# **Contents**

| l  | Green's Function Formalism                                    | 1  |
|----|---------------------------------------------------------------|----|
|    | I.1 Perturbation theory, Dyson equation                       | 3  |
|    | I.2 Nambu-Gorkov GF                                           | 3  |
| П  | Superconductivity                                             | 5  |
|    | II.0.1 Extracting $T_{\rm C}$                                 | 5  |
| Ш  | d-wave Superconductivity                                      | 7  |
|    | III.1 BCS theory with momentum dependent coupling             | 7  |
|    | III.2 Anisotropic pairing                                     | 8  |
|    | III.2.1 Hubbard interaction                                   | 8  |
|    | III.2.2 Magnetic interaction                                  | 11 |
|    | III.3 d-wave superconductivity in two dimensions - cuprates   | 11 |
| IV | Coherence length and penetration depth in strongly correlated |    |
|    | superconductors                                               | 17 |
|    | IV.1 Ginzburg-Landau description                              | 17 |
|    | IV.2 Phase transitions and broken symmetry                    | 18 |
|    | IV.2.1 Order parameter concept                                | 18 |
|    | IV.2.2 Landau theory                                          | 18 |
|    | IV.2.3 Ginzburg-Landau theory I: Ising order                  | 19 |
|    | IV.2.4 Ginzburg-Landau theory II: complex order and superflow | 19 |
|    | IV.2.5 Ginzburg-Landau theory III: charged fields             | 20 |
| V  | Dynamical Mean-Field Theory                                   | 21 |
| VI | Hubbard model                                                 | 23 |
| VI | INoninteracting EG-X Model and structure                      | 25 |
|    | VII 1 Lattice Structure of Graphene                           | 25 |

ii Contents

| List of Symbols                                                | 45 |
|----------------------------------------------------------------|----|
| Bibliography                                                   | 43 |
| IX.1.2 Computational Implementation                            | 42 |
| IX.1.1 Self-consistent calculation of the superconducting gaps | 37 |
| IX.1 BCS Theory on the EG-X Model                              | 37 |
| IX EG-X Model - Trying BCS theory                              | 37 |
| VIII.1.2BdG Hamiltonian in band basis                          | 35 |
| VIII.1.1BdG Hamiltonian                                        | 33 |
| VIII.BdG Hamiltonian and free energy                           | 33 |
| VIIEG-X Model with interactions                                | 33 |
| VII.2.2 Band structure of the non-interacting EG-X model       | 29 |
| VII.2.1 Review: Hubbard model on the honeycomb lattice $$      | 29 |
| VII.2EG-X Model                                                | 28 |
|                                                                |    |

# **Todo list**

| Show GFs can be related to observables                                            | 2  |
|-----------------------------------------------------------------------------------|----|
| How to resolve ambiguity at borders of integral                                   | 2  |
| single-particle Matsubara GF                                                      | 3  |
| equations of motion for Matsubara GF                                              | 3  |
| Short introduction to diagrams                                                    | 3  |
| Self energy                                                                       | 3  |
| Dyson equation                                                                    | 3  |
| More general introduction into NG GFs, how they look like, what they describe etc | 3  |
| Sources for these?                                                                | 3  |
| How to get quasiparticle weight?                                                  | 3  |
| Find a source for that! Phase transitions                                         | 5  |
| Point out specific difference to BCS theory!                                      | 7  |
| What is the $E_k$ ?                                                               | 7  |
| Why large gap?                                                                    | 8  |
| Connection from gap to transition temperature?                                    | 8  |
| Are there more?                                                                   | 8  |
| Proper implementation of normal-ordering                                          | 8  |
| Hubbard-like would be $V_q = U$ ?                                                 | 8  |
| Show why the third line works!                                                    | 9  |
| Why do we define spatial parity? Only symmetrised wavefunctions physical?         | 9  |
| How exactly?                                                                      | 10 |

iv Contents

| studied superconductors are mostly singlet, pure triplet not found?  Thats why we split it up! Paper for that?         | 10 |
|------------------------------------------------------------------------------------------------------------------------|----|
| explain last step here                                                                                                 | 10 |
| vector arrows over the psi (or bold)                                                                                   | 10 |
| How can we access that information in experiment?                                                                      | 10 |
| Source for that?                                                                                                       | 10 |
| A bit more information on history, structure etc                                                                       | 11 |
| How doped?                                                                                                             | 11 |
| Why can we only treat BCS when we also have Fermi liquid?                                                              | 11 |
| Do we just treat this case in the following?                                                                           | 11 |
| $V_q^{singlet}$ as well?                                                                                               | 12 |
| Put table here as well?                                                                                                | 12 |
| Calculate that fully                                                                                                   | 12 |
| Why is the symmetry preserved? And why are the symmetries of the pair conserved? Are these the same as of $\Delta_k$ ? | 12 |
| Calculate that                                                                                                         | 13 |
| Can an s-wave condensate also appear? How is it decided what symmetry the condensate has?                              | 13 |
| What is the relationship between gap and interaction? aka where does this equation come from?                          | 13 |
| What quasiparticle?                                                                                                    | 13 |
| What exactly is shown in the figure?                                                                                   | 14 |
| What is the exact dispersion?                                                                                          | 14 |
| How exactly typical? $l=2$ ?                                                                                           | 14 |
| Visualise that somehow?                                                                                                | 14 |
| How does the DOS compare with real materials? Do we have the V-shaped structure?                                       | 14 |
| Put in source                                                                                                          | 17 |
| What does that mean? More details on FFLO theory                                                                       | 17 |

<u>Contents</u> v

| Fill in equation                                                                                               | 17 |
|----------------------------------------------------------------------------------------------------------------|----|
| More details on GL theory in general                                                                           | 17 |
| Fill in equation                                                                                               | 17 |
| This works also for phase transitions not dependent of temperatures, so e.g. in pressures?                     | 18 |
| Short introduction for one-component order parameter, so the connection to complex order parameters gets clear | 19 |
| What exactly are field operators again?                                                                        | 19 |
| More info on that? Does that come later in chapter?                                                            | 19 |
| Here: rest of notes from Goodnotes                                                                             | 20 |
| Coherent states/Interpretation of states/Off-diagonal long-range order                                         | 20 |
| Here: particle-current operator, especially for coherent state, connection with phase twist                    | 20 |
| Here: Meissner effect, etc                                                                                     | 20 |
| Spin-orbit coupling, drop second spin index?                                                                   | 28 |
| Write review for Hubbard model on the honeycomb lattice                                                        | 29 |
| Does that make sense?                                                                                          | 33 |

# I Green's Function Formalism

Following [Bruus\_Flensberg\_2004]

Green's functions: method to encode influence of many-body effects on propagation of particles in a system.

Have different kinds of Green's functions, for example the retarded Green's function:

$$G^{R}(\mathbf{r}\sigma t, \mathbf{r}'\sigma't') = -i\Theta(t - t') \langle \{c_{\mathbf{r}\sigma}(t), c_{\mathbf{r}\sigma}^{\dagger}(t')\} \rangle$$
 (I.1)

They give the amplitude of a particle inserted at point  $\mathbf{r}'$  at time t' to propagate to position  $\mathbf{r}$  at time t. For time-independent Hamiltonians and systems in equilibrium, the GFs only depend on time differences:

$$G^{R}(\mathbf{r}\sigma t, \mathbf{r}'\sigma't') = G^{R}(\mathbf{r}\sigma, \mathbf{r}'\sigma', t - t')$$
(I.2)

So we can take t' = 0 and consider t as the only free variable:

$$G^{R}(\mathbf{r}\sigma, \mathbf{r}'\sigma', t) = -i\Theta(t) \langle \{c_{\mathbf{r}\sigma}(t), c_{\mathbf{r}\sigma}^{\dagger}(0)\} \rangle$$
 (I.3)

In a translation invariant system: can use  $\mathbf{k}$  as a natural basis set:

$$G^{R}(\mathbf{k}, \sigma, \sigma' t) = -i\Theta(t - t') \langle \{c_{\mathbf{k}\sigma}(t), c_{\mathbf{k}\sigma'}^{\dagger}(0)\} \rangle$$
 (I.4)

Define Fourier-transform:

$$G^{R}(\mathbf{k}, \sigma, \sigma', \omega) = \int_{-\infty}^{\infty} dt G^{R}(\mathbf{k}, \sigma, \sigma' t)$$
 (I.5)

Can define the spectral function from this:

$$A(\mathbf{k}\sigma,\omega) = -2\Im G^R(\mathbf{k}\sigma,\omega) \tag{I.6}$$

Looking at the diagonal elements of  $G^R$  here. The spectral function can be thought of as the energy resolution of a particle with energy  $\omega$ . This mean,

2

for non-interacting systems, the spectral function is a delta-function around the single-particle energies:

$$A_0(\mathbf{k}\sigma,\omega) = 2\pi\delta(\omega - \epsilon_{\mathbf{k}\sigma}) \tag{I.7}$$

Show GFs can be related to observables For interacting systems this is not true, but A can still be peaked.

Mathematical technique to calculate retarded GFs involves defining GFs on imaginary times  $\tau$ :

$$t \to -i\tau$$
 (I.8)

where  $\tau$  is real and has the dimension time. This enables the simultaneous expansion of exponential  $e^{-\beta H}$  coming from the thermodynamic average and  $e^{-\mathrm{i}Ht}$  coming from the time evolution of operators.

Define imaginary time/Matsubara GF  $\mathcal{C}_{AB}(\tau,0)$ :

$$C_{AB}(\tau,0) = -\langle T_{\tau}(A(\tau)B(0))\rangle \tag{I.9}$$

with time-ordering operator in imaginary time:

$$T_{\tau}(A(\tau)B(\tau')) = \Theta(\tau - \tau')A(\tau)B(\tau') \pm \Theta(\tau' - \tau)B(\tau')A(\tau)$$
 (I.10)

so that operators with later 'times' go to the left.

Can prove from properties of Matsubara GF, that they are only defined for

$$-\beta < \tau < \beta \tag{I.11}$$

Due to this, the Fourier transform of the Matsubara GF is defined on discrete values:

$$C_{AB}(i\omega_n) = \int_0^\beta d\tau \tag{I.12}$$

with fermionic/bosonic Matsubara frequencies

$$\omega_n = \begin{cases} \frac{2n\pi}{\beta} & \text{for bosons} \\ \frac{(2n+1)\pi}{\beta} & \text{for fermions} \end{cases}$$
 (I.13)

How to resolve ambiguity at borders of integral

It turns out that Matsubara GFs and retarded GFs can be generated from a common function  $\mathcal{C}_{AB}(z)$  that is defined on the entire complex plane except for the real axis. So we can get the retarded GF  $\mathcal{C}_{AB}^R(\omega)$  by analytic continuation:

$$C_{AB}^{R}(\omega) = C_{AB}(i\omega_n \to \omega + i\eta)$$
 (I.14)

So in particular the extrapolation of the Matsubara GF to zero is proportional to the density of states at the chemical potential. Gapped: density is zero (Matsubara GF goes to 0), metal: density is finite (Matsubara GF goes to finite value) [Bruus\_Flensberg\_2004].

# I.1 Perturbation theory, Dyson equation

Dyson equation:

$$\mathcal{G}_{\sigma}(\mathbf{k}, i\omega_n) = \frac{\mathcal{G}_{\sigma}^0(\mathbf{k}, i\omega_n)}{1 - \mathcal{G}_{\sigma}^0(\mathbf{k}, i\omega_n) \Sigma_{\sigma}(\mathbf{k}, i\omega_n)} = \frac{1}{i\omega_n - \xi_{\mathbf{k} - \Sigma_{\sigma}(\mathbf{k}, i\omega_n)}}$$
(I.15)

# I.2 Nambu-Gorkov GF

Introduction following [1, ch. 14.7]

Order parameter can be chosen as the anomalous GF:

$$\Psi = F^{\text{loc}}(\tau = 0^-) \tag{I.16}$$

or the superconducting gap

$$\Delta = Z\Sigma^{\text{AN}} \tag{I.17}$$

that can be calculated from the anomalous self-energy  $\Sigma^{\rm AN}$  and quasiparticle weight Z

single-particle Matsubara GF

equations of motion for Matsubara GF

Short introduction to diagrams

Self energy

Dyson equation

More general introduction into NG GFs, how they look like, what they describe etc.

Sources for these?

How to get quasiparticle weight?

# **II Superconductivity**

# II.0.1 Extracting $T_{\rm C}$

From Niklas

Übrigens: Typische Varianten, um 'sauber(er)' Tc zu bestimmen, ist  $|OP|^2$  gegen T aufzutragen, da das (als Phasenübergang 2. Ordnung) proportional zu T-Tc ist. Heißt, man kann Tc dann mittels linearem Fit finden - ist leider auch nicht immer der einfachste Weg, weil der Bereich, in dem diese lineare Näherung prinzipiell sehr klein um Tc herum sein kann. Aber pimal-Daumen Abschätzungen gehen damit ganz gut. Oder man macht es wie unten beschrieben mit einer daraus abgeleiteten Formel.

Find a source for that! Phase transitions

in the superconducting region in Fig. 2A. To estimate  $T_c$ , we assume that the order parameter as a function of temperature behaves like  $P_{SC}(T) \propto \sqrt{T_c - T}$  for  $T \lesssim T_c$ . We pick the highest and the second highest temperatures ( $T_1$  and  $T_2$ , respectively), which give stable superconducting solutions ( $P_{SC} \gtrsim 0.01$ ). Then,  $T_c$  is determined by

$$T_{\rm c} = T_1 + (T_1 - T_2) \frac{P_{\rm SC}^2(T_1)}{P_{\rm SC}^2(T_2) - P_{\rm SC}^2(T_1)}$$
 (S4)

Figure II.1: Formula for extracting  $T_{\rm C}$ 

# III d-wave Superconductivity

Source: Coleman\_2015 - Coleman\_2015 [Coleman\_2015]

# III.1 BCS theory with momentum dependent coupling

Starting point is a BCS-Hamiltonian with momentum-dependent coupling term  $V_{\mathbf{k},\mathbf{k}'}$ :

$$H = \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow} \tag{III.1}$$

The original idea by Bardeen, Cooper and Schrieffer uses the coupling

$$V_{\mathbf{k},\mathbf{k}'} = \begin{cases} -\frac{g_0}{V} , & |\epsilon_{\mathbf{k}}| < \omega_D \\ 0 \end{cases}$$
 (III.2)

Then similar process as for BCS theory without the momentum-dependent term (Hubbard-Stratonovich decoupling, minimization of mean-field free energy). Gives self-consistent equation for the gap function: Point out specific difference to BCS theory!

$$\Delta_{\mathbf{k}} = -\sum_{\mathbf{k'}} V_{\mathbf{k},\mathbf{k'}} \frac{\Delta_{\mathbf{k'}}}{2E_{\mathbf{k'}}} \tanh\left(\frac{\beta E_{\mathbf{k}}}{2}\right)$$
(III.3)

or at T=0:

$$\Delta_{\mathbf{k}} = -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \frac{\Delta_{\mathbf{k}'}}{2E_{\mathbf{k}'}} \tag{III.4}$$

Important note: there is a minus sign in the front! If  $V_{\mathbf{k},\mathbf{k}'} < 0$  (a uniformly attractive interaction), the equation is fulfilled by a uniformly positive gap function. In general  $V_{\mathbf{k},\mathbf{k}'}$  contains repulsive (positive) terms (in particula stemming from the Coulomb interaction), so the gap function cannot be

What is the  $E_k$ ?

uniformly positive, it acquires nodes in momentum space. Most satisfying solutions fulfill:

$$\operatorname{sign}(\Delta_{\mathbf{k}}) = -\operatorname{sign}(V_{\mathbf{k},\mathbf{k}'})\operatorname{sign}(\Delta_{\mathbf{k}'}) \tag{III.5}$$

So for an attractive interaction we have:

$$sign(\Delta_{\mathbf{k}}) = -(-1)sign(\Delta_{\mathbf{k}'})$$
(III.6)

So areas in phase space linked by an attractive interaction have the same sign (and areas linked by repulsive interaction have opposite signs)! Solutions like this have the largest gaps and thus the largest mean-field transition temperature .

Why large gap?

Connection from gap to transition temperature?

Are there more?

#### Two cases:

- Electron-phonon superconductors: interaction is repulsive at high energies,  $\Delta_k$  is largely isotropic in momentum space, but changes sign at  $\approx$  Debye frequency
- Anisotropic superconductors:  $\Delta_k$  is strongly momentum-dependent, acquires nodes in momentum space

The last mechanism is at work in heavy-fermion, high-temperature cuprate and iron-based superconductors.

# III.2 Anisotropic pairing

#### III.2.1 Hubbard interaction

The goal in this section is to derive a BCS-like Hamiltonian with a term

$$V_{\mathbf{k},\mathbf{k}'}\Psi_{\mathbf{k}}^{\dagger}\Psi_{\mathbf{k}'} \tag{III.7}$$

We start from a Hubbard-like interaction term

$$V = \sum_{\mathbf{q}} V_{\mathbf{q}} : \rho_{-\mathbf{q}} \rho_{\mathbf{q}} := \frac{1}{2} \sum_{\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{q}, \sigma, \sigma'} V_{\mathbf{q}} c_{\mathbf{k}_{1} + \mathbf{q}\sigma}^{\dagger} c_{\mathbf{k}_{2} - \mathbf{q}\sigma'}^{\dagger} c_{\mathbf{k}_{2}\sigma'} c_{\mathbf{k}_{1}\sigma}$$
(III.8)

Proper implementation of normalordering

Hubbard-like would be  $V_q = U$ ?

Cooper pairs have zero total momentum and the pairing potential is determined by the interaction on them, so we have

$$\mathbf{k}_1 + \mathbf{k}_2 = 0 \implies \mathbf{k}_1 = -\mathbf{k}_2 -: \mathbf{k}' \tag{III.9}$$

$$\mathbf{k}_1 + \mathbf{q} = -(\mathbf{k}_2 - \mathbf{q}) -: \mathbf{k} \implies \mathbf{k}' + \mathbf{q} = \mathbf{k} \implies \mathbf{q} = \mathbf{k} - \mathbf{k}'$$
 (III.10)

and we can split up the interaction term

Show why the third line works!

$$V_{\text{BCS}} = \frac{1}{2} \sum_{\mathbf{k} \, \mathbf{k}' \, \sigma \, \sigma'} V_{\mathbf{k} - \mathbf{k}'} c_{\mathbf{k}\sigma}^{\dagger} c_{-\mathbf{k}\sigma'}^{\dagger} c_{-\mathbf{k}'\sigma'} c_{\mathbf{k}'\sigma}$$
(III.11)

$$=\frac{1}{2}\sum_{\mathbf{k},\mathbf{k'}}V_{\mathbf{k}-\mathbf{k'}}c_{\mathbf{k}\uparrow}^{\dagger}c_{-\mathbf{k}\downarrow}^{\dagger}c_{-\mathbf{k'}\downarrow}c_{\mathbf{k'}\uparrow} \qquad \left(=\frac{1}{2}V_{\mathrm{BCS}}^{\uparrow\downarrow}\right) \tag{III.12}$$

$$+\frac{1}{2}\sum_{\mathbf{k},\mathbf{k'}}V_{\mathbf{k}-\mathbf{k'}}c_{\mathbf{k}\downarrow}^{\dagger}c_{-\mathbf{k}\uparrow}^{\dagger}c_{-\mathbf{k'}\uparrow}c_{\mathbf{k'}\downarrow} \qquad \left(=\frac{1}{2}V_{\mathrm{BCS}}^{\downarrow\uparrow}=\frac{1}{2}V_{\mathrm{BCS}}^{\uparrow\downarrow}\right) \quad (\mathrm{III.13})$$

$$+\frac{1}{2}\sum_{\mathbf{k},\mathbf{k}'}V_{\mathbf{k}-\mathbf{k}'}c_{\mathbf{k}\uparrow}^{\dagger}c_{-\mathbf{k}\uparrow}^{\dagger}c_{-\mathbf{k}'\uparrow}c_{\mathbf{k}'\uparrow} \qquad \left(=V_{\mathrm{BCS}}^{\uparrow\uparrow}\right) \tag{III.14}$$

$$+\frac{1}{2}\sum_{\mathbf{k},\mathbf{k'}}V_{\mathbf{k}-\mathbf{k'}}c_{\mathbf{k}\downarrow}^{\dagger}c_{-\mathbf{k}\downarrow}^{\dagger}c_{-\mathbf{k'}\downarrow}c_{\mathbf{k'}\downarrow} \qquad \left(=V_{\mathrm{BCS}}^{\downarrow\downarrow}\right) \tag{III.15}$$

$$=V_{\rm BCS}^{\uparrow\downarrow} + V_{\rm BCS}^{\uparrow\uparrow} + V_{\rm BCS}^{\downarrow\downarrow} \tag{III.16}$$

First we treat  $V_{\rm BCS}^{\uparrow\downarrow}$ . Pair of opposite spins are neither single nor triplet, because they are not appropriately symmetrised. If we have the pair wavefunction

$$F(\mathbf{k})_{\alpha\beta} = \langle \mathbf{k}\alpha, -\mathbf{k}\beta | |\mathbf{k}\rho\rangle \tag{III.17}$$

We define spatial parity of this wavefunction:

$$F(-\mathbf{k})_{\alpha\beta} = PF(\mathbf{k})_{\alpha\beta} \tag{III.18}$$

as well as the spin parity:

$$F(\mathbf{k})_{\beta\alpha} = XF(\mathbf{k})_{\alpha\beta} ,$$
 (III.19)

where we define singlets (X = +1) and triplets (X = -1). The join application of XP is an exchange of fermions, so it should have an eigenvalue -1. So we have

Why do we define spatial parity? Only symmetrised wavefunctions physical?

- even-parity pairs,  $P=+1 \implies X=-1$ , spin singlets, (X,P)=(+,-)
- odd-parity pairs,  $P = -1 \implies X = +1$ , spin triplets, (X, P) = (-, +)

We split up the interaction into the symmetric and asymmetric parts:

$$V_{\text{BCS}} = \sum_{\mathbf{k}, \mathbf{k'}} \left( \frac{V_{\mathbf{k} - \mathbf{k'}} + V_{\mathbf{k} + \mathbf{k'}}}{2} + \frac{V_{\mathbf{k} - \mathbf{k'}} - V_{\mathbf{k} + \mathbf{k'}}}{2} \right) \Psi_{\mathbf{k}}^{\dagger} \Psi_{\mathbf{k'}}$$
(III.20)

$$:- \left( V_{\mathbf{k},\mathbf{k}'}^S + V_{\mathbf{k},\mathbf{k}'}^T \right) \Psi_{\mathbf{k}}^{\dagger} \Psi_{\mathbf{k}'} , \qquad (III.21)$$

where we have defined the BCS pairing interaction in the singlet and triplet channel:

$$V_{\mathbf{k},\mathbf{k}'}^{S,T} = \frac{1}{2} \left( V_{\mathbf{k}-\mathbf{k}'} \pm V_{\mathbf{k}+\mathbf{k}'} \right)$$
 (III.22)

explain last step here

How exactly?

studied supercon-

ductors are mostly singlet, pure triplet

not found? Thats why we split it up!

Paper for that?

The singlet channel is even in  $\mathbf{k}, \mathbf{k}'$ :

$$V_{-\mathbf{k},-\mathbf{k}'}^{S} = \frac{1}{2} \left( V_{-\mathbf{k}+\mathbf{k}'} \pm V_{-\mathbf{k}-\mathbf{k}'} \right) = \frac{1}{2} \left( V_{-(\mathbf{k}-\mathbf{k}')} \pm V_{-(\mathbf{k}+\mathbf{k}')} \right) = \frac{1}{2} \left( V_{\mathbf{k}-\mathbf{k}'} \pm V_{\mathbf{k}+\mathbf{k}'} \right) ,$$
(III.23)

while the triplet channel is odd in  $\mathbf{k}, \mathbf{k}'$ . In the sum:

With everything we write the unequal spin pairing as:

$$V_{\text{BCS}}^{\uparrow\downarrow} = \frac{1}{4} \sum_{\mathbf{k}\mathbf{k}'} \left[ V_{\mathbf{k},\mathbf{k}'}^S \Psi_{\mathbf{k}}^{S\dagger} \Psi_{\mathbf{k}'}^S + V_{\mathbf{k},\mathbf{k}'}^T \Psi_{\mathbf{k}}^{T\dagger} \Psi_{\mathbf{k}'}^T \right]$$
(III.24)

$$= \sum_{\mathbf{k}\mathbf{k}' \in \frac{1}{2} \text{BZ}} \left[ V_{\mathbf{k},\mathbf{k}'}^S \Psi_{\mathbf{k}}^{S\dagger} \Psi_{\mathbf{k}'}^S + V_{\mathbf{k},\mathbf{k}'}^T \Psi_{\mathbf{k}}^{T\dagger} \Psi_{\mathbf{k}'}^T \right]$$
(III.25)

The equal spin pairing also includes triplet pairing (these are wrapped up in the vectors ) and all in all the BCS pairing potential is:

$$V_{\text{BCS}} = \sum_{\mathbf{k}\mathbf{k}' \in \frac{1}{2} \text{BZ}} \left[ V_{\mathbf{k},\mathbf{k}'}^S \Psi_{\mathbf{k}}^{S\dagger} \Psi_{\mathbf{k}'}^S + V_{\mathbf{k},\mathbf{k}'}^T * \Psi_{\mathbf{k}}^{T\dagger} \cdot * \Psi_{\mathbf{k}'}^T \right]$$
(III.26)

How can we access that information in experiment?

vector arrows over

the psi (or bold)

In real materials we mostly see singlet pairing, in this case we can just write:

$$V_{\text{BCS}} = \sum_{\mathbf{k}\mathbf{k}' \in \frac{1}{2} \text{BZ}} V_{\mathbf{k},\mathbf{k}'}^{S} (c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger}) (c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow})$$
(III.27)

Source for that?

#### III.2.2 Magnetic interaction

Starting point here is a magnetic interaction:

$$V_{\text{mag}} = \frac{1}{2} \sum_{\mathbf{q}} J_{\mathbf{q}} \left[ \mathbf{S}_{-\mathbf{q}} \cdot \mathbf{S}_{\mathbf{q}} \right]$$
 (III.28)

$$= \frac{1}{2} \sum_{\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{q}} J_{\mathbf{q}} c_{\mathbf{k}_{1} + \mathbf{q}\alpha}^{\dagger} c_{\mathbf{k}_{2} - \mathbf{q}\gamma}^{\dagger} \left(\frac{\boldsymbol{\sigma}}{2}\right)_{\alpha\beta} \left(\frac{\boldsymbol{\sigma}}{2}\right)_{\gamma\delta} c_{\mathbf{k}_{2}\delta} c_{\mathbf{k}_{1}\beta}$$
(III.29)

Important point: eigenvalues of  $\mathbf{S}_1 \cdot \mathbf{S}_2$  are different for singlet and triplet states:

$$\mathbf{S}_1 \cdot \mathbf{S}_2 = \begin{cases} +\frac{1}{4} & \text{(triplet)} \\ -\frac{3}{4} & \text{(singlet)} \end{cases}$$
 (III.30)

These eigenvalues enter as prefactors into the pairing potentials:

$$V_{\mathbf{k},\mathbf{k}'}^{S} = -\frac{3}{4} \left( \frac{J_{\mathbf{k}-\mathbf{k}'} + J_{\mathbf{k}+\mathbf{k}'}}{2} \right)$$
 (III.31)

$$V_{\mathbf{k},\mathbf{k}'}^{T} = \frac{1}{4} \left( \frac{J_{\mathbf{k}-\mathbf{k}'} - J_{\mathbf{k}+\mathbf{k}'}}{2} \right)$$
 (III.32)

So antiferromagnetic interactions  $(J_{\mathbf{k}-\mathbf{k}'}>0 \implies V^S_{\mathbf{k},\mathbf{k}'}<0)$  attract in the singlet channel, while ferromagnetic interactions  $(J_{\mathbf{k}-\mathbf{k}'}<0 \implies V^T_{\mathbf{k},\mathbf{k}'}<0)$  attracts in the triplet channel.

# III.3 d-wave superconductivity in two dimensions - cuprates

Cuprate superconductors cannot be understood in Fermi liquid theory.

Three regimes:

• Undoped: antiferromagnetic Mott insulators

• Doped: d-wave superconductors

 $\bullet\,$  Over-doped: Fermi liquid behaviours reoccurs, BCS treatment is applicable

A bit more information on history, structure etc.

How doped?

Why can we only treat BCS when we also have Fermi liquid?

Do we just treat this case in the following?

Approximate by 2D tight-binding lattice (with nearest-neighbour hopping strength t) with

$$\epsilon_{\mathbf{k}} = -2t(\cos(k_x a) + \cos(k_y a)) - \mu \tag{III.33}$$

interacting via onsite Coulomb repulsion and nearest-neighbour antiferromagnetic interaction:

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{j} U n_{j\uparrow} n_{j\downarrow} + J \sum_{\langle i,j \rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$$
 (III.34)

In momentum space:

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \frac{1}{2} \sum_{\mathbf{q}} U \rho_{-\mathbf{q}} \rho_{\mathbf{q}} + J \sum_{\mathbf{q}} \mathbf{S}_{-\mathbf{q}} \cdot \mathbf{S}_{\mathbf{q}}$$
(III.35)

 $V_a^{singlet}$  as well?

Put table here as well?

Calculate that fully

with  $J_{\mathbf{q}} = 2J(\cos(q_x a) + \cos(q_y a))$ . From the treatment of the Hubbard and magnetic interaction earlier we can get the singlet interaction

$$V_{\mathbf{k},\mathbf{k}'} = U - \frac{3J}{2} \left( c_x c_{x'} + c_y c_{y'} \right)$$
 (III.36)

where we use the abbreviation  $c_x = \cos(k_x a)$ . So the mean-field BCS Hamiltonian is

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{\mathbf{k}\mathbf{k}'} \left( U - \frac{3J}{2} \left( c_x c_{x'} + c_y c_{y'} \right) \right)$$
(III.37)

Looking at the gap equation

$$\Delta_{\mathbf{k}} = -\sum_{\mathbf{k'}} V_{\mathbf{k},\mathbf{k'}} \frac{\Delta_{\mathbf{k'}}}{2E_{\mathbf{k'}}} \tanh\left(\frac{\beta E_{\mathbf{k}}}{2}\right), \qquad (III.38)$$

Why is the symmetry preserved? And why are the symmetries of the pair conserved? Are these the same as of  $\Delta_k$ ?

we see that the interaction preserves the symmetries of the pair ( $\hat{=}$  symmetries of  $\Delta_k$ ). We divide the interaction into two parts:

$$V_{\mathbf{k},\mathbf{k}'}^{S} = U - \frac{3J}{4}(c_x + c_y)(c_{x'} + c_{y'})$$
(III.39)

$$V_{\mathbf{k},\mathbf{k}'}^{D} = -\frac{3J}{2}(c_x - c_y)(c_{x'} - c_{y'})$$
 (III.40)

$$V_{\mathbf{k},\mathbf{k}'}^{S} + V_{\mathbf{k},\mathbf{k}'}^{D} = U - \frac{3J}{4} (c_x c_{x'} + c_x c_{y'} + c_{x'} c_y + c_y c_{y'})$$
(III.41)

$$-\frac{3J}{4}(c_xc_{x'}-c_xc_{y'}-c_{x'}c_y+c_yc_{y'})$$
 (III.42)

$$= U - \frac{3J}{2}(c_x c_{x'} + c_y c_{y'}) = V_{\mathbf{k},\mathbf{k}'}$$
 (III.43)

We call  $\frac{3J}{4}(c_x + c_y)(c_{x'} + c_{y'})$  the extended s-wave term. The s-wave term is invariant under 90° rotations of **k** or **k'**, whereas the d-wave term changes sign :

\_\_\_Calculate that

$$V_{\mathbf{k},\mathbf{k}'}^S = V_{\mathbf{k}R\mathbf{k}'}^S \tag{III.44}$$

$$V_{\mathbf{k},\mathbf{k}'}^D = -V_{\mathbf{k}R\mathbf{k}'}^D \tag{III.45}$$

with  $R\mathbf{k} = (-k_y, k_x)$ . Another point to note is that in the d-wave term, there is no onsite Coulomb interaction. So a condensate with d-wave symmetry,

$$\Delta_{\mathbf{k}}^{D} = \Delta_{D}(c_x - c_y) \tag{III.46}$$

$$\Delta_{R\mathbf{k}}^D = -\Delta_{\mathbf{k}}^D \tag{III.47}$$

couples to cooper pairs via d-wave interaction, because

$$\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'}^S \Delta_{\mathbf{k}'}^D(\ldots) = 0$$
 (III.48)

(see gap equation, it preserves the symmetry of the pair). A condensate with extended s-wave symmetry

$$\Delta_{\mathbf{k}}^{S} = \Delta_1 + \Delta_2(c_x + c_y) \tag{III.49}$$

vanishes when integrated with the d-wave part of the interaction. This means the two types of pairing are symmetry decoupled and moreover, the symmetry of the d-wave pair decouples against the local Coulomb pseudopotential. The quasiparticle energy for the d-wave condensate is:

aka where does this equation come from?

Can an s-wave condensate also appear?

what symmetry the condensate has?

How is it decided

What is the rela-

tionship between gap and interaction?

What quasiparticle?

$$E_{\mathbf{k}} = \sqrt{\epsilon_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2 (c_y - c_x)^2}$$
 (III.50)



Figure III.1

What is the exact dispersion?

It vanishes at intersections of nodes (where  $\Delta_{\mathbf{k}} = 0$ ) and the Fermi surface (where  $\epsilon_{\mathbf{k}} = 0$ ). At these points the dispersion can be linearized, they form Dirac cones of excitations with a relativistic dispersion. We can approximately solve the gap equation and get

$$\Delta_D(c_y - c_x) = \Delta_D(k_x^2 - k_y^2) = \Delta_0 \cos(2\theta)$$
 (III.51)

How exactly typical? l = 2?

Visualise that somehow?

The dependence  $\Delta \propto \cos{(2\theta)}$  is typical for an l=2 Cooper pair. The quasiparticle energy is then

$$E_{\mathbf{k}} = \sqrt{\epsilon_{\mathbf{k}}^2 + (\Delta_0 \cos(2\theta))^2}$$
 (III.52)

The d-wave density of states does not have a clear gap, but instead a V-shaped structure. This linear DOS across the gap is due to the Dirac cones.

How does the DOS compare with real materials? Do we have the V-shaped structure?

What exactly is shown in the fig.



Figure III.2

# IV Coherence length and penetration depth in strongly correlated superconductors

Put in source

Order parameter (OP) of a superconducting condensate with FMP has the form

$$\Psi_{\mathbf{q}}(\mathbf{r}) = |\Psi_{\mathbf{q}}|e^{i\mathbf{q}\mathbf{r}} \tag{IV.1}$$

where  $\mathbf{q}$  is the center-of-mass momentum of Cooper pairs.

FMP is well known from Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) theory, where the single-momentum phase used here corresponds to FF-type pairing.

What does that mean? More details on FFLO theory

# IV.1 Ginzburg-Landau description

First: Motivate how the FMP constraint relates to  $\lambda_L$  and  $\xi_0$ .

GL low-order expansion of the free energy density  $f_{\rm GL}$  in terms of the FMP-constrained OP reads

1 (IV.2)

The temperature dependent correlation length  $\xi$  appears as the natural length scale of the amplitude mode ( $\propto \alpha$ ) and kinetic energy term

More details on GL

theory in general

Fill in equation

$$\xi(T) = \tag{IV.3}$$

with the zero temperature value  $\xi_0$  being the coherence length.

Fill in equation

# IV.2 Phase transitions and broken symmetry

Following [1, ch. 11].

#### IV.2.1 Order parameter concept

Landau theory: phase transitions (e.g. iron becomes magnetic, water freezes, superfluidity/superconductivity) are associated with the development of an order parameter when the temperature drops below the transition temperature  $T_C$ 

 $|\psi| = \begin{cases} 0 , T > T_C \\ |\psi_0| > 0 , T < T_C \end{cases}$  (IV.4)

phase transitions not dependent of temperatures, so e.g. in pressures?

This works also for

Landau theory does not need microscopic expression for order parameter, it provides corse-grained description of the properties of matter. The order parameter description is good at length scales above  $\xi_0$ , the coherence length (e.g. size of Cooper pairs for SC).

#### IV.2.2 Landau theory

Landau theory

Going from a one to a n-component order parameters, we can actually

Particularly important example: complex or two component order parameter in superfluids and superconductors:

$$\psi = \psi_1 + i\psi_2 = |\psi|e^{i\phi} \tag{IV.5}$$

The Landau free energy takes the form:

$$f[\psi] = r(\psi^*\psi) + \frac{u}{2}(\psi^*\psi)^2$$
 (IV.6)

Figure IV.1 shows the Landau free energy as function of  $\psi$ .

In this 'Mexican hat' potential: order parameter can be rotated continuously from one broken-symmetry state to another. If we want the phase to be rigid, we need to introduce an There is a topological argument for the fact that the phase is rigid. This leads to Ginzburg-Landau theory. Will see later: well-defined phase is associated with persistent currents or superflow.



Figure IV.1: Mexican hat potential

### IV.2.3 Ginzburg-Landau theory I: Ising order

### IV.2.4 Ginzburg-Landau theory II: complex order and superflow

Now: G-L theory of complex or two-component order parameters, so superfluids and superconductors. Heart of discussion: emergence of a 'macroscopic wavefunction', where the microscopic field operators  $\psi(x)$  acquire an expectation value:

$$\langle \psi(x) \rangle = \psi(x) = |\psi(x)| e^{i\theta(x)}$$
 (IV.7)

Magnitude determines density of particles in the superfluid:

$$|\psi(x)|^2 = n_s(x) \tag{IV.8}$$

Twist/gradient of phase determines superfluid velocity:

$$\mathbf{v}_s(x) = \frac{\hbar}{m} \Delta \phi(x) \tag{IV.9}$$

We will derive this later in the chapter. Counterintuitive from quantum mechanics: GL suggested that  $\Phi(x)$  is a macroscopic manifestation of a macroscopic number of particles condensed into precisely the same quantum

Short introduction for one-component order parameter, so the connection to complex order parameters gets clear

What exactly are field operators again?

More info on that? Does that come later in chapter? Here: rest of notes from Goodnotes

Coherent states/Interpretation of states/Off-diagonal long-range order

Here: particlecurrent operator, especially for coherent state, connection with phase twist

Here: Meissner effect, etc

state. Emergent phenomenon, collective properties of mater not a-priori self-evident from microscopic physics.

Phase rigidity and superflow: in GL theory, energy is sensitive to a twist of the phase. Substitute  $\psi = |\psi|e^{i\phi}$  into GL free energy, gradient term is:

$$\Delta \psi = () \tag{IV.10}$$

# IV.2.5 Ginzburg-Landau theory III: charged fields

# V Dynamical Mean-Field Theory

Source: Georges\_Kotliar\_Krauth\_Rozenberg\_1996 - Georges\_Kotliar\_Krauth\_Rozenberg\_

Most general non-interacting electronic Hamiltonian in second quantization:

$$H_0 = \sum_{i,j,\sigma} \tag{V.1}$$

with lattice coordinates i, j and spin  $\sigma$ .

One particle Green's function (many-body object, coming from the Hubbard model):

$$G(\mathbf{k}, \mathrm{i}\omega_n) = \frac{1}{\mathrm{i}\omega_n + \mu - \epsilon_\mathbf{k} - \Sigma(\mathbf{k}, \mathrm{i}\omega_n)} \tag{V.2}$$

with the self energy  $\Sigma(i\omega_n)$  coming from the solution of the effect on-site problem:

The Dyson equation

$$G(\mathbf{k}, i\omega_n) = (G_0(\mathbf{k}, i\omega_n) - \Sigma(\mathbf{k}, i\omega_n))^{-1}$$
 (V.3)

relates the non-interacting Greens function  $G_0(\mathbf{k}, i\omega_n)$  and the fully-interacting Greens function  $G(\mathbf{k}, i\omega_n)$  (inversion of a matrix!).

# VI Hubbard model

# VII Noninteracting EG-X Model and structure

# VII.1 Lattice Structure of Graphene

Structure of honeycomb lattice following  $[Yang\_Li\_Lee\_Ng\_2018]$ .

Monolayer graphene forms a hexagonal lattice.

Primitive lattice vectors of the hexagonal lattice:

$$\mathbf{a}_1 = \frac{a}{2} \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix} \tag{VII.1}$$

$$\mathbf{a}_2 = \frac{a}{2} \begin{pmatrix} 1\\ -\sqrt{3} \end{pmatrix} \tag{VII.2}$$

with lattice constant  $a \approx 2.46 \,\text{Å}$  (distance between unit cells). Have

$$a = \sqrt{3}a_0 \tag{VII.3}$$

with the nearest-neighbour distance  $a_0$ .

Vectors to the nearest-neighbor  $B_i$  (i = 1, 2, 3,) atoms from atom A:

$$\boldsymbol{\delta}_{AB,1} = \begin{pmatrix} 0 \\ \frac{a}{\sqrt{3}} \end{pmatrix}, \boldsymbol{\delta}_{AB,2} = \begin{pmatrix} \frac{a}{2} \\ -\frac{a}{2\sqrt{3}} \end{pmatrix}, \boldsymbol{\delta}_{AB,3} = \begin{pmatrix} -\frac{a}{2} \\ -\frac{a}{2\sqrt{3}} \end{pmatrix}$$
 (VII.4)

Vectors to the nearest-neighbor  $A_i$  (i=1,2,3,) atoms from atom B:

$$\boldsymbol{\delta}_{BA,1} = \begin{pmatrix} 0 \\ -\frac{a}{\sqrt{3}} \end{pmatrix}, \boldsymbol{\delta}_{BA,2} = \begin{pmatrix} \frac{a}{2} \\ \frac{a}{2\sqrt{3}} \end{pmatrix}, \boldsymbol{\delta}_{BA,3} = \begin{pmatrix} -\frac{a}{2} \\ \frac{a}{2\sqrt{3}} \end{pmatrix}$$
(VII.5)



Figure VII.1: Graphene lattice structure

The vectors between the Graphene A atom and the six neighbours on the same sub lattice can be found by rotating  $\mathbf{a}_1$  six times by  $1/6 * 2\pi = \pi/3$ :

$$\delta_{AA,1} = \mathbf{a}_1 = \frac{a}{2} \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix} = a \begin{pmatrix} \frac{1}{2}\\\frac{\sqrt{3}}{2} \end{pmatrix} = a \begin{pmatrix} \sin\left(\frac{\pi}{6}\right)\\\cos\left(\frac{\pi}{6}\right) \end{pmatrix}$$
(VII.6)

$$\delta_{AA,2} = a \begin{pmatrix} \sin\left(\frac{3\pi}{6}\right) \\ \cos\left(\frac{3\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 (VII.7)

$$\delta_{AA,3} = a \begin{pmatrix} \sin\left(\frac{5\pi}{6}\right) \\ \cos\left(\frac{5\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix}$$
 (VII.8)

$$\delta_{AA,4} = a \begin{pmatrix} \sin\left(\frac{7\pi}{6}\right) \\ \cos\left(\frac{7\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix}$$
 (VII.9)

$$\delta_{AA,5} = a \begin{pmatrix} \sin\left(\frac{9\pi}{6}\right) \\ \cos\left(\frac{9\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
 (VII.10)

$$\delta_{AA,6} = a \begin{pmatrix} \sin\left(\frac{11\pi}{6}\right) \\ \cos\left(\frac{11\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}$$
 (VII.11)



Figure VII.2: Graphene Brillouin Zone

The primitive reciprocal lattice vectors  $\mathbf{b}_1,\,\mathbf{b}_2$  fulfill

$$\mathbf{a}_1 \cdot \mathbf{b}_1 = \mathbf{a}_2 \cdot \mathbf{b}_2 = 2\pi \tag{VII.12}$$

$$\mathbf{a}_1 \cdot \mathbf{b}_2 = \mathbf{a}_2 \cdot \mathbf{b}_1 = 0 , \qquad (VII.13)$$

so we have:

$$\mathbf{b}_{1} = \frac{2\pi}{a} \begin{pmatrix} 1\\ \frac{1}{\sqrt{3}} \end{pmatrix}$$
 (VII.14)
$$\mathbf{b}_{2} = \frac{2\pi}{a} \begin{pmatrix} 1\\ -\frac{1}{\sqrt{3}} \end{pmatrix}$$
 (VII.15)

$$\mathbf{b}_2 = \frac{2\pi}{a} \begin{pmatrix} 1\\ -\frac{1}{\sqrt{3}} \end{pmatrix} \tag{VII.15}$$

Points of high symmetry in the Brillouin zone are:

$$\Gamma = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{VII.16}$$

$$M = \frac{\pi}{a} \begin{pmatrix} 1\\ \frac{1}{\sqrt{3}} \end{pmatrix}$$
 (VII.17)  
$$K = \frac{4\pi}{3a} \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
 (VII.18)

$$K = \frac{4\pi}{3a} \begin{pmatrix} 1\\0 \end{pmatrix}$$
 (VII.18)

# VII.2 EG-X Model

Graphene lattice and a site X. Real-life motivation: layer of graphene on top



Figure VII.3: EG-X model

of a substrate of another material (which provides the additional X atoms). There is no spin-orbit coupling considered in the model (but when according to Niklas: when mapping to substrates Sn or Pb, it could be necessary (but does not the qualitative result?)).

Spin-orbit coupling, drop second spin index?

Without interaction:

VII.2 EG-X Model 29

$$H_{0} = -t_{X} \sum_{\langle ij \rangle, \sigma\sigma'} d_{i,\sigma}^{\dagger} d_{j,\sigma'} + \text{h.c.} - t_{Gr} \sum_{\langle ij \rangle, \sigma\sigma'} \left( c_{i,\sigma}^{(A),\dagger} c_{j,\sigma'}^{(B)} + c_{j,\sigma'}^{(B),\dagger} c_{i,\sigma}^{(A)} + \text{h.c.} \right)$$

$$+ V \sum_{i,\sigma\sigma'} \left( d_{i,\sigma}^{\dagger} c_{i,\sigma'}^{(A)} + c_{i,\sigma}^{(A),\dagger} d_{i,\sigma'} \right)$$

$$(VII.19)$$

with:

- d operators on the X atom
- $c^{(\epsilon)}$  operators on the graphene site  $(\epsilon = A, B)$
- $t_X$  NN hopping for X
- $t_{Gr}$  NN hopping of Gr
- V hybridization between X and Graphene B sites

We can also introduce an onsite Hubbard interaction:

$$H_{\rm int} = U_{\rm X} \sum_{i} d_{i,\uparrow}^{\dagger} d_{i,\downarrow}^{\dagger} d_{i,\downarrow} d_{i,\uparrow} + U_{\rm Gr} \sum_{i,\epsilon=A,B} c_{i,\uparrow}^{(\epsilon)\dagger} c_{i,\downarrow}^{(\epsilon)\dagger} c_{i,\downarrow}^{\epsilon} c_{i,\uparrow}^{\epsilon}$$
(VII.21)

### VII.2.1 Review: Hubbard model on the honeycomb lattice

# VII.2.2 Band structure of the non-interacting EG-X model

To treat eq. VII.20, we first write out the sums over nearest neighbours  $\langle i,j \rangle$  explicitly, writing  $\delta_{\rm X}, \delta_{\epsilon}$  ( $\epsilon=A,B$ ) for the connections to the nearest neighbours of the X atoms and Graphene A,B sites. Doing the calculation for the example of the X atoms:

$$-t_{X} \sum_{\langle ij\rangle,\sigma\sigma'} (d_{i,\sigma}^{\dagger} d_{j,\sigma'} + d_{j,\sigma}^{\dagger} d_{i,\sigma'})$$
 (VII.22)

$$= -\frac{t_X}{2} \sum_{i,\sigma,\sigma'} \sum_{\delta_{\mathbf{X}}} d_{i,\sigma}^{\dagger} d_{i+\delta_{\mathbf{X}},\sigma'} - \frac{t_X}{2} \sum_{i,\sigma,\sigma'} \sum_{\delta_{\mathbf{X}}} d_{j,\sigma}^{\dagger} d_{j+\delta_{\mathbf{X}},\sigma'}$$
(VII.23)

$$= -t_X \sum_{i,\sigma,\sigma'} \sum_{\delta_X} d_{i,\sigma}^{\dagger} d_{i+\delta_X,\sigma'}$$
 (VII.24)

Write review for Hubbard model on the honeycomb lattice (The factor 1/2 is to account for double counting when going to the sum over all lattice sites i)

Now we can input the discrete Fourier transform (for both graphene and X operators) into eq. VII.24

$$c_i = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{i\mathbf{k}\mathbf{r}_i} c_{\mathbf{k}}$$
 (VII.25)

$$c_i^{\dagger} = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-i\mathbf{k}\mathbf{r}_i} c_{\mathbf{k}}^{\dagger} \tag{VII.26}$$

with the completeness relation:

$$\sum_{i} e^{i\mathbf{k}\mathbf{r}_{i}} e^{-i\mathbf{k}'\mathbf{r}_{i}} = N\delta_{\mathbf{k},\mathbf{k}'} . \tag{VII.27}$$

We get:

$$-t_{X}\frac{1}{N}\sum_{i,\sigma,\sigma'}\sum_{\boldsymbol{\delta}_{\mathbf{X}}}d_{i,\sigma}^{\dagger}d_{i+\boldsymbol{\delta}_{\mathbf{X}},\sigma'} = -t_{X}\frac{1}{N}\sum_{i,\sigma,\sigma'}\sum_{\boldsymbol{\delta}_{\mathbf{X}}}\sum_{\mathbf{k},\mathbf{k'}}e^{-\mathrm{i}\mathbf{k}\mathbf{r}_{i}}d_{\mathbf{k},\sigma}^{\dagger}e^{\mathrm{i}\mathbf{k'}\mathbf{r}_{i}}e^{\mathrm{i}\mathbf{k'}\boldsymbol{\delta}_{\mathbf{X}}}d_{\mathbf{k'},\sigma'}$$

$$(VII.28)$$

$$= -t_{X}\frac{1}{N}\sum_{\mathbf{k},\mathbf{k'},\sigma,\sigma'}\sum_{\boldsymbol{\delta}_{\mathbf{X}}}d_{\mathbf{k},\sigma}^{\dagger}e^{\mathrm{i}\mathbf{k'}\boldsymbol{\delta}_{\mathbf{X}}}d_{\mathbf{k'},\sigma'}\sum_{i}e^{-\mathrm{i}\mathbf{k}\mathbf{r}_{i}}e^{\mathrm{i}\mathbf{k'}\mathbf{r}_{i}}$$

$$(VII.29)$$

$$= -t_{X}\frac{1}{N}\sum_{\mathbf{k},\mathbf{k'},\sigma,\sigma'}\sum_{\boldsymbol{\delta}_{\mathbf{X}}}d_{\mathbf{k},\sigma}^{\dagger}e^{\mathrm{i}\mathbf{k'}\boldsymbol{\delta}_{\mathbf{X}}}d_{\mathbf{k'},\sigma'}N\delta_{\mathbf{k},\mathbf{k'}}$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma}^{\dagger}d_{\mathbf{k},\sigma'}\sum_{\boldsymbol{\delta}_{\mathbf{X}}}e^{\mathrm{i}\mathbf{k}\boldsymbol{\delta}_{\mathbf{X}}}$$

$$(VII.30)$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d_{\mathbf{k},\sigma}^{\dagger}d_{\mathbf{k},\sigma'}\sum_{\boldsymbol{\delta}_{\mathbf{X}}}e^{\mathrm{i}\mathbf{k}\boldsymbol{\delta}_{\mathbf{X}}}$$

$$(VII.31)$$

VII.2 EG-X Model 31

The nearest neighbours for X atoms are the vectors  $\boldsymbol{\delta}_{AA,i}$  from section VII.1. With that, we can calculate:

$$f_{\mathcal{X}}(\mathbf{k}) = -t_{\mathcal{X}} \sum_{\boldsymbol{\delta}_{\mathcal{X}}} e^{i\mathbf{k}\boldsymbol{\delta}_{\mathcal{X}}}$$
 (VII.32)

$$= -t_X \left( e^{ia(\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2})} + e^{iak_x} + e^{ia(\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2})} \right)$$
(VII.33)

$$+e^{\mathrm{i}a(-\frac{k_x}{2}-\frac{\sqrt{3}k_y}{2})}+e^{-\mathrm{i}ak_x}+e^{\mathrm{i}a(-\frac{k_x}{2}+\frac{\sqrt{3}k_y}{2})}$$
 (VII.34)

$$= -t_X \left( 2\cos(ak_x) + 2e^{ia\frac{\sqrt{3}k_y}{2}}\cos(\frac{a}{2}k_x) + 2e^{-ia\frac{\sqrt{3}k_y}{2}}\cos(\frac{a}{2}k_x) \right)$$
(VII.35)

$$= -2t_X \left(\cos\left(ak_x\right) + 2\cos\left(\frac{a}{2}k_x\right)\cos\left(\sqrt{3}\frac{a}{2}k_y\right)\right)$$
 (VII.36)

We can do the same for the hopping between Graphene sites, for example:

$$-t_{\rm Gr} \sum_{\langle ij\rangle,\sigma\sigma'} c_{i,\sigma}^{(A),\dagger} c_{j,\sigma'}^{(B)} = -t_{\rm Gr} \sum_{i,\sigma\sigma'} \sum_{\delta_{AB}} c_{i,\sigma}^{(A),\dagger} c_{i+\delta_{AB},\sigma'}^{(B)}$$
(VII.37)

$$= -t_{Gr} \sum_{\mathbf{k}, \sigma, \sigma'} c_{\mathbf{k}, \sigma}^{(A)\dagger} c_{\mathbf{k}, \sigma'}^{(B)} \sum_{\boldsymbol{\delta}_{AB}} e^{i\mathbf{k}\boldsymbol{\delta}_{AB}}$$
(VII.38)

We note

$$\sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}} = \left(\sum_{\delta_{BA}} e^{i\mathbf{k}\delta_{BA}}\right)^* = \sum_{\delta_{BA}} e^{-i\mathbf{k}\delta_{BA}}$$
(VII.39)

and calculate

$$f_{Gr} = -t_{Gr} \sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}} \tag{VII.40}$$

$$= -t_{Gr} \left( e^{i\frac{a}{\sqrt{3}}k_y} + e^{i\frac{a}{2\sqrt{3}}(\sqrt{3}k_x - k_y)} + e^{i\frac{a}{2\sqrt{3}}(-\sqrt{3}k_x - k_y)} \right)$$
(VII.41)

$$= -t_{Gr} \left( e^{i\frac{a}{\sqrt{3}}k_y} + e^{-i\frac{a}{2\sqrt{3}}k_y} \left( e^{i\frac{a}{2}k_x} + e^{-i\frac{a}{2}k_x} \right) \right)$$
(VII.42)

$$= -t_{Gr} \left( e^{i\frac{\alpha}{\sqrt{3}}k_y} + 2e^{-i\frac{\alpha}{2\sqrt{3}}k_y} \cos\left(\frac{a}{2}k_x\right) \right)$$
 (VII.43)



**Figure VII.4:** Bands of the non-interacting EG-X model. All the bands are spin-degenerate.

All together, we get:

$$H_0 = \sum_{\mathbf{k}, \sigma, \sigma'} \begin{pmatrix} c_{k, \sigma}^{A, \dagger} & c_{k, \sigma}^{B, \dagger} & d_{k, \sigma}^{\dagger} \end{pmatrix} \begin{pmatrix} 0 & f_{Gr} & V \\ f_{Gr}^* & 0 & 0 \\ V & 0 & f_X \end{pmatrix} \begin{pmatrix} c_{k, \sigma}^A \\ c_{k, \sigma}^B \\ d_{k, \sigma} \end{pmatrix}$$
(VII.44)

The band structure for the non-interacting EG-X model is easily obtained by diagonalising the matrix in eq. VII.44. This was done in fig. VII.4.

Values used for calculation:

- $a_0 = 1$
- $t_{\rm Gr} = 1$
- $t_{\rm X} = 0.01$

V is the control parameter. (According to Niklas), a range from V=0.1 to V=2 can be mapped onto materials in experiment.

## VIII EG-X Model with interactions

## VIII.1 BdG Hamiltonian and free energy

#### VIII.1.1 BdG Hamiltonian

Define sublattice index

$$\alpha = 1, 2, 3 \tag{VIII.1}$$

Does that make

sense?

with  $1 = Gr_1, 2 = Gr_2, 3 = X$ . Then we can write the non-interacting term

$$H_0 = -\sum_{\langle i,j\rangle,\alpha,\beta,\sigma} [\mathbf{t}]_{i\alpha,j\beta} c_{i\alpha}^{\dagger} c_{j\beta}$$
 (VIII.2)

with the matrix \_\_\_\_

$$\mathbf{t} = \begin{pmatrix} 0 & t_{Gr} & 0 \\ t_{Gr} & 0 & -V\delta_{ij} \\ 0 & -V\delta_{ij} & t_{X} \end{pmatrix}$$
(VIII.3)

Add chemical potential:

$$-\mu \sum_{i\alpha\sigma} n_{i\alpha\sigma} \tag{VIII.4}$$

Also write the interaction part with  $\alpha$  (with changed signs compared to Niklas, to keep in line with papers about the attractive Hubbard model):

$$H_{int} = -\sum_{i\alpha} U_{\alpha} c_{i\alpha\uparrow}^{\dagger} c_{i\alpha\downarrow}^{\dagger} c_{i\alpha\downarrow} c_{i\alpha\uparrow}$$
 (VIII.5)

Fourier transformation:

$$H_{int} = -\frac{1}{N^2} \sum_{\alpha, \mathbf{k}_{1,2,3,4}} U_{\alpha} e^{i(\mathbf{k}_1 + \mathbf{k}_4 - \mathbf{k}_1 - \mathbf{k}_3) r_{i\alpha}} c^{\dagger}_{\mathbf{k}_1 \alpha \uparrow} c^{\dagger}_{\mathbf{k}_3 \alpha \downarrow} c_{\mathbf{k}_2 \alpha \downarrow} c_{\mathbf{k}_4 \alpha \uparrow}$$
(VIII.6)

Impose zero-momentum pairing:  $\mathbf{k}_1 + \mathbf{k}_3 = 0$  and  $\mathbf{k}_2 + \mathbf{k}_4 = 0$ :

$$H_{int} = -\sum_{\alpha, \mathbf{k}, \mathbf{k}'} U_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} c_{-\mathbf{k}'\alpha\downarrow} c_{\mathbf{k}'\alpha\uparrow}$$
(VIII.7)

Mean-field approximation:

$$H_{int} \approx \sum_{\alpha, \mathbf{k}} (\Delta_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} + \Delta_{\alpha}^{*} c_{-\mathbf{k}\alpha\downarrow} c_{\mathbf{k}\alpha\uparrow})$$
 (VIII.8)

with

$$\Delta_{\alpha} = -U_{\alpha} \sum_{\mathbf{k}'} \langle c_{-\mathbf{k}'\alpha\downarrow} c_{\mathbf{k}'\alpha\uparrow} \rangle \tag{VIII.9}$$

$$\Delta_{\alpha}^{*} = -U_{\alpha} \sum_{\mathbf{k}'} \langle c_{\mathbf{k}'\alpha\uparrow}^{\dagger} c_{-\mathbf{k}'\alpha\downarrow}^{\dagger} \rangle \qquad (VIII.10)$$

This gives the BCS mean field Hamiltonian:

$$H_{BCS} = \sum_{\mathbf{k}\alpha\beta\sigma} [H_{0,\sigma}(\mathbf{k})]_{\alpha\beta} c_{\mathbf{k}\alpha\sigma}^{\dagger} c_{\mathbf{k}\beta\sigma} - \mu \sum_{\mathbf{k}\alpha\sigma} n_{\mathbf{k}\alpha\sigma} + \sum_{\alpha,\mathbf{k}} (\Delta_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} + \Delta_{\alpha}^{*} c_{-\mathbf{k}\alpha\downarrow} c_{\mathbf{k}\alpha\uparrow})$$
(VIII.11)

with Nambu spinor

$$\Psi_{\mathbf{k}} = \begin{pmatrix} c_{1,\mathbf{k}\uparrow} \\ c_{2,\mathbf{k}\uparrow} \\ c_{3,\mathbf{k}\uparrow} \\ c_{1,-\mathbf{k}\downarrow}^{\dagger} \\ c_{2,-\mathbf{k}\downarrow}^{\dagger} \\ c_{3,-\mathbf{k}\downarrow}^{\dagger} \end{pmatrix}$$
(VIII.12)

we have:

$$H_{MF} = \sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} \mathcal{H}(\mathbf{k}) \Psi_{\mathbf{k}}$$
 (VIII.13)

with

$$\mathcal{H}(\mathbf{k}) = \begin{pmatrix} H_{0,\uparrow}(\mathbf{k}) - \mu & \Delta \\ \Delta^{\dagger} & -H_{0,\downarrow}^{*}(-\mathbf{k}) + \mu \end{pmatrix}$$
(VIII.14)

with  $H_{0,\sigma}$  being the F.T. of the kinetic term and  $\Delta = diag(\Delta_1, \Delta_2, \Delta_3)$ .

#### VIII.1.2 BdG Hamiltonian in band basis

Use transformation

$$c_{\mathbf{k}\alpha\sigma}^{\dagger} = \sum_{n} [\mathbf{G}]_{\alpha n}^{*} d_{n\mathbf{k}\sigma}^{\dagger}$$
 (VIII.15)

where the columns are made up of the eigenvectors of  $\mathbf{H}_{0,\sigma}$  for a given  $\mathbf{k}$ :

$$\mathbf{G} = \begin{pmatrix} \mathbf{G}_1 & \mathbf{G}_2 & \mathbf{G}_3 \end{pmatrix} \tag{VIII.16}$$

with that:

$$\mathbf{G}_{\sigma}^{\dagger}(\mathbf{k})\mathbf{H}_{0,\sigma}(\mathbf{k})\mathbf{G}_{\sigma}(\mathbf{k}) = \begin{pmatrix} \epsilon_{1} & 0 & 0\\ 0 & \epsilon_{2} & 0\\ 0 & 0 & \epsilon_{3} \end{pmatrix}$$
(VIII.17)

So the kinetic part of the BdG Hamiltonian becomes:

$$\sum_{\mathbf{k}\alpha\beta\sigma} [H_{0,\sigma}(\mathbf{k})]_{\alpha\beta} \sum_{n} [\mathbf{G}(\mathbf{k})]_{\alpha n}^* d_{n\mathbf{k}\sigma}^{\dagger} \sum_{m} [\mathbf{G}(\mathbf{k})]_{\beta m} d_{m\mathbf{k}\sigma} - \mu \sum_{\mathbf{k}\alpha\sigma} n_{n\mathbf{k}\sigma} \quad (VIII.18)$$

$$= \sum_{mn\mathbf{k}\sigma} d_{n\mathbf{k}\sigma}^{\dagger} d_{m\mathbf{k}\sigma} \sum_{\alpha\beta} [\mathbf{G}(\mathbf{k})]_{\alpha n}^{*} [H_{0,\sigma}(\mathbf{k})]_{\alpha\beta} [\mathbf{G}(\mathbf{k})]_{\beta m} - \mu \sum_{\mathbf{k}\alpha\sigma} n_{n\mathbf{k}\sigma} \quad (VIII.19)$$

$$= \sum_{m,k\sigma} d^{\dagger}_{nk\sigma} d_{mk\sigma} \epsilon_n \delta_{nm} - \mu \sum_{k\sigma\sigma} n_{nk\sigma}$$
 (VIII.20)

$$= \sum_{n \mathbf{k}\sigma} \epsilon_n d_{n\mathbf{k}\sigma}^{\dagger} d_{n\mathbf{k}\sigma} - \mu \sum_{\mathbf{k}\sigma\sigma} n_{n\mathbf{k}\sigma}$$
 (VIII.21)

$$=: \sum_{n \neq k} \xi_{\mathbf{k}} d_{n\mathbf{k}\sigma}^{\dagger} d_{n\mathbf{k}\sigma} \tag{VIII.22}$$

with  $\xi_{\mathbf{k}} := \epsilon_{\mathbf{k}} - \mu$ . The pairing terms become (I set n = m here, which seems only sensible, but I dont have a real reason why?):

$$\sum_{\mathbf{k}\alpha} \Delta_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} = \sum_{\mathbf{k}\alpha} \Delta_{\alpha} \sum_{n} [\mathbf{G}_{\uparrow}(\mathbf{k})]_{\alpha n}^{*} d_{n\mathbf{k}\uparrow}^{\dagger} \sum_{m} [\mathbf{G}_{\downarrow}(-\mathbf{k})]_{\beta m}^{*} d_{m-\mathbf{k}\downarrow}^{\dagger}$$
(VIII.23)

$$= -\sum_{n\mathbf{k}} \Delta_n d_{n\mathbf{k}\uparrow}^{\dagger} d_{n-\mathbf{k}\downarrow}^{\dagger} \tag{VIII.24}$$

with gap  $\Delta_n(\mathbf{k}) = -\sum_{\alpha} [\mathbf{G}_{\uparrow}(\mathbf{k})]_{\alpha n}^* \Delta_{\alpha} [\mathbf{G}_{\downarrow}(-\mathbf{k})]_{\alpha n}^*$  for band n.

$$\sum_{\mathbf{k}\alpha} \Delta_{\alpha}^* c_{-\mathbf{k}\alpha\downarrow} c_{\mathbf{k}\alpha\uparrow} = -\sum_{n\mathbf{k}} \Delta_n^* d_{n-\mathbf{k}\downarrow} d_{n\mathbf{k}\uparrow}$$
 (VIII.25)

So the BdG Hamiltonian is:

$$H_{BdG} = \sum_{n\mathbf{k}\sigma} \xi_{\mathbf{k}} d_{n\mathbf{k}\sigma}^{\dagger} d_{n\mathbf{k}\sigma} - \sum_{n\mathbf{k}} (\Delta_{n}^{*} d_{n-\mathbf{k}\downarrow} d_{n\mathbf{k}\uparrow} + \Delta_{n} d_{n\mathbf{k}\uparrow}^{\dagger} d_{n-\mathbf{k}\downarrow}^{\dagger}) \qquad (VIII.26$$

# IX EG-X Model - Trying BCS theory

## IX.1 BCS Theory on the EG-X Model

#### IX.1.1 Self-consistent calculation of the superconducting gaps

This does not really work! I neglect interband pairing at some point, so i throw away 6 out of 9 gap equations I have, also the GF ansatz works with diagonal Matsubara GFs, so I dont think it works here.

Compare [Bruus\_Flensberg\_2004]. Notable here: Multiple bands, and the gaps in each band depend in a complicated manner on the parameters  $U_{\alpha}$  and the orbital Green's functions.

Define normal Green's function:

$$\mathcal{G}_{n\uparrow n\uparrow}(\mathbf{k},\tau) = -\langle T_{\tau} d_{n\mathbf{k}\uparrow}(\tau) d_{n\mathbf{k}\uparrow}^{\dagger}(0) \rangle$$
 (IX.1)

Anomalous Green's function:

$$\mathcal{F}_{n\downarrow n\uparrow}(\mathbf{k},\tau) = -\langle T_{\tau} d_{n-\mathbf{k}\downarrow}(\tau) d_{n\mathbf{k}\uparrow}^{\dagger}(0) \rangle$$
 (IX.2)

Equations of motion (Heisenberg equation), follow [Bruus\_Flensberg\_2004]:

$$\partial_{\tau} \mathcal{G}_{n\uparrow n\uparrow}(\mathbf{k}, \tau) = -\delta(\tau) + \langle T_{\tau} \left[ d_{n\mathbf{k}\uparrow}, H_{BdG} \right](\tau) d_{n\mathbf{k}\uparrow}^{\dagger}(0) \rangle$$
 (IX.3)

$$\partial_{\tau} \mathcal{F}_{n\downarrow n\uparrow}(\mathbf{k}, \tau) = \langle T_{\tau} \left[ d_{n-\mathbf{k}\downarrow}, H_{BdG} \right] (\tau) d_{n\mathbf{k}\uparrow}^{\dagger}(0) \rangle$$
 (IX.4)

To calculate the commutators, use the relation (for operators A, B, C):

$$[A, BC] = ABC - BCA = (\{A, B\} - BA)C - B(\{C, A\} - AC)$$
 (IX.5)

$$\begin{bmatrix}
d_{n-\mathbf{k}\downarrow}^{\dagger}, H_{0}
\end{bmatrix} = \sum_{n'\mathbf{k}'\sigma'} \xi_{n'\mathbf{k}'} \left[ d_{n-\mathbf{k}\downarrow}^{\dagger}, d_{n'\mathbf{k}'\sigma'}^{\dagger} d_{n'\mathbf{k}'\sigma'} \right] \qquad (IX.6)$$

$$= \sum_{n'\mathbf{k}'\sigma'} \xi_{n'\mathbf{k}'} \left( \{ d_{n-\mathbf{k}\downarrow}^{\dagger}, d_{n'\mathbf{k}'\sigma'}^{\dagger} \} - d_{n'\mathbf{k}'\sigma'}^{\dagger} d_{n-\mathbf{k}\downarrow}^{\dagger} \right) d_{n'\mathbf{k}'\sigma'} \qquad (IX.7)$$

$$- d_{n'\mathbf{k}'\sigma'}^{\dagger} \left( \{ d_{n'\mathbf{k}'\sigma'}, d_{n-\mathbf{k}\downarrow}^{\dagger} \} - d_{n-\mathbf{k}\downarrow}^{\dagger} d_{n'\mathbf{k}'\sigma'} \right) \qquad (IX.8)$$

$$= \sum_{n'\mathbf{k}'\sigma'} \xi_{n'\mathbf{k}'} \left( -d_{n'\mathbf{k}'\sigma'}^{\dagger} d_{n-\mathbf{k}\downarrow}^{\dagger} d_{n'\mathbf{k}'\sigma'} - d_{n'\mathbf{k}'\sigma'}^{\dagger} \delta_{n'\mathbf{k}'\sigma',n-\mathbf{k}\uparrow} + d_{n'\mathbf{k}'\sigma'}^{\dagger} d_{n-\mathbf{k}\downarrow}^{\dagger} d_{n'\mathbf{k}'\sigma'} \right)$$

$$(IX.9)$$

$$= -\xi_{n\mathbf{k}} d_{n\mathbf{k}\uparrow}^{\dagger} \tag{IX.10}$$

$$\left[d_{n-\mathbf{k}\downarrow}, -\sum_{m\mathbf{k}'} \Delta_m^* d_{m-\mathbf{k}'\downarrow} d_{m\mathbf{k}'\uparrow}\right]$$
 (IX.11)

$$= -\sum_{m\mathbf{k}'} \Delta_m^* \left( \left\{ d_{n-\mathbf{k}\downarrow}, d_{m-\mathbf{k}'\downarrow} \right\} - d_{m-\mathbf{k}'\downarrow} d_{n-\mathbf{k}\downarrow} \right) d_{m\mathbf{k}'\uparrow}$$
 (IX.12)

$$-d_{m-\mathbf{k}'\downarrow} \left( \left\{ d_{m\mathbf{k}'\uparrow}, d_{n-\mathbf{k}\downarrow} \right\} - d_{n-\mathbf{k}\downarrow} d_{m\mathbf{k}'\uparrow} \right) \tag{IX.13}$$

$$= -\sum_{m\mathbf{k}'} \Delta_m^* \left( \delta_{n-\mathbf{k}\downarrow,m-\mathbf{k}'\downarrow} - d_{m-\mathbf{k}'\downarrow} d_{n-\mathbf{k}\downarrow} \right) d_{m\mathbf{k}'\uparrow} + d_{m-\mathbf{k}'\downarrow} d_{n-\mathbf{k}\downarrow} d_{m\mathbf{k}'\uparrow}$$
(IX.14)

$$= -\Delta_n^* d_{n\mathbf{k}\uparrow} \tag{IX.15}$$

$$\partial_{\tau} \mathcal{F}_{n\downarrow n\uparrow}(\mathbf{k},\tau) = -\xi_{n\mathbf{k}} \left\langle T_{\tau}(d_{n-\mathbf{k}\downarrow}^{\dagger}(\tau)d_{n\mathbf{k}\uparrow}^{\dagger}(0)) \right\rangle - \Delta_{n}^{*} \left\langle T_{\tau}(d_{n\mathbf{k}\uparrow}(\tau)d_{n\mathbf{k}\uparrow}^{\dagger}(0)) \right\rangle$$
(IX.16)

$$= \xi_{n\mathbf{k}} \mathcal{F}_{n\downarrow n\uparrow}(\mathbf{k}, \tau) + \Delta_n^* \mathcal{G}_{n\uparrow n\uparrow}(\mathbf{k}, \tau)$$
 (IX.17)

Similarly:

$$[d_{n-\mathbf{k}\uparrow}, H_0] = \sum_{n'\mathbf{k}'\sigma'} \xi_{n'\mathbf{k}'} \left[ d_{n-\mathbf{k}\downarrow}^{\dagger}, d_{n'\mathbf{k}'\sigma'}^{\dagger} d_{n'\mathbf{k}'\sigma'} \right]$$
(IX.18)

$$=\xi_n d_{n\mathbf{k}\uparrow}^{\dagger} \tag{IX.19}$$

$$\left[d_{n-\mathbf{k}\uparrow}, -\sum_{m\mathbf{k}'} \Delta_m d_{m-\mathbf{k}'\uparrow}^{\dagger} d_{m-\mathbf{k}'\downarrow}^{\dagger}\right]$$
 (IX.20)

$$= -\Delta_n d_{n-\mathbf{k}\perp}^{\dagger} \tag{IX.21}$$

$$\partial_{\tau} \mathcal{G}_{n\uparrow n\uparrow}(\mathbf{k}, \tau) = -\delta(\tau) + \xi_{n\mathbf{k}} \left\langle T_{\tau} d_{n\mathbf{k}\uparrow}(\tau) d_{n\mathbf{k}\uparrow}^{\dagger} \right\rangle - \Delta_{n} \left\langle T_{\tau} d_{n-\mathbf{k}\downarrow}(\tau) d_{n\mathbf{k}\uparrow}^{\dagger}(0) \right\rangle$$
(IX.22)

$$= -\delta(\tau) - \xi_{n\mathbf{k}} \mathcal{G}_{n\uparrow n\uparrow}(\mathbf{k}, \tau) + \Delta_n \mathcal{F}_{n\downarrow n\uparrow}(\mathbf{k}, \tau)$$
 (IX.23)

(IX.24)

All in all:

$$\partial_{\tau} \mathcal{G}_{n\uparrow n\uparrow}(\mathbf{k}, \tau) = -\delta(\tau) - \xi_{n\mathbf{k}} \mathcal{G}_{n\uparrow n\uparrow}(\mathbf{k}, \tau) + \Delta_n \mathcal{F}_{n \perp n\uparrow}(\mathbf{k}, \tau)$$
(IX.25)

$$\partial_{\tau} \mathcal{F}_{n\downarrow n\uparrow}(\mathbf{k}, \tau) = \xi_{n\mathbf{k}} \mathcal{F}_{n\downarrow n\uparrow}(\mathbf{k}, \tau) + \Delta_{n}^{*} \mathcal{G}_{n\uparrow n\uparrow}(\mathbf{k}, \tau)$$
 (IX.26)

Fourier transform:

$$(-i\omega_n + \xi_{n\mathbf{k}})\mathcal{G}_{n\uparrow n\uparrow}(\mathbf{k}, i\omega_n) = -1 + \Delta_n \mathcal{F}_{n \downarrow n\uparrow}(\mathbf{k}, i\omega_n)$$
 (IX.27)

$$(-i\omega_n - \xi_{n\mathbf{k}})\mathcal{F}_{n\downarrow n\uparrow}(\mathbf{k}, i\omega_n) = \Delta_n^* \mathcal{G}_{n\uparrow n\uparrow}(\mathbf{k}, i\omega_n)$$
 (IX.28)

This algebraic expression can be easily solved:

$$(-i\omega_n - \xi_{n\mathbf{k}})\mathcal{F}_{n\downarrow n\uparrow}(\mathbf{k}, i\omega_n) = \frac{\Delta_n^*}{-i\omega_n + \xi_{n\mathbf{k}}}(-1 + \Delta_n \mathcal{F}_{n\downarrow n\uparrow}(\mathbf{k}, i\omega_n)) \quad (IX.29)$$

$$(-i\omega_n - \xi_{n\mathbf{k}} - \frac{|\Delta_n|^2}{-i\omega_n + \xi_{n\mathbf{k}}})\mathcal{F}_{n\downarrow n\uparrow}(\mathbf{k}, i\omega_n) = \frac{-\Delta_n^*}{-i\omega_n + \xi_{n\mathbf{k}}} \quad (IX.30)$$

$$\left(\frac{(-\mathrm{i}\omega_n - \xi_{n\mathbf{k}})(-\mathrm{i}\omega_n + \xi_{n\mathbf{k}}) - |\Delta_n|^2}{-\mathrm{i}\omega_n + \xi_{n\mathbf{k}}}\right) \mathcal{F}_{n\downarrow n\uparrow}(\mathbf{k}, \mathrm{i}\omega_n) = \frac{-\Delta_n^*}{-\mathrm{i}\omega_n + \xi_{n\mathbf{k}}} \quad (IX.31)$$

$$\mathcal{F}_{n\downarrow n\uparrow}(\mathbf{k}, i\omega_n) = \frac{-\Delta_n^*}{(-i\omega_n - \xi_{n\mathbf{k}})(-i\omega_n + \xi_{n\mathbf{k}}) - |\Delta_n|^2}$$
(IX.32)

$$= \frac{-\Delta_n^*}{(\mathrm{i}\omega_n)^2 - \xi_{n\mathbf{k}}^2 - |\Delta_n|^2}$$
 (IX.33)

$$= \frac{-\Delta_n^*}{(\mathrm{i}\omega_n)^2 - E_{n\mathbf{k}}} \tag{IX.34}$$

$$(-i\omega_n + \xi_{n\mathbf{k}})\mathcal{G}_{n\uparrow n\uparrow}(\mathbf{k}, i\omega_n) = -1 + \frac{-|\Delta_n|^2}{(i\omega_n)^2 - \xi_{n\mathbf{k}}^2 - |\Delta_n|^2}$$
(IX.35)

$$= \frac{-(i\omega_n)^2 + \xi_{n\mathbf{k}}^2 + |\Delta_n|^2 - |\Delta_n|^2}{(i\omega_n)^2 - \xi_{n\mathbf{k}}^2 - |\Delta_n|^2}$$
 (IX.36)

$$= \frac{-(i\omega_n)^2 + \xi_{n\mathbf{k}}^2 + |\Delta_n|^2 - |\Delta_n|^2}{(i\omega_n)^2 - \xi_{n\mathbf{k}}^2 - |\Delta_n|^2}$$
 (IX.36)  
$$= \frac{-(i\omega_n)^2 + \xi_{n\mathbf{k}}^2}{(i\omega_n)^2 - \xi_{n\mathbf{k}}^2 - |\Delta_n|^2}$$
 (IX.37)

$$= \frac{(i\omega_n + \xi_{n\mathbf{k}})(-i\omega_n + \xi_{n\mathbf{k}})}{(i\omega_n)^2 - \xi_{n\mathbf{k}}^2 - |\Delta_n|^2}$$
(IX.38)

$$\mathcal{G}_{n\uparrow n\uparrow}(\mathbf{k}, i\omega_n) = \frac{i\omega + \xi_{n\mathbf{k}}}{(i\omega_n)^2 - \xi_{n\mathbf{k}}^2 - |\Delta_n|^2}$$
(IX.39)

$$= \frac{\mathrm{i}\omega + \xi_{n\mathbf{k}}}{(\mathrm{i}\omega_n)^2 - E_{n\mathbf{k}}}$$
 (IX.40)

with the energies  $E_{n\mathbf{k}} = \pm \sqrt{\xi_{n\mathbf{k}}^2 + |\Delta_n|^2}$ .

To calculate the band gap in band n:

$$\Delta_n(\mathbf{k}) = -\sum_{\alpha} [G_{k\uparrow}]_{\alpha n}^* \Delta_{\alpha} [G_{-k\downarrow}]_{\alpha n}^*$$
 (IX.41)

$$= \sum_{\alpha k'} U_{\alpha} [G_{k\uparrow}]_{\alpha n}^* \left\langle c_{-k'\alpha\downarrow} c_{k'\alpha\uparrow} \right\rangle [G_{-k\downarrow}]_{\alpha n}^* \tag{IX.42}$$

$$= \sum_{\alpha \mathbf{k}'} U_{\alpha} [G_{k\uparrow}]_{\alpha n}^* [G_{-k\downarrow}]_{\alpha n}^* \sum_{m} [G_{-k'\downarrow}]_{\alpha m} [G_{k'\uparrow}]_{\alpha m} \langle d_{-k'm\downarrow} d_{k'm\uparrow} \rangle$$
(IX.43)

Can now use  $\mathcal{F}$  and fourier-transform:

$$\langle d_{-k'm\downarrow}d_{k'm\uparrow}\rangle = \mathcal{F}_{m\downarrow m\uparrow}^*(\mathbf{k'}, \tau = 0^+)$$
 (IX.44)

$$= \frac{1}{\beta} \sum_{i\omega_n} e^{-i\omega_n 0^+} \mathcal{F}_{m\downarrow m\uparrow}^*(\mathbf{k}', i\omega_n)$$
 (IX.45)

The summation over the Matsubara frequencies can be solved via the Residue theorem (the poles  $z_0$  of  $\mathcal{F}$  are the energies  $\pm E_{m\mathbf{k}}$ ):

$$\frac{1}{\beta} \sum_{\mathbf{i}\omega} e^{-\mathbf{i}\omega_n 0^+} \mathcal{F}_{m\downarrow m\uparrow}^*(\mathbf{k}', \mathbf{i}\omega_n)$$
 (IX.46)

$$= \sum_{z_0 \text{ poles of } \mathcal{F}} e^{-z_0 0^+} n_F(z_0) Res_{z_0} \mathcal{F}_{m\downarrow m\uparrow}^*(\mathbf{k}', z_0)$$
 (IX.47)

$$=e^{-E_{mk}0^{+}}n_{F}(E_{mk})Res_{E_{mk}}\frac{-\Delta_{m}}{(i\omega_{n})^{2}-E_{mk}}+e^{E_{mk}0^{+}}n_{F}(-E_{mk})Res_{-E_{mk}}\frac{-\Delta_{m}}{(i\omega_{n})^{2}-E_{mk}}$$
(IX.48)

with residue:

$$Res_{E_{mk}} \frac{1}{(i\omega_n)^2 - z_0^2} = \frac{1}{\partial_z|_{z_0 = E_{mk}} ((i\omega)^2 - z_0^2)} = \frac{1}{2E_{mk}}$$
 (IX.49)

So we have

$$\langle d_{-k'm\downarrow}d_{k'm\uparrow}\rangle = -\Delta_m \left(\frac{n_F(E_{m\mathbf{k}})}{2E_{m\mathbf{k}}} - \frac{n_F(-E_{m\mathbf{k}})}{2E_{m\mathbf{k}}}\right)$$
(IX.50)

The  $n_F$  term can be written as:

$$n_{F}(E_{m\mathbf{k'}}) - n_{F}(-E_{m\mathbf{k'}}) = \frac{1}{e^{\beta E_{m\mathbf{k'}}} + 1} - \frac{1}{e^{-\beta E_{m\mathbf{k'}}} + 1}$$
(IX.51)
$$= \frac{e^{-\frac{1}{2}\beta E_{m\mathbf{k'}}}}{e^{-\frac{1}{2}\beta E_{m\mathbf{k'}}}} \frac{1}{e^{\beta E_{m\mathbf{k'}}} + 1} - \frac{e^{\frac{1}{2}\beta E_{m\mathbf{k'}}}}{e^{\frac{1}{2}\beta E_{m\mathbf{k'}}}} \frac{1}{e^{-\beta E_{m\mathbf{k'}}} + 1}$$
(IX.52)

$$= \frac{e^{-\frac{1}{2}\beta E_{m\mathbf{k}'}} - e^{\frac{1}{2}\beta E_{m\mathbf{k}'}}}{e^{\frac{1}{2}\beta E_{m\mathbf{k}'}} + e^{-\frac{1}{2}\beta E_{m\mathbf{k}'}}}$$
(IX.53)

$$= -\tanh\left(\frac{\beta E_{m\mathbf{k'}}}{2}\right) \tag{IX.54}$$

This results in the self-concistency equation for the gap:

$$\Delta_{n}(\mathbf{k}) = \sum_{\alpha m \mathbf{k}'} U_{\alpha} [G_{k\uparrow}]_{\alpha n}^{*} [G_{-k\downarrow}]_{\alpha n}^{*} [G_{-k'\downarrow}]_{\alpha m} [G_{k'\uparrow}]_{\alpha m} \Delta_{m}(\mathbf{k}') \frac{\tanh\left(\frac{\beta E_{m \mathbf{k}'}}{2}\right)}{2E_{m \mathbf{k}'}}$$
(IX.55)

Using time-reversal symmetry  $[G_{-\mathbf{k}\downarrow}]_{\alpha m}^* = [G_{\mathbf{k}\uparrow}]_{\alpha m}$  this expression gets a bit simpler:

$$\Delta_n(\mathbf{k}) = \sum_{\alpha m \mathbf{k}'} U_\alpha |[G_{k\uparrow}]_{\alpha n}|^2 |[G_{k'\uparrow}]_{\alpha m}|^2 \Delta_m(\mathbf{k}') \frac{\tanh\left(\frac{\beta E_{m \mathbf{k}'}}{2}\right)}{2E_{m \mathbf{k}'}}$$
(IX.56)

### IX.1.2 Computational Implementation

Use scipys fixed\_point solver to solve the gap equation self-consistently. Flatten  $\Delta_n(\mathbf{k})$  the following way, to put it into the solver (**k** discretized in some way):

$$x = \begin{pmatrix} \Re(\Delta_{1}(\mathbf{k}_{1})) \\ \Re(\Delta_{1}(\mathbf{k}_{2})) \\ \vdots \\ \Re(\Delta_{2}(\mathbf{k}_{1})) \\ \vdots \\ \Re(\Delta_{3}(\mathbf{k}_{1})) \\ \vdots \\ \Im(\Delta_{1}(\mathbf{k}_{1})) \\ \vdots \\ \Im(\Delta_{2}(\mathbf{k}_{1})) \\ \vdots \\ \Im(\Delta_{3}(\mathbf{k}_{1})) \\ \vdots \\ \Im(\Delta_{3}(\mathbf{k}_{1})) \\ \vdots \end{pmatrix}$$
(IX.57)

so that accessing a certain element takes the form:

$$\Re \Delta_n(\mathbf{k}) = x \left[ \operatorname{index}(\mathbf{k}) + \frac{\operatorname{len}(x) \cdot n}{6} \right]$$

$$\Im \Delta_n(\mathbf{k}) = x \left[ \operatorname{index}(\mathbf{k}) + \frac{\operatorname{len}(x) \cdot n}{6} + \frac{1}{2} \operatorname{len}(x) \right]$$
(IX.58)

$$\Im \Delta_n(\mathbf{k}) = x \left[ \operatorname{index}(\mathbf{k}) + \frac{\operatorname{len}(x) \cdot n}{6} + \frac{1}{2} \operatorname{len}(x) \right]$$
 (IX.59)

# **Bibliography**

[1] P. Coleman. Introduction to Many-Body Physics. Cambridge University Press, Nov. 2015. ISBN: 978-0-521-86488-6. URL: https://doi.org/10.1017/CB09781139020916 (visited on 02/13/2024).

# List of Symbols

| $\mathbf{Symbol}$         | Meaning                                | Definition |
|---------------------------|----------------------------------------|------------|
| au                        | general imaginary time variable        | 2          |
| $\mathcal{C}_{AB}(	au,0)$ | Correlation function in imaginary time | 2          |