

WHAT IS CLAIMED IS:

- 1 1. A method for identifying a compound that modulates cell cycle
2 arrest, the method comprising the steps of:
 - 3 (i) contacting a cell comprising a target polypeptide or fragment thereof or
4 inactive variant thereof, selected from the group consisting of flap structure specific
5 endonuclease 1 (FEN1), protein kinase C ζ (PKC- ζ), phospholipase C- β 1 (PLC- β 1),
6 protein tyrosine kinase 2 (FAK), protein tyrosine kinase 2b (FAK2), casein kinase 2
7 (CK2), cMET tyrosine kinase (cMET), REV1 dCMP transferase (REV1),
8 apurinic/apyrimidinic nuclease 1 (APE1), cyclin dependent kinase 3 (CDK3), PIM1
9 kinase (PIM1), cell division cycle 7 kinase (CDC7L1), cyclin dependent kinase 7
10 (CDK7), cytokine inducible kinase (CNK), potentially prenylated protein tyrosine
11 phosphatase (PRL-3), serine threonine kinase 2 (STK2) or (NEK4), cyclin dependent
12 serine threonine kinase (NKIAMRE), or histone acetylase (HBO1), or fragment thereof
13 with the compound, the target polypeptide encoded by the complement of a nucleic acid
14 that hybridizes under stringent conditions to a nucleic acid encoding a polypeptide having
15 an amino acid sequence selected from the group consisting of SEQ ID NO:14, 2, 4, 6, 8,
16 10, 12, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, and 36; and
 - 17 (ii) determining the chemical or phenotypic effect of the compound upon
18 the cell comprising the target polypeptide or fragment thereof or inactive variant thereof,
19 thereby identifying a compound that modulates cell cycle arrest.
- 1 2. The method of claim 1, wherein the chemical or phenotypic effect
2 is determined by measuring enzymatic activity selected from the group consisting of
3 nuclease activity, kinase activity, lipase activity, transferase activity, phosphatase activity,
4 and acetylase activity.
- 1 3. The method of claim 1, wherein the chemical or phenotypic effect
2 is determined by measuring cellular proliferation.
- 1 4. The method of claim 3, wherein the cellular proliferation is
2 measured by assaying fluorescent marker level or DNA synthesis.
- 1 5. The method of claim 4, wherein DNA synthesis is measured by ^3H
2 thymidine incorporation, BrdU incorporation, or Hoescht staining.

1 6. The method of claim 4, wherein the fluorescent marker is selected
2 from the group consisting of a cell tracker dye or green fluorescent protein.

1 7. The method of claim 1, wherein modulation is activation of cell
2 cycle arrest.

1 8. The method of claim 1, wherein modulation is activation of cancer
2 cell cycle arrest.

1 9. The method of claim 1, wherein the host cell is a cancer cell.

1 10. The method of claim 9, wherein the cancer cell is a breast, prostate,
2 colon, or lung cancer cell.

1 11. The method of claim 9, wherein the cancer cell is a transformed
2 cell line.

1 12. The method of claim 11, wherein the transformed cell line is A549,
2 PC3, H1299, MDA-MB-231, MCF7, or HeLa.

1 13. The method of claim 9, wherein the cancer cell is p53 null or
2 mutant.

1 14. The method of claim 9, wherein the cancer cell is p53 wild-type.

1 15. The method of claim 1, wherein the polypeptide is recombinant.

1 16. The method of claim 1, wherein the polypeptide is encoded by a
2 nucleic acid comprising a sequence of SEQ ID NO:13, 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23,
3 25, 27, 29, 31, 33, or 35.

1 17. The method of claim 1, wherein the compound is an antibody.

1 18. The method of claim 1, wherein the compound is a small organic
2 molecule.

1 19. The method of claim 1, wherein the compound is an antisense
2 molecule.

1 20. The method of claim 1, wherein the compound is a peptide.

1 21. The method of claim 20, wherein the peptide is circular.

1 22. The method of claim 1, wherein the compound is an siRNA
2 molecule.

1 23. A method for identifying a compound that modulates cell cycle
2 arrest, the method comprising the steps of:

3 (i) contacting a cell comprising a target polypeptide or fragment thereof or
4 inactive variant thereof, selected from the group consisting of flap structure specific
5 endonuclease 1 (FEN1), protein kinase C ζ (PKC- ζ), phospholipase C- β 1 (PLC- β 1),
6 protein tyrosine kinase 2 (FAK), protein tyrosine kinase 2b (FAK2), casein kinase 2
7 (CK2), cMET tyrosine kinase (cMET), REV1 dCMP transferase (REV1),
8 apurinic/apyrimidinic nuclelease 1 (APE1), cyclin dependent kinase 3 (CDK3), PIM1
9 kinase (PIM1), cell division cycle 7 kinase (CDC7L1), cyclin dependent kinase 7
10 (CDK7), cytokine inducible kinase (CNK), potentially prenylated protein tyrosine
11 phosphatase (PRL-3), serine threonine kinase 2 (STK2) or (NEK4), cyclin dependent
12 serine threonine kinase (NKIAMRE), or histone acetylase (HBO1), or fragment thereof
13 with the compound, the target polypeptide encoded by the complement of a nucleic acid
14 that hybridizes under stringent conditions to a nucleic acid encoding a polypeptide having
15 an amino acid sequence selected from the group consisting of SEQ ID NO:14, 2, 4, 6, 8,
16 10, 12, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, and 36; and

17 (ii) determining the physical effect of the compound upon the target
18 polypeptide or fragment thereof or inactive variant thereof; and

19 (iii) determining the chemical or phenotypic effect of the compound upon
20 a cell comprising the target polypeptide or or fragment thereof or inactive variant thereof,
21 thereby identifying a compound that modulates cell cycle arrest.

1 24. A method of modulating cell cycle arrest in a subject, the method
2 comprising the step of administering to the subject a therapeutically effective amount of a
3 compound identified using the method of claim 1.

1 25. The method of claim 24, wherein the subject is a human.

- 1 26. The method of claim 25, wherein the subject has cancer.
- 1 27. The method of claim 24, wherein the compound is a small organic
2 molecule.
- 1 28. The method of claim 24, wherein the compound is an antisense
2 molecule.
- 1 29. The method of claim 24, wherein the compound is an antibody.
- 1 30. The method of claim 24, wherein the compound is a peptide.
- 1 31. The method of claim 30, wherein the peptide is circular.
- 1 32. The method of claim 24, wherein the compound is an siRNA
2 molecule.
- 1 33. The method of claim 24, wherein the compound inhibits cancer cell
2 proliferation.
- 1 34. A method of modulating cell cycle arrests in a subject, the method
2 comprising the step of administering to the subject a therapeutically effective amount of a
3 target polypeptide or fragment thereof or inactive variant thereof, selected from the group
4 consisting of flap structure specific endonuclease 1 (FEN1), protein kinase C ζ (PKC- ζ),
5 phospholipase C- β 1 (PLC- β 1), protein tyrosine kinase 2 (FAK), protein tyrosine kinase
6 2b (FAK2), casein kinase 2 (CK2), cMET tyrosine kinase (cMET), REV1 dCMP
7 transferase (REV1), apurinic/apyrimidinic nuclease 1 (APE1), cyclin dependent kinase 3
8 (CDK3), PIM1 kinase (PIM1), cell division cycle 7 kinase (CDC7L1), cyclin dependent
9 kinase 7 (CDK7), cytokine inducible kinase (CNK), potentially prenylated protein
10 tyrosine phosphatase (PRL-3), serine threonine kinase 2 (STK2) or (NEK4), cyclin
11 dependent serine threonine kinase (NKIAMRE), or histone acetylase (HBO1), or
12 fragment thereof with the compound, the target polypeptide encoded by the complement
13 of a nucleic acid that hybridizes under stringent conditions to a nucleic acid encoding a
14 polypeptide having an amino acid sequence selected from the group consisting of SEQ ID
15 NO:14, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, and 36.

1 35. A method of modulating cell cycle arrest in a subject, the method
2 comprising the step of administering to the subject a therapeutically effective amount of a
3 nucleic acid encoding a target polypeptide or fragment thereof or inactive variant thereof,
4 selected from the group consisting of flap structure specific endonuclease 1 (FEN1), protein
5 kinase C ζ (PKC- ζ), phospholipase C- β 1 (PLC- β 1), protein tyrosine kinase 2 (FAK), protein
6 tyrosine kinase 2b (FAK2), casein kinase 2 (CK2), cMET tyrosine kinase (cMET), REV1
7 dCMP transferase (REV1), apurinic/apyrimidinic nuclelease 1 (APE1), cyclin dependent
8 kinase 3 (CDK3), PIM1 kinase (PIM1), cell division cycle 7 kinase (CDC7L1), cyclin
9 dependent kinase 7 (CDK7), cytokine inducible kinase (CNK), potentially prenylated protein
10 tyrosine phosphatase (PRL-3), serine threonine kinase 2 (STK2) or (NEK4), cyclin dependent
11 serine threonine kinase (NKIAMRE), or histone acetylase (HBO1), or fragment thereof with
12 the compound, the target polypeptide encoded by the complement of a nucleic acid that
13 hybridizes under stringent conditions to a nucleic acid encoding a polypeptide having an
14 amino acid sequence selected from the group consisting of SEQ ID NO:14, 2, 4, 6, 8, 10, 12,
15 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, and 36.

1 36. A CK2-specific siRNA molecule comprising the sequence
2 AACATTGAATTAGATCCACGT, wherein the siRNA molecule is from 21 to 30 nucleotide
3 base pairs in length.

1 37. The CK2-specific siRNA molecule of claim 36 consisting of the
2 sequence AACATTGAATTAGATCCACGT and its complement as active portion.

1 38. A method of inhibiting expression of a CK2 gene in a cell, the method
2 comprising contacting the cell with a CK2-specific siRNA molecule comprising the sequence
3 AACATTGAATTAGATCCACGT, wherein the siRNA molecule is from 21 to 30 nucleotide
4 base pairs in length.

1 39. A PIM1-specific siRNA molecule comprising the sequence
2 AAAACCTCCGAGTGAACGGTC, wherein the siRNA molecule is from 21 to 30
3 nucleotide base pairs in length.

1 40. The PIM1-specific siRNA molecule of claim 39 consisting of the
2 sequence AAAACCTCCGAGTGAACGGTC and its complement as active portion.

1 41. A method of inhibiting expression of a PIM1 gene in a cell, the method
2 comprising contacting the cell with a PIM1-specific siRNA molecule comprising the
3 sequence AAAACTCCGAGTGAACGGTC, wherein the siRNA molecule is from 21 to 30
4 nucleotide base pairs in length.

1 42. An Hbo1-specific siRNA molecule comprising the sequence
2 AACTGAGCAAGTGGTTGATT, wherein the siRNA molecule is from 21 to 30 nucleotide
3 base pairs in length.

1 43. The Hbo1-specific siRNA molecule of claim 42 consisting of the
2 sequence AACTGAGCAAGTGGTTGATT and its complement as active portion.

1 44. A method of inhibiting expression of an Hbo1 gene in a cell, the
2 method comprising contacting the cell with an Hbo1-specific siRNA molecule comprising
3 the sequence AACTGAGCAAGTGGTTGATT, wherein the siRNA molecule is from 21 to
4 30 nucleotide base pairs in length.