

Analysis and Design of Algorithm

- 贪心算法的基本概念
 - 贪心选择性质
 - 局部最优和全局最优
- 贪心算法的应用
 - 哈夫曼编码、最小生成树、单源最短路径
- NP完全问题
 - 多机调度问题、旅行商问题

第五章 回溯法

- 理解回溯法的深度优先搜索策略
- 掌握用回溯法解题的算法框架
 - 递归回溯
 - 迭代回溯
 - 子集树算法框架
 - 排列树算法框架
- 应用范例
 - 装载问题; 批处理作业调度; 符号三角形问题; n后问题; 0-1背包问题; 最大团问题; 图的m着色问题; 旅行售货员问题

例子: 0-1背包问题

问题:有n种物品,每种物品的重量和价值分别为 w_i, v_i 。如果背包的最大承重限制是B,每种物品至多放1个。怎么样选择放入背包的物品使得背包所装物品价值最大?

$$\max \sum_{i=1}^{n} v_i x_i$$

$$\begin{cases} \sum_{i=1}^{n} w_i x_i \le B \\ x_i \in \{0,1\}, 1 \le i \le n \end{cases}$$

解空间树与剪枝

- 动态规划法的剪枝策略
 - 考虑的搜索空间中子问题的重叠性
- 贪心算法的剪枝策略

0-1背包问题的搜索空间

什么是回溯法

- ■一种"通用的解法"
 - 将问题建模为解空间树

深度优先搜索

■ 搜索过程中剪枝

■ 适合解组合数相当大的

问题

回溯法的两个核心问题

1

如何构建解空间树?

2

如何设计剪枝函数?

回溯问题的解空间

对n个物品的0-1背包问题

■ 可能解由一个不等长向量组成

- 数
- 解向量的长度等于装入背包的物品个数
- 如n=3,解空间{(),(1),(2),(3),(1,2),(1,3),(2,3),(1,2,3)}
- 可能解由一个等长向量{x1,...,xn}组成
 - x_i 表示是否放入物品i
 - 如n=3,解空间为{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1)}

回溯问题的解空间

- 问题的解向量:
 - n元式($x_1,x_2,...,x_n$)的形式。
 - 显约束:对分量 x_i 的取值限定。
 - 隐约束:为满足问题的解而对不同分量之间 施加的约束。
 - ■解空间:满足显式约束条件的所有多元组

回溯问题的解空间树

- 解空间树
 - 问题的解空间的表示方式
 - 第0层为初始状态
 - 第*k*层为第*k*个分量做出选择后到达的状态
 - 从树的根节点到叶子节点的路径

n=3时的0-1背包 问题的解空间树

回溯问题的解空间树(0-1背包问题)

表示解(0,1,1)即选物品2和物品3,不选物品1

n=3时的0-1背包问题的解空间树

树中第i层与第i+1层节点之间的边上给出了对物品i的 选择结果,8个叶子代表8个可能解

解空间树的生成方法——深度优先

- 基于深度优先搜索
 - 英文缩写为DFS即Depth First Search
 - 对每一个可能的分支路径深入到不能再深入为止, 而且每个节点只能访问一次

解空间树的生成方法—广度优先

- 基于广度优先搜索(第六章分支限界算法)
 - 英文缩写为BFS即Breadth First Search
 - 从根开始,辐射状地优先遍历其周围较广的区域, 而且每个节点只能访问一次

0-1背包问题的实例

问题:有n种物品,每种物品的重量和价值分别为 w_i, v_i 。如果背包的最大承重限制是B,每种物品至多放1个。怎么样选择放入背包的物品使得背包所装物品价值最大?

实例: $V=\{12,11,9,8\}, W=\{8,6,4,3\}, B=13$

最优解: <0,1,1,1>, 价值: 28, 重量: 13

算法设计

- ■解: n维0-1向量 $\langle x_1, x_2, ..., x_n \rangle$ $x_i = 1$ ⇔物品i选入背包
- 搜索空间: 一棵0-1取值的二叉树, 有2ⁿ片 树叶
- 结点: $\langle x_1, x_2, ..., x_k \rangle$ (部分向量)
- 可行解: 满足约束条件(不超重)的解
- 最优解: 可行解中价值达到最大的解

实例

- $\mathfrak{h}\lambda$: $V=\{12,11,9,8\}, W=\{8,6,4,3\}, B=13$
- 2个可行解:
 - <0,1,1,1>, 价值: 28, 重量: 13
 - <1,0,1,0>, 价值: 21, 重量: 12
- 最优解: 〈0,1,1,1〉

4

搜索空间

- 实例: $V=\{12,11,9,8\}, W=\{8,6,4,3\}, B=13$
- 搜索空间: 2ⁿ片树叶

回溯法的基本思想

■问题的求解方式

- 应包括所有的可能解
- ■定义整个解空间完成
- ■确定易于搜索的解空间结构
- 深度优先方式遍历解空间并剪枝

回溯法是具有剪枝 函数的深度优先生 成法

回溯法的例子

■ M: n=3的0-1背包问题,

- 重量{20, 15, 10}
- 价值{20,30,25}
- 背包容量为25

■ 深度优先遍历

- A→B选物品1,则容量为5,价值为20;
- B→D, 因为选物品2放不下, 对以D为根的子树剪枝;
- 从D回溯到B,选右子树E,不选物2,价仍然为20;
- E→J, 选物3放不下, 所以以J为根的子树剪枝;
- 从J回溯到E,再由E→K,K不需容量,构成一个可行解(1,0,0), 价为20。

- 在搜索至树上任意一点时判断
 - 是否满足约束条件
 - 是否包含问题的(最优)解。

不包含

跳过对以该节点为根的子树的搜索,剪枝(pruning)

包含

进入以该节点为根的 子树,继续按深度优 先搜索。

- 在搜索至树上任意一点时判断
 - 是否满足约束条件
 - 是否包含问题的(最优)解。

- 两种用于剪枝的函数
 - 约束函数: 用约束条件剪去得不到可行解的子树
 - 限界函数: 用目标函数剪去得不到最优解的子树

利用剪枝函数可避免无效搜索, 使算法无需搜索整个搜索树。

回溯法算法框架—递归回溯

■ 递归形式

```
void backtrack (int t)
                    到达叶子节点,
  if (t>n) output(x);输出结果
  else
    for (int i=f(n, t); i <= g(n, t); i++)
       if (constraint(x,t)&&bound(x,t)) 剪枝函数
          backtrack(t+1);
```

f(n,t): 第t层未搜索过子树的起始编号 g(n,t): 第t层未搜索过子树的终止编号

迭代回溯

非递归的迭代形式。 void iterativeBacktrack (){ int t=1; **while** (t>0) { **if** $(f(n,t) \leq g(n,t))$ **for** (int i=f(n,t); i <= g(n,t); i++) x[t]=h(i);if (constraint(x,t)&&bound(x,t)) { 剪枝函数 if (solution(t)) output(x); 到达叶子节点, else {t++;break;} 输出结果 else t--; f(n,t): 第t层未搜索过子树的起始编号

g(n, t): 第t层未搜索过子树的终止编号

操作/x的值	

- 正被访问结点
- 未被访问结点
- 已访问结点


```
void backtrack (int t)
  if (t>=n) output(x);
  else
     for (int i=0; i<=1; i++) {
       x[t]=h(i);
       if (constraint(x,t)&&bound(x, t))
           backtrack(t+1);
```

t	操作/x的值
0	<1>

- 正被访问结点
- 〇已访问结点
- 未被访问结点

t	操作/x的值
0	<1>
1	<1, 1>

- 正被访问结点
- 未被访问结点
- 〇已访问结点


```
void backtrack (int t)
{
    if (t>=n) output(x);
    else
    for (int i=0; i<=1; i++) {
        x[t]=h(i);
        if (constraint(x,t)&&bound(x, t))
            backtrack(t+1);
    }</pre>
```

t	操作/x的值
0	<1>
1	<1, 1>
2	<1, 1, 1>

- 正被访问结点
- 未被访问结点
- 〇已访问结点


```
void backtrack (int t)
  if (t>=n) output(x);
  else
     for (int i=0; i<=1; i++) {
       x[t]=h(i);
       if (constraint(x,t)\&\&bound(x, t))
           backtrack(t+1);
```

t	操作/x的值
0	<1>
1	<1, 1>
2	<1, 1, 1>
3	输出<1,1,1>, 更新界

- 正被访问结点
- 未被访问结点
- 〇已访问结点

t	操作/x的值	
0	<1>	
1	<1, 1>	
2	<1, 1, 1>	
3	输出<1,1,1>, 更新界	
2	<1, 1, 0>	

- 正被访问结点
- 未被访问结点
- 〇已访问结点


```
void backtrack (int t)
  if (t>=n) output(x);
  else
     for (int i=0; i<=1; i++) {
       x[t]=h(i);
       if (constraint(x,t)\&\&bound(x, t))
           backtrack(t+1);
```

t	操作/x的值
0	<1>
1	<1, 1>
2	<1, 1, 1>
3	输出<1,1,1>, 更新界
2	<1, 1, 0>
3	输出 <1,1,0>, 更新界

- 正被访问结点
- 点 〇 已访问结点
- 未被访问结点

	backtrack(t+1),
}	
H (I	

t	操作/x的值
0	<1>
1	<1, 1>
2	<1, 1, 1>
3	输出<1,1,1>, 更新界
2	<1, 1, 0>
3	输出 <1,1,0>, 更新界
2	返回上一层

- 正被访问结点
- 未被访问结点
- 〇 已访问结点

}	1	0	
		\mathbf{F}_{0}	
H (I)	J K		N O

t	操作/x的值
0	<1>
1	<1, 1>
2	<1, 1, 1>
3	输出<1,1,1>, 更新界
2	<1, 1, 0>
3	输出 <1,1,0>, 更新界
2	返回上一层
1	<1,0>(剪枝)

- 正被访问结点
- 〇已访问结点
- 未被访问结点

回溯法的空间复杂度

- 回溯法的存储特点
 - 动态产生问题的解空间
 - 只保存从根结点到当前扩展结点的路径。

- 空间复杂度
 - 根到叶子的最长路径的长度为h(n)
 - 空间复杂性通常为O(h(n))。
 - 显式地存储整个解空间则需要 $O(2^{h(n)})$ 或O(h(n)!)

回溯法与其他算法比较

- 保证算法高效性的机制
 - 动态规划:避免计算重叠子问题
 - 贪心算法: 只考虑局部最优解
 - 回溯法:利用剪枝函数

回溯法与其他算法比较

- 保证算法高效性的机制
 - 动态规划:避免计算重叠子问题
 - 贪心算法: 只考虑局部最优解
 - 回溯法:利用剪枝函数

回溯法与其他算法比较

- 保证算法高效性的机制
 - 动态规划:避免计算重叠子问题
 - 贪心算法: 只考虑局部最优解
 - 回溯法:利用剪枝函数

回溯法的两个核心问题

1

如何构建解空间树?

2

如何设计剪枝函数?

排列树对: 旅行商问题

回顾: 旅行商问题

旅行商问题(Travelling Salesman Problem,TSP): 旅行家旅行n个城市,要各城市经历且经历一次,然后回到源点,求出最短路程。

规划快递线路

电路板钻洞

DNA测序

旅行商问题的描述

- 问题: 一个旅行商需要在n个城市销售商品,已知任两个城市之间的距离,求一条每个城市恰好经过一次的回路,使得总长度最小。
- 建模: 城市集 $C = \{c_1, c_2, ..., c_n\}$,距离 $d(c_i, c_j) = d(c_j, c_i)$
- 求解: 1,2,...,n的排列 $k_1,k_2,...,k_n$ 使得

$$\min \left\{ \sum_{i=1}^{n-1} d(c_{k_i}, c_{k_{i+1}}) + d(c_{k_n}, c_{k_1}) \right\}$$

实例

输入:

1

2

3

4

· $C=\{$ 计算机楼, 经管楼, 桃园, 梅园 $\}$

	计	经	桃	梅	
计	$\int_{-\infty}^{\infty}$	625	1100	770	
经	$\begin{bmatrix} \infty \\ 625 \end{bmatrix}$	∞	940	1000	距离 矩阵
桃	1100	940	∞	900	矩阵
梅	\ 770		900	∞	

经管楼 940 1100 625 1000 770 計算机楼 梅园宿舍

最优解: <1, 2, 3, 4>,

长度=625+940+900+770=3235

搜索空间

解空间树

思考:

如果有5个地点,解空间有多大?

旅行商问题的解空间树有(n-1)!片树叶

子集树与排列树

■ 子树集(subset trees):

- 从*n*个元素中找出满足某种性 质子集,相应解空间为子集 树。
- 如0-1背包问题

```
void backtrack (int t)
{
    if (t>n) output(x);
    else
        for (int i=0;i<=1;i++) {
            x[t]=i;
            if (legal(t)) backtrack(t+1);
        }</pre>
```

▪ 时间复杂度

- 通常各节点有相同数目子树, 记为C
- C=2时,子集树中共有2ⁿ个叶子,因此需要*O*(2ⁿ)时间。

子集树与排列树

- 排列树(permutation trees)
 - 当所给问题是确定*n*个元素满足 某种性质的排列时
 - 如旅行商问题

■ 时间复杂度

- 第1层每个节点有n个子节点
- 第2层每个节点有*n*-1个子节点
- 第n层每个节点有1个子点
- 有n!个叶子节点,需时间O(n!)

```
1 2 3
B C D
2 3 1 3 2 1
E F G H I J
3 2 3 1 1 2 4
K L M N O P
```

```
void backtrack (int t)
{
    if (t>n) output(x);
    else
        for (int i=t;i<=n;i++) {
            swap(x[t], x[i]);
            if (legal(t)) backtrack(t+1);
            swap(x[t], x[i]);
        }
}</pre>
```

回溯法的时间复杂度

■时间复杂度

■ 子集树: *O*(2ⁿ)

■ 排列树: O(n!)

- 蛮力穷举法,最坏时间复杂性不可指望。
 - ■通用性强
 - 平均时间性能较好
 - ■需设计较好的剪枝函数

n叉树: n皇后问题

国际象棋

- 皇后的走法
- 又称"皇后"。走 法是横、直、斜走 均可, 格数不限, 但不可越过其他棋 子。吃子和走法相 同。

在一个n×n的方格内放置n个皇后,使得没有两个皇后在同一行、同一列、也不在同一条45度的斜线上。问有多少种可能的布局?

并行内存系统 的存储模式

超大规模集 成电路设计

检测程序中 的死锁问题

n皇后问题的解空间

- 当n=4时
 - 解是4维向量⟨x₁, x₂, x₃, x₄⟩
 - 解: ⟨2,4,1,3⟩, ⟨3,1,4,2⟩

- 当n=8时
 - 解是8维向量,有92个解
 - 例如:⟨1,5,8,6,3,7,2,4⟩是解

n皇后问题的解空间树

■ 一棵n叉树(假设n=4)

树的特点:

- 每个节点有四个子节点, 表示选择1,2,3,4四个位置
- 第i层选择表示解向量中第i个分量的值
- 最深层的叶子是解
- 按深度优先次序遍历树,找到所有解

n皇后问题的算法实现

```
bool Queen::Place(int k)
    for (int j=1; j < k; j++)
        if ((abs(k-j) == abs(x[j]-x[k])) | | (x[j] == x[k]))
             return false;
    return true;
void Queen::Backtrack(int t)
{
    if (t>n) sum++;
    else
        for (int i=1; i<=n; i++) {
             x[t]=i;
             if (Place(t)) Backtrack(t+1);
```


问题	解性质	解描述向量	搜索空间	搜索方式	约束条件
n皇后	可行解	〈x ₁ , x ₂ , ··· , x _n 〉 x _i : 第 i 行列号	n叉树	深度优先搜索	彼此不攻击
0-1背包	最优解	$\langle x_1, x_2, \cdots, x_n \rangle$ $x_i \in \{0, 1\}$	子集树	深度优先搜索	不超过 总重量
旅行商	最优解	$\langle k_1, k_2, \cdots, k_n angle$ 1,2, \cdots , n 的排列	排列树	深度优先搜索	选没有经过 的城市

特点	搜索解	向量,不断扩 张部分向量	树	跳跃式遍历	约束条件,回溯判定
----	-----	-----------------	---	-------	-----------

回溯法的几个应用

装载问题

贪心法的最优装载问题(回忆)

■ 有一批集装箱 $\{a_1,a_2,...,a_n\}$ 要装上一艘载重量为C的轮船,其中集装箱 a_i 的重量为 W_i 。

■ 最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船。

贪心策略: 轻者优先

装载问题及其应用

- 有一批共n个集装箱要装上2艘载重量分别为 c_1 和 c_2 的轮船,其中集装箱i的重量为 w_i ,且

$$w_1 + w_2 + \dots + w_n \le c_1 + c_2$$

装载问题要求确定是否有一个合理的装载方案 可将这个集装箱装上这2艘轮船。如果有,找 出一种装载方案。

例子: 出国旅行的装载问题

装载问题的解空间

■ 实例:

- 物品的重量 $W = \langle 90,65,40,30,20,12,10 \rangle$
- 旅行箱允许载重 $c_1 = 152$, $c_2 = 130$

■问题的解

- 将物品1,3,6,7装第一个箱子
- $c_1 + c_3 + c_6 + c_7 = 152$
- 解的表示⟨1,0,1,0,0,1,0⟩

装载问题的求解思路

- 输入: 物品重量W, 旅行箱载重 c_1, c_2
 - 首先将第一个旅行箱尽可能装满;
 - 将剩余的物品装上第二个旅行箱。
 - 将第一个旅行箱尽可能装满等价于选取全体物品的一个子集,使该子集中物品重量之和最接近。

$$\max \sum_{i=1}^{n} w_i x_i$$

$$\text{s.t.} \sum_{i=1}^{n} w_i x_i \le c_1$$

$$x_i \in \{0,1\}, 1 \le i \le n$$

装载问题的解空间树

■ 一棵二叉树(子集树)

实例

- 物品重量W = 〈90,65,40,30,20,12,10〉
- $c_1 = 152, c_2 = 130$
- 最优解:〈1,0,1,0,0,1,1〉

装载问题的剪枝函数

- 可行性约束函数
- 限界函数
 - 有用的变量
 - 当前旅行箱内重量: cw
 - 当前最优解: bestw
 - 上界函数:剩余物品的重量 $r = w_{i+1} + w_{i+2} + \cdots + w_n$
 - ■剪枝条件:
 - 若 $cw + r \leq bestw$,则剪枝

装载问题的剪枝函数

■ 实例

■物品重量

$$W = \langle 90,65,40,30,20,12,10 \rangle$$

- $c_1 = 152, c_2 = 130$
- 最优解:〈1,0,1,0,0,1,1〉
- *bestw*=152

 $cw + r \le bestw$

cw=0

剪枝!

r=40+30+20+12+10=112

装载问题的算法实现

```
void backtrack (int i)
{// 搜索第i层结点
   if (i > n)
        更新最优解bestx,bestw;return;
                                       到达叶结点
    r -= w[i];
    if (cw + w[i] \le c) {
                             搜索左子树
       x[i] = 1;
       cw += w[i];
       backtrack(i + 1);
        cw -= w[i];
    if (cw + r > bestw)
       x[i] = 0;
       backtrack(i + 1);
    r += w[i];
```

批处理作业调度问题

批处理作业调度及其应用

- 给定*n*个作业的集合{*J*₁,*J*₂,...,*J_n*}。每个作业必须先由机器1处理,然后由机器2处理。
 - t_{ii} 是作业 J_i 需要机器j的处理时间。
 - F_i 是作业i的完成时间。
- 目标: 求最佳作业调度方案使作业完成时间和最小

Web服务器调度

网络交换机的流调度

批处理作业调度问题的解空间

■ 实例:

梅园打印店每天要处理很多打 印任务,分两步:

- 将文件拷贝至电脑
- 在打印机打印

问题: 给定一系列任务, 且任务的拷贝和打印时间 已知,请找出这些任务先 后顺序,使所有任务的总 完成时间最短。

t _{ji}	拷贝	打印
网络作业	2	1
概率作业	3	1
算法作业	2	3

批处理作业调度问题的解空间

■问题的解

可行解	(1,2,3)	(1,3,2)	(2,1,3)	(2,3,1)	(3,1,2)	(3,2,1)
完成时间	19	18	20	21	19	19

	任务	拷贝	打印
1	网络作业	2	1
2	概率作业	3	1
3	算法作业	2	3

批处理作业调度问题的解空间树

■ 实例

	任务	拷贝	打印
1	网络作业	2	1
2	概率作业	3	1
3	算法作业	2	3

- 解空间
 - 排列树 (n=3)
- ■剪枝函数
 - 当前方案的执行时间>最优解

批处理作业调度问题的算法实现

```
void Backtrack(int i)
       if (i > n) {
           for (int j = 1; j <= n; j++)
到达叶
              bestx[j] = x[j];
           bestf = f;
       else
           for (int j = i; j <= n; j++) {
               f1+=M[x[i]][1];
当前方案的
               f2[i] = ((f2[i-1]>f1)?f2[i-1]:f1)+M[x[i]][2];
执行时间
               f += f2[i];
               if (f < bestf) {
                                        M.
                                               // 各作业所需的处理时间
                   Swap(x[i], x[j]);
                                               // 当前作业调度
                                        Χ,
  若不被剪枝
                   Backtrack(i+1);
                                               // 当前最优作业调度
                                        bestx.
                   Swap(x[i], x[j]); }
                                        f2.
                                               // 机器2完成处理时间
               f1 - =M[x[\dot{1}]][1];
                                               // 机器1完成处理时间
                                        f1.
               f - = f2[i];
                                               // 完成时间和
                                        f,
                                               // 当前最优值
                                        bestf.
                                               // 作业数
                                        N
```

两个核心问题小结

- 定义解空间
 - 解向量为 $\langle x_1, x_2, ..., x_n \rangle$
 - 确定 x_i 的取值集合为 X_i
 - 子集树、排列树、*n*叉树

- ■定义剪枝函数
 - ■可行性约束函数
 - ■限界函数

回溯法的剪枝技巧

两种剪枝函数

1

可行性约束函数

2

限界函数

两种剪枝函数

1

可行性约束函数

2

限界函数

图着色问题及其应用(回顾)

- 给定无向连通图G=(V,E),是否可k种颜色对G中顶点着色,可使任意两个顶点着色不同。
 - 是与否的判定问题
 - 解向量: $\langle x_1, x_2, \dots, x_n \rangle$, x_i 表示顶点i所着颜色

地图着色

程序编译器的 寄存器分配算法

实例: 给中国地图着色

图的m着色问题的解空间树

■3着色问题——三叉树

- ■剪枝函数
 - 可行性约束函数

解空间有3⁵=243个结点, 而回溯只搜了其中14个结 点就找到了解。

两种剪枝函数

1

可行性约束函数

2

限界函数

回溯法与组合优化问题(回顾)

例如: 0-1背包问题

最大化
$$x_1 + 3x_2 + 5x_3 + 10x_4$$

最大化价值

满足约束条件

$$\begin{cases} 2x_1 + 3x_2 + 6x_3 + 7x_4 \le 10 & \text{ 重量约束} \\ x_i \in \{0,1\}, \ i = 1, 2, 3, 4 & \text{定义域约束} \end{cases}$$

- 组合优化问题
 - 目标函数(极大化或极小化)
 - 约束条件(解满足的条件)
 - 可行解: 搜索空间满足约束条件的解
 - 最优解: 使目标函数达极大(或极小)的可行解

■ 代价函数的计算位置

- 搜索树的结点
- 代价函数的值

- 对于极大化问题,以该点为根的子树所有可行解的值的上界(极小化问题为下界)
- 代价函数的性质
 - 对于极大化问题, 父结点代价不小于子结点的代价(极小化问题相反)

回溯法的界

■ 界的含义

当前得到可行解的目标函数的最大值(极小化问题相反)

■ 界的初值

■ 极大化问题初值为0(极小化问题为最大值)

■ 界的更新

■ 得到更好的可行解时

回溯法的剪枝函数

■剪枝函数

- 不满足约束条件(可行性约束函数)
- 代价函数值不优于当前的界(限界函数)

■ 界的更新

对于极大化问题,如果一个新的可行解的优化函数值大于(极小化问题为小于)当前的界,则把界更新为该可行解的值

4

回溯法剪枝的实例

- 0-1背包问题
 - 4种物品,重量 w_i 和价值 v_i 分别为
 - $v_1 = 1, v_2 = 3, v_3 = 5, v_4 = 10$
 - $w_1 = 2, w_2 = 3, w_3 = 6, w_4 = 7$
 - 背包重量限制为10

例如: 0-1背包问题

最大化
$$x_1 + 3x_2 + 5x_3 + 10x_4$$

满足约束条件

$$\begin{cases} 2x_1 + 3x_2 + 6x_3 + 7x_4 \le 10 \\ x_i \in \{0,1\}, & i = 1, 2, 3, 4 \end{cases}$$

通常的回溯法做法

