# Precalculus Lecture 19

#### **Todor Miley**

https://github.com/tmilev/freecalc

2020

#### Outline

- The Definition of a Function
  - Function Domains
  - The Vertical Line Test
  - Piecewise Defined Functions
  - Zeros of a function
  - Symmetry
  - Increasing and Decreasing Functions

#### License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
   https://creativecommons.org/licenses/by/3.0/us/and the links therein



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

• Functions are also synonymously called "maps".



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

- Functions are also synonymously called "maps".
- In the picture above, f is represented via the arrows.



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

- Functions are also synonymously called "maps".
- In the picture above, f is represented via the arrows.

#### **Definition (Domain)**

The set *D* in the definition of *f* is called the domain of *f*.



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

#### Definition (Co-domain)

The set *E* in the definition of *f* is called the co-domain of *f*.



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

#### Definition (Value of f at x)

The number f(x) is called the value of f at x and is read "f of x".



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

#### Definition (Value of f at x)

The number f(x) is called the value of f at x and is read "f of x".

• The value of f at x is also called the image of x under the map f.



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

#### Definition (Value of f at x)

The number f(x) is called the value of f at x and is read "f of x".

- The value of f at x is also called the image of x under the map f.
- In the expression f(x), x is referred to as the *argument* of f.



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

#### Definition (Range)



 A function has domain D ⇒ there is exactly one arrow starting at each element of D.

# Definition (Function)

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

#### Definition (Range)



- A function has domain D ⇒ there is exactly one arrow starting at each element of D.
- An element of the co-domain can be at the tip of more than one arrow.

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

#### Definition (Range)



- A function has domain D ⇒ there is exactly one arrow starting at each element of D.
- An element of the co-domain can be at the tip of more than one arrow.
  - It is allowed to have an element in the co-domain without arrows pointing to it.

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

#### Definition (Range)



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

• Functions are also synonymously called "maps".



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

• Functions are also synonymously called "maps".

#### Definition (Domain)

The set *D* in the definition of *f* is called the domain of *f*.



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

#### Definition (Co-domain)

The set *E* in the definition of *f* is called the co-domain of *f*.



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

#### Definition (Value of *f* at *x*)

The number f(x) is called the value of f at x and is read "f of x".



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

#### Definition (Value of *f* at *x*)

The number f(x) is called the value of f at x and is read "f of x".

• The value of f at x is also called the image of x under the map f.



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

#### Definition (Value of *f* at *x*)

The number f(x) is called the value of f at x and is read "f of x".

• The value of f at x is also called the image of x under the map f.



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

#### Definition (Range)

• The notation f(x) for the image of x was introduced by Leonhard Euler.

- The notation f(x) for the image of x was introduced by Leonhard Euler.
- Expressions such as a(x + y) may either refer to

- The notation f(x) for the image of x was introduced by Leonhard Euler.
- Expressions such as a(x + y) may either refer to
  - the function a applied to the argument x + y or

- The notation f(x) for the image of x was introduced by Leonhard Euler.
- Expressions such as a(x + y) may either refer to
  - the function a applied to the argument x + y or
  - the number a multiplied by x + y.

- The notation f(x) for the image of x was introduced by Leonhard Euler.
- Expressions such as a(x + y) may either refer to
  - the function a applied to the argument x + y or
  - the number a multiplied by x + y.
- Which of the two cases is at hand should be clarified with English language.

- The notation f(x) for the image of x was introduced by Leonhard Euler.
- Expressions such as a(x + y) may either refer to
  - the function a applied to the argument x + y or
  - the number a multiplied by x + y.
- Which of the two cases is at hand should be clarified with English language.
- However if no such clarification is present (as often is the case in mathematical exercises/tests), the matter is up to the reader's intelligent interpretation.

$$f(x)=2x^2+x+1.$$

 When we want to define a function f whose domain (input) is a number, we often use algebraic formulas, for example:

$$f(x)=2x^2+x+1.$$

• In the notation above, *x* is an independent, bounded (dummy, placeholder) variable - it denotes a substitution pattern.

$$f(x)=2x^2+x+1.$$

- In the notation above, *x* is an independent, bounded (dummy, placeholder) variable it denotes a substitution pattern.
- We could think of x as a placeholder instead of  $f(x) = 2x^2 + x + 1$  we could write  $f(\square) = 2\square^2 + \square + 1$ .

$$f(x) = 2x^2 + x + 1.$$

- In the notation above, *x* is an independent, bounded (dummy, placeholder) variable it denotes a substitution pattern.
- We could think of x as a placeholder instead of  $f(x) = 2x^2 + x + 1$  we could write  $f(\square) = 2\square^2 + \square + 1$ .
- Here,  $\square$  denotes our ability to substitute  $f(\square)$  by  $2\square^2 + \square + 1$ .

$$f(x)=2x^2+x+1.$$

- In the notation above, *x* is an independent, bounded (dummy, placeholder) variable it denotes a substitution pattern.
- We could think of x as a placeholder instead of  $f(x) = 2x^2 + x + 1$  we could write  $f(\square) = 2\square^2 + \square + 1$ .
- Here,  $\square$  denotes our ability to substitute  $f(\square)$  by  $2\square^2 + \square + 1$ .
- For example  $f(1) = 2 \cdot 1^2 + 1 + 1$ .

$$f(x)=2x^2+x+1.$$

- In the notation above, *x* is an independent, bounded (dummy, placeholder) variable it denotes a substitution pattern.
- We could think of x as a placeholder instead of  $f(x) = 2x^2 + x + 1$  we could write  $f(\Box) = 2\Box^2 + \Box + 1$ .
- Here,  $\square$  denotes our ability to substitute  $f(\square)$  by  $2\square^2 + \square + 1$ .
- For example  $f(1) = 2 \cdot 1^2 + 1 + 1$ .
- The word independent refers to the fact that x is no relation with any of the other variables in the text.

$$f(x)=2x^2+x+1.$$

- In the notation above, x is an independent, bounded (dummy, placeholder) variable - it denotes a substitution pattern.
- Another example is  $f(x^2) = 2(x^2)^2 + x^2 + 1$ .

$$f(x)=2x^2+x+1.$$

- In the notation above, *x* is an independent, bounded (dummy, placeholder) variable it denotes a substitution pattern.
- Another example is  $f(x^2) = 2(x^2)^2 + x^2 + 1$ .
- This example illustrates the meaning of the word bounded (dummy, placeholder):

$$f(x)=2x^2+x+1.$$

- In the notation above, *x* is an independent, bounded (dummy, placeholder) variable it denotes a substitution pattern.
- Another example is  $f(x^2) = 2(x^2)^2 + x^2 + 1$ .
- This example illustrates the meaning of the word bounded (dummy, placeholder): the dummy variable x is only a convenient placeholder label,

$$f(x)=2x^2+x+1.$$

- In the notation above, *x* is an independent, bounded (dummy, placeholder) variable it denotes a substitution pattern.
- Another example is  $f(x^2) = 2(x^2)^2 + x^2 + 1$ .
- This example illustrates the meaning of the word bounded (dummy, placeholder): the dummy variable x is only a convenient placeholder label, and is a distinct mathematical object from the variable x which has meaning outside of the expression  $f(x^2)$ .

$$f(x)=2x^2+x+1.$$

- In the notation above, *x* is an independent, bounded (dummy, placeholder) variable it denotes a substitution pattern.
- Another example is  $f(x^2) = 2(x^2)^2 + x^2 + 1$ .
- This example illustrates the meaning of the word bounded (dummy, placeholder): the dummy variable x is only a convenient placeholder label, and is a distinct mathematical object from the variable x which has meaning outside of the expression  $f(x^2)$ .
- If we omit the clarification colors, it is no longer clear whether f(x) refers to the defining expression for f(x),

$$f(x)=2x^2+x+1.$$

- In the notation above, *x* is an independent, bounded (dummy, placeholder) variable it denotes a substitution pattern.
- Another example is  $f(x^2) = 2(x^2)^2 + x^2 + 1$ .
- This example illustrates the meaning of the word bounded (dummy, placeholder): the dummy variable x is only a convenient placeholder label, and is a distinct mathematical object from the variable x which has meaning outside of the expression  $f(x^2)$ .
- If we omit the clarification colors, it is no longer clear whether f(x) refers to the defining expression for f(x), or to an expression f(x) where x has meaning outside of the definition of f.

$$f(x)=2x^2+x+1.$$

- In the notation above, *x* is an independent, bounded (dummy, placeholder) variable it denotes a substitution pattern.
- Another example is  $f(x^2) = 2(x^2)^2 + x^2 + 1$ .
- This example illustrates the meaning of the word bounded (dummy, placeholder): the dummy variable x is only a convenient placeholder label, and is a distinct mathematical object from the variable x which has meaning outside of the expression  $f(x^2)$ .
- If we omit the clarification colors, it is no longer clear whether f(x) refers to the defining expression for f(x), or to an expression f(x) where x has meaning outside of the definition of f.
- Computer algebra systems will "keep track of the colors" and will not confuse the dummy *x* with the non-dummy variable *x*.

$$f(x)=2x^2+x+1.$$

- In the notation above, *x* is an independent, bounded (dummy, placeholder) variable it denotes a substitution pattern.
- Another example is  $f(x^2) = 2(x^2)^2 + x^2 + 1$ .
- Computer algebra systems will "keep track of the colors" and will not confuse the dummy x with the non-dummy variable x.

$$f(x)=2x^2+x+1.$$

- In the notation above, *x* is an independent, bounded (dummy, placeholder) variable it denotes a substitution pattern.
- Another example is  $f(x^2) = 2(x^2)^2 + x^2 + 1$ .
- Computer algebra systems will "keep track of the colors" and will not confuse the dummy *x* with the non-dummy variable *x*.
- For humans however the danger of confusion is real.

$$f(x)=2x^2+x+1.$$

- In the notation above, *x* is an independent, bounded (dummy, placeholder) variable it denotes a substitution pattern.
- Another example is  $f(x^2) = 2(x^2)^2 + x^2 + 1$ .
- Computer algebra systems will "keep track of the colors" and will not confuse the dummy *x* with the non-dummy variable *x*.
- For humans however the danger of confusion is real.
- In case of human confusion, clarification should be sought through renaming variables, as illustrated above.

$$f(t)=2t^2+t+1.$$

- In the notation above, *x* is an independent, bounded (dummy, placeholder) variable it denotes a substitution pattern.
- Another example is  $f(x^2) = 2(x^2)^2 + x^2 + 1$ .
- Computer algebra systems will "keep track of the colors" and will not confuse the dummy *x* with the non-dummy variable *x*.
- For humans however the danger of confusion is real.
- In case of human confusion, clarification should be sought through renaming variables, as illustrated above.

$$f(t)=2t^2+t+1.$$

- In the notation above, *x* is an independent, bounded (dummy, placeholder) variable it denotes a substitution pattern.
- Another example is  $f(x^2) = 2(x^2)^2 + x^2 + 1$ .
- Computer algebra systems will "keep track of the colors" and will not confuse the dummy *x* with the non-dummy variable *x*.
- For humans however the danger of confusion is real.
- In case of human confusion, clarification should be sought through renaming variables, as illustrated above.
- The relabeling of the dummy variable to t removes any confusion about the meaning of  $f(x^2)$ .

$$f(t)=2t^2+t+1.$$

- In the notation above, x is an independent, bounded (dummy, placeholder) variable - it denotes a substitution pattern.
- Another example is  $f(x^2) = 2(x^2)^2 + x^2 + 1$ .
- Computer algebra systems will "keep track of the colors" and will not confuse the dummy x with the non-dummy variable x.
- For humans however the danger of confusion is real.
- In case of human confusion, clarification should be sought through renaming variables, as illustrated above.
- The relabeling of the dummy variable to t removes any confusion about the meaning of  $f(x^2)$ .
- In computer programming, the issues described here are addressed via "variable scope rules".

$$\frac{f(2+h)-f(2)}{h} =$$

$$\frac{f(2+h)-f(2)}{h} = \frac{((2+h)^2-(2+h)-1)-(2^2-2-1)}{h}$$

$$= \frac{?}{h}$$

$$\frac{f(2+h)-f(2)}{h} = \frac{\left((2+h)^2-(2+h)-1\right)-(2^2-2-1)}{h}$$
$$= \frac{2^2+2\cdot 2h+h^2-2-h-1-2^2+2+1}{h}$$

$$\frac{f(2+h)-f(2)}{h} = \frac{((2+h)^2-(2+h)-1)-(2^2-2-1)}{h}$$
$$= \frac{2^2+2\cdot 2h+h^2-2-h-1-2^2+2+1}{h}$$

$$\frac{f(2+h)-f(2)}{h} = \frac{((2+h)^2-(2+h)-1)-(2^2-2-1)}{h}$$
$$= \frac{2^2+2\cdot 2h+h^2-2-h-1-2^2+2+1}{h}$$

$$\frac{f(2+h)-f(2)}{h} = \frac{((2+h)^2-(2+h)-1)-(2^2-2-1)}{h}$$

$$= \frac{2^{2}+2\cdot 2h+h^2-2-h-1-2^2+2+1}{h}$$

$$\frac{f(2+h)-f(2)}{h} = \frac{((2+h)^2-(2+h)-1)-(2^2-2-1)}{h}$$

$$= \frac{2^{2}+2\cdot 2h+h^2-2-h-x-2^{2}+2+x}{h}$$

$$= \frac{h^2+3h}{h}$$

$$\frac{f(2+h) - f(2)}{h} = \frac{((2+h)^2 - (2+h) - 1) - (2^2 - 2 - 1)}{h}$$

$$= \frac{2^{2} + 2 \cdot 2h + h^2 - 2 - h - 1 - 2^{2} + 2 + 1}{h}$$

$$= \frac{h^2 + 3h}{h}$$

$$= \frac{h(h+3)}{h}$$

$$\frac{f(2+h)-f(2)}{h} = \frac{((2+h)^2 - (2+h)-1) - (2^2 - 2 - 1)}{h}$$

$$= \frac{2^{2} + 2 \cdot 2h + h^2 - 2 - h - 1 - 2^{2} + 2 + 1}{h}$$

$$= \frac{h^2 + 3h}{h}$$

$$= \frac{h(h+3)}{h}$$

$$= h+3$$

If the domain of a function isn't specified, it is implied to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

Todor Milev Lecture 19 2020

If the domain of a function isn't specified, it is implied to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

• Can't divide by 0.

If the domain of a function isn't specified, it is implied to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

- Can't divide by 0.
- Even roots of a negative number are not defined in this course  $(\sqrt{-1}, \sqrt[4]{-2053}, \sqrt[6]{-15}...$  not allowed).

If the domain of a function isn't specified, it is implied to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

- Can't divide by 0.
- Even roots of a negative number are not defined in this course  $(\sqrt{-1}, \sqrt[4]{-2053}, \sqrt[6]{-15}...$  not allowed).
- Taking  $\log x$  if  $x \le 0$  is not allowed in this course; taking  $\log 0$  is not allowed in any course.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

Find the implied domains of the given functions.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

• Any risk of dividing by 0?

Find the implied domains of the given functions.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

• Any risk of dividing by 0? No.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number?

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$x - 2 > 0$$

Find the implied domains of the given functions.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$x-2 \geq 0$$
  
 $x > 2$ 

Find the implied domains of the given functions.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$x-2 \geq 0$$
  
 $x > 2$ 

Find the implied domains of the given functions.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$x-2 \geq 0$$
  
 $x > 2$ 

Domain is all real numbers greater than or equal to 2; that is,  $[2, \infty)$ .

• Any risk of dividing by 0?

Find the implied domains of the given functions.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$x-2 \geq 0$$
  
 $x > 2$ 

Domain is all real numbers greater than or equal to 2; that is,  $[2, \infty)$ .

Any risk of dividing by 0? Yes.

Find the implied domains of the given functions.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$egin{array}{ccc} x-2 & \geq & 0 \ x & > & 2 \end{array}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.Any risk of taking the even root
- Any risk of taking the even root of a negative number?

Find the implied domains of the given functions.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$egin{array}{ccc} x-2 & \geq & 0 \ x & > & 2 \end{array}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.

Find the implied domains of the given functions.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$x-2 \geq 0$$
  
 $x > 2$ 

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.
- $x^2 x 6$  must not equal 0.

Find the implied domains of the given functions.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$x-2 \geq 0$$
  
 $x > 2$ 

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.
- $x^2 x 6$  must not equal 0.

$$x^2 - x - 6 \neq 0$$

Find the implied domains of the given functions.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$x-2 \geq 0$$
  
 $x > 2$ 

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.
- $x^2 x 6$  must not equal 0.

$$x^2 - x - 6 \neq 0$$

$$(x-3)(x+2) \neq 0$$

Find the implied domains of the given functions.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$x-2 \geq 0$$
  
 $x > 2$ 

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.
- $x^2 x 6$  must not equal 0.

$$x^{2}-x-6 \neq 0$$

$$(x-3)(x+2) \neq 0$$

$$x \neq 3 \text{ or } -2$$

Find the implied domains of the given functions.

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$x-2 \geq 0$$
  
 $x \geq 2$ 

Domain is all real numbers greater than or equal to 2; that is,  $[2, \infty)$ .

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.
- $x^2 x 6$  must not equal 0.

$$x^{2}-x-6 \neq 0$$

$$(x-3)(x+2) \neq 0$$

$$x \neq 3 \text{ or } -2$$

Domain is all real numbers except 3 and -2; that is,  $(-\infty, -2) \cup (-2, 3) \cup (3, \infty)$ .

## Question

Given a curve in the plane, is it the graph of a function or not?



#### Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

# Proposition (The Vertical Line Test)

A curve in the plane is the graph of a function if and only if no vertical line intersects it more than once.



#### Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

# Proposition (The Vertical Line Test)



#### Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

## Proposition (The Vertical Line Test)

A curve in the plane is the graph of a function if and only if no vertical line intersects it more than once.



#### Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

# Proposition (The Vertical Line Test)

A curve in the plane is the graph of a function if and only if no vertical line intersects it more than once.



#### Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

# Proposition (The Vertical Line Test)



#### Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

# Proposition (The Vertical Line Test)



#### Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

## Proposition (The Vertical Line Test)



## Piecewise Defined Functions

# **Definition (Piecewise Defined Function)**

A piecewise defined function is a function that is defined by different algebraic formulas on different subsets of its domain.

## Piecewise Defined Functions

## **Definition (Piecewise Defined Function)**

A piecewise defined function is a function that is defined by different algebraic formulas on different subsets of its domain.

## Example



$$f(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$

The filled red circle means (0, 1) is on the curve.

The open circle means (0, -1) is not on the curve.

The absolute value |x| of a number a is defined to be

$$|x| = \left\{ \begin{array}{ccc} x & \text{if} & x \geq 0 \\ -x & \text{if} & x < 0. \end{array} \right.$$

Sketch a graph of the function f(x) = |x|.



The absolute value |x| of a number a is defined to be

$$|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0. \end{cases}$$

Sketch a graph of the function f(x) = |x|.



The absolute value |x| of a number a is defined to be

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

Sketch a graph of the function f(x) = |x|.



The absolute value |x| of a number a is defined to be

$$|x| = \left\{ \begin{array}{ccc} x & \text{if} & x \geq 0 \\ -x & \text{if} & x < 0. \end{array} \right.$$

Sketch a graph of the function f(x) = |x|.



The absolute value |x| of a number a is defined to be

$$|x| = \left\{ \begin{array}{ccc} x & \text{if} & x \geq 0 \\ -x & \text{if} & x < 0. \end{array} \right.$$

Sketch a graph of the function f(x) = |x|.



Find a formula for the function *f* whose graph is given below.



Find a formula for the function *f* whose graph is given below.



Different formulas on [0, 1), [1, 2), and [2, 5).

Find a formula for the function *f* whose graph is given below.



Different formulas on [0, 1), [1, 2), and [2, 5).

$$f(x) = \begin{cases} & \text{if } 0 \leq x < 1 \\ & \text{if } 1 \leq x < 2 \\ & \text{if } 2 \leq x < 5 \end{cases}$$

Find a formula for the function *f* whose graph is given below.



Different formulas on [0, 1), [1, 2), and [2, 5).

$$f(x) = \begin{cases} f(x) = \begin{cases} f(x) & \text{if } 0 \le x < 1 \\ f(x) & \text{if } 1 \le x < 2 \\ f(x) & \text{if } 2 \le x < 5 \end{cases}$$

Find a formula for the function f whose graph is given below.



Different formulas on [0, 1), [1, 2), and [2, 5).

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ & \text{if } 1 \le x < 2 \\ & \text{if } 2 \le x < 5 \end{cases}$$

Find a formula for the function *f* whose graph is given below.



Different formulas on [0, 1), [1, 2), and [2, 5).

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ ? & \text{if } 1 \le x < 2 \\ \text{if } 2 \le x < 5 \end{cases}$$

Find a formula for the function f whose graph is given below.



Different formulas on [0, 1), [1, 2), and [2, 5).

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ 2 - x & \text{if } 1 \le x < 2 \\ & \text{if } 2 \le x < 5 \end{cases}$$

Find a formula for the function *f* whose graph is given below.



Different formulas on [0, 1), [1, 2), and [2, 5).

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ 2 - x & \text{if } 1 \le x < 2 \\ ? & \text{if } 2 \le x < 5 \end{cases}$$

Find a formula for the function *f* whose graph is given below.



Different formulas on [0, 1), [1, 2), and [2, 5).

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ 2 - x & \text{if } 1 \le x < 2 \\ 0 & \text{if } 2 \le x < 5 \end{cases}$$

Sketch the function f(x) = |2x - 3|.



Sketch the function f(x) = |2x - 3|.



$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

Sketch the function f(x) = |2x - 3|.



$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0 \\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$

Sketch the function f(x) = |2x - 3|.



$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0 \\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } 2x \ge 3 \\ -2x + 3 & \text{if } 2x < 3 \end{cases}$$

Sketch the function f(x) = |2x - 3|.



$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0 \\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } 2x \ge 3 \\ -2x + 3 & \text{if } 2x < 3 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } x \ge 3/2 \\ -2x + 3 & \text{if } x < 3/2. \end{cases}$$

Sketch the function f(x) = |2x - 3|.



$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0 \\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } 2x \ge 3 \\ -2x + 3 & \text{if } 2x < 3 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } x \ge 3/2 \\ -2x + 3 & \text{if } x < 3/2. \end{cases}$$

Sketch the function f(x) = |2x - 3|.



$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0 \\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } 2x \ge 3 \\ -2x + 3 & \text{if } 2x < 3 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } x \ge 3/2 \\ -2x + 3 & \text{if } x < 3/2. \end{cases}$$

Sketch the function  $f(x) = \frac{|4x + 2|}{2x + 1}$ 



Sketch the function 
$$f(x) = \frac{|4x+2|}{2x+1}$$
.



$$|u| = \begin{cases} u & \text{if } u \ge 0 \\ -u & \text{if } u < 0. \end{cases}$$

Sketch the function 
$$f(x) = \frac{|4x+2|}{2x+1}$$
.



#### **Definition**

The zeros of a function f are the values of the argument x for which f(x) = 0.

#### Observation

The zeros of a function are the x-coordinates of the x intercepts of the graph of the function.





Find the zeroes of 
$$f(x) = \frac{1}{6}x^3 + \frac{1}{6}x^2 - x.$$



Find the zeroes of 
$$f(x) = \frac{1}{6}x^3 + \frac{1}{6}x^2 - x.$$

• Find when f(x) = g(x), where

$$f(x) = \frac{1}{6}x^3 + \frac{1}{6}x^2$$
  $g(x) = x$ 

• Find the intersections of the graphs of f and g.



#### Observation

 To solve f(x) = g(x) means to find the x coordinates of the intersections of the graphs of f and g.



#### Observation

 To solve f(x) = g(x) means to find the x coordinates of the intersections of the graphs of f and g.



#### Observation

• To solve f(x) = g(x) means to find the x coordinates of the intersections of the graphs of f and g.



### Observation

 To solve f(x) = g(x) means to find the x coordinates of the intersections of the graphs of f and g.



#### Observation

 To solve f(x) = g(x) means to find the x coordinates of the intersections of the graphs of f and g.



#### Observation

- To solve f(x) = g(x) means to find the x coordinates of the intersections of the graphs of f and g.
- To solve f(x) = g(x) is equivalent to solving the equation f(x) g(x) = 0.



#### Observation

- To solve f(x) = g(x) means to find the x coordinates of the intersections of the graphs of f and g.
- To solve f(x) = g(x) is equivalent to solving the equation f(x) - g(x) = 0.
- To solve f(x) = g(x) means to find the zeroes of f(x) g(x).



## Observation

Zeros of a function

- To solve f(x) = g(x) means to find the x coordinates of the intersections of the graphs of f and g.
- To solve f(x) = g(x) is equivalent to solving the equation f(x) - g(x) = 0.
- To solve f(x) = g(x) means to find the zeroes of f(x) g(x).



#### Observation

Zeros of a function

- To solve f(x) = g(x) means to find the x coordinates of the intersections of the graphs of f and g.
- To solve f(x) = g(x) is equivalent to solving the equation f(x) - g(x) = 0.
- To solve f(x) = g(x) means to find the zeroes of f(x) g(x).



### Observation

- To solve f(x) = g(x) means to find the x coordinates of the intersections of the graphs of f and g.
- To solve f(x) = g(x) is equivalent to solving the equation f(x) - g(x) = 0.
- To solve f(x) = g(x) means to find the zeroes of f(x) g(x).
- The x coordinates of the intersections of f(x) and g(x) coincide with the x coordinates of the x intercepts of f(x) - g(x).

# Definition (Even and Odd Functions)

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

# Definition (Even and Odd Functions)

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

# Example ( $x^2$ is Even, $x^3$ is Odd)

The function  $f(x) = x^2$  is even:

The function  $g(x) = x^3$  is odd:

## Definition (Even and Odd Functions)

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

# Example ( $x^2$ is Even, $x^3$ is Odd)

The function  $f(x) = x^2$  is even:

$$f(-x) = (-x)^2 = x^2 = f(x).$$

The function  $g(x) = x^3$  is odd:

## Definition (Even and Odd Functions)

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

# Example ( $x^2$ is Even, $x^3$ is Odd)

The function  $f(x) = x^2$  is even:

$$f(-x) = (-x)^2 = x^2 = f(x).$$

The function  $g(x) = x^3$  is odd:

$$g(-x) = (-x)^3 = -x^3 = -g(x).$$

## Definition (Even and Odd Functions)

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

# Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$

$$g(x) = 1 - x^4$$

$$h(x)=2x-1$$

## Definition (Even and Odd Functions)

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

## Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
  $g(x) = 1 - x^4$   $h(x) = 2x - 1$   
 $f(-x) = q(-x) = h(-x) =$ 

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

## Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
  $g(x) = 1 - x^4$   $h(x) = 2x - 1$   
 $f(-x) = (-x)^5 + (-x)$   $g(-x) =$   $h(-x) =$ 

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

## Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
  $g(x) = 1 - x^4$   $h(x) = 2x - 1$   
 $f(-x) = (-x)^5 + (-x)$   $g(-x) = h(-x) = 0$ 

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

## Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
  $g(x) = 1 - x^4$   $h(x) = 2x - 1$   
 $f(-x) = (-x)^5 + (-x)$   $g(-x) = h(-x) = 0$   
 $= -x^5 - x$   
 $= -(x^5 + x)$ 

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

## Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = h(-x) =$$

$$= -x^{5} - x$$

$$= -(x^{5} + x)$$

$$= -f(x)$$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

## Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
  $g(x) = 1 - x^4$   $h(x) = 2x - 1$   
 $f(-x) = (-x)^5 + (-x)$   $g(-x) =$   $h(-x) =$   
 $= -x^5 - x$   
 $= -(x^5 + x)$   
 $= -f(x)$ 

Therefore *f* is odd.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

## Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = 1 - (-x)^{4} h(-x) =$$

$$= -x^{5} - x$$

$$= -(x^{5} + x)$$

$$= -f(x)$$

Therefore *f* is odd.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

#### Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = 1 - (-x)^{4} h(-x) =$$

$$= -x^{5} - x = 1 - x^{4}$$

$$= -(x^{5} + x)$$

$$= -f(x)$$

Therefore *f* is odd.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

## Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = 1 - (-x)^{4} h(-x) =$$

$$= -x^{5} - x = 1 - x^{4}$$

$$= -(x^{5} + x) = g(x)$$

$$= -f(x)$$

Therefore *f* is odd.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

#### Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
  $g(x) = 1 - x^4$   $h(x) = 2x - 1$   
 $f(-x) = (-x)^5 + (-x)$   $g(-x) = 1 - (-x)^4$   $h(-x) =$   
 $= -x^5 - x$   $= 1 - x^4$   
 $= -(x^5 + x)$   $= g(x)$   
 $= -f(x)$  Therefore  $g$  is even.

Therefore *f* is odd.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

## Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
  $g(x) = 1 - x^4$   $h(x) = 2x - 1$   
 $f(-x) = (-x)^5 + (-x)$   $g(-x) = 1 - (-x)^4$   $h(-x) = 2(-x) - 1$   
 $= -x^5 - x$   $= 1 - x^4$   
 $= -(x^5 + x)$   $= g(x)$   
 $= -f(x)$  Therefore  $g$  is even.

Therefore *f* is odd.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

## Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
  $g(x) = 1 - x^4$   $h(x) = 2x - 1$   
 $f(-x) = (-x)^5 + (-x)$   $g(-x) = 1 - (-x)^4$   $h(-x) = 2(-x) - 1$   
 $= -x^5 - x$   $= 1 - x^4$   $= -2x - 1$   
 $= -(x^5 + x)$   $= g(x)$   
 $= -f(x)$  Therefore  $g$  is even.

Therefore *f* is odd.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

## Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
  $g(x) = 1 - x^4$   $h(x) = 2x - 1$   
 $f(-x) = (-x)^5 + (-x)$   $g(-x) = 1 - (-x)^4$   $h(-x) = 2(-x) - 1$   
 $= -x^5 - x$   $= 1 - x^4$   $= -2x - 1$   
 $= -(x^5 + x)$   $= g(x)$   $\neq h(x), -h(x)$   
 $= -f(x)$  Therefore  $g$  is even.

Therefore *f* is odd.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

#### Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = 1 - (-x)^{4} h(-x) = 2(-x) - 1$$

$$= -x^{5} - x = 1 - x^{4} = -2x - 1$$

$$= -(x^{5} + x) = g(x) \neq h(x), -h(x)$$

$$= -f(x) Therefore a is even. Therefore h is neither.$$

Therefore *g* is even.

Therefore *f* is odd.

Therefore *h* is neither even nor odd.

# Definition (Increasing and Decreasing Functions)

A function f is called increasing on an interval I if  $f(x_1) < f(x_2)$  whenever  $x_1 < x_2$  in I.

It is called decreasing on the interval I if  $f(x_1) > f(x_2)$  whenever  $x_1 < x_2$  in I.

# Definition (Increasing and Decreasing Functions)

A function f is called increasing on an interval I if  $f(x_1) < f(x_2)$  whenever  $x_1 < x_2$  in I.

It is called decreasing on the interval I if  $f(x_1) > f(x_2)$  whenever  $x_1 < x_2$  in I.

# Example (Increasing and Decreasing)



# Definition (Increasing and Decreasing Functions)

A function f is called increasing on an interval I if  $f(x_1) < f(x_2)$  whenever  $x_1 < x_2$  in I.

It is called decreasing on the interval I if  $f(x_1) > f(x_2)$  whenever  $x_1 < x_2$  in I.

# Example (Increasing and Decreasing)



• f is increasing on  $[-1, -\frac{1}{2}]$ .

# Definition (Increasing and Decreasing Functions)

A function f is called increasing on an interval I if  $f(x_1) < f(x_2)$  whenever  $x_1 < x_2$  in I.

It is called decreasing on the interval I if  $f(x_1) > f(x_2)$  whenever  $x_1 < x_2$  in I.

# Example (Increasing and Decreasing)



- f is increasing on  $[-1, -\frac{1}{2}]$ .
- f is decreasing on  $\left[-\frac{1}{2}, \frac{1}{2}\right]$ .

# Definition (Increasing and Decreasing Functions)

A function f is called increasing on an interval I if  $f(x_1) < f(x_2)$  whenever  $x_1 < x_2$  in I.

It is called decreasing on the interval I if  $f(x_1) > f(x_2)$  whenever  $x_1 < x_2$  in I.

# Example (Increasing and Decreasing)



- f is increasing on  $[-1, -\frac{1}{2}]$ .
- f is decreasing on  $\left[-\frac{1}{2}, \frac{1}{2}\right]$ .
- f is increasing on  $[\frac{1}{2}, 1]$ .