IMPEDANCIA CONTROLADA EN CIRCUITOS IMPRESOS

Ing. Noelia Scotti (noeliascotti@gmail.com)

Cuándo es necesaria?

- Líneas de RF
- USB
- Ethernet
- HDMI
- SATA
- Memorias

Qué tareas implica?

- Estudio del valor de impedancia necesario.
- Selección del stack-up.
- Cálculo del ancho de la pista para la impedancia requerida.
- Diseñar el PCB.
- Validar la impedancia.

Qué pasa si no tenemos en cuenta la impedancia de las pistas?

A frecuencias altas, la variación de impedancia de un punto a otro provoca reflexiones y distorsiones en la señal.

Entonces hay que controlar la impedancia de las pistas!

Este es el primer paso para lograr lo que se llama SIGNAL INTEGRITY o integridad de señal.

DISEÑO DE STACK-UP

Definir planos de señal y de referencia.

El stack-up se define junto con el fabricante.

St	Stack-up de 4 layers (Nanya NY1140)					
		Layer	Espesor			
М	ásca	ra antisoldante	0,02 mm			
	Lī	Cobre 1 Oz	0,035 mm			
	Pre	preg 1x7628	0,19 mm			
	L2	Cobre ½ Oz	0,018 mm			
		CORE	1,18 mm			
	L3	Cobre ½ Oz	0,018 mm			
	Pre	preg 1x7628	0,19 mm			
	L4	Cobre 1 Oz	0,035 mm			
М	ásca	ra antisoldante	0,02 mm			
		Total	1,7 mm			

STACK-UP - MATERIALES

Tipos de Materiales

- Copper Foils
- Cores / Laminates
- Prepregs

Fabricantes

- Isola
- Rogers
- Nouya

LÍNEAS DE TRANSMISIÓN

Microstrip

- Microstrip con plano adyacente
- **Stripline**
- Microstrip diferencial
- **Stripline diferencial**

SOFTWARE DE CÁLCULO

- KiCAD PCB Calculator
- Saturn PCB Design Inc.: PCB Toolkit
- Mentor Graphics: Hyperlynx
- Sierra Circuits: www.protoexpress.com/hdi/hdi-toolsimpedance-calculator.jsp
- Polar Instruments Software: Si9000

SOFTWARE DE CÁLCULO

PCB Calculator (KiCAD)

SOFTWARE DE CÁLCULO

PCB Toolkit (Saturn PCB Design Inc.)

SOFTWARE DE CÁLCULO

Hyperlynx SI GHz

SOFTWARE DE CÁLCULO

 www.protoexpress.com/hdi/hdi-toolsimpedance-calculator.jsp (Sierra Circuits)

SOFTWARE DE CÁLCULO

Polar Instruments SI9000

EJEMPLO DE CÁLCULO MICROSTRIP 50 OHM

Stack-up de 4 layers (Nanya NY1140)					
Máscara antisoldante	0,02 mm				
L1 Cobre 1 Oz	0,035 mm				
Prepreg 1x7628	0,19 mm				
L2 Cobre ½ Oz	0,018 mm				
CORE	1,18 mm				
L3 Cobre ½ Oz	0,018 mm				
Prepreg 1x7628	0,19 mm				
L4 Cobre 1 Oz	0,035 mm				
Máscara antisoldante	0,02 mm				

Pista Antena Zo = 50 ohm W?

EJEMPLO DE CÁLCULO MICROSTRIP 50 OHM

EJEMPLO DE CÁLCULO MICROSTRIP DIFERENCIAL

Stack-up de 4 layers (Nanya NY1140)					
Máscara antisoldante	0,02 mm				
L1 Cobre 1 Oz	0,035 mm				
Prepreg 1x7628	0,19 mm				
L2 Cobre ½ Oz	0,018 mm				
CORE	1,18 mm				
L3 Cobre ½ Oz	0,018 mm				
Prepreg 1x7628	0,19 mm				
L4 Cobre 1 Oz	0,035 mm				
Máscara antisoldante	0,02 mm				

USB Zdiff = 90 ohm W?, S?

IMPEDANCIA EN MODO DIFERENCIAL

Zdiff = Zodd * 2

Zodd: Impedancia impar

Impedancia de una sola línea al aplicar señales con polaridad opuesta. Zodd = Zdiff/2.

Zeven: Impedancia par

Impedancia de una sola línea al aplicar señales con la misma polaridad.

Zdiff: Impedancia diferencial

Impedancia entre las dos líneas con señales diferenciales aplicadas.

EJEMPLO DE CÁLCULO MICROSTRIP DIFERENCIAL

DISEÑO DE SCH

 Documentar en el esquemático las señales con impedancia controlada y las reglas de diseño.

DISEÑO DE PCB

- Rutear con los anchos de pista calculados.
- Documentar el stack-up y los anchos de pista en una capa del PCB.

STACK UP (doble prepreg) Top: 1 oz (Signal) L2: 1 oz (Plane) L3: 1 oz (Signal) Bot: 1 oz (Plane) Microstrip Line / Differential Microstrip Prepreg 2x 7628 Nanya NY1140: 0.38 mm Laminate NY1140: 0,80 mm Stripline / Edge Coupled Stripline Prepreg 2x 7628 Nanya NY1140: 0.38 mm Total aprox.: 1,7 mm

IMPEDANCE CONTROL
50 OHM TOP/BOT LAYER: 0.3 mm
50 OHM L2/L3 LAYER: 0.23 mm
90 OHM DIFF TOP/BOT LAYER: 0.25/0.2 mm
90 OHM DIFF L2/L3 LAYER: 0.18/0.2 mm
100 OHM DIFF TOP/BOT LAYER: 0.15/0.15 mm

CUPONES DE TEST DE IMPEDANCIA

OBJETIVO

Medir con un TDR la impedancia de las diferentes líneas de transmisión para verificar valores teóricos calculados.

QUÉ TIENEN LOS CUPONES?

Microstrip 50 ohm Microstrip 75 ohm Diff. Microstrip 100 ohm NORMAS IPC IPC-2141A IPC-TM-650

MEDICIÓN DE IMPEDANCIA

EJEMPLO DE REPORTE DE MEDICIÓN

CUPONES DE TEST ENTREGADOS POR EL FABRICANTE

S	CC SHE	NNAN CII	股份有限公司 RCUITS CO.,LTD. 1pedan		asurem			文档密级: 内部公开 For Internal use only
物资编码/Material Coding:			101247339		零件号/Part	No:	000-L10-FR4-29	83-1111
生产号/Product No:			11-100614852-	1-01	日期/Date:		2019/3/18	
操作人/Operator:			杨彩红 审核人/Em			endator: 廖春英 / 施金花		E
NO.	Description	SPEC	+%	-%	Average	Result	Operator	Date
1	1.1	50	10	10	51.49	PASS	GSL	2019/3/11
1	L3	50	10	10	51.68	PASS	GSL	2019/3/11
1	1.4	50	10	10	50.47	PASS	GSL	2019/3/11
1	1.7	50	10	10	48.75	PASS	GSL.	2019/3/11
1	L8	50	10	10	52, 93	PASS	GSL	2019/3/11
1	L10	50	10	10	46. 26	PASS	GSL	2019/3/11
1	LI	85	10	10	84. 96	PASS	GSL.	2019/3/11
1	LI	90	10	10	92.73	PASS	GSL	2019/3/11
1	1.1	100	10	10	98.08	PASS	GSL	2019/3/11
1	L7	100	10	10	105.18	PASS	GSL	2019/3/11
1	L8	100	10	10	103.89	PASS	GSL	2019/3/11
1	L10	85	10	10	83, 14	PASS	GSL	2019/3/11
1	L3	100	10	10	104, 45	PASS	GSL	2019/3/11
1	L4	100	10	10	107, 30	PASS	GSL	2019/3/11
1	1.10	100	10	10	98, 51	PASS	GSL	2019/3/11
2	11	En.	1.0	4.0			000	

CUPONES DE TEST DE IMPEDANCIA - DISEÑO

Si la fabricación será local, será necesario proveer al fabricante del diseño del cupón.

El fabricante coloca en su panel de fabricación un cupón en cada esquina.

TDR INTI: TEKTRONIX DSA8300

El equipo de INTI posee puntas single ended

y puntas diferenciales.

Punta Tektronix P8018 (1,8 mm)

Punta Tektronix P80318 (0,5 mm a 4,2 mm)

5.14Z000e-000	5.Z19511e+001			
5.146000e-008				
5.150000e-008	5.144148e+001			
5.154000e-008	4 50304e+001	MIN	MAX	PROMEDIO
5.158000e-008	5.185450e+001	50,64322	51,8545	51,1430038
5.162000e-008	5.145067e+001			
5.166000e-008	5.178041e+001			
5.170000e-008	5.169243e+001			
5.174000e-008	5.107301e+001			
5.178000e-008	5.104255e+001			
5.182000e-008	5.156693e+001			
5.186000e-008	5.159581e+001			
5.190000e-008	5.113353e+001			
5.194000e-008	5.116575e+001			
5.198000e-008	5.096479e+001			
5.202000e-008	5.084716e+001			
5.206000e-008	5.078810e+001			
5.210000e-008	5.098250e+001			
5.214000e-008	5.101761e+001			
5.218000e-008	5.098829e+001			
5.222000e-008	5.108639e+001			

MEDICIÓN DE IMPEDANCIA CON TDR

Medición de líneas single ended

MEDICIÓN DE IMPEDANCIA CON TDR

Medición de líneas diferenciales

Configurar en el equipo la suma de los dos canales: Zdiff = Zodd1 + Zodd2

MEDICIÓN DE IMPEDANCIA CON TDR

Determinación de la zona de medición (según IPC-TM-650)

Figure 5-3 Determination of Measurement Zone

MEDICIÓN EN FÁBRICAS -POLAR INSTRUMENTS

La mayoría de las fábricas de PCB usan el Software y el TDR de Polar Instruments.

CHECKLIST 1 - ESTUDIO

- Identificar las líneas que necesitan impedancia controlada.
- 2. Estudiar cada caso para saber el valor de impedancia y la tolerancia permitida.
 - a) Hojas de datos.
 - b) Notas de aplicación.
 - c) Libros o publicaciones.
 - d) Generalmente las líneas que necesitan IC también requieren de otras consideraciones relacionadas con signal integrity y ruteo.

CHECKLIST 2 – CÁLCULOS

- Definir el stack-up
 - a) Cantidad de capas y cómo usarlas.
 - b) Materiales y espesores.
 - c) Dialogar con el fabricante del PCB.
- 2. Calcular el de ancho de las pistas utilizando un software especializado.

CHECKLIST 3 – DISEÑO DE PCB

- 1. Documentar en el esquemático: Marcar las líneas con IC y colocar notas sobre las consideraciones especiales que necesitan dichas líneas.
- 2. Configurar los anchos de pistas necesarios, y la separación en el caso de pares diferenciales.
- 3. Rutear con los anchos de pista correspondientes (además de considerar todos los otros requerimientos de las líneas especiales).
- 4. Documentar el stack-up en una capa de documentación del PCB. También aclarar las duplas impedancia/ancho de pista que se desean en las capas de interés.

CHECKLIST 4 – VERIFICACIONES

- 1. Simulación post-layout (antes de mandar a fabricar).
- 2. Verificación de la impedancia luego de la fabricación:
 - a) Solicitando el servicio de medición al fabricante.
 - b) Diseñando un cupón propio para luego medirlo.
 - c) Prueba funcional del circuito.

MATERIAL DE LECTURA

- Libro de Eric Bogatin: Signal and Power Integrity - Simplified
- Web de Polar Instruments
- Guía de Impedancia Controlada de Sierra Circuits.
- Simulación de reflexiones en la web de Bogatin: VRPW-30-16

Autor: Ing. Noelia Scotti (noeliascotti@gmail.com)