# Chapter 12 Integrated Circuit Technologies

# OUTLINE

- Basic Operational Characteristics and Parameters
- CMOS Circuits
- TTL Circuits
- Practical Considerations in the Use of TTL
- Comparison of CMOS and TTL Performance

# 12.1 Basic Operational Characteristics and Parameters

- DC Supply Voltage
  - TTL: +5V
  - CMOS
    - +5V
    - +3.3V
    - +2.5V
    - +1.2V



# CMOS Logic Levels

- $\bullet$   $V_{IL}$ ,  $V_{IH}$
- $\bullet$   $V_{OL}$ ,  $V_{OH}$



# TTL Logic Levels



#### Noise Immunity

- Noise induced in electrical circuits can present a threat to the proper operation of circuits.
- In order not to be adversely affected by noise, a logic circuit must have a certain amount of noise immunity.



## Noise Margin

$$V_{\rm NH} = V_{\rm OH(min)} - V_{\rm IH(min)}$$

$$V_{NL} = V_{IL(\max)} - V_{OL(\max)}$$



The voltage on this line will never be less than 4.4 V unless noise or improper operation is introduced.

(a) HIGH-level noise margin



The voltage on this line will never exceed 0.33 V unless noise or improper operation is introduced.

(b) LOW-level noise margin

# Power Dissipation

- TTL circuits: power dissipation is constant over its range of operating frequencies.
- CMOS: power dissipation is frequency dependent

$$P_D = V_{CC} I_{CC}$$



# Propagation Delay Time





- Speed-Power Product
  - A basis for the comparison of logic circuits when both propagation delay time and power dissipation are important considerations in the selection of the type of logic to be used in a certain application.

# Loading and Fan-Out



#### Figure 14–11 Capacitive loading of a CMOS gate.



#### Figure 14–12 Basic illustration of current sourcing and current sinking in logic gates.



Figure 14–13 HIGH-state TTL loading.



Figure 14–14 LOW-stage TTL loading.



# 12.2 CMOS Circuits

- CMOS: Complementary Metal-Oxide Semiconductor
- Complementary: an n-channel MOSFET and a pchannel MOSFET are used

# The MOSFET

- Two types
  - P-channel
  - N-channel
- Three terminals
  - Gate, drain and source



The Structure and Symbol of N-channel MOSFET











(a) MOSFET symbols





Figure 14–16 Simplified MOSFET symbol.



#### A CMOS inverter circuit.



#### Operation of a CMOS inverter.





#### A CMOS NOR gate circuit.



|   |   | $Q_1$            |   |   |   |   |
|---|---|------------------|---|---|---|---|
| L | L | S<br>S<br>C<br>C | S | C | C | Н |
| L | Н | S                | C | C | S | L |
| Н | L | C                | S | S | C | L |
| Н | Н | C                | C | S | S | L |

C = cutoff (off)

S = saturation (on)

H = HIGH

L = LOW

# **Open-drain CMOS gates**

• The drain terminal of the output transistor is unconnected and must be connected externally to  $V_{\rm DD}$  through a load.



#### The three states of a tristate circuit.

• HIGH, LOW and high-Z



Figure 14–23 A tristate CMOS inverter.



# Precautions for handling CMOS

- When CMOS devices are removed from the foam, the pins should not be touched.
- Do not place CMOS devices in polystyrene foam or plastic trays.
- All tool, test equipment, and metal workbenches should be earth-grounded.
- Do not insert CMOS devices into sockets or PC boards with the power on.
- All unused inputs should be connected to the supply voltage or ground.
- After assembly on PC boards, protection should be made.

Figure 14–24 Handling unused CMOS inputs.



# 12.3 TTL Circuits

- TTL: Transistor-transistor logic
- With totem-pole output

### The Bipolar Junction Transistor

- Three terminals
  - Base, emitter, and collector Base (B)





#### The ideal switching action of the BJT



(a) Saturated (ON) transistor and ideal switch equivalent



(b) OFF transistor and ideal switch equivalent

#### A standard TTL inverter circuit.



# **Operation** of a TTL inverter



# A TTL NAND gate circuit.



#### Diode equivalent of a TTL multiple-emitter transistor.



# TTL inverter with open-collector output (Open-Collector Gates)





#### Basic tristate inverter circuit.



#### An equivalent circuit for the tristate output in the high-Z state



# 12.4 Practical Considerations in the Use of TTL

#### **Current sinking and sourcing action in TTL.**



(a) Current sourcing ( $I_{IH}$  value is maximum)



(b) Current sinking ( $I_{IL}$  value is maximum)

#### A wired-AND configuration of four inverters



Wired-AND: The output of open-collector gates are wired together.

#### Open-collector wired negative-AND operation with inverters.



## If the outputs of Totem-Pole are connected, ...?



Totem-pole outputs wired together. Such a connection may cause excessive current through  $Q_1$  of device A and  $Q_2$  of device B and should never be used.

45

# Why an open-collector driver is so useful?



#### Some applications of open-collector drivers

### How do we set those unused TTL inputs?

- An unconnected input on a TTL gate acts as a HIGH
- An open input results in a reverse-biased emitter junction on the input transistor
- It is best **NOT** to leave unused TTL inputs unconnected.

#### Comparison of an open TTL input and a HIGH-level input.



#### Methods for handling unused TTL inputs



This connection counts as: 1 unit load in LOW state 3 unit loads in HIGH state Two unused inputs connected to one used input

This connection counts as: 3 unit loads in LOW state 3 unit loads in HIGH state

(a) Tied-together inputs



(b) Inputs to  $V_{CC}$  or ground

(c) Inputs to unused output