

_LN9 - 복사본

CONTENTS

목차

- 1. 텍스트 분석 이해
- 2. 텍스트 전처리 텍스트 정규화
- 3. Bag Of Words BOW
- 4. 텍스트 분류 실습 20 뉴스그룹 분류
- 5. 감성 분석
- 6. 토픽모델링 20 뉴스그룹
- 7. 문서 군집화 소개와 실습 (Opinion Review)
- 8. 문서 유사도
- 9. 한글 텍스트 처리 네이버 영화 평점 감성 분석

서론

텍스트 분석(마이닝) vs NLP

• 자연어처리(NLP)

머신이 인간의 언어를 이해하고 해석하는데 더 중점을 두고 기술을 발전하기 위해 통계학과 다양한 딥러닝 기술들을 적용하여 연구하는 분야

• 텍스트마이닝(Text-mining)

자연어처리(NLP)의 결과물인 언어모델(Language Model)을 활용하여 배달앱 리뷰나 쇼핑몰 검색 데이터와 같은 텍스트 형태로된 비정형 텍스 트에서 고객의 경향성이나 선호도 등 유의미한 정보를 얻어내기 위한 분 석 기법

01. 텍스트 분석 이해

텍스트 분석 이해

머신러닝 알고리즘은 숫자형의 피처 기반 데이터만 입력받을 수 있음. 비정형 데이터에서 피처 형태로 추출하고 추출된 피처에 숫자값을 부여할 수 있어야 됨

- 1) 텍스트 사전 준비 작업 (텍스트 전처리): 클렌징, 대/소문자 변경, 특수분자 삭제 등의 클렌징 작업, 단어 등의 토큰화 작업, stop word 제거 작업, 어근 추출 등의 텍스트 정규화 작업 수행2) 피처 벡터화/추출: 가공된 텍스트에 피처를 추출하고 벡터값을 할당 (BOW, Word2Vec)
- 3) ML 모델 수립 및 학습/예측/평가 : 피처 벡터화 된 데이터 세 트에 ML 모델을 적용

텍스트 분석 이해

텍스트 분석 패키지

NTLK	파이썬의 가장 대표적인 NLP 패키지. 많은 NLP 패키지가 NTLK의 영향을 받아 작성되고 있음. 수행 속도 측면에서 아쉬운 부분이 있음.
Genism	토픽 모델링 분야에서 가장 두각을 나타내는 패키지.
SpaCy	뛰어난 수행 성능으로 최근 가장 주목을 받는 NLP 패키지. 많은 NLP 어플리케이션에서 SpaCy를 사용하는 사례 증가

02. 텍스트 전처리

텍스트 정규화

텍스트 전처리

사전에 텍스트를 가공하는 준비 작업 필요

- 클렌징
- 토큰화
- 필터링/스톱워드 제거/철자 수정
- Stemming
- Lemmatization

클렌징

텍스트 분석에 방해가 되는 불필요한 문자, 기호 등을 사전에 제거

- HTML 태그 : `
`, ``, `<div>`

- 1. HTML 태그: 〈br〉, 〈p〉, 〈un〉 2. URL 3. 이메일 주소 4. 특수 문자: 텍스트 분석에는 일반적으로 특수 문자(`@`, `#`, `\$`, `%`, `^`, `&`, `*`, `(`, `)`, `-`, `_', `=`, `+`, `[`, `]`, `{`, `}`, `;`, `;`, `;`, `, ` · `, `<`, `>`, '/`, '?', `~', `|`, `\` 등)가 필요 없습니다. 5. 숫자: 날짜나 시간 정보는 분석에 방해가 될 수 있습니다. 6. 이모티콘, 이모지 7. 분파이하 공백

- 문장 부호: 콤마, 마침표, 물음표, 느낌표 등의 문장 부호

텍스트 전처리

테스트 토큰화

토큰

텍스트 토큰화에서 '토큰'은 일반적으로 문장을 구성하는 최소 단위를 의미. (단어, 문장, 문단 등) 텍스트 토큰화는 주어진 텍스트를 이러한 토큰으로 분리하는 과정 (예를 들어, 문장을 단어 단위로 분리하거나, 문단을 문장 단 위로 분리하는 것)

1) 문장 토큰화

텍스트 문서를 문장으로 각각 분리

텍스트 전처리

2) 단어 토큰화

문장을 단어로 토큰화

- 공백, 마침표, 개행문자 로 분리
- 정규 표현식을 이용해 분리
- 단어의 순서가 중요하지 않은 경우 문장 토큰화를 사용하지 않고 단어 토큰화만 사용해도 충분
- word_tokenize()

텍스트 전처리

3) 문장 토큰화 + 단어 토큰화

```
from nltk import word_tokenize, sent_tokenize
#**aoie)제의 문장으로 된 강력 데이터를 문장받은 단어 토르와 만드는 함수 생성

def tokenize_text(text):

#** 문장병로 본데 로픈
**sentences = sent_tokenize(text)
#** 문자리는 문장병 단어 토프화 word_tokens = [word_tokenize(sentence) for sentence in sentences]
#**word_tokens = [word_tokenize(sentence) for sentence in sentences]
#***# word_tokens = tokenize_text(text_sample)
#**print(type(word_tokens),len(word_tokens))
#**print(type(word_tokens),len(word_tokens),len(word_tokens)
#**print(type(word_tokens),len(word_t
```

<u>*n-gram</u> 문<u>장을 단어별로 토큰화 할 경</u> 우 문맥적인 의미가 무시된다는 한계가 존재.

'N-gram'은 텍스트 토큰화에서 사용되는 기법으로, **연속된 'N'개의 토큰으로 구성된 시퀀스를 의미** 예를 들어, '2-gram' 또는 'bigram'은 연속된 두 개의 토큰(보통 단어)으로 이루어진 시퀀스를 나타냄. 이를 통해 단어나 문장의 문맥을 보다 잘 이해하고, 예측하거나 분석하는 데 도움을 줌.

텍스트 전처리

스톱워드 제거 분석에 큰 의미가 없는 단어를 지칭 (예. Is, the, a, will)

NTLK에 언어별로 목록화된 스톱워드 제공 Stop words를 필터링으로 제거 예제

```
import nltk

stopwords = nltk.corpus.stopwords.words('english')
all_tokens = []
# 에 매체의 3개의 문장별로 얻은 word_tokens list 에 대해 stop word 제거 Loop
for sentence in word_tokens:
    filtered_words=[]
# 개별 문장별로 tokenize된 sentence list에 대해 stop word 제거 Loop
    for word in sentence:
        #소문자로 모두 변화합니다.
        word = word.lower()
# tokenize 된 개별 word가 stop words 들의 단어에 포함되지 않으면 word_tokens에 추가
        if word not in stopwords:
            filtered_words.append(word)
        all_tokens.append(filtered_words)

print(all_tokens)

[['matrix', 'everywhere', 'around', 'us', ',', 'even', 'room', '.'], ['see', 'window', 'television', '.'], ['fee
l', 'go', 'work', ',', 'go', 'church', 'pay', 'taxes', '.']]
```

텍스트 전처리

Stemming과 Lemmatization 문법적 또는 의미적으로 변화하는 단어의 원형을 찾는 과정을 의미합니다.

1. Stemming

- "working"의 어간: "work"
- "worked"의 어간: "work"
- "works"의 어간: "work"

Stemming에서는 단순히 어미를 제거하기 때문에, "working", "worked", "works" 모두 "work"라는 어간을 가집니다.

2. Lemmatization:

- "am", "are", "is"의 표제어: "be"
- "car", "cars"의 표제어: "car"
- "better"의 표제어: "good"

Lemmatization에서는 단어의 의미와 문법적 특성을 고려하여 표제어를 찾기 때문에, "am", "are", "is"는 모두 "be"라는 표제어를, "car", "cars"는 "car" 라는 표제어를, "better"는 "good"이라는 표제어를 가집니다.

Stemming	Lemmatization
원형 단어로 변환 시 일 반적인 방법을 적용하거 나 더 단순화된 방법을 적용 원래 단어에서 일부 철 자가 훼손된 어근 단어 추출	문법적인 요소와 의미적 인 부분을 감안해 정확 한 철자로 된 어근 단어 찾음 Stemming보다 더 오랜 시간 소요

텍스트 전처리

Stemming 예제

```
from nltk.stem import LancasterStemmer
stemmer = LancasterStemmer()

print(stemmer.stem('working'),stemmer.stem('works'),stemmer.stem('worked'))
print(stemmer.stem('amusing'),stemmer.stem('amuses'),stemmer.stem('amused'))
print(stemmer.stem('happier'),stemmer.stem('happiest'))
print(stemmer.stem('fancier'),stemmer.stem('fanciest'))
```

amus amus amus happy happiest fant fanciest

Lemmatization 예제

```
from nltk.stem import WordNetLemmatizer
import nltk
nltk.download('wordnet')

lemma = WordNetLemmatizer()
print(lemma.lemmatize('amusing','v'),lemma.lemmatize('amuses','v'),lemma.lemmatize('amused','v'))
print(lemma.lemmatize('fancier','a'),lemma.lemmatize('fanciest','a'))

[nltk_data] Downloading package wordnet to
[nltk_data] C:\Users\yong\AppData\Roaming\nltk_data...
[nltk_data] Package wordnet is already up-to-date!
amuse amuse amuse
happy happy
fancy fancy
```

03. Bag of Words - BOW

Bag of Words - BOW

모든 단어를 문맥이나 순서를 무시하고 일괄적으로 단어에 대해 빈도값 을 부여해 피처 값을 추출하는 모델

장점	단점
쉽고 빠른 구축 문서의 특징을 잘 나 타낼 수 있는 모델	문맥 의미 반영 부족 희소 행렬 문제

*희소 행렬 문제

많은 문서에서 단어를 추출하면 매우 많은 단어가 칼럼으로 만들어짐. 대부분의 데이터는 0값으로 채워지게됨. 대규모의 칼럼으로 구성된 행렬에서 <u>대부분의 값이 0으로 채워지는 행렬을 희소행렬이라고 함.</u>

Bag of Words - BOW

Bow 피처벡터화

피처 벡터화

단어 빈도 값을 피처에 값으로 부여해 각 문서를 단어 피처의 발생 빈도 값으로 구성된 벡터로 만드는 기법

> 카운트 기반 벡터화에서는 중요하지 않지 만 자주 사용되는 단어에도 높은 중요도 값을 부여하는 문제 발생

이 문제를 보완하기 위해 TF-IDF 출현

The child makes the dog happy the: 2, dog: 1, makes: 1, child: 1, happy: 1
The dog makes the child happy the: 2, child: 1, makes: 1, dog: 1, happy: 1

		child	dog	happy	makes	the	BoW Vector representations	
Ì	D1	1	1	1	1	2	[1,1,1,1,2]	
ı	D2	1	1	1	1	2	[1,1,1,1,2]	

피처 벡터화 방식

- 카운트 기반 벡터화
- TF-IDF 기반 벡터화

Bag of Words - BOW

TF-IDF

개별 문서에서 자주 사용되는 단어에 높은 가중치를 주되, 모든 문서에서 전반적으로 자주 나타나는 단어에 대해서는 패널티를 주는 방식으로 값을 부여

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

 $tf_{x,y}$ = frequency of x in y df_y = number of documents containing x

Term x within document y N = total number of documents

*TF-IDF가 count기반 벡터화보다 더 높은 예측 성능 보장

Bag of Words - BOW

CountVectorizer, Tf-idfVectorizer

CountVectorizer

카운트 기반의 벡터화 구현 클래스, 텍스트의 전처리도 함께 수행

max_df	너무 높은 빈도수를 가지는 단어 피처를 제외하기 위 한 파라미터
min_df	너무 낮은 빈도수를 가지는 단어 피처를 제외하기 위 한 파라미터
max_features	추출하는 피처의 개수를 정수로 제한
stop_words	'english ' 라고 지정하면 영어의 스톱워드로 지정된 단어는 추출에서 제외
n_gram_range	n_gram범위를 설정
analyzer	피처 추출을 수행할 단위를 선택 (default = word)
token_pattern	토큰화를 수행하는 정규 패턴을 지정
tokenizer	토큰화를 별도의 커스텀 함수로 이용시 적용

Bag of Words - BOW

희소 행렬

대규모의 행렬이 생성시 레코드의 각 문서가 가지는 단어의 수는 제한적이기 때문에 이 행렬의 값은 대부분 0이 차지

1	2	31	2	9	7	34	22	11	5
11	92	4	3	2	2	3	3	2	1
3	9	13	8	21	17	4	2	1	4
8	32	1	2	34	18	7	78	10	7
9	22	3	9	8	71	12	22	17	3
13	21	21	9	2	47	1	81	21	9
21	12	53	12	91	24	81	8	91	2
61	8	33	82	19	87	16	3	1	55
54	4	78	24	18	11	4	2	99	5
13	22	32	42	9	15	9	22	1	21

- COO 형식
- CSR 형식
- ··· 적은 메모리 공간을 차지하도록 변환

Bag of Words - BOW

1) COO

0이 아닌 데이터만 별도의 데이터 배열에 저장하고, 그 데이터가 가리키는 행과 열의 위치를 별도의 배열로 저장하는 방식

*희소행렬 변환 시 Scipy 사용

```
from scipy import sparse
# 0 이 아닌 데이터 추출
data = np.array([3,1,2])
# 행 위치와 열 위치를 각각 array로 생성
row_pos = np.array([0,0,1])
col_pos = np.array([0,2,1])
# sparse 패키지의 coo_matrix를 이용하여 COO 형식으로 최소 행렬 생성
sparse_coo = sparse.coo_matrix((data, (row_pos,col_pos)))
```

Bag of Words - BOW

2) CSR 방식

행렬의 비-0 요소들을 행의 순서대로 나열하고, 이들의 열 인덱스를 따로 저장합니다. 또한, 각 행의 첫 번째 요소가 저장된 인덱스 위치를 별도의 배열에 저장하여, 특정 행을 참조하는 데 필요한 정보를 제공합니다.

04. 텍스트 분류 실습

20 뉴스그룹 분류

텍스트 분류 실습

텍스트를 기반으로 분류를 수행할 때는 먼저 텍스트를 정규화한 뒤 피처 벡터화를 적용

- 실습 과정
- (1) 카운트기반, TF-IDF 기반 벡터화 진행
- (2) 하이퍼 파라미터 튜닝
- (3) 사이킷런 Pipeline 객체 수행

① 텍스트 정규화

key값 확인

```
from sklearn.datasets import fetch_20newsgroups
news_data = fetch_20newsgroups(subset='all', random_state=156)
print(news_data.keys())
dict_keys(['data', 'filenames', 'target_names', 'target', 'DESCR'])
```

• target 클래스 확인

```
import pandas as pd

print('target 클래스의 갑과 분포도 \n', pd.Series(news_data.target).value_counts().sort_index())

print('target 클래스의 이름들 \n', news_data.target_names)

target 클래스의 갑과 분포도
0 799
1 973
2 985
3 982
4 963
5 988
6 975
7 990

Name: count, dtype: int64
target 클래스의 이름들
['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware',
'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.cr
ypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mid
east', 'talk.politics.misc', 'talk.religion.misc']
```

텍스트 분류 실습

① 텍스트 정규화

• 개별 데이터 확인

```
print(news_data.data[0])

From: egreen@east.sun.com (Ed Green - Pixel Cruncher)
Subject: Re: Observation re: helmets
Organization: Sun Microsystems, RTP, NC
Lines: 2]
Distribution: world
Reply-To: egreen@east.sun.com
NNTP-Posting-Host: laser.east.sun.com
NNTP-Posting-Host: laser.east.sun.com
In article 211353@mavenry.altcit.eskimo.com, maven@mavenry.altcit.eskimo.com (Norman Hamer) writes:

> The question for the day is re: passenger helmets, if you don't know for
certain who's gonnar ide with you (like say you meet them at a . . . . church
meeting, yeah, that's the ticket)... What are some guidelines? Should I just
>pick up another shoel in my size to have a backup helmet (KL), or should I
maybe get an inexpensive one of a smaller size to accomodate my likely
>passenger?

If your primary concern is protecting the passenger in the event of a
crash, have him or her fitted for a helmet that is their size. If your
primary concern is complying with stupid helmet (Laws, carry a real big
spare (you can put a big or small head in a big helmet, but not in a
small one).

Ed Green, former Ninjaite | I was drinking last night with a biker,
Ed.Green@East.Sun.COM | land I showed him a picture of you. I said,
DoD #8111 (919)468-8302 | "Go on, get to know her, you'll like her!"
(The Grateful Dead) — It seemed like the least I could do...
```

텍스트 분석 의도에 벗어나는 제목과 소속, 이메일 주소 등의 헤더와 푸터 정보는 제거

→ 순수 텍스트만으로 구성된 기사 내용으로 어떤 뉴스 그룹에 속하는지 분류

② 피처벡터화 변환과 머신러닝 모델 학/예/평

• CountVectorizer 피처 벡터화 변환

```
from sklearn.feature_extraction.text import CountVectorizer
# Count Vectorization으로 피처 백터화 변환 수행
cnt_vect = CountVectorizer()
cnt_vect.fit(X_train)
X_train_cnt_vect = cnt_vect.transform(X_train)
# 학습 데이터로 fit()된 CountVectorizer를 이용해 테스트 데이터를 피처 백터화 변환 수행
X_test_cnt_vect = cnt_vect.transform(X_test)
print('학습 데이터 텍스트 CountVectorizer Shape:', X_train_cnt_vect.shape)
학습 데이터 텍스트 CountVectorizer Shape: (11314, 114751)
```

반드시 학습데이터를 이용해 fit()이 수행된 CountVectorizer 객체를 이용해 테스트 데이터 변환(transform)

텍스트 분류 실습

- ② 피처벡터화 변환과 머신러닝 모델 학/예/평
 - 로지스틱 회귀 적용

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
import warnings
warnings.filterwarnings('ignore')

# LogisitcRegression을 이용하여 학습/예속/평가 수행
lr_clf = LogisticRegression(solver='liblinear')
lr_clf.fit(X_train_cnt_vect, y_train)
pred = lr_clf.predict(X_test_cnt_vect)
print('CountVectorized Logistic Regression의 예측 정확도는 {0:.3f}'.format(accuracy_score(y_test, pred)))
CountVectorized Logistic Regression의 예측 정확도는 0.731
```

- ② 피처벡터화 변환과 머신러닝 모델 학/예/평
- TF-IDF 적용 후 로지스틱 회귀

```
from sklearn.feature_extraction.text import TfidfVectorizer

# TF-IDF 벡터화를 적용해 학습 데이터 세트와 테스트 데이터 세트 변환

tfidf_vect = TfidfVectorizer()

tfidf_vect.fit(X_train)

X_train_tfidf_vect = tfidf_vect.transform(X_train)

X_test_tfidf_vect = tfidf_vect.transform(X_test)

# LogisticRegression을 이용해 학습/예측/평가 수행.

lr_clf = LogisticRegression(solver='liblinear')

lr_clf.fit(X_train_tfidf_vect, y_train)

pred = lr_clf.predict(X_test_tfidf_vect)

print('TF-IDF_Logsitic Regression의 예측 정확도는 {0:3f}'.format(accuracy_score(y_test, pred)))
```

텍스트 분석에서 머신러닝 모델 성능 향상시키기

- 1. 최적의 ML 알고리즘 선택하기
- 2. 최상의 피처 전처리를 수행하기

TF-IDF Logsitic Regression의 예측 정확도는 0.777748

단순 카운트보다 더 높은 예측 정확도 제공

텍스트 분류 실습

- ③ stopwords 및 GridSearchCV
 - stopwords

```
#stop words 필터링을 추가하고 ngrams을 기본 (1,1)에서 (1,2)로 변경해 피처 백터화 적용
tfidf_vect = TfidfVectorizer(stop_words='english', ngram_range=(1,2), max_df=300)
tfidf_vect.fit(X_train)
X_train_tfidf_vect = tfidf_vect.transform(X_train)
X_test_tfidf_vect = tfidf_vect.transform(X_test)

lr_clf= LogisticRegression(solver='liblinear')
lr_clf.fit(X_train_tfidf_vect, y_train)
pred = lr_clf.predict(X_test_tfidf_vect)
print('TF-IDF Vectorized Logistic Regression의 예측 정확도는 {0:.3f}'.format(
accuracy_score(y_test, pred)))

TF-IDF Vectorized Logistic Regression의 예측 정확도는 0.794
```

GridSearchCV

```
from sklearn.model_selection import GridSearchCV

# 최작 C 값 도출 유성 수행. CV는 폴드 세트로 설정
params = {'C': [0.1, 0.1, 1, 5, 10]}
grid_cv_lr = GridSearchCV(lr_clf, param_grid=params, cv=3, scoring='accuracy', verbose=1)
grid_cv_lr.fit(X_train_tfidf_vect, y_train)
print('Logistic Regression best C parameter:', grid_cv_lr.best_params_)

# 최적 C값으로 예술된 grid_cv로 예술 및 전화도 전가
pred = grid_cv_lr.predict(X_test_tfidf_vect)
print('TF-IDF Vectorized Logistic Regression의 예측 정확도는 {0:.3f}'.format(
accuracy_scorely_test, pred)))

Fitting 3 folds for each of 5 candidates, totalling 15 fits
Logistic Regression best C parameter: {'C': 10}
TF-IDF Vectorized Logistic Regression의 예측 정확도는 0.806
```

④ Pipeline 사용

```
from sklearn.pipeline import Pipeline

# TfidfVectorizer 작용을 tfidf_vect 작용됐으로, LogisticRegression적처음 lr_clf 작용됐으로 생성하는 Pipeline생성
pipeline = Pipeline({
    ('tfidf_vect', TfidfVectorizer(stop_words='english', ngram_range=(1,2), max_df=300)),
    ('lr_clf', LogisticRegression(solver='liblinear', C=10))

# 발도에 TfidfVectorizer적체일 fit_transform( )과 LogisticRegression의 fit(), predict()가 필요 일은.
# pipeline》 fit() 가 predict() 반으로 분위한에 Feature Vectorization과 ML 에실이 다수이 가는.
pipeline. Fit(X_train, y_train)
pred = pipeline.ped # Logistic Regression의 에스트 원칙도는 {0:.3f}'.format(accuracy_score(y_test ,pred)))

# from sklearn.pipeline import Pipeline
pipeline = Pipeline({
    ('tfidf_vect', TfidfVectorizer(stop_words='english')),
    ('lr_clf', LogisticRegression(solver='liblinear'))
}

# Pipeline에 가능한 작가의 작용 변수에 인데에 그가를 받았어 보여 GridSearchCV에 사용될
# 국제이당 에스트 제공이 이용을 보냈는.
# params = { 'tfidf_vect_maram_range': [(1,1), (1,2), (1,3)],
    'tfidf_vect_maram_range': [(1,1), (1,2), (1,3)],
    'tfidf_vect_maram_fide() 300, 700],
    'lr_clf_C': [1, 5, 10]

# GridSearchCV의 생물자의 Estimator가 이난 Pipeline 전체 발덕
grid_cv_pipe = GridSearchCV(pipeline, param_grid=params, cv=3, scoring='accuracy',verbose=1)
grid_cv_pipe.best_params_, grid_cv_pipe.best_score_)
pred = grid_cv_pipe.best_params_, grid_cv_pipe.best_score_)
pred = grid_cv_pipe.predict(X_test)
print('Pipeline을 통한 Logistic Regression의 에스트 전복으는 (0:.3f)'.format(accuracy_score(y_test_pred)))
```

Pipeline 클래스를 이용해 (앞서 진행한) 피처 벡터화 와 ML 알고리즘 학습/예측을 위한 코드 작성을 한번 에 진행할 수 있음

수고하셨습니다