Mathematical Finance

Labix

May 8, 2025

Contents

1	Mat	hematical Finance	2
2	Mat	hematical Models for Option Pricing	3
	2.1	Background Terminology	3
	2.2	One-Period Binomial Models	3
	2.3	Multi-Period Binomial Models	4
	2.4	Black-Scholes-Merton Model	5

1 Mathematical Finance

Assets: Items Stocks: Makes you own a small percentage of a company. Shares: The unit for stocks. (Owning share = Owning a certain number of stocks) Bonds: Buying debt from a loan issuer. Options: Contract that gives the ability to buy / sell assets at a certain time in the future. Futures: Contract to buy / sell assets at a certain time in the future. Value: Total gain / loss from the whole ordeal.

Derivatives: Just think of them as options / future for now. Strike price: the cost of exercising the derivative at the expiration date.

Idea: Derivatives themselves can also be traded.

Call: Looking to buy. Put: Looking to sell.

European options: can only exercise at the specified date. American options: can exercise any time before the specified date.

Derivative Traders: Hedger: Actually exercises the derivative. (To minimize loss) Speculator: Actually bets on the ups and downs of the derivatives. Arbitrageurs: Finding certain entry point to guarantee some winnings by calling / putting a combination of derivatives. (Too powerful and rare so we usually assume no arbitrage opportunities occur)

The price of an option is a function of

- S_0 : Current stock price.
- *K*: Strike price.
- *T*: Time to expiration.
- \bullet r: Risk free interest rate.
- Dividends that are expected to be paid.

More notation:

- S_T : Stock price at expiration day.
- C/P: American call / put.
- c/p: European call / put.

We assume no arbitrage opportunities (if there is then it disappears quickly).

We have

- $C \leq S_0$
- $\bullet \ S_0 Ke^{rT} \le c \le S_0.$
- $P \leq K$
- $Ke^{-rT} S_0 \le p \le Ke^{-rT}$

More:

- $c + Ke^{-rT} = p + S_0$ (idea: European call and put options worth the same price at time T)
- $S_0 K \le C P \le S_0 Ke^{-rT}$

2 Mathematical Models for Option Pricing

2.1 Background Terminology

Risk-neutral: A situation where investors do not expect an increase in return when the risk increases. This has two consequences.

- The expected return of a stock is the risk free rate.
- The discount rate for the expected pay off of an option is the risk free.

Risk-less: A portfolio is risk-less when regardless of the outcome, the net total is constant.

2.2 One-Period Binomial Models

Definition 2.2.1: The Binomial Model

Suppose that t is the current time. An asset has a current stock price of S_0 with an unknown option price \mathcal{O} . After a time step of dt, the stock price either increase by a multiplicative factor of u>1 or the stock price decreases by a multiplicative factor of d<1. Denote the corresponding option value (the net gain from the option) by \mathcal{O}_u and \mathcal{O}_d respectively.

$$t \xrightarrow{dt} t + dt$$

The number 0 is an unknown quantity denoting the probability that the stock price increases.

Lemma 2.2.2

Assume there is no arbitrage opportunity and the world is risk-neutral. Assume the binomial model. Suppose a portfolio of buying $\Delta \in \mathbb{N}$ stocks and shorting a call option. Then the portfolio is risk-less when

$$\Delta = \frac{\mathcal{O}_u - \mathcal{O}_d}{uS_0 - dS_0}$$

Proposition 2.2.3

Assume there is no arbitrage opportunity and the world is risk-neutral. Assume the binomial model. Denote $V(t) = S_0 \Delta - \mathcal{O}$ the value of the portfolio of buying Δ stocks and shorting a call option. Then the following are true.

• The probability p that the stock price increases is given by

$$p = \frac{e^{rdt} - d}{u - d}$$

• The option price is given by

$$\mathcal{O} = e^{-rdt} \left(p\mathcal{O}_u + (1-p)\mathcal{O}_d \right)$$

Proof. Accounting for the discount rate, we have

$$V(t+dt) = (uS_0\Delta - \mathcal{O}_u)e^{-rdt} = (dS_0\Delta - \mathcal{O}_d)e^{-rdt}$$

by definition of Δ . Equating V(t) and V(t+dt) gives the desired result.

Lemma 2.2.4

Assume there is no arbitrage opportunity and the world is risk-neutral. Assume the binomial model. Suppose that the implied volatility is σ . Then we have

$$u = e^{\sigma\sqrt{dt}}$$
 and $d = e^{-\sigma\sqrt{dt}}$

2.3 Multi-Period Binomial Models

Definition 2.3.1: The Multi-Period Binomial Model

Suppose that t is the current time. An asset has a current stock price of S_0 with an unknown option price \mathcal{O} . After a time step of dt, the stock price either increase by a multiplicative factor of u > 1 or the stock price decreases by a multiplicative factor of d < 1. Denote the corresponding option value (the net gain from the option) by \mathcal{O}_u and \mathcal{O}_d respectively.

The number 0 is an unknown quantity denoting the probability that the stock price increases. The process iterates for <math>n-times.

Notice at each time-step, the process is identical except with a different current stock and option price. Therefore we can iterate the one-period binomial model *n*-times to recover the option value.

Proposition 2.3.2

Assume there is no arbitrage opportunity and the world is risk-neutral. Assume the mutliperiod binomial model with period n. Then the European call option price is given by

$$\mathcal{O} = e^{-nrdt} \left(\sum_{i=0}^{n} \binom{n}{i} p^{n-i} (1-p)^{i} \mathcal{O}_{u^{n-i}d^{i}} \right)$$

2.4 Black-Scholes-Merton Model

Definition 2.4.1: Black-Scholes-Merton Model

Let T be a set time (in years). Denote $S:\Omega\times[0,T]\to\mathbb{R}$ the stochastic processes that is the value of a certain stock. Let μ be the annual expected return. Let σ be the annual volatility of the stock price. The Black-Scholes-Merton Model makes the following assumptions

• The percentage in stock is normally distributed:

$$\frac{S_{t+dt} - S_t}{S_t} \sim N(\mu dt, \sigma^2 dt)$$

- μ and σ are constants over time.
- The risk free interest rate is constant over time.
- There are no dividends during the lifetime of the stock.
- There are no arbitrage opportunities.

Lemma 2.4.2

Let T be a set time (in years). Denote $S:\Omega\times[0,T]\to\mathbb{R}$ the stochastic processes that is the value of a certain stock. Let μ be the annual expected return. Let σ be the volatility of the stock price. Assume the Black-Scholes-Merton model. Then we have

$$\ln(S_t) \sim N\left(\ln(S_0) + \left(\mu - \frac{\sigma^2}{2}\right)T, \sigma^2 T\right)$$

Rate of return: The percentage return averaged over a certain amount of time.

Lemma 2.4.3

Let T be a set time (in years). Denote $S:\Omega\times[0,T]\to\mathbb{R}$ the stochastic processes that is the value of a certain stock. Assume the Black-Scholes-Merton model. Let r be the continuously compounded rate of return of S. Then we have

$$r \sim N\left(\mu - \frac{\sigma^2}{2}, \frac{\sigma^2}{T}\right)$$

Volatility: a measure of uncertainty of return. So it is precisely the variance of the rate of return. Hence the annual volatility is σ . Checks out.

Proposition 2.4.4

Let T be a set time (in years). Denote $S:\Omega\times[0,T]\to\mathbb{R}$ the stochastic processes that is the value of a certain stock. Assume the Black-Scholes-Merton model. Then the European call option price according to the model is

$$c = S_0 F_N(d_1) - K e^{-rT} F_N(d_2)$$

where K is the strike price, r is the risk-free interest rate and F_N is the cumulative distribution function of N(0,1) and

$$d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}$$
 and $d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T}$