目 录

一、实验要求	2
二、实验原理	2
1.AD/DA 模块	2
2.设计原理	6
三、DE0 外接引脚说明	8

基于 FPGA 的频率检测电路

一、实验要求

1. 利用 FPGA 开发板和高速 A/D 模块检测信号发生器输出任意波形的频率, 当检测到频率为 1KHZ 时,用 2 位数码管显示同组成员学号后 2 位。当输入信号 为其他频率时显示另一位成员学号后 2 位数字。(单人组同学按照分别显示学号 后 2 位和后 3-4 位处理)

二、实验原理

- 1. AD/DA 模块
- 1.1 AD/DA 模块

- 1.2 A/D 芯片
- 1.2.1 AD9280 芯片

AD9280 是 ADI 公司生产的一款单芯片、8 位、32MSPS (Million Samples Per Second,每秒采样百万次)模数转换器,具有高性能、低功耗的特点。

AD9280 的内部功能框图如下图所示:

AD9280 内部功能框图

AD9280 在时钟(CLK)的驱动下工作,用于控制所有内部转换的周期; AD9280 内置片内采样保持放大器(SHA),同时采用多级差分流水线架构,保证了32MSPS的数据转换速率下全温度范围内无失码;AD9280内部集成了可编程的基准源,根据系统需要也可以选择外部高精度基准满足系统的要求。

AD9280 输出的数据以二进制格式表示,当输入的模拟电压超出量程时,会拉高 OTR(out-of-range)信号;当输入的模拟电压在量程范围内时,OTR 信号为低电平,因此可以通过 OTR 信号来判断输入的模拟电压是否在测量范围内。AD9280 的时序图如下图所示:

模拟信号转换成数字信号并不是当前周期就能转换完成,从采集模拟信号开始到输出数据需要经过3个时钟周期。比如上图中在时钟 CLK 的上升沿沿采集的模拟电压信号 S1,经过3个时钟周期后(实际上再加上25ns的时间延时),输出转换后的数据 DATA1。需要注意的是,AD9280 芯片的最大转换速度是

输出转换后的数据 DATA1。需要注意的是,AD9280 芯片的最大转换速度是32MSPS,即输入的时钟最大频率为32MHz。

AD9280 支持输入的模拟电压范围是 0V 至 2V, 0V 对应输出的数字信号为 0, 2V 对应输出的数字信号为 255。输出的电压范围是-5V~+5V,需要在 AD9280 的模拟输入端增加电压衰减电路,使-5V~+5V 之间的电压转换成 0V 至 2V 之间。

那么实际上对我们用户使用来说,当 AD9280 的模拟输入接口连接-5V 电压时,AD 输出的数据为 0;当 AD9280 的模拟输入接口连接+5V 电压时,AD 输出的数据为 255。

当 AD9280 模拟输入端接-5V 至+5V 之间变化的正弦波电压信号时, 其转换后的数据也是成正弦波波形变化, 转换波形如下图所示:

AD9280 正弦波模拟电压值(左)、数据(右)

由上图可知,输入的模拟电压范围在-5V至5V之间,按照正弦波波形变化,最终得到的数据也是按照正弦波波形变化。

1.2.2 AD9280 电路原理图

AD9280 电路原理图

1.2.3 工作原理

上图中输入的模拟信号 SMA_IN 经过衰减电路后得到 AD_IN2 信号,两个模拟电压信号之间的关系是 AD_IN2=SMA_IN/5+1,即当 SMA_IN=5V 时,AD_IN2=2V; SMA_IN=-5V 时,AD_IN2=0V。

1.3 引脚配置

1.3.1 模数模块外接引脚

1.3.2 FPGA 外接引脚

1.3.3 模数模块引脚说明

信号名	端口说明

ad_data[0]	AD 输入数据
ad_data[1]	AD 输入数据
ad_data[2]	AD 输入数据
ad_data[3]	AD 输入数据
ad_data[4]	AD 输入数据
ad_data[5]	AD 输入数据
ad_data[6]	AD 输入数据
ad_data[7]	AD 输入数据
ad_otr	模拟输入电压超出量程标志 (0:量程范围内 1:超过量程)
ad_clk	AD9280 驱动时钟

2. 设计原理

2.1 测量原理

常用的频率测量方法有周期法、直接测频法和等精度频率测量法。直接测频 法原理简单易懂,选择直接测频法测量信号频率。直接测频法在确定的闸门时间 内记录被测信号的脉冲个数。由于闸门时间通常不是待测信号的整数倍,这种方 法的计数值也会产生最大为±1个脉冲误差。

频率测量的整体原理如下图,被测信号为外部输入信号,送入测量电路,在确定的闸门时间内,测量计数、数据锁存和送显,就完成了频率测量的基本功能。

直接法频率法的原理框图

计数原理图

2.2 原理框图

FPGA频率检测

由于 AD9280 转换芯片支持的最大时钟频率为 32Mhz,而 FPGA 的系统时钟 频率为 50Mhz, 所以需要先对时钟进行分频, 将分频后的时钟作为 AD9280 转换 芯片的驱动时钟。

三、DEO 外接引脚说明

按钮开关与 Cyclone III FPGA 的连接按钮开关的引脚分配

信号名	FPGA 引脚号	说明
BUTTON [0]	PIN_ H2	Pushbutton[0]
BUTTON [1]	PIN_ G3	Pushbutton[1]
BUTTON [2]	PIN_ F1	Pushbutton[2]

拨动开关与 CycloneIII FPGA 的连接

拨动开关的引脚分配

信号名	FPGA 引脚号.	说明
SW[0]	PIN_J6	Slide Switch[0]
SW[1]	PIN_H5	Slide Switch[1]
SW[2]	PIN_H6	Slide Switch[2]
SW[3]	PIN_G4	Slide Switch[3]
SW[4]	PIN_G5	Slide Switch[4]
SW[5]	PIN_J7	Slide Switch[5]
SW[6]	PIN_H7	Slide Switch[6]
SW[7]	PIN_E3	Slide Switch[7]
SW[8]	PIN_E4	Slide Switch[8]
SW[9]	PIN_D2	Slide Switch[9]

LED 灯与 Cyclone III FPGA 的连接

LED 灯的引脚分配

信号名	FPGA 引脚号	说明
LEDG[0]	PIN_J1	LED Green[0]
LEDG[1]	PIN_J2	LED Green[1]
LEDG[2]	PIN_J3	LED Green[2]
LEDG[3]	PIN_H1	LED Green[3]
LEDG[4]	PIN_F2	LED Green[4]

LEDG[5]	PIN_E1	LED Green[5]
LEDG[6]	PIN_C1	LED Green[6]
LEDG[7]	PIN_C2	LED Green[7]
LEDG[8]	PIN_B2	LED Green[8]
LEDG[9]	PIN_B1	LED Green[9]

HEX0

七段数码管与 Cyclone III FPGA 芯片的连接示意图

七段数码管每个字段的相应编号

七段数码管的引脚配置

信号名	FPGA 引脚号	说明
HEX0_D[0]	PIN_E11	Seven Segment Digit 0[0]
HEX0_D[1]	PIN_F11	Seven Segment Digit 0[1]
HEX0_D[2]	PIN_H12	Seven Segment Digit 0[2]
HEX0_D[3]	PIN_H13	Seven Segment Digit 0[3]
HEX0_D[4]	PIN_G12	Seven Segment Digit 0[4]
HEX0_D[5]	PIN_F12	Seven Segment Digit 0[5]
HEX0_D[6]	PIN_F13	Seven Segment Digit 0[6]
HEX0_DP	PIN_D13	Seven Segment Decimal Point 0
HEX1_D[0]	PIN_A13	Seven Segment Digit 1[0]
HEX1_D[1]	PIN_B13	Seven Segment Digit 1[1]
HEX1_D[2]	PIN_C13	Seven Segment Digit 1[2]

HEX1_D[3]	PIN_A14	Seven Segment Digit 1[3]
HEX1_D[4]	PIN_B14	Seven Segment Digit 1[4]
HEX1_D[5]	PIN_E14	Seven Segment Digit 1[5]
HEX1_D[6]	PIN_A15	Seven Segment Digit 1[6]
HEX1_DP	PIN_B15	Seven Segment Decimal Point 1
HEX2_D[0]	PIN_D15	Seven Segment Digit 2[0]
HEX2_D[1]	PIN_A16	Seven Segment Digit 2[1]
HEX2_D[2]	PIN_B16	Seven Segment Digit 2[2]
HEX2_D[3]	PIN_E15	Seven Segment Digit 2[3]
HEX2_D[4]	PIN_A17	Seven Segment Digit 2[4]
HEX2_D[5]	PIN_B17	Seven Segment Digit 2[5]
HEX2_D[6]	PIN_F14	Seven Segment Digit 2[6]
HEX2_DP	PIN_A18	Seven Segment Decimal Point 2

HEX3_D[0]	PIN_B18	Seven Segment Digit 3[0]
HEX3_D[1]	PIN_F15	Seven Segment Digit 3[1]
HEX3_D[2]	PIN_A19	Seven Segment Digit 3[2]
HEX3_D[3]	PIN_B19	Seven Segment Digit 3[3]
HEX3_D[4]	PIN_C19	Seven Segment Digit 3[4]
HEX3_D[5]	PIN_D19	Seven Segment Digit 3[5]
HEX3_D[6]	PIN_G15	Seven Segment Digit 3[6]
HEX3_DP	PIN_G16	Seven Segment Decimal Point 3

时钟分配电路的方块图

时钟输入的引脚分配

信号名	FPGA 引脚 号 .	说明
CLOCK_50	PIN_G21	50 MHz clock input

扩展接头的 I/O 分配