Zbigniew S. Szewczak Podstawy Systemów Operacyjnych

Wykład 3

Struktura systemu komputerowego

terminu egzaminu

- I termin
- wtorek, 14.06.11, g.10 (AULA)
- ♦ II termin
- poniedziałek, 19.09.11, g.10 (S9)

Struktura komputera

Struktura komputera

Magistrala systemowa

- System bus (ang.)
- Droga zapewniająca komunikację między (modułami): procesorem, pamięcią i wejściem-wyjściem
- Tryb rozgłaszania (ang. broadcast)
- 50 do 100 oddzielnych linii pogrupowanych w 8, 16, 32 linii zwanych szynami
 - linie danych do przenoszenia danych
 - ♦ np. szyna danych 8b a rozkaz 16b: 2 x transfer z pamięci
 - linie adresowe do określenia adresu danych
 - linie sterowania do sterowania liniami
 - linie zasilania

Magistrala systemowa (c.d.)

- Arbitraż (ang. bus arbitration)
 - sterownik magistrali (arbiter) jest odpowiedzialny za sposób wykorzystania magistrali
 - ♦ określa które urządzenie jest nadrzędne: procesor czy moduł we/wy

Taktowanie

- synchroniczne
 - ♦ linia zegarowa transmituje sekwencje 1-0 zwane cyklem magistrali
 - ♦ np. 200MHz zegar ma cykl długości 5ns (=5*10⁻⁹s)
 - przesunięcie względne sygnałów w magistrali (ang. bus skew) oznacza niejednakowe przybycie sygnału do celu na różnych liniach
- asynchroniczne
 - wystąpienie zdarzenia jest zależne jedynie od zdarzenia poprzedzającego
- http://en.wikipedia.org/wiki/System_bus
- http://en.wikipedia.org/wiki/Bus_%28computing%29

Schemat magistrali

Struktury wielomagistralowe

- Duża ilość modułów opóźnia działanie magistrali
 - * można zwiększać szybkość magistrali lub jej szerokość (z 32b na 64b)
 - jednak szybkość modułów (grafika, video) wzrasta bardziej
- Struktury wielomagistralowe o określonej hierarchii
 - ♦ lokalna magistrala: procesor <->pamięć podręczna
 - * magistrala systemowa: we/wy komunikując się z pamięcią główną poprzez interfejs szyny rozszerzenia (ang. expansion bus) nie ma wpływu na działanie procesora
 - * szyna rozszerzenia buforuje dane między magistralą systemową a sterownikami we/wy dołączonymi do szyny rozszerzenia (ang. expansion bus)

Przykład Pentium

- cache(L2), local bus, memory bus
 - ♦ PCI bridge chip: local, memory, szyna PCI
- ISA (ang. Industry Standard Architecture)
 - ❖ I/O bus: EIDE (ang. Enhanced Integrated Drive Electronics), ATA (ang. Advanced Technology Attachment) dyski 16,67MBps
- PCI (ang. Peripheral Component Interconnect)
 - SCSI (ang. Small Computer System Interface)
 - szybkie we/wy do 160MBps (dyski,..)
 - ♦ USB (ang. Universal Serial Bus)
 - wolne urządzenia we/wy do 1.5MBps, (mysz, skaner,..)
 - ◆ IEEE 1394 (FireWire) do 50MBps (multimedia)
 - ♦ 1024*768*3B = 2,25MB; 2.25MB*30 ekranów na s = 67,5MBps; 2 przesłania z dysku do pamięci i na ekran: razem 135MBps
 - sygnalizacja równoległa
- ◆ AGP (ang. Accelerated Graphics Port) grafika

Struktura magistralowa Pentium

Struktura komputera

Funkcje jednostki centralnej

- CPU = procesor = jednostka centralna
- Pobieranie rozkazów z pamięci
- Interpretowanie rozkazów
- Pobieranie danych (z pamięci lub we/wy)
- Przechowywanie danych w pamięci
- Przetwarzanie danych wykonywanie rozkazów
- Zapisywanie wyników (do pamięci lub na we/wy)

Schemat jednostki centralnej

Rejestry procesora

- licznik programu (PC) adres rozkazu do pobrania
- rejestr rozkazu (IR) kod rozkazu
- rejestr adresowy pamięci (MAR) adres lokacji
- rejestr buforowy pamięci (MBR) dane do/z pamięci
- rejestry PSW (ang. program status word) słowo stanu programu, informacje o stanie

PSW (bity, flagi)

- znak bit znaku ostatniej operacji
- zero wynik operacji = zero
- przeniesienie (ang. carry) przeniesienie w wielokrotnej precyzji
- równość (ang. equal) wynik porównania logicznego
- przepełnienie (ang. overflow)
- zezwolenie/blokowanie przerwań
- nadzorca tryb systemu lub tryb użytkownika

Procesory CISC i RISC

- CISC (ang. complex instruction set computer) procesor o złożonej liście rozkazów
 - ♦ złożona lista rozkazów = łatwiejsze programowanie
 - trudne do zbudowania
 - * rozkazy maszynowe realizowane są przez mikrozkazy
 - ♦ IBM360/370, VAX, Pentium (Intel), C25xx (router Cisco): M68360 (Motorola), 20MHz
- RISC (ang. reduced instruction set computer) procesor o zredukowanej liście rozkazów
 - prosta lista rozkazów = trudniejsze programowanie
 - * łatwe do zbudowania ale programy są dłuższe (ale pamięć tanieje)
 - ♦ SPARC, HP-PA, PowerPC, Athlon, C4500: MIPS R4600,100MHz
- http://bwrc.eecs.berkeley.edu/CIC/
- http://www.baznet.freeserve.co.uk/index.htm
- http://developer.intel.com/design/pentium/manuals/

Zegar

- Zegar układ wysyłający regularne impulsy o stałej szerokości i częstotliwości
 - http://en.wikipedia.org/wiki/Computer_clock
- Umożliwia kontrolę relacji czasowych w CPU
- Odstęp między dwoma impusami to cykl zegara (ang. clock cycle time)
 - ♦ zwykle 1MHz-3GHz
 - * za precyzję zegara odpowiada oscylator (rezonator) kwarcowy
 - http://en.wikipedia.org/wiki/Clock_rate
- W jednym cyklu zegara może być wykonywanych wiele rozkazów
 - * w podcyklach wyznaczonych przez przesunięte sygnały wtórne zegara
- Zegar może być użyty do generownia ciągów liczb (pseudo)losowych
 - http://en.wikipedia.org/wiki/Random_number_generator
- Zegar może być celem ataku z zewnątrz (ang. timing attack)
 - http://en.wikipedia.org/wiki/Clock_drift
- Sygnał z zegara może przybyć o różnych czasach do różnych celów
 - http://en.wikipedia.org/wiki/Clock skew

Jednostka sterująca

Mikrooperacje

- Komputer wykonuje programy
- Cykl pobierania i wykonania
- Każdy cykl jest złożony z mniejszych jednostek
 - dalsza dekompozycja rozkazu maszynowego
- Mikrooperacje (ang. micro-operations)
 - * każdy z podcykli (np. pobrania, adresowania pośredniego, wykonania, przerwania) obejmuje jedną lub więcej mikrooperacji
- Mikrooperacje są elementarnymi operacjami (ang. atomic operation) wykonywanymi przez CPU
- Czas cyklu procesora czas potrzebny do wykonania najkrótszej mikrooperacji
- Mikroprogramowanie koncepcja zaproponowana przez M. V. Wilkes'a (1951)
 - zastosowanie: IBM System/360 (1964)

μ**OP- mikrooperacje**

Intel Core i7

- Listopad 2008
- Cztery procesory x86 SMT
- Dedykowany L2, dzielony L3 cache (8MB)
- Spekulatywne wypełnianie cache'a (ang. speculative pre-fetch for caches) które mogą być wkrótce użyte
- Kontroler pamięci DDR3 na chipie
 - trzy kanały szerokości 8 B (szerkość szyny 192b) dające 32GB/s
 - * pozwala na wyeliminowanie FSB (ang. front side bus)
- QuickPath Interconnection (QPI)
 - łącze point-to-point do komunikowania się pomiędzy rdzeniami (zapewnia zgodność cache'a)
 - ♦ 6.4G transferów per second, 16b per transfer
 - komunikacja dwukierunkowa (ang. bidirectional)
 - ightharpoonup Przepustowość = 2*2*6.4GB=25.6GB/s

Intel Core i7 Diagram

Struktura komputera

Wejście/Wyjście

- Dlaczego nie łączy się urządzeń peryferyjnych bezpośrednio z magistralą systemową?
 - wielka różnorodność urządzeń we/wy
 - przesyłanie różnej ilości danych
 - ♦ z różną prędkością
 - ♦ w różnym formacie
 - urządzenia we/wy za wolne dla procesora i pamięci
- Potrzeba modułu we/wy
 - interfejs z procesorem i pamięcia przez magistralę
 - interfejs z urządzeniami peryferyjnymi

Model modułu we/wy

Kategorie wejścia/wyjścia

Rodzaje urządzeń we/wy

- przeznaczone do odczytu przez człowieka (np. monitor ekranowy, wydruk, dźwięk)
- przeznaczone do odczytu przez maszynę (np. dyski magnetyczne, taśmy, czujniki w robotach)
- *komunikacyjne (np. modem, karta sieciowa)

Funkcje modułu we/wy

- Sterowanie i taktowanie (zegar)
- Komunikacja z procesorem
- Komunikacja z urządzeniem
- Buforowanie danych
- Wykrywanie błędów

Funkcje modułu we/wy (c.d.)

Sterowanie i taktowanie (zegar), np.:

- procesor żąda statusu urządzenia we/wy
- moduł we/wy udziela odpowiedzi
- ♦ jeśli urządzenie jest gotowe procesor wydaje rozkaz
- moduł we/wy otrzymuje dane z urządzenia
- ♦ dane są przenoszone z modułu we/wy do procesora

Komunikacja z procesorem

- dekodowanie rozkazu przez moduł we/wy
- przesyłanie danych poprzez magistralę
- przesyłanie informacji o stanie modułu we/wy
- *rozpoznawanie adresu modułu we/wy

Funkcje modułu we/wy

Komunikacja z urządzeniem

- sygnały sterujące z modułu we/wy (np. ustaw głowicę dysku)
- sygnały stanu do modułu we/wy (np. ready, not-ready)
- dane do/z modułu we/wy
- dane specyficzne dla urządzenia do/z otoczenia

Buforowanie danych

dane są buforowane w module we/wy i wysyłane do urządzenia z prędkością stosowaną dla tego urządzenia

Wykrywanie błędów, np.:

❖ 7-bitowy kod ASCII, ósmy bit ustawiany w zależności od tego czy jest parzysta liczba jedynek czy nie

Struktura modułu we/wy

Rodzaje modułów we/wy

- Sterownik wejścia/wyjścia (urządzenia) prymitywny, wymaga szczegółowego sterowania
 - mikrokomputery, minikomputery
- Kanał (procesor) wejścia/wyjścia przejmuje większość obciążenia we/wy CPU, wysoki priorytet dojścia do procesora
 - * superkomputery, duże instalacje

Sposoby realizacji we/wy

- programowane dane są wymieniane między procesorem a modułem we/wy, procesor czeka na zakończenie operacji we/wy
- sterowane przerwaniami procesor wydaje operację we/wy i wykonuje dalsze rozkazy do momentu zakończenia operacji we/wy (przerwanie we/wy)
- bezpośredni dostęp do pamięci (ang. direct memory access - DMA) - moduł we/wy wymienia dane bezpośrednio z pamięcią bez udziału procesora

We/wy progamowane

We/wy sterowane przerwaniami

Bezpośredni dostęp do pamięci

Struktura komputera

Pamięć - lokalizacja, miara

- CPU
- wewnętrzna (główna)
- zewnętrzna (pomocnicza)
- komórka pamięci najmniejsza adresowalna jednostka pamięci – zwykle jeden bajt (=8b)
 - ♦ Burroughs B1700 1b; IBM 1130 16b; Honeywell 6180 36b
- słowo zgrupowane komórki
 - długość słowa 8, 16, 32, 64 bitów (b)
- pojemność pamięci mierzona w ilości słów (lub w bajtach)
 - CRAY C90 ma słowo 64b a liczba całkowita jest reprezentowana przez 46b

Pamięć - jednostka transferu

- pamięć wewnętrzna
 - zwykle szerokość szyny danych
- pamięć zewnętrzna
 - *zwykle bloki o wiele większe niż słowo
- jednostka adresowalna
 - najmniejsza ilość danych dająca się jednoznacznie zaadresować (zwykle słowo ale może być to klaster na dysku)
 - ♦ N = ilość adresowalnych jednostek; A = długość adresu
 - ♦ zależność: N = 2^A

Pamięć - metody dostępu (1)

- dostęp sekwencyjny (ang. sequential)
 - dostęp liniowy blok po bloku wprzód lub wtył
 - czas dostępu zależy od pozycji bloku względem pozycji bieżącej
 - np. taśmy
- dostęp bezpośredni (ang. direct)
 - * każdy blok ma unikalny adres
 - czas dostępu realizowany przez skok do najbliższego otoczenia i sekwencyjne przeszukiwanie
 - np. dysk magnetyczny

Mechanizm dysku

Pamięć - metody dostępu (2)

- dostęp swobodny (ang. random)
 - * każda adresowalna lokacja w pamięci ma unikatowy, fizycznie wbudowany mechanizm adresowania
 - * czas dostępu nie zależy od poprzednich operacji i jest stały
 - np. RAM
- dostęp skojarzeniowy (ang. associative)
 - dane są lokalizowane raczej na podstawie porównania z ich zawartością niż na podstawie adresu
 - * czas dostępu nie zależy od poprzednich operacji i jest stały
 - np. pamięć podręczna (ang. cache)

Pamięć - wydajność (definicje)

czas dostępu

- dostęp swobodny: czas niezbędny do zrealizowania operacji
- * dostęp nieswobodny : czas potrzebny na ustawienie głowicy

czas_cyklu pamięci

 czas dostępu + czas, który musi upłynąć aby mógła nastąpić kolejna operacja (zapis, odczyt)

szybkość transferu

- dostęp swobodny : 1/czas_cyklu
- dostęp nieswobodny : T_n = T_a + n/r
 - ♦ T_n śr. czas operacji na n-bitach;T_a = śr. czas dostępu
 - r szybkość transferu w b/sek (bps)

Pamięć - rodzaje fizyczne

- półprzewodnikowa (ang. semiconductor)
 - **♦** RAM
- magnetyczna
 - dysk & taśma
- magneto-optyczna
 - ◆ CD & DVD

Pamięć - własności fizyczne

- zanikanie, rozpad (ang. decay)
- ulotność (ang. volatility)
- wymazywalność (ang. erasable)
- zasilanie do utrzymania zawartości

Pamięć - organizacja

Naturalny porządek bitów w słowie

- ◆ Czy numerujemy od 0 czy od 1?
- Czy numerujemy bity od lewej do prawej czy odwrotnie?
- Czy numerujemy bajty w słowie od lewej do prawej czy odwrotnie?

Nie zawsze oczywisty

- ♦ Big-Endian, Little-Endian
 - problem transmisji jeśli jeden komputer jest grubokońcowy a drugi cienkokońcowy

Hierarchia pamięci

- Jak osiągnąć efektywność ze względu na koszt?
- rejestry
 - w CPU
- pamięć wewnętrzna lub główna
 - pamięć podręczna (cache) może być wiele poziomów
 - pamięć główna "RAM"
- pamięć zewnętrzna
 - dyskowa pamięć podręczna
 - pamięć dyskowa
 - pamięć taśmowa lub dysk optyczny

Hierarchia pamięci (c.d.)

- od góry do dołu:
 - malejący koszt na bit
 - rosnąca pojemność
 - rosnący czas dostępu
 - malejąca częstotliwość dostępu do pamięci przez procesor
- Metody programowe hierarchizacji z wykorzystaniem bufora dyskowego
 - grupowanie danych przez transfery większych ilości danych
 - czytanie danych z bufora a nie z dysku

Zasada lokalności odniesień

- zasada lokalności odniesień (ang. locality of reference) oznacza, że w czasie wykonania programu odwołania do danych i rozkazów mają tendencję do gromadzenia się
- przyczyna: programy zwykle zawierają tablice deklaracji zmiennych oraz stałych i wiele pętli iteracyjnych i podprogramów
 - lokalność przestrzenna grupowanie odniesień do tych samych miejsc w pamięci
 - * skłonność do sekwencyjnego sięgania po rozkazy lub dane (np. tablica)
 - ♦ lokalność czasowa skłonność do odwołań do ostatnio wykorzystywanych miejsc w pamięci (np. pętla iteracyjna)
- operacje na tablicach dostęp do zgrupowanych słów
- wykorzystanie zasady lokalności odniesień pozwala na zmniejszenie częstotliwości dostępu
- przykład: pamięć podręczna (ang. cache, fr. cacher) procesora

Pamięć podręczna a główna

- wydajność CPU a szybkość dostępu do pamięci
- mała (od 1kB do 512kB) szybka pamięć (droga)
- typowy współczynnik czasu dostępu 5:1
- wykorzystanie zasady lokalności odniesień

Pamięć podręczna - działanie

- Cache zawiera fragment pamięci głównej
- Procesor sprawdza czy aktualnie potrzebne do wykonania rozkazu słowo z pamięci jest w cache'u
 - ♦ jeśli nie, to blok pamięci o ustalonej liczbie K słów zawierający potrzebne słowo jest ściągnięty do pamięci podręcznej
- Cache zawiera znaczniki identyfikujące bloki pamięci głównej
- Zrealizowana po raz pierwszy w 1969 na komputerze IBM S/360 model 85

Pamięć podręczna (c.d.)

- rozmiar cache'u
 - mały cache poprawia wydajność
- rozmiar bloku (od 4B do 128B)
 - większy blok: większe prawdopodobieństwo, że słowo jest w cache'u (zasada lokalności)
 - zbyt duży blok: większe prawdopodobieństwo, że słowo jest w usuniętym bloku
- funkcja mapująca (ang. mapping function)
 - określa lokalizację bloku w cachu'u
 - przykład: 2b tag(znacznik), 6b adres
 - ♦ 01: 010000, 010001, 010010, 010011, 010100, 010101, 010110, 010111, 011000, 011001, 011010, 011011, 011100, 011111

Struktura pamięci głównej

podręcznej i

Mapowanie bezpośrednie

- Mapowanie bezpośrednie (ang. direct mapping)
- Każdy blok w pamięci głównej jest odwzorowywany na tylko jeden możliwy wiersz (ang. line) pamięci
 - * tzn. jeśli blok jest w cache'u to tylko w ściśle określonym miejscu
- Adres jest dzielony na dwie części
 - najmniej znaczących w-bitów identyfikuje jednoznacznie słowo (ang. word) lub bajt w pamięci
 - ♦ najbardziej znaczących s-bitów określa jeden z 2^s bloków pamięci
 - najbardziej znaczące bity są dzielone na pole wiersza złożone z r bitów oraz znacznik w postaci s-r bitów (najbardziej znacząca część)
- Wiersz
 - 0
 - **•** 1

Przypisane bloki w pamięci głównej

$$2^{r} - 1, 2*2^{r} - 1, 3*2^{r} - 1, 4*2^{r} - 1, \dots$$

Struktura adresu (mapowanie bezpośrednie)

Wiersz r	Słowo w
14	2
	Wiersz r 14

- ♦ Adres s+w=24 bitowy: 2^24 = 16MB
- Rozmiar cache'a: 64kB
 - ♦ cache mieści się w pamięci 16MB/64kB = 2^(s-r)=2^8 razy
- ♦ Rozmiar bloku w cache'u 4B
 - ♦ w=2 bitowy identyfikator słowa (jeden z 4 bajtów)
- ♦ s=22 bitowy identyfikator bloku: 16MB/4B = 4M = 2^22
 - ♦ 8 bitowy znacznik (=s-r=22-14)
 - ♦ r=14 bitowy wiersz: funkcja mapująca modulo m=2^r=2^14

Przykład 1

Mapowanie bezpośrednie

Tag		Line	Word
Main memory address =	8	14	2

Mapowanie bezpośrednie

- ◆ Długość adresu = (s + w) bitów
- Liczba adresowalnych jednostek = 2^(s+w) słów lub bajtów
- ◆ Rozmiar bloku = rozmiar wiersza = 2^w słów lub bajtów
- ♦ Liczba wierszy w cache'u = m = 2^r
- Liczba bloków w pamięci głównej = 2^(s+ w)/2^w = 2^s
- ◆ Rozmiar znacznika = (s r) bitów

Mapowanie bezpośrednie za & przeciw

- Proste
- **♦** Tanie

- Dla danego bloku istnieje stała lokalizacja w cache'u
 - ❖ Co się stanie jeśli w krótkiej pętli są odwołania do 2 bloków pamięci mapowanych na ten sam wiersz?

Mapowanie skojarzeniowe

- mapowanie skojarzeniowe (ang. associative mapping)
- Blok pamięci może zostać załadowany do dowolnego wiersza w cache'u
- Adres dzielimy na dwie części: znacznik i słowo
 - * znacznik jednoznacznie określa blok pamięci
- Aby stwierdzić czy blok jest w cache'u trzeba zbadać zgodność adresu ze znacznikiem każdego wiersza
- Kosztowana metoda zwłaszcza gdy rozmiar cache'a jest duży
 - konieczność równoległego badania znaczników wszystkich wierszy w pamięci podręcznej (złożone układy)

Struktura adresu (mapowanie skojarzeniowe)

Znacznik 22 bity

Słowo 2 bity

Wiersz

- 22 bitowy znacznik przechowywany wraz z każdym 32 bitowym (=4*8B) blokiem danych
- Porównanie pola znacznika adresu ze znacznikiem w cache'u dla stwierdzenia czy blok jest w cache'u
- Najmniej znaczące 2 bity adresu wyznaczają 16 bitowe słowo z 32 bitowego bloku danych
- np.

Adres	Znacznik	Dane	

 ♦ FFFFFC
 3FFFFF
 24682468
 3FFF

Przykład 2

Mapowanie skojarzeniowe

	Tag	Word
Main Memory Address =	22	2

Mapowanie skojarzeniowe

- ◆ Długość adresu = (s + w) bitów
- Liczba jednostek adresowalnych = 2^(s+w) słów lub bajtów
- ◆ Rozmiar bloku = rozmiar wiersza = 2^w słów lub bajtów
- ♦ Liczba bloków w pamięci = 2^(s+w)/2^w = 2^s
- Liczba wierszy w pamięci podręcznej = nieokreślona
- ◆ Rozmiar znacznika= s bitów

Mapowanie sekcyjnoskojarzeniowe

- k-drożne mapowanie sekcyjno-skojarzeniowe (ang. k-way set associative mapping)
- Cache jest dzielony na v sekcji (ang. sets)
- Każda sekcja składa się z k wierszy
- Dany blok B może zostać odwzorowany na dowolny wiersz jakiejś sekcji i
 - np. jeśli sekcja ma 2 wiersze
 - ◆ 2 sposoby mapowania (mapowanie dwudrożne)
 - blok może zostać umieszczony w jednym z dwu wierszy w jednej sekcji
 - np. jeśli adres sekcji jest 13 bitowy
 - ♦ określa się numer bloku w pamięci modulo 2¹³
 - bloki 000000, 008000, 018000,...., FF8000 są mapowane na tę samą sekcję 0

Struktura adresu (mapowanie sekcyjno-skojarzeniowe)

Znacznik 9b Sekcja 13b Słowo 2 bity

- mapowanie dwudrożne
- Za pomocą pola sekcji w adresie wybiera się sekcję w cache'u
- Następnie porównuje się pole znacznika aby określić czy blok jest cache'u
- Np.

Adres	Znacznik	Dane	Numer sekcji
♦ 167FFC	02C	12345678	1FFF
◆ FFFFFC	1FF	24682468	1FFF

	Tag	Set	Word
Main Memory Address =	9	13	2

k-drożne mapowanie sekcyjnoskojarzeniowe

- ◆ Długość adresu = (s + w) bitów
- Liczba jednostek adresowalnych = 2^(s+w) bajtów lub słów
- ♦ Rozmiar bloku = rozmiar wiersza = 2^w bajtów lub słów
- ♦ Liczba sekcji = v = 2^d
- \bullet Liczba bloków w pamięci = $2^(s+w)/2^w = 2^s$
- ♦ Liczba wierszy w sekcji = k
- ♦ Liczba wierszy w cache'u = k*v = k * 2^d
- ♦ Rozmiar znacznika = (s d) bitów

Pamięć podręczna (c.d.)

- algorytm zastępowania określa, który blok należy zastąpić
 - * mapowanie bezpośrednie nie ma wyboru
 - * mapowanie skojarzeniowe i sekcyjno-skojarzeniowe
 - ♦ least-recently-used (LRU) zastąp najdawniej użyty
 - ♦ first-in-first-out (FIFO) zastąp najstarszy
 - ♦ least-frequently-used (LFU) zastąp najmniej używany
 - random zastąp na "chybił-trafił" (tylko do testów porównawczych)
- polityka zapisywania (ang. write policy) zmieniony blok w cache'u musi zostać zapisywany w pamięci głównej
 - zapis jednoczesny (ang. write through)- za każdym razem kiedy blok w cache'u jest zmieniany jest też zmieniany w pamięci
 - zapis opóźniony (ang. write back) gdy jest blok jest zmieniany w cache'u ustawiany jest bit UPDATE skojarzony z danym wierszem i jeśli blok jest zastępowany to następuje aktualizacja pamięci
 - minimalizuje ilość operacji zapisywania (ok. 15% operacji dostępu do pamięci to zapis) ale pamięć główna może być nieaktualna (np. w połączeniu z DMA)

Pamięć podręczna - Intel

- ♦ 80386 brak,
- 80486 8kB cache (16B wiersz, 4-drożne mapowanie sekcyjno-skojarzeniowe)
- Pentium dwa L1 cache: 8kB dane i 8kB rozkazy
- ◆ Pentium III L3 poza chipem
- Pentium 4
 - ♦ L1 cache: 8kB
 - 4-drożne mapowanie sekcyjno-skojarzeniowe
 - wiersz: 64B
 - ♦ L2 cache: 256kB
 - wsparcie dla L1 cache'a
 - ♦ 8-drożne mapowanie sekcyjno-skojarzeniowe
 - wiersz: 128B
 - ♦ L3 cache na chipie

Pamięć półprzewodnikowa

- RAM (ang. Random Access Memory)
 - nazwa myląca bowiem wszystkie pamięci półprzewodnikowe mają dostęp swobodny
 - odczyt/zapis
 - * ulotna
 - sposób wymazywania: elektryczny
 - statyczna (ang. static) lub dynamiczna (ang. dynamic)
- DIMM (ang. dual in-line memory module) rodzaj pamięci RAM dla PC

Pamięć dynamiczna (DRAM)

- bity zapamiętane jak ładunki w kondensatorach
- rozładowywanie
- okresowe "odświeżanie ładunku"
- prosta budowa
- mała
- tania
- wolna
- asynchroniczna
- zastosowanie: pamięć główna

Przykład działania DRAM

- ♦ 16 Mb DRAM 4 bity czytane i pisane jednocześnie
- 4M 4-bitowych słów
- tablica: 2048 wierszy i 2048 kolumn
- ♦ linie adresowe A0-A10 (2^11=2048)
- 11 sygnałów określa adres wiersza lub kolumny
 - zmniejszenie liczby pinów
 - dodatkowy sygnał
 - wyboru wiersza RAS (ang. row address select)
 - wyboru kolumny CAS (ang. column address select)
- DRAM zablokowany podczas odświeżania
 - * wszystkie wiersze są okresowo odświeżane
- MUX pozwala na 4-krotne zwiększenie pamięci (jednoczesne użycie 4 układów)

Inne pamięci DRAM

- EDRAM (ang. Enhanced DRAM)- wzbogacona o pamięć podręczną statyczną RAM (16b)
- CDRAM (ang. Cache DRAM)- zawiera pamięć podręczną o 2Kb statycznej RAM
- SDRAM (ang. Synchronous DRAM) pamięć synchroniczna, transmisja do/z CPU pod kontrolą zewnętrznego zegara systemowego; bardzo wydajna przy dużych transferach (np. multimedia)
 - ♦ DDR (ang. double-data-rate SDRAM) ok. 3GBps
 - ♦ DDR2 (ang. quad-data-rate), XDR (ang. octal-data-rate)
 - ♦ http://www.simmtester.com/page/news/showpubnews.asp?num=109
- RDRAM (ang. Rambus DRAM) do 3.5GBps
 - http://www.rambus.com/
 - http://www.reed-electronics.com/electronicnews/article/CA501992.html

Pamięć statyczna (SRAM)

- bity przechowywane za pomocą przerzutników
- nie wymaga odświeżania
- bardziej złożona budowa
- większa
- droższa
- szybsza
- zastosowanie: pamięć podręczna
- przykład: CMOS (ang. complementary metaloxide-semiconductor) - zasilanie: bateria

Pamięć stała (ROM)

- ROM ang. read-only memory
- trwały wzór danych
- zastosowanie:
 - mikroprogramowanie
 - tablice funkcji
 - programy systemowe (BIOS, ang. Basic Input Output System - niskopoziomowe we/wy)
 - podprogramy biblioteczne dla często wywoływanych funkcji

Rodzaje pamięci ROM (1)

- zapisywana w trakcie produkcji
 - bardzo droga dla małych serii
- pamięć programowalna (PROM, ang. programmable)
 - do zapisu (tylko raz) wymagane jest specjalne urządzenie
- pamięć głównie do odczytu (ang. read-mostly memory)
 - optycznie wymazywalna programowalna pamięć stała (ang. Erasable Programmable (EPROM))
 - wymazywanie: naświetlanie promieniowaniem ultrafioletowym z układu znajdującego się w obudowie

Rodzaje pamięci ROM (2)

- pamięć głównie do odczytu (c.d.)
 - elektrycznie wymazywalna programowalna pamięć stała (ang. Electrically Erasable Programmable (EEPROM))
 - zapisywane są tylko bajty zaadresowane
 - ◆ zapisywanie trwa dłużej niż odczyt (kilka mikrosekund/B)
 - mniej gęsto upakowana niż EPROM
 - pamięć błyskawiczna (ang. Flash memory, Flash EEPROM)
 - ♦ wymazywanie elektryczne
 - nie umożliwia wymazywania na poziomie bajtu
 - ◆ szybsza niż EPROM
 - tańsza niż EEPROM
 - zastosowanie: BIOS, Cisco IOS, PenDrive= USB flash memory drive (ok. 8GB)
 - http://en.wikipedia.org/wiki/Flash_memory

Rodzaje pamięci półprzewodnikowych

rodzaj pamięci	kategoria	wymazywanie	sposób zapisu	ulotność
Pamięć o dostępie swobodnym (RAM)	odczyt-zapis	elektrycznie, na poziomie bajtu	elektryczny	ulotna
Pamięć stała (ROM)			maski	
Programowalna pamięć stała (PROM)	tylko odczyt	niemożliwe		
Wymazywalna PROM (EPROM)		światłem UV, na po- ziomie mikroukładu		nieulotna
Pamięć błyskawiczna (flash)	głównie odczyt	elektrycznie, na poziomie bloku	elektryczny	
Elektrycznie wyma- zywalna PROM (EEPROM)		elektrycznie, na poziomie bajtu		

Literatura

- W. Stallings Architektura i organizacja systemu komputerowego, WNT, 2000, 2003, 2004
 - http://williamstallings.com/COA5e.html
 - http://WilliamStallings.com/COA6e.html
 - http://williamstallings.com/COA/COA7e.html
- A. S. Tanenbaum, Strukturalna organizacja systemów komputerowych, Helion, 2006
- Wikipedia