GCP Approaches and Preliminary Results

Lungu Andrei, Isac Lucian, Fomin Bogdan April 2025

1 Deep Q-Learning using GNNs

The Deep Q-Network Algorithm

Figure 5: The Deep Q-Network Algorithm (Image by Author)

- 1. Initialize your Main and Target neural networks
- 2. Choose an action using the Epsilon-Greedy Exploration Strategy
- 3. Update your network weights using the Bellman Equation

A core difference between Deep Q-Learning and Vanilla Q-Learning is the implementation of the Q-table. Critically, Deep Q-Learning replaces the regular Q-table with a neural network. Rather than mapping a state-action pair to a q-value, a neural network maps input states to (action, Q-value) pairs.

One of the interesting things about Deep Q-Learning is that the learning process uses 2 neural networks. These networks have the same architecture but different weights. Every N steps, the weights from the main network are copied to the target network. Using both of these networks leads to more stability in the learning process and helps the algorithm to learn more effectively. In our implementation, the main network weights replace the target network weights every 100 steps.

Experience Replay is the act of storing and replaying game states (the state, action, reward, next-state) that the RL algorithm is able to learn from. Experience Replay can be used in Off-Policy algorithms to learn in an offline fashion. Off-policy methods are able to update the algorithm's parameters using saved and stored information from previously taken actions. Deep Q-Learning uses Experience Replay to learn in small batches in order to avoid skewing the dataset distribution of different states, actions, rewards, and next-states that the neural network will see. Importantly, the agent doesn't need to train after each step. In our implementation, we use Experience Replay to train on small batches once every 4 steps rather than every single step. We found this trick to really help speed up our Deep Q-Learning implementation.

Input States

Bellman Equation

Just like with vanilla Q-Learning, the agent still needs to update our model weights according to the Bellman Equation.

Input States

$$(R_t + \lambda * max_a Q(S_{t+1}, a))$$

State: One-hot color encoding per node.

			0 1			
[0.	0.	0.		0.	1.	0.]
[0.	0.	0.		0.	0.	0.]
[0.	0.	0.		0.	0.	1.]]
[[0.	0.	1.		0.	0.	0.]
[0.	0.	0.		0.	0.	0.]
[0.	0.	0.		0.	0.	0.]

Action: **Legal** color to choose from. Example: pick color 3 from legal [1, 3, 5, 6] Reward framework:

- Reward -2 for coloring a node with a new color introduced to the graph.
- Reward 0 for coloring a node with a color that's not new to the graph.
- Reward -10 for coloring with an illegal color.

Experience replay: Array of past 10000 events. That being state for the current node, action, reward, next-state, edge-index.

2 Integer Linear Programming Models

2.1 Classical Assignment Model

The assignment model defines binary variables $x_{i,c}$ indicating whether vertex i is assigned color c. The constraints ensure that each vertex receives exactly one color and that adjacent vertices do not share the same color.

$$\min z_{max} \tag{1}$$

s.t.

$$\sum_{c=1}^{H} x_{i,c} = 1 \qquad \forall i \in V \tag{2}$$

$$x_{i,c} + x_{j,c} \le 1 \qquad \qquad \forall (i,j) \in E; 1 \le c, e \le H$$
 (3)

$$z_{max} \ge cx_{i,c}$$
 $\forall i \in V; 1 \le c \le H$ (4)

$$x_{i,c} \in \{0,1\} \qquad \forall i \in V; 1 \le c \le H \tag{5}$$

$$z_{max} \in \mathbb{R} \tag{6}$$

2.2 Hybrid Partial-Ordering Based ILP Model

The Hybrid Partial Order Method is a novel Integer Linear Programming (ILP) formulation introduced to solve the vertex coloring problem by combining aspects of the classical assignment model and partial ordering approaches. The goal is to minimize the number of colors required to properly color the graph while maintaining a partial ordering structure.

$$\min 1 + \sum_{i=1}^{H} y_{i,q} \tag{1}$$

s.t.

$$z_{v,1} = 0 \forall v \in V (2)$$

$$y_{H,v} = 0 \forall v \in V (3)$$

$$y_{i,v} - y_{i+1,v} \ge 0$$
 $\forall v \in V, \ i = 1, \dots, H-1$ (4)

$$y_{i,v} + z_{v,i+1} = 1$$
 $\forall v \in V, \ i = 1, \dots, H-1$ (5)

$$x_{v,i} = 1 - (y_{i,v} + z_{v,i})$$
 $\forall v \in V, i = 1, \dots, H - 1$ (6)

$$x_{u,i} + x_{v,i} \le 1 \qquad \forall (u,v) \in E, \ i = 1,\dots, H$$
 (7)

$$y_{i,q} - y_{i,v} \ge 0$$
 $\forall v \in V, \ i = 1, \dots, H - 1$ (8)

$$y_{i,v}, z_{v,i} \in \{0,1\}$$
 $\forall v \in V, i = 1,..., H$ (9)

3 Experimental results

The graphs used in the experiments are taken from the work of Trick, M.A., 2002, titled "Computational Symposium: Graph Coloring and Its Generalization." These graphs are used to evaluate the performance of graph coloring algorithms. The table below summarizes the solutions and experimental results for the presented models.

Graph		GCA	1	GCMO		Q_GNN_50
	$E \mid k^*$	Avg Time [s]	k^*	Avg Time [s]	k^*	Avg Time [s]
1-FullIns_4.col 93 5	93 5	551.927	5	220.613	10	0.0432
1-FullIns_5.col 282 32	247 -	_	-	-	13	0.2366
	621 6	1542.793	6	1405.000	12	0.2386
	46 6	79.358	6	35.660	10	0.0304
	524 7	6860.887	7	40189.066	12	0.3405
	41 7	74.884	7	224.230	10	0.04972
	550 8	139707.639	8	326228.070	15	0.7301
	56 4	1500.394	4	891.687	4	0.045
	92 8	156.001	8	171.058	10	0.1124
1	36 5	1481.863	5	336.751	9	0.1001
	891 -	-	_	-	28	0.1273
1	961 -	_	_	_	_	-
	218 -	_	_	_	_	_
	86 11	49.938	11	38.422	12	0.1034
1	12 11	16.208	11	69.604	12	0.0592
	$\frac{12}{391} \mid \frac{11}{30}$	8647.931	30	18091.708	40	0.5674
	$\frac{1}{100}$	10971.131	30	22261.259	39	0.5319
	$\frac{1}{276} \frac{30}{9}$	30.828	9	45.411	10	0.0917
1 9	258 -	30.020	9	40.411	19	0.0917
1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.492	11	50.015	11	0.3138
	$\begin{array}{c c} 02 & 11 \\ 08 & 10 \end{array}$	19.249	10	34.108	10	
		19.249	10			0.0567 0.5641
1		-		-	23 23	
		293544.982	- 25	16097 097	l	0.8354
	260 25	4797.352	25	16937.937	30	0.8444
	263 25	1109.989	25	6593.416	30	0.856
	714 5	91082.342	5	132220.429	14	0.5794
1	734 5	101281.902	5	330164.498	14	0.5934
1	432 42	5535.919	42	52164.028	43	0.1001
	74 8	24.868	8	48.515	10	0.0784
1	340 20	55.109	20	130.001	22	0.1115
1	226 31	722.343	31	1036.207	34	0.09801
	66 4	464.081	4	227.726	6	0.0233
	66 4	504.788	4	256.657	6	0.0220
	925 49	5354.243	49	8128.514	49	0.1796
	885 31	773.851	31	1722.966	36	0.1825
	916 31	1465.258	31	2615.020	36	0.1763
	946 31	1460.488	31	2159.745	36	0.1771
	973 31	1443.901	31	1470.731	36	0.1710
"	20 4	8.612	4	96.649	4	0.0045
1 2	71 5	253.726	5	239.840	6	0.0067
	36 6	1238.089	6	1260.944	7	0.0162
	55 -	-	-	-	10	0.0327
1 ,	360 -	-	-	-	9	0.113
1 *	940 -	-	-	-	21	0.0633
	960 -	-	-	-	23	0.0723
	192 -	-	-	-	23	0.1179
1 *	556 -	-	-	-	25	0.1637
queen14_14.col 196 83	372 -	-	-	-	28	0.1947
1 * 1	20 5	1.621	5	2.311	6	0.0097
	80 7	330.278	7	236.386	10	0.0146
1 *	52 7	392.637	7	434.787	12	0.0233
queen8_12.col 96 27	736 12	658.831	12	614.457	19	0.0808
	456 9	2397.146	9	5499.739	16	0.0382
queen9_9.col 81 21	112 10	170747.021	-	-	20	0.0542
	100 49	2705.986	49	7396.734	49	0.1451
zeroin.i.2.col 211 35	541 30	2299.254	30	3689.648	39	0.1357
1	540 30	2416.741	30	3761.858	39	0.1265

Table 1: Performance of Graph Coloring Methods with Predicted Chromatic Number K and Runtime (s)