

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Т Фундаментальные науки	
КАФЕДРА	Прикладная математика	

Отчет по лабораторной работе №1 на тему:

"Прямые методы решения систем линейных алгебраических уравнений"

Студент	ФН2-51Б		И.Е. Дыбко
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Студент	ФН2-51Б		С. И. Тихомиров
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Проверил			А.О. Гусев
11p 020pmi		(Подпись, дата)	(И.О. Фамилия)

ОГЛАВЛЕНИЕ 2

Оглавление

1.	Описание использованных алгоритмов	2
	1.1. Метод Гаусса	2
	1.2. Метод вращения Гивенса	3
2.	Ответы на контрольные вопросы	4
3.	Ответы на дополнительные вопросы	7

1. Описание использованных алгоритмов

1.1. Метод Гаусса

Для начала представим систему в виде расширенной матрицы. СЛАУ запишем в виде матрицы коэффициентов с добавлением столбца свободных членов (расширенная матрица).

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Соответствующая расширенная матрица будет:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & | & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & | & b_2 \\ \vdots & \vdots & \ddots & \vdots & | & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & | & b_m \end{pmatrix}$$

Далее преобразуем расширенную матрицу к треугольному виду с нулями ниже главной диагонали. Цель — получить систему вида, где каждое уравнение имеет на одну переменную меньше:

$$\begin{cases} x_1 + a'_{12}x_2 + \dots + a'_{1n}x_n = b'_1 \\ x_2 + a'_{23}x_3 + \dots + a'_{2n}x_n = b'_2 \\ \vdots \\ x_n = b'_n \end{cases}$$

После того, как система приведена к треугольному виду, начинаем с последнего уравнения и поэтапно находим значения переменных:

$$x_n = b'_n$$

Подставляем x_n в предыдущее уравнение, чтобы найти x_{n-1} , и так далее, пока не будут найдены все переменные.

1.2. Метод вращения Гивенса

Метод Гивенса используется для нахождения QR-разложения путём последовательного применения элементарных вращений (матриц Гивенса), которые зануляют элементы под диагональю. Вращения Гивенса — это вращения в плоскости, которые применяются для зануления отдельных элементов матрицы, аналогично преобразованию отражений, но вращение воздействует только на две строки матрицы за раз.

Матрица вращения Гивенса $G(i, j, \theta)$ – это ортогональная матрица, которая зануляет элемент матрицы A в позиции a_{ij} (под диагональю), изменяя только строки i и j. Выглядит она следующим образом:

$$G(i, j, \theta) = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & c & \dots & s \\ & & \vdots & \ddots & \vdots \\ & & -s & \dots & c \\ & & & \ddots & \end{pmatrix}$$

Где:

$$c = \cos \theta, \qquad s = \sin \theta$$

Параметр θ выбирается таким образом, чтобы занулить элемент a-ij, то есть:

$$c = \frac{a_{ii}}{\sqrt{a_{ii}^2 + a_{ij}^2}}, \qquad s = \frac{a_{ij}}{\sqrt{a_{ii}^2 + a_{ij}^2}}$$

Для каждого элемента под диагональю $(a_{ij}, j < i)$ создаётся соответствующее вращение Гивенса. При умножении матрицы A слева на матрицу $G(i, j, \theta)$, происходит зануление элемента a_{ij} .

Процесс последовательно повторяется для всех элементов под диагональю, в результате чего матрица A становится верхнетреугольной — это и есть матрица R.

Каждое вращение Γ ивенса сохраняется как ортогональная операция, и после применения всех вращений к матрице A, матрица Q получается как произведение всех

обратных вращений. Поскольку каждое вращение Гивенса является ортогональной матрицей, их произведение также будет ортогональной матрицей.

Иными словами:

$$A = QR$$
 где $Q = G_1^T G_2^T \cdots G_k^T$

После нахождения QR-разложения решаем систему:

$$Rx = Q^T b$$

Так как матрица R — верхнетреугольная, система решается методом обратного хода.

2. Ответы на контрольные вопросы

1) Каковы условия применимости метода Гаусса без выбора и с выбором ведущего элемента?

Без выбора ведущего элемента: Метод Гаусса может быть применен, если на всех шагах на главной диагонали не возникает нулевых элементов:

$$a_{ii}^{(i-1)} \neq 0, i = 1, 2, \dots, n.$$

С выбором ведущего элемента: Метод с выбором ведущего элемента применим всегда, когда матрица невырожденная ($\det A \neq 0$).

- 2) Докажите, что если $\det A \neq 0$, то при выборе главного элемента в столбце среди элементов, лежащих не выше главной диагонали, всегда найдется хотя бы один элемент, отличный от нуля.
 - Для любой невырожденной матрицы обязательно существует хотя бы один ненулевой элемент в каждом столбце среди элементов, которые находятся на главной диагонали или ниже ее. В противном случае хотя бы один столбец состоял бы из нулей, что привело бы к нулевому определителю, что противоречит условию ($\det A \neq 0$):
- 3) В методе Гаусса с полным выбором ведущего элемента приходится не только переставлять уравнения, но и менять нумерацию неизвестных. Предложите алгоритм, позволяющий восстановить первоначальный порядок неизвестных.
 - Создадим два массива linearr и columnarr, где изначально будет числовая последованность $i=1,2,\ldots,n$. При перестановке уравнений (строк) или смене нумерации неизвестных (столбцов) будем менять элементы в этих массивах.
- 4) Оцените количество арифметических операций, требуемых для QRразложения произвольной матрицы A размера $n \times n$.

(а) Метод Грамма-Шмидта

Проекция вектора на другой вектор требует 2n операций. Для каждого из n столбцов вычисляется n-1 проекций.

$$\sum = 2n(n-1)n = 2n^3 - 2n^2 \sim 2n^3$$

(b) Метод отражений Хаусхолдера

Отражение Хаусхолдера для каждого столбца требует $2n^2$ операций, так как оно применяется ко всем элементам матрицы ниже диагонали. Для матрицы размером $n \times n$ таких отражений будет n-1.

$$\sum = 2n^2(n-1) = 2n^3 - 2n^2 \sim 2n^3$$

(с) Метод вращений Гивенса

Метод вращений Гивенса использует последовательные вращения для зануления элементов матрицы. Вращение затрагивает только два элемента одновременно, что делает метод особенно эффективным для разреженных матриц ($\sum = n^2$). Для плотных матриц, как правило, требуется также $\sum = n^3$ операций, так как необходимо применять множество вращений ко всем элементам матрицы.

5) Что такое число обусловленности и что оно характеризует? Имеется ли связь между обусловленностью и величиной определителя матрицы? Как влияет выбор нормы матрицы на оценку числа обусловленности?

Числом обусловленности $M_A = ||A^{-1}|| ||A||$ называется числом обусловленности матрицы A (и A^{-1} в силу симметрии формулы). Оно характеризует, насколько сильно ошибка в данных может повлиять на решение задачи.

Если матрица плохо обусловлена (большое число обусловленности), то матрица близка к вырожденной, что связано с малым значением определителя. Матрица с маленьким числом обусловленности близка к ортогональной или хорошо обусловленной. Норма матрицы влияет на оценку числа обусловленности: в зависимости от выбранной нормы $\|\cdot\|$ значение M_A может различаться.

- 6) Как упрощается оценка числа обусловленности, если матрица является:
 - (а) диагональной;
 - (b) **симметричной**;
 - (с) ортогональной;
 - (d) положительно определенной;

- (е) треугольной?
- (a) Диагональная матрица: $M_A = \frac{\max(|a_{ii}|)}{\min(|a_{ii}|)}$
- (b) Симметричная матрица: оценка зависит только от собственных значений. Если матрица симметрична и положительно определена, то M_A можно оценить через отношение наибольшего и наименьшего собственных значений.
- (c) Ортогональная матрица: $M_A = 1$, так как $A_{-1} = A_T$ и $||A|| = ||A_{-1}|| = 1$
- (d) **Положительно определенная:** оценка зависит от собственных значений; чем больше разброс, тем выше число обусловленности.
- (e) **Треугольная матрицая:** число обусловленности зависит от отношения наибольшего и наименьшего диагональных элементов.
- 7) Применимо ли понятие числа обусловленности к вырожденным матрицам?

Для вырожденных матриц ($\det A = 0$) число обусловленности формально не определено, так как A^{-1} не существует. Однако, если матрица почти вырожденная, можно использовать псевдообратную матрицу A^+ для оценки обусловленности.

8) В каких случаях целесообразно использовать метод Гаусса, а в каких — методы, основанные на факторизации матрицы?

Метод Гаусса эффективен для решения систем линейных уравнений с квадратными матрицами, если матрица не слишком плохо обусловлена.

Методы факторизации предпочтительны, когда требуется решить несколько систем с одной и той же матрицей, но разными векторами правых частей. Они также более устойчивы при вычислениях с плавающей запятой и в случае плохо обусловленных матриц.

- 9) Как можно объединить в одну процедуру прямой и обратный ход метода Гаусса? В чем достоинства и недостатки такого подхода? Можно объединить прямой и обратный ход метода Гаусса, используя модифицированную схему, где вычисления производятся непосредственно в ходе исключения. Это уменьшает количество операций ввода-вывода, но усложняет алгоритм и снижает его численную устойчивость.
- 10) Объясните, почему, говоря о векторах, норму $\|\cdot\|_1$ часто называют октаэдрической, норму $\|\cdot\|_2$ шаровой, а норму $\|\cdot\|_\infty$ кубической. Норма $\|\cdot\|_1$ называется октаэдрической, потому что геометрическое место всех точек вектора с такой нормой образует октаэдр.

Норма $\|\cdot\|_2$ называется шаровой, потому что множество всех векторов с такой нормой образует сферу в евклидовом пространстве.

Норма $\|\cdot\|_{\infty}$ называется кубической, потому что множество точек с такой нормой образует гиперкуб (или куб в трёхмерном пространстве).

3. Ответы на дополнительные вопросы

1) Вопрос №1 (Определение минора)

Минором порядка k матрицы A типа $m \times n$ называют определитель, который составлен из элементов этой матрицы, стоящих на пересечении произвольно выбранных k строк и k столбцов с сохранением порядка этих строк и столбцов.

- 2) Вопрос №3 (Пример)
- 3) Вопрос №5 (Число обусловленности = 200. Матрица хорошо обусловлена или нет?)

В зависимости от относительной погрешности задания коэффициентов правой части системы.

Пример

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 1 & 0, 01 \end{pmatrix}$$

Число обусловленности $M_A=200,005$. При этом относительная погрешность задания коэффициентов правой части системы в 1 % привела к относительной погрешности ее решения в 100 %.

4) Вопрос №7 (На примере системы из 2-х уравнений дать геометрическую интерпритацию плохо обусловленной системы, вырожденной системы)

Рассмотрим следующую систему уравнений:

$$\begin{cases}
0.00001x + 0.00034y = 0.00456, \\
0.0005x + 3.123y = 1.234.
\end{cases}$$
(1)

Число обусловлености у этой системы $M_A = 314094$.

Эти две прямые практически параллельны, но пересекаются в одной точке. Поскольку углы между ними очень малы (1.68468° и 0.0091732° соответственно), малейшее изменение в коэффициентах системы может сильно изменить положение решения.

 Вопрос №8 (Подсчитать число операций в модифицированном матоде Гаусса)

Рис. 1. График функций СЛАУ (1)

Поскольку модифицированная схема не уменьшает количество операций на этапе прямого хода, общая сложность остаётся $O(n^3)$. Основное преимущество – это оптимизация по числу операций ввода-вывода и экономия времени за счёт совмещения процессов. Но с точки зрения арифметической сложности, модифицированная схема метода Гаусса остаётся такой же, как и классический метод – $O(n^3)$.

6) Вопрос №10 (Какие нормы называются эквивалентными? Картинки норм)

Две нормы p и q, заданные на пространстве V называются **эквивалентными**, если $\forall x \in V, \exists \alpha, \beta \in \mathbf{R} : \alpha p(x) \leqslant q(x) \leqslant \beta p(x)$

Рис. 2. нормы