

MOSFET

StrongIRFET™ 2 Power-Transistor

Features

- Optimized for a wide range of applications
 N-Channel, normal level
 100% avalanche tested

- Pb-free lead plating; RoHS compliant
 Halogen-free according to IEC61249-2-21

Product validation

Qualified according to JEDEC Standard

Table 1 **Key Performance Parameters**

Table 1 Reg 1 direction and the control of the cont								
Parameter	Value	Unit						
$V_{ extsf{DS}}$	100	V						
R _{DS(on),max}	1.6	mΩ						
I _D	274	A						
Qoss	204	nC						
Q _G	161	nC						

Type / Ordering Code	Package	Marking	Related Links
IPF016N10NF2S	PG-TO263-7	016N10NS	-

StrongIRFETTM 2 Power-Transistor

Table of Contents

escription	1
1aximum ratings	3
hermal characteristics	3
lectrical characteristics	4
lectrical characteristics diagrams	6
ackage Outlines	0
evision History	1
rademarks 1	1
nisclaimer	1

StrongIRFET[™] 2 Power-Transistor **IPF016N10NF2S**

1 Maximum ratings at T_A =25 °C, unless otherwise specified

Table 2 Maximum ratings

Danamatan	0		Value	s		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Continuous drain current ¹⁾	I _D	- - -	- - -	274 210 194 34	A	V _{GS} =10 V, T _C =25 °C V _{GS} =10 V, T _C =100 °C V _{GS} =6 V, T _C =100 °C V _{GS} =10V, T _A =25 °C, R _{thJA} =40 °C/W ²)
Pulsed drain current ³⁾	I _{D,pulse}	-	-	1096	Α	<i>T</i> _A =25 °C
Avalanche energy, single pulse ⁴⁾	E _{AS}	-	-	1065	mJ	$I_{\rm D}$ =100 A, $R_{\rm GS}$ =25 Ω
Gate source voltage	V _{GS}	-20	-	20	V	-
Power dissipation	P _{tot}	-	-	300 3.8	W	T _C =25 °C T _A =25 °C, R _{thJA} =40 °C/W ²⁾
Operating and storage temperature	T _j , T _{stg}	-55	-	175	°C	-

2 Thermal characteristics

Table 3 Thermal characteristics

Parameter	Symbol	Values			Unit	Note / Test Condition
Parameter	Symbol	Min.	Тур.	Max.	Ullit	Note / Test Condition
Thermal resistance, junction - case	R _{thJC}	-	-	0.5	°C/W	-
Thermal resistance, junction - ambient, 6 cm² cooling area²)		-	-	40	°C/W	-
Thermal resistance, junction - ambient, minimal footprint	R _{thJA}	-	-	62	°C/W	-

¹⁾ Rating refers to the product only with datasheet specified absolute maximum values, maintaining case temperature as specified. For other case temperatures please refer to Diagram 2. De-rating will be required based on the actual environmental conditions. $^{2)}$ Device on 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm 2 (one layer, 70 μ m thick) copper area for drain

connection. PCB is vertical in still air.

3) See Diagram 3 for more detailed information

4) See Diagram 13 for more detailed information

StrongIRFET[™] 2 Power-Transistor IPF016N10NF2S

Electrical characteristics

at T_j=25 °C, unless otherwise specified

Static characteristics Table 4

Daniel de la constant	0		Value	s			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Drain-source breakdown voltage	V _{(BR)DSS}	100	-	-	V	V _{GS} =0 V, I _D =1 mA	
Gate threshold voltage	V _{GS(th)}	2.2	3.0	3.8	V	V _{DS} =V _{GS} , I _D =267 μA	
Zero gate voltage drain current	I _{DSS}	-	0.1 10	1 100	μA	V _{DS} =100 V, V _{GS} =0 V, T _j =25 °C V _{DS} =100 V, V _{GS} =0 V, T _j =125 °C	
Gate-source leakage current	I _{GSS}	-	10	100	nA	V _{GS} =20 V, V _{DS} =0 V	
Drain-source on-state resistance	R _{DS(on)}	-	1.4 1.7	1.6 2.1	mΩ	V _{GS} =10 V, I _D =100 A V _{GS} =6 V, I _D =50 A	
Gate resistance	R _G	-	1.4	-	Ω	-	
Transconductance ¹⁾	g fs	133	-	_	S	V _{DS} ≥2 I _D R _{DS(on)max} , I _D =100 A	

Table 5 **Dynamic characteristics**

Devementar	Crossball	Values				Nata / Table Open distant
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance	C _{iss}	-	11000	-	pF	V _{GS} =0 V, V _{DS} =50 V, f=1 MHz
Output capacitance	Coss	-	1700	-	pF	V _{GS} =0 V, V _{DS} =50 V, f=1 MHz
Reverse transfer capacitance	C _{rss}	-	76	-	pF	V _{GS} =0 V, V _{DS} =50 V, f=1 MHz
Turn-on delay time	$t_{\sf d(on)}$	-	25	-	ns	$V_{\rm DD}$ =50 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =100 A, $R_{\rm G,ext}$ =1.6 Ω
Rise time	t _r	-	65	-	ns	$V_{\rm DD}$ =50 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =100 A, $R_{\rm G,ext}$ =1.6 Ω
Turn-off delay time	$t_{\sf d(off)}$	-	60	-	ns	$V_{\rm DD}$ =50 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =100 A, $R_{\rm G,ext}$ =1.6 Ω
Fall time	t _f	-	33	_	ns	$V_{\rm DD}$ =50 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =100 A, $R_{\rm G,ext}$ =1.6 Ω

Gate charge characteristics²⁾ Table 6

Doromotor	Symbol		Values			Note / Test Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q _{gs}	-	51	-	nC	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =100 A, $V_{\rm GS}$ =0 to 10 V
Gate charge at threshold	$Q_{g(th)}$	-	34	-	nC	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =100 A, $V_{\rm GS}$ =0 to 10 V
Gate to drain charge	Q_{gd}	-	33	-	nC	V _{DD} =50 V, I _D =100 A, V _{GS} =0 to 10 V
Switching charge	Q _{sw}	-	49	-	nC	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =100 A, $V_{\rm GS}$ =0 to 10 V
Gate charge total ¹⁾	Qg	-	161	241	nC	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =100 A, $V_{\rm GS}$ =0 to 10 V
Gate plateau voltage	V _{plateau}	-	4.5	-	V	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =100 A, $V_{\rm GS}$ =0 to 10 V
Gate charge total, sync. FET	Q _{g(sync)}	-	140	-	nC	V _{DS} =0.1 V, V _{GS} =0 to 10 V
Output charge	Qoss	-	204	-	nC	V _{DS} =50 V, V _{GS} =0 V

 $^{^{1)}}$ Defined by design. Not subject to production test. $^{2)}$ See "Gate charge waveforms" for parameter definition

StrongIRFETTM 2 Power-Transistor IPF016N10NF2S

Table 7 Reverse diode

Parameter	Cymphol		Values			Nata / Tank Oam distant
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Diode continuous forward current	Is	-	-	205	Α	<i>T</i> _C =25 °C
Diode pulse current	I _{S,pulse}	-	-	1096	Α	<i>T</i> _C =25 °C
Diode forward voltage	V _{SD}	-	0.86	1.2	V	V _{GS} =0 V, I _F =100 A, T _j =25 °C
Reverse recovery time	<i>t</i> _{rr}	-	49	-	ns	V _R =50 V, I _F =100 A, d <i>i</i> _F /d <i>t</i> =500 A/μs
Reverse recovery charge	Qrr	-	437	-	nC	V_{R} =50 V, I_{F} =100 A, di_{F}/dt =500 A/ μ s

4 Electrical characteristics diagrams

5 Package Outlines

PACKAGE - GROUP NUMBER:	PG-TO2	63-7-U02					
DIMENSIONS	MILLIMETERS						
DIMENSIONS	MIN.	MAX.					
Α	4.30	4.70					
A1	0.00	0.25					
b	0.65	0.85					
С	0.45	0.60					
c1	1.25	1.40					
D	9.00	9.40					
D1	6.86	7.42					
E	9.68	10.08					
E1	7.70	8.30					
е	1	.27					
N	7						
Н	14.61	15.88					
L	1.78	2.79					
L1	0.00	1.60					
L2	0.00	1.78					
THETA	0° - 8°						
PØ	0.90	1.10					
Q	2.78						

Figure 1 Outline PG-TO263-7, dimensions in mm

StrongIRFET[™] 2 Power-Transistor IPF016N10NF2S

Revision History

IPF016N10NF2S

Revision: 2022-09-23, Rev. 2.0

Previous Revision

Revision	Date	Subjects (major changes since last revision)
2.0	2022-09-23	Release of final version

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2022 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Final Data Sheet 11 Rev. 2.0, 2022-09-23