

美团点评用户行为分析系统的构建与优化

沙山锐 美团点评数据平台团队

(D) 成为软件技术专家 全球软件开发大会 的必经之路

[北京站] 2018

2018年4月20-22日 北京·国际会议中心

一购票中,每张立减2040元

团购享受更多优惠

识别二维码了解更多

AICON

全球人工智能与机器学习技术大会

助力人工智能落地

2018.1.13 - 1.14 北京国际会议中心

扫描关注大会官网

下载极客时间App 获取有声IT新闻、技术产品专栏,每日更新

扫一扫下载极客时间App

SPEAKER INTRODUCE

孙业锐

美团点评高级技术专家 Apache Kylin PMC

美团点评数据平台查询引擎方向负责人

负责数据生产和查询引擎的改进优化和落地应用

专注于分布式计算,OLAP分析,Adhoc查询等领域

包括但不限于Hive、SparkSQL、Presto、Apache Kylin、Druid等

TABLE OF

CONTENTS 大纲

- 问题分析
- 算法思路
- 工程实现
- ・性能优化
- · 总结

问题背景

Growth Hacking

 Acquisition 用户获取
 Activation 激活注册
 Retention 活跃留存
 推荐分享
 空现模式

转化率

转化率分析 (有序漏斗)

路径: 首页-搜索-菜品-下单-支付

日期: 2017-11-11

时间窗口: 1小时

城市:北京

操作系统:iOS

2017.11.11

1小时

北京市

iOS

page = 首页

page = 搜索页 and keyword = 中餐

page = 菜品页

page = 下单页 and price > 100

page = 支付成功

数据探查

UUID	timestamp	page	city	keyword
AAA	100	首页	北京	
AAA	102	搜索页	北京	中餐
AAA	130	菜品页	北京	
BBB	102	首页	北京	
BBB	103	首页	北京	
BBB	140	搜索页	北京	西餐
CCC	101	首页	上海	
CCC	110	菜品页	上海	
CCC	151	搜索页	上海	中餐

直观解法1:Join

几亿条数据的多层Join 代价很高,时间很长

select count (distinct t1.id1), count (distinct t2.id2), count (distinct t3.id3) from (select uuid id1, timestamp ts1 from data where timestamp >= 1510329600 and timestamp < 1510416000 and page = '首页') t1 left join

(select uuid id2, timestamp ts2 from data where timestamp >= 1510329600 and timestamp < 1510416000 and page = '搜索页' and keyword = '中餐') t2 on t1.id1 = t2.id2 and t1.ts1 < t2.ts2 and t2.ts2 - t1.ts1 < 3600 left join

(select uuid id3, timestamp ts3 from data where timestamp >= 1510329600 and timestamp < 1510416000 and page = '菜品页') t3

on t1.id1 = t3.id3 and t2.ts2 < t3.ts3 and t1.ts1 < t3.ts3 and t3.ts3 - t1.ts1 < 3600

直观解法2:UDAF

几亿个UUID的聚合 没有高效的过滤条件

select

funnel(timestamp, 3600, '首页') stage0,

funnel(timestamp, 3600, '首页', '搜索页', keyword = '中餐') stage1,

from data

where timestamp > = 1510329600 and timestamp < 1510416000

group by uuid

问题推点

事件有序

序列匹配运算

复杂度超过 普通的集合运算

时间窗口

最大长度约束下的 序列匹配

丰富属性

埋点完全开放 属性基数超百万 维度下钻分析

数据规模

单天日志数百亿条 时间跨度6个月

坏消息

- 1. 完全随机的漏斗定义
 - 事件组合、时间窗口完全随机
 - 不能实现完全预计算

- 2. 不同粒度的深入分析
 - 多个层次维度,事件附加属性
 - 需要OLAP下钻和筛选能力

- 3. 规模与性能的矛盾
 - 在海量数据下实现交互式分析

好消息

- 1. 支持能力: 模式相对确定
 - 核心是集合运算和去重计数
 - 不需要完整的SQL能力

- 2. 使用场景: 查询并发度低
 - 主要是人工探索式分析
 - 可以调度所有资源

- 3. 数据特点:入库不会修改
 - 可能构建索引

- 4. 业务特点:指标收敛较快
 - 重点分析转化率偏低的场景
 - 可能快速过滤

问题本质

多维分析和序列匹配下的去重计数

实现目标

实现多维分析和序列匹配下的去重计数、

支持海量数据、交互式响应、

可能利用索引或有限预处理等手段、充分利用资源的

算法和系统

TABLE OF

CONTENTS 大纲

- 问题分析
- 算法思路
- 工程实现
- ・性能优化
- · 总结

对应策略

根据多个维度做筛选

UUID内事件 按照时间排序 漏斗每层节点 符合条件的UUID计数

实现多维分析和序列匹配下的去重计数、

支持海量数据、交互式响应、

可能利用索引或有限预处理等手段、充分利用资源的

算法和系统

数据探查

UUID的事件没有排序 序列匹配困难

UUID	timestamp	page	city	keyword
AAA	100	首页	北京	
AAA	102	搜索页	北京	中餐
AAA	130	菜品页	北京	
BBB	102	首页	北京	
BBB	103	首页	北京	
BBB	140	搜索页	北京	西餐
CCC	101	首页	上海	
CCC	110	菜品页	上海	
CCC	151	搜索页	上海	中餐

数据整理

需要遍历每个UUID 维度筛选和序列匹配都很慢

UUID	event1	event2	event3	event n
AAA	ts = 100 page = 首页 city = 北京	ts = 102 page = 搜索页 city = 北京 keyword = 中餐	ts = 130 page = 菜品页 city = 北京	
BBB	ts = 102 page = 首页 city = 北京	ts = 103 page = 首页 city = 北京	ts = 140 page = 搜索页 city = 北京 keyword = 西餐	
CCC	ts = 101 page = 首页 city = 上海	ts = 110 page = 菜品页 city = 上海	ts = 151 page = 搜索页 city = 上海 keyword = 中餐	

构建索引

维度对应的UUID集合需遍历 序列匹配更困难

key	value1	value2	value3	value n
page = 首页	UUID = AAA ts = 100	UUID = BBB ts = 102	UUID = CCC $ts = 101$	UUID = BBB ts = 103
page = 搜索页	UUID = AAA ts = 102	UUID = BBB ts = 140	UUID = CCC $ts = 151$	
page = 菜品页	UUID = CCC $ts = 110$	UUID = AAA $ts = 130$		
city = 北京	UUID = AAA ts = 100	UUID = AAA $ts = 102$	UUID = BBB ts = 102	UUID = BBB ts = 103
city = 上海	UUID = CCC $ts = 101$	UUID = CCC ts = 110	UUID = CCC $ts = 151$	
keyword =				

索引优化

基于UUID集合快速过滤,迅速收敛 UUID对应的时间序列集中读取

key	UUID collection	sequence
page = 首页	AAA,BBB,CCC	AAA(100) , BBB(102,103), CCC(101)
page = 搜索页	AAA,BBB,CCC	AAA(102), BBB(140), CCC(151)
page = 菜品页	AAA,CCC	AAA(130),CCC(110)
city = 北京	AAA,BBB	AAA(100,102,130) , BBB(102,103,140)
city = 上海	CCC	CCC(101,110,151)
keyword =		

索引设计

```
page = 首页
               bitmap:1,3,5,7,9,.....
               1: 1493568000, 1493609880, ......
               3: 1493696280, 1493699880, .....
   12768
               page = 搜索页
              bitmap: 2, 4, 6, 8, 10, .....
               2: 1493568722, 1493609873, ......
               4: 1493620787, 1493669382, ......
   15162 -
               keyword = 中餐
               bitmap: 1, 2, 3, 5, 7, .....
               1: 1493568000, 1493609880, .....
               2: 1493568722, 1493609873, ......
               Trailer
               page = 首页:
                             0, 12768
               page = 搜素页: 12768, 2394
               keyword = 中餐: 15162, 379105
Index File
```

UUID Collection使用Bitmap存储用于快速过滤数据

每个UUID的sequence编码存储 用于序列和时间窗口匹配

组合索引

{"expr": "page = 首页"},

{"expr": "page = 搜索页 and keyword in (中餐, 西餐)"},

{"expr": "page = 菜品页"}

索引数据 page = 首页

AND组合索引 child = 2

索引数据 page = 菜品页

索引数据 page = 搜索页

OR组合索引 child = 2

> 索引数据 keyword = 中餐

> 索引数据 keyword = 西餐

查询过程

集合交集 读取索引 序列匹配 读取索引 索引数据 时间序列 最终集合 UUID集合 过滤后集合 page = 首页 读取索引 读取索引 集合交集 序列匹配 索引数据 过滤后集合 时间序列 UUID集合 最终集合 page = 搜索页 集合交集 读取索引 读取索引 序列匹配 索引数据 过滤后集合 最终集合 时间序列 UUID集合 page = 菜品页

序列匹配

"startTimestamp": 100, "endTimestamp": 130, "maxWindow": 10

page = 首页 AAA的时间序列

page = 搜索页 AAA的时间序列

page = 菜品页 AAA的时间序列

核心思路

查询条件

索引构建

维度筛选的表达

基于bitmap 快速过滤

通过时间戳序列匹配

按照属性值分别构建索引

包括bitmap和 sequence两部分 多个维度表达为 AND/OR组合条件

转换为索引树

维度间的过滤 节点间的过滤

非常适合快速收敛

匹配过程需要回溯

TABLE OF

CONTENTS 大纲

- 问题分析
- 算法思路
- 工程实现
- ・性能优化
- · 总结

具体需求

- ·分布式
- · REST服务
- 计算框架
- 文件系统

架构权衡

简单

简单易用

快速落地

成熟

成熟稳定

应用广泛

生态活跃

可控

掌控能力

深度定制

可调

工程优化

持续迭代

实际选择

Spring

应用广泛 文档丰富 简单易用

Netty/Jetty

Spark

分布式调度框架 掌控力强 可高度定制 专注逻辑

MapReduce

Alluxio

部署简单相对轻量级 异构存储 性能优化空间

HDFS/HBase

整体架构

工程要点

查询条件

-

属性表达树 的组合

基于Bitmap 快速过滤

通过时间戳序列匹配

采用Json格式 REST服务接收 请求

Antlr解析条件 生成表达树 使用 RoaringBitmap 易用,快速 采用差值存储 平均长度由8字节 降到1.5字节

TABLE OF

CONTENTS 大纲

- 问题分析
- 算法思路
- 工程实现
- 性能优化
- · 总结

核心关注

眼镜

尺子

资源利用率

JVM

有效Profiling手段

JStack/JStat
JMap/JHat
MAT/JMC

可量化的指标

时延/吞吐

CPU 内存 磁盘 网络

内存 GC 方法热点

基本优化:几分钟

Query Request

REST Server

SparkContext

Master

Spark Master

Alluxio Master

Slave

Spark Worker

Alluxio Worker

Slave

Spark Worker

数据按照UUID分区

Spark长作业

Alluxio Worker

Slave

Spark Worker

Alluxio Worker

本地化调度:分钟内

内存映射: 10秒内

Unsafe调用: 5秒内

UserCode
Slice.getIntUnchecked()

NativeCode
public native int getInt(long var1)

优化历程

TABLE OF

CONTENTS 大纲

- 问题分析
- 算法思路
- 工程实现
- ・性能优化
- 总结

发展现状

数百亿事件

亿级UV

超百万属性埋点

数百次查询

TP95 小于5秒

方法总结

项目阶段	方法要点	实际应用
需求分析	理解问题本质 基于本质确定目标	有序漏斗的本质理解 在此基础上确定实现目标
算法设计	正反分析,确定边界问题拆解与转化,方案借鉴	坏消息和好消息 直观解法入手,逐步优化思路
工程实现	选型权衡的原则和方法	简单、成熟、可控、可调
优化迭代	眼镜和尺子 持续抓瓶颈	Profiling手段和可量化的指标 常见的可能瓶颈和对应优化方法

未规划

· 代码开源,社区共建

- 功能与性能的迭代
 - 留存统计和路径分析
 - 更高的执行效率
 - 更紧凑的存储格式
 - 更合理的系统架构

加入我们

·我们有

近万台机器,数百PB数据

数十业务线,数百分析师

业界突破:HDFS异地跨机房,YARN调度百倍性能提升,Spark核心性能优化

·我们要

追求极致,持续深耕的领域专家

充满激情,挑战自我的技术新兵

· 联系方式: sunyerui@{meituan.com, gmail.com, apache.org}

THANKYOU

如有需求,欢迎至[讲师交流会议室]与我们的讲师进一步交流

