LAPLACEOVA TRANSFORMACIJA

1. SVOJSTVA DIREKTNE LAPLACEOVE TRANSFORMACIJE

	F(s)	$=\int\limits_{0}^{\infty}f(t)e^{-st}dt$
Teorem linearnosti	$\mathfrak{t}[f(t)]$	=F(s)
	$\mathfrak{t}[A \cdot f(t)]$	$=A\cdot F(s)$
2. Teorem superpozicije	$\mathfrak{s}[f_1(t)+f_2(t)]$	$=F_1(s)+F_2(s)$
Teorem pomaka u vremenskoj domeni	$\mathbb{E}\big[f(t-t_0)\big]$	$=e^{-t_0s}\cdot F(s)$
Teorem o derivaciji slike	$\mathfrak{L}[t \cdot f(t)]$	$=-\frac{d}{ds}F(s)$
5. Teorem pomaka u "s" domeni	$\pounds \Big[e^{\alpha t} \cdot f(t) \Big]$	$=F(s-\alpha)$
6. Teorem o preslikavanju derivacije u vremenskoj domeni	$\mathfrak{L}\left[\frac{df(t)}{dt}\right]$	$= s \cdot F(s) - f(0+)$
	$\mathfrak{L}\left[\frac{d^2f(t)}{dt^2}\right]$	$= s^2 \cdot F(s) - s f(0) - f'(0)$
7. Teorem o integriranju originala	$\mathbb{E}\big[\big[f(t)dt+\big]f(0)\big]$	$=\frac{F(s)}{s}+\frac{\int f(0)}{s}$
Teorem o konačnoj vrijednosti	$\lim_{t\to\infty} f(t)$	$\lim_{s\to 0} s F(s)$
Teorem o početnoj vrijednosti	$\lim_{t\to 0} f(t)$	$\lim_{s\to\infty} s F(s)$
10. Teorem o preslikavanju konvolucije	$\mathfrak{L} = \mathfrak{L} \left[\int_{0}^{t} f(t-\tau) \cdot g(t) \cdot dt \right]$	=F(s)G(s)
11. Preslikavanje periodičke funkcije s periodom T	$\mathfrak{t}[f(t)]$	$= \frac{1}{1 - e^{-T s}} \int_{0}^{T} e^{-st} \cdot f(t) dt$

2. TABLICA PRESLIKAVANJA

$f(t) = x(t) za \ t \ge 0$	$F(s) = \int_{0}^{\infty} f(t) \cdot e^{-st} dt$
 δ(t) (jedinična impulsna funkcija, Dirac-ova) 	= 1
S(t) (jedinična step funkcija, Haevisideova funkcija, parabola nultog reda)	$=\frac{1}{s}$
3. $t \cdot S(t)$ (funkcija linearnog porasta parabola prvog reda))	$=\frac{1}{s^2}$
4. $t^2 \cdot S(t)$ (parabola)	$= \frac{1}{s^2}$ $= \frac{2}{s^3}$
5. $t^n \cdot S(t)$ (parabola n-tog reda)	$=\frac{n!}{s^{n+1}}$
4 $A \cdot e^{\frac{-t}{T}} = A \cdot e^{-\alpha t}$ (funkcija prigušenja u vremenskoj domeni)	$=\frac{A}{s+\frac{1}{T}}=\frac{A}{s+\alpha}$
5. $S(t-t_0) = S(t-T_m) = S(t-T)$ (funkcija pomaka – kašnjenja u vremenskoj domeni)	$= \frac{1}{s} \cdot \overline{e}^{t_0} = \frac{1}{s} \cdot \overline{e}^{T_m} = \frac{1}{s} \cdot \overline{e}^{Ts}$
6. sin(ωt)	$=\frac{\omega}{s^2+\omega^2}$
7. cos(ωt)	$=\frac{p}{s^2+\omega^2}$
8. $\sin(\omega t \pm \varphi)$	$=\frac{\omega\cdot\cos\varphi\pm s\cdot\sin\varphi}{s^2+\omega^2}$
9. $\cos(\omega t \pm \varphi)$	$=\frac{s\cdot\cos\varphi\mp\omega\cdot\sin\varphi}{s^2+\omega^2}$
10. $e^{-\alpha t} \cdot \sin(\omega t)$	$=\frac{\omega}{(s+\alpha)^2+\omega^2}$
11. $e^{-\alpha t} \cdot \cos(\omega t)$	$=\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$
12. $t \cdot e^{-\alpha t}$	$=\frac{1}{(s+\alpha)^2}$
13. e ^{-at}	$=\frac{1}{s+\alpha}$
$14. \ \frac{1}{\alpha}(1-e^{-\alpha t})$	$=\frac{1}{s\cdot(s+\alpha)}$
15. $\frac{1}{\omega_n \sqrt{1-\zeta^2}} \cdot e^{-\zeta \omega_a t} \cdot \sin(\omega_d t)$	$=\frac{1}{s^2+2\varsigma\omega_n\cdot s+\omega_n^2}$
$\omega_d = \omega_n \sqrt{1 - \zeta^2}$, n

16. $\sqrt{\frac{(z-a)^2 + \omega^2}{\omega^2}} \cdot e^{-at} \sin(\omega t + \varphi)$ $\varphi = arctg \frac{\omega}{z-a}$	$=\frac{s+z}{(s+a)^2+\omega^2}$
$\frac{1}{\omega_n^2} - \frac{1}{\omega_n \cdot \omega_d} \cdot e^{-\zeta \cdot \omega_n t} \cdot \sin(\omega_d t + \varphi)$ 17. $\omega_d = \omega_n \cdot \sqrt{1 - \zeta^2}$; $\varphi = \arccos(\zeta) = \arctan\left(\frac{\sqrt{1 - \zeta^2}}{\zeta}\right)$	$=\frac{1}{s(s^2+2\zeta\omega_n\cdot s+\omega_n^2)}$
18. $\frac{z}{\omega^2} - \sqrt{\frac{z^2 + \omega^2}{\omega^4}} \cdot \cos(\omega t + \varphi)$ $\varphi = arctg \frac{\omega}{z}$	$=\frac{s+z}{s\left(s^2+\omega^2\right)}$
33y 100,000 miles (100,000 miles (10	

3. INVERZNA LAPLACEOVA TRANSFORMACIJA

Inverzna Laplaceova transformacija služi za određivanje originalne funkcije f(t) na osnovi poznate slike F(s) u kompleksnoj domeni. Od nekoliko načina ovdje predlažemo dva praktična postupka:

- A) Određivanje originala funkcije f(t) pomoću tablica Laplaceovih transformata pri čemu je poznatu racionalnu funkciju F(s) potrebno prikazati u obliku sume parcijalnih razlomaka te iz tablica transformata odabrati originalne funkcije f₁(t), f₂(t), f₃(t), a originalna funkcija jest: f(t)= f₁(t)+ f₂(t)+ f₃(t).
- B) Određivanje originala funkcije f(t) pomoću Heavisideovih teorema i Eulerovih formula

A) RASTAVLJANJE NA PARCIJALNE RAZLOMKE

Polinom £ [f(t)] = F(s) = Y(s) = $\frac{A(s)}{B(s)}$ može se jednoznačno rastaviti u sumu parcijalnih razlomaka u obliku: $\frac{A}{(s-s_i)^k}$ ili $\frac{D \cdot s + E}{(s^2 + c_l \cdot s + d)^l}$ pri čemu su moguća <u>četiri slučaja</u>:

I. Nazivnik B(s) je takav da jednadžba B(s) = 0 ima samo realne jednostruke korijene $s_1, s_2, ..., s_n$

Rastavljanje se vrši na slijedeći način:

$$\frac{A(s)}{B(s)} = \frac{a_m \cdot s^m + \dots + a_1 \cdot s + a_0}{(s - s_1) \cdot (s - s_2) \cdot \dots \cdot (s - s_n)} = \frac{A}{s - s_1} + \frac{B}{s - s_2} + \dots + \frac{C}{s - s_n}$$

II. Nazivnik B(s) je takav da su korijeni jednadžbe B(s)=0 realni ali među njima ima višestrukih. Rastavljanje se vrši na slijedeći način:

$$\frac{A(s)}{B(s)} = \frac{a_m \cdot s^m + \dots + a_1 \cdot s + a_0}{(s - s_1)^{k_1} (s - s_2)^{k_2}} = \frac{A_1}{s - s_1} + \frac{A_2}{(s - s_1)^2} + \dots + \frac{A_{k_1}}{(s - s_1)^{k_1}} + \frac{B_1}{s - s_2} + \frac{B_2}{(s - s_2)^2} + \dots + \frac{B_{k_2}}{(s - s_2)^{k_2}}$$

III. Nazivnik B(p) je takav da među korjenima jednadžbe B(p)=0 postoje jednostruki kompleksni korjeni i višestruki realn korjeni.

Rastavljanje se vrši na slijedeći način:

$$\frac{A(s)}{B(s)} = \frac{a_m \cdot s^m + a_{m-1} \cdot s^{m-1} + \dots + a_1 \cdot s + a_0}{(s - s_1)^{k_1} \cdot (s^2 + c \cdot s + d)} = =$$

$$= \frac{A_1}{s - s_1} + \frac{A_2}{(s - s_1)^2} + \dots + \frac{A_{k_1}}{(s - s_1)^{k_1}} + \frac{D_1 \cdot s + E_1}{(s^2 + c_1 \cdot s + d_1)}$$

IV. Nazivnik B(s) je takav da među korjenima jednadžbe B(s)=0 postoje višestruki realni i višestruki kompleksni korjeni.

Rastavljanje se vrši na slijedeći način:

$$\frac{A(s)}{B(s)} = \frac{a_m \cdot s^m + a_{m-1} \cdot s^{m-1} + \dots + a_1 \cdot s + a_0}{(s - s_1)^{k_1} \cdot (s^2 + c_1 \cdot s + d_1)^{l_1}} =$$

$$= \frac{A_1}{s - s_1} + \frac{A_2}{(s - s_1)^2} + \dots + \frac{A_{k_1}}{(s - s_1)^{k_1}} + \frac{D_1 \cdot s + E_1}{(s^2 + c_1 \cdot s + d_1)} + \frac{D_2 \cdot s + E_2}{(s^2 + c_1 \cdot s + d_1)^2}$$

B). HEAVISIDEOVI TEOREMI

Heavisideovi teoremi razvoja za određivanje vremenske funkcije f(t) = y(t) uz poznatu sliku F(s) = Y(s) mogu se primijeniti na slijedeće načine:

1. Korijeni nazivnika funkcije F(s) su jednostruki realni ili kompleksni tada vrijedi:

$$F(s) = \frac{A(s)}{B(s)} = \frac{A(s)}{(s-s_1)(s-s_2)\cdots(s-s_i)\cdots(s-s_n)}$$

$$f(t) = \sum_{i=1}^{n} \left[\frac{A(s)}{B(s)} \cdot (s - s_i) \right]_{s=s_i} \cdot e^{s_i t}$$

2. Korijeni nazivnika funkcije F(s) su jednostruki realni i jedan dvostruki

$$F(s) = \frac{A(s)}{B(s)} = \frac{A(s)}{(s - s_1)^2 (s - s_3) \cdots (s - s_i) \cdots (s - s_n)}$$

$$f(t) = \left[\frac{A(s)}{B(s)} \cdot (s - s_1)^2\right]_{s = s_1} \cdot t \cdot e^{s_1 t} + \left\{\frac{d}{dt} \left[\frac{A(s)}{B(s)} \cdot (s - s_1)^2\right]\right\}_{s = s_1} \cdot e^{s_1 t} + \sum_{i=3}^{n} \left[\frac{A(s)}{B(s)} \cdot (s - s_i)\right]_{s = s_i} \cdot e^{s_i t}$$

3. Korijeni nazivnika funkcije F(s) su jednostruki realni i jedan konjugirano kompleksni

$$F(s) = \frac{A(s)}{B(s)} = \frac{A(s)}{(s - \sigma - j\omega)(s - \sigma + j\omega) \cdots (s - s_i) \cdots (s - s_n)}$$

$$f(t) = \frac{\left|K(\sigma + j\omega_d)\right|}{\omega_d} \cdot e^{\sigma t} \cdot \sin(\omega_d \cdot t + \varphi) + \sum_{i=3}^n \left[\frac{A(s)}{B(s)} \cdot (s - s_i)\right]_{s=s_i} \cdot e^{s_i t}$$

gdje je: $\left|K_{(\sigma+j\omega_d)}\right|$ modul, a ϕ fazni kut (argument) slijedećeg kompleksnog broja

$$K_{\left(\sigma+j\omega_{d}\right)} = \left[\frac{A(s)}{B(s)}\cdot\left(s-\sigma-j\omega_{d}\right)\left(s-\sigma+j\omega_{d}\right)\right]_{s=\sigma+j\omega_{d}} \\ = \left[\frac{A(s)}{B(s)}\cdot\left(s^{2}-2\,s\sigma+\sigma^{2}+\omega_{d}^{2}\right)\right]_{s=\sigma+j\omega_{d}} \\ = \left[\frac{A(s)}{B(s)}\cdot\left(s^{2}-2\,s\sigma+\sigma^{2}+\omega_{d}^{2}\right)\right$$

C. Eulerove formule za trigonometrijske funkcije

1.
$$e^{j\omega t} = \cos(\omega t) + j \cdot \sin(\omega t)$$

2.
$$\sin(\omega t) = \frac{e^{j\omega t} - e^{-j\omega t}}{2 \cdot i}$$

3.
$$cos(\omega t) = \frac{e^{j\omega t} + e^{-j\omega t}}{2}$$

D) Formula za zbrajanje sinusoida iste frekvencije

$$A_1 \cdot \sin(\omega \cdot t + \varphi_1) + A_2 \cdot \sin(\omega \cdot t + \varphi_2) = A \cdot \sin(\omega \cdot t + \varphi)$$

gdje je:

$$A = \sqrt{A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 \cos(\varphi_2 - \varphi_1)}$$

$$tg(\varphi) = \frac{A_1 \cdot \sin \varphi_1 + A_2 \cdot \sin \varphi_2}{A_1 \cdot \cos \varphi_1 + A_2 \cdot \cos \varphi_2}$$

Treba zapamtiti i slijedeće relacije:

$$arctg(\varsigma) = arccos \frac{1}{\sqrt{1+\varsigma^2}}$$
 i $arccos(\varsigma) = arctg \frac{\sqrt{1-\varsigma^2}}{\varsigma}$