MD. Foygal Rahaman JD: 21-45809-3 Given CFGi S-> aTb/b T-> TalE Rule! For each variable. S and T. S(9, E, S) = (9, B)... gwhene Sand $T \rightarrow B$ framon S(9, E, T) = (9, B)... Rule 2 For each Terminal. a and b. $S(q, a, a) = (q, \epsilon)$ which have to pop 8(9, b, b) = (9, E) Hene, S(9, E, A) = (9, B) where state input variable state A>Bis a product a production nuce of gramma. In this case.

Our variable 5 and T

and Tenminals a, b.

now, use mite down production rule and pop rule.

s-aTb/b T-> TalE aTb atab dos arab aab_ 6 suppose this is our input. ab

A west	9	7.				
.0.		*(b)	-			
	Now	Transition tal	ble			
	S. No	state	unroad inpu	t stock	from the	
	1	9.	aab	E	1,	
	2.	90	aab	S	1.	
	3.	90	aab	аТЬ	2	
	4.	90	aab	& Tb	Б.	
	5.	200	ab	Tb	@ ·	
	6.	90	ab	Tab	4.	
	7.	90	ab	ab	5.	
	8.	20	ø b	øь	6.	
	9.	9.	Ь	Ь		
	*	900	B	Ь	2.	
	10.		E	E	Accept	
	11.	900				

E, E>5 8 E, E>5 8 Queop €,5 → b 0 €, € → T 0 €, € → a €, T → a 0 €, € → T $\varepsilon, s \rightarrow b$ $\varepsilon, \tau \rightarrow \varepsilon$ $a, a \rightarrow \varepsilon$ $b, b \rightarrow \varepsilon$