BASIC NUMBER THEORY: LECTURE 14

WENHAN DAI

1. Orders in imaginary quadratic field (continued)

Let K be an imaginary quadratic field. We resume on Theorem 14 of Lecture 13 last time.

Theorem 1. Fix an order \mathcal{O} of discriminant $D = \Delta_{\mathcal{O}/\mathbb{Z}} < 0$. Then

(1) If $f(x,y) = ax^2 + bxy + cy^2$ is a ppdf of discriminant D, then

$$[a, \frac{-b + \sqrt{D}}{2}] \subseteq \mathcal{O}$$

is a proper ideal of \mathcal{O} .

(2) Resuming on (1), the map

$$f(x,y) \longmapsto \left[a, \frac{-b + \sqrt{D}}{2}\right]$$

induces an isomorphism $C(D) \simeq C(\mathcal{O})$. In particular, $h(\mathcal{O}) = h(D)$.

(3) A positive integer m is represented by a ppdf f(x,y) of discriminant D if and only if $m = N(\alpha)$ for some proper \mathcal{O} -ideal \mathfrak{a} corresponding to f(x,y) via the isomorphism $C(D) \simeq C(\mathcal{O})$ in (2).

We have finished the proof of (1)(2) last time.

Remark 2. There was a small gap in our proof of Theorem 1(2) last time, and we left it to the reader to fill. That is, it remains to show that $f(x,y) \mapsto [a, \frac{-b+\sqrt{D}}{2}]$ is a homomorphism.

Given two ppdfs $f(x,y) = ax^2 + bxy + cy^2$ and $g(x,y) = a'x^2 + b'xy + c'y^2$ of discriminant D with (a', a, (b+b')/2) = 1, there is an integer B such that

$$B \equiv b \mod 2a$$
, $B \equiv b' \mod 2a'$, $B^2 \equiv D \mod 4aa'$.

Recall that the direct composition (or Dirichlet composition) of f and g is defined as

$$F(x,y) = aa'x^{2} + Bxy + \frac{B^{2} - D}{4aa'}y^{2}.$$

Consider the images under the bijection $C(D) \to C(\mathcal{O})$

$$F\mapsto [aa',\frac{-B-\sqrt{D}}{2}],\quad f\mapsto [a,\frac{-b-\sqrt{D}}{2}],\quad g\mapsto [a',\frac{-b'-\sqrt{D}}{2}].$$

Denote $\Delta = \frac{-B - \sqrt{D}}{2}$. Then

$$[a,\frac{-b-\sqrt{D}}{2}]=[a,\Delta],\quad [a',\frac{-b'-\sqrt{D}}{2}]=[a',\Delta],$$

Date: December 4, 2020.

and

$$[a, \Delta] \cdot [a', \Delta] = [aa', a\Delta, a'\Delta, \Delta^2].$$

As $B^2 \equiv D \mod 4aa'$,

$$\Delta^2 = \frac{B^2 + D - 2B\sqrt{D}}{4} = \frac{2B^2 - 2B\sqrt{D}}{4} = -B\Delta.$$

Hence

$$[a, \Delta] \cdot [a', \Delta] = [aa', a\Delta, a'\Delta, -B\Delta] = [aa', \Delta],$$

where the last equality is due to (B, a, a') = 1.

To summarize, the class of F is well-defined, i.e. independent of the choice of f and g. Clearly, $C(D) \to C(\mathcal{O})$ is a group homomorphism. Moreover, C(D) is an abelian group under direct composition such that $C(D) \cong C(\mathcal{O})$.

To prove Theorem 1(3), the following lemma would be useful.

Lemma 3. Fix an order \mathcal{O} of K with the ideal norm map $N(\cdot)$ on K.

- (1) For each $0 \neq \alpha \in \mathcal{O}$, $N(\alpha \mathcal{O}) = N(\alpha)$, where the right hand side is the norm of elements in K.
- (2) $N(\mathfrak{ab}) = N(\mathfrak{a})N(\mathfrak{b})$ for any proper \mathcal{O} -ideals $\mathfrak{a}, \mathfrak{b}$.
- (3) $a\overline{a} = N(a) \cdot \mathcal{O}$, where a is any proper \mathcal{O} -ideal.

Proof. (1) is clear for the following reason. Consider the \mathbb{Z} -linear map

$$T_{\alpha}: \mathcal{O} \longrightarrow \mathcal{O}, \quad x \longmapsto \alpha x.$$

Then $N(\alpha) = \det(T_{\alpha}) = |\mathcal{O}/T_{\alpha}(\mathcal{O})| = |\mathcal{O}/\alpha\mathcal{O}| = N(\alpha\mathcal{O}).$

Now we prove (2)(3). For $\alpha \in \mathcal{O}$, $N(\alpha \mathfrak{a}) = N(\alpha)N(\mathfrak{a})$ because

$$0 \to \alpha \mathcal{O}/\alpha \mathfrak{a} \to \mathcal{O}/\alpha \mathfrak{a} \to \mathcal{O}/\alpha \mathcal{O} \to 0$$

is an exact sequence, where by multiplicating by α we have an isomorphism $\mathcal{O}/\mathfrak{a} \simeq \alpha \mathcal{O}/\alpha \mathfrak{a}$. Suppose $\mathfrak{a} = \alpha[1,\tau]$ so that $\mathcal{O} = [1,\alpha\tau]$. Then $a\mathfrak{a} = \alpha[a,a\tau]$; here a comes from the ppdf $f(x,y) = ax^2 + bx + c$ of discriminant D for (a,b,c) = 1, $f(\tau) = 0$, and a > 0. Thus, $N(a) = a^2$ and

$$N(a\mathfrak{a}) = N(a)N(\mathfrak{a}) = N(\alpha)N([a, a\tau]) = aN(\alpha) \implies N(\mathfrak{a}) = \frac{N(\alpha)}{a}.$$

We also have $\overline{\mathfrak{a}} = \overline{\alpha}[1, \overline{\tau}]$. Therefore,

$$\begin{split} \mathfrak{a}\overline{\mathfrak{a}} &= \alpha \overline{\alpha}[1,\tau][1,\overline{\tau}] \\ &= N(\alpha)[1,\tau,\overline{\tau},\tau\overline{\tau}] \\ &= \frac{N(\alpha)}{a}[a,\frac{-b+\sqrt{D}}{2},c] \\ &= \frac{N(\alpha)}{a}[a,b,c,\frac{-b+\sqrt{D}}{2}] \\ &= \frac{N(\alpha)}{a}\mathcal{O} = N(\mathfrak{a})\mathcal{O}. \end{split}$$

Now we have proved (3). As for (2), we have

$$N(\mathfrak{ab})\mathcal{O} = \mathfrak{a}\overline{\mathfrak{a}}\mathfrak{b}\overline{\mathfrak{b}} = N(\mathfrak{a})N(\mathfrak{b})\mathcal{O}.$$

This completes the proof.

Now we are ready to resume on the proof of our main theorem.

Proof of Theorem 1(3). Suppose m is represented by f. Then $m^2 = d^2a$ for some a, where a is properly represented by $f(x,y) = ax^2 + bxy + cy^2$. Let τ be a root of f(x,1) in the upper half plane. Then $\mathfrak{a} = [a, a\tau]$ is a proper \mathcal{O} -ideal. It follows that for $\mathcal{O} = [1, a\tau]$, we have an isomorphism $f \mapsto \mathfrak{a}$ from Theorem 1(2) that we have proved last time, with $N(\mathfrak{a}) = a$. Conversely, let

$$m = N(\mathfrak{a}) = \frac{N(\alpha)}{a}, \quad \mathfrak{a} = \alpha[1, \tau], \quad \mathcal{O} = [1, a\tau],$$

where $\alpha, \alpha \tau \in \mathcal{O}$. Then for some $p, q, r, s \in \mathbb{Z}$,

$$\alpha = p + qa\tau, \quad \alpha\tau = r + sa\tau.$$

So we compute that

$$\begin{split} m &= N(\mathfrak{a}) = \frac{N(\alpha)}{a} = \frac{1}{a}(p + qa\tau)(p + qa\overline{\tau}) \\ &= \frac{1}{a}(p^2 - bpq + acq^2) \\ &= \frac{1}{a}((sa)^2 + sa(bq) + acq^2), \qquad (p = qb + sa, \ -qc = r) \\ &= as^2 + bsq + cq^2 \\ &= f(p,q). \end{split}$$

Corollary 4. Let $0 \neq m \in \mathbb{Z}$ Then for any ideal class in $C(\mathcal{O})$, there exists a proper \mathcal{O} -ideal whose norm is coprime to m.

Caveat. We remark that the isomorphism $C(D) \simeq C(\mathcal{O})$ is not valid for real quadratic fields. For a counterexample, let $K = \mathbb{Q}(\sqrt{3})$ and then $\mathcal{O}_K = \mathbb{Z}[\sqrt{3}]$ is a UFD. We have seen before that $d_K = 12$ and $h(12) \neq 1$, because $x^2 - 3y^2$ is not proper equivalent to $x^2 + 3y^2$ under any $\mathrm{SL}_2(\mathbb{Z})$ -action. Hence the group homomorphism $C(D) \to C(\mathcal{O})$ fails to be injective in this case.

2. Ideal prime to the conductor

Recall that for any order \mathcal{O} of K, its conductor f is defined as $[\mathcal{O}_K : \mathcal{O}]$. The ultimate goal of this section is to construct the following isomorphism:

$$C(\mathcal{O}) \simeq \text{class}$$
 group of \mathcal{O} -ideals prime to f
 $\simeq \text{class}$ group of \mathcal{O}_K -ideals prime to f

Definition 5. (1) Say an \mathcal{O} -ideal \mathfrak{a} is prime to f if $\mathfrak{a} + f\mathcal{O} = \mathcal{O}$.

(2) Let m be a positive integer. Say an \mathcal{O}_K -ideal \mathfrak{a} is prime to m if $\mathfrak{a} + m\mathcal{O}_K = \mathcal{O}_K$.

Lemma 6. (1) An ideal $\mathfrak{a} \subseteq \mathcal{O}$ is prime to f if and only if $(N(\mathfrak{a}), f) = 1$.

(2) Every O-ideal prime to f is proper.

Proof. (1) Take the multiplicating map

$$m_f: \mathcal{O}/\mathfrak{a} \xrightarrow{\cdot f} \mathcal{O}/\mathfrak{a}.$$

Then we obtain

 \mathfrak{a} is prime to $f \iff m_f$ is surjective $\iff m_f \text{ is an isomorphism}$ $\iff (f, |\mathcal{O}/\mathfrak{a}|) = (f, N(\mathfrak{a})) = 1.$

(2) Suppose \mathfrak{a} is an \mathcal{O} -ideal prime to f. Take $\beta \in K$ such that $\beta \mathfrak{a} \subseteq \mathfrak{a}$ (and hence $\beta \in \mathcal{O}_K$). We have

$$\beta(\mathfrak{a} + f\mathcal{O}) = \beta\mathcal{O}$$

$$\beta(\mathfrak{a} + f\mathcal{O}) \subseteq \mathfrak{a} + \beta f\mathcal{O} \subseteq \mathfrak{a} + f\mathcal{O}_K \subseteq \mathfrak{a} + \mathcal{O} = \mathcal{O}.$$

Hence $\beta \mathcal{O} \subseteq \mathcal{O}$ and $\beta \in \mathcal{O}$ follows, i.e. $\{\beta \in K : \beta \mathfrak{a} \subseteq \mathfrak{a}\} = \mathcal{O}$. So \mathfrak{a} is proper.

Notation 7. Denote $I(\mathcal{O}, f)$ the subgroup of $I(\mathcal{O})$ generated by \mathcal{O} -ideals prime to f. And denote $P(\mathcal{O}, f)$ the subgroup of $I(\mathcal{O}, f)$ generated by $\{\alpha \mathcal{O} \mid \alpha \in \mathcal{O}, (N(\alpha), f) = 1\}$.

Proposition 8. There is a natural isomorphism

$$I(\mathcal{O}, f)/P(\mathcal{O}, f) \xrightarrow{\sim} I(\mathcal{O})/P(\mathcal{O}).$$

Proof. By Corollary 4 this is surjective. Note that the injectivity is equivalent to

$$P(\mathcal{O}, f) = P(\mathcal{O}) \cap I(\mathcal{O}, f).$$

The " \subseteq " direction is apparent. Conversely, for $\alpha \in K$ we have $\alpha \mathcal{O} \in P(\mathcal{O}) \cap I(\mathcal{O}, f)$. Then $\alpha \mathcal{O} = \mathfrak{ab}^{-1}$ with some $\mathfrak{b}, \mathfrak{b}$ being \mathcal{O} -ideals that are prime to f. Hence $N(\mathfrak{b})\alpha \mathcal{O} = \mathfrak{a}\overline{\mathfrak{b}}$ by multiplicating by $\overline{\mathfrak{b}}$. Let $\alpha' = N(\mathfrak{b})\alpha$ and then $\alpha' \mathcal{O} = \mathfrak{a}\overline{\mathfrak{b}}$, and

$$(N(\mathfrak{b}), f) = 1, \quad (N(\mathfrak{b}\overline{\mathfrak{b}}), f) = 1, \quad (N(\alpha'), f) = 1.$$

Thus, $\alpha \mathcal{O} = (\alpha' \mathcal{O})(N(\mathfrak{b})\mathcal{O})^{-1}$ with $\alpha' \mathcal{O}, N(\mathfrak{b})\mathcal{O} \in P(\mathcal{O}, f)$. This proves $\alpha \mathcal{O} \in P(\mathcal{O}, f)$, and hence the injectivity.

Proposition 9. (1) If \mathfrak{a} is an \mathcal{O}_K -ideal prime to f, then $\mathfrak{a} \cap \mathcal{O}$ is an \mathcal{O} -ideal prime to f with the same norm.

- (2) If \mathfrak{a} is an \mathcal{O} -ideal prime to f, then $\mathfrak{a}\mathcal{O}_K$ is an \mathcal{O}_K -ideal prime to f with the same norm.
- (3) We obtain an isomorphism

$$I_K(f) \xrightarrow{\sim} I(\mathcal{O}, f)$$

$$\mathfrak{a} \longmapsto \mathfrak{a} \cap \mathcal{O}$$

$$\mathfrak{a} \mathcal{O}_K \longleftarrow \mathfrak{a}$$

Proof. (1) Consider the natural injection

$$\iota: \mathcal{O}/\mathfrak{a} \cap \mathcal{O} \hookrightarrow \mathcal{O}_K/\mathfrak{a}$$
.

Since $\mathfrak{a} + f\mathcal{O}_K = \mathcal{O}_K$, we see $m_f : \mathcal{O}_K/\mathfrak{a} \to \mathcal{O}_K/\mathfrak{a}$ is an isomorphism. In particular, $(N(\mathfrak{a}), f) = 1$. Then $(N(\mathfrak{a} \cap \mathcal{O}), f) = 1$ follows. Hence $\mathfrak{a} \cap \mathcal{O}$ is prime to f. Note that

 $\operatorname{coker}(\iota)$ is annihilated by f, so that $\operatorname{coker}(\iota) = 0$. This proves that ι is an isomorphism, and the assertion (1) follows.

In the next lecture we will resume on the proof for (2)(3).

School of Mathematical Sciences, Peking University, 100871, Beijing, China $\it Email\ address:$ daiwenhan@pku.edu.cn