Examen de Computabilidad y Complejidad

(CMC)

16 de septiembre de 1997

- (I) Cuestiones (justifique formalmente las respuestas)
- 1. Sea L un lenguaje recursivo sobre Σ cuyas palabras poseen longitud par. Sea $L' = \{u \in \Sigma^* \mid \exists v \in \Sigma^*, uv \in L, |u| = |v|\}$. \mathcal{E} Es L' recursivo?

(1.5 ptos)

2. Sea L un lenguaje recursivamente enumerable sobre Σ y $x \in \Sigma^*$ una palabra fija. Sea $h: \Sigma^* \to \Delta^*$ un homomorfismo. ξ Es $h(Lx^{-1})$ recursivamente enumerable ?

(1.5 ptos)

3. ¿ Es $L = \{a^i b^j c^{max(i,j)} \mid i, j \ge 1\}$ in
contextual ?

(1.5 ptos)

4. Demuestre que todo lenguaje incontextual sobre Σ que no contenga la cadena vacía es generado por una gramática $G=(N,\Sigma,P,S)$ cuyas reglas son todas de la forma $A\to\gamma a$ con $A\in N,\ \gamma\in N^*,\ a\in\Sigma.$

(1.5 ptos)

(II) PROBLEMAS:

5. Sea G la gramática:

$$S \rightarrow AB \mid a$$

$$A \rightarrow aBS \mid b$$

$$B \rightarrow Sba \mid \lambda$$

Sea h el homomorfismo definido por h(a)=ab y h(b)=a. Dar una gramática G' tal que $L(G')=(h(L(G))\cup (L(G))^r)^*$.

(2 ptos)