

Analysis vs. Design

Analysis: Given a sequential circuit, show the behavior vs.

Design: Given a behavior, build the sequential circuit

George H. Mealy

(1927 - 2010)

Mathematician and Computer Scientist Invented Mealy Machine Also a pioneer of modular programming

Outputs = Function(Current State, Inputs)

Edward Forrest Moore (1925 – 2003)

Mathematician and Computer Scientist Inventor of the Moore Machine Also an early pioneer of artificial life

Outputs = Function(Current State, Inputs)

216 Chapter 5 Synchronous Sequential Logic

Moore Machine

FIGURE 5.21Block diagrams of Mealy and Moore state machines

216 Chapter 5 Synchronous Sequential Logic

Moore Machine

FIGURE 5.21Block diagrams of Mealy and Moore state machines

Analysis (Moore model in output) by an example

- 0. Is the circuit sequential or combinational? Any FF or feedback → Sequential
- 1. What are the flip-flops? RS, D, T, JK, or mixed (e.g., 2 JK, 1 RS, ...)
- 2. What are the state combinations? 2#FF
- 3. Form "State" table:
 - a) Columns: for each FF, two columns:
 - one for current state,
 - o one for next state
 - b) Rows: for each state combination
 - O In total: 2^{#FF}
- 4. Fill the state table for next state columns based on:
 - a) the current state
 - b) the inputs to the FFs
- 5. Form State Transition Diagram
- 6. (Optional) Analyze paths and states in state transition diagram

Analysis (+ Input + Moore Model Output)

- 0. Is the circuit sequential or combinational? Any FF or feedback → Sequential
- 1. What are the flip-flops? RS, D, T, JK, or mixed (e.g., 2 JK, 1 RS, ...)
- 2. What are the state combinations?
- 3. Form "State" table:
 - a) Columns: for each FF, two columns:
 - o one for current state,
 - o one for next state
 - b) Rows: for each state combination
 - o In total: 🏋
- 4. Fill the state table for next state columns based on:
 - a) the current state
 - b) the inputs to the FFs
- 5. Form State Transition Diagram
- 6. (Optional) Analyze paths and states in state transition diagram

0. Is the circuit sequential or combinational? Any FF or feedback → Sequential

- 0. Is the circuit sequential or combinational? Sequential
- 1. What are the flip-flops?

- 0. Is the circuit sequential or combinational? Sequential
- 1. What are the flip-flops? T, JK
- 2. What are the state combinations? $2^{\#FF} \times 2^{\#inputs} = 2^{\#FF + \#inputs}$

#FFs + #Inputs = $2+1 \rightarrow 2^3 = 8$ combinations

- 0. Is the circuit sequential or combinational? Sequential
- 1. What are the flip-flops? T, JK
- 2. What are the state combinations? $2^{\#FF} \times 2^{\#inputs} = 2^{\#FF + \#inputs} = 2^3 = 8$
- 3. Form "State" table:
 - a) Columns:
 - o For each FF, two columns: one for current state, one for next state
 - For each input, one column
 - For each output, one column
 - b) Rows: See item 2

Inputs	Q(T)		Q(T+1)		Outputs
X	В	Α	В	Α	Υ

Q	(T)	Q(T+1) w	vhen X=0	Q(T+1) when X=1		Outputs
В	Α	В	А	В	Α	Υ
			Alternat			

- 0. Is the circuit sequential or combinational? Sequential
- 1. What are the flip-flops? T, JK
- 2. What are the state combinations? $2^{\#FF} \times 2^{\#inputs} = 2^{\#FF + \#inputs} = 2^3 = 8$
- 3. Form "State" table:
 - a) Columns:
 - For each FF, two columns: one for current state, one for next state
 - For each input, one column
 - For each output, one column
 - b) Rows: See item 2
- 4. Fill the state table for
 - a) next state columns
 - b) the output value

Inputs	Q(T)		Q(T+1)		Outputs
X	В	А	В	А	Y=BA ¥
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Inputs	Q	(T)) Q(T+1)			
X	В	Α	В	А	Y=BA ¥	
0	0	0			0	
0	0	1			0	
0	1		Moore Model			
0	1				1	
1	0		Only depends on current state X is not involved!			
1	0	X				
1	1	0			0	
1	1	1			1	

Inputs	Q(T)		Q(T+1)		Outputs
X	В	Α	В	Α	Y=BA
0	0	0			0
0	0	1			0
0	1	0			0
0	1	1			1
1	0	0			0
1	0	1			0
1	1	0			0
1	1	1			1

Inputs	Q	(T)	Q(T+1)		Outputs
X	В	А	В	А	Y=BA
0	0	0		$A=0$ $J_A = XB = 00 = 0$ $K_A = B' = 0' = 1$ $$ $Reset \rightarrow 0$	0
0	0	1			0
0	1	0			0
0	1	1			1
1	0	0			0

Inputs	Q	(1)	Q(I	+1)	Outputs
X	В	Α	В	А	Y=BA
0	0	0	$B=0$ $T_B=XA=00=0$ Store $\rightarrow 0$	0	0
0	0	1			0
0	1	0			0
0	1	1			1
1	0	0			0
1	0	1			0

Inputs	Q(T)		Q(T+1)		Outputs
X	В	Α	В	А	Y=BA
0	0	0	0	0	0
0	0	1			0
0	1	0			0
0	1	1			1
1	0	0			0
1	0	1			0
1	1	0			0
1	1	1			1

Inputs	Q(T)		Q(T+1)		Outputs
X	В	Α	В	Α	Y=BA
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	?	0	0
1	1	0	1	1	0
1	1	1	0	1	1

Inputs	Q(T)		Q(T+1)		Outputs
X	В	Α	В	Α	Y=BA
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	B=0 TB=XA=11=1 Comp. → 1	0	0

Inputs	Q(T)		Q(T+1)		Outputs
X	В	Α	В	Α	Y=BA
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	1	0	0
1	1	0	1	1	0
1	1	1	0	1	1

- 0. Is the circuit sequential or combinational? Sequential
- 1. What are the flip-flops? T, JK
- 2. What are the state combinations? $2^{\#FF} \times 2^{\#inputs} = 2^{\#FF + \#inputs} = 2^3 = 8$
- 3. Form "State" table:
 - a) Columns:
 - For each FF, two columns: one for current state, one for next state
 - For each input, one column
 - For each output, one column
 - b) Rows: See item 2
- 4. Fill the state table for
 - a) next state columns
 - b) the output value
- 5. Form state (transition) diagram
 - a) nodes for states, directed edges for transitions between states
 - b) labels for edges by the value of input
 - c) labels for nodes by the value of <u>output</u>

Analysis

6) (Optional) Path on State Transitions

Life lock!

Mealy Model
Y depends on X

Mealy Model

Y depends on X, so, Y can change out of Clk synchronization!

Labels go on edges for Y:

Labels go on edges for Y:

Design by an example

Counter Up-Down

Switch to count up from i to i+1 Switch to count down from i to i-1

Turn on the light if the current number is even

Deci	ian	(Reca	n)
DC3	911	(INCCA	\mathbf{P}_{I}

0. Do we need combinational logic or sequential logic? Do we need memory?

Counter up/down

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow ... \rightarrow N-1 \rightarrow N$$

$$N \rightarrow N-1 \rightarrow ... \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0$$

- 0. Do we need combinational logic or sequential logic? Do we need memory?
- 1. How many storage (flip-flops)? #FF

Counter up/down
$$N=7$$

 $000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111$
 $000 \leftarrow 001 \leftarrow 010 \leftarrow 011 \leftarrow 100 \leftarrow 101 \leftarrow 110 \leftarrow 111$

For each intermediate state, we need 3 bits \rightarrow 3 flip-flops

- 0. Do we need combinational logic or sequential logic? Do we need memory?
- 1. How many storage (flip-flops)? #FF
- 2. How many input and output?

Counter up/down
$$N=7$$

 $000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111$
 $000 \leftarrow 001 \leftarrow 010 \leftarrow 011 \leftarrow 100 \leftarrow 101 \leftarrow 110 \leftarrow 111$

We need to switch between up and down \rightarrow 1 binary variable X=0 Count Up

X=1 Count Down

Counter up/down N=7

$$X=0:000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111$$

$$X=1: 111 \rightarrow 110 \rightarrow 101 \rightarrow 100 \rightarrow 011 \rightarrow 010 \rightarrow 001 \rightarrow 000$$

We need to turn on the light when the number is even \rightarrow 1 binary variable \rightarrow Y

- 0. Do we need combinational logic or sequential logic? Do we need memory?
- 1. How many storage (flip-flops)? #FF
- 2. How many input and output?
- 3. Form the state (transition) diagram

Y=1:even

Y=0: else

Moore model

- 0. Do we need combinational logic or sequential logic? Do we need memory?
- 1. How many storage (flip-flops)? #FF
- 2. How many input and output?
- 3. Form the state (transition) diagram
- 4. Form the state table
- 5. Fill the state table

Inputs	Q(T)				Q(T+1)		
X	С	В	Α	С	В	А	Υ
0	0	0	0	0	0	1	
0	0	0	1	0	1	0	
0	0	1	0	0	1	1	
0	0	1	1	1	0	0	Count Up
0	1	0	0	1	0	1	X=0
0	1	0	1	1	1	0	_
0	1	1	0	1	1	1	
0	1	1	1	0	0	0	
1	0	0	0	1	1	1	
1	0	0	1	0	0	0	
1	0	1	0	0	0	1	
1	0	1	1	0	1	0	Count Down
1	1	0	0	0	1	1	X=1
1	1	0	1	1	0	0	
1	1	1	0	1	0	1	
1	1	1	1	1	1	0	

Inputs	Q(T)			Q(T+1)			Outputs		
X	С	В	Α	С	В	А	Υ		
0	0	0	0	0		1	1		
0	0	0	1	0	1	0	0		
0	0	1	0	0	1	1	1		
0	0	1	1	1			0		
0	1	0	0	1		1	1		
0	1	0	1	1	1		0		
0	1	1	0	Ydep	1				
0	1	1	1	Y depends only on current state of					
1	0	0	0	Curr	current state of				
1	0	0	1	0	CBA		0		
1	0	1	0	0		1	1		
1	0	1	1	0	1		0		
1	1	0	0	0	1	1	1		
1	1	0	1	1		0	0		
1	1	1	0	1		1	1		
1	1	1	1	1	1		0		
				-					

Inputs	Q(T)				Outputs		
X	С	В	Α	С	В	Α	Υ
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	1	1
0	0	1	1	1	0	0	0
0	1	0	0	1	0	1	1
0	1	0	1	1	1	0	0
0	1	1	0	1	1	1	1
0	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	0	0	0	1	1
1	0	1	1	0	1	0	0
1	1	0	0	0	1	1	1
1	1	0	1	1	0	0	0
1	1	1	0	1	0	1	1
1	1	1	1	1	1	0	0

- 0. Do we need combinational logic or sequential logic? Do we need memory?
- 1. How many storage (flip-flops)? #FF
- 2. How many input and output?
- 3. Form the state (transition) diagram
- 4. Form the state table
- 5. Fill the state table
- 6. What type of storage (flip-flop)? RS, D, T, JK, or Mixed

Counter Up/Down

Let's pick mix FFs: 1×T-FF, 1×D-FF, 1×JK-FF

- 0. Do we need combinational logic or sequential logic? Do we need memory?
- 1. How many storage (flip-flops)? #FF
- 2. How many input and output?
- 3. Form the state (transition) diagram
- 4. Form the state table
- 5. Fill the state table
- 6. What type of storage (flip-flop)? RS, D, T, JK, or Mixed
- 7. Input (excitation) equations for each FF
- 8. Minimization of input (excitation) equations

Excitation Equations A $J_A = F(X, C, B, A)$ $K_A = F(X, C, B, A)$ B $D_B = F(X, C, B, A)$ C $T_C = F(X, C, B, A)$

Flip-Flops

Input

Excitation Equations

A $J_A = F(X, C, B, A)$ $K_A = F(X, C, B, A)$

 $B \mid D_{R} =$

 $C \mid T_C =$

Inputs	Q(T)			Q(T+1)	Outputs	Ex	citation for	·A
X	С	В	А	A A	Y	Action	J_A	K_A
0	0	0	0	1		Set/Cmp	1	X
0	0	0	1	0	0	Rst/Cmp	X	1
0	0	1	0	0 1 1		Set/Cmp	1	X
0	0	1	1	1 0 0	0	Rst/Cmp	X	1
0	1	0	0	1 1		Set/Cmp	1	X
0	1	0	1	0	0	Rst/Cmp	X	1
0	1	1	0	1		Set/Cmp	1	X
0	1	1	1	0 0 0	0	Rst/Cmp	X	1
1	0	0	0	1 1 1		Set/Cmp	1	X
1	0	0	1	0 0	0	Rst/Cmp	X	1
1	0	1	0	0 0 1		Set/Cmp	1	X
1	0	1	1	0 1 0	0	Rst/Cmp	X	1
1	1	0	0	0 1 1		Set/Cmp	1	X
1	1	0	1	1 0 0	0	Rst/Cmp	X	1
1	1	1	0	1 0 1		Set/Cmp	1	X
1	1	1	1	1 0	0	Rst/Cmp	X	1

Excitation Equations

A $J_A = \sum (0,2,4,6,8,10,12,14) + d(1,3,5,7,9)$ $K_A = \sum (1,3,5,7,9,11,13,15) + d(0,2,4,6,8,10,12,14)$ 11,13,15)

10,12,14)

Inputs	Q(T)			Q(T+1)		Outputs	Excitation	on for B
X	С	B A	<u>C</u>	В	А	Υ	Action	D_B
0	0	00	0	0	1		Rst	0
0	0	01	Ω	1	0		Set	1
0	0	10	Ω	1	1		Set	1
0	0	11	11	0			Rst	0
0	1	0	1	0	1		Rst	0
0	1	01	1	1			Set	1
0	1	1	1	1	1		Set	1
0	1	11	0	0			Rst	0
1	0	00	11	1	1		Set	1
1	0	0 1	0	0			Rst	0
1	0	1 0	0	0	1		Rst	0
1	0	11	0	1			Set	1
1	1	00	0	1	1		Set	1
1	1	01	11	0	0		Rst	0
1	1	1 0	1	0	1		Rst	0
1	1	1 1	1	1	0		Set	1

A $J_A = \sum (0,2,4,6,8,10,12,14) + d(1,3,5,7,9)$ $K_A = \sum (1,3,5,7,9,11,13,15) + d(0,2,4,6,8,11,13,15)$ 10,12,14)

 $D_{B}=\sum(1,2,5,6,8,11,12,15)$ Never "don't care condition" happens in D-FF

 $C \mid T_C =$

Inputs	Q(T)		Q(T+1)		Outputs	Excitatio	on for C
X	CBA	С	В		Υ	Action	T_{C}
0	00	0		1		Store	0
0	011	0	1			Store	0
0	00	0	1	1		Store	0
0	011	1	0			Comp	1
0	1	1		1		Store	0
0	11	1	1			Store	0
0	1	1	1	1		Store	0
0	1	0	0			Comp	1
1	00	1	1	1		Comp	1
1	01	0	0			Store	0
1	0 1 0	0		1		Store	0
1	0 1 1	0	1			Store	0
1	100	• 0	1	1		Comp	1
1	1011	1	0			Store	0
1	10	1		1		Store	0
1	1 1 1	1	1			Store	0

A $J_A = \sum (0,2,4,6,8,10,12,14) + d(1,3,5,7,9)$ $K_A = \sum (1,3,5,7,9,11,13,15) + d(0,2,4,6,8,11,13,15)$ 10,12,14)

B $D_B = \sum (1,2,5,6,8,11,12,15)$ Never "don't care condition" happens in D-FF

C $T_C = \sum (3,7,8,12)$ Never "don't care condition" happens in T-FF

Minimization for excitation equations ?-Variable K-Map

A
$$J_A = \sum (0,2,4,6,8,10,12,14) + d(1,3,5,7,9,11,13,15)$$

$$K_A = \sum (1,3,5,7,9,11,13,15) + d(0,2,4,6,8,10,12,14)$$

B
$$D_B = \sum (1,2,5,6,8,11,12,15)$$
 Never "don't care condition" happens in D-FF

$$C \mid T_C = \sum (3,7,8,12)$$
 Never "don't care condition" happens in T-FF

Minimization

4-Variable K-Map F(X, C, B, A)

		ВА					
		00	01	11	10		
	00	O_{m_0}	O _{m1}	1 m ₃	O		
VC	01	rP ₄	\mathbf{Q}_{5}	$\begin{bmatrix} 1 \\ \mathbf{m}_7 \end{bmatrix}$	PG ₆		
XC	11	1 ₁₂	Q	O	O		
	10	1 m ₈	O _{m₉}	O m ₁₁	O m ₁₀		

$$T_C = \sum (3,7,8,12)$$

= X'BA + XB'A'

 $D_B = \sum (1,2,5,6,8,11,12,15)$

= X'B'A + X'BA' + XB'A' + XBA

= X'(B'A+BA') + X(B'A'+BA)

 $= X'(B \oplus A) + X(B \odot A)$

 $= X \bigoplus B \bigoplus A$

$$J_{A} = \sum (0,2,4,6,8,10,12,14) + d(1,3,5,7,9,11,13,15) = 1$$

 $K_A = \sum (1,3,5,7,9,11,13,15) + d(0,2,4,6,8,10,12,14) = 1$

 $A \mid J_A = 1 \qquad K_A = 1$

 $B \mid D_B = F(X,C,B,A) = X \oplus B \oplus A$

 $C \mid T_C = F(X,C,B,A) = X'BA + XB'A'$

Design (Recap)

- 0. Do we need combinational logic or sequential logic? Do we need memory?
- 1. How many storage (flip-flops)? #FF
- 2. How many input and output?
- 3. Form the state (transition) diagram
- 4. Form the state table
- 5. Fill the state table
- 6. What type of storage (flip-flop)? RS, D, T, JK, or Mixed
- 7. Input (excitation) equations for each FF
- 8. Minimization of input (excitation) equations
- 9. Boolean function for the output
- 10. Minimization of output variable

Inputs		Q(T)			Q(T+1)		Outputs
X	С	В	Α	С	В	Α	Υ
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	1	1
0	0	1	1	1	0	0	0
0	1	0	0	1	0	1	1
0	1	0	1	1	1	0	0
0	1	1	0	1	1	1	1
0	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	0	0	0	1	1
1	0	1	1	0	1	0	0
1	1	0	0	0	1	1	1
1	1	0	1	1	0	0	0
1	1	1	0	1	0	1	1
1	1	1	1	1	1	0	0

Inputs	Q(T)			Q(T+1)			Outputs
Χ	С	В	А	С	В	А	Υ
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	1	1
0	0	1	1	1	0	0	0
0	1	0	0	1	0	1	1
0	1	0	1	1	1	0	0
0	1	1	0	1	1	1	1
0	1	1	1	Y = F(C)	$(B,A)^{\circ} = \sum_{i=1}^{n}$	(0.2.4.6)	0
1	0	0	0	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	0	0	0	1	1
1	0	1	1	0	1	0	0
1	1	0	0	0	1	1	1
1	1	0	1	1	0	0	0
1	1	1	0	1	0	1	1
1	1	1	1	1	1	0	0

Inputs	Q(T) Q(T+1)					Outputs	
Χ	С	В	Α	С	В	А	Υ
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	1	1
0	0	1	1	1	0	0	0
0	1	0	0	Incorroc	t but if w	vo mako	1
0	1	0	1		t but if w	U	0
0	1	1	0	a mistak	ce that X	İS 1	1
0	1	1	1	involved	0	0	0
1	0	0	0	1	1	1	1
1	0	0	1	U	C,B,A) =	0	0
1	0	1	0	∑(0,2,4,€	5 ,8,10,12,	14) 1	1
1	0	1	1	0	1	0	0
1	1	0	0	0	1	1	1
1	1	0	1	1	0	0	0
1	1	1	0	1	0	1	1
1	1	1	1	1	1	0	0

Minimization for output Y 3-Variable K-Map

Incorrectly 4-Variable K-Map

		BA							
		00	01	11	10				
C	0	1 m ₀	O m ₁	O m ₃	1 m ₂				
	1	1 1 1 1	O m ₅	O m ₇	76				

$$Y = F(C,B,A) = \sum (0,2,4,6)$$

= A'

Even if we consider the input, because Y does not depend on X in the state table, it will disappear in simplification!

			В	Α	
		00	01	11	10
	00	JE C	O _E 1	O_{m_3}	1 m ₂
XC	01	\mathbf{m}_{4}	P ₅	P ₇	m_6
۸С	11	1 m ₁₂ /	Q	n Q	m ₁₄
	10	1 m ₈	O _{m9}	O m ₁₁	TE

$$Y = F(X,C,B,A) = \sum (0,2,4,6,8,10,12,14)$$

= A'

Design (Recap)

- 0. Do we need combinational logic or sequential logic? Do we need memory?
- 1. How many storage (flip-flops)? #FF
- 2. How many input and output?
- 3. Form the state (transition) diagram
- 4. Form the state table
- 5. Fill the state table
- 6. What type of storage (flip-flop)? RS, D, T, JK, or Mixed
- 7. Input (excitation) equations for each FF
- 8. Minimization of input (excitation) equations
- 9. Boolean function for the output
- 10. Minimization of output variable
- 11. Draw/Sketch Logic Circuit
- 12. (Optional) Test

Α	$J_A=1$ $K_A=1$	
В	$D_B = F(X,C,B,A) = X \oplus B \oplus A$	
С	$T_C = F(X,C,B,A) = X'BA + XB'A'$	
Υ	F(C,B,A) = A'	

Α	$J_A=1$ $K_A=1$
В	$D_B = F(X,C,B,A) = X \oplus B \oplus A$
С	$T_C = F(X,C,B,A) = X'BA + XB'A'$
Υ	F(C,B,A) = A'

Α	$J_A=1$ $K_A=1$
В	$D_B = F(X,C,B,A) = X \oplus B \oplus A$
С	$T_C = F(X,C,B,A) = X'BA + XB'A'$
Υ	F(C,B,A) = A'

Α	$J_A=1$ $K_A=1$
В	$D_B = F(X,C,B,A) = X \oplus B \oplus A$
С	$T_C = F(X,C,B,A) = X'BA + XB'A'$
Υ	F(C,B,A) = A'

Counter Up-Down Example Mealy Model

Counting up and number is even Counting up and number is odd Counting down and number is odd Counting down and number is even

Counter Up-Down

X=0: Count up from i to i+1

X=1: Count down from N i to i -1

Y = 1 when counting up (X=0) and number is even

Y = 0 when counting up (X=0) and number is odd

Y = 1 when counting down (X = 1) and number is odd

Y = 0 when counting down (X = 1) and number is even

Inputs		Q(T)		Q(T+1)			Outputs
X	С	В	Α	С	В	А	Υ
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	1	1
0	0	1	1	1	0	0	0
0	1	0	0	1	0	1	1
0	1	0	1	1	1	0	0
0	1	1	0	V -1E(V	$C P \Lambda -$	1	1
0	1	1	1	$\Gamma = \Gamma(\underline{\lambda}, \underline{\lambda})$	C,B,A) =	0	0
1	0	0	0	$ \sum (0,2,4,6) $	5,9,11,13,	15) ₁	0
1	0	0	1	0	0	0	1
1	0	1	0	0	0	1	0
1	0	1	1	0	1	0	1
1	1	0	0	0	1	1	0
1	1	0	1	1	0	0	1
1	1	1	0	1	0	1	0
1	1	1	1	1	1	0	1

Minimization for output Y 4-Variable K-Map

$$Y = F(X,C,B,A) = \sum (0,2,4,6,9,11,13,15)$$

= X'A' + XA
= X \odot A

Α	$J_A = 1$ $K_A = 1$
В	$D_B = F(X,C,B,A) = X \oplus B \oplus A$
С	$T_C = F(X,C,B,A) = X'BA + XB'A'$
Υ	$F(C,B,A) = X \odot A$