Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours portent sur les éléments précédés d'un astérisque (\star) sur le chapitre 17 : Analyse asymptotique. Les exercices porteront sur le chapitre 16 : polynômes et fractions rationnelles et/ou sur un développement limité simple en 0.

Chapitre 17: Analyse asymptotique

Toutes les preuves de ce chapitre peuvent être menées sous l'hypothèse de non annulation à partir d'un certain rang, ou dans un voisinage épointé de a.

Comparaison asymptotique de suites.

Domination

Relation de domination. $u = O(v) \iff u/v$ bornée. Transitivité de la relation de domination. Compatibilité avec les combinaisons linéaires à gauche, les produits et les fonctions puissances. Composition à droite.

Prépondérance

Relation de prépondérance. $u = o/(v) \iff u/v \to 0$. Transitivité de la relation de prépondérance. Compatbilité avec les combinaisons linéaires à gauche, les produits et les fonctions puissances. Si $\alpha < \beta, n^{\alpha} = o(n^{\beta})$. Si $|a| < |b|, a^n = o(b^n)$. Croissances comparées de l'exponentielle, des puissances et du logarithmes. (*) $a^n = o(n!)$, (*) $n! = o(n^n)$. Composition à droite.

Equivalents

Relation d'équivalence : $u \sim v$ lorsque u - v = o(v). $u \sim v \iff u/v \rightarrow 1$. La relation d'équivalence est une relation d'équivalence. Compatibilité avec le produit, avec les puissances. Si $u \le v \le w$ àpcr et $u \sim w$, alors $v \sim w$. Si $u \sim v$ et u de signe constant àpcr, alors v de ce même signe constant àpcr. Si $u \sim v$ et u admet une limite , alors v admet la même limite. (\star) Passage au logarithme dans les équivalents.

Développement asymptotique

Formule de Stirling. Exemples de développements asymptotiques : Suite $\tan(x_n) = x_n$ avec x_n dans $]n\pi - \pi/2$, $n\pi + \pi/2[$, $x_n = n\pi + \pi/2 - 1/(n\pi) + o(1/n)$. Suite $u_0 = 1$, $u_{n+1} = \sin(u_n)$ via Cesaro, $u_n \sim \sqrt{3/n}$.

Comparaison locale de fonctions de ${\mathbb R}$ dans ${\mathbb K}$

Extension de tous les résultats précédents au cas des fonctions en a un point adhérent à I (éventuellement infini).

Développements limités

Opérations

Notion de développement limité en $a \in I$. (\star) Unicité sous réserve d'existence. Partie régulière d'un $DL_n(a)$. Troncature, $DL_n(0)$ d'une fonction paire, impaire. (\star) Formule de Taylor-Young. Primitivation des DL, dérivation des DL sous hypothèse de n-dérivabilité en a. Combinaison linéaire de DL, produit de DL, composition de DL.

Catalogue usuel

$$(\star)$$
 $DL_n(0)$ de e^x , $\sin(x)$, $\cos(x)$, $\sin(x)$, $\cot(x)$, $\cot($

Etude locale de fonctions

Si f admet un $DL_p(a)$ de la forme $f(x) = f(a) + f'(a)(x-a) + a_p(x-a)^p + o((x-a)^p)$ avec $p \ge 2$ et $a_p \ne 0$, position relative de la courbe de f et de sa tangente en a au voisinage de a selon la parité de p et le signe de a_p . Dans le cas f'(a) = 0, présence ou non d'extremum local en a. Position par rapport à une asymptote.

* * * * *