Grupo I

- 1) Falso: (Contra exemple (2/10/, x) semigrupo onde e' prefo)
- 2) Falso: (Contra exemple: (Z_3, Θ) supe $H = \{T\} \subseteq Z_3$ e $H \cap e$ super pois $O \notin H$)
- 3) Se $\sigma(\alpha) = 12$ para alge $a \in G$ enter $\sigma(\alpha^4) = \frac{12}{mdc(4,12)} = \frac{12}{4} = 3$

TI ofund

Albertahn 1:

- 1) Not existe Qualquer subgrupo de um grupo Commitator e' +6 commutator
- 2) G=D3 e H=dph (subsupo huze). Neste com D3 in o' commitation & HKD3 e H e' brichmente commitation
- 3) Not exist. Se o(a) = 5 entry $o(a^3) = \frac{5}{md((3,5))} = 5$

Alternotion 2

Correspond por "en" queun é a identidade da Jupa e pren é o invaix de l'élement (a,5) 95 do pup

$$|f = (0,1) = |f| = (a+bx0, bx1)$$

$$= (a,b)$$

$$= (a,b)$$

$$(0,1)*(a,b) = (0+ax1, 1xb)$$

$$= (a,b)$$

• Dado $(a_1b) \in G$, $(a'_1b'_1) \in Muno de (a_1b) \in G$ $(a_1b) * (a'_1b'_1) = (a'_1b'_1) * (a_1b) = (0,1)$

(and) * (a',b') = (0,1) (=)
$$(a+ba',bb') = (0,1)$$

(a) $a+ba' = 0$
 $a+ba' = 0$
 $bb' = 1$
(a) $a' = -9/b$
 $b' = 1/b$
 $a' = -9/b$
 $b' = 1/b$
 $a' = -9/b$
 $b' = 1/b$

a) $1 \times \# \phi$ fins $16 = (0,1) \in K$ 2) $(a_11), (b_11) \in K \Rightarrow (a_11) \times (b_11) = (a+1\times b_1) \times (a+1) \in K$ $= (a+b,1) \in K$ 3) $(a_11) \in K \Rightarrow (a_11)^{-1} = (-a_1 + a_1) = (-a_1 + a_1) \in K$ $(a_11), (a_11) \in K \Rightarrow (a_11)^{-1} = (-a_1 + a_1) = (-a_1 + a_1) \in K$

b)
$$o((a,b)) = 2 (=))(a,b) \neq (0,1)$$

 $(a,b)*(a,b) = (0,1)$

$$(a_1b)*(a_1b) = (o_1) (=) (a+ba, b^2) = (o_1)$$

 $(a_1b)*(a_1b) = (o_1) (=) (a+ba, b^2) = (o_1)$
 $(a_1b)*(a_1b) = (o_1) (a+ba, b^2) = (o_1)$

(=)
$$|a=0|$$
 | $a=0$ | $a=0$ | $a=0$ | $b=-1$ | $b=-1$ | $a=0$ | $b=-1$ | $a=0$ | $b=-1$ | $a=0$ | $a=$

Loyo,
$$d(a,b) \in G : \sigma((a,b)) = 2 = d(a,-1) : a \in G$$

C) Note Perpue a identidade de F not ten orde 2.

