Package 'zernike'

February 15, 2016

Title Zernike Polynomials

Version 3.2.6

Author M.L. Peck <mpeck1@ix.netcom.com></mpeck1@ix.netcom.com>
Depends R (>= $3.0.0$)
Suggests pixmap, rgl, Rsolnp, odesolve, mvtnorm, lppuw
Description Routines for Manipulation of Zernike polynomials and Interferogram fringe analysis
Maintainer M.L. Peck <mpeck1@ix.netcom.com></mpeck1@ix.netcom.com>
License MIT and GPL
R topics documented:
addfit aiapsi astig.bath circle.pars col3d convolve2d crop fftfit FFTUtilities fitzernikes foucogram gblur gblur 1

 load.images
 21

 lspsi
 22

 modalfit
 23

2 addfit

pcafit	 	 24
pcapsi	 	 25
pick.sidelobe	 	 27
plot.cmat	 	 28
plot.pupil	 	 29
plotn	 	 30
plotxs	 	 31
psifit	 	 32
pupil	 	 33
pupil.pars	 	 35
pupil.rhotheta	 	 36
pupilrms	 	 37
qpuw	 	 38
readjpeg	 	 39
rescale	 	 39
rmap	 	 40
rygcb	 	 41
separate.wf	 	 42
startest	 	 43
synth.interferogram	 	 44
turbwf	 	 46
wf.net	 	 47
wf3d.pupil	 	 48
zconic	 	 49
Zernike	 	 50
zlist	 	 52
$zmoments \ \dots \dots \dots \dots$	 	 53
$zpm\ \dots\dots\dots\dots$	 	 54
		55

addfit

Add zernike coefficients to a matrix.

Description

Add zernike coefficients to a matrix.

Usage

```
addfit(..., th = 0, zcm = NULL, theta = numeric(0))
```

Arguments

... One or more fits as from psifit, etc.

th Rotation angles, in degrees

zcm The matrix to be added to (defaults to NULL) theta The vector of rotation angles to be added to

aiapsi 3

Author(s)

M.L. Peck

aiapsi

Iterative algorithms for PSI with unknown phase shifts

Description

Three iterative algorithms for PSI with unknown phase shifts.

Usage

```
aiapsi(im.mat, phases, maxiter = 20, ptol = 0.001,
  trace = 1, plotprogress = TRUE)
hkpsi(im.mat, phases, maxiter = 20, ptol = 0.001,
  trace = 1, plotprogress = TRUE)
tiltpsi(im.mat, phases, x, y, tilts = NULL, nlpref = 1, tlim = 0.5,
  maxiter = 20, ptol = 0.001, trace = 1, plotprogress=TRUE)
```

Arguments

im.mat	a matrix of interferogram values
phases	Starting guess for phase shifts
maxiter	Maximum number of iterations
ptol	Convergence criterion for phase shifts
trace	Print some summary data every trace'th iteration.
plotprogress	Plot some summary data for each iteration?
	Also, for tiltpsi
x	x coordinate for each pixel.
У	y coordinate for each pixel.
tilts	Starting guess for tilts.
nlpref	Preferred nonlinear optimizer.
tlim	Maximum tilt difference from overall tilt values.

Details

The default of tilts = NULL will set the starting guess for all tilts to 0.

nlpref picks the preferred nonlinear optimizer in function tiltpsi. The default choice uses the base package function nlminb. If nlpref > 1 the function solnp from package Rsolnp is used instead.

4 astig.bath

Value

A list containing the following elements:

phi The wrapped phase estimate. This is a vector as long as the number of rows in

im.mat.

mod Modulation estimate.

phases Phase shift estimates.

iter Number of iterations.

sse Sum squared error at each iteration.

Also, for tiltpsi

tilts Final tilt estimates, given as offsets from frame 1 tilts.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

References

Zhaoyang Wang and Bongtae Han, "Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms," *Opt. Lett.* 29, 1671-1673 (2004).

Han, G-S and Kim, S-W,, "Numerical correction of reference phases in phase-shifting interferometry by iterative least squares fitting," *Applied Optics* 33, 7321-7325 (1994),

Lin, B-J et al., "An iterative tilt-immune phase-shifting algorithm," OSA conference Optical Fabrication and Testing 2010.

See Also

itfit

astig.bath

Zernike coefficients for astigmatism due to Bath astigmatism.

Description

Calculates Bath astigmatism coefficients with optional rotation of phi degrees.

Usage

```
astig.bath(D, rc, s, lambda = 1e-06, phi = 0)
```

circle.pars 5

Arguments

rc Radius of curvature

s separation of reference and test beams

lambda Wavelength – defaults to 1 nm.

phi angle of image horizontal relative to interferometer axis, in degrees

Details

D, rc, s, and lambda must have the same units.

Value

The Zernike coefficients for primary astigmatism terms.

Author(s)

M.L. Peck <mpeck1@ix.netcom.com>

Description

Automatically determine the center and radius of a circular interferogram image.

Usage

```
circle.pars(im, fw=2, qt=0.995, excl=5, refine=2,
    plots=TRUE, ask=TRUE, details=FALSE)
```

Arguments

im	A matrix containing an image of a circular disk
fw	Amount to smooth image
qt	Threshold to accept an edge point, expressed as a quantile
excl	number of pixels around border of frame to exclude
refine	radius range in pixels for a second pass estimate
plots	Plot edge candidates and fit?
ask	Wait for input before displaying fit?
obstructed	Logical: is there a central obstruction?

6 circle.pars

Details

This routine partially implements the Canny algorithm for edge detection. After optionally smoothing the input image the gradient is calculated using a Sobel filter, and edge pixels are identified by locating local maxima in the magnitude of the gradient.

The edge pixels with qt percentile largest gradients are passed to lqs in package MASS to determine robustly the best fit circle.

Finally, if refine > 0, all edge points within +- refine pixels of the previously determined edge are passed to nls for a second estimate of center point and radius.

Value

A list with the following components:

XC	X coordinate of the center of the pupil
ус	Y coordinate of the center of the pupil
rx	Horizontal radius of the pupil
ry	Vertical radius of the pupil = rx
obstruct	Obstruction fraction (always = 0)

Note

This routine is only effective on modulation estimates, and will almost certainly fail on interferogram images. Since data quality varies widely considerable experimentation may be needed on any given image. Increasing the smoothing parameter f_W helps to suppress artifacts. Depending on how strong the actual edge is compared to artifacts qt may need to be either increased or decreased from the default value.

if details==TRUE several more pieces of data are returned. This is mostly for debugging purposes and may be eliminated in the future.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

See Also

Many routines require the pupil parameters in the form returned by circle.pars. For example psifit, fftfit, pupil, etc.

col3d 7

Description

Returns a vector of colors similar to image () display.

Usage

```
col3d(surf, surf.col=topo.colors(256), zlim = NULL, eqa=FALSE)
```

Arguments

surf	A matrix of surface values
surf.col	Color palette for surface
zlim	Range of values to display
eqa	Equal area per color

Value

A vector of color values the same length as surf.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

References

The **rgl** package is described at http://rgl.neoscientists.org/about.shtml, and available from CRAN.

```
plot.pupil
```

8 crop

convolve2d

2D convolution

Description

General 2D convolution using FFTs

Usage

```
convolve2d(im, kern)
```

Arguments

im A matrix representing an image

kern the convolution kernel

Value

The filtered matrix im.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

See Also

```
gblur. Called by circle.pars.
```

crop

Crop an array

Description

Crop a matrix or 3D array. Main application is to trim excess pixels from an image array, wavefront, etc.

Usage

```
crop(img, cp, npad = 20)
```

Arguments

img Array to be cropped.

cp A list describing the pupil boundary.

npad Amount of padding to leave around the edge.

fftfit 9

Details

cp is the list provided by circle.pars.

Value

im The cropped array cp Revised value of cp

Author(s)

M.L. Peck <mpeck1@ix.netcom.com>

fftfit

Fourier transform interferogram analysis

Description

High level routines for FFT analysis of interferograms.

Usage

```
fftfit(imagedata, cp = NULL, fringescale = 1,
    sl = c(1, 1), filter = NULL, taper = 2,
    zlist = makezlist(), zc0 = c(1:3, 6:7),
    satarget = c(0, 0), astig.bath = c(0, 0),
    puw.alg = "qual", uselm = FALSE, sgs = 3, plots = TRUE, CROP = FALSE)
```

Arguments

imagedata	A matrix containing the interferogram
ср	A list describing the pupil boundary, as returned by pupil.pars
fringescale	Fringe spacing, in waves. Use 1 for single pass, 0.5 for double pass, etc.
sl	Position of sidelobe in the form $c(x,y)$
filter	Size of background filter around DC
taper	Size of taper applied to edge of half plane cut
zlist	Indexes of Zernike polynomials to fit to wavefront
zc0	Indexes of Zernike coefficients to be removed from net wavefront
satarget	Target 4th and 6th order SA coefficients in non-null tests of aspheres
astig.bath	Astigmatism coefficients for Bath geometry
puw.alg	Algorithm to use for phase unwrapping
uselm	Logical: use lm() for least squares fit
sgs	Sample Grid Spacing for least squares fits to wavefront values
plots	Logical: plot progress?
CROP	Center and crop maps?

10 fftfit

Details

If is.null (filter) (the default), pick.sidelobe will be called to select a Fourier domain sidelobe and background filter size.

If is .null (cp) circle.pars is applied to the modulation to estimate the pupil parameters.

See wf.net for details of the process of creating net and smoothed wavefronts from raw unwrapped wavefront maps.

puw.alg Specifies the unwrapping algorithm. If NULL an algorithm that's likely to be successful will be selected. You can specify an algorithm by choosing puw.alg=c("brcut", "ls", "lp", "modal", "qua

Value

A list with the following components:

phase	Wrapped phase map
mod	The estimated modulation
ср	A list describing the pupil boundary
cp.orig	The precropped value of cp
wf.net	Net unsmoothed wavefront; a matrix of class "pupil
wf.smooth	Net smoothed wavefront
wf.residual	Difference between net wavefront and polynomial fit
fit	Return value from fitzernikes
zcoef.net	Net Zernike coefficients from fit

Note

These functions are based largely on the work of Roddier and Roddier (1987).

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

References

Roddier, C. and Roddier, F. 1987, **Interferogram analysis using Fourier transform techniques**, *Applied Optics*, vol. 26, pp. 1668-1673.

```
wf.net, pupil.pars, pick.sidelobe.
```

FFTUtilities 11

|--|--|

Description

Miscellaneous utilities for working with 2D images in the Fourier domain.

Usage

```
wftophase(X, lambda=1)
padmatrix(X, npad, fill = 0)
submatrix(X, size = 255)
fftshift(X)
.up2(nr, nc=nr)
```

Arguments

X	A matrix
lambda	Value of the wavelength, in the same units as X
npad	Size of padded matrix
fill	Values to be assigned to padded matrix elements
size	Size of returned matrix
nr	A number
nc	A number

Details

wftophase computes the complex phase from wavefront values.

padmatrix pads a matrix to size npad x npad, placing the original matrix in the lower left hand corner of the padded matrix.

submatrix extracts a size x size matrix from the center of a larger matrix.

fftshift shuffles the quadrants of a matrix around to put the DC element (1,1) in the center of the transformed matrix, with spatial frequencies increasing to the right and up.

Value

A matrix transformation of the input matrix X.

```
.up2 returns the next higher power of 2 than max (nr, nc).
```

Note

These low level routines are used by several higher level functions that operate in the Fourier domain.

12 fitzernikes

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

See Also

```
startest, fftfit.
```

fitzernikes

Least Squares fit to Zernike polynomials

Description

Performs a least squares fit of a specified set of Zernike polynomials to a vector of wavefront measurements.

Usage

```
fitzernikes(wf, rho, theta, phi = 0, maxorder = 14, uselm = FALSE)
```

Arguments

wf A vector of wavefront values rho A vector of radial coordinates.

theta A vector of angular coordinates, in radians.

phi Orientation of the image, in degrees
maxorder Maximum Zernike polynomial order
uselm Boolean: use lm() for least squares fit

Details

wf, rho, and theta must be the same length.

Value

The model fit as returned by 1m, or the coefficients of the least squares fit if uselm is FALSE.

Note

The model fit is of the form $wf \sim 20+21+22+...$ With the standard ordering of Zernikes Z0 is the piston term, Z1 and Z2 are x and y tilts, Z3 is defocus, etc.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

```
zpm, psifit, fftfit, wf.net.
```

foucogram 13

foucogram Simulate a Foucaultgram

Description

Simulates the appearance of a wavefront under the Foucault test.

Usage

```
foucogram(wf, edgex = 0, phradius = 0, slit = FALSE,
  pad = 4, gamma = 1, map = FALSE, lev = 0.5)
```

Arguments

wf	An object of class pupil containing wavefront values
edgex	lateral position of knife edge
phradius	radius of light source
slit	Logical: Is source a slit or pinhole?
pad	pad factor for FFT
gamma	Gamma value for graphics display
map	Logical: Overlay contours from wavefront map?
lev	Increment for contour levels, if used

Details

The default value of 0 for phradius simulates a monochromatic point source. Try values in the range 10-30 to suppress diffraction effects.

Value

A matrix of intensity levels in the simulated image.

Note

The key approximations here are treating the light source as monochromatic and spatially coherent, which is usually not the case for an extended source. Also, Fraunhofer diffraction theory is used.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

References

See http://home.netcom.com/~mpeck1/astro/foucault/ext_foucault.pdf for an outline of the mathematical treatment of an extended source.

14 gblur

See Also

pupil

gblur

Gaussian blur

Description

Blur an image by fw pixels

Usage

```
gblur(X, fw=0, details=FALSE)
```

Arguments

X A matrix representing an image

fw Width of the Gaussian convolution kernel, in pixels

details Return convolution kernel?

Details

fw is the standard deviation of the Gaussian.

Value

The filtered matrix X.

Note

the details option is mostly for debugging purposes and may go away.

Author(s)

```
M.L.\ Peck < mpeckl@ix.netcom.com>
```

See Also

convolve2d

gray256

gray256

8 bit Grayscale

Description

A vector of gray scale levels

Usage

```
gray256
grey256
```

Value

```
Defined as gray256 <- grey(seq(0,1,length=256))</pre>
```

Author(s)

M.L. Peck <mpeck1@ix.netcom.com>.

hypot

Hypotenuse

Description

The Euclidean length of a vector

Usage

```
hypot(x)
```

Arguments

Х

a vector

Value

the length of the vector

Author(s)

M.L. Peck

Examples

```
hypot(c(1,2))
```

16 idiffpuw

	٠,	_	_	
٦.	α	+ .	tn	W[[

Phase unwrapping by Integrating DIFFerences

Description

Simple path following algorithm for two dimensional phase unwrapping.

Usage

```
idiffpuw(phase, mask = phase, ucall = TRUE, dx = NULL, dy = NULL)
```

Arguments

phase	A matrix of wrapped phase values
mask	Matrix the same size as phase indicating masked pixels
ucall	Boolean: User call?
dx	Matrix of x differences
dy	Matrix of y differences

Details

mask indicates pixels that shouldn't be unwrapped. In the simplest (default) case these are just pixels where phase is undefined.

Value

if (ucall), a matrix of class "pupil" with unwrapped wavefront values, otherwise a list with items:

puw Unwrapped phase

uw Matrix indicating pixels that have been unwrapped.

Note

Both broutpuw and modalpuw call rmap first to check for the presence of residues. If there are none idiffpuw is guaranteed to work and is called to do the phase unwrapping.

If there *are* residues broutpuw creates a mask then calls idiffpuw to unwrap unmasked portions of the phase map.

This function is user callable as well; use a call of the form idiffpuw (phase).

Author(s)

M.L. Peck <mpeck1@ix.netcom.com>. Thanks to Steve Koehler for programming ideas to considerably speed up the algorithm.

References

Ghiglia, D.C., and Pritt, M.D., 1998, **Two-Dimensional Phase Unwrapping**, New York: Wiley & Sons, Inc., ISBN 0-471-24935-1.

See Also

```
rmap, brcutpuw, modalpuw
```

itfit

Iterative algorithms for Phase Shifting Interferometry

Description

High level function that calls one of the iterative algorithms for PSI.

Usage

```
itfit(images, phases, cp=NULL,
  maxiter=20, ptol=0.001, trace=5, usenlm=FALSE, plotprogress=TRUE,
  fringescale=1, zlist=makezlist(), zc0=c(1:3, 6:7),
  satarget=c(0,0), astig.bath=c(0,0)
  puw.alg = "qual", uselm=FALSE, sgs=3, plots=TRUE, CROP=FALSE)
```

Arguments

images	An array containing the interferogram images
phases	A vector of phase shifts
ср	A list describing the pupil boundary, as returned by pupil.pars
maxiter	maximum number of iterations of phase shift updates
ptol	A measure of phase shift convergence tolerance
trace	print trace of phase step estimates
usenlm	call nlminb to estimate optimum?
plotprogress	Logical - plot progress of phase shift estimation?
fringescale	Fringe spacing, in waves. Use 1 for single pass, 0.5 for double pass, etc.
zlist	Indexes of Zernike polynomials to fit to wavefront
zc0	Indexes of Zernike coefficients to be removed from net wavefront
satarget	Target 4th and 6th order SA coefficients in non-null tests of aspheres
astig.bath	Astigmatism coefficients for Bath geometry
puw.alg	Algorithm to use for phase unwrapping
uselm	Boolean: use lm() for least squares fit
sgs	Sample Grid Spacing for least squares fits to wavefront values
plots	Logical: plot progress?
CROP	Center and crop maps?

Details

images is a 3 dimensional array with dimensions $nrow \times ncol \times length (phases)$, where nrow and ncol are the number of rows and columns in the individual interferogram images.

If cp == NULL circle.pars is called to construct the interferogram mask automatically.

See wf.net for details of the process of creating net and smoothed wavefronts from raw unwrapped wavefront maps.

puw.alg specifies the unwrapping algorithm. You can specify an algorithm by choosing puw.alg=c("brcut", "ls",

Value

A list with the following components:

phase Raw, wrapped phase map mod The estimated modulation

cp A list describing the pupil boundary

cp.orig Uncropped value of cp

wf.net Net unsmoothed wavefront; a matrix of class "pupil"

wf.smooth Net smoothed wavefront

wf.residual Difference between net wavefront and polynomial fit

fit Return value from fitzernikes
zcoef.net Net Zernike coefficients from fit

phases final phase shift estimates

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

References

Zhaoyang Wang and Bongtae Han, "Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms," *Opt. Lett.* 29, 1671-1673 (2004).

```
psifit, hkfit, pcafit, wf.net, pupil.pars.
```

itfit

Iterative algorithms for Phase Shifting Interferometry

Description

High level function that calls one of the iterative algorithms for PSI.

Usage

```
itfit(images, phases, cp=NULL,
  maxiter=20, ptol=0.001, trace=1, plotprogress=TRUE, REFINE=TRUE,
  tilts=NULL, tlim=0.5, nlpref=1,
  it.alg = c("aia", "hk", "tilt"),
  fringescale=1, zlist=makezlist(), zc0=c(1:3, 6:7),
  satarget=c(0,0), astig.bath=c(0,0)
  puw.alg = "qual", uselm=FALSE, sgs=1, plots=TRUE, CROP=FALSE)
```

Arguments

images	An array containing the interferogram images
phases	A vector of phase shifts
ср	A list describing the pupil boundary, as returned by pupil.pars
maxiter	maximum number of iterations of phase shift updates
ptol	A measure of phase shift convergence tolerance
trace	print trace of phase step estimates
plotprogress	Logical - plot progress of phase shift estimation?
REFINE	Logical - run the algorithm a second time after calculating mask
tilts	initial guess of tilts
tlim	tilt value limit
nlpref	preferred nonlinear optimizer
it.alg	iterative algorithm to use
fringescale	Fringe spacing, in waves. Use 1 for single pass, 0.5 for double pass, etc.
zlist	Indexes of Zernike polynomials to fit to wavefront
zc0	Indexes of Zernike coefficients to be removed from net wavefront
satarget	Target 4th and 6th order SA coefficients in non-null tests of aspheres
astig.bath	Astigmatism coefficients for Bath geometry
puw.alg	Algorithm to use for phase unwrapping
uselm	Boolean: use lm() for least squares fit
sgs	Sample Grid Spacing for least squares fits to wavefront values
plots	Logical: plot progress?
CROP	Center and crop maps?

Details

images is a 3 dimensional array with dimensions $nrow \times ncol \times length (phases)$, where nrow and ncol are the number of rows and columns in the individual interferogram images.

If cp == NULL circle.pars is called to construct the interferogram mask automatically. If REFINE == TRUE the selected iterative algorithm will be called a second time with the masked data. Selecting cp = NULL will generate an error if it.alg == "tilt".

The arguments tilts, tlim and nlpref are passed to tiltpsi if it.alg == "tilt" and are ignored otherwise.

puw.alg specifies the unwrapping algorithm. You can specify an algorithm by choosing puw.alg=c("brcut", "ls",

See wf.net for details of the process of creating net and smoothed wavefronts from raw unwrapped wavefront maps.

Value

A list with the following components:

phase Raw, wrapped phase map mod The estimated modulation phases final phase shift estimates

cp A list describing the pupil boundary

cp.orig Uncropped value of cp

wf.net Net unsmoothed wavefront; a matrix of class "pupil"

wf.smooth Net smoothed wavefront

wf.residual Difference between net wavefront and polynomial fit

fit Return value from fitzernikes
zcoef.net Net Zernike coefficients from fit
iter Number of iterations of the algorithm

sse vector of sum squared errors

And, if it.alg == "tilt"

tilts final estimate of tilts for each frame

Author(s)

M.L. Peck <mpeck1@ix.netcom.com>

References

Zhaoyang Wang and Bongtae Han, "Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms," *Opt. Lett.* 29, 1671-1673 (2004).

Han, G-S and Kim, S-W,, "Numerical correction of reference phases in phase-shifting interferometry by iterative least squares fitting," *Applied Optics* 33, 7321-7325 (1994),

Lin, B-J et al., "An iterative tilt-immune phase-shifting algorithm," OSA conference Optical Fabrication and Testing 2010.

load.images 21

See Also

```
psifit, pcafit, wf.net, circle.pars.
```

load.images Read images

Description

Loads image files in jpeg or tiff format. load.pgm provides legacy support for reading files in pgm format.

Usage

```
load.images(files, names=files, channels=c(1,0,0), scale=1, FLIP=FALSE)
load.pgm(files, imdiff=NULL)
```

Arguments

files A vector of character strings with file names

names Original files channels channel weights

scale scale factor for image resize FLIP flip image left for right?

Details

set FLIP=TRUE to reverse mirror imaged interferograms.

Value

An array containing the contents of the image files.

Note

load.pgm is the original load.images included for legacy support of greyscale portable anymap files.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

22 lspsi

lspsi

Phase Shifting Interferometry

Description

Least squares fitting of phase shifted interferograms.

Usage

```
lspsi(images, phases, wt = rep(1, length(phases)))
```

Arguments

images An array containing the interferogram images

 $\begin{array}{ll} \hbox{phases} & A \ vector \ of \ phase \ shifts \\ \hbox{wt} & A \ vector \ of \ weights \end{array}$

Details

images is a 3 dimensional array with dimensions $nrow \times ncol \times length (phases)$, where nrow and ncol are the number of rows and columns in the individual interferogram images.

Value

A list containing the following components:

phi Estimated wrapped wavefront phase; a matrix the same size as the interferogram

images

B Terms of the least squares fit; an nrow x ncol x 3 array

Note

Appendix A of Goldberg and Bokor gives a useful summary of the least squares method of phase shifted interferometry analysis. The matrix B is defined in Equation A2 and solved in equation A5 of their paper.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

References

```
Goldberg, K. and Bokor, J. 2001, Fourier-transform method of phase-shift determination, Applied Optics, vol. 40, pp. 2886-2894; also available at http://goldberg.lbl.gov/papers/Goldberg_AO_40(17).pdf.
```

```
Called by psifit, hkfit.
```

modalfit 23

modalfit	Foucault test data reduction	

Description

Data reduction for moving source Foucault tests.

Usage

```
modalfit(rho, f, rc, R, run = NULL, theta = rep(0, length(rho)),
   zlist = list(n = seq(4, 12, by = 2), m = rep(0, 5), t = rep("n", 5)))
zonalfit(rho, f, rc, R,
   zlist = list(n = seq(4, 12, by = 2), m = rep(0, 5), t = rep("n", 5)))
```

Arguments

rho	A vector of relative zonal radii
f	A vector of longitudinal aberration measurements
rc	Radius of curvature of the mirror
R	Semi-diameter of the mirror
run	A vector of factor levels, if different measurement runs are included
theta	Orientation angle of the mirror, if different orientations are present
zlist	Indexes of Zernikes to be fit

Details

All linear measurements must be in millimeters.

Value

A long list describing the fit to the data. Please contact the author if you need details.

Note

These are provided for completeness only. Please contact me if you need details on their use.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

References

Modal analysis of Foucault test data is described by the author in http://home.netcom.com/~mpeck1/astro/modal/modal.pdf.

24 pcafit

pcafit

Principal Component Analysis for Phase Shifting Interferometry

Description

Implements an algorithm proposed by Vargas et al. (2011) to estimate phase in PSI with principal components.

Usage

```
pcafit(images, cp=NULL,
BGSUB = TRUE, REFINE = TRUE,
    fringescale=1, zlist=makezlist(), zc0=c(1:3, 6:7),
satarget=c(0,0), astig.bath=c(0,0),
puw.alg="qual", uselm=FALSE, sgs=1, plots=TRUE, CROP=FALSE)
```

Arguments

images	An array containing the interferogram images
ср	A list describing the pupil boundary, as returned by pupil.pars
BGSUB	Logical: subtract pixel-wise mean?
diagpos	controls treatment of singular values of data matrix
REFINE	Logical: calculate phase again after finding interferogram edge?
fringescale	Fringe spacing, in waves. Use 1 for single pass, 0.5 for double pass, etc.
zlist	Indexes of Zernike polynomials to fit to wavefront
zc0	Indexes of Zernike coefficients to be removed from net wavefront
satarget	Target 4th and 6th order SA coefficients in non-null tests of aspheres
astig.bath	Astigmatism coefficients for Bath geometry
puw.alg	Algorithm to use for phase unwrapping
uselm	Boolean: use lm() for least squares fit
sgs	Sample Grid Spacing for least squares fits to wavefront values
plots	Logical: plot progress?
CROP	Center and crop maps?

Details

images is a 3 dimensional array with dimensions $nrow \times ncol \times length (phases)$, where nrow and ncol are the number of rows and columns in the individual interferogram images.

```
If cp == NULL circle.pars is called to construct the interferogram mask automatically.
```

If REFINE == TRUE pcapsi is called again with the masked image data after the calculation of cp. If !is.null(cp) in the function call REFINE is ignored.

See wf.net for details of the process of creating net and smoothed wavefronts from raw unwrapped wavefront maps.

puw.alg specifies the unwrapping algorithm. You can specify an algorithm by choosing puw.alg=c("brcut", "ls",

pcapsi 25

Value

A list with the following components:

phase Raw, wrapped phase map

mod The estimated modulation

phases final phase shift estimates

cp A list describing the pupil boundary

cp.orig Uncropped value of cp

wf.net Net unsmoothed wavefront; a matrix of class "pupil"

wf.smooth Net smoothed wavefront

wf.residual Difference between net wavefront and polynomial fit

fit Return value from fitzernikes
zcoef.net Net Zernike coefficients from fit

An estimate of the signal to noise ratio of the raw data eigen

The singular values of the input crossproduct matrix

Author(s)

M.L. Peck <mpeck1@ix.netcom.com>

References

J. Vargas, J. Antonio Quiroga, and T. Belenguer, "Phase-shifting interferometry based on principal component analysis," *Opt. Lett.* **36**, 1326-1328 (2011) http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-8-1326

Vargas et al.'s Principal Components method for PSI

J. Vargas, J. Antonio Quiroga, and T. Belenguer, "Analysis of the principal component algorithm in phase-shifting interferometry," *Opt. Lett.* **36**, 2215-2217 (2011) http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-12-2215

See Also

```
psifit, itfit, wf.net, circle.pars.
```

Description

pcapsi

Compute the phase using the Principal components algorithm.

Usage

```
pcapsi(im.mat, BGSUB)
```

26 pcapsi

Arguments

im.mat A matrix of interferogram values

BGSUB Logical - subtract the pixelwise mean as background estimate?

diagpos controls treatment of singular values of the data matrix

Details

Images are input into an array by load.images. This must be reshaped into a matrix for this function. Also, a mask should be applied if available prior to the call.

Value

A list containing the following elements:

phi The wrapped phase estimate. This is a vector as long as the number of rows in

im.mat.

mod Modulation estimate.

phases Phase shift estimates.

snr An estimate of the signal to noise ratio in the input data.

eigen Singular values of the crossproduct matrix.

Author(s)

M.L. Peck <mpeck1@ix.netcom.com>

References

- J. Vargas, J. Antonio Quiroga, and T. Belenguer, "Phase-shifting interferometry based on principal component analysis," *Opt. Lett.* **36**, 1326-1328 (2011) http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-8-1326
- J. Vargas, J. Antonio Quiroga, and T. Belenguer, "Analysis of the principal component algorithm in phase-shifting interferometry," *Opt. Lett.* **36**, 2215-2217 (2011) http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-12-2215

```
pcafit, wf.net
```

pick.sidelobe 27

pick.sidelobe

Select an interferogram sidelobe in the Fourier domain

Description

Interactively locate the center of a first order sidelobe in the FFT of an interferogram, and mark the width of the background filter.

Usage

```
pick.sidelobe(imagedata, logm=FALSE, gamma=3)
```

Arguments

imagedata A matrix containing an interferogram image

logm Logical: pass fn="logMod" to plot.cmat?

gamma value for display

Details

Uses the basic graphics utility locator.

Value

A list with the following components:

The coordinates c(x, y) of the selected sidelobe

filter Estimated size of background filter

Note

The high level FFT interferogram analysis routine fftfit requires the approximate location of the intended first order interferogram sidelobe to be specified.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

```
fftfit.
```

28 plot.cmat

_				
~ 1	\sim \pm		ama	+
ρ_{\perp}	・しし	•	cma	し

Plot a complex matrix

Description

Plot a real valued function of a complex matrix

Usage

```
plot.cmat(X, fn = "Mod", col = topo.colors(256),
cp=NULL, zoom=1, gamma=1, ...)
```

Arguments

X	A complex valued matrix
fn	A function returning a real value
col	Color palette for graph
ср	pupil parameters as returned by pupil.pars
zoom	zoom factor for display
gamma	gamma value for display
	Other parameters to pass to image.default

Details

In addition to the functions described in complex fn can be assigned the values "logMod", which will call an internally defined function returning the value log(1+Mod(X)), "Mod2" to plot the power spectrum, and "logMod2" to plot the logarithm of the power spectrum.

If the parameter cp is passed axes will display spatial frequencies in cycles per pupil radius.

Value

none

Note

This is used primarily for displaying FFT's of interferograms. In the case of an interferogram in which the background has not been removed use fn="logMod" to make the first order sidelobes visible.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

```
localize.sidelobe, fftfit.
```

plot.pupil 29

plot.pupil	Pupils and wavefronts	

Description

Plot and summary methods for objects of class "pupil".

Usage

```
plot.pupil(wf, cp=NULL, col = topo.colors(256), addContours = TRUE, cscale = FALSE,
        eqa=FALSE, zlim=NULL, ...)
summary.pupil(wf)
```

Arguments

wf	An object of class "pupil"
ср	Pupil parameters; a list as returned by pupil.pars
col	Color palette for plot
addContours	Logical: add contour lines?
cscale	Add a color scale legend?
eqa	Perform an "equal area" plot?
zlim	z limits to pass to image
	Additional parameters to pass to image.default

Details

These give simple plot and summary methods for objects of class pupil.

If eqa is TRUE, each color in the palette will be used for an equal number of pixels (as opposed to representing an equal interval). Note: the color scale (when cscale == TRUE) may be inaccurate if a very small number of colors are used.

Value

none

Author(s)

```
M.L.\ Peck < mpeckl@ix.netcom.com>
```

```
pupil, pupilrms, pupilpv, strehlratio, pupil.pars.
```

30 plotn

_		
n	-	n
ν_{-}	$L \cup L$	11 ر

Wavefront comparison plots

Description

Plot an arbitrary number of wavefronts and all differences.

Usage

```
plotn(..., labels = NULL, addContours=FALSE, wftype = "net", col = rygcb(400), qt = c(0.01, 0.99))
```

Arguments

... List of wavefront estimates as returned by wf.net.

labels Labels to identify the wavefronts.

addContours Boolean to add contours to top row plots

wftype If the inputs are from wf.net, one of "net", "smooth", "residual".

col Color palette for top row of plot

qt Quantiles of differences to plot in comparisons.

Details

... can be any number of objects containing wavefront estimates as returned for example by wf.net.

Wavefronts are displayed on the top row, and differences of all pairs on subsequent rows. Grayscale is used to render the difference plots, and the color palette given in col is used for the wavefronts.

Value

none

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

```
plot.pupil wf.net
```

plotxs 31

	_			
n	10	٠+	v	c
ν.	エし	ノし	\sim	K

Plot cross-sections (profiles) through a wavefront map.

Description

Plots an arbitrary number of cross-sections through a wavefront map, with one highlighted.

Usage

```
plotxs(wf, cp, theta0 = 0, ylim = NULL, N = 4, n = 101, col0 = "black", col = "gray", lty = 2)
```

Arguments

wf	A matrix of wavefront values.
ср	List of pupil parameters as returned by pupil.pars.
theta0	Angle of highlighted profile, in degrees.
ylim	range of heights to plot.
N	Number of cross sections.
n	Number of points for each cross section.
col0	Highlight color.
col	Cross section color.
lty	Line type for plots.

Details

The cross sections are equally spaced in angle from 0 to pi*(N-1)/N. Any angle can be specified for the highlighted profile at theta0.

Value

none

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

See Also

plot.pupil is the main wavefront plotting routine.

32 psifit

psifit	Phase Shifting Interferometry	
1	<i>y</i> 0 <i>y</i> 2	

Description

High level function for Least squares analysis of phase shifted interferograms.

Usage

```
psifit(images, phases, cp=NULL, wt=rep(1,length(phases)),
  fringescale=1, zlist=makezlist(),
  zc0=c(1:3, 6:7), satarget=c(0,0), astig.bath=c(0,0)
  puw.alg = "qual", uselm=FALSE, sgs=2, plots=TRUE, CROP=FALSE)
```

Arguments

images	An array containing the interferogram images
phases	A vector of phase shifts
ср	A list describing the pupil boundary, as returned by pupil.pars
wt	psifit only: A vector of weights
fringescale	Fringe spacing, in waves. Use 1 for single pass, 0.5 for double pass, etc.
zlist	Indexes of Zernike polynomials to fit to wavefront
zc0	Indexes of Zernike coefficients to be removed from net wavefront
satarget	Target 4th and 6th order SA coefficients in non-null tests of aspheres
astig.bath	Astigmatism coefficients for Bath geometry
puw.alg	Algorithm to use for phase unwrapping
uselm	Boolean: use lm() for least squares fit
sgs	Sample Grid Spacing for least squares fits to wavefront values
plots	Logical: plot progress?
CROP	Center and crop maps?

Details

images is a 3 dimensional array with dimensions $nrow \times ncol \times length (phases)$, where nrow and ncol are the number of rows and columns in the individual interferogram images.

```
If cp == NULL circle.pars is called to construct the interferogram mask automatically.
```

See wf.net for details of the process of creating net and smoothed wavefronts from raw unwrapped wavefront maps.

puw.alg specifies the unwrapping algorithm. You can specify an algorithm by choosing puw.alg=c("brcut", "ls",

pupil 33

Value

A list with the following components:

phase	Raw, wrapped phase map
mod	The estimated modulation
ср	A list describing the pupil boundary
cp.orig	Uncropped value of cp
wf.net	Net unsmoothed wavefront; a matrix of class "pupil"
wf.smooth	Net smoothed wavefront
wf.residual	Difference between net wavefront and polynomial fit
fit	Return value from fitzernikes
zcoef.net	Net Zernike coefficients from fit

Note

The low level function implementing the least squares algorithm is lspsi.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

See Also

```
lspsi, wf.net, hkfit, aiafit, pcafit.
```

pupil Pupils and wavefronts	
-----------------------------	--

Description

Create a pupil object and optionally fill it with a wavefront. For our purposes a "pupil" is defined to be a matrix representation of a circular or annular aperture. Simple plot and summary methods are also provided.

Usage

```
pupil(zcoef=NULL, zlist=makezlist(), phi=0, piston=0,
nrow=256, ncol=nrow, cp=list(xc=128,yc=128,rx=127,ry=127,obstruct=0),
    obstruct=NULL)
pupil.arb(zcoef=NULL, zlist=makezlist(), phi=0, piston=0,
nrow=256, ncol=nrow, cp=list(xc=128,yc=128,rx=127,ry=127,obstruct=0),
    obstruct=NULL)
```

34 pupil

Arguments

zcoef	A vector of Zernike coefficients
zlist	List of indexes the same length as zcoef
phi	Amount to rotate image, in degrees
piston	Constant to add to wavefront values
nrow	Number of rows in output matrix
ncol	Number of columns in output matrix
ср	A list with items xc - x coordinate of central pixel, yc - y coordinate of central pixel, rx - x radius in pixels, ry - y radius in pixels, obstruct - central obstruction fraction.
obstruct	Obstruction fraction

Details

```
plot.pupil and summary.pupil provide simple plot and summary methods for objects of
class "pupil".
pupil.arb will accept an arbitrary list of Zernikes.
pupil requires a complete set of Zernikes as returned by makezlist.
```

Value

A matrix of size nrow x ncol. The matrix is assigned to the class "pupil". NA's are used to fill the matrix outside the defined area of the pupil.

Note

The parameter cp is used to define the dimensions of the pupil. See pupil.pars for details. obstruct is included twice for backward compatability.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

See Also

```
Zernike, makezlist, pupilrms, pupilpv, strehlratio, pupil.pars, circle.pars.
```

Examples

```
wf <- pupil(zcoef=rnorm(length(makezlist()$n), 0, 0.01))
plot(wf, addContours=FALSE)
summary(wf)</pre>
```

pupil.pars 35

|--|--|

Description

Interactively determine the center, radius, and obstruction fraction of a circular or annular interferogram image.

Usage

```
pupil.pars(im = NULL, obstructed = FALSE)
```

Arguments

im A matrix containing an interferogram image obstructed Logical: is there a central obstruction?

Details

In pupil.pars, if the image has already been plotted im can be NULL, which is the default.

Value

A list with the following components:

X coordinate of the center of the pupil
Y coordinate of the center of the pupil
RX Horizontal radius of the pupil
Vertical radius of the pupil
Obstruct
Obstruction

Note

pupil.pars uses the basic graphics library routine locator to interactively mark the edge of the pupil, and optionally the edge of the obstruction. After right clicking to terminate locator() a least squares fit is performed to the marked points to determine the center and radius of the pupil. Note that all routines that make use of Zernikes implicitly assume a circular pupil, or an annular one with small obstruction. We allow rx != ry for imaging sensors with non-square aspect ratios.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

See Also

Many routines require the pupil parameters in the form returned by pupil.pars. For example psifit, fftfit, pupil, etc.

pupil.rhotheta

Description

Calculate matrixes of polar coordinates for pupil's.

Usage

```
pupil.rhotheta(nrow, ncol, cp)
```

Arguments

nrow	Number of rows in interferogram images
ncol	Number of columns in interferogram images
ср	A list describing the pupil boundary, as returned by pupil.pars

Value

A list with the following components:

rho A matrix of radial coordinates
theta A matrix of angular coordinates

Note

My Zernike polynomial routines work in polar coordinates, which this function provides. Also, NA's are used to fill the matrix outside the pupil boundary, making the returned values convenient for selecting pixels inside interferograms.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

```
Zernike, pupil.
```

pupilrms 37

pupilrms

Wavefront statistics

Description

Compute basic statistics of wavefronts stored in "pupil" objects.

Usage

```
pupilrms(pupil)
pupilpv(pupil)
strehlratio(rms)
```

Arguments

```
pupil A matrix of class "pupil"
rms An rms wavefront error
```

Value

Estimates of the RMS and P-V wavefront errors. strehratio calculates Mahajan's approximation to the Strehl ratio.

Note

pupilrms simply calculates the standard deviation of finite values in the matrix pupil. This is a crude, but usually accurate enough estimate of the true RMS wavefront error.

```
summary.pupil calls these functions.
```

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

References

Schroeder, D.J. 2000, Astronomical Optics, 2nd Edition, Academic Press, chapter 10.

See Also

```
summary.pupil.
```

Examples

```
zcoef <- rnorm(length(makezlist()$n), 0, 0.01)
wf <- pupil(zcoef=zcoef)
plot(wf)
summary(wf)
sqrt(crossprod(zcoef)) # A more accurate estimate of RMS</pre>
```

38 qpuw

qpuw

Quality guided algorithm for phase unwrapping

Description

Quality guided algorithm for two dimensional phase unwrapping.

Usage

```
qpuw(phase, qual)
```

Arguments

phase A matrix of wrapped phase values

qual A matrix of quality values the same size as phase.

Value

puw A matrix of class "pupil" with the unwrapped wavefront.

Note

This is a straightforward implementation of the quality guided algorithm of G&P.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

References

Ghiglia, D.C., and Pritt, M.D., 1998, **Two-Dimensional Phase Unwrapping**, New York: Wiley & Sons, Inc., ISBN 0-471-24935-1.

See Also

```
idiffpuw, brcutpuw, modalpuw, lspuw
```

readjpeg 39

readjpeg

Read a jpeg or tiff file

Description

Reads a jpeg or tiff file and combines the channels to produce a monochrome image in a matrix.

Usage

```
readjpeg(filename, channels)
readtiff(filename, channels)
```

Arguments

filename Filename

channels A vector of length 3 with the channel weights

Details

Values in channels should be non-negative, but need not add to one.

Value

A double precision matrix with the image data.

Note

The matrix must have rows reversed and transposed to display properly with image ().

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

rescale

Rescale an image.

Description

Rescale a matrix containing a bitmapped image using bilinear interpolation.

Usage

```
rescale(im, scale)
```

40 rmap

Arguments

im A matrix with image data.

scale Scale factor.

Details

A value <1 will shrink the image.

Value

A matrix containing the rescaled image data.

Note

NA's are OK.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

See Also

Called by load.images if necessary.

rmap

Utilities for phase unwrapping

Description

Utility functions for use in 2D phase unwrapping.

Usage

```
rmap(phase, dx = NULL, dy = NULL, plot = FALSE, ...) wrap(phase)
```

Arguments

phase	Matrix of wrapped phase values
dx	Matrix of x differences
dy	Matrix of y differences
plot	Boolean: plot residue positions?
	additional arguments for image

Details

 $\mbox{\tt dx}$ and $\mbox{\tt dy}$ must have the same dimension as $\mbox{\tt phase}.$

rygcb 41

Value

```
In rmap if plot == TRUE
```

nr the number of residues identified in the map

otherwise

phase wrapped phase returned by wrap

residues Matrix the same size as phase with residues marked as + or - 1.

Note

These are primarily intended for internal use but can be used interactively. Calling rmap (phase, plot=TRUE) will plot the positions of residues and return nothing. If (plot==FALSE) in the call to rmap a matrix the same size as phase is returned with residues identified with values of +1 or -1.

Author(s)

M.L. Peck <mpeck1@ix.netcom.com>. Steve Koehler is responsible for the efficient implementation of the wrap function.

References

Ghiglia, D.C., and Pritt, M.D., 1998, **Two-Dimensional Phase Unwrapping**, New York: Wiley & Sons, Inc., ISBN 0-471-24935-1.

See Also

Called by modalpuw, idiffpuw, brcutpuw.

rygcb A better rainbow.

Description

Produces a rainbow color palette with colors ranging from "red" to "blue" or "magenta". Perceptual uniformity should be superior to R's rainbow.

Usage

```
rygcb(n)
rygcbm(n)
```

Arguments

n Number of color levels

42 separate.wf

Details

The palette is created using colorRampPalette.

Value

A vector of colors.

Note

The call to colorRampPalette sets space="Lab" and interpolate="spline" with the intent of creating a more perceptually uniform rainbow.

Author(s)

M.L. Peck

See Also

```
grey256
```

Examples

```
plotsp <- function(spectrum)
sl <- length(spectrum)
rgbv <- col2rgb(spectrum)
plot((0:(sl-1))+0.5, rgbv[1,], type="l", col="red", xlim=c(0,sl),ylim=c(0,300),xlab="Index",
points((0:(sl-1))+0.5, rgbv[2,], type="l", col="green")
points((0:(sl-1))+0.5, rgbv[3,], type="l", col="blue")
grid()
rect(0:(sl-1), 260, 1:sl, 300, col=spectrum, density=NA)
}
plotsp(rygcb(400))
X11()
plotsp(rygcbm(500))</pre>
```

separate.wf

Separate wavefronts

Description

Separate "polished in" from "instrumental" aberrations if possible

Usage

```
separate.wf(zcm, theta, maxorder = 14)
```

startest 43

Arguments

zcm Matrix of observed Zernike coefficients
theta Vector of rotation angles (in radians)
maxorder Maximum Zernike order to extract

Value

zcb Table of extracted coefficients and standard errors

Author(s)

M.L. Peck

startest

Star test simulator

Description

Simulates a star test.

Usage

```
startest(wf=NULL, zcoef=NULL, zlist=makezlist(), phi=0,
lambda = 1, defocus=5,
nrow = 255, ncol = nrow,
cp = list(xc=128,yc=128,rx=127,ry=127,obstruct=0),
obstruct=NULL, npad = 4,
gamma=2, psfmag=2, displaymtf=TRUE, displaywf=FALSE)
```

Arguments

wf	A matrix of class pupil containing wavefront values
zcoef	Vector of Zernike coefficients
zlist	Indexes of Zernike coefficients
phi	Angle to rotate wavefront
lambda	Wavelength, in same units as coefficients
defocus	Amount of defocus in waves
nrow	# rows in pupil matrix
ncol	# columns in pupil matrix

cp pupil parameters
obstruct Obstruction fraction
npad Pad factor for FFT

psfmag Magnification factor for in focus PSF display

displaymtf Logical: Display MTF?

displaywf Logical: Display calculated wavefront?

44 synth.interferogram

Details

If wf is NULL the wavefront is calculated from the the Zernike coefficients (which should be non-NULL).

Value

A list with the following components:

psf The in focus point spread function.

otf The complex optical transfer function, a complex matrix of size pupilsize.

mtf The modulation transfer function, a real matrix of size pupilsize.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

References

```
Born, M. and Wolf, E. 1999, Principles of Optics, 7th Edition, Cambridge University Press. Suiter, H. R., 1994, Star Testing Astronomical Telescopes, Willman-Bell, Inc.
```

See Also

```
Zernike, pupil.
```

Examples

```
# a random, but probably almost diffraction limited, wavefront
temp <- startest(zcoef=rnorm(length(makezlist()$n), mean=0, sd=0.01), zlist=makezlist(), dis</pre>
```

```
synth.interferogram
```

Synthetic interferogram

Description

Compute and display a synthetic interferogram.

Usage

```
synth.interferogram(wf = NULL, zcoef = NULL, zlist = NULL,
  nr = nrow(wf), nc = ncol(wf), cp = NULL,
  phi = 0, addzc = rep(0, 4), fringescale = 1, plots = TRUE)
```

synth.interferogram 45

Arguments

wf	A matrix of wavefront values
zcoef	A vector of Zernike coefficients
zlist	A list of Zernike indexes
nr	Number of rows in the output matrix
nc	Number of columns in the output matrix
ср	A list describing the pupil boundaries, as created by pupil.pars
phi	Amount to rotate the wavefront, in degrees
addzc	A 4-vector with piston, tilt, and defocus terms to be added
fringescale	Fringe scale. Should be 1 for single pass, 0.5 for double, etc.
plots	Logical: Plot the interferogram?

Details

Either wf or zcoef should be non-null, but not both. If zcoef is specified zlist must be as well.

Additional piston, tilt, and defocus terms can be added to the calculated wavefront using addzc.

Value

A matrix of intensity levels in the calculated interferogram, assigned class "pupil".

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

See Also

```
pupil.
```

Examples

```
# create a list of zernikes
zcoef <- rnorm(length(zlist.fr$n), mean=0, sd=0.01)
iwf <- synth.interferogram(zcoef=zcoef, zlist=zlist.fr)
X11()
# show again with some tilt
iwf <- synth.interferogram(zcoef=zcoef, zlist=zlist.fr, addzc=c(0,5,5,0))</pre>
```

46 turbwf

turbwf

Kolmogorov Turbulence

Description

Simulates the optical effects of atmospheric turbulence using Noll's (1976) calculation of the covariance matrix of Zernike polynomials under Kolmogorov turbulence.

Usage

```
turbwf(friedratio = 1, zlist = makezlist(2, 40), reps = 1)
```

Arguments

friedratio Ratio of pupil diameter to Fried parameter
zlist A list of Zernikes, as returned for example by makezlist

reps Number of draws to simulate

Details

The default value of zlist has 440 elements, which may be more than necessary for a reasonable representation of an "atmospheric" wavefront.

Value

A list with the following components:

zcoef.turb A reps x length(zlist\$n matrix of simulated draws of Zernike coefficients.V Covariance matrix of the indexed Zernikes.

Note

Typos in the original source material have been corrected in the code. Note that scintillation is not modelled.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

References

Noll, R.J. 1976, **Zernike polynomials and atmospheric turbulence**, *J. Opt. Soc. Am.*, Vol. 66, No. 3, p. 207.

See Also

```
Zernike, pupil.
```

wf.net 47

Examples

```
# Simulate a single draw from a turbulent atmosphere
zcoef.turb <- turbwf(friedratio=5, zlist=makezlist(2,30), reps=1)$zcoef.turb
# Warning: this can take a while
wf <- pupil(zcoef=zcoef.turb, zlist=makezlist(2,30))
plot(wf)
summary(wf)</pre>
```

wf.net

Wavefront smoothing

Description

Calculate net and smoothed wavefronts from a raw wavefront containing low order nuisance aberrations.

Usage

```
wf.net(wf.raw, rho=NULL, theta=NULL, cp, sgs=3, zlist=makezlist(),
    zc0=c(1:3, 6:7), satarget=c(0,0), astig.bath=c(0,0),
    uselm=FALSE, plots=TRUE)
```

Arguments

wf.raw	Raw wavefront to be processed
rho	Radial coordinates in pupil as returned by pupil.rhotheta
theta	Angular coordinates in pupil as returned by pupil.rhotheta
ср	A list describing the pupil boundary, as returned by pupil.pars
sgs	Sample Grid Spacing for least squares fits to wavefront values
zlist	Indexes of Zernike polynomials to fit to wavefront
zc0	Indexes of Zernike coefficients to be removed from net wavefront
satarget	Target 4th and 6th order SA coefficients in non-null tests of aspheres
astig.bath	Astigmatism coefficients for Bath geometry
uselm	Boolean: use lm() for least squares fit
plots	Logical: plot calculated wavefronts?

Details

In performing least squares fits to the raw data the pupil is sampled on a square grid with spacing sgs by sgs pixels. The default value of 3 appears to give a sufficiently dense sample for typical video resolution images without using too much memory or CPU cycles.

Passing rho and theta is optional. If rho is NULL they are calculated using pupil.rhotheta.

In a non-null test of an asphere setting satarget to the desired Zernike coefficients for 3rd and 5th order spherical aberration will produce a net wavefront with the target SA coefficients removed.

48 wf3d.pupil

Value

A list with the following components:

wf.net Net unsmoothed wavefront; a matrix of class "pupil"

wf.smooth Net smoothed wavefront

wf.residual Difference between net wavefront and polynomial fit

fit Return value from fitzernikes
zcoef.net Net Zernike coefficients from fit

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

See Also

```
Called by fftfit, psifit, hkfit, pcafit, aiafit.
Calls fitzernikes, pupil.
```

wf3d.pupil

OpenGL wavefront plot

Description

Interactive plot of a wavefront using the OpenGL package **rgl**. This is a 3D plotting method for objects of class "pupil".

Usage

Arguments

wf A matrix of wavefront values

cp A list describing the pupil boundary

zoom.wf Zoom factor for heights surf.col Color palette for surface bg.col Background color eqa Equal area per color?

Details

The default color palette will match the colors in the default version of plot.pupil.

zconic 49

Value

none

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

References

The rgl package is described at http://rgl.neoscientists.org/about.shtml, and available from CRAN.

See Also

```
plot.pupil
```

Examples

```
# create a random wavefront
wf <- pupil(zcoef=rnorm(length(makezlist()$n), mean=0, sd=0.01))</pre>
# the default method
plot(wf)
#this is more fun
wf3d(wf)
```

zconic

Zernike coefficients for a conic surface

Description

Calculates the radially symmetric Zernike coefficient values up to order nmax for a conic surface relative to a sphere of the same paraxial radius of curvature.

1 nm.

Usage

```
zconic(D, rc, b = -1, lambda = 1e-06, nmax = 6)
```

Maximum radial polynomial order

Arguments

nmax

D	Diameter
rc	Radius of curvature
b	Conic constant
lambda	Wavelength – defaults to

50 Zernike

Details

D, rc, and lambda must have the same units.

Value

A vector of length nmax/2-1 of coefficient values, in increasing radial order, n=c(4,6,...).

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

See Also

```
Zernike
```

Examples

```
zconic(200,2000)
zconic(10, 20, b=-1.05, lambda=632.8E-9, nmax=12)
```

Zernike

Zernike Polynomials

Description

Routines for creating and manipulating Zernike polynomials.

Usage

```
Zernike(rho, theta, n, m, t)
DZernike(rho, theta, n, m, t)
DTZernike(rho, theta, n, m, t)
rzernike(rho, n, m)
drzernike(rho, n, m)
```

Arguments

```
rho normalized radius, 0 <= rho <= 1
theta angular coordinate

n radial polynomial order

m azimuthal order

t character for trig function: one of c("n", "c", "s")
```

Zernike 51

Note

These functions return Zernikes scaled such that they form an orthonormal basis set for the space of functions defined on the unit circle. Note that this is not the most commonly used definition (as given e.g. in *Born and Wolf*). The definition I use is often associated with *Noll* (1976).

The function zmult can be used to convert between normalized and conventionally defined vectors of Zernike coefficients.

The basic low level functions rzernike and drzernike use numerically stable recurrence relationships for the radial Zernikes.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

References

Born, M. and Wolf, E. 1999, *Principles of Optics, 7th Edition*, Cambridge University Press, chapter 9 and appendix VII.

Noll, R.J. 1976, **Zernike polynomials and atmospheric turbulence**, *J. Opt. Soc. Am.*, Vol. 66, No. 3, p. 207.

```
http://wyant.opt-sci.arizona.edu/zernikes/zernikes.htm
http://mathworld.wolfram.com/ZernikePolynomial.html
```

See Also

```
makezlist, zlist.fr, zmult, fillzm, pupil, pupilrms, pupilpv, strehlratio.
```

Examples

```
Zernike(1, 0, 4, 0, "n") # == sqrt(5)

# A slightly more complex example

rho <- seq(0, 1, length = 101)
theta <- rep(0, 101)

plot(rho, Zernike(rho, theta, 6, 0, "n"), type="1",
    ylim=c(-3.5,3.5), main="Some 6th order Zernike Polynomials")
lines(rho, Zernike(rho, theta, 5, 1, "c"), lty=2)
lines(rho, Zernike(rho, theta, 4, 2, "c"), lty=3)
lines(rho, Zernike(rho, theta, 3, 3, "c"), lty=4)</pre>
```

52 zlist

zlist

Lists of Zernike polynomial indexes

Description

Ordered lists of Zernike polynomial indexes.

Usage

```
makezlist(minorder = 2, maxorder = 14)
zlist.fr
zmult(zlist = makezlist())
```

Arguments

minorder minimum value of n+m maxorder maximum value of n+m

zlist a list of the form returned by makezlist

Details

Zernike polynomials are indexed by a radial index n, an azimuthal index m, and include cosine, sine, and radial terms. These routines return lists of indexes using a popular ordering scheme for Zernike polynomials.

Value

makezlist and zlist.fr return lists with the following components:

```
n radial order
m azimuthal order
t one of c ("c", "s", "n")
```

zmult returns a vector the same length as the components of zlist.

Note

```
zlist.fr is an augmented "Fringe" set of Zernike polynomials equivalent to makezlist(2,12). makezlist returns a complete list of indexes for all orders from minorder through maxorder, where "order" is the value of n+m.
```

Author(s)

```
M.L.\ Peck < \verb|mpeck1@ix.netcom.com|| \\
```

zmoments 53

See Also

Virtually all high level functions that work with Zernike polynomials use these lists. See for example pupil, psifit, fftfit.

Examples

```
zlist <- makezlist(2,12)
zcoef <- rnorm(length(zlist))
zcoef # a vector of normalized Zernike coefficients
zcoef*zmult(zlist) # Coefficients in conventional representation
sqrt(crossprod(zcoef)) # This is the RMS error of the wavefront
# constructed from these Zernikes</pre>
```

zmoments

Zernike moments

Description

Calculate Zernike moments from a vector of coefficients

Usage

```
zmoments(zcoef, maxorder = 14)
```

Arguments

zcoef Zernike coefficients

maxorder Maximum order to return

Value

A table of the moments along with radial and azimuthal orders

References

M.L. Peck

54 zpm

zpm

Matrixes of Zernike polynomials

Description

Create a matrix of Zernike polynomial values, or their derivatives or gradient.

Usage

```
zpm(rho, theta, phi = 0 , maxorder = 14)
zpm.arb(rho, theta, phi = 0, zlist = makezlist())
filldzm(rho, theta, phi = 0, zlist = makezlist())
fillgradientzm(rho, theta, phi = 0, zlist = makezlist())
```

Arguments

rho A vector of radial coordinates.

theta A vector of angular coordinates, in radians.

phi Orientation of the image, in degrees

zlist A list of indexes, as returned by makezlist maxorder The maximum Zernike polynomial order

Details

rho and theta must be the same length.

Value

zpm, zpm.arb and filldzm return a matrix of size length (rho) x length (zlistn) with values of Zernike polynomials or their radial derivatives evaluated at the polar coordinates (rho, theta-pi*phi/180).

fillgradientzm returns the gradient, in polar coordinates, of Zernikes in a 2*length (rho) x length (zlist\$n) matrix. Rows 1:length (rho) contain the radial derivative, followed by 1/rho times the tangential derivative.

Note

These are used by various routines to make least squares fits of sets of Zernike polynomials to measured wavefront values.

Author(s)

```
M.L. Peck <mpeck1@ix.netcom.com>
```

See Also

```
Zernike, makezlist, zlist.fr, fitzernikes
```

Index

*Topic Graphics	aiapsi,3
plotn, 30	astig.bath,4
plotxs, 31	convolve2d, 8
pupil, 33	fftfit,9
rygcb, 41	gblur, 14
*Topic IO	idiffpuw, 16
load.images, 21	itfit, 17, 19
readjpeg, 39	lspsi, 22
*Topic Utilities	pcafit, 24
crop, 8	pcapsi, 25
*Topic Utility	psifit, 32
addfit,2	qpuw, 38
hypot, 15	rmap, 40
separate.wf, 42	turbwf,46
zmoments, 53	wf.net,47
*Topic arith	zconic,49
rescale, 39	Zernike, 50
*Topic array	zlist, 52
rescale, 39	zpm, 54
*Topic file	*Topic statistics
load.images, 21	fitzernikes, 12
readjpeg, 39	modalfit, 23
*Topic graphics	pupilrms, 37
col3d, 7	*Topic utilities
foucogram, 13	circle.pars,5
gray256, 15	FFTUtilities, 11
	pick.sidelobe,27
<pre>pick.sidelobe, 27 plot.cmat, 28</pre>	plot.pupil, 29
startest, 43	pupil.pars,35
synth.interferogram, 44	pupil.rhotheta,36
wf.net, 47	.up2 (FFTUtilities), 11
wf3d.pupil, 48	addfit, 2
*Topic hplot	aiafit, <i>33</i> , <i>48</i>
col3d, 7	aiapsi, 3
foucogram, 13	astig.bath,4
startest, 43	
synth.interferogram, 44	brcutpuw, 16, 17, 38, 41
wf3d.pupil, 48	circle.pars, 5, 8-10, 18, 20, 21, 24, 25,
*Topic mathematics	32, 34
* Topic manicinancs	JL, JT

56 INDEX

col3d, 7	plotn, 30
complex, 28	plotxs, 31
convolve2d, 8, 14	psifit, 6, 12, 18, 21, 22, 25, 32, 35, 48, 53
crop, 8	pupil, 6, 10, 13, 14, 16, 18, 20, 25, 29, 33,
1 /	33, 35, 36, 38, 44–46, 48, 51, 53
drzernike (Zernike), 50	pupil.pars, 9, 10, 17-19, 24, 28, 29, 31,
DTZernike (Zernike), 50	32, 34, 35, 36, 45, 47
DZernike (Zernike), 50	
bacinike (acinike), 50	pupil.rhotheta, 36, 47
fftfit, 6, 9, 12, 27, 28, 35, 48, 53	pupilpv, 29, 34, 51
fftshift (FFTUtilities), 11	pupilpv (pupilrms), 37
FFTUtilities, 11	pupilrms, 29, 34, 37, 51
	20
filldzm (zpm), 54	qpuw, 38
fillgradientzm(zpm), 54	20
fillzm, <i>51</i>	readjpeg, 39
fitzernikes, 10, 12, 18, 20, 25, 33, 48, 54	readtiff(<i>readjpeg</i>),39
foucogram, 13	rescale, 39
	rmap, <i>16</i> , <i>17</i> , 40
gblur, 8, 14	rygcb, 41
gray256, 15	rygcbm(rygcb),41
grey256,42	rzernike (Zernike), 50
grey256 (gray256), 15	, , , , , , , , , , , , , , , , , , , ,
	separate.wf,42
hkfit, 18, 22, 33, 48	startest, <i>12</i> , 43
hkpsi (aiapsi), 3	strehlratio, 29, 34, 51
hypot, 15	strehlratio(pupilrms), 37
11, 12, 13, 13	submatrix (FFTUtilities), 11
idiffpuw, 16, 38, 41	
image.default, 28, 29	summary.pupil, 34, 37
-	summary.pupil(plot.pupil),29
itfit, 4, 17, 19, 25	synth.interferogram,44
lm, 12	
	tiltpsi, 20
load.images, 21, 26, 40	tiltpsi(aiapsi),3
load.pgm(load.images), 21	turbwf,46
localize.sidelobe, 28	- 10 10 10 00 01 04 06 00 00 00
locator, 27, 35	wf.net, 10, 12, 18, 20, 21, 24-26, 30, 32, 33,
lspsi, 22, 33	47
lspuw, 38	wf3d(<i>wf3d.pupi1</i>),48
	wf3d.pupil,48
makezlist, <i>34</i> , <i>46</i> , <i>51</i> , <i>54</i>	wftophase(FFTUtilities), 11
makezlist(zlist),52	wrap(<i>rmap</i>), 40
modalfit, 23	
modalpuw, 16, 17, 38, 41	zconic,49
	Zernike, 34, 36, 44, 46, 50, 50, 54
padmatrix(FFTUtilities),11	zlist, 52
pcafit, 18, 21, 24, 26, 33, 48	zlist.fr, 51, 54
pcapsi, 25	zlist.fr(zlist), 52
pick.sidelobe, <i>10</i> , 27	zmoments, 53
plot.cmat, 27, 28	zmult, 51
plot.pupil. 7. 29. 30. 31. 34. 48. 49	zmult ($zlist$), 52

INDEX 57

```
zonalfit (modalfit), 23
zpm, 12, 54
```