Zadania kwalifikacyjne na warsztaty "Algebra obliczeniowa"

Damian Orlef

Warto przed rozwiązywaniem zadań zajrzeć do skryptu (link). Jeśli nie tłumaczy on wszystkich wątpliwości, proszę pisać na orlef.damian@gmail.com, a chętnie pomogę.

We wszystkich zadaniach k oznacza dowolny ze zbiorów \mathbb{Q} , \mathbb{R} , \mathbb{C} .

1 Zadania podstawowe

Zadanie 1.1 (1p.). Znajdź wszystkie liczby zespolone z, dla których $z^2 = 3 + 4i$.

Zadanie 1.2 (1p.). Udowodnij, że jeśli $z \in \mathbb{C}$ jest pierwiastkiem wielomianu P(x) o współczynnikach rzeczywistych, to \bar{z} jest również jego pierwiastkiem.

Zadanie 1.3 (1p.). Udowodnij, że w $\mathbb{C}[x,y,z]$ ideał I=(x-1,y-2,z-3) to dokładnie zbiór $\{f\in\mathbb{C}[x,y,z]\,|\,f(1,2,3)=0\}.$

Zadanie 1.4 (1p.). Udowodnij, że w dowolnym porządku jednomianowym < i dla dowolnego $\alpha \in (\mathbb{Z}_{\geq 0})^n$ różnego od $(0,0,\ldots,0)$, zachodzi $\alpha > (0,0,\ldots,0)$.

Zadanie 1.5 (1p.). Udowodnij, że jeśli ustalimy pewien porządek jednomianowy na $k[x_1, \ldots, x_n]$, to dla dowolnych niezerowych $f, g \in k[x_1, \ldots, x_n]$ zachodzi $LT(f) \cdot LT(g) = LT(f \cdot g)$.

Zadanie 1.6 (1p.). Udowodnij, że dla dowolnego podzbioru $A \subset k^n$, zbiór $I(A) \subset k[x_1, \dots, x_n]$ jest ideałem.

Zadanie 1.7 (1p.). Udowodnij, że dla dowolnych $f_1, \ldots, f_m \in k[x_1, \ldots, x_n]$, zbiór (f_1, \ldots, f_m) , określony tak jak w skrypcie, jest ideałem w $k[x_1, \ldots, x_n]$.

2 Zadania średnie

Zadanie 2.1 (3p.). Rozstrzygnij, czy istnieje wielomian dwóch zmiennych P(x,y) o współczynnikach rzeczywistych, którego zbiorem wartości dla $x,y \in \mathbb{R}$ jest dokładnie $(0,+\infty)$.

Zadanie 2.2 (2p.). Udowodnij, że porządek $<_{lex}$ opisany w skrypcie jest porządkiem jednomianowym.

Zadanie 2.3 (2p.). Udowodnij, że suma zbiorów algebraicznych jest zbiorem algebraicznym.

Zadanie 2.4 (2p.). Niech $f_1, \ldots, f_m \in k[x_1, \ldots, x_n]$ będą jednomianami. Udowodnij, że dla dowolnego $f \in k[x_1, \ldots, x_n]$ prawdą jest, że $f \in (f_1, \ldots, f_m)$ wtedy i tylko wtedy, gdy każdy jednomian w zapisie f jest podzielny przez któryś jednomian f_i .

3 Zadania dodatkowe

Zadanie 3.1 (5p.). Niech P(x) będzie wielomianem o współczynnikach zespolonych, stopnia co najmniej 1. Udowodnij, że pierwiastki wielomianu P'(x) leżą w otoczce wypukłej pierwiastków wielomianu P, czyli że jeśli wszystkimi pierwiastkami zespolonymi P są c_1, \ldots, c_n oraz $P'(\alpha) = 0$, to α leży w wielokącie o wierzchołkach c_i (we wnętrzu lub na brzegu). Równoważnie, trzeba pokazać, że istnieją liczby rzeczywiste x_1, \ldots, x_n , które są nieujemne, sumują się do 1 i zachodzi dla nich $\alpha = x_1c_1 + x_2c_2 + \ldots + x_nc_n$.

Zadanie 3.2 (5p.). Zaproponuj algorytm, który dla danego wielomianu P(x) o współczynnikach całkowitych stwierdzi, czy istnieją wielomiany Q(x), R(x), stopni co najmniej 1 i również o współczynnikach całkowitych, dla których $P(x) = Q(x) \cdot R(x)$. Można operować jedynie na liczbach wymiernych lub ich skończonych ciągach. Algorytm nie musi być w żadnym stopniu wydajny - wystarczy, żeby zwracał zawsze poprawną odpowiedź i na pewno się zatrzymywał.

Wskazówka: Warto umieć oszacować pierwiestki zespolone (ich moduł) dowolnego wielomianu przy

Wskazówka: Warto umieć oszacować pierwiastki zespolone (ich moduł) dowolnego wielomianu przy pomocy jego współczynników i na odwrót.