Nondeterministic Finite Automaton with Epsilon-Transitions

- Another extension of Finite Automaton.
- The new "feature": transition on ε (empty string) is allowed.
- In effect, an NFA is allowed to make a transition spontaneously, without receiving an input symbol.
- Note that, the new capability does not expand the class of languages that can be accepted by finite automata, but it does give some added "programming convenience".

Example:

Formal Definition:

An ε -NFA is a quintuple (5-tuple), that is, a system which consists of 5 elements. We describe an ε -NFA, A as follows:

$$A = (Q, \Sigma, \delta, q_0, F)$$

where

Q - finite nonempty set of states;

 Σ - finite nonempty set of input symbols, input alphabet;

 δ - transition function, $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^{Q}$;

 q_0 – initial state, $q_0 \in Q$;

F - set of final or accepting states, $F \subseteq Q.$

Epsilon-Closures (ε^*):

All the states that can be reached from a particular state only by seeing the ε symbol.

ECLOSE $(3) = \{3, 6\}$

ECLOSE $(2) = \{2, 3, 6\}$

ECLOSE $(1) = \{1, 2, 4, 3, 6\}$

Eliminating ε -Transitions (ε -NFA to DFA):

Given any ϵ -NFA E, we can find a DFA D that accepts the same language as E. Let $E = (Q_E, \Sigma, \delta_E, q_0, F_E)$, then the equivalent DFA can be found by defining $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$.

Example:

The Equivalent DFA,

