6.2 Recursion

Notebook: Discrete Mathematics [CM1020]

Created: 2019-10-07 2:31 PM **Updated:** 2019-12-07 12:33 PM

Author: SUKHJIT MANN

Cornell Notes

Topic: 6.2 Recursion

Course: BSc Computer Science

Class: Discrete Mathematics-Lecture

Date: December 06, 2019

Essential Question:

What are recursion, recurrence, and recurrence relations?

Questions/Cues:

- What is recursion?
- What is a Recursively defined function?
- What is a recursively defined set?
- What is recursive algorithm?
- What is a recurrence relation?
- What is a linear recurrence?
- What is a arithmetic sequence?
- What is a geometric sequence?
- What is a divide and conquer recurrence?
- How to solve recurrence relations?
- How do we use induction when solving a recurrence relation?

Notes

Definition

- Sometimes it is difficult to define a mathematical object (e.g. a function, sequence or set) explicitly; it is easier to define the object in terms of the object itself
- This process is called recursion.

Recursively defined functions

A recursively defined function f with domain \mathbb{N} is a function defined by:

- BASIS STEP: specify an initial value of the function
- RECURSIVE STEP: give a rule for finding the value of the function at an integer from its values at smaller integers
- Such a definition is called a recursive or inductive definition
- Defining a function f (n) from the set \mathbb{N} to the set \mathbb{R} is the same as a **sequence** a_0, a_1 ... where $\forall i \in \mathbb{N}, a_i \in \mathbb{R}$.

Examples

Let's give a recursive definition of the sequence $\{a_n\}$, n = 1, 2, 3, ..., in the following cases:

```
1. a_n = 4n
```

2.
$$a_n = 4^n$$

3.
$$a_n = 4$$

- There may be more than one correct answer to each sequence
 - 1. As each term in the sequence is greater than the previous term by 4, this sequence can be defined by setting $a_1 = 4$ and declaring that $\forall n \geq 1$ $a_{n+1} = 4 + a_n$
 - 2. As each term is 4 times its predecessor, this sequence can be defined as a_1 = 4 and $\forall n \ge 1$ a_{n+1} = $4a_n$
 - 3. This sequence can be defined as $a_1 = 4$ and $\forall n \ge 1$ $a_{n+1} = a_n$.

Recursively defined sets

Sets can also be defined recursively, by defining two steps:

- BASIS STEP: where we specify some initial elements
- RECURSIVE STEP: where we provide a rule for constructing new elements from those we already have.

Example:

- Consider the subset S of the set of integers recursively defined by:
 - 1. BASIS STEP: $4 \in S$
 - 2. RECURSIVE STEP: if $x \in S$ and $y \in S$, then $x + y \in S$
- Later we will see how it can be proved that the set S is the set of all positive integers that are multiples of 4.

Recursive algorithms

Definition 1:

 An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem.

Definition 2:

 An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem with a smaller input.

Example

Let's give a recursive algorithm for computing n!, where n is a nonnegative integer:

 n! can be recursively defined by the following two steps:

```
BASIS STEP: 0! = 1

RECURSIVE STEP: n! = n (n - 1)! when n is a positive integer
```

 The pseudocode of this algorithms can be formalised as:

```
procedure factorial(n: nonnegative integer){
    if n = 0 then return 1
    else
    return n factorial (n - 1)
}
```

Definitions

- A recurrence relation is an equation that defines a sequence based on a rule that gives the next term as a function of the previous term
- An infinite sequence is a function from the set of positive integers to the set of real numbers
- In many cases, it can be very useful to formalise the problem as a sequence before solving it.

Example: Hanoi Tower

- The game of Hanoi Tower is played with a set of discs of graduated size and a playing board consisting of three spokes for holding the discs
- The object of the game is to transfer all the discs from spoke A to spoke C by moving one disk at a time without placing a larger disc on top of a smaller one.

Let a_n be the minimum number of moves to transfer n discs from one spoke to another:

Let a_n be the minimum number of moves to transfer n discs from one spoke to another:

• in order to move n discs from A to C, we must move the first n-1 discs from A to B by a_{n-1} moves

Let a_n be the minimum number of moves to transfer n discs from one spoke to another:

- in order to move n discs from A to C, we must move the first n-1 discs from A to B by a_{n-1} moves
- then, move the last (and also the largest) disc from A to C by one move

Let a_n be the minimum number of moves to transfer n discs from one spoke to another:

- in order to move n discs from A to C, we must move the first n-1 discs from A to B by a_{n-1} moves
- then, move the last (and also the largest) disc from A to C by one move
- then, remove the n 1 discs again from B to C by a_{n-1}moves

Let a_n be the minimum number of moves to transfer n discs from one spoke to another:

- in order to move n discs from A to C, we must move the first n-1 discs from A to B by a_{n-1} moves
- then, move the last (and also the largest) disc from A to C by one move
- then, remove the n 1 discs again from B to C by a_{n-1} moves
- thus, the total number of moves is: $a_n = 2a_{n-1} + 1$.

Linear recurrences

A linear recurrence is a relation in which each term of a sequence is a linear function of earlier terms in the sequence.

- · There are two types of linear recurrence:
 - · linear homogeneous recurrences:
 - formalised as $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$
 - where $c_1, c_2, ..., c_k \in \mathbb{R}$, and k is the degree of the relation
 - linear non-homogeneous recurrences:
 - formalised as $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + f(n)$
 - where $c_1, c_2, ..., c_k \in \mathbb{R}$, f(n) is a function depending only on n, and k is the degree of the relation.

Example: first order recurrence

Let's consider the following case:

- a country with currently 50 million people that:
 - has a population growth rate (birth rate minus death rate) of 1% per year
 - receives 50,000 immigrants per year
- question: find this country's population in 10 years from now.
- This case can be modelled as the following firstorder linear recurrence:
 - where a_n is the population in n years from now
 - $\forall n \in \mathbb{N}$, a_{n+1} is expressed as $a_{n+1} = 1.01 a_n + 50,000$
 - $a_0 = 50,000,000$.

Example: second order recurrence

Let's consider the following sequence:

- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
- where each number is found by adding up the two numbers before it

This sequence can be modelled as the following second-order linear recurrence:

- $a_n = a_{n-1} + a_{n-2}$
- $a_0 = 0$
- $a_1 = 1$

This sequence is famously known as the **Fibonacci** sequence.

Arithmetic sequences

- A sequence is called arithmetic if the difference between consecutive terms is a constant c
- $\forall n, a_{n+1}$ is expressed as $a_{n+1} = a_n + c$ and $a_n = a$.

Example:

- The sequence 2, 5, 8, 11, 14, ... is **arithmetic** with an initial term of $a_0 = 2$ and a common difference of 3
- 30, 25, 20, 15,... is arithmetic with an initial term of $a_0 = 30$ and a common difference of -5.

Geometric sequences

- A sequence is called *geometric* if the ratio between consecutive terms is a constant r
- $\forall n, a_{n+1}$ is expressed as $a_{n+1} = r a_n$ and $a_0 = a$.

Example:

- The sequence 3, 6, 12, 24, 48, ... is geometric with an initial term of $a_0 = 3$ and a common ratio of 2
- 125, 25, 5, 1, 1/5, 1/25, ... is geometric with an initial term of $a_0 = 125$ and a common ratio of 1/5.

Divide and conquer recurrence

A divide and conquer algorithm consists of three steps:

- dividing a problem into smaller subproblems
- solving (recursively) each subproblem
- and then combining solutions to find a solution to the original problem.

Example

Let's consider the problem of finding the minimum of a sequence $\{a_n\}$ where $n \in \mathbb{N}$

- if n=1, the number is itself min or max
- if n>1, divide the numbers into two lists
- · order the sequence
- · find the min and max in the first list
- · then find the min and max in the second list

then infer the min and max of the entire list.

Solving linear recurrence

- Let $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ be a linear homogeneous recurrence
- If a combination of the geometric sequence $a_n = r^n$ is a solution to this recurrence, it satisfies $r^n = c_1 r^{n-1} + c_2 r^{n-2} \dots c_k r^{n-k}$
- By dividing both sides by r^{n-k} , we get: r^k = c_1r^{k-1} + c_2r^{k-2} ... c_k

This equation is called the **characteristic equation**.

Solving linear recurrence

Solving this equation is the first step towards finding a solution to linear homogeneous recurrence:

- If r is a solution of the equation with multiplicity p, then the combination $(\alpha + \beta n + \gamma n^2 + ... + \mu n^{p-1})r^n$ satisfies the recurrence
- We will examine some examples of how this works in the next section.

Example: solving Fibonacci

Let's consider solving the Fibonacci recurrence relation:

$$f_n = f_{n-1} + f_{n-2}$$
, with $f_0 = 0$ and $f_1 = 1$

Solution:

- The characteristic equation of the Fibonacci recurrence relation is:
 - $r^2 r 1 = 0$
- It has two distinct roots, of multiplicity 1:
 - $r_1 = (1+\sqrt{5})/2$ and $r_2 = (1-\sqrt{5})/2$
- So, $f_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ is a solution

Example: solving Fibonacci

To find α_1 and α_2 we need to use the initial conditions.

- From:
 - $f_0 = \alpha_1 + \alpha_2 = 0$
 - $f_1 = \alpha_1(1+\sqrt{5})/2 + \alpha_2(1+\sqrt{5})/2 = 1$
- we can find $\alpha_1 = 1/\sqrt{5}$ and $\alpha_2 = -1/\sqrt{5}$
- · The solution is then formalised as:

$$f_n = 1/\sqrt{5} \cdot ((1+\sqrt{5})/2)^n) - 1/\sqrt{5} \cdot ((1-\sqrt{5})/2)^n)$$

Example 2

Let's consider another sequence:

- $a_n = -3a_{n-1} 3a_{n-2} a_{n-3}$
- $a_0 = 1$, $a_1 = -2$ and $a_2 = -1$

Solution:

- The characteristic equation of this relation is: r^3 + $3r^2+3r+1=0$
- It has one distinct root, whose multiplicity is 3 $r_1 = -1$
- So, $a_n = (\alpha_0 + \alpha_1 n + \alpha_2 n^2) r_1^n$ is a solution.

Example 2

- To find α₀, α₁ and α₂we need to use the initial conditions.
 - · From:
 - $a_0 = \alpha_0 = 1$
 - $a_1 = -(\alpha_0 + \alpha_1 + \alpha_2) = -2$
 - $a_2 = -(\alpha_0 + 2\alpha_1 + 4\alpha_2) = -1$
 - we can find $\alpha_1 = 1$, $\alpha_2 = -3$ and $\alpha_3 = -2$
- The solution is then formalised as: $a_n = (1 + 3n 2n^2)(-1)^n$

Induction for solving recurrence

Sometimes, it is easier to verify a recurrence relation solution using strong induction.

Example:

- · Let's try to prove the following:
 - P(n): the sequence $f_n = 1/\sqrt{5}(r_1^n r_2^n)$ verifies the Fibonacci recurrence, where:
 - $r_1 = (1+\sqrt{5})/2$
 - $r_2 = (1-\sqrt{5})/2$ are the roots of $r^2 r 1 = 0$

Induction for solving recurrence

- · Let's verify P(2):
 - $f_1 + f_0 = 1/\sqrt{5}(r_1 r_2) = 1/\sqrt{5}(\sqrt{5}) = 1 = f_2$
 - because $f_2 = 1/\sqrt{5}(r_1^2 r_2^2) = 1$
 - · which verifies the initial condition.
- Let $k \in \mathbb{N}$, where P(2) P(3)...P(k) are all true
- · Let's verify P(k+1):
 - $f_n+f_{n-1}=\frac{(r_1^{n-}r_2^n)}{\sqrt{5}}+\frac{(r_1^{n-1}-r_2^{n-1})}{\sqrt{5}}=r_1^{n-1}(r_1+1)/\sqrt{5}+r_2^{n-1}(r_2+1)/\sqrt{5}=r_1^{n-1}*r_1^2+r_2^{n-1}*r_2^2=r_1^{n+1}+r_2^{n+1}$ which equals f_{n+1}

We conclude that P(k+1) is true and the strong induction is verified.

Summary

In this week, we learned what recursion is, what is recursively-defined set & function are and what a recursive algorithm is. Also we explored what a recurrence relation is, the difference types of sequences, what linear & divide and conquer recurrences are and lastly how to solve recurrence relations.