ENGG 2760A / ESTR 2018: Probability for Engineers

4. Random Variables

Prof. Hong Xu
Credit to Prof. Andrej Bogdanov

Random variable

A discrete random variable assigns a discrete value to every outcome in the sample space.

{ HH, HT, TH, TT }

N = number of Hs

Probability mass function

We can describe the PMF by a table or by a chart.

Two 3-sided dice are tossed. Calculate the PMF of the difference D of the rolls.

```
11 12 13
```

What is the probability that $D \ge 1$? D is odd?

The binomial random variable

Binomial(n, p): Perform n independent trials, each of which succeeds with probability p.

X = number of successes

Examples

Toss *n* coins. "number of heads" is Binomial(n, $\frac{1}{2}$).

A less obvious example

Flip n coins. Let C be the number of consecutive changes (HT or TH).

Examples:	ω	$C(\omega)$
	нннннн	0
	THHHHHT	2
	HTHHHHT	3

Then C is Binomial $(n-1, \frac{1}{2})$.

Draw a 10-card hand from a 52-card deck.

Let N = number of aces among the drawn cards

Is N a Binomial(10, 1/13) random variable?

Probability mass function

If X is Binomial(n, p), its PMF is

$$p(k) = P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Binomial random variable

$$\mathbf{P}(\text{Binomial}(n, p) \ge k) =$$

P(Binomial(n, p) $\geq (n-1)/2$)

The Lakers and the Celtics meet for a 7-game playoff.

Lakers win 60% of the time. What is the probability that all 7 games are played?

Geometric random variable

Let X_1, X_2, \ldots be independent trials with success p.

A Geometric(p) random variable N is the time of the first success among $X_1, X_2, ...$:

N = first (smallest) n such that $X_n = 1$.

Apples

About 10% of the apples on your farm are rotten.

You sell 10 apples. How many are rotten?

Probability model

Number of rotten apples you sold is Binomial(n = 10, p = 1/10).

Apples

You improve productivity; now only 5% apples rot. You can now sell 20 apples.

The Poisson random variable

A $Poisson(\lambda)$ random variable has PMF

$$p(k) = e^{-\lambda} \lambda^k / k!$$

$$k = 0, 1, 2, 3, \dots$$

Poisson random variables do not occur "naturally" in the sample spaces we have seen.

The Poisson random variable

Poisson(λ) approximates Binomial(n, p) when $\lambda = np$ is fixed and n is large (p is small)

$$P(Poisson(\lambda) = k) = \lim_{n \to \infty} P(Binomial(n, \lambda/n) = k)$$

The Poisson random variable

Rain is falling on your head at a rate of 3 drops/sec.

Functions of random variables

PMF of X:

PMF of X-1?

$$\frac{x}{p(x)} = 0$$
 1 2 $\frac{1}{1/3}$ 1/3 1/3

PMF of $(X-1)^2$?

If X is a random variable with p.m.f. p_X , then Y = f(X) is a random variable with p.m.f.

$$p_Y(y) = \sum_{x: f(x) = y} p_X(x).$$

D is the difference of two 3-sided dice rolls. Calculate the PMF of |D|.

Expected value

The expected value (expectation) of a random variable X with p.m.f. p is

$$E[X] = \sum_{x} x p(x)$$

Example

N = number of Hs

Expected value

Example

N = number of Hs

The expectation is the average value the random variable takes when experiment is done many times

F = face value of fair 6-sided die

If appears k times, you win \$k.

If it doesn't appear, you lose \$1.

Utility

Should I go to tutorial?

		VIDEO GAMES	P(correct)
		\$200	80%
		\$400	50%
		\$600	
		\$800	
		\$1000	