Organizatorzy: Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Oddział Kujawsko-Pomorski Polskiego Towarzystwa Informatycznego Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

	Arkusz I
Czas	pracy: 60 minut
	Liczba punktów do uzyskania: 15
Instr	rukcja dla zdającego
1.	Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron (zadania $1-3$). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
2.	Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
3.	Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
4.	Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
5.	Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
6.	Wpisz poniżej zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
7.	Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, pseudokodu lub języka programowania, który wybrałaś/eś na egzamin.
Dane	e uzupełnia uczeń:
WYBI	RANE:
	(środowisko)
	(kompilator)

(program użytkowy)

PESEL:						
Klasa:						

Zadanie 1. Test (0-5)

Oceń, czy poniższe zdania są prawdziwe. Zaznacz **P**, jeśli zdanie jest prawdziwe, albo **F**, jeśli zdanie jest fałszywe. W każdym zadaniu uzyskasz punkt, jeśli poprawnie odpowiesz na wszystkie jego części.

Zadanie 1.1. (0-1)

Przepustowość łącza internetowego wynosi 300Mb/s (megabitów na sekundę). Który z podanych plików, których wielkość wyrażoną w megabajtach podajemy poniżej, jest największym, który można przesłać przez podane łącze w czasie jednej sekundy.

1.	3 megabajty	P	F
2.	30 megabajtów	P	F
3.	35 megabajtów	P	F
4.	300 megabajtów	P	F

Zadanie 1.2. (0-1)

Kolory w języku HTML mogą być reprezentowane zgodnie z modelem przestrzeni barw RGB. W tym modelu spotkamy kod złożony z kilku liczb systemu szesnastkowego: np. #00FD43. Który z podanych zapisów barw, przedstawia kolor będący odcieniem szarości?

1.	#AA00AA	P	F
2.	#00AA00	P	F
3.	#0000AA	P	F
4.	#A0A0A0	P	F

Zadanie 1.3. (0-1)

Sortowanie, w którym nie porównuje się ze sobą porządkowanych elementów to:

1.	Sortowanie przez zliczanie	P	F
2.	Sortowanie przez wybór	P	F
3.	Sortowanie szybkie	P	F
4.	Sortowanie przez scalanie	P	F

Zadanie 1.4. (0–1)

Przyporządkuj definicje do pojęć.

Pojęcia: Definicje:

1.	Phishing
2.	Firmware
3.	Freeware
4.	Phreaking

A	nielegalne podłączenie się do sieci komputerowej w taki sposób, że koszty ponosi inna osoba
В	proceder polegający na wykradaniu poufnych danych dostępowych, np. loginów i ich haseł
С	licencja na bezpłatne użytkowanie programu, autor programu zachowuje prawo autorskie
D	licencja na oprogramowanie sterująca sprzętem komputerowym, które jest umieszczone w nim na stałe

W poniższej tabeli, w kolumnie Definicja, wpisz odpowiednie litery.

Pojęcie	Definicja
1.	В
2.	D
3.	С
4.	A

Zadanie 1.5. (0–1)

W systemach obsługi baz danych posługujemy się językiem zapytań SQL. W celu zliczenia liczby wszystkich wierszy w tabeli z danymi osobowymi, zapytanie może mieć postać:

1.	select count (*) as liczba from tabela where ubezpieczenie='1';	P	${f F}$
2.	select suma from tabela where ubezpieczenie='1';	P	${f F}$
3.	select count (*) from tabela;	P	F
4.	select (*) from tabela;	P	F

	Numer zadania	1.1	1.2	1.3	1.4	1.5	Suma
Wypelnia egzaminator	Maksymalna liczba punktów	1	1	1	1	1	5
	Uzyskana liczba punktów						

Zadanie 2. Liczby odkryte (0-5)

Liczbą odkrytą nazywamy liczbę całkowitą większą od 0, której wartość jest podzielna przez każdą cyfrę różną od zera, z której się składa jej zapis. Jeśli liczba całkowita jest zapisana w systemie liczbowym o podstawie p, gdzie $2 \le p \le 10$, to jest ona liczbą odkrytą, jeśli jej wartość w systemie dziesiętnym jest podzielna przez każdą cyfrę różną od zera, z której się składa jej zapis w systemie o podstawie p.

Przykłady:

Dla *p*=10 liczbą odkrytą jest liczba 24, ponieważ dzieli się przez 2 oraz 4, natomiast przykładem liczby nieodkrytej jest liczba 26, ponieważ dzieli się przez 2, ale nie dzieli się przez 6.

Zadanie 2.1 (0-1)

W tabeli podano liczby zapisane w systemie dziesiętnym. Sprawdź, czy podane liczby są liczbami odkrytymi, a następnie uzupełnij poniższą tabelę.

Liczba	Liczba odkryta TAK/NIE
15	TAK
308	NIE
2436	TAK
12774	NIE
31662	TAK

Miejsce na obliczenia:

sprawdzam czy liczba dzieli się bez reszty dla każdej z jej cyfr poza 0

Zadanie 2.2 (0–1)

Tabela zawiera liczby zapisane w różnych systemach pozycyjnych. Sprawdź, czy podane liczby są liczbami odkrytymi, a następnie uzupełnij poniższą tabelę.

Liczba	System liczbowy	Liczba odkryta TAK/NIE
222	czwórkowy	TAK
414	piątkowy	NIE
154	szóstkowy	NIE
470	ósemkowy	NIE
333	dziewiątkowy	TAK

Zamieniam na dziesiątkowy i sprawdzam czy są podzielne

Zadanie 2.3 (0–3)

W wybranym przez Ciebie języku programowania zapisz funkcję, która sprawdza czy liczba podana w systemie dziesiętnym jest liczbą odkrytą. **Dane:**

Liczba całkowita: n > 0.

Wynik:

Wartość logiczna, która reprezentuje w wybranym przez Ciebie języku programowania prawdę, gdy liczba n jest liczbą odkrytą, fałsz – gdy liczba n nie jest liczbą odkrytą.

```
//////////////////ALGORYTM
bool jest = true;
int liczba = n;
while(n)
{
     int pom = n%10;
     if(liczba % pom != 0) jest = false;
         n/=10;
}
cout<<jest;</pre>
```

Wypełnia egzaminator	Numer zadania	2.1	2.2	2.3	Suma
	Maksymalna liczba punktów	1	1	3	5
	Uzyskana liczba punktów				

Zadanie 3. Ciąg liczb kolejnych (0-5)

Podciągiem danego ciągu liczb naturalnych nazwiemy ciąg składający się z dowolnie wybranych liczb, których kolejność jest taka sama jak w ciągu początkowym. Na przykład dla ciągu (5, 3, 7, 1, 6), jego podciągami są (5, 1, 6), (3,7), (6), ale nie (3,5), (7,1,3).

Ciągiem **liczb kolejnych** nazwiemy rosnący podciąg składający się z kolejnych liczb naturalnych, np. (3,4,5,6,7). Długością takiego ciągu jest liczba jego elementów, np. ciąg (3,4,5) ma długość 3.

Zadanie 3.1 (0-1)

Uzupełnij poniższą tabelkę. Dla danego ciągu podaj długość jego najdłuższego podciągu, który jest ciągiem liczb kolejnych zaczynającym się od 1.

Dane	Wynik
3,6,1,8,2,5,3,2,5,1,4,8,9,6	4
5,7,4,1,6,2,3,4,7,3,8,4,5,3,5	5
6,7,3,7,4,9,1,6,4,2,6,4	2
9,8,7,6,5,4,3,2,1	1

Miejsce na obliczenia

Zadanie 3.2 (0-4)

Napisz program w wybranej przez siebie notacji (schemat blokowy, lista kroków, język programowania), zgodny z poniższą specyfikacją.

Dane:

n – liczba naturalna nie większa niż 100, ciąg n liczb naturalnych, każda z zakresu [1,100].

Wynik:

Długość najdłuższego podciągu danego ciągu liczb, który jest ciągiem liczb kolejnych zaczynającym się od 1.

```
/////ALGORYTM (zakładam że ciąg to tablica intów o nazwie CIAG i indexach [0,n-1])
int najdl = 0;
for(int i =0; i<n; i++)
{
       if(CIAG[i] == 1)
              int dl = 1, prev = CIAG[i];
              for(int j = i+1; j < n-1; j++)
                      if(CIAG[j] == prev+1)
                                    dl++;
                                    prev = CIAG[j];
                             }
              if(dl>najdl)
                             najdl = dl;
       }
}
cout<<najdl;
```

Numer zadania	3.1	3.2	Suma
---------------	-----	-----	------

Maksymalna liczba punktów	1	4	5
Uzyskana liczba punktów			