# Intermittent distribution of ion temperature-anisotropy microinstabilities in the terrestrial magnetosheath

#### UD Plasma Group and MMS Team

University of Delaware

September 17, 2019

MMS-Telecon

$$R_j \equiv T_{\perp j} \, / \, T_{\parallel j}$$

$$R_j \equiv T_{\perp j} / T_{\parallel j}$$

Anisotropy  $\Rightarrow$  Non-Maxwellian VDF

$$R_j \equiv T_{\perp j} / T_{\parallel j}$$

 $\mbox{Anisotropy} \Rightarrow \mbox{Non-Maxwellian VDF} \quad \Rightarrow \mbox{Free Energy}$ 

$$R_j \equiv T_{\perp j} / T_{\parallel j}$$

Anisotropy  $\Rightarrow$  Non-Maxwellian VDF  $\Rightarrow$  Free Energy  $\Rightarrow$  Unstable

RQ (UDel) MMS-Telecon September 17, 2019

$$R_j \equiv T_{\perp j} \, / \, T_{\parallel j}$$

Anisotropy  $\Rightarrow$  Non-Maxwellian VDF  $\Rightarrow$  Free Energy  $\Rightarrow$  Unstable  $\Rightarrow$  Micro-Instabilities

RQ (UDel) MMS-Telecon September 17, 2019

$$R_j \equiv T_{\perp j} / T_{\parallel j}$$

Anisotropy  $\Rightarrow$  Non-Maxwellian VDF  $\Rightarrow$  Free Energy  $\Rightarrow$  Unstable  $\Rightarrow$  Micro-Instabilities  $\Rightarrow$  Growth rate  $(\gamma_j)$ 

RQ (UDel) MMS-Telecon September 17, 2019

$$R_j \equiv T_{\perp j} / T_{\parallel j}$$

Anisotropy  $\Rightarrow$  Non-Maxwellian VDF  $\Rightarrow$  Free Energy  $\Rightarrow$  Unstable  $\Rightarrow$  Micro-Instabilities  $\Rightarrow$  Growth rate  $(\gamma_j)$ 

|                                 | Parallel $(\mathbf{k} \parallel \mathbf{B}) \&$ | Oblique $(\mathbf{k} \not\parallel \mathbf{B}) \&$ |
|---------------------------------|-------------------------------------------------|----------------------------------------------------|
|                                 | Propagating $(\omega_{\rm r} > 0)$              | Non-Propagating ( $\omega_{\rm r}=0$ )             |
| $T_{\perp j} > T_{\parallel j}$ | Ion-cyclotron                                   | Mirror                                             |
| $(R_j > 1)$                     | (Alfven mode)                                   | (kinetic slow mode)                                |
| $T_{\perp j} < T_{\parallel j}$ | Parallel firehose                               | Oblique firehose                                   |
| $(R_j < 1)$                     | (fast/whistler mode)                            | (Alfven mode)                                      |

$$R_j \equiv T_{\perp j} / T_{\parallel j}$$

Anisotropy  $\Rightarrow$  Non-Maxwellian VDF  $\Rightarrow$  Free Energy  $\Rightarrow$  Unstable  $\Rightarrow$  Micro-Instabilities  $\Rightarrow$  Growth rate  $(\gamma_j)$ 

|                                 | Parallel $(\mathbf{k} \parallel \mathbf{B}) \&$ | Oblique $(\mathbf{k} \not\parallel \mathbf{B}) \&$ |
|---------------------------------|-------------------------------------------------|----------------------------------------------------|
|                                 | Propagating $(\omega_{\rm r} > 0)$              | Non-Propagating ( $\omega_{\rm r}=0$ )             |
| $T_{\perp j} > T_{\parallel j}$ | Ion-cyclotron                                   | Mirror                                             |
| $(R_j > 1)$                     | (Alfven mode)                                   | (kinetic slow mode)                                |
| $T_{\perp j} < T_{\parallel j}$ | Parallel firehose                               | Oblique firehose                                   |
| $(R_j < 1)$                     | (fast/whistler mode)                            | (Alfven mode)                                      |

$$\beta_{\parallel j} \equiv \frac{n_j \, k_{\rm B} \, T_{\parallel j}}{B^2 \, / \, (2 \, \mu_0)}$$



Hellinger et al. (GRL, 2006)

RQ (UDel)





Maruca et al. (ApJ, 2018)





Marginally unstable plasma ( $\gamma \gtrsim 0$ ) exhibits enhancements in:

- Magnetic fluctuations (Bale et al., PRL, 2009)
- Temperature (Maruca et al., PRL, 2011)
- Turbulent structures (PVI) (Osman et al., PRL, 2012; 2013)

RQ (UDel)

Used similar method of  $\gamma$  calculation on a fully kinetic PIC simulation:

$$\beta_p = \beta_e = 0.6, R_p = 1, T_p = T_e$$







### MMS observation in Magnetosheath

- Ion data from Fast Plasma Investigator (FPI) aboard MMS.
- In burst mode we get one proton distribution every 150 ms.
- Period analysed: Several burst modes from 2016 and 2018.
- Present results from 12/27/2016. Previously studied by Chasapis et al. (ApJ, 2017; ApJL, 2018).

RQ (UDel) MMS-Telecon September 17, 2019 8/12





- $\beta_{\parallel p}$  is high
- A lot more unstable VDFs
- Distribution of instabilities are still intemittent

## Comparison between PIC and Observation



RQ (UDel)



• Instability growth rates are intermittently distributed in the space/time



- Instability growth rates are intermittently distributed in the space/time
- Various studies (Osman et al. (*PRL*, 2011, 2012; Greco et al. (*PRE*, 2012) have shown intermittency to be associated with sharp gradients in magnetic field, thus implying presence of turbulence in those regions

- Instability growth rates are intermittently distributed in the space/time
- Various studies (Osman et al. (*PRL*, 2011, 2012; Greco et al. (*PRE*, 2012) have shown intermittency to be associated with sharp gradients in magnetic field, thus implying presence of turbulence in those regions
- Since they lie in the same configuration space, it appears that temperature anisotropy is driven by turbulence

- Instability growth rates are intermittently distributed in the space/time
- Various studies (Osman et al. (*PRL*, 2011, 2012; Greco et al. (*PRE*, 2012) have shown intermittency to be associated with sharp gradients in magnetic field, thus implying presence of turbulence in those regions
- Since they lie in the same configuration space, it appears that temperature anisotropy is driven by turbulence
- Locally plasma was still homogeneous enough for  $\gamma_p$  to limit anisotropy