

Spectroscopie

17-10-2023

Lecture 6

Principales bandes d'absorption

On distingue 4 types de bandes d'absorptions dans les spectres UV des molécules organiques. Elles sont caractérisées par la longueur d'onde de leur maximum d'absorption (λ_{max})

Bandes R:

Elles sont dues à une transition électroniques $n \to \pi^\star$

Lorsqu'un hétéroatome porteur de doublet(s) non apparié(s), n, fait partie d'un système insaturé ou est conjugué avec un tel système, une transition de faible énergie peut se produire : passage d'un électron non liant dans une orbitale anti-liante π^* .

Ces bandes R présentent en général une faible absorption molaire avec le plus souvent ϵ_{max} < 100 mol⁻¹ L cm⁻¹

CHINA WIND OF SCIENCE THE STATE OF SCIENCE THE STATE OF SCIENCE THE SCIENCE TH

Principales bandes d'absorption

Bandes B (benzénoïdes):

Elles sont dues à une transition électroniques $\pi \to \pi^*$

Elles apparaissent dans les spectres de molécules aromatiques ou hétéroaromatiques.

Ces bandes B ont une structure fine et des valeurs d'absorption molaire avec le plus souvent ϵ_{max} < 1 000 mol⁻¹ L cm⁻¹.

Principales bandes d'absorption

Bandes E (Éthyléniques):

Elles sont aussi dues à une transition électroniques $\pi \to \pi^*$

Elles apparaissent dans les spectres de molécules aromatiques substituées par des groupements auxochromes.

Par exemple:

X = Halogène, Azote, Soufre, tout porteur de doublet donneur

Ces bandes E ont des valeurs d'absorption molaire de l'ordre de $2000 < \epsilon_{max} < 14~000~mol^{-1}~L~cm^{-1}$.

CHINN IN THE STATE OF SCHOOL SCHO

Principales bandes d'absorption

Bandes K (Konjugierte):

Elles sont dues à une transition électronique $\pi \to \pi^*$

Elles apparaissent dans les spectres de molécules possédant un système de doubles liaisons conjuguées :

Les bandes K ont des valeurs d'absorption molaire élevées :

 $\varepsilon_{\rm max} > 10~000~{\rm mol^{-1}~L~cm^{-1}}$.

Chromophores

Tous les composés sont capables d'absorber le rayonnement

électromagnétique mais à λ < 185 nm

un nombre limité des composés absorbe $\lambda > 200$ nm, ceux dont les électrons de valence ont de faibles énergies d'excitation: les chromophores

Chromophores : ce sont des groupements chimiques insaturés covalents qui donnent lieu à une absorption dans l'ultraviolet.

Transitions $n \rightarrow \sigma^*$

Transitions $\sigma \rightarrow \sigma^*$

composé	λ _{max} (nm)
CH₄	125
CH ₃ -CH ₃	135

composé	λ _{max} (nm)	ε _{max} (mol ⁻¹ L cm ⁻¹)
H ₂ O	167	1480
CH₃OH	184	150
CH₃CI	173	200
CH₃I	 ¦ 258	365
(CH ₃) ₂ S	229	140
(CH ₃) ₂ O	184	2520
CH ₃ NH ₂	215	600
(CH ₃) ₃ N	227	900

Chromophores

Chromophore	Formule	λ _{max} (nm)	ε _{max} (mol ⁻¹ L cm ⁻¹)
Amine	H_N-	195	2800
Ethylène	\rightarrow	190	8000
Carbonyle	>= 0	195	1000
Nitro	N,	220-230	1000
Azo	N=N	285-400	3-25
Benzène		185-202-255	
Naphtalène		220-275-312	
Anthracène		252-375	

Chromophores

Il existe des chromophores « élémentaires » qui, en fonction de leurs propriétés électroniques, absorbent certaines longueur d'ondes UV-visible.

Chromophores élémentaires	λ _{max} (nm)	¦ ε _{max} (mol ⁻¹ L cm ⁻¹)
alcène (>C=C<)	173*	10000
alcyne (- C≡C-)	178*	2000
cétone (>C=O)	290	16
aldéhyde (-CH=O)	279	15
acide (-COOH)	208	32
chlorure d'acide (-COCI)	220	100
amide (-CONH₂)	220	63
ester (-COOR)	211	57
nitro (-NO ₂)	214	17
azométhane (-N=N-)	338	4 ! 4

^{*} Dans le n-heptane

Éthylène CH₂=CH₂

Butadiène CH₂-CH-CH-CH₂

λ_{max} alcènes

Plus la longueur du polyène augmente, plus l'énergie (le gap entre la HOMO et la LUMO) diminue, et donc plus la longueur d'onde augmente.

Les molécules deviennent alors de plus en plus colorées

λ_{max} alcènes

Règles de Woodward-Fieser pour les diènes et polyènes

Pour le calcul de λ_{max}

Pour les polyènes conjugués ayant moins de 4 doubles liaisons.

Règles de Woodward-Fieser pour les diènes et polyènes

Pour le calcul de λ_{max}

Pour les polyènes conjugués ayant moins de 4 doubles liaisons.

FEATURE TO LOOK FOR:	λ_{MAX}	EXAMPLE	CALCULATION
Conjugated diene	Base value = 217		217 nm
Each additional double bond	+30	Two additional double bonds	Base: 217 $\frac{+2 \times 30}{277 \text{ nm}}$ (observed = 290 nm)
Each auxochromic alkyl group	+5	Three alkyl groups connected to chromophore	Base: 217 +3×5 232 nm (observed = 232 nm)
Each exocyclic double bond (a double bond where one vinylic position is part of a ring and the other vinylic position is outside the ring)	+5	Exocyclic	Base: 217 +2×5 alkyl groups +5 exocyclic double bond 232 nm (observed = 230 nm)
Homoannular diene—both double bonds are contained in one ring, so the diene moiety is locked in an s-cis conformation	+39		Base: 217 +4×5 alkyl groups +39 homoannular diene 276 nm (observed = 269 nm)

Règles de Fieser-Kuhn pour les polyènes conjugués

Pour les polyènes conjugués ayant plus de 4 doubles liaisons, les règles de Fieser-Kuhn doivent être appliquées afin d'obtenir la longueur d'onde d'absorption maximale.

Selon cette règle, l'équation suivante peut être utilisée pour résoudre la longueur d'onde de l'absorption maximale λ_{max} et aussi l'absorptivité maximale ϵ_{max} :

$$\lambda_{\text{max}} = 114 + 5M + n (48,0 - 1,7 n) - 16,5 R_{\text{endo}} - 10 R_{\text{exo}}$$

$$\varepsilon_{\text{max}} = (1,74 \times 10^4) \text{ n}$$

WHO LESS TO A SECRETARY OF THE PROPERTY OF THE

Règles de Fieser-Kuhn pour les polyènes conjugués

M est le nombre de substituants d'alkyle / résidus d'anneau dans le système conjugué.

n est le nombre de doubles liaisons conjuguées.

R_{endo} est le nombre d'anneaux avec doubles liaisons endocycliques dans le système conjugué.

R_{exo} est le nombre d'anneaux avec des doubles liaisons exocycliques dans le système conjugué.

β-carotène

β-carotene est le précurseur de la vitamin A qui est un dérivé terpénique avec plusieurs unités isoprène.

β-carotene

Les caroténoïdes constituent une classe importante de pigments naturels. Ils sont responsables de la couleur jaune ou orangée de nombreux fruits et légumes. Le β-carotène est abondant dans les carottes, les citrouilles abricots et nectarines. Les légumes de couleur vert foncé comme les épinards et les brocolis en sont aussi une source importante. Dans ces légumes, la couleur orange est masquée par la couleur verte de la chlorophylle. Lorsque la chlorophylle s'estompe, la couleur jaune-orange devient plus visible c'est l'automne !!!

β-carotène

M (nombre de substituants alkyls): 10 n (nombre de doubles liaisons conjuguées): 11

R_{endo} (nombre de doubles liaisons endocycliques) : 2

R_{exo} (nombre de doubles liaisons exocycliques) : 0

Substitution dans l'équation

$$\lambda_{max}$$
 = 114 + 5M + n (48.0 - 1.7 n) - 16.5 R_{endo} - 10 R_{exo}

$$= 114 + 5 \times 10 + 11 \times (48.0 - 1.7 \times 11) - 16.5 \times 2 - 10 \times 0$$

$$= 114 + 50 + 322.3 - 33$$

COLUMNIA INVESTIGATION DE CARRESTA DE DE CARRESTA

β-carotène

 $\epsilon_{452} \sim 140~000~\text{mol}^{-1}~\text{L cm}^{-1}$

 $\lambda_{\text{max, calc}} = 453.3 \text{ nm}$

 $\epsilon_{\text{max,calc}}$ = (1,74 x 10⁴) n = (1,74 x 10⁴) x 11 = 191400 mol⁻¹ L cm⁻¹

Composés benzéniques

On s'attend à l'existence de quatre transitions de même énergie d'un électron de π_2 ou π_3 vers un niveau π_4^* ou π_5^* .

Composés benzéniques

En raison des interactions électroniques, ces 4 états excités voient leur dégénérescence levée en trois niveaux B_{2u} , B_{1u} et E_{1u} . Seule la première transition $A_{1g} \rightarrow B_{2u}$ est observée dans l'UV proche, interdite par symétrie (256 nm avec ϵ = 200)

Composés benzéniques

Bandes primaires (184, 202 nm)

Influence du substituant

Pour la substitution en para, si un substituant est électroattracteur et l'autre électro-donneur, le déplacement de la bande primaire est plus grand que celui correspondant à la somme des déplacement dû à chaque substituant.

		Primai	re	Seconda	ire	
Substitue	ent	λ (nm)	3	λ (nm)	8	
	> -н	203.5	7400	254	204	
	-сн,	206.5	7000	261	225)
Electrons	-(1	209.5	7400	263.5	190	
Releasing	$\rightarrow tt^{L}$	210	7900	261	192	électro-donneur
Substituents	-OH	210.5	6200	270	1450	
Substituents	-осн,	217	6400	269	1480	
	-NH,	2.30	8600	280	1430	
	-CN	224	13000	271	1000	7
Electron-	-cooh	230	11600	273	9.70	électroattracteur
Withdrawing	-COCH,	245.5	9800			electroattracteur
Substituents	-CHO	249.5	11400			
	-NO1	268.5	7800			

Effet du pH

	Primair	Primaire		aire
Substituent	λ (nm)	ε	λ (nm)	ε
<u></u>	203.5	7400	254	204
-он	210.5	6200	270	1450
-0-	235	9400	287	2600
-NH.	230	8600	280	1430
-NH*.	203	7500	254	169
-соон	230 .	11600	273	970
-COO	224	8700	268	560

Chromophore	λmax	$A_{\rm ice}^{146}$
benzoic acid	273	85
phenol phenolate	270 - 287	172- 271
NH ₃	255- 286	16- 79

Règle pour les dérivés benzoyles

Empirical Rules for Benzoyl Derivatives

Parent chromophore:	O ⊢C—R	
R = Alkyl or ring residue		246
R-H		250
R = OH or OAlkyl		230
Increment for each substituent:		
-Alkyl or ring residue	0-,m-	3
	p-	10
-OH, -OCH ₃ , or -OAlkyl	o-,m-	7
	p-	25
-0	0-	11
	m-	20
	р-	78
-C1	o-,m-	0
	p-	10
-Br	o-,m-	2
	p-	15
-NH ₂	o-,m-	13
	р-	58
-NHCOCH,	o-,m-	20
	p-	45
NHCH,	p-	73
-N (CH ₃) a	o-,m-	20
	р-	85

THE STATE OF STATE OF

Transitions électroniques pour les carbonyles

Transitions électroniques pour les carbonyles

Exemple du formaldéhyde

Quelques règles

Règles empiriques pour les aldéhydes, acides et esters conjugués

β\ α /H C=C-C	
B 1	
PARENT	208 nm
PARENT With α or β alkyl groups	208 nm 220
and the second s	

Empirical Rules for	r Unsaturated Acids and Ester
Base Values for:	
β α C=C	C=C
β COOR	β \ COOII
with α or β alkyl group	208 nm
with α, β or β, β alkyl groups	217
with α, β, β alkyl groups	225
for an exocyclic α , β double be	ond add 5 nm
for an endocyclic α, β double	bond in
a 5- or 7-membered ring	add 5 nm

Quelques règles

Règle de Woodward-Fieser pour les énones conjuguées

 Système d'increments pour calculer les maxima d'absorp 	noi
des composés carbonyles α,β-insaturés	

$ \delta - C = C - C = C - C = O $ $ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$	(dans I	e méthanol o	u l'éthanol)	
Valeurs de base ⇒ ⇒ 3	X = H			207 nm
	X = alcyle (resp. cycle de 6C)			215 nm
	X = OH, O-alkyle			193 nm
par position exocyclique d'une par composant diènique homo par substituants en		pos	ition	+ 5 nm + 39 nm
	α	β	γ	δ et suivantes
alkyle (ou reste cyclique)	10	12	18	18
CI	15	12		
Br	25	30		
	0.5	00		FO

alkyle (ou reste cyclique) 10 12 18 18

CI 15 12

Br 25 30

OH 35 30 50

O—alkyle 35 30 17 31

O—acyle 6 6 6 6 6

N(Alkyle)₂ 95

Les valeurs de base sont le résultat de mesure dans les alcools. Pour les autres milieux, il convient d'effectuer des corrections en fonction du solvant :

+ 8 nm	
- 1 nm	
- 5 nm	
- 7 nm	
-11 nm	
-11 nm	
	- 1 nm - 5 nm - 7 nm - 11 nm

Transitions $\pi \to \pi^*$, $n \to \pi^*$ et $\sigma \to \pi^*$

composé	solvant	λ _{max} (nm)	ε _{max} (mol ⁻¹ L cm ⁻¹)	transition
C ₆ H ₁₃ CH=CH ₂	heptane	177	13000	$\pi \to \pi^\star$
C ₅ H ₁₁ CH≡CCH ₃	heptane	178	10000	$\pi \to \pi^\star$
		196	2000	
	i	225	160	
CH ₃ (C=O)CH ₃	hexane	186	1000	$n \to \sigma^\star$
		280	16	$\boldsymbol{n} \to \boldsymbol{\pi}^{\star}$
CH ₃ (C=O)H	hexane	180	élevé	$n \to \sigma^\star$
		293	12	$\boldsymbol{n} \rightarrow \boldsymbol{\pi^{\star}}$
CH ₃ (C=O)OH	¦ éthanol	204	41	$\textbf{n} \rightarrow \pi^{\star}$
CH ₃ (C=O)NH ₂	: eau	214	60	$n\to \pi^\star$
CH ₃ N=NCH ₃	éthanol	339	5	$\textbf{n} \rightarrow \pi^{\star}$
CH ₃ NO ₂	isooctane	280	22	$n\to \pi^\star$
C ₂ H ₅ ONO ₂	¦ dioxane	270	12	$n\to \pi^\star$

Valeurs d'absorption de chromophores isolés

composé	transition	λ _{max} (nm)	log ε _{max} (mol ⁻¹ L cm ⁻¹)
R-OH	$n \to \sigma^*$	180	2.5
R-O-R	$n \to \sigma^\star$	180	3.5
R-NH ₂	$\textbf{n} \rightarrow \sigma^{\star}$	190	3.5
R-SH	$n \rightarrow \sigma^*$	210	3.0
R ₂ C=CR ₂	$\pi o \pi^\star$	175	3.0
R-C≡C-R	$\pi \to \pi^\star$	170	3.0
R-C≣N	$n \to \pi^\star$	160	< 1.0
R-N=N-R	$n o \pi^\star$	340	< 1.0
R-NO ₂	$n o \pi^\star$	271	< 1.0
R-CHO	$\pi \to \pi^\star$	190	2.0
	$n\to \pi^\star$	290	1.0
R ₂ CO	$\pi \to \pi^\star$	180	3.0
	$n o \pi^\star$	280	1.5
R-COOH	$n o \pi^\star$	205	1.5
R-COOR'	$\textbf{n} \rightarrow \pi^{\star}$	205	1.5
R-CONH ₂	$n\to \pi^\star$	210	1.5

Relation avec la structure chimique

Anions inorganiques transitions $n \to \pi^*$

λ _{max} (nm)
313
217
360, 280
230

Métaux de transition

Éléments de transition de la première (3d) à la deuxième série (4d)

Bandes larges dépendantes de l'environnement

Terres rares

Lanthanides: 4f Actinides: 5f

Bandes étroites et indépendantes de l'environnement

THE STANDARD OF CASE WATER

Auxochrome

Auxochromes : ce sont des groupements saturés qui, lorsqu'ils sont liés à un chromophore, modifient la longueur d'onde λ_{max} et l'intensité du maximum d'absorption.

Effet hypsochromique de paires auxochromes isolées sur la transition $n \to \pi^*$ d'un groupement carbonyle

composé	solvant	λ _{max} (nm)	ε _{max} (mol ⁻¹ L cm ⁻¹)
CH₃COH	hexane	293	12
CH ₃ COCH ₃	hexane	279	15
CH ₃ COCI	hexane	235	53
CH ₃ CONH ₂	eau	214	- I
CH ₃ COCH ₂ CH ₃	eau	204	60
CH₃COOH	éthanol	204	41

Solvant

Ils doivent dissoudre le produit et être transparents dans la région examinée. L'éthanol à 95 % est le solvant le plus utilisé ; il est suffisamment bon solvant pour beaucoup de composés organiques.

Les hydrocarbures sont des solvants utilisés pour des substances non polaires ; ils doivent être purifiés soigneusement pour éliminer toute trace de substances aromatiques ou éthyléniques.

L'eau distillée et les acides sont de bons solvants : leur transmission est très bonne.

Solvant

Les solvants ont tout de même des effets : leur polarité changeant, on observe des changements quant à la longueur d'onde et à l'intensité du maximum d'absorption.

Solvant	Cut-off (nm)	
H ₂ O	205	
Acetonitrile	210	
Ether	210	
Hexane	210	
Méthanol	210	
Chloroforme	245	
CC1 ₄	265	
DMF	270	
Pyridine	305	
Acétone	330	
Nitrométhane	380	
Ethanol	205	
Cyclohexane	210	
Dioxane	220	
Pyridine	305	
Benzène	280	
Toluène	285	
1,2-Dichloroethane	230	
Acétone	330	

Effets de solvant

Effets de solvant sur les alcènes

diminution de l'énergie causée par les intéractions du solvant

Effets de solvant

Effets de solvant sur les carbonyles

