® BUNDESREPUBLIK DEUTSCHLAND

OffenlegungsschriftDE 42 16 301 A 1

(5) Int. Cl.⁵: **G 01 P 3/00** G 01 P 15/00 G 01 D 1/16 G 01 M 17/00

DEUTSCHES PATENTAMT (21) Aktenzeichen:

P 42 16 301.3

2 Anmeldetag:

16. 5.92

43 Offenlegungstag:

18. 11. 93

(1) Anmelder:

Daimler-Benz Aktiengesellschaft, 70567 Stuttgart, DF

② Erfinder:

Ammon, Dieter, Dr.-Ing., 7000 Stuttgart, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- (A) Verfahren zur Bestimmung das Fahrverhalten charakterisierender Größen
- (5) Die Erfindung bezieht sich auf ein Verfahren zur Bestimmung das Fahrverhalten charakterisierender Größen, wobei einer Recheneinrichtung Signale zugeführt werden, die den Lenkwinkel (δ), die Fahrzeuglängsgeschwindigkeit (ν) sowie zwei in Fahrzeuglängsrichtung hintereinander liegende Querbeschleunigungen (a_{qv}, a_{qv}) repräsentieren, wobei aufgrund dieser gemessenen Größen in der Recheneinrichtung unter Verwendung fahrzeugspezifischer Größen und eines Fahrzeugmodells weitere Größen abgeleitet werden und wobei dann weiterhin mittels des Fahrzeugmodells in der Recheneinrichtung wenigstens eine der Größen Schwimmwinkel und/oder Gierwinkelgeschwindigkeit ermittelt und ausgegeben wird.

Beschreibung

Die Erfindung betrifft ein Verfahren zur Bestimmung das Fahrverhalten charakterisierender Größen gemäß dem Oberbegriff des Patentanspruches 1.

Es ist bereits ein gattungsgemäßes Verfahren bekannt, wonach zur Bestimmung der Gierwinkelgeschwindigkeit der Sagnac-Effekt angewendet wird. Dabei wird monochromatisches, kohärentes Licht geteilt und in gegensinniger Richtung mittels Lichtleiterkabeln auf einer Kreisbahn geführt. Aufgrund einer Drehung (Gierbewegung) der Lichtleiterkabel ergibt sich somit für das geteilte Licht ein rotierendes Bezugssystem. Da sich in diesem rotierenden Bezugssystem die elektromagnetischen Wellen entsprechend den relativistischen Transformationsgleichungen anders verhalten als in einem ruhenden Bezugssystem, ändern sich auch die Interferenzerscheinungen des geteilten Lichtes in Abhängigkeit von der Drehbeschleunigung (Gierwinkelbeschleunigung) und Drehgeschwindigkeit (Gierwinkelgeschwindigkeit). Durch Auswertung dieser Interferenzerscheinungen kann somit auf die entsprechenden Größen der Drehbewegung zurückgeschlossen werden.

Bei diesem Verfahren könnte es als nachteilig erachtet werden, daß zunächst eine Lichtquelle mit interferenzfähigem Licht bereitgestellt werden muß. Außerdem muß die Anordnung der Lichtleitkabel hinsichtlich Erschütterungen so gelagert sein, daß die Interferenzen auftreten können.

Des weiteren ist ein lineares Einspurmodell eines Fahrzeuges bekannt, bei dem die Höhe des Schwerpunktes des Fahrzeuges vernachlässigt wird. Somit wird in dieser Näherung der Schwerpunkt des Fahrzeuges in die Ebene der Aufstandspunkte der Räder verlegt. Da somit Wank- und Nickbewegungen ausgeschlossen sind, können bei diesem Modell die Räder einer Achse zu einem Rad in der Mitte der Achse vereinigt werden. Dieses Modell ist beispielsweise in DE-Buch: Zomotor, Adam: Fahrwerktechnik, Fahrverhalten, Hrsg. Jörnsen Reimpell, Würzburg: Vogel 1987, ISBN 3-8023-0774-7 auf den Seiten 99 bis 116 beschrieben.

Dieser Darstellung ist dabei nicht zu entnehmen, wie die Gierwinkelgeschwindigkeit und die Gierwinkelbeschleunigung aus nießbaren Größen abgeleitet werden kann.

Aufgabe der Erfindung ist es, ein Verfahren zur Bestimmung das Fahrverhalten charakterisierender Größen derart auszugestalten, daß eine möglichst gute Meßgenauigkeit bei einem möglichst geringen Aufwand an benötigter Hardware erzielt werden kann.

Diese Aufgabe wird bei einem gattungsgemäßen Verfahren zur Bestimmung das Fahrverhalten charakterisierender Größen erfindungsgemäß mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst, wobei die Merkmale der Unteransprüche vorteilhafte Aus- und Weiterbildungen kennzeichnen.

Zunächst sollen einige Gleichungen abgeleitet werden, mittels denen die zu bestimmenden Größen in Abhängigkeit von meßbaren Größen dargestellt werden. Dazu soll zunächst eine Tabelle erstellt werden, die die Bedeutung der im folgenden verwendeten Symbole verdeutlicht.

Symbol	Bedeutung	
d#/dt	erste zeitliche Ableitung einer Größe #, die eine der in dieser Tabelle enthaltenen Größen ist	
$d^2 \# / dt^2$	zweite zeitliche Ableitung einere Größe #, die eine der in dieser Tabelle enthaltenen Größen ist	5
a	Fahrzeuglängsbeschleunigung	
\mathbf{a}_{q}	Fahrzeugquerbeschleunigung	
a_{qh}	Fahrzeugquerbeschleunigung hinten	
a_{qv}	Fahrzeugquerbeschleunigung vorne	10
Ch	Cornering Stiffness hinten	
Cv	Cornering Stiffness vorn	
CSh	Querfedersteife hinten	
CSv	Querfedersteife vorn	15
C _x	Drehfedersteife bei Wankbewegung um Fahrzeuglängsachse	
h _h	Einbauhöhe des Querbeschleunigungssensors hinten	
h _p	Wankpolhöhe (Abstand des Punktes bei einer Wankbewegung vom Boden, der ortsfest ist)	
h _s	Schwerpunkthöhe	
h _v	Einbauhöhe des Querbeschleunigungssensors vorne	20
J _x	Trägheitsmoment um die Fahrzeuglängsachse	
Jz Jz	Trägheitsmoment um die Fahrzeughochachse	
k _x	Drehdämpfung bei Wankbewegung um Fahrzeuglängsachse	
:	Radstand	25
lh '	Abstand zwischen Querbeschleunigungssensor hinten und Vorderachse	
lv	Abstand zwischen Querbeschleunigungssensor vorn und Vorderachse	
ls	Abstand zwischen Schwerpunkt und Vorderachse	
m	Fahrzeugmasse	30
Sh	Seitenkraft an den Hinterrädern	30
$S_{\mathbf{v}}$	Seitenkraft an den Vorderrädern	
V	Fahrzeuglängsgeschwindigkeit	
$\mathbf{v}_{\mathbf{q}}$	Fahrzeuglängsgeschwindigkeit	
α_h	Schräglaufwinkel an der Hinterachse	35
αν	Schräglaufwinkel an der Vorderachse	
β	Schwimmwinkel	
δ	Radlenkwinkel	
δt	Integrationsschrittweise	
Φ	Gierwinkel	40
τ	Wankwinkel	
Die Kräfte	bilanz in Querrichtung des Fahrzeuges liefert die Gleichung:	
Die Krane	bhanz in Querrichtung des Fam zeuges heiert die Gielchung:	
$m \cdot a_q = S_v \cdot$	$\cos(\delta) + S_h$ (1)	45
Die Mome	ntenbilanz um die Fahrzeughochachse liefert die Beziehung:	
$J_z \cdot d^2 \Phi/dt^2$	$= I_s \cdot S_v \cdot \cos(\delta) - (I - I_s) \cdot S_h \qquad (2)$	50
•	wird die Dynamik einer Wankbewegung modelliert durch den Ansatz einer Differentialgleichung	
$J_x \cdot d^2 \tau / dt^2 +$	$+ k_x \cdot d\tau/dt + c_x \cdot \tau = m \cdot (h_s - h_p) \cdot a_q \qquad (3)$	
	ellierung des Querkraftaufbaus an den Reifen erfolgt nach folgenden Gleichungen:	55
	and any dear at a trade and a trade a critical critical reaction to gender of exchangen:	
$\frac{dS_v/dt}{cs_v} + \frac{v}{c_v}$	$\frac{1}{c} \cdot S_{v} = \frac{1}{\cos(\delta)} \cdot \alpha_{v} \qquad (4)$	60
$\frac{dS_h/dt}{cs_h} + \frac{v}{c_h}$	$\frac{1}{a} \cdot = \alpha_h$ (5)	
$\alpha_{\rm v} = {\rm v \cdot sin}(8$	$S) - I_s \cdot d\Phi/dt - v_q - (h_s - h_p) \cdot d\tau/dt $ (6)	65
$\alpha_h = (I - I_s)$	$d\Phi/dt - v_q - (h_s - h_p) \cdot d\tau/dt \qquad (7)$	

Diese den Querkraftaufbau beschreibenden Gleichungen weisen eine starke Abhängigkeit von der Fahrzeuglängsgeschwindigkeit v auf.

Die Beschleunigungen aq und a hängen von der zeitlichen Änderung des Betrages der jeweiligen Geschwindigkeit ab sowie von der zeitlichen Änderung der Richtung der jeweiligen Geschwindigkeit. Es ergeben sich somit folgende Gleichungen:

$$a_q = dv_q/dt + v \cdot d\Phi/dt$$
 (8)

$$a = dv/dt - v_q \cdot d\Phi/dt$$
 (9)

Als Meßgrößen sollen nun der Lenkwinkel δ , die Fahrzeuglängsgeschwindigkeit v, und zwei Querbeschleunigungen a_{qv} und a_{qh} verwendet werden. Die beiden Querbeschleunigungssensoren können dabei jeweils durch den Abstand zur Vorderachse sowie die jeweilige Höhe beschrieben werden. Aufgrund der Geometrie ergibt sich für diese beiden Beschleunigungssensoren:

$$a_{qv} = a_q + (l_s - l_v) \cdot d^2 \Phi/dt^2 + (h_s - h_v) \cdot d^2 \tau/dt^2$$
 (10)

$$\dot{a}_{gh} = \dot{a}_{g} + (l_s - l_v) \cdot d^2 \Phi / dt^2 + (h_s - h_h) \cdot d^2 \tau / dt^2$$
 (11)

Da es sich somit bei den Gleichungen (10) und (11) um ein System aus zwei Gleichungen handelt, die dadurch linear unabhängig sind, daß lh ungleich lv ist, können somit bei bekannter bzw. vernachlässigbarer Wankbeschleunigung d²τ/dt² die Gierwinkelbeschleunigung d²Φ/dt² sowie die Fahrzeugquerbeschleunigung bestimmt werden. Zusammenfassen der beiden Gleichungen (10) und (11) ergibt:

$$a_{q} = \frac{(I_{s} - I_{h}) * (a_{qv} - (h_{s} - h_{v}) * d^{2}\tau/dt^{2}) - (I_{s} - I_{v}) * (a_{qh} - (h_{s} - h_{h}) * d^{2}\tau/dt^{2})}{(I_{v} - I_{h})}$$
(12)

$$d^{2}\Phi/dt^{2} = \frac{a_{qv} - a_{qh} + (h_{v} - h_{h}) \cdot d^{2}\tau/dt^{2}}{(l_{v} - l_{h})}.$$
 (13)

In vorteilhafter Weise kann bei der Anbringung der Querbeschleunigungssensoren vorgesehen werden, daß $h_v = h_h = h_p$ gilt. Dann entfallen die Wankbeschleunigungsterme unabhängig von der Größenordnung der Wankbeschleunigung, wodurch sich die Auswertung erheblich vereinfacht.

Alternativ dazu kann die Wankdynamik durch eine an sich bekannte numerische Auswertung der Differentialgleichung (3) beispielsweise mittels des Runge-Kutta-Verfahrens oder mittels des expliziten Eulerverfahrens mit der Integrationsschrittweite δt erfolgen:

$$d^2 \tau / dt^2 = \frac{-k_x \cdot d\tau / dt - c_x \cdot \tau + m \cdot (h_s - h_p) \cdot a_q}{I_x}$$
 14)

$$\tau_{neu} := \tau + d\tau/dt \cdot \delta t; \ d\tau/dt_{neu} := d\tau/dt = d^2 \tau/dt^2 \cdot \delta t \qquad 15)$$

Die Gierwinkel- und Querbeschleunigung sowie die Wankgrößen können somit unter Anwendung der Gleichungen (12), (13), (14) und (15) oder durch Zustandsschätzungen mittels der Gleichungen (3), (10) und (11) bestimmt werden.

Aus der Kraftbilanz nach Gleichung (1) sowie der Momentenbilanz nach Gleichung (2) können die Seitenkräfte erhalten werden:

$$S_{v} = \frac{(1-I_{s}) \cdot m \cdot a_{q} + J_{z} \cdot d^{2} \Phi/dt^{2}}{1 \cdot \cos(\delta)}$$
 (16)

$$S_h = \frac{I_s \cdot m \cdot a_q - J_z \cdot d^2 \Phi/dt^2}{I} \quad (17)$$

Durch Differentiation der beiden Gleichungen (16) und (17) ergibt sich somit:

$$dS_{*}/dt = \frac{(1-l_{s}) * m * da_{o}/dt + J_{s} * d(d^{2}\Phi/dt^{2})/dt}{1 * \cos(\delta)} - \frac{\sin(\delta) * ((1-l_{s}) * m * a_{o} + J_{s} * d^{2}\Phi/dt^{2}) * d\delta/dt}{1 * \cos^{2}(\delta)}$$
(18)

$$^{5} dS_{h}/dt = \frac{I_{s} \cdot m \cdot da_{q}/dt - J_{z} \cdot d^{2} \Phi/dt^{2}}{I}$$
 (19)

Aus den Gleichungen (4), (5), (6) und (7) ergeben sich somit zwei lineare Gleichungen, mittels denen die Größen vq und dΦ/dt aus bekannten Größen bestimmt werden können.

$$I_{s} \cdot d\Phi/dt + v_{q} = -\left(\frac{dS_{v}/dt}{cs_{v}} + \frac{v}{c_{v}} \cdot S_{v}\right) \cdot \cos(\delta) + v \cdot \sin(\delta) - (h_{s} - h_{p}) \cdot d\tau/dt \quad (20)$$

$$-(l-l_s)\cdot d\Phi/dt + v_q = -\left(\frac{dS_h/dt}{cS_h} + \frac{v}{c_h}\cdot S_h\right) - (h_s - h_p)\cdot d\tau/dt \quad (21)$$

Die Gleichungen (16), (17), (18) und (19) enthalten nur Größen, die unmittelbar gemessen werden (δ , v, a_{qh} , a_{qv}) oder wie oben beschrieben anhand der gemessenen Größen bestimmt werden können. Zeitableitungen bekannter Größen können dabei durch Quotientenbildung abgeleitet werden. Somit können die Größen v_q und d Φ /dt zu jedem Zeitpunkt berechnet werden. Den Schwimmwinkel β erhält man schließlich:

15

50

55

60

$$\beta = \arctan(v_q/v)$$
 (22)

Bisher wurde beschrieben, wie aus bekannten Parametern, die das Fahrzeug betreffen, das Fahrverhalten charakterisierende Größen bestimmt werden. Diese Parameter unterliegen dabei gewissen Schwankungen. Die reifenabhän-Fahrzeugmasse sowie die Schwerpunktlage variiert dabei durch unterschiedliche Beladungen. Die reifenabhängigen Größen variieren dabei mit der Reifentemperatur und mit verschiedenen Fahrbahnbelägen. Die wesentlichste Schwankung tritt bei der Cornering Stiffness auf. Im folgenden soll ein Verfahren vorgestellt werden, mit dem eine Adaption der Cornering Stiffness möglich ist. Ebenso kann dann eine Adaption der anderen Parameter erfolgen. Zuerst müssen für diese Adaption Systemgleichungen gefunden werden, die nur bekannte bzw. ableitbare Größen enthalten und die linear unabhängig sind zu den Gleichungen, die bei der Bestimmung der bekannten oder abgeleiteten Größen verwendet wurden. Geeignete Gleichungen erhält man beispielsweise durch die Differentiation der Gleichungen (20) und (21).

$$c_v = c_v(t) = (S_v \cdot \cos(\delta) \cdot dv/dt + v \cdot \cos(\delta) \cdot dS_v/dt + v \cdot S_v \cdot \sin(\delta) \cdot d\delta/dt) \cdot f_v(t)$$
(23)

$$\frac{1}{f_{v}(t)} = \frac{-1,*d^{2}\Phi/dt^{2} - a_{g} + v*d\Phi/dt + \sin(\delta)*dv/dt - v*\cos(\delta)*d\delta/dt - \cos(\delta)*d^{2}S_{v}/dt^{2} + \sin(\delta)*dS_{v}/dt*d\delta/dt}{cs_{v}}$$

$$- (h_s - h_p) * d^2 \tau / d t^2$$
 (24)

$$c_h = c_h(t) = (S_h \cdot dv/dt + v \cdot dS_h/dt) \cdot f_h(t) \qquad (25)$$

$$\frac{1}{f_h(t)} = (1 - l_s) \cdot d^2 \Phi/dt^2 - a_q + v \cdot d\Phi/dt - \frac{d^2 S_h/dt^2}{cs_h} - (h_s - h_p) \cdot d^2 \tau/dt^2$$
 (26)

Die Gierwinkelgeschwindigkeit ergibt sich aus den Gleichungen (20) und (21) durch Elimination von v_q. Die Seitenkräfte werden mittels den Gleichungen (16) (17), (18) und (19) sowie entsprechende Differenzenquotienten berechnet. Somit ergeben sich jeweils aktuelle Schätzwerte für die Cornering Stiffness vorne und hinten. Eine Aktualisierung der bei den weiteren Rechnungen verwendeten Werten der Cornering Stiffness kann dabei durch eine L₂-Approximation mit gleitender Zeitmittelung erfolgen. Dabei werden die bei folgenden Rechnungen zu verwendenden Parameter mit c_v akt und Chakt bezeichnet. Die bisherigen Parameter werden mit c_v und mit c_h bezeichnet. Die aktuellen Schätzwerte werden mit C_v(t) und mit C_h(t) bezeichnet.

$$c_{vakt} = (1 - \Gamma) \cdot c_v + \Gamma \cdot C_v(t)$$
 (27)

$$c_{hakt} = (I - \Gamma) \cdot c_h + \Gamma \cdot C_h(t)$$
 (28)

Dabei ist Γ ein Faktor mit einem Wert zwischen 0 und 1. Je größer dabei Γ ist, desto mehr werden die aktuellen Schätzwerte berücksichtigt. Bei einem kleinen Wert von Γ erfolgt eine langsame Adaption. Soll die Adaption beispielsweise mit einer Grenzfrequenz Ω_G erfolgen, so ist $\Gamma = \Omega_G \cdot \delta t$.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung schematisch dargestellt und wird im folgenden näher beschrieben. Den Fig. 1 und 2 sind dabei Darstellungen zu entnehmen, die die Größen nach obiger Tabelle an einem Fahrzeug zeigen. Fig. 3 zeigt dabei einen möglichen Ablauf des erfindungsgemäßen Verfahrens. In einem ersten Schritt 301 werden dabei die Werte bestimmt, auf deren Grundlage die das Fahrzenhalten charakterisierenden Größen bestimmt werden. Diese Werte sind dabei der Lenkwinkel & die Fahrzeuglängsgeschwinterisierenden Größen bestimmt werden. Diese Werte sind dabei der Lenkwinkel wird dabei vorzugsweise direkt gemessen, die Fahrzeuglängsgeschwindigkeit kann beispielsweise aus den Signalen von Drehzahlsensoren bestimmt werden. Die beiden Querbeschleunigungen werden dabei vorzugsweise direkt gemessen mittels geeignet angebrachter Querbeschleunigungssensoren. Gegebenenfalls ist es auch möglich, die Gierwinkelgeschwindigkeit unmittelbar zu messen. Dies ist jedoch nicht zwingend erforderlich, da die Gierwinkelgeschwindigkeit auch

aus den genannten Meßgrößen beispielsweise mittels des aufgezeigten Verfahrens bestimmt werden kann. In einem zweiten Schritt 302 wird aus diesen Größen beispielsweise mittels der Gleichungen (12) und (13) die Querbeschleunigung a_q und die Gierwinkelbeschleunigung $d^2\Phi/dt^2$ bestimmt. Beispielsweise mittels der Gleichungen (14) und (15) wird dann in einem Schritt 303 der Wankwinkel τ mit seinen zeitlichen Ableitungen bestimmt. Durch Differenzenquotienten werden dann die höheren Ableitungen der Zustandsgrößen gebildet, die im folgenden noch benötigt werden. Mittels der Gleichungen (16), (17), (18) und (19) werden dann in einem Schritt 304 die Seitenkräfte sowie deren Ableitungen gewonnen. Mittels der Gleichungen (20), (21) und (22) werden dann in einem Schritt 305 der Schwimmwinkel sowie die Gierwinkelgeschwindigkeit gewonnen, wenn diese Größe nicht bereits unmittelbar gemessen wurde.

Darüber hinaus ist der Fig. 4 zu entnehmen, daß eine Adaption der Parameter erfolgen kann. Dazu werden zunächst in einem Schritt 401 mittels Differenzenquotienten höhere Ableitungen der Seitenkräfte ermittelt. Mittels der Gleichungen (23), (24), (25) und (26) werden dann in einem Schritt 402 aktuelle Schätzwerte der Parameter bestimmt. Mittels der Gleichungen (27) und (28) werden dann in einem Schritt 403 Werte der Parameter bestimmt, die bei dann folgenden Rechnungen zur Bestimmung das Fahrverhalten charakterisierender Größen Verwendung finden.

Alternativ dazu ist es auch möglich, wenn die Gierwinkelgeschwindigkeit gemessen wird, aus Abweichungen der gemessenen Gierwinkelgeschwindigkeit von der abgeleiteten Gierwinkelgeschwindigkeit eine Adaption der Parameter durchzuführen.

Fig. 5 zeigt eine Recheneinrichtung 501, der als Eingangssignale 502, 503, 504, 505 und gegebenenfalls 506 die genannten Größen entsprechend dem Schritt 301 nach Fig. 3 zugeführt werden. Nachdem die entsprechenden Größen in der Recheneinrichtung mittels der genannten Gleichungen nach dem Ablaufdiagramm der Fig. 3 ermittelt wurden, werden Ausgangssignale 506, 507, 508 ausgegeben, die die bestimmten Größen repräsentieren. Diese bestimmten Größen können dabei der Schwimmwinkel, die Gierwinkelgeschwindigkeit und/oder eine weitere Größe sein, die während des Ablaufes des Verfahrens ermittelt wurde. Weiterhin erfolgt gemäß dem Ablaufdiagramm der Fig. 4 eine Adaption der Parameter, mittels denen das Fahrzeugmodell beschrieben wird.

Patentansprüche

Verfahren zur Bestimmung das Fahrverhalten charakterisierender Größen, dadurch gekennzeichnet,
 daß einer Recheneinrichtung (501) Signale (502, 503, 504, 505) zugeführt werden (301, 502, 503, 504, 505), die den Lenkwinkel (δ), die Fahrzeuglängsgeschwindigkeit (v) sowie zwei in Fahrzeuglängsrich-

tung hintereinander liegende (l_v, l_h) Querbeschleunigungen (a_{qv}, a_{qh}) repräsentieren,

- daß aufgrund dieser gemessenen Größen in der Recheneinrichtung (501) unter Verwendung fahrzeugspezifischer Größen und eines Fahrzeugmodells weitere Größen abgeleitet werden (302, 303, 304) und
- daß dann weiterhin mittels des Fahrzeugmodells in der Recheneinrichtung (501) wenigstens eine der Größen Schwimmwinkel und/oder Gierwinkelgeschwindigkeit ermittelt und ausgegeben wird (305, 506, 507, 508).
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei dem Fahrzeugmodell Wankbewegungen des Fahrzeuges berücksichtigt werden (303).
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Querbeschleunigungen (a_{qv}, a_{qh}) mittels Querbeschleunigungssensoren gemessen werden, deren jeweilige Einbauhöhen (h_h, h_v) gleich sind und der Schwerpunkthöhe (h_s) entsprechen.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß eine Adaption der fahrzeugspezifischen Größen erfolgt (401, 402, 403).

5

5

- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Adaption mittels eines gleitenden Mittelwertverfahrens erfolgt (403).
- 6. Verfahren nach einem der Ansprüche 1 bis 5. dadurch gekennzeichnet, daß wenigstens eine weitere Größe ausgegeben wird (506, 507, 508), die während des Ablaufes des Verfahrens ermittelt wurde.
- 7. Versahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Recheneinrichtung (501) ein Signal zugeführt wird (506), das die Gierwinkelgeschwindigkeit repräsentiert.
- 8. Verfahren nach Anspruch 7 sowie 4 oder 5, dadurch gekennzeichnet, daß die Adaption der Parameter aufgrund der der Recheneinrichtung (501) zugeführten Gierwinkelgeschwindigkeit erfolgt.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 42 16 301 A1 G 01 P 3/00 18. November 1993

Fig. 1

Nummer: Int. Cl.⁵: Offenlegungstag: DE 42 16 301 A1 G 01 P 3/00 18. November 1993

Fig. 3

Fig. 5

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.