ECE 388: Embedded Systems Design Project Wheelchair Control and Safety

Kevin Prairie, Zachary Taylor, Joao Alves October 5, 2018

We certify that this work is original and not a product of anyone's work but our own.

Kevin Prairie		
Zachary Taylor		
Icac Alread		

Submitted: October 5, 2018 Due by: October 5, 2018

Contents

1	Intr	roduction	2
2	Con	acept of Operation	2
	2.1	Hardware	3
	2.2	Software and Firmware	3
		2.2.1 General Control	4
		2.2.2 Park Mode	4
		2.2.3 EasyVR Shield 2.0	4
		2.2.4 Sensors	4
3	Test	t Plans	5
	3.1	Motors	7
	3.2	Encoders	8
	3.3	Digital Accelerometer	9
	3.4	Joystick	10
	3.5	Pressure Sensor	11
	3.6	H-Bridge	11
	3.7	Proximity Sensors	12
		3.7.1 Ultra-sonic	12
		3.7.2 Infra-red	13
	3.8	Voice Recognition	14
4	Con	atributions	15
5	Lab	oratory Reflection	15

Abstract

This report consists of the breakdown of wheelchair control and safety project. It highlights the progress that has been made since the start date, as well as gives an overview of the requirements, components, and goals of the system. Test plans for each of the components at hand have been included along with a compilation of each team member's contributions to the project.

1 Introduction

Prototyping is a major and very important aspect of every major project or any project for the matter. It is an import step in ensuring the success and the completion of the project. This specific project is designed to amplify the safety of a wheelchair, and to do so many outside components have to be implemented in the chair. These components include several sensors as well as a Joystick, an H-Bridge, Digital Accelerometer, as well as a Voice Recognition. Each component will play a key part in ensuring the maximum level of safety for the chair, which is the main goal of the project. During the prototyping stage, each of these components will be tested separately as well as in conjunction with each other to see the outcome of each as well as how each component reacts and works with each other. The data collected will be compared with the expected results gathered from each components data sheet.

2 Concept of Operation

This wheelchair should be able to operate and do all the functions that a regular electric wheelchair should be able to do. In this design, the wheelchair has two forms of operation. The main operation is through a joystick which allows the user to turn in any direction the joystick is pushed. The second operation is through voice commands that allow the user to speak to wheelchair to execute movement and other commands. The wheelchair also contains advanced safety features through sensors. There is a pressure sensor that detects the weight of the user on the chair and acts accordingly if the user is suddenly ejected from the chair. There are proximity sensors at two different angles. These sensors are on the front and back of the wheelchair. One is angled 90 degrees to detect anything directly in front or behind the wheelchair. The other's angle has yet to be determined and will be determined through trial and error. However, the sensor will be pointed roughly around 20 degrees so the wheelchair can detect cliffs and any ground obstacles. There is also an accelerometer on the wheelchair. This is done so that if the wheelchair is accelerating at too fast of a pace the motor can be throttled so that the user does not lose control of the wheelchair. The wheelchair also features toggle-able LEDs on the side as a safety feature for night time use.

2.1 Hardware

This project requires the use of a variety of components including three different types of sensors that are crucial to the project's main goal of safety. The components that have been gathered so far include:

- Digital Accelerometer (ADXL345)
- Joystick (B1033810)
- H-Bridge (L298N)
- Pressure Sensor (FR 402)
- Ultra-sonic Proximity Sensor (HC-SR04)
- Infra-red Proximity Sensor (GP2Y0A41SK0F)
- Voice Recognition (EasyVR Shield 2.0)

Along with the components listed above, a cart powered by two DC motors was supplied to act as the scaled wheelchair. A to-scale chair will be constructed out of Styrofoam to allow for the system to be mounted. The accelerometer will be used to detect if the wheelchair is either going too fast, or accelerating too quickly. If this is the case the chair will throttle it's speed to a safe pace. The joystick's purpose is to pair up with h-bridge to control the movement of the wheelchair as well as control the speed at which the chair moves. The plan for the pressure sensor is to place it on the seat of the wheelchair to detect whether or not the user is seated. If there is no weight detected while the chair is moving, i.e the user fell out of the chair, the chair should stop and play an alert through the speaker. Both the ultra-sonic and infra-red proximity sensor will be used to detect obstacles in front and behind the chair. At the time of this report, the placement of these sensors and which type of sensor that is going to be used is still unknown, but this will come with testing the capabilities and reliability of each type. As for the voice recognition through the EasyVR Shield, it will be used to turn on LEDs on the wheels for night-time usage, and potentially move the wheelchair. Though it is not a top priority at this time, the voice recognition is expected to be a feature in the final design. These components along with the scaled down wheelchair that was given will be used to prototype and test.

2.2 Software and Firmware

In this project it is predicted that two different processors will be used. Both processors will be the ATMEGA328P but one CPU will be used just to function the EasyVR Shield Voice Recognition module while the others will deal with the inputs and outputs of the wheelchair. The EasyVR Shield will be using Arduino libraries that are provided with the Shield. The coding language, whether assembly or C,has not been decided at this time. However, C is most likely going to be the coding language in the final design.

2.2.1 General Control

The general control of the wheelchair is done through a joystick. This joystick works in conjunction with a H-Bridge that is supplies current to drive the motors. The code converts the resistance that the joystick gives when pushed a certain direction into actual directional movement with the wheelchair.

2.2.2 Park Mode

Park Mode is a setting that is toggle-able through a button on the left arm of the wheelchair. When Park Mode is on, a blue LED will be lit on the left arm of the wheelchair indicating that Park Mode is engaged. When Park Mode is off, this LED will be off and the wheelchair will work as expected. Park Mode locks the motor in place so the wheelchair can not move in this setting. If the user gets off of the chair at this time, the pressure sensor will not sound an alarm.

2.2.3 EasyVR Shield 2.0

This component should make the wheelchair be controlled with voice recognition. The plan is to have a list of commands that will react with the wheelchair through code to do the given command. To initiate a command the user must say "Sally" before their command for the wheelchair to listen. The commands should be able to be chained together. For example, "SALLY TURN LEFT THEN STOP". This will execute the turn left command and immediately stop after this command. The commands are listed below:

- SALLY STOP: Stops the wheelchair.
- SALLY FORWARD: Advances the wheelchair until a stop command is given or sensors engage breaks.
- SALLY REVERSE: Reverses the wheelchair until a stop command is given or sensors engage breaks.
- SALLY TURN LEFT: Turns the wheelchair left then halts.
- SALLY TURN RIGHT: Turns the wheelchair right then halts.
- SALLY TURN ON WHEEL LIGHTS: Turns the safety LEDs on.
- SALLY PARK: Engages the Park Mode.
- SALLY TURN AROUND: Turns the wheelchair 180 degrees.

2.2.4 Sensors

The sensors will be communicating with motors and encoder in order to provide safety features for the wheelchair. When the sensor reads an obstacle ahead that is deemed a hazard (edge, wall, person, etc.) the sensors will lock stop the wheelchair. The pressure sensor will read if there is weight on the wheelchair,

if weight is detected then the wheelchair will work as expected. When weight is taken off of the sensor without engaging "Park Mode" an alarm will sound to alert that the user may be in trouble and fallen out of the chair. If "Park Mode" is engaged this sensor will be turned off and the alarm will not sound. The proximity sensors' set distance has not been determined yet, but with trial and error a set distance will be made in the code where it is deemed unsafe and will automatically stop the wheelchair heading towards a hazard.

3 Test Plans

The following subsections test plans for each component that is currently being used in the wheel chair. Each table includes a variety of tests that will ensure the components are working properly. The procedure portion of the table explains how the specific test was performed and the expected results of the test will be listed in the next column. Components that have been tested will include the actual results of the test along with the calculated percentage error. Some components have not been tested yet and those will become a top priority to verify their performance.

When the final product is completed the object should satisfy the following table.

Final Test Plan					
Circuit Testing	Test	Results			
Joystick w/ Motors	Left: Right motor full throttle, Left motor half throttle Right: Left motor full throttle, right motor half throttle				
	Forward: Both motors full throttle Reverse: Both motors full throttle backwards.				
EasyVR Shield w/ Output	Run through all commands. The Shield should execute each command with a .2 second response time.				
Park Mode	Attempt to move the wheelchair when in park mode. Blue LED should turn on. Remove weight alarm should not sound.				
Pressure Sensor	Remove weight. Alarm should sound				
Proximity Sensor w/motors	Drive wheelchair towards an edge. Wheelchair should override user and stop. Slide object in front of wheelchair while in motion. Wheelchair should stop. Repeat above test for backwards motion. Should have same result.				
Accelerometer w/ motors	Drive wheelchair down a steep hill. The wheelchair should throttle down due to high acceleration.				

3.1 Motors

	Servo DC Motor						
Test	Procedure	Expected Results	Actual Results	Percentage Error	Notes		
Working Current:	Supply current until it reaches moderate speed	Part scratched off and unknown	1 to 2 A	N/A	At 1 amp the device went a moderate speed. At 2 amps the device went con- siderably faster.		
Working Voltage:	Supply voltage until it reaches moderate speed.	Part scratched off and unknown	5 to 14 V	N/A	At 5 volts the de- vice went moderate speed at 12 volts the device went con- siderably faster and 14 was deemed unsafe.		
Reversing:	Supply negative voltage until it reaches slow reverse speed.	Part scratched off and unknown	Under Test	N/A	This was done and it has gone in reverse, but one of the motors ceased working before further testing could be done.		

3.2 Encoders

	HEDS-9140							
Test	Procedure	Expected Results	Actual Results	Percentage Error	Notes			
Working Voltage:	Supply voltage until it powers on.	5 V	Under Test	Under Test	Under Test			
Accuracy:	Monitor the rotary encoders output with an oscillo- scope by hooking the oscil- loscope to the in- formation port	The oscilloscope should result in a square wave with little to no noise.	Under Test	Under Test	Under Test			

3.3 Digital Accelerometer

ADXL345						
Test	Procedure	Expected	Actual	Percentage	Notes	
		Results	Results	Error		
Working	Measure	$0.1~\mu\mathrm{A}$ to	Under	Under	Under	
Current:	the cur-	$23 \ \mu A$	Test	Test	Test	
	rent					
	consump-					
	tion when					
	in idle					
	and work-					
	ing mode					
	while					
	powered.					
Working	Measure	2.0 V to	Under	Under	Under	
Voltage:	the volt-	3.6 V	Test	Test	Test	
	age con-					
	sumption					
	when in					
	idle and					
	working mode					
	while					
	powered.					
Accuracy:	Vary the	+- 2g	Under	Under	Under	
Ticcuracy.	speeds	1 - 48	Test	Test	Test	
	given to		1050	1050	1050	
	the ac-					
	celerom-					
	eter to					
	ensure it					
	detects					
	accelera-					
	tion.					

3.4 Joystick

B1033810						
Test	Procedure	Expected Results	Actual Results	Percentage Error	Notes	
X-Axis	Moving the joystick to left and the value should be bellow 470. Moving the joystick to the right, the value should go above 550.	Range from 470-0 for left movement. Range from 550-1023 for right movement.	Under Test	Under Test	Under Test	
Y-Axis	Moving the joy- stick back- wards and the value should be bellow 470. Mov- ing the joystick forward and the value goes above 550.	Range from 470-0 for backwards movement. Range from 550-1023 for forward movement.	Under Test	Under Test	Under Test	
Center Position	Move the joystick in several directions and release to center position, and observe it it returns to the range of 470-550	Range value from 470-550	Under Test	Under Test	Under Test	

3.5 Pressure Sensor

	FR 402						
Test	Procedure	Expected	Actual	Percentage	Notes		
		Results	Results	Error			
Weight	Take dif-	Each	Under	Under	Under		
to Re-	ferent size	weight	Test	Test	Test		
sistance	weights	should					
Ratio:	and place	decrease					
	them	the resis-					
	on the	tance.					
	pressure						
	and note						
	the corre-						
	sponding						
	resis-						
	tance.						
Non-	Measure	$> 10 \mathrm{M}\Omega$	Under	Under	Under		
actuated	resistance		Test	Test	Test		
Resis-	with no						
tance:	weight						

3.6 H-Bridge

	H-Bridge						
Test	Procedure	Expected	Actual	Percentage	Notes		
		Results	Results	Error			
Current	Giving	The	Under	Under	Under		
flow	the H-	output	Test	Test	Test		
	Bridge	current					
	Current	should					
	(2A) and	be the					
	measur-	same as					
	ing the	the input					
	output	current					
	current.	(2A)					
Inverted	Giving	The	Under	Under	Under		
current	the H-	output	Test	Test	Test		
flow	Bridge	current					
	Current	should					
	(2A) and	be the					
	measur-	inverse of					
	ing the	the input					
	output	current					
	current.	(-2A)					

3.7 Proximity Sensors

3.7.1 Ultra-sonic

		HC-S	SR04		
Test	Procedure	Expected Results	Actual Results	Percentage Error	Notes
Vertical	Using a measuring tape and an object in the vertical direction to see how far out the sensors can still detect the object	Refer to Data Sheet for the sensors range	Under Test	Under Test	Under Test
Horizontal	Using a measuring tape and an object in the Horizontal direction to see how far to the right and left the sensors can still detect the object	Refer to Data Sheet for the sensors range	Under Test	Under Test	Under Test

3.7.2 Infra-red

		GP2Y0A	41SK0F		
Test	Procedure	Expected	Actual	Percentage	Notes
		Results	Results	Error	
Vertical	Using a	Refer	Under	Under	Under
	measuring	to Data	Test	Test	Test
	tape and	Sheet			
	an object	for the			
	in the	sensors			
	vertical	range			
	direction				
	to see				
	how far				
	out the				
	sensors				
	can still				
	detect the				
TT : 4 1	object	Refer	TT 1	TT 1	Under
Horizontal	Using a		Under	Under	
	measur- ing tape	to Data Sheet	Test	Test	Test
	and an	for the			
	object in	sensors			
	the Hor-	range			
	izontal	range			
	direction				
	to see how				
	far to the				
	right and				
	left the				
	sensors				
	can still				
	detect the				
	object				

3.8 Voice Recognition

	EasyVR Shield 2.0						
Test	Procedure	Expected Results	Actual Results	Percentage Error	Notes		
Working Current:	Drive less than the operation current and see when the component turns on.	12 mA to 180 mA	Under Test	Under Test	Under Test		
Working Voltage:	Drive 3-5 Volts to the chip and see when it turns on.	5 V	Under Test	Under Test	Under Test		
Voice Recog- nition Accuracy:	Use different peoples voice and accents to command the chip.	All different ranges of voices should work.	Under Test	Under Test	Under Test		
Command Recog- nition Accuracy:	Go through the range of given commands and assure the chip un- derstand the dif- ference between the commands and ex- ecutes them properly.	All commands will work when said and execute probably.	Under Test	Under Test	Under Test		

4 Contributions

Team Member Contributions		
Joao Alves	Kevin Prairie	Zachary Taylor
Currently working in	Gathered data-sheets	Gathered data-sheets
making the Chair move	for the Team Github.	for Team Github.
using the joystick in		
conjunction with the H-		
Bridge		
Built a casing to enclose	LaTeX formatting for	Soldered accelerometer
three 3.7V li-ion batter-	Lab One and Project	for test
ies	Progress Report.	
Wrote test plans for	Wrote test plans for	Wrote test plans
Joystick, H-Bridge, and	HEDS-9140 encoder, h-	for pressure sensor,
the two proximity sen-	bridge, and assisted	accelerometer, and
sors (Ultra-sonic and	with DC motor test	EasyVR Shield
Infra-red)	plan.	
Assisted in gathering	Gathered voltage and	Currently researching
results for all the com-	current ratings for all	EasyVR Shield 2.0
ponents	components.	further
	Currently learning the	Created chassis for cur-
	fundamentals of Eagle	rent prototype.
	software for PCB.	

5 Laboratory Reflection

Thus far, there have been issues occasionally happening. One of the biggest halts in the progression of this design is that the left side motor has failed and is currently undergoing repair. This slowed the testing of the motors. The hardest component to work with thus far is the EasyVR Shield. There are many external program required for the EasyVR shield that has become an entirely new learning curve. The availability of the parts have been sporatic as well which resulted in a slow testing process. All the sensors other than the pressure sensor and accelerometer have been received last lab session, which made prototyping the sensors very difficult in order to make the timing of this report. The encoder has not been tested due to there being nothing that the encoder currently has to read, thus it has been put near the bottom of the priority list. The joystick, H-Bridge, and motors were wired together to make the chassis move in each direction. The problem lied with the unresponsive motor as the joystick worked with one motor but not the other. This is going to be tested again after the repair of the motor. Otherwise, the high-level design and final desired operation has been designed.