TagScan: Simultaneous Target Imaging and Material Identification with Commodity RFID Devices

Ju Wang, Jie Xiong, Xiaojiang Chen, Hongbo Jiang, Rajesh Krishna Balan, Dingyi Fang

Many applications are enabled by passive sensing

Gesture recognition

Elderly Monitoring

Virtual Reality

Intruder Detection

[RTI'10], [VRTI'12], Google [Nuzzer'13], [WiTrack'14], [mTrack'15], [LiFS'16],...

RF-based passive sensing

RF-based passive sensing

Gesture recognition

[WiSee'13], Microsoft

[E-eyes'14], [WiDeo'15],

[WiDraw'15], [D-Watch'16]...

[RTI'10], [VRTI'12], Google [Nuzzer'13], [WiTrack'14], [mTrack'15], [LiFS'16],...

Motion tracking

Gesture recognition

[WiSee'13], Microsoft

[E-eyes'14], [WiDeo'15],

[WiDraw'15], [D-Watch'16]...

RF-based passive sensing

Smart home,

Others...

Missing: target imaging and material identification

Target Imaging

Material Identification

Applications of Target Imaging and Material Identification

Robot Control

Robot adjusts its grip strength when picking egg and stone by using material identification

Detecting concealed weapons by knowing target shape and material type

Security checking

TagScan

A system identifies a target's material and images its shape simultaneously

Low cost:

cheap commodity RFID device.

High accuracy:

- differentiating even Coke and Pepsi.
- Imaging the body shape accurately.

Easy deployment:

Utilizing the phase and RSS readings.

How can we identify a target's material? ?

How can we image a target's shape?

Preliminary studies

Setup:

Place RFID tag on top of the cup and pour the same amount of liquid.

Key Observations:

- Different liquids have different Phase/RSS changes.
- Even Coke and Pepsi have an around 0.2 radians phase change difference.

Challenge: Without knowing the target size, identifying material type is challenging

Background and limitation of past approaches

Considering a target that blocks the direct path:

RF propagation property

- > Phase constant β : Phase changes β over a wavelength.
- > Attenuation constant α : amplitude changes $e^{-\alpha}$ over a unit distance.

With Phase change $\Delta \emptyset$ and RSS change ΔR , we have:

$$-\Delta \emptyset = 2(\beta_{air} - \beta_{tar})D$$

$$\ln 10^{\Delta R/20} = 2(\alpha_{air} - \alpha_{tar})D$$
 Measurements Constant Unique for each material type

Past approaches use α_{tar} and β_{tar} for material identification

Background and limitation of past approaches

Considering a target that blocks the direct path:

RF propagation property

- > Phase constant β : Phase changes β over a wavelength.
- > Attenuation constant α : amplitude changes $e^{-\alpha}$ over a unit distance.

With Phase change $\Delta \emptyset$ and RSS change ΔR , we have:

2 Equations
$$\begin{cases} -\Delta \emptyset = 2(\beta_{air} - \beta_{tar})D \\ \ln 10^{\Delta R/20} = 2(\alpha_{air} - \alpha_{tar})D \end{cases}$$
 - - 3 Unknowns

2 equations can not solve 3 unknowns!

Our solution:

By removing the unknown D, we define a feature:

$$\Omega = \frac{\ln 10^{\Delta R/20}}{\Delta \emptyset} = \frac{\alpha_{air} - \alpha_{tar}}{\beta_{tar} - \beta_{air}}$$

Advantage:

• Ω is unique for each material and independent of D.

Our solution:

By removing the unknown D, we define a feature:

$$\Omega = \frac{\ln 10^{\Delta R/20}}{\Delta \emptyset} = \frac{\alpha_{air} - \alpha_{tar}}{\beta_{tar} - \beta_{air}}$$

Advantage:

- Ω is unique for each material and independent of D.
- Ω can be calculated from RSS and phase readings.

Without knowing the target size, we employ the new feature Ω for material identification

Differentiating materials with feature Ω

The Ω values of 6 liquids are different from each other. 17

How can we identify a target's material? ?

How can we image a target's shape?

Preliminary studies

Setup:

Pour a liquid into the cup and increase the liquid height.

Key Observation:

 Linear relationship between phase changes and liquid heights (i.e. target widths).

Challenge: Stitching target widths for imaging is non-trivial

Starting points of target widths are unknown;

Starting points of target widths are unknown; As a result, we may obtain wrong images:

How can we solve this problem?

Key Observation:

 Images estimated from different arrays align well if the starting points are estimated correctly.

V2 Ground Truth

Image from Array 1

Image from Array 2

Image from Array 1

Image from Array 2

Initial image estimate

Ground Truth

Image from Array 1

Image from Array 2

Initial image estimate

Another image estimate

Image from Array 1

Image from Array 2

Initial image estimate

Another image estimate

Final image estimate

Multipath Problem:

Multipath signals break the linear relationship between phase change and target width

Stage 1: Identifying the "clean" channels and tags

However, this works well only in the environment with little multipath

Stage 2: Enhancing the direct-path signal

(a) Phase shift of $\frac{4\pi f}{C} d \cos(\theta)$ at two adjacent tags.

Tag *i*:

Stage 2: Enhancing the direct-path signal

(a) Phase shift of $\frac{4\pi f}{C} d \cos(\theta)$ at two adjacent tags.

(b) Phase shift of $4\pi \tau \Delta f$ at two adjacent channels.

Stage 2: Enhancing the direct-path signal

(a) Phase shift of $\frac{4\pi f}{C} d \cos(\theta)$ at two adjacent tags.

(b) Phase shift of $4\pi \tau \Delta f$ at two adjacent channels.

Implementation & Evaluation

Implementation

- Reader and Tag: one Impinj Speedway R420 readers; 16 cheap Alien ALN-9634 tags.
- Environments: Hall, lab-office and library, w.r.t, low, medium and high multipath.

Material Identification Performance

Material Identification for 10 Liquids

M: Whole milk

N: Skimmed milk

Material identification accuracy is higher than 94%.

Similar Liquid Material identification

Higher than 90% accuracy for identifying Coke and Pepsi.

100% accuracy for identifying Skimmed and Whole milk.

Target Imaging Performance

Imaging for Target with Different Shapes and Materials

Triangle shape (plastic & water)

Hexagonal shape (plastic & water)

Rectangular shape cement pillar

Circular shape (plastic & water)

Imaging for Target with Different Shapes and Materials

Two more arrays added!

Hexagonal shape (plastic & water)

Circular shape (plastic & water)

See-through the wall imaging

Human target through wall imaging

See-through the wall imaging

Two-target through wall imaging

Conclusion

- TagScan performs material identification and target imaging simultaneously.
- A new approach to identify materials, independent of target size.
- A novel method for imaging targets, using RSS and phase.