The Design and Analysis of Algorithms

Lecture 19 Extending the Limits of Tractability

Zhenbo Wang

Department of Mathematical Sciences, Tsinghua University

Content

Finding Small Vertex Covers

Solving NP-Hard Problems on Trees

Circular Arc Coloring

Coping With NP-Completeness

- Q. Suppose I need to solve an NP-hard problem. What should I do?
- A. Theory says it is unlikely to find a poly-time algorithm.
- Practice. Must sacrifice one of three desired features.
 - 1. Solve arbitrary instances of the problem.
 - 2. Solve problem to optimality.
 - 3. Solve problem in polynomial time.
 - This lecture focuses on solving some special cases of NP-complete problems that arise in practice.

Vertex Cover

Def. Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \le k$, and for each edge (u, v) either $u \in S$, or $v \in S$, or both.

Finding Small Vertex Covers

- Claim. Let u v be an edge of G. G has a vertex cover of size $\leq k$ iff at least one of G u and G v has a vertex cover of size k 1.
 - Pf. " \Rightarrow " Suppose *G* has a vertex cover of size $\leq k$.

S contains either u or v (or both). Assume it contains u.

G - u is a vertex cover of G - u.

" \Leftarrow " Suppose S is a a vertex cover of size $\leq k - 1$.

Then $S \cup u$ is a vertex cover of G. \square

- Claim. If G has a vertex cover of size k, it has $\leq k(n-1)$ edges.
 - Pf. Each vertex covers at most n-1 edges. \Box

Finding Small Vertex Covers

Claim. The following algorithm determines if G has a vertex cover of size $\leq k$ in $O(2^k kn)$ time.

Vertex-Cover (G, k)

```
1: if G contains no edges then
```

2: return true

3: **else if** G contains $\geq kn$ edges **then**

4: return false

5: **else**

6: let (u, v) be any edge of G

7: a = Vertex - Cover(G - u, k - 1)

8: b = Vertex - Cover(G - v, k - 1)

9: **return** $a \lor b$

10: **end if**

Pf. Correctness follows previous two claims.

Recursion Tree

$$T(n,k) \le \begin{cases} cn & \text{if } k = 1 \\ 2T(n,k-1) + cnk & \text{if } k > 1 \end{cases} \Rightarrow T(n,k) \le 2^k ckn$$

There are $\leq 2^{k+1}$ nodes in the recursion tree; each invocation takes O(kn) time. \Box

Independent Set on Trees

Independent Set on Trees

Given a tree, find a maximum cardinality subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has at least two leaf nodes.

 Key observation. If v is a leaf, there exists a maximum size independent set containing v.

Independent Set on Trees

Pf. (exchange argument)

- Consider a max cardinality independent set S.
- If $v \in S$, we're done.
- If $u \notin S$ and $v \notin S$, then $S \cup v$ is independent $\Rightarrow S$ not maximum.
- If $u \in S$ and $v \notin S$, then $S \cup v u$ is independent. \square

Greedy Algorithm

Theorem 1

The following greedy algorithm finds a maximum cardinality independent set in forests(and hence trees).

Independent-Set-In-A-Forest (F)

- 1: *S* ← ∅
- 2: while F has at least one edge do
- 3: Let e = (u, v) be an edge such that v is a leaf
- 4: Add v to S
- 5: Delete from *F* nodes *u* and *v*, and all edges incident to them.
- 6: end while
- 7: return S
- Pf. Correctness follows from the previous key observation. □
- Remark. Can implement in O(n) time by considering nodes in postorder.

Weighted Independent Set on Trees

Weighted independent set on trees.

Given a tree and node weights $w_v > 0$, find an independent set S that maximizes $\sum_{v \in S} w_v$.

Observation 1

If (u, v) is an edge such that v is a leaf node, then either OPT includes u, or it includes all leaf nodes incident to u.

- Dynamic programming solution. Root tree at some node r.
- OPT_{in}(u) = max weight independent set rooted at u, containing u.
- OPT_{out}(u) = max weight independent set rooted at u, not containing u.

Weighted Independent Set on Trees

•
$$OPT_{in}(u) = w_u + \sum_{v \in children(u)} OPT_{out}(v)$$

•
$$OPT_{out}(u) = \sum_{v \in children(u)} max\{OPT_{in}(v), OPT_{out}(v)\}$$

children(u) = { v, w, x }

Theorem 2

The dynamic programming algorithm find a maximum weighted independent set in trees in O(n) time.

Greedy Algorithm

Weighted-Independent-Set-In-A-Forest (F)

```
1: Root the tree at a node r
2: for node u of T in postorder do
3: if u is a leaf then
4: M_{in}[u] = w_{ii}
5: M_{out}[u] = 0
6: else
         M_{in}[u] = w_u + \sum_{v \in \text{children}(u)} OPT_{out}(v)
         M_{out}[u] = \sum \max\{OPT_{in}(v), OPT_{out}(v)\}
8:
                     v∈children(u)
      end if
9:
10: end for
11: return max{M_{in}[r], M_{out}[r]}
```

Pf. Takes O(n) time since we visit nodes in postorder and examine each edge exactly once. \Box

Wavelength-Division Multiplexing (WDM)

Allows m communication streams (arcs) to share a portion of a fiber optic cable, provided they are transmitted using different wavelengths.

- Ring topology. Special case is when network is a cycle on n nodes.
- Bad news. NP-complete, even on rings.
 - Brute force. Can determine if k colors suffice in O(k^m) time by trying all k-colorings.
 - Goal. $O(f(k) \cdot poly(m, n))$ on rings.

Interval Coloring

Greedy algorithm finds coloring such that number of colors equals depth of schedule (maximum number of streams at one location).

Circular arc coloring.

Weak duality: number of colors \geq depth.

Strong duality does not hold.

max depth = 2 min colors = 3

Transforming Circular Arc Coloring to Interval Coloring

Circular arc coloring

Given a set of n arcs with depth $d \le k$, can the arcs be colored with k colors?

• Equivalent problem. Cut the network between nodes v_1 and v_n . The arcs can be colored with k colors iff the intervals can be colored with k colors in such a way that "sliced" arcs have the same color.

Dynamic programming algorithm

- Assign distinct color to each interval which begins at cut node v₀.
- At each node v_i, some intervals may finish, and others may begin.
- Enumerate all k-colorings of the intervals through v_i that are consistent with the colorings of the intervals through v_{i-1} .
- The arcs are k-colorable iff some coloring of intervals ending at cut node v₀ is consistent with original coloring of the same intervals.

Circular Arc Coloring: Running Time

• Running time: $O(k! \cdot n)$.

n phases of the algorithm.

Bottleneck in each phase is enumerating all consistent colorings.

There are at most k intervals through v_i , so there are at most k! colorings to consider.

Remark. This algorithm is practical for small values of k (say k = 10) even if the number of nodes n (or paths) is large.

Homework

- Read Chapter 10 of the textbook.
- Exercises 5 & 7 in Chapter 10.

