Department of Mathematics

15B11MA211

Mathematics-II

Tutorial Sheet 14

B.Tech. Core

Topic: Evaluation of Real Integrals Using Residues

- 1. Evaluate the real integral $\int_0^{2\pi} \frac{1}{3-2\cos\theta} d\theta$ using suitable contour.
- 2. Evaluate $\int_0^\pi \frac{4\cos 2\theta}{4-4\cos \theta+1}d\theta$, using suitable contour.
- 3. Evaluate the integral $\int_{-\infty}^{\infty} \frac{x^2+1}{1+x^4} dx$, using suitable contour.
- 4. Evaluate $\int_0^\infty \frac{x^2}{(1+x^4)(x^2+1)} dx$, using suitable contour.

Ans:

- 1. $2\pi/\sqrt{5}$
- 2. $2\pi/3$
- $3.\sqrt{2}\pi$
- 4. $\pi/6$

let
$$z = e^{i\theta}$$
, $|z| = | \Rightarrow dz = |z| d\theta \Rightarrow d\theta = \frac{dz}{|z|}$

$$\cos 0 = \frac{z+z^{+}}{2} = \frac{z^{2}+1}{2z}$$

$$\int_{|z|=1} \frac{dz}{|z|} \frac{dz}{|z|} \left(\frac{|z|+1}{|z|} \right) = \left(\frac{1}{|z|} \right) \frac{dz}{|z|=1}$$

$$= i \int_{|z|=1} \frac{dz}{(z-a_1)} (z-a_2)$$

Where
$$a_1 = \frac{3+55}{2}$$
 $z^2 - 3z + 1 = 0$
 $a_2 = \frac{3-55}{2}$ only it lies $z = \frac{3\pm 55}{2}$ $z = \frac{3\pm 55}{2}$

$$= -2\pi \cdot \frac{1}{\left(\frac{3-\sqrt{3}}{2} - \frac{3+\sqrt{5}}{2}\right)} = -4\pi \cdot \frac{1}{3-\sqrt{5}-3-\sqrt{5}}$$

$$= \frac{2\pi}{\sqrt{5}} \quad \text{or} \quad \frac{2\sqrt{5}}{5} = \frac{\pi}{5}$$

2. $\int_{0}^{\frac{\pi}{5-4\cos\theta}} \frac{4\cos 2\theta}{5-4\cos\theta} d\theta \cdot \int_{0}^{\frac{\pi}{5-4\cos\theta}} \frac{4\theta}{d\theta} = \int_{0}^{\frac{\pi}{5-$

Reserved the following of the served and
$$z = 2$$
 described the served at $z = -\frac{3}{4} \int_{C} \frac{z^{4}+1}{z^{2}(3z-1)(z-3)} dz$

Reserved at $z = 0$ = $\frac{d}{dz} \left(\frac{z^{4}+1}{az^{2}-5z+2}\right) at z = 0$

$$= (2z^{2}-5z+2)(4z^{3}) - (z^{4}+1)(4z-5)$$

$$= -(+1)(-5) = \frac{5}{4}$$

Reserved (at $z = \frac{1}{2}$) = at $(z-\frac{1}{2})$

$$= \frac{1}{2}(z+1) = \frac{1}{2}(z+1)$$

$$= \frac{1}{2}(z+1) = \frac{1}{2}(z+1)$$

$$= \frac{1}{2}(z+1) = \frac{1}{2}(z+1)$$

$$= -\frac{3}{2} \int_{C} \frac{z^{4}+1}{z^{2}(2z-1)(z-2)} dz$$

$$= -\frac{3}{2} \left(2z-1\right)(z-2)$$

Sum of hesidues =
$$\frac{i+1}{4(-1+i)} + \frac{1-i}{4(-1+i)}$$

= $\frac{i+1}{4(-1+i)} + \frac{1-i}{4(-1+i)}$
= $\frac{1}{4(-1+i)} + \frac{1-i}{1+i}$
= \frac

 $= \int_{C} f(z) dz$ where c'is the contour consisting of the fart of real axis from 0 to R and part of imaginary axis from R to O The integrand has simple poles at Z = i, -i, di, -di of which only Z=i, di lu inside C. Res (at z=i) = H (z-i) f(z). = lt (z-/) z² z-i (z+i)(z/)(z²+4)