Collective communication costs in MPI

Suraj Kumar

Inria & ENS Lyon
Email:suraj.kumar@inria.fr

CR12: September 2023

https://surakuma.github.io/courses/daamtc.html

Cost model

- The links of the network are bidirectional
- Each process can send and receive at-most one message at the same time
- Time taken to send a message with $\it n$ bytes between any two nodes $\it T=\alpha+\it n\beta$
 - α : latency cost per message, β : transfer time per byte
- \bullet In case of reduction operation, $\gamma :$ computation cost per byte
- P is the total number of processes

Allgather

p0	p1	p2	рЗ	p4	р5
a_0	a_0	a_0	a_0	a_0	a_0
a_1	a_1	a_1	a_1	a_1	a_1
<i>a</i> ₂	a_2	<i>a</i> ₂	a_2	a ₂	a ₂
<i>a</i> ₃	a_3	<i>a</i> ₃	a_3	a ₃	a_3
<i>a</i> ₄					
<i>a</i> ₅	<i>a</i> ₅	<i>a</i> ₅	<i>a</i> ₅	a 5	<i>a</i> ₅

Data after operation

Ring algorithm

- Takes total P − 1 steps
- In each step, process i sends its contribution to process i+1 and receives the contribution from process i-1
- $T_{ring} = (P-1)\alpha + \left(\frac{P-1}{P}\right)n\beta$
- n is the total amount of data gathered on each processor

Recursive doubling algorithm for Allgather

Initial data

<i>a</i> ₀	<i>a</i> ₀	a_2	a ₂	<i>a</i> ₄	<i>a</i> ₄	a ₆	a ₆
a_1	a_1	<i>a</i> ₃	<i>a</i> ₃	<i>a</i> ₅	<i>a</i> ₅	a ₇	a ₇

$$\begin{bmatrix} a_0 & a_0 & a_0 & a_0 & a_4 & a_4 & a_4 \\ a_1 & a_1 & a_1 & a_5 & a_5 & a_5 \\ a_2 & a_2 & a_2 & a_2 & a_6 & a_6 & a_6 \\ a_3 & a_3 & a_3 & a_7 & a_7 & a_7 \end{bmatrix}$$

	a_0	<i>a</i> ₀	1	<i>a</i> ₀						
Ī	a_1	a_1	1	a_1	a_1	a_1	a_1	a_1	a_1	
	a ₂	a ₂		a ₂	a_2	<i>a</i> ₂	a ₂	<i>a</i> ₂	a ₂	
	a ₃	<i>a</i> ₃		<i>a</i> ₃						
	a 4	<i>a</i> ₄		a4	a ₄	<i>a</i> ₄	<i>a</i> ₄	a4	a4	
	a ₅	a ₅		a ₅						
	a ₆	a ₆		a ₆						
	a ₇	a ₇		a ₇						

- Assume P is a perfect power of 2
- In each step $k(0 \le k < \lg P)$, processes that are at 2^k distance exchange their data
- $T_{rec_dbl} = (\lg P)\alpha + (\frac{P-1}{P}) n\beta$
- Requires adaptation when P is not a-power-of-two

Bruck's algorithm for Allgather

After step 1

Initial data

рЗ p4 p5 a_1 a_5 a_0 a_3 a_4 a_1 a_2 *a*₃ *a*₄ a5 a_0 a_2 a_3 **a**₄ a5 a₀ a_1 *a*₃ **a**4 a₅ a_0 a_2 *a*₄ a₅ *a*₃

After step 0

After step 2

After local shift

•
$$T_{bruck} = \lceil \lg P \rceil \alpha + \frac{P-1}{P} n \beta$$

• In each step $k(0 \le k < \lceil \lg P \rceil)$, process i sends data to process $(i-2^k)\%P$ and receives data from process $(i + 2^k)\%P$

Broadcast

It broadcasts *n* words from the root to all processes.

p0 p1 p2 p3 p4 p5 a a a a a a a

Initial setting

Data after operation

Bionomial tree algorithm

In the first step, the root sends data to process $(root + \frac{P}{2})$. This process and the root then act as new roots and recursively continue this algorithm.

•
$$T_{tree} = \lceil \lg P \rceil (\alpha + n\beta)$$

Alternative approach: Scatter + Allgather

All-to-All

Initial settings

Data after operation

Algorithm by Thakur et al.

- In each step $k(1 \le k < P)$, process i receives data from process (i k)%P and send data to process (i + k)%P
- $T = (P-1)\alpha + \frac{P-1}{P}n\beta$
- n is the total amount of data on any process in the beginning or end

Reduce-Scatter

р0	р1	р2	рЗ	p4	р5
a_0	b_0	<i>c</i> ₀	d_0	e_0	f_0
a_1	b_1	c_1	d_1	e_1	f_1
a_2	b_2	<i>c</i> ₂	d_2	e_2	f_2
a_3	<i>b</i> ₃	<i>c</i> ₃	d_3	e_3	f_3
a 4	b_4	C4	d_4	e ₄	f_4
<i>a</i> ₅	b_5	<i>C</i> ₅	d_5	<i>e</i> ₅	f_5

Initial settings

Data after operation

 $x_i = \text{Reduce}(a_i, b_i, c_i, d_i, e_i)$ Each process has n amount of data in the beginning.

Recursive halving algorithm (Assuming P is a perfect power of 2)

- Analogous to the recursive-doubling algorithm for Allgather
- In each step $k(1 \le k \le P)$, processes that are at $\frac{P}{2^k}$ distance exchange parts of their data
- Each process sends the data needed by all processes in the other half, receives the data needed by all processes in its own half
- $T_{rec_half} = (\lg P)\alpha + \frac{P-1}{P}n\beta + \frac{P-1}{P}n\gamma$
- Requires adaptation when P is not a power-of-two
- With an adaptation of Bruck's algorithm: $T_{bruck} = \lceil \lg P \rceil \alpha + \frac{P-1}{P} n \beta + \frac{P-1}{P} n \gamma$

Reduce and Allreduce

Each process has *n* amount of data in the beginning.

Reduce

- With binomial tree algorithm, $T_{tree} = \lceil \lg P \rceil (\alpha + n\beta + n\gamma)$
- With Reduce-Scatter(Bruck's algorithm) + Gather(Binomial tree), $T = 2\lceil \lg P \rceil \alpha + 2 \frac{P-1}{P} n\beta + \frac{P-1}{P} n\gamma$

Allreduce

• With Reduce-Scatter(Bruck's algorithm) + Allgather(Bruck's algorithm), $T=2\lceil\lg P\rceil\alpha+2\frac{P-1}{P}n\beta+\frac{P-1}{P}n\gamma$

- R. Thakur, R. Rabenseifner, and W. Gropp (2005).

 Optimization of Collective Communication Operations in MPICH

 Int. J. High Perform. Comput. Appl. 19, 1 (February 2005), 49–66.
- E. W. Chan, M. F. Heimlich, A. Purkayastha and R. A. van de Geijn On Optimizing Collective Communication IEEE International Conference on Cluster Computing, San Diego, CA, USA, 2004, pp. 145-155.