$\label{eq:power_power} \mbox{Heap and PQ}$

Class 9

Performance with *n* Pairs

• a PQ always has *n* pushes and *n* pops

	sorted vect	sorted list	unsort vect	unsort list
push	$O(n), \Omega(\lg n)$	$O(n), \Omega(1)$	$\Theta(1)$	$\Theta(1)$
pop	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$
n pairs	$O(n^2), \Omega(n \lg n)$	$O(n^2), \Omega(n)$	$\Theta(n^2)$	$\Theta(n^2)$

- which implementation is best?
- sorted list, then sorted vector, then the unsorted versions tie for last
- however, we can do better than any of these if instead we use a heap

Heap

- a digression to a new data structure
- heap is a very unfortunate name
- heap has two completely different meanings in CS
 - the area of memory from which memory for dynamically allocated variables is obtained
 - 2. a specific data structure (in our case, we will assume a binary heap when we say heap)

Heap Data Structure

Heap

A complete binary tree in which the root is either empty or contains a data element of higher value than both children, and both children are recursively heaps.

Heap Operations

- a heap has two main operations
 - 1. push
 - 2. pop

Heap Push

- since the heap must be complete, the inserted item must go to the right (sibling or cousin) of the last element
- or, if the bottom row is filled, open a new row
- insert 43

Heap Push

• then, bubble up

Heap Push Final Arrangement

• bubble up until done

- clearly the delete(_max) operation returns the root element
- to maintain heap structure, we must get rid of the rightmost element on the last row
- we copy the rightmost last row element to the root

• then call percolate down

• continue percolate down

• continue percolate down

Heap vs PQ

- we have been discussing the heap data structure
- but clearly, a heap can be used to implement a PQ
- analysis of the heap

	heap		
push			
pop			
n pairs			

Heap vs PQ

- we have been discussing the heap data structure
- but clearly, a heap can be used to implement a PQ
- analysis of the heap

	heap
push	$O(\lg n), \Omega(1)$
pop	$O(\lg n), \Omega(1)$
n pairs	$O(n \lg n), \Omega(n)$

• a huge improvement over $O(n^2)$ for a sorted list or vector

- but this heap thing is just an ADT
- it's an idea, a pretty abstraction

- but this heap thing is just an ADT
- it's an idea, a pretty abstraction
- but how do we implement it in code?
- what physical data structure do we use?

- but this heap thing is just an ADT
- it's an idea, a pretty abstraction
- but how do we implement it in code?
- what physical data structure do we use?
- a heap is a tree
- we will talk about trees in general later
- we normally implement trees with nodes and pointers to nodes

- but this heap thing is just an ADT
- it's an idea, a pretty abstraction
- but how do we implement it in code?
- what physical data structure do we use?
- a heap is a tree
- we will talk about trees in general later
- we normally implement trees with nodes and pointers to nodes
- we could implement a heap this way
- but instead, amazingly, we can implement it on a vector

Heap Implementation

Who's Your Daddy?

Navigating

- for any element i
 - i's parent is $\frac{i-1}{2}$
 - i's children are
 - 2i + 1
 - 2i + 2

PQ Example

- starting with the heap below, do the following operations
- show the results
 - schematically for a PQ
 - physically, including the indexes considered
- push (24); push (19); pop();

Building a Heap

- suppose we have *n* elements
- we wish to build a heap with them
- one at a time, *n* times, we do a push
- analyze this

Building a Heap

- suppose we have *n* elements
- we wish to build a heap with them
- one at a time, *n* times, we do a push
- analyze this
- each push takes $O(\lg n), \Omega(1)$ operations
- there are *n* pushes
- for a total of $O(n \lg n)$, $\Omega(n)$ operations

Heapify

• we can do better
void heapify(array)
{
 size_t size = array.size();
 for (size_t index = (size / 2) - 1; index < size; index--)
 {
 percolate_down(index);
 }
}</pre>

analyze this

Heapify

```
    we can do better

void heapify(array)
  size_t size = array.size();
  for (size_t index = (size / 2) - 1; index < size; index--)</pre>
    percolate_down(index);

    analyze this

        • a for loop (\Theta(n)) containing
        • percolate down (O(\lg n), \Omega(1))
  • for an overall analysis of O(n \lg n), \Omega(n) \text{ BUT!} \dots
```

Heapify Analysis

• how many leaf nodes are in a heap (for n > 2)?

Heapify Analysis

• how many leaf nodes are in a heap (for n > 2)?

Analysis of Heapify

- in a full binary tree there are $n = 2^h$ nodes
- half of them are leaves, half are interior nodes
- we count comparisons
- the actual number of comparisons in heapify is

$$2\frac{n}{2}$$
 for the level above the leaves $+2\frac{n}{4}$ for the level above that $+2\frac{n}{8}$ for the level above that :

• for h-1 levels

$$\sum_{i=1}^{h-1}\frac{2n}{2^i}\in\Theta(n)$$

A Digression for an Application

• once we perform heapify, what do we know about the element in vector position 0?

26	21	23	10	17	14	8	3
0	1	2	3	4	5	6	7

ullet swap positions 0 and n-1

- "wall off" position n-1
- call percolate down on 0

- swap positions 0 and n-2
- "wall off" position n-2
- call percolate down on 0

- swap positions 0 and n-3
- "wall off" position n-3
- call percolate down on 0

Heapsort

```
heapify();
for (size_t i = n - 1; i != 0; i--)
{
   swap(array.at(0), array.at(i))
   pretend the array is one smaller
   percolate_down(0)
}
```

Heapsort Analysis

- heapify is O(n) (from earlier)
- a $\Theta(n)$ loop containing:
 - percolate_down, which is $O(\lg n)$

$$T(n) \le n + n \lg n$$
$$\in O(n \lg n)$$

• what is big-Omega?