《100天成为风控专家》

(规则生成(4) 专 单变量(含实操)于

公众号 出品人

Py出品?东哥起话科子

解锁风控课程

关注我的公众号

目录

- 一、变量初筛
- 二、变量分箱、指标计算
- 2.1. 分箱-概念
- 2.2. 分箱-算法分类
- 2.3. 分箱-统计量
- 2.4. 分箱-统计量含义
- 2.5. WOE-公式和含义
- 2.6. IV-公式和含义
- 2.7. IV-使用标准
- 2.8. IV-Python代码实现

三、制定规则阈值

- 3.1. 规则效果-两点期望
- 3.2. 规则效果-5个评估项
- 3.3. 规则阈值制定方法-基于分箱的IV分析法
- 3.4. 规则阈值制定方法-极端值检测

四、Python代码实操

- 4.1. 变量初筛
- 4.2. IV筛选变量
- 4.3. 基于分箱及分箱二次调整进行阈值分析
- 4.4. 极端值的筛选、指标评估

三个步骤

单一变量规则从筛选到制定生成,一般有以下三个步骤:

对变量进行描述性统计分析,进行初步筛选;

对筛选后保留的变量进行分箱处理,计算分箱下的统计量和指标,基于I\值再次对变量进行筛选;

扫码加我微信

基于分箱IV分析法、极端值检测两种方法确认规则的阈值;

《100天风控专家》版权归属于公众号 变量初烯数据科学出品人:东哥起飞,盗版必究

1.1. 变量初筛

什么要进行变量筛选?

假如,我们现在手上有几千个变量,很明显不可能全部用于制定规则,一是变量效果有好有坏,并且部分变量之间效果也存在效果重叠;二是规则多太复杂会导致稳定性变差;三是规则多也会大大提升不必要的工作量。因此要对变量进行层层筛选。

变量初筛的过程,主要对变量进行描述性统计(如平均值、最大值、最小值、标准差等)以及缺失率、众数占比等指标计算,对不符合要求的变量先进行一轮剔除,这样可以减少后面二轮筛选规则时的压力。

变量名	变量含义	缺失率	众数占比	平均值	最大值	最小值	标准差
Α	现行消费贷款机构数	5%	2%	2.5	8	0	1
В	近12个月旅游出行次数	60%	90%	0.1	1	0	0
С	月均夜间短信数	10%	5%	3	50	0	1.5
D	同WIFI地址一个月出现贷款次数	8%	6%	2	15	0	0.5

Python数据科学

1.2. 变量初筛

sts_df = simple_statics()

sts_df.head(100)

	Feature	Unique_values	Percentage_of_null	Percentage_of_999	Percentage_of_mode	Туре
0	lmt	1718	0.0	0.000000	2.160889	float64
1	job	13	0.0	0.000000	47.766021	int64
3	basicLevel	6	0.0	1.712503	34.837043	int64
2	ncloseCreditCard	3	0.0	0.235554	79.341660	int64
4	unpayNormalLoan	3	0.0	0.235554	84.530671	int64
5	target	2	0.0	0.000000	99.273644	int64

《100天风控专家》版权归属于 公众**变量分箱。n指标讲算** 出品人:东哥起飞,盗版必究

2.1. 分箱-概念

分箱定义

- ① 将连续变量离散化;
- ② 将多状态的离散变量合并为数量更少的几箱;

分箱的用处

- ① 对变量分层,易于对变量进行统计分析;
- ② 避免了异常值的干扰, 鲁棒性好;

分箱的注意事项

- ① 分箱必须包括变量的所有数值,不能丢失信息;
- ② 分箱数量不宜太多,一般控制在5-8之间;
- ③ 每箱数量占比至少在5%以上,数量太少没有统计意义;
- ④ 如果有缺失值,需要单独分一箱;

2.2. 分箱-算法分类

扫码加我微信

值,对原始省份信息进行编码

2.3. 分箱-统计量

比如 "最近3个月新型非银金融机构的查询次数" 征信变量,数值类型范围从0-16,下面分为6箱。

分箱	好客户数	坏客户数	总客户数	好客户占比	坏客户占比	总客户占比	区间坏账率
[0.0,0.5)	796	28	824	40.20%	20.59%	38.94%	3.40%
[0.5,1.5)	533	36	569	26.92%	26.47%	26.89%	6.33%
[1.5,2.5)	301	23	324	15.20%	16.91%	15.31%	7.10%
[2.5,3.5)	166	18	184	8.38%	13.24%	8.70%	9.78%
[3.5,4.5)	98	11	109	4.95%	8.09%	5.15%	10.09%
[4.5,16.0)	86	20	106	0.0434	14.71%	5.01%	18.87%
总计	1980	136	2116	100%	100.01%	100.00%	6.43%

- ① **数量统计**:各分箱下客户的数量求和,比如好/坏/总客户数量。
- ② **边际占比:分箱下的XX数量/XX总数量**, XX可以是好/坏/总客户。比如, [0.0,0.5)分箱下边际好客户占比=分箱下的好客户数/总的好客户数=796/1980=40.2%, 同理边际坏客户占比=28/136=20.59%, 边际总客户占比=824/2116=38.94%。
- ③ **区间占比:分箱下的XX数量/分箱内总客户数**, XX可以是好/坏/总客户,一般我们只关注坏客户,也叫 **区间坏账率**,比如[0.0,0.5)分箱下的区间坏账率=坏客户数/总客户数=28/824=3.4%。

2.4. 分箱-统计量含义

比如 "最近3个月新型非银金融机构的查询次数" 征信变量,数值类型范围从0-16,下面分为6箱。

分箱	好客户数	坏客户数	总客户数	好客户占比	坏客户占比	总客户占比	区间坏账率
[0.0,0.5)	796	28	824	40.20%	20.59%	38.94%	3.40%
[0.5,1.5)	533	36	569	26.92%	26.47%	26.89%	6.33%
[1.5,2.5)	301	23	324	15.20%	16.91%	15.31%	7.10%
[2.5,3.5)	166	18	184	8.38%	13.24%	8.70%	9.78%
[3.5,4.5)	98	11	109	4.95%	8.09%	5.15%	10.09%
[4.5,16.0)	86	20	106	4.34%	14.71%	5.01%	18.87%
总计	1980	136	2116	100%	100.01%	100.00%	6.43%

- ① **总客户占比**:代表每个分箱内的样本数据占总量的比例,比如最后一箱[4.5,16),如果我们将4.5设置规则阈值,那么此时总客户占比就等同于规则的命中率(hit rate)了。
- ② **区间坏账率**:该示例中最后一列可以明显看到一个从小到大的排序。这个就是我们前面总提到的"<mark>排序</mark>性",一般要求排序具有明显的单调性,这样符合业务的可解释性。
- ③ **好/坏客户占比**:可用于评估制定规则的阈值,比如,我们设计该变量值大于4时为拒绝,那么将会拒掉最后一箱的客户,其中坏账客户占全部坏客户中的14.71%,但也会误拒掉全部好客户中的4.34%。

2.5. WOE-公式和含义

WOE (Weight of Evidence) 叫做证据权重,计算公式如下:

$$WOE_i = ln(rac{Bad_i}{Bad_T} / rac{Good_i}{Good_T}) = ln(rac{Bad_i}{Bad_T}) - ln(rac{Good_i}{Good_T})$$

② WOE计算示例

分箱	好客户数	坏客户数	总客户数	好客户占比	坏客户占比	总客户占比	区间坏账率	WOE
[0.0,0.5)	796	28	824	40.20%	20.59%	38.94%	3.40%	-0.6692
[0.5,1.5)	533	36	569	26.92%	26.47%	26.89%	6.33%	-0.0168
[1.5,2.5)	301	23	324	15.20%	16.91%	15.31%	7.10%	0.1066
[2.5,3.5)	166	18	184	8.38%	13.24%	8.70%	9.78%	0.4566
[3.5,4.5)	98	11	109	4.95%	8.09%	5.15%	10.09%	0.4911
[4.5,16.0)	86	20	106	4.34%	14.71%	5.01%	18.87%	1.2196
总计	1980	136	2116	100%	100.01%	100.00%	6.43%	1.5879

公式中的计算项正是我们前面介绍的**边际好坏客户的占比**,因此我们只需取In然后相减即可得到WOE 结果。比如,[0.0,0.5)分箱下WOE=In(20.59%)-In(40.20%)=-0.6692,其他分箱同理。

2.6. IV-公式和含义

IV (Information Value) 信息价值,是基于WOE计算出来的一个指标,在风控策略和模型中常用来评估变量对目标变量Y的预测能力,其公式如下。

$$IV_i = (rac{Bad_i}{Bad_T} - rac{Good_i}{Good_T}) * WOE_i \ = (rac{Bad_i}{Bad_T} iggreen rac{Good_i}{Good_T}) * ln(rac{Bad_i}{Bad_T} iggreen rac{Good_i}{Good_T})$$

分箱	好客户数	坏客户数	总客户数	好客户占比	坏客户占比	总客户占比	区间坏账率	WOE	
[0.0,0.5)	796	28	824	40.20%	20.59%	38.94%	3.40%	-0.6692	0.1313
[0.5,1.5)	533	36	569	26.92%	26.47%	26.89%	6.33%	-0.0168	0.0001
[1.5,2.5)	301	23	324	15.20%	16.91%	15.31%	7.10%	0.1066	0.0018
[2.5,3.5)	166	18	184	8.38%	13.24%	8.70%	9.78%	0.4566	0.0222
[3.5,4.5)	98	11	109	4.95%	8.09%	5.15%	10.09%	0.4911	0.0154
[4.5,16.0)	86	20	106	4.34%	14.71%	5.01%	18.87%	1.2196	0.1264
总计	1980	136	2116	100%	100.01%	100.00%	6.43%	1.5879	0.2972

基于每箱的WOE结果再乘以坏客户和好客户的边际占比之差,可得到每箱的IV值,最后将所有分箱的IV值求和得到最终IV结果,此例中基于该分箱的最终IV值=0.2972。

2.7. IV-使用标准

① IV值的衡量标准是什么?

IV范围	预测效果
IV<0.02	几乎没有
0.02<=IV<0.1	弱
0.1<=IV<0.3	中
0.3<=IV<0.5	强
0.5<=IV	需要排查,可能穿越

变量名	IV	预测能力
最近12月贷款信用卡查询次数,	0.4246	强
最近6月线款信用卡查询欠数	0.3489	强
现行贷记卡 (R2) 账户数 (人民币)	0.3032	强
现行当前月度房贷应还金额 (房贷)	0.2372	中
最近24个月信贷账户最大持续道期月份数	0.2069	中一
货记卡现行账户计数	0.2028	中一
最近3月贷款信用卡查询机构数	0.1871	中中
最近3月贷款信用卡查询欠数	0.1871	中
现行经营性账户数	0.1697	中
学历、リート	0.1586	中
最近12个月所有信贷产品最大的历史道朝期数	0.1303	中
现行房贷账户数	0.0803	弱
现行贷记卡(R2)燥近6个月1-29天无期欠数	0.0762	弱
金近公积金纳比的健个人缴存比例+公司缴存比例	0.0548	弱

扫码加我微信

② 筛选变量的标准:

好而不同,单体预测能力强,相互关联性弱。因此除了用IV值评估变量预测能力以外,还要考虑变量之间的相关性,选择IV值高的并且彼此之间相关性低的规则组合,和做模型筛选入模变量是一个道理。同时也需要考虑变量的区间坏账排序性,即业务可解释性。

2.8. IV-Python代码实现

一些用于做模型的三方Python包,如toad、scorecardpy已经封装好了分箱、WOE和IV的计算函数,可直接调用函数实现IV的计算。此外,如果对三方包的函数功能不满意,也可以基于WOE和IV公式自行手写一个,过程不算复杂。

《100天风控专家》版权归属于 公众罢:制定规则阅值科学

出品人:东哥起飞,盗版必究

3.1. 规则效果-两个期限

对于规则效果而言,我们有以下两点期望:

a) 拒绝客户占总体客户的比例 (命中率) 不易过高;

- 一是拒绝客户占比过高会影响通过率,进而影响业务规模;
- 二是整个风控策略流程中有很多个判断风险的环节,类似一个漏斗,对客户进行层层筛选,各个环节维度不同,可以对风险识别互为补充,是一种协作的关系。因此每个环节只会做最有把握的事情,即拒绝最差的客户,剩下的部分交给其它环节来判断。如果单个规则的拒绝率过高,那么将会损失过多好的客户。

因此,规则阈值的设置一般会比较极端,要实现的效果就是**通过大部分客户,而只拒绝一少部分客户,一般拒绝比例不超过5%。**

b) 拒绝客户中, 坏客户占比越高越好, 同时好客户占比越低越好;

我们希望尽量抓到更多的坏客户,而减少对好客户的误杀。

3.2. 规则效果-5个评估项

① 命中率 (hit_rate) ② 精准率 (bad rate) ③ 召回率 (recall_rate)

④ 排序性

⑤ 可解释性

T-111与JJH 才及17以 | 百

- a) **定义**:指的是规则拒绝的客户占总客户的比例
- **b) 解释:** 一般拒绝比例 不超过5%, 否则将对业 务通过率有很大影响。
- a) **定义**:指的是规则拒绝的人中坏用户的占比
- b)解释:理想情况越接 近100%越好,但实际情况中由于坏样本浓度过低,很难达到一个很高的精确率。因此一般精准率的高低是和整体样本的坏账率作比较的。比如,整体坏账率为6%,精准率为18%,高于3倍。
- a) 定义:指的是规则拒绝的坏用户占总的坏用户的比例,简单说就是规则抓出了多少坏人。
- b) 解释:比如,一个规则精确率达到了80%,但拒绝的坏用户只占了0.1%,那这条规则对于降低风控坏账其实没什么用,大部分坏用户还是被它放过了。
- a) 定义:指的是区间坏 账率的排序性,是针对弱 规则的评估指标。
- b)解释:例如一个评分规则,我们希望分箱下的区间坏账率和分数大小是呈现单调性的,即分数越低,区间坏账率越高。这样我们就能根据业务需求对它进行收紧或放松,实现对贷后逾期的可控性。

可解释性指的是评估规则本身是否符合业务感知,比如征信机构查询次数一般是拒绝查询次数非常多的客群,但规则是拒绝查询次数少的客户,那这条规则就不具有解释性了。

另一方面可解释性是用 于向业务人员解释规则 拒绝是否科学合理。

3.3. 规则阈值制定方法-基于分箱的IV分析法

① 基于分箱的IV分析法

第一种是比较常用的方法,就是基于分箱计算各统计量和IV值。

比如下面这个变量,基于分箱结果,我们将最后一箱(区间坏账率最高的)定为规则的阈值:最近3个月

新型非银金融机构的查询次数>4,触发则拒绝,反之通过。

分箱	好客户数	坏客户数	总客户数	好客户占比	坏客户占比	总客户占比	区间坏账率
[0.0,0.5)	796	28	824	40.20%	20.59%	38.94%	3.40%
[0.5,1.5)	533	36	569	26.92%	26.47%	26.89%	6.33%
[1.5,2.5)	301	23	324	15.20%	16.91%	15.31%	7.10%
[2.5,3.5)	166	18	184	8.38%	13.24%	8.70%	9.78%
[3.5,4.5)	98	11	109	4.95%	8.09%	5.15%	10.09%
[4.5,16.0)	86	20	106	4.34%	14.71%	5.01%	18.87%
总计	1980	136	2116	100%	100.01%	100.00%	6.43%

- 1) 命中率 (hit_rate) 为5.01%;
- 2) 拒绝客户的坏账率 (精准率) 为18.87%, Lift=18.87%/6.43%=2.93;
- 3) 坏客户占比(召回率)为14.71%,即抓到了坏客户中的14.71%,并且仅拒绝了好客户中的4.34%;
- 4) 区间坏账率有明显的排序性, 且有业务可解释性。

扫码加我微信

通过

拒绝

3.4. 规则阈值制定方法-极端值检测

② 极端值检测

极端值检测的方法的思想是: 高风险客群属于一群异常的客户, 他们的变量特征是异于常人的, 会集中在比较极端的范围内, 即变量值越大或者越小, 客户的风险越高。极端值检测通过"枚举分位数"的方式, 枚举可能得极端值, 作为备选的阈值, 以此制定出规则。

比如下面设置了8个分位点 [0.005, 0.01, 0.02, 0.05, 0.95, 0.98, 0.99, 0.995]), 分别基于这些点位制定出规则, 然后输出评估指标。我们看到, 综合hit_rate、hit_bad_rate、lift等指标, 该变量阈值定为4.25为最佳。

	var	rule	total_size	total_bad_size	total_bad_rate	hit_rate	hit_size	hit_bad_size	hit_bad_rate	lift
C	最近3个月新型非银金融机构的查询次数	is missing	2116	136	0.064272	0.000000	0	0	NaN	NaN
1	最近3个月新型非银金融机构的查询次数	<= 0.0	2116	136	0.064272	0.389414	824	28	0.033981	0.528698
2	最近3个月新型非银金融机构的查询次数	<= 0.0	2116	136	0.064272	0.389414	824	28	0.033981	0.528698
3	最近3个月新型非银金融机构的查询次数	<= 0.0	2116	136	0.064272	0.389414	824	28	0.033981	0.528698
4	最近3个月新型非银金融机构的查询次数	<= 0.0	2116	136	0.064272	0.389414	824	28	0.033981	0.528698
5	最近3个月新型非银金融机构的查询次数	>= 4.25	2116	136	0.064272	0.050095	106	20	0.188679	2.935627
6	最近3个月新型非银金融机构的查询次数	>= 6.0	2116	136	0.064272	0.029301	62	0	0.000000	0.000000
7	最近3个月新型非银金融机构的查询次数	>= 9.0	2116	136	0.064272	0.010870	23	0	0.000000	0.000000
8	最近3个月新型非银金融机构的查询次数	>= 11.0	2116	136	0.064272	0.006144	13	0	0.000000	0.000000

《100天风控专家》版权归属于公卿号 Python代码解操学出品人:东哥起飞,盗版必究

