Ejercicio 3

Sea G un grafo dirigido y G_C su grafo de componentes

1- Considere una DFS de G en la cual los vértices son apilados en una Pila P al terminar de ser procesados. Para cada CFC C_i sea f_i , $1 \le i \le k$ el primer vértice visitado, y sea f_k, \ldots, f_1 el orden en que esos vértices son apilados en P.

Observación 1:

Una recorrida DFS va marcando los vértices visitados en pre - procesamiento y los apila en pos procesamiento.

Observación 2

Si en un recorrido DFS hay un camino entre f_i y f_j , y f_i es visitado antes que f_j , siendo f_i y f_j como en $\mathbf{1}$, entonces f_i no será procesado en pos procesamiento hasta recorrer todos los vértices para los cuales haya un camino y aún no hayan sido visitados, por lo que f_j será pos procesado antes que f_i .

Proposición a:

Si en una recorrida DFS el vértice f_i es visitado antes que el vértice f_j y hay un camino desde f_i hacia f_i , entonces fi será apilado después de f_i .

Demostración:

Como f_i y f_j son tales que se relacionan como se indica en la Observación 2, y la pila va agregando elementos en pos procesamientos, entonces es cierta la proposición.

Proposición b:

Para cada CFC C_i, f_i es el ultimo de sus vértices que se apila en P.

Demostración:

Como f_i pertenece a CFC C_i hay un camino entre este vértice y todos los vértices que pertenecen a C_i .

Luego como f_i es visitado antes que todos los demás por la observación previa es el último en ser apilado para esa CFC.

Proposición c:

Si hay algún camino desde la CFC C_i a la CFC C_j , entonces f_i se apila en P despues que f_j .

Demostración:

Si f_i es visitado antes que f_j entonces por Proposición a esto es cierto.

Es decir sea (u_i, u_j) tal que $u_i \in CFC \ C_i \ y \ u_j \in CFC \ C_j$

Como C_i es CFC podemos armar un camino $\{u_i, ..., f_i, u_j, ..., f_j\}$

Es decir existe un camino $\{f_i, u_j, \dots, f_j\}$ con f_j aún no visitado.

Si f_i es visitado despues que f_j entonces la arista que va de un vertice v_i de CFC C_i a un vertice v_j de CFC C_j no forma parte del arbol de recubrimiento generado por DFS. Entonces CFC C_j y CFC C_i pertenecen a distintas ramas del árbol y la rama que contiene a CFC C_j ha pasado ya por el pre y pos procesamiento, por lo que en este caso también f_i se apila después que f_i .

Proposición d:

Al terminar la DFS el vértice que queda en el tope de P pertenece a una CFC fuente.

Demostración:

 f_1 es el último vértice en ser apilado entonces por Proposición c no hay camino alguno de C_i a C_1 para $2 \le i \le k$.

Entonces por definición de CFC fuente C₁ es fuente.

Proposición e:

En el proceso de desapilar P, la secuencia $(f_{1,}...,f_{k})$ determina una secuencia $v=(v_{1,}...,v_{k})$ que es un ordenamiento topológico de G_{C} , donde v_{i} representa la componente C_{i}

Demostración:

 $(f_{1,}...,f_k)$ por Proposición c son tales que no existen caminos que vayan de un C_i a un C_i con $j>i,i\neq i,i\leq k$, $j\leq k$.

Entonces en el grafo de componentes no existen caminos que vayan de v_i a v_i con j>i, $i\neq i$, $i\leq k$, $j\leq k$

Entonces $v = (v_1, ..., v_k)$ es ordenamiento topológico.