RANCANG BANGUN SISTEM PENUNJANG KEPUTUSAN UNTUK PEMILIHAN PEMBELIAN HANDPHONE TERBAIK BAGI PELANGGAN DI FAREL LUBUK BASUNG KABUPATEN AGAM MENGGUNAKAN METODE AHP DENGAN MENGGUNAKAN BAHASA PEMROGRAMAN PHP DAN DATABASE MYSQL SKRIPSI

Untuk Memenuhi Sebagian Persyaratan Mencapai Gelar Sarjana Komputer

Program Studi : Sistem Informasi Jenjang Pendidikan : Strata 1 (S 1)

Diajukan Oleh

RIKA RIDLA JUITA 17101152610035

FAKULTAS ILMU KOMPUTER
UNIVERSITAS PUTRA INDONESIA "YPTK"
PADANG
2021

LEMBAR PERNYATAAN

Saya yang bertanda tangan dibawah ini:

Nama : RIKA RIDLA JUITA

No. BP : 17101152610035

Fakultas : ILMU KOMPUTER

Jurusan : SISTEM INFORMASI

Menyatakan Bahwa:

1. Sesungguhnya skripsi yang saya susun ini merupakan hasil karya tulis saya

sendiri. Adapun bagian-bagian tertentu dalam skripsi yang saya peroleh dari

hasil karya tulis orang lain, telah saya tuliskan sumbernya dengan jelas,

sesuai dengan kaidah penulisan ilmiah.

2. Jika dalam pembuatan skripsi secara keseluruhan ternyata terbukti

dibuatkan oleh orang lain, maka saya bersedia menerima sanksi yang

diberikan oleh akademik, berupa pembatalan skripsi dan mengulang

penelitian serta mengajukan judul baru.

Demikianlah surat pernyataan ini saya buat dengan sesungguhnya tanpa ada

paksaan dari pihak manapun.

Padang, Juli 2021

Saya yang menyatakan,

RIKA RIDLA JUITA 17101152610035

LEMBAR PERSETUJUAN PEMBIMBING

RANCANG BANGUN SISTEM PENUNJANG KEPUTUSAN UNTUK PEMILIHAN PEMBELIAN HANDPHONE TERBAIK BAGI PELANGGAN DI FAREL LUBUK BASUNG KABUPATEN AGAM MENGGUNAKAN METODE AHP DENGAN MENGGUNAKAN BAHASA PEMROGRAMAN PHP DAN DATABASE MYSOL

Yang Dipersiapkan dan Disusun Oleh

RIKA RIDLA JUITA 17101152610035

Telah Memenuhi Persyaratan Untuk Dipertahankan Di Depan Dewan Penguji
Pada Ujian Komprehensif

Padang, Juli 2021

Pembimbing I

Pembimbing II

17101152610035 - RIKA RID LAJUIT

Dr. Ir. H. Sumijan, M.Sc NIP: 196605071994031004

(Surmayanti, S.Kom., M.Kom.) NIDN: 1029116801

LEMBAR PENGESAHAN

RANCANG BANGUN SISTEM PENUNJANG KEPUTUSAN UNTUK PEMILIHAN PEMBELIAN HANDPHONE TERBAIK BAGI PELANGGAN DI FAREL LUBUK BASUNG KABUPATEN AGAM MENGGUNAKAN METODE AHP DENGAN MENGGUNAKAN BAHASA PEMROGRAMAN PHP DAN DATABASE MYSQL SKRIPSI

Yang dipersiapkan dan disusun oleh

RIKA RIDLA JUITA 17101152610035

Telah dipertahankan di depan dewan penguji Pada tanggal: Februari 2021 dan dinyatakan telah lulus memenuhi syarat

Pembimbing I

Pembimbing II

(Dr. Ir. H. Sumijan, M.Sc) (Surmayanti, S.Kom., M.Kom.) NIP: 196605071994031004 NIDN: 1029116801

> Padang, Agustus 2021 Dekan Fakultas Ilmu Komputer Universitas Putra Indonesia "YPTK" Padang

> > (<u>Dr. Yuhandri, S.Kom, M.Kom</u>) NIDN: 1015057301

LEMBAR PENGESAHAN PENGUJI SIDANG SKRIPSI

PENERAPAN METODE ANALITYCAL HIERARCHY PROCESS (AHP) PADA SISTEM PENDUKUNG KEPUTUSAN MENENTUKAN PERPANJANGAN KONTRAK BURUH PADA PT BUMI SARIMAS INDONESIA MENGGUNAKAN BAHASA PEMROGRAMAN VISUAL BASIC NET 2010 DAN DATABASE MYSQL

Yang dipersiapkan dan disusun oleh

RIKA RIDLA JUITA 17101152610035 PROGRAM STUDI SISTEM INFORMASI

Skripsi ini telah dinyatakan LULUS oleh Penguji Materi Pada Sidang Skripsi Program Studi Strata 1 Ilmu Komputer Program Studi Sistem Informasi Universitas Putra Indonesia "YPTK" Padang Pada Hari/Tgl:2021

		IIM PENGUJI:
1.	•••••	••••••
2.		
	Padang	,2021

Mengetahui Dekan Fakultas Ilmu Komputer Universitas Putra Indonesia "YPTK" Padang

> (<u>Dr. Yuhandri, S.Kom, M.Kom</u>) NIDN: 1015057301

ABSTRACT

TITLE : DESIGN AND BUILD DECISION SUPPORT

SYSTEM FOR THE BEST HANDPHONE PURCHASE FOR CUSTOMERS IN FAREL

LUBUK BASUNG, AGAM DISTRICT USING AHP

METHOD USING PHP PROGRAMMING LANGUAGE AND MYSQL DATABASE

STUDENT NAME : RIKA RIDLA JUITA

STUDENT NUMBER : 17101152610035

STUDY PROGRAM : INFORMATION SYSTEM

DEGREE : STRATA 1 (S1)

ADVISERS : 1. Dr. Ir. H. Sumijan, M.Sc

2. Surmayanti, S.Kom., M.Kom.

The development of information and communication technology is very fast, as a result of globalization. One of the information and communication technology devices that is experiencing rapid development is a cellular telephone. The many types of cameras make consumers confused in choosing the desired cellphone product, no wonder consumers sometimes choose the wrong cellphone that doesn't suit their needs due to the diversity of types, specifications and prices offered. To overcome this problem, it is necessary to apply a decision support system in the selection of cellphones in order to provide a structured assessment that can help consumers by using the Analitycal Hierarchy Process (Ahp) method. The steps taken in AHP are compiling a hierarchy, determining priorities between criteria, to measuring the consistency of pairwise comparisons of criteria and each sub-criteria. By using this system, it is hoped that it will make it easier to choose a cellphone according to consumer needs.

Keyword: Contract Extension, Decision Support System, AHP, Laborer.

ABSTRAK

JUDUL : RANCANG BANGUN SISTEM PENUNJANG

KEPUTUSAN UNTUK PEMILIHAN PEMBELIAN

HANDPHONE TERBAIK BAGI PELANGGAN DI

FAREL LUBUK BASUNG KABUPATEN AGAM

MENGGUNAKAN METODE AHP DENGAN

MENGGUNAKAN BAHASA PEMROGRAMAN

PHP DAN DATABASE MYSQL

NAMA : RIKA RIDLA JUITA NO. BP : 17101152610035

PROGRAM STUDI : SISTEM INFORMASI

JENJANG : STRATA 1 (S1)

PENDIDIKAN

PEMBIMBING : 1. DR. IR. H. SUMIJAN, M.SC

2. SURMAYANTI, S.KOM., M.KOM.

Perkembangan teknologi informasi dan komunikasi sangatlah cepat, sebagai akibat dari arus globalisasi. Salah satu perangkat teknologi informasi dan komunikasi yang mengalami perkembangan yang cepat adalah telepon seluler / handphone. Banyaknya tipe-tipe kamera membuat konsumen kebingungan dalam memilih produk handphone yang diinginkan, tak heran jika konsumen kadang salah memilih handphone yang tidak sesuai dengan kebutuhan dikarenakan kemajemukan tipe, spesifikasi dan harga yang ditawarkan. Untuk mengatasi permasalahan tersebut maka diperlukan penerapan sistem pendukung keputusan (Decision Support System) dalam pemilihan handphone agar memberikan penilaian secara terstruktur yang dapat membantu konsumen dengan menggunakan metode Analitycal Hierarchy Process (Ahp). Langkah-langkah yang dilakukan dalam AHP adalah menyusun hirarki, menentukan prioritas antar kriteria, hingga mengukur konsistensi perbandingan berpasangan kriteria dan masing-masing subkriteria. Dengan menggunakan sistem ini diharapkan untuk memberikan kemudahan dalam pemilihan handphone sesuai dengan kebutuhan konsumen.

Kata Kunci: Pemilihan Handphone, Sistem Pendukung Keputusan, AHP.

KATA PENGANTAR

Syukur Alhamdulillah, berkat rahmat Allah SWT yang telah memberikan segala karunia-Nya sehingga penulis dapat menyelesaikan skripsi ini dengan baik dan tepat waktu. Dan tidak lupa shalawat dan salam kepada Nabi Besar Muhammad SAW yang telah berjasa besar dengan membukakan jalan dalam perkembangan ilmu pengetahuan seperti sekarang ini.

Adapun judul dari skripsi ini adalah "RANCANG BANGUN SISTEM PENUNJANG KEPUTUSAN UNTUK PEMILIHAN PEMBELIAN HANDPHONE TERBAIK BAGI PELANGGAN DI FAREL LUBUK BASUNG KABUPATEN AGAM MENGGUNAKAN METODE AHP DENGAN MENGGUNAKAN BAHASA PEMROGRAMAN PHP DAN DATABASE MYSQL".

Pada kesempatan ini penulis ingin menyampaikan ucapan terimakasih yang setulusnya kepada pihak yang telah membantu dalam penulisan skripsi ini, terutama kepada :

- Bapak H. Herman Nawas (rahimahullah) selaku Pendiri Universitas Putra Indonesia "YPTK" Padang.
- 2. Ketua Yayasan Perguruan Tinggi Komputer "YPTK" Padang
- 3. Bapak **Prof. Dr. H. Sarjon Defit, S.Kom., M.Sc.,** selaku Rektor Universitas Putra Indonesia "YPTK" Padang.
- 4. Bapak **Dr. Yuhandri, S.Kom, M.Kom** selaku Dekan Fakultas Ilmu Komputer Universitas Putra Indonesia "YPTK" Padang.

- Ibu Eva Rianti, S.Kom., M.Kom., selaku Ketua Jurusan Sistem Informasi Fakultas Ilmu Komputer Universitas Putra Indonesia "YPTK" Padang.
- 6. Bapak **Dr. Ir. H. Sumijan., M. Sc,** selaku Dosen pembimbing I yang telah banyak memberikan pengetahuan dan arahan kepada penulis.
- 7. Ibu **Surmayanti, S.Kom., M.Kom.**, selaku Dosen pembimbing II yang telah banyak memberikan pengetahuan dan arahan kepada penulis.
- 8. Seluruh Keluarga Universias Putra Indonesia "YPTK" yang telah banyak membantu dalam pemberian data-data yang diperlukan.
- 9. Seluruh Bapak dan Ibu Dosen yang telah mendidik dan mengajar penulis berbagai disiplin ilmu di fakultas ilmu komputer.
- 10. Segenap karyawan dan karyawati di lingkungan Universitas Putra Indonesia "YPTK" Padang yang telah memberikan jasanya dalam penanganan administrasi akademik.

Penulis menyadari dalam penulisan skripsi ini, hasilnya masih jauh dari sempurna. Untuk itu penulis sangat mengharapkan saran-saran dan kritikan yang bersifat membangun. Akhir kata penulis berharap semoga skripsi ini dapat memberikan manfaat bagi penulis dan bagi pembaca pada umumnya.

Padang, Juli 2021

Penulis

DAFTAR ISI

HALAMAN PERNYATAAN	i
HALAMAN PERSETUJUAN PEMBIMBING	iii
HALAMAN PENGESAHAN	iv
HALAMAN PENGESAHAN PENGUJI SIDANG	
ABSTRACT	v i
ABSTRAK	vi
KATA PENGANTAR	viii
DAFTAR ISI	X
DAFTAR TABEL	XV i
DAFTAR GAMBAR	xix
BAB I PENDAHULUAN	
1.1 Latar Belakang Masalah	1
1.2 Perumusan Masalah	4
1.3 Hipotesa	4
1.4 Batasan Masalah	5
1.5 Tujuan Penelitian	5
1.6 Manfaat Penelitian	6
1.7 Sistematika Penulisan	6
BAB II TINJAUAN PUSTAKA	
2.1 Konsep Dasar Sistem	8
2.1.1 Pengertian Sistem	8
2.1.2 Karaktariatik Siatam	C

	2.1.3 Klasifikasi Sistem	10
2.2	Konsep Dasar Informasi	11
	2.2.1 Pengertian Informasi	11
	2.2.2 Kualitas Informasi	12
	2.2.3 Siklus Informasi	13
2.3	Konsep Dasar Sistem Informasi	13
	2.3.1 Pengertian Sistem Informasi	14
	2.3.2 Komponen Sistem Informasi	14
2.4	Sistem Pendukung Keputusan	15
	2.4.1 Tahapan Keputusan	16
	2.4.2 Komponen Sistem Pendukung Keputusan	16
	2.4.3 Tujuan Sistem Pendukung Keputusan	18
2.5	Metode Analytical Hierarchy Process (AHP)	19
	2.5.1 Prinsip Dasar AHP	19
	2.5.2 Kelebihan dan Kelemahan AHP	21
	2.5.3 Prosedur AHP	23
2.6	Pengertian Handphone	26
2.7	Penelitian Terdahulu	27
BA	AB III METODOLOGI PENELITIAN	
3.1	Pendahuluan	32
3.2	Kerangka Kerja Penelitian	32
3.3	Tahapan Penelitian	33
	3.3.1 Penelitian Pendahuluan	33

3.3.2 Pengum	pulan Data	34
3.3.3 Analisa.		35
3.3.4 Perancai	ngan	35
3.3.5 Impleme	entasi	36
3.3.6 Pengujia	an	36
3.3.7 Hasil da	n Pembahasan	36
BAB IV ANALI	SA DAN HASIL	
4.1 Analisa Siste	em	38
4.1.1 Analisis	s Sistem Berjalan	38
4.1.2 Analisa	ı Input	39
4.1.3 Analisa	Proses	39
4.1.4 Analisa	Output	40
4.1.5 Usulan	Perbaikan Sistem	40
4.1.6 Perhitu	ngan Metode AHP	40
4.2 Analisa Siste	em Baru	66
4.2.1 UML(U	Jnified Modelling Language)	67
4.2.1.1	Use Case Diagram	67
4.2.1.2	Class Diagram	68
4.2.1.3	Activity Diagram	68
4.2.1.4	Sequence Diagram	70
4.2.2 Desain	Terperinci	80
4.2.2.1	Desain Output	80
4.2.2.2	Desain Input	82

4.2.2.3	Desain File	86
BAB V IMPLE	MENTASI DAN PENGUJIAN SISTEM	
5.1 Implementas	si Sistem	93
5.1.1 Instalas	Software	93
5.1.1.1 In	nstalasi Software Xampp Portable Win32 5.6.23	93
5.2 Pengujian Si	stem	98
BAB VI PENUT	TUP	
6.1 Kesimpulan		110
6.2 Saran		111
DAFTAR PUST	'AKA	

DAFTAR GAMBAR

Gambar 2.1 Siklus Informasi	13
Gambar 2.2 Komponen Sistem Pendukung Keputusan	17
Gambar 3.1 Kerangka Penelitian	33
Gambar 4.1 Use Case Diagram	67
Gambar 4.2 Class Diagram	68
Gambar 4.3 Activity Diagram Admin	69
Gambar 4.4 Activity Diagram Pelanggan	70
Gambar 4.5 Sequence Diagram Pelanggan Melihat Home	70
Gambar 4.6 Sequence Diagram Pelanggan Melihat Produk	71
Gambar 4.7 Sequence Diagram Pelanggan Melihat Oppo	71
Gambar 4.8 Sequence Diagram Pelanggan Melihat Samsung	72
Gambar 4.9 Sequence Diagram Pelanggan Melihat Vivo	72
Gambar 4.10 Sequence Diagram Pelanggan Melihat Tentang Kami	73
Gambar 4.11 Sequence Diagram Data Pengguna	73
Gambar 4.12 Sequence Diagram Data Kategori	74
Gambar 4.13 Sequence Diagram Data Alternatif	74
Gambar 4.14 Sequence Diagram Data Kriteria	75
Gambar 4.15 Sequence Diagram Data Sub Kriteria	75
Gambar 4.16 Sequence Diagram Perbandingan Kriteria	76
Gambar 4.17 Sequence Diagram Perbandingan Sub Kriteria	76
Gambar 4.18 Sequence Diagram Analisa Kriteria	77
Gambar 4.19 Sequence Diagram Analisa Sub Kriteria	77
Gambar 4.20 Sequence Diagram Analisa Alternatif	78
Gambar 4.21 Sequence Diagram Laporan Data Alternatif	78

Gambar 4.22 Sequence Diagram Laporan Perkategori	79
Gambar 4.23 Sequence Diagram Laporan Hasil	79
Gambar 4.24 Desain Laporan Alternatif	80
Gambar 4.25 Desain Laporan Perkategori	81
Gambar 4.26 Desain Laporan Hasil	81
Gambar 4.27 Desain Input Login	82
Gambar 4.28 Desain Input Data Pengguna	82
Gambar 4.29 Desain Input Data Kategori	83
Gambar 4.30 Desain Input Data Alternatif	83
Gambar 4.31 Desain Input Data Kriteria	84
Gambar 4.32 Desain Input Data Sub Kriteria	84
Gambar 4.33 Desain Input Data Perbandingan Kriteria	85
Gambar 4.34 Desain Input Data Perbandingan Sub Kriteria	85

DAFTAR TABEL

Tabel 2.1 Tabel Skala Perbandingan Berpasangan	20
Tabel 2.2 Tabel Penelitian Terdahulu (State of the art)	27
Tabel 4.1 Daftar Kriteria Penilaian	41
Tabel 4.2 Penilaian Kriteria	41
Tabel 4.3 Daftar IKM	42
Tabel 4.4 Skala Penilaian dan Perbandingan Berpasangan	43
Tabel 4.5 Matriks Perbandingan Berpasangan Kriteria	44
Tabel 4.6 Normalisasi Matriks Kriteria	44
Tabel 4.7 Matriks Penjumlahan Baris	45
Tabel 4.8 Matriks Ratio Konsistensi	45
Tabel 4.9 Tabel Indeks Random Konsistensi	46
Tabel 4.10 Matriks Perbandingan Subkriteria OS Version	47
Tabel 4.11 Matriks Nilai Subkriteria OS Version	47
Tabel 4.12 Matriks Penjumlahan Setiap Baris Subkriteria OS Version	48
Tabel 4.13 Ratio Konsistensi Subkriteria OS Version	48
Tabel 4.14 Matriks Perbandingan Subkriteria Ukuran Layar	49
Tabel 4.15 Matriks Nilai Subkriteria Ukuran Layar	49
Tabel 4.16 Matriks Penjumlahan Setiap Baris Subkriteria Ukuran Layar	50
Tabel 4.17 Ratio Konsistensi Subkriteria Ukuran Layar	50
Tabel 4.18 Matriks Perbandingan Subkriteria CPU	51
Tabel 4.19 Matriks Nilai Subkriteria CPU	51
Tabel 4.20 Matriks Peniumlahan Setian Baris Subkriteria CPU	52

Tabel 4.21 Ratio Konsistensi Subkriteria CPUTabel 4.22 Matriks Perbandingan
Subkriteria RAM52
Tabel 4.22 Matriks Perbandingan Subkriteria RAM
Tabel 4.23 Matriks Nilai Subkriteria RAM53
Tabel 4.24 Matriks Penjumlahan Setiap Baris Subkriteria RAM54
Tabel 4.25 Ratio Konsistensi Subkriteria RAM
Tabel 4.26 Matriks Perbandingan Subkriteria ROM55
Tabel 4.27 Matriks Nilai Subkriteria ROM55
Tabel 4.28 Matriks Penjumlahan Setiap Baris Subkriteria ROM56
Tabel 4.29 Ratio Konsistensi Subkriteria ROM
Tabel 4.30 Matriks Perbandingan Subkriteria Resolusi Kamera Belakang57
Tabel 4.31 Matriks Nilai Subkriteria Resolusi Kamera Belakang57
Tabel 4.32 Matriks Penjumlahan Setiap Baris Subkriteria Resolusi Kamera
Belakang58
Tabel 4.33 Ratio Konsistensi Subkriteria Resolusi Kamera Belakang58
Tabel 4.34 Matriks Perbandingan Subkriteria Resolusi Kamera Depan59
Tabel 4.35 Matriks Nilai Subkriteria Resolusi Kamera Depan59
Tabel 4.36 Matriks Penjumlahan Setiap Baris Subkriteria Resolusi Kamera Depan
Tabel 4.37 Ratio Konsistensi Subkriteria Resolusi Kamera Depan60
Tabel 4.38 Matriks Perbandingan Subkriteria Kapasitas Baterai61
Tabel 4.39 Matriks Nilai Subkriteria Kapasitas Baterai
Tabel 4.40 Matriks Penjumlahan Setiap Baris Subkriteria Kapasitas Baterai62
Tabel 4.41 Ratio Konsistensi Subkriteria Kapasitas Baterai

Tabel 4.42 Hasil Perhitungan Setiap Prioritas Kriteria dan Sub Kriteria	63
Tabel 4.43 Data Merk Handphone Yang Dipilih	63
Tabel 4.44 Hasil Perhitungan Setiap Prioritas Kriteria dan Sub Kriteria	65
Tabel 4.45 Desain Tabel Admin	86
Tabel 4.46 Desain Tabel Kategori	86
Tabel 4.47 Desain Tabel Alternatif	87
Tabel 4.48 Desain Tabel Kriteria	87
Tabel 4.49 Desain Tabel Subkriteria	88
Tabel 4.50 Desain Tabel Perbandingan Kriteria	88
Tabel 4.51 Desain Tabel Perbandingan Subkriteria	89
Tabel 4.52 Desain Tabel Prioritas Kriteria	89
Tabel 4.53 Desain Tabel Prioritas Subkriteria	90
Tabel 4.54 Desain Tabel Hasil	92

BABI

PENDAHULUAN

1.1 Latar Belakang Masalah

Perkembangan teknologi informasi dan komunikasi sangatlah cepat, sebagai akibat dari arus globalisasi. Salah satu perangkat teknologi informasi dan komunikasi yang mengalami perkembangan yang cepat adalah telepon seluler / handphone. Handphone merupakan salah satu alat komunikasi yang diperlukan oleh manusia, mulai dari anak-anak, remaja, dewasa, hingga orangtua. Handphone bukan hanya sekedar alat telekomunikasi sebagai layanan telepon maupun pesan singkat, namun seiring perkembangannya handphone menjadi perangkat mobile yang serbaguna. (Nurul Chafid, 2016)

Handphone sendiri memiliki banyak tipe dan spesifikasi. Banyaknya tipe-tipe kamera membuat konsumen kebingungan dalam memilih produk handphone yang diinginkan, tak heran jika konsumen kadang salah memilih handphone yang sesuai dengan kebutuhan dikarenakan kemajemukan tipe, spesifikasi dan harga yang ditawarkan. (digilib.uin-suka.ac.id/29738/2/13651063_BAB-I_IV-atau-V DAFTAR-PUSTAKA.pdf) di akses pada tanggal 17 november 2020.

Penerapan sistem pendukung keputusan (Decision Support System) dalam pemilihan handphone akan memberikan penilaian secara terstruktur yang dapat membantu konsumen. sistem pendukung keputusan adalah suatu sistem berbasis komputer yang dapat menghasilkan alternatif terbaik yang telah ditentukan berdasarkan kriteria-kriteria tertentu untuk membantu para pengambil keputusan

dalam menentukan keputusan secara objektif. (Sri Wahyuni, 2019). Sedangkan Menurut Suryadi dan Ramdhani dalam penelitian. Aplikasi DSS menggunakan data, memberikan antarmuka pengguna yang mudah dan dapat menggabungkan pemikiran pengambil keputusan. DSS lebih ditujukan untuk mendukung manajemen dalam melakukan pekerjaan yang bersifat analitis dalam situasi yang kurang terstruktur dan dengan kriteria yang kurang jelas. DSS tidak dimaksudkan untuk mengotomatisasikan pengambilan keputusan tetapi memberikan perangkat interaktif yang memungkinkan pengambil keputusan untuk melakukan berbagai analisis menggunakan model-model yang tersedia. (Supiyandi, 2020)

Pengambilan keputusan jika memiliki sejumlah bobot dari kriteria yang belum diketahui maka dapat ditentukan dengan menggunakan metode AHP yang menerima sejumlah input dari penilai dalam bentuk matriks perbandingan berpasangan. Metode Analytical Hierarchy Process (AHP) dikembangkan oleh Thomas L. Saaty, seorang ahli matematika pada tahun 1970. Metode ini adalah sebuah kerangka untuk mengambil keputusan dengan efektif atas persoalan yang sangat kompleks dengan menyederhanakan dan mempercepat proses pengambilan keptusan dengan memecahkan persoalan tersebut kedalam bagian-bagiannya, menata bagian atau variabel ini dalam suatu susunan hirarki, memberi nilai numerik pada pertimbangan subjektif tentang pentingnya setiap variabel dan mensitensis berbagai pertimbangan untuk menetapkan variabel yang mana yang memiliki prioritas paling tinggi dan bertindak untuk mempengaruhi hasil pada situasi tersebut. (Suci Ramadhani, 2020).

Pada hakekatnya AHP merupakan suatu model pengambil keputusan yang komprehensif dengan memperhitungkan hal-hal yang bersifat kualitatif dan kuantitatif. Dalam model penghitungan keputusan dengan AHP pada dasarnya berusaha menutupi semua kekurangan dari model-model sebelumnya. AHP juga memungkinkan ke struktur suatu sistem dan lingkungan kedalam komponen saling berinteraksi dan kemudian menyatukan mereka dengan mengukur dan mengatur dampak dari komponen kesalahan sistem (Saaty,2001). Rumus yang di gunakan, Consistency Index: (t-n)/n dan hasil akan diuji dengan Consistency Ratio: CI/RI. Apabila hasil CR kurang dari 0.1 hasil dinyatakan Konsisten atau dapat diterima. (Mohammad Adzan, 2019)

Berdasarkan latar belakang tersebut maka dalam penelitian ini penulis mengangkat sebuah topik yang bertujuan untuk merancang sebuah aplikasi sistem penunjang keputusan dengan judul "RANCANG BANGUN SISTEM PENUNJANG KEPUTUSAN UNTUK PEMILIHAN PEMBELIAN HANDPHONE TERBAIK BAGI PELANGGAN DI FAREL LUBUK BASUNG KABUPATEN AGAM MENGGUNAKAN METODE AHP DENGAN MENGGUNAKAN BAHASA PEMROGRAMAN PHP DAN DATABASE MYSQL".

1.2 Perumusan Masalah

Berdasarkan latar belakang diatas penulis dapat merumuskan beberapa masalah diantaranya :

- 1. Bagaimana sistem pendukung keputusan dapat membantu dalam penentuan pemilihan handphone di Farel Lubuk Basung Kabupaten Agam?
- 2. Bagaimana sistem pendukung keputusan dengan metode *Analitical Hierarchy Process* (AHP) dapat menghasilkan keputusan yang tepat ?
- 3. Bagaimana sistem pendukung keputusan dengan Metode Analitical Hierarchy Process (AHP) dapat menentukan jenis dan tipe handphone yang perlu dipertimbangkan pada saat membeli handphone?

1.3 Hipotesa

Berdasarkan perumusan masalah di atas, maka dapat diambil beberapa hipotesa, yaitu :

- Diharapkan dengan adanya sistem penunjang keputusan dapat membantu dalam penentuan pemilihan handphone di Farel Lubuk Basung Kabupaten Agam.
- 2. Diharapkan dengan adanya sistem penunjang keputusan dengan menerapkan metode *Analitical Hierarchy Process* (AHP) dapat menghasilkan keputusan yang tepat.

 Diharapkan dengan adanya jenis dan tipe apa saja yang menjadi pertimbangan dalam pembelian handphone di Farel Lubuk Basung Kabupaten Agam.

1.4 Batasan Masalah

Untuk menghindari terjadinya pengembangan masalah yang lebih luas dan penulisan penelitian ini lebih terarah maka penulis menetapkan batasan-batasan terhadap masalah yang akan diteliti, yaitu:

- 1. Bagaimana sistem pendukung keputusan dengan menerapkan metode Analitical Hierarchy Process (AHP) dapat menghasilkan keputusan yang tepat ?
- 2. Jenis dan tipe apa saja yang menjadi pertimbangan dalam pembelian handphone di Farel Lubuk Basung Kabupaten Agam?

1.5 Tujuan Penelitian

Tujuan dari penelitian ini adalah sebagai berikut :

- Membangun sistem pendukung keputusan yang dapat menghasilkan keputusan yang tepat dan akurat.
- 2. Menerapkan metode *Analitical Hierarchy Process* (AHP) dalam pembuat sistem menggunakan bahasa pemrograman php dan database mysql yang mampu untuk membantu pengambilan keputusan dalam memilih handphone.

1.6 Manfaat Penelitian

Manfaat dari penelitian ini diharapkan yaitu:

- Dari sistem yang dibangun dapat membantu seseorang dalam pengambilan keputusan dalam pemilihan handphone.
- Bagi peneliti, dapat mengaplikasikan ilmu yang diperoleh dari bangku perkuliahan, melatih pola pikir yang sistematis dan ilmiah, dan menjadi acuan untuk pengembangan penelitian selanjutnya.
- 3. Bagi pihak lain, diharapkan dapat memberikan ilmu pengetahuan khususnya bidang ilmu teknologi informasi dan dijadikan sebagai referensi untuk pengembangan penelitian selanjutnya.
- Penulis, bertambah wawasan dan pengalaman penulis dalam bidang programming dan teknologi informasi dalam hal-hal yang berkaitan dengan metodologi penulisan tugas akhir.

1.7 Sistematika Penulisan

Sistematika penulisan yang digunakan dalam pemilihan skripsi iniadalah sebagaiberikut:

BAB I PENDAHULUAN

Pada bab ini terdiri dari latar belakang pemilihan judul, rumusan masalah, hipotesa, batasan masalah, tujuan penelitian, manfaat penelitian dan sistematika penulisan yang digunakan.

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

Bab ini menjelaskan tentang tinjauan pustaka, serta menguraikan teori-teori yang mendasari pembahasan secara detail, dapat berupa definisi-definisi atau model yang langsung berkaitan dengan ilmu atau masalah yang diteliti.

BAB III METODE PENELITIAN

Bab ini menjelakan tentang tinjauan umum yang menguraikan tentang gambaran umum objek penelitian, dan analisa kasus yang doiteliti yang diimplementasikan kedalam web sistem informasi, pengujian aplikasi program dan hasilnya.

BAB IV IMPLEMENTASI DAN PEMBAHASAN

Pada bab ini akan membahas tentang hasil program aplikasi yang akan diimplementasikan kedalam web sistem informasi, pengujian aplikasi program, dan hasilnya.

BAB V PENUTUP

Pada bab ini terakhir ini berisi tentang kesimpulan dan saran-saran mengenai rancang bangun sistem penunjang keputusan menggunakan bahasa pemrograman PHP dan Database Mysql.

BABII

TINJAUAN PUSTAKA

2.1 Konsep Dasar Sistem

Suatu sistem adalah jaringan kerja dari prosedur-prosedur yang saling berhubungan, berkumpul bersama-sama untuk melakukan suatu kegiatan atau menyelesaikan suatu sasaran tertentu. Sistem yang baik harus mempunyai tujuan dan sasaran yang tepat karena hal ini akan sangat menentukan dalam mendefinisikan masukan yang dibutuhkan sistem dan juga keluaran yang dihasilkan (Kristanto, 2018).

2.1.1 Pengertian Sistem

Sistem adalah kumpulan elemen-elemen yang saling bekerjasama dan berinteraksi untuk memproses masukan kemudian saling berhubungan untuk mencapai tujuan tertentu (Ayu & Permatasari, 2018). Sistem didefinisikan sebagai seperangkat komponen yang saling terkait, dengan batasan yang jelas, yang bekerja sama untuk mencapai tujuan tertentu dengan menerima masukan dan menghasilkan keluaran dalam proses transformasi yang terorganisasi (Balgis, 2017).

Selain itu sistem dapat didefinisikan sebagai sekumpulan objek-objek yang saling berinteraksi dan berelasi, serta hubunga antar objek bias dilihat sebagai satu kesatuan yang dirancang untuk mencapai satu tujuan yang telah ditetapka (Agung Ramdhanu, 2017).

2.1.2 Karakteristik Sistem

Sebuah sistem mempunyai beberapa karakteristik, yang diantaranya adalah :

1. Komponen atau elemen (Components)

Suatu sistem terdiri dari komponen-komponen yang saling berinteraksi, yang artinya saling bekerja sama membentuk suatu kesatuan.

2. Batas sistem (*Boundary*)

Batas sistem merupakan daerah yang membatasi antara sistem yang satu dengan sistem yang lainnya atau dengan lingkungan luarnya. Adanya batas sistem, maka sistem dapat membentuk suatu kesatuan, karena dengan batas sistem ini, fungsi dan tugas dari subsistem satu dengan yang lainnya berbeda tetapi tetap saling berinteraksi.

3. Lingkungan luar sistem (*Environment*)

Lingkungan luar sistem adalah segala sesuatu diluar batas sistem yang mempengaruhi operasi suatu sistem.

4. Penghubung sistem (*Interface*)

Penghubung sistem merupakan suatu media (penghubung) antara satu subsistem dengan subsistem lainnya yang membentuk satu kesatuan.

5. Masukan (*Input*)

Input adalah energi atau sesuatu yang dimasukkan ke dalam suatu sistem yang dapat berupa masukkan yaitu energi yang dimasukkan supaya sistem dapat beroperasi.

6. Luaran (*Output*)

Merupakan hasil dari energi yang diolah dan diklarifikasi menjadi luaran yang berguna, juga menjadi luaran atau tujuan akhir sistem.

7. Pengolah (*Process*)

Suatu sistem mempunyai bagian pengolah yang akan mengubah *input* menjadi *output*.

8. Sasaran (*Objective*)

Sasaran dari sistem sangat menentukan sekali masukan yang dibutuhkan sistem dan keluaran yang akan dihasilkan sistem. Suatu sistem dikatakan berhasil bila mengenai sasaran atau tujuannya (Faizal & Putri, 2017).

2.1.3 Klasifikasi Sistem

Dari berbagai sudut pandang, sistem dapat diklasifikasikan menjadi beberapa bagian yaitu (Kristanto, 2018) :

1. Sistem abstrak dan sistem fisik

Sistem abstrak merupakan sistem yang tidak bisa dilihat secara mata biasa dan biasanya sistem ini berupa pemikiran atau ide-ide. Contoh dari sitem abstrak ini adalah filsafat. Sistem fisik merupakan sistem yang bisa dilihat secara mata biasa dan biasanya sering digunakan oleh manusia. Contoh dari sistem fisik adalah sistem komputer.

2. Sistem alamiah dan sistem buatan manusia

Sistem alamiah merupakan sistem yang terjadi karena pengaruh alam. Misalnya sistem rotasi bumi. Sistem buatan merupakan sistem yang dirancang dan dibuat oleh manusia. Misalnya sistem pengolahan gaji.

3. Sistem tertutup dan sistem terbuka

Sistem tertutup merupakan sistem yang tidak berhubungan dengan bagian luar sistem dan biasanya tidak terpengaruh oleh kondisi diluar sistem. Sedangkan terbuka merupakan sistem yang tidak berhubungan dengan bagian luar sistem.

2.2 Konsep Dasar Informasi

Informasi dapat diibaratkan sebagai darah yang mengalir didalam tubuh manusia, seperti halnya informasi didalam sebuah perusahaan yang sangat penting untuk mendukung kelansungan perkembangannya, sehingga terdapat alasan bahwa informasi sangat dibutuhkan bagi sebuah perusahaan. Jadi dapat disimpulkan informasi merupakan kumpulan data yang diolah menjadi bentuk yang lebih berguna dan lebih berarti bagi yang menerima. Tanpa suatu informasi, suatu sistem tidak akan berjalan dengan lancar dan akhirnya bisa mati. Sumber informasi adalah data, dimana data tersebut akan diolah dan diterapkan dalam sistem menjadi *input* yang berguna dalam suatu sistem (Kristanto, 2018).

2.2.1 Pengertian Informasi

Informasi adalah data yang diolah menjadi bentuk yang berguna untuk membuat keputusan karena menirukan ketidakpastian (atau meningkatkan pengetahuan). Informasi tersebut merupakan hasil pengolahan data atau fakta yang dikumpulkan dengan metode atau cara-cara tertentu (Muslihudin & Oktavianto, 2016). Informasi adalah data yang telah diolah menjadi bentuk yang lebih berguna bagi yang menerima (Sitohang, 2018).

2.2.2 Kualitas Informasi

Kualitas dari informasi adalah sebagai berikut (Kristanto, 2018):

1. Akurat.

Informasi yang dihasilkan harus bebas dari kesalahan-kesalahan dan tidak menyesatkan bagi orang yang menerima informasi tersebut. Ketidakakuratan dapat terjadi karena sumber informasi (data) mengalami gangguan atau kesengajaan sehingga merusak atau merubah data-data asli tersebut.

2. Tepat waktu.

Informasi yang diterima harus tepat pada waktunya, sebab kalau informasi yang diterima terlambat maka informasi tersebut tidak berguna lagi.

3. Relevan.

Informasi harus mempunyai manfaat bagi si penerima, sebab informasi ini akan digunakan untuk pengambilan suatu keputusan dalam pemecahan suatu permasalahan.

4. Ekonomis, efisien dan dapat dipercaya.

Informasi yang dihasilkan mempunyai manfaat yang lebih besar dibandingkan dengan biaya mendapatkannya dan sebagian besar informasi tidak dapat tepat ditaksir keuntungannya dengan satuan nilai uang tetapi dapat ditaksir nilai efektivitasnya. Selain itu informasi yang dihasilkan juga bisa dipercaya kebenarannya.

2.2.3 Siklus Informasi

Data yang diolah untuk menghasilkan informasi menggunakan model proses yang tertentu. Data yang diolah melalui suatu model menjadi informasi, kemudian penerima menerima informasi tersebut, yang berarti menghasilkan keputusan dan melakukan tindakan yang lain yang akan membuat sejumlah data kembali. Data tersebut akan ditangkap sebagai input, diproses kembali lewat suatu model dan seterusnya yang disebut dengan siklus informasi (*information cycle*). Siklus ini juga disebut dengan siklus pengolahan data (*data processing cycles*). (Japerson Hutahaean, 2015). Agar lebih jelas, dapat dilihat pada Gambar 2.1 berikut:

(Sumber: Tomi Loveri, 2016)

Gambar 2.1 Siklus Informasi

2.3 Konsep Dasar Sistem Informasi

Sebuah sistem informasi merupakan kumpulan dari perangkat keras dan perangkat lunak komputer serta perangkat manusia yang akan mengolah data menggunakan perangkat keras dan perangkat lunak tersebut (Kristanto, 2018). Sistem dapat diartikan sebagai suatu kumpulan atau himpunan dari unsur, komponen, atau variabel yang terorganisir, saling berintegrasi saling tergantung satu sama lain, dan terpadu. sebuah sistem terdiri atas bagian bagian atau komponen yang terpadu untuk satu tujuan (Rusli Saputra, 2015).

2.3.1 Pengertian Sistem Informasi

Sistem informasi adalah kumpulan dari subsistem apapun baik fisik ataupun non fisik yang saling berhubungan satu sama lain dan bekerja sama secara harmonis untuk mencapai satu tujuan yaitu mengolah data menjadi informasi yang berarti dan berguna (Hutahaean, 2015).

Sistem informasi merupakan suatu sistem yang dibuat oleh manusia yang terdiri dari komponen-komponen dalam organisasi untuk mencapai suatu tujuan yaitu menyajikan suatu informasi. Sistem informasi menerima masukan data instruksi, mengola data tersebut menurut instruksi, dan mengeluarkan hasilnya (Tomi Loveri, 2016).

2.3.2 Komponen Sistem Informasi

Komponen-komponen sistem informasi adalah sebagai berikut (Kristanto, 2018):

1. Input

Input adalah semua data yang dimasukkan ke dalam sistem informasi.

Dalam hal ini yang termasuk dalam input adalah dokumen-dokumen,
formulir-formulir dan file-file.

2. Proses

Proses merupkan kumpulan prosedur yang memanipulasi *input* yang kemudian akan disimpan dalam bagian basis data dan seterusnya akan diolah menjadi *output* yang akan digunakan oleh si penerima.

3. Output

Output merupakan semua keluaran atau hasil dari model yang sudah diolah menjadi suatu informasi yang berguna dan dapat dipakai penerima.

4. Teknologi

Teknologi merupakan bagian yang berfungsi untuk memasukkan *input*, mengolah *input* dan menghasilkan keluaran. Teknologi ini meliputi perangkat keras, perangkat lunak, dan perangkat manusia.

5. Basis data

Basis data merupakan kumpulan data-data yang saling berhubungan satu dengan yang lain yang disimpan dalam perangkat keras komputer dan akan diolah menggunakan perangkat lunak.

6. Kendali

Kendali merupakan semua tindakan yang diambil untuk menjaga sistem tersebut agar bisa berjalan dengan lancar dan tidak mengalami gangguan.

2.4 Sistem Pendukung Keputusan

SPK atau Decision Support System (DSS) pertama kali diungkapkan pada awal tahun 1970-an oleh Michael S. Scott Morton dengan istilah Management Decision System. Sistem tersebut adalah suatu sistem yang berbasis komputer yang ditujukan untuk membantu mengambil keputusan dengan memanfaatkan data dan model tertentu untuk memecahkan berbagai persoalan yang tidak terstruktur. SPK adalah sebuah sistem yang mampu memberikan kemampuan pemecahan masalah maupun kemampuan pengkomunikasian untuk masalah dengan kondisi semi terstruktur dan tak terstruktur. Sistem ini digunakan untuk membantu pengambilan

keputusan dalam situasi semi terstruktur dan situasi yang tidak terstruktur, di mana tak seorang pun tahu secara pasti bagaimana keputusan seharusnya dibuat (Nur Arifah Syafitri, *et al.*, 2016).

2.4.1 Tahapan Pengambilan Keputusan

SPK adalah model yang menggambarkan proses pengambilan keputusan proses ini terdiri dari tiga fase, yaitu sebagai berikut :

- Intelligence, tahap ini merupakan proses penelusuran dan pendeteksian dari lingkup problematika serta proses pengenalan masalah. Data masukan diperoleh, diproses, dan diuji dalam rangka mengindentifikasi masalah.
- Design, tahap ini merupakan proses menemukan, mengembangkan, dan menganalisis alternatif tindakan yang bisa dilakukan. Tahap ini meliputi proses untuk mengerti masalah, menurunkan solusi dan menguji kelayakan solusi.
- 3. *Choice*, pada tahap ini dilakukan proses pemilihan diantara berbagai alternatif tindakan yang mungkin dijalankan. Hasil pemilihan tersebut kemudian diimplementasikan dalam proses pengambilan keputusan (Wahyuni & Tiyas, 2017).

2.4.2 Komponen Sistem Pendukung Keputusan

Adapun komponen-komponen dari sistem pendukung keputusan yaitu (Rudi Febrianto, *et al.*, 2017) :

- Manajemen Data (Data Management): merupakan komponen SPK sebagai penyedia data bagi sistem dan data disimpan dalam Database Management System (DBMS), sehingga dapat diakses dan diekstraksi dengan cepat.
- 2. Manajemen Model (*Model Management*): melibatkan model finansial, statistikal, manajemen science, atau berbagai model kuantitatif lainnya, sehingga dapat memberikan ke sistem suatu kemampuan analitis dan manajemen *software* yang diperlukan.
- 3. Dialog Subsistem (*Communication*) : *user* dapat berinteraksi dan memberikan perintah pada SPK melalui subsistem ini dan berarti menyediakan antarmuka.
- 4. Manajemen Pengetahuan (*Knowledge Management*): subsistem optional ini dapat mendukung subsistem lain atau bertindak sebagai komponen yang berdiri sendiri.

Komponen-komponen SPK dapat digambarkan melalui Gambar 2.2 sebagai berikut :

(Sumber: Luh Made Yulyantari, 2019)

Gambar 2.2 Komponen Sistem Pendukung Keputusan

2.4.3 Tujuan Sistem Pendukung Keputusan

Adapun tujuan dari SPK adalah sebagai berikut :

- Membantu manajemen dalam pengambilan keputusan atas masalah semi terstruktur.
- Memberikan dukungan atas pertimbangan manajer dan bukannya di maksudkan untuk menggantikan fungsi manajer.
- 3. Meningkatkan efektifitas keputusan yang diambil manajer lebih dari pada perbaikan efisiensinya.
- Kecepatan komputasi komputer memungkinkan para pengambil keputusan untuk melakukan banyak komputasi secara cepat dengan biaya yang rendah.
- 5. Peningkatan produktivitas, membangun satu kelompok pengambilan keputusan, terutama para pakar, bisa sangat mahal. Pendukung terkomputerisasi bisa mengurangi ukuran kelompok dan memungkinkan para anggotanya untuk berada di berbagai lokasi yang berbeda beda.
- 6. Dukungan kualitas komputer bisa meningkatkan kualitas yang di buat.
- 7. Berdaya saing manajemen dan pemberdayaan perusahaan, tekanan persaingan menyebabkan tugas pengambilan keputusan menjadi sulit. Persaingan didasarkan tidak hanya pada harga dan dukungan pelanggan.
- 8. Mengatasi keterbatasan kognitif dalam pemrosesan dan penyimpanan (Rudi Febrianto, *et al.*, 2017).

2.5 Metode Analitical Hierarchy Process (AHP)

Analytical Hierarchy Process merupakan suatu metode pendukung keputusan yang dikembangkan oleh Thomas L. Saaty. Model pendukung keputusan ini akan menguraikan masalah multi faktor atau multi kriteria yang kompleks menjadi suatu hierarki. Menurut Saaty, hierarki didefinisikan sebagai suatu representasi dari sebuah permasalahan yang kompleks dalam suatu struktur multilevel dimana level pertama adalah tujuan, yang diikuti level faktor, kriteria, sub kriteria, dan seterusnya hingga level terakhir dari alternatif. Analytical Hierarchy Process digunakan sebagai metode pemecahan masalah dibanding dengan metode yang lain karena alasan-alasan berikut (Munthafa & Mubarok, 2017):

- Struktur yang berhierarki, sebagai konsekuensi dari kriteria yang dipilih, sampai pada sub kriteria yang paling dalam.
- 2. Memperhitungkan validitas sampai dengan batas toleransi inkonsistensi sebagai kriteria dan alternatif yang dipilih oleh pengambil keputusan.
- Memperhitungkan daya tahan output analisis sensitivitas pengambilan keputusan.

2.5.1 Prinsip Dasar Analitical Hierarchy Process (AHP)

Dalam menyelesaikan permasalahan dengan AHP ada beberapa prinsip yang harus dipahami, diantaranya adalah (Wahyuni & Tiyas, 2017):

a. Membuat hierarki

Sistem yang kompleks bisa dipahami dengan memecahnya menjadi elemen-elemen pendukung, menyusun elemen secara hierarki, dan menggabungkannya.

b. Penilaian kriteria dan alternatif

Kriteria dan alternatif dilakukan dengan perbandingan berpasangan. Menurut Saaty, "untuk berbagai persoalan skala 1 sampai 9 adalah skala terbaik untuk mengekspresikan pendapat. Nilai dan definisi pendapat kualitatif dari skala perbandingan Saaty bisa diukur menggunakan tabel analisis seperti Tabel 2.1".

Tabel 2.1 Tabel Skala Perbandingan Berpasangan

	Skala Perdandingan Berpasangan
Intensitas Kepentingan	Keterangan
1	Kedua elemen sama penting.
3	Elemen yang satu sedikit lebih penting daripada yang lainnya.
5	Elemen yang satu lebih penting dari elemen yang lainnya.
7	Satu elemen jelas mutlak penting daripada elemen lainnya
9	Satu elemen mutlak penting daripada elemen lainnya.
2,4,6,8	Nilai-nilai antara dua nilai pertimbangan yang berdekatan.
Kebalikan	Jika aktivitas <i>i</i> mendapat satu angka dibandingkan dengan aktivitas <i>j</i> , maka <i>j</i> memiliki nilai kebalikannya dibandingkan dengan <i>i</i> .

(Sumber: Wahyuni & Tiyas, 2017)

c. Menentukan prioritas

Untuk setiap kriteria dan alternatif, perlu dilakukan perbandingan berpasangan. Nilai-nilai perbandingan relatif dari seluruh alternatif kriteria bisa disesuaikan dengan judgement yang telah ditentukan untuk menghasilkan bobot dan prioritas. Bobot dan prioritas dihitung dengan memanipulasi matriks atau melalui penyelesaian persamaan matematika.

d. Konsistensi logis

Konsistensi memiliki dua makna, pertama objek-objek yang serupa bisa dikelompokkan sesuai dengan keseragaman dan relevansi. Kedua, menyangkut tingkat hubungan antar objek yang didasarkan pada kriteria tertentu.

2.5.2 Kelebihan dan Kelemahan Analitical Hierarchy Process (AHP)

Layaknya sebuah metode analisis, AHP pun memiliki kelebihan dan kelemahan dalam sistem analisisnya. Kelebihan-kelebihan analisis ini adalah (Munthafa & Mubarok, 2017):

1. Kesatuan (*Unity*)

AHP membuat permasalahan yang luas dan tidak terstruktur menjadi suatu model yang fleksibel dan mudah dipahami.

2. Kompleksitas (*Complexity*)

AHP memecahkan permasalahan yang kompleks melalui pendekatan sistem dan pengintegrasian secara deduktif.

3. Saling ketergantungan (*Interdependence*)

AHP dapat digunakan pada elemen-elemen sistem yang saling bebas dan tidak memerlukan hubungan linier.

4. Struktur Hirarki (*Hierarchy Structuring*)

AHP mewakili pemikiran alamiah yang cenderung mengelompokkan elemen sistem ke level-level yang berbeda dari masing-masing level berisi elemen serupa.

5. Pengukuran (*Measurement*)

AHP menyediakan skala pengukuran dan metode untuk mendapatkan prioritas.

6. Sintesis (*Synthesis*)

AHP mengarah pada perkiraan keseluruhan mengenai seberapa diinginkannya masing-masing alternatif.

7. Trade Off

AHP mempertimbangkan proritas relatif faktor-faktor pada sistem sehingga orang mampu memilih alternatif terbaik berdasarkan tujuan mereka.

8. Penilaian dan Konsensus (*Judgement and Consensus*)

AHP tidak megharuskan adanya suatu consensus, tapi menggabungkan hasil penilaian yang berbeda.

9. Pengulangan Proses (*Process Repetition*)

AHP mampu membuat orang menyaring definisi dari suatu permasalahan dan mengembangkan penilaian serta pengertian mereka melalui proses pengulangan.

Sedangkan kelemahan metode AHP adalah sebagai berikut (Agnia Eva Munthafa dan Husni Mubarok, 2017):

- Ketergantungan model AHP pada input utamanya. Input utama ini berupa persepsi seorang ahli sehingga dalam hal ini melibatkan subyektifitas sang ahli. Selain itu, model menjadi tidak berarti jika ahli tersebut memberikan penilaian yang keliru.
- Metode AHP ini hanya metode matematis tanpa ada pengujian secara statistik sehingga tidak ada batas kepercayaan dari kebenaran model yang terbentuk.

2.5.3 Prosedur Analitical Hierarchy Process (AHP)

Prosedur atau langkah–langkah dalam metode AHP meliputi (Wahyuni & Tiyas, 2017):

- a. Mendefinisikan masalah dan menentukan solusi yang diinginkan, lalu menyusun hierarki dari permasalahan yang dihadapi. Penyusunan hierarki adalah dengan menetapkan tujuan yang merupakan sasaran sistem secara keseluruhan pada level teratas.
- b. Menentukan prioritas elemen
 - 1) Membuat perbandingan pasangan, yaitu membandingkan elemen secara berpasangan sesuai kriteria yang diberikan.
 - Matriks perbandingan berpasangan diisi menggunakan bilangan untuk merepresentasikan kepentingan relatif dari suatu elemen terhadap elemen lainnya.

c. Sintesis

Pertimbangan-pertimbangan terhadap perbandingan berpasangan di sintesis untuk memperoleh keseluruhan prioritas. Hal – hal yang dilakukan dalam langkah ini adalah:

- 1) Menjumlahkan nilai-nilai dari setiap kolom pada matriks
- Membagi setiap nilai dari kolom dengan total kolom yang bersangkutan untuk memperoleh normalisasi matriks
- 3) Menjumlahkan nilai–nilai dari setiap baris dan membagi dengan jumlah elemen untuk mendapatkan nilai rata rata.

Penghitungan dilakukan lewat cara menjumlahkan nilai setiap kolom yang bersangkutan untuk memperoleh normalisasi matriks, dan menjumlahkan nilai-nilai dari setiap baris dan membaginya dengan jumlah elemen untuk mendapatkan rata-rata.

Apabila A adalah matriks perbandingan berpasangan, maka vektor bobot yang berbentuk:

$$(A)(wT) = (n)(wT) \tag{1}$$

dapat didekati dengan cara:

1) Menormalkan setiap kolom j dalam matriks A, sedemikian hingga:

$$\Sigma_i(i,)i = 1 \tag{2}$$

sebut sebagai A'.

2) Hitung nilai rata-rata untuk setiap baris i dalam A':

$$wi = \frac{1}{n} \sum_{i} a(i, j)$$
 (3)

dengan wi adalah bobot tujuan ke-i dari vektor bobot.

- d. Mengukur konsistensi Dalam pembuatan keputusan, penting untuk mengetahui seberapa baik konsistensi yang ada karena tidak menginginkan keputusan bersdarkan pertimbangan dengan konsistensi yang rendah. Hal-hal yang dilakukan dalam langkah ini adalah :
 - Kalikan setiap nilai pada kolom pertama dengan prioritas relatif elemen pertama, nilai pada kolom kedua dengan prioritas relatif elemen kedua, dan seterusnya.
 - 2) Jumlahkan setiap baris
 - Hasil dari penjumlahan baris dibagi dengan elemen prioritas relatif yang bersangkutan.
 - Jumlahkan hasil bagi diatas dengan banyaknya elemen yang ada, hasil disebut λ maks.
- e. Hitung Consistency index (CI) dengan rumus:

$$CI = \frac{(\lambda \operatorname{maks} - n)}{n} \tag{4}$$

dimana n = banyaknya elemen

f. Hitung Rasio Konsistensi atau Consistency Ratio (CR) dengan rumus:

$$CR = \frac{CI}{IR} \tag{5}$$

Dimana CR = Consistency Ratio

CI = Consistency Index

IR = Index Random Consistency

g. Memeriksa konsistensi hierarki. Jika nilainya lebih dari 10%, maka penilaian data judgement harus diperbaiki. Namun jika rasio konsistensi (CI/IR) kurang atau sama dengan 0.1. maka hasil perhitungan bisa dinyatakan benar.

2.6 Pengertian Handphone

Handphone (hp) atau disebut pula dengan telepon seluler (ponsel) adalah perangkat telkomunikasi elekronik yang mempunyai kemampuan dasar yang sama dengan telepon konvensial saluran tetap, namun dapat dibawa kemana-mana (portabel,mobile) dan tidak perlu disambungkan dengan jaringan telepon menggunakan kabel (nirkabel;wireless).

Saat ini ada dua teknologi sistem operasional, handphone (hp) atau telepon seluler (ponsel) yang digunakan oleh operator telkomunikasi di indonesia. Teknologi yang dimaksud adalah Global System mobile Communication (GSM) dan Code Divusion Multipe Access (CDMA), secara prinsip, beda antara keduanya adalah cara penggunaan kodedan pemancaran frekuensi yang digunakan. (Soni Daniswara dan Riyan,2007) di akses pada tanggal 16 desember 2020.

2.7 Penelitian Terdahulu (State of the art)

Tabel 2.2 Tabel Penelitian Terdahulu (State of the art)

		er i chentian	Terdanulu (State of the ar	<i>'</i>
No.	Nama Pengarang (Tahun)	Metode	Data	Hasil
1.	Adi Ferdian (2020)	AHP (Analytica 1 Hierarchy Process)	Studi pustaka dan observasi berupa pengumpulan data, dilakukan dengan melakukan pengamatan langsung terhadap website seperti GSMarena.com dan beberapa website informasi ponsel dengan sampel beberapa data ponsel dan kriterianya.	Dilakukan perhitungan yang sama pada setiap data handphone, dan didapatkan hasil MI 9 dengan nilai tertinggi dan merupakan rangking 1 dengan nilai 0,31. Maka dapat disimpulkan bahwa sampel diatas dapat dipilih menjadi pilihan yg direkomendasikan untuk pembeli handphone.
2.	Muhamad Muslihudi n dan Dewi Rahayu (2018)	Weighted Product	Pada penelitian ini penulis menggunakan teknik observasi wawancara(di lakukan di SMK Muhammadiyah 1 Pringsewu tentang bagaimana menentukan siswa berprestasi yang unggul dalam proses pembelajaran dari semua jurusan yang ada) dan study pustaka.	Hasil yang diperoleh dalam penelitian metode Weighted product (WP) dapat membantu mengambil keputusan untuk

3.	Deny Novianti dan Andika Bayu Hasta Yanto (2019)	SAW (Simple Additive Weighting)	Metode pengumpulan data yang digunakan adalah wawancara dengan narasumber yg bernama Firdaus Amariskan Cahya(Seven Computech) diperoleh lima kriteria	cukup membantu untuk menentukan laptop terbaik yang digunakan oleh jurusan multimedia. Dapat dilihat dari hasil perhitungan yang menunjukkan bahwa Alternatif yang paling unggul adalah Asus X450YA dengan hasil akhir 23%, Asus X441NA = 22%, HP BS003TU
				= 21%, Acer Aspire V5-123 = 20%, dan di posisi terakhir ada Lenovo IP210 = 14%.
4.	Alwendi dan Dasril Aldo (2019)	ORESTE	Metode yang digunakan dalam pengumpulan data terdiri dari wawancara, observasi, dan studi pustaka sedangkan objek penelitian dalam penelitian ini adalah toko handpone di kota padangsidimpuan	Dari hasil analisa dan penerapannya, metode oreste menghasilkan alternatif A sebagai toko handphone terbaik di kota Padangsidimpuan dengan nilai preference A = 5,3556, dengan demikian metode

				Oreste mampu memecahkan masalah toko handphone terbaik di kota Padangsidimpuan dengan menghasilkan Toko Selamat Cellular adalah toko yang terbaik atau
5.	Siti Sundari, Sinta Maria Sinaga, Irfan Sudahri Damanik, Anjar Wanto (2019)	Electre	Ada beberapa kriteria yang dipertimbangkan yang digunakan untuk memilih peserta olmpiade. Kriteria tersebut antara lain nilai rata-rata, nilai matematika, keterampilan, prilaku dan kehadiran. Objek siswa SMA Teladan, SMA Swasta di kota Pematangsiantar.	Rangking 1 Hasil dari perhitungan dengan metode Electre maka diperoleh peringkat yang paling tinggi A5 yaitu Mei Asi Marba Tambuan.
6.	Putu Praba Santika dan I Putu Susila Handika (2018)	AHP dan TOPSIS	Dengan proses wawancara, kepada PT. Global Retailindo Pratama mengunakan empat buah kriteria dalam seleksi karyawan baru yaitu pendidikan, kecerdasan, pengalaman, dan hasil wawancara.	Hasil perhitungan yang dihasilkan sistem sama dengan hasil perhitungan yang dilakukan secara manual. Dimana alternatif yang terpilih adalah

				alternatif nomor 8 yang memiliki kriteria pendidikan adalah S1, kecerdasan tinggi, pengalaman tinggi dan hasil wawancara tinggi dengan nilai jarak alternatif solusi ideal adalah 1.
7	Arief Herdiansa h (2020)	AHP	Metode yang digunakan yaitu wawancara dan metode sampling. Metode wawancara dilakukan untuk melakukan pengambilan data kriteria dan bobotnya dari lima ketua program studi pada fakultas teknik Universitas Muhammadiyah Tangerang, sebagai dasar dari SPK yang dikembangkan. Metode analisa berkas dilakukan untuk melakukan analisa sampling untuk mengambil data beberapa siswa kelas XII IPA sekolaha menengah atas yang ingin melanjutkan studi lanjut di perguruan tinggi/universitas fakultas teknik.	akhir perangkingan SPK jurusan teknik yang paling sesuai dengan siswa yang bersangkutan dalam bentuk diagram batang yang mempermudah pengguna melihat hasil perhitungan SPK yang

	1	<u> </u>	I	111 11 1
				dibandingkan
				teknik industri atau
				teknik informatika.
8.	Narti,	AHP	peneliti melakukan	Hasil dari
	Sriyadi,		penyebaran kuesioner	pengolahan data
	Nur		kepada masyarakat yang	1 0
	Rahmayan		mana dari hasil kuesioner	
	i, Mahmud		tersebut akan diolah	perhitungan metode
	Syarif		sehingga dapat dijadikan	Analytical
	(2010)		sebagai pemecah suatu	Hierarchy Process
	(2019)		masalah dalam hal	didapatkan bahwa
			pemilihan sekolah.	kriteria Kualitas
			Penyebaran kuesioner ini	Sekolah menjadi
			disebar sebanyak 35	kriteria tertinggi
			kuesioner, namun hanya	pada pemilihan
			30 kuesioner yang dapat	sekolah. Kemudian
			diolah.	Sekolah Menengah
				Atas (SMA) lebih
				unggul 0,373 atau
				37,3% sedangkan
				Sekolah Menengah
				Kejuruan (SMK)
				0,370 atau 37,0%,
				Madrasah Aliyah
				(MA) 0,257 atau
				25,7%.
9.	Muhamad	AHP dan	pada penelitian ini data	sistem dapat
	Fahrur	TOPSIS	yang akan digunakan	mencapai nilai
	Rozi, Edy		adalah data yang bersifat	akurasi yang tinggi
	Santoso,		sekunder dimana data	dalam melakukan
	Muhamma		tersebut diperoleh dari	rekomendasi
	d Tanzil		PT. Jagaraga Adika,	penerimaan calon
	Furqon		Surabaya pada tahun	pegawai pada PT.
	(2019)		2017 yang mana data	Jagaraga Adika
			yang diperoleh tersebut	dengan rata-rata
			telah diverifikasi oleh	nilai akurasi
			pihak PT. Jagaraga	sebesar 92,22%
			Adika, Surabaya dan	
			memiliki jumlah total	akurasi ini

10.	Deny	SAW	keseluruhan sebanyak 638 data dan memiliki 4 kriteria utama yang diperlukan dalam membangun sebuah sistem yang digunakan pada penelitian ini.	diperoleh pada skenario uji 2 dengan capaian akurasi tertinggi tiap periode mencapai 100% dan nilai akurasi terendah mencapai 85%.
10.	Deny Febri Wirawan (2019)	(Simple Additive Weightin)	Pada tahap ini dilakukan pengumpulan data yang berhubungan dengan penelitian dan pembuatan sistem, yaitu observasi, wawancara, dan studi pustaka.	menjelaskan aplikasi menampilkan hasil tahapan akhir yang dimana Alternatif Handphone Realme 2 memiliki ranking no 1 dan memiliki nilai sama seperti perhitungan secara manual yaitu 93 Maka dari hasil pengujian yang telah ditunjukkan di atas menunjukkan bahwa sistem penunjang keputusan menggunakan metode SAW yang sudah dilakukan, sudah berjalan dengan benar.

BAB III

METODOLOGI PENELITIAN

3.1 Pendahuluan

Metodologi penelitian adalah suatu cabang ilmu pengetahuan yang membicarakan atau mempersoalkan mengenai cara-cara melaksanakan penelitian (yaitu meliputi kegiatan-kegiatan, mencari, mencatat, merumuskan, menganalisis sampai menyusun laporannya) berdasarkan fakta-fakta atau gejala-gejala secara ilmiah.

Lebih luas lagi dapat dikatakan bahwa metodologi penelitian adalah ilmu yang mempelajari cara-cara melakukan pengamatan dengan pemikiran yang tepat secara terpadu melalui tahapan-tahapan yang disusun secara ilmiah untuk mencari, menyusun serta menganalisis dan menyimpulkan data-data, sehingga dapat dipergunakan untuk menemukan, mengembangkan dan menguji kebenaran sesuatu pengetahuan berdasarkan bimbingan tuhan.

3.2 Kerangka Kerja Penelitian

Adapun kerangka kerja penelitian yang dibuat dalam metodologi penelitian ini memiliki tujuan agar mendapat hasil seperti yang diharapkan dan mudah untuk menyelesaikan permasalahan serta mudah dipahami. Langkah-langkah yang akan dibuat pada penelitian ini disusun secara sistematis. Maka diperlukan kerangka kerja penelitian, dimana kerangka kerja penelitian yang dilakukan seperti gambar 3.1.

Gambar 3.1 Kerangka Penelitian

3.3 Tahapan Penelitian

Tahapan penelitian adalah langkah-langkah yang akan dilakukan untuk mempermudah dalam melakukan penelitian. Adapun tahapan-tahapan dalam penelitian ini adalah sebagai berikut:

3.3.1 Penelitian Pendahuluan

Penelitian pendahuluan merupakan langkah pertama dalam melakukan penelitian. Penelitian dilaksanakan pada Farel pemilihan handphone di Lubuk Basung. Bertujuan untuk membantu pengambilan keputusan dalam pemilihan handphone terbaik di Lubuk Basung.

Penelitian pendahuluan ini dilakukan dengan cara membaca buku-buku, jurnal-jurnal, dan literatur lainnya yang berhubungan dengan penelitian yang akan

dilakukan serta mendatangi langsung objek penelitian dan meminta data-data yang diperlukan dalam penelitian.

3.3.2 Pengumpulan Data

Dalam penelitian ini data-data dikumpulkan dari berbagai sumber dengan melakukan pencarian referensi seperti buku-buku, karya-karya ilmiah maupun jurnal, baik yang ada diperpustakaan maupun yang ada di internet yang berhubungan dengan penelitian. Data juga didapat dari studi lapangan dengan melakukan observasi maupun wawancara secara langsung.

Adapun hal-hal yang berkaitan dalam melakukan pengumpulan data pada metodologi penelitian ini adalah sebagai berikut :

1. Waktu Penelitian

Pelaksanaan penelitian dimulai dari bulan November 2020 sampai waktu yang dibutuhkan untuk pengumpulan data selesai.

2. Tempat Penelitian

Adapun tempat penelitian yang penulis lakukan adalah di toko Farel yang beralamat di kec. Lubuk basung Kab. Agam.

3. Metode Penelitian

Dalam melakukan penelitian agar mendapatkan hasil seperti yang diharapkan, maka diperlukan suatu metodologi yang umum dilakukan yaitu:

a. Penelitian Lapangan (Field Research)

Yaitu penelitian yang dilakukan secara langsung pada objek yang bersangkutan. Untuk mendapatkan data-data yang diperlukan dengan melakukan wawancara dengan pihak-pihak terkait serta melakukan observasi langsung.

b. Penelitian Perpustakaan (Library Research)

Yaitu penelitian yang dilakukan dengan mencari literatur-literatur dan bahan bacaan dari perpustakan yang berhubungan dengan penulisan yang dianggap perlu dan dibutuhkan dalam penulisan.

c. Penelitian Laboratorium (Laboratory Research)

Yaitu penelitian yang dilakukan di laboratorium komputer dalam merancang program dan penyusunan laporan dengan menggunakan program lunak (*Software*) dan perangkat keras (*Hardware*).

3.3.3 Analisa

Berdasarkan penelitian pendahuluan diatas, maka dilakukan analisa data yang bertujuan agar pemecahan masalah dapat menemukan solusi yang tepat dan menghindari munculnya masalah yang baru. Sistem pendukung keputusan dengam menggunakan metode *Analitical Hierarchy Process* (AHP) dapat dijadikan sebagai solusi untuk pemecahan masalah yang ada yaitu untuk membantu pengambilan keputusan dalam pemilihan handphone terbaik bagi pelanggan di Farel lubuk Basung. Sistem ini dapat membantu dalam menentukan pemilihan handphone terbaik untuk pelanggan

3.3.4 Perancangan

Dalam perancangan sistem dilakukan pemodelan berorientasi objek dengan mendesain *Unified Modelling Language* (UML). Pada tahap ini dilakukan pengumpulan fakta-fakta yang mendukung perancangan sistem. *Unified Modelling*

Language (UML) akan digunakan sebagai tools dalam menjelaskan alur analisa program.

Adapun *Unified Modelling Language* (UML) yang akan digunakan adalah sebagai berikut :

a. Use Case Diagram

Use Case Diagram menggambarkan fungsionalitas yang diharapkan dari sebuah sistem. Sebuah use case merepersentasikan sebuah interaksi antara aktor dengan sistem. Use case diagram sangat membantu dalam menyusun kebutuhan sebuah sistem, mengkomunikasikan rancangan dengan klien, dan merancang test case untuk sebuah fitur yang ada pada sistem.

b. Class Diagram

Class Diagram digunakan untuk menggambarkan pembagian kelas-kelas yang akan dibuat untuk membangun sistem dan menggambarkan relasi antar suatu kelas dengan kelas yang lain.

c. Sequence Diagram

Sequence Diagram menggambarkan kelakuan objek pada use case dengan mendeskripsikan waktu hidup objek dan message yang dikirimkan dan diterima antar objek. Semakin banyak use case didefenisikan maka diagram sequence yang harus dibuat juga semakin banyak. Secara sederhana, sequence diagram menggambarkan proses per kegiatan yang dilakukan oleh aktor.

d. Activity Diagram

Activity Diagram menggambarkan alur aktivitas yang dilakukan oleh aktor pada sebuah sistem. Activity Diagram memberikan gambaran aktivitas apa saja yang akan dilakukan aktor dan proses parallel yang mungkin terjadi pada beberapa eksekusi.

3.3.5 Implementasi

Implementasi sistem merupakan tahapan yang dilakukan apabila sistem yang dirancang telah siap untuk dioperasikan. Implementasi dilakukan dengan tujuan untuk mengkonfirmasi hasil dari perancangan sistem, sehingga pengguna dapat memberi masukan (feedback) terhadap pengembangan sistem.

3.3.6 Pengujian

Pada tahap pengujian ini dilakukan pemantauan atau kegunaan atau fungsi dari sistem yang telah dibuat tersebut dimana nantinya akan dilakukan auditsistem secara berkala.

3.3.7 Hasil dan Pembahasan

Pada tahap ini merupakan tahap akhir dari penelitian yakni pembuatan kesimpulan dan saran dari hasil penelitian yang telah dicapai.

BAB IV

ANALISA DAN HASIL

4.1 Analisa Sistem

Analisa sistem merupakan tahap awal dalam perancangan dan pengembangan sebuah sistem yang akan dirancang, karena pada tahap ini akan diukur dan di evaluasi tentang kinerja dari sistem yang dirancang. Dalam melakukan analisa sistem terlebih dahulu harus mengetahui dan memahami sistem, untuk menganalisa sistem diperlukan data dari sistem untuk dianalisa. Data yang diperlukan adalah hal-hal yang dibutuhkan untuk defenisi data. Sehingga dari data-data yang telah didefenisi dapat dilakukan identifikasi atas masalah-masalah yang ada dan membuat langkah-langkah perancangan yang dibutuhkan sehingga hasil rancangan sesuai dengan yang diharapkan.

Dengan merencanakan perancangan terhadap sistem pendukung keputusan yang akan dibangun diharapkan dapat meminimalisasi kesalahan-kesalahan yang terjadi pada sistem yang akan dibangun. Untuk itu perlu dilakukan analisa sistem tentang bagaimana perosedur aliran sistem informasi datanya.

4.1.1 Analisa Sistem Berjalan

Adapun dalam perancangan sistem baru diperlukan adanya gambaran sistem yang sedang berjalan pada suatu perusahaan atau instansi sebelum dilakukannya perbaikan terhadap sistem, sehingga sistem baru yang akan dibangun dapat diaplikasikan secara maksimal yang pada dasarnya bertujuan untuk memperbaiki kekurangan dan kelemahan dari sistem yang lama atau sistem yang sedang berjalan.

Sistem yang berjalan ditoko Farel Lubuk Basung saat ini dengan menggunakan sistem manual, jadi pembeli datang ketoko dan menanyakan kepada penjual handphone yang sedang dicari. Kemudian penjual menjelaskan spesifikasi handphone yang diinginkan oleh pembeli dan pembeli menentukan pilihan.

4.1.2 Analisa Input

Input dari sistem pendukung keputusan merupakan dokumen yang digunakan dalam proses pemilihan Handphone di Farel Lubuk Basung diantaranya adalah data handphone yang ada di Farel Lubuk Basung. Data-data ini yang nantinya akan diolah dalam merancang sistem pendukung keputusan untuk pemilihan pembelian handphone terbaik bagi pelanggan di Farel Lubuk Basung.

4.1.3 Analisa Proses

Proses yang akan terjadi dalam sistem pendukung keputusan ini akan menggunakan metode Analitical Hierarchy Process (AHP). Analitical Hierarchy Process (AHP) adalah sebuah metode memecahkan permasalahan yang kompleks/rumit dalam situasi yang tidak terstruktur menjadi bagian-bagian komponen. Mengatur bagian atau variabel ini menjadi suatu bentuk susunan hierarki, kemudian memberikan nilai numerik untuk penilaian subjektif terhadap kepentingan relatif dari setiap variabel dan mensintesis penilaian untuk variabel mana yang memiliki prioritas tertinggi yang akan mempengaruhi penyelesaian dari situasi tersebut.

Analitical Hierarchy Process (AHP) merupakan suatu proses mengidentifikasi, mengerti dan memberikan perkiraan interaksi sistem secara keseluruhan dengan menggabungkan pertimbangan dan penilaian pribadi dengan

cara yang logis dan dipengaruhi imajinasi, pengalaman, dan pengetahuan untuk menyusun hierarki dalam suatu masalah yang berdasarkan logika, intuisi dan pengalaman untuk memberikan pertimbangan.

4.1.4 Analisa Output

Berdasarkan analisa input yang akan diproses maka output yang akan dihasilkan oleh sistem pendukung keputusan untuk pemilihan pembelian handphone terbaik bagi pelanggan di Farel Lubuk Basung adalah laporan berupa daftar rangking penilaian dalam pemilihan handphone terbaik pada Farel Lubuk Basung yang nantinya akan menjadi bahan pertimbangan dalam pengambilan keputusan untuk pemilihan pembelian handphone terbaik bagi pelanggan di Farel Lubuk Basung.

4.1.5 Usulan Perbaikan Sistem

Adapun berdasarkan analisa sistem yang sedang berjalan dan data yang diperoleh maka akan dibangun suatu aplikasi sistem pendukung keputusan yang diharapkan dapat sehingga bisa digunakan dimana saja. Pembeli tidak harus datang ke toko untuk mencari informasi handphone yang diinginkan.

4.1.6 Perhitungan Metode AHP

Perhitungan *Analitical Hierarchy Process* (AHP) pada sistem pendukung keputusan penentuan handphone terbaik bagi pelanggan di Farel Lubuk Basung ini menggunakan 8 faktor kriteria yaitu OS Version, Ukuran Layar, CPU, RAM, ROM, Resolusi Kamera Belakang, Resolusi Kamera Depan, Kapasitas Baterai. Metode

Analitical Hierarchy Process (AHP) juga menghitung 4 intensitas yaitu sangat baik, baik, Cukup dan kurang.

Dari 8 faktor kriteria dan 4 intensitas pada masing-masing kriteria tersebut dilakukan pemilihan pembelian handphone terbaik bagi pelanggan di Farel Lubuk Basung dengan menggunakan model *Analitical Hierarchy Process* (AHP) sehingga didapatkan nilai total pada masing-masing Handphone. Adapun kriteria, penilaian kriteria dan daftar Handphone dalam penilaian pemilihan pembelian handphone terbaik bagi pelanggan di Farel Lubuk Basung adalah sebagai berikut:

Tabel 4.1 Daftar Kriteria Penilaian

No.	Kriteria
1	OS Version
2	Ukuran Layar
3	CPU
4	RAM
5	ROM
6	Resolusi Kamera Belakang
7	Resolusi Kamera Depan
8	Kapasitas Baterai

Tabel 4.2 Penilaian Kriteria

No.	Kriteria	Penilaian
1	OS Version	Sangat baik, baik, cukup, dan kurang
2	Ukuran Layar	Sangat baik, baik, cukup, dan kurang
3	CPU	Sangat baik, baik, cukup, dan kurang
4	RAM	Sangat baik, baik, cukup, dan kurang
5	ROM	Sangat baik, baik, cukup, dan kurang

No.	Kriteria	Penilaian
6	Resolusi Kamera Belakang	Sangat baik, baik, cukup, dan kurang
7	Resolusi Kamera Depan	Sangat baik, baik, cukup, dan kurang
8	Kapasitas Baterai	Sangat baik, baik, cukup, dan kurang

Tabel 4.3 Daftar IKM

No.	Kategori	Merk Handphone
1	Орро	Oppo A12
2	Орро	Oppo A5 2020
3	Орро	Орро К3
4	Орро	Oppo R17 Pro
5	Орро	Oppo Reno
6	Samsung	Samsung Galaxy A11
7	Samsung	Samsung Galaxy M11
8	Samsung	Samsung Galaxy A01
9	Samsung	Samsung Galaxy A31
10	Samsung	Samsung Galaxy M51
11	Vivo	Vivo Y30
12	Vivo	Vivo V19
13	Vivo	Vivo Y11
14	Vivo	Vivo Y91
15	Vivo	Vivo V15 Pro

Adapun untuk penilaian kriteria dan alternatif dinilai melalui perbandingan berpasangan menggunakan skala perbandingan Saaty yang telah ditentukan yang digunakan untuk mengisi nilai matriks perbandingan. Skala penilaian dan perbandingan berpasangan dapat dilihat pada tabel 4.4 berikut:

Tabel 4.4 Skala Penilaian dan Perbandingan Berpasangan

Intensitas Kepentingan	Defenisi
1	Kedua elemen sama pentingnya
3	Elemen yang satu sedikit lebih penting daripada elemen yang lain
5	Elemen yang satu lebih penting daripada yang lainnya
7	Satu elemen jelas lebih mutlak penting daripada elemen lainnya
9	Satu elemen mutlak penting daripada elemen lainnya
2,4,6,8	Nilai – nilai antara dua nilai pertimbangan – pertimbangan yang berdekatan
Kebalikan	Jika aktivitas <i>i</i> mendapat satu angka dibandingkan dengan aktivitas <i>j</i> , maka <i>j</i> memiliki nilai kebalikannya dibandingkan dengan <i>i</i> .

A. Menentukan Prioritas Kriteria

Langkah yang harus dilakukan dalam menentukan prioritas kriteria adalah sebagai berikut :

Langkah 1 : Membuat matriks perbandingan berpasangan antara satu kriteria dengan kriteria yang lain, seperti yang dapat dilihat pada tabel 4.5 berikut:

Tabel 4.5 Matriks Perbandingan Berpasangan Kriteria

Kriteria	os	UL	CPU	RAM	ROM	RKB	RKD	KB
OS Version	1	3	1	1	1	4	4	4
Ukuran Layar	0,333	1	2	2	2	4	4	3
CPU	1	0,5	1	1	1	4	4	2
RAM	1	0,5	1	1	1	5	5	4
ROM	1	0,5	1	1	1	5	5	4
Resolusi Kamera Belakang	0,25	0,25	0,25	0,2	0,2	1	3	2
Resolusi Kamera Depan	0,25	0,25	0,25	0,2	0,2	0,333	1	2
Kapasitas Baterai	0,25	0,333	0,5	0,25	0,25	0,5	0,5	1
Jumlah	5,083	6,333	7	6,65	6,65	23,833	26,5	22

Langkah 2 : Lakukan normalisasi. Caranya dengan membagi setiap elemen dengan jumlah masing-masing kolom seperti Tabel 4.6.

Tabel 4.6 Normalisasi Matriks Kriteria

Kri	OS	UL	CPU	RAM	ROM	RKB	RKD	KB	Jumlah	Prioritas
OS	0,196	0,474	0,143	0,15	0,15	0,168	0,151	0,182	1,615	0,202
UL	0,066	0,158	0,286	0,301	0,301	0,168	0,151	0,136	1,567	0,196
CPU	0,197	0,079	0,143	0,15	0,15	0,168	0,151	0,091	1,129	0,141
RAM	0,197	0,079	0,143	0,15	0,15	0,21	0,189	0,182	1,3	0,163
ROM	0,197	0,079	0,143	0,15	0,15	0,21	0,189	0,182	1,3	0,163
RKB	0,049	0,039	0,036	0,03	0,03	0,042	0,113	0,091	0,43	0,054
RKD	0,049	0,039	0,036	0,03	0,03	0,014	0,038	0,091	0,327	0,041
KB	0,049	0,053	0,071	0,038	0,038	0,021	0,019	0,045	0,334	0,042

Langkah 4 : Membuat matriks penjumlahan setiap baris. Setiap elemen pada table ini dihitung dengan mengalikan matriks perbandingan berpasangan dengan nilai prioritas atau rata-rata. Matriks penjumlahan baris dapat dilihat pada tabel 4.7 berikut ini :

Tabel 4.7 Matriks Penjumlahan Baris

abei i.,	abel 4.7 Matriks i enjumanan baris								
Kri	OS	UL	CPU	RAM	ROM	RKB	RKD	KB	Jumlah
OS	0,202	0,588	0,141	0,163	0,163	0,216	0,164	0,168	1,589
UL	0,067	0,196	0,282	0,362	0,362	0,216	0,164	0,126	1,487
CPU	0,202	0,098	0,141	0,163	0,163	0,216	0,164	0,084	1,015
RAM	0,202	0,098	0,141	0,163	0,163	0,27	0,205	0,168	1,14
ROM	0,202	0,098	0,141	0,163	0,163	0,27	0,205	0,168	1,14
RKB	0,051	0,049	0,035	0,033	0,033	0,054	0,123	0,084	0,408
RKD	0,051	0,049	0,035	0,033	0,033	0,018	0,041	0,084	0,326
KB	0,051	0,065	0,071	0,041	0,041	0,027	0,021	0,042	0,332

Langkah 5 : Perhitungan ratio konsistensi. Digunakan untuk memastikan bahwa rasio konsistensi (CR) ≤ 0.1 . Jika nilai CR > 0.1 maka matriks perbandingan berpasangan harus dihitung ulang.

Tabel 4.8 Matriks Ratio Konsistensi

No.	Kriteria	∑Baris	Prioritas	Hasil				
1	OS Version	1,589	0,202	1,791				
2	Ukuran Layar	1,487	0,196	1,683				
3	CPU	1,015	0,141	1,156				
4	RAM	1,14	0,163	1,303				
5	ROM	1,14	0,163	1,303				
6	Resolusi Kamera Belakang	0,408	0,054	0,462				
7	Resolusi Kamera Depan	0,326	0,041	0,367				
8	Kapasitas Baterai	0,332	0,042	0,374				
	Jumlah							

Kolom prioritas diperoleh dari kolom prioritas tabel matriks nilai kriteria dan kolom jumlah perbaris diperoleh dari kolom jumlah pada tabel penjumlahan setiap baris. Berdasarkan nilai pada tabel 4.8, dapat dihitung nilai berikut :

$$\lambda_{maks} = \frac{jumlah}{n} = \frac{8,439}{8} = 1,055$$

$$CI = \frac{\lambda_{maks} - n}{n} = \frac{1,055 - 8}{8} = -0,868$$

$$CR = \frac{CI}{IR} = \frac{-0,868}{1,41} = -0,616$$

Dari perhitungan di atas, nilai CR < 0,1 sehingga perhitungan ratio konsistensi dari perhitungan kriteria dapat diterima.

Tabel 4.9 Tabel Indeks Random Konsistensi

Ukuran Matriks	Nilai IR
1,2	0.00
3	0.58
4	0.90
5	1.12
6	1.24
7	1.32
8	1.41
9	1.45
10	1.49
11	1.51
12	1.48
13	1.56
14	1.57

B. Menentukan Prioritas Sub Kriteria

Adapun langkah-langkah dalam menentukan prioritas subkriteria dari seluruh kriteria adalah sebagai berikut :

1. Subkriteria OS Version

Langkah 1 : Membuat matriks perbandingan berpasangan. Pada tahap ini dilakukan perbandingan antara satu kriteria dengan kriteria yang lain. Hasil perbandingan tersebut dapat dilihat pada tabel 4.10 berikut:

Tabel 4.10 Matriks Perbandingan Subkriteria OS Version

OS Version	SB	В	C	K
Sangat Baik	1	2	3	4
Baik	0,5	1	2	3
Cukup	0,333	0,5	1	3
Kurang	0,25	0,333	0,333	1
Jumlah	2,083	3,833	6,333	11

Langkah 2 : Membuat matriks nilai kriteria seperti yang dapat dilihat pada tabel 4.11 berikut :

Tabel 4.11 Matriks Nilai Subkriteria OS Version

os	SB	В	C	K	Jumlah	Prioritas	Prioritas Subkriteria
SB	0,48	0,522	0,474	0,364	1,84	0,46	1
В	0,24	0,261	0,316	0,273	1,09	0,273	0,593
С	0,16	0,13	0,158	0,273	0,721	0,18	0,391
K	0,12	0,087	0,053	0,091	0,351	0,088	0,191

Langkah 3: Membuat matriks penjumlahan setiap baris. Dengan mengalikan nilai prioritas kriteria dengan nilai perbandingan berpasangan. Hasil perhitungannya dapat dilihat pada tabel 4.12 berikut:

Tabel 4.12 Matriks Penjumlahan Setiap Baris Subkriteria OS Version

OS Version	SB	В	C	K	Jumlah
Sangat Baik	0,45	0,546	0,54	0,352	1,898
Baik	0,23	0,273	0,36	0,264	1,127
Cukup	0,153	0,137	0,18	0,264	0,734
Kurang	0,115	0,091	0,06	0,088	0,354

Langkah 4 : Perhitungan ratio konsistensi. Perhitungan ini digunakan untuk memastikan bahwa nilai rasio konsistensi (CR) <= 0,1 jika nilainya lebih besar dari 0,1 maka matriks perbandingan berpasangan perlu diperbaiki. Untuk menghitung rasio konsistensi dapat dilihat pada tabel 4.13 berikut:

Tabel 4.13 Ratio Konsistensi Subkriteria OS Version

OS Version	Jumlah per Baris	Prioritas	Hasil				
Sangat Baik	1,898	0,46	2,358				
Baik	1,127	0,273	1,4				
Cukup	0,734	0,18	0,914				
Kurang	0,354	0,088	0,442				
	Jumlah						

Berdasarkan nilai pada tabel 4.13, dapat dihitung nilai berikut :

$$\lambda_{maks} = \frac{jumlah}{n} = \frac{5,115}{4} = 1,279$$

$$CI = \frac{\lambda_{maks} - n}{n} = \frac{1,279 - 4}{4} = -0.68$$

$$CR = \frac{CI}{IR} = \frac{-0,68}{0,90} = -0,756$$

Karena CR < 0,1 maka ratio konsistensi dari perhitungan diatas diterima.

2. Subkriteria Ukuran Layar

Langkah 1 : Membuat matriks perbandingan berpasangan. Pada tahap ini dilakukan perbandingan antara satu kriteria dengan kriteria yang lain. Hasil perbandingan tersebut dapat dilihat pada tabel 4.14 berikut:

Tabel 4.14 Matriks Perbandingan Subkriteria Ukuran Layar

Ukuran Layar	SB	В	C	K
Sangat Baik	1	2	3	5
Baik	0,5	1	3	5
Cukup	0,333	0,333	1	5
Kurang	0,2	0,2	0,2	1
Jumlah	2,033	3,533	7,2	16

Langkah 2 : Membuat matriks nilai kriteria seperti yang dapat dilihat pada tabel 4.15 berikut :

Tabel 4.15 Matriks Nilai Subkriteria Ukuran Layar

UL	SB	В	C	K	Jumlah	Prioritas	Prioritas Subkriteria
SB	0,492	0,566	0,417	0,313	1,84	0,447	1
В	0,246	0,283	0,417	0,313	1,09	0,315	0,705
С	0,164	0,094	0,139	0,313	0,721	0,178	0,398
K	0,098	0,057	0,028	0,063	0,351	0,062	0,139

Langkah 3: Membuat matriks penjumlahan setiap baris. Dengan mengalikan nilai prioritas kriteria dengan nilai perbandingan berpasangan. Hasil perhitungannya dapat dilihat pada tabel 4.16 berikut:

Tabel 4.16 Matriks Penjumlahan Setiap Baris Subkriteria Ukuran Layar

Ukuran Layar	SB	В	C	K	Jumlah
Sangat Baik	0,447	0,63	0,534	0,31	1,921
Baik	0,224	0,315	0,534	0,31	1,383
Cukup	0,149	0,105	0,178	0,31	0,742
Kurang	0,089	0,063	0,036	0,062	0,25

Langkah 4 : Perhitungan ratio konsistensi. Perhitungan ini digunakan untuk memastikan bahwa nilai rasio konsistensi (CR) <= 0,1 jika nilainya lebih besar dari 0,1 maka matriks perbandingan berpasangan perlu diperbaiki. Untuk menghitung rasio konsistensi dapat dilihat pada tabel 4.17 berikut:

Tabel 4.17 Ratio Konsistensi Subkriteria Ukuran Layar

Ukuran Layar	Jumlah per Baris	Prioritas	Hasil
Sangat Baik	1,921	0,447	2,368
Baik	1,383	0,315	1,698
Cukup	0,742	0,178	0,698
Kurang	0,25	0,062	0,312
	5,298		

Berdasarkan nilai pada tabel 4.17, dapat dihitung nilai berikut :

$$\lambda_{maks} = \frac{jumlah}{n} = \frac{5,298}{4} = 1,325$$

$$CI = \frac{\lambda_{maks} - n}{n} = \frac{1,325 - 4}{4} = -0,669$$

$$CR = \frac{CI}{IR} = \frac{-0,669}{0,90} = -0,743$$

Karena CR < 0,1 maka ratio konsistensi dari perhitungan diatas diterima.

3. Subkriteria CPU

Langkah 1 : Membuat matriks perbandingan berpasangan. Pada tahap ini dilakukan perbandingan antara satu kriteria dengan kriteria yang lain. Hasil perbandingan tersebut dapat dilihat pada tabel 4.18 berikut:

Tabel 4.18 Matriks Perbandingan Subkriteria CPU

CPU	SB	В	C	K
Sangat Baik	1	3	5	5
Baik	0,333	1	3	5
Cukup	0,2	0,333	1	3
Kurang	0,2	0,2	0,333	1
Jumlah	1,733	4,533	9,333	14

Langkah 2 : Membuat matriks nilai kriteria seperti yang dapat dilihat pada tabel 4.19 berikut :

Tabel 4.19 Matriks Nilai Subkriteria CPU

CPU	SB	В	C	K	Jumlah	Prioritas	Prioritas Subkriteria
SB	0,577	0,662	0,536	0,357	2,132	0,533	1
В	0,192	0,221	0,321	0,357	1,091	0,273	0,512
С	0,115	0,073	0,107	0,214	0,509	0,127	0,238
K	0,115	0,044	0,036	0,071	0,266	0,067	0,126

Langkah 3: Membuat matriks penjumlahan setiap baris. Dengan mengalikan nilai prioritas kriteria dengan nilai perbandingan berpasangan. Hasil perhitungannya dapat dilihat pada tabel 4.210 berikut:

Tabel 4.20 Matriks Penjumlahan Setiap Baris Subkriteria CPU

CPU	SB	В	С	K	Jumlah
Sangat Baik	0,533	0,819	0,635	0,335	2,322
Baik	0,177	0,273	0,381	0,335	1,166
Cukup	0,107	0,091	0,127	0,201	0,526
Kurang	0,107	0,055	0,042	0,067	0,271

Langkah 4: Perhitungan ratio konsistensi. Perhitungan ini digunakan untuk memastikan bahwa nilai rasio konsistensi (CR) <= 0,1 jika nilainya lebih besar dari 0,1 maka matriks perbandingan berpasangan perlu diperbaiki. Untuk menghitung rasio konsistensi dapat dilihat pada tabel 4.21 berikut:

Tabel 4.21 Ratio Konsistensi Subkriteria CPU

CPU	Jumlah per Baris	Prioritas	Hasil
Sangat Baik	2,322	0,533	2,855
Baik	1,166	0,273	1,439
Cukup	0,526	0,127	0,653
Kurang	0,271	0,067	0,338
	5,285		

Berdasarkan nilai pada tabel 4.21, dapat dihitung nilai berikut :

$$\lambda_{maks} = \frac{jumlah}{n} = \frac{5,285}{4} = 1,321$$

$$CI = \frac{\lambda_{maks} - n}{n} = \frac{1,321 - 4}{4} = -0,670$$

$$CR = \frac{CI}{IR} = \frac{-0.75}{0.90} = -0.744$$

Karena CR < 0,1 maka ratio konsistensi dari perhitungan diatas diterima.

4. Subkriteria RAM

Langkah 1 : Membuat matriks perbandingan berpasangan. Pada tahap ini dilakukan perbandingan antara satu kriteria dengan kriteria yang lain. Hasil perbandingan tersebut dapat dilihat pada tabel 4.22 berikut:

Tabel 4.22 Matriks Perbandingan Subkriteria RAM

RAM	SB	В	C	K
Sangat Baik	1	3	3	5
Baik	0,333	1	3	3
Cukup	0,333	0,333	1	3
Kurang	0,2	0,333	0,333	1
Jumlah	1,866	4,666	7,333	12

Langkah 2 : Membuat matriks nilai kriteria seperti yang dapat dilihat pada tabel 4.23 berikut :

Tabel 4.23 Matriks Nilai Subkriteria RAM

RAM	SB	В	C	K	Jumlah	Prioritas	Prioritas Subkriteria
SB	0,536	0,643	0,409	0,417	2,005	0,501	1
В	0,178	0,214	0,409	0,25	1,051	0,263	0,525
С	0,178	0,071	0,139	0,25	0,635	0,159	0,317
K	0,107	0,071	0,045	0,083	0,306	0,077	0,154

Langkah 3: Membuat matriks penjumlahan setiap baris. Dengan mengalikan nilai prioritas kriteria dengan nilai perbandingan berpasangan. Hasil perhitungannya dapat dilihat pada tabel 4.24 berikut:

Tabel 4.24 Matriks Penjumlahan Setiap Baris Subkriteria RAM

RAM	SB	В	C	K	Jumlah
Sangat Baik	0,501	0,789	0,447	0,385	2,152
Baik	0,167	0,263	0,477	0,231	1,138
Cukup	0,167	0,088	0,159	0,231	0,645
Kurang	0,1	0,088	0,053	0,077	0,318

Langkah 4: Perhitungan ratio konsistensi. Perhitungan ini digunakan untuk memastikan bahwa nilai rasio konsistensi (CR) <= 0,1 jika nilainya lebih besar dari 0,1 maka matriks perbandingan berpasangan perlu diperbaiki. Untuk menghitung rasio konsistensi dapat dilihat pada tabel 4.25 berikut:

Tabel 4.25 Ratio Konsistensi Subkriteria RAM

RAM	Jumlah per Baris	Prioritas	Hasil			
Sangat Baik	2,152	0,501	2,653			
Baik	1,138	0,263	1,401			
Cukup	0,645	0,159	0,804			
Kurang	0,318	0,077	0,395			
	Jumlah					

Berdasarkan nilai pada tabel 4.25, dapat dihitung nilai berikut :

$$\lambda_{maks} = \frac{jumlah}{n} = \frac{5,253}{4} = 1,313$$

$$CI = \frac{\lambda_{maks} - n}{n} = \frac{1,313 - 4}{4} = -0,672$$

$$CR = \frac{CI}{IR} = \frac{-0,672}{0,90} = -0,747$$

Karena CR < 0,1 maka ratio konsistensi dari perhitungan diatas diterima.

5. Subkriteria ROM

Langkah 1 : Membuat matriks perbandingan berpasangan. Pada tahap ini dilakukan perbandingan antara satu kriteria dengan kriteria yang lain. Hasil perbandingan tersebut dapat dilihat pada tabel 4.26 berikut:

Tabel 4.26 Matriks Perbandingan Subkriteria ROM

ROM	SB	В	C	K
Sangat Baik	1	3	3	5
Baik	0,333	1	3	3
Cukup	0,333	0,333	1	3
Kurang	0,2	0,333	0,333	1
Jumlah	1,866	4,666	7,333	12

Langkah 2 : Membuat matriks nilai kriteria seperti yang dapat dilihat pada tabel 4.27 berikut :

Tabel 4.27 Matriks Nilai Subkriteria ROM

ROM	SB	В	C	K	Jumlah	Prioritas	Prioritas Subkriteria
SB	0,536	0,643	0,409	0,417	2,005	0,501	1
В	0,178	0,214	0,409	0,25	1,051	0,263	0,525
С	0,178	0,071	0,139	0,25	0,635	0,159	0,317
K	0,107	0,071	0,045	0,083	0,306	0,077	0,154

Langkah 3: Membuat matriks penjumlahan setiap baris. Dengan mengalikan nilai prioritas kriteria dengan nilai perbandingan berpasangan. Hasil perhitungannya dapat dilihat pada tabel 4.28 berikut:

Tabel 4.28 Matriks Penjumlahan Setiap Baris Subkriteria ROM

ROM	SB	В	C	K	Jumlah
Sangat Baik	0,501	0,789	0,447	0,385	2,152
Baik	0,167	0,263	0,477	0,231	1,138
Cukup	0,167	0,088	0,159	0,231	0,645
Kurang	0,1	0,088	0,053	0,077	0,318

Langkah 4: Perhitungan ratio konsistensi. Perhitungan ini digunakan untuk memastikan bahwa nilai rasio konsistensi (CR) <= 0,1 jika nilainya lebih besar dari 0,1 maka matriks perbandingan berpasangan perlu diperbaiki. Untuk menghitung rasio konsistensi dapat dilihat pada tabel 4.29 berikut:

Tabel 4.29 Ratio Konsistensi Subkriteria ROM

ROM	Jumlah per Baris	Prioritas	Hasil			
Sangat Baik	2,152	0,501	2,653			
Baik	1,138	0,263	1,401			
Cukup	0,645	0,159	0,804			
Kurang	0,318	0,077	0,395			
	Jumlah					

Berdasarkan nilai pada tabel 4.29, dapat dihitung nilai berikut :

$$\lambda_{maks} = \frac{jumlah}{n} = \frac{5,253}{4} = 1,313$$

$$CI = \frac{\lambda_{maks} - n}{n} = \frac{1,313 - 4}{4} = -0,672$$

$$CR = \frac{CI}{IR} = \frac{-0,672}{0,90} = -0,747$$

Karena CR < 0,1 maka ratio konsistensi dari perhitungan diatas diterima.

6. Subkriteria Resolusi Kamera Belakang

Langkah 1 : Membuat matriks perbandingan berpasangan. Pada tahap ini dilakukan perbandingan antara satu kriteria dengan kriteria yang lain. Hasil perbandingan tersebut dapat dilihat pada tabel 4.30 berikut:

Tabel 4.30 Matriks Perbandingan Subkriteria Resolusi Kamera Belakang

Resolusi Kamera Belakang	SB	В	С	K
Sangat Baik	1	2	5	5
Baik	0,5	1	2	5
Cukup	0,2	0,5	1	2
Kurang	0,2	0,2	0,5	1
Jumlah	1,9	3,7	8,5	13

Langkah 2 : Membuat matriks nilai kriteria seperti yang dapat dilihat pada tabel 4.31 berikut :

Tabel 4.31 Matriks Nilai Subkriteria Resolusi Kamera Belakang

RKB	SB	В	C	K	Jumlah	Prioritas	Prioritas Subkriteria
SB	0,526	0,541	0,588	0,385	2,04	0,51	1
В	0,263	0,27	0,235	0,385	1,153	0,288	0,565
С	0,105	0,135	0,135	0,154	0,512	0,128	0,251
K	0,105	0,054	0,054	0,077	0,259	0,074	0,145

Langkah 3: Membuat matriks penjumlahan setiap baris. Dengan mengalikan nilai prioritas kriteria dengan nilai perbandingan berpasangan. Hasil perhitungannya dapat dilihat pada tabel 4.32 berikut:

Tabel 4.32 Matriks Penjumlahan Setiap Baris Subkriteria Resolusi Kamera Belakang

Resolusi Kamera Belakang	SB	В	C	K	Jumlah
Sangat Baik	0,51	0,576	0,64	0,37	2,096
Baik	0,255	0,288	0,256	0,37	1,169
Cukup	0,102	0,144	0,128	0,148	0,522
Kurang	0,102	0,058	0,064	0,074	0,298

Langkah 4: Perhitungan ratio konsistensi. Perhitungan ini digunakan untuk memastikan bahwa nilai rasio konsistensi (CR) <= 0,1 jika nilainya lebih besar dari 0,1 maka matriks perbandingan berpasangan perlu diperbaiki. Untuk menghitung rasio konsistensi dapat dilihat pada tabel 4.33 berikut:

Tabel 4.33 Ratio Konsistensi Subkriteria Resolusi Kamera Belakang

Resolusi Kamera Belakang	Jumlah per Baris	Prioritas	Hasil
Sangat Baik	2,096	0,51	2,606
Baik	1,169	0,288	1,457
Cukup	0,522	0,128	0,65
Kurang	0,298	0,074	0,372
	5,085		

Berdasarkan nilai pada tabel 4.33, dapat dihitung nilai berikut :

$$\lambda_{maks} = \frac{jumlah}{n} = \frac{5,085}{4} = 1,271$$

$$CI = \frac{\lambda_{maks} - n}{n} = \frac{1,271 - 4}{4} = -0,682$$

$$CR = \frac{CI}{IR} = \frac{-0,75}{0,90} = -0,758$$

Karena CR < 0,1 maka ratio konsistensi dari perhitungan diatas diterima.

7. Subkriteria Resolusi Kamera Depan

Langkah 1 : Membuat matriks perbandingan berpasangan. Pada tahap ini dilakukan perbandingan antara satu kriteria dengan kriteria yang lain. Hasil perbandingan tersebut dapat dilihat pada tabel 4.34 berikut:

Tabel 4.34 Matriks Perbandingan Subkriteria Resolusi Kamera Depan

Resolusi Kamera Depan	SB	В	C	K
Sangat Baik	1	2	4	5
Baik	0,5	1	2	4
Cukup	0,25	0,5	1	2
Kurang	0,2	0,25	0,5	1
Jumlah	1,95	3,75	7,5	12

Langkah 2 : Membuat matriks nilai kriteria seperti yang dapat dilihat pada tabel 4.35 berikut :

Tabel 4.35 Matriks Nilai Subkriteria Resolusi Kamera Depan

RKD	SB	В	С	K	Jumlah	Prioritas	Prioritas Subkriteria
SB	0,513	0,533	0,533	0,417	1,996	0,499	1
В	0,256	0,267	0,267	0,333	1,123	0,281	0,563
С	0,128	0,133	0,133	0,167	0,561	0,14	0,281
K	0,103	0,067	0,067	0,083	0,32	0,08	0,16

Langkah 3: Membuat matriks penjumlahan setiap baris. Dengan mengalikan nilai prioritas kriteria dengan nilai perbandingan berpasangan. Hasil perhitungannya dapat dilihat pada tabel 4.36 berikut:

Tabel 4.36 Matriks Penjumlahan Setiap Baris Subkriteria Resolusi Kamera Depan

Resolusi Kamera Depan	SB	В	C	K	Jumlah
Sangat Baik	0,499	0,562	0,56	0,4	2,021
Baik	0,25	0,281	0,28	0,32	1,131
Cukup	0,125	0,141	0,14	0,16	0,566
Kurang	0,1	0,07	0,07	0,08	0,32

Langkah 4: Perhitungan ratio konsistensi. Perhitungan ini digunakan untuk memastikan bahwa nilai rasio konsistensi (CR) <= 0,1 jika nilainya lebih besar dari 0,1 maka matriks perbandingan berpasangan perlu diperbaiki. Untuk menghitung rasio konsistensi dapat dilihat pada tabel 4.37 berikut:

Tabel 4.37 Ratio Konsistensi Subkriteria Resolusi Kamera Depan

Resolusi Kamera Depan	Jumlah per Baris	Prioritas	Hasil
Sangat Baik	2,021	0,499	2,52
Baik	1,131	0,281	1,412
Cukup	0,566	0,14	0,706
Kurang	0,32	0,08	0,4
	Jumlah		5,038

Berdasarkan nilai pada tabel 4.37, dapat dihitung nilai berikut :

$$\lambda_{maks} = \frac{jumlah}{n} = \frac{5,038}{4} = 1,26$$

$$CI = \frac{\lambda_{maks} - n}{n} = \frac{1,26 - 4}{4} = -0,685$$

$$CR = \frac{CI}{IR} = \frac{-0,685}{0,90} = -0761$$

Karena CR < 0,1 maka ratio konsistensi dari perhitungan diatas diterima.

8. Subkriteria Kapasitas Baterai

Langkah 1 : Membuat matriks perbandingan berpasangan. Pada tahap ini dilakukan perbandingan antara satu kriteria dengan kriteria yang lain. Hasil perbandingan tersebut dapat dilihat pada tabel 4.38 berikut:

Tabel 4.38 Matriks Perbandingan Subkriteria Kapasitas Baterai

Kapasitas Baterai	SB	В	C	K
Sangat Baik	1	2	3	3
Baik	0,5	1	2	3
Cukup	0,333	0,5	1	2
Kurang	0,333	0,333	0,5	1
Jumlah	2,166	3,833	6,5	9

Langkah 2 : Membuat matriks nilai kriteria seperti yang dapat dilihat pada tabel 4.39 berikut :

Tabel 4.39 Matriks Nilai Subkriteria Kapasitas Baterai

KB	SB	В	C	K	Jumlah	Prioritas	Prioritas Subkriteria
SB	0,462	0,522	0,522	0,333	1,779	0,445	1
В	0,231	0,261	0,261	0,333	1,133	0,283	0,636
С	0,154	0,13	0,154	0,222	0,66	0,165	0,371
K	0,154	0,087	0,077	0,111	0,429	0,107	0,24

Langkah 3: Membuat matriks penjumlahan setiap baris. Dengan mengalikan nilai prioritas kriteria dengan nilai perbandingan berpasangan. Hasil perhitungannya dapat dilihat pada tabel 4.40 berikut:

Tabel 4.40 Matriks Penjumlahan Setiap Baris Subkriteria Kapasitas Baterai

Kapasitas Baterai	SB	В	С	K	Jumlah
Sangat Baik	0,445	0,566	0,495	0,321	1,827
Baik	0,223	0,283	0,33	0,321	1,157
Cukup	0,148	0,142	0,165	0,214	0,669
Kurang	0,148	0,094	0,083	0,107	0,432

Langkah 4: Perhitungan ratio konsistensi. Perhitungan ini digunakan untuk memastikan bahwa nilai rasio konsistensi (CR) <= 0,1 jika nilainya lebih besar dari 0,1 maka matriks perbandingan berpasangan perlu diperbaiki. Untuk menghitung rasio konsistensi dapat dilihat pada tabel 4.41 berikut:

Tabel 4.41 Ratio Konsistensi Subkriteria Kapasitas Baterai

Kapasitas Baterai	Jumlah per Baris	Prioritas	Hasil
Sangat Baik	1,827	0,445	2,272
Baik	1,157	0,283	1,44
Cukup	0,669	0,165	0,834
Kurang	0,432	0,107	0,539
	Jumlah		5,085

Berdasarkan nilai pada tabel 4.41, dapat dihitung nilai berikut :

$$\lambda_{maks} = \frac{jumlah}{n} = \frac{5,085}{4} = 1,271$$

$$CI = \frac{\lambda_{maks} - n}{n} = \frac{1,271 - 4}{4} = -0,682$$

$$CR = \frac{CI}{IR} = \frac{-0,682}{0,90} = -0,758$$

Karena CR < 0,1 maka ratio konsistensi dari perhitungan diatas diterima.

C. Menentukan Hasil Akhir

Prioritas hasil perhitungan pada langkah sebelumnya dituangkan dalam matrik hasil seperti yang dapat dilihat pada tabel 4.42 berikut :

Tabel 4.42 Hasil Perhitungan Setiap Prioritas Kriteria dan Sub Kriteria

Prioritas	OS Version	Ukuran Layar	CPU RAM ROM Belakan Depan		Kamera	•		
	0,202	0,196	0,141	0,163	0,163	0,054	0,041	0,042
Sangat Baik	0,46	0,447	0,533	0,501	0,501	0,51	0,499	0,445
Baik	0,273	0,315	0,273	0,263	0,263	0,288	0,281	0,283
Cukup	0,18	0,178	0,127	0,159	0,159	0,128	0,14	0,165
Kurang	0,088	0,062	0,067	0,077	0,077	0,074	0,08	0,107

Seandainya diberikan data limabelas (15) handphone yang dijual pada Farel Lubuk Basung yang akan diprioritaskan untuk menjadi pilihan yang terbaik untuk pelanggan sebagai berikut:

Tabel 4.43 Data Merk Handphone Yang Dipilih

Merk	Prioritas Kriteria dan Sub Kriteria										
	os	UL	CPU	RAM	ROM	RKB	RKD	KB			
Oppo A12	Baik	Baik	Sangat	Cukup	Kuran	Cukup	Kuran	Cukup			
			Baik		g		g				

Merk		Prio	ritas Kri	iteria d	an Sub	Kriter	ia	
Merk	os	UL	CPU	RAM	ROM	RKB	RKD	KB
Oppo A5 2020	Cukup	Baik	Sangat	Cukup	Cukup	Cukup	Kuran	Cukup
			Baik				g	
Орро К3	Baik	Baik	Sangat	Baik	Cukup	Baik	Cukup	Kuran
			Baik					g
Oppo R17 Pro	Cukup	Baik	Sangat	Sangat	Baik	Baik	Baik	Kuran
			Baik	Baik				g
Oppo Reno	Baik	Baik	Sangat	Baik	Sangat	Sangat	Kuran	Kuran
			Baik		Baik	Baik	g	g
Samsung	Sangat	Baik	Sangat	Cukup	Kuran	Cukup	Kuran	Cukup
Galaxy A11	Baik		Baik		g		g	
Samsung	Sangat	Baik	Sangat	Cukup	Kuran	Cukup	Kuran	Baik
Galaxy M11	Baik		Baik		g		g	
Samsung	Sangat	Kurang	Sangat	Kuran	Kuran	Kuran	Kuran	Kuran
Galaxy A01	Baik		Baik	g	g	g	g	g
Samsung	Sangat	Baik	Sangat	Baik	Baik	Sangat	Cukup	Baik
Galaxy A31	Baik		Baik			Baik		
Samsung	Sangat	Sangat	Sangat	Sangat	Baik	Sangat	Sangat	Sangat
Galaxy M51	Baik	Baik	Baik	Baik		Baik	Baik	Baik
Vivo Y30	Sangat	Baik	Sangat	Cukup	Baik	Cukup	Kuran	Baik
	Baik		Baik				g	
Vivo V19	Sangat	Baik	Sangat	Sangat	Baik	Sangat	Baik	Cukup
	Baik		Baik	Baik		Baik		

Merk	Prioritas Kriteria dan Sub Kriteria										
	OS	UL	CPU	CPU RAM		ROM RKB		KB			
Vivo Y11	Baik	Baik	Sangat Baik	Cukup	Kuran g	Cukup	Kuran g	Baik			
Vivo Y91	Cukup	Baik	Sangat Baik	Kuran g	Kuran g	Cukup	Kuran g	Cukup			
Vivo V15 Pro	Baik	Baik	Sangat Baik	Baik	Baik	Sangat Baik	Baik	Kuran g			

Tabel 4.44 Hasil Perhitungan Setiap Prioritas Kriteria dan Sub Kriteria

N/ 1		Pri	oritas I	Kriteria	dan S	ub Krit	eria		T ()	Ranki	Keputusa
Merk	os	UL	CPU	RAM	ROM	RKB	RKD	KB	Total	ng	n
Samsung Galaxy M51	0,093	0,088	0,075	0,082	0,043	0,028	0,02	0,019	0,448	1	Terbaik
Vivo V19	0,093	0,062	0,075	0,082	0,043	0,028	0,012	0,007	0,402	2	-
Samsung Galaxy A31	0,093	0,062	0,075	0,043	0,043	0,028	0,006	0,012	0,362	3	-
Oppo Reno	0,093	0,062	0,075	0,043	0,082	0,028	0,003	0,004	0,352	4	-
Oppo R17 Pro	0,036	0,062	0,075	0,082	0,043	0,016	0,012	0,004	0,33	5	-
Vivo V15 Pro	0,055	0,062	0,075	0,043	0,043	0,028	0,012	0,004	0,322	6	-
Vivo Y30	0,093	0,062	0,075	0,026	0,043	0,007	0,003	0,012	0,321	7	-
Samsung Galaxy M11	0,093	0,062	0,075	0,026	0,013	0,007	0,003	0,012	0,291	8	-
Орро К3	0,055	0,062	0,075	0,043	0,026	0,016	0,006	0,004	0,287	9	-

Samsung Galaxy A11	0,093	0,062	0,075	0,026	0,013	0,007	0,003	0,007	0,286	10	-
Vivo Y11	0,055	0,062	0,075	0,026	0,013	0,007	0,003	0,012	0,253	11	-
Oppo A12	0,055	0,062	0,075	0,026	0,013	0,007	0,003	0,007	0,248	12	-
Oppo A5 2020	0,036	0,062	0,075	0,026	0,026	0,007	0,003	0,007	0,242	13	-
Vivo Y91	0,036	0,062	0,075	0,013	0,013	0,007	0,003	0,007	0,216	14	-
Samsung Galaxy A01	0,093	0,012	0,009	0,013	0,013	0,004	0,003	0,004	0,151	15	-

Nilai 0,055 pada Oppo A12 di kolom OS Version didapatkan dari hasil perkalian prioritas nilai OS Version dikalikan dengan sub prioritas pada sub kriteria nilai OS Version, begitu juga nilai lain diperoleh dengan cara yang sama. Sedangkan total didapatkan dari penjumlahan pada setiap baris penilaian. Maka dari hasil tersebut yang memiliki nilai paling tinggi yang akan menjadi handphone dengan pilihan terbaik untuk pelanggan yaitu handphone yang bermerk Samsung Galaxy M51 dengan harga Rp. 5.499.000.

4.2 Analisa Sistem Baru

Dengan dilakukannya analisa sistem akan dapat memberikan kemudahan di dalam perancangan dan pembangunan terhadap sistem yang akan dibangun. Perancangan sistem adalah sebuah kegiatan merancang atau mendesain yang di dalamnya terdapat langkah-langkah operasi dalam pemrosesan pengolahan data dan prosedur yang mendukung operasi sistem. Sistem yang dirancang haruslah lebih baik dari sistem yang lama dalam segi efisiensi proses maupun laporan yang dihasilkan sistem sesuai dengan perkembangan organisasi atau instansi.

4.2.1 UML (Unified Modelling Language)

Dalam perancangan perlu adanya permodelan yang dijadikan gambaran bagaimana sistem itu akan terbentuk nantinya. Pemodelan UML (Unified Modelling Languange) yang merupakan standard bahasa yang banyak digunakan untuk mendefenisikan sistem dalam pemograman berorientasi objek.

4.2.1.1 Use Case Diagram

Use Case Diagram mendeskripsikan sebuah interaksi antara satu atau lebih aktor dengan sistem informasi. Use Case Diagram menggambarkan bagaimana proses-proses yang dilakukan oleh aktor terhadap sebuah sistem. Adapun Use Case Diagram dari sistem yang dirancang dapat dilihat pada gambar 4.1 berikut ini:

Gambar 4.1 Use Case Diagram

4.2.1.2 Class Diagram

Class diagram berfungsi untuk menggambarkan hubungan antara tabeltabel yang ada pada database. Semua proses yang dilakukan aktor terhadap aplikasi akan didefenisikan dengan menggunakan class diagram. Masing-masing class memiliki attribute dan metoda/fungsi sesuai proses yang terjadi. Adapun class diagram dari sistem yang dirancang dapat dilihat pada gambar 4.2.

Gambar 4.2 Class Diagram

4.2.1.3 Activity Diagram

Activity Diagram merupakan yang akan menggambarkan aktivitas-aktivitas sistem, bukan apa yang akan dilakukan oleh aktor. Activity diagram

menggambarkan berbagai alur aktivitas dalam sistem yang sedang dirancang dan proses yang berjalan.

1. Activity Diagram Admin

Diagram ini akan menjelaskan segala aktivitas yang bisa dilakukan oleh admin dengan memilih menu yang sudah tersedia pada sistem. Adapun *Activity Diagram Admin* dapat digambarkan seperti gambar 4.3.

Gambar 4.3 Activity Diagram Admin

2. Activity Diagram Pelanggan

Diagram ini akan menjelaskan segala aktivitas yang bisa dilakukan oleh pelanggan dengan memilih menu yang sudah tersedia pada sistem. Adapun *Activity Diagram* pelanggan dapat digambarkan seperti gambar 4.4.

Gambar 4.4 Activity Diagram Pelanggan

4.2.1.4 Sequence Diagram

Sequence Diagram biasa digunakan untuk menggambarkan skenario atau rangkaian langkah-langkah yang dilakukan sebagai respons dari sebuah event untuk menghasilkan output tertentu.

1. Sequence Diagram Pelanggan Melihat Home

Pelanggan dapat melihat home, dapat dilihat pada gambar 4.5 berikut ini :

Gambar 4.5 Sequence Diagram Pelanggan Melihat Home

2. Sequence Diagram Pelanggan Melihat Produk

Pelanggan dapat melihat produk, dapat dilihat pada gambar 4.6 berikut ini :

Gambar 4.6 Sequence Diagram Pelanggan Melihat Produk

3. Sequence Diagram Pelanggan Melihat Oppo

Pelanggan dapat melihat data handphone oppo, dapat dilihat pada gambar

4.7 berikut ini:

Gambar 4.7 Sequence Diagram Pelanggan Melihat Oppo

4. Sequence Diagram Pelanggan Melihat Samsung

Pelanggan dapat melihat data handphone samsung, dapat dilihat pada gambar 4.8 berikut ini :

Gambar 4.8 Sequence Diagram Pelanggan Melihat Samsung

5. Sequence Diagram Pelanggan Melihat Vivo

Pelanggan dapat melihat data handphone vivo, dapat dilihat pada gambar

4.9 berikut ini:

Gambar 4.9 Sequence Diagram Pelanggan Melihat Vivo

6. Sequence Diagram Pelanggan Melihat Tentang Kami

Pelanggan dapat melihat tentang kami, dapat dilihat pada gambar 4.10 berikut ini :

Gambar 4.10 Sequence Diagram Pelanggan Melihat Tentang Kami

7. Sequence Diagram Data Pengguna

Menjelaskan urutan langkah-langkah yang dilakukan admin untuk mengelola data pengguna, dapat dilihat pada gambar 4.11 berikut ini :

Gambar 4.11 Sequence Diagram Data Pengguna

8. Sequence Diagram Data Kategori

Menjelaskan urutan langkah-langkah yang dilakukan admin untuk mengelola data kategori, dapat dilihat pada gambar 4.12 berikut ini :

Gambar 4.12 Sequence Diagram Data Kategori

9. Sequence Diagram Data Alternatif

Menjelaskan urutan langkah-langkah yang dilakukan admin untuk mengelola data alternatif, dapat dilihat pada gambar 4.13 berikut ini :

Gambar 4.13 Sequence Diagram Data Alternatif

10. Sequence Diagram Data Kriteria

Menjelaskan urutan langkah-langkah yang dilakukan admin untuk mengelola data kriteria, dapat dilihat pada gambar 4.13 berikut ini :

Gambar 4.14 Sequence Diagram Data Kriteria

11. Sequence Diagram Data Sub Kriteria

Menjelaskan urutan langkah-langkah yang dilakukan admin untuk mengelola data sub kriteria, dapat dilihat pada gambar 4.15 berikut ini :

Gambar 4.15 Sequence Diagram Data Sub Kriteria

12. Sequence Diagram Perbandingan Kriteria

Menjelaskan urutan langkah-langkah yang dilakukan admin untuk mengelola perbandingan kriteria, dapat dilihat pada gambar 4.16 berikut ini

:

Gambar 4.16 Sequence Diagram Perbandingan Kriteria

13. Sequence Diagram Perbandingan Sub Kriteria

Menjelaskan urutan langkah-langkah yang dilakukan admin untuk mengelola perbandingan sub kriteria, dapat dilihat pada gambar 4.17 berikut ini :

Gambar 4.17 Sequence Diagram Perbandingan Sub Kriteria

14. Sequence Diagram Analisa Kriteria

Menjelaskan urutan langkah-langkah yang dilakukan admin untuk mengelola analisa kriteria, dapat dilihat pada gambar 4.18 berikut ini :

Gambar 4.18 Sequence Diagram Analisa Kriteria

15. Sequence Diagram Analisa Sub Kriteria

Menjelaskan urutan langkah-langkah yang dilakukan admin untuk mengelola analisa sub kriteria, dapat dilihat pada gambar 4.19 berikut ini :

Gambar 4.19 Sequence Diagram Analisa Sub Kriteria

16. Sequence Diagram Analisa Alternatif

Menjelaskan urutan langkah-langkah yang dilakukan admin untuk mengelola analisa alternatif, dapat dilihat pada gambar 4.20 berikut ini :

Gambar 4.20 Sequence Diagram Analisa Alternatif

17. Sequence Diagram Laporan Data Alternatif

Menjelaskan urutan langkah-langkah yang dilakukan admin untuk melihat laporan data alternatif, dapat dilihat pada gambar 4.21 berikut ini :

Gambar 4.21 Sequence Diagram Laporan Data Alternatif

18. Sequence Diagram Laporan Perkategori

Menjelaskan urutan langkah-langkah yang dilakukan admin untuk melihat laporan perkategori, dapat dilihat pada gambar 4.22 berikut ini :

Gambar 4.22 Sequence Diagram Laporan Perkategori

19. Sequence Diagram Laporan Hasil

Menjelaskan urutan langkah-langkah yang dilakukan admin untuk melihat laporan hasil, dapat dilihat pada gambar 4.23 berikut ini :

Gambar 4.23 Sequence Diagram Laporan Hasil

4.2.2 Desain Terinci

Desain terinci disebut juga desain fisik sistem. Desain terinci ini terdiri dari desain output, desain input, desain file, dan logika program. Rancangan-rancangan dari desain ini dijadikan acuan dalam perancangan sistem baru untuk memperoleh hasil yang maksimal.

4.2.2.1 Desain Output

Desain output merupakan desain tampilan yang digunakan untuk melihat tampilan akhir yang dihasilkan oleh sistem berdasarkan dari aktifitas yang dilakukan oleh user di dalam sistem tersebut yang dapat dilihat dari layar monitor ataupun dicetak dalam bentuk kertas.

1. Desain laporan Alternatif

Desain ini merupakan bentuk rancangan laporan data alternative atau handphone yang dihasilkan oleh sistem seperti pada gambar 4.24.

PEMILIHAN PEMBELIAN HANDPHONE TERBAIK FAREL CELL LUBUK BASUNG KABUPATEN AGAM

Laporan Alternatif

No Handphone Brand Harga 99 x(100) x(50) 9(11) 99 x(100) x(50) 9(11)

Lubuk Basung, m-d-Y

(x(100))

Gambar 4.24 Desain Laporan Alternatif

2. Desain Laporan Perkategori

Desain ini merupakan bentuk rancangan laporan hasil dari proses perhitungan AHP perkategori atau brand handphone yang dihasilkan oleh sistem seperti pada gambar 4.25.

PEMILIHAN PEMBELIAN HANDPHONE TERBAIK FAREL CELL LUBUK BASUNG KABUPATEN AGAM

Laporan Hasil Penilaian Handphone x(50)

Ranking	Handphone	Total
99	x(100) x(100)	9(11)

Lubuk Basung, m-d-Y

(x(100))

Gambar 4.25 Desain Laporan Perkategori

3. Desain Laporan Hasil

Desain ini merupakan bentuk rancangan laporan hasil penilaian dari sistem yang dibuat seperti gambar 4.26.

PEMILIHAN PEMBELIAN HANDPHONE TERBAIK FAREL CELL LUBUK BASUNG KABUPATEN AGAM

Laporan Hasil Penilaian Handphone

Ranking	Handphone	Brand	Total
99	x(100) x(100)	x(50) x(50)	9(11)

Lubuk Basung, m-d-Y

(x(100))

Gambar 4.26 Desain Laporan Hasil

4.2.2.2 Desain Input

Desain *input* merupakan tampilan yang digunakan sebagai *input* oleh *user* kedalam sistem. Berikut adalah beberapa bentuk tampilan input yang akan dibuat yang ada pada sistem :

1. Desain Input Login

Merupakan form untuk menginputkan hak akses untuk masuk ke dalam sistem dengan bentuk rancangan seperti pada gambar 4.27.

Gambar 4.27 Desain Input Login

2. Desain Input Data Pengguna

Desain input data pengguna merupakan form untuk menginputkan semua data pengguna yang ada, rancangannya dapat dilihat pada gambar 4.28.

Gambar 4.28 Desain Input Data Pengguna

3. Desain Input Data Kategori

Desain input data kategori merupakan form untuk menginputkan semua data kategori yang ada, rancangannya dapat dilihat pada gambar 4.29.

Gambar 4.29 Desain Input Data Kategori

4. Desain Input Data Alternatif

Desain input data alternatif merupakan form untuk menginputkan semua data alternatif yang ada, rancangannya dapat dilihat pada gambar 4.30.

Gambar 4.30 Desain Input Data Alternatif

5. Desain Input Data Kriteria

Desain input data kriteria merupakan form untuk menginputkan semua data kriteria yang ada, rancangannya dapat dilihat pada gambar 4.31.

Gambar 4.31 Desain Input Data Kriteria

6. Desain Input Data Sub Kriteria

Desain input data sub kriteria merupakan form untuk menginputkan semua data sub kriteria yang ada, rancangannya dapat dilihat pada gambar 4.32.

Gambar 4.32 Desain Input Data Sub Kriteria

7. Desain Input Data Perbandingan Kriteria

Desain input data perbandingan kriteria merupakan form untuk menginputkan semua data perbandingan kriteria yang ada, rancangannya dapat dilihat pada gambar 4.33.

Tambah Perbandingan Kriteria				
Kode Perbandingan	Varchar(7)			
Kriteria	Varchar(50)			
Perbandingan Kriteria	Varchar(50)			
Kriteria	Varchar(50)	\Box		
	Simpan Kembali			

Gambar 4.33 Desain Input Data Perbandingan Kriteria

8. Desain Input Data Perbandingan Sub Kriteria

Desain input data perbandingan sub kriteria merupakan form untuk menginputkan semua data perbandingan sub kriteria yang ada, rancangannya dapat dilihat pada gambar 4.34.

Gambar 4.34 Desain Input Data Perbandingan Sub Kriteria

4.2.2.3 Desain File

Database merupakan kumpulan dari beberapa file yang saling berhubungan seperti pada *class diagram*. File-file tersebut saling berhubungan berdasarkan file kunci yang ada. Agar lebih jelas mengenai file-file, adalah sebagai berikut:

1. Tabel Admin

Merupakan tabel yang digunakan untuk menampung data-data admin dengan rancangan struktur seperti tabel 4.45.

Tabel 4.45 Desain Tabel Admin

Nama Database : ahp hp

Nama Tabel : admin

Primary Key : id_admin

No.	Field Name	Type	Width	Description
1	id_admin	Integer	11	Id admin
2	username	Varchar	10	Username
3	password	Varchar	10	Password
4	Nama_lengkap	Varchar	100	Nama Lengkap

2. Tabel Kategori

Tabel yang digunakan untuk menampung data-data kategori dengan rancangan struktur seperti tabel 4.46.

Tabel 4.46 Desain Tabel Kategori

Nama Database : ahp_hp

Nama Tabel : kategori

Primary Key : id_kategori

No.	Field Name	Type	Width	Description
1	id_kategori	Integer	11	Id Kategori

2	kategori	Varchar	50	Kategori
---	----------	---------	----	----------

3. Tabel Alternatif

Tabel yang digunakan untuk menampung data-data alternatif dengan rancangan struktur seperti tabel 4.47.

Tabel 4.47 Desain Tabel Alternatif

Nama Database : ahp_hp

Nama Tabel : alternatif

Primary Key : id_alternatif

No.	Field Name	Type	Width	Description
1	id_alternatif	Varchar	7	Id Alternatif
2	id_kategori	Integer	11	Id Kategori
3	merk	Varchar	100	Merk Handphone
4	harga	Integer	11	Harga Handphone
5	deskripsi	Text	-	Deskripsi
6	gambar	Text	-	Gambar

4. Tabel Kriteria

Tabel yang digunakan untuk menampung data-data kriteria dengan rancangan struktur seperti tabel 4.48.

Tabel 4.48 Desain Tabel Kriteria

Nama Database : ahp_hp

Nama Tabel : kriteria

Primary Key : id_kriteria

No. Field Name Type Width Description	No.	Field Name	Type	Width	Description
---	-----	------------	------	-------	-------------

1	id_kriteria	Varchar	7	Id kriteria
2	kriteria	Varchar	50	Nama kriteria

5. Tabel Subkriteria

Tabel yang digunakan untuk menampung data-data subkriteria dengan rancangan struktur seperti tabel 4.49

Tabel 4.49 Desain Tabel Subkriteria

Nama Database : ahp_hp

Nama Tabel : subkriteria

Primary Key : id_subkriteria

No.	Field Name	Type	Width	Description
1	id_subkriteria	Varchar	7	Id Subkriteria
2	subkriteria	Varchar	50	Nama Subkriteria
3	singkatan	Varchar	10	Singkatan

6. Tabel Perbandingan Kriteria

Tabel yang digunakan untuk menampung data nilai perbandingan kriteria dengan rancangan struktur seperti tabel 4.50.

Tabel 4.50 Desain Tabel Perbandingan Kriteria

Nama Database : ahp_hp

Nama Tabel : perbandingan_kriteria

Primary Key : id perb kriteria

No.	Field Name	Type	Width	Description
-----	------------	------	-------	-------------

1	id_perb_kriteria	Varchar	7	Id Perb Kriteria
2	kriteria1	Varchar	50	Kriteria 1
3	nm_banding	Varchar	50	Nama Banding
4	kriteria2	Varchar	50	Kriteria 2
5	nilai_banding	Integer	11	Nilai Banding

7. Tabel Perbandingan Subkriteria

Tabel yang digunakan untuk menampung data nilai perbandingan subkriteria dengan rancangan struktur seperti tabel 4.51.

Tabel 4.51 Desain Tabel Perbandingan Subkriteria

Nama Database : ahp_hp

Nama Tabel : perb_subkriteria

Primary Key : id perb subkriteria

No.	Field Name	Type	Width	Description
1	id_perb_subkriteria	Varchar	7	Id Perb Subkriteria
2	subkriteria1	Varchar	50	Subkriteria 1
3	nm_banding	Varchar	50	Nama Banding
4	subkriteria2	Varchar	50	Subkriteria 2
No.	Field Name	Type	Width	Description
5	nilai_banding	Integer	11	Nilai Banding

8. Tabel Prioritas Kriteria

Tabel yang digunakan untuk menampung data nilai prioritas kriteria dengan rancangan struktur seperti tabel 4.52.

Tabel 4.52 Desain Tabel Prioritas Kriteria

Nama Database : ahp_hp

Nama Tabel : pw_kriteria

Primary Key : id_pw_kriteria

No.	Field Name	Type	Width	Description
1	id_pw_kriteria	Integer	11	Id Prioritas
2	pw1	Double	-	Prioritas 1
3	pw2	Double	-	Prioritas 2
4	pw3	Double	-	Prioritas 3
5	pw4	Double	-	Prioritas 4
6	pw5	Double	-	Prioritas 5
7	pw6	Double	-	Prioritas 6
8	pw7	Double	-	Prioritas 7
9	pw8	Double	-	Prioritas 8

9. Tabel Prioritas Subkriteria

Tabel yang digunakan untuk menampung data nilai prioritas subkriteria dengan rancangan struktur seperti tabel 4.53.

Tabel 4.53 Desain Tabel Prioritas Subkriteria

Nama Database : ahp_hp

Nama Tabel : pw_subkriteria

Primary Key : id_pw_subkriteria

No.	Field Name	Type	Width	Description
1	id_pw_subkriteria	Integer	7	Id Prioritas
2	pwsb1	Double	-	Prioritas SB 1
3	pwb1	Double	-	Prioritas B 1
4	pwc1	Double	-	Prioritas C 1
5	pwk1	Double	-	Prioritas K 1
6	pwsb2	Double	-	Prioritas SB 2
7	pwb2	Double	-	Prioritas B 2

No.	Field Name	Type	Width	Description
8	pwc2	Double	-	Prioritas C 2
9	pwk2	Double	-	Prioritas K 2
10	pwsb3	Double	-	Prioritas SB 3
11	pwb3	Double	-	Prioritas B 3
12	pwc3	Double	-	Prioritas C 3
13	pwk3	Double	-	Prioritas K 3
14	pwsb4	Double	-	Prioritas SB 4
15	pwb4	Double	-	Prioritas B 4
16	pwc4	Double	-	Prioritas C 4
17	pwk4	Double	-	Prioritas K 4
18	pwsb5	Double	-	Prioritas SB 5
19	pwb5	Double	-	Prioritas B 5
20	pwc5	Double	-	Prioritas C 5
21	pwk5	Double	-	Prioritas K 5
22	pwsb6	Double	-	Prioritas SB 6
23	pwb6	Double	-	Prioritas B 6
24	pwc6	Double	-	Prioritas C 6
25	pwk6	Double	-	Prioritas K 6
26	pwsb7	Double	-	Prioritas SB 7
27	pwb7	Double	-	Prioritas B 7
28	pwc7	Double	-	Prioritas C 7
29	pwk7	Double	-	Prioritas K 7
30	pwsb8	Double	-	Prioritas SB 8
31	pwb8	Double	-	Prioritas B 8
32	pwc8	Double	-	Prioritas C 8
33	pwk8	Double	-	Prioritas K 8

10. Tabel Hasil

Tabel yang digunakan untuk menampung data hasil penilaian alternatif dengan rancangan struktur seperti tabel 4.54.

Tabel 4.54 Desain Tabel Hasil

Nama Database : ahp_hp

Nama Tabel : hasil

Primary Key : id_hasil

No.	Field Name	Type	Width	Description
1	id_hasil	Integer	2	Id Hasil
2	tgl_penilaian	Date	-	Tanggal Penilaian
3	id_alternatif	Varchar	7	ID Alternatif
4	OS	Double	-	Hasil 1
5	UL	Double	-	Hasil 2
6	CPU	Double	-	Hasil 3
7	RAM	Double	-	Hasil 4
8	ROM	Double	-	Hasil 5
9	RKB	Double	-	Hasil 6
10	RKD	Double	-	Hasil 7
11	KB	Double	-	Hasil 8
12	total	Double	-	Total

BAB V

IMPLEMENTASI DAN PENGUJIAN SISTEM

5.1 Implementasi Sistem

Implementasi sistem merupakan salah satu tahapan dalam daur hidup pengembangan sistem yang dilakukan setelah melalui tahapan perencanaan sistem, yang bertujuan untuk menerapkan atau menjalankan sistem yang telah dirancang agar sistem informasi siap untuk dipakai dan mengetahui sejauh mana aplikasi pada sistem dapat dipakai.

5.1.1 Instalasi Software

Dalam tahap implementasi dan perancangan sistem pendukung keputusan ini diperlukannya aplikasi pendukung yang akan digunakan sebagai media pendukung menjalankan web server pada komputer untuk mengetahui hasil dari sistem yang sudah dibuat dan digunakan juga sebagai media bantu untuk penyimpanan data yang telah diinputkan dari sistem tersebut.

5.1.1.1 Instalasi *Software* Xampp Portable Win32 5.6.23

Langkah untuk menjalankan program atau aplikasi yaitu dengan dengan menginstal perangkat lunaknya terlebih dahulu. Langkah kedua adalah dengan penginstalan Xampp :

1. Klik 2 kali file xampp-portable-win32-5.6.23-0-VC11-installer.exe untuk memulai proses penginstalan, maka akan muncul tampilan seperti Gambar 5.1 berikut ini :

Gambar 5.1 Tampilan Awal Penginstalan Xampp

2. Klik *next* untuk melanjutkan penginstalan, seperti pada Gambar 5.2 berikut ini :

Gambar 5.2 Tampilan Setup

3. Biarkan pilihan *default*, kemudian klik *next* untuk melanjutkan penginstalan, seperti pada Gambar 5.3 berikut ini :

Gambar 5.3 Tampilan Select Components

4. Kemudian akan muncul tampilan *Installation Folder* pilih tempat penyimpanan mana tempat *Xampp* akan diinstal, lalu klik *Next* seperti Gambar 5.4 berikut ini :

Gambar 5.4 Tampilan Installation Folder

5. Kemudian muncul tampilan *Bitnami for XAMPP* dan klik *Next* seperti Gambar 5.5 berikut ini :

Gambar 5.5 Tampilan Bitnami For XAMPP

6. Tampilan berikutnya adalah *Ready to Install*, klik *Next* untuk memulai proses intalasi seperti Gambar 5.6 berikut ini :

Gambar 5.6 Tampilan Ready to Install

7. Setelah itu proses instalasi akan dilakukan secara otomatis oleh laptop dan tunggu hingga selesai, seperti Gambar 5.7 berikut ini :

Gambar 5.7 Tampilan Proses Instalasi Xampp

8. Setelah proses pada Gambar 5.7 selesai, klik *finish* seperti Gambar 5.8 berikut ini :

Gambar 5.8 Tampilan Xampp Berhasil Diinstal

9. Kemudian akan muncul tampilan pilihan bahasa, klik *Save* seperti Gambar 5.9 berikut ini :

Gambar 5.9 Tampilan Pilihan Bahasa

10. Setelah itu akan muncul tampilan seperti Gambar 5.10 berikut ini :

Gambar 5.10 Tampilan Control Panel Xampp

5.2 Pengujian Sistem

Pengujian terhadap sistem dilakukan untuk untuk mengetahui sejauh mana sistem yang sudah dirancang dapat mengatasi masalah, serta untuk mengetahui hubungan antar komponen sistem.

1. Halaman Menu Utama

Menu utama merupakan tampilan menu utama pada saat membuka aplikasi. Pada halaman menu utama ini akan ditampilkan menu-menu yang bisa diakses oleh semua user. Tampilan menu utama dapat dilihat pada Gambar 5.11 berikut ini.

Gambar 5.11 Halaman Menu Utama

2. Halaman Produk

Halaman produk berisi tentang produk handphone yang tersedia beserta informasi merk handphone, harga handphone. Seperti pada Gambar 5.12 berikut ini.

Gambar 5.12 Halaman Produk

3. Halaman Oppo

Halaman Oppo berisi tentang handphone brand Oppo yang tersedia beserta informasi merk handphone, harga handphone. Seperti pada Gambar 5.13 berikut ini.

Gambar 5.13 Halaman Oppo

4. Halaman Samsung

Halaman Samsung berisi tentang handphone brand Samsung yang tersedia beserta informasi merk handphone, harga handphone. Seperti pada Gambar 5.14 berikut ini.

Gambar 5.14 Halaman Samsung

5. Halaman Vivo

Halaman Vivo berisi tentang handphone brand Vivo yang tersedia beserta informasi merk handphone, harga handphone. Seperti pada Gambar 5.15 berikut ini.

Gambar 5.15 Halaman Oppo

6. Halaman Samsung Tentang Kami

Halaman tentang kami berisi tentang identitas Farel Cell yang dijabarkan secara detail beserta informasi lainnya serta dapat diakses oleh semua user. Seperti pada Gambar 5.16 berikut ini.

Gambar 5.14 Halaman Tentang Kami

7. Halaman Login

Form login digunakan sebagai validasi data admin yang ingin masuk kedalam sistem dengan cara menginputkan *username* dan *password*. Gambar 5.15 memperlihatkan form login yang ada pada sistem.

Gambar 5.15 Tampilan Login

8. Halaman Dashboard Admin

Halaman Dashboard admin menampilkan tampilan dashboard admin setelah admin *login* ke sistem yang berisi menu dan sub menu apa saja yang dapat diakses dan dilihat oleh admin seperti pada gambar 5.16.

Gambar 5.16 Tampilan Dashboard Admin

9. Halaman Data Pengguna

Tampilan ini memperlihatkan data-data pengguna yang telah diinputkan sebelumnya pada form input data pengguna, sehingga menampilkan seperti pada gambar 5.17.

Gambar 5.17 Tampilan Data Pengguna

10. Halaman Data Kategori

Tampilan ini memperlihatkan data-data kategori yang telah diinputkan sebelumnya pada form input data kategori, sehingga menampilkan seperti pada gambar 5.18.

Gambar 5.18 Tampilan Data Kategori

11. Halaman Data Alternatif

Tampilan ini memperlihatkan data-data alternatif yang telah diinputkan sebelumnya pada form input data alternatif, sehingga menampilkan seperti pada gambar 5.19.

Gambar 5.19 Tampilan Data Alternatif

12. Halaman Data Kriteria

Tampilan ini memperlihatkan data-data kriteria yang telah diinputkan sebelumnya pada form input data kriteria, sehingga menampilkan seperti pada gambar 5.20.

Gambar 5.20 Tampilan Data Kriteria

13. Halaman Data Sub Kriteria

Tampilan ini memperlihatkan data-data sub kriteria yang telah diinputkan sebelumnya pada form input data sub kriteria, sehingga menampilkan seperti pada gambar 5.21.

Gambar 5.21 Tampilan Data Sub Kriteria

14. Halaman Data Perbandingan Kriteria

Tampilan ini memperlihatkan data-data perbandingan kriteria yang telah diinputkan sebelumnya pada form input data perbandingan kriteria, sehingga menampilkan seperti pada gambar 5.22.

Gambar 5.22 Tampilan Data Perbandingan Kriteria

15. Halaman Data Perbandingan Sub Kriteria

Tampilan ini memperlihatkan data-data perbandingan sub kriteria yang telah diinputkan sebelumnya pada form input data perbandingan sub kriteria, sehingga menampilkan seperti pada gambar 5.23.

Gambar 5.23 Tampilan Data Perbandingan Sub Kriteria

16. Halaman Data Analisa Kriteria

Tampilan ini memperlihatkan data-data analisa kriteria yang telah diinputkan sebelumnya pada form input data analisa kriteria, sehingga menampilkan seperti pada gambar 5.24.

Gambar 5.24 Tampilan Data Analisa Kriteria

17. Halaman Data Analisa Sub Kriteria

Tampilan ini memperlihatkan data-data analisa sub kriteria yang telah diinputkan sebelumnya pada form input data analisa sub kriteria, sehingga menampilkan seperti pada gambar 5.25.

Gambar 5.25 Tampilan Data Analisa Sub Kriteria

18. Halaman Data Analisa Alternatif

Tampilan ini memperlihatkan data-data analisa alternatif yang telah diinputkan sebelumnya pada form input data analisa alternatif, sehingga menampilkan seperti pada gambar 5.26.

Gambar 5.26 Tampilan Data Analisa Alternatif

19. Halaman Laporan Data Alternatif

Halaman laporan data alternatif berisi data alternatif yang telah diinputkan ke sistem. Bentuk tampilan laporan data alternatif seperti gambar 5.27.

Gambar 5.27 Tampilan Laporan Data Alternatif

20. Halaman Laporan Perkategori

Laporan perkategori berisi data hasil penilaian perkategori menggunakan metode AHP pada sistem. Bentuk tampilan laporan hasil penilaian seperti pada gambar 5.28.

Gambar 5.28 Tampilan Laporan Perkategori

21. Halaman Laporan Hasil

Laporan hasil penilaian berisi data hasil penilaian menggunakan metode AHP pada sistem. Bentuk tampilan laporan hasil penilaian seperti pada gambar 5.29.

Gambar 5.29 Tampilan Laporan Hasil

BAB VI

KESIMPULAN DAN SARAN

Pada bab ini akan menjelaskan tentang kesimpulan yang berisi hasil-hasil yang diperoleh setelah dilakukan analisis, desain dan implementasi dari perancangan sistem informasi yang dibuat.

6.1 Kesimpulan

Berdasarkan pembahasan yang telah diurai pada bab sebelumnya, dengan melakukan penelitian dan penganalisaan dengan menggunakan metode-metode penelitian, maka dapat diambil kesimpulan sebagai berikut:

- Setelah adanya sistem penunjang keputusan yang dibangun ini maka sistem ini telah menjawab kebutuhan informasi yang berkenaan dengan Pemilihan handphone terbaik.
- Setelah pembuatan sistem baru ini maka system tersebut telah dapat menjawab dan membantu dalam menyelesaikan masalah pemilian pembelian handphone terbaik.
- Setelah adanya sistem penunjang keputusan ini maka wilayah promosi usaha telah tersebar di dalam maupun luar daerah dan telah mencakup kota kota lain yang ada dalam jangkauan.

6.2 Saran

Berdasarkan kesimpulan yang telah diuraikan sebelumnya, maka dapat dikemukakan beberapa saran yang diharapkan menjadi bahan pertimbangan dengan harapan agar berguna bagi yang menggunakan sistem ini :

- Agar sistem yang dirancang dapat bekerja secara maksimal dan efektif maka diperlukan tenaga ahli yang terampil didalam mengoperasikan sistem yang dibuat.
- 2. Kedepannya dapat menambahkan fitur order agar dapat mempermudah pelanggan dalam melakukan pemilihan pembelian.

DAFTAR PUSTAKA

- Aggarwal, P. (2016). The Importance of Management Information System (MIS) and Decision Support System (DSS) in Decision-Making Process. *Imperial Journal of Interdisciplinary Research*, 2(12), 2454–1362.
- Aswati, S., Ramadhan, M. S., Firmansyah, A. U., Anwar, K., Studi, P., Informasi, S., Royal, S., Prof, J., No, H. M. Y., Kabupaten, K., Sumatera, A., & Pendahuluan, I. (2017). Studi Analisis Model Rapid Application Development Dalam. *Studi Analisis Model Rapid Application Development Dalam*.
- Ayu, F., & Permatasari, N. (2018). PERANCANGAN SISTEM INFORMASI PENGOLAHAN DATA PRAKTEK KERJA LAPANGAN (PKL) PADA DEVISI HUMAS PT. PEGADAIAN. *Intra-Tech*.
- Azhar, Z., & Handayani, M. (2018). ANALISIS FAKTOR PRIORITAS DALAM PEMILIHAN PERUMAHAN KPR MENGGUNAKAN METODE AHP. *Jurnal Manajemen Informatika Dan Sistem Informasi*. https://doi.org/10.36595/misi.v1i2.38
- Besser, A., Kazak, J. K., Świąder, M., & Szewrański, S. (2019). A Customized Decision Support System for Renewable Energy Application by Housing Association. *Sustainability*, 11(16), 4377. https://doi.org/10.3390/su11164377
- Dwanoko, Y. S. (2016). Implementasi Software Development Life Cycle (Sdlc) Dalam Penerapan Pembangunan Aplikasi Perangkat. *Jurnal Teknologi Informasi*.
- Fakhriza & Ispandi. (2018). SISTEM PENUNJANG KEPUTUSAN KENAIKAN JABATAN PADA PT. METRAPLASA DENGAN METODE AHP. *JURNAL GERBANG*.
- Farell, G., Saputra, H. K., & Novid, I. (2018). Rancang Bangun Sistem Informasi Pengarsipan Surat Menyurat (Studi Kasus Fakultas Teknik Unp). *Jurnal Teknologi Informasi Dan Pendidikan (JTIP)*, 11(2), 56–62.
- Fernandes, K., Vinagre, P., & Cortez, P. (2015). A proactive intelligent decision support system for predicting the popularity of online news. *Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics*), 9273, 535–546. https://doi.org/10.1007/978-3-319-23485-4 53

- Haryani, E., & Widiastuti, N. (2017). Sistem Pengambilan Keputusan Seleksi Siswa Berprestasi Pada Sekolah Menengah Kejuruan (Smk) Ma'arif 1 Kalirejo Menggunakan Metode AHP. *Jurnal TAM (Technology Acceptance Model)*.
- Heriyanto, Y. (2018). Perancangan Sistem Informasi Rental Mobil Berbasis Web Pada PT.APM Rent Car. *Jurnal Intra-Tech*.
- Hutahean, J. (2015). Konsep Sistem Informasi Jeperson Hutahaean Google Buku. In *Agustus*.
- Imbar, R. V., Masli, K., & Edi, D. (2016). Sistem Pendukung Keputusan Penerima Beasiswa Dengan Metode Simple Additive Weighting (Studi Kasus di Fakultas Teknologi Informasi U.K. Maranatha). *Jurnal Teknik Informatika Dan Sistem Informasi*. https://doi.org/10.28932/jutisi.v2i3.494
- Lestanti, S., & Susana, A. D. (2016). SISTEM PENGARSIPAN DOKUMEN GURU DAN PEGAWAI MENGGUNAKAN METODE MIXTURE MODELLING BERBASIS WEB. *Antivirus: Jurnal Ilmiah Teknik Informatika*. https://doi.org/10.35457/antivirus.v10i2.164
- Lubis, A. (2016). Basis Data Dasar. Deepublish.
- Manalu, Rofendy, M. (2015). Implementasi Sistem Informasi Penyewaan Mobil Pada Cv. Btn Padang Bulan Dengan Metode Waterfall. *Jurnal Mantik Penusa*, 18(2).
- Marbun, M., & Sinaga, B. (2017). Sistem Pendukung Keputusan Penilaian Hasil Belajar Mahasiswa dengan Metode Topsis di STMIK Pelita Nusantara Medan. *Jurnal Mantik Penusa*.
- Muslim, B., & Dayana, L. (2016). Sistem Informasi Peraturan Daerah (Perda) Kota Pagar Alam Berbasis Web. *Jurnal Ilmiah Betrik*. https://doi.org/10.36050/betrik.v7i01.11
- Narti, N.-, Sriyadi, S., Rahmayani, N., & Syarif, M. (2019). Pengambilan Keputusan Memilih Sekolah Dengan Metode AHP. *Jurnal Informatika*. https://doi.org/10.31311/ji.v6i1.5552
- Rahmawati, S., Andini, S., & Zefriyenni, Z. (2018). Penerapan Game Education Untuk Meningkatkan Daya Ingat Belajar Pada Anak Usia Dini. *Teknologi*, 6(2), 67–77.