Here's a structured **report template** comparing different **lip-syncing approaches** for a **VRM model** using **custom video/image and audio**. This report evaluates multiple methods, including **First-order-model**, **Wav2Lip**, **D-ID API**, **and Unity Unreal engine** (**pro method**) **DeepFaceLive**, discussing their steps, pros/cons, and outputs.

REPORT: Avatar model Approaches

roject Title: Choosing the Best Lip-Sync Approach for VRM Models

1 Introduction

Lip-syncing technology allows facial animations to match spoken words, making it essential for avatars, VRM models, and Al-generated videos. Various techniques exist, from Al-driven solutions like **D-ID** API to open-source alternatives such as **Wav2Lip and DeepFaceLive**.

This report explores **three** different methods, detailing their workflow, advantages, disadvantages, and a comparative analysis to determine the best approach.

2 Approaches for Lip-Syncing

1. First-order-model

Q Overview:

FOMM is an Al-driven animation model that can generate motion from a single image using a driving video (i.e., face movements).

📌 Steps to Implement:

- 1. Load the checkpoints from repo to the code.
- Provide an source image to generate the avatar.
- 3. Also provide the reference video to generate a lip-synced video.
- 4. **Download the processed video** once completed.

Pros:

- ✓ Full-face animation, not just lip-syncing.
- ✓ Works offline.
- ✓ Can animate any static image.

- X Cons:
- **X** Needs a driving video for animation.
- **X** Less accurate for **precise lip movements**.
- ***** checkpoint path vox.pth file is corrupted.

2 Wav2Lip (Local Al Model)

Trail Code: https://github.com/shardsnaik/Al-Avatar_/blob/main/wav2lip_trail.ipynb

Q Overview:

Wav2Lip is an **open-source** deep learning model that enables precise lip-syncing by analyzing audio waveforms and matching facial movements.

★ Steps to Implement:

- Install Wav2Lip using pip install git+https://github.com/Rudrabha/Wav2Lip.git.
- 2. Provide a video (face) and audio file.
- 3. Run python inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face video.mp4 --audio audio.wav.

Pros:

- ✓ Works offline (No API needed).
- ✓ Highly accurate lip movements.
- ✓ Open-source and free.

X Cons:

- *** Requires a powerful GPU** for real-time processing.
- **≭** Setup is **complex**,
- **★** works good only for zoomed target face (less accurate for fully body picture)
- **X** No built-in facial expressions, only lip movement.

Sample Output:

• Lip-synced **MP4 file** with frame-perfect mouth movements.

Failing to full size image

Sample output 👇 👇

https://drive.google.com/file/d/1PIrsoulhmOdUqWqFET0xDyV17CYXIHe6/view?usp=sharing

Note: It can be adjusted by hard coding but chance of crash in different env

3 D-ID API (Cloud-Based AI)

Trail Code: https://github.com/shardsnaik/Al-Avatar_/blob/main/d-id_trail.ipynb

Q Overview:

D-ID provides an **AI-based API** that can lip-sync an image or video using custom audio. It is a cloud-based solution requiring internet access.

★ Steps to Implement:

- 5. Upload an image or video to D-ID's cloud storage.
- 6. **Provide an audio file** or generate text-to-speech (TTS).
- 7. Send an API request to generate a lip-synced video.
- 8. Download the processed video once completed.

Pros:

- ✓ No need for local GPU processing.
- ✓ High-quality and realistic facial animations.
- ✓ Supports TTS & different voice providers (Google, Microsoft, ElevenLabs).
- ✓ Easy API integration into websites & apps.

X Cons:

- **X** Requires **API key** and has **usage costs**.
- **X** Limited control over **expressions & movements**.
- *** Internet-dependent** processing.

★ Sample Output:

Through Api call:

https://drive.google.com/file/d/1VJ816toUyf1XW4xQjCcKo1vJGsczB6Lh/view?usp=drive_link

Through Website Interface (d-id)

https://drive.google.com/file/d/13bUK3rCZatV20T VyvAwYi39wFZy8F20/view?usp=sharing

4. DeepFaceLive (Real-Time Lip-Syncing)

Overview:

DeepFaceLive enables real-time lip-syncing using deepfake AI and webcam-based tracking.

★ Steps to Implement:

- 1. Install DeepFaceLive on a Windows/Linux machine.
- 2. Load a VRM avatar or video face.
- 3. Select audio input (live speech or pre-recorded audio).
- 4. Apply real-time facial tracking and lip-syncing.

✓ Pros:

- ✔ Real-time processing (useful for streaming & live avatars).
- ✓ Supports VRM models & custom avatars.
- ✓ Can be combined with VR chat & metaverse applications.

X Cons:

- **★ Needs a high-end GPU** for smooth results.
- **Setup is complex** (requires deepfake model training).
- * Not ideal for pre-recorded, high-quality outputs.

★ Sample Output:

- Real-time lip-synced avatar via webcam/microphone.
- Best for: Live streaming, VTubing, & virtual events.

5. Using Unity Unreal engine (Production Grade Approach)

Q Overview:

To create a production-grade real-time lip-syncing avatar like this one, you'll need several components working together::

★ Steps to Implement:

1. **3D Character Model

- Create a high-quality 3D model using software like Blender, Maya, or ZBrush
- Design detailed facial topology with focus on mouth and facial muscles
- Implement proper rigging with blend shapes/morph targets specifically for speech

2. Facial Animation System

- Develop phoneme-based viseme sets (visual representations of phonetic sounds)
- Implement blend shape/morph target controllers for lip movements
- Implement audio-to-viseme mapping algorithms

3. Real-Time Audio Processing Pipeline

- Build real-time audio analysis system for phoneme detection
- Select a real-time rendering engine (Unity, Unreal Engine)
- Implement proper lighting and shading for photorealistic appearance

Assumption of Pros and Cons

Pros:

- ✔ Real-time processing (useful for streaming & live avatars) with Production Grade result.
- ✓ Supports VRM models & custom avatars.
- ✓ Can be combined with VR chat & Real time audio phoneme
- ✓ Easy to maintain by connecting various pipeline together
- ✓ Additionally integrate ml, methods to learn from past data.

X Cons:

- **X** Needs investment, time team and high-end GPU for smooth results.
- **Setup is complex** (requires deepfake model training).
- **≭** Need good **3D designed model**
- **★** Need blend shape setup using c-sharpe/C# or by unity to make high realistic lip sync to avatar

Sample Output:

3 Comparison of Approaches

Method	Processi ng Type	Internet Required ?	GPU Required ?	Ease of Use	Accuracy	Best For
D-ID API	Cloud-bas ed Al	✓ Yes	X No	***	***	Pre-reco rded, high-qua lity avatar videos
Wav2Lip	Local AI	X No	✓ Yes	***	****	Offline, frame-p erfect lip sync
DeepFaceLi ve	Real-time	X No	✓ Yes	**	***	Live streamin g & VTubing
Unity Unreal engine	Both real-time and cloud bases	Flxible	✓ Yes	***	****	Best for Real world, Producti on grade taks

4 Conclusion & Recommendation

After evaluating all approaches, each method serves a different purpose:

- ✓ Use D-ID API if you need quick Al-generated videos with minimal setup.
- ✓ Use Wav2Lip for offline & high-quality Al-driven lip-syncing for only face.
- ✓ Use DeepFaceLive if you require real-time VTubing or streaming avatars.
- ✓ Use Unity Method if you require real-time High-quality for production .