If *G* is a group, an **automorphism** of *G* is an isomorphism from *G* to *G*.

1. If *G* is any group, and *a* is any element of *G*, prove that $f(x) = axa^{-1}$ is an automorphism of *G*. We call this *conjugation* by *b*.

Proof. We need to show that f is a bijecton function and satisfy that f(xy) = f(x)f(y) such that x, y are both in G. Let $x, y \in G$ and f(x) = f(y).

$$axa^{-1} = aya^{-1}$$

$$a^{-1}axa^{-1} = a^{-1}aya^{-1}$$

$$xa^{-1} = ya^{-1}$$

$$xa^{-1}a = ya^{-1}a$$

$$x = y$$

Hence, f is injective. Then, let us prove that for every $y \in G$ there exists x in G such that f(x) = y. We have $x = a^{-1}ya$ satisfy the statement. $y = a(a^{-1}ya)a^{-1} = f(x)$ Hence, f is surjective and hence bijective.

Lastly, we need to show that f(xy) = f(x)f(y) for all $x, y \in G$.

$$f(xy) = a(xy)a^{-1}$$

$$= axya^{-1}$$

$$f(x)f(y) = axa^{-1}aya^{-1}$$

$$= axeya^{-1}$$

$$= axya^{-1}$$

Hence, f is isomorphism for all $x, y \in G$. Therefore, f is an automorphism of G.

2. Since each automorphism of G is a bijective function from G to G, it is a *permutation* of G. Define Aut(G) as the set of all automorphisms of G. Prove $Aut(G) \le S_G$.

Proof. First, we need to show that Aut(G) is a nonempty subset of S_G . We can say that $\epsilon \in Aut(G)$ if G is a isomorphism of G. Consider the identity function for G: $\epsilon(x) = x$. If $\epsilon(x) = \epsilon(y)$, then x = y. Hence the function is injective. For every y in G, there exists an element $x \in G$ such that $\epsilon(y) = y$. Hence, the function is surjective and therefore bijective. Lastly, we know that $\epsilon(xy) = xy = \epsilon(x)\epsilon(y)$. Therefore, ϵ is a isomorphism from G to G and hence Aut(G) is a nonempty subset of S_G .

Second, we need to show Aut(G) is closed under composition. Let $f, g \in Aut(G)$, and we need to prove that the operation $f \circ g$ is in Aut(G). That is, it is a automorphisms of G, an isomorphism from G to G. Since both f and g are bijective, their composition will be bijective, which implies $f \circ g(x) \in Aut(G)$ and Aut(G) is closed under composition.

Third, we need to show that the inverse of Aut(G) is in Aut(G). Let $f \in Aut(G)$, then we need to prove f^{-1} in Aut(G), f^{-1} is an isomorphism from G to G. Let $f^{-1}(x) = f^{-1}(y)$ such that $x, y \in G$. Since f is bijective, we have:

$$f^{-1}(x) = f^{-1}(y)$$

$$f(f^{-1}(x)) = f(f^{-1}(y))$$

$$\epsilon(x) = \epsilon(y)$$

$$x = y$$

Hence f^{-1} is injective. Now we need to show that for all $y \in G$, there exists $x \in G$ such that $f^{-1}(x) = y$. Since f is surjective, there must exist $x \in G$ such that f(y) = x, implying that $y = f^{-1}x$. Hence, f^{-1} is surjective and therefore bijective.

To show that f^{-1} is isomorphism to G, we also need to show that $f^{-1}(xy) = f^{-1}(x)f^{-1}(y)$. Let $a, b \in G$ such that $f^{-1}x = a$ and $f^{-1}y = b$. $f^{-1}(x)f^{-1}(y) = ab$. Since f is an isomorphism, we know that f(ab) = f(a)f(b) = xy. Then $f^{-1}(xy) = ab = f^{-1}(x)f^{-1}(x)$. Hence, the inverse of $f \in Aut(G)$ is in G. Therefore, Aut(G) is a subgroup of G.

3. We'll prove some basic properties of order. Let $a, b, c \in G$. Show that

(a)
$$\operatorname{ord}(a) = \operatorname{ord}(bab^{-1})$$

Proof. Let ord(a) = x such that x is the smallest positive integer that the equation holds. Then $a^x = e$. Need to show that $(bab^{-1})^x = e$.

$$(bab^{-1})^{x} = (bab^{-1})(bab^{-1})...(bab^{-1})$$

$$= bab^{-1}bab^{-1}...bab^{-1}$$

$$= ba(b^{-1}b)ab^{-1}...bab^{-1}$$

$$= ba^{x}b^{-1}$$

$$= beb^{-1}$$

$$= e$$

Next, we need to show that x is the smallest positive integer such that $(bab^{-1})^x = e$. Suppose there exists a positive integer y such that $(bab^{-1})^y = e$ and y < x. Then, we can write $a^y = b^{-1}ba^yb^{-1}b = b^{-1}(bab^{-1})^yb = b^{-1}eb = e$, which contradicts the fact that x is the smallest positive integer such that $a^x = e$. Therefore, x is the smallest positive integer such that $(bab^{-1})^x = e$. Therefore, the order of (bab^{-1}) is x, which equals to the order of a.

(b) $\operatorname{ord}(a^{-1}) = \operatorname{ord}(a)$

Proof. Let ord(a) = x such that x is the smallest positive integer that the equation holds. Then $a^x = e$. Need to show that $(a^{-1})^x = e$. According to the law of exponents, we know that $(a^{-1})^x = (a^x)^{-1} = e^{-1} = e$.

Next, we need to show that x is the smallest positive integer such that $(a^{-1})^x = e$. Suppose there exists a positive integer y such that $(a^{-1})^y = e$ and y < x. Then, we can write $a^y = ((a^{-1})^y)^{-1} = e^{-1} = e$, which contradicts the fact that x is the smallest positive integer such that $a^x = e$. Therefore, x is the smallest positive integer such that $(a^{-1})^x = e$. Therefore, the order of (a^{-1}) is x, which equals to the order of a.

4. Now show

(a) ord(ab) = ord(ba)

Proof. Let ord(ab) = x such that x is the smallest positive integer that the equation holds. Then $(ab)^x = e$. Need to show that $(ba)^x = e$.

$$(ab)^{x} = (ab)(ab)(ab)...(ab)$$
$$= a(ba)(ba)b...(ab)b$$
$$= a(ba)^{x-1}b$$

Since $a(ba)^{x-1}b = (ab)^x = e$. $(ba)^{x-1}$ must be $a^{-1}b^{-1}$, which equals to $(ba)^{-1}$. Since $(ba)^{x-1} = (ba)^{-1}$, we can conclude that $(ba)^x = (ba)^{-1}(ba) = e$.

Next, we need to show that x is the smallest positive integer such that $(ba)^x = e$. Suppose there exists a positive integer y such that $(ba)^y = e$ and y < x. Then, we can write $(ab)^y = a(ba)^{y-1}b = a(ba)^y(ba)^{-1}b = a(ba)^{-1}b = aa^{-1}b^{-1}b = e$, which contradicts the fact that x is the smallest positive integer such that $(ab)^x = e$. Therefore, x is the smallest positive integer such that $(ba)^x = e$. Therefore, the order of ba is x, which equals to the order of ab.

(b) $\operatorname{ord}(abc) = \operatorname{ord}(cab) = \operatorname{ord}(bca)$

Let ord(abc) = x such that x is the smallest positive integer that the equation holds. Then $(abc)^x = e$. Need to show that $(cab)^x = (bca)^x = e$.

$$(abc)^{x} = (abc)(abc)(abc)...(abc)$$
$$= ab(cab)(cab)...(cab)c$$
$$= ab(cab)^{x-1}c$$

Since $ab(cab)^{x-1}c = (abc)^x = e$, $(cab)^{x-1}$ must equal to $b^{-1}a^{-1}c^{-1} = (cab)^{-1}$. Since $(cab)^{x-1} = (cab)^{-1}$, $(cab)^x = (cab)^{-1}(cab) = e$. Similarly, we can get that $(bca)^x = e$ as well by realizing that $a(bca)^{n-1}bc = e$, $(bca)^{n-1} = (bca)^{-1}$ and $(bca)^x = e$.

Next, we need to show that x is the smallest positive integer such that $(cab)^x = e$. Suppose there exists a positive integer y such that $(cab)^y = e$ and y < x. Then, we can write $(abc)^y = ab(cab)^{y-1}c = ab(cab)^{y-1}c = ab(cab)^y(cab)^{-1}c = ab(cab)^{-1}c = ab(cab)^{-1}c = e$, which contradicts the fact that x is the smallest positive integer such that $(abc)^x = e$. Therefore, x is the smallest positive integer such that $(cab)^x = e$. Similarly, x is the smallest positive integer such that $(bca)^x = e$.

Therefore, the order of abc is x, which equals to the order of cab and bca.

5. Let $a \in G$, and of finite order. Prove that if a is the *only* element of order k in G, then a is in the center of G.

Proof. To prove that $a \in G$ is in the center of G, we need to show that for all $b \in G$, ab = ba. We proved in 3(a) that $\operatorname{ord}(a) = \operatorname{ord}(bab^{-1})$ for all $a, b \in G$. However, we know that a is the only element of order k in G, which implies that $a = bab^{-1}$.

$$a = bab^{-1}$$
$$ab = bab^{-1}b$$
$$ab = ba$$

Therefore, *a* is in the center of *G*.