```
In [1]: import pandas as pd
        import numpy as np
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.metrics import confusion_matrix
        from sklearn.metrics import f1_score
        from sklearn.metrics import accuracy score
In [5]: dataset = pd.read_csv('diabetes.csv')
        print(len(dataset))
        print(dataset.head())
        768
           Pregnancies Glucose BloodPressure SkinThickness Insulin
                                                                         BMI \
                            148
                                                                        33.6
                     6
                                            72
                                                           35
        1
                     1
                             85
                                            66
                                                           29
                                                                     0
                                                                        26.6
        2
                     8
                            183
                                            64
                                                            0
                                                                     0
                                                                        23.3
        3
                     1
                             89
                                            66
                                                           23
                                                                    94
                                                                        28.1
                                                                   168 43.1
        4
                     0
                            137
                                            40
                                                           35
           DiabetesPedigreeFunction Age Outcome
        0
                              0.627
                                      50
                                                1
                              0.351
                                                0
        1
                                      31
        2
                              0.672
                                      32
                                                1
                              0.167
                                                0
        3
                                      21
```

Replace Zeros with Mean

2.288

33

4

```
In [7]: zero_not_acc = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']
In [12]: for column in zero_not_acc:
    dataset[column] = dataset[column].replace(0,np.NaN)
    mean=int(dataset[column].mean(skipna=True))# skipna will ignore the Nan value and return the mean
    dataset[column] = dataset[column].replace(np.NaN,mean)
```

1

Split Dataset in train and test dataset

In [14]: dataset

Out[14]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148.0	72.0	35.0	155.0	33.6	0.627	50	1
1	1	85.0	66.0	29.0	155.0	26.6	0.351	31	0
2	8	183.0	64.0	29.0	155.0	23.3	0.672	32	1
3	1	89.0	66.0	23.0	94.0	28.1	0.167	21	0
4	0	137.0	40.0	35.0	168.0	43.1	2.288	33	1
			•••						
763	10	101.0	76.0	48.0	180.0	32.9	0.171	63	0
764	2	122.0	70.0	27.0	155.0	36.8	0.340	27	0
765	5	121.0	72.0	23.0	112.0	26.2	0.245	30	0
766	1	126.0	60.0	29.0	155.0	30.1	0.349	47	1
767	1	93.0	70.0	31.0	155.0	30.4	0.315	23	0

768 rows × 9 columns

```
In [15]: X = dataset.iloc[:,0:8]# this is our whole data except output
y = dataset.iloc[:,8]# this is our output
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=0,test_size=0.2)
#test size 20% we make it a side so that we can train it later
```

Setting Standard Scale

```
In [16]: Sc_X = StandardScaler()
X_train = Sc_X.fit_transform(X_train)
X_test = Sc_X.fit_transform(X_test)
```

Defining Model

```
In [18]: #n_neighbors = odd (number of neighbours around test data point)
    # p= 2 (We need to find is that a diabatic or not)
    #metric = euclidean (it is method of finding distance between points)
    classifier = KNeighborsClassifier(n_neighbors=11 , p = 2 , metric='euclidean')
```

Evaluate the model through confusion metrix

```
In [22]: classifier.fit(X_train,y_train)
Out[22]: KNeighborsClassifier(metric='euclidean', n_neighbors=11)
```

```
In [23]: y_pred = classifier.predict(X_test)
        y_pred
        C:\Users\mosai\anaconda3\lib\site-packages\sklearn\neighbors\_classification.py:228: FutureWarning:
        Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically
        preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of
         keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and th
         e value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.
          mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,
               1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1,
               1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
               0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
               0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
              dtype=int64)
In [24]: cm = confusion matrix(y test,y pred)
        print(cm)
        print(f1_score(y_test,y_pred))
         [[95 12]
         [18 29]]
         0.6590909090909092
In [25]: print(accuracy_score(y_test,y_pred))
         0.8051948051948052
 In [ ]:
```