图像处理中的数学方法-homework1

郑灵超

2017年3月19日

1 作业一

1.1 一阶偏导数

根据课程 PPT 第 77 页内容, 左图对应的导数为

$$\left. \frac{\partial v}{\partial x} \right|_{i,j} = \frac{\lambda}{2} + \frac{1-\lambda}{2} = \frac{1}{2}, \quad \frac{\partial v}{\partial y} \Big|_{i,j} = 0,$$

而右图对应的数值格式,

$$\frac{\partial v}{\partial x}\Big|_{i,j} = \frac{\partial v}{\partial y}\Big|_{i,j} = \frac{\lambda}{2} + \frac{1-\lambda}{2}\frac{1}{2} = \frac{1+\lambda}{4},$$

因此当 $\lambda = \sqrt{2} - 1$ 时, 二者离散导数的模相同。

1.2 拉普拉斯算子

根据课程 PPT 第78页内容, 左图对应的数值格式的拉普拉斯算子为

$$\Delta v|_{i,j} = \lambda + 1 - \lambda = 1,$$

右图对应的数值格式的拉普拉斯算子为

$$\Delta v|_{i,j} = 2\lambda + \frac{1-\lambda}{2} = \frac{1+3\lambda}{2},$$

因此当 $\lambda = \frac{1}{2}$ 时,二者拉普拉斯的值相同。

2 作业二

2.1 问题介绍

对模型进行去噪去模糊, 本次我们采用的模型为

$$\hat{u} = \underset{u}{\operatorname{arg\,min}} \lambda \int |\nabla u| dx + \frac{1}{2} \int (Au - f)^2 dx, \tag{1}$$

2 作业二 2

其中 A 是用于模拟图像模糊的卷积矩阵, 卷积核为

$$k = \text{fspecial}("Gaussian", [15, 15], \sigma_1), \sigma_1 = 1.5, 2.$$

假设原图为 \tilde{u} ,待处理的图像可以由如下方式生成:

$$f = A\tilde{u} + \sigma_2 \text{randn}, \sigma_2 = \frac{\max(\tilde{u})}{100}, \frac{\max(\tilde{u})}{200}.$$

2.2 问题分析

2.2.1 算法介绍

我们采用的算法为 ADMM 算法, 其迭代格式如下:

1.
$$u_{k+1} = (A^T A + \mu W^T W)^{-1} (A^T f + \mu W^T (d_k - b_k)),$$

2.
$$d_{k+1} = \mathcal{T}_{\lambda/u}(Wu_{k+1} + b_k),$$

3.
$$b_{k+1} = b_k + \delta(Wu_{k+1} - k + 1)$$
.

迭代的终止条件为

$$\frac{\|Wu_{k+1} - d_{k+1}\|_2}{\|f\|_2} < tol.$$

2.2.2 算法分析

算子 A 对应于一个矩阵 A 与 f 的卷积,算子 W^TW 对应于矩阵 L 与 f 的卷积,记 \hat{A},\hat{L},\hat{f} 分别为它们的 Fourier 变换后的矩阵,则迭代格式第一步等价于

$$(\hat{A} * \hat{A} + \mu \hat{L}) * \hat{u}_{k+1} = \hat{A} * \hat{f} + \mu (W^T (d_k - b_k)).$$

而为了求解迭代过程中的第一个方程, 我们采用 FFT 算法, 步骤如下: 其中这里的 * 表示矩阵逐分量相乘。

因此我们可以通过如下步骤求解该方程:

- 1. 计算算子 A^TA 和 W^TW 的 Fourier 变换的矩阵 \hat{A} 与 $\hat{\Delta}$, 以及 \hat{f} 和 $W^T(d-b)$ 的 Fourier 变换 \hat{v} .
- 2. 计算 $(\hat{A}*\hat{f}+\mu\hat{v})/(\hat{A}*\hat{A}+\mu\hat{L})$, 这里的 *,/ 均表示逐项操作。
- 3. 做 Fourier 逆变换得到 u.

2 作业二 3

2.3 实验结果

我们使用了经典的 Lena 图作为实验图片,对其进行加噪声与模糊得到待处理图片,再利用之前的算法进行去噪去模糊,得到的结果如下:

图 1: $\sigma_1 = 1.5, \sigma_2 = |u|/100$

图 2: $\sigma_1 = 1.5, \sigma_2 = |u|/200$

2 作业二 4

图 3: $\sigma_1 = 2, \sigma_2 = |u|/100$

图 4: $\sigma_1 = 2, \sigma_2 = |u|/200$

而关于原图的相对误差,得到的结果如下:

$err \sigma_2$ σ_1	100	200
1.5	0.0234	0.0235
2	0.0261	0.0262

以上实验的参数选取为 $\mu=1, \lambda=0.01, \delta=0.1, maxstep=100, tol=1e-7$ 。 其中加了噪声与模糊而未进行去噪的误差,当 $\sigma_1=1$ 时为 0.026,当 $\sigma_1=2$ 时为 0.032。可见该去噪去模糊算法有一定作用,但结果尚不能令人满意。 3 上次作业总结 5

3 上次作业总结

本次作业,我们实现了采用 ROF 模型和 ADMM 算法对图片进行去噪去模糊,并使用了 Fourier 变换进行卷积的求解。实验结果表明该方法有一定作用,但最后的结果还是不是特别令人满意。