

The Role of a Decision Tree Model to Predict Weight Loss Following Radiotherapy in Head and Neck Cancer Patients

Z. Cheng¹, M. Nakatsugawa^{1,2}, A. P. Kiess¹, S. P. Robertson¹, J. Moore¹, M. Allen¹, S. Afonso¹, A. Choflet¹, K. Sakaue³, S. Sugiyama³, J. W. Wong¹, T. R. McNutt¹, and H. Quon¹

¹Johns Hopkins University, Baltimore, MD, ²Toshiba America Research, Inc., Baltimore, MD, ³Toshiba Medical Systems Corporation, Otawara, Japan

Purpose/Objectives

- ➤ The QOL*1 of the irradiated head and neck cancer (HNC) patient can be significantly affected by toxicities leading to **weight loss**
- To determine the predictors for weight loss based on the experience of similar previously treated patients
- To develop a real-time clinical decision support system to predict and reduce toxicities with a learning health system (LHS) model

Materials/Methods

- ➤ Oncospace: an integrated analytic relational database that systematically captures clinical outcome results and all aspects of a radiotherapy treatment plan.
- ➤ Retrospective analysis was undertaken using structured data elements (SDEs) that were prospectively acquired during routine clinical care
- > Data
 - 391 HNC patients from 2007 to 2014 (Table 1)
 - 3,015 clinical and dosimetric variables
 - diagnostic ICD-9 code
 - planned DVH*2 at 1% volume increments
 - OVH (Overlap Volume Histogram): distance b/w PTV*3 and OARs*4 on CT Image
 - NCI-CTCAEv4.0 toxicity and QOL

Table. 1 – Demographic data (n=391)

5 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Variable	N (%)
Onset Age, ≥60	169 (43%)
Male	306 (78%)
Caucasian	187 (48%)
Chemotherapy	261 (67%)
T stage, ≥T3	114 (29%)
N Stage, ≥N2	169 (43%)
Site, pharynx	126 (32%)

Materials/Methods (Cont.)

- Method
 - Weight loss of 5kg or more at 3 months post-RT was predicted by the Classification and Regression Trees (CART)
 - Two prediction models for incremental datasets (Fig. 1)
 - at RT planning without variables during RT
 at the end of RT with variables during RT

Fig. 1 – Two prediction models before/during treatment

Results

- ➤ Weight loss predictors at RT planning (Fig. 2)
 - AUC*5 0.773
 - Sensitivity 0.766, PPV*6 0.426
 - Predictors:
 - (1: Dosimetry) dose to masticatory muscle, larynx, parotid
 - (2: Diagnosis) ICD-9 code
 - (3: Patient) age

Fig. 2 – Weight loss prediction model at planning

- *1 QOL: Quality of Life, *2 DVH: Dose Volume Histogram,
- *3 PTV: Planning Target Volume, *40AR: Organ at Risk,
- *5 AUC: Area Under Curve, *5 PPV: Positive Predictive Value

Results (Cont.)

- > Weight loss predictors <u>during treatment</u> (Fig. 3)
 - AUC 0.839
 - Sensitivity 0.988, PPV 0.467
 - Predictors:
 - (1: QOL) patient reported oral intake
 - (2: Diagnosis and staging) ICD-9, N stage
 - (3: Dosimetry) dose to larynx, parotid
 - (4: Toxicity) skin toxicity, nausea, pain
 - (5: Geometry) minimum distance between PTV and larynx

Fig. 3 – Weight loss prediction model during treatment

Conclusion

- Systematic capture of SDEs and data-mining tools facilitated a decision-support analysis tool for weight loss based on past similarly treated patients
- The two prediction models at RT planning / treatment
 - identified the importance of Patient Reported Outcome
 - showed the potential for a real-time decision-support (e.g. prophylactic feeding tube placement)
- ➤ Future work: evaluating models in the clinical settings; imaging features might be helpful to improve PPV