Nome: RA:

A lista deve ser entregue até o dia 17/10/2018

- 1. A figura 1 apresenta um amplificador *cascode*. O projeto prevê uma impedância de saída (R_{OUT}) de 1200 k Ω . A corrente de polarização é 1 mA.
 - a) Considerando que os transistores são casados e possuem $|V_A|=80$ V, $k_n=10~\mu\text{A/V}^2$, calcule $(W/L)_1$ e $(W/L)_2$.
 - b) Calcule o ganho de tensão do amplificador cascode.
 - c) Com os valores obtidos, apresente o modelo de pequenos sinais.
 - d) Com o **modelo de pequenos sinais**, calcule v_0/v_i para $R_{L1}=100~{\rm k}\Omega$ e $R_{L2}=1~{\rm M}\Omega$

Figura 1 – Amplificador Cascode.

2. Deseja-se projetar o espelho de corrente da figura 2 para uma corrente de saída de 500 μ A. Deve-se garantir que a tensão de saída opere entre a faixa de 500 mV até no máximo V_{DD} V e que a variação do valor nominal de I_O para esta faixa esteja limitada a 2%. Considere que o valor da corrente de saída fora obtido quando $V_O = V_{GS}$. Encontre o valor de R e as dimensões dos transistores Q_1 e Q_2 .

Figura 2 – Espelho de corrente MOS simples.

- 3. Um projetista utilizou uma fonte de corrente com impedância de saída (R_{SS}) e uma fonte de sinal único (V_{CM}) para polarizar os transistores do amplificador diferencial da figura 3. A fonte de corrente estabelece uma corrente de 1 mA. Os transistores Q_I e Q₂ tem V_t = 0,8 V k'_n = 1 mA/V², W/L = 5, λ = 0, V_{DD} = 15 V e V_{SS} = 0 V. Considere um queda de 1V na fonte de corrente, ou seja, |V_{CS}| = 1V.
 - a) Qual o valor de V_{CM} que garante o funcionamento do circuito como amplificador?
 - b) Se o valor de R_D variar entre 3 k Ω e 10 k Ω (potenciômetro), qual a variação (ΔA_V) do ganho diferencial (saída diferencial)?
 - c) Qual a tensão cc nos drenos dos transistores para $R_D = 8 \text{ k}\Omega$
 - d) Determine o ganho de modo comum (saída única) para $R_D = 8 \text{ k}\Omega$ levando em consideração o valor de g_m .
 - e) Calcule o valor de CMRRu em dB usando o valor do item d.
 - f) Calcule o valor de CMRRd usando o valor do item d.
 - g) Se a saída for diferencial e existir um erro de 1% entre as resistências de dreno, qual o valor de $|A_d|$, $|A_{cm}|$ e *CMRR*d? Considere $R_D = 8 \text{ k}\Omega$

Figura 3 – Amplificador Diferencial

- 4. Explique o funcionamento do amplificador do tipo "Par Darlington"
- 5. Quais as limitações e qual a principal utilização do amplificador diferencial BJT?
- 6. Projete o amplificador fonte comum da figura 5 para um ganho de tensão de 28 V/V e máxima potência dissipada de 4 mW. Use $(W/L)_1 = 20/0.25$, $\lambda_n = 0.15$ V⁻¹ e $\lambda_p = 0.25$ V⁻¹, $k'_n = 150$ μ A/V² e Vt = 0.5 V.

Figura 5 – Amplificador Fonte Comum