DATA 100: Vitamin 7 Solutions

April 9, 2019

1 Statistical Inference

Probability theory is used in statistical inference because it allows us to characterize randomness and quantify ____ due to sampling.

✓ uncertainty

□ probability

 \square error

2 Random Variables

Which of the following are true of discrete random variables?

✓ They can be added to other random variables

✓ They can be multiplied by other random variables

✓ They are denoted by capital letters

✓ They have an associated expectation and variance

3 Expectation and Variance

Which of the following are true?

$$\triangle$$
 $E[X+Y] = E[X] + E[Y]$ for independent random variables X and Y.

$$\square \ Var[X+Y] = Var[X] + Var[Y]$$
 for all random variables X and Y.

$$\bigvee Var[X+Y] = Var[X] + Var[Y]$$
 for independent random variables X and Y.

Explanation: Option three is incorrect because it fails to take into account the covariance between X and Y. When X and Y are independent, their covariance is 0, and therefore option 4 is correct.

4 Estimators

An "estimator" is a function ...

- \square of a statistic that computes a parameter.
- \square of a distribution that computes a statistic.
- \square of a random variable that computes its expectation.
- ✓ of a sample that computes an estimate of a parameter.

5 Error

The "mean squared error" of an estimator X with respect to a parameter θ is defined as:

- $\Box (X-\theta)^2$
- $\Box E[X-\theta]^2$
- $\triangle E[(X-\theta)^2]$
- $\Box (E[X] \theta)^2$

Explanation: The L_2 loss function for random variable X and parameter θ is defined as $L_2(X, \theta) = (X - \theta)^2$. The risk of this loss function is defined as $E[(X - \theta)^2]$, which is commonly known as the mean squared error.