FEUP MiEic Algebra 14-18 nov 2016

Exec: Encontre un vector C tal que A.C=B.C=O, com C#3, sendo A = (2, 1, -1) e B = (1, -1, 2)

ExRC: Determine dois vectores Ce D tais que A = C+D, B.D=0, C/B, onde A = (2, -1, 2) e B = (1, 2, -2).

ExRC: Calcule um vector unitario paralelo a A-2B, sabendo que A = (1, -2, 3) e B = (3, 1, 2).

EXRC: A, B, C e D são vectores não nulos de R4, tais que B=C+D, C//A e DJA. Prove que A não é perpendicular

A sobre B, ExRC: Calcule C, a projecções de sendo A = (1, 2, 3) e B = (1, 2, 2).

- Exec: Sejam A, B e C vectores de \mathbb{R}^3 , tois que $\|A\| = \|C\| = 5$, $\|B\| = 1$, $\|A B + C\| = \|A + B + C\|$ e $\chi(A,B) = \frac{\pi}{8}$. Determine $\theta = \chi(B,C)$.
- ExRc: Sejam A, B vectores de R³ tais que $\|A + B\| = \sqrt{7}$, $\|B\| = 1$ e $\#(A, B) = \frac{\pi}{3}$.

 Determine $\|A\|$.
- ExRC: A, B, C e D vectores de Rⁿ tais que $\|A\| = \sqrt{2}$, $\|B\| = \|D\| = 1$, D/A, C = A + B, $\#(A,B) = \sqrt[n]{4}$. Calcule:
 - a) 11 < 11b) 0 = 4(c, D)
 - 64. Seja $S = \{A, B\}$ um conjunto ortogonal de $|R^3|$ com ||B|| = 1 e seja D um vector definido por $D = C + (A \times B)$, em que C é um vector de L(S). Supondo que $||D|| = \sqrt{6}$ e que $\angle(C, D) = 60^\circ$, determine o valor de ||A||.
 - 66. Considere dois vectores não paralelos A e B de $|R^3|$, tais que A . B = 2, ||A|| = 1 e ||B|| = 4; seja ainda C = 2 (A × B) 3 B . Calcule:
 - a) A.(B+C).
 - b) || C || .
 - c) O ângulo $\,\theta\,$ formado pelos vectores $\,B\,$ e $\,C\,$.
 - 75. Sejam A, B, C e D vectores de $|R^3|$, tais que A + B = C × D, ||C|| = ||D|| = 1, ||A|| = ||B||, $\angle(C, D) = 60^\circ$ e $\angle(A, C \times D) = 30^\circ$. Calcule:
 - a) || B ||.
 - b) O ângulo $\,\theta\,$ formado pelos vectores $\,A\,$ e $\,B\,$.