

Deep Encode Intermediate Presentation

By Ruihan, Julio and Vinzenz

Intermediate Presentation

• Wrap Up: Problem Statement

- Details and preliminary results
 - First Demo

Problem Statement

- Convolutional Neural Networks, Gradient Boosting Decision Tree and Linear Regression
- predict VMAF values
- plot data points(bitrate, predicted VMAF) and find the convex hull

Details and preliminary results

Gradient Boosting Decision Tree

Input variables: e_crf, e_width, e_height, e_codec_profile, e_codec_level,

t_average_bitrate (Correlation > 0.1)

average MAE for all Video ID: 2.262

average score for all Video ID: 0.989

Demo - Python Gradient Boosting Decision Tree

Details and preliminary results

Convolutional Neural Network

Absolute Value of Correlation with VMAF>0.04: e_crft, t_average_bitrate, e_height, e_width, e_scan_type, e_codec_level, e_codec_profile, c_si

number of tests = 200, mean absolute error :2.969299849271774, standard_error :0.01193681736466972, lower_interval :2.9573630319071045,upper_interval :2.981236666271774

Variables used : e_crft, t_average_bitrate, e_height, e_width, e_scan_type, e_codec_level, e_codec_profile, c_si

Demo - Python

Details and preliminary results

Lineare Regression

Correlation >0.250: e_crf, t_average_bitrate, e_width, e_height, e_codec_level, e_scan_typeNumber, e_codec_profileNumber

MAE: 7.1028

sMAPE: 0.3504

Model: e_crf + e_width + e_codec_profileNumber + e_codec_level + e_scan_typeNumber + e_height

Demo - R

Schedule / next Steps

