ASSIGNMENT – 2 MACHINE LEARNING

Q1 to _	1. Movie Recommendation systems are an example of: i) Classification
	ii) Clustering iii) Regression Options:
	ans - a) 2 Only
<u>-</u> -	2. Sentiment Analysis is an example of: i) Regressionii) Classificationiii) Clusteringiv) Reinforcement Options:ans - d) 1, 2 and 4
	3. Can decision trees be used for performing clustering? Ans - a) True
 given I	4. Which of the following is the most appropriate strategy for data cleaning before performing clustering analysis ess than desirable number of data points: i) Capping and flooring of variables ii) Removal of outliers Options: ans - a) 1 only
	5. What is the minimum no. of variables/ features required to perform clustering? Ans - b) 1
	6. For two runs of K-Mean clustering is it expected to get same clustering results? Ans - b) No
K-Mea	7. Is it possible that Assignment of observations to clusters does not change between successive iterations in ns? Ans - a) Yes
teratio	8. Which of the following can act as possible termination conditions in K-Means? i) For a fixed number of
icrano ninimi	ii) Assignment of observations to clusters does not change between iterations. Except for cases witha bad local
_	iii) Centroids do not change between successive iterations. iv) Terminate when RSS falls below a threshold. Options: ans - d) All of the above
	9. Which of the following algorithms is most sensitive to outliers? Ans - a) K-means clustering algorithm
 Super 	10. How can Clustering (Unsupervised Learning) be used to improve the accuracy of Linear Regression model rvised Learning): i) Creating different models for different cluster groups. ii) Creating an input feature for cluster ids as an ordinal variable. iii) Creating an input feature for cluster centroids as a continuous variable. iv) Creating an input feature for cluster size as a continuous variable. Options: ans -) All of the above
algoritl	11. What could be the possible reason(s) for producing two different dendrograms using agglomerative clustering for the same dataset? Ans - d) All of the above

Q12 to Q14 are subjective answers type questions, Answers them in their own words briefly

12. Is K sensitive to outliers?

Ans - The K-means clustering algorithm is sensitive to outliers, because a mean is easily influenced by extreme values. K-medoids clustering is a variant of K-means that is more robust to noises and outliers.

13. Why is K means better?

Ans - Guarantees convergence. Can warm-start the positions of centroids. Easily adapts to new examples. Generalizes to clusters of different shapes and sizes, such as elliptical clusters

14. Is K means a deterministic algorithm?

Ans - One of the significant drawbacks of K-Means is its non-deterministic nature. K-Means starts with a random set of data points as initial centroids. This random selection influences the quality of the resulting clusters. Besides, each run of the algorithm for the same dataset may yield a different outpu