I hereby certify that this correspondence is being deposited with the U.S. Postal Service as Express Mail, Airbill No. EV 309 880 265 US, in an envelope addressed to: MS Patent Application, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450, on the date shown below.

Dated: August 28, 2003

For: FUEL CELL

Signature:

Docket No.: TOW-039

Examiner: Not Yet Assigned

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of: Tadashi Tsunoda	
Application No.: NEW APPLICATION	
Filed: Concurrently Herewith	Art Unit: N/A

CLAIM FOR PRIORITY AND SUBMISSION OF DOCUMENTS

MS Patent Application Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Applicant hereby claims priority under 35 U.S.C. 119 based on the following prior foreign applications filed in the following foreign countries on the dates indicated:

Country	Application No.	Date
Japan	2002-249371	August 28, 2002
Japan	2003-134200	May 13, 2003

In support of this claim, a certified copy of each said original foreign application is filed herewith.

Application No.: NEW APPLICATION Docket No.: TOW-039

Applicant believes no fee is due with this response. However, if a fee is due, please charge our Deposit Account No. 12-0080, under Order No. TOW-039 from which the undersigned is authorized to draw.

Dated: August 28, 2003

Respectfully submitted,

Anthony A. Lauremano Registration No.: 38,220

LAHIVE & COCKFIELD, LLP

28 State Street

Boston, Massachusetts 02109

(617) 227-7400

(617) 742-4214 (Fax)

Attorney/Agent For Applicant

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 8月28日

出願番号

Application Number:

特願2002-249371

[ST.10/C]:

[JP2002-249371]

出 願 人 Applicant(s):

本田技研工業株式会社

2003年 6月 3日

特許庁長官 Commissioner, Japan Patent Office

特2002-249371

【書類名】 特許願

【整理番号】 PCB16926HK

【提出日】 平成14年 8月28日

【あて先】 特許庁長官殿

【国際特許分類】 H01M 8/00

【発明者】

【住所又は居所】 埼玉県和光市中央1丁目4番1号 株式会社本田技術研

究所内

【氏名】 角田 正

【特許出願人】

【識別番号】 000005326

【氏名又は名称】 本田技研工業株式会社

【代理人】

【識別番号】 100077665

【弁理士】

【氏名又は名称】 千葉 剛宏

【選任した代理人】

【識別番号】 100116676

【弁理士】

【氏名又は名称】 宮寺 利幸

【選任した代理人】

【識別番号】 100077805

【弁理士】

【氏名又は名称】 佐藤 辰彦

【手数料の表示】

【予納台帳番号】 001834

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9711295

【包括委任状番号】 0206309

【プルーフの要否】 要

【書類名】明細書

【発明の名称】

燃料電池

【特許請求の範囲】

【請求項1】

電解質をアノード電極とカソード電極とで挟んで構成される複数の電解質・電 極接合体がセパレータ間に配設される燃料電池であって、

前記セパレータは、互いに積層される第1および第2プレートを備え、

前記第1および第2プレート間には、前記アノード電極に燃料ガスを供給する ための燃料ガス通路、および前記カソード電極に酸化剤ガスを供給するための酸 化剤ガス通路が形成されており、

前記セパレータは、前記複数の電解質・電極接合体で反応に使用された後の燃料ガスおよび酸化剤ガスを、排ガスとして積層方向に排出する排ガス通路と、

前記排ガス通路内に配置され、使用前の燃料ガスを前記積層方向に供給する燃料ガス供給連通孔と、

前記燃料ガス供給連通孔と前記燃料ガス通路とを連通するとともに、前記排ガス通路を前記積層方向に交差するセパレータ面方向に横切って配置される燃料ガス分配通路と、

を備えることを特徴とする燃料電池。

【請求項2】

請求項1記載の燃料電池において、前記排ガス通路は、前記セパレータの中央 部に設けられることを特徴とする燃料電池。

【請求項3】

請求項1または2記載の燃料電池において、前記燃料ガス供給連通孔は、前記 排ガス通路の中央部に設けられることを特徴とする燃料電池。

【請求項4】

請求項1または2記載の燃料電池において、前記排ガス通路は、前記燃料ガス 通路および前記酸化剤ガス通路が設けられている面側とは異なる面側に、かつ該 燃料ガス通路および該酸化剤ガス通路と隣接して設けられることを特徴とする燃

料電池。

【請求項5】

請求項1記載の燃料電池において、前記第1および第2プレートは、それぞれの一方の面に第1および第2凸部を設け、

前記第1および第2プレートの他方の面同士を対向させることにより、前記第 1および第2凸部間に形成される空間部を前記燃料ガス供給連通孔として構成す ることを特徴とする燃料電池。

【請求項6】

請求項5記載の燃料電池において、複数の前記セパレータを積層するとともに、一方のセパレータを構成する第1プレートの第1凸部と他方のセパレータを構成する第2プレートの第2凸部との間に、前記空間部をシールするためのシール部が介装されることを特徴とする燃料電池。

【請求項7】

請求項5または6記載の燃料電池において、前記第1および第2プレートは、 それぞれの他方の面に第1および第2突起部を設け、

前記第1および第2突起部同士を接合することにより、前記第1および第2プレート間に前記燃料ガス通路および前記燃料ガス分配通路を形成することを特徴とする燃料電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、電解質をアノード電極とカソード電極とで挟んで構成される複数の電解質・電極接合体がセパレータ間に配設される燃料電池に関する。

[0002]

【従来の技術】

通常、固体電解質型燃料電池(SOFC)は、電解質に酸化物イオン導電体、 例えば、安定化ジルコニアを用いており、この電解質の両側にアノード電極およ びカソード電極を対設して構成される単セル(電解質・電極接合体)を、セパレ ータ(バイポーラ板)によって挟持することにより構成されている。この燃料電 池は、通常、所定数だけ連続的に積層して燃料電池スタックとして使用されている。

[0003]

この種の燃料電池において、カソード電極に酸化剤ガス、例えば、主に酸素を含有するガスあるいは空気(以下、酸素含有ガスともいう)が供給されると、前記カソード電極と電解質との界面でこの酸化剤ガス中の酸素がイオン化(〇²⁻)され、酸素イオンが電解質を通ってアノード電極側に移動する。その間に生じた電子が外部回路に取り出され、直流の電気エネルギとして利用される。なお、アノード電極には、燃料ガス、例えば、主に水素を含有するガス(以下、水素含有ガスともいう)やCOが供給されているために、このアノード電極において、酸素イオン、電子および水素(またはCO)が反応して水(またはCO₂)が生成される。

[0004]

一般的に、固体電解質型燃料電池は、作動温度が800℃~1000℃と高温であるため、高温の排熱を利用して燃料ガスの内部改質が可能であるとともに、例えば、ガスタービンを回して発電することができる。従って、固体電解質型燃料電池は、各種燃料電池の中でも、最も高い発電効率を有しており、ガスタービンとの組み合わせの他、車載用としての利用が望まれている。

[0005]

ところで、安定化ジルコニアは、イオン導電率が低いため、大電流を得ようとすると、前記安定化ジルコニアを薄膜状に構成する必要がある。しかしながら、安定化ジルコニアの機械的強度が弱くなり、固体電解質型燃料電池の大型化を図ることができないという不具合が指摘されている。

[0006]

そこで、例えば、特開平6-310164号公報(以下、従来技術1という)に開示されているように、金属製セパレータに小面積の単セルが複数個配列されるとともに、前記単セルの中央部に燃料ガス供給孔および酸化剤ガス供給孔が形成された固体電解質型燃料電池が知られている。この従来技術1では、一平面におけるセルの総面積を増大することができるとともに、基板の破損を阻止して信

頼性を向上させることが可能になる、としている。

[0007]

【発明が解決しようとする課題】

しかしながら、上記の従来技術1では、単セルの略中央部に燃料ガス供給孔および酸化剤ガス供給孔が貫通形成されるとともに、燃料ガス通流溝または酸化剤ガス通流溝が形成されている。このため、単セル自体の機械的強度が低下してしまい、例えば、燃料電池の運転時に熱破壊が発生し易いという問題が指摘されている。

[0008]

そこで、例えば、特開平8-279364号公報(以下、従来技術2という) に開示された固体電解質型燃料電池では、図12に示すように、無孔平板である 単セル1がセパレータ2により挟持されるとともに、前記セパレータ2はスペー サ3を介して積層されている。セパレータ2には、積層方向に貫通して燃料ガス 導入孔4および空気導入孔5が形成されている。

[0009]

燃料ガス導入孔4は、燃料ガス分配流路6を介して単セル1の一方の面中央部に燃料ガスを供給するように構成されている。空気導入孔5は、空気分配流路7を介して単セル1の他方の面中央部に空気を供給するように構成されている。

[0010]

このように構成される従来技術2では、単セル1が無孔平板で構成されるため、その機械的強度が増大するとともに、反応ガスが単セル1の両面中央部から電池反応部の周辺に向かって流れ、2つの反応ガスが相互に分離された状態に維持される、としている。

[0011]

ところが、上記の従来技術2では、燃料ガス導入孔4から燃料ガスが漏洩(クロスリーク)するおそれがあり、この燃料ガスが、例えば、単セル1の空気極側に導入され易い。これにより、空気極側で燃料ガスと空気とが反応して局部的な発熱が惹起され、単セル1やセパレータ2が損傷するという問題がある。

[0012]

本発明はこの種の問題を解決するものであり、複数の電解質・電極接合体を配列して所望の発電性能を維持するとともに、簡単な構成で、燃料ガスの漏れによるクロスリークを確実に阻止することが可能な燃料電池を提供することを目的とする。

[0013]

【課題を解決するための手段】

本発明の請求項1に係る燃料電池では、複数の電解質・電極接合体を挟持するセパレータが、互いに積層される第1および第2プレートを備え、前記第1および第2プレート間には、アノード電極に燃料ガスを供給するための燃料ガス通路、およびカソード電極に酸化剤ガスを供給するための酸化剤ガス通路が形成されている。

[0014]

セパレータは、複数の電解質・電極接合体で反応に使用された後の燃料ガスおよび酸化剤ガスを、排ガスとして積層方向に排出する排ガス通路と、前記排ガス通路内に配置され、使用前の燃料ガスを前記積層方向に供給する燃料ガス供給連通孔と、前記燃料ガス供給連通孔と前記燃料ガス通路とを連通するとともに、前記排ガス通路を前記積層方向に交差するセパレータ面方向に横切って配置される燃料ガス分配通路とを備えている。

[0015]

このため、使用前の燃料ガスは、燃料ガス供給連通孔を介して積層方向に供給され、この燃料ガス供給連通孔に連通する燃料ガス分配通路を通って燃料ガス通路に供給される。その際、燃料ガス供給連通孔に燃料ガスの漏れが発生すると、この燃料ガスは前記燃料ガス供給連通孔を周回している排ガス通路に導入される。従って、漏洩した燃料ガスが酸化剤ガス通路側に移動することがなく、局部的な発熱による電解質・電極接合体の損傷等を良好に阻止することができる。しかも、排ガス通路に、燃料ガスを検知する、例えば、水素検知機を設置するだけで、燃料ガスの漏洩を確実に検出することが可能になる。

[0016]

さらに、燃料ガスは、排ガス通路内を移動する際に、この排ガス通路に排出さ

れる高温な排ガスを介して暖められるため、排熱の回収が容易に行われる。一方、燃料ガスは、排ガスにより昇温された後にアノード電極に供給される。これにより、初期始動時や燃料ガスの内部改質に適することができ、電解質・電極接合体を迅速に活性化させることが可能になる。

[0017]

また、本発明の請求項2に係る燃料電池では、高温の排ガス通路がセパレータの中央部に設けられているため、セパレータの周部からの放熱を防止でき、前記セパレータ全体に熱が伝わり易くなり、温度分布を均一にすることができる。さらに、排ガス通路の周囲のみをシールするだけでよく、シール構造を簡素化することができる。その他、排ガスが中央部にのみ向かって流れるため、排ガスの流れの乱れを阻止でき、該排ガスを円滑に排出することが可能になる。

[0018]

さらに、本発明の請求項3に係る燃料電池では、燃料ガス供給連通孔が、排ガス通路の中央部に設けられている。従って、燃料ガスを介して排ガスからの熱回収が確実に行われ、前記燃料ガスを所望の温度、すなわち、燃料電池の作動温度に昇温させることが可能になる。その上、燃料ガス供給連通孔が、セパレータの中央部に設けられるため、各電解質・電極接合体に燃料ガスを均一に供給することができ、発電性能を良好に維持することが可能になる。

[0019]

さらにまた、本発明の請求項4に係る燃料電池では、排ガス通路が、燃料ガス 通路および酸化剤ガス通路が設けられている面側とは異なる面側に、かつ前記燃料ガス通路および前記酸化剤ガス通路と隣接して設けられている。このため、燃料電池のレイアウトを簡素化するとともに、積層方向の厚さを有効に減少させることができる。しかも、排ガス通路が燃料ガス通路および酸化剤ガス通路と隣接しており、高温の排ガスと燃料ガスおよび酸化剤ガスとの熱交換が良好に遂行可、能になる。

[0020]

また、本発明の請求項5に係る燃料電池では、第1および第2プレートが、それぞれの一方の面に第1および第2凸部を設け、前記第1および第2プレートの

他方の面同士を接合することにより、前記第1および第2凸部間に形成される空間部を燃料ガス供給連通孔として構成している。

[0021]

これにより、第1および第2プレート自体に燃料ガス供給連通孔が一体的に設けられ、工程の簡素化を図るとともに、部品点数の削減が可能になる。しかも、第1および第2プレートに設けられた第1および第2凸部間に空間部が形成されるため、前記第1および第2凸部の高さ、すなわち、絞り量を小さくすることができる。このため、第1および第2プレートの成形性が有効に向上する。

[0022]

さらに、本発明の請求項6に係る燃料電池では、複数のセパレータを積層するとともに、一方のセパレータを構成する第1プレートの第1凸部と他方のセパレータを構成する第2プレートの第2凸部との間に、空間部をシールするためのシール部が介装されている。従って、シール部を第1および第2凸部で挟持することにより剛性が向上し、シールが確実に行われる。

[0023]

さらにまた、本発明の請求項7に係る燃料電池では、第1および第2プレートが、それぞれの他方の面に第1および第2突起部を設け、前記第1および第2突起部同士を接合することにより、前記第1および第2プレート間に燃料ガス通路および燃料ガス分配通路が形成されている。これにより、第1および第2プレート自体に燃料ガス通路および燃料ガス分配通路が一体的に設けられ、工程の簡素化を図るとともに、パイプ等が不要になって部品点数の削減が可能になる。

[0024]

しかも、第1および第2プレートに設けられた第1および第2突起部同士を接合しているため、前記第1および第2突起部の高さ、すなわち、絞り量を小さくすることができる。このため、第1および第2プレートの成形性が有効に向上する。その上、第1および第2突起部は、第1および第2凸部とは反対方向に突出成形されている。従って、第1および第2凸部の剛性が向上し、この第1および第2凸部間に形成される空間部を強固に保持することができ、この空間部の潰れを抑制して燃料ガスの供給量を一定に確保する他、シールを確実にする機能を付

加することが可能になり、高い発電性能を維持することができる。

[0025]

【発明の実施の形態】

図1は、本発明の実施形態に係る燃料電池10が複数積層された燃料電池スタック12の概略斜視説明図であり、図2は、前記燃料電池スタック12の一部断面説明図である。

[0026]

燃料電池10は、固体電解質型燃料電池であり、設置用の他、車載用等の種々の用途に用いられている。本実施形態では、燃料電池スタック12の適用例として、例えば、ガスタービン14に組み込む構成が、図3に示されている。なお、図3では、ガスタービン14に組み込むために、図1および図2に示す燃料電池スタック12とは異なる形状とされているが、実質的な構成は同一である。

[0027]

ガスタービン14を構成するケーシング16内には、燃焼器18を中心にして、燃料電池スタック12が組み込まれており、この燃料電池スタック12の中央側から前記燃焼器18側の室20に反応後の燃料ガスおよび酸化剤ガスである排ガスが排出される。室20は、排ガスの流れ方向(図3中、矢印X方向)に向かって幅狭となり、その先端側外周部に熱交換器22が外装されている。室20の前端側にタービン(出力タービン)24が配設されており、このタービン24にコンプレッサ26および発電器28が同軸に連結されている。ガスタービン14は、全体として軸対称に構成されている。

[0028]

タービン24の排出通路30は、熱交換器22の第1通路32に連通するとと もに、コンプレッサ26の供給通路34は、前記熱交換器22の第2通路36に 連通する。第2通路36は、加熱エア導入通路38を介して燃料電池スタック1 2の外周部に連通している。

[0029]

図1に示すように、燃料電池スタック12は、外周波形円板状の複数の燃料電池10を矢印A方向に積層するとともに、その積層方向両端には、フランジ40

a、40bが配置され、複数本、例えば、8本の締め付け用ボルト42を介して 一体的に締め付け保持されている。燃料電池スタック12の中心部には、円形の 燃料ガス供給連通孔44がフランジ40aを底部として矢印A方向に形成される (図2参照)。

[0030]

燃料ガス供給連通孔44の周囲には、複数、例えば、4つの排ガス通路46が、フランジ40bを底部として矢印A方向に形成される。フランジ40a、40bとエンドプレート97a、97bとの間は、絶縁プレート98a、98bで絶縁されており、前記エンドプレート97a、97bからそれぞれ出力端子48a、48bが設けられる。

[0031]

図4および図5に示すように、燃料電池10は、例えば、安定化ジルコニア等の酸化物イオン導電体で構成される電解質(電解質板)50の両面に、カソード電極52およびアノード電極54が設けられた電解質・電極接合体56を備える。電解質・電極接合体56は、比較的小径な円板状に形成される。

[0032]

複数、例えば、16個の電解質・電極接合体56を挟んで一組のセパレータ58が配設されることにより、燃料電池10が構成される。セパレータ58の面内には、このセパレータ58の中心部である燃料ガス供給連通孔44と同心円上に8個の電解質・電極接合体56が配列される内周側配列層P1と、この内周側配列層P1の外周に8個の電解質・電極接合体56が配列される外周側配列層P2とが設けられる(図4参照)。

[0033]

セパレータ58は、互いに積層される複数枚、例えば、2枚のプレート60、62を備える。プレート60、62は、例えば、ステンレス合金等の板金で構成されており、それぞれ波形外周部60a、62aを設けている(図7および図8参照)。

[0034]

図6、図7および図9に示すように、プレート(第1プレート)60の中央側

には、燃料ガス供給連通孔44および4つの排ガス通路46を設けるためのリブ部63aが形成される。プレート60には、リブ部63aから内周部に沿って、各排ガス通路46を周回する4つの内側突起部(第1突起部)64aがプレート(第2プレート)62側に膨出成形される。プレート60の燃料ガス供給連通孔44の周囲には、プレート62から離間する方向(内側突起部64aとは反対方向)に突出する凸部(第1凸部)65aが成形される。

[0035]

プレート60には、燃料ガス供給連通孔44に対して放射状に外側突起部(第1突起部)66aが設けられるとともに、内側突起部64aと前記外側突起部66aとの間には、燃料ガス分配通路67aを介して前記燃料ガス供給連通孔44に連通する燃料ガス通路67が形成される。この燃料ガス分配通路67aは、リブ部63aに沿って、すなわち、各排ガス通路46を積層方向に交差するセパレータ面方向(矢印B方向)に横切って配置され、燃料ガス供給連通孔44と燃料ガス通路67とを連通する。

[0036]

外側突起部66aは、それぞれ半径外方向に所定の距離だけ突出する複数の第1壁部68aおよび第2壁部70aを交互に設けている。図9に示すように、第1壁部68aは、先端を結ぶ仮想円が内周側配列層P1の中心線を形成し、この内周側配列層P1に沿って8個の電解質・電極接合体56が配列される。第1壁部68a間に第2壁部70aが設けられ、前記第2壁部70aの先端を通る仮想円により外周側配列層P2の中心線が形成される。この外周側配列層P2の中心線に沿って8個の電解質・電極接合体56が配列される。

[0037]

第1壁部68aおよび第2壁部70aの先端側周囲には、それぞれ3個の酸化 剤ガス導入口78がプレート60を貫通して形成される。プレート60には、内 周側配列層P1および外周側配列層P2に沿って配列される各電解質・電極接合 体56側に突出し、各電解質・電極接合体56に接する第1ボス部80が膨出成 形される。

[0038]

図6、図8および図9に示すように、プレート60の波形外周部60aの内方 近傍には、この波形外周部60aと同一形状を有しプレート62から離間する方 向に突出して第1周回凸部83aが成形される。プレート60には、この第1周 回凸部83aを挟んで両側に互いに対向して(あるいは、互いに位置をずらして)、外周突起部85aおよび内周突起部87aがそれぞれ所定の間隔離間して複 数ずつ設けられる。

[0039]

図6、図7および図10に示すように、プレート62の中央側には、プレート60のリブ部63aに対向してリブ部63bが形成されるとともに、前記プレート60側に突出して4つの内側突起部(第2突起部)64bが膨出成形される。プレート62の燃料ガス供給連通孔44の周囲には、プレート60から離間する方向に突出する凸部(第2凸部)65bが成形される。プレート60、62が接合される際、互いに逆方向に突出する凸部65a、65b間に形成される空間部が、燃料ガス供給連通孔44を構成する。

[0040]

プレート62には、外側突起部66aに対向しプレート60側に突出する外側 突起部(第2突起部)66bが設けられる。プレート60、62では、内側突起 部64a、64bと外側突起部66a、66bとが互いに接合することにより、 燃料ガス供給連通孔44に燃料ガス分配通路67aを介して連通する燃料ガス通 路67が形成される。外側突起部66bは、それぞれ半径外方向に所定の距離だ け突出する複数の第1壁部68bおよび第2壁部70bを交互に設けている。

[0041]

プレート62には、内周側配列層P1および外周側配列層P2に沿って配列される各電解質・電極接合体56側に突出し、各電解質・電極接合体56に接する第2ボス部86が膨出成形される。第2ボス部86は、第1ボス部80よりも径方向および高さ方向の各寸法が小さく設定されている。プレート62には、燃料ガス通路67に連通する燃料ガス導入口88が貫通形成される。

[0042]

プレート62には、内周側配列層P1および外周側配列層P2に沿って、それ

ぞれ8個の電解質・電極接合体56を位置決め配置するための位置決め突起部8 1が設けられる。位置決め突起部81は、各電解質・電極接合体56を周回する 位置に対応して3個以上、例えば、3個ずつ設けられるとともに、前記電解質・ 電極接合体56が前記位置決め突起部81間に非接触状態で収容可能な位置に設 定される。位置決め突起部81は、第2ボス部86よりも高さ方向の寸法が大き く設定される(図6参照)。

[0043]

図6、図8および図10に示すように、プレート62の波形外周部62aの内方近傍には、この波形外周部62aと同一形状を有しプレート60から離間する方向に突出して第2周回凸部83bが成形される。プレート62には、この第2周回凸部83bを挟んで両側に互いに対向して(あるいは、互いに位置をずらして)、外周突起部85bおよび内周突起部87bがそれぞれ所定の間隔離間して複数ずつ設けられる。

[0044]

プレート60とプレート62との間には、内側突起部64a、64bと外側突起部66a、66bとの間に対応して燃料ガス通路67が形成されるとともに、前記外側突起部66a、66bの外方に対応して酸化剤ガス通路82が形成される(図11参照)。この酸化剤ガス通路82は、プレート60に形成された酸化剤ガス導入口78に連通する。

[0045]

セパレータ58には、図6に示すように、燃料ガス供給連通孔44をシールするための絶縁シール90が設けられる。この絶縁シール90は、例えば、セラミックスの板材を配置する、あるいはセラミックスをプレート60の凸部65aまたはプレート62の凸部65bに溶射することにより構成される。プレート60、62の第1および第2周回凸部83a、83bは、互いに離間する方向に膨出成形されており、前記第1周回凸部83aまたは前記第2周回凸部83bには、セラミックス等の絶縁シール92が介装あるいは溶射により設けられる。

[0046]

図5および図6に示すように、一方のセパレータ58を構成するプレート60

と他方のセパレータ58を構成するプレート62とにより、電解質・電極接合体56が挟持される。具体的には、電解質・電極接合体56を挟んで互いに対向するプレート60、62には、第1ボス部80および第2ボス部86が膨出成形されており、前記第1ボス部80と前記第2ボス部86とによって前記電解質・電極接合体56が挟持される。

[0047]

図11に示すように、電解質・電極接合体56と一方のセパレータ58を構成するプレート62との間には、燃料ガス通路67から燃料ガス導入口88を介して連通する燃料ガス供給流路94が形成される。電解質・電極接合体56と他方のセパレータ58を構成するプレート60との間には、酸化剤ガス通路82から酸化剤ガス導入口78を介して連通する酸化剤ガス供給流路96が形成される。燃料ガス供給流路94および酸化剤ガス供給流路96は、第2ボス部86および第1ボス部80の各高さ寸法に応じて開口寸法が設定されている。燃料ガスの流量が酸化剤ガスの流量よりも少ないために、第2ボス部86が第1ボス部80よりも小さな寸法に設定されている。

[0048]

図6に示すように、燃料ガス通路67は、同一のセパレータ58を構成するプレート60、62の凸部65a、65b間に形成された燃料ガス供給連通孔44に連通する。酸化剤ガス通路82は、燃料ガス通路67と同一の面上に形成されており、同一のセパレータ58を構成するプレート60、62の第1および第2周回凸部83a、83b間を介して外部に開放されている。

[0049]

各セパレータ58は、積層方向に沿って第1および第2ボス部80、86が電解質・電極接合体56を挟持することにより、集電体として機能するとともに、プレート60、62の内側突起部64a、64bおよび外側突起部66a、66bが互いに接触することにより、各燃料電池10が矢印A方向に沿って直列的に接続されている。

[0050]

図1および図2に示すように、上記のように構成される燃料電池10が矢印A

方向に積層されて、その積層方向両端にエンドプレート97a、97bが配置される。エンドプレート97a、97bの外方には、絶縁プレート98a、98bを介装してフランジ40a、40bが積層される。このフランジ40a、40bには、プレート60、62の波形外周部60a、62aが内方に湾曲する部分に対応して孔部100a、100bが形成される。孔部100a、100bには、締め付け用ボルト42が挿入されて端部にナット104が螺合することにより、積層されている各燃料電池10に所望の締め付け力が付与されている。

[0051]

このように構成される燃料電池スタック12の動作について、以下に説明する

[0052]

燃料電池10を組み付ける際には、まず、セパレータ58を構成するプレート60、62が接合される。具体的には、図6に示すように、プレート60、62に一体成形されている内側突起部64a、64bおよび外側突起部66a、66bがろう付け等により固定されるとともに、リング状の絶縁シール90が燃料ガス供給連通孔44を周回して前記プレート60または前記プレート62に、例えば、溶射等によって設けられる。一方、プレート60の第1周回凸部83aまたはプレート62の第2周回凸部83bに、波形状の絶縁シール92が、例えば、溶射によって設けられる。

[0053]

これにより、セパレータ58が構成され、プレート60、62間には、同一面上に位置して燃料ガス通路67と酸化剤ガス通路82とが形成される。さらに、燃料ガス通路67が燃料ガス分配通路67aを介して燃料ガス供給連通孔44に連通する一方、酸化剤ガス通路82がそれぞれの波形外周部60a、62a間から外部に開放されている。

[0054]

次いで、セパレータ58間に電解質・電極接合体56が挟持される。図4および図5に示すように、各セパレータ58は、互いに対向する面、すなわち、プレート60、62間に内周側配列層P1に対応して8個の電解質・電極接合体56

が配置されるとともに、外周側配列層 P 2 に沿って 8 個の電解質・電極接合体 5 6 が配置される。

[0055]

その際、各電解質・電極接合体 5 6 の配置位置には、それぞれ 3 個の位置決め 突起部 8 1 が設けられており、 3 個の前記位置決め突起部 8 1 間に前記電解質・ 電極接合体 5 6 が収容される。位置決め突起部 8 1 内には、互いに近接する方向 に突出して第 1 および第 2 ボス部 8 0、 8 6 が形成されており、前記第 1 および 第 2 ボス部 8 0、 8 6 によって電解質・電極接合体 5 6 が挟持される。

[0056]

このため、図11に示すように、電解質・電極接合体56のカソード電極52 とプレート60との間には、酸化剤ガス導入口78を介して酸化剤ガス通路82 に連通する酸化剤ガス供給流路96が形成される。一方、電解質・電極接合体56のアノード電極54とプレート62との間には、燃料ガス導入口88を介して燃料ガス通路67に連通する燃料ガス供給流路94が形成される。さらに、セパレータ58間には、反応後の燃料ガスおよび酸化剤ガスを混合して燃料ガス供給連通孔44に導くための排出通路106が形成される。

[0057]

上記のように組み付けられた燃料電池10が矢印A方向に積層されて、燃料電池スタック12が組み立てられる(図1および図2参照)。

[0058]

そこで、燃料電池スタック12を構成するフランジ40bの燃料ガス供給連通 孔44に燃料ガス(例えば、水素含有ガス)が供給されるとともに、前記燃料電 池スタック12の外周部側から加圧された酸化剤ガスである酸素含有ガス(以下、空気ともいう)が供給される。燃料ガス供給連通孔44に供給された燃料ガス は、積層方向(矢印A方向)に移動しながら、各燃料電池10を構成するセパレータ58内の燃料ガス分配通路67aに導入される(図6参照)。

[0059]

図5に示すように、燃料ガスは、外側突起部66a、66bを構成する第1壁部68a、68bおよび第2壁部70a、70bに沿って燃料ガス通路67を移

動し、それぞれの先端部から燃料ガス導入口88を介して燃料ガス供給流路94 に導入される。燃料ガス導入口88は、各電解質・電極接合体56のアノード電極54の中心位置に対応して設けられており、燃料ガス供給流路94に導入された燃料ガスは、前記アノード電極54の中心部から外周に向かって流動する(図11参照)。

[0060]

一方、各燃料電池10の外周側から供給される酸化剤ガスは、各セパレータ58のプレート60、62間に形成されている酸化剤ガス通路82に供給される。この酸化剤ガス通路82に供給された酸化剤ガスは、酸化剤ガス導入口78から酸化剤ガス供給流路96に導入され、電解質・電極接合体56のカソード電極52の中心部から外周に沿って流動する(図5および図11参照)。

[0061]

従って、各電解質・電極接合体56では、アノード電極54の中心部から外周 に向かって燃料ガスが供給されるとともに、カソード電極52の中心部から外周 に向かって酸化剤ガスが供給される。その際、酸素イオンが電解質50を通って アノード電極54に移動し、化学反応により発電が行われる。

[0062]

ここで、各電解質・電極接合体 5 6 は、第 1 および第 2 ボス部 8 0、 8 6 により挟持されており、前記第 1 および第 2 ボス部 8 0、 8 6 が集電体として機能する。このため、各燃料電池 1 0 は、矢印 A 方向(積層方向)に電気的に直列に接続されて出力端子 4 8 a、 4 8 b間に出力を取り出すことができる。また、複数の電解質・電極接合体 5 6 のうちのいずれかの電解質・電極接合体 5 6 が断線した際にも、残りの電解質・電極接合体 5 6 で通電することが可能であり、発電の信頼性を向上させることができる。

[0063]

一方、各電解質・電極接合体 5 6 の外周に移動した反応後の燃料ガスおよび酸化剤ガス(排ガス)は、セパレータ 5 8 間に形成される排出通路 1 0 6 を介して前記セパレータ 5 8 の中心部側に移動する。セパレータ 5 8 の中心部近傍には、排ガスマニホールドを構成する 4 つの排ガス通路 4 6 が形成されており、排ガス

がこの排ガス通路46から外部に排出される。

[0064]

この場合、本実施形態では、比較的小径な円形状の電解質・電極接合体 5 6 を備え、複数個、例えば、1 6 個の前記電解質・電極接合体 5 6 をセパレータ 5 8 間に配置している。このため、電解質・電極接合体 5 6 を薄肉化することができ、抵抗分極の低減を図るとともに、温度分布が小さくなり、熱応力による破損を回避することが可能になる。従って、燃料電池 1 0 の発電性能を有効に向上させることができる。

[0065]

さらに、セパレータ58の中心部である燃料ガス供給連通孔44と同心円上に8個の電解質・電極接合体56が配列される内周側配列層P1と、この内周側配列層P1の外周側に8個の前記電解質・電極接合体56が配列される外周側配列層P2とが設けられている。その際、外周側配列層P2の電解質・電極接合体56は、内周側配列層P1の電解質・電極接合体56に対し互いに位相をずらして配列している。

[0066]

これにより、複数の電解質・電極接合体 5 6 を互いに密に配列することができ、所望の発電性能を維持しつつ、燃料電池 1 0 全体のコンパクト化が容易に図られるという利点が得られる。

[0067]

さらにまた、本実施形態では、セパレータ58の中心部近傍に排ガスを積層方向に排出するための排ガス通路46が設けられるとともに、この排ガス通路46内には、使用前の燃料ガスを積層方向に供給する燃料ガス供給連通孔44が配置されている。そして、この燃料ガス供給連通孔44は、排ガス通路46をセパレータ面方向(矢印B方向)に横切って配置される燃料ガス分配通路67aを介して燃料ガス通路67に連通している。

[0068]

このため、使用前の燃料ガスは、燃料ガス供給連通孔44を介して積層方向に供給され、各セパレータ58内でこの燃料ガス供給連通孔44に連通する燃料ガ

ス分配通路67aを通って燃料ガス通路67に供給される。

[0069]

その際、燃料ガス供給連通孔44に燃料ガスの漏れが発生すると、この燃料ガスは前記燃料ガス供給連通孔44を周回している排ガス通路46に導入される。従って、漏洩した燃料ガスは、例えば、酸化剤ガス通路82側に移動することがなく、クロスリークを確実に阻止することが可能になる。これにより、燃料ガスと酸化剤ガスとの反応によって局部的な発熱が発生することがなく、例えば、電解質・電極接合体56が損傷することを良好に阻止することができるという効果が得られる。しかも、排ガス通路46に、例えば、燃料ガスを検知するための燃料ガス検知機を設置するだけで、燃料ガスの漏洩を確実に検出することが可能になる。

[0070]

また、燃料ガスは、排ガス通路46内を燃料ガス供給連通孔44に沿って移動する際に、この排ガス通路46に排出される高温の排ガスを介して暖められるため、排熱の回収が容易に行われる。一方、燃料ガスは、排ガスにより昇温された後に、燃料ガス供給流路94に導入されてアノード電極54に供給される。これにより、特に、初期始動時や燃料ガスの内部改質に適することができ、電解質・電極接合体56を迅速に活性化させることが可能になるという利点がある。

[0071]

しかも、排ガス通路46がセパレータ58の中央部に設けられるため、高温になる排ガス通路46の熱が前記セパレータ58の周部から逃げることを防止でき、前記セパレータ58全体に熱が伝わり易くなるため、温度分布を均一にすることが可能になる。その他、排ガス通路46の周囲のみをシールするだけでよく、シール構造が簡素化されるとともに、排ガスが中央部にのみ向かって流れるため、排ガスの流れの乱れを阻止でき、該排ガスを円滑に排出することができる。

[0072]

さらに、燃料ガス供給連通孔44がセパレータ58の中央部に設けられるため、各電解質・電極接合体56に燃料ガスを均一に供給することができ、発電性能を良好に維持することが可能になる。

[0073]

さらにまた、排ガス通路46に連通する排出通路106は、燃料ガス通路67 および酸化剤ガス通路82が設けられている面側とは異なる面側に、かつ互いに 近接して設けられている(図11参照)。このため、燃料電池10のレイアウト を簡素化するとともに、積層方向の厚さを有効に減少させることができる。しか も、排出通路106は、燃料ガス通路67および酸化剤ガス通路82と隣接して おり、高温の排ガスと燃料ガスおよび酸化剤ガスとの熱交換が良好に遂行可能に なる。

[0074]

また、プレート60、62では、それぞれの一方の面に凸部65a、65bを 設けるとともに、他方の面同士を対向させることにより、前記凸部65a、65 b間に燃料ガス供給連通孔44が形成されている。さらに、プレート60、62 のそれぞれの他方の面には、内側突起部64a、64bと外側突起部66a、6 6bとが設けられており、これらを接合することによってプレート60、62間 には、燃料ガス通路67および燃料ガス分配通路67aが形成されている。

[0075]

これにより、プレート60、62自体に燃料ガス供給連通孔44、燃料ガス分配通路67aおよび燃料ガス通路67が一体的に設けられている。従って、作業工程の簡素化を図るとともに、パイプ等が不要になって部品点数を大幅に削減することが可能になる。

[0076]

しかも、凸部65a、65bの高さや内側突起部64a、64bおよび外側突起部66a、66bの高さ、すなわち、それぞれの絞り量を小さくすることができる。このため、プレート60、62の成形性が有効に向上するという効果がある。その際、凸部65a、65bと内側突起部64a、64bとは互いに異なる方向に突出しており、前記凸部65a、65bの接合剛性が向上し、空間部である燃料ガス供給連通孔44の潰れを抑制することができる。従って、燃料ガスの供給量を一定に確保するだけでなく、シールを確実にする機能を付加し、高い発電性能を維持することが可能になる。

[0077]

次に、燃料電池スタック12を、図2に示すガスタービン14に組み込んだ場合の動作について、概略的に説明する。

[0078]

図3に示すように、このガスタービン14では、始動時に燃焼器18が駆動されてタービン24が回転され、コンプレッサ26および発電器28が駆動される。コンプレッサ26の駆動によって外気が供給通路34に導入され、高圧かつ所定温度(例えば、200°)になった空気が熱交換器22の第2通路36に送られる。

[0079]

この熱交換器22の第1通路32には、反応後の燃料ガスおよび酸化剤ガスである高温の排ガスが供給されており、熱交換器22の第2通路36に導入された空気が加熱される。この加熱された空気は、加熱エア導入通路38を通って燃料電池スタック12を構成する各燃料電池10の外周部に導入される。このため、燃料電池10で発電が行われ、反応後の燃料ガスおよび酸化剤ガスである排ガスが、ケーシング16内の室20に排出される。

[0080]

その際、固体電解質型燃料電池である燃料電池10から排出される排ガスは、800℃~1000℃の高温となっており、この排ガスがタービン24を回転させて発電器28による発電が行われるとともに、熱交換器22に送られて吸入される外部空気の加熱を行うことができる。これにより、燃焼器18を使用する必要がなく、燃料電池スタック12から排出される排ガスを用いてタービン24を回転させることが可能になる。

[0081]

しかも、排ガスが800℃~1000℃と高温となっており、燃料電池スタック12に供給される燃料の内部改質を行うことができる。従って、燃料として、例えば、天然ガスやブタン、あるいはガソリン系等の種々の燃料を使用して内部 改質を行うことが可能になる。

[0082]

なお、本実施形態では、燃料電池スタック12をガスタービン14に組み込んで使用する場合について説明したが、これに限定されるものではなく、燃料電池スタック12を車載用として使用することも可能である。

[0083]

【発明の効果】

本発明に係る燃料電池では、燃料ガス供給連通孔に燃料ガスの漏れが発生すると、この燃料ガスは前記燃料ガス供給連通孔を周回している排ガス通路に導入される。従って、漏洩した燃料ガスが酸化剤ガス通路側に移動することがなく、局部的な発熱による電解質・電極接合体の損傷等を良好に阻止することができる。しかも、排ガス通路に、例えば、燃料ガス検知機を設置するだけで、燃料ガスの漏洩を確実に検出することが可能になる。

[0084]

さらに、燃料ガスは、排ガス通路内を移動する際に、この排ガス通路に排出される高温な排ガスを介して暖められるため、排熱の回収が容易に行われる。一方、燃料ガスは、排ガスにより昇温された後にアノード電極に供給されるため、特に、初期始動時や燃料ガスの内部改質に適することができ、電解質・電極接合体を迅速に活性化させることが可能になる。

【図面の簡単な説明】

【図1】

本発明の実施形態に係る燃料電池が複数積層された燃料電池スタックの概略斜視説明図である。

【図2】

前記燃料電池スタックの一部断面説明図である。

【図3】

前記燃料電池スタックを組み込むガスタービンの概略構成を示す断面説明図である。

【図4】

前記燃料電池の分解斜視図である。

【図5】

前記燃料電池の動作を示す一部分解斜視説明図である。

【図6】

前記燃料電池スタックの一部省略断面図である。

【図7】

前記燃料電池を構成するセパレータの分解斜視説明図である。

【図8】

前記燃料電池の一部拡大分解斜視図である。

【図9】

前記セパレータを構成する一方のプレートの正面説明図である。

【図10】

前記セパレータを構成する他方のプレートの正面説明図である。

【図11】

前記燃料電池の動作説明図である。

【図12】

従来技術に係る燃料電池の断面説明図である。

【符号の説明】

1	Λ	 燃料	雷洲

14…ガスタービン

22…熱交換器

26…コンプレッサ

40a、40b…フランジ

4 6 … 排ガス通路

52…カソード電極

56…電解質・電極接合体

60、62…プレート

64 a、64 b … 内側突起部 65 a、65 b … 凸部

66a、66b…外側突起部

67a…燃料ガス分配通路

81…位置決め突起部

12…燃料電池スタック

18…燃焼器

24…タービン

28…発電器

44…燃料ガス供給連通孔

50…電解質

54…アノード電極

58…セパレータ

60a、62a…波形外周部

67…燃料ガス通路

78…酸化剤ガス導入口

80、86…ボス部

特2002-249371

82…酸化剤ガス通路

88…燃料ガス導入口

94…燃料ガス供給流路

83a、83b…周回凸部

90、92…絶縁シール

96…酸化剤ガス供給流路

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

FIG. 7 88 <u>58</u> 86 62 -83b 88 63b 66b 60 60a 66a 酸化剤がス 燃料がス

【図8】

【図9】

【図10】

【図11】

【図12】

【書類名】要約書

【要約】

【課題】複数の電解質・電極接合体を配列して所望の発電性能を維持するととも に、簡単な構成で燃料ガスの漏れによるクロスリークを確実に阻止することを可 能にする。

【解決手段】複数の電解質・電極接合体 5 6 を挟持するセパレータ 5 8 は、プレート 6 0、6 2 を備え、前記プレート 6 0、6 2 間には、燃料ガス通路 6 7 および酸化剤ガス通路 8 2 が形成される。セパレータ 5 8 は、排ガスを積層方向に排出する排ガス通路 4 6 と、前記排ガス通路 4 6 内に配置され、使用前の燃料ガスを供給する燃料ガス供給連通孔 4 4 と、前記燃料ガス供給連通孔 4 4 と前記燃料ガス通路 6 7 を連通する燃料ガス分配通路 6 7 a とを備える。

【選択図】図6

出願人履歴情報

識別番号

[000005326]

1. 変更年月日

1990年 9月 6日

[変更理由]

新規登録

住 所

東京都港区南青山二丁目1番1号

氏 名

本田技研工業株式会社