Report No: CCISE170709904

FCC REPORT

(UNII)

Applicant: APRIX LATINOAMERICA S.A.

Address of Applicant: ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE

CABAL PANAMA

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: Aprix Tab8ii

Trade Mark: APRIX

FCC ID: 2AHJQ-APT8II

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 01 Jun., 2017

Date of Test: 01 Jun., to 11Jul., 2017

Date of report issued: 11 Jul., 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCISE170709904

2 Version

Version No.	Date	Description
00	11 Jul., 2017	Original

Tested by:	Carey Chen	Date:	11 Jul., 2017
	Test Engineer	_	
Reviewed by:	Simer Man J Project Engineer	Date:	11 Jul., 2017

3 Contents

			Page
1	cov	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5		IERAL INFORMATION	
Ü			
	5.1	CLIENT INFORMATION	_
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT ANDMODE	
	5.4	MEASUREMENT UNCERTAINTY	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	18
	6.5	POWER SPECTRAL DENSITY	25
	6.6	BAND EDGE	30
	6.7	Spurious Emission	34
	6.7.1	Restricted Band	34
	6.7.2	2 Unwanted Emissions out of the Restricted Bands	38
	6.8	FREQUENCY STABILITY	45
7	TES	T SETUP PHOTO	47
8	FUT	CONSTRUCTIONAL DETAILS	49

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a)	Pass
26dB Occupied Bandwidth	15.407 (a)	Pass
6dB Emission Bandwidth	15.407(e)	N/A ^{note1}
Power Spectral Density	15.407 (a)	Pass
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass

Pass: The EUT complies with the essential requirements in the standard.

note1: Not Applicable for 5150MHz~5350MHz and 5470~5725MHz band equipment.

5 General Information

5.1 Client Information

Applicant:	APRIX LATINOAMERICA S.A.
Address of Applicant:	ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE CABAL PANAMA
Manufacturer:	Todos industrial limited
Address of Manufacturer:	Room 308, Building #5, Cofoc (Fuan) Robotics Industrial Park, No.90, Dayang Road, Fuyong Street, Shenzhen City, P.R. China

5.2 General Description of E.U.T.

Product Name:	Tablet PC
Model No.:	Aprix Tab8ii
Operation Frequency:	Band 1: 5180MHz-5240MHz
Channel numbers:	Band 1: 802.11a/802.11n20: 4,802.11n40: 2
Channel separation:	802.11a/802.11n20:20MHz, 802.11n40:40MHz
Modulation technology: (IEEE 802.11a)	BPSK,QPSK,16-QAM,64-QAM
Modulation technology: (IEEE 802.11n)	BPSK,QPSK,16-QAM,64-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps,MCS1:13Mbps,MCS2:19.5Mbps,MCS3:26Mbps, MCS4:39Mbps,MCS5:52Mbps,MCS6:58.5Mbps,MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps,MCS1:30Mbps,MCS2:45Mbps,MCS3:60Mbps, MCS4:90Mbps,MCS5:120Mbps,MCS6:135Mbps,MCS7:150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-4000mAh
AC adapter:	Model: BY120502000 Input: AC100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 2000mAh

Operation Frequency each of channel

Band 1					
802.11a/	′802.11n20	802.11n40			
Channel Frequency		Channel	Frequency		
36 5180MHz		39	5190MHz		
40 5200MHz		45	5230MHz		
44	5220MHz				
48 5240MHz					

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1					
802.11a/802	802.11n	40			
Channel	Frequency	Channel	Frequency		
The lowest channel 5180MHz		The lowest channel	5190MHz		
The middle channel 5200MHz		The highest channel	5230MHz		
The highest channel	5240MHz				

5.3 Test environment andmode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.			
We have verified the construction and function in typical operation. All the test modes were carried out with				
EUT in transmitting opera	ation, which was shown in this test report and defined as follows:			
Per-scan all kind of data rate in lo	west channel, and found the follow list which it was worst case.			
Mode	Data rate			
802.11a 6Mbps				
802.11n20	6.5Mbps			
802.11n40	13.5Mbps			
Final Test Mode:				

Report No: CCISE170709904

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup"6Mbps for 802.11a, 6.5 Mbps for 802.11n20 and 13.5 Mbps for 802.11n40. All test items for 802.11a and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

•FCC- Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered andfully describedin a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

•IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

•CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax:+86-755-23116366 Email: info@ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018	
6	Pre-amplifier (18-40GHz)	A.H System	PAM-1840	GTS219	02-25-2017	02-24-2018	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018	
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018	
11	Spectrum Analyzer	HP	8564E	CCIS0150	02-25-2017	02-24-2018	

Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213,§ 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 1	5.207				
Test Method:	ANSI C63.4: 2014					
Test Frequency Range:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kH					
Limit:	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Average			
	0.15-0.5 66 to 56* 56 to 46*					
	0.5-5 56 46					
	5-30 60 50					
		parithm of the frequency.				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). Itprovides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted 					
	interference. In order positions of equipments	er to find the maximum en ent and all of the interface	nission, the relative e cables must be			
Test setup:	interference. In order positions of equipment changed according measurement. LISN AUX Equipment Test table/Insula Remark EUT: Equipment Under to LISN: Line Impedence State Test table height=0.8m	er to find the maximum entent and all of the interface to ANSI C63.4: 2014 on other to ANSI C63.4: 2014	nission, the relative e cables must be conducted			
Test setup: Test Instruments:	interference. In order positions of equipment changed according measurement. LISN AUX Equipment Test table/Insular Remark EUT: Equipment Under in LISN: Line Impedence State	er to find the maximum entent and all of the interface to ANSI C63.4: 2014 on other to ANSI C63.4: 2014	nission, the relative e cables must be conducted			
	interference. In order positions of equipment changed according measurement. LISN AUX Equipment Test table/Insula Remark EUT: Equipment Under to LISN: Line Impedence State Test table height=0.8m	er to find the maximum entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the interface to ANSI C63.4: 2014 on the entent and all of the entent a	nission, the relative e cables must be conducted			

Notes

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv)
Test Method:	ANSI C63.10: 2013, KDB789033 D02 General U-NII Test Procedures New Rules v01r04
Limit:	Band 1: 24dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Band 1							
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result			
	Lowest	5.11	24.00	Pass			
802.11a	Middle	5.07	24.00	Pass			
	Highest	4.37	24.00	Pass			
	Lowest	5.10	24.00	Pass			
802.11n20	Middle	4.77	24.00	Pass			
	Highest	4.74	24.00	Pass			
802.11n40	Lowest	5.03	24.00	Pass			
	Highest	4.67	24.00	Pass			

Date: 1.JUN.2017 20:21:25

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (5)
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v01r04
Limit:	Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Band 1:

Test	26dB Ei	mission Bandw	idth (MHz)	Limit Booult		
Channel	802.11a	802.11n20	802.11n40	Limit	Result	
Lowest	19.52	19.84	38.56		N/A	
Middle	19.36	19.76		N/A		
Highest	19.44	19.76	38.88			

Test	99% C	ccupy Bandwid	dth (MHz)	Limit	Dooult	
Channel	802.11a	802.11n20	802.11n40	Limit	Result	
Lowest	16.56	17.68	36.16			
Middle	16.56	17.68		N/A	N/A	
Highest	16.56	17.68	36.16			

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv)
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v01r04
Limit:	Band 1: 11 dBm/MHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

	Band 1							
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result				
	Lowest	-6.28	11.00	Pass				
802.11a	Middle	-6.29	11.00	Pass				
	Highest	-6.67	11.00	Pass				
	Lowest	-6.28	11.00	Pass				
802.11n20	Middle	-6.55	11.00	Pass				
	Highest	-7.02	11.00	Pass				
902 11540	Lowest	-9.43	11.00	Pass				
802.11n40	Highest	-9.82	11.00	Pass				

Highest channel

6.6 Band Edge

o.o Band Edge							
Test Requirement:	FCC Part15 E Sect						
Test Method:	ANSI C63.10:2013 New Rules v01r04	and KDB789033	D02 General	U-NII Test Procedures			
Receiver setup:	Detector	RBW	VBW	Remark			
	Quasi-peak	120kHz	300kHz	Quasi-peak Value			
	RMS	1MHz	3MHz	Average Value			
Limit:	Band	,	V/m @3m)	Remark			
	Band 1		.20	Peak Value			
	54.00 Average Value						
	Remark: 1. Band 1 limit:						
		P[dBm] + 95 2=68	2 dBuV/m for F	IPR[dBm]=-27dBm.			
Test Procedure:				table 1.5 meters above			
				s rotated 360 degrees			
	todetermine th	e position of the h	nighest radiation	on.			
				erference-receiving			
		nwas mounted on	the top of a v	ariable-height antenna			
	tower. 3. The antenna h	eight is varied fro	m one meter t	to four meters above			
				of the field strength.			
	_			ne antenna are set to			
	make the mea						
				rranged to its worst			
			_	nts from 1 meter to 4			
			ned from 0 de	egrees to 360 degrees			
	to find the max 5. The test-received	ver system was se	et to Peak Det	tect Function and			
		width with Maxim					
				was 10dB lower than			
				ed and the peak values			
				emissions that did not			
				one using peak, quasi-			
	'	ge method as spe	cified and the	n reported in a data			
Test setup:	sheet.			2.			
rest setup.		////////	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
			Т	3			
			Horn Antenna A	Intenna Tower			
		AE EUT		Silenia rower			
	Oct.	, ,	, , <u> </u>				
	(Turntable)						
	Ground Reference Plane						
		Y-45	Pre-	oller			
	Test Receiver Amplifer Controller						
Test Instruments:	Refer to section 5.7	for details					
Test mode:	Refer to section 5.3						
Test results:	Passed						

Band 1									
	802.11a								
			Test cha	nnel: Lowest	channel				
				Peak Value					
Fraguanay	Read	Antenna	Cable	Preamp	Lovel	Limit	Over		
Frequency	Level	Factor	Loss	Factor	Level	Line	Limit	Polarization	
(MHz)	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
5150.00	42.36	36.23	7.05	41.93	43.71	68.20	-24.49	Horizontal	
5150.00	41.90	36.23	7.05	41.93	43.25	68.20	-24.95	Vertical	
			A	verage Value)				
Croqueney/	Read	Antenna	Cable	Preamp	Lovel	Limit	Over		
Frequency	Level	Factor	Loss	Factor	Level	Line	Limit	Polarization	
(MHz)	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
5150.00	31.85	36.23	7.05	41.93	33.20	54.00	-20.80	Horizontal	
5150.00	32.19	36.23	7.05	41.93	33.54	54.00	-20.46	Vertical	

	Test channel: Highest channel								
	Peak Value								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	43.85	35.37	7.11	41.89	44.44	68.20	-23.76	Horizontal	
5350.00	43.16	35.37	7.11	41.89	43.75	68.20	-24.45	Vertical	
			Д	verage Value)				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	31.28	35.37	7.11	41.89	31.87	54.00	-22.13	Horizontal	
5350.00	32.23	35.37	7.11	41.89	32.82	54.00	-21.18	Vertical	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20									
	Test channel: Lowest channel								
				Peak Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	42.30	36.23	7.05	41.93	43.65	68.20	-24.55	Horizontal	
5150.00	41.85	36.23	7.05	41.93	43.20	68.20	-25.00	Vertical	
			A	verage Value)				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	31.94	36.23	7.05	41.93	33.29	54.00	-20.71	Horizontal	
5150.00	32.39	36.23	7.05	41.93	33.74	54.00	-20.26	Vertical	

			Test cha	nnel: Highest	channel						
	Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	43.19	35.37	7.11	41.89	43.78	68.20	-24.42	Horizontal			
5350.00	42.73	35.37	7.11	41.89	43.32	68.20	-24.88	Vertical			
			A	verage Value)						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	31.07	35.37	7.11	41.89	31.66	54.00	-22.34	Horizontal			
5350.00	31.96	35.37	7.11	41.89	32.55	54.00	-21.45	Vertical			

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Limit

Line

(dBuV/m)

54.00

54.00

Level

(dBuV/m)

33.32

33.46

Over

Limit

(dB)

-20.68

-20.54

Polarization

Horizontal

Vertical

	802.11n-HT40										
			Test cha	nnel: Lowest	channel						
				Peak Value							
Fraguenay	Read	Antenna	Cable	Preamp	Level	Limit	Over				
Frequency	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization			
(MHz)	(dBuV/m)	(dB)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)				
5150.00	42.95	7.05	41.93	41.93	50.00	68.20	-18.20	Horizontal			
5150.00	42.08	7.05	41.93	41.93	49.13	68.20	-19.07	Vertical			
			A	verage Value)						
Frequency Read Antenna Cable Preamp Level Limit Over											
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization			
(IVII 12)	(dBuV/m)	(dB)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)				
5150.00	31.57	7.05	41.93	41.93	38.62	54.00	-15.38	Horizontal			
5150.00	32.09	7.05	41.93	41.93	39.14	54.00	-14.86	Vertical			
			Test cha	nnel: Highest	channel						
				Peak Value							
Frequency	Read	Antenna	Cable	Preamp	Level	Limit	Over				
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization			
(IVITZ)	(dBuV/m)	(dB)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)				
5350.00	43.27	35.37	35.37	7.11	41.89	68.20	-26.31	Horizontal			
5350.00	42.91	35.37	35.37	7.11	41.89	68.20	-26.31	Vertical			
			A	verage Value	9						

Preamp

Factor

(dB)

41.89

41.89

Remark:

Frequency

(MHz)

5350.00

5350.00

Read

Level

(dBuV/m)

32.73

32.87

Antenna

Factor

(dB)

35.37

35.37

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Cable

Loss

(dB)

7.11

7.11

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>	Restricted Band									
	Test Requirement:	FCC Part15 E	FCC Part15 E Section 15.407(b)							
	Test Method:	ANSI C63.10:	2013							
	TestFrequencyRange:	Band 1: 4.5 G	Hz to 5.15	GHz	and 5.35GHz	z to 5.4	6GHz			
	Test site:	Measurement	Distance:	3m						
	Receiver setup:	Frequency	Detec	tor	RBW	VE	3W	Remark		
		Above 1GHz	Pea	k	1MHz	3N	ИHz	Peak Value		
		Above 1GHZ	RM:	S	1MHz	3N	ИHz	Average Value		
	Limit:	Frequer	псу	Lin	nit (dBuV/m @	23m)		Remark		
					74.00			Peak Value		
		Above 10	HZ		54.00		Α	verage Value		
	Test Procedure:	the grour todeterm 2. The EUT antenna, tower. 3. The ante the grour Both hori make the case and meters a to find the Specified 5. The test-Specified 6. If the em the limits of the EU have 100	ndat a 3 m ine the pos was set 3 whichwas nna height of to deter zontal and measured suspected thenthe a nd the rotal e maximur receiver sy Bandwidth ission level pecified, the	eter of sition meter mount is vartiment. It was terminated by the ment of the menter reactions are repossible.	camber. The tage of the highest of the highest or away from the on the total ried from one the maximum cal polarizations sion, the EU may as tuned from the was turned from the EUT in peacesting could be orted. Otherwisers and the could be orted.	able was a tradiated the interpretation of the meter of value one of the tradiated to height one of the tradiated tradiat	as rotation. erferen variable to four of the the ante arrange hts fror egrees tect Fu de. e was 1 bed and emissie one us	e-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 to 360 degrees unction and I OdB lower than If the peak values ons that did not sing peak, quasi-		
	Test setup:		AE (Turntab	- W	Ground Reference Plane	Pre- Co	Antenna To	ower T		
	Test Instruments:	Refer to section	on 5.7 for (detail	S					
	Test mode:	Refer to section	on 5.3 for (detail	s					
	Test results:	Passed								

				Band 1				
				802.11a				
			Test cha	nnel: Lowest	channel			
				Peak Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	44.36	34.50	6.80	42.05	43.61	74.00	-30.39	Horizontal
4500.00	43.80	34.50	6.80	42.05	43.05	74.00	-30.95	Vertical
			Α	verage Value)			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.84	34.50	6.80	42.05	32.09	54.00	-21.91	Horizontal
4500.00	30.19	34.50	6.80	42.05	29.44	54.00	-24.56	Vertical
			Test cha	nnel: Highest	channel			
			100001101	Peak Value	Onamici			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.85	34.90	7.18	41.85	43.08	74.00	-30.92	Horizontal
5460.00	43.16	34.90	7.18	41.85	43.39	74.00	-30.61	Vertical
			A	verage Value)			
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polarization

(dB)

41.85

41.85

(dBuV/m)

54.00

54.00

(dBuV/m)

33.07

32.42

(dB)

-20.93

-21.58

Remark:

(MHz)

5460.00

5460.00

(dBuV/m)

32.84

32.19

(dB)

34.90

34.90

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor. 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

(dB)

7.18

7.18

Project No.: CCISE1707099

Horizontal

Vertical

802.11n-HT20										
			Test cha	nnel: Lowest	channel					
				Peak Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	43.96	34.50	6.80	42.05	43.21	74.00	-30.79	Horizontal		
4500.00	43.15	34.50	6.80	42.05	42.40	74.00	-31.60	Vertical		
Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	31.26	34.50	6.80	42.05	30.51	54.00	-23.49	Horizontal		
4500.00	31.01	34.50	6.80	42.05	30.26	54.00	-23.74	Vertical		
			Test cha	nnel: Highest	channel					
			Test cha	nnel: Highest Peak Value	channel					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)		channel Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
	Level	Factor	Cable Loss	Peak Value Preamp Factor	Level	Line	Limit	Polarization Horizontal		
(MHz)	Level (dBuV/m)	Factor (dB)	Cable Loss (dB)	Peak Value Preamp Factor (dB)	Level (dBuV/m)	Line (dBuV/m)	Limit (dB)			
(MHz) 5460.00	Level (dBuV/m) 42.94	Factor (dB) 34.90	Cable Loss (dB) 7.18 7.18	Peak Value Preamp Factor (dB) 41.85	Level (dBuV/m) 43.17 43.99	Line (dBuV/m) 74.00	Limit (dB) -30.83	Horizontal		
(MHz) 5460.00	Level (dBuV/m) 42.94	Factor (dB) 34.90	Cable Loss (dB) 7.18 7.18	Peak Value Preamp Factor (dB) 41.85	Level (dBuV/m) 43.17 43.99	Line (dBuV/m) 74.00	Limit (dB) -30.83	Horizontal		

41.85

54.00

32.16

-21.84

Vertical

Remark:

5460.00

31.93

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

34.90

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.18

	802.11n-HT40										
			Test cha	nnel: Lowest	channel						
Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	42.11	34.50	6.80	42.05	41.36	74.00	-32.64	Horizontal			
4500.00	43.08	34.50	6.80	42.05	42.33	74.00	-31.67	Vertical			
			А	verage Value)						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	32.84	34.50	6.80	42.05	32.09	54.00	-21.91	Horizontal			
4500.00	31.17	34.50	6.80	42.05	30.42	54.00	-23.58	Vertical			

			Test cha	nnel: Highest	channel						
	Peak Value										
Гио жило по м.	Read	Antenna	Cable	Preamp	Laval	Limit	Over				
Frequency	Level	Factor	Loss	Factor	Level	Line	Limit	Polarization			
(MHz)	(dBuV/m)	(dB)	(dB) (dB) (dBuV/m)	(dBuV/m)	(dB)						
5460.00	42.74	34.90	7.18	41.85	42.97	74.00	-31.03	Horizontal			
5460.00	43.17	34.90	7.18	41.85	43.40	74.00	-30.60	Vertical			
			A	verage Value)						
Fraguenav	Read	Antenna	Cable	Preamp	Lovel	Limit	Over				
Frequency	Level	Factor	Loss	Factor	Level	Line	Limit	Polarization			
(MHz)	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)				
5460.00	32.14	34.90	7.18	41.85	32.37	54.00	-21.63	Horizontal			
5460.00	32.08	34.90	7.18	41.85	32.31	54.00	-21.69	Vertical			

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:20)13						
TestFrequencyRange:	30MHz to 40GH	lz						
Test site:	Measurement D	istance: 3m						
Receiver setup:	Frequency	Detector	RBW	V	BW	Remark		
receiver detap.	30MHz-1GHz	Quasi-peak)kHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	31	MHz Peak Value			
Limit:	Frequency Limit (dBuV/m @3m) Remark					Remark		
	30MHz-88MHz 40.0 Quasi-peak Val							
	88MHz-216N		43.5			uasi-peak Value		
	216MHz-960		46.0			uasi-peak Value		
	960MHz-1G	iHz	54.0		Qı	uasi-peak Value		
	Frequenc	v	Limit (dBm/MHz	<u>z</u>)		Remark		
			68.20	,		Peak Value		
	Above 1GI	HZ	54.00		ļ	Average Value		
Test Procedure:	1. The EUT w /1.5m(abov was rotated radiation. 2. The EUT w antenna, w tower. 3. The antenr ground to c horizontal a measureme 4. For each si and thenthe and the rot maximum r 5. The test-re SpecifiedB 6. If the emiss limitspecifie EUT would 10dB marg	EIRP[dBm] + 9 ras placed on re 1GHz) abo d 360 degrees ras set 3 mete hichwas mou ha height is val determine the rand vertical pre ent. uspected emi e antenna wa reading. receiver system andwidth with sion level of the d, then testir be reported.	ve the groundate to todetermine the ers away from one maximum value olarizations of the ers awas set to Pear Maximum Holding EUT in peaking could be stop Otherwise the ers away from the ers aw	ating ta a 3 m e positione inter of a value neter to e of the ne anter was ar nots from rees to ak Detel I Mode mode ped ar missio one us	able 0.8 eter car tion of the ference ariable-had four me field stenna are as 360 de ect Fund the post that ing pea	m(below 1GHz) mber. The table he highest e-receiving height antenna heters above the trength. Both e set to make the to its worst case er to 4 meters egrees to find the ction and dB lower than the heak values of the did not have k, quasi-peak or		

	Above 1GHz										
				Band 1							
	802.11a mode										
Test channel: Lowest channel											
	Peak Value										
Fraguenav	Read	Antenna	Coblo	Preamp	Lovel	Limit	Over				
Frequency	Level	Factor	Cable	Factor	Level	Line	Limit	polarization			
(MHz)	(dBuV)	(dB/m)	Loss (dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)				
10360.00	49.31	40.10	9.82	41.97	57.26	68.20	-10.94	Vertical			
10360.00	48.94	40.10	9.82	41.97	56.89	68.20	-11.31	Horizontal			
			Ave	rage Value)						
- Croquency	Read	Antenna	Coblo	Preamp	Lovel	Limit	Over				
Frequency	Level	Factor	Cable	Factor	Level	Line	Over	polarization			
(MHz)	(dBuV)	(dB/m)	Loss (dB)	(dB)	(dBuV/m)	(dBuV/m)	Limit (dB)				
10360.00	39.27	40.10	9.82	41.97	47.22	54.00	-6.78	Vertical			
10360.00	38.61	40.10	9.82	41.97	46.56	54.00	-7.44	Horizontal			

			Test chann	el: Middle	channel			
			Pe	eak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	49.61	40.00	9.85	41.95	57.51	68.20	-10.69	Vertical
10400.00	49.06	40.00	9.85	41.95	56.96	68.20	-11.24	Horizontal
			Ave	rage Value	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	39.26	40.00	9.85	41.95	47.16	54.00	-6.84	Vertical
10400.00	41.36	40.00	9.85	41.95	49.26	54.00	-4.74	Horizontal

			Test chann	el: Highest	channel						
	Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	50.26	39.70	9.96	41.88	58.04	68.20	-10.16	Vertical			
10480.00	49.27	39.70	9.96	41.88	57.05	68.20	-11.15	Horizontal			
		802.11a	a mode High	est channe	l (AverageV	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	41.36	39.70	9.96	41.88	49.14	54.00	-4.86	Vertical			
10480.00	41.07	39.70	9.96	41.88	48.85	54.00	-5.15	Horizontal			

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

			802.	11n20 mod	le				
			Test chann	el: Lowest	channel				
Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360.00	49.00	40.10	9.82	41.97	56.95	68.20	-11.25	Vertical	
10360.00	48.63	40.10	9.82	41.97	56.58	68.20	-11.62	Horizontal	
			Ave	rage Value	9				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360.00	39.97	40.10	9.82	41.97	47.92	54.00	-6.08	Vertical	
10360.00	38.16	40.10	9.82	41.97	46.11	54.00	-7.89	Horizontal	

Test channel: Middle channel								
	Peak Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	49.07	40.00	9.85	41.95	56.97	68.20	-11.23	Vertical
10400.00	49.36	40.00	9.85	41.95	57.26	68.20	-10.94	Horizontal
	Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	39.84	40.00	9.85	41.95	47.74	54.00	-6.26	Vertical
10400.00	41.37	40.00	9.85	41.95	49.27	54.00	-4.73	Horizontal

Test channel: Highest channel								
	Peak Value							
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss (dB)	Preamp Factor	Level (dBuV/m)	Limit Line	Over Limit	polarization
` '	(dBuV)	(dB/m)	` ′	(dB)	,	(dBuV/m)	(dB)	Madiant
10480.00	50.31	39.70	9.96	41.88	58.09	68.20	-10.11	Vertical
10480.00	49.36	39.70	9.96	41.88	57.14	68.20	-11.06	Horizontal
			Ave	rage Value	9			
Frequency	Read Level	Antenna Factor	Cable	Preamp Factor	Level	Limit Line	Over Limit	polarization
(MHz)	(dBuV)	(dB/m)	Loss (dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	polarization
10480.00	41.27	39.70	9.96	41.88	49.05	54.00	-4.95	Vertical
10480.00	41.16	39.70	9.96	41.88	48.94	54.00	-5.06	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n40 mode								
	Test channel: Lowest channel							
	Peak Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	49.36	40.00	9.85	41.95	57.26	68.20	-10.94	Vertical
10380.00	48.83	40.00	9.85	41.95	56.73	68.20	-11.47	Horizontal
			Ave	rage Value	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	38.26	40.00	9.85	41.95	46.16	54.00	-7.84	Vertical
10380.00	39.09	40.00	9.85	41.95	46.99	54.00	-7.01	Horizontal

Test channel: Highest channel								
Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	49.30	39.80	9.92	41.90	57.12	68.20	-11.08	Vertical
10460.00	49.15	39.80	9.92	41.90	56.97	68.20	-11.23	Horizontal
	Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	39.95	39.80	9.92	41.90	47.77	54.00	-6.23	Vertical
10460.00	40.09	39.80	9.92	41.90	47.91	54.00	-6.09	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)			
Limit:	Manufacturers of U-NII devices are responsible for ensuringfrequency stability such that anemission is maintained within the band of operation under all conditions of normal operation asspecified in the user's manual.			
Test setup:	Spectrum analyzer EUT Variable Power Supply Note: Measurement setup for testing on Antenna connector			
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.			
Test results:	Passed			

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions			Man Davidian (non)		
Temp(℃)	Voltage(dc)	Frequency(MHz)	Max. Deviation (ppm)		
	4.37V	5179.996321	0.71		
20	3.80V	5179.974802	4.86		
	3.23V	5179.938411	11.89		

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test condit	tions	F(MII-)	May Davistian (num)		
Voltage(dc)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)		
	-20	5179.987023	2.51		
	-10	5179.948403	9.96		
	0	5179.978029	4.24		
3.80V	10	5179.948903	9.86		
3.00 V	20	5179.905612	18.22		
	30	5179.931268	13.27		
	40	5179.998104	0.37		
	50	5179.963281	7.09		