

MECH 6v29.002 – Model Predictive Control

Tuesday and Thursday 8:30 – 9:45am L3 – Math Background

Outline

- Mathematical Background for MPC
 - Vectors
 - Matrices
 - Sets
 - Functions

• Note:

- Not intended to be complete, focus on common assumptions and operations for MPC
- Notation is not always consistent in the literature, so ask questions throughout the semester
- Let me know what topics are new to you so that I can improve this review in the future!

MPC-motivated Math Review

Functions:

- Continuous
- Convex

• Lipschitz
• Comparison
$$\min_{U_t} \sum_{k=t}^{t+N-1} J(x_k, u_k) + J_T(x_{t+N}, u_{t+N})$$

$$s.t. \ \forall k = t, ..., t + N - 1$$
$$x_{k+1} = Ax_k + Bu_k$$

Model

$$x_{k+1} = Ax_k + Bu_k$$

Constraints

$$u_k \in \mathcal{U}, \ x_k \in \mathcal{X}, \ y_k = g(x_k, u_k) \in \mathcal{Y}$$

$$x_t = x(t)$$

Vectors and Matrices:

- Notation
- Norms
- **Spaces**

Sets

- Compact
- Convex
- Representations
- **Operations**

For more mathematical background, see:

- Appendix A of Model Predictive Control: Theory, Computation, and Design 2nd Edition by Rawlings, Mayne, and Diehl, 2019.
- Appendix A of Convex Optimization by Boyd and Vandenberghe, 2009.

- Vector notation
 - x is a vector, x_i are scalars $x \in \mathbb{R}^n$ $x_1, x_2, ..., x_n \in \mathbb{R}$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$$

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, i \in 1, \dots, n$$

- State at time t x(t)
- Predicted state at time step k x(k), x[k], x_k
- Predicted state at time step j determined at time step k

- Vector spaces
 - Mostly dealing with Euclidean space \mathbb{R}^n
 - Frequently use *n*-dimensional state space and *m*-dimensional input space

$$x_k \in \mathbb{R}^n$$
 $u_k \in \mathbb{R}^m$

- Vector spaces must satisfy a set of axioms
 - https://en.wikipedia.org/wiki/Vector space
 - Most importantly, if \mathcal{V} is a vector space and x and y are elements of this vector space $x, y \in \mathcal{V}$, then

$$\alpha x + \beta y \in \mathcal{V}$$
 for all scalars $\alpha, \beta \in \mathbb{R}$

- Not to be confused with set, which can be finite
- (Linear) subspaces contained in a vector space $S \subset V$ $\alpha x + \beta y \in S$ for all scalars $\alpha, \beta \in \mathbb{R}$
 - Examples?
 - Line, plane, origin, empty set

- Absolute value for a scalar $x \in \mathbb{R}$ $|x| \in \mathbb{R}_+$

• Absolute value of a vector
$$x \in \mathbb{R}^n$$

• Apply element-wise $|x| = \begin{vmatrix} |x_1|| \\ \vdots \\ |x_n| \end{vmatrix} \in \mathbb{R}^n_+$
• Need to be careful with notation

- Norm of a vector $x \in \mathbb{R}^n ||x|| \in \mathbb{R}$
 - All norms are:
 - Nonnegative $||x|| \ge 0, \ \forall x \in \mathbb{R}^n$
 - Definite

$$||x|| \ge 0, \ \forall x \in \mathbb{R}^n$$

$$||x|| = 0$$
 only if $x = 0$

• Homogeneous
$$\|\alpha x\| = |\alpha| \|x\| \ \forall x \in \mathbb{R}^n, \alpha \in \mathbb{R}$$

Satisfy triangle inequality

$$||x+y|| \le ||x|| + ||y|| \quad \forall x, y \in \mathbb{R}^n$$

- Vector norms (continued)
 - Common types of norms

$$\ell_1 - norm: ||x||_1 = |x_1| + |x_2| + \dots + |x_n|$$

sum-absolute-value

$$\ell_2 - norm: \|x\|_2 = (x^T x)^{1/2} = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$$

Root-sum-square

$$\ell_p - norm: \|x\|_p = (|x_1|^p + |x_2|^p ... + |x_n|^p)^{1/p}$$
 $p \ge 1$

$$\ell_{\infty} - norm: \|x\|_{\infty} = \max\{|x_1|, |x_2|, ..., |x_n|\}$$

Different versions of the unit ball

$$|x|_{\infty} \le 1_{7 \text{ of } 24}$$

- Vector norms (continued)
 - Common types of norms

$$\ell_{1} - norm: \quad ||x||_{1} = |x_{1}| + |x_{2}| + \dots + |x_{n}|$$

$$\ell_{2} - norm: \quad ||x||_{2} = (x^{T}x)^{1/2} = (x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2})^{1/2}$$

$$\ell_{p} - norm: \quad ||x||_{p} = (|x_{1}|^{p} + |x_{2}|^{p} \dots + |x_{n}|^{p})^{1/p} \qquad p \ge 1$$

$$\ell_{\infty} - norm: \quad ||x||_{\infty} = \max\{|x_{1}|, |x_{2}|, \dots, |x_{n}|\}$$

- Norm equivalence
 - For any two norms, there exists positive constants such that $\alpha \|x\|_a \le \|x\|_b \le \beta \|x\|_a$
 - Common relationships

$$||x||_{\infty} \le ||x||_{2} \le ||x||_{1} \le \sqrt{n} ||x||_{2} \le n ||x||_{\infty}$$

- Matrix notation

$$M \in \mathbb{R}^{m \times n}$$

•
$$M$$
 is a matrix $M \in \mathbb{R}^{m \times n}$ $M = \begin{bmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & \ddots & & \vdots \\ \vdots & & & & \\ m_{m1} & \cdots & & m_{mn} \end{bmatrix}$ $M = \begin{bmatrix} x_{ij} \end{bmatrix}, i \in 1, ..., m, j \in 1, ..., n$

$$M = [x_{ij}], i \in 1,...,m, j \in 1,...,r$$

• Matrices are linear transformations (linear mappings)

$$\mathbb{R}^n \to \mathbb{R}^m$$

• Maps each vector $x \in \mathbb{R}^n$ to $y = Mx \in \mathbb{R}^m$

- Matrix notation $M \in \mathbb{R}^{m \times n}$ $x \in \mathbb{R}^n$ $y = Mx \in \mathbb{R}^m$
 - It makes since to think about where this mapping can take you (and where it cannot)
 - Range of $M: \mathcal{R}(M) = \{y = Mx \mid x \in \mathbb{R}^n\}$
 - Set of vectors that can be written as linear combinations of the columns of *M*

 $\mathcal{R}(M)$ is a subspace of \mathbb{R}^m

with dimension equal to the # of linearly independent columns of M (= rank of M)

- Nullspace of $M: \mathcal{N}(M) = \{x \mid Mx = 0\}$
 - Set for vectors *x* that are mapped to zero by *M*

 $\mathcal{N}(M)$ is a subspace of \mathbb{R}^n

with dimension equal to n - rank(M)

i.e. sum of the dimensions of $\mathcal{R}(M)$ and $\mathcal{N}(M) = n$

• The four fundamental subspaces [1]

$$M \in \mathbb{R}^{m \times n}$$
 $x \in \mathbb{R}^n$

• Column space (Range): $\mathcal{R}(M) \subset \mathbb{R}^m$

$$y = Mx \in \mathbb{R}^m$$

- All linear combination of columns of *M*
- Nullspace: $\mathcal{N}(M) \subset \mathbb{R}^n$
 - All solutions x such that Mx = 0
- Row space (Range of transpose): $\mathcal{R}(M^T) \subset \mathbb{R}^n$
 - All linear combination of rows of *M*
- Left nullspace (Nullspace of transpose): $\mathcal{N}(M^T) \subset \mathbb{R}^m$
 - All solutions x such that $M^T x = 0$ $\left(x^T M = 0\right)$

[1] https://ocw.mit.edu/courses/mathemátics/18-06sc-linear-algebra-fall-2011/ax-b-and-the-four-subspaces/the-four-fundamental-subspaces/MIT18 06SCF11 Ses1.10sum.pdf

- Some square matrices can be positive definite or positive semidefinite
- Let *Q* be a real, symmetric matrix
 - Then Q is positive definite Q > 0 if

$$x^T Q x > 0, \quad \forall x \in \mathbb{R}^n$$

• Then *Q* is positive semidefinite $Q \ge 0$ if

$$x^T Q x \ge 0, \quad \forall x \in \mathbb{R}^n$$

- Lecture Assignment:
 - Prove one of the following

$$Q > 0$$
 if and only if $\lambda(Q) > 0$, $\lambda \in eig(Q)$

$$Q \ge 0$$
 if and only if $\lambda(Q) \ge 0$, $\lambda \in eig(Q)$

- Remember to go both directions, i.e.
 - Assume Q > 0 and show $\lambda(Q) > 0$, $\lambda \in eig(Q)$
 - Then assume $\lambda(Q) > 0$, $\lambda \in eig(Q)$ and show Q > 0

- Consider a set $S \in \mathbb{R}^n$
 - An element of this set, $x \in S$, is an interior point if the set of "nearby points" are also elements of this set
 - Formally, $\exists \epsilon > 0 \text{ s.t. } \{y \mid ||y x||_2 \le \epsilon\} \subseteq S$
 - Alternatively, we can think about the existence of an epsilon-ball centered at *x* that lies entirely in the set

- Consider a set $S \in \mathbb{R}^n$
 - An element of this set, $x \in S$, is a boundary point if there are both "nearby points" that are in and not in the set
 - Formally, $\forall \epsilon > 0 \exists y \in S \text{ and } z \notin S \text{ such that }$

$$||y - x||_{2} \le \epsilon \qquad ||z - x||_{2} \le \epsilon$$

$$S$$

$$x \oplus \mathcal{B}, \mathcal{B} = \{y \mid ||y||_{2} \le \epsilon\}$$
and if it contains its boundary

- A set is closed if it contains its boundary $\forall \epsilon > 0$
- A set is open if it contains no boundary points
- A set is bounded if there exists a finite number that bounds the norm of every element of the set

$$\exists M < \infty, \ s.t. \ \|x\| \le M, \ \forall x \in S$$

A set is compact if it is closed and bounded

- A set is convex if for any two elements in the set, all of the points on a straight line connecting these elements are also in the set
- Formally, $\forall x, y \in S$ and $\lambda \in [0,1]$, $(\lambda x + (1-\lambda)y) \in S$
- We will primarily deal with convex sets
- Sets can be defined using different representations
 - Intervals:

$$S = \left[\underline{x}, \overline{x}\right] = \left\{x \in \mathbb{R}^n \mid \underline{x} \le x \le \overline{x}\right\}$$

- Sets can be defined using different representations
 - Halfspace-Representation (H-Rep):

$$S = \{x \in \mathbb{R}^n \mid Ax \le b\}, \quad A \in \mathbb{R}^{n_h \times n}, \quad b \in \mathbb{R}^{n_h} \qquad n_h = \text{\# of halfspaces}$$

$$egin{bmatrix} 0 & 1 \ 5 & -2 \ -1 & -3 \ -4 & -2 \end{bmatrix} egin{bmatrix} x \ y \end{bmatrix} \leq egin{bmatrix} 7 \ 36 \ -14 \ -26 \end{bmatrix}$$

- Sets can be defined using different representations
 - Vertex-Representation (V-Rep): (convex hull of vertices)

$$S = \left\{ x \in \mathbb{R}^n \mid x = \sum_{i=1}^{n_v} \lambda_i v_i, \ \lambda_i \ge 0, \ \sum_{i=1}^{n_v} \lambda_i = 1 \right\}, \quad n_v = \text{$\#$ of vertices}$$

[1]

- H-rep and V-rep can be used to represent any convex polytope
 - A polytope is a geometric object with "flat" sides
 - Also a bounded cases of a more general (potentially unbounded) polyhedron

- Common set operations
 - Linear transformation: $MS = \{Mx \mid x \in S\}, M \in \mathbb{R}^{m \times n}$
 - Minkowski sum:

$$S_1 \oplus S_2 = \{x_1 + x_2 \mid x_1 \in S_1, x_2 \in S_2\}$$

Pontryagin difference:

$$S_1 \odot S_2 = \{ x_1 \in S_1 \mid x_1 \oplus S_2 \subseteq S_1 \}$$

= \{ x_1 \in S_1 \cong x_1 \in S_1 \cong x_2 \in S_1, \forall x_2 \in S_2 \}

• Intersection:

$$S_1 \cap S_2 = \{x_1 \in S_1 \mid x_1 \in S_2\}$$

Convex hull:

$$CH(S_1, S_2) = \left\{ \lambda x_1 + (1 - \lambda) x_2 \mid x_1 \in S_1, x_2 \in S_2, \lambda \in [0, 1] \right\}$$

- Lecture Assignment:
 - Explore the computational geometry features of the Multi-Parametric Toolbox (MPT)
 - https://www.mpt3.org/

Multi-Parametric Toolbox 3

The Multi-Parametric Toolbox (or MPT for short) is an open source, Matlab-based toolbox for

Installation

- · Installation & updating instructions
- License
- · How to cite MPT3

Contact

Questions and comments should be posted via the MPT forum at Google Groups.

First steps with MPT3

- · Quick start using demos
- · Parametric optimization
- · Computational geometry features
- · MPC synthesis (regulation, tracking)
 - · Modeling of dynamical systems
 - · Closed-loop simulations
 - · Additional constraints (move blocking, soft & rate constraints, terminal sets, etc.)
 - · Fine-tuning MPC setups via YALMIP
 - Code generation
 - · Low-complexity explicit MPC algorithms
- · Computation of invariant sets
- · Construction of Lyapunov functions

rly

Particularly these ones

https://www.mpt3.org/Geometry/Geometry

Tour on the computational geometry

Objects for representing sets and functions

- · Construction and properties of basic sets
- · Construction of function objects

Objects for representing unions of sets

· Construction and properties of unions of sets

Objects for representing functions over sets

· Construction of function over sets

Geometric operations

- · Geometric operations with general convex sets
- · Geometric operations with polyhedra

See question on last slide.

Functions

- A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous if $\forall x \in \mathbb{R}^n$ $\exists \delta \text{ s.t. } \|y - x\|_2 \le \delta \Rightarrow \|f(y) - f(x)\|_2 \le \epsilon, \ \forall \epsilon > 0$
- A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if $\forall x, y \in \mathbb{R}^n, \lambda \in [0,1]$ $f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$

Functions

- The level set of a function $f: \mathbb{R}^n \to \mathbb{R}$ is $\left\{ x \in \mathbb{R}^n \mid f(x) = \alpha \right\} \ \alpha \in \mathcal{R}$
- The sublevel set is similar with

$$\left\{x \in \mathbb{R}^n \mid f(x) \le \alpha\right\} \ \alpha \in \mathcal{R}$$

• A function is Lipschitz, with Lipschitz constant *L*, if

$$\forall x, y \in \mathbb{R}^n, \quad \|f(y) - f(x)\|_2 \le L \|y - x\|_2$$

- Lecture Assignment:
 - Provide an example of a function that is continuous but not Lipschitz

Functions

• A function $f: \mathbb{R}^n \to \mathbb{R}$ is positive definite if

$$f(0) = 0$$
 and $f(x) > 0$, $\forall x \neq 0$

• A function $f: \mathbb{R}^n \to \mathbb{R}$ is positive semidefinite if

$$f(0) = 0$$
 and $f(x) \ge 0$, $\forall x$

• A quadratic function $f(x) = x^T Q x$, where Q is symmetric, is positive (semi)definite if Q is a positive (semi)definite matrix

Comparison Functions

- Class K: A scalar continuous function $\alpha(r):[0,a) \to \mathbb{R}$ belongs to class K if it is strictly increasing and $\alpha(0)=0$
- Class \mathcal{K}_{∞} : A scalar continuous function $\alpha(r):[0,\infty)\to\mathbb{R}$ belongs to class \mathcal{K}_{∞} if it belongs to class \mathcal{K} and $\alpha(r)\to\infty$ as $r\to\infty$
- Class \mathcal{KL} : A scalar continuous function $\beta(r,s):[0,a)\times[0,\infty)\to\mathbb{R}$ belongs to class \mathcal{KL} if for each fixed value of s, $\beta(r,s)$ belongs to class \mathcal{K} with respect to r and for each fixed value of r, $\beta(r,s)$ is decreasing with respect to s and

$$\beta(r,s) \to 0 \text{ as } s \to \infty$$

• Examples:

$$\alpha(r) = \tan^{-1}_{y}(r)$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

Summary of Lecture Assignments

 $^{
m 1)}\,$ $\,$ $\,$ Prove one of the following

$$Q > 0$$
 if and only if $\lambda(Q) > 0$, $\lambda \in eig(Q)$

$$Q \ge 0$$
 if and only if $\lambda(Q) \ge 0$, $\lambda \in eig(Q)$

- Remember to go both directions, i.e.
 - Assume Q > 0 and show $\lambda(Q) > 0$, $\lambda \in eig(Q)$
 - Then assume $\lambda(Q) > 0$, $\lambda \in eig(Q)$ and show Q > 0
- 2) MPT Toolbox
 - Review computational geometry features
 - Determine H-rep of orange set on page

- https://www.mpt3.org/Geometry/OperationsWithPolyhedra
- Provide an example of a function that is continuous but not Lipschitz