LSML #5

Рекомендательные системы

Рекомендательные системы

Вам также могут понравиться

Рекомендательные системы

User-based и Item-based Collaborative Filtering

Похожесть пользователей

Корреляция общих оценок = -1

User-based CF

- **n** пользователей, **m** товаров
- r_{ui} оценка пользователя и товару і
- r_u средняя оценка пользователя и
- Похожесть пользователей u и v:

По общим оценкам!

$$corr(u,v) = \frac{\sum_{i \in I} (r_{ui} - r_u)(r_{vi} - r_v)}{\sqrt{\sum_{i \in I} (r_{ui} - r_u)^2 \sum_{i \in I} (r_{vi} - r_v)^2}}$$

• Предсказание:

$$\widehat{r_{ui}} = r_u + \frac{\sum_{v=1}^{n} corr(u, v)(r_{vi} - r_v)}{\sum_{v=1}^{n} |corr(u, v)|}$$

Прикинем на примере

- 10000 рейтингов
- 1000 пользователей
- 100 товаров
- Рейтинги распределены равномерно в таблице

- Сколько общих оценок в среднем у двух случайных юзеров?
- А у двух случайных товаров?

Прикинем на примере

- 10000 рейтингов
- 1000 пользователей
- 100 товаров
- Рейтинги распределены равномерно в таблице

- Сколько общих оценок в среднем у двух случайных юзеров? (1)
- А у двух случайных товаров? (10)

Item-based CF

- Похожие формулы
- Более уверенные оценки похожести товаров
- Медленнее устаревают похожести товаров
- B production:
 - Посчитаем для каждого товара в офлайне 1000 самых похожих на него, сложим в Key-Value хранилище (например, Redis)
 - В онлайне возьмем оценённые пользователем товары (последние 100) и для них сходим в Key-Value за похожими
 - Посчитаем итоговые рекомендации по формуле $\hat{r}_{ui} = rac{\sum_{j} S(i,j) r_{uj}}{\sum_{j} |S(i,j)|}$

Параллелим Item-based CF

- **n** пользователей, **m** товаров, **n** \sim **m** \sim 10^6
- Нужно посчитать заранее Item-Item похожести:

$$s(i,j) = \frac{\sum_{u \in U} (r_{ui} - r_u)(r_{uj} - r_u)}{\sqrt{\sum_{u \in U} (r_{ui} - r_u)^2} \sqrt{\sum_{u \in U} (r_{uj} - r_u)^2}}$$
 adjusted cosine similarity

- Наивный подход O(m²n)
- Матрица оценок сильно разрежена, можно лучше?
- Вклад в похожесть двух товаров ненулевой только от пользователей, которые оценили оба этих товара

Инвертированный индекс

• Будем обновлять расчеты раз в день при помощи инвертированного индекса:

$$s(i,j) = \frac{\sum_{u \in U} (r_{ui} - r_u)(r_{uj} - r_u)}{\dots}$$

Мар шаг:

$$(1, 3) \rightarrow (5 - 3.3) * (4 - 3.3)$$

 $(1, 6) \rightarrow (5 - 3.3) * (1 - 3.3)$
 $(3, 6) \rightarrow (4 - 3.3) * (1 - 3.3)$

Reduce шаг:

Суммируем по ключу

Как посчитать все числители на Spark

```
def emit pairs(x):
                                                         s(i,j) = \frac{\sum_{u \in U} (r_{ui})(r_{uj})}{}
    user, items = x
    items = sorted(items)
    if len(items) < 300:</pre>
         for i in range(len(items) - 1):
             for j in range(i + 1, len(items)):
                 yield (
                      (items[i][0], items[j][0]),
                      items[i][1] * items[j][1]
dot product = (
    ratings
    .map(lambda x: (x.user, (x.product, x.rating)))
    .groupByKey()
    .flatMap(emit pairs)
    .reduceByKey(lambda x, y: x + y)
```

Решение на Spark SQL

```
s(i,j) = \frac{\sum_{u \in U} (r_{ui})(r_{uj})}{}
SELECT
  ic1.itemId,
  ic2.itemId AS jointItemId,
  SUM(ic1.val * ic2.val) AS cosine
FROM ic AS ic1
  JOIN ic AS ic2 ON ic1.clientId = ic2.clientId
WHERE ic1.itemId < ic2.itemId</pre>
GROUP BY ic1.itemId, ic2.itemId;
```

Похожести для <u>неявных</u> рейтингов

• Например, рассмотрим покупку (неявный рейтинг)

Что такое «часто покупают вместе»?

Количество совместных покупок?

- Бестселлеры типа «Гарри Поттер» много кто купил
- Получается, что «Гарри Поттер» часто покупают со всеми остальными книгами
- Но не рекомендовать же всем «Гарри Поттер» к любой книге?

Мера Жаккара (похожесть множеств юзеров)

• Учитывает популярности сравниваемых товаров:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}.$$

Пример

Самые похожие на Kanye West по пересечению:

Artist	Overlap	
Coldplay	8061	
Jay-Z	6851	
The Beatles	6139	Kanye West Coldplay
Radiohead	6135	
Eminem	5454	
more		Jay-Z

Самые похожие на Kanye West по мере Жаккара:

Artist	Jaccard	
Jay-Z	0.217	
T.I.	0.163	
Lupe Fiasco	0.156	
Nas	0.156	
Common	0.139	
more		

Параллелится точно так же

Content-based рекомендации

- Используем свойства товаров и пользователей
 - Возраст, пол, ...
 - Жанр, режиссер, ...
- Можем рекомендовать товары, не имея статистики

Content-based: похожесть текстов

TFIDF Normed Vectors	۵	Accelerating	and	applications	art	behavior	Building	Consumer	CRM	customer	data	for	Handbook	Introduction	Knowledge	Managemen	Marketing	Mastering	mining	of	relationship	Research	science	technology
Building data mining applications for CRM				0.502			0.502		0.344		0.251	0.502							0.251					
Accelerating customer relationships: using CRM and relationship technologies		0.432	0.296						0.296	0.216											0.468			0.432
Mastering Data Mining: the art and science of Customer Relationship Management Data Mining your			0.256		0.374					0.187	0.187					0.256		0.374	0.187	0.374	0.256		0.374	
Data Mining your website Introduction to Marketing											0.316	1		0.636			0.436		0.316					

Content-based: похожесть текстов

- Похожесть как косинус между векторами TF-IDF
- Используем инвертированный индекс

Факторизация матрицы оценок

 Матрица рейтингов разреженная (много пропусков)

 Оценки товаров коррелируют (пользователям часто нравятся одни и те же пары товаров)

 Можно сжать матрицу оценок!

SVD для плотной матрицы

Факторы отсортированы по вкладу в приближение исходной матрицы

400 x 600 image 240000 values

400 x 1 / 1 x 1 / 1 x 600 matrices 1001 values

SVD для картинки

400 x 600 image 240000 values

400 x 2 / 2 x 2 / 2 x 600 matrices 2004 values

SVD для картинки

400 x 600 image 240000 values

400 x 9 / 9 x 9 / 9 x 600 matrices 9081 values

26х сжатие!

Funk SVD для разреженной матрицы

- Пользователи и товары погружаются в новое пространство (малой размерности k).
- Координаты в этом пространстве «характеристики» товаров и пользователей.
- Похожесть в этом пространстве это скалярное произведение!

Funk SVD для разреженной матрицы

Оптимизируем при помощи SGD:

$$\min_{X,Y} \sum_{(u,i)\in R} (r_{ui} - x_u^T y_i)^2 + \lambda(\|x_u\|^2 + \|y_i\|^2)$$

Интерпретация профилей товаров

Можно оценить похожести товаров

Пример похожестей товаров

Самые похожие на Kanye West по косинусу между профилями исполнителей:

Artist	Implicit ALS
Lupe Fiasco	0.950
Jay-Z	0.928
T.I.	0.913
Lil Wayne	0.895
N*E*R*D	0.891
more	

Профиль для нового пользователя

Профиль для нового пользователя

Рекомендация для пользователя

Alternating Least Squares (ALS)

$$\min_{X,Y} \sum_{(u,i)\in R} (r_{ui} - x_u^T y_i)^2 + \lambda(\|x_u\|^2 + \|y_i\|^2)$$

Alternating Least Squares (ALS)

$$\min_{X,Y} \sum_{(u,i)\in R} (r_{ui} - x_u^T y_i)^2 + \lambda(\|x_u\|^2 + \|y_i\|^2)$$

Инициализируем X и Y случайными значениями

В цикле:

- Фиксируем матрицу X (пользователей)
- Находим оптимальную матрицу Y (решаем гребневую регрессию для каждого товара)

• И наоборот

Implicit ALS (iALS) для неявных оценок

как долго читал статью

$$p_{ui} = \left\{ egin{array}{ll} 1 & r_{ui} > 0 \ 0 & r_{ui} = 0 \end{array}
ight.$$
 Понравилось?

$$c_{ui} = 1 + \alpha r_{ui}$$

Если не читал, то уверенность в $p_{ui}=0$ маленькая

$$\min \sum_{u,i} c_{ui} (p_{ui} - x_u^T y_i)^2 + \lambda \left(\sum_u \parallel x_u \parallel^2 + \sum_i \parallel y_i \parallel^2 \right)$$
 Взвешенные потери

сумма по всем ячейкам (пропусков нет)

iALS: считается так же быстро

iALS: считается так же быстро

$$Y^T C_u Y = Y^T Y + Y^T (C_u - I) Y$$

Считается один раз!

Не ноль только на прочтенных!

Наивный параллельный ALS

- R = XY, обновляем X
- Join R и Y по товарам \rightarrow (u, r_{ui}, y_i)
- Группируем по u
- На каждой машине пересчитываем x_u
- Один и тот же вектор у_і
 может понадобится
 нескольким пользователям
 на машине, и будет
 отправлен несколько раз

Реализация с broadcast Y

- Быстрее
- Имеет предел масштабирования (Ү должен влезать в память)

Блочный ALS (как в Spark ML)

- Пользователи бьются на блоки, каждый блок обрабатывается на своей машине
- Один раз вычисляем какие товары понадобятся в каждом блоке (мапинг хранится в памяти)
- Пересылаются только нужные части матриц <u>в</u> память машин

Блочный ALS (как в Spark ML)

- Числом блоков можно управлять (параметр numBlocks)
- Чем их больше, тем выше шанс, что подматрица товаров для каждого блока влезет в память

from pyspark.ml.recommendation import ALS

```
als = ALS(maxIter=5, regParam=0.01,
userCol="userId", itemCol="itemId",
ratingCol="rating", numBlocks=10)

model = als.fit(training)
```

Ссылки

- https://stanford.edu/~rezab/sparkworkshop/slides/xiangrui.pdf
- https://www.kaggle.com/tkm2261/outbrain-click-prediction/bigquery-is-cool-lb-0-63692
- http://cs229.stanford.edu/proj2016/report/JaiswalGopinathLimaye-OutbrainClickPrediction-report.pdf
- https://data-artisans.com/how-to-factorize-a-700-gb-matrix-with-apache-flink/