$\begin{array}{c} \text{Math 31AH: Spring 2021} \\ \text{Homework 1} \\ \text{Due 5:00pm on Friday } 10/1/2021 \end{array}$

Problem 1: Arithmetic of sets. Determine whether the following three equalities hold for all sets A, B, and C. If equality does not hold, determine whether we have the containments \subseteq or \supseteq . Prove your claims.

- (1) $A \cap (B C) = (A \cap B) (A \cap C)$.
- (2) $A \cup (B C) = (A \cup B) (A \cup C)$.
- $(3) A \times (B C) = (A \times B) (A \times C).$

Solution: (1) This equality is true. Indeed, let $x \in A \cap (B - C)$. Then $x \in A$ and $x \in B - C \subseteq B$, so that $x \in A \cap B$. Furthermore, since $x \in B - C$ we have $x \notin C$, so that $x \notin A \cap C$. We conclude that $x \in (A \cap B) - (A \cap C)$.

On the other hand, suppose $x \in (A \cap B) - (A \cap C)$. Then $x \in A \cap B$ so that $x \in A$ and $x \in B$. If $x \in C$ then (since $x \in A$) we have $x \in A \cap C$, which contradicts $x \in (A \cap B) - (A \cap C)$. We conclude that $x \in A \cap (B - C)$.

(2) We have the containment $A \cup (B - C) \supseteq (A \cup B) - (A \cup C)$. Indeed, suppose $x \in (A \cup B) - (A \cup C)$. If $x \in A$ then certainly $x \in A \cup (B - C)$. If $x \in B$ then since $x \notin A \cup C$ we have $x \notin C$ so that $x \in B - C$. We conclude that $x \in A \cup (B - C)$.

To see why equality does not hold in general, let $A = \{a\}, B = \{b\}$, and $C = \{c\}$ be singleton sets. Then $A \cup (B - C) = \{a\} \cup \{b\} = \{a, b\}$ whereas $(A \cup B) - (A \cup C) = \{a, b\} - \{a, c\} = \{b\}$.

(2) This equality is true. Indeed, let $(x,y) \in A \times (B-C)$. Then $x \in A$ and $y \in B-C \subseteq B$ so that $x \in A \times B$. Since $y \notin C$, we have $(x,y) \notin A \times C$ so that $(x,y) \in (A \times B) - (A \times C)$.

Now suppose $(x, y) \in (A \times B) - (A \times C)$. Since $(x, y) \in A \times B$ we have $x \in A$ and $y \in B$. If $y \in C$ then $(x, y) \in A \times C$, which is a contradiction. We conclude that $(x, y) \in A \times (B - C)$.

Problem 2: Vectors on the circle. Let S be the unit circle in the plane \mathbb{R}^2 centered at the origin, i.e.

$$S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

True or false: there exist elements $\mathbf{v}, \mathbf{w} \in S$ such that $\mathbf{v} + \mathbf{w} \in S$. Prove your claim.

Solution: This is true. Indeed, let $\mathbf{v} = (1/2, \sqrt{3}/2)$ and $\mathbf{w} = (1/2, -\sqrt{3}/2)$. We have $\mathbf{v}, \mathbf{w} \in S$ and $\mathbf{v} + \mathbf{w} = (1, 0) \in S$.

Problem 3: Ill-defined functions. Each of the following "functions" is not well-defined. Explain why they are not well-defined.

- (1) $f: \mathbb{C} \to \mathbb{C}$, where $\mathbb{C} = \{x + iy : x, y \in \mathbb{R}\}$ is the set of complex numbers and $f(z) := \frac{1}{z^2 + 3}$.
- (2) $g: \mathbb{Q} \to \mathbb{Z}$, where $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ is the set of integers, $\mathbb{Q} = \{\frac{a}{b}: a, b \in \mathbb{Z}, b \neq 0\}$ is the set of rational numbers, and $g(\frac{a}{b}) = a b$.
- (3) $h: X \to \mathbb{R}_{>0}$, where $X := \{(x,y) \in \mathbb{R}^2 : y = x^2 1\}$ is a parabola in the plane, $\mathbb{R}_{>0} = \{x \in \mathbb{R} : x > 0\}$ are the positive reals, and h(x,y) = y.

Solution: (1) We have $\sqrt{3}i \in \mathbb{C}$ and trying to evaluate $f(z) = \frac{1}{z^2+3}$ at $z = \sqrt{3}i$ results in division by zero.

- (2) The fractions $\frac{1}{2}$ and $\frac{2}{4}$ represent the same element of \mathbb{Q} . However $g(\frac{1}{2}) = 1 2 = -1$ and $g(\frac{2}{4}) = 2 4 = -2$. Since $-1 \neq -2$, the rule for $g(\frac{a}{b})$ does not assign an unambiguous value to $\frac{1}{2} = \frac{2}{4}$.
- (3) We have $(0, -1) \in X$ and h(0, -1) = -1, which is not an element of the range $\mathbb{R}_{>0}$ of the rule for h(x, y).

Problem 4: Binary operations. Decide whether the given binary operations \star on the given sets S are well-defined. Prove your claim.

- (1) $S = \{(x,y) \in \mathbb{R}^2 : xy = 0\}$ and $(x,y) \star (x',y') := (x+x',y+y')$.
- (2) $S = \mathbb{R}$ and $x \star y := \frac{x}{y^2 + 1}$.
- (3) $S = \mathbb{C}$ and $x \star y := \frac{x}{y^2 + 1}$.

Solution: (1) This binary operation is not well-defined. Indeed, we have $(1,0), (0,1) \in S$ and $(1,0) \star (0,1) = (1,1) \notin S$.

- (2) This is a well-defined binary operation $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$. Indeed, the expression $\frac{x}{y^2+1}$ is well-defined for any $x,y \in \mathbb{R}$ since $y^2+1 \neq 0$ for all $y \in \mathbb{R}$.
- (3) This binary operation is not well-defined. Indeed, attempting to compute $1 \star i$ involves division by zero since $i^2 + 1 = 0$.

Problem 5: Multiplication in fields. Let \mathbb{F} be a field and let $a, b \in \mathbb{F}$ be nonzero elements. Prove that $ab \neq 0$. (Hint: Use 'proof by contradiction'. Assume to the contrary that ab = 0 with $a, b \neq 0$. Prove that this forces one of a, b to be zero.)

Solution: Assume that ab = 0 for $a, b \neq 0$. Since $a \neq 0$, we may multiply both sides of ab = 0 by a^{-1} to obtain

$$0 = a^{-1} \cdot 0 = a^{-1}ab = 1 \cdot b = b$$

so that b = 0. This contradicts the assumption that $b \neq 0$.

Problem 6: Characteristic of a field. Let \mathbb{F} be a field. The *characteristic* of \mathbb{F} , written $\operatorname{char}(\mathbb{F})$, is the minimum positive integer n such that we have

$$\overbrace{1+1+\cdots+1}^{n}=0$$

inside \mathbb{F} . If no such n exists, the field \mathbb{F} is said to have *characteristic zero* and we write $\operatorname{char}(\mathbb{F}) = 0$.

Let \mathbb{F} be a field with $\operatorname{char}(\mathbb{F}) = n > 0$. Prove that n is prime. (Hint: Use Problem 5 in a clever way.)

Solution: Suppose char(\mathbb{F}) = n > 0 is not prime. Then we may factor n = ab where a, b < n are positive integers. By the distributive law, we have

$$0 = \underbrace{1 + 1 + \dots + 1}^{n}$$

$$= \underbrace{1 \cdot (1 + 1 + \dots + 1) + \dots + 1 \cdot (1 + 1 + \dots + 1)}^{a}$$

$$= \underbrace{(1 + 1 + \dots + 1) \cdot (1 + 1 + \dots + 1)}^{b}$$

and Problem 5 implies that either $\underbrace{1+1+\cdots+1}_{a}=0$ or $\underbrace{1+1+\cdots+1}_{b}=0$. Since a,b< n are positive integers this contradicts the definition of $\operatorname{char}(\mathbb{F}).^1$

Problem 7: A four-element field? Let $S = \{0, 1, 2, 3\}$ and define binary operations +, \cdot on S to be addition and multiplication modulo $4.^2$ Do these binary operations turn S into a field? Prove your claim.

Solution: These binary operations do not turn S into a field. Indeed, in S we have $2 \cdot 2 = 0$ since 4 = 0 modulo 4. Since $2 \neq 0$, Problem 5 shows that S is not a field under these operations.

Problem 8: A non-field. Let \mathbb{F} be a field. Define binary operations + and \cdot on $\mathbb{F}^2 = \{(a, b) : a, b \in \mathbb{F}\}$ by the 'coordinatewise' rules

$$(a,b) + (a',b') := (a+a',b+b') \quad \text{and} \quad (a,b) \cdot (a',b') := (a \cdot a',b \cdot b')$$

Prove that these binary operations do **not** turn \mathbb{F}^2 into a field.

¹Technically, since 1 is not prime, you would need to observe that $1 \neq 0$ to see that $char(\mathbb{F}) \neq 1$. I am not expecting this here.

²More precisely, given $x, y \in S$ we define $x + y \in S$ to be the remainder of the (usual) sum of x, y upon division by 4 and let $x \cdot y \in S$ be the remainder of the (usual) product of x, y upon division by 4.

Solution: The elements $(1,0),(0,1) \in \mathbb{F}^2$ are nonzero and yet their product $(1,0) \cdot (0,1) = (0,0)$ is zero (i.e., the additive identity) in \mathbb{F}^2 . By Problem 5, the set \mathbb{F}^2 is not a field under these operations.

Problem 9: (Optional; not to be handed in.) When $\mathbb{F} = \mathbb{R}$ is the field of real numbers, we can endow \mathbb{R}^2 with the structure of a field via the alternative binary operations

$$(x,y)+(x',y'):=(x+x',y+y')$$
 and $(x,y)\cdot(x',y'):=(xx'-yy',xy'+x'y)$

Explain why this is the field \mathbb{C} of complex numbers in disguise. Can these rules be used to define a field structure on \mathbb{F}^2 for any field \mathbb{F} ? Why or why not?