MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

minden vizsgázó számára

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI HIVATAL

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas-hatóan** javítsa ki.
- A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott pontszám a mellette levő téglalapba kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányjel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha az útmutatóban egy **megjegyzés** zárójelben szerepel, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. **Mértékegység hiánya esetén** csak akkor jár pontlevonás, ha a hiányzó mértékegység válaszban vagy mértékegység-átváltásban szerepel (zárójel nélkül).
- 7. Egy feladatra adott többféle megoldási próbálkozás közül **a vizsgázó által megjelölt változat értékelhető**. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 8. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 9. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 10. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 11. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül – a következő műveletek elvégzésére fogadható el: összeadás,

kivonás, szorzás, osztás, hatványozás, gyökvonás,
$$n!$$
, $\binom{n}{k}$ kiszámítása, a függvénytáb-

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek bizonyos statisztikai mutatók kiszámítására (átlag, szórás) abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, azokért nem jár pont.

- 12. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 13. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 14. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 15. A vizsgafeladatsor II. B részében kitűzött 3 feladat közül csak 2 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

I.

1.		
$(21\ 000 \cdot 0.8 =) 16\ 800\ Ft$	2 pont	
Összesen:	2 pont	

2.		
$\left(\frac{7\cdot 6}{2}\right) = 21$	2 pont	
Összesen:	2 pont	

3.		
$\overline{B} = \{1; 2; 4; 5; 7; 8\}$	1 pont	
$A \setminus B = \{2; 5; 7\}$	2 pont	
Összesen:	3 pont	

4.		
A vizsgázó az $x \mapsto \sqrt{x}$ függvény grafikonjából kiindulva,	1 pont	<i>y</i>
eltolta azt az y tengely mentén 1 egységgel negatív irányba.	1 pont	
Összesen:	2 pont	

5.		
$420 = 2^2 \cdot 3 \cdot 5 \cdot 7$	1 pont	
$504 = 2^3 \cdot 3^2 \cdot 7$	1 pont	
A két szám legnagyobb közös osztója: $2^2 \cdot 3 \cdot 7 = 84$.	1 pont	
Összesen:	3 pont	

6.		
$\overrightarrow{AB}(1;-5)$	2 pont	
Összesen:	2 pont	

7.		
$q = \frac{9}{6} = 1,5$	1 pont	
$a_1 = (6:1,5=)4$	1 pont	
$S_6 = 4 \cdot \frac{1,5^6 - 1}{1,5 - 1} = 83,125.$	2 pont	4+6+9+13,5+20,25+ +30,375 = 83,125
Összesen:	4 pont	

$(4 \cdot 3 =) 60$ 2 po	nt
Összesen: 2 po	nt

9.		
B, D	2 pont	Egy helyes válasz, vagy két helyes és egy hibás válasz esetén 1 pont, min- den más esetben 0 pont jár.
Összesen:	2 pont	

10.		
(-3;5)	2 pont	
Összesen:	2 pont	

11.		
$(r = \sqrt[3]{\frac{1989}{\pi} \cdot \frac{3}{4}} \approx) 7.8 \text{ (cm)}$	2 pont	
Összesen:	2 pont	

12. első megoldás		
Két kockával 36-féle számpárt dobhatunk (összes eset száma).	1 pont	pk 1 2 3 4 5 6
A kedvező esetek (kék; piros): (6; 1), (6; 2), (6; 3), (6; 4), (6; 5), (5; 1), (5; 2), (5; 3), (5; 4), (4; 1), (4; 2), (4; 3), (3; 1), (3; 2), (2; 1), összesen 15.	2 pont	3 4 5 6
A kérdéses valószínűség $\frac{15}{36} \approx 0,417.$	1 pont	
Összesen:	4 pont	

12. második megoldás		
Két kockával 36-féle számpárt dobhatunk (összes eset száma).	1 pont	
Ezek között 6 eset van, amikor két egyforma számot		
dobunk, így $\frac{36-6}{2}$ = 15 olyan eset van, amikor a kék	2 pont	
dobás nagyobb, mint a piros.		
A kérdéses valószínűség $\frac{15}{36} \approx 0,417.$	1 pont	
Összesen:	4 pont	

II. A

13. a)		
$(f(1) = (1+3)^2 - 2,25 =) 13,75$	2 pont	
Összesen:	2 pont	

13. b)		
$(x+3)^2 - 2,25 = 0$	1 pont	x+3 = 1,5
$x^2 + 6x + 6,75 = 0$	1 pont	$x + 3 = 1,5 \ vagy$ x + 3 = -1,5
x = -1.5 és $x = -4.5$.	2 pont	
Összesen:	4 pont	

13. c)		
Az f függvénynek az $x = -3$ helyen minimuma van, melynek értéke $-2,25$.	1-1 pont	
Összesen:	3 pont	

13. d)		
Az állítás hamis.	1 pont	
Helyes indoklás (pl.: az f függvény minimuma –2,25).	1 pont	
Összesen:	2 pont	

14. a) első megoldás		
A feladat szövege alapján: $AE = EC = x$, $EB = 12 - x$.	2 pont	EB = y, $AE = EC = 12 - y$
Az <i>EBC</i> derékszögű háromszögben a Pitagorasz-tétel alapján: $(12-x)^2 + 6^2 = x^2$.	1 pont	$y^2 + 6^2 = (12 - y)^2$
180 = 24x	1 pont	y = 4.5
x = 7.5 cm valóban.	1 pont	
Összesen:	5 pont	

14. a) második megoldás		
Ha $AE = 7.5$ cm, akkor $EB = 12 - 7.5 = 4.5$ cm.	1 pont	
Mivel $4,5^2 + 6^2 = 7,5^2$, ezért ekkor $EC = 7,5$ cm való-		
ban (tehát AECF négyszög valóban egy 7,5 cm oldalú	2 pont	
rombusz).		
Ha AE rövidebb (hosszabb) lenne, mint 7,5 cm,		
akkor EB hosszabb (rövidebb) lenne, mint 4,5 cm,		
így ekkor EC hosszabb (rövidebb) lenne, mint 7,5 cm,	2 pont	
tehát AECF nem lenne rombusz.	2 poin	
(Tehát a rombusz oldalhosszának az egyetlen lehetsé-		
ges értéke valóban 7,5 cm.)		
Összesen:	5 pont	

14. b)		
A rombusz A és C csúcsnál lévő α belső szöge egyenlő a BEC szöggel.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$\sin\alpha = \frac{6}{7.5}$	1 pont	A rombusz AC átlója felezi az α szöget, így $tg\frac{\alpha}{2} = \frac{6}{12}$.
Ebből $\alpha \approx 53,1^{\circ}$.	1 pont	
Az E és F csúcsnál lévő belső szögek nagysága (180° – 53,1° =) 126,9°.	1 pont	
Összesen:	4 pont	

14. c)		
A téglalap területe $12 \cdot 6 = 72 \text{ cm}^2$,	1 pont	$\frac{T_{\text{rombusz}}}{AE} = \frac{AE}{AE}$
a rombusz területe $7.5 \cdot 6 = 45 \text{ cm}^2$.	1 pont	$T_{ m t\acute{e}glalap}$ AB
$\frac{45}{72} = 0,625$	1 pont	$\frac{7,5}{12} = 0,625$
Így a rombusz területe 62,5%-a a téglalap területének.	1 pont	
Összesen:	4 pont	

Megjegyzés: Ha a vizsgázó megoldásában közelítő értékeket is használ, akkor ezért ne veszítsen pontot.

15. a)		
2022-től 2100-ig 78 év telik el,	1 pont	
$igy 8 \cdot 1,01^{78} \approx$	1 pont	
\approx 17,38 milliárd fő élne 2100 végén a Földön.	1 pont	
Összesen:	3 pont	

15. b)		
(Jelölje <i>n</i> a 2022 után eltelő évek számát.)	1 nont	
A feladat szövege alapján $8 \cdot 1,01^n = 12$.	1 pont	
$1,01^n = 1,5$	1 pont	
$n = \log_{1,01} 1.5 \left(= \frac{\lg 1.5}{\lg 1.01} \right) \approx 40.75$	2 pont	
Tehát (2022 + 41 =) 2063-ban érné el a Föld népessége a 12 milliárd főt.	1 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó évről évre (helyes kerekítéssel) kiszámolja a Föld népességét, és ez alapján helyes választ ad, akkor a teljes pontszám jár.

15. c) első megoldás		
$(2100 - 2022 = 78, \text{ igy})$ ha q -val jelöljük azt, hogy évről évre hányszorosára nő a népesség, akkor $8 \cdot q^{78} = 10{,}35$.	1 pont	
$q = \sqrt[78]{\frac{10,35}{8}} \approx 1,0033$	2 pont	
Évente kb. 0,33%-kal kellene növekednie a népességnek.	1 pont	
Összesen:	4 pont	

15. c) második megoldás		
(2100 - 2022 = 78, igy) ha p a növekedés százalékos		
értéke, akkor $8 \cdot \left(1 + \frac{p}{100}\right)^{78} = 10,35$.	2 pont	
$1 + \frac{p}{100} = \sqrt[78]{\frac{10,35}{8}}$	1 pont	
$p \approx 0.33$ (Tehát évente kb. 0.33%-kal kellene növekednie a népességnek.)	1 pont	
Összesen:	4 pont	

II. B

16. a) első megoldás		
Nem választotta a 16-os feladatot a vizsgázók 25%-a (6 fő), nem választotta a 17-es feladatot a vizsgázók 37,5%-a (9 fő).	2 pont	
Így a 18-ast (100 – 25 – 37,5 =) 37,5% (9 fő) nem választotta,	1 pont	A vizsgázóknak ez a (25 + 37,5 =) 62,5
azaz 15 fő, tehát a vizsgázók 62,5%-a választotta a 18-as feladatot.	1 pont	százaléka választotta a 18-as feladatot.
Összesen:	4 pont	

16. a) második megoldás		
Ha a 18-as feladatot választók százalékos aránya <i>x</i> ,		Ez a pont akkor is jár, ha
akkor a 75, a 62,5 és az <i>x</i> összeadásakor minden vizs-	1 pont	ez a gondolat csak a meg-
gázót kétszer számolunk.		oldásból derül ki.
Megoldandó az $75 + 62,5 + x = 200$ egyenlet,	2 pont	
amelyből $x = 62,5$, azaz a vizsgázók 62,5%-a válasz-	1 mant	
totta a 18-as feladatot.	1 pont	
Összesen:	4 pont	

16. b)		
Az osztályzatok átlaga: $\frac{2 \cdot 2 + 9 \cdot 3 + 6 \cdot 4 + 7 \cdot 5}{24} =$	1 pont	
= 3,75.	1 pont	
Összesen:	2 pont	

16. c)		
Az adatok módusza 3,	1 pont	
mediánja 4,	1 pont	
terjedelme 3.	1 pont	
Összesen:	3 pont	

16. d)		
Az egy diákhoz tartozó középponti szög $\frac{360^{\circ}}{24} = 15^{\circ}$.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Az egyes osztályzatokhoz tartozó középponti szögek nagysága: 2-es: 30°, 3-as: 135°, 4-es: 90°, 5-ös: 105°.	1 pont	

16. e)		
A két kettes osztályzatú dolgozatot mindenképpen kiválasztja.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A többi osztályzat esetében $\binom{9}{2} = 36$, $\binom{6}{2} = 15$,	2 mont	
illetve $\binom{7}{2}$ = 21 lehetőség van.	2 pont	
A megfelelő kiválasztások száma:	1 pont	
$36 \cdot 15 \cdot 21 = 11\ 340.$		
Összesen:	4 pont	

17. a) első megoldás		
A trapéz <i>D</i> -ből induló magasságának <i>T</i> talppontja az		
AB alapot egy $\left(\frac{24-12}{2}\right) = 6$ cm hosszú és egy		
(24 – 6 =) 18 cm hosszú szakaszra osztja.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 pont	
Az így keletkező <i>ATD</i> derékszögű háromszög egy szabályos háromszög fele, így a kérdéses szög valóban 60°-os.	2 pont	$\cos \alpha = \frac{6}{12} = \frac{1}{2},$ $\text{fgy } \alpha = 60^{\circ}.$
Összesen:	3 pont	

17. a) második megoldás		
A D csúcson keresztül párhuzamost húzunk a BC		
szárral, ami az AB alapot az E pontban metszi.		
Mivel az <i>EBCD</i> négyszög paralelogramma,		
ezért $EB = 12$ cm.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 pont	
Az AED háromszög minden oldala 12 cm hosszú, azaz a háromszög szabályos, így a kérdéses szög valóban 60°-os.	2 pont	
Összesen:	3 pont	

17. b) első megoldás		
Az ABD háromszögben a koszinusztétel alapján: $BD^2 = 24^2 + 12^2 - 2 \cdot 24 \cdot 12 \cdot \cos 60^{\circ},$	1 pont	A BCD háromszögben a koszinusztétel alapján: $BD^2 = 12^2 + 12^2 -$ $-2.12.12.\cos 120^\circ$.
amiből $BD = \sqrt{432} \approx 20.8$ cm.	2 pont	
Összesen:	3 pont	

17. b) második megoldás		
A trapéz DT magasságának hossza (például a Pitagorasz-tétel alapján): $\sqrt{108} = 6\sqrt{3} \approx 10,4$ cm.	1 pont	
A <i>DTB</i> háromszögben a Pitagorasz-tétel alapján: $BD^2 = 18^2 + \sqrt{108}^2 = 432,$	1 pont	
amiből $BD = \sqrt{432} \approx 20.8$ cm.	1 pont	
Összesen:	3 pont	

17. c)		
A keletkező test egy csonkakúp. A csonkakúp alapkörének sugara 12 cm, fedőkörének sugara 6 cm.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A csonkakúp magassága: $\sqrt{12^2 - 6^2} = \sqrt{108} \ (\approx 10,4) \text{ cm.}$	1 pont	
A csonkakúp térfogata: $V = \frac{\sqrt{108} \cdot \pi}{3} \cdot (12^2 + 12 \cdot 6 + 6^2) \approx 2742 \text{ cm}^3.$	2 pont	
Összesen:	4 pont	

17. d) első megoldás		
Az egyes sorokba kerülő szőlőtőkék darabszámai egy		Ez a pont akkor is jár, ha
olyan számtani sorozat egymást követő tagjai,	1 pont	ez a gondolat csak a meg-
amelynek első tagja 120, <i>n</i> -edik tagja 240.		oldásból derül ki.
A feladat szövege alapján $S_n = \frac{120 + 240}{2} \cdot n = 7380$,	1 pont	
amiből $n = 41 \ (\geq 20)$.	1 pont	
Ekkor $240 = 120 + (41 - 1) \cdot d$,	1 pont	
amiből $d = 3$.	1 pont	
Az első 20 sorba $S_{20} = \frac{2 \cdot 120 + 19 \cdot 3}{2} \cdot 20 = 2970 $ tőkét		$a_{20} = 120 + 19 \cdot 3 = 177$ $S_{20} = \frac{120 + 177}{2} \cdot 20 = 2970$
Az elso 20 sorba $S_{20} = \frac{1}{2} \cdot 20 = \frac{29}{0}$ toket	2 pont	g 120+177 20 2070
ültettek, ennyi tehát az olaszrizlingtőkék száma.	-	$S_{20} = {2} \cdot 20 = 2970$
Összesen:	7 pont	

17. d) második megoldás		
Az egyes sorokba kerülő szőlőtőkék darabszámai egy		Ez a pont akkor is jár, ha
olyan számtani sorozat egymást követő tagjai,	1 pont	ez a gondolat csak a meg-
amelynek első tagja 120, <i>n</i> -edik tagja 240.		oldásból derül ki.
Ha a sorozat differenciája $d \neq 0$, akkor a tagok		240 = 120 + (n-1)d
száma $n = \frac{240 - 120}{d} + 1$	1 pont	$d = \frac{120}{n-1} $ (mivel $n \neq 1$).
$S_n = \frac{2 \cdot 120 + \left(\frac{120}{d} + 1 - 1\right)d}{2} \cdot \left(\frac{120}{d} + 1\right) =$ $= 180 \cdot \left(\frac{120}{d} + 1\right) = 7380$	1 pont	$\frac{2 \cdot 120 + (n-1) \cdot \frac{120}{n-1}}{2} \cdot n =$ $= 180 \cdot n = 7380$
Ebből $d = 3$,	1 pont	n = 41
és $n = 41$ (≥ 20).	1 pont	d = 3
Az első 20 sorba $S_{20} = \frac{2 \cdot 120 + 19 \cdot 3}{2} \cdot 20 = 2970 $ tőkét	2 pont	
ültettek, ennyi tehát az olaszrizlingtőkék száma.		
Osszesen:	7 pont	

18. a)		
B D E	2 pont	
Összesen:	2 pont	

18. b)		
Egy négyszögöl $\frac{10000}{2780} \approx 3,597 \text{ m}^2,$	1 pont	
tehát egy öl $\sqrt{3,597} \approx 1,9$ méter.	2 pont	
Összesen:	3 pont	

18. c) első megoldás		
A 14 család közül a 12 nyertest $\binom{14}{12}$ = 91-féleképpen	2 pont	A 2 vesztest $\binom{14}{2}$ -féle-
lehet kiválasztani (összes eset száma).		képpen lehet kiválasztani.
Ha mindkét család nyer, akkor a többi 10 nyertest a többi 12 család közül $\binom{12}{10}$ = 66-féleképpen lehet kiválasztani (kedvező esetek száma).	2 pont	(12) olyan eset van, amikor a 2 vesztes család a többi 12 család közül kerül ki.
A kérdéses valószínűség $\frac{66}{91} \approx 0,725$.	1 pont	
Összesen:	5 pont	

18. c) második megoldás		
Rendezzük meg úgy a sorsolást, hogy 12 "nyert" és 2 "nem nyert" feliratú cédula közül húznak egyetegyet a családok. Feltehetjük, hogy a Kovács és a Szabó család húz először.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Annak valószínűsége, hogy a Kovács család nyer: $\frac{12}{14}$.	1 pont	
Annak valószínűsége, hogy miután a Kovács család nyert, a Szabó család is nyer: $\frac{11}{13}$.	1 pont	
A kérdéses valószínűség ezek szorzata, azaz $\frac{12}{14} \cdot \frac{11}{13} \approx 0,725.$	2 pont	
Összesen:	5 pont	

18. d)		
Jelölje (méterben) egy telek rövidebb oldalát a,		
hosszabb oldalát b. Ekkor a feladat szövege alapján:	2 4	
2a+4b=228	2 pont	
4a+2b=156		
Az első egyenletből $a = 114 - 2b$,	1 pont	Az első egyenlet kétszere- séből a második egyenle- tet kivonva:
amit a másodikba helyettesítve és a zárójelet	1 pont	6b = 300,
felbontva kapjuk, hogy $456 - 8b + 2b = 156$,	1 pont	0b = 300,
amiből $b = 50$ méter,	1 pont	
igy $a = (114 - 2.50 =) 14$ méter.	1 pont	
Egy telek területe $14 \cdot 50 = 700 \text{ m}^2$.	1 pont	
Összesen:	7 pont	