Récapitulatif : systèmes modélisables par des processus de naissance et de mort de paramètres λ_k et μ_k).

Table 1 :Modèles markoviens à m=1 serveur M/M/1/././ (FIFO)

Modèle →	K=∞,	K<∞, L=∞	K =∞	K<∞,L<∞
	L=∞		L<∞	(L≥K).
Paramètre↓				
λ_k	λ	λ si k <k;< td=""><td>λ(L-k) si</td><td></td></k;<>	λ(L-k) si	
		0 si k≥K	0≤k≤L;	
			0 si k>L	
μ_k	μ ∀k	μ ∀k	μ ∀k	
Performance ↓				
Condition de		Toujours stable (le régime	Toujours stable	Toujours
stabilité	$\rho = \frac{\lambda}{-} < 1$	stationnaire existe toujours)		stable
	$\frac{\rho = - < 1}{\mu}$			
$ar{\lambda} = \lambda_{e\!f\!f\!e\!ctif}$	λ	$\lambda(1-\pi_{K})<\lambda_{M/M/1}$	λ(L-E(N))	λ(L-E(N))
π_k loi du nombre de	o ^k (1 o)	$k = 1 - \rho$	11	
clients dans le	$\rho^{k}(1-\rho)$	$= \rho^k \frac{1 - \rho}{1 - \rho^{K+1}} \text{ si } k \le K$	$\frac{L!}{(L-k)!}\rho^k\pi_0$, II
système		=0 $si k > K$	$(L-\kappa)!$	$\rho^k \frac{L}{(L-k)!} \pi_0$
-7		=0 $3t K > K$		(L-K):
Débit absolu	2(1 -)	$\lambda(1-\pi_{K})=\mu(1-\pi_{0})$	$\mu(1-\pi_0)$	k=0,K μE(SA)
A	$\lambda = \mu(1-\pi_0)$	$\lambda(1-\pi_{K})=\mu(1-\pi_{0})$	$\mu(1-\pi_0)$	μΕ(SA)
Débit relatif	1	1-π _K	$(1-\pi_0)/\rho$	
A' P _{refus}	0	т	0	π
E(SA)	ρ	π_{K} $\rho(1-\pi_{K})$	ρ	$\pi_{ m K}$
E(S/1)	P	p(1-nK)	Р	
E(Q)	ρ^2			
Taille de la file	$\frac{\rho^2}{1-\rho}$	$E(N)$ -(1- π_0)	L-	
			$\frac{\lambda + \mu}{\lambda} (1 - \pi_0)$	
EOD		***	λ	
E(N)	$\frac{\rho}{1-\rho}$	$\frac{\rho}{1-\rho} - \frac{(K+1)\rho^{K+1}}{1-\rho^{K+1}}$		
	$1-\rho$	$1-\rho$ $1-\rho^{K+1}$	().	
			$L-(1-\pi_0)/\rho$	
E(W)	$\frac{1}{\mu} \frac{\rho}{1-\rho}$			
Temps d'attente		$E(Q)/\bar{\lambda}$	E(Q)/λ	
E(V)	$\frac{1}{\mu - \lambda}$	_		
Temps de séjour	$\mu - \overline{\lambda}$	$E(N)/\lambda$	$E(N)/\lambda$	
			E(IN)/ A	

 $\textbf{Table 12}: Mod\`{e}les \ markoviens \ \grave{a} \ m \ serveurs \ parall\`{e}les \ M/M/m/././ \ ;$

3.6. 13.1		***	3.6.37		
Modèle	$K=\infty$, $L=\infty$	K=m,	M=K	$K=m+M<\infty,L=\infty$	$K=\infty,L<\infty$
\rightarrow		L=∞	$=L=\infty$		
λ_k	λ	λ	λ	λ si k <m+m, 0="" sinon<="" td=""><td>$\lambda(L-k)$, si k<l; 0<="" td=""></l;></td></m+m,>	$\lambda(L-k)$, si k <l; 0<="" td=""></l;>
, , , ,	70	70	,,	70 Si K (III 101, O SIIIOII	sinon
	. (1)			. (1	
μ_{k}	μmin(k,m)	μ_k	μ_k	μmin(k,m)	μmin(k,m)
	$\varphi = \frac{\lambda}{-} = \frac{\rho}{-} < 1$		ρ<∞		
	μm m				
	$\frac{\rho^k}{k!}\pi_0, k \leq m$		$\frac{\rho^k}{\mu}e^{-\rho}$	$\frac{\rho^{k}}{k!} \pi_{0}, k \leq m$ $\frac{\rho^{k}}{m! m^{k-m}} \pi_{0}, m \leq k \leq m+M$	$\frac{L!}{k!(N-k)!}\rho^k\pi_0, \ k \le m$
π_k	a^k	$ ho^{\scriptscriptstyle k}$ _	k!	, k	$L!$ $o^k \pi$ $m \le k \le I$
	$\frac{p}{m!m^{k-m}}\pi_0, \ k \ge m$	$\frac{1}{k!}\pi_0$		$\frac{p}{m!m^{k-m}}\pi_0, m \le k \le m+M$	$m!m^{k-m}(L-k)!$
A	λ	λ(1-	λ	$\lambda(1-\pi_{\mathrm{m+M}})$	
		$\pi_{\rm m}$)			
	1	1-π _m	1	1 - π_{m+M}	
A'					
P _{refus}	0	π_{m}		o^{m+M}	
				$\pi_{ ext{m+M}} = rac{oldsymbol{ ho}^{m+M}}{m^M m!}$	
E(S)	ρ	ρ(1-	ρ	$\rho(1-\pi_{m+M})$	
	-	$\pi_{\rm m}$)			
E(Q)	$\frac{arphi\pi_m}{(1-arphi)^2}$		0	$\frac{\rho^{m+1}}{m!m} \frac{1 - \varphi^M (M+1) + M \varphi^{M+1}}{(1-\varphi)^2}$	
	$(1-\varphi)^2$			$m!m$ $(1-\varphi)^2$	
E(N)	E(Q)+ρ		ρ		
E(W)	$E(Q)/\lambda$				
E(V)	$E(N)/\lambda$				