

FORMATO DE SYLLABUS

Macroproceso: Direccionamiento Estratégico

Versión: 01

Código: AA-FR-003

SIGUD

Proceso: Autoevaluación y Acreditación

Fecha de Aprobación: 27/07/2023

FACULTAD: Tecnológica										
PROYECTO CURRICULAR:			Tecnología en Electrónica Industrial			CÓDIGO PLAN DE ESTUDIOS:				
I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO										
NOMBRE DEL ESPACIO ACADÉMICO: CONTROL DE MOVIMIENTO										
Código del espacio académico:			24903	Número de créditos académicos:			2			
Distribución horas de trabajo:			HTD	2	нтс	2	НТА	2		
Tipo de espacio académico:			Asignatura	х	Cátedra					
			NATURA	ALEZA DEL ESPACIO ACA	DÉMICO:					
Obligatorio Básico	х	Obligatorio Complementario			Electivo Intrínseco		Electivo Extrínseco			
CARÁCTER DEL ESPACIO ACADÉMICO:										
Teórico		Práctico		Teórico-Práctico	x	Otros:		Cuál:		
MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:										
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:		
III CHOFFFENDIAC DE CAREFFE V CONOCINAIENTOS DEFINIOS										

II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS

Se recomienda que el estudiante tenga conocimientos sólidos en fundamentos de electrónica, teoría de control, programación de PLCs, sistemas eléctricos y mecánica aplicada. Además, debe manejar software como MATLAB/Simulink, CODESYS o TIA Portal, y tener experiencia en la configuración de variadores o servoaccionamientos.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

El control de movimiento constituye el núcleo operativo de sistemas industriales automatizados como robots, máquinas CNC, manipuladores, líneas de ensamble y sistemas de transporte. Con la irrupción de la Industria 4.0, la capacidad de integrar movimiento preciso, control distribuido, monitoreo remoto, seguridad funcional y diagnósticos inteligentes se convierte en una competencia esencial. Esta asignatura prepara al estudiante para analizar, diseñar e implementar sistemas de control de movimiento basados en servosistemas, variadores inteligentes y redes industriales, conectados a arquitecturas modernas de automatización bajo normativas de la ISA, estándares de integración y ciberseguridad.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Desarrollar en el estudiante competencias para diseñar, simular, configurar y poner en marcha sistemas de control de movimiento en entornos industriales modernos, integrando componentes mecatrónicos, redes industriales, y técnicas avanzadas de programación y supervisión.

Objetivos Específicos:

Identificar y dimensionar los componentes clave de un sistema de control de movimiento (actuadores, sensores, controladores, elementos mecánicos).

Modelar y analizar el comportamiento dinámico de sistemas mecatrónicos con movimiento controlado.

Programar controladores industriales con funciones de movimiento embebido.

Configurar servodrives, variadores de frecuencia, y sistemas de movimiento multieje.

Integrar dispositivos en redes industriales seguras y conectadas (Profinet, EtherCAT, OPC-UA).

Aplicar estándares ISA en la documentación, estructura y ejecución de procesos con movimiento.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de formación:

Promover la aplicación de técnicas modernas de control de movimiento con base en sensores, servosistemas y comunicación digital.

Fomentar la integración de tecnologías 4.0 (diagnóstico remoto, seguridad funcional, edge computing) en sistemas de automatización mecánica.

Consolidar una visión sistémica del movimiento controlado en procesos industriales.

Resultados de aprendizaje esperados:

Diseña soluciones de control de movimiento aplicando principios dinámicos, eléctricos y mecánicos.

Configura servodrives, variadores y motores para lograr precisión y eficiencia en el movimiento.

Integra sistemas de control de movimiento en arquitecturas industriales con PLC y SCADA.

Aplica modelos de perfiles de movimiento optimizados (trapezoidal, S-curve, spline).

Implementa estrategias de seguridad, comunicación y mantenimiento en entornos con movimiento controlado.

VI. CONTENIDOS TEMÁTICOS

1. Fundamentos del control de movimiento (1 semana)

Arquitectura de un sistema de movimiento

Componentes eléctricos, mecánicos y de control

Modelado general de sistemas servoasistidos

2. Motores y actuadores para control de movimiento (2 semanas)

Motores AC, motores DC, servomotores, motores paso a paso

Modelos de comportamiento dinámico

Sensores de posición, velocidad y corriente (encoders, resolvers, sensores Hall)

3. Transmisión de potencia y dinámica mecánica (2 semanas)

Sistemas de transmisión: husillos, correas, engranajes, piñones-cremalleras

Inercia reflejada, fricción, rigidez

Simulación de cargas mecánicas

4. Controladores y servoaccionamientos (2 semanas)

Variadores de velocidad y drives inteligentes

Lazos de corriente, velocidad y posición

Programación de servos (tuning automático y manual)

Protocolos de comunicación industrial (Profinet, EtherCAT, CANOpen)

5. Perfiles de movimiento y control multieje (2 semanas)

Perfiles trapezoidales, suaves (S-curve), interpolaciones

Coordinación de ejes

SoftMotion y bibliotecas de control avanzado (PLCopen, PackML)

6. Programación de sistemas de movimiento (3 semanas)

Lenguajes estructurados IEC 61131-3 (ST, SFC)

Uso de controladores con bloques de movimiento (TIA, Studio 5000, CODESYS)

Aplicación de ISA-88 y sincronización por fases

Integración en redes industriales y monitoreo SCADA (ISA-112)

7. Aplicaciones industriales y tendencias (3 semanas)

Robótica y máquinas CNC

Líneas de ensamblaje inteligentes y celdas flexibles

Diagnóstico predictivo y seguridad funcional (SIL/PL)

Movimiento conectado (IIoT, Edge, OPC-UA, ISA-95)

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

El curso se desarrollará mediante clases magistrales con talleres activos, simulación con MATLAB, Simulink y software industrial (TIA, Studio 5000, CODESYS), montaje físico con servos y variadores reales, análisis de casos industriales y proyectos aplicados. Se implementará el aprendizaje basado en proyectos, resolviendo desafíos de automatización con sistemas de movimiento reales o simulados.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta servodrives y motores FESTO, Siemens, Delta, Schneider; variadores de velocidad, plataformas: Studio 5000, CODESYS, TIA Portal, MATLAB/Simulink, bancos mecánicos con carga variable, tableros PLC industriales con módulos de movimiento, documentación técnica ISA-88, ISA-95, ISA-112.

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se recomienda realizar una visita técnica a plantas que utilicen servosistemas o máquinas CNC, laboratorios de automatización robótica o centros de innovación industrial donde se implementen estrategias de control de movimiento avanzado y sincronizado.

XI. BIBLIOGRAFÍA

Crowder, R. Electric Drives and Electromechanical Systems. Elsevier Rashid, M. Electrónica de Potencia. Pearson Moritz, F. Electromechanical Motion Systems. Wiley IEC. Norma IEC 61131-3 ISA. ISA-88, ISA-95, ISA-112, ISA-99

Shigley, J. Teoría de Máquinas y Mecanismos. McGraw Hill

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS								
Fecha revisión por Consejo Curricular:								
Fecha aprobación por Consejo Curricular:		Número de acta:						