تقسیم و غلبه - بخش سوم

Divide and Conquer III

پارادایم تقسیم و غلبه

Divide the problem into a number of subproblems that are smaller instances of the same problem.

Conquer the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.

Combine the solutions to the subproblems into the solution for the original problem.

- Tournament Scheduling
- Convex Hull

پوشش محدب

- Convex hull of a set Q of points, denoted by CH(Q), is $p_i : (x_i, y_i)$
 - the <u>smalles</u>t convex polygon *P*
 - for which each point in Q is
 - either on the boundary of **P** or in its interior.

- There are many algorithms for computing the convex hull:
 - Brute Force: $O(n^3)$
 - Gift Wrapping: $O(n^2)$
 - Quickhull: $O(n\log n) O(n^2)$
 - Divide and Conquer: $O(n \log n)$

Divide and conquer

- \checkmark 1. Divide the n points into two halves.

Sort

index

- 2. Find convex hull of each subset.
 - √ 3. Combine the two hulls into overall convex hull.

Combine

ترکیب پوششهای محدب

- Merging Hulls,
 - "Stitch" two hulls
 - Need to find the <u>tangent</u> joining segments

ترکیب پوششهای محدب

Find a <u>tangent</u> joining segment

Observation:

The edge \overline{ab} is a tangent if the two points about a and the two points about b are on the same side of \overline{ab} .

ترکیب پوششهای محدب

• "Stitch" algorithm

- Find an edge \overline{ab} between A and B that does not intersect the two hulls. $a=\max_{A} \times \sum_{b=\min}^{A} \times \sum_{b=\min$

– While a' and a'' are not to the left of \overline{ab} , rotate a clock-wise.

- While b' and b'' are not to the left of \overline{ab} , rotate b counter-clock-wise.

Repeat

return a,b // "upper joint tangent"

swap the role of "next" and "prev" in above code and replace every +1 with -1, then

Do the same to find "Lower joint tangent"