

A1.1.2: Straight-line regression in errors-in-variables models

Getting straight-line regression right

Steffen Martens, Katy Klauenberg, and Clemens Elster

WG 8.42 Data Analysis and Measurement Uncertainty

EMUE Workshop, 01/22/20, Paris

Straight line regression in Errors-in-Variables (EIV) models

N pairs $(x_i, y_i)^{\mathrm{T}}$ of independent x_i and dependent variables y_i

(1a)
$$x_i = \xi_i + \epsilon_{x,i}$$

(1b) $y_i = \beta_0 + \beta_1 \xi_i + \epsilon_{y,i}$

- calibration procedures
- method comparision studies

 $(y_i, \sigma_{y,i})$

^[1] https://primosensor.de/produkt/ind4r13-digitalanzeige/

^[2] https://nordiclifescience.org/wp-content/public html/2018/05/lab-e1526288478439.jpg

Straight line regression in Errors-in-Variables (EIV) models

 $\eta_i = \beta_0 + \beta_1 \xi_i$

 $(x_i, \sigma_{x,i})$

(1a)
$$x_i = \xi_i + \epsilon_{x,i}$$

(1b) $y_i = \beta_0 + \beta_1 \xi_i + \epsilon_{y,i}$

a) errors of *i*-th measurement are drawn from a zero-mean, multivariate Gaussian distribution with *i*-th covariance

$$oldsymbol{\Sigma}_i = egin{pmatrix} \sigma_{x,i}^2 & oldsymbol{
ho}_i \sigma_{x,i} \sigma_{y,i} \ oldsymbol{
ho}_i \sigma_{x,i} \sigma_{y,i} & \sigma_{y,i}^2 \end{pmatrix}$$

b) Σ_i are known

- ullet stand. meas. uncertainty $\sigma_{\!x,i}$
- stand. meas. uncertainty $\sigma_{u,i}$
- access correlation ρ_i

ISO/TS 2803>

Goal: Find best estimates and their uncertainties

$$\hat{\beta}_0, \hat{\beta}_1, \hat{\xi}_i, u_{\hat{\beta}_0}, u_{\hat{\beta}_1}, u_{\hat{\xi}_i}, \mathbf{U}_{\hat{\beta}_0, \hat{\beta}_1, \hat{\boldsymbol{\xi}}}$$

- numerous approaches exist:
 - ➤ least-squares (LS)^[1,2] methods
 - weighted TLS (WTLS)
 - Deming regression^[3]
 - ordinary LS (OLS)
 - ➤ Bayesian regression^[4,5]

- maximum likelihood estimators [4]
- > instrumental variables[6]
- methods-of-moments^[7]etc.

^[1] Adcock The Analyst 4, 183 (1877); 5, 53 (1878), [2] Pearson Philos Mag. 2, 559 (1901)

^[3] W. E. Deming "Statistical adjustment of data" (1943), [4] Zellner "An Introduction to Bayesian Inference Econometrics" (1971)

^[5] Carroll et al. "Measurement errors in Nonlinear models" (2006), [6] 9 M. Y: Wong Biometrika 76, 141 (1989),

• Goal: Find best estimates and their uncertainties

$$\hat{\beta}_0, \hat{\beta}_1, \hat{\xi}_i, u_{\hat{\beta_0}}, u_{\hat{\beta}_1}, u_{\hat{\xi}_i}, \mathbf{U}_{\hat{\beta_0}, \hat{\beta}_1, \hat{\boldsymbol{\xi}}}$$

- numerous approaches exist
 - ➤ least-squares (LS)^[1,2] methods
 - weighted TLS (WTLS)
 - Deming regression^[3]
 - ordinary LS (OLS)
 - ➤ Bayesian regression^[4,5]

- > maximum likelihood estimators [4]
- > instrumental variables^[6]
- methods-of-moments^[7]
 etc.

Goal: Find best estimates and their uncertainties

$$\hat{\beta_0}, \hat{\beta_1}, \hat{\xi_i}, u_{\hat{\beta_0}}, u_{\hat{\beta_1}}, \iota$$

- numerous approaches exist
 - ➤ least-squares (LS)^[1,2] methods
 - weighted TLS (WTLS)
 - Deming regression^[3]
 - ordinary LS (OLS)
 - ➤ Bayesian regression^[4,5]

- GUM documents advise uncertainties assessment based on
 - 1) propagation of uncertainties **GUF** (GUM^[1], GUM-S2^[2])

Goal: Find best estimates and their uncertainties

$$\hat{\beta_0}, \hat{\beta_1}, \hat{\xi_i}, u_{\hat{\beta_0}}, u_{\hat{\beta_1}}, \iota$$

- numerous approaches exist
 - ➤ least-squares (LS)^[1,2] methods
 - weighted TLS (WTLS)
 - Deming regression^[3]
 - ordinary LS (OLS)
 - ➤ Bayesian regression^[4,5]

- GUM documents advise uncertainties assessment based on
 - 1) propagation of uncertainties **GUF** (GUM^[1], GUM-S2^[2])
 - 2) propagation of distributions **MC** methods (GUM-S1^[3], GUM-S2^[2])
- GUM documents do not give guidance for regressions problems

Straight line regression in EIV models

multiple standards recommend minimization of WTLS^[1] functional

$$\begin{pmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\xi}} \end{pmatrix} = \underset{\boldsymbol{\beta}, \boldsymbol{\xi}}{\operatorname{argmin}} \sum_{i=1}^{N} \mathbf{v}_{i}^{\top} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{v}_{i} \quad \text{with } \mathbf{v}_{i} = \begin{pmatrix} x_{i} - \xi_{i} \\ y_{i} - \beta_{0} - \beta_{1} \xi_{i} \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix}$$

- ☐ in general, only numerical approaches can be used
- ☐ uncertainties might <u>depend</u> on chosen algorithm^[2]
- ☐ Does an uncertainty evaluation acc. to GUF and MC methods provide similar results for point estimates and their uncertainties?
- often, usage of OLS justified by " $\sigma_{x,i}$ is small compared to $\sigma_{y,i}$ [3]
 - ☐ Under what conditions does OLS deliver valid results?
- Bayesian inference is generally applicable and more flexible
 - ☐ When and whether Bayesian inference with prior knowledge has advantages in comparison to MC methods?

Straight line regression in EIV models

multiple standards recommend minimization of WTLS^[1] functional

$$\begin{pmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\xi}} \end{pmatrix} = \underset{\boldsymbol{\beta}, \boldsymbol{\xi}}{\operatorname{argmin}} \sum_{i=1}^{N} \mathbf{v}_{i}^{\top} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{v}_{i} \quad \text{with } \mathbf{v}_{i} = \begin{pmatrix} x_{i} - \xi_{i} \\ y_{i} - \beta_{0} - \beta_{1} \xi_{i} \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix}$$

- ☐ in general, only numerical approaches can be used
- ☐ uncertainties might <u>depend</u> on chosen algorithm^[2]
- ☐ Does an uncertainty evaluation acc. to GUF and MC methods provide similar results for point estimates and their uncertainties?
- often, usage of OLS justified by " $\sigma_{x,i}$ is small compared to $\sigma_{y,i}$ [3]
 - ☐ Under what conditions does OLS deliver valid results?
- Bayesian inference is generally applicable and more flexible
 - ☐ When and whether Bayesian inference with prior knowledge has advantages in comparison to MC methods?

OLS point estimate is biased and inconsistent

Reasonable conditions for usage of OLS:

 Deviation of estimator from true value must be compatible with the estimator's uncertainty.

(2a)
$$\operatorname{Var}\left(\hat{\beta_1}^{\text{OLS,EIV}}\right) \ge \left(E\left(\hat{\beta_1}^{\text{OLS,EIV}}\right) - \beta_1\right)^2$$

OLS point estimate is biased and inconsistent

Reasonable conditions for usage of OLS:

Deviation of estimator from true value must be compatible with the estimator's uncertainty.

(2a)
$$\operatorname{Var}\left(\hat{\beta}_{1}^{\text{OLS,EIV}}\right) \geq \left(E\left(\hat{\beta}_{1}^{\text{OLS,EIV}}\right) - \beta_{1}\right)^{2}$$

The uncertainty of the estimator should not be underestimated.

(2b)
$$\sqrt{\operatorname{Var}\left(\hat{\beta_1}^{\text{OLS,EIV}}\right)} \leq u_{\hat{\beta_1}^{\text{OLS}}}$$

OLS point estimate is biased and inconsistent

Reasonable conditions for usage of OLS:

 Deviation of estimator from true value must be compatible with the estimator's uncertainty.

(2a)
$$\operatorname{Var}\left(\hat{\beta_1}^{\text{OLS,EIV}}\right) \ge \left(E\left(\hat{\beta_1}^{\text{OLS,EIV}}\right) - \beta_1\right)^2$$

2. The uncertainty of the estimator should not be underestimated.

(2b)
$$\sqrt{\operatorname{Var}\left(\hat{\beta_1}^{\text{OLS,EIV}}\right)} \leq u_{\hat{\beta_1}^{\text{OLS}}}$$

• in homosc. EIV ($\sigma_x = \sigma_{x,i}$, $\sigma_y = \sigma_{y,i}$, $\rho = \rho_i$), point estimates are asymp. normally distributed [1] and closed expressions for $E\left(\hat{\beta_1}^{\text{OLS,EIV}}\right)$ and $Var\left(\hat{\beta_1}^{\text{OLS,EIV}}\right)$ exist

deviation condition (2a) is fulfilled

$$\sigma_x/\sigma_\xi < 1/\sqrt{N}$$

uncertainty condition (2b) is obeyed

$$\frac{\sigma_y}{\sigma_{\xi}} > \frac{|\beta_1|}{|\rho|} \begin{cases} (\sigma_x/\sigma_{\xi})^{-1}, & \operatorname{sgn}(\beta_1 \rho) = -1\\ 0.5(\sigma_x/\sigma_{\xi}), & \operatorname{sgn}(\beta_1 \rho) = 1 \end{cases}$$

- ightharpoonup justification " $\sigma_{x.i}$ is small compared to $\sigma_{y,i}$ " is not sufficient
- in general, OLS cannot be recommended for EIV models especially if $\operatorname{sgn}(\rho\beta_1) = -1$

Straight line regression in EIV models

multiple standards recommend minimization of WTLS^[1] functional

$$\begin{pmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\xi}} \end{pmatrix} = \underset{\boldsymbol{\beta}, \boldsymbol{\xi}}{\operatorname{argmin}} \sum_{i=1}^{N} \mathbf{v}_{i}^{\top} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{v}_{i} \quad \text{with } \mathbf{v}_{i} = \begin{pmatrix} x_{i} - \xi_{i} \\ y_{i} - \beta_{0} - \beta_{1} \xi_{i} \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix}$$

- in general, only numerical approaches can be used
- ☐ uncertainties might <u>depend</u> on chosen algorithm^[2]
- □ Does an uncertainty evaluation acc. to GUF and MC methods provide similar results for point estimates and their uncertainties?
- often, usage of OLS justified by " $\sigma_{\!x,i}$ is small compared to $\sigma_{\!y,i}$ " $^{[3]}$
 - ☐ Under what conditions does OLS deliver valid results?
- Bayesian inference is generally applicable and more flexible
 - ☐ When and whether Bayesian inference with prior knowledge has advantages in comparison to MC methods?

• multivariate measurand $\mathbf{Y} = (\beta_0, \beta_1, \boldsymbol{\xi})^T$

$$\hat{\mathbf{Y}} = \underset{\beta_0, \beta_1, \boldsymbol{\xi}}{\operatorname{argmin}} \sum_{i=1}^{N} \begin{pmatrix} x_i - \xi_i \\ y_i - \beta_0 - \beta_1 \xi_i \end{pmatrix}^{\top} \boldsymbol{\Sigma}_i^{-1} \begin{pmatrix} x_i - \xi_i \\ y_i - \beta_0 - \beta_1 \xi_i \end{pmatrix}$$

evaluation of argmin leads to set of N+2 implicit normal equations

$$\mathbf{h}(\mathbf{X}, \mathbf{Y}) = 0$$
, with input quantities $\mathbf{X} = (x_1, y_1, \dots, x_N, y_N)^{\top}$

supplement 2 to GUM (6.3) discusses this class of problems

- perform extensive numerical simulations
- generate "synthetic data" according to stat. model (1a) (1b)

N	$ ho_{ m i}$	$\sigma_{ m i}^{\ 2}/\sigma_{ m \xi}^{\ 2}$	MU Designs
$\{10, 100\}$	{-0.8,0,0.8}	$\{1\%, 5\%, 10\%, 25\%\}$	7

- for each combination $N_{\rm rep}$ =1000 data sets + $N_{\rm S1}$ = $5~10^4$ S1 sub-samples (Monte-Carlo)
- perform uncertainty evalutation accord. to GUF and MC methods

- ISO 28037^[1] applies LPU to linearized problem (Gauss-Newton)
- 1) coverage interval (CI) and frequentist coverage:
 - 95% coverage intervals acc. to GUF yield 95% frequentist coverage
 - MC method provides slightly longer mean CI's length
 - \circ effect strengthens with growing values for $(\sigma_{x,i,} \ \sigma_{y,i})$

2) point estimates:

- GUF: point estimates are unbiased
- MC method gives slightly larger estimates for β_1 and slightly smaller ones for $\beta_0 \to \text{larger RMSEs}$
 - with growing N, difference between GUF and MC lessens

- ISO 28037^[1] applies LPU to linearized problem (Gauss-Newton)
- 1) coverage interval (CI) and frequentist coverage:
 - 95% coverage intervals acc. to GUF yield 95% frequentist coverage
 - MC method provides slightly longer mean CI's length
 - > recommend ISO 28037:2010 WTLS implementation
- advise uncertainties evaluation acc. to the simpler propagation of uncertainties (GUF) approach
 - MC method gives slightly larger estimates for β_1 and slightly smaller ones for $\beta_0 \rightarrow \text{larger RMSEs}$
 - with growing N, difference between GUF and MC lessens

Straight line regression in EIV models

multiple standards recommend minimization of WTLS^[1] functional

$$\begin{pmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\xi}} \end{pmatrix} = \underset{\boldsymbol{\beta}, \boldsymbol{\xi}}{\operatorname{argmin}} \sum_{i=1}^{N} \mathbf{v}_{i}^{\top} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{v}_{i} \quad \text{with } \mathbf{v}_{i} = \begin{pmatrix} x_{i} - \xi_{i} \\ y_{i} - \beta_{0} - \beta_{1} \xi_{i} \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix}$$

- ☐ in general, only numerical approaches can be used
- ☐ uncertainties might <u>depend</u> on chosen algorithm^[2]
- ☐ Does an uncertainty evaluation acc. to GUF and MC methods provide similar results for point estimates and their uncertainties?
- often, usage of OLS justified by " $\sigma_{x,i}$ is small compared to $\sigma_{y,i}$ [3]
 - ☐ Under what conditions does OLS deliver valid results?
- Bayesian inference is generally applicable and more flexible
 - When and whether Bayesian inference with prior knowledge has advantages in comparison to MC methods?

• following Bayes' theorem, posterior for measurands $\theta = (\beta_0, \beta_1, \boldsymbol{\xi}^\top)$

$$p(\boldsymbol{\theta}|\mathrm{data}) \propto \pi_0(\boldsymbol{\theta}) \mathcal{L}(\boldsymbol{\theta};\mathrm{data})$$

with prior $\pi_0(\theta)$, likelihood $\mathcal{L}(\theta; \mathrm{data})$, and given $\tilde{\Sigma} = \mathrm{diag}(\Sigma_1, \ldots, \Sigma_N)$

• assign flat prior to ξ : $\pi_0(\theta) = \pi_0(\beta)\pi_0(\xi) \propto \pi_0(\beta)$

WTLS est. = ML est.

$$p(\boldsymbol{\beta}|\mathrm{data}) \propto \pi_0(\boldsymbol{\beta}) \prod_{i=1}^N \sigma_{\mathrm{eff,i}}^{-1}(\beta_1) \exp\left(-\frac{(y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma_{\mathrm{eff,i}}^2}\right),$$

MAP est. for $\beta_1 \neq \text{WTLS}$ est.

$$\sigma_{\text{eff,i}}^2(\beta_1) = \sigma_{y,i}^2 - 2\rho_i \sigma_{x,i} \sigma_{y,i} \beta_1 + \beta_1^2 \sigma_{x,i}^2$$

select multivariate Normal prior for β

$$\pi_0(\boldsymbol{\beta}) \propto \exp\left(-\frac{1}{2} \left(\boldsymbol{\beta} - \mu_{\beta}\right)^{\top} \boldsymbol{V}^{-1} \left(\boldsymbol{\beta} - \mu_{\beta}\right)\right), \text{ with } \boldsymbol{\mu}_{\beta} = \begin{pmatrix} \mu_{\beta_0} \\ \mu_{\beta_1} \end{pmatrix}, \, \boldsymbol{V} = \operatorname{diag}(\sigma_{\beta_0}^2, \sigma_{\beta_1}^2)$$

closed expressions for marginal distributions can be derived

select multivariate Normal prior for β

$$\pi_0(\boldsymbol{\beta}) \propto \exp\left(-\frac{1}{2} \left(\boldsymbol{\beta} - \mu_{\beta}\right)^{\top} \boldsymbol{V}^{-1} \left(\boldsymbol{\beta} - \mu_{\beta}\right)\right), \text{ with } \boldsymbol{\mu}_{\beta} = \begin{pmatrix} \mu_{\beta_0} \\ \mu_{\beta_1} \end{pmatrix}, \, \boldsymbol{V} = \operatorname{diag}(\sigma_{\beta_0}^2, \sigma_{\beta_1}^2)$$

closed expressions for marginal distributions can be derived

95% CI	LS estimate	Bayesian inference with normal prior		
	ISO - MCM			
$oldsymbol{eta}_0$	(-0.48,0.65)			
$oldsymbol{eta}_1$	(0.58,1.33)			

select multivariate Normal prior for β

$$\pi_0(\boldsymbol{\beta}) \propto \exp\left(-\frac{1}{2} \left(\boldsymbol{\beta} - \mu_{\beta}\right)^{\top} \boldsymbol{V}^{-1} \left(\boldsymbol{\beta} - \mu_{\beta}\right)\right), \text{ with } \boldsymbol{\mu}_{\beta} = \begin{pmatrix} \mu_{\beta_0} \\ \mu_{\beta_1} \end{pmatrix}, \, \boldsymbol{V} = \operatorname{diag}(\sigma_{\beta_0}^2, \sigma_{\beta_1}^2)$$

- closed expressions for marginal distributions can be derived
- set $(\mu_{\beta_0}, \mu_{\beta_1})^{\top} = (0, 1)^{\top}$ and $(\sigma_{\beta_0}^2, \sigma_{\beta_1}^2)^{\top} = q \left(u_{\hat{\beta_0}^{\mathrm{ISO-MCM}}}^2, u_{\hat{\beta_1}^{\mathrm{ISO-MCM}}}^2\right)^{\top}$

95% CI	LS estimate	Bayesian inference with normal prior		
	ISO - MCM		q=1	
$oldsymbol{eta}_0$	(-0.48,0.65)		(-0.22,0.43)	
$oldsymbol{eta}_1$	(0.58,1.33)		(0.71,1.15)	

select multivariate Normal prior for β

$$\pi_0(\boldsymbol{\beta}) \propto \exp\left(-\frac{1}{2} \left(\boldsymbol{\beta} - \mu_{\beta}\right)^{\top} \boldsymbol{V}^{-1} \left(\boldsymbol{\beta} - \mu_{\beta}\right)\right), \text{ with } \boldsymbol{\mu}_{\beta} = \begin{pmatrix} \mu_{\beta_0} \\ \mu_{\beta_1} \end{pmatrix}, \, \boldsymbol{V} = \operatorname{diag}(\sigma_{\beta_0}^2, \sigma_{\beta_1}^2)$$

- closed expressions for marginal distributions can be derived
- set $(\mu_{\beta_0}, \mu_{\beta_1})^{\top} = (0, 1)^{\top}$ and $(\sigma_{\beta_0}^2, \sigma_{\beta_1}^2)^{\top} = q (u_{\hat{\beta_0}^{\mathrm{ISO-MCM}}}^2, u_{\hat{\beta_1}^{\mathrm{ISO-MCM}}}^2)^{\top}$

95% CI	LS estimate	Bayesian inference with normal prior		
	ISO - MCM	q=0.01	q=1	
$oldsymbol{eta}_0$	(-0.48,0.65)	(-0.05,0.05)	(-0.22,0.43)	
$oldsymbol{eta}_1$	(0.58,1.33)	(0.97,1.03)	(0.71,1.15)	

select multivariate Normal prior for β

$$\pi_0(\boldsymbol{\beta}) \propto \exp\left(-\frac{1}{2} \left(\boldsymbol{\beta} - \mu_{\beta}\right)^{\top} \boldsymbol{V}^{-1} \left(\boldsymbol{\beta} - \mu_{\beta}\right)\right), \text{ with } \boldsymbol{\mu}_{\beta} = \begin{pmatrix} \mu_{\beta_0} \\ \mu_{\beta_1} \end{pmatrix}, \, \boldsymbol{V} = \operatorname{diag}(\sigma_{\beta_0}^2, \sigma_{\beta_1}^2)$$

- closed expressions for marginal distributions can be derived
- set $(\mu_{\beta_0}, \mu_{\beta_1})^{\top} = (0, 1)^{\top}$ and $(\sigma_{\beta_0}^2, \sigma_{\beta_1}^2)^{\top} = q (u_{\hat{\beta_0}^{\mathrm{ISO-MCM}}}^2, u_{\hat{\beta_1}^{\mathrm{ISO-MCM}}}^2)^{\top}$

95% CI	LS estimate	Bayesian inference with normal prior		
	ISO - MCM	q=0.01	q=1	q=1000
$oldsymbol{eta}_0$	(-0.48,0.65)	(-0.05,0.05)	(-0.22,0.43)	(-0.23,0.72)
$oldsymbol{eta}_1$	(0.58,1.33)	(0.97,1.03)	(0.71,1.15)	(0.52,1.15)

Conclusion

☑ present generic treatment of straight line regression in EIV models

- ☑ validity of OLS point estimates
 - " $\sigma_{x,i}$ is small compared to $\sigma_{y,i}$ is not sufficient
 - especially, OLS cannot be recommended for EIV models if $\mathrm{sgn}(
 ho eta_1) = -1$
- ☑ uncertainty evaluation acc. to GUF or MC methods for WTLS point estimates
 - advise uncertainty evaluation acc. to simpler GUF (LPU) approach
 - recommend ISO 28037 implementation
- ☑ Bayesian inference with an informative prior
 - is to be preferred if sufficient prior knowledge is available

Conclusion

☑ present generic treatment of straight line regression in EIV models

- ☑ validity of OLS point estimates
 - " $\sigma_{x,i}$ is small compared to $\sigma_{y,i}$ " is not sufficient
 - especially, OLS cannot be recommended for EIV models if $\mathrm{sgn}(
 ho eta_1) = -1$

☑ ur Straight line regression in errors-in-variables models ates

 Comparison between the application of the GUM with its supplements and Bayesian analyses

☑ Ba

Steffen Martens¹, Katy Klauenberg¹, Maurice G. Cox², Alen Bošnjaković³, John Greenwood⁴, Adriaan M. H. van der Veen⁵, and Clemens Elster¹

under revision

Conclusion

☑ present generic treatment of straight line regression in EIV models

- ☑ validity of OLS point estimates
 - " $\sigma_{x,i}$ is small compared to $\sigma_{y,i}$ is not sufficient

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

part of **E**xamples of **M**easurement **U**ncertainty **E**valuation project and has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme