Optimization in Machine Learning Constrained Optimization

Learning goals

- Examples of constrained optimization in statistics and ML
- General definition
- Hierarchy of convex constrained problems

CONSTRAINED OPTIMIZATION IN STATISTICS

Example: Maximum Likelihood Estimation

For data $(\mathbf{x}^{(1)},...,\mathbf{x}^{(n)})$, we want to find the maximum likelihood estimate

$$\max_{\theta} L(\theta) = \prod_{i=1}^{n} f(\mathbf{x}^{(i)}, \theta)$$

In some cases, θ can only take **certain values**.

• If f is a Poisson distribution, we require the rate λ to be non-negative, i.e. $\lambda \geq 0$

CONSTRAINED OPTIMIZATION IN ML

• Lasso regression:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \quad \frac{1}{n} \sum_{i=1}^n \left(y^{(i)} - \boldsymbol{\beta}^T \mathbf{x}^{(i)} \right)^2$$
s.t.
$$\|\boldsymbol{\beta}\|_1 \le t$$

• Ridge regression:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \quad \frac{1}{n} \sum_{i=1}^n \left(y^{(i)} - \boldsymbol{\beta}^T \mathbf{x}^{(i)} \right)^2$$
s.t.
$$\|\boldsymbol{\beta}\|_2 \le t$$

CONSTRAINED OPTIMIZATION

General definition of a Constrained Optimization problem:

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{such that} & g_i(\mathbf{x}) \leq 0 \qquad \text{for } i=1,\ldots,k \\ & h_j(\mathbf{x}) = 0 \qquad \text{for } j=1,\ldots,l, \end{array}$$

where

- $g_i : \mathbb{R}^d \to \mathbb{R}, i = 1, ..., k$ are inequality constraints,
- $h_j: \mathbb{R}^d \to \mathbb{R}, j = 1, ..., I$ are equality constraints.

The set of inputs **x** that fulfill the constraints, i.e.,

$$\mathcal{S} := \{ \mathbf{x} \in \mathbb{R}^d \mid g_i(\mathbf{x}) \leq 0, h_j(\mathbf{x}) = 0 \ \forall \ i, j \},$$

is known as the feasible set.

CONSTRAINED CONVEX OPTIMIZATION

Special cases of constrained optimization problems are **convex programs**, with convex objective function f, convex inequality constraints g_i , and affine equality constraints h_j (i.e. $h_j(\mathbf{x}) = \mathbf{A}_j^{\top} \mathbf{x} - \mathbf{b}_j$).

X O O X

Convex programs can be categorized into

