Persistence: RAID

Sridhar Alagar

Many Disks

- We often want
 - More capacity
 - Better reliability
 - High performance
- Many inexpensive disks can be used together
 - Alternative: Buy a hig end expensive disk
- Challenge: FS work only on one disk

Solution 1: JBOD

 Just a Bunch of Disks together

 Application needs to be smart to store files across different disks

Solution 2: RAID

- Redundant Array of Inexpensive Disks
 - Build logical disks from many disks
- RAID provides
 - Capacity
 - Performance
 - Reliability
- RAID is
 - Transparent
 - Easily deployable

General Strategy: Mapping

Build fast, large disk from many smaller ones

General Strategy: Redundancy

Add more disks for reliability

RAID Levels

- Which logical blocks map to which physical blocks?
- How do we use extra physical blocks (if any)?
- Different RAID levels make different trade-offs

Workloads

- Reads
 - One operation
 - Steady-state I/O: Sequential and Random
- Writes
 - One operation
 - Steady-state I/: Sequential and Random

Metric

- Capacity: how much space can we use?
- Reliability: how many disks can we safely lose? (assume fail stop!)
- Performance: how long does each workload take?
- · Normalize each to characteristics of one disk

N := number of disks

C := capacity of 1 disk

S := sequential throughput of 1 disk

R := random throughput of 1 disk

D := latency of one small I/O operation

RAID-0: Striping

Optimize for capacity. No redundancy

RAID - 0: Striping 4 disks

_	Disk 0	Disk 1	Disk 2	Disk 3
stripe:	0	1	2	3
	4	5	6	7
	8	9	10	11
	12	13	14	15

Given logical address A, find:

Disk =
$$A \% N$$

Offset = A / N

RAID-0: Analysis

```
What is capacity? N * C How many disks can fail? O Latency D Throughput (sequential, random)? N*5, N*R
```

Buying more disks improves throughput, but not latency!

N := number of disks

C := capacity of 1 disk

S := sequential throughput of 1 disk

R := random throughput of 1 disk

D := latency of one small I/O operation

RAID-1: Mirroring

Keep two copies of all data.

Raid-1 Layout

	DISK U	DISK I
	0	0
2 disks	1	1
	2	2
	3	3

	Disk U	Disk 1	Disk 2	<u> </u>
4 disks	0	0	1	1
	2	2	3	3
	4	4	5	5
	6	6	7	7

RAID-1: Analysis

What is capacity?
How many disks can fail?
Latency

N/2 * C 1 (may be up to N/2) D

N := number of disks

C := capacity of 1 disk

S := sequential throughput of 1 disk

R := random throughput of 1 disk

D := latency of one small I/O operation

RAID-1: Throughput

What is steady-state throughput for

- random reads?
N*R

- random writes? N/2 * R

- sequential writes? N/2 * S

- sequential reads? Book: N/2 * S (other models: N * S)

Disk 0	Disk 1	Disk 2	Disk 4
0	0	1	1
2	2	3	3
4	4	5	5
6	6	7	7

Mirroring Issues

 Disk 0 and Disk 1 are inconsistent

- Seen this problem before
 - · Write-ahead logging

write(T) to 3 update disk 1 crash

Capacity vs Reliability

RAID 4: Strategy

Use Parity Disk

C0	C1	C2	C3	P
0	0	1	1	XOR(0,0,1,1) = 0
0	1	0	0	XOR(0,1,0,0) = 1

• Using parity bit, can reconstruct the lost column (disk)

Example

Disk0 Disk1 Disk2 Disk3 Disk4

Stripe: 1 0 1 1 1 (parity)

Example

	Disk0	Disk1	Disk2	Disk3	Disk4
Stripe:	1	0	1	1	1
					(parity)

Disk 2 failed. Reconstruct the data based on the other data in the stripe

Parity Block: How to construct?

Block0	Block1	Block2	Block3	Parity
00	10	11	10	11
10	01	00	01	10

 $\, \cdot \, i^{th}$ bit in the parity block is the parity bit of i^{th} bit of all the other blocks in the stripe

RAID-4: Analysis

What is capacity?
How many disks can fail?
Latency (read, write)

(N-1) * C

1

D, 2D (read and write parity disk)

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	P0
4	5	6	7	P1
8	9	10	11	P2
12	13	14	15	P3

RAID-4: Throughput

What is steady-state throughput for

```
- sequential reads? (N-1) * S
```

- sequential writes? (N-1) * S

- random reads? (N-1) * R

- random writes? R/2 (read and write parity disk sequentially)

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	P0
*4	5	6	7	+P1
8	9	10	11	P2
12	*13	14	15	+P3

RAID-4: Small Write Problem

- Writes to block 4 and 13 cannot happen in parallel
 - P1 and P3 can only be updated sequentially

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	P0
*4	5	6	7	+P1
8	9	10	11	P2
12	*13	14	15	+P3

 Parity disk is the bottleneck

RAID-5: Rotating Parity

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	P0
5	6	7	P1	4
10	11	P2	8	9
15	P3	12	13	14
P4	16	17	18	19

• Parity blocks are rotated across disks drive

RAID-5: Throughput

What is steady-state throughput for

- sequential reads? (N-1) * S

- sequential writes? (N-1) * S

- random reads?
N*R

- random writes? N*R/4

RAID LEVEL COMPARISONS

	RAID-0	RAID-1	RAID-4	RAID-5
Capacity	N	N/2	N-1	N-1
Reliability	0	1 (for sure) $\frac{N}{2}$ (if lucky)	1	1
Throughput				
Sequential Read	N·S	(N/2) · S	(N-1) • S	(N-1) • S
Sequential Write	N·S	(N/2) · S	(N-1) • S	(N-1) • S
Random Read	N•R	N•R	(N-1) • R	Ν·R
Random Write	N•R	(N/2) • R	$\frac{1}{2}R$	$\frac{N}{4}$ R
Latency				
Read	D	D	D	D
Write	D	D	2D	2D

Summary

 Capacity, reliability, and performance can be increased using RAID

Transparent and easily deployable

Offers many trade-offs

Disclaimer

• Some of the materials in this lecture slides are from the lecture slides by Prof. Andrea, Prof. Youjip, and other educators. Thanks to all of them.