Statistical Analysis of Networks

Introduction to Stochastic Actor-Based Models

Learning Goals

- * Understand difference between Exponential Random Graph Models and Stochastic Actor-Based Models
- * Describe logic of *micro-steps* and simulation of networks using **rate** function.
- * Describe logic of *preferences* and simulation of networks using **objective** function.

Introduction

- * With ERGMs, we asked: "what are the network configurations that generated this network?"
 - * We reviewed models that are "edge-based" in the sense that the probability of an edge is dependent (or not) on other edges in the network.

Introduction

- * With Stochastic Actor-Based Models (SABM), we can ask a new question:
 - * How do networks change? (network dynamics)
 - * This introduces a temporal element that was not addressed by ERGMs (although, it is possible [see STERGMs]).

Network Dynamics

Network Dynamics

t + 1

Both are different sequences.

Network Dynamics

Network Dynamics

We want to model these dynamics as micro steps

Micro-steps

- * What is a micro-step?:
- Uniquely identify actors
 - * Actors control and decide about the tie variable
 - * (Note the difference from an ERGM)

In the first micro-step, the yellow node makes a decision.

Specifically, drop a tie.

In the second microstep, the yellow node makes a decision.

Specifically, reciprocate a tie.

But, there are different sequences of decisions that occur by which we would reach the second network.

In the first micro-step, the yellow node makes a decision.

Specifically, reciprocate a tie.

In the second microstep, the yellow node makes a decision.

Specifically, drop a tie.

Why 'actor-based'?

- * Actors make decisions which drive change in the network (i.e. actor-driven or agent-based model).
 - * ERGMs are *edge*-based models in that we parameterize the configurations of edges that characterize the network.

Why 'actor-based'?

- * The SABM has 2 sub-models (called functions):
 - * When can actor *i* make a decision? (rate)
 - * Which decision does actor *i* make? (**objective**)

Simulating Network Evolution

- * The SABM logic goes like this:
 - * Start with a network at to and run an algorithm to t1.
 - * For all actors, a waiting time is sampled according to the rate function.
 - * Take the actor with the shortest waiting time and allow the actor to set a *micro step*.

- * The **rate** function determines how many decisions actors make.
- * The **objective** function expresses how likely it is for an actor to change his/her network in a particular way.
 - * Represents the short-term *objectives* of the actor (hence the name).
 - * "defined on the set of possible states of the network, as perceived from the point of view of the focal actor" (Snijders et al. 2010).

What can i do?

- * The SABM simulates networks and compares them to the observed network.
 - Basically, optimizing a random utility function.
 - * Take an actor, evaluate what he/she can do, determine which is most likely.

- * The estimated model then yields estimates about actors' preferences
 - * Positive effects that are large and significantly different from zero indicate a preference over available alternatives for that particular configuration.
 - * The opposite for **negative** effects that are large and significantly different from zero.

- * As with ERGMs, network configurations operationalize the process in which we are interested.
 - * Thus, we can test hypotheses regarding actor-based mechanisms.

unpopular others

Effect t+1 (RSiena te

(RSiena term) Preference

t+1

Effect (RSiena term)

<u>Preference</u>

to form ties

<u>Effect</u> (RSiena term)

Outdegree (default)

Preference

to form ties

to reciprocate ties

t+1

<u>Effect</u>

(RSiena term)

Preference

t+1

Effect (RSiena term)

Preference

for being friend of the friend's friends

†

t+1

Effect (RSiena term)

Preference

Transitive
Triplets
(transTrip)

for being friend of the friend's friends

†

t+1

Effect (RSiena term)

<u>Preference</u>

Transitive
Triplets
(transTrip)

for being friend of the friend's friends

for forming cycles

t t+1

Effect (RSiena term)

Preference

Transitive
Triplets
(transTrip)

for being friend of the friend's friends

Cyclical Triad (cycle3)

for forming cycles

t+1

Effect (RSiena term)

Preference

for being friend of popular alters

t+1

Effect (RSiena term)

Preference

Popularity (inPop)

for being friend of popular alters

t+1

Effect (RSiena term)

<u>Preference</u>

Popularity (inPop)

for being friend of popular alters

for being friend of active alters

Effect Preference t+1 (RSiena term) Ego Ego for being Popularity friend of (inPop) popular alters Ego Ego for being Activity friend of (outPop) active alters

t+1

Effect

(RSiena term)

<u>Preference</u>

t+1

Effect (RSiena term)

Preference

for ties to similar alters

t + 1

<u>Effect</u> (RSiena term)

<u>Preference</u>

Similarity for ties to (sameX or simX) similar alters

t+1

Effect (RSiena term)

<u>Preference</u>

Similarity for ties to (sameX or simX) similar alters

ego's covariate effect on preference

(EgoX)

preference

Ego

Ego

alter's covariate effect on preference

Learning Goals

- Understand difference between Exponential Random Graph Models and Stochastic Actor-Based Models
- * Describe logic of *micro-steps* and simulation of networks using **rate** function.
- * Describe logic of *preferences* and simulation of networks using **objective** function.

Questions?