Assembly + Machine language

Opcode	Operand	Function	RTN	Mnemonic	Machine
			Register Transfer Notation		code
0000	Address	Load	ACC M[Address]	LDA M[Address]	-0000 aaaa
0001	Address	Add w/ C	ACC ← ACC + M[Address]	ADC M[Address]	0001 aaaa
0000			+ C		
0010	Address	Subtract w/ C	ACC ☐ ACC - M[Address]	SBC M[Address]	0010 aaaa
			- C		
0011	Address	Store	M[Address] ACC	STA M[Address]	0011 aaaa
0100	λλλλ	Clear	ACC □ 0; C □ 0	CLA	0100 xxx
0101 0001	Address	AND	ACC ₩ ACC & M[Address]	AND M[Address]	0101 aaaa
0110	Address	OR	ACC ACC M[Address]	OR M[Address]	0110 aaaa
0111	Address	NOT	ACC ← ~ACC	NOT	0111 xxxx
10xx	xxxx	SHL	ACC ♣ ACC ♣ 2	SHL	10xx xxxx
11xx	XXXX	SHR	ACC ■ ACC ■ 2	SHR	11xx xxxx

Procedure

Design a 4-bit ALU that can perform 10 functions, only the ALU part, not control parts and memories. Implement it on Atrix 7 FPGA board. Use DIP switch as Ain, Bin, and ALU control, and LED to display the contents of ACC.

module ALU (input [3:0] ALU_control, Ain, Bin, output reg [3:0] ACC_out, output V, Z, C, Clk); wire reg [3:0] ALU_out; // write your code here endmodule

TA Signature: Lall_2A_64,6.8...
6/11/63