Flervariabelanalys, MMG300, del 2

2023 05 30, 14:00-18:00

Kursansvarig: David Witt Nyström, 0767794288

Betygsgränser: 0-11 (U), 12-17 (G), 18-25 (VG)

1. Formulera och bevisa Greens formel.

(4p)

- 2. Låt $f_n:[0,1]\to\mathbb{R}$ vara en följd av kontinuerliga funktioner som konvergerar likformigt på [0,1] mot en funktion f. Visa att integralerna $\int_0^1 f_n(x)dx$ konvergerar mot integralen $\int_0^1 f(x)dx$. Ge också ett exempel på en följd av kontinuerliga funktioner g_n som konvergerar punktvis på [0,1] mot en kontinuerlig funktion g, men där integralerna $\int_0^1 g_n(x)dx$ inte konvergerar mot $\int_0^1 g(x)dx$. (4p)
- 3. Beräkna kurvintegralen

$$\int_{\gamma} x \sin(x) dx + z \sin(yz) dy + y \sin(yz) dz,$$

där kurvan γ har parametriseringen $r(t)=(e^t,e^{-t^2},e^{t^3}), 0\leq t\leq 1.$

(4p)

4. Bestäm huruvida serien

$$\sum_{k=1}^{\infty} (\sin(1/k + k) + \sin(1/k - k))$$

är konvergent eller divergent.

(3p)

5. Beräkna flödesintegralen $\iint_Y F \cdot NdS$, där $F(x,y,z) = (x+z\cos(y), -xy\cos(z), x\sin(z))$ och ytan $Y: x^2+y^2=1+\cos^2(z), 0 < z < \pi$ är orienterad så att den positiva sidan är den som syns från origo.

(4p)

6. Lös differentialekvationen $(1-x^2)y''=y$ med begynnelsevärdena y(0)=0 och y'(0)=1 genom ansatsen $y(x)=\sum_{0}^{\infty}a_kx^k$. Glöm inte att bestämma var lösningen är giltig.

(3p)

7. Låt D_1 och D_2 vara två begränsade och mätbara delmängder till \mathbb{R}^2 . Visa att unionen $D_1 \cup D_2$ också är mätbar.

(3p)

8. Bonusuppgift: Låt a_k vara en positiv växande följd sådan att $a_k \to \infty$ då $k \to \infty$. Visa att serien

$$\sum_{1}^{\infty} \left(\frac{a_{k+1}}{a_k} - 1 \right)$$

är divergent.

(?p)