

Motor de Passo NEMA 34 – 4.5 Nm – TMA.ES.34045					
Especificações				Diagrama	
Angulo de Passo	1.8 ± 5%	Corrente	6 A		
N° de Fase	2	Resistencia	0.6 ± 10% Ω	Vermelho •	
Resistência isolação	100 Mohm (500V DC)	Indutância	1.8 ± 20% mH	Verde -	
Classe isolamento	В	Holding Torque	18 kg.cm	Amareio	
Ligação no drive	Paralelo	A+ Vermelho A- Verde	B+ Amarelo B- Azul		

Dimensões:

Observações:

- Cabo com comprimento de 3 metros

- Cabo do encoder com comprimento de 350mm

Cabo do encoder			
GND	Branco		
VCC	Vermelho		
A+	Preto		
A-	Azu1		
B+	Amarelo		
B-	Verde		

+55 19 3463.5087

vendas@tecmaf.com.br

R. Frederico Amadeu Covolan, 413 - Distrito Industrial CEP: 13456-132 Santa Bárbara d´Oeste/SP

Driver para Motor de Passo com Malha Fechada – TMA.DES.HSS86

1. Instruções:

TMA.DES.HSS86 é um driver de motor de passo, híbrido de 2 fases, com malha fechada para motores NEMA 34. É equipado com uma nova geração de DSP de 32 bits e uma tecnologia de controle vetorial que não aceita que o motor perca passo, garantindo assim uma melhor precisão do motor. A redução do torque no motor em malha fechada é muito menor do que no motor de passo em malha aberta quando estão em alta velocidade, melhorando assim a performance em alta velocidade e alto torque.

O controle de corrente é baseado na carga, que reduz efetivamente a corrente média, garantindo maior vida útil do motor.

A função do alarme de diferença de posição garante que a máquina trabalhe de forma segura, evitando o desperdício de matéria prima e danos nos equipamentos e mecânica da máquina.

2. Características:

- Driver para motores de passo com malha fechada NEMA 34
- Frequência de resposta de pulsos de 200Khz.
- Escolha de 16 tipos de micropassos em escala de 400 a 51200 crosteps/rev.
- Faixa de tensão: 24V à 50VDC
- Proteção contra sobrecorrente, sobretensão e diferença de posição.

3. Vantagens:

- Motor de passo em sistema de malha fechada nunca perde passo.
- Melhora considerável na relação velocidade e torque.
- Ajuste automático de corrente baseado na carga de trabalho reduzindo o aquecimento.
- Adequado para todas as condições de cargas mecânicas, incluindo correias de baixa rigidez. Não é necessário ajustar o parâmetro de ganho.
- O motor trabalha leve, com baixa vibração e alta performance para aceleração e desaceleração.
- Sem vibração na desaceleração da velocidade máxima para velocidade zero.

4. Aplicação:

Os sistemas de passo de malha fechada podem ser aplicados em todos os tipos de equipamentos automáticos de pequena escala, como: máquinas de gravuras, máquinas de costura industrial, máquina de decapagem, máquina de gravação, máquinas dispensadoras, máquinas de corte, máquinas a laser, plotter, máquinas CNC, etc.

5. Parâmetros Elétricos:

Voltage Range	24~80VAC ou 30~110VDC
Corrente de pico	8A de pico (valor varia de acordo com a carga)
Corrente de entrada lógica	7~20mA
Frequência	0~200KHz
Motores adequados	86HSE12N, 86HSE8N, 86HSE4N
Linhas do encoder	1000
Resistência de isolamento	>=500MΩ

6. Parâmetros Ambientais:

Método de resfriamento	Natural ou radiador		
	Ocasião operacional Evitar poeira, óleo e gás corrosivo		
Ambiente	Temp. operacional 0~50°C		
Operacional	Humidade operacional 40~90%RH		
	Vibração	5.9m/s² Max	
Temp. de armaz.	-20°C~65°C		
Peso	Aproximadamente 560g		

7. Ligação do Motor e Fornecimento de Energia:

Porta Nº.			Fios do motor
1	A+	A enrolamento de fase +	Vermelho
2	A-	A enrolamento de fase -	Verde
3	B+	B enrolamento de fase +	Amarelo
4	B-	B enrolamento de fase -	Azul
5	AC1	Tensão de entrada	AC20~80V
6	AC2	Tensão de entrada	DC30~110V

8. Ligação dos Cabos do Encoder:

Porta Nº.			Fios do Encoder
1	EB+	Fase B+ Encoder	Amarelo
2	EB-	Fase B- Encoder	Verde
3	EA+	Fase A+ Encoder	Preto
4	EA-	Fase A- Encoder	Azul
5	VCC	Tensão do encoder (+5V) ••	Vermelho
6	EGND	GND (0V)	Branco

OBSERVAÇÃO IMPORTANTE:

Ligar o motor e driver com o cabo desconectado poderá danificar o driver e o encoder

9. Portas de Controle e de Sinal:

Porta Nº.			
1	PUL+	Pulso +	Se a tensão do sinal de controle for +5V, não é necessário o uso de resistor
2	PUL-	Pulso -	para diminuir a tensão. Se a tensão do sinal for +12V, é necessário o uso de um resistor de 1K para reduzir a
3	DIR+	Direção +	tensão. If the signal control voltage is +24V, é necessário o uso de um
4	DIR-	Direção -	resistor de 2K para reduzir a tensão.
5	ENA+	Habilita +	
6	ENA-	Habilita -	
7	PEND+	Sinal de posição +	Saída OC, fechado indica fim do ciclo. Aberto indica que o ciclo não
8	PEND-	Sinal de posição -	terminou.
9	ALM+	Sinal de alarme +	Saída OC, tem sinal de alarme -saída está fechada. Sem sinal de alarme -
10	ALM-	Sinal de alarme -	saída está aberta.

10. Configuração do Switch:

- SW1: Motor TMA.ES.34045 = on

- SW2: Sentido de rotação: on = Horário / off = Anti-horário

- SW3, SW4, SW5, SW6: Configuração de micropasso

Micorstep/rev	SW3	SW4	SW5	SW6
Default (400)	on	on	on	on
800	off	on	on	on
1600	on	off	on	on
3200	off	off	on	on
6400	on	on	off	on
12800	off	on	off	on
25600	on	off	off	on
51200	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
40000	off	off	off	off

11. Indicador de Status:

- PWR: Indicador de energia: Quando a alimentação é conectada, a luz verde ficará acesa.
- ALM: Indicador de alarme: Se a luz vermelha piscar uma vez em um intervalo de 3 segundos, significa sobrecorrente ou curto circuito entre as fases do motor;
 - Se a luz vermelha piscar duas vez em um intervalo de 3 segundos, significa sobretensão;
 - Se a luz vermelha piscar três vez em um intervalo de 3 segundos, significa diferença de posição entre motor e encoder ou cabo do encoder desconectado.

12. Diagrama Elétrico:

12. Dimensões:

