HW3 答案

1. 從 UCI 下載 Concrete Compressive Strength Data Set

下載檔案

```
In [24]: import pandas as pd
    df=pd.read_excel("/Users/chuanyang/Downloads/Concrete_Data.xls")
    df.head()
```

Out[24]:

•		Cement (component 1) (kg in a m^3 mixture)	Blast Furnace Slag (component 2)(kg in a m^3 mixture)	Fly Ash (component 3) (kg in a m^3 mixture)	Water (component 4) (kg in a m^3 mixture)	Superplasticizer (component 5)(kg in a m^3 mixture)	Coarse Aggregate (component 6)(kg in a m^3 mixture)	Fine Aggregate (component 7)(kg in a m^3 mixture)	Age (day)	Concrete compressive strength(MPa, megapascals)
	0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.986111
	1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.887366
	2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.269535
	3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.052780
	4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.296075

更改column name

```
In [27]: df.columns =['Cement', 'Blast Furnace Slag', 'Fly Ash', 'Water', 'Superplasticizer', 'Coarse Aggregate',
    'Fine Aggregate', 'Age', 'Concrete compressive strength']
    df.head()
```

Out[27]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Concrete compressive strength
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.986111
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.887366
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.269535
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.052780
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.296075

Name -- Data Type -- Measurement -- Description

Cement (component 1) -- quantitative -- kg in a m3 mixture -- Input Variable
Blast Furnace Slag (component 2) -- quantitative -- kg in a m3 mixture -- Input Variable
Fly Ash (component 3) -- quantitative -- kg in a m3 mixture -- Input Variable
Water (component 4) -- quantitative -- kg in a m3 mixture -- Input Variable
Superplasticizer (component 5) -- quantitative -- kg in a m3 mixture -- Input Variable
Coarse Aggregate (component 6) -- quantitative -- kg in a m3 mixture -- Input Variable
Fine Aggregate (component 7) -- quantitative -- kg in a m3 mixture -- Input Variable
Age -- quantitative -- Day (1~365) -- Input Variable
Concrete compressive strength -- quantitative -- MPa -- Output Variable

2. 請算出9個變數間的相關係數

*** 方法1:直接的出相關係數

In [28]: df.corr()

Out[28]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Concrete compressive strength
Cement	1.000000	-0.275193	-0.397475	-0.081544	0.092771	-0.109356	-0.222720	0.081947	0.497833
Blast Furnace Slag	-0.275193	1.000000	-0.323569	0.107286	0.043376	-0.283998	-0.281593	-0.044246	0.134824
Fly Ash	-0.397475	-0.323569	1.000000	-0.257044	0.377340	-0.009977	0.079076	-0.154370	-0.105753
Water	-0.081544	0.107286	-0.257044	1.000000	-0.657464	-0.182312	-0.450635	0.277604	-0.289613
Superplasticizer	0.092771	0.043376	0.377340	-0.657464	1.000000	-0.266303	0.222501	-0.192717	0.366102
Coarse Aggregate	-0.109356	-0.283998	-0.009977	-0.182312	-0.266303	1.000000	-0.178506	-0.003016	-0.164928
Fine Aggregate	-0.222720	-0.281593	0.079076	-0.450635	0.222501	-0.178506	1.000000	-0.156094	-0.167249
Age	0.081947	-0.044246	-0.154370	0.277604	-0.192717	-0.003016	-0.156094	1.000000	0.328877
Concrete compressive strength	0.497833	0.134824	-0.105753	-0.289613	0.366102	-0.164928	-0.167249	0.328877	1.000000

*** 方法2: 算出相關係數並劃出熱力圖


```
In [33]: import matplotlib.pyplot as plt import seaborn as sns sns.pairplot(df) plt.tight layout() #plt.savefig('scatterplot.png', dpi=300) plt.show()

### Additional Conference of the Confere
```

3. 得出使用用8個特徵預測 Concrete compressive strength的線性迴歸模型

訓練模型

```
In [116]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error
    from sklearn.metrics import r2_score
    slr = LinearRegression()
    slr.fit(X_train, y_train)
    *print(str.coef)
    for x in range(0,8):
        print(df.columns[x],",",'coef: %.8f' % slr.coef_[x])

Cement , coef: 0.12497617
    Blast Furnace Slag , coef: 0.10756450
    Fly Ash , coef: 0.09257633
    Water , coef: -0.14994099
    Superplasticizer , coef: 0.19312049
    Coarse Aggregate , coef: 0.01664178
```

預測模型

結果:發現MSE比較高,而且train的R^2比test的R^2高

Fine Aggregate , coef: 0.02078749 Age , coef: 0.12085950

4. 觀察是否有迴歸係數與相關係數異異號的情況

比較各X與y

```
發現有異號: Fly Ash, Coarse Aggregate, Fine Aggregate
```

```
In [118]: #相關係數結果
            df.corr()["Concrete compressive strength"]
Out[118]: Cement
                                                    0.497833
            Blast Furnace Slag
                                                    0.134824
                                                  -0.105753
            Water
                                                  -0.289613
            Superplasticizer
            Coarse Aggregate
                                                   -0.164928
                                                   -0.167249
            Fine Aggregate
                                                   0.328877
            Concrete compressive strength
                                                   1.000000
            Name: Concrete compressive strength, dtype: float64
In [119]: #回歸結果
            for x in range(0,8):
             print(df.columns[x],",",'coef: %.8f' % slr.coef_[x])
            Cement , coef: 0.12497617
            Blast Furnace Slag , coef: 0.10756450
Fly Ash , coef: 0.09257633
            Water , coef: -0.14994099
            Superplasticizer , coef: 0.19312049
Coarse Aggregate , coef: 0.01664178
            Fine Aggregate , coef: 0.02078749
Age , coef: 0.12085950
            5. 進行行行資料預處理理(ex. 刪除部分特徵),以求得迴歸係數與相關係數均同號的線性迴歸模型
In [120]: df.columns
Out[120]: Index(['Cement', 'Blast Furnace Slag', 'Fly Ash', 'Water', 'Superplasticizer', 'Coarse Aggregate', 'Fine Aggregate', 'Age', 'Concrete compressive strength'],
                   dtype='object')
            發現有異號: Fly Ash, Coarse Aggregate, Fine Aggregate
In [121]: index=[0,1,3,4,7]
            X1 = X[:,index]
            X1_train, X1_test, y_train, y_test = train_test_split(
            X1, y, random_state=8)
slr_new = LinearRegression()
            slr_new.fit(X1_train, y_train)
            y1_train_pred = slr_new.predict(X1_train)
y1_test_pred = slr_new.predict(X1_test)
            新的同歸結果
In [122]: for x in range(0,len(index)):
            print(index[x],":",df.columns[(index[x])],'coef: %.8f' % slr_new.coef_[x])
            0 : Cement coef: 0.08442900
            1 : Blast Furnace Slag coef: 0.06168285
            3 : Water coef: -0.19841103
            4 : Superplasticizer coef: 0.54630191
            7 : Age coef: 0.11736351
            原始回歸結果
In [123]: for x in range(0,8):
                print(x,":",df.columns[x],",",'coef: %.8f' % slr.coef_[x])
            0 : Cement , coef: 0.12497617
            1 : Blast Furnace Slag , coef: 0.10756450
2 : Fly Ash , coef: 0.09257633
             3 : Water , coef: -0.14994099
            4 : Superplasticizer , coef: 0.19312049
5 : Coarse Aggregate , coef: 0.01664178
            6 : Fine Aggregate , coef: 0.02078749
7 : Age , coef: 0.12085950
            新的回歸結果的MSE &R^2
In [124]: print('MSE train: %.3f, test: %.3f' % (
                      mean_squared_error(y_train, y1_train_pred),
            mean_squared_error(y_test, y1_test_pred)))
print('R^2 train: %.3f, test: %.3f' % (
    r2_score(y_train, y1_train_pred),
                      r2_score(y_test, y1_test_pred)))
            MSE train: 113.221, test: 126.465 R^2 train: 0.600, test: 0.524
```