Sparse Principal Component Analysis D3S Session 1 - Project B

Théo Druilhe, Nathan Pizzetta, Sigurd Saue

Master 2 Data Science for Social Sciences

December 2024

Table of Contents

Introduction

Exploratory Data Analysis (EDA)

Methodology of Sparse PCA

PCA

Lasso and Elastic Net for Sparse PCA

Sparse PCA

Structured Sparse PCA

Application to Human-face Recognition

Application of PCA

Application of Sparse PCA

Prediction Model

Conclusion and Perspectives

Bibliography

Introduction

Dimensionality Reduction:

- Essential for analyzing high-dimensional datasets.
- Techniques: Principal Component Analysis (PCA) and Sparse PCA (SPCA).

Dataset: Labeled Faces in the Wild (LFW)

- Benchmark dataset for facial image analysis.
- ► Size: 1,288 grayscale images of 7 individuals.
- ► **Resolution:** 50 × 37 pixels flattened to 1,850-dimensional vectors.
- Challenge: High dimensionality and multi-class structure.

Goals and Evaluation

Goals:

- Compare PCA and SPCA for meaningful feature extraction.
- Analyze interpretability, accuracy, and efficiency.
- Evaluate classification performance using Support Vector Machine (SVM).

Methods:

- ▶ **PCA:** Captures maximum variance but lacks interpretability.
- ► **SPCA:** Introduces sparsity, highlighting localized features (e.g., eyes, mouth).
- SSPCA: Incorporates domain-specific structures for improved interpretability.

Acknowledgements

Acknowledgement of Sources:

- Based on seminal works:
 - ▶ Zou et al. (2006): Sparse Principal Component Analysis [?].
 - ▶ Jenatton et al. (2010): Structured Sparse PCA [?].
- Provides mathematical foundation and optimization techniques.

Focus:

- Theoretical insights.
- Practical application and evaluation on the LFW dataset.

Exploratory Data Analysis: Dataset Overview

Dataset: Labeled Faces in the Wild (LFW)

- Grayscale images of 7 well-known individuals.
- ► Total Samples: 1,288 images.
- ▶ Image Dimensions: 50×37 pixels.
- Classes:
 - Ariel Sharon, Colin Powell, Donald Rumsfeld, George W. Bush, Gerhard Schroeder, Hugo Chavez, Tony Blair.

Sample Images

Understanding the Dataset:

Figure: Sample images from the LFW dataset.

Pixel Intensity Distribution

Analysis:

- ▶ Pixel intensity values range from 0 (black) to 1 (white).
- ► Histogram indicates:
 - Concentration around mid-range values.
 - Few very dark or bright pixels.
 - Well-lit facial images.

Class Distribution

Observations:

- Slight imbalance in class distribution.
- ► George W. Bush has the most samples.
- Class imbalance could impact model performance.

Figure: Number of images per individual in the dataset.

Image Statistics: Mean and Standard Deviation

Key Metrics:

- ▶ **Mean Image:** Highlights shared features (e.g., eyes, mouth).
- ▶ **Standard Deviation Image:** Shows areas of high variability (e.g., hairline, facial contours).

Figure: (Left) Mean image. (Right) Standard deviation image.

Image Flattening and Representation

Flattening Process:

- ► Images of 50 × 37 pixels reshaped into 1-dimensional vectors of size 1,850.
- Facilitates compatibility with machine learning models.

Matrix Representation:

$$\mathbf{X} \in \mathbb{R}^{1,288 \times 1,850}, \quad \mathbf{Y} = \begin{bmatrix} y_1, y_2, \dots, y_{1288} \end{bmatrix}^{\top}, \quad y_i \in \{1, \dots, 7\}.$$

Key Points:

- Enables dimensionality reduction.
- Removes spatial structure; can be restored through advanced techniques.

Principal Component Analysis (PCA)

Overview:

- Widely used dimensionality reduction technique.
- Extracts and encodes significant features in high-dimensional data.
- Retains essential patterns while discarding noise and redundancy.

Application to Face Recognition:

- Encodes facial images into low-dimensional feature spaces.
- Reduces dimensions while preserving critical features for classification.

PCA: How It Works

Principal Components (PCs):

- Linear combinations of original variables (pixel intensities).
- Capture maximum variance in the data.
- ▶ PCs are uncorrelated, ensuring efficient feature representation.

Computation Using Singular Value Decomposition (SVD):

$$X = UDV^{\top}$$

- ▶ U: Left singular vectors (principal components scaled by variance).
- ▶ D: Diagonal matrix of singular values (variance explained by each PC).
- V: Right singular vectors (loadings of the PCs).

PCA in Face Recognition

Eigenfaces:

- ▶ PCs derived from facial data are often called "eigenfaces."
- Represent key patterns and variations in facial features.

Dimensionality Reduction:

- Retain only the leading PCs, reducing dimensions.
- Enables efficient storage and classification.

Limitations of PCA

Lack of Sparsity:

- Each PC is a combination of all features.
- Challenging to interpret in the context of specific facial features.

Interpretability Issues:

Dense components make it difficult to associate PCs with distinct image regions.

Potential Information Loss:

Retains maximal variance but does not prioritize task-specific features.

Loadings of the First Six Principal Components

Table 1. Pitprops Data: Loadings of the First Six Principal Components

PC1	PC2	PC3	PC4	PC5	PC6
-0.404	0.218	-0.207	0.091	-0.083	0.120
-0.406	0.186	-0.235	0.103	-0.113	0.163
-0.124	0.541	0.141	-0.078	0.350	-0.276
-0.173	0.456	0.352	-0.055	0.356	-0.054
-0.057	-0.170	0.481	-0.049	0.176	0.626
-0.284	-0.014	0.475	0.063	-0.316	0.052
-0.400	-0.190	0.253	0.065	-0.215	0.003
-0.294	-0.189	-0.243	-0.286	0.185	-0.055
-0.357	0.017	-0.208	-0.097	-0.106	0.034
-0.379	-0.248	-0.119	0.205	0.156	-0.173
0.011	0.205	-0.070	-0.804	-0.343	0.175
0.115	0.343	0.092	0.301	-0.600	-0.170
0.113	0.309	-0.326	0.303	0.080	0.626
32.4	18.3	14.4	8.5	7.0	6.3
32.4	50.7	65.1	73.6	80.6	86.9
	-0.404 -0.406 -0.124 -0.173 -0.057 -0.284 -0.400 -0.294 -0.357 -0.379 0.011 0.115 0.113	-0.404 0.218 -0.406 0.186 -0.124 0.541 -0.173 0.456 -0.057 -0.170 -0.284 -0.014 -0.400 -0.190 -0.294 -0.189 -0.357 0.017 -0.379 -0.248 0.011 0.205 0.115 0.343 0.113 0.309 32.4 18.3	-0.404 0.218 -0.207 -0.406 0.186 -0.235 -0.124 0.541 0.141 -0.173 0.456 0.352 -0.057 -0.170 0.481 -0.284 -0.014 0.475 -0.400 -0.190 0.253 -0.294 -0.189 -0.243 -0.357 0.017 -0.208 -0.379 -0.248 -0.119 0.011 0.205 -0.070 0.115 0.343 0.092 0.113 0.309 -0.326	-0.404 0.218 -0.207 0.091 -0.406 0.186 -0.235 0.103 -0.124 0.541 0.141 -0.078 -0.173 0.456 0.352 -0.055 -0.057 -0.170 0.481 -0.049 -0.284 -0.014 0.475 0.063 -0.400 -0.190 0.253 0.065 -0.294 -0.189 -0.243 -0.286 -0.357 0.017 -0.208 -0.097 -0.379 -0.248 -0.119 0.205 0.011 0.205 -0.070 -0.804 0.115 0.343 0.092 0.301 0.113 0.309 -0.326 0.303	-0.404 0.218 -0.207 0.091 -0.083 -0.406 0.186 -0.235 0.103 -0.113 -0.124 0.541 0.141 -0.078 0.350 -0.173 0.456 0.352 -0.055 0.356 -0.057 -0.170 0.481 -0.049 0.176 -0.284 -0.014 0.475 0.063 -0.316 -0.400 -0.190 0.253 0.065 -0.215 -0.294 -0.189 -0.243 -0.286 0.185 -0.357 0.017 -0.208 -0.097 -0.106 0.379 -0.248 -0.119 0.205 0.156 0.011 0.205 -0.070 -0.804 -0.343 0.115 0.343 0.092 0.301 -0.600 0.113 0.309 -0.326 0.303 0.080 32.4 18.3 14.4 8.5 7.0

Source: Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal

component analysis. Journal of Computational and Graphical Statistics, 15(2), 265-286.

Loadings of the First Six Sparse PCs by SPCA

Table 3. Pitprops Data: Loadings of the First Six Sparse PCs by SPCA. Empty cells have zero loadings.

Variable	PC1	PC2	PC3	PC4	PC5	PC6
topdiam	-0.477					
length	-0.476					
moist		0.785				
testsg		0.620				
ovensg	0.177		0.640			
ringtop			0.589			
ringbut	-0.250		0.492			
bowmax	-0.344	-0.021				
bowdist	-0.416					
whorls	-0.400					
clear				-1		
knots		0.013			-1	
diaknot			-0.015			1
Number of nonzero loadings	7	4	4	1	1	1
Variance (%)	28.0	14.4	15.0	7.7	7.7	7.
Adjusted variance (%)	28.0	14.0	13.3	7.4	6.8	6.5
Cumulative adjusted variance (%)	28.0	42.0	55.3	62.7	69.5	75.

Source: Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. *Journal of Computational and Graphical Statistics*, *15*(2), 265-286.

The Lasso

Overview:

- \triangleright Adds an L_1 penalty to the regression coefficients.
- Encourages sparsity by shrinking some coefficients to zero.

Optimization Problem:

$$\hat{oldsymbol{eta}}_{\mathsf{lasso}} = rg \min_{oldsymbol{eta}} \|\mathbf{Y} - \mathbf{X}oldsymbol{eta}\|^2 + \lambda_1 \sum_{j=1}^{
ho} |eta_j|$$

- \triangleright λ_1 : Regularization parameter controlling sparsity.
- Shrinks less relevant features, selecting the most important ones.

Limitation:

Struggles with correlated predictors.

Elastic Net

Overview:

- ightharpoonup Combines L_1 (Lasso) and L_2 (Ridge) penalties.
- Addresses limitations of the Lasso for correlated predictors.

Optimization Problem:

$$\hat{\boldsymbol{\beta}}_{\mathsf{en}} = \arg\min_{\boldsymbol{\beta}} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda_2 \sum_{j=1}^{p} \beta_j^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j|$$

- \triangleright λ_1 : Sparsity parameter (controls Lasso effect)
- λ_2 : Stabilization parameter for correlated features (controls Ridge effect).

Sparse Principal Component Analysis (SPCA)

Overview:

- Introduced by Zou et al. (2006).
- ▶ Improves PCA by introducing sparsity in the loadings matrix V.
- Ensures that only a subset of features contributes to each principal component (PC).

Benefits:

- Improved interpretability.
- Reduces the number of used variables, enhancing computational efficiency.

PCA as a Regression Problem

Regression Framework:

- Each PC in PCA can be recovered by solving a regression problem.
- Ridge regression formulation:

$$\hat{\boldsymbol{\beta}}_{\mathsf{ridge}} = \arg\min_{\boldsymbol{\beta}} \|\mathbf{Z}_i - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2$$

- \triangleright λ : Ridge penalty for stability and uniqueness.
- ► The normalized ridge solution is:

$$\hat{oldsymbol{\mathsf{v}}} = rac{\hat{oldsymbol{eta}}_{\mathsf{ridge}}}{\|\hat{oldsymbol{eta}}_{\mathsf{ridge}}\|}.$$

SPCA as a Regression Problem

Extension to SPCA:

ightharpoonup Adds an L_1 penalty (Lasso) to enforce sparsity:

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \|\mathbf{Z}_i - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda_2 \|\boldsymbol{\beta}\|^2 + \lambda_1 \|\boldsymbol{\beta}\|_1$$

- ▶ Combines Ridge (L_2) and Lasso (L_1) penalties for stability and sparsity.
- The resulting sparse loading vector $\hat{\mathbf{v}}_i$ is normalized, and the sparse principal component is given by:

 $\mathbf{X}\hat{\mathbf{v}}_{i}$.

SPCA Optimization Problem

General Optimization Criterion:

$$(\hat{\mathbf{A}},\hat{\mathbf{B}}) = \arg\min_{\mathbf{A},\mathbf{B}} \sum_{i=1}^n \|\mathbf{x}_i - \mathbf{A}\mathbf{B}^\top \mathbf{x}_i\|^2 + \sum_{j=1}^k \left(\lambda_1 \|\beta_j\|_1 + \lambda_2 \|\beta_j\|^2\right)$$

- ▶ **A**: Sparse loading matrix $(p \times k)$.
- **B**: Coefficients of principal components $(n \times k)$.

Constraints:

$$\mathbf{A}^{\top}\mathbf{A} = \mathbf{I}_{k \times k}$$

Role of Penalties:

- \triangleright λ_1 : Controls sparsity (Lasso penalty).
- $\triangleright \lambda_2$: Ensures stability (Ridge penalty).

Algorithm to resolve SPCA optimization problem

Algorithm

- Fix A and solve for B using the Elastic Net.
- Fix B and solve for A using Singular Value Decomposition (SVD).
- Repeat until convergence.

SPCA in Face Recognition

Applications:

- Extracts localized features like eyes, nose, and mouth.
- Focuses on key facial regions rather than global patterns.
- Facilitates dimensionality reduction and interpretable feature extraction.

Comparison with PCA:

- ▶ PCA generates dense components, involving all features.
- SPCA introduces sparsity, isolating specific important features.

Summary of SPCA

- ► SPCA combines PCA with regularization techniques (Lasso, Elastic Net).
- Components are easier to interpret because only the most important variables are kept (due to Lasso penalty).
- Useful in scenarios where feature selection and sparsity are critical, like face recognition.

Introduction to Structured Sparse PCA

Overview:

- Extends Sparse PCA to incorporate prior structure in data.
- ► Incorporates domain knowledge to enforce sparsity patterns in principal components.
- Useful for datasets with hierarchical or group structures.

Core Idea:

Retains sparsity while respecting predefined structures (e.g., groups of features, spatial contiguity).

Why Structured Sparse PCA?

Limitations of Sparse PCA:

- ▶ Ignores group or hierarchical relationships in features.
- May select sparse features that are not meaningful in context.

Advantages of SSPCA:

- Leverages domain knowledge to improve feature selection.
- Ensures selected features adhere to logical groupings.
- Produces interpretable principal components with real-world relevance.

Applications:

- Functional brain imaging (groups of voxels).
- Genomics (pathways or gene networks).
- Face recognition (spatially adjacent features like eyes or mouth).

Mathematical Formulation of SSPCA

Optimization Problem:

$$(\hat{\mathbf{A}}, \hat{\mathbf{B}}) = \arg\min_{\mathbf{A}, \mathbf{B}} \sum_{i=1}^{n} \|\mathbf{x}_i - \mathbf{A}\mathbf{B}^{\top}\mathbf{x}_i\|^2 + \sum_{j=1}^{k} P(\beta_j)$$

- x_i: Input data vectors.
- ▶ **A**: Sparse loading matrix $(p \times k)$.
- **B**: Coefficients of principal components $(n \times k)$.
- \triangleright $P(\beta_i)$: Structured sparsity-inducing penalty.

Structured Sparsity Penalties

Group Lasso:

$$P_{\mathsf{group}}(\boldsymbol{\beta}) = \sum_{g \in \mathcal{G}} \lambda_g \|\boldsymbol{\beta}_g\|_2$$

- \triangleright \mathcal{G} : Predefined groups of features.
- Ensures entire groups of features are selected or removed.

Fused Lasso:

$$P_{\mathsf{fused}}(\boldsymbol{\beta}) = \lambda_1 \|\boldsymbol{\beta}\|_1 + \lambda_2 \sum_{j=1}^{p-1} |\beta_{j+1} - \beta_j|$$

Promotes sparsity and smoothness for sequential data.

Graph-based Penalty:

$$P_{\mathsf{graph}}(oldsymbol{eta}) = \lambda_1 \|oldsymbol{eta}\|_1 + \lambda_2 oldsymbol{eta}^{ op} \mathbf{L} oldsymbol{eta}$$

- L: Graph Laplacian encoding feature connectivity.
- Encourages features to be selected based on graph structure.

Constraints in SSPCA:

Structured Sparsity:

 $oldsymbol{eta}_j$ must respect predefined group, spatial, or graph structures.

Examples of structural constraints:

- ► **Group Sparsity:** Features are selected in predefined groups.
- Smoothness: Neighboring features have similar weights (e.g., in spatial or temporal data).
- ► **Graph Connectivity:** Selected features form a connected subgraph in a predefined network.

Comparison of PCA, SPCA, and SSPCA

Feature	PCA	Sparse PCA	SSPCA
Sparsity	No	Yes	Yes
Structure	No	No	Yes
Interpretability	Low	Medium	High
Applications	General	Feature selection	Structured data

Challenges and Takeaways of SSPCA

Challenges:

- Requires prior knowledge of feature structure.
- Computationally expensive for large datasets.
- Sensitive to hyperparameter tuning.

Key Takeaways:

- SSPCA bridges the gap between Sparse PCA and domain-specific feature selection.
- Balances sparsity, structure, and interpretability.

Application to Human-Face Recognition

Analyzing PCA and SPCA on the LFW Dataset

Objectives

Objectives:

- Evaluate the effectiveness of PCA and Sparse PCA (SPCA) for facial image analysis.
- Extract lower-dimensional representations that preserve discriminative information.

Evaluation:

- Predictive performance using a Support Vector Machine (SVM) classifier.
- Assess trade-offs in accuracy, interpretability, and computational efficiency.

Determining the Number of Principal Components

Figure: Scree Plot: Cumulative Explained Variance vs. Number of Principal Components.

Scree Plot Analysis

Two methods:

- ▶ **Elbow Point:** The curve flattens around 20–30 components, where adding further components contributes minimal additional variance.
- ► Target Variance Retention: To retain 95% of the variance, approximately 170 components are needed.

We choose to keep components that retain **95% of the variance** to achieve a balance between dimensionality reduction and minimal information loss.

Dimensionality Reduction with PCA

PCA Application:

- ► Goal: Simplify data structure and extract meaningful features.
- ▶ PCA reduces dimensions while retaining 95% of the variance.

Results:

- ▶ Original dataset shape: $1,288 \times 1,850$.
- ▶ Reduced dataset shape: $1,288 \times 171$.

Interpretation:

- Dimensionality reduction simplifies computational tasks.
- Maintains most of the dataset's variance.

Visualizing Principal Components (Eigenfaces)

Key Insights:

- Principal components (PCs) represent key patterns in the data.
- ► Eigenfaces: PCs for facial data, highlighting areas of variation.

Figure: First five PCA components (eigenfaces). Lighter/darker areas correspond to regions of high/low variance.

Insights from PCA Components

Description of the First Five Components:

- ► **Component 1:** Captures global brightness and symmetry across the face.
- ▶ Component 2: Highlights asymmetry, such as lighting differences between left/right sides.
- ► Component 3: Focuses on shadows and variations in the mouth and chin regions.
- Component 4: Emphasizes variations in the eye and brow regions.
- Component 5: Reflects changes in cheeks and mouth (e.g., facial expressions).

Observations and Limitations of PCA

Insights:

- ▶ Reduced dimensionality (171 PCs) retains 95% of variance.
- ▶ PCA components (eigenfaces) highlight key variations in facial features.

Limitations:

- Lack of sparsity: All features (pixels) contribute to each PC, making them less interpretable.
- Difficulty associating PCs with specific regions or patterns in the face.

Sparse PCA: Addressing PCA Limitations

Motivation:

- PCA produces dense principal components (PCs) that are difficult to interpret.
- Sparse PCA introduces sparsity, isolating specific features to enhance interpretability.

Sparse PCA Applied to the LFW Dataset:

- Reduced dimensionality from 1,850 features to 171 sparse components.
- Maintains meaningful variance while highlighting localized regions.

Visualizing Sparse PCA Components

Key Insights:

- Unlike PCA, Sparse PCA components highlight specific localized regions.
- Enhances interpretability by focusing on distinct facial features (e.g., eyes, mouth).

Figure: First five Sparse PCA components. Each component captures localized facial features.

Interpreting Sparse PCA Components

Descriptions of the First Five Components:

- ► Component 1: Highlights a localized region, likely corresponding to an eye or part of the forehead.
- ► Component 2: Focuses on a separate facial feature, such as the other eye or a shadowed region.
- ► **Component 3:** Captures a distinct upper facial feature, potentially related to the eyes or forehead.
- ► **Component 4:** Highlights the lower face, possibly the mouth or jawline.
- ► Component 5: Isolates another localized region, potentially the cheeks.

Comparison Between PCA and Sparse PCA

Key Differences:

- Component Structure:
 - PCA: Dense, global patterns involving all pixels.
 - Sparse PCA: Sparse, localized features (e.g., eyes, nose, mouth).
- Interpretability:
 - PCA components are harder to relate to specific facial features.
 - Sparse PCA components focus on distinct regions, improving interpretability.

MiniBatch Sparse PCA

MiniBatch Sparse PCA: A variant of Sparse PCA for efficient dimensionality reduction with sparse components.

- ▶ Why Use It? Efficient for large datasets; reduces memory and computation.
- How It Works: Processes data in mini-batches to balance speed and accuracy.

Key Parameters:

- n_components: Number of components.
- alpha: Controls sparsity.
- batch_size: Size of mini-batches.
- max_iter: Iterations for convergence.

Visualizing MiniBatch Sparse PCA Components

Key Insights:

- MiniBatch Sparse PCA components capture localized and sparse facial features.
- Sparsity enhances interpretability by isolating meaningful regions of variation.

Figure: First five MiniBatch Sparse PCA components. Each component highlights specific facial features.

Insights from MiniBatch Sparse PCA Components

Description of the First Five Components:

- ► Component 1: Captures the overall face structure, focusing on eyes and mouth.
- ► Component 2: Highlights contours around the nose and mouth regions.
- ► Component 3: Emphasizes the lower face, particularly the mouth and jawline.
- ► Component 4: Focuses on the upper face, especially the eyes and forehead.
- ► Component 5: Balances mid-face features, including the nose and cheeks.

Prediction Model: Overview

Objective:

Compare PCA, Sparse PCA, and MiniBatch SPCA by evaluating their performance in a classification task.

Methodology:

- ► Support Vector Machine (SVM) was chosen as the classifier.
- Suitable for high-dimensional data like facial feature vectors.

Support Vector Machine (SVM): Key Concepts

How SVM Works:

- ► Finds hyperplanes that separates data points from different classes.
- Maximizes the margin (distance to the nearest data points).

Kernel Trick:

- Maps data into a higher-dimensional space to handle non-linear separations.
- Common kernels:
 - **Linear**: For linearly separable data.
 - RBF (Radial Basis Function): Effective for non-linear relationships.
 - Polynomial: Handles more complex boundaries.

SVM Hyperparameter Optimization

Two hyperparameters to tune:

- ► C: Controls the trade-off between maximizing the margin and minimizing classification errors.
- ▶ **Gamma:** Determines the influence of a single data point.

Optimization Strategy:

- Grid search over hyperparameter values:
 - $C \in \{1, 5, 10, 20\}.$
 - $\gamma \in \{\text{scale}, 0.1, 0.01, 0.001\}.$
- ▶ 5-fold cross-validation to select the best combination.

Prediction Results: Accuracy Comparison

Results After Grid Search:

- **No PCA:** 0.845 (C = 5, $\gamma = \text{scale}$).
- **PCA:** 0.845 (C = 5, $\gamma = \text{scale}$).
- ▶ **Sparse PCA:** 0.841 (C = 10, $\gamma = \text{scale}$).
- ▶ MiniBatch SPCA: 0.853 (C = 5, $\gamma = \text{scale}$).

Analysis of Results

Why MiniBatch SPCA Performs Best:

- Balances sparsity with computational efficiency.
- Preserves more discriminative structure in the data.

Why PCA and Sparse PCA Are Similar:

- PCA captures global patterns effectively, which are sufficient for classification.
- Sparse PCA focuses on localized features but may lose some discriminative information if sparsity is overly enforced.

Conclusion

Project Summary:

Applied PCA and Sparse PCA for dimensionality reduction on the LFW dataset.

► PCA:

- Reduced dataset to 171 components, retaining 95% of the variance.
- Captures global patterns but lacks interpretability.

Sparse PCA:

- Introduced sparsity, improving interpretability by highlighting localized features.
- Slight reduction in classification accuracy compared to PCA.

MiniBatch Sparse PCA:

- Achieved the best accuracy (0.853).
- Balanced sparsity with computational efficiency.

To Go Further: Potential Improvements

Future Explorations:

- Applying SSPCA:
 - Structured Sparse Principal Component Analysis (SSPCA) introduces additional structure to the sparsity pattern.
 - Captures meaningful relationships between features.
 - Compare SSPCA's predictive accuracy with SPCA and MiniBatch SPCA.
- Experimenting with Different Variance Thresholds:
 - ► Current PCA retains 95% of variance.
 - Explore thresholds like 90%, 85%, and 99% to observe impact on predictive accuracy.
 - ► Trade-off: Lower thresholds may remove noise, while higher thresholds preserve more information.

Bibliography I

- ➤ Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. *Journal of Computational and Graphical Statistics*, 15(2), 265-286. https://doi.org/10.1198/106186006X113430.
- ▶ Jenatton, R., Obozinski, G., & Bach, F. (2010). Structured sparse principal component analysis. *Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics*, 366-373. http://proceedings.mlr.press/v9/jenatton10a/jenatton10a.pdf.