UNIVERSITY OF BRISTOL

May/June 2023 Examination Period

FACULTY OF ENGINEERING

Second Year Examination for the Degree of Bachelor of Science and Master of Engineering

COMS20011
Data-Driven Computer Science

TIME ALLOWED: 2 Hours

Answers to COMS20011: Data-Driven Computer Science

Intended Learning Outcomes:

Help Formulas:

Minkowski distance:

$$D(x,y) = (\sum_{i=1}^{n} |x_i - y_i|^p)^{\frac{1}{p}}$$

One-dimensional Gaussian/Normal probability density function:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Multi-dimensional Gaussian/Normal probability density function:

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^M |\Sigma|}} e^{-\frac{1}{2}(\mathsf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathsf{x} - \boldsymbol{\mu})}$$

2D Convolution:

$$g(x,y) = \sum_{m=-1}^{1} \sum_{n=-1}^{1} h(m,n) f(x-m,y-n)$$

Least Squares Matrix Form:

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \ \mathbf{X}^T \ \mathbf{y}$$

Matrix inversion:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Matrix Determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Q1. Consider the pixel values of a small image below:

10	2	2	2	2	2
10	2	1	14	2	2
10	2	2	13	0	2
10	2	1	15	2	2
10	2	2	15	1	2
10	2	2	2	2	2

Using the position of the pixel with value 13 as the centre pixel to be convolved, apply the following convolution filter once using 8-connectivity and once using 4-connectivity:

$$\begin{pmatrix} -1 & 1 & -1 \\ -1 & 3 & -1 \\ -1 & 1 & -1 \end{pmatrix}$$

Which of the options below is the correct answer for the new pixel value in each connectivity case?

- A. For 8-connectivity it is 76, and for 4-connectivity it is 70
- B. For 8-connectivity it is 60, and for 4-connectivity it is 66
- C. For 8-connectivity it is 60, and for 4-connectivity it is 76
- D. For 8-connectivity it is 66, and for 4-connectivity it is 60
- E. For 8-connectivity it is 70, and for 4-connectivity it is 76

[6 marks]

Solution: B - convolve or in fact correlate (since the filter is symmetric) with 8 neighbours or 4 neighbours.

- Q2. Which of the following statements is TRUE:
 - A. The outer regions of the Fourier space represent the detail in the image and are used for smoothing.
 - B. The outer regions of the Fourier space represent the detail in the image and are used for sharpening.
 - C. The central regions of the Fourier space represent the detail in the image and are used for smoothing.
 - D. Options A, B, and C are all true.

(COIIC.)

E. Options A, B, and C are all false.

[3 marks]

Solution: B

Q3. Naive Bayes Classifier - The table below shows the probability of certain words from amongst a large selection of spam and not spam emails received at a university. The occurrence of the words and their probabilities are independent of each other.

Word	p(word spam)	$p(word \neg spam)$
Ink	0.80	0.30
Term	0.02	0.93
Summer	0.40	0.65
Printer	0.18	0.75
Bulk	0.70	0.10

Making a Naive Bayes assumption, compute the probability of sentence S1 below being spam and the probability of sentence S2 below not being spam:

- S1- Buy printer ink in bulk at prices seen last Summer.
- S2- The Summer term notes are by the printer.

Choose the correct option for P(S1|spam) and P(S2|not spam):

- A. P(S1|spam) = 0.0403 and P(S2|not spam) = 0.0146
- B. P(S1|spam) = 0.0146 and P(S2|not spam) = 0.4534
- C. P(S1|spam) = 0.0403 and P(S2|not spam) = 0.0014
- D. P(S1|spam) = 0.0146 and P(S2|not spam) = 0.4095
- **E.** P(S1|spam) = 0.0403 and P(S2|not spam) = 0.4534

[6 marks]

Solution: E -
$$P(S1|spam) = 0.18 \times 0.80 \times 0.70 \times 0.40 = 0.0403$$
 and $P(S2|not spam) = 0.65 \times 0.93 \times 0.75 = 0.4095$

Q4. For a digitised sample acquired using 4Hz sampling and 4 quantisation levels, the following file has been provided:

0010101101010010011010111101010

The first sample collected after the first second of recording has passed is equal to:

- A. 0110
- B. 1011

(cont.)

C. 01

D. 10

E. 0010

[3 marks]

Solution: C - 4 quantisation levels requires 2 binary digits. 4Hz is 1/4 seconds, then at 1 second we have 00101011, and the first sample collected next is 01.

Q5. For three-dimensional data $X = (x_1, x_2, x_3)$, we plot each variable against the other as shown below:

Given these plots, determine which of the following is a reasonable estimate of the covariance matrix Σ of dataset X?

A.
$$\Sigma = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 7 & -2 \\ -1 & -2 & 2 \end{bmatrix}$$

A.
$$\Sigma = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 7 & -2 \\ -1 & -2 & 2 \end{bmatrix}$$
B. $\Sigma = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ -1 & -2 & 7 \end{bmatrix}$

C.
$$\Sigma = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 1 & 2 \\ 1 & 2 & 7 \end{bmatrix}$$

D.
$$\Sigma = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 7 & -2 \\ -1 & -2 & 2 \end{bmatrix}$$

E.
$$\Sigma = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 7 & -2 \\ -1 & -2 & 0 \end{bmatrix}$$

[5 marks]

Solution: A

Q6. Which of the following 2D matrices are NOT separable? Ignore normalisation factors which are not stated here.

$$M_{1} = \begin{pmatrix} -1 & 3 & -1 \\ -3 & 9 & -3 \\ 1 & -3 & 1 \end{pmatrix} \qquad M_{2} = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ -1 & 0 & 1 \end{pmatrix} \qquad M_{3} = \begin{pmatrix} -1 & 4 & -1 \\ -1 & 8 & -1 \\ -1 & 4 & -1 \end{pmatrix}$$

$$M_{4} = \begin{pmatrix} 1 & 2 & -1 & 2 & 4 \\ 2 & 4 & -2 & 4 & 8 \\ -1 & -2 & 1 & -2 & -4 \\ 2 & 4 & -2 & 4 & 8 \\ 4 & 8 & 4 & 8 & 16 \end{pmatrix} \qquad M_{5} = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 2 & 1 & 1 & -2 \\ 1 & 0 & 0 & -1 \\ 2 & 1 & 1 & -2 \end{pmatrix}$$

Choose the correct option:

- A. M_1 and M_5
- B. M_2 and M_3 and M_5
- C. M_1 and M_4
- D. M_2 and M_3 and M_4
- **E.** M_3 and M_5

[5 marks]

Solution: E - Only M_3 and M_5 are not separable - the others can be arrived at with one column and one row vector. Verify using Python or Matlab.

Q7. Two eigenvalues of the matrix below are 1 and 8:

$$\begin{bmatrix} 1 & -2 & 0 & 5 \\ 0 & 7 & 1 & 5 \\ 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

What are the other two eigenvalues?

- A. 3 and 4
- B. 4 and 2
- C. 2 and 3
- D. 1 and 3
- E. 0 and 4

[4 marks]

(cont.)

Solution: C - Sum of the variances (main diagonal elements = 14) = sum of the eigenvalues, so answer has to be 2 and 3 for all the eigenvalues to sum up to 14 too

Q8. Fig. 1 shows an image of 'lines & numbers' and its Fourier Transform output.

Figure 1: An image and its FFT space.

The top row in Fig. 2 shows 4 filtered versions of the 'lines & numbers' FFT space: (F1, F2, F3, F4). The 4 images in the bottom row, (W, X, Y, Z), show <u>in a random order</u>, the inverse FFT results of those filtered FFT outputs. Select the choice that correctly states which filtered FFT image corresponds to which inverse filtered FFT image.

Figure 2: (top row) Filtered versions of the FFT result of the 'lines & numbers' image, and (bottom row) Inverse FFT results of tose in the top row but in a random order.

- A. (F1, F2, F3, F4) correspond to (Y, X, Z, W)
- B. (F1, F2, F3, F4) correspond to (Y, X, W, Y)
- C. (F1, F2, F3, F4) correspond to (Z, W, X, Y)
- **D.** (F1, F2, F3, F4) correspond to (X, Y, Z, W)
- E. (F1, F2, F3, F4) correspond to (X, Y, W, Z)

[10 marks]

Solution: D - the filters are high pass $(F4 \Rightarrow W)$, low pass $(F1 \Rightarrow X)$, band pass $(F2 \Rightarrow Y)$, and very low pass $(F2 \Rightarrow Z)$.

- **Q9**. The eigenvalues of a dataset are: [26.0, 16.0, 13.0, 5.0, 4.0, 3.0, 1.95, 0.85, 0.60]. Approximately what variance in the dataset do the first 4 eigenvalues represent?
 - A. 91.2%
 - B. 88.6%
 - C. 93.3%
 - D. 77.3%
 - E. 85.2%

[5 marks]

Solution: E - Sum of the first 4 eigenvalues divided by the sum of all the eigenvalues, multiplied by 100 and rounded to 1 decimal point.

- Q10. What is the minimum Edit Distance between the words "Sunday" and "Saturday"?
 - A. 4
 - B. 6
 - C. 7
 - D. 3
 - E. 2

[3 marks]

Solution: D - We would need to convert "un" to "atur" using 3 operations: substitute 'n' with 'r', insert 'a', insert 't'

- Q11. Which of these is NOT a potential cause of overfitting?
 - A. Choosing a function class that is too complex
 - B. Choosing a function class that is too simple
 - C. No regularisation.
 - D. Too few datapoints.
 - E. Datapoints only cover a small region in the input space.

[5 marks]

- Q12. Which of these statements about cross-validation is FALSE:
 - A. Cross-validation can be used to assess overfitting.
 - B. Cross-validation reports performance on the training data used to fit the function.
 - C. Cross-validation can be used to choose the function class.
 - D. Cross-validation can be used to choose the amount of regularisation.
 - E. Cross-validation can be computationally expensive if we have more than one or two hyperparameters.

[5 marks]

- Q13. Which of these statements about the logarithm and its use in data-science is FALSE:
 - A. The logarithm converts products into sums, i.e. $\log ab = \log a + \log b$.
 - B. The logarithm converts powers into products, i.e. $\log a^b = b \log a$.
 - **C.** The gradient of the logarithm is $\frac{\partial \log p}{\partial p} = 2p^{-1}$.
 - D. Using log-probabilities rather than "raw" probabilities helps us avoid numerical under/overflow.
 - E. When doing maximum-likelihood fitting, the parameters with the highest log-likelihood are the same as the parameters with the highest "raw" likelihood.

[5 marks]

Q14. Find the value of:

$$\sum_{i=1}^{5} (\delta_{i2}i^3 + \delta_{i5}i^2)$$

where δ is the Kronecker-delta.

- A. 30
- B. 33
- C. 34

(cont.)

D. 36

E. 40

[5 marks]

Solution:

$$\sum_{i=1}^{5} (\delta_{i2}i^3 + \delta_{i5}i^2) = 2^3 + 5^2 = 8 + 25 = 33.$$
 (1)

Q15. For the data in the table, fit a model of the form $\hat{y} = w_1 + w_2 x$

A.
$$w_1 = -4.20$$
, $w_2 = 2.12$.

B.
$$w_1 = -4.24$$
, $w_2 = 2.06$.

C.
$$w_1 = -4.30$$
, $w_2 = 2.12$.

D.
$$w_1 = -4.32$$
, $w_2 = 2.06$.

E.
$$w_1 = -4.35$$
, $w_2 = 2.12$.

Q16. For the data in the table, fit a model of the form $\hat{y} = w_1 x + w_2 x^2$

		_	_	_	
	<u>y</u>				
	-4.2				
1	-2.3				[5 marks]
2	-0.1				[3 IIIai KS]
3	2.1				
4	3.9				
	A. $w_1 = -1.42$, $w_2 = 0.603$.				
	B. $w_1 = -1.55$, $w_2 = 0.654$.				
	C. $w_1 = -1.60$, $w_2 = 0.674$.				
	D. $w_1 = -1.78$, $w_2 = 0.687$.				
	E. $w_1 = -1.82$, $w_2 = 0.742$.				

Q17. For the data in the table, fit a model of the form $\hat{y}_i = w_1 X_{i1} + w_2 X_{i2}$

(cont.)

[5 marks]

[5 marks]

$$X_{i1}$$
 X_{i2} y_i -1 -2.6

-1 1 -0.2

1 -1 0.5

1 1 2.4

A.
$$w_1 = 1.275$$
, $w_2 = 0.925$

B.
$$w_1 = 1.305$$
, $w_2 = 0.970$

C.
$$w_1 = 1.350$$
, $w_2 = 1.025$

D.
$$w_1 = 1.400$$
, $w_2 = 1.505$

E.
$$w_1 = 1.425$$
, $w_2 = 1.075$

Q18. Compute $\sum_{i} \log P(y_i|x_i)$ for binary classification, where

$$P(y_i = 1|x_i) = \sigma(1 + x_i - 2x_i^2)$$

with data,

-0.9 0

0.2 1

1.2 1

2.4 1

A. -9.32

B. -9.56

C. -9.61

D. -9.69

E. -9.83

Q19. We have N datapoints, x_1, \ldots, x_N , distributed according to,

$$P(x_i|\mu) \propto \frac{1}{x_i} e^{-(\log x_i - \mu)/2}$$

What is the maximum-likelihood solution for μ ?

A.
$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$
.

B.
$$\mu = \frac{1}{2N} \sum_{i=1}^{N} \log x_i$$

C.
$$\mu = \frac{1}{N} \sum_{i=1}^{N} \log x_i$$

D.
$$\mu = \frac{1}{2N} \sum_{i=1}^{N} e^{x_i}$$

E.
$$\mu = \frac{1}{N} \sum_{i=1}^{N} e^{x_i}$$

Solution:

$$\log P(x|\mu) = \sum_{i} (-\log x_i - (\log x_i - \mu)^2/2)$$
 (2)

$$\log P(x|\mu) = \sum_{i} (-\log x_i - (\log x_i)^2 / 2 + \mu \log x_i - \mu^2 / 2)$$
 (3)

$$0 = \frac{\partial}{\partial \mu} \log P(x|\mu) = \sum_{i} (\log x_i - \mu)$$
 (4)

$$0 = \sum_{i} (\log x_i) - N\mu \tag{5}$$

$$N\mu = \sum_{i} (\log x_i) \tag{6}$$

$$\mu = \frac{1}{N} \sum_{i} (\log x_i) \tag{7}$$

Q20. We have N datapoints, x_1, \ldots, x_N , distributed according to,

$$P(x_i|\beta) \propto \beta^2 \frac{1}{x_i^3} e^{-\beta/x_i}$$

What is the maximum-likelihood solution for β ?

A.
$$\frac{1}{2} (\frac{1}{N} \sum_{i=1}^{N} x_i)$$

B.
$$\frac{1/2}{\frac{1}{N}\sum_{i=1}^{N}x_i}$$

C.
$$\frac{1/2}{\frac{1}{N}\sum_{i=1}^{N}(1/x_i)}$$

$$\mathsf{D.} \ \frac{2}{\frac{1}{N} \sum_{i=1}^{N} \mathsf{x}_i}$$

E.
$$\frac{2}{\frac{1}{N}\sum_{i=1}^{N}(1/x_i)}$$

[5 marks]

Solution:

$$\log P(x|\beta) = \sum_{i=1}^{N} (2\log \beta - 3\log x - \beta/x_i)$$
 (8)

$$= N(2\log\beta - 3\log x) - \beta \sum_{i=1}^{N} (1/x_i)$$
 (9)

$$0 = \frac{\partial}{\partial \beta} \log P(x|\beta) = 2N_{\overline{\beta}}^{1} - \sum_{i=1}^{N} (1/x_{i})$$
 (10)

$$\sum_{i=1}^{N} (1/x_i) = 2N_{\overline{\beta}}^{1} \tag{11}$$

$$\beta = \frac{2N}{\sum_{i=1}^{N} (1/x_i)} \tag{12}$$

$$\beta = \frac{2N}{\sum_{i=1}^{N} (1/x_i)}$$

$$\beta = \frac{2}{\frac{1}{N} \sum_{i=1}^{N} (1/x_i)}$$
(12)