Operating Instructions

HDRC4 - camera

LOGLUX^Ò

Kamera Werk Dresden GmbH

Operating Instructions $LOGLUX^{\otimes}$

Kamera Werk Dresden GmbH Bismarckstr. 56 01257 Dresden

Last changes:

November 5, 1998 November 9, 1998 November 16, 1998 November 19, 1998 December 18, 1998

Table of Contents

1	INTRO	DUCTION	5
	1.1 TH	E BINARY LOGARITHM	5
		E Fixed Pattern Noise	
		RRECTION OF THE FIXED PATTERN NOISE	
		DIATION-PHYSICAL DETERMINATIONS	
		HT-TECHNICAL CONNECTION BETWEEN SUBJECT AND SENSOR BRIGHTNESS	
		LATION BETWEEN RADIATION-PHYSICAL AND LIGHT-TECHNICAL QUANTITES	
		LIBRATION EQUATION	
		ESSMENT OF THE GRAY SCALE RANGE IN THE LOGARITHMICALLY ALTERED FRAME – THE NORMA	
		TOGRAPHIC SUBJECT	
2		TIONAL ARCHITECTURE OF THE CAMERA LOGLUX ^O	
2			
	2.1 Sui	RVEY OF FUNCTIONS	12
		AME DATA INTERFACE OF THE CAMERA LOGLUX	
	2.2.1	Description the interface	
	2.2.2	Pin-load of the LOGLUX® frame data interface	
	2.2.3 2.3 DE	Cable plan, LOGLUX® frame data interface (connecting cable)	10 17
		SCRIPTION OF FUNCTIONS: HDRC4-SENSOR	
	2.4.1	Generation of column and row addresses	
	2.4.2	Column and row address counter	
	2.4.3	Configuration of X/Y_BASE and X/Y_OFFSET register	
	2.4.3.1	MODE 0 (single channel mode)	20
	2.4.3.2		
	2.4.3.3 2.4.4	MODE 3 (dual channel mode, divergent)	
	2.4.4 2.4.5	The PIPELINE-DELAY-register (VSG-reg. 8)	22 24
	2.4.6	Configuration of the frame data transmission control protocol by the LEN-, FEN- and	27
	2	MEASURE-register	24
	2.5 FRA	AME DATA SORTING	
	2.5.1	The frame data collation in single channel mode (MODE 0)	
	2.5.2	The frame data collation in dual channel mode (MODE 2,3)	
	2.5.2.1		
	2.5.2.2		
3	CONFI	GURATION OF THE CAMERA <i>LOGLUX</i> O	29
	3.1 INT	RODUCTION	29
		232C CONFIGURATION INTERFACE	
	3.3 RS	422 CONFIGURATION INTERFACE (OPTIONALLY)	31
		nal-LED	
		NFIGURATIONS SWITCH	
		MERA CONTROL IN ASCII (KLARTEXT) MODE	
	3.7 CAI	MERA CONTROL IN HEX MODE	34
4	DESCR	IPTION OF COMMANDS	37
	4.1 TAI	BLE OF COMMANDS	37
	4.2 STR	RUCTURE OF COMMAND DESCRIPTION	37
	4.3 con	MMANDS FOR TRANSMITTING BIGGER DATA QUANTITIES	
	4.3.1	The transmitting of files in XMODEM-format with the WIN3.1x -, WIN 95- TERMINAL (VT)	
		on)	
	4.3.2	Receiving files in XMODEM format with the WIN3.1x -, WIN 95- TERMINAL (VT100-emula	
	422	C	
	4.3.3 4.3.4	Structure of the correction file	
	4.3.4 4.3.5	Structure of a 100th image file	
	4.3.6	Description of the XMODEM control protocol	

	4.3.6.1	General features	69
	4.3.6.2	XMODEM protocol	69
	4.3.6.3	XMODEM/CRC protocol	
	4.4 Oper	ATION WITH AUTOMATIC LIGHT GENERATOR	71
5	GLOSSA	RYFEHLER! TEXTMAI	RKE NICHT DEFINIERT.
6	APPEND!	IX	75
	6.1 TABL	LE: PLUG LOAD	
		Power supply	
	6.1.2	RS232- / RS422-configuration interface	75
	6.1.3	RS422- / LVDS-frame data interface	
	6.2 SURV	EY: LENSES FOR THE CAMERA $LOGLUX^{\bullet}$	76
	6.3 OPTIO	CAL ACCESSORY COMPONENTS	77
	6.3.1	Stereo attachment	77
		Others Fehler!	
	6.4 ACCE	SSORIES FEHLER! TEXT	MARKE NICHT DEFINIERT.
	6.4.1	Optical and mechanical accessories	77
	6.4.2	Accessories for recording frame datas, power supply and camera contr	ol 77
	6.5 OUTL	INES: LENSES AND ACCESSORIES	78

1 Introduction

1.1 The binary logarithm

Definition of the binary logarithm:

$$a = 2^{(lb(a))}$$

$$lb(a) = \frac{\log_{x}(a)}{\log_{x}(2)} = \frac{\ln(a)}{\ln(2)}$$

For the octave skip 2a is:

$$1b(2a) = 1b(2) + 1b(a) = 1 + 1b(a)$$

1.2 The Fixed Pattern Noise

Every pixel of the HDRC4-sensor used with the coordinates (x,y) alters the irradiance $E_e(x,y)$ of the sensor surface into an electrical voltage $U_s(x,y)$:

$$U_s(x,y) = U_1(x,y) \cdot lb \left(\frac{E_e(x,y)}{E_{e0}} \right) + U_0(x,y)$$
 $E_{e0} = 1 \frac{W}{m^2}$

The voltages $U_0(x,y)$ and $U_1(x,y)$ are coordinate-depending and normally distributed quantities. The visual effect resulting from this is called "fixed pattern noise" (short FPN). The term noise is only indirectly accurate, because it is a noise in the local area and not in the time area. (The voltage constants $U_0(x,y)$ and $U_1(x,y)$ are temporally constant quantities.)

1.3 Correction of the Fixed Pattern Noise

In order to receive an output signal not depending on the coordinates with the same irradiance of all pixels, the FPN has to be corrected when reading out the sensor. This correction is executed in an arithmetic processing unit. The voltage depending on the irradiance is multiplied with a gain correction voltage $U_{lkorr}(x,y)$ and added up with an offset correction voltage $U_{0korr}(x,y)$:

$$U_{Skorr}(x,y) = U_{S}(x,y) \cdot U_{1korr}(x,y) + U_{0korr}(x,y)$$

When trimming the camera the two correction constants which depend on the coordinates are determined so that the following is valid:

For:

$$E_e(x,y) = const$$
 $U_{Skorr}(x,y) = const$

The breaking down of the correction voltage in two components has proved to be very favourable:

- Correction voltage (independent of coordinates) with a big setting range for correcting the average value
- 2. Correction voltage (dependent on coordinates) with a small setting range for correcting the leakage

$$U_{0korr}(x, y) = \overline{U}_{0korr} + \Delta U_{0korr}(x, y)$$

$$U_{1korr}(x, y) = \overline{U}_{1korr} + \Delta U_{1korr}(x, y)$$

The camera calibration is obeyed in 4 seperately selectable steps maximum:

- 1. Setting of the mean sensor steepness (gain correction voltage, coarse)
- 2. Setting of the mean absolute sensor brightness (offset correction voltage, coarse)
- 3. Determination of the correction voltage dependent on coordinates for correcting the steepness (gain correction voltage, fine)
- 4. Determination of the correction voltage dependent on coordinates for correcting the absolute brightness (offset correction voltage, fine)

1.4 Radiation-physical determinations

To be able to image the irradiance E_e on a numerical range Z, an assignment instruction which follows the natural conditions is required.

The following is determined:

- 1. The working area of the camera covers an exposure rate of $1:2^{32}$ (32 octaves)
- 2. This working area shall appear as 10bit number
- 3. The numerical value Z=0 is assigned to the irradiance $E_e=2^{-16}$ W/m²

This means the following for the working area:

$$0 \le Z < 1024$$
 for $2^{-16} \frac{W}{m^2} \le E_e < 2^{16} \frac{W}{m^2}$

The following relation is produced between the radiation-physical figure and the numerical number Z assigned:

$$E_{e} = E_{e0} \cdot 2^{\left(\frac{Z}{32} - 16\right)}$$

$$E_{e0} = 1 \frac{W}{m^{2}}$$

$$Z = 32 \cdot \left[lb \left(\frac{E_{e}}{E_{e0}}\right) + 16 \right]$$

1.5 Light-technical connection between subject and sensor brightness

When an ideal diffuse reflecting subject is illuminated with the brightness E_{OB} , the subject shines with the brightness L_{OB} of

$$L_{OB} = E_{OB} \cdot \rho \cdot \left(\frac{1}{\pi} \frac{cd}{lx \cdot m^2} \right)$$

r reflection factor

The proportional factor $\left(\frac{1}{\pi}\frac{cd}{lx\cdot m^2}\right)$ results from the laws of the ideal diffuse reflection.

The subject is imaged by the lens with an aperture k set on the sensor and with a brightness E_s

$$E_{S} = L_{OB} \cdot \frac{\tau}{4 \left(\frac{k}{k_{o}}\right)^{2}} \cdot \left(\pi \frac{lx \cdot m^{2}}{cd}\right)$$

k aperture

 k_0 datum for aperture, =1

The constant t gives the transmittance of the lens. The representive figure of t = 0.8 is used in all further calculations.

When putting in the subject brightness E_{OB} the relation between subject brightness, reflection factor, aperture and sensor brightness is received.

$$E_{S} = E_{OB} \cdot \frac{\rho \cdot \tau}{4 \left(\frac{k}{k_{0}}\right)^{2}}$$

Samples for natural brightnesses E_{OB} :

Illuminance	E_{OB} in [lx]
Sunlight, summer	100000
Sunlight, winter	10000
Street lighting	330
Workroom	40300
Night with full moon	0,2
Inner rooms	40150

Reflection factors *r* for different materials:

Material, object	r
Wood, bright/dark	0,30,5/0,10,25
Concrete, bright/dark	0,30,5/0,150,25
Tar cover	0,080,15
Brick, bright/dark	0,30,4/0,150,25
Chromium, polished	0,60,7
statistical photografical standard subject	0,17

1.6 Relation between radiation-physical and light-technical figures

Light-technical figures take the physiological brightness sensitivity of the human eye into consideration, while radiation-physical figures show the power aspect. To be able to convert on figure into the other one, the relative spectral brightness sensitivity V(l) of the human eye is required. The relation between beam power L_e and luminance L is:

$$L = K \int_{\text{max}}^{780 \, \text{nm}} L_e(\lambda) \cdot V(\lambda) \cdot d\lambda$$

 K_{max} photo-metrical radiadion equivalent 683 lm/W

 $L_e(1)$ spectral power density of radiation in interval (1+d1)

V(1) relative spectral brightness sensitivity of the human eye

1	V(1)
400nm	0,0004
500nm	0,323
555nm	1
600nm	0,631
700nm	0,0041

All calculations for calibrating the camera refer to monochromatic light with a wavelength of l = 555nm. The function V(l) reaches its maximum of V(555nm) = l with this wavelength. As exception of the integral mentioned above follows:

$$L = 683 \frac{lm}{W} \cdot L_e$$

The same goes for the intensity of brightness E and the irradiance E_e t:

$$E = 683 \frac{lm}{W} \cdot E_e$$

1.7 Calibration equation

The calibration equation gives the connection between the digitally changed numerical value Z and the luminance L when chosing aperture k.

The summing of the equations

$$E_{s} = L_{OB} \cdot \frac{\tau}{4\left(\frac{k}{k_{o}}\right)^{2}} \cdot \left(\pi \frac{lx \cdot m^{2}}{cd}\right)$$
Connection subject luminance – sensor brightness

$$E_{s} = 683 \frac{lm}{W} \cdot E_{es}$$
 Connection radiation-physical and light-technical figures

$$E_{eS} = E_{e0} \cdot 2^{\left(\frac{Z}{32} - 16\right)}$$
 Definition ADC-converting area

results in the calibration equation:

$$\left(\frac{L_{OB}}{L_0}\right) = 683 \cdot \frac{1}{\pi \cdot \tau} \cdot \left(\frac{k}{k_0}\right)^2 \cdot 2^{\left(\frac{Z}{32} - 16\right)}$$

 $L_0 = 4cd/m^2$ datum for luminance $k_0 = 1$ datum for aperture t = 0.8 transmittance of the lens

 L_{OB} subject luminance in cd/m² Z digital ADC numerical value k aperture

The calibration equation in logarithmic form:

$$lb\left(\frac{L_{OB}}{L_{o}}\right) - 2lb\left(\frac{k}{k_{o}}\right) - lb\left(\frac{683}{\pi \cdot \tau}\right) = \left(\frac{Z}{32} - 16\right)$$

Calibration equation

Presentation of the calibration equation for apertures k=1 to 16

1.8 Presentation of subjects with different brightnesses

When the subject luminance L_{OB} in the logarithmic form of the calibration equation is replaced by the reflection factor r and the subject brightness E_{OB} this results in the following:

$$lb\left(\frac{E_{OB}}{E_0}\right) + lb(\rho) - 2lb\left(\frac{k}{k_0}\right) - lb\left(\frac{683}{\tau}\right) = \left(\frac{Z}{32} - 16\right)$$

$$E_0 = 4lx$$

When illuminating two subjects with reflection factors r_1 and r_2 in succession with two brightnessses E_{OB1} and E_{OB2} , the differences of the values Z are:

Difference of the numerical value DZ between subject with r_1 and r_2 and with brightness E_{OB1} and E_{OB2} :

$$\Delta Z = Z(\rho_1) - Z(\rho_2) = 32 \cdot [lb(\rho_1) - lb(\rho_2)]$$

Brightness ratios because of different reflection factors r in the subject are given as constant number differences DZ, independent of the subject brightness.

1.9 Assessment of the range of gray scales in the logarithmically altered frame – the photographic normal subject

According to statistical surveys the most often subjects have a contrast difference of 1:32 and an average reflection factor of r = 0.17. These figures can be consulted when estimating the gray scales Z pictured with a certain brightness.

Definition: photographic standard subject

$$\frac{L_{\text{max}}}{L_{\text{min}}} = 32 \qquad \overline{\rho} = 0,17$$

The average gray tone results from the above mentioned:

$$\overline{Z} = 32 \cdot \left[lb \left(\frac{E_{OB}}{E_0} \right) + lb(0,17) - 2lb \left(\frac{k}{k_0} \right) - lb \left(\frac{683}{\tau} \right) + 16 \right]$$

$$\overline{Z} \approx 32 \cdot \left[lb \left(\frac{E_{OB}}{E_0} \right) - 2lb \left(\frac{k}{k_0} \right) \right] + 118$$

The difference between the biggest and the smallest gray tone is:

$$\Delta Z = Z_{\text{max}} - Z_{\text{min}} = 32 \cdot \text{lb}(32) = 160$$

2 The functional architecture of the camera *LOGLUX*^O

2.1 Survey of functions

The camera $LOGLUX^{\hat{O}}$ contains all analog and digital switching components necessary for a frame recording. They can be splitted up into 3 groups:

Analog switching components

- 1.1 switching components for processing the frame signal (sensor, amplifier)
- 1.2 switching components for producing an auxiliary voltage

Digital switching components

- 2.1 switching components for a frame processing (data sorting, address generation)
- 2.2 switching components for transmitting frame signals (image data interface)
- 2.3 switching components for camera control (controller and periphery)

AD-, DA-converter

- 3.1 DA-converter for a digital control of the necessary auxiliary voltages
- 3.2 AD-converter for converting the image signals

All analog switching components have such a structure that they can be completely digitally balanced by a configuration bus. The analog and digital components necessary for an image recording are controlled by a 16bit-microcontroller. The microcontroller contains all setting features and initializes all assemblies after switching the camera on.

These features of the camera can be gained in different ways:

- automatic identification when trimming the camera
- by transfering instruction over the configuration interface
- by setting the configuration switch on the camera back

The camera has a data interface for transfering the frame datas. This interface is removeable so that the transmission medium and the way of transmission can easily be adjusted.

The functions of the most important components of the HDRC4-camera $LOGLUX^{O}$ as well as their configuration is described in the following:

HDRC4 sensor

configuration and addressing requirements

• VSG (Variable Scan Generator)

Register description and configuration instructions

Data sorting

Description of the data sorting depending on the mode

DA-converter for producing an auxiliary voltage

Register description

2.2 Frame data interface of the camera *LOGLUX*^O

2.2.1 Description of the interface

Different interface modules can be attached to the camera *LOGLUX*^O:

- Data transmission via cable, parallel
- LWL-data transmission, serial

The parallel data interface is available in two different variants:

- 1. LVDS (Low Voltage Differential Signaling) level
- 2. RS422 level

Both interfaces only differ from each other in their pegel definition but not in the structure of their transmission protocols. These interface standards are symmetric data signals which means that every signal is transmitted once inverted (identification: -) and once not-inverted (identification: +). An incorrect data transmission by compensating streams in the signal groundings (application in industrial plants) can thus be avoided.

Bundles of twisted pair two-wire circuits with a characteristic impedance of Z=100W are used as data cables. For this reason all data receivers require a terminator of R=100W.

Comparision RS422, LVDS (with $R_L=100W$, typ.):

Sum of the potential difference between negated and unnegated exit:

$$\Delta U_{O} = \left| U_{OH} - U_{OL} \right|$$
LVDS

$$335 \text{mV}$$
RS422 (3,3V)
$$2,6 \text{V}$$

Offset voltage (Common Mode Voltage):

$$U_{CM} = \frac{U_{OH} + U_{OL}}{2}$$
 LVDS RS422 (3,3V) 1,5V

Power demand per signal, at $U_b=3.3V$:

$$P_V = \frac{U_b \cdot \Delta U_O}{R_L}$$

LVDS RS422 11,0mW 85,8mW

Power demand when using all 13 signals (10 data bits, LEN, FEN, CAMCLK):

143mW 1,1W

The frame data transmission takes place by using the following signals:

- 1. CAMCLK (Camera Clock)
- 2. LEN (Line Enable)
- 3. FEN (Frame Enable)
- 4. 10 Bit image datas D0 D9

The following definitions are valid for the signals LEN, FEN and CAMCLK:

- 1. The signal LEN ("Line Enable") is defined as HIGH active if the readout of a row is given by the level LEN=H. The same is valid for the signal FEN ("Frame Enable").
- 2. The signal CAMCLK is defined as HIGH active if the datas being on the exit are valid with an increasing (LH) edge of the signal.

The signals CAMCLK, LEN and FEN can be configured as HIGH or LOW active (LEN, FEN, CAMCLK commands, refer to tabel of commands).

	CAMCLK		LEN				FEN	
	HIGH active	LOW active	HIGH	active	LOW	active	HIGH active	LOW active
			lof=0	lof=1	lof=0	lof=1		
Image datas valid	↑ edge	↓ edge	H L		Н	L		
Line enable ↑ edge		↓edge	L		Н		Н	L
Frame Enable	↑ edge	↓ edge	X L		X	Н	L	Н

Tip: meaning *lof*-bit, refer to VSG-Reg. 0, Bit 8

The signal FRAMETRIG can be used for the external frame synchronization (refer to command TRIG, table of commands). The symmetric entry selects a LVDS- (DS90LV032) or RS422- (DS26LV32) receiver and is closed with 100Ω . When the external trigger is switched on (command: TRIG 1) the frame readout process is started with every increasing (LH) edge. After finishing the readout process the camera returns to the waiting state. The status of the FRAMETRIG signal is ignored during the readout process.

2.2.2 Pin-load of the *LOGLUX* frame data interface

The frame data interface is located on the camera back. (44-pole. D-SUB jack)

Designation	PIN no.	Quty.	Input, Output	Description
D0+	1	1	A	Data bit 0
D1+	2	1	A	Data bit 1
D2+	3	1	A	Data bit 2
D3+	4	1	A	Data bit 3
D4 +	5	1	A	Data bit 4
D 5+	6	1	A	Data bit 5
D6+	7	1	A	Data bit 6
D7 +	8	1	A	Data bit 7
D8+	9	1	A	Data bit 8
D9+	10	1	A	Data bit 9
LEN+	11	1	A	Line Enable
FEN+	12	1	A	Frame Enable
CAMCLK+	13	1	A	Camera Clock
FRAMETRIG+	15	1	Е	Frame Trigger
D0-	16	1	A	Data bit 0, negated
D1-	17	1	A	Data bit 1, negated
D2-	18	1	A	Data bit 2, negated
D3-	19	1	A	Data bit 3, negated
D4-	20	1	A	Data bit 4, negated
D5-	21	1	A	Data bit 5, negated
D6-	22	1	A	Data bit 6, negated
D7-	23	1	A	Data bit 7, negated
D8-	24	1	A	Data bit 8, negated
D9-	25	1	A	Data bit 9, negated
LEN-	26	1	A	Line Enable, negated
FEN-	27	1	A	Frame Enable, negated
CAMCLK-	28	1	A	Camera Clock, negated
FRAMETRIG-	30	1	Е	Frame Trigger, negated
SDA	31	1	E/A	Datas, I ² C-bus (optional)
SCL	32	1	Е	Clock, I ² C-Bus (optional)
GND	33-40	4		Ground
VCC3	41, 42	2	A	3,3V
VCC5	43, 44	2	A	5V

2.2.3 Cable plan, *LOGLUX*^O frame data interface (feeder cable)

Twisted pair cable, Z \approx 100 Ω , 20 line pairs + screen 2×44-pole D-SUB jack with plug shell

	jack 1, 44-po	le D-SUB	jack 2, 44-po	jack 2, 44-pole D-SUB		
Designation	Pair no.	Pin no.	Pair no.	Pin no.		
D0	1	1	1	1		
		16		16		
D1	2	2	2	2		
		17		17		
D2	3	3	3	3		
		18		18		
D3	4	4	4	4		
		19		19		
D4	5	5	5	5		
		20		20		
D5	6	6	6	6		
		21		21		
D6	7	7	7	7		
		22		22		
D7	8	8	8	8		
		23		23		
D8	9	9	9	9		
		24		24		
D9	10	10	10	10		
		25		25		
LEN	11	11	11	11		
		26		26		
FEN	12	12	12	12		
		27		27		
CAMCLK	13	13	13	13		
		28		28		
OTR	14	14	14	14		
		29		29		
FRAMETRIG	15	15	15	15		
		30		30		
GND1	16	31	16	31		
		32		32		
GND2	17	33	17	33		
		34		34		
GND3	18	35	18	35		
		36		36		
+3,3V	19	41	19	41		
		42		42		
+5V	20	43	20	43		
		44		44		
SCHIRM	Housing		-			

2.3 Description of functions: HDRC4-Sensor

The HDRC4-sensor combines on one chip two light-sensitive CMOS-arrays with column and line stucture. Every array has an organisation of 256×256 pixel. The corresponding column and row addresses of both halfs of the sensor are connected. The selection of two pixels (right/left half of the sensor) is possible in different ways. The selection of the access rule is determined by the single bits of the HDRC-register (refer to command *HDRC par* as well). The selection of the half of the sensor is carried out by an additional address bit. This bit selects the seperately digital changed frame information of the left/right half of the sensor via a data multiplexer. Consequently, the address clock frequency can always be half of the pixel clock frequency and two corresponding pixel are read out with one access cycle.

To avoid failures of the analog circuit components caused by the digital components, an addressing in GRAY code is possible. The selection of GRAY or BINARY addressing is determined for both halfs of the senor.

The access rule of the line and column decoder can be selected by an assigned mirror bit:

- 1. *mirror*-bit =0: created column/row address *X* selects column Spalte *X* or row *X*
- 2. mirror-Bit =1: created column/row address X selects column or row (255-X)

Please note that the mirroring results from a subtraction and not from forming the ones complement because this would lead to a malfunction when having chosen the GRAY addressing.

Determination of the addressing by the HDRC-register:

 Bit
 7
 6
 5
 4
 3
 2
 1
 0

 HDRC-Reg.
 lrm
 gray
 Rowlm
 collm
 rowrm
 colrm

- **colrm**, *column right mirror*: By activating this bit the right-hand half of the sensor can be mirrored around the north-south axis. When addressing column *N*, column (255-*N*) is read out.
- **rowrm**, *row right mirror*: By activating this bit the right-hand half of the sensor can be mirrored around the east-west axis. When addressing line *N*, line (255-*N*) is read out.
- collm, column left mirror: as colrm, left-hand half of the sensor
- rowlm, row left mirror: as rowrm, left-hand half of the sensor
- **gray**: Selection of the addressing code, =0 binary code/=1 gray code.
- **lrm**, *left right mirror*: By activating this bit the addressing of the sensor halfs is interchanged. (When addressing the left-hand half of the sensor, the right-hand half of the sensor is read out and inverted.)

The activating of these bits is independently done by the camera internal control software when using the following commands:

- 1. Selection readout mode, MODE-command
- 2. Mirroring the image, MIR-command
- 3. Rotating the image, *ROT*-command
- 4. (initialization of the camera after the switching on)

Examples, pixel adressing:

The following examples show the pixel addressing depending on the *mirror*-bits. The sensor provides one pixel formation for the right and left-hand half of the sensor each. All examples are valid for a row address y = 80 and a column address x = 60.

2.4 Description of functions: VSG (Variable Scan Generator)

VSG is a programmable address generator. It provides the address, control and synchronous signals required for reading out the sensor:

- 1. addresses of rows and columns
- 2. LEN-, FEN-, CAMCLK-signal for frame data transfer
- 3. Control signals, reading and writing addresses for data sorting

2.4.1 Generation of the column and row addresses

There are two different ways possible for reading out the sensor:

Single channel mode (Mode 0)

The frame information of two pixels is gained in every addressing cycle. However, the information of one pixel is warped afterwards. The order of the pixel coordinates read out of the sensor corresponds to the order of the image datas given out.

Dual channel mode (Mode 2,3)

The image information of two pixels is gained in every addressing cycle. The order of the pixel coordinates read out of the sensor does not correspond to the order of the image datas given out. Therefore an image data sorting is absolutely necessary.

2.4.2 The column and row address counter

VSG contains a 9bit-column and an 8bit-row counter. Start and offset constants of the counter are programmable over register.

The X/Y_BASE -register contains the start constants of the respective counter. The resetting is carried out after reaching the count $(X/Y_BASE) + (X/Y_OFFSET)$.

Example:

Capacity of the column counter: 100...200 (101 columns!)

$$X_BASE = 100, X_OFFSET = 100$$

Capacity of the row counter: 0...255 (256 rows!)

Whole image area:

 $X_BASE = 0, X_OFFSET = 511$

 $Y_BASE = 0, Y_OFFSET = 255$

Table, VSG-register 4...7:

2.4.3 Configuration of X/Y_BASE and X/Y_OFFSET-register

2.4.3.1 MODE 0 (single channel mode)

In readout mode 0 the position and size of the frame which is to read out can be selected completely free. The coordinates of the top left-hand frame corner are determined by the X/Y_BASE-register pair, the size of the frame by the X/Y_OFFSET-register pair.

Configuration of the *mirror*-bits for an upright non-reverse image:

 $\begin{array}{ll} colrm & = 0 \\ rowrm & = 0 \\ collm & = 0 \\ rowlm & = 0 \end{array}$

2.4.3.2 MODE 2 (dual channel mode, converging)

The left-hand sensor half is exclusively addressed in dual channel mode. Corresponding pixel of the right-hand half are read out parallel and afterwards correctly sorted in the image data stream. To get an converging readout, the columns of the right-hand sensor half needs to be mirrored.

Configuration of the *mirror*-bits for an upright and non-reserve image:

The following sketches show the difference between the addressed and read out sensor area in MODE 2.

Addressed sensor area:

Secondary requirement in MODE 2: [X_BASE] + [X_OFFSET] = 255

Read out sensor area:

2.4.3.3 MODE 3 (dual channel mode, divergent)

The left sensor half is exclusively addressed in the dual channel mode. Corresponding pixel of the right-hand half are read out parallel and afterwards correctly sorted in the image data stream. To obtain a divergent readout, the columns of the left-hand sensor half have to be mirrored.

Configuration of the *mirror*-bits for an upright and non-reverse image:

 colrm
 = 0

 rowrm
 = 0

 collm
 = 1

 rowlm
 = 0

The following sketches show the difference between the addressed and read out sensor area in MODE 3.

Addressed sensor area:

Secondary requirement, MODE 3: $X_BASE = 0$

Read out sensor area:

2.4.4 Configuration of the MODE and PREDIV-registers (VSG-Reg. 0,1)

By configuring the MODE-registers, the readout mode and further essential working parameters of the camera are determined:

- Readout mode
- Pixel clock frequency (f_{camclk})
- Single step operating
- External image triggering
- Selection: binary/gray addressing
- OR-concatenation of the synchronous signals
- System-internal settings

Bit	8	7	6	5	4	3	2	1	0
VSG-Reg. 0	lof	sa	Step	ext_trig	gray	delay	mode		
VSG-Reg. 1								pre	div

Description:

mode (Reg. 0, Bit 0,1,2)

The *mode*-bits determine the readout mode. Only three of all eight possible variants are useful for the programmer (MODE 0,2,3).

MODE 0: *mode* = 000b MODE 2: *mode* = 010b MODE 3: *mode* = 011b

delay (Reg. 0, Bit 3)

The delay-bit controls the moment of the row and column address change. It is set by the camera-internal software to 1 and should not be changed.

gray (Reg. 0, bit 4)

- =1 row and column addresses are generated in the gray code.
- =0 row and column addresses are generated in the binary code.

In order to ensure a correct sensor addressing, the figure of the gray bits has to correspond with the gray bit of the HDRC-registers. The camera-internal software mainly operates with gray addressing (gray = 1).

trig (Reg. 0, bit 5)

=1 single frame mode

A LH single edge on the external triggering entry starts one readout of the sensor with the current X/Y_OFFSET and X/Y_BASE-parameters.

=0 running frame mode

The sensor is continuously read out.

step (Reg. 0, bit 6)

=1 single step operation

The single step operation can only temporary be used by the camera-internal functions.

sa (Reg. 0, bit 7)

camera-internal functions

lof (Reg. 0, bit 8)

- **=0** The LEN signal is switched "inactive" during the row synchronization phase.
- **=1** The LEN signal is switched "inactive" during the row or frame synchronization phase (*len or fen*)

prediv (Reg. 1, bit 0,1)

predivider setting for frame data clock

Prediv	f_{CAMCLK} , MODE 0	f_{CAMCLK} , MODE 2,3
00b	8MHz	16MHz
01b	4MHz	8MHz
10b	2MHz	4MHz
11b	1MHz	2MHz

2.4.5 PIPELINE-DELAY register (VSG reg. 8)

Pipeline-ADC are used for the frame data conversion in LOGLUX cameras. What makes these AD-converter stand out are their low power consumption. The AD conversion is carried out by the operating principle above mentioned in several steps. 2bit information are obtained during every step in this case. A temporal shift of 5 clocks (with 10bit ADC-resolution) between the analog input figure and the converted digital word on the data exit results from this. The sketch shown below gives the architecture of such a cascade transformer in principles.

In order to balance the temporal shift between the sensor addressing and the data sorting, the PIPELINE_DELAY register has to be loaded with a circuit-specific constant:

PIPELINE_DELAY = [number of clocks required for the conversion]-2

The figure for the PIPELINE_DELAY-register is for the camera *LOGLUX* =5 and must not be changed by the user because this figure is a system constant.

PIPELINE DELAY = 3

2.4.6 Configuration of the frame data transmission control protocol by the LEN, FEN and MEASURE register

Table: LEN, FEN and MEASURE-register

len (Reg. 2, bit 0...7)

• Length of the inactive phase of the LEN-signal with row synchronization Length of the LEN-signal in number *L* CAMCLK-clocks

MODE 0: L=[len] MODE 2,3: L=2×[len]

fen (Reg. 3, bit 0...7)

• Length of the inactive phase of the FEN-signal with frame synchronization Length of the FEN-signal in number Z rows

For [fen]=0:

During the frame synchronization the FEN-signal is in addition to the LEN-signal inactive for the same period of time.

For $[fen] \neq 0$:

Z=[fen]

adcclk, pxlclk (Reg. 9, bit 0,1)

• Switching off the internal clock signals, set bits always =0

clkoff (Reg. 9, bit 2)

• Switching off the frame clock CAMCLK

This function is only used camera-internally, set bit always =0

clkinv (Reg.9, bit 3)

Determination of polarity of the CAMCLK-signal

clkinv=0:

frame datas with LH signal edge of the CAMCLK-signal is valid, data change with HL single edge

clkinv=1:

frame datas with HL single edge of the CAMCLK-signal is valid, data change with LH single edge

leninv (Reg.9, bit 4)

• Determination of polarity of the LEN-signal

leninv=0:

LEN-signal with running row transmission =HIGH, LEN-signal with row synchronization =LOW

leninv=1:

LEN-signal with running row transmission =LOW, LEN-signal with row synchronization =HIGH

feninv (Reg.9, bit 5)

• Determination of polaritiy of the FEN-signal

feniny=0:

FEN-signal with running frame transimission =HIGH, LEN-signal with frame synchronization =LOW $\,$

feninv=1:

FEN-signal with running row transmission =LOW, FEN-signal with frame synchronization =HIGH

chaninv (Reg.9, bit 7)

• Inversion of channel selection signal, set bit always =0

2.5 Frame data sorting

The frame data sorting is carried out by a Dual-Port-RAM 1k×10bit (2 rows×512× 10bit). One port is exclusively used for reading, the other one exclusively for writing. Now VSG provides the sorting addresses in this way that the frame datas read out on the writing port are straight-line written in chronological order and the frame datas of the previous row are straight-line read out in local order on the reading port. Consequently, a time shift of one row can be found between the frame data output and current readout coordinates of the sensor.

2.5.1 Frame data sorting in single channel mode (MODE 0)

When the single channel mode is set, one pixel is read during every addressing cycle. A data sorting is not necessary. However, it is carried out because of circuit-technical reasons. In single channel mode the right half of the sensor is analyzed with a column address ≥256, the left half with a column address <256. The information of the corresponding pixel on the respectively other half of the sensor is rejected. Consequently, a completely free predefinition of the frame which is to read out is possible. However, the maximum pixel clock frequency must not be higher than 8MHz.

The data sorter works from the assumption that the frame datas which need to be sorted are read out sequentially with a rising row and column address.

The frame data sorting is carried out in a simple way:

	Dual-Port-R	AM, w	riting port	Dual-Port-RAM, reading port			
Sensor access	Pixel information	Dı	ıal-Port-RAM	Pixel information	Dual-Port-RAM		
	Coordinate[X,Y]	Bank	Writing address	coordinate[X,Y]	Bank	Reading address	
	•••		•••	•••		•••	
n	[x ,y]	0	Adr	[x,y-1]	1	Adr	
n+1	[x+1,y]	0	Adr+1	[x+1,y-1]	1	Adr+1	
n+2	[x+2,y]	0	Adr+2	[x+2,y-1]	1	Adr+2	
n+3	[x+3,y]	0	Adr+3	[x+3,y-1]	1	Adr+3	
n+4	[x+4,y]	0	Adr+4	[x+4,y-1]	1	Adr+4	
			•••	•••		•••	
m	[x,y+1]	1	Adr	[x,y]	0	Adr	
m+1	[x+1,y+1]	1	Adr+1	[x+1,y]	0	Adr+1	
m+2	[x+2,y+1]	1	Adr+2	[x+2,y]	0	Adr+2	
m+3	[x+3,y+1]	1	Adr+3	[x+3,y]	0	Adr+3	
m+4	[x+4,y+1]	1	Adr+4	[x+4,y]	0	Adr+4	
			•••	•••	•••	•••	

2.5.2 Frame data sorting in dual channel mode (MODE 2,3)

Two corresponding pixel are read in one access cycle in the dual channel mode. MODE 2 and MODE 3 differ from each other only in their sorting algorithm by the interpretation of the coordinates of the sequentially read frame datas.

2.5.2.1 MODE 2:

The frame datas are sorted in this way that the frame datas are sorted locally correct when being convergingly read out. Converged means in this case that corresponding pixel pairs draw nearer to each other during the readout process.

Example, converging readout:

Pixel coordinates in one cycle, full frame:

 $\begin{array}{lll} n; & \left\{ \left[\begin{array}{c} x,y \right], \left[511- & x,y \right] \right\} \\ n+1; & \left\{ \left[x+1,y \right], \left[511-(x+1),y \right] \right\} \\ n+2; & \left\{ \left[x+2,y \right], \left[511-(x+2),y \right] \right\} \\ n+3; & \left\{ \left[x+3,y \right], \left[511-(x+3),y \right] \right\} \\ n+4; & \left\{ \left[x+4,y \right], \left[511-(x+4),y \right] \right\} & etc. \end{array}$

mirror-bits: colrm = 1

 $\begin{array}{ll} rowrm &= 0 \\ collm &= 0 \\ rowlm &= 0 \end{array}$

	Dual-Port-R	AM, writing port		Dual-Port-RAM, reading port			
Sensor access	Pixel information	Dual-Port-RAM		Pixel information	Dual-Port-RAM		
	coordinate[X,Y]	Bank	Writing address	Coordinate[X,Y]	Bank	Reading address	
		•••					
n	[0,y]	0	0x000	[0,y-1]	1	0x000	
	[511,y]	0	0x001	[1,y-1]	1	0x002	
n±1	[1,y]	0	0x002	[2,y-1]	1	0x004	
n+1	[510,y]	0	0x003	[3,y-1]	1	0x006	
n+2	[2,y]	0	0x004	[4,y-1]	1	0x008	
II⊤Z	[509,y]	0	0x005	[5,y-1]	1	0x00A	
n+3	[3,y]	0	0x006	[6,y-1]	1	0x00C	
птЭ	[508,y]	0	0x007	[7,y-1]	1	0x00E	
n+4	[4,y]	0	0x008	[8,y-1]	1	0x010	
11+4	[507,y]	0	0x009	[9,y-1]	1	0x012	
n+126	[126,y]	0	0x0FC	[252,y-1]	1	0x1F8	
N+120	[385,y]	0	0x0FD	[253,y-1]	1	0x1FA	
107	[127,y]	0	0x0FE	[254,y-1]	1	0x1FC	
n+127	[384,y]	0	0x0FF	[255,y-1]	1	0x1FE	
100	[128,y]	0	0x100	[256,y-1]	1	0x1FF	
n+128	[383,y]	0	0x101	[257,y-1]	1	0x1FD	
120	[129,y]	0	0x102	[258,y-1]	1	0x1FB	
n+129	[382,y]	0	0x103	[259,y-1]	1	0x1F9	
120	[130,y]	0	0x104	[260,y-1]	1	0x1F7	
n+130	[381,y]	0	0x105	[261,y-1]	1	0x1F5	
		•••					
n+255	[255,y]	0	0x1FE	[510,y-1]	1	0x003	
11+233	[511,y]	0	0x1FF	[511,y-1]	1	0x001	
n 256	[255,y+1]	1	0x000	[0,y]	0	0x000	
n+256	[256,y+1]	1	0x001	[1,y]	0	0x002	
		1			0		

2.5.2.2 MODE 3:

The frame datas are sorted in this way that frame datas are sorted locally correct when the sensor is read out divergently. Divergent means here that corresponding pixel pairs approach to the respective edge of the frame when being read out.

u.s.w

Example, divergent readout:

Pixel coordinates in one cycle, full frame:

n: {[255-x,y], [256+x,y]} n+1: {[255-(x+1),y], [256+(x+1),y]} n+2: {[255-(x+2),y], [256+(x+2),y]} n+3: {[255-(x+3),y], [256+(x+3),y]} n+4: {[255-(x+4),y], [256+(x+4),y]}

mirror-bits: colrm = 0

 $\begin{array}{ll}
 \text{rowrm} &= 0 \\
 \text{collm} &= 1 \\
 \text{rowlm} &= 0
 \end{array}$

	Dual-Port-RAM, writing port			Dual-Port-RAM, reading port			
Sensor access	Pixel information	Dı	ıal-Port-RAM	Pixel information	Dual-Port-RAM		
	coordinate[X,Y]	Bank	Writing address	coordinate[X,Y]	Bank	Reading address	
n	[255,y]	0	0x000	[0,y-1]	1	0x1FE	
n	[256,y]	0	0x001	[1,y-1]	1	0x1FC	
n+1	[254,y]	0	0x002	[2,y-1]	1	0x1FA	
11+1	[257,y]	0	0x003	[3,y-1]	1	0x1F8	
n+2	[253,y]	0	0x004	[4,y-1]	1	0x1F6	
	[258,y]	0	0x005	[5,y-1]	1	0x1F4	
n+3	[252,y]	0	0x006	[6,y-1]	1	0x1F2	
	[259,y]	0	0x007	[7,y-1]	1	0x1F0	
n+4	[251,y]	0	0x008	[8,y-1]	1	0x1EE	
11++	[260,y]	0	0x009	[9,y-1]	1	0x1EC	
n+126	[129,y]	0	0x0FC	[252,y-1]	1	0x006	
n+120	[382,y]	0	0x0FD	[253,y-1]	1	0x004	
n+127	[128,y]	0	0x0FE	[254,y-1]	1	0x002	
11+12/	[383,y]	0	0x0FF	[255,y-1]	1	0x000	
n+128	[127,y]	0	0x100	[256,y-1]	1	0x001	
11+128	[384,y]	0	0x101	[257,y-1]	1	0x003	
n+129	[126,y]	0	0x102	[258,y-1]	1	0x005	
11+129	[385,y]	0	0x103	[259,y-1]	1	0x007	
n+130	[125,y]	0	0x104	[260,y-1]	1	0x009	
11+130	[386,y]	0	0x105	[261,y-1]	1	0x00B	
n+255	[0,y]	0	0x1FE	[510,y-1]	1	0x1FD	
11⊤∠JJ	[511,y]	0	0x1FF	[511,y-1]	1	0x1FF	
n+256	[255,y+1]	1	0x000	[0,y]	0	0x1FE	
11+230	[256,y+1]	1	0x001	[1,y]	0	0x1FC	
		1			0		

3 Configuration of the camera *LOGLUX*^O

3.1 Introduction

The device-internal camera control makes it possible to set the following parameters over the configuration interface:

- frequency and polarity of the camera clock CAMCLK
- pulse width and polarity of the row synchronuous signal LEN (Line Enable)
- pulse width and polarity of the row synchronuous signal FEN (Frame Enable)
- size and position of sensor half which is to read out
- · readout mode
- infensification and offset of the video amplifier
- selection of the correction table

In order to make the camera configuration easier for the user, the internal software offers two opportunities:

- 1. ASCII (plain text) control
- 2. HEX control

The selection of the way of controlling and of the interface-specific parameter is effected by the configuration switch on the camera back.

 $LOGLUX^{\hat{O}}$ cameras have a RS232C (V.24) configuration interface as standard. All parameters declared are not erased when switching the camera off and are automatically set when switching the camera on or when pressing the RESET button. It is, therefore, possible to use the camera independently of a configuration computer or to do the configuration only when installing the camera.

Requirements for the camera configuration:

- 1. Configuration computer with serial interface (e.g. COM1, PC)
- 2. VT100 terminal or special configuration software
- 3. 1 zero modem cable

3.2 RS232C Configuration interface

The camera-internal RS232C interface is equipped with an IC MAX3232 and attends the signals TxD, RxD, CTS and RTS. The signals DTR, DSR and DCD are internally connected. For controlling the data transmission the hardware (RTS/CTS) control protocol is applied. The transmission rate, the number of stop bits and data bits as well as the parity bit can be selected with the configuration switch (see below). At the same time it is possible to define the interface parameters completely free or from a default selection.

The 9-pole D-SUBm plug located on the camera back has the following pin assignments:

RS232 connection, 9-pole D-SUB plug

Designation	PIN#,	Quantity	Input/Output	Description
/DCD	1	1	Е	DATA CARRIER DETECTED
				with /DTR and /DSR connected
RxD	2	1	Е	Receive datas
TxD	3	1	A	Transmission datas
/DTR	4	1	A	DATA TERMINAL READY
				with /DCD and /DSR connected
GND	5	1		GROUND
/DSR	6	1	Е	DATA SET READY
				with /DCD and /DTR connected
/RTS	7	1	A	REQUEST TO SEND
/CTS	8	1	Е	CLEAR TO SEND
RI	9	1	Е	RING INDICATOR
				Not connected

A cable (zero modem cable) with the connections mentioned below is necessary to connect the camera with the configuration computer.

List of connections for the zero modem cable

Jack 1	RxD	TxD	RTS	CTS	DTR-DCD	DSR	GND
9-pole D-SUBw	PIN 2	PIN 3	PIN 7	PIN 8	PIN 4-1	PIN 6	PIN 5
Jack 2	TxD	RxD	CTS	RTS	DSR	DTR-DCD	GND
9-pole D-SUBw	PIN 3	PIN 2	PIN 8	PIN 7	PIN 6	PIN 4-1	PIN 5

back side of the camera

3.3 RS422 Configuration interface (optionally)

The configuration interface can optionally be equipped with a RS422 driver (MAX3488). The interface operates without a hardware control protocol in this case (only RxD+, RxD-, TxD+, TxD-). The D-Sub plug was wired in this way that a zero modem cable of a RS232C interface can further be used for communication.

To make a data transmission over longer distances possible, the symmetric data input (RxD+, RxD-) is closed with a terminator of R = 100W.

RS422 connection, 9-pole D-SUB jack

Designation	PIN#	Quantity	Input/Output	Description
	1	1		Connected with PIN 4,6
RxD+	2	1	I	Receive datas
TxD+	3	1	O	Transmission datas
	4	1		Connected with PIN 1,6
GND	5	1		GROUND
	6	1		Connected with PIN 4,1
RxD-	7	1	I	Receive datas, inverted
TxD-	8	1	0	Transmission datas, inverted
	9	1		Free

3.4 Signal-LED

The signal-LED on the camera back gives information about the present operating condition of the camera. The following signals are assigned to different conditions:

Signal	Operating condition
Green continuous light	camera operates, commands cannot be received
Green continuous ngint	(configuration switch position 15)
Green continuous light, short yellow blinking (0,5Hz)	camera operates, commands can be received
Green continuous light, short yellow blinking (0,5112)	(configuration switch position 014)
Green flashing light	camera carries out the command or is in the base
Oreen masning light	initialization after the switching on
Yellow flashing light, slowly	Camera trimming
Yellow flashing light, quickly	Flash-ROM is programmed
Valleys/mod fleshing light	camera requests during the trimming routine a high
Yellow/red flashing light	luminance
Yellow/green flashing light	camera requests during the trimming routine a low
Tenow/green hashing light	luminance
Green/red flashing light	Base initialization after the WATCHDOG reset

3.5 The Configuration switch

The configuration switch is used for selecting the

- 1. kind of control (plain text, HEX mode)
- 2. interface parameter.

Together with the RESET button the configuration switch is located on the camera back under a base plate.

The position of the configuration switch is enquired when powering up the operating voltage or after RESET i.e. an adjusting under running does not have immediate influence. If the camera is equipped with the standard configuration switch (RS232C), the following interface and configuration parameter arise for the different switch positions:

Position	Configuration	Transmission	Datas		
	mode	rate			
0		1200 Bd	8 Bit	No parity	
1		1200 Bd	7 Bit	No parity	
2	Plain text m.	9600 Bd	8 Bit	No parity	
3		9600 Bd	7 Bit	No parity	
4		1200 Bd	8 Bit	No parity	
5		1200 Bd	8 Bit	Even	
6		1200 Bd	8 Bit	Uneven	1 Stop bit
7		9600 Bd	8 Bit	No parity	
8	HEX mode	9600 Bd	8 Bit	Even	
9		9600 Bd	8 Bit	Uneven	
10		19200 Bd	8 Bit	No parity	
11		19200 Bd	8 Bit	Even	
12		19200 Bd	8 Bit	Uneven	
13	Plain text m.	User-defined			
14	HEX mode	User-defined			
15	No ext	ernal configuration	(conf. Inter	rface is not initialize	d)

Example: plain text control 9600Bd, 8bit, no parity: switch position

3.6 Camera control in ASCII (plain text) mode

If the configuration switch is in setting 0...3 or 13, the camera can be configured in plain text. The camera has to be connected to a VT100 compatible terminal for this (TERMINAL WIN3.1x, HYPER TERMINAL WIN95, TERMINAL VT100 Norton Commander) and the terminal software needs to be configured as follows:

- Transmission rate, 7/8 bit, parity, stop bit \rightarrow see table, configuration switch
- Hardware control protocol (RTS/CTS)
- No local echo
- Function keys for Windows OFF!

All commands are input in plain text. The data sender (keyboard) operates independently of the receiver because the camera transmits a character echo itself. Small letters are automatically shifted into capital letters. All printable ASCII characters (0x20...0x7F) are analyzed as well as the following control characters and ESCAPE series:

^M	0x0D (carriage return, CR)	RETURN button
ESC O P	0x1B / 0x4F / 0x50	F1 button
ESC O Q	0x1B / 0x4F / 0x51	F2 button
ESC O P	0x1B / 0x4F / 0x52	F3 button
ESC O Q	0x1B / 0x4F / 0x53	F4 button
ESC [A	0x1B / 0x5B / 0x41	↑ button
ESC [B	0x1B / 0x5B / 0x42	↓ button
ESC [C	0x1B / 0x5B / 0x43	\rightarrow button
ESC [D	0x1B / 0x5B / 0x44	←-Taste

The data receiver (display) must be able to process the control characters given below in addition to all printable ASCII characters (0x20...0x7F):

^M	0x0D	(carriage return, CR)	Cursor to the beginning of the line
^H	0x08	(back space, BS)	Cursor one character to the left
^J	0x0A	(line feed, LF)	Cursor one character downwards
^G	0x07	(bell, BEL)	Acoustic signal

Layout of function keys:

F1: BACKUP, Saving the present configuration F2: UNDO, Setting of the configuration saved

F3: Display of the configuration F4: Single frame statistics

Commands and parameters are seperated by blanks, parameters from each other by a comma:

COMMAND [parameter1 [, parameter2]]

Example: CAMCLK 16,0

When using the terminal function "SEND TEXT FILE", it is possible to send command groups (e.g. setting for certain types of framegrabbers). The file which is to be sent can be created with any editor (e.g. EDIT, WRITE).

Example: Setting of the camera clock signal for ELTEC framegrabber PCEye with CAMA 160:

// configuration ELTEC framegrabber len 16,0 fen 0,0 // pixel clock 4MHz camclk 4,0

3.7 Camera control in HEX mode

Is the configuration switch in setting 4...12 or 14, the camera can be configured in plain text mode. This mode permits the control with a minimum of characters transmitted. Every command has a capacity of 4 byte maximum. That is why, the configuration interface has to be programmed to a transmission of 8-bit data capacity. Furthermore, it is possible to transmit command sequences as datagrams which are sequentially processed.

A datagram (command sequence) has always the following structure:

Byte 0	Byte 1	Byte 2	Byte 3	 Byte n-1	Byte n	
(Sequence length n)	date 1	date 2	date 3	date n-1	data n	l

Byte 0 includes the length of the command sequence. (An empty sequence has the sequence length 0)

Structure of an command:

1 byte command Command code

2 byte command

Command code Date 1

3 byte command

Command code Date 1 Date 2

4 byte command

Command code Date 1 Date 2 Date 3

The length of the instruction results from the command code. Is an command or an command sequence processed, a return data sequence consisting of 1 byte minimum (only error code) is produced. Is an command sequence processed, the following command of this sequence is only then obeyed if this command produces the error code 0x00 (ok). In case of an error the process is interrupted and the error code is sent to the control computer via the configuration interface.

Table: Error codes

Error code		Description
Decimal	Hex.	_
0	0x00	Command is properly obeyed
1127	0x010x7F	Marking byte, m data bytes follow (see table
		below)
128	0x80	Command sequence too long
249	0xF9	Set frame format or frame position cannot be
		adjusted in the selected readout mode
250	0xFA	Set pixel clock frequency cannot be adjusted in the
		selected readout mode
251	0xFB	Parameter is illegal in the selected readout mode
252	0xFC	Priviliged command, see \$ command
253	0xFD	Illegal parameter
254	0xFE	Number of parameters too small
255	0xFF	Illegal command code

If the command includes the sending of datas to the control computer (e.g. enquiring the software version), these datas are sent before the respective error code (marking by the error code 1..127). The sent marking byte corresponds to the error code of the command which effects the sending of further data bytes. The number of data bytes following the marking byte comes from the marking byte in accordance with the following assignment:

Assignment marking byte (=command code) - number m of the following data bytes

Marking byte	number <i>m</i> of the following data bytes
0x01 (VERSION)	4
0x0F (EEPROM)	128
0x17 (ADC)	2
0x1B (STAT)	30

A definite analysis of a return data sequence is possible according to the following diagramm:

```
Send command sequence

cancel=no

DO

Input data byte date

IF (date<128 or date>0)
Determine from date number*)
Input number of data bytes (read return datas)

ELSE IF (date=0)
result=ok
ELSE
result=error

cancel=yes

WHILE(abbruch=nein)
```

Analyze result

^{*)} This function assigns the length of the return sequence to a command. (see command description)

Example: Command sequence sent with **proper** process

Plain text: version

mode 3

• Command sequence, sent byte series:

	Byte 0	Byte 1	Byte 2	Byte 3
	0x03	0x01	0x09	0x03
Command length		Command code	Command code	Parameter
		VERSION	MODE	"3"

• Return data sequence, received byte series

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
0x01	0x00	98	03	24	0x00
Marking byte,	Data byte0	Data byte1	Data byte2	Data byte3	Error code for
Byte signalizes:	IDENTIFICA-	YEAR	MONTH	DAY	whole
4 data bytes	TION				sequence:
follow	"LOGLUX"				"ok"

Sent command sequence with **incorrect** parameters:

Plain text: mode 72

version

"72" uncorrect parameter

• Command sequence, sent byte series:

_	Byte 0	Byte 1	Byte 2	Byte 3
	0x03	0x09	72	0x01
	Command code		Parameter	Command code
	length	MODE.		VERSION

• Return data sequence, received byte series

The command VERSION was not obeyed because the command MODE was cancelled by an incorrect parameter.

4 Description of commands

4.1 Table of commands

According to their functions the commands given below can be divided into the following groups:

• Commands for determining the frame data transmission

CAMCLK LEN FEN TRIG

• Commands for determining the frame size and position

RESET FRAME_SIZE FRAME_POS ROT MIR

• Matching and test commands

HIGH LOW CAL WR

• Enquiring the camera status

VERSION EEPROM ADC

· Register commands

VSG MUX HDRC DAC

4.2 Structure of the command description:

COMMAND Name of the command for plain text mode

• Abstract Abstract of the commands

0x00 Coding of the command in HEX mode

Return:

Error code Return sequence

Length of the command: 1 byte Command length

RESET

• Reset of all camera settings

Return:

Error code

Length of command: 1byte

The RESET command allocates all variable configuration parameter with a defined value and re-initializes the correction RAM.

When calling the RESET command the following MACRO is started:

DAC 0, 150 DAC 1, 140 DAC 2, 128 DAC 3, 128 MODE 0 TAB 4

Configuration:

Bit	8	7	6	5	4	3	2	1	0
HDRC reg.		lrm 1	resdir 1	nores 1	gray 1	rowlm 0	Collm 0	rowrm 0	colrm 0
VSG reg. 0	lof 0	sa step ext_trig gray delay mode 0 0 0 1 1 0							
VSG reg. 1								pre	
VSG reg. 2						en 6		1	•
VSG reg. 3					fe	en O			
VSG reg. 4					x_base	<u>U</u>			
VSG reg. 5		0 y_base							
VSG reg. 6		x_offset							
VSG reg. 7		511 y_offset							
VSG reg. 8		pipedelay							
VSG reg. 9								pxlclk 0	adcclk
_									
DAC reg.0	gain								
DAC reg.1		150 offset							
DAC reg.2		140 adcref							
DAC reg.3		128 xxx 128							
Correctur table	tab (8	bit)							

The contents of the DAC-Backup register and the matching references remain unchanged.

VERSION

• Enquiring the software version (date of compiling)

0x01

Length of the command: 1byte

Return: 6 byte

0x01 0x00 year month day error code

Error code: [0] ok

The contents of all configuration registers remains unchanged.

\$

• Release of the extended command set

0x02

Length of the command: 1byte

Return: 1 byte
Error code

The extended command set is released by the \$ command. This makes it possible to have a direct access to the configuration register. The use of the extended command set requires the exact knowledge of the camera control because incorrect parameters may cause a malfunction of the camera.

The contents of all configuration registers remains unchanged.

If there is any access to a command of the extended command set (privileged command) without prior release, the command sequence is cancelled and acknowledged with error code [252].

DAC channel, parameter

(privileged command, see \$ command)

• Setting the DAC channel

0x03	channel	parameter

Length of the command: 3 bytes

Return: 1 byte Error code

channel: number of the channel (0...3) channel 0: GAIN register

channel 1: OFFSET register

channel 2: ADCREF register (HIGH reference video ADC)

parameter: 0...255 channel 0: GAIN register standard parameter: 150

channel 1: OFFSET register standard parameter: 140 channel 2: ADCREF register standard parameter: 128

error code: [0] ok

[252] access to privileged command (see \$ command)

GAIN register:

The intensification of the video amplifier results from the following equation:

$$V(dB) = 20dB \cdot (value \cdot 6.78 \cdot 10^{-3} + 0.381) - 19dB$$

$$\Delta V(db) = \Delta value \cdot 0,136dB$$

Examples:

Value	0	100	150	200	255
V(dB)	-11,4dB	2,2dB	9,0dB	15,8dB	23,2dB

ADCREF register: The difference between HIGH and LOW reference (range of converter) of the video-

ADC results from the following equation:

 $\Delta U = 312 \text{mV} + \text{value} \cdot 5,56 \text{mV}$

Examples:

Value	100	128	150	200	255
U	868mV	1024m	1146mV	1424mV	1730mV
		V			

MUX channel, switch

(privileged command, see \$ command)

• Setting of a multiplex channel

0x04 channel paramet

Length of the command: 3 byte

Return: 1 byte
Error code

channel: number of the channel (0, 1)

schalter: switch position (0...3)

error code: [0] ok

[252] access to privileged commands (see \$ command)

The MUX command activates the camera-internal analog multiplex channel. This command can be used for test purposes only and has no influence on the camera configuration.

HDRC parameter

(privileged command, see \$ command)

• Loading the HDRC register

0x05 parameter

Length of the command: 2 byte

Return: 1 byte
Error code

parameter: parameter of the HDRC register (0...255)

error code: [0] ok

[252] access to privileged command (see \$ command)

The HDRC command sets the HDRC register. If bit 0...4 differs between old and new register parameter, the correction RAM is additionally re-configured. The selection of the table depends on the TAB register. (See TAB command)

Configuration by HDRC command:

Bit 7 6 5 4 3 2 1 0

HDRC reg.

lrm	Resdir	nores	gray	rowlm	collm	rowrm	colrm
\Leftrightarrow							

Correction table

tab (8bit)

Structure of the HDRC register:

• colrm, column right mirror: By setting this bit the right-hand half of the sensor can be mirrored around

the north-south axis. When addressing column (n), column (255-n) is read

Out

• rowrm, row right mirror: By setting this bit the right-hand half of the sensor can be mirrored around

the east-west axis. When addressing row (n), row (255-n) is read out.

• **collm**, *column left mirror*: as colrm, left-hand half of the sensor

• rowlm, row left mirror: as rowrm, left-hand half of the sensor

• gray: Selection of the addressing code, =0 binary code/=1 gray code. This bit is

tightly connected with the gray bit VSG reg. 0, bit 4

nores: Suppresses the reset procedure which is processed row by row. The

parameter of this bit should not be changed by the user.

• **resdir**: Determines the reset procedure. The parameter of this bit should not be

changed by the user.

• **lrm**, *left right mirror*: By setting this bit, the addressing of the sensor halfs is interchanged. (When

addressing the left-hand half of the sensor, the right-hand half of the sensor is

read out and inverted.)

VSG reg, parameter

(privileged command, see \$ command)

• Loading of a VSG register

0x06	reg	high	low
		(parameter)	(parameter)

Length of the command: 4 byte

Return: 1 byte
Error code

Error code: [0] ok

[252] access to privileged commands (see \$ command)

high(parameter): High byte register parameter (0, 1) low(parameter): Low byte register parameter (0, 255)

reg: register no. (0...9)

Configuration by VSG command:

VSG configuration register:

VSG register	reg
MODE register	0
PREDIV register	1
LEN register	2
FEN register	3
X_BASE register	4
Y_BASE register	5
X_OFFSET register	6
Y_OFFSET register	7
PIPEDELAY reg.	8
MEASURE reg.	9

Refer to chapter "2.4 Descriptions of function VSG" for an exact description of the VSG register.

FRAME_SIZE x, y

• Determination of the frame area

0x07	high	low	
	(X)	(X)	Y

Length of the command: 4 byte

Return: 1 byte Error code

Erroe code: [0] ok

high(X): (High byte X coordinate)-1 (0, 1) low(X): (Low byte X coordinate)-1 (0...255)

Y: (Y coordinate)-1 (0...255)

Example: FRAME_SIZE 199,99 frame area (200×100) pixel

The command FRAME_SIZE determines the frame area which needs to be read out and which depends on the readout mode set (see command MODE). The following restrictions are valid for this with reference to the area set:

• MODE 2,3: north-south axial-symmetric frame areas are possible only, even X coordinates only

• MODE 0: the selection of the frame area is completely free

Configuration by the FRAME_SIZE command:

Bit	8	7	6	5	4	3	2	1	0	
VSG reg. 0	lof	sa	step	ext_trig	gray	delay	mode			
	×	×	×	×	×	×	×			
VSG reg. 1		·		ı	ı			pre	div	
								>	<	
VSG reg. 2					le	en		I		
					>	<				
VSG reg. 3					fe	en				
		×								
VSG reg. 4		x_base								
	⇔/× (see table)									
VSG reg. 5		y_base								
		×								
VSG reg. 6		x_offset								
		⇔ (see table)								
VSG reg. 7		y_offset								
Ü		⇔ (see table)								
VSG reg. 8		pipedelay								
		×								
VSG reg. 9		chaniny		feniny	Leniny	Clkinv	clkoff	pxlclk	adcclk	
150 105.		×		×		×		×	×	
		^		^	×	^	×	^	^	

VSG-REGISTER	MODE 0	MODE2	MODE 3
4 (X_BASE)	×(not changed)	255-X/2 *	0
6 (X_OFFSET)	X	X/2 *	X/2 *
7 (Y_OFFSET)	Y	Y	Y

^{*} The LSB of the X coordinate is lost when dividing by 2. That is why, a frame area of (300x200) pixel is set each time when applying the following commands:

FRAME_SIZE 299, 199 FRAME_SIZE 298, 198

FRAME_POS x, y

• Determination of the frame position

0x08	High	low	
	(X)	(X)	Y

Length of the command: 4 byte

Return: 1 byte
Error code

Error code: [0] ok

high(X): (High byte X coordinate) MODE 0: (0, 1) MODE 1,2,3: (0)

low(X): (Low byte X coordinate) (0...255)

Y: (Y coordinate) (0...255)

The command FRAME_SIZE determines the position of the upper left-hand corner of the image. This depends on the readout mode set (see command MODE). The following commands are valid with reference to the varying coordinates:

• MODE 2,3: Y coordinate is variable only (0...255), X coordinate is ignored

• MODE 0: the selection of the frame position is completely free

Configuration by the FRAME_POS command:

Bit	8	7	6	5	4	3	2	1	0
VSG reg. 0	Lof	sa	step	ext_trig	gray	delay	mode		
	×	×	×	×	×	×		×	
VSG reg. 1								pre	div
								>	<
VSG reg. 2					L	en		•	
					>	<			
VSG reg. 3					F	en			
					;	<			
VSG reg. 4					x_base				
			MO	DDE 0: ⇔((X)	MODE 2,3	5: ×		
VSG reg. 5					y_t	oase			
					\Leftrightarrow	(Y)			
VSG reg. 6					x_offset				
					×				
VSG reg. 7					y_0	ffset			
					,	<			
VSG reg. 8		pipedelay							
		×							
VSG reg. 9		chaninv		feninv	leninv	clkinv	clkoff	pxlclk	adcclk
		×		×	×	×	×	×	×

MODE m

• Determination of the readout mode

0x09	m
UAU	111

Length of the command: 2 byte

Return: 1 byte
Error code

Error code: [0]

[249] no symmetric frame area

A switching from single channel mode to dual channel mode is only possible when an **axial-symmetric** frame area is set!

[250] The CAMCLK frequency selected before is not random in the readout mode set. (e.g. 1MHz selected, afterwards command MODE 3)

m: Mode (0,2,3)

The readout mode can be determined with the command MODE:

MODE 0: single channel mode

ok

MODE 2: dual channel mode, both halfs of the sensor are convergingly read out MODE 3: dual channel mode, both halfs of the sensor are divergently read out

The following parameter remain:

• Frequency f_{CAMCLK}

• Number of clocks LEN, FEN

• Polarity CAMCLK, LEN, FEN

• Frame size and position

Configuration:

Bit	8	7	6	5	4	3	2	1	0			
HDRC reg.		lrm 1	Resdir 1	nores 1	gray 1	rowlm ⇔	Collm ⇔	rowrm ⇔	colrm ⇔			
VSG reg. 0	lof ×	sa ×	Step 0	ext_trig	gray 1	delay 1		mode ⇔				
VSG reg. 1								pre				
VSG reg. 2		Len										
VSG reg. 3	⇔ Fen											
VSG reg. 4		x_base										
VSG reg. 5	⇔ y_base											
VSG reg. 6		⇔ x_offset										
VSG reg. 7						ffset						
VSG reg. 8		× pipedelay 3										
VSG reg. 9		chaninv ×		feninv ×	leninv ×	clkinv ×	Clkoff ×	pxlclk ×	adcclk ×			

The HDRC register consists of the following:

Readout mode	0	2	3
HDRC register	0xF0	0xF1	0xF4

LEN clocks, polarity

• Configuration of the LINE-ENABLE signal

0x0A	clocks	polarity

Length of the command: 3 byte

Return: 1 byte
Error code

clocks: Length of the LEN signal, number of CAMCLK clocks of the LEN signal during its inactive phase

MODE 0: (0, 1, 2,...254, 255)

MODE 1, 2, 3: (0, 2, 4,...252, 254), (LSB of ,,clocks" is ignored)

polarity: 1: LEN H active

0: LEN L active

The LEN command determines length and polarity of the inactive phase of the LINE-ENABLE signal as multiple of the signal CAMCLK.

Configuration by the LEN command:

Bit	8	7	6	5	4	3	2	1	0
VSG reg. 0	lof	sa	Step	ext_trig	gray	delay	mode		
	×	×	×	×	×	×		×	
VSG reg. 1								pre	div
								,	<
VSG reg. 2					L	en			
						e table)			
VSG reg. 3					F	en			
						<			
VSG reg. 4					x_base				
					×				
VSG reg. 5						oase			
						<			
VSG reg. 6					x_offset				
					×				
VSG reg. 7						ffset			
					<u> </u>	<u> </u>			
VSG reg. 8		pipedelay							
						an i	11 00	×	
VSG reg. 9		chaninv		feninv	leninv	Clkinv	clkoff	pxlclk	adcclk
		×		×	⇔	×	×	×	×

	VSG reg. 2 (LEN register)	Leninv
MODE 0	Clocks	polarity
MODE 1, 2, 3	Clocks/2	polarity

FEN rows, polarity

• Configuration of the FRAME-ENABLE signal

0x0B	rows	Polarity							
I anoth of the commande 2 byte									

Length of the command: 3 byte

Return: 1 byte
Error code

clocks: Length of the FEN signal, number of rows of the FEN signal during its inactive phase

rows=0: FEN becomes inactive in addition to LEN for frame synchronization

zeilen>0: FEN becomes inactive for n rows for frame synchronization

polarity: 1: FEN H active

0: FEN L active

The FEN command determines length and polarity of the FRAME-ENABLE signal during its inactive phase.

Configuration of the FEN command:

Bit	8	7	6	5	4	3	2	1	0
VSG reg. 0	lof	sa	Step	ext_trig	gray	delay	mode		
	×	×	×	×	×	×		×	
VSG reg. 1				ı				pre	div
								,	<
VSG reg. 2					le	n		ı	
					>	<			
VSG reg. 3					fe	en			
					⇔ (see	e table)			
VSG reg. 4					x_base				
					×				
VSG reg. 5					y_t	ase			
					>	<			
VSG reg. 6					x_offset				
					×				
VSG reg. 7					y_o:	ffset			
					>	<			
VSG reg. 8		pipedelay							
		×							
VSG reg. 9		chaninv		feninv	leninv	clkinv	clkoff	pxlclk	adcclk
		×		⇔	×	×	×	×	×

CAMCLK freq, polarity

• Configuration of the CAMCLK signal

0x0C	freq	polarity
I amouth of	.1	d. 2 h-4-

Length of the command: 3 byte

Return: 1 byte
Error code

freq: Frequency in MHz: 1 (Mode 0 only), 2, 4, 8, 16 (Mode 2, 3 only)

polarity: 1: datas valid for HL edge, data exchange LH edge

0: datas valid for LH edge, data exchange HL edge

The CAMCLK command determines frequency and polarity of the camera clock.

Configuration by the CAMCLK command:

Bit	8	7	6	5	4	3	2	1	0
VSG reg. 0	lof	sa	step	Ext_tri	gray	delay		mode	
	×	×	×	g	×	×		×	
				×					
VSG reg. 1				•				pre	div
								⇔ (see	e table)
VSG reg. 2					L	en		•	
					>	×			
VSG reg. 3					F	en			
					>	<			
VSG reg. 4					x_base				
					×				
VSG reg. 5					y_b	ase			
					>	×			
VSG reg. 6					x_offset				
					×				
VSG reg. 7					y_o	ffset			
					>	<			
VSG reg. 8		Pipedelay							
								×	
VSG reg. 9		chaninv		feninv	leninv	clkinv	clkoff	pxlclk	Adcclk
		×		×	×	⇔	×	×	×

Configuration of the PREDIV register (VSG reg. 1)

	1MHz	2MHz	4MHz	8MHz	16MHz
MODE 0	3	2	1	0	-
MODE 2, 3	-	3	2	1	0

Configuration examples: CAMCLK, LEN, FEN signal

The polarity of the synchronuous signals which needs to be set depends on the type of the attached framegrabber.

Example:

Manufacturer	Type	CAMCLK, LEN, FEN parameter
ELTEC, Mainz	PCEye, CAMA 160	CAMCLK n ₁ , 0 LEN n ₂ , 0 FEN n ₃ , 0
INO-Vision	INOCAP CSD	CAMCLK n ₁ , 0 LEN n ₂ , 1 FEN n ₃ , 1

ROT

• Rotation of the frame about 180°

0x0D

Length of the command: 1 byte

Return: 1 byte
Error code

Configuration of the ROT command:

7 Bit 5 4 3 2 1 0 HDRC reg. lrm Resdir nores gray rowlm Collm rowrm colrm \Leftrightarrow

MIR

• Mirroring of both sensor halfs

0x0E

Length of the command: 1 byte

Return: 1 Byte Error code

Configuration of the MIR command:

EEPROM

• Readout of the internal configuration eeprom

0x0F

Length of the command: 1 byte

Return: 130 byte

ſ	0x0F	Contents	Contents	Contents	Contents		Contents	Error code
ı	OAOI	Adr. 0x00	Adr. 0x01	Adr. 0x02	Adr. 0x03		Adr. 0x7F	Littor code

The EEPROM command outputs the contents of the configuration EEPROM over the configuration interface. It is possible to read out all configuration parameters with this. The interpretation of the datas takes place on the controlling PC.

Data assignment in the internal EEPROM:

Address	Byte	Function	
0x00	1	HDRC register	
0x01	1	Multiplexer register	
0x02-0x15	10×2	VSG register 09	
0x16-0x19	4	DAC channels 03	
0x1A-0x29	4×4	DAC backup for 4 correction tables	
0x2A	1	Ones complement of the less valuable bytes of the total over	
		the address 0x1A-0x29 (proof total)	
0x2B	1	Set correction table	
0x2C	8	Interface specific datas	
0x34	2	BRIGHT reference	
0x36	2	DARK reference	
0x38	1	GAIN difference	
0x39	1	OFFSET difference	
0x3A	10	Statistical data correction table0	
0x44	10	Statistical data correction table1	
0x4E	10	Statistical data correction table2	
0x58	10	Statistical data correction table3	

INTERFACE par1, par2

• Setting of the interface-specific parameter

0x10	par1	high	low
		(par1)	(par1)

Length of the command: 4 byte

Return: 1 byte
Error code

Error code: [0] ok

The modified parameters of the configuration interface can be determined with the INTERFACE command.

The meaning of parameter par1 and par2 depends on the used configuration interface (standard RS232C).

Configuration interface RS232C

The camera permits the determination of a user-specific interface configuration each for the plain text and the HEX configuration (rate of transmission, number of stop and start bits, parity bits). By setting the configuration switch (setting 13 for plain text configuration, setting 14 for HEX configuration) on the camera back and pressing the RESET button afterwards, the setting selected is taken over.

The user-specific interface configuration can be undone by shifting the configuration switch to setting 0...12 at any time.

Meaning of the Parameter:

par1 =0: Setting of interface parameter for plain text configuration

=1: Setting of interface parameter for HEX configuration

par2: Interface parameter word

Structure:

The Baud rate \boldsymbol{B} results from parametern \boldsymbol{n} and \boldsymbol{N} as follows:

$$N = \frac{\Phi}{2^{(2n+5)} \cdot B} - 1 \qquad B = \frac{\Phi}{2^{(2n+5)} \cdot (N+1)} \qquad \Phi = 8 \cdot 10^6 \, Hz$$

Error *E* of the Baud fate in %:

$$E = \left(\frac{\Phi}{(N+1) \cdot B \cdot 2^{(2n+5)}} - 1\right) \cdot 100\% \qquad \Phi = 8 \cdot 10^6 \, Hz$$

Example:

Baud rate [Bd]	n	N	Error [%]
110	2	141	0,03
150	2	103	0,16
300	1	207	0,16
600	1	103	0,16
1200	0	207	0,16
2400	0	103	0,16
4800	0	51	0,16
9600	0	25	0,16
19200	0	12	0,16
31250	0	7	0

Interface parameter for plain text configuration: 4800Bd, 2 stop bits, parity EVEN:

INTERFACE 0, 0x2833 INTERFACE 0, 10291

Setting of a user-specific transmission rate:

- 1. Obeying the INTERFACE command in plain text or HEX mode
- 2. Setting of the configuration switch (setting 13: plain text mode, setting 14: HEX mode)
- 3. Pressing the RESET button or restarting the camera by switching off and on the power supply.

Notes: In HEX mode and when transmitting datas with the XMODEM control protocol in plain text mode, always 8 data bits need to be transmitted.

TAB table

• Setting of a correction table

0x11	table

Length of the command: 2 byte

Return: 1 byte Error code

The TAB command selects a correction table. The following assignment is valid:

TAB			
0	Correction table 0 from FLASH-ROM		
1	Correction table 1 from FLASH-ROM		
2	Correction table 2 from FLASH-ROM		
3	Correction table 3 from FLASH-ROM		
4	Not corrected frame		
5	Test pattern for GAIN and OFFSET		
6	Correction table 0 from FLASH-ROM		
7	Correction table 1 from FLASH-ROM	Additional inlaying of the	
8	Correction table 2 from FLASH-ROM	main setting datas	
9	Correction table 3 from FLASH-ROM	• X direction: GAIN	
10	Not corrected frame	• Y direction: OFFSET	
11	Test pattern for GAIN and OFFSET		
12	Correction table 0 from FLASH-ROM		
13	Correction table 1 from FLASH-ROM		
14	Correction table 2 from FLASH-ROM		
15	Correction table 3 from FLASH-ROM		
16	Not corrected frame		
17	Test pattern for GAIN and OFFSET		Additional inlaying of the
18	Correction table 0 from FLASH-ROM		frame size
19	Correction table 1 from FLASH-ROM	Additional inlaying of the main	
20	Correction table 2 from FLASH-ROM	setting datas	
21	Correction table 3 from FLASH-ROM	• X direction: GAIN	
22	Not corrected frame	• Y direction: OFFSET	
23	Test pattern for GAIN and OFFSET		

HIGH parameter

(privileged command, see \$ command)

• Definition of the BRIGHT reference (see CAL command)

0x12	high	low
	(parameter)	(parameter)

Length of the command: 3 byte

Return: 1 byte Error code

LOW parameter

(privileged command, see \$ command)

• Definition of the DARK refernce (see CAL command)

0x13	high	low	
	(parameter)	(parameter)	

Length of the command: 3 byte

Return: 1 byte
Error code

• Calibration of the camera

0x14	table	parameter
		1

Length of the command: 3 byte

table: No. of the correction table in FLASH-ROM (aim for calibration datas, 0...3)

parameter: 0: rough correction only, correction table is described as mean value

1: OFFSET fine correction2: GAIN fine correction

3: GAIN and OFFSET fine correction

Return: 1 byte Error code

The CAL command serves the automatic trimming of the camera on a calibrated light generator. At the same time the camera parameter are varied this way that a defined luminance results in a certain absolute value and a luminance jump leads to a defined value difference on the exit.

The numerical values for the high and low luminance are reconcilled with HIGH or LOW. The following connection exists between luminance and numerical value.

$$\frac{L}{L_0} = 683 \frac{1}{t \cdot p} \cdot \left(\frac{k}{k_0}\right)^2 \cdot 2^{\left(\frac{Z}{32} - 16\right)}$$

Z = numerical value(10bit)

L: luminance of the light generator in cd/m^2 $L_0=4cd/m^2$

k: aperture of the lens

t: Transmission degree of the lens (approx. 0,8)

 $k_0 = 1$

The setting of different luminances is required by the blinking of the camera LED:

yellow-red: high luminance yellow-green: low luminance

yellow: calibration is in progress

The change of luminance has to be acknowledged by pressing the button on the camera back (button next to RESET). The use of an automatically controlled light generator is described in chapter "Operation with automatic light generator".

WR adr, date

(privileged command, see \$ command)

• Description of the internal EEPROMS

0x15	adr	date
07112	a a a	aate

Length of the command: 3 byte

Return: 1 byte
Error code

Error code: [0] ok

adr: EEPROM address (0...127)

date: 0...255

Attention: This command serves test patterns only! An overwriting of the internal proof totals by accident results in an initialization of the camera connected with losing all calibration data.

TRIG par

• Switching on of the external frame trigger

Length of the command: 2 byte

Return: 1 byte
Error code

Error code: [0] ok

par =0: External frame trigger OFF

The readout of the sensor is continuously done

par =1: External frame trigger ON

With a rising edge on the FRAME_TRIG input one frame is read out. Afterwards the camera

remains in waiting state.

Configuration:

ADC channel

(privileged command, see \$ command)

• Enquiring the internal AD converter for test purposes

0x17 channel

Length of the command: 2 byte

Return: 4 byte

0x17	high	low	Error
	(adc_parameter)	(adc_parameter)	code

Error code: [0] ok

adc_parameter: value of voltage in mV

// (Comment)

Marking of an command line as comment

0x18

Length of the command: 1 byte

Return: 1 byte
Error code

Error code: [0] ok

The "//" command marks a command line as comment and improves the overall view of configuration files in connection with the TERMINAL menu point "Send text file". The camera settings are not changed during the obeying process.

The application is only useful in plain text mode.

Example:

Text file INO_VIS.TXT for configuring the camera for a connection to an INO-VISION framegrabber, created with WRITE (Windows) or EDIT (DOS):

```
// INO-Vision configuration, 8MHz
// LINE-, FRAME-Enable LOW active
len 16,1
fen 0,1
camclk 8,0
```

GAIN gain_difference

• Setting of a gain difference

0x19	gain_difference
------	-----------------

Length of the command: 2 byte

Return: 1 byte
Error code

Error code: [0] ok

[253] illegal parameter

gain_difference: parameter for gain difference, range 0...45

The "GAIN" command permits to increase the gain of the video amplifier. At the same time a constant difference to the value of the DAC register which is determined when calibrating the camera is laid down. This results in a constant rise of the gain independent of the calibration results. The set gain difference is considered as independent of the correction table set.

The connection of the parameter "gain_differenz" DZ and the rise of the gain results from the following equation:

$$\Delta V = \Delta Z \cdot 0.136 dB$$

Example:

ΔZ	15	22	29	37	44
ΔV in dB	≈2	≈3	≈4	≈5	≈6

OFFSET offset

• Setting of the brightness offset

0x1A	offset

Length of the command: 2 bytes

Return: 1 byte
Error code

Error code: [0] ok

[253] illegal parameter

offset: parameter of the brightness offset, range 0...50

The "Offset" command permits a change of the frame brightness independent of the DAC offset parameter determined when trimming the camera. Consequently, the ascertainable brightness range can be determined in connection with a gain rise by the gain command. A higher value for "offset" results in a darker frame. The set offset parameter is valid for all correction tables.

STAT table

(privileged command, see \$ command)

(\times : value is not changed \Leftrightarrow : value is changed according to parameter 0: value = 0 etc.) - page 62 -

• Enquiring statistical parameter of the correction table "table" for control purposes

0x1B table

Lenght of the command: 2 byte

Return: 32 byte

0x1B Byte 2 ... Byte 31 fehler-code

Error code: [0] ok

[253] unvalid parameter

table: correction table 0...3

With the STAT command it is possible to make a statement about the statistical distribution of the corresponding correction files. Byte 2...31 contain the following information:

Ву	rte#	Meaning					
High	Low						
2	3	Sensor data	Bit 0,1: selected parameter of the	Bit 215: Difference			
			"CAL" command	INSTANTANEOUS-DESIRED			
			0: rough cal. 1: OFFSET	value of the mean brightness			
			2: GAIN 3: GAIN+OFFSET	figures after the calibration			
			(complement on two)				
4	5		Standard drift (68% interval), sense	or roughly corrected			
6	7		99% interval, sensor roughly corrected				
8	9		Standard drift (68% interval), sensor fine corrected				
10	11		99% interval, sensor fine corrected				
12	13	Offset-correction	Mean value instantaneous value (desired value: 512)				
14	15	file	68% interval (standard drift), =0 when correction file is empty				
16	17		99% interval				
18	19		90% interval				
20	21		50% interval				
22	23	Gain-correction	Mean value instantaneous value (desired value: 32)				
24	25	file	68% interval (standard drift)				
26	27	1	99% interval				
28	29	1	90% interval				
30	31		50% interval				

4.3 Commands for transmitting bigger data quantities

The internal software of the $LOGLUX^{\hat{O}}$ camera permits a transmission of bigger data quantities with the XMODEM control protocol. The protocol provides an error control of the data transmitted. The command for the XMODEM data transmission

- 1. LOAD par1, par2
- 2. SAVE pars

are available for certain camera setting only. As the XMODEM transmission relies on 8 transmitted data bits, the following settings need to be adjusted:

- 1. configuration in plain text mode
- 2. quantity of transmitted data bits of the RS232 interface: 8bit

LOAD par1, par2

- Transmitting a file from control computer to camera
- par1: Determination of the contents of the file which is to transmit
 - **0:** correction table 0
 - 1: correction table 1
 - 2: correction table 2
 - **3:** correction table 3
- par2: Determination of the control protocol
 - **0:** Requirements XMODEM control protocol
 - 1: Requirements XMODEM/CRC control protocol

4.3.1 Sending of files in XMODEM format with the WIN3.1x -, WIN 95- TERMINAL (VT100 emulation)

Windows 3.1x-Terminal:

- 1. Menu "setting" (only when configuring the terminal for the first time)
 - 1.1 Menu "binary transmission"
 - Activate XMODEM/CRC
 - 1.2 Menu "modem commands"
 - Activate NONE
- 2. Input camera command "LOAD par, 1→"
- 3. Wait for "LOGLUX ready for receiving a binary file..."
- 4. Menu "transmission"
 - 4.1 Menu "SEND BINARY FILE"
 - 4.2 Select file
 - 4.3 OK

Windows 95 - HyperTerminal:

- 1. Send camera command ,,LOAD par1,par2↓"
- 2. Wait for "LOGLUX ready for receiving a binary file..."
- 3. Menu "transmission"
 - 3.1 Menu "SEND FILE"
 - 3.2 Select file
 - 3.3 Activate **Xmodem**
 - 3.4 OK

Should any problems arise when transmitting datas (transmission does not start), select menu "FILE \rightarrow PREDICATES \rightarrow SELECTION NUMBER \rightarrow CONFIGURATION \rightarrow PROTOCOL" "NONE".

SAVE par

• Transmitting a file from camera to control computer

par: Determining the contents of the file which is to transmit

par		File			
0	Bin	ary file: correction table 0			
1	Binary file: correction table 1				
2	Binary file: correction table 2				
3	Binary file: correction table 3				
4	Windows *.BMP file	Bit 29 of the recorded 10bit frame			
5	Palett: gray scales	Restricted value range 1 (see below)			
6		Restricted value range 2 (see below)			
7	Windows *.BMP file	Bit 29 of the recorded 10bit frame			
8	Palett: gray scales	Restricted value range 1 (see below)			
9	Marking overshoot of range Restricted value range 2 (see below)				
10	Bin	ary file: single frame 10bit			
11	Text file*.TXT	Set camera parameter			
12	ASCII code	Calibration statistics			
13		Set camera parameter, configuration statistics			
14		Calibration statistics for EXCEL table			
15		10bit single frame histogramm for EXCEL			
16		Histogramm offset correction table 0 for EXCEL			
17		Histogramm gain correction table 0 for EXCEL			
18		Histogramm offset correction table 1 for EXCEL			
19		Histogramm gain correction table 1 for EXCEL			
20		Histogramm offset correction table 2 for EXCEL			
21		Histogramm gain correction table 2 for EXCEL			
22		Histogramm offset correction table 3 for EXCEL			
23		Histogramm gain correction table 3 for EXCEL			

Calculation of the restricted value range:

Processing steps:

- 1. Calculation of the mean frame brightness *M*
- 2. Subtraction of the mean frame brightness from all 10bit pixel values P(x,y) (complement on two)
- 3. Assigning the difference D(x,y)=P(x,y)-M according to the following scheme:

Range 1: if
$$D(x,y) < -256$$

then $D(x,y) = -256$
if $D(x,y) > 255$
then $D(x,y) = 255$
gray $scale(x,y) = D(x,y)/2 + 128$
range 2: if $D(x,y) < -128$
then $D(x,y) = -128$
if $D(x,y) > 127$
then $D(x,y) = 127$
gray $scale(x,y) = D(x,y) + 128$

4.3.2 Receiving of files in XMODEM format with the WIN3.1x -, WIN 95-TERMINAL (VT100 emulation)

Windows 3.1x-Terminal:

- 1. Menu "settings" (only when configuring the terminal for the first time)
 - 1.1 Menu "Binary transmission"
 - Activate XMODEM/CRC
 - 1.2 Menu "Modem commands"
 - Activate **NONE**
 - 2. Input camera command "SAVE par→"
 - 3. Wait for "LOGLUX ready for sending a binary file..."
 - 4. Menu "Transmission"
 - 4.1 Menu "BINARY FILE RECEIVED"
 - 4.2 Select file
 - 4.3 OK

Windows 95 - HyperTerminal:

- 1. Send camera command "LOAD parl,par2 بـ "
- 2. Wait for "LOGLUX ready for sending a binary file..."
- 3. Menu "Transmission"
 - 3.1 Menu "Send file"
 - 3.2 Select file which is to receive
 - 3.3 activate **Xmodem**
 - 3.4 OK

Should any problems arise when transmitting datas (transmission does not start), select menu "FILE →PREDICATES →SELECTION NUMBER →CONFIGURATION →PROTOCOLL" "NONE".

4.3.3 Structure of the correction file

One correction file is sent by the camera when obeying the command SAVE 0...3 and has the following structure:

Lenght of file, total: 262170 bytes Consisting of: file head: 26 bytes

correction data 262144 bytes (0,25 MB)

Structure of the data head:

Ву	yte	Description				
0	7	Character string: "LOGLUX"				
8	3	Device code: =0				
Ģ)	Software version:	year			
1	0		month			
1	1		day			
1	2	Calibration values	GAIN, reg. 0			
1	3	DAC register	OFFSET, reg. 1			
1	4		ADCREF, reg. 2			
1	5		VRESET, reg. 3			
16	17	Statistical data,	Drift of desired			
		Sensor calibration	value			
18	19		68% interv., uncorr.			
20 21			99% interv., uncorr.			
22	23		68% interv., corr.			
24	25		99% interv., corr.			

Structure of correction data block:

Byte		Structure 16bit word	Correction data: pixel coordinate		
HIGH	LOW			X	Y
0	1	Bit 09: OFFSET		0	0
		Bit 1015: GAIN		•••	•••
510	511		Left sensor half	0	255
512	513		Left sensor nam	1	0
					•••
131070	131071			255	255
131072	131073			256	0
					•••
131582	131583		Right sensor half	511	0
131584	131585		Right sensor han	256	1
					•••
262142	262143			511	255

Please note: The coordinate origin is located in the upper left-hand corner of the sensor (NW corner).

[0,0]	 [255,0]	[256,0]	 [511,255]
[0,255]	 [255,255]	[256,255]	 [511,255]

4.3.4 Structure of a 10bit frame file

Beginning with the coordinate [0,0] pixel values are ascendingly saved as 16bit words in a 10bit frame file. Bit 10...15 is set =0. This results in file size of 0,25Mbyte = 256kByte. The higher-quality byte of the 16bit word is located on a lower address:

Address n	Address (n+1)
HIGH-Byte	LOW-Byte

Structure of the 10bit frame file:

[0,0]		[255,0]	[256,0]		[511,255]
0x00000		0x001FE	0x00200		0x003FE
[0,255]	•••	[255,255]	[256,255]	•••	[511,255]
0x3FC00		0x3FDFE	0x3FE00		0x3FFFE

4.3.5 Structure of a text file for infixing a MS-EXCEL table

The text files which are to infix in Microsoft EXCEL have the following characteristics:

- 1. Characters of the ASCII code are transmitted only (<0x80)
- 2. **Data columns** are seperated by **commas**.
- 3. **Data rows** are separated by \mathbf{CR} (0x0D) \mathbf{LF} (0x0A).
- 4. **Numbers** are given in decimal style.
- 5. Character strings are marked by quotation marks (").

Example: A text file with the following contents (part) is interpreted by MS-EXCEL as shown below:

Text file *.txt

"LOGLUX histogramm(GAIN)",0,0
,1,0
, 2 , 0
, 3 , 0
, 4 , 0
,5,0
,6,0
•••

EXCEL table *.xls

LOGLUX histogramm(GAIN)	0	0
	1	0
	2	0
	3	0
	4	0
	5	0
	6	0

4.3.6 Description of the XMODEM control protocol

4.3.6.1 General features

The XMODEM control protocol permits a transmission of bigger data quantities over a serial interface. The transmission is carried out in 128byte blocks. Should a transmission error arise, the uncorrect block is transmitted once more. A further development of the XMODEM control protocol is the XMODEM/CRC control protocol. It is more fault-tolerant because of the use of a CRC checksum (CRC: Cyclical Redundancy Check). A transmission with the XMODEM control protocol requires the possibility to transmit 8 data bits. This must be done without a control with the XON/XOFF control protocol.

In principel every data block is structured as follows:

ASCII characters				checksum
SOH	Block number	(255-Block no.)	128 Data bytes	XMODEM: 1byte
0x01				XMODEM/CRC: 2byte

XMODEM and XMODEM/CRC data blocks differ from each other only in their structure of the checksum.

4.3.6.2 XMODEM control protocol

Data transmission with the XMODEM control protocol

Data sender	Data receiver
	1. Receiver signals standby with sending the ASCII character NAK (0x15)
2. (Cancel of the data transmission by sending the	
ASCII character CAN (0x18), then immediate stop	
of transmission)	
3. Sending of a data block (132 byte)	
	4. (Cancel of the data transmission by sending the
	ASCII character CAN (0x18), then immediate stop
	of transmission)
	5. Controlling the checksum
	6. Sending the ASCII character ACK (0x06) when
	the data transmission is ok, otherwise NAK (0x15)
7. (Cancel of the data transmission by sending the	
ASCII character CAN (0x18), then immediate stop	
of transmission)	
8. When receiving NAK the data block is sent once	
more, otherwise sent next data block	
9. Repeat steps 48 until a	all data blocks are transmitted
10. Send the ASCII character EOT (0x04) for stoping	
the data transmission	
	11. Sending the ASCII character NAK (0x15)
12. Sending the ASCII character EOT (0x04)	
	13. Sending the ASCII character ACK (0x06)
14. Transmi	ssion finished

Calculation of the checksum for the XMODEM control protocol (1byte):

checksum = (Sum over all 128 data bytes) & 255

4.3.6.3 XMODEM/CRC control protocol

Data transmission with the XMODEM/CRC control protocol

	Data sender		Data receiver
		1.	Receiver signals standby with sending the ASCII character ,,C" (0x43)
2.	(Cancel of the data transmission by sending the		
	ASCII character CAN (0x18), then immediate stop		
_	of transmission)		
3.	Sending a data block (133 bytes)		
		4.	(Cancel of the data transmission by sending the
			ASCII character CAN (0x18), then immediate stop of transmission)
		5.	Controlling the checksum
		6.	Send the ASCII character ACK (0x06) when the
			data transmission is ok, otherwise NAK (0x15)
7.	(Cancel of the data transmission by sending the		
	ASCII character CAN (0x18), then immediate stop		
	of transmission)		
8.	After receiving NAK, send the data block once		
	more, otherwise send next data block		
	9. Repeat steps 48 until a	ıll da	ata blocks are transmitted
10.	Sending the ASCII character EOT (0x04) for		
	stopping the data transmission		
		11.	Sending the ASCII character NAK (0x15)
12.	Sending the ASCII character EOT (0x04)		
		13.	Sending the ASCII character ACK (0x06)
	14. Transmiss	sion	is finished

Calculation of the checksum for the XMODEM/CRC control protocol (2byte), 1 Data block:

```
crc = 0
FOR z=0 TO 127
crc = (crc*256) xor (crctabelle[(crc/256) xor data byte[z]])
```

The Array ,crctabelle[...]" is a constant. Its contents can be calculated when following these instructions:

FOR
$$i=0$$
 TO 255
 $a = 0$
 $k=i*256$

FOR $j=0$ TO 7
IF $(((k \ xor \ a) \ and \ 0x8000) <>0)$
 $a = (a*2) \ xor \ 4129$

ELSE
 $a = (a*2)$
 $k = k*2$
 $crctabelle[i] = a$

The checksum is transmitted in the order HIGH byte, LOW byte.

4.4 Operation with automatic light generator

The control software of the $LOGLUX^{\hat{O}}$ camera permits the attachment of an automatic light generator to the camera-internal I^2C bus. A 5-pole JST plug (CON6) which is on the circuit 6000 1 0400 (H8 board) from index C on is proveded for this and has the following load:

PIN no.	load
1	SCL (clock I ² C bus)
2	SDA (data signal I ² C bus)
3	GND
4	free
5	DV3,3

The initialization routine looks on the I^2C bus for connected subscriber with the addresses 0x40, 0x42, 0x44, 0x70, 0x72 and 0x74. If a subscriber is found in one of these addresses, the following message appears in plain text mode:

Light generator addr.: address

The calibration routine (command CAL) takes on an 8bit port on this address. Consequently, the use of the *Philips* I²C port *PCF8574* or *PCF8574A* is possible.

The single bits of the IO port are described, selected or enquired as shown below:

Bit no.	Input/output	Meaning
0	Output	Aperture motor reverse action, LOW active
1	Output	Aperture motor right action, LOW active
2	Input	End position switch 1, LOW active (=LOW: end position 1 detected)
3	Input	End position switch 2, LOW active (=LOW: end position 2 detected)
4	Output	"BRIGHT", LOW active
5	Output	"DARK", LOW active
6	Output	"CALIBRATIO IS RUNNING", LOW acktive
7	Output	"CALIBRATION IS FINISHED", LOW active

According to the ascertained I^2C address the signals "reverse/right action" are selected in different ways and the signals "end position 1/-2" are interpreted in different ways.

I ² C address		Selecting scheme		
PCF8574	PCF8574A	End position switch 1,2	Aperture motor outputs	
0x40	0x70		"BRIGHT": reverse action =LOW	
		End position switch 1 =LOW: "BRIGHT"	"DARK": right action =LOW	
0x42	0x72	End position switch 2 =LOW: "DARK"	"BRIGHT" / "DARK":	
			reverse action =LOW	
0x44	0x74	End position switch 1 =LOW: "BRIGHT"	right action: without meaning	
		End position switch 1 =HIGH: "DARK"		

When the camera trimming is finished, bit 7 ("CALIBRATION FINISHED") is activated for approx. 1s (acoustic signal).

A determination of bit 1,2 of the I²C address can be carried out over a DIP switch.

5 Glossary

<i>\$</i>	D	
\$ command	DAC command	40
	Data interfaceSee frame data interface	
/	Data sorting See frame data sorting	
// command61	Dark - determine reference	
	delay bit2	
\boldsymbol{A}	Description of commands	
ADC command61	Dual-Port-RAM2	
adcclk - bit25	Dual channel mode	
ADCREF register40		
ADC converting area9	\boldsymbol{E}	
Aperture <i>f</i> 7	Echo	33
ASCII control29	EEPROM, Data assignment	
ASCII control33	EEPROM command	
Assessment of the range11	ESCAPE sequences	
В	$oldsymbol{F}$	
	-	2.5
BACKUP	Error codes, table	
Baud rate	FEN	
BINARY code17	fen bits	
Binary logarithm5	FEN register	
BRIGHT - determine reference58	FEN command	
Brightness E8	feniny bit	
Brightness conditions11	Fixed Pattern Noise	
Brightness sensitivity, physiological8	Correction of the	
\boldsymbol{C}	f-number	
	FPN See Fixed Pattern Noi	
CAL command59	Frame data interface	
Calibration of camera6	Pin load	
starting59	Feeder cable	
Calibration equation9	Frame file 10bit, structure	
Description10	Frame data sorting	
logarithmic form9	FRAME_POS command	
CAMCLK14	FRAME_SIZE command	
CAMCLK command51	FRAMETRIG	
Cascade transformer24	Function keys	33
chaniny bit25	$\it G$	
Characteristic impedance13	O .	
clkinv bit25	GAIN command	52
clkoff bit25	GAIN register	40
collm bit17	Gray scale	11
colrm bit17	Gray bit	
Column address counter19	HDRC	17
column left mirrorSee collm	VSG2	23
column right mirror	Gray code	17
Command, structure34	·	
Comment command61	H	
Common Mode VoltageSee offset voltage	HDRC command	42
Configuration of the camera29	HDRC4 sensor	
Configuration bus	Description of functions	17
Configuration interface	HEX control	
Configuration switch	HIGH command	
Correction file, structure	Histogramm for MS-EXCEL	
Correction table	Thoogramm for this Excels	,,
determine	I	
Correction table	I ² C bus	71
27		/ 1 55
	ON LEANING AS A COMMINATION	

RS232C55	RESET command	
Irradiance E_e 6, 8	ROT command	
7	Row address counter	
L	row left mirror	vlm
LED, signal31	row right mirrorSee row	vrm
left right mirror	rowlm bit	
LEN14	rowrm bit	
len bits24	RS232C	. 29
LEN register24	PIN load	. 30
LEN command49	RS42213	, 31
leniny bit25	PIN load	
Light generator, automatic71		
LOAD command64	\boldsymbol{S}	
lof bit	sa bit	. 23
Low Voltage Differential Signaling See LVDS	SAVE command	
LOW command	Sensor brighness E_S	
lrm bit	Set of commands, Release of extendedSee \$,
Luminance	command	
LVDS	Examples	
L V DO13	Sequence of commands	36
M	Brightness	
Marking byta	CAMCLK, LEN, FEN signal	
Marking byte	Pixel addressing	
MIR command	Reflexion factor	
mirror bit	Transmission rate, user-defined	
mode bits	Single channel mode	
	Standard subject, photographic	
MODE register	STAT command	
	step bit	
Mode 2	Subject brightness E_{OB}	
MODE command	Subject originaless L_{OB}	
MUX command	Subject infilliance L_{OB}	, 11
MUA command41	T	
0	TAB command	57
Octove clain 5	Terminator	
Octavo skip		
OFFSET register	Transmissions level t	
	Transmission rateuser-defined	
Offset voltage		
P	trig bitTRIG command	. 23 60
Donitor 22		
Parity 32	Trigger, external	. 00
Pipeline-ADC	$oldsymbol{U}$	
PIPELINE-DELAY register	INIDO	22
Plain text control	UNDO	. 33
Power densitiy, spectral8	V	
prediv bits		
PREDIV register	V(λ)	
Protocol, RTS/CTS29	Variable Scan Generator Siehe V	
pxlclk bit25	VERSION command	. 39
Q	VSG	
	Description of functions	
Quantities	VSG command	
light-technical8	VT100 terminal	. 29
radiation-physical8	W	
R		
	Working area of the camera	6
Radiation density L_e 8	WR command	
Radiation equivalent, photometric8	V	
Radiation-physical, determinations6	X	
Readout, converging	x_base register	. 20
Readout, divergent	x_offset register	
Reflexion, diffuse7	XMODEM protocol	
Perflavion factor r 7 11	•	

Description69	y_offset register
Receiving of files66	j_onset register
Sending of files64	Z
Y	Zero modem cable
y_base register20	

6 Appendix

6.1 Table: Plug load

6.1.1 Power supply

Frame data Interface	V_{CC}	I_B	Plug
LVDS	5,56,2 V	450mA	Binder
RS422		700mA	09-0407-00-03
LWL		650mA	Thomas & Betts T01-0560-P03

6.1.2 RS232/RS422 Configuration interface

9-pole D-Sub, plug

Pin no.	RS232	RS422 (optinal)	
1	With 4,6 connected		
2	RxD	RxD+	
3	TxD	TxD+	
4	With 1,6 c	onnected	
5	GND		
6	With 4,1 connected		
7	/RTS	RxD-	
8	/CTS	TxD-	
9	fre	ei	

6.1.3 RS422/LVDS Frame data interface

1	D0.	16	D0-	21	CDA
	D0+			31	SDA
2	D1+	17	D1-	32	SCL
3	D2+	18	D2-	33	GND
4	D3+	19	D3-	34	GND
5	D4+	20	D4-	35	GND
6	D5+	21	D5-	36	GND
7	D6+	22	D6-	37	frei
8	D7+	23	D7-	38	frei
9	D8+	24	D8-	39	frei
10	D9+	25	D9-	40	frei
11	LEN+	26	LEN-	41	3,3V
12	FEN+	27	FEN-	42	3,3V
13	CAMCLK+	28	CAMCLK-	43	5V
14	OTR+	29	OTR-	44	5V
15	FRAMETR+	30	FRAMETR-		

6.2 Table: Lenses for *LOGLUX*^Ò

Designation	Focal length f' [mm]	Aperture range	Camera connection	Pict. angle (2 σ ')	Recording range	Distance setting
LOGLAR T 2/13	13,2	2 (fixed)	over 0 plate (M16 x 0,5)	49°	∞ 2m ("Fixed focus")	On customer's demand Fixed settings up to approx. 0,2m possible
DOCTAR 5/13,5	13,51	5 (fixed)	C-Mount plate (1" x 32 TPI)	48°	∞ 0,2m	Over lens connection thread
LOGLAR T 2,8/16	16,3	2,8 (fixed)	over 0 plate (M16 x 0,5)	41°	∞ 2,3m ("Fixed focus")	On customer's demand Fixed settings up to approx. 0,3m possible
LOGLAR T 4/16	16,3	4 (fixed)	over 0 plate (M16 x 0,5)	41°	∞ 1,6m ("Fixed focus")	On customer's demand Fixed settings up to approx. 0,3m possible
LOGLAR T 8/16	16,3	8 (fixed)	over 0 plate (M16 x 0,5)	41°	∞ 0,8m ("Fixed focus")	On customer's demand Fixed settings up to approx. 0,3m possible
TEVIDON 1,4/25	25,4	1,4 16	C-Mount plate (1" x 32 TPI)	27°	∞ 0,3m	over lens setting ring
ROTAR T 4,5/29	29,85	4,5 16	C-Mount plate (1" x 32 TPI)	23°	∞ 0,3m	Continuously up to approx. 5mm Lens extension over mount
Tessar T 3,5/37,5	37,5	3,5 (fixed)	C-Mount plate (1" x 32 TPI)	19°	∞ 0,2m	Continuously up to approx. 12mm Lens extension over mount
MAKRO-TV 4/45	45,3	4 (fixed)	C-Mount plate (1" x 32 TPI)	Up to 10°	79 124mm Operation distance	over lens setting ring for macro range 1:1 to 1:2
ROTAR T 4,5/50 S	50,75	4,5 22	C-Mount plate (1" x 32 TPI)	14°	∞ 0,4m	Continuously up to approx. 10mm Lens extension over mount
Tessar T 3,5/50	51,43	3,5 (fixed)	C-Mount plate (1" x 32 TPI)	14°	∞ 0,3m	Continouosly up to approx. 14mm Lens extension over mount
Tessar T 3,5/70	70,3	3,5 (fixed)	C-Mount plate (1" x 32 TPI)	10°	∞ 0,65m	Continuously up to approx. 10mm Lens extension over mount
ROTAR T 6,5/75	73,5	6,5 22	C-Mount plate (1" x 32 TPI)	10°	∞ 0,3m	Continuously up to approx. 11mm Lens extension over mount
TEVIDON 2,8/100	96,5	2,8 16	C-Mount plate (1" x 32 TPI)	8°	∞ 1,5m	over lens setting ring
LOGLAR 19/320 makro	317,3	19 (fixed)	C-Mount plate (1" x 32 TPI)	bis 2°	0,6 3m or ∞ operation distance	Over adaptor for macro range 1:1 to 1:6 as well as for ∞

6.3 Optical supplementary components

6.3.1 Stereo attachment

Designation	Stereoscopic basis	stereoscopic distance range		
Designation	Stereoscopic basis	Close point width	Far point width	
Stereo attachment, small	12mm	0,5m	2,3m	
Stereo attachment, big	60mm	3,0m	∞	

6.3.2 Other

Designation	Description		
C-Mount lens plate	For using C-Mount lenses		
Microscope adaptor, mono	Suitable for Zeiss Jena microscopes with mf-adjustment		
Microscope adaptor, stereo	Suitable for Zeiss Jena microscopes with mi-adjustment		
Microscope tubus	For microscope lenses according to DIN 58887 in standard connection		
	thread		

6.4 Accessories

6.4.1 Mechanic accessories

Designation	Description
Fastening block	
Tripod attachment	Tripod thread A 1/4" and A 3/8" according to DIN 4503/1
Notch	Thread ØM5

6.4.2 Accessories for the frame data collection, power supply and camera control

Designation	Description
PCI-Frame Grabber INOCAP INO VISION	Digital framegrabber, PCI bus
PCI-Frame Grabber HC-32 PCI HaSoTec	Digital framegrabbet, I CI bus
Frame data cable	Feeder cable, framegrabber camera for LVDS or RS422-frame data interface
Zero modem cable	Feeder cable, camera configuration interface – COM port PC
Power supply cable	Power supply plug 3-pole, conducter end bushings
Power supply	6V/1A, power supply plug 3-pole

6.5 Outlines: lenses and accessories

- 1. LOGLAR 19/320
- 2. Microscope tubus
- 3. Microscope adaptor, mono
- 4. Microscope adaptor, stereo
- 5. Stereo adaptor, small
- 6. Stereo adaptor, big
- 7. Fastening block