K-Medoids Clustering

The C++ implmentation for K-Medoids clustering

Generated by Doxygen 1.8.11

Contents

1	k-m	edoids			1
2	Clas	ss Index			3
	2.1	Class	List		3
3	File	Index			5
	3.1	File Lis	st		5
4	Clas	ss Docu	mentation	1	7
	4.1	KMedo	oids Class	Reference	7
		4.1.1	Detailed	Description	7
		4.1.2	Construc	ctor & Destructor Documentation	8
			4.1.2.1	KMedoids(const Parameter ±, const Eigen::MatrixXf &data, const int #← OfClusters)	8
			4.1.2.2	~KMedoids()	8
		4.1.3	Member	Function Documentation	8
			4.1.3.1	${\it computeMedoids(MatrixXf~\¢erTemp,~const~vector<~vector<~int~>>} \\ {\it \&neighborVec,~const~int~\&normOption,~const~MetricPreparation~\&object)~const}~.$	8
			4.1.3.2	getInitCenter(MatrixXf &initialCenter, const MetricPreparation &object, const int &normOption) const	9
			4.1.3.3	getMedoids(FeatureLine &fline, const int &normOption, Silhouette &sil, Time← Recorder &tr) const	9
		4.1.4	Member	Data Documentation	13
			4.1.4.1	data	13
			4.1.4.2	initialStates	13
			4.1.4.3	isSample	13
			4.1.4.4	numOfClusters	13

iv CONTENTS

	4.2	Parame	eter Struct	Reference	13
		4.2.1	Detailed	Description	14
		4.2.2	Construc	tor & Destructor Documentation	14
			4.2.2.1	Parameter(const int &initialization, const bool &isSample)	14
			4.2.2.2	Parameter()	14
			4.2.2.3	~Parameter()	14
		4.2.3	Member	Data Documentation	14
			4.2.3.1	initialization	14
			4.2.3.2	isSample	14
	4.3	TimeR	ecorder St	ruct Reference	14
		4.3.1	Detailed	Description	15
		4.3.2	Member	Data Documentation	15
			4.3.2.1	eventList	15
			4.3.2.2	timeList	15
5	File	Docume	entation		17
	5.1	KMedo	oids.cpp Fi	le Reference	17
		5.1.1	Variable	Documentation	17
			5.1.1.1	isPBF	17
	5.2	KMedo	oids.h File	Reference	18
	5.3	main.c	pp File Re	ference	18
		5.3.1	Function	Documentation	19
			5.3.1.1	featureExtraction(const int &argc, char **argv)	19
			5.3.1.2	main(int argc, char *argv[])	21
			5.3.1.3	performKMedoids(const string &fileName, const std::vector< std::vector< float >> &dataVec, const int &dimension, const string &fullName, const KMedoids &kmedoid, const int &normOption, Silhouette &sil, TimeRecorder &tr)	21
			5.3.1.4	recordInitilization(const Parameter ±, const int &sampleOption)	22
		5.3.2	Variable	Documentation	23
			5.3.2.1	isPBF	23
			5.3.2.2	readCluster	23
	5.4	READI	ME.md File	e Reference	23
Inc	dex				25

Chapter 1

k-medoids

It includes the iterative or median-based medoid refinement similar to what k-medoids defined. To confirm to the regulations of other clustering techniques and cluster representatives, we choose the **iterative medoid refinement**.

2 k-medoids

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

KMedoids .											 													1
Parameter .											 													13
TimeRecord	er .										 													14

4 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

KMedoids.cpp	17
KMedoids.h	18
main.cpp	18

6 File Index

Chapter 4

Class Documentation

4.1 KMedoids Class Reference

#include <KMedoids.h>

Public Member Functions

- KMedoids (const Parameter &pm, const Eigen::MatrixXf &data, const int &numOfClusters)
- ∼KMedoids (
- void getMedoids (FeatureLine &fline, const int &normOption, Silhouette &sil, TimeRecorder &tr) const

Public Attributes

int numOfClusters

Private Member Functions

- · void getInitCenter (MatrixXf &initialCenter, const MetricPreparation &object, const int &normOption) const
- void computeMedoids (MatrixXf ¢erTemp, const vector< vector< int > > &neighborVec, const int &normOption, const MetricPreparation &object) const

Private Attributes

- · int initialStates
- bool isSample
- Eigen::MatrixXf data

4.1.1 Detailed Description

Definition at line 47 of file KMedoids.h.

8 Class Documentation

4.1.2 Constructor & Destructor Documentation

4.1.2.1 KMedoids::KMedoids (const Parameter & pm, const Eigen::MatrixXf & data, const int & numOfClusters)

Definition at line 17 of file KMedoids.cpp.

4.1.2.2 KMedoids::∼KMedoids ()

Definition at line 30 of file KMedoids.cpp.

```
31 {
32
33 }
```

4.1.3 Member Function Documentation

4.1.3.1 void KMedoids::computeMedoids (MatrixXf & centerTemp, const vector < vector < int > > & neighborVec, const int & normOption, const MetricPreparation & object) const [private]

Definition at line 360 of file KMedoids.cpp.

```
364 {
365
        centerTemp = MatrixXf(numOfClusters,data.cols());
        366
367
368
        #pragma omp parallel for schedule(static) num_threads(8)
369
370
            for (int i=0;i<neighborVec.size();++i)</pre>
371
372
                const vector<int>& clusMember = neighborVec[i];
373
                const int& clusSize = clusMember.size();
MatrixXf mutualDist = MatrixXf::Zero(clusSize, clusSize);
374
375
                /*mutualDist to store mutual distance among lines of each cluster */
376
                for(int j=0;j<clusSize;++j)</pre>
377
                {
378
                    for(int k=j+1;k<clusSize;++k)</pre>
379
                        mutualDist(j,k) = getDisimilarity(data,clusMember[j],
380
381
                            clusMember[k], normOption, object);
                        mutualDist(k, j) = mutualDist(j,k);
382
383
384
                }
385
386
                float minL1_norm = FLT_MAX, rowSummation;
387
                int index = -1;
388
                for(int j=0;j<clusSize;++j)</pre>
389
390
                    rowSummation = mutualDist.row(j).sum();
391
                    if (rowSummation<minL1_norm)</pre>
392
393
                        minL1 norm = rowSummation;
394
                        index = j;
395
396
397
                centerTemp.row(i) = data.row(clusMember[index]);
398
399
        }
400
401
        else//use Weiszfeld's algorithm to get geometric median
```

```
402
            //reference at https://en.wikipedia.org/wiki/Geometric_median
403
404
            MatrixXf originCenter = centerTemp;
405
        #pragma omp parallel for schedule(static) num_threads(8)
406
            for(int i=0;i<numOfClusters;++i)</pre>
407
408
                const vector<int>& clusMember = neighborVec[i];
409
                const int& clusSize = clusMember.size();
410
                float distToCenter, distInverse, percentage = 1.0;
411
                int tag = 0;
                while (tag<=10&&percentage>=0.02)
412
413
                    VectorXf numerator = VectorXf::Zero(data.cols());
414
415
                    VectorXf previous = centerTemp.row(i);
416
                     float denominator = 0;
417
                     for(int j=0;j<clusSize;++j)</pre>
418
419
                         distToCenter = getDisimilarity(centerTemp.row(i),
                                data, clusMember[j], normOption, object);
420
                         distInverse = (distToCenter>1.0e-8)?1.0/distToCenter:1.0e8;
421
422
                         numerator += data.row(clusMember[j])*distInverse;
423
                         denominator += distInverse;
424
                    centerTemp.row(i) = numerator/denominator;
425
426
                    percentage = (centerTemp.row(i)-previous).norm()/previous.norm();
427
428
429
            }
430
        }
431 }
```

4.1.3.2 void KMedoids::getInitCenter (MatrixXf & initialCenter, const MetricPreparation & object, const int & normOption)
const [private]

Definition at line 329 of file KMedoids.cpp.

```
332 {
333
        switch(initialStates)
334
335
        case 1:
           Initialization::generateRandomPos(initialCenter, data.cols(), data,
336
     numOfClusters);
337
           break;
338
339
        default:
340
       case 2:
            Initialization::generateFromSamples(initialCenter, data.cols(), data,
341
      numOfClusters);
342
           break;
343
344
       case 3:
            Initialization::generateFarSamples(initialCenter, data.cols(), data,
345
      numOfClusters, normOption, object);
346
           break;
347
348
        std::cout << "Initialization completed!" << std::endl;</pre>
349 }
```

4.1.3.3 void KMedoids::getMedoids (FeatureLine & fline, const int & normOption, Silhouette & sil, TimeRecorder & tr) const

Definition at line 44 of file KMedoids.cpp.

10 Class Documentation

```
56
       int *storage = new int[numOfClusters]; // used to store number inside each cluster
       MatrixXf centerTemp;
58
       int tag = 0;
59
       std::vector< std::vector<int> > neighborVec(numOfClusters,
60
                                                       std::vector<int>());
61
62 /* perform K-means with different metrics */
       std::cout << "K-medoids start!" << std::endl;</pre>
64
       const int& Row = data.rows();
6.5
       const int& Column = data.cols();
       struct timeval start, end;
66
67
       gettimeofday (&start, NULL);
       std::vector<int> recorder(Row); //use to record which cluster the row belongs to
68
69
70
       71
72
73
74
           memset(storage, 0, sizeof(int) *numOfClusters);
75
           centerTemp = clusterCenter;
76
77
       /\star clear streamline indices for each cluster \star/
78
       #pragma omp parallel for schedule(static) num_threads(8)
    for (int i = 0; i < numOfClusters; ++i)</pre>
79
80
81
                neighborVec[i].clear();
82
83
84
       #pragma omp parallel num_threads(8)
85
            #pragma omp for nowait
86
                for (int i = 0; i < Row; ++i)
88
                    int clusTemp;
89
                    float dist = FLT_MAX;
float tempDist;
90
91
                    for (int j = 0; j < numOfClusters; ++j)</pre>
92
93
                        tempDist = getDisimilarity(clusterCenter.row(j),
95
                                      data,i,normOption,object);
96
                         if(tempDist<dist)</pre>
97
                             dist = tempDist;
98
99
                             clusTemp = j;
100
101
102
                     recorder[i] = clusTemp;
103
                 #pragma omp critical
104
105
106
                         storage[clusTemp]++;
107
                         neighborVec[clusTemp].push_back(i);
108
109
                 }
110
111
112
            computeMedoids(centerTemp, neighborVec, normOption, object);
113
114
            moving = FLT_MIN;
115
116
        /\star measure how much the current center moves from original center \star/
117
        #pragma omp parallel for reduction(max:moving) num_threads(8)
118
             for (int i = 0; i < numOfClusters; ++i)</pre>
119
120
                 if(storage[i]>0)
121
122
                     tempMoving = (centerTemp.row(i)-clusterCenter.row(i)).norm();
                     clusterCenter.row(i) = centerTemp.row(i);
123
124
                     if (moving<tempMoving)</pre>
125
                         moving = tempMoving;
126
                 }
127
             . std::cout << "K-means iteration " << ++tag << " completed, and moving is " << moving << "!" << std::endl;
128
129
        }while (abs (moving-before) /before >= 1.0e-2 && tag < 20/* && moving > 5.0*/);
130
131
132
        double delta;
133
        tr.eventList.push_back("For norm ");
134
        \verb|tr.timeList.push_back(to_string(normOption)+"\n");|\\
135
136
137
        std::multimap<int,int> groupMap;
138
        float entropy = 0.0;
139
        float probability;
140
        vector<int> increasingOrder(numOfClusters);
        for (int i = 0; i < numOfClusters; ++i)</pre>
141
142
```

```
143
            groupMap.insert(std::pair<int,int>(storage[i],i));
144
             if(storage[i]>0)
145
146
                 probability = float(storage[i])/float(Row);
147
                 entropy += probability*log2f(probability);
148
            }
149
        }
150
        int groupNo = 0;
151
152
        for (std::multimap<int,int>::iterator it = groupMap.begin(); it != groupMap.end(); ++it)
153
154
             if(it->first>0)
155
             {
156
                 increasingOrder[it->second] = (groupNo++);
157
158
159
        entropy = -entropy/log2f(groupNo);
160
161
        /* finish tagging for each group */
162
163
         /* record labeling information */
164
        // IOHandler::generateGroups(neighborVec);
165
166
167
        // set cluster group number and size number
168 #pragma omp parallel for schedule(static) num_threads(8)
169
        for (int i = 0; i < Row; ++i)</pre>
170
171
             fline.group[i] = increasingOrder[recorder[i]];
             fline.totalNum[i] = storage[recorder[i]];
172
173
174
175
        float shortest, toCenter, farDist;
176
        int shortestIndex = 0, tempIndex = 0, furthestIndex = 0;
177
        std::vector<int> neighborTemp;
178
        /\star choose cloest and furthest streamlines to centroid streamlines \star/
179
        for (int i = 0; i < numOfClusters; ++i)</pre>
180
181
182
             if(storage[i]>0)
183
184
                 neighborTemp = neighborVec[i];
185
                 shortest = FLT_MAX;
186
                 farDist = FLT_MIN;
187
188
189
                 for (int j = 0; j < storage[i]; ++j)</pre>
190
                     // j-th internal streamlines
191
                     tempIndex = neighborTemp[j];
192
193
                     toCenter = getDisimilarity(clusterCenter.row(i), data,
194
                                  tempIndex, normOption, object);
195
                     if(!isSample)
196
197
                         if (toCenter<shortest)
198
                         {
199
                              shortest = toCenter;
200
                              shortestIndex = tempIndex;
201
202
203
                     /* update the farthest index to centroid */
204
                     if(toCenter>farDist)
205
                     {
                          farDist = toCenter;
206
207
                         furthestIndex = tempIndex;
208
209
                 if(!isSample)
210
211
                     fline.closest.push_back(ExtractedLine(shortestIndex,increasingOrder[i]));
212
                 fline.furthest.push_back(ExtractedLine(furthestIndex,increasingOrder[i]));
213
214
215
216
        std::vector<float> closeSubset;
        /* based on known cluster centroid, save them as vector for output */
for (int i = 0; i < numOfClusters; ++i)
217
218
219
220
             if(storage[i]>0)
221
222
                 for (int j = 0; j < Column; ++j)
223
224
                     closeSubset.push_back(clusterCenter(i, j));
225
226
                 fline.centerMass.push_back(MeanLine(closeSubset,increasingOrder[i]));
227
                 closeSubset.clear();
228
             }
229
        }
```

12 Class Documentation

```
230
        delete[] storage;
231
        std::cout << "Has taken closest and furthest out!" << std::endl;</pre>
232
233
234 /* Silhouette computation started */
235
        std::cout << "The finalized cluster size is: " << groupNo << std::endl;</pre>
236
237
         if (groupNo<=1)</pre>
238
239
240
         /* if the dataset is not PBF, then should record distance matrix for Gamma matrix compution */
241
        if(!isPBF)
242
243
             deleteDistanceMatrix(data.rows());
244
245
             std::ifstream distFile(("../dataset/"+to_string(normOption)).c_str(), ios::in);
246
             if(distFile.fail())
247
             {
248
                 distFile.close();
                 getDistanceMatrix(data, normOption, object);
249
250
                  std::ofstream distFileOut(("../dataset/"+to_string(normOption)).c_str(), ios::out);
251
                  for(int i=0;i<data.rows();++i)</pre>
2.52
253
                      for(int j=0; j < data.rows(); ++j)</pre>
254
255
                          distFileOut << distanceMatrix[i][j] << " ";</pre>
256
257
                      distFileOut << std::endl;
258
259
                 distFileOut.close();
260
261
             else
262
263
                 std::cout << "read distance matrix..." << std::endl;</pre>
264
                 distanceMatrix = new float*[data.rows()];
265
             #pragma omp parallel for schedule(static) num_threads(8)
    for (int i = 0; i < data.rows(); ++i)</pre>
266
267
268
                 {
269
                      distanceMatrix[i] = new float[data.rows()];
270
                 int i=0, j;
string line;
271
272
273
                 stringstream ss;
274
                 while (getline (distFile, line))
275
276
                      i=0:
2.77
                      ss.str(line);
278
                      while (ss>>line)
279
280
                           if(i==j)
281
                              distanceMatrix[i][j]=0;
282
                          else
283
                               distanceMatrix[i][j] = std::atof(line.c_str());
284
                          ++j;
285
                      ++i;
286
                      ss.str("");
287
288
                      ss.clear();
289
290
                 distFile.close();
291
             }
292
293
294
         tr.eventList.push_back("Final cluster number is : ");
295
        tr.timeList.push_back(to_string(groupNo));
296
297
         ValidityMeasurement vm;
298
        vm.computeValue(normOption, data, fline.group, object, isPBF);
299
300
         tr.eventList.push_back("Kmedoids Validity measure is: ");
301
         stringstream fc_ss;
302
         fc_ss << vm.f_c;
303
        tr.timeList.push_back(fc_ss.str());
304
305
         //groupNo record group numbers */
306
        gettimeofday(&start, NULL);
307
308
        sil.computeValue(normOption, data, Row, Column, fline.group, object, groupNo,
      isPBF):
309
        std::cout << "Silhouette computation completed!" << std::endl;</pre>
310
311
         gettimeofday(&end, NULL);
312
         delta = ((end.tv_sec - start.tv_sec) * 1000000u + end.tv_usec - start.tv_usec) / 1.e6;
313
        tr.eventList.push_back("Evaluation analysis would take: ");
tr.timeList.push_back(to_string(delta)+"s");
314
315
```

```
316
317  /* write value of the silhouette class */
318     IOHandler::writeReadme(entropy, sil, "For norm "+to_string(normOption));
319 }
```

4.1.4 Member Data Documentation

4.1.4.1 Eigen::MatrixXf KMedoids::data [private]

Definition at line 107 of file KMedoids.h.

4.1.4.2 int KMedoids::initialStates [private]

Definition at line 95 of file KMedoids.h.

4.1.4.3 bool KMedoids::isSample [private]

Definition at line 102 of file KMedoids.h.

4.1.4.4 int KMedoids::numOfClusters

Definition at line 85 of file KMedoids.h.

The documentation for this class was generated from the following files:

- KMedoids.h
- KMedoids.cpp

4.2 Parameter Struct Reference

```
#include <KMedoids.h>
```

Public Member Functions

- Parameter (const int &initialization, const bool &isSample)
- Parameter ()
- ∼Parameter ()

Public Attributes

- · int initialization
- bool isSample

14 Class Documentation

4.2.1 Detailed Description

Definition at line 20 of file KMedoids.h.

4.2.2 Constructor & Destructor Documentation

```
4.2.2.1 Parameter::Parameter (const int & initialization, const bool & isSample) [inline]
```

Definition at line 24 of file KMedoids.h.

```
25 : initialization(initialization), isSample(
    isSample)
26 {}
```

```
4.2.2.2 Parameter::Parameter() [inline]
```

Definition at line 27 of file KMedoids.h.

```
28 {}
```

```
4.2.2.3 Parameter::∼Parameter() [inline]
```

Definition at line 29 of file KMedoids.h.

```
30 {}
```

4.2.3 Member Data Documentation

4.2.3.1 int Parameter::initialization

Definition at line 22 of file KMedoids.h.

4.2.3.2 bool Parameter::isSample

Definition at line 23 of file KMedoids.h.

The documentation for this struct was generated from the following file:

• KMedoids.h

4.3 TimeRecorder Struct Reference

```
#include <KMedoids.h>
```

Public Attributes

- std::vector < string > eventList
- std::vector< string > timeList

4.3.1 Detailed Description

Definition at line 37 of file KMedoids.h.

4.3.2 Member Data Documentation

4.3.2.1 std::vector<string> TimeRecorder::eventList

Definition at line 39 of file KMedoids.h.

4.3.2.2 std::vector<string> TimeRecorder::timeList

Definition at line 40 of file KMedoids.h.

The documentation for this struct was generated from the following file:

• KMedoids.h

16 Class Documentation

Chapter 5

File Documentation

5.1 KMedoids.cpp File Reference

#include "KMedoids.h"
Include dependency graph for KMedoids.cpp:

Variables

• bool isPBF

5.1.1 Variable Documentation

5.1.1.1 bool isPBF

Definition at line 16 of file main.cpp.

18 File Documentation

5.2 KMedoids.h File Reference

```
#include "IOHandler.h"
#include "Initialization.h"
#include "Silhouette.h"
#include "ValidityMeasurement.h"
Include dependency graph for KMedoids.h:
```


This graph shows which files directly or indirectly include this file:

Classes

- struct Parameter
- struct TimeRecorder
- class KMedoids

5.3 main.cpp File Reference

```
#include "KMedoids.h"
#include <sys/time.h>
```

Include dependency graph for main.cpp:

Functions

- void featureExtraction (const int &argc, char **argv)
- void performKMedoids (const string &fileName, const std::vector< std::vector< float >> &dataVec, const int &dimension, const string &fullName, const KMedoids &kmedoid, const int &normOption, Silhouette &sil, TimeRecorder &tr)
- · void recordInitilization (const Parameter &pm, const int &sampleOption)
- int main (int argc, char *argv[])

Variables

- · bool isPBF
- bool readCluster

5.3.1 Function Documentation

5.3.1.1 void featureExtraction (const int & argc, char ** argv)

Definition at line 78 of file main.cpp.

```
80 {
      while (number!=3)
81
          83
84
                    << "data_dimension(3)" << endl;
8.5
          exit(1);
86
87
88
      const string& strName = string("../dataset/")+string(argv[1]);
      const int& dimension = atoi(argv[2]);
90
      /\star check whether it is a PBF data set \star/
91
      std::cout << "It is a PBF dataset? 1. Yes, 0. No." << std::endl;</pre>
92
      int isPBFInput;
93
      std::cin >> isPBFInput;
      assert(isPBFInput==1||isPBFInput==0);
      isPBF = (isPBFInput==1);
97
      /\star check whether it is a Pathline data set or not \star/
98
99
      bool isPathlines:
100
       std::cout << "It is a Pathline? 1.Yes, 0. No" << std::endl;
       std::cin >> isPBFInput;
```

20 File Documentation

```
102
       assert(isPBFInput==1||isPBFInput==0);
103
       isPathlines = (isPBFInput==1);
104
105
       int vertexCount;
106
107 /*-
                      108
       Parameter pm;
109
110
       std::cout << "Please choose initialization option for seeds:" << std::endl</pre>
                << "1.chose random positions, 2.Chose from samples, 3.k-means++ sampling" << endl;
111
       std::cin >> pm.initialization;
112
       assert(pm.initialization==1||pm.initialization==2||pm.
113
     initialization==3);
114
115
       int sampleOption;
       116
117
118
       std::cin >> sampleOption;
119
       assert(sampleOption==1||sampleOption==2);
120
       if (sampleOption==1)
121
          pm.isSample = true;
122
       else if(sampleOption==2)
123
         pm.isSample = false;
124
125
       if (isPathlines)
126
          sampleOption = 1;
127
       else
128
           std::cout << "choose a sampling method for the dataset?" << std::endl</pre>
129
                    << "1.directly filling with last vertex; 2. uniform sampling." << std::endl;</pre>
130
131
           std::cin >> sampleOption;
132
133
       assert(sampleOption==1||sampleOption==2);
134
135
       std::cout << "Please choose cluster number method, 0.user input, 1.read clustering: " << std::endl;
136
       int clusterInput;
137
       std::cin >> clusterInput;
138
       assert(clusterInput==0 || clusterInput==1);
139
       readCluster = (clusterInput==1);
140
141 /*---
                     -----*/
142
       TimeRecorder tr:
143
144
145
       std::unordered_map<int,int> clusterMap;
146
       if(readCluster)
147
148
           IOHandler::readClusteringNumber(clusterMap, "cluster_number");
149
150
151
       /* a Silhouette method to estimate the clustering effect */
152
       Silhouette silhou;
153
154
       struct timeval start, end;
155
       double timeTemp;
156
       int maxElements;
157
158
       gettimeofday(&start, NULL);
159
       std::vector< std::vector<float> > dataVec;
160
       IOHandler::readFile(strName, dataVec, vertexCount, dimension, maxElements);
161
       //IOHandler::readFile(pbfPath, dataVec, vertexCount, dimension, 128000, 1500);
162
       gettimeofday(&end, NULL);
       163
164
165
       tr.eventList.push_back("I-O file reader takes: ");
166
       tr.timeList.push_back(to_string(timeTemp)+"s");
167
168
       stringstream ss;
       ss << strName << "_differentNorm_full.vtk";
169
170
       const string& fullName = ss.str();
171
       IOHandler::printVTK(ss.str(), dataVec, vertexCount, dimension);
172
       ss.str("");
173
174
       Eigen::MatrixXf data;
175
       std::vector<float> averageS;
176
177
       if (sampleOption==1)
178
          IOHandler::expandArray(data, dataVec, dimension, maxElements);
179
       else if(sampleOption==2)
180
           IOHandler::sampleArray(data, dataVec, dimension, maxElements);
181
182
       /★ 0: Euclidean Norm
           1: Fraction Distance Metric
183
184
           2: piece-wise angle average
185
           3: Bhattacharyya metric for rotation
186
           4: average rotation
           5: signed-angle intersection
187
```

```
6: normal-direction multivariate distribution
            7: Bhattacharyya metric with angle to a fixed direction
189
190
            8: Piece-wise angle average \times standard deviation
191
            9: normal-direction multivariate un-normalized distribution
192
            10: x*y/|x||y| borrowed from machine learning
193
            11: cosine similarity
            12: Mean-of-closest point distance (MCP)
194
195
            13: Hausdorff distance min_max(x_i,y_i)
196
            14: Signature-based measure from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6231627
197
            15: Procrustes distance take from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6787131
            16: entropy-based distance metric taken from http://vis.cs.ucdavis.edu/papers/pg2011paper.pdf
198
             17: time-series MCP distance from https://www.sciencedirect.com/science/article/pii/
199
      S0097849318300128
                for pathlines only
200
201
202
203
        KMedoids kmedoid(pm, data, -1);
204
205
        recordInitilization(pm, sampleOption);
206
207
        for (int i = 0; i <= 17; i++)
208
209
            if (isPathlines)
210
211
                if (i!=0 && i!=1 && i!=2 && i!=4 && i!=12 && i!=13 && i!=14 && i!=15 && i!=17)
212
                    continue;
213
214
            else
215
216
                if (i!=0 && i!=1 && i!=2 && i!=4 && i!=12 && i!=13 && i!=14 && i!=15)
217
                    continue:
218
            }
219
220
            if(readCluster)
221
                kmedoid.numOfClusters = clusterMap[i];
222
            else
223
            {
224
                std::cout << "Please input a cluster number (>=2) for norm " << i << " in [2, " ^{\prime\prime}
225
                         << dataVec.size() << "]: " << std::endl;
226
                std::cin >> kmedoid.numOfClusters;
227
            }
228
            gettimeofday(&start, NULL);
ss << strName << "_KMedoids";</pre>
229
230
            performKMedoids(ss.str(), dataVec, dimension, fullName, kmedoid, i, silhou, tr);
231
232
233
            gettimeofday(&end, NULL);
                                      - start.tv_sec) * 1000000u + end.tv_usec - start.tv_usec) / 1.e6;
234
            timeTemp = ((end.tv_sec
            tr.eventList.push_back("Direct K_Means operation time for norm "+to_string(i)+" takes: ");
235
            tr.timeList.push_back(to_string(timeTemp)+"s");
236
237
            if(silhou.sData.empty())
238
                silhou.sAverage = 0;
239
240
            IOHandler::writeReadme(tr.eventList, tr.timeList, kmedoid.numOfClusters);
            tr.eventList.clear();
241
242
            tr.timeList.clear();
            silhou.reset();
244
245 }
```

5.3.1.2 int main (int argc, char * argv[])

Definition at line 65 of file main.cpp.

```
66 {
67     featureExtraction(argc, argv);
68     return 0;
69 }
```

5.3.1.3 void performKMedoids (const string & fileName, const std::vector< std::vector< float >> & dataVec, const int & dimension, const string & fullName, const KMedoids & kmedoid, const int & normOption, Silhouette & sil, TimeRecorder & tr)

Definition at line 260 of file main.cpp.

22 File Documentation

```
268 {
269
       FeatureLine fl(dataVec);
270
       kmedoid.getMedoids(fl, normOption, sil, tr);
271
2.72
       std::vector<std::vector<float> > closestStreamline, furthestStreamline;
273
       std::vector<int> closestCluster, furthestCluster, meanCluster;
274
       int closestPoint, furthestPoint;
275
       IOHandler::assignVec(closestStreamline, closestCluster, fl.closest,
276
                           closestPoint, dataVec);
2.77
       IOHandler::assignVec(furthestStreamline, furthestCluster, fl.furthest,
278
                           furthestPoint, dataVec);
279
280
281 /* get the average rotation of the extraction */
282
       std::vector<float> closestRotation, furthestRotation;
283
       const float& closestAverage = getRotation(closestStreamline, closestRotation);
       const float& furthestAverage = getRotation(furthestStreamline, furthestRotation);
284
285
286
       tr.eventList.push_back("Average rotation of closest for K-medoids clustering on norm "
287
                              + to_string(normOption) + " is: ");
288
       tr.timeList.push_back(to_string(closestAverage));
289
       290
291
       tr.timeList.push_back(to_string(furthestAverage));
292
293 /*
      finish the rotation computation \star/
294
295
       IOHandler::assignVec(meanCluster, fl.centerMass);
296
       IOHandler::printVTK(fileName+string("_norm")+to_string(normOption)+string("_mean.vtk"),
297
                           fl.centerMass,
298
                          fl.centerMass.size()*fl.centerMass[0].minCenter.size()/dimension.
       dimension, sil.sCluster);
IOHandler::printVTK(fileName+"_norm"+to_string(normOption)+"_closest.vtk",
299
300
301
                          closestStreamline, closestPoint/dimension, dimension,
       closestCluster, sil.sCluster);
IOHandler::printVTK(fileName+"_norm"+to_string(normOption)+"_furthest.vtk",
302
303
                          furthestStreamline, furthestPoint/dimension, dimension, furthestCluster, sil.sCluster);
304
305
306
       std::cout << "Finish printing vtk for k-means clustering result!" << std::endl;</pre>
307
       308
309
       //IOHandler::writeReadme(fl.closest, fl.furthest, normOption);
310
311
312
       IOHandler::printToFull(dataVec, sil.sData, "norm"+to_string(normOption)+"_SValueLine",
313
                             fullName, 3);
       314
315
316 }
```

5.3.1.4 void recordinitilization (const Parameter & pm, const int & sampleOption)

Definition at line 325 of file main.cpp.

```
327 {
        std::ofstream readme("../dataset/README", ios::out | ios::app);
328
329
         if(readme.fail())
330
             std::cout << "cannot create README file!" << std::endl;
331
332
             exit(1):
333
334
335
        readme << std::endl;</pre>
336
        readme << "Initial centroid is: ";</pre>
        if (pm.initialization==1)
337
             readme << pm.initialization << ".random initialization"
338
339
                    << std::endl;
340
        else if(pm.initialization==2)
341
           readme << pm.initialization << ".sample initialization"</pre>
342
                    << std::endl;
        else if(pm.initialization==3)
    readme << pm.initialization << ".kmedoids++ initialization"</pre>
343
344
                     << std::endl;
345
346
347
        readme << "Medoid is: ";</pre>
348
         if(pm.isSample)
             readme << pm.isSample << ".inside samples" << std::endl;</pre>
349
350
        else
351
             readme << pm.isSample << ".from iterations" << std::endl;</pre>
352
```

```
353     readme << "Sampling is: ";
354     if(sampleOption==1)
355         readme << sampleOption << ".directly filling" << std::endl;
356     else if(sampleOption==2)
357         readme << sampleOption << ".uniformly sampling" << std::endl;
358
359     readme.close();
360
361 }</pre>
```

5.3.2 Variable Documentation

5.3.2.1 bool isPBF

Definition at line 16 of file main.cpp.

5.3.2.2 bool readCluster

Definition at line 21 of file main.cpp.

5.4 README.md File Reference

24 File Documentation

Index

~KMedoids	isPBF, 23
KMedoids, 8	main, 21
~Parameter Parameter, 14	performKMedoids, 21 readCluster, 23
	recordInitilization, 22
computeMedoids	
KMedoids, 8	numOfClusters
data	KMedoids, 13
KMedoids, 13	Parameter, 13
	\sim Parameter, 14
eventList	initialization, 14
TimeRecorder, 15	isSample, 14
facture Extraction	Parameter, 14
featureExtraction	performKMedoids
main.cpp, 19	main.cpp, 21
getInitCenter	README.md, 23
KMedoids, 9	readCluster
getMedoids	main.cpp, 23
KMedoids, 9	recordInitilization
initialStates	main.cpp, 22
KMedoids, 13	
initialization	timeList
Parameter, 14	TimeRecorder, 15
isPBF	TimeRecorder, 14 eventList, 15
KMedoids.cpp, 17	timeList, 15
main.cpp, 23	timeList, 13
isSample	
KMedoids, 13	
Parameter, 14	
KMedoids, 7	
~KMedoids, 8	
computeMedoids, 8	
data, 13	
getInitCenter, 9	
getMedoids, 9	
initialStates, 13	
isSample, 13	
KMedoids, 8	
numOfClusters, 13	
KMedoids.cpp, 17	
isPBF, 17	
KMedoids.h, 18	
main	
main.cpp, 21	
main.cpp, 18	
featureExtraction, 19	