Cutting-plane Method and Its Amazing Oracles

@luk036

2022-11-03

When you have eliminated the impossible, whatever remains, however improbable, must be the truth.

Sir Arthur Conan Doyle, stated by Sherlock Holmes

Introduction

Common Perspective of Ellipsoid Method

- It is widely believed to be inefficient in practice for large-scale problems.
 - Convergent rate is slow, even when using deep cuts.
 - Cannot exploit sparsity.
- It has since then supplanted by the interior-point methods.
- Used only as a theoretical tool to prove polynomial-time solvability of some combinatorial optimization problems.

But...

- The ellipsoid method works very differently compared with the interior point methods.
- Only require a *separation oracle*. Can play nicely with other techniques.
- While the ellipsoid method itself cannot take advantage of sparsity, the oracle can.

Consider the ellipsoid method when...

- The number of optimization variables is moderate, e.g. ECO flow, analog circuit sizing, parametric problems
- The number of constraints is large, or even infinite
- Oracle can be implemented effectively.

class: middle, center

Cutting-plane Method Revisited

Convex Set

.pull-left70[

- Let $\mathcal{K} \subseteq \mathbb{R}^n$ be a convex set.
- Consider the feasibility problem:
 - Find a point $x^* \in \mathbb{R}^n$ in \mathcal{K} ,
 - or determine that \mathcal{K} is empty (i.e., there is no feasible solution)

].pull-right30[

Figure 1: image

]

Separation Oracle

.pull-left70

- When a separation oracle Ω is queried at x_0 , it either
 - asserts that $x_0 \in \mathcal{K}$, or
 - returns a separating hyperplane between x_0 and \mathcal{K} :

$$g^{\mathsf{T}}(x-x_0) + \beta \leq 0, \beta \geq 0, g \neq 0, \ \forall x \in \mathcal{K}$$

] .pull-right30[

Separation Oracle (cont'd)

- (g, β) is called a *cutting-plane*, or cut, because it eliminates the half-space $\{x \mid g^{\mathsf{T}}(x x_0) + \beta > 0\}$ from our search.
- If $\beta = 0$ (x_0 is on the boundary of halfspace that is cut), the cutting-plane is called *neutral cut*.
- If $\beta > 0$ (x_0 lies in the interior of halfspace that is cut), the cutting-plane is called $deep\ cut$.

Figure 2: image

• If $\beta < 0$ (x_0 lies in the exterior of halfspace that is cut), the cutting-plane is called $shallow\ cut$.

Subgradient

- \mathcal{K} is usually given by a set of inequalities $f_j(x) \leq 0$ or $f_j(x) < 0$ for $j = 1 \cdots m$, where $f_j(x)$ is a convex function.
- A vector $g \equiv \partial f(x_0)$ is called a subgradient of a convex function f at x_0 if $f(z) \geq f(x_0) + g^{\mathsf{T}}(z x_0)$.
- Hence, the cut (g,β) is given by $(\partial f(x_0),f(x_0))$

Remarks:

• If f(x) is differentiable, we can simply take $\partial f(x_0) = \nabla f(x_0)$

Key components of Cutting-plane method

- A cutting plane oracle Ω
- A search space S initially large enough to cover K, e.g.
 - Polyhedron $\mathcal{P} = \{z \mid Cz \leq d\}$
 - Interval $\mathcal{I} = [l, u]$ (for one-dimensional problem)
 - Ellipsoid $\mathcal{E} = \{z \mid (z x_c)P^{-1}(z x_c) \le 1\}$

Generic Cutting-plane method

- Given initial \mathcal{S} known to contain \mathcal{K} .
- Repeat
 - 1. Choose a point x_0 in \mathcal{S}
 - 2. Query the cutting-plane oracle at x_0
 - 3. If $x_0 \in \mathcal{K}$, quit
 - 4. Else, update \mathcal{S} to a smaller set that covers:

$$\mathcal{S}^+ = \mathcal{S} \cap \{ z \mid g^{\mathsf{T}}(z - x_0) + \beta \le 0 \}$$

5. If $S^+ = \emptyset$ or it is small enough, quit.

From Feasibility to Optimization

minimize
$$f_0(x)$$
, subject to $x \in \mathcal{K}$

- The optimization problem is treated as a feasibility problem with an additional constraint $f_0(x) \leq t$.
- $f_0(x)$ could be a convex or a quasiconvex function.
- t is also called the best-so-far value of $f_0(x)$.

Convex Optimization Problem

• Consider the following general form:

minimize
$$t$$
,
subject to $\Phi(x,t) \leq 0$,
 $x \in \mathcal{K}$,

where $\mathcal{K}_t' = \{x \mid \Phi(x,t) \leq 0\}$ is the t-sublevel set of $\{x \mid f_0(x) \leq t\}$.

- Note: $\mathcal{K}_t' \subseteq \mathcal{K}_u'$ if and only if $t \leq u$ (monotonicity)
- One easy way to solve the optimization problem is to apply the binary search on t.

Shrinking

• Another possible way is, to update the best-so-far t whenever a feasible solution x' is found by solving the equation:

$$\Phi(x', t_{\text{new}}) = 0.$$

• If the equation is difficult to solve but t is also convex w.r.t. Φ , then we may create a new variable, say z and let $z \leq t$.

Generic Cutting-plane method (Optim)

- Given initial \mathcal{S} known to contain \mathcal{K}_t .
- Repeat
 - 1. Choose a point x_0 in \mathcal{S}
 - 2. Query the separation oracle at x_0
 - 3. If $x_0 \in \mathcal{K}_t$, update t such that $\Phi(x_0, t) = 0$.
 - 4. Update S to a smaller set that covers:

$$\mathcal{S}^+ = \mathcal{S} \cap \{z \mid g^\mathsf{T}(z-x_0) + \beta \leq 0\}$$

5. If $S^+ = \emptyset$ or it is small enough, quit.

Example - Profit Maximization Problem

This example is taken from [@Aliabadi2013Robust].

$$\label{eq:posterior} \begin{array}{ll} \text{maximize} & p(Ax_1^\alpha x_2^\beta) - v_1 x_1 - v_2 x_2 \\ \text{subject to} & x_1 \leq k. \end{array}$$

- $p(Ax_1^{\alpha}x_2^{\beta})$: Cobb-Douglas production function
- p: the market price per unit
- A: the scale of production

- α, β : the output elasticities
- x: input quantity
- v: output price
- k: a given constant that restricts the quantity of x_1

Example - Profit maximization (cont'd)

- The formulation is not in the convex form.
- Rewrite the problem in the following form:

$$\begin{array}{ll} \text{maximize} & t \\ \text{subject to} & t + v_1 x_1 + v_2 x_2 \leq p A x_1^\alpha x_2^\beta \\ & x_1 \leq k. \end{array}$$

Profit maximization in Convex Form

• By taking the logarithm of each variable:

$$-y_1 = \log x_1, y_2 = \log x_2.$$

• We have the problem in a convex form:

$$\begin{array}{ll} \max & t \\ \text{s.t.} & \log(t+v_1e^{y_1}+v_2e^{y_2})-(\alpha y_1+\beta y_2) \leq \log(pA) \\ & y_1 \leq \log k. \end{array}$$

Area of Applications

- Robust convex optimization
 - oracle technique: affine arithmetic
- Parametric network potential problem
 - oracle technique: negative cycle detection
- Semidefinite programming
 - oracle technique: Cholesky or LDL^{T} factorization

class: middle, center

Robust Convex Optimization

Robust Optimization Formulation

• Consider:

$$\label{eq:sup_q} \begin{split} & \text{minimize} & & \sup_{q \in \mathbb{Q}} f_0(x,q), \\ & \text{subject to} & & f_j(x,q) \leq 0, \ \forall q \in \mathbb{Q}, \ j=1,2,\cdots,m, \end{split}$$

where q represents a set of varying parameters.

• The problem can be reformulated as:

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & f_0(x,q) < t \\ & f_j(x,q) \leq 0, \ \forall q \in \mathbb{Q}, \ j=1,2,\cdots,m. \end{array}$$

Example - Profit Maximization Problem (convex)

$$\begin{aligned} & \max \quad t \\ & \text{s.t.} \quad & \log(t+\hat{v}_1e^{y_1}+\hat{v}_2e^{y_2}) - (\hat{\alpha}y_1+\hat{\beta}y_2) \leq \log(\hat{p}\,A) \\ & y_1 \leq \log\hat{k}, \end{aligned}$$

- Now assume that:
 - $\hat{\alpha}$ and $\hat{\beta}$ vary $\bar{\alpha} \pm e_1$ and $\bar{\beta} \pm e_2$ respectively.
 - $-\hat{p}$, \hat{k} , \hat{v}_1 , and \hat{v}_2 all vary $\pm e_3$.

Example - Profit Maximization Problem (oracle)

By detail analysis, the worst case happens when:

- $p = \bar{p} e_3, k = k e_3$
- $\begin{array}{ll} \bullet & v_1 = \bar{v}_1 + e_3, \, v_2 = \bar{v}_2 + e_3, \\ \bullet & \text{if } y_1 > 0, \, \alpha = \bar{\alpha} e_1, \, \text{else } \alpha = \bar{\alpha} + e_1 \end{array}$
- if $y_2 > 0$, $\beta = \bar{\beta} e_2$, else $\beta = \bar{\beta} + e_2$

Oracle in Robust Optimization Formulation

- The oracle only needs to determine:
 - If $f_i(x_0, q) > 0$ for some j and $q = q_0$, then * the cut $(g,\beta)=(\partial f_j(x_0,q_0),f_j(x_0,q_0))$
 - If $f_0(x_0,q) \ge t$ for some $q=q_0$, then

 - * the cut $(g, \beta) = (\partial f_0(x_0, q_0), f_0(x_0, q_0) t)$
 - Otherwise, x_0 is feasible, then
 - * Let $q_{\max} = \operatorname{argmax}_{q \in \mathbb{Q}} f_0(x_0, q)$.
 - $*\ t:=f_0(x_0,q_{\max}).$
 - * The cut $(g,\beta) = (\partial f_0(x_0, q_{\text{max}}), 0)$

Remark:

• for more complicated problems, affine arithmetic could be used [@liu2007robust].

class: middle, center

Multi-parameter Network Problem

Parametric Network Problem

Given a network represented by a directed graph G = (V, E).

Consider:

$$\begin{array}{ll} \text{find} & x, \textcolor{red}{u} \\ \text{subject to} & \textcolor{red}{u_j - u_i} \leq h_{ij}(x), \ \forall (i, j) \in E, \end{array}$$

- $h_{ij}(x)$ is the concave function of edge (i, j),
- Assume: network is large, but the number of parameters is small.

Network Potential Problem (cont'd)

Given x, the problem has a feasible solution if and only if G contains no negative cycle. Let \mathcal{C} be a set of all cycles of G.

$$\begin{aligned} & \text{find} & & x \\ & \text{subject to} & & w_k(x) \geq 0, \forall C_k \in \mathcal{C}, \end{aligned}$$

- C_k is a cycle of G
- $w_k(x) = \sum_{(i,j) \in C_k} h_{ij}(x)$.

Negative Cycle Finding

There are lots of methods to detect negative cycles in a weighted graph [@cherkassky1999negative], in which Tarjan's algorithm [@Tarjan1981negcycle] is one of the fastest algorithms in practice [@alg:dasdan_mcr; @cherkassky1999negative].

Oracle in Network Potential Problem

- The oracle only needs to determine:
 - If there exists a negative cycle C_k under x_0 , then
 - * the cut $(g,\beta) = (-\partial w_k(x_0), -w_k(x_0))$
 - Otherwise, the shortest path solution gives the value of u.

Example - Optimal Matrix Scaling [@orlin1985computing]

- Given a sparse matrix $A = [a_{ij}] \in \mathbb{R}^{N \times N}$.
- Find another matrix $B = UAU^{-1}$ where U is a nonnegative diagonal matrix, such that the ratio of any two elements of B in absolute value is as close to 1 as possible.
- Let $U = \text{diag}([u_1, u_2, \dots, u_N])$. Under the min-max-ratio criterion, the problem can be formulated as:

```
 \begin{array}{ll} \text{minimize} & \pi/\psi \\ \text{subject to} & \psi \leq u_i | a_{ij} | u_j^{-1} \leq \pi, \ \forall a_{ij} \neq 0, \\ & \pi, \psi, u, \ \text{positive} \\ \text{variables} & \pi, \psi, u \,. \end{array}
```

Optimal Matrix Scaling (cont'd)

By taking the logarithms of variables, the above problem can be transformed into:

```
 \begin{array}{ll} \text{minimize} & t \\ \text{subject to} & \pi' - \psi' \leq t \\ & \underline{u_i' - u_j'} \leq \pi' - a_{ij}', \; \forall a_{ij} \neq 0 \,, \\ & \underline{u_j' - u_i'} \leq a_{ij}' - \psi', \; \forall a_{ij} \neq 0 \,, \\ \text{variables} & \pi', \psi', \underline{u}' \,. \end{array}
```

where k' denotes $\log(|k|)$ and $x = (\pi', \psi')^{\mathsf{T}}$.

Example - clock period & yield-driven co-optimization

$$\begin{split} & \text{minimize} & & T_{\text{CP}}/\beta \\ & \text{subject to} & & u_i - u_j \leq T_{\text{CP}} - F_{ij}^{-1}(\beta), \quad \forall (i,j) \in E_s \,, \\ & & u_j - u_i \leq F_{ij}^{-1}(1-\beta), \qquad \forall (j,i) \in E_h \,, \\ & & T_{\text{CP}} \geq 0, \, 0 \leq \beta \leq 1 \,, \\ & \text{variables} & & T_{\text{CP}}, \beta, u. \end{split}$$

- Note that $F_{ij}^{-1}(x)$ is not concave in general in [0,1].
- Fortunately, we are most likely interested in optimizing circuits for high yield rather than the low one in practice.
- Therefore, by imposing an additional constraint to β , say $\beta \geq 0.8$, the problem becomes convex.

Example - clock period & yield-driven co-optimization

The problem can be reformulated as:

```
 \begin{split} & \text{minimize} & & t \\ & \text{subject to} & & T_{\text{CP}} - \beta t \leq 0 \\ & & & u_i - u_j \leq T_{\text{CP}} - F_{ij}^{-1}(\beta), \quad \forall (i,j) \in E_s \,, \\ & & u_j - u_i \leq F_{ij}^{-1}(1-\beta), \qquad \forall (j,i) \in E_h \,, \\ & & T_{\text{CP}} \geq 0, \, 0 \leq \beta \leq 1 \,, \end{split}  variables  & T_{\text{CP}}, \beta, u.
```

class: middle, center

Matrix Inequalities

Problems With Matrix Inequalities

Consider the following problem:

find
$$x$$
, subject to $F(x) \succeq 0$,

- F(x): a matrix-valued function
- $A \succeq 0$ denotes A is positive semidefinite.

Problems With Matrix Inequalities

- Recall that a matrix A is positive semidefinite if and only if $v^{\mathsf{T}} A v \geq 0$ for all $v \in \mathbb{R}^N$.
- The problem can be transformed into:

$$\begin{array}{ll} \text{find} & x, \\ \text{subject to} & v^\mathsf{T} F(x) v \geq 0, \ \forall v \in \mathbb{R}^N \end{array}$$

- Consider $v^{\mathsf{T}}F(x)v$ is concave for all $v \in \mathbb{R}^N$ w. r. t. x, then the above problem is a convex programming.
- Reduce to semidefinite programming if F(x) is linear w.r.t. x, i.e., $F(x)=F_0+x_1F_1+\cdots+x_nF_n$

Oracle in Matrix Inequalities

The oracle only needs to:

- Perform a row-based LDLT factorization such that $F(x_0) = LDL^{\mathsf{T}}$.
- Let $A_{p,p}$ denotes a submatrix $A(1:p,1:p) \in \mathbb{R}^{p \times p}$.
- If the process fails at row p,
 - there exists a vector $e_p = (0,0,\cdots,0,1)^\mathsf{T} \in \mathbb{R}^p$, such that $v = R_{p,p}^{-1}e_p$, and $v^\mathsf{T}F_{p,p}(x_0)v < 0$.

 The cut $(g,\beta) = (-v^\mathsf{T}\partial F_{p,p}(x_0)v, -v^\mathsf{T}F_{p,p}(x_0)v)$

Lazy evaluation

- Don't construct the full matrix at each iteration!
- Only $O(p^3)$ per iteration, independent of N!

Google Benchmark Comparison

2: Benchmark Time CPU Iterations

131235 ns 131245 ns 196694 ns 196708 ns 2: BM_LMI_Lazy 4447 2: BM_LMI_old 3548 2/4 Test #2: Bench_BM_lmi Passed 2.57 sec

Example - Matrix Norm Minimization

- Let $A(x)=A_0+x_1A_1+\cdots+x_nA_n$ Problem $\min_x\|A(x)\|$ can be reformulated as

$$\begin{array}{ll} \text{minimize} & t, \\ \text{subject to} & \left(\begin{array}{cc} t \, I & A(x) \\ A^\mathsf{T}(x) & t \, I \end{array} \right) \succeq 0,$$

• Binary search on t can be used for this problem.

Example - Estimation of Correlation Function

$$\begin{aligned} & \min_{\kappa,p} & & \|\Sigma(p) + \kappa I - Y\| \\ & \text{s. t.} & & \Sigma(p) \succcurlyeq 0, \kappa \ge 0 \;. \end{aligned}$$

- Let $\rho(h) = \sum_{i=1}^{n} p_i \Psi_i(h)$, where
 - p_i 's are the unknown coefficients to be fitted Ψ_i 's are a family of basis functions.
- The covariance matrix $\Sigma(p)$ can be recast as:

$$\Sigma(p) = p_1 F_1 + \dots + p_n F_n$$

where
$$\{F_k\}_{i,j} = \Psi_k(\|s_j - s_i\|_2)$$

Experimental Result

.pull-left[

Data Sample (kern=0.5)

] .pull-right[

Least Square Result

1

Experimental Result II

. pull-left[

Data Sample (kern=1.0)

] .pull-right[

Least Square Result

]

Experimental Result III

. pull-left[

Data Sample (kern=2.0)

] .pull-right[

Least Square Result

]

Ellipsoid Method Revisited

. pull-left[

@luk036

2022 - 11 - 03

 $] \ . pull-right[$

Figure 3: image

]

Some History of Ellipsoid Method [@BGT81]

• Introduced by Shor and Yudin and Nemirovskii in 1976

- Used to show that linear programming (LP) is polynomial-time solvable (Kachiyan 1979), settled the long-standing problem of determining the theoretical complexity of LP.
- In practice, however, the simplex method runs much faster than the method, although its worst-case complexity is exponential.

Basic Ellipsoid Method

• An ellipsoid $\mathcal{E}(x_c, P)$ is specified as a set

$$x\mid (x-x_c)P^{-1}(x-x_c)\leq 1,$$

where x_c is the center of the ellipsoid.

Updating the ellipsoid (deep-cut)

Calculation of minimum volume ellipsoid \mathcal{E}^+ covering:

$$\mathcal{E} \cap z \mid g^{\mathsf{T}}(z - x_c) + \beta \leq 0.$$

- Let $\tilde{g} = P g$, $\tau^2 = g^\mathsf{T} P g$.
- If $n \cdot \beta < -\tau$ (shallow cut), no smaller ellipsoid can be found.
- If $\beta > \tau$, intersection is empty.

Otherwise,

$$x_c^+ = x_c - \frac{\rho}{\tau^2} \tilde{g}, \quad P^+ = \delta \cdot \left(P - \frac{\sigma}{\tau^2} \tilde{g} \tilde{g}^\mathsf{T} \right), \quad (P')^{-1} = \delta^{-1} \cdot \left(P^{-1} + \frac{\mu}{\tau^2} g g^\mathsf{T} \right).$$

where

$$\rho = \frac{\tau + n \cdot \beta}{n+1}, \quad \sigma = \frac{2\rho}{\tau + \beta}, \quad \delta = \frac{n^2(\tau + \beta)(\tau - \beta)}{(n^2 - 1)\tau^2}, \quad \mu = \frac{2(\tau + n \cdot \beta)}{(n-1)(\tau - \beta)}$$

Deep cut

Figure 4: Deep-cut

Updating the ellipsoid (cont'd)

- Even better, split P into two variables $\kappa \cdot Q$
- Let $\tilde{g} = Q \cdot g$, $\omega = g^{\mathsf{T}} \tilde{g}$, $\tau = \sqrt{\kappa \cdot \omega}$.

$$x_c^+ = x_c - \frac{\rho}{\omega} \tilde{g}, \quad Q' = Q - \frac{\sigma}{\omega} \tilde{g} \tilde{g}^\mathsf{T}, \quad (Q')^{-1} = Q^{-1} + \frac{\mu}{\omega} g g^\mathsf{T}, \quad \kappa^+ = \delta \cdot \kappa.$$

- Reduce n^2 multiplications per iteration.
- - The determinant of Q decreases monotonically. The range of δ is $(0,\frac{n^2}{n^2-1}).$

Central Cut

- A Special case of deep cut when $\beta=0$
- Deserve a separate implement because it is much simplier.
- Let $\tilde{g} = Q g$, $\tau = \sqrt{\kappa \cdot \omega}$,

$$\rho=\frac{\tau}{n+1},\quad \sigma=\frac{2}{n+1},\quad \delta=\frac{n^2}{n^2-1},\quad \mu=\frac{2}{n-1}.$$

Central Cut

Figure 5: Central-cut

class: middle, center

Parallel Cuts

Parallel Cuts

- Oracle returns a pair of cuts instead of just one.
- The pair of cuts is given by g and (β_0,β_1) such that:

$$g^{\mathsf{T}}(x - \frac{\mathbf{x}_c}{\mathbf{c}}) + \beta_0 \le 0,$$

$$g^{\mathsf{T}}(x - \frac{\mathbf{x}_c}{\mathbf{c}}) + \beta_1 \ge 0,$$

for all $x \in \mathcal{K}$. \$\$

• Only linear inequality constraint can produce such parallel cut:

$$l \le a^{\mathsf{T}}x + b \le u, \quad L \le F(x) \le U.$$

• Usually provide faster convergence.

Parallel Cuts

Figure 6: Parallel Cut

Updating the ellipsoid

- Let $\tilde{g}=Q\,g,\, \tau^2=\kappa\cdot\omega$. If $\beta_0>\beta_1$, intersection is empty. If $\beta_0\beta_1<-\tau^2/n$, no smaller ellipsoid can be found. If $\beta_1^2>\tau^2$, it reduces to deep-cut with $\alpha=\alpha_1$ Otherwise,

$$x_c' = x_c - \frac{\rho}{\omega} \tilde{g}, \quad Q' = Q - \frac{\sigma}{\omega} \tilde{g} \tilde{g}^\mathsf{T}, \quad (Q')^{-1} = Q^{-1} + \frac{\mu}{\omega} g g^\mathsf{T}, \quad \kappa^+ = \delta \kappa.$$

where

$$\begin{array}{lcl} \bar{\beta} & = & (\beta_0 + \beta_1)/2, \\ \xi^2 & = & (\tau^2 - \beta_0^2)(\tau^2 - \beta_1^2) + (n(\beta_1 - \beta_0)\bar{\beta})^2, \\ \\ \sigma & = & (n + (\tau^2 + \beta_0\beta_1 - \xi)/(2\bar{\beta}^2))/(n+1), \\ \\ \rho & = & \bar{\beta} \cdot \sigma, \\ \\ \mu & = & \sigma/(1-\sigma), \\ \\ \delta & = & (n^2/(n^2-1))(\tau^2 - (\beta_0^2 + \beta_1^2)/2 + \xi/n)/\tau^2. \end{array}$$

Example - FIR filter design

Figure 7: A typical structure of an FIR filter @mitra2006digital.

• The time response is:

$$y[t] = \sum_{k=0}^{n-1} h[k]u[t-k].$$

Example - FIR filter design (cont'd)

• The frequency response:

$$H(\omega) = \sum_{m=0}^{n-1} h(m)e^{-jm\omega}.$$

• The magnitude constraints on frequency domain are expressed as

$$L(\omega) \leq |H(\omega)| \leq U(\omega), \ \forall \ \omega \in (-\infty, +\infty).$$

where $L(\omega)$ and $U(\omega)$ are the lower and upper (nonnegative) bounds at frequency ω respectively.

• The constraint is non-convex in general.

Example - FIR filter design (II)

• However, via *spectral factorization* [@goodman1997spectral], it can transform into a convex one [@wu1999fir]:

$$L^2(\omega) \leq R(\omega) \leq U^2(\omega), \ \forall \ \omega \in (0,\pi),$$

where

$$-R(\omega)=\sum_{i=-1+n}^{n-1}r(t)e^{-j\omega t}=|H(\omega)|^2$$
 $-\mathbf{r}=(r(-n+1),r(-n+2),...,r(n-1))$ are the autocorrelation coefficients.

Example - FIR filter design (III)

• \mathbf{r} can be determined by \mathbf{h} :

$$r(t) \ = \ \sum_{i=-n+1}^{n-1} h(i)h(i+t), \ t \in {\bf Z},$$

where h(t) = 0 for t < 0 or t > n - 1.

• The whole problem can be formulated as:

$$\begin{array}{ll} \min & \gamma \\ \\ \mathrm{s.t.} & L^2(\omega) \leq R(\omega) \leq U^2(\omega), \ \forall \omega \in [0,\pi] \\ \\ & R(\omega) > 0, \forall \omega \in [0,\pi] \end{array}$$

Experiment

Google Benchmark Result

3:			
3: Benchmark	Time	CPU	Iterations
3:			
3: BM_Lowpass_single_cut	627743505 ns	621639313 ns	1
3: BM_Lowpass_parallel_cut	30497546 ns	30469134 ns	24
3/4 Test #3: Bench_BM_lowpa	ss	Passed	1.72 sec

Example - Maximum Likelihood estimation

$$\begin{split} & \min_{\kappa,p} & & \log \det(\Omega(p) + \kappa \cdot I) + \mathrm{Tr}((\Omega(p) + \kappa \cdot I)^{-1}Y) \\ & \text{s.t.} & & & \Omega(p) \succeq 0, \kappa \geq 0 \end{split}$$

Figure 8: Result

Note: the 1st term is concave, the 2nd term is convex

• However, if there are enough samples such that Y is a positive definite matrix, then the function is convex within [0, 2Y]

Example - Maximum Likelihood estimation (cont'd)

• Therefore, the following problem is convex:

$$\begin{aligned} & \min_{\kappa,p} & \log \det V(p) + \mathrm{Tr}(V(p)^{-1}Y) \\ & \text{s.t.} & & \Omega(p) + \kappa \cdot I = V(p) \\ & & & & 0 \preceq V(p) \preceq 2Y, \kappa {>} 0 \end{aligned}$$

class: middle, center

Discrete Optimization

Why Discrete Convex Programming

- Many engineering problems can be formulated as a convex/geometric programming, e.g. digital circuit sizing
- Yet in an ASIC design, often there is only a limited set of choices from the cell library. In other words, some design variables are discrete.
- The discrete version can be formulated as a *Mixed-Integer Convex programming* (MICP) by mapping the design variables to integers.

What's Wrong w/ Existing Methods?

- Mostly based on relaxation.
- Then use the relaxed solution as a lower bound and use the branch—and—bound method for the discrete optimal solution.
 - Note: the branch-and-bound method does not utilize the convexity of the problem.
- What if I can only evaluate constraints on discrete data? Workaround: convex fitting?

Mixed-Integer Convex Programming

Consider:

minimize
$$f_0(x),$$
 subject to
$$f_j(x) \leq 0, \ \forall j=1,2,\dots$$

$$x \in \mathbb{D}$$

where

- $f_0(x)$ and $f_j(x)$ are "convex" • Some design variables are discrete.

Oracle Requirement

- The oracle looks for the nearby discrete solution x_d of x_c with the cuttingplane:

$$g^{\mathsf{T}}(x-\textcolor{red}{x_{d}}) + \beta \leq 0, \beta \geq 0, g \neq 0$$

- Note: the cut may be a shallow cut.
- Suggestion: use different cuts as possible for each iteration (e.g. roundrobin the evaluation of constraints)

Discrete Cut

Figure 9: Discrete Cut

Example - Multiplier-less FIR filter design (nnz=3)

Figure 10: Lowpass