Assignment 3

Vibhavasu Pasumarti - EP20BTECH11015

Download all python codes from

https://github.com/VIB2020/AI1103/blob/main/ Assignment%203/code/Assignment%203.py

and latex-tikz codes from

https://github.com/VIB2020/AI1103/blob/main/ Assignment%203/Assignment%203.pdf

1 Problem

GATE 2015 (EE PAPER 01 NEW 2), Q. 27 (ELECTRICAL ENGG. SECTION)

Two players A, and B alternately keep rolling a fair dice. The person to get a six first wins the game. Given that player A starts the game, the probability that A wins the game is:

A:
$$\frac{5}{11}$$
 $B:\frac{1}{2}$ $C:\frac{7}{13}$ $D:\frac{6}{11}$

$$B:\frac{1}{2}$$

$$C: \frac{7}{13}$$

$$D: \frac{6}{11}$$

2 Solution

Let the random variables X denote the win of A Give that the die is fair

$$\implies$$
 The probability of getting $6 = \frac{1}{6} = p$ (say)

$$\implies$$
 The probability of getting $6 = \frac{5}{6} = q$ (say)

P(A wins on the first throw) = p

Constraint: A wins the game

Thus, if A does not get 6 on the first throw then B also should not get 6 on the second throw. P (A wins on the third throw) = q^2p

P (A wins on the
$$(2n + 1)^{th}$$
 throw) = $q^{2n}p$

$$P(X) = \sum_{n=1}^{+\infty} q^{2n} p$$
 (1)

$$= p \sum_{n=1}^{+\infty} (q^2)^n \quad (2)$$

$$= p\left(\frac{1}{1-q^2}\right) = \frac{p}{1-q^2} = \frac{\frac{1}{6}}{1-\frac{25}{36}} = \frac{6}{11} \quad (3)$$

P(A wins the game) = P(X) =
$$\frac{6}{11}$$

Option D