$\underline{\text{Vocabularies}}$

• Peterson's Algorithm

 is a concurrent programming algorithm for mutual exclusion that allows two or more processes to share a single-use resource without conflict, using only shared memory for communication

Thread 1 Thread 2

• Lamport's Bakery Algorithm

- Is one of the simplest known solutions to the mutual exclusion/critical section problem for the general case of N process

• Synchronization

 Is the concurrent execution of two or more threads that share critical resource to avoid critical resource use conflicts

• Disable Interrupts

- Is a type of interrupt that postpones interrupts until a later time

• Spin Lock

 Is a loop that keeps a thread from going beyond the loop till a certain condition is met

```
while(cantGoOn) {};
```

• Priority Inversion

 Is a problem a low priority process acquiring a resource that a high priority process needs, and then being preempted by a medium priority process, so the high priority process is blocked on the resource while the medium priority one finishes

Example

Mars Pathfinder Rover

• Sleep Lock

 Is a type of thread where locking condition is achieved by putting thread to sleep (into "blocked" state) while waiting to acquire a lock lock

```
wait_event(queue, condition)
wake_up(wait_queue_head_t *queue);
```

• Condition variables

- Is an explicit queue that threads can put themselves on when some state of execution (i.e., some condition) is not as desired (by waiting on the condition); some other thread, when it changes said state, can then wake one (or more) of those waiting threads and thus allow them to continue (by signaling on the condition)

Semaphores

 Is a variable or abstract data type used to control access to a common resource by multiple processes in a concurrent system such as a multitasking operating system.

```
wait_event(queue, condition)
wake_up(wait_queue_head_t *queue);
```

• Signal

 Is a function that unblock <u>one</u> threads currently blocked on the specified condition variable

• Broadcast

 Is a function that unblock <u>all</u> threads currently blocked on the specified condition variable

1 Lecture Video

1.1 Synchronization Hardware

- We are not going to use peterson's algorithm or lampert's bakery algorithm to solve critical section problem
- We will be using a lot of conditional variables

1.2 Disabling Interrupts

```
boolean TAS(boolean *lock) {
  boolean old = *lock;
  *lock = True;
  return old;
}
```

```
boolean TAS(boolean *lock) {
    if(*lock == False) {
        *lock = True;
        return False;
    } else
        return True;
}
```

- Is used within the operating system
 - Is used in very short critical section
 - Disabling interrupts in OS is used sometimes
 - Disabling interrupts in OS works only on uniprocessor
- Is poor solution for user-level programs what could go wrong here?
 - Professor Reid: Interrupts may never be enabled again
- Disabling interrupts not sufficient on a uniprocessor why?
 - Professor Reid: Because interrupts work on per process basis (so it disables interrupts on one processor and not the other)

1.3 Atomic instructions: Test and Set

```
boolean TAS(boolean *lock) {
  boolean old = *lock;
  *lock = True;
  return old;
}
```

```
boolean TAS(boolean *lock) {
    if(*lock == False) {
        *lock = True;
        return False;
    } else
        return True;
}
```

- Is hardware-based
- The code is for definition and not implementation (it may look different)
- **Professor Reid:** It modifies the value of the lock variable, and returns the value of what it was just set before

1.4 Lock Implementation

•