Методы оптимизации Семинар 2. Матрично - векторное дифференцирование

Лобанов Александр Владимирович

Московский физико-технический институт Факультет инноваций и высоких технологий

lobanov.av@mipt.ru

8 сентября 2022 г.

Что нового?

Ha github появилась таблица успеваемости:

Таблица успеваемости группы: Б05-027

Nº	C							П	осец	цаем	иость						П	Д	/3		K	/P	Текущая оценка
IA	2 Студент		2	3	4	5	6	7	8	9	10	11	12	13	14	15	1	2	3	4	1	2	за курс МО
1	Аджима Никита	+																					10
2	Алексеев Максим	+																					10
3	Белый Антон	н																					10
4	Вандакуров Артем	+																					10
5	Грачев Кирилл	+																					10
6	Егоров Гордей	+																					10
7	Мустафин Артём	н																					10
8	Мухаметгалин Артур	н																					10
9	Русскин Николай	н																					10
10	Рябухин Никита	н																					10
11	Турлыбеков Олжас	+																					10
12	Хоружий Тимофей	+																					10
13	Хрол Ариана	+																					10
14	Челышкин Артём	+																					10
15	Яфаров Владимир	+																					10

Обозначения: «+» – присутствовал на семинаре, «+» — отсутствовал на семинаре, «+» — сдано Д/З

Дата обновления: 6 сентября 2022 г.

Что нового?

Ha github появилась таблица успеваемости:

Таблица успеваемости группы: Б05-027

N₂	Студент							П	осец	цаем	ость							Д	Посещаемость Д/3 К/Р											
14-	Студент	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1	2	3	4	1	2	за курс МО							
1	Аджима Никита	+																					10							
2	Алексеев Максим	+																					10							
3	Белый Антон	н																					10							
4	Вандакуров Артем	+																					10							
5	Грачев Кирилл	+																					10							
6	Егоров Гордей	+																					10							
7	Мустафин Артём	н																					10							
8	Мухаметгалин Артур	н																					10							
9	Русскин Николай	н																					10							
10	Рябухин Никита	н																					10							
11	Турлыбеков Олжас	+																					10							
12	Хоружий Тимофей	+																					10							
13	Хрол Ариана	+																					10							
14	Челышкин Артём	+																					10							
15	Яфаров Владимир	+																					10							

Обозначения: «+» – присутствовал на семинаре, «+» — отсутствовал на семинаре, «+» — сдано Д/З

Дата обновления: 6 сентября 2022 г.

Что нового?

Ha github появилась таблица успеваемости:

Таблица успеваемости группы: Б05-027

								П	20011	1201	10CTI						П	п	/2		Ιĸ	/D	Текущая оценка
Nº	Студент		Посещаемость												Д/3				K/P				
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1	2	3	4	1	2	за курс МО
1	Аджима Никита	+																					10
2	Алексеев Максим	+																					10
3	Белый Антон	н																					10
4	Вандакуров Артем	+																					10
5	Грачев Кирилл	+																					10
6	Егоров Гордей	+																					10
7	Мустафин Артём	н																					10
8	Мухаметгалин Артур	н																					10
9	Русскин Николай	н																					10
10	Рябухин Никита	н																					10
11	Турлыбеков Олжас	+																					10
12	Хоружий Тимофей	+																					10
13	Хрол Ариана	+																					10
14	Челышкин Артём	+																					10
15	Яфаров Владимир	+																					10

Обозначения: «+» – присутствовал на семинаре, «+» — отсутствовал на семинаре, « \oplus » — сдано Д/З

Дата обновления: 6 сентября 2022 г.

Красный столбец означает, что deadline наступил и сдавать Д/З нельзя.

Пусть A — матрица $m \times n$, B — матрица $n \times p$, и пусть произведение AB будет выглядить, как:

$$C = AB$$
,

Пусть A — матрица $m \times n$, B — матрица $n \times p$, и пусть произведение AB будет выглядить, как:

$$C = AB$$
,

тогда C — матрица $m \times p$ с элементом (i,j), заданным следующим образом:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Пусть A — матрица $m \times n$, B — матрица $n \times p$, и пусть произведение AB будет выглядить, как:

$$C = AB$$
,

тогда C — матрица $m \times p$ с элементом (i,j), заданным следующим образом:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Пусть A — матрица $m \times n$, x — вектор $n \times 1$, тогда элемент произведения z = Ax задан следующим образом:

$$z_i = \sum_{k=1}^n a_{ik} x_k.$$

Полезные свойства

$$\bullet$$
 $C = AB$ $C^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$

- $AB \neq BA$
- $e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$
- $e^{A+B} \neq e^A e^B$

Градиент

Пусть $f(x):\mathbb{R}^n \to \mathbb{R}$, тогда вектор, который содержит все частные производные первого порядка:

$$\nabla f(x) = \frac{df}{dx} = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Градиент

Пусть $f(x): \mathbb{R}^n \to \mathbb{R}$, тогда вектор, который содержит все частные производные первого порядка:

$$\nabla f(x) = \frac{df}{dx} = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Гессиан

Пусть $f(x): \mathbb{R}^n \to \mathbb{R}$, тогда матрица, которая содержит все частные производные второго порядка:

$$f''(x) = \frac{\partial^2 f}{\partial x_i \partial x_j} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{pmatrix}$$

Якобиан (Матрица Якоби)

Пусть $f(x):\mathbb{R}^n \to \mathbb{R}^m$, тогда матрица, составленная из частных производных первого порядка этих функций:

$$f'(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Якобиан (Матрица Якоби)

Пусть $f(x): \mathbb{R}^n \to \mathbb{R}^m$, тогда матрица, составленная из частных производных первого порядка этих функций:

$$f'(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Промежуточный Итог

$$f(x): X \to Y; \quad \frac{\partial f(x)}{\partial x} \in G$$

X	Υ	G	Название
\mathbb{R}	\mathbb{R}	\mathbb{R}	f'(x) (Производная)
\mathbb{R}^n	\mathbb{R}	\mathbb{R}^n	$rac{\partial f}{\partial x_i}$ (Градиент)
\mathbb{R}^n	\mathbb{R}^m	$\mathbb{R}^{m \times n}$	$rac{\partial f_i}{\partial x_i}$ (Матрица Якоби)
$\mathbb{R}^{m \times n}$	\mathbb{R}	$\mathbb{R}^{m \times n}$	$\frac{\partial f}{\partial x_{ij}}$

Матричное представление функции

$$f(x) = c^{\mathsf{T}} x$$

Матричное представление функции

$$f(x) = c^{\mathsf{T}} x$$

Скалярное представление функции

$$f(x) = \sum_{i=1}^{n} c_i x_i$$

Матричное представление функции

$$f(x) = c^{\mathsf{T}} x$$

Скалярное представление функции

$$f(x) = \sum_{i=1}^{n} c_i x_i$$

Вычисление производной

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial \left(\sum_{i=1}^n c_i x_i\right)}{\partial x_k}$$

$$f(x) = c^{\mathsf{T}} x$$

Скалярное представление функции

$$f(x) = \sum_{i=1}^{n} c_i x_i$$

$$\frac{\partial f(x)}{\partial x_k} = c_k$$

Вычисление производной

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial \left(\sum_{i=1}^n c_i x_i\right)}{\partial x_k}$$

$$f(x) = c^{\mathsf{T}} x$$

Скалярное представление функции

$$f(x) = \sum_{i=1}^{n} c_i x_i$$

Матричное представление градиента

$$\nabla f(x) = c$$

$$\frac{\partial f(x)}{\partial x_k} = c_k$$

Вычисление производной

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial \left(\sum_{i=1}^n c_i x_i\right)}{\partial x_k}$$

Основная Техника (Продвинутый Подход)

Данный подход подразумевает формулировку набора простых правил, позволяющих вычислять производные точно так же, как и в простом подходе.

Дифференциалы

После получения дефференциальной записи df мы можем получить градиент, используя следующую формулу:

$$df = \langle \nabla f(x), dx \rangle.$$

Тогда если у нас есть дифференциал указанной выше формы и нам нужно вычислить вторую производную матричной/векторной функции, мы рассматриваем «старое» dx как константу dx_1 , затем вычисляем d(df)

$$d^2 f(x) = \langle \nabla^2 f(x) dx_1, dx_2 \rangle = \langle H_f(x) dx_1, dx_2 \rangle$$

Основная Техника (Продвинутый Подход)

Свойства

Пусть A и B будут фиксированными матрицами, α — фиксированный скаляр, X, Y — переменные (или матричные функции).

- \bullet dA=0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY
- $d(X)^{-1} = -X^{-1}(dX)X^{-1}$
- $d(X^{\mathsf{T}}) = (dX)^{\mathsf{T}}$
- d(XY) = (dX)Y + X(dY)
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$
- $d(\det X) = \det X \langle X^{-\mathsf{T}}, dX \rangle$
- $d(\operatorname{tr} X) = \langle I, dX \rangle$

 $lackbox{0}$ Найти abla f(x), если $f(x) = rac{1}{2}x^\mathsf{T}Ax + b^\mathsf{T}x + c.$

10 / 11

- lacktriangledown Найти abla f(x), если $f(x) = rac{1}{2} x^\mathsf{T} A x + b^\mathsf{T} x + c.$
- **2** Найти $\nabla f(x), f''(x)$, если $f(x) = -e^{-x^{\mathsf{T}}x}$.

- lacktriangledown Найти abla f(x), если $f(x) = rac{1}{2} x^\mathsf{T} A x + b^\mathsf{T} x + c.$
- **②** Найти $\nabla f(x), f''(x)$, если $f(x) = -e^{-x^{\mathsf{T}}x}$.
- $lacksymbol{3}$ Найти df(X), $d^2f(X)$ и $\nabla f(X)$, если $f(X)=\ln(\det(X))$.

- lacktriangle Найти $\nabla f(x)$, если $f(x) = \frac{1}{2}x^\mathsf{T} A x + b^\mathsf{T} x + c.$
- **2** Найти $\nabla f(x), f''(x)$, если $f(x) = -e^{-x^{\mathsf{T}}x}$.
- lacksquare Найти df(X), $d^2f(X)$ и $\nabla f(X)$, если $f(X) = \ln(\det(X))$.
- lacktriangledown Найти df(x), $d^2f(x)$, а также $\nabla f(x)$ и $\nabla^2 f(x)$, если $f(x) = \ln(1+e^{\langle a,x \rangle})$.

Домашнее задание

deadline: 23:59 (Московское время), 22 сентября.

- **1** Найти $\nabla f(x)$ и f''(x), если $f(x) = \frac{1}{2} ||Ax b||_2^2$, $x \in \mathbb{R}^n$.
- ② Найти $\nabla f(x)$ и f''(x), если $f(x) = \frac{1}{n} \|x\|_2^p$, $x \in \mathbb{R}^n \setminus \{0\}$, p порядковый номер по списку группы (см. табл. успеваемости).
- \bullet Найти df(X) и $\nabla f(X)$, если $f(X) = ||AX B||_F$, $X \in \mathbb{R}^{k \times n}$.
- Найти df(X) и $\nabla f(X)$, если $f(X) = \text{Tr}(AXBX^{-1})$, $X \in \mathbb{R}^{n \times n}$, $\det(X) \neq 0$.
- Найти аналитическое выражение градиента, гессиана и сравнить с ответами, полученными любой системой автоматической дифференциации (autograd / jax / pytorch / tensorflow) для следующих функций:

$$1) f(x) = \frac{1}{2} x^{\mathsf{T}} A x + b^{\mathsf{T}} x + c$$

$$2) f(x) = \frac{1}{2} ||Ax - b||_2^2$$

1)
$$|f(x)| = \frac{1}{2}x^{\mathsf{T}}Ax + b^{\mathsf{T}}x + c$$
 2) $|f(x)| = \frac{1}{2}||Ax - b||_2^2$ 3) $f(x) = \ln(1 + \exp(\langle a, x \rangle))$.