CS 218

Homework, MIPS Asst. #2

Purpose: Become familiar with the MIPS stack and standard calling conventions.

Due: Tuesday (7/05)

Points: 70

Assignment:

Use the provided MIPS assembly language main program and write the following functions:

 Write a MIPS assembly language function, surfaceAreas(), to calculate the surface areas for each of the rectangular parallelepipeds in a set of rectangular parallelepipeds. The formula for the surface of a rectangular parallelepiped is as follows:


```
surfaceAreas[n] = 2(asides[n]*bsides[n]+asides[n]*csides[n]*bsides[n]*csides[n])
```

• Write a MIPS assembly language function, **cocktailSort()**, to sort a list of surface areas into ascending order (small to large). To sort the numbers, Use the following cocktail¹ sort algorithm:

```
function cocktailSort(list, listLength) {
    bottom = 0;
    top = list length - 1;
    swapped = true;
    while(swapped == true) {
        swapped = false;
        for(i = bottom; i < top; i = i + 1) {
            // test if two elements are in the correct order
            if(list[i] > list[i + 1]) {
                 swap(list[i], list[i + 1]);
                 swapped = true;
            }
        }
        top = top - 1;
        for(i = top; i > bottom; i = i - 1) {
            if(list[i] < list[i - 1]) {
                 swap(list[i], list[i - 1]);
                 swapped = true;
            }
        bottom = bottom + 1;
    }
}
```

You *must* use the above cocktail sort algorithm (i.e., do **not** use a different sort). *Note*, the algorithm assumes array index's start at 0. As necessary, you can define additional variables.

¹ Source of Cocktail sort algorithm: http://en.wikipedia.org/wiki/Cocktail_sort

- Write a MIPS assembly language function, **printAreas()**, to display the array of surface areas. The numbers should be printed five (5) per line, left justified (see example output).
- Write a MIPS assembly language function, **surfaceAreasStats()**, that will find the minimum, median, maximum, sum, and floating point average. You should find the minimum, median, and maximum after the list is sorted. The average should be calculated as a floating point value.
- Write a MIPS assembly language function, **printStats()**, to print the surface areas statistical information (minimum, maximum, median, sum, average) in the format shown in the example.

Submission:

When complete, submit:

- A copy of the **source file** via the class web page by class time. *Assignments received after the start time of class will not be accepted.*
- Submissions not based on the full/complete cocktail sort algorithm will not be scored.

Example Output:

The program must display the results to the console window. The output should look something like the following (with all of the correct answers displayed for all data sets):

Assignment #2 Surface Areas Program				
 Data Set #1				
Length: 20				
Unsorted Surface Areas	:			
6698	6184	5622	6190	5608
6766	6184	7038	6904	6758
5008	174	18480	5240	6976
7864	4760	6118	88	183800
Sorted Surface Areas:				
88	174	4760	5008	5240
5608	5622	6118	6184	6184
6190	6698	6758	6766	6904
6976	7038	7864	18480	183800
Surface Areas Min = 88				
Surface Areas Med = 61	87			
Surface Areas Max = 18	3800			
Surface Areas Sum = 30				
Surface Areas Ave = 15	123.00000000			
Data Set #2				
Length: 77				
Unsorted Surface Areas	:			
*****	345742	380984	344290	336520
339660	318010	343150	322120	311830
[truncated for	space]			
=	-			

Note, the example output above may appear slightly different than the console output on the screen.