

UCL Update

Laurie McClymont

23 Oct 2015

1) Data Commissioning of Flavour Tagging

Improvements to Flavour Tagging for Run-2

- 1) Insertable B-layer (IBL).
 - New innermost tracking layer located 33mm from the the beam line
- 2) Upgraded the multi-variate tagger to MV2
- 3) Improvements to the base tagging algorithms.

These changes have been tested and optimised using Monte Carlo (MC) Simulation

Data Commissioning

- However, we need to show that we the flavour tagging performance found in MC is also seen in data.
- This can be done by comparing Monte-Carlo Simulation to Data for key flavour tagging variables.

ATL-PHYS-PUB-2015-022

4 Samples and Event Selection

Samples

- Data 56 pb⁻¹ of early Run-2 data taken May-July 2015
 - Only use data if stable beam and calorimeters and inner detector working.
 - 13 TeV collision energy with a 50ns bunch spacing.
- <u>Simulation Monte Carlo simulation of QCD multi-dijet events</u>
 - 50ns bunch spacing and 13 TeV collision energy.
 - Pythia 8 used to simulate the events, EVTGEN used to decay heavy hadrons.
 - Reweight average number of interactions per beam crossing, <µ>, to match data.

Object and Event Selection

- <u>Jet</u> anti-k_T algorithm with R = 0.4
 - $P_T > 35 \text{ GeV}, |\eta| < 2.4$
 - JVT > 0.641, if jet p_T < 50 GeV
- <u>Trigger</u>: HLT_j60
- General Cuts
- 2 jets in event (dijet event)
- Leading jet-P_T > 70 GeV

- Monte-Carlo Cuts
- Average P_T of two highest P_T jets
 - < 1.4 * Truth Leading Jet P_T

- We first examine the mv2c20 distribution of the leading jet
- Then compare to an unbiased b-enhanced sample
 - This is created by tagging the leading jet @ 70% eff using MV2c20
 - Then we study the subleading jet.
 - (Fraction of b's ~3% to ~13%)

Leading jet sample:

b-enhanced sample.

- Clear discrepancy in lowest bin in leading jet sample.
 - We want to understand this discrepancy.

Longitudinal (z0)

Impact Parameter Significance

Why The Discrepancies?

- Problems likely due to material mismodelling in simulation.
 - Believed that IBL material is underestimated.
- Working with tracking experts to solve this problem.
 - New geometry model undergoing validation. (Hopefully will be ready soon)

Investigation: Is the discrepancy in bottom bin due to the fact if no SV or JF is found then IPxD is more dominant in deciding MV2c20 value, and hence discrepancies become large.

1. Normal

- Leading Jet
- No MV2c20
 Requirements
- The usual sample

2. Bottom Bin Only

- Leading Jet
- Only data from troublesome bottom bin (MV2c20 < -0.933334)

3. Bottom Bin Excluded

- Leading Jet
- <u>Exclude</u> the problematic bottom bin (MV2c20 > -0.93333)

4. B-Enhance

- Unbiased b-enhanced sample
- Sub-Leading Jet
- Leading Jet Tagged @
 70% Efficiency

5. SV reco

- Leading Jet
- Only if a secondary vertex is reconstructed (SV_m > 0)

6. No JF or SV reco

- Leading Jet
- SV and JF <u>don't</u>
 reconstruct a vertex
 (SV_m && JF_m == 0)

Normal:

Bottom Bin Only:

No Bottom Bin:

b-enhanced (SL):

SV reconstucted:

No Bottom Bin:

SV reconstucted:

Data/Simulation

No Bottom Bin:

SV reconstucted:

Some events have no SV or JF:

These events are:

- Likely to be in the at the low end of mv2c20
- Dominated by IPxD tagger
- We know IPxD puts thing as more "b-like" in data than in MC.
 - This might lead to a deficit in data in the bottom bin of the MV2c20 distribution

Future Plans

- A ttbar sample has been produced with a new geometry tag
 - This will need validation
 - Then we can launch a di-jet sample with new geometry tag.

2) Data Commissioning of Flavour Tagging

14 Exotic Di-b-Jet Search

- Di-jets is one of the most sensitive probes of new physics at high masses.
- Many BSM models predict resonances that can decay to bb
 - Use of *b*-tagging increases sensitivity to these models.
 - ATLAS has never done a di-b-jet analysis before (CMS has)
- Di-b-jet search will use a similar strategy as the exotic di-jet analysis
- Fit the QCD background using a smoothly falling function.
- Look for excesses from this fitted background

(Jeff Dandoy)

Fit Function

$$f(x) = p_1(1-x)^{p_2} x^{p_3+p_4 \ln x + p_5(\ln x)^2}$$

- 3 Parameter (p4, p5 = 0)
- 4 Parameter (p5 = 0)
- 5 Parameter

15 Flavour Composition

- For di-b-jet analysis we want to understand how varying the flavour composition will affect the fitting function.
- Are the fitting functions robust to flavour composition.
 - Below I have fitted to a di-b-jet spectrum and show the different flavour compositions.
 - Next step is to weight all b's or c's to increase their contribution.
- We want to see if we can break the fit...

Details

Pythia8EvtGen MC Di-Jet Sample

Standard Dijet Resonance Cuts

- Leading Jet p_T > 410 GeV
- Sublead Jet p_T > 50 GeV
- $-|y^*| < 0.6$
- $m_{jj} > 1100 \text{ GeV}$

b-tag required for both jets at 85% WP

- Fixed cut on MV2c20

Use cone matching to identify flavour

Individual Components

Backup

Number of jets

Number of jets

18 Di-jet sample re-weighting


```
Total = mcwg*(Filter Eff.)*(CS[fb])*(Lumi[fb-1])
Weight (# Events)
```

```
Xs(fb) Eff. Slice and Energy
7.8420E+13 6.7198E-04 #JZ1W 20-60 GeV
2.4334E+12 3.3264E-04 #JZ2W 60-160 GeV
2.6454E+10 3.1953E-04 #JZ3W 160-400 GeV
2.5464E+08 5.3009E-04 #JZ4W 400-800 GeV
```


Average P_T of two highest P_T jets < 1.4 * Truth Leading Jet P_T

Bottom Bin Only:

No Bottom Bin:

b-enhanced (SL):

SV reconstucted:

Normal:

Bottom Bin Only:

No Bottom Bin:

b-enhanced (SL):

SV reconstucted:

21 IP d0 error

Bottom Bin Only:

No Bottom Bin:

b-enhanced (SL):

SV reconstucted:

