

Please amend the specification As Follows:

Page 37, lines 1-2 (reference to paragraph [0114] is to Published Application):

[0114] FIG. 4 illustrates a collection of patches (a 7patch 401, a 12patch 403, and an 18patch 405) of a database. The dashed circle 407 represents the entire document space.

Page 37, line 17 to Page 38, line 5 (reference to paragraph [0117] is to Published Application):

[0117] FIG. 5 shows an essential function of CONF to the clusters $[[[[A]]] \underline{C_i}$ and $[[[[B]]] \underline{C_j}]$ which include 8 and 10 vectors, respectively. Two vectors are in the common intersection of $[[[[A]]] \underline{C_i}$ and $[[[[B]]] \underline{C_j}]$, and therefore when the function CONF is applied to the patches in the order $[[[[A]]] \underline{C_i}, [[[[B]]] \underline{C_j}]$, that is, $\text{CONF}([[[[A]]] \underline{C_i}, [[[[B]]] \underline{C_j}])$, the result is 0.25 or 25%. When the function is applied in the order $[[[[B]]] \underline{C_j}, [[[[A]]] \underline{C_i}]$, that is, $\text{CONF}([[[[B]]] \underline{C_j}, [[[[A]]] \underline{C_i}])$, the result is 0.2 or 20%. The function CONF can be applied to any two patches drawn from a common underling sample of the database.