

Midterm Presentation -P4 Accuracy of Approximate Circuits

FABIAN GARBER, SIMON HOWIND, KAGAN ÖZTEN, MARTIN RESETARITS, PETER TRAUNMÜLLER

Introduction

- Short Recap
- Binary Decision Diagram Progress / Error Analysis
- VHDL Progress
- Power & Area Analysis
- Outlook

Recap: Circuit Designs

Conventional Full Adder Circuit Design

Approximate Full Adder Circuit Design as proposed by Priyadharshni et al

Recap: Truth Table

Input			Full Adder		INXA1	
x	y	c_{in}	c_{out}	s	c_{out}	s
0	0	0	0	0	0 🗸	0 🗸
0	0	1	0	1	$_{1}$ X	1 🗸
0	1	0	0	1	0 🗸	1 🗸
0	1	1	1	0	$1 \checkmark$	0 🗸
1	0	0	0	1	0 🗸	1 🗸
1	0	1	1	0	$1 \checkmark$	0 🗸
1	1	0	1	0	$_{0}$ X	0 🗸
1	1	1	1	1	$1 \checkmark$	1 🗸

Recap: Error Analysis

- For multi bit inputs, the error is not Hamming distance
- Error must be interpreted as number

Recap: Binary Decision Diagram

	Input		Output
X[0]	X[1]	X[2]	out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

What's New

- BDD generation
- Worst case error analysis (partly) finished
- Area and power analysis of the VHDL design

Generate outputs for exact and approx. adder

```
00 + 00 = approx: 010, exact: 000
00 + 01 = approx: 101, exact: 001
00 + 10 = approx: 100, exact: 010
00 + 11 = approx: 011, exact: 011
01 + 00 = approx: 101, exact: 001
01 + 01 = approx: 010, exact: 010
01 + 10 = approx: 011, exact: 011
```


- Generate outputs for exact and approx. adder
- Calculate error

```
00 + 00 = approx: 010, exact: 000, error: 1
00 + 01 = approx: 101, exact: 001, error: 1
00 + 10 = approx: 100, exact: 010, error: 1
00 + 11 = approx: 011, exact: 011, error: 0
01 + 00 = approx: 101, exact: 001, error: 1
01 + 01 = approx: 010, exact: 010, error: 0
01 + 10 = approx: 011, exact: 011, error: 0
```


- Generate outputs for exact and approx. adder
- Calculate error
- Extract truth tables

```
bit 0

00 + 00 = approx: 010, exact: 000, error: 1
00 + 01 = approx: 101, exact: 001, error: 1
00 + 10 = approx: 100, exact: 010, error: 1
00 + 11 = approx: 011, exact: 011, error: 0
01 + 00 = approx: 101, exact: 001, error: 1
01 + 01 = approx: 010, exact: 010, error: 0
01 + 10 = approx: 011, exact: 011, error: 0
```


- Generate outputs for exact and approx. adder
- Calculate error
- Extract truth tables
- Draw for bits

```
bit 0

00 + 00 = approx: 010, exact: 000, error: 1

00 + 01 = approx: 101, exact: 001, error: 1

00 + 10 = approx: 100, exact: 010, error: 1

00 + 11 = approx: 011, exact: 011, error: 0

01 + 00 = approx: 101, exact: 001, error: 1

01 + 01 = approx: 010, exact: 010, error: 0

01 + 10 = approx: 011, exact: 011, error: 0
```


- Generate outputs for exact and approx. adder
- Calculate error
- Extract truth tables
- Draw BDD for bits
- Draw BDD for error

```
00 + 00 = approx: 010, exact: 000, error: 1
00 + 01 = approx: 101, exact: 001, error: 1
00 + 10 = approx: 100, exact: 010, error: 1
00 + 11 = approx: 011, exact: 011, error: 0
01 + 00 = approx: 101, exact: 001, error: 1
01 + 01 = approx: 010, exact: 010, error: 0
01 + 10 = approx: 011, exact: 011, error: 0
```


BDD: Complexity

Example:

- 8 bit full adder
- $2^{8*2} = 65536$ input combinations
- BDDs for output bit "1"

← Approximate: 31 nodes

Exact: 49 nodes →

BDD: Complexity

A(1) (A(1) (A(1) (A(2) (A(2) (A(3) (

Example:

- 8 bit full adder
- $2^{(8*2)} = 65536$ input combinations
- BDDs for output bit "1"

← Approximate: 31 nodes

Exact: 49 nodes →

- 64 bit adder?
- $2^{(64*2)} = 3.4E38$ input combinations

BDD: Error

BDD: Error Analysis

```
A[n] in

B[n] in

INXA1

approx. adder

error out

exact adder
```

```
00 + 00 = approx: 010, exact: 000, error out: 2
00 + 01 = approx: 101, exact: 001, error out: 4
00 + 10 = approx: 100, exact: 010, error out: 2
00 + 11 = approx: 011, exact: 011, error out: 0
01 + 00 = approx: 101, exact: 001, error out: 4
01 + 01 = approx: 010, exact: 010, error out: 0
01 + 10 = approx: 011, exact: 011, error out: 0
```

•••

BDD: Error Analysis

VHDL in Detail

What has been done so far:

- 1-, 4-, 8- and 16-bit full adders in exact and approximate form are completed
- Schematics regarding these designs are realised
- Area and power analysis of the VHDL design are partially done

VHDL: Schematics

Exact vs. Approximate: reduced basic logic gate number

1-Bit Full Adder:

1-Bit Approximate Full Adder (INXA1):

Area Analysis

Used metric for area: Gate Count in adders

TYPE	XOR	OR	AND	NOT	Basic Gates in Total
1 Bit Exact	2	1	2	X	11
4 Bit Exact	8	4	8	X	44
8 Bit Exact	16	8	16	X	88
16 Bit Exact	32	16	32	Χ	176
1 Bit Appro.	2	X	X	1	9 (-3)
4 Bit Appro.	8	X	X	4	36 (-8)
8 Bit Appro.	16	X	X	8	72 (-16)
16 Bit Appro.	32	X	X	16	144 (-32)

 $= \sim 18.2\%$ less

XOR = 2 AND + 1 OR + 1 NOT = 4 Basic Gates

Power Analysis

Settings

Summary (1.023 W, Margin: N/A)

Power Supply

Utilization Details

Hierarchical (0.903 W)

∨ Signals (0.019 W)

Data (0.019 W)

Logic (0.007 W)

I/O (0.877 W)

Settings

Summary (1.266 W, Margin: N/A)

Power Supply

Utilization Details

Hierarchical (1.141 W)

✓ Signals (0.023 W)

Data (0.023 W)

Logic (0.008 W)

I/O (1.11 W)

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.023 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 36,8°C

Thermal Margin: 48,2°C (4,0 W)

Effective \$JA: 11,5°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.266 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 39,6°C

Thermal Margin: 45,4°C (3,8 W)

Effective 9JA: 11,5°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity

1 BIT

EXAC

APPROXIMATE

Power Analysis

Settings

Summary (11.955 W, Margin: N/A)

Power Supply

Utilization Details

Hierarchical (10.915 W)

✓ Signals (0.443 W)

Data (0.443 W)

Logic (0.154 W)

I/O (10.318 W)

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 11.955 W (Junction temp exceeded!)

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 125,0°C

Thermal Margin: -77,9°C (-6,0 W)

Effective 9JA: 11,5°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity

On-Chip Power Dynamic: 10.915 W (91%)Signals: 0.443 W (4%)91% Logic: 0.154 W (196)95% 1/0: 10.318 W (95%)9% Device Static: 1.039 W

16 BIT

Settings

Summary (17.853 W, Margin: N/A)

Power Supply

Utilization Details

Hierarchical (16.813 W)

✓ Signals (1.076 W)

Data (1.076 W)

Logic (0.371 W)

I/O (15.366 W)

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 17.853 W (Junction temp exceeded!)

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 125,0°C

Thermal Margin: -145,9°C (-11,9 W)

Effective 9JA: 11,5°C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity

TU TECHNISCHE UNIVERSITÄT WIEN

Problem in Power Analysis

What could be the reason:

- Approximate design is actually faster in calculating inputs.
 - Therefore, in given certain amount of time it processes more calculations, which leads to more power consumption.

Signal Rate (Mtr/s)	Α	В	Cin	S	Cout
16 Bit Exact	12500	12500	12500	32304,17	19238,91
16 Bit Appro.	12500	12500	12500	46986,90	49996,23

- Without a Testbench we don't have a controlled test environment.
- · Vivado is sometimes inconsistent with its' analysis tools.

Future Plans

- Adding functionality for generic N bit Adders
- Final Worst Case Error Analysis with BDD
- Several Graphical Error Visualizations
- Designing a Testbench for VHDL design
- Implementing on Zedboard (Hardware)

Thank you!

