

They check all the boxes

Gaussian Processes are a type of ML model

... Capable of doing inference based on set of observations

- For input values close to those of known observations
- ...Their output can be close to those of the observations themselves

Finally, their output is a full probability distribution (not a point estimate)

Intuitively, they model a conditional probability

$$P(y \mid x, \hat{x}, \hat{y}) \simeq f(y, x, \hat{x}, \hat{y}, \omega)$$

- lacktriangle The model is parameterized with a numeric vector, i.e. $oldsymbol{\omega}$
- lacksquare ...But also with a set of examples with input \hat{x} and output \hat{y}

They achieve this by relying on properties of the Normal (Gaussian) distribution

We will introduce the key concepts in GPs via an example:

- Say we want to model how rainfall changes over a stretch of land
- $y = \text{rainfall}, (x_0, x_1) = \text{position on the surface of land}$

We will introduce the key concepts in GPs via an example:

Since this is a physical phenomenon...

- lacktriangleright ...We can reasonably assume that $oldsymbol{y}$ is Normally distributed
- But unless we know more, we can say nothing else

We will introduce the key concepts in GPs via an example:

However, if we have a few measurements...

- ...Then we can assume that rainfall in nearby locations is similar
- ...So we can infer rainfall for positions for which we lack measurements

We will introduce the key concepts in GPs via an example:

E.g. we can view the measurements as components of a variable $y_X = (y_0, y_1, y_2)$

- \mathbf{y}_X will follow a multivariate Normal distribution
- ...And we can assume the covariance will depend on the distances

Formally:

A GP is a stochastic process, i.e. a collection of indexed random variables

- lacktriangle Each variable y_x is indexed via a tuple x (e.g. location, time...)
- The index is continuous and the collection infinite
- lacktriangle Every finite subset of y_x variables follows a Multivariate Normal Distribution

Translating back to our original conditional probability:

$$P(y \mid x, \hat{x}, \hat{y}) \equiv P(y_x \mid \hat{y}_{\hat{x}})$$

- \mathbf{x} is the GP input
- \mathbf{y}_{x} is the (stochastic) variable we want to estimate
- \hat{x} is the input for all available observations
- lacksquare ...And $\hat{y}_{\hat{x}}$ is the (stochastic) output

A GP has access to:

- \blacksquare The input vector \boldsymbol{x} for an unobserved point
- The input $\hat{x}_1, \hat{x}_2, \dots$ for a number of observed points

Overall, let $\tilde{x} = (x, \hat{x}_1, \hat{x}_2, \dots$

We view the output $\tilde{y} = (y_x, \hat{y}_1, \hat{y}_2, ...)$ as a Multivariate Normal Variable

$$\tilde{y} \sim \mathcal{N}(\mu, \Sigma)$$

With the aim to define the distribution, we make two assumptions:

- $\mu = 0$ (we can satisfy this by centering the data)
- The covariance matrix depends on the set of inputs...
- lacksquare ...And on the the ω parameter vector, i.e. $\Sigma(\tilde{x},\omega)$

This is enough to estimate the distribution we need

The PDF for multivariate normal distribution is available in closed form

$$\phi(x, \mu, \Sigma) = \det(2\pi\Sigma)^{-\frac{1}{2}} e^{(x-\mu)^T \Sigma^{-1} (x-\mu)}$$

 \blacksquare Therefore, for our y variable we have:

$$P(y|\hat{y}) = \frac{\phi(\tilde{y}, 0, \Sigma(\tilde{x}, \omega))}{\phi(\hat{y}, 0, \Sigma(\hat{x}, \omega))}$$

- lacksquare Which implies we can also easily get the PDF for $\hat{y}_{\hat{x}}$
- In fact, we can do it for every finite subset of observations

The catch is that we need to define how to compute $\Sigma(x,\omega)$

We build Σ by means of a user-defined kernel function K

Given a set of (random) variables $y = (y_{x_1}, y_{x_2}, ...)$, we have:

$$\Sigma_{ij}(x,\omega) = K(x_i, x_j, \omega)$$

- lacktriangle Where the x_i, x_j are the input for the considered pair
- \blacksquare ...And ω is a (kernel-dependent) parameter vector

The overall covariance matrix will be structured as:

$$\Sigma(x,\omega) = \begin{pmatrix} K(x_1,x_1,\omega) & K(x_1,x_2,\omega) & \cdots & K(x_1,x_n,\omega) \\ K(x_2,x_1,\omega) & K(x_2,x_2,\omega) & \cdots & K(x_2,x_n,\omega) \\ \vdots & \vdots & \vdots & \vdots \\ K(x_n,x_1,\omega) & K(x_n,x_2,\omega) & \cdots & K(x_n,x_n,\omega) \end{pmatrix}$$

Training a Gaussian Process

In practice, to setup a GP model we

- lacksquare Collect training observations $\hat{y}_{\hat{x}}$
- Pick a parameterized kernel function $K(x_i, x_j, \omega)$

Then we choose ω by maximizing the likelihood of the training data:

$$\operatorname{argmax}_{\omega} \phi(\hat{y}, 0, \Sigma(\hat{x}, \omega))$$

- After this is done, we can store the training observations
- ...And use the to condition our predictions

The training problem

- Is a (possibly challenging) numerical optimization problem
- ...Which is typically solved to local optimality (e.g. via gradient descent)

Gaussian Processes in Practice

This is When It will all make sense... Hopefully

Target and Training Set

Let's see how to use GPs in scikit-learn

First, we need to collect a training setusing our example function and some noise

```
In [2]: np.random.seed(42)
x_tr = np.random.rand(10)
y_tr = pd.Series(index=x_tr, data=f(x_tr) + 0.01*np.random.randn(10))
util.plot_series(samples=y_tr, target=target, figsize=figsize, xlabel='x')
```


Radial Basis Functions

Next we need to pick a kernel function

- There are <u>many available options</u>
- ...But we will focus on those typically used in Bayesian Optimization

We will start with a Radial Basis Function kernel

This is in the form:

$$K(x_i, x_j, \omega) = e^{-\frac{d(x_i, x_j)^2}{2l}}$$

The correlation decreases with the (Euclidean) distance $d(x_i, x_j)$:

- Intuitively, the closer the points, the higher the correlation
- \blacksquare The l parameter (scale) control the rate of the reduction

The ω vector will just be the collection of all kernel parameters

Untrained Guassian Processes

Let's start by building an RBF kernel with default parameters

```
In [3]: kernel = RBF()
kernel
Out[3]: RBF(length_scale=1)
```

Then we build a GP regressor and obtain our predictions

```
In [4]: gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9, normalize_y=True)
y_mu, y_std = gp.predict(x.reshape(-1,1), return_std=True)
```

The "predictions" in this case are full probability distribution

- Since we know they are Normal
- ...They are characterized via a mean and standard deviation

Untrained Guassian Processes

Here's how the prediction look before training

■ The mean is 0 everywhere

...And we are not exploiting Σ , since there is no stored observarion

Training a Gaussian Process

Now, let's train our model:

During this process, two things happen:

- First, the kernel parameters are optimized
- Second, the training observations are stored in the model

```
In [7]: print(gp.kernel_)
    print('X_train_:', str(gp.X_train_).replace('\n', ','))
    print('y_train_:', str(gp.y_train_).replace('\n', ','))

RBF(length_scale=0.000494)
    X_train_: [[0.37454012], [0.95071431], [0.73199394], [0.59865848], [0.15601864], [0.15599452],
    [0.05808361], [0.86617615], [0.60111501], [0.70807258]]
    y_train_: [ 0.49936961    0.16078846    1.49069525    -1.55533978    -0.52939824    -0.57819753,    0.9157736
    6    0.01106198    -1.5385743    1.12382089]
```


Not Yet There

Let's check the updated predictions

- The predicted means are close to all the observations (good news)
- Libut they get far from them very quickly (bad news)

White Noise

The issue is that we never told our model there is noise in the data

This can be done by adding a while noise kernel:

$$K(x_i, x_j, \omega) = e^{-\frac{d(x_i, x_j)^2}{2l}} + \nu(i, j)$$

Where:

$$v(i,j) = \begin{cases} \sigma^2 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

- lacksquare only kernel parameter
- We are telling the GP that observations have some intrinsic variance
- ...Freeing it from the need to interpolate exactly all observations

A Decent, Trained, Gaussian Process

Let's repeat training and display the results

All the predicted means are close to the observed ones

