# Magnetismo induzido por corrente elétrica

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

14 de Julho de 2022

#### Sumário

- Campo magnético em um condutor
- Campo magnético numa espira circular
- Campo magnético num solenóide
- Materiais magnéticos
- 6 Aplicações
- 6 Apêndice

#### A relação entre corrente elétrica e magnetismo

A relação entre corrente elétrica e magnetismo surgiu na experiência de Oersted.



Experiência de Oersted mostrando que a corrente no fio produz alguma influência sobre a bússola.



Campo magnético circular produzido pela corrente elétrica

#### Lei de Ampère

De acordo com experiências, a corrente que percorre um fio condutor produz um campo magnético circular  $\vec{B}$ , onde  $\vec{B} \propto i$  e  $\vec{B} \propto \frac{1}{r}$ . Podemos reunir em uma única relação de proporcionalidade,

$$B \alpha \frac{i}{r} \Rightarrow B = \left(\frac{\mu_0}{2\pi}\right) \frac{i}{r}.$$

 $\mu_0$  é chamado constante de permeabilidade magnética.



Linhas de campo magnético.

# Lei de Ampère

$$B=\frac{\mu_0 i}{2\pi r}.$$

# A corrente $i_1$ produzirá um campo magnético $B_1$ no fio 1. A força magnética atuando no fio 2 é $F_m = BiL$ . Pela Lei de Àmpere temos $B = \frac{\mu_0 i}{2\pi t}$ , portanto

$$F_m = BiL,$$
 $F_m = \left(\frac{\mu_0 i}{2\pi r}\right) iL.$ 

Se r=1m, i=1A, e L=1m a força encontrada vale  $F_m = 2 \times 10^{-7} N$ , substituindo

$$\mu_0 = 4\pi \times 10^{-7} \; \frac{N}{A^2}.$$



Força magnética entre dois fios [3].

Prof. Flaviano W. Fernandes

# O que é uma espira circular?

Sabemos que a corrente num fio condutor produz linhas de campo magnético circulares, se dobrarmos esse fio afim de possuir um formato circular de raio r, as linhas de campo de cada pedaço do fio irão se concentrar no centro do círculo (chamamos esse círculo de espira circular). Sabendo que  $B \alpha i e B \alpha \frac{1}{r}$ , podemos dizer que o campo B no centro da espira é proporcional a corrente i e o raio r da espira.



Linhas de campo magnético em um espira circular.

#### Campo magnético no centro da espira circular

$$B \alpha \frac{i}{r}$$

#### O que é um solenóide?

Um solenóide é um fio enrolado de modo a formar N espiras sucessivas, todas alinhadas em um cilindro de comprimento L. Sabendo que cada espira produz um campo magnético  $\vec{B}$  no seu centro, onde  $\vec{B} \alpha i$  e considerando que cada espira possui o mesmo raio, para saber o campo magnético numa posição no interior do solenóide, multiplicamos o campo  $\vec{B}$  de cada espira pelo número de espiras por unidade de comprimento do solenóide, n.



Foto de um solenóide.

# Campo magnético no interior do solenóide

 $B \alpha ni$ .

#### Tipos de materiais magnéticos

Existem três classes de materiais magnéticos:

- Paramagnéticos: São aqueles que magnetizam fracamente aumentando ligeiramente o campo magnético no local.
- Ferromagnéticos: São aqueles que magnetizam com muita facilidade e aumentam substancialmente o campo magnético no local.
- Diamagnéticos: São aqueles que magnetizam fracamente diminuindo ligeiramente o campo magnético no local.

#### Corollary

A magnetização do material diminui com a temperatura, pois a elevação da temperatura provoca um aumento da agitação térmica dos átomos, dificultando, então, a sua magnetização.

# Materiais paramagnéticos

Na presença de um campo magnético, os ímãs elementares do material tendem a se orientarem no mesmo sentido do campo magnético. Assim, o campo magnético é somado com o campo dos ímãs elementares, fazendo com que ele fique fracamente aumentado.



Representação dos ímãs elementares de um material paramagnético.



Orientação dos ímãs elementares na presença de um campo magnético  $\vec{V}$ .

## Materiais ferromagnéticos

Assim como no caso dos materiais paramagnéticos, nos materiais ferromagnéticos, os ímãs elementares se orientam no mesmo sentido do campo do magnético externo, porém muito mais significativamente. Isso aumenta consideravelmente o campo magnético no seu interior.



Campo magnético do ferro se somando ao campo magnético do ímã.

## Corollary

Existem poucos materiais na natureza que possuem propriedades ferromagnéticas, como o ferro, cobalto e níquel.

#### Materiais diamagnéticos

Nos materiais diamagnéticos, ao contrário dos materias paramagnéticos e ferromagnéticos, os ímãs elementares do material se orientam no sentido contrário ao campo magnético externo, fazendo com que o material se comporte como ímãn com os pólos contrários.



Campo magnético do bismuto se subtraindo ao campo magnético do ímã.

# Corollary

Geralmente os materiais diamagnéticos sofrem uma força de repulsão na presença de um campo magnético externo.

#### Aplicações do magnetismo e a tecnologia atual



Guindaste que funciona à base de eletroímã.



Maglev cobra da UFRJ [2]: As cargas elétricas nos supercondutores produz um campo magnético intenso o suficiente para repelir os ímãs, fazendo o veículo levitar.

#### Alfabeto grego

| Alfa    | Α | $\alpha$                |
|---------|---|-------------------------|
| Beta    | В | $\beta$                 |
| Gama    | Γ | $\gamma$                |
| Delta   | Δ | $\delta$                |
| Epsílon | Ε | $\epsilon, \varepsilon$ |
| Zeta    | Z | $\zeta$                 |
| Eta     | Η | $\eta$                  |
| Teta    | Θ | $\theta$                |
| lota    | 1 | $\iota$                 |
| Capa    | Κ | $\kappa$                |
| Lambda  | Λ | $\lambda$               |
| Mi      | Μ | $\mu$                   |

| Ni      | Ν | $\nu$           |
|---------|---|-----------------|
| Csi     | Ξ | ξ               |
| ômicron | 0 | 0               |
| Pi      | П | $\pi$           |
| Rô      | P | $\rho$          |
| Sigma   | Σ | $\sigma$        |
| Tau     | T | au              |
| ĺpsilon | Υ | v               |
| Fi      | Φ | $\phi, \varphi$ |
| Qui     | X | $\chi$          |
| Psi     | Ψ | $\psi$          |
| Ômega   | Ω | $\omega$        |
|         |   |                 |

#### Referências



- www.maglevcobra.coppe.ufrj.br/
- Os fundamentos da fisica

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education