Ecuaciones Diferenciales Ordinarias (EDO)

Repaso Módulo I

Comisión B3 - 2024

- 1. (a) Halle la solución y(x) al siguiente Problema de Valor Inicial: $\begin{cases} y'-\frac{1}{x^2-4}y=0\\ y(3)=5 \end{cases}$
 - (b) Halle la familia de curvas ortogonales a y = C(x+1). Graficar algunas curvas de ambas familias.
- 2. (a) Resuelva el siguiente Problema de Valor Inicial. Grafique la solución hallada: $\begin{cases} y' + 3y = 6 \\ y(0) = 4 \end{cases}$
 - (b) Halle la familia de curvas ortogonales en todo punto (x, y) a la familia $y = C(x 2)^2$.
- 3. Halle $y = \varphi(x)$ tal que su gráfica pase por el punto de coordenadas (1,0) y tenga en cada punto (x,y) pendiente igual a $\frac{1-y}{x-2}$.
- 4. Resuelva el siguiente Problema de Valor Inicial: $\begin{cases} y'+y=e^x\\ y(0)=1 \end{cases}$. Indique que tipo de ecuación diferencial es y si la solución hallada es única, justificando adecuadamente.
- 5. (a) Halle la solución general de $(\sec^2 x \cos y)dx + (\sec^2 y + x \sin y)dy = 0$.
 - (b) Halle $y = \varphi(x)$ tal que su gráfica pase por el punto (1, -2) y tenga, en cada punto (x, y), pendiente igual a y 2x.
- 6. (a) ¿Puede asegurar si el siguiente PVI tiene solución? y si la tiene, ¿puede asegurar que sea única? Justifique adecuadamente. $\begin{cases} y' = \frac{2x}{x^2 1} \\ y(2) = 1 \end{cases}$

1

- (b) Si existe, halle la solución única del PVI anterior.
- (c) Halle la solución general de la ecuación diferencial (x + y)dx + (x + 2y)dy = 0.
- 7. (a) Halle la solución particular de $y' + \frac{3y}{1+x} = 2$ que pasa por (1,2).
 - (b) Halle la familia de curvas ortogonales a $F_1: \frac{x^2}{4} + y^2 = C^2$.

- 8. (a) Resolver el PVI que modela un decaimiento exponencial: $\begin{cases} \frac{dN(t)}{dt} = -3N(t)\\ N(0) = 1 \end{cases}$
 - (b) Halle para que valor de t se tiene que $N(t) = \frac{1}{2}$.
 - (c) Halle la solución general de la siguiente ecuación diferencial $\frac{dy}{dx} + 3y = xe^{-2x}$.
- 9. (a) Halle la solución general de $y' + \frac{1}{x}y = 4$.
 - (b) Halle la solución particular de la ecuación diferencial $(\cos x + \ln y)dx + \left(e^y + \frac{x}{y}\right)dy = 0$ que pasa por el punto (0,1).
 - (c) Halle la familia de curvas ortogonales a $y^2 = x + C$. Grafique añgunas curvas de ambas familias.
- 10. (a) Dadas las familias de curvas $F_1: y^2 = \alpha x$ y $F_2: 2x^2 + y^2 = C^2$, pruebe que son ortogonales en todo punto (x, y).
 - (b) Resuelva el siguiente PVI solo en el caso de que se garantice la existencia y unicidad de la solución, justificando adecuadamente. $\begin{cases} \frac{dy}{dx} = 3x + 2y \\ y(0) = \frac{3}{2} \end{cases}$