || X_{1:T}, Z_{1:T}) \right] \\ &\leq \underbrace{\mathbb{E}_f \left[-\log h(U_{1:T} || X_{1:T}, Z_{1:T}) \right]}_{\text{expected causal log loss}} \end{split}$$

Strong duality holds (Γ is closed and convex)

$$\min_{h\in\Xi} \max_{f\in\Gamma} \mathbb{E}_h[-\log f] = \max_{f\in\Gamma} \min_{h\in\Xi} \mathbb{E}_h[-\log f] = \max_{f\in\Gamma} H(U_{1:T}||X_{1:T},Z_{1:T})$$

Maximum Causal Entropy Inverse LQG

Robust Prediction

Introduction Motivation

Related Wor

LQG Background LQG

Regression Motivation

Imitation Motivation Adversarial

Conclusion

Definition

The maximum causal entropy inverse LQG (convex optimization problem)

$$\begin{split} \max_{\{f(u_{1:T}||z_{1:T},X_{1:T})\}\in\Xi} & H(U_{1:T}||Z_{1:T},X_{1:T}) \\ \text{such that } \mathbb{E}_f\left[\sum_{t=1}^{T+1} X_t X_t^T\right] = & \tilde{\mathbb{E}}\left[\sum_{t=1}^{T+1} X_t X_t^T\right] \end{split}$$

Motivation of expectation constraint (Abbeel, Ng 2004)

$$\mathbb{E}_f = \tilde{\mathbb{E}} \implies \mathbb{E}_{f,M} = \tilde{\mathbb{E}}_M \quad (\forall M \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{S}|})$$

Gaussian Belief Solution

Robust Prediction

Introduction Motivation

Related Work

Direct Inverse

LQG Background

LQG Regression

Motivation Robust Experiment

Imitation Motivation Adversarial

Conclusion

Theorem

Belief state b_t summaries the historical information $u_{1:t-1}, z_{1:t}$

$$X_t|b_t \sim N(\mu_{b_t}, \Sigma_{b_t})$$

Optimal control policy:

$$U_t | \mu_{b_t} \sim N\left(-W_t \mu_{b_t}, \Sigma_{U_t}\right)$$

Relates to LQG Optimal Control

Robust Prediction

Optimal policy - optimal control law:

$$u_t = -L_t \hat{x}_t(+) \quad \hat{x}_t(+) = \mathbb{E}[X_t|\zeta_t]$$

Optimal policy - our min-max approach:

$$U_t | \mu_{b_t} \sim N\left(-W_t \mu_{b_t}, \Sigma_{U_t}\right)$$

Theorem

Given the Lagrangian multiplier matrix M as the cost matrix:

$$W_t = L_t$$

Introduction Motivation

Related Worl

LQG Background LQG

Motivation Robust Experiment

Imitation Motivation Adversarial Experiment

Real Experiment-Problem

Robust Prediction

Introduction Motivation

Related Work

Inverse

Background LQG

Motivation Robust

Motivation Adversarial

Conclusion

Modeling mouse cursor pointing motions

Real Experiment-Data

Robust Prediction

Introduction Motivation

Related Work

Direct Inverse

LQG Background

LQG

Motivation Robust

Imitation Motivation Adversarial

Figure 4: Example mouse cursor trajectories terminating at small circle positions exhibiting characteristics of delayed feedback.

Real Experiment-Direct Estimation

Robust Prediction

Background

LQG

Direct estimation k^{th} -order Markov model (k = 1, 2, 3, 4) (linear regression model)

$$\hat{\vec{s}}_t = [\vec{s}_{t-1} \; \vec{s}_{t-2} \; \dots \; \vec{s}_{t-k}] \vec{\alpha} + \epsilon \qquad \epsilon \sim \textit{N}(0, \sigma^2)$$

- $\vec{s}_t \triangleq [x_t \ y_t]$ position of mouse cursor
- control policy $\hat{\vec{u}}_t = \hat{\vec{s}}_t \vec{s}_{t-1}$

Real Experiment-Linear Quadratic

Robust Prediction

Introduction Motivation

Related Work

LQG Background

Backgroun LQG

Motivation Robust

Motivation Adversaria

Conclusion

Linear Quadratic setting

$$\vec{x}_t \triangleq \begin{bmatrix} x_t \ y_t \ \dot{x}_t \ \dot{y}_t \ \ddot{x}_t \ \ddot{y}_t \end{bmatrix}^T \quad \vec{u}_t = \begin{bmatrix} \dot{x}_t \ \dot{y}_t \end{bmatrix}^T$$

$$\begin{pmatrix} \dot{x}_t \\ \dot{y}_t \end{pmatrix} = \begin{pmatrix} x_t - x_{t-1} \\ y_t - y_{t-1} \end{pmatrix} \quad \begin{pmatrix} \ddot{x}_t \\ \ddot{y}_t \end{pmatrix} = \begin{pmatrix} \dot{x}_t - \dot{x}_{t-1} \\ \dot{y}_t - \dot{y}_{t-1} \end{pmatrix}$$

- Linear Quadratic Regulator (LQR) fully observable
- LQG delay partially observable

Figure 5: Example LQG setting with one time step delay

Real Experiment-Result

Robust Prediction

Introduction Motivation

Related Work Direct

LQG Background

LQG Regression

Motivation Robust Experimen

Imitation

Motivation

Adversarial

Experiment

Figure 6: Average trajectory log-loss of: the LQG model with various amounts of delay, t_0 ; the LQR model; Markov models of order 2,3,4.

Research Contribution

Robust Prediction

Introduction Motivation

Related Work

LQG Background

Background LQG Regression

Motivation Robust Experiment

Imitation Motivation Adversarial Experiment

Conclusion

Develop **robust** structure prediction models for **process** data that

- allows partially observable continuous environments (Chen, Ziebart 2015)
- deals with covariate shift (Chen, Monfort, Liu, Ziebart 2016)
- enable various imitation learning evaluation measures and embodiment transfer

(Chen, Carr, Ziebart 2015; Chen, Monfort, Ziebart, Carr 2016)

Motivation

Robust Prediction

Motivation

Problem

Background

Motivation Robust

Motivation

Adversarial

What if the training samples are not representative?

Non-representative

Robust Prediction

Introduction Motivation

Related Work Direct

LQG Background

Backgroun LQG

Motivation Robust

Imitation

Motivation

Adversarial

Experiment

Figure 7: Hahn1 dataset representing the result of a National Institute of Standards and Technology (NIST) study of the thermal expansion of copper.

Background

Robust Prediction

Introductio

Motivation

Problem

Related Wor

LQG Background

LQG

regressio

Motivation Robust Experiment

Imitation Motivation Adversarial Experiment

Conclusion

A loss function $L(x, y, f(x; \theta))$ measures the discrepancy $f(x; \theta)$ is the approximation function to y Let

$$f^*(x) = \mathbb{E}_{Y|X=x}[Y|X=x]$$

A model is correctly specified if there exists a θ^* such that

$$f(x;\theta^*)=f^*(x).$$

Otherwise, the model is misspecified.

Optimal estimator

Robust Prediction

Introduction Motivation

Related World Direct

Inverse

Background LQG

LQG Regression

Motivation Robust Experiment

Motivation Adversaria

Conclusion

Optimal parameter

$$\theta^* = \arg\min_{\theta} [L(X, Y, f(X; \theta))].$$

Optimal estimator

$$\hat{\theta} = \arg\min_{\theta} \left[\frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, f(x_i; \theta)) \right] \left(\lim_{N_{tr} \to \infty} \hat{\theta}_{tr} \stackrel{p}{\longrightarrow} \theta_{tr}^* \right)$$

If training p_{tr} and test p_{te} share the same distribution

$$p_{tr}(x,y) = p_{te}(x,y)$$

 $\hat{\theta}_{tr}$ is a consistent estimator of θ_{te}^* even for misspecified models:

$$\lim_{N_{tr}\to\infty}\hat{\theta}_{tr}\stackrel{p}{\longrightarrow}\theta_{tr}^*=\theta_{te}^*.$$

Covariate Shift

Robust Prediction

Introduction Motivation

Related Work Direct

Inverse

Background

LQG .

Motivation

Robust Experime

Imitation

Motivation

Adversarial

Experiment

Conclusion

In many real-world applications,

$$p_{tr}(x, y) \neq p_{te}(x, y)$$

Covariate shift

- $p_{tr}(x) \neq p_{te}(x)$
- $p_{tr}(y|x) = p_{te}(y|x)$

Under covariate shift $\hat{\theta}_{tr}$ is

- consistent estimator of θ_{te}^* if the model is correctly specified
- no longer consistent if the model is misspecified

Importance weighted Method

Robust Prediction

Introduction

Related Work

LQG

Background LQG

Motivation Robust

Imitation

Motivation Adversarial Experiment

Conclusion

Importance weighted method (Shimodaira, 2000) requires importance ratio's first moment to be finite (Cortes+, 2010)

$$\mathbb{E}_{p_{tr}(x)}\left[p_{te}(X)/p_{tr}(X)\right]<\infty.$$

Reweight loss function

$$\mathbb{E}_{X^{te},Y^{te}}\left[L(X,Y,f(X;\theta))\right] = \mathbb{E}_{X^{tr},Y}\left[\frac{p_{te}(X)}{p_{tr}(X)}L(X,Y,f(X;\theta))\right].$$

So that

$$\theta_{te}^* = \theta_{triw}^* = \arg\min_{\theta} \mathbb{E}_{X^{tr},Y} \left[\frac{p_{te}(X)}{p_{tr}(X)} L(X,Y,f(X;\theta)) \right].$$

Hence $\hat{\theta}_{\textit{triw}}$ is a consistent estimator of $\theta_{\textit{te}}^*$ that

$$\lim_{N_{tr}\to\infty}\hat{\theta}_{triw}\stackrel{p}{\longrightarrow}\theta^*_{triw}=\theta^*_{te}$$

Importance-Weighted Method - Issue

Robust Prediction

Introduction Motivation

Related Work

Direct Inverse

Background

LQG

Motivation Robust

Imitation

Motivation Adversarial Experiment

Conclusion

Too restricted to hold

$$\mathbb{E}_{p_{tr}(x)}\left[p_{te}(X)/p_{tr}(X)\right]<\infty$$

(e.g., two Gaussian distributions with slightly shifted mean)

Linear regression

Robust Prediction

Introduction Motivation Problem

Related Worl

Inverse LQG

Background LQG

Motivation Robust

Imitation Motivation Adversarial Experiment

Conclusion

Ordinary least squares (linear regression)

$$\hat{y}_{a,b}(x) = b^T x + a$$

(Adaptive) Importance Weighted Regression (Sugiyama+, 2012)

$$\operatorname*{argmax}_{a,b,\sigma} \mathbb{E}_{\tilde{f}_{\mathsf{tr}}(X)\tilde{f}(y|X)} \left[\left(\frac{f_{\mathsf{te}}(X)}{f_{\mathsf{tr}}(X)} \right)^{\gamma} \log \hat{f}_{a,b,\sigma}(Y|X) \right]$$

where $\gamma \in (0,1)$ is the flattening parameter. Ordinary least squares $(\gamma = 0)$, and importance weighted $(\gamma = 1)$ at its extrems.

Robust Bias-Aware Regression

Robust Prediction

Introduction Motivation

Related Wor

LQG

Background LQG

Motivation

Experime

Motivation Adversarial

Conclusion

Definition

The **robust bias-aware regression estimator**, $\hat{f}(y|x)$, $(f_o(Y|X))$ works as a baseline distribution):

$$\min_{\hat{f}(y|x)} \max_{f(y|x) \in \Xi} \mathbb{E}_{f_{te}(x)f(y|x)} \left[-\log \frac{\hat{f}(Y|X)}{f_o(Y|X)} \right]$$

such that:
$$\mathbb{E}_{f_{\operatorname{tr}}(x)f(y|x)}[\Phi(X,Y)] = \frac{1}{n}\sum_{i=1}^n \phi(x_i,y_i)$$

Mean and Variance

Robust Prediction

Introduction Motivation

Related Work

Inverse

Background

LQG Regression

Motivation Robust

Imitation

Motivation Adversarial Experiment

Conclusion

If $f_o(y|x) = N(\mu_o, \sigma_o^2)$ and $\Phi(x, y) = [y \ x^T \ 1]^T [y \ x^T \ 1]$ Lagrangian multiplier matrix:

$$M = \begin{bmatrix} M_{(y,y)} & M_{(y,x1)} \\ M_{(x1,y)} & M_{(1,1)} \end{bmatrix}$$

The robust bias-aware regression:

$$\hat{f}_{M}(y|x) \sim N(\mu(x,M), \sigma^{2}(x,M))$$

$$\mu(x, M) = \left(2\frac{f_{tr}(x)}{f_{te}(x)}M_{(y,y)} + \frac{1}{\sigma_o^2}\right)^{-1} \left(-2\frac{f_{tr}(x)}{f_{te}(x)}M_{(y,x1)}\begin{bmatrix} x\\1 \end{bmatrix} + \frac{1}{\sigma_o^2}\mu_o\right)$$
$$\sigma^2(x, M) = \left(2\frac{f_{tr}(x)}{f_{te}(x)}M_{(y,y)} + \frac{1}{\sigma_o^2}\right)^{-1}$$

The distribution's certainty is moderated by $f_{tr}(x)/f_{te}(x)$.

Base Distribution

Robust Prediction

Introduction Motivation Problem

Related Work Direct

LQG

Background LQG

Robust .

Imitation Motivation Adversarial Experiment

Conclusion

 $f_o(y|x) = N(\mu_o, \sigma_o^2)$ is a Gaussian distribution with mean and variance estimated from the range

$$[y_{\min}, y_{\max}]$$

of y's of the source dataset D_{src} :

$$\mu_o = \frac{y_{\mathsf{min}} + y_{\mathsf{max}}}{2}, \quad \sigma_o^2 = \left(\frac{y_{\mathsf{max}} - \mu_o}{2}\right)^2.$$

Hence all of the y's of the source dataset are located within the 95% confidence of the base distribution.

Comparison Approaches

Robust Prediction

Introduction Motivation Problem

Related Work Direct Inverse

Background LQG

Motivation Robust Experiment

Imitation Motivation Adversarial Experiment

- RBA_{KLD} our approach (relative log loss)
- BS baseline Gaussian distribution
- RBA_{DE} robust-biase aware regression via differential entropy (log loss)
- LS ordinary least squares $Y|X \sim N(b^TX + a, \sigma^2)$
- BAIWLS best adaptive importance weighted least squares (optimal flattening parameter $\gamma \in \{0.1, 0.2, \cdots, 0.9\}$)
- IWLS importance weighted least squares
- BLR Bayesian linear regression (prior $[b^T a] \sim N(0, I)$)

Datasets

Robust Prediction

Regression datasets from the UCI repository

Introduction Motivation Problem

Related Work

LQG Background

Regression Motivation

Motivation Robust Experiment

Motivation Adversarial Experiment

Table 1: Datasets for empirical evaluation

Dataset	#Examples	#Features	Output
Airfoil	1503	5	sound pressure
Concrete	1030	8	strength
Housing	506	14	value of home
Music	1059	66	latitude
Crime	1994	127	crime rate
Parkinsons	5725	16	UPDRS score
WineQuality	6497	11	quality score
IndoorLocation	21048	529	latitude

Constructing Datasets with Bias

Robust Prediction

Consider both synthetically created and naturally occuring bias

Introduction

Motivation

Problem

Related Work Direct

LQG Background

LQG Regressio

Motivation Robust Experiment

Imitation Motivation Adversarial Experiment

Table 2: Experimental settings

Dataset	#Source	#Target	Bias Setting
Airfoil	150-751	752	synthetic
Concrete	100-515	515	synthetic
Housing	75-253	253	synthetic
Music	160-529	530	synthetic
Parkinsons	1430-2862	2863	synthetic
Crime	40-278	1716-1954	different state
WineQuality	4898	1599	different color
Parkinsons	1877	1839	different age
IndoorLocation	9371	10566	different floor

Experimental Result

Robust Prediction

Introduction Motivation

Related Worl

LQG Background LQG

Regression Motivation Robust Experiment

Imitation Motivation Adversaria Experimen

Figure 8: Five plots of the average empirical logloss for target datasets with 95% confidence interval. A bar figure showing empirical log loss on four natural bias datasets.

Research Contribution

Robust Prediction

Introduction Motivation

Related Wor

LQG

Background LQG Regression

Motivation Robust Experiment

Imitation Motivation Adversarial

Conclusion

Develop **robust** structure prediction models for **process** data that

- allows partially observable continuous environments (Chen, Ziebart 2015)
- deals with covariate shift (Chen, Monfort, Liu, Ziebart 2016)
- enables various imitation learning evaluation measures and embodiment transfer

(Chen, Carr, Ziebart 2015; Chen, Monfort, Ziebart, Carr 2016)

Adversarial IOC-Motivation

Robust Prediction

Introduction Motivation Problem

Related Wor

LQG

Background LQG

Motivation Robust Experimen

Imitatio

Motivation Adversarial Experiment

Conclusion

A basketball match

Want the robotic camera mimic the operator

- Square or absolute loss are much preferable
- Robotic camera is **less capable** than an operator

Adversarial IOC-Motivation

Robust Prediction

Introduction Motivation Problem

Related Work

Direct Inverse

LQG

Background LQG

Motivation

Robust Experimen

Imitation

Motivation Adversarial

Figure 9: Grid world navigation

Problem Definition

Robust Prediction

Introduction Motivation Problem

Related Work

LOG

Background LQG

Motivation Robust

Imitation
Motivation
Adversarial
Experiment

Conclusion

Definition

In the task of imitation learning with general losses and embodiments,

- Demonstrated samples from a distribution under
 - \blacksquare a known dynamics $\tau(s_{1:T}||a_{1:T})$
 - an unknown control policy $\pi(a_{1:T}||s_{1:T})$
- Learner attempts to choose
 - lacksquare a control policy $\hat{\pi}(\hat{a}_{1:T}||\hat{s}_{1:T})$
 - for potentially different dynamics $\hat{\tau}(\hat{s}_{1:T}||\hat{a}_{1:T})$
- Minimize a general loss function

$$\min_{\hat{\pi}} \mathsf{loss}_{ au,\hat{ au}}(\pi,\hat{\pi})$$

Adversarial Approach

Robust Prediction

Introductio Motivation Problem

Related Work Direct

Inverse

LQG Backgrou

Background LQG

Motivation Robust

Imitation

Adversarial Experiment

Conclusion

Definition

The adversarial inverse optimal control learner is defined as a zero-sum game:

$$\min_{\hat{\pi}} \max_{\check{\pi} \in \tilde{\Xi}} \mathbb{E} \left[\sum_{t=1}^{T} \mathsf{loss}(\hat{S}_t, \check{S}_t) \middle| \check{\pi}, \tau, \hat{\pi}, \hat{\tau} \right]$$

 $\tilde{\Xi}$ represents constraints measured from demonstrated data

$$\check{\pi} \in \tilde{\Xi} \iff \mathbb{E}[\sum_{t=1}^{T} \phi(\check{S}_t) | \check{\pi}, \tau] = \tilde{c} \triangleq \mathbb{E}[\sum_{t=1}^{T} \phi(S_t) | \tilde{\pi}, \tilde{\tau}]$$

Loss functions that additively decompose over the state sequence - computation benefit

Definition of Fisher Consistency

Robust Prediction

Introduction Motivation Problem

Related Worl

LQG Background

Background LQG

Motivation Robust Experiment

Imitation
Motivation
Adversarial
Experiment

Conclusion

Definition

An imitation learning algorithm producing policy π_{imit} is **Fisher consistent** if, given

- the demonstrator's control policy π for any demonstrator/imitator decision processes, $(\tau, \hat{\tau})$
- lacktriangleright a sufficiently expressive feature representation for policies the policy π_{imit} is a loss minimizer:

$$\pi_{\mathsf{imit}} \in \operatorname*{argmin}_{\hat{\pi}} \mathbb{E}\left[\mathsf{loss}_{\tau,\hat{\tau}}(\pi,\hat{\pi})\right].$$

Fisher Consistency of Adversarial Approach

Robust Prediction

Introduction Motivation Problem

Related Wor

LQG Background

LQG Regression

Motivation Robust Experimen

Imitation
Motivation
Adversarial
Experiment

Conclusion

Theorem

Given a sufficiently rich feature representation defining the constraint set Ξ , the adversarial inverse optimal control learner is a **Fisher consistent loss function minimizer** for all additive, state-based losses.

Proof

A sufficiently rich feature representation is equivalent to the constraint set Ξ containing only the true policy π . Then, under $\check{\pi}=\pi$, then reduces to:

$$\min_{\hat{\pi}} \mathbb{E}\left[\sum_{t=1}^{T} \mathsf{loss}(\hat{S}_t, \check{S}_t) \middle| \pi, \tau, \hat{\pi}, \hat{\tau}\right]$$

which is the loss function minimizer.

Generalization Bound

Robust Prediction

Introduction Motivation

Related Work

LQG

Background LQG

Motivation Robust

Imitation Motivation Adversarial

Conclusion

Theorem

The adversarial formulation provides a generalization bound:

$$\begin{split} P(\pi \in \tilde{\Xi}) &\geq 1 - \alpha \implies \\ P\bigg(\mathbb{E}\left[\sum_{t=1}^{T} loss(\hat{S}_{t}, S_{t}) | \pi, \tau, \hat{\pi}, \hat{\tau}\right] &\geq \mathbb{E}\left[\sum_{t=1}^{T} loss(\hat{S}_{t}, \check{S}_{t}) | \check{\pi}, \tau, \hat{\pi}, \hat{\tau}\right]\bigg) \leq \alpha. \end{split}$$

Proof If $\pi \in \tilde{\Xi}$, then:

$$\mathbb{E}\left[\sum_{t=1}^{T} \mathsf{loss}(\hat{S}_t, S_t) | \pi, \tau, \hat{\pi}, \hat{\tau}\right] \leq \underbrace{\mathbb{E}\!\left[\sum_{t=1}^{T} \mathsf{loss}(\hat{S}_t, \check{S}_t) | \check{\pi}, \tau, \hat{\pi}, \hat{\tau}\right]}_{\mathsf{min \, max \ \, bound}}$$

Dual Form

Robust Prediction

Introduction Motivation

Related Wor

LQG Background

Background LQG

Motivation Robust Experiment

Imitation Motivation Adversarial Experiment

Conclusion

Theorem

An equilibrium for the game is obtained by solving an unconstrained zero-sum game parameterized by a vector of Lagrange multipliers ω :

$$\min_{\omega} \min_{\hat{\pi}} \max_{\check{\pi}} \mathbb{E} \left[\sum_{t=1}^{T} loss(\check{S}_{t}, \hat{S}_{t}) + \omega \cdot \phi(\check{S}_{t}) \middle| \check{\pi}, \tau, \hat{\pi}, \hat{\tau} \right] - \omega \cdot \tilde{c}.$$

zero-sum game

Using gradient descent method (λ learning rate)

$$\omega \leftarrow \omega - \lambda \cdot (\mathbb{E}_{P(\check{S}_{1:T}, \check{A}_{1:T})}[\sum_{t=1}^{T} \phi(\check{S}_{t}) | \check{\pi}^{*}, \tau] - \tilde{c})$$

Payoff Matrix

Robust Prediction

Introduction Motivation

Related Work

LQG

Background LQG

Motivation Robust Experiment

Imitation
Motivation
Adversarial
Experiment

Conclusion

Stochastic policy of each player (demonstrator $\check{\pi}$ or learner $\hat{\pi}$) is a mixture of **deterministic policies**: $\check{\delta}$ and $\hat{\delta}$.

	δ_1	δ_2		δ_k
$\hat{\delta}_1$	$\ell(\check{\delta}_1,\hat{\delta}_1) \ +\psi(\check{\delta}_1)$	$\ell(\check{\delta}_2,\hat{\delta}_1) \ +\psi(\check{\delta}_2)$		$\ell(\check{\delta}_{\pmb{k}},\hat{\delta}_{\pmb{1}}) \ +\psi(\check{\delta}_{\pmb{k}})$
$\hat{\delta}_2$	$\ell(\check{\delta}_1,\hat{\delta}_2) + \psi(\check{\delta}_1)$	$\ell(\check{\delta}_2,\hat{\delta}_2) + \psi(\check{\delta}_2)$		$\ell(\check{\delta}_k, \hat{\delta}_2) \\ + \psi(\check{\delta}_k)$
:	:	:	٠	:
$\hat{\delta}_{j}$	$\ell(\check{\delta}_1,\hat{\delta}_j) \ + \psi(\check{\delta}_1)$	$\ell(\check{\delta}_2,\hat{\delta}_j) \ +\psi(\check{\delta}_2)$		$\ell(\check{\delta}_k,\hat{\delta}_j) \\ + \psi(\check{\delta}_k)$

Table 3: The payoff matrix with $\ell(\check{\delta}, \hat{\delta}) = \mathbb{E}[\sum_{t=1}^{T} \mathsf{loss}(\check{S}_t, \hat{S}_t) | \check{\delta}, \tau, \hat{\delta}, \hat{\tau}]$ and $\psi(\check{\delta}) = \omega \cdot \mathbb{E}[\sum_{t=1}^{T} \phi(\check{S}_t) | \check{\delta}, \tau].$

Double Oracle Method

Robust Prediction

Introduction Motivation Problem

Related Work

LQG Background

LQG Regression

Motivation Robust

Imitation
Motivation
Adversarial
Experiment

Conclusion

The payoff matrix grows exponentially

Double oracle method (McMahan, Gordon, Blum, 2003)

- Solve sub-game via linear programming
- Add best responses
- Repeat until convergence

Best response - solve a Finite-Horizon MDP

$$\mathop{\mathsf{argmin}}_{\hat{\delta}} \mathbb{E}_{\check{\pi}}; \; \mathop{\mathsf{or}} \mathop{\mathsf{argmax}}_{\check{\delta}} \mathbb{E}_{\hat{\pi}}$$

Synthetic Experiment Setting

Robust Prediction

Introduction Motivation

Related Worl

Direct Inverse

LQG Background LQG

Regression Motivation

Motivation Robust Experiment

Motivation Adversarial Experiment

Conclusion

Synthetic experiment - navigation across a grid world

• Cost:
$$C(s) = \theta^T \phi(s) + \varepsilon(s)$$

Transition dynamics:

$$p(s_{t+1}|s_t,a_t) = egin{cases} p_m & ext{matching the action} \ rac{1-p_m}{\# ext{ of neighbor cells}} & ext{neighbor cells} \end{cases}$$

Loss: euclidean distance between demonstrator and learner

Compare to maximum margin planning (MMP)

Synthetic Experiment Result

Robust Prediction

Introduction Motivation

Related Work Direct

IIIverse

Background

LQG

Motivation Robust

Imitatio

Adversarial Experiment

Figure 10: Experimental results with 95% confidence interval of various settings of the grid world's characteristics

Real Experiment Setting

Robust Prediction

Introduction Motivation

Related Worl

LQG Background

LQG Regression

Motivation Robust Experiment

Motivation Adversarial Experiment

Conclusion

Real experiment-Learning camera control from demonstration

- lacktriangle Output: camera's horizontal pan angle $heta_t$
- Input: 14-element vector describing players' location X_t
- State: pan angle and its velocity-map them to 305 possible states
- Features: 32 element vector $[\theta, \theta^2, \dot{\theta}, \dot{\theta}^2, \theta X, \dot{\theta} X]$ that is $\phi(s_t)$.

Real Experiment Setting

Robust Prediction

Introductio Motivation

Related Wor

LQG Background

Regression
Motivation
Robust
Experiment

Motivation Adversarial Experiment

Conclusion

Comparison methods:

- Linear regression (LS)
- $lue{}$ Constrained by camera empirical dynamic (LS_C)
- Condition on previous state (LS_{MI})
- Maximum marginal planning (MMP)
- With start location provided (MMP_{SL})
- Adversarial approach (Adv)
- Wwith start location provided (Adv_{SL})

Real Experiment Result

Robust Prediction

Introduction Motivation

Related Work Direct

Inverse

Background LQG

Motivation Robust

Imitation Motivation

Experiment

Figure 11: Imitating human camera operator's pan angle control using a regression approach, maximum margin planning, and our adversarial inverse optimal control method.

Real Experiment Result

Robust Prediction

Introduction Motivation Problem

Related Work

LQG Background

Regression Motivation Robust

Imitation

Motivation

Adversarial

Experiment

Figure 12: Average squared loss and absolute loss of the imitator (with 95% mean confidence intervals estimates) with maximum margin planning results suppressed due to being significantly worse and off of the presented scale.

Conclusion

Robust Prediction

Introduction Motivation Problem

Related Work
Direct

LQG Background LQG

Motivation Robust Experiment

Imitation Motivation Adversarial Experiment

Conclusion

Process environment are inherently complex and noisy. **conclusion**

Process prediction models that are developed

- by deriving the best estimation under the worst case
- subject to matching known properties of the real distribution

demonstrate robust prediction performance and benefit from

- incorporating partial observability
- dealing with non-stationary settings
- enabling various evaluation measures and embodiment transfer

Future Work

Robust Prediction

Introduction Motivation

Related Work Direct

LQG Background

LQG Pogressio

Motivation Robust Experiment

Imitation
Motivation
Adversarial
Experiment

Thank You

Robust Prediction

Motivation

Related Worl

LQG Background LQG

Regression Motivation Robust Experiment

Imitation Motivation Adversarial Experiment

Conclusion

Many thanks to

- Advisor Pro.Brian D. Ziebart
- Committee members
- Collaborators Anqi Liu, Mathew Monfort and Peter Carr (Disney)
- Lab mates (chat, discussion, fun, resource and many others) Kaiser Asif, Rizal Fathony, Sima Behpour, Jia Li, Hong Wang, Wei Xing, Chris Schultz, Sanket Gaurav, Andrea Tirinzoni