Inhaltsverzeichnis

Ι	Elementare Zahlentheorie	1
1	Seite 28	1
	1.1 Aufgabe 1	. 1
	1.2 Aufgabe 2	. 2
	1.3 Aufgabe 3	. 3
	1.4 Aufgabe 4	. 4
	1.5 Aufgabe 5	. 5
	1.6 Aufgabe 6	. 6
2	Seite 33	7
	2.1 Aufgabe 3	. 7
	2.2 Aufgabe 4	. 8
3	Seite 53	10
	3.1 Aufgabe 1	. 10
${f L}^{rac{1}{2}}$	iteraturverzeichnis	11

Teil I

Elementare Zahlentheorie

Aufgaben aus dem Buch: Reinhold Remmert und Peter Ullrich (2008). Elementare Zahlentheorie. Springer. ISBN: 978-3-7643-7730-4.

1 Seite 28

1.1 Aufgabe 1

Seien a, b, c Ziffern aus der Menge $\{0, 1, 2, \dots, 9\}$ und $a \neq 0$. Zeigen Sie: 13 teilt die natürliche Zahl abcabc (Zifferndarstellung).

Beweis. Es werden die Differenzen betrachtet, wenn sich a, b, c um einen Wert verändern:

$$a = 1 \Rightarrow a = 2 : \triangle 100100$$

 $b = 0 \Rightarrow b = 1 : \triangle 10010$

 $c = 0 \Rightarrow c = 1 : \triangle 1001$

Es ist zu sehen 13 | 1001 $^1.$ Hieraus folgt 13 | 10010, 13 | 100100 und damit auch 13 | abcabc.

 $^{^{1}1001 = 13 \}cdot 77$

1.2 Aufgabe 2

Sei n eine natürliche Zahl, n>1. Beweisen Sie: Aus $n\mid (n-1)!+1$ folgt $n\in\mathbb{P}.$

Beweis. Ist n eine zusammengesetzte Zahl n=ab mit a,b>1, dann gilt $a\mid (n-1)!$ und dadurch $a\nmid (n-1)!+1$ weshalb ebenfalls $n\nmid (n-1)!+1$.

Der restliche Beweis mit dem Satz von Wilson

1.3 Aufgabe 3

Sei p_n die n-te Primzahl, d. h. $p_1=2,\,p_2=3$ usw. Zeigen Sie: $p_n\leq 2^{2^{n-1}}$ für alle $n\geq 1$. Beweis.

1.4 Aufgabe 4

Sei p eine Primzahl. Beweisen Sie: p ist ein Teiler von $\binom{p}{v}$ für $1 \le v \le p-1$.

Beweis. Obwohl die Zahlen $\binom{n}{v}$ als Brüche definiert sind, gilt stets:

$$\binom{n}{v} \in \mathbb{N}$$
 für alle $n, v \in \mathbb{N}$.

Dies ist auf die Identität

$$\binom{n-1}{v-1} + \binom{n-1}{v} = \binom{n}{v}$$

zurückzuführen, mit der sich jeder Binomialkoeffizient rekursiv als die Summe natürlicher Zahlen berechnen lässt. Per Definition gilt:

$$\binom{p}{v} := \frac{p(p-1)\cdot\ldots\cdot(p-v+1)}{v!}$$

Die Primzerlegung des Nenners muss vollständig in der des Zählers vorhanden sein. Wegen p > v ist p jedoch niemals Teil dieser Zerlegung und kann im Zähler nicht gekürzt werden. Es folgt $p \mid \binom{p}{v}$.

1.5 Aufgabe 5

Seien $p \in \mathbb{P}, n \in \mathbb{N}^{\times}$ und $a, b \in \mathbb{Z}$. Zeigen Sie durch Induktion nach n: p ist ein Teiler von $((a+b)^{p^n}-(a^{p^n}+b^{p^n}))$.

Beweis. \Box

1.6 Aufgabe 6

Sei $n \geq 2$ eine natürliche Zahl. Zeigen Sie
: $n^4 + 4^n$ ist keine Primzahl.

Beweis.

2 Seite 33

2.1 Aufgabe 3

Seien a und b positive natürliche Zahlen mit der Eigenschaft, dass es keine Primzahl gibt, die zugleich a und b teilt. Beweisen Sie: Gibt es ein $c \in \mathbb{N}$ mit $ab = c^2$, so existieren $x, y \in \mathbb{N}$ mit $a = x^2$ und $b = y^2$.

Beweis. Es ist c eine beliebige zusammengesetzte Zahl und $c^2 = p_1^{2m_1} p_2^{2m_2} \cdot \ldots \cdot p_r^{2m_r}$ ihre Primzerlegung. Man überlege jetzt, wie diese Faktoren zwischen a und b verteilt sein können. Damit keine Primzahl in a oder b gemeinsam vorkommt, müssen die Primpotenzen $p_i^{2m_i}$; $i=1,\ldots,r$ vollständig zwischen a und b verteilt sein. Somit sind es immer Quadratzahlen.

Zum Beispiel:

$$20^{2} = 2^{4}5^{2}$$
 1) $ab = (2^{4})(5^{2}) = 4^{2} \cdot 5^{2}$

$$210^{2} = 2^{2}3^{2}5^{2}7^{2}$$
 1) $ab = (2^{2}3^{2}5^{2})(7^{2}) = 30^{2} \cdot 7^{2}$
2) $ab = (2^{2}3^{2})(5^{2}7^{2}) = 6^{2} \cdot 35^{2}$
3) $ab = (2^{2})(3^{2}5^{2}7^{2}) = 2^{2} \cdot 105^{2}$

2.2 Aufgabe 4

Es seien a,b natürliche Zahlen, für die gilt: $a\mid b^2,b^2\mid a^3,a^3\mid b^4,b^4\mid a^5,\dots$ Zeigen sie: a=b.

Beweis. Es sind

$$a = X_1^{m_1} \cdot X_2^{m_2} \cdot \dots \cdot X_r^{m_r}$$

$$b = Y_1^{n_1} \cdot Y_2^{n_2} \cdot \dots \cdot Y_r^{n_r} \qquad X_i, Y_i \in \mathbb{P}; \ i = 1, \dots, r$$

die Primzerlegungen von a und b. Es ist direkt festzuhalten, dass $X_i = Y_i \,\forall i$. Hätte a zu b zusätzliche Primfaktoren, verletzt dies das Teilbarkeitskriterium in $a \mid b^2$, hätte a abzügliche Primfaktoren, verletzt dies $b^2 \mid a^3$. Es bleibt zu zeigen, dass auch die Primpotenzen nicht verschieden sind. Angenommen $a \neq b$ und es werden zwei Fälle unterschieden:

1) Es gilt 0 < a < b und a hat somit mindestens einen Primfaktoren der Form $X_i^{m_i-s_i}$ mit $0 < s_i < m_i$. Für diesen Beweis reicht es genau einen dieser Faktoren zu untersuchen und wir schreiben X^{m-s} ohne den Index i. Es werden die folgenden Fakten aufgeschrieben:

Es lassen sich die folgenden Ungleichungen ableiten oder direkt ablesen:

$$2km \ge 2km - m - 2ks + s$$

$$0 \ge -m - 2ks + s \tag{1}$$

$$m + (2k - 1)s \ge 0$$

$$2km + m - 2ks - s \ge 2km$$

$$m - (2k+1)s \ge 0$$
(2)

Es ist zu sehen, dass Ungleichung 1 für alle k, m, s wahr ist. In 2 wird k = m gewählt und man führt die ursprüngliche Behauptung mit $(1 - 2s)m - s \ge 0$ zum Widerspruch. Der Term 1 - 2s ist wegen s > 0 immer negativ.

2) Es gilt a > b und a hat somit mindestens einen Primfaktoren der Form $X_i^{m_i + s_i}$ mit $s_i > 0$. Es wird nach demselben Prinzip wie zuvor aufgeschrieben

$$X^{(2k-1)m+(2k-1)s} \mid X^{2km} \qquad \qquad X^{2km} = X^{(2k-1)m+(2k-1)s} \cdot X^{m-(2k-1)s}$$

$$X^{2km} \mid X^{(2k+1)m+(2k+1)s} \quad X^{(2k+1)m+(2k+1)s} = X^{2km} \cdot X^{m+(2k+1)s}$$

und die folgenden Ungleichungen abgelesen:

$$m - (2k - 1)s \ge 0 \tag{3}$$

$$m + (2k+1)s \ge 0 \tag{4}$$

Es ist zu sehen, dass Ungleichung 4 für alle k, m, s wahr ist. In 3 wird k = m + 1 gewählt und man führt die ursprüngliche Behauptung mit $(1 - 2s)m - s \ge 0$ zum Widerspruch. Es folgt a = b.

3 Seite 53

3.1 Aufgabe 1

Sei p eine Primzahl, a,b seien von Null verschiedene rationale Zahlen, $a+b\neq 0$. Zeigen Sie: $w_p(a+b)\geq \min\left(w_p(a),w_p(b)\right)$

Literaturverzeichnis

Remmert, Reinhold und Peter Ullrich (2008). *Elementare Zahlentheorie*. Springer. ISBN: 978-3-7643-7730-4.