AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (Previously Presented): A compound represented by the following formula (I) or a physiologically acceptable salt thereof, or a hydrate thereof:

$$\begin{array}{c|c}
R^1 \\
R^2 \\
S \\
W^1 \\
N \\
N \\
N \\
N \\
W^2 - Q
\end{array}$$
(I)

wherein, R^1 and R^2 each independently represent hydrogen atom, a halogen atom, hydroxyl group, a group of OZ_{1-6} (the group of OZ_{1-6} represents an alkyl group having 1-6 carbon atoms or a fluoroalkyl group having 1-6 carbon atoms, which bonds via the oxygen atom), a group of $S(O)_nZ_{1-4}$ (Z_{1-4} represents an alkyl group having 1-4 carbon atoms or a fluoroalkyl group having 1-4 carbon atoms or an alkylene group derived therefrom), a group of $N(R^{12})(R^{13})$ (R^{12} and R^{13} each independently represent hydrogen atom, an alkyl group having 1-4 carbon atoms or a fluoroalkyl group having 1-4 carbon

atoms), a group of Z_{1-8} which may be substituted (Z_{1-8} represents an alkyl group having 1-8 carbon atoms or a fluoroalkyl group having 1-8 carbon atoms), a 5- to 7-membered cyclic alkyl group, an aryl group, a heteroaryl group, or a 4- to 7-membered saturated or partially saturated heterocyclic group (the cyclic alkyl group, aryl group, heteroaryl group and heterocyclic group may have one to three substituents selected from the group consisting of a halogen atom, hydroxyl group, a group of OZ_{1-4} , a group of $S(O)_nZ_{1-4}$, and a group of $S(O)_nZ_{1-4}$, group of $S(O)_nZ_{1-4}$, a group of $S(O)_nZ_{1-4}$, and a group of $S(O)_nZ_{1-4}$, group of $S(O)_nZ_{1-4}$, a group of $S(O)_nZ_{1-4}$, and a group of $S(O)_nZ_{1-4}$, group of $S(O)_nZ_{1-4}$, a group selected from the group consisting of $S(O)_nZ_{1-4}$.

 W^1 represents a group selected from the group consisting of -CH=CH-, -N(R¹²)CO-, -CON(R¹²)-, -CH₂O- and -CH₂CH₂- (each of the aforementioned groups binds to the thiazole ring at the left end);

 R^3 represents hydrogen atom, a halogen atom, hydroxyl group or an amino group; R^4 represents a group selected from the group consisting of hydrogen atom, a group of $-OZ_{0.4}R^5$ ($Z_{0.4}$ represents an alkylene group having 1-4 carbon atoms, a fluorine-substituted alkylene group having 1-4 carbon atoms or a single bond, and R^5 represents a 5- to 7-membered cyclic alkyl group, an aryl group, a heteroaryl group or a 4- to 7-membered saturated or partially saturated heterocyclic group (the cyclic alkyl group, aryl group, heteroaryl group and heterocyclic group may have one to three substituents selected from the group consisting of a halogen atom, hydroxyl group, a group of $OZ_{1.4}$, a group of $S(O)_nZ_{1.4}$, a group of $N(R^{12})(R^{13})$, a group of $Z_{1.4}$, carboxyl group, a group of $CO_2Z_{1.4}$, group of $CONH_2$, a group of $CONH(Z_{1.4})$ and a group of $CONH(Z_{1.4})$, a group of $S(O)_nZ_{0.4}R^5$, a group of $S(R^6)(R^7)$ (S^6 and S^7 each

independently represent hydrogen atom or Z_{1-4} , or they may bind to each other to form a saturated or unsaturated 5- to 7-membered ring (the ring may contain one or two hetero atoms as ring constituting atoms), and R^6 and R^7 may have one to three substituents selected from the group consisting of a halogen atom, hydroxyl group, a group of $OCON(R^{12})(R^{13})$, a group of $CON(R^{12})(R^{13})$, a group of $N(R^{12})(R^{13})$, carboxyl group, cyano group, a group of $N(R^{12})(R^{13})$, $N(R^{12})(R^{13})$, carboxyl group, cyano group, a group of $N(R^{12})(R^{13})$, $N(R^{12})(R^{13})$, carboxyl group, cyano group, a group of $N(R^{12})(R^{13})$, $N(R^{12})(R^{13})$, a group of $N(R^{12})(R^{13})$, a group of $N(R^{12})(R^{13})$, carboxyl group, cyano group, a group of $N(R^{12})(R^{13})$, and a group of $N(R^{$

 $^{(CH_2)q}$ }, a 5- or 6-membered aryl group which may be substituted and a 5- or 6-membered unsaturated heterocyclic group which may be substituted; W^2 represents a single bond or $-C(R^8)=C(R^9)-(R^8)$ and R^9 each independently represent hydrogen atom, a halogen atom, a lower alkyl group, an alkoxy group, cyano group, carboxyl group, hydroxymethyl group, cyanomethyl group, vinyl group or a group of $N(R^{12})(R^{13})$, Q represents an acidic group, and W^2 and Q may bind together to form vinylidenethiazolidinedione in E- or Z-configuration or an equivalent heterocyclic ring; m and n each independently represent an integer of 0 to 2, and q represents an integer of 0 to 3.

Claim 2 (Previously Presented): A medicament composition for eliminating resistance of a microorganism with acquired drug resistance, which comprises a compound represented by formula (I) according to claim 1 or a physiologically acceptable salt thereof as an active ingredient.

Claim 3 (Previously Presented): A medicament composition for enhancing effect of an antimicrobial agent, which comprises a compound represented by formula (I) according to claim 1 or a physiologically acceptable salt thereof as an active ingredient.

Claim 4 (Currently Amended): A pharmaceutical composition for therapeutic treatment of infection by microorganisms selected from Pseudomonas aeruginosa and bacteria having a genetically homologous drug efflux pump which comprises a compound represented by formula (I) according to claim 1 or a physiologically acceptable salt thereof together with an antimicrobial agent.

Claim 5 (Previously Presented): A compound represented by the following formula (I) or a physiologically acceptable salt thereof, or hydrate thereof

$$R^1$$
 R^2
 S
 W^1
 X
 N
 Y
 R^4
 W^2-Q
(I)

wherein, R^1 and R^2 each independently represent hydrogen atom, a halogen atom, hydroxyl group, a group of OZ_{1-6} (the group of OZ_{1-6} represents an alkyl group having 1-

6 carbon atoms or a fluoroalkyl group having 1-6 carbon atoms, which bonds via the oxygen atom), a group of $S(O)_nZ_{1-4}$ (Z_{1-4} represents an alkyl group having 1-4 carbon atoms or a fluoroalkyl group having 1-4 carbon atoms or an alkylene group derived therefrom), a group of $N(R^{12})(R^{13})$ (R^{12} and R^{13} each independently represent hydrogen atom, an alkyl group having 1-4 carbon atoms or a fluoroalkyl group having 1-4 carbon atoms), a group of Z_{1-8} which may be substituted (Z_{1-8} represents an alkyl group having 1-8 carbon atoms or a fluoroalkyl group having 1-8 carbon atoms), a 5- to 7-membered cyclic alkyl group, an aryl group, a heteroaryl group, or a 4- to 7-membered saturated or partially saturated heterocyclic group (the cyclic alkyl group, aryl group, heteroaryl group and heterocyclic group may have one to three substituents selected from the group consisting of a halogen atom, hydroxyl group, a group of OZ_{1-4} , a group of $S(O)_nZ_{1-4}$, and a group of $S(O)_nZ_{1-4}$); $S(O)_nZ_{1-4}$ 0 and a group of $S(O)_nZ_{1-4}$ 1, $S(O)_nZ_{1-4}$ 2.

W' represents a group selected from the group consisting of -CH=CH-, -N(R'²)CO-, -CON(R¹²)-, -CH₂O- and -CH₂CH₂- (each of the aforementioned groups binds to the thiazole ring at the left end);

 R^3 represents hydrogen atom, a halogen atom, hydroxyl group or an amino group; R^4 represents a group selected from the group consisting of hydrogen atom, a group of $-OZ_{0-4}R^5$ (Z_{0-4} represents an alkylene group having 1-4 carbon atoms, a fluorine-substituted alkylene group having 1-4 carbon atoms or a single bond, and R^5 represents a 5- to 7-membered cyclic alkyl group, an aryl group, a heteroaryl group or a 4- to 7-membered saturated or partially saturated heterocyclic group (the cyclic alkyl

group, aryl group, heteroaryl group and heterocyclic group may have one to three substituents selected from the group consisting of a halogen atom, hydroxyl group, a group of OZ_{1-4} , a group of $S(O)_nZ_{1-4}$, a group of $N(R^{12})(R^{13})$, a group of Z_{1-4} , carboxyl group, a group of CO₂Z₁₋₄, group of CONH₂, a group of CONH(Z₁₋₄) and a group of $CON(Z_{1-4})(Z_{1-4})$, a group of $-S(O)_nZ_{0-4}R^5$, a group of $-N(R^6)(R^7)$ { R^6 and R^7 each independently represent hydrogen atom or Z₁₋₄, or they may bind to each other to form a saturated or unsaturated 5- to 7-membered ring (the ring may contain one or two hetero atoms as ring constituting atoms), and R⁶ and R⁷ may have one to three substituents selected from the group consisting of a halogen atom, hydroxyl group, a group of OCON(R^{12})(R^{13}), a group of CON(R^{12})(R^{13}), a group of N(R^{12})CON(R^{12})(R^{13}), a group of Z_{1-4} , a group of OZ_{1-4} , a group $S(O)_nZ_{1-4}$, group of CH_2OH , a group of $(CH_2)_mN(R^{12})(R^{13})$, carboxyl group, cyano group, a group of $CO-Z_{1-4}(R^{10})-N(R^{12})(R^{13})$ (R¹⁰ is a substituent corresponding to a side chain on an amino acid carbon or a group of -Z_{1.4}-R¹¹ (R¹¹ represents a substituent which forms a quaternary salt) and a group of $CO - Z_{1-4} - N(R^{12})(R^{13})$

 $^{(CH_2)q}$ }, a 5- or 6-membered aryl group which may be substituted and a 5- or 6-membered unsaturated heterocyclic group which may be substituted; W^2 represents a single bond or $-C(R^8)=C(R^9)-(R^8)$ and R^9 each independently represent hydrogen atom, a halogen atom, a lower alkyl group, an alkoxy group, cyano group, carboxyl group, hydroxymethyl group, cyanomethyl group, vinyl group or a group of $N(R^{12})(R^{13})$, Q represents an acidic group, and W^2 and Q may bind together to form

vinylidenethiazolidinedione in E- or Z-configuration or an equivalent heterocyclic ring; m and n each independently represent an integer of 0 to 2, and q represents an integer of 0 to 3; R^{14} represents hydrogen atom, Z_{1-4} , $Z_{1-4}R^5$ or

Z₁₋₄OR⁵; and X represents C-H and Y represents C-H or nitrogen atom.

Claim 6 (Currently Amended): A medicament composition for therapeutic treatment of infection by microorganisms selected from Pseudomonas aeruginosa and bacteria having a genetically homologous drug efflux pump which comprises a compound represented by the formula (I) according to claim 1 or a physiologically acceptable salt thereof as an active ingredient.

Claim 7 (Currently Amended): A method for therapeutic treatment of infection by microorganisms selected from Pseudomonas aeruginosa and bacteria having a genetically homologous drug efflux pump <u>Pseudomonas aeruginosa</u> comprising administering to a mammal in need thereof a therapeutically effective amount of the composition according to claim 6.

Claim 8 (Previously Presented): The method according to claim 7, further comprising administering at least one antimicrobial agent.

Claim 9 (Previously Presented) The method according to claim 8, wherein the at least one antimicrobial agent is simultaneously administered with the composition.

Claim 10 (Previously Presented): The method according to claim 8, wherein the at least one antimicrobial agent is separately administered from the composition.

Claim 11 (Previously Presented): The method according to claim 8, wherein the at least one antimicrobial agent is successively administered with the composition.

Claim 12 (Previously Presented): The method according to claim 7 wherein the mammal is a human.

Claims 13-19 (Canceled)

Claim 20 (Currently Amended): A medicament composition for therapeutic treatment of infection by microorganisms selected from Pseudomonas aeruginosa and bacteria having a genetically homologous drug efflux pump which comprises a compound represented by the formula (I) according to claim 5 or a physiologically acceptable salt thereof as an active ingredient.

Claim 21 (Canceled)

Claim 22 (Currently Amended): A method for therapeutic treatment of infection by microorganisms selected from Pseudomonas aeruginosa and bacteria having a genetically homologous drug efflux pump <u>Pseudomonas aeruginosa</u> comprising administering to a mammal in need thereof a therapeutically effective amount of the composition according to claim 20.

Claim 23 (Canceled)

Claim 24 (Previously Presented): The method according to claim 22, further comprising administering at least one antimicrobial agent.

Claim 25. (Currently Amended): A method for therapeutic treatment of infection by microorganisms selected from Pseudomonas aeruginosa and bacteria having a genetically homologous drug efflux pump Pseudomonas aeruginosa comprising administering to a mammal in need thereof a therapeutically effective amount of a composition comprising a compound represented by formula (I) or a physiologically

acceptable salt thereof as an active ingredient and at least one antimicrobial agent

$$R^{1}$$
 R^{2}
 S
 W^{1}
 X
 N
 Y
 R^{4}
 W^{2}
 Q
 W^{2}
 Q
 W^{3}
 Q
 Q
 Q

wherein, R¹ and R² each independently represent hydrogen atom, a halogen atom, hydroxyl group, a group of OZ₁₋₆ (the group of OZ₁₋₆ represents an alkyl group having 1-6 carbon atoms or a fluoroalkyl group having 1-6 carbon atoms, which bonds via the oxygen atom), a group of $S(O)_nZ_{1-4}$ (Z_{1-4} represents an alkyl group having 1-4 carbon atoms or a fluoroalkyl group having 1-4 carbon atoms or an alkylene group derived therefrom), a group of $N(R^{12})(R^{13})$ (R^{12} and R^{13} each independently represent hydrogen atom, an alkyl group having 1-4 carbon atoms or a fluoroalkyl group having 1-4 carbon atoms), a group of Z₁₋₈ which may be substituted (Z₁₋₈ represents an alkyl group having 1-8 carbon atoms or a fluoroalkyl group having 1-8 carbon atoms), a 5- to 7-membered cyclic alkyl group, an aryl group, a heteroaryl group, or a 4- to 7-membered saturated or partially saturated heterocyclic group (the cyclic alkyl group, aryl group, heteroaryl group and heterocyclic group may have one to three substituents selected from the group consisting of a halogen atom, hydroxyl group, a group of OZ₁₋₄, a group of S(O)_nZ₁₋₄, a group of $N(R^{12})(R^{13})$, a group of Z_{1-4} , carboxyl group, a group of CO_2Z_{1-4} , group of $CONH_2$, a group of $CONH(Z_{1-4})$ and a group of $CON(Z_{1-4})(Z_{1-4})$;

W¹ represents a group selected from the group consisting of -CH=CH-, -N(R¹²)CO-,

-CON(R¹²)-, -CH₂O- and -CH₂CH₂- (each of the aforementioned groups binds to the thiazole ring at the left end);

R³ represents hydrogen atom, a halogen atom, hydroxyl group or an amino group; R⁴ represents a group selected from the group consisting of hydrogen atom, a group of -OZ_{0.4}R⁵ (Z_{0.4} represents an alkylene group having 1-4 carbon atoms, a fluorinesubstituted alkylene group having 1-4 carbon atoms or a single bond, and R⁵ represents a 5- to 7-membered cyclic alkyl group, an aryl group, a heteroaryl group or a 4- to 7-membered saturated or partially saturated heterocyclic group (the cyclic alkyl group, aryl group, heteroaryl group and heterocyclic group may have one to three substituents selected from the group consisting of a halogen atom, hydroxyl group, a group of OZ_{1-4} , a group of $S(O)_0Z_{1-4}$, a group of $N(R^{12})(R^{13})$, a group of Z_{1-4} , carboxyl group, a group of CO_2Z_{1-4} , group of $CONH_2$, a group of $CONH(Z_{1-4})$ and a group of $CON(Z_{1-4})(Z_{1-4})$, a group of $-S(O)_nZ_{0-4}R^5$, a group of $-N(R^6)(R^7)$ { R^6 and R^7 each independently represent hydrogen atom or Z_{1-4} , or they may bind to each other to form a saturated or unsaturated 5- to 7-membered ring (the ring may contain one or two hetero atoms as ring constituting atoms), and R⁶ and R⁷ may have one to three substituents selected from the group consisting of a halogen atom, hydroxyl group, a group of $OCON(R^{12})(R^{13})$, a group of $CON(R^{12})(R^{13})$, a group of $N(R^{12})CON(R^{12})(R^{13})$, a group of Z_{1-4} , a group of OZ_{1-4} , a group $S(O)_nZ_{1-4}$, group of CH_2OH , a group of $(CH_2)_mN(R^{12})(R^{13})$, carboxyl group, cyano group, a group of $CO-Z_{1-4}(R^{10})-N(R^{12})(R^{13})$ (R¹⁰ is a substituent corresponding to a side chain on an amino acid carbon or a group of -Z_{1.4}-R¹¹ (R¹¹ represents a substituent which forms a quaternary salt) and a group of

CO $\cdot Z_{1\cdot 4} \cdot N(R^{12})(R^{13})$

(CH₂)¹q }, a 5- or 6-membered aryl group which may be substituted and a 5- or 6-membered unsaturated heterocyclic group which may be substituted; W² represents a single bond or -C(R⁸)=C(R⁹)- (R⁸ and R⁹ each independently represent hydrogen atom, a halogen atom, a lower alkyl group, an alkoxy group, cyano group, carboxyl group, hydroxymethyl group, cyanomethyl group, vinyl group or a group of N(R¹²)(R¹³)), Q represents an acidic group, and W² and Q may bind together to form vinylidenethiazolidinedione in *E*- or *Z*-configuration or an equivalent heterocyclic ring; m and n each independently represent an integer of 0 to 2, and q represents an integer of 0 to 3; R¹⁴ represents hydrogen atom, an alkyl group having 1, 3 or 4 carbon atoms or a fluoroalkyl group having 1-4 carbon atoms, Z₁₋₄R⁵ or Z₁₋₄OR⁵; and X and Y each independently represent C-H or nitrogen atom.

Claims 26-27 (Canceled)

Claim 28 (Previously Presented): A method for inhibiting drug resistance acquisition due to a drug efflux pump comprising administering to a mammal in need thereof an effective amount to inhibit drug resistance acquisition due to a drug efflux pump of the composition according to claim 6.

Claim 29 (Previously Presented): The method according to claim 28 wherein the mammal is a human.

Claim 30 (Previously Presented): A method for inhibiting drug resistance acquisition due to a drug efflux pump comprising administering to a mammal in need thereof an effective amount to inhibit drug resistance acquisition due to a drug efflux pump of the composition according to claim 20.

Claim 31 (Previously Presented): The method according to claim 30 wherein the mammal is a human.

Claim 32 (Previously Presented): A method for inhibiting drug resistance acquisition due to a drug efflux pump comprising administering to a mammal in need thereof an effective amount to inhibit drug resistance acquisition due to a drug efflux pump of a composition comprising a compound represented by formula (I) or a physiologically acceptable salt thereof as an active ingredient

wherein, R^1 and R^2 each independently represent hydrogen atom, a halogen atom, hydroxyl group, a group of OZ_{1-6} (the group of OZ_{1-6} represents an alkyl group having 1-6 carbon atoms or a fluoroalkyl group having 1-6 carbon atoms, which bonds via the oxygen atom), a group of $S(O)_nZ_{1-4}$ (Z_{1-4} represents an alkyl group having 1-4 carbon atoms or a fluoroalkyl group having 1-4 carbon atoms or an alkylene group derived therefrom), a group of $N(R^{12})(R^{13})$ (R^{12} and R^{13} each independently represent hydrogen

atom, an alkyl group having 1-4 carbon atoms or a fluoroalkyl group having 1-4 carbon atoms), a group of Z_{1-8} which may be substituted (Z_{1-8} represents an alkyl group having 1-8 carbon atoms or a fluoroalkyl group having 1-8 carbon atoms), a 5- to 7-membered cyclic alkyl group, an aryl group, a heteroaryl group, or a 4- to 7-membered saturated or partially saturated heterocyclic group (the cyclic alkyl group, aryl group, heteroaryl group and heterocyclic group may have one to three substituents selected from the group consisting of a halogen atom, hydroxyl group, a group of OZ_{1-4} , a group of $S(O)_nZ_{1-4}$, a group of $N(R^{12})(R^{13})$, a group of Z_{1-4} , carboxyl group, a group of CO_2Z_{1-4} , group of $CONH_2$, a group of $CONH(Z_{1-4})$ and a group of $CON(Z_{1-4})(Z_{1-4})$;

 W^1 represents a group selected from the group consisting of -CH=CH-, -N(R¹²)CO-, -CON(R¹²)-, -CH₂O- and -CH₂CH₂- (each of the aforementioned groups binds to the thiazole ring at the left end);

 R^3 represents hydrogen atom, a halogen atom, hydroxyl group or an amino group; R^4 represents a group selected from the group consisting of hydrogen atom, a group of $-OZ_{0.4}R^5$ ($Z_{0.4}$ represents an alkylene group having 1-4 carbon atoms, a fluorine-substituted alkylene group having 1-4 carbon atoms or a single bond, and R^5 represents a 5- to 7-membered cyclic alkyl group, an aryl group, a heteroaryl group or a 4- to 7-membered saturated or partially saturated heterocyclic group (the cyclic alkyl group, aryl group, heteroaryl group and heterocyclic group may have one to three substituents selected from the group consisting of a halogen atom, hydroxyl group, a group of OZ_{1-4} , a group of $S(O)_nZ_{1-4}$, a group of $N(R^{12})(R^{13})$, a group of Z_{1-4} , carboxyl group, a group of CO_2Z_{1-4} , group of $CONH_2$, a group of $CONH(Z_{1-4})$ and a group of

CON(Z_{1-4})(Z_{1-4})), a group of -S(O)_n $Z_{0-4}R^5$, a group of -N(R⁶)(R⁷) {R⁶ and R⁷ each independently represent hydrogen atom or Z_{1-4} , or they may bind to each other to form a saturated or unsaturated 5- to 7-membered ring (the ring may contain one or two hetero atoms as ring constituting atoms), and R⁶ and R⁷ may have one to three substituents selected from the group consisting of a halogen atom, hydroxyl group, a group of OCON(R¹²)(R¹³), a group of CON(R¹²)(R¹³), a group of N(R¹²)CON(R¹²)(R¹³), a group of Z_{1-4} , a group of Z_{1-4} group of

 $^{(CH_2)q'}$ }, a 5- or 6-membered aryl group which may be substituted and a 5- or 6-membered unsaturated heterocyclic group which may be substituted;

 W^2 represents a single bond or $-C(R^8)=C(R^9)$ - (R^8) and R^9 each independently represent hydrogen atom, a halogen atom, a lower alkyl group, an alkoxy group, cyano group, carboxyl group, hydroxymethyl group, cyanomethyl group, vinyl group or a group of $N(R^{12})(R^{13})$, Q represents an acidic group, and W^2 and Q may bind together to form vinylidenethiazolidinedione in E- or Z-configuration or an equivalent heterocyclic ring; m and n each independently represent an integer of 0 to 2, and q represents an integer of 0 to 3; R^{14} represents hydrogen atom, an alkyl group having 1, 3 or 4 carbon atoms or a

P20938.A21

fluoroalkyl group having 1-4 carbon atoms, $Z_{1-4}R^5$ or $Z_{1-4}OR^5$; and X and Y each independently represent C-H or nitrogen atom.

33 (Previously Presented): The method according to claim 32 wherein the mammal is a human.