

<u>Gameboard</u>

Maths

Acceleration f(t) 3ii

Acceleration f(t) 3ii

A cyclist travels along a straight road. Her velocity $v \, \mathrm{m \, s^{-1}}$, at time t seconds after starting from a point O, is given by

$$v=2 ext{ for } 0 \leq t \leq 10$$

$$v = 0.03t^2 - 0.3t + 2 \text{ for } t \ge 10$$

Find the displacement of the cyclist from O when t=10.

Part B Expression for displacement

Find an expression for the displacement of the cyclist from O as a function of time for $t \geq 10\,\mathrm{s}$. Give your answer using fractions, not decimals.

The following symbols may be useful: t

Part C Time

Find the time when the acceleration of the cyclist is $0.6\,\mathrm{m\,s^{-2}}$.

Part D Displacement

Find the displacement of the cyclist from O when her acceleration is $0.6\,\mathrm{m\,s^{-2}}$.

Used with permission from UCLES, A Level, June 2006, OCR M1, Question 4

<u>Gameboard</u>

Maths

Acceleration f(t) 4i

Acceleration f(t) 4i

A car is travelling along a straight horizontal road with velocity $32.5 \,\mathrm{m\,s^{-1}}$. The driver applies the brakes and the car decelerates at $(8-0.6t)\,\mathrm{m\,s^{-2}}$, where $t\,\mathrm{s}$ is the time which has elapsed since the brakes were first applied.

Part A Velocity

Find an expression for the velocity of the car when it is decelerating.

The following symbols may be useful: t

Part B Time taken

Find the time taken to bring the car to rest.

Part C Distance travelled

Find the total distance travelled by the car whilst it is decelerating.

Used with permission from UCLES, A Level, January 2012, OCR M1, Question 3

Gameboard:

STEM SMART Double Maths 23 - Vector Equations of Motion

<u>Gameboard</u>

Maths

Calculus and Vectors 1ii

Calculus and Vectors 1ii

A particle P of mass $0.2\,\mathrm{kg}$ moves on a smooth horizontal plane. Initially it is projected with velocity $0.8\,\mathrm{m\,s^{-1}}$ from a fixed point O towards another fixed point A. At time $t\,\mathrm{s}$ after projection, P is $x\,\mathrm{m}$ from O and is moving with velocity $v\,\mathrm{m\,s^{-1}}$, with the direction OA being positive. A force of $(1.5t-1)\,\mathrm{N}$ acts on P in the direction parallel to OA.

Part A Expression for v

Find an expression for v in terms of t.

The following symbols may be useful: t, v

Find the time (in seconds) when the velocity of P is next $0.8\,\mathrm{m\,s^{-1}}$.

Find the first time when P subsequently passes through O.

Find the second time when P subsequently passes through O.

Part D Distance in third second

Find the distance P travels in the third second of its motion.

Used with permission from UCLES, A Level, June 2013, OCR M3, Question 3

Gameboard:

STEM SMART Double Maths 23 - Vector Equations of Motion

<u>Gameboard</u>

Maths

Vectors & Calculus 2i

Vectors & Calculus 2i

A projectile has velocity $egin{pmatrix} A \\ 5-gt \end{pmatrix} \mathrm{m}\,\mathrm{s}^{-1}.$

Part A Displacement

Given that the particle is at $inom{5}{10}$ when t=0.

Find an expression for the x-component of the particle's displacement, in metres, as a function of t.

The following symbols may be useful: A, g, t

Find an expression for the y-component of the particle's displacement, in metres, as a function of t.

The following symbols may be useful: A, g, t

Part B Force

Find an expression for the force on the particle, given that it has mass $m \lg$. Give your answer in the form $a\underline{\pmb{i}} + b\underline{\pmb{j}}$ where $\underline{\pmb{i}}$ and $\underline{\pmb{j}}$ are unit vectors in the x and y directions respectively.

The following symbols may be useful: A, g, i, j, m

${\bf Part \ C} \qquad {\bf Value \ of} \ A$

The projectile hits a target at the coordinates $\binom{20}{0}$.

What is the value of A? Give your answer to 2 significant figures. In your calculation, use the approximation $g\simeq 10\,\mathrm{m\,s^{-2}}$ and assume that the target is hit at t>0.

Created for isaacphysics.org by Jonathan Waugh

Gameboard:

STEM SMART Double Maths 23 - Vector Equations of Motion

<u>Gameboard</u>

Maths

Vectors & Calculus 1i

Vectors & Calculus 1i

A planet moves through space. The force on the planet is given by

$$oldsymbol{\underline{F}} = egin{pmatrix} -mAB^2\cos Bt \ -mAB^2\sin Bt \end{pmatrix}$$

where A and B are numerical constants and m is the mass of the planet.

Part A Velocity

Given that the velocity of the planet when t=0 is $\begin{pmatrix} 0 \\ AB \end{pmatrix}$.

Find an expression for the x-component of the velocity of the planet as a function of time.

The following symbols may be useful: A, B, cos(), sin(), t, tan()

Find an expression for the y-component of the velocity of the planet as a function of time.

The following symbols may be useful: A, B, cos(), sin(), t, tan()

Part B Displacement

Given that the displacement of the planet when t=0 is $\binom{A}{0}$.

Find an expression for the x-component of the displacement of the planet as a function of time.

The following symbols may be useful: A, B, cos(), sin(), t, tan()

Find an expression for the y-component of the displacement of the planet as a function of time.

The following symbols may be useful: A, B, cos(), sin(), t, tan()

Part C Modulus

Find an expression for the modulus of the displacement. Simplify your answer as far as possible.

The following symbols may be useful: A, B, cos(), sin(), t, tan()

Part D Shape of path

What is the shape of the path that the planet follows?

Created for isaacphysics.org by Jonathan Waugh

Gameboard:

STEM SMART Double Maths 23 - Vector Equations of Motion

<u>Gameboard</u>

Maths

Projectiles: Trajectories 3i

Projectiles: Trajectories 3i

Figure 1: The trajectory of a particle P.

A particle P is projected with speed $32\,\mathrm{m\,s^{-1}}$ at an angle of elevation α , where $\sin\alpha=\frac{3}{5}$, from a point A on horizontal ground. At the same instant a particle Q is projected with speed $20\,\mathrm{m\,s^{-1}}$ at an angle of elevation β , where $\sin\beta=\frac{24}{25}$, from a point B on the same horizontal ground. The particles move freely under gravity in the same vertical plane and collide with each other at the point C at the instant when they are travelling horizontally.

Express the velocity of P in vector form using the unit vectors \underline{i} and \underline{j} , where \underline{i} is a unit vector in the direction of \overrightarrow{AB} and \underline{j} is a unit vector vertically upwards.

The following symbols may be useful: i, j, k

Express the velocity of Q in vector form using the unit vectors \underline{i} and \underline{j} , where \underline{i} is a unit vector in the direction of \overrightarrow{AB} and j is a unit vector vertically upwards.

The following symbols may be useful: i, j, k

Calculate the height of ${\cal C}$ above the ground. Give your answer to 3 significant figures.

Part C Time in air

Find the time, t, between projection and collision. Give your answer to 3 significant figures.

Part D Distance AB

Calculate the distance AB. Give your answer to 3 significant figures.

Adapted with permission from UCLES, A Level, June 2016, OCR M2, Question 7

Gameboard:

STEM SMART Double Maths 23 - Vector Equations of Motion

<u>Gameboard</u>

Maths

Particles Moving on a Surface

Particles Moving on a Surface

A particle Q of mass $0.2\,\mathrm{kg}$ is projected horizontally with velocity $4\,\mathrm{m\,s^{-1}}$ from a fixed point A on a smooth horizontal surface. At time $t\,\mathrm{s}$ after projection Q is $x\,\mathrm{m}$ from A and is moving away from A with velocity $v\,\mathrm{m\,s^{-1}}$. There is a force of $3\cos 2t\,\mathrm{N}$ acting on Q in the positive x-direction.

Part A Expression for velocity

Find an expression for the velocity of Q at time t.

The following symbols may be useful: cos(), sin(), t, tan(), v

Part B Maximum and minimum

State the maximum value of the velocity of Q as t varies. Give your answer to 3 significant figures.

State the minimum value of the velocity of Q as t varies. Give your answer to 2 significant figures.

Part C Average velocity

Find the average velocity of Q between the times $t=\pi$ and $t=\frac{3}{2}\pi$. Give your answer to 3 significant figures.

Part D Particle's velocity

A particle P moves in a plane. Its displacement from the starting point, R, varies with time, t, as follows:

$$R=egin{pmatrix} 2t^2\sin\pi t-1\ 1+t^3 \end{pmatrix}$$

Where displacement is measured in metres and time is measured in seconds.

What is the x-component of the particle's velocity?

The following symbols may be useful: cos(), pi, sin(), t, tan()

What is the y-component of the particle's velocity?

The following symbols may be useful: cos(), pi, sin(), t, tan()

Part E Speed of particle

Find the speed of the particle when t=2. Give your answer to 3 significant figures.

Adapted with permission from UCLES, A Level, June 2016, OCR M3, Question 2

Gameboard:

STEM SMART Double Maths 23 - Vector Equations of Motion

<u>Gameboard</u>

Maths

Ships at Sea

Ships at Sea

Part A Unit vector

Find the unit vector in the same direction as $\underline{\pmb{p}}=6\underline{\pmb{i}}-3\underline{\pmb{j}}+2\underline{\pmb{k}}$ in $\underline{\pmb{i}},\underline{\pmb{j}}$, $\underline{\pmb{k}}$ format.

The following symbols may be useful: i, j, k, p

Hence, find a vector of magnitude 4 parallel to p.

The following symbols may be useful: i, j, k, p

${\bf Part \, B} \hspace{0.5cm} S \ {\bf and} \ T$

In an experiment two ships, ${\cal S}$ and ${\cal T}$, move in a calm sea.

S and T are considered to be represented by single points in space. Which single word describes an object for which such an assumption is made?

Part C Position of S

S starts from the origin and moves with constant velocity $\underline{v_1} = 4\underline{i} - 3\underline{j}$, where $\underline{v_1}$ is measured in $\mathrm{km}\,\mathrm{h}^{-1}$.

Write down the position vector of S in terms of t using ijk notation.

The following symbols may be useful: i, j, k, t

Part D Calm sea assumption

T starts from the point with position vector $(3\underline{i}-5\underline{j})$ and moves with constant velocity $\underline{v_2}=(\underline{i}+4\underline{j})$ where $\underline{v_2}$ is measured in $\mathrm{km}\,\mathrm{h}^{-1}$.

Using the information given, justify limiting the velocity vectors of S and T to two dimensions.

Part E Do they meet?

Do S and T ever meet? If so, find the time in seconds. If not, enter in 0.

Part F Minimum distance

Find the minimum distance between S and T. Give your answer using exact fractions and surds.

A second experiment is undertaken. The behavior of S is unchanged. T starts from the same point as before, but this time it is the intention that S and T meet. The required constant velocity to set for T is of the form $(\underline{i} + y\underline{j})$.

Find the value of y.

Part H Percentage accuracy

The ships are each approximately $40\,\mathrm{m}$ long. Estimate the maximum percentage error in the calculation of the time it takes for the ships to meet due to using the assumption described in <u>Part B</u>. Give your answer to 1 significant figure.

Created for isaacphysics.org by Sally Waugh