Ockham Efficiency Theorem for Randomized Scientific Methods

Conor Mayo-Wilson and Kevin T. Kelly

Department of Philosophy Carnegie Mellon University

Formal Epistemology Workshop (FEW) June 19th, 2009

Point of the Talk

 Ockham efficiency theorem: Ockham's razor has been explained in terms of minimizing retractions en route to the truth, relative to all deterministic scientific strategies (Kevin T. Kelly and Oliver Schulte).

- Ockham efficiency theorem: Ockham's razor has been explained in terms of minimizing retractions en route to the truth, relative to all deterministic scientific strategies (Kevin T. Kelly and Oliver Schulte).
- Extension: Ockham's deterministic razor minimizes retractions en route to the truth, relative to a broad class of random scientific strategies.

- Ockham efficiency theorem: Ockham's razor has been explained in terms of minimizing retractions en route to the truth, relative to all deterministic scientific strategies (Kevin T. Kelly and Oliver Schulte).
- Extension: Ockham's deterministic razor minimizes retractions en route to the truth, relative to a broad class of random scientific strategies.
- Further significance: Extending the argument to expected retractions is a necessary step for lifting the idea to a theory of statistical theory choice.

Outline

- Puzzle of Simplicity
- 2 Standard Explanations
- Simplicity
- **Examples**
- 5 "Mixed" Strategies and Ockham's Razor

- Ockham's Razor is indespensible in scientific inference.
- Inference should be truth-conducive.
- But how could a fixed bias toward simplicity be said to help one find possibly complex truths?

Examples

 Methodological virtues: Simpler theories are more testable or explanatory or are otherwise more virtuous.

- Methodological virtues: Simpler theories are more testable or explanatory or are otherwise more virtuous.
- Response: wishful thinking—desiring that the truth be virtuous doesn't make it so.

• Confirmation: Simple theories are better confirmed by simple data:

$$\frac{p(T_S \mid E)}{p(T_C \mid E)} > \frac{p(T_S)}{p(T_C)}.$$

• Confirmation: Simple theories are better confirmed by simple data:

$$\frac{p(T_S \mid E)}{p(T_C \mid E)} > \frac{p(T_S)}{p(T_C)}.$$

- Responses
 - Simple data are compatible with complex hypotheses.

• Confirmation: Simple theories are better confirmed by simple data:

$$\frac{p(T_S \mid E)}{p(T_C \mid E)} > \frac{p(T_S)}{p(T_C)}.$$

- Responses
 - Simple data are compatible with complex hypotheses.
 - No clear connection with finding the truth in the short run.

• Over-fitting: Even if the truth is complex, simple theories improve overall predictive accuracy by trading variance for bias.

- Over-fitting: Even if the truth is complex, simple theories improve overall predictive accuracy by trading variance for bias.
- Responses:
 - The underlying decision theory is unclear—the worst-case solution is the most complex theory.

- Over-fitting: Even if the truth is complex, simple theories improve overall predictive accuracy by trading variance for bias.
- Responses:
 - The underlying decision theory is unclear—the worst-case solution is the most complex theory.
 - The over-fitting account ties Ockham's razor to choices among stochastic theories.

• **Over-fitting:** Even if the truth is complex, simple theories improve overall predictive accuracy by trading variance for bias.

Responses:

- The underlying decision theory is unclear—the worst-case solution is the most complex theory.
- The over-fitting account ties Ockham's razor to choices among stochastic theories.
- "Prediction" must be understood so as to rule out counterfactual or causal predictions.

• **Convergence:** Even if the truth is complex, complexities in the data will eventually over-turn over-simplified theories.

- **Convergence:** Even if the truth is complex, complexities in the data will eventually over-turn over-simplified theories.
- Responses:
 - Any theory choice in the short run is compatible with finding the true theory in the long run.

A New Approach

Examples

- Deduction:
 - Sound;
 - Monotone.

Deduction:

- Sound:
- Monotone.

Induction:

- Approximate Soundness: converge to truth with minimal errors;
- Approximate Monotonicity: minimize retractions.

Monotonicity for Bayesians

Monotonicity in Belief Revision

• Total number of times $B_{n+1} \not\models B_n$ = total number of non-expansive belief revisions.

• Ockham's Razor = Closest Inductive Approximation to Deduction

- Ockham's Razor = Closest Inductive Approximation to Deduction
- Ockham's razor converges to the truth with minimal retractions and errors and elapsed time to retractions, elapsed time to errors

- Ockham's Razor = Closest Inductive Approximation to Deduction
- Ockham's razor converges to the truth with minimal retractions and errors and elapsed time to retractions, elapsed time to errors
- No other convergent method does

- Ockham's Razor = Closest Inductive Approximation to Deduction
- Ockham's razor converges to the truth with minimal retractions and errors and elapsed time to retractions, elapsed time to errors
- No other convergent method does
- No circular appeal to prior simplicity biases

- Ockham's Razor = Closest Inductive Approximation to Deduction
- Ockham's razor converges to the truth with minimal retractions and errors and elapsed time to retractions, elapsed time to errors
- No other convergent method does
- No circular appeal to prior simplicity biases
- No awkward trade-offs between costs are required.

Empirical Effects:

- Recognizable eventually.
- Arbitrarily subtle so may take arbitrarily long to be noticed.
- Each theory predicts finitely many.

Empirical Problems:

- Background knowledge K picks out a set of possible, finite, effect sets.
- Theory T_S says that exactly the effects in S will be seen in the unbounded future.
- A world of experience w is an infinite sequence that presents some finite set of effects at each stage and that presents some set $S \in K$ in the limit.
- The **empirical problem** corresponding to K is to determine which theory in $\{T_S : S \in K\}$ is true of the actual world of experience w.

Empirical Problems and Simplicity

What simplicity is:

• The empirical complexity of world of experience w is the length of the longest effect path in K to the effect set S_w presented by w.

Empirical Problems and Simplicity

What simplicity isn't:

- notational or computational brevity (MDL),
- a question-begging rescaling of prior probability using $-\ln(x)$ (MML).
- free parameters or dimensionality (AIC).

Three Paradigmatic Examples

- Linearly ordered complexity with refutation: Curve Fitting
 - Kelly [2004]

Three Paradigmatic Examples

- Linearly ordered complexity with refutation: Curve Fitting
 - Kelly [2004]
- Partially ordered complexity with refutation: Causal Inference
 - Schulte, Luo and Greiner [2007],
 - Kelly and Mayo-Wilson [2008]

- Linearly ordered complexity with refutation: Curve Fitting
 - Kelly [2004]
- Partially ordered complexity with refutation: Causal Inference
 - Schulte, Luo and Greiner [2007],
 - Kelly and Mayo-Wilson [2008]
- Partially ordered complexity without refutation: Orientation of Causal Edge
 - Kelly and Mayo-Wilson [2008]

Linearly Ordered Simplicity Structure

- Curve fitting is an instance of a more general type of problem.
- Problem: Choosing amongst theories that are linearly ordered in terms of complexity.
- Evidence: Suppose that any false, simple theory is refuted in some finite amount of time.

Puzzle of Simplicity

Linearly Ordered Simplicity Structure

Linearly Ordered Simplicity Structure

Puzzle of Simplicity

Linearly Ordered Simplicity Structure

Linearly Ordered Simplicity Structure

Puzzle of Simplicity

Branching Simplicity Structure

consistent stalwart Ockham

Puzzle of Simplicity

Branching Simplicity Structure

 Problem: Choose a causal network describing the causal relationships amongst a set of variables.

- Problem: Choose a causal network describing the causal relationships amongst a set of variables.
- Evidence (Effects): probabilistic dependencies amongst the variables discovered over time.

- Problem: Choose a causal network describing the causal relationships amongst a set of variables.
- Evidence (Effects): probabilistic dependencies amongst the variables discovered over time.
- Complexity = greater number of edges

Deterministic Theory Choice Methods

Given arbitrary, finite initial segment e of a world of experience, a
deterministic theory choice method produces a unique theory T_S or
'?' indicating refusal to choose.

Say a method M is

• **convergent** if, for any world w, M eventually produces the true theory in w.

Say a method M is

- **convergent** if, for any world *w*, *M* eventually produces the true theory in *w*.
- Ockham if it never says any non-simple theory (relative to evidence).

Say a method M is

- **convergent** if, for any world *w*, *M* eventually produces the true theory in *w*.
- Ockham if it never says any non-simple theory (relative to evidence).
- stalwart if whenever it endorses the simplest theory, it continues to do so until it's no longer simplest.

Say a method M is

- convergent if, for any world w, M eventually produces the true theory in w.
- Ockham if it never says any non-simple theory (relative to evidence).
- **stalwart** if whenever it endorses the simplest theory, it continues to do so until it's no longer simplest.
- eventually informative if, in any world, there is some point of inquiry n after which M never says '?' in w.

Ockham's Razor in Probability

Say a method M is a **normally Ockham** if it is Ockham, stalwart, and eventually informative.

Ockham's Razor

Modulo some minor assumptions on the simplicity structure, which all of the above examples satisfy.

Theorem (Efficiency Theorem)

Let M be a normal Ockham method, and let M' be any convergent method. Suppose M and M' agree along some finite initial set of experience e_- , and that M' violates Ockham's razor at e. Then M' commits strictly more retractions (in the worst-case) in every complexity class with respect to e.

Mixed Strategies in Decision and Game Theory

 Randomization in decision theory and games: E.g. Rock, paper, scissors, matching pennies

Mixed Strategies in Decision and Game Theory

 Randomization in decision theory and games: E.g. Rock, paper, scissors, matching pennies

"Mixed" Strategies and Ockham's Razor

 Can randomization in scientific inquiry improve expected errors and retractions?

Randomized Strategies

 Randomized Methods: Machines (formally, discrete state stochastic processes) for selecting theories from data

Randomized Strategies

- Randomized Methods: Machines (formally, discrete state stochastic processes) for selecting theories from data
- Outputs of machine are a function of (i) its current state and (ii) total input

Randomized Strategies

- Randomized Methods: Machines (formally, discrete state stochastic processes) for selecting theories from data
- Outputs of machine are a function of (i) its current state and (ii) total input
- States of machine evolve according to a random process i.e.
 - Future and past states may be correlated to any degree -Independence not assumed!
 - No assumptions about process being Markov, etc.

Randomized methods ought to be as deductive as possible:

- Approximate Soundness: convergence in probability, minimization of expected errors
- Approximate Monotonicity: minimization of expected retractions

Retractions in Chance and Expected Retractions

Retractions in Chance and Expected Retractions

Say a randomized method M is

 Ockham if it never says any non-simple theory with probability greater than zero.

Say a randomized method M is

- Ockham if it never says any non-simple theory with probability greater than zero.
- Stalwart if whenever it endorses the simplest theory (with any
 positive probability), it continues to do so with unit probability until
 it is no longer Ockham.

Say a randomized method M is

- Ockham if it never says any non-simple theory with probability greater than zero.
- Stalwart if whenever it endorses the simplest theory (with any
 positive probability), it continues to do so with unit probability until
 it is no longer Ockham.
- Convergent in Probability if for any world w, the probability that
 M produces the theory true in w approaches 1 as time elapses.

Ockham's Razor in Probability

Say a method M is a **normally Ockham** if it is Ockham, stalwart, and convergent in probability.

Generalized Efficiency Theorem: Suppose the simplicity structure has no short paths, and let M be a randomized or deterministic method such that

- M first violates Ockham's razor after some initial segment of evidence e.
- M is convergent in probability

Then, in comparison to any normal Ockham method (deterministic or not!), M accrues a strictly greater number of retractions in every complexity class with respect to e.

References

- Mark Gold, E. "Language identification in the limit." Information and Control. V 10. 447-474.
- Kevin Kelly. The Logic of Reliable Inquiry. Oxford University Press, 1996.
- Oliver Schulte. Inferring Conservation Laws in Particle Physics: A
 Case Study in the Problem of Induction. The British Journal for the
 Philosophy of Science. 2001.
- Oliver Schulte, W. Luo and R. Greiner. "Mind Change Optimal Learning of Bayes Net Structure." In 20th Annual Conference on Learning Theory (COLT), San Diego, CA, June 12-15, 2007.

Branching Simplicity Structure

Consistent stalwart Ockham Ockham Uniolator
Ockham Efficiency Theorem for Randomized Scientific Methol

Stochastic Processes

Definition

Let T, Δ, Σ be arbitrary sets. A stochastic process is a quadruple $Q = (T, (\Delta, D, p), (\Sigma, S), X)$, where:

- 1 T is a set called the *index set* of the process;
- (Δ, \mathcal{D}, p) is a (countably additive) probability space;
- \bigcirc (Σ, \mathcal{S}) is a measurable space of possible *values* of the process;
- **1** $X: T \times \Delta \to \Sigma$ is such that for each fixed $t \in T$, the function X_t is \mathcal{D}/\mathcal{S} -measurable.

Stochastic Processes

Definition

Let F represent finite, initial segments of data streams, and Ans contain the set of all theories and '?' representing "I don't know. A stochastic empirical method is a triple $\mathcal{M} = (\mathcal{Q}, \alpha, \sigma_0)$ where:

- $Q = (F, (\Delta, \mathcal{D}, p), (\Sigma, \mathcal{S}), X)$ is a stochastic process indexed by the set F of all finite, initial segments of data streams.
- $X_{()}^{-1}(\sigma_0) = \Delta$).
- **3** α : $F \times \Sigma$ → Ans is such that for each $e \in F$, α_e is $\mathcal{G}/2^{\mathsf{Ans}}$ -measurable.