Three improvements to the Reduceron

Matthew Naylor and Colin Runciman University of York

(Talk given at HFL, March 2009)

The Reduceron

A custom computer designed to run functional programs,

not restricted by conventional architectural constraints,

implemented on an FPGA using a functional language.

This talk

Graph reduction and widening the von Neumann bottleneck.

Three improvements to the Reduceron since September 2008.

How the Reduceron is described.

Suppose that **f** is defined by

$$f x y z = g y (h z x)$$

where **g** and **h** are functions and the following machine-state arises during reduction.

Operation: f <- Stack[0]

g <- Code[f]

g -> Heap

Count: 3

Operation: arg <- Code[f+1]

b <- Stack[arg]</pre>

b -> Heap

Count: 6

Operation:

Count:

Stack Heap **Program** @3 @1 @2 b b a

Operation: h <- Code[f+3]

h -> Heap

Count: 10

Operation: arg <- Code[f+4]

c <- Stack[arg]</pre>

c -> Heap

Count: 13

Operation: arg <- Code[f+5]

a <- Stack[arg]</pre>

a -> Heap

Count: 16

The von Neumann Bottleneck

One word at a time.

Each of the 16 memory transactions is done sequentially.

Widening the Bottleneck

Widening the Bottleneck, again

Applying a function "in one go"

Reduceron, September 2008

Operation	Clock cycles
Apply Unwind Swap Primitive Apply	3 + n/8 2 2 Includes updating

Where n = number of nodes in function body.

Reduceron, September 2008

Wide Reduceron

(uses wide, parallel memories)

5x faster than

Narrow Reduceron

(single connection to memory)

Wide Reduceron

at 92MHz on Virtex-II FPGA

5x slower than

GHC - 02

(advanced optimising compiler) at 2800MHz on Pentium-4 PC

(On "symbolic programs".)

Improvement 1

Heap and stack layout

Making a wide memory: Method 1

Cannot address individual words, only blocks of 4.

Making a wide memory: Method 2

Can address *any 4* consecutive words, but extra logic is needed which may need buffered.

Old Heap Layout

Used Method 2, so the expression

Cons
$$(f x)$$
 $(map f xs)$

was represented in memory as

Great utilisation, but buffer on memory bus resulted in *2-cycle reads*.

New Heap Layout

Uses Method 1, so the expression

Cons
$$(f x)$$
 $(map f xs)$

is represented in memory as

Poor utilisation, but allows 1-cycle reads.

Also permits updating without indirections.

Old Stack Layout

Stack cannot have gaps, so *must* use <u>Method 2!</u>

Now 2 cycles are needed to read from stack...

New Stack Layout

But top elements can be stored in registers.

Top elements can be read in 0 cycles.

(This is the critical path in my current design – suggestions welcome!)

New clock counts

Using new heap/stack layout (& spineless reduction).

Operation	Clock cycles
Apply Unwind	[n/2] 1
Update	1
Swap	1
Primitive Apply	1

Where n = number of applications in function body.

Clock frequency not affected.

Improvement 2

Dealing with case expressions

Case expressions

In general

Example

```
case e of C_1 \ v_1 ... v_{\#c_1} \ -> \ e_1 : C_n \ v_1 ... v_{\#c_n} \ -> \ e_n
```

```
app xs ys =

case xs of

Cons v_1 v_2 ->

Cons v_1 (app v_2 ys)

Nil -> ys
```

Case expressions

In general

Example

case e of $C_1 \ v_1...v_{\#c_1} \ -> \ e_1$: $C_n \ v_1...v_{\#c_n} \ -> \ e_n$

app xs ys =

case xs of

Cons
$$v_1$$
 v_2 ->

Cons v_1 (app v_2 ys)

Nil -> ys

Free variable with respect to case expression.

Case elimination, part 1

(The Scott/Parigot/Jansen/... encoding.)

case e of

$$C_1 \ v_1...v_{\#c_1} \rightarrow e_1$$

$$C_n v_1...v_{\#c_n} \rightarrow e_n$$

e (alt₁
$$\nu$$
(e₁))
:
(alt_n ν (e_n))

where

alt₁
$$\nu(e_1) v_1...v_{\#c_1} = e_1$$

:
alt_n $\nu(e_n) v_1...v_{\#c_n} = e_n$

 ν (e) denotes the *free variables* in e.

Case elimination, part 1, example


```
app xs ys = xs (alt<sub>1</sub> ys) ys
alt<sub>1</sub> ys v_0 v_1 = Cons v_0 (app v_1 ys)
```

Case elimination, part 2

(The Scott/Parigot/Jansen/... encoding.)

For each constructor C₁, introduce function

$$C_i V_1...V_{\#C_i} k_1...k_n = k_i V_1...V_{\#C_i}$$

For example, the list constructors:

Case elimination, bigger example

```
data Exp = X
            | Neg Exp
            Add Exp Exp
            | Sub Exp Exp
eval x y e =
   case e of
     X \rightarrow x
     Y -> y
     Neg n \rightarrow 0 - \text{eval } x y n
     Add n m \rightarrow eval x y n + eval x y m
     Sub n m -> eval x y n - eval x y m
```

Case elimination, bigger example

```
X \times y \text{ neg add sub} = x
Y \times y \text{ neg add sub} = y
Neg n m x neg add sub = neg n
Add n m x y neg add sub = add n m
Sub n m k y neg add sub = sub n m
eval x y e = e x y (negAlt x y)
                   (addAlt x y)
                    (subAlt x y)
negAlt x y n = 0 - eval x y n
addAlt x y n m = eval x y n + eval x y m
subAlt x y n m = eval x y n - eval x y m
```

Large arities. Large bodies, with repetition.

Abstraction

```
e \times y (alt_3 \times y) (alt_4 \times y) (alt_5 \times y)
= \{alt_1 \times y = x, alt_2 \times y = y\}
     e (alt<sub>1</sub> x y) (alt<sub>2</sub> x y)
          (alt<sub>3</sub> x y) (alt<sub>4</sub> x y) (alt<sub>5</sub> x y)
= { abstraction }
                                                     No repetition
     e alt<sub>1</sub> alt<sub>2</sub> alt<sub>3</sub> alt<sub>4</sub> alt<sub>5</sub> x y
                                          Row of constants
```

Case elimination, revisited

For each case alternative, introduce function

$$alt_i v_1...v_{\#C_i} \mathcal{V}(e_1...e_n) = e_i$$

Transform each case expression to

e alt
$$_1$$
 $\mathcal{V}(e_1...e_n)$ (Case alts are *aligned* – next slide)

Evaluate constructor C; to function at address

Simple addition - can be computed in 0 cycles?

Jumping in 0 cycles, part 1

The code for app (list append)

```
app xs ys = xs alt<sub>1</sub> ys
alt<sub>1</sub> x xs ys = Cons x (app xs ys)
alt<sub>2</sub> ys = ys
```

is represented in memory as follows.

Jumping in 0 cycles, part 2

Evaluate constructor C; to function at address

Not such a simple addition!

Must fetch **alt**₁ from stack, **#C**₁ places from the top

Solution: store **alt**₁ on a separate (parallel) stack.

Clock frequency not affected.

Improvement 3

Dynamic update avoidance

Shared applications

Distinguish between

- unshared applications, and
- possibly-shared applications.

Idea: When an unshared application is reduced to normal form, no update is needed.

Dynamic v. Static Analysis

"Create all closures as [unshared], and dynamically change their tag to [possibly-shared] if they become shared. We call this operation dashing."

"In general we strongly suspect that the cost of **dashing** greatly outweighs the advantages of precision when compared to the [static analysis] method."

Dashing when applying

Before

Stack

X

g

Heap

Program

@2 @3 **@1 @3**

Stack

Heap

Program

After

a

a:

@1 @3

Dashing when unwinding

Stack Heap **Before** b Stack Heap b After

Dashing when updating

Dynamic v. Static Analysis

In the Reduceron, dynamic update avoidance is rather cheap – it's just bit-flipping under some simple-to-compute conditions.

Clock frequency not affected.

How the Reduceron is described

Description language

York Lava

- Multi-output primitives
- RAMs
- Modular easy to add new primitives and back-ends
- Behavioural description
- Statically-sized bit-vectors

My dream...

Compile small-step machine semantics directly to efficient hardware.

For example, here's the unwind rule from a structural operational semantics.

```
<APP addr:s, u, h, c>
--> <(h!addr) ++ s, (length s, addr):u, h, c>
```

But for now...

```
unwind top s u h c doUpdate =
 do top <== n
    vpush len ns s
    upush (mkUpdate (stack$ize s)
                    (apAddr\$ val top)) u
    doUpdate <== (arity n |> len)
    cread (funAddr n) c
    hreadB (apAddr n) h
    tick
  where
    app = heapOutB h
    len = appArity app
    (n:ns) = appNodes app
```

Argh —pre-fetching and pre-computing!

Preliminary results and our to-do list

Performance improvement

Program	Speed-up
Queens	2.1
Queens ₂	2.9
PermSort	2.9
MSS	2.7
PropInsert	3.0
Sudoku	4.0
Adjoxo	3.1
While	2.8
Clausify	3.6
Average	3.0

To-do list

- Critical path reduction
- Parallel garbage collection (low or high-level?)
- Compile-time optimisation
 - Supercompilation (Neil Mitchell, Jason Reich)
- Speculative evaluation of primitive redexes
- Multi-core Reduceron
- Relax memory restrictions
 - large, off-chip heap
- Efficient hardware from small-step semantics?