A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Programs were mostly entered using punched cards or paper tape. Programmable devices have existed for centuries. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Following a consistent programming style often helps readability. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Programming languages are essential for software development. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Also, specific user environment and usage history can make it difficult to reproduce the problem. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). However, Charles Babbage had already written his first program for the Analytical Engine in 1837. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. It is very difficult to determine what are the most popular modern programming languages. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute.