

Ins 1 = a, v + a2(+ v + 00) + a3(- 0 + a) = 0320 v + 0 0) + a2 (- v + 0 (- 0 + u)) > 02 =0 +(5) = a | t v 0 0 0 0 0 m ez-h sortie de Brunovsky, 0 (+ 1) 0 + ou le sini, an chair the a- u- co 4) Contrôle associé à Da = k, Dy + h, Dy + h, Dy - y-y, t-q. les Mous propose d'ac du polynône - h - a soient à Pe KD doint 2 22 h avec be (2:) <0, por membe -1, $\lambda^3 + 3\lambda^2 + 3\lambda + 1$ 3, hz = -5, hz = -1 + h, (- 2 + 00 contrôleur de 4% s écont: 5%-Le u = K z + existe A+BK His untz observateur de 2% s'écut 2 + A 2 + Bu + L (C2-y) VINTE A+LC Huskirz

94/14/M.

Sortie de Brunarky: y = h h' = v $h'' = -\frac{v}{\overline{z_2}} + \sigma \theta + \frac{w}{\overline{z_2}}$ $h''' = \frac{v}{\overline{z_2}} - \sigma(\frac{1}{\overline{z_1}} + \frac{1}{\overline{z_2}})\theta + (\frac{w}{\overline{z_2}} - \frac{w}{\overline{z_2}}) + \sigma u$ $= \frac{v}{\overline{z_2}} - \sigma(\frac{1}{\overline{z_1}} + \frac{1}{\overline{z_2}})\theta + (\frac{w}{\overline{z_2}} - \frac{w}{\overline{z_2}}) + \sigma u$ $= \omega \quad \text{commande}$

 $h_c=y_c$ donné \Rightarrow $\alpha_c=y_c'''$ commande de référence. Pour le mini, on pox $\delta h=h_ch_c$, $\delta \alpha=\alpha-\alpha_c$, d'où $\delta h'''=\delta \alpha$.

On choiest (ko, h, hz) t-p. bes raches du polynomes $\lambda^3 - h_2 \lambda^2 - h_n \lambda - h_0 = 50$ partie seelle négative.

La commande $\alpha = \alpha_c + k_0 \delta h + k_1 \delta h' + k_2 \delta h''$ permet alors de stabiliser l'erreur δh autour

de O, cad de stabiliser la trajectoire de stabiliser le système autour de la trajectoire de rédérence $h_c(\cdot)$.

Bo). Réinterprétang les données précédentes. Soit H = (h, h', h'') et x = (h, 0, v, w). L'état x est solution d'un système $\dot{x} = Ax + Bu$ et en a construit on \dot{x} un observateur \dot{x} , $\dot{x} = A\hat{x} + Bu + L C(\hat{x} - x)$ de façon à ce que \dot{x} erreur d'observation $\Delta x = \hat{x} - x$ soit solution d'une EDO agruptotiquement stable, 3 $\Delta x' = (A+LC) \Delta x.$

D'antre part, H est solution d'un systé me $H' = \overline{A}H + \overline{B} \propto (=) L''' = \propto$ dont la commande $\propto s'$ e'crit : $\alpha = \prod x + \sigma n$ (rappelons que $\dot{w} = s$) alors que $H = N \propto s$.

A une trajechaire de référence $h_c(\cdot)$ pour lu ou associe l'erneur $\delta H = H - (h_c, h'_c, h'_c)$ jet $\delta \alpha = \alpha - \alpha c$, qui sa his dont:

841 = A 54 + B 8x.

On a trouve on 39/ rune matrice K f-g, on prenant $E \propto = \kappa_c + K \delta H$, l'erreur δH est solution de $l' \in DO$ asymptotiquement stable:

8H' = (+ BK)8H.

La commande u correspondante vérifie: $6u = x_c - 71z + K(H - H_c).$

Choisissons maintenant une commande un de la laçon suivante:

 $\sigma u = \alpha_c - \pi \hat{\alpha} + \kappa (\hat{H} - H_c)$ où $\hat{H} = N\hat{\alpha}$.

Avec les notations précédentes, on a:

 $\delta \alpha = K(\hat{H} - H_c) - \Pi \Delta z = K SH + K N \Delta z - \Pi \Delta z$ $= K SH + \Pi \Delta z \quad \text{an} \quad \tilde{\Pi} = K N - \Pi$

(3)

On a ainsi les équalisms: $\begin{cases}
\delta H' = (\overline{A} + \overline{B}K) \delta H + \overline{B} \widetilde{M} \Delta x \\
\Delta x' = (A + LC) \Delta z
\end{cases}$

 $\begin{pmatrix} \Delta x \end{pmatrix} = \begin{pmatrix} \overline{A} + \overline{g} \, K & \overline{g} \, \overline{\Omega} \\ O & A+ LC \end{pmatrix} \begin{pmatrix} \overline{S}H \\ \overline{D} \alpha \end{pmatrix}$

pui est une épuation ensymptoliquement stable les uneurs s'et et de tendent donc vers 0, a pri assure la stabilisation autour de la trajectoire de référence et la convergence de l'observateur.

• • • • •