2.6 The Couchy Criterion

Definition 2.6.1 (Covering Sequence)

A sequence (an) is called a Covering sequence if, for every 6 > 0,

INEN s.t. whenever m, n ≥ N, it follows that I an-aml < E

· Very very similar to definition for convergence

- convergence talks about terms in sequence getting orbitrarily close to some number

- Couchy sequence talks about forms in sequence getting orbitrority close to each other

· Turns out the definitions are equivalent

45 We won't to prove that a sequence converges, if and only if it is a Courty sequence.

Theorem 2.6.2: Every convergent sequence is a lavely sequence. Proof given in Ex 1

· Proving the converse is difficult be to prove something converges directly, we need a condidate for the limit.

lemma 2.8.3 Conchy sequences one bounded

Proof: Let E=1. There exists N such that $|2m-2n|<1 + m,n \geq N$.

Thus, we must have $|2n|<|2n|+1 + n\geq N$. It follows that $M=\max\{|2n|,|2n|,|2n-1|,|2n+1|\}$ is a bound for (2n)reverse through

Seconse $||2n|-|2n||\leq |2n-2n|<1 \leftarrow inequality$.

So |2n|-|2n|<1 =>|2n|<|1/2n| =>|2n|<|1/2n| =>|2n|<|1/2n|

Theorem 2.6.4 (Couchy Criterion)

A sequence converges iff it is a Covery sequence Proof:

(=>) Use Thm 2.6.2

(=) Stort with a Couchy sequence (χ_n) that is bounded by hemma 2.6.3. By Bolzomo-Weierstrass, we produce a convergent subsequence (χ_n). Set $\chi=\lim_{n\to\infty}\chi_n$. The idea is to show that (χ_n) -> χ . Let $\varepsilon>0$, Beconse (χ_n) is Couchy, $\exists N$ such that $|\chi_n-\chi_m| < \varepsilon/2$ whenever $m,n\geq N$. We also know that ($\chi_n = \chi_n = 0$) so choose a term in this subsequence $\chi_n = \chi_n = 0$, and $|\chi_n = \chi_n| < \varepsilon/2$. Observe that if $n\geq N$, then

 $|\chi_{n}-\chi| = |\chi_{n}-\chi_{n}K+\chi_{n}K-\chi|$ $\leq |\chi_{n}-\chi_{n}K|+|\chi_{n}K-\chi| < \xi/2+\xi/2 = \xi$

1) Prove theorem 2.6.2: Every converger, to sequence is a covery sequence.

(Hint: Use triangle, inequality)

Proof: Assume $(\chi_n) \rightarrow \chi$. Ic prove (χ_n) is Covery, we must find a point in the sequence after which we have $|\chi_n - \chi_m| < \epsilon$. Since $(\chi_n) \rightarrow \chi$, then $\exists N \in \mathbb{N}$ such that $\forall m, n \geq N$, $|\chi_n - \chi| < \epsilon/2$ and $|\chi_m - \chi| < \epsilon/2$. Now consider the expression $|\chi_n - \chi_m|$. Expand as $|\chi_n - \chi + \chi - \chi_m| = |(\chi_n - \chi) + (\chi - \chi_m)|$. Then by the triangle inequality, $|(\chi_n - \chi) + (\chi - \chi_m)| \leq |\chi_n - \chi| + |\chi_m - \chi| < \epsilon/2 = \epsilon_0$

- 2) Give an example, or argue that such a request is impossible
 - a) A Couchy sequence that is not monotone.

Simply any convergent sequence that is not mometone: (1,2,1,1,1,1,1,1,1,1,1)

b) A Couchy sequence with an unbounded subsequence

Impossible. By lemma 2.6.3, a lawly sequence (χ_n):s bounded so $\exists M \in \mathbb{R}$ s.t. $|\chi_n| \in M$ fine \mathbb{N} . Now consider an unbounded subsequence (χ_n). Then $\forall B \in \mathbb{R}$, $\exists k \in \mathbb{N}$ s.t. $|\chi_n| \geq 8$. This means that there is some term χ_n with $|\chi_n| \geq M$. This controdicts the finding that (χ_n) is bounded, so the request is impossible \square

c) A divergent monotone sequence with a Cauchy subsequence.

Impossible. Proof:
Assume for contradiction that (χ_n) is a divergent monotone sequence with a Cauchy subsequence $(\chi_n k)$. We know (χ_n) must be unbounded, because otherwise by the MCT (χ_n) would converge. By lemma 2.6.3 we also know $(\chi_n k)$ is bounded. The question is now reduced to whether an unbounded monotone sequence (χ_n) can have a bounded subsequence $(\chi_n k)$. Since $(\chi_n k)$ is bounded, then $\exists M \in \mathbb{R}$ such that $\forall k \in \mathbb{N}$, $|\chi_n k| < M$, Because (χ_n) is unbounded, then we can find $n \in \mathbb{N}$ such that $|\chi_n| |\chi_n k| < M$, Because (χ_n) is unbounded, then we can find $n \in \mathbb{N}$ such that $|\chi_n| |\chi_n k| < M$, Because $|\chi_n|$ is unbounded, then we can find $n \in \mathbb{N}$ such that $|\chi_n| > M$. Now find $|\chi_n| < M$, and then because $|\chi_n|$ is monotone (assume increasing M206), then $|\chi_n| > M$. This contradicts the finding that $|\chi_n| > M$, so the request is impossible $|\chi_n| > M$.

d) An unbounded sequence containing a subsequence that is Cauchy. Consider $\chi_n = \begin{cases} 1 & \text{if } n \text{ odd} \\ n & \text{if } n \text{ even} \end{cases} = (1,2,1,4,1,6,...)$ (12n) is unbounded, and $(\chi_{nk}) = (1,1,1,1,...)$ is a Couchy subsequence.

- 3) If (Xn) and (Yn) are Cowchy sequences, then by the Couchy Criterion (Xn) and (Yn) converge, and then by ALT (Xntyn) Converges and its hence Cowchy.
 - a) Give a direct argument that (Xntyn) is a Couchy sequence that does not use the lowery Criterion or the Algebraic Limit Theorem.

For cavely sequences (x_n) and (y_n) We want to show there $\exists N \in \mathbb{N}$ such that $\forall m, n \geq N$, $|(x_n + y_n)| \in \mathcal{E}$. Let $N_i \in \mathbb{N}$ such that $\forall m, n \geq N_i$, $|x_n - x_m| \leq \mathcal{E}/2$, and let $N_2 \in \mathbb{N}$ such that $\forall m, n \geq N_2$, $|y_n - y_m| \leq \mathcal{E}/2$. Then choose $N = \max \{N_i, N_2\}$, and both expressions still hold $\forall m, n \geq N$. Now we know that $\mathcal{E} = \mathcal{E}/2 + \mathcal{E}/2 > |x_n - x_m| + |y_n - y_m| \geq |(x_n - x_m) + (y_n - y_m)| = |(x_n + y_n) - (x_m + y_m)|$, and so $(x_n + y_n)$ is a Covery sequence \mathcal{D}

b) Do the same for the product (2nyn) Proof?

We count to show there $\exists N \in \mathbb{N} \text{ s.t. } \forall m, n \geq \mathbb{N}, | \chi_n y_n - \chi_m y_m | \ell \mathcal{E},$ assuming (χ_n) and (y_n) are lovely sequences. Because (χ_n) and (y_n) are Couchy, they are bounded. So $\exists X \in \mathbb{R} \text{ s.t. } | \chi_n | \ell X \forall n \in \mathbb{N}, \text{ and } \exists Y \in \mathbb{R} \text{ s.t. } | y_n | \ell Y \forall n \in \mathbb{N}. \text{ Set } \mathbb{N}, \in \mathbb{N} \text{ s.t. } \forall m, n \geq \mathbb{N}, | \chi_n - \chi_m | \ell \frac{\mathcal{E}}{2|Y|}$ and set $\mathbb{N}_2 \in \mathbb{N} \text{ s.t. } \forall m, n \geq \mathbb{N}_2, | y_n - y_m | \ell \frac{\mathcal{E}}{2|X|}. \text{ Then we can show that } \mathcal{E} > |\chi| \frac{\mathcal{E}}{2|\chi|} + |\gamma| \frac{\mathcal{E}}{2|Y|} > |\chi||y_n - y_m| + |\gamma||\chi_n - \chi_m| > |\chi_n||y_n - y_m| + |y_n||\chi_n - \chi_m|$

> $|\chi_n(y_n-y_m)-y_m(\chi_m-\chi_n)|$ > $|\chi_ny_n+\chi_ny_m-\chi_ny_m-\chi_my_m|$ = $|\chi_ny_n-\chi_my_m|$. So the product (χ_ny_n) is Covery is