IBM Data science Capstone project

Predicting Seattle car accident severity

Renuka Devi Ulaganathan

October 3, 2020

Introduction:

With the prevailing traffic conditions around the globe, there is a need for an alert system that would predict the possiblity of an accident based on given conditions. Using machine learning techniques, a model can be built and trained from the past collision data available. The model thus trained shall be used to predict the occurrence of a collision and its severity and alert the parties involved.

1. Business understanding:

The Seattle government, in an effort to reduce the number of car collisions, wants to reduce the car accidents in Seattle. To implement this, a model to be developed to predict the possibility of car accidents given factors like accident spot, driving speed, weather, road, light conditions etc. This model will help in warning the local Seattle government, traffic police and the drivers on the targeted roads that will help in reducing the requency of accidents.

The target audience of this project is Seattle government, traffic police department, city traffic surveillance team, car drivers and the local residents in the neighbourhood.

2. Data understanding:

2.1 Source of the data:</u>

The collision data used for this project is taken from Seattle Department of Transport (SDOT) provided in capstone project introduction. The link for the data is https://s3.us.cloud-object-storage.appdomain.cloud/cf-courses-data/CognitiveClass/DP0701EN/version-2/Metadata.pdf).

The data is be downloaded from the portal and saved into a python dataframe for futher analytics.

 $--2020-10-11\ 06:24:14--\ https://s3.us.cloud-object-storage.appdomain.cloud/cf-courses-data/CognitiveClass/DP0701EN/version-2/Data-Collisions.csv$

Resolving s3.us.cloud-object-storage.appdomain.cloud (s3.us.cloud-object-storage.appdomain.cloud)... 67.228.254.196

Connecting to s3.us.cloud-object-storage.appdomain.cloud (s3.us.cloud-object-storage.appdomain.cloud) | 67.228.254.196 | :443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 73917638 (70M) [text/csv]

Saving to: 'collision_data.csv'

100%[=======] 73,917,638 42.9MB/s in 1.6s

2020-10-11 06:24:16 (42.9 MB/s) - 'collision_data.csv' saved [73917638/73917638]

Dataset downloaded successfully

/opt/conda/envs/Python36/lib/python3.6/site-packages/IPython/core/interactives hell.py:3020: DtypeWarning: Columns (33) have mixed types. Specify dtype optio n on import or set low memory=False.

interactivity=interactivity, compiler=compiler, result=result)

	SEVERITYCODE	х	Y	OBJECTID	INCKEY	COLDETKEY	REPORTNO	STAT
0	2	-122.323148	47.703140	1	1307	1307	3502005	Matc
1	1	-122.347294	47.647172	2	52200	52200	2607959	Matc
2	1	-122.334540	47.607871	3	26700	26700	1482393	Matc
3	1	-122.334803	47.604803	4	1144	1144	3503937	Matc
4	2	-122.306426	47.545739	5	17700	17700	1807429	Matc

5 rows × 38 columns

Taking a look at the collision dataset, we have 194,673 rows and 38 columns.

```
The number of columns is : 38
The number of (rows,columns) is : (194673, 38)
The size of the dataset is : 7397574
The data types of different columns are below :
```

SEVERITYCODE	int64
X	float64
Y	float64
OBJECTID	int64
INCKEY	int64
COLDETKEY	int64
REPORTNO	object
STATUS	object
ADDRTYPE	object
INTKEY	float64
LOCATION	object
EXCEPTRSNCODE	object
EXCEPTRSNDESC	object
SEVERITYCODE.1	int64
SEVERITYDESC	object
COLLISIONTYPE	object
PERSONCOUNT	int64
PEDCOUNT	int64
PEDCYLCOUNT	int64
VEHCOUNT	int64
INCDATE	object
INCDTTM	object
JUNCTIONTYPE	object
SDOT_COLCODE	int64
SDOT_COLDESC	object
INATTENTIONIND	object
UNDERINFL	object
WEATHER	object
ROADCOND	object
LIGHTCOND	object
PEDROWNOTGRNT	object
SDOTCOLNUM	float64
SPEEDING	object
ST_COLCODE	object
ST_COLDESC	object
SEGLANEKEY	int64
CROSSWALKKEY	int64
HITPARKEDCAR	object
dtype: object	

Taking a back up of the dataframe for any reference down the line, as we will now proceed with data cleaning

The target or dependent variable is **'SEVERITYCODE'** which determines the severity of the accident. Below are the possible values for this variable. However, the dataset provided in the capstone project has only '1' and '2' severity codes. so, our maachine learning technique will apply on the provided data source.

Severity codes:

- 0: Little to no Probability (Clear Conditions)
- 1: Very Low Probability Chance or Property Damage
- 2: Low Probability Chance of Injury
- 3: Mild Probability Chance of Serious Injury
- 4: High Probability Chance of Fatality

Out of the 38 columns present in the dataset, it is necessary to determine the predictor or independent variables that would influence the severity of the accident. Observing the data, the variables

'ADDRTYPE','WEATHER','ROADCOND','LIGHTCOND','UNDERINFL', 'COLLISIONTYPE','JUNCTIONTYPE' and 'SPEEDING' seem to more likely to impact the accident severity. Let us plot these variables against severity code and observe relationship between them.

Identify the unique values for each of these variables:

The frequency of address type is:

Block 126926
Intersection 65070
Alley 751
Name: ADDRTYPE, dtype: int64

The frequency of weather conditions is:

Clear	111135
Raining	33145
Overcast	27714
Unknown	15091
Other	5913
Snowing	907
Fog/Smog/Smoke	569
Sleet/Hail/Freezing Rain	113
Blowing Sand/Dirt	56
Severe Crosswind	25
Partly Cloudy	5
Name: WEATHER, dtype: int64	

The frequency of road conditions is:

Dry 124510 47474 Wet Unknown 15078 Other 5144 Ice 1209 1004 Snow/Slush Standing Water 115 Sand/Mud/Dirt 75 Oil 64 Name: ROADCOND, dtype: int64

The frequency of light conditions is:

```
Daylight
                           116137
Dark - Street Lights On
                            48507
Unknown
                            13473
Dusk
                             5902
Other
                             5405
Dawn
                             2502
Dark - No Street Lights
                             1537
                            1199
Dark - Street Lights Off
Dark - Unknown Lighting
                               11
Name: LIGHTCOND, dtype: int64
```

The distinct 'under influence' values and its respective counts are:

N 105158 0 80394 Y 5126 1 3995

Name: UNDERINFL, dtype: int64

The distinct speeding values and its respective counts are:

N 185340 Y 9333

Name: SPEEDING, dtype: int64

The frequency of collision types is:

 Parked Car
 47987

 Angles
 34674

 Rear Ended
 34090

 Other
 28607

 Sideswipe
 18609

 Left Turn
 13703

 Pedestrian
 6608

 Cycles
 5415

 Right Turn
 2956

 Head On
 2024

Name: COLLISIONTYPE, dtype: int64

The frequency of junction types is:

Mid-Block (not related to intersection) 89800
At Intersection (intersection related) 62810
Mid-Block (but intersection related) 22790
Driveway Junction 10671
Other 6329
At Intersection (but not related to intersection) 2098
Ramp Junction 166
Unknown 9

Name: JUNCTIONTYPE, dtype: int64

2.2 Data Cleaning:

The total number of null/NaN values for each variable is as follows:

CELTED THIS CODE	
SEVERITYCODE	5224
X	5334
Y	5334
OBJECTID	0
INCKEY	0
COLDETKEY	0
REPORTNO	0
STATUS	0
ADDRTYPE	1926
INTKEY	129603
LOCATION	2677
EXCEPTRSNCODE	109862
EXCEPTRSNDESC	189035
SEVERITYCODE.1	0
SEVERITYDESC	0
COLLISIONTYPE	4904
PERSONCOUNT	0
PEDCOUNT	0
PEDCYLCOUNT	0
VEHCOUNT	0
INCDATE	0
INCDTTM	0
JUNCTIONTYPE	6329
SDOT COLCODE	0
SDOT COLDESC	0
INATTENTIONIND	164868
UNDERINFL	4884
WEATHER	5081
ROADCOND	5012
LIGHTCOND	5170
PEDROWNOTGRNT	190006
SDOTCOLNUM	79737
SPEEDING	185340
ST_COLCODE	18
ST COLDESC	4904
SEGLANEKEY	0
CROSSWALKKEY	0
HITPARKEDCAR	0
dtype: int64	O .
20/PC. 111001	

Let us replace the null or NaN values of SPEEDING to N, null, NaN and 0 values of UNDERINFL to N and all other null values of predictor variables to 'other'

Now, Let us check if there are still any null values for these independent variables.

SEVERITYCODE	0
X	5334
Y	5334
OBJECTID	0
INCKEY	0
COLDETKEY	0
REPORTNO	0
STATUS	0
ADDRTYPE	0
INTKEY	129603
LOCATION	2677
EXCEPTRSNCODE	109862
EXCEPTRSNDESC	189035
SEVERITYCODE.1	0
SEVERITYDESC	0
COLLISIONTYPE	0
PERSONCOUNT	0
PEDCOUNT	0
PEDCYLCOUNT	0
VEHCOUNT	0
INCDATE	0
INCDTTM	0
JUNCTIONTYPE	0
SDOT_COLCODE	0
SDOT_COLDESC	0
INATTENTIONIND	164868
UNDERINFL	0
WEATHER	0
ROADCOND	0
LIGHTCOND	0
PEDROWNOTGRNT	190006
SDOTCOLNUM	79737
SPEEDING	0
ST_COLCODE	18
ST_COLDESC	4904
SEGLANEKEY	0
CROSSWALKKEY	0
HITPARKEDCAR	0
dtype: int64	

Good! We have got rid off Nan and NULL values for the independent variables.

2.3 Understanding of Target variable:

```
The severity codes by count is as follows:
1 136485
2 58188
Name: SEVERITYCODE, dtype: int64
<matplotlib.axes._subplots.AxesSubplot at 0x7f5363025b70>
```

2.3.1 Downsampling and Balancing the dataset:

As we see, the severity code '1'(property damage) is more than doubles the time of severity code '2'(Injury). Hence the dataset is highly unbalanced. It will be difficult to predict or apply machine learning algorithms on unbalanced dataset. Hence, I shall downsample the dataset to balance it.

Let us take these variables to understand what kind of impact it has on SEVERITYCODE.

The dataset is now balanced and can be used for machine learning. Severity cod e frequency is below.

5818858188

Name: SEVERITYCODE, dtype: int64

2.3.2 Feature selection:

As part of feature selection, let us drop the rest of the fields that are not part of independent variable list.

The variables part of dataframe are listed below:

SEVERITYCODE	int64
ADDRTYPE	object
COLLISIONTYPE	object
PERSONCOUNT	int64
PEDCOUNT	int64
PEDCYLCOUNT	int64
VEHCOUNT	int64
JUNCTIONTYPE	object
UNDERINFL	object
WEATHER	object
ROADCOND	object
LIGHTCOND	object
SPEEDING	object
dtype: object	

As a next step, want to understand if the variables **PERSONCOUNT,PEDCOUNT,PEDCYLCOUNT** and **VEHCOUNT** has impact on the severity code before doing **dimension reduction**. Let us draw the **correlation matrix** with these numerical data to analyze further.

2.3.3 Correlation Matrix of numeric variables:

Text(32.99999999999, 0.5, 'Vehicle, person and pedestrial counts')

From the correlation matrix above, we can see that the correlation coefficient is less than 0.5 for all the variables mapped and hence none of them have stronger relation between them. Comapring the variables against SEVERITYCODE, the variables **PERSONCOUNT,PEDCOUNT,PEDCYLCOUNT** and **VEHCOUNT** have **weaker relationship** with **severity code.** Hence these can be dropped from the dataframe.

Dropping PERSONCOUNT, PEDCOUNT, PEDCYLCOUNT, VEHCOUNT from the Data Frame

	SEVERITYCODE	ADDRTYPE	COLLISIONTYPE	JUNCTIONTYPE	UNDERINFL	WEATHER
25055	1	Intersection	Angles	At Intersection (intersection related)	0	Raining
65280	1	Intersection	Angles	At Intersection (intersection related)	0	Clear
86292	1	Intersection	Angles	At Intersection (intersection related)	N	Unknown
155111	1	Block	Sideswipe	Mid-Block (not related to intersection)	N	Clear
64598	1	Block	Head On	Mid-Block (not related to intersection)	0	Clear

Data Frame after drpping the pereson and vehicle counts:

SEVERITYCODE int64 object ADDRTYPE COLLISIONTYPE object object JUNCTIONTYPE UNDERINFL object WEATHER object ROADCOND object LIGHTCOND object object SPEEDING dtype: object

3. Exploratory data analysis:

The variable **UNDERINFL** currently has values '0','N','Y' and '1'. To keep it unform for machine learning, let us map 'N' to '0'and Y to '1'.

The values variable UNDERINFL is mapped to values 0 and 1

3.1 Relationship between ADDRTYPE and SEVERITYCODE:

	ADDRTYPE	SEVERITYCODE	ADDRCOUNT
2	Block	1	82450
3	Block	2	60192
5	Intersection	2	55638
4	Intersection	1	31862
6	Other	1	1462
0	Alley	1	602
7	Other	2	382
1	Alley	2	164

3.1.1 ADDRCOUNT vs SEVERITYCODE - Data Visualization

Text(0, 0.5, 'Number of accidents by Severity')

From the above, we can see that **ADDRCOUNT** has strong relationship with SEVERITYCODE influencing the accident severity. Hence, it should be considered as part of the independent variables to predict SEVERITYCODE.

3.2 Relationship between WEATHER and SEVERITYCODE:

	WEATHER	SEVERITYCODE	WEATHCOUNT
3	Clear	2	71680
		1	
2	Clear	•	64212
13	Raining	2	22352
12	Raining	1	18816
9	Overcast	2	17490
8	Overcast	1	16178
20	Unknown	1	12070
6	Other	1	4044
7	Other	2	2400
21	Unknown	2	1632
18	Snowing	1	606
5	Fog/Smog/Smoke	2	374
19	Snowing	2	342
4	Fog/Smog/Smoke	1	336
16	Sleet/Hail/Freezing Rain	1	70
17	Sleet/Hail/Freezing Rain	2	56
0	Blowing Sand/Dirt	1	30
1	Blowing Sand/Dirt	2	30
15	Severe Crosswind	2	14
14	Severe Crosswind	1	12
11	Partly Cloudy	2	6
10	Partly Cloudy	1	2

3.2.1 WEATHER vs SEVERITYCODE - Data Visualization

Text(0, 0.5, 'Number of accidents by Severity')

From the above, we can see that **WEATHER** has strong relationship with SEVERITYCODE influencing the accident severity. Hence, it should be considered as part of the independent variables to predict accident severity.

3.3 Relationship between LIGHTCOND and SEVERITYCODE:

	LIGHTCOND	SEVERITYCODE	LIGHTCOUNT
11	Daylight	2	77088
10	Daylight	1	65918
4	Dark - Street Lights On	1	29316
5	Dark - Street Lights On	2	28950
16	Unknown	1	10914
13	Dusk	2	3888
14	Other	1	3666
12	Dusk	1	3296
15	Other	2	2284
9	Dawn	2	1648
8	Dawn	1	1422
17	Unknown	2	1210
0	Dark - No Street Lights	1	1064
2	Dark - Street Lights Off	1	774
1	Dark - No Street Lights	2	668
3	Dark - Street Lights Off	2	632
7	Dark - Unknown Lighting	2	8
6	Dark - Unknown Lighting	1	6

3.3.1 LIGHTCOND vs SEVERITYCODE - Data Visualization

Text(0.5, 1.0, 'Light conditions impacting accident severity')

From the above, we can see that **LIGHTCOND** has strong relationship with SEVERITYCODE influencing the accident severity. The accident has resulted in injury mainly during daylight and dark when street lights are on. Hence, it should be considered as part of the independent variables to predict accident severity.

3.4 Relationship between UNDERINFL and SEVERITYCODE:

	UNDERINFL	SEVERITYCODE	INFLCOUNT
5	N	2	63850
4	N	1	62000
0	0	1	49524
1	0	2	45402
7	Υ	2	3878
3	1	2	3246
6	Υ	1	2802
2	1	1	2050

3.4.1 UNDRINFL vs SEVERITYCODE - Data Visualization

Text(0.5, 1.0, 'Alcohol Influence impacting accident severity')

From the above, we can see that **UNDERINFL** has weaker relationship with SEVERITYCODE in influencing the accident severity. We can see that the accident has resulted in property damage or injury when the driver is not under alcohol influence. Hence, it should **not be considered** as part of the independent variables to predict accident severity.

3.5 Relationship between ROADCOND and SEVERITYCODE:

	ROADCOND	SEVERITYCODE	ROADCOUNT
1	Dry	2	80128
0	Dry	1	71872
17	Wet	2	31510
16	Wet	1	27238
14	Unknown	1	12114
6	Other	1	3488
7	Other	2	2206
15	Unknown	2	1498
2	Ice	1	810
10	Snow/Slush	1	722
3	Ice	2	546
11	Snow/Slush	2	334
13	Standing Water	2	60
12	Standing Water	1	54
5	Oil	2	48
8	Sand/Mud/Dirt	1	48
9	Sand/Mud/Dirt	2	46
4	Oil	1	30

3.5.1 ROADCOND vs SEVERITYCODE - Data Visualization

Text(0.5, 1.0, 'Road conditions impacting accident severity')

From the above, we can see that **ROADCOND** has strong relationship with SEVERITYCODE influencing the accident severity. The accident has resulted in injury mainly when the road was dry and wet. Hence, it should be considered as part of the independent variables to predict accident severity.

3.6 Relationship between COLLISIONTYPE and SEVERITYCODE:

11/10/20, 12:13 pm

	COLLISIONTYPE	SEVERITYCODE	COLLNCOUNT	
10	Parked Car	1	38614	
15	Rear Ended	2	29342	
1	Angles	2	27248	
8	Other	1	18450	
0	Angles	1	17868	
14	Rear Ended	1	16466	
9	Other	2	14306	
18	Sideswipe	1	13794	
13	Pedestrian	2	11872	
7	Left Turn	2	10822	
3	Cycles	2	9488	
6	Left Turn	1	7052	
11	Parked Car	2	5324	
19	Sideswipe	2	5012	
16	Right Turn	1	1998	
5	Head On	2	1744	
17	Right Turn	2	1218	
4	Head On	1	1018	
12	Pedestrian	1	586	
2	Cycles	1	530	

3.6.1 COLLISIONTYPE vs SEVERITYCODE - Data Visualization

Text(0.5, 1.0, 'Collision type impacting accident severity')

From the barplot, we can see that **COLLISIONTYPE** has strong relationship with SEVERITYCODE influencing the accident severity. Hence, it should be considered as part of the independent variables to predict accident severity.

3.7 Relationship between JUNCTIONTYPE and SEVERITYCODE:

	JUNCTIONTYPE	SEVERITYCODE	JUNCNCOUNT	
0	At Intersection (but not related to intersection)	1	1290	
1	At Intersection (but not related to intersection)	2	1246	
2	At Intersection (intersection related)	1	30446	
3	At Intersection (intersection related)	2	54348	
4	Driveway Junction	1	6336	
5	Driveway Junction	2	6468	
6	Mid-Block (but intersection related)	1	13258	
7	Mid-Block (but intersection related)	2	14594	
8	Mid-Block (not related to intersection)	1	59890	
9	Mid-Block (not related to intersection)	2	38808	
10	Other	1	5074	
11	Other	2	800	
12	Ramp Junction	1	80	
13	Ramp Junction	2	108	
14	Unknown	1	2	
15	Unknown	2	4	

3.7.1 JUNCTIONTYPE vs SEVERITYCODE - Data Visualization

Text(0.5, 1.0, 'Junction types impacting accident severity')

From the barplot, we can see that **JUNCTIONTYPE** has strong relationship with SEVERITYCODE influencing the accident severity. The accidents are more at midblock and intersection points. Hence, it should be considered as part of the independent variables to predict accident severity.

3.8 Relationship between SPEEDING and SEVERITYCODE:

	SPEEDING	SEVERITYCODE	SPEEDCOUNT
0	N	1	111478
1	N	2	109314
3	Υ	2	7062
2	Υ	1	4898

3.8.1 SPEEEDING vs SEVERITYCODE - Data Visualization

Text(0.5, 1.0, 'Vehicle speeding impacting accident severity')

From the barplot above, we can see that **SPEEDING** has less impact on SEVERITYCODE influencing the accident severity. The accident has been reported more from vehicles which were not speeding. Hence, it should **not be considered** as part of the independent variables to predict accident severity.

At the end of Data visualization, we undersgtnad that **UNDERINFL** and **SPEEDING** cannot be relied upon to predict SEVERITYCODE. Let us remove them from dataframe.

UNDERINFL and SPEEDING has been dropped from the Data Frame.

	SEVERITYCODE	ADDRTYPE	COLLISIONTYPE	JUNCTIONTYPE	WEATHER	ROADCONE
25055	1	Intersection	Angles	At Intersection (intersection related)	Raining	Wet
65280	1	Intersection	Angles	At Intersection (intersection related)	Clear	Dry
86292	1	Intersection	Angles	At Intersection (intersection related)	Unknown	Unknown
155111	1	Block	Sideswipe	Mid-Block (not related to intersection)	Clear	Dry
64598	1	Block	Head On	Mid-Block (not related to intersection)	Clear	Dry

The variables used for Data modeling and Evaluation are below:

SEVERITYCODE int64 ADDRTYPE object COLLISIONTYPE object JUNCTIONTYPE object int64 UNDERINFL WEATHER object ROADCOND object LIGHTCOND object object SPEEDING dtype: object

4. Data Preprocessing:

The above indpendent variables are now categorical variables. To apply machine learning algorithms, we have to convert the categorical values to a dummy numeric values.

Let us do Label encoding to assign a unique numeric value to each catagory of variables.

	SEVERITYCODE	ADDRTYPE	COLLISIONTYPE	JUNCTIONTYPE	WEATHER	ROADCOND	LIGI
1	1	2	0	1	6	8	2
2	1	2	0	1	1	0	5
3	1	2	0	1	10	7	8
4	1	1	9	4	1	0	5
5	1	1	2	4	1	0	5

Now, we have the target variable balanced and the input feature standardized. Now ,the data is ready to be fed to build data models