First name: _	 	 		
Last name:				
Student ID number:				

2nd Midterm Exam

course name

INTRODUCTION TO MACHINE LEARNING AND DATA MINING

Instructions:

- Write your **FIRST NAME**, **LAST NAME** and **STUDENT ID NO**. on each piece of paper with solutions;
- This midterm is composed of **5** assignments for the total amount of **100 points**;
- Solving time is **90 minutes**;
- Only a <u>calculator</u> and <u>1 piece of paper (A4 format)</u> with written notes and formulas is allowed;
- All other literature, the use of Internet, laptops, mobile phones and other electronic devices is strictly forbidden!

Learning set:

ID	Att ₁	Att ₂ Att ₃		Att ₄	Cls
100	2000.000	n	-	x	T
101	2004.410	n	+	0	F
102	2016.623	У	+	x	F
103	2015.735	n	+	0	T
104	2002.042	n	-	x	F
105	2006.153	У	-	x	F
106	2020.000	n	-	0	T
107	2010.666	У	+	0	F
108	2013.177	У	+	x	T
109	2019.186	n	+	0	T
110	2008.797	У	_	0	F

ID: Identifier $[0, \infty)$ Att₁: Date in KSP format
Att₂: Nominal value $\{\mathbf{y}, \mathbf{n}\}$ Att₃: Nominal value $\{+, -\}$ Att₄: Nominal value $\{\mathbf{o}, \mathbf{x}\}$ Cls: Class, nominal value $\{\mathbf{T}, \mathbf{F}\}$

Test set:

ID	Att₁	Att ₂	Att₃	Att ₄	Cls
200	2017.115	n	+	?	Т
201	2015.428	У	-	?	F
202	2011.141	?	-	x	F

1. Decision trees

Classify the examples from the <u>test set</u> by using the given decision tree (depicted below)!

The distribution of examples in the leaves of this decision tree is given in the form #(T): #(F).

Write the complete probability distribution for each example in the <u>test set</u>!

(10 points)

2. Classification rules

The first classification rule for class value **T** »found« by the PRISM algorithm on the <u>learning set</u>, using just the attributes **Att₂**, **Att₃** and **Att₄**, is:

IF
$$(Att_2 = n)$$
 AND $(Att_4 = o)$ AND $(Att_3 = -)$ THEN T

Find the next (second) classification rule for class value **T** on the <u>learning set</u>, using the same three attributes!

(20 points)

3. Clustering

Simulate the hierarchical agglomerative clustering algorithm on the set of data $\{e_1, e_2, e_3, e_4, e_5\}$, depicted in the figure below. Use the *Manhattan distance* to compute the distances between data points.

a) Use the <u>complete linkage</u> method when calculating distances between a single element and a group; write down each step of the agglomeration by using distance tables and draw the complete <u>dendrogram</u>!

(15 points)

b) How many groups does the agglomerative clustering algorithm discover? Write them down! (5 points)

4. Nearest neighbours

Now, let Att_2 , Att_3 , Att_4 and Cls be the attributes, and Att_1 be the class. Use the *nearest* neighbours method (k–NN) with parameter k set to 4 (k = 4) to classify the (below) given example! Use the Euclidean distance to calculate the »vicinity« to other examples from the <u>learning set</u>. (15 points)

ID	Att ₁	Att ₂	Att₃	Att ₄	Cls
300		n	+	0	T

5. Association rules

The (below) given table represents market baskets of 5 randomly chosen customers that bought products in a supermarket. For the sake of clarity, only the initials of the product names are listed. They are sorted alphabetically and put into columns for easier counting.

TID	Product	:S										
22149	Α,	В,	C,	L,	Ρ,	Q,			U,		Χ	
33277	Α,	В,	C,		Ρ,		R,				Χ	
44305	Α,		C,					Τ,		٧,	Χ	
57423	Α,				Ρ,					٧,		Z
58511	Α,	В,			Ρ,					٧,	Χ	

- a) Find all k-itemsets with <u>support</u> at least 60%! How many are there?(10 points)
- b) What is the total number of association rules that can be generated from the itemsets that you found in assignment 4.a)?(5 points)
- c) Which association rules generated from the itemset {A, B, P} have <u>confidence</u> at least 80%?
 (10 points)
- d) Which of the association rules that you found in assignment 4.c) have "enough" lift? (10 points)