Titanic Train Preprocessing Method

Using Encoding Method

Using Feature Scalling Method

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cal
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	N
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	N
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C1
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	N
4											•

```
In [4]: # check missing data
        dataset.isnull().sum()
Out[4]: PassengerId
                          0
        Survived
                          0
        Pclass
                          0
                          0
        Name
        Sex
                          0
                        177
        Age
        SibSp
                          0
        Parch
                          0
        Ticket
                          0
        Fare
                          0
        Cabin
                        687
        Embarked
                          2
        dtype: int64
In [5]: # how much percent
        dataset.isnull().sum() / len(dataset)*100
Out[5]: PassengerId
                         0.000000
        Survived
                         0.000000
        Pclass
                         0.000000
        Name
                         0.000000
        Sex
                         0.000000
        Age
                        19.865320
        SibSp
                         0.000000
        Parch
                         0.000000
        Ticket
                         0.000000
        Fare
                         0.000000
        Cabin
                        77.104377
        Embarked
                         0.224467
        dtype: float64
In [6]: # Drop variable - Cabin because we have 77% missing data
        dataset = dataset.drop(['Cabin'], axis=1)
In [7]: dataset.isnull().sum() / len(dataset)*100
Out[7]: PassengerId
                         0.000000
        Survived
                         0.000000
        Pclass
                         0.000000
        Name
                         0.000000
        Sex
                         0.000000
        Age
                        19.865320
        SibSp
                         0.000000
        Parch
                         0.000000
        Ticket
                         0.000000
        Fare
                         0.000000
        Embarked
                         0.224467
        dtype: float64
```

```
In [8]: dataset.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 11 columns):
          #
              Column
                           Non-Null Count
                                           Dtype
              -----
         ---
                           -----
                                            ----
              PassengerId 891 non-null
          0
                                           int64
          1
              Survived
                           891 non-null
                                           int64
          2
              Pclass
                           891 non-null
                                           int64
          3
              Name
                           891 non-null
                                           object
          4
              Sex
                           891 non-null
                                           object
          5
                                           float64
              Age
                           714 non-null
          6
              SibSp
                           891 non-null
                                           int64
          7
                           891 non-null
                                           int64
              Parch
          8
              Ticket
                           891 non-null
                                           object
          9
                           891 non-null
                                           float64
              Fare
          10 Embarked
                           889 non-null
                                           object
         dtypes: float64(2), int64(5), object(4)
         memory usage: 76.7+ KB
 In [9]: | dataset['Embarked'].value_counts()
 Out[9]: S
              644
         C
              168
               77
         Q
         Name: Embarked, dtype: int64
In [10]: dataset['Embarked'] = dataset['Embarked'].fillna('S')
In [11]: dataset['Embarked'].value_counts()
Out[11]: S
              646
         C
              168
               77
         Name: Embarked, dtype: int64
```

Age - conclusion

almost 20% of the values are missing

we have to check outlier and on that basis we have to decide imputation method

```
In [12]: dataset['Age'].describe()
Out[12]: count
                   714.000000
         mean
                   29.699118
         std
                   14.526497
         min
                    0.420000
         25%
                   20.125000
         50%
                    28.000000
         75%
                    38.000000
                   80.000000
         max
         Name: Age, dtype: float64
In [13]: dataset['Age'].plot(kind='hist', bins=20)
```

Out[13]: <AxesSubplot:ylabel='Frequency'>


```
In [14]: dataset['Age'].plot(kind='kde')
```

Out[14]: <AxesSubplot:ylabel='Density'>


```
In [15]: dataset['Age'].plot(kind='box')
```

Out[15]: <AxesSubplot:>

In [16]: dataset[dataset['Age']>65]

Out[16]:

96 97 0 1 116 117 0 3	Wheadon, Mr. Edward H Goldschmidt, Mr. George B Connors, Mr. Patrick Artagaveytia, Mr. Ramon	male male	71.0 70.5	0 0	0 0	C.A. 24579 PC 17754 370369	10.5000 34.6542 7.7500	
96 97 0 1 116 117 0 3 493 494 0 1 630 631 1 1	Mr. George B Connors, Mr. Patrick Artagaveytia,	male	70.5			17754		
493 494 0 1 630 631 1 1	Patrick Artagaveytia,			0	0	370369	7.7500	
630 631 1 1		male					550	
			71.0	0	0	PC 17609	49.5042	
672 673 0 2	Barkworth, Mr. Algernon Henry Wilson	male	80.0	0	0	27042	30.0000	
070 0 2	Mitchell, Mr. Henry Michael	male	70.0	0	0	C.A. 24580	10.5000	
745 746 0 1	Crosby, Capt. Edward Gifford	male	70.0	1	1	WE/P 5735	71.0000	
851 852 0 3	Svensson, Mr. Johan	male	74.0	0	0	347060	7.7750	

In [17]: dataset['Age'] = dataset['Age'].fillna(dataset['Age'].median())

In [18]: dataset.isnull().sum()

Out[18]: PassengerId 0 Survived 0 **Pclass** 0 Name 0 Sex Age 0 SibSp Parch 0 Ticket 0 Fare 0 Embarked dtype: int64

In [19]: dataset['Survived'].value_counts()

Out[19]: 0 549 1 342

Name: Survived, dtype: int64

```
In [20]: dataset = dataset.drop(['PassengerId','Name','Ticket','Fare'],axis=1)
In [21]: |dataset.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 7 columns):
              Column
                         Non-Null Count Dtype
                                         ----
          0
              Survived 891 non-null
                                         int64
              Pclass
                         891 non-null
                                         int64
          1
          2
                         891 non-null
                                         object
              Sex
          3
              Age
                         891 non-null
                                         float64
                                         int64
          4
              SibSp
                         891 non-null
          5
                         891 non-null
                                         int64
              Parch
          6
              Embarked 891 non-null
                                         object
         dtypes: float64(1), int64(4), object(2)
         memory usage: 48.9+ KB
In [22]: # Encoding part - Sex and Embarked
         dataset['Sex'].value counts()
Out[22]: male
                    577
         female
                    314
         Name: Sex, dtype: int64
In [23]: # Label encoder
         dataset['Sex'] = dataset['Sex'].astype('category')
         dataset['Sex'] = dataset['Sex'].cat.codes
In [24]: dataset['Embarked'].value_counts()
Out[24]: S
               646
         C
               168
               77
         Name: Embarked, dtype: int64
In [25]: # One Hot Encoding
         dataset = pd.get_dummies(dataset, columns = ['Embarked'])
In [26]: dataset.head()
Out[26]:
             Survived Pclass Sex Age SibSp Parch Embarked C Embarked Q Embarked S
                                                          0
          0
                  0
                         3
                              1 22.0
                                         1
                                               0
                                                                      0
                                                                                 1
          1
                   1
                         1
                              0 38.0
                                               0
                                                                      0
                                                                                 0
          2
                  1
                         3
                              0 26.0
                                         0
                                               0
                                                          0
                                                                      0
                                                                                 1
                                                                                 1
          3
                   1
                         1
                              0 35.0
                                         1
                                               0
                                                          0
                                                                      0
                   0
                         3
                              1 35.0
                                         0
                                               0
                                                                                 1
```

```
In [27]: # dummy variable
dataset = dataset.iloc[:,:-1]
```

In [28]: dataset.head()

Out[28]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Embarked_C	Embarked_Q
0	0	3	1	22.0	1	0	0	0
1	1	1	0	38.0	1	0	1	0
2	1	3	0	26.0	0	0	0	0
3	1	1	0	35.0	1	0	0	0
4	0	3	1	35.0	0	0	0	0

```
In [29]: # Feature Scaling
# Point to remember - we can not do feature scaling with Dependent variable

x = dataset.iloc[:,1:]
y = dataset[['Survived']]
```

In [30]: x.head()

Out[30]:

	Pclass	Sex	Age	SibSp	Parch	Embarked_C	Embarked_Q
0	3	1	22.0	1	0	0	0
1	1	0	38.0	1	0	1	0
2	3	0	26.0	0	0	0	0
3	1	0	35.0	1	0	0	0
4	3	1	35.0	0	0	0	0

```
In [31]: y
Out[31]:
                 Survived
                       0
              2
              3
                       1
            886
                       0
            887
            888
                       0
            889
            890
                       0
           891 rows × 1 columns
```

Feature scaling with x - independent variable

Standarization

```
In [35]: from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    x = sc.fit_transform(x)
    pd.DataFrame(x)
```

Out[35]:

	0	1	2	3	4	5	6
0	0.827377	0.737695	-0.565736	0.432793	-0.473674	-0.482043	-0.307562
1	-1.566107	-1.355574	0.663861	0.432793	-0.473674	2.074505	-0.307562
2	0.827377	-1.355574	-0.258337	-0.474545	-0.473674	-0.482043	-0.307562
3	-1.566107	-1.355574	0.433312	0.432793	-0.473674	-0.482043	-0.307562
4	0.827377	0.737695	0.433312	-0.474545	-0.473674	-0.482043	-0.307562
886	-0.369365	0.737695	-0.181487	-0.474545	-0.473674	-0.482043	-0.307562
887	-1.566107	-1.355574	-0.796286	-0.474545	-0.473674	-0.482043	-0.307562
888	0.827377	-1.355574	-0.104637	0.432793	2.008933	-0.482043	-0.307562
889	-1.566107	0.737695	-0.258337	-0.474545	-0.473674	2.074505	-0.307562
890	0.827377	0.737695	0.202762	-0.474545	-0.473674	-0.482043	3.251373

891 rows × 7 columns

Normalization

```
In [36]: from sklearn.preprocessing import Normalizer
nor = Normalizer()
x1 = nor.fit_transform(x1)
pd.DataFrame(x1)
```

Out[36]:

	0	1	2	3	4	5	6
0	0.134840	0.044947	0.988826	0.044947	0.000000	0.000000	0.000000
1	0.026288	0.000000	0.998963	0.026288	0.000000	0.026288	0.000000
2	0.114624	0.000000	0.993409	0.000000	0.000000	0.000000	0.000000
3	0.028548	0.000000	0.999185	0.028548	0.000000	0.000000	0.000000
4	0.085367	0.028456	0.995943	0.000000	0.000000	0.000000	0.000000
886	0.073821	0.036911	0.996588	0.000000	0.000000	0.000000	0.000000
887	0.052559	0.000000	0.998618	0.000000	0.000000	0.000000	0.000000
888	0.106199	0.000000	0.991189	0.035400	0.070799	0.000000	0.000000
889	0.038376	0.038376	0.997788	0.000000	0.000000	0.038376	0.000000
890	0.093250	0.031083	0.994672	0.000000	0.000000	0.000000	0.031083

891 rows × 7 columns

Thank you