Multimedia Analysis and Indexing

Homework #1

R01922024 Qing-Cheng Li

October 7, 2012

1 Algorithm

Accroding to this paper¹, I choice the *Histograms* algorithm to implement my "shot_detect" program. (I also tried the *Region Histograms* algorithm, but when there was a big object moved fast in frames, my program still said that is a shot. Finally I choice *Histograms* algorithm because its implementation is simple and its performance looks good on paper.)

First, reading frame (image) i in video, and resize this frame. I calculate the histogram H_i of this frame. (RGB: 64bins, R×G×B:4×4×4; HSV: 162bins, H×S×V:18×3×3; YIQ: 81bins, Y×I×Q:9×3×3)

Then, reading the next frame (image) i + 1, calculating its histogram H_{i+1} . If $D(i, i + 1) = |H_i - H_{i+1}| > T$, where T is a threshold I decided, here is a shot boundary. I found that it can detect cut, but it's hard to detect fade.

I observed the frames difference, I found that when there is a fade transition, from the start of this transition to the end of this transition, there are many frames difference is higher than threshold T but those frames are not continuous.

We can use the method below to detect shot boundaries.

¹J.S. Boreczky, L.A. Rowe, "Comparison of video shot boundary detection techniques," Proc of SPIE- Storage and Retrieval for Still Image and Video Databases IV, Vol. 2670, San Diego, 1996.

```
status \leftarrow NotFound
w \leftarrow 0
for frame i in video do
   if D(i-1,i) > T then
       w \leftarrow WindowSize
       end \leftarrow i
                                                              ▶ Transition end
       if status = NotFound then
           status \leftarrow Found
           start \leftarrow i
                                                             \triangleright Transition start
       end if
   else
       if status = Found then
           if w > 0 then
               w \leftarrow w - 1
                                     \triangleright Found a transition from start to end
           else
               status \leftarrow NotFound
               ShotBoundaries.append((start,end))
           end if
       end if
   end if
end for
if status = Found then
                                     ▶ Found a transition from start to end
   status \leftarrow NotFound
   ShotBoundaries.append((start,end))
end if
```

2

#	Genre	Transition Type	Frame Count	Average Shot Length (Frame)
01	News	Cut	829	63.7692
02	Trailer	Fade	1772	50.6286
03	Anime	Cut	493	61.6250
04	Anime	Cut	1052	87.6667
05	MV	Cut,Fade	1196	48.6829
06	Ad	Cut	1190	238.0000
07	Trailer	Cut	1859	116.1875
08	Ad	Cut,Fade	913	29.4516

I think HSV is better. It has bigger frame difference in 02.mpg, when using a threshold to determine shot boundaries, it's helpful. And take a look at 03.mpg, the peak about frame 170 is higher than the peak about frame 441, but frame 170 is not a shot boundary, if I want to detect frame 441 then I will also detect frame 170, it's not what I want, so I think HSV is better.

Figure 1: 02.mpg frame difference

Figure 2: 03.mpg frame difference

3

I think it's not really very well. Just need to modify the threshold for each video. But there are some transition type my program cannot detect even I use other color space, for example, 07.mpg frame 81-96.

4 Thresholds

除了08.mpg(多找2個,少找3個),運作非常良好,至多是多算一個或少找一個。不過如果對每個影片去挑選一個Threshold而不是共用一個Threshold的話結果會更好一點。而Threshold越高則Precision越高,Recall越低。

我自己認爲Threshold與影片的種類是相關的,我們使用Histogram來判斷是否進入另外一個Shot,是因爲Histogram的變化量可以用來衡量畫面中顏色分佈的改變是否夠大,大到超過Threshold而被我們判定爲這是Shot Boundary。不同主題內容種類的影像細膩的程度不同,因此發生改變的Threshold應該也會隨之有高有低。

不過影片畫面大小有限,所以當大部分pixel發生改變的時候應該存在一個比較低的Threshold可以偵測這樣的事件,可以讓程式運作的不會太差。

#	Threshold	Precision	Recall
1	40000	1.0000	1.0000
2	35000	1.0000	1.0000
3	40000	0.8571	1.0000
_3	60000	1.0000	1.0000
4	40000	0.9091	1.0000
5	40000	1.0000	0.9756
6	40000	1.0000	1.0000
7	40000	1.0000	0.9375
8	40000	0.9000	0.9355

5 Average Shot Length

觀察這8個影片,感覺沒什麼關聯。

6 Representive Frame

我認爲只要簡單的挑出中間的frame作爲代表的frame即可,因爲在一個Shot之中大多是相似的畫面,如果這個Shot想要表達什麼,不應該放在太前面或 太後面的frame出現,所以直接取中間的畫面會比較接近這個Shot的重點。

如果取第一個frame的話可能會遇到淡入時的frame,取到一片黑色這種意味不明的frame。

以下針對05.mpg試驗了取中間frame與取第一個frame的結果。雖然大致上看起來差不多,不過我自己覺得取中間frame的最左下那張和右下那張都比取第一個frame的還要好。

Figure 3: Take first frame as represent frame

Figure 4: Take middle frame as represent frame