Equations for system

March 18, 2018

We follow [1] very very closely.

Domain

Our domain Ω is d=2 or 3-dimensional, and partitioned into Ω_f and Ω_p , with $\Gamma_{fp}=\Omega_f\cap\Omega_p$ being the (d-1)-dimensional interface. The boundary $\partial\Omega$ is partitioned into $\Gamma_f=\partial\Omega\cap\partial\Omega_f$ and $\Gamma_p=\partial\Omega\cap\partial\Omega_p$. We assume each region is connected, reasonably smooth and all that.

Unknowns

The unknowns of the system and the corresponding test functions are:

- \mathbf{u}_f , \mathbf{v}_f : free flow fluid velocity. Defined on Ω_f .
- \mathbf{u}_p , \mathbf{v}_p : porous flow fluid velocity. Defined on Ω_p .
- p_f , w_f : free flow fluid pressure. Defined on Ω_f .
- p_p , w_p : porous flow fluid pressure. Defined on Ω_p .
- η_p , ξ_p : displacement. Defined on Ω_p .
- λ_{Γ} , μ_{Γ} : normal stress balance Lagrange multiplier. Defined on Γ_{fp} . In [1], denoted λ, μ_h .

Parameters

```
\mu_f fluid viscosity (denoted \mu in the [1])
```

 λ_p, μ_p Lamé parameters. Denoted μ in [1].

 α Biot-Willis constant

K Permeability tensor. Symmetric, bounded, positive definite. I take it to be scalar.

 α_{BJS} Friction coefficient

 s_0 Storage coefficient

 $B=\frac{\mu_f\alpha_{BJS}}{\sqrt{K}}$ The coefficient in the BJS condition. Could be zero.

Notation

- \mathbf{n}_f , \mathbf{n}_p are the outward unit normal vectors to $\partial \Omega_f$, $\partial \Omega_p$.
- $au_{f,j}, j=1,\ldots,d-1$ is an orthogonal system of unit tangent vectors at $\Gamma_{fp}.$
- $\mathbf{D}(\mathbf{v}) := \frac{1}{2}(\nabla \mathbf{v} + \nabla \mathbf{v}^T)$
- $\sigma_f(\mathbf{u}_f, p_f) := -p_f \mathbf{I} + 2\mu_f \mathbf{D}(\mathbf{u}_f)$
- $\sigma_p(\eta_p, p_p) := \lambda_p(\nabla \cdot \eta_p)\mathbf{I} + 2\mu_p\mathbf{D}(\eta_p) \alpha p_p\mathbf{I}$

Next, here are a bunch of bilinear forms used in the problem:

•
$$a_f(\mathbf{u}_f, \mathbf{v}_f) = (2\mu \mathbf{D}(\mathbf{u}_f), \mathbf{D}(\mathbf{v}_f))_{\Omega_f}$$

•
$$a_p^d(\mathbf{u}_p, \mathbf{v}_p) = (\mu K^{-1}\mathbf{u}_p, \mathbf{v}_p)_{\Omega_p}$$

•
$$a_p^e(\boldsymbol{\eta}_p, \boldsymbol{\xi}_p) = (\mu_p \mathbf{D}(\boldsymbol{\eta}_p), \mathbf{D}(\boldsymbol{\xi}_p))_{\Omega_p} + (\lambda_p \nabla \cdot \boldsymbol{\eta}_p, \nabla \cdot \boldsymbol{\xi}_p)_{\Omega_p}$$

•
$$b_f(\mathbf{v}_f, w_f) = -(\nabla \cdot \mathbf{v}_f, w_f)_{\Omega_f}$$

•
$$b_p(\mathbf{v}_p, w_p) = -(\nabla \cdot \mathbf{v}_p, w_p)_{\Omega_p}$$

•
$$a_{BJS}(\mathbf{u}_f, \boldsymbol{\eta}_p; \mathbf{v}_f, \boldsymbol{\xi}_p) = \frac{\mu \alpha_{BJS}}{\sqrt{K}} \sum_{j=1}^{d-1} \left((\mathbf{u}_f - \boldsymbol{\eta}_p) \cdot \boldsymbol{\tau}_j, (\mathbf{v}_f - \boldsymbol{\eta}_p) \cdot \boldsymbol{\tau}_j \right)_{\Gamma_{fp}}$$

•
$$b_{\Gamma_{fp}}(\mathbf{v}_f, \mathbf{v}_p, \boldsymbol{\xi}_p; \mu_{\Gamma}) = (\mathbf{v}_f \cdot \mathbf{n}_f + (\boldsymbol{\xi}_p + \mathbf{v}_p) \cdot \mathbf{n}_p, \mu_{\Gamma})_{\Gamma_{fp}}$$

Strong formulation

These are all ignoring body force and source terms. So it's okay to put stuff on the right hand sides if you want to.

Stokes (applies in Ω_f):

$$-\nabla \cdot \boldsymbol{\sigma}_f(\mathbf{u}_f, p_f) = 0 \tag{1a}$$

$$\nabla \cdot \mathbf{u}_f = 0 \tag{1b}$$

Darcy (applies in Ω_p):

$$\mathbf{u}_p = -\frac{K}{\mu} \nabla p_p \tag{2}$$

Biot (applies in Ω_p):

$$-\nabla \cdot \boldsymbol{\sigma}_{p}(\boldsymbol{\eta}_{p}, p_{p}) = 0 \tag{3a}$$

$$\frac{\partial}{\partial t} \left(s_0 p_p + \alpha \nabla \cdot \boldsymbol{\eta}_p \right) + \nabla \cdot \mathbf{u}_p = 0 \tag{3b}$$

Interface conditions

Conservation of mass:

$$\mathbf{u}_f \cdot \mathbf{n}_f + \left(\frac{\partial \boldsymbol{\eta}_p}{\partial t} + \mathbf{u}_p\right) \cdot \mathbf{n}_p = 0 \tag{4}$$

Balance of stress:

$$-(\boldsymbol{\sigma}_f \mathbf{n}_f) \cdot \mathbf{n}_f = p_p + C_p = \lambda \tag{5}$$

$$\sigma_f \mathbf{n}_f + \sigma_p \mathbf{n}_p = 0 \tag{6}$$

BJS condition:

$$-(\boldsymbol{\sigma}_f \mathbf{n}_f) \cdot \boldsymbol{\tau}_j = B \left(\mathbf{u}_f - \frac{\partial \boldsymbol{\eta}_p}{\partial t} \right) \cdot \boldsymbol{\tau}_j \tag{7}$$

[1] does not have the constant C_p in (5), but their interface is 'actually flat' and not a vessel wall with muscles extering force of their own, so that's reasonable.

Boundary conditions

In their numerical experiment (section 7.2), [1] use the domain shown in figure The Darcy boundary Γ_p is partitioned into the left part $\Gamma_p^{\rm L}$ and the remainder

Figure 1: Darcy domain from [1]. Stokes domain is the removed 'finger'.

 $\Gamma_p^{\neg L}$ in the obvious way. Physically, I think Γ_p^L is above ground and the other part is below ground or something.

As boundary conditions, they use:

•
$$\mathbf{u}_f = 10\mathbf{n}_f$$
 on Γ_f

- $\mathbf{u}_p \cdot \mathbf{n}_p = 0$ on Γ_p^{left}
- $p_p = 1000$ on $\Gamma_p^{\neg \text{left}}$
- $\boldsymbol{\eta}_p \cdot \mathbf{n}_p = 0$ on $\Gamma_p^{\neg \text{left}}$
- $(\boldsymbol{\sigma}_p \mathbf{n}_p) \cdot \boldsymbol{\tau}_p = 0$ on $\Gamma_p^{\neg \text{left}}$

I think I can use essentially the same boundary conditions, although maybe I should prescribe the pressure on Γ_f instead of the flow.

Variational formulation

Having used a backward Euler discretization of the time derivative, [1] obtain the following variational formulation

$$a_{f}(\mathbf{u}_{f}, \mathbf{v}_{f}) + b_{f}(\mathbf{v}_{f}, p_{f}) + a_{p}^{e}(\boldsymbol{\eta}_{p}, \boldsymbol{\xi}_{p})$$

$$+ \alpha b_{p}(\boldsymbol{\xi}_{p}, p_{p}) + a_{p}^{d}(\mathbf{u}_{p}, \mathbf{v}_{p}) + b_{p}(\mathbf{v}_{p}, p_{p})$$

$$+ b_{\Gamma_{fp}}\left(\mathbf{v}_{f}, \mathbf{v}_{p}, \boldsymbol{\xi}_{p}; \lambda\right) + a_{BJS}\left(\mathbf{u}_{f}, \frac{\boldsymbol{\eta}_{p}}{\Delta t}; \mathbf{v}_{f}, \boldsymbol{\xi}_{p}\right)$$

$$= a_{BJS}\left(\mathbf{u}_{f}, \frac{\boldsymbol{\eta}_{p}^{n-1}}{\Delta t}; \mathbf{v}_{f}, \boldsymbol{\xi}_{p}\right) + (\mathbf{v}_{p}, C_{p}\mathbf{n}_{p})_{\Gamma_{fp}} + (\boldsymbol{\sigma}_{f}\mathbf{n}_{f}, \mathbf{v}_{f})_{\Gamma_{f}}$$

$$+ (\boldsymbol{\sigma}_{p}\mathbf{n}_{p}, \boldsymbol{\xi}_{p})_{\Gamma_{p}} + (p_{p}\mathbf{n}_{p}, \mathbf{v}_{p})_{\Gamma_{p}}$$

$$\left(s_{0}\frac{p_{p}}{\Delta t}, w_{p}\right)_{\Omega_{p}} - \alpha b_{p}\left(\frac{\boldsymbol{\eta}_{p}}{\Delta t}, w_{p}\right) - b_{p}(\mathbf{u}_{p}, w_{p}) - b_{f}(\mathbf{u}_{f}, w_{f})$$
 (8b)

$$\left(s_0 \frac{p_p}{\Delta t}, w_p\right)_{\Omega_p} - \alpha b_p \left(\frac{p_p}{\Delta t}, w_p\right) - b_p(\mathbf{u}_p, w_p) - b_f(\mathbf{u}_f, w_f) \quad (8b)$$

$$= \left(s_0 \frac{p_p^{n-1}}{\Delta t}, w_p\right)_{\Omega_p} - \alpha b_p \left(\frac{\boldsymbol{\eta}_p^{n-1}}{\Delta t}, w_p\right)_{\Omega_p}$$

$$b_{\Gamma_{fp}}\left(\mathbf{u}_f, \mathbf{u}_p, \boldsymbol{\eta}_p; \mu_{\Gamma}\right) = b_{\Gamma_{fp}}\left(\mathbf{u}_f, \mathbf{u}_p, \boldsymbol{\eta}_p^{n-1}; \mu_{\Gamma}\right)$$
(8c)

Here the unknowns with no superscript mean the unknowns at time n (e.g. $\mathbf{u}_f = \mathbf{u}_f^n$).

Derivation of weak form

Multiply (1a) by \mathbf{v}_f and integrate over Ω_f . By standard vector calculus,

$$\int\limits_{\Omega_f} -\mathbf{v}_f \cdot
abla \cdot oldsymbol{\sigma}_f = \int\limits_{\Omega_f} oldsymbol{\sigma}_f \colon
abla \mathbf{v}_f - \int\limits_{\partial \Omega_f} oldsymbol{\sigma}_f \mathbf{n}_f \cdot \mathbf{v}_f.$$

Now, as the $\partial\Omega_f$ consists of Γ_f and Γ_{fp} , the boundary term splits into an integral over Γ_f which we can move to the RHS by applying boundary conditions ¹, and an interface term $-I_{\mathbf{v}_f} = -\int_{\Gamma_{fp}} \boldsymbol{\sigma}_f \mathbf{n}_f \cdot \mathbf{v}_f$.

Before proceeding, we expand²

$$\int_{\Omega_f} \boldsymbol{\sigma}_f : \nabla \mathbf{v}_f = \int_{\Omega_f} (-p_f \mathbf{I} + 2\mu_f \mathbf{D}(\mathbf{u}_f)) : \nabla \mathbf{v}_f$$

$$= \int_{\Omega_f} -p_f \nabla \cdot \mathbf{v}_f + \int_{\Omega_f} 2\mu_f \mathbf{D}(\mathbf{u}_f) : \nabla \mathbf{v}_f$$

$$= b_f(\mathbf{v}_f, p_f) + a_f(\mathbf{u}_f, \mathbf{v}_f)$$

So the contribution here is

$$a_f(\mathbf{u}_f, \mathbf{v}_f) + b_f(\mathbf{v}_f, p_f) - I_{\mathbf{v}_f} - (\boldsymbol{\sigma}_f \mathbf{n}_f, \mathbf{v}_f)_{\Gamma_f}.$$

Next, multiply (3a) by ξ_p and integrate over Ω_p . By exactly the same argument,

$$\int\limits_{\Omega_p} -\boldsymbol{\xi}_p \cdot \nabla \cdot \boldsymbol{\sigma}_p = \int\limits_{\Omega_p} \boldsymbol{\sigma}_p \colon \nabla \boldsymbol{\xi}_p - \int\limits_{\partial \Omega_p} \boldsymbol{\sigma}_p \mathbf{n}_p \cdot \boldsymbol{\xi}_p.$$

Again, the boundary term splits into an integral over Γ_p where we need boundary conditions ³ and an interface term $-I_{\boldsymbol{\xi}_p} = -\int_{\Gamma_{f_p}} \boldsymbol{\sigma}_p \mathbf{n}_p \cdot \boldsymbol{\xi}_p$. Expanding,

$$\begin{split} \int\limits_{\Omega_p} \boldsymbol{\sigma}_p \colon \nabla \boldsymbol{\xi}_p &= \int\limits_{\Omega_p} \left(\lambda_p (\nabla \cdot \boldsymbol{\eta}_p) (\nabla \cdot \boldsymbol{\xi}_p) + 2 \mu_p \mathbf{D}(\boldsymbol{\eta}_p) \colon \nabla \boldsymbol{\xi}_p \right) - \alpha p_p \nabla \cdot \boldsymbol{\xi}_p \\ &= a_p^e(\boldsymbol{\eta}_p, \boldsymbol{\xi}_p) + \alpha b_p(\boldsymbol{\xi}_p, p_p) \end{split}$$

So the contribution is

$$a_p^e(\boldsymbol{\eta}_p, \boldsymbol{\xi}_p) + \alpha b_p(\boldsymbol{\xi}_p, p_p) - I_{\boldsymbol{\xi}_p} - (\boldsymbol{\sigma}_p \mathbf{n}_p, \boldsymbol{\xi}_p)_{\Gamma_p}.$$

Next, multiply (2) by $\frac{\mu}{K}\mathbf{v}_p$ and integrate over Γ_p . Integration by parts yields

$$\int_{\Omega_p} \frac{\mu}{K} \mathbf{v}_p \cdot \mathbf{u}_f - \int_{\Omega_p} p_p \nabla \cdot \mathbf{v}_p = \int_{\partial \Omega_p} p_p \mathbf{v}_p \cdot \mathbf{n}_p$$

The boundary term splits into an integral over Γ_p where we need boundary conditions ⁴ and an interface term $I_{\mathbf{v}_p} = \int_{\Gamma_{t_p}} p_p \mathbf{v}_p \cdot \mathbf{n}_p$, so the contribution is

$$a_p^d(\mathbf{u}_p, \mathbf{v}_p) + b_p(\mathbf{v}_p, p_p) + I_{\mathbf{v}_p} - (p_p \mathbf{n}_p, \mathbf{v}_p)_{\Gamma_p}.$$

¹Specifically, Dirichlet conditions on \mathbf{u}_f or Neumann conditions on $\boldsymbol{\sigma}_f$.

²The equality $\mathbf{D}(\mathbf{u}_f)$: $\nabla \mathbf{v}_f = \mathbf{D}(\mathbf{u}_f)$: $\mathbf{D}(\mathbf{v}_f)$ looks false because $\nabla \mathbf{v}_f \neq \mathbf{D}(\mathbf{v}_f)$, but $\mathbf{D}(\mathbf{u}_f)$ is symmetric, so $\mathbf{D}(\mathbf{u}_f)$: $\nabla \mathbf{v}_f = \mathbf{D}(\mathbf{u}_f)$: $\nabla \mathbf{v}_f^T = \mathbf{D}(\mathbf{u}_f)$: $\mathbf{D}(\mathbf{v}_f)$.

 $^{^3}$ Specifically, Dirichlet conditions on η_p or Neumann conditions on σ_p .

 $^{{}^4}$ Specifically, Dirichlet conditions on $\dot{{f u}_p}$ or Neumann conditions on p_p .

Next, once we add all these equations together, we will have to handle the sum of the interface terms

$$-I_{\mathbf{v}_f} - I_{\boldsymbol{\xi}_p} + I_{\mathbf{v}_p} = -\int_{\Gamma_{fp}} \boldsymbol{\sigma}_f \mathbf{n}_f \cdot \mathbf{v}_f - \int_{\Gamma_{fp}} \boldsymbol{\sigma}_p \mathbf{n}_p \cdot \boldsymbol{\xi}_p + \int_{\Gamma_{fp}} p_p \mathbf{v}_p \cdot \mathbf{n}_p$$

We start with $\int_{\Gamma_{fp}} p_p \mathbf{v}_p \cdot \mathbf{n}_p$. By (5), $p_p = \lambda_{\Gamma} - C_p$ on Γ_{fp} , so

$$I_{\mathbf{v}_p} = \int_{\Gamma_{fp}} p_p \mathbf{v}_p \cdot \mathbf{n}_p = \int_{\Gamma_{fp}} \lambda_{\Gamma} \mathbf{v}_p \cdot \mathbf{n}_p - \int_{\Gamma_{fp}} C_p \mathbf{v}_p \cdot \mathbf{n}_p$$

The second term can then go live on the right hand side. Next, we treat the other two interface terms. By (6), $\sigma_f \mathbf{n}_f = -\sigma_p \mathbf{n}_p$, so we have that

$$I_{\mathbf{v}_f} + I_{oldsymbol{\xi}_p} = \int\limits_{\Gamma_{fp}} \left(\mathbf{v}_f - oldsymbol{\xi}_p
ight) \cdot oldsymbol{\sigma}_f \mathbf{n}_f$$

Next, note that the BJS condition (7) gives us information on the tangential component of $\sigma_f \mathbf{n}_f$, while (5) gives us information on the normal component. As $\mathbf{n}_f, \tau_1, \tau_2$ form an orthonormal system, we have that⁵

$$\begin{split} \mathbf{v}_f - \boldsymbol{\xi}_p &= \mathbf{n}_f((\mathbf{v}_f - \boldsymbol{\xi}_p) \cdot \mathbf{n}_f) + \sum_j \boldsymbol{\tau}_j((\mathbf{v}_f - \boldsymbol{\xi}_p) \cdot \boldsymbol{\tau}_j) \\ \Longrightarrow & (\boldsymbol{\sigma}_f \mathbf{n}_f) \cdot (\mathbf{v}_f - \boldsymbol{\xi}_p) = ((\boldsymbol{\sigma}_f \mathbf{n}_f) \cdot \mathbf{n}_f) \left((\mathbf{v}_f - \boldsymbol{\xi}_p) \cdot \mathbf{n}_f \right) \\ & + \sum_j ((\boldsymbol{\sigma}_f \mathbf{n}_f) \cdot \boldsymbol{\tau}_j) ((\mathbf{v}_f - \boldsymbol{\xi}_p) \cdot \boldsymbol{\tau}_j) \end{split}$$

By (5),
$$(\boldsymbol{\sigma}_f \mathbf{n}_f) \cdot \mathbf{n}_f = -\lambda$$
, and by (7), $(\boldsymbol{\sigma}_f \mathbf{n}_f) \cdot \boldsymbol{\tau}_j = -B \left(\mathbf{u}_f - \frac{\partial \boldsymbol{\eta}_p}{\partial t} \right) \cdot \boldsymbol{\tau}_j$, so

$$\begin{split} (\boldsymbol{\sigma}_{f}\mathbf{n}_{f})\cdot(\mathbf{v}_{f}-\boldsymbol{\xi}_{p}) &= -\lambda\left((\mathbf{v}_{f}-\boldsymbol{\xi}_{p})\cdot\mathbf{n}_{f}\right) \\ &-\sum_{i}\left(B\left(\mathbf{u}_{f}-\frac{\partial\boldsymbol{\eta}_{p}}{\partial t}\right)\cdot\boldsymbol{\tau}_{j}\right)\left((\mathbf{v}_{f}-\boldsymbol{\xi}_{p})\cdot\boldsymbol{\tau}_{j}\right) \end{split}$$

We can then use that $\mathbf{n}_f = -\mathbf{n}_p$ to write $\lambda(\mathbf{v}_f - \boldsymbol{\xi}_p) \cdot \mathbf{n}_f = \lambda(\mathbf{v}_f \cdot \mathbf{n}_f + \boldsymbol{\xi}_p \cdot \mathbf{n}_p)$. Putting it all together,

⁵This is just use of the fact when a vector \mathbf{v} is written in a basis \mathbf{e}_i , the coefficient of \mathbf{e}_i

$$\begin{split} -(I_{\mathbf{v}_{f}} + I_{\boldsymbol{\xi}_{p}}) + I_{\mathbf{v}_{p}} &= \int\limits_{\Gamma_{fp}} \lambda \left(\mathbf{v}_{f} \cdot \mathbf{n}_{f} + (\boldsymbol{\xi}_{p} + \mathbf{v}_{p}) \cdot \mathbf{n}_{p} \right) \\ &+ \int\limits_{\Gamma_{fp}} \left(B \left(\mathbf{u}_{f} - \frac{\partial \boldsymbol{\eta}_{p}}{\partial t} \right) \cdot \boldsymbol{\tau}_{j} \right) \left((\mathbf{v}_{f} - \boldsymbol{\xi}_{p}) \cdot \boldsymbol{\tau}_{j} \right) \\ &- \int\limits_{\Gamma_{fp}} C_{p} \mathbf{v}_{p} \cdot \mathbf{n}_{p} \\ &= b_{\Gamma_{fp}} \left(\mathbf{v}_{f}, \mathbf{v}_{p}, \boldsymbol{\xi}_{p}; \lambda \right) + a_{BJS} \left(\mathbf{u}_{f}, \frac{\partial \boldsymbol{\eta}_{p}}{\partial t}; \mathbf{v}_{f}, \boldsymbol{\xi}_{p} \right) - (\mathbf{v}_{p}, C_{p} \mathbf{n}_{p})_{\Gamma_{fp}} \end{split}$$

We have now derived all the necessary identities, and summing them all yields the following:

$$\begin{aligned} a_f(\mathbf{u}_f, \mathbf{v}_f) + b_f(\mathbf{v}_f, p_f) + a_p^e(\boldsymbol{\eta}_p, \boldsymbol{\xi}_p) \\ + \alpha b_p(\boldsymbol{\xi}_p, p_p) + a_p^d(\mathbf{u}_p, \mathbf{v}_p) + b_p(\mathbf{v}_p, p_p) \\ + b_{\Gamma_{fp}} \left(\mathbf{v}_f, \mathbf{v}_p, \boldsymbol{\xi}_p; \lambda \right) + a_{BJS} \left(\mathbf{u}_f, \frac{\partial \boldsymbol{\eta}_p}{\partial t}; \mathbf{v}_f, \boldsymbol{\xi}_p \right) \\ = \left(\mathbf{v}_p, C_p \mathbf{n}_p \right)_{\Gamma_{fp}} + (\boldsymbol{\sigma}_f \mathbf{n}_f, \mathbf{v}_f)_{\Gamma_f} + (\boldsymbol{\sigma}_p \mathbf{n}_p, \boldsymbol{\xi}_p)_{\Gamma_p} + (p_p \mathbf{n}_p, \mathbf{v}_p)_{\Gamma_p} \end{aligned}$$

If $\frac{\partial \eta_p}{\partial t}$ is now discretized by a backward Euler difference, this is exactly (8a).

Thoughts

- Kent offered very gentle scepticism about using a 3-field formulation, and suggested not having \mathbf{u}_p as an unknown, using $\mathbf{u}_p = \nabla p_p$ to remove it. I thought [1] had some opinion on this, but on closer reading I can't find it, so maybe that's from another article. I should read up on this.
- I derived the weak formulation by noting that [1] had $\lambda_{\Gamma} = -(\boldsymbol{\sigma} \mathbf{n}_f) \cdot \mathbf{n}_f = p_p$, while I want $\lambda_{\Gamma} = -(\boldsymbol{\sigma} \mathbf{n}_f) \cdot \mathbf{n}_f = p_p + C_p$, so I figured I could get my weak formulation by taking [1]'s and replacing λ_{Γ} by $\lambda_{\Gamma} + C_p$. I should rederive it myself to see whether this is actually true.
- Why is there a 2 in front of μ in equation (1a)? If μ is just divided by 2 that's fine, but then I need to divide my choice by μ accordingly.

References

[1] Ambartsumyan, Ilona, et al., "A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model.", arXiv preprint arXiv:1710.06750 (2017).