Financial Econometrics Econ 40357 Volatility, ARCH, GARCH

N.C. Mark

University of Notre Dame and NBER

October 9, 2020

Brooks, Chapter 9.

Volatility

Financial returns are not normally distributed. They exhibit

- Leptokurtotic (fat tails)
- Volatility clusters
- The unconditional distribution of short-horizon returns aren't normal. But their conditional distributions could be normal.

We want to model return volatility. Why?

Estimate the value of market risk. (Sharpe ratios).

$$Sharpe = \frac{r_p - r_f}{\sigma_p}$$

where $r_p - r_f$ is portfolio excess return and σ_p is portfolio volatility. Sharpe ratio is the average portfolio return per unit of volatility (a risk concept).

- Volatility is a key parameter for pricing financial derivatives. All modern option pricing techniques rely on a volatility parameter for price evaluation.
- Volatility is used for risk management assessment and in general portfolio management. Financial institutions want to know the current value of the volatility of the managed assets.
- They also want to predict their future values. Volatility forecasting is important for institutions involved in options trading and portfolio management.
- Volatility changes over time, which makes these pricing examples conditional on the current environment (high, low volatility). We want to model how volatility changes and what it depends on.

Market excess return

Let r_{mt}^e be the market excess return. Suppose we have only one observation. How would you form the sample variance? The sample standard deviation?

Square root of squared daily market excess returns

Does staring at this picture make you want to regress it on lags of itself?

Dependent Variable: ERRTSQ

Method: Least Squares Sample (adjusted): 7/02/1926 9/30/2019 Included observations: 24578 after adjustments

Coeff	Std. Error	t-Statistic	Prob.
0.483965	0.006482	74.66786	0.0000
0.292132	0.006101	47.88619	0.0000
0.085343	Mean dependent var		0.683687
	0.483965 0.292132	0.483965 0.006482 0.292132 0.006101	0.483965 0.006482 74.66786 0.292132 0.006101 47.88619

Dependent Variable: ERRTSQ

Sample (adjusted): 7/13/1926 9/30/2019

Included observations: 24571 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.165840	0.007648	21.68515	0.0000
ERRTSQ(-1)	0.091617	0.006369	14.38482	0.0000
ERRTSQ(-2)	0.134604	0.006383	21.08746	0.0000
ERRTSQ(-3)	0.110312	0.006409	17.21309	0.0000
ERRTSQ(-4)	0.092554	0.006413	14.43328	0.0000
ERRTSQ(-5)	0.104587	0.006413	16.30962	0.0000
ERRTSQ(-6)	0.100466	0.006409	15.67642	0.0000
ERRTSQ(-7)	0.062992	0.006383	9.868447	0.0000
ERRTSQ(-8)	0.060376	0.006369	9.479599	0.0000
R-squared	0.227199	Mean dependent var		0.683789
		•		

The ARCH/GARCH class of models

- Popular way to model is with ARCH (autoregressive conditional heteroskedasticity) and GARCH (generalized ARCH).
- ARCH was invented by Robert Engle. The Nobel committee gave him the economics prize in part for this.
- GARCH was invented by Tim Bollerslev, who was Engle's student at UCSD.
- There's also,
 - EGARCH (exponential GARCH)
 - IGARCH (integrated GARCH)
 - STARCH (smooth-transition ARCH)
 - TARCH (threshold ARCH)
 - FIGARCH (fractionally integrated GARCH)
 - SWARCH (switching ARCH).

Robert Engle Nobel Laureat

Nobel Prize citation: "for methods of analyzing economic time series with time- varying volatility (ARCH)"

Robert Engle Does Ice Dancing!

The ARCH/GARCH class of models

Return on some asset

$$r_t = a + \beta x_t + u_t$$

 $u_t \sim N(0, \sigma_t^2)$

Notice t subscript on variance. σ_t^2 is the **conditional** variance of u_t . Conditional on past observations of u_t

$$\sigma_t^2 = E\left[(u_t - E_t(u_t))^2 | u_{t-1}, u_{t-2}, \ldots \right] = \text{Var}\left(u_t | u_{t-1}, u_{t-2}, \ldots \right)$$

This says the conditional variance changes over time. It is time-varying. It **moves around** over time. ARCH is a **parametric model** of the conditional variance.

- Intuition: remember how we want to think of conditional expectation as regression?
- Estimation done by maximum likelihood

ARCH

ARCH(1)

$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2$$

ARCH(2)

$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \alpha_2 u_{t-2}^2$$

ARCH(q)

$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \alpha_2 u_{t-2}^2 + \cdots + \alpha_q u_{t-q}^2$$

Test for ARCH effects

Run the main regression

$$r_t = \hat{a} + \hat{\beta}x_t + \hat{u}_t$$

save the residuals \hat{u}_t

• Regress the squared residuals \hat{u}_t^2 on q lags of itself (to test for ARCH(q)).

$$\hat{u}_t^2 = b_0 + b_1 \hat{u}_{t-1}^2 + \cdots b_q \hat{u}_{t-q}^2 + v_t$$

where v_t is the error term. You can do an F-test on the coefficients.

• You can also do a Lagrange multiplier (LM) test. Get the R² from this regression.

$$TR^2 \sim \chi_q^2$$

What does the F-test and LM test test?

$$H_0: (b_1=0)\cap (b_2=0)\cap \cdots (b_q=0)$$

The alternative is H_A : NOT H_0 .

Test for and Estimate ARCH model in EViews

Test for and Estimate ARCH model in EViews

Dependent Variable: MKT_RF

Method: ML ARCH - Normal distribution (BFGS / Marguardt steps)

Date: 11/18/19 Time: 15:12 Sample (adjusted): 7/02/1926 8/30/2019

Included observations: 24558 after adjustments

Convergence achieved after 11 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(3) + C(4)*RESID(-1)^2$

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C MKT RF(-1)	0.028996 0.246425	0.004540 0.002153	6.386850 114.4349	0.0000
			114.4043	
Variance Equation				
С	0.656324	0.003491	188.0134	0.0000
RESID(-1)^2	0.473991	0.008016	59.13110	0.0000
R-squared	-0.028109	Mean dependent var		0.029196
Adjusted R-squared	-0.028151	S.D. dependent var		1.062371
S.E. of regression	1.077221	Akaike info criterion		2.768679
Sum squared resid	28494.91	Schwarz criterion		2.770000
Log likelihood	-33992.61	Hannan-Qu	inn criter.	2.769107
Durbin-Watson stat	2.323311			

Test for and Estimate ARCH model in EViews

Oy! Too many parameters!

GARCH(1,1)

$$r_{t} = a + \beta x_{t} + u_{t}$$

$$u_{t} \sim N\left(0, \sigma_{t}^{2}\right)$$

$$\sigma_{t}^{2} = \alpha_{0} + \alpha_{1} u_{t-1}^{2} + \beta \sigma_{t-1}^{2}$$

The (1,1) refers to number of lags of u^2 and σ^2 , and where

$$0 \le \beta \le 1$$

(class: why do we need this?)

GARCH(1,1) is constrained infinite ordered ARCH. Observe,

$$\sigma_{t-1}^2 = \alpha_0 + \alpha_1 u_{t-2}^2 + \beta \sigma_{t-2}^2
\sigma_{t-2}^2 = \alpha_0 + \alpha_1 u_{t-3}^2 + \beta \sigma_{t-3}^2$$

substitute this into previous

$$\begin{split} \sigma_{l}^{2} &= \alpha_{0} + \alpha_{1} u_{l-1}^{2} + \beta \underbrace{\left(\alpha_{0} + \alpha_{1} u_{l-2}^{2} + \beta \sigma_{l-2}^{2}\right)}_{\sigma_{l-1}^{2}} \\ &= \alpha_{0} \left(1 + \beta\right) + \alpha_{1} u_{l-1}^{2} + \alpha_{1} \beta u_{l-2}^{2} + \beta^{2} \sigma_{l-2}^{2} \\ &= \alpha_{0} \left(1 + \beta\right) + \alpha_{1} \left(u_{l-1}^{2} + \beta u_{l-2}^{2}\right) + \beta^{2} \left(\alpha_{0} + \alpha_{1} u_{l-3}^{2} + \beta \sigma_{l-3}^{2}\right) \\ &= \alpha_{0} \left(1 + \beta + \beta^{2}\right) + \alpha_{1} \left(u_{l-1}^{2} + \beta u_{l-2}^{2} + \beta^{2} u_{l-3}^{2}\right) + \beta^{3} \sigma_{l-3}^{2} \end{split}$$

Keep going. $\beta^k = 0$ as $k \to \infty$.

$$\sigma_t^2 = \frac{\alpha_0}{1 - \beta} + \frac{\alpha_1}{\beta} \sum_{j=1}^{\infty} \beta^j u_{t-j}^2$$

GARCH(2,1)

$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \alpha_2 u_{t-2}^2 + \beta \sigma_{t-1}^2$$

GARCH(1,2)

$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \beta_1 \sigma_{t-1}^2 + \beta_2 \sigma_{t-1}^2$$

Usually, GARCH(1,1) does the job.

■ Equation: EQ02 Workfile: VOLATILITY::Untitled\

View Proc Object Print Name Freeze Estimate Forecast Stats Resids

Dependent Variable: MKT_RF

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 11/18/19 Time: 15:25

Sample (adjusted): 7/02/1926 8/30/2019

Included observations: 24558 after adjustments

Convergence achieved after 26 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.047571	0.004436	10.72388	0.0000
MKT_RF(-1)	0.126446	0.006698	18.87856	0.0000
	Variance I	Equation		
С	0.012641	0.000497	25.43512	0.0000
RESID(-1)^2	0.103414	0.002076	49.82175	0.0000
GARCH(-1)	0.886041	0.002373	373.4385	0.0000
R-squared	0.000338	Mean dependent var		0.029196
Adjusted R-squared	0.000298	S.D. dependent var		1.062371
S.E. of regression	1.062213	Akaike info criterion		2.428462
Sum squared resid	27706.47	Schwarz criterion		2.430113
Log likelihood	-29814.08	Hannan-Quinn criter.		2.428997
Durbin-Watson stat	2.107261			

Forecasting Volatility

Forecasting Volatility

Forecasting Volatility

How to forecast the conditional variance in Eviews

- Equation Window → view → Garch Graph
- ② Equation Window → Proc → Make GARCH Variance Series
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \end{tabular} \end{tabu$

Both static and dynamic forecasting use the original estimated coefficients at every step.

Static computes a sequence of one-step ahead forecasts using the actual (not forecasted) values of lagged deppendent variables. Dynamic forecasting uses only information available at the beginning of the forecast period. i.e., no updating the rhs variables. It forecasts the rhs variables.

ARCH-M, GARCH-M (in the mean)

Is higher volatility associated with higher or lower returns? Here is GARCH-M example

$$r_t^e = a + b\sigma_t + u_t$$

$$u_t \sim N\left(0, \sigma_t^2\right)$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \beta \sigma_{t-1}^2$$

- Use volatility as 'regressor' to preserve units.
- b > 0, high volatility, r^e expected to be large. b < 0, high volatility, r^e expected to be small.
- Estimation is by maximum likelihood.
- To implement, choose the option in EViews

ARCH-M/GARCH-M in Eviews

ARCH-M/GARCH-M in Eviews

