Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»			
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,			
информационные технологии»				

Домашняя работа

«Задача линейного целочисленного программирования с булевыми переменными»

ДИСЦИПЛИНА: «Моделирование»

Выполнил: студент гр. ИУК4-72Б		_ (_	Сафронов Н.С.	
	(подпись)		(Ф.И.О.)	
Проверил:		_ (_	Никитенко У.В.	
	(подпись)		(Ф.И.О.)	
Дата сдачи (защиты):				
D ()				
Результаты сдачи (защиты):				
- Балльная оценка:				
- Оценка	:			

Цель работы: овладеть навыками выделения наиболее важных свойств объектов моделей для моделирования; навыками решения задач целочисленного программирования с булевыми переменными.

Постановка задачи

Решить задачу линейного целочисленного программирования с булевыми переменными. Использовать алгоритмы плотного заполнения, Фора-Мальгранжа, Балаша. Привести для каждого алгоритма иллюстрацию решения.

Вариант 3

$$F = 6x_1 + 4x_2 + 5x_3 + 10x_4 + 2x_5$$

$$4x_1 + 2x_2 + 3x_3 + 5x_4 + x_5 \le 8$$

$$x_1 + x_2 + x_3 \le 1$$

$$x_4 + x_5 \le 1$$

$$x_j \in \{0,1\}, j = 1,2,3,4,5$$

Ход выполнения работы

Алгоритм плотного заполнения

Припишем переменной x_1 единичное значение. Для этого подставим $x_1=1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$2x_2 + 3x_3 + 5x_4 + x_5 \le 4$$
$$x_2 + x_3 \le 0$$
$$x_4 + x_5 \le 1$$

Все $b_i^{(1)} \ge 0$, выполняем следующий шаг. Припишем переменной x_2 единичное значение. Для этого подставим $x_2 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$3x_3 + 5x_4 + x_5 \le 2$$

$$x_3 \le -1$$

$$x_4 + x_5 \le 1$$

Одно из $b_i^{(2)} < 0$, припишем переменной x_2 нулевое значение. Для этого подставим $x_2 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$3x_3 + 5x_4 + x_5 \le 4$$
$$x_3 \le 0$$
$$x_4 + x_5 \le 1$$

Все $b_i^{(2)} \ge 0$, выполняем следующий шаг. Припишем переменной x_3 единичное значение. Для этого подставим $x_3=1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$5x_4 + x_5 \le 1$$
$$0 \le -1$$
$$x_4 + x_5 \le 1$$

Одно из $b_i^{(3)} < 0$, припишем переменной x_3 нулевое значение. Для этого подставим $x_3 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$5x_4 + x_5 \le 4$$
$$0 \le 0$$
$$x_4 + x_5 \le 1$$

Все $b_i^{(3)} \ge 0$, выполняем следующий шаг. Припишем переменной x_4 единичное значение. Для этого подставим $x_4 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$x_5 \le -1$$
$$x_5 \le 0$$

Одно из $b_i^{(4)} < 0$, припишем переменной x_4 нулевое значение. Для этого подставим $x_4 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$x_5 \leq 4$$

$$x_5 \le 1$$

Все $b_i^{(4)} \ge 0$, выполняем следующий шаг. Припишем переменной x_5 единичное значение. Для этого подставим $x_5 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$0 \le 3$$

$$0 \le 0$$

Bce
$$b_i^{(5)} \ge 0$$
.

Таким образом, получаем следующее решение задачи:

$$X = (1,0,0,0,1)$$

$$F(X) = 6 + 2 = 8$$

Проиллюстрируем ход решения задачи:

Рисунок 1 – Решение задачи алгоритмом плотного заполнения

Алгоритм Фора-Мальгранжа

Шаг 1

Попытаемся найти любое допустимое решение задачи, воспользовавшись алгоритмом плотного заполнения. Таким образом, получаем решение из предыдущего пункта. К ограничениям задачи добавим новое ограничение:

$$6x_1 + 4x_2 + 5x_3 + 10x_4 + 2x_5 \ge 9 \Rightarrow 6x_1' + 4x_2' + 5x_3' + 10x_4' + 2x_5' \le 18$$

Шаг 2

Получаем следующую задачу:

$$F = 6x_1 + 4x_2 + 5x_3 + 10x_4 + 2x_5$$

$$4x_1 + 2x_2 + 3x_3 + 5x_4 + x_5 \le 8$$

$$x_1 + x_2 + x_3 \le 1$$

$$x_4 + x_5 \le 1$$

$$6x_1' + 4x_2' + 5x_3' + 10x_4' + 2x_5' \le 18$$

$$x_j \in \{0,1\}, j = 1,2,3,4,5$$

Решим задачу, воспользовавшись алгоритмом плотного заполнения:

Припишем переменной x_1 единичное значение. Для этого подставим $x_1=1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$2x_2 + 3x_3 + 5x_4 + x_5 \le 4$$

$$x_2 + x_3 \le 0$$

$$x_4 + x_5 \le 1$$

$$4x_2' + 5x_3' + 10x_4' + 2x_5' \le 18$$

Все $b_i^{(1)} \ge 0$, выполняем следующий шаг. Припишем переменной x_2 единичное значение. Для этого подставим $x_2 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$3x_3 + 5x_4 + x_5 \le 2$$

$$x_3 \le -1$$

$$x_4 + x_5 \le 1$$

$$5x_3' + 10x_4' + 2x_5' \le 18$$

Одно из $b_i^{(2)} < 0$, припишем переменной x_2 нулевое значение. Для этого подставим $x_2 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$3x_3 + 5x_4 + x_5 \le 4$$

$$x_3 \le 0$$

$$x_4 + x_5 \le 1$$

$$5x_3' + 10x_4' + 2x_5' \le 14$$

Все $b_i^{(2)} \ge 0$, выполняем следующий шаг. Припишем переменной x_3 единичное значение. Для этого подставим $x_3 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$5x_4 + x_5 \le 1$$
$$0 \le -1$$
$$x_4 + x_5 \le 1$$
$$10x_4' + 2x_5' \le 14$$

Одно из $b_i^{(3)} < 0$, припишем переменной x_3 нулевое значение. Для этого подставим $x_3 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$5x_4 + x_5 \le 4$$
$$0 \le 0$$
$$x_4 + x_5 \le 1$$
$$10x'_4 + 2x'_5 \le 9$$

Все $b_i^{(3)} \ge 0$, выполняем следующий шаг. Припишем переменной x_4 единичное значение. Для этого подставим $x_4 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$x_5 \le -1$$
$$0 \le 0$$
$$x_5 \le 0$$
$$2x_5' \le 9$$

Одно из $b_i^{(4)} < 0$, припишем переменной x_4 нулевое значение. Для этого подставим $x_4 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$x_5 \le 4$$

$$0 \le 0$$

$$x_5 \le 1$$

$$2x_5' \le -1$$

Одно из $b_i^{(4)} < 0$, последовательно (в обратном порядке) просматриваем переменные до тех пор, пока не обнаружим переменную, которой приписано единичное значение - x_1 .

Припишем переменной x_1 нулевое значение. Для этого подставим $x_1 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$2x_2 + 3x_3 + 5x_4 + x_5 \le 8$$

$$x_2 + x_3 \le 1$$

$$x_4 + x_5 \le 1$$

$$4x_2' + 5x_3' + 10x_4' + 2x_5' \le 12$$

Все $b_i^{(1)} \ge 0$, выполняем следующий шаг. Припишем переменной x_2 единичное значение. Для этого подставим $x_2 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$3x_3 + 5x_4 + x_5 \le 6$$
$$x_3 \le 0$$
$$x_4 + x_5 \le 1$$

$$5x_3' + 10x_4' + 2x_5' \le 12$$

Все $b_i^{(2)} \ge 0$, выполняем следующий шаг. Припишем переменной x_3 единичное значение. Для этого подставим $x_3 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$5x_4 + x_5 \le 3$$
$$0 \le -1$$
$$x_4 + x_5 \le 1$$
$$10x'_4 + 2x'_5 \le 12$$

Одно из $b_i^{(3)} < 0$, припишем переменной x_3 нулевое значение. Для этого подставим $x_3 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$5x_4 + x_5 \le 6$$
$$0 \le 0$$
$$x_4 + x_5 \le 1$$
$$10x'_4 + 2x'_5 \le 7$$

Все $b_i^{(3)} \ge 0$, выполняем следующий шаг. Припишем переменной x_4 единичное значение. Для этого подставим $x_4 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$x_5 \le 1$$
$$0 \le 0$$
$$x_5 \le 0$$
$$2x_5' \le 7$$

Все $b_i^{(4)} \ge 0$, выполняем следующий шаг. Припишем переменной x_4 единичное значение. Для этого подставим $x_4 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$0 \le 0$$

$$0 \le 0$$

$$0 \le -1$$

Одно из $b_i^{(5)} < 0$, припишем переменной x_3 нулевое значение. Для этого подставим $x_3 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$0 \le 1$$

$$0 \le 0$$

$$0 \le 0$$

Bce
$$b_i^{(5)} \ge 0$$
.

Таким образом, получаем следующее решение задачи:

$$X = (0,1,0,1,0)$$

$$F(X) = 4 + 10 = 14$$

Проиллюстрируем ход решения задачи:

Рисунок 2 – Решение задачи 2 метода Фора-Мальгранжа алгоритмом плотного заполнения

К ограничениям задачи добавим новое ограничение:

$$6x_1 + 4x_2 + 5x_3 + 10x_4 + 2x_5 \ge 15 \Rightarrow 6x_1' + 4x_2' + 5x_3' + 10x_4' + 2x_5' \le 12$$
IIIar 3

Получаем следующую задачу:

$$F = 6x_1 + 4x_2 + 5x_3 + 10x_4 + 2x_5$$

$$4x_1 + 2x_2 + 3x_3 + 5x_4 + x_5 \le 8$$

$$x_1 + x_2 + x_3 \le 1$$

$$x_4 + x_5 \le 1$$

$$6x_1' + 4x_2' + 5x_3' + 10x_4' + 2x_5' \le 12$$

$$x_j \in \{0,1\}, j = 1,2,3,4,5$$

Решим задачу, воспользовавшись алгоритмом плотного заполнения:

Припишем переменной x_1 единичное значение. Для этого подставим $x_1=1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$2x_2 + 3x_3 + 5x_4 + x_5 \le 4$$

$$x_2 + x_3 \le 0$$

$$x_4 + x_5 \le 1$$

$$4x_2' + 5x_3' + 10x_4' + 2x_5' \le 12$$

Примем переменную $x_4 = 0$ из первого ограничения, тогда система примет вид:

$$2x_{2} + 3x_{3} + x_{5} \le 4$$

$$x_{2} + x_{3} \le 0$$

$$x_{5} \le 1$$

$$4x'_{2} + 5x'_{3} + 2x'_{5} \le 2$$

Все $b_i^{(1)} \ge 0$, выполняем следующий шаг. Припишем переменной x_2 единичное значение. Для этого подставим $x_2 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$3x_3 + x_5 \le 2$$

$$x_3 \le -1$$

$$x_5 \le 1$$

$$5x_3' + 2x_5' \le 2$$

Одно из $b_i^{(2)} < 0$, припишем переменной x_2 нулевое значение. Для этого подставим $x_2 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$3x_3 + 5x_4 + x_5 \le 4$$
$$x_3 \le 0$$
$$x_4 + x_5 \le 1$$

$$5x_3' + 2x_5' \le -2$$

Одно из $b_i^{(2)} < 0$, последовательно (в обратном порядке) просматриваем переменные до тех пор, пока не обнаружим переменную, которой приписано единичное значение - x_1 .

Припишем переменной x_1 нулевое значение. Для этого подставим $x_1 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$2x_2 + 3x_3 + 5x_4 + x_5 \le 8$$

$$x_2 + x_3 \le 1$$

$$x_4 + x_5 \le 1$$

$$4x_2' + 5x_3' + 10x_4' + 2x_5' \le 6$$

Все $b_i^{(1)} \ge 0$, выполняем следующий шаг. Припишем переменной x_2 единичное значение. Для этого подставим $x_2 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$3x_3 + 5x_4 + x_5 \le 6$$

$$x_3 \le 0$$

$$x_4 + x_5 \le 1$$

$$5x_3' + 10x_4' + 2x_5' \le 6$$

Все $b_i^{(2)} \ge 0$, выполняем следующий шаг. Припишем переменной x_3 единичное значение. Для этого подставим $x_3 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$5x_4 + x_5 \le 3$$
$$0 \le -1$$
$$x_4 + x_5 \le 1$$
$$10x'_4 + 2x'_5 \le 6$$

Одно из $b_i^{(3)} < 0$, припишем переменной x_3 нулевое значение. Для этого подставим $x_3 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$5x_4 + x_5 \le 6$$
$$0 \le 0$$
$$x_4 + x_5 \le 1$$
$$10x_4' + 2x_5' \le 1$$

Все $b_i^{(3)} \ge 0$, выполняем следующий шаг. Припишем переменной x_4 единичное значение. Для этого подставим $x_4 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$x_5 \le 1$$
$$0 \le 0$$
$$x_5 \le 0$$
$$2x_5' \le 1$$

Все $b_i^{(4)} \ge 0$, выполняем следующий шаг. Припишем переменной x_4 единичное значение. Для этого подставим $x_4=1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$0 \le 0$$
$$0 \le 0$$
$$0 \le -1$$
$$0 \le 1$$

Одно из $b_i^{(5)} < 0$, припишем переменной x_5 нулевое значение. Для этого подставим $x_5 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$0 \le 1$$
$$0 \le 0$$
$$0 \le 0$$
$$0 \le -1$$

Одно из $b_i^{(5)} < 0$, последовательно (в обратном порядке) просматриваем переменные до тех пор, пока не обнаружим переменную, которой приписано единичное значение - x_4 .

Припишем переменной x_4 нулевое значение. Для этого подставим $x_4 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$x_5 \le 6$$

$$0 \le 0$$

$$x_5 \le 1$$

$$2x_5' \le -9$$

Одно из $b_i^{(5)} < 0$, последовательно (в обратном порядке) просматриваем переменные до тех пор, пока не обнаружим переменную, которой приписано единичное значение - x_3 .

Припишем переменной x_3 нулевое значение. Для этого подставим $x_3 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$5x_4 + x_5 \le 6$$
$$0 \le 0$$
$$x_4 + x_5 \le 1$$
$$10x_4' + 2x_5' \le 1$$

Все $b_i^{(3)} \ge 0$, выполняем следующий шаг. Припишем переменной x_4 единичное значение. Для этого подставим $x_4 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$x_5 \le 1$$
$$0 \le 0$$
$$x_5 \le 0$$
$$2x_5' \le 1$$

Все $b_i^{(4)} \ge 0$, выполняем следующий шаг. Припишем переменной x_5 единичное значение. Для этого подставим $x_5 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$0 \leq 0$$

 $0 \leq 0$

 $0 \leq -1$

 $0 \le 1$

Одно из $b_i^{(5)} < 0$, выполняем следующий шаг. Припишем переменной x_5 единичное значение. Для этого подставим $x_5 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$0 \le 1$$

 $0 \le 0$

 $0 \le 1$

 $0 \leq -1$

Одно из $b_i^{(5)} < 0$, последовательно (в обратном порядке) просматриваем переменные до тех пор, пока не обнаружим переменную, которой приписано единичное значение - x_2 .

Припишем переменной x_2 нулевое значение. Для этого подставим $x_2 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$3x_3 + 5x_4 + x_5 \le 8$$

$$x_3 \le 1$$

$$x_4 + x_5 \le 1$$

$$5x_3' + 10x_4' + 2x_5' \le 2$$

Все $b_i^{(2)} \ge 0$, выполняем следующий шаг. Припишем переменной x_3 единичное значение. Для этого подставим $x_3 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$5x_4 + x_5 \le 5$$

$$0 \le 0$$

$$x_4 + x_5 \le 1$$

$$10x'_4 + 2x'_5 \le 2$$

Все $b_i^{(3)} \ge 0$, выполняем следующий шаг. Припишем переменной x_4 единичное значение. Для этого подставим $x_4 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$x_5 \le 0$$
$$0 \le 0$$

$$x_5 \le 1$$

$$2x_5' \leq 2$$

Все $b_i^{(4)} \ge 0$, выполняем следующий шаг. Припишем переменной x_5 единичное значение. Для этого подставим $x_5 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$0 \leq -1$$

$$0 \le 0$$

$$0 \le 0$$

Одно из $b_i^{(5)} < 0$, выполняем следующий шаг. Припишем переменной x_5 единичное значение. Для этого подставим $x_5 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$0 \le 0$$

$$0 \le 0$$

$$0 \le 1$$

$$0 \le 0$$

Таким образом, получаем следующее решение задачи:

$$X = (0,0,1,1,0)$$

$$F(X) = 5 + 10 = 15$$

Проиллюстрируем ход решения задачи:

Рисунок 3 – Решение задачи 3 метода Фора-Мальгранжа алгоритмом плотного заполнения

К ограничениям задачи добавим новое ограничение:

$$6x_1 + 4x_2 + 5x_3 + 10x_4 + 2x_5 \ge 16 \Rightarrow 6x_1' + 4x_2' + 5x_3' + 10x_4' + 2x_5' \le 11$$

Шаг 4

Получаем следующую задачу:

$$F = 6x_1 + 4x_2 + 5x_3 + 10x_4 + 2x_5$$

$$4x_1 + 2x_2 + 3x_3 + 5x_4 + x_5 \le 8$$

$$x_1 + x_2 + x_3 \le 1$$

$$x_4 + x_5 \le 1$$

$$6x_1' + 4x_2' + 5x_3' + 10x_4' + 2x_5' \le 11$$

$$x_j \in \{0,1\}, j = 1,2,3,4,5$$

Решим задачу, воспользовавшись алгоритмом плотного заполнения:

Припишем переменной x_1 единичное значение. Для этого подставим $x_1=1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$2x_2 + 3x_3 + 5x_4 + x_5 \le 4$$

$$x_2 + x_3 \le 0$$

$$x_4 + x_5 \le 1$$

$$4x_2' + 5x_3' + 10x_4' + 2x_5' \le 11$$

Примем переменную $x_4 = 0$ из первого ограничения, тогда система примет вид:

$$2x_{2} + 3x_{3} + x_{5} \le 4$$

$$x_{2} + x_{3} \le 0$$

$$x_{5} \le 1$$

$$4x'_{2} + 5x'_{3} + 2x'_{5} \le 1$$

Все $b_i^{(1)} \ge 0$, выполняем следующий шаг. Припишем переменной x_2 единичное значение. Для этого подставим $x_2 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$3x_3 + x_5 \le 2$$

$$x_3 \le -1$$

$$x_5 \le 1$$

$$5x_3' + 2x_5' \le 1$$

Одно из $b_i^{(2)} < 0$, припишем переменной x_2 нулевое значение. Для этого подставим $x_2 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$3x_3 + 5x_4 + x_5 \le 4$$
$$x_3 \le 0$$

$$x_4 + x_5 \le 1$$
$$5x_3' + 2x_5' \le -3$$

Одно из $b_i^{(2)} < 0$, последовательно (в обратном порядке) просматриваем переменные до тех пор, пока не обнаружим переменную, которой приписано единичное значение - x_1 .

Припишем переменной x_1 нулевое значение. Для этого подставим $x_1 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$2x_2 + 3x_3 + 5x_4 + x_5 \le 8$$

$$x_2 + x_3 \le 1$$

$$x_4 + x_5 \le 1$$

$$4x_2' + 5x_3' + 10x_4' + 2x_5' \le 5$$

Все $b_i^{(1)} \ge 0$, выполняем следующий шаг. Припишем переменной x_2 единичное значение. Для этого подставим $x_2 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$3x_3 + 5x_4 + x_5 \le 6$$

$$x_3 \le 0$$

$$x_4 + x_5 \le 1$$

$$5x_3' + 10x_4' + 2x_5' \le 5$$

Все $b_i^{(2)} \ge 0$, выполняем следующий шаг. Припишем переменной x_3 единичное значение. Для этого подставим $x_3 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$5x_4 + x_5 \le 3$$
$$0 \le -1$$
$$x_4 + x_5 \le 1$$
$$10x_4' + 2x_5' \le 5$$

Одно из $b_i^{(3)} < 0$, припишем переменной x_3 нулевое значение. Для этого подставим $x_3 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$5x_4 + x_5 \le 6$$
$$0 \le 0$$
$$x_4 + x_5 \le 1$$
$$10x'_4 + 2x'_5 \le 0$$

Все $b_i^{(3)} \ge 0$, выполняем следующий шаг. Припишем переменной x_4 единичное значение. Для этого подставим $x_4 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$x_5 \le 1$$
$$0 \le 0$$
$$x_5 \le 0$$
$$2x_5' \le 0$$

Все $b_i^{(4)} \ge 0$, выполняем следующий шаг. Припишем переменной x_4 единичное значение. Для этого подставим $x_4 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$0 \le 0$$
$$0 \le 0$$
$$0 \le -1$$
$$0 < 0$$

Одно из $b_i^{(5)} < 0$, припишем переменной x_3 нулевое значение. Для этого подставим $x_3 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$0 \le 1$$
$$0 \le 0$$
$$0 \le 0$$

$$0 \le -2$$

Одно из $b_i^{(5)} < 0$, последовательно (в обратном порядке) просматриваем переменные до тех пор, пока не обнаружим переменную, которой приписано единичное значение - x_2 .

Припишем переменной x_2 нулевое значение. Для этого подставим $x_2 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$3x_3 + 5x_4 + x_5 \le 8$$

$$x_3 \le 1$$

$$x_4 + x_5 \le 1$$

$$5x_3' + 10x_4' + 2x_5' \le 1$$

Все $b_i^{(2)} \ge 0$, выполняем следующий шаг. Припишем переменной x_3 единичное значение. Для этого подставим $x_3 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$5x_4 + x_5 \le 5$$
$$0 \le 0$$
$$x_4 + x_5 \le 1$$
$$10x'_4 + 2x'_5 \le 1$$

Все $b_i^{(3)} \ge 0$, выполняем следующий шаг. Припишем переменной x_4 единичное значение. Для этого подставим $x_4 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$x_5 \le 0$$
$$0 \le 0$$
$$x_5 \le 1$$
$$2x_5' \le 1$$

Все $b_i^{(4)} \ge 0$, выполняем следующий шаг. Припишем переменной x_5 единичное значение. Для этого подставим $x_5 = 1$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$0 \leq -1$$

$$0 \le 0$$

$$0 \le 0$$

$$0 \le 1$$

Одно из $b_i^{(5)} < 0$, выполняем следующий шаг. Припишем переменной x_5 единичное значение. Для этого подставим $x_5 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение

$$0 \le 0$$

$$0 \le 0$$

$$0 \le 1$$

$$0 \leq -1$$

Одно из $b_i^{(5)} < 0$, последовательно (в обратном порядке) просматриваем переменные до тех пор, пока не обнаружим переменную, которой приписано единичное значение - x_4 .

Припишем переменной x_4 нулевое значение. Для этого подставим $x_4 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$x_5 \leq 0$$

$$0 \le 0$$

$$x_5 \leq 1$$

$$2x_5' \leq -9$$

Одно из $b_i^{(4)} < 0$, последовательно (в обратном порядке) просматриваем переменные до тех пор, пока не обнаружим переменную, которой приписано единичное значение - x_3 .

Припишем переменной x_3 нулевое значение. Для этого подставим $x_3 = 0$ в ограничения, учитывая вхождение этой переменной в каждое ограничение:

$$5x_4 + x_5 \le 8$$

$$0 \le 1$$

$$x_4 + x_5 \le 1$$

$$10x_4' + 2x_5' \le -4$$

Одно из $b_i^{(3)} < 0$, последовательно (в обратном порядке) просматриваем переменные до тех пор, пока не обнаружим переменную, которой приписано единичное значение — таких переменных нет. Таким образом, полученная система противоречива и не имеет допустимых решений.

Проиллюстрируем ход решения задачи:

Рисунок 4 – Решение задачи 4 метода Фора-Мальгранжа алгоритмом плотного заполнения

Очевидно, что решение предыдущей задачи X = (0,0,1,1,0) – оптимальное решение исходной задачи, а F(X) = 5 + 10 = 15 – оптимальное значение целевой функции.

Алгоритм Балаша

Попытаемся найти любое допустимое решение задачи, воспользовавшись алгоритмом плотного заполнения. Таким образом, получаем решение из первого пункта.

Дополним исходную систему ограничением:

$$6x_1 + 4x_2 + 5x_3 + 10x_4 + 2x_5 \ge 9 \Rightarrow 6x_1' + 4x_2' + 5x_3' + 10x_4' + 2x_5' \le 18$$

Получаем следующую задачу:

$$F = 6x_1 + 4x_2 + 5x_3 + 10x_4 + 2x_5$$

$$4x_1 + 2x_2 + 3x_3 + 5x_4 + x_5 \le 8$$

$$x_1 + x_2 + x_3 \le 1$$

$$x_4 + x_5 \le 1$$

$$6x_1' + 4x_2' + 5x_3' + 10x_4' + 2x_5' \le 18$$

$$x_j \in \{0,1\}, j = 1,2,3,4,5$$

Исключение переменных невозможно. Вносим задачи 1 ($x_1=1$) и 2 ($x_1=0$) в список.

Задача 1

$$X = (1, x_2, x_3, x_4, x_5)$$

$$2x_2 + 3x_3 + 5x_4 + x_5 \le 4$$

$$x_2 + x_3 \le 0$$

$$x_4 + x_5 \le 1$$

$$4x_2' + 5x_3' + 10x_4' + 2x_5' \le 18$$

Имеется возможность расширить частичное решение. Из 2-го неравенства $x_2=0$ и $x_3=0$:

$$X = (1,0,0, x_4, x_5)$$

$$5x_4 + x_5 \le 4$$

$$0 \le 0$$

$$x_4 + x_5 \le 1$$

$$10x_4' + 2x_5' \le 9$$

Поставленная задача противоречива: любое значение x_4 приводит к неверной системе неравенств.

Задача 2

$$X = (0, x_2, x_3, x_4, x_5)$$

$$2x_2 + 3x_3 + 5x_4 + x_5 \le 8$$

$$x_2 + x_3 \le 1$$

$$x_4 + x_5 \le 1$$

$$4x_2' + 5x_3' + 10x_4' + 2x_5' \le 12$$

Исключить переменную не можем. Внесем задачу 3 ($x_2=1$) и задачу 4 ($x_2=0$) в список.

Задача 3

$$X = (0,1, x_3, x_4, x_5)$$
$$3x_3 + 5x_4 + x_5 \le 6$$
$$x_3 \le 0$$
$$x_4 + x_5 \le 1$$
$$5x_3' + 10x_4' + 2x_5' \le 12$$

Имеется возможность расширить частичное решение. Из 2-го неравенства $x_3=0$:

$$X = (0,1,0, x_4, x_5)$$

$$5x_4 + x_5 \le 6$$

$$0 \le 0$$

$$x_4 + x_5 \le 1$$

$$10x_4' + 2x_5' \le 7$$

Имеется возможность расширить частичное решение. Из 2-го неравенства $x_4=1$:

$$X = (0,1,0,1,x_5)$$

$$x_5 \le 1$$

$$0 \le 0$$

$$x_5 \le 0$$

$$2x_5' \le 7$$

Имеется возможность расширить частичное решение. Из 2-го неравенства $x_5=0$

$$X = (0,1,0,1,0)$$

 $0 \le 1$
 $0 \le 0$
 $0 \le 0$
 $0 \le 5$

Получаем X = (0,1,0,1,0), F(X) = 4 + 10 = 14 – новый рекорд.

Задача 4

$$X = (0,0, x_3, x_4, x_5)$$
$$3x_3 + 5x_4 + x_5 \le 8$$
$$x_3 \le 1$$
$$x_4 + x_5 \le 1$$
$$5x_3' + 10x_4' + 2x_5' \le 8$$

Имеется возможность расширить частичное решение. Из 2-го неравенства $x_4=1$

$$X = (0,0,x_3,1,x_5)$$
$$3x_3 + x_5 \le 3$$
$$x_3 \le 1$$
$$x_5 \le 0$$
$$26$$

$$5x_3' + 2x_5' \le 8$$

Имеется возможность расширить частичное решение. Из 2-го неравенства $x_5=0$

$$X = (0,0,x_3,1,0)$$
$$3x_3 \le 3$$
$$x_3 \le 1$$
$$0 \le 0$$
$$5x_3' \le 6$$

Исключить переменную не можем. Внесем задачу 5 ($x_3=1$) и задачу 6 ($x_3=0$) в список.

Задача 5

$$X = (0,0,1,1,0)$$

 $3 \le 3$
 $x_3 \le 1$
 $0 \le 0$
 $0 \le 6$

Получаем X = (0,1,0,1,0), F(X) = 5 + 10 = 15 – новый рекорд.

Задача 6

$$X = (0,0,0,1,0)$$
$$3 \le 3$$
$$x_3 \le 1$$
$$0 \le 0$$
$$0 \le 6$$

Получаем X = (0,0,0,1,0), F(X) = 10 = 10.

Список задач пуст, следовательно, оптимальное решение задачи – последний зафиксированный рекорд. Оптимальное значение функции получено при X = (0,1,0,1,0), F(X) = 5 + 10 = 15.

Проиллюстрируем ход решения задачи:

Рисунок 5 – Решение задачи алгоритмом Балаша

Вывод: в ходе выполнения домашней работы были приобретены навыки выделения наиболее важных свойств объектов моделей для моделирования, решения задач целочисленного программирования с булевыми переменными.