3

ANÁLISIS Y COMPARATIVA DE ALGORITMOS EVOLUTIVOS

RECURSOS MAS USADOS PARA ANÁLISIS Y COMPARATIVA

- Tablas comparativas
- Curvas de Convergencia
- Diagramas de Caja (Box Plot)
- Benchmark functions (Funciones de prueba o referencia)

TABLAS COMPARATIVAS (I)

- También conocidas como: "tablas de resultados", "tablas de resumen" o "tablas de métricas".
- Mínimo, Promedio, Máximo y Desviación Estándar son referentes a los valores de Fitness obtenidos en diferentes algoritmos.

Algoritmo	Mínimo	Promedio	Máximo	Desviación Est.
Algoritmo A	1.079	2.467	3.769	0.624
Algoritmo B	1.188	2.712	4.184	0.995
Algoritmo C	0.894	2.360	3.503	0.688

TABLAS COMPARATIVAS (II)

- Propósito de las Tablas Comparativas
 - ✓ Comparación de Desempeño: Permiten comparar directamente el rendimiento de diferentes algoritmos o configuraciones en términos de calidad de la solución y consistencia.
 - ✓ Identificación de Tendencias: Ayudan a identificar cuál algoritmo tiende a producir mejores resultados y cuál es más estable.
 - ✓ Toma de Decisiones: Facilitan la toma de decisiones informadas sobre qué algoritmo usar para un problema específico.

Algoritmo	Mínimo	Promedio	Máximo	Desviación Est.
Algoritmo A	1.079	2.467	3.769	0.624
Algoritmo B	1.188	2.712	4.184	0.995
Algoritmo C	0.894	2.360	3.503	0.688

CURVAS DE CONVERGENCIA (I)

- Es un recurso para analizar el comportamiento de un algoritmo evolutivo o de optimización a lo largo del tiempo (o iteraciones).
- Una curva de convergencia muestra cómo el valor de la función objetivo (o fitness) mejora a medida que el algoritmo avanza en su proceso de búsqueda.

CURVAS DE CONVERGENCIA (II)

- Elementos de una Curva de Convergencia
- Eje "y" (Fitness): Representa el valor de la función objetivo, que puede ser minimizado o maximizado.
- Eje "x" (Iteraciones): Representa el número de iteraciones o generaciones que el algoritmo ha completado.
- ▶ Tendencia:
 - ✓ Una curva descendente indica la minimización del valor del fitness, con el algoritmo acercándose al óptimo.
 - √ Una curva ascendente indica la maximización del fitness.
- Velocidad de Convergencia: La pendiente de la curva indica la rapidez con la que el algoritmo converge hacia el óptimo. Una curva que se aplana rápidamente sugiere una rápida convergencia.

CURVAS DE CONVERGENCIA (III)

- Utilidad de las Curvas de Convergencia
- ✓ Diagnóstico de Algoritmos: Permiten evaluar la eficiencia de un algoritmo. Si la curva se estabiliza rápidamente, el algoritmo podría estar convergiendo prematuramente (atascándose en un óptimo local).
- ✓ Comparación de Algoritmos: Diferentes algoritmos pueden ser comparados en términos de su velocidad de convergencia.
- ✓ Ajuste de Parámetros: Ayudan a ajustar parámetros del algoritmo para mejorar el rendimiento.

DIAGRAMAS DE CAJA (I)

- ¿Para que sirven?
- Para comparar métricas de:
 - 1. Rendimiento
 - 2. Variabilidad
 - 3. Estabilidad
 - 4. Consistencia
 - 5. Valores atípicos (outliers)

DIAGRAMAS DE CAJA (II)

- ¿Como se grafican?
- Dados 3 algoritmos evolutivos (A, B, y C). Se busca compararlos según las métricas mencionadas.

Paso 1: Ejecutar cada algoritmo 30 veces y registrar el mejor valor de fitness obtenido en cada ejecución.

Paso 2: Diagramar 3 box plot para comparar la distribución de los resultados de

los 3 algoritmos.

DIAGRAMAS DE CAJA (III)

- 1. Rendimiento. Mide la calidad de las soluciones obtenidas por un algoritmo evolutivo.
- Ejemplo: Dados 2 algoritmos, si el box plot de uno tiene una mediana más baja en términos de fitness (en minimización), este algoritmo tiene mejor rendimiento.
- Interpretación: Una caja más baja (en minimización) indica que el algoritmo tiende a encontrar soluciones de mejor calidad.

DIAGRAMAS DE CAJA (IV)

- 2. Variabilidad. Indica la dispersión de los resultados de un algoritmo, reflejada en la amplitud de la caja y los bigotes
- Ejemplo: Un algoritmo con una caja larga y bigotes largos en el box plot tiene alta variabilidad, lo que significa que los resultados pueden variar significativamente entre ejecuciones.
- Interpretación: La variabilidad alta sugiere que el algoritmo puede ser inestable o sensible a las condiciones iniciales, ya que produce resultados diversos en diferentes ejecuciones.

DIAGRAMAS DE CAJA (V)

- 3. Estabilidad. Es la capacidad de un algoritmo para mantener un rendimiento constante a lo largo de múltiples ejecuciones. Se evalúa frente a variaciones en los parámetros.
- Ejemplo: Si un box plot muestra una caja pequeña con bigotes cortos y sin valores atípicos, el algoritmo es estable.
- Interpretación: Un algoritmo estable produce resultados similares independientemente de las ejecuciones, lo que se refleja en un box plot compacto sin valores atípicos.

DIAGRAMAS DE CAJA (VI)

- 4. Consistencia. Es la capacidad de un algoritmo para producir resultados similares en múltiples ejecuciones. Se evalúa en condiciones idénticas.
- Ejemplo: una caja pequeña y bigotes cortos en el box plot indica alta consistencia.
- Interpretación: Una caja pequeña con bigotes cortos muestra que las ejecuciones del algoritmo producen valores de fitness muy similares, lo que sugiere que el algoritmo es confiable porque es consistente.

DIAGRAMAS DE CAJA (VII)

- 5. Valores atípicos. Son ejecuciones que producen resultados significativamente diferentes del resto, a menudo considerados anomalías.
- Ejemplo: Si en un box plot se observan puntos individuales alejados de los bigotes, esos puntos representan ejecuciones que produjeron valores de fitness anómalos.
- Interpretación: La presencia de muchos valores atípicos podría indicar que el algoritmo es sensible a ciertas condiciones, lo que puede comprometer su fiabilidad.

BENCHMARK FUNCTIONS (I)

- Son conjuntos de funciones matemáticas de pruebas con el objetivo de evaluar la performance de los procedimientos de búsqueda en problemas de naturaleza variada.
- Un requerimiento esencial de las investigaciones en el campo de AE es realizar evaluaciones justas y sobre un conjunto de funciones de prueba diverso, para medir el desempeño bajo diferentes condiciones.
- Evita que un algoritmo que sepa explotar alguna propiedad en particular se destaque por sobre los demás.

BENCHMARK FUNCTIONS (II)

- Características de funciones de prueba (mono-objetivo o multi-objetivo)
 - 1. Funciones unimodales
 - 2. Funciones multimodales
 - 3. Funciones con óptimos globales en la región central
 - 4. Funciones con óptimos locales en la región central
 - 5. Funciones con óptimos globales en los límites del dominio
 - 6. Funciones con óptimos locales en los límites del dominio
 - 7. Funciones rotadas
 - 8. Funciones con el centro desplazada
 - 9. Funciones con diferentes entornos para los puntos óptimos
 - 10. Funciones no continuas
 - 11. Funciones no diferenciables

BENCHMARK FUNCTIONS (III)

No.	Name	D	С	S	Function Definition	f_{min}
f_1	Sphere	10,30,50	U	[-5.12, 5.12] ^D	$f_1(x) = \sum_{i=1}^d x_i^2$	0.0
f_2	Step	10,30,50	U	[-100, 100] ^D	$f_2(x) = \sum_{i=1}^{d} ([x_i + 0.5]^2)$	0.0
f_3	Zakharov	10,30,50	U	[-5, 10] ^D	$f_3(x) = \sum_{i=1}^d x_i^2 + \left(\sum_{i=1}^d 0.5ix_i\right)^2 + \left(\sum_{i=1}^d 0.5ix_i\right)^4$	0.0
f_4	Griewangk	10,30,50	M	[-600, 600] ^D	$f_4(x) = \frac{1}{4000} \sum_{i=1}^{d} x_i^2 - \prod_{i=1}^{d} \cos \frac{x_i}{\sqrt{i}} + 1$	0.0
f_5	Rastrigin	10,30,50	M	[-15, 15] ^D	$f_5(x) = \sum_{i=1}^d [x_i^2 - 10\cos(2\pi x_i) + 10]$	0.0
f_6	Rosenbrock	10,30,50	U	[-15, 15] ^D	$f_6(x) = \sum_{i=1}^{d-1} \left[100 \left(x_{i+1} - x_i^2 \right)^2 + (x_i - 1)^2 \right]$	0.0
f_7	Ackley	10,30,50	М	[-32, 32] ^D	$f_7(x) =$ $-20exp\left(-0.2\sqrt{\frac{1}{d}\sum_{i=1}^{d}x_i^2}\right) -$ $exp\left(\frac{1}{n}\sum_{i=1}^{n}\cos 2\pi x_i\right) + 20 + e$	0.0
f_8	Schwefel	10,30,50	M	[-500, 500] ^D	$f_8(x) = 418.9829 * d - \sum_{i=1}^{n} -x_i \sin(\sqrt{ x_i })$	0.0
f_9	Easom	10,30,50	M	$[-2\pi, 2\pi]^{D}$	$f_9(x) = -(-1)^d * (\prod_1^d \cos^2(x_i)) * exp[\sum_1^d (x_i - \pi)^2]$	-1.000
f_{10}	Michalewicz	10,30,50	M	$[0,\pi]^D$	$f_{10}(x) = -\sum_{i=1}^{d} \sin(x_i) \sin^{2m}\left(\frac{ix_i^2}{x_i^2}\right)$	NA

BENCHMARK FUNCTIONS (IV)

BENCHMARK FUNCTIONS (V)

BENCHMARK FUNCTIONS (VI)

BENCHMARK FUNCTIONS (VII)

BENCHMARK FUNCTIONS (VIII)

REFERENCIAS BIBLIOGRÁFICAS Y WEB (I)

- López, J. (2013). Optimización multiobjetivo: aplicaciones a problemas del mundo real. Buenos Aires, Argentina, Universidad Nacional de la Plata.
- Yucra López, Carlos Enrique (2021). Biblioteca para la comparación estadística de algoritmos evolutivos. Proyecto Fin de Carrera / Trabajo Fin de Grado, Madrid, España.