Índice general

L.	Ani	llos	1
	1.1.	Ideales y anillos cociente	1
		Operaciones con ideales	

Capítulo 1

Anillos

1.1. Ideales y anillos cociente

Teorema 1.1 (Teorema de la Correspondencia). Si I es un ideal de un anillo A, las asignaciones $J \mapsto J/I$ y $X \mapsto \pi^{-1}(X)$ definen aplicaciones biyectivas (una inversa de la otra) que conservan la inclusión entre el conjunto de los ideales de A que contienen al I y el conjunto de los ideales de A/I.

Demostración.

- (1) Si J es un ideal de A que contiene a I entonces J/I es un ideal de A/I y $\pi^{-1}(J/I) = J$.
- (2) Si X es un ideal de A/I entonces $\pi^{-1}(X)$ es un ideal de A que contiene a I y $\pi^{-1}(X)/I = X$.
- (3) Si $J \subseteq K$ son ideales de A que contienen a I entonces entonces $J/I \subseteq K/I$.
- (4) Si $X \subseteq Y$ son ideales de A/I entonces $\pi^{-1}(X) \subseteq \pi^{-1}(Y)$.

1.2. Operaciones con ideales

Sea A un anillo. Recordemos que X es un subconjunto de A entonces llamamos ideal de A generado por X al menor ideal de A que contiene a X y que

$$(X) = \left\{ \sum_{i=1}^{n} a_i x_i : n \ge 0, a_i \in A, x_i \in X \right\}$$

Es fácil ver que la intersección de una familia de ideales de A es un ideal de A. Eso implica que (X) es también la intersección de todos los ideales de A que contienen a X.

Si I y J son dos ideales de A entonces la suma y el producto de A son los conjuntos

$$I + J = \{x + y : x \in y \in J\}$$

$$IJ = \{x_1y_1 + \dots + x_ny_n : x_1 + \dots + x_n \in I, y_1, \dots, y_n \in J\}$$

Más generalmente, si I_1, \ldots, I_n son ideales, entonces la suma de estos ideales es

$$I_1 + \dots + I_n = \{x_1 + \dots + x_n : x_1 \in I_1, \dots, x_n \in I_n\}$$

y el producto $I_1 \cdots I_n$, es el ideal formado por las sumas de productos de la forma $x_1 \cdots x_n$ donde $x_1 \in I_1, \dots, x_n \in I_n$.

Aún más general, si $\{I_x : x \in X\}$ es una familia de ideales de A entonces

$$\sum_{x \in X} I_x = \left\{ \sum_{x \in X} a_x : a_x \in I_x \text{ para todo } x \in X \text{ y } a_x = 0 \text{ para casi todo } x \in X \right\}$$

y $\prod_{x \in X}$ es el ideal formado por las sumas de productos de la forma $\prod_{x \in X} a_x$ donde $a_x \in I_x$ para todo $x \in X$ y $a_x = 1$ para casi todo $x \in X$.