Integralrechnung

Stammfunktionen

$$f(x) = x^5$$

$$f'(x) = 5x^4$$

$$F(x) = \frac{1}{101}x^{101} = \frac{x^{101}}{101}$$
$$f(x) = x^{100}$$

Beobachtung: wenn $f'(x) = x^3$ gilt, dann könnte $f(x) = \frac{1}{4}x^4$ gelten, es könnte aber auch $f(x) = \frac{1}{4}x^4 + 4$ oder $f(x) = \frac{1}{4}x^4 + 367$ gelten.

Def: F(x) heißt Stammfunktion fon f(x), falls F'(x) = f(x) gilt.

Bemerkung: Wer F eine Stammfunktion von f ist, dann ist auch G mit G(x) = F(x) + c für c = R eine Stammfunktion von f.

Beweis:

$$G'(x) = F'(x) + 0$$

$$G'(x) = f(x)$$

Aufgabentypen

- Geben Sie 3 verschiedene Stammfunktionen von $f(x) = 5x^3 7x^2 + 8x + 4$ an!
- Geben Sie alle Stammfunktionen von f aus 1) an! $F(x)=\tfrac{5}{4}x^4-\tfrac{7}{3}x^3+4x^2+4x+c;c\widehat{=}\mathbb{R}$
- Geben die **die** Stammfunktion von f aus 1) an, für die F(1) = 100 gilt!

Integralrechnung

Eines der Ziele der Integralrechnung ist die exakte Berechnung von Flächen, die deurch Funktionsgraphen umrandet werden. Die ersten Ideen dazu sind SEHR alt, so stammt die folgene Einschachtel-Idee schon aus der Antike, z.B. bei Archimeedes (ca. 285 - 212) zu finden (Trapeze statt Rechtecke).

Formel

$$A = \int_0^1 x^2 \cdot dx = \left[\frac{1}{3}x^3\right]_0^1 = \frac{1}{3} \cdot 1^3 - \frac{1}{3} \cdot 0^3 = \frac{1}{3} - 0 = \frac{1}{3}$$

- Man muss die Stammfunktion (Aufleitung) der funktion hinter f bekommen
- In diese setzt man die obere Integralzahl ein.
- Dann die untere.
- Dann substrahiert man das ergebnis des oberen Ergebnisses mit dem Ergebniss des unteren.

1