MTH 344-001 Winter 2022 HW 1

Randi Bolt

1/14/2022

- 1. Do the following define operations on the given set? Why or why not? (Your answers only need to be a sentance or two; if these do define operations, you do not need to check if they're commutative, associatve, ect. in this problem.)
- (a) a*b=4a-b on \mathbb{Z}

No, because the operation * is neither commutative, or associative.

Commutative: Let a = 1, and b = 2,

$$a * b = 4a - b = 4(1) - 2 = 4 - 2 = 2$$

$$b*a = 4b - a = 4(2) - a = 8 - 1 = 7$$

$$2 \neq 7$$

Associative:

$$(a*b)*c = (4a-b)*c = 4(4a-b)-c = 16a-4b-c$$

$$a * (b * c) = 4a - (4b - c) = 4a - 4b + c$$

$$16a - 4b - c \neq 4a - 4b + c$$

(b)
$$a*b=3^b$$
 on \mathbb{Q}

No, because * is neither commutative, or associative.

Commutative : Let a = 1 and b = 2 then,

$$a * b = 3^2 = 9 \neq 3 = 3^1 = b * a$$

Associative:

$$a * (b * c) = (3^c)^{3^c} \neq 3^c = (a * b) * c$$

(c)
$$a * b = \frac{a}{ab+2}$$
 on \mathbb{R}

No, because the operation * is neither commutative, or associative.

Commutative : Let a = 1, and b = 2,

$$a * b = \frac{a}{ab+2} = \frac{1}{4} \neq \frac{1}{2} = \frac{b}{ba+2} = b * a$$

Associative:

$$a*(b*c) = a*\frac{b}{bc+2} = \frac{a}{a\frac{b}{bc+2}+2} = \frac{\frac{a}{1}}{\frac{ab+2(bc+2)}{bc+2}} = \frac{a(bc+2)}{ab+2(bc+2)} = \frac{abc+2}{ab+2bc+4}$$

$$(a*b)*c = \frac{a}{ab+2}*c = \frac{\frac{a}{ab+2}}{\frac{a}{ab+2}c+2} = \frac{\frac{a}{ab+2}}{\frac{ac+2(ab+2)}{ab+2}} = \frac{a(ab+2)}{(ac+2(ab+2))(ab+2)} = \frac{a^2b+2a}{(ac+2ab+4)(ab+2)}$$

$$a * (b * c) \neq (a * b) * c$$

(d)
$$a*b = \frac{1}{ab+2}$$
 on \mathbb{R}^+

No, because the operation * is not associative.

$$a*(b*c) = a*(\frac{1}{bc+2}) = \frac{1}{a(\frac{1}{bc+2})+2} = \frac{\frac{1}{1}}{\frac{a+2(bc+2)}{bc+2}} = \frac{bc+2}{a+2bc+4}$$

Let a = 1, b = 2, c = 3,

$$\frac{bc+2}{a+2bc+4} = \frac{2(3)+2}{1+2(2)(3)+4} = \frac{8}{17} \approx 0.470588$$

$$(a*b)*c = (\frac{1}{ab+2})*c = \frac{1}{(\frac{1}{ab+2})c+2} = \frac{\frac{1}{1}}{\frac{c+2(ab+2)}{ab+2}} = \frac{ab+2}{c+2ab+4}$$

Let a = 1, b = 2, c = 3,

$$\frac{ab+2}{c+2ab+4} = \frac{4}{3+4+4} = \frac{4}{11} \approx 0.3636$$
$$\frac{8}{17} \neq \frac{4}{11}$$

2. Define an operation * on \mathbb{R} by a*b=3a-4b+2

(a) Is * commutative?

No, let a = 1, and b = 2.

$$3a - 4b + 2 = 3b - 4a + 2$$

$$3(1) - 4(2) + 2 = 3(2) - 4(1) + 2$$

$$3 - 8 + 2 = 6 - 4 + 2$$

$$-3 \neq 4$$
(1)

Since $a * b \neq b * a$, then * is NOT commutative.

(b) Is * associative?

No,

$$(a*b)*c = (3a - 4b + 2)*c$$

$$= 3(3a - 4b + 2) - 4c + 2$$

$$= 9a - 12b + 6 - 4c + 2$$

$$= 9a - 12b - 4c + 8$$
(2)

$$a*(b*c) = a*(3b-4c+2)$$

$$= 3a-4(3b-4c+2)+2$$

$$= 3a-12b+16c-8+2$$

$$= 3a-12b+16c-6$$
(3)

Since $(a*b)*c \neq a*(b*c)$, then * isn't associative.

(c) Is there an identity element $e \in \mathbb{R}$ w.r.t. *?

No, let $e \in \mathbb{R}$ such that $e * a = a \forall a \in \mathbb{R}$.

$$e * a = a \Rightarrow 3a - 4e + 2 = a$$

$$\Rightarrow 4e = 2a + 2$$

$$\Rightarrow e = \frac{1}{4}(2a + 2) = \frac{1}{2}a + \frac{1}{2}$$

$$(4)$$

- (d) Does every element $a \in \mathbb{R}$ have an inverse w.r.t. *?
- 3. Define an operation * on \mathbb{R} by a*b=a+b-ab.
- (a) Is * commutative?

$$a * b = a + b - ab$$

 $= b + a - ab$ since + is commutative
 $= b + a - ba$ since · is commutative
 $= b * a$ (5)

- (b) Is * associative?
- (c) Is there an identity element $e \in \mathbb{R}$ w.r.t. *?
- (d) Does every element $a \in \mathbb{R}$ have an inverse w.r.t. *?
- 4. Define an operation * on the set $G = \{(x,y) \in \mathbb{R} \times \mathbb{R} | x \neq 0\}$ by

$$(a,b)*(c,d) = (ac, ad + bc).$$

Prove that $\langle G, * \rangle$ is an abelian group. (You do not need to check associativity. We will show this in class.)

- 5. Let a,b,c,x be elements of a group G. Solve the following system of equations for x:
- (a) $bx^2 = ax^{-1}$ and $x^4 = c$
- (b) $x^2c = bxa^{-1}$ and xca = cax
- 6. This problem asks you to consider the importance of using proper notation for inverses in groups. Your answer only needs to be a sentence or two.

Suppose a,b, and x are elements of a *nonabelian* group G, and that we want to solve thte equation ax = b for x. Why would it be incorrect and unclear to say that the solution is $x = \frac{b}{a}$