Übung 12: Wiederholung Theoretische Informatik Sommersemester 2014

Markus Kaiser

16. Juli 2014

Satz

Für eine Darstellung D einer regulären Sprache ist entscheidbar:

Wortproblem Gegeben w, gilt $w \in L(D)$? Leerheitsproblem Ist $L(D) = \emptyset$? Endlichkeitsproblem Ist $|L(D)| < \infty$? Äquivalenzproblem Gilt $L(D_1) = L(D_2)$?

Abschlusseigenschaften

	Schnitt	Vereinigung	Komplement	Produkt	Stern
REG	ja	ja	ja	ja	ja
CFL	nein	ja	nein	ja	ja

Entscheidbarkeit

	Wortproblem	Leerheit	Äquivalenz	Schnittproblem
DFA	$\mathcal{O}(n)$	ja	ja	ja
CFG	$\mathcal{O}(n^3)$	ja	nein	nein

Satz

Sei A formale Sprache, dann ist äquivalent:

- A ist Typ 0 Sprache
- A rekursiv aufzählbar
- A semi-entscheidbar, also χ'_{Δ} berechenbar
- \blacksquare A = L(M) für eine TM M
- A ist Bild oder Urbild einer berechenbaren Funktion

Spracheigenschaften

Abschlusseigenschaften

	Schnitt	Vereinigung	Komplement	Produkt	Stern
REG	ja	ja	ja	ja	ja
CFL	nein	ja	nein	ja	ja
CSL	ja	ja	ja	ja	ja
TM	ja	ja	nein	ja	ja

■ Entscheidbarkeit

	Wortproblem	Leerheit	Aquivalenz	Schnittproblem
DFA	$\mathcal{O}(n)$	ja	ja	ja
CFG	$\mathcal{O}(n^3)$	ja	nein	nein
CSL	$\mathcal{O}(2^n)$	nein	nein	nein
TM	nein	nein	nein	nein

Alle formalen Sprachen

Typ 0 - Rekursiv aufzählbar Grammatik Turingmaschine, WHILE-Programm, μ -rekursive Funktion

Typ 1 - Kontextsensitiv Längenmonotone Grammatik Linear Beschränkter Automat (LBA)

Typ 2 - Kontextfrei Links nur ein Nichtterminal Kellerautomat (PDA)

> Typ 3 - Regulär Links- / Rechtsreguläre Grammatik DFA, NFA, RE

Obacht, Klausur!

- lacktriangledown RE $ightarrow \epsilon$ -NFA ightarrow NFA ightarrow DFA
- (Produktautomat)
- Quotientenautomat, Minimale DFAs
- Reguläres Pumpinglemma
- CNF-Synthese
- Nützliche Symbole, CYK
- Kellerautomaten, Deterministische Kellerautomaten
- (GNF-Synthese)
- (PDA ↔ CFG)
- Kontextfreies Pumpinglemma
- Turingmaschinen
- LOOP und PR
- Berechenbarkeit, Entscheidbarkeit
- Reduktionen (in der Berechenbarkeit)