

User Manual

GO-5000M-PMCL GO-5000C-PMCL

5M CMOS Digital Progressive Scan Monochrome and Color Camera

Document Version: 1.2 GO-5000-PMCL_Ver.1.2_Aug2014

Notice

The material contained in this manual consists of information that is proprietary to JAI Ltd., Japan and may only be used by the purchasers of the product. JAI Ltd., Japan makes no warranty for the use of its product and assumes no responsibility for any errors which may appear or for damages resulting from the use of the information contained herein. JAI Ltd., Japan reserves the right to make changes without notice.

Company and product names mentioned in this manual are trademarks or registered trademarks of their respective owners.

Warranty

For information about the warranty, please contact your factory representative.

Certifications

CE compliance

As defined by the Directive 2004/108/EC of the European Parliament and of the Council, EMC (Electromagnetic compatibility), JAI Ltd., Japan declares that GO-5000M-PMCL and GO-5000C-PMCL comply with the following provisions applying to its standards.

EN 61000-6-3 (Generic emission standard part 1)

EN 61000-6-2 (Generic immunity standard part 1)

FCC

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Warning

Changes or modifications to this unit not expressly approved by the party responsible for FCC compliance could void the user's authority to operate the equipment.

Supplement

The following statement is related to the regulation on "Measures for the Administration of the control of Pollution by Electronic Information Products", known as "China RoHS". The table shows contained Hazardous Substances in this camera.

mark shows that the environment-friendly use period of contained Hazardous Substances is 15 years.

重要注意事项

有毒,有害物质或元素名称及含量表

根据中华人民共和国信息产业部『电子信息产品污染控制管理办法』,本产品《 有毒,有害物质或元素名称及含量表 》如下.

	有毒有害物质或元素						
部件名称	铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr(VI))	多溴联苯 (PPB)	多溴二苯醚 (PBDE)	
螺丝固定座	×	0	0	0	0	0	
连 接插 头	×	0	0	0	0	0	
电路板	×	0	0	0	0	0	

- 〇: 表示该有毒有害物质在该部件所有均质材料中的含量均在SJ/T11363-2006规定的限量要求以下。
- ×: 表示该有毒有害物质至少在该部件的某一均质材料中的含量超出SJ/T11363-2006规定的限量要求。
- (企业可在此处、根据实际情况对上表中打"×"的技术原因进行进一步说明。)

环保使用期限

电子信息产品中含有的有毒有害物质或元素在正常使用的条件下不会发生外 泄或突变、电子信息产品用户使用该电子信息产品不会对环境造成严重污染 或对基人身、财产造成严重损害的期限。

数字「15」为期限15年。

Supplement

The following statement is related to the regulation on "Measures for the Administration of the control of Pollution by Electronic Information Products", known as "China RoHS". The table shows contained Hazardous Substances in this camera.

mark shows that the environment-friendly use period of contained Hazardous Substances is 15 years.

重要注意事项

有毒,有害物质或元素名称及含量表

根据中华人民共和国信息产业部『电子信息产品污染控制管理办法』,本产品《 有毒,有害物质或元素名称及含量表 》如下.

有毒有害物质或元素							
铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr(VI))	多溴联苯 (PPB)	多溴二苯醚 (PBDE)		
×	0	0	0	0	0		
×	0	×	0	0	0		
×	0	0	0	0	0		
×	0	0	0	0	0		
	(Pb) X X X	(Pb) (Hg) X	铅 (Rb)	田 (Pb) (Hg) (Cd) (Cr(VI)) (Cr(VI)) (Cd) (Cr(VI)) (Cd) (Cr(VI))	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田		

- 表示该有毒有害物质在该部件所有均质材料中的含量均在SJ/T11363-2006规定的限量要求以下。
- ×:表示该有毒有害物质至少在该部件的某一均质材料中的含量超出SJ/T11363-2006规定的限量要求。

环保使用期限

电子信息产品中含有的有毒有害物质或元素在正常使用的条件下不会发生外 泄或突变、电子信息产品用户使用该电子信息产品不会对环境造成严重污染 或对基人身、财产造成严重损害的期限。

数字「15」为期限15年。

- Contents -

Befo		ing this camera		
1.	Gene	eral	- 7	-
2.	Came	era composition	- 7	-
3.		features		
4.		allation and preparation		
т. 5.		s locations and their functions		
ر. 5.1		s locations and their functions		
5.2		r Panel		
6.		t and output		
6.1		nector and its pin configuration		
	5.1.1	Camera Link Connector		
·	6.1.1.			
	6.1.1.			
6.2	Can	nera Link interface	- 15	j -
6	5.2.1	Camera Link Interface		
-	5.2.2	Camera Link pixel clock frequency		
6.3	_	tal IN/OUT interface		
_	5.3.1	Line Selector		
-	5.3.2	Line Source		
	5.3.3	Line Mode		
	5.3.4	Line Inverter		
	5.3.5	Line Status		
	3.6	Line Format		
6	5.3.7	GPIO		
	6.3.7.			
6.4	6.3.7.	.2 Input and output matrix tablese Generator		
	. Puis	Clock Pre-scaler		
_	5.4.1 5.4.2	Pulse Generator Selector		
-	5.4.2 5.4.3	Pulse Generator Length		
-	5.4.4	Pulse Generator Start Point.		
-	5.4.5	Pulse Generator End Point		
-	5.4.6	Pulse Generator Repeat Count		
	5.4.7	Pulse Generator Clear Activation		
_	.4.8	Pulse Generator Clear Sync Mode		
	.4.9	Pulse Generator Clear Source		
-	.4.10	Pulse Generator Inverter		
6	.4.11	Pulse Generator Setting table		
7.		or layout, output format and timing		
7.1		sor layout		
	7.1.1	Monochrome sensor		
7	7.1.2	Bayer sensor		
7.2		nera output format (Tap Geometry)		
7	7.2.1	1X2-1Y	- 25	· -
7	7.2.2	1X3-1Y	- 25	· -
_	7.2.3	1X4-1Y		
7	7.2.4	1X8-1Y		
7.3		put timing and output image		
	7.3.1	Horizontal timing		
	7.3.2	Vertical timing		
	7.3.3	ROI (Region Of Interest) setting		
7.4	Digi	tal output bit allocation	- 40) -

8.	Operating modes	- 41	۱ -
8.1	. Acquisition control (change the frame rate)	4	1 -
8	3.1.1 Acquisition control		
8	3.1.2 Calculation of the frame rate	4	1 -
8.2	Exposure setting	4	3 -
8	3.2.1 Exposure Mode	4	3 -
8	3.2.2 ExposureTime	4	4 -
8	3.2.3 ExposureAuto	4	4 -
8.3	B. Trigger control	4	4 -
8	3.3.1 Trigger Selector		
8	3.3.2 Trigger Mode	- 4	5 -
8	3.3.3 Trigger Source	- 4	5 -
8	3.3.4 TriggerActivation	4	6 -
8.4	I. Normal continuous operation (Timed Exposure Mode/Trigger Mode OFF)	4	6 -
8.5			
8	3.5.1 If Overlap setting is OFF		
8	3.5.2 If Overlap setting is Readout		
8.6	·		
	3.6.1 If Overlap setting is OFF		
	3.6.2 If Overlap setting is Readout		
8.7	· · · · · · · · · · · · · · · · · · ·		
8.9			
	3.9.1 Video send mode		
	3.9.2 Sequence mode		
_	3.9.3 Trigger Sequence mode timing		
	3.9.4 Sequence ROI setting parameters		
8.1			
	3.10.1 Multi ROI setting parameters		
8.1			
0. 1	Exposure		
9.	Other functions		
9.1			
	9.1.1 Black Level Selector		
	9.1.2 Black Level		
9.2			
	9.2.1 Gain Selector		
-			
		_	
_	9.2.3 Gain Raw	_	_
	9.2.4 Gain Auto	-	
	9.2.4 Balance white auto	-	-
9.3			
	9.3.1 LUT Mode		
	9.3.2 LUT Index		
	9.3.3 LUT Value		
9.4			
	9.4.1 Linear and Dark Compression		
9.5	3		
9.6	· · · · · · · · · · · · · · · · · · ·		
9.7			
9.8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
10.	Camera Settings		
11.	External appearance and dimensions	- 67	7 -
12.	Specifications		
			-
12	·		۷.
12. 12.	1. Camera spectral response	6	

See the possibilities

Appendix 1 Short ASCII Command Communication Protocol	72 -
1 Communication setting	72 -
2 Protocol (Short ASCII Command)	
2.1 Transmit the setting command to camera	
2.2 Transmit the request command to camera	
2.3 Switching baud rate between PC and camera	
2.4 Command list (Short ASCII command)	
2.4.1 GenCP Bootstrap Register	
2.4.2 Technology Specific Bootstrap Register	
2.4.3 Device Control	
2.4.4 Image Format Control	74 -
2.4.5 Acquisition Control	
2.4.6 Digital I/O Control	76 -
2.4.7 Analogue Control	77 -
2.4.8 LUT Control	
2.4.9 Transport Layer Control	77 -
2.4.10 User Set Control	77 -
2.4.11 JAI-Custom	78 -
Appendix 2	93 -
1. Precautions	
2. Typical Sensor Characteristics	
3. Caution when mounting a lens on the camera	
4. Caution when mounting the camera	
5. Exportation	
6. References	
Manual change history	95 -
Ver.1.0	
Release	
User's Record	

Before using this camera

EMVA 1288

With regard to signal to noise ratio in this manual, specifications measured by EMVA 1288 are used together with specifications by a traditional measurement method.

EMVA 1288 is a more complete measurement that considers multiple noise sources, including random noise, pattern noise, and shading. Additionally, EMVA 1288 incorporates temporal variances in pixel output by capturing 100 frames of data and computing the RMS variations over the captured frames. Because of the comprehensive nature of the noise analysis and the additional consideration for RMS variances over time, EMVA 1288 SNR measurements are inherently lower than the traditional SNR measurements given by manufacturers. However, the comprehensive nature combined with rigid test parameters, means that all manufacturers' are measuring their products equally and EMVA 1288 tested parameters can be compared among different manufacturers' products.

In order to learn more about EMVA 1288, please visit http://www.emva.org

See the possibilities

1. General

The GO-5000M-PMCL and GO-5000C-PMCL are new small-in-size cameras providing both high resolution and a high frame rate with excellent image quality for machine vision applications. The GO-5000M-PMCL is a monochrome progressive scan COMS camera and the GO-5000C-PMCL is the equivalent Bayer mosaic progressive scan CMOS camera. Both are equipped with CMOS sensors offering a 1-inch image format, a resolution of 5 million pixels, and a 5:4 aspect ratio. They provide a maximum of 107.2 frames per second for continuous scanning with 2560 x 2048 full pixel resolution in 1x8-1Y, 8-bit output format.

8-bit, 10-bit or 12-bit output can be selected for both monochrome and raw Bayer formats. The new cameras feature a Mini Camera Link interface supporting a "Power over Camera Link" capability. A full pixel readout or partial scan readout mode can be selected depending on applications. The readout format is available for 8-tap, 4-tap, 3-tap or 2-tap output.

The GO-5000M-PMCL and GO-5000C-PMCL have various comprehensive functions needed for automated optical inspection applications, such as solid state device inspection or material surface inspection. They incorporate video processing functions such as a look-up table, flat field shading compensation and blemish compensation in addition to fundamental functions such as trigger, exposure setting and video level control.

The latest version of this manual can be downloaded from: www.jai.com
The latest version of the JAI SDK for the GO-5000M-PMCL and GO-5000C-PMCL can be downloaded from: www.jai.com

For camera revision history, please contact your local JAI distributor.

2. Camera composition

The standard camera composition is as follows.

Camera body 1
Sensor protection cap 1
Dear Customer (sheet) 1

The following optional accessories are available.

Tripod base	MD 43
i iribod base	l MP-43
	.,

3. Key features

- New small-in-size 1-inch CMOS 5-megapixel progressive scan camera
- Utilizes two Mini Camera Link interfaces to support Base, Medium or Full configurations
- Aspect ratio 5:4, 2560 (H) x 2048 (V) 5 million effective pixels
- 5 µm square pixels
- S/N 55dB for monochrome and 50dB for color (Dark compression is used, traditional measurement method)
- 8-bit, 10-bit or 12-bit output for monochrome and Bayer
- 107.2 frames/second with full resolution in continuous operation for 8-tap, 63.6 frames/second for 4-tap, 47.8 frames/second for 3-tap, and 31.9 fps for 2-tap readout
- Supports ROI (Region Of Interest) modes for faster frame rate
- OdB to +24dB gain control for both GO-5000M-PMCL and GO-5000C-PMCL
- 10 μs (1/100,000) to 8 seconds exposure control in 1 μs step
- Auto exposure control
- Timed and trigger width exposure control
- RCT trigger mode for specific applications
- ALC control with combined function of AGC and Auto Shutter
- Various pre-processing circuits are provided

Programmable LUT

Gamma correction from 0.45 to 1.0

Shading correction

Bayer white balance with manual or one-push auto (GO-5000C-PMCL only)

Blemish compensation

HDR (High Dynamic Range) function (GO-5000M-PMCL only)

- C-mount for lens mount
- Accepts power over Mini Camera Link
- Setup by Windows XP/Vista/7/8 via serial communication

4. Installation and preparation

Before starting operation, check to make sure that all equipment is appropriate and is connected in the right manner.

1. Lens used

The GO-5000-PMCL employs a 1-inch CMOS imager. It is necessary to select a 1-inch C mount lens if the full resolution of the camera is to be utilized. The imager used in the GO-5000-PMCL measures 16.392 mm diagonally, which is slightly larger than the standard 16 mm diagonal of the 1-inch format. Please consult with your lens provider to select a 1-inch lens able to cover 16.392 mm, otherwise the image captured may show vignetting.

It is possible to use C mount lenses with an optical format smaller than 1-inch, provided a less-than full-resolution ROI is going to be used. For example, a centered ROI of 1920 x 1080 pixels (HD format) will fit inside the image circle of most standard 2/3-inch C mount lenses. Likewise, a centered VGA ROI (640 x 480 pixels) can be accommodated by a standard 1/3-inch C mount lens.

The rear protrusion on any lens used must be less than 10 mm.

The focal length of lens used is estimated by the following formula.

Focal length = WD/(1 + W/w)

Here, WD: Working distance (the distance between lens and object)

W: Width of object

w: Width of sensor (the SP-5000-PMCL is 12.8 mm)

2. JAI SDK and Control Tool software

The GO-5000M-PMCL and GO-5000C-PMCL are designed to use the JAI SDK and Control Tool software to control camera functions. All controllable functions are stored in the camera's XML file. The JAI SDK can be downloaded from www.jai.com. Third-party software can also be used with the camera provided it is compliant with the GenICam® standard. See section 10 for important notes regarding the use of third-party software.

A camera control tool for using the Short ASCII command protocol is not available on the JAI website. Please contact your local JAI representative if this is required. A list of ASCII commands is shown at the end of this manual.

3. Frame grabber board

The GO-5000M-PMCL complies with "Power over Camera Link" which utilizes power supplied to the camera through the Camera Link cabling. Please be sure that the frame grabber board you are using also complies with this specification.

The GO-5000-PMCL employs output formats which comply with the GenlCam[®] standard. They are 1X8-1Y (8-Tap output), 1X4-1Y (4-Tap output), 1X3-1Y (3-Tap output) and 1X2-1Y (2-Tap output). 1X8-1Y is available for 8-bit and 10-bit output, and 1X4-1Y and 1X2-1Y are available for 8-bit, 10-bit and 12-bit output. 1x3-1Y is only available for 8-bit output. Please check if the frame grabber used in the system complies with the mentioned formats.

The GO-5000-PMCL has two Camera Link connectors. Connector #1 is used for the Camera Link Base configuration, as well as in Medium and Full configurations. Power is supplied through this connector. Connector #2 is used for Medium and Full configurations.

4. Camera Link Cable

Please confirm that the Camera Link cable is securely connected to both the camera and the Camera Link interface board. A cable with a Mini-Camera Link connector (SDR) on one end is required to connect to the camera. A Standard Camera Link connector (MDR) or Mini (SDR) can be used on the other end of the cable, depending on the connector used in the Camera Link frame grabber board. The length between the camera and frame grabber board is described in chapter 6.2.2.

5. Caution when certain commands are executed

When the following commands are executed, the video output may be interrupted instantaneously.

- 1. Base Gain
- 2. HDR mode (ON/OFF)
- 3. Setting HDR SLOPE when HDR mode is ON

When this occurs, it is necessary to disable the frame grabber board.

6. Camera Default Settings

When the camera is connected to a PC and JAI SDK 2.0 is started up, an XML file which stores default settings of the camera is downloaded to the JAI_SDK camera control tool.

The default settings of the GO-5000-PMCL are as follows.

Table - 1 Default settings

Table - 1 berault settings							
Image Format	Bit allocation	8-bit					
	Height	2048					
	Device Tap Geometry	1x8_1Y					
	Binning Horizontal	OFF					
	Binning Vertical	OFF					
Trigger Operation	Trigger Mode	OFF					
	Trigger Source	CL_CC1_In					
Exposure Control	Exposure Mode	OFF					
Gain	Gain Auto	OFF					
	Manual Gain all	0					
	Manual Fine Gain all	0					
	Analogue Base Gain	0dB					

5. Parts locations and their functions

5.1 Parts locations and their functions

- ① Lens mount
- ② LED
- 3 Camera Link Connector 1
- 4 Camera Link Connector 2
- ⑤ Mounting holes

C-mount (Note *1)

Indication for power and trigger input

Digital video output (Base, Medium and Full config.) (Note *2)

Digital video output (Medium and Full configuration) (Note *2)

M3 depth 5 mm for fixing the camera to the tripod base or

direct installation (Note *3)

- *1) Note: Rear protrusion on C-mount lens must be less than 10.0 mm.
- *2) Note: When a Camera Link cable is connected to the camera, please do not excessively tighten screws by using a driver. The Camera Link receptacle on the camera might be damaged. For security, the strength to tighten screws is less than 0.147 Newton meter (Nm). Tightening by hand is sufficient in order to achieve this.
- *3) Note: The part number for the tripod adapter plate (with 1/4"-20 thread) is MP-43 (option). For MP-43, three M3x5 pan head screws must be used.

Fig. 1 Locations

See the possibilities

5.2 Rear Panel

The rear panel mounted LED provides the following information:

Amber: Power connected - initiating

This light goes OFF after initiating.

• Steady green: Camera is operating in Continuous mode

* Flashing green: The camera is receiving external triggering

Note: The interval of flashing does not correspond with external trigger duration.

Fig. 2 Rear panel

6. Input and output

6.1 Connector and its pin configuration

6.1.1 Camera Link Connector

6.1.1.1 Figure

Type: 26-pin Mini Camera Link connector (Honda HDR-EC26FYTG2-SL+). The camera has two connectors. Power over Camera Link (PoCL) must be provided over Connector #1.

Fig.3 Camera Link connector

6.1.1.2 Pin assignment

Table-2 Camera link pin configuration - connector 1

Pin No	In/Out	Name	Note
1,26		Power	Power
2(-),15(+)	0	X_OUT0	
3(-),16(+)	0	X_OUT1	Data output
4(-),17(+)	0	X_OUT2	
5(-),18(+)	0	X_Clk	Clock for CL
6(-),19(+)	0	X_OUT3	Data output
7(+),20(-)		SerTC (RxD)	LVDS serial control
8(-),21(+)	0	SerTFG (TxD)	LVD3 Serial Control
9(-),22(+)	I	CC1 (Trigger)	Line2 Trigger input
10(+),23(-)		CC1 (Reserved)	
11,24		N.C	
12,25		N.C	
13,14		Shield	Power Return

Camera Link connector 2

Pin No	In/Out	Name	Note
1,26		Power	Connector #1 must be used for Power
2(-),15(+)	0	Y_OUT0	
3(-),16(+)	0	Y_OUT1	Data output
4(-),17(+)	0	Y_OUT2	
5(-),18(+)	0	Y_Clk	Clock for CL
6(-),19(+)	0	Y_OUT3	Data output
7(+),20(-)		N.C	
8(-),21(+)	0	Z_OUT0	
9(-),22(+)	0	Z_OUT1	Data output
10(+),23(-)	0	Z_OUT2	
11,24	0	Z_Clk	Clock for CL
12,25	0	Z_OUT3	Data output
13,14		Shield	Power Return

See the possibilities

6.2 Camera Link interface

6.2.1 Camera Link Interface

Table-3 Camera Link interface

GO-5000M/C-PMCL									
Port		Configuration	Base	Base	Medium	Full	80bit		
	Camera Link port/bit		2Tap / 12bit	3Tap/8bit	4Tap / 12bit	8 Tap / 8bit	8 Tap / 10bit		
	GenICam T	ap Geometry	1X2 - 1Y	1X3 - 1Y	1X4 - 1Y	1x8 - 1Y	1X8 - 1Y		
	Port A0	TxIN 0	Tap1 D0	Tap 1 D0	Tap 1 D0	Tap 1 D0	Tap 1 D2		
	Port A1	TxIN 1	Tap1 D1	Tap 1 D1	Tap 1 D1	Tap 1 D1	Tap 1 D3		
	Port A2	TxIN 2	Tap1 D2	Tap 1 D2	Tap 1 D2	Tap 1 D2	Tap 1 D4		
	Port A3	TxIN 3	Tap1 D3	Tap 1 D3	Tap 1 D3	Tap 1 D3	Tap 1 D5		
_	Port A4	TxIN 4	Tap1 D4	Tap 1 D4	Tap 1 D4	Tap 1 D4	Tap 1 D6		
D	Port A5	TxIN 6	Tap1 D5	Tap 1 D5	Tap 1 D5	Tap 1 D5	Tap 1 D7		
i	Port A6	TxIN 27	Tap1 D6	Tap 1 D6	Tap 1 D6	Tap 1 D6	Tap 1 D8		
g	Port A7	TxIN 5	Tap1 D7	Tap 1 D7	Tap 1 D7	Tap 1 D7	Tap 1 D9		
i	Port B0	TxIN 7	Tap1 D8	Tap 2 D0	Tap 1 D8	Tap 2 D0	Tap 2 D2		
	Port B1	TxIN 8	Tap1 D9	Tap 2 D1	Tap 1 D9	Tap 2 D1	Tap 2 D3		
t	Port B2	TxIN 9	Tap1 D10	Tap 2 D2	Tap 1 D10	Tap 2 D2	Tap 2 D4		
a	Port B3	TxIN 12	Tap1 D11	Tap 2 D3	Tap 1 D11	Tap 2 D3	Tap 2 D5		
l	Port B4	TxIN 13	Tap2 D8	Tap 2 D4	Tap 2 D8	Tap 2 D4	Tap 2 D6		
	Port B5	TxIN 14	Tap2 D9	Tap 2 D5	Tap 2 D9	Tap 2 D5	Tap 2 D7		
	Port B6	TxIN 10	Tap2 D10	Tap 2 D6	Tap 2 D10	Tap 2 D6	Tap 2 D8		
ı	Port B7	TxIN 11	Tap2 D11	Tap 2 D7	Tap 2 D11	Tap 2 D7	Tap 2 D9		
/	Port C0	TxIN 15	Tap2 D0	Tap 3 D0	Tap 2 D0	Tap 3 D0	Tap 3 D2		
0	Port C1	TxIN 18	Tap2 D1	Tap 3 D1	Tap 2 D1	Tap 3 D1	Tap 3 D3		
	Port C2	TxIN 19	Tap2 D2	Tap 3 D2	Tap 2 D2	Tap 3 D2	Tap 3 D4		
	Port C3	TxIN 20	Tap2 D3	Tap 3 D3	Tap 2 D3	Tap 3 D3	Tap 3 D5		
-	Port C4	TxIN 21	Tap2 D4	Tap 3 D4	Tap 2 D4	Tap 3 D4	Tap 3 D6		
	Port C5	TxIN 22	Tap2 D5	Tap 3 D5	Tap 2 D5	Tap 3 D5	Tap 3 D7		
1	Port C6	TxIN 16	Tap2 D6	Tap 3 D6	Tap 2 D6	Tap 3 D6	Tap 3 D8		
	Port C7	TxIN 17	Tap2 D7	Tap 3 D7	Tap 2 D7	Tap 3 D7	Tap 3 D9		
	-	TxIN 24	LVAL	LVAL	LVAL	LVAL	LVAL		
	-	TxIN 25	FVAL	FVAL	FVAL	FVAL	FVAL		
	(Port I0)	TxIN 26	DVAL	DVAL	DVAL	DVAL	Tap 1 D0		
	(Port I1)	TxIN 23	Exposure Active	Exposure Active	Exposure Active	Exposure Active	Tap 1 D1		

	GO-5000-PMCL									
Port	Camera Link	Configuration	Base	Base	Medium	Full	80bit			
	Camera Li	ink port/bit	2Tap / 12bit	3Tap/8bit	4Tap / 12bit	8 Tap / 8bit	8 Tap / 10bit			
	GenICam T	ap Geometry	1X2 - 1Y	1X3 - 1Y	1X4 - 1Y	1x8 - 1Y	1X8 - 1Y			
	Port D0	TxIN 0	_	_	Tap 4 D0	Tap 4 D0	Tap 4 D2			
D	Port D1	TxIN 1	-		Tap 4 D1	Tap 4 D1	Tap 4 D3			
i	Port D2	TxIN 2			Tap 4 D2	Tap 4 D2	Tap 4 D4			
a	Port D3	TxIN 3	-		Tap 4 D3	Tap 4 D3	Tap 4 D5			
g	Port D4	TxIN 4			Tap 4 D4	Tap 4 D4	Tap 4 D6			
i	Port D5	TxIN 6			Tap 4 D5	Tap 4 D5	Tap 4 D7			
t	Port D6	TxIN 27	_	_	Tap 4 D6	Tap 4 D6	Tap 4 D8			
a	Port D7	TxIN 5	_	_	Tap 4 D7	Tap 4 D7	Tap 4 D9			
1	Port E0	TxIN 7	_	_	Tap 3 D0	Tap 5 D0	Tap 5 D2			
,	Port E1	TxIN 8	_	_	Tap 3 D1	Tap 5 D1	Tap 5 D3			
	Port E2	TxIN 9	_	_	Tap 3 D2	Tap 5 D2	Tap 5 D4			
I	Port E3	TxIN 12	_		Tap 3 D3	Tap 5 D3	Tap 5 D5			
/	Port E4	TxIN 13	_	_	Tap 3 D4	Tap 5 D4	Tap 5 D6			
0	Port E5	TxIN 14	_	_	Tap 3 D5	Tap 5 D5	Tap 5 D7			
Ü	Port E6	TxIN 10	_	_	Tap 3 D6	Tap 5 D6	Tap 5 D8			
	Port E7	TxIN 11	_	_	Tap 3 D7	Tap 5 D7	Tap 5 D9			
-	Port F0	TxIN 15	_		Tap 3 D8	Tap6 D0	Tap 6 D2			
	Port F1	TxIN 18	_		Tap 3 D9	Tap6 D1	Tap 6 D3			
2	Port F2	TxIN 19	_	_	Tap 3 D10	Tap6 D2	Tap 6 D4			
_	Port F3	TxIN 20	_	_	Tap 3 D11	Tap6 D3	Tap 6 D5			
	Port F4	TxIN 21	_	_	Tap 4 D8	Tap6 D4	Tap 6 D6			
•	Port F5	TxIN 22	_	_	Tap 4 D9	Tap6 D5	Tap 6 D7			
1	Port F6	TxIN 16	_	_	Tap 4 D10	Tap6 D6	Tap 6 D8			
/	Port F7	TxIN 17	_	_	Tap 4 D11	Tap6 D7	Tap 6 D9			
,	-	TxIN 24	_	_	LVAL	LVAL	LVAL			
2	(Port I2)	TxIN 25	_		FVAL	FVAL	Tap 2 D0			
)	(Port I3)	TxIN 26	_	_	DVAL	DVAL	Tap 2 D1			
	(Port I4)	TxIN 23	_	_	Exposure Active	Exposure Active	Tap 3 D0			

See the possibilities

	GO-5000M/C-PMCL								
Port	Camera Lir	nk Configuration	Base	Base	Medium	Full	80bit		
		Link port/bit	2Tap / 12bit	3Tap/8bit	4Tap / 12bit	8 Tap / 8bit	8 Tap / 10bit		
	GenICam	Tap Geometry	1X2 - 1Y	1X3 - 1Y	1X4 - 1Y	1x8 - 1Y	1X8 - 1Y		
	Port G0	TxIN 0	_	_	_	Tap 7 D0	Tap 7 D2		
D	Port G1	TxIN 1	_	1	-	Tap 7 D1	Tap 7 D3		
i	Port G2	TxIN 2	_	_	_	Tap 7 D2	Tap 7 D4		
a	Port G3	TxIN 3	_	_	_	Tap 7 D3	Tap 7 D5		
g	Port G4	TxIN 4	_	_	_	Tap 7 D4	Tap 7 D6		
i	Port G5	TxIN 6	_	_	_	Tap 7 D5	Tap 7 D7		
t	Port G6	TxIN 27	_	_	_	Tap 7 D6	Tap 7 D8		
a	Port G7	TxIN 5	_	_	_	Tap 7 D7	Tap 7 D9		
1	Port H0	TxIN 7	_	_	_	Tap 8 D0	Tap 8 D2		
(Port H1	TxIN 8	_	_	_	Tap 8 D1	Tap 8 D3		
	Port H2	TxIN 9	_	_	_	Tap 8 D2	Tap 8 D4		
1	Port H3	TxIN 12	_	_	_	Tap 8 D3	Tap 8 D5		
/	Port H4	TxIN 13	_	_	_	Tap 8 D4	Tap 8 D6		
0	Port H5	TxIN 14	_	_	_	Tap 8 D5	Tap 8 D7		
U	Port H6	TxIN 10	_	_	_	Tap 8 D6	Tap 8 D8		
	Port H7	TxIN 11	_	_	_	Tap 8 D7	Tap 8 D9		
-	(Port I5)	TxIN 15	_	_	_	·	Tap 3 D1		
	(Port I6)	TxIN 18	_	_	_		Tap 4 D0		
2	(Port I7)	TxIN 19	_	_	_		Tap 4 D1		
Z	(Port K0)	TxIN 20	_	_	_		Tap 5 D0		
	(Port K1)	TxIN 21	_	_	_		Tap 5 D1		
	(Port K2)	TxIN 22	_	_	_		Tap 6 D0		
2	(Port K3)	TxIN 16	_	_	_		Tap 6 D1		
_	(Port K4)	TxIN 17	_	_	_		Tap 7 D0		
-	-	TxIN 24	_	_	_	LVAL	LVAL		
2	(Port K5)	TxIN 25	_	_	_	FVAL	Tap 7 D1		
_	(Port K6)	TxIN 26	_	_	_	DVAL	Tap 8 D0		
	(Port K7)	TxIN 23	_	_	_	Exposure Active	Tap 8 D1		

Note

- 1. In this table, not all tap geometry items are described. For instance, 1X4-1Y shows only 12-bit. In case of 10-bit, upper 2 bits (D10 and D11) are not used and in case of 8-bit, upper 4 bits (D8 through D11) are not used.
- 2. Please check whether the frame grabber complies with those formats if you use 80-bit (8-tap/10-bit) camera configuration.
- 3. If you use 80-bit (8-tap/10-bit) camera configuration, DVAL and Exposure Active (JAI custom) are not output through the Camera Link interface. FVAL is only output via Digital I/O-1 connector.

6.2.2 Camera Link pixel clock frequency

In the GO-5000M-PMCL and GO-5000C-PMCL, the Camera Link pixel clock can be selected from 84.99 MHz, 72.85 MHz, 58.28 MHz, and 48.57 MHz. If the 48.57MHz clock is used, the transfer length through the camera link cable will be extended to 10m for all tap geometries. On the other hand, the frame rate will be reduced (see table). The default setting is 72.85 MHz.

Table - 4 Camera link pixel clock, cable length, and frame rates

Camera Link Pixel Clock	Maximum	1X2-1Y 1X3-1Y 1X4-1Y		1X4-1Y	1X8-1Y	
	length	8/10/12bit	8bit	8/10/12bit	8bit	10bit
High (84.99MHz)	5m	31.9	47.8	63.6	-	-
Mid (72.85 MHz)	5m	27.4	41.0	54.7	-	-
High (72.85 MHz)	10m	-	-	-	107.2	-
Mid (58.28 MHz)	10m	-	-	-	-	84.9
Low (48.57 MHz)	10m	18.3	27.4	36.4	70.8	70.8

Note: The maximum lengths shown in the above table are guidelines. Operating at these lengths may generate bit noise, depending on the cable used.

6.3 Digital IN/OUT interface

In the GO-5000M-PMCL and GO-5000C-PMCL, the software control tool can assign the necessary signals used in the system to digital inputs and outputs (see Section 5.3.7.1 for block diagram).

6.3.1 Line Selector

In the Line Selector, the following input and output signals can be assigned.

Table-5 Line selector

Line Selector item	Description
NAND 0 IN 1	No. 1 input to the first NAND gate
NAND 0 IN 2	No. 2 input to the first NAND gate
NAND 1 IN 1	No. 1 input to the second NAND gate
NAND 1 IN 2	No. 2 input to the second NAND gate

6.3.2 Line Source

Line source signal can be selected from the following table to connect it to the line item which is selected in the line selector.

Table-6 Line Source

Line Source item	Description						
Low	Connect Low Level signal to line item selected in Line Selector, Default setting						
High	Connect High Level signal to line item selected in Line Selector						
Frame Trigger Wait	Connect Frame Trigger Wait signal to line item selected in Line Selector						
Frame Active	Connect Frame Active signal to line item selected in Line Selector						
Exposure Active	Connect Exposure Active signal to line item selected in Line Selector						
FVAL	Connect FVAL signal to line item selected in Line Selector						
LVAL	Connect LVAL signal to line item selected in Line Selector						
Pulse Generator 0 Out	Connect Pulse Generator 0 signal to line item selected in Line Selector						
CL CC1 In	Connect CL CC1 IN signal to line item selected in Line Selector						
NAND 0 Out	Connect NAND 0 signal to line item selected in Line Selector						
NAND 1 Out	Connect NAND 1 signal to line item selected in Line Selector						
Note] As for LVAL, some line items cannot be connected. Refer to "5.3.7.2 GPIO matrix table"							

6.3.3 Line Mode

Indicates the status of the item selected in Line Selector. (INPUT or OUTPUT)

6.3.4 Line Inverter

Inverts the signal polarity for the item selected in Line Selector. (False=Positive, True=Negative)

6.3.5 Line Status

Indicates the status of the selected signal (input or output) (True=High, False=Low)

6.3.6 Line Format

Indicates the interface information of the input and output lines.

Not connected, TTL, LVDS or Opto-coupled

Note: In the GO-5000-PMCL, Opto-coupled interface is not available.

See the possibilities

6.3.7 GPIO

GPIO is a general interface for input and output which controls the I/O for trigger signals and other valid signals and pulse generators. By using this interface you can control an external light source, make a delay function for an external trigger signal, or make a precise exposure setting together with a PWC trigger.

6.3.7.1 Basic block diagram

The basic block diagram is as follows.

Fig.4 GPIO interface

6.3.7.2 Input and output matrix table

The relationship between input and output is as follows.

Table-7 GPIO matrix table

Selector (Cross point switch output)	Trigger Selector	Li	ne S	elect	Pulse Generator Selector	
Source signal (Cross point switch input)	Trigger Source (Frame Start)	NAND 1 In 1	NAND 1 In 2	NAND 2 In 1	NAND 2 In 2	Pulse Generator 0
Low	0	0	0	0	0	0
High	0	0	0	0	0	0
Soft Trigger	0	×	×	×	×	×
Exposure Active	×	0	0	0	0	0
Frame Trigger Wait	×	0	0	0	0	0
Frame Active	×	0	0	0	0	0
FVAL	×	0	0	0	0	0
LVAL	×	×	×	×	×	0
Pulse Generator 0	0	0	0	0	0	×
CL CC1 in	0	0	0	0	0	0
NAND 0 Out	0	×	×	0	0	0
NAND 1 Out 1	0	0	0	×	×	0
	Trigger Source					Pulse Generator Clear Source

6.4 Pulse Generator

The GO-5000-PMCL has a frequency divider using the sensor clock as the basic clock and one pulse generator. In the Pulse Generator, various Clear settings are connected to GPIO.

The following shows the Pulse Generator default settings. In the GO-5000-PMCL, the sensor pixel clock is 36 MHz for 8-bit, 28.8MHZ for 10-bit and 24 MHZ for 12-bit.

Table - 8 Pulse Generator default settings

Display Name	Value										
Clock Pre-scaler	1										
	Pulse G	Pulse Generator									
	Length	Start	End	Repeat	Clear	Clear	Clear	Clear			
Pulse Generator		Point	Point	Count	Source	Inverter	Activation	Sync			
Selector								Mode			
- Pulse Generator 0	1	0	1	0	Off	True	Off	Async			
1 disc Sellerator 0	'	J	ļ	J	Oii	True	011	Mode			

Note:]

When Pulse Generator Repeat Count is set to "0", the camera is operating in free-running mode. However, based on the above default settings, Length=1, Start Point=0 and End Point=1, Pulse Generator stops at High output. Therefore, if Start Point=0 and End Point=1 are configured, Length should be "2" as the minimum active width.

6.4.1 Clock Pre-scaler

Clock pre-scaler (Divide Value) can set the dividing value of the frequency divider (12-bit length) and the sensor clock is used for this. Four built-in pulse generators work by the same clock.

6.4.2 Pulse Generator Selector

The GO-5000-PMCL has only one pulse generator. Therefore, it is fixed.

Table - 9 Pulse Generator setting

Trigger Selector item	Description							
Pulse Generator 0 If Pulse Generator 0 is selected, Length, Start Point, End Point, Repeat Count, Clear Source, C Inverter, Clear Activation and Clear Sync Mode of Pulse Generator 0 are displayed under selector.								
Pulse generator Clear source IN (Clear activation								

Fig.5 Pulse Generator pulse construction

6.4.3 Pulse Generator Length

Set the counter up value for the pulse generator. If Repeat Count value is "0" and if Pulse Generator Clear signal is not input, the pulse generator generates the pulse repeatedly until reaching this counter up value.

6.4.4 Pulse Generator Start Point

Set the active output start count value for the pulse generator. However, please note that a maximum 1 clock jitter for the clock which is divided in the clock pre-scaler can occur.

6.4.5 Pulse Generator End Point

Set the active output ending count value for the pulse generator.

6.4.6 Pulse Generator Repeat Count

Set the repeating number of the pulse for the pulse generator. After Trigger Clear signal is input, the pulse generator starts the count set in Repeat Count. Accordingly, an active pulse which has a start point and end point can be output repeatedly. However, if Repeat Count is set to "0", it works as a free-running counter.

6.4.7 Pulse Generator Clear Activation

Set the clear conditions of clear count pulse for the pulse generator.

6.4.8 Pulse Generator Clear Sync Mode

Set the count clear method for the pulse generator. In case of Async Mode, if the clear signal is input during the length setting value, the counter will stop counting according to the clear signal input. In case of Sync Mode, if the clear signal is input during the length setting value, the counter will continue to count until the end of the length setting value and then clear the count. Both modes clear the repeat count when the counter is cleared.

Fig.6 Counter clear in Async mode

Fig.7 Counter clear in Sync mode

6.4.9 Pulse Generator Clear Source

The following clear sources can be selected as the pulse generator clear signal.

Table - 10 Pulse generator clear source

Pulse Generator Clear Source item	Description
Low	Connect Low level signal to Clear Source for the pulse generator. Default setting
High	Connect High level signal to Clear Source for the pulse generator.
Frame Trigger Wait	Connect Frame Trigger Wait signal to Clear Source for the pulse generator.
Frame Active	Connect Frame Active signal to Clear Source for the pulse generator.
Exposure Active	Connect Exposure Active signal to Clear Source for the pulse generator.
FVAL	Connect FVAL signal to Clear Source for the pulse generator.
LVAL	Connect LVAL signal to Clear Source for the pulse generator.
CL CC1 In	Connect CL CC1 IN signal to Clear Source for the pulse generator.
Nand0 Out	Connect NAND 0 output signal to Clear Source for the pulse generator.
Nand1 Out	Connect NAND 1 output signal to Clear Source for the pulse generator.

6.4.10 Pulse Generator Inverter

Clear Source Signal can be have polarity inverted.

6.4.11 Pulse Generator Setting table

Table - 11 Pulse Generator setting parameters

Display Name	Value
Clock Pre-scaler	1 to 4096
Pulse Generator Clock (MHZ)	[Pixel Clock:36MHz/28.8MHz/24MHz]÷[Clock Pre-scaler]
Pulse Generator Selector	- Pulse Generator 0
- Pulse Generator Length	1 to 1048575
- Pulse Generator Length (ms)	([Clock Source]÷[Clock Pre-scaler]) -1 x [Pulse Generator Length]
- Pulse Generator Frequency (Hz)	[Pulse Generator Length (ms)] -1
- Pulse Generator Start Point	0 to 1048574
- Pulse Generator Start Point (ms)	([Clock Source]÷[Clock Pre-scaler]) -1 x [Pulse Generator Start Point]
- Pulse Generator End Point	1 to 1048575
- Pulse Generator End Point (ms)	([Clock Source]÷[Clock Pre-scaler]) -1 x [Pulse Generator End Point]
- Pulse Generator pulse-width (ms)	[Pulse Generator End Point (ms)] - [Pulse Generator Start Point (ms)]
- Pulse Generator Repeat Count	0 to 255
- Pulse Generator Clear Activation Clear Mode for the Pulse Generators	- Off - High Level - Low level - Rising Edge - Falling Edge
- Pulse Generator Clear Sync Mode	- Async mode
	- Sync mode
- Pulse Generator Clear Source	- Low
	- High
	- Frame Trigger Wait - Frame Active
	- Frame Active - Exposure Active
	- Fval
	- Lval
	- CL_CC1_In
	- Nand0 Out
	- Nand1 Out
- Pulse Generator Inverter(Polarity)	- False
Pulse Generator Clear Inverter	- True

Note:

^{1.} If Pulse Generator Repeat Count is set to "0", the pulse generator works in free-running mode.

^{2.} The output of the same pulse generator cannot be connected to Clear input.

7. Sensor layout, output format and timing

7.1 Sensor layout

The CMOS sensors used in the GO-5000M-PMCL and GO-5000C-PMCL have the following pixel layout.

7.1.1 Monochrome sensor

Fig. 8 Monochrome sensor layout

7.1.2 Bayer sensor

Fig. 9 Color sensor layout

7.2 Camera output format (Tap Geometry)

Table - 12 Output format

Camera output format	Bit assignment	Refer to drawing
1X2-1Y	8-bit, 10-bit, 12-bit	7.2.1
1X3-1Y	8-bit	7.2.2
1X4-1Y	8-bit, 10-bit, 12-bit	7.2.3
1X8-1Y	8-bit, 10-bit	7.2.4

Note: The camera output description is based on GenICam SFNC Ver.1.5.1.

7.2.1 1X2-1Y

1X2-1Y is a 2-tap readout system specified in GenlCam Tap Geometry and it outputs as the following.

Fig.10 1X2-1Y output format

7.2.2 1X3-1Y

1X3-1Y is a 3-tap readout system specified in GenlCam Tap Geometry.

7.2.3 1X4-1Y

1X4-1Y is a 4-tap readout system specified in GenlCam Tap Geometry.

Fig. 11 1X4-1Y output format

7.2.4 1X8-1Y

1X8-1Y is an 8-tap readout system and outputs as follows.

Fig. 12 1X8-1Y output format

7.3 Output timing and output image

7.3.1 Horizontal timing

The horizontal frequency is changed by setting the Tap Geometry. In the GO-5000M-PMCL, H-binning is available.

Fig. 13 Horizontal timing per 1 tap in Camera Link output

Table -13 Horizontal timing parameters in continuous trigger mode (1/2)

Camera Se	ettings	(a)	(b)	(c)						
Tap Camera Geometry Link Pixel			R	OI		Bining		LVAL Active	LVAL Non Active	H Total
	Clock	Width	Offset X	Height	Offset Y	Horizontal	Vertical	(Unit:	(Unit:	(Unit:
								clock)	clock)	clock)
		2560	0	2048	0	Off	Off	320	10	330
		1280	0	2048	0	x2	Off	160	170	330
		640	0	2048	0	x4	Off	80	250	330
		2560	0	1024	0	Off	x2	320	10	330
	72.85 MHz	1280	0	1024	0	x2	x2	160	170	330
		640	0	1024	0	x4	x2	80	250	330
		2560	0	512	0	Off	Off	320	10	330
		1280	0	512	0	x2	x4	160	170	330
1X8 - 1Y		640	0	512	0	x4	x4	80	250	330
8-bit		2560	0	2048	0	Off	Off	320	14	334
		1280	0	2048	0	x2	Off	160	170	330
		640	0	2048	0	x4	Off	80	250	330
		2560	0	1024	0	Off	x2	320	14	334
	48.57 MHz	1280	0	1024	0	x2	x2	160	170	330
		640	0	1024	0	x4	x2	80	250	330
		2560	0	512	0	Off	Off	320	14	334
		1280	0	512	0	x2	x4	160	170	330
		640	0	512	0	x4	x4	80	250	330

Camera Se	ettings	(a)	(b)	(c)						
Tap Geometry	Camera Link Pixel		RO	OI		Bining		LVAL Active	LVAL Non Active	H Total
	Clock	Width	Offset X	Height	Offset Y	Horizontal	Vertical	(Unit:	(Unit:	(Unit:
		Width	Offset X	пеідпі	Offset 1	HOHZOHLAL	verticat	clock)	clock)	clock)
		2560	0	2048	0	Off	Off	320	14	334
		1280	0	2048	0	x2	Off	160	170	330
		640	0	2048	0	x4	Off	80	250	330
1X8 - 1Y		2560	0	1024	0	Off	x2	320	14	334
10-bit	58.28 MHz	1280	0	1024	0	x2	x2	160	170	330
10 510		640	0	1024	0	x4	x2	80	250	330
		2560	0	512	0	Off	Off	320	14	334
		1280	0	512	0	x2	x4	160	170	330
		640	0	512	0	x4	x4	80	250	330

Camera Se	ettings		-	•	•		•	(a)	(b)	(c)
Tap Geometry	Camera Link Pixel		ROI			Bini	Bining		LVAL Non Active	H Total
	Clock	Width	Offset X	Height	Offset Y	Horizontal	Vertical	Active (Unit: clock)	(Unit: clock)	(Unit: clock)
		2560	0	2048	0	Off	Off	640	14	654
		1280	0	2048	0	x2	Off	320	253	573
		640	0	2048	0	x4	Off	160	413	573
		2560	0	1024	0	Off	x2	640	14	654
	84.99 MHZ	1280	0	1024	0	x2	x2	320	253	573
		640	0	1024	0	x4	x2	160	413	573
		2560	0	512	0	Off	Off	640	14	654
		1280	0	512	0	x2	x4	320	253	573
		640	0	512	0	x4	x4	160	413	573
		2560	0	2048	0	Off	Off	640	12	652
		1280	0	2048	0	x2	Off	320	179	499
		640	0	2048	0	x4	Off	160	339	499
		2560	0	1024	0	Off	x2	640	12	652
1X4 - 1Y	72.85 MHz	1280	0	1024	0	x2	x2	320	179	499
		640	0	1024	0	x4	x2	160	339	499
		2560	0	512	0	Off	Off	640	12	652
		1280	0	512	0	x2	x4	320	179	499
		640	0	512	0	x4	x4	160	339	499
		2560	0	2048	0	Off	Off	640	12	652
		1280	0	2048	0	x2	Off	320	173	493
		640	0	2048	0	x4	Off	160	333	493
		2560	0	1024	0	Off	x2	640	12	652
	48.57 MHz	1280	0	1024	0	x2	x2	320	173	493
		640	0	1024	0	x4	x2	160	333	493
		2560	0	512	0	Off	Off	640	12	652
		1280	0	512	0	x2	x4	320	173	493
		640	0	512	0	x4	x4	160	333	493

See the possibilities

Camera Se	ettings	(a)	(b)	(c)						
Tap Geometry	Camera Link Pixel		RO	OI		Bini	ng	LVAL Active	LVAL Non Active	H Total
	Clock	Width	Offset X	Uoight	Offset Y		(Unit:	(Unit:	(Unit:	
		Width	Offset A	Height	Offset 1		verticat	clock)	clock)	clock)
		2559	0	2048	0	Off	Off	853	12	865
		1278	0	2048	0	x2	Off	426	149	575
		639	0	2048	0	x4	Off	213	365	578
		2559	0	1024	0	Off	x2	853	12	865
1X3 - 1Y	84.99 MHZ	1280	0	1024	0	x2	x2	426	149	575
		639	0	1024	0	x4	x2	213	365	578
		2559	0	512	0	Off	Off	853	12	865
		1278	0	512	0	x2	x4	426	149	575
		639	0	512	0	x4	x4	213	365	578

Camera Se	ettings	(a)	(b)	(c)						
Tap Geometry	Camera Link Pixel		R	OI		Bini	ng	LVAL Active	LVAL Non Active	H Total
	Clock	Width	Offset X	Height	Offset Y	Horizontal	Vertical	(Unit:	(Unit:	(Unit: clock)
		2560	0	2048	0	Off	Off	clock)	clock)	1294
		1280	0	2048	0	x2	Off	640	17	657
		640	0	2048	0	x4	Off	320	155	575
		2560	0	1024	0	Off	x2	1280	14	1294
	84.99 MHz	1280	0	1024	0	x2	x2	640	17	657
		640	0	1024	0	x4	x2	320	155	575
		2560	0	512	0	Off	Off	1280	14	1294
		1280	0	512	0	x2	x4	640	17	657
		640	0	512	0	x4	x4	320	155	575
		2560	0	2048	0	Off	Off	1280	14	1294
		1280	0	2048	0	x2	Off	640	13	653
	72.85 MHz	640	0	2048	0	x4	Off	320	173	493
		2560	0	1024	0	Off	x2	1280	14	1294
1X2 - 1Y		1280	0	1024	0	x2	x2	640	13	653
		640	0	1024	0	x4	x2	320	173	493
		2560	0	512	0	Off	Off	1280	14	1294
		1280	0	512	0	x2	x4	640	13	653
		640	0	512	0	x4	x4	320	173	493
		2560	0	2048	0	Off	Off	1280	16	1296
		1280	0	2048	0	x2	Off	640	21	651
		640	0	2048	0	x4	Off	320	15	335
		2560	0	1024	0	Off	x2	1280	16	1296
	48.57 MHz	1280	0	1024	0	x2	x2	640	21	651
		640	0	1024	0	x4	x2	320	15	335
		2560	0	512	0	Off	Off	1280	16	1296
		1280	0	512	0	x2	x4	640	21	651
		640	0	512	0	x4	x4	320	15	335

Table - 14 Horizontal timing parameters in continuous trigger mode (2/2)

Note: A is Operation value and B is calculation value

Camera Se	ettings		A: Operation value, B:Calculation value								
Tap Geometry	Camera Link Pixel Clock		RO	OI		Bini	Bining		1 line Total clock	Horizontal Frequency	Horizontal Period
		Width	Offset X	Height	Offset Y	Horizontal	Vertical		(Unit: clock)	(Unit: clock)	(Unit: clock)
								A	330	220.751	4.53
		2560	0	2048	0	Off	Off	<u>А</u> В	330	220.751	4.53 4.529
		1280	0	2048	0	x2	Off	A	330	220.751	4.53
		1280	U	2048	U	XZ	OII	В	330	220.779	4.529
	72.85 MHz	640	0	2048	0	x4	Off	Α	330	220.751	4.53
			-		-			В	330	220.779	4.529
		2560	0	1024	0	Off	x2	<u>А</u> В	330 330	220.751 220.779	4.53 4.529
								A A	330	220.779	4.529
		1280	0	1024	0	x2	x2	В	330	220.779	4.529
		0.40		4004		4	0	Ā	330	220.751	4.53
		640	0	1024	0	x4	x2	В	330	220.779	4.529
		2560	0	512	0	Off	x4	A	330	220.751	4.53
		2500	U	312	0	-	^7	В	330	220.779	4.529
	-	1280	0	512	0	x2 x4	x4	<u>А</u> В	330	220.751	4.53
				-				330	220.779	4.529	
1X8 - 1Y		640	0	512	0	x4	x4	<u>А</u> В	330 330	220.751 220.779	4.53 4.529
8-bit								A	333.7	145.56	6.87
O Dit		2560	0	2048	0	Off	Off	B	334	145.423	6.876
		4000		0040	0	0	044	Ä	329.3	147.493	6.78
		1280	0	2048	0	x2	Off	В	330	147.186	6.794
		640	0	2048	0	x4	Off	Α	329.3	147.493	6.78
		0-10	Ů	2040	ŭ	Α-1	011	В	330	147.186	6.794
		2560	0	1024	0	Off	x2	A	333.7	145.56	6.87
								В	334 329.3	145.423 147.493	6.876 6.78
	48.57 MHz	1280	0	1024	0	x2	x2	<u>А</u> В	330	147.186	6.794
	ŀ							A A	329.3	147.493	6.78
		640	0	1024	0	x4	x2	B	329.3 330	147.186	6.794
		0500 0 544	E10	0	Off	v.4	Ā	333.7	145.56	6.87	
		2000	2560 0 512 0	U	Off	x4	В	334	145.423	6.876	
		1280	0	512	0	x2	x4 x4	A	329.3	147.493	6.78
		.200	, ,	312		,, <u>,</u>		В	330	147.186	6.794
		640	0	0 512	0	x4		<u>A</u>	329.3	147.493	6.78
								В	330	147.186	6.794

See the possibilities

Camera Se	ettings							A: Ope	ration valu	e, B:Calculat	tion value
Tap Geometry	Camera Link Pixel Clock		RO	DI		Bini	ing	A: Operation value, B:Calculation value Total Clock (Unit: (Unit: (Unit: (Unit: Clock) Clock) Clock) A 333.4 174.825 5.73 A 329.9 176.687 5.66 B 330 176.623 5.662 A 339.4 174.825 5.72 B 334 174.508 5.73 A 329.9 176.687 5.66 B 330 176.623 5.662 A 339.4 174.508 5.73 A 329.9 176.687 5.66 B 330 176.623 5.662 A 339.4 174.508 5.73 A 329.9 176.687 5.66 B 330 176.623 5.662 A 339.9 176.687 5.66			
	Clock	Width	Offset X	Height	Offset Y	Horizontal	Vertical		(Unit:	`	,
									, , , , , , , , , , , , , , , , , , ,	,	,
		2560	0	2048	0	Off	Off	A			5.72
		4000		20.40			0"				
		1280	0	2048	0	x2	Off	В	330	176.623	5.662
	58.28 MHz	640	0	2048	0	x4	Off				
		040	Ů	2040	Ů	Α-τ	On				5.662
		2560	0	1024	0	Off	x2				
		1280	0	1024	0	x2	x2				
		040	_	1024	_	4	0				
		640	0	1024	0	x4	x2				5.662
		2560	0	512	0	Off	x4				5.72
		2000	Ů	012	Ů	On	Α-1				
		1280	0	512	0	x2	x4	A			
						x4 x4				176.623	
1X-8 - 1Y		640	0	512	0		x4				
10bit		2560	0	2048	0	04	04				
		2560	Ü	2048	U	Off Off	Off	В	334	145.423	6.876
		1280	0	2048	0	x2	Off	Α	329.3	147.493	6.78
		1200	Ů	2040	Ů	^2	On	В	330	147.186	6.794
		640	0	2048	0	x4	Off	A	329.3	147.493	6.78
	-							B A	330 333.7	147.186 145.56	6.794 6.87
		2560	0	1024	0	Off	x2	л В	334	145.423	6.876
	40.57141	1000		4004	_			Ā	329.3	147.493	6.78
	48.57 MHz	1280	0	1024	0	x2	x2	В	330	147.186	6.794
		640	0	1024	0	x4	x2	Α	329.3	147.493	6.78
		0-10	ļ ,	1024	Ŭ	Α-τ	XZ	В	330	147.186	6.794
		2560 0 512	0	Off	x4	<u>А</u> В	333.7 334	145.56 145.423	6.87		
			 					A B	334	145.423	6.876 6.78
1		1280 0 512 0	0	x2	x2 x4	В	330	147.186	6.794		
		640		512	0	v.4	v.4	Ā	329.3	147.493	6.78
		640 0	U	512	0	x4	x4	В	330	147.186	6.794

Camera Se	ettings		-		•			A: Oper	ation value	e, B:Calculat	ion value
Тар	Camera Link Pixel Clock		RO	OI		Bini	Bining		1 line Total clock		Horizontal Period
		Width	Offset X	Height	Offset Y	Horizontal	Vertical		(Unit:	(Unit:	(Unit:
		0500	0	0040	0	044	044	A	clock) 653.6	clock) 130.039	clock) 7.69
		2560		2048		Off	Off	В	654 572.9	129.969 148.368	7.694 6.74
		1280	0	2048	0	x2	Off	A B	573	148.342	6.741
		640	0	2048	0	x4	Off	<u>А</u> В	572.9 573	148.368 148.342	6.74 6.741
		2560	0	1024	0	Off	x2	A	653.6	130.039	7.69
								B A	654 572.9	129.969 148.368	7.694 6.74
	84.99 MHz	1280	0	1024	0	x2	x2	В	573	148.342	6.741
		640	0	1024	0	x4	x2	<u>А</u> В	572.9 573	148.368 148.342	6.74 6.741
		2560	0	512	0	Off	x4	Α	653.6	130.039	7.69
								В А	654 572.9	129.969 148.368	7.694 6.74
		1280	0	512	0	x2	x4	В	573	148.342	6.741
		640	0	512	0	x4	x4	<u>А</u> В	572.9 573	148.368 148.342	6.74 6.741
		2560	0	2048	0	Off	Off	Α	651.3	111.857	8.94
								В А	652 498.3	111.916 146.199	8.935 6.84
		1280	0	2048	0	x2	Off	В	499	146.006	6.849
		640	0	2048	0	x4	Off	<u>А</u> В	492.5 493	147.929 147.059	6.76 6.767
		2560	0	1024	0	Off	x2	Α	651.3	111.857	8.94
4)/4 4)/	72.85 MHz	4000		4004		0	0	B A	652 498.3	111.916 146.199	8.935 6.84
1X4 -1Y		1280	0	1024	0	x2	x2	В	499	146.006	6.849
		640	0	1024	0	x4	x2	<u>А</u> В	492.5 493	147.929 147.059	6.76 6.767
		2560	0	512	0	Off	x4	Α	651.3	111.857	8.94
		1280	0	512	0	x2	x4	B A	652 498.3	111.916 146.199	8.935 6.84
		1200	0	312	U	**2		В	499	146.006	6.849
		640	0	512	0	x4	x4	A B	492.5 493	147.929 147.059	6.76 6.767
		2560	0	2048	0	Off	Off	<u>А</u> В	651.3 652	74.571 75.421	13.41 13.259
		1280	0	2048	0	x2	Off	A A	334.2	154.349	6.88
		1200		2040		*2	OII	В	335 329.3	144.989 147.493	6.897 6.78
		640	0	2048	0	x4	Off	<u>А</u> В	330	147.186	6.794
		2560	0	1024	0	Off	x2	A B	651.3 652	74.571 75.421	13.41 13.259
	48.57 MHz	1280	0	1024	0	x2	x2	Α	334.2	154.349	6.88
	48.57 MHZ - -							B A	335 651.3	144.989 74.571	6.897 13.41
		640	0	1024	0	x4	x2	В	652	75.421	13.259
		2560	0	512	0	Off	x4	<u>А</u> В	334.2 335	154.349 144.989	6.88 6.897
		1280	0	512	0	x2	x4	A	651.3	74.571	13.41
			-					B A	652 334.2	75.421 154.349	13.259 6.88
		640	0	512	0	x4	х4	В	335	144.989	6.897

See the possibilities

Camera Se	Camera Settings									A: Operation value, B:Calculation value			
Tap Geometry	Camera Link Pixel Clock	ROI				Bining			1 line Total clock	Horizontal Frequency	Horizontal Period		
		Width	Offset X	Height	Offset Y	Horizontal	Vertical		(Unit: clock)	(Unit: clock)	(Unit: clock)		
		2560	0	2048	0	Off	Off	A	864.4	98.328	10.17		
		2500	U	2040	U	OII	OII	В	865	98.266	10.176		
		1280	0	2048	0	x2	Off	A	578	147.059	6.8		
			-		·			В	578	147.059	6.8		
	-	640	0	2048	0	x4	Off	A	578	147.059	6.8		
							Off x2	В	578	147.059 98.328	6.8 10.17		
		2560	0	1024	0	Off		AB	864.4 865	98.266	10.176		
								A	578	147.059	6.8		
1X3 - 1Y	84.99 MHz	1280	0	1024	0	x2	x2	В	578	147.059	6.8		
		0.40	0	4004		4	0	Ā	578	147.059	6.8		
		640	0	1024	0	x4	x2	В	578	147.059	6.8		
		2560	0	512	0	Off	x4	ΑΑ	864.4	98.328	10.17		
		2300	Ü	312	U	OII		В	865	98.266	10.176		
		1280	0	512	0	x2	x4	Α	578	147.059	6.8		
		00		- · -				В	578	147.059	6.8		
		640	0	512	0	x4	x4	A	578	147.059	6.8		
		040					l	В	578	147.059	6.8		

Camera Se	ettings							A: Oper	ration value	e, B:Calculat	ion value
Тар	Camera								1 line		
Geometry	Link Pixel		RO	OI		Bini	ng		Total	Horizontal Ho Frequency I	
	Clock								clock		Period
		Width	Offset X	Height	Offset Y	Horizontal	Vertical		(Unit:	(Unit:	(Unit:
		Width	Oliset X	Height	Offset 1	Tiorizontat	verticat		clock)	clock)	clock)
		2560	0	2048	0	Off	Off	<u>А</u> В	1293.7 1294	65.703 65.668	15.22 15.224
		1280	0	2048	0	x2	Off	AB	656.2 657	129.534 129.376	7.72 7.729
		640	0	2048	0	x4	Off	Α	574.6	147.929	6.76
	-		0	1024	0	Off		B A	575 1293.7	147.826 65.703	6.765 15.22
		2560		1024		OII	x2	В	1294 656.2	65.668 129.534	15.224
	84.99 MHz	1280	0	1024	0	x2	x2	А В	657	129.334	7.72 7.729
		640	0	1024	0	x4	x2	A	574.6	147.929	6.76
	·	0500		540		011		B A	575 1293.7	147.826 65.703	6.765 15.22
		2560	0	512	0	Off	x4	В	1294	65.668	15.224
		1280	0	512	0	x2	x4	A B	656.2 657	129.534 129.376	7.72 7.729
	1	640	0	512	0	x4	v.4	A	574.6	147.929	6.76
		640	0	512	U	Х4	x4	В	575	147.826	6.765
		2560	0	2048	0	Off	Off	A B	1293.2 1294	56.338 56.304	17.75 17.761
		1280	0	2048	0	x2	Off	Α	652.8	111.607	8.96
		1200		2040		^2	OII	B	653 492.5	111.573 147.929	8.963 6.76
		640	0	2048	0	x4	Off	A B	493	147.783	6.767
	72.85 MHz	2560	0	1024	0	Off	x2	A	1293.2 1294	56.338 56.304	17.75 17.761
41/0 41/		4000		4004		0	0	B A	652.8	111.607	8.96
1X2 - 1Y		1280	0	1024	0	x2	x2	В	653	111.573	8.963
		640	0	1024	0	x4	x2	А В	492.5 493	147.929 147.783	6.76 6.767
		2560	0	512	0	Off	x4	A	1293.2	56.338	17.75
		2300	0	312	0	OII		В	1294	56.304	17.761
		1280	0	512	0	x2	x4	<u>А</u> В	652.8 653	111.607 111.573	8.96 8.963
		640	0	512	0	x4	x4	A	492.5	147.929	6.76
		0-10		012			Α-τ	В	493 1294.9	147.783 37.509	6.767 26.66
		2560	0	2048	0	Off	Off	А В	1294.9	37.478	26.682
		1280	0	2048	0	x2	Off	A	650.9	74.627	13.4
	-							B A	651 334.2	74.61 145.349	13.403 6.88
		640	0	2048	0	x4	Off	В	335	144.989	6.897
		2560	0	1024	0	Off	x2	A	1294.9	37.509	26.66
							_	<u>В</u> А	1296 650.9	37.478 74.627	26.682 13.4
	48.57 MHz	1280	0	1024	0	x2	x2	В	651	74.61	13.403
	-	640	0	1024	0	x4	x2	A	334.2 335	145.349 144.989	6.88 6.897
		0500		540		044	4	B A	1294.9	37.509	26.66
		2560	0	512	0	Off	х4	В	1296	37.478	26.682
		1280	0	512	0	x2	x4	A B	650.9 651	74.627 74.61	13.4 13.403
		640	0	512	0	V.4	v.4	A A	334.2	145.349	6.88
		040	U	512	U	x4	x4	В	335	144.989	6.897

See the possibilities

7.3.2 Vertical timing

Figure 17 shows the vertical timing of Camera Link output during continuous trigger operation. However, with 1X8-1Y 10-bit geometry, which is 80-bit configuration, DVAL and Exposure Active, which are normally output to Camera Link spare bits, are not output through the Camera Link interface as data bits are applied to those bits. H-Binning and V-Binning functions are available in both the GO-5000M-PMCL and GO-5000C-PMCL.

Fig. 14 Vertical timing

Table - 15 Vertical format (in Continuous trigger mode) (1/2)

Camera S	ettings								(A)	(B)	(C)	(D)
Тар	Pixel	Frame	ROI				Binning		FVAL &	FVAL	V-Offset	Exposure
Geometry	Clock	Period							DVAL	Non		Time
		(Typ)	Width	Offset X	Height	Offset Y	Horizontal	Vertical	Active (Unit:line)	Active (Unit:line)		(min) (Unit:µs)
			2560	0	2048	0	Off	Off	2048	10		
			2560	0	1024	0	Off	x2	1024	10		
			2560	0	512	0	Off	х4	512	10		
			1280	0	2048	0	x2	Off	2048	10		
	72.85 MHz	9328 us	1280	0	1024	0	x2	x2	1024	10	0	10
			1280	0	512	0	x2	x4	512	10		
			512	0	2048	0	x4	Off	2048	10		
			512	0	1024	0	x4	x2	1024	10		
1X8 - 1Y			512	0	512	0	x4	x4	512	10		
8-bit			2560	0	2048	0	Off	Off	2048	14		
			2560	0	1024	0	Off	x2	1024	14		
			2560	0	512	0	Off	х4	512	14		
			1280	0	2048	0	x2	Off	2048	14		
	48.57 MHz	14117 us	1280	0	1024	0	x2	x2	1024	14	0	10
			1280	0	512	0	x2	x4	512	14		
			512	0	2048	0	x4	Off	2048	14		
			512	0	1024	0	x4	x2	1024	14		
			512	0	512	0	x4	x4	512	14		

Camera Se	ettings								(A)	(B)	(C)	(D)
Тар	Pixel	Frame	ROI				Binning		FVAL &	FVAL	V-Offset	Exposure
Geometry	Clock	Period							DVAL	Non		Time
		(Typ)	Width	Offset X	Height	Offset Y	Horizontal	Vertical	Active	Active		(min)
									(Unit:line)	(Unit:line)	(Unit:line)	(Unit:µs)
			2560	0	2048	0	Off	Off	2048	14		
			2560	0	1024	0	Off	x2	1024	14		
			2560	0	512	0	Off	x4	512	14		
1X8 - 1Y			1280	0	2048	0	x2	Off	2048	14		
10-bit	58.28 MHz	11765 us	1280	0	1024	0	x2	x2	1024	14	0	10
10 51			1280	0	512	0	x2	х4	512	14		
			512	0	2048	0	x4	Off	2048	14		
			512	0	1024	0	x4	x2	1024	14		[
			512	0	512	0	x4	x4	512	14		

Camera Se	ettings					-	-		(A)	(B)	(C)	(D)
Тар	Pixel	Frame	ROI				Binning		FVAL &	FVAL	V-Offset	Exposure
Geometry	Clock	Period							DVAL	Non		Time
•		(Typ)	Width	Offset X	Height	Offset Y	Horizontal	Vertical	Active	Active		(min)
		(-)F)								(Unit:line)	(Unit:line)	
			2560	0	2048	0	Off	Off	2048	14	,	` ,
			2560	0	1024	0	Off	x2	1024	14		
			2560	0	512	0	Off	x4	512	14		
			1280	0	2048	0	x2	Off	2048	14		
	84.99 MHz	15719 us	1280	0	1024	0	x2	x2	1024	14	0	10
			1280	0	512	0	x2	x4	512	14		
			512	0	2048	0	x4	Off	2048	14		
			512	0	1024	0	x4	x2	1024	14		
			512	0	512	0	x4	x4	512	14		
			2560	0	2048	0	Off	Off	2048	12		
			2560	0	1024	0	Off	x2	1024	12		
			2560	0	512	0	Off	x4	512	12		
			1280	0	2048	0	x2	Off	2048	12		
1X4 - 1Y	72.85 MHz	18268 us	1280	0	1024	0	x2	x2	1024	12	0	10
			1280	0	512	0	x2	x4	512	12		
			512	0	2048	0	x4	Off	2048	12		
			512	0	1024	0	x4	x2	1024	12		
			512	0	512	0	x4	x4	512	12		
			2560	0	2048	0	Off	Off	2048	12		
			2560	0	1024	0	Off	x2	1024	12		
			2560	0	512	0	Off	x4	512	12		
			1280	0	2048	0	x2	Off	2048	12		
	48.57 MHz	27778 us	1280	0	1024	0	x2	x2	1024	12	0	10
			1280	0	512	0	x2	x4	512	12		
			512	0	2048	0	x4	Off	2048	12		
			512	0	1024	0	x4	x2	1024	12		
			512	0	512	0	x4	x4	512	12		

Camera Se	ettings	•	•	•	•	•			(A)	(B)	(C)	(D)
Тар	Pixel	Frame	ROI				Binning		FVAL &	FVAL	V-Offset	Exposure
Geometry	Clock	Period							DVAL	Non		Time
		(Typ)	Width	Offset X	Height	Offset Y	Horizontal	Vertical	Active	Active		(min)
					_				(Unit:line)	(Unit:line)	(Unit:line)	(Unit:µs)
			2559	0	2048	0	Off	Off	2048	14		
			2559	0	1024	0	Off	x2	1024	14		
			2559	0	512	0	Off	x4	512	14		
4)/0 4)/			1278	0	2048	0	x2	Off	2048	14		
1X3 - 1Y 8-bit	84.99 MHz	20796 us	1278	0	1024	0	x2	x2	1024	14	0	10
O-DIL			1278	0	512	0	x2	х4	512	14		
			510	0	2048	0	x4	Off	2048	14		
			510	0	1024	0	x4	x2	1024	14		
			510	0	512	0	x4	x4	512	14		

See the possibilities

Camera Se	ettings				*				(A)	(B)	(C)	(D)
Тар	Pixel	Frame	ROI				Binning		FVAL &	FVAL	V-Offset	Exposure
Geometry	Clock	Period							DVAL	Non		Time
,		(Typ)	Width	Offset X	Height	Offset Y	Horizontal	Vertical	Active	Active		(min)
		(1)(1)	Widen	OTTSCCA	ricigiic	OTT SECTI	110112011tat	Verticat		(Unit:line)	(Unit:line)	
			2560	0	2048	0	Off	Off	2048	14	,	. ,
			2560	0	1024	0	Off	x2	1024	14		
			2560	0	512	0	Off	x4	512	14		
			1280	0	2048	0	x2	Off	2048	14		
	84.99 MHz	31268 us	1280	0	1024	0	x2	x2	1024	14	0	10
			1280	0	512	0	x2	x4	512	14		
			512	0	2048	0	x4	Off	2048	14		
			512	0	1024	0	x4	x2	1024	14		
			512	0	512	0	x4	x4	512	14		
			2560	0	2048	0	Off	Off	2048	14		
			2560	0	1024	0	Off	x2	1024	14		
			2560	0	512	0	Off	x4	512	14		
1X2 - 1Y			1280	0	2048	0	x2	Off	2048	14		
177 - 11	72.85 MHz	36366 us	1280	0	1024	0	x2	x2	1024	14	0	10
			1280	0	512	0	x2	х4	512	14		
			512	0	2048	0	x4	Off	2048	14		
			512	0	1024	0	x4	x2	1024	14		
			512	0	512	0	x4	х4	512	14		
			2560	0	2048	0	Off	Off	2048	16		
			2560	0	1024	0	Off	x2	1024	16		
			2560	0	512	0	Off	x4	512	16		
			1280	0	2048	0	x2	Off	2048	16		
	48.57 MHz	55126 us	1280	0	1024	0	x2	x2	1024	16	0	10
			1280	0	512	0	x2	x4	512	16		
			512	0	2048	0	x4	Off	2048	16		
			512	0	1024	0	x4	x2	1024	16		
			512	0	512	0	x4	x4	512	16		

Table - 15 Vertical format (in Continuous trigger mode) (2/2)

Camera S	ettings	•	-					-		(E)	(F)
Tap Geometry	Pixel Clock	Frame Period	ROI				Binning		Frame Period	Exposure Time	Expsoure End to FVAL
	Giodic	(Тур)	Width	Offset X	Height	Offset Y	Horizontal	Vertical	(min) (Unit:us)	(max) (Unit:us)	Active Start (Unit:us)
			2560	0	2048	0	Off	Off	9328	9222	(/
			2560	0	1024	0	Off	x2	4709	4657	
			2560	0	512	0	Off	x4	2397	2317	
			1280	0	2048	0	x2	Off	9272	9228	
	72.85 MHz	9328 us	1280	0	1024	0	x2	x2	4681	4628	29.6
			1280	0	512	0	x2	x4	2383	2302	
			512	0	2048	0	x4	Off	9272	9280	
			512	0	1024	0	x4	x2	4681	4628	
1X8 - 1Y			512	0	512	0	x4	x4	2383	2302	
8-bit			2560	0	2048	0	Off	Off	14117	14184	
			2560	0	1024	0	Off	x2	7127	7102	
			2560	0	512	0	Off	x4	3627	3560	
			1280	0	2048	0	x2	Off	13947	14012	
	48.57 MHz	14117 us	1280	0	1024	0	x2	x2	7041	7015	40.4
			1280	0	512	0	x2	x4	3584	3516	
			512	0	2048	0	x4	Off	13947	14012	
			512	0	1024	0	x4	x2	7041	7015	
			512	0	512	0	x4	x4	3584	3516	

Camera Se	ettings	•	•	•			•			(E)	(F)
- 1	Pixel	Frame	ROI	1			Binning		-	Exposure	Expsoure End to FVAL
Geometry	CIOCK	Period (Typ)	Width	Offset X	Height	Offset Y	Horizontal	Vertical	Period (min) (Unit:us)	Time (max) (Unit:us)	Active Start (Unit:us)
			2500	0	2040	0	044	04		,	(Unic.us)
			2560	0	2048	0	Off	Off	11765	11803	
			2560	0	1024	0	Off	x2	5938	5900	
			2560	0	512	0	Off	x4	3023	2949	
4)/0 4)/			1280	0	2048	0	x2	Off	11622	11659	1
1X8 - 1Y 10-bit	58.28 MHz	11765 us	1280	0	1024	0	x2	x2	5867	5828	35.2
TO-Dit			1280	0	512	0	x2	x4	2986	2913	1
			512	0	2048	0	x4	Off	11622	11659	
			512	0	1024	0	x4	x2	5867	5828	1
			512	0	512	0	x4	x4	2986	2913	

Camera Se	ettings									(E)	(F)
Тар	Pixel	Frame	ROI				Binning		Frame	Exposure	Expsoure End
Geometry	Clock	Period							Period	Time	to FVAL
		(Typ)	Width	Offset X	Height	Offset Y	Horizontal	Vertical	(min)	(max)	Active Start
		' ' ' '							(Unit:us)	(Unit:us)	(Unit:us)
			2560	0	2048	0	Off	Off	15719	15804	
			2560	0	1024	0	Off	x2	7927	7911	
			2560	0	512	0	Off	x4	4028	3964	
			1280	0	2048	0	x2	Off	13934	13998	
	84.99 MHz	15719 us	1280	0	1024	0	x2	x2	7027	7001	41.6
			1280	0	512	0	x2	x4	3570	3502	
			512	0	2048	0	x4	Off	13934	13998	
			512	0	1024	0	x4	x2	7027	7001	
			512	0	512	0	x4	x4	3570	3502	
			2560	0	2048	0	Off	Off	18268	18384	
			2560	0	1024	0	Off	x2	9213	9211	
			2560	0	512	0	Off	x4	4681	4624	
			1280	0	2048	0	x2	Off	13934	13998	
1X4 - 1Y	72.85 MHz	18268 us	1280	0	1024	0	x2	x2	7027	7001	43.2
			1280	0	512	0	x2	x4	3570	3502	
			512	0	2048	0	x4	Off	13934	13998	
			512	0	1024	0	x4	x2	7027	7001	
			512	0	512	0	x4	x4	3570	3502	
			2560	0	2048	0	Off	Off	27444	27672	
			2560	0	1024	0	Off	x2	13841	13891	
			2560	0	512	0	Off	x4	7033	7000	
			1280	0	2048	0	x2	Off	14019	14084	
	48.57 MHz	27444 us	1280	0	1024	0	x2	x2	7070	7044	52.4
			1280	0	512	0	x2	x4	3592	3524	
			512	0	2048	0	x4	Off	13934	13998	
			512	0	1024	0	x4	x2	7027	7001	
			512	0	512	0	x4	x4	3608	3502	

Camera Se	ettings		-	-	-	-	-	-		(E)	(F)
Тар	Pixel	Frame	ROI				Binning	i	Frame	Exposure	Expsoure End
Geometry	Clock	Period							Period	Time	Active Start
		(Typ)	Width	Offset X	Height	Offset Y	Horizontal	Vertical	(min)	(max)	ACTIVE Start
									(Unit:us)	(Unit:us)	(Unit:us)
			2559	0	2048	0	Off	Off	20881	20944	
			2559	0	1024	0	Off	x2	10521	10491	
			2559	0	512	0	Off	x4	5336	5264	
1)/0 1)/			1278	0	2048	0	x2	Off	13920	13985	
1X3 - 1Y 8-bit	84.99 MHz	20796 us	1278	0	1024	0	x2	x2	7013	6987	46
O-DIL			1278	0	512	0	x2	х4	3557	3489	
			510	0	2048	0	x4	Off	13920	13985	
			510	0	1024	0	x4	x2	7013	6987	
			510	0	512	0	x4	x4	3557	3489	

See the possibilities

Camera Se	ettings									(E)	(F)
Тар	Pixel	Frame	ROI				Binning		Frame	Exposure	Expsoure End
Geometry	Clock	Period							Period	Time	to FVAL
		(Typ)	Width	Offset X	Height	Offset Y	Horizontal	Vertical	(min)	(max)	Active Start
		()1 /							(Unit:us)	(Unit:us)	(Unit:us)
			2560	0	2048	0	Off	Off	31268	31542	
			2560	0	1024	0	Off	x2	15770	15841	
			2560	0	512	0	Off	x4	8013	7990	1
			1280	0	2048	0	x2	Off	15889	15976	
	84.99 MHz	31268 us	1280	0	1024	0	x2	x2	8013	7998	58
			1280	0	512	0	x2	x4	4071	4008	
			512	0	2048	0	x4	Off	13934	13998	
			512	0	1024	0	x4	x2	7027	7001	
			512	0	512	0	x4	x4	3570	3502	
			2560	0	2048	0	Off	Off	36366	36702	
			2560	0	1024	0	Off	x2	18341	18441	
			2560	0	512	0	Off	x4	9319	9310	
1X2 - 1Y			1280	0	2048	0	x2	Off	18438	18556	
17.2 11	72.85 MHz	36366 us	1280	0	1024	0	x2	x2	9299	9298	70
			1280	0	512	0	x2	x4	4725	4668	
			512	0	2048	0	x4	Off	13934	13998	
			512	0	1024	0	x4	x2	7027	7001	
			512	0	512	0	x4	x4	3570	3502	
			2560	0	2048	0	Off	Off	54464	55020	
			2560	0	1024	0	Off	x2	27469	27671	
			2560	0	512	0	Off	x4	13958	13996	
			1280	0	2048	0	x2	Off	27614	27844	
	48.57 MHz	55126 us	1280	0	1024	0	x2	x2	13926	13978	82.8
			1280	0	512	0	x2	x4	7077	7044	
			512	0	2048	0	x4	Off	14189	14256	
			512	0	1024	0	x4	x2	7156	7131	
			512	0	512	0	x4	x4	3635	3568	

7.3.3 ROI (Region Of Interest) setting

In the GO-5000-PMCL, a subset of the image can be output by setting Width, Height, Offset-X, and Offset-Y. If the height is decreased, the number of lines read out is decreased and as the result, the frame rate is increased. However, in the horizontal direction, the horizontal frequency is not changed if the width is decreased. In the GO-5000M-PMCL, the minimum width is "2" to "8" depending on the tap geometry and minimum height is "1". In the GO-5000C-PMCL, the minimum width is the same as GO-5000-PMCL but minimum height is "2".

Setting example (1)
Binning Horizontal = 1
Binning Vertical = 1

Setting example (2)
Binning Horizontal = 2
Binning Vertical = 2

Fig. 15 Setting example (No binning)

Fig.16 Setting example (Binning)

7.4 Digital output bit allocation

Table -16 Output level

CMOS	out	Offset	Setup		Digital Out	
		-100@12-bit	+133@12-bit	8-bit	10-bit	12-bit
Black	100	0LSB	133LSB	8LSB	32LSB	128LSB
100%	3527	3427LSB	3560LSB	222LSB	890LSB	3560LSB
Full (115%)	4062	3962LSB	4095LSB	255LSB	1023LSB	4095LSB

Fig. 17 Bit allocation (12-bit)

8. Operating modes

8.1. Acquisition control (change the frame rate)

8.1.1 Acquisition control

With Trigger OFF (free running mode - see section 7.2.1), the default frame rate of the camera is based on the specified ROI. The smaller the ROI, the faster the default frame rate. However, it is possible to specify a free-running frame rate (i.e., no trigger needed) that is slower than the default rate. This can be useful when a longer exposure time is needed for a specific ROI.

Modification of the frame rate is done by entering a value in the AcquisitionFrameRate control corresponding to the frame frequency (Hz). Allowed values range from the shortest frame rate to 0.125 Hz (fps), however if the value entered is less than the time required for the default frame rate, the setting is ignored and the default frame rate is used.

The setting range in Acquisition Frame Rate is:

Shortest	to	Longest
Inverse number of time required to drive all pixels in the area set by ROI command or inverse number of time required to transmit one frame data	to	0.125 Hz (fps) = 8 seconds

8.1.2 Calculation of the frame rate

The frame rate depends on the tap geometry and is calculated in the following formula.

Frame Rate[fps] = 1 / Frame Period[us) x 10e-6

Frame $Period[us] = Ceil \{Line Period[us] x (Height + V.Blank[Line]) x 0.988\}$ Note: 0.988 is compensation coefficient.

V.Blank depends on Tap Geometry, CL Clock Frequency and Bit Allocation. Refer to the following table.

Tap Geometry	CL Clock Frequency	Bit Allocation	V.Black (dec)
	High	8/10/12	16
1x2-1Y	Mid	8/10/12	16
	Low	8/10/12	16
1x3-1Y	High	8	14
	High	8/10/12	16
1x4-1Y	Mid	8/10/12	16
	Low	8/10/12	16
	High	8	18
1x8-1Y	Mid	10	18
	Low	8/10	18

Line Period[us] = $T_{Row} \times 16 / InRate [MHz]$

 T_{Row} = Ceil (HTotal x InRate [MHZ] / (OutRate [MHz] x 16) Note: If T_{ROW} calculation result is less 164, T_{ROW} is fixed to 164.

The value of InRate and OutRate depend on Tap geometry, CL Clock Frequency, and Bit Allocation. Refer to the following table.

Tap Geometry	Тар	CL Clock Frequency	Bit Allocation	OutRate(MHz)	InRate(MHz)
	2	High	8/10/12	169.9999	
1x2-1Y	2	Mid	8/10/12	145.7142	
	2	Low	8/10/12	97.1428	
1x3-1Y	3	High	8	254.99985	384
	4	High	8/10/12	339.9998	
1x4-1Y	4	Mid	8/10/12	291.4284	
	4	Low	8/10/12	194.2856	
	8	High	8	582.8568	577.6
1x8-1Y	8	Mid	10	466.28544	460.8
	8	Low	8/10	388.5712	577.6

Calculation of OutRate
OutRate = CL Clock [MHz] x Tap

Calculation of InRate (Using internal clock)

If [1X2_1Y/1X3_1Y/1X4_1Y/1X8-1Y(Low)] is used,

 $InRate = 48MHz \times 8 = 384$

If [1X8_1Y(Mid)] is used, InRate = 57.6 MHz x 8 = 460.8

If [1X8_1Y(High)] is used, InRate = 72.2 MHz x 8 = 577.6

HTotal = (Pixel x Width / 2560 + H.Blank) x Tap

Pixel = Floor (2560/Tap)

The value of H.Blank depends on Tap geometry, CL Clock Frequency, and Bit Allocation. Refer to the following table.

Тар	CL Clock	Bit	H.Blank
Geometry	Frequency	Allocation	(dec)
	High	8/10/12	20
1x2-1Y	Mid	8/10/12	18
	Low	8/10/12	16
1x3-1Y	High	8	15
	High	8/10/12	12
1x4-1Y	Mid	8/10/12	12
	Low	8/10/12	12
	High	8	12
1x8-1Y	x8-1Y Mid		14
	Low	8/10	14

Width: Width of the image transferred through Camera Link interface (pixels)

The value of Width is restricted by the multiple number of 64 (pixels)

Height: Height of the image transferred through Camera Link interface (pixels)

See the possibilities

8.2. Exposure setting

This section describes how to set the exposure settings.

8.2.1 Exposure Mode

The exposure mode can be selected from the following three ways.

Table - 17 Exposure mode

Exposure Mode setting	Exposure operation
OFF	No exposure control (free-running operation)
Timed	 Exposure operation at the value set in Exposure Time. Setting value is usec unit. If Trigger Mode setting is OFF, the camera is in free-running operation. If Trigger Mode setting is ON, the exposure operation depends on the setting of Trigger Option.
Trigger Width	The exposure is controlled by the pulse width of the external trigger. • Trigger Mode is forced to ON.

For trigger operation, Exposure Mode must be set to something other than OFF and Trigger Mode of Frame Start must be ON.

If Exposure Mode is set at Timed, the exposure operation can be selected as follows by setting Trigger Option

Table - 18 Trigger option

Trigger Option setting	Exposure operation
OFF	Timed (EPS) mode
RCT	RCT mode

The effect of the combination of Exposure Mode, Trigger Option and Trigger Mode is as follows.

Table 20. The combination of Exposure Mode, Trigger Option and Trigger Mode

Exposure Mode	Trigger Option	Trigger Mode (Frame Start)	Operation
OFF	N/A N/A Exposure control by Exp Time is not possible		Exposure control by Exposure
			Free-running operation Exposure control by Exposure Time is not possible
Timed	OFF	ОИ	Timed (EPS) Operation Exposure can be controlled by Exposure Time
	RCT	Forced to ON	RCT Operation Exposure can be controlled by Exposure Time
Trigger Width	N/A	Forced to ON	Exposure is controlled by the pulse width of the external trigger

8.2.2 ExposureTime

This command is effective only when Exposure Mode is set to Timed. It is for setting exposure time. The setting step for exposure time is 1 μ sec per step.

Minimum: 10 µsec

Maximum: 8 seconds (Note - noise may make image unusable after 1 second)

Note: In the continuous trigger mode (Frame Start Trigger Mode: OFF), the maximum setting value of the exposure time is limited by the frame rate setting. In the GO-5000-PMCL, the maximum value of exposure time is "Frame Rate - 100". If the exposure mode is OFF, the maximum value of exposure time is set in the camera. If the frame period is changed, then the maximum value of exposure time is renewed.

8.2.3 ExposureAuto

This is a function to control the exposure automatically. It is effective only for Timed. JAI ALC Reference controls the brightness.

There are three modes, OFF, Once and Continuous.

OFF: No exposure control

Once: Exposure adjusts when the function is set, then remains at that setting

Continuous: Exposure continues to be adjusted automatically

In this mode, the following settings are available.

ALC Speed: Rate of adjustment can be set

ASC Max: The maximum value for the exposure time to be controlled can

be set

ASC Min: The minimum value for the exposure time to be controlled can

be set

ALC Reference: The reference level of the exposure control can be set ALC Channel Area: This can Enable or Disable the area selected by ALC

Custom Area Selector

High	High	High	High
Left	Mid-left	Mid–right	Right
Mid-High	Mid-High	Mid-High	Mid-High
Left	Mid-left	Mid-right	Right
Mid-Low Left	Mid-Low Mid-left	Mid-Low Mid-right	Mid- Low Right
Low	Low	Low	Low
Left	Mid-left	Mid-right	Right

Fig.18 ALC Area Type

8.3. Trigger control

The following 5 types of Trigger Control are available by the combination of Trigger Selector, Trigger Mode, Exposure Mode and Trigger Option.

See the possibilities

Table - 19 Trigger control

Camera Settings		JAI Custom	Description		
Trigger Trigge		Trigger	Trigger Mode		
Selector	Trigger Mode	Exposure Mode	Option	Name	
Frame Start	Off	Off	Off	Continuous Trigger	Free-running operation with the maximum exposure time per the frame rate
	Off	Timed	Off	Continuous Trigger	Free-running operation with a user-set exposure time.
	On	Timed	Off	EPS Trigger	Externally triggered operation with a user-set exposure time
	On	Timed	RCT	RCT Trigger	Externally triggered operation for RCT
	On	Trigger Width	Off	PWC Trigger	Externally triggered operation with a pulse width exposure time

8.3.1 Trigger Selector

Selects the trigger operation. In the GO-5000-PMCL, only Frame Start is available.

Table - 20 Trigger selector

Trigger Selector Item	Description
Frame Start	Frame Start Trigger

8.3.2 Trigger Mode

Select either free-running operation or external trigger operation.

OFF: Free-running operation
ON: External trigger operation

8.3.3 Trigger Source

Select the trigger source to be used for trigger operation (Frame Start for the GO-5000-PMCL) from the following:

Table - 21 Trigger Source

Trigger Source item	Description
Low	Connect LOW level signal to the selected trigger operation Default setting
High	Connect HIGH level signal to the selected trigger operation
Soft Trigger	Connect Soft Trigger signal to the selected trigger operation Trigger can be input manually by the execution of the software trigger Trigger software is available on each trigger source.
PulseGenerator0 Out	Connect Pulse generator 0 signal to the selected trigger operation
Line 2 - CC1	Connect Trigger In signal through CC1 in Camera Link Interface to the selected trigger operation
NAND 0 Out	Connect NAND 0 OUT signal to the selected trigger operation
NAND 1 Out	Connect NAND 1 OUT signal to the selected trigger operation

8.3.4 TriggerActivation

This command can select how to activate the trigger.

Rising edge: At the rising edge of the pulse, the trigger is activated.

Falling edge: At the falling edge of the pulse, the trigger is activated.

Level High: During the high level of trigger, the accumulation is activated

During the low level of trigger, the accumulation is activated

If Exposure Mode is set to Trigger Width, Level High or Level Low must be used.

Table - 22 Trigger Activation

	Trigger Activation Setting				
Exposure Mode	Rising Edge Falling Edge Level High Level Low				
Timed	0	0	×	×	
Trigger width	×	×	0	0	
Timed RCT	0	0	×	×	

8.4. Normal continuous operation (Timed Exposure Mode/Trigger Mode OFF)

This is used for applications which do not require triggering.

Table - 23 Minimum interval (1X8-1Y, 8-bit, CL Clock =72.85MHz)

	, ,	,
Trigger Mode	Readout Mode	Time (Min. trigger period)
	Full	9435us
Timed Exposure Mode	AOI Center 2/3	6281us
Trigger Mode OFF	AOI Center 1/2	4740us
(Note 1)	AOI Center 1/4	2393us
	AOI Center 1/8	1219us
	V Binning ON (Full) (Note2)	4740us

Note 1: Readout setting in Trigger Overlap is not available

Note 2: GO-5000M-PMCL only

8.5. Timed mode (EPS operation)

This mode captures image(s) with a preset exposure time by using the external trigger. An additional setting determines if the trigger pulse can be accepted during the exposure period.

Primary settings to use this mode

Acquisition Mode = Single frame, Multi-frame or Continuous

Trigger Mode = ON

Exposure Mode = Timed

See the possibilities

Table - 24 Trigger minimum interval (Trigger Overlap = Readout) (1X8-1Y, 8-bit, CL Clock=72.85 MHz)

Trigger Mode	Readout Mode	Time (Min. Trigger Period)
	Full	9435 us + 8.01 μs
Timed Evensure Mode	AOI Center 2/3	6281 us + 8.01 μs
Timed Exposure Mode Trigger Mode ON	AOI Center 1/2	4740 us + 8.01 μs
Trigger Mode ON	AOI Center 1/4	2393 us + 8.01 μs
	AOI Center 1/8	1219 us + 8.01 μs
	V Binning ON (Full) (Note 1)	4740 us + 8.01 μs

Note1: GO-5000M-PMCL only

Note2: If Trigger Overlap is OFF, the accumulation time is added to the above table.

8.5.1 If Overlap setting is OFF

t1	t2	t3	t4
2L (Min.)	218 clocks	10.13 μs	8L to 9L

Fig. 19 Overlap OFF

8.5.2 If Overlap setting is Readout

Fig. 20 Overlap Readout

8.6 Trigger width mode (PWC)

In this mode, the exposure time is equal to the trigger pulse width. Accordingly, longer exposure times are supported. Additional settings determine if the trigger pulse can be accepted during the exposure period.

Primary settings to use this mode

Trigger Mode = ON

Exposure Mode = Trigger Width

Table - 25 Minimum trigger interval (Trigger Overlap = Readout) (1X8-1Y, 8-bit, CL Clock=72.85 MHz)

Trimman Mada	Dee deut Mede	Time (Min.
Trigger Mode	Readout Mode	Trigger Period)
	Full	9435 us + 8.01 μs
Trigger Width Expenses	AOI Center 2/3	6281 us + 8.01 μs
Trigger Width Exposure Mode	AOI Center 1/2	4740 us + 8.01 μs
Mode	AOI Center 1/4	2393 us + 8.01 μs
	AOI Center 1/8	1219 us + 8.01 μs
	V Binning ON (Full) (Note1)	4740 us + 8.01 μs

Note1: GO-5000M-PMCL only

Note2: If Trigger Overlap is OFF, the accumulation time is added to the above table.

8.6.1 If Overlap setting is OFF

t1	t2	t3
2L (Min.)	208 clocks	7L to 8L

Fig. 21 Overlap = OFF

8.6.2 If Overlap setting is Readout

t1 Trigger t4 t2 CMOS Exposure Exposure Active Exposure Period t3 **FVAL** t1 t2 t3 t4 2L (Min.) 208 clocks 7L to 8L 1L

Fig. 22 Overlap: Readout

8.7. RCT mode

Until the trigger is input, the camera operates continuously and can use auto-gain, if necessary, to control the exposure setting. During this time, FVAL and LVAL are output but DVAL is not output. When the trigger is input, the fast dump is activated to read out the electronic charge very quickly, after which the accumulation and the readout are performed. When the accumulated signal against the trigger is read out, FVAL, LVAL and DVAL are output too.

Primary settings to use this mode

Trigger Mode = ON Exposure Mode = Timed Trigger Option = RCT

Table - 26 Minimum trigger interval (1X8-1Y)

	- 33 (-	,
Trigger Mode	Readout Mode	Time (Min. Trigger Period)
	Full	9435 us + Exposure time + 1.562 ms
Docat Continuous	AOI Center 2/3	6281 us + Exposure time + 1.562 ms
Reset Continuous	AOI Center 1/2	4740 us+ Exposure time + 1.562 ms
Trigger Mode (Note2)	AOI Center 1/4	2393 us + Exposure time + 1.562 ms
(Notez)	AOI Center 1/8	1219 us + Exposure time + 1.562 ms
	V Binning ON (Full) (Note1)	4740 us + Exposure time + 1.562 ms

Note1: GO-5000M-PMCL only

Note2: Trigger Overlap "Readout" is not available for this trigger mode.

t1	t2
28L	9L ∼10L

F

Fig.23 RCT mode timing

See the possibilities

8.9 Sequence ROI Trigger Mode

This is a function to capture images in sequence based on preset ROI, Exposure Time, Gain and other parameters in the sequence index table. In order activate this function, Video Send Mode must be switched from "Normal" to either "Trigger Sequence" or "Command Sequence" (see below).

Video send mode

Sequence Mode has two operating modes and it is set in the Video Send Mode selector.

Video Send Mode	How to select Index				
	The index can be selected by the				
Trigger Sequence	frame start trigger signal. (Index is				
	determined by the Next Index setting)				
	Select the index directly by setting				
Command Sequence	the index number with the Command				
	Sequence Index command.				

8.9.2 Sequence mode

Basic setting to use this function

Trigger Mode: ON Exposure mode: Timed

Video Send Mode: Trigger Sequence or Command Sequence

Table - 27 Minimum trigger interval (1x8-1Y)

		,				
Trigger Mode	Readout Mode	Time (Min. Trigger Period)				
	Full	9435 us + Exposure time + 8.01μs				
	ROI Center 2/3	6281 us + Exposure time + 8.01μs				
PIV mode	ROI Center 1/2	4740 us + Exposure time + 8.01μs				
	ROI Center 1/4	2393 us + Exposure time + 8.01μs				
	ROI Center 1/8	1219 us + Exposure time + 8.01μs				
	V Binning ON (Full) (Note 1)	4740 us + Exposure time + 8.01μs				

Note 1: GO-5000M-PMCL only
Note 2: The minimum trigger interval assumes that the exposure time is the same for each index in the sequence. If the exposure time is different, the difference in period should be added to the interval calculation.

Note 3: If it is necessary to use different exposure times, it is recommended to arrange the exposure times from the shortest to the longest.

Note 4: In sequence mode, the exposure should be adjusted so that the operation is not in LVAL sync accumulation.

8.9.3 Trigger Sequence mode timing

The following drawing shows the sequence mode timing concept.

Fig. 24 Behavior of Sequence trigger

In this mode, it is not possible to overlap the next exposure while the previous trigger operation (Index table) is in progress.

Sequence Index Table should proceed through Index 1 and after Index 1 is activated, the next index can be processed.

Table 28. Sequence mode: Sequence Index default value

	Sequence ROI													
	Width	Height	Off t	se	Gain S	elector		Exposure	Black	Binning		LUT	Frame	Next
Sequence ROI Index	wiatri	Height	Х	Υ	Gain (ALL)	Red	Blue	Time	Level	Horizontal	Vertical	Enable	Count	Index
- Index 1	2560	2048	0	0	100	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 1
- Index 2	2560	2048	0	0	100	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 1
- Index 3	2560	2048	0	0	100	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 1
- Index 4	2560	2048	0	0	100	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 1
- Index 5	2560	2048	0	0	100	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 1
- Index 6	2560	2048	0	0	100	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 1
- Index 7	2560	2048	0	0	100	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 1
- Index 8	2560	2048	0	0	100	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 1
- Index 9	2560	2048	0	0	100	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 1
-Index 10	2560	2048	0	0	100	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 1

8.9.4 Sequence ROI setting parameters

Setting parameters for Sequence ROI are as follows.

(1) Sequence ROI Index Selector

In Sequence ROI Index Selector, Index 1 to 10 can be selected.

Sequence ROI - Width, Height, Offset X, Offset Y, Gain Selector - Gain/Red/Blue, Exposure Time, Black Level, Binning Horizontal, Binning Vertical, LUT Enable, Frame Count, Next Index for the selected index are displayed.

(2) Sequence ROI Width

Set the width of sequence ROI. The setting range is 2 to 2560 pixels (1X2-1Y), 4 to 2560 pixels (1X4-1Y and 8 to 2560 pixels (1X8-1Y).

Rules for setting area and step number are the same as the normal ROI mode set by [Video Send Mode] = "Normal".

(3) Sequence ROI Height

Set the height of sequence ROI. The setting range is 1 to 2048 lines (Monochrome) and 2 to 2048 lines (Color).

Rules for setting area and step number are the same as the normal ROI mode set by [Video Send Mode] = "Normal".

(4) Sequence ROI Offset X

Set Offset X of sequence ROI. Refer to the specifications table for the details.

Sequence ROI Binning Horizontal =1 (Off):

Setting range is 0 to (2560 - [Sequence ROI Width])

Sequence ROI Binning Horizontal =2 (On):

Setting range is 0 to (1280 - [Sequence ROI Width])

The limitations of step number and other factors are the same as the normal ROI mode set by [Video Send Mode] = "Normal".

See the possibilities

(5) Sequence ROI Offset Y

Set Offset Y of sequence ROI. Refer to the specifications table for the details.

Sequence ROI Binning Vertical =1 (Off):

Setting range is 0 to (2048 - [Sequence ROI Height])

Sequence ROI Binning Vertical =2 (On):

Setting range is 0 to (1024 - [Sequence ROI Height])

The limitations of step number and other factors are the same as the normal ROI mode set by [Video Send Mode] = "Normal".

(6) Sequence ROI Gain Selector

In Sequence ROI Gain Selector, the gain settings for each index are available.

GO-5000C-PMCL: Gain (ALL), Red, and Blue can be set.

GO-5000M-PMCL: Only Gain is displayed and can be set.

(7) Sequence ROI Black Level

Black Level setting is available for each index.

(8) Sequence ROI Exposure Time

Exposure Time setting is available for each index.

(9) Sequence ROI Binning Horizontal

ON or OFF of Horizontal Binning for each index can be set.

(10) Sequence ROI Binning Vertical

ON or OFF of Vertical Binning for each index can be set.

(11) Sequence ROI LUT Enable

Enable or disable of LUT function for each index1 to 10 can be set. In the sequence operation, if LUT mode is selected OFF or LUT Table, the dark compression function is forced to be OFF.

(12) Sequence ROI Frame Count

This can set how many times the selected index is repeated. This is applied to each index. Triggers are input according to numbers set in Frame Count and index is repeated and moves to the next index. Therefore, the same number of triggers as Frame Count must be input.

(13) Sequence ROI Next Index

The number of the index that will follow the current index can be set. If [Video Send Mode] is set to "Trigger Sequence" and the trigger pulse is input in EPS trigger, the sequence is executed from index 0.

(14) Sequence ROI Reset Command

This command resets the current index pointer and reverts to index 1 in the table. Frame Count is also re-initialized.

Fig. 25 Trigger Sequence timing

8.10 Multi ROI function

This function divides one frame image into a maximum of 5 images vertically and reads out all areas in one frame. In this function, width is the same for all 5 images.

Multi ROI setting

Video Send Mode: Set to Multi ROI

Table 29 Multi ROI Index table default values

Multi ROI Index Max	1					
Multi ROI Width	2560					
	Multi ROI					
Multi ROI Index Selector	Height	х	Y			
- Index 1	1	0	0			
- Index 2	1	0	0			
- Index 3	1	0	0			
- Index 4	1	0	0			
- Index 5	1	0	0			

8.10.1 Multi ROI setting parameters

(1) Multi ROI Index Max : Setting value = $1 \sim 5$ Maximum 5 ROI settings are possible in a frame. Set Index 0 through 4 in Multi ROI Index table as an application requires.

(2) Multi ROI Width

The setting range and Step number are the same as the normal ROI setting in which [Width] plus [Offset X] should be equal to [Width Max]. In Multi ROI operation, the maximum offset value in index 0 to index 4 is the object in this calculation.

See the possibilities

(3) Multi ROI Index Selector:

Index 0 to 4 can be selected. [Height], [Offset X], and [Offset Y] of the selected Multi ROI Index are displayed and can be set.

(4) Multi ROI Offset X:

Offset X can be set for each ROI area of Multi ROI Index 1 to 5.

The restriction for setting Step and other factors are the same as the normal ROI setting. As described before, in Multi ROI operation, Multi ROI Width is a common width setting for Multi ROI Index 1 to 5.

(5) Multi ROI Height:

Height can be set for each ROI area of Multi ROI Index 1 to 5. The restriction for setting Step and other factors are the same as the normal ROI setting.

(6) Multi ROI Offset Y:

Offset Y can be set for each ROI area of Multi ROI Index 1 to 5.

The restriction for setting Step and other factors is the same as the normal ROI setting. The sum of Multi ROI Height values of index 1 to 5 should be less than Height Max.

Fig. 26 Multi ROI settings and output image

Note: In this mode, the frame grabber board must set its horizontal pixel number to Multi ROI Width and its vertical pixels to Multi ROI Max and the sum of Multi ROI Height.

8.11. Operation and function matrix

Table - 30 Operation and function matrix

Exposure operation	Trigger Mode	Trigger Option	Binning Vertical	Binning Horizontal	Exposure Time	ROI	Auto White Balanc e (Note1)	Auto Gain	Auto Exposure	Over lap	Vide S Multi ROI	Sequenc e ROI	
OFF	OFF	OFF	1	1	×	0	0	0	×	×	0	×	
Oll	011	5	2	2	×	0	×	0	×	×	0	×	
Timed	OFF	OFF	1	1	0	0	0	0	0	×	0	×	
Timed	011		2	2	0	0	×	0	0	×	0	×	
Timed	ON	ON	OFF	1	1	0	0	0	0	0	0	0	0
Timed				5	OIT	2	2	0	0	×	0	0	0
Trigger	ON	OFF	1	1	×	0	0	0	×	0	0	×	
Width	ON	ON OFF	2	2	×	0	×	0	×	0	0	×	
RCT ON	рст	1	1	0	0	0	0	0	×	0	×		
INCT	ON	RCT	2	2	×	×	×	×	×	×	×	×	

(Note1) GO-5000C-PMCL only

9. Other functions

9.1 Black level control

This function adjusts the setup level.

Variable range: -256 to 255 LSB (at 10-bit output)

9.1.1 Black Level Selector

The following items can be adjusted.

Monochrome: Black Level All

Color: Black Level All/ Black Level Red/ Black Level Blue

9.1.2 Black Level

The black level can be adjusted in the following range.

Monochrome: Black Level All : -256 \sim +255 Color: Black Level All : -256 \sim +255

Black Level Red/Blue: -512 ~+511

9.2 Gain control

In the GO-5000-PMCL, the gain control uses Analog Base Gain and Digital Gain. Analog Base Gain can be set at 0dB, +6dB or +12dB. The digital gain is used for the master gain setting.

For setting the gain,

- 1. Set analog gain (Select from 0dB, +6dB and +12dB)
- 2. Set digital gain

The master gain (DigitalAll) for both monochrome and color can be set x1 (0dB) to x16 (+24dB) against the analog base gain. The resolution for gain setting is 0.01%/step which is 0.05dB to 0.08dB, depending on the setting value. In the GO-5000C-PMCL, blue and red gain can be set from x0.45 to x5.62 against the master gain setting and its resolution is x0.01/step.

Note: If the gain up function is used, it is recommended to use the analog base gain as the master gain setting. For instance, if +12dB gain up is required, the analog base gain is set at +12dB and no digital gain is added. This is because the signal-to-noise is better on analog gain performance. Additionally, the analog base gain is effective in order to minimize breaks in the histogram at higher gain settings. Please note that the analog base gain has less accuracy due to its variability. Also note that the AGC function only works with digital gain.

See the possibilities

Fig.27 Gain control

9.2.1 Gain Selector

The following parameters can be set.

Monochrome: Digital All

Color: Digital All/Digital Red/ Digital Blue

9.2.2 Gain

The range for adjustment is as follows.

Monochrome: Digital All: 1 \sim 16 (x1 (0dB) \sim x16 (+24dB)) Color: Digital All: 1 \sim 16 (x1 (0dB) \sim x16 (+24dB))

Digital Red: -0.4467 \sim 5.6235 (-7dB \sim +15dB) Digital Blue: 0.4467 \sim 5.6235 (-7dB \sim +15dB)

9.2.3 Gain Raw

The range for adjustment is as follows.

Mono: Gain Raw Digital All : $100 \sim 1600 \text{ (0dB} \sim 24\text{dB)}$ Color: Gain Raw Digital All : $100 \sim 1600 \text{ (0dB} \sim 24\text{dB)}$

Gain Raw Digital Red / Gain Raw Digital Blue : -4533~37876

Gain calculation formula

Gain value = $\frac{(8192 + Setting Value)}{8192}$

Exp.1 If Setting value is -4533, Gain value = $\frac{(8192-4533)}{8192} = 0.4467 (-7dB)$

9.2.4 Gain Auto

This provides automatic control of the gain level.

This is controlled by the command JAI ALC Reference.

There are three modes.

OFF: Adjust manually.

Once: Operate only one time when this command is set

Continuous: Operate the auto gain continuously

The following detailed settings are also available.

ALC Speed: The rate of adjustment of GainAuto can be set (common with

Exposure Auto)

Gain Auto Max: The maximum value of GainAuto control range can be set Gain Auto Min: The minimum value of GainAuto control range can be set

ALC Reference: The reference level of Gain Auto control can be set (common with

Exposure Auto)

ALC channel area: The measurement area of GainAuto control can be set, either

entire area or individual section (Common with Exposure Auto)

High	High	High	High
Left	Mid-left	Mid-right	Right
Mid-High	Mid-High	Mid-High	Mid-High
Left	Mid-left	Mid-right	Right
Mid-Low Left	Mid-Low Mid-left	Mid-Low Mid-right	Mid- Low Right
Low	Low	Low	Low
Left	Mid-left	Mid-right	Right

Fig.28 ALC channel area

9.2.4 Balance white auto

This is to adjust the white balance by controlling R and B gain level.

OFF: Auto white balance is disabled. Manually adjusted.

Once: The white balance is controlled at one time when it is activated.

Continuous: The white balance is continuously adjusted.

Preset 4600K: R and B gain is preset so that the color temperature is 4600K. Preset 5600K: R and B gain is preset so that the color temperature is 5600K. Preset 6500K: R and B gain is preset so that the color temperature is 6500K.

9.3. LUT

This function can be used to convert the input to the desired output characteristics. The Lookup Table (LUT) has 32 points for setup in the monochrome model (GO-5000M-PMCL) and 16 points for setup in the color model (GO-5000C-PMCL). The output level is created by applying gain to the input level to achieve the specified output level.

9.3.1 LUT Mode

Can be set to OFF, gamma (see section 9.4), or Lookup Table. If Lookup Table is selected, the dark compression is forced to be OFF.

9.3.2 LUT Index

This represents the "starting" or "input" pixel value to be modified by the Lookup Table. The GO-5000M-PMCL has a 32-point Lookup Table and GO-5000C-PMCL has a 16-point table. Thus, in the GO-5000M-PMCL, an index value of 0 represents a full black pixel and a value of 31 represents a full white pixel. For the GO-5000C-PMCL, the corresponding index values range from 0 to 15. The index point values are automatically scaled to fit the internal pixel format of the camera. This is common for all output configurations.

9.3.3 LUT Value

This is the "adjusted" or "output" pixel value for a given LUT index. It has range of 0 to 4095 (12-bits) and is automatically scaled to the bit depth of the current output mode (8-bit, 10-bit, or 12-bit). Note: Linear interpolation is used to calculate LUT values between index points. In the color model, the LUT function works the same regardless of the color of the pixel.

9.4 Gamma

This command is used set gamma. Gamma 0.45, 0.6 and 1.0 (OFF) can be selected. The gamma value is an approximate value.

Fig.30 Gamma correction

9.4.1 Linear and Dark Compression

GO-5000-PMCL has a dark compression circuit to improve the signal-to-noise ratio in the dark portion of the image.

Dark Compression	Function		
Linear(Factory default)	No compression, Gamma=1.0		
Dark Compression	Compress the signal level in the dark portion. It can improve the signal to noise ratio, but on the other hand, the linearity will be deteriorated.		

The following drawing is characteristics of linear and dark compression.

Fig.48 Characteristics

9.5 Shading Correction

This function compensates for shading (non-uniformity) caused by the lens or the light source used. This compensation can be performed even if shading issues are not symmetrical in horizontal and/or vertical directions. There are two methods of correction.

Flat shading correction:

The method to compensate the shading is to measure the highest luminance level in the image and use that data as the reference. Luminance levels of other areas are then adjusted so that the level of the entire area is equal. The block grid for compensation is 20 (H) x 16(V) and each block contains 128 x 128 pixels. The complementary process is applied to produce the compensation data with less error.

Fig.31 Concept drawing of flat shading correction

Color shading correction (For GO-5000C-PMCL only):

In this case, R channel and B channel are adjusted to match with G channel characteristics. The block grid for compensation is 20 (H) \times 16(V) and each block contains 128 \times 128 pixels. The complementary process is applied to produce the compensation data with less error.

Fig. 32 Concept drawing of color shading correction

Note: Under the following conditions, the shading correction circuit may not work properly.

- If there is some area in the image with a video level less than 70%
- If part of the image or the entire image is saturated
- If the highest video level in the image is less than 300LSB (at 10-bit output)

9.6 Blemish compensation

The GO-5000-PMCL has a blemish compensation circuit. This function compensates blemishes on the CMOS sensor (typically pixels with extremely high response or extremely low response). This applies to both monochrome and color versions. Pixels that fulfill the blemish criteria can be compensated by averaging the data from the pixel in the left adjacent column and, in the case of the GO-5000C-PMCL, the defective pixels can be compensated by averaging the data from the same Bayer color pixel in left adjacent column. The number of pixels that can be compensated is up to 512 pixels.

GO-5000-PMCL has automatic blemish detection function. After setting the threshold, and then the blemish compensation is executed, blemishes are automatically detected and stored in the memory inside the camera. If the blemish compensation is set to ON, the stored data is loaded. The customer can adjust white blemishes but not black blemishes.

Fig. 33 Blemish compensation

9.7 ALC

In the GO-5000-PMCL, auto gain and auto exposure can be combined to provide a wide ranging automatic exposure control from dark to bright or vice versa.

The functions are applied in the sequence shown below and if one function is disabled, the remaining function will work independently.

If the lighting condition is changed from bright to dark ASC - AGC If the lighting condition is changed from dark to bright AGC - ASC

Fig.34 ALC function concept

9.8 HDR (High Dynamic Range) (GO-5000M-PMCL only)

HDR sensing mode can be set when HDR Mode is set to ON while Exposure Mode is Timed.

The parameters to configure dynamic range are HDR_SLOPE Level 1, Level 2, Level 3 and Level 4.

The user can select any one of those parameters as required for their application.

In this mode, the timed exposure is used as the reference and the value selected in HDR_SLOPE will compensate to get an appropriate dynamic range by changing the exposure time.

Notes:

- 1. If the exposure mode is OFF and the HDR mode is set to ON, the exposure mode is automatically changed to Timed.
- 2. If horizontal binning and/or vertical binning are set to ON, the HDR mode cannot be set. In this case, the HDR mode must be set first before H-Binning and/or V-Binning are set.
- 3. In this mode, exposure overlapped behavior is not available and the frame rate is slower than the normal operation.
- 4. The exposure time value is fixed at the value when HDR Mode is activated. When the exposure time is changed, HDR Mode should be off. Once the exposure time is changed, the HDR Mode can be set to ON again.
- 5. In this mode, Exposure Auto function is disabled.

Fig. 35 HDR characteristics

Knee Slope	Dynamic Range [%]	
1	(200)	
2	(400)	
3	(800)	
4	(1600)	

10. Camera Settings

In the GO-5000-PMCL, control of all camera functions is done by the JAI SDK and Control Tool software. All controllable camera functions are stored in an XML file inside of the camera. The JAI SDK and Control Tool software can be downloaded from www.jai.com.

If you need to use the Short ASCII communication protocol and associated control tool, please contact your local JAI representative.

Specific notes regarding Control Tool use:

- 1. For GO-5000-PMCL, the JAI SDK and Control Tool 2.0 can be used to control the camera, provided the PC on which the JAI software is installed is connected to the camera via a GenCP-compliant Camera Link frame grabber. Many frame grabber vendors also provide their own GenICam control tool software, as do a number of third-party software companies. Software conflicts can occur between these GenICam tools and the JAI SDK and Control Tool causing one or both tools to function improperly. Therefore, if you intend to use the JAI SDK and Control Tool you should A) not install any other GenICam software on your host PC, or B) install the JAI SDK and Control Tool last, after installing any other software. This will, in most cases, ensure that the JAI SDK and Control Tool functions properly. If not, please contact the frame grabber manufacturer or JAI to determine other ways to eliminate any software conflict.
- 2. The frame grabber used must be compliant with Camera Link Specification v1.1 or greater in order to communicate with the JAI SDK and Control Tool. If it is not, the JAI SDK and Control Tool cannot be used, and the Short ASCII communication protocol and associated control tool should be used instead.

11. External appearance and dimensions

Dimensions tolerance: ± 0.3 mm Unit: mm

Fig. 36 Appearance and Dimensions

12. Specifications

12.1. Camera spectral response

Fig.37 GO-5000M-PMCL Spectral response

RESPONSIVITY - PD

Fig.38 GO-5000C-PMCL Spectral response (Note: full sensor response. IR-cut filter not shown)

12.2. Specification table

Table - 31 Specification table

Specifications			GO-5000M-PMCL	GO-5000C-PMCL	
Scanning system			Progressive scan		
Synchronia	zation		Internal		
Interface			-	C2), Conforming with PoCL specifications	
lmage sen	sor		1 inch Monochrome CMOS	1 inch Bayer color CMOS	
Aspect rat	tio		5:4		
Effective i	image siz	e	12.8 (h) x 10.24 (v) mm 16.39 mm diagonal		
Cell size			5.0 (h) x 5.0 (v) μm		
Active pixels			2560 (h) x 2048 (v)		
Sensor Pixel clock			8-bit: 36MHz, 10-bit: 28.8MHz, 12-bit: 24MHz		
Camera Link clock			48.57 MHz/8 Pixels (Camera Link Clock = Low) 58.28 MHz/8 Pixels (Camera Link Clock = Mid, only for X8-1Y-10bit) 72.85 MHz/8 Pixels (Camera Link Clock = Mid, High for 1X8-1Y-8bit) 84.99 MHz/8 Pixels (Camera Link Clock = High)		
Acquisitio	n Frame I	Rate	Maximum frame rate shown. Minimum is 0.125fps in all instances.		
	H1, V1		31.9fps	31.9fps	
		H1, V2	63.4fps	_	
1X2-1Y		H1, V4	124.7fps	_	
8/10/		H2, V1	62.9fps	_	
12-bit	Binning	H2, V2	124.7fps	_	
CL clock:		H2, V4	245.6fps	_	
HIGH		H4, V1	124.7fps	_	
		H4, V2	245.6fps	_	
		H4, V4	280.1fps	_	
	H1, V1	T	47.8fps	47.8fps	
		H1, V2	95.0fps	_	
1X3-1Y		H1, V4	187.4fps	_	
B-bit	Binning	H2, V1	71.8fps	_	
CL clock:		H2, V2	142.5fps	_	
HIGH		H2, V4	281.1fps	_	
		H4, V1	71.8fps	_	
		H4, V2	142.5fps	_	
	114 1/4	H4, V4	281.1fps	-	
	H1, V1	114 1/2	63.6fps	63.6fps	
		H1, V2	126.1fps	_	
IX4-1Y		H1, V4	248.2fps	_	
3/10/	Dinning	H2, V1	71.7fps	_	
CL clock: HIGH	Binning	H2, V2	142.3fps	_	
		H2, V4	280.1fps	_	
		H4, V1	71.7fps 142.3fps	_	
		H4, V2	280.1fps	_	
	H4, V4		107.2fps		
1x8-1Y 8-bit	H1, V1		212.3fps	107.21þ5	
		H1, V4	417.1fps		
CL Clock:	Binning	H2, V1	107.1fps		
HIGH		H2, V1	213.6fps		
		H2, V4	417.0fps		
		114, 74	417.01ps	_	

		H4, V1	107.8fps	_	
		H4, V2	213.6fps	_	
		H4, V4	419.6fps	_	
	H1, V1	1 /	84.9fps	84.9fps	
		H1, V2	168.4fps	_	
		H1, V4	330.7fps	_	
1x8-1Y		H2, V1	86.0fps	_	
10-bit CL Clock: MID	Binning	H2, V2	170.4fps	_	
		H2, V4	334.8fps	_	
		H4, V1	86.0fps	_	
		H4, V2	170.4fps	_	
		H4, V4	334.8fps	_	
EMVA 128			At 10-bit output	At 10-bit output	
Absolute sensitivity Maximum SNR		y	20.17 p (λ = 525 nm) 41.3 dB	51.25 p (λ = 525 nm)	
Maxiiiiuiii	SIAIC			38.12 dB	
SN ratio (Traditional)		al)	Dark Compression:55dB (Typical) Linear:49dB (Typical)	Dark Compression:53dB (Typical) Linear: 44dB (Typical)	
JIV Tacto (radicion	αι,	(OdB gain, Black))	(0dB gain, Green Pixel Black)	
			(odb gain, black))	(odd gairi, Green Fixet black)	
	Full image		2560 (h) x 2048 (v)	2560 (h) x 2048 (v)	
		Height	1 \sim 2048 lines, 1 line / step	2 \sim 2048 lines, 2 lines / step	
		OFFSET Y	0 \sim 2047 lines, 1 line / step	0 \sim 2046 lines, 2 lines / step	
			2 \sim 2560 pixels, 2 pixels/step(1X2-1Y)	$2 \sim 2560$ pixels, 2 pixels/step(1X2-1Y)	
		V47: 141	$3 \sim 2559$ pixels, 3 pixels/step(1X3-1Y)	$3 \sim 2559$ pixels, 3 pixels/step(1X3-1Y)	
	ROI	Width	$4 \sim 2560$ pixels, 4 pixels/step(1X4-1Y)		
	KOI		$8 \sim 2560$ pixels, 8 pixels/step(1X8-1Y)		
			$0 \sim 2558$ pixels, 2 pixels/step(1X2-1Y)		
Image			0 \sim 2556 pixels, 3 pixels/step(1X3-1Y)		
Output		OFFSET X	0 \sim 2556 pixels, 4 pixels/step(1X4-1Y)		
Format					
Digital		1114		0 ~2552 pixels, 8 pixels/step(1X8-1Y)	
		H1	2560 pixels	2560 pixels	
	H Binning	H2	1280 pixels	_	
			The frame rate is not changed.		
		H4	640 pixels The frame rate is not changed.		
		V1	2048 lines	2048 lines	
	V Binning	V2	1024 lines	_	
		V4	512 lines		
				BayerGR8, BayerGR10, BayerGR12	
Pixel Format Acquisition Mode			Mono8,Mono10,Mono12		
'			Continuous		
Trigger selector			Frame Start		
Trigger mode			Continuous, Timed (EPS), Trigger Width,		
Trigger op			JAI_R0	CT with ALC	
Trigger overlap			OFF, Readout		
Trigger input signal		 l	Line2 (Camera link CC1), Pulse Generator 0, Soft Trigger,		
1			NANDO (out), NAND1 (out)		
Exposure	Timed		Auto Exposure OFF: 10 μ s (Min) \sim 8 sec. (Max)(Note1), Step: 1 μ s Auto Exposure Continuous: 100 μ s (Min) \sim 8 sec. (Max)(Note1), Step: 1 μ s		
Mode	Trigger Width		10 μs (Min) ~ ∞ (Max)(Note1)		

Auto expo	osure	OFF /	Continuous				
Exposure	Auto response speed		1 ~8				
Digital I/0		Line Selector (Came	ra Link): EEN out/CC1 in				
Black	Reference	33.5LSB 10-bit (Average of 100*100)				
level	Adj. range	-256 ∼+;	255LSB 10-bit				
adjust	Resolution	1 STEP	P = 0.25LSB				
Analog E	Base Gain	x1 (0dB), x2 (+6dB), x4 (+12dB)	x1 (0dB), x2 (+6dB), x4 (+12dB) R,G,B can be adjustable individually				
	Manual adj. range	0dB ∼+24dB, 1%/step (Note2)	0dB ∼+24dB、1%/step (Note2)				
	WB gain	_	R / B : -7dB to +15dB, 1%/ step				
Gain	WB area	_	4 x 4				
Adjust	WB range	_	3000K \sim 9000K				
	White balance	-	OFF, Once, Continuous, Preset 4600K/5600K/6500K				
Blemish	Detection		above the threshold value tected only by factory)				
comp.	Compensation	Complement by adjacent pixels (Con	tinuous blemishes are not compensated)				
	Correct Numbers	Up to 512 pixels					
ALC		AGC and Auto Shutter can be con	mbined and automatically controlled				
Gamma		γ=0.45, 0.6, 1.0 (3 steps are available)				
LUT		OFF: γ=1.0, ON=	32 points can be set				
Shading c	compensation(Note1)	Flat field Block based (20 x 16 blocks))	Flat field, Color shading Block based (20 x 16 blocks)				
HDR Mode	2	Level 1, 2, 3 and 4 based on the exposure time setting					
	Power input	DC+12V ± 1V (Compl	ies with PoCL Standards)				
Power	Current	250mA (12V i	input, full image)				
supply	Power Consumption	3.0W (12V ir	nput, full image)				
Lens mou	nt	C mount, Rear protrusion	of the lens is less than 10 mm.				
Flange ba	ick	C mount : 17.526 mm	, Tolerance 0 to -0.05 mm				
Optical fi	lter	Protection glass: Not provided	IR cut filter (Half value is 670 nm)				
	nce Guaranteed g temperature	-5°C to +45°C / 20%	% - 80% (non-condensing)				
Storage Temp. / Humidity		-25°C to +60°C / 20%	6 - 80 % (non-condensing)				
Regulation		CE (EN61000-6-2 and EN61000-6-	-3), FCC part 15 class B, RoHS, WEEE				
Housing D	imensions	29 x 29 x 52 mm (W x H	x D) (including lens mount)				
Weight			46 g				

- Note 1) Performance guarantee is up to 1 second.
- Note 2) Gaps in histogram may occur if more than +12dB of gain is applied.
- Note 3) Approximately 5 minutes pre-heating is required to achieve these specifications.
- Note 4) The above specifications are subject to change without notice.

Appendix 1 Short ASCII Command Communication Protocol

This chapter described the communication control protocol based on the short ASCII command as the reference

1 Communication setting

Baud Rate	9600
Data Length	8bit
Start Bit	1bit
Stop Bit	1bit
Parity	Non
Xon/Xoff Control	Non

2 Protocol (Short ASCII Command)

2.1 Transmit the setting command to camera

NN is any kind of command.

NN=[Param.]<CR><LF>

e.g.

Send to camera: GA=0 <CR><LF>

Camera response: COMPLETE<CR><LF>

When camera receives a valid command, camera will return 'COMPLETE'.

If camera receives an improper command, camera will return one of the following:

e.g.

Send to camera: GAX=0 < CR>< LF>

Camera response: 01 Unknown Command!!<CR><LF>

e.g

Send to camera: GA=1000 <CR><LF>

Camera response: 02 Bad Parameters!!<CR><LF>

2.2 Transmit the request command to camera

The status of camera's settings can be queried by transmitting NN?<CR><LF>, where NN is any valid command.

The camera will return the current setting data.

e.g.

Send to camera: GA? <CR><LF>

Camera response: GA=0<CR><LF>

2.3 Switching baud rate between PC and camera

Camera always starts up with 9600 bps. This can be switched to higher baud rates after communication has been established. When switching to other baud rates the procedure is as follows.

e.g. Change baud rate to 115200 bps

1. Confirm baud rates camera supported

Send to camera: SBDRT? <CR><LF>

Camera response: SBDRT=31(0x1F)<CR><LF>

2. Request new baud rate

Send to camera: CBDRT=16(0x10) <CR><LF>
Camera response: COMPLETE<CR><LF>

(Change baud rate to 115200 bps)

See the possibilities

3. Rewrite new baud rate again with new baud rate (Confirmation command)

Send to camera: CBDRT=16(0x10) <CR><LF> Camera response: COMPLETE<CR><LF>

In case the camera does not receive the confirming command with new baud rate within 250 ms after sending the acknowledgement it falls back to the original baud rate (9600 bps).

2.4 Command list (Short ASCII command)

2.4.1 GenCP Bootstrap Register

Name	Interface	Acce	Short ASCII	Values	MIN	MAX	DEFAU LT	Description
DeviceVendorN ame	I String	R/O	DVN	"JAI Ltd., Japan"	_	_	_	DVN? <cr><lf></lf></cr>
DeviceModelNa me	I String	R/O	MD		_	_	_	MD? <cr><lf></lf></cr>
DeviceVersion	I String	R/O	DV	Indicate device version (e.g. "0.1.0.0")	_	_	_	DV? <cr><lf></lf></cr>
DeviceID	I String	R/O	ID	Revision+Order- Number	_	_	_	ID? <cr><lf></lf></cr>
DeviceUserID	I String	R/W	UD	User can save and load free text. (12 or less characters)				UD=[Param.] <cr><lf> UD?<cr><lf></lf></cr></lf></cr>

2.4.2 Technology Specific Bootstrap Register

Name	Interface	Acce ss	Short ASCII	Values	MIN	MAX	DEFAU LT	Description
SupportedBaudr ates	I Integer	R/O	SBDR T	Indicate Support/Non- support status for each baud rate bit0: 9600bps bit1: 19200bps bit2: 38400bps bit3: 57600bps bit4: 115200bps bit5: 230400bps bit6: 460800bps bit7: 921600bps	0x01	0xFF	0x1F	SBDRT? <cr><lf> This camera supports 9600bps, 19200bps, 38400bps, 57600bps, and 115200bps.</lf></cr>
CurrentBaudrat e	l Integer	R/W	CBDR T	READ: Indicate current baud rate WRITE: Set any bit of baud rate bit0: 9600bps bit1: 19200bps bit2: 38400bps bit3: 57600bps bit4: 115200bps bit5: 230400bps bit6: 460800bps bit7: 921600bps	0x01	0x80	1 (9600b ps)	CBDRT=[Param.] <cr> <lf> CBDRT?<cr><lf> In case of WRITE execution (change baud rate), it needs to control in the proper sequence between Host and Camera. (Refer to the section 3.3)</lf></cr></lf></cr>

2.4.3 Device Control

Name	Interfac e	Acc ess	Short ASCII	Values	MIN	MAX	DEFA ULT	Description
DeviceFirmwa re Version	I String	R/O	VN	Firm Ver. No.	_	_	_	VN? <cr><lf></lf></cr>
DeviceReset	I Comma nd	W/ O	CRS0 0	1	_	_	_	CRS00=1 <cr><lf></lf></cr>

2.4.4 Image Format Control

Name	Interfac e	Acc ess	Short ASCII	Values	MIN	MAX	DEFA ULT	Description
Height	l Integer	R/W	HTL	Min \sim (Max - OffsetY)	1(Mo no) 2(Bay er)	2048	2048	HTL=[Param.] <cr>< LF> HTL?<cr><lf></lf></cr></cr>
Width	l Integer	R/W	WTC	Min \sim (Max - OffsetX)	2(1X 2-1y) 4(1X 4-1Y) 8(1X 8-1Y)	2560	2560	WTC=[Param.] <cr>< LF> WTC?<cr><lf></lf></cr></cr>
Width	I Integer	R/W	WTC	Min \sim (Max - OffsetX)	(1X3- 1Y)	2559	2559	WTC=[Param.] <cr>< LF> WTC?<cr><lf></lf></cr></cr>
Offset Y	l Integer	R/W	OFL	Min∼(Max - Height)	0	2047 (Mon o) 2046 (Bay er)	0	OFL=[Param.] <cr>< LF> OFL?<cr><lf></lf></cr></cr>
Offset X	I Integer	R/W	OFC	Min∼(Max - Width)	0	2544	0	OFC=[Param.] <cr>< LF> OFC?<cr><lf></lf></cr></cr>
BinningHorizo ntal	l Integer	R/W	НВ	1: Normal / 2: Binning mode	1	2	1	HB=[Param.] <cr><l F> HB?<cr><lf> only Mono</lf></cr></l </cr>
BinningVertic al	l Integer	R/W	VB	1: Normal / 2: Binning mode	1	2	1	VB=[Param.] <cr><lf > VB?<cr><lf> only Mono</lf></cr></lf </cr>
PixelFormat	I Enumer ation	R/(W)	ВА	Mono model: 0: Mono8 1: Mono10 2: Mono12 Bayer model: 0: BayerGR8 1: BayerGR10 2: BayerGR12	0	2	0	BA=[Param.] <cr><lf > BA?<cr><lf></lf></cr></lf </cr>

See the possibilities

TestImageSel ector	I Enumer ation	R/W	TPN	0: Off 1: GreyHorizontalRam p 2: GreyVerticalRamp 3:GreyHorizontal RampMoving	0	6	0	TPN=[Param.] <cr>< LF> TPN?<cr><lf></lf></cr></cr>
-----------------------	----------------------	-----	-----	--	---	---	---	--

2.4.5 Acquisition Control

2.4.5 Acquisit	ion Contro	l						
Name	Interface	Acce ss	Short ASCII	Values	MIN	MAX	DEFA ULT	Description
AcquisitionFra meRate	I Float	R/W	-	Min~Max[fps]	0.125	Firm will set	83.6	TI=[Param.] <cr><l F> TI?<cr><lf></lf></cr></l </cr>
FrameStartTrig Mode	I Enumera tion	R/W	ТМ	Off/On	0	1	0	TM=[Param.] <cr><lf> TM?<cr><lf></lf></cr></lf></cr>
TrigSoftware	l Comman d	(R)/ W	STRG	0	_	_	_	STRG=0 <cr><lf></lf></cr>
FrameStartTrig Source	I Enumera tion	R/W	TI	0: Low 1: High 2: SoftTrigger 8: PulseGenerator0 13: CL_CC1_In 14: Nand0 15: Nand1	0	17	0	TI=[Param.] <cr><lf> TI?<cr><lf></lf></cr></lf></cr>
FrameStartTrig Activation	I Enumera tion	R/W	ТА	0: RisingEdge 1: FallingEdge 2: LevelHigh 3: LevelLow	0	3	0	TA=[Param.] <cr><lf> TA?<cr><lf></lf></cr></lf></cr>
FrameStartTrig Over Lap	I Enumera tion	R/W	то	0: Off / 1: ReadOut	0	1	0	TO=[Param.] <cr><lf> TO?<cr><lf></lf></cr></lf></cr>
ExposureMode	I Enumera tion	R/W	EM	0: Off 1: Timed 2: TriggerWidth	0	2	0	EM=[Param.] <cr><lf> EM?<cr><lf></lf></cr></lf></cr>
ExposureTimeR aw	l Integer	R/W	PE	Min∼Max[us]	10	80000 00	18000	PE=[Param.] <cr><lf> PE?<cr><lf></lf></cr></lf></cr>
ExposureAuto	I Enumera tion	R/W	ASC	0: Off 1: Continuous	0	2	2	ASC=[Param.] <cr><lf> ASC?<cr><lf></lf></cr></lf></cr>

2.4.6 Digital I/O Control

Name	Interface	Acces s	Short ASCII	Values	MI N	M AX	DE FA UL T	Description
LineInverter_Line1	I Boolean	R/W	LI0	False/True	0	1	0	LIO=[Param.] <cr><lf> LIO?<cr><lf></lf></cr></lf></cr>
LineInverter_Nand0In 1	I Boolean	R/W	ND0IN V1	False/True	0	1	0	ND0INV1=[Param.] <cr><lf> ND0INV1?<cr><lf></lf></cr></lf></cr>
LineInverter_Nand0In 2	I Boolean	R/W	ND0IN V2	False/True	0	1	0	ND0INV2=[Param.] <cr><lf> ND0INV2?<cr><lf></lf></cr></lf></cr>
LineInverter_Nand1In 1	I Boolean	R/W	ND1IN V1	False/True	0	1	0	ND1INV1=[Param.] <cr><lf> ND0INV1?<cr><lf></lf></cr></lf></cr>
LineInverter_Nand1In 2	I Boolean	R/W	ND1IN V2	False/True	0	1	0	ND1INV2=[Param.] <cr><lf> ND0INV2?<cr><lf></lf></cr></lf></cr>
LineSource_Line1	I Enume ration	R/W	LSO	0: Low 1: High 3: Frame TriggerWait 4: Frame Active 5: Exposure Active 6: Fval 7: Lval 8: Pulse Generator0 13: CL_CC1_In 14: Nand0 15: Nand1	0	17	0	LS0=[Param.] <cr><lf> LS0?<cr><lf> For 12pin TTL out</lf></cr></lf></cr>
LineSource_Nand0In1	I Enume ration	R/W	ND0IN1	Same as for Line1	0	17	0	NDOIN1=[Param.] <cr><lf> NDOIN1?<cr><lf></lf></cr></lf></cr>
LineSource_Nand0In2	I Enume ration	R/W	ND0IN2	Same as for Line1	0	17	0	NDOIN2=[Param.] <cr><lf> NDOIN2?<cr><lf></lf></cr></lf></cr>
LineSource_Nand1In1	I Enume ration	R/W	ND1IN1	Same as for Line1	0	17	0	ND1IN1=[Param.] <cr><lf> ND1IN1?<cr><lf></lf></cr></lf></cr>
LineSource_Nand1In2	I Enume ration	R/W	ND1IN2	Same as for Line1	0	17	0	ND1IN2=[Param.] <cr><lf> ND1IN2?<cr><lf></lf></cr></lf></cr>

See the possibilities

2.4.7 Analogue Control

Name	Interface	Acc ess	Short ASCII	Values	MIN	MAX	DEFAU LT	Description
GainRawDigital All	I Integer	R/W	FGA	min~0~max	100	1600	100	FGA=[Param.] <cr><l F> FGA?<cr><lf></lf></cr></l </cr>
AnalogBaseColo rGainAll	I Integer	R/W	ABALL	0:0dB, 1:6dB, 2:12dB	0	2	0	ABALL=[Param.] <cr>< LF> ABALL?<cr><lf></lf></cr></cr>
AnalogBaseColo rGainR	I Integer	R/W	ABR	0:0dB, 1:6dB, 2:12dB	0	2	0	ABR=[Param.] <cr><l F> ABR?<cr><lf></lf></cr></l </cr>
AnalogBaseColo rGainG	I Integer	R/W	ABG	0:0dB, 1:6dB, 2:12dB	0	2	0	ABG=[Param.] <cr><l F> ABG?<cr><lf></lf></cr></l </cr>
AnalogBaseColo rGainB	I Integer	R/W	ABB	0:0dB, 1:6dB, 2:12dB	0	2	0	ABB=[Param.] <cr><lf > ABB?<cr><lf></lf></cr></lf </cr>
GainAuto	I Enumerat ion	R/W	AGC	0: Off 1: Continuous	0	1	0	AGC=[Param.] <cr><l F> AGC?<cr><lf></lf></cr></l </cr>
BlackLevelRaw All	I Integer	R/W	BL	min~0~max	-256	255	0	BL=[Param.] <cr><lf> BL?<cr><lf></lf></cr></lf></cr>

2.4.8 LUT Control

Name	Interface	Acce ss	Short ASCII	Values	MIN	MAX	DEFAU LT	Description
LUTValueGreen (Mono)	I Integer	R/W	LUTG	Param 1: LUT index Param 2:LUTdata (Min~Max)	0	32	γ =1 Equival ent	LUT*=[Param1],[Para m2] <cr><lf> LUT*?[Param1]<cr><l F></l </cr></lf></cr>

2.4.9 Transport Layer Control

<u> </u>	ne Layer e							
Name	Interface	Acce ss	Short ASCII	Values	MIN	MAX	DEFAU LT	Description
DeviceTapGeom etry	l Enumera tion	R/(W)	TAGM	1: Geometry_1X2_1Y 3: Geometry_1X4_1Y 5: Geometry_1X8_1Y 7: Geometry_1X3_1Y	1	7	5	TAGM=[Param.] <cr>< LF> TAGM?<cr><lf></lf></cr></cr>

2.4.10 User Set Control

Name	Interface	Access	Short ASCII	Values	MIN	MAX	DE FAULT	Description
UserSetLoad	I Command	(R)/W	LD	0: Default 1: UserSet1 2: UserSet2 3: UserSet3	0	3	0	LD=[Param.] <cr><lf> LD?<cr><lf></lf></cr></lf></cr>
UserSetSave	I Command	(R)/W	SA	1: UserSet1 2: UserSet2 3: UserSet3	1	3	1	SA=[Param.] <cr><lf> SA?<cr><lf></lf></cr></lf></cr>

2.4.11 JAI-Custom

Name	Interfac e	Acc ess	Short ASCII	Values	MIN	MAX	DE FAUL T	Description
AcquisitionFra mePeriod	l Integer	R/W	AR	Min∼Max[us]	1	3257 86	1196	AR=[Param.] <cr><l F> AR?<cr><lf> Maximum value is calcurated depending on Height and Offset Y settings</lf></cr></l </cr>
BlemishWhite Enable	l Boolean	R/W	BMW	0: False 1: True	0	1	0	BMW=[Param.] <cr> <lf> BMW?<cr><lf></lf></cr></lf></cr>
BlemishWhite Detect	I Comma nd	W/O	BMRC W	0	0	0	0	BMRCW=0 <cr><lf></lf></cr>
BlemishWhite Detect Threshold	I Integer	R/W	BMTH W	0	0	100	10	BMTHW=[Param.] <c R><lf> BMTHW?<cr><lf></lf></cr></lf></c
BlemishWhite Detect PositionX	I Integer	R/W	BMPX W	Param 1: Blemish index Param 2: X position(Min~Max)	0	2559	0	BMPXW=[Param1],[Param2] <cr><lf> BMPXW? [Param1]<cr><lf></lf></cr></lf></cr>
BlemishWhite Detect PositionY	I Integer	R/W	BMPY W	Param 1: Blemish index Param 2: Y position(Min~Max)	0	2047	0	BMPYW=[Param1],[Param2] <cr><lf> BMPYW? [Param1]<cr><lf></lf></cr></lf></cr>
VideoSendMod e	l Enumer ation	R/W	VSM	0: Normal 1: Trigger Sequence 2: Command Sequence 3: Multi Roi Mode	0	3	0	VSM=[Param.] <cr>< LF> VSM?<cr><lf></lf></cr></cr>
SequenceMod eIndex	l Enumer ation	R/W	SQI	0: Index0 1: Index1 2: Index2 3: Index3 4: Index4 5: Index5 6: Index6 7: Index7 8: Index8 9: Index9	0	9	0	SQI=[Param.] <cr>< LF> SQI?<cr><lf></lf></cr></cr>
SequenceMod eFrame Count0	I Integer	R/W	SQF1	Min~Max	1	255	1	SQF1=[Param.] <cr> <lf> SQI1?<cr><lf></lf></cr></lf></cr>
SequenceMod eFrame Count1	I Integer	R/W	SQF2	Min∼Max	1	255	1	SQF2=[Param.] <cr> <lf> SQI2?<cr><lf></lf></cr></lf></cr>
SequenceNod eFrame Count2	I Integer	R/W	SQF3	Min∼Max	1	255	1	SQF3=[Param.] <cr> <lf> SQI3?<cr><lf></lf></cr></lf></cr>
SequenceMod	I Integer	R/W	SQF4	Min∼Max	1	255	1	SQF4=[Param.] <cr></cr>

eFrame Count3 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
eFrame Count4 SQF5 Min \sim Max 1 255 1 <lf> SQI5?<cr><lf> SquenceMod eFrame Count5 SequenceMod eFrame I Integer R/W SQF6 Min\simMax 1 255 1 <lf> SQI6?<cr><lf> SQF6=[Param.] SequenceMod eFrame I Integer R/W SQF7 Min\simMax 1 255 1 <lf> SQF7=[Param.]</lf></lf></cr></lf></lf></cr></lf>	CR>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
eFrame Count5	CR>
Count5 SQI6? <cr><lf> SequenceMod eFrame I Integer R/W SQF7 Min~Max 1 255 1 <lf></lf></lf></cr>	
SequenceMod eFrame I Integer R/W SQF7 Min~Max 1 255 1 SQF7=[Param.]<	
eFrame I Integer R/W SQF7 Min~Max 1 255 1 <lf></lf>	CR>
Count6 CO1722CD LES	
Counto	
SequenceMod SQF8=[Param.]<	CR>
eFrame I Integer R/W SQF8 Min~Max 1 255 1 <lf></lf>	
Count7 SQI8? <cr><lf></lf></cr>	
SequenceMod SQF9=[Param.]<	CR>
eFrame I Integer R/W SQF9 Min~Max 1 255 1 <lf></lf>	
Count8 SQI9? <cr><lf></lf></cr>	
SequenceMod SQF10=[Param.]	<cr< td=""></cr<>
eFrame I Integer R/W SQF10 Min~Max 1 255 1 > <lf></lf>	
Count9 SQI10? <cr><lf></lf></cr>	C D
SequenceMod I Same as Same SQNI1=[Param.]	<cr< td=""></cr<>
eNext Enumer R/W SQNI1 SequencePoiledex U 9 U > <lf></lf>	
Index0 ation SQNI1? <cr><lf></lf></cr>	
SequenceMod I SQNI2=[Param.]	<cr< td=""></cr<>
eNext Frumer R/W SONI2 Same as 0 9 0 ScIFS	
Index1 ation SequenceRoiIndex SQNI2? <cr><lf></lf></cr>	
SequenceMod I SQNI3=[Param.] eNext Enumer R/W SONI3 Same as 0 9 0 > <lf></lf>	<cr< td=""></cr<>
eNext Enumer R/W SQNI3 SequenceRoiIndex 0 9 0 > <lf> SQNI3?<cr><lf> SQNI3?<cr><lf> SQNI3?<cr><lf> SQNI3?<cr><lf> SQNI3?<cr><lf> SQNI3?<cr><lf> SQNI3?<cr><lf> SQNI3?<cr><lf> SQNI3?<cr><cr><cr><cr> SQNI3?<cr><cr><cr> SQNI3?<cr><cr><cr> SQNI3?<cr><cr><cr> SQNI3?<cr><cr> SQNI3?<cr><cr> SQNI3?<cr><cr> SQNI3?<cr> SQNI3.</cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf>	
SequenceMod I SQNI4=[Param.]	
eNext Frumer P/W SONIA Same as 0 9 0 Scl. FS	·CIN
Index3 ation SequenceRoiIndex SQNI4? <cr><lf></lf></cr>	
SequenceMod I SONI5=[Param]	
aNovt Frumer P/W SONIS Salle as 0 0 0 SIES	C.\
Index4 ation SequenceRoiIndex SQNI5? <cr><lf></lf></cr>	
SequenceMod I SONI6-[Param I	
eNext Fnumer R/W SONIG Same as 0 9 0 ><1F>	
Index5 SequenceRoiIndex SQNI6? <cr><lf></lf></cr>	
SeguenceMod I SONI7=[Param.]	
eNext Frumer R/W SONIT Same as 0 0 0 ScIES	
Index6 ation SequenceRoiIndex SQNI7? <cr><lf></lf></cr>	
SequenceMod I Same as a SQNI8=[Param.]	<cr< td=""></cr<>
eNext Enumer R/W SQNI8 Cognoso Poiladox 0 9 0 >< LF>	
Index/ ation : SQNI8: <cr><lf></lf></cr>	
SequenceMod I Same as Same SQNI9=[Param.]	<cr< td=""></cr<>
enext Enumer R/W SQN19 SequencePoiledex U 9 U > <lf></lf>	
Indexo ation SQNI9: CR>-CLF>	
SequenceMod I SQNI1 Same as Q SQNI10=[Param.	J <c< td=""></c<>
enext Enumer R/W 0 SequencePoiledex U 9 U R> <lf></lf>	
Index9 ation SQNI10? <cr><lf< td=""><td>></td></lf<></cr>	>
SequenceMod 1(Mo SQH1=[Param.]<	CR\
LANDON DE LA CONTRACTOR DE	CI\/
e Height0 I Integer R/W SQH1 Min~Max no) 2(Bay er) 2048 2048 SQH1? <cr><-CF> SQH1?<-CR><-CF></cr>	

SequenceMod e Height1	l Integer	R/W	SQH2	Min∼Max	1(Mo no) 2(Bay er)	2048	2048	SQH2=[Param.] <cr> <lf> SQH2?<cr><lf></lf></cr></lf></cr>
SequenceMod e Height2	l Integer	R/W	SQH3	Min∼Max	1(Mo no) 2(Bay er)	2048	2048	SQH3=[Param.] <cr> <lf> SQH3?<cr><lf></lf></cr></lf></cr>
SequenceMod e Height3	l Integer	R/W	SQH4	Min∼Max	1(Mo no) 2(Bay er)	2048	2048	SQH4=[Param.] <cr> <lf> SQH4?<cr><lf></lf></cr></lf></cr>
SequenceMod e Height4	l Integer	R/W	SQH5	Min∼Max	1(Mo no) 2(Bay er)	2048	2048	SQH5=[Param.] <cr> <lf> SQH5?<cr><lf></lf></cr></lf></cr>
SequenceMod e Height5	l Integer	R/W	SQH6	Min∼Max	1(Mo no) 2(Bay er)	2048	2048	SQH6=[Param.] <cr> <lf> SQH6?<cr><lf></lf></cr></lf></cr>
SequenceMod e Height6	I Integer	R/W	SQH7	Min∼Max	1(Mo no) 2(Bay er)	2048	2048	SQH7=[Param.] <cr> <lf> SQH7?<cr><lf></lf></cr></lf></cr>
SequenceMod e Height7	l Integer	R/W	SQH8	Min∼Max	1(Mo no) 2(Bay er)	2048	2048	SQH8=[Param.] <cr> <lf> SQH8?<cr><lf></lf></cr></lf></cr>
SequenceMod e Height8	l Integer	R/W	SQH9	Min∼Max	1(Mo no) 2(Bay er)	2048	2048	SQH9=[Param.] <cr> <lf> SQH9?<cr><lf></lf></cr></lf></cr>
SequenceMod e Height9	l Integer	R/W	SQH10	Min∼Max	1(Mo no) 2(Bay er)	2048	2048	SQH10=[Param.] <cr ><lf> SQH10?<cr><lf></lf></cr></lf></cr
SequenceMod e OffsetY0	l Integer	R/W	SQOY1	Min∼Max	0	2047 (Mno) 2046 (Baye r)	0	SQOY1=[Param.] <cr ><lf> SQOY1?<cr><lf></lf></cr></lf></cr
SequenceMod e OffsetY1	l Integer	R/W	SQOY2	Min∼Max	0	2047 (Mno) 2046 (Baye r)	0	SQOY2=[Param.] <cr ><lf> SQOY2?<cr><lf></lf></cr></lf></cr
SequenceMod e OffsetY2	l Integer	R/W	SQOY3	Min∼Max	0	2047 (Mno) 2046 (Baye	0	SQOY3=[Param.] <cr ><lf> SQOY3?<cr><lf></lf></cr></lf></cr

						r)	1	
SequenceMod e OffsetY3	I Integer	R/W	SQOY4	Min∼Max	0	2047 (Mno) 2046 (Baye r)	0	SQOY4=[Param.] <cr ><lf> SQOY4?<cr><lf></lf></cr></lf></cr
SequenceMod e OffsetY4	I Integer	R/W	SQOY5	Min \sim Max	0	2047 (Mno) 2046 (Baye r)	0	SQOY5=[Param.] <cr ><lf> SQOY5?<cr><lf></lf></cr></lf></cr
SequenceMod e OffsetY5	l Integer	R/W	SQOY6	Min∼Max	0	2047 (Mno) 2046 (Baye r)	0	SQOY6=[Param.] <cr ><lf> SQOY6?<cr><lf></lf></cr></lf></cr
SequenceMod e OffsetY6	I Integer	R/W	SQOY7	Min∼Max	0	2047 (Mno) 2046 (Baye r)	0	SQOY7=[Param.] <cr ><lf> SQOY7?<cr><lf></lf></cr></lf></cr
SequenceMod e OffsetY7	I Integer	R/W	SQOY8	Min∼Max	0	2047 (Mno) 2046 (Baye r)	0	SQOY8=[Param.] <cr ><lf> SQOY8?<cr><lf></lf></cr></lf></cr
SequenceMod e OffsetY8	I Integer	R/W	SQOY9	Min∼Max	0	2047 (Mno) 2046 (Baye r)	0	SQOY9=[Param.] <cr ><lf> SQOY9?<cr><lf></lf></cr></lf></cr
SequenceMod e OffsetY9	I Integer	R/W	SQOY1 0	Min∼Max	0	2047 (Mno) 2046 (Baye r)	0	SQOY10=[Param.] <c R><lf> SQOY10?<cr><lf></lf></cr></lf></c
SequenceMod eGain0	I Integer	R/W	SQGA1	Min∼Max	100	1600	0	SQGA1=[Param.] <cr ><lf> SQGA1?<cr><lf></lf></cr></lf></cr
SequenceMod eGain1	l Integer	R/W	SQGA2	Min∼Max	100	1600	0	SQGA2=[Param.] <cr ><lf> SQGA2?<cr><lf></lf></cr></lf></cr
SequenceMod eGain2	I Integer	R/W	SQGA3	Min∼Max	100	1600	0	SQGA3=[Param.] <cr ><lf> SQGA3?<cr><lf></lf></cr></lf></cr
SequenceMod eGain3	I Integer	R/W	SQGA4	Min~Max	100	1600	0	SQGA4=[Param.] <cr ><lf></lf></cr

								SQGA4? <cr><lf></lf></cr>
SequenceMod eGain4	I Integer	R/W	SQGA5	Min∼Max	100	1600	0	SQGA5=[Param.] <cr ><lf> SQGA5?<cr><lf></lf></cr></lf></cr
SequenceMod eGain5	l Integer	R/W	SQGA6	Min~Max	100	1600	0	SQGA6=[Param.] <cr ><lf> SQGA6?<cr><lf></lf></cr></lf></cr
SequenceMod eGain6	l Integer	R/W	SQGA7	Min∼Max	100	1600	0	SQGA7=[Param.] <cr ><lf> SQGA7?<cr><lf></lf></cr></lf></cr
SequenceMod eGain7	l Integer	R/W	SQGA8	Min∼Max	100	1600	0	SQGA8=[Param.] <cr ><lf> SQGA8?<cr><lf></lf></cr></lf></cr
SequenceMod eGain8	l Integer	R/W	SQGA9	Min~Max	100	1600	0	SQGA9=[Param.] <cr ><lf> SQGA9?<cr><lf></lf></cr></lf></cr
SequenceMod eGain9	l Integer	R/W	SQGA1 0	Min∼Max	100	1600	0	SQGA10=[Param.] <c R><lf> SQGA10?<cr><lf></lf></cr></lf></c
SequenceMod e ExposureTime 0	l Integer	R/W	SQPE1	Min∼Max	10	8000 000	1800 0	SQPE1=[Param.] <cr ><lf> SQPE1?<cr><lf></lf></cr></lf></cr
SequenceMod e ExposureTime 1	l Integer	R/W	SQPE2	Min~Max	10	8000 000	1800 0	SQPE2=[Param.] <cr ><lf> SQPE2?<cr><lf></lf></cr></lf></cr
SequenceMod e ExposureTime 2	I Integer	R/W	SQPE3	Min~Max	10	8000 000	1800 0	SQPE3=[Param.] <cr ><lf> SQPE3?<cr><lf></lf></cr></lf></cr
SequenceMod e ExposureTime 3	l Integer	R/W	SQPE4	Min~Max	10	8000 000	1800 0	SQPE4=[Param.] <cr ><lf> SQPE4?<cr><lf></lf></cr></lf></cr
SequenceMod e ExposureTime 4	l Integer	R/W	SQPE5	Min~Max	10	8000 000	1800 0	SQPE5=[Param.] <cr ><lf> SQPE5?<cr><lf></lf></cr></lf></cr
SequenceMod e ExposureTime 5	l Integer	R/W	SQPE6	Min~Max	10	8000 000	1800 0	SQPE6=[Param.] <cr ><lf> SQPE6?<cr><lf></lf></cr></lf></cr
SequenceMod e ExposureTime 6	I Integer	R/W	SQPE7	Min~Max	10	8000 000	1800 0	SQPE7=[Param.] <cr ><lf> SQPE7?<cr><lf></lf></cr></lf></cr
SequenceMod e ExposureTime 7	I Integer	R/W	SQPE8	Min~Max	10	8000 000	1800 0	SQPE8=[Param.] <cr ><lf> SQPE8?<cr><lf></lf></cr></lf></cr
SequenceMod	I Integer	R/W	SQPE9	Min∼Max	10	8000	1800	SQPE9=[Param.] <cr< td=""></cr<>

e						000	0	> <lf></lf>
ExposureTime 8								SQPE9? <cr><lf></lf></cr>
SequenceMod e ExposureTime 9	l Integer	R/W	SQPE1	Min∼Max	10	8000 000	1800 0	SQPE10=[Param.] <c R><lf> SQPE10?<cr><lf></lf></cr></lf></c
SequenceMod e Hbinning0	I Enumer ation	R/W	SQHB1	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB1=[Param.] <cr ><lf> SQHB1?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMod e Hbinning1	I Enumer ation	R/W	SQHB2	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB2=[Param.] <cr ><lf> SQHB2?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMod e Hbinning2	I Enumer ation	R/W	SQHB3	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB3=[Param.] <cr ><lf> SQHB3?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMod e Hbinning3	I Enumer ation	R/W	SQHB4	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB4=[Param.] <cr ><lf> SQHB4?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMod e Hbinning4	I Enumer ation	R/W	SQHB5	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB5=[Param.] <cr ><lf> SQHB5?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMod e Hbinning5	I Enumer ation	R/W	SQHB6	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB6=[Param.] <cr ><lf> SQHB6?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMod e Hbinning6	I Enumer ation	R/W	SQHB7	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB7=[Param.] <cr ><lf> SQHB7?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMod e Hbinning7	I Enumer ation	R/W	SQHB8	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB8=[Param.] <cr ><lf> SQHB8?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMod e Hbinning8	I Enumer ation	R/W	SQHB9	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB9=[Param.] <cr ><lf> SQHB9?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMod e Hbinning9	I Enumer ation	R/W	SQHB1	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB10=[Param.] <c R><lf> SQHB10?<cr><lf> (Mono model only)</lf></cr></lf></c
SequenceMod e Vbinning0	I Enumer ation	R/W	SQVB1	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQVB1=[Param.] <cr ><lf> SQVB1?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMod	I	R/W	SQVB2	1: Hbinning = OFF	1	2	1	SQVB2=[Param.] <cr< td=""></cr<>

e Vbinning1	Enumer ation			2: Hbinning = ON				> <lf> SQVB2?<cr><lf></lf></cr></lf>
	40.0							(Mono model only)
SequenceMod e	l Enumer	R/W	SQVB3	1: Hbinning = OFF	1	2	1	SQVB3=[Param.] <cr ><lf></lf></cr
Vbinning2	ation	10, 11	30,123	2: Hbinning = ON	'			SQVB3? <cr><lf> (Mono model only)</lf></cr>
SequenceMod e	l Enumer	R/W	SQVB4	1: Hbinning = OFF	1	2	1	SQVB4=[Param.] <cr ><lf></lf></cr
Vbinning3	ation	107 11	JQVDH	2: Hbinning = ON	'		l'	SQVB4? <cr><lf> (Mono model only)</lf></cr>
SequenceMod	1			1: Hbinning = OFF				SQVB5=[Param.] <cr ><lf></lf></cr
e Vbinning4	Enumer ation	R/W	SQVB5	2: Hbinning = ON	1	2	1	SQVB5? <cr><lf> (Mono model only)</lf></cr>
SequenceMod	1							SQVB6=[Param.] <cr< td=""></cr<>
e	Enumer	R/W	SQVB6	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	> <lf> SQVB6?<cr><lf></lf></cr></lf>
Vbinning5	ation			3				(Mono model only)
SequenceMod	<u>I</u>	D /\/	60\/D7	1: Hbinning = OFF				SQVB7=[Param.] <cr ><lf></lf></cr
e Vbinning6	Enumer ation	R/W	SQVB7	2: Hbinning = ON	1	2	1	SQVB7? <cr><lf></lf></cr>
								(Mono model only) SQVB8=[Param.] <cr< td=""></cr<>
SequenceMod e	Enumer	R/W	SQVB8	1: Hbinning = OFF	1	2	1	> <lf></lf>
Vbinning7	ation			2: Hbinning = ON				SQVB8? <cr><lf> (Mono model only)</lf></cr>
SequenceMod	1			4. 111				SQVB9=[Param.] <cr< td=""></cr<>
e	Enumer	R/W	SQVB9	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	> <lf> SQVB9?<cr><lf></lf></cr></lf>
Vbinning8	ation			3				(Mono model only)
SequenceMod	<u>I</u>	5 044	SQVB1	1: Hbinning = OFF				SQVB10=[Param.] <c R><lf></lf></c
e Vbinning9	Enumer ation	R/W	0	2: Hbinning = ON	1	2	1	SQVB10? <cr><lf></lf></cr>
SequenceMod	1							(Mono model only) SQLUT1=[Param.] <c< td=""></c<>
e	Enumer	R/W	SQLUT 1	Off/On	0	1	0	R> <lf></lf>
LutEnable0 SequenceMod	ation		'				-	SQLUT1? <cr><lf> SQLUT2=[Param.]<c< td=""></c<></lf></cr>
e	Enumer	R/W	SQLUT	Off/On	0	1	0	R> <lf></lf>
LutEnable1	ation		2					SQLUT2? <cr><lf></lf></cr>
SequenceMod e	Enumer	R/W	SQLUT	Off/On	0	1	0	SQLUT3=[Param.] <c R><lf></lf></c
LutEnable2	ation		3					SQLUT3? <cr><lf></lf></cr>
SequenceMod e	I Enumer	R/W	SQLUT	Off/On	0	1	0	SQLUT4=[Param.] <c R><lf></lf></c
LutEnable3	ation	,	4					SQLUT4? <cr><lf></lf></cr>
SequenceMod e	l Enumer	R/W	SQLUT	Off/On	0	1	0	SQLUT5=[Param.] <c R><lf></lf></c
LutEnable4	ation	137 44	5	3117 OII		<u> </u>	0	SQLUT5? <cr><lf></lf></cr>
SequenceMod	Fnumer	R/W	SQLUT	Off/On	0	1	0	SQLUT6=[Param.] <c R><lf></lf></c
e LutEnable5	Enumer ation	K/ W	6	OII/OII	0	1	U	SQLUT6? <cr><lf></lf></cr>
SequenceMod		R/W	SQLUT	Off/On	0	1	0	SQLUT7=[Param.] <c< td=""></c<>
е	Enumer		/					R> <lf></lf>

LutEnable6	ation							SQLUT7? <cr><lf></lf></cr>
SequenceMod	I		SQLUT					SQLUT8=[Param.] <c< td=""></c<>
e	Enumer	R/W	8	Off/On	0	1	0	R> <lf></lf>
LutEnable7	ation							SQLUT8? <cr><lf></lf></cr>
SequenceMod e	Enumer	R/W	SQLUT	Off/On	0	1	0	SQLUT9=[Param.] <c R><lf></lf></c
LutEnable8	ation	107 11	9	0117 011		'		SQLUT9? <cr><lf></lf></cr>
SequenceMod	I		COLUT					SQLUT10=[Param.]<
е	Enumer	R/W	SQLUT 10	Off/On	0	1	0	CR> <lf></lf>
LutEnable9	ation		10					SQLUT10? <cr><lf></lf></cr>
SequenceMod e	I Integer	R/W	SQBL1	Min∼Max	-256	255	0	SQBL1=[Param.] <cr ><lf></lf></cr
BlackLevel0	i integer	107 44	JQDL1	Will Max	-230	233		SQBL1? <cr><lf></lf></cr>
SequenceMod								SQBL2=[Param.] <cr< td=""></cr<>
e	I Integer	R/W	SQBL2	Min∼Max	-256	255	0	> <lf></lf>
BlackLevel1								SQBL2? <cr><lf></lf></cr>
SequenceMod e	l Integer	R/W	SQBL3	Min∼Max	-256	255	0	SQBL3=[Param.] <cr ><lf></lf></cr
BlackLevel2	i integer	107 44	JQDLJ	Milliamax	-230	233		SQBL3? <cr><lf></lf></cr>
SequenceMod								SQBL4=[Param.] <cr< td=""></cr<>
е	I Integer	R/W	SQBL4	Min∼Max	-256	255	0	>< LF >
BlackLevel3								SQBL4? <cr><lf></lf></cr>
SequenceMod e	I Integer	R/W	SQBL5	Min∼Max	-256	255	0	SQBL5=[Param.] <cr ><lf></lf></cr
BlackLevel4	i integer	107 11	JQDLJ	Will Max	230	233		SQBL5? <cr><lf></lf></cr>
SequenceMod								SQBL6=[Param.] <cr< td=""></cr<>
e	I Integer	R/W	SQBL6	Min∼Max	-256	255	0	> <lf></lf>
BlackLevel5								SQBL6? <cr><lf></lf></cr>
SequenceMod								SQBL7=[Param.] <cr< td=""></cr<>
е	I Integer	R/W	SQBL7	Min∼Max	-256	255	0	> <lf></lf>
BlackLevel6								SQBL7? <cr><lf></lf></cr>
SequenceMod								SQBL8=[Param.] <cr< td=""></cr<>
e	I Integer	R/W	SQBL8	Min∼Max	-256	255	0	> <lf></lf>
BlackLevel7								SQBL8? <cr><lf></lf></cr>
SequenceMod								SQBL9=[Param.] <cr< td=""></cr<>
e	I Integer	R/W	SQBL9	Min∼Max	-256	255	0	> <lf></lf>
BlackLevel8								SQBL9? <cr><lf></lf></cr>
SequenceMod			SQBL1					SQBL10=[Param.] <c< td=""></c<>
e Blacktovalo	I Integer	R/W	0	Min∼Max	-256	255	0	R> <lf></lf>
BlackLevel9					-			SQBL10? <cr><lf> SQPGR1=[Param.]<c< td=""></c<></lf></cr>
SequenceMod		5 ///	SQPG		4522	1771		R> <lf></lf>
e GainRed0	I Integer	R/W	R1	Min∼Max	-4533	3	0	SQPGR1? <cr><lf></lf></cr>
Gairikedo								(Bayer model only)
SequenceMod			CODC			1774		SQPGR2=[Param.] <c< td=""></c<>
e	I Integer	R/W	SQPG R2	Min∼Max	-4533	1771 3	0	R> <lf> SQPGR2?<cr><lf></lf></cr></lf>
GainRed1			112					(Bayer model only)
SequenceMod								SQPGR3=[Param.] <c< td=""></c<>
e sequencemod	I Integer	R/W	SQPG	Min∼Max	-4533	1771	0	R> <lf></lf>
GainRed2		,,	R3		.555	3		SQPGR3? <cr><lf></lf></cr>
SequenceMod	I Integer	R/W	SQPG	Min∼Max	-4533	1771	0	(Bayer model only) SQPGR4=[Param.] <c< td=""></c<>
Jequencemou	i iiitegei	137 44	JUFU	MIII - MAX	-4000	1//1	U	JUI OINT-[Farann.]~C

е			R4			3		R> <lf></lf>
GainRed3								SQPGR4? <cr><lf></lf></cr>
								(Bayer model only) SQPGR5=[Param.] <c< td=""></c<>
SequenceMod			SQPG			1771		R> <lf></lf>
e	I Integer	R/W	R5	Min∼Max	-4533	3	0	SQPGR5? <cr><lf></lf></cr>
GainRed4								(Bayer model only)
SequenceMod								SQPGR6=[Param.] <c< td=""></c<>
e	l Integer	R/W	SQPG	Min∼Max	-4533	1771	0	R> <lf></lf>
GainRed5	i integer	10, 11	R6	max		3		SQPGR6? <cr><lf></lf></cr>
								(Bayer model only) SQPGR7=[Param.] <c< td=""></c<>
SequenceMod			SQPG			1771		R> <lf></lf>
e	I Integer	R/W	R7	Min \sim Max	-4533	3	0	SQPGR7? <cr><lf></lf></cr>
GainRed6								(Bayer model only)
SequenceMod								SQPGR8=[Param.] <c< td=""></c<>
e	l Integer	R/W	SQPG	Min∼Max	-4533	1771	0	R> <lf></lf>
GainRed7			R8			3		SQPGR8? <cr><lf></lf></cr>
								(Bayer model only) SQPGR9=[Param.] <c< td=""></c<>
SequenceMod			SQPG			1771		R> <lf></lf>
e Colora de	I Integer	R/W	R9	Min∼Max	-4533	3	0	SQPGR9? <cr><lf></lf></cr>
GainRed8								(Bayer model only)
SequenceMod								SQPGR10=[Param.]<
e	l Integer	R/W	SQPG	 Min∼Max	-4533	1771	0	CR> <lf></lf>
GainRed9			R10			3		SQPGR10? <cr><lf></lf></cr>
								(Bayer model only)
CoguenceMed								SQPGB1=[Param.] <c< td=""></c<>
SequenceMod e	l Integer	R/W	SQPGB	 Min∼Max	-4533	1771	0	R> <lf></lf>
GainBlue0	i integer	107 11	1	MIII Max	1333	3		SQPGB1? <cr><lf></lf></cr>
								(Bayer model only)
CoguencoMed								SQPGB2=[Param.] <c< td=""></c<>
SequenceMod e	l Integer	R/W	SQPGB	Min∼Max	-4533	1771	0	R> <lf></lf>
GainBlue1	i integer	10, 11	2	max	1333	3		SQPGB2? <cr><lf></lf></cr>
								(Bayer model only) SQPGB3=[Param.] <c< td=""></c<>
SequenceMod			SQPGB			1771		R> <lf></lf>
e G : Bl = 2	I Integer	R/W	3	Min \sim Max	-4533	3	0	SQPGB3? <cr><lf></lf></cr>
GainBlue2								(Bayer model only)
SequenceMod								SQPGB4=[Param.] <c< td=""></c<>
e	l Integer	R/W	SQPGB	Min∼Max	-4533	1771	0	R> <lf></lf>
GainBlue3			4			3		SQPGB4? <cr><lf></lf></cr>
								(Bayer model only) SQPGB5=[Param.] <c< td=""></c<>
SequenceMod			SQPGB			1771		R> <lf></lf>
e CaiaBlua 4	I Integer	R/W	5	Min∼Max	-4533	3	0	SQPGB5? <cr><lf></lf></cr>
GainBlue4								(Bayer model only)
SequenceMod			605.55					SQPGB6=[Param.] <c< td=""></c<>
e	I Integer	R/W	SQPGB	Min∼Max	-4533	1771	0	R> <lf></lf>
GainBlue5			6			3		SQPGB6? <cr><lf> (Bayer model only)</lf></cr>
SequenceMod								SQPGB7=[Param.] <c< td=""></c<>
e	l Integer	R/W	SQPGB	Min∼Max	-4533	1771	0	R> <lf></lf>
GainBlue6			7		<u> </u>	3		SQPGB7? <cr><lf></lf></cr>

								(Bayer model only)
SequenceMod e GainBlue7	I Integer	R/W	SQPGB 8	Min∼Max	-4533	1771 3	0	SQPGB8=[Param.] <c R><lf> SQPGB8?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMod e GainBlue8	l Integer	R/W	SQPGB 9	Min∼Max	-4533	1771 3	0	SQPGB9=[Param.] <c R><lf> SQPGB9?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMod e GainBlue9	I Integer	R/W	SQPGB 10	Min∼Max	-4533	1771 3	0	SQPGB10=[Param.] < CR> <lf> SQPGB10? < CR> < LF> (Bayer model only)</lf>
CommnadSeq uence Index	I Enumer ation	R/W	SQI	Same as SequenceModeInde x	0	9	0	CSQI=[Param.] <cr> <lf> CSQI?<cr><lf></lf></cr></lf></cr>
CurrentSeque nce Index	I Enumer ation	R/O	SQIDX	Same as SequenceModeInde x	0	9	0	SQIDX? <cr><lf></lf></cr>
SequenceRese t	I Enumer ation	W/O	SQRST	0	0	0	0	SQRST=[Param.] <cr ><lf></lf></cr
SequenceLutM ode	I Enumer ation	R/W	SQLUT	0: Gamma 1: LUT	0	1	0	SQLUT=[Param.] <cr ><lf> SQLUT?<cr><lf></lf></cr></lf></cr
MultiRoiIndex Max	I Integer	R/W	MRIM	Min~Max	1	8	1	MRIM=[Param.] <cr> <lf> MRIM?<cr><lf></lf></cr></lf></cr>
MultiRoiWidth	I Integer	R/W	MRW	Min~Max	8	2560	8	MRW=[Param.] <cr> <lf> MRW?<cr><lf></lf></cr></lf></cr>
MultiRoiHeigh t1	I Integer	R/W	MRH1	Min∼Max	0	2048	1	MRH1=[Param.] <cr ><lf> MRH1?<cr><lf></lf></cr></lf></cr
MultiRoiHeigh t2	l Integer	R/W	MRH2	Min∼Max	0	2048	1	MRH2=[Param.] <cr ><lf> MRH2?<cr><lf></lf></cr></lf></cr
MultiRoiHeigh t3	I Integer	R/W	MRH3	Min~Max	0	2048	1	MRH3=[Param.] <cr ><lf> MRH3?<cr><lf></lf></cr></lf></cr
MultiRoiHeigh t4	I Integer	R/W	MRH4	Min~Max	0	2048	1	MRH4=[Param.] <cr ><lf> MRH4?<cr><lf></lf></cr></lf></cr
MultiRoiHeigh t5	I Integer	R/W	MRH5	Min~Max	0	2048	1	MRH5=[Param.] <cr ><lf> MRH5?<cr><lf></lf></cr></lf></cr
MultiRoiOffset X1	I Integer	R/W	MROX 1	Min∼Max	0	5118	0	MROX1=[Param.] <c R><lf> MROX1?<cr><lf></lf></cr></lf></c
MultiRoiOffset X2	I Integer	R/W	MROX 2	Min~Max	0	5118	0	MROX2=[Param.] <c R><lf> MROX2?<cr><lf></lf></cr></lf></c
MultiRoiOffset	I Integer	R/W	MROX	Min∼Max	0	5118	0	MROX3=[Param.] <c< td=""></c<>

Х3			3					R> <lf> MROX3?<cr><lf></lf></cr></lf>
MultiRoiOffset X4	l Integer	R/W	MROX 4	Min~Max	0	5118	0	MROX4=[Param.] <c R><lf> MROX4?<cr><lf></lf></cr></lf></c
MultiRoiOffset X5	I Integer	R/W	MROX 5	Min∼Max	0	5118	0	MROX5=[Param.] <c R><lf> MROX5?<cr><lf></lf></cr></lf></c
MultiRoiOffset Y1	I Integer	R/W	MROY 1	Min~Max	0	3839	0	MROY1=[Param.] <c R><lf> MROY1?<cr><lf></lf></cr></lf></c
MultiRoiOffset Y2	I Integer	R/W	MROY 2	Min~Max	0	3839	0	MROY2=[Param.] <c R><lf> MROY2?<cr><lf></lf></cr></lf></c
MultiRoiOffset Y3	I Integer	R/W	MROY 3	Min~Max	0	3839	0	MROY3=[Param.] <c R><lf> MROY3?<cr><lf></lf></cr></lf></c
MultiRoiOffset Y4	I Integer	R/W	MROY 4	Min~Max	0	3839	0	MROY4=[Param.] <c R><lf> MROY4?<cr><lf></lf></cr></lf></c
MultiRoiOffset Y5	I Integer	R/W	MROY 5	Min∼Max	0	3839	0	MROY5=[Param.] <c R><lf> MROY5?<cr><lf></lf></cr></lf></c
LUTMode	I Enumer ation	R/W	LUTC	0: Off 1: Gamma 2: LUT	0	2	0	LUTC=[Param.] <cr> <lf> LUTC?<cr><lf></lf></cr></lf></cr>
AlcSpeed	l Integer	R/W	ALCS	Min~Max	1	8	4	ALCS=[Param.] <cr> <lf> ALCS?<cr><lf> for AGC and ASC</lf></cr></lf></cr>
ExposureAuto Max	I Integer	R/W	ASCEA	Min∼Max[us]	101	8000 000	1800 0	ASCEA=[Param.] <cr><lf> ASCEA?<cr><lf> Maximum value is varied depending on frame rate.</lf></cr></lf></cr>
ExposureAuto Min	l Integer	R/W	ASCEI	Min~Max	100	7999 999	100	ASCEI=[Param.] <cr><lf> ASCEI?<cr><lf> Maximum value is varied depending on frame rate.</lf></cr></lf></cr>
RequestExpos ureAuto Result	I Enumer ation	R/O	ASRS	0=Complete. 1=Too Bright. 2=Too dark. 3=Timeout Error. 4=Busy. 5=Limit. 6= Trig is not set as Normal.	0	6	0	ASRS? <cr><lf></lf></cr>
TriggerOption	l Enumer ation	R/W	TRGO P	0: Off 1: RCT 3: Smear-less 4: RCT Continuous	0	4	0	TRGOP=[Param.] <c R><lf> TRGOP?<cr><lf></lf></cr></lf></c

AlcReference	I Integer	R/W	AGCF	Min~Max[%]	1	100	50	AGCF=[Param.] <cr></cr>
GainAutoMax	I Integer	R/W	AGCG A	Min~Max	101	1600	1600	AGCF? <cr><lf> AGCGA=[Param.]<c r=""><lf> AGCGA?<cr><lf></lf></cr></lf></c></lf></cr>
GainAutoMin	I Integer	R/W	AGCGI	Min~Max	100	1599	100	AGCGI=[Param.] <cr ><lf> AGCGI?<cr><lf></lf></cr></lf></cr
RequestGainA uto Result	I Enumer ation	R/O	AGRS	0=Complete. 1=Too Bright. 2=Too dark. 3=Timeout Error. 4=Busy. 5=Limit. 6= Trig is not set as Normal.	0	6	0	AGRS? <cr><lf></lf></cr>
ALCChannelAr eaAll	I Enumer ation	R/W	ALCA	0: Off / 1: On	0	1	0	ALCA=[Param.] <cr> <lf> ALCA?<cr><lf></lf></cr></lf></cr>
ALCChannelAr ea LowRight	I Enumer ation	R/W	ALCLR	0: Off / 1: On	0	1	1	
ALCChannelAr ea LowMidRight	I Enumer ation	R/W	ALCLM R	0: Off / 1: On	0	1	1	
ALCChannelAr ea LowMidLeft	I Enumer ation	R/W	ALCLM L	0: Off / 1: On	0	1	1	
ALCChannelAr ea LowLeft	I Enumer ation	R/W	ALCLL	0: Off / 1: On	0	1	1	
ALCChannelAr ea MidLowRight	I Enumer ation	R/W	ALCML R	0: Off / 1: On	0	1	1	
ALCChannelAr ea MidLowMidRig ht	I Enumer ation	R/W	ALCML MR	0: Off / 1: On	0	1	1	ALC**=[Param.] <cr> <lf> ALC**?<cr><lf></lf></cr></lf></cr>
ALCChannelAr ea MidLowMidLef t	I Enumer ation	R/W	ALCML ML	0: Off / 1: On	0	1	1	
ALCChannelAr ea MidLowLeft	I Enumer ation	R/W	ALCML L	0: Off / 1: On	0	1	1	
ALCChannelAr ea MidHighRight	I Enumer ation	R/W	ALCM HR	0: Off / 1: On	0	1	1	
ALCChannelAr ea MidHighMidRig ht	I Enumer ation	R/W	ALCM HMR	0: Off / 1: On	0	1	1	
ALCChannelAr ea	l Enumer	R/W	ALCM HML	0: Off / 1: On	0	1	1	

MidHighMidLef t	ation							
ALCChannelAr ea MidHighLeft	I Enumer ation	R/W	ALCM HL	0: Off / 1: On	0	1	1	
ALCChannelAr ea HighRight	I Enumer ation	R/W	ALCHR	0: Off / 1: On	0	1	1	
ALCChannelAr ea HighMidRight	I Enumer ation	R/W	ALCH MR	0: Off / 1: On	0	1	1	
ALCChannelAr ea HighMidLeft	I Enumer ation	R/W	ALCH ML	0: Off / 1: On	0	1	1	
ALCChannelAr ea HighLeft	I Enumer ation	R/W	ALCHL	0: Off / 1: On	0	1	1	
AcquisitionFra meRateLine	I Integer	R/W	AR	Min∼Max	1	3257 86	774	ART=[Param.] <cr>< LF> ART?<cr><lf> Maximum value is calculated depending on Height and Offset Y settings</lf></cr></cr>
GammaSelect or	I Integer	R/W	GMA	0(γ=0.45) 1(γ=0.6) 2(γ=1)	0	2	0	GMA=[Param.] <cr> <lf> GMA?<cr><lf></lf></cr></lf></cr>
Temperature	I Integer	R/O	TMP0	value	_	_	_	$\begin{array}{ll} TMP0?\\ (Value \div 128) & = \\ Temperature [^{\circ}C] & \end{array}$
GpioPulseGen Divide Value	I Integer	R/W	PGDE V	Min~Max	1	4096	1	PGDEV=[Param.] <cr ><lf> PGDEV?<cr><lf></lf></cr></lf></cr
GpioPulseGen Length0	I Integer	R/W	PGL0	Min∼Max	1	1048 575	1	PGL0=[Param.] <cr> <lf> PGL0?<cr><lf></lf></cr></lf></cr>
GpioPulseGen Start Point0	I Integer	R/W	PGST0	Min~Max	0	1048 574	0	PGST0=[Param.] <cr ><lf> PGST0?<cr><lf></lf></cr></lf></cr
GpioPulseGen End Point0	I Integer	R/W	PGEN0	Min~Max	1	1048 575	1	PGEN0=[Param.] <cr ><lf> PGEN0?<cr><lf></lf></cr></lf></cr
GpioPulseGen Repeat Count0	I Integer	R/W	PGRPT 0	Min~Max	0	255	0	PGRPT0=[Param.] <c R><lf> PGRPT0?<cr><lf></lf></cr></lf></c
GpioPulseGen Clear Mode0	l Enumer ation	R/W	PGCM 0	0: Free Run 1: Level High 2: Level Low 3: Rising Edge 4: Falling Edge	0	4	0	PGCM0=[Param.] <c R><lf> PGCM0?<cr><lf></lf></cr></lf></c
GpioPulseGen Sync Mode0	I Enumer ation	R/W	PGSM0	0: Async Mode 1: Sync Mode	0	1	0	PGSM0=[Param.] <cr ><lf> PGSM0?<cr><lf></lf></cr></lf></cr

	1	,						Ţ.
GpioPulseGenI nput0	l Enumer ation	R/W	PGIN0	0:Low 1:High 2:Soft 3:AcquisitionTrigge rWait 4:FrameTriggerWai t 5:FrameActive 6:ExposureActive 7:FVAL 8:LVAL 9:PG0 10:PG1 14:CL CC1 in 15:nand0 16:nand1	0	18	0	PGIN0=[Param.] <cr ><lf> PGIN0?<cr><lf></lf></cr></lf></cr
GpioPulseGenI nvert0	I Enumer ation	R/W	PGINV 0	0:Non-Inv 1:Inv	0	1	0	PGIN0=[Param.] <cr ><lf> PGIN0?<cr><lf></lf></cr></lf></cr
GpioNand0Inp utSource1	I Enumer ation	R/W	ND0IN 1	0: Low 1: High 2: FrameTriggerWait 3: FramActive 4: ExposureActive 5: Fval 6: PulseGenerator0 11: CL_CC1_In	0	11	0	ND0N1=[Param.] <cr ><lf> ND0IN1?<cr><lf></lf></cr></lf></cr
GpioNand1Inp utSource1	I Enumer ation	R/W	ND1IN 1	Same as above.	0	11	0	ND1N1=[Param.] <cr ><lf> ND1IN1?<cr><lf></lf></cr></lf></cr
GpioNand0Inp utSource2	I Enumer ation	R/W	NDOIN 2	0: Low 1: High 2: FrameTriggerWait 3: FramActive 4: ExposureActive 5: Fval 6: PulseGenerator0 11: CL_CC1_In	0	11	0	ND0N2=[Param.] <cr ><lf> ND0IN2?<cr><lf></lf></cr></lf></cr
GpioNand1Inp utSource2	I Enumer ation	R/W	ND1IN 2	Same as above.	0	11	0	ND1N2=[Param.] <cr ><lf> ND1IN2?<cr><lf></lf></cr></lf></cr
GpioNand0Inp utInvert1	I Enumer ation	R/W	ND0IN V1	0: Non-Inv 1: Inv	0	1	0	NDOINV1=[Param.]< CR> <lf> NDOINV1?<cr><lf></lf></cr></lf>
GpioNand1Inp utInvert1	I Enumer ation	R/W	ND1IN V1	Same as above.	0	1	0	ND1INV1=[Param.]< CR> <lf> ND1INV1?<cr><lf></lf></cr></lf>
GpioNand0Inp utInvert2	I Enumer ation	R/W	ND0IN V2	0: Non-Inv 1: Inv	0	1	0	NDOINV2=[Param.]< CR> <lf> NDOINV2?<cr><lf></lf></cr></lf>
GpioNand1Inp utInvert2	I Enumer ation	R/W	ND1IN V2	Same as above.	0	1	0	ND1INV2=[Param.]< CR> <lf> ND1INV2?<cr><lf></lf></cr></lf>

LUTSequence G	I Enumer ation	R/W	LUTSG	Min~Max	0	4095	0	LUTSG=[Param.] <cr ><lf> LUTSG?<cr><lf></lf></cr></lf></cr
BlemishNum	I Integer	R/O	BNUM	Min∼Max	0	512	0	BNUM? <cr><lf></lf></cr>
VideoProcessB ypass	I Enumer ation	R/W	VPB	0: Off / 1: On	0	1	0	VPB=[Param.] <cr>< LF> VPB?<cr><lf></lf></cr></cr>

See the possibilities

Appendix 2

1. Precautions

Personnel not trained in dealing with similar electronic devices should not service this camera.

The camera contains components sensitive to electrostatic discharge. The handling of these devices should follow the requirements of electrostatic sensitive components.

Do not attempt to disassemble this camera.

Do not expose this camera to rain or moisture.

Do not face this camera towards the sun, extreme bright light or light reflecting objects.

When this camera is not in use, put the supplied lens cap on the lens mount.

Handle this camera with the maximum care.

Operate this camera only from the type of power source indicated on the camera.

Power off the camera during any modification such as changes of jumper and switch setting.

2. Typical Sensor Characteristics

The following effects may be observed on the video monitor screen. They do not indicate any fault of the camera, but are associated with typical sensor characteristics.

V. Aliasing

When the CMOS camera captures stripes, straight lines or similar sharp patterns, jagged edges may appear on the monitor.

Blemishes

All cameras are shipped without visible image sensor blemishes.

Over time some pixel defects can occur. This does not have a practical effect on the operation of the camera. These will show up as white spots (blemishes).

Exposure to cosmic rays can cause blemishes to appear on the image sensor. Please take care to avoid exposure to cosmic rays during transportation and storage. It is recommended using sea shipment instead of air flight in order to limit the influence of cosmic rays on the camera. Pixel defects/blemishes also may emerge due to prolonged operation at elevated ambient temperature, due to high gain setting, or during long time exposure. It is therefore recommended to operate the camera within its specifications.

Patterned Noise

When the sensor captures a dark object at high temperature or is used for long time integration, fixed pattern noise may appear on the video monitor screen.

3. Caution when mounting a lens on the camera

When mounting a lens on the camera dust particles in the air may settle on the surface of the lens or the image sensor of the camera. It is therefore important to keep the protective caps on the lens and on the camera until the lens is mounted. Point the lens mount of the camera downward to prevent dust particles from landing on the optical surfaces of the camera. This work should be done in a dust free environment. Do not touch any of the optical surfaces of the camera or the lens.

4. Caution when mounting the camera

When you mount the camera on your system, please make sure to use screws of the recommended length described in the following drawing. Longer screws may cause serious damage to the PCB inside the camera.

If you mount the tripod mounting plate, please use the provided screws.

Attaching the tripod mount

Mounting the camera to fixing plate

5. Exportation

When exporting this product, please follow the export regulation of your own country.

6. References

- 1. This manual and a datasheet for GO-5000M-PMCL / GO-5000C-PMCL can be downloaded from www.jai.com
- 2. Camera control software can be downloaded from www.jai.com

Manual change history

Date	Revision	Changes
May 2014	Preliminary	New Release
June 2014	Ver.1.0	Release
July 2014	Ver.1.1	Review EMA1288 parameters
August 2014	Ver.1.2	Review Frame Rate in 6.2.2 and 12.2, Review Frame Rate and Frame Period in 7.3.2 and review the calculation formula in 8.1.2

User's Record		
Camera type:	GO-5000M-PMCL /	GO-5000C-PMCL
Revision:		
Serial No.		
Firmware version	on	
For camera revision history, pleas	e contact your local JAI d	istributor.
User's Mode Settings.		
User's Modifications.		
Company and product names mentioned in JAI A-S cannot be held responsible for any and documentation without prior notification	technical or typographical erro	egistered trademarks of their respective owners. rs and reserves the right to make changes to products
Europe, Middle East & Africa	Asia Pacific	Americas

Visit our web site at www.jai.com

Phone +45 4457 8888

Fax +45 4491 3252

Phone (toll-free) +1 800 445 5444

Phone +1 408 383 0300

Phone +81 45 440 0154

Fax +81 45 440 0166