Part 0xF

CHAPTER 3

Architecture and Organization

Alan Clements

These slides are being provided with permission from the copyright for in-class (CS2208B) use only. The slides must not be reproduced or provided to anyone outside of the class.

All download copies of the slides and/or lecture recordings are for personal use only. Students must destroy these copies within 30 days after receipt of final course evaluations.

CENGAGE Learning

Music: "Corporate Success" by Scott Holmes, used under <u>Attribution-NonCommercial License</u>

ADC $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Add with carry Rd \leftarrow Rn + Op2 + Carry

ADD $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Add $Rd \leftarrow Rn + Op2$

 $MLA\{cond\}\{S\}\ Rd, Rm, Rs, Rn\ Multiply\ Accumulate \ Rd \leftarrow (Rm \times Rs) + Rn$

 $MUL\{cond\}\{S\}\ Rd,\ Rm,Rs$ Multiply $Rd \leftarrow Rm \times Rs$

 $MOV\{cond\}\{S\}\ Rd,Op2$ Move register or constant $Rd \leftarrow Op2$

NEG{cond}{S} Rd,Rn Negate the value in a register Rd ← - Rn

RSB $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Reverse Subtract Rd \leftarrow Op2 - Rn

RSC $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Reverse Subtract with Carry Rd \leftarrow Op2 - Rn - 1 + Carry

SBC $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Subtract with Carry Rd \leftarrow Rn - Op2 - 1 + Carry

SUB{cond}{S} {Rd,}Rn,Op2 Subtract Rd \leftarrow Rn - Op2

AND $\{cond\}\{S\}\{Rd,\}Rn,Op2$ AND Rd \leftarrow Rn AND Op2

BIC $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Bit Clear Rd \leftarrow Rn AND NOT Op2

 $ORR\{cond\}\{S\}\{Rd,\}Rn,Op2 OR Rd \leftarrow Rn OR Op2$

EOR $\{cond\}\{S\}\{Rd,\}Rn,Op2\}$ Exclusive OR Rd \leftarrow Rn \oplus Op2

MVN $\{cond\}\{S\}\ Rd,Op2$ Move not $Rd \leftarrow OxFFFFFFF \oplus Op2$

CMN{cond} Rn,Op2 Compare Negative CPSR flags ← Rn + Op2

CMP{cond} Rn,Op2 Compare CPSR flags ← Rn - Op2

TEQ{cond} Rn,Op2 Test bitwise equality CPSR flags ← Rn ⊕ Op2

TST{cond} Rn,Op2 Test bits CPSR flags ← Rn AND Op

Computer Organization and Architecture: Themes and Variations, $1^{\rm st}$ Edition

Clements

ARM Assembly Instructions Summary

B{cond} address Branch R15 ← address

BL{cond} address Branch with Link R14 \leftarrow R15, R15 \leftarrow address

Computer Organization and Architecture: Themes and Variations, 1st Edition

Clements

ARM Assembly Instructions Summary

ADR{cond}Rd,label

Load address

Rd ← The address of the label

STR{cond}{B} Rd,address Store register to memory

[address] ← Rd

LDR{cond}{B} Rd,address Load register from memory

Rd ← [address]

LDR{cond} Rd,=expr

Load a 32-bit immediate value Rd ← expr

LDR{cond} Rd,=label

Load a 32-bit address

Rd ← The address of the label

Computer Organization and Architecture: Themes and Variations, 1st Edition

Clements

ARM Assembly Instructions Summary

LDM{cond}{IA|IB|DA|DB}{cond} Rn{!},reglist

Load Multiple registers/Stack pop

LDM{cond}{FD|FA|ED|EA}{cond} Rn{!},reglist

Load Multiple registers/Stack pop

STM{cond}{IA|IB|DA|DB}}{cond} Rn{!},reglist

Store Multiple registers/Stack push

STM{cond}{FD|FA|ED|EA}}{cond} Rn{!},reglist

Store Multiple registers/Stack push

ADC{cond}{S} {Rd,}Rn,Op2 Add with carry $Rd \leftarrow Rn + Op2 + Carry$ ADD{cond}{S} {Rd,}Rn,Op2 Add $Rd \leftarrow Rn + Op2$ AND{cond}{S} {Rd,}Rn,Op2 AND $Rd \leftarrow Rn AND Op2$

ADR{cond}Rd,label Load address Rd ← The address of the label

B{cond} address **Branch** R15 ← address BIC{cond}{S} {Rd,}Rn,Op2 Bit Clear Rd ← Rn AND NOT Op2 BL{cond} address Branch with Link $R14 \leftarrow R15, R15 \leftarrow address$

CMN{cond} Rn,Op2 **Compare Negative** CPSR flags \leftarrow Rn + Op2 CMP{cond} Rn,Op2 Compare CPSR flags \leftarrow Rn - Op2

EOR{cond}{S} {Rd,}Rn,Op2 **Exclusive OR** $Rd \leftarrow Rn \oplus Op2$

Load Multiple registers/Stack pop LDM{cond}{IA|IB|DA|DB}{cond} Rn{!},reglist LDM{cond}{FD|FA|ED|EA}{cond} Rn{!},reglist Load Multiple registers/Stack pop

LDR{cond}{B} Rd,address Load register from memory $Rd \leftarrow [address]$ LDR{cond} Rd,=expr Load a 32-bit immediate value $Rd \leftarrow expr$

Rd ← The address of the label LDR{cond} Rd,=label Load a 32-bit address

MLA(cond)(S) Rd, Rm,Rs,Rn Multiply Accumulate $Rd \leftarrow (Rm \times Rs) + Rn$

MOV{cond}{S} Rd,Op2 $Rd \leftarrow Op2$ Move register or constant MUL(cond)(S) Rd, Rm,Rs Multiply $Rd \leftarrow Rm \times Rs$ MVN{cond}{S} Rd,Op2 Move not $Rd \leftarrow 0xFFFFFFFF \oplus Op2$

NEG{cond}{S} Rd,Rn Negate the value in a register $Rd \leftarrow -Rn$

ORR{cond}{S} {Rd,}Rn,Op2 OR $Rd \leftarrow Rn OR Op2$

No operation

Reverse Subtract

RSC{cond}{S} {Rd,}Rn,Op2 Reverse Subtract with Carry $Rd \leftarrow Op2 - Rn - 1 + Carry$

SBC{cond}{S} {Rd,}Rn,Op2 **Subtract with Carry** $Rd \leftarrow Rn - Op2 - 1 + Carry$

Store Multiple registers/Stack push STM{cond}{IA|IB|DA|DB}}{cond} Rn{!},reglist STM{cond}{FD|FA|ED|EA}}{cond} Rn{!},reglist Store Multiple registers/Stack push

No operation

 $Rd \leftarrow Op2 - Rn$

STR{cond}{B} Rd,address [address] ← Rd Store register to memory SUB{cond}{S} {Rd,}Rn,Op2 Subtract $Rd \leftarrow Rn - Op2$

TEQ{cond} Rn,Op2 Test bitwise equality CPSR flags \leftarrow Rn \oplus Op2 TST{cond} Rn,Op2 Test bits CPSR flags ← Rn AND Op2

→ Update condition flags if S present

NOP

RSB{cond}{S}{ Rd,}Rn,Op2

{cond} → (to be omitted for unconditional execution) Refer to the table below for the meaning of the {cond} field.

<u>Meaning</u>	<u>10 †</u>	{condition	} field	_
	_	-		=

Encoding	Mnemonic	Branch on Flag Status	Execute on Condition
0000	EQ	Z set	Equal (i.e., zero)
0001	NE	Z clear	Not equal (i.e., not zero)
0010	CS	C set	Unsigned higher or same
0011	CC	C clear	Unsigned lower
0100	MI	N set	Negative
0101	PL	N clear	Positive or zero
0110	VS	V set	Overflow
0111	VC	V clear	No overflow
1000	HI	C set and Z clear	Unsigned higher
1001	LS	C clear or Z set	Unsigned lower or same
1010	GE	N set and V set, or N clear and V clear	Greater or equal
1011	LT	N set and V clear, or N clear and V set	Less than
1100	GT	Z clear and N set and V set, or	Greater than
		Z clear and N clear and V clear	
1101	LE	Z set, or N set and V clear,	Less than or equal
		or N clear and V set	
1110	AL		Always (default)
1111	NV		Never (reserved)
II.			

224

Instruction Encoding Formats

Conversion Tables

$2^0 = 1$
$2^1 = 2$
$2^2 = 4$
$2^3 = 8$
$2^4 = 16$
$2^5 = 32$
$2^6 = 64$
$2^7 = 128$
$2^8 = 256$
$2^9 = 512$
$2^{10} = 1024 \text{ (Kilo)}$
$2^{11} = 2048$
$2^{12} = 4096$
$2^{13} = 8192$
$2^{14} = 16384$
$2^{15} = 32768$
$2^{16} = 65536$
$2^{17} = 131072$
$2^{18} = 262144$
$2^{19} = 524288$
$2^{20} = 1048576 $ (Mega)

```
(0)_{16} = (0)_{10} = (0000)_{2}
(1)_{16} = (1)_{10} = (0001)_{2}
(2)_{16} = (2)_{10} = (0010)_{2}
(3)_{16} = (3)_{10} = (0011)_{2}
(4)_{16} = (4)_{10} = (0100)_{2}
(5)_{16} = (5)_{10} = (0101)_{2}
(6)_{16} = (6)_{10} = (0110)_{2}
(7)_{16} = (7)_{10} = (0111)_{2}
(8)_{16} = (8)_{10} = (1000)_{2}
(9)_{16} = (9)_{10} = (1001)_{2}
(A)_{16} = (10)_{10} = (1010)_{2}
(B)_{16} = (11)_{10} = (1011)_{2}
(C)_{16} = (12)_{10} = (1100)_{2}
(D)_{16} = (13)_{10} = (1101)_{2}
(E)_{16} = (14)_{10} = (1110)_{2}
(F)_{16} = (15)_{10} = (1111)_{2}
```

```
ASCII Table
'0' → 0x30
'1' → 0x31
`2' → 0x32
`8' → 0x38
'9' → 0x39
`A' → 0x41
'B' → 0x42
'C' → 0x43
'D' → 0x44
`E' → 0x45
`F' → 0x46
`X' → 0x58
'Y' → 0x59
`Z' → 0x5A
`a' → 0x61
'b' → 0x62
'c' → 0x63
'd' → 0x64
'e' → 0x65
`f' → 0x66
'x' → 0x78
'v' → 0x79
`z' → 0x7A
```