```
import pandas as pd
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns
data = pd.read_csv("train_data1.csv", engine= "python")
data.head(10)
```

Out[79]:

						Avai
	case_id	Hospital_code	Hospital_type_code	City_Code_Hospital	Hospital_region_code	Rι
						Hos
0	1	8	С	3	Z	
1	2	2	С	5	Z	
2	3	10	е	1	Х	
3	4	26	b	2	Υ	
4	5	26	b	2	Y	
5	6	23	а	6	Х	
6	7	32	f	9	Y	
7	8	23	а	6	X	
8	9	1	d	10	Υ	
9	10	10	e	1	X	

```
In [80]:
          ▶ | age_lst = data["Age"].unique()
             age_lst.sort()
             age_dict = dict(zip(age_lst, range(len(age_lst))))
             data["new_age"]=data["Age"].replace(age_dict)
             print(age_dict)
             stay_list = data["Stay"].unique()
             stay_list.sort()
             dept Stay = dict(zip(stay_list, range(len(stay_list))))
             data["new_stay"]= data["Stay"].replace(dept_Stay)
             print(dept_Stay)
             data.head()
             {'0-10': 0, '11-20': 1, '21-30': 2, '31-40': 3, '41-50': 4, '51-60': 5, '61
             -70': 6, '71-80': 7, '81-90': 8, '91-100': 9}
             {'0-10': 0, '11-20': 1, '21-30': 2, '31-40': 3, '41-50': 4, '51-60': 5, '61
             -70': 6, '71-80': 7, '81-90': 8, '91-100': 9, 'More than 100 Days': 10}
```

Out[80]:

Wa	Department	Available Extra Rooms in Hospital	Hospital_region_code	City_Code_Hospital	Hospital_type_code	_code
	radiotherapy	3	Z	3	С	8
	radiotherapy	2	Z	5	С	2
	anesthesia	2	X	1	е	10
	radiotherapy	2	Υ	2	b	26
	radiotherapy	2	Υ	2	b	26

```
numerical_data = data[['Available Extra Rooms in Hospital', 'Bed Grade', 'Vis
In [81]:
                                   , 'Admission_Deposit', 'new_age', 'new_stay']]
                  fig, new_plot =plt.subplots(3,2, figsize=(14,10))
                  fig.tight_layout(pad=5.0)
                  for new_plot, n in zip(new_plot.flatten(), numerical_data.columns.tolist()):
                       sns.distplot(ax=new_plot, a=numerical_data[n], label="Skewness = %.2f"%(n
                       new_plot.set_title(n, fontsize = 14)
                       new_plot.legend(loc = 'best')
                               Available Extra Rooms in Hospital
                                                                                              Bed Grade
                                                     Skewness = 0.97
                                                                                                           Skewness = 0.05
                  1.25
                  1.00
                  0.75
                  0.50
                   0.00
                                                                                     1.5
                                   10 15
Available Extra Rooms in Hospital
                                                                                               2.5
Bed Grade
                                    Visitors with Patient
                                                                                           Admission_Deposit
                                                                                                           Skewness = 0.93
                                                     Skewness = 3.14
                  1.25
                                                                       0.0004
                  1.00
                                                                       0.0003
                   0.75
                                                                       0.0002
                   0.50
                                                                       0.0001
                   0.25
                   0.00
                                                                       0.0000
                                                       25
                                                                              2000
                                                                                               6000
                                                                                                       8000
                                                                                                                10000
                                          15
                                      Visitors with Patient
                                                                                             Admission_Deposit
                                         new age
                                                                                              new stay
                                                     Skewness = 0.13
                                                                                                           Skewness = 1.42
                   1.0
                                                                        1.25
                   0.8
                                                                        1.00
                                                                        0.75
                   0.6
                                                                        0.50
                   0.4
                   0.2
                                                                         0.25
                                                                         0.00
```


<ipython-input-86-e483c9db69c1>:9: UserWarning:

Boolean Series key will be reindexed to match DataFrame index.

Out[90]:

	Hospital_region_code	Available Extra Rooms Department in Hospital		Ward_Type	Bed Grade	patientid	Type of Admission	Seve IIIn
0	Z	1.386294	radiotherapy	R	2.0	31397	Emergency	Extr
1	Z	1.098612	radiotherapy	S	2.0	31397	Trauma	Extr
2	. x	1.098612	anesthesia	S	2.0	31397	Trauma	Extr
4	Y	1.098612	radiotherapy	S	2.0	31397	Trauma	Extr
5	X	1.098612	anesthesia	S	2.0	31397	Trauma	Extr

```
In [91]:

    import numpy as np

             new dept = new1["Department"].unique()
             new dept.sort()
             new dept = dict(zip(new dept, range(len(new dept))))
             new1.Department.replace(new_dept, inplace= True)
             print(new_dept)
             new_hosp_code = new1["Hospital_region_code"].unique()
             new_hosp_code.sort()
             new_hosp_code= dict(zip(new_hosp_code, range(len(new_hosp_code))))
             new1.Hospital_region_code.replace(new_hosp_code, inplace = True)
             print(new_hosp_code)
             new ward type = new1["Ward Type"].unique()
             new_ward_type.sort()
             new_ward_type = dict(zip(new_ward_type, range(len(new_ward_type))))
             new1.replace(new_ward_type, inplace=True)
             print(new_ward_type)
             new type admiss = new1["Type of Admission"].unique()
             new type admiss.sort()
             new type admiss = dict(zip(new type admiss, range(len(new type admiss))))
             new1["Type of Admission"].replace(new type admiss, inplace=True)
             print(new type admiss)
             new severity = new1["Severity of Illness"].unique()
             new_severity .sort()
             new severity = dict(zip(new severity, range(len(new severity ))))
             new1["Severity of Illness"].replace(new severity , inplace=True)
             print(new severity )
```

```
{'TB & Chest disease': 0, 'anesthesia': 1, 'gynecology': 2, 'radiotherapy':
3, 'surgery': 4}
{'X': 0, 'Y': 1, 'Z': 2}
{'P': 0, 'Q': 1, 'R': 2, 'S': 3, 'T': 4, 'U': 5}
{'Emergency': 0, 'Trauma': 1, 'Urgent': 2}
{'Extreme': 0, 'Minor': 1, 'Moderate': 2}
```

Out[92]:

	Hospital_region_code	Available Extra Rooms in Hospital	Department	Ward_Type	Bed Grade	patientid	Type of Admission	Seve IIIn
0	2	1.386294	3	2	2.0	31397	0	
1	2	1.098612	3	3	2.0	31397	1	
2	0	1.098612	1	3	2.0	31397	1	
4	1	1.098612	3	3	2.0	31397	1	
5	0	1.098612	1	3	2.0	31397	1	

In [94]: ▶ new2 = new1

Out[94]:

	new_stay	new_age	Available Extra Rooms in Hospital	Bed Grade	patientid	Type of Admission	Visitors with Patient	Admission_Deposit
0	0	5	1.386294	2.0	31397	0	1.098612	8.499436
1	4	5	1.098612	2.0	31397	1	1.098612	8.691986
2	3	5	1.098612	2.0	31397	1	1.098612	8.465057
4	4	5	1.098612	2.0	31397	1	1.098612	8.623174
5	1	5	1.098612	2.0	31397	1	1.098612	8.400659

```
In [111]:
           ▶ new2 = new1.drop(['Visitors with Patient', 'Hospital region code', 'Visitors wi
                         , axis = 1)
              new3 = new2.dropna()
              new3.isna().sum()
   Out[111]: new_stay
                                                    0
                                                    0
              new_age
              Available Extra Rooms in Hospital
              Bed Grade
              Type of Admission
                                                    0
              Admission Deposit
                                                    0
              Department
                                                    0
              Severity of Illness
                                                    0
              dtype: int64
          x_train = new3.iloc[:, 1:].values
In [105]:
              y_train = new3.iloc[:, 0].values
In [106]:
           ▶ | from sklearn.model selection import train test split
              from sklearn.ensemble import RandomForestClassifier
              from sklearn.metrics import accuracy score
              x_train_split, x_val_split, y_train_split, y_val_split = train_test_split(x_t
              clf = RandomForestClassifier(n estimators=300, max depth = 20, min samples le
              clf.fit(x_train_split, y_train_split)
              y_pred = clf.predict(x_val_split)
              accuracy = accuracy score(y pred, y val split)
              print('Accuracy :',accuracy)
              Accuracy: 0.3195481934508361
In [115]:

  | x = new3.drop(["new_stay", 'Bed Grade'], axis=1).to_numpy()

              y = new3['new stay'].values
In [117]:
           ▶ X_train, X_val, Y_train, Y_val = train_test_split(x, y, test_size = 0.2, rand
In [119]:

    | clf_rf = RandomForestClassifier(n_estimators=1000, max_depth=15)

              clf_rf.fit(X_train, Y_train)
              Y pred rf = clf rf.predict(X val)
              # get the accuracy score
              acc_rf = accuracy_score(Y_pred_rf, Y_val)
              print(acc rf)
              0.31042128603104213
```

In []: **M**