

Pixel-Adaptive Convolutional Neural Networks

Hang Su¹, Varun Jampani², Deqing Sun², Orazio Gallo², Erik Learned-Miller¹, Jan Kautz² ¹UMassAmherst ² TVIDIA.

Motivation (

Spatial convolution

$\mathbf{v}_i' = \sum_{j=1}^{n} \mathbf{W}[\mathbf{p}_i - \mathbf{p}_j]\mathbf{v}_j + \mathbf{b}$

- Fundamental building block of modern neural networks
- Provides an efficient and effective way to propagate and integrate features across image pixels

It has advantages ...

- Simple formulation → efficient parallelization
- Spatial sharing → capturing invariance
- Allows hierarchical features learning

But the filters are content-agnostic ...

- Loss gradient are pooled across pixel locations.
- Once learned, same filter banks are used across all images and pixels locations.

Goal: Make convolutions adaptive to image content

Efficient CRF with PAC

PAC is a content-adaptive operation that generalizes spatial convolutions

P https://suhangpro.github.io/pac (code available)

Pixel-Adaptive Convolution (PAC)

input features ' output features

 \mathbf{p} (x,y) coordinates

W filter weights adapting features adapting kernel

Making convolution content-adaptive

- Kernel function K modifies filters according to f.
- In contrast, kernel-prediction networks [1,2,3] generate filters directly: $\mathbf{v}_i' = \sum_{j \in \Omega(i)} \mathbf{W_i} [\mathbf{p}_i - \mathbf{p}_j] \mathbf{v}_j$.
- We use $K(\mathbf{f}_i, \mathbf{f}_j) = \exp(-\frac{1}{2} ||\mathbf{f}_i \mathbf{f}_j||^2)$ for our experiments.
- \mathbf{f} and \mathbf{v} can both be learned through backpropagation.

PAC generalizes many existing operations

- $K(\mathbf{f}_i, \mathbf{f}_i) = 1$ Spatial convolution
- Bilateral filter $\mathbf{f} = (r, g, b)$

 $K(\mathbf{f}_i, \mathbf{f}_j) = \exp(-\frac{1}{2\alpha_1} \|\mathbf{f}_i - \mathbf{f}_j\|^2)$

 $\mathbf{W}[\mathbf{p}_i - \mathbf{p}_j] = \exp(-\frac{1}{2\alpha_2} \|\mathbf{p}_i - \mathbf{p}_j\|^2)$

mloU

67.20

+2.45

+2.33

+1.57

+2.21

+2.62

CRF Runtime

629ms

2.6s

39ms

 $K(\mathbf{f}_i, \mathbf{f}_j) = 1, \mathbf{W}[\mathbf{p}_i - \mathbf{p}_j] = \frac{1}{E^2}$ Average pooling

Method

Unary only (FCN)

Full-CRF [10]

BCL-CRF [11]

PAC-CRF, 32

Conv-CRF [12]

PAC-CRF, 16-64

 $K(\mathbf{f}_i, \mathbf{f}_i) = \alpha + (\|\mathbf{f}_i - \mathbf{f}_i\|^2 + \epsilon^2)^{\lambda}$ Detail-preserving pooling [4]

Deep Joint Upsampling Networks

Method	4×	8×	16×
Bicubic	8.16	14.22	22.32
MRF	7.84	13.98	22.20
GF [5]	7.32	13.62	22.03
JBU [6]	4.07	8.29	13.35
DMSG [7]	3.78	6.37	11.16
FBS [8]	4.29	8.94	14.59
DJF [9]	3.38	5.86	10.11
Ours	2.39	4.59	8.09

Results on NYU Depth v2

Optical flow

(Sintel)

Layer Hot-Swapping with PAC

A modification to pre-trained networks that:

- Replace certain Conv layers with PAC counterparts
- Retain the pre-trained weights
- Reuse earlier layers for adapting features f

Experiments

- ~2% improvement w/ minimal runtime overhead
- Complementary with PAC-CRF improvement

Method	mloU	Runtime		
FCN	67.20	39ms		
PAC-FCN	69.18	41ms		
PAC-FCN + PAC-CRF	71.34	118ms		
Results on Pascal VOC2012 (test)				

- ✓ Drop-in replacement
- ✓ Zero added parameters
- ✓ Minimal overhead

$p(\mathbf{l}|I) \propto \exp \left\{ -\sum \psi_u(l_i|I) - \sum \psi_p(l_i,l_j|I) \right\}$

• Pairwise term: $\psi_p(l_i, l_j | I) = \mu(l_i, l_j) K(\mathbf{f}_i, \mathbf{f}_j)$

 $K(\mathbf{f}_{i}, \mathbf{f}_{j}) = w_{1} \exp \left\{ -\frac{\|\mathbf{p}_{i} - \mathbf{p}_{j}\|^{2}}{2\theta_{\alpha}^{2}} - \frac{\|I_{i} - I_{j}\|^{2}}{2\theta_{\beta}^{2}} \right\} + w_{2} \exp \left\{ -\frac{\|\mathbf{p}_{i} - \mathbf{p}_{j}\|^{2}}{2\theta_{\gamma}^{2}} \right\}$

Mean-field update rule:

Fully Connected CRF [10]

 $Q_i^{(t+1)}(l) \leftarrow \frac{1}{Z_i} \exp\left\{-\psi_u(l) - \sum_{i=1}^{n} \mu(l, l') \sum_{i=1}^{n} K(\mathbf{f}_i, \mathbf{f}_j) Q_j^{(t)}(l')\right\}$

PAC-CRF

• A more general pairwise term: $\psi_p(l_i, l_j|I) = W(\mathbf{p}_j - \mathbf{p}_i, l_i, l_j)K(\mathbf{f}_i, \mathbf{f}_j)$

References

[1] Brabandere et al. Dynamic filter networks. NIPS '16. [2] Bako et al. Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ToG '17. [3] Wu et al. Dynamic sampling convolutional neural networks. ECCV '18.

[4] Saeedan et al. Detail preserving pooling in deep networks. CVPR '18.

[5] He et al. Guided image filtering. ECCV '10. [6] Kopf et al. Joint bilateral upsampling. ToG '07. [7] Hui et al. Depth map super-resolution by deep multiscale guidance. ECCV '16.

[8] Barron and Poole. Fast bilateral solver. ECCV '16 [9] Li et al. Joing image filtering with deep convolutiona networks. TPAMI '18.

[10] Krähenbühl and Koltun. Efficient inference in fully connected CRFs with Gaussian edge potentials. NIPS '11. [11] Jampani et al. Learning sparse high-dimensional filters: image filtering, dense CRFs and bilateral neural networks. CVPR '16.

[2] Teichmann and Cipolla. Convolutional CRFs for semantic segmentation. arXiv:1805.04777.