Übungen zum Ferienkurs Analysis II 2014

Topologie, Differenzieren, Taylorreihen

1.1 Differenzieren

- a) Zeigen Sie dass die Abbildung $f: \mathbb{R}^n \to \mathbb{R}^n, \ x \mapsto y \cdot ||x||$ bei $0 \in \mathbb{R}^n$ differenzierbar ist und dass $\mathrm{Df}(0) = 0$ gilt.
- b) Zeigen Sie, dass für $a, b \in \mathbb{R}^n$ die Abbildung $f : \mathbb{R}^{n \times n} \to \mathbb{R}^n$, $X \mapsto X \cdot a + b$ an jeder Stelle X $in\mathbb{R}^{n \times n}$ differenzierbar ist und dass Df(X)=a gilt.

1.2 Differenzierbarkeit

Untersuchen Sie die Funktion $h: \mathbb{R}^2 \to \mathbb{R}$,

$$h(x) := \begin{cases} \frac{\sin(x_1)\sin(x_2)}{x_1^2 + x_2^2} & x \neq 0\\ 0 & \text{sonst} \end{cases}$$

im Punkt $0 \in \mathbb{R}^2$ auf Stetigkeit, partielle Differenzierbarkeit und Differenzierbarkeit.

1.3 Taylorpolynom

Berechnen Sie das zweite Taylorpolynom von $f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = exp(x-y)$ an der Stelle (0,0).

1.4 Taylorreihe

Sei $D = \{(x,y) \in \mathbb{R}^2 \mid xy \leq 0\}$ und $f: D \to \mathbb{R}$ gegeben durch $f(x,y) = \cos x + y(y+2)$ und sei (x_0,y_0) einer der kritischen Punkte. Bestimmen Sie das Taylorpolynom zweiten Grades von fum den Entwicklungspunkt $(\pi,-1)$

1.5 Taylorpolynom

Bestimmen Sie das Taylorpolynom dritter Ordnung der Funktion

$$f:]-1,\infty[\to\mathbb{R}, \qquad f(x):=rac{1}{1+x^3}$$

zum Entwicklungspunkt 0.

1.6 Existenz einer Funktion

Gibt es eine Funktion f $inC^2(\mathbb{R}^2)$, sodass $\frac{\partial f}{\partial x}(x,y) = sin(x,y) = \frac{\partial f}{\partial y}(x,y)$ für alle $(x,y) \in \mathbb{R}^2$ gilt?

