Equilibrio químico en fase gas

• Con datos do equilibrio

- 1. Nun recipiente de 2,0 dm³ introdúcense 0,043 moles de NOCl(g) e 0,010 moles de $Cl_2(g)$. Péchase, quéntase ata unha temperatura de 30 °C e déixase que alcance o equilibrio, no que hai 0,031 moles de NOCl(g). Para o equilibrio: NOCl(g) $\rightleftharpoons \frac{1}{2} Cl_2(g) + NO(g)$, calcula:
 - a) O grao de disociación.
 - b) A concentración de cada gas.
 - c) O valor da constante K_c .
 - d) A presión parcial de cada gas.
 - e) A presión total.
 - f) O valor da constante K_p .

Dato: R = 0.082 atm·L·K⁻¹·mol⁻¹ = 8,31 J·K⁻¹·mol⁻¹. Problema modelo baseado na P.A.U. xuño 15

Rta.: a) $\alpha = 27.9 \%$; b) ([NOCl]_e = 0.0155; [Cl₂]_e = 0.00800; [NO]_e = 0.00600) mol/dm³;

c) $K_c = 0.035$; d) $(p(NOCl) = 39; p(Cl_2) = 20; p(NO) = 15)$ kPa; e) p = 74 kPa; f) $K_p = 0.173$.

Datos Cifras significativas: 3

Gas: volume $V = 2,00 \text{ dm}^3$

temperatura $T = 30 \,^{\circ}\text{C} = 303 \,^{\circ}\text{K}$

Cantidade inicial de NOCl $n_0(NOCl) = 0,0430 \text{ mol NOCl}$

Cantidade inicial de Cl_2 $n_0(Cl_2) = 0,0100 \text{ mol } Cl_2$

Cantidade de NOCl no equilibrio $n_e(NOCl) = 0,0310 \text{ mol NOCl}$

Constante dos gases ideais $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Concentración de cada gas en el equilibrio [NOCl]_e, [Cl₂]_e, [NO]_e

Constante de equilibrio en función das concentracións K_c

Presións parciais de cada gas no equilibrio p(NOCI), $p(Cl_2)$, p(NO)

Presión total no equilibrio p

Constante de equilibrio en función das presións K_p

Outros símbolos

Cantidade de gas que reaccionou $n_{\rm r}$

Ecuacións

Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T$

Lei de Dalton das presións parciais $p_t = \sum p_i$

Concentración da substancia X [X] = n(X) / V

Grao de disociación $\alpha = \frac{n_{\rm d}}{n_{\rm d}}$

Constante do equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_{c} = \frac{[C]_{e}^{c}[D]_{e}^{d}}{[A]_{e}^{d}[B]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{d}(A) \cdot p_{e}^{b}(B)}$

Solución:

a) Calcular a cantidade de NOCl que reaccionou:

$$n_{\rm r} = n_{\rm e} - n_{\rm o} = 0.0310 - 0.0430 = -0.0120 \text{ mol NOCl}$$

Calcular o grao de disociación:

$$\alpha = \frac{n_{\rm d}}{n_{\rm o}} = \frac{0.012 \text{ 0mol reacc.}}{0.043 \text{ 0mol inic.}} = 0.279 = 27.9 \%$$

b) Construir unha táboa para calcular as cantidades de produtos e reactivos no equilibrio a partir da estequiometría da reacción:

$$NOCl(g) \rightleftharpoons \frac{1}{2} Cl_2(g) + NO(g)$$

		NOCl	\rightleftharpoons	½ Cl ₂	NO	
Cantidade inicial	n_0	0,0430		0,0100	0	mol
Cantidade que reacciona ou se forma	n_{r}	0,0120	\rightarrow	0,0120 / 2 = 0,00600	0,0120	mol
Cantidade no equilibrio	$n_{\rm e}$	0,0310		0,0160	0,0120	mol

Calcular as concentracións no equilibrio dividindo as cantidades entre o volume:

$$\begin{split} [NOCl]_e &= 0.0310 \ / \ 2 = 0.0155 \ mol/dm^3 \\ [Cl_2]_e &= 0.0160 \ / \ 2 = 0.00800 \ mol/dm^3 \\ [NO]_e &= 0.0120 \ / \ 2 = 0.00600 \ mol/dm^3 \end{split}$$

c) Calcular a constante de equilibrio en función deas concentracións:

$$K_c = \frac{[\text{NO}]_e \cdot [\text{Cl}_2]_e^{1/2}}{[\text{NOCl}]_e} = \frac{0,00600 \cdot \sqrt{0,00800}}{0,015 \text{ 5}} = 0,034 \text{ 6(concentracións en mol/dm}^3)$$

d) Calcular a presión parcial de cada gas a partir da cantidades no equilibrio. Supoñendo comportamento ideal para os gases, emprégase a ecuación de estado dos gases ideais: $p \cdot V = n \cdot R \cdot T$.

$$p(\text{NOCl}) = \frac{n(\text{NOCl}) \cdot R \cdot T}{V} = \frac{0,031 \text{ 0mol} \cdot 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 303 \text{ K}}{2,00 \cdot 10^{-3} \text{ m}^3} = 3,91 \cdot 10^4 \text{ Pa} = 39,1 \text{ kPa} = 0,386 \text{ atm}$$

$$p(\text{Cl}_2) = \frac{n(\text{Cl}_2) \cdot R \cdot T}{V} = \frac{0,016 \text{ 0mol} \cdot 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 303 \text{ K}}{2.00 \cdot 10^{-3} \text{ m}^3} = 2,02 \cdot 10^4 \text{ Pa} = 20,2 \text{ kPa} \cdot \frac{1 \text{ atm}}{101,3 \text{ kPa}} = 0,199 \text{ atm}$$

$$p(\text{NO}) = \frac{n(\text{NO}) \cdot R \cdot T}{V} = \frac{0.012 \text{ 0mol} \cdot 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 303 \text{ K}}{2.00 \cdot 10^{-3} \text{ m}^3} = 1.51 \cdot 10^4 \text{ Pa} = 15.1 \text{ kPa} \cdot \frac{1 \text{ atm}}{101.3 \text{ kPa}} = 0.149 \text{ atm}$$

e) Calcular a presión total pola lei de Dalton, $p_t = \sum p_i$:

$$p = p(NOCl) + p(Cl_2) + p(NO) = 39.1 [kPa] + 20.2 [kPa] + 15.1 [kPa] = 74.4 kPa = 0.734 atm$$

f) Calcular a constante de equilibrio en función das presións K_p a partir das presións parciales:

$$K_p = \frac{p_e(\text{NO}) \cdot p_e^{1/2}(\text{Cl}_2)}{p_e(\text{NOCl})} = \frac{0.149 \cdot \sqrt{0.199}}{0.386} = 0.173 \text{ (presiones en atm)}$$

Pódese calcular tamén a partir dea relación coa constante Kc:

$$K_{p} = \frac{p_{e}(\text{NO}) \cdot p_{e}^{1/2}(\text{Cl}_{2})}{p_{e}(\text{NOCl})} = \frac{[\text{NO}]_{e} \cdot R \cdot T \cdot ([\text{Cl}_{2}] \cdot R \cdot T)_{e}^{1/2}}{[\text{NOCl}]_{e} \cdot R \cdot T} = \frac{[\text{NO}]_{e} \cdot [\text{Cl}_{2}]_{e}^{1/2}}{[\text{NOCl}]_{e}} \cdot (R \cdot T)^{1/2} = K_{c} \cdot \sqrt{R \cdot T}$$

$$K_{p} = K_{c} \cdot \sqrt{R \cdot T} = 0.034 \ 6\sqrt{0.082 \cdot 303} = 0.173 \ \text{(presiones en atm)}$$

As respostas poden obterse na pestana «Equilibrio» da folla de cálculo <u>Quimica (gal)</u>. <u>Instrucións</u>. En DATOS, escriba:

	Reactivo A +			Reactivo B	B ⇌ Produto C			+ Produto D		
Reacción axustada		NOCl			0,5	Cl_2		NO		
Cantidade inicial		0,043				0,01				
Cantidade en equilibrio		0,031								
Temperatura	<i>T</i> =	30	°C							

Volume	V =	2 dm	n ³				
Presión total	<i>p</i> =						
				Cal	cular: Presión	total	
RESULTADOS:							
Cantidade		NOCl(g)		⇒ 0,5	$Cl_2(g)$ +	NO(g)	
in	icial	0,0430			0,0100	0	mol
reacci	iona	0,0120		\rightarrow	0,00600	0,0120	mol
equili	brio	0,0310			0,0160	0,0120	mol
Consta	ntes $K_c =$	0,0346	(Conc. en mol/L))			
	$K_p =$	0,173	(p en atm.)				
Pres	sión (total)	= 0,734	atm en equilibrio)	Grao de diso	ciación α =	= 27,9 %
Para calcular as presió	ns parciais,	, substitúa «(Cantidade» por	«Presión»			
Presión		NOCl(g)		⇒ 0,5	$Cl_2(g)$ +	NO(g)	
in	icial	0,535			0,124	0	atm
reacci	iona	0,149		\rightarrow	0,0749	0,149	atm

2. Nun matraz de 1,5 dm³, no que se fixo o baleiro, introdúcense 0,08 moles de N_2O_4 e quéntase a 35 °C. Parte do N_2O_4 disóciase segundo a reacción: $N_2O_4(g) \rightleftharpoons 2 \ NO_2(g)$ e cando se alcanza o equilibrio a presión total é de 2,27 atm. Calcula a porcentaxe de N_2O_4 disociado.

0,199

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa.

0.386

(A.B.A.U. extr. 19)

atm

0.149

Rta.: $\alpha = 69 \%$.

equilibrio

b)

Datos Cifras significativas: 3

Volume $V = 1,50 \text{ dm}^3 = 1,50 \cdot 10^{-3} \text{ m}^3$

Temperatura $T = 35 \text{ }^{\circ}\text{C} = 308 \text{ K}$

Cantidade inicial de tetraóxido de dinitróxeno $n_0(N_2O_4) = 0,0800 \text{ mol}$

Presión no equilibrio $p = 2,27 \text{ atm} \cdot 1,013 \cdot 10^5 \text{ Pa/atm} = 2,30 \cdot 10^5 \text{ Pa}$

Constante dos gases ideais $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Porcentaxe de N₂O₄ disociado α

Ecuacións

Concentración da substancia X [X] = n(X) / V

Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T$

Constante do equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]_e^c \cdot \left[B\right]_e^b}$

Solución:

b) Constrúese unha táboa, baixo a ecuación de disociación, na que se chama x á cantidade de N_2O_4 que se disocia, e complétase atendendo á estequiometría da reacción. Escríbense as cantidades no equilibrio en función de x, restando as cantidades que reaccionaron das cantidades iniciais dos reactivos, e sumándoas ás dos produtos:

		N ₂ O ₄	=	2 NO ₂	
Cantidade inicial	n_0	0,0800		0	mol
Cantidade que reacciona ou se forma	$n_{ m r}$	x	\rightarrow	2 x	mol
Cantidade no equilibrio	$n_{\rm e}$	0,0800 - x		2 x	mol

Escríbese a cantidade total de gas no equilibrio en función de x:

$$n_{\rm t} = 0.0800 - x + 2 \ x = 0.0800 + x$$

Por outra banda, pódese calcular a cantidade de gas a partir da presión total,supoñendo comportamento ideal:

$$n_{\rm t} = \frac{p \cdot V}{R \cdot T} = \frac{2,30 \cdot 10^5 \text{ Pa} \cdot 1,50 \cdot 10^{-3} \text{ dm}^3}{8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot 308 \text{ K}} = 0,135 \text{ mol gas}$$

Comparando coa ecuación anterior, calcúlase a cantidade de N2O4 que se disociou:

$$x = 0.135 - 0.080 = 0.055$$
 mol de N₂O₄

Calcúlase a porcentaxe de N₂O₄ disociado:

$$\alpha = \frac{n_{\rm r}}{n_0} = \frac{0.055}{0.080} = 0.69 = 69 \%$$

As respostas poden obterse na pestana «Equilibrio» da folla de cálculo <u>Quimica (gal)</u>. <u>Instrucións</u>. En DATOS, escriba:

Bit Bit es, escriba.											
			Reactivo A +		Reactivo B	⇌ Produto C		+ Produto D			
	Reacción axustada		N_2O_4			2	NO_2				
	Cantidade inicial		0,08							mol	
	Cantidade en equilibrio										
	Temperatura	T =	35	$^{\circ}\!$				-			-
	Volume	V =	1,5	dm³							

RESULTADOS:

Cantidade	$N_2O_4(g)$		⇒ 2	$NO_2(g)$	
inicial	0,0800			0	mol
reacciona	0,0547		\rightarrow	0,109	mol
equilibrio	0,0253			0,109	mol
Constantes	$K_c = 0.314$	(Conc. en mol/I	<u>.</u>)		
	$K_p = 7,95$	(p en atm.)			
				Grao de disociación α =	68,3 %

- 3. Á temperatura de 35 $^{\circ}$ C dispoñemos, nun recipiente de 310 cm³ de capacidade, dunha mestura gasosa que contén 1,660 g de N_2O_4 en equilibrio con 0,385 g de NO_2 .
 - a) Calcula a K_c da reacción de disociación do tetraóxido de dinitróxeno á temperatura de 35 °C.
 - b) A 150 °C, o valor numérico de K_c é de 3,20. Cal debe ser o volume do recipiente para que estean en equilibrio 1 mol de tetraóxido e dous moles de dióxido de nitróxeno?

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 / (\text{K} \cdot \text{mol})$.

(P.A.U. xuño 07)

Rta.: a) $K_c = 0.0125$; b) $V = 1.25 \text{ dm}^3$.

DatosCifras significativas: 3Volume $V = 310 \text{ cm}^3 = 0,310 \text{ dm}^3$ Temperatura do apartado a) $T = 35 \text{ }^{\circ}\text{C} = 308 \text{ K}$ Masa no equilibrio N_2O_4 a 35 $^{\circ}\text{C}$ $m_e(N_2O_4) = 1,660 \text{ g } N_2O_4$

 $M(NO_2) = 46.0 \text{ g/mol}$ $M(N_2O_4) = 92.0 \text{ g/mol}$

Datos	Cifras significativas: 3
Masa no equilibrio NO_2 a 35 °C	$m_{\rm e}({\rm NO_2}) = 0.385~{\rm g~NO_2}$
Constante do equilibrio K_c a 150 °C	$K_c' = 3,20$
Cantidade no equilibrio N_2O_4 a 150 $^{\circ}$ C	$n_{\rm e}({\rm N_2O_4})$ = 1,00 mol N ₂ O ₄
Cantidade no equilibrio NO₂ a 150 °C	$n_{\rm e}({\rm NO_2})$ = 2,00 mol NO ₂

Incógnitas

Masa molar:

Constante do equilibrio K_c a 35 °C K_c Volume do recipiente V

dióxido de nitróxeno

tetraóxido de dinitróxeno

Ecuacións

Cantidade (número de moles) n = m / MConcentración da substancia X [X] = n(X) / VConstante do equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]^a \cdot \left[B\right]^b}$

Solución:

A ecuación química é:

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

A expresión da constante de equilibrio:

$$K_c = \frac{[NO_2]_e^2}{[N_2O_4]_e}$$

As concentracións das especies no equilibrio son:

$$[NO_2]_e = \frac{0.385 \text{ g NO}_2}{0.310 \text{ dm}^3} \frac{1 \text{ mol NO}_2}{46.0 \text{ g NO}_2} = 0.027 \text{ 0mol/dm}^3$$

$$[N_2O_4]_e = \frac{1,660 \text{ g } N_2O_4}{0,310 \text{ dm}^3} \frac{1 \text{ mol } N_2O_4}{92,0 \text{ g } N_2O_4} = 0,058 \text{ 2mol/dm}^3$$

e o valor da constante de equilibrio a 35 ℃ é

$$K_c = \frac{[NO_2]_e^2}{[N_2O_4]_e} = \frac{(0.027)^2}{0.058 \ 2} = 0.012 \ 5$$

b) Ao variar a temperatura, varía a constante de equilibrio. Volvendo escribir a expresión da constante á temperatura de 150 °C

$$K_c = 3,20 = \frac{[NO_2]_e^2}{[N_2O_4]_e} = \frac{\left(\frac{2,00}{V}\right)^2}{\left(\frac{1,00}{V}\right)} = \frac{4,00}{V}$$

de onde:

$$V = 4,00 / 3,20 = 1,25 \text{ dm}^3$$

As respostas poden obterse na pestana «Equilibrio» da folla de cálculo Quimica (gal). Instrucións.

En DATOS, escriba:

		Reactivo A	+	Reactivo B	⇒ Produto C		+ Produto D		
Reacción axustada		N_2O_4			2	NO_2			
Cantio	Cantidade inicial								
Masa er	Masa en equilibrio					0,39			g
Temperatura	T =	35	$^{\circ}\! \mathbb{C}$						
Volume	V =	310	cm³						

RESULTADOS:

Constantes
$$K_c = 0.0125$$
 (Conc. en mol/L)
 $K_p = 0.317$ (p en atm.)

Para o apartado b) borre os datos numéricos e as súas unidades (seleccione co rato desde a cela baixo «Ecuación axustada» ata a cela onde se cruzan «Calcular» e «g» e faga clic no botón Borrar datos), e escriba os novos datos:

RESULTADOS:

- 4. Nun recipiente pechado introdúcense 2,0 moles de CH_4 e 1,0 mol de H_2S á temperatura de 727 °C, establecéndose o seguinte equilibrio: $CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$. Una vez alcanzado o equilibrio, a presión parcial do H_2 é 0,20 atm e a presión total é de 0,85 atm. Calcule:
 - a) Os moles de cada substancia no equilibrio e o volume do recipiente.
 - b) O valor de K_c e K_p .

Constante dos gases ideais: R = 0.082 atm·dm³·K⁻¹·mol⁻¹ =8,31 J·K⁻¹·mol⁻¹ (A.B.A.U. ord. 20)

Rta.: a) $n_e(CH_4) = 1.80 \text{ mol}$; $n_e(H_2S) = 0.60 \text{ mol}$; $n_e(CS_2) = 0.200 \text{ mol}$; $n_e(H_2) = 0.800 \text{ mol}$; $V = 328 \text{ dm}^3$; b) $K_p = 0.0079$; $K_c = 1.2 \cdot 10^{-6}$.

Datos	Cifras significativas: 3
	- ij

Temperatura $T = 727 \,^{\circ}\text{C} = 1000 \,^{\circ}\text{K}$ Cantidade inicial de metano $n_0(\text{CH}_4) = 2,00 \,^{\circ}\text{mol CH}_4$ Cantidade inicial de sulfuro de hidróxeno $n_0(\text{H}_2\text{S}) = 1,00 \,^{\circ}\text{mol H}_2\text{S}$ Presión parcial do hidróxeno no equilibrio $p_e(\text{H}_2) = 0,200 \,^{\circ}\text{atm}$ Presión total no equilibrio $p_e = 0,850 \,^{\circ}\text{atm}$

Constante dos gases ideais $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Cantidade no equilibrio de cada substancia $n_e(CH_4)$, $n_e(H_2S)$, $n_e(CS_2)$, $n_e(H_2)$

Volume do recipiente VConstante do equilibrio K_c K_c Constante do equilibrio K_p K_p

Ecuacións

Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T$ Concentración da substancia X [X] = n(X) / V

Ecuacións

Constantes do equilibrio: $a A + b B \rightleftharpoons c C + d D$

$$K_{c} = \frac{\left[C\right]_{e}^{c} \cdot \left[D\right]_{e}^{d}}{\left[A\right]_{e}^{a} \cdot \left[B\right]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{a}(A) \cdot p_{e}^{b}(B)}$$

Solución:

a) Constrúese unha táboa baixo a ecuación de reacción, na que se chama x á cantidade de CH₄ que reacciona, e complétase atendendo á estequiometría da reacción. Escríbense as cantidades no equilibrio en función de x, restando as cantidades que reaccionaron das cantidades iniciais no caso dos reactivos, e sumándoas no caso dos produtos:

		CH ₄	$2 H_2S$	\rightleftharpoons	CS ₂	4 H ₂	
Cantidade inicial	n_0	2,00	1,00		0,0	0,0	mol
Cantidade que reacciona ou se forma	$n_{\rm r}$	x	2 x		x	4 x	mol
Cantidade no equilibrio	$n_{\rm e}$	2,00 - x	1,00 - 2 x		х	4 x	mol

Escríbese a cantidade total de gas no equilibrio en función de x:

$$n_e = (2,00 - x) + (1,00 - 2 x) + x + 4 x = 3,00 + 2 x$$

A presión parcial dun gas nunha mestura é a que exercería o gas se se atopase só no recipiente. Escríbese unha ecuación da cantidade no equilibrio de gas H_2 en función do volume, a partir da presión parcial do hidróxeno, supoñendo comportamento ideal:

$$p \cdot V = n \cdot R \cdot T \implies n_{e}(H_{2}) = \frac{p_{e}(H_{2}) \cdot V}{R \cdot T} = \frac{0,200 \text{ atm} \cdot V}{0,082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 1000 \text{ K}} = 0,00244 \cdot V \text{ mol } H_{2}$$

$$4 x = 0.0244 \cdot V$$

Analogamente coa presión total:

$$n_{\rm e} = \frac{p_{\rm e} \cdot V}{R \cdot T} = \frac{0.850 \text{ atm} \cdot V}{0.082 \text{ atm} \cdot \text{dm}^2 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 1000 \text{ K}} = 0.010 \text{ 4V mol}$$

$$3.00 + 2 x = 0.104 \cdot V$$

Resólvese o sistema de dúas ecuacións con dúas incógnitas:

$$4 x = 0.00244 \cdot V
3.00 + 2 x = 0.010 \ 4V$$

Divídese a segunda ecuación entre a primeira e calcúlase o volume V do recipiente e a cantidade x de CH_4 que reaccionou ata acadar o equilibrio.

$$\frac{3,00+2x}{4x} = \frac{0,010 \text{ } 4V}{0,00244 \cdot V} = 4,25 \implies 3,00+2x = 17,0x \implies x = 0,200$$
$$V = \frac{4x}{0.00244} = \frac{4 \cdot 0,200}{0.00244} = 328$$

As cantidades das substancias no equilibrio son:

$$n_{\rm e}({\rm CH_4}) = 2,00 - x = 2,00 - 0,200 = 1,80 \; {\rm mol} \; {\rm CH_4}$$

 $n_{\rm e}({\rm H_2S}) = 1,00 - 2 \; x = 1,00 - 2 \cdot 0,200 = 0,60 \; {\rm mol} \; {\rm H_2S}$
 $n_{\rm e}({\rm CS_2}) = x = 0,200 \; {\rm mol} \; {\rm CS_2}$
 $n_{\rm e}({\rm H_2}) = 4 \cdot x = 0,800 \; {\rm mol} \; {\rm H_2}$

Calcúlase a constante de equilibrio en función das concentracións:

$$K_{c} = \frac{\left[\text{CS}_{2} \right]_{e} \cdot \left[\text{H}_{2} \right]_{e}^{4}}{\left[\text{CH}_{4} \right]_{e} \cdot \left[\text{H}_{2} \text{S} \right]_{e}^{2}} = \frac{\frac{n_{e}(\text{CS}_{2}) \cdot \left(\frac{n_{e}(\text{H}_{2})}{V} \cdot \left(\frac{n_{e}(\text{H}_{2})}{V} \right)^{4}}{\frac{n_{e}(\text{CH}_{4})}{V} \cdot \left(\frac{n_{e}(\text{H}_{2}\text{S})}{V} \right)^{2}} = \frac{n_{e}(\text{CS}_{2}) \cdot n_{e}^{4}(\text{H}_{2})}{n_{e}(\text{CH}_{4}) \cdot n_{e}^{2}(\text{H}_{2}\text{S})} \cdot \frac{1}{V^{2}} = \frac{0,200 \cdot 0,800^{4}}{1,80 \cdot 0,60^{2}} \cdot \frac{1}{328^{2}} = 1,2 \cdot 10^{-6}$$

Dedúcese a relación entre K_p e K_c , supoñendo comportamento ideal para os gases:

$$p \cdot V = n \cdot R \cdot T \Rightarrow p = \frac{n}{V} \cdot R \cdot T$$

$$K_{p} = \frac{p_{e}(CS_{2}) \cdot p_{e}^{4}(H_{2})}{p_{e}(CH_{4}) \cdot p_{e}^{2}(H_{2}S)} = \frac{[CS_{2}]_{e} \cdot R \cdot T \cdot ([H_{2}]_{e} \cdot R \cdot T)^{4}}{[CH_{4}]_{e} \cdot R \cdot T \cdot ([H_{2}S]_{e} \cdot R \cdot T)^{2}} = \frac{[CS_{2}]_{e} \cdot ([H_{2}]_{e})^{4}}{[CH_{4}]_{e} \cdot ([H_{2}S]_{e})^{2}} \cdot (R \cdot T)^{2} = K_{c} \cdot (R \cdot T)^{2}$$

Calcúlase a constante de equilibrio en función das presións:

$$K_p = 1,2 \cdot 10^{-6} \cdot (0,082 \cdot 1000)^2 = 0,0079$$
 (presións en atm)

As respostas poden obterse na pestana «Equilibrio» da folla de cálculo <u>Quimica (gal)</u>. <u>Instrucións</u>. En DATOS, escriba:

LII DATTOS, CSCITOA.								,
Reacción axustada		CH₄	2	H_2S	CS_2	4	H_2	
Cantidade inicial		2		1				mol
Presión en	equilibrio						0,2	atm
Temperatura	T =	727	°C					
Volume	V =							
Presión total	<i>p</i> =	0,85	atm					
					(Calcular:	Volume	total

En RESULTADOS, elixa «Cantidade»:

Cantidade	SbCl₅(g	<u>;</u>)	\rightleftharpoons	$SbCl_3(g) +$	$Cl_2(g)$	mol
inicial	2,00	1,00		0	0	mol
reacciona	0,200	0,400	\rightarrow	0,200	0,800	mol
equilibrio	1,80	0,600		0,200	0,800	mol
Constantes	Constantes $K_c = 1,17 \cdot 10^{-6}$ (Con					
	$K_p = 0,00790$	(p en atm.)				
Volume(tot	tal) =	328 dm³ en equilibrio		Grao d	le disociación α =	30,0 %

Coa constante como dato

- 1. Considera o seguinte proceso en equilibrio a 686 °C: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$. As concentracións en equilibrio das especies son:
 - $[CO_2] = 0.086 \text{ mol/dm}^3$; $[H_2] = 0.045 \text{ mol/dm}^3$; $[CO] = 0.050 \text{ mol/dm}^3$ e $[H_2O] = 0.040 \text{ mol/dm}^3$.
 - a) Calcula K_c para a reacción a 686 °C.
 - b) Se se engadise CO₂ para aumentar a súa concentración a 0,50 mol/dm³, cales serían as concentracións de todos os gases unha vez restablecido o equilibrio?

(P.A.U. set. 14)

Rta.: a) $K_c = 0.517$; b) $[CO_2] = 0.47$; $[H_2] = 0.020$; [CO] = 0.075 e $[H_2O] = 0.065$ mol/dm³.

Datos Cifras significativas: 2

Temperatura $T = 686 \,^{\circ}\text{C} = 959 \,^{\circ}\text{K}$

Concentración no equilibrio de H_2 $[H_2]_e = 0.045 \text{ mol/dm}^3 H_2$

Concentración no equilibrio de CO_2 $[CO_2]_e = 0,086 \text{ mol/dm}^3 CO_2$

Concentración no equilibrio de H_2O [H_2O]_e = 0,040 mol/dm³ H_2O

Concentración no equilibrio de $CO [CO]_e = 0,050 \text{ mol/dm}^3 CO$

Concentración inicial de CO_2 no apartado b) $[CO_2]_0 = 0,50 \text{ mol/dm}^3 CO_2$

Incógnitas

Constante de equilibrio K_c

Concentracións no novo equilibrio [H₂]_{eb}, [CO₂]_{eb}, [H₂O]_{eb}, [CO]_{eb}

Ecuacións

Concentración da substancia X [X] = n(X) / V

Constantes do equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]_e^d \cdot \left[B\right]_e^b}$

Solución:

a) A constante de equilibrio K_c vale

$$K_c = \frac{[\text{H}_2\text{O}]_{\text{e}} \cdot [\text{CO}]_{\text{e}}}{[\text{H}_2]_{\text{e}} \cdot [\text{CO}_2]_{\text{e}}} = \frac{0,040 \text{ mol/dm}^3 \cdot 0,050 \text{ mol/dm}^3}{0,045 \text{ mol/dm}^3 \cdot 0,086 \text{ mol/dm}^3} = 0,52 \text{ (concentracións en mol/dm}^3)$$

b) Chamando x ás concentracións en mol/dm³ de CO_2 que reaccionan desde que a concentración de CO_2 é 0,50 mol/dm³ ata alcanzar o equilibrio, pódese escribir:

,,00 mor, am ara areamzar o equinomo, pouce	o coci						
		CO ₂	H_2	=	СО	H ₂ O	
Concentración inicial	[X] ₀	0,50	0,045		0,050	0,040	mol/dm³
Concentración que reacciona ou se forma	[X] _r	x	х	\rightarrow	х	x	mol/dm³
Concentración no equilibrio	[X] _{eb}	0,50 - x	0,045 - x		0,050 + x	0,040 + x	mol/dm³

A expresión da constante de equilibrio en función das concentracións é:

$$K_{c} = \frac{[H_{2}O]_{eb} \cdot [CO]_{eb}}{[CO_{2}]_{eb} \cdot [H_{2}]_{eb}} = \frac{(0.040 + x) \cdot (0.050 + x)}{(0.50 - x) \cdot (0.045 - x)} = 0.52$$

Resolvendo a ecuación de segundo grao dá dúas solucións. Unha delas (-0,79) non é válida, xa que supoñería a existencia de concentracións negativas no equilibrio. A outra solución é $x = 0,025 \text{ mol/dm}^3$. As concentracións no equilibrio son:

$$[CO_2]_{eb} = 0.475 \text{ mol/dm}^3$$

$$[H_2]_{eb} = 0.020 \text{ mol/dm}^3$$

$$[CO]_{eb} = 0.075 \text{ mol/dm}^3$$

$$[H_2O]_{eb} = 0,065 \text{ mol/dm}^3$$

As respostas poden obterse na pestana «Equilibrio» da folla de cálculo <u>Quimica (gal)</u>. <u>Instrucións</u>. En DATOS, escriba:

Reacción axustada	CO	H_2	CO	H_2O	
Cantio	lade inicial				

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 04/10/24

Sumario

EOUILIBRIO	QUÍMICO EN FASE GAS	
LOCILIDIGO	QUINTED EN TITOL ONE	

Con	datos do equilibrio1
1.	Nun recipiente de 2,0 dm³ introdúcense 0,043 moles de NOCl(g) e 0,010 moles de Cl₂(g). Péchase,
	quéntase ata unha temperatura de 30 °C e déixase que alcance o equilibrio, no que hai 0,031 moles
	de NOCl(g). Para o equilibrio: NOCl(g) $\rightleftharpoons \frac{1}{2}$ Cl ₂ (g) + NO(g), calcula:1
	a) O grao de disociación
	b) A concentración de cada gas
	c) O valor da constante K _c
	d) A presión parcial de cada gas
	e) A presión total
	f) O valor da constante K _p
2.	Nun matraz de 1,5 dm 3 , no que se fixo o baleiro, introdúcense 0,08 moles de N_2O_4 e quéntase a 35
	$^{\circ}$ C. Parte do N_2O_4 disóciase segundo a reacción: $N_2O_4(g) \rightleftharpoons 2$ $NO_2(g)$ e cando se alcanza o equilibrio
	a presión total é de 2,27 atm. Calcula a porcentaxe de N_2O_4 disociado3
3.	Á temperatura de 35 °C dispoñemos, nun recipiente de 310 cm³ de capacidade, dunha mestura gaso-
	sa que contén 1,660 g de N_2O_4 en equilibrio con 0,385 g de NO_2 4
	a) Calcula a K_c da reacción de disociación do tetraóxido de dinitróxeno á temperatura de 35 °C
	b) A 150 °C, o valor numérico de K_c é de 3,20. Cal debe ser o volume do recipiente para que estean
	en equilibrio 1 mol de tetraóxido e dous moles de dióxido de nitróxeno?
4.	Nun recipiente pechado introdúcense 2,0 moles de CH₄ e 1,0 mol de H₂S á temperatura de 727 °C,
	establecéndose o seguinte equilibrio: $CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$. Una vez alcanzado o
	equilibrio, a presión parcial do H ₂ é 0,20 atm e a presión total é de 0,85 atm. Calcule:
	a) Os moles de cada substancia no equilibrio e o volume do recipiente
0	b) O valor de K _c e K _p
	constante como dato
1.	Considera o seguinte proceso en equilibrio a 686 °C: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$. As concentration of the seguinte proceso en equilibrio a 686 °C: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$.
	tracións en equilibrio das especies son: $[CO_2] = 0.086 \text{ mol/dm}^3$; $[H_2] = 0.045 \text{ mol/dm}^3$; $[CO] = 0.050 \text{ mol/dm}^3$; $[H_2] = 0.045 \text{ mol/dm}^3$; $[CO] = 0.050 \text{ mol/dm}^3$
	mol/dm^3 e $[H_2O] = 0.040 \ mol/dm^3$
	a) Calcula K _c para a reacción a 686 °C
	b) Se se engadise CO ₂ para aumentar a súa concentración a 0,50 mol/dm³, cales serían as concen-
	tracións de todos os gases unha vez restablecido o equilibrio?