Espaces vectoriels normés

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1	Définitions, exemples			2
	1.1	Normes		2
		1.1.1 Définition		2
		1.1.2 Distance associée à une norme		2
		1.1.3 Boules et sphères		2
		1.1.4 Normes équivalentes		3
	1.2	Topologie définie par une norme		4
		1.2.1 Voisinages		4
		1.2.2 Ouverts et fermés		5
		1.2.3 Adhérence et intérieur		6
	1.3	Suites		7
		1.3.1 Convergence dans E		7
		1.3.2 Relations avec la topologie		8
		1.3.3 Parties compactes		8
	1.4	Fonctions continues		10
		1.4.1 Applications continues particulières		
		1.4.2 Théorèmes relatifs à la continuité		
2	Esp	ces vectoriels normés de dimension finie	1	12
	2.1^{-}	Théorème fondamental et conséquences		12
	2.2	Théorème spectral		14
3	App	ications linéaires continues	1	16
	3.1	Caractérisations de la continuité		16
	3.2	Triple norme		17
		3.2.1 Généralités		17
		3.2.2 Cas particulier et calcul pratique de la triple norme		19
4	Lim	tes	2	20
	4.1	Définitions et faits de base		20
	4.2	Négligeabilité		21

1 Définitions, exemples

1.1 Normes

1.1.1 Définition

Soit E un \mathbb{R} -espace vectoriel. Une norme sur E est une application $N: E \longrightarrow \mathbb{R}_+$ vérifiant :

- (1) $\forall x \in E, N(x) = 0 \Leftrightarrow x = 0_E \text{ (séparation)};$
- (2) $\forall x \in E, \forall \alpha \in \mathbb{R}, N(\alpha x) = |\alpha| N(x)$ (homogénéité);
- (3) $\forall x, y \in E, N(x + y) \leq N(x) + N(y)$ (inégalité triangulaire).

Remarques Si N est une norme sur E alors :

- $-\forall x \in E, N(-x) = |-1|N(x) = N(x)$
- Soit $r \ge 0$, il existe toujours des vecteurs de norme r^a . En effet soit $x \in E \setminus \{0\}$, le vecteur $\frac{x}{N(x)}$ est unitaire (de norme 1) car $N\left(\frac{x}{N(x)}\right) = \frac{1}{N(x)}N(x) = 1$. Alors le vecteur $\frac{rx}{N(x)}$ est de norme r. $\forall x, y \in E$, $|N(x) N(y)| \le N(x + y)$ (inégalité triangulaire à l'envers).

1.1.2 Distance associée à une norme

Soit N une norme sur le \mathbb{R} -espace vectoriel E. Pour $x, y \in E$, on pose $d_N(x, y) = N(y - x)$. Alors d_N est une distance sur E:

Soit X un ensemble non vide. Une distance sur X est une application $d: X^2 \longrightarrow \mathbb{R}_+$ telle que :

- (1) $\forall a, b \in X$, $d(a, b) = 0 \Leftrightarrow a = b$ (séparation);
- (2) $\forall a, b \in X, d(a, b) = d(b, a)$ (symétrie);
- (3) $\forall a, b, c \in X$, $d(a, c) \leq d(a, b) + d(b, c)^a$ (inégalité triangulaire).

Ici, d_N est appelée distance associée à la norme N

a. Et si d est une distance sur X, on a aussi $|d(a,b) - d(b,c)| \le d(a,c)$

1.1.3 Boules et sphères

- \square Soit N une norme sur le \mathbb{R} -espace vectoriel E. Soit $x \in E$ et r > 0.
- $-\mathcal{B}_{N}(x,r) = \{y \in E | d_{N}(x,y) < r\}$ est la boule ouverte de centre x et de rayon r.
- $-\overline{\mathcal{B}}_{N}(x,r)=\{y\in E|d_{N}(x,y)\leqslant r\}$ est la boule fermée de centre x et de rayon r.
- $-\mathcal{S}_{N}(x,r) = \{y \in E | d_{N}(x,y) = r\}$ est la sphère de centre x et de rayon r.

remarquons que ces trois ensembles sont non vides : soit r > 0, on sait qu'il existe $u \in E$ tel que N(u) = r. Alors $x \dotplus u \in \overline{\mathcal{B}}_N(x,r), x \dotplus u \in \mathcal{S}_N(x,r), \frac{x \dotplus u}{2} \in \mathcal{B}_N(x,r)$.

 \square On appelle $\mathcal{B}_N(0_E,1)$ la boule unité ouverte de (E,N), $\overline{\mathcal{B}}_N(0_E,1)$ la boule unité fermée de (E,N), $\mathcal{S}_N(0_E,1)$ la sphère unité de (E,N).

Exemples

 $-E = \mathbb{R}^2$. Pour $x = (\alpha, \beta) \in \mathbb{R}^2$, on pose :

$$N_{\infty}(x) = \max(|\alpha|, |\beta|)$$

$$N_{1}(x) = |\alpha| + |\beta|$$

$$N_{2}(x) = (\alpha^{2} + \beta^{2})^{1/2}$$

a. Sauf si E est réduit à $\{0\}$, auquel cas, vous en conviendrez, définir une norme n'était pas du plus pertinent...

 $N_{\infty}\left(x\right),\ N_{1}\left(x\right),\ N_{2}\left(x\right)$ sont bien des normes sur \mathbb{R}^{2} et leurs sphères unité respectives sont représentées ainsi :

$$-E = \mathbb{R}^n$$
. Pour $x = (\alpha_1, \alpha_2, \dots, \alpha_n) \in E$, et $p > 1$ on pose

$$N_{\infty}(x) = \max\left(|\alpha_{i}|_{i \in \llbracket 1, n \rrbracket}\right)$$

$$N_{1}(x) = \sum_{i=1}^{n} |\alpha_{i}|$$

$$N_{2}(x) = \left(\sum_{i=1}^{n} \alpha_{i}^{2}\right)^{1/2}$$

$$N_{p}(x) = \left(\sum_{i=1}^{n} \alpha_{i}^{p}\right)^{1/p}$$

Ce sont des normes sur $\mathbb{R}^{n \ b}$.

 $-E = \mathcal{C}([a,b],\mathbb{R})$. Pour $f \in E$, et p > 1 on pose :

$$N_{\infty}(f) = \max_{[a,b]} |f|$$

$$N_{1}(f) = \int_{a}^{b} |f|$$

$$N_{2}(f) = \left(\int_{a}^{b} |f|^{2}\right)^{1/2}$$

$$N_{p}(f) = \left(\int_{a}^{b} |f|^{p}\right)^{1/p}$$

Ce sont encore des normes sur $E = \mathcal{C}([a,b],\mathbb{R})$.

1.1.4 Normes équivalentes

Soit E un \mathbb{R} -espace vectoriel, N_1 , N_2 deux normes sur E. On dit que N_1 est équivalente à N_2 et on note $N_1 \sim N_2$ s'il existe $a, b \in \mathbb{R}_+^*$ tels que $\forall x \in E$, $aN_1(x) \leq N_2(x) \leq bN_1(x)$

Il s'agit bien d'une relation d'équivalence sur l'ensemble des normes définies sur E:

– Si N est une norme alors en prenant a=b=1 il est clair que $N\sim N$

a. « left to the reader! »

b. Le courageux lecteur pourra par ailleurs montrer que $\lim_{p\to +\infty} N_p\left(x\right) = N_{\infty}\left(x\right)$

- Si N_1 , N_2 sont deux normes sur E telles que $N_1 \sim N_2$, alors $∃a,b ∈ \mathbb{R}_+^*$, $aN_1 ≤ N_2 ≤ bN_1$. D'où , $\frac{1}{b}N_{2} \leqslant N_{1} \leqslant \frac{1}{a}N_{2} \text{ et } N_{2} \sim N_{1}.$ - Enfin si $N_{1} \sim N_{2}$ et $N_{2} \sim N_{3}$, $\exists a, b \in \mathbb{R}_{+}^{*}$, $aN_{1} \leqslant N_{2} \leqslant bN_{1}$ et $\exists c, d \in \mathbb{R}_{+}^{*}$, $cN_{2} \leqslant N_{3} \leqslant dN_{2}$, d'où
- $acN_1 \leqslant N_3 \leqslant bdN_1 \text{ et } N_1 \sim N_3$

On dira simplement que N_1 et N_2 sont équivalentes.

Exemples \square Soit $E = \mathbb{R}^n$. Montrons que N_1 , N_2 , N_∞ sont équivalentes, en déterminant les « meilleures » constants a et b possibles.

- Soit $x = (\alpha_1, \alpha_2, \dots, \alpha_n) \in E$. $\exists j \in [1, n], N_{\infty}(x) = |\alpha_j|$. Donc $|\alpha_j| \leq \sum_{i=1}^n |\alpha_i| = N_1(x)$. On a donc $N_{\infty}\left(x\right)\leqslant N_{1}\left(x\right)$, et l'égalité est vérifiée par exemple pour $x=(1,0,\ldots0)$. Par ailleurs $\sum_{i=1}\left|\alpha_{i}\right|\leqslant n\left|\alpha_{j}\right|$, donc $nN_{\infty}(x) \ge N_1(x)$, avec égalité pour x = (1, ..., 1). Donc $N_{\infty}(x) \le N_1(x) \le nN_{\infty}(x)$.
- $-N_2^2(x) = \sum_{i=1}^n |\alpha_i|^2 \ge |\alpha_j|^2 = N_\infty^2(x)$. On a donc $N_\infty(x) \le N_2(x)$, et l'égalité est vérifiée par exemple pour $x = (1, 0, \dots 0)$. Par ailleurs $N_2^2(x) = \sum_{i=1}^n |\alpha_i|^2 \le nN_\infty^2$, donc $\sqrt{n}N_\infty(x) \ge N_2(x)$, avec égalité pour $x = (1, \dots, 1)$. Donc $N_{\infty}(x) \leq N_2(x) \leq \sqrt{n} N_{\infty}(x)$
- $-N_1(x) = \sum_{i=1}^{n} 1. |\alpha_i|^2 \leqslant \sqrt{\sum_{i=1}^{n} 1^2}$, d'après l'inégalité de CAUCHY-SCHWARZ. On a donc $N_1(x) \leqslant \sqrt{n} N_2(x)$, et l'égalité est vérifiée par exemple pour $x=(1,\ldots 1)$. De plus

$$N_1^2(x) = \left(\sum_{i=1}^n |\alpha_i|\right)^2 = \sum_{i=1}^n |\alpha_i|^2 + \sum_{\substack{j \neq i \ \geqslant 0}} |\alpha_i| |\alpha_j|$$

Donc $N_1(x) \ge N_2(x)$, avec égalité pour $x = (1, 0, \dots, 0)$. Finalement $N_2(x) \le N_1(x) \le \sqrt{n}N_2(x)$ \square Soit maintenant $E = \mathcal{C}([a;b], \mathbb{R})$, montrons que dans cet espace N_1 et N_{∞} ne sont pas équivalents. Supposons en effet que $N_1 \sim N_{\infty}$. Alors il existe $\alpha \ge 0$ tel que $N_{\infty} \le \alpha N_1$. Considérons $f_n : t \in [0,1] \longrightarrow t^n$. On doit avoir pour tout $n, 1 = N_{\infty}(f_n) \le \alpha N_1(f_n) = \frac{\alpha}{n+1}$, Soit $\forall n \in \mathbb{N}, n+1 \le \alpha$: un lecteur avisé saura ici repérer la contradiction.

Topologie définie par une norme 1.2

Soit (E, N) un espace vectoriel normé : E est un \mathbb{R} -espace vectoriel et N une norme sur E.

Voisinages 1.2.1

Soit $x \in E$ et $A \subset E$. On dit que A est un voisinage de x s'il existe r > 0 tel que $\overline{\mathcal{B}}_N(x,r) \subset A$.

On remarque que A est un voisinage de x si et seulement si $\exists r > 0/\mathcal{B}_N(x,r) \subset A$. En effet :

- \Rightarrow On sait que $\forall r > 0/\overline{\mathcal{B}}_N(x,r) \subset A$ d'où $\mathcal{B}_N(x,r) \subset \overline{\mathcal{B}}_N(x,r)$.
- \Leftarrow On sait que $\exists r > 0/\mathcal{B}_N\left(x,r\right)$ d'où $\overline{\mathcal{B}}_N\left(x,\frac{r}{2}\right) \subset \mathcal{B}_N\left(x,r\right) \subset A$.

Petite histoire \square Soit N' une norme sur E telle que $N \sim N'$: $\exists a, b \in \mathbb{R}_+^*$ tels que $\forall x \in E, aN(x) \leq N'(x) \leq N'(x) \leq N'(x)$ $bN\left(x\right)$. Soit donc $x \in E, \ r > 0$. Si $y \in \overline{\mathcal{B}}_{N}\left(x,r\right)$, alors $N\left(y-x\right) \leqslant r$ donc $N'\left(y-x\right) \leqslant br$ donc $y \in \overline{\mathcal{B}}_{N'}\left(x,br\right)$ donc $\overline{\mathcal{B}}_{N}(x,r) \subset \overline{\mathcal{B}}_{N'}(x,br)$. De même, $\overline{\mathcal{B}}_{N'}(x,r) \subset \overline{\mathcal{B}}_{N}\left(x,\frac{r}{a}\right)$ donc

$$\overline{\mathcal{B}}_{N'}(x,ar) \subset \overline{\mathcal{B}}_{N}(x,r) \subset \overline{\mathcal{B}}_{N'}(x,br)$$

- \square Soit maintenant $A \subset E$.
- Si A est voisinage de x dans (E, N), alors $\exists r > 0$ tel que $\overline{\mathcal{B}}_N(x, r) \subset A$ d'où $\overline{\mathcal{B}}_{N'}(x, ra) \subset A$ donc A est voisinage de x dans (E, N').
- De même, si A est voisinage de x dans (E, N'), alors $\exists \rho > 0$ tel que $\overline{\mathcal{B}}_{N'}(x, \rho) \subset A$ donc $\overline{\mathcal{B}}_N\left(x, \frac{\rho}{a}\right) \subset A$ donc A est voisinage de x dans (E, N).

Ainsi, deux normes équivalentes définissent les même voisinages dans E et donc la même topologie.

Propriétés des voisinages

Soit (E, N) un espace vectoriel normé, $x \in E$.

- Si A est un voisinage de X et si $A \subset B$ alors B est voisinage de x
- Une réunion quelconque de voisinages de x est un voisinage de x.
- Une intersection finie de voisinages de x est un voisinage de x.

En effet, soient
$$V_1, V_2, \ldots, V_m$$
 $(m \in \mathbb{N}^*)$ voisinages de x . $\exists r_1, r_2, \ldots, r_m \in \mathbb{R}_+^*, \forall i \in [1, m], \overline{\mathcal{B}}_N(x, r_i) \subset V_i$. Soit alors $r = \min(r_1, r_2, \ldots, r_m)$. On a $r \leqslant r_i$ $(1 \leqslant i \leqslant m)$ donc $\overline{\mathcal{B}}_N(x, r) \subset \overline{\mathcal{B}}_N(x, r_i) \subset V_i$. Donc $\overline{\mathcal{B}}_N(x, r) \subset \bigcap_{i=1}^m V_i$.

Piège! Une intersection *infinie* de voisinages de x n'est en général pas un voisinage de x. Voici un contreexemple : pour $n \in \mathbb{N}$, on pose $V_n = \overline{\mathcal{B}}_N\left(x, \frac{1}{n}\right)$ est clairement un voisinage de x. Mais $\bigcap_{i \in \mathbb{N}} V_i = \{x\}$:

- on a bien $\{x\} \subset V_n$ pour tout $n \in \mathbb{N}$, donc $x \subset \bigcap_{i \in \mathbb{N}} V_i$.
- si $y \in E \setminus \{x\}$, alors $d_N(x,y) > 0$ et pour $m \in \mathbb{N}$ assez grand, $\frac{1}{m} < d_N(x,y)$ donc $y \notin V_m$. Donc $y \notin \bigcap_{i \in \mathbb{N}} V_i$. et d'autre part, $\{x\}$ n'est pas un voisinage de $\{x\}$: en effet si r > 0, $\overline{\mathcal{B}}_N(x,r)$ contient toujours des points autres que x, par exemple ceux de $\mathcal{S}_N(x,r)$.

1.2.2 Ouverts et fermés

Soit (E, N) un espace vectoriel normé, $A \subset E$

- On dit que A est ouvert si $\forall x \in A$, A est voisinage de x. En particulier, \emptyset et E sont des ouverts.
- on dit que A est fermé si $E \setminus A$ est ouvert.

E et \varnothing sont les seuls ensembles à la fois ouverts et fermés.

Exemples Soit $x \in E$, r > 0. Alors $\mathcal{B}_N(x,r)$ est une partie ouverte de (E,N), et $\overline{\mathcal{B}}_N(x,r)$ est une partie fermée de (E,N).

- Soit $y \in \mathcal{B}_{x}(x,r)$, $d_{N}(x,r) < r$. Posons $r' = r d_{N}(y,r)$, et soit $z \in \mathcal{B}_{N}(y,r)$. Alors $d_{N}(x,z) \leq \underbrace{d_{N}(x,y)}_{< r'} + d_{N}(y,z)$. Donc $z \in \mathcal{B}_{N}(x,r)$. Donc $\mathcal{B}_{N}(y,r') \subset \mathcal{B}_{N}(x,r)$ et donc $\mathcal{B}_{N}(x,r)$ est bien un voisinage de x.
- Montrons que $E \setminus \overline{\mathcal{B}}_N(x,r)$ est ouvert. Soit $y \in E \setminus \overline{\mathcal{B}}_N(x,r)$, on a $d_N(x,y) > r$. Soit $r' = d_N(x,y) r$ et $z \in \mathcal{B}_N(y,r')$. Alors $d_N(x,z) \ge d_N(x,y) d_N(y,z)$ (inégalité triangulaire à l'envers), d'où $d_N(x,z) > d(x,y) r' = r$. Donc $z \in E \setminus \overline{\mathcal{B}}_N(x,r)$ et $\mathcal{B}_N(y,r') \subset E \setminus \overline{\mathcal{B}}_r(x,r)$. $E \setminus \overline{\mathcal{B}}_N(x,r)$ est donc bien un voisinage de y.

On montrerait de même que si $x \in E$, alors $\{x\}$ est fermé.

Propriétés

- Une réunion quelconque d'ouverts est un ouvert.
- Une intersection *finie* d'ouverts est un ouvert.
- Une intersection quelconque de fermés est un fermé.
- Une réunion *finie* de fermés est un fermé.

En particulier, toute partie finie, qui peut être vue comme réunion de singletons, est fermée.

Remarque Soit N' une norme sur E telle que $N' \sim N$. N et N' définissent les mêmes voisinages donc définissent les mêmes parties ouvertes et fermées. En particulier, $\forall x \in E, \forall R > 0, \overline{\mathcal{B}}_{N'}(x, R)$ et $\mathcal{S}_{N'}(x, R)$ sont fermées dans (E, N) et $\mathcal{B}_{N}(x, R)$ est ouverte dans (E, N).

1.2.3 Adhérence et intérieur

Soit $A \subset E$.

- (1) On dit que $x \in E$ est intérieur à A si A est voisinage de x. L'ensemble des points intérieurs à A est l'intérieur de A et se note Int A.
- (2) On dit que $x \in E$ est adhérent à A si tout voisinage de x de E contient au moins un élément de A, c'est-à-dire si pour tout voisinage V de x, $V \cap A \neq \emptyset$. L'ensemble des points adhérents à A est l'adhérence de A et se note Adh A.

On a toujours de manière triviale :

$$\operatorname{Int} A \subset A \subset \operatorname{Adh} A$$

Exemple Soit $x \in E$, r > 0. Alors Adh $\mathcal{B}_N(x,r) = \overline{\mathcal{B}}_N(x,r)$ et Int $\overline{\mathcal{B}}_N(x,r) = \mathcal{B}_N(x,r)$. Montrons le premier résultat.

 \square Réciproquement, si $y \in \operatorname{Adh} \mathcal{B}_N(x,r)$, alors pour $n \in \mathbb{N}^*$, $\overline{\mathcal{B}}_N\left(x,\frac{1}{n}\right)$ est voisinage de y donc $\overline{\mathcal{B}}_N\left(x,\frac{1}{n}\right) \cap$

 $\mathcal{B}_{N}\left(x,r\right)\neq\varnothing$ donc $\exists z_{n}\in\mathcal{B}_{N}\left(x,r\right)$ tel que $d_{N}\left(y,z_{n}\right)\leqslant\frac{1}{n}$ d'où

$$d_N(x, y) \leq d_N(x, z) + d_N(z, y)$$

$$\leq r + \frac{1}{n}$$

En faisant tendre $n \to +\infty$ dans la précédente inégalité, on obtient $d_N(x,y) \le r$ donc $y \in \overline{\mathcal{B}}_N(x,r)$.

Proposition

Soit $A \subset E$ et N une norme définissant la topologie.

- (1) Int A est ouvert; c'est le plus grand ouvert contenu dans A et A est ouvert si et seulement si Int A = A.
- (2) Adh A est un fermé, c'est le plus petit fermé contenant A et A est fermé si et seulement si Adh A = A.
- (1) Si Int $A = \emptyset$, Int A est ouvert. Supposons Int $A \neq \emptyset$ et soit $x \in \text{Int } A$, A est voisinage de x donc $\exists r > 0$ tel que $\mathcal{B}_N(x,r) \subset A$ or $\mathcal{B}_N(x,r)$ est ouvert donc voisinage de tous ses points. De plus $\mathcal{B}_N(x,r) \subset A$ donc A est voisinage de chaque point de $\mathcal{B}_N(x,r)$ donc $\mathcal{B}_N(x,r) \subset \text{Int } A$ donc Int A est voisinage de x donc Int A est ouvert.

Soit maintenant O un ouvert de E tel que $O \subset A$. Si $x \in O$, O est voisinage de x donc A aussi donc $x \in Int A$ donc $O \subset Int A$.

 \Rightarrow Si A est ouvert, A est un ouvert de E contenu dans A donc $A \subset \operatorname{Int} A$ or $\operatorname{Int} A \subset A$ donc $A = \operatorname{Int} A$.

- \Leftarrow Réciproquement, si Int A = A, alors A est ouvert car Int A l'est.
- (2) Montrons que $E \setminus Adh A$ est ouvert. Si Adh $A = E \Leftrightarrow E \setminus Adh A = \emptyset$, c'est bon. Dans le cas contraire, soit $x \in E \setminus Adh A$, x n'est pas adhérent à A donc il existe un voisinage V de A tel que $V \cap A = \emptyset$. Or $\exists r > 0$ tel que $\mathcal{B}_N(x,r) \subset V$ et si $y \in \mathcal{B}_N(x,r)$, $\mathcal{B}_N(x,r)$ est voisinage de y et $(\mathcal{B}_N(x,r) \cap A) \subset (V \cap A)$ donc y n'est pas adhérent à A donc $\mathcal{B}_N(x,r) \subset E \setminus Adh A$. Par conséquent, $E \setminus Adh A$ est un voisinage de x donc Adh A est fermé.

Soit F un fermé de E tel que $A \subset F$, $O = E \setminus F \subset E \setminus A$ est ouvert donc si $x \in O$, O est voisinage de x inclus dans $E \setminus A$ donc $x \notin Adh A$ donc $O \subset E \setminus Adh A \Leftrightarrow Adh A \subset F$.

- \Rightarrow Si A est fermé, A est un fermé de E qui contient A donc il contient $A \operatorname{dh} A$ or $A \subset \operatorname{Adh} A$ donc $A = \operatorname{Adh} A$.
- $\Leftarrow A = \operatorname{Adh} A$ et $\operatorname{Adh} A$ est fermé...

1.3 Suites

1.3.1 Convergence dans E

Dans la suite a, (E, N) est un espace vectoriel normé.

Soit $x \in E^{\mathbb{N}}$, $(x_n)_{n \in \mathbb{N}}$ est donc une suite d'éléments de E.

- (1) Soit $a \in E$, on dit que x converge vers a et on écrit $x_n \xrightarrow[n \to +\infty]{N} a$ lorsque $d_N(x_n, a) \xrightarrow[n \to +\infty]{0} 0$.
- (2) On dit que x est convergente si $\exists a \in E$ tel que $x_n \xrightarrow[n \to +\infty]{N} a$, et divergente dans le cas contraire.

Unicité de la limite Soit $x \in E^{\mathbb{N}}$ convergente, alors il existe un unique $a \in E$ tel que $x_n \xrightarrow[n \to +\infty]{N} a$. a est la limite de x et se note $\lim_{n \to +\infty} x_n$.

En effet, supposons qu'il existe $a, b \in E$ avec $a \neq b$ tels que x converge vers a et x converge vers b, et soit $d = d_N(a, b) > 0$. Si $\varepsilon = \frac{d}{4}$, $\exists n_0, n_1 \in \mathbb{N}$ tels que $\forall n \geqslant n_0$, $d_N(x_n, a) \leqslant \epsilon$ et $\forall n \geqslant n_1$, $d_N(x_n, b) \leqslant \epsilon$. Mais alors pour $n \geqslant \max(n_0, n_1)$,

$$d_{N}(a,b) \leq d_{N}(a,x_{n}) + d_{N}(x_{n},b)$$

$$\leq 2\varepsilon$$

$$\leq \frac{d_{N}(a,b)}{2}$$

D'où la contradiction.

Proposition Soit $x \in E^{\mathbb{N}}$ convergente de limite $a \in E$.

- (1) Toute sous-suite de x converge aussi vers a.
- (2) x est bornée : $\exists M > 0/\forall n \in \mathbb{N}, N(x_n) \leq M$.

En effet, montrons ces deux résultats.

- (1) Soit $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante, $\left(d_N\left(x_{\varphi(n)},a\right)\right)_{n\in\mathbb{N}}$ est une sous-suite de $\left(d_N\left(x_n,a\right)\right)_{n\in\mathbb{N}}$ qui converge vers 0 donc , d'après les théorèmes sur les suites réelles, $d_N\left(x_{\varphi(n)},a\right) \underset{n\to+\infty}{\longrightarrow} 0$.
- (2) Prenons $\epsilon = 42^b$, il existe $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0$, $d_N(x_n, a) \le 42$ donc pour $n \ge n_0$,

$$N(x_n) = N(x_n - a + a)$$

$$\leq N(x_n - a) + N(a)$$

$$\leq 42 + N(a)$$

Soit $\mu = \max(N(x_0), N(x_1), \dots, N(x_{n_0-1})) =$, alors $\forall n \in \mathbb{N}, N(x_n) \leq \max(\mu, 42 + N(a))$.

a. Pour éviter toute confusion avec le titre de cette section, M. Sellès a préféré nous donner une version anglaise : « In the sequel, (E, N) is a normed vector space. ». Yeah!

b. 42! Voir la note page ??.

Théorème général Soient $x, y \in E^{\mathbb{N}}$ convergentes de limites respectives a et b. Alors $\forall \alpha \in \mathbb{R}$,

$$\alpha x_n + y_n \xrightarrow[n \to +\infty]{} \alpha a + b$$

En effet, $\forall n \in \mathbb{N}$,

$$d_{N}(\alpha x_{n} + y_{n}, \alpha a + b) = N(\alpha(x_{n} - a) + x_{n} - b)$$

$$\leq |\alpha| \underbrace{N(x_{n} - a)}_{n \to +\infty} + \underbrace{N(x_{n} - b)}_{n \to +\infty}$$

Or $d_N(x,y) \ge 0$ pour $x,y \in E$ donc, d'après les théorèmes sur les suites réelles, $d_N(\alpha x_n + y_n, \alpha a + b) \xrightarrow[n \to +\infty]{} 0$.

1.3.2 Relations avec la topologie

Définition topologique de la convergence Soit $b \in E^{\mathbb{N}}$, $u \in E$, b converge vers u si et seulement si pour tout voisinage V de u dans (E, N), $\exists n_0 \in \mathbb{N}/\forall n \geq n_0$, $b_n \in V$.

- ⇒ Soit V un voisinage de u dans (E, N), $\exists r > 0$ tel que $\mathcal{B}_N(u, r) \subset V$. Prenons $\varepsilon = r$, alors $\exists n_0 \in \mathbb{N}/\forall n \ge n_0$, $d_N(b_n, u) \le \varepsilon$ d'où pour $n \ge n_0$, $b_n \in \mathcal{B}_N(u, r)$.
- \Leftarrow Soit $\varepsilon > 0$, $V = \overline{\mathcal{B}}_N(u, \varepsilon)$ est un voisinage de u dans E donc $\exists n_0 \in \mathbb{N}/\forall n \geqslant n_0, b_n \in \overline{\mathcal{B}}_N(u, \varepsilon) \Leftrightarrow d_N(b_n, u) \leqslant \varepsilon$.

Caractérisation séquentielle de l'adhérence

Soit $A \subset E$, $x \in E$, x est adhérent à A si et seulement si il existe une suite d'éléments de A qui converge vers x.

- $\Rightarrow \text{ On suppose } x \in \text{Adh } A, \text{ pour } n \in \mathbb{N}^*, \ V_n = \overline{\mathcal{B}}_N\left(x,\frac{1}{n}\right) \text{ est voisinage de } x \text{ dans } (E,N) \text{ donc } V_n \cap A \neq \varnothing :$ si $a_n \in V_n \cap A \text{ alors } \forall n \in \mathbb{N}, \ a_n \in A \text{ et } a_n \in V_n \text{ donc } 0 \leqslant \operatorname{d}_N\left(a_n,x\right) \leqslant \frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0 \text{ d'où } \operatorname{d}_N\left(a_n,x\right) \underset{n \to +\infty}{\longrightarrow} 0$ donc $(a_n)_{n \in \mathbb{N}}$ est une suite d'éléments de A qui converge vers x.
- \Leftarrow Soit $a \in A^{\mathbb{N}}$ convergente de limite $x \in E$, V un voisinage de x. Alors $\exists n_0 \in \mathbb{N}/\forall n \geq n_0$, $a_n \in V$ d'où $a_n \in V \cap A$ donc $V \cap A \neq \emptyset$.

Suites et parties fermées Soit $A \subset E, A \neq \emptyset$. Alors A est fermée si et seulement si $\forall a \in A^{\mathbb{N}}$ convergente, $\lim_{n \to +\infty} a_n \in A$.

- \Rightarrow Soit a une suite convergente d'éléments de A, $l = \lim_{n \to +\infty} a_n \in E$. l est limite d'une suite de points de A donc $l \in Adh A = A$.
- \Leftarrow Montrons que $A = \operatorname{Adh} A$. Il suffit de voir que $\operatorname{Adh} A \subset A$. Soit $x \in \operatorname{Adh} A$, $\exists a \in A^{\mathbb{N}}$ convergente telle que $\lim_{n \to +\infty} a_n = x$ donc $x \in A$.

1.3.3 Parties compactes

Soit $A \subset E$, on dit que A est un compact si $\forall a \in A^{\mathbb{N}}$, il existe une sous-suite de a qui converge vers un élément de A.

Pour $E = \mathbb{R}$ et $N = |\cdot|$, on a vu que les parties compactes de \mathbb{R} sont les parties fermées et bornées ^a.

a. Voir section 10.3.3.2 du cours complet page 173.

Proposition Montrons que si A est un compact, alors A est fermée et bornée.

- \square Montrons que A est fermée. Soit $a \in A^{\mathbb{N}}$ convergente, montrons que $b = \lim_{n \to +\infty} a_n \in A$. A est compact donc il existe une sous-suite de a qui converge vers $b' \in A$. Or a est convergente donc toutes les sous-suites de a convergent vers b donc $b = b' \in A$.
- □ Montrons que A est bornée, supposons qu'elle ne l'est pas : $\forall R > 0$, $\exists a \in A$ tel que N(a) > R. En particulier, $\forall n \in \mathbb{N}$, $\exists a_n \in A$ tel que $N(a_n) \ge n$. Si $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ est strictement croissante, alors $\forall n \in \mathbb{N}$, $N(a_{\varphi(n)}) \ge \varphi(n) \ge n \xrightarrow[n \to +\infty]{} +\infty$ donc la suite $(a_{\varphi(n)})_{n \in \mathbb{N}}$ n'est pas bornée donc ne converge pas. Aucune sous-suite de A ne converge, ce qui est impossible.

Cas particulier

Prenons E de dimension finie $m \in \mathbb{N}^*$, $\mathcal{B} = (e_1, e_2, \dots, e_m)$ un base de E et pour $x \in E$, on pose $N_{\infty,\mathcal{B}}(x) = \max_{i \in [\![1,m]\!]} |e_i^*(x)|$ où $(e_1^*, e_2^*, \dots, e_m^*)$ est la base duale de \mathcal{B} . $N_{\infty,\mathcal{B}}$ est une norme et pour toute suite x d'éléments de A et $\forall a \in E$,

$$x_n \xrightarrow[n \to +\infty]{N_{\infty,B}} a \Leftrightarrow \forall i \in [1, m], e_i^*(x_n) \xrightarrow[n \to +\infty]{} e_i^*(a)$$

 \Rightarrow Soit $i \in [1, n]$,

$$|e_{i}^{*}(x_{n}) - e_{i}^{*}(a)| = |e_{i}^{*}(x_{n} - a)|$$

$$\leq \max_{j \in [1, m]} |e_{j}^{*}(x_{n} - a)|$$

$$\leq N_{\infty, \mathcal{B}}(x_{n} - a) \xrightarrow[n \to +\infty]{} 0$$

donc $e_i^*(x_n) \xrightarrow[n \to +\infty]{} e_i^*(a)$.

 \Leftarrow Pour $n \in \mathbb{N}$,

$$N_{\infty,\mathcal{B}}(x_n - a) = \max_{i \in [1,n]} |e_i^*(x_n - a)|$$

$$\leq \sum_{j=1}^n \underbrace{|e_j^*(x_n) - e_i^*(a)|}_{n \to +\infty} 0$$

donc $N_{\infty,\mathcal{B}}(x_n-a) \xrightarrow[n\to+\infty]{} 0$ d'où le résultat.

Dans le cas où E est de dimension finie uniquement, les parties compactes de $(E, N_{\infty, \mathcal{B}})$ sont les parties fermées bornées.

Il reste à voir que si A est fermée et bornée, alors A est un compact.

Petit lemme Soit $r \in \mathbb{N}^*$, $u_1, u_2, \dots, u_r \in \mathbb{R}^{\mathbb{N}}$ des suites réelles bornées. Alors $\exists \varphi : \mathbb{N} \longrightarrow \mathbb{N}$ telle que $\forall i \in [1, n]$ strictement croissante et $\alpha_1, \alpha_2, \dots, \alpha_r \in \mathbb{R}$ tels que $\forall i \in [1, r]$, $u_i(\varphi(n)) \xrightarrow[n \to +\infty]{} \alpha_i$.

En effet, pour r=1 c'est le théorème de Bolzano-Weierstrass a.

Supposons le résultat vrai pour $r \in \mathbb{N}^*$, soient $u_1, u_2, \ldots, u_{r+1} \in \mathbb{R}^{\mathbb{N}}$ des suites bornées. Par hypothèse, $\exists \psi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante et $\alpha_1, \alpha_2, \ldots, \alpha_r$ tels que $\forall i \in \llbracket 1, r \rrbracket$, $u_i(\psi(n)) \underset{n \to +\infty}{\longrightarrow} \alpha_i$. La suite v définie pour $n \in \mathbb{N}$ par $v_n = u_{r+1}(\psi(n))$ est une sous-suite bornée de u_{r+1} donc, d'après le théorème de BOLZANO-WEIERSTRASS, il existe $\theta : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante et $\theta \in \mathbb{R}$ tels que $v_{\theta(n)} \underset{n \to +\infty}{\longrightarrow} \beta$ donc $u_{r+1}(\psi \circ \theta(n)) \underset{n \to +\infty}{\longrightarrow} \beta$. Pour $i \in \llbracket 1, r \rrbracket$, la suite $(u_i(\psi \circ \theta(n)))_{n \in \mathbb{N}}$ est une sous-suite de la suite convergente $(u_i(\psi(n)))_{n \in \mathbb{N}}$ donc elle converge aussi vers α_i . Ainsi, si on pose $\alpha_{i+1} = \beta$ et $\varphi = \psi \circ \theta$, alors φ est strictement croissante et $\forall i \in \llbracket 1, r+1 \rrbracket$, $u_i(\varphi(n)) \underset{n \to +\infty}{\longrightarrow} \alpha_i$.

a. Voir la section 9.3.5 du cours complet page 157.

Ici, soit $x \in A^{\mathbb{N}}$ bornée. A est bornée donc $\exists R > 0$ tel que $\forall z \in A, N_{\infty,\mathcal{B}}(z) \leqslant R$ donc $\forall n \in \mathbb{N}, N_{\infty,\mathcal{B}}(x_n) \leqslant R$ donc $\forall i \in [1, m], \ \forall n \in \mathbb{N}, \ |e_i^*(x_n)| \leqslant R$ donc $(e_i^*(x_n))_{n \in \mathbb{N}}$ est une suite réelle bornée donc, d'après le petit lemme, $\exists \varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante et $\alpha_1, \alpha_2, \ldots, \alpha_m \in \mathbb{R}$ tels que $\forall i \in [1, m], \ e_i^*(x_{\varphi(n)}) \xrightarrow[n \to \infty]{} \alpha_i$.

Posons
$$a = \sum_{i=1}^{m} \alpha_i e_i$$
, alors

$$x_{\varphi(n)} \xrightarrow[n \to +\infty]{N_{\infty,\mathcal{B}}} a$$

a est limite d'une suite d'éléments du fermé A donc $a \in A$ donc A est un compact.

1.4 Fonctions continues

Soient (E, N) et (F, ν) deux espaces vectoriels normés et $f: D \subset E \longrightarrow F$.

- (1) Soit $x_0 \in D$, on dit que f est continue en x_0 si pour tout voisinage V de $f(x_0)$ dans (F, ν) , il existe un voisinage U de x_0 dans (E, N) tel que $f(U \cap D) \subset V$.
- (2) On dit que f est continue si $\forall x \in D$, f est continue en x.

Proposition Avec les notations de la définition, les assertions suivantes sont équivalentes :

- (1) $\forall \varepsilon > 0, \exists \alpha > 0 \text{ tel que } \forall x \in D, N(x x_0) \leq \alpha \Rightarrow N(f(x) f(x_0)) \leq \varepsilon;$
- (2) f est continue en x_0 ;
- (3) pour toute suite u d'éléments de E qui converge vers x_0 , f(u) converge vers $f(x_0)$.

Démonstration

- (1) \Rightarrow (2) Soit V un voisinage de $f(x_0)$ dans (F, ν) , $\exists \varepsilon > 0$, $\overline{\mathcal{B}}_{\nu}(f(x_0), \varepsilon) \subset V$. On peut trouver d'après (1) un $\alpha > 0$ tel que $\forall x \in D$, $N(x x_0) \leqslant \alpha \Rightarrow N(f(x) f(x_0)) \leqslant \varepsilon$. Soit $U = \overline{\mathcal{B}}_N(x_0, \alpha)$, alors U est un voisinage de x_0 et, pour tout $x \in U \cap D$, on a $x \in D$ et $N(x x_0) \leqslant \alpha$ donc $N(f(x) f(x_0)) \leqslant \varepsilon$ d'où $f(x_0) \in V$.
- (2) \Rightarrow (3) Soit $u \in D^{\mathbb{N}}$ convergente vers x_0 . Montrons que $f(u_n) \xrightarrow[n \to +\infty]{\nu} f(x_0)$. Soit V un voisinage de $f(x_0)$ dans (F, ν) , on cherche $n_0 \in \mathbb{N}/\forall n \geq n_0$, $f(u_n) \in V$. D'après (2), il existe un voisinage U de x_0 dans (E, N) tel que $f(U \cap D) \subset V$. u converge vers x_0 donc $\exists n_0 \in \mathbb{N}/\forall n \geq n_0$, $u_n \in U$. Donc, pour $n \geq n_0$, $u_n \in U \cap D$ donc $f(u_n) \in V$.
- $(3) \Rightarrow (1)$ Montrons que $\neg (1) \Rightarrow \neg (3)$. Supposons donc que

$$\exists \varepsilon > 0, \forall \alpha > 0, \exists x \in D/N (x - x_0) \leq \alpha \text{ et } N (f(x_0) - f(x)) > \varepsilon$$

En particulier, $\forall n \in \mathbb{N}$, $\exists (u_n) \in D^{\mathbb{N}}$ tel que $N(u_n - x_0) \leq 2^{-n}$ et $N(f(u_n) - f(x_0)) > \varepsilon$ donc u est une suite de points de D qui converge vers x_0 telle que $f(u_n)$ ne converge pas vers x_0 , ce qui prouve la contraposée.

Théorèmes généraux

- (1) Soient $f, g: D \subset (E, N) \longrightarrow (F, \nu)$ continues. Alors $\forall \alpha \in \mathbb{R}, \alpha f + g$ est continue.
- (2) Soient (E, N), (F, ν) et $(G, \|\cdot\|)$ trois espaces vectoriels normés, $D \subset E$, $\Delta \subset F$, $f: D \longrightarrow F$ telle que $f(D) \subset \Delta$ et $g: \Delta \longrightarrow G$. Si f et g sont continues, alors $f \circ g$ est continue.

Démontrons la deuxième proposition, la première étant triviale au vu de la caractérisation séquentielle de la continuité et des théorèmes déjà connus sur les suites convergentes. Soit $x \in E$ donc, montrons que $g \circ f$ est continue en x. Soit W un voisinage de $g \circ f(x)$ dans G, g est continue en f(x) donc il existe un voisinage V de f(x) dans F tel que $g(V \cap \Delta) \subset W$. De plus, f est continue en x donc il existe un voisinage U de x dans E tel que $f(U \cap D) \subset V$ donc, si $t \in U \cap D$, $f \circ g(t) \in W$.

1.4.1 Applications continues particulières

Soit $b \in F$, alors $x \in E \longrightarrow b$ est continue : soit $\varepsilon > 0$, $x_0 \in E$, $\alpha = 1$, $\forall x \in Z$ tel que $N(x - x_0) \le 1$, $\nu(f(x) - f(x_0)) = \nu(0) = 0 \le \varepsilon$.

Applications lipschitziennes

 $f: D \subset E \longrightarrow F$ est lipschitzienne s'il existe $k \ge 0$ tel que $\forall x, y \in D$, $\nu\left(f\left(x\right) - f\left(y\right)\right) \le kN\left(x - y\right)$. Il est clair que toute application lipschitzienne est continue.

 $\square N: E \longrightarrow \mathbb{R}_+$ est continue de (E,N) dans $(\mathbb{R},|\cdot|)$: en effet, $\forall x,y \in E$, d'après l'inégalité triangulaire à l'envers, $|N(x)-N(y)| \leq N(x-y)$ donc N est 1-lipschitzienne.

 \square Supposons que E est de dimension finie $m \in \mathbb{N}^*$, soit $\mathcal{B} = (e_1, e_2, \dots, e_m)$ une base de E muni de $N_{\infty, \mathcal{B}}{}^a$, (F, ν) un espace vectoriel normé et $f: E \longrightarrow F$ linéaire. Alors f est continue de (E, N) dans (F, ν) .

En effet, soit
$$x = \sum_{i=1}^{m} \alpha_i e_i \in E$$
, alors $f(x) = \sum_{i=1}^{m} \alpha_i f(e_i)$ donc

$$\nu(f(x)) \leq \sum_{i=1}^{m} \nu(\alpha_{i} f(e_{i}))$$

$$\leq \sum_{i=1}^{m} \underbrace{|\alpha_{i}|}_{\leq N_{\infty,\mathcal{B}}(x)} \nu(f(e_{i}))$$

$$\leq N_{\infty,\mathcal{B}}(x) \sum_{i=1}^{m} \nu(f(e_{i}))$$

Donc $\exists \lambda \in \mathbb{R}$ tel que $\forall x \in E$, $\nu(f(x)) \leq \lambda N_{\infty,\mathcal{B}}(x)$ mais alors $\forall x, y \in E$,

$$d_{\nu} (f(x), f(y)) = \nu (f(x) - f(y))$$

$$\leq \lambda N_{\infty, \mathcal{B}} (x - y)$$

$$\leq \lambda d_{N} (x, y)$$

donc f est λ -lipschitzienne donc continue.

 ${f Piège!}$ Il existe des applications linéaires qui ne sont pas continues! Il suffit de prendre E de dimension infinie.

Prenons $E = \mathcal{C}([0,1],\mathbb{R}), N_1 = \int_0^1 |f|$. Soit $\varphi : f \in E \longrightarrow f(1) \in \mathbb{R}$, φ est linéaire de E dans \mathbb{R} mais si pour $n \in \mathbb{N}$ on pose $f_n : t \in \mathbb{R} \longrightarrow t^n$, alors $f_n \xrightarrow[n \to +\infty]{N_1} 0_E$ mais $\forall n \in \mathbb{N}, \varphi(f_n) = 1$ d'où $\varphi(f_n) \xrightarrow[n \to +\infty]{N_1} 1 \neq \varphi(0_E) = 0_{\mathbb{R}}$.

Applications uniformément continues

Soit $f:D\subset E\longrightarrow F$, on dit que f est uniformément continue si $\forall \varepsilon>0,\ \exists \alpha>0$ tel que $\forall x,y\in D,\ N\left(x-y\right)\leqslant\varepsilon\Rightarrow\nu\left(f\left(x\right)-f\left(y\right)\right)\leqslant\alpha.$

Toutes les applications lipschitziennes sont uniformément continues, mais $\sqrt{\cdot}: \mathbb{R}_+ \longrightarrow \mathbb{R}$ est uniformément continue mais pas lipschitzienne b.

a. Voir page 13.

b. Voir section 11.1.1.3 du cours complet page 177.

2011-2012

1.4.2 Théorèmes relatifs à la continuité

Théorème de Heine

Soit D un compact de (E, N), $f: D \longrightarrow (F, \nu)$ continue. Alors f est uniformément continue.

Supposons que f n'est pas uniformément continue : $\exists \varepsilon > 0$ tel que $\forall \alpha > 0$, $\exists x_{\alpha}, y_{\alpha} \in D$ tels que $d_{N}(x_{\alpha}, y_{\alpha}) \leq \alpha$ et $d_{\nu}(f(x_{\alpha}), f(y_{\alpha})) > \varepsilon$. En particulier, $\forall n \in \mathbb{N}^{*}$, il existe $x_{n}, y_{n} \in D$ tels que $d_{N}(x_{n}, y_{n}) \leq \frac{1}{n}$ et $d_{\nu}(f(x_{n}), f(y_{n})) > \varepsilon$. D est un compact donc il existe $a \in D$ et $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante tels que $x_{\varphi(n)} \xrightarrow[n \to +\infty]{N} a$. Or, $\forall n \in \mathbb{N}^{*}$,

$$d_{N}(y_{\varphi(n)}, a) \leq d_{N}(y_{\varphi(n)}, x_{\varphi(n)}) + d_{N}(x_{\varphi(n)}, a)$$

$$\leq \frac{1}{\varphi(n)} + d_{N}(x_{\varphi(n)}, a)$$

$$\leq \frac{1}{n} + d_{N}(x_{\varphi(n)}, a) \xrightarrow[n \to +\infty]{} 0 \operatorname{car} \varphi(n) \geq n$$

Ainsi, $y_{\varphi(n)} \xrightarrow[n \to +\infty]{N} a$ or f est continue en a donc $f\left(x_{\varphi(n)}\right) \xrightarrow[n \to +\infty]{\nu} f\left(a\right)$ et $f\left(y_{\varphi(n)}\right) \xrightarrow[n \to +\infty]{\nu} f\left(a\right)$. Or, $\forall n \in \mathbb{N}^*$,

$$\varepsilon < d_{\nu} \left(f\left(x_{\varphi(n)} \right), f\left(y_{\varphi(n)} \right) \right) \underset{n \to \infty}{\longrightarrow} 0$$

d'où la contradiction.

Image d'un compact par une application continue

Soit D un compact de (E, N), $f: D \longrightarrow (F, \nu)$ continue. Alors f(D) est un compact de (F, ν) . En particulier, si $F = \mathbb{R}$ et $\nu = |\cdot|$, f est bornée et atteint ses bornes : $\exists x_0, y_0 \in D$ tels que $\forall z \in D$, $f(x_0) \leq f(z) \leq f(y_0)$.

 \square Soit y une suite d'éléments de f(D), pour $n \in \mathbb{N}$, il existe $x_n \in D$ tel que $y_n = f(x)$. D est compact donc $\exists \varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante et $a \in D$ tels que $x_{\varphi(n)} \xrightarrow[n \to +\infty]{N} a$. f est continue en a donc

$$y_{\varphi(n)} = f\left(x_{\varphi(n)}\right) \xrightarrow[n \to +\infty]{\nu} f\left(a\right) \in f\left(D\right)$$

 \square Si $F = \mathbb{R}$ et $\nu = |\cdot|$, f(D) est un compact de $(\mathbb{R}, |\cdot|)$ donc c'est une partie fermée bornée de \mathbb{R} d'où le résultat.

Remarque Soit N' une norme sur E telle que $N' \sim N$ et ν' une norme sur F équivalente à ν .

□ Soit $x \in E^{\mathbb{N}}$, $a \in E$ et supposons que $x_n \xrightarrow[n \to +\infty]{N} a$. Or $\exists \beta > 0$ tel que $\forall u \in E, N'(u) \leqslant \beta N(u)$ donc $\forall n \in \mathbb{N}$, $N'(x_n - a) \leqslant \beta N(x_n - a) \xrightarrow[n \to +\infty]{N} 0$ donc $x_n \xrightarrow[n \to +\infty]{N} a$. En inversant les rôles, on aurait $x_n \xrightarrow[n \to +\infty]{N'} a \Rightarrow x_n \xrightarrow[n \to +\infty]{N} a$ donc (E, N) et (E, N') ont les mêmes suites convergentes et les mêmes limites en cas de convergence.

 \square On a aussi vu que N et N' définissent les mêmes voisinages dans E, et ν et ν' les mêmes voisinages dans F donc si $f:D\subset E\longrightarrow F$, alors f est continue de (E,N) dans (F,ν) si et seulement si f est continue de (E,N') dans (F,ν') .

2 Espaces vectoriels normés de dimension finie

2.1 Théorème fondamental et conséquences

Soit E un \mathbb{R} -espace vectoriel de dimension finie. Alors toutes les normes sur E sont équivalentes.

Démonstration Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base de E, ν une norme sur E. Montrons que ν est équivalente à $N_{\infty,\mathcal{B}}^{a}$.

On sait que les parties compactes de $(E, N_{\infty, \mathcal{B}})$ sont les parties fermées bornées. En particulier, $\mathcal{S} =$ $\{x \in E | N_{\infty,\mathcal{B}}(x) = 1\}$ est un compact de $(E, N_{\infty,\mathcal{B}})$. Montrons que $\nu : (E, N_{\infty,\mathcal{B}}) \longrightarrow \mathbb{R}$ est continue. Soit $x = \sum_{i=1}^{n} \alpha_i e_i$, alors

$$\nu(x) \leq \sum_{i=1}^{n} |\alpha_{i}| \nu(e_{i})$$

$$\leq N_{\infty,\mathcal{B}}(x) \sum_{i=1}^{n} \nu(e_{i})$$

Ainsi, $\forall x \in E, \ \nu(x) \leqslant cN_{\infty,\mathcal{B}}(x)$ ce qui nous donne un sens de la double inégalité de l'équivalence entre deux normes. Mais on en déduit aussi que $\forall x, y \in E, |\nu(x) - \nu(y)| \leq \nu(x - y) \leq cN_{\infty,\mathcal{B}}(x - y)$ donc ν est c-lipschitzienne de $(E, N_{\infty,\mathcal{B}})$ dans $(\mathbb{R}, |\cdot|)$. En particulier, ν est continue sur le compact \mathcal{S} donc $\nu_{|\mathcal{S}}$ est bornée et atteint ses bornes : $\exists x_0 \in \mathcal{S}$ tel que $\forall x \in \mathcal{S}, \nu(x) \geqslant \nu(x_0) = b > 0$. En effet, $b \neq 0$ car $x_0 \neq 0$. Soit alors $x \in E \setminus \{0\}, \ x' = \frac{x}{N_{\infty,\mathcal{B}}(x)} \in \mathcal{S} \text{ donc } \nu(x') \geqslant b \text{ or } \nu(x') = \frac{\nu(x)}{N_{\infty,\mathcal{B}}(x)} \text{ donc } bN_{\infty,\mathcal{B}}(x) \leqslant \nu(x), \text{ ce qui est vrai } a$ fortiori pour x = 0. Ainsi, $\forall x \in E$,

$$bN_{\infty,\mathcal{B}}(x) \leqslant \nu(x) \leqslant cN_{\infty,\mathcal{B}}(x)$$

donc $\nu \sim N_{\infty,B}$

Conséquences

Soit E un \mathbb{R} -espace vectoriel de dimension finie $m \in \mathbb{N}^*$, toutes les normes sur E définissent les mêmes voisinages. ouverts, fermés et compacts. On dira alors que E est muni de sa topologie a d'espace vectoriel normé sans préciser la norme considérée.

a. La topologie d'un ensemble est l'ensemble de ses parties ouvertes.

 \square Munissons donc E de sa topologie d'espace vectoriel normé. Les compacts de E sont les parties fermées bornées.

En effet, si A est une partie fermée bornée, elle l'est au sens de $N_{\infty,\mathcal{B}}$ donc c'est un compact pour $N_{\infty,\mathcal{B}}$, donc pour n'importe quelle autre norme.

- \square En particulier, si N est une norme sur E, alors pour r>0 et $x\in E$, $\overline{\mathcal{B}}_N(x,r)$ et $\mathcal{S}_N(x,r)$ sont des compacts de E car elles sont fermées bornées.
- \square Si (F,ν) est un espace vectoriel normé, toute application linéaire $f:E\longrightarrow F$ est continue de E dans (F,ν) . En effet, on a vu que f est continue de $(E,N_{\infty,\mathcal{B}})$ dans (F,ν) où \mathcal{B} est une base de E.

On en déduit que si $\mathcal{B} = (e_1, e_2, \dots, e_m)$ est une base de E de base duale $\mathcal{B}^* = (e_1^*, e_2^*, \dots, e_m^*)$, alors pour $i \in [1, m]$, e_i^* est linéaire de E dans \mathbb{R} donc continue donc, par produit, $\forall k \in \mathbb{N}$, $(e_i^*)^k$ est aussi continue et pour $\alpha_{1}, \alpha_{2}, \dots, \alpha_{m} \in \mathbb{N}, f : x \in E \longrightarrow \prod_{i=1}^{m} (e_{i}^{*}(x))^{k}$ est aussi continue.

Ainsi, par combinaison linéaire, toute application polynômiale en les coordonnées de x est continue.

- □ Soit $x \in E^{\mathbb{N}}$, $a \in E$, $\mathcal{B} = (e_1, e_2, \dots, e_m)$ une base de E de base duale $\mathcal{B}^* = (e_1^*, e_2^*, \dots, e_m^*)$. Alors $x_n \xrightarrow[n \to +\infty]{} a$ si et seulement si $\forall i \in [1, m], e_i^*(x_n) \xrightarrow[n \to +\infty]{} e_i^*(a)$.
- \Rightarrow Trivial car $\forall i \in [1, m], e_i^*$ est continue en a.

a. Voir page 2.

 $\Leftarrow x_n - a = \sum_{i=1}^m e_i^* (x_n - a)$ donc, d'après les théorèmes généraux,

$$x_n = \sum_{i=1}^{m} e_i^* (x_n) \xrightarrow[n \to +\infty]{} \sum_{i=1}^{m} e_i^* (a) = a$$

- \square Soit F un \mathbb{R} -espace vectoriel de dimension finie, $f: E \longrightarrow F$ et $\mathcal{C} = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_p)$ une base de F. Pour $i \in [1, p]$, on pose pour $x \in E$ $f_i(x) = \varepsilon_i^*(f(x))$. Alors f est continue si et seulement si $\forall i \in [1, p]$, f_i est continue.
- \Rightarrow Pour $i \in [1, p]$, ε_i^* est linéaire de F dans $\mathbb R$ donc continue donc, par composition, $\varepsilon_i^* \circ f = f_i$ aussi.
- $\Leftarrow f = \sum_{i=1}^p f_i \varepsilon_i, \text{ montrons que } \forall i \in \llbracket 1, p \rrbracket, \ x \in E \longmapsto f_i \left(x \right) \varepsilon_i \text{ est continue. Soit } x_0 \in E, \ i \in \llbracket 1, p \rrbracket, \ x \in E^{\mathbb{N}} \text{ qui converge vers } x_0, \text{ alors } f_i \left(x_n \right) \epsilon_i \underset{n \to +\infty}{\longrightarrow} f_i \left(x_0 \right) \varepsilon_i \text{ donc } f_i \text{ est continue donc par somme, } f \text{ est continue.}$

2.2 Théorème spectral

Soit E un espace euclidien, $u \in \mathcal{L}(E)$ symétrique. Alors il existe une base orthonormée \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(u)$ est diagonale.

Remarque Supposons que u est diagonalisable en base orthonormée : il existe une base orthonormée $\mathcal{B} = (e_1, e_2, \dots, e_n)$ de E et $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$ tels que $u(e_i) = \lambda_i e_i$. On suppose de plus (quitte à les renuméroter) que $\lambda_1 < \lambda_2 < \dots < \lambda_n$. Soit $x = \sum_{i=1}^n \alpha_i e_i \in E$ unitaire, alors $u(x) = \sum_{i=1}^n \alpha_i u(e_i) = \sum_{i=1}^n \alpha_i \lambda_i e_i$ donc

$$\langle u(x), x \rangle = \sum_{i=1}^{n} \alpha_i^2 \lambda_i$$

 $\leq \lambda_n \sum_{i=1}^{n} \alpha_i^2$
 $\leq \lambda_n \text{ car } x \text{ est unitaire}$

Ainsi, $\forall x \in \mathcal{S} = \{x \in E | \|x\| = 1\}, \langle u(x), x \rangle \leq \lambda_n$. Par ailleurs, $e_n \in \mathcal{S}$ et $\langle u(e_n), e_n \rangle = \lambda_n$ donc $\lambda_n = \max_{x \in E} \langle u(x), x \rangle$.

Lemme Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien, $u \in \mathcal{L}(E)$ symétrique. Alors u admet une valeur propre. \square En effet, munissons E de sa topologie d'espace normé. Soit $f: x \in E \longrightarrow \langle u(x), x \rangle \in \mathbb{R}$, montrons d'abord que f est continue. Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base orthonormée de $E, M = \operatorname{Mat}_{\mathcal{B}}(u)$ et $x = \sum_{i=1}^{n} x_i e_i \in E$. La colonne des composantes de u(x) dans \mathcal{B} est MX donc

$$f(x) = \langle x, u(x) \rangle$$

$$= {}^{\mathsf{T}}XMX$$

$$= (x_1 \cdots x_n) \times \begin{pmatrix} \sum_{j=1}^{n} M[1, j] x_j \\ \vdots \\ \sum_{j=1}^{n} M[n, j] x_j \end{pmatrix}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} M[i, j] x_i x_j$$

f est polynômiale en les coordonnées de x, elle est donc continue.

- \square Par ailleurs, la sphère unité \mathcal{S} de $(E, \|\cdot\|)$ est une partie fermée bornée donc c'est un compact de E puisque E est de dimension finie. Ainsi, $f_{|\mathcal{S}}$ admet un maximum $\lambda = \max_{x \in \mathcal{S}} f(x) = \max_{x \in \mathcal{S}} \langle u(x), x \rangle$ et λ est atteint : $\exists x_0 \in \mathcal{S}$ tel que $\lambda = f(x_0) = \langle u(x_0), x_0 \rangle$. Montrons que λ est valeur propre de u.
 - Tout d'abord, montrons que $u(x_0) \in \text{Vect}(x_0)$. Soit $y_0 \in \{x_0\}^{\perp}$, montrons que $\langle u(x_0), y_0 \rangle = 0 \Leftrightarrow u(x_0) \in (\{x_0\}^{\perp})^{\perp} = \text{Vect}(x_0)$. On peut supposer y_0 unitaire. Pour $\theta \in \mathbb{R}$, $z_{\theta} = \cos \theta x_0 + \sin \theta y_0 \in \mathcal{S}$ car $\|z_0\| = 1$ donc $f(z_{\theta}) \leq \lambda = f(x_0)$. Or, pour $\theta \in \mathbb{R}$,

$$f(z_{0}) = \langle u(z_{\theta}), z_{\theta} \rangle$$

$$= \langle \cos \theta u(x_{0}) + \sin \theta u(y_{0}), \cos \theta x_{0} + \sin \theta y_{0} \rangle$$

$$= \cos^{2} \theta \langle u(x_{0}), x_{0} \rangle + \sin^{2} \theta \langle u(y_{0}), y_{0} \rangle + \sin \theta \cos \theta \langle u(y_{0}), x_{0} \rangle + \cos \theta \sin \theta \langle y_{\theta}, u(x_{\theta}) \rangle$$

$$= \cos^{2} \theta \lambda + \sin^{2} \theta \langle u(y_{0}), y_{0} \rangle + 2 \sin \theta \cos \theta \langle u(x_{0}), y_{0} \rangle \text{ car } u \text{ est symétrique et } f(x_{0}) = 0$$

Or on doit avoir

$$f(z_{\theta}) - \lambda \leqslant 0 \quad \Leftrightarrow \quad \left(\cos^{2}\theta - 1\right)\lambda + \sin^{2}\theta\left\langle u\left(y_{0}\right), y_{0}\right\rangle + 2\sin\theta\cos\theta\left\langle u\left(x_{0}\right), y_{0}\right\rangle \leqslant 0$$

$$\Leftrightarrow \quad \sin^{2}\theta\left[\left\langle u\left(y_{0}\right), y_{0}\right\rangle - \lambda\right] + 2\sin\theta\cos\theta\left\langle u\left(x_{0}\right), y_{0}\right\rangle \leqslant 0$$

D'où, pour $\theta \in]0, \pi[$, en divisant par $\sin \theta > 0$,

$$\sin \theta \left[f\left(y_{0}\right) -\lambda \right] +2\cos \theta \left\langle u\left(x_{0}\right) ,y_{0}\right\rangle \leqslant 0$$

Lorsque $\theta \to 0$, on obtient $2\langle u(x_0), y_0 \rangle \leqslant 0$ et lorsque $\theta \to \pi$, $-2\langle u(x_0), y_0 \rangle \leqslant 0$ d'où $\langle u(x_0), y_0 \rangle = 0$. - Ainsi, $u(x_0) \in \text{Vect}(x_0)$ donc $\exists \mu \in \mathbb{R}$ tel que $u(x_0) = \mu x_0$ or $\lambda = \langle u(x_0), x_0 \rangle = \mu \|x_0\|^2 = \mu$ donc $u(x_0) = \lambda x_0$ donc λ est valeur propre de u.

Revenons à la démonstration du résultat principal, qui se fait par récurrence. Soit H_n : « Si E est euclidien de dimension n et $u \in \mathcal{L}(E)$ est symétrique, alors u est diagonalisable en base orthonormée ».

- Pour n = 1, toute matrice est diagonale ^a.
- Supposons H_n vraie pour $n \in \mathbb{N}^*$, soit E euclidien de dimension n+1, $u \in \mathcal{L}(E)$ symétrique. D'après le lemme, u admet une valeur propre λ . Soit $x_0 \in E$ unitaire tel que $u(x_0) = \lambda x_0$ et $F = \{x_0\}^{\perp}$. F est stable par u: si $y \in F$, alors

$$\langle u(y), x_0 \rangle = \langle y, u(x_0) \rangle$$

= $\lambda \langle y, x_0 \rangle$
= 0

Donc $u(y) \in \{x_0\}^{\perp}$. Si on note $v = u_{|F} \in \mathcal{L}(F)$, v est un endomorphisme symétrique de F de dimension n donc, d'après H_n , on peut trouver une base orthonormée $\mathcal{B} = (e_1, e_2, \dots, e_n)$ de F telle que $\operatorname{Mat}_{\mathcal{B}}(v)$ est diagonale : $\exists \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$ tels que $\forall i \in [1, n]$, $v(e_1) = \lambda_i e_i$. Par recollement, $\mathcal{B}' = (x_0, e_1, e_2, \dots, e_n)$ est une base orthonormée de E dans laquelle

$$\operatorname{Mat}_{\mathcal{B}'}(u) = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} \in \operatorname{D}_n(\mathbb{R})$$

a. « cétaki! »

Corollaire Pour $M \in \mathcal{S}_n(\mathbb{R})^a$, il existe $O \in \mathcal{O}_n(\mathbb{R})$ et $D \in \mathcal{D}_n(\mathbb{R})$ telles que

$$M = {}^{\mathrm{T}}ODO$$

Démonstration En effet, on munit \mathbb{R}^n du produit scalaire standard. Soit $u \in \mathcal{L}(E)$ canoniquement associée à $M: M = \operatorname{Mat}_{BC_n}(u)$. BC_n est une base orthonormée de $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ et M est symétrique donc u est un endomorphisme symétrique. D'après le théorème spectral, il existe une base orthonormée \mathcal{B} de \mathbb{R}^n telle que $\Delta = \operatorname{Mat}_{\mathcal{B}}(u)$ est diagonale. Or $M = O^{-1}\Delta O$ où $O = \mathcal{P}_{\mathcal{B}}^{\operatorname{BC}_n}$ et \mathcal{B} et BC_n sont orthonormées donc $O \in \operatorname{O}_n(\mathbb{R})$ et $O^{-1} = {}^{\mathrm{T}}O.$

Applications linéaires continues 3

3.1Caractérisations de la continuité

Soient (E, N), (F, ν) deux espaces vectoriels normés et $f \in \mathcal{L}(E, F)$. Les assertions suivantes sont équivalentes :

- (1) f est continue;
- (2) f est continue en 0_E ;
- (3) f est bornée sur $\overline{\mathcal{B}}_N\left(0_E,1\right)$; (4) f est bornée sur $\mathcal{S}_N\left(0_E,1\right)$;
- (5) $\exists k > 0 \text{ tel que } \forall x \in E, \ \nu(f(x)) \leq kN(x);$
- (6) f est lipschitzienne.
- $(1) \Rightarrow (2)$ Cela ne devrait pas trop poser de problèmes.
- $(2) \Rightarrow (3) \text{ Soit } \varepsilon = 1, \exists \alpha > 0 \text{ tel que } \forall x \in E, N\left(x\right) \leqslant \alpha \Rightarrow \nu\left(f\left(x\right)\right) \leqslant \varepsilon. \text{ Si } x \in \overline{\mathcal{B}}_{N}\left(0_{E}, 1\right), N\left(\alpha x\right) = \alpha N\left(x\right) \leqslant \alpha$ donc $\nu(f(\alpha x)) \leq 1 \Leftrightarrow \alpha \nu(f(x)) \leq 1 \Leftrightarrow \nu(f(x)) \leq \frac{1}{\alpha}$ et $\frac{1}{\alpha}$ est une constante.
- $(3) \Rightarrow (4) \mathcal{S}_N(0_E, 1) \subset \overline{\mathcal{B}}_N(0_E, 1)$ d'où le résultat.
- $(4) \Rightarrow (5)$ Il existe M > 0 tel que $\forall x \in \mathcal{S}_N(0_E, 1), \ \nu(f(x)) \leq M$. Pour $y \in E \setminus \{0\}, \ \frac{y}{N(y)} \in \mathcal{S}_N(0_E, 1)$ donc

$$\nu\left(f\left(\frac{y}{N\left(y\right)}\right)\right) \leqslant M \quad \Leftrightarrow \quad \frac{1}{N\left(y\right)}\nu\left(f\left(y\right)\right) \leqslant M$$
$$\Leftrightarrow \quad \nu\left(f\left(y\right)\right) \leqslant MN\left(y\right)$$

et c'est aussi vrai pour $y = 0_E$.

 $(5) \Rightarrow (6) \text{ Pour } x, y \in E,$

$$d_{\nu}(f(x), f(y)) = \nu(f(x) - f(y))$$

$$= \nu(f(x - y))$$

$$\leqslant kN(x - y)$$

$$\leqslant kd_{N}(x, y)$$

donc f est lipschitzienne.

 $(6) \Rightarrow (1) \ll Dj \dot{a}vu! \gg$

On notera $\mathcal{L}_{c}((E,N),(F,\nu))$ l'ensemble des applications linéaires continues de (E,N) dans (F,ν) , ou plus simplement $\mathcal{L}_{c}(E,F)$ si les normes sont sous-entendues.

a. Ensemble des matrices symétriques.

Exemples

- (1) Si E est de dimension finie et N est une norme sur E, alors pour tout espace vectoriel normé (F, ν) , toute application linéaire de E dans F est continue de (E, N) dans (F, ν) .
- (2) Soit $E = \mathcal{C}([0,1], \mathbb{R})$, on pose pour $f \in E$ $N_1(f) = \int_0^1 |f|$, $N_2(f) = \left(\int_0^1 |f|^2\right)^{\frac{1}{2}}$, $N_\infty(f) = \sup_{[0,1]} |f|$. Pour $f \in E$, on pose $\psi(f) = \int_0^1 f$ et $\varphi(f) = f(0)$. On a alors $\varphi, \psi \in \mathcal{L}(E, \mathbb{R})$, montrons la continuité ou la non-continuité de ψ et φ par rapport aux différentes normes.
 - Étudions la continuité de ψ : on utilisera le critère (5).
 - Soit $f \in E$, $|\psi(f)| = \left| \int_0^1 f \right| \le \int_0^1 |f| = N_1(f)$ donc ψ est continue pour N_1 . De plus, cette majoration est optimale car il y a égalité pour la fonction constante égale à 1.
 - On a d'autre part pour $f \in E$, $|v(f)| \le \int_0^1 |f| \le \left(\int_0^1 1^2\right)^{\frac{1}{2}} \left(\int_0^1 |f|^2\right)^{\frac{1}{2}}$ d'après Cauchy-Schwarz, donc $|\psi(f)| \le N_2(f)$ donc f est continue pour N_2 .
 - \circ Enfin, pour $f \in E$,

$$|\psi(f)| \le \int_0^1 \underbrace{|f(t)|}_{\le N_{\infty}(f)} dt$$

$$\le N_{\infty}(f) \underbrace{\int_0^1 1}_{1}$$

Ainsi, ψ est continue pour N_{∞} .

- Étudions la continuité de φ .
 - Pour $f \in E$, $|\varphi(f)| = |f(0)| \leq N_{\infty}(f)$ donc φ est continue pour N_{∞} .
 - o Posons pour $n \in \mathbb{N}$ $f_n(t) = (1-t)^n$, on a alors $N_1(f_n) = \int_0^1 (1-t)^n dt = \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$ donc $f_n \xrightarrow[n \to +\infty]{N_1} 0$ mais $\forall n \in \mathbb{N}, |\varphi(f_n)| = 1$ donc $|\varphi(f_n)| \underset{n \to +\infty}{\longrightarrow} 1 \neq 0$ donc φ n'est pas continue pour N_1 .
 - $\circ N_2(f_n) = \left(\int_0^1 (1-t)^{2n} dt\right)^{\frac{1}{2}} = \frac{1}{\sqrt{2n+1}} \underset{n \to +\infty}{\longrightarrow} 0 \text{ mais } |\varphi(f_n)| = 1 \text{ donc } \varphi \text{ n'est pas continue pour } N_2.$

3.2 Norme subordonnée d'une application linéaire continue

3.2.1 Généralités

Soient (E, N) et (F, ν) deux espaces vectoriels normés, $f \in \mathcal{L}_{c}(E, F)$. On sait que f est bornée sur $\overline{\mathcal{B}}_{N}(0_{E}, 1)$ et sur $\mathcal{S}_{N}(0_{E}, 1)$.

On montre que
$$\sup_{x \in \overline{\mathcal{B}}_{N}(0_{E},1)} \nu\left(f\left(x\right)\right) = \sup_{x \in \mathcal{S}_{N}(0_{E},1)} \nu\left(f\left(x\right)\right)$$
 et par définition, on pose
$$\|f\| = \sup_{x \in \overline{\mathcal{B}}_{N}(0_{E},1)} \nu\left(f\left(x\right)\right)$$

En effet, soit $\lambda = \sup_{x \in \overline{\mathcal{B}}_N(0_E, 1)} \nu\left(f\left(x\right)\right)$ et $\mu = \sup_{x \in \mathcal{S}_N(0_E, 1)} \nu\left(f\left(x\right)\right)$, soit $x \in \mathcal{S}_N\left(0_E, 1\right)$. On a alors $x \in \overline{\mathcal{B}}_N\left(0_E, 1\right)$ donc $\mu \leqslant \lambda$. On sait que $\mu = \sup\left\{\nu\left(f\left(x\right)\right) \mid x \in \overline{\mathcal{B}}_N\left(0_E, 1\right)\right\}$, ainsi soit $\varepsilon > 0$, $\exists x \in \overline{\mathcal{B}}_N\left(0_E, 1\right) \setminus \{0\}$ tel que

 $\nu\left(f\left(x\right)\right) \geqslant \lambda - \varepsilon \text{ alors } \frac{x}{N\left(x\right)} \in \mathcal{S}_{N}\left(0_{E}, 1\right) \text{ donc}$

$$\nu\left(f\left(\frac{x}{N\left(x\right)}\right)\right) \leqslant \mu \quad \Leftrightarrow \quad \frac{\nu\left(f\left(x\right)\right)}{N\left(x\right)} \leqslant \mu$$

$$\Leftrightarrow \quad \nu\left(f\left(x\right)\right) \leqslant \mu N\left(x\right) \leqslant \mu$$

C'est vrai aussi pour x=0. Ainsi, $\lambda-\varepsilon\leqslant\mu$ donc, par conservation des inégalités larges en faisant tendre $\varepsilon\to0$, $\lambda\leqslant\mu$ donc $\lambda=\mu$.

Triple norme

 $\|\cdot\|_{(N,\nu)}$ est une norme sur $\mathcal{L}_{c}(E,F)$ qui est au passage un \mathbb{R} -espace vectoriel. $\|\cdot\|$ est la triple norme.

Séparation : si $f = 0_{\mathcal{L}_{c}(E,F)}$, alors $\forall x \in \mathcal{S}_{N}(0_{E},1)$, $f(x) = 0_{F} \Leftrightarrow \nu(f(x)) = 0$ donc $|||f|||_{(N,\nu)} = 0$. Réciproquement, si |||f||| = 0, alors $\forall \in \mathcal{S}_{N}(0_{E},1)$, $\nu(f(x)) \leq 0 \Leftrightarrow f(x) = 0$. donc si $y \in E \setminus \{0\}$, $f\left(\frac{y}{N(y)}\right) = 0 \Leftrightarrow \frac{1}{N(y)}f(y) = 0 \Leftrightarrow f(y) = 0$ donc $f = 0_{\mathcal{L}_{c}(E,F)}$.

Homogénéité: soit $\alpha \in \mathbb{R}$, $f \in \mathcal{L}_{c}(E, F)$, montrons que $\|\alpha f\| = |\alpha| \|f\|$.

- Pour $x \in \mathcal{S}_N (0_E, 1)$,

$$\nu\left(\left(\alpha f\right)(x)\right) = \nu\left(\alpha f\left(x\right)\right)
= |\alpha|\nu\left(f\left(x\right)\right)
\leqslant |\alpha| ||f|| ||f||$$

 $\operatorname{donc} \ \|\alpha f\| \leqslant |\alpha| \ \|f\|.$

- Si $\alpha \neq 0$, pour $x \in \mathcal{S}_N(0_E, 1)$,

$$\nu(f(x)) = \nu\left(\frac{1}{\alpha}(\alpha f)(x)\right)$$
$$= \frac{\nu((\alpha f)(x))}{|\alpha|}$$
$$\leqslant \frac{\||\alpha f|\|}{|\alpha|}$$

donc $|\alpha| ||f|| \leq ||\alpha f||$.

Inégalité triangulaire : soient $f, g \in \mathcal{L}_{c}(E, F)$, pour $x \in \mathcal{S}_{N}(0_{E}, 1)$,

$$\nu\left(\left(f+g\right)\left(x\right)\right) = \nu\left(f\left(x\right) + g\left(x\right)\right) \\
\leqslant \nu\left(f\left(x\right)\right) + \nu\left(g\left(x\right)\right) \\
\leqslant \|f\| + \|g\|$$

donc $||f + g|| \le ||f|| + ||g||$.

Caractérisation de $\|\cdot\|$ \square Soit $f \in \mathcal{L}_{c}(E, F)$, on a vu que $\forall x \in \mathcal{S}_{N}(0_{E}, 1), \ \nu(f(x)) \leq \|f\|$ donc pour $y \in E \setminus \{0\}, \ \nu\left(f\left(\frac{y}{N(y)}\right)\right) \leq \|f\| \Leftrightarrow \nu(f(y)) \leq \|f\| N(y)$. Cette dernière inégalité est aussi vraie pour y = 0. Finalement, $\forall y \in F, \ \nu(f(y)) \leq \|f\| N(y)$.

 \square Soit $k \in \mathbb{R}_+$ tel que $\forall y \in E$, $\nu(f(y)) \leq kN(y)$. Pour $y \in \mathcal{S}_N(0_E, 1)$, $\nu(f(y)) \leq k$ donc $k \geq |||f|||$.

Finalement, $|||f||| = \min \{k \in \mathbb{R}_+ | \forall x \in E, \nu(f(x)) \leq kN(x) \}.$

3.2.2 Cas particulier et calcul pratique de la triple norme

Soit (E, N) et (F, ν) deux espaces vectoriels normés de dimensions finies. On sait que $\mathcal{L}_{c}(E, F) = \mathcal{L}(E, F)$. On pourra alors parler de ||u||| pour $u \in \mathcal{L}(E, F)$.

Premier exemple Soit E un espace euclidien muni du produit scalaire $\langle \cdot, \cdot \rangle$, de norme associée $\|\cdot\|$. Prenons E = F, $\nu = \|\cdot\|$, si $f \in \mathcal{L}(E)$, alors $\|\|f\|\| = \sup_{x \in \mathcal{S}_{\|\cdot\|}(0_E, 1)} \|f(x)\|$. Soit f^* l'adjoint de f, $\forall x, y \in E$, $\langle f(x), y \rangle = \langle x, f^*(y) \rangle$. Pour $x \in \mathcal{S} = \mathcal{S}_{\|\cdot\|}(0_E, 1)$,

$$\begin{split} \|f\left(x\right)\|^2 &= \left\langle f\left(x\right), f\left(x\right)\right\rangle \\ &= \left\langle x, f^* \circ f\left(x\right)\right\rangle \\ &\leqslant \underbrace{\|x\|}_{1} \|f^* \circ f\left(x\right)\| \text{ d'après Cauchy-Schwarz} \\ &\leqslant \|f^* \circ f\| \|x\| \\ &\leqslant \|f^* \circ f\| \end{split}$$

donc $||f(x)|| \le \sqrt{||f^* \circ f||}$ donc $||f|| \le \sqrt{||f^* \circ f||}$. Or $f^* \circ f$ est symétrique donc, d'après le théorème spectral, il existe $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$ et $\mathcal{B} = (e_1, e_2, \ldots, e_n)$ une base orthonormées de E telle que $\operatorname{Mat}_{\mathcal{B}}(f^* \circ f)$ est diagonale, c'est-à-dire que $\forall i \in [1, n]$, $f^* \circ f(e_i) = \lambda_i e_i$. De plus, $||f(e_i)||^2 = \langle f^* \circ f(e_i), e_i \rangle = \langle \lambda_i e_i, e_i \rangle = \lambda_i ||e_i||^2$ donc $\lambda_i = ||f(e_i)|| > 0$. Soit $x \in \mathcal{S}$, $x = \sum_{i=1}^n \alpha_i e_i$ avec $\sum_{i=1}^n \alpha_i^2 = 1$ car \mathcal{B} est orthonormée. $||f(x)||^2 = \langle f^* \circ f(x), x \rangle$ or

$$f^* \circ f(x) = \sum_{i=1}^{n} \alpha_i f^* \circ f(x)$$
$$= \sum_{i=1}^{n} \alpha_i \lambda_i e_i$$

 $\operatorname{donc} \|f\left(x\right)\|^{2} = \sum_{i=1}^{n} \alpha_{i}^{2} \lambda_{i}. \text{ Soit } M = \max_{i \in [\![1,n]\!]} \lambda_{i}, \|f\left(x\right)\|^{2} = \sum_{i=1}^{n} \alpha_{i}^{2} M = M \text{ donc } \|f\left(x\right)\| \leqslant \sqrt{M} \text{ donc } \|f\| \leqslant \sqrt{M}. \text{ Si } j \in [\![1,n]\!] \text{ est tel que } M = \lambda_{j}, \text{ alors}$

$$||f(e_j)||^2 = \langle e_j, f^* \circ f(e_j) \rangle$$
$$= \langle e_j, \lambda_j e_j \rangle$$
$$= \lambda_j$$
$$= M$$

donc $||f||^2 \ge ||f(e_j)||^2 = M$.

Finalement, dans le case d'un endomorphisme f d'un espace euclidien E, si l'on note $\operatorname{Sp} f$ l'ensemble des valeurs propres de f, alors

$$|||f||| = \sqrt{\max_{\lambda \in \operatorname{Sp} f} \lambda}$$

Remarque On a, avec les notations précédentes, $\max_{\lambda \in \operatorname{Sp} f} \lambda = \lambda_j = |||f^* \circ f|||$.

En effet, $||f^* \circ f|| \ge ||f^* \circ f(e_j)|| = ||\lambda_j e_j|| = \lambda_j$ et pour $x = \sum_{i=1}^n \alpha_i e_i \in \mathcal{S}$,

$$||f^* \circ f(x)|| = \left\| \sum_{i=1}^n \alpha_i \lambda_i e_i \right\|$$

$$= \sqrt{\sum_{i=1}^n \alpha_i^2 \lambda_i^2}$$

$$\leq \sqrt{\sum_{i=1}^n \alpha_i^2 \lambda_j}$$

$$\leq \lambda_j$$

donc $||f^* \circ f|| = \lambda_i$.

4 Limites

4.1 Définitions et faits de base

Soient (E, N) et (F, ν) deux espaces vectoriels normés. Dans ce qui suit, on rappelle qu'il est inutile de préciser la norme si E et F sont de dimensions finies. Le cas le plus courant est $E = \mathbb{R}^m$ et $F = \mathbb{R}$. On ne démontrera pas les résultats avancés, car cela a déjà été fait dans le chapitre Limites : voir section 12.2 du cours complet page 187.

Soit D une partie de E non-vide, $a \in Adh D$, $f: D \longrightarrow F$ et $v \in F$. On dit que f(x) tend vers v lorsque x tend vers z lorsqu'une des trois conditions suivantes est remplie :

- (1) pour tout voisinage V de v dans (F, ν) , il existe un voisinage U de x dans (E, N) tel que $f(U \cap D) \subset V$;
- (2) $\forall \varepsilon > 0, \exists \alpha > 0 \text{ tel que } \forall x \in D, N(x-a) \leqslant \alpha \Rightarrow \nu(f(x) f(a)) \leqslant \varepsilon;$
- (3) pour toute suite $u \in D^{\mathbb{N}}$ convergente vers a dans (E, N), $f(u_n) \xrightarrow[n \to +\infty]{\nu} v$.

Propriétés \square S'il existe $v, v' \in F$ tels que $f(x) \xrightarrow[x \to a]{} v$ et $f(x) \xrightarrow[x \to a]{} v'$, alors v = v'. Ainsi, s'il existe $v \in F$ tel que $f(x) \xrightarrow[x \to a]{} v$, alors v est la limite de f en a et se note $\lim_a f(x)$.

$$\square$$
 Si $f(x) \xrightarrow{x \to a} v$ et $g(x) \xrightarrow{x \to a} w$, alors $\forall \alpha \in \mathbb{R}$,

$$\alpha f(x) + g(x) \xrightarrow[x \to a]{} \alpha v + w$$

Si $F = \mathbb{R}$, on a tous les théorèmes généraux afférents aux opérations permises dans \mathbb{R} .

 \square Soient E, F, G trois espaces vectoriels normés, $f: D \subset E \longrightarrow \Delta \subset F$ et $g: \Delta \longrightarrow G$. Si f admet une limite b en a, alors $b \in Adh \Delta$. De plus, si g admet une limite $c \in G$ en b, alors $g \circ f(x) \xrightarrow[x \to a]{} c$.

□ Supposons que F est de dimension finie, soit $\mathcal{B} = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_m)$ une base de F, $f : D \longrightarrow E$. Pour $x \in E$ et $i \in [1, m]$ on note $f_i(x) = \varepsilon_i^*(x)$ où $\mathcal{B}^* = (\varepsilon_1^*, \varepsilon_2^*, \dots, \varepsilon_m^*)$ est la base duale de \mathcal{B} . Soient $v_1, v_2, \dots, v_m \in \mathbb{R}$ et $v = \sum_{i=1}^m v_i$, alors

$$f(x) \xrightarrow[x \to a]{} v \Leftrightarrow \forall i \in [1, m], f_i(x) \xrightarrow[x \to a]{} v_i$$

 \square Soit $f:D\subset E\longrightarrow F$, $a\in D$. Alors f est continue en a si et seulement si f admet une limite en a et dans ce cas, $\lim_{x\to a}f(x)=f(a)$.

4.2 Négligeabilité

Soit $f: D \subset (E, N) \longrightarrow (F, \nu)$, on suppose $0_E \in \operatorname{Adh} D$. On dira que f(h) est négligeable devant $N(h)^k$ avec $k \in \mathbb{N}^*$ lorsque h tend vers 0 et on écrira $f(h) = o(N(h)^k)$ si

$$\lim_{\substack{h \to 0_E \\ h \neq 0_E}} \frac{f\left(h\right)}{N\left(h\right)^k} = 0_F \Leftrightarrow \forall \varepsilon > 0, \ \exists \alpha > 0 \ \text{tel que} \ \forall h \in D \setminus \left\{0_E\right\}, \ N\left(h\right) \leqslant \alpha \Rightarrow \frac{\nu\left(f\left(h\right)\right)}{N\left(h\right)^k} \leqslant \varepsilon$$

 \square Si $N' \sim N$ et $\nu' \sim \nu$, alors la notion de négligeabilité est inchangée.

Par exemple, prenons $E = \mathbb{R}^m$, pour $i \in [1, m]$ et $x \in E$ notons $\alpha_i(x)$ la i-ième composante de x dans BC_m . On a toujours, si k > p, $\alpha_i(x)^k = \mathrm{o}(\|x\|^p)$ où $\|\cdot\|$ est n'importe quelle norme sur \mathbb{R}^m . En particulier, $\alpha_i(x)^2 = \mathrm{o}(\|x\|)$.

En effet, il suffit de le montrer pour N_{∞} . Pour $x = (\alpha_1, \alpha_2, \dots, \alpha_m) \in \mathbb{R}^m \setminus \{0\}$ et $i \in [1, m]$,

$$\frac{\left|\alpha_{i}\left(x\right)\right|^{k}}{N_{\infty}\left(x\right)^{p}} \leqslant N_{\infty}\left(x\right)^{k-p} \underset{x \to 0_{E}}{\longrightarrow} 0$$