Application of B₁⁺ shimming for relaxation-compensated 7T CEST-MRI

Petr Bulanov¹, Petr Menshchikov¹, Johannes Grimm¹, Max Lutz², Stephan Orzada¹, Philip S. Boyd¹, Peter Bachert¹, Mark E. Ladd¹, Andreas Korzowski¹ and Sebastian Schmitter^{1,2}

¹German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

²Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.

INTRODUCTION:

Ultra high-field MRI provides significant advantages for CEST imaging – higher SNR and spectral resolution. However, abdominal CEST-MRI at ultra high-fields is challenged by strong B_1 inhomogeneity and B_1 + dropouts. In this study we investigate CEST at 7T in the liver by addressing these challenges with static parallel transmission (B_1 + shimming). **METHODS:**

A dataset was obtained in a healthy volunteer (female, 25 y.o.) on a Magnetom 7T (Siemens Healthineers, Germany) using a local 8-channel Tx/Rx body coil [1]. B_1 + shimming was applied for two ROIs in different liver regions to locally maximize the B_1 + efficiency [2], i.e. B_1 + magnitude per input power. The B_1 + field was mapped for two different B_1 + shim settings using an absolute, MRF-based B_1 + mapping technique [3]. Relative B_1 + values (rB_1) were calculated as the ratio of the obtained actual FA to nominal FA (= 40°). CEST sequence (res:1.5×1.5×6 mm3; 130 Gaussian-shaped, 15mslong saturation RF pulses, duty cycle = 80%; recovery time = 3s, total acquisition time = 8min, 73 offsets) was acquired twice with mean nominal saturation amplitudes B_1 = 0.6 and 0.9 μ T. The acquisition of each single offset time (5.5s) was synchronized with the respiratory cycle. Postprocessing of the data, as well as amide, rNOE MTR_{Rex} values quantification and reconstruction to B_1 =0.8 μ T was performed as in [4]. **RESULTS:**

Figure 1 (C, D) shows rB_1 maps for two shims in different ROIs. Representative Z-spectra demostrated for two regions of shim 2 (Fig1. D): shimmed region with high rB_1 =1.02 (Fig.1 A) and B_1 + dropout region with low rB_1 = 0.2 (Fig.1 B). Amide and rNOE MTR_{Rex} maps for two shims are demonstrated on Fig.2 (A-D). Quantitative data in ROI for shim 1: rB_1 = 1.09±0.09 (Fig.1 C), amide MTR_{Rex} = 0.12±0.03 (Fig.2 A), rNOE MTR_{Rex} = 0.16±0.05 (Fig.2 C); for shim 2: rB_1 = 1.19±0.07 (Fig.1 D), amide MTR_{Rex} = 0.12±0.04 (Fig.2 B), rNOE MTR_{Rex} = 0.15±0.06 (Fig.3 D).

Figure 1. rB_1 maps for two shims in different ROIs (C, D) (shimming ROIs are indicated by red line) and Z-spectra from two regions: shimmed region with high $rB_1 = 1.02(A)$ and B_1^+ dropout region with low $rB_1 = 0.2$ (B).

Figure 2. Amide (A, B) and rNOE (C, D) MTR_{Rex} maps collected with two B_1 * shims (A-C and B-D) in different ROIs. MTR_{Rex} data from voxels with B_1 * dropouts were masked out. The shimming ROIs are indicated by the red line.

DISCUSSION:

The necessity of employing B_1 * shimming techniques for ensuring robust data acquisition from the target region is demonstrated – spectra from regions with low rB_1 are unsuitable for processing (Fig1. B) and the spectra from shimming area (Fig.1 B) have appropriate quality for accurate quantification. There are no significant differences in MTR_{Rex} values in two shimming regions, which underscore the method reliability and independence from the target region. MTR_{Rex} values for CEST effects are comparable to the corresponding values in gray brain matter (amide: \approx 0.12, rNOE: \approx 0.3) [4].

CONCLUSION:

To the best of our knowledge, we present the first robust acquisition of liver amide and rNOE CEST MTR_{Rex} contrasts. Relaxation-compensated CEST-MRI is very promising technique for liver biochemistry and tumor investigation with vast number of possible clinical applications.

REFERENCES:

- 1. Orzada, S., et al. Proc. Intl. Soc. Mag. Reson. Med. 17 (2009)
- Metzger, G. J. et al. MRM, 59(2), 396–409. https://doi.org/10.1002/MRM.21476
- 3. Lutz, M., et al. ISMRM-ESMRMB ISMRT 31st Annual Meeting. https://doi.org/10.58530/2022/0386
- 4. Meissner, M., et al. NMR in Biomedicine, 28(5), 529–537. https://doi.org/10.1002/NBM.3283