Introduction to dependent type theory

Ali Caglayan

April 26, 2019

Contents

1	Intr	roduction	3						
2	Syn	tax	4						
	2.1	The difficulty with syntax	4						
	2.2	Introduction	5						
	2.3	Well-founded induction	6						
	2.4	Abstract syntax trees	7						
	2.5	Substitution in asts	9						
	2.6	Abstract binding trees	10						
	2.7		12						
3	Judgements 12								
	3.1	Inference rules	13						
	3.2		14						
	3.3		15						
	3.4		18						
	3.5	v -	20						
	3.6	v -	21						
4	Statics and Dynamics 21								
	4.1	Typing and Type systems	22						
	4.2		23						
	4.3		23						
	4.4		24						
	4.5	Evaluation dynamics	24						
5	Simply typed lambda calculus 24								
	5.1	2 0 02	25						
	5.2	Structural rules	26						
	5.3		27						
	5.4	- v	28						
	5.5	V 1	31						

6	Nor	malisation of STLC 32						
	6.1	Introduction						
	6.2	Properties of relations						
	6.3	Normalisation						
	6.4	Canonicity						
7	STI	C Examples 41						
•	7.1	Identity function $\lambda x.x$						
	7.2	Function application $\lambda x.\lambda y.xy$						
	7.3							
		0						
	7.4	$(\lambda x.x)(\lambda x.x)$						
	7.5	$\lambda x.\lambda y.(xy)(xy)$						
	7.6	Y-combinator $\lambda x.(\lambda y.x(yy))(\lambda y.x(yy))$						
	7.7	Function composition $\lambda x.\lambda y.\lambda z.x(yz)$						
	7.8	Owl combinator $\lambda x.\lambda y.\lambda z.y(xy)$						
	7.9	Currying $\lambda x.\lambda y.\lambda z.x(y,z)$						
	7.10	Swap $\lambda t.(\operatorname{snd}(t), \operatorname{fst}(t))$						
8	Cur	ry-Howard correspondence 43						
	8.1	Mathematical logic						
	8.2	Lambda calculus						
	8.3	Recursive functions						
	8.4	Turing machines						
	8.5	Russell's paradox						
	8.6	The problem with lambda calculus as a logic						
	8.7	Types to the rescue						
	8.8	The theory of proof a la Gentzen						
	8.9	Curry and Howard						
		Propositions as types						
		Predicates [CHANGE] as types?						
	8.12	Dependent types						
9	Simply typed lambda calculus with products, sums and natural							
	num	bers 45						
	9.1	Introduction						
	9.2	Natural numbers						
	9.3	Sum types						
10	Dep	endent types 46						
11	IIn:	verses 47						
11		Introduction						
		Universes a la Tarski						
۸ -	nor	dices 49						
- 7-1-	hem	49						

A	Simply typed lambda calculus $\lambda_{ ightarrow imes}$					
	A.1	Syntax	49			
	A.2	Judgements	49			
	A.3	Structural rules	49			
	A.4	Equality rules	49			
	A.5	Function type	50			
	A.6	Product type	50			
	A.7	Unit type	51			
_	_					
В	Exa	mples	51			

1 Introduction

The goal of this dissertation is to give an introduction to the formal study of lambda calculus and in general type theory. We begin by analysing the intuitive notion of *syntax*, highlighting the many subtleties associated with it. We discuss possible solutions to these issues, but ultimately remark that it is very difficult to be certain of correctness. We will however give a notion of syntax which is correct enough for our purposes.

The next section is to discuss the formality of *judgements*. This is a concept oft overlooked in the study of type theory. We will give a careful and detailed account of derivability and admissibility. We will also remark on inconsistencies of the treatment of certain concepts.

Next we will discuss the technology of *typing*. Even though it is a relatively simple idea, it has many powerful, and subtle, consequences. After a look at this static analysis, we will also discuss the dynamics of programming languages. We will later remark on common solutions to over come incorrect code and run time errors

This will lead us into studying the *simply type lambda calculus* (STLC), in some ways one of the simplest (functional) programming languages. We will give syntax, judgements and rules. After which, we will prove metaproperties about our type theory and discuss the notion of *type checking*.

We will then analyse the dynamics of the STLC. There is a long history of normalisation results we wish to breifly sketch. We will set up some machinary to prove some of these results. Finally we will discuss notions of canonicity and what these results mean for the design of programming languages.

Next there will be several examples of terms to be type checked. This will show the intricacies that go into designing a type checker. We will see that typing makes lambda calculus much weaker, in that many terms from the untyped lambda calculus cannot be typed. It is precisely these terms which gave the computational power of the untyped lambda calculus to begin with.

The next section will be a detailed account of the ideas that went in to, what is now known as the *Curry-Howard* correspondence. This is a very deep package of ideas with far reaching consequences, of which we will try to make account of.

We will use the knowledge gained from a study of Curry-Howard to design new types and data structures for our STLC, and turn it into a more powerful programming language, i.e. one that can support recursion. We make a note about encodings of natural numbers in the plain STLC, and why they are insufficient to really be called natural numbers.

Finally we will sketch a dependent type theory with Π and Σ types. We will not prove any formal properties of this type theory but using our previous work we will sketch how one might go about doing so. We will take this time to introduce the workings of dependent types and discuss their advantages over other type theory features.

Our closing remarks will be about future directions in type theory, questions that need to be answered and future of programming language design.

2 Syntax

2.1 The difficulty with syntax

Syntax is difficult to handle rigorously. The syntax of type theory has a long history of proposed solutions and an even longer history of incorrect solutions. The main difficulty lies with the fact that syntax must account for the deceptively subtle notions of variable binding, capture-free substitution and even multiple derivations of judgements.

Mathematicians therefore have an "ingenious" way of dealing with this: Abstract away the key properties to end up with an object with the desired semantics. This objects typically fall under names such as structured categories, and come up in the subject of categorical semantics. Mathematicians can therefore reason about "type theories" by reasoning about these particular objects.

The questions still stands however what is a type theory? We will not claim to solve this problem but rather provide a partial solution. In this thesis we will describe a specific kind of dependent type theory. Later we will derived the categorical semantics for our type theory. We cannot however do this all in one step, and so we will begin with what is known as simply typed lambda calculus. We will then modify the rules for this to give us a basic dependent type theory.

We will discuss in detail the need for some sort of "initiality theorem" for a given type theory. This will make the interpretation of the syntax useful. There have been many attempts in the past to prove some sort of initiality theorem, the most notable by Streicher, but in general there is still much debate on the usefulness of these results. Notable mathematicians such as Vladimir Voevodsky have persuasively argued that this is an unacceptably unrigorous attitude. There is no precise definition of what "suitable type theory" means nor which methods are applicable.

The author will note that there are currently a few attempts at answering this question, but to date, not suitable solution has been proposed.

Now suppose we have some sort of "type theory". It is still not a completely satisfactory situation in terms of describing the syntax of such an object. Many

authors [add citations] have noted that this is the case and more worryingly many other authors have claimed that it is done and dusted. There is as a result a long history of false claims of correct syntax. [add citations]

2.2 Introduction

We will follow the structure of syntax outlined in Harper [17]. There are several reasons for this.

Firstly, for example in Barendregt et. al. [1] we have notions of substitution left to the reader under the assumption that they can be fixed. Generally Barendregt's style is like this and even when there is much formalism, it is done in a way that we find peculiar.

In Crole's book [9], syntax is derived from an algebraic signature which comes directly from categorical semantics. We want to give an independent view of type theory. The syntax only has types as well, meaning that only terms can be posed in this syntax. Operations on types themselves would have to be handled separately. This will also make it difficult to work with bound variables.

In Lambek and Scott's book [26], very little attention is given to syntax and categorical semantics and deriving type theory from categories for study is in the forefront of their focus.

In Jacob's book [18], we again have much reliance on categorical machinery. A variant of algebraic signature called a many-typed signature is given, which has its roots in mathematical logic. Here it is discussed that classically in logic the idea of a sort and a type were synonymous, and they go onto preferring to call them types. This still has the problems identified before as terms and types being treated separately, when it comes to syntax.

In Barendregt's older book [2], there are models of the syntax of (untyped) lambda calculus, using Scott topologies on complete lattices. We acknowledge that this is a working model of the lambda calculus but we believe it to be overly complex for the task at hand. It introduces a lot of mostly irrelevant mathematics for studying the lambda calculus. And we doubt very much that these models will hold up to much modification of the calculus. Typing seems impossible.

In Sørensen and Urzyczyn's book [33] a more classical unstructured approach to syntax is taken. This is very similar to the approaches that Church, Curry and de Brujin gave early on. The difficulty with this approach is that it is very hard to prove things about the syntax. There are many exceptional cases to be weary of (for example if a variable is bound etc.). It can also mean that the syntax is vulnerable to mistakes. We acknowledge it's correctness in this case, however we prefer to use a safer approach.

We will finally look at one more point of view, that of mathematical logic. We look at Troelstra and Schwichtenberg's book [35] which studies proof theory. This is essentially the previous style but done to a greater extent, for they use that kind of handling of syntax to argue about more general logics. As before, we do not choose this approach.

We have seen books from either end of the spectrum, on one hand Barendregt's type theoretic camp, and on the other, the more categorical logically oriented camp. We have argued that the categorical logically oriented texts do not do a good job of explaining and defining syntax, their only interest is in their categories. The type theoretic texts also seem to be on mathematically shaky ground, sometimes much is left to the reader and finer details are overlooked.

Harper's seems more sturdy and correct in our opinion. Harper doesn't concern himself with abstraction for the sake of abstraction but rather when it will benefit the way of thinking about something. The framework for working with syntax also seems ideal to work with, when it comes to adding features to a theory (be it a type theory or otherwise).

2.3 Well-founded induction

Firstly we will begin a quick recap of induction. This should be a notion familiar to computer scientists and mathematicians alike. The following will be more accessible to mathematicians but probably more useful for them too since they will be generally less familiar with the generality of induction.

The notion of well-founded induction is a standard theorem of set theory. The classical proof of which usually uses the law of excluded middle [19, p. 62], [3, Ch. 7]. It's use in the formal semantics of programming languages is not much different either [37, Ch. 3]. There are however more constructive notions of well-foundedness [30, §8] with more careful use of excluded middle. We will follow [34], as this is the simplest to understand, and we won't be using this material much other than an initial justification for induction in classical mathematics.

Definition 2.3.1. Let X be a set and \prec a binary relation on X. A subset $Y \subseteq X$ is called \prec -inductive if

$$\forall x \in X, \quad (\forall y \prec x, \ y \in Y) \Rightarrow x \in Y.$$

Definition 2.3.2. The relation \prec is **well-founded** if the only \prec -inductive subset of X is X itself. A set X equipped with a well-founded relation is called a *well-founded set*.

Theorem 2.3.3 (Well-founded induction principle). Let X be a well-founded set and P a property of the elements of X (a proposition). Then

$$\forall x \in X, P(x) \iff \forall x \in X, (\forall y \prec x, P(y)) \Rightarrow P(x).$$

Proof. The forward direction is clearly true. For the converse, assume $\forall x \in X, ((\forall y \prec x, P(y)) \Rightarrow P(x))$. Note that $P(y) \Leftrightarrow x \in Y := \{x \in X \mid P(x)\}$ which means our assumption is equivalent to $\forall x \in X, (\forall y \prec x, y \in Y) \Rightarrow x \in Y$ which means Y is \prec -inductive by definition. Hence by 2.3.2 Y = X giving us $\forall x \in X, P(x)$.

We now get onto some of the tools we will be using to model the syntax of our type theory.

2.4 Abstract syntax trees

We begin by outlining what exactly syntax is, and how to work with it. This will be important later on if we want to prove things about our syntax as we will essentially have good data structures to work with.

Definition 2.4.1 (Sorts). Let S be a finite set, which we will call **sorts**. An element of S is called a **sort**.

A sort could be a term, a type, a kind or even an expression. It should be thought of an abstract notion of the kind of syntactic element we have. Examples will follow making this clear.

Definition 2.4.2 (Arities). An **arity** is an element $((s_1, \ldots, s_n), s)$ of the set of **arities** $\mathcal{Q} := \mathcal{S}^* \times \mathcal{S}$ where \mathcal{S}^* is the Kleene-star operation on the set \mathcal{S} (a.k.a the free monoid on \mathcal{S} or set of finite tuples of elements of \mathcal{S}). An arity is typically written as $(s_1, \ldots, s_n)s$.

Definition 2.4.3 (Operators). Let $\mathcal{O} := \{\mathcal{O}_{\alpha}\}_{\alpha \in \mathcal{Q}}$ be an \mathcal{Q} -indexed (arity-indexed) family of disjoint sets of **operators** for each arity. An element $o \in \mathcal{O}_{\alpha}$ is called an **operator** of arity α . If o is an operator of arity $(s_1, \ldots, s_n)s$ then we say o has **sort** s and that o has n **arguments** of sorts s_1, \ldots, s_n respectively.

Definition 2.4.4 (Variables). Let $\mathcal{X} := \{\mathcal{X}_s\}_{s \in \mathcal{S}}$ be an \mathcal{S} -indexed (sort-indexed) family of disjoint (finite?) sets \mathcal{X}_s of **variables** of sort s. An element $x \in \mathcal{X}_s$ is called a **variable** x of **sort** s.

Definition 2.4.5 (Fresh variables). We say that x is **fresh** for \mathcal{X} if $x \notin \mathcal{X}_s$ for any sort $s \in \mathcal{S}$. Given an x and a sort $s \in \mathcal{S}$ we can form the family \mathcal{X}, x of variables by adding x to \mathcal{X}_s .

[[Wording here may be confusing]]

Definition 2.4.6 (Fresh sets of variables). Let $V = \{v_1, \ldots, v_n\}$ be a finite set of variables (which all have sorts implicitly assigned so really a family of variables $\{V_s\}_{s \in \mathcal{S}}$ indexed by sorts, where each V_s is finite). We say V is fresh for \mathcal{X} by induction on V. Suppose $V = \emptyset$, then V is fresh for X.

Suppose $V = \{v\} \cup W$ where W is a finite set, v is fresh for W and W is fresh for \mathcal{X} . Then V is fresh for \mathcal{X} if v is fresh for \mathcal{X} . By induction we have defined a finite set being fresh for a set \mathcal{X} . Write \mathcal{X}, V for the union (which is disjoint) of \mathcal{X} and V. This gives us a new set of variables with obvious indexing.

Remark 2.4.7. The notation \mathcal{X}, x is ambiguous because the sort s associated to x is not written. But this can be remedied by being clear from the context what the sort of x should be.

Definition 2.4.8 (Abstract syntax trees). The family $\mathcal{A}[\mathcal{X}] = {\mathcal{A}[\mathcal{X}]_s}_{s \in \mathcal{S}}$ of abstract syntax trees (or asts), of sort s, is the smallest family satisfying the following properties:

- 1. A variable x of sort s is an ast of sort s: if $x \in \mathcal{X}_s$, then $x \in \mathcal{A}[\mathcal{X}]_s$.
- 2. Operators combine asts: If o is an operator of arity $(s_1, \ldots, s_n)s$, and if $a_1 \in \mathcal{A}[\mathcal{X}]_{s_1}, \ldots, a_n \in \mathcal{A}[\mathcal{X}]_{s_n}$, then $o(a_1; \ldots; a_n) \in \mathcal{A}[\mathcal{X}]_s$.

Remark 2.4.9. The idea of a smallest family satisfying certain properties is that of structural induction. So another way to say this would be a family of sets inductively generated by the following constructors.

Remark 2.4.10. An ast can be thought of as a tree whose leaf nodes are variables and branch nodes are operators.

Example 2.4.11 (Syntax of lambda calculus). The (untyped) lambda calculus has one sort **Term**, so $S = \{\text{Term}\}$. We have an operator App of application whose arity is (**Term**, **Term**)**Term** and an family of operators $\{\lambda_x\}_{x \in \mathbf{Var}}$ which is the lambda abstraction with bound variable x, so $\mathcal{O} = \{\lambda_x\} \cup \{\text{App}\}$. The arity of each λ_x for some $x \in \mathbf{Var}$ is simply (**Term**)**Term**.

Consider the term

$$\lambda x.(\lambda y.xy)z$$

We can consider this the *sugared* version of our syntax. If we were to *desugar* our term to write it as an ast it would look like this:

$$\lambda_x(\operatorname{App}(\lambda_y(\operatorname{App}(x;y));z))$$

Sugaring allows for long-winded terms to be written more succinctly and clearly. Most readers would agree that the former is easier to read. We have mentioned the tree structure of asts so we will illustrate with the following equivalent examples. We present two to allow for use of both styles.

Remark 2.4.12. Note that later we will enrich our notion of abstract syntax tree that takes into account binding and scope of variables but for now this is purely structural.

tree representing the lambda term

Figure 1: Vertically oriented tree representing the lambda term

Remark 2.4.13. When we prove properties $\mathcal{P}(a)$ of an ast a we can do so by structural induction on the cases above. We will define structural induction as a special case of well-founded induction. But for this we will need to define a relation on asts.

Definition 2.4.14. Suppose $\mathcal{X} \subseteq \mathcal{Y}$. An ast $a \in \mathcal{A}[\mathcal{X}]$ is a **subtree** of an ast $b \in \mathcal{A}[\mathcal{Y}]$ [This part is giving me a headache. How can I define subtree if I can't do it by induction? To do it by induction I would have to define subtree.]

[Some more notes on structural induction, perhaps this can be defined and discussed with trees in the section before?]

[add examples of sorts, operators, variables and how they fit together in asts]

Lemma 2.4.15. If we have $\mathcal{X} \subseteq \mathcal{Y}$ then, $\mathcal{A}[\mathcal{X}] \subseteq \mathcal{A}[\mathcal{Y}]$.

Proof. Suppose $\mathcal{X} \subseteq \mathcal{Y}$ and $a \in \mathcal{A}[\mathcal{X}]$, now by structural induction on a:

- 1. If a is in \mathcal{X} then it is obviously also in \mathcal{Y} .
- 2. If $a := o(a_1; ...; a_n) \in \mathcal{A}[\mathcal{X}]$ we have $a_1, ..., a_n \in \mathcal{A}[\mathcal{X}]$ also. By induction we can assume these to be in $\mathcal{A}[\mathcal{Y}]$ hence giving us $a \in \mathcal{A}[\mathcal{Y}]$.

Hence by induction we have shown that $\mathcal{A}[\mathcal{X}] \subseteq \mathcal{A}[\mathcal{Y}]$.

2.5 Substitution in asts

Definition 2.5.1 (Substitution). If $a \in \mathcal{A}[\mathcal{X}, x]_{s'}$, and $b \in \mathcal{A}[\mathcal{X}]_s$, then $[b/x]a \in \mathcal{A}[\mathcal{X}]_{s'}$ is the result of **substituting** b for every occurrence of x in a. The ast a is called the **target**, the variable x is called the **subject** of the **substitution**. We define substitution on an ast a by induction:

1. [b/x]x = b and [b/x]y = y if $x \neq y$.

```
2. [b/x]o(a_1; ...; a_n) = o([b/x]a_1; ...; [b/x]a_n)
```

[Examples of substitution]

Corollary 2.5.2. If $a \in \mathcal{A}[\mathcal{X}, x]$, then for every $b \in \mathcal{A}[\mathcal{X}]$ there exists a unique $c \in \mathcal{A}[\mathcal{X}]$ such that [b/x]a = c.

Proof. By structural induction on a, we have three cases: a:=x, a:=y where $y \neq x$ and $a:=o(a_1;\ldots;a_n)$. In the first we have [b/x]x=b=c by definition. In the second we have [b/x]y=y=c by definition. In both cases $c\in\mathcal{A}[\mathcal{X}]$ and are uniquely determined. Finally, when $a:=o(a_1;\ldots;a_n)$, we have by induction unique c_1,\ldots,c_n such that $c_i:=[b/x]a_i$ for $1\leq i\leq n$. Hence we have a unique $c=o(c_1,\ldots,c_n)\in\mathcal{A}[\mathcal{X}]$.

Remark 2.5.3. Note that 2.5.2 was simply about checking Definition 2.5.1. We have written out a use of the definition here so we won't have to again in the future.

Abstract syntax trees are our starting point for a well-defined notion of syntax. We will modify this notion, as the author of [17] does, with slight modifications that are used in [27, 28], the Initiality Project. This is a collaborative project for showing initiality of dependent type theory (the idea that some categorical model is initial in the category of such models). It is a useful reference because it has brought many mathematicians together to discuss the intricate details of type theory. The definitions here have spawned from these discussions on the nlab and the nforum.

We want to modify the notion of abstract syntax tree to include features such as binding and scoping. This is a feature used by many type theories (and even the lambda calculus). It is usually added on later by keeping track of bound and free variables. [CITE]. We will avoid this approach as it makes inducting over syntax more difficult.

2.6 Abstract binding trees

Definition 2.6.1 (Generalized arities). A **generalised arity** (or signature) is a tuple consisting of the following data:

- 1. A sort $s \in \mathcal{S}$.
- 2. A list of sorts of length n called the **argument sorts**, where n is called the **argument arity**.
- 3. A list of sorts of length m called the **binding sorts**, where m is called the **binding arity**.
- 4. A decidable relation \triangleleft between [n] and [m] called **scoping**. Where $j \triangleleft k$ means the jth argument is in scope of the kth bound variable.

The set of generalised arities **GA** could therefore be defined as $\mathcal{S} \times \mathcal{S}^* \times \mathcal{S}^*$ equipped with some appropriate relation \triangleleft .

Remark 2.6.2. In [17] there is no relation but a function. And each argument has bound variables assigned to it. But as argued in [28] this means arguments can have different variables bound even if they are really the same variable. To fix this, bound variables belong to the whole signature. Which confidently makes it simpler to understand too.

This definition is more general than the definition given in [28] due to bound variables having sorts chosen for them rather than being defaulted to the sort tm. It is mentioned there however that it can be generalised to this form (but would have little utility there).

We will now redefine the notion of operator, taking note that generalised arities are a super-set of arities defined previously.

Definition 2.6.3 (Operators (with generalized arity)). Let $\mathcal{O} := \{\mathcal{O}_{\alpha}\}_{\alpha \in \mathbf{GA}}$ be a \mathbf{GA} -indexed family of disjoint sets of **operators** for each generalised arity α . An element $o \in \mathcal{O}_{\alpha \in \mathbf{GA}}$ is called an operator of (generalised) **arity** α . If α has sort s then o has **sort** s. If α has argument sorts (s_1, \ldots, s_n) then we say that o has **argument arity** n, with the jth argument having **sort** s_j . If α has binding sorts (t_1, \ldots, t_m) then we say that o has **binding arity** m, with the kth bound variable having **sort** s_k . If the the scoping relation of α has $j \triangleleft k$ then we say that the jth argument of o is in **scope** of the kth bound variable of o.

Remark 2.6.4. We overload the definitions of arity and operator to mean generalised operator and operator with generalised arity respectively.

Remark 2.6.5. When we wish to specify an operator we need only give the following data:

- 1. Name what we wish to call the operator, for example \rightarrow or \times .
- 2. Sort what is the sort of the operator?
- 3. Variables What are the variables of the operator?
- 4. Sorted arguments What are the arguments and what are their sorts?
- 5. Scoping Which arguments are in scope of which variables?
- 6. Sugared syntax How do we write down the operator with all the variables and arguments together. By default we have been writing $\mathcal{O}(x)$

Now that we can equip our operators with the datum of binding and scoping we can go ahead and define abstract binding trees.

[[Lots of concepts for asts have been redefined for abts, perhaps its worth making note of that back in the asts definitions]]

Definition 2.6.6 (Abstract binding trees). The family $\mathcal{B}[\mathcal{X}] = \{\mathcal{B}[\mathcal{X}]_s\}_{s \in \mathcal{S}}$ of abstract binding trees (or abts), of sort s, is the smallest family satisfying the following properties:

- 1. A variable x of sort s is an abt of sort s: if $x \in \mathcal{X}_s$, then $x \in \mathcal{B}[\mathcal{X}]_s$.
- 2. Suppose G is an operator of sort s, argument arity n and binding arity m. Suppose V is some finite set of length m which is fresh for \mathcal{X} . These will be called our **bound variables**. Label the elements of V as $V = \{v_1, \ldots, v_m\}$. For $j \in [n]$, let $X_j := \{v_k \in V \mid j \triangleleft k\}$ be the set of bound variables that the jth argument is in scope of. Now suppose for each $j \in [n]$, $M_j \in \mathcal{B}[\mathcal{X}, V]_{s_j}$ where s_j is the sort of the jth argument of G. Then $G(X; M_1, \ldots, M_n) \in \mathcal{B}[\mathcal{X}]_s$.

Remark 2.6.7. There is a lot going on in the second constructor of Definition 2.6.6. It simply allows for bound variables to be constructed in syntax in a well-defined way that avoids variable capture. This will be useful when defining notions like substitution on abts as we will have the avoidance of variable capture built-in.

[[What is variable capture talk about this and reference this stuff because lots of cleverer people have thought about this too you know.]]

2.7 Substitution in abts

3 Judgements

We will now develop the basic formal tools to describe how our programming languages work. We will first describe judgements and how to specify a type system. Then our first example will be the simply typed lambda calculus. We use the ideas developed in [17] though these ideas are much older. [Probably traceable back to Gentzen]. [There are many more references to be included here]

Definition 3.0.1. The notion of a *judgement* or assertion is a logical statement about an abt. The property or relation itself is called a *judgement form*. The judgement that an object or objects have that property or stand in relation is said to be an *instance* of that judgement form. A judgement form has also historically been called a *predicate* and its instances called *subjects*.

Remark 3.0.2. Typically a judgement is denoted J. We can write a J, J a to denote the judgement asserting that the judgement form J holds for the abt a. For more abts this can also be written prefix, infix, etc. This will be done for

readability. Typically for an unspecified judgement, that is an instance of some judgement form, we will write J.

Definition 3.0.3. An *inductive definition* of a judgement form consists of a collection of rules of the form

$$\frac{J_1 \quad \cdots \quad J_k}{J}$$

in which J and J_1, \ldots, J_k are all judgements of the form being defined. The judgements above the horizontal line are called the *premises* of the rules, and the judgement below the line is called its *conclusion*. A rule with no premises is called an *axiom*.

3.1 Inference rules

Remark 3.1.1. An inference rule is read as starting that the premises are *sufficient* for the conclusion: to show J, it is enough to show each of $J_1, \ldots J_k$. Axioms hold unconditionally. If the conclusion of a rule holds it is not necessarily the case that the premises held, in that the conclusion could have been derived by another rule.

Example 3.1.2. Consider the following judgement from - nat, where a nat is read as "a is a natural number". The following rules form an inductive definition of the judgement form - nat:

We can see that an abt a is zero or is of the form succ(a). We see this by induction on the abt, the set of such abts has an operator succ. Taking these rules to be exhaustive, it follows that succ(a) is a natural number if and only if a is.

Remark 3.1.3. We used the word *exhaustive* without really defining it. By this we mean necessary and sufficient. Which we will define now.

Definition 3.1.4. A collection of rules is considered to define the *strongest* judgement form that *closed under* (or *respects*) those rules. To be closed under the rules means that the rules are *sufficient* to show the validity of a judgement: J holds if there is a way to obtain it using the given rules. To be the *strongest* judgement form closed under the rules means that the rules are also *necessary*: J holds *only if* there is a way to obtain it by applying the rules.

Let's add some more rules to our example, to get a richer structure.

Example 3.1.5. The judgement form a = b expresses the equality of two abts a and b. We define it inductively on our abts as we did for nat.

$$\frac{a=b}{\mathtt{zero}=\mathtt{zero}} \qquad \frac{a=b}{\mathtt{succ}(a)=\mathtt{succ}(b)}$$

Our first rule is an axiom declaring that **zero** is equal to itself, and our second rule shows that abts of the form **succ** are equal only if their arguments are. Observe that these are exhaustive rules in that they are necessary and sufficient for the formation of =.

3.2 Derivations

To show that an inductively defined judgement holds, we need to exhibit a derivation of it.

Definition 3.2.1. A derivation of a judgement is a finite composition of rules, starting with axioms and ending with the judgement. It is a tree in which each node is a rule and whose children are derivations of its premises. We sometimes say that a derivation of J is evidence for the validity of an inductively defined judgement J.

Suppose we have a judgement J and

$$\frac{J_1 \quad \cdots \quad J_k}{J}$$

is an inference rule. Suppose $\triangledown_1,\dots,\triangledown_k$ are derivations of its premises, then

$$\frac{\nabla_1 \quad \cdots \quad \nabla_k}{J}$$

is a derivation of its conclusion. Notice that if k=0 then the node has no children.

Writing derivations as trees can be very enlightening to how the rules compose. Going back to our example with nat we can give an example of a derivation.

Example 3.2.2. Here is a derivation of the judgement succ(succ(succ(zero))) nat:

Remark 3.2.3. To show that a judgement is *derivable* we need only give a derivation for it. There are two main methods for finding derivations:

• Forward chaining or bottom-up construction

• Backward chaining or top-down construction

Forward chaining starts with the axioms and works forward towards the desired conclusion. Backward chaining starts with the desired conclusion and works backwards towards the axioms.

It is easy to observe the *algorithmic* nature of these two processes. In fact this is an important point to think about, since it may become relevant in the future.

Lemma 3.2.4. Given a derivable judgement J, there is an algorithm giving a derivation for J by forward chaining.

Proof. This is not a difficult algorithm to describe. We start with a set of rules $\mathcal{R} := \emptyset$ which we initially set to be empty. Now we consider all the rules that have premises in \mathcal{R} , initially this will be all the axioms. We add these rules to \mathcal{R} and repeat this process until J appears as a conclusion of one of the rules in \mathcal{R} . It is not difficult to see that this will necessarily give all derivations of all derivable judgements and since J is derivable, it will eventually give a derivation for J.

Remark 3.2.5. Notice how we had to specify that our judgement is derivable. Since if were not, then our process would not terminate, hence would not be an algorithm. It is also worth noting that this algorithm is very inefficient since the size of \mathcal{R} will grow rapidly, especially when we have more rules available. This is sort of a brute force approach. What we will need is more clever picking of the rules we wish to add. Mathematically this is an algorithm, but not in any practical sense.

Forward chaining does not take into account any of the information given by the judgement J. The algorithm is in a sense blind.

Lemma 3.2.6. Given a derivable judgement J, we can give a derivation for J by backward chaining.

Proof. Backward chaining maintains a queue of goals, judgements whose derivations are to be sought. Initially this consists of the sole judgement we want to derive. At each step, we pick a goal, then we pick a rule whose conclusion is our picked goal and add the premises of the rule to our list of goals. Since J is derivable there must be a derivation that can be chosen.

Remark 3.2.7. We could as before consider all possible goals generated by all possible rules which would technically give us an algorithm like in the case for forward chaining. But it would also be as useless as that algorithm. What backward chaining allows us to do however is better pick to rules at each stage. This is the structure that type checkers will take later on and even proof assistants, programs that assist a user in proving a statement formally. Due to each stage giving us information about the kind of rule we ought to pick, backward chaining is more suitable for algorithmic ally proving something. In face if we set up our rules in such a way that for each goal there is only one such rule to pick, we have an algorithm!

3.3 Rule induction

Conveniently our notion of inductive definition of a judgement form is actually an inductive definition. In that the set of derivable judgements forms a well-founded tree as defined earlier. This means we can apply our more general notion of well-founded induction when proving properties of a judgement.

Definition 3.3.1. We say that a property \mathcal{P} is *closed under* or *respects* the rules defining a judgement form J. A property \mathcal{P} respects the rule

$$\frac{a_1 \mathsf{J} \cdots a_k \mathsf{J}}{a \mathsf{J}}$$

if $\mathcal{P}(a)$ holds whenever $\mathcal{P}(a_1), \ldots, \mathcal{P}(a_k)$ do.

Remark 3.3.2. This is nothing more than a rephrasing of well-founded trees which is classically more common. This style of inductive definition fits more closely with what is actually going on, and we would argue is easier to work with.

We will now give some examples detailing how rule induction can be used.

Example 3.3.3. Continuing our **nat** example, if we want to show $\mathcal{P}(a)$ for some a **nat** it is enough to show the following:

- $\mathcal{P}(\text{zero})$.
- for all a, of $\mathcal{P}(a)$, then $\mathcal{P}(\operatorname{succ}(a))$.

This is the familiar notion of mathematical induction on the natural numbers.

Now for another example where we combine all the things we have just discussed.

Example 3.3.4. Consider the judgement form tree defined inductively by the following rules:

$$\frac{a_1 \text{ tree} \quad a_2 \text{ tree}}{\text{empty tree}} \qquad \frac{a_1 \text{ tree} \quad a_2 \text{ tree}}{\text{node}(a_1; a_2) \text{ tree}}$$

Here is a derivation of the judgement node(empty; node(empty; empty)) tree:

Now rule induction for the judgement form tree states that, to show $\mathcal{P}(a)$ it is enough to show the following:

• $\mathcal{P}(\text{empty})$.

• for all a_1 and a_2 , if both $\mathcal{P}(a_1)$ and $\mathcal{P}(a_2)$ then, $\mathcal{P}(\mathsf{node}(a_1; a_2))$.

This is the familiar notion of tree induction.

Now that we have induction on our inductive definitions we can prove some results about our examples.

Lemma 3.3.5. If succ(a) nat, then a nat.

Proof. By induction on succ(a), when succ(a) is zero this is vacuously true. Otherwise when succ(a) is succ(b), what we want to prove is succ(b) nat \implies b nat but this is exactly our induction hypothesis.

Lemma 3.3.6 (Reflexivity of =). If a nat, then a = a.

Proof. By induction on a we have two cases which are exactly the two rules about = to begin with.

Lemma 3.3.7 (Injectivity of succ). If $succ(a_1) = succ(a_2)$, then $a_1 = a_2$.

Proof. We perform induction on $succ(a_1)$ and $succ(a_2)$. Note that if any of the two are of the form zero then the statement is true vacuously. When $succ(a_1)$ is of the form $succ(b_1)$ and $succ(a_2)$ is of the form $succ(b_2)$ our statement that we want to prove is exactly what we get from the induction hypothesis.

Lemma 3.3.8 (Symmetry of =). If a = b, then b = a.

Proof. Begin with induction on a and b:

- Suppose a is of the form zero and b is of the form zero then we have zero = zero as desired.
- Suppose a is of the form zero and b is of the form succ(b') then our statement is vacuously true. The same happens for when b is zero and a is of the form succ(a').
- Finally when a is of the form succ(a') and b is of the form succ(b') we have succ(a') = succ(b'). By 3.3.7 we have a' = b' and by our induction hypothesis we have b' = a' as desired.

Lemma 3.3.9 (Transitivity of =). If a = b and b = c then a = c.

Proof. By induction on a, b and c we see that we have eight cases. Clearly six of these are vacuously true, so we will prove the other two:

- When a, b and c are of the form zero our statement holds trivially.
- When a, b and c are of the form succ(a'), succ(b') and succ(c') respectively, we can apply 3.3.7 on succ(a') = succ(b') and succ(b') = succ(c') to get a' = b' and b' = c'. Then applying our induction hypothesis we have a' = c', finally applying the second rule for = we have succ(a') = succ(c').

Finally we can say our four rules correspond to Peano arithmetic!

[[Now talk about how classically Peano arithmetic requires many more axioms, we only have four rules and the notion of induction!]] [[Talk about what we have proven about Peano arithmetic is actually a meta statement, a statement in the metalanguage, later we will have richer logics where we can prove things like this internally]].

[[References include Aczel 1977 who provides a thorough account of inductive definitions and judgement based logic is inspired by Martin-Löf's logic of judgements 1983, 1987]]

[[Talk about iterated and simultaneous inductive definitions]]

3.4 Hypothetical judgements

A hypothetical judgement expresses an entailment between one or more hypothesis and a conclusion. There are two main notions of entailment in logic: derivability and admissibility. We first begin by defining derivability.

Definition 3.4.1. Given a set \mathcal{R} of rules, define the *derivability* judgement, $J_1, \ldots, J_k \vdash_{\mathcal{R}} K$ where each J_i and K are basic judgements, to mean that we may derive K from the *expansion* $\mathcal{R} \cup \{J_1, \ldots, J_k\}$ of the rules \mathcal{R} with the axioms

$$\overline{J_1}$$
 \cdots $\overline{J_k}$

We treat the hypotheses or antecedents J_1, \ldots, J_k of the judgement $J_1, \ldots, J_k \models_{\mathcal{R}} K$ as axioms and derive the conclusion or consequent, by composing rules in \mathcal{R} . Thus $J_1, \ldots, J_k \vdash_{\mathcal{R}} K$ means the judgement K is derivable from the expanded rules $\mathcal{R} \cup \{J_1, \ldots, J_k\}$.

Remark 3.4.2. We will typically denote a list of basic judgements by a capital Greek letter such as Γ or Δ . The expansion $\mathcal{R} \cup \{J_1, \ldots, J_k\}$ may also be written as $\mathcal{R} \cup \Gamma$ where $\Gamma := J_1, dots, J_k$. The judgement $\Gamma \vdash_{\mathcal{R}} K$ means K is derivable from the rules $\mathcal{R} \cup \Gamma$, and the judgement $\vdash_{\mathcal{R}} \Gamma$ means that $\vdash_{\mathcal{R}} J$ for each J in Γ . We may also extend lists of basic judgements like this: Γ, J , which would correspond to the list of basic judgements J_1, \ldots, J_k, J , similarly for J, Γ . We can then concatenate two lists of basic judgements in the obvious way, through list concatenation written Γ, Δ .

Example 3.4.3. Let Peano be the set of four rules for our nat example. Consider the following derivability judgement:

$$a \text{ nat } \vdash_{\mathsf{Peano}} \mathsf{succ}(\mathsf{succ}(a)) \text{ nat}$$

This can be shown to be true by exhibiting the following derivation:

$$\frac{\frac{a \text{ nat}}{\text{succ}(a) \text{ nat}}}{\text{succ}(\text{succ}(a)) \text{ nat}}$$

We now show that derivability doesn't get affected by expansion.

Lemma 3.4.4 (Stability). If $\Gamma \vdash_{\mathcal{R}} J$, then $\Gamma \vdash_{\mathcal{R} \cup \mathcal{R}'} J$.

Proof. Any derivation if J from $\mathcal{R} \cup \Gamma$ is also a derivation from $(\mathcal{R} \cup \mathcal{R}') \cup \Gamma$ since $\mathcal{R} \subseteq \mathcal{R} \cup \mathcal{R}'$.

There are a number of structural properties that derivability satisfies:

Lemma 3.4.5 (Reflexivity). Every judgement is a consequence of itself: $\Gamma, J \vdash_{\mathcal{R}} J$.

Proof. Since J becomes an axiom, the proof is trivial.

Lemma 3.4.6 (Weakening). If $\Gamma \vdash_{\mathcal{R}} J$, then $\Gamma, K \vdash_{\mathcal{R}} J$. Entailment is not influenced by unused premises.

Proof. The proof is trivial.

Lemma 3.4.7 (Transitivity). If $\Gamma, K \vdash_{\mathcal{R}} J$ and $\Gamma \vdash_{\mathcal{R}} K$, then $\Gamma \vdash_{\mathcal{R}} J$. If we replace an axiom by a derivation of it, the result is a derivation of the consequent without the hypothesis.

Proof. It is clear that if there is a derivation for J from $\Gamma, K \cup \mathcal{R}$ and a derivation for K from $\Gamma \cup \mathcal{R}$, then there is clearly a derivation for J from $\Gamma \cup \mathcal{R}$. For the first case it is clear how to compose two derivations to give the desired derivation. \square

Definition 3.4.8. Another form of entailment, *admissibility*, written $\Gamma \vDash_{\mathcal{R}} J$, is a weaker form of hypothetical judgement stating that $\vdash_{\mathcal{R}} \Gamma$ implies $\vdash_{\mathcal{R}} J$. That is, the conclusion J is derivable from the rules \mathcal{R} when the assumptions are all derivable from the rules \mathcal{R} .

Remark 3.4.9. In particular, if any of the hypotheses are *not* derivable relative to \mathcal{R} , then the judgement is vacuously true.

The admissibility judgement is *not* stable under expansion of the rules.

Lemma 3.4.10. If $\Gamma \vdash_{\mathcal{R}} J$, then $\Gamma \vDash_{\mathcal{R}} J$.

Proof. By definition of admissibility we need to show that $\vdash_{\mathcal{R}} \Gamma$ implies $\vdash_{\mathcal{R}} J$. It can be seen that repeated application of transitivity allows us to form a similar statement for when K is a list of basic judgements in reference to 3.4.7. This repeated transitivity gives us the desired result.

We will now give an example of some inadmissible rules.

Example 3.4.11. Consider the collection of rules Parity consisting of the rules in Peano and the following:

$$\frac{b \text{ odd}}{\text{zero even}} \qquad \frac{b \text{ odd}}{\text{succ}(b) \text{ even}} \qquad \frac{a \text{ even}}{\text{succ}(a) \text{ odd}}$$

This is a simultaneous inductive definition. Clearly we have the following admissibility judgement

$$succ(a)$$
 even $\vDash_{\mathsf{Parity}} a$ odd

But by adding the following rule to Parity, and calling it Parity'

we see that the following is no longer true:

$$succ(a)$$
 even $\vDash_{\mathsf{Parity'}} a$ odd

since there is no composition of rules deriving zero odd. Hence admissibility is not stable under expansion.

Remark 3.4.12. Admissibility is a useful property of a rule. It essentially checks whether we can get rid of a rules, knowing that we can derive it anyway. Hence by identifying inadmissible rules we can streamline our rule set.

3.5 Hypothetical inductive definitions

Our inductive definitions give us a rich and expressive way to define and use rules. We wish to enrich it further by introducing rules whose premises and conclusions are derivability judgements.

Definition 3.5.1. A hypothetical inductive definition consists of a set of hypothetical rules of the following form:

$$\frac{\Gamma, \Gamma_1 \vdash J_1 \quad \cdots \quad \Gamma, \Gamma_n \vdash J_n}{\Gamma \vdash J}$$

We call the hypotheses Γ , the *global hypotheses* of the rule, and Γ_i are called the local hypotheses of the *i*th premise of the rule. We will require that all rules in a hypothetical inductive definition be *uniform* in the following sense.

Definition 3.5.2. A hypothetical rules is said to be *uniform* if it holds for *all* global contexts.

Remark 3.5.3. When we have uniformity, we can present the rule in an *implicit* or *local* form:

 $\frac{\Gamma_1 \vdash J_1 \quad \cdots \quad \Gamma_n \vdash J_n}{J}$

with the understanding that the rule applies for any choice of global hypotheses.

Remark 3.5.4. A hypothetical inductive definition can be regarded as an ordinary inductive definition of a *formal derivability judgement* $\Gamma \vdash J$ consisting of a list of basic judgements Γ and a basic judgement J.

Definition 3.5.5. A formal derivability judgement $\Gamma \vdash J$ is closed under a set of hypothetical rules \mathcal{R} and the judgement is *structural* is that it is closed under the following rules

$$\frac{\Gamma \vdash J}{\Gamma, J \vdash J} \qquad \frac{\Gamma \vdash J}{\Gamma, K \vdash J} \qquad \frac{\Gamma \vdash K \quad \Gamma, K \vdash J}{\Gamma \vdash J}$$

These rules ensure that formal derivability behaves like a hypothetical judgement. We write $\Gamma \vdash_{\mathcal{R}} J$ to denote that $\Gamma \vdash J$ is derivable from rules \mathcal{R} .

[[This bit is very confusing, and we abuse notation (with reason)]]

Remark 3.5.6. This definition is perhaps quite confusing, this is because we have two layers of derivability. What a formal derivability judgement shows is that the judgement of being derivable is itself derivable. This also means that we do not have to define what hypothetical induction on a hypothetical inductive definition is, since the formal derivability judgement is itself a judgement. So the principle of *hypothetical rule induction* is just the principle of rule induction applied to the formal hypothetical rule induction.

[[TODO: talk about admissibility of structural rules]]

3.6 General judgements

[[Talk about generic judgements and parametric judgements]]

4 Statics and Dynamics

How can we in general design programming languages to ascertain certain behaviours. Static and dynamic typing for instance. Different constructs and data types such as products and sums. Later we will look at a deep correspondence between programming and logic which gives us an indication of what a programming language ought to have.

Statics: Type checking Dynamics: Computation, equational rules, transition systems (reduction with betas and etas)

We will introduce typing and think carefully about another structural rule: The exchange rule, we will see that it is inadmissible and in fact not necessarily needed. In fact later when we think about dependent types we will see that it is in general "complete nonsense". HOWEVER it is essential for some models of STLC.

We will end up with STLC. But we will also show how to add sum types.

We will also model the semantics of such programming languages (at least the statics of) using categories.

Later we will see that Curry-Howard is very suggestive about quantifiers, can we add these? YES!

Then we can introduce our favourite dependent types. Show how useful they are for programmers and mathematicians

We will now try to design programming languages that can have types, types allow us to restrict what terms we can apply functions to. Something take for granted very often in mathematics and to a lesser extent in programming. Programming languages such as C don't really type check, which means functions that should be applied can be. There are different strengths to type checking, some check at compilation (which is arguably to most sensible) but others check during run time but this means a program cannot be guaranteed to be safe.

The ideas of types are very deep, so when combined with a flexibly expressible type system (dependent types) it leads to a powerful correctness tool.

4.1 Typing and Type systems

We will need to discuss the modern idea of bidirectional type checking which has advantages over choosing a single one. This is closely related to the subtle difference between Church's lambda calculus and Curry's lambda calculus.

Things to discuss:

- Typing judgements
- typing contexts
- Type checking
 - Different kinds of type checking (bidirectional?)
 - Program safety
- Unicity of typing (every term has one type)
- Inversion is a form of type inference fitting into the more general framework of bidirectional type checking
- Exchange rule (discussion of and implications thereof)
- Other structural properties including substitution, decomposition, weakening

4.2 Dynamics

Things to discuss:

Two formulations of dynamics in type theory:

- Transition systems
- Equational dynamics

Arguably the first is more reminiscent of what a programming language ought to do, and the second is more reminiscent of what a mathematician would want.

- Judgemental equality has some issues, some terms that ought to be judgmentally equal are only so for particular instances but not in general. There is a discussion of *semantic* equivalence to solve this issue.
- Should be based off of Plotkin's work on structural semantics

Need a discussion of

- structural dynamics
- contextual dynamics

Which are basically the same thing.

4.3 Type safety

Type safety is the notion of being strongly typed. It is typically given as a theorem consisting of two parts: *preservation* and *progress*.

```
Definition 4.3.1 (Preservation). If e : \tau and e \mapsto e', then e' : \tau.
```

Evaluation preserves typing.

Discuss canonical forms and canonicity of a type theory.

Definition 4.3.2 (Progress). If $e : \tau$, then either e val, or there exists e' such that $e \mapsto e'$.

A term is either evaluated or can be evaluated.

Definition 4.3.3 (Type safety). A language is said to be *safely typed* or *strongly typed* if it satisfies preservation and progress.

4.4 Run time errors

Talk about division yielding an exceptional case when dividing by zero. There are two solutions:

- 1. Enhance the typing systems
- 2. Add dynamic checks

Typically the second is more common, but we will argue the case for dependent types which essentially allows us to solve the first.

4.5 Evaluation dynamics

There can be a discussion of richer judgements of evaluation that also take into account of cost and such things, but these might be out of scope.

They can be related back to structural dynamics. Evaluation dynamics are more expressive yet limited since now we cannot check type safety. But if we have run time errors we can get quite close. These ideas are developed when designing standard ML, Milner. Cost dynamics are used by Blelloch and Greiner in a study of parallel computation.

5 Simply typed lambda calculus

First develop the features needed. Discuss the arbitrary nature of such features, then use Curry-Howard as motivation for "the language that ought to be". Develop STLC, discuss in detail the implications, give categorical semantics. Discuss briefly the dynamics of simply typed lambda calculus. A big disadvantage of STLC over the untyped version (which we ought to discuss since we have the tools to) is that there is no recursion. There are many ways to fix this, see Gödel for example. In order to fix this we will introduce dependent types.

We begin by discussing the syntax of our type theory. We will start by specifying the sorts S of our type theory.

Definition 5.0.1. The sorts of simply typed lambda calculus are terms and types $S := \{tm, ty\}.$

We now specify the operators (with generalised arities) that we defined in definition 2.6.3. In remark 2.6.5 we discussed the data needed to give an operator, therefore we will present all our operators in the following table.

Definition 5.0.2. The operators in the syntax of simply typed lambda calculus are given by the following table:

Op	Sort	Vars	Type args	Term args	Scoping	Syntax
\rightarrow	ty	_	A, B	_	_	$A \rightarrow B$
×	ty		A, B	_	—	$A \times B$
(-,-)	$_{ m tm}$			x, y	—	(x,y)
λ	${ m tm}$	x	A, B	_	M	$\lambda(x:A).M$
App	tm	_	A, B	_	M, N	MN

Remark 5.0.3. Note that some of the syntax loses information that was put in. The application is the main example of this. In practice if we know the type of M and N we can deduce the type of MN just from the rules we will define later. The syntax is sugared or syntactic sugar so we do not have to write so much. If done incorrectly it could be considered an abuse of notation. It should be possible to desugar the syntax by adding an annotated version of an operator. For example for application instead of MN we could write $\operatorname{App}_{A,B}(M;N)$. Having this information in the syntax will be useful when we want to induct over syntax, for example when proving an initiality theorem. But in practice we will save ourselves from having to write it out.

Definition 5.0.4. We can now construct our raw terms and types as the collection of abts (see definition 2.6.6) over the previously defined data $\text{Term} := \mathcal{B}[\varnothing]_{\text{tm}}$ and $\text{Type} := \mathcal{B}[\varnothing]_{\text{ty}}$.

Remark 5.0.5. Note that we have no variables. This is because if we set the definition of abt up correctly we don't need any, but terms can have sub-terms (sub-trees of the abt) which have variables. The sets Term and Type become *all* the types and terms we ought to be able to write down from scratch.

We now need to define judgements about our syntax and write down the rules to write them down. [[Make a note about substitution because afik we haven't defined it properly yet]].

5.1 Judgements

[[TODO: Clean up this whole paragraph(s)]] We begin with our basic judgements. Of which there will be 5. Our STLC will have bidirectional type checking, in that we will distinguish between the direction of type checking. There are several advantages of this and historically the two main systems called STLC are Curry's and Church's which simply differ in the direction of type checking. By having both directions and a sort of "mode-switching rule" we have far greater control and ease when describing type checking properties. We will also need to have a notion of judgemental equality since we wish to do some computation. There are variations of this theme discussed in the statics chapter that allow us to have transition systems instead but we will use an equational style since transition systems can be derived from this. This also has the advantage of STLC becoming what is known as an "equational theory". This will be a useful feature for when we want to derive categorical semantics.

A context is a list of basic judgements. Our basic judgements are x:A. [[No it is not fix this]]

There are 5 judgements that we have:

- $\Gamma \vdash A$ type "A is a type in context Γ ".
- $\Gamma \vdash T \Leftarrow A$ "T can be checked to have type A in context Γ ".
- $\Gamma \vdash T \Rightarrow A$ "T synthesises the type A in context Γ ".
- $\Gamma \vdash A \equiv B$ type "A and B are judgmentally equal types in context Γ ".
- $\Gamma \vdash S \equiv T : A$ "S and T are judgmentally equal terms of type A in context Γ ".

5.2 Structural rules

Structural rules will dictate how our judgements interact with each other, how different contexts can be formed and how substitution works. This is all roughly what a "type theory" ought to provide.

Definition 5.2.1. We begin with the *variable* rule, this says that if a term x appears with a type A as an element in a context Γ then x synthesises a type A in context Γ . Or written more succinctly as:

$$\frac{(x:A) \in \Gamma}{\Gamma \vdash x \Rightarrow A} \text{ (var)}$$

Other structural rules: weakening, contraction and substitution are all admissible. [[What does it mean for a rule to be admissible? We have defined this previously but we need to carefully state these facts, and prove them too!]

One of the features of bidirectional type checking is that we can switch the mode we are in. This is expressed as the mode switching rule:

$$\frac{\Gamma \vdash t \Rightarrow A \qquad \Gamma \vdash A \equiv B \text{ type}}{\Gamma \vdash t \Leftarrow B} \text{ (cswitch)}$$

Remark 5.2.2. This rule has been specially set up in that it will be the *only* way to derive $\Gamma \vdash T \Leftarrow B$. These are the kinds of properties we would like our syntax to have. A careful analysis will be done under the name of *inversion* lemma. [[Link to inversion lemma?]]

In a unidirectional type system, the judgements $\Gamma \vdash T \Rightarrow A$ and $\Gamma \vdash T \Leftarrow B$ are collapsed into one: $\Gamma \vdash T : A$. And now the mode-switching rule may have a more familiar form:

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash A \equiv B \text{ type}}{\Gamma \vdash t : B}$$

Which shows that it is actually a rule about substituting along a judgemental equality! But this is a problem since a type checking algorithm will have to decide when to stop doing this. This is one of the big advantages that bidirectional type checking has over unidirectional type checking. The type checking algorithm will be simpler! [[TODO: Clean up and discuss type checking in more detail]]

Remark 5.2.3. Occasionally, we will simply mode-switch using reflexivity $\Gamma \vdash A \equiv A$ type, in which case we will abbreviate the rule as follows:

$$\frac{\Gamma \vdash t \Rightarrow A}{\Gamma \vdash t \Leftarrow A}$$
(switch)

5.3 Equality rules

Finally we have some structural rules for our two judgemental equality judgements. We wish for these to be an equivalence relation and that they are compatible with each other.

First we begin with the structural rules for the judgement form $-\equiv -$ type:

Definition 5.3.1. We wish for our judgemental equality of types to be reflexive:

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \equiv A \text{ type}} \ (\equiv_{\mathsf{type}}\text{-reflexivity})$$

We want our judgemental equality of types to be symmetric:

$$\frac{\Gamma \vdash A \equiv B \text{ type}}{\Gamma \vdash B \equiv A \text{ type}} (\equiv_{\mathsf{type}}\text{-symmetry})$$

and our judgemental equality of types to be transitive:

$$\frac{\Gamma \vdash B \text{ type} \qquad \Gamma \vdash A \equiv B \text{ type} \qquad \Gamma \vdash B \equiv C \text{ type}}{\Gamma \vdash A \equiv C \text{ type}} \left(\equiv_{\mathsf{type}\text{-}} \mathsf{transitivity} \right)$$

Notice how the previous rule also checks that B is a type. This is because if we did not do this, we could insert any symbol in. This is clearly undesirable. It also demonstrates how subtly sensitive rules are.

Now we list the rules making the judgement form $- \equiv -: A$ into an equivalence relation:

We wish for our judgemental equality of terms to be reflexive:

$$\frac{\Gamma \vdash t \Leftarrow A}{\Gamma \vdash t \equiv t : A} \ (\equiv_{\mathsf{term}}\text{-reflexivity})$$

We want our judgemental equality of terms to be symmetric:

$$\frac{\Gamma \vdash s \equiv t : A}{\Gamma \vdash t \equiv s : A} \; (\equiv_{\mathsf{term}}\text{-symmetry})$$

and our judgemental equality of terms to be transitive:

$$\frac{\Gamma \vdash t \Leftarrow A \qquad \Gamma \vdash s \equiv t : A \qquad \Gamma \vdash t \equiv r : A}{\Gamma \vdash s \equiv r : A} \; (\equiv_{\mathsf{term}} \text{-transitivity})$$

as we stated before for transitivity judgemental equality of types we need to also check that the middle term T is actually a term.

Finally we need a rule that will make that judgemental equality of types and judgemental equality of terms interact the way we expect them to:

$$\frac{\Gamma \vdash A \text{ type} \qquad \Gamma \vdash s \equiv t : A \qquad \Gamma \vdash A \equiv B \text{ type}}{\Gamma \vdash s \equiv t : B} \ (\equiv_{\mathsf{term}} - \equiv_{\mathsf{type}} \text{-compat})$$

5.4 Type formers

What we have constructed thus far is essentially an "empty type theory". What we have included which other authors typically gloss over is a clean way of constructing a type checking algorithm: bidirectional type checking and an account of judgemental equality. We now study what are known as type formers, typically when we wish to add a new type to a type theory we need to think about a collection of rules. These can roughly be sorted into 5 kinds of rules:

- Formation rules How can I construct my type?
- Introduction rules Which terms synthesise this type?
- Elimination rules How can terms of this type be used?
- Computation (or equality) rules How do terms of this type compute? (Normalise, etc.)
- Congruence rules How do all the previous rules interact with judgemental equality

We make a note that although we will be providing all the rules, the congruence rules can be typically derived from the others. Although we do not know exactly how to do this so we will provide them explicitly. We also note that not every type need computation rules.

Building on top of our "empty type theory" we introduce \to the function type former:

Definition 5.4.1. Our formation rules tell us how to construct arrow types from other types:

$$\frac{\Gamma \vdash A \; \mathsf{type} \qquad \Gamma \vdash B \; \mathsf{type}}{\Gamma \vdash A \to B \; \mathsf{type}} \; (\to \text{-form})$$

Our introduction rule tells us how to construct terms of our type. This is also known as λ -abstraction:

$$\frac{\Gamma, x : A \vdash M \Leftarrow B}{\Gamma \vdash \lambda x. M \Rightarrow A \to B} (\to -intro)$$

Our elimination rule tells us how to use terms of this type. For function types this corresponds to application:

$$\frac{\Gamma \vdash M \Leftarrow A \to B \qquad \Gamma \vdash N \Leftarrow A}{\Gamma \vdash MN \Rightarrow B} \ (\to \text{-elim})$$

And finally we have computation rules which tell us how to compute our terms. We will later prove results about normalisation of the lambda calculus. We start with β -reduction which tells us how applied functions compute:

Then we introduce η -conversion which tells us if two functions applied to the same term and are judgmentally equal then the functions are judgmentally equal. This is "function extensionality" for judgemental equality.

$$\frac{\Gamma, y: A \vdash My \equiv M'y: B}{\Gamma \vdash M \equiv M': A \to B} \, (\to \neg \eta)$$

Finally we have to make sure all our rules respect judgemental equality. This means showing that \rightarrow respects judgemental equality of types and that λ -terms and applications respect judgemental equality of terms.

$$\frac{\Gamma \vdash A \equiv A' \; \mathsf{type} \qquad \Gamma \vdash B \equiv B' \; \mathsf{type}}{\Gamma \vdash A \to B \equiv A' \to B' \; \mathsf{type}} \; (\to - \equiv_{\mathsf{type}} \text{-cong})$$

$$\frac{\Gamma, x: A \vdash M \equiv M': B}{\Gamma \vdash \lambda x. M \equiv \lambda x. M': A \to B} \; (\to \text{-} \equiv_{\mathsf{term}\text{-}\mathsf{cong}})$$

$$\frac{\Gamma \vdash M \equiv M' : A \to B \qquad \Gamma \vdash N \equiv N' : A}{\Gamma \vdash MN \equiv M'N' : A \to B} \ (\to \text{-elim-cong})$$

Remark 5.4.2. Notice that we don't ensure that types compute the same way. This is because the computation rules will not be used in the type checking process and are therefore irrelevant to the inversion lemmas. Later we will prove that "fully reduced" computations are in fact equal. This is known as the Church-Rosser theorem.

We define the product type as follows.

Definition 5.4.3 (Product type). Given two types, we have their product type:

$$\frac{\Gamma \vdash A \text{ type} \qquad \Gamma \vdash B \text{ type}}{\Gamma \vdash A \times B \text{ type}} (\times \text{-form})$$

We define ordered pairs as taking a term of each type:

$$\frac{\Gamma \vdash a \Leftarrow A \qquad \Gamma \vdash b \Leftarrow B}{\Gamma \vdash (a,b) \Rightarrow A \times B} \ (\times \text{-intro})$$

We give two eliminators for pairs, the first and second elements:

$$\frac{\Gamma \vdash t \Leftarrow A \times B}{\Gamma \vdash \mathrm{fst}(t) \Rightarrow A} \, (\times \text{-elim}_1) \qquad \frac{\Gamma \vdash t \Leftarrow A \times B}{\Gamma \vdash \mathrm{snd}(t) \Rightarrow B} \, (\times \text{-elim}_2)$$

And we finally need to dictate how this is computed:

$$\frac{\Gamma \vdash x \Leftarrow A \qquad \Gamma \vdash y \Leftarrow B}{\Gamma \vdash \operatorname{fst}(x, y) \equiv x : A} (\times -\beta_1)$$
$$\frac{\Gamma \vdash x \Leftarrow A \qquad \Gamma \vdash y \Leftarrow B}{\Gamma \vdash \operatorname{snd}(x, y) \equiv y : B} (\times -\beta_2)$$

However we need to be careful since there is a nontrivial equality we must also add as a rule:

$$\frac{\Gamma \vdash \mathrm{fst}(t) \equiv \mathrm{fst}(t') : A \qquad \Gamma \vdash \mathrm{snd}(t) \equiv \mathrm{snd}(t') : B}{\Gamma \vdash t \equiv t' : A \times B} (\times -\eta)$$

Remark 5.4.4. There are many other ways to present product types, the eliminators are in a sense not unique. Typically in presentations of type theory [[LIKE IN MARTIN-LOF]] an inductive principle is given. This is simply just a way to build functions out of the type, the elimination principle is stated like that. What we note is that rule is in fact admissible in the presence of our fst and snd eliminators. We also argue that the fst and snd approach more closely matches what a programmer will do with the type theory. Elimination principles in general correspond to left[[or right I need to check]] universal properties of the categorical semantic counterparts.

Remark 5.4.5. Our presentation of η -reduction is unconventional. The traditional η

$$\frac{\Gamma \vdash t \Leftarrow A \times B}{\Gamma \vdash (\mathrm{fst}(t), \mathrm{snd}(t)) \equiv t}$$

Is in fact admissible by observing the following proof tree: [[Include admissibility tree]] We choose our presentation because it more clearly display what η really means and why it is there.

We will also need to add a unit type. This will be the simplest type, with only one term.

Definition 5.4.6 (Unit type). We begin with the formation rules, essentially saying that the unit type exists.

$$\overline{1 \text{ type}}$$
 (1-form)

We then say that the unit type has a term:

$$\overline{\Gamma \vdash * \Rightarrow 1}$$
 (1-intro)

Remark 5.4.7. We don't need to give any more rules since the unit type has all the properties we need. Our rules for \rightarrow allow us to build constant functions anyway. And we note that all functions $\mathbf{1} \rightarrow A$ are constant functions!

[[TODO: Clear up wording maybe?]]

Remark 5.4.8. We make an important note that this is not the simplest presentation of the STLC of which there are many variations thereof. We chose judgemental equality and bidirectional type checking because these are features we will need if we are to enrich our type system with dependent types.

5.5 Inversion lemmas

Having listed all these rules, we need *Inversion lemmas* detailing how different judgements can *only* come from a set of given judgements. This is a crucial analysis if we wish to construct a type checking algorithm. An inversion lemma for a type theory is typically very difficult to state, and extremely tedious to prove. But nonetheless is essential if we want to induct over terms. These are also known as *Generation lemmas* [33, 17].

Luckily we set up syntax in such a way that we only need induct over the syntax. So we pick a syntactic form and the inversion lemma will tell us exactly how we can arrive at that conclusion. Let us list all term syntax we can create in STLC. We will write them in Backus-Naur form (BNF) [CITATION] which is a common and clear way to write inductive generators:

Term ::=
$$x \mid \lambda x.a \mid (a,b) \mid ab \mid c$$

Where x is a variable, a, b are terms and c is a constant, in this case any of *, fst, snd. We may also list the types that we have:

Type ::=
$$A \times B \mid A \rightarrow B \mid \mathbf{1}$$

Where A, B are types.

 \bullet x where x is a variable.

- $\lambda x.M$ where M is a term.
- \bullet (x,y) where x and y are terms.
- fst, snd the eliminators of \times
- * the element of 1
- ind_1 the eliminator of 1

Lemma 5.5.1.

[[TODO: State this beast]]

Lemma 5.5.2. In the STLC the following term forms are generated by certain rules...

6 Normalisation of STLC

6.1 Introduction

We now wish to analyse the computational power of our type theory. When designing the type checking algorithm we made a point not to invoke any computational rules, since this will give us a decidable type checking algorithm. We now wish to show that successive applications of mode-switching, betas and eta will always terminate and to the same term, this will be known as the *normal form*. The theorem is known as the Church-Rosser theorem [[CITE]]. This is a subtle property of the type theory and is determined by the computational rules we have added. Further addition of term constructors and type formers should leave this property untouched.

Our proof will follow the proof in [33, p. 67] albeit with modifications to make it work here. [[TODO rewrite and add good citations]]

6.2 Properties of relations

First we define what we mean by a binary relation being *compatible* with the syntax of the STLC.

Definition 6.2.1. A binary relation \succ on Term the set of all terms, is said to be *compatible with the syntax of STLC* (or just simply *compatible*) if the following conditions hold:

- 1. If $M \succ N$ then $\lambda x.M \succ \lambda x.N$.
- 2. If M > N then MZ > NZ.
- 3. If M > N then ZM > ZN.
- 4. If $M \succ N$ then $(Z, M) \succ (Z, N)$.

5. If $M \succ N$ then $(M, Z) \succ (N, Z)$.

Remark 6.2.2. The notion of compatibility allows us to make sure a relation also considers sub-terms. This is a tricky thing to get right but due to our focus on the correct structure of syntax we are fine.

Remark 6.2.3 ([CLEAN THIS UP).] The reader may ask what relations have to do with normalisation, but it is a formalism that we have chosen. This is definitely not the only way to prove properties like Church-Rosser. The main reason we have chosen this method is for its simplicity. In fact earlier we discussed the dynamics of languages, this is exactly that. There are many ways to go about dynamics including transition systems and equational dynamics. Our approach corresponds to the more classical and simple transition systems approach. It can be shown that this is equivalent to equational dynamics in that a reduction step will be justified by application of rules from STLC.

We will demonstrate our last remark by considering the following relation:

Definition 6.2.4. Let \sim_{ty} denote the relation amond terms of having the same type. Suppose $\Gamma \vdash s \Leftarrow S$ and $\Gamma \vdash t \Leftarrow T$, then:

$$s \sim_{\operatorname{ty}} t \iff \Gamma \vdash S \equiv T \text{ type}$$

Lemma 6.2.5. The relation \sim_{ty} is a compatible relation.

Proof. Suppose $M \sim_{\text{ty}} N$, then we have $\Gamma \vdash M \Leftarrow S$, $\Gamma \vdash N \Leftarrow T$ and $\Gamma \vdash S \equiv T$ type.

Definition 6.2.6. Given a relation \succ on a set X, we denote by \succ^+ the transitive closure of \succ . This is the smallest relation which coincides with \succ and is transitive. We also consider the reflexive-transitive closure \succ^* of \succ which is simply the relation $\Delta(X) \cup \succ^+$ where $\Delta(X)$ is the image of the diagonal function $x \mapsto (x, x)$. (We've simply added that $x \succ^* x$)

Remark 6.2.7. Transitive closures correspond to chains of the relation, and reflexive-transitive closures allow for chains of length 0. It should also be noted that we took the *union* of a relation. This is a well-defined notion and can easily be seen to be a relation.

Let \rightarrow be a binary relation on a set A, \rightarrow be its transitive closure and \rightarrow be its reflexive-transitive closure.

Now we define (very generally) what it means for an element of a set to be in *normal form* and *normalising* with respect to some relation.

Definition 6.2.8. An element $a \in A$ is said to be of *normal form* if $\forall b \in A$, $a \not\rightarrow b$.

Definition 6.2.9. An element $a \in A$ is said to be normalising (or weakly normalising) if there is a reduction sequence $a \to a_1 \to a_2 \to \cdots \to a_n$ where a_n is in normal form, for some n. We call a_n a normal form or reduct of a.

Remark 6.2.10. Note that not every reduction sequence is guaranteed to be finite. We also note that if \rightarrow a relation is Church-Rosser (to be defined below) then a_n is *the* normal form or reduct.

We discuss what it means for a relation to be Church-Rosser:

Definition 6.2.11. A relation \rightarrow has the *Church-Rosser* (CR) property if and only if for all $a, b, c \in A$ such that $a \twoheadrightarrow b$ and $a \twoheadrightarrow c$, there exists $d \in A$ with $b \twoheadrightarrow d$ and $c \twoheadrightarrow d$.

Remark 6.2.12. This says no matter what path we take along a relation, there will always be elements at which the paths cross.

We will also need a slightly weaker version called weak Church-Rosser, for reasons we will see later:

Definition 6.2.13. A relation \rightarrow has the *weak Church-Rosser* (WCR) property if and only if for all $a,b,c\in A$ such that $a\rightarrow b$ and $a\rightarrow c$, there exists $d\in A$ with $b\twoheadrightarrow d$ and $c\twoheadrightarrow d$.

We now state the obvious:

Corollary 6.2.14. If \rightarrow is CR then \rightarrow is WCR.

The converse to this is in general false but it is true when another condition holds, namely that \rightarrow is strongly normalising.

Definition 6.2.15. A binary relation \rightarrow is *strongly normalising* (SN) if and only if there is no infinite sequence $a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow \cdots$.

Remark 6.2.16. In other words, a relation \rightarrow is strongly normalising if and only if *every* sequence $a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow \cdots$ terminates after a finite number of steps.

Remark 6.2.17. We typically also say an element is strongly normalising if the condition holds for that element. This allows us to state SN in a different (and perhaps more correct) way: A relation \rightarrow is strongly normalising if each element is strongly normalising with respect to \rightarrow . Then we can define an element to be strongly normalising if all of it's reducts are strongly normalising. The nice thing about this definition is that we have seen it before, this is precisely what it means to be a well-founded relation from Defintion 2.3.2. So \rightarrow is strongly normalising if and only if it is well-founded. This is good because we can induct over it!

Corollary 6.2.18. If a relation \rightarrow is strongly normalising then every element is normalising.

Proof. By induction on \rightarrow we see that either an element is in normal form, or it reduces to normal form. This is precisely what it means to be normalising. \Box

We now state a lemma which will be very useful. It is a sufficient condition for the converse of Corollary 6.2.14 to hold.

Lemma 6.2.19 (Newman's Lemma). If \rightarrow is strongly normalising and WCR then it is CR.

Proof. Since \rightarrow is strongly normalising, any $a \in A$ has a normal form. Call an element ambiguous if a reduces to two distinct normal forms. Clearly \rightarrow is CR if there are no ambiguous elements of A. Assume, for contradiction, that there is an ambiguous a. We will show that there is another ambiguous a' where $a \rightarrow a'$. Suppose we have $a \rightarrow b_1$ and $a \rightarrow b_2$ where b_1 and b_2 are two different normal forms. Both reductions must make at least one step, thus both reductions can be written as $a \rightarrow a_1 \rightarrow b_1$ and $a \rightarrow a_2 \rightarrow b_2$. Suppose $a_1 = a_2$ then we can choose $a' = a_1 = a_2$. Now suppose $a_1 \neq a_2$, we know by WCR that $a_1 \rightarrow b_3$ and $a_2 \rightarrow b_3$ for some b_3 . We can assume that b_3 is a normal form. Since b_1 and b_2 are distinct, b_3 is different from b_1 or b_2 so we can choose $a' = a_1$ or $a' = a_2$. Since we can always choose an a', we can repeat this process and get an infinite chain of ambiguous elements. It is clear that this contradicts strongly normalising, hence A has no ambiguous elements.

6.3 Normalisation

Now we define what we mean by β -reduction and β -normal form.

Definition 6.3.1. We define β -reduction to be the least compatible relation \rightarrow_{β} on Term satisfying the following conditions:

- 1. $(\lambda x.y)t \rightarrow_{\beta} y[t/x]$
- 2. $fst(x,y) \rightarrow_{\beta} x$
- 3. $\operatorname{snd}(x,y) \to_{\beta} y$

A term on the left hand side of any of the above is called a β -redex (reducible expression) and the right hand sides are said to arise by contracting the redex.

Remark 6.3.2 ([Clear up wording).] Observe that these are very similar to our β rules, in fact they are exactly those. So the question may arise: why haven't we defined β -reduction using the rules that we already have? The answer is that we could but we would have a much harder time, the rules also take into account typing information but we are explicitly not worried about that since we will show later β -reduction doesn't change a typed terms type. It is somewhat simpler and clearer to focus purely on terms. We will later justify calling this β -reduction.

Definition 6.3.3. A term M is said to be in β -normal form if it is in normal form with respect to \rightarrow_{β} .

Remark 6.3.4. That is to say a term is in β -normal form if there is no β -reduction to any other term. Or better yet, M does not contain a β -redex.

Definition 6.3.5. Let $\twoheadrightarrow_{\beta}$ be the transitive and reflexive closure of \rightarrow_{β} called a *multi-step* β -reduction.

Remark 6.3.6. Not every term is normalising. Take for example the term $\Omega = (\lambda x.xx)(\lambda x.xx)$ which cannot be typed as we will see later. There is an infinite reduction sequence:

$$\Omega \to_{\beta} \Omega \to_{\beta} \Omega \to_{\beta} \Omega \to_{\beta} \cdots$$

Since Ω cannot be given a type, it is deemed *ill-typed*.

This means we have to be careful which terms we are talking about. When talking about terms of the STLC we should add that we expect them to be well-typed (derivable). We will see later there are many syntactically valid terms that are ill-typed.

We want to now prove that every derivable term is β -normalising. In order to do this we need to keep track of available redexes and bound them. We will then show there is a reduction strategy that decreases this bound yielding our result.

This proof is usually attributed to an unpublished note of Turing [[CITE]] but it has been rediscovered by various authors. We will follow the proof in Girard's book [14].

Definition 6.3.7. The degree $\partial(T)$ of a type T is defined by:

- $\partial(T) := 1$ if T is atomic.
- $\partial(U \times V), \partial(U \to V) := \max(\partial(U), \partial(V)) + 1.$

Definition 6.3.8. The $(\beta$ -)degree $\partial_{\beta}(t)$ of a redex is defined by:

- $\partial_{\beta}(\operatorname{fst}(u,v)), \partial_{\beta}(\operatorname{snd}(u,v)) := \partial(U \times V)$ where $\Gamma \vdash (u,v) \Leftarrow U \times V$.
- $\partial_{\beta}((\lambda x.v)u) := \partial(U \to V)$ where $\Gamma \vdash \lambda x.v \Leftarrow U \to V$.

Definition 6.3.9. The $(\beta$ -)degree $d_{\beta}(t)$ of a term is the maximum of the degrees of its redexes:

$$d_{\beta}(t) := \max\{\partial_{\beta}(s) \mid s \text{ is a redex in } t\}$$

Remark 6.3.10. A redex is associated to two degrees, one as a redex and another as a term. Since a redex r may contain other redexes we have that $\partial(r) \leq d(r)$. It should be noted we have defined degree to mean 3 different things here, but as long as we are careful we should not get confused.

Lemma 6.3.11. If r is a redex of type T then $\partial(T) < \partial_{\beta}(r)$.

Proof. Checking the cases for r:

- $\partial(T) < \partial_{\beta}(\operatorname{fst}(t, u)) = \max(\partial(T), \partial(U)) + 1.$
- $\partial(T) < \partial_{\beta}(\operatorname{snd}(u,t)) = \max(\partial(U), \partial(T)) + 1.$
- $\partial(T) < \partial_{\beta}((\lambda x.t)u) = \max(\partial(U), \partial(T)) + 1.$

Lemma 6.3.12. If $\Gamma, x : T \vdash t \Leftarrow U$ then $d_{\beta}(t[u/x]) \leq \max(d_{\beta}(t), d_{\beta}(u), \partial(T))$.

Proof. Analysing the redexes of t[u/x] we find that they fall into the following cases:

- They are redexes of t (in which u has become x).
- They are redexes of u, proliferating due to each occurrence of x in t.
- They are formed when t is of the form fst(x), snd(x), or xv for u of the form (u', u''), (u', u''), or $\lambda y.u'$ respectively. These new redexes have degree $\partial(T)$.

Lemma 6.3.13. If $t \to_{\beta} u$ then $d_{\beta}(u) \leq d_{\beta}(t)$.

Proof. Consider the reduction where u is obtained from t by replacing the redex r in u by c. Now we consider all the redexes of u where we find:

П

- redexes which were originally in t, but not in r, and have been modified by the replacement of r by c. Observe that their degree does not change.
- redexes which were originally in c. But c is obtained by reducing r, or in other words a substitution in r. Notice $(\lambda x.s)s'$ becomes s[s'/x] and Lemma 6.3.12 tells us that $d_{\beta}(c) \leq \max(d_{\beta}(s), d_{\beta}(s'), \partial(T))$, where T is the type of x. But by Lemma 6.3.11 we have $\partial(T) \leq \partial(r)$. Applying max gives us $\max(d(s), d(s'), \partial(T)) \leq \max(d_{\beta}(s), d_{\beta}(s'), \partial_{\beta}(r))$ and hence $d_{\beta}(c) \leq \max(d_{\beta}(s), d_{\beta}(s'), \partial(r)) = d(r)$.
- redexes which come from replacing r by c. These redexes have degree equal to $\partial(T)$ where T is the type of r. By Lemma 6.3.11 we have $\partial(T) \leq \partial(r)$.

Next we will prove a lemma bounding the number of redexes of a certain degree.

Lemma 6.3.14. Let r be a redex of maximal degree n in t, and suppose that all redexes strictly contained in r have degree less than n. If u is obtained from t by reducing r to c. Then u has strictly fewer redexes of degree n.

Proof. When the reduction happens we make the following observations:

- The redexes outside r in t remain u.
- The redexes strictly inside r are in general conserved but sometimes become more prolific. Take for example $(\lambda x.(x,x))s \to_{\beta} (s,s)$. The number of redexes in the reduct are double that of redex on the left. However the degree of the proliferated redexes must be strictly less than n.
- \bullet The redex r is destroyed and possibly replaced by redexes of strictly smaller degree.

Remark 6.3.15. Although not defined, we take the meaning of a redex strictly inside to be a redex that is not the whole redex.

We now have all the machinary needed to prove that typed terms in the STLC are weakly β -normalising.

Theorem 6.3.16. Every derivable term $\Gamma \vdash t \Leftarrow A$ in the STLC is β -normalising.

Proof. Consider the function $\mu : \mathbf{Term} \to \mathbb{N} \times \mathbb{N}$ which takes $t \mapsto (n, m)$ where $n = d_{\beta}(t)$ and m is the number of redexes in t of degree n. By Lemma 6.3.14 it is possible to choose a redex r of t in such a way that, after reduction of r to c, the reduct t' satisfies $\mu(t') < \mu(t)$. Thus by double induction on n and m it is possible to see that $\mu(t)$ can always be decreased until t is normal.

Remark 6.3.17. The ordering in $\mu(t') < \mu(t)$ on $\mathbb{N} \times \mathbb{N}$ is the lexicographic ordering. Meaning (n', m') < (n, m) if and only if n' < n or n' = n and m' < m. (Think Alphabetical order).

Lemma 6.3.18. Suppose $\Gamma \vdash M \Leftarrow T$ and $M \twoheadrightarrow_{\beta} N$, then $\Gamma \vdash M \equiv N : T$.

Definition 6.3.19. We define η -reduction to be the least compatible relation \rightarrow_{η} on Term satisfying the following conditions:

- 1. $\lambda x.fx \to_{\eta} f$
- 2. $(fst(t), snd(t)) \rightarrow_{\eta} t$

Just like for β -reduction we have the notions of η -redex and terms that arise by contracting the redex.

Definition 6.3.20. A term is said to be in η -normal form if it is in normal form with respect to \rightarrow_{η} .

Definition 6.3.21. Let $\twoheadrightarrow_{\eta}$ be the transitive and reflexive closure of \rightarrow_{η} called a *multi-step* η -reduction.

We will now show that \rightarrow_{η} is strongly normalising.

Remark 6.3.22. Originally we had thought to modify the proof of β -normalisation, and make it work for η . However, this is where the difference between the two is key. β -normalisation has the power to create new β -redexes whereas η -normalisation never does. In fact η -normalisation is strongly normalising even in the untyped lambda calculus. This suggests that talking about degrees is not the correct approach and there ought to be some other metric for which can be used to bound η -reducible terms. Based off of work in [13], the authors of [33, Ex. 3.21] define a *depth* function for terms. We belive this to be the actual depth of the underlying tree of the abstract binding tree of the syntax of the term. But that is not a relevent result for now.

Definition 6.3.23. Given a term t we define the *depth* $\delta(t)$ *of* t by induction on terms:

- $\delta(x) := 0$ for x a variable or constant.
- $\delta(ab) := 1 + \max(\delta(a), \delta(b)).$
- $\delta(\lambda x.y) := 1 + \delta(y)$.
- $\delta((a,b)) := 1 + \max(\delta(a), \delta(b)).$

Lemma 6.3.24. If $t \to_{\eta} u$ then $\delta(u) < \delta(t)$.

Proof. Observe that since \rightarrow_{η} is a compatible relation, we need only prove the statement for a redex. We do this by cases:

 $\delta((\text{fst}(s), \text{snd}(s))) = 1 + \max(\delta(\text{fst}(s)), \delta(\text{snd}(s)))$ $= 1 + \max(1 + \delta(s), 1 + \delta(s))$ $= \delta(s) + 2$

 $\delta(\lambda x.sx) = 1 + \delta(sx)$ $= 2 + \max(\delta(s), \delta(x))$ $= \delta(s) + 2$

Observe that in both cases we have that the depth of a redex s is $\delta(s) = \delta(r) + 2$ where r is the reduct of s. However at the level of terms we cannot garantee equality due to the nature of depth and compatibility.

Lemma 6.3.25. η -reduction is strongly normalising.

Proof. By Lemma 6.3.24 we have that the depth of any η -reduction sequence is strictly decreasing. Hence there may only be finitely many steps in any given η -reduction sequence.

Lemma 6.3.26. Suppose $\Gamma \vdash M \Leftarrow T$ and $M \twoheadrightarrow_{\eta} N$, then $\Gamma \vdash M \equiv N : T$.

Proof. Observe that in the definition of

Now we need a small technical lemma that will show the utility of being strongly normalising.

Lemma 6.3.27. If there is an infinite $\beta\eta$ -reduction sequence starting from M, then there is an infinite β -reduction sequence starting from M.

We are interested in the contrapositive form of this lemma:

Corollary 6.3.28. If there is no infinite β -reduction sequence starting from M, then there is no infinite $\beta\eta$ -reduction sequence starting from M.

Remark 6.3.29. In particular this means that \rightarrow_{β} being strongly normalising implies that $\rightarrow_{\beta\eta}$ is strongly normalising.

Theorem 6.3.30. β -reduction is strongly normalising.

Corollary 6.3.31. $\beta\eta$ -reduction is strongly normalising.

Lemma 6.3.32. $\beta\eta$ -reduction is WCR.

Theorem 6.3.33. The Church-Rosser property holds for $\beta\eta$ -reduction.

Remark 6.3.34. So not only does every well-typed term have a normal-form, but it is in fact unique!

6.4 Canonicity

[[These two concepts are very related, we should find some way to talk about it, including Church-Rosser]]

7 STLC Examples

Untyped lambda calculus, as we mentioned, is in fact *stronger* than the typed lambda calculus. This we will see by looking at some examples of type checking. Many of these are combinators from untyped lambda calculus in combinatory logic. ?? [[Need reference of Mockingbird combinator thing]]

Note we don't have very much choice on types, so it may be useful to enrich our type theory with +-types or even the natural numbers. But we will see soon that these both are special cases of dependent types.

7.1 Identity function $\lambda x.x$

Example 7.1.1 (Identity function). Let's consider the following lambda term $\lambda x.x$. We wish to find a type T such that given some context Γ we have $\Gamma \vdash \lambda x.x \Leftarrow T$. Our inversion lemma will tell us exactly which rules let us get to this point. So we will essentially be performing a tree search. Firstly we need to switch modes to get $\lambda x.x \Rightarrow T$. But mode switching also lets us change our

$$\Gamma \vdash \lambda x.x \Rightarrow T$$

7.2 Function application $\lambda x.\lambda y.xy$

Example 7.2.1. Here is another example of a term that type checks. Unfortunately we see the disadvantage with type-setting derivation trees: they are very difficult to write down, and get really wide very quickly. We want to find a type T such that $\Gamma \vdash \lambda x.\lambda y.xy \Leftarrow T$ is true. Here is a derivation tree:

Proof. We begin with the judgement $\Gamma \vdash \lambda x.\lambda y.xy \Leftarrow T$, now the only way to arrive at this judgement is via the mode-switching rule. Whilst doing this we add type variables A and B which can easily be seen to form into $A \to B$ and let $T \equiv A \to B$. We can come back later and validate this judgement. The mode-switching should have given us $\Gamma \vdash \lambda x.\lambda y.xy \Rightarrow A \to B$ which we can only arrive at by applying the $(\to -intro)$ rule. This gives us $\Gamma, x: A \vdash \lambda y.xy \Leftarrow B$. Which we have to mode-switch, and as before we take this chance to introduce type variables C and D in order to arrive at the judgement $\Gamma, x: A \vdash \lambda y.xy \Rightarrow C \to D$. This allows us to apply $(\to -intro)$ giving us $\Gamma, x: A, y: C \vdash xy \Leftarrow D$. Now we apply the $(\to -elim)$ rule since we have an application. For this we need $\Gamma, x: A, y: C \vdash y \Leftarrow C$, which is marked as (\dagger) , and observe that a simple application of mode-switching and the variable rule allows us to derive this judgement. The other hypothesis we need is $\Gamma, x: A, y: C \vdash x \Leftarrow C \to D$. Again by mode-switching and setting $C \to D \equiv A$ we get $\Gamma, x: A, y: C \vdash x \Rightarrow A$ which is clearly derivable by the variable rule.

Now we have 3 type equations (*), (**) and (***), substituting back in we get $\Gamma \vdash T \equiv (C \to D) \to C \to D$ for some types C and D. So $\Gamma \vdash \lambda x.y.xy \Leftarrow T$ if we have types C and D.

Remark 7.2.2. There is a lot going on the the previous example, but crucially it should be observed that it is in fact the *inversion lemmas* that allow us to make choices of which rules to use. So a type-checking algorithm would have to make choices based on what the inversion lemmas say. We also introduced equalities of types which was brushed over. In general, type equalities are only generated by reflexivity so in a way our equations were lifted to equality of syntax. This gave us a classical equality problem. Since all our syntax are trees, we can easily decide their equality. [[CAN YOU???!!]]

- 7.3 Mockingbird $\lambda x.xx$
- **7.4** $(\lambda x.x)(\lambda x.x)$
- **7.5** $\lambda x.\lambda y.(xy)(xy)$
- 7.6 Y-combinator $\lambda x.(\lambda y.x(yy))(\lambda y.x(yy))$
- 7.7 Function composition $\lambda x.\lambda y.\lambda z.x(yz)$
- 7.8 Owl combinator $\lambda x.\lambda y.\lambda z.y(xy)$
- 7.9 Currying $\lambda x.\lambda y.\lambda z.x(y,z)$
- 7.10 Swap $\lambda t.(\operatorname{snd}(t), \operatorname{fst}(t))$

8 Curry-Howard correspondence

8.1 Mathematical logic

At the beginning of the 20th century, Whitehead and Russell published their *Principia Mathematica* [29], demonstrating to mathematicians of the time that formal logic could express much of mathematics. It served to popularise modern mathematical logic leading to many mathematicians taking a more serious look at topic such as the foundations of mathematics.

One of the most influential mathematicians of the time was David Hilbert. Inspired by Whitehead and Russell's vision, Hilbert and his colleagues at Göttingen became leading researchers in formal logic. Hilbert proposed the *Entscheidungsproblem* (decision problem), that is, to develop an "effectually calculable procedure" to determine the truth or falsehood of any logical statement. At the 1930 Mathematical Congress in Königsberg, Hilbert affirmed his belief in the conjecture, concluding with his famous words "Wir müssen wissen, wir werden wissen" ("We must know, we will know"). At the very same conference, Kurt Gödel announced his proof that arithmetic is incomplete [16], not every statement in arithmetic can be proven.

This however did not deter logicians, who were still interested in understanding why the *Entscheidungsproblem* was undecidable, for this a formal definition of "effectively calculable" was required. So along came three proposed definitions of what it meant to be "effectively calculable": *lambda calculus*, published in 1936 by Alonzo Church [7]; *recursive functions*, proposed by Gödel in 1934 later published in 1936 by Stephen Kleene [25]; and finally *Turing machines* in 1937 by Alan Turing [36].

8.2 Lambda calculus

(Untyped) lambda calculus was discovered by Church at Princeton, originally as a way to define notations for logical formulas. It is a remarkably compact idea, with only three constructs: variables; lambda abstraction; and function

application.z It is closely related to Curry's idea of combinatory logic [10, 11] It was realised at the time by Church and others that "There may, indeed, be other applications of the system than its use as a logic." [4, 5]. Church discovered a way of encoding numbers as terms of lambda calculus. From this addition and multiplication could be defined. Kleene later discovered how to define the predecessor function. [21, 22]. Church later proposed λ -definability as the definition of "effectively calculable", what is now known as Church's Thesis, and demonstrated that the problem of determining whether or not a given λ -term has a normal form is not λ -definable. This is now known as the Halting Problem.

8.3 Recursive functions

In 1933 Gödel arrived in Princeton, unconvinced by Church's claim that every effectively calculable function was λ -definable. Church responded by offering that if Goödel would propose a different definition, then Church would "undertake to prove it was included in λ -definability". In a series of lectures at Princeton, Gödel proposed what came to be known as "general recursive functions" as his candidate for effective calculability. Kleene later published the definition [?]. Church later outlined a proof [6] and Kleene later published it in detail [23]. This however did not have the intended effect on Gödel, whereby he then became convinced that his own definition was incorrect!

8.4 Turing machines

Alan Turing was at Cambridge when he independently formulated his own idea of what it means to be "effectively calculable", now known today as Turing machines. He used it to show that the Entscheidungsproblem is undecidable, that is it cannot be proven to be true or false. Before publication, Turing's advisor Max Newman was worried since Church had published a solution, but since Turing's approach was sufficiently novel it was published anyway. Turing had added an appendix sketching the equivalence of λ -definability to Turing machines. It was Turing's argument that later convinced Gödel that this was the correct notion of "effectively calculable".

8.5 Russell's paradox

[Talk about the origin of types and stuff]

8.6 The problem with lambda calculus as a logic

Church's students Kleene and Rosser quickly discovered that lambda calculus was inconsistent as a logic [24]. Curry later simplified the result which became known as Curry's paradox [12]. Curry's paradox was related to rissoles paradox, in that a predicate was allowed to act on itself. This led to an abandoning of the use of lambda calculus as a logic for a short time. In order to solve this Church

adapted a solution similar to Russell's when formulating *Principia Mathematica*: use types [?]. What was discovered is now known today as *simply-typed lambda calculus* [8]. What is nice about Church's STLC is that every term has a normal form, or in the language of Turing machines every computation halts. [36] [CITATION NEEDED] From this consistency of Church's STLC as a logic could be established.

8.7 Types to the rescue

[Talk in detail why typing is good for mathematicians, programmers and logicians]

8.8 The theory of proof a la Gentzen

[Go into the history of the theory of proof e.g. Gentzen's work; take notice of natural deduction]

8.9 Curry and Howard

[Curry makes an observation that Gentzen's natural deduction corresponds to simply typed lambda calculus, Howard takes this further and defines it formally, eventually predicting a notion of dependent type.

8.10 Propositions as types

[Overview of the full nature of the observation, much deeper than a simple correspondence since logic is in some sense "very correct" and programming constructs corresponding to these must therefore also be "very correct".]

8.11 Predicates [CHANGE] as types?

[Talk about predicate quantifiers \forall , \exists and what a "dependent type ought to do"]

8.12 Dependent types

[Perhaps expand on the simply typed section]
[talk about pi and sigma types
[talk about "dependent contexts"]

9 Simply typed lambda calculus with products, sums and natural numbers

9.1 Introduction

Historically the addition of a natural numbers type with a recursion principle \mathbb{N} was done by Gödel in his "System T" of Higher-Order recursion. This is different

than having encoded numbers in type theory. For example in $\lambda_{\to\times}$ we have Church numerals [[CITE EXAMPLE]], and we have seen that it is possible to do basic arithmetic with. Church-Encodings are what are known as impredicative encodings, whereby the terms of the types are the same as the desired one but the eliminators are not present. This is demonstrated for Church-encodings of the natural numbers by the fact that it is impossible to define recursion over the natural numbers in $\lambda_{\to\times}$ [?] [[CITATION NEEDED]]. This isn't the case for untyped lambda calculus however. It is well-known that untyped lambda calculus can have recursive definitions, but they come at a cost. Not every term in untyped lambda calculus is normalising. This corresponds to a computation which doesn't halt and is intimately related to the halting problem.[[CITE]] A natural numbers type can however be added to $\lambda_{\to\times}$ leading to a type theory that is "equivalent" to Gödel's system T.

We will also look at some other types such as sums and 0 and eventually exhibit the properties of this type theory as a propositional logic, as the Curry-Howard corresondence suggests.

9.2 Natural numbers

We add natural numbers. This will be our first example of an *inductive type*. We will call the corresponding type theory $\lambda_{\to \times \mathbb{N}}$ and note that it enjoys *canonicity*. Meaning that not only do all terms *normalise* but they normalise to a canonical form. This means if we have a function that computes a natural number, we are guaranteed to get a numeral (an iterated number of successors to zero). If we had some rules in our type theory that broke canonicity, we may get a term that type checks as a natural number but isn't judgmentally equal to one.

9.3 Sum types

[[Sum types go by the name of unions in C, whereas product types correspond to structs.]]

They are like disjoint unions of sets.

Their induction principle is very simple, to build a function out of A + B it suffices to give a function out of A and another out of B.

10 Dependent types

We have seen previously that the Curry-Howard correspondence is a deep parallel between logic and computation. We therefore will use it as a guiding principle for a type theory. This was originally sketched by Curry [[CITE]] and the project taken up by Per Martin-Löf [[CITE]]. In order to begin modifying our rules for the STLC we need to introduce the notion of a *universe*.

11 Universes

11.1 Introduction

Originally Martin-Löf had added a type of all types. But this, unsurprisingly, led to Russellian paradoxes. This is known as Girard's paradox [15]. There is a simple resolution to this, which is inspired to a similar technique in set theory known as *Grothendieck universes*, though the type theoretic counterpart is much simpler to state [32].

There are two approaches to universes. Universes a la Russel and universes a la Tarski. The former is much simpler to state but loses unicity of typing. The latter keeps unicity of typing and corresponds closely with the semantic models, however unfortunately has many annotations and extra congruence rules. It is generally believed that the latter can be compressed into the former, and the former annotated to give the latter. [[CITE]]

Of course we don't actually *need* universes to discuss dependent types, but we will soon see that there aren't many interesting dependent types we can write down if we have no way of letting types vary over terms. In order to do this we need to be able to write down a *type family*, which is a function $F: A \to \mathcal{U}$ from a type A to some universe U, giving us each F(a) as a type, i.e. F(a) varies with a: A.

11.2 Universes a la Tarski

We add a type \mathcal{U} which has terms for each type former in our type theory. Universes are a general concept which can be added to many type theories but we will restrict ourselves and add it to $\lambda_{\to \times}$ the simply typed lambda calculus.

Definition 11.2.1 (Universes a la Tarski). For every $i \in \mathbb{N}$ we have a universe type:

$$\Gamma \vdash \mathcal{U}_i \text{ type} (\mathcal{U}_i\text{-form})$$

This type has a special property in that all it's terms are types:

$$\frac{\Gamma \vdash a \Leftarrow \mathcal{U}_i}{\Gamma \vdash \mathsf{El}_i(a) \; \mathsf{type}} \; (\mathsf{Universe}_1)$$

In particular there is a term u_i in \mathcal{U}_{i+1} :

$$\frac{1}{\Gamma \vdash u_i : \mathcal{U}_{i+1}}$$
 (Universe₂)

This little universe is in fact the corresponding universe as a type:

$$\Gamma \vdash \mathsf{El}_{i+1}(u_i) \equiv \mathcal{U}_i \text{ type}$$
 (Universe₃

Now for each type former of $\lambda_{\to \times}$ we add an introduction rule and add some congruence rules.

Remark 11.2.2. It quickly turns out that we essentially double the number of rules that we have by adding universes a la Tarski since we have to have a "mini"-version of each type, add rules for a type El which ensures terms are types, and finally make sure El is congruent with respect to the formers we gave before.

Remark 11.2.3. A metalogic is the logic in which all these formal statments take place. We have not discussed this notion much since we would like our ideas to be mostly invariant of the metalogic. For technical satisfaction suppose we are working in ZFC with as many inaccessible cardinals as needed. This should be sufficiently strong enough to prove what we discussing. Further discussion on the foundational issues can be attained from [32, 31, 20] but is ultimately irrelevant in this context.

Appendices

A Simply typed lambda calculus $\lambda_{\to \times}$

This is the full-presentation of the simply typed lambda calculus $\lambda_{\to \times}$. It has function types, product types and a unit type.

A.1 Syntax

Written in BNF:

Term ::=
$$x \mid \lambda x.a \mid (a,b) \mid ab \mid c$$

Type ::=
$$\mathbf{1} \mid A \times B \mid A \to B$$

Or listed as operators:

Op	Sort	Vars	Type args	Term args	Scoping	Syntax
\rightarrow	ty	_	A, B		_	$A \rightarrow B$
×	ty	_	A, B		_	$A \times B$
(-, -)	$_{ m tm}$	_	_	x, y	_	(x,y)
λ	$_{ m tm}$	x	A, B		M	$\lambda(x:A).M$
App	$_{ m tm}$		A, B		M, N	MN

A.2 Judgements

Judgement	Meaning			
$\Gamma \vdash A$ type	A is a type in context Γ .			
$\Gamma \vdash T \Leftarrow A$	T can be checked to have type A in context Γ .			
$\Gamma \vdash T \Rightarrow A$	T synthesises the type A in context Γ .			
$\Gamma \vdash A \equiv B$ type	A and B are judgmentally equal types in context Γ .			
$\Gamma \vdash S \equiv T : A$	S and T are judgmentally equal terms of type A in context Γ .			

A.3 Structural rules

$$\frac{(x:A) \in \Gamma}{\Gamma \vdash x \Rightarrow A} \text{ (var)} \qquad \frac{\Gamma \vdash t \Rightarrow A \qquad \Gamma \vdash A \equiv B \text{ type}}{\Gamma \vdash t \Leftarrow B} \text{ (switch)}$$

[[TODO: Include admissible rules?]]

A.4 Equality rules

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \equiv A \text{ type}} \ (\equiv_{\mathsf{type}}\text{-refl}) \qquad \frac{\Gamma \vdash A \equiv B \text{ type}}{\Gamma \vdash B \equiv A \text{ type}} \ (\equiv_{\mathsf{type}}\text{-symm})$$

$$\frac{\Gamma \vdash B \text{ type} \qquad \Gamma \vdash A \equiv B \text{ type} \qquad \Gamma \vdash B \equiv C \text{ type}}{\Gamma \vdash A \equiv C \text{ type}} \left(\equiv_{\mathsf{type}}\text{-tran} \right)$$

$$\frac{\Gamma \vdash t \Leftarrow A}{\Gamma \vdash t \equiv t : A} \left(\equiv_{\mathsf{term}}\text{-refl} \right) \qquad \frac{\Gamma \vdash s \equiv t : A}{\Gamma \vdash t \equiv s : A} \left(\equiv_{\mathsf{term}}\text{-symm} \right)$$

$$\frac{\Gamma \vdash t \Leftarrow A \qquad \Gamma \vdash s \equiv t : A \qquad \Gamma \vdash t \equiv r : A}{\Gamma \vdash s \equiv r : A} \left(\equiv_{\mathsf{term}}\text{-tran} \right)$$

$$\frac{\Gamma \vdash A \text{ type} \qquad \Gamma \vdash s \equiv t : A \qquad \Gamma \vdash A \equiv B \text{ type}}{\Gamma \vdash s \equiv t : B} \left(\equiv_{\mathsf{term}}\text{-}\equiv_{\mathsf{type}}\text{-cong} \right)$$

A.5 Function type

$$\frac{\Gamma \vdash A \text{ type} \qquad \Gamma \vdash B \text{ type}}{\Gamma \vdash A \to B \text{ type}} (\to \text{-form}) \qquad \frac{\Gamma, x : A \vdash M \Leftarrow B}{\Gamma \vdash \lambda x . M \Rightarrow A \to B} (\to \text{-intro})$$

$$\frac{\Gamma \vdash M \Leftarrow A \to B \qquad \Gamma \vdash N \Leftarrow A}{\Gamma \vdash M N \Rightarrow B} (\to \text{-elim})$$

$$\frac{\Gamma, x : A \vdash y \Leftarrow B \qquad \Gamma \vdash t \Leftarrow A}{\Gamma \vdash (\lambda x . y) t \equiv y[t/x] : B} (\to \beta) \qquad \frac{\Gamma, y : A \vdash M y \equiv M' y : B}{\Gamma \vdash M \equiv M' : A \to B} (\to -\eta)$$

$$\frac{\Gamma \vdash A \equiv A' \text{ type} \qquad \Gamma \vdash B \equiv B' \text{ type}}{\Gamma \vdash A \to B \equiv A' \to B' \text{ type}} (\to -\equiv_{\text{type}} \text{-cong})$$

$$\frac{\Gamma, x : A \vdash M \equiv M' : B}{\Gamma \vdash \lambda x . M \equiv \lambda x . M' : A \to B} (\to -\equiv_{\text{term}} \text{-cong})$$

$$\frac{\Gamma \vdash M \equiv M' : A \to B}{\Gamma \vdash M N \equiv M' : A \to B} (\to -\equiv_{\text{term}} \text{-cong})$$

A.6 Product type

$$\frac{\Gamma \vdash A \text{ type} \qquad \Gamma \vdash B \text{ type}}{\Gamma \vdash A \times B \text{ type}} \quad (\times \text{-form}) \quad \frac{\Gamma \vdash a \Leftarrow A \qquad \Gamma \vdash b \Leftarrow B}{\Gamma \vdash (a,b) \Rightarrow A \times B} \quad (\times \text{-intro})$$

$$\frac{\frac{\Gamma \vdash t \Leftarrow A \times B}{\Gamma \vdash \text{fst}(t) \Rightarrow A} \quad (\times \text{-elim}_1) \qquad \frac{\Gamma \vdash t \Leftarrow A \times B}{\Gamma \vdash \text{snd}(t) \Rightarrow B} \quad (\times \text{-elim}_2)$$

$$\frac{\Gamma \vdash x \Leftarrow A \qquad \Gamma \vdash y \Leftarrow B}{\Gamma \vdash \text{fst}(x,y) \equiv x : A} \quad (\times \text{-}\beta_1) \qquad \frac{\Gamma \vdash x \Leftarrow A \qquad \Gamma \vdash y \Leftarrow B}{\Gamma \vdash \text{snd}(x,y) \equiv y : B} \quad (\times \text{-}\beta_2)$$

$$\frac{\Gamma \vdash \text{fst}(t) \equiv \text{fst}(t') : A \qquad \Gamma \vdash \text{snd}(t) \equiv \text{snd}(t') : B}{\Gamma \vdash t \equiv t' : A \times B} \quad (\times \text{-}\eta)$$

$$\frac{\Gamma \vdash A \equiv A' \text{ type} \qquad \Gamma \vdash B \equiv B' \text{ type}}{\Gamma \vdash A \times B \equiv A' \times B' \text{ type}} \quad (\times \text{-}\equiv_{\text{type}}\text{-cong})$$

$$\begin{split} \frac{\Gamma \vdash a \equiv a' : A \qquad \Gamma \vdash b \equiv b' : B}{\Gamma \vdash (a,b) \equiv (a',b') : A \times B} & (\times \text{-}\!\!\equiv_{\mathsf{term}}\text{-}\!\!\operatorname{cong}) \\ \frac{\Gamma \vdash t \equiv t' : A \times B}{\Gamma \vdash \mathsf{fst}(t) \equiv \mathsf{fst}(t') : A} & (\times \text{-}\!\!\operatorname{elim}_1\text{-}\!\!\operatorname{cong}) \\ \frac{\Gamma \vdash t \equiv t' : A \times B}{\Gamma \vdash \mathsf{snd}(t) \equiv \mathsf{snd}(t') : B} & (\times \text{-}\!\!\operatorname{elim}_2\text{-}\!\!\operatorname{cong}) \end{split}$$

A.7 Unit type

$$\frac{1}{1 \text{ type}} \text{ (1-form)} \qquad \frac{1}{\Gamma \vdash * \Rightarrow 1} \text{ (1-intro)}$$

B Examples

 $(\rightarrow \text{intro}) \frac{\Gamma, x : A \vdash \lambda y. xy \Leftarrow B}{\Gamma \vdash \lambda x. \lambda y. xy \Rightarrow A \to B} \frac{\Gamma \vdash T \equiv A \to B \text{ type}}{\Gamma \vdash T \equiv A \to B \text{ type}} (*)$ $\overline{\Gamma,x:A,y:C\vdash D\equiv D} \text{ type } (\equiv_{\text{type-refl}})$ $(\rightarrow \text{-intro}) \frac{\Gamma, x : A, y : C \vdash xy \Leftarrow D}{\Gamma, x : A \vdash \lambda y . xy \Rightarrow C \to D} \frac{\Gamma, x : A \vdash B \equiv C \to D \text{ type}}{\Gamma, x : A \vdash B \equiv C \to D \text{ type}} (**)$ $\Gamma \vdash \lambda x.\lambda y.xy \Leftarrow T$ $\overline{\Gamma,x:A,y:C}\vdash y \Leftarrow \overline{C} \ (\dagger)$ $\overline{\Gamma,x:A,y:C\vdash C\to D\equiv A \text{ type}} \stackrel{(***)}{\underset{\frown}{\cdots}}$ (switch) Γ , $x:A,y:C \vdash xy \Rightarrow D$ $(\rightarrow -\text{elim}) \frac{\Gamma, x : A, y : C \vdash x \leftarrow C \rightarrow D}{}$ (var) $\frac{x:A \in \Gamma, x:A, y:C}{\Gamma, x:A, y:C \vdash x \Rightarrow A}$

References

- [1] Henk Barendregt. Lambda calculus with types. Perspectives in logic. Cambridge University Press, Cambridge, 2013.
- [2] H.P. Barendregt. The lambda calculus: its syntax and semantics. Studies in logic and the foundations of mathematics. North-Holland, 1984.
- [3] J. Barwise. *Handbook of Mathematical Logic*. Studies in Logic and the Foundations of Mathematics. Elsevier Science, 1982.
- [4] Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics, 33(2):346–366, 1932.
- [5] Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics, 34(4):839–864, 1933.
- [6] Alonzo Church. A note on the entscheidungsproblem. Journal of Symbolic Logic, 1(1):40-41, 1936.
- [7] Alonzo Church. An unsolvable problem of elementary number theory. American Journal of Mathematics, 58(2):345–363, April 1936.
- [8] Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic, 5(2):56-68, 1940.
- [9] Roy L Crole. Categories for types. Cambridge University Press, Cambridge, 1993.
- [10] H. B. Curry. Grundlagen der kombinatorischen logik. American Journal of Mathematics, 52(3):509–536, 1930.
- [11] H. B. Curry. Grundlagen der kombinatorischen logik. American Journal of Mathematics, 52(4):789–834, 1930.
- [12] Haskell B. Curry. The inconsistency of certain formal logic. The Journal of Symbolic Logic, 7(3):115–117, 1942.
- [13] Steven Fortune, Daniel Leivant, and Michael O'Donnell. The expressiveness of simple and second-order type structures. *J. ACM*, 30(1):151–185, January 1983.
- [14] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge University Press, New York, NY, USA, 1989.
- [15] J.Y. Girard. Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur. 1972.
- [16] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38(1):173–198, 1931.
- [17] Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press, 2 edition, 2016.
- [18] B. Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and the Foundations of Mathematics. North Holland, Amsterdam, 1999.
- [19] P.T. Johnstone. *Notes on Logic and Set Theory*. Cambridge mathematical text-books. Cambridge University Press, 1987.
- [20] Chris Kapulkin and Peter LeFanu Lumsdaine. The Simplicial Model of Univalent Foundations (after Voevodsky). arXiv e-prints, page arXiv:1211.2851, Nov 2012.
- [21] S. C. Kleene. A theory of positive integers in formal logic. part i. *American Journal of Mathematics*, 57(1):153–173, 1935.
- [22] S. C. Kleene. A theory of positive integers in formal logic. part ii. American Journal of Mathematics, 57(2):219–244, 1935.
- [23] S. C. Kleene. λ -definability and recursiveness. Duke Math. J., 2(2):340–353, 06 1936.

- [24] S. C. Kleene and J. B. Rosser. The inconsistency of certain formal logics. Annals of Mathematics, 36(3):630–636, 1935.
- [25] S.C. Kleene. General recursive functions of natural numbers. *Mathematische Annalen*, 112:727–742, 1936.
- [26] J Lambek. Introduction to higher order categorical logic. Cambridge studies in advanced mathematics; 7. Cambridge University Press, Cambridge, 1986.
- [27] nLab authors. Initiality Project. http://ncatlab.org/nlab/show/Initiality% 20Project, December 2018. Revision 46.
- [28] nLab authors. Initiality Project Raw Syntax. http://ncatlab.org/nlab/show/Initiality%20Project%20-%20Raw%20Syntax, December 2018. Revision 22.
- [29] Alfred North Whitehead and Bertrand Russell. *Principia Mathematica*, volume 1. Cambridge University Press, Cambridge, 1910.
- [30] Michael Shulman. Comparing material and structural set theories. $ArXiv\ e\text{-}prints,$ page arXiv:1808.05204, August 2018.
- [31] Michael Shulman. All \$(,1)\$-toposes have strict univalent universes. arXiv eprints, page arXiv:1904.07004, Apr 2019.
- [32] Michael A. Shulman. Set theory for category theory. arXiv e-prints, page arXiv:0810.1279, October 2008.
- [33] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism, Volume 149 (Studies in Logic and the Foundations of Mathematics). Elsevier Science Inc., New York, NY, USA, 2006.
- [34] Paul Taylor. Intuitionistic sets and ordinals. The Journal of Symbolic Logic, 61(3):705-744, 1996.
- [35] A. S. Troelstra and H. Schwichtenberg. *Basic Proof Theory*. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2 edition, 2000.
- [36] Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 2(42):230–265, 1936.
- [37] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. Foundations of computing. Zone Books, U.S., 1993.