UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE CIENCIAS ESCUELA PROFESIONAL DE CIENCIA DE LA COMPUTACIÓN

Sílabo

1 Información General

Asignatura: Programación Paralela

Código: CC332 Créditos: 04(cuatro) Pre-requisito:

Condición: Obligatorio Ciclo Académico: 2020-II Horas teóricas: 2 horas semana Horas Laboratorio: 4 horas semana

Sistema de Evaluación: Profesor: José Fiestas

2 Sumilla

La programación en paralelo es uno de los pilares de las Ciencias de la Computación moderna, y sus aplicaciones en el mundo dominan todas las areas de desarrollo (industrial, comercial, científica y educacional).

Este curso introduce a los estudiantes en algoritmos de programación en paralelo, utilizando paradigmas de programación sólidamente establecidos en las áreas mencionadas. Asimismo, se desarrollan actividades prácticas, con herramientas de programación en paralelo, como MPI, OpenMP y CUDA, y una introducción a la programación híbrida

3 Competencias

Objetivo, es desarrollar la capacidad del estudiante, en:

- Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina.
- Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución.
- Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas

4 Unidades de Aprendizaje

- Fundamentos de paralelismo y arquitecturas paralelas : Del procesamiento secuencial al paralelo, Procesadores mutlinúcleo. Taxonomia de Flynn, Metas del Paralelismo: velocidad y precision, Memoria compartida vs memoria distribuida.
- Metodos de paralelismo Métricas de velocidad, eficiencia, escalabilidad. Ley de Ahmdal, DAG, Operaciones basicas de paralelismo (tabulate, iterate), Secuencias, Divide y venceras, Modelos computacionales en paralelo (PRAM), Broadast/Reduccion
- Descomposición en paralelo Paradigmas de programacion en paralelo, Paralelismo ideal, Uso de random en paralelo, Particionamiento, Divide y Vencerás
- Comunicación y coordinación: Comunicacion Global, topologias, Pasos de Mensaje (MPI, Mensajes Punto a Punto, MPI, Comunicación Colectiva, Blocking vs non-blocking), Memoria Compartida (OMP, Constructores y cláusulas, CUDA, optimizacion con GPUs), Programacion Hibrida
- Análisis y programación de algoritmos paralelos Aceleración y escalabilidad, Naturalmente (vergonzosamente) algoritmos paralelos, Algoritmos de ordenamiento en paralelo, Algoritmos de búsqueda en paralelo, Algoritmos de grafos en paralelo, Ecuaciones diferenciales parciales , Ejemplos de algoritmos paralelos no-escalables.
- Desempeño en paralelo Equilibrio de carga, La medición del desempeño, Programación y contención, Consumo de energía y gestión.

5 Metodología

- Las sesiones de teoría se llevan a cabo en clases magistrales donde se realizarán actividades que propicien un aprendizaje activo, con descripción de casos prácticos, que permitan a los estudiantes interiorizar los conceptos.
- Para verificar que los alumnos hayan alcanzado el logro planteado para cada una de las unidades de aprendizaje, realizarán actividades que les permita aplicar los conocimientos adquiridos durante las sesiones de teoría y se les propondrá retos que permitan evaluar el desempeño de los alumnos. Como parte de la evaluación continua se asignarán tareas semanales en forma grupal o individual.

6 Laboratorios

- Laboratorio 1: Métodos de paralelismo y descomposición en paralelo (DAG, PRAM)
- Laboratorio 2: Comunicación y coordinación (MPI)
- Laboratorio 3: Comunicación y coordinación (caso práctico)
- Laboratorio 4: Comunicación y coordinación (OMP)
- Exámen Parcial
- Laboratorio 5: Comunicación y coordinación (Paralelismo híbrido)
- Laboratorio 6: Análisis y programación de algoritmos paralelos (Ordenamiento)
- Laboratorio 7: Análisis y programación de algoritmos paralelos (Grafos)
- Laboratorio 8: Desempeño en paralelo (Performance, Escalabilidad)
- Exámen Final

7 Método de Evaluación

El promedio final resulta de promediar las siguientes notas:

Evaluación	Peso
Examen parcial (EP)	1
Examen final (EF)	2
Promedio de laboratorios (PP)	1

PromedioFinal:

$$F = (EP + 2EF + PP)/4$$

8 Bibliografía

- David B. Kirk and Wen-mei W. Hwu. (2013) Programming Massively Paral- lel Processors: A Hands-on Approach. 2nd. Morgan Kaufmann, isbn: 978-0- 12-415992-1.
- Norm Matloff. (2014) Programming on Parallel Machines. University of Cali-fornia, Davis. url: http://heather.cs.ucdavis.edu/matloff/158/PLN/ParProcBook.pdf.
- Peter S. Pacheco. (2011) An Introduction to Parallel Programming. 1st. Morgan Kaufmann. isbn: 978-0-12-374260- 5.
- Michael J. Quinn. (2003) Parallel Programming in C with MPI and OpenMP. 1st. McGraw-Hill Education Group. isbn: 0071232656.
- \bullet MPI Tutorial (https://computing.llnl.gov/tutorials/mpi/)
- Cuda by Example (Sanders & Kandrot, 2010)

9 Programa

Las clases imparten principios básicos de algoritmos y programación en paralelo, y su aplicación en la solución de problemas. Las clases están distribuídas de la siguiente manera:

Semana	Teoría	Práctica
1	Introducción a la Computación Paralela	
(02.11-07.11)	Del procesamiento secuencial al paralelo	Prueba de
	Procesadores mutlinúcleo, Taxonomia de Flynn	entrada
2	Métodos de Paralelismo	
(09.11-14.11)	DAG, PRAM	Laboratorio
_	Operaciones básicas en paralelo	1
3	Métodos de Paralelismo	D. C. H.
(16.11-21.11)	Divide y vencerás	Práctica
4	Broadcast y reducción	grupal
(92.11.99.11)	Descomposición en Paralelo Paralelismo ideal	Laboratorio
(23.11-28.11)		Laboratorio 2
5	Random en paralelo Comunicación y coordinación	
(30.11-05.12)	MPI, comunicación punto a punto	Práctica grupal
(50.11-05.12)	Comunicación y coordinación	Tractica grupar
(07.12-12.12)	comunicación colectiva	Lab. 3
7	Comunicación y coordinación	Eab. 0
(14.12-19.12)	bloqueo y no-bloqueo	Lab. 4
8 (21.12-26.12)	Exámen Parcial	
9	Comunicación y coordinación	
(28.11-02.01)	OMP, constructores, cláusulas	Lab. 5
10	Comunicación y coordinación	D ()
(04.01-09.01)	OMP, CUDA	Práctica grupal
(11.01.16.01)	Comunicación y coordinación	T 1 C
(11.01-16.01)	Programación híbrida	Lab. 6
(10.01.22.01)	Análisis y programación de algoritmos paralelos	I ab anat 7
(18.01-23.01)	Algortimos de ordenamiento en paralelo Algortimos de búsqueda en paralelo	Laboratorio 7
13	Análisis y programación de algoritmos paralelos	
(25.01-30.01)	Algortimos de grafos en paralelo	Lab. 8
14	Desempeño en paralelo	Lab. 0
(01.02-06.02)	Equilibrio de carga, desempeño	Práctica grupal
15	Desempeño en paralelo	
(08.02-13.02)	Consumo de energía y gestión	Repaso
8 (21.12-26.12)	Exámen Final	
17 (01.03-06.03)	Exámen Sustitutorio	