Import the packages

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
In [2]: visa_df=pd.read_csv(r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\N
        visa df.head(2)
Out[2]:
           case_id continent education_of_employee has_job_experience requires_job_training
         0 EZYV01
                         Asia
                                         High School
                                                                    Ν
                                                                                         Ν
         1 EZYV02
                         Asia
                                            Master's
                                                                     Υ
                                                                                         Ν
```

Bi variate analysis

- Analyse the two variables
- Two categorical columns
- Two numerical columns
- One categorical and one numerical

Categorical vs Categorical

```
In [3]: visa_df.columns
Out[3]: Index(['case_id', 'continent', 'education_of_employee', 'has_job_experience',
                 'requires_job_training', 'no_of_employees', 'yr_of_estab',
'region_of_employment', 'prevailing_wage', 'unit_of_wage',
                 'full_time_position', 'case_status'],
                dtype='object')
In [4]: cat=visa df.select dtypes(include='object').columns
         cat
Out[4]: Index(['case_id', 'continent', 'education_of_employee', 'has_job_experience',
                 'requires_job_training', 'region_of_employment', 'unit_of_wage',
                 'full_time_position', 'case_status'],
                dtype='object')
In [5]: num cols=visa df.select dtypes(exclude='object').columns
         num_cols
Out[5]: Index(['no_of_employees', 'yr_of_estab', 'prevailing_wage'], dtype='object')
         continent-case_status
In [6]: visa_df['continent'].value_counts()
```

```
Out[6]: continent
         Asia
                         16861
         Europe
                          3732
         North America 3292
         South America
                          852
         Africa
                           551
                            192
         Oceania
         Name: count, dtype: int64
In [7]: visa_df['case_status'].value_counts()
Out[7]: case_status
         Certified 17018
         Denied
                      8462
         Name: count, dtype: int64
         How many asia people got the visa Certified
         How many asia people got the visa Denied
In [11]: con1=(visa_df['continent']=='Asia')
         con2=visa_df['case_status']=='Certified'
         con=con1&con2
         len(visa_df[con])
         print(f"the number of employees visa certified are: {len(visa_df[con])}")
        the number of employees visa certified are: 11012
In [12]: con1=(visa_df['continent']=='Asia')
         con2=visa_df['case_status']=='Denied'
         con=con1&con2
         len(visa_df[con])
         print(f"the number of employees visa certified are: {len(visa_df[con])}")
        the number of employees visa certified are: 5849
In [19]: keys=visa_df['continent'].unique()
         certified_list,denied_list=[],[]
         for i in keys:
             con1=(visa_df['continent']==i)
             con2=visa_df['case_status']=='Certified'
             con3=visa df['case status']=='Denied'
             certi_con=con1&con2
             denied con=con1&con3
             certified_list.append(len(visa_df[certi_con]))
             denied_list.append(len(visa_df[denied_con]))
         pd.DataFrame(zip(certified_list,denied_list),
                     columns=['Certified','Denied'],
                     index=keys)
```

	Certified	Denied
Asia	11012	5849
Africa	397	154
North America	2037	1255
Europe	2957	775
South America	493	359
Oceania	122	70

Cross tab

Out[19]:

- cross tab will take two arguments
 - first argument: index
 - second argument: column

```
In [21]: col1=visa_df['continent']
    col2=visa_df['case_status']
    result1=pd.crosstab(col1,col2)
    result1
```

Out[21]: case_status Certified Denied continent Africa 397 154

Africa	397	154
Asia	11012	5849
Europe	2957	775
North America	2037	1255
Oceania	122	70
South America	493	359

```
In [24]: col1=visa_df['continent']
    col2=visa_df['case_status']
    result2=pd.crosstab(col2,col1)
    result2
```

Out[24]: continent Africa Asia Europe North America Oceania South America case_status

Certified	397	11012	2957	2037	122	493
Denied	154	5849	775	1255	70	359

```
In [25]: result1.plot(kind='bar')
```


In [26]: result2.plot(kind='bar')

Out[26]: <Axes: xlabel='case_status'>


```
In [28]: col1=visa_df['continent']
    col2=visa_df['education_of_employee']
    col3=visa_df['case_status']
    col=[col1,col2]
    result3=pd.crosstab(col,col3)
    result3
```

		education_of_employee	continent
62	81	Bachelor's	Africa
11	43	Doctorate	
43	23	High School	
38	250	Master's	
2761	4407	Bachelor's	Asia
143	780	Doctorate	
1614	676	High School	
1331	5149	Master's	
259	1040	Bachelor's	Europe
58	788	Doctorate	
328	162	High School	
130	967	Master's	
584	641	Bachelor's	North America
51	207	Doctorate	
191	210	High School	
429	979	Master's	
28	38	Bachelor's	Oceania
3	19	Doctorate	
17	19	High School	
22	46	Master's	
173	160	Bachelor's	South America
14	75	Doctorate	
63	74	High School	
109	184	Master's	

case_status Certified Denied

Numerical-Numerical

- In order to plot numerical vs numerical we need to use scatter plots
- Scatter plots will give the relation between two numerical columns
- It is under matplotlib

```
In [ ]: #y=x graph
In [31]: x=[1,2,3,4,5]
         y=[1,2,3,4,5]
         # it is y=x plot
         plt.scatter(x,y)
          plt.plot(x,y)
         plt.show()
         5.0
         4.5
         4.0
         3.5
         3.0
        2.5
        2.0
         1.5
         1.0
                                                       3.5
                                                               4.0
                       1.5
                               2.0
                                       2.5
                                               3.0
                                                                       4.5
                                                                               5.0
               1.0
In [32]: x=[i for i in range(-4,5)]
         y=[i*i for i in x]
         plt.scatter(x,y)
```

plt.plot(x,y)
plt.show()


```
In [33]: num_cols
```

Out[33]: Index(['no_of_employees', 'yr_of_estab', 'prevailing_wage'], dtype='object')

Scatter plot-1

• no_of_employees and yr_of_estab

```
In [34]: col1=visa_df['no_of_employees']
    col2=visa_df['yr_of_estab']
    plt.scatter(col1,col2)
```

Out[34]: <matplotlib.collections.PathCollection at 0x1bef3f24d50>

Observation: No relation

pearson correlation coeff=0

Scatter plot-2

• no_of_employees and prevailing_wage

```
In [36]: col1=visa_df['no_of_employees']
    col2=visa_df['prevailing_wage']
    plt.scatter(col1,col2)
```

Out[36]: <matplotlib.collections.PathCollection at 0x1bef3e8cd50>

Observation: No relation

pearson correlation coeff=0

Scatter plot-2

• yr_of_estab and prevailing_wage

```
In [37]: col1=visa_df['yr_of_estab']
    col2=visa_df['prevailing_wage']
    plt.scatter(col1,col2)
```

Out[37]: <matplotlib.collections.PathCollection at 0x1bef37c8a50>

Observation: No relation

pearson correlation coeff=0

```
In [40]: plt.figure(figsize=(14,3))

col1=visa_df['no_of_employees']
col2=visa_df['yr_of_estab']
plt.subplot(1,3,1).scatter(col1,col2)

col1=visa_df['no_of_employees']
col2=visa_df['prevailing_wage']
plt.subplot(1,3,2).scatter(col1,col2)

col1=visa_df['yr_of_estab']
col2=visa_df['prevailing_wage']
plt.subplot(1,3,3).scatter(col1,col2)
```

Out[40]: <matplotlib.collections.PathCollection at 0x1bef51f6090>

Correlation Coefficient

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

- Perason correlation coefficient will give the amount of relation between variables
- It is denoted with r
- r varies from -1 to 1
- For postive relation r varies from 0 to 1
- For negative relation r varies from -1 to 0
- For no relation r approximate 0
- In python code we have **corr** function under pandas
 - This will give covariance matrix
 - we already discussed covariance matrix is rows and columns type
 - In this data we have 3 numerical columns
 - so we will get 3*3 9 values
 - All trace of the matrix represnts variance
 - Upper trainagle and lower traingle represents co variance

In [42]: visa_df.corr(numeric_only=True)

Out[42]:

	no_ot_employees	yr_ot_estab	prevailing_wage
no_of_employees	1.000000	-0.017770	-0.009523
yr_of_estab	-0.017770	1.000000	0.012342
prevailing_wage	-0.009523	0.012342	1.000000

Observations

- The correlation value between no_of_employees and yr_of_estb approximately zero
 - which indicates no relation
- The correlation value between no_of_employees and prevailing_wage approximately zero
 - which indicates no relation
- The correlation value between yr_of_estb and prevailing_wage approximately zero

which indicates no relation

In []: