Surrogate modelling for GISAXS reconstruction

Maksim Zhdanov¹, Lisa Randolph², Marina Ganeva³, Thomas Kluge¹, Christian Gutt² and Nico Hoffmann¹ Helmholtz-Zentrum Dresden-Rossendorf, ² Universität Siegen, ³ Forschungszentrum Jülich

Experimental setup

Inverse problem

Challenges

Inverse problem is ill-posed

Posterior distribution is complex due to ambiguities

Reconstruction via simulation is highly time-consuming

Uncertainty estimation is desired

Solution: Approximate Bayes Computation + Surrogate model

Posterior Acceptance criterion Time **Prior** BornAgain [1] thickness 50k samples $\mathbf{f}:\mathbf{y}\to\mathbf{X}$ $\mathbf{y} \sim \mathbf{Uniform}(0, \mathbf{I})$ 32 hours thickness sample roughness N times thickness 50k samples roughness 1 minute Surrogate model $\mathbf{f}:\mathbf{y}, heta o \mathbf{X}$ roughness

Simulation

Surrogate model

Convolutional neural network

Optimized via MSE loss

Wasserstein distance $\mathbf{W_{|y|}(\mathbf{p_{BA}},\mathbf{p_{SM}})=0.03}$

Summary

Interpretable and trustworthy reconstruction

Remarkable computation time reduction w.r.t.

BornAgain

[1] Pospelov, Gennady et al. "BornAgain: software for simulating and fitting grazing-incidence small-angle scattering." Journal of Applied Crystallography 53 (2020): 262 - 276.

