For return on 24 January 2014 (late submission: 7 February 2014)

Electronic submission: pdf files only

1. (3%) Construct the truth-table for the Boolean function given by the Boolean formula

$$\neg (A \land (B \to C)) \land \neg B.$$

Use the truth-table to realise this function by a formula with the connectives \neg , \lor , \land only. Simplify the formula in such a way that the corresponding Boolean circuit contains a minimal number of gates. Show the Boolean circuit.

Truth Table

A	B	C	¬	(A	\wedge	(B	\rightarrow	C))	\wedge	$\neg B)$
0	0	0	1		0		1		1	1
0	0	1	1		0		1		1	1
0	1	0	1		0		0		0	0
0	1	1	1		0		1		0	0
1	0	0	0		1		1		0	1
1	0	1	0		1		1		0	1
1	1	0	1		0		0		0	0
1	1	1	0		1		1		0	0

Simplification

1.
$$(\neg A \land \neg B \land \neg C) \lor (\neg A \land \neg B \land C)$$

2.
$$(\neg(A \lor B) \land \neg C) \lor (\neg(A \lor B) \land C)$$

3.
$$\neg (A \lor B) \lor (\neg C \land C)$$

$$4. \ \neg (A \lor B) \lor 0$$

5.
$$\neg (A \lor B)$$

Boolean Circuit

$$A \longrightarrow B$$

2. (3%) Are the following Boolean formulas equivalent? Explain your answer.

(a)
$$A \to (B \land C)$$
 and $(A \to B) \land (A \to C)$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					ш.				- 13	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A	B	C	$\parallel A$	\rightarrow	(B	\wedge	C)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0		1		0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	1		1		0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0				1		0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1	1		1		1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A	B	C	(A	\rightarrow	B)	\wedge	(A	\rightarrow	C)
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0						1	
$egin{array}{c cccccc} 0 & 1 & 0 & & 1 & & 1 & & 1 \\ 0 & 1 & 1 & & 1 & & 1 & & 1 \\ 1 & 0 & 0 & & 0 & & 0 & & 0 \\ 1 & 0 & 1 & & 0 & & 0 & & 1 \\ 1 & 1 & 0 & & 1 & & 0 & & 0 \\ \end{array}$	0	0	1		1		1		1	
$egin{array}{c ccccc} 0 & 1 & 1 & & 1 & & 1 & & 1 \\ 1 & 0 & 0 & & & 0 & & 0 \\ 1 & 0 & 1 & & 0 & & 0 & & 1 \\ 1 & 1 & 0 & & 1 & & 0 & & 0 \\ \end{array}$									1	
$egin{array}{c ccccc} 1 & 0 & 0 & & 0 & & 0 & & 0 \\ 1 & 0 & 1 & & 0 & & 0 & & 1 \\ 1 & 1 & 0 & & 1 & & 0 & & 0 \\ \hline \end{array}$									1	
$egin{array}{c cccc} 1 & 0 & 1 & & 0 & & 0 \\ 1 & 1 & 0 & & 1 & & 0 & & 0 \\ \end{array}$									Ū	
$egin{array}{c cccc} 1 & 1 & 0 & 1 & 0 \\ \hline \end{array}$									_	
									_	
	1	1	1	1	1				1	

Yes they are equivalent

(b)
$$(A \wedge B) \to C$$
 and $(\neg C \to \neg A) \wedge (\neg C \to \neg B)$

	\overline{A}	B C	' (₂	$\overline{4} \wedge$	B)	\rightarrow	C		
	0	$\frac{D}{0}$		0		1			
	0	0 1	- 11	0		1			
	0	1 0	- 11	0		1			
	0	1 1		0		1			
	1	0 0		0		1			
	1	0 1		0		1			
	1	1 0		1		0			
	1	1 1		1		1			
A B	C	$ (\neg C$	\rightarrow	$\neg A)$	\wedge	$(\neg C$	\rightarrow	$\neg B)$	
0 0	0	1	1	1	1	1	1	1	
0 0	1	0	1	1	1	0	1	1	
0 1	0	1	1	1	0	1	0	0	
0 1	1	0	1	1	1	0	1	0	
1 0	0	1	0	0	0	1	1	1	
1 0	1	0	1	0	1	0	1	1	
1 1	0	1	0	0	0	1	0	0	

No they are not equivalent

(c)
$$(A \lor B) \to C$$
 and $(A \to B) \lor (A \to C)$

, , ,		, . (- /					
		A	B	C	$\ (A$	V	B)	\rightarrow	C
		0	0	0		0		1	
		0	0	1		0		1	
		0	1	0		1		0	
		0	1	1		1		1	
		1	0	0		1		0	
		1	0	1		1		1	
		1	1	0		1		0	
		1	1	1		1		1	
		ъ	\sim 1	1 / 4		D)			
	A	В	C	(<i>A</i>	\rightarrow	B)	V	(A	\rightarrow $C)$
	0	0	0		1		1		1
	0	0	1		1		1		1
	0	1	0		1		1		1
	0	1	1		1		1		1
	1	0	0		0		0		0
	1	0	1		0		1		1
	1	U	-						
	1	1	0		1		1		0
					1 1				0 1

No they are not equivalent

3. (3%) A parity function is a Boolean function whose value is 1 if the input has an odd number of ones. Design a Boolean circuit for the 2-bit parity function. Show your working. (Hint: you may find XOR gates useful.)

4. (3%) Suppose $\alpha = a_{31}a_{30} \dots a_1a_0$ is a 32-bit binary word. Consider the 32-bit binary word $\beta = b_{31}b_{30}\dots b_1b_0$ computed by the following algorithm: scan α from right to left and copy its bits to β until the first 1 is found (which is also copied to β); after that, copy the Boolean negations of the bits in α . For example, $\alpha = 10100\dots00$ is transformed to $\beta = 01100\dots00$. Explain what this algorithm computes if α and β are interpreted as binary numbers.

Given a two's compliment binary number, the algorithm computes the conversion into a binary number.

5. (6%) Given the machine 32-bit word

1100 0001 0011 0000 0000 0000 0000 0000

find the decimal number represented by this word assuming that it is

- (a) a two's complement integer;
 - 1. Read the first character from the left of the word to get the sign of the integer it represents. In this case it is a one so the number is negative.
 - 2. Use the two's compliment algorithm to convert it into a binary number. Starting from the right of the word, move to the first one :
 - * 1100 0001 0011 00...00
 - 3. Move left, from the first on flipping the bit after the first one until you reach the far left:
 - * 1100 0001 0001 00...00
 - * 1100 0001 0101 00...00
 - * 1100 0001 1101 00...00
 - * 1100 0000 1101 00...00
 - * 1100 0010 1101 00...00
 - * 1100 0110 1101 00...00
 - * 1100 1110 1101 00...00
 - $* \ 1101 \ 1110 \ 1101 \ 00...00$
 - * 1111 1110 1101 00...00
 - * 1011 1110 1101 00...00
 - * 0011 1110 1101 00...00
 - 4. Then add all the base two 1's together to get the integer:

$$* 2^{29} + 2^{28} + 2^{27} + 2^{26} + 2^{25} + 2^{23} + 2^{22} + 2^{20} = 1053818880$$

- 5. And multiply it by the sign, which is -1:
 - * -1(1053818880) = -1053818880
- (b) an unsigned integer;

As an unsigned integer, add the base two ones together:

 $2^{31} + 2^{30} + 2^{24} + 2^{21} + 2^{20} = 3241148416$

(c) a single precision IEEE 754 floating-point number.

$$(-1)^S \times (1+F) \times 2^E$$

S = Sign

F = fraction (0 < F < 1)

E = Exponent - Bias

Bias = 127 for single precision

If the first character of the word is a one then the sign is negative:

$$S = 1$$

The next eight bits make up the exponent:

$$E = 100\ 0001\ 0 = 2^7 + 2^1 = 128 + 2 = 130$$
 - Bias = 130 - 127 = 3

 $F = 011 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000$

Going from left to right, with left as the zero point and going into the negative:

$$2^{-2} + 2^{-3} = 0.25 + 0.125 = 0.375$$

$$(-1)^1 \times (1 + 0.375) \times 2^3$$

$$-1 \times 1.375 \times 8$$

The answer is -11

- 6. (6%) Find computer representations of the following numbers:
 - (a) -1022 as a two's complement 32-bit binary number;
 - (b) -32.75 as an IEEE 754 32-bit floating-point number;
 - (c) 77 as a two's complement 32-bit binary number.
- 7. (6%) Consider the following finite automaton:

- (a) Give all the computations of the automaton on the input strings aab, aba, and ε , and determine if the strings are accepted.
- (b) Describe the language accepted by the automaton in English.
- (c) Describe the language accepted by the automaton by means of a regular expression.
- (d) Describe the language accepted by the automaton by means of a context-free grammar.
- 8. (10%) Transform, using the subset construction, the following nondeterministic finite automaton into an equivalent deterministic finite automaton. Show your working.

What is the language of this automaton.

- 9. (7%) Design a (deterministic or nondeterministic) finite automaton A such that L(A) consists of all strings over the alphabet $\{0,1\}$ that begin with 01 and do not end with 11. Find a regular expression representing the language L(A).
- 10. (6%) Design a (deterministic or nondeterministic) finite automaton A such that L(A) consists of all strings over the alphabet $\{0,1\}$ whose third symbol from the right end is 1 (for example, 100101 is in L(A), but 100011 is not). Find a regular expression representing L(A).
- 11. (8%) Convert the regular language $L[x((y \cup x)^*x)^*y]$ to a finite automaton accepting it.
- 12. (4%) Consider the following context free grammar:

$$S \to SS, \quad S \to L0L0L, \qquad L \to \varepsilon, \quad L \to 1L, \quad L \to 0L.$$

- (a) Give a derivation for the string 101101.
- (b) Describe in English the language of this grammar.
- 13. (6%) Construct context free grammars for the following languages
 - (a) $\{w \in \{0,1\}^* \mid w \text{ starts and ends with different symbols}\},$
 - (b) $\{w \in \{0,1\}^* \mid \text{ the length of } w \text{ is even}\}$
- 14. (15%) Construct a context free grammar and a pushdown automaton for the language of words over the alphabet $\{0,1\}$ that start and end with the same symbol and have the same number of 0s as 1s.
- 15. (5%) Consider the following transition table of a Turing machine:

- (i) Give the computations of the machine starting with the configurations
 - $-(s,\triangleright\underline{0}),$
 - $(s, \triangleright 111),$
 - $(s, \triangleright 100).$

- (ii) Describe in English what this Turing machine does.
- 16. (9%) Consider the following $\mathbb{N} \to \mathbb{N}$ function f:

$$f(n) = \begin{cases} 4n & \text{if } n \text{ is odd,} \\ n/2 & \text{if } n \text{ is even.} \end{cases}$$

(Don't forget that all numbers are represented in binary.)

- (i) Explain what it means to say that a Turing machine computes this function f.
- (ii) Give an implementation level description in English of a Turing machine that computes this f.
- (iii) Give the complete transition table of this Turing machine.
- (iv) Give the computations of your Turing machine on inputs 0, 11 and 100.