Tutorat mathématiques: TD7

Université François Rabelais

Département informatique de Blois

Mathématiques générales

Problème 1

On considère les matrices P et D appartenant à $\mathcal{M}_2(\mathbb{Z})$ telles que :

$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$$

- 1. Calcul matriciel
 - (a) Montrer que P est inversible et calculer son inverse P^{-1} .

(b) Soit la matrice $A = P.D.P^{-1}$. Calculer A.

$$A = P.D.\frac{1}{2}P = \frac{1}{2}P.D.P = \frac{1}{2}\begin{pmatrix} 3 & -1 \\ 3 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$

- (c) Soit la propriété $P(n): \forall n \in \mathbb{N}, A^n = P.D^n.P^{-1}$. Démontrer que P(n) est vraie.
 - Initialisation (pour n = 0).

$$A^0 = I_2$$

 $P.D^0.P^{-1} = P.P^{-1} = I_2$

P(0) est vraie.

• Hérédité

On suppose qu'il existe un entier n tel que P(n) est vraie.

On veut montrer que la propriété est vraie au rang n+1, c'est à dire, montrer que

$$A^{n+1} = P.D^{n+1}.P^{-1}$$

On utilise l'hyposthèse de récurrence.

$$A^{n} = P.D^{n}P^{-1} \Leftrightarrow A^{n}.A = P.D^{n}.P^{-1}.A$$
$$\Leftrightarrow A^{n+1} = P.D^{n}.P^{-1}.P.D.P^{-1}$$

$$\Leftrightarrow A^{n+1} = P.D^{n+1}.P^{-1}$$

P(n+1) est vraie. • Conclusion La propiété est initialisée pour n=0 et hérédiataire. Dès lors $P(n): \forall n\in \mathbb{N}, A^n=1$

- 2. Soient les deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ de premier terme $u_0=1$ et $v_0=2$ et définies par récurrence telles que : $\begin{cases} u_{n+1} &= u_n + 2v_n \\ v_{n+1} &= 2u_n + v_n \end{cases}$
 - (a) On note $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$. Traduire ces suites par un système matriciel. Quelle relation vérifie

On a
$$\begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} u_n \\ v_n \end{pmatrix} \Leftrightarrow X_{n+1} = A.X_n.$$

On a une relation géométrique pour ces deux suites, et on a $u_n = q^n u_0$ où u_n est le terme

Dès lors, on a :

$$X_n = A^n \left(\begin{array}{c} 1 \\ 2 \end{array} \right)$$

(b) On pose $X_n = P.D^n.P^{-1} \binom{1}{2}$. Déterminer (u_n) et (v_n) en fonction de n.

On a alors
$$X_n = A^n \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Leftrightarrow \begin{pmatrix} u_n \\ v_n \end{pmatrix} = P.D^n.P^{-1} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$D^{n} = \begin{pmatrix} 3^{n} & 0 \\ 0 & (-1)^{n} \end{pmatrix}$$
 Car c'est une matrice diagonale.

On a
$$P.D^n.P^{-1} = \frac{1}{2} \left[(-1)^n \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} + 3^n \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right]$$
$$= \frac{1}{2} \begin{pmatrix} (-1)^n + 3^n & (-1)^{n+1} + 3^n \\ (-1)^{n+1} + 3^n & (-1)^n + 3^n \end{pmatrix}$$

Soit
$$X_n = \frac{1}{2} \begin{pmatrix} 3^{n+1} + (-1)^{n+1} \\ 3^{n+1} + (-1)^n \end{pmatrix}$$

Soit
$$X_n = \frac{1}{2} \begin{pmatrix} 3^{n+1} + (-1)^{n+1} \\ 3^{n+1} + (-1)^n \end{pmatrix}$$

Finalement on a $\forall n \in \mathbb{N}, \begin{cases} u_n = \frac{1}{2} \left(3^{n+1} + (-1)^{n+1} \right) \\ v_n = \frac{1}{2} (3^{n+1} + (-1)^n) \end{cases}$

Problème 2

On considère la matrice $A_m = \begin{pmatrix} -1 & 2 & -1 \\ m & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ où $m \in \mathbb{R}$.

1. Calculer $A_0 - A_1$ et $A_0 A_1$

On a
$$A_0 = \begin{pmatrix} -1 & 2 & -1 \\ 0 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 et $A_1 = \begin{pmatrix} -1 & 2 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
Et $A_0 - A_1 = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $A_0 A_1 = \begin{pmatrix} 2 & -5 & 2 \\ 0 & 2 & 0 \\ 1 & 2 & 1 \end{pmatrix}$

2. Écrire le système linéaire (S_m) d'écriture matricielle $A_m \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ m \\ 3m \end{pmatrix}$

On a le système (S_m) suivant :

$$\left| (S_m) \Leftrightarrow \begin{cases} -x & +2y & -z & = & 0 \\ mx & -y & +z & = & m \\ x & +y & +z & = & 3m \end{cases} \right|$$

3. Calculer $\det(A_m)$ puis donner $\det(A_0)$, $\det(2^t A_0)$, $\det(A_0^3)$.

- 4. Pour quelles valeurs de m la matrice A_m est-elle inversible?
- $||A_m|$ est inversible si et seulement si $\det(A_m) \neq 0 \Leftrightarrow m \neq 1$.
- 5. Déterminer sans calcul l'ensemble des solutions (S_0) .

On a le résultat suivant :

Théorème de Cramer - Soit un système (S) représenté sous forme matricielle tel que :

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix} \Leftrightarrow A \times X = \Lambda$$

où la matrice A contient les coefficients des inconnues, le vecteur colonne X contient ces inconnues et le vecteur colonne Λ contient les membres de droite des équations du système.

Alors, (S) admet une unique solution si et seulement si sa matrice A est inversible, le n – uplet est composé des coefficients :

$$x_k = \frac{\det(A_k)}{\det(A)}$$

avec A_k , la matrice obtenue en remplaçant la k-ième colonne de A par $\Lambda.$

On la solution triviale $\mathscr{S} = \{(0,0,0)\}$. De plus, comme (S_0) est un système à la Cramer, on sait qu'il existe un unique triplet solution qui est la solution précédemment donnée.

6. Résoudre (S_1) .

On a le système (S_1) suivant :

$$(S_1) \Leftrightarrow \begin{cases} -x +2y -z = 0 \\ x -y +z = 1 \\ x +y +z = 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x +2y -z = 0 \\ y = 1 \quad L_2 \leftarrow L_2 + L_1 \\ x +y +z = 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x -z = -2 \quad L_1 \leftarrow L_1 - 2L_2 \\ y = 1 \\ x +y +z = 3 \end{cases}$$

On a \mathcal{L}_1 et \mathcal{L}_3 qui sont équivalentes. Il résulte :

$$(S_1) \Leftrightarrow \begin{cases} x = x \\ y = 1 \\ z = 2 - x \end{cases}$$

On a le triplet solution $\mathscr{S} = \{x \in \mathbb{R} | (x, 1, 2 - x) \}$

Problème 3

Soient $n \in \mathbb{N}^*$, $U = (1)_{1 < i, j < n}$ et $A \in \mathcal{M}_n(\mathbb{R})$. On note $\sigma(A)$ la somme des coefficients de A.

$$\sigma(A) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}$$

Exprimer UAU en fonction de $\sigma(A)$ et U.

On appelle s(j) la somme des coefficients a_{ij} de la colonne j. On a

$$s(j) = \sum_{i=1}^{n} a_{ij}$$

On calcule $U \times A$

On calcule
$$U \times A$$

$$U \times A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \times \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} s(1) & s(2) & \cdots & s(n) \\ s(1) & s(2) & \cdots & s(n) \\ \vdots & \vdots & \ddots & \vdots \\ s(1) & s(2) & \cdots & s(n) \end{pmatrix}$$

$$\sigma(A) = \sum_{j=1}^{n} s(j)$$

$$\begin{pmatrix} s(1) & s(2) & \cdots & s(n) \\ s(1) & s(2) & \cdots & s(n) \\ \vdots & \vdots & \ddots & \vdots \\ s(1) & s(2) & \cdots & s(n) \end{pmatrix} \times U = \begin{pmatrix} s(1) & s(2) & \cdots & s(n) \\ s(1) & s(2) & \cdots & s(n) \\ \vdots & \vdots & \ddots & \vdots \\ s(1) & s(2) & \cdots & s(n) \end{pmatrix} \times \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

Grâce à la définition précédente de $\sigma(A)$. Il vient qu

$$U.A.U = \sigma(A) \times U$$

Problème 4

Soient $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on note Δ_n le déterminant suivant de taille $n \times n$ tel que :

$$\Delta_n = \begin{pmatrix} a & 0 & \cdots & 0 & 0 & n-1 \\ 0 & a & \cdots & 0 & 0 & n-2 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a & 0 & 2 \\ 0 & 0 & \cdots & 0 & a & 1 \\ n-1 & n-2 & \cdots & 2 & 1 & a \end{pmatrix} \qquad n$$

1. Calculer Δ_n en fonction de Δ_{n-1} . On pourra penser à factoriser selon les colonnes.

On simplifie Δ_n par la colonne C_1 . On a :

$$\Delta_{n} = (-1)^{1+1} a \underbrace{ \begin{bmatrix} a & \cdots & 0 & 0 & n-2 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & a & 0 & 2 \\ 0 & \cdots & 0 & a & 1 \\ n-2 & \cdots & 2 & 1 & a \end{bmatrix}}_{\Delta_{n-1}} + (-1)^{1+n} (n-1) \underbrace{ \begin{bmatrix} 0 & \cdots & 0 & 0 & n-1 \\ a & \cdots & 0 & 0 & n-2 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & a & 0 & 2 \\ 0 & \cdots & 0 & a & 1 \end{bmatrix}}_{\delta}$$

On va simplifier δ , on a simplifie par la ligne L_1 .

On va simplifier
$$\delta$$
, on a simplifie par la light
$$\delta = (-1)^{(n-1)+1}(n-1) \begin{vmatrix} a & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & a & 0 \\ 0 & \cdots & 0 & a \end{vmatrix}$$
$$= (-1)^n(n-1)a^{n-2}$$
On a donc $\Delta_n = a\Delta_{n-1} - (n-1)^2a^n$

$$= (-1)^n (n-1)a^{n-2}$$

2. Démontrer que :
$$\forall n \geq 2, \Delta_n = a^n - a^{n-2} \sum_{k=1}^{n-1} k^2$$

On pose la propriété $P(n): \forall n \geq 2, \Delta_n = a^n - a^{n-2} \sum_{k=1}^{n-1} k^2$.

Démontrons celle-ci par récurrence.

• Initialisation (pour n=2)

$$\Delta_2 = \begin{vmatrix} a & 1 \\ 1 & a \end{vmatrix}$$
$$= a^2 - 1$$
$$a^2 - a^0 \sum_{k=1}^{1} k^2 = a^2 - 1$$
$$P(2) \text{ est vraie.}$$

• Hérédité

On suppose qu'il existe un entier n tel que P(n) est vraie.

On veut montrer que la propriété est vraie au rang n+1, c'est à dire, montrer que

$$\Delta_{n+1} = a^{n+1} - a^{n-1} \sum_{k=1}^{n} k^2$$

On sait grâce à la question précédente que :

$$\Delta_{n+1} = a\Delta_n - n^2a^{n-1}$$
 On a avancé d'un rang.

On utilise l'hyposthèse de récurrence.

$$\Delta_{n+1} = a \left(a^n - a^{n-2} \sum_{k=1}^{n-1} k^2 \right) - n^2 a^{n-1}$$
$$= a^{n+1} - a^{n-1} \left(\sum_{k=1}^{n-1} k^2 \right) - n^2 a^{n-1}$$

$$= a^{n+1} - a^{n-1} \left[\left(\sum_{k=1}^{n-1} k^2 \right) + n^2 \right]$$

$$= a^{n+1} - a^{n-1} \sum_{k=1}^{n} k^2$$

$$P(n+1) \text{ est vraie.}$$
• Conclusion

La propiété est initialisée pour n=2 et hérédiataire. Dès lors $P(n): \forall n\geq 2, \Delta_n=a^n-a^{n-2}\sum\limits_{l=1}^{n-1}k^2$ est vraie.

Problème 5

Les matrices stochastiques sont des structures très utilisées en informatique et en probabilités. Elles sont à la base des chaînes de Markov qui servent en particulier à modéliser des processus aléatoires complexes de manière très simple et forment ainsi des outils puissants pour l'étude de problèmes. Une matrice M est dite stochastique si et seulement si :

$$M \in \mathcal{M}_n([0,1]) \text{ et } \forall i \in [1,n], \sum_{j=1}^n m_{ij} = 1$$

C'est-à-dire que tous les coefficients m_{ij} de M appartiennent à [0,1] (en fait ces coefficients représentent des probabilités), et la somme des coefficients en ligne vaut 1. On note \mathcal{S}_n l'ensemble des matrices stochastiques de taille n.

Soit $A \in \mathcal{S}_n$ et $B \in \mathcal{S}_n$. Montrer que $A \times B$ est une matrice stochastique.

Soient les matrices A et B telles que :

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \text{ et } B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}$$

On note $A \times B = C$ et les coefficients c_{ij} de C.

Par définition du produit matricielle, on a :

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

La somme des éléments de la ligne i de C est donc

$$(C)_i = \sum_{j=1}^n c_{ij}$$

Par ré-écriture, on a
$$(C)_i = \sum_{j=1}^n c_{ij}$$

= $\sum_{j=1}^n \sum_{k=1}^n a_{ik} b_{kj}$

$$=\sum_{k=1}^{n} a_{ik} \sum_{j=1}^{n} b_{kj} Or, \sum_{j=1}^{n} b_{kj} = 1 car B est stochastique.$$

$$=\sum_{k=1}^{n} a_{ik}$$

$$=1$$

Il résulte que $A \times B$ est bien une matrice stochastique. (De même pour $B \times A$).

Problème 6

Soient
$$A = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 4 & 6 \\ 2 & 3 \end{pmatrix}$.

1. Calculer $A^2 + 2AB + B^2$ et $(A + B)^2$. Que peut-on constater? Pourquoi? Développer $(A+B)^2$, factoriser A^3-I_2 .

$$A^{2} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$

$$B^{2} = \begin{pmatrix} 28 & 42 \\ 14 & 21 \end{pmatrix}$$

$$A + B = \begin{pmatrix} 5 & 8 \\ 3 & 2 \end{pmatrix}$$

$$2AB = \begin{pmatrix} 16 & 24 \\ 4 & 6 \end{pmatrix}$$
On a donc : $A^{2} + 2AB + B^{2} = \begin{pmatrix} 47 & 66 \\ 18 & 30 \end{pmatrix}$

 $(A+B)^2 = \left(\begin{array}{cc} 49 & 56\\ 21 & 28 \end{array}\right)$ Le résultat n'est pas le même car l'anneau des matrices ne possède par les mêmes propriétés que

$$(A+B)^{2} = (A+B)(A+B)$$

$$= (A+B)(A+B)$$

$$= A^{2} + AB + BA + B^{2}$$

$$A^{3} - I_{2} = (A-I_{2})(A^{2} + A + I_{2})$$

2. Calculer A^n pour tout $n \in \mathbb{N}$. En déduire que A est inversible et donner A^{-1} .

On a $A^2 = 3I_2$. De là, on déduit immédiatement que $A^{-1} = \frac{1}{3}A$.

le corps des nombres réels. (Perte de la commutativité entre autres).

De plus on a
$$A^3 = A \times A^2$$

$$=3A$$

De plus on a
$$A^3 = A \times A^2$$

$$= 3A$$
Et $A^4 = A^2 \times A^2$

$$= 3^2 I_2$$

Par récurrence, on devine que $A^n = \begin{cases} 3^{\frac{n}{2}}I_2 & \text{si } n \text{ est pair} \\ 3^{\frac{n-1}{2}} \times A & \text{si } n \text{ est impair} \end{cases}$

3. Déterminer $C_B = \{M \in \mathcal{M}_2(\mathbb{R}) | BM = MB\}.$

On cherche
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 telle que : $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 4 & 6 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
$$\Leftrightarrow \begin{pmatrix} 4a + 2b & 6a + 3b \\ 4c + 2d & 6c + 3d \end{pmatrix} = \begin{pmatrix} 4a + 6c & 4b + 6d \\ 2a + 3c & 2b + 3d \end{pmatrix}$$

On est amené à résoudre le système suivant :

$$(S) \Leftrightarrow \begin{cases} 4a + 2b &= 4a + 6c \\ 6a + 3b &= 4b + 6d \\ 4c + 2d &= 2a + 3c \\ 6c + 3d &= 2b + 3d \end{cases}$$

$$(S) \Leftrightarrow \begin{cases} a &= \frac{1}{2}c + d \\ b &= 3c \\ c &= c \\ d &= d \end{cases}$$
On a donc $C_B = \left\{ M(c,b) \middle| M(c,b) \in \mathcal{M}_2(\mathbb{R}), \exists (c,b) \in \mathbb{R}^2, M(c,b) = \begin{pmatrix} \frac{1}{2}c + d & 3c \\ c & d \end{pmatrix} \right\}.$

On a donc
$$C_B = \left\{ M(c,b) \middle| M(c,b) \in \mathcal{M}_2(\mathbb{R}), \exists (c,b) \in \mathbb{R}^2, M(c,b) = \begin{pmatrix} \frac{1}{2}c+d & 3c \\ c & d \end{pmatrix} \right\}.$$

4. Déterminer $\mathcal{O}_{MB} = \{ M \in \mathcal{M}_2(\mathbb{R}) | MB = \mathcal{O}_2 \}.$

Le système suivant :

$$(S) \Leftrightarrow \begin{cases} 4a + 2b &= 0 \\ 6a + 3b &= 0 \\ 4c + 2d &= 0 \\ 6c + 3d &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 2a + b &= 0 \\ 2a + b &= 0 \\ 2c + d &= 0 \\ 3c + d &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} b &= -2a \\ d &= 0 \\ c &= 0 \end{cases}$$

On a l'ensemble solution
$$\mathcal{O}_{MB} = \left\{ M(a) \middle| M(a) \in \mathcal{M}_2(\mathbb{R}), \exists a \in \mathbb{R}, M(a) = \begin{pmatrix} a & -2a \\ 0 & 0 \end{pmatrix} \right\}.$$