AI+DATA, CXL Memory and Memory Centric Computing

Harry Juhyun Kim

CPO and Co-founder

AI+DATA WORLFLOWS

AI/ML IS THE BIGGEST CONSUMER OF DATA TODAY
THE LARGEST TABLES AND LAKEHOUSES ARE BUILT FOR AI

Data Preparation

- Preparing tables
- Embeddings, long sequences of features
- Batch ETL pipelines similar to traditional data transformation
- But extremely inefficient
- Need to understand characteristic of "feature engineering"

Data Loading

- Feeding GPUs
- Latency sensitive
- Order sensitive (Training)→ random/chronological/...
- New challenges for data processing

WHAT AI DATA LOOKS LIKE

Features are frequently added and removed in a wide column with nested schema. Transformation, feature engineering, storage and retrieval are all challenging.

CHALLENGES IN DATA ANALYTICS

MEMORY INEFFICIENCIES AND DIMINISHING RETURNS IN SCALING CALL FOR A NEW MEMORY SOLUTION

PROBLEM

DATA IS RAPIDLY
INCREASING,
WHILE
MEMORY TECHNOLOGY
STRUGGLES TO KEEP UP

XCENA AIMS TO BREAK THE MEMORY WALL PROBLEM

MEMORY WALL: ONE OF THE BIGGEST HEADACHES OF DATA CENTERS

- SIZE: CHALLENGING TO KEEP UP WITH THE RAPID DATA INCREASE
- PERFORMANCE: DATA MOVEMENT IS THE BIGGEST BOTTLENECK
- COST: MEMORY IS REALLY EXPENSIVE (HALF OF THE SERVER COSTS)
- UTILIZATION: MEMORY UTILIZATION IS VERY LOW (OVER-PROVISIONED)

SOLUTION?

WHAT IF A SINGLE DENSE MEMORY AND COMPUTE NODE COULD REPLACE A CLUSTER OF 10?

Dense Memory and Compute Node

Cluster of Nodes

DATA PROCESSING QUADRANT

Low

EMBARRESSINGLY PARALLEL, LOW COMPUTE INTENSITY, MEMORY BOUNDED

Disaggregation, Computational Memory

DDR CXL MEMORY

Big Data Processing

Vector Databases For Gen Al

DNA Analysis **Computational Intensity Per Memory Access**

[Large-scale Data Analytics]

No Interest

Bandwidth/Capacity Expansion

DDR LPDDR

General Computing

Operation Diversity Per Memory Access

Low

High

HBM, Explicit Memory

HBM GDDR

Artificial Intelligence

COMPUTE EXPRESS LINK

THE NEXT GENERATION MEMORY INTERCONNECT PROTOCOL

Built on PCIe that lets you plug in memory as the same way you plug in a GPU card

CXL memory looks like regular DRAM with additional latency due to protocol overhead

Memory pooling and sharing through Switch

CACHE COHERENCE

HETEROGENEOUS COMPUTING

XCENA

XCENA CXL COMPUTATIONAL MEMORY

BEYOND JUST ANOTHER CXL MEMORY EXPANDER

DATA PROCESSING LIBRARY

DATA ANALYTICS ACCELERATION

TCO SAVINGS
SEAMLESS INTEGRATION

COMPUTING HW-SW SOLUTION

NEAR-MEMORY PROCESSING

LESS DATA MOVEMENT LOWER CPU UTIL LOWER POWER BETTER PERFORMANCE

CXL MEMORY

HIGH PERFORMANCE CXL DRAM EXPANSION

INFINITE MEMORY

PB-SCALE MEMORY
WITH SSD EXPANSION

MORE MEMORY
CHEAPER MEMORY

NEAR-MEMORY PROCESSING

More Capacity, Extra Bandwidth, +Latency
Reducing data movement by Near-Memory Processing

1000s RISC-V CORES FOR EFFICIENT DATA PROCESSING

UTILIZATION

XCENA

KEY DIFFERENCES PCIE vs. CXL

CXL MEMORY IS A PART OF HOST SYSTEM MEMORY, WHEREAS PCIE DEVICE MEMORY IS NOT VISIBLE TO THE HOST.

Typical PCIe Based CXL Memory Based Acceleration Acceleration CPU DMA Cache Coherent Copy **CXL** Accet **NMP**

✓ Write (Coherent) **✓** Compute ✓ Read (Coherent) ← Part of Host Memory regardless of Acceleration

✓ Write

✓ Read

✓ Compute

CXL MEMORY + DATA PROCESSING

CXL COMPUTATIONAL MEMORY FOR LARGE-SCALE DATA AVAILABLE SOON

Novel CXL Hardware 1000s of Custom RISC-V Cores DDR5 x 4Ch ~1TB **TFLOPS Vector Engine** CXL 3.0 HDM-DB SSD-backed with Back-invalidation **CXL** Expansion Cache Coherence

Rich Software Framework

XCENA

PARALLEL PROGRAMMING

Parallel Xceleration Library (PXL)

Map API encapsulates all the complexities of device management and provides a FRAMEWORK of thought for developers.

DATA SPECIFIC LIBRARY

Spark SQL query is compiled and planned by Spark, translated into Velox plans by Gluten, and executed by XFLARE on MX1.

```
spark.read.parquet("persons.parquet").createOrReplaceTempView("persons")
2 spark.sql("""
      SELECT *
      FROM
             persons
     ORDER BY age DESC
6 """).show()
                                                                               Offloading control flow
                                                                                                     Arrow
                          XFLARE
                                                                                                  sorted buffer
                          OrderBy
                                                                              ΜU
     Spark
                                         Operator
                                                                                                     Arrow
    Gluten
                                         Scheduler
                                                                                                 column buffer
    Velox
                          XFLARE
                          Parquet
                                                                                                    Parquet
                                                                                                   file buffer
                                                                              ΜU
                               XFLARE
                                                                                                 CXL DRAM
                                                       Host
                                                                         MX1 Device
```


DON'T MOVE DATA, MOVE COMPUTATIONS!

CXL LOAD/STORE

Use CXL memory as just another part of host memory.

PXL API

PXL allows you to manage resources and execute user kernels in parallel.

XFLARE

Common formats (Substrait, Arrow) and high-level APIs simplify query offloading.

XCENA SDK Docs

Q Search XCENA SDK Docs

Introduct CENAigw COMSDK XCENA Software Development Kit (SDK) is a comprehensive software framework designed to

º- xcena.com/SDK

QEMUCXL 3.0 Get Started Tutorials Tutorials Total Computation of XCENS hardware for characteristic applications such as Al, the XCENA SDK allows for seamless integration with CXL computational memory, enabling SDKer&aRuntimes Litibrary

Documentation

Release Notes Example Codes and Tutorials

Seamless integration with computational CXL memory, specialized for data-intensive applications

 Support for emulation and simulation with general tools like QEMU and our proprietary simulators, ensuring smooth development and testing environments

Software Ecosystem

Applications: Main applications running on the host system that leverage XCENA hardware for

THANK YOU

HARRY KIM, CPO

harry.kim@xcena.com

http://xcena.com

https://www.linkedin.com/company/xcena/