Using the end-to-end model Atlantis to test the performance of EwE

Erla Sturludottir and Gunnar Stefansson University of Iceland

19 September 2017 ICES ASC Miami

Ecosystem Approach to Fisheries Management

Fisheries management today

- Single species stock assessment
- Effect of fishing on target species

EAFM

- Effect of fishing on the ecosystem
- Multi-species or ecosystem models
- Socio-economic factors

Atlantis

- Simulates the entire ecosystem
- Ecosystem model
- Fisheries model
- Sampling and assessment model
- Management model
- Socio-economic model

The Icelandic Atlantis model

Food web from the Atlantis model

Ecopath with Ecosim (EwE)

 Ecopath: a static, massbalanced snapshot of the system.

• Ecosim: a time dynamic simulation module.

The Ecopath part

The Ecopath equations

$$P_{i} = Y_{i} + M2 + E_{i} + BA_{i} + MO_{i}$$

$$M2_{i} = \sum_{j=1}^{n} Q_{j} * DC_{ij} \qquad M0_{i} = P_{i}(1 - EE_{i})$$

Parameters in Ecopath: B, P/B, Q/B, EE and DC

The Ecosim part

Balanced Ecopath model is the start

The growth rate in Ecosim is defined as:

$$\frac{\partial B_i}{\partial t} = g_i \sum_{j}^{n} c_{ji} - \sum_{j}^{n} c_{ij} + E_i - (M0_i + F_i)B_i$$

$$V_{i,i} * V_{i,j} D_{i,i} * V_{i,j}$$

$$c_{ij} = Q_{ij} * \frac{V_{ij} * Y_j}{V_{ij} - 1 + Y_j} * \frac{D_{ij} * Y_i}{D_{ij} - 1 + Y_i}$$

Performance of EwE

Atlantis used as an operating model

Data from Atlantis imported into EwE

Can EwE mimic the Atlantis ecosystem?

Scenarios tested

Scenario 1: Best possible knowlegde

Scenario 2: Error added to the data

Scenario 3: Missing data???

Building an Ecopath model

- The value of parameters calculated from Atlantis
- Balancing needed before moving to the Ecosim part
- No estimation of parameters
- Usually done manually => subjective
- Not obvious what parameters to change
- Here done automatically with iterations

Unbalanced model

Group	type	TL	Biomass	РВ	QB	EE	GE	Removals
Cod 0-4	0	4.07	366493	0.37	4.44	0.59	0.08	6537
Cod 4+	0	4.28	1523327	0.49	2.01	0.61	0.25	448843
Haddock 0-4	0	3.38	107812	0.58	3.33	0.51	0.18	8672
Haddock 4+	0	3.35	80137	0.92	1.93	0.74	0.48	50415
Saithejuv 0-4	0	4.17	82634	0.38	3.11	0.74	0.12	1361
Saithe 4+	0	4.26	371033	0.37	1.49	0.78	0.25	53280
Redfish	0	3.91	1836558	0.09	0.97	2.15	0.10	0
Greenland Halibut	0	4.27	571364	0.16	1.89	1.47	0.09	6105
Flatfish	0	2.88	225305	0.30	1.74	0.22	0.17	19981
Herring 0-4	0	3.69	417900	0.51	1.30	1.42	0.40	4749
Herring 4+	0	3.69	471015	0.39	0.87	1.53	0.45	29929
Capelin	0	3.50	5899716	1.17	3.03	0.61	0.39	121793
Migratory pelagic	0	3.53	1253964	0.51	1.71	0.56	0.30	0
Other Codfish	0	3.89	115588	0.47	1.88	0.94	0.25	19333
Demersal Commerical	0	3.72	255543	0.31	1.90	1.40	0.16	19572
Other Demersal Fish	0	3.46	534144	0.58	1.79	0.32	0.32	0
Sandeel Fish	0	3.47	1273289	0.58	3.22	0.55	0.18	0
Long Lived Demersal	0	4.42	115273	0.15	1.31	0.85	0.12	0
Large Pelagic Fish	0	3.95	87526	0.15	1.33	1.54	0.12	0
Small Pelagic Fish	0	3.61	106630	0.51	2.39	2.05	0.21	0
Small Sharks	0	4.50	117525	0.09	1.06	1.29	0.08	0
Skates	0	4.06	61269	0.15	1.12	0.53	0.14	0
Large Sharks	0	4.60	111533	0.05	0.95	3.34	0.05	0
Seabird	0	4.30	29786	0.11	1.38	-0.03	0.08	0
Pinniped	0	4.67	1835	0.13	1.48	2.61	0.09	0
Minke Whale	0	4.09	69106	0.10	1.58	0.11	0.06	0
Whale Baleen	0	3.64	389033	0.08	0.82	0.29	0.10	15025
Whale Tooth	0	4.82	408143	0.06	1.85	0.17	0.03	1414
Whale Tooth Other	0	4.69	11323	0.16	0.45	0.15	0.35	0

Automatic balancing process

Fitting the Ecosim model

- Fitted to time-series of biomass and catches.
- Vulnerability
 parameters in
 predator-prey
 interactions estimated
- 671 parameters!

$$c_{ij} = Q_{ij} * \frac{V_{ij} * Y_j}{V_{ij} - 1 + Y_j} * \frac{D_{ij} * Y_i}{D_{ij} - 1 + Y_i}$$

Predator-prey interactions

The fitting

- Not possible to do simultaneously
- Done iteratively
- Minimizing SS

$$SS = \sum_{i=1}^{2} \sum_{g=1}^{G} \sum_{t=1}^{T} (y_{gti} - \hat{y}_{gti})^{2}$$

Performance when hindcasting

Performance when hindcasting

Biomass (t) 40000 80000

Atlantis EwE EwE fitted

> 15 20 25 30 35 Year

Average			
r	RI	MEF	
0.14 → 0.26	1.78 → 1.24	-7.32 → -2.72	

Sandeel				
r	RI	MEF		
-0.69 → 0.98	5.33 → 2.03	-2.56 → 0.82		

Large Pelagic			
r	RI	MEF	
0.40 → -0.07	1.24 → 1.10	-10.5 → -1.65	

Performance when hindcasting

Biomass (t) 4000 8000

15 20 25 30 35 Year

10

Average				
r RI MEF				
0.34 → 0.29	1.29 → 1.16	-30.3 → -1.74		

Minke Whale			
r	RI	MEF	
0.90 → 0.97	1.10 → 1.12	0.69 → 0.65	

Shark			
r	RI	MEF	
-0.17 → -0.79	1.11 → 1.20	-2.04 → -8.61	

Performance when forecasting

10 20

year

Cod			
r	RI	MEF	
0.88 → -0.95	1.15 → 1.23	0.55 → -12.5	

Other Codfish			
r	RI	MEF	
0.95 → 0.25	1.24 → 1.40	0.69 → -7.36	

year

20 30 Year 40

Performance when forecasting

Average			
r	RI	MEF	
0.29 → 0.19	1.16 → 1.22	-1.74 → -185	

Minke Whale			
r	RI	MEF	
0.97 → 0.71	1.12 → 1.12	0.65 → -3.66	

Shark			
r	RI	MEF	
-0.79 → 0.13	1.20 → 1.48	-8.61 → -861	

Atlantis Hindcast Forecast

10

Did groups with better fit have better prediction?

Done iteratively

Minimizing SS

Conclusion

• It is possible to make a simple EwE model that fits reasonably to data.

 But that does not necessary make the model good for predictions.

Acknowledgement

This project has received funding from the European Union's Seventh Framework Programme for research, technological developement and demonstration under grant agreement no. 613571 and from the European Commission's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 634495 for the project Science, Technology, and Society Initiative to minimize Unwanted Catches in European Fisheries (MINOUW)

