Secondo Incontro: ripassiamo la goniometria

Test Preliminare

Domanda 1. Sapendo che l'angolo α rappresentato nella figura è un angolo notevole, stabilire quale delle seguenti affermazioni è corretta.

(B)
$$\cos \alpha = -1/2 e \sin \alpha = \sqrt{3}/2$$

(C)
$$\cos \alpha = 1/2 e \sin \alpha = -\sqrt{3}/2$$

(D)
$$\cos \alpha = -\sqrt{3}/2 e \sin \alpha = 1/2$$

(E)
$$\cos \alpha = -\sqrt{2}/2 e \sin \alpha = -\sqrt{3}/2$$

Domanda 2. Sia $\alpha = 19\pi/6$. Quale delle seguenti affermazioni è corretta?

(A)
$$\sin \alpha = 1/2$$

(B)
$$\cos \alpha = \sqrt{3}/2$$

(C)
$$\tan \alpha = \sqrt{3}$$

(D)
$$\cot \alpha = \sqrt{3}$$

Domanda 3. Individua quale tra le seguenti relazioni risulta corretta $\forall x \in \mathbb{R}$

(A)
$$\sin(\pi + x) = \sin x$$

(B)
$$\cos(\pi/2 - x) = -\sin x$$

(C)
$$\cos(\pi/2 + x) = -\sin x$$

(D)
$$\tan(\pi + x) = -\tan x$$

(E)
$$\sin(2\pi - x) = \sin x$$

Domanda 4. Sia $f(x) = \sqrt{2}\sin x - \sqrt{2}\cos x$. Allora si ha

(A)
$$f(x) = \sin(\sqrt{2}x) - \cos(\sqrt{2}x)$$

(B)
$$f(x) = 2\sin(x - \pi/4)$$

(C)
$$f(x) = \sqrt{2}\cos(x + \pi/4)$$

(D)
$$f(x) = \sin(x + \pi/4)$$

Domanda 5. Individua l'identità vera.

- (A) $2\sin x = \sin 2x$.
- (B) $\cos x + \cos y = \cos(x + y)$.
- (C) $\cos(x+y) = \cos x \cos y + \sin x \sin y$.
- (D) $\sin(x+y) = \cos x \sin y + \sin x \cos y$.
- (E) $\cos x + \sin x = 1$

Domanda 6. Individua l'espressione della funzione rappresentata:

- (A) $2\sin(\frac{x}{2} \frac{\pi}{6})$ (B) $\frac{1}{2}\sin(x \frac{\pi}{6})$ (C) $\frac{1}{2}\sin(2x \frac{\pi}{3})$
- (D) $2\tan(x+\frac{\pi}{6})$
- (E) Nessuna delle precedenti.

Domanda 7. Seleziona l'affermazione vera

- (A) $10\sin x + 7 6(\sin x 1) = 3(\sin x + 3)$ è sempre verificata.
- (B) $2\cos^2 x + 5\sin x + 1 = 0$ ha le stesse soluzioni di $\cos(x + \frac{\pi}{2}) = \frac{1}{2}$.
- (C) $\sin 2x \sqrt{3}\cos 2x = 0$ ha le stesse soluzioni di $\sin(2x + \frac{\pi}{5}) = \sin(5x + \frac{\pi}{2})$ (D) $\sin 4x \cos 4x 1 = 0$ ha le stesse soluzioni di $4\sin^2 x + 2\sin x\cos x + 4\cos^2 x = 3$
- (E) Nessuna delle precedenti.

Domanda 8. Trovare le soluzioni alla seguente disequazione in $[0, 2\pi)$:

$$\frac{\sin(x)}{2\cos(x) - 1} \ge 0$$

- (A) $[0, \pi/3) \cup [\pi, 5\pi/3)$
- (B) $[0, \pi/6] \cup [\pi, 11\pi/6]$
- (C) $[0,\pi] \cap (-\pi/3,\pi/3) = [0,\pi/3)$
- (D) $[0, 2\pi]$
- (E) Nessuna delle precedenti