Timus #1197 [answers]

'	Α	В	С	D	E	F	G	Н
1	2	3	4	4	4	4	3	2
2	3	4	6	6	6	6	4	3
3	4	6	8	8	8	8	6	4
4	4	6	8	8	8	8	6	4
5	4	6	8	8	8	8	6	4
6	4	6	8	8	8	8	6	4
7	3	4	6	6	6	6	4	3
8	2	3	4	4	4	4	3	2

Timus #1197 [distance]

·	Α	В	С	D
1	18	13	10	9
2	13	8	5	4
3	10	5	2	1
4	9	4	1	0

Timus #1319

 $f(A) \coloneqq \operatorname{submatrix}\left(A, 0, \operatorname{rows}(A) - 1, 0, \operatorname{cols}(A) - 2\right) - \operatorname{submatrix}\left(A, 0, \operatorname{rows}(A) - 1, 1, \operatorname{cols}(A) - 1\right)$ $g(A) \coloneqq \operatorname{submatrix}\left(A, 1, \operatorname{rows}\left(A\right) - 1, 0, \operatorname{cols}\left(A\right) - 1\right) - \operatorname{submatrix}\left(A, 0, \operatorname{rows}\left(A\right) - 2, 0, \operatorname{cols}\left(A\right) - 1\right)$

$$A \coloneqq \begin{bmatrix} 4 & 2 & 1 \\ 7 & 5 & 3 \\ 9 & 8 & 6 \end{bmatrix}$$

$$A \coloneqq \begin{bmatrix} 4 & 2 & 1 \\ 7 & 5 & 3 \\ 9 & 8 & 6 \end{bmatrix} \qquad \qquad f(A) = \begin{bmatrix} 2 & 1 \\ 2 & 2 \\ 1 & 2 \end{bmatrix} \qquad \qquad g(A) = \begin{bmatrix} 3 & 3 & 2 \\ 2 & 3 & 3 \end{bmatrix} \qquad \qquad g(A)^{\langle 0 \rangle} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$g(A) = \begin{bmatrix} 3 & 3 & 2 \\ 2 & 3 & 3 \end{bmatrix}$$

$$g(A)^{\langle 0 \rangle} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$B \coloneqq \begin{bmatrix} 7 & 4 & 2 & 1 \\ 11 & 8 & 5 & 3 \\ 14 & 12 & 9 & 6 \\ 16 & 15 & 13 & 10 \end{bmatrix} \qquad f(B) = \begin{bmatrix} 3 & 2 & 1 \\ 3 & 3 & 2 \\ 2 & 3 & 3 \\ 1 & 2 & 3 \end{bmatrix} \qquad g(B) = \begin{bmatrix} 4 & 4 & 3 & 2 \\ 3 & 4 & 4 & 3 \\ 2 & 3 & 4 & 4 \end{bmatrix} \qquad g(B)^{\langle 0 \rangle} = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}$$

$$f(B) = \begin{bmatrix} 3 & 2 & 1 \\ 3 & 3 & 2 \\ 2 & 3 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$

$$g(B) = \begin{bmatrix} 4 & 4 & 3 & 2 \\ 3 & 4 & 4 & 3 \\ 2 & 3 & 4 & 4 \end{bmatrix}$$

$$g(B)^{\langle 0 \rangle} = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}$$

$$C \coloneqq \begin{bmatrix} 11 & 7 & 4 & 2 & 1 \\ 16 & 12 & 8 & 5 & 3 \\ 20 & 17 & 13 & 9 & 6 \\ 23 & 21 & 18 & 14 & 10 \\ 25 & 24 & 22 & 19 & 15 \end{bmatrix} \qquad f(C) = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 4 & 4 & 3 & 2 \\ 3 & 4 & 4 & 3 \\ 2 & 3 & 4 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix} \qquad g(C) = \begin{bmatrix} 5 & 5 & 4 & 3 & 2 \\ 4 & 5 & 5 & 4 & 3 \\ 3 & 4 & 5 & 5 & 4 \\ 2 & 3 & 4 & 5 & 5 \end{bmatrix} \qquad g(C)^{\langle 0 \rangle} = \begin{bmatrix} 5 \\ 4 \\ 3 \\ 2 \end{bmatrix}$$

$$f(C) = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 4 & 4 & 3 & 2 \\ 3 & 4 & 4 & 3 \\ 2 & 3 & 4 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

$$q(C) = \begin{bmatrix} 5 & 5 & 4 & 3 & 2 \\ 4 & 5 & 5 & 4 & 3 \\ 3 & 4 & 5 & 5 & 4 \\ 2 & 3 & 4 & 5 & 5 \end{bmatrix}$$

$$g(C)^{\langle 0 \rangle} = \begin{bmatrix} 5 \\ 4 \\ 3 \\ 2 \end{bmatrix}$$