```
import pickle
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from nltk.tokenize import RegexpTokenizer
from gensim.models import Word2Vec
from nltk.tokenize import word_tokenize
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
```

Generic Fucntions

```
labels=pickle.load( open('labels.pkl', 'rb'))
features=pickle.load( open('features.pkl', 'rb'))
features tfidf= pickle.load( open('features_tfidf.pkl', 'rb'))
word tfidf weights=pickle.load( open('word tfidf weights.pkl', 'rb'))
non text features np = features.drop(columns=['title', 'text',
'combined text', 'label']).to numpy()
def get_metrics(clf,test_ft,test_labels):
    pred labels=clf.predict(test ft)
print(classification report(pred labels, test labels, target names=["fak")
e", "real"]))
def plot ROC(test):
    pred labels=clf.predict(test ft)
    fpr, tpr, thresholds = roc curve(test,pred labels)
    roc auc = auc(fpr, tpr)
    # Plot ROC curve
    plt.plot(fpr, tpr, label='ROC curve (AUC =
{:.2f})'.format(roc auc))
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate (FPR)')
    plt.ylabel('True Positive Rate (TPR)')
    plt.title('Receiver Operating Characteristic (ROC)')
    plt.legend(loc='lower right')
```

```
plt.show()

def plot_loss_acc(history):
    plt.plot(history.history['loss'], label='Training Loss')
    plt.plot(history.history['val_loss'], label='Validation Loss')
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.legend()
    plt.show()

plt.plot(history.history['accuracy'], label='Training Accuracy')
    plt.plot(history.history['val_accuracy'], label='Validation

Accuracy')
    plt.xlabel('Epochs')
    plt.ylabel('Accuracy')
    plt.legend()
    plt.show()
```

1. TF-IDF vectors + text characteristics

Machine Learning models

```
#normalizing the data
scaler=StandardScaler()
norm features=scaler.fit transform(features tfidf)
train ft, test ft, train labels, test labels=train test split(norm featur
es, labels, test size=0.2, train size=0.8)
print("-----Train data-----
print(" train data features shape {} \n train data labels shape {}\
n".format(train_ft.shape,train_labels.shape))
print("-----Test data-----
print(" test data features shape {} \n test data labels shape
{}".format(test ft.shape,test labels.shape))
 -----Train data-----
train data features shape (57229, 115)
train data labels shape (57229,)
-----Test data-----
test data features shape (14308, 115)
test data labels shape (14308,)
```

Logistic Regression

clf = LogisticRegression(random_state=0).fit(train_ft, train_labels)
get_metrics(clf,test_ft,test_labels)

	precision	recall	f1-score	support
	•			• •
fake	0.91	0.92	0.92	6895
real	0.93	0.92	0.92	7413
accuracy			0.92	14308
macro avg	0.92	0.92	0.92	14308
weighted avg	0.92	0.92	0.92	14308

plot_ROC(test_labels)

Linear Discriminant Analysis

clf = LinearDiscriminantAnalysis().fit(train_ft, train_labels)
get_metrics(clf,test_ft,test_labels)

	precision	recall	f1-score	support
fake real	0.89 0.93	0.92 0.90	0.91 0.92	6762 7546
accuracy macro avg weighted avg	0.91 0.91	0.91 0.91	0.91 0.91 0.91	14308 14308 14308
plot_ROC(test	_labels)			

Artificial Neural network

```
class ANN_model(tf.keras.models.Model):
    def __init__(self):
        super(ANN_model,self).__init__()
        self.layer1= Dense(64, activation="relu")
        self.layer2= Dense(32,activation="relu")
        self.label= Dense(1,activation="sigmoid")

def call(self,inputs):
    x=self.layer1(inputs)
```

```
x=self.laver2(x)
       x = self.label(x)
       return x
NameError
                                      Traceback (most recent call
last)
Cell In[2], line 1
----> 1 class ANN_model(tf.keras.models.Model):
          def __init__(self):
     3
              super(ANN model, self). init ()
NameError: name 'tf' is not defined
model = Sequential()
model.add(Dense(32, activation='relu', input shape=(115,))) # Input
laver
model.add(Dense(64, activation='relu')) # Hidden layer
model.add(Dense(1, activation='sigmoid')) # Output layer
model.summary()
Model: "sequential 4"
Layer (type)
                          Output Shape
                                                  Param #
dense 12 (Dense)
                          (None, 32)
                                                  3712
dense 13 (Dense)
                          (None, 64)
                                                  2112
dense 14 (Dense)
                          (None, 1)
                                                  65
Total params: 5,889
Trainable params: 5,889
Non-trainable params: 0
model.compile(optimizer='adam', loss='binary_crossentropy',
metrics=['accuracy'])
history=model.fit(train ft, train labels, epochs=10, batch size=32,
validation data=(X val, y val))
Epoch 1/10
0.2334 - accuracy: 0.9022 - val loss: 0.5883 - val accuracy: 0.7453
Epoch 2/10
0.1678 - accuracy: 0.9325 - val_loss: 0.6167 - val_accuracy: 0.7461
```

```
Epoch 3/10
0.1524 - accuracy: 0.9388 - val loss: 0.6310 - val accuracy: 0.7486
0.1416 - accuracy: 0.9437 - val_loss: 0.6881 - val_accuracy: 0.7511
Epoch 5/10
0.1324 - accuracy: 0.9469 - val loss: 0.7083 - val accuracy: 0.7653
Epoch 6/10
0.1254 - accuracy: 0.9501 - val loss: 0.7609 - val accuracy: 0.7500
Epoch 7/10
0.1191 - accuracy: 0.9526 - val_loss: 0.7825 - val_accuracy: 0.7639
Epoch 8/10
0.1133 - accuracy: 0.9554 - val loss: 0.7938 - val accuracy: 0.7599
Epoch 9/10
0.1092 - accuracy: 0.9566 - val loss: 0.8115 - val accuracy: 0.7604
Epoch 10/10
0.1050 - accuracy: 0.9583 - val loss: 0.8822 - val accuracy: 0.7526
# Evaluate the model on the test set
test loss, test accuracy = model.evaluate(test ft, test labels)
print(f'Test Loss: {test loss}, Test Accuracy: {test accuracy}')
- accuracy: 0.9332
Test Loss: 0.17231875658035278, Test Accuracy: 0.9331842064857483
plot loss acc(history)
```


2. Word2vec vectors + text characteristics

Machine Learning Models

```
doc=list(features["combined text"])
non text features = features.drop(columns=['title', 'text',
'combined text', 'label'])
non text features np=non text features.to numpy()
def tokenize words(text):
    tokenized words,vocab=[],[]
    for i in text:
        tokenizer = RegexpTokenizer(r'\w+') #using regular
expression tokenizer
        wrd token=tokenizer.tokenize(i)
        tokenized words.append(wrd token)
        vocab.extend(wrd token)
    return tokenized words, vocab
doc tokens w2v,vocab=tokenize words(doc) #tokenizing the doc(ans+que)
model doc=Word2Vec(doc tokens w2v,min count=2,window=4)
sentence vectors = []
for sentence in doc:
    tokens = word tokenize(sentence.lower())
    sentence vector = np.zeros(model doc.vector size)
    if len(tokens) == 0:
        sentence vectors.append([0]*100)
    else:
        for token in tokens:
            if token in model doc.wv:
                token vector = model doc.wv[token]
                sentence vector += token vector
        sentence vector /= len(tokens)
        sentence vectors.append(sentence vector)
# Convert the list of sentence vectors to a NumPy array
sentence vectors = np.array(sentence vectors)
sentence vectors.shape
(71537, 100)
non_text_features = features.drop(columns=['title', 'text',
'combined text', 'label'])
non text features np=non text features.to numpy()
```

```
features w2v = np.hstack((sentence vectors, non text features np))
pickle.dump(features w2v, open('features_w2v.pkl', 'wb'))
features w2v = pickle.load( open('features tfidf.pkl', 'rb'))
scaler=StandardScaler()
norm features=scaler.fit transform(features w2v)
train_ft,test_ft,train_labels,test_labels=train_test_split(norm_featur
es,labels,test_size=0.2, train_size=0.8)
print("--------\n")
print(" train data features shape {} \n train data labels shape {}\
n".format(train_ft.shape,train_labels.shape))
print("-----\n")
print(" test data features shape {} \n test data labels shape
{}".format(test ft.shape,test labels.shape))
-----Train data-----
train data features shape (57229, 115)
train data labels shape (57229,)
-----Test data-----
test data features shape (14308, 115)
test data labels shape (14308,)
```

Logistic Regression

```
clf = LogisticRegression(random_state=0).fit(train_ft, train_labels)
get_metrics(clf,test_ft,test_labels)
plot_ROC(test_labels)
```

	precision	recall	f1-score	support
fake real	0.91 0.93	0.92 0.92	0.92 0.92	6895 7413
accuracy macro avg weighted avg	0.92 0.92	0.92 0.92	0.92 0.92 0.92	14308 14308 14308

<pre>get_metrics(c</pre>	<pre>get_metrics(clf,test_ft,test_labels)</pre>					
	precision	recall	f1-score	support		
fake real	0.91 0.93	0.92 0.92	0.92 0.92	6895 7413		
accuracy macro avg weighted avg	0.92 0.92	0.92 0.92	0.92 0.92 0.92	14308 14308 14308		
plot_ROC(test						

Linear Discriminant Analysis

clf = LinearDiscriminantAnalysis().fit(train_ft, train_labels)
get_metrics(clf,test_ft,test_labels)

	precision	recall	f1-score	support
fake	0.89	0.92	0.91	6762
real	0.93	0.90	0.92	7546
accuracy			0.91	14308
macro avg	0.91	0.91	0.91	14308
weighted avg	0.91	0.91	0.91	14308

plot_ROC(test_labels)

Artificial Neural Network

```
train ft, test ft, train labels, test labels=train test split(norm featur
es, labels, test_size=0.2, train_size=0.8)
X_train, X_val, y_train, y_val = train_test_split(train_ft,
train labels, test size=0.2, random state=42)
print("Training set shape:", X_train.shape)
print("Validation set shape:", X val.shape)
print("Test set shape:", test ft.shape)
Training set shape: (45783, 115)
Validation set shape: (11446, 115)
Test set shape: (14308, 115)
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# Assuming you have already preprocessed and split your dataset into
X train, y train, X val, y val
# Define the model architecture
model = Sequential()
```

```
model.add(Dense(64, activation='relu', input shape=(115,))) # Input
layer
model.add(Dense(64, activation='relu')) # Hidden layer
model.add(Dense(1, activation='sigmoid')) # Output layer
model.summary()
Model: "sequential_5"
                    Output Shape
Layer (type)
                                      Param #
dense_15 (Dense)
                    (None, 64)
                                      7424
                    (None, 64)
                                      4160
dense 16 (Dense)
dense 17 (Dense)
                                      65
                    (None, 1)
Total params: 11,649
Trainable params: 11,649
Non-trainable params: 0
model.compile(optimizer='adam', loss='binary crossentropy',
metrics=['accuracy'])
history=model.fit(train ft, train labels, epochs=10, batch size=32,
validation data=(X val, y val))
Epoch 1/10
0.2122 - accuracy: 0.9140 - val loss: 0.1641 - val accuracy: 0.9363
0.1574 - accuracy: 0.9371 - val loss: 0.1362 - val accuracy: 0.9462
Epoch 3/10
0.1388 - accuracy: 0.9442 - val loss: 0.1233 - val accuracy: 0.9529
Epoch 4/10
0.1253 - accuracy: 0.9505 - val loss: 0.1076 - val accuracy: 0.9582
Epoch 5/10
0.1140 - accuracy: 0.9551 - val loss: 0.0995 - val accuracy: 0.9599
Epoch 6/10
0.1042 - accuracy: 0.9591 - val loss: 0.0897 - val accuracy: 0.9661
Epoch 7/10
0.0956 - accuracy: 0.9635 - val loss: 0.0801 - val accuracy: 0.9710
Epoch 8/10
```

```
0.0869 - accuracy: 0.9671 - val_loss: 0.0672 - val_accuracy: 0.9751
Epoch 9/10
1789/1789 [=================] - 4s 2ms/step - loss:
0.0800 - accuracy: 0.9697 - val_loss: 0.0612 - val_accuracy: 0.9795
Epoch 10/10
1789/1789 [=================] - 4s 2ms/step - loss:
0.0732 - accuracy: 0.9722 - val_loss: 0.0585 - val_accuracy: 0.9793
# Evaluate the model on the test set
test_loss, test_accuracy = model.evaluate(test_ft, test_labels)
print(f'Test Loss: {test_loss}, Test Accuracy: {test_accuracy}')
448/448 [======================] - 1s 1ms/step - loss: 0.1954
- accuracy: 0.9354
Test Loss: 0.19544467329978943, Test Accuracy: 0.9353508353233337
plot_loss_acc(history)
```


3. TF-IDF weighted Word2vec vectors

Machine learning models

```
sentence vectors tf = []
# Process each sentence and compute its vector
for i,sentence in enumerate(doc):
    tokens = word tokenize(sentence.lower())
    sentence vector = np.zeros(model doc.vector size)
    if len(tokens)==0:
         sentence vectors tf.append([0]*100)
    else:
        for token in tokens:
            if token in model doc.wv:
                token vector = model doc.wv[token]
                sentence vector += token vector
        sentence vector /= len(tokens)
        sentence vector *= word tfidf weights[i]
        sentence_vectors_tf.append(sentence_vector)
# Convert the list of sentence vectors to a NumPy array
```

```
sentence_vectors_tf = np.array(sentence_vectors)
sentence_vectors_tf = np.nan_to_num(sentence_vectors_tf, nan=0.0)
pickle.dump(sentence_vectors_tf, open('w2v_tf_vectors.pkl', 'wb'))
sentence_vectors_tf=pickle.load( open('w2v_tf_vectors.pkl', 'rb'))
sentence_vectors_tf.shape
(71537, 100)
```

Logistic Regression

```
scaler=StandardScaler()
norm features=scaler.fit transform(sentence vectors tf)
train ft,test ft,train_labels,test_labels=train_test_split(norm_featur
es, labels, test_size=0.2, train_size=0.8)
print("-----\n")
print(" train data features shape {} \n train data labels shape {}\
n".format(train_ft.shape,train_labels.shape))
print("-----\n")
print(" test data features shape {} \n test data labels shape
{}".format(test ft.shape,test labels.shape))
-----Train data-----
train data features shape (57229, 100)
train data labels shape (57229,)
-----Test data-----
test data features shape (14308, 100)
test data labels shape (14308,)
clf = LogisticRegression(random state=0, max iter=300).fit(train ft,
train labels)
get metrics(clf,test ft,test labels)
plot ROC(test labels)
                       recall f1-score support
            precision
       fake
                0.87
                         0.87
                                  0.87
                                          7008
                         0.88
       real
                0.88
                                  0.88
                                          7300
   accuracy
                                  0.88
                                         14308
                         0.88
                                         14308
  macro avq
                0.88
                                  0.88
weighted avg
                0.88
                         0.88
                                  0.88
                                         14308
```


Linear Discriminant Analysis

clf = LinearDiscriminantAnalysis().fit(train_ft, train_labels)
get_metrics(clf,test_ft,test_labels)
plot_ROC(test_labels)

	precision	recall	f1-score	support
fake real	0.87 0.87	0.87 0.87	0.87 0.87	7011 7297
accuracy macro avg weighted avg	0.87 0.87	0.87 0.87	0.87 0.87 0.87	14308 14308 14308

Artificial Neural Networks

```
train ft, test ft, train labels, test labels=train test split(sentence ve
ctors tf, labels, test size=0.2, train size=0.8)
X_train, X_val, y_train, y_val = train_test_split(train_ft,
train labels, test size=0.2, random state=42)
# Print the shape of each set
print("Training set shape:", X train.shape)
print("Validation set shape:", X_val.shape)
print("Test set shape:", test ft.shape)
Training set shape: (45783, 100)
Validation set shape: (11446, 100)
Test set shape: (14308, 100)
model = Sequential()
model.add(Dense(32, activation='relu', input_shape=(100,))) # Input
laver
model.add(Dense(64, activation='relu')) # Hidden layer
model.add(Dense(1, activation='sigmoid')) # Output layer
model.summary()
```

```
Model: "sequential 1"
Layer (type)
                   Output Shape
                                    Param #
                -----
_____
                                   ========
dense 3 (Dense)
                   (None, 32)
                                    3232
dense_4 (Dense)
                                    2112
                   (None, 64)
dense 5 (Dense)
                   (None, 1)
                                    65
Total params: 5,409
Trainable params: 5,409
Non-trainable params: 0
opt = keras.optimizers.SGD(learning rate=0.1)
model.compile(optimizer=opt, loss='binary crossentropy',
metrics=['accuracy'])
history=model.fit(train ft, train labels, epochs=10, batch size=32,
validation data=(X val, y val))
Epoch 1/10
0.3477 - accuracy: 0.8504 - val loss: 0.2978 - val accuracy: 0.8757
Epoch 2/10
0.2944 - accuracy: 0.8773 - val loss: 0.2764 - val accuracy: 0.8840
Epoch 3/10
0.2785 - accuracy: 0.8848 - val loss: 0.2591 - val accuracy: 0.8927
Epoch 4/10
0.2675 - accuracy: 0.8885 - val loss: 0.2546 - val accuracy: 0.8929
Epoch 5/10
0.2588 - accuracy: 0.8927 - val_loss: 0.2553 - val_accuracy: 0.8945
Epoch 6/10
0.2518 - accuracy: 0.8960 - val loss: 0.2673 - val accuracy: 0.8861
Epoch 7/10
0.2463 - accuracy: 0.8973 - val loss: 0.2310 - val accuracy: 0.9050
Epoch 8/10
0.2406 - accuracy: 0.9015 - val_loss: 0.2373 - val_accuracy: 0.9034
Epoch 9/10
0.2359 - accuracy: 0.9021 - val_loss: 0.2523 - val_accuracy: 0.8955
Epoch 10/10
```


4 TF-IDF weighted Word2vec with non numeric features

Machine Learning Models

Logistic Regression

```
train data features shape (57229, 115)
 train data labels shape (57229,)
      -----Test data-----
 test data features shape (14308, 115)
 test data labels shape (14308,)
clf = LogisticRegression(random_state=0, max_iter=300).fit(train_ft,
train labels)
get_metrics(clf,test_ft,test_labels)
plot_ROC(test_labels)
                           recall f1-score
              precision
                                              support
        fake
                   0.91
                             0.91
                                       0.91
                                                 7048
                   0.91
                             0.91
                                       0.91
                                                 7260
        real
    accuracy
                                       0.91
                                                14308
                                       0.91
                             0.91
                                                14308
   macro avg
                   0.91
weighted avg
                   0.91
                             0.91
                                       0.91
                                                14308
```


Linear Discriminant Analysis

clf = LinearDiscriminantAnalysis().fit(train_ft, train_labels)
get_metrics(clf,test_ft,test_labels)
plot ROC(test labels)

	precision	recall	f1-score	support
fake real	0.90 0.90	0.90 0.90	0.90 0.90	7106 7202
accuracy macro avg weighted avg	0.90 0.90	0.90 0.90	0.90 0.90 0.90	14308 14308 14308

Receiver Operating Characteristic (ROC)

Artificial Neural Networks

features_w2v = np.hstack((sentence_vectors_tf, non_text_features_np))
scaler=StandardScaler()
norm_features=scaler.fit_transform(features_w2v)

train_ft,test_ft,train_labels,test_labels=train_test_split(norm_featur
es,labels,test_size=0.2, train_size=0.8)

```
X_train, X_val, y_train, y_val = train_test_split(train_ft,
train labels, test size=0.2, random state=42)
print("Training set shape:", X_train.shape)
print("Validation set shape:", X_val.shape)
print("Test set shape:", test ft.shape)
Training set shape: (45783, 115)
Validation set shape: (11446, 115)
Test set shape: (14308, 115)
model = Sequential()
model.add(Dense(32, activation='relu', input_shape=(115,))) # Input
layer
model.add(Dense(64, activation='relu')) # Hidden layer
model.add(Dense(1, activation='sigmoid')) # Output layer
model.summary()
Model: "sequential 3"
Layer (type)
                         Output Shape
                                                Param #
dense 9 (Dense)
                         (None, 32)
                                                3712
dense 10 (Dense)
                         (None, 64)
                                                2112
dense_11 (Dense)
                         (None, 1)
                                                65
Total params: 5,889
Trainable params: 5,889
Non-trainable params: 0
opt = keras.optimizers.SGD(learning rate=0.1)
model.compile(optimizer=opt, loss='binary crossentropy',
metrics=['accuracy'])
history=model.fit(train ft, train labels, epochs=10, batch size=32,
validation data=(X val, y val))
Epoch 1/10
0.2118 - accuracy: 0.9152 - val loss: 0.1692 - val accuracy: 0.9340
Epoch 2/10
0.1656 - accuracy: 0.9344 - val loss: 0.1563 - val accuracy: 0.9383
Epoch 3/10
0.1524 - accuracy: 0.9397 - val loss: 0.1436 - val accuracy: 0.9467
Epoch 4/10
```

```
0.1452 - accuracy: 0.9432 - val loss: 0.1372 - val accuracy: 0.9468
Epoch 5/10
0.1398 - accuracy: 0.9450 - val loss: 0.1285 - val accuracy: 0.9514
Epoch 6/10
0.1344 - accuracy: 0.9474 - val loss: 0.1264 - val accuracy: 0.9519
Epoch 7/10
0.1301 - accuracy: 0.9494 - val loss: 0.1190 - val accuracy: 0.9547
Epoch 8/10
0.1268 - accuracy: 0.9509 - val loss: 0.1188 - val accuracy: 0.9543
Epoch 9/10
0.1221 - accuracy: 0.9524 - val loss: 0.1166 - val accuracy: 0.9547
Epoch 10/10
0.1197 - accuracy: 0.9530 - val loss: 0.1114 - val accuracy: 0.9568
# Evaluate the model on the test set
test loss, test accuracy = model.evaluate(test ft, test labels)
print(f'Test Loss: {test loss}, Test Accuracy: {test accuracy}')
- accuracy: 0.9417
Test Loss: 0.1571870893239975, Test Accuracy: 0.9417109489440918
plot loss acc(history)
```

