Lecture 6: Recursive Algorithms: Finding the Closest Pair of Points

1 Finding the Closest Pair of Points in the Plane

- Given n points $P = \{p_1, p_2, \dots p_n\}$. find the **closest** pair of points.
- We will investigate the case where the points are in the plane.
 - The point set is 2-dimensional.
 - Specifically, for each $1 \le i \le n$, let $P_i = (x_i.y_i)$.
- How quickly can we do?

2 Exhaustive Search

- The simplest algorithm to try is **exhaustive search**:
 - Calculate the distance between every pair of points.
 - Output the pair with the shortest pairwise distance.
- What is the running time?
 - There are n points so there are $\binom{n}{2} = \frac{n \cdot (n-1)}{2}$ pairs of points.
 - \circ Runtime = $O(n^2)$
- So we have an efficient (dumb) algorithm! Is there a faster algorithm?

3 The 1-Dimensional Case

• It will be informative to first study the problem in 1-D.

• In 1-D the closest pair of points must be adjacent in the x-ordering.

- Thus we need to calculate only n-1 pairwise distances.
- \circ Runtime (If the points are already sorted in x-order) = $O(n^2)$
- \circ Runtime (If we have to sort the points first) = $O(n \cdot \log n)$

4 The 2-Dimensional Case

- Let mimic this idea in 2-D on the point set $P = \{p_1, p_2, \cdots p_n\}$
 - Order the points by their x-coordinate; we call this x-ordering.
 - $\circ\,$ Order the points by their y-coordinate; we call this y-ordering.
 - $\circ\,$ Find the $pair\ of\ points\ closest$ in their x-coordinate.
 - $\circ\,$ Find the $pair\ of\ points\ closest$ in their y-coordinate.
- Does this algorithm work?

- o NO!
- This algorithm does not work: points that are close in their x-coordinate (or y-coordinate) may be very far apart.
- \circ In fact, the closest point P_i and P_j can be separated by many places in both the x-ordering and the y-ordering.

5 A Second Attempt

- Instead let's try a divide and conquer approach.
- Partition the points into two groups of cardinality $\frac{n}{2}$.
 - $\circ\,$ One way to do this is via the x-ordering using a ${\bf dividing}$ line D.
 - We select D to pass through the point with the <u>median</u> x-coordinate.
 - \rightarrow We have a linear time algorithm to find the median.

- Three Possibilities:
 - \circ We can now recursively search for the closest pairs in P_L and P_R .

- But there is a third possibility:
 - The closest pair could have one point in P_L and the other in P_R .
 - \circ So after calculating δ_L and δ_R , we must check there is no better solution between a point in P_L and a point in P_R .

6 The Recursive Algorithm

- We can now recursively search for the closest pair in P_L and P_R .
 - 1. Find the point q with the **median** x-coordinate.
 - 2. Partition P into P_L and P_R using point q.
 - 3. Recursively find the *closest pairs* of points in P_L and P_R .
 - 4. Find the closest pair with one point in P_L and one point in P_R .
 - 5. Amongst the three pairs found, output the **closest** pair.
- How long does this algorithm take?
 - The recursive formula for the running time is:

$$T(n) = 2 \cdot T(\frac{n}{2}) + O(n^2)$$

- \rightarrow Thus we have a = 2, b = 2, and d = 2.
- \rightarrow This is Case 1 of the Master Theorem.
- \rightarrow Runtime = $O(n^d) = O(n^2)$
- The bottleneck operation is Step 4.
 - \rightarrow So it takes far too long to measure the distance between every point in P_L and every point in P_R .
 - \rightarrow But, by solving the subproblems of P_L and P_R , we know the **minimum pairwise distance** is at most:

$$\delta = min\{\delta_L.\delta_R\}$$

 \rightarrow The trick is to use the value of δ (which we have calculated by recursion) to <u>reduce</u> the number of distances we measure between P_L and P_R .

 \rightarrow The key observation is that to find a better solution than δ the two points in P_L and P_R must be very close to the **dividing line** D...

• Lemma. Take $p_i \in P_L$ and $p_j \in P_R$. If $d(p_i, p_j) \leq \delta$ then $\{p_i, p_j\} \subseteq P_M$

Proof.

- $\circ~$ Without lost of generality, assume $p_i \not \in P_M$
- Then $d(p_i, p_j) > \delta$
- So if the closest-pair is not in one of the two sub-problems then it is within P_M .

7 A modified Recursive Algorithm

- This induces the following <u>fine-tuned</u> divide and conquer algorithm.
 - 1. Find the point q with the **median** x-coordinate.
 - 2. Partition P into P_L and P_R using point q.
 - 3. Recursively find the closest pairs of points in P_L and P_R .
 - 4. Find the *closest pair* of points in P_M . (Modified step!)
 - 5. Amongst the three pairs found, output the **closest** pair.
- Problem?
 - \circ But P_M may contain **all** (or most) of the points!

 19^{th} Jan, 2018

©Yutong Yan

- \rightarrow It may still take time $\Omega(n^2)$ to measure the distances between the points in $P_L \cap P_M$ and the points in $P_R \cap P_M$
- But the points in P_M cover a narrow band of the x-axis. As we have a **target** distance of δ , this helps a lot...
 - $\circ\,$ Consider the area of the plane within distance of δ of the line D.
 - Divide this area up into small squares of width $\frac{\delta}{2}$ as shown.

Claim. No two points of P lie in the same square.

• To prove this claim we will use the following observation.

Observation. Each square lies entirely on one side of D.

 19^{th} Jan, 2018 ©Yutong Yan

Claim. No two points of P lie in the same square. **Proof.**

 \rightarrow wlog Take two points in a square in P_L .

- \rightarrow Their pairwise distance is: $\leq \sqrt{(\frac{\delta}{2})^2 + \frac{\delta}{2})^2} = \frac{\delta}{\sqrt{2}} < \delta$
- \rightarrow This contradicts the fact that the smallest pairwise distance in P_1 is at least δ .
- Theorem. Take $p_i \in P_L$ and $p_j \in P_R$. If $d(p_i, p_j) \leq \delta$ then p_i and p_j have at most 10 points between them in the y-order of P_M .

 Proof.
 - \circ wlog p_i is below p_j in the y-order.
 - $\circ~$ Then p_j is in the same row of squares as p_i or in the next two higher rows.
 - If not, $d(p_i, p_j) > \delta$, a contradiction.

- But, by the claim, there is at most one point in each square.
 - \rightarrow There are at most 10 points between p_i and p_j in the y-order of P_M .

8 Back to the 1-D Case

- This means the basic idea for the 1-D algorithm will work here!
- To find the **closest pair** in P_M , we first sort the points by y-coordinate.

- Then, rather than finding the distances between points that are 1-apart in the y-order, we find the distances for all pairs up to 11 places apart.
- Thus we calculate less than 11n pairwise distances. After doing so:
 - $\circ\,$ Either we find a pair of points at distance less than $\delta.$
 - $\circ\,$ Or we conclude that ${\bf no}$ such pair of points exists.
- So give $\delta = min\{\delta_L, \delta_R\}$, we can check if there is a pair of points between P_L and P_R that are closer than δ in time O(n).

 19^{th} Jan, 2018

©Yutong Yan

9 An Enhanced Modified Recursive Algorithm

- Finally, this will give us very fast divide and conquer algorithm.
 - 1. Find the point q with the **median** x-coordinate.
 - 2. Partition P into P_L and P_R using point q.
 - 3. Recursively find the *closest pairs* of points in P_L and P_R .
 - 4. Find the *closest pair* of points in P_M using the **enhanced** 1-D algorithm. (Modified step!)
 - 5. Amongst the three pairs found, output the **closest** pair.
- The recursive formula for the running time is:

$$T(n) = 2 \cdot T(\frac{n}{2}) + O(n)$$

- Find median wrt x-coordinates.
- \circ Partition into P_L and P_R .
- \circ Find P_M .
- \circ Apply 1-D algorithm on P_M .
- Thus we have a = 2, b = 2, and d = 1.
- This is Case 2 of the Master Theorem.
- Runtime = $O(n^d \cdot \log n) = O(n \cdot \log n)$
- Validity of the algorithm:
 - As usual, the correctness of the algorithm follows by strong induction.
 - For the **bases cases**, we can find the closest pair in constance time by exhaustive search when there are a constant number of points left.
 - That the **inductive step** is correct follows by our discussion in the lecture.
 - \rightarrow **Theorem.** The recursive algorithm finds the minimum distance pair of points.

10 Computational Geometry

- The closest pair of points problem was a foundation question in the field of **computational geometry**.
- Computational has numerous applications:
 - $\circ\,$ Computer Graphics.
 - o Computer Vision.
 - $\circ\,$ Geometric Information Systems.
 - o ...