

Neural Networks Basics

13 April 2018 10:5

Neuron in Human Brain

Basic Neuron

Cost Function (Linear)

$$C = \frac{1}{2} (\hat{y} - y)^2 \quad \text{wMere} \quad \hat{y} = \sum_{i=1}^{N} w_i$$

Activation Functions

Step Function

$$y = \left\{ \begin{array}{ll} 1 & x \le 0 \\ 0 & x \in 0 \end{array} \right.$$

Rectified Linear Unit

$$y = \left\{ \begin{array}{ll} x & x \le 0 \\ 0 & x \in 0 \end{array} \right.$$

$$\frac{\text{Sigmoid Function}}{y = \frac{1}{(1 + e^{-s})}}$$

Tanh Function

$$y = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

Multi-Layer Perceptron

Multilayer Perceptron

No of Weights = 3*4 + 4*3 + 3 = 27

Gradient Descent

Batch V/s Stochastic Gradient Descent

- Stochastic Gradient Descent helps avoid local minima
- Batch GD is deterministic algorithm which Stochastic is stochastic algorithm

Mini-Batch Gradient Descent

Back-Propagations

Neural Network Training Process Flow

