Úvod

Poznámka (Historie)

MP zavedl Maurice Fréchet na podnět Felixe Hausdorffa.

Poznámka

Dále se opakovali metrické prostory.

Definice 0.1 (Baireův prostor)

 $\mathbb{N}^{\mathbb{N}}$, $d(\{x_n\}, \{y_n\}) = \frac{1}{k}$, kde k je první index, že $x_k \neq y_k$.

Poznámka

V Bairově prostoru platí $d(x,y) \leq \max(d(x,z),d(z,y))$. Metriky s touto vlastností se nazývají ultrametriky (dříve archimédovské metriky).

Definice 0.2 (Peadická metrika)

 (Q, d_p) , kde p je prvočíslo:

$$d_p(a,b) = p^{-n}, \frac{a}{b} = p^n \cdot c.$$

Definice 0.3 (Stejnoměrně ekvivalentní)

Metriky jsou stejnoměrně ekvivalentní, jestliže identická zobrazení $((X, d) \mapsto (X, e)$ a opačně) jsou stejnoměrně spojitá.

Definice 0.4 (Hölderovské zobrazení)

Nechť $\alpha \geqslant 0$. Říkáme, že zobrazení $f:(X,d) \to (Y,e)$ je hölderovské stupně α (nebo α -hölderovské), jestliže existuje $k \in \mathbb{R}$ tak, že pro všechna $x,y \in X$ platí

$$e(f(x), f(y)) \le k \cdot d^{\alpha}(x, y)$$

Hölderovské zobrazení stupně 1 se nazývá lipschitzovské. Lipschitzovské zobrazení s konstantou k<1 se nazývá kontrakce.

1

Tvrzení 0.1

Je- $li\ f:(X,d) \to (Y,e)\ \alpha$ - $h\ddot{o}lderovsk\acute{e}\ pro.$