CMIP6 Model Documentation

Institute: NOAA-GFDL GFDL-CM4C192

Topic: atmos

Doc. Generated: 2020-04-08
Doc. Seeded From: Spreadsheet

Specialization Version: 1.1.0

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	7
3	Dynamical Core	9
4	Radiation	14
5	Turbulence Convection	27
6	Microphysics Precipitation	31
7	Cloud Scheme	33
8	Observation Simulation	37
9	Gravity Waves	40
10	Natural Forcing	44

1 Key Properties

Atmosphere key properties

1.1.1 Top level properties

Atmosphere key properties

1.1.1.1 Name *

Name of atmos model code

GFDL AM4.0.1

1.1.1.2 Keywords *

Keywords associated with atmos model code

AMIP, prescribed SST and sea-ice concentration, atmosphere-land-vegetation coupled model

1.1.1.3 Overview *

Overview of atmos model.

GFDL Atmosphere Model (version 4.0.1) is the Atmosphere and Land component of GFDL coupled model CM4.0 for use in CMIP6. The Atmospheric component is identifical to the AM4.0 model documented in Zhao et. al (2018a, 2018b). The vegetation, land and glacier models differ from AM4.0 in the following aspects: 1) dynamical vegetation was used instead the static vegetation used in AM4.0. 2) glacier albedo is retuned. 3) other minor tuning in the land model.

1.1.1.4	Model Family *
Type of at	$mospheric\ model.$
	AGCM - Atmospheric General Circulation Model
	ARCM - Atmospheric Regional Climate Model
	Other - please specify:
1.1.1.5	Basic Approximations *
Basic appr	roximations made in the atmosphere.
\boxtimes	Primitive equations
	Non-hydrostatic
	Anelastic
	Boussinesq
\boxtimes	Hydrostatic
	Quasi-hydrostatic

Other - please specify:

1.2.1 Resolution

Characteristics of the model resolution

1.2.1.1 Horizontal Resolution Name *

This is a string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48.

C96

1.2.1.2 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon.

1 degree

1.2.1.3 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg

Quasi-uniform 1 degree

1.2.1.4 Number Of Vertical Levels *

Number of vertical levels resolved on the computational grid.

33.0

1.2.1.5 High Top *

Does the atmosphere have a high-top? High-Top atmospheres have a fully resolved stratosphere with a model top above the stratopause.

☐ True ☐ False

1.3.1 Timestepping

Characteristics of the atmosphere model time stepping

1.3.1.1 Timestep Dynamics *

Timestep for the dynamics in seconds

=30*60

1.3.1.2 Timestep Shortwave Radiative Transfer

Timestep for the shortwave radiative transfer in seconds.

3600.0

1.3.1.3 Timestep Longwave Radiative Transfer

 $Timestep\ for\ the\ longwave\ radiative\ transfer\ in\ seconds.$

=60*60*3

1.4.1 Orography

Characteristics of the model orography

1.4.1.1	Type *
Type of o	rographic representation.
\boxtimes	Fixed: present day
	Fixed: modified - Provide details of modification below
	Other - please specify:
1.4.1.2	Modified
If the oro	graphy type is modified describe the adaptation.
Selec	t MULTIPLE options:
	Related to ice sheets
	Related to tectonics
	Modified mean
	Modified variance if taken into account in model (cf gravity waves)
	Other - please specify:

1.4.1.3 Time-varying

Describe any time varying orographic change

No change with time

1.5.1 Tuning Applied

Tuning methodology for atmospheric component

1.5.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. and Document the relative weight given to climate performance metrics versus process oriented metrics, and and on the possible conflicts with parameterization level tuning. In particular describe any struggle and with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Model simulated present-day global top-of-atmsphere radiative fluxes are tuned towards the observational estimates from CERES. Model development focus on model performance in simulating present-day climatoly such as precipitation, winds, TOA radiative fluxes.

1.5.1.2 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

Global mean OLR and SW absorption at top-of-atmosphere

1.5.1.3 Regional Metrics Used

 $List\ of\ regional\ metrics\ of\ mean\ state\ used\ in\ tuning\ model/component$

No specific regional metrics/diagnostic of mean state are used in tuning the model. However, model development has used global RMSE of precipitation, TOA radiative flux for model evaluation.

1.5.1.4 Trend Metrics Used

 $List\ observed\ trend\ metrics\ used\ in\ tuning\ model/component$

Enter COMMA SEPARATED list:

$\mathbf{2}$ Grid $Atmosphere\ grid$ 2.1.1 Top level properties $Atmosphere\ grid$ 2.1.1.1 Name $Name\ of\ grid\ in\ atmos\ model.$ GFDL Finite-Volume Cubed-Sphere Grid **2.1.1.2** Overview Overview of grid in atmos model. GFDL Finite-Volume Cubed-Sphere Dynamical Core (FV3) 2.1.2 Horizontal Atmosphere discretisation in the horizontal 2.1.2.1 Scheme Type * Horizontal discretisation type Spectral \boxtimes Fixed grid Other - please specify: 2.1.2.2 Scheme Method * Horizontal discretisation method Finite elements \boxtimes Finite volumes Finite difference

Centered finite difference

2.1.2.3 Scheme Order *

Second Third

Fourth

 \boxtimes

Horizontal discretisation function order

	Other - please specify:	
2.1.2.4	Horizontal Pole	
Horizonto	l discretisation pole singularity treatment	
	Filter	
	Pole rotation	
	Artificial island	
	Other - please specify:	
2.1.2.5	Grid Type *	
Horizonta	d grid type	
	Gaussian	
	Latitude-Longitude	
\boxtimes	Cubed-Sphere	
	Icosahedral	
	Other - please specify:	
2.1.3 V	Vertical	
Atmosphere discretisation in the vertical		
2.1.3.1	Coordinate Type *	
Type of v	ertical coordinate system	
Selec	t MULTIPLE options:	
	Isobaric - Vertical coordinate on pressure levels	
	Sigma - Allows vertical coordinate to follow model terrain	
	Hybrid sigma-pressure - Sigma system near terrain and isobaric above	
	Hybrid pressure	
	Vertically lagrangian	
	Other - please specify:	

3 Dynamical Core

Characteristics of the dynamical core

3.	1	.1	Top	level	pro	perties

 $Characteristics\ of\ the\ dynamical\ core$

3.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ dynamical\ core\ in\ atmos\ model.$

FV3

 \boxtimes

Potential temperature

3.1.1.2 Overview

Overview of characteristics of the dynamical core in atmos model.

GFDL Finite-Volume Cubed-Sphere Dynamical Core

3.	.1	.1.	3	Timestepping	Type	*
----	----	-----	----------	--------------	------	---

$Time stepping\ framework\ type$		
	Adams-Bashforth	
\boxtimes	Explicit	
	Implicit	
	Semi-implicit	
	Leap frog	
	Multi-step	
	Runge Kutta fifth order	
	Runge Kutta second order	
	Runge Kutta third order	
	Other - please specify:	
3.1.1.4	Prognostic Variables *	
List of the	$model\ prognostic\ variables$	
	Surface pressure	
\boxtimes	Wind components	
	Divergence/curl	
	Temperature	

	Total water
\boxtimes	Water vapour
\boxtimes	Water liquid
\boxtimes	Water ice
	Total water moments
	Clouds
	Radiation
	Other - please specify:
	Top Boundary boundary layer at the top of the model
3.2.1.1	Top Boundary Condition *
Top boun	dary condition
	Sponge layer
	Radiation boundary condition
	Other - please specify:
3.2.1.2	Top Heat *
Top boun	dary heat treatment
\mathbf{Zero}	flux
3.2.1.3	Top Wind *
Top boun	dary wind treatment
\mathbf{Zero}	flux
3.3.1 l	Lateral Boundary
Type of	lateral boundary condition (if the model is a regional model)
3.3.1.1	Condition
Type of lo	uteral boundary condition
	Sponge layer
	Radiation boundary condition
	Other - please specify:

3.4.1 Diffusion Horizontal

 $Horizontal\ diffusion\ scheme$

3.4.1.1 Scheme Name

 $Horizontal\ diffusion\ scheme\ name$

Mono	otonic constraint and divergence damping	
3.4.1.2 Scheme Method *		
Horizonta	l diffusion scheme method	
\boxtimes	Iterated Laplacian	
	Bi-harmonic	
	Other - please specify:	
3.4.2	Tracers	
Tracer a	dvection scheme	
3.4.2.1	Scheme Name	
Tracer ad	vection scheme name	
	Heun	
	Roe and VanLeer	
	Roe and Superbee	
	Prather	
	UTOPIA	
	Other - please specify:	
3.4.2.2	Scheme Characteristics *	
Tracer ad	vection scheme characteristics	
	Eulerian	
	Modified Euler	
	Lagrangian	
	Semi-Lagrangian	
	Cubic semi-Lagrangian	
	Quintic semi-Lagrangian	
	Mass-conserving	

\boxtimes	Finite volume
	Flux-corrected
	Linear
	Quadratic
	Quartic
	Other - please specify:
3.4.2.3	Conserved Quantities *
Tracer adv	vection scheme conserved quantities
\boxtimes	Dry mass
\boxtimes	Tracer mass
	Other - please specify:
3.4.2.4	Conservation Method *
Tracer adv	vection scheme conservation method
	Conservation fixer
	Priestley algorithm
	Other - please specify:
3.4.3 N	Momentum
Momento	um advection scheme
3.4.3.1	Scheme Name
Momentum	n advection schemes name
	VanLeer
	Janjic
	SUPG (Streamline Upwind Petrov-Galerkin)
	Other - please specify:
3.4.3.2	Scheme Characteristics *
Momentur	n advection scheme characteristics
	2nd order
\boxtimes	4th order

	Cell-centred
	Staggered grid
	Semi-staggered grid
	Other - please specify:
	Scheme Staggering Type *
Momentun	n advection scheme staggering type
Ш	Arakawa B-grid
	Arakawa C-grid
	Arakawa D-grid
	Arakawa E-grid
	Other - please specify:
3.4.3.4	Conserved Quantities *
Momentun	n advection scheme conserved quantities
	Angular momentum
	Angular momentum Horizontal momentum
	Horizontal momentum
	Horizontal momentum Enstrophy
\boxtimes	Horizontal momentum Enstrophy Mass
	Horizontal momentum Enstrophy Mass Total energy
	Horizontal momentum Enstrophy Mass Total energy Vorticity Other - please specify:
3.4.3.5	Horizontal momentum Enstrophy Mass Total energy Vorticity Other - please specify: Conservation Method *
3.4.3.5	Horizontal momentum Enstrophy Mass Total energy Vorticity Other - please specify:
3.4.3.5 (Momentum	Horizontal momentum Enstrophy Mass Total energy Vorticity Other - please specify: Conservation Method *
3.4.3.5 (Momentum	Horizontal momentum Enstrophy Mass Total energy Vorticity Other - please specify: Conservation Method * n advection scheme conservation method

4 Radiation

Characteristics of the atmosphere radiation process

4.1.1 Top level properties

Characteristics of the atmosphere radiation process

4.1.1.1 Name

Commonly used name for the radiation in atmos model.

GFDL-AM4-radiation-model

4.1.1.2 Overview

Overview of characteristics of the atmosphere radiation process in atmos model.

Aerosols whose radiative effect is taken into account in the atmosphere model

The basic shortwave and longwave radiation algorithms are described in Freidenreich and Ramaswamy (1999) and Schwarzkopf and Ramaswamy (1999), respectively, modified as in GFDL Global Atmospheric Model Development Team (2004). Modifications to both schemes are described in Zhao et al (2018b). The principal changes for longwave scheme are: 1) use of HITRAN 2012 line data 2) use of mt_ckd 2.5 formulation for the H2O continuum 3) inclusion of the CO2 10 um band 4) capability to compute longwave CO2 absorption with amounts up to 10000 ppmv; CH4 absorption up to 6000 ppbv; N2O absorption up to 800 ppbv. The principal changes for shortwave scheme are: 1) inclusion of shortwave water vapor continuum 2) inclusion of new o2 bands 3) updated ESF parameters for H2O, now has 66 integration points rather than 38. 4) CO2 now calculated with ESF

4.1.1.3 Aerosols *

\boxtimes	Sulphate
	Nitrate
\boxtimes	Sea salt
\boxtimes	Dust
	Ice
\boxtimes	Organic
	BC - Black carbon / soot
	SOA - Secondary organic aerosols
	POM - Particulate organic matter
	Polar stratospheric ice
	NAT - Nitric acid trihydrate
	NAD - Nitric acid dihydrate
	STS - Supercooled ternary solution aerosol particle

	Other - please specify:
4.2.1 \$	Shortwave Radiation
Properti	es of the shortwave radiation scheme
4.2.1.1	Name
Commonl	y used name for the shortwave radiation scheme
Ente	r TEXT:
4.2.1.2	Spectral Integration *
Shortwave	e radiation scheme spectral integration
	Wide-band model
	Correlated-k
\boxtimes	Exponential sum fitting
	Other - please specify:
4.2.1.3	Transport Calculation *
Shortwave	e radiation transport calculation methods
\boxtimes	Two-stream
	Layer interaction
	Bulk - Highly parameterised methods that use bulk expressions
	$\label{eq:Adaptive-Exploits} A daptive \text{ - } Exploits \text{ spatial and temporal correlations in optical characteristics}$
	Multi-stream
	Other - please specify:
4.2.1.4	Spectral Intervals *
Shortwave	e radiation scheme number of spectral intervals
18.0	
4.2.1.5	General Interactions *
General r	adiative interactions e.g. with aerosols, cloud ice and cloud water
	Emission/absorption,
\boxtimes	Scattering
	Other - please specify:

4.3.1 Shortwave GHG

 $Representation\ of\ greenhouse\ gases\ in\ the\ shortwave\ radiation\ scheme$

4.3.1.1 Greenhouse Gas Complexity *

 $Complexity\ of\ greenhouse\ gases\ whose\ shortwave\ radiative\ effects\ are\ taken\ into\ account\ in\ the\ atmosphere\ model$

Selec	t MULTIPLE options:	
	CO2 - Carbon Dioxide	
	CH4 - Methane	
	N2O - Nitrous Oxide	
concentrat	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11	
equivalenc	${\it CFC-12}$ eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a ${\it CFC-12}$ the concentration	
concentrat	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ tion	
	${\bf Explicit\ ODSs\ -\ Explicit\ representation\ of\ Ozone\ Depleting\ Substances\ e.g.\ CFCs,\ HCFCs\ and\ Halons}$	
	$ Explicit \ other \ fluorinated \ gases \ - \ Explicit \ representation \ of \ other \ fluorinated \ gases \ e.g. \ HFCs \ and \ PFCs$	
	O3	
	H2O	
	Other - please specify:	
4.3.1.2 ODS Ozone depleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere model		
Selec	t MULTIPLE options:	
	CFC-12 - CFC	
	CFC-11 - CFC	
	CFC-113 - CFC	
	CFC-114 - CFC	
	CFC-115 - CFC	
	HCFC-22 - HCFC	
	HCFC-141b - HCFC	
	HCFC-142b - HCFC	

	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
	Other Flourinated Gases
	x irinated gases whose shortwave radiative effects are explicitly taken into account in the atmosphere model
Selec	t MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC

	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:
4.4.1 \$	Shortwave Cloud Ice
Shortwa	ve radiative properties of ice crystals in clouds
4.4.1.1	Physical Representation *
Physical 1	representation of cloud ice crystals in the shortwave radiation scheme
Selec	t MULTIPLE options:
typically l	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: hundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than sphe	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area res
	Ice water path - Integrated ice water path through the cloud kg m-2 $$
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
	Optical Methods *
-	ethods applicable to cloud ice crystals in the shortwave radiation scheme
Selec	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:

4.5.1 Shortwave Cloud Liquid

 $Shortwave\ radiative\ properties\ of\ liquid\ droplets\ in\ clouds$

4.5.1.1	Physical Representation *
Physical 1	representation of cloud liquid droplets in the shortwave radiation scheme
Selec	t MULTIPLE options:
	Cloud droplet number concentration - CDNC
	Effective cloud droplet radii
	Droplet size distribution
	Liquid water path - Integrated liquid water path through the cloud kg m-2 $$
	Other - please specify:
4.5.1.2	Optical Methods *
Optical m	sethods applicable to cloud liquid droplets in the shortwave radiation scheme
Selec	t MULTIPLE options:
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.6.1 \$	Shortwave Cloud Inhomogeneity
Cloud in	phomogeneity in the shortwave radiation scheme
4.6.1.1	Cloud Inhomogeneity *
Method fo	or taking into account horizontal cloud inhomogeneity
Selec	t SINGLE option:
	Monte Carlo Independent Column Approximation - McICA
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010
	Analytic
	Other - please specify:

4.7.1 Shortwave Aerosols

 $Shortwave\ radiative\ properties\ of\ aerosols$

Physical representation of aerosols in the shortwave radiation scheme Select MULTIPLE options: Number concentration Effective radii Size distribution Asymmetry Aspect ratio Mixing state - For shortwave radiative interaction Other - please specify: 4.7.1.2 Optical Methods * Optical methods applicable to aerosols in the shortwave radiation scheme Select MULTIPLE options: T-matrix - For non-spherical particles Geometric optics - For non-spherical particles Finite difference time domain (FDTD) - For non-spherical particles Mie theory - For spherical particles Anomalous diffraction approximation Other - please specify: 4.8.1 Longwave Radiation Properties of the longwave radiation scheme 4.8.1.1 Name $Commonly\ used\ name\ for\ the\ longwave\ radiation\ scheme.$ Simplified Exchange Approximation (SEA) 4.8.1.2 Spectral Integration * $Longwave\ radiation\ scheme\ spectral\ integration$ \bowtie Wide-band model \Box Correlated-k

4.7.1.1 Physical Representation *

Exponential sum fitting

	Other - please specify:
4.8.1.3	Transport Calculation *
Longwave	e radiation transport calculation methods
Selec	et MULTIPLE options:
	Two-stream
	Layer interaction
	Bulk - Highly parameterised methods that use bulk expressions
	Adaptive - Exploits spatial and temporal correlations in optical characteristics
	Multi-stream
	Other - please specify:
4.8.1.4	Spectral Intervals *
Longwave	radiation scheme number of spectral intervals
Ente	r INTEGER value:
4.8.1.5	General Interactions *
General r	radiative interactions e.g. with aerosols, cloud ice and cloud water
\boxtimes	Emission/absorption,
	Scattering
	Other - please specify:
4.9.1	Longwave GHG
Represe	ntation of greenhouse gases in the longwave radiation scheme
4.9.1.1	Greenhouse Gas Complexity *
Complexi	ty of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model
Selec	et MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide
concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11

equivalence	${\it CFC-12}$ eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a ${\it CFC-12}$ ec concentration
concentrat	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ tion
	${\bf Explicit~ODSs~-Explicit~representation~of~Ozone~Depleting~Substances~e.g.~CFCs,~HCFCs~and~Halons}$
	$ Explicit \ other \ fluorinated \ gases \ - \ Explicit \ representation \ of \ other \ fluorinated \ gases \ e.g. \ HFCs \ and \ PFCs $
	O3
	H2O
	Other - please specify:
4.9.1.2 Ozone der model	ODS oleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere
Selec	t MULTIPLE options:
	CFC-12 - CFC
	CFC-11 - CFC
	CFC-113 - CFC
	CFC-114 - CFC
	CFC-115 - CFC
	HCFC-22 - HCFC
	HCFC-141b - HCFC
	HCFC-142b - HCFC
	Halon-1211 - Halon
	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:

4.9.1.3 Other Flourinated Gases

 $Other \ flour in a ted \ gases \ whose \ longwave \ radiative \ effects \ are \ explicitly \ taken \ into \ account \ in \ the \ atmosphere \ model$

Selec	t MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:

4.10.1 Longwave Cloud Ice

 $Longwave\ radiative\ properties\ of\ ice\ crystals\ in\ clouds$

4.10.1.1	Physical Reprenstation *
Physical r	representation of cloud ice crystals in the longwave radiation scheme
typically l	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: hundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than sphe	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area res
	Ice water path - Integrated ice water path through the cloud kg m-2
	Crystal asymmetry
	Crystal aspect ratio
\boxtimes	Effective crystal radius
	Other - please specify:
4.10.1.2	2 Optical Methods *
Optical m	ethods applicable to cloud ice crystals in the longwave radiation scheme
Selec	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
4.11.1	Longwave Cloud Liquid
Longway	ve radiative properties of liquid droplets in clouds
4.11.1.1	Physical Representation *
Physical r	representation of cloud liquid droplets in the longwave radiation scheme
Selec	t MULTIPLE options:
	Cloud droplet number concentration - CDNC
	Effective cloud droplet radii
	Droplet size distribution
	Liquid water path - Integrated liquid water path through the cloud kg m-2

	Other - please specify:
4.11.1.2	Optical Methods *
Optical m	ethods applicable to cloud liquid droplets in the longwave radiation scheme
Selec	t MULTIPLE options:
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.12.1	Longwave Cloud Inhomogeneity
Cloud in	homogeneity in the longwave radiation scheme
4.12.1.1	Cloud Inhomogeneity *
Method fo	r taking into account horizontal cloud inhomogeneity
Selec	t SINGLE option:
	Monte Carlo Independent Column Approximation - McICA
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010
	Analytic
	Other - please specify:
4.13.1	Longwave Aerosols
Longway	radiative properties of aerosols
4.13.1.1	Physical Representation *
Physical r	representation of aerosols in the longwave radiation scheme
Selec	t MULTIPLE options:
	Number concentration
	Effective radii
	Size distribution
	Asymmetry
	Aspect ratio
	Mixing state - For shortwave radiative interaction
	Other - please specify:

4.13.1.2	Optical	Methods	*
----------	---------	---------	---

 $Optical\ methods\ applicable\ to\ aerosols\ in\ the\ longwave\ radiation\ scheme$

Select MULTIPLE options:		
	T-matrix - For non-spherical particles	
	Geometric optics - For non-spherical particles	
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$	
	Mie theory - For spherical particles	
	Anomalous diffraction approximation	
	Other - please specify:	

5 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1.1 Top level properties

Atmosphere Convective Turbulence and Clouds

5.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ turbulence\ convection\ in\ atmos\ model.$

AM4-PBL-moist-convection-scheme

5.1.1.2 Overview

 $Overview\ of\ atmosphere\ convective\ turbulence\ and\ clouds\ in\ atmos\ model.$

PBL convection described in Lock (2000) and GAMDT (2004). Double plume moist convection described in Zhao et al (2018b) and Bretherton et al (2004)

5.2.1 Boundary Layer Turbulence

Properties of the boundary layer turbulence scheme

5.2.1.1 Scheme Name		
Boundary	layer turbulence scheme name	
	Mellor-Yamada	
	Holtslag-Boville	
	EDMF - Combined Eddy Diffusivity Mass-Flux	
	Other - please specify:	
5.2.1.2	Scheme Type *	
Boundary	layer turbulence scheme type	
	TKE prognostic	
	TKE diagnostic	
	TKE coupled with water	
\boxtimes	Vertical profile of Kz	
	Non-local diffusion	
	Monin-Obukhov similarity	
	Coastal Buddy Scheme - Separate components for coastal near surface winds over ocean and land	
	Coupled with convection	

	Coupled with gravity waves
	Depth capped at cloud base - Boundary layer capped at cloud base when convection is diagnosed
	Other - please specify:
5.2.1.3	Closure Order *
Boundary	layer turbulence scheme closure order
1.0	
5.2.1.4	Counter Gradient *
Uses bour	ndary layer turbulence scheme counter gradient
	True A False
5.3.1	Deep Convection
Properti	ies of the deep convection scheme
5.3.1.1	Scheme Name
Deep con	vection scheme name
Doul al 2018)	ble Plume scheme with one bulk plume for deep and one for shallow convection (Zhao et
5.3.1.2	Scheme Type *
Deep con	vection scheme type
\boxtimes	Mass-flux
	Adjustment
	Plume ensemble - Zhang-McFarlane
	Other - please specify:
5.3.1.3	Scheme Method *
Deep con	vection scheme method
	CAPE - Mass flux determined by CAPE, convectively available potential energy.
	Bulk - A bulk mass flux scheme is used
	Ensemble - Summation over an ensemble of convective clouds with differing characteristics
sphere	CAPE/WFN based - CAPE-Cloud Work Function: Based on the quasi-equilibrium of the free tropo-
	$\label{thm:thm:mass} \mbox{TKE/CIN based - TKE-Convective Inhibition: Based on the quasi-equilibrium of the boundary layer}$
	Other - please specify

5.3.1.4	Processes *
Physical	processes taken into account in the parameterisation of deep convection
	Vertical momentum transport
\boxtimes	Convective momentum transport
\boxtimes	Entrainment
\boxtimes	Detrainment
\boxtimes	Penetrative convection
\boxtimes	Updrafts
	Downdrafts
	Radiative effect of anvils
\boxtimes	Re-evaporation of convective precipitation
	Other - please specify:
5.3.1.5	Microphysics
	sics scheme for deep convection. Microphysical processes directly control the amount of detrainment of lrometeor and water vapor from updrafts
\boxtimes	Tuning parameter based
	Single moment
	Two moment
	Other - please specify:
5.4.1	Shallow Convection
Propert	ies of the shallow convection scheme
5.4.1.1	Scheme Name
Shallow o	convection scheme name
Mod 201 8)	ified UW Shallow Cumulus Scheme (Bretherton et. al 2004, Zhao et. al 2008, Zhao et. al
5.4.1.2	Scheme Type *
Shallow o	convection scheme type
\boxtimes	Mass-flux
	Cumulus-capped boundary layer
	Other - please specify:

5.4.1.3	Scheme Method *	
Shallow o	convection scheme method	
	Same as deep (unified)	
\boxtimes	Included in boundary layer turbulence	
\boxtimes	Separate diagnosis - Deep and Shallow convection schemes use different thermodynamic closure criteria	
	Other - please specify:	
	Processes *	
Physical :	processes taken into account in the parameterisation of shallow convection	
\boxtimes	Convective momentum transport	
\boxtimes	Entrainment	
\boxtimes	Detrainment	
\boxtimes	Penetrative convection	
\boxtimes	Re-evaporation of convective precipitation	
	Other - please specify:	
5.4.1.5 Microphysics Microphysics scheme for shallow convection		
Selec	et MULTIPLE options:	
	Tuning parameter based	
	Single moment	
	Two moment	
	Other - please specify:	

6 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1.1 Top level properties

Large Scale Cloud Microphysics and Precipitation

6.1.1.1 Name

Commonly used name for the microphysics precipitation in atmos model.

Tietke large-scale cloud scheme, Rotstayn microphysics

6.1.1.2 Overview

 $Overview\ of\ large\ scale\ cloud\ microphysics\ and\ precipitation\ in\ atmos\ model.$

Large-scale cloud scheme is described in Tiedtke (1993) with the cloud microphysics described in Rotstayn (1997) and Rotstayn et al. (2000). Fluxes of large-scale rain and snow are diagnosed and the amount of precipitation flux inside and outside of clouds is tracked separately following Jakob and Klein (2000).

6.2.1 Large Scale Precipitation

Properties of the large scale precipitation scheme

6.2.1.1 Scheme Name

 $Commonly\ used\ name\ of\ the\ large\ scale\ precipitation\ parameterisation\ scheme$

Diagnostic scheme (Jakob and Klein 2000)

6.2.1.2 Hydrometeors *

Precipitat	ing hydrometeors taken into account in the large scale precipitation scheme
\boxtimes	Liquid rain
\boxtimes	Snow
	Hail
	Graupel

6.3.1 Large Scale Cloud Microphysics

Other - please specify:

Properties of the large scale cloud microphysics scheme

6.3.1.1 Scheme Name

Commonly used name of the microphysics parameterisation scheme used for large scale clouds.

Rotstayn (1997) and Ming et al. (2006)

Large scale cloud microphysics processes		
Select MULTIPLE options:		
	Mixed phase	
	Cloud droplets	
	Cloud ice	
	Ice nucleation	
	Water vapour deposition	
	Effect of raindrops	
	Effect of snow	
	Effect of graupel	

Other - please specify:

6.3.1.2 Processes *

7 Cloud Scheme

Characteristics of the cloud scheme

7.1.1 Top level properties

Characteristics of the cloud scheme

7.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ cloud\ scheme\ in\ atmos\ model.$

Tiedtke prognostic cloud scheme (1993)

7.1.1.2 Overview

Overview of characteristics of the cloud scheme in atmos model.

Progn	ostic cloud liquid, ice, amount, and drop number with parameterized sources and sinks
7.1.1.3 \$	Scheme Type *
Describes t	the $type(s)$ of cloud scheme: prognostic, diagnostic, other.
\boxtimes	Prognostic
	Diagnostic
	Other - please specify:
7.1.1.4 U	Uses Separate Treatment *
Description and bounds	n for when different cloud schemes are used for different types of clouds e.g. convective, stratiforn ary layer)
Yes	
7.1.1.5 I	Processes *
Processes i	included in the cloud scheme
	Entrainment
	Detrainment
	Bulk cloud
	Other - please specify:

List the prognostic variables used by the cloud scheme, if applicable.

☐ Cloud amount

Liquid

\boxtimes	Ice
	Rain
	Snow
	Cloud droplet number concentration - To document the use of two-moment cloud microphysics schemes
	Ice crystal number concentration - To document the use of two-moment cloud microphysics schemes
	Other - please specify:
7.1.1.7	Atmos Coupling
	re components that are linked to the cloud scheme
\boxtimes	Atmosphere_radiation
\boxtimes	Atmosphere_microphysics_precipitation
\boxtimes	Atmosphere_turbulence_convection
	Atmosphere_gravity_waves
	Atmosphere_natural_forcing
\boxtimes	Atmosphere_observation_simulation
7010	Ontical Cloud Dropontics
	Optical Cloud Properties cloud properties
7211	Cloud Overlap Method
	or taking into account overlapping of cloud layers
	Random
	Maximum
	Maximum-random - Combination of maximum and random overlap between clouds
\boxtimes	Exponential
	Other - please specify:
7919	Cloud Inhomogeneity
	or taking into account cloud inhomogeneity
	nastic

7.3.1 Sub Grid Scale Water Distribution

 $Sub\mbox{-}grid\ scale\ water\ distribution$

7.3.1.1 Type *
Sub-grid scale water distribution type
Prognostic
Diagnostic
7.3.1.2 Function Name *
Sub-grid scale water distribution function name
Tiedtke (1993) for stratiform clouds; Bretherton et al. (2004) for convective clouds
7.3.1.3 Function Order *
Sub-grid scale water distribution function type
Enter INTEGER value:
7.3.1.4 Convection Coupling *
Sub-grid scale water distribution coupling with convection
Coupled with deep
Coupled with shallow
☐ Not coupled with convection
7.4.1 Sub Grid Scale Ice Distribution
Sub-grid scale ice distribution
7.4.1.1 Type *
Sub-grid scale ice distribution type
Prognostic
Diagnostic
7.4.1.2 Function Name *
Sub-grid scale ice distribution function name
Tiedtke (1993) for stratiform clouds; Bretherton et al. (2004) for convective clouds
7.4.1.3 Function Order *
Sub-grid scale ice distribution function type

Enter INTEGER value:

7.4.1.4 Convection Coupling *		
$Sub\mbox{-}grid\ scale\ ice\ distribution\ coupling\ with\ convection$		
Select MULTIPLE options:		
	Coupled with deep	
	Coupled with shallow	
	Not coupled with convection	

8 Observation Simulation

Characteristics of observation simulation

8.1.1 Top level properties

 $Characteristics\ of\ observation\ simulation$

8.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ observation\ simulation\ in\ atmos\ model.$

COSP: CFMIP Observation Simulator Package

8.1.1.2 Overview

Overview of characteristics of observation simulation in atmos model.

COSP version 1.4.1 was used for all CMIP6 experiments

8.2.1 Isscp Attributes

ISSCP Characteristics

8.2.1.1 Top Height Estimation Method

	1 3		
Cloud sin	$Cloud\ simulator\ ISSCP\ top\ height\ estimation\ method Uo$		
	No adjustment		
\boxtimes	IR brightness		
\boxtimes	Visible optical depth		
	Other - please specify:		
8.2.1.2	Top Height Direction		
Cloud simulator ISSCP top height direction			
	Lowest altitude level		
\boxtimes	Highest altitude level		

8.3.1 Cosp Attributes

Other - please specify:

 $CFMIP\ Observational\ Simulator\ Package\ attributes$

8.3.1.1	Run Configuration
Cloud sir	nulator COSP run configuration
\boxtimes	Inline
	Offline
	Other - please specify:
8.3.1.2	Number Of Grid Points
Cloud sir	nulator COSP number of grid points
Ente	r INTEGER value:
8.3.1.3	Number Of Sub Columns
Cloud sir	$nulator\ COSP\ number\ of\ sub-cloumns\ used\ to\ simulate\ sub-grid\ variability$
25.0	
	Number Of Levels nulator COSP number of levels
40.0	
8.4.1	Radar Inputs
Charact	eristics of the cloud radar simulator
8.4.1.1	Frequency
Cloud sir	nulator radar frequency (Hz)
=940	000000000
8.4.1.2	Type
Cloud sir	nulator radar type
	Surface
\boxtimes	Space borne
	Other - please specify:
8.4.1.3	Gas Absorption
Cloud sir	nulator radar uses gas absorption
	True

8.4.1.4	Effective Radius
Cloud sir	nulator radar uses effective radius
\boxtimes	True
8.5.1	Lidar Inputs
Charact	teristics of the cloud lidar simulator
8.5.1.1	Ice Types
Cloud sir	nulator lidar ice type
\boxtimes	Ice spheres
	Ice non-spherical
	Other - please specify:
8.5.1.2	Overlap
Cloud sir	nulator lidar overlap
Selec	ct MULTIPLE options:
	Max
	Random
	Other - please specify:

Gravity Waves 9

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1.1 Top level properties

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or $other\ sources$

9.1.1.1 Name

Commonly used name for the gravity waves in atmos model.

Garner 2005, Alexander and Dunkerton 1999

9.1.1.2 Overview

Overview of characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources in atmos model.

_	grid orographic drag parameterization is decribed in Garner (2005) and Zhao et. al $(20$ ive gravity wave parameterization is described in Alexander and Dunkerton (1999) .
9.1.1.3	Sponge Layer *
Sponge la	yer in the upper levels in order to avoid gravity wave reflection at the top.
	Rayleigh friction
\boxtimes	Diffusive sponge layer
	Other - please specify:
9.1.1.4	Background *
Backgrou	and wave distribution
	Continuous spectrum
\boxtimes	Discrete spectrum
	Other - please specify:
9.1.1.5	Subgrid Scale Orography *
$Subgrid\ s$	cale orography effects taken into account.
\boxtimes	Effect on drag
	Effect on lifting
	Enhanced topography - To enhance the generation of long waves in the atmosphere
	Other - please specify:

9.2.1 Orographic Gravity Waves

Gravity waves generated due to the presence of orography

aracity	autor generated due to the presence of orograph	
9.2.1.1 Name		
Common	ly used name for the orographic gravity wave scheme	
Garr	ner 2005	
9.2.1.2	Source Mechanisms *	
Orograph	ic gravity wave source mechanisms	
\boxtimes	Linear mountain waves	
	Hydraulic jump	
	Envelope orography	
\boxtimes	Low level flow blocking	
	Statistical sub-grid scale variance	
	Other - please specify:	
9.2.1.3 Calculation Method *		
Orograph	ic gravity wave calculation method	
	Non-linear calculation	
	More than two cardinal directions	
	Other - please specify:	
9.2.1.4	Propagation Scheme *	
Orograph	ic gravity wave propogation scheme	
\boxtimes	Linear theory	
	Non-linear theory	
	Includes boundary layer ducting	
	Other - please specify:	
9.2.1.5 Dissipation Scheme *		
	Orographic gravity wave dissipation scheme	

Total wave

Single wave

 ${\bf Spectral}$

	Linear
	Wave saturation vs Richardson number
	Other - please specify:
9.3.1 N	Non Orographic Gravity Waves
Gravity v	waves generated by non-orographic processes.
9.3.1.1	Name
Commonly	y used name for the non-orographic gravity wave scheme
Alexa	nder and Dunkerton (1999)
9.3.1.2	Source Mechanisms *
Non-orogra	aphic gravity wave source mechanisms
	Convection
	Precipitation
\boxtimes	Background spectrum
	Other - please specify:
9.3.1.3	Calculation Method *
Non-orogra	aphic gravity wave calculation method
\boxtimes	Spatially dependent
	Temporally dependent
9.3.1.4]	Propagation Scheme *
Non-orogra	aphic gravity wave propogation scheme
\boxtimes	Linear theory
	Non-linear theory
	Other - please specify:
9.3.1.5 l	Dissipation Scheme *
Non-orogra	aphic gravity wave dissipation scheme
Select	SINGLE option:
	Total wave
	Single wave

	Spectral
	Linear
	Wave saturation vs Richardson number
П	Other - please specify:

10	Natural	Forcing
	1 1000 011 011	

Natural forcing: solar and volcanic.

10.1.1 Top level properties

Natural forcing: solar and volcanic.

10.1.1.1 Name

Commonly used name for the natural forcing in atmos model.

Enter TEXT:

10.1.1.2 Overview

 $Overview\ of\ natural\ forcing:\ solar\ and\ volcanic.\ in\ atmos\ model.$

Enter TEXT:

10.2.1 Solar Pathways

Pathways for solar forcing of the atmosphere

10.2.1.1 Pathways *

Pathways for the solar forcing of the atmosphere model domain

	SW radiation - Shortwave solar spectral irradiance.
,	Precipitating energetic particles - Precipitating energetic particles from the sun (predominantly prothe magnetosphere (predominantly electrons) affect the ionization levels in the polar middle and upper re, leading to significant changes of the chemical composition
	Cosmic rays - Cosmic rays are the main source of ionization in the troposphere and lower stratosphere.
	Other - please specify:

10.3.1 Solar Constant

Solar constant and top of atmosphere insolation characteristics

10.3.1.1 Type *

 $Time\ adaptation\ of\ the\ solar\ constant.$

Fixed

If the solar constant is fixed, enter the value of the solar constant (W m -2).	
Enter FLOAT value:	
10.3.1.3 Transient Characteristics	
Solar constant transient characteristics (W m-2)	
From Kopp et al. (2005, Solar Physics)	
10.4.1 Orbital Parameters	
Orbital parameters and top of atmosphere insolation characteristics	
10.4.1.1 Type *	
Type of orbital parameter	
Transient	
10.4.1.2 Fixed Reference Date	
Reference date for fixed orbital parameters (yyyy)	
23.0	
10.4.1.3 Transient Method	
Description of transient orbital parameters	
Enter TEXT:	
10.4.1.4 Computation Method	
Method used for computing orbital parameters.	
Select SINGLE option:	
Berger 1978	
Laskar 2004	
Other - please specify:	

10.5.1 Insolation Ozone

10.3.1.2 Fixed Value

 $Impact\ of\ solar\ insolation\ on\ stratospheric\ ozone$

10.5.1.1 Solar Ozone Impact *	
Does top	of atmosphere insolation impact on stratospheric ozone?
	True
10 G 1	Volcanoes Treatment
10.0.1	voicanoes freatment
Characte	eristics and treatment of volcanic forcing in the atmosphere
10.6.1.1	Volcanoes Characteristics *
Description	on of how the volcanic forcing is taken into account in the atmosphere.
Enter	TEXT:
10.6.1.2	Volcanoes Implementation *
How volca	nic effects are modeled in the atmosphere.
Selec	t SINGLE option:
	High frequency solar constant anomaly
	Stratospheric aerosols optical thickness
	Other - please energy