Lycée Leconte de Lisle MPI

TD: Grammaires non contextuelles

Exercice 1

Soit $\Sigma = \{a,b\}$. Proposer des grammaires algébriques qui engendrent les langages suivants. Justifier.

- 1. $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}.$
- 2. $L_2 = \{u \mid |u|_a = |u|_b\}.$
- 3. $L_3 = \{u \mid |u|_a \ge |u|_b\}.$
- 4. $L_4 = \{u \mid u = \overline{u}\}$ (palindromes).
- 5. $L_5 = \{\text{mots ayant au moins deux fois plus de a que de b}\}$ À l'aide du lemme de l'étoile, il est possible de montrer que tous ces langages sont non réguliers.

Exercice 2

Stabilités des langages non contextuels

- 1. Démontrer que l'union de deux langages hors contexte est un langage hors contexte.
- 2. Démontrer que la concaténation de deux langages hors contexte est un langage hors contexte.
- 3. Démontrer que l'étoile d'un langage hors contexte est un langage hors contexte.
- 4. Démontrer que si L est non contextuel alors \overline{L} est non contextuel
- 5. Démontrer que $L_1 = \{a^nb^nc^m \mid (n,m) \in \mathbb{N}^2\}$ et $L_2 = \{a^nb^mc^m \mid (n,m) \in \mathbb{N}^2\}$ sont non contextuels. Exprimer $L_1 \cap L_2$. On peut montrer (hors programme) que ce langage n'est pas un langage non contextuel.

Exercice 3

On considère la grammaire *G* suivante :

$$S \to S + S \mid S \times S \mid C \mid (S)$$

 $C \rightarrow 0 \mid 1 \mid 0C \mid 1C$

- 1. Décrire intuitivement le langage engendré par *G*.
- 2. Montrer que *G* est ambiguë.
- 3. Construire une grammaire non ambiguë *G'* équivalente à *G*.

Exercice 4

Mots de Motzkin

On se place dans le plan \mathbb{N}^2 et on considère les déplacements élémentaires suivants :

- a = (+1, +1),
- b = (+1, -1),
- c = (+1, 0)

Un chemin est un mot sur Σ , il représente une trajectoire débutant en (0,0) et définie par la succession de déplacements élémentaires correspondant aux lettres du mot. Un chemin est valide s'il mène de (0,0) à (n,0) en restant bien dans l'espace \mathbb{N}^2

- Donner une grammaire pour décrire l'ensemble des chemins valides.
- 2. Démontrer que l'ensemble des chemins valides n'est pas régulier.

Exercice 5

Ambiguïté et dérivations gauches

Soit $G = (\Sigma, V, S, \mathcal{R})$ une grammaire algébrique, justifier les propositions suivantes :

- 1. Si $u \in \mathcal{L}(G)$ alors $S \Rightarrow_g^* u$.
- 2. Si G est non ambiguë et $u \in \mathcal{L}(G)$ alors il existe **une unique** suite de dérivations gauches $S \Rightarrow_g^* u$.
- 3. En déduire que $S \to \varepsilon \mid SS \mid aSb$ est ambiguë. Remarque : on obtient exactement le même résultat pour des dérivations droites.

*Exercice 6

Grammaires linéaires

Lycée Leconte de Lisle MPI

On dit qu'une grammaire est linéaire si chaque règle ne contient qu'un seul symbole non terminal au plus. On dit qu'elle est linéaire à droite si le symbole non terminal se situe nécessairement à la fin du mot produit.

1. Démontrer que tout langage régulier est engendré par une

grammaire linéaire à droite.

2. Démontrer que tout langage engendré par une grammaire linéaire à droite est régulier.

