PROBLEM STATEMENT: Which model is suitable for Flight Price Prediction

Importing Packages

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Read the Data

_		-	_	-	
\cap		- 1	7		•
v	uι	- 1	_		

:	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Price
0	IndiGo	24/03/2019	Banglore	New Delhi	$BLR \to DEL$	22:20	01:10 22 Mar	2h 50m	non-stop	No info	3897
1	Air India	1/05/2019	Kolkata	Banglore	$\begin{array}{c} CCU \to IXR \to \\ BBI \to BLR \end{array}$	05:50	13:15	7h 25m	2 stops	No info	7662
2	Jet Airways	9/06/2019	Delhi	Cochin	$\begin{array}{c} DEL \to LKO \to \\ BOM \to COK \end{array}$	09:25	04:25 10 Jun	19h	2 stops	No info	13882
3	IndiGo	12/05/2019	Kolkata	Banglore	$\begin{array}{c} CCU \to NAG \to \\ BLR \end{array}$	18:05	23:30	5h 25m	1 stop	No info	6218
4	IndiGo	01/03/2019	Banglore	New Delhi	$\begin{array}{c} BLR \to NAG \to \\ DEL \end{array}$	16:50	21:35	4h 45m	1 stop	No info	13302
10678	Air Asia	9/04/2019	Kolkata	Banglore	$CCU \to BLR$	19:55	22:25	2h 30m	non-stop	No info	4107
10679	Air India	27/04/2019	Kolkata	Banglore	$CCU \to BLR$	20:45	23:20	2h 35m	non-stop	No info	4145
10680	Jet Airways	27/04/2019	Banglore	Delhi	$BLR \to DEL$	08:20	11:20	3h	non-stop	No info	7229
10681	Vistara	01/03/2019	Banglore	New Delhi	$BLR \to DEL$	11:30	14:10	2h 40m	non-stop	No info	12648
10682	Air India	9/05/2019	Delhi	Cochin	$\begin{array}{c} DEL \to GOI \to \\ BOM \to COK \end{array}$	10:55	19:15	8h 20m	2 stops	No info	11753

10683 rows × 11 columns

In [3]: testdf=pd.read_csv(r"C:\Users\Venky\Downloads\Copy of Test_set.csv")
testdf

Out[3]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info
0	Jet Airways	6/06/2019	Delhi	Cochin	$\begin{array}{c} DEL \to BOM \to \\ COK \end{array}$	17:30	04:25 07 Jun	10h 55m	1 stop	No info
1	IndiGo	12/05/2019	Kolkata	Banglore	$\begin{array}{c} CCU \to MAA \to \\ BLR \end{array}$	06:20	10:20	4h	1 stop	No info
2	Jet Airways	21/05/2019	Delhi	Cochin	$\begin{array}{c} DEL \to BOM \to \\ COK \end{array}$	19:15	19:00 22 May	23h 45m	1 stop	In-flight meal not included
3	Multiple carriers	21/05/2019	Delhi	Cochin	$\begin{array}{c} DEL \to BOM \to \\ COK \end{array}$	08:00	21:00	13h	1 stop	No info
4	Air Asia	24/06/2019	Banglore	Delhi	$BLR \to DEL$	23:55	02:45 25 Jun	2h 50m	non-stop	No info
2666	Air India	6/06/2019	Kolkata	Banglore	$\begin{array}{c} CCU \to DEL \to \\ BLR \end{array}$	20:30	20:25 07 Jun	23h 55m	1 stop	No info
2667	IndiGo	27/03/2019	Kolkata	Banglore	$CCU \to BLR$	14:20	16:55	2h 35m	non-stop	No info
2668	Jet Airways	6/03/2019	Delhi	Cochin	$\begin{array}{c} DEL \to BOM \to \\ COK \end{array}$	21:50	04:25 07 Mar	6h 35m	1 stop	No info
2669	Air India	6/03/2019	Delhi	Cochin	$\begin{array}{c} DEL \to BOM \to \\ COK \end{array}$	04:00	19:15	15h 15m	1 stop	No info
2670	Multiple carriers	15/06/2019	Delhi	Cochin	$\begin{array}{c} DEL \to BOM \to \\ COK \end{array}$	04:55	19:15	14h 20m	1 stop	No info

2671 rows × 10 columns

Data Collection and Preprocessing

In [4]: traindf.head()

Out[4]:

<u></u>	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Price
0	IndiGo	24/03/2019	Banglore	New Delhi	$BLR \to DEL$	22:20	01:10 22 Mar	2h 50m	non-stop	No info	3897
1	Air India	1/05/2019	Kolkata	Banglore	$\begin{array}{c} CCU \to IXR \to BBI \\ \to BLR \end{array}$	05:50	13:15	7h 25m	2 stops	No info	7662
2	Jet Airways	9/06/2019	Delhi	Cochin	$\begin{array}{c} DEL \to LKO \to BOM \\ \to COK \end{array}$	09:25	04:25 10 Jun	19h	2 stops	No info	13882
3	IndiGo	12/05/2019	Kolkata	Banglore	$CCU \to NAG \to BLR$	18:05	23:30	5h 25m	1 stop	No info	6218
4	IndiGo	01/03/2019	Banglore	New Delhi	$BLR \to NAG \to DEL$	16:50	21:35	4h 45m	1 stop	No info	13302

In [5]: testdf.head()

Out[5]:

:	Airli	ne	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info
	0 Jet Airwa	ys	6/06/2019	Delhi	Cochin	$\begin{array}{c} DEL \to BOM \to \\ COK \end{array}$	17:30	04:25 07 Jun	10h 55m	1 stop	No info
	1 Indi	Go	12/05/2019	Kolkata	Banglore	$\begin{array}{c} CCU \to MAA \to \\ BLR \end{array}$	06:20	10:20	4h	1 stop	No info
:	2 Jet Airwa	ys	21/05/2019	Delhi	Cochin	$\begin{array}{c} DEL \to BOM \to \\ COK \end{array}$	19:15	19:00 22 May	23h 45m	1 stop	In-flight meal not included
;	3 Multip		21/05/2019	Delhi	Cochin	$\begin{array}{c} DEL \to BOM \to \\ COK \end{array}$	08:00	21:00	13h	1 stop	No info
	4 Air As	sia	24/06/2019	Banglore	Delhi	$BLR \to DEL$	23:55	02:45 25 Jun	2h 50m	non-stop	No info

In [6]: traindf.tail()

Out[6]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Price
10678	Air Asia	9/04/2019	Kolkata	Banglore	$CCU \to BLR$	19:55	22:25	2h 30m	non-stop	No info	4107
10679	Air India	27/04/2019	Kolkata	Banglore	$CCU \to BLR$	20:45	23:20	2h 35m	non-stop	No info	4145
10680	Jet Airways	27/04/2019	Banglore	Delhi	$BLR \to DEL$	08:20	11:20	3h	non-stop	No info	7229
10681	Vistara	01/03/2019	Banglore	New Delhi	$BLR \to DEL$	11:30	14:10	2h 40m	non-stop	No info	12648
10682	Air India	9/05/2019	Delhi	Cochin	$\begin{array}{c} DEL \to GOI \to \\ BOM \to COK \end{array}$	10:55	19:15	8h 20m	2 stops	No info	11753

In [7]: testdf.tail()

Out[7]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info
2666	Air India	6/06/2019	Kolkata	Banglore	$CCU \to DEL \to BLR$	20:30	20:25 07 Jun	23h 55m	1 stop	No info
2667	IndiGo	27/03/2019	Kolkata	Banglore	$CCU \to BLR$	14:20	16:55	2h 35m	non-stop	No info
2668	Jet Airways	6/03/2019	Delhi	Cochin	$DEL \to BOM \to COK$	21:50	04:25 07 Mar	6h 35m	1 stop	No info
2669	Air India	6/03/2019	Delhi	Cochin	$DEL \to BOM \to COK$	04:00	19:15	15h 15m	1 stop	No info
2670	Multiple carriers	15/06/2019	Delhi	Cochin	$DFL \to BOM \to COK$	04:55	19:15	14h 20m	1 stop	No info

In [8]: traindf.describe() Out[8]: Price count 10683.000000 9087.064121 mean 4611.359167 std 1759.000000 min 25% 5277.000000 50% 8372.000000 12373.000000 75% max 79512.000000 testdf.describe() In [9]: Out[9]: Airline Date_of_Journey Source Destination Route Dep_Time Arrival_Time Duration Total_Stops Additional_Info 2671 2671 2671 2671 2671 2671 2671 2671 2671 2671 count 320 unique 11 44 5 6 100 5 6 199 704 Cochin $DEL \rightarrow BOM \rightarrow COK$ top Jet Airways 9/05/2019 Delhi 10:00 19:00 2h 50m 1 stop No info freq 897 144 1145 1145 624 62 113 122 1431 2148 In [10]: traindf.shape Out[10]: (10683, 11) In [11]: testdf.shape Out[11]: (2671, 10)

```
In [12]: traindf.columns
Out[12]: Index(['Airline', 'Date of Journey', 'Source', 'Destination', 'Route',
                'Dep Time', 'Arrival Time', 'Duration', 'Total Stops',
                'Additional Info', 'Price'],
               dtvpe='object')
In [13]: | testdf.columns
Out[13]: Index(['Airline', 'Date of Journey', 'Source', 'Destination', 'Route',
                'Dep Time', 'Arrival Time', 'Duration', 'Total Stops',
                'Additional Info'],
               dtvpe='object')
In [14]: traindf.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10683 entries, 0 to 10682
         Data columns (total 11 columns):
                               Non-Null Count Dtype
              Column
             -----
              Airline
                               10683 non-null object
              Date of Journey 10683 non-null object
                               10683 non-null object
          2
              Source
              Destination
                               10683 non-null object
                               10682 non-null object
              Route
              Dep Time
                               10683 non-null object
             Arrival Time
                               10683 non-null object
              Duration
                               10683 non-null object
             Total Stops
                               10682 non-null object
              Additional Info 10683 non-null object
          10 Price
                               10683 non-null int64
         dtypes: int64(1), object(10)
         memory usage: 918.2+ KB
```

```
In [15]: testdf.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 2671 entries, 0 to 2670
         Data columns (total 10 columns):
              Column
                               Non-Null Count Dtype
              Airline
                               2671 non-null
                                               object
              Date of Journey 2671 non-null
                                               object
                               2671 non-null
                                               object
              Source
              Destination
                               2671 non-null
                                               obiect
                                               object
              Route
                               2671 non-null
              Dep Time
                               2671 non-null
                                               object
              Arrival Time
                               2671 non-null
                                               obiect
              Duration
                                               object
                               2671 non-null
                                               object
              Total Stops
                               2671 non-null
              Additional Info 2671 non-null
                                               object
         dtvpes: object(10)
         memory usage: 208.8+ KB
```

Checking whether there are any null values in the dataset

```
In [16]: traindf.isnull().sum()
Out[16]: Airline
                             0
          Date of Journey
                             0
                             0
          Source
          Destination
                             0
          Route
         Dep Time
         Arrival Time
                             0
          Duration
         Total Stops
                             1
         Additional Info
                             0
          Price
                             0
          dtype: int64
```

Removing Null Values from the dataset

```
In [18]: traindf.dropna(inplace=True)
In [19]: testdf.dropna(inplace=True)
```

Conversion of datatype of values from String to Numerical Values

```
In [20]: |traindf['Airline'].value_counts()
Out[20]: Airline
         Jet Airways
                                               3849
         IndiGo
                                               2053
         Air India
                                               1751
         Multiple carriers
                                               1196
         SpiceJet
                                                818
         Vistara
                                                479
         Air Asia
                                                319
         GoAir
                                                194
         Multiple carriers Premium economy
                                                 13
         Jet Airways Business
                                                  6
         Vistara Premium economy
                                                  3
         Trujet
                                                  1
         Name: count, dtype: int64
In [21]: traindf['Source'].value counts()
Out[21]: Source
         Delhi
                     4536
         Kolkata
                     2871
         Banglore
                     2197
         Mumbai
                      697
         Chennai
                      381
         Name: count, dtype: int64
In [22]: traindf['Destination'].value_counts()
Out[22]: Destination
         Cochin
                      4536
         Banglore
                      2871
         Delhi
                      1265
                       932
         New Delhi
         Hyderabad
                       697
         Kolkata
                       381
         Name: count, dtype: int64
```

Out[24]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Price
0	1	24/03/2019	Banglore	New Delhi	$BLR \to DEL$	22:20	01:10 22 Mar	2h 50m	non-stop	No info	3897
1	2	1/05/2019	Kolkata	Banglore	$\begin{array}{c} CCU \to IXR \to BBI \\ \to BLR \end{array}$	05:50	13:15	7h 25m	2 stops	No info	7662
2	0	9/06/2019	Delhi	Cochin	$\begin{array}{c} DEL \to LKO \to \\ BOM \to COK \end{array}$	09:25	04:25 10 Jun	19h	2 stops	No info	13882
3	1	12/05/2019	Kolkata	Banglore	$\begin{array}{c} CCU \to NAG \to \\ BLR \end{array}$	18:05	23:30	5h 25m	1 stop	No info	6218
4	1	01/03/2019	Banglore	New Delhi	$\begin{array}{c} BLR \to NAG \to \\ DEL \end{array}$	16:50	21:35	4h 45m	1 stop	No info	13302
											•••
10678	6	9/04/2019	Kolkata	Banglore	$CCU \to BLR$	19:55	22:25	2h 30m	non-stop	No info	4107
10679	2	27/04/2019	Kolkata	Banglore	$CCU \to BLR$	20:45	23:20	2h 35m	non-stop	No info	4145
10680	0	27/04/2019	Banglore	Delhi	$BLR \to DEL$	08:20	11:20	3h	non-stop	No info	7229
10681	5	01/03/2019	Banglore	New Delhi	$BLR \to DEL$	11:30	14:10	2h 40m	non-stop	No info	12648
10682	2	9/05/2019	Delhi	Cochin	$\begin{array}{c} DEL \to GOI \to \\ BOM \to COK \end{array}$	10:55	19:15	8h 20m	2 stops	No info	11753

10682 rows × 11 columns

10:55

19:15

8h 20m

2 stops

No info 11753

In [25]: city={"Source":{"Delhi":0,"Kolkata":1,"Banglore":2, "Mumbai":3,"Chennai":4}} traindf=traindf.replace(city) traindf

Out[25]:		Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Price
•	0	1	24/03/2019	2	New Delhi	$BLR \to DEL$	22:20	01:10 22 Mar	2h 50m	non-stop	No info	3897
	1	2	1/05/2019	1	Banglore	$\begin{array}{c} CCU \to IXR \to BBI \\ \to BLR \end{array}$	05:50	13:15	7h 25m	2 stops	No info	7662
	2	0	9/06/2019	0	Cochin	$\begin{array}{c} DEL \to LKO \to BOM \\ \to COK \end{array}$	09:25	04:25 10 Jun	19h	2 stops	No info	13882
	3	1	12/05/2019	1	Banglore	$CCU \to NAG \to BLR$	18:05	23:30	5h 25m	1 stop	No info	6218
	4	1	01/03/2019	2	New Delhi	$BLR \to NAG \to DEL$	16:50	21:35	4h 45m	1 stop	No info	13302
	10678	6	9/04/2019	1	Banglore	$CCU \to BLR$	19:55	22:25	2h 30m	non-stop	No info	4107
	10679	2	27/04/2019	1	Banglore	$CCU \to BLR$	20:45	23:20	2h 35m	non-stop	No info	4145
	10680	0	27/04/2019	2	Delhi	$BLR \to DEL$	08:20	11:20	3h	non-stop	No info	7229
	10681	5	01/03/2019	2	New Delhi	$BLR \to DEL$	11:30	14:10	2h 40m	non-stop	No info	12648
	10682	2	9/05/2019	0	Cochin	$DEL \to GOI \to BOM$	10:55	10:15	8h 20m	2 stons	No info	11753

 \rightarrow COK

10682 rows × 11 columns

2

9/05/2019

Cochin

0

10682

Out[26]:		Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Price
_	0	1	24/03/2019	2	3	$BLR \to DEL$	22:20	01:10 22 Mar	2h 50m	non-stop	No info	3897
	1	2	1/05/2019	1	1	$\begin{array}{c} CCU \to IXR \to BBI \\ \to BLR \end{array}$	05:50	13:15	7h 25m	2 stops	No info	7662
	2	0	9/06/2019	0	0	$\begin{array}{c} DEL \to LKO \to BOM \\ \to COK \end{array}$	09:25	04:25 10 Jun	19h	2 stops	No info	13882
	3	1	12/05/2019	1	1	$CCU \to NAG \to BLR$	18:05	23:30	5h 25m	1 stop	No info	6218
	4	1	01/03/2019	2	3	$BLR \to NAG \to DEL$	16:50	21:35	4h 45m	1 stop	No info	13302
	10678	6	9/04/2019	1	1	$CCU \to BLR$	19:55	22:25	2h 30m	non-stop	No info	4107
	10679	2	27/04/2019	1	1	$CCU \to BLR$	20:45	23:20	2h 35m	non-stop	No info	4145
	10680	0	27/04/2019	2	2	$BLR \to DEL$	08:20	11:20	3h	non-stop	No info	7229
	10681	5	01/03/2019	2	3	$BLR \to DEL$	11:30	14:10	2h 40m	non-stop	No info	12648
	10682	2	9/05/2019	0	0	$\begin{array}{c} DEL \to GOI \to BOM \\ \to COK \end{array}$	10:55	19:15	8h 20m	2 stops	No info	11753

10682 rows × 11 columns

\sim	4	. г э		Ι.
()	нт		' /	
$\mathbf{\circ}$	uч		. /	

:	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Price
-	1	24/03/2019	2	3	$BLR \to DEL$	22:20	01:10 22 Mar	2h 50m	0	No info	3897
1	2	1/05/2019	1	1	$\begin{array}{c} CCU \to IXR \to BBI \\ \to BLR \end{array}$	05:50	13:15	7h 25m	2	No info	7662
2	. 0	9/06/2019	0	0	$\begin{array}{c} DEL \to LKO \to BOM \\ \to COK \end{array}$	09:25	04:25 10 Jun	19h	2	No info	13882
3	1	12/05/2019	1	1	$CCU \to NAG \to BLR$	18:05	23:30	5h 25m	1	No info	6218
4	1	01/03/2019	2	3	$BLR \to NAG \to DEL$	16:50	21:35	4h 45m	1	No info	13302
10678	6	9/04/2019	1	1	$CCU \to BLR$	19:55	22:25	2h 30m	0	No info	4107
10679	2	27/04/2019	1	1	$CCU \to BLR$	20:45	23:20	2h 35m	0	No info	4145
10680	0	27/04/2019	2	2	$BLR \to DEL$	08:20	11:20	3h	0	No info	7229
10681	5	01/03/2019	2	3	$BLR \to DEL$	11:30	14:10	2h 40m	0	No info	12648
10682	2	9/05/2019	0	0	$\begin{array}{c} DEL \to GOI \to BOM \\ \to COK \end{array}$	10:55	19:15	8h 20m	2	No info	11753

10682 rows × 11 columns

Data visualization

```
In [28]: fdf=traindf[['Airline','Source','Destination','Total_Stops','Price']]
sns.heatmap(fdf.corr(),annot=True)
```

Out[28]: <Axes: >

Feature Scaling: To Split the data into training data and test data

```
In [29]: x=fdf[['Airline','Source','Destination','Total_Stops']]
y=fdf['Price']
```

```
In [30]: from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=100)
```

Linear Regression

```
In [31]: from sklearn.linear model import LinearRegression
         regr=LinearRegression()
          regr.fit(X train,y train)
         print(regr.intercept )
         coeff df=pd.DataFrame(regr.coef_,x.columns,columns=['coefficient'])
          coeff df
         7211.098088897471
Out[31]:
                       coefficient
               Airline
                      -418.483922
              Source -3275.073380
                     2505.480291
           Destination
          Total_Stops 3541.798053
In [32]: score=regr.score(X_test,y_test)
          print(score)
          0.41083048909283415
         predictions=regr.predict(X_test)
In [33]:
```

```
In [34]: plt.scatter(y_test,predictions)
```

Out[34]: <matplotlib.collections.PathCollection at 0x261f8aa5850>


```
In [35]: x=np.array(fdf['Price']).reshape(-1,1)
y=np.array(fdf['Total_Stops']).reshape(-1,1)
fdf.dropna(inplace=True)
```

C:\Users\SASIDHAR ROYAL\AppData\Local\Temp\ipykernel_7940\521034954.py:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

fdf.dropna(inplace=True)

```
In [36]: X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
regr.fit(X_train,y_train)
regr.fit(X_train,y_train)
```

Out[36]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [37]: y_pred=regr.predict(X_test)
plt.scatter(X_test,y_test,color='g')
plt.plot(X_test,y_pred,color='b')
plt.show()
```


Since we did not get the accuracy for LinearRegression we are going to implement Logisti Regression

Logistic Regression

```
In [38]: #Logistic Regression
         x=np.array(fdf['Price']).reshape(-1,1)
         y=np.array(fdf['Total Stops']).reshape(-1,1)
         fdf.dropna(inplace=True)
         x train,x test,y train,y test=train test split(x,y,test size=0.3,random state=1)
         from sklearn.linear model import LogisticRegression
         lr=LogisticRegression(max iter=10000)
         C:\Users\SASIDHAR ROYAL\AppData\Local\Temp\ipykernel 7940\3604832714.py:4: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returnin
         g-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versu
         s-a-copy)
           fdf.dropna(inplace=True)
In [39]: lr.fit(x train,y train)
         C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\utils\validation.py:1143:
         DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n
         samples, ), for example using ravel().
           y = column or 1d(y, warn=True)
Out[39]: LogisticRegression(max iter=10000)
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
```

In [40]: score=lr.score(x_test,y_test)
print(score)

0.7160686427457098

In [41]: sns.regplot(x=x,y=y,data=fdf,logistic=True,ci=None)

C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\statsmodels\genmod\families\links.
py:198: RuntimeWarning: overflow encountered in exp
t = np.exp(-z)

Out[41]: <Axes: >

Since we did not get the accuracy for Logistic Regression we are going to implement Decision Tree and Random Forest and make a comparative study for finding the best model for the dataset

Decision Tree

Out[42]: DecisionTreeClassifier(random state=0)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [43]: score=clf.score(x_test,y_test)
print(score)
```

0.9369734789391576

Random Forest

```
In [44]: #Random forest classifier
    from sklearn.ensemble import RandomForestClassifier
    rfc=RandomForestClassifier()
    rfc.fit(X_train,y_train)
```

C:\Users\SASIDHAR ROYAL\AppData\Local\Temp\ipykernel_7940\1232785509.py:4: DataConversionWarning: A column-vector y
was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
 rfc.fit(X_train,y_train)

Out[44]: RandomForestClassifier()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [45]: params={'max_depth':[2,3,5,10,20],'min_samples_leaf':[5,10,20,50,100,200],'n_estimators':[10,25,30,50,100,200]}
```

```
In [46]: from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rfc,param_grid=params,cv=2,scoring="accuracy")
```

```
grid search.fit(X train,y train)
In [47]:
         ape of y to (n samples,), for example using ravel().
           estimator.fit(X train, y train, **fit params)
         C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\model selection\ validat
         ion.py:686: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the sh
         ape of v to (n samples,), for example using ravel().
           estimator.fit(X train, y train, **fit params)
         C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\model selection\ validat
         ion.py:686: DataConversionWarning: A column-vector v was passed when a 1d array was expected. Please change the sh
         ape of v to (n samples,), for example using ravel().
           estimator.fit(X train, y train, **fit params)
         C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\model selection\ validat
         ion.py:686: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the sh
         ape of y to (n samples,), for example using ravel().
           estimator.fit(X train, v train, **fit params)
         C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\model selection\ validat
         ion.py:686: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the sh
         ape of y to (n samples,), for example using ravel().
           estimator.fit(X train, y train, **fit params)
         C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\model selection\ validat
         ion.py:686: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the sh
        grid search.best score
In [48]:
Out[48]: 0.523605715699528
```

```
In [49]: rf_best=grid_search.best_estimator_
    rf_best
```

Out[49]: RandomForestClassifier(max_depth=2, min_samples_leaf=5, n_estimators=30)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with noviewer.org.

```
In [50]: from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[4],class_names=['0','1','2','3','4'],filled=True);
```



```
In [ ]: score=rfc.score(x_test,y_test)
print(score)
```

Here when we compare between Decision Tree and Random Forest, we can confirm that Decision Tree has more accuracy than Random Forest which makesit the best model for this dataset. It makes DecisionTree to

perform better than Random Forest. But it may vary for the other datasets where in most casesRandom Forest performs better as it has reducedoverfitting and robust to outliers.

CONCLUSION: Based on accuracy scores of all models that were implemented we can conclude that "Decision Tree" is the best model for the given dataset

			Tn I I I
			TII •
			Tu []: