MATH 311

Last Chapter

SECTION 5.3: ORTHOGONALITY

CONTENTS

Definit	ons	2
	Dot Product	. 2
	Length	. 3
Import	ant Identities	4
_	Cauchy-Schwarz Inequality	. 4
	Triangle Inequality	. 5
	Distance	. 5
Orthog	onality	6
	Orthogonal Sets	. 7
	Orthonormal Sets	
Import	ant Identities	9
•	Pythagoras' Theorem	. 9
	Linearly Independent	
	Fourier Expansion	
	Criteria to be in the Span	

Created by: Pierre-Olivier Parisé Spring 2024

DEFINITIONS

Dot Product

If \mathbf{x} is an $1 \times n$ column vector and \mathbf{y} is an $n \times 1$ column vector, then recall that

$$\begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 + x_2y_2 + \cdots + x_ny_n \end{bmatrix}.$$

The result is a 1×1 matrix that we treat as a number.

DEFINITION 1. Let $\mathbf{x} = [x_1 \ x_2 \ \dots \ x_n]$ and $\mathbf{y} = [y_1 \ y_2 \ \dots \ y_n]$ be two $1 \times n$ row vectors in \mathbb{R}^n . Their **dot product** is defined as followed:

$$\mathbf{x} \cdot \mathbf{y} := \mathbf{x} \mathbf{y}^{\top} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

EXAMPLE 1. If
$$\mathbf{x} = \begin{bmatrix} 1 & -1 & -3 & 1 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 2 & 1 & 1 & 0 \end{bmatrix}$. Then $\mathbf{x} \cdot \mathbf{y} = (1)(2) + (-1)(1) + (-3)(1) + (1)(0) = -2$.

Notes:

- ① We can use other representations of vectors in \mathbb{R}^n .
- ② For instance, if **x** and **y** are $n \times 1$ column vectors, then

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \mathbf{x}^{\top} \mathbf{y}.$$

Length

DEFINITION 2. Let $\mathbf{x} = [x_1 \ x_2 \cdots x_n]$. The **length** $\|\mathbf{x}\|$ is defined by

$$\|\mathbf{x}\| := \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

EXAMPLE 2. If $\mathbf{x} = \begin{bmatrix} 1 & 3 & -2 & 0 \end{bmatrix}$, then

$$\|\mathbf{x}\| = \sqrt{(1)^2 + (3)^2 + (-2)^2 + (0)^2} = \sqrt{1 + 9 + 4} = \sqrt{14}.$$

Properties:

- $2 \mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}.$
- $(a\mathbf{x}) \cdot \mathbf{y} = a(\mathbf{x} \cdot \mathbf{y}) = \mathbf{x} \cdot (a\mathbf{y}).$
- $(5) \|\mathbf{x}\| \ge 0, \text{ and } \|\mathbf{x}\| = 0 \text{ if and only if } \mathbf{x} = \mathbf{0}.$

6
$$\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + 2(\mathbf{x} \cdot \mathbf{y}) + \|\mathbf{y}\|^2$$

IMPORTANT IDENTITIES

Cauchy-Schwarz Inequality

EXAMPLE 3. Let
$$\mathbf{x} = (a, b)$$
 and $\mathbf{y} = (c, d)$. Show that $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$.

SOLUTION.

So,

$$(ac + bd)^2 \le (a^2 + b^2)(c^2 + d^2)$$

 $\Rightarrow a^2c^2 + 2acbd + b^2d^2$
 $\in a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2$
 $\Rightarrow 2acbd \le a^2d^2 + b^2c^2$
 $\Rightarrow 0 \le a^2d^2 - 2adbc + b^2c^2$
 $\Rightarrow 0 \le (ad - bc)^2 - b$ this is always

THEOREM 1. If \mathbf{x} and \mathbf{y} are in \mathbb{R}^n , then

$$|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||.$$

Triangle Inequality

THEOREM 2. If \mathbf{x} and \mathbf{y} are in \mathbb{R}^n , then $\|\mathbf{x} + \mathbf{y}\| \leq \|\mathbf{x}\| + \|\mathbf{y}\|$. Illustration in \mathbb{R}^2 .

Distance

DEFINITION 3. If \mathbf{x} and \mathbf{y} are two vectors in \mathbb{R}^n , the **distance** $d(\mathbf{x}, \mathbf{y})$ is defined by

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|.$$

Illustration in \mathbb{R}^2 .

ORTHOGONALITY

DEFINITION 4. Two vectors **x** and **y** are **orthogonal** if

$$\mathbf{x} \cdot \mathbf{y} = 0.$$

If \mathbf{x} and \mathbf{y} are orthogonal, we write $\mathbf{x} \perp \mathbf{y}$.

EXAMPLE 4. Let $\mathbf{x} = \begin{bmatrix} 1 & 1 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 1 & -1 \end{bmatrix}$.

- a) Are \mathbf{x} , \mathbf{y} orthogonal?
- b) If they are orthogonal, then draw the vectors in a coordinates plane and give one special geometric properties.

a)
$$\vec{x} \cdot \vec{y} = (1)(1) + (1)(-1) = 1 - 1 = 0$$

 $\Rightarrow \vec{x} \perp \vec{y}$.

the angle between 2 and 3 is 90° .

Notes: In \mathbb{R}^2 , we can show that

$$\mathbf{x} \cdot \mathbf{y} = ||x|| ||y|| \cos \theta$$

where θ is the angle between the vectors \mathbf{x} and \mathbf{y} .

Orthogonal Sets

DEFINITION 5. A collection of vectors $\{\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_k}\}$ is an **orthogonal set** if

- ① $\mathbf{x_i} \cdot \mathbf{x_j} = 0$ for any $i \neq j$.
- ② $\mathbf{x_i} \neq 0$ for any i.

EXAMPLE 5. Let

- a) $S_1 = \{(0,0,0), (1,2,3), (-1,-1,-1)\}.$
- b) $S_2 = \{(1,2,3), (-1,-1,-1), (1,1,1)\}.$
- c) $S_3 = \{(3,4,5), (-4,3,0), (-3,-4,5)\}.$

Which one of these sets is an orthogonal set?

- a) S_1 is not orth. set because $(0,0,0) \in S_1$.
- b) (1,7,3) · (-1,-1,-1) = -6 = 0 -> Sz is not an orth. set.
- c) $(3,4,5) \cdot (-4,3,0) = -12 + 12 + 0 = 0$ $(3,4,5) \cdot (-3,-4,5) = -9 - 16 + 25 = 0$ $(-4,3,0) \cdot (-3,-4,5) = 12 - 12 = 0$ S3 is an orth. set.

Orthonormal Sets

DEFINITION 6. A collection of vectors $\{\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_k}\}$ is an **orthonormal set** if

- ① it is an orthogonal set.
- $2 \|\mathbf{x_i}\| = 1 \text{ for every index } i.$

EXAMPLE 6. The standard basis $\{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}\}$ is an orthonormal set in \mathbb{R}^n .

We can always obtain an orthonormal set from an orthogonal set by **normalizing** the vectors in the orthogonal set.

EXAMPLE 7. Obtain an orthonormal set by normalizing the following orthogonal set:

$$\{(1,-1,2),(0,2,1),(5,1,-2)\}.$$

IMPORTANT IDENTITIES

Pythagoras' Theorem

THEOREM 3. If $\{\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_k}\}$ is an orthogonal set in \mathbb{R}^n , then

$$\|\mathbf{x_1} + \mathbf{x_2} + \dots + \mathbf{x_k}\|^2 = \|\mathbf{x_1}\|^2 + \|\mathbf{x_2}\|^2 + \dots + \|\mathbf{x_k}\|^2.$$

Illustration in \mathbb{R}^2 .

Linearly Independent

THEOREM 4. If $S = \{\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_k}\}$ is an orthogonal set in \mathbb{R}^n , then S is linearly independent.

Fourier Expansion

EXAMPLE 8. Let $U = \text{span}\{(1, -2, 3), (-1, 1, 1)\}$ and $\mathbf{x} = (13, -20, 15) \in U$.

- a) Show $\{(1,-2,3),(-1,1,1)\}$ is an orthogonal basis of U.
- b) Express \mathbf{x} as a linear combination of the basis of U.

THEOREM 5. Let $\{\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_m}\}$ be an orthogonal basis of a subspace U of \mathbb{R}^n . For any $\mathbf{x} \in U$, we have

$$\mathbf{x} = \left(\frac{\mathbf{x} \cdot \mathbf{u_1}}{\|\mathbf{u_1}\|^2}\right) \mathbf{u_1} + \left(\frac{\mathbf{x} \cdot \mathbf{u_2}}{\|\mathbf{u_2}\|^2}\right) \mathbf{u_2} + \dots + \left(\frac{\mathbf{x} \cdot \mathbf{u_m}}{\|\mathbf{u_m}\|^2}\right) \mathbf{u_m}.$$

P.-O. Parisé MATH 311 Page 11

Criteria to be in the Span

EXAMPLE 9. Let $U = \text{span}\{\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_m}\}$ and let $\mathbf{x} \in \mathbb{R}^n$. Show that if $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{x} \perp \mathbf{u_k}$ for each $1 \leq k \leq m$, then $\mathbf{x} \notin U$.