Отчёт по лабораторной работе №1

Развертывание виртуальной машины

Плето Плето Мбамби

Содержание

1	Цель работы	4
2	Выполнение лабораторной работы	5
3	Вывод	13
4	Контрольные вопросы	14
Список литературы		17

Список иллюстраций

2.1	Создание новой виртуальной машины	5
2.2	Конфигурация жёсткого диска	6
2.3	Конфигурация жёсткого диска	6
2.4	Конфигурация жёсткого диска	7
2.5	Конфигурация жёсткого диска	7
2.6	Конфигурация системы	8
2.7	Установка языка	9
2.8	Параметры установки	10
2.9	Этап установки	10
		11
2.11	Команда dmesg	12
	<u> </u>	12

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов

2 Выполнение лабораторной работы

Создаю виртуальную машину

Рис. 2.1: Создание новой виртуальной машины

Задаю конфигурацию жёсткого диска — VDI, динамический виртуальный диск.

Рис. 2.2: Конфигурация жёсткого диска

Рис. 2.3: Конфигурация жёсткого диска

Рис. 2.4: Конфигурация жёсткого диска

Рис. 2.5: Конфигурация жёсткого диска

Добавляю новый привод оптических дисков и выбираю образ

Рис. 2.6: Конфигурация системы

Запускаю виртуальную машину и выбираю установку системы на жёсткий диск. Устанавливаю язык для интерфейса и раскладки клавиатуры

Рис. 2.7: Установка языка

Указываю параметры установки

Рис. 2.8: Параметры установки

Рис. 2.9: Этап установки

Создаю пользователя

Рис. 2.10: Создание пользователя

Захожу в созданную учётную запись.

Информация по машине.

- 1. Версия ядра Linux (Linux version).
- 2. Частота процессора (Detected Mhz processor).
- 3. Модель процессора (CPU0).
- 4. Объем доступной оперативной памяти (Memory available).
- 5. Тип обнаруженного гипервизора (Hypervisor detected).

```
\oplus
                                                                                  phleto@fedora:~
                                                                                                                                                                   Q
           0.840719] usb usb1: Manufacturer: Linux 6.0.7-301.fc37.x86_64 ehci_hcd 0.983774] usb usb2: Manufacturer: Linux 6.0.7-301.fc37.x86_64 ohci_hcd
       0.983774] usb usb2: Manufacturer: Linux 6.0.7-301.fc37.x86_64 oh 7.427815] SELinux: policy capability network_peer_controls=1 7.427820] SELinux: policy capability open_perms=1 7.427821] SELinux: policy capability extended_socket_class=1 7.427822] SELinux: policy capability always_check_network=0 7.427823] SELinux: policy capability always_check_network=0 7.427824] SELinux: policy capability rogroup_seclabel=1 7.427824] SELinux: policy capability nnp_nosuid_transition=1 7.427825] SELinux: policy capability genfs_seclabel_symlinks=1 7.427826] SELinux: policy capability ioctl_skip_cloexec=0 7.623932] systemd[1]: Successfully loaded SELinux policy in 350. 19.108202] 17:09:08.620646 main OS Product: Linux
            0.983774] usb usb2: Manufacturer:
                                                                                                                                 x policy in 350.404ms.
 phleto@fedora ~]$ dmesg | grep MHz
[ 0.000006] tsc: Detected 2599.994 MHz processor
            4.862534] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:91:e7:a7
 .
[phleto@fedora ~]$ dmesg | grep Mem
                                         emory: 3969848K/4193848K available (16393K kernel code, 3227K rw
           0.073077] M
data, 12820K rodata, 3024K init, 4680K bss, 223740K reserved, 0K cma-reserved)

[ 0.225673] x86/mm: Memory block size: 128MB

[ 2.831047] systemd[1]: memstrack.service - Memstrack Anylazing Service was
                                                                                                                         mstrack Anylazing Service was s
kipped because all trigger condition checks failed.

[ 11.822934] systemd[1]: Listening on systemd-oomd.socket - Userspace Out-Of-emory (OOM) Killer Socket.
[phleto@fedora ~]$
```

Рис. 2.11: Команда dmesg

- 6. Тип файловой системы корневого раздела.
- 7. Последовательность монтирования файловых систем

```
[phleto@fedora ~]$ dmesg | grep Hyper
[ 0.000000] Hypervisor detected: KVM
[phleto@fedora ~]$ df
Файловая система 1К-блоков Использовано Доступно Использовано% Смонтировано в
                              0 4096
              4096
devtmpfs
                                                             0% /dev
tmpfs
                   2005700
                                       0 2005700
tmpfs
                              3044 799230
3352212 37349484
36 2005664
3352212 37349484
                                                               9% /
1% /tmp
/dev/sda3
                  40891392
tmpfs
/dev/sda3
                  40891392
                                                                9% /home
/dev/sda2
                                            400984
                                                                1% /run/user/1000
[phleto@fedora ~]$
```

Рис. 2.12: Команда dmesg

3 Вывод

Мы приобрели практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

4 Контрольные вопросы

- 1. Какую информацию содержит учётная запись пользователя?
- входное имя пользователя (Login Name);
- пароль (Password);
- внутренний идентификатор пользователя (User ID);
- идентификатор группы (Group ID);
- анкетные данные пользователя (General Information);
- домашний каталог (Home Dir);
- указатель на программную оболочку (Shell).
- 2. Укажите команды терминала и приведите примеры:
- для получения справки по команде man;
- для перемещения по файловой системе cd;
- для просмотра содержимого каталога ls;
- для определения объёма каталога ls -l;
- для создания / удаления каталогов / файлов touch, mkdir, rm, rmdir;
- для задания определённых прав на файл / каталог chmod;
- для просмотра истории команд history.
- 3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система (англ. file system) — порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании. FAT. Числа в FAT12, FAT16 и FAT32 обозначают количество бит, используемых для перечисления блока файловой системы. FAT32 является фактическим стандартом и устанавливается на большинстве видов сменных носителей по умолчанию. Одной из особенностей этой версии ФС является возможность применения не только на современных моделях компьютеров, но и в устаревших устройствах и консолях, снабженных разъемом USB. Пространство FAT32 логически разделено на три сопредельные области: зарезервированный сектор для служебных структур; табличная форма указателей; непосредственная зона записи содержимого файлов.

Стандарт NTFS разработан с целью устранения недостатков, присущих более ранним версиям ФС. Впервые он был реализован в Windows NT в 1995 году, и в настоящее время является основной файловой системой для Windows. Система NTFS расширила допустимый предел размера файлов до шестнадцати гигабайт, поддерживает разделы диска до 16 Эб (эксабайт, 1018 байт). Использование системы шифрования Encryption File System (метод «прозрачного шифрования») осуществляет разграничение доступа к данным для различных пользователей, предотвращает несанкционированный доступ к содержимому файла. Файловая система позволяет использовать расширенные имена файлов, включая поддержку многоязычности в стандарте юникода UTF, в том числе в формате кириллицы. Встроенное приложение проверки жесткого диска или внешнего накопителя на ошибки файловой системы chkdsk повышает надежность работы харда, но отрицательно влияет на производительность.

Ext2, Ext3, Ext4 или Extended Filesystem – стандартная файловая система, первоначально разработанная еще для Minix. Содержит максимальное количество функций и является наиболее стабильной в связи с редкими изменениями кодовой базы. Начиная с ext3 в системе используется функция журналирования. Сегодня версия ext4 присутствует во всех дистрибутивах Linux.

XFS рассчитана на файлы большого размера, поддерживает диски до 2 терабайт. Преимуществом системы является высокая скорость работы с большими файла-

ми, отложенное выделение места, увеличение разделов на лету, незначительный размер служебной информации. К недостаткам относится невозможность уменьшения размера, сложность восстановления данных и риск потери файлов при аварийном отключении питания.

- 4. Как посмотреть, какие файловые системы подмонтированы в ОС? командой du.
- 5. Как удалить зависший процесс?

командой kill.

Список литературы

- 1. Colvin H. VirtualBox: An Ultimate Guide Book on Virtualization with VirtualBox.
 - CreateSpace Independent Publishing Platform, 2015. 70 c.
- 2. Unix и Linux: руководство системного администратора / Э. Немет и др. 4-е изд. —Вильямс, 2014. 1312 с.