Understanding Performance Implications of LLM Inference on CPUs

Seonjin Na, Geonhwa Jeong, Byung Hoon Ahn, Jeffery Young, Tushar Krishna, Hyesoon Kim

IISWC 2024

Large Language Models (LLM) are widely adopted

Data centers equip with

GPUs, NPUs to accelerate LLM inference

LLM Services

Overview of LLM Inference Procedure

Prefill Phase vs Decode Phase

Prefill phase

Is Georgia Tech a good school?

Input Prompts

Process all input prompts in parallel

Compute bound

Decode phase

Yes

it

is

Output tokens

Process one token at a time

Memory bound

Challenges in LLM Inference: Huge Model Size

Gap between

GPU memory vs model size

LLMs continue to grow increasingly larger, driven by scaling law [2]

The *memory wall* of LLMs [1]

Georgia [1]: Reducing the Barriers to Entry for Foundation Model Training, Arxiv' 24 [2]: Scaling Laws for Neural Language Models

Challenges in LLM Inference: KV Cache Size

- KV Cache size linearly scales with the sequence length and batch size
 - O The size of KV Cache = 2 (Key/ Value) * 2 (BF16) * d_layer * d_model * seq_len * batch_size

KV cache size is **288GB (FP16)** with 2048 sequence length, 64 batch size for OPT-66B

Requires at least 4 H100-80GB GPU

Offloading-based LLM Inference on GPUs

LLM weights, activation, KV cache are offloaded to CPU memory

Possible Hardware Options for LLM Inference

Options	Cost	Accuracy	Latency
CPU	Low	High	Low-High
Single-GPU with CPU offloading	Medium	High	Low- High
Single-GPU with quantization (without CPU- offloading)	Medium	High- Medium	Low
Multi-GPUs	Very High	High	Very Low

Opportunities in Latest CPUs: (1) Dedicated Accelerators

- Recent CPUs offer GEMM accelerators with extended ISA support
 - o Intel Advanced Matrix eXtension (AMX), ARM Scalable Matrix Extension (SME), etc.

Opportunities in Latest CPUs: (2) Large Memory Capacity

• CPU servers provide larger memory capacity than that of GPUs

CPU Could be expanded

There are two key opportunities for CPU LLM inference

- 1. Dedicated accelerator with ISA extension
 - 2. Larger memory capacity with HBM

High Capacity **Low** bandwidth

Low Capacity **High** bandwidth

NVIDIA H100 GPU
HBM 80GB

Evaluation Methodology

- Use Intel Extension for Pytorch (IPEX) for CPU LLM inference
- Evaluated LLMs: OPT (1.3B, 6.7B, 13B, 30B, 66B) , LLaMA2 (7B, 13B, 70B)
- Metrics: End-to-End Latency & Throughput (Generated output tokens/s)

	Sapphire Rapids CPU (SPR)
CPU Model	Xeon 4 th Max 9468
# of Cores (Per socket) / # of Socket	48 / 2
Compute Throughput	25.6 (AVX-512) / 206.4 (AMX) TFLOPS
L1/L2 (per core)	48KB/ 2MB
LLC	105MB
Memory Capacity	DDR5 512GB, HBM 128GB
Memory Bandwidth	DDR5: 233.8 GB/s, HBM: 588 GB/s

Key Intel CPU Configurations: Memory, Clustering Modes

Questions We Aim to Answer for Optimal Performance

• What is the optimal clustering and memory configuration for LLM inference?

• What is the optimal number of CPU cores for LLM inference?

Performance Impact of Clustering and Memory Modes

- Compare the averaged performance across all LLMs and batch sizes (1 to 32)
 - Each result is normalized to **Quadrant_Cache** (**quad_cache**) configuration
 - HBM memory is prioritized for flat mode using Linux numactl

Best configuration

Performance Impact of the Number of CPU Cores

- Compare the averaged performance across all LLMs and batch sizes (1 to 32)
 - Each result is normalized to **12 cores** configuration
 - All configurations use quad_flat mode

Using Quad with Flat and 48 cores delivers the best results

GPU Server Configurations

• We use **FlexGen** for offloading-based LLM inference on GPUs

	A100-40GB GPU	H100-80GB GPU
# of SMs	108	132
Compute Throughput	312 TFLOP	989 TFLOP
L1/L2	192KB / 40MB	256KB / 50MB
Memory Capacity	HBM 40GB	HBM 80GB
Memory Bandwidth	1299.9 GB/s	1754.4 GB/s
Interconnect	PCIe 4.0, 64GB/s	PCIe 5.0, 128GB/s

Performance Comparison: SPR Max CPU vs GPUs

GPUs outweigh CPU for smaller models

CPU performs better than GPUs for larger models

GPU Execution Time Breakdown

Offloading-based LLM inference suffers from significant PCle transfer times

OPT-66B model in **H100-80GB**

Future Research Direction for Efficient CPU LLM Inference

NUMA aware data placement

CPU-GPU Hybrid LLM Inference

Conclusion

- LLM inference demands substantial memory, often exceeding GPU memory
 - Offloading-based LLM inference suffer from performance degradation due to PCIe transfer
- Recent CPUs have potential for LLM inference
 - Dedicated GEMM Accelerators with ISA support
 - Larger memory capacity with HBM that could be further expanded CXL
- CPUs can perform better than GPUs, specifically for larger models

Backup Slides

Challenges in LLM Inference: Huge Model Size

LLMs are growing larger due to scaling laws [1]

Sensitivity Study: Sequence Length

Evaluation Methodology

- Use Intel Extension for Pytorch (IPEX) for CPU LLM inference
- Evaluated LLMs: OPT (1.3B, 6.7B, 13B, 30B, 66B), LLaMA2 (7B, 13B, 70B)
- Metrics: End-to-End Latency & Throughput (Generated output tokens/s)

	IceLake CPU (ICL)	Sapphire Rapids CPU (SPR)
CPU Model	Xeon 3 rd 8352Y	Xeon 4 th Max 9468
# of Cores (Per socket) / # of Socket	32 / 2	48 / 2
Compute Throughput	18.0 TFLOP (AVX-512)	25.6 (AVX-512) / 206.4 (AMX) TFLOPS
L1/L2 (per core)	48KB/ 1.25MB	48KB/ 2MB
LLC	48MB	105MB
Memory Capacity	DDR4 256GB	DDR5 512GB, HBM 128GB
Memory Bandwidth	156.2 GB/s	DDR5: 233.8 GB/s, HBM: 588 GB/s

Performance Comparison: ICL CPU vs SPR CPU

- We use 32 cores for ICL CPU and 48 cores for SPR CPU
 - Each result is normalized to ICL CPU results at the same batch size.

Performance Impact of Clustering and Memory Modes

- Compare the averaged performance across all LLMs and batch sizes (1 to 32)
 - Each result is normalized to **Quadrant_Cache** (**quad_cache**) configuration
 - O HBM memory is prioritized for flat mode using Linux numactl

quad_cache quad_flat snc_cache snc_flat Lower is better 1.5 1.5 1.0 0.5 0.0 E2E Latency Tokens/s

LLaMA2-13B model with batch size 8

Performance Impact of the Number of CPU Cores

- Compare the averaged performance across all LLMs and batch sizes (1 to 32)
 - Each result is normalized to **12 cores** configuration
 - All configurations use quad_flat mode

LLaMA2-7B model with batch size 8

inter-socket communication

