

ELSEVIER

Computers in Industry 46 (2001)

**COMPUTERS IN
INDUSTRY**

www.elsevier.com/locate/compind

Author index to volume 46

Arai, T., Y. Aiyama, M. Sugi , and J. Ota, Holonic assembly system with Plug and Produce	289
Aiyama, Y. , <i>see</i> Arai, T.	289
Bai, Y.B. , and X.W. Xu, Object Boundary Encoding — a new vectorisation algorithm for engineering drawings	65
Balasubramanian, S., R.W. Brennan and D.H. Norrie, An architecture for metamorphic control of holonic manufacturing systems	13
Bluemink, G.-J. , <i>see</i> Heikkilä, T.	315
Brennan, R.W. , and D.H. Norrie, Evaluating the performance of reactive control architectures for manufacturing production control	235
Brennan, R.W. , <i>see</i> Balasubramanian, S.	13
Chin, K.-S. , <i>see</i> Tang, D.	75
Colquhoun, G.J. , <i>see</i> Hubel, H.	149
Costa, C.A., J.A. Harding and R.I.M. Young, The application of UML and an open distributed process framework to information system design	33
Giebels, M.M.T., H.J.J. Kals and W.H.M. Zijm, Building holarchies for concurrent manufacturing planning and control in EtoPlan	301
Han, M.C. , <i>see</i> Lee, S.	123
Harding, J.A. , <i>see</i> Costa, C.A.	33
Heikkilä, T., M. Kollingbaum, P. Valckenaers and G.-J. Bluemink, An agent architecture for manufacturing control: manAge	315
Hsieh, K.-L. , and L.-I. Tong, Optimization of multiple quality responses involving qualitative and quantitative characteristics in IC manufacturing using neural networks	1
Hsu, M.-S. , <i>see</i> Hsu, Y.-L.	167
Hsu, Y.-L. , and M.-S. Hsu, Weight reduction of aluminum disc wheels under fatigue constraints using a sequential neural network approximation method	167
Hubel, H. , and G.J. Colquhoun, A reference architecture for Engineering Data Control (EDC) in capital plant manufacture	149
Kals, H.J.J. , <i>see</i> Giebels, M.M.T.	301
Khoo, L.-P. , and L.-Y. Zhai, A prototype genetic algorithm-enhanced rough set-based rule induction system	95
Kollingbaum, M. , <i>see</i> Heikkilä, T.	315
Kosmopoulos, D. , and T. Varvarigou, Automated inspection of gaps on the automobile production line through stereo vision and specular reflection	49
Kruth, J.-P., T. Van Ginderachter, P.I. Tanaya and P. Valckenaers, The use of finite state machines for task-based machine tool control	247
Langer, G. , <i>see</i> Larsen, M.H.	275

Author index to volume 46

Larsen, M.H., C. Sørensen and G. Langer, Development of a Production Meta Product State Model	275
Lee, K.C. , <i>see</i> Lee, S.	123
Lee, S., K.C. Lee, M.C. Han and J.S. Yoon, On-line fuzzy performance management of Profibus networks	123
Li, Z. , <i>see</i> Tang, D.	75
Lin, F. , and D.H. Norrie, Schema-based conversation modeling for agent-oriented manufacturing systems	259
Liu, Y.W. , <i>see</i> Wang, T.Y.	181
Navet, N. , and Ye-Qiong, Song, Validation of in-vehicle real-time applications	107
Norrie, D.H. , <i>see</i> Balasubramanian, S.	13
Norrie, D.H. , <i>see</i> Brennan, R.W.	235
Norrie, D.H. , <i>see</i> Lin, F.	259
Norrie, D.H. , <i>see</i> Xue, D.	209
Ota, J. , <i>see</i> Arai, T.	289
Song, Ye-Qiong , <i>see</i> Navet, N.	107
Sørensen, C. , <i>see</i> Larsen, M.H.	275
Sun, J. , and D. Xue, A dynamic reactive scheduling mechanism for responding to changes of production orders and manufacturing resources	189
Sugi, M. , <i>see</i> Arai, T.	289
Sun, J. , <i>see</i> Xue, D.	209
Tanaya, P.I. , <i>see</i> Kruth, J.-P.	247
Tang, D., L. Zheng, Z. Li and K.-S. Chin, STEP-based product modeling for concurrent stamped part and die development	75
Tong, L.-I. , <i>see</i> Hsieh, K.-L.	1
Valckenaers, P. , <i>see</i> Heikkilä, T.	315
Valckenaers, P. , <i>see</i> Kruth, J.-P.	247
Van Ginderachter, T. , <i>see</i> Kruth, J.-P.	247
Varvarigou, T. , <i>see</i> Kosmopoulos, D.	49
Wang, T.Y., K.B. Wu and Y.W. Liu, A simulated annealing algorithm for facility layout problems under variable demand in Cellular Manufacturing Systems	181
Wu, C. , <i>see</i> Yan, J.-H.	139
Wu, K.B. , <i>see</i> Wang, T.Y.	181
Xu, X.W. , <i>see</i> Bai, Y.B.	65
Xue, D., J. Sun and D.H. Norrie, An intelligent optimal production scheduling approach using constraint-based search and agent-based collaboration	209
Xue, D. , <i>see</i> Sun, J.	189
Yan, J.-H. , and C. Wu, Scheduling approach for concurrent product development processes	139
Yoon, J.S. , <i>see</i> Lee, S.	123
Young, R.I.M. , <i>see</i> Costa, C.A.	33
Zhai, L.-Y. , <i>see</i> Khoo, L.-P.	95
Zheng, L. , <i>see</i> Tang, D.	75
Zijm, W.H.M. , <i>see</i> Giebels, M.M.T.	301

ELSEVIER

Computers in Industry 46 (2001)

**COMPUTERS IN
INDUSTRY**

www.elsevier.com/locate/compind

Subject index to volume 46

Agent technologies	315	Manufacturing control	315
Architecture	149	Manufacturing control architectures	235
Artificial intelligence	189	Manufacturing systems control	13
Automated visual inspection	49	Match-up approach	189
Back-propagation neural network (BPNN)	1	Modelling	149
CAD	65	Multi-agent systems	315
CAN	107	Multi-agents	189, 209
Capital plant	149	Multiple responses	1
Colored petri nets	259	Networking for manufacturing automation	123
Concurrent engineering	75, 139	Neural network	167
Constraints	209	Optimization	1
Data management	149	Optimization scheduling	139
Decentralised production planning	247	Performance evaluation	107
Design	107	Performance management	123
Distributed autonomous system	289	Plug and Produce	289
Distributed control	315	Predictive scheduling	189
Engineering drawing	65	Processing	65
Facility layout	181	Product development process	139
Fatigue	167	Product life cycle	181
Finite state machine	247	Product modeling	75
Flexible control	301	Production Meta Product State Model	275
Fuzzy logic	123	Profibus-FMS protocol	123
Fuzzy network performance manager (FNPM)	123	PSM	275
Gap measurement	49	Qualitative characteristic	1
Genetic algorithm	95, 139	Quantitative characteristic	1
Heuristic algorithm	139	Raster	65
Holonic control	301	Reactive scheduling	189
Holonic manufacturing systems	13, 235, 275	Real-time control	13
Holonic system	289	RM-ODP	33
Image	65	Rough sets	95
Implicit constraint	167	Rule induction	95
Information system	33	Schema	259
Integration	301	Search	209
Intelligent agent	259	Semiconductor	1
Intelligent manufacturing system	259	Simulated annealing	181
Intelligent scheduling	209	Specular reflection	49
In-vehicle application	107	Stamped part and die development	75
Machine tool control	247	STEP	75
		Stochastic planning	301
		Structural optimization	167

Subject index to volume 46

Target rotation time (TRT)	123	Unified Modelling Language (UML)	33
Task-based data model	247	Validation	107
UML	275	Vector	65