Quantifying the impact of CYP2D6 allele activity on Z-endoxifen formation leveraging the multi-study CEPAM database: Freie Universitä

Towards treatment optimisation of tamoxifen

F. Klima (1,2), T. Helland (3,4,5), R. Michelet (1), W. Huisinga (6), D. Hertz (3), C. Kloft (1,2) for the CYP2D6 Endoxifen Percentage Activity Model in Breast Cancer (CEPAM) consortium

(1) Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany, (2) Graduate Research Training program PharMetrX, Germany, (3) Dept. of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, USA, (4) Hormone Laboratory, Dept. of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway, (5) Dept. of Clinical Science, University of Bergen, Norway, (6) Institute of Mathematics, University of Potsdam, Germany

Background and Objectives

Tamoxifen treatment individualisation?

Prodrug TAM: Breast cancer recurrence (≤ 25%) at 20 mg QD standard dosing¹ Active Z-ENDX: Clinical studies found heterogeneous PK efficacy thresholds²⁻⁵
Large prospective study for TAM treatment individualisation unrealistic⁶

New approach needed: Modelling + simulation of multi-study data^{7,8}

Role of varying CYP2D6 allele activities

Investigate quantitative impact of CYP2D6 alleles on Z-ENDX formation

CYP2D6 alleles CEPAM,%

2.1

3.8

CNV

PK only Methods

36 studies n=8451 n=10574

TAM <1 month

19.4% Unexplained outliers

31 studies n=6841 n=8791

No PK measurements

No CYP2D6 genotype

CEPAM analysis dataset

PK samples

6% multiple samples [2-20]

Z-ENDX 66.5%

TAM + **Z-ENDX** and **Z4'-ENDX 19.8% Total ENDX 13.8%** (Z-ENDX + Z4'-ENDX)

Developing CYP2D6 percentage allele activity

5% — 50% — 95%

3.0

Modelling CYP2D6 activity CYP2D6 inibitor NONMEM® 7.5.1, FOCE-I **54%** none Single CYP2D6 allele activity: **42%** imputed $\mathbf{\xi} = Activity * NxCNV$ **2.9%** weak **0.1%** moderate Combined allele activity: $\mathbf{X} = \mathbf{X} = \mathbf{X} + \mathbf{X}$ **0.9%** strong

*1 (WT) 44 13 *35 1.8 7.3 **夏夏夏夏** 1.2 7.6 1.0 *4 15

▼xN

CYP2D6-dependent Z-ENDX formation: $CL_{CYP2D6} = CL_{CYP2D6} * \maltese* e^{CYP2D6 inhibitor}$

Observed · · · 5% — 50% · · · 95%

Results

Figure 1 Parent-metabolite model of TAM and ENDX. All exponential and power covariate relationships were median-normalised. All RSEs: ≤30%. *: Parameter values fixed.

Structural parameters: t_{lag}: 0.385 h; k_a: 1.09 h⁻¹; CL_{TAM}/F: 5.78 L/h; CYP2D6-dependent apparent Z-ENDX formation CL_{CYP2D6}/F: 0.442 L/h; CYP2D6-independent apparent Z-ENDX formation CL_{other}/F: 0.163 L/h; CL_{ZENDX}/F: 5.1 L/h; $CL_{Z4'MET}/F: 0.318 L/h; CL_{Z4'ENDX}/F: 5.1 L/h; V_{TAM,C}/F: 743 L; V_{ZENDX,C}/F: 400 L; V_{Z4'ENDX,C}/F: 400 L.$

Covariates on F: Non-adherence (-0.697) as relative change; on CL_{TAM}/F: Age (-0.282) and body weight (0.177) as power functions; CYP3A4 and CYP2C19 phenotype (0.133 and 0.001) as exponential models; on CL_{CYP2D6}/F: CYP2D6 inhibitor (-0.565) as exponential model; CYP2D6 alleles as relative change, Fig. 4; on CL_{other}/F: CYP2C9 phenotype (0.380) as exponential model; on CL_{ZENDX}/F and $CL_{Z4'ENDX}/F$: Body weight (0.385 and 0.226) as power functions. IIV: On CL_{TAM}/F (51.0% CV) and on Z-ENDX formation CL_{CYP2D6}/F+ CL_{other}/F (28.1% CV) as exponential model. RUV: Proportional model separated for patients with one sample (29.9-58.6% CV) and multiple samples (≤17.3% CV).

~ Body weight 2.5 Categorical CYP2D6 activity score Figure 2 Prediction-corrected visual predictive check of Z-ENDX.

CYP2D6 percentage activity Figure 3 Proportion of CYP2D6-dependent Z-ENDX formation with increasing allele activity stratified by CYP2D6 inhibitor.

CYP2D6 allele activity Alleles **Activity**

Category Percentage

XN CNV			Nx 0.70
X	*1 (WT)	1	1 fix
8	*35	1	0.74
A A	*2	1	0.72
ĕ	*9	0.25	0.58
A	*17	0.5	0.30
A A A A A A A A A A A A A A A A A A A	*10	0.25	0.25
ğ	*41	0.25	0.17
\forall			
	*3,*4,*5	0	0 fix
Figure 4 CYP2D6 categorical and			

Figure 4 CYP2D6 categorical and percentage allele activities and impact of gene duplication (CNV).

Conclusions

PK model for Z-ENDX was developed based on global multi-study data

CYP2D6 percentage activity holds high potential for optimising TAM treatment

Perspective

Treatment simulations and survival analysis for studies with reported outcome and covariate information

Investigate potential for individualised TAM dosing

Application of PK model to studies with survival data:

PK model was successfully developed:

References

[2] Madlensky et al. Clin. Pharmacol. Ther. 89: 718-725 (2011). [3] Saladores et al. Pharmacogenomics J. 15: 84-94 (2015).

[4] Helland et al. Breast Cancer Res. 19 (2011).

[5] Love et al. Springerplus 2: 1-5 (2013).

[6] Helland et al. J. Pers. Med. 11 (2021).

[7] de Vries Schultink et al. PAGE 28 (2019).

[8] Mc Laughlin et al. Clin. Pharmacol. Ther. (2024). [9] Caudle et al. Clin. Transl. Sci. 13: 116-124 (2020).

Abbreviations

Copy number variation Clearance

ENDX Endoxifen Bioavailability **FOCE-I First-order conditional**

estimation with interaction Interindividual variability

Absorption rate constant Number of gene duplications Pharmacokinetic(s)

Once daily Relative standard error Residual standard error

Tamoxifen Absorption lag time

wildtype

For more information: Fenja Klima, fenja.klima@fu-berlin.de www.clinical-pharmacy.eu

32nd Population Approach Group Europe meeting – PAGE, Rome, Italy, 2024

自然解析

