Complex Analysis

Let
$$U \subseteq C$$
 open, $f: U \rightarrow C$
 $f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$ $z \in U$

Examples:

Holomorphic Functions ()

 $f(z) = Z^k$ $f'(z) = kz^k$ (for k>0)

fig holomorphic, then ftg, fg holomorphic as well.
pt CIXI are holomorphic

Let (rn) non be a sequence in IR.

lim sup ra = lim (sup rm)

Fact: Let lim sup rn = r. If r>r, then rn Lr for all large n.

If FLr, FLrn for infinitely many n.

Weierstrauss M-Test: If $\sum_{n=0}^{\infty} a_n$ is a convergent series of non-negative reals, and $|Z_n| \leq M |a_n|$ for (Z_n) , $Z_n \in \mathbb{C}$, then $\sum_{n=0}^{\infty} Z_n$ is absolutely convergent

Consider complex power series $\sum_{n=0}^{\infty} a_n z^n$ with $a_n, z_n \in \mathbb{C}$. Like real power series are convergent on interval [-R,R], these are convergent in $B(O,R) \subseteq \mathbb{C}$.

1/R = lim sup |an |1/n

Claim 1: If OCPCR, then some converges uniformly
on B(O,p) = {Z: |Z|CP}.

Proof: Find p' such that $PRP'(R, so \frac{1}{p}) > \frac{1}{R} = \lim_{n \to \infty} \sup_{n \to \infty} |a_n|^{n}$ Then by previous fact $\frac{1}{p} > |a_n|^{n}$ for all large n. For all $Z \in B(0, p)$, $||a_n Z^n| \leq |a_n||Z|^n \leq \left(\frac{p}{p}\right)^n$

And P/p(C1), so we get uniform convergence for $\sum_{n=0}^{\infty} a_n z^n$ on B(o,p).

Claim 2: If 121>R, lanzol+>0, so Zonzo diverges.

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ for $z \in B(o, R)$. Introduce another complex power series $f_i(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$.

Radius of convergence for $f_1 = is$ $\frac{1}{R_1} = \lim_{n \to \infty} |n - a_n|^{n} \quad \text{and} \quad n^{n-1} = a_n - a_n$ so $R_1 = R$.

Theorem: Let f be Holomorphic on B(O,R) and f = f, where fife one as before.

Proof: Let f(z) = Sn(z) + Rn(z) where Sn(z) = [aizi

Note that. Sn & C[x], so Sn'exists Rn(z) = \(\sigma aizi\)
and is a polynomial. Let \(\xi, \xi_0 \in B(0, P) \), \(p \in R. \) izn

 $\lim_{n\to\infty}\left|\frac{f(z)-f(z_0)}{z-z_0}-f_1(z)\right|$

 $= \left(\frac{S_n(z) - S_n(z_0)}{z - z_0} - \frac{S_n(z)}{z - z_0}\right) + \left(\frac{S_n(z) - S_n(z_0)}{z - z_0}\right) + \left(\frac{R_n(z) - R_n(z_0)}{z - z_0}\right)$

small ble sn is small ble fi is convergent 1. Herentiuble

Takes some work

Some work! Let RZn. | 2 - 20 | = | 2 h-1 + 2 h-2 to + ... + 20 h-1

Compare $\frac{1}{2-20}$ $\frac{R_n(z)-R_n(z_0)}{2-20}$ to $\sum_{k\geq n} k a_n p^{k-1}$ ≤ kpk-1

Since pcR, then f. (p) has tail \(\sum_{n \ge n} kanp^{k-1}, which he comes orbitrarily small as non.

Hence f'(z)= f(z).

=> Complex Power Series are infinitely differentiable.

(Analytic => Holomorphic)

Later: If f is holomorphic on U, as U, then $f = \sum a_n(z-a)^n \text{ in a nobal of } U \text{ for some choice of } a_n.$ (Holomorphic \Longrightarrow Analytic)

The Exponential Function:

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Radius of convergence:
$$\frac{1}{R} = \lim \sup_{n \to \infty} |1/n!|^{1/n} = 0$$

$$\implies R = \infty$$

Defn: A function of which is holomorphic on [(everywhere) is called an entine function.

E.g. exp

$$\exp^{1}(z) = \exp(z)$$

 $\exp(0) = 1$

Show that exp(a)exp(6) = exp(a+6):

$$\frac{d}{dz}\left(\exp(z)\exp(c-z)\right) = \exp(z)\exp(c-z) - \exp(z)\exp(c-z)$$

$$= 0$$

So $\exp(z) \exp(c-z)$ is constant, and in particular $\exp(z) \exp(c-z) = \exp(0) \exp(c-0) = \exp(0)$.

Also
$$exp(x+iy) = exp(x)exp(iy)$$

= $e^{x} cis(y)$

exp is periodic: $exp(2\pi i) = cis(2\pi) = 1$ $exp(z+2\pi i) = exp(z)$

Can similarly define sin and cos via power series.

Complex Integration:

Line integrals over $\gamma: [a,b] \longrightarrow \mathbb{C}$, $[a,b] \subseteq \mathbb{R}$.

y(a)

Fact. Y is continuous iff Re(Y) and Im(Y) are cts.

Typically, y will be C1. The y will be called differentiable if each of Re(Y), Im(Y) are differentiable.

Detri y is piccewise C¹ if $a = 40 \times 41 \times 1... \times 4n = 6$ and y is C' in (ais air) and derivative exists at ai from for each i from 60th left and right. Only from left for an, only from right for ao.

Recall: (From 3D Calc)

Let 22 CR? be an open disk. Suppose y: [a,b] -> 12 is continuous, and p,q: R? -> R. Then

 $\int_{\gamma} \rho \, dx + q \, dy = \int_{\alpha}^{6} \left(\rho(\gamma_{i}(t), \gamma_{z}(t)) \frac{\partial \gamma_{i}}{\partial t} + q(\gamma_{i}(t), \gamma_{z}(t)) \frac{\partial \gamma_{z}}{\partial t} \right) dt$ $= \int_{\alpha}^{6} \left(\rho(\gamma(t)) \right) \cdot \nabla \gamma \, dt$

Question! When does poly q dy depend only on the endpoints a and 6?

Answer: Exactly when there is $U: \Omega \rightarrow \mathbb{R}$ such that $U_x = p$ and $U_y = q$

(pdx+qdy is an exact differential form)

If u exists, then along any curve from a to b $\int_{Y} p dx + q dy = u(b) - u(a)$

Complex Integration:

Y:[a,b] -> 12 continuously differentiable, 12 = Copen f: 12 -> Continuous

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

Change of Variable:

φ: [a',b'] -> [a,b] & strictly increasing, C1.

$$\phi(a')=a$$
, $\phi(b')=b$

$$\int_{S} f(z)dz = \int_{V} f(z)dz$$

Examples:

If
$$S(t) = \gamma(6+\alpha-t)$$

$$\int_{\gamma} f(z)dz = -\int_{\gamma} f(z)dz$$

If y parameterizes a line of length L
$$y(a)$$
 L $y(b)$ L $y(b)$ $\int_{Y} f(z) dz \leq L \max_{z \in line} |f(z)|$

$$\gamma(\theta) = \alpha + Rcis(\theta)$$

$$\int \frac{dz}{z-a} = \int \frac{Riex}{Rci}$$

$$\int_{\gamma} \frac{dz}{z-a} = \int_{0}^{2\pi} \frac{Ri \exp(i\Theta)}{Rcis\Theta} d\Theta = 2\pi i$$

Complex analysis version of Fundamental Theorem of Calculus: $\Omega \subseteq \mathbb{C}$ open, $\gamma: [a_1b] \to \mathbb{C}$ piecewise \mathbb{C}^1 Say $f: \Omega \to \mathbb{C}$ is continuous, and further that there

is $F: \Omega \rightarrow C$ holomorphic such that F'=f, then $\int f(z) dz = F(x(b)) - F(x(b))$

$$\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a))$$

Note that the value only depends on the endpoints of γ .

Proof:

Let F(x+iy) = u(x,y) + iv(x,y) where $u,v:\mathbb{R}^2 \longrightarrow \mathbb{R}$ $F'(x+iy) = f(x+iy) = u(x,y) + iv(x,y) + iv(x,y) = v_y(x,y) - iu_y(x,y)$ Let $\gamma(t) = \gamma_1(t) + i\gamma_2(t)$ $\int_a^b f(\gamma(t)) dt = \int_a^b u_x(\gamma_1(t), \gamma_2(t)) + iv_x(\gamma_1(t), \gamma_2(t)) \frac{dx}{dt} dt$ $= \int_a^b v_y(\gamma_1(t), \gamma_2(t)) - iu_y(\gamma_1(t), \gamma_2(t)) \frac{dy}{dt} dt$ where $\frac{dy}{dt} = \gamma_1'(t) + i\gamma_2'(t)$.

Proof continued: work from other side $F(\gamma(t)) = u(\gamma_i(t), \gamma_z(t)) + iv(\gamma_i(t), \gamma_z(t))$ $\frac{d}{dt} F(\gamma(t)) = \left(u_{\mathbf{x}} (\gamma_{i}(t), \gamma_{z}(t)) \gamma_{i}'(t) + u_{\gamma}(\gamma_{i}(t), \gamma_{z}(t)) \gamma_{z}'(t) \right)$ $+ i \left(V_{x} \left(Y_{i}(t), Y_{z}(t) \right) Y_{i}'(t) + V_{y} \left(Y_{i}(t), Y_{z}(t) \right) Y_{z}'(t) \right)$

Pair up terms to see that

 $\frac{d}{dt}$ $F(\gamma(t)) = integrand.$

Defn: Let XEC be arbitrary, f:X > C. f is holomorphic if there is open UZX open such that there is g: U -> (holomorphic and g/X=f.

Theorem (Cauchy 1): Let R be a closed rectangle in C. R Let y define the boundary of R in a natural way, counterclockwise.

Let f be a holomorphic function $f: R \longrightarrow \mathbb{C}$. Then $\int_{V} f(z) dz = 0$.

Converse to the Cauchy Riemann Equations:

If ux, Uy, Vx, Vy are ortinuous on U and satisfy the Carchy-Riemann Equations, then f is holomorphic and f'= ux +ivx = vy -iuy.

Robertophic

Proof: Let f(x+iy)=u(x,y)+iv(x,y). Let (4,6) EU. In a neighborhood around (a,b), for r,s small

Let D = u(a+r,b+s) - u(a,b) + iv(a+r,b+s) - iv(a,b)= $\nabla u(a,b) \cdot (s) + i \nabla v(a,b) \cdot (s) + \text{'error term''}$ (bounded by $\mathcal{E}(r^2 + s^2)$).

Consider $\frac{D}{rtis} = (r-is)(\nabla u(a,b)\cdot(s) ti \nabla v(a,b)\cdot(s) + error)$

Using the fact that u and v satisfy lauchy-Riemann equations, simplify to get that as rtis ->0

difference quotient -> Ux (a,b) +i Vx(a,b)

= Vy (a,6) + - Uy (a,6). QED?

Theorem: (Couchy #1)

R rectangle, f holomorphic on R (i.e. some open set UZR).

 $\int_{V} f(z)dz = 0 \text{ where } y \text{ parameterizer boundary of } R.$

Proof: Define a sequence of Rectangles Rn where

Ro = R and Rn+1 will be a "quadrant" of Rn such that the integral around the boundary of Rn+1 is the largest of the integrals around the quadrants:

 $\left| \oint_{\partial R_{n+1}} f(z) dz \right| \ge |4| \oint_{\partial R_n} f(z) dz |$

Let {Z* } be the intersection of the Rn's: {Z*} = \(Rn \).

Since f is differentiable at zt, for any \$20 there is \$20 $\left|\frac{f(z)-f(z^*)}{z-z^*}-f'(z^*)\right| \leq \varepsilon \quad \text{for } z \in B(z^*, \delta) \left\{z^*\right\}$

$$|f(z)-(f(z^*)+(z-z^*)f'(z^*))| \leq \epsilon |z-z^*| \quad \forall z \in B(z^*,\delta).$$

$$\frac{Recall:}{\int_{V}^{\infty} f(z)dz} = \int_{V}^{\infty} f(z^*) dz = \int_{V}^{\infty} f(z^$$

In particular, for closed y (i.e. y(6)=y(a)), & f(z)dz=0.

Also, as before, linear polynomials have antiderivatives, so

$$\int_{\gamma} \left(f(z^*) + (z-z^*) f'(z^*) \right) dz = 0 \quad \text{for all closed } \gamma \qquad \boxed{1}$$

If we fix a small ball $B(z,\delta)$, then for a large enough $R_n \subseteq B(z,\delta)$. For some constant C, perimeter of R_n has length $2^{-n}C_s$ where C= perimeter of R.

For some other constant D, max 12-2*1 \leq 2-DD, where Dis the diameter of R. ZEDRA

Combining all these estimates, given $\varepsilon > 0$, choose S small so $|f(z)-(f(z^*)+(z-z^*)f'(z^*))| \le \frac{\varepsilon}{cD}(z^*-z^*)$ for $z \in B(z^*,S)$ and choose n longe so that $R_n \subseteq B(z^*,S)$.

$$\left| \int_{\partial R_n} f(z) dz \right| = \left| \int_{\partial R_n} f(z) dz \right| = \left| \int_{\partial R_n} (f(z^*) + (z - z^*) f'(z^*)) \right|$$

$$\leq \left| \int_{\partial R_n} (f(z) - f(z^*) + (z - z^*) f'(z^*)) dz \right| = 0 \quad \text{by } (D)$$

$$= \int_{R_n}^{\epsilon} \left| \frac{1}{cD} \left(z - z^n \right) \right| dz \leq \frac{1}{4^n} \epsilon \Rightarrow \left| \int_{R_n}^{\epsilon} f(z) dz \right| \leq \epsilon$$

Corollary: Let f be holomorphic on an open disk D.

Then (a) f has a holomorphic untiderivative, that is

there is F holomorphic on A s.t. F'=f.

(b) $\oint_{\gamma} f(z)dz = 0$ for all closed γ in Δ .

"Proof": Fix $a \in \Delta$. Define $F(z) = \int f(t) dt$ where $Y : [0,1] \to \Delta$ has $\gamma(0) = a, \gamma(1) = z$ and $\gamma(0) = a, \gamma(1) = z$ and $\gamma(0) = a, \gamma(1) = z$.

Calculation will show that F' = f.

Winding Number:

Given a E C, y a closed curve around a. Winding # is number of times y goes around a.

Y is closed in C \{a\}

Consider: $\int_{\gamma} \frac{dz}{z-a}$ Remark: Since γ is cts, [a,b] compact, then image of γ is compact (closed + bounded).

Reparameterize $\gamma: To, IJ \rightarrow C \setminus \{a\}, \ r(o) = \gamma(I)$ Define $f(K) = \int_{0}^{K} \frac{\gamma'(t)}{\gamma(t) - a} dt$ $\frac{df}{dt} = \frac{\gamma'(t)}{\gamma(t) - a}$

 $g(t) = \exp(-f(t))(y(t)-a)$ $g'(t) = -f'(t) \exp(-f(t))(y(t)-a)$ $+ \exp(f(t))(y'(t))$ $= \frac{-\gamma'(t)}{(y(t)-a)} (f(t)-a) \exp(-f(t))$ $+ \gamma'(t) \exp(-f(t))$

= O.

Hence, since g'(t)=0, then g is constant, and f(0)=0. g(0)=g(1) and $\gamma(0)=\gamma(1)$, so $\exp(-f(1))=1$ if $\exp(x+i\gamma)=1$, then $e^{\chi}(\cos(\gamma)+i\sin(\gamma))=1$ So $\chi=0$ and $\gamma=2\pi k$ $\chi=Z$. Hence f(1) is an integer multiple of $Z\pi i$ So $f(1)=\int_{\gamma} \frac{dz}{z-a} \in Z\pi i \mathbb{Z}$.

Hence, winding number is integer.

Cauchy's Theorem part Z:

Let R be a rectangle. Let a,,,, an E R. Let f be

holomorphic on R1 {a,,..., an E R. Let f be

lim f(z)(z-ai) = O. (Holds when f is bounded, but can

get slightly warse f than bod).

Then $\int_{\partial R} f(z)dz = 0$.

Proof:

Break R into smaller rectangles, so that each contains at most one ai.

Sf = \(\sum_{j} \) Sf . WLOG, k=1 and only one bad point.

Now pot the bad point a in a square, and center the bad point in square

Near a, If(2)(2-a)/LE

So
$$|f(z)| \leq \frac{\varepsilon}{|z-a|} \leq \frac{2\varepsilon}{d} (1)$$
 | $|f(z)|dz| \leq 8\varepsilon$.
length $(\partial S) \leq 4d$ (2) $|f(z)|dz| \leq 8\varepsilon$.

Dopen disk Corollary: If f is holomorphic on 1/29,, and Vi, lin f(z) (z-ai) = 0, then f has an antiderivative in [\{\a_{1},...,ak}\} \text{ than So } \int f(\pi)d\pi = 0 for any closed curve y in \\\ \lambda \{\a_{1},...,ak}\}. Proof: Same as before, paths avoid all of the bad points. Theorem (Couchy Integral Formula): (And derivation) \triangle an open disk, γ a closed contour in \triangle , $a \notin im(\gamma)$, $a \in \triangle$, f holo on \triangle . Consider $g(z) = \frac{f(z) - f(a)}{z - a}$. This function is holomorphic in $\triangle \setminus \{a\}$ $\lim_{z\to a} \left(g(z)(z-a)\right) = 0.$ $\int_{\gamma} g(z)dz = 0, \text{ but also } 0 = \int_{\gamma} g(z)dz = \int_{\gamma} \frac{f(z)}{z-a}dz - f(a) \frac{dz}{z-a}$ $\frac{\text{And}}{2\pi i} \int \frac{dz}{z-a} = n(y,a)$, the winding number of y oround a $\int_{\gamma} \frac{f(z)}{z-a} dz = 2\pi i \, n(\gamma, a) \, f(a) \Rightarrow \int_{\gamma} f(a) \, n(\gamma, a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-a} dz.$

Assume for now the $n(\gamma, \alpha) = 1$, (e.g. γ is a small circle around a) Rename $f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$ Traditional form of CIF.

Next time: $f'(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-z)^2} d\zeta \implies f'(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d\zeta$ So if f is differentiable, it is infinitely so!

```
Cauchy Integral Formula:
           Let D be a closed of D disk & C, f holomorphic on D,

\Delta = D and C = \partial D. Parameterize C by Y.
       Easy to see: n(y,a) = 1 for all a & 1.
    Cauchy Integral Formula: For any ZED, f(z) = 1/2Ti / 7-2 dq
     More generally, let y be piecewise differentiable, & continuous on im(y).
      Consider F(z) = \int_{V}^{1} \frac{\phi(z)}{\zeta - z} d\zeta for z \notin im(\gamma).
       Assume y: [0,1] -> ( piecewise C1.
           y'(t), \phi(\gamma(t)) are both bounded.
                im(y) is closed, bounded and connected.
        If z \( im(y), then | y(t) - z \) 6 ounded away from zero.
         (3 6>0 17(t)-21>8 4 &t)
        We show:
           (a) F is continuous
           (6) Fis holomorphic
           (c) F'(z) = \int_{\gamma} \frac{\phi(z)}{(z-z)^2} dz
 Proof:
(a) Let Z & im(r). Let 6 >0 s.t. B(z, 8) n im(r) = Ø, zoe B(z, 8/2).
              FNANAMANA Then |y(t)-Zo | > 8/2 for all t.
                F(z) - F(z_0) = \int_{\gamma} \phi(\zeta) \left( \frac{1}{\zeta - z} - \frac{1}{\zeta - z_0} \right) d\zeta
                                  = \int_{V} \frac{\phi(7)(2-20)}{(7-2)(7-20)} d7
                                = (\overline{z} - \overline{z}_0) \int_{\gamma} \frac{\varphi(\overline{z})}{(\overline{z} - \overline{z})(\overline{z} - \overline{z}_0)} d\overline{z}.
```

So now let Zo>Zo and observe F(Zo) -> F(Zo). So Fis

(b) Consider
$$\frac{F(z) - F(z_0)}{z - z_0} = \int_{\gamma} \frac{\phi(\zeta)}{(\zeta - z)(\zeta - z_0)} d\zeta$$

Appeal to previous part (a) with a replaced by

$$\Phi^*(\overline{q}) = \Phi(\overline{q}) \cdot \text{Set } \frac{F(z) - F(z_0)}{\overline{z} - \overline{z_0}} \longrightarrow \int_{\gamma} \frac{\Phi(\overline{q})}{(\overline{q} - \overline{z})^2} d\overline{q} \cdot \frac{\overline{q}}{\overline{q}} d\overline{q} \cdot \frac{\overline{q}}{\overline{q}} d\overline{q} = 0$$

(C) Iferating, we find that Fis Coo and that $E^{(n)}(z) = n! \left[\Phi(z) \right]$

$$F^{(n)}(z) = n! \int \frac{\phi(z)}{(z-z)^{n+1}} dz$$
.

Returning to Couchy integral formula:

f is infinitely different iable, and
$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\vec{q})}{(\vec{q}-\vec{z})^{n+1}} dz$$

Liouville's theorem: An entire function on C is constant if it's bounded.

Proof: Let If(z) I EM for all ZE C. Let CR be a circle of radius R around z. Then

$$f'(z) = \frac{1}{2\pi i} \int_{C_R} \frac{f(z)}{(z-z)^2} dz$$

$$let \gamma = R \exp(2\pi i t) + z$$

$$\gamma: [0, i] \to C_R.$$

Notice that $f'(z) \longrightarrow 0$ as $R \longrightarrow \infty$. So then f'(z)=0 for all $z \in C$, so f is constant.

Next Goal: f holomorphic on $\Omega \subseteq C$ open. Let $a \in \Omega$, consider the Taylor series $f(a) + (z-a)f^{(1)}(a) + \frac{(z-a)^2}{2!}f^{(2)}(a) + \cdots$

It converges to f(z) on any open disk centered on a and contained in 12.

```
Refined Couchy Integral Formula:
        DCC closed dish, D= D, C= SD parameterized by Y.
      Let ais-saked, fholomorphic on DI {ais san}.
      For each i, let lim f(2) (2-ai) = 0.
     Then: f(z)=\int_{\gamma(\overline{q}-\overline{z})} f(\overline{q}) d\overline{q} for z \in A \setminus \{a_1,\ldots,a_k\}.
    Proot: Combine previous proof of CIF with more general
          Cauchy's theorem.
    Defn: Let f be holomorphic in an open ball B(a, 8)\{a}, $>0.
        Then I has a removable singularity at a iff lim f(z)(z-a)=0.
  Theorem: If a is a removable singularity for a function

Theorem: If a is a removable singularity for a function

f as above, then f can be extended to f, holomorphic on B(a, s).
                      Consider g defined on B(a, 8/2) by
     Consider g of \frac{1}{\sqrt{7-2}} \frac{1}{\sqrt{7-2}} \frac{1}{\sqrt{7-2}} \frac{1}{\sqrt{7-2}}
      By general/previous facts, g is holomorphic on B(a, 8/2) & by
    CIF, g(z)=f(z) for zeB(a, 8/2)/{a3}.
      Use g to extend f to f, by f(a)=g(a), f(z)=f(z) for z\neq a.
         Since g is continuous, agrees w/f, lim f(z) = g(a)
    Taylor Exponsion: f holomorphic on 12, as 12.
            f(z)-f(a) is holomorphic on \Omega1803, removable singularity at a.
     So let f(z) = \begin{cases} f(z) - f(a) \\ \overline{z} - a \end{cases} z \in \Omega(\frac{1}{2}a), repeat.
```

Taylor Expansions:

Let f be holomorphic on 12, open. Let a & 12. The function f(z)-f(a) is holomorphic on IZ/{a}, and has a removable singularity at a. Remove it, thereby defining f, such $f_{1}(z) = \begin{cases} \frac{f(z) - f(a)}{z - a} & z \in \Omega \setminus \{a\} \\ f(a) & z = a \end{cases}$ and f, holomorphic

Inductively define

$$f_{n}(z) = \begin{cases} f_{n-1}(z) - f_{n-1}(a) \\ \hline z - a \end{cases} \quad z \in \Omega \setminus \{a\}$$

$$f_{n} \text{ holomorphic on } \Omega$$

Easily shown:

$$f(z) = f(a) + f_1(a)(z-a) + \dots + f_{n-1}(a)(z-a)^{n-1} + f_n(z)(z-a)^n$$

$$f(z) = f(a) + f^{(0)}(a)(z-a) + f^{(2)}(a)(z-a)^2 + \dots + f^{(n)}(a)(z-a)^n + \dots$$

Special cases of Cauchy Integral Formula:

Consider a contour C, which is a circle around a

1 (dz - n(C,a) = 1 $\frac{1}{2\pi i} \int_{\overline{z}-a}^{2\pi i} = n(C,a) = 1$

$$\frac{1}{2\pi i} \int \frac{dz}{(z-a_1)(z-a_2)} = \frac{1}{2\pi i (a_1-a_2)} \int \left(\frac{1}{z-a_1} - \frac{1}{z-a_2}\right) dz$$

$$= 0.$$

Differentiate wrta,: $\int_{\zeta} \frac{dz}{(z-a_1)^n(z-a_2)} = 0 \quad \text{*}$

Using CIF for $1^{(n)}$, $O = \int \frac{dz}{(z-a)^n}$ for n > 1, a inside

Recall:
$$f(z) = f(a) + f^{(1)}(a)(z-a) + \dots + f^{(n)}(a)(z-a)^{n} + f_{n}(z)(z-a)^{n+1}$$
So
$$f_{n}(z) = \frac{f(z)}{(z-a)^{n}} - \frac{f(a)}{(z-a)^{n}} - \dots - \frac{f^{(n-1)}(a)}{(n-1)!(z-a)}$$
Use CIF to simplify. Let C be a contour around a,

C a circle of radius small s.t. C U (disk \leq C) \leq Ω .

Assume $(n \gg 1)$

$$f_{n}(z) = \int \frac{f(7)d7}{(7-2)} = \int \frac{f(7)d7}{(7-2)} d7$$

Assume (1) 1)
$$f_{n}(z) = \int \frac{f(\overline{z})d\overline{z}}{(\overline{z}-\overline{z})} = \int \frac{f(\overline{z})d\overline{z}}{(\overline{z}-a)^{n}(\overline{z}-\overline{z})} + O$$

$$f_{n}(z) = \int \frac{f(\overline{z})d\overline{z}}{(\overline{z}-a)^{n}(\overline{z}-\overline{z})} + O$$

f holomorphic => f bounded on C Since Compact,

Let D be a closed disk of radius 1/2 (radius of C), center a. Consider only ZED. Then 17-2/2 1/2 R where Ris He radius of C. Estimate value of $f_n(z)$ and see that $f_n(z)(z-a)^n \longrightarrow 0$ on D unitarmly as n > 00. Why is this the case?

other terms drop

b/c * from previous page.

$$|f_n(z)(z-a)^n| = |f_n(z)||(z-a)^n| \leq \frac{\sup_{z \in C} |f(z)|}{R^n}$$

$$\leq \frac{\sup_{z \in C} |f(z)|}{R^n} (\frac{1}{2}R)^n$$

 $\leq \frac{1}{7^n} \sup_{z \in C} |f(z)|$ Error bound for 1th order taylor, series for f at point a.

Also this tail - series converges in a disk around a.

Proof ctd. Suppose for contradiction that I is a connected component of ([\im(Y) and q1, q2 = 12. n(Y, q1) < n(Y, q2) Choose at I such that n(8, 7,) La Ln(8, 72) Ω = Ω < UΩ > where Ω > = {ZeΩ: n(y, Z) > α} 12 = {ZED: n(8,Z < x) * contradicts connectivity of 12. Inside any region I, and any B(a, E) SI, the taylor series converges. Let a ∈ 12, and suppose that f (n)(a) = 0 for all n ∈ N. There is \$70 and B(a, 8) & D and f/B(a, 8) =0 f (n) (b) = 0 for all be B(a, 8). Hence, the collection of a 652 s.t. f(n)(a) = 0 is open. Let a ∈ R, f (n) (a) ≠0 for some n∈N. f (1) is holomorphic, and hence continuous, so there is 8>0

 $B(a, \delta) \subseteq \Omega$ and $f^{(n)}(b) \neq 0$ for all $b \in B(a, \delta)$ Hence, SaED: there is nEN s.t. f (n)(a) #03 is open in 12 Call it 12*

Flow For any a & IZ, either f(1) (a) =0 4n, or In f(1)(a) +0 Since I is connected, both of Do and 2* are open, then one of $(\Omega_0 = \emptyset)$ and $\Omega^* = \Omega$) or $(\Omega_0 = \Omega)$ and $\Omega^* = \Omega$ most be the case.

Assume that f is not identically zero on Ω_s so for all as Ω . Here is n s.t. $f^{(n)}(a) \neq 0$.

Let f(a)=0 and let n be the least such that $f^{(n)}(a)\neq 0$. From the proof of Taylor's theorem, there is analytic g on Ω so $f(Z)=(Z-a)^2g(Z)$, $g(a)\neq 0$.

As g is continuous, there is 8>0, $B(a,\delta)\subseteq 12$ where $g(b)\neq 0$ for all $b\in B(a,\delta)$. So $f(z)\neq 0$ for $B(a,\delta)\setminus\{a\}$.

We say f has a zero of order n'at a. Small open disk where only a is a zero of fon that disk.

Corollary: If B is a closed, bounded set, BC IZ a region, then {a & B: f(a) = 0} is finite.

Proot: Open cover/finite subcover 6/c B is compact.

Corollary: If y:[0,1] -> C, then there is a closed/bounded BED.

Such that im(y) CB.

Defn: Let f be holomorphic in $B(a,5) \setminus \{a\}$. Then f has a pole at a it $\lim_{z \to a} |f(z)| = \infty$

Suppose f has a pole at $a \in \Omega$. Consider $g: B(a, \delta) | \{a\} \rightarrow C$, $g(z) = \frac{1}{f(a)}$. We may assume $f(z) \neq 0$ for $z \in B(a, \delta) | \{a\}$.

g is holomorphic on $B(a,\delta)|\{a\}$. $\lim_{z\to a} g(z) = 0$, so g has a removable singularity at a, so define $g_1(z) = (g(z)) z \neq a$ $g_1(z)$ is nonzero, holomorphic, has zero at a. $\{g(z)\}$ z = a

If g, has a zero of order n at z=a, then $g_1(z)=(z-a)^nh(z)$, $h(a) \neq 0$, h holomorphic on $B(a,\delta)$.

So
$$f(z) = \frac{1}{g_1(z)} = (z-a)^{-n} \frac{1}{h(z)}$$
 for all $z \in B(a, \delta) \setminus \{a\}$.

Analytic ble $h \neq 0$.

"f has a pole of order n at z=a".

Extended Complex Plane:

 $\mathbb{C} \cup \{\infty\}$ is the one-point compactification of \mathbb{C} . Also the projective space $\mathbb{P}^1(\mathbb{C})$.

Vr:te
$$\mathbb{C} \cup \{\infty\} = (\mathbb{C}) \cup (\mathbb{C} \cup \{\infty\} \setminus \{0\})$$

 $z \in \mathbb{C} \longrightarrow \frac{1}{z} \in \mathbb{C} \cup \{\infty\} \setminus \{0\}$ remap coordinates.
 $\frac{1}{0} = \infty, \frac{1}{\infty} = 0$.

Local Behavior of Holomorphic functions

f holomorphic on 12, f not identically zero on 12. For simplicity, assume for the moment that f has only finitely many zeroes in 12, which are {a1,..., an}

We write $f(z) = (z-a_1)(z-a_2)\cdots(z-a_n)g(z)$ g is holomorphic on Ω and $g(z)\neq 0$ for all $z\in \mathbb{R}$.

NB: ai can have repetitions.

$$\frac{f'(z)}{f(z)} = \frac{1}{z-a_1} + \dots + \frac{1}{z-a_n} + \frac{g'(z)}{g(z)} \text{ at all } z \in \Omega \setminus \{a_1, \dots, a_n\}$$

Let y be a closed curve in the Than Then:

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = n(\gamma, \alpha_1) + n(\gamma, \alpha_2) + \dots + n(\gamma, \alpha_n) + \int_{\gamma} \frac{g'(z)}{g(z)} dz$$

$$= 0 \text{ since}$$

g has no zeroes in 12 Special case: if γ is a circle in Ω avoiding zeroes of f, then $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(8)}{f(2)} dz = \# \text{ of zeroes of } f \text{ endosed } \not b y \ \gamma \text{, counted } up \text{ to multiplicity.}$

Consider the curve of T = for. Since y avoids zeroes of f,
T avoids zero. So then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = n(\Gamma_{s}O)$$

Lost f: 2 - C holomorphic, not identically zero.

closed precurve in 12, y avoids zeroes of f.

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{\substack{Z_{j} \neq ero \\ of f}} n(\gamma, Z_{j}) = n(\Gamma, 0) \quad \text{if } \Gamma = f \circ \gamma.$$

Generalization: f(z) = a = z is a zero of f-a.

If y is closed and avoids {z: f(z)=a}, then

 $n(\Gamma, a) = \sum_{j} n(\gamma, Z_{j}(a))$ where $Z_{j}(a)$ on one rates with multiplicity points where f(Z) = a.

Key Point: Let γ be a circle, $\Gamma = for$ $n(\Gamma, a) = \sum_{i} n(\gamma, \mathbf{z}_{j}(a)) \quad counts \quad (w/ multiplicity) \quad points \quad inside \quad \gamma \quad where \quad f(\mathbf{z}) = a.$

As we saw, if a, a' are in the same region determined by Γ , then $n(\Gamma, a) = n(\Gamma, a')$. If assumes values a, a' same number of times inside Γ .

f holomorphic on Ω , be Ω , f(b)=a, f nonconstant on Ω Let b be a zero of order n for f-a, that is $f-a=(z-b)^n f$ for a holomorphic function h with $h(a) \neq 0$.

Key Point:

- 1 b is an isolated zero of f-a.
- ② If f'(6)=0 (so 6 is repeated root) then 6 is also an isolated zero of f.

Let y be a circle with center b contained in 12, along wi interior of circle. Inside y, f-a has only 6 as a zero and flas only bas a zero, possibly.

(i.e. floorishes only possibly at bin y)

For a sufficiently close to a, $n(\Gamma, a) = n(\Gamma, a') = \#$ of times f assumes Since $f' \neq 0$ inside y except possibly at z = b, value a inside y = n. values a' $\neq a$ are assumed a times, each with multiplicity one.

Key consequences: I a region, f holomorphic on I, nonconstant

- (1) f is an open mapping: for all open UED, f(U) is open
- (2) If f is nonconstant on 12, If I does not assume a maximum on 12.

Extended Complex Plane: (U { 00}

Riemann Surface One-point Compactification of C.

Construct He "Riemann Sphere" x2+y2+=2=1, identity xy-plane with C.

S= {(x, y, =) | x2+y2+=2=1}

For QES, Q +P, associate to Q the unique xtiy Sit. the line PQ neets to xy-plane at (xx,0).

Gives Bijection between SI{P} and C. I for isometry, giving Sthe Euclidean metric. Continuous ul cts inverse, so homeomorphism.

Let P correspond to oo. S is compactiso then Que is compact too.

Extended Complex Plane:

ACCUEOUZ is open iff

for all as A, there is busic open neighborhood around a but contained in A.

basic open sets are if $a \in \mathbb{C}$, $B(a, \delta)$ if $a = \infty$, $\{\infty\} \cup \{z \in \mathbb{C}, |z| > \delta\} = B(\infty, \delta)$.

Let y be a closed curve, say y:[0,1] -> C.

im(Y) is compact, i.e. closed and bounded.

Consider y as a function y: [0,1] -> Cu{00}

y divides (Luxor) into regions

There is one region containing as, and some others, all bounded in usual metric on C.

Fact: It at a and a is in the unbounded region determined by Y, then n(Y,a) = 0.

Froot: Find Δ s.t.im(r) $\subset \Delta$, Δ on open disk. Find $\alpha \in C[\Delta]$, α for from Δ . Then $\frac{1}{2-\alpha}$ is holomorphic on Δ , so

$$\Omega(\gamma_i a) = \frac{1}{2\pi i} \int_{\overline{z}-a}^{\overline{dz}} = 0$$

Defn: Let \(\Omega\) be a region in \(\C.\). Then \(\Omega\) is simply connected.

Theorem: Let 12 be a region. Then TFAE

(1) I is simply connected

(2) n(Y,A)=0 for all closed y in Is all A & IZ.

Proof (1) \Rightarrow (2):

Consider the regions of Cuzos determined by Y.

Cu{oo} \ \ \(\omega \) is contained in one region determined by \(\gamma \), since \(\omega \) \(\omega \) is connected. Since \(\omega \) \(\omega \) is in the

unbounded region.

 $n(\gamma, a) = 0$ for all a in the unbounded region, since it's constant on each region, and for some $a \notin \Omega$, $\frac{1}{z}$ -a is holomorphic on Ω_s so $n(\gamma, a) = 0$.

Proof of (2) => (1):

By with contropositive. It is not simply connected, so ([U{\outless{\outles\outless{\outless{\outless{\outles\outless{\outless{\outless{\outless{\o

Say wEB, so w & A => wEA , and A is open.

Accontains on open noble of so in Cufoof.

So A is a bounded subset of C, closed => compact.

Also BAC is a closed subset of C.

Since A is compact, B closed, AnB = \$\phi_s\$ then there is \$>0 such that \forall aeA and \forall 6eB \quad \forall 28

Fix a EA. Cover C by squares of size So KKS s.t. a is at the center of some such square.

intersect A, since A is bounded.

Consider the set of the squares which meet A, break it into connected components, and focus on component which contains a.

Proof (2) => (1) Continued:

If a square Q appears in this component and EGDQ is an edge, then and there is no other square Q' in the component, $\partial Q' \cap E \neq \emptyset$, then $E \subseteq \Omega$.

Since A meets Q, and $d(A,B) > \delta > \delta_0 = length E$, then $E \cap B = \emptyset$.

Proof Aborted.

Goal: (Penultimate Couchy's theorem):

For any simply connected Ω , holomorphic $f: \Omega \to \mathbb{C}$, and any closed curve γ in Ω , $\oint_{\gamma} f(z)dz = 0$.

Ultimate Cauchy's Theorem:

For any region Ω , any γ s.t. $\forall a \notin \Omega$, $n(\gamma, a) = 0$, and any $f: \Omega \to C$ holomorphic $\oint_{\gamma} f(z)dz = 0$.

Idea: Cauchy for all functions = a, a & 12, => full Cauchy.

Corollary: If f is holomorphic on simply connected 12, then f has an antiderivative on 2.

Salvaging the proof until last time.

Want to show: \(\Omega \text{ a region}\), $\forall a \neq \Omega \, n(\gamma, a) = 0\) for all closed \(\gamma\) in \(\Omega \).$

I simply connected only when Curas \ I is connected.

If [u[0]] \ \(\Ozer \) is not connected, [u[0]] \(\Ozer = AuB nonempty, closed, disjoint. \(\operate{\text{B}} \in \text{B} \) \(\operate{\text{bounded}}. \(\operate{\text{B}} \text{Closed}. \)

Since A compact, B closed 36>0 d(a,b)>6 4a=A,6=B.

Cover plane by closed squares w/ side length & KS.

Arrange some aEA lies at the center of some square. Consider the finite set of squares meeting A. Start with the one containing a. Inductively add I is by the roles @ new I meets A

6 has an edge in common w/ previous.

For each square Q meeting A, let 2Q= 1 be a contour. For each such Q, $n(\partial Q, a) = \{1 \text{ if } Q \text{ is unique square containing } a \}$

 $\frac{1}{2\pi i} \oint \frac{dz}{z-a} = n(x, a) = 1 \quad \text{and} \quad \frac{1}{2\pi i} \oint \frac{dz}{z-a} = \sum_{\alpha \neq \alpha} n(\partial Q, \alpha) = 1 + O + O$

Combining terms, can find finitely many closed XIS->YK s.t.

(a)
$$\sum_{i=1}^{n} n(\gamma_{i}, a) = 61$$

(6) Each yi is composed of the boundaries of the squares which occur in exactly one q meeting A.

Key point: All such edges must avoid B by choice of Soll S, and avoid A, so are contained in 12. So we cannot have n(Yi,a) = 1 for some Yi, by assumption, hence #, and Cusas most be connected.

Free Abelian Groups:

For any set X, Fr(x)= {f: X -> Z, {f(x) + 0} cofinite}

If H is any abelian group, $f: X \rightarrow H$ is any function, f extends to an HM $\phi: Fr(X) \rightarrow H$, $\phi(\sum_{i=1}^{n} n_i f(x_i)) = \sum_{i=1}^{n} n_i f(x_i)$.

Algebraic Topology Stuff

If $\gamma:[a,b] \to \mathbb{C}$, piecewise continuously differentiable, - γ is " γ traversed backwards", $(-\gamma)(t) = \gamma(a+b-t)$

$$\int_{\gamma} f(z) dz = - \int_{-\gamma} f(z) dz.$$

If $\phi: [a_16] \rightarrow [a', 6']$ strictly increasing and C^{2} , then if $Y' = Y \circ \phi: [a', b'] \rightarrow C$, then $\int_{Y} f(z)dz = \int_{Y'} f(z)dz$.

Say $\gamma: [a_ib] \longrightarrow \mathbb{C}$ $a = a_0 \times a_1 \times \dots \times a_n = b$ γ_i is from $\gamma_i = [a_i, a_{i+1}]$ to \mathbb{C} , $\gamma_i = \gamma / [a_i, a_{i+1}]$ $\int_{\gamma} f(z) dz = \sum_{i=0}^{n-1} \int_{\gamma_i} f(z) dz$

Chain Group: Start with X= {y: y piecewise C1}
Form Fr(X), the free group on X.

Let $G \subseteq F_r(x)$ be the subgroup of $F_r(x)$ generated by terms of the form y + (-y) $y - y \circ \phi$, ϕ increasing, C^1 as above $Y - (y_1 + y_2 + ... + y_n)$ where $y_1 \circ y_2 \circ ... \circ y_n = y$, y_i come from partition of domain of $y_i \circ y_j \circ y$

Chain Group = $\frac{F_r(x)}{6}$. Elements ye Chain Group are called chains.

Chain Group: We will identity y with its equivalence class LY] = Y+6 in the chain group, because the integral of a function is invariant on its equivalence class of contours. So the integral is well-defined for ye Chair Group.

Extend the meaning of $\int_{\gamma} f(z)dz$ to $\gamma \in F_{r}(x)$ as follows: $\int_{\sum n_i Y_i} f(z) dz = \sum n_i \int_{i} f(z) dz.$

For all $y \in G$, $\int_{Y} f(z) dz = 0$.

Defn: A chain y is in 12 iff $y = \sum_{i=1}^{n} n_i y_i + G_j$ Ω on open subset of C_j ,

Defn: The group of cycles is the subgroup of the chain group generated by cosets of the form 8+6, 8 is a closed curve.

Theorem (revisited): For a region REC, TFAE (1) 12 simply connected

(2) n(y,a) = 0 for all cycles y in 12, for a # 12

N.B: n(Y,a) is well defined for cycles, =1 \frac{dz}{z \tau i} \frac{dz}{z-a}

Defn: Let Ω be a region.

(a) A cycle in Ω is homologous to zero if $n(\gamma_i a) = 0$ for all $a \notin \Omega$

(b) γ_1, γ_2 cycles in \mathcal{L} re homologous iff $\gamma_1 - \gamma_2$ is homologous to zero iff $n(\gamma_1, a) = n(\gamma_2, a)$ for all $a \notin \Omega$

Y, homologous to 12, we write YINYZ Technically, homologous mod 12.

Theorem (Ultimate Cauchy):

If f is holomorphic in region Ω , γ a cycle in Ω , and $\gamma \sim 0 \pmod{\Omega}$, then $\int_{\gamma} f(z)dz = 0$.

Corollary: If Ω is simply connected, then $\int_{\gamma} f(z) dz = 0$ for all

So f has an antiderivative on 12.

Corollary: If Ω is simply connected, f holomorphic and nonzero on Ω , then can define a holomorphic function $\log(f)$ on Ω s.t. $\exp(\log(f(z))) = f(z)$ for all $z \in \Omega$, not necessarily unique.

Proof: Since f nonzero on Ω , f' holomorphic on Ω , so $\frac{f'}{f}$ is holomorphic on Ω . Choose an antideribative F for f'/f. f

F (5) = f(5)/f(5).

Look at $g(z) = f(z) \exp(-F(z))$.

 $g'(z) = f'(z) \exp(-F(z)) - f(z) \frac{f'(z)}{f(z)} \exp(-F(z)) = 0.$

g is a holomorphic function with zero derivative on a connected set, so g(z) is constant.

Fix Zo E 12. Choose w site exp(w) = f(Zo), possible since f(Zo) #0.

 $\exp(F(z) - F(z_0) + \omega) = f(z)$ by calculation, F(z) is $\log(f)$.

Corollary: If f is nonzero, holomorphic on Ω a simply connected region, then can choose ∇f holomorphic on Ω .

Proof: $\sqrt{f} = \exp\left(\frac{\log f}{n}\right)$.

Proof of Ultimate Cauchy:
Fix some closed y in Ω . Suffices because a curve. Case 1: Ω is bounded. Cover Ω with Ω
Case 1: 1 is bounded. of closed curves.
Cover C with closed and
Arrange so at least one square square
Cover Ω with closed squares, side length S . Arrange so at least one square Ω . As Ω is bounded, finite, nonem, set of squares meet Ω .
Let $X = \{0:0:$
$X_2 = \{Q: Q: s \text{ square}, Q \cap \Omega \neq \emptyset\}$ $\phi \neq X_1 \subseteq X_2$, X_2 finite.
Let $\Omega_S = UQ$ and arrange that y is a cycle in Ω_S .
Form the sum of the boundaries of X2, get cycle Is.
Let ZEILIZS. Then ZEQ for some Q II. Find Zo EQII.
The line of to go avoides Ds. So of and on one in the same region
retermined by 8, as 8 is in -28. As y ~ O (mod -2), and
go FIL, then o(x Z) = 0 Ac a(x)
regions determined by Y , then $n(Y, Z) = n(Y, Z_0) = 0$.
In particular, $n(\gamma, \zeta) = 0$ for all ζ on ζ .
f is holomorphic on 12, the let ze Dg, s.t. ze Q, QEX,
\cdot

Let R be a square, $R \in X_1$, so $R \subseteq \Omega$. $\frac{1}{2\pi i} \int_{\partial R} \frac{f(z)}{\zeta - z} d\zeta = \begin{cases} f(z) & \text{if } R = Q \\ 0 & \text{otherwise} \end{cases}$

Summing, $\frac{1}{2\pi i} \int_{\zeta} \frac{f(\zeta)}{4-z} d\zeta = f(z).$

Special case of Fubini - Torelli Theorem:

If f is a continuous function from \mathbb{R}^2 to \mathbb{R} , [a,b], [c,d] closed intervals in \mathbb{R} , then $\int_a^b \int_c^d f(x,y) dx dy = \int_a^b \int_c^b f(x,y) dy dx.$

Idea: $\int_{\gamma} f(z)dz = \int_{\gamma} \left(\frac{1}{2\pi i} \int_{\Gamma_{\delta}} \frac{f(\zeta)}{\zeta^{-2}} d\zeta\right)d\zeta$ $= \frac{-1}{2\pi i} \int_{\Gamma_{\delta}} \int_{\gamma} \frac{f(\zeta)}{\zeta^{-2}} d\zeta d\zeta = 60t \text{ needs to be justified.}$ $= \frac{1}{2\pi i} \int_{\Gamma_{\delta}} f(\zeta) (-n(\gamma, \zeta)) d\zeta$ $= \frac{1}{2\pi i} \int_{\Gamma_{\delta}} f(\zeta) (0) d\zeta = 0.$

So now to justify (*):

Key fact: im(x), im(13) disjoint, compact, so there is some \$>0 such that d(a,b) > E for all asim(x), beim(13).

So \frac{1}{377} \frac{\frac{\frac{1}{7}}{7-2}}{7-2} = f(\frac{2}{7}) \text{ for all 2 on y.}

Furthermore, 17-21 is bounded from below, f holomorphic, so $\frac{f(7)}{7-2}$ is holomorphic on this region.

Case?: Hence established for bounded region Ω_3 if Ω unbounded, fix large open disk Δ s.t. y is a cycle in Ω' , $\Omega' = \Omega n \Delta$. Then y $n O \mod \Omega'$, because if $\alpha \notin \Delta$, $n(\gamma, \alpha) = 0$, $b(c \ \gamma \ cycle \ in \ \Delta$. If $\alpha \notin \Omega'$ but $\alpha \in \Delta$, $n(\gamma, \alpha) = 0$ because $\gamma n O \mod \Omega$.

Meromorphic Functors:

Defn: Ω a region. A function f is meromorphic function on Ω if and only if for every $a \in \Omega$, there is 6>0 s.t. $B(a, \delta) \subseteq \Omega$ and either (a) f is holomorphic on $B(a, \delta)$, or (b) f is holomorphic on $B(a, \delta) \setminus \{a\}$, f has a pole at a.

Fact: {f: f is meromorphic on 12} forms a field, with the normal operations, pointwise, remove removable singularities.

Example: $\Omega = C$ $f(z) = 1 + \frac{1}{z}$, $g(z) = \frac{1}{z}$ $(f+g)(z) = 1 + \frac{1}{z} - \frac{1}{z}$, yet undefined at z = 0. Hence a removable singularity here, which we can remove to get f+g=1.

Defn:
An segion \(\Omega \) is n-connected if and only if \(\Cu\{\infty\} \) \(\Omega \) has n connected components.

For any given n-connected Ω , let the components be $A_1, A_2, ..., A_n$, with $\infty \in A_n$. We showed that Ω is simply connected (1-connected) \iff $n(\gamma, \alpha) = 0$ $\forall \gamma \text{ cycle in } \Omega$, $\alpha \notin \Omega$.

Choosing a sufficiently fine grid of squares on \mathbb{C} , we may construct a $i \in A_i$ and $\gamma_i \in \Omega$ for $i \in A_i$ such that $n(\gamma_i, a_i) = 1$, $n(\gamma_i, a_j) = 0$ for $j \neq i$.

Let y be an arbitrary cycle in Ω . Let $m_i = n(\gamma, q_i)$. Then $\gamma \sim \sum_{i=1}^{n-1} m_i \gamma_i \mod \Omega.$

Proof! Let $a \notin \Omega$. Since $n(\gamma, \bullet)$ is constant on each region defined by $Y : n(\gamma, \bullet)$ constant on each Ai. If $a \in Ai$ for in, then $n(\gamma, a) = n(\gamma, ai) = mi$ and $n(\sum m_i \gamma_i, a) = mi$

 $n(\sum miyi, ai) = mi$

Proof continued:

If $a \in A_n$, then A_n is unbounded $n(y_i a) = 0$ and $n(y_i a) = 0$ $\forall i$.

This claim shows, essentially,

that the set of y_i is a basis for the abelian group

of cycles in Ω mod the subgroup of cycles homologous to zero.

Since y- Emilia vo (mod 12), then $\int_{Y-\sum m_i Y_i} f(z) dz = 0 \implies \int_{Y} f(z) dz = \sum_{i=1}^{n-1} m_i \int_{Y_i} f(z) dz.$

Calculus of Residues:

Let 12 be a region.

Let f be holomorphic in $\Omega' = \Omega \setminus \{a_1, \dots, a_m\}$ ai distinct points in Ω For each j, KjEm, find Si such that B(a; Si) = 12, and ar & B(aj, Sj) for k + j. Let Cj be a circular contour around aj, radius Silz. Define

 $P_j = \int_{C_i} f(z) dz$, $R_j = P_j/z\pi i$, and consider $f - \frac{R_j}{z-a_j}$.

 $B(a_j, \delta_j) \setminus \{a\}$ is 2-connected.

 $\oint_{\mathcal{L}} \left(f(z) - \frac{R_j}{z - a_j} \right) dz = 0 \text{ for all cycles } \gamma \text{ in } \mathcal{R}(a_j, \delta_j) \setminus \{a_j\}.$

Note that locally, $f(z) - \frac{R_j}{z-a_j}$ has an antiderivative in this punctured disk $B(a_j, \delta_j) \setminus \{a_j\}$.

Let y be a cycle in Ω , y avoids $a_1, a_2, ..., a_m$.

Assume y ~ 0 . mod Ω .

 $\gamma \sim \sum_{i=1}^{m} n(\gamma_i a_i) C_i \mod \Omega'$

f holomorphic in 12', Y- En(Y,oi) Cin O mod 12'

50 $\int_{\gamma} f(z) dz = \sum_{k=1}^{m} n(\gamma, a_k) \int_{C_R} f(z) dz$ $= \sum_{k=1}^{m} n(\gamma, a_k) P_k$

 $\implies \frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{i=1}^{m} n(\gamma, a_i) R_i \qquad R_i \text{ is the residue of } f \text{ at } a_i.$

Generalization: Suppose that Ω is a region, f holomorphic on $\Omega \setminus \{a_j: j \in J\}$, and the a_j are "isolated singularities,"

For all j, there is $\delta_j > 0$ $\alpha_k \notin B(a_j, \delta_j)$ for $k \neq j$.

Key Point: If y is a cycle in 12 and avoids as for each je J then { j: n(y,aj) ≠ 0} is finite.

Proof: $\{a: n(\gamma, a) = 0, a \notin im(\gamma)\}$ is open and there is a closed disk $\overline{\Delta}$ such that γ in $\overline{\Delta}$ and $n(\gamma, a) = 0$ for all $a \notin \overline{\Delta}$. $\overline{\Delta}$ is compact, so can contain only finitely many a_j .

Residue Theorem: Let Ω be a region, f holomorphic on $\Omega \setminus \{a_j: j \in J\}$ as isolated singularities. γ is a cycle in Ω , $\gamma \sim 0 \mod \Omega$. Then $\frac{1}{2\pi i} \int_{\gamma} f(z)dz = \sum_{j \in J} n(\gamma, a_i) R_j$ where R_j is the residue of f at a_j .

Thing: Given a region $\Omega \leq C$, $A \leq \Omega$. If f is holomorphic on $\Omega \setminus A$, not defined on A. A is scattered, that is, there is S > 0 no limit points.

Y a cycle in 12/A, y ~ 0 mod 1.

Then

- (1) {a ∈ A: n(Y,a) ≠ 0} is finite
- (2) $\frac{1}{2\pi i} \int_{\gamma} f(z)dz = \sum_{a \in A} n(\gamma_i a) \operatorname{Res}_{z=a} f$.

Proof: Find a closed eyele disk $\overline{\Delta}$ s.t. γ is a cycle in $\overline{\Delta}$. $A^{*} = \{a \in A : n(\gamma_{i}a) \neq 0\} \subseteq A \cap \overline{\Delta} \subseteq \Omega \cap \overline{\Delta}$.

Suppose for contradiction that A* is infinite. By compactness, choose a sequence an EA*, converging to a as n > 00.

So, a a &A because A has no limit points.

B(aso, S) on which f is defined and holomorphic, but an $\Rightarrow aso$, f is ill-defined on ai for all i, $\Rightarrow aso \neq \Omega \setminus A$.

So $aso \notin \Omega$.

But as $y \sim 0 \mod \Omega$, $n(y,a_{\infty}) = 0$. As n(y,x) is continuous as a function of x, n(y,b) = 0 for all b in open ball around a_{∞} . But this is a contradiction because $a_{n} \rightarrow a_{\infty}$, $n(y,a_{n}) \neq 0$, for all $n \in \mathbb{N}$.

Finish Proof of Residue Theorem:

Argument Principle: Let f be a holomorphic function, nonconstant on Ω . If f has a zero of order n at a, then locally $f = (z-a)^n h$, h holomorphic and $h \neq 0$.

$$\frac{f'}{f} = n(z-a)^{n-1}h + (z-a)^{n}h' = \frac{n}{(z-a)} + \frac{h'}{h}$$

This has a pole of order 1 at a adwith residue n.

Similarly, if f has a pole of order n at a, f/f has a simple pole with residue -n.

Let γ be a cycle, $\gamma \sim 0 \mod \Omega$, γ avoids zeros and poles of f. Then $\frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{f(z)} dz = \sum_{z \text{ zero of } f} n(\gamma z) - \sum_{p \text{ pole of } f} n(\gamma, p).$

Here, note that $\frac{1}{2\pi i} \oint_{\gamma} \frac{f'(z)}{f(z)} dz = n(\Gamma, 0)$ where $\Gamma = f \circ \gamma$.

Rouche's THEOREM: Let yno mod 12, 12 a region in C.

Assume $n(\gamma_i a) \in \{1, 0\}$ for all a not on γ .

"a inside $\gamma'' \longrightarrow n(\gamma_i a) = 1$ "a outside $\gamma'' \longrightarrow n(\gamma_i a) = 0$

Suppose that fig holomorphic on 12, and If-g/LIFI on y. Then "f and g have the same number of zeros inside y."

Proof of Rouche's Theorem:

Let h = 9/f. By hypothesis, 11-h/21 on y.

Let \(\int = \ho \gamma \). As \(0 \int \B(1,1) \), \(\Gamma \), \(

So $\int \frac{h'(z)}{h(z)} dz = 0$, so h has the same number of zeros/poles.

Check that this => fig have equal number of zeros.

Using residues to compute integrals:

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = TT$$
 Consider the contour

$$\oint_{C_R} \frac{dx}{1+x^2} = \int_{C_R^0} \frac{dx}{1+x^2} + \int_{C_P^0} \frac{dx}{1+x^2}$$

CR = CR + CR A Rota Remicrock

Then, since $\frac{1}{x_1^2} = \frac{1}{(x+i)(x-i)}$, the residue of $\frac{1}{1+x^2}$ at x=i is π So $\oint_{C_2} \frac{d_4}{i+x^2} = 2\pi i \left(\frac{1}{2i}\right) = \pi \quad constant \quad as \quad R \to \infty$

$$\lim_{R\to\infty} \int \frac{dx}{1+x^2} = \int \frac{dx}{1+x^2} \quad \text{and} \quad \lim_{R\to\infty} \int \frac{dx}{1+x^2} = 0 \quad \text{(the size of denominator)}$$

$$\int_{0}^{2\pi} \frac{d\Theta}{2+\sin(\Theta)} = \frac{2\pi}{\sqrt{3}}$$
 Make a substitution, $\sin(\Theta) = \frac{\exp(i\Theta) - \exp(-i\Theta)}{2i}$

So this integral becomes
$$\int_{0}^{2\pi} \frac{2ie^{i\Theta}d\Theta}{4ie^{i\Theta}+e^{2i\Theta}-1} = \int_{0}^{2\pi} \frac{2dz}{4iz+z^{2}-1}$$
Substitute $z=e^{i\Theta}$ $\Theta \in [0,2\pi]$

To integrate this, use portial fractions to And poles of $\frac{2}{4iz+z^2-1}$, which are at $z=-2i\pm\sqrt{3}i=i(-2\pm\sqrt{3})$

$$\int_{circle} \frac{2}{(z-i(z+\sqrt{3}))(z-i(-2-\sqrt{3}))} dz = \frac{2}{i(\sqrt{3}+-2)-i(\sqrt{3}-2)} = \frac{1}{\sqrt{3}i}$$
circle

So multiply by zmi to get zm $\int \frac{\sin \Theta}{2 + \sin \Theta} = \frac{2\pi}{\sqrt{3}}.$

Evaluate
$$\int_{-\infty}^{\infty} \frac{\cos(x)}{1+x^2} dx = \operatorname{Re} \left(\int_{-\infty}^{\infty} \frac{e^{ix}}{x^2+1} dx \right)$$

Consider $\int \frac{e^{iz}}{z^{z+1}} dz$

As $R \to \infty$ $\int_{C_1}^{\infty} \frac{e^{i\xi}}{\xi^2 + 1} d\xi \longrightarrow 0$

Residue at
$$z=i$$
: 1/zie, so
$$\int_{C_R}^{eiz} \frac{e^{iz}}{z^2+1} dz = \int_{-\infty}^{\infty} \frac{e^{iz}}{z^2+1} dz = \int_{-\infty}^{\infty} \frac{\cos x}{z^2+1} dx$$
$$= \frac{2\pi i}{zie} = \frac{\pi}{2} = \frac{\pi}{2}$$

Series and products.
Given a sequence of functions (fn), fn holomorphic on sin, single
(Remark: A 1.
K = 12m.) Cond for holomorphic on 12 for all not then (a) f holomorphic on 12, and (b) for if uniformly on compact sets. Before the Proof;
Before the Proof;
If $\int_{\gamma} f(z) dz = C$ for all closed γ in Ω . Then γ is analytic.
root: + has holozovanhor 1.1
by magic" derivative of holomorphic function is half
De man Color de 12 = UDm, so a e Dm \ m,
Ω_m open \longrightarrow find $\delta > 0$, $\overline{B(a,\delta)} \subseteq \Omega_m \subseteq \Omega_n \forall n \geq m$. By hypothesis, $f_n \Longrightarrow f$ on $\overline{B(a,\delta)}$.
By hypothesis, $f_n \rightarrow f$ on $B(a,\delta) \subseteq \Omega_m \subseteq \Omega_n \ \forall n \ge m$. As $B(a,\delta)$ is simply connected, $\int f_n(z)dz = 0$ for all closed $\int_Y f(z)dz = 0$ for all closed $f_n(z)dz = 0$ for all clos
=> f holomorphic on B(a,8) by Morera.

Proof of Weierstrauss (6):

ue Dm, Blass) = Dm

For all zeB(a, 8) $f_n(z) = \frac{1}{2\pi i} \int \frac{f(\zeta)}{\zeta - z} d\zeta$ $n \ge 0$

 $\implies f(z) = \frac{1}{2\pi i} \int \frac{f(\zeta)}{\zeta - z} d\zeta \qquad \text{by uniform convergence.}$

As f is continuous on y, f is holomorphic in B(a, 8).

 $f'_n(z) = \frac{1}{2\pi i} \int \frac{f(\zeta)}{(\zeta - z)^2} d\zeta$

As $n \to \infty$, RHS $\longrightarrow \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-z)^2} d\zeta = f'(z)$.

Annuall+ "1" of convergence, net uniform.

Argue that $f_n' = f'$ on B(a, 4/z) by Es and S's.

Given compact K C12, cover w/ svitable finite of small, closed

Corollary: Let for holomorphic on 2 for nell. If (\subsetent \frac{N}{2} \munder n) conveges on compact sets, then the sum is holomorphic and we can differentiate term by term.

Laurent Series: Zanza

To analyze: split into $a_0 + a_1 z + a_2 z^2 + \dots = \sum_{n=0}^{\infty} a_n z^n$ As $a_{-1} z^{-1} + a_{-2} z^{-2} + \dots = \sum_{m=1}^{\infty} a_{-m} w^m$ let $w = z^{-1}$

Radius of convergence of $\sum_{n=1}^{\infty} a_n z^n$ is R_i , of $\sum_{n=1}^{\infty} a_n w^n$ is S_2 { $Z: |Z| LR_i$ and $|Y| Z | LS_z$ }, series converges

Recall: If f is meromorphic, f has a pole at b. In a noble of b, f(2)-(216 $f(z) = (z-b)^{-n}g(z)$, $g \neq 0$, g holomorphic. From taylor series of g, $g \neq 0$, g holomorphic. Singular part

11 f = p(z-b) + h(z), $g \neq 0$, $g \neq 0$, noted of b, p a polynomial with no constant term, deg(p)=n. Problem: Construct moromorphic function for C with specified poles and Let by, velN be distinct, by - as v->0. For each y, P is nonzero polynomial u/ zero constant term. Goal: Construct ful poles by and singular part P2 (1/2-by) at by. $\sum_{\nu} \left(p_{\nu} \left(\frac{1}{z - b_{\nu}} \right) - p_{\nu}(z) \right)$ Pr will be an initial segment of the taylor series for $P_2(\frac{1}{z-6y})$ in powers of z. Let 92(2)= P2 (= 6,), holomorphic on B(0,1621). gu has a taylor series expansion valid in this disk. Estimate: Let Pr be the first not I terms of the Taylor Series (up to the x no term) Let C be a circular contour w/ radius 1621

Estimate error: (using integral form of Taylor Series remainder,

2 (162) - P2(2) $g_{y}(z) = P_{y}(z) + \frac{z^{n_{y+1}}}{2\pi i} \int_{C} \frac{\Phi(\zeta) d\zeta}{\zeta^{n_{y+1}}(\zeta-z)}$ since $|z| \le |b_{y}|/4$, $|\zeta-z| \ge \frac{|b_{y}|}{4}$. $\Rightarrow |g_{\nu}(z) - p_{\nu}(z)| \leq \frac{|z|^{n_{\nu+1}}}{2\pi} \cdot \frac{2\pi |b_{\nu}|}{2} \frac{M_{\nu} 2^{n_{\nu+1}} \cdot 4}{|b_{\nu}|^{n_{\nu+1}} \cdot |b_{\nu}|}, \text{ where } M = \sup_{z \in MC} |g_{\nu}(z)|.$ $=2M_{\nu}\left(\frac{2121}{16\nu}\right)^{n_{\nu}+1}\leq 2M_{\nu}\left(\frac{1}{2}\right)^{n_{\nu}+1}=\frac{M_{\nu}}{2^{n_{\nu}}}$

Choose no s.t. Zny My 42-2.

Fix Z & {by: NEN}. For all but finitely many N, 1216 1601 since by Diaco So break up [gulz)-Pr(z)) into several parts.

>: 16, 12 412) + \[(9, (2) - P, (2)) + \[(9, (2) - P, (2)) \]
>: 16, 12 412

This shows that for each S, $\sum_{\nu} (9\nu - P\nu) = T_1 + T_2$ T_1 meromorphic $T_2 \text{ unitarmly convergent} \text{ on } \overline{B(0,8)}, (16\nu) \ge 48$.

By Weierstrauss theorem, $T_z = \sum_{\nu: 16\nu 1>48} g_{\nu-\nu} + bolomorphic on B(0,8).$

If $f = \sum_{\nu} g_{\nu} - P_{\nu}$, f is as required.

Is this function unique? Yes!

Let h be any meromorphic function with poles by and singular parts $P(\frac{1}{2-b_0})$. Construct to f as above, consider h-f. Has removable singularities at each by. So we can find an entire function g such that h=f+g.

Example: $\frac{\pi^2}{\sin^2(\tau z)}$, where $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$

Has poles at all integers $\mathbf{a} \in \mathbb{Z}$, with singular part $\frac{1}{(z-n)^2}$.

 $\sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}$ absolutely convergent for $z \notin \mathbb{Z}$.

uniformly convergent on $B(0,\delta)$ if we exclude terms $1.11 \le \delta$

Then $\frac{\pi^2}{\sin^2(\pi z)} - \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}$ is entire.

both have period 1, so estimate on {x+iy: 04 x 4 1}

sin
$$(\pi(x+iy)) = \frac{e^{i\pi(x+iy)} - e^{-i(x+iy)\pi}}{2}$$
 for $|y|$ large?

$$|\sin(\pi(x+iy))| = |e^{-\pi y}| + |e^{\pi y}|$$
as $y \to \infty$

$$|\sin(\pi(x+iy))| = |e^{-\pi y}| + |e^{\pi y}|$$
as $y \to \infty$

Let
$$H = \frac{\pi^2}{\sin^2(\pi z)} - \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}$$
, H is entire, $H \to 0$ as $z \to \infty$

Find & s.t. |H| = 1 for = w/ 121>8

Hownded on B(0,5), so Hownded. Hence, by Liouville, H is constant.

Since it tends to zero, H=0, so:

$$\frac{\pi^2}{\sin^2(\pi z)} = \sum_{n \in \mathbb{Z}} \frac{1}{(z-n^2)}$$

Infinite Products:

Branch cut: Q=C \ {relR: re0}

$$Log(re^{i\Theta}) = ln(r) + i\Theta$$
, $\Theta = Arg(re^{i\Theta})$
 $r>0$, $\Theta \in (-\pi, \pi)$

This product converges iff(1) {n:bn=0} is finite a matter of logical hygene" The bon, boe C

(2) "partial products" of nonzero entries converge

If The converges, then by 1 as n > 00. Actually if The bn converges Let bn = Itan, then an -> 0 As bn - 1, log (bn) exists for all lorge n.

Analyze T (1+an), an -o, 1+an & o for all n. Consider \(\sum_{\text{log}} \log(1+a_n). Theorem: T(Itan) converges => [Lag (Itan) converges. Proof (=): If $\sum_{n} Log(1+a_n) = S$ and $S_n = \sum_{i=0}^{n} Log(1+a_i)$ $\exp(S_n) = P_n = \prod_{i=0}^n (1+a_i)$. Exp is continuous, so $P_n \to \exp(S) = P$. (\Longrightarrow) : $P_n \longrightarrow P$, and $P_n/p \longrightarrow 1$. Thus Log (PA/P) -> Log (1) = 0. exp $(Log(P_n/p) - S_n + Log(P))$ $= \frac{P_0}{P} \cdot \frac{1}{exp(s_0)} P = 1$ So then Log (Pn/p) - Sn + Log (P) = hn 2 Ti, hn EZ $(h_{n+1}-h_n)(2\pi i) = \log\left(\frac{P_{n+1}}{P}\right) - \log\left(\frac{P_n}{P}\right) - \log\left(1+a_{n+1}\right)$ As RHS -> 0 with n, then hn+1-hn -> 0 with n as well. Since ho & Z for all tons then ho = h is constant for large n. Log (Pn) - Sn + Log (P) = h Zni, h & Z. n→∞ → Log(Pn/P)→O, S=Log(P)-ZTih I he Z. Defn: IT (1+an) \$0, an >0, 1+an & D with D = C) {relR, r = 0} This product is absolutely convergent () I Log(Itan) is also convergent absolutely. Taylor series for Log(1+2) around zero, has radius of convergence = 1. Log (1+2) = Z - = 2 + = 3 - ...

 $\lim_{z\to 0} \frac{\log(1+z)}{z} = 1. \quad \text{If } a_n\to 0, \text{ then for all } \epsilon>0 \text{ for all large } n,$ $(1-\epsilon)|a_n|\leq |L_{og}(1+a_n)|\leq (1+\epsilon)|a_n|.$

Hence, we conclude that

TT (Itan) absolutely convergent () [log (Itan) absolutely convergent ⇒ ∑an absolutely convergent.

An analysis of entire functions:

Easy: if g is entires then exp(g(z)) is also entire and has no zeroes.

Fact: If h is entire and has no zeroes, then h=exp(g(z)) for some entire g. Proof: Use on old result to choose of as a holomorphic logarithm of h, defined on whole of C.

Let h be entire, h has finitely many zeroes. Assume h(0) = 0 with order m > 0, and zeroes at ais..., and including multiplications

Let $g(z) = \frac{h(z)}{z^m \prod_{i=1}^m (1-\frac{z}{q_i})}$. The denominator is a polynomial in Z, and after removing removable singularities, g is an entire function with no zeroes.

So g=exp(f(z)) for some entire f, hence

 $h = z^m \prod_{i=1}^N (a_i - z) \exp(f(z)).$

3/17/14

Recall: TT (1+an) converges absolutely () [an converges absolutely.

Entire functions:

Recall: if f is an entire function with no zeros, then there is an entire g with f(z) = exp(g(z))

Suppose f is entire, f has a zero of order m at z=0, and zeros a,,...,an, (a; #0). Consider $g = \frac{f}{z^m ff(1-z)}$ Removing singularities at zeroes of f, get entre function with no zeros. $g = \exp(h(z))$ for some entire h. f = z T(1-Z/ai) exp(h(Z)).

What if our function has infinitely mony zeros?

$$Cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$

Let (a: iEIN) be a sequence of nonzero complex numbers, and let a: -> 00. Went to make an entire function with zeros at ai.

This converges absolutely on every closed disk $B(o_1R) \Leftrightarrow \sum_{|a|} \frac{1}{|a|}$ converges absolutely, which if may not

What about

 $Log(1-\frac{2}{a_i})$ for $z \in B(0, |a_i|)$?

Taylor series is
$$\frac{-2}{a_i} - \frac{1}{2} \left(\frac{z}{a_i}\right)^2 - \frac{1}{3} \left(\frac{z}{a_i}\right)^3 - \cdots$$

Let m_i be a natural number, and let $p_i(z) = \frac{Z}{a_i} + \frac{1}{2} \left(\frac{Z}{a_i}\right)^2 + \cdots + \frac{1}{m_i} \left(\frac{Z}{a_i}\right)^{m_i}$. $\left| \text{Log}\left(1 - \frac{Z}{a_i}\right) + p_i(z) \right| = \left| \frac{1}{m_i + 1} \left(\frac{Z}{a_i}\right)^{m_i + 1} + \frac{1}{m_i + 2} \left(\frac{Z}{a_i}\right)^{m_i + 2} + \ldots \right| \quad \text{with } |z| \leq |a_i|$

$$= \frac{1}{m_{i+1}} \frac{|z|^{m_{i+1}}}{|a_i|^{m_{i+1}}} \frac{1}{1 - \frac{|z|}{|a_i|}}$$

Fix R, n s.t. lail≥ZR for i≥n.

For ZEB(O,R) and iZn, choose mi=i, so & decays exponentially by comparison test using sum of logs, above bound &

So
$$\sum_{i=n}^{\infty} \left(\log \left(1 - \frac{z}{a_i} \right) + p_i(z) \right)$$
 converges absolutely, uniformly.

Hence, II kg (1-2) e Pi(2) converges absolutely and uniformly.

Ve may conclude $\prod_{i=0}^{\infty} (1-\frac{2}{a_i})e^{\beta_i(z)}$ is entine, has zeros exactly at $\{a_i: i\in IN\}$.

Recall:
$$\frac{\pi^2}{\sin^2(\pi z)} = \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}$$

Consider the entire function
$$Sin(\Pi Z) = \frac{e^{i\Pi Z}}{-e^{-i\Pi Z}}$$

 $Sin(\Pi Z) = Z \prod_{n \neq 0} (1 - \frac{Z}{n}) e^{\frac{Z}{n}}$
 $Sin(\Pi Z) = \frac{Z}{n} (1 - \frac{Z}{n}) e^{\frac{Z}{n}}$

$$Sin (\Pi z) = z \prod_{n \neq 0} (1 - \frac{z}{n}) e^{\frac{z}{n}/n}$$

Converges absolutely to an B(O,R) for all R.

 $\frac{\sin(\pi z)}{z \, \text{TT} (1-\frac{z}{2})e^{z\ln z}} \quad \text{is entire, has no zeros, hence} = g(z) \quad \text{for some entire } g(z)$

$$Sin(\pi z) = \exp(g(z)) z \prod_{\substack{n \neq 0 \\ n \in \mathbb{Z}}} (1 - \frac{z}{n}) e^{\frac{z}{n}}$$

What is the logarithmic derivative of sin(TZ)?

$$\frac{d}{dz}\log(\sin(\pi z)) = \frac{\pi\cos(\pi z)}{\sin(\pi z)} = \pi\cot(\pi z).$$

To find q(Z), use the logarithmic derivative.

3/19/14

$$\pi \cot(\pi z) = \frac{1}{2} + g'(z) + \sum_{n \neq 0} \left(\frac{-1/n}{1 - z/n} + \frac{1}{n} \right) = \frac{1}{z} + g'(z) + \sum_{n \neq 0} \frac{z}{n(z - n)}$$

Let
$$H = \frac{1}{2} + \sum_{n \neq 0} \frac{2}{n(2-n)}$$

Let
$$H = \frac{1}{2} + \sum_{n \neq 0} \frac{2}{n(z-n)}$$
 $H'(z) = \frac{-1}{2^2} + \sum_{n \neq 0} \frac{-1}{(z-n)^2} = \frac{-\pi^2}{\sin^2(\pi z)}$ \leftarrow from before.

#Zde

$$\frac{d}{dz} \pi \operatorname{co} f(\pi z) = -\pi^2$$

$$\frac{d}{dz} \operatorname{Sin}^2(\pi z)$$

$$\frac{d}{dz} \pi \cot(\pi z) = -\frac{\pi^2}{Sig^2(\pi z)}$$
 Hence
$$\frac{d}{dz} (H - \pi \cot(\pi z)) = 0$$

Note that the LHS is an odd function. H-Mcot(MZ) = K & constant K.
Therefore 1-

Therefore, K is an odd function, but constant, so K=0.

Hence, g'(z)=0. So g(z)=l for some constant l.

Detour into Functional Analysis

Schwarz Lemma: Let f be holomorphic on B(0,1). If $|f(z)| \le 1$ for all z and f(0) = 0, then $|f(z)| \le |z|$ and $|f'(0)| \le 1$.

Also: if equality holds (either $|f(z)| = |z| \le z$ or |f'(0)| = 1)

then f(z) = cz for some c with |c| = 1.

Proof: Let $r \ge 1$ and consider the behavior of f(z)/z on B(0,r).

By compactness, f(z)/z has a maximum in the disk. By the maximum principle, finds max on boundary $\{z: |z| = r\}$ of B(0,r).

So for $|z| \le r$, so $|f(z)| \le \frac{1}{|z|} \implies |f(z)| \le \frac{|z|}{r}$. Let $r \to 1$, and conclude $|f(z)| \le |z|$ and $|f'(0)| \le 1$. \longleftarrow from difference quotient.

If falso attains max on interior, then f is constant. So equality holding means that f is just constant anyway.