COMPLÉMENT D'ANALYSE

Impact du variant Omicron sur l'épidémie COVID-19 et son contrôle en France métropolitaine durant l'hiver 2021-2022

7 janvier 2022

Alessio Andronico^{1*}, Cécile Tran Kiem^{1*}, Paolo Bosetti^{1*}, Juliette Paireau^{1,2}, Consortium Emergen\$, Simon Cauchemez¹

¹ Unité de Modélisation Mathématique des Maladies Infectieuses, Institut Pasteur, Université de Paris, CNRS UMR2000; ² Santé Publique France;

*: contribution égale; \$: les membres du consortium Emergen sont listés en annexe Correspondance: simon.cauchemez@pasteur.fr

AVERTISSEMENTS: Ces scénarios sont faits sur la base de données incomplètes et d'hypothèses incertaines. La propagation du virus SARS-CoV-2 est difficile à anticiper; et la dynamique de l'épidémie peut changer rapidement. Les trajectoires décrites dépendent des hypothèses faites; si les hypothèses ne se réalisent pas, la dynamique observée pourra être différente des projections.

ERRATUM: Dans une version antérieure de ce rapport, nous avions inversé les résultats des Scénarios 1 (sévérité basse, transmissibilité haute) et 2 (sévérité plus importante, transmissibilité intermédiaire). L'erreur a été corrigée dans cette version amendée. Ces deux scénarios offrent des projections relativement proches. Par exemple, avec 20% de réduction des contacts en janvier, on s'attend, au pic, à 2700 (Scénario 1) vs 2500 (Scénario 2) admissions à l'hôpital, 18 000 (Scénario 1) vs 17 000 (Scénario 2) lits d'hospitalisation conventionnelle et 4 000 (Scénario 1) vs 3 900 (Scénario 2) lits de soins critiques.

Résumé

Objectifs: Le 27 décembre 2021, nous avons publié plusieurs scénarios évaluant l'impact possible de l'épidémie du variant Omicron, avec une incertitude importante notamment en ce qui concerne la sévérité et l'avantage de transmission de ce variant. Avec davantage de recul sur l'épidémie Omicron en France et à l'étranger, nous pouvons aujourd'hui réduire le nombre de scénarios envisagés. Par ailleurs, la description des trajectoires de patients hospitalisés infectés par Omicron nous permet de projeter l'impact de cette vague Omicron sur les besoins en lits d'hospitalisation conventionnelle et de soins critiques. Finalement, nous présentons également des scénarios avec une efficacité vaccinale plus basse pour Omicron, basée sur les dernières données britanniques.

Résultats:

- Nous présentons des projections pour trois scénarios différents concernant l'avantage de transmission et la sévérité d'Omicron par rapport à Delta. Dans le Scénario 1 qui paraît actuellement le plus probable, le variant Omicron est caractérisé par une sévérité basse (réduction de 77% de la probabilité d'hospitalisation lorsqu'on est infecté par rapport à Delta) mais une transmissibilité haute.
- Dans le Scénario 1, sous des hypothèses optimistes concernant l'efficacité vaccinale, le pic d'hospitalisations pourrait atteindre 4400 hospitalisations quotidiennes sans réduction

des taux de transmission le 3 janvier. Dans les scénarios plus probables où les Français réduisent leurs contacts de 10% et 20%, ce pic passerait à 3400 (-21%) et 2700 (-39%) hospitalisations journalières, respectivement. Dans les scénarios où les taux de transmission sont réduits de 0%, 10% et 20% début janvier, il faudrait respectivement 27000, 22000 (-18%) et 18000 (-33%) lits d'hospitalisations conventionnelles et 5300, 4600 (-14%) et 4000 (-24%) lits de soins critiques au pic de l'épidémie. Avec une réduction de 10% des taux de transmission à compter du 3 janvier, les besoins de lits d'hospitalisation conventionnelle pourraient passer de 22000 lits pour une durée moyenne de séjour de 6 jours pour les patients Omicron à 17600 (-20%) et 15200 (-31%) lits si l'on réussissait à réduire cette durée à 4 et 3 jours, respectivement.

- Dans le Scénario 1, sous des hypothèses plus pessimistes concernant l'efficacité vaccinale, le pic des admissions à l'hôpital serait de 5300, 4200 (-20%) et 3300 (-39%), respectivement, si les taux de transmission sont réduits de 0%, 10% et 20% début janvier. Au pic, il faudrait 32000, 26000 (-18%) et 21000 (-34%) lits d'hospitalisations conventionnelles et 6000, 5100 (-14%) et 4400 (-27%) lits de soins critiques.
- Des changements dans les hypothèses concernant l'avantage de transmission et la sévérité d'Omicron peuvent impacter de façon importante les projections, avec des projections substantiellement dégradées lorsque le risque d'hospitalisation est plus élevé.

Discussion:

- Comme dans nos analyses précédentes, nous trouvons que de petites réductions dans les taux de transmission en janvier peuvent fortement réduire l'impact hospitalier de cette vague. Par exemple, si les Français réduisent de 20% leurs contacts en janvier, cela pourrait réduire la taille du pic des hospitalisations de 40%. Par ailleurs, la pression sur les services d'hospitalisation conventionnelle pourrait être atténuée s'il est possible de réduire les durées moyennes de séjour dans ces services. Cela nécessite le développement de structures en soins primaires ou des hospitalisations à domicile pour l'accueil des patients en amont ou aval des hospitalisations, notamment pour assurer l'oxygénothérapie à domicile.
- Dans le passé, les durées de séjour et probabilités de passage en soins critiques ont pu varier de façon importante au fur et à mesure que les vagues épidémiques progressaient (voir l'analyse à ce lien). Il demeure en outre de nombreuses incertitudes concernant la durée et la probabilité d'admission en soins critiques des patients infectés par Omicron. Ces éléments rendent particulièrement incertaines les projections pour les besoins en termes de lits.
- Nous étudions l'impact de l'émergence du variant Omicron sur les besoins hospitaliers au niveau national (France métropolitaine). Il existe néanmoins des disparités régionales importantes concernant le profil d'immunité dans la population ou l'avancement de l'épidémie du variant Omicron. Les dynamiques régionales sont donc susceptibles d'être différentes de celle prédite au niveau national.
- Nous utilisons les données de vaccination disponibles au 19 décembre et faisons l'hypothèse que les doses de rappel sont administrées à un rythme de 800 000 doses par jour. Nos projections ne prennent pas en compte le ralentissement de l'administration des doses de rappel observé durant les vacances scolaires, qui est susceptible de dégrader l'impact hospitalier.

- Notre modèle fait pour l'instant l'hypothèse qu'une fois hospitalisés, les patients vaccinés et non-vaccinés ont les mêmes probabilités de passage en soins critiques et durées de séjour. Il est cependant probable que les hospitalisations soient moins graves pour les personnes vaccinées. Cela pourrait conduire à surestimer le nombre de lits nécessaires en soins critiques, notamment dans les scénarios avec une efficacité vaccinale plus faible. Nous essaierons de mieux prendre en compte les différences entre les trajectoires hospitalières des vaccinés et des non-vaccinés dans les futures itérations de ce modèle.
- Même si les incertitudes se réduisent par rapport à nos analyses du 27 décembre, elles restent importantes comme l'attestent les variations observées entre les différents scénarios présentés.

Objectifs

Le 27 décembre 2021, <u>nous avons publié plusieurs scénarios</u> évaluant l'impact possible de l'épidémie du variant Omicron, avec une incertitude importante notamment en ce qui concerne la sévérité et l'avantage de transmission de ce variant. Avec davantage de recul sur l'épidémie Omicron en France et à l'étranger, nous pouvons aujourd'hui réduire le nombre de scénarios envisagés. Par ailleurs, la description des trajectoires de patients hospitalisés infectés par Omicron nous permet de projeter l'impact de cette vague Omicron sur les besoins en lits d'hospitalisation conventionnelle et de soins critiques. Finalement, nous présentons également des scénarios avec une efficacité vaccinale plus bas pour Omicron, basée sur les dernières données anglaises.

Hypothèses et méthodes

Nous invitons les lecteurs à consulter <u>notre rapport du 27 décembre 2021</u> pour obtenir une description détaillée de notre modèle et de nos hypothèses. Nous ne présentons ici que les éléments nouveaux ne figurant pas dans le rapport précédent.

Risque d'hospitalisation lorsqu'on est infecté

Dans notre analyse du 27 décembre 2021, nous envisagions 4 niveaux de sévérité possibles pour l'infection Omicron, avec un risque d'hospitalisation lorsqu'on est infecté:

- i) identique à celui du variant Delta;
- ii) identique à celui du variant Alpha (-33% par rapport à Delta),
- iii) identique à celui du virus historique (-53% par rapport à Delta);
- iv) deux fois plus faible que celui du virus historique (½ historique; -77% par rapport à Delta).

Étant donné les données disponibles à l'international [1], nous nous concentrons désormais sur les deux derniers scénarios.

Trajectoires des patients à l'hôpital

Sur la base des données internationales [2–5], nous faisons l'hypothèse que, parmi les patients COVID hospitalisés:

- La probabilité de passage en soins critiques est 3 fois plus faible pour les patients infectés par Omicron que pour ceux infectés par Delta. Cette probabilité est égale à 25% pour les patients Delta (voir l'analyse à ce lien) et à 8% pour les patients Omicron.
- La durée moyenne de séjour en hospitalisation conventionnelle est deux fois plus faible pour les patients Omicron que pour les patients Delta. Cette durée est égale à 12 jours pour les patients Delta (voir l'analyse à ce lien) et à 6 jours pour les patients Omicron.
- Lorsqu'un patient est admis en soins critiques, la durée moyenne de séjour en soins critiques est identique pour les patients Omicron et les patients Delta. Cette durée est de 14 jours (voir l'analyse à ce lien).

Par ailleurs, dans une étude de sensibilité, nous explorons un scénario où les durées moyennes de séjour sont réduites pour les patients Omicron en hospitalisation conventionnelle, par exemple grâce à la mise en place de protocoles dédiés. Nous présentons donc des scénarios où les durées moyennes de séjour des patients Omicron sont de 3 et 4 jours en hospitalisation conventionnelle (au lieu de 6 jours dans notre scénario de référence).

Hypothèses sur l'efficacité vaccinale

Dans <u>notre rapport du 27 décembre 2021</u>, nous faisions les hypothèses décrites dans le Tableau 1 concernant l'efficacité vaccinale. Nous présentons également des projections avec une efficacité vaccinale plus faible, issue de l'analyse de UKHSA [6] (scénario ALT dans le Tableau 1).

Tableau 1: Hypothèses concernant la protection contre l'infection et l'hospitalisation pour les variants Delta et Omicron, pour différents profils d'individus, quand la dose a été administrée il y a moins de 6 mois ou plus de 6 mois. Nous présentons également un scénario alternatif (ALT) avec une efficacité vaccinale plus faible issue des données britanniques récentes.

	Variant	Protection contre l'infection		Protection contre l'hospitalisation	
		<6 mois	≥6 mois	<6 mois	≥6 mois
Infectés et non-vaccinés	Delta	85%	60%	90%	85%
	Omicron	35%	15%	80%	50%
2 doses	Delta	80%	50%	95%	85%
	Omicron	55% ALT: 40%	25% ALT: 10%	90%	70%
Rappel OU infecté et vacciné	Delta	95%	85%	95%	95%
	Omicron	85% ALT: 60%	70% ALT: 40%	95%	90%

Lorsque nous changeons les paramètres d'efficacité vaccinale dans le modèle, nous recalculons l'avantage de transmission pour que nos scénarios avec avantages de transmission haut, intermédiaire et bas continuent à correspondre à des temps de doublement du variant Omicron de 2.4, 2.7 et 3 jours fin novembre-début décembre (cf <u>rapport du 27 décembre 2021</u>).

Rappel du scénario de référence

Comme dans le <u>rapport du 27 décembre 2021</u>, notre scénario de référence est caractérisé par i) un maximum de 800 000 doses de rappel administrées par jour, ii) une adhésion au rappel de 95% chez les 18+ éligibles avec un délai de 4 mois entre la seconde dose et la dose de rappel, iii) 30 000 enfants de 5-11 ans recevant une primo-vaccination par jour avec une adhésion de

30% à compter du 1er janvier 2022, iv) nos hypothèses de référence sur l'immunité (Tableau 1), iv) une prévalence d'Omicron de 0.3% le 29 novembre (enquête Flash S48).

Résultats

Comparaison entre projections du 27 décembre et dernières données d'hospitalisation

Dans notre rapport du 27 décembre 2021, étant donné les incertitudes, nous présentions des projections pour différents avantages de transmission et niveaux de sévérité d'Omicron par rapport à Delta. La comparaison de ces projections et des dernières données d'hospitalisation est informative car elle nous permet de déterminer les scénarios qui restent compatibles aux données et ceux qui semblent désormais pouvoir être exclus.

Figure 1: Comparaison des dernières données d'hospitalisation aux projections présentées dans le rapport du 27 décembre, pour deux niveaux de sévérité et trois avantages de transmission d'Omicron possibles par rapport à Delta. Les points noirs correspondent aux données disponibles au moment où le modèle a été calibré.

Le scénario avec un avantage de transmission bas ne semble pas compatible avec la croissance des hospitalisations observée pendant les fêtes (Figure 1, panneau de gauche). Par ailleurs, l'analyse des données Flash indique un temps de doublement des cas Omicron de 2.4 jours la semaine du 29 novembre et de 2.8 jours la semaine du 13 décembre, soit une réduction du taux de croissance des cas Omicron de 15% courant décembre. Ceci est globalement compatible avec notre scénario de transmissibilité haute. Pour rappel, ce scénario est caractérisé par un temps de doublement des infections Omicron de 2.4 jours début décembre puis une réduction des taux de transmission de 20% le 1er décembre 2021, donnant lieu à un temps de doublement de 3.0 jours courant décembre.

Sur la base de ces comparaisons, nous retenons 3 scénarios qui semblent toujours compatibles aux données:

- Scénario 1: Sévérité deux fois plus faible que celle du virus historique (Hist/2) et Transmissibilité Haute (que nous considérons à ce stade comme le plus probable)
- Scénario 2: Sévérité identique à celle du virus historique (Hist) et Transmissibilité Intermédiaire
- Scénario 3: Sévérité identique à celle du virus historique (Hist) et Transmissibilité Haute.

Parmi ces trois scénarios, le Scénario 1 est celui qui semble le plus en adéquation aux données nationales et internationales.

Projections des besoins hospitaliers dans notre scénario de référence avec des hypothèses optimistes sur l'efficacité vaccinale

La Figure 2 présente la dynamique des admissions hospitalières journalières, des lits d'hospitalisation conventionnelle et de soins critiques, selon les hypothèses concernant l'avantage de transmission et la sévérité du variant Omicron ainsi que les changements de comportements dans les semaines qui viennent. En effet, même sans renforcement des mesures de contrôle, il est possible que les Français modifient leurs comportements face à la reprise de l'épidémie. Par ailleurs, des mesures de contrôle ont récemment été annoncées. Nous présentons donc des scénarios où ces annonces conduisent à une réduction du nombre de reproduction de base R₀ de 0%, 10% ou 20% à partir du 3 janvier 2022. Les scénarios avec des réductions de 10% ou 20% des taux de transmission semblent plus probables que le scénario sans réduction.

Dans tous les scénarios, le pic des admissions à l'hôpital est attendu dans la deuxième moitié de janvier, avec un impact maximal sur l'occupation des lits fin janvier-courant février. Le pic des infections est attendu mi-janvier (voir la Figure 6 dans le rapport du 27 décembre 2021).

<u>Scénario 1 - Sévérité d'Omicron Hist/2 et avantage de transmission haut (scénario que nous considérons actuellement comme le plus probable)</u>

Dans ce scénario, le pic d'hospitalisations pourrait atteindre 4400 hospitalisations quotidiennes sans réduction des taux de transmission le 3 janvier (Figure 2, panneau en haut à gauche). Dans les scénarios plus probables où les Français réduisent leurs contacts de 10% et 20%, ce pic passerait à 3400 (réduction de 21%) et 2700 (réduction de 39%) hospitalisations journalières, respectivement. Dans les scénarios où les taux de transmission sont réduits de 0%, 10% et 20% début janvier, il faudrait respectivement 27000, 22000 (réduction de 18%) et 18000 (réduction de 33%) lits d'hospitalisations conventionnelles et 5300, 4600 (réduction de 14%) et 4000 (-24%) lits de soins critiques au pic de l'épidémie.

Scénario 2 - Sévérité identique à celle du virus historique (Hist) et Transmissibilité Intermédiaire

Dans ce scénario, si les taux de transmission sont réduits de 0%, 10% et 20% début janvier, le pic des admissions à l'hôpital serait de 5200, 3600 (-29%) et 2500 (-52%), respectivement. Au

pic, il faudrait 32000, 23000 (-27%) et 17000 (-46%) lits d'hospitalisations conventionnelles et 6000, 4700 (-23%) et 3900 (-36%) lits de soins critiques.

Scénario 3 - Sévérité identique à celle du virus historique (Hist) et Transmissibilité Haute

Dans ce scénario, si les taux de transmission sont réduits de 0%, 10% et 20% début janvier, le pic des admissions à l'hôpital serait de 8600, 6700 (-22%) et 5100 (-41%), respectivement. Au pic, il faudrait 50000, 40000 (-20%) et 31000 (-37%) lits d'hospitalisations conventionnelles et 9000, 7400 (-18%) et 6100 (-32%) lits de soins critiques.

Figure 2: Projections des admissions journalières à l'hôpital (ligne du haut), du nombre de lits COVID-19 en hospitalisations conventionnelle (ligne du milieu) et en soins critiques (ligne du bas). Ces projections sont présentées lorsque les taux de transmission restent inchangés (traits rouges) et lorsqu'ils diminuent de 10% (traits verts) ou 20% (traits bleus) à compter du 3 janvier 2022. En colonne, nous considérons 3 scénarios possibles en termes de sévérité et transmissibilité d'Omicron (voir texte). Les pointillés indiquent les niveaux atteints durant le premier pic de 2020.

La Figure 3 montre les besoins en termes de lits d'hospitalisation conventionnelle pour différentes durées moyennes de séjour en hospitalisation conventionnelle pour les patients Omicron. Dans le Scénario 1, avec une réduction de 10% des taux de transmission à compter du 3 janvier, les besoins de lits d'hospitalisation conventionnelle passent de 22000 lits pour une durée moyenne de séjour de 6 jours à 17600 (-20%) et 15200 (-31%) lits si l'on réussit à réduire cette durée à 4 et 3 jours, respectivement.

Figure 3: Projections du nombre de lits COVID-19 en hospitalisations conventionnelle en fonction de la durée moyenne de séjour (DMS) des patients Omicron en hospitalisation conventionnelle, pour nos 3 scénarios de sévérité/transmissibilité d'Omicron et différentes hypothèses sur la réduction des taux de transmission à compter du 3 janvier 2022. Les pointillés indiquent les niveaux atteints durant le premier pic de 2020.

Projections des besoins hospitaliers sous des hypothèses plus pessimistes concernant l'efficacité vaccinale

La Figure 4 présente les projections sous les hypothèses plus pessimistes concernant l'efficacité vaccinale (Tableau 1, scénario ALT).

<u>Scénario 1 - sévérité d'Omicron Hist/2 et avantage de transmission haut</u>

Dans ce scénario, si les taux de transmission sont réduits de 0%, 10% et 20% début janvier, le pic des admissions à l'hôpital serait de 5300, 4200 (-20%) et 3300 (-39%), respectivement. Au pic, il faudrait 32000, 26000 (-18%) et 21000 (-34%) lits d'hospitalisations conventionnelles et 6000, 5100 (-14%) et 4400 (-27%) lits de soins critiques.

Scénario 2 - Sévérité identique à celle du virus historique (Hist) et Transmissibilité Intermédiaire

Dans ce scénario, si les taux de transmission sont réduits de 0%, 10% et 20% début janvier, le pic des admissions à l'hôpital serait de 7200, 5200 (-28%) et 3500 (-52%), respectivement. Au pic, il faudrait 43000, 32000 (-26%) et 22000 (-49%) lits d'hospitalisations conventionnelles et 7800, 6000 (-23%) et 4400 (-44%) lits de soins critiques.

Scénario 3 - Sévérité identique à celle du virus historique (Hist) et Transmissibilité Haute

Dans ce scénario, si les taux de transmission sont réduits de 0%, 10% et 20% début janvier, le pic des admissions à l'hôpital serait de 11000, 8400 (-20%) et 6400 (-40%), respectivement. Au pic, il faudrait 60000, 49000 (-19%) et 38000 (-36%) lits d'hospitalisations conventionnelles et 11000, 9000 (-16%) et 7000 (-32%) lits de soins critiques.

La Figure 5 montre les besoins en termes de lits d'hospitalisation conventionnelle pour différentes durées moyennes de séjour en hospitalisation conventionnelle des patients Omicron.

Figure 4: Projections des admissions journalières à l'hôpital (ligne du haut), du nombre de lits COVID-19 en hospitalisations conventionnelle (ligne du milieu) et en soins critiques (ligne du bas) sous des hypothèses plus pessimistes concernant l'efficacité vaccinale (Tableau 1, scénario ALT). Ces projections sont présentées lorsque les taux de transmission restent inchangés (traits rouges) et lorsqu'ils diminuent de 10% (traits verts) ou 20% (traits bleus) à compter du 3 janvier 2022. En colonne, nous considérons 3 scénarios possibles en termes de sévérité et transmissibilité d'Omicron (voir texte). Les pointillés indiquent les niveaux atteints durant le premier pic de 2020.

Figure 5: Projections du nombre de lits COVID-19 en hospitalisations conventionnelle en fonction de la durée moyenne de séjour des patients Omicron en hospitalisation conventionnelle, pour nos 3 scénarios de sévérité/transmissibilité d'Omicron et différentes hypothèses sur la réduction des taux de transmission à compter du 3 janvier 2022, sous des hypothèses plus pessimistes concernant l'efficacité vaccinale (Tableau 1, scénario ALT). Les pointillés indiquent les niveaux atteints durant le premier pic de 2020.

Références

- SARS-CoV-2 variants of concern and variants under investigation in England Technical briefing: Update on hospitalisation and vaccine effectiveness for Omicron VOC-21NOV-01 (B.1.1.529). Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_d ata/file/1044481/Technical-Briefing-31-Dec-2021-Omicron severity update.pdf
- 2. Ulloa AC, Buchan SA, Daneman N, Brown KA. Early estimates of SARS-CoV-2 Omicron variant severity based on a matched cohort study, Ontario, Canada. medRxiv. 2022; 2021.12.24.21268382.
- Christensen PA, Olsen RJ, Wesley Long S, Snehal R, Davis JJ, Saavedra MO, et al. Early signals of significantly increased vaccine breakthrough, decreased hospitalization rates, and less severe disease in patients with COVID-19 caused by the Omicron variant of SARS-CoV-2 in Houston, Texas. medRxiv. 2022; 2021.12.30.21268560.
- Wang L, Berger NA, Kaelber DC, Davis PB, Volkow ND, Xu R. Comparison of outcomes from COVID infection in pediatric and adult patients before and after the emergence of Omicron. medRxiv. 2022; 2021.12.30.21268495.
- Maslo C, Friedland R, Toubkin M, Laubscher A, Akaloo T, Kama B. Characteristics and Outcomes of Hospitalized Patients in South Africa During the COVID-19 Omicron Wave Compared With Previous Waves. JAMA. 2021. doi:10.1001/jama.2021.24868
- 6. SARS-CoV-2 variants of concern and variants under investigation in England Technical briefing 33. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_d ata/file/1043807/technical-briefing-33.pdf

Annexe - Consortium Emergen

Le consortium EMERGEN est constitué des membres suivants:

Nom	Prénom	Affiliation 1	Affiliation 2
BAL	Antonin	CNR Virus des infections respiratoires	Hospices Civils de Lyon
DESTRAS	Gregory	CNR Virus des infections respiratoires	Hospices Civils de Lyon
JOSSET	Laurence	CNR Virus des infections respiratoires	Hospices Civils de Lyon
LINA	Bruno	CNR Virus des infections respiratoires	Hospices Civils de Lyon
BEHILLIL	Sylvie	CNR Virus des infections respiratoires	Institut Pasteur
ENOUF	Vincent	CNR Virus des infections respiratoires	Institut Pasteur
VAN DER WERF	Sylvie	CNR Virus des infections respiratoires	Institut Pasteur
COLSON	Philippe	CNR-LE Appui au séquençage du SARS-CoV-2	АРНМ
FOURNIER	Pierre-Edouard	CNR-LE Appui au séquençage du SARS-CoV-2	АРНМ
HOUHAMDI	Linda	CNR-LE Appui au séquençage du SARS-CoV-2	АРНМ
LEVASSEUR	Anthony	CNR-LE Appui au séquençage du SARS-CoV-2	АРНМ
FOURATI	Slim	CNR-LE Appui au séquençage du SARS-CoV-2	APHP Henri Mondor
PAWLOTSKY	Jean-Michel	CNR-LE Appui au séquençage du SARS-CoV-2	APHP Henri Mondor
RODRIGUEZ	Christophe	CNR-LE Appui au séquençage du SARS-CoV-2	APHP Henri Mondor
BENQUEY	Thibaut	Plateforme AMI	Alpigene - Synlab
DUCREUX	Stéphanie	Plateforme AMI	Alpigene - Synlab
MARTIN-DUNAVIT	Tanguy	Plateforme AMI	Alpigene - Synlab
CADO	Sylvie	Plateforme AMI	Cerba - Cerballiance
HAIM-BOUKOBZA	Stéphanie	Plateforme AMI	Cerba - Cerballiance

ROQUEBERT	Bénédicte	Plateforme AMI	Cerba - Cerballiance
VERDURME	Laura	Plateforme AMI	Cerba - Cerballiance
DURET	Thomas	Plateforme AMI	Genbio - Inovie
KEMENY	Stéphane	Plateforme AMI	Genbio - Inovie
KEPPI	Bertrand	Plateforme AMI	Genbio - Inovie
RIVRON	François	Plateforme AMI	Genbio - Inovie
CHILLOU	Christian	Plateforme AMI	Laborizon Centre - Biogroup
HOLSTEIN	Anne	Plateforme AMI	Laborizon Centre - Biogroup
JIMENEZ	Mélanie	Plateforme AMI	Laborizon Centre - Biogroup
CHARPENTIER	Charlotte	Réseau ANRS MIE (AC43)	APHP Bichat-Claude Bernard
DESCAMPS	Diane	Réseau ANRS MIE (AC43)	APHP Bichat-Claude Bernard
BELEC	Laurent	Réseau ANRS MIE (AC43)	APHP HEGP
ROQUE	Anne-Marie	Réseau ANRS MIE (AC43)	APHP Paul Brousse
CALVEZ	Vincent	Réseau ANRS MIE (AC43)	APHP Pitié-Salpêtrière
MORAND-JOUBERT	Laurence	Réseau ANRS MIE (AC43)	APHP Saint Antoine
DELAUGUERRE	Constance	Réseau ANRS MIE (AC43)	APHP Saint-Louis
VALLEE	Eric	Réseau ANRS MIE (AC43)	CH Simone Veil
POGGI	Cécile	Réseau ANRS MIE (AC43)	CH Toulon
MARQUE-JUILLET	Stéphanie	Réseau ANRS MIE (AC43)	CH Versailles
CASTELAIN	Sandrine	Réseau ANRS MIE (AC43)	CHU Amiens
LAFON	Marie-Edith	Réseau ANRS MIE (AC43)	CHU Bordeaux
PAYAN	Christopher	Réseau ANRS MIE (AC43)	CHU Brest
VABRET	Astrid	Réseau ANRS MIE (AC43)	CHU Caen
HENQUELL	Cécile	Réseau ANRS MIE (AC43)	CHU Clermont-Ferrand
DE ROUGEMONT	Alexis	Réseau ANRS MIE (AC43)	CHU Dijon
MORAND	Patrice	Réseau ANRS MIE (AC43)	CHU Grenoble
JAFFAR-BANDJEE	Marie-Christine	Réseau ANRS MIE (AC43)	CHU La Réunion
BOCKET	Laurence	Réseau ANRS MIE (AC43)	CHU Lille
ROGEZ	Sylvie	Réseau ANRS MIE (AC43)	CHU Limoges
-	•	•	•

DOS SANTOS	Georges	Réseau ANRS MIE (AC43)	CHU Martinique
DELAMARE	Catherine	Réseau ANRS MIE (AC43)	CHU Metz
TUAILLON	Edouard	Réseau ANRS MIE (AC43)	CHU Montpellier
SCHVOERER	Evelyne	Réseau ANRS MIE (AC43)	CHU Nancy
FERRE	Virginie	Réseau ANRS MIE (AC43)	CHU Nantes
GIORDANENGO	Valérie	Réseau ANRS MIE (AC43)	CHU Nice
STEPHAN	Robin	Réseau ANRS MIE (AC43)	CHU Nîmes
LEVEQUE	Nicolas	Réseau ANRS MIE (AC43)	CHU Poitiers
THIBAULT	Vincent	Réseau ANRS MIE (AC43)	CHU Rennes
PLANTIER	Jean-Christophe	Réseau ANRS MIE (AC43)	CHU Rouen
BOURLET	Thomas	Réseau ANRS MIE (AC43)	CHU Saint-Etienne
FAFI-KREMER	Samira	Réseau ANRS MIE (AC43)	CHU Strasbourg
IZOPET	Jacques	Réseau ANRS MIE (AC43)	CHU Toulouse
GAUDY	Catherine	Réseau ANRS MIE (AC43)	CHU Tours
ANDREOLETTI	Laurent	Réseau ANRS MIE (AC43)	Faculté de Medecine URCA / CHU Reims
ROUSSET	Dominique	Réseau ANRS MIE (AC43)	Institut Pasteur Guyane
GORGE	Olivier	Réseau ANRS MIE (AC43)	IRBA
MAVINGUI	Patrick	Réseau ANRS MIE (AC43)	PIMIT-La Réunion
GARCIA	Vincent	Réseau LBM ARS	Alphabio
HALFON	Philippe	Réseau LBM ARS	Alphabio
DUDA	Alain	Réseau LBM ARS	Atoutbio
GERMAIN	Hugo	Réseau LBM ARS	Atoutbio
NEYBECKER	Paul	Réseau LBM ARS	Atoutbio
JACQUES	Alexandra	Réseau LBM ARS	Biogroup
CAPRON	Nicolas	Réseau LBM ARS	Biopath
LEROY	Hugues	Réseau LBM ARS	Biopath
SAGOT	Christophe	Réseau LBM ARS	Biopath
FELICI	Charlotte	Réseau LBM ARS	Espacebio
LEVY	Julien	Réseau LBM ARS	Espacebio

BARQUES	Nicolas	Réseau LBM ARS	Eurofin-Biomnis
JACOMO	Véronique	Réseau LBM ARS	Eurofin-Biomnis
NAUDOT	Xavier	Réseau LBM ARS	Eurofin-Biomnis
SAUDEMONT	Camille	Réseau LBM ARS	Eurofin-Biomnis
VIGNOLA	Alexandre	Réseau LBM ARS	Oriade Noviale
ANTONIEWSKI	Christophe	Institut Français de BioInformatique	
BOURI	Laurent	Institut Français de BioInformatique	
CHARRIERE	Nicole	Institut Français de BioInformatique	
CHIAPELLO	Hélène	Institut Français de BioInformatique	
DENECKER-BERARDI NO	Thomas	Institut Français de BioInformatique	
GERBES	François	Institut Français de BioInformatique	
LAURIOU	Suzanne	Institut Français de BioInformatique	
LE BARS	Arthur	Institut Français de BioInformatique	
LE CORGUILLE	Gildas	Institut Français de BioInformatique	
MALABAT	Christophe	Institut Français de BioInformatique	
MEDIGUE	Claudine	Institut Français de BioInformatique	
MENAGER	Hervé	Institut Français de BioInformatique	
MESSAK	Imane	Institut Français de BioInformatique	
MILANESI	Sylvain	Institut Français de BioInformatique	
NAOUAR	Naïra	Institut Français de BioInformatique	
ROSNET	Thomas	Institut Français de BioInformatique	

SALGADO	David	Institut Français de BioInformatique	
SAND	Olivier	Institut Français de BioInformatique	
SEILER	Julien	Institut Français de BioInformatique	
VAN HELDEN	Jacques	Institut Français de BioInformatique	
AMZERT	Abdelkader	Inserm	ITMO Technologies de la Santé
LAHMANI	Imane	Inserm	ITMO Technologies de la Santé
LETHIMONNIER	Franck	Inserm	ITMO Technologies de la Santé
SAHNOUNE	Samy	Inserm	ITMO Technologies de la Santé
LESAULNIER	Frédérique	Inserm	
DEBARRE	Florence	Ecole Normale Supérieure	
SIMON-LORIERE	Etienne	Institut Pasteur	
BARRET	Anne-Sophie	Santé publique France	Direction Maladies Infectieuses
BERNARD-STOECKLI N	Sibylle	Santé publique France	Direction Maladies Infectieuses
CASTRO-ALVAREZ	Javier	Santé publique France	Direction Maladies Infectieuses
CHE	Didier	Santé publique France	Direction Maladies Infectieuses
DE VALK	Henriette	Santé publique France	Direction Maladies Infectieuses
DJELLOUL	Mehdi	Santé publique France	Direction Maladies Infectieuses
FERI	Adeline	Santé publique France	Direction Maladies Infectieuses
FOURNIER	Lucie	Santé publique France	Direction Maladies Infectieuses
MAISA	Anna	Santé publique France	Direction Maladies Infectieuses
SAUVAGE	Claire	Santé publique France	Direction Maladies Infectieuses
SCHAEFFER	Justine	Santé publique France	Direction Maladies Infectieuses
AHAMADI	Amina	Santé publique France	Direction des Régions
BREMBILLA	Alice	Santé publique France	Direction des Régions
CHENT	Souhaila	Santé publique France	Direction des Régions
GBAGUIDI	Gwladys	Santé publique France	Direction des Régions
HAMIDOUCHE	Mohamed	Santé publique France	Direction des Régions

HUCHET-KERVELLA	Caroline	Santé publique France	Direction des Régions
LAMY	Anais	Santé publique France	Direction des Régions
MASTROVITO	Brice	Santé publique France	Direction des Régions
MERCIER	Alizé	Santé publique France	Direction des Régions
PICARD	Gwenola	Santé publique France	Direction des Régions
RIONDEL	Adeline	Santé publique France	Direction des Régions
SPACCAFERRI	Guillaume	Santé publique France	Direction des Régions
LE STRAT	Yann	Santé publique France	Direction Appui, Traitement et Analyses de données
SUDOUR	Jeanne	Santé publique France	Direction Appui, Traitement et Analyses de données
ARFAOUI	Adel	Santé publique France	Direction des Systèmes d'Information
LAMPE	Paul-Henri	Santé publique France	Direction des Systèmes d'Information
MALLEJAC	Sophie	Santé publique France	Direction des Systèmes d'Information
HACHIN	Clothilde	Santé publique France	
NARDY	Stéphane	Santé publique France	
coivous	Aude	Santé publique France	Direction Achats et Finances
MEREAU	Anne-Laure	Santé publique France	Direction Achats et Finances
MORIN-LANDAIS	Angélique	Santé publique France	Direction Achats et Finances
ORTIZ	Sonia	Santé publique France	Direction Achats et Finances
COIGNARD	Bruno	Santé publique France	Direction Maladies Infectieuses
BOZORGAN	Anne	Santé publique France	Direction Maladies Infectieuses
YAZDANPANAH	Yazdan	ANRS Maladies Infectieuses Emergentes	
RAOUL	Hervé	ANRS Maladies Infectieuses Emergentes	
BRUGEROLLES	Claire	ANRS Maladies Infectieuses Emergentes	
MADELAINE	Claire	ANRS Maladies Infectieuses Emergentes	