smfprob7(1617).tex

SMF PROBLEMS 7. 2.3.2017

- Q1. (i) For a Bernoulli distribution B(p) with uniform prior on $p \in [0, 1]$, show that the posterior distribution is a Beta distribution, and find the parameters.
- (ii) Repeat with a Beta prior $B(\alpha, \beta)$.
- Q2. For the Bernoulli distribution B(p), find
- (i) the information per reading;
- (ii) the Jeffreys prior.
- Q3. Find the mean of $B(\alpha, \beta)$.
- Q4. Hence find the posterior mean in Q1(ii), and interpret this as the sample size n increases.
- Q5 (Convolutions of Gammas and Euler's integral for the Beta function). Write f_{α} for the exponential density with parameter α :

$$f_{\alpha}(x) = x^{\alpha - 1}e^{-x}/\Gamma(\alpha)$$
 $(x > 0).$

(i) Show that

$$f_{\alpha} * f_{\beta} = f_{\alpha+\beta}.$$

(ii) Deduce Euler's integral for the Beta function:

$$B(\alpha, \beta) := \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

- Q6. For the shifted exponential distribution with parameter $\theta > 0$ (density $e^{-(x-\theta)}$ for $x > \theta$),
- (i) find the MLE;
- (ii) find for each n a sufficient statistic;
- (iii) if θ has prior density $\lambda e^{-\lambda \theta}$ ($\theta \sim E(\lambda)$), find the posterior density to within a multiplicative constant.

NHB