SVD i obcięte SVD

Grzegorz Mika

5 listopada 2017

1 Wstęp

Niech H,G będą przestrzeniami Hilberta, $A\colon H\to G$ niech będzie liniowym i ograniczonym operatorem między tymi przestrzeniami. Naszym zadaniem jest, mając dany $g\in G$, znaleźć taki $f\in H$, że

$$Af = q$$
.

Problem nazwiemy dobrze postawionym (well- posed) wg Hadamarda, gdy:

- dla dowolnego $g \in G$ istnieje $f \in H$ spełniający zadane równanie,
- rozwiązanie jest jedyne,
- rozwiązanie jest stabilne, czyli zależy w sposób ciągły od prawej strony równania.

Jeżeli choć jeden z warunków nie jest spełniony problem nazywamy źle postawionym (ill- posed). W przypadku braku stabilności, operator odwrotny A^{-1} jest nieograniczony, co może prowadzić do eksplozji rozwiązania nawet w przypadku niewielkiego zaburzenia wartości g, czyli rozpatrując lekko zaburzoną wersję g oznaczoną jako g_{ϵ} , dostajemy, że $f_{\epsilon} = A^{-1}g_{\epsilon}$ może być bardzo odległe od prawdziwej wartości f.

W przypadku stochastycznych problemów odwrotnych możemy rozpatrzeć następujący problem

$$Y = Af + \epsilon \xi$$
,

gdzie ϵ jest pewną liczbą determinującą poziom szumu, natomiast ξ jest losowym zaburzeniem mierzonej wartości. Podsumowując, przy rozwiązywaniu stochastycznych problemów odwrotnych spotykamy następujące problemy:

- jak poradzić sobie z losowym szumem w obserwacji?
- \bullet w jaki sposób "delikatnie" odwrócić operator A?
- jak wydajnie zaimplementować numeryczne rozwiązanie?

2 Teoria operatorów

Rozważmy liniowy operator ograniczony A między dwoma przestrzeniami Hilberta H, G. Założymy, że $D(A) = \{ f \in H : \exists_{g \in G} Af = g \} = H$.

Operatorem sprzężonym do operatora A nazywamy operator A^* taki, że $\forall_{f \in H} \forall_{g \in G} \langle Af, g \rangle = \langle f, A^*g \rangle$.

Operator A nazwiemy samosprzężonym, jeżeli $A = A^*$.

Operator $A \colon H \to H$ jest nieujemny, gdy $\forall_{f \in H} \langle Af, f \rangle \geq 0$ (odpowiednio dodatni).

Twierdzenie 1. Niech $A \in L(H, G)$. Wtedy

- $KerA = (RangeA^*)^{\perp} oraz \overline{RangeA} = (KerA^*)^{\perp}$,
- jeśli A jest iniektywny, to A*A też,
- $A^*A \in L(H)$ oraz A^*A jest dodatni i samosprzężony.

Dowód. Zauważmy, że $RangeA^{\perp} = \{g \in G : \langle Ag, g \rangle = 0 \ \forall f \in H\}.$

Wtedy dla dowolnych $f \in KerA$ i $g \in G$ mamy, że $0 = \langle Af, g \rangle = \langle f, A^*g \rangle$ a stąd $KerA = (RangeA^*)\bot$. Zamieniając A z A^* otrzymujemy, że $(KerA^*)^\bot = RangeA^\bot$, czyli $(KerA^*)^\bot = (RangeA^\bot)^\bot = \overline{RangeA}$, jako że rozpatrujemy przestrzenie Hilberta.

Korzystając z równości $\langle A^*Af,f\rangle=\langle Af,Af\rangle=||Af||^2,$ widzimy, że $KerA=KerA^*A.$

Analogicznie otrzymujemy, że $\langle A^*Af, f \rangle = \langle Af, Af \rangle = \langle f, A^*Af \rangle$ oraz $\langle A^*Af, f \rangle = ||Af||^2 \ge 0$, zatem operator A^*A jest samosprzężony i dodatni.

Wniosek 1. • $H = KerA \oplus KerA^{\perp} = KerA \oplus \overline{RangeA^*}$,

 $\bullet \ \ G = \overline{RangeA} \oplus RangeA^{\perp} = \overline{RangeA} \oplus KerA^*.$

3 Operatory zwarte

Definicja 1. Operator $A: H \to G$ nazywamy zwartym (compact), jeżeli dla każdego ograniczonego zbioru w H, jego obraz przez operator A jest względnie zwarty w G, czyli jego domknięcie jest zwarte w G. Przez K(H,G) będziemy oznaczać zbiór operatorów zwartych między przestrzeniami H i G.

Uwaga 1. Jeżeli $A \in K(H,G)$ oraz $dimH = \infty$ to operator A^{-1} jest nie-ograniczony.

Twierdzenie 2 (Reprezentacja spektralna). Niech A będzie samosprzężonym operatorem zwartym na przestrzeni Hilberta H. Wtedy istnieje zupełny układ funkcji własnych $E = \{f_j, j \in I\} \subset H$. Niech $J = \{j \in I: \lambda_j \neq 0\}$ oznacza zbiór tych indeksów dla których odpowiednie wartości własne są niezerowe, wtedy zbiór J jest przeliczalny oraz

$$\forall_{f \in H} \ Af = \sum_{j \in J} \lambda_j \langle f, f_j \rangle f_j.$$

Ponadto dla każdego $\delta > 0$ zbiór $J_{\delta} = \{j \in I : |\lambda_j| \geqslant \delta\}$ jest skończony a jedynym mozliwym punktem skupienia zbioru wartości własnych jest zero.

$$Dow \acute{o}d$$
. Bez dowodu.

Powyższe twierdzenie można stosować tylko do przypadku operatorów samosprzężonych i zwartych. O ile w dalszym ciągu będziemy zakładać zwartość operatora A, o tyle warunek samosprzężenia zostanie usunięty dzięki zamienieniu reprezentacji spektralnej na reprezentację singularną.

Twierdzenie 3. Niech $A: H \to G$ będzie operatorem zwartym na przestrzeniach Hilberta H, G. Wtedy istnieją skończony lub zbieżny do zera ciąg liczb dodatnich $\{b_n\}_{n\in I}$ oraz układy ortonormalne $\{v_n\}_{n\in I} \subset H$, $\{u_n\}_{n\in I} \subset G$ takie, że

- $Ker A^{\perp} = \overline{span\{v_n, n \in I\}},$
- $\overline{RangeA} = \overline{span\{u_n, n \in I\}},$
- $Af = \sum_{n} b_n \langle f, v_n \rangle u_n \text{ oraz } A^*g = \sum_{n} b_n \langle g, u_n \rangle v_n.$

Ponadto $g \in RangeA$ wtedy i tylko wtedy, gdy spełniony jest tzw. warunek Picarda

$$\sum_{n} b_n^{-2} |\langle g, u_n \rangle|^2 < \infty \text{ oraz } g = \sum_{n} \langle g, u_n \rangle u_n$$

Wtedy rozwiązania równania Af = g mają postać

$$f = f_0 + \sum_n b_n^{-1} \langle g, u_n \rangle v_n$$

 $przy\ czym\ f_0 \in KerA\ jest\ dowolne.$

Układ (u_n, v_n, b_n) nazywamy układem singularnym operatora A a jego reprezentację w postaci $Af = \sum_n \lambda_n \langle f, v_n \rangle u_n$ nazywamy dekompozycją według wartości osobliwych (singular value decomposition—SVD) operatora A.

Dowód. Dowód twierdzenia opiera się na wykorzystaniu twierdzenia spektralnego do operatora A^*A .

Operator A^*A jest samosprzężony, zwarty i dodatni, a zatem istnieją liczby $b_1^2 \geqslant b_2^2 \geqslant \cdots \geqslant 0$ oraz funkcje ortonormalne v_n takie, że $A^*Av_n = b_n^2v_n$. Niech $I = \{n \colon b_n > 0\}$ oraz przez u_n oznaczmy znormalizowane obrazy wektorów v_n , czyli $u_n = b_n^{-1}Av_n$ dla $n \in I$. Zauważmy, że $\langle u_k, u_l \rangle = b_k^{-1}b_l^{-1}\langle Av_k, Av_l \rangle = b_k^{-1}b_l^{-1}\langle v_k, A^*Av_l \rangle = b_k^{-1}b_l^{-1}\langle v_k, b_l^2v_l \rangle = \delta_{kl}$.

Korzystając w wykazanego wcześniej twierdzenia dostajemy, że $KerA^{\perp} = (KerA^*A)^{\perp} = \overline{RangeA^*A} = \overline{span}\{v_n, n \in I\}.$

Analogicznie rozpatrując operator AA^* z rozkładem spektralnym $AA^*u_n=b_n^2u_n$ dostajemy, że $\overline{RangeA}=\overline{span\{u_n,\ n\in I\}}$.

Tożsamości $Af = \sum_n b_n \langle f, v_n \rangle u_n$ oraz $A^*g = \sum_n b_n \langle g, u_n \rangle v_n$ otrzymujemy, zauważając, że $Af = \sum_n \langle Af, u_n \rangle u_n = \sum_n \langle Af, b_n^{-1} Av_n \rangle u_n = \sum_n \langle f, b_n^{-1} A^*Av_n \rangle u_n = \sum_n \langle f, b_n^{-1} b_n^2 v_n \rangle u_n = \sum_n b_n \langle f, v_n \rangle u_n$ oraz drugą analogicznie.

Z nierówności Bessela dostajemy, że $\sum_n |\langle f, v_n \rangle|^2 < \infty$, bo $f \in H$ a stąd $\sum_n |\langle f, v_n \rangle|^2 = \sum_n b_n^{-4} |\langle f, b_n^2 v_n \rangle|^2 = \sum_n b_n^{-4} |\langle f, A^* A v_n \rangle|^2 = \sum_n b_n^{-4} |\langle A f, A v_n \rangle|^2 = \sum_n b_n^{-4} |\langle f, b_n^2 v_n \rangle|^2 = \sum_n b_n^{-2} |\langle g, b_n^{-1} A v_n \rangle|^2 = \sum_n b_n^{-2} |\langle g, u_n \rangle|^2 < \infty$. W drugą stronę wnioskujemy, że jeśli spełniony jest warunek Picarda to możemy wypisać jawny wzór na rozwiązanie, gdyż odpowiedni szereg norm współczynników jest zbieżny i g jest sumą swojego szeregu Fouriera..

Ostatecznie możemy wnioskować, że $f = f_0 + \sum_n b_n^{-1} \langle g, u_n \rangle v_n$, gdzie $f_0 \in Ker A$.

Udało nam się zaprezentować działanie zwartego operatora w postaci jego rozwinięcia według wartości osobliwych w postaci $Af = \sum_n b_n \langle f, v_n \rangle u_n$ oraz

uzyskać postać szukanych rozwiązań w postaci $f = f_0 + \sum_n b_n^{-1} \langle g, u_n \rangle v_n$. Jednak takie rozwiązanie sytuacji stawia przed nami nowe problemy. Po pierwsze zauważmy, że jeżeli tylko g posiada niezerowe składowe w przestrzeni ortogonalnej do domknięcia obrazu operatora A równanie Af = g nie może być spełnione dokładnie. Niech $P: G \to \overline{RangeA}$ będzie rzutem ortogonalnym, czyli $\forall_{g \in G} Pg = \sum_n \langle g, u_n \rangle u_n$. Wtedy dla dowolnego elementu $f \in H$ mamy, że $||Af - g||^2 = ||Af - Pg||^2 + ||(1 - P)g||^2 \ge ||(1 - P)g||^2$.

Drugi problem związany jest ze zbieżnością szeregu w warunku Picarda. Z twierdzenia o reprezentacji spektralnej operatora zwartego samosprzężonego wiemy, że liczby $b_n \to 0$ gdy $n \to \infty$ a zatem liczby $b_n^{-2} \to \infty$ gdy $n \to \infty$ a nie mamy żadnej gwarancji, że liczby $\langle g, u_n \rangle$ zbiegają do zera odpowiednio szybko by zrównoważyć ten przyrost szczególnie w przypadku zaburzonej wartości y.

4 Przykłady

Przykład 1. Należy zauważyć i nie mylić wartości własnych operatora zwartego, które mogą nie istnieć, z jego wartościami osobliwymi. Rozważmy następujący przykład. Niech H=G i niech $\{e_n\}$ będzie zupełnym układem ortonormalnym w tej przestrzeni oraz rozważmy operator zadany następująco $Af=\sum_k\frac{1}{k}\langle f,e_k\rangle e_{k+1}$. Pokażemy teraz, że operator ten nie ma wartości własnych. Gdyby miał musiałoby być spełnione dla pewnych λ , f równanie $Af=\lambda f$. Korzystając z zupełności ukłądu $\{e_n\}$ możemy prawą stronę równania zapisać jako $\lambda\sum_{k=1}^{\infty}\langle f,e_k\rangle e_k$ i porównując odpowiednie współczynniki dostajemy, że $\forall_k\frac{1}{k}\langle f,e_k\rangle = \lambda\langle f,e_{k+1}\rangle$. Jeżeli $\lambda=0$ to f=0, jeżeli natomiast $\lambda\neq 0$, to dostajemy, że $\forall_k\langle f,e_{k+1}\rangle = \frac{1}{k!\lambda^k}\langle f,e_1\rangle$ i pozostaje zagadnienie znalezienia wartości $\langle f,e_1\rangle$. Licząc iloczyn skalarny $\langle Af,e_1\rangle = 0 = \langle \lambda f,e_1\rangle$, czyli $\langle f,e_1\rangle$ musi być zerem, czyli f=0, czyli operator A nie może mieć wartości własnych. Widać jednak od razu, że układ $(\frac{1}{k},e_k,e_{k+1})$ tworzy jego układ singularny.

5 Stochastyczny problem odwrotny

Powróćmy do sformułowania problemu z zaburzonymi pomiarami wyrażonymi w języku stochastyki, czyli niech $A\colon H\to G$ będzie zwartym operatorem między dwoma przestrzeniami Hilberta. Obserwując pewną zaburzoną

informację Y naszym zadaniem jest poznać $f \in H$ według modelu

$$Y = Af + \epsilon \xi$$

gdzie ϵ oznacza wielkość szumu.

Podamy teraz założenia jakie będzie musiał spełniać losowy szum.

Definicja 2. Stochastycznym błędem ξ nazwiemy Hilbert– space process, czyli ograniczony liniowy operator $\xi \colon G \to L^2(\Omega, \mathcal{F}, \mathbb{P})$ taki, że dla dowolnych elementów $g_1, g_2 \in G$ mamy zdefiniowane zmienne losowe $\langle \xi, g_i \rangle$ takie, że $\mathbb{E}\langle \xi, g_i \rangle = 0$ oraz możemy zdefiniować kowariancję Cov_{ξ} jako ograniczony liniowy operator ($||Cov_{\xi}|| \leq 1$) z przestrzeni G w przestrzeń G taki, że $\langle Cov_{\xi}g_1, g_2 \rangle = Cov(\langle \xi, g_1 \rangle, \langle \xi, g_2 \rangle)$.

Często wykorzystywanym modelem będącym idealizacją pewnych innych modeli jest model białego szumu.

Definicja 3. Powiemy, że losowy błąd ξ jest białym szumem, jeśli $Cov_{\xi} = I$ oraz indukowane zmienne losowe są gaussowskie, czyli dla dowolnych elementów $g_1, g_2 \in G$ mamy, że $\langle \xi, g_i \rangle \sim \mathcal{N}(0, ||g_i||^2)$ oraz $Cov(\langle \xi, g_1 \rangle, \langle \xi, g_2 \rangle) = \langle g_1, g_2 \rangle$.

Lemat 1. Niech ξ będzie białym szumem w przestrzeni G oraz niech $\{u_n\}$ będzie ortonormalną bazą tej przestrzeni. Oznaczając $\xi_k = \langle \xi, u_k \rangle$ dostajemy, że $\{\xi_n\}$ niezależnymi zmiennymi losowymi o tym samym standardowym rozkładzie gaussowskim.

Dowód. Z definicji
$$\xi_k = \langle \xi, u_k \rangle \sim \mathcal{N}(0, ||u_k||^2) = \mathcal{N}(0, 1)$$
 oraz $Cov(\langle \xi, u_n \rangle, \langle \xi, u_k \rangle) = \langle u_n, u_k \rangle = \delta_{nk}$.

Zauważmy, że gdy ξ jest białym szumem, Y nie jest elementem przestrzeni G a staje się operatorem działającym na przestrzeni G w następujący sposób

$$\forall_{g \in G} \langle Y, g \rangle = \langle Af, u_n \rangle + \epsilon \langle \xi, g \rangle$$

gdzie $\langle \xi, g \rangle \sim \mathcal{N}(0, ||g||^2)$.

Rozważmy teraz układ singularny (u_n, v_n, b_n) operatora zwartego A oraz niech ξ będzie białym szumem. Możemy wtedy zapisać rozpatrując projekcję Y na układ $\{u_n\}$, że

$$\langle Y, u_n \rangle = \langle Af, u_n \rangle + \epsilon \langle \xi, u_n \rangle = \langle Af, b_n^{-1} A v_n \rangle + \epsilon \xi_n = b_n^{-1} \langle A^* Af, v_n \rangle + \epsilon \xi_n = 0$$

$$b_n^{-1} \langle \sum_k b_k^2 \langle f, v_k \rangle v_k, v_n \rangle + \epsilon \xi_n = b_n \theta_n + \epsilon \xi_n$$

gdzie $\theta_n = \langle f, v_n \rangle$ są współczynnikami w rozwinięciu Fouriera funkcji f w bazie $\{v_n\}$.

Oznaczając przez $y_n = \langle Y, u_n \rangle$ możemy wyjściowy problem $Y = Af + \epsilon \xi$ zapisać w równoważnej postaci sequence space model jako

$$y_n = b_n \theta_n + \epsilon \xi_n, \ n = 1, 2, \dots$$

W tej postaci widać dokładnie trudności związane ze stochastycznymi problemami odwrotnymi. Jako że b_n są wartościami osobliwymi operatora zwartego mamy, że $b_n \to 0$ gdy $n \to \infty$, czyli widać, że wraz ze wzrostem n sygnał $b_n\theta_n$ staje się coraz słabszy i coraz trudniej estymować θ_n . Dodatkową trudnością jest fakt, że naszym celem jest estymacja współczynników θ_n a nie współczynników $b_n\theta_n$, dlatego możemy zapisać równoważną postać problemu

$$x_n = \theta_n + \epsilon \sigma_n \xi_n, \ n = 1, 2, \dots$$

gdzie $x_n = y_n/b_n$ oraz $\sigma_n = b_n^{-1}$, czyli $\sigma_n \to \infty$ gdy $n \to \infty$. Widzimy zatem, że wraz ze wzrostem n szum zaczyna dominować nad sygnałem czyniąc estymację θ_n trudną.

Zależnie od szybkości ucieczki wartości b_n do nieskończoności można podzielić problemy odwrotne na pewne kategorie

- direct, gdy $\sigma_n \approx 1$,
- mildly ill– posed, gdy $\sigma_n \simeq n^{\beta}$,
- severely ill– posed, gdy $\sigma_n \simeq \exp(\beta n)$.

Poszczególne kategorie problemów charakteryzują się coraz większą trudnością z uwagi na tempo "gubienia" sygnału pośród szumu.

6 Przykłady 2

Przykład 2. Rozważmy problem estymacji l– tej pochodnej funkcji. Niech $H = G = \mathcal{L}^2([0,1]), f \in C^k([0,1])$ będzie 1– periodyczną funkcją i zdefiniujmy model $Y = f + \epsilon \xi$, gdzie ξ jest białym szumem a naszym celem jest estymacja $f^{(l)} = D^l f$. Używając bazy trygonometrycznej $\{\phi_k = e^{2\pi i kx}\}$ możemy zapisać współczynniki funkcji f w tej bazie jako θ . Jest znane, że wtedy $f^{(l)} = \sum_{-\infty}^{\infty} (2\pi i k)^l \theta_k \phi_k$. Problem ten jest równoważny następującemu modelowi:

Obserwujemy $y_k = \theta_k + \epsilon \xi_k$ i próbujemy estymować współczynniki $\nu_k (2\pi i k)^l \theta$ co jest równoważne modelowi $y_k = (2\pi i k)^{-l} \nu_k + \epsilon \xi_k$ i próbie estymacji współczynników θ_k . Widać zatem, że problem ten jest mildly ill– posed.

Przykład 3. Rozważmy problem dekonwolucji. Niech $H = G = \mathbb{L}^2(\mathbb{R})$ oraz niech operator $A \colon H \to H$ będzie zdefiniowany następująco

$$(Af)(x) = \phi * f(t) = \int_{-\infty}^{\infty} \phi(x - y)f(y)dy.$$

Rozwiązanie tego problemu możemy znaleźć stosując transformatę Fouriera. Przypomnijmy, że dla całkowalnej funkcji f jej transformata Fouriera wyraża się wzorem $\hat{f}(t) = \int_{-\infty}^{\infty} f(x) \exp{(-ixt)} dx$. Stosując ją do naszego operatora otrzymujemy, że $\mathcal{F}(Af)(t) = \hat{\phi}(t)\hat{f}(t)$ a stąd rozwiązaniem jest funkcja $f(x) = \mathcal{F}^{-1}(\hat{\phi}^{-1}g)(x)$ jednak mamy problem ze zbieżnością tego rozwiązania! Jako, że transformata Fouriera jądra gaussowskiego wyraża się wzorem $\hat{\phi}(t) = e^{-t^2/2}$ jej odwrotność rośnie w tempie wykładniczym.

7 Obcięte SVD

Na początek rozważmy problem estymacji w nieparametrycznym modelu regresji

$$y_n = f(x_n) + \sigma \epsilon_n.$$

Naszym celem jest znalezienie funkcji f. W tym celu możemy posłużyć się metodą rzutowania na pewną bazę, na przykład trygonometryczną lub falkową. Funkcję f możemy wtedy zapisać w postaci szeregu $f = \sum_{n=1}^{\infty} a_n \phi_n$ i wtedy zadanie estymacji sprowadzi się do znalezienia współczynników rozwinięcia a_n . W przypadku obserwowania skończonej liczby pomiarów ciężko oczekiwać by udało się wyestymować nieskończoną liczbę parametrów (ciężko oczekiwać zbieżności tak otrzymanego szeregu), dlatego możemy zastosować następującą metodę: pierwsze N współczynników oszacujemy na podstawie posiadanych danych natomiast pozostałe współczynniki oszacujemy przez 0. Metoda ta znajduje swoje uzasadnienie w tym, że w przypadku gładkich funkcji f o jej kształcie decydują początkowe współczynniki, natomiast pozostałe stają się zaniedbywalne. Metoda ta posiada także pewne swoje modyfikacje (hard tresholding, soft tresholding) polegające na zastąpieniu przez

zero współczynników w pewnym sensie małych, szczególnie dobrze sprawujące się w przypadku funkcji posiadających sparse przedstawienie w pewnej bazie falkowej.

Podobną metodologię możemy spróbować zastosować w przypadku stochastycznych problemów odwrotnych z operatorami zwartymi posiadającymi dekompozycję według wartości osobliwych.

Rozważmy problem w postaci

$$x_n = \theta_n + \epsilon \sigma_n \xi_n, \ n = 1, 2, \dots$$

Wtedy możemy zaproponować następujący estymator dla współczynników θ_n

$$\hat{\theta}(N) = \begin{cases} x_k, & k \leqslant N \\ 0, & k > N \end{cases}.$$

Wtedy estymatorem elementu f staje się $\hat{f} = \sum_{k=1}^{N} x_k v_k$.

Liczbę N nazywamy bandwidth.

Na tak zaproponowaną metodę estymacji możemy również spojrzeć w następujący sposób. Niech $P_k \colon G \to span\{u_1, u_2, \dots, u_k\}$ będzie skończenie wymiarową projekcją ortogonalną $P_k g = \sum_{n=1}^k \langle g, u_n \rangle u_n$. Jako że P_k jest skończenie wymiarowe $P_k g \in RangeA$ dla dowolnego k oraz $P_k g \to Pg$ gdy $k \to \infty$, gdzie P oznacza projekcję ortogonalna na \overline{RangeA} (czyli to, co w zasadzie rozwiązujemy rozpatrując dekompozycję operatora według wartości osobliwych). Możemy wtedy rozpatrywać następującą modyfikację problemu

$$Af = P_k q, \ k \in \mathbb{N}.$$

Równanie to zawsze posiada rozwiązanie oraz biorąc iloczyn skalarny z wektorami u_n otrzymujemy, że

$$b_n \langle f, v_n \rangle = \begin{cases} \langle g, u_n \rangle, & n \leqslant k \\ 0, & n > k \end{cases}.$$

A zatem poszukiwane rozwiązanie możemy zapisać w postaci

$$f_k = f_0 + \sum_{n=1}^k b_n^{-1} \langle g, u_n \rangle v_n$$

dla pewnego $f_0 \in KerA$. Zauważmy również, że $||Af_k - Pg||^2 = ||(P - P_k)g||^2 \to 0$ gdy $k \to \infty$, czyli błąd popełniany przy zastąpieniu P przez P_k może być dowolnie mały.

Wybierając $f_0 = 0$ możemy zapisać następującą definicję

Definicja 4. Niech $A: H \to G$ będzie zwartym operatorem liniowym z rozkładem według wartości osobliwych (v_n, u_n, b_n) . Aproksymacją przez obcięcie SVD (TSVD) problemu Af = g nazwiemy problem znalezienia takiego $f \in H$, że

$$Af = P_k q, \ f \perp Ker A$$

dla pewnego $k \in \mathbb{N}$.

Tak postawiony problem posiada jedyne rozwiązanie w postaci obcięcia reprezentacji według wartości osobliwych (TSVD) w postaci

$$f_k = \sum_{n=1}^k b_n^{-1} \langle g, u_n \rangle v_n.$$

Problemem jaki pozostał jest dobranie odpowiedniego poziomu obcięcia k.

W celu oceny jakości estymatora posłużymy się błędem średniokwadratowym, czyli $R(f,\hat{f}) = \mathbb{E}(||f-\hat{f}||^2)$. Mając do dyspozycji układ wartości osobliwych możemy zapisać estymator uzyskany metodą TSVD w postaci $\hat{f} = \sum_{n=1}^k x_n v_n$. Dzięki temu możemy zauważyć, że jest to estymator liniowy z wektorem wag posiadających jedynki na pierwszych k pozycjach i zerach na pozostałych. Ryzyko estymatora możemy wtedy zapisać jako $R(f,\hat{f}) = \mathbb{E}(||f-\hat{f}||^2) = \mathbb{E}(\sum_n (\hat{f}_k - f_k)^2) = \sum_{n=k+1}^\infty \theta_n^2 + \sum_{n=1}^k \epsilon^2 \sigma_n^2$, czyli ryzyko estymatora TSVD wyraża się w bardzo prosty sposób.

Możemy teraz zastanowić się jak wybór k będzie wpływał na ryzyko estymatora TSVD

$$R(f, \hat{f}) = \sum_{n=k+1}^{\infty} \theta_n^2 + \sum_{n=1}^k \epsilon \sigma_n.$$

Z uzyskanego wzoru widzimy, że wraz ze wzrostem k zmniejsza się się obciążenie estymatora (ubywa pominiętych współrzędnych), ale rośnie wariancja, odwrotny skutek obserwujemy zmniejszając k- rośnie obciążenie, ale maleje wariancja. Optymalny wybór k powinien prowadzić do zbalansowania tych dwóch przeciwstawnych tendencji. Ogólnie wiadomo jednak, że wybór optymalnego poziomu odcięcia wymaga znajomości pewnych parametrów poszukiwanej funkcji (gładkość).

8 Przykłady 3

Przykład 4. W następującym przykładzie prześledzimy problemy związane z odwracaniem operatorów (nawet skończenie wymiarowych), poziomem obcięcia i występowaniem szumu.

Rozważmy transformację Laplace'a funkcji zdefiniowanej na odcinku $[0,\infty)$ zadanej jako

 $(\mathcal{L}f)(s) = \int_0^\infty e^{-st} f(t) dt.$

Uprościmy sytuację rozważając pewną dyskretną aproksymację tej transformaty zadaną na siatce $0 < s_1 < s_2 < \cdots < s_n < \infty$, wyrażającą się wzorem

$$(\mathcal{L}_d f)(s_j) = \sum_{k=1}^n w_k e^{-s_j t_k} f(t_k),$$

gdzie w_k , t_k są wybrane według jakiejś metody przybliżonego całkowania. W przykładzie z [2] zastosowano logarytmicznie rozłożone punkty siatki i 40 punktową kwadraturę Gaussa- Legendre'a obciętą do przedziału (0,5). Niech funkcja f będzie zadana wzorem

$$f(t) = t\mathbf{1}_{[0,1)} + \left(\frac{3}{2} - \frac{1}{2}t\right)\mathbf{1}_{[1,3)},$$

której transformatę można wyrazić jawnym wzorem

$$(\mathcal{L}f)(s) = \frac{1}{2s^2} \left(2 - 3e^{-s} + e^{-3s} \right).$$

Zadaniem jest teraz odtworzenie funkcji f na podstawie wartości jej transformaty w punktach s_j .

Bezpośrednia próba rozwiązania tego zagadnienia nawet pomijając jakikolwiek błąd addytywny prowadzi do katastrofalnych wyników z powodu fatalnego uwarunkowania tego zadania co wyraża się przez wskaźnik uwarunkowania tego zadania zdefiniowany w tym przypadku jako

$$\kappa(A) = ||A|| \ ||A^{-1}|| \approx 8, 5 \cdot 10^{20}.$$

Stąd nawet zaokrąglenia numeryczne prowadzą do poważnych zaburzeń wyniku.

W przypadku gdy pojawia się problem z odwróceniem macierzy możemy skorzystać z pseudoodwrotności Penrosa- Moora. Każdą macierz $A \in \mathbb{R}^{m \times n}$

można zdekomponować według wartości osobliwych $A = U\Lambda V^T$, gdzie $U \in \mathbb{R}^{m \times m}$ i $V \in \mathbb{R}^{n \times n}$ są macierzami ortogonalnymi, a $\Lambda \in \mathbb{R}^{m \times n}$ macierzą diagonalną z elementami $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_{(m,n)}$. Wtedy rozwiązanie zagadnienia Af = g ma rozwiązanie w postaci $f = f_0 + A^{\dagger}g$, gdzie A^{\dagger} jest właśnie pseudoodwrotnością Penrosa– Moora, zdefiniowaną jako $A^{\dagger} = V\Lambda^{\dagger}U^T$, gdzie $\Lambda^{\dagger} \in \mathbb{R}^{n \times m}$ jest macierzą diagonalną złożoną z odwrotności wartości singularnych wej macierzy A. Zauważmy, że gdy któraś z wartości singularnych wyjściowej macierzy jest bardzo mała jej odwrotność bardzo mocno rośnie, co może powodować, że zastosowanie wprost pseudoodwrotności P-M może skutkować niestabilnością wyniku i nawet błędy zaokrągleń mogą powodować eksplozję wyniku. Stąd potrzebne jest obcięcie pewnych najmniejszych wartości singularnych. W tym przypadku można zastosować discrepancy principle. Niech y będzie zaburzoną wersją 'czystego' y_0 i $||g-g_0|| \approx \epsilon$ i wtedy wybieramy poziom obcięcia k jako największy indeks spełniający $||g-Af_k|| = ||g-P_kg|| \geqslant \epsilon$.

Literatura

- [1] L. Cavalier, *Inverse Problems in Statistics* in P. Alquier et al., *Inverse problems and high- dimensional estimation*, Springer, 2011,
- [2] J. Kaipo, E. Somersalo, Statistical and computational inverse problems, Springer, 2004,
- [3] Z. Szkutnik, Statystyczne problemy odwrotne, notatki do wykładu,
- [4] L. Wasserman, All of nonparmetric statistics, Springer, 2006.