Entrega 3 Sistemas Operativos II

Mellino, Natalia

Farizano, Juan Ignacio

Ejercicio 1

Los procesos alternan entre ráfagas (o bursts) en las que realizan cómputo interno y otras, en donde están limitados por operaciones de entrada/salida ($I/O\ bound$). En estos últimos la atención del planificador desaparece ya que el proceso deja de estar **listo** y pasa a estar **bloqueado**. Entonces, si bien los procesos están en ejecución un largo período de tiempo estos son tratados como procesos cortos porque al estar en una ráfaga de I/O, tienden a estar bloqueados esperando a eventos (como los procesos interactivos) y en consecuencia, requieren atención meramente ocasional del procesador permitiendo que mientras estos procesos estén bloqueados se puedan ejecutar otros.

Un proceso largo es aquel que por mucho tiempo ha estado 'listo' o 'en ejecución', es decir, un proceso que está en una larga ráfaga limitada por la CPU. Un ejemplo de proceso largo puede ser el kernel del sistema operativo.

Ejercicio 2

Apartado a)

Esquema FIFO

Proceso	Llegada	t	Inicio	Fin	Т	Е	P
A	0	8	0	8	8	0	1
В	2	13	8	21	19	6	1.46
С	4	3	21	24	20	17	6.6
D	4	6	24	30	26	20	4.3
Е	6	8	30	38	32	24	4
F	6	3	38	41	35	32	11.6
Promedio		6.83			23.3	16.5	4.82

Ronda con q = 1

Proceso	Llegada	t	Inicio	Fin	Τ	Е	Р
A	0	8	0	28	28	20	3.5
В	2	13	2	40	38	25	2.92
С	4	3	5	17	13	10	4.33
D	4	6	6	31	27	21	4.5
E	6	8	9	37	31	23	3.87
F	6	3	10	21	15	12	5
Promedio		6.83			25.3	18.5	4.02

Ronda con q = 3

Proceso	Llegada	t	Inicio	Fin	Т	E	Р
A	0	8	0	25	25	17	3.12
В	2	13	2	40	38	25	2.92
С	4	3	8	11	7	4	2.33
D	4	6	11	28	24	18	4
Е	6	8	17	39	33	25	4.12
F	6	3	20	23	17	14	5.66
Promedio		6.83			24	17.16	3.69

Apartado b)

Conclusiones:

- \bullet La ronda con q = 3 destaca por ser la que menor penalización posee en promedio.
- El método FIFO se destaca por tener el menos tiempo de espera en promedio y el menor tiempo desde que un proceso llega a su fin.