

Peter Pfaffelhuber

December 13, 2024

Time-homogeneous Markov processes

- Definition 15.19: A Markov process \mathcal{X} is called time-homogeneous if there is a family of Markov kernels $(\mu_t)_{t\in I}$ with $\mu_{s,t}=\mu_{t-s}$, which we call transition semigroup. Equivalently, there is a family of transition operators $(T_t)_{t\in I}$ with $T_{s,t}=T_{t-s}$, which we call operator semigroup.
- For a time-homogeneous Markov process,

$$(X_{t_0},...X_{t_n}) \sim \nu_{t_0} \otimes \mu_{t_1-t_0} \otimes \cdots \otimes \mu_{t_n-t_{n-1}},$$

$$\mu_s \mu_t = \mu_{s+t}, \qquad T_s T_t = T_{s+t}.$$

The strong Markov property is in this case

$$\mathbf{P}[X_{S+t} \in A | \mathcal{F}_S] = \mu_t(X_S, A), \qquad \mathbf{E}[f(X_{S+t}) | \mathcal{F}_S] = (T_t f)(X_S).$$

Feller semigroup, Feller process

- ▶ Definition 15.22: A family of operators $(T_t)_{t \in I}$ is called an operator semigroup if $T_t(T_s f) = T_{t+s} f$. Such a semigroup is called
 - 1. positive if $T_t f \ge 0$ if $f \ge 0$ for all $t \in I$,
 - 2. contraction if $0 \le T_t f \le 1$ for $0 \le f \le 1$ for a
 - 3. conservative if $T_t 1 = 1$ for all $t \in I$,
 - 4. strongly continuous if $||T_t f f||_{\infty} \xrightarrow{t \to 0} 0$ for all $f \in C_b(E)$.
 - 5. Feller semigroup if $T_t f(x) \xrightarrow{t \to 0} f(x)$ for $x \in E$ and $f \in \mathcal{C}_b(E)$ and $T_t f \in \mathcal{C}_b(E)$ for all $f \in \mathcal{C}_b(E)$ and $t \in I$.
- A time-homogeneous Markov process $\mathcal{X} = (X_t)_{t \in \mathcal{I}}$ is called Feller process if its operator semigroup $(T_t)_{t \in \mathcal{I}}$ is a Feller semigroup.

Probabilistic properties of Feller processes

Let $(T_t)_{t \in I}$ be the operator semigroup of a Markov process

$$\mathcal{X} = (X_t)_{t \in I}$$
, i.e. $T_t f(x) = \mathbf{E}[f(X_t)|X_0 = x]$.

- 1. $(T_t)_{t \in I}$ is conservative and a positive contraction.
- 2. $T_t f(x) \xrightarrow{t \to 0} f(x)$ for all $f \in C_b(E) \iff X_t \xrightarrow{t \to 0}_p X_0$.

'⇒': With
$$g(y) := r(x, y) \wedge 1$$
, note

$$\mathbf{E}_{\mathsf{x}}[r(X_0,X_t)\wedge 1]=T_tg(X_0)\xrightarrow{t\to 0}g(X_0)=0.$$

' \Leftarrow ': Since $X_t \xrightarrow{t \to 0} X_0 =: x$, for $f \in \mathcal{C}_b(E)$ in particular

$$T_t f(x) = \mathbf{E}_x[f(X_t)] \xrightarrow{t \to \infty} \mathbf{E}_x[f(X_0)] = f(x).$$

PPP and BM are Feller

- ▶ Lemma 15.24: PPP and BM are Feller processes.
- ▶ Proof: Define in both cases $Z_t := X_t X_0$. Then, for the PPP, $Z_t \sim \text{Poi}(\lambda t)$ and for BM, $Z_t \sim N(0, t)$. In both cases, write (due to independent increments),

$$T_t f(x) = \mathbf{E}[f(x + Z_t)], \qquad f \in \mathcal{C}_b(\mathbb{R}).$$

Since $Z_t \xrightarrow{t \to 0} 0$ in both cases, we find $T_t f(x) \xrightarrow{t \to 0} f(x)$. By dominated convergence, $x \mapsto \mathbf{E}[f(x + Z_t)]$ is continuous.

Generator of a semigroup

▶ Definition 15.25: $\mathcal{X} = (X_t)_{t \in I}$ be a time-homogeneous Markov process with $(T_t)_{t \in I}$. The *generator* of \mathcal{X} is defined as

$$(Gf)(x) = \lim_{t \to 0} \frac{\mathbf{E}_x[f(X_t) - f(x)]}{t} = \lim_{t \to 0} \frac{1}{t}((T_t f)(x) - f(x)),$$

for all f for which the limit value exists. The set of functions f for which (Gf)(x) exists for all $x \in E$ exists is $\mathcal{D}(G)$.

Generator for the PPP(λ)

▶ For $\mathcal{X} = \mathsf{PPP}(\lambda)$, and $P_t \sim \mathsf{Poi}(\lambda)$, and $f \in \mathcal{C}_b(\mathbb{R})$,

$$Gf(x) = \lim_{t \to 0} \frac{1}{t} (\mathbf{E}_{x} [f(x + P_{t}) - f(x)])$$

$$= \lim_{t \to 0} \frac{1}{t} \sum_{k=1}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} (f(x + k) - f(x))$$

$$= \lim_{t \to 0} \lambda \sum_{k=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{k}}{(k+1)!} (f(x+1+k) - f(x))$$

$$= \lambda (f(x+1) - f(x))$$

Generator for BM

▶ Let $\mathcal X$ be BM and $f \in \mathcal C^2_b(\mathbb R)$. Then, with $Z \sim \mathcal N(0,1)$,

$$(Gf)(x) = \lim_{t \to 0} \frac{1}{t} (\mathbf{E}_{x} [f(x + \sqrt{t}Z) - f(x)])$$

$$= \lim_{t \to 0} \frac{1}{t} (\mathbf{E}_{x} [f'(x)\sqrt{t}Z + \frac{1}{2} (f''(x + \sqrt{t}Y) - f''(x))tZ^{2}])$$

$$= \frac{1}{2} f''(x) + \lim_{t \to \infty} \mathbf{E} [\frac{1}{2} (f''(x + \sqrt{t}Y) - f''(x))Z^{2}]$$

$$= \frac{1}{2} f''(x).$$

Operator semigroups and generators

Lemma 15.28: \mathcal{X} Feller process with $(T_t)_{t\in I}$ and generator G and $\mathcal{D}\subseteq\mathcal{D}(G)$ with $G(\mathcal{D})\subseteq\mathcal{C}_b(E)$. Then,

$$f \in \mathcal{C}_b(E) \Rightarrow \int_0^t (T_s f) ds \in \mathcal{D}(G)$$
 with $(T_t f)(x) - f(x) = \left(G\left(\int_0^t (T_s f) ds\right)\right)(x),$ $f \in \mathcal{D} \Rightarrow T_t f \in \mathcal{D}(G)$ with $G(T_t f) = T_t(Gf)$ and $(T_t f)(x) - f(x) = \int_0^t (T_s(Gf))(x) ds.$

In particular,

$$\mathbf{E}_{\mathsf{x}}[f(X_t)] = f(\mathsf{x}) + \int_0^t \mathbf{E}[(Gf)(X_s)] ds.$$

Proof of Lemma 15.28

► For the first equation,

$$\frac{1}{h} \mathbf{E}_{x} \Big[\int_{0}^{t} (T_{s}f)(X_{h}) - (T_{s}f)(x) ds \Big] = \frac{1}{h} \Big(\int_{0}^{t} (T_{s+h}f)(x) - (T_{s}f)(x) ds \Big) \\
= \frac{1}{h} \Big(\int_{h}^{t+h} (T_{s}f)(x) ds - \int_{0}^{t} (T_{s}f)(x) ds \Big) \\
= \frac{1}{h} \int_{0}^{t+h} (T_{s}f)(x) ds - \frac{1}{h} \int_{0}^{h} (T_{s}f)(x) ds \xrightarrow{h \to 0} (T_{t}f)(x) - f(x).$$

Proof of Lemma 15.28

► For the other statements,

$$\begin{aligned} \frac{d}{dt} \mathbf{E}_{x}[f(X_{t})] &= \lim_{h \to 0} \frac{1}{h} \mathbf{E}_{x}[f(X_{t+h}) - f(X_{t})] \\ &= T_{t} \lim_{h \to 0} \frac{1}{h} \mathbf{E}_{x}[f(X_{h}) - f(x)] = (T_{t}(Gf))(x), \end{aligned}$$

and

$$\frac{d}{dt} \mathbf{E}_{x}[f(X_{t})] = \lim_{h \to 0} \frac{1}{h} \mathbf{E}_{x}[f(X_{t+h}) - f(X_{t})]$$

$$= \lim_{h \to 0} \frac{1}{h} \mathbf{E}_{x}[(T_{t}f)(X_{h}) - (T_{t}f)(x)] = (G(T_{t}f))(x)$$

and since $t \mapsto (T_t(Gf))(x)$ is continuous

$$(T_t f)(x) - f(x) = \int_0^t \frac{d}{ds} \mathbf{E}_x[f(X_s)] ds = \int_0^t (T_s(Gf))(x) ds.$$

Domain is dense

- Corollary 15.29: Assumptions of Lemma 15.28 apply with $\mathcal{D}=\mathcal{C}_b(E)$, and $(T_t)_{t\in I}$ is strongly continuous. Then, $\mathcal{D}(G)$ is dense in $\mathcal{C}_b(E)$.
- ▶ Let $f \in C_b(E)$. Then,

$$\frac{1}{t}\int_0^t (T_s f) ds \xrightarrow{t\to 0} f.$$

Since the function on the left-hand side according to Lemma 15.28 lie in $\mathcal{D}(G)$, the assertion is shown.

Martingales derived from Markov processes

▶ Theorem 15.30: $\mathcal{X} = (X_t)_{t \in I}$ Feller with generator G and domain $\mathcal{D}(G)$, and $f \in \mathcal{D}(G)$ such that $Gf \in \mathcal{C}_b(E)$. Then, the following are martingales:

$$\left(f(X_t) - \int_0^t (Gf)(X_s)ds\right)_{t \in I}, \left(f(X_t) \exp\left(-\int_0^t \frac{(Gf)(X_s)}{f(X_s)}ds\right)\right)_{t \in I}.$$

▶ For $s \leq t$,

$$\mathbf{E}\Big[f(X_t) - f(X_s) - \int_s^t (Gf)(X_r)dr \Big| \mathcal{F}_s\Big]$$

$$= \mathbf{E}\Big[f(X_t) - f(X_s) - \int_s^t (Gf)(X_r)dr \Big| X_s\Big]$$

$$= (T_{t-s}f)(X_s) - f(X_s) - \int_s^t (T_{r-s}(Gf))(X_s)dr = 0.$$