= 0.3961568328

(E) milpoint I fax) dx = sh [I faxil]

3.
$$\int_{0}^{\frac{\pi}{4}} \int_{chx}^{cosx} (2yshx+cosx)dy dx$$

of $\int_{chx}^{cosx} (2yshx+cosx)dy dx$

for $\int_{chx}^{cosx} (2yshx+cosx)dy$
 $M=U+3$ $\int_{chx}^{cosx} (2yshx+cosx)dy$
 $\int_{chx}^{cosx} (2yshx+cos$

$$\int_{3}^{2} \frac{1}{2} \left(\cos x - \sin x \right) \left(2 + \sin x \right) dx$$

$$= \frac{1}{2} \frac{1}{3} \cdot \frac{7}{16} \left(2 + 2 \cos \frac{\pi}{8} - \sin \frac{7}{8} \right) \left(2 + \sin \frac{7}{4} \right) + 4 \cos \frac{\pi}{6} \frac{1}{3} - \sin \frac{7}{6} \frac{1}{3} \right)$$

$$= 0.5 \left[19875444 \right]$$

4. (a)
$$x = \pm 1$$
 $\Rightarrow dx = -\pm 2 \pm 1$
 $\Rightarrow \int_{0}^{1} x^{2} \sin x dx$
 $\frac{1}{2} x^{2} - \frac{1}{2} x^{2} + \frac{1}{2} x^{$

b)
$$\int_{1}^{0} t^{2} \sin(t^{2}) - \frac{1}{t^{2}} dt$$
 $= \int_{0}^{1} t^{2} \sin(t^{2}) dt$
 $h = t \Rightarrow t_{1}z^{2}\frac{1}{8}$
 $= \int_{0}^{1} t^{2} \sin(t^{2}) dt$
 $= \int_{0}^{1} t^{2} \sin($