TIMESERIES: THE FINAL CHAPTER

11.9.2018

RECAP

- * power spectrum / psd
- * spectrogram
- * filtering
- * nyquist frequency

OVERSAMPLING

- * the EEG data from wednesday was originally collected at 22 kHz (22000 samples per second)
- * if we had used the original, the data file would have been 1.1 GB instead of 6.5 MB
- * and every analysis step that you ran would have taken at least 170x as long

OVERSAMPLING

- * would 22 kHz sampling be useful?
- * it would increase
 the Nyquist
 frequency from 64 Hz
 to 11000 Hz
- * but EEG can't see
 signals over ~100 Hz

all the interesting stuff

all the extras you get from 22 kHz

OVERSAMPLING

- * the point: it's useful and good to downsample EEG signals from 22 kHz to 128 Hz
- * so how do we do that?

SUBSAMPLING

* suppose (for simplicity) we have a 20 kHz signal and want to downsample it to 2 kHz

SUBSAMPLING

- * one idea: just take every 10th sample!
 - * (this is called **subsampling**)
- * taking every 10th sample is *LITERALLY THE WORST IDEA*
 - * (let's see an example)

SUBSAMPLING

- * the weird thing about subsampling is that, instead of removing high frequencies, it turns them into low frequencies
- * this is called aliasing

ALIASING IN IMAGES

Original Image

Subsampled

high frequency pattern (bricks) is aliased to low frequency "moiré pattern"

ALIASING

- * sampling is like
 multiplying your
 timeseries by a "comb"
 function
- * ... which is equivalent to convolving the fourier transform of your timeseries by a comb function

ALIASING

* which means that the fourier transform of the subsampled timeseries can have high frequencies "invading" lower frequencies

* how do we solve this?

- * we can use an antialiasing filter
- * e.g.: the original signal is sampled at 20 kHz, we want to downsample to 2 kHz
- * the new 2 kHz shouldn't contain any frequencies above Nyquist (1 kHz)
- * so we **low-pass filter** the original signal at 1 kHz, and then subsample

ANTIALIASING IN IMAGES

Original Image

Subsampled

Properly downsampled

- * there are functions in **scipy.signal** for doing good downsampling/resampling
 - * signal.decimate is great for downsampling
 - * **signal.resample** can do downsampling or upsampling

END