A Security Aware Routing Approach for Networks-on-Chip

Priscila Giovanella Vivian

Advisor: Prof. Ph.D. César Augusto Missio Marcon

Co-Advisor: Prof. Ph.D. Martha Johanna Sepúlveda Flórez

Pontifical Catholic University of Rio Grande do Sul Faculty of Informatics Computer Science Graduate Program

July 20, 2016

Introduction Objectives

Research

Threat Model Security Aware Routing Modeling

Evaluation

Evaluation Criteria Preliminary Results

Index

Introduction

Objectives

Research

Threat Model Security Aware Routing Modeling

Evaluation

Evaluation Criteria Preliminary Results

Introduction I

- ► The Network-on-Chip (NoC) has been widely adopted as a paradigm capable of providing a reliable and scalable interconnection in MPSoCs [?], [?]
- ► The concern for data protection appears as a design requirement of MPSoCs
- Protection usually occurs at either:
 - Application Level, e.g., using data encryption or source authentication: or
 - ► Communication Level, e.g., detecting abnormal communication behavior in the system.

Introduction II

▶ NoCs have been shown to aid in the overall MPSoC protection [?], [?], [?], by implementing security services at communication level

Index

Introduction Objectives

Research

Threat Model Security Aware Routing Modeling

Evaluation

Evaluation Criteria
Preliminary Results

Objectives

Introduction

Objectives

- ► The definition of a routing model that is capable of considering system security requirements to define safe routing paths
- ► The creation of an abstract model that enables the implementation and the verification of the routing technique
- The validation and evaluation of the routing algorithm for different security configurations
- ► The adaptation of an existing NoC simulation platform to employ this new routing model for behavior evaluation

Index

Introduction Objectives

Research

Threat Model Security Aware Routing Modeling

Evaluation Crite

Research

- ► This work is based on two premises:
 - (i) that sensitive applications communicate over the NoC in MPSoCs, and are therefore vulnerable to interference by malicious applications; and
 - (ii) that protection from software attacks is achieved by communication level protection; e.g., by defining safe communication paths for sensitive applications
- ► Therefore, a routing algorithm that is capable of defining safe routing paths for sensitive applications should enhance the overall system protection

Index

Research

Threat Model

Modeling

Research

Threat Model

Threat Model

- ► The NoC is considered secure, meaning that an attacker cannot tamper its resources
- ► An attacker, aware of the sensitive path, can disrupt communication between a source and a destination
- ▶ We consider that an attacker can either generate a *DoS* or

Security Aware Routing

Index

Introduction Objectives

Research

Threat Mode

Security Aware Routing

Modeling

Evaluation

Evaluation Criteria

Preliminary Results

Security Zones

- ► A security zone is a physical space (continuous or disrupted) that wraps IPs that execute critical applications
- ► The task mapping of critical applications defines the shape of the security zone
- ► Certain IP blocks might not be assigned to any security zone, e.g., idle resources or shared memories

Security Aware Routing

Communication in Security Zones

► Full intra-zone communication (FIZ): S and D are in the same SZ. The sensitive path is completely inside the SZ, e.g., the path from IP1 to IP2

Communication in Security Zones

▶ Partial intra-zone communication (PIZ): S and D are in the same SZ. However, the sensitive path is partially inside the SZ., e.g., the path from IP3 to IP4

Communication in Security Zones

► Inter-zone communication (IZ): S and D are in different SZ, e.g., the path from IP5 to IP6

Security Aware Routing

Segment-based Routing (SBR) - Deadlock Prevention

Logically partitions the NoC into segments

Security Aware Routing

Segment-based Routing (SBR) - Deadlock Prevention

► Each segment contains a localized bidirectional turn restriction

Segment-based Routing (SBR) - Deadlock Prevention

 Guarantees global deadlock freedom and reachability (as long as the NoC is connected) Security Aware Routing

SBR-Security Zone Awareness (SBR-SZA)

► Traditional SBR might place turn restrictions that causes *PIZ* routing

Security Aware Routing

SBR-Security Zone Awareness (SBR-SZA)

► SBR-SZA aims to create segments that tailor to security zone shapes

Region-based Routing (RBR) - Routing Algorithm

- ► Populates the routing tables of NoC routers, considering the turn restrictions of SBR
- Groups routing entries to greatly reduce table size (interval routing and port/destination sets)
- ▶ There are three steps in RBR computation:
 - Routing Computation: computes all source and destination pairs
 - Region Computation: joins entries based on input and output ports
 - Region Merge: merges overlapping regions to reduce routing entries

Index

Introduction
Objectives

Research

Threat Model
Security Aware Routing
Modeling

Evaluation
Evaluation Criteria
Preliminary Results

Modeling

► The NoC is modeled as a graph, with IP/Routers as vertices and links as edges

Modeling

► Each vertex belongs to a security zone, and each edge has a positive weight that is set according to the path-finding iteration

Modeling

 Edge weight can represent the cost to employ encryption to a sensitive packet

Index

Introduction Objectives

Research

Threat Model Security Aware Routing Modeling

Evaluation

Evaluation Criteria Preliminary Results

NoC Configuration Tool

► Graphical configuration tool to generate and compute scenarios at design time

NoC Configuration Tool

Evaluation

Implements SBR and RBR algorithms to populate routing entries

NoC Configuration Tool

Evaluation

▶ Performs routing entries, *FIZ/PIZ* routing paths, and latency evaluations

Evaluation

Outputs the generated configuration to a SystemC simulation platform

Index

Introduction Objectives

Research

Threat Model Security Aware Routing Modeling

Evaluation

Evaluation Criteria

Preliminary Results

Evaluation Criteria

Scenario	NoC Dimension (Columns X Rows)	SBR Seeds	Segmentation Modes	Configurations per Scenario
NASA NAS	13×13	169	SBR / SBR-SZA	338
Synth 1	6x4	24	SBR / SBR-SZA	48
Synth 2	10×6	60	SBR / SBR-SZA	120
	_		Total:	506

Evaluation

- ▶ Three scenarios evaluated: 2 synthetic and 1 based on a real application communication dependency trace
- Evaluation consists of four preliminary steps
 - Seed for segment computation
 - SBR computation
 - RBR computation

Evaluation Criteria

Evaluation Criteria

Scenario	NoC Dimension (Columns X Rows)	SBR Seeds	Segmentation Modes	Configurations per Scenario
NASA NAS	13×13	169	SBR / SBR-SZA	338
Synth 1	6×4	24	SBR / SBR-SZA	48
Synth 2	10x6	60	SBR / SBR-SZA	120
	•		Total:	506

Evaluation

- ► Three evaluations were performed:
 - Routing table scalability
 - ► FIZ/PIZ occurrences
 - Latency estimation

Index

Introduction Objectives

Research

Threat Model Security Aware Routing Modeling

Evaluation

Evaluation Criteria

Preliminary Results

Routing Table Scalability - Average Routing Tables Size

2

Preliminary Results

Routing Table Scalability - Optimal Configuration Heatmap

FIZ Occurrences

Evaluation ○○ ○○○

Latency Variation

0.4

Latency Variation - FIZ Communication

Index

Introduction Objectives

Research

Threat Model Security Aware Routing Modeling

Evaluation

Evaluation Criteria

Preliminary Results

Activities	2016					2017			
Activities		08	09	10	11	12	01	02	03
Study of Related Work									
SA Writing									
SA Presentation									
Dissertation Writing									
Paper submission and									
writing									
Creation of Configuration									
Scenarios and Traffic									
Generators									
Model Evaluation and									
Result Analysis									
Master's Degree Defense									