3 3rd Assignments

3.1 Group E - Phonon Gas

Photon \rightarrow Quantize particles of light wave Similarly, Phonon \rightarrow Quantize particles of sound wave

In solid, vibration of lattice can be realized in terms of billions of phonons. N atoms $\to 3N$ no of atoms

Classical Stationary waves $L = \frac{n\lambda_n}{2}$ where λ_n is wavelength of stationary waves $y = \sum_{n=1}^{\alpha} A_n \sin \frac{2\pi x}{\lambda_n}$ $\lambda_n = \frac{2L}{n}$

Phonons in solid with length L or volume V $L \sim \lambda_1 = \frac{h}{p_1} = \frac{2\pi}{k_1}$ $L \sim 2\lambda_2 = \frac{2h}{p_2} = \frac{4\pi}{k_2}$ $L \sim n\lambda_n = \frac{nh}{p_n} = \frac{n2\pi}{k_n}$ $\Rightarrow p_n = \frac{nh}{L}$ or $K_n = n\frac{2\pi}{L}$ Lowest momentum = momentum pixel(Δp) $\Delta p = \frac{h}{L}$ or $\Delta K = \frac{2\pi}{L}$

Debye assumes an upper momentum P_D or K_D or upper energy E_D or W_D . So $3\int_0^{K_D} \frac{d^3K}{(\Delta K)^3} = 3N$ $\implies \int_0^{K_D} \frac{4\pi K^2 dK}{(\frac{2\pi}{L})^3} = N \implies \frac{V}{2\pi^2} \int_0^{K_D} K^2 dK = N$ $\implies K_D = \left[\frac{6\pi^2}{\nu}\right]^{\frac{1}{3}}$

Assuming an upper energy ϵ_D , proposed by Debye, we can get total number of states(=3N = no of phonons)

$$3\int_{0}^{\epsilon_{D}} \frac{d^{3}x d^{3}P}{h^{3}} = 3N$$
$$\frac{3V4\pi}{h^{2}C^{3}} \left[\frac{\epsilon_{D}^{3}}{3}\right] = 3N$$
$$\implies N = \frac{4\pi V}{h^{3}C^{3}} \frac{\epsilon_{D}^{3}}{3}$$
$$\implies \epsilon_{D} = \left[\frac{3N}{V} \frac{h^{3}C^{3}}{4\pi}\right]^{\frac{1}{3}}$$

$$\hbar\omega_D = hc \left[\frac{3}{v4\pi}\right]^{\frac{1}{3}} \implies \omega_D = c \left[\frac{6\pi^2}{v}\right]^{\frac{1}{3}}$$

$$K_D = \frac{\omega_D}{c} = \left[\frac{6\pi^2}{v}\right]^{\frac{1}{3}}$$

$$P_D = \hbar K_D = \frac{h}{2\pi} \left(\frac{6\pi^2}{v}\right)^{\frac{1}{3}}$$

$$Internal Energy, U = 3 \int \frac{d^3x d^3P}{h^3} \frac{\epsilon}{e^{\beta\epsilon} - 1}$$

$$= \frac{3V}{h^3} \int_0^{\epsilon_D} 4\pi \frac{\epsilon^2}{c^2} \frac{d\epsilon}{c} \frac{\epsilon}{e^{\beta\epsilon} - 1}$$

$$= \frac{12\pi V}{h^3} \frac{(KT)^4}{c^3} \int_0^{\beta\epsilon_D} \frac{x^3 dx}{e^x - 1}$$

$$\frac{U}{N} = \frac{g(KT)^4}{\epsilon_D^3} \int_0^{\beta\epsilon_D} \frac{x^3 dx}{e^x - 1}$$

$$\frac{U}{N}=3KT\left[\frac{3}{(\beta\epsilon_D)^3}\int_0^{\beta\epsilon_D}\frac{x^3}{e^x-1}\right], \text{where }D(\beta\epsilon_D) \text{ is Debye function}$$

Now Debye function D(t) is defined as

$$D(t) = \frac{3}{(t)^3} \int_0^t \frac{x^3}{e^x - 1} = \begin{cases} 1 - \frac{3t}{8} + \frac{1t^2}{20} + \dots + (t \ll 1) \\ \frac{\pi^4}{5t^3} + O(e^{-t}) \\ (t \gg 1) \end{cases}$$

Here $t=\beta\epsilon_D=\frac{\epsilon_D}{KT}=\frac{T_D}{T}$ where $T_D=\frac{\epsilon_D}{K}=\frac{\hbar\omega_D}{k}$ is Debye temperature. So in terns of T_D , we can say

$$D\left(\frac{T_D}{T}\right) = \frac{3}{\left(\frac{T_D}{T}\right)_0^3} \int_0^{T_D/T} \frac{x^3 dx}{e^x - 1} = \begin{cases} 1 - \frac{3}{8} \frac{T_D}{T} + \dots + (T_D \ll T) \\ \frac{\pi^4}{5} \left(\frac{T}{T_D}\right)^3 + O\left(e^{-T_D/T}\right) \\ (T_D \gg T) \end{cases}$$

so for large $T, \frac{U}{N} = 3KTD\left(\frac{T_D}{T}\right) \approx 3KT$ for small $T, \frac{U}{N} = 3KTD\left(\frac{T_D}{T}\right) \approx 3KT\left[\frac{\pi^4}{5}\left(\frac{T}{T_D}\right)^3\right]$

Figure 1: Phonon Gas

3.2 Group C

Now if we take average mass density,

$$\begin{split} \rho(r) \approx \langle \rho \rangle &= \frac{M}{\frac{4}{3}\pi R^3} \\ \langle \rho \rangle &= \frac{\displaystyle\int_0^R \rho(r) 4\pi r^2 \, dr}{\displaystyle\int_0^R 4\pi r^2 \, dr} = \frac{M}{\frac{4}{3}\pi R^3} \end{split}$$

$$\begin{split} \Omega &= -\int_0^R \frac{GM(r)}{r} 4\pi r^2 \rho(r) \, dr \approx -\int_0^R G \frac{4}{3}\pi r^3 \rho(r) 4\pi r \rho(r) \, dr \\ \Omega &= -G \frac{4\pi}{3} \times 4\pi \langle \rho \rangle^2 \left[\frac{R^5}{5} \right] \\ \Omega &= -\frac{3}{5R} \left[\frac{4\pi}{3} R^3 \langle \rho \rangle \right]^2 \end{split}$$

Using
$$M(r)=\frac{4}{3}\pi r^3\rho(r)$$
 and $\rho(r)\approx\langle\rho\rangle$
$$\Omega=-\frac{3}{5}\frac{GM^2}{R} \eqno(4)$$

Now internal energy/kinetic energy

$$U = \frac{3}{2}PV = \int_0^R \frac{3}{2}\rho(r)4\pi r^2 dr$$

Using
$$P = \frac{\langle \rho \rangle}{m} K_B T$$

Where m is the mass of gas particles

$$U = \frac{3}{2m} K_B \int_0^R T(r) \langle \rho \rangle 4\pi r^2 dr$$

Using
$$\langle T \rangle = \frac{1}{M} \int_0^R T(r) \langle \rho \rangle 4\pi r^2 dr$$

$$U = \frac{3}{2} \frac{K_B}{m} M \langle T \rangle \tag{5}$$

Virial theorem 3 becomes $-2U = \Omega$

$$\Rightarrow -2\left(\frac{3}{2}K_B\langle T\rangle\frac{M}{m}\right) = -\frac{3}{5}\frac{GM^2}{R}$$

$$\langle T\rangle = \frac{1}{5}\frac{GMm}{K_BR}$$

As we know,

$$\langle \rho \rangle \frac{4}{3} \pi R^3 = M$$
$$\Rightarrow R^3 = \frac{3M}{4\pi \langle \rho \rangle}$$

Thus,

$$\begin{split} \langle T \rangle &= \frac{1}{5} \frac{Gm}{K_B} M \left(\frac{4\pi \langle \rho \rangle}{3M} \right)^{\frac{1}{3}} \\ \langle T \rangle &\propto M^{\frac{2}{3}} \langle \rho \rangle^{\frac{1}{3}} \end{split}$$

Now,

$$m_H = 1.6 \times 10^{-27}$$

$$G = 6.6 \times 10^{-11} m^3 / kg/s^2$$

$$K_B = 1.38 \times 10^{-23} m^2 kg s^{-2} K^{-1}$$

For Sun,

$$M = 1.9 \times 10^{30} \text{kg}$$

$$R = 6.9 \times 10^8 \text{m}$$

Calculating value of $\langle T \rangle$

$$\begin{split} \langle T \rangle &= \frac{1}{5} \times \frac{6.6 \times 10^{-11} \times 1.9 \times 10^{30}}{1.38 \times 10^{-23} \times 6.9 \times 10^{8}} \times 1.6 \times 10^{-27} \\ &= \left(\frac{6.6 \times 1.9 \times 1.6}{5 \times 1.38 \times 6.9}\right) \times \frac{10^{-8}}{10^{-15}} \\ &= 4 \times 10^{6} \end{split}$$

3.3 Group D: *****

Number Density is represented by n

$$n = g \int_{0}^{P_f} \frac{d^3 P}{h^3} 1 = g \frac{4\pi}{h^3} (\frac{P_f^3}{3})$$

$$E_f = \frac{P_f^2}{2m} = \sqrt{P^2 c^2 + m^2 c^2}$$

$$\Rightarrow P_F \left[\frac{3h^3}{4\pi g} n \right]^{1/3}$$
(4)

Non Relative,

$$n = g \frac{4\pi}{3h^3} (2mE_F)^{3/2} \qquad N \cdot R$$
 (5)

Relative,

$$= g \frac{4\pi}{3h^3} \left(\frac{E_F^2}{c^2} - m^2 c^2\right)^{3/2}$$

$$= 8 \frac{4\pi}{3h^3} \frac{E_F^3}{c^3}$$
(6)

R for m=0

$$\epsilon = g \int_0^{p_F} \frac{d^3p}{h^3} E = \frac{g}{h^3} \int_0^{P_F} 4\pi P^2 dP \left(\frac{P^2}{2m}\right)$$

Non Relative,

$$= \frac{g}{h^{3}} \frac{4\pi}{2m} \frac{P_{F}^{5}}{5} \qquad NR$$

$$= \frac{g}{5h^{3}} \frac{4\pi}{2m} (2mE_{p})^{5/2}$$

$$\langle E \rangle = \frac{\epsilon}{n} = \frac{3}{5} E_{F}$$

$$p = g \int_{0}^{p_{F}} \frac{d^{3}P}{h^{3}} \left(\frac{pv}{3}\right) \qquad v = \frac{p}{m}$$

$$= \frac{g}{3h^{3}} \int_{0}^{P_{f}} 4\pi p^{2} \left(\frac{pp}{m}\right)$$

$$= \frac{g}{3h^{3}} \frac{4\pi}{m} \frac{P_{F}^{5}}{5} \quad \Rightarrow P_{F} = \left[\frac{15Ph^{3}m}{g^{4}r}\right]^{\frac{1}{5}}$$
(7)

$$= \frac{g4n}{15h^3m} \left[\frac{3h^3}{4\pi g} n \right]^{5/3}$$
$$= \underbrace{\frac{1}{5m} \left[\frac{3h^3}{4\pi g} \right]^{2/3}}_{k} n^{5/3}$$

Hydrodynamical Equlibriun

$$\frac{1}{\rho_e} \frac{dP_e}{dr} = \frac{GM}{R^2}$$

$$M = \frac{4}{3} nR^3 \rho_e$$

$$\rho_e = \frac{M}{\frac{4}{3}\pi^3}$$

$$\propto \frac{M}{R^3}$$

$$\int_0^R \frac{dP_e}{dr} dr = \int_0^R \frac{GM}{R^2} \frac{M}{\frac{4\pi R^3}{3}} dr$$

$$P = \frac{GM^2}{\frac{4\pi}{3}} \frac{R^{-5+1}}{-5+1}$$
(8)
$$P_e \propto \frac{M^2}{R^4}$$
(9)

But degenerate pressure,

$$P_{e} \propto \rho_{e}^{5/3}$$

$$\propto \frac{M^{5/3}}{R^{5}}$$

$$\Rightarrow \frac{M^{1/3}}{R} \propto \frac{\rho_{e}}{P_{e}} \Rightarrow R \propto \frac{1}{M^{1/3}}$$

$$\Rightarrow \rho \propto \frac{M}{R^{3}}$$

$$\rho_{e} \propto M^{2}$$
(10)

For Relativistic

$$P = \frac{m_e c^2}{8\pi^2 x_e^3} \phi\left(x_e\right) \qquad x_e = \frac{P_F}{m_e c}$$

$$\rho = \hat{\mu} m_p c^2 n_e$$

$$\rho = \begin{cases} P \propto \rho^{\frac{5}{3}}, & \text{for } x_e \ll 1 \\ \propto \rho^{\frac{4}{3}}, & \text{for } x_e \gg 1 \end{cases}$$

$$\underbrace{\left(\frac{9\pi M}{4\hat{\kappa}m_p}\right)^{4/3} - \frac{3\pi\alpha}{\hbar C}GM^2}_{>0} = \left(\frac{R}{x_e}\right)^2 \left(\frac{9\pi M}{4\hat{\mu}m_p}\right)^{2/3}$$

$$M \leq \left(\frac{9\pi}{4\hat{\mu}m_p}\right)^2 \left(\frac{\hbar c}{3\pi\alpha G}\right)$$

$$m_p = \sqrt{\frac{\hbar c}{G}} = 10^{19} GeV e^{-2}$$
(11)

3.4 Group F: *****

$$number \ N = \Sigma \left(\frac{1}{e^{\beta(\epsilon - \mu)} + \eta} \right)$$

where if $\eta = 0 \text{ MB}$ = 1 FD = -1 BE

$$\begin{split} Internal\ Energy\ U &= \Sigma \left(\frac{\epsilon}{e^{\beta(\epsilon-\mu)} + \eta}\right) \\ Grand\ potential\ \phi &= \frac{-KT}{\eta} \Sigma ln(1 + \eta e^{-\beta(\epsilon-\mu)}) \end{split}$$

fugacity
$$z = e^{\beta \mu} \rightarrow \int \frac{d^3 P d^3 x}{h^3}$$

In integration form, $\Sigma \to V \int D(\epsilon) d\epsilon$, where $D(\epsilon)$ is density of states.

Therefore,

$$\begin{split} N &= V \int \frac{d^3P}{h^3} \frac{1}{e^{\beta(\epsilon - \mu)} + \eta} \\ D(\epsilon) d\epsilon &= D(P) dP = \frac{d^3P}{h^3} = \frac{4\pi P^2 dP}{h^3} \\ U &= V \int \frac{d^3P}{h^3} \frac{\epsilon}{e^{\beta(\epsilon - \mu)} + \eta} \end{split}$$

$$\phi = -PV = \frac{-KT}{\eta}V \int \frac{d^3P}{h^3}ln(1 + \eta e^{-\beta(\epsilon - \mu)})$$

Therefore,

$$P = \frac{KT}{\eta} \int \frac{d^3P}{h^3} ln(1 + \eta e^{-\beta(\epsilon - \mu)})$$
 (12)

Bose Gas

$$N = \sum_{\epsilon} \frac{1}{e^{\beta(\epsilon - \mu)} - 1} = \frac{1}{z^{-1}e^{\beta\epsilon} - 1}$$

$$N = \sum_{\epsilon \ge 0} \frac{1}{e^{\beta(\epsilon - \mu)} - 1} + \frac{1}{e^{-\beta\epsilon} - 1} = \sum_{\epsilon \ge 0} \frac{1}{z^{-1}e^{\beta\epsilon} - 1} + \frac{1}{z^{-1} + 1}$$

where the second parts are contribution for $\epsilon = 0$

$$N = \int \frac{d^3 P d^3 x}{h^3} \frac{1}{e^{\beta(\epsilon - \mu)} - 1} + \frac{z}{1 - z}$$

$$N = \frac{V}{h^3} \int_0^{\alpha} 2\pi (2m)^{3/2} \epsilon^{1/2} d\epsilon \frac{1}{e^{\beta(\epsilon - \mu)} - 1} + \frac{z}{1 - z}$$

Now, for non relativistic scenario, $\epsilon = \frac{p^2}{2m}$ $d^3P = 4\pi P^2 dP = 4\pi \sqrt{2m\epsilon}$ $PdP = md\epsilon$

Look: First term at $\epsilon=0$, the integrand gets vanished, therefore the 2nd term is added separately.

$$PV = -\Phi = -KT \sum_{\epsilon} \ln\{1 - e^{-\beta(\epsilon - \mu)}\}$$

$$PV = -KT \sum_{\epsilon > 0} \ln\{1 - ze^{-\beta\epsilon}\} + \ln(1 - z)]$$

$$PV = -KT \left[\frac{V}{h^3} 2\pi (2m)^{3/2} \int_0^{\alpha} \epsilon^{1/2} d\epsilon \ln(1 - ze^{-\beta\epsilon}) + \ln(1 - z)\right]$$

$$N = V \int_0^{\infty} \frac{d^3P}{h^3} \frac{1}{(z^{-1}e^{\beta\epsilon} - 1)} + \frac{z}{1 - z}$$

$$P = -KT \int \frac{d^3P}{h^3} \ln(1 - ze^{-\beta\epsilon}) - \frac{KT}{V} \ln(1 - z)$$
(14)

Group G: Bose 3.5

Let us call $N_0 = \frac{\mathbf{Z}}{1-\mathbf{Z}}$ is the number of particles at $\epsilon = 0$

Pressure:-

So the pressure
$$P_0 = -\frac{KT}{V}ln(1-\mathbf{Z})$$
 at ground state
$$= +\frac{KT}{V}ln(1+N_0) \qquad \qquad [\because \mathbf{Z} = \frac{N_0}{1+N_0}]$$
 $\approx KT\frac{1}{N}lnN \longrightarrow \text{Negligible for large }N$

So
$$\frac{P}{KT} = -\frac{2\pi}{h^3} (2m)^{\frac{3}{2}} \int_0^\infty \epsilon^{\frac{1}{2}} ln(1 - \mathbf{Z} e^{-\beta \epsilon}) d\epsilon$$

= $\frac{g_{5/2}(\mathbf{Z})}{\lambda^3}$

where $\lambda = \frac{h}{(2\pi mKT)^{1/2}} \Rightarrow$ Thermal de Broglie Wavelength

$$g_n(\mathbf{Z}) = \frac{1}{\Gamma(n)} \int_0^\infty \frac{x^{n-1}}{\mathbf{Z}^{-1}e^x - 1} = \mathbf{Z} + \frac{\mathbf{Z}^2}{2^n} + \frac{\mathbf{Z}^3}{3^n} + \dots$$
 (15)

where $g_n(\mathbf{Z})$ is the Bose-Einstein function

No. of particles:-

$$\begin{split} \frac{N}{V} - \frac{N_0}{V} &= \frac{2\pi (2m)^{\frac{3}{2}}}{h^3} \int_0^\infty \epsilon^{\frac{1}{2}} \frac{1}{\mathbb{Z}^{-1} e^{\beta \epsilon} - 1} \ d\epsilon \\ &= \frac{g_{1/2}(\mathbb{Z})}{\lambda^3} = \frac{N_e}{V} \end{split}$$

where $N_0 \longrightarrow$ No. of particles at ϵ and $N_e \longrightarrow$ No. of particles at ϵ or in excited state

Since $\mathbf{Z} = e^{\beta \mu} \leq 1$ for Bose gas,

$$\Rightarrow \frac{N-N_0}{V} = \frac{N_e}{V} \leq \frac{g_{\frac{3}{2}}(\mathbf{Z}_{=1})}{\lambda^3} = \frac{\zeta_{\frac{3}{2}}}{\lambda^3}$$

3.6 Group I: *****

$$\begin{split} \frac{P}{KT} &= -\frac{2\pi}{h^3} (2m)^{\frac{3}{2}} \int_0^\infty \epsilon^{\frac{1}{2}} ln(1 - Ze^{-\beta\epsilon}) \, d\epsilon \\ \Rightarrow \beta \varepsilon = x \\ \Rightarrow d\epsilon &= \frac{dx}{\beta} = KT \, dx \\ \frac{P}{KT} &= -2\pi \left(\frac{2mKT}{h^2}\right)^{\frac{3}{2}} \int_0^\infty x^{\frac{1}{2}} ln(1 - Ze^{-x}) \, dx \\ &= -2\pi \left(\frac{2mKT}{h^2}\right)^{\frac{3}{2}} \left[\left| \frac{x^{\frac{3}{2}}}{\frac{3}{2}} ln(1 - Ze^{-x}) \right|_0^\infty - \int_0^\infty \frac{Ze^{-x}}{1 - Ze^{-x}} \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \, dx \right] \\ &= 2\pi \left(\frac{2mKT}{h^2}\right)^{\frac{3}{2}} \frac{1}{\frac{3}{2}} \int_0^\infty \frac{x^{\frac{3}{2}}}{Z^{-1}e^x - 1} \, dx \\ &= \left(\frac{2\pi mKT}{h^2}\right)^{\frac{3}{2}} \frac{1}{\frac{3}{2} \frac{1}{2} \Gamma(\frac{1}{2})} \int_0^\infty \frac{x^{\frac{5}{2} - 1}}{Z^{-1}e^x - 1} \, dx \qquad \text{as } \Gamma(\frac{1}{2}) = \sqrt{\pi} \end{split}$$

Thermal debroglie wavelength BE function

BE function
$$\longleftrightarrow$$
 Rieman Zeta function $g_n(Z)$ $\zeta_n = \sum_{l=1}^{\infty} \frac{1}{l^n}$ $\Rightarrow g_n(Z=1) = \zeta_n$ (16)

If we assume a picture, as $T \downarrow \Rightarrow Z \downarrow$

$$\begin{array}{ccc} \text{or High T} & & Z < 1 \\ \downarrow & \Rightarrow & \downarrow \\ \text{low T} & & Z = 1 \end{array}$$

and let us assume a characteristic temperature T_c , where Z becomes unity.

Before coming to $T = T_c$, i.e. $T > T_c$, we can assume

$$N_o \to low$$

$$\Rightarrow N_e \approx N \; ({\rm where} N = N_o + N_e) \label{eq:Ne}$$
 $N_e \to high$

Now at $T = T_c$, Z = 1

$$\begin{split} \Rightarrow g_{\frac{3}{2}}(Z=1) &= \zeta_{\frac{3}{2}} \\ \Rightarrow \frac{N_e}{V} &= \frac{g_{\frac{3}{2}}(Z=1)}{\lambda^3} = \frac{\zeta_{\frac{3}{2}}}{\lambda^3} \\ \Rightarrow \frac{N_e}{V} &= \zeta_{\frac{3}{2}} \frac{(2\pi m K T_c)^{\frac{3}{2}}}{h^3} \end{split}$$

$$\Rightarrow \frac{N_e}{V} = \zeta_{\frac{3}{2}} \frac{(2\pi mK)^{\frac{3}{2}}}{h^3} T_c^{\frac{3}{2}}$$

$$\Rightarrow T_c^{\frac{3}{2}} = \frac{h^3}{(2\pi mK)^{\frac{3}{2}} \zeta_{\frac{3}{2}}} \left(\frac{N_e}{V}\right)$$

$$\Rightarrow T_c = \frac{h^2}{2\pi mK} \left\{\frac{N}{V\mathcal{G}_{\frac{3}{2}}}\right\}^{\frac{2}{3}} \quad \text{assuming } N_e \approx N$$

$$\frac{T_c}{T} = \left(\frac{h^2}{2\pi mKT}\right) \left\{\frac{N}{V\zeta_{\frac{3}{2}}}\right\}^{\frac{2}{3}}$$

$$= \lambda^2 \left\{\frac{N}{V\zeta_{\frac{3}{2}}}\right\}^{\frac{2}{3}}$$

$$= \left\{\frac{\lambda^3 N}{V\zeta_{\frac{3}{2}}}\right\}^{\frac{2}{3}}$$

$$\frac{\lambda^3 N}{V\zeta_{\frac{3}{2}}} = \left(\frac{T_c}{T}\right)^{\frac{3}{2}}$$
(17)

So for $0 \le T \le T_C$, Z remains unity.

$$\frac{N}{V} - \frac{N_o}{V} = \frac{N_e(Z=1)}{V}$$
$$= \frac{g_{\frac{3}{2}}(Z=1)}{\lambda^3}$$
$$\frac{N}{N} - \frac{N_o}{N} = \frac{V}{N} \frac{\zeta_{\frac{3}{2}}}{\lambda^3}$$

$$\Rightarrow \frac{N_o}{N} = 1 - \left(\frac{T}{T_c}\right)^{\frac{3}{2}} \qquad T \le T_c$$

$$\Rightarrow \frac{N_e}{N} = 1 - \frac{N_o}{N} = \left(\frac{T}{T_c}\right)^{\frac{3}{2}} \quad T \le T_c \tag{18}$$

- 3.7 Group J: *****
- 3.8 Group K: *****

Internal Energy
$$U = \int \frac{d^3x d^3\rho}{h^3} \frac{\epsilon}{e^{\beta(\epsilon-\mu)} - 1}$$

$$\implies U = \frac{V}{h^3} 2\pi (2m)^{\frac{3}{2}} \int_0^{\inf} \frac{\epsilon^{\frac{3}{2}}}{z^{-1}e^{\beta\epsilon} - 1}$$

$$= \frac{2\pi V}{h^3} (2mKT)^{\frac{3}{2}} \int_0^{\inf} \frac{x^{\frac{5}{2} - 1} z^{-1} e^x - 1}{d} x$$

$$\beta \epsilon = x$$

$$d\epsilon = KT dx$$

$$\frac{U}{KT} = V(\frac{2mnKT}{h^2})^{\frac{3}{2}} \frac{1}{\frac{1}{2\sqrt{\pi}}} \int_0^{\inf} \frac{x^{\frac{5}{2} - 1}}{z^{-1}e^x - 1} dx$$

$$= \frac{V}{\lambda^3} \frac{3}{2} \frac{1}{\Gamma(\frac{5}{2})}$$

$$= \frac{3}{2} V \frac{g_{\frac{5}{2}}(z)}{\lambda^3}$$

Since
$$\frac{P}{KT} = \frac{g_{\frac{5}{2}}(z)}{\lambda^3}$$
 So,
$$\boxed{U = \frac{3}{2}PV} \qquad(1$$

Relation in also valid for ideal gas - $\mho = \frac{3}{2}NKT$

$$PV = NKT$$

$$\implies U = \frac{3}{2}PV$$

$$\frac{U}{NK} = \frac{3}{2}\nu \frac{g_{\frac{5}{2}}(z)}{\lambda^3}T, T > T_e \text{ or } z < 1$$

$$= \frac{3}{2}\nu \frac{g_{\frac{5}{2}}(z)}{\lambda^3}T, T \leq T_e \text{ or } z = 1$$

$$\frac{T}{\lambda^3} = aT^{\frac{5}{2}}, \text{ where } a = \left(\frac{2m\pi K}{h^2}\right)^{\frac{3}{2}}$$

$$\frac{d}{dT}\left(\frac{T}{\lambda^3}\right) = \frac{5}{2}aT^{3/2} = \frac{5}{2}\lambda^3 \qquad(2)$$
Now for $T \le T_c$ (when $Z = 1$),
$$\frac{U}{NK} = \frac{3}{2}\nu\zeta_{5/2}\left(\frac{T}{\lambda^3}\right)$$

$$\Rightarrow \frac{C_v}{NK} = \frac{1}{NK}\frac{dU}{dT} = \frac{3}{2}\nu\zeta_{5/2}\frac{d}{dT}\left(\frac{T}{\lambda^3}\right)$$

$$= \frac{15}{4}\nu\left(\frac{\zeta_{5/2}}{\lambda^3}\right) \propto T^{3/2} \qquad(3)$$

Now at high
$$T$$
, when $z \ll 1$,

i.e.
$$g_{\frac{5}{2}}(x) \approx z \approx \frac{\lambda^{3}}{v},$$
So,
$$\frac{U}{NK} = \frac{3}{2}v\frac{g_{\frac{5}{2}}(x)}{\lambda^{3}}T \approx \frac{3}{2}T,$$

$$\Rightarrow \qquad \frac{C_{v}}{NK} = \frac{1}{NK}\left(\frac{\partial U}{\partial T}\right) \approx \frac{3}{2},$$
At,
$$T = T_{c}, \left(\frac{v_{c}, \xi_{3/2}}{\lambda^{3}}\right) = 1,$$

$$\Rightarrow \qquad \frac{C_{v}}{NK}(T = T_{c}) = \frac{15}{4}\frac{\xi_{5/2}}{\xi_{3/2}} \qquad \dots (4).$$

