HHL - Algorithmus

Alfred Nguyen

Fakultät der Informatik Technische Universität München 85758 Garching, Bavaria

June 2023

Gliederung

Evaluierung

Laufzeit

Laufzeit

Gliederung

Evaluierung

Laufzeit

Laufzeit

Laufzeit

Gauß Verfahren

$$\mathcal{O}(N^3)$$

- ▶ nicht der schnellste Algorithmus
- selben constraints sind zu beachten!!

Laufzeit

Classical

Conjugate gradient descent

$$\mathcal{O}(\kappa slog\left(\frac{1}{\epsilon}\right)N)$$

- N := is number of variables in linear system
- $\kappa = \frac{\lambda_{max}}{\lambda_{min}}$: condition number

Quanten Version

HHL

$$\mathcal{O}(\frac{\kappa^2 s^2}{\epsilon} log N)$$

- $ightharpoonup \epsilon := is the accuracy$
- s := is s-sparse matrix: each row has at most s nonzero entries

Laufzeit

Classical

Quanten Version

Conjugate gradient descent

HHL

$$\mathcal{O}(\kappa s \log\left(\frac{1}{\epsilon}\right) N) \qquad \qquad \mathcal{O}(\frac{\kappa^2 s^2}{\epsilon} \log N)$$

$$\Rightarrow \mathcal{O}(N) \qquad \qquad \Rightarrow \mathcal{O}(\log(N))$$

Takeaway

- ightharpoonup exponential speed up $\mathcal{O}(N)$ vs $\mathcal{O}(\log(N))$
- klassischer algorithmus hat bessere Fehlerabhängigkeit: $log(\frac{1}{\epsilon})$ vs $\frac{1}{\epsilon}$

- 1. einfache Zustandsvorbereitung des Vektors \vec{b} zum Quantenzustand $|b\rangle$
- 2. niedrige condition number κ
- 3. und muss s-sparse sein
- 4. nicht jeder Eintrag von $|x\rangle$ auslesbar
- 5. Der Ressourcenbedarf sehr hoch

- 1. niedrige condition number κ
- 2. muss s-sparse sein
- 3. einfache Zustandsvorbereitung des Vektors \vec{b} zum Quantenzustand $|b\rangle$
 - wenn man $|b\rangle$ klassisch lesen/schreiben muss, ist der Geschwindigkeitsgewinn weg, da $|b\rangle$ N Einträge hat \rightarrow qram
- 4. nicht jeder Eintrag von $|x\rangle$ auslesbar
 - Nachbearbeitung muss erfolgen
 - ▶ nur $log_2(n)$ Qubits -¿ nur eine Näherung
 - statistische Informationen möglich (Verhältnis, Bereiche großer Einträge, ...)
- Der Ressourcenbedarf sehr hoch
 - Shors Algorithmus ist dem HHL-Algorithmus sehr ähnlich (aufgrund von QPE)
 - untere Grenze von 4000 logischen Qubits (2048bit RSA)
 - d.h. millionen physikalischer Qubits (für Fehlerkorrektur)

Was das

Ablauf

- 1. State Preparation
 - Enkodiere Vektor und Matrix in Quanten Computer
- 2. Quantum Phase Estimation
 - ermittle Eigenwerte und Eigenvektoren
 - ightharpoonup bilde $|b\rangle$ in Eigenbasis A ab
- 3. Ancilla Bit Rotation Invertieren der Eigenwerte
- 4. Inverse Quantum Phase Estimation
- Messung