Hints for small exercise (Lecture 2, Day 2)

Helene Charlotte Wiese Rytgaard

May 30, 2023

First recall that

$$\operatorname{expit}(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}, \qquad \operatorname{logit}(x) = \log\left(\frac{x}{1 - x}\right),$$

- 1. Show that expit(logit(x)) = x.
- 2. Show that expit(-logit(x)) = 1 x.
- 3. Show that $\log(\operatorname{expit}(x)) = -\log(1 + e^{-x})$.
- 4. Show that $\log(1 \operatorname{expit}(x)) = -\log(1 + e^x)$.
- 5. Compute $\frac{d}{dx}\log(\operatorname{expit}(x))$ and $\frac{d}{dx}\log(1-\operatorname{expit}(x))$.
- 6. Derive the derivatives with respect to ε of the composite functions $\log(\exp(i(\log i(x) + \varepsilon h)))$ and $\log(1 \exp(i(\log i(x) + \varepsilon h)))$.
- 7. Set $\varepsilon = 0$ in the expressions for the derivatives of 5.
- 8. Applying these steps to $\mathcal{L}(f_{\varepsilon})$ now gives:

$$\frac{d}{d\varepsilon}\Big|_{\varepsilon=0} \mathcal{L}(f_{\varepsilon})(O) = YH(A,X)(1 - f(A,X)) - (1 - Y)H(A,X)f(A,X)$$
$$= YH(A,X) - H(A,X)f(A,X) = H(A,X)(Y - f(A,X)).$$