Einführung in die Quantenkommunikation

Irene Diener, Toni Roob, Jarod A. M. Békési

30. September 2025

30. September 2025

Figure 1: Particle-free interaction

- Was sind Quanten?
- 2 Was ist Quantenmechanik?
- Was ist Quantenkommunikation?
 - Polarisation
- 4 Quantenteleportation & Quantennetzwerke
- Quellenverzeichnis

Ursprung des Begriffs

- Quant = lat. "quantum" \rightarrow "wie groß" / "wie viel"
- Bedeutet messbares, quantifizierbares
- Demokrit: Materie nicht unendlich teilbar \rightarrow Atome

Der Photoeffekt

Thomas Young:
Doppelspaltversuch (1801 bis 1803)

→ Licht = Welle mit typischen
Überlagerungsmuster (Interferenz)

Figure 3: Doppelspalt

Natur des Lichts

- Licht löst Elektronen aus Metalloberflächen
- Stromfluss abhängig von der Farbe (Frequenz), nicht Helligkeit (Erwartung)
- Albert Einstein (Idee von Max Planck):
 - Licht tritt in Energiepaketen
 (Photonen) →
 Teilcheneigenschaft
- → Wellen-Teilchen Dualismus

Figure 4: Photoelektrischer Effekt

6/23

Beispiele für Quantenobjekte

Elektronen & Quarks

Photonen & Gluonen

Gitterschwingungen in Kristallen

30. September 2025

- Was ist Quantenmechanik?
- - Polarisation

Ein Bereich der Physik, welcher die Eigenschaften und Wechselwirkungen von Materie und Energie auf der Skala von Atomen und subatomaren Partikeln beschreibt.

Mathematische Grundlagen

Schrödinger-Gleichung

Eine der grundlegenden Gleichungen der Quantenmechanik, die die zeitliche Veränderung der Quantenzustände eines Systems beschreibt.

Mathematische Formulierung

$$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \hat{H} \Psi(x,t)$$

i: Imaginäre Einheit; Ψ: Wellenfunktion des Teilchens

 \hbar . Reduzierte Planck-Konstante; \hat{H} : Hamiltonoperato

Mathematische Grundlagen

Schrödinger-Gleichung

Eine der grundlegenden Gleichungen der Quantenmechanik, die die zeitliche Veränderung der Quantenzustände eines Systems beschreibt.

Mathematische Formulierung

$$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \hat{H} \Psi(x,t)$$

i: Imaginäre Einheit; Ψ : Wellenfunktion des Teilchens

 \hbar . Reduzierte Planck-Konstante; \hat{H} : Hamiltonoperator

10/23

Superposition & Qubits

Klassisches Bit: klar definierter Zustand \rightarrow 0 oder 1

Qubit: kann in Superposition existieren (Schrödingers Katze)

 $|0\rangle \& |1\rangle$

Mehrere Qubits: 2^n Zustände

gleichzeitig

Superposition zerfällt: Qubit fällt

auf $|0\rangle$ oder $|1\rangle$

Figure 5: Visualisierung von Schrödingers Katze

Bloch-Kugel

Grafische Darstellung eines Qubit Zustandes

Jeder Punkt auf der Kugel = möglicher Qubit-Zustand

$$|\Psi\rangle=lpha|0
angle+eta|1
angle$$
 mit

$$|\alpha^2| + |\beta^2| = 1\&\alpha, \beta \in \mathbb{C}$$

Wahrscheinlichkeit:

$$|0\rangle$$
 zu messen $=\alpha^2$

$$|1\rangle$$
 zu messen = β^2

Figure 6: Bloch-Kugel

Quantenkommunikation

Verschränkung

Zwei oder mehr Teilchen sind so miteinander verbunden (Quantensystem), dass die Messung des Zustands eines Teilchens den Zustand der anderen sofort beeinflusst, unabhängig von der Entfernung Bell'sche

Ungleichung:

$$S = |E(a, b) - (a, b') + E(a', b) + (a', b')| \le 2$$

 $S > 2$, dann Verschränkung

Figure 7: Veranschaulichung von Quantenverschränkung

- Was ist Quantenkommunikation?
 - Polarisation

Quantenkommunikation ist die Nutzung der "Prinzipien der Quantenmechanik wie Quantenverschränkung und Quantensuperposition, um Informationen nahezu abhörsicher zu übertragen". [Fra25]

- Nutzung von Quantenzuständen (erzeugt durch Polarisation) zur abhörsicheren Nachrichtenübertragung
- Nutzt Superposition und Verschränkung
- Quantenschlüsselverteilung zur Erstellung eines gemeinsamen Schlüssels (siehe Protokolle der Kryptographie)
- Besondere Eigenschaft: Abhören verändert automatisch den Quantenzustand →erkennbar

Quantenkommunikation ist die Nutzung der "Prinzipien der Quantenmechanik wie Quantenverschränkung und Quantensuperposition, um Informationen nahezu abhörsicher zu übertragen". [Fra25]

- Nutzung von Quantenzuständen (erzeugt durch Polarisation) zur abhörsicheren Nachrichtenübertragung
- Nutzt Superposition und Verschränkung
- Quantenschlüsselverteilung zur Erstellung eines gemeinsamen Schlüssels (siehe Protokolle der Kryptographie)
- Besondere Eigenschaft: Abhören verändert automatisch den Quantenzustand →erkennbar

Licht besteht aus elektromagnetischen Wellen. Das elektrische Feld schwingt immer senkrecht zur Ausbreitungsrichtung. Die Richtung dieser Schwingung nennt man Polarisation.

Quantenkommunikation

Polarisationsrichtungen¹ I

Basen (Photonenzustände):

Orthogonal: H/V - Basis (Z-Basis)

H, 0° : horizontal \rightarrow

V, 90° : vertikal \uparrow

Schräg: D/A - Basis (X-Basis)

D, 45°: diagonal

A, 135° : antidiagonal \nwarrow

Zustände werden als $|0\rangle$ oder $|1\rangle$ festgelegt

z.B: H/V – Basis
$$\rightarrow$$
 $|H\rangle = 0$, $|V\rangle = 1$

20 5 . 1 2025

¹ lineare Polarisation

Wie funktioniert sie?

- Erfordert Basiselemente des Quantencomputers
- Polarisation der Schwingungsrichtungen der Photonen mittels Polarisationsfilter \rightarrow Erzeugung von Qubits

- Begrenzung: Photonenabsorption in Glasfasern \rightarrow ca. 100 km Reichweite
- Lösung: Quantenrepeater zur Reichweitenerhöhung \rightarrow zentrales Forschungsthema

18 / 23

- - Polarisation
- Quantenteleportation & Quantennetzwerke

- - Polarisation
- Quellenverzeichnis

Quellenverzeichnis I

Fraunhofer Gesellschaft:

Quantenkommunikation.

(2025).

https://www.fraunhofer.de/de/forschung/artikel-2025/ quantenforschung/quantenkommunikation.html, Abruf: 17 09 2025

Abbildungsverzeichnis I

