LIMITES DES FONCTIONS

Partie 1: Limite d'une fonction à l'infini

1) Limite infinie en ∞

Définition:

On dit que la fonction f admet pour **limite** $+\infty$ **en** $+\infty$, si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment grand.

Remarque : On a une définition analogue en $-\infty$.

Exemple:

La fonction définie par $f(x) = x^2$ a pour limite $+\infty$ lorsque x tend vers $+\infty$.

On a par exemple : $f(100) = 100^2 = 10000$

 $f(1000) = 1000^2 = 1000000$

Les valeurs de la fonction deviennent aussi grandes que l'on veut dès que x est suffisamment grand.

Remarques:

- Une fonction qui tend vers $+\infty$ lorsque x tend vers $+\infty$ n'est pas nécessairement croissante. Par exemple :

- Il existe des fonctions qui ne possèdent pas de limite infinie. C'est le cas des fonctions sinusoïdales.

2) Limite finie en ∞

Définition:

On dit que la fonction f admet pour **limite** L **en** $+\infty$, si f(x) est aussi proche de L que l'on veut, pourvu que x soit suffisamment grand et on note : $\lim_{x \to +\infty} f(x) = L$.

Remarque : On a une définition analogue en $-\infty$.

Exemple:

La fonction définie par

$$f(x) = 2 + \frac{1}{x}$$
 a pour limite 2

lorsque x tend vers $+\infty$.

On a par exemple:

$$f(100) = 2 + \frac{1}{100} = 2,01$$

$$f(10000) = 2 + \frac{1}{10000}$$
$$= 2,0001$$

Les valeurs de la fonction se resserrent autour de 2 dès que x est suffisamment grand. La courbe de la fonction "se rapproche" de la droite d'équation y=2 sans jamais la toucher.

<u>Définition</u>: Si $\lim_{x\to +\infty} f(x) = L$, la droite d'équation y=L est appelée **asymptote horizontale** à la courbe de la fonction f en $+\infty$.

Remarques:

- Lorsque x tend vers $+\infty$, la courbe de la fonction "se rapproche" de son asymptote.
- On a une définition analogue en $-\infty$.

3) Limites des fonctions de référence

Propriétés: $\lim_{x \to +\infty} x^2 = +\infty, \lim_{x \to -\infty} x^2 = +\infty$ $\lim_{x \to +\infty} x^3 = +\infty, \lim_{x \to -\infty} x^3 = -\infty$ $\lim_{x \to +\infty} \sqrt{x} = +\infty$ $\lim_{x \to +\infty} \frac{1}{x} = 0, \lim_{x \to -\infty} \frac{1}{x} = 0$ $\lim_{x \to +\infty} e^x = +\infty, \lim_{x \to -\infty} e^x = 0$

Partie 2 : Limite d'une fonction en un réel A

1) Définition

Définition:

On dit que la fonction f admet pour **limite** $+\infty$ **en** A, si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment proche de A.

Exemple:

La fonction définie par $f(x) = \frac{1}{3-x} + 1$ a pour limite $+\infty$ lorsque x tend vers 3.

On a par exemple:

$$f(2,99) = \frac{1}{3 - 2,99} + 1 = 101$$
$$f(2,9999) = \frac{1}{3 - 2,9999} + 1 = 10001$$

Les valeurs de la fonction deviennent aussi grandes que l'on veut dès que x est suffisamment proche de 3.

La courbe de la fonction "se rapproche" de la droite d'équation x=3 sans jamais la toucher.

 $\frac{\text{D\'efinition : Si : } \lim_{x \to A} f(x) = +\infty \text{ ou } \lim_{x \to A} f(x) = -\infty, \text{ la droite d'\'equation } x = A \text{ est appel\'ee}}{\text{asymptote verticale } \grave{a} \text{ la courbe de la fonction } f}.$

2) Limite à gauche, limite à droite :

Exemple:

Considérons la fonction inverse définie sur \mathbb{R}^* par

$$f(x) = \frac{1}{x}.$$

La fonction f admet des limites différentes en 0 selon que :

$$x > 0$$
 ou $x < 0$.

• Si x > 0: Lorsque x tend vers 0, f(x) tend vers $+\infty$ et on note :

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty \text{ ou } \lim_{\substack{x \to 0^+}} f(x) = +\infty.$$

On parle de limite à gauche de 0

• Si x < 0: Lorsque x tend vers 0, f(x) tend vers $-\infty$ et on note :

$$\lim_{\substack{x\to 0\\x<0}} f(x) = -\infty \text{ ou } \lim_{\substack{x\to 0^-}} f(x) = -\infty.$$

On parle de limite à droite de 0.

Méthode: Déterminer graphiquement des limites d'une fonction

Vidéo https://youtu.be/9nEJCL3s2eU

On donne ci-dessous la représentation graphique de la fonction f.

- a) Lire graphiquement les limites en $-\infty$, en $+\infty$, en -4 et en 5.
- b) Compléter alors le tableau de variations de f.

Correction

a)
$$\bullet \lim_{x \to -\infty} f(x) = 5$$
 $\lim_{x \to +\infty} f(x) =$

a) ullet $\lim_{x \to -\infty} f(x) = 5$ $\lim_{x \to +\infty} f(x) = 5$ La courbe de f admet une asymptote horizontale d'équation y = 5 en $-\infty$ et $+\infty$.

$$\bullet \lim_{x \to -4} f(x) = +\infty$$

La courbe de f admet une asymptote verticale d'équation x=-4.

$$\bullet \lim_{x \to 5^{-}} f(x) = +\infty \text{ et } \lim_{x \to 5^{+}} f(x) = -\infty$$

La courbe de f admet une asymptote verticale d'équation x = 5.

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Partie 3 : Opérations sur les limites

1) Utiliser les propriétés des opérations sur les limites

 α peut désigner $+\infty$, $-\infty$ ou un nombre réel.

SOMME

$\lim_{x \to \alpha} f(x) =$	L	L	L	+∞	-∞	+∞
$\lim_{x \to \alpha} g(x) =$	L'	+∞	-∞	+∞	-8	
$\lim_{x \to \alpha} f(x) + g(x) =$	L + L'	+∞	-∞	+∞	-∞	F.I.*

^{*} Forme indéterminée : On ne peut pas prévoir la limite éventuelle.

PRODUIT

 ∞ désigne $+\infty$ ou $-\infty$

$\lim_{x \to \alpha} f(x) =$	L	L	8	0
$\lim_{x \to \alpha} g(x) =$	L'	8	8	8
$\lim_{x \to \alpha} f(x) \times g(x) =$	$L \times L'$	8	8	F.I.

On applique la règle des signes pour déterminer si le produit est $+\infty$ ou $-\infty$.

QUOTIENT

 ∞ désigne $+\infty$ ou $-\infty$

$\lim_{x \to \alpha} f(x) =$	L	$L \neq 0$	L	8	∞	0
$\lim_{x \to \alpha} g(x) =$	$L' \neq 0$	0	8	L	8	0
$ \lim_{x \to \alpha} \frac{f(x)}{g(x)} = $	$\frac{L}{L'}$	8	0	8	F.I.	F.I.

On applique la règle des signes pour déterminer si le produit est $+\infty$ ou $-\infty$.

Méthode: Calculer la limite d'une fonction à l'aide des formules d'opération

Vidéo https://youtu.be/at6pFx-Umfs

Déterminer les limites suivantes : a) $\lim_{x \to -\infty} (x - 5)(3 + x^2)$ b) $\lim_{x \to 3^-} \frac{1 - 2x}{x - 3}$

Correction

a)
$$\lim_{x \to -\infty} (x - 5)(3 + x^2) = ?$$

$$\begin{cases}
\lim_{x \to -\infty} x - 5 = -\infty \\
\lim_{x \to -\infty} x^2 = +\infty donc \lim_{x \to -\infty} 3 + x^2 = +\infty
\end{cases}$$

Comme limite d'un produit : $\lim_{x \to -\infty} (x - 5)(3 + x^2) = -\infty$

b)
$$\lim_{x \to 3^{-}} \frac{1-2x}{x-3} = ?$$

$$\begin{cases} \lim_{x \to 3^{-}} 1 - 2x = 1 - 2 \times 3 = -5\\ \lim_{x \to 3^{-}} x - 3 = 0^{-} \end{cases}$$

Une limite de la forme « $\frac{5}{0}$ » est égale à « ∞ ».

Donc, d'après la règle des signes, une limite de la forme « $\frac{-5}{0^-}$ » est égale à « +∞ ».

D'où, comme limite d'un quotient : $\lim_{x\to 3^-} \frac{1-2x}{x-3} = +\infty$.

2) Cas des formes indéterminée (non exigible)

Comme pour les suites, on rappelle que :

Les quatre formes indéterminées sont, par abus d'écriture :

$$\infty - \infty$$

$$0 \times \infty$$

$$\frac{0}{0}$$

Méthode: Lever une forme indéterminée à l'aide de factorisations (1) - NON EXIGIBLE

Vidéo https://youtu.be/4NQbGdXThrk

Calculer: $\lim_{x \to +\infty} -3x^3 + 2x^2 - 6x + 1$

Correction

$$\lim_{x \to +\infty} -3x^3 + 2x^2 - 6x + 1 = ?$$

$$\oint_{\substack{x \to +\infty}} \lim_{x \to +\infty} -3x^3 = -\infty$$

$$\lim_{x \to +\infty} 2x^2 = +\infty.$$

On reconnait une forme indéterminée du type " $\infty - \infty$ ".

• Levons l'indétermination en factorisant par le monôme de plus haut degré :

$$-3x^3 + 2x^2 - 6x + 1 = x^3 \left(-3 + \frac{2}{x} - \frac{6}{x^2} + \frac{1}{x^3} \right)$$

•
$$\lim_{x \to +\infty} \frac{2}{x} = \lim_{x \to +\infty} \frac{6}{x^2} = \lim_{x \to +\infty} \frac{1}{x^3} = 0.$$

Donc, par limite d'une somme :

$$\lim_{x \to +\infty} -3 + \frac{2}{x} - \frac{6}{x^2} + \frac{1}{x^3} = -3$$

$$\bullet \begin{cases} \lim_{x \to +\infty} -3 + \frac{2}{x} - \frac{6}{x^2} + \frac{1}{x^3} = -3 \\ \lim_{x \to +\infty} x^3 = +\infty \end{cases}$$

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr

Donc, par limite d'un produit :

$$\lim_{x \to +\infty} x^3 \left(-3 + \frac{2}{x} - \frac{6}{x^2} + \frac{1}{x^3} \right) = -\infty$$
Soit:
$$\lim_{x \to +\infty} -3x^3 + 2x^2 - 6x + 1 = -\infty.$$

Méthode: Lever une forme indéterminée à l'aide de factorisations - NON EXIGIBLE

- Vidéo https://youtu.be/8tAVa4itblc
- Vidéo https://youtu.be/pmWPfsQaRWI

Calculer: a) $\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5}$ b) $\lim_{x \to -\infty} \frac{3x^2 + 2}{4x - 1}$

Correction

- a) En appliquant la méthode précédente pour le numérateur et le dénominateur cela conduirait à une forme indéterminée du type " $\frac{\infty}{\infty}$ ".
- Levons l'indétermination en factorisant les monômes de plus haut degré :

$$\frac{2x^2 - 5x + 1}{6x^2 - 5} = \frac{x^2}{x^2} \times \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{x^2}} = \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{x^2}}$$

 $\bullet \lim_{x \to +\infty} \frac{5}{x} = \lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{5}{x^2} = 0.$

$$\lim_{x \to +\infty} 2 - \frac{5}{x} + \frac{1}{x^2} = 2 \quad \text{et} \quad \lim_{x \to +\infty} 6 - \frac{5}{x^2} = 6$$

• Donc, comme limite d'un quotient :

$$\lim_{x \to +\infty} \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{x^2}} = \frac{2}{6} = \frac{1}{3}$$

Soit: $\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5} = \frac{1}{3}$.

- b) Il s'agit d'une forme indéterminée du type " $\frac{\infty}{\infty}$ ".
- Levons l'indétermination en factorisant les monômes de plus haut degré :

$$\frac{3x^2 + 2}{4x - 1} = \frac{x^2}{x} \times \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}} = x \times \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}}$$

 $\bullet \lim_{x \to -\infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{2}{x^2} = 0$

Donc, comme limite de sommes :

$$\lim_{x \to -\infty} 3 + \frac{2}{x^2} = 3$$
 et $\lim_{x \to -\infty} 4 - \frac{1}{x} = 4$

• Donc, comme limite d'un quotient :

$$\lim_{x \to -\infty} \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}} = \frac{3}{4}$$

• De plus, $\lim_{x\to -\infty} x = -\infty$, donc, comme limite d'un produit :

$$\lim_{x \to -\infty} x \times \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}} = -\infty$$

Soit :
$$\lim_{x \to -\infty} \frac{3x^2 + 2}{4x - 1} = -\infty.$$

Méthode: Déterminer une asymptote

- Vidéo https://youtu.be/0LDGK-QkL80
- Vidéo https://youtu.be/pXDhrx-nMto

Soit f la fonction définie sur $\mathbb{R} \setminus \{1\}$ par $f(x) = \frac{-2}{1-x}$.

Démontrer que la courbe représentative de la fonction f admet des asymptotes dont on précisera la nature et les équations.

Correction

• $\lim_{x \to +\infty} 1 - x = -\infty$ donc comme limite d'un quotient, on a : $\lim_{x \to +\infty} \frac{-2}{1-x} = 0$.

On prouve de même que : $\lim_{x \to -\infty} \frac{-2}{1-x} = 0$.

On en déduit que la droite d'équation y=0 est asymptote horizontale à la courbe représentative de f en $+\infty$ et en $-\infty$.

• $\lim_{x\to 1^-} 1 - x = 0^+$ donc comme limite d'un quotient, on a : $\lim_{x\to 1^-} \frac{-2}{1-x} = -\infty$

Et $\lim_{x\to 1^+} 1 - x = 0^-$ donc comme limite d'un quotient, on a : $\lim_{x\to 1^+} \frac{-2}{1-x} = +\infty$

On en déduit que la droite d'équation x=1 est asymptote verticale à la courbe représentative de f.

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Partie 4 : Calculs de limites par composition et comparaison

1) Composition de limites

Méthode: Déterminer la limite d'une fonction composée

- Vidéo https://youtu.be/DNU1M3Ii76k
- Vidéo https://youtu.be/f5i_u8XVMfc

Soit la fonction f définie sur $\left|\frac{1}{2}\right|$; $+\infty$ par : $f(x) = \sqrt{2 - \frac{1}{x}}$ Calculer la limite de la fonction f en $+\infty$.

Correction

On a : $\lim_{x \to +\infty} \frac{1}{x} = 0$, donc $\lim_{x \to +\infty} 2 - \frac{1}{x} = 2$

Donc, comme limite d'une fonction composée : $\lim_{x\to +\infty} \sqrt{2-\frac{1}{x}} = \sqrt{2}$

En effet, si $x \to +\infty$, on a : $X = 2 - \frac{1}{x} \to 2$ et donc : $\lim_{X \to 2} \sqrt{X} = \sqrt{2}$.

2) Comparaison

Méthode: Calculer une limite par comparaison

Vidéo https://youtu.be/OAtkpYMdu7Y

Calculer: $\lim_{x \to +\infty} x + \sin x$

Correction

• $\lim_{x \to +\infty} \sin x$ n'existe pas.

Donc sous la forme donnée, la limite cherchée est indéterminée.

Levons l'indétermination :

- $-1 \le \sin x$, donc : $x 1 \le x + \sin x$.
- Or $\lim_{x\to +\infty} x-1=+\infty$, donc par comparaison :

$$\lim_{x \to +\infty} x + \sin x = +\infty$$

Par abus de langage, on pourrait dire que la fonction $x \mapsto x - 1$ pousse la fonction $x \mapsto x + \sin x$ vers $+\infty$ pour des valeurs de x suffisamment grandes.

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales