Intro to Big Data Science: Assignment 1

Due Date: Mar 11, 2025

Exercise 1

Given the ordered data $\{x_{(i)}\}_{i=1}^{2n-1}$ with increasing order. Show that the median of the data set is equal to the minimizer of the following L^1 minimization problem:

$$x_{(n)} = \arg\min_{c} \sum_{i=1}^{2n-1} |x_{(i)} - c|.$$

Exercise 2

Consider the probability density function (PDF) shown in the following figure and equations:

$$p(x) = \begin{cases} 0, & \text{if } x < 0, \\ \frac{2}{w} - \frac{2x}{w^2}, & \text{if } 0 \le x \le w, \\ 0, & \text{if } w < x. \end{cases}$$

1. Which of the following expression is true? (Only one truth.)

(A)
$$E[X] = \int_{-\infty}^{\infty} (\frac{2}{w} - \frac{2x}{w^2}) dx;$$

(B)
$$E[X] = \int_{-\infty}^{\infty} x(\frac{2}{w} - \frac{2x}{w^2}) dx;$$

(C)
$$E[X] = \int_{-\infty}^{\infty} w(\frac{2}{w} - \frac{2x}{w^2}) dx;$$

(D)
$$E[X] = \int_0^w (\frac{2}{w} - \frac{2x}{w^2}) dx$$
;

(E)
$$E[X] = \int_0^w x(\frac{2}{w} - \frac{2x}{w^2}) dx;$$

(F)
$$E[X] = \int_0^w w(\frac{2}{w} - \frac{2x}{w^2}) dx;$$

- 2. What is $\mathbb{P}(x = 1 | w = 2)$?
- 3. When w = 2, what is p(1)?

Exercise 3

Let X and Y be two continuous random variables. The conditional expectation of Y on X = x is defined as the expectation of Y with respect to the conditional probability density p(Y|X):

$$E(Y|X=x) = \int_{\mathscr{Y}} y p(y|X=x) dy = \frac{\int_{\mathscr{Y}} y p(x,y) dy}{p_x(x)},$$

where $p_x(x)$ is the marginal probability density of Y. Show the following properties of the conditional expectation:

1. $E_{p_y}Y = E_{p_x}[E(Y|X)]$, where E_{p_y} means taking the expectation with respect to the marginal probability density p_y .

Remark: This formula is sometimes called the tower rule.

- 2. If *X* and *Y* are independent, then E(Y|X=x)=E(Y).
- 3. The minimizer of the following minimization problem with respect to some constant $c \in \mathbb{R}$

$$\arg\min_{c} \mathbb{E}[(Y-c)^{2}|X=x]$$

is attained at $c^* = E(Y|X = x)$.

- Exercise 4 In this exercise, we would like to invite you get a comprehensive understanding of the concept of distance. The symmetric distance (or rand distance) between two sets $A \subset \Omega$ and $B \subset \Omega$ is defined as $R_{\delta}(A,B) = \frac{|A \setminus B| + |B \setminus A|}{|\Omega|} = \frac{|A \triangle B|}{|\Omega|}$, where |S| stands for the number of elements in the set S. Show that the rand distance R_{δ} is actually a distance, i.e., it satisfies the three properties:
 - 1. Positivity: $R_{\delta}(A, B) \ge 0$, and "=" if and only if A = B;
 - 2. Symmetry: $R_{\delta}(A, B) = R_{\delta}(B, A)$;

3. Triangle inequality: $R_{\delta}(A, B) \le R_{\delta}(A, C) + R_{\delta}(B, C)$.

Remark: For students who are interested in the this concept, we invite you to consider why the Jaccard distance between two sets A and B ($J_{\delta}(A,B) = 1 - \frac{|A \cap B|}{|A \cup B|} = \frac{|A \triangle B|}{|A \cup B|}$) also satisfies the three above properties.