Motre que um seguento em um retangulo tem medida vecko.
ACRM
ACRIM Some Si Um conjunto limitado X CIRM I = Mensusur ável su e somente su sua ponteira de tém medida pula.
1 . Me NALET ável su e som ente se, sua hantiera da sen
medida vula
co
The 10 mm a conjuted at 1 1 at it
1 1 1 1 1 S a think it
Tomamos um bloo A CIRM e O o conjunto dos pontos de descontinui- dode da função cara etrisitica:
$\chi_{\chi} = A \longrightarrow R, \chi_{\chi} = 1, \chi_{\chi} \in [4, 5]$
$[0, x \times \notin Ca, b]$
Outa forma unt (A) contém (0,1, mos eem sequemento é comporto
por pontos, e como cada ponte Tem medide Meila. Então um
O, Se X + 29,65 Ourton forma unt. (A) contém (O, 1), mos eem sequemento é comporto por pontos, e como cada ponte Tem medida reela. Então em requemento é um conjunto de pontos de medida-reela.
Também podemos dizve que $\bar{\chi} = \partial \chi$, mas $\partial \chi = \chi$ entato $\partial \chi$ também tem medida vula, como $\chi = La_1b$] C int (A) a pela função característica temos que $(A - \chi 1) > \chi $, entato σ segmento La_1b possei nedida
medida nula, como x= Ia,B] c int (A) e pela função característica
temos que 11-x1>>1x1, então o seguento La, D possei nedida
rula um ulação ao Soco A.