14. Partial Derivatives

Gunja Sachdeva

Department of Mathematics
BITS PILANI K K Birla Goa Campus, Goa

September 26, 2024

Domain and range for functions of several variables

$$|R^{N} \xrightarrow{f} |R$$

$$(x_{1},--,x_{N}) \xrightarrow{f} f(x_{1},--,x_{N}) = \omega$$

Definition (Function of several variables)

Suppose D is a set of n-tuples of real numbers $(x_1, x_2, ..., x_n)$. A **real-valued function** f on D is a rule that assigns a unique (single) real number

$$w = f(x_1, x_2, \ldots, x_n)$$

to each element in D. The set D is the function's **domain**. The set of w-values taken by f is called the **range** of the function f. Here the symbol w is called **dependent variable** of f and f is said to be the function of several **independent variables** x_1 to x_n .

Particular cases

If f is a function of two independent variables, we write it as z = f(x, y) and we usually call the independent variables x and y and the dependent variable z, and we picture the domain of f as a region in the xy-plane.

From $f: Domain \subseteq \mathbb{R}^3$ → $f(x,y,z) = \omega$ If f is a function of three independent variables, we write it as w = f(x, y, z) and we call the independent variables x, y, and z and the dependent variable w, and we picture the domain as a region in space.

Examples

- 1. The temperature at each point of an object.
- 2. Distance of a point in the space from the origin. $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$

3.
$$f(x,y) = \sqrt{1-x^2-y^2}$$
.

4.
$$f(x, y, z) = \sin(x + y) + |z|$$
.
 $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$
 $\text{Range} = (-1, \infty)$

Examples

Function	Domain	Range
$z=\sqrt{y-x^2},$	$\{(x,y) : y \ge x^2\}$	$[0,\infty)$
$z = \frac{1}{x + y}$	$\{(x,y) : x+y \neq 0\}$	$\mathbb{R}-\{0\}$
$z = \sin xy$	Entire plane \mathbb{R}^2	[-1,1]
$w = \sqrt{x^2 + y^2 + z^2}$	Entire space \mathbb{R}^3	$[0,\infty)$
$w = \frac{1}{x^2 + y^2 + z^2}$	$\mathbb{R}^3 - \{(0,0,0)\}$	$(0,\infty)$
$w = xy \ln z$	$\{(x,y,z): z>0\}$	$(-\infty,\infty)$

Properties of Domain in \mathbb{R}^2 and \mathbb{R}^3

Let (x_0, y_0) be a point in \mathbb{R}^2 . The open disk centered (x_0, y_0) of radius r > 0 is defined as the set:

$$\{(x,y)\in\mathbb{R}^2:(x-x_0)^2+(y-y_0)^2<\underline{r^2}\}.$$

Let $\varepsilon > 0$ and (x_0, y_0, z_0) be a point in space. We define open ball of radius $\varepsilon > 0$ centered at (x_0, y_0, z_0) by the set

$$\{(x,y,z)\in\mathbb{R}^3: \sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}<\varepsilon\}$$

Interior Point

A point (x_0, y_0) in a region R in the xy-plane is an interior point of R if the region R contains a disk centered (x_0, y_0) .

A point (x_0, y_0, z_0) in a region R in space is an interior point of R if the region R contains an open ball centered at (x_0, y_0, z_0) of some positive radius.

Boundary Point

A point (x_0, y_0) is a boundary point of R if every disk centered at (x_0, y_0) contains points that lies outside of R as well as points that lies in R.

A point (x_0, y_0, z_0) is a boundary point of R if every open ball centered at (x_0, y_0, z_0) contains points that lies outside of R as well as points that lies in R.

Examples

D= { (x,y) + 1x2 | x2+ y2 <1 } Trtesion pts = D Bad pt = (60,4) | x2+42=1 D = { (31, y) & 1R2) 302+ y2=1} No pt. 15 an interior pt. Bd pts = D - closed, Notopen D= {(xiy) EIR2) x=y) Bd points = D Interior PES = None D= { (x,y) \in 182 | x \ge 0 } Interior pt = {(x,y) tik2 | x>0} Bol pts = { (o,y) + 12 } - closed, Not open Interior pts = { (x,y,2) \in 12 \in 22 \in 1)} Bdd Dfs = { (x,y,2) E1R3 | x2+y2+22=1} D={(w,y,z) E1K3 } ==1 No menos pt. - closed, Not open. Bdd pts = D D= {(x,y) \in 12 x 2 + y 2 > 1 } Informer p.f = D Bold PES = x2+42=1 - Not closed, open _ Not Open Int D = { (x,y) & 1R2 | 1 (x2+y2<2) Inferior pfs = $\begin{cases} (x,y) + 1R^2 \\ 12x^2 + y^2 = 2 \end{cases}$ Bdd pf = $\begin{cases} (x,y) + 1R^2 \\ 12x^2 + y^2 = 1 \end{cases}$, $x^2 + y^2 = 2 \end{cases}$ - Not closed

Open and Closed Sets in xy-plane

Open Set: A region R is said to be open if every point in it is an interior point of the region R. $T_N + (R) = R$

Closed Set: A region R is said to be closed if it contains all its boundary points.

Bd $R \subseteq R$

Ex
$$D = \begin{cases} (x,y) \in \mathbb{R}^2 \\ x^2 + y^2 = 1 \end{cases}$$
 - Not open $D = \begin{cases} (x,y) \in \mathbb{R}^2 \\ x^2 + y^2 < 1 \end{cases}$ - open $D = \begin{cases} (x,y) \in \mathbb{R}^2 \\ x^2 + y^2 < 1 \end{cases}$ - Not open