Universidade Estadual de Campinas Faculdade de Engenharia Elétrica e de Computação MÉTODOS DA ENGENHARIA ELÉTRICA Professor Anésio dos Santos Júnior

PROVA 02

EE 400 - A

QUESTÕES EXPOSITIVAS

1-Considere o campo vetorial $\vec{A}(x,y,z) = (z + x^2)\hat{a}_x + (x^3 - y)\hat{a}_v + (y^2 - x)\hat{a}_z$

-Calcule o campo $\vec{G} = rot \vec{A}$;

-Obtenha o resultado da integral \iint_{S_1} rot $\vec{A} \cdot d\vec{S}$ na qual, dados os pontos O(0,0,0), A(2,0,0),

B(2,2,0), C(0,2,0) e $D(1,1,1), S_1$ é formada pela união dos triângulos OAD, ABD, BCD e OCD. Admita as superfícies que compõe S₁ orientadas para a região externa da pirâmide DOABC, como indica a figura (\hat{a}_n) . Justifique sua resposta.

-Obtenha o resultado da integral $\iint_{S_2} \operatorname{rot} \vec{A} \cdot d\vec{S}$ na qual a superfície

S₂ é a superfície fechada externa da pirâmide DOABC e está orientada da região interna para a região externa da mesma. Justifique a sua solução. Justifique sua resposta.

2-Considere duas cascas esféricas com centro na origem do sistema cartesiano, de material condutor, isoladas eletricamente e posicionadas nas superfícies de r = 1 e r = 10. A placa interna é conectada em uma fonte de tensão de 15 volts e a externa é aterrada. Determine a expressão para o potencial eletrostático V.

3-Determine uma família de funções analíticas f(z) = u(x,y) + iv(x,y) de modo que $v(x,y) = x^2 - y^2 + y$.

4-Obtenha a relação h(x,y)=0 para o *lugar geométrico* representado por $\frac{1}{z}+\frac{1}{\overline{z}}=2$ e esboce o mesmo graficamente $(x, y \in R \ e \ z \in C)$.

5-Resolva a equação: $\left(\frac{z-1-j}{\sqrt[2]{2}}\right)^4 = -1$.