

# **CD4514BMS CD4515BMS**

CMOS 4-Bit Latch/4-to-16 Line Decoders

July 14, 2006

### **Features**

- High-Voltage Types (20-Volt Rating)
- CD4514BMS Output "High" on Select
- CD4515BMS Output "Low" on Select
- Strobed Input Latch
- Inhibit Control
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and 25°C
- Noise Margin (Full Package-Temperature Range):
  - 1V at VDD = 5V
  - 2V at VDD = 10V
  - 2.5V at VDD = 15V
- . 5V, 10V, and 15V Parametric Ratings
- · Standardized, Symmetrical Output Characteristics
- Meets all Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

### **Applications**

- · Digital Multiplexing
- Address Decoding
- Hexadecimal/BCD Decoding
- Program-counter Decoding
- Control Decoder

### Description

CD4514BMS and CD4515BMS consist of a 4-bit strobed latch and a 4-to-16-line decoder. The latches hold the last input data presented prior to the strobe transition from 1 to 0. Inhibit control allows all outputs to be placed at 0(CD4514BMS) or 1(CD4515BMS) regardless of the state of the data or strobe inputs.

The decode truth table indicates all combinations of data inputs and appropriate selected outputs.

These devices are similar to industry types MC14514 and MC14515.

The CD4514BMS and CD4515BMS are supplied in these 24 lead outline packages:

Braze Seal DIP H4V
Frit Seal DIP H1Z
Ceramic Flatpack H4P

### **Pinout**

### CD4514BMS, CD4515BMS TOP VIEW



# Functional Diagram



### **Reliability Information Absolute Maximum Ratings** Ceramic DIP and FRIT Package . . . . $\theta_{ja}$ DC Supply Voltage Range, (VDD) . . . . . . -0.5V to +20V $^{ heta_{jc}}_{20^{o}\text{C/W}}$ (Voltage Referenced to VSS Terminals) 20°C/W Input Voltage Range, All Inputs . . . . . . . . -0.5V to VDD +0.5V Flatpack Package . . . . . . . . . . . . . . . . 70°C/W Maximum Package Power Dissipation (PD) at +125°C For $T_A = -55^{\circ}C$ to $+100^{\circ}C$ (Package Type D, F, K).....500mW Operating Temperature Range. . . . . . . . . -55°C to +125°C For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C (Package Type D, F, K) . . . . Derate Package Types D, F, K, H Storage Temperature Range (TSTG).....-65°C to +150°C Linearity at 12mW/°C to 200mW Lead Temperature (During Soldering) . . . . . . . . +265°C Device Dissipation per Output Transistor . . . . . . . . . . . . . . . 100mW For T<sub>A</sub> = Full Package Temperature Range (All Package Types) At Distance 1/16 $\pm$ 1/32 Inch (1.59mm $\pm$ 0.79mm) from case for 10s Maximum

### TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

|                                |        |                                       | GROUP A   |           | LIMITS               |       |       |       |
|--------------------------------|--------|---------------------------------------|-----------|-----------|----------------------|-------|-------|-------|
| PARAMETER                      | SYMBOL | CONDITIONS (NOTE 1)                   |           | SUBGROUPS | TEMPERATURE          | MIN   | MAX   | UNITS |
| Supply Current                 | IDD    | VDD = 20V, VIN = VDD or GND           |           | 1         | +25°C                | -     | 10    | μΑ    |
|                                |        |                                       |           | 2         | +125°C               | -     | 1000  | μΑ    |
|                                |        | VDD = 18V, VIN = VD                   | D or GND  | 3         | -55°C                | -     | 10    | μΑ    |
| Input Leakage Current          | IIL    | VIN = VDD or GND                      | VDD = 20  | 1         | +25°C                | -100  | -     | nA    |
|                                |        |                                       |           | 2         | +125°C               | -1000 | -     | nA    |
|                                |        |                                       | VDD = 18V | 3         | -55°C                | -100  | -     | nA    |
| Input Leakage Current          | IIH    | VIN = VDD or GND                      | VDD = 20  | 1         | +25°C                | -     | 100   | nA    |
|                                |        |                                       |           | 2         | +125°C               | -     | 1000  | nA    |
|                                |        |                                       | VDD = 18V | 3         | -55°C                | -     | 100   | nA    |
| Output Voltage                 | VOL15  | VDD = 15V, No Load                    |           | 1, 2, 3   | +25°C, +125°C, -55°C | -     | 50    | mV    |
| Output Voltage                 | VOH15  | VDD = 15V, No Load                    | (Note 3)  | 1, 2, 3   | +25°C, +125°C, -55°C | 14.95 | -     | V     |
| Output Current (Sink)          | IOL5   | VDD = 5V, VOUT = 0.                   | 4V        | 1         | +25°C                | 0.53  | -     | mA    |
| Output Current (Sink)          | IOL10  | VDD = 10V, VOUT = 0                   | 0.5V      | 1         | +25°C                | 1.4   | -     | mA    |
| Output Current (Sink)          | IOL15  | VDD = 15V, VOUT = 1.5V                |           | 1         | +25°C                | 3.5   | -     | mA    |
| Output Current (Source)        | IOH5A  | VDD = 5V, VOUT = 4.6V                 |           | 1         | +25°C                | -     | -0.53 | mA    |
| Output Current (Source)        | IOH5B  | VDD = 5V, VOUT = 2.                   | .5V       | 1         | +25°C                | -     | -1.8  | mA    |
| Output Current (Source)        | IOH10  | VDD = 10V, VOUT = 9                   | 9.5V      | 1         | +25°C                | -     | -1.4  | mA    |
| Output Current (Source)        | IOH15  | VDD = 15V, VOUT =                     | 13.5V     | 1         | +25°C                | -     | -3.5  | mA    |
| N Threshold Voltage            | VNTH   | VDD = 10V, ISS = -10                  | μΑ        | 1         | +25°C                | -2.8  | -0.7  | V     |
| P Threshold Voltage            | VPTH   | VSS = 0V, IDD = 10μ/                  | 4         | 1         | +25°C                | 0.7   | 2.8   | V     |
| Functional                     | F      | VDD = 2.8V, VIN = VD                  | DD or GND | 7         | +25°C                | VOH>  | VOL < | V     |
|                                |        | VDD = 20V, VIN = VD                   | D or GND  | 7         | +25°C                | VDD/2 | VDD/2 |       |
|                                |        | VDD = 18V, VIN = VD                   | D or GND  | 8A        | +125°C               |       |       |       |
|                                |        | VDD = 3V, VIN = VDD                   | or GND    | 8B        | -55°C                |       |       |       |
| Input Voltage Low<br>(Note 2)  | VIL    | VDD = 5V, VOH > 4.5V, VOL < 0.5V      |           | 1, 2, 3   | +25°C, +125°C, -55°C | =     | 1.5   | V     |
| Input Voltage High<br>(Note 2) | VIH    | VDD = 5V, VOH > 4.5V, VOL < 0.5V      |           | 1, 2, 3   | +25°C, +125°C, -55°C | 3.5   | -     | V     |
| Input Voltage Low<br>(Note 2)  | VIL    | VDD = 15V, VOH > 13.5V,<br>VOL < 1.5V |           | 1, 2, 3   | +25°C, +125°C, -55°C | -     | 4     | ٧     |
| Input Voltage High<br>(Note 2) | VIH    | VDD = 15V, VOH > 13<br>VOL < 1.5V     | 3.5V,     | 1, 2, 3   | +25°C, +125°C, -55°C | 11    | -     | V     |

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

is 0.050V max.

<sup>2.</sup> Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

|                   |        |                            | GROUP A   |               | LIM |      |       |
|-------------------|--------|----------------------------|-----------|---------------|-----|------|-------|
| PARAMETER         | SYMBOL | CONDITIONS (NOTE 1, 2)     | SUBGROUPS | TEMPERATURE   | MIN | MAX  | UNITS |
| Propagation Delay | TPHL1  | VDD = 5V, VIN = VDD or GND | 9         | +25°C         | -   | 970  | ns    |
| Strobe or Data    | TPLH1  |                            | 10, 11    | +125°C, -55°C | -   | 1310 | ns    |
| Propagation Delay | TPHL2  | VDD = 5V, VIN = VDD or GND | 9         | +25°C         | -   | 500  | ns    |
| Inhibit TPLH2     |        |                            | 10, 11    | +125°C, -55°C | -   | 675  | ns    |
| Transition Time   | ,      |                            | 9         | +25°C         | -   | 200  | ns    |
|                   | TTLH   |                            | 10, 11    | +125°C, -55°C | -   | 270  | ns    |

### NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

|                         |                                |                               |       |                         | LIN     | IITS  |       |  |
|-------------------------|--------------------------------|-------------------------------|-------|-------------------------|---------|-------|-------|--|
| PARAMETER               | SYMBOL CONDITIONS              |                               | NOTES | TEMPERATURE             | MIN MAX |       | UNITS |  |
| Supply Current          | IDD VDD = 5V, VIN = VDD or GND |                               | 1, 2  | -55°C, +25°C            | -       | 5     | μΑ    |  |
| ,                       |                                |                               |       | +125°C                  | -       | 150   | μΑ    |  |
|                         |                                | VDD = 10V, VIN = VDD or GND   | 1, 2  | -55°C, +25°C            | -       | 10    | μΑ    |  |
|                         |                                |                               |       | +125°C                  | -       | 300   | μΑ    |  |
|                         |                                | VDD = 15V, VIN = VDD or GND   | 1, 2  | -55°C, +25°C            | -       | 10    | μΑ    |  |
|                         |                                |                               |       | +125°C                  | -       | 600   | μΑ    |  |
| Output Voltage          | VOL                            | VDD = 5V, No Load             | 1, 2  | +25°C, +125°C,<br>-55°C | -       | 50    | mV    |  |
| Output Voltage          | VOL                            | VDD = 10V, No Load            | 1, 2  | +25°C, +125°C,<br>-55°C | -       | 50    | mV    |  |
| Output Voltage          | VOH                            | VDD = 5V, No Load             | 1, 2  | +25°C, +125°C,<br>-55°C | 4.95    | -     | V     |  |
| Output Voltage          | VOH                            | VDD = 10V, No Load            | 1, 2  | +25°C, +125°C,<br>-55°C | 9.95    | -     | V     |  |
| Output Current (Sink)   | IOL5 VDD = 5V, VOUT = 0.4V     |                               | 1, 2  | +125°C                  | 0.36    | -     | mA    |  |
|                         |                                |                               |       | -55°C                   | 0.64    | -     | mA    |  |
| Output Current (Sink)   | IOL10                          | VDD = 10V, VOUT = 0.5V        | 1, 2  | +125°C                  | 0.9     | -     | mA    |  |
|                         |                                |                               |       | -55°C                   | 1.6     | -     | mA    |  |
| Output Current (Sink)   | IOL15                          | VDD = 15V, VOUT = 1.5V        | 1, 2  | +125°C                  | 2.4     | -     | mA    |  |
|                         |                                |                               |       | -55°C                   | 4.2     | -     | mA    |  |
| Output Current (Source) | IOH5A                          | VDD = 5V, VOUT = 4.6V         | 1, 2  | +125°C                  | -       | -0.36 | mA    |  |
|                         |                                |                               |       | -55°C                   | -       | -0.64 | mA    |  |
| Output Current (Source) | IOH5B                          | VDD = 5V, VOUT = 2.5V         | 1, 2  | +125°C                  | -       | -1.15 | mA    |  |
|                         |                                |                               |       | -55°C                   | =       | -2.0  | mA    |  |
| Output Current (Source) | IOH10                          | VDD = 10V, VOUT = 9.5V        | 1, 2  | +125°C                  | =       | -0.9  | mA    |  |
|                         |                                |                               |       | -55°C                   | -       | -1.6  | mA    |  |
| Output Current (Source) | IOH15                          | VDD =15V, VOUT = 13.5V        | 1, 2  | +125°C                  | -       | -2.4  | mA    |  |
|                         |                                |                               |       | -55°C                   | -       | -4.2  | mA    |  |
| Input Voltage Low       | VIL                            | VDD = 10V, VOH > 9V, VOL < 1V | 1, 2  | +25°C, +125°C,<br>-55°C | -       | 3     | V     |  |
| Input Voltage High      | VIH                            | VDD = 10V, VOH > 9V, VOL < 1V | 1, 2  | +25°C, +125°C,<br>-55°C | +7      | -     | ٧     |  |

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

|                      |              |            |         |             | LIM | IITS |       |
|----------------------|--------------|------------|---------|-------------|-----|------|-------|
| PARAMETER            | SYMBOL       | CONDITIONS | NOTES   | TEMPERATURE | MIN | MAX  | UNITS |
| Propagation Delay    | TPHL1        | VDD = 10V  | 1, 2, 3 | +25°C       | -   | 370  | ns    |
| Strobe or Datat      | TPLH1        | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 270  | ns    |
| Propagation Delay    | TPHL2        | VDD = 10V  | 1, 2, 3 | +25°C       | -   | 220  | ns    |
| Inhibit              | TPLH2        | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 170  | ns    |
| Transition Time      | TTHL<br>TTLH | VDD = 10V  | 1, 2, 3 | +25°C       | -   | 100  | ns    |
|                      |              | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 80   | ns    |
| Minimum Data Setup   | TS           | VDD = 5V   | 1, 2, 3 | +25°C       | -   | 150  | ns    |
| Time                 |              | VDD = 10V  | 1, 2, 3 | +25°C       | -   | 70   | ns    |
|                      |              | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 40   | ns    |
| Minimum Strobe Pulse | TW           | VDD = 5V   | 1, 2, 3 | +25°C       | -   | 250  | ns    |
| Width                |              | VDD = 10V  | 1, 2, 3 | +25°C       | -   | 100  | ns    |
|                      |              | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 75   | ns    |
| Input Capacitance    | CIN          | Any Input  | 1, 2    | +25°C       | -   | 7.5  | pF    |

### NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

|                              |              |                             |            |             | LIMITS |                          |       |
|------------------------------|--------------|-----------------------------|------------|-------------|--------|--------------------------|-------|
| PARAMETER                    | SYMBOL       | CONDITIONS                  | NOTES      | TEMPERATURE | MIN    | MAX                      | UNITS |
| Supply Current               | IDD          | VDD = 20V, VIN = VDD or GND | 1, 4       | +25°C       | -      | 25                       | μΑ    |
| N Threshold Voltage          | VNTH         | VDD = 10V, ISS = -10μA      | 1, 4       | +25°C       | -2.8   | -0.2                     | V     |
| N Threshold Voltage<br>Delta | ΔVTN         | VDD = 10V, ISS = -10μA      | 1, 4       | +25°C       | -      | ±1                       | V     |
| P Threshold Voltage          | VTP          | VSS = 0V, IDD = $10\mu$ A   | 1, 4       | +25°C       | 0.2    | 2.8                      | V     |
| P Threshold Voltage<br>Delta | ΔVΤΡ         | VSS = 0V, IDD = 10μA        | 1, 4       | +25°C       | -      | ±1                       | V     |
| Functional                   | F            | VDD = 18V, VIN = VDD or GND | 1          | +25°C       | VOH >  | VOL <                    | V     |
|                              |              | VDD = 3V, VIN = VDD or GND  |            |             | VDD/2  | VDD/2                    |       |
| Propagation Delay Time       | TPHL<br>TPLH | VDD = 5V                    | 1, 2, 3, 4 | +25°C       | -      | 1.35 x<br>+25°C<br>Limit | ns    |

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

| PARAMETER               | SYMBOL | DELTA LIMIT              |
|-------------------------|--------|--------------------------|
| Supply Current - MSI-2  | IDD    | $\pm$ 1.0 $\mu$ A        |
| Output Current (Sink)   | IOL5   | ± 20% x Pre-Test Reading |
| Output Current (Source) | IOH5A  | ± 20% x Pre-Test Reading |

**TABLE 6. APPLICABLE SUBGROUPS** 

| CONFORMANCE GROUP             |                      | MIL-STD-883<br>METHOD | GROUP A SUBGROUPS                     | READ AND RECORD              |
|-------------------------------|----------------------|-----------------------|---------------------------------------|------------------------------|
| Initial Test (F               | Pre Burn-In)         | 100% 5004             | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| Interim Test                  | 1 (Post Burn-In)     | 100% 5004             | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| Interim Test                  | 2 (Post Burn-In)     | 100% 5004             | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| PDA (Note                     | e 1)                 | 100% 5004             | 1, 7, 9, Deltas                       |                              |
| Interim Test 3 (Post Burn-In) |                      | 100% 5004             | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| PDA (Note                     | e 1)                 | 100% 5004             | 1, 7, 9, Deltas                       |                              |
| Final Test                    |                      | 100% 5004             | 2, 3, 8A, 8B, 10, 11                  |                              |
| Group A                       |                      | Sample 5005           | 1, 2, 3, 7, 8A, 8B, 9, 10, 11         |                              |
| Group B                       | Group B Subgroup B-5 |                       | 1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas | Subgroups 1, 2, 3, 9, 10, 11 |
|                               | Subgroup B-6         | Sample 5005           | 1, 7, 9                               |                              |
| Group D                       |                      | Sample 5005           | 1, 2, 3, 8A, 8B, 9                    | Subgroups 1, 2 3             |

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

### **TABLE 7. TOTAL DOSE IRRADIATION**

|                    | MIL-STD-883 | TEST      |            | READ AND RECORD |            |
|--------------------|-------------|-----------|------------|-----------------|------------|
| CONFORMANCE GROUPS | METHOD      | PRE-IRRAD | POST-IRRAD | PRE-IRRAD       | POST-IRRAD |
| Group E Subgroup 2 | 5005        | 1, 7, 9   | Table 4    | 1, 9            | Table 4    |

## TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

|                              |             |                |            |                | OSCILI | LATOR |
|------------------------------|-------------|----------------|------------|----------------|--------|-------|
| FUNCTION                     | OPEN        | GROUND         | VDD        | 9V $\pm$ -0.5V | 50kHz  | 25kHz |
| Static Burn-In 1<br>(Note 1) | 4-11, 13-20 | 1-3, 12, 21-23 | 24         |                |        |       |
| Static Burn-In 2<br>(Note 1) | 4-11, 13-20 | 12             | 1-3, 21-24 |                |        |       |
| Dynamic Burn-<br>In (Note 1) | -           | 2, 3, 12       | 21, 22, 24 | 4-11, 13-20    | 1      | 23    |
| Irradiation<br>(Note 2)      |             |                |            |                |        |       |

### NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K  $\pm$  5%, VDD = 18V  $\pm$  0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K  $\pm$  5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD =  $10V \pm 0.5V$

# CD4514BMS, CD4515BMS



 $<sup>^{\</sup>star}\,$  All inputs protected by CMOS protection network.

FIGURE 1. LOGIC DIAGRAM

### **TRUTH TABLE**

|               | DE | CODE   | R INPU | JTS | SELECTED OUTPUT                                          |
|---------------|----|--------|--------|-----|----------------------------------------------------------|
| INHIBIT       | D  | С      | В      | Α   | CD4514BMS = LOGIC 1 (HIGH)<br>CD4515BMS = LOGIC 0 (LOW)  |
| 0             | 0  | 0      | 0      | 0   | S0                                                       |
| 0             | 0  | 0      | 0      | 1   | S1                                                       |
| 0             | 0  | 0      | 1      | 0   | S2                                                       |
| 0             | 0  | 0      | 1      | 1   | <b>S</b> 3                                               |
| 0             | 0  | 1      | 0      | 0   | S4                                                       |
| 0             | 0  | 1      | 0      | 1   | <b>S</b> 5                                               |
| 0             | 0  | 1      | 1      | 0   | S6                                                       |
| 0             | 0  | 1      | 1      | 1   | <b>S</b> 7                                               |
| 0             | 1  | 0      | 0      | 0   | S8                                                       |
| 0             | 1  | 0      | 0      | 1   | S9                                                       |
| 0             | 1  | 0      | 1      | 0   | S10                                                      |
| 0             | 1  | 0      | 1      | 1   | S11                                                      |
| 0             | 1  | 1      | 0      | 0   | S12                                                      |
| 0             | 1  | 1      | 0      | 1   | S13                                                      |
| 0             | 1  | 1      | 1      | 0   | S14                                                      |
| 0             | 1  | 1      | 1      | 1   | S15                                                      |
| 1             | Х  | Х      | Х      | Х   | All Outputs = 0, CD4514BMS<br>All Outputs = 1, CD4515BMS |
| 1 = HIGH LEVE | L  | 0 = L0 | OW LE  | VEL | X = DON'T CARE                                           |

# Typical Performance Characteristics



FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS



FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS



FIGURE 6. TYPICAL STROBE OR DATA PROPAGATION DELAY TIME vs LOAD CAPACITANCE



FIGURE 3. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS



FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS



FIGURE 7. TYPICAL INHIBIT PROPAGATION DELAY TIME vs LOAD CAPACITANCE

# Typical Performance Characteristics (Continued)





FIGURE 8. TYPICAL LOW-TO-HIGH TRANSITION TIME vs LOAD CAPACITANCE

FIGURE 9. TYPICAL STROBE OR DATA PROPAGATION DELAY TIME vs SUPPLY VOLTAGE



10. TYPICAL POWER DISSIPATION vs FREQUENCY

# Waveforms



FIGURE 11. WAVEFORMS FOR SETUP TIME AND STROBE PULSE WIDTH

# Chip Dimensions and Pad Layouts



Dimensions in parentheses are in milimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10<sup>-3</sup> inch.)

METALLIZATION: Thickness: 11kÅ - 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

**BOND PADS:** 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com