Regression Algorithm-Assignment

Problem Statement or Requirement:

- A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same.

Model to be developed:

- Develop a model that predict the insurance premium amount.

Details in dataset:

- Dataset has 1338 rows of records with 1 output and 5 inputs columns.
- Followings are the criteria based on which insurance premium amount has been determined.
- They are, age, smoking status, status of marital & children, body mass index.

Pre-processing requirement:

- Dataset has categorical value which can be converted into meaningful numerical value.
- Categorical type is **nominal** so we need to follow **one-hot-encoding method** to make it meaningful numerical value.

3 Stages of Model Selection:

Stage:1 – **Domain Selection**:

- Dataset has majorly numerical value. Model can be created using **Machine Learning domain**.

- <u>Stage:2 – Model Learning Selection</u>:

- Dataset has clear requirements to be build.
- It has both input and output without missing any records.
- Hence, Model can be created with **Supervised Learning** method.

<u>Stage:3 – Regression or Categorical Regression</u>:

- Since Learning selection is Supervised, we need to identify next whether the output value of model is going to predict will be numerical or categorical value.
- With no doubt, the insurance premium amount is going to be numerical value.
- Hence, the model will be created using **regression type** of algorithms.

Model Creation:

- Since the dataset has more than 1 input column, **Simple Linear Algorithm can't be used**.
- Next, Try with all other regression type of algorithms such as **Multiple Linear Algorithm**, **Support Vector Machine (SVM)**, **Decision Tree** and **Random Forest** etc.,

7 stages of model creation:

Step-1: Data collection

Step-2: Data Clean-up

Step-3: Data Pre-processing

Step-4: Identify Input/Output values

Step-5: Train data / Test data Split

Step-6: Model Creation

Step-7: Model Evaluation

Step-8: Save the model

Multiple Linear Algorithm:

	SI.No.	Fit_Intercept	r2_score
	1	-	0.789
Γ	2	TRUE	0.789

Multiple Linear Algorithm has given r2 value same with and/or without hyper tuning parameter.

R2_score is 0.789

Support Vector Machine (SVM):

- R2_score was -0.067 without normalization.

- So, Standardization of data is required.

SI.No.	Kernel	gamma	C Value	r2_score
1	-	-	-	0.9957
<mark>2</mark>	<mark>linear</mark>	<mark>scale</mark>	<mark>1</mark>	<mark>0.9981</mark>
<mark>3</mark>	<mark>linear</mark>	<mark>scale</mark>	<mark>10</mark>	<mark>0.9981</mark>
<mark>4</mark>	<mark>linear</mark>	scale	<mark>100</mark>	<mark>0.9981</mark>
<mark>5</mark>	<mark>linear</mark>	<mark>auto</mark>	1	<mark>0.9981</mark>
<mark>6</mark>	<mark>linear</mark>	<mark>auto</mark>	<mark>10</mark>	<mark>0.9981</mark>
<mark>7</mark>	<mark>linear</mark>	<mark>auto</mark>	<mark>100</mark>	<mark>0.9981</mark>
8	rbf	scale	1	0.9957
9	rbf	scale	10	0.9962
10	rbf	scale	100	0.9962
11	rbf	auto	1	0.9957
12	rbf	auto	10	0.9962
13	rbf	auto	100	0.9962
14	poly	scale	1	0.9944
15	poly	scale	10	0.995
16	poly	scale	100	0.9953
17	poly	auto	1	0.9944
18	poly	auto	10	0.995
19	poly	auto	100	0.9953
20	sigmoid	scale	1	-111.34
21	sigmoid	scale	10	-8178.42
				-
22	sigmoid	scale	100	1138617.8
23	sigmoid	auto	1	-111.34
24	sigmoid	auto	10	-8178.42

				-
25	sigmoid	auto	100	1138617.8

Support Vector Machine with hyper tuning parameter of **kernel ='Linear'** model has given very good r2_score value of 99.81 % .

R2_score value is **0.9981**

Decision Tree:

SI.No.	criterion	splitter	max_features	r2_score
1	-	-	-	0.701
2	squared_error	best	sqrt	0.5593
3	squared_error	best	log2	0.7215
4	squared_error	random	sqrt	0.6555
5	squared_error	random	log2	0.6529
6	friedman_mse	best	sqrt	0.701
7	friedman_mse	best	log2	0.6323
8	friedman_mse	random	sqrt	0.6077
9	friedman_mse	random	log2	0.6737
10	absolute_error	best	sqrt	0.6654
11	absolute_error	best	log2	0.7372
12	absolute_error	random	sqrt	0.6847
13	absolute_error	random	log2	0.6973
14	poisson	best	sqrt	0.6103
15	poisson	best	log2	0.6217
16	poisson	random	sqrt	0.6247
17	poisson	random	log2	0.6862

Decision Tree with hyper tuning parameter of **criterion = absolute_error**, **splitter = best and max_features = log2** has given highest r2_score value of 0.**7372**

Random Forest:

Si.No.	n_estimators	criterion	max_features	r2_score
1	-	-	-	0.8576
2	100	squared_error	sqrt	0.8694
3	100	squared_error	log2	0.8705
4	100	friedman_mse	sqrt	0.8724
5	100	friedman_mse	log2	0.8688
6	100	absolute_error	sqrt	0.8704
7	100	absolute_error	log2	0.8662
8	100	poisson	sqrt	0.8302
9	100	Poisson	log2	0.8281

Random Forest algorithm with hyper tuning parameter of n_estimators =100, criterion = friendman_mse, max_features=sqrt has given hightest r2_score value of 0.8724

Among all of the regression algorithm tried, Support Vector Machine(SVM)-regression algorithm with hyper tuning parameter of Kernel=Linear, gamma=scale/auto has given extraordinary r2_score value, which is 0.9981, very close to 1.0
Since it has given very highest r2_score value, this algorithm will predict the very accurate premium than other models
Hence, I am going to deploy this model to client for the their requirement.

Model Created to predict the insurance premium: