

2.5 初等函数 **★★★** 熟记 2.5.1 指数函数

定义 设 $z = x + iy, x, y \in \mathbb{R}$,则定义指数函数为

$$e^z = e^{x+iy} = e^x (\cos y + i \sin y) = e^x e^{iy}$$

2)
$$\forall \alpha \in \mathbb{R}$$
, $e^{\alpha + \frac{\pi}{2}i} = e^{\alpha} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) = i e^{\alpha}$.

3)
$$e^{\pi i} = \cos \pi + i \sin \pi = -1$$
.

4)
$$e^{-2+i\frac{3\pi}{2}} = e^{-2}\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right) = -\frac{1}{e^2}i_{\circ}$$

5)
$$\forall k \in \mathbb{Z}, \ \mathbf{e}^{2k\pi \mathbf{i}} = \cos 2k\pi + \mathbf{i}\sin 2k\pi = 1.$$

$$e^z = e^{x+iy} = e^x(\cos y + i\sin y) = e^x e^{iy}, x, y \in \mathbb{R}.$$

- $\operatorname{Re}(\mathbf{e}^z) = \mathbf{e}^x \cos y = \mathbf{e}^{\operatorname{Re}z} \cos(\operatorname{Im}z)$,
 - $\operatorname{Im}(e^{z}) = e^{x} \sin y = e^{\operatorname{Re}z} \sin(\operatorname{Im}z)$

 $\operatorname{Arg} \mathbf{e}^z = y + 2k\pi = \operatorname{Im} z + 2k\pi, \ k \in \mathbb{Z}.$

• $\overline{\mathbf{e}^z} = \mathbf{e}^{\bar{z}}$ •

证明:
$$e^{z} = e^{x} (\cos y + i \sin y)$$
 = $e^{x} (\cos y - i \sin y)$
= $e^{x} \{ \cos(-y) + i \sin(-y) \}$
= $e^{x-iy} = e^{\overline{z}}$

$$e^z = e^{x+iy} = e^x(\cos y + i\sin y) = e^x e^{iy}, x, y \in \mathbb{R}.$$

e^z 是单值函数(根据定义),且具有如下性质:

(1)
$$\forall z \in \mathbb{C}(复数域)$$
, $\mathbf{e}^z \neq \mathbf{0}$. 这是因为 $|\mathbf{e}^z| = \mathbf{e}^{\mathbf{Re}z} \neq \mathbf{0}$ 。

(2) $\lim_{z\to\infty} e^z$ 不存在, e^{∞} 无意义.

证:
$$\mathbf{e}^{z} = \begin{cases} \mathbf{e}^{x} \to +\infty, & \text{Im } z = 0, \ z = x \to +\infty \text{时}, \\ \mathbf{e}^{x} \to 0, & \text{Im } z = 0, \ z = x \to -\infty \text{时}, \end{cases}$$

故 lime^z 无意义。

同理,
$$\lim_{z\to\infty}\frac{z}{e^z}$$
不存在,因为

Im
$$z = 0$$
, $z = x \to +\infty$ by, $\frac{z}{e^z} \to 0$; $z = x \to -\infty$ by, $\frac{z}{e^z} \to \infty$.

$$e^z = e^{x+iy} = e^x(\cos y + i\sin y) = e^x e^{iy}, x, y \in \mathbb{R}.$$

(1)
$$\forall z \in \mathbb{C}(复数域)$$
, $\mathbf{e}^z \neq \mathbf{0}$ 。 $\left(\mathbf{B} \Rightarrow \mathbf{e}^z \right) = \mathbf{e}^{\mathbf{R}\mathbf{e}z} \neq \mathbf{0}$ 。

- (2) $\lim_{z\to\infty} e^z$ 不存在, e^∞ 无意义。
- (3) $\forall z_1, z_2 \in \mathbb{C}, \ \mathbf{e}^{z_1} \cdot \mathbf{e}^{z_2} = \mathbf{e}^{z_1 + z_2}$

证: 设
$$z_1 = x_1 + i y_1$$
, $z_2 = x_2 + i y_2$, $x_1, y_1, x_2, y_2 \in \mathbb{R}$,

$$\mathbf{e}^{z_1} \cdot \mathbf{e}^{z_2} = \left(\mathbf{e}^{x_1} \mathbf{e}^{\mathbf{i} y_1} \right) \cdot \left(\mathbf{e}^{x_2} \mathbf{e}^{\mathbf{i} y_2} \right)$$

$$= (e^{x_1} e^{x_2}) e^{i(y_1 + y_2)} = e^{x_1 + x_2} e^{i(y_1 + y_2)}$$

$$= e^{x_1 + x_2 + i(y_1 + y_2)} = e^{z_1 + z_2}$$

$$e^{z} = e^{x+iy} = e^{x}(\cos y + i\sin y) = e^{x} e^{iy}, x, y \in \mathbb{R}.$$

- (1) $\forall z \in \mathbb{C}, \mathbf{e}^z \neq 0$ 。 (因 $|\mathbf{e}^z| = \mathbf{e}^x \neq 0$ 。)
- (2) $\lim_{z\to\infty} \mathbf{e}^z$ 不存在, \mathbf{e}^∞ 无意义。(3) $\forall z_1, z_2 \in \mathbb{C}$, $\mathbf{e}^{z_1} \cdot \mathbf{e}^{z_2} = \mathbf{e}^{z_1+z_2}$ 。
- (4) e^z 是以 $2\pi i$ 为周期的周期函数,即

$$e^{z+2k\pi i} = e^z$$
, $\forall z \in \mathbb{C}$, $\forall k \in \mathbb{Z}$.

证明:
$$\forall k \in \mathbb{Z}$$
, $e^{2k\pi i} = \cos 2k\pi + i \sin 2k\pi = 1$.

由(3)得,

$$\mathbf{e}^{z+2k\pi\mathbf{i}} = \mathbf{e}^z \cdot \mathbf{e}^{2k\pi\mathbf{i}} = \mathbf{e}^z$$
.

$$e^z = e^{x+iy} = e^x(\cos y + i\sin y) = e^x e^{iy}, x, y \in \mathbb{R}.$$

- (1) $\forall z \in \mathbb{C}, \mathbf{e}^z \neq \mathbf{0}, \left(\mathbf{E} \left| \mathbf{e}^z \right| = \mathbf{e}^x \neq \mathbf{0} \right) \right)$
- (2) $\lim_{z\to\infty} \mathbf{e}^z$ 不存在, \mathbf{e}^∞ 无意义。(3) $\forall z_1, z_2 \in \mathbb{C}$, $\mathbf{e}^{z_1} \cdot \mathbf{e}^{z_2} = \mathbf{e}^{z_1+z_2}$ 。
- (4) e^z 以 $2\pi i$ 为周期, $\mathbb{P}e^{z+2k\pi i}=e^z$, $\forall z\in\mathbb{C}$, $\forall k\in\mathbb{Z}$ 。
- (5) $e^{z_1} = e^{z_2} \Leftrightarrow \exists k \in \mathbb{Z}$,使得 $z_1 = z_2 + 2k\pi i$.

证明: 充分性 "←". 直接由(4)得出.

必要性" \Rightarrow ". 若 $e^{z_1} = e^{z_2}$,则由(3)得

$$1 = \frac{e^{z_1}}{e^{z_2}} \cdot \frac{e^{-z_2}}{e^{-z_2}} = \frac{e^{z_1 - z_2}}{e^0} = e^{x_1 - x_2} e^{i(y_1 - y_2)}, \quad \text{ix}$$

$$\begin{cases} e^{x_1-x_2} = 1, & \forall z_1 = z_2 + 2k\pi i, \\ y_1 - y_2 = 0 + 2k\pi, & k \in \mathbb{Z}, \end{cases} \begin{cases} x_1 = x_2, & \forall z_1 = z_2 + 2k\pi i, \\ y_1 = y_2 + 2k\pi, \end{cases}$$

$$e^z = e^{x+iy} = e^x(\cos y + i\sin y), x, y \in \mathbb{R}$$
 性质

- (1) $\forall z \in \mathbb{C}(复数域), |e^z| = e^{Rez} \neq 0, e^z \neq 0.$
- (2) $\lim_{z\to\infty} \mathbf{e}^z$ 不存在, \mathbf{e}^∞ 无意义. (3) 加法公式 $\mathbf{e}^{z_1} \cdot \mathbf{e}^{z_2} = \mathbf{e}^{(z_1+z_2)}$.
- (4) e^z 是以 $2\pi i$ 为周期的周期函数, $\mathbb{P}e^{z+2k\pi i}=e^z$, $\forall k\in\mathbb{Z}$.
- (5) $e^{z_1} = e^{z_2} \Leftrightarrow \exists k \in \mathbb{Z}$, 使得 $z_1 = z_2 + 2k\pi i$.
- (6) e^z 在全平面解析,且 $\left(e^z\right)'=e^z$.

详细证明见P32例1中的2).

例 设
$$z = x + i y$$
, 求(1) $\left| e^{i+z^2} \right|$; (2) $\left(e^{i+z^2} \right)'$.

解 (1)
$$e^{i+z^2} = e^{i+(x+iy)^2} = e^{x^2-y^2+i(2xy+1)}$$

 $= e^{x^2-y^2} e^{i(2xy+1)}$, 故
 $\left|e^{i+z^2}\right| = e^{x^2-y^2}$;

(2)有复合函数求导法则得

$$(e^{i+z^2})' = e^{i+z^2} (i+z^2)' = 2z e^{i+z^2}.$$

2.5.2. 三角函数和双曲函数

 $\forall y \in \mathbb{R}, \ e^{iy} = \cos y + i \sin y, \ e^{-iy} = \cos y - i \sin y,$ 将两式相加、相减后,可解出cosy和siny:

$$\cos y = \frac{1}{2} (e^{iy} + e^{-iy}), \quad \sin y = \frac{1}{2i} (e^{iy} - e^{-iy}).$$

推广到y取复数的情性,即

$$\forall z \in \mathbb{C}$$
, 定义

余弦函数
$$\cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right),$$

正弦函数
$$\sin z = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$$
。

余弦函数
$$\cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$$
,

正弦函数
$$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz})$$
。 类似地,

因
$$\forall y \in \mathbb{R}$$
, $\operatorname{ch} y = \frac{1}{2} (\mathbf{e}^y + \mathbf{e}^{-y})$, $\operatorname{sh} y = \frac{1}{2} (\mathbf{e}^y - \mathbf{e}^{-y})$, 故 $\forall z \in \mathbb{C}$, 定义

双曲余弦函数
$$\operatorname{ch} z = \frac{1}{2} (\mathbf{e}^z + \mathbf{e}^{-z}),$$

双曲正弦函数
$$\operatorname{sh} z = \frac{1}{2} (\mathbf{e}^z - \mathbf{e}^{-z}).$$

P35

→
$$\cos iz = \cosh z$$
, $\sin iz = -\frac{1}{i} \sinh z = i \sinh z$ 。
 $\cosh iz = \cos z$, $\sinh iz = i \sin z$ 。 熟背

余弦
$$\cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right),$$

余弦
$$\cos z = \frac{1}{2} \left(\mathbf{e}^{\mathbf{i}z} + \mathbf{e}^{-\mathbf{i}z} \right)$$
, 双曲余弦 $\cot z = \frac{1}{2} \left(\mathbf{e}^z + \mathbf{e}^{-z} \right)$, 正弦 $\sin z = \frac{1}{2\mathbf{i}} \left(\mathbf{e}^{\mathbf{i}z} - \mathbf{e}^{-\mathbf{i}z} \right)$ 。 双曲正弦 $\sin z = \frac{1}{2} \left(\mathbf{e}^z - \mathbf{e}^{-z} \right)$.

• cosz, sinz, chz, shz在全平面处处解析,

$$(\cos z)' = -\sin z$$
, $(\sin z)' = \cos z$,
 $(\operatorname{ch} z)' = \operatorname{sh} z$, $(\operatorname{sh} z)' = \operatorname{sh} z$ 。

P35 熟记

证: 因 e^z , e^{iz} 在全平面解析, 故 $\cos z$, $\sin z$, $\cosh z$, $\sinh z$ 在全平面解析,

$$\frac{(\cos z)'}{2} = \frac{1}{2} \left\{ \left(e^{iz} \right)' + \left(e^{-iz} \right)' \right\} = \frac{1}{2} \left\{ e^{iz} \cdot i + e^{-iz} \cdot (-i) \right\}$$

$$= \frac{1}{2} i \left(e^{iz} - e^{-iz} \right) = -\frac{1}{2i} \left(e^{iz} - e^{-iz} \right) = -\sin z \circ$$

同理, $(\sin z)' = \cos z$, $(\operatorname{ch} z)' = \operatorname{sh} z$, $(\operatorname{sh} z)' = \operatorname{sh} z$.

余弦
$$\cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right),$$
 双曲余弦 $\cot z = \frac{1}{2} \left(e^{z} + e^{-z} \right),$

正弦
$$\sin z = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$$

双曲余弦
$$\operatorname{ch} z = \frac{1}{2} (\mathbf{e}^z + \mathbf{e}^{-z}),$$

正弦
$$\sin z = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$$
。 双曲正弦 $\sin z = \frac{1}{2} \left(e^{z} - e^{-z} \right)$ 。

1) $\cos z$, $\sin z$ 以 2π 为周期, $\cot z$, $\sin z$ 以 2π i为周期,即

$$\cos(z+2\pi) = \cos z, \quad \sin(z+2\pi) = \sin z.$$

$$\operatorname{ch}(z+2\pi i) = \operatorname{ch}z, \quad \operatorname{sh}(z+2\pi i) = \operatorname{sh}z.$$
P35

$$\operatorname{ch}(z+2\pi i) = \operatorname{ch} z, \operatorname{sh}(z+2\pi i) = \operatorname{sh} z$$

证: 因 $\mathbf{e}^{z+2k\pi\mathbf{i}} = \mathbf{e}^z$, $\forall k \in \mathbb{Z}$, 故

$$\cos(z+2\pi) = \frac{1}{2} \left\{ e^{i(z+2\pi)} + e^{-i(z+2\pi)} \right\} = \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$$

= **cos** *z*。同理可证,

$$\sin(z+2\pi)=\sin z, \ \operatorname{ch}(z+2\pi i)=\operatorname{ch} z, \ \operatorname{sh}(z+2\pi i)=\operatorname{sh} z.$$

余弦
$$\cos z = \frac{1}{2} (\mathbf{e}^{\mathbf{i}z} + \mathbf{e}^{-\mathbf{i}z})$$
,
正弦 $\sin z = \frac{1}{2\mathbf{i}} (\mathbf{e}^{\mathbf{i}z} - \mathbf{e}^{-\mathbf{i}z})$ 。
双曲余弦 $\cot z = \frac{1}{2} (\mathbf{e}^z + \mathbf{e}^{-z})$,

2)(零点)
$$(a)$$
 $\{z|\sin z = 0\} = \{n\pi, n \in \mathbb{Z}\} = \{0, \pm \pi, \pm 2\pi, \cdots\}$ 。

(b)
$$\{z | \cos z = 0\} = \{n\pi + \frac{\pi}{2}, n \in \mathbb{Z}\} = \{\pm \frac{1}{2}\pi, \pm \frac{3}{2}\pi, \cdots\}$$

$$\mathbf{i} \mathbf{E} : (b) \cos z = 0 \Leftrightarrow \mathbf{e}^{\mathbf{i}z} = -\mathbf{e}^{-\mathbf{i}z} \Leftrightarrow \mathbf{e}^{2\mathbf{i}z} = -\mathbf{1}$$

$$\Leftrightarrow z = x + \mathbf{i} \ y, \ x, y \in \mathbb{R}, \ \mathbf{e}^{-2y + 2\mathbf{i}x} = \mathbf{e}^{-2y} \ \mathbf{e}^{2\mathbf{i}x} = \mathbf{e}^{\pi\mathbf{i}}$$

$$\Leftrightarrow$$
 $z-y+iv$ $y\in\mathbb{R}$ $y=0$ $2y-\pi+2n\pi$ $n\in\mathbb{Z}$

$$\Leftrightarrow z = x + i y, x, y \in \mathbb{R}, y = 0, 2x = \pi + 2n\pi, n \in \mathbb{Z}$$

$$\Leftrightarrow z = n\pi + \frac{\pi}{2}, n \in \mathbb{Z} \text{ 。故得}(b) \text{ 。同理可证}(a), 以及$$

$$(c) \left\{ z \middle| \text{ch} z = 0 \right\} = \left\{ \left(n\pi + \frac{\pi}{2} \right) \mathbf{i}, n \in \mathbb{Z} \right\} = \left\{ \pm \frac{1}{2}\pi \mathbf{i}, \pm \frac{3}{2}\pi \mathbf{i}, \cdots \right\} \text{ .}$$

(d)
$$\{z|\operatorname{sh} z=0\}=\{n\pi i, n\in\mathbb{Z}\}=\{0,\pm\pi i,\pm 2\pi i,\cdots\}$$
.

余弦
$$\cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right),$$
 双曲余弦 $\cot z = \frac{1}{2} \left(e^z + e^{-z} \right),$

E弦
$$\sin z = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$$

正弦
$$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz})$$
。 双曲正弦 $\sin z = \frac{1}{2} (e^{z} - e^{-z})$ 。

2)(零点) (a)
$$\{z | \sin z = 0\} = \{n\pi, n \in \mathbb{Z}\} = \{0, \pm \pi, \pm 2\pi, \cdots\}$$
。

(b)
$$\{z | \cos z = 0\} = \{n\pi + \frac{\pi}{2}, n \in \mathbb{Z}\} = \{\pm \frac{1}{2}\pi, \pm \frac{3}{2}\pi, \cdots\}$$

(c)
$$\left\{z\middle| \operatorname{ch} z = 0\right\} = \left\{\left(n\pi + \frac{\pi}{2}\right)i, n \in \mathbb{Z}\right\} = \left\{\pm \frac{1}{2}\pi i, \pm \frac{3}{2}\pi i, \cdots\right\}$$

(d)
$$\{z | \operatorname{sh} z = 0\} = \{n\pi i, n \in \mathbb{Z}\} = \{0, \pm \pi i, \pm 2\pi i, \cdots\}$$

⇒若Im $z \neq 0$, 则 $\cos z \neq 0$, $\sin z \neq 0$.

若Re $z \neq 0$, 则ch $z \neq 0$, sh $z \neq 0$.

余弦
$$\cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$$
,正弦 $\sin z = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$ 。

实三角函数恒等式在复变数情形仍然成立:

(3)
$$\sin(-z) = -\sin z$$
, $\cos(-z) = \cos z$, $\sin^2 z + \cos^2 z = 1$,

$$\frac{\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2}{\cos(z_1 + z_2) = \cos z_1 \cos z_2 + \sin z_1 \sin z_2}, \dots \mathbf{P36}$$

证明 根据定义。如
$$\sin z_1 \cos z_2 = \frac{1}{4i} \left(e^{iz_1} - e^{-iz_1} \right) \left(e^{iz_2} + e^{-iz_2} \right)$$

$$=\frac{1}{4i}\left\{e^{i(z_1+z_2)}+e^{i(z_1-z_2)}-e^{-i(z_1-z_2)}-e^{-i(z_1+z_2)}\right\}.$$
Wth.

$$\cos z_{1} \sin z_{2} = \frac{1}{4i} \left\{ e^{i(z_{2}+z_{1})} + e^{i(z_{2}-z_{1})} - e^{-i(z_{2}-z_{1})} - e^{-i(z_{2}+z_{1})} \right\}.$$

故
$$\sin z_1 \cos z_2 + \cos z_1 \sin z_2 = \frac{1}{2i} \left\{ e^{i(z_2 + z_1)} - e^{-i(z_2 + z_1)} \right\} = \sin(z_1 + z_2)$$
。

例. 求cos(3-2i)。

解由三角函数公式得

cos(3-2i) = cos 3 cos 2i + sin 3 sin 2i= cos 3 ch 2 + i sin 3 sh 2.

 $\cos iz = \cosh z$, $\sin iz = i \sinh z$. $\cot iz = \cos z$, $\sinh iz = i \sin z$.

熟背

双曲余弦
$$\operatorname{ch} z = \frac{1}{2} (\mathbf{e}^z + \mathbf{e}^{-z})$$
, 双曲正弦 $\operatorname{sh} z = \frac{1}{2} (\mathbf{e}^z - \mathbf{e}^{-z})$.

实双曲函数恒等式在复变数情形仍然成立:

$$sh(-z) = -sh z, \quad ch(-z) = ch z, \quad ch^{2} z - sh^{2} z = 1,
sh(z_{1} + z_{2}) = sh z_{1} ch z_{2} + ch z_{1} sh z_{2}, \cdots
sh(z_{1} - z_{2}) = sh z_{1} ch z_{2} - ch z_{1} sh z_{2}, \cdots$$

$$P 36$$

证明 根据定义。

• 当 $z \neq n\pi$, $n = 0, \pm 1, \pm 2, \cdots$ 时,

$$\operatorname{ctg} z \triangleq \frac{\cos z}{\sin z}$$
,解析, $\left(\operatorname{ctg} z\right)' = -\frac{1}{\sin^2 z}$.

证明 首先sinz,cosz在全平面解析。

故ctg
$$z = \frac{\cos z}{\sin z}$$
解析。

且(ctg z)' =
$$\frac{(\cos z)' \sin z - \cos z (\sin z)'}{\sin^2 z}$$

$$=\frac{-\sin^2 z - \cos^2 z}{\sin^2 z} = -\frac{1}{\sin^2 z}.$$

• 当
$$z \neq n\pi$$
, $n \in \mathbb{Z}$ 时, $\operatorname{ctg} z \triangleq \frac{\cos z}{\sin z}$ 解析,
$$(\operatorname{ctg} z)' = -\frac{1}{\sin^2 z}.$$

同理可证,

$$mathai{suppression} = \frac{\pi}{2}$$
, $n \in \mathbb{Z}$ 时, $tgz \triangleq \frac{\sin z}{\cos z}$, 解析,
 $\left(tgz\right)' = \frac{1}{\cos^2 z}$ 。

• 当
$$z \neq n\pi$$
i, $n \in \mathbb{Z}$ 时, $\operatorname{cth} z \triangleq \frac{\operatorname{ch} z}{\operatorname{sh} z}$ 解析, $\left(\operatorname{cth} z\right)' = -\frac{1}{\operatorname{sh}^2 z}$ 。

• 当
$$z \neq \left(n\pi + \frac{\pi}{2}\right)$$
i, $n \in \mathbb{Z}$ 时, th $z \triangleq \frac{\sinh z}{\cosh z}$ 解析, $\left(\tanh z\right)' = \frac{1}{\cosh^2 z}$ 。

sh x, ch x 在 \mathbb{R} 中无界,故sh z, ch z 在复平面 无界。

 $\forall x \in \mathbb{R}, |\sin x| \le 1, |\cos x| \le 1, |\pi R, \text{但是}$ $|\sin z| \pi |\cos z| \text{复平面无界}.$

证: 当 $z = i y, y \in \mathbb{R}$ 时,

 $\cos i y = \cosh y$,

故当 $y \to \infty$ 时, $|\cos i y| = \operatorname{ch} y \to \infty$.

故 |cosz|在复平面无界。

同理 $|\sin z|$ 在复平面无界。

例1. 求sinz的实部,虚部和模。

解: 设z = x + i y, $x, y \in \mathbb{R}$, 则由三角函数公式得 $\sin z = \sin(x + i y) = \sin x \cos(i y) + \cos x \sin(i y)$ $= \sin x \cosh y + i \sinh y \cos x$ 。

故 $\operatorname{Re}(\sin z) = \sin x \operatorname{ch} y$, $\operatorname{Im}(\sin z) = \operatorname{sh} y \cos x$ 。

$$|\sin z| = \sqrt{\sin^2 x \cosh^2 y + \sinh^2 y \cos^2 x}$$

$$=\sqrt{\left(1-\cos^2 x\right) \cosh^2 y + \sinh^2 y \cos^2 x}$$

$$= \sqrt{\cosh^2 y - \cos^2 x \left(\cosh^2 y - \sinh^2 y\right)} = \sqrt{\cosh^2 y - \cos^2 x}$$

也可以按sinz的定义计算。

2. 对数函数(指数函数的反函数)

定义:设复数 $z \neq 0$ 已知,满足方程 $e^w = z$ 的复数 w,称为 z 的对数函数,记为 w = Lnz.

令w = u + iv,则由 $e^w = z$ 得, $e^{u+iv} = e^u e^{iv} = z$ 。故 $e^u = |z|$, $u = \ln|z|$, $v = \operatorname{Arg} z = \operatorname{arg} z + 2k\pi, k \in \mathbb{Z}$,

w = Ln z是无穷多值函数. 每个 k,对应 Lnz 的一个分支.

k = 0分支记为: $\ln z = \ln |z| + i \arg z$, 称为 $\ln z$ 的主值,

其中 $-\pi < \arg z \leq \pi$.

非零复数都有对数.

$$w = \operatorname{Ln} z = \ln |z| + i (\operatorname{arg} z + 2k\pi), \quad k \in \mathbb{Z}.$$

主值: $\ln z = \ln |z| + i \operatorname{arg} z, \quad -\pi < \operatorname{arg} z \le \pi.$

主值:
$$\ln z = \ln |z| + i \arg z$$
, $-\pi < \arg z \le \pi$

例 求 Ln x (x>0), Ln i及相应主值.

解
$$(1) x > 0$$
, $\arg x = 0$. Ln $x = \ln x + 2k\pi i$, $k \in \mathbb{Z}$.

) Lni = ln|i| + i (arg i +
$$2k\pi$$
) = ln1 + i $\left(\frac{1}{2}\pi + 2k\pi\right)$

$$=\mathbf{i}\left(2k+\frac{1}{2}\right)\pi, \quad k\in\mathbb{Z}.$$

$$\diamondsuit k = 0$$
得主值 $\ln i = \frac{\pi}{2} i$ 。

 $w = \operatorname{Ln} z = \ln |z| + i (\operatorname{arg} z + 2k\pi), k \in \mathbb{Z}.$ 主值: $\ln z = \ln |z| + i \operatorname{arg} z, -\pi < \operatorname{arg} z \leq \pi.$

例 求 $e^w = 1 + i\sqrt{3}$ 的全部解。

解
$$w = \operatorname{Ln}(1+i\sqrt{3}) = \ln|1+i\sqrt{3}| + i\left\{\operatorname{arg}(1+i\sqrt{3}) + 2k\pi\right\}$$

$$= \ln\left(\sqrt{1+3}\right) + i\left(\arctan\frac{\sqrt{3}}{1} + 2k\pi\right)$$

$$= \ln 2 + i \left(\frac{\pi}{3} + 2k\pi \right), \quad k \in \mathbb{Z}_{\circ}$$

对数函数的性质 P38 熟记

(1)
$$\operatorname{Ln}(z_1 \cdot z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2$$
, $(z_1, z_2 \neq 0)$.

(2)
$$\operatorname{Ln} \frac{z_1}{z_2} = \operatorname{Ln} z_1 - \operatorname{Ln} z_2 \quad (z_1, z_2 \neq 0), \quad \operatorname{Ln} \frac{1}{z} = -\operatorname{Ln} z, \quad (z \neq 0)_{\circ}$$

证明 (1)
$$\operatorname{Ln}(z_1 \cdot z_2) = \operatorname{ln}|z_1 \cdot z_2| + \operatorname{i}\operatorname{Arg}(z_1 \cdot z_2)$$

$$= \ln(|z_1| \cdot |z_2|) + i(\operatorname{Arg} z_1 + \operatorname{Arg} z_2)$$

$$= \ln |z_1| + \ln |z_2| + i \left(\operatorname{Arg} z_1 + \operatorname{Arg} z_2 \right)$$

=
$$(\ln |z_1| + i \operatorname{Arg} z_1) + (\ln |z_2| + i \operatorname{Arg} z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2$$
.

(2)
$$\operatorname{Ln} \frac{z_1}{z_2} = \operatorname{ln} \left| \frac{z_1}{z_2} \right| + i \operatorname{Arg} \left(\frac{z_1}{z_2} \right)$$

$$= \ln |z_1| - \ln |z_2| + i \left(\operatorname{Arg} z_1 - \operatorname{Arg} z_2 \right)$$

=
$$\{\ln|z_1| + i \operatorname{Arg}(z_1)\} - \{\ln|z_2| + i \operatorname{Arg}(z_2)\} = \operatorname{Ln} z_1 - \operatorname{Ln} z_2^{\circ}$$

对数函数主值的连续性和解析性

主值: $\ln z = \ln |z| + i \arg z$, $-\pi < \arg z \le \pi$.

 $\ln |z|$ 在除去z = 0的复平面连续,

argz在除去原点和负实轴的复平面D内连续,

 $D: -\pi < \arg z < \pi,$

故 $\ln z$ 在 $D: -\pi < \arg z < \pi$ 内连续。

沿负半实轴割开的z平面

 $D: -\pi < \arg z < \pi.$

条形域: $-\pi < \text{Im} w < \pi$

对数函数其他分支的连续性和解析性

$$\forall k \in \mathbb{Z}$$
, 记 $w_k = (\operatorname{Ln} z)_k = \ln |z| + i(\operatorname{arg} z + 2k\pi),$
其中 $-\pi < \operatorname{arg} z < \pi$ 。

在除去原点和负实轴的复平面 $D: -\pi < \arg z < \pi$,

$$w_k = (\operatorname{Ln} z)_k$$
 连续。

沿负半实轴割开的z平面

 $-\pi < \arg z < \pi$.

(Lnz)_k 条形域:

$$(2k-1)\pi < \operatorname{Im} w < (2k+1)\pi$$

根据反函数理论,因指数函数处处解析,故在除去原点和负实轴的复平面 $D: -\pi < \arg z < \pi$ 内,Lnz的主值分支 $\ln z$ 、其它各分支($\ln z$)_k解析,且

• 对于 $w_0 = \ln z = \ln |z| + i \arg z$, 有 $z = e^{w_0}$, 故 $(\ln z)' = \frac{1}{(e^{w_0})'} = \frac{1}{e^{w_0}} = \frac{1}{z}$, 故 $(\ln z)' = \frac{1}{z}$ 。

• 対于
$$w_k = (\operatorname{Ln} z)_k = \ln|z| + i(\operatorname{arg} z + 2k\pi), \ k \in \mathbb{Z},$$

有 $z = e^{w_k}$,故

$$\left(\left(\operatorname{Ln} z\right)_{k}\right)' = \frac{1}{\left(e^{w_{k}}\right)'} = \frac{1}{e^{w_{k}}} = \frac{1}{z}, \quad \text{ix}\left(\left(\operatorname{Ln} z\right)_{k}\right)' = \frac{1}{z}.$$

若取 $0 < \arg z < 2\pi$,则

在除去原点和正实轴的复平面 $D: 0 < \arg z < 2\pi$ 内,

$$\ln z = \ln |z| + i \arg z$$
, $0 < \arg z < 2\pi$, 连续,解析。

沿正半实轴割开的z平面 $0 < \arg z < 2\pi$

条形域: $0 < \text{Im } w < 2\pi$ 。

2.5.7. 一般幂函数

设 $z \in \mathbb{Z}$, $z \neq 0$, α 为任意一个复数, 定义幂函数

$$z^{\alpha} = e^{\alpha \operatorname{Ln} z} = e^{\alpha \left\{ \ln |z| + i \left(\arg z + 2k\pi \right) \right\}}, k = 0, \pm 1, \pm 2, \cdots.$$
背熟

(1) 当 $\alpha \in \mathbb{Z}^+$ (正整数)时,与普通幂函数 z^n 一致,因为

$$z^{n} = e^{n\operatorname{Ln} z} = e^{n\operatorname{ln}|z| + in\operatorname{arg} z + 2nk\pi i}$$

$$= e^{\operatorname{ln}|z|^{n}} e^{in\operatorname{arg} z} = |z|^{n} e^{in\operatorname{arg} z}.$$

2.5.1小节

 z^n : 单值函数,处处解析, $(z^n)' = nz^{n-1}$ 。

(2) 当
$$\alpha = \frac{1}{n}$$
, n 是正整数时, $z^{\frac{1}{n}}$ 与根式函数 \sqrt{z} 一致,因为

$$z^{\frac{1}{n}} = e^{\frac{1}{n}\operatorname{Ln} z} = e^{\frac{1}{n}\operatorname{ln}|z| + i\left(\arg z + 2k\pi\right)} = e^{\frac{1}{n}\operatorname{ln}|z|} e^{i\frac{\arg z + 2k\pi}{n}}$$
$$= \left(\sqrt[n]{|z|}\right) \exp\left\{i\frac{\arg z + 2k\pi}{n}\right\}, \quad k \in 0,1,2,\dots,n-1.$$

故 $z^{\frac{1}{n}} = \sqrt[n]{z}$,是n值函数。

在除去原点和负实轴的复平面 $D: -\pi < \arg z < \pi$ 内,

$$\forall k = 0,1,2,\cdots,n-1$$
.

$$w_k \triangleq \left(z^{\frac{1}{n}}\right)_k = \left(\sqrt[n]{|z|}\right) \exp\left\{i\frac{\arg z + 2k\pi}{n}\right\}, \quad -\pi < \arg z < \pi_0$$

连续,解析,

$$w_{k}' = \left(z^{\frac{1}{n}}\right)_{k}' = \left(e^{\frac{1}{n}(\operatorname{Ln}z)_{k}}\right)' = \left(e^{\frac{1}{n}(\operatorname{Ln}z)_{k}}\right) \cdot \left(\frac{1}{n} \cdot \frac{1}{z}\right) = \frac{1}{nz}\left(z^{\frac{1}{n}}\right)_{k} \circ$$

(3) 当 α 是有理数,即 $\alpha = \frac{m}{n}$ (既约), $m \in \mathbb{Z}, n \in \mathbb{Z}^+$ 时,

$$z^{\frac{m}{n}} = \sqrt[n]{z^m} = \sqrt[n]{|z|^m} \exp\left\{im \arg z\right\}$$
$$= \left(\sqrt[n]{|z|^m}\right) \exp\left\{i\frac{m \arg z + 2k\pi}{n}\right\}, \qquad k = 0, 1, 2, \dots, n-1.$$

 $z^{\frac{m}{n}}$ 是 n 值函数。

(4) 当 α 是无理数或一般复数($\text{Im} \alpha \neq 0$)时,

$$z^{\alpha} = e^{\alpha \operatorname{Ln} z} = e^{\alpha \left\{ \ln |z| + i \left(\operatorname{arg} z + 2k\pi \right) \right\}}, \quad k = 0, \pm 1, \pm 2, \cdots$$

因当 α 是无理数或 $\operatorname{Im}\alpha \neq 0$ 时, $\forall k \in \mathbb{Z}, k\alpha$ 不是整数, $e^{2k\alpha\pi i} \neq 1$,

故 z 是无穷多值函数.

(4) 当 α 是无理数或一般复数($\text{Im} \alpha \neq 0$)时,

$$z^{\alpha} = e^{\alpha \operatorname{Ln} z} = e^{\alpha \left\{ \ln |z| + i \left(\operatorname{arg} z + 2k\pi \right) \right\}}, \quad k = 0, \pm 1, \pm 2, \cdots$$

因当 α 是无理数或 $\operatorname{Im}\alpha \neq 0$ 时, $\forall k \in \mathbb{Z}, k\alpha$ 不是整数, $e^{2k\alpha\pi i} \neq 1$,

故 z 是无穷多值函数.

例
$$\mathbf{i}^{\mathbf{i}} = \mathbf{e}^{i \operatorname{Lni}} = \mathbf{e}^{i \left\{ \ln |\mathbf{i}| + i \left(\operatorname{arg} \mathbf{i} + 2k\pi \right) \right\}}$$

$$= e^{i\left\{0+i\left(\frac{\pi}{2}+2k\pi\right)\right\}} = e^{-\left(\frac{\pi}{2}+2k\pi\right)}, \quad k = 0, \pm 1, \pm 2, \cdots$$

i¹ 是无穷多值函数.

(4) 当 α 是无理数或一般复数($\text{Im} \alpha \neq 0$)时,

$$\frac{z^{\alpha} = e^{\alpha \ln z}}{z} = e^{\alpha \{\ln |z| + i(\arg z + 2k\pi)\}}, \quad k = 0, \pm 1, \pm 2, \cdots,$$
是无穷多值函数。

例
$$(-2)^{\sqrt{3}} = e^{\sqrt{3} \operatorname{Ln}(-2)}$$
 $\operatorname{arg}(-2) = \pi$

$$= e^{\sqrt{3} \left\{ \ln 2 + i(\pi + 2k\pi) \right\}}$$

$$= e^{\sqrt{3} \ln 2} e^{i\sqrt{3}(2k+1)\pi}$$

$$= e^{\sqrt{3} \ln 2} \left\{ \cos \sqrt{3}(2k+1)\pi + i \sin \sqrt{3}(2k+1)\pi \right\},$$

$$k = 0, \pm 1, \pm 2, \cdots,$$

是无穷多值函数。

(4) 当 α 是无理数或一般复数($\text{Im} \alpha \neq 0$)时,

$$z^{\alpha} = e^{\alpha \operatorname{Ln} z} = e^{\alpha \{\ln |z| + i(\arg z + 2k\pi)\}}, \quad k = 0, \pm 1, \pm 2, \cdots$$

例
$$(-1-2i)^{2-3i} = e^{(2-3i)Ln(-1-2i)}$$

=
$$e^{(2-3i)\{\ln|-1-2i|+i\{\arg(-1-2i)+2k\pi\}\}}$$

$$= e^{(2-3i)\left\{\ln\sqrt{5} + i\left(-\pi + \arctan\frac{-2}{-1} + 2k\pi\right)\right\}} = e^{(2-3i)\left\{\frac{1}{2}\ln 5 + i\left\{\arctan (2k-1)\pi\right\}\right\}}$$

$$\ln 5 + 3 \arctan 2 + 3(2k-1)\pi + i \left\{ 2 \arctan 2 + 2(2k-1)\pi - \frac{3}{2} \ln 5 \right\}$$

$$= 5e^{3\arctan 2+3(2k-1)\pi} e^{i\left\{2\arctan 2-\frac{3}{2}\ln 5\right\}}, \quad k$$

它是无穷多值函数.

$$e^{2(2k-1)\pi i} = 1.$$

$$k = 0, \pm 1, \pm 2, \cdots$$

作业

P44-45

11 (2),(3)(提示:与相关实函数类似地分析即可)

13 (2) (3)

14(1),(3)

(先求使分母等于0的点, 当分母≠0时, 可微, 利用商的求导公式求导)。

15(1) 16

17 (1), (3)

e^z 单叶性区域

e^z:单值函数

(5)
$$e^{z_1} = e^{z_2} \Leftrightarrow \exists k \in \mathbb{Z}, 使得z_1 = z_2 + 2k\pi i.$$

(7) e^z在全平面解析.

$$D$$
是 \mathbf{e}^z 单叶性区域 \Longrightarrow $\{z_1 = z_2 + 2k\pi \mathbf{i}, k \in \mathbb{Z}.\}$

条形性域a < Im z < b, $b - a \le 2\pi$ 是 e^z 的单叶性区域.

直线 $L_1: \operatorname{Im} z = y_0, \ a < y_0 < b$ 不含原点的射线 $L: \operatorname{arg} w = y_0.$

线段: $\operatorname{Re} z = x_0$, $a < \operatorname{Im} z < b \stackrel{\mathbf{e}^z}{\longrightarrow}$ 圆弧 $|w| = \mathbf{e}^{x_0}$, $a < \operatorname{arg} w < b$.

条形性域 $(2k-1)\pi < \text{Im } z < (2k+1)\pi$

 \mathbf{e}^z

割去负半实轴和原点的w平面 $(2k-1)\pi < \arg w < (2k+1)\pi$

在除去原点和上半虚轴的复平面取 $\frac{\pi}{2}$ <arg z< $\frac{5\pi}{2}$ 内,则得连续的函数

$$\ln z = \ln |z| + i \arg z, \quad \frac{\pi}{2} < \arg z < \frac{5\pi}{2}$$

沿上半虚轴割开的z平面 π τ ο να τ τ 5π

$$\frac{\pi}{2} < \arg z < \frac{5\pi}{2}$$

条形域: $\frac{\pi}{2} < \operatorname{Im} w < \frac{5\pi}{2}$ 。

• tg z, ctg z 以π为周期,即

$$tg(z+\pi)=tgz$$
, $ctg(z+\pi)=ctgz$.

• th z, cth z 以πi为周期,即

$$th(z+\pi i)=tgz$$
, $cth(z+\pi i)=ctgz$.