Computational Methods for Astrophysical Applications

lleyk El Mellah & Jon Sundqvist

Centre for mathematical Plasma Astrophysics Instituut voor Sterrenkunde KU Leuven **Lesson 2 : Finite Difference Approximation**

- Spatial discretization
 Mesh and data collocation
 Discrete equations
- Time advance
 Von Neumann stability analysis
 Explicit linear schemes

- Spatial discretization
 - Mesh and data collocation
 - Discrete equations

- Time advance
 - Von Neumann stability analysis
 - Explicit linear schemes

- useless? Method is consistent since LTE vanish in limit $\Delta x \to 0$ and $\Delta t \to 0$
 - \Rightarrow accuracy: 2nd order space, 1st order time \rightarrow overall 1st
 - ⇒ failure is related to numerical stability
- round-off errors should not grow during time progression
 - ⇒ evaluate by von Neumann method
 - \Rightarrow numerical solution = exact + round-off error $\epsilon(x, t)$
 - \Rightarrow represent $\epsilon(x, t)$ in Fourier series, analyse Fourier term

$$\epsilon_k(\mathbf{x},t) = \hat{\epsilon}_k \mathrm{e}^{\lambda t} \mathrm{e}^{\mathrm{i}k\mathbf{x}}$$

numerically stable scheme: for all spatial wavenumbers k

$$\left| \frac{\epsilon_k^{n+1}}{\epsilon_k^n} \right| = \left| e^{\lambda \Delta t} \right| \le 1$$

Taylor series expansions

perform von Neumann stability analysis for Lax–Friedrichs

$$e^{\lambda \Delta t} = \cos(k\Delta x) - i \frac{v\Delta t}{\Delta x} \sin(k\Delta x)$$

⇒ conditional stability requiring Courant number C

$$C \equiv \frac{|v|\Delta t}{\Delta x} \leq 1$$

- \Rightarrow limitation of the time step Δt for a given resolution Δx
- ⇒ Courant-Friedrichs-Lewy condition (1928)
- ⇒ necessary (not sufficient) condition for stability!

Central FD method

in (x, t) space, we identify **stencil** of a method ⇒ stencils visualizes discrete dependence of method

- ⇒ stencil for FTCS (a) versus Lax-Friedrichs (b)
- hyperbolic PDE and physical characteristics
 - ⇒ the advection equation is hyperbolic as

$$\frac{\partial u}{\partial t} + \frac{\partial \left(\underbrace{vu}_{F}\right)}{\partial x} = 0$$

El Mellah & Sundavist (KU Leuven)

 v is real number 'characteristic sneed' G0B30A Computational Methods

Truncation error and order of accuracy

for second order wave equation

$$\frac{\partial^2 u}{\partial t^2} - v^2 \frac{\partial^2 u}{\partial x^2} = 0$$

⇒ factorizes to

$$\left(\frac{\partial}{\partial t} - v \frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} + v \frac{\partial}{\partial x}\right) u = 0$$

⇒ general solution has left and right going wave with

$$u = f(x - vt) + g(x + vt)$$

- \Rightarrow initial shapes f(x), g(x) combine
- \Rightarrow 2 characteristics $\frac{dx}{dt} = \pm v$

Consistency of a FDA w/ respect to its PDE

illustrate CFL for second order wave equation:
 the domain of dependence of the differential equation should
 be contained in the DOD of the discretised equations

- \Rightarrow stability means physical DOD contained in stencil bounds (numerical DOD), hence Δt small enough (right case)
- note: linear advection + wave equation: DOD only involves 1 or 2 points from $t=0 \leftrightarrow \text{HD}$: DOD bounds set by $v\pm c_s$ with c_s

- Spatial discretization
 - Mesh and data collocation
 - Discrete equations

- Time advance
 - Von Neumann stability analysis
 - Explicit linear schemes

Principle and necessary stability condition

von Neumann stability analysis for BTCS scheme

$$\left| e^{\lambda \Delta t} \right| = \frac{1}{\left| 1 + i \frac{v \Delta t}{\Delta x} \sin(k \Delta x) \right|} < 1$$
 for all k

- \Rightarrow unconditionally stable, any (large) time step Δt allowed
- note: stability does not imply accuracy
 - \Rightarrow large Δt affects accuracy, defines time resolution: behavior may involve physical timescale that needs to be resolved!
- implicit backward Euler: first order in time

Convergence: Lax-Richtmeyer theorem

von Neumann stability analysis for BTCS scheme

$$\left| e^{\lambda \Delta t} \right| = \frac{1}{\left| 1 + i \frac{v \Delta t}{\Delta x} \sin(k \Delta x) \right|} < 1$$
 for all k

- \Rightarrow unconditionally stable, any (large) time step Δt allowed
- note: stability does not imply accuracy
 - \Rightarrow large Δt affects accuracy, defines time resolution: behavior may involve physical timescale that needs to be resolved!
- implicit backward Euler: first order in time

Lax-Friedrichs

• spatial differences as average of n-th and (n + 1)-th time step

$$u_i^{n+1} = u_i^n - \frac{1}{4}v \frac{\Delta t}{\Delta x} (u_{i+1}^{n+1} + u_{i+1}^n - u_{i-1}^{n+1} - u_{i-1}^n)$$

- ⇒ second order Crank–Nicolson method
- ⇒ Exercise: show that this scheme is unconditionally stable, 2nd order accurate
- stencils for BTCS (left) and Crank-Nicolson (right)

Lax-Wendroff

• spatial differences as average of n-th and (n + 1)-th time step

$$u_i^{n+1} = u_i^n - \frac{1}{4}v\frac{\Delta t}{\Delta x}(u_{i+1}^{n+1} + u_{i+1}^n - u_{i-1}^{n+1} - u_{i-1}^n)$$

- ⇒ second order Crank–Nicolson method
- ⇒ Exercise: show that this scheme is unconditionally stable, 2nd order accurate
- stencils for BTCS (left) and Crank-Nicolson (right)

Runge-Kutta

• spatial differences as average of n-th and (n+1)-th time step

$$u_i^{n+1} = u_i^n - \frac{1}{4}v\frac{\Delta t}{\Delta x}(u_{i+1}^{n+1} + u_{i+1}^n - u_{i-1}^{n+1} - u_{i-1}^n)$$

- ⇒ second order Crank–Nicolson method
- ⇒ Exercise: show that this scheme is unconditionally stable, 2nd order accurate
- stencils for BTCS (left) and Crank-Nicolson (right)

Upwind FD scheme

• spatial differences as average of n-th and (n + 1)-th time step

$$u_i^{n+1} = u_i^n - \frac{1}{4}v\frac{\Delta t}{\Delta x}(u_{i+1}^{n+1} + u_{i+1}^n - u_{i-1}^{n+1} - u_{i-1}^n)$$

- ⇒ second order Crank–Nicolson method
- ⇒ Exercise: show that this scheme is unconditionally stable, 2nd order accurate
- stencils for BTCS (left) and Crank-Nicolson (right)

