Math. - ES 2 - S2 - Epreuve 2

lundi 17 mai 2021 - Durée 2 h

EXERCICE 1

- 1. Soit $(\Omega, \mathscr{P}(\Omega), \mathbb{P})$ un espace probabilisé, G désigne une variable aléatoire réelle définie sur Ω . On suppose que G suit une loi géométrique de paramètre $p \in]0,1[$.
 - **a.** Que vaut $G(\Omega)$? Rappeler les valeurs de $\mathbb{P}(G=k)$ pour tout $k \in G(\Omega)$.
 - **b.** Rappeler les formules donnant l'espérance et la variance de G.

Dans la suite de l'exercice, on considère une urne contenant n boules noires et b boules blanches, avec $n, b \in \mathbb{N}^*$. Les boules sont supposées indiscernables au toucher.

- 2. On tire une boule au hasard dans l'urne.
 - **a.** Quelle est la probabilité p d'obtenir une boule noire?
 - **b.** Quelle est la probabilité q d'obtenir une boule blanche?

On effectue une suite infinie de tirages avec remise dans l'urne décrite précédemment. On suppose qu'on dispose d'un espace probabilisé $(\Omega, \mathscr{P}(\Omega), \mathbb{P})$ permettant d'étudier cette expérience aléatoire.

- **3.** On note N la variable aléatoire égale au rang d'apparition de la première boule noire et B la variable aléatoire égale au rang d'apparition de la première boule blanche.
 - **a.** Déterminer les lois de N et B.
 - **b.** Soit $k \in \mathbb{N}^*$. Calculer $\mathbb{P}((N = k) \cap (B = k))$. Les variables aléatoires N et B sont-elles indépendantes?
- 4. Soit $k \in \mathbb{N}^*$. On note N_k l'évènement "obtenir une boule noire au k^{eme} tirage" et B_k l'évènement "obtenir une boule blanche au k^{eme} tirage." On effectue à nouveau une suite infinie de tirages avec remise dans l'urne. On s'intéresse aux nombres de tirages successifs permettant d'obtenir deux changements de couleur dans les résultats. On obtient tout d'abord i boules successives d'une même couleur $(i \in \mathbb{N}^*)$, puis j boules successives de l'autre couleur $(j \in \mathbb{N}^*)$, puis une boule de la couleur initiale et on ne s'intéresse pas aux couleurs obtenues dans les tirages suivants.

La variable aléatoire X désigne le nombre de boules de la même couleur apparues en début de tirage, la variable aléatoire Y désigne le nombre de boules de la même couleur apparues en deuxième partie de tirage. On a $X(\Omega) = Y(\Omega) = \mathbb{N}^*$.

- **a.** Soit $(i, j) \in (\mathbb{N}^*)^2$. Déterminer $\mathbb{P}((X = i) \cap (Y = j))$.
- **b.** Déterminer la loi de X.
- c. Montrer que

$$\forall j \in \mathbb{N}^*, \ \mathbb{P}(Y=j) = p^2 q^{j-1} + q^2 p^{j-1}$$

- **d.** i. Montrer que X a une espérance et la calculer.
 - ii. Montrer que $\mathbb{E}(X) \geq 2$.
- e. Montrer que Y a une espérance et que $\mathbb{E}(Y) = 2$.
- **f.** Soit $n \in \mathbb{N}^*$. Vérifier que $\mathbb{P}((X = n) \cap (Y = n)) = (pq)^n$. En déduire $\mathbb{P}(X = Y)$.
- 5. On considère la variable aléatoire S = X + Y.
 - **a.** Que vaut $S(\Omega)$? Soit $k \in S(\Omega)$. Décrire l'évènement (S = k) à l'aide des évènements (X = i) et (Y = j).
 - **b.** Si $p = q = \frac{1}{2}$, déterminer $\mathbb{P}(S = k)$ en fonction de k.
 - **c.** Si $p \neq q$, déterminer $\mathbb{P}(S = k)$ en fonction de k.

EXERCICE 2

L'objectif de cet exercice est de démontrer la convergence de l'intégrale de Dirichlet $I = \int_0^{+\infty} \frac{\sin(t)}{t} dt$ et de calculer sa valeur.

On considère la fonction $f: [0, +\infty[\times]0, +\infty[\longrightarrow \mathbb{R}$ définie par

$$\forall (x,t) \in [0,+\infty[\times]0,+\infty[,\ f(x,t) = \frac{\sin(t)}{t}e^{-xt}$$

ainsi que la fonction $u \; : \; [0,+\infty[\times]0,+\infty[\longrightarrow \mathbb{R}$ définie par

$$\forall (x,y) \in [0, +\infty[\times]0, +\infty[, \ u(x,t) = -\frac{x\sin(t) + \cos(t)}{1 + x^2} e^{-xt}$$

Dans l'exercice, on pourra utiliser sans la démontrer l'inégalité $|\sin(t)| \le |t|$ valable pour $t \in \mathbb{R}$.

1. Préliminaires

- **a.** Soit x > 0. Montrer que la fonction $t \mapsto f(x,t)$ est intégrable sur $]0,+\infty[$.
- b. En utilisant par exemple une intégration par parties, montrer que l'intégrale I est convergente si, et seulement si, l'intégrale $\int_0^{+\infty} \frac{1-\cos(t)}{t^2} \mathrm{d}t$ est convergente. En déduire que l'intégrale I est convergente.
- c. Soit $x \ge 0$. Montrer que $t \mapsto u(x,t)$ est une primitive de la fonction $t \mapsto \sin(t)e^{-xt}$ sur $]0,+\infty[$.

Pour la suite de l'exercice, on définit la fonction $F \ : \ [0,+\infty[\longrightarrow \mathbb{R} \ par$

$$\forall x \in [0, +\infty[, F(x) = \int_{0}^{+\infty} f(x, t) dt$$

2. CALCUL DE F SUR $[0, +\infty[$

- **a.** Montrer que $|F(x)| \le \frac{1}{x}$ pour tout x > 0. En déduire la limite de F en $+\infty$.
- **b.** Soit a>0. Montrer que la fonction F est dérivable sur $[a,+\infty[$ et que l'on a

$$\forall x \in [a, +\infty] [F'(x)] = -\int_0^{+\infty} \sin(t) e^{-xt} dt$$

c. En déduire que la fonction F est dérivable sur $]0, +\infty[$ et déterminer une expression de F'(x) pour tout $x \in]0, +\infty[$. Conclure que

$$\forall x > 0, \ F(x) = \frac{\pi}{2} - \operatorname{Arctan}(x)$$

3. Conclusion

On considère les fonctions $F_1:[0,1]\longrightarrow \mathbb{R}$ et $F_2:[0,1]\longrightarrow \mathbb{R}$ définies par

$$\forall x \in [0, 1], \ F_1(x) = \int_0^1 f(x, t) dt \quad \text{et} \quad F_2(x) = \int_1^{+\infty} f(x, t) dt$$

- **a.** Montrer que la fonction F_1 est continue sur [0,1].
- **b.** Soit $x \in [0,1]$. Montrer que la fonction $t \mapsto \frac{u(x,t)}{t^2}$ est intégrable sur $[1,+\infty[$ et que

$$F_2(x) = \frac{x\sin(1) + \cos(1)}{1 + x^2} e^{-x} + \int_1^{+\infty} \frac{u(x,t)}{t^2} dt$$

- **c.** Montrer que la fonction F_2 est continue sur [0,1].
- **d.** En déduire que la fonction F est continue en 0, puis déterminer la valeur de l'intégrale I.

Fin de l'énoncé