සියලුම හිමිකම් ඇවිරිණි / ω ලාරුව වනිවාදා ω නාගෙනු ω (ω) නිවාදා ω (ω) සියලුම හිමිකම් ඇවිරිණි / ω) සියලුම හිමිකම් ඇවිරිණි / ω

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තැලින්**ලා කිරීම ලංකා විභාග** දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பழீட்சைத் නිකைக்களம் இலங்கைப் பழீட்சைத் திணைக்களம் இலங்கைப் பழீட்சைத் නිකைக்களம் இலங்கைப் பழீட்சைத் නිකைக்களம் Department of Examinations, Sri Lanka Department of **නිතික්ඛ්රීම** Selland පත්තම් විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව සිටිය සිටිය

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022) සහඛාධ பொதுத் தூதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021 (2022) General Certificate of Education (Adv. Level) Examination, 2021 (2022)

උසස් ගණිතය I உயர் கணிதம் **I** Higher Mathematics **I**

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුඛත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

 	-	T = T		
ව්භාග අංකය			1	

උපදෙස්:

- * මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ; A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).
- * A කොටස * A කොටස සියලුමු පුත්තවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුර

සියලුම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

- * B කොටස
 - පුශ්න පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.
- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයෙහි **B කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙනයාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

-	(11) උසස් ගණිත	3 I
කොටස	ළශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	AL
	5	Y . L
A	6	
	7	
	8	
	9	
	10	
•	11	,
	12	
	13	
В	14	1
	15	
	16	
	17	
	එකතුව	

100	එකතුව	
ඉලක්කමෙන්		
අකුරෙන්	3	

L	A කොටස
1.	සාධකවලට වෙන් කරන්න: $x^4(y^2-z^2)+y^4(z^2-x^2)+z^4(x^2-y^2)$.
	•••••••••••••••••••••••••••••••••••••••
	······
•	${\mathbb Z}$ සියලු නිබිල කුලකය මත $5a+b$ යන්න 3 න් බෙදේ නම්, aRb මගින් අර්ථ දැක්වූ සම්බන්ධයක් R යැයි ගනිමු. ${\mathbb Z}$ මත R තුලාංතා සම්බන්ධයක් බව පෙන්වා, 0 හි තුලාංතා පන්තිය ලියා දක්වන්න.
•	
•	······································
•	
٠	
٠	
•	

0228

3. $x \neq 3$ සඳහා $f(x) = \frac{x}{x-3}$ යැයි ද $x \in \mathbb{R}$ සඳහා $g^{-1}(x) = 2x-1$ යැයි ද ගනිමු. $f^{-1}(x)$ හා g(x) සොයා $g(2f^{-1}(0)) = \frac{1}{2}$ බව පෙන්වන්න.

.....

4. $\begin{vmatrix} x^3 + x & x+1 & x-2 \\ 2x^3 + 3x + 1 & 3x & 3x - 3 \\ x^3 + 2x + 3 & 2x - 1 & 2x - 1 \end{vmatrix} = x \begin{vmatrix} 1 & 1 & 1 \\ -4 & 0 & 0 \\ 3 & -3 & 3 \end{vmatrix} + \begin{vmatrix} 0 & 1 & -2 \\ -4 & 0 & 0 \\ 3 & -3 & 3 \end{vmatrix}$

බව පෙන්වන්න.

5.	$y^2 = 4ax$ පරාවලය මත වූ $P \equiv (ap^2, 2ap)$ හා $Q \equiv (aq^2, 2aq)$ ලක්ෂා යා කරන ජනාය පරාවලයේ නාභිය හරහ යයි. $pq = -1$ බව පෙන්වා P හා Q හිදී පරාවලයට ඇඳි ස්පර්ශක ලම්බ වන බව අපෝහනය කරන්න.
	· · · · · · · · · · · · · · · · · · ·
6.	$f(x) = \begin{cases} \frac{\alpha x + x }{\beta x - x } & ; x \neq 0$ නම $g(x) = \begin{cases} \frac{\sqrt{1+x} - 1}{\alpha x} & ; x \neq 0$ නම $-\beta$ $; x = 0$ නම
	යැයි ගනිමු; මෙහි $lpha>0$ හා $eta\in { m I\!R}$ වේ.
	x=0 හි දී $f(x)$ හා $g(x)$ සන්තතික බව දී ඇත. $lpha$ හා eta හි අගයන් සොයන්න.
	·······
	·····
	······································
	

	x^3 ; $x \ge 0$ නම්	3
7.	$f(x) = \begin{cases} -x^2 & ; -1 < x < 0 $ නම්	
	$f(x) = \begin{cases} x^3 & ; & x \ge 0 \text{ නම} \\ -x^2 & ; & -1 < x < 0 \text{ නම} \\ -x - 2 & ; & x \le -1 \text{ නම} \end{cases}$	
	ξ යැයි ගනිමු. $x=0$ හි දී $f(x)$ අවකලා බව ද $x=-1$ හි දී $f(x)$ අවකලා නොවන බව ද පෙන්ව x	ත්ත.
	යැයි ගන්මු. $x=0$ හ ද $f(x)$ අවකලා බව ද $x=-1$ හ ද $f(x)$ අවකලා වෙන්නේ සිට ද වෙන්නේ $x \neq -1$ සඳහා $f'(x)$ ලියා දක්වන්න.	
	$x \neq -1$ $\exists e \in S$ $f(x) \in S$ $f(x) \in S$	
	••••••	

		•••••
		.,
	A. 4	
8.	$x=0$ වන විට $y=1$ අවශාතාවට යටත්ව, $\tan y \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{1+x} + (1+x)e^x \sec y = 0$ අවකල සමීකර	රණය වසඳන්න.

	•••••	
	······································	
		: : ********
		: :
	<u> </u>	****************** 27 -

		A. ••••••••••••••••••••••••••••••••••••

-	9. K මත ƒ යනු සන්තතික තාක්වික අගයැති ශිුතයක් ය a	
	$\int_{-a}^{a} f(x) dx = \int_{0}^{a} \left\{ f(a-x) + f(a+x) \right\} dx$ බව ලෙස	හත්වන්න.
		······
	•••••••••••••••••••••••••••••••••••••••	
	•••••••••••••••••••••••••••••••••••••••	
10.	$r = 2\cos\theta + 4\sin\theta$ මගින් ධුැවක සමීකරණය දෙනු	ලබන වකුයෙහි දළ සටහනක් අඳින්න.
	$\left(4,rac{\pi}{2} ight)$ ධුැවක ඛණ්ඩාංක සහිත ඉහත වකුය මත ලක	ත්ෂායේදී වූ ස්පර්ශකයේ ධුැවක සමීකරණය සොයන්න.
	•••••••••••••••••••••••••••••••••••••••	•••••
		•••••
	······································	

		•••••••••••••••••••••••••••••••••••••••
		······································
		•••••••••••••••••••••••••••••••••••••••
	***************************************	· · · · · · · · · · · · · · · · · · ·

සියලුම හිමිකම් ඇවිරිණි/முழுப் பதிப்புரிமையுடையது/ $All\ Rights\ Reserved$]

ල් ලංකා විශාල දෙපාර්තමේත්තුව ල් ලංකා විශාල දෙපාර්ත**ේ පිටුර්ගිර පිටුර් පිටුර්ගිර පිටුර් පි**

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022) සබාඛ්ධ ධொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021 (2022) General Certificate of Education (Adv. Level) Examination, 2021 (2022)

උසස් ඉණිතය I உயர் கணிதம் I Higher Mathematics I

B කොටස

🗱 පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

- ${f 11.}(a)~A,B$ හා C යනු S සර්වනු කුලකයක උපකුලක යැයි ගනිමු. ඔබ යොදා ගන්නා කුලක වීජයෙහි නියමයන් පැහැදිලිව පුකාශ කරමින්,
 - (i) $(A-B)\cup (A-C)=A-(B\cap C)$ so
 - (ii) $(A'-B)\cap C' = (A'-C)-(B-C)$
 - බව පෙන්වන්න, මෙහි A-B යන්න $A\cap B'$ මගින් අර්ථ දක්වනු ලැබේ.
 - (b) පා පන්දු, පැසි පන්දු හා අත් පන්දු කි්ඩකයින් සමූහයක
 - (i) කීඩකයින් 8 දෙනෙකුට පා පන්දු හා පැසි පන්දු ද,
 - (ii) කීඩකයින් 5 දෙනෙකුට පා පන්දු හා අත් පන්දු ද,
 - (iii) කීඩකයින් 7 දෙනෙකුට පැසි පන්දු හා අත් පන්දු ද,
 - (iv) කි්ඩකයින් 29 දෙනෙකුට පා පන්දු හෝ පැසි පන්දු ද,
 - (v) කි්ඩකයින් 30 දෙනෙකුට පා පන්දු හෝ අත් පන්දු ද,
 - (vi) කීඩකයින් 25 දෙනෙකුට පැසි පන්දු හෝ අත් පන්දු ද,

කීඩා කළ හැකි බව දී ඇත. තීඩකයින් කොපමණකට පා පන්දු කීඩා කළ හැකි දැයි සොයන්න.

- $12.(a) \ a, b, c > 0$ යැයි ගනිමු.
 - (i) $ab \le \frac{1}{2}(a^2 + b^2)$ බව පෙන්වා, $abc^2 \le \frac{1}{4}(a^4 + b^4 + 2c^4)$ බව **අපෝහනය** කරන්න.
 - (ii) **ඒ නයින්**. $abc \le \left(\frac{a^4 + b^4 + c^4}{a + b + c}\right)$ බව පෙන්වන්න. සමානතාව පවතින්නේ a = b = c ම නම් පමණක් බව පෙන්වන්න.
 - (b) $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 4 & -1 \\ 6 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ පරිණාමනය xy තලයේ ලක්ෂා x'y' තලයේ ලක්ෂාවලට අනුරූපණය කරයි.

ඒවා මතටම අනුරූපණය කරන සරල රේඛාවල සමීකරණ සොයන්න. x'y' - තලයේ $y\!=\!2x\!-\!1$ රේඛාවෙහි පුතිබිම්බය සොයන්න.

More Past Papers at

tamilguru.lk

- 13. ධන නිබිලමය දර්ශකයක් සඳහා **ද මුචාචර් පුමේශය** පුකාශ කර සාධනය කරන්න.
 - **ද මුවාවර් පුමේයය** භාවිතයෙන්,

$$\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$$
 බව හා
$$\sin 4\theta = 4\cos^3 \theta \sin \theta - 4\cos \theta \sin^3 \theta$$
 බව පෙන්වන්න.

ඒ නයින්,
$$\cot 4\theta = \frac{\cot^4 \theta - 6\cot^2 \theta + 1}{4(\cot^3 \theta - \cot \theta)}$$
 බව පෙන්වන්න.

$$\cot 4\theta = \sqrt{3}$$
 විසඳා $x = \cot \left(\frac{\pi}{24}\right)$ යන්න $x^4 - 4\sqrt{3}x^3 - 6x^2 + 4\sqrt{3}x + 1 = 0$ සමීකරණයෙහි විසඳුමක් බව පෙන්වන්න.

පෙනවනවා.
මෙම සමීකරණයෙහි අනෙක් විසඳුම් ද
$$k$$
 හි අගයන් පුකාශ කරමින් $\cot\left(\frac{k\pi}{24}\right)$ ආකාරයෙන් ලියා දක්වන්න.
$$\cot\frac{\pi}{24} + \cot\frac{7\pi}{24} + \cot\frac{13\pi}{24} + \cot\frac{19\pi}{24} = 4\sqrt{3} \quad \text{බව අපෝහනය කරන්න.}$$

14.(a) C_1 හා C_2 යනු පිළිවෙළින් $y=(x-1)^2+1$ හා $(y-2)^2=16x$ මගින් දෙනු ලබන වකු යැයි ගනිමු. ඒවායේ ඡේදන ලක්ෂා දක්වමින් C_1 හා C_2 හි පුස්තාරවල දළ සටහන් එකම රූපයක අඳින්න.

 C_1 හා C_2 වකු මගින් සපර්යන්ක වන R පෙදෙසෙහි වර්ගඵලය සොයන්න.

y=1 රේඛාව වටා R පෙලෙස 2π රේඩියනවලින් භුමණය කිරීමෙන් ජනනය වන ඝන වස්තුවේ පරිමාව ද සොයන්න.

(b) වකු කුලයක් $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x-y+5}{-x+2y+5}$ යන අවකල සමීකරණය මගින් අර්ථ දක්වනු ලබයි. මූල ලක්ෂාපය හරහා යන මෙම කුලයට අයත් වකුයේ සමීකරණය සොයන්න.

$$15.(a) \ n$$
 \in \mathbb{Z}^+ සඳහා $I_n = \int_{1}^{1} x^n (1-x)^{\frac{3}{2}} \, \mathrm{d}x$ යැයි ගනිමු. $n \geq 2$ සඳහා $I_n = \left(\frac{2n}{2n+5}\right) I_{n-1}$ බව පෙන්වන්න. ඒ නයින්, $\int_{0}^{1} x^4 (1-x)^{\frac{3}{2}} \, \mathrm{d}x$ හි අගය සොයන්න.

(b) x^3 හි පදය දක්වා එයත් ඇතුළත්ව x හි ආරෝහණ බලවලින් $\cos x$ හා e^x හි මැක්ලෝරින් ලේණි සොයන්න. ඒ **නයින්**, x^3 හි පදය දක්වා එයත් ඇතුළත්ව x හි ආරෝහණ බලවලින් $e^{-x}\cos(x^2)$ හි මැක්ලෝරින් ලේණිය ලබා ගන්න.

මෙය භාවිතයෙන්, $\int\limits_0^{0.1}xe^{-x}\cos(x^2)\mathrm{d}x$ සඳහා ආසන්න අගයක් සොයන්න.

16. $(a\cos\theta,b\sin\theta)$ ලක්ෂනයේ දී $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ ඉලිප්සයට ඇඳි ස්පර්ශකයේ සමීකරණය $bx\cos\theta+ay\sin\theta=ab$ බව ද $(r\cos\phi,r\sin\phi)$ ලක්ෂනයේ දී $x^2+y^2=r^2$ වෘත්තයට ඇඳි ස්පර්ශකයේ සමීකරණය $x\cos\phi+y\sin\phi=r$ බව ද පෙන්වන්න.

C යනු $x^2+y^2=36$ වෘත්තය ද, S යනු $\frac{x^2}{9^2}+\frac{y^2}{4^2}=1$ ඉලිප්සය ද යැයි ගනිමු. C වෘත්තය හා S ඉලිප්සය ඡේදනය වන ලක්ෂායක් $(6\cos\phi,6\sin\phi)$ යැයි සිනමු. $\tan^2\phi=\frac{4}{9}$ බව පෙන්වන්න.

ඒ නයින්, හෝ අන් අයුරකින් හෝ S ඉලිප්සය හා C වෘත්තය ඡේදනය වන ලක්ෂායන් හිදී ඒවාට ඇඳි ස්පර්ශක අතර සුළු කෝණය $an^{-1}\Big(rac{5}{9}\Big)$ බව පෙන්වන්න.

- 17.(a) $x \in \mathbb{R}$ සඳහා $f(x) = \frac{\cos^2 x}{2 + 2\sin x \cos x + \sin^2 x}$ යැයි ගනිමු.
 - (i) $x \in \mathbb{R}$ සඳහා $0 \le f(x) \le \frac{3}{5}$ බව පෙන්වන්න.
 - (ii) $f(x)=rac{3}{5}$ හා f(x)=0 සමීකරණ විසඳා $0\leq x\leq rac{\pi}{2}$ සඳහා y=f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.
 - (b) පහත වගුවෙන්, 0 හා 1.2 අතර දිග 0.2 ක් වූ පුාන්තරවලදී වූ x හි අගයන් සඳහා f(x) ශිකයෙහි අගයන් දශමස්ථාන දෙකකට නිවැරදිව දෙයි.

х	0.0	0.2	0.4	0.6	0.8	1.0	1.2
f(x)	1.12	2.01	0.00	1.11	1.65	2.42	1.61

සිම්සන් නීතිය භාවිතයෙන්, $I=\int\limits_0^{1.2}f(x)\mathrm{d}x$ සඳහා ආසන්න අගයක් සොයන්න.

ඒ නයින්, $\int\limits_0^{1.2} x \, f'(x) \, \mathrm{d}x$ සඳහා ආසන්න අගයක් සොයන්න.

বিত্ৰেම জিটামতী প্রতির্ভিন্ন / முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

ල් ලංකා විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්ත**ි**ක්**ලෝකාලේපාන ලෙපාර්තමේන්තුව**කාග දෙපාරතමේන්තුව ල් ලංකා විභාග දෙපාරතමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of **Examinations**, Sri Lanka Department of Examinations, Sri Lanka D

අධානයන පොදු සහකික පතු (උසස් පෙළ) විභාගය, 2021(2022) සහ්ඛ්ධ பொதுத் தூதரப் பத்திர (உயர் தூ)ப் பரீட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

උසස් ගණිතය II உயர் கணிதம் II Higher Mathematics II

පැය භූනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි _{மேலதிக வாசிப்பு} நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුඛත්වය දෙන පුශ්න සංවීධානය කර ගැනීමටත් යොදාගන්න.

S				
විහාග අංකය	1		 _	

උපදෙස්:

- * මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;
 - ${f A}$ කොටස (පුශ්න ${f 1}$ ${f 10}$) සහ ${f B}$ කොටස (පුශ්න ${f 11}$ ${f 17}$).
- * A කොටස

සියලුම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

- * B කොටස
 - පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.
- st නියමිත කාලය අවසන් වූ පසු f A කොටසෙහි පිළිතුරු පතුය f B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයෙහි **B කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙනයාමට ඔබට අවසර ඇත.
- 🔆 සංඛාහන වගු සපයනු ලැබේ.
- * g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(11) උසස් ගණිතය II				
කොටස	පුශ්න අංකය	ලකුණු		
	1			
	2			
	3			
	4			
A	5	_		
A	6			
	7			
	8			
	9			
	10			
_	11			
i	12			
	13			
В	14			
	15			
	16			
	17			
	එකතුව			

<u>එකතුව</u>		
ඉලක්කමෙන්	11	
අකුරෙන්	ă	

	සංකේත අංක
උත්තර පතු පරීක්ෂක	v :
1 පරීක්ෂා කළේ:	:
2	
අධීක්ෂණය කළේ:	

		<u>A</u>		
1.	$A \equiv (-2, -1, -1), B \equiv (3, 1, 2)$	හා $C\equiv (1, lpha, -eta)$ යනු \overrightarrow{OA} හා \overrightarrow{OC}	ි අතර කෝණය $\frac{2\pi}{3}$ හා	$ \overrightarrow{OA} = \overrightarrow{OC} $ වන
	පරිදි වූ ලක්ෂා තුනක් යැයි ගනිමු	; මෙහි $lpha,eta$ > 0 වේ. $lpha$ හා eta හි අග	යන් සොයන්න.	
		·	\$ ***	
			·····	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	***************************************		***************************************	
	***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•••••	

			***************************************	*******
	••••••	•••••	·····	************
	•••••••	••••••••••••	•••••	***************
		•••••		
		••••••		*************************
		*************************************		*******
		,		

			·	•••••
		************************************	••••	
•	ලක්ෂාවලදී කිුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි	+ k බල දෙකක් පිළිවෙළින් i + 2j , γ ∈ R වේ. ඒවායේ කිුයා රේඛා 4i	+ 4j + 4k ලක්ෂා හරහා	යන බව දී ඇත.
	u, p හා y හ අගයන කොයනන. එ	වායේ සම්පුයුක්තයේ කිුයා රේබාවේ) සමකරණය ලියා දක්වප	රන.
		**************************************		•••••
		• • • • • • • • • • • • • • • • • • • •	••••••	•••••
		•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •	••••••
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
		•	•••••	

	***************************************			•••••
	***************************************	a 		
	••••••	<u></u>		
		# ************************************	<u></u>	•••••
		10 2 2 2 2 2 2	************	,,,,,,,,,,
		i ••••••••••••••••••••••••••••••••••••	***************************************	
		*** ***	•	
		**************************************	***************************************	
			\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\	•••••

1	
1	
L	_
L	\Box
[$\overline{}$
ı	١V
ı	Ni
ı	7
	m

<i>.</i>		ව්භාග අංකය		
AL/2021(2022)/11/S-II	- 3 -	Come chame		

3.	අරය a , උස $4a$ හා ඝනත්වය σ වූ ඒකාකාර ඝන සෘජු වෘත්තාකාර	ර කේතුවක් ඝනුත	්වය $ ho$ වූ සමජාතිය දුවයක,
	දුවගේ නිදහස් මතුපිටට a දුරක් ඉහළින් එහි ශීර්ෂය ඇතිව කොටසා	ක් ගිලී පාවේ. $\dfrac{\mathcal{b}}{ ho}$ ර	අනුපාතලය් අගය සොයන්න.
	දුවයෙහි සම්පූර්ණයෙන්ම ගිල්වීමට කේතුවේ ශීර්ෂයට සම්බන්ධ ක	ළ හැකි අංශුවේ 6	අඩුම බර සොයන්න.
		.,	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	<u> </u>		
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	<u></u>		
	·		

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,
4.	P අංශුවක t කාලයේදී ත්වරණය $a(t)=6t\mathbf{i}-\cos t\mathbf{j}+e^t\mathbf{k}$ මගින් ෙ	දනු ලබයි. $t=0$ දී	$\{P$ අංශුවේ පිහිටුම් දෛශිකය
	හා පුවේගය පිළිවෙළින් $\mathbf{j}+\mathbf{k}$ හා \mathbf{k} වේ. t කාලයේදී P හි පිහිටුම් ර	ඉදෙශිකය සොයන	ත්ත.
			•••••
			•••••
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************
			•••••

	; 	; ************************************	,
		: (

5.	. එක එකෙහි ස්කන්ධය m වූ P හා Q අංශු දෙකක් සුමට තිරස් තලයක එක එකක් u වේගයක් සහිතව සුමට සිරස් බිත්තියක් දෙසට චලනය වෙමින් DE රේඛාවේදී බිත්තිය හමුවේ. P ට පෙර Q , X වෙත ළඟාවෙමින්, X හිදී අංශු දෙකම බිත්තිය සමග ගැටේ. P හි චලිත දිශාව AX දිගේ වේ; මෙහි $A\hat{X}D=30^\circ$ වේ. Q හි චලිත දිශාව BX දිගේ වේ; මෙහි $B\hat{X}D=60^\circ$ වේ. P හා Q දෙකම බිත්තිය සමග ගැටීමෙන් පසු එකම \overline{XY} දිශාවට චලනය වේ (රූපය බලන්න). P හා බිත්තිය අතර පුතාහගති සංගුණකය e වේ. Q හා බිත්තිය අතර පුතාහගති සංගුණකය e වේ. Q හා බිත්තිය අතර පුතාහගති සංගුණකය e වේ. e හා e 0 හා බිත්තිය අතර පුතාහගති සංගුණකය e 1 බිත්තිය සමග ගැටුමෙන් පසු e 2 හා e 3 වේගයන් අතර අනුපාතය e 3 ා e 3 වේගයන් අතර අනුපාතය e 6 ා	B u y 30° y 1//////////////////////////////////	
		•	
	•••••••••••••••••••••••••••••••••••••••	· • · · · · · · · · · · · · · · · · · ·	
		·	
		·	
		·	***************************************
		``````````````````````````````````````	•••••
			••••••
		: ••••••	
		•••••••	
		· · · ·	
,		0	
6.	දිග $2a$ හා ස්කන්ධය $m$ වූ ඒකාකාර $OA$ දණ්ඩක් සිරස් තලයක අසව් කරන ලද		
6.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $rac{2\pi}{3}$ ක කෝණයක් පිහි	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	 θ 2a
6.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $\frac{2\pi}{3}$ ක කෝණයක් පිහි තබා මුදා හරියි. යටිඅත් සිරස සමග දණ්ඩ $ heta$ කෝණයක් සාදන විටදී කෝ	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	$\theta$ 2a
<b>մ.</b>	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $rac{2\pi}{3}$ ක කෝණයක් පිහි	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	$\theta$ 2a A
6.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $\frac{2\pi}{3}$ ක කෝණයක් පිහි තබා මුදා හරියි. යටිඅත් සිරස සමග දණ්ඩ $ heta$ කෝණයක් සාදන විටදී කෝ	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	θ 2a
5.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $\frac{2\pi}{3}$ ක කෝණයක් පිහි තබා මුදා හරියි. යටිඅත් සිරස සමග දණ්ඩ $ heta$ කෝණයක් සාදන විටදී කෝ	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	θ 2a
6.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $\frac{2\pi}{3}$ ක කෝණයක් පිහි තබා මුදා හරියි. යටිඅත් සිරස සමග දණ්ඩ $ heta$ කෝණයක් සාදන විටදී කෝ	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	θ 2a
б.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $\frac{2\pi}{3}$ ක කෝණයක් පිහි තබා මුදා හරියි. යටිඅත් සිරස සමග දණ්ඩ $ heta$ කෝණයක් සාදන විටදී කෝ	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	θ 2a A
б.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $\frac{2\pi}{3}$ ක කෝණයක් පිහි තබා මුදා හරියි. යටිඅත් සිරස සමග දණ්ඩ $ heta$ කෝණයක් සාදන විටදී කෝ	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	θ 2a A
6.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $\frac{2\pi}{3}$ ක කෝණයක් පිහි තබා මුදා හරියි. යටිඅත් සිරස සමග දණ්ඩ $ heta$ කෝණයක් සාදන විටදී කෝ	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	θ 2a A
6.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $\frac{2\pi}{3}$ ක කෝණයක් පිහි තබා මුදා හරියි. යටිඅත් සිරස සමග දණ්ඩ $ heta$ කෝණයක් සාදන විටදී කෝ	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	$\theta$ 2a A
6.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $\frac{2\pi}{3}$ ක කෝණයක් පිහි තබා මුදා හරියි. යටිඅත් සිරස සමග දණ්ඩ $ heta$ කෝණයක් සාදන විටදී කෝ	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	θ 2a A
6.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $\frac{2\pi}{3}$ ක කෝණයක් පිහි තබා මුදා හරියි. යටිඅත් සිරස සමග දණ්ඩ $ heta$ කෝණයක් සාදන විටදී කෝ	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	θ 2a A
5.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $\frac{2\pi}{3}$ ක කෝණයක් පිහි තබා මුදා හරියි. යටිඅත් සිරස සමග දණ්ඩ $ heta$ කෝණයක් සාදන විටදී කෝ	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	$\theta$ 2a A
б.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $\frac{2\pi}{3}$ ක කෝණයක් පිහි තබා මුදා හරියි. යටිඅත් සිරස සමග දණ්ඩ $ heta$ කෝණයක් සාදන විටදී කෝ	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	θ 2a A
6.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $\frac{2\pi}{3}$ ක කෝණයක් පිහි තබා මුදා හරියි. යටිඅත් සිරස සමග දණ්ඩ $ heta$ කෝණයක් සාදන විටදී කෝ	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	θ 2a A
5.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $\frac{2\pi}{3}$ ක කෝණයක් පිහි තබා මුදා හරියි. යටිඅත් සිරස සමග දණ්ඩ $ heta$ කෝණයක් සාදන විටදී කෝ	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	θ 2a A
6.	වටා භුමණය වීමට නිදහස ඇත. යටිඅත් සිරස සමග $\frac{2\pi}{3}$ ක කෝණයක් පිහි තබා මුදා හරියි. යටිඅත් සිරස සමග දණ්ඩ $ heta$ කෝණයක් සාදන විටදී කෝ	ෑ ඒ කෙළවර 🔍 ටුමක අල්වා 💄	$\theta$ 2 $a$

•	ආපනශාලාවක සසම්භාවී ලෙස ග ඇණුවුම් කිරීමේ සම්භාවිතාව 0.6 ක	තා්රාගත් පාරිභෝගිකයෙක් තම උදෑසන ආහාර ත් වේ. පාරිභෝගිකයන් 5 දෙනෙකුගේ සසම්භාවී	වේල සමග තේ කෝජපයක් නියැදියක් තෝරාගතහොත්,
	(i) එක පාරිභෝගිකයෙකු පමණක්,		
	(ii) පාරිභෝගිකයන් තුන් දෙනෙකුරි	) වඩා අඩුවෙන්,	
		ත් ඇණවුම් කිරීමේ සම්භාවිතාව සොයන්න.	
			· · · · · · · · · · · · · · · · · · ·
	***************************************		
			•
	***************************************		
	••••••		
	***************************************		
8.		ාසයකට දෙවතාවක් විදුලි විසන්ධිවීම් ඇති වේ. ^ල	<del>ාද</del> න ලද මාසයකදී,
	(i) විදුලි විසන්ධිවීම් නොමැතිවීමේ		
	(ii) අඩුම වශයෙන් විදුලි විසන්ධිවී	ම් 2 ක් වත් ඇතිවීමේ,	
	සම්භාවිතාව සොයන්න.		
	•••••	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	•••••••	
		·	
		: 	
			••••
	•••••		***************************************
			,
	***************************************		**************************************
		<u></u>	
			.,,

	X සන්තතික සසම්භාවී විචලෳයක සම්භාවිතා ඝනත්ව ශිුතය,	
	$f(x) = \begin{cases} rac{1}{c}x^2 &, &  x  \le 1  සඳහා \\ 0 &,  එසේ නොවේ නම්$	
	0 , එසේ නොවේ නම්	
	මගින් දෙනු ලැබේ. මෙහි $c$ නියතයක් වේ. $c$ හි අගය සොයන්න.	•
	කවද, $E(X)$ හා $V(X)$ සොයන්න.	:
		•••••
		:
		• '
	······································	
		•••••
		· · · · · · · · · ·
		•••••
0.	ෙනානැඹුරු සනකාකාර දාදු කැටයක් එක් වරක් පෙරළකු ලැබේ. ලැබුණු අගය $X$ යැයි ද $V-rac{1}{2}$	
0.	නොනැඹුරු ඝනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ . ගනිමු. $E(X)$ හා $E(Y)$ සොයන්න.	$X^2$ යැයි ද
0.	නොනැඹුරු ඝනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ ගනිමු. $E(X)$ හා $E(Y)$ සොයන්න.	 X ² යැයි ද 
0.	නොනැඹුරු ඝනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ ගනිමු. $E(X)$ හා $E(Y)$ සොයන්න.	X ² යැයි ද
0.	නොනැඹුරු ඝනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ ගනිමු. $E(X)$ හා $E(Y)$ සොයන්න.	X ² යැයි ද 
.0.	නොනැඹුරු ඝනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ . ගනිමු. $E(X)$ හා $E(Y)$ සොයන්න.	 X ² යැයි ද 
0.	නොනැඹුරු ඝනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ . ගනිමු. $E(X)$ හා $E(Y)$ සොයන්න.	X ² යැයි ද
0.	නොනැඹුරු ඝනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ ගනිමු, $E(X)$ හා $E(Y)$ සොයන්න.	X ² ατα
0.	නොනැඹුරු ඝනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ ගනිමු. $E(X)$ හා $E(Y)$ සොයන්න.	X ² යැයි ද
0.	නොනැඹුරු ඝනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ ගනිමු. $E(X)$ හා $E(Y)$ සොයන්න.	X ² ຜැයි ද
0.	නොනැඹුරු ඝනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ . ගනිමු, $E(X)$ හා $E(Y)$ සොයන්න.	X ² ατα ε
	නොනැඹුරු ඝනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ . ගනිමු. $E(X)$ හා $E(Y)$ සොයන්න.	X ² ατα
	නොනැඹුරු සනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ ගනිමු. $E(X)$ හා $E(Y)$ සොයන්න.	X ² ατα ε
0.	නොනැඹුරු ඝනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ . ගනිමු. $E(X)$ හා $E(Y)$ සොයන්න.	X ² Φτ ಔ ę
0.	නොනැඹුරු ඝනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ . ගනිමු. $E(X)$ හා $E(Y)$ සොයන්න.	X ² Φτ ಔ ę
	නොනැඹුරු සනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ . ගනිමු. $E(X)$ හා $E(Y)$ සොයන්න.	X ² ατα ε
0.	නොනැඹුරු සනකාකාර දාදු කැටයක් එක් වරක් පෙරළනු ලැබේ. ලැබුණු අගය $X$ යැයි ද $Y=rac{1}{2}$ . ගනිමු, $E(X)$ හා $E(Y)$ සොයන්න.	X ² Φ ₁ & ę





മ്മേള്യ തിയ്മയ് സമ്റ്റ് സ്വാധ് വളിപ്പുറിത്താപ്പപ്പെട്ടു /All Rights Reserved]

ලී ලංකා විශාන දෙපාරතමේන්තුව ලී ලංකා විශාන දෙපාරත**ල් නලව නිල**ු**ම් දැවැති කට නො**ම දෙපාරතමේන්තුව ලී ලංකා විශාන දෙපාරතමේන්තුව இலங்கைப் பரீட்சைத் නිනෙනස්සහේව இலங்கைப் ப**ட** කිසින් නිනෙනස්සහ ඉණුම්බාන 1 රැඩිමේන් නිනෙනස්සහේව இலங்கைப் பரீட்சைத் නිනෙනස්සහේව Department of Examinations, Sri Lanka Department of **இலங்கை ස**. Sr **Lifitu නාජන** හැකින්නෙස් හිටිමේන්තුව ලේ ලංකා විශාන අදපාරකමේන්තුව ලේ ලංකා විශාන සහස්ව සහස්

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022) සහඛාධ பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

**උසස් ගණිත**ය II உயர் கணிதம் II Higher Mathematics II



#### B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

- 11.  $A \equiv (1,0,0), B \equiv (0,1,0)$  හා  $C \equiv (0,0,1)$  යනු ලක්ෂා තුනක් යැයි ගනිමු.  $2\overrightarrow{AB}$  ,  $3\overrightarrow{AC}$  හා  $\overrightarrow{BC}$  බල පිළිවෙළින් AB , AC හා BC දිගේ අක්ෂර අනුපිළිවෙළින් දැක්වෙන දිශාවලට කි්යාකරයි.
  - (i) පද්ධතිය, A ලක්ෂාය හරහා යන  ${f R}$  තනි බලයකට හා  ${f G}$  යුග්මයකට ඌනනය වන බව පෙන්වන්න; මෙහි  ${f R}$  හා  ${f G}$  නිර්ණය කළ යුතුව ඇත.
  - (ii) දැන් F බලයක් ඉහත පද්ධතියට හඳුන්වා දෙයි.
    - (a)  ${f F}$  මූල ලක්ෂාය හරහා කිුිියාකරයි නම් හා පද්ධතිය යුග්මයකට ඌනනය වේ නම්  ${f F}$  හා යුග්මයේ විශාලත්වය සොයන්න.
    - (b) පිහිටුම් දෛශිකය  ${f i}+c{f j}+d{f k}$  සහිත ලක්ෂාය හරහා  ${f F}$  කියාකරයි නම් හා පද්ධතිය සමතුලිකතාවයේ පවතී නම් c හා d හි අගයන් සොයන්න.
- 12. අරය a වූ වෘත්තාකාර ආස්තරයක් එහි පෘෂ්ඨය සිරස්ව ඇතිව ho නියත ඝනත්වයකින් යුතු සමජාතීය දුවයක ගිල්වා ඇත්තේ එහි කේන්දුය O දුවයේ නිදහස් පෘෂ්ඨයට a ගැඹුරකින් පිහිටන පරිදි ය. ආස්තරය මත දුව තෙරපුමේ විශාලත්වය  $\pi a^3 
  ho g$  බව පෙන්වා, ආස්තරයේ පීඩන කේන්දුය එහි සිරස් විෂ්කම්භය මත O කේන්දුයට  $\frac{a}{4}$  දුරක් පහළින් පිහිටන බවත් පෙන්වන්න.

අරය a වූ හා උස 2a වූ ඝන සෘජු වෘත්තාකාර කේතුවක්, එහි උඩම ලක්ෂාය දුවයේ නිදහස් පෘෂ්ඨය මත ඇතිව ද එහි අක්ෂය තිරස්ව ද, ho නියත ඝනත්වයකින් යුතු සමජාතීය දුවයක ගිල්වා ඇත. කේතුවේ වකු පෘෂ්ඨය මත තෙරපුමෙහි විශාලත්වය, දිශාව හා කිුයා රේඛාව සොයන්න.

13. රළු තිරස් මේසයක් මත තබා ඇති ස්කන්ධය 2m වූ P අංශුවක්, මේසයේ දාරයට සවි කළ O කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක් මගින් ස්කන්ධය 3m වූ Q අංශුවකට සම්බන්ධ කර ඇත. P හා Q අංශු හා තන්තුව සිරස් තලයක පිහිටයි.

P සහ මේසය අතර ඝර්ෂණ සංගුණකය  $\frac{1}{2}$  යැයි ගනිමු. රූපයේ පෙන්වා ඇති පරිදි, තන්තුව තදව පද්ධතිය නිශ්චලතාවයේ සිට මුදා හැරේ. අංශු චලනය වීමට පටන් ගන්නා බව පෙන්වන්න.



Q අංශුව චලනය වන්නේ, එහි චේගය v වන විට, mkv පුතිරෝධ බලයක් යොදන පුතිරෝධි මාධාායකය; මෙහි k(>0) නියනයකි.

 $5\frac{\mathrm{d}v}{\mathrm{d}t} = 2g - kv$  බව පෙන්වන්න.

 $\frac{g}{k}$  ක වේගයකට ළඟා වීමට Pට ගතවන කාලය හා P මෙම කාලය තුළදී ගමන් කළ දුර සොයන්න. (මෙම කාලය තුළ Pට, O වෙත ළඟා නොවීමට තරම් තන්තුවේ දිග පුමාණවත් යැයි උපකල්පය කරන්න.)

- 14. සමාන අරයන්ගෙන් යුත් A හා B සුමට ගෝල දෙකක් සුමට තිරස් මේසයක් මත තබා ඇත. A හි ස්කන්ධය m හා B හි ස්කන්ධය 2m වේ. ගෝල එකිනෙක දෙසට පුක්ෂේප කරන අතර ඒවා ගැටෙන විට ඒවායේ කේන්දු යා කරන රේඛාව  $\mathbf{j}$  ට සමාන්කර වන අතර පිළිවෙළින් A හා B හි පුවේග  $2\mathbf{i} + 3\mathbf{j}$  හා  $-\mathbf{i} + \alpha\mathbf{j}$  වේ; මෙහි  $\alpha > 0$  වේ. A හා B අතර පුතාහගති සංගුණකය  $\frac{1}{2}$  ද ගැටුමට මොහොතකට පසු Q ගෝලයේ පුවේගය  $-\mathbf{i} + 3\mathbf{j}$  වේ.
  - (i) αහි අගය ද
  - (ii) ගැටුමට මොහොතකට පසු P ගෝලයේ පුවේගය ද
  - (iii) ගැටුම නිසා සිදුවන චාලක ශක්ති හානිය ද
  - $({
    m i} {
    m v})$  B මගින් A මත ආවේගය ද සොයන්න.
- 15. එක එකක් ස්කන්ධය m හා දිග 2a වූ ඒකාකාර දඬු 3 කින් සමන්විත රාමුවක් ABC තිකෝණයක ආකාරයට දෘඪ ලෙස සවි කර ඇති අතර, රූපයේ පෙන්වා ඇති පරිදි ස්කන්ධය m වූ ඒකාකාර වෘත්තාකාර මුදුවක් එම තිකෝණයේ අන්තර්ගත කර ඇත. මුදුව, AB, BC හා CA දඬුවලට පිළිවෙළින් D, E හා F හිදී දෘඪ ලෙස සවි කර ඇත; මෙහි D, E හා F යනු පිළිවෙළින් AB, BC හා CA හි මධා ලක්ෂා වේ.

A තුළින් වූ රාමුවේ කලයට ලම්බ අක්ෂය වටා රාමුවේ අවස්ථිති සූර්ණය  $rac{23}{3}ma^2$ බව පෙන්වන්න.



A තුළින් වූ රාමුවේ තලයට ලම්බ සුමට තිරස් අචල අක්ෂයක් වටා රාමුව භුමණය විය හැක. රාමුවේ ස්කන්ධ කේන්දය A ට පහළින් පිහිටන පරිදි, සමතුලිත පිහිටුමේ සිට රාමුවට කුඩා විස්ථාපනයක් ලබා දී, නිශ්චලතාවයේ සිට මුදාහරින ලදී. රාමුවේ චලිතය ආසන්න වශයෙන් සරල අනුවර්තීය බව පෙන්වා එහි ආවර්ත කාලය  $2\pi\sqrt{\frac{23a}{8\sqrt{3}g}}$  බව පෙන්වන්න.

 ${f 16.}\ \ (a)\ \ X$  විවික්ත සසම්භාවී විචලායට පහත දී ඇති සම්භාවිතා වාාප්තිය ඇතැයි සිතමු.

X	0	1	2	3	4
P(X=x)	0.1	0.3	0.4	0.15	0.05

Y = 2X + 1 ලෙස ගනිමු. Y හි සම්භාවිතා වාාප්තිය පහත වගුවෙන් දෙනු ලැබේ.

Y	1	3	5	7	9
P(Y=y)	0.1	0.3	р	$\overline{q}$	0.05

- (i) p හා q හි අගයන් සොයන්න.
- (ii) E(Y) හා Var(Y) සොයන්න.
- (iii) P(Y > 3) සොයා, **ඒ නයින්** P(X > 1) සොයන්න.

More Past Papers at

# tamilguru.lk

- (b) (i) නොනැඹුරු කාසි 3 ක් උඩ දැමීමේදී ලැබෙන අගයන් ගණන X යැයි ගනිමු. X හි සම්භාවිතා වxාප්තිය සොයා, **ඒ නයින්** E(X) හා Var(X) සොයන්න.
  - (ii) X හි අගය ඔත්තේ සංඛාාවක් නම්, මුහුණතේ 3 හෝ 6 ලැබීමේ සම්භාවිතාව  $\frac{2}{3}$  ට සමාන, නැඹුරු ඝනකාකාර දාදු කැටයක් පෙරළනු ලැබේ. එසේ නොමැති නම් මුහුණතේ 3 හෝ 6 ලැබීමේ සම්භාවිතාව  $\frac{1}{3}$  ට සමානවන, නැඹුරු ඝනකාකාර දාදු කැටයක් පෙරළනු ලැබේ.

Yවීචලා3ය පහත ලෙස අර්ථ දැක්වේ.

$$Y = \left\{ egin{array}{ll} 2, & \mbox{දාදු කැටගේ මුහුණතේ අගය 3 න් බෙදිය හැකි නම්,} \ 1, & \mbox{එසේ නොමැති නම්,} \end{array} 
ight.$$

Yහි සම්භාවිතා වාහප්තිය සොයා **ඒ නයින්** E(Y) හා  $\mathrm{Var}(Y)$  සොයන්න.

 $oldsymbol{17.}(a)$  X සන්තතික සසම්භාවී විචලාගේ සම්භාවිතා ඝනත්ව ශිුතය

$$f_X(x) = \left\{ egin{array}{ll} 10x^2(1-x) & , & 0 < x < 1 \\ 0 & , & එසේ නොවන විට \end{array} 
ight.$$

මගින් දෙනු ලැබේ.

E(X) හා  $\mathrm{Var}(X)$  සොයන්න.

තවද 
$$P(X < \frac{1}{2})$$
 භෞයන්න.

Y සන්තතික සසම්භාවී විචලාය  $Y=rac{3X+2}{4}$  මගින් අර්ථ දක්වනු ලැබේ නම්, E(Y) හා  $\mathrm{Var}(Y)$  සොයන්න.

- (b) නාගරික පුදේශයක දෛනික ගෘහස්ථ පුවාහන වියදම්, මධානාපය රු. 2000 ක් හා සම්මත අපගමනය රු. 400 ක් ඇතිව පුමතව වසාප්ත වී ඇතැයි සිතමු.
  - (i) සසම්භාවී ලෙස තෝරාගත් ගෘහයක දෛනික පුවාහන වියදම Rs. 2500 කට වඩා වැඩිවීමේ සම්භාවිතාව සොයන්න.
  - (ii) ගෘහයන් 10% ක ලෛනික පුවාහන වියදම රු. k ව වඩා වැඩි බව දී ඇත. k හි අගය සොයන්න.