USN

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU)

II Semester B. E. Regular / Supplementary Examinations Aug-2024

VECTOR CALCULUS, LAPLACE TRANSFORM AND NUMERICAL METHODS

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.
- 3. Use of mathematics Handbook is permitted. Do not write anything on handbook.

PART-A					CO
1	1.1	If vector $\vec{f} = 2ax\hat{\imath} - ay\hat{\jmath} + 4z\hat{k}$ is solenoidal, then the value of the			
		constant 'a' is	01	1	1
	1.2	The normal vector to the surface $y^2 - 4x^2 + 3z = 3$ is	01	1	1
	1.3	The region of convergence for the Laplace transform of $sin(2t)$ is			
		·	01	1	1
	1.4	If $L[f(t)] = \frac{5}{s(s^2+7)}$, then $L[f(2t)] = \underline{\hspace{1cm}}$.	01	1	1
	1.5	$L^{-1}\left[\frac{1}{(s+2)^5}\right] = \underline{\hspace{1cm}}.$	02	1	2
	1.6	$L[\sqrt{t} e^{-\frac{t}{2}}] = \underline{\qquad}.$	02	2	1
	1.7	Inverse Laplace transform of $\frac{s-3}{s^2-6s+2}$ is	02	2	1
	1.8	Given $\frac{dy}{dx} = x + y^2$, $y(0) = 1$, $h = 0.1$, $k_1 = 0.1$, $k_2 = 0.1152$, $k_3 = 0.1168$, then			
		the solution of the differential equation at $x = 0.1$ using Runge kutta			
		method of fourth order is	02	2	2
	1.9	First approximate value of a real root of the equation $2x - \log_{10} x = 7$ in the interval [3.5,4] by false position method is	02	1	1
	1.10	If $\vec{F} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ and \vec{V} is the region bounded by cube $x = 0, y = 0, z = 0$			
		$0, x = 1, y = 2, z = 3$, then $\iiint_{v} \nabla \cdot \vec{F}$ is	02	2	2
	1.11	If $\vec{F} = (x^2 + 5y^2)\hat{i} + (3y^2 - 4x)\hat{j}$, then evaluate $\int_c \vec{F} \cdot d\vec{r}$ along the			
		straight line from (0,0) to (0,2).	02	2	2
	1.12	Compute gradient of the scalar field $\phi = r + z\cos\theta$, specified in the			
		cylindrical coordinates (r, θ, z) .	02	2	2

PART-B

		-			
2	а	Find the directional derivative of $\phi(x,y,z) = \frac{1}{x^2 + y^2 + z^2}$ at the point			
		$(1,2,-3)$ in the direction of $\hat{i}+3\hat{j}+\hat{k}$.	06	2	2
	b	Show that the vector $\vec{F} = (y^2 \cos(x) + z^3)\hat{\imath} + (2y\sin(x) - 4)\hat{\jmath} + 3xz^2\hat{k}$ is			
		irrotational and find its scalar potential such that $\vec{F} = \nabla \phi$	06	3	3
	С	If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ and $r = \vec{r} $, then show that $\nabla r^n = nr^{n-2}\vec{r}$	04	2	2
3	a	Using divergence theorem, evaluate			
		$\iint_{S} [(x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}].\hat{n}ds, \text{ over the surface of the}$			
		rectangular parallelepiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$		2	3
	b	Using Green's theorem in the plane evaluate			
		$\int_{C} \{(3x^2 - y^2)dx + (x^2 + 5y^2)dy\}, C \text{ is the boundary of the region}$			
		bounded by $x = 0, y = 0, x + y = 2$.	08	2	3

		OR				
4	a b	Using Stokes theorem evaluate $\int_{c} (x+y)dx + (2x-z)dy + (y+z)dz \text{ where } C \text{ is the boundary of the triangle with vertices } (2,0,0), (0,3,0) \text{ and } (0,0,6).$ Evaluate $\int_{c} \vec{F} \cdot d\vec{r} \text{ where } \vec{F} = (xy)\hat{\imath} + (x^2 + y^2)\hat{\jmath} \text{ along}$ i) The path of the straight line from $(0,0)$ to $(1,0)$ and then to	10	3	3	
		(1,1). ii) The straight line joining the origin and (1,2).	06	2	2	
5	a b	Find the Laplace transform of $\int_0^t \frac{\sin t}{t} dt + te^{-t} \cos^2 2t$ Express the piecewise continuous function $f(t) = \begin{cases} 1, & 0 < t \le 1 \\ t, & 1 < t \le 2 \\ t^2, & t > 2 \end{cases}$ in	08	2	2	
		terms of the unit step function and also find its Laplace transform.	08	2	3	
		OR				
6	a b	i) Evaluate $\int_0^\infty e^{-6t}t \sin(t) dt$ using Laplace transform. ii) Find the Laplace transform of the function $(e^{-at} - \cos(bt))/t$ Show that the Laplace transform of the periodic function $f(t)$ is	08	2	2	
		$\frac{a}{s}\tanh\left(\frac{as}{2}\right), where f(t) = \begin{cases} k, 0 \le t \le a \\ -k, a \le t < 2a \end{cases} f(t+2a) = f(t). \text{ Also sketch the waveform for } f(t).$	08	2	2	
7	a	Find the inverse Laplace transform of $\frac{4s+5}{(s+1)^2(s+2)}$	00	0		
	b	Using convolution theorem, obtain the inverse Laplace transform of	08	2	2	
		$\frac{1}{(s+1)(s^2+4)}$ OR	08	3	3	
8	a b	Solve $\frac{d^2y}{dt^2} + \frac{dy}{dt} = t^2 + 2t$, $y(0) = 4$, $y'(0) = -2$ using Laplace transform.	08	3	4	
		i) $L^{-1} \left[\cot^{-1} \left(\frac{2}{s+1} \right) \right]$ ii) $L^{-1} \left[e^{-4s} \left(\frac{s+3}{s^2+4s+13} \right) \right]$	08	2	2	
9	а	Use the Runge Kutta method of fourth order with $h = 0.1$ to find approximate value of the solution of the initial value problem dy				
	b	$\frac{dy}{dx} = 2x^2 + 3y^2 - 2, y(2) = 1 \text{ at } x = 2.1.$ Employ Taylor series method to obtain the approximate value of y at $x = 0.1$ for the differential equation $\frac{dy}{dx} = e^x - y^2; y(0) = 1$ considering	08	2	4	
		the terms upto fourth degree.	08	2	2	
		OR				
10	a	Apply Milne's predictor-corrector method to find the solution of the differential equation $\frac{dy}{dx} + x^3 = y$ at $x = 0.4$ given that $y(0) = 1$,				
	b	y(0.1) = 1.1051, $y(0.2) = 1.2210$, $y(0.3) = 1.3477Using Newton Raphson method, find the root of the equation x\cos x = x^2 correct to four decimal places choosing the initial guess x_0 = 1.$	10 06	2 2	2	