Saurabh Single 19BCE10322

(A) Minimize!

$$Z = 10x_1 + 6x_2 + 2x_3$$
 $Z = 10x_1 + 6x_2 + 2x_3$
 $Z = 10x_1 + 2x_2 + 2x_3$
 $Z =$

Here, feasible rolution is obtained one
$$x_1 = 1/4$$
, $n_2 = 5/4$, $n_3 = 0$

$$8 \quad z_{min} = 10$$

A>2			•	TO	
		A	B	C	DE
	→	6	B 2 0	5 3	7 1 8 2
fram	C		П.	∞	47
	D E	12	4, 3	6	

Rop r	ninimiz9Ho	on;		D	E
A	A		4	6	0
7	4	Ø	1	6	3
8	4	3	2.	2	1
D	8	0	1	П	2
E	O		3	l	

Column - Minimization.

	A	8	C	D	
A .	2		3	6	0
A	A		0	6	D
B	A	CA	A	0	0
C	4			X 1	4
D	8	0		7	
	10	2	D		00

∞		3	Z.	[o]
4	0	[0]	6	0
4	3	0	[0]	3
8	[0]	0	17	0
[0]		1		A 2

$$Cost = 1+3+4+4+1=13$$

As per sequence from above assignment, indicates to broduce A, then E & then A without Broducing Broduck B, C & D. It violates restriction of Broducy each forduct. Nor, we have to examine matrix for Bestsol". assigning with C15 to C12 & C12 to C15 3. 6 0 0 [0] [0] 4 A-B-C-D-E-A NOPI : Cost = 2+3+4+5+1=15 Here, the cost is increased by Rs-2. Fodder 1 Nutrient is ₹ 3 per unit & that of Cost of fodder 1' fodder 2 ₹ 2.

Let se unit of fodder 1 & y units of fooddes 2.

: total cost: z = 3x+2y

Dutient	Fodder 1	Jodder 2	Minimum requirements
A	2	1	14
R	2	3	22
C	1	1	1
· ans brain	sk:		

Minimize: Z:= 3n+2y
2x+y ≥ 14, 2n+3y ≥ 22, n+y > 1, 21≥0, y≥0 LPP Millbe!

No. of Supply constraints: 3 No of Demand constraints = 3 53 15 101 Smallest transforation cost is 4 in cell S1 & In 1st now. allo cation in this cell is min (14,15) = 14 table will be 30 52 53 2 101 Demad 6 smallest transportation cost 1/3 3 in S2 D3 in 2nd now, : Allocation in the cell 1711 be min (12,1)=1 Now, Table Milbe! Deman

In 2nd www smallest transportation cost is 4 in cell S2D1 allocation to the cell will be min (11,6) = 6 S2D2. will be allocated by 5. similarly! smallest transportation cost is 2 in 3rd mo, so it will be allocated by min (5,5) =5 Initial seasible solution 79618 Supply D 2 8 SI 6 5 52 53 15 10 De Mard total transportation cost = 4x11+4x6 + 9x5+3x1+2x5=138 Minimum No. of allocated cells = 5 = 3+3-1=5 : est ution is non-degenerate;