БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Лабораторная работа по вычислительным методам алгебры на тему:

Определение наибольшего по модулю собственного значения матрицы

Выполнил: Архангельский И.А.

> Проверил: Кондратюк А.П.

Входные и выходные данные.

Входные данные

Входной файл в первой строке содержит число n - размерность матрицы , следующие n строк содержат матрицу (A), где A - квадратная матрица.

Строка n+2 содержит начальный вектор y_0 .

Строка n+3 содержит величину ε - заданную точность.

Выходные данные

На выход в stdout подается максимальное собственное значение матрицы A

Блок-схема

Реализация

```
package maximumeigenvalue;
2
   import java.io.BufferedReader;
3
    import java.io.FileReader;
    import\ java.io. IO \, Exception;\\
    import java.util.StringTokenizer;
6
    public class MaximumEgien
7
8
        double[][] matrix;
9
        double[] y;
10
        double epsilon;
11
        int k;
        public MaximumEgien(String filename) throws IOException
13
             BufferedReader br = new BufferedReader(new FileReader(filename));
14
15
             int dim = Integer.parseInt(br.readLine());
16
             matrix = new double [dim] [dim];
            for (int i = 0; i < dim; i++)
17
18
19
                 StringTokenizer tmp = new StringTokenizer(br.readLine());
                 \mbox{for (int $j=0$; $j<dim$; $j++)}
21
                 {
22
                     matrix[i][j] = Double.parseDouble(tmp.nextToken());
                 }
23
24
25
            StringTokenizer tmp = new StringTokenizer(br.readLine());
26
            y = new double[dim];
27
            for (int i = 0; i < \dim; i++)
2.8
29
                 y[i] = Double.parseDouble(tmp.nextToken());
30
            }
31
             epsilon = Double.parseDouble(br.readLine());
32
33
        public double getMaxEigen()
34
            double[] ythis = mulMatrix(y);
double[] yprev = y;
35
36
37
             double [] lambdas = new double [yprev.length];
38
             for \ (int \ i = 0; \ i < lambdas.length; \ i++) \ \{lambdas[i] = ythis[i] \ / \ yprev[i]; \} 
39
             while (eps(lambdas) > epsilon | | k < 10)
40
41
             {
42
                 yprev = ythis;
                 ythis = mulMatrix(ythis);
43
                 for (int i = 0; i < lambdas.length; i++) {lambdas[i] = ythis[i] / yprev[i];}
44
45
                 k++;
46
             return lambdas[0];
47
48
49
        private double[] mulMatrix(double[] x)
50
             double[] res = new double[matrix.length];
             for (int i = 0; i < matrix.length; i++)
52
53
             {
54
                 res[i] = 0;
55
                 for (int j = 0; j < matrix.length; j++) {res[i] += x[j] * matrix[i][j];}
56
57
             return res:
58
        public int getK() {return k;}
60
61
        private double eps(double[] x)
63
             double e = 0;
64
             for (int i = 1; i < x.length; i++) {e += Math.pow(Math.abs(x[0] - x[i]), 2);}
65
             return Math.sqrt(e);
66
67
    }
```

Тестовые данные

3 1 3 3 1 0.0	$egin{array}{cccc} 2 & 3 \\ 2 & 3 \\ 5 & 7 \\ 1 & 1 \\ 0000001 \end{array}$	3 7 1	${ m test}01.{ m in}$		10.673392446138907	${ m test}01.{ m out}$
	${ m test}02.{ m in}$				00.0100501101001	test02.out
3	c	1	2		90.6120501191381	
1	2	2	3			
3	2		$\frac{4}{90}$			
7	2		90 3			
$\begin{vmatrix} 1 \\ 0.0 \end{vmatrix}$	00003	2	Э			
		${ m test}03.{ m in}$				test03.out
4					96.61095118459914	
1	2	2	3	10		
3	2	2	4	100		
7	8	3	90	31		
34	3	32	4	15		
1	2	2	3	5		
0.0	00003					