Jerry Chen

CS541

Artificial Intelligence

Prof. Shen

HW3

Gradient Calculation

Sigmoid:
$$F(w) = \frac{1}{1 + e^{-x + w}}$$
, Gradient: $\frac{dF(w)}{dw} = \frac{xe^{-xw}}{(1 + e^{-xw})^2}$

Logistic Loss:
$$F(w) = \log(1 + e^{-yx*w})$$
, Gradient: $-\frac{xye^{-xy*w}}{1 + e^{-xy*w}}$, $y - \frac{1}{1 + e^{-xw}}$

Linear Regression

1. $\min w \in R^d$, $F(w) = \frac{1}{2} ||y - Xw||_2^2$, Gradient: $\frac{dF(w)}{dw} = X^T X w - X^T y$, Hessian: $\frac{d^2 F(w)}{dw^2} = X^T X w$

1 is a convex program because the sum of convex functions is convex and the function x^2 is convex. The composition with an affine function is also convex, therefore $\frac{1}{2}\sum_{i=1}^{n}|y_i-Xw|^2$ is a convex program.

- 2. We stick with the least squares formulation because it is more efficient to compute and gives us the essential information to compute error (squaring out the negatives).
- 3. F(w) is strongly convex when the eigenvalues of the hessian of F(w) can be lower bounded by a value α . If the minimum eigenvalue becomes infinitely small (goes towards negative infinity), then the function is not strongly convex. F(w) is not strongly convex when d>n.
- 4. N=100, D=40

The best learning rates seem to be at 1*n0 and 2*n0, the smaller learning rates are way too slow while the larger learning rates just oversteps and increases the error rather than minimize.

5. When trying to calculate the solution w^* , it turns out that the eigenvalues of the hessian matrix are no longer lower bounded by a value α as the minimum eigenvalue has gone to negative infinity. This means that the function is no longer strongly convex, but rather just convex. We can still apply GD, but w_{opt} will not be as easy to identify.

Similar to question 4, we get the best results with the learning rate of 1*n0 with the smaller values taking too long to converge to 0 and the larger values going the opposite direction instead.