

Countably infinite set-homogeneous structures

R. Gray
University of Lisbon

D. Macpherson
University of Leeds

C. E. Praeger, G. F. Royle University of Western Australia

Homogeneity

A relational structure M is *homogeneous* if any isomorphism between finite substructures of M extends to an automorphism of M. That is, every partial finite symmetry extends to a global symmetry.

Dates back to pioneering work of Fraïssé (1953).

Homogeneous structures:

- have lots of symmetry
- often have rich and interesting automorphism groups
- provide a meeting-point of ideas from combinatorics, model theory, and permutation group theory

Examples

Finite graphs

- Pentagon is homogeneous
- Hexagon is not homogeneous: $(\bullet, \bullet) \mapsto (\bullet, \bullet)$ does not extend to an automorphism

Finite digraphs

• Lachlan (1982) - the following digraph is homogeneous

Figure: The vertices are the 8 non-zero vectors in $GF(3)^2$ and there is an arc from u to v if $|u^T v^T| = 1$ (where $|u^T v^T|$ is the determinant of the 2×2 matrix with columns u^T and v^T).

The random graph

In 1964 Rado constructed a countably infinite graph R as follows: The vertex set is the set of natural numbers (including zero). For $i, j \in \mathbb{N}$, i < j, then i and j are joined if and only if the ith digit in j (in base 2) is 1.

Rado's graph ${\cal R}$ satisfies the following condition

(*) Given any two finite disjoint sets U and V of vertices, there is a vertex x joined to every vertex in U and to no vertex in V.

A back-and-forth argument shows Rado's graph is the unique countable graph (up to isomorphism) satisfying condition (*).

ullet This can be used to show that R is homogeneous.

Theorem (Erdős and Rényi (1963)). If a countable random graph is chosen by selecting edges independently with probability $\frac{1}{2}$ from all pairs of vertices, the resulting graph is isomorphic to R with probability 1.

ullet Thus, the infinite homogeneous graph R is the countable random graph.

Set-homogeneity

A relational structure M is set-homogeneous if, whenever U and V are isomorphic finite substructures, there is an automorphism g of M with $U^g = V$.

- Concept originally due to Fraïssé and Pouzet
- Is a natural weakening of homogeneity

Main question

How much stronger is homogeneity than set-homogeneity?

Finite graphs

Ronse (1978) and Enomoto (1981): for finite graphs sethomogeneity is equivalent to homogeneity.

Finite set-homogeneous digraphs

Finite digraphs

The directed 5-cycle:

- is a set-homogeneous digraph
- is not homogeneous: $(\bullet, \bullet) \mapsto (\bullet, \bullet)$ does not extend to an automorphism

Theorem 1

Let D be a finite set-homogeneous digraph. Then either D is homogeneous or D is isomorphic to the directed 5-cycle.

Infinite set-homogeneous digraphs

Let us consider two constructions which give examples of countable set-homogeneous digraphs which are not 2-homogeneous, and therefore are not homogeneous.

Circular structures

Let T(4) be the digraph obtained by distributing countably many points densely around the unit circle with

- no two making an angle of π or $\pi/2$ at the centre, and
- $x \to y$ if and only if $\pi/2 < \arg(x/y) < \pi$.

By a back-and-forth argument, this construction for ${\cal T}(4)$ determines a unique digraph.

Lemma. The digraph T(4) is set-homogeneous but not 2-homogeneous.

- $\ \ \, \ \, \ \ \,$ set-homogeneity: shown by "expanding" T(4) to a homogeneous structure
- not 2-homogeneous: if $x,y\in T(4)$ with $0<\arg(x/y)<\pi/2$, then
- $\exists z \ (y \to z \to x) \ \mathsf{but} \ \nexists z \ (x \to z \to y)$

- Thus, $(x.y)\mapsto (y,x)$ does not extend to an automorphism.
- ullet T(4) is set-homogeneous but not 2-homogeneous, and has primitive automorphism group.

Colouring the rationals

• Let $2 \le n \le \aleph_0$ and $\{Q_i : 1 \le i \le n\}$ be a partition of $\mathbb Q$ into n dense codense sets.

Define a digraph R_n with domain \mathbb{Q} , putting $a \to b$ if and only if a < b and there is no i such that $a, b \in Q_i$.

• Viewing the Q_i as colours, R_n may be thought of as $\mathbb Q$ interdensely coloured by n colours, with arcs strictly increasing and between vertices of different colours.

By a back-and-forth argument, this construction for R_n determines a unique digraph.

Lemma. The digraphs R_n (for $n \ge 2$) are sethomogeneous but not 2-homogeneous.

- ullet set-homogeneity: shown by "expanding" R_n to a homogeneous structure
- not 2-homogeneous: if $x,y\in Q_1$ with x< y then there is $z\in Q_2$ with $x\to z\to y$ but no z with $y\to z\to x$

- Thus $(x,y)\mapsto (y,x)$ does not extend to an automorphism.
- R_n (for $n \ge 2$) is set-homogeneous but not 2-homogeneous, and has imprimitive automorphism group.

Theorem 2

Let D be a countably infinite set-homogeneous digraph which is not 2-homogeneous. Then D is isomorphic to T(4) or to R_n for some $n \geq 2$.

Open problems

- Is there a countably infinite tournament that is set-homogeneous but not homogeneous?
- Classify the countably infinite set-homogeneous digraphs.

References

- [1] G. L. Cherlin. The classification of countable homogeneous directed graphs and countable homogeneous n-tournaments. *Mem. Amer. Math. Soc.*, 131(621):xiv+161, 1998.
- [2] H. Enomoto. Combinatorially homogeneous graphs. *J. Comb. Theory Ser. B*, 30:215–223, 1981.
- [3] R. Gray, D. Macpherson, C. E. Praeger, G. F. Royle. Set-homogeneous directed graphs. *J. Comb. Theory Ser. B* 102:474–520, 2012.
- [4] A.H. Lachlan, 'Finite homogeneous simple digraphs', in *Logic Colloquium 1981* (ed. J. Stern), vol. 107 of *Studies in Logic and the Foundations of Mathematics*, North-Holland, New York, 1982, 189–208.
- [5] C. Ronse. On homogeneous graphs. *J. London Math. Soc.* (2), 17(3):375–379, 1978.

Acknowledgements

R. Gray was supported by an EPSRC Postdoctoral Fellowship EP/E043194/1 held at the University of St Andrews, Scotland, and was partially supported by FCT and FEDER, project POCTI-ISFL-1-143 of Centro de Álgebra da Universidade de Lisboa, and by the project PTDC/MAT/69514/2006. D. Macpherson was supported by the EPSRC grants EP/D048249/1 and EP/H00677X/1. C. E. Praeger was supported by an Australian Research Council Federation Fellowship FF0776186. G. F. Royle acknowledges support from the Australian Research Council Discovery Grants Scheme (DP0984540).