5

10

15

20

CLAIMS

- A method of using PFCs recovered from the effluent of a CVD chamber cleaning process as an influent for the CVD chamber cleaning process, comprising the steps of:
 - (a) selecting a first PFC gas mixture having a first ratio of C₂F₆ to CF₄;
 - (b) providing the first PFC gas mixture as the influent gas to the CVD chamber, wherein the influent gas reacts during the cleaning process to create a CVD chamber effluent gas comprising a second PFC gas mixture having a second ratio of C₂F₆ to CF₄;
 - (c) adding virgin C_2F_6 or CF_4 to the CVD chamber effluent gas in sufficient quantity to create a third PFC gas mixture having the first ratio of C_2F_6 to CF_4 ;
 - using the third PFC gas mixture as the influent gas to the CVD chamber;
 and
 - (e) continuing to add virgin C_2F_6 or CF_4 to the CVD chamber effluent gas to create the third PFC mixture and continuing to use the third PFC gas mixture as the influent gas to the CVD chamber.
- 2. The method of claim 1, including the step of providing O_2 to the third PFC gas mixture for use as influent gas to the CVD chamber.
- 3. The method of claim 1, wherein the third ratio of C_2F_6 to CF_4 is less than or equal to the following equation:

where U= Utilization of CF₄ in the plasma; G= Generation frequency of CF₄ from C₂F₆; and C = Capture efficiency of CF₄, and the first ratio of C₂F₆ to CF₄ is selected based on the third ratio of C₂F₆ to CF₄

4. The method of claim 1, wherein the third ratio of C_2F_6 to CF_4 is less than or equal to about 0.32, and the first ratio of C_2F_6 to CF_4 is selected based on the third ratio of C_2F_6 to CF_4

5

- 5. The method of claim 1, wherein the third ratio of C_2F_6 to CF_4 is greater than or equal to 1, and the first ratio of C_2F_6 to CF_4 is selected based on the third ratio of \dot{C}_2F_6 to CF_4 .
- 10 6. The method of claim 5, wherein the third ratio of C₂F₆ to CF₄ is adjusted by increasing the O₂ concentration.
 - 7. The method of claim 5, wherein the third ratio of C_2F_6 to CF_4 is adjusted by using higher C_2F_6 flowrates.

15

- The method of claim 1, wherein the amount CF₄ in the effluent is less than or equal to the amount of CF₄ in the influent.
- The method of claim 1, wherein the total gas volume of the effluent is less than or
 equal to the total gas volume of the influent.
 - 10. A method of using PFCs recovered from the effluent of a CVD chamber cleaning process as an influent for the CVD chamber cleaning process, comprising the steps of:
 - selecting a first PFC gas mixture having a first ratio of C₂F_e to CF₄ greater than or equal to 1;
- 25 (b) providing the first PFC gas mixture as the influent gas to the CVD chamber, wherein the influent gas reacts during the cleaning process to

5

10

20

- create a CVD chamber effluent gas comprising a second PFC gas mixture having a second ratio of C_2F_n to CF_4 :
- (c) adding virgin C₂F₆ or CF₄ to the CVD chamber effluent gas in sufficient quantity to create a third PFC gas mixture having the first ratio of C₂F₆ to CF₄:
- using the third PFC gas mixture as the influent gas to the CVD chamber;
 and
- (e) continuing to add virgin C₂F₆ or CF₄ to the CVD chamber effluent gas to create the third PFC mixture and continuing to use the third PFC gas mixture as the influent gas to the CVD chamber.
- 11. The method of claim 10, including the step of providing O_2 to the third PFC gas mixture for use as influent gas to the CVD chamber.
- 15 12. The method of claim 10, wherein the third ratio of C₂F₆ to CF₄ is adjusted by increasing the O₂ concentration.
 - 13. The method of claim 10, wherein the third ratio of C_2F_6 to CF_4 is adjusted by using higher C_2F_6 flowrates.
 - 14. The method of claim 10, wherein the amount CF₄ in the effluent is less than or equal to the amount of CF₄ in the influent.
- The method of claim 10, wherein the total gas volume of the effluent is less than
 or equal to the total gas volume of the influent.

 N\DOCNOS\06100-06199\06142\USADOC