

Discrete Mathematics

MATH-305/501

Dr. Ahmed M. H. Abdelfattah

ahmed.abdelfattah@guc.edu.eg

Computer Science and Engineering, GUC

http://shams.academia.edu/AhmedAbdelFattah

#2 (Arguments in PL)

Logical Equivalences

Two statements p and q are logically equivalent, denoted $p \equiv q$, if and only if $p \leftrightarrow q$ is a tautology.

Logical Equivalences

Two statements p and q are logically equivalent, denoted $p \equiv q$, if and only if $p \leftrightarrow q$ is a tautology.

Example: Show that
$$\neg (p \land q) \equiv \neg p \lor \neg q$$
 (De Morgan's)

Logical Equivalences

Two statements p and q are logically equivalent, denoted $p \equiv q$, if and only if $p \leftrightarrow q$ is a tautology.

Example: Show that $\neg (p \land q) \equiv \neg p \lor \neg q$ (De Morgan's)

Answer:

- ① Construct the truth table of $\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$
- ② Check whether it is a tautology if "Yes", then $\neg (p \land q)$ and $(\neg p \lor \neg q)$ are logically equivalent.

Logical Equivalences

Two statements p and q are logically equivalent, denoted $p \equiv q$, if and only if $p \leftrightarrow q$ is a tautology.

Example: Show that $\neg (p \land q) \equiv \neg p \lor \neg q$ (De Morgan's)

Answer:

- ① Construct the truth table of $\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$
- ② Check whether it is a tautology if "Yes", then ¬(p ∧ q) and (¬p ∨ ¬q) are logically equivalent.

			$\neg(p \land q)$ ①				
			F				
Т	F	F	Т	F	Т	Т	Т
F	Т	F	Т	Т		Т	Т
F	F	F	Т	Т	Т	Т	Т

Answer:

① Any material implication has the form $p \to q$, where p and q are propositions. E.g. $A \to B$ and $(R \lor S) \to (T \land \neg S)$ are both forms of implication.

Answer:

- Any material implication has the form $p \to q$, where p and q are propositions. E.g. $A \to B$ and $(R \lor S) \to (T \land \neg S)$ are both forms of implication.
- ② Recall that the contrapositive of $p \to q$ has the form $\neg q \to \neg p$.

Answer:

- **4** Any material implication has the form $p \to q$, where p and q are propositions.
 - E.g. $A \to B$ and $(R \lor S) \to (T \land \neg S)$ are both forms of implication.
- **②** Recall that the contrapositive of $p \to q$ has the form $\neg q \to \neg p$.
 - E.g. The contrapositive of $A \to B$ is $\neg B \to \neg A$
 - E.g. The contrapositive of $(R \lor S) \to (T \land \neg S)$ is $\neg (T \land \neg S) \to \neg (R \lor S)$

Answer:

4. Any material implication has the form $p \to q$, where p and q are propositions.

E.g. $A \to B$ and $(R \lor S) \to (T \land \neg S)$ are both forms of implication.

@ Recall that the contrapositive of $p \to q$ has the form $\neg q \to \neg p$.

E.g. The contrapositive of $A \rightarrow B$ is $\neg B \rightarrow \neg A$

E.g. The contrapositive of $(R \vee S) \to (T \wedge \neg S)$ is $\neg (T \wedge \neg S) \to \neg (R \vee S)$

(9) We need therefore to check whether or not $(p \to q) \leftrightarrow (\neg q \to \neg p)$ is a tautology if "Yes", then a material implication $p \to q$ and its contrapositive statement $\neg q \to \neg p$ are logically equivalent.

p	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$	$(p \to q) \leftrightarrow (\neg q \to \neg p)$
Т	Т	Т		
Т	F	F		
F	Т	Т		
F	F	Т		

Important Equivalence Rules

- Commutativity:

 - $p \wedge q \equiv q \wedge p.$
- ► Associativity:

 - $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
- ► De Morgan's laws:
- ► Distributive Properties:
- ▶ Implication: $p \rightarrow q \equiv \neg p \lor q$
- ▶ Double Negation: $\neg \neg p \equiv p$
- ▶ Equivalence: $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$

Tautologies, Contradictions, and Contingencies

A tautology is a statement that is true under any truth assignment to its variables

Example: $p \lor \neg p$ $(p \land p) \leftrightarrow p$ $p \to (q \to p)$

A contradiction is a statement that is false under any truth assignment to its variables

Example: $p \land \neg p$ $p \leftrightarrow \neg (p \lor p)$

A statement is **satisfiable** if it is not a contradiction.

Example: p

A statement is falsifiable if it is not a tautology.

Example: $p \rightarrow q$

A statement is a **contingency** if it is both falsifiable and satisfiable.

Example: $p \lor (q \land \neg r)$

Tautologies, Contradictions, and Contingencies

Exercise: Complete the following table

	Tautology	Satisfiable	Contingency
p o eg p	X	√	
$p \vee \neg p$	\checkmark	\checkmark	
$p \wedge \neg p$			X
$p \lor q$			\checkmark
p o q		✓	
$p \wedge q \to q$	\checkmark	\checkmark	

Tautologies, Contradictions, and Contingencies

Exercise: Complete the following table					
	Tautology	Satisfiable	Contingency		
p o eg p	X	√			
$p \vee \neg p$	√	\checkmark			
$p \wedge \neg p$			X		
$p \lor q$			\checkmark		
p o q		\checkmark			
$p \wedge q \rightarrow q$	√	✓			

Logic Applications:

- ► Web searching.
- System configurations.
- ► Logic Puzzles, the *n*-queens puzzles, Sudoku, etc.
- ► Automatic theorem-proving: see "Resolution".
- Logic Gate Design.

Logical Vs. Human: NL conditional \neq Material conditional

The 4-Card Puzzle: Deductive Reasoning and the Selection Task

- Rules: ① Each card has a **letter** on one side and a **number** on the other.
 - 2 A card that has D on one side must have 3 on the other.
 - 3 A response that identifies a card that need not be inverted, or that fails to identify a card that needs to be inverted, is incorrect.
- Given: Four cards showing D, K, 3, and 7
- Task: To verify the rule's truth: which cards should only be checked?

Result: Any ideas?

Logical Vs. Human: NL conditional \neq Material conditional

The 4-Card Puzzle: Deductive Reasoning and the Selection Task

- Rules: ① Each card has a **letter** on one side and a **number** on the other.
 - 2 A card that has D on one side must have 3 on the other.
 - 3 A response that identifies a card that need not be inverted, or that fails to identify a card that needs to be inverted, is incorrect.
- Given: Four cards showing D, K, 3, and 7
- Task: To verify the rule's truth: which cards should only be checked?
- Result: Not even 10% of participants found the correct solution (D and 7).

Logical Vs. Human: NL conditional \neq Material conditional

The 4-Card Puzzle: Deductive Reasoning and the Selection Task

- Rules: 1 Each card shows a **person** on one side and a **beverage** on the other.
 - ② If someone is drinking alcohol, someone must be ≥ 21 .
 - 3 A response that identifies a card that need not be inverted, or that fails to identify a card that needs to be inverted, is incorrect.
- Given: Four cards showing beer, cola, 25, and 16
- Task: To verify the rule's truth: which cards should only be checked?
- Result: Participants behave significantly better (beer and 16) in social contexts.

Other variants: Turn as few cards as possible to prove the rule

- If there is a vowel at one side, there will be an even number at the other side.
- If a card shows an even number on one face, then its opposite face is red.

Propositions: A statement is a sentence that can be assigned exactly one of the two truth values (tertium non datur)

Propositions: A statement is a sentence that can be assigned exactly one of the two

truth values (tertium non datur)

Tautologies: A tautology is a statement that is true under any truth assignment to its

variables

Propositions: A statement is a sentence that can be assigned exactly one of the two truth values (tertium non datur)

Tautologies: A tautology is a statement that is true under any truth assignment to its

variables

Contradictions: A contradiction is a statement that is false under any truth assignment to its variables

Propositions: A statement is a sentence that can be assigned exactly one of the two

truth values (tertium non datur)

Tautologies: A tautology is a statement that is true under any truth assignment to its

variables

Contradictions: A contradiction is a statement that is false under any truth assignment to

its variables

Contingency modes: A statement is satisfiable if it is not a contradiction.

A statement is falsifiable if it is not a tautology.

A statement is a contingency if it is both falsifiable and satisfiable.

Propositions: A statement is a sentence that can be assigned exactly one of the two truth values (tertium non datur)

Tautologies: A tautology is a statement that is true under any truth assignment to its variables

Contradictions: A contradiction is a statement that is false under any truth assignment to its variables

Contingency modes: A statement is satisfiable if it is not a contradiction.

A statement is falsifiable if it is not a tautology.

A statement is a contingency if it is both falsifiable and satisfiable.

Logical equivalence: Two statements p and q are logically equivalent, denoted $p \equiv q$, if and only if $p \leftrightarrow q$ is a tautology.

Propositions: A statement is a sentence that can be assigned exactly one of the two truth values (tertium non datur)

Tautologies: A tautology is a statement that is true under any truth assignment to its variables

Contradictions: A contradiction is a statement that is false under any truth assignment to its variables

Contingency modes: A statement is satisfiable if it is not a contradiction.

A statement is falsifiable if it is not a tautology.

A statement is a contingency if it is both falsifiable and satisfiable.

Logical equivalence: Two statements p and q are logically equivalent, denoted $p \equiv q$, if and only if $p \leftrightarrow q$ is a tautology.

Logical fallacies: invalid arguments that are based on contingencies rather than tautologies.

Propositions: A statement is a sentence that can be assigned exactly one of the two truth values (tertium non datur)

Tautologies: A tautology is a statement that is true under any truth assignment to its variables

Contradictions: A contradiction is a statement that is false under any truth assignment to its variables

Contingency modes: A statement is satisfiable if it is not a contradiction.

A statement is falsifiable if it is not a tautology.

A statement is a contingency if it is both falsifiable and satisfiable.

Logical equivalence: Two statements p and q are logically equivalent, denoted $p \equiv q$, if and only if $p \leftrightarrow q$ is a tautology.

Logical fallacies: invalid arguments that are based on contingencies rather than tautologies.

Entscheidungsproblem: Is there always an algorithm (i.e., a definite procedure) that can decide whether or not a statement is true?

Smullyan's¹ Puzzle of the Politicians:

A certain convention numbered 100 politicians.

- Each politician was either crooked or honest.
- We are given the following two facts.
 - At least one of the politicians was honest.

[MATH-305/501:: LCT.#2 (Intro. to proofs)]

- Q Given any two of the politicians, at least one of the two was crooked.
- Can it be determined from these two facts how many of the politicians were honest and how many were crooked?

Solution:

- Only one honest politician.
- ► Why?

Write your argument here:

src: https://raymondsmullyan.com/

 $^{^1}$ Visit https://raymondsmullyan.com/ or read (Rosen, 2018, pp. 21) for more about Raymond Smullyan, the modern-day Lewis Carroll, the master of logic puzzles.

Arguments

- ▶ An argument is a *pair* (P,q) that consists of:
 - $\mathcal{P} = \{p_1, p_2, \dots, p_n\}$ is a finite set of statements called hypotheses (or premises), $\{p_1, p_2, \dots, p_n\}$, and
 - Q q is a statement called the conclusion, q.

Arguments

- An argument is a pair (\mathcal{P}, q) that consists of:
 - $\mathbf{0}$ $\mathcal{P} = \{p_1, p_2, \dots, p_n\}$ is a finite set of statements called hypotheses (or premises), $\{p_1, p_2, \dots, p_n\}$, and
- Q is a statement called the conclusion, Q.
- ► The hypotheses and conclusion are commonly displayed as

or represented in PL as implications: $p_1 \wedge p_2 \wedge \cdots \wedge p_n \rightarrow q$

$$p_1 \wedge p_2 \wedge \cdots \wedge p_n \rightarrow q$$

Arguments

- An argument is a pair (\mathcal{P}, q) that consists of:
 - $\mathbf{0}$ $\mathcal{P} = \{p_1, p_2, \dots, p_n\}$ is a finite set of statements called hypotheses (or premises), $\{p_1, p_2, \dots, p_n\}$, and
 - Q is a statement called the conclusion, Q.
- ► The hypotheses and conclusion are commonly displayed as

$$p_1$$
 p_2
 \vdots
 p_n
 \vdots q

or represented in PL as implications:

$$p_1 \wedge p_2 \wedge \cdots \wedge p_n \rightarrow q$$

Example:
$$\begin{array}{c} U \wedge V \\ U \rightarrow \neg R \\ \neg V \vee S \\ \hline \therefore S \wedge \neg R \end{array}$$

[MATH-305/501:: LCT.#2 (Intro. to proofs)]

Here, $U \wedge V$, $U \rightarrow \neg R$, and $\neg V \vee S$ are the premises, whereas $S \wedge \neg R$ is the conclusion.

The argument as an implication: $(U \wedge V) \wedge (U \rightarrow \neg R) \wedge (\neg V \vee S) \rightarrow (S \wedge \neg R)$

Valid Arguments

Definition

An argument is valid if the conclusion is true whenever all hypotheses are true.

Argument: $(D \to T) \land D \to T$

If I drive to work, then I will arrive tired $D \rightarrow T$

I drive to work

 \therefore I will arrive tired \therefore T

Argument: $W \wedge (W \rightarrow R) \rightarrow R$

The British PM is a woman W

If the British PM is a woman, then the British PM is a mother W o R

The British PM is a mother

An argument is valid if the conclusion is true whenever all hypotheses are true \equiv An argument is valid if it is a tautology

Are the following arguments valid?

Example (Argument1)

The British PM is a woman If the British PM is a woman, then the British PM is a mother

... The British PM is a mother

GUC

Example (Argument2)

The British PM is either a man or a woman If the British PM is a mother, then the British PM is a woman

.: The British PM is a man

Valid Arguments

An argument is valid if the conclusion is true whenever all hypotheses are true = An argument is valid if it is a tautology

Are the following arguments valid?

Valid

Example (Argument1)

The British PM is a woman	W
If the British PM is a woman, then the British PM is a mother	$W \to R$
· The British PM is a mother	R

Invalid

Example (Argument2)

Fall-2022

The British PM is either a man or a woman	$M \vee W$
If the British PM is a mother, then the British PM is a woman	$R \to W$
· The British PM is a man	· M

More on Valid Arguments

- ▶ The truth of the conclusion has to *follow from* the truth of the hypotheses.
- ▶ There should be no world in which the hypotheses are all true and the conclusion is false.
- An argument is valid if it is a tautology.

More on Valid Arguments

- ▶ The truth of the conclusion has to *follow from* the truth of the hypotheses.
- ▶ There should be no world in which the hypotheses are all true and the conclusion is false
- An argument is valid if it is a tautology.

Example

at
$$egin{pmatrix} P
ightarrow Q \ P \end{bmatrix}$$
 is

Prove that $\frac{P}{\therefore Q}$ is a valid argument.

Notes:

- ► This argument is known as modus ponens (usually abbreviated MP).
- ▶ To show its validity, simply prove that $((P \to Q) \land P) \to Q$ is a tautology.

Validity Vs. Truth

- Statements can be true or false
- Arguments can be valid or invalid
- ► Tautologies: A tautology is a statement that's true under any truth assignment.
- ▶ Logical fallacies: invalid arguments that are based on contingencies.

Validity Vs. Truth

- Statements can be true or false
- Arguments can be valid or invalid
- Tautologies: A tautology is a statement that's true under any truth assignment.
- Logical fallacies: invalid arguments that are based on contingencies.

Validity is all about the form:

If you Invest in the stock market, then you get Rich	$I \to R$
If you get Rich, then you become Happy	$R \to H$
If you Invest in the stock market, then you become Happy	$I \to H$

So, no matter what is being said, $(I \to R) \land (R \to H) \to (I \to H)$ is a valid argument.

Validity Vs. Truth

- ► Statements can be true or false
- Arguments can be valid or invalid
- ► Tautologies: A tautology is a statement that's true under any truth assignment.
- ▶ Logical fallacies: invalid arguments that are based on contingencies.

Take Care: An argument can be VALID, despite its conclusion being	FALSE!
Smoking is healthy	H
If smoking is healthy, then cigarettes are prescribed by physicians	$H \to P$
Cigarettes are prescribed by physicians	∴ P

Validity Vs. Truth

- Statements can be true or false
- Arguments can be valid or invalid
- ► **Tautologies:** A tautology is a statement that's true under any truth assignment.
- ▶ Logical fallacies: invalid arguments that are based on contingencies.

Take Care: An argument can be VALID, despite its conclusion being	FALSE!
Smoking is healthy	H
If smoking is healthy, then cigarettes are prescribed by physicians	$H \to P$

∴ Cigarettes are prescribed by physicians	<i>:</i> .	F)
---	------------	---	---

Take Care: An INVALID argument is a fallacy

If you solve every problem, then you will learn discrete mathematics	$S \to M$
You learned discrete mathematics.	M
You solve every problem.	∴ S

This Slide is for Rent:

Ahmad Ahlay

Formal Proofs

Instead of using truth tables, we can produce a formal proof that a given argument is valid (i.e., that the conclusion follows from the hypotheses).

A formal proof is a *sequence* of statements in which each statement is either a hypothesis or the result of applying a predefined set of derivation rules on earlier statements in the proof.

► For the proof to be correct, derivation rules must be truth-preserving—they must represent valid argument.

Formal Proofs

Instead of using truth tables, we can produce a formal proof that a given argument is valid (i.e., that the conclusion follows from the hypotheses).

A formal proof is a *sequence* of statements in which each statement is either a hypothesis or the result of applying a predefined set of derivation rules on earlier statements in the proof.

► For the proof to be correct, derivation rules must be truth-preserving—they must represent valid argument.

Derivation Rules

- ▶ Derivation rules come in two flavors.
 - Equivalence rules allow statements and sub-statements to be substituted by logically-equivalent statements.
 - ② Inference rules allow new statements to be derived from previous statements in the proof.

Inference:

- ▶ Inference is the name given to the reasoning process, by which we assert or deny the truth of a conclusion on the basis of other beliefs (premises) assumed to be true.
- ► Corresponding to every inference, one² can formulate a group of statements as an argument leading to the conclusion in question.

Important Equivalence Rules (again)

- Commutativity:

 - $p \wedge q \equiv q \wedge p.$
- ► Associativity:

 - $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
- ► De Morgan's laws:
- ► Distributive Properties:
- ▶ Implication: $p \rightarrow q \equiv \neg p \lor q$
- ▶ Double Negation: $\neg \neg p \equiv p$
- ▶ Equivalence: $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$

Important Inference Rules

Modus Ponens (MP)

 $\begin{array}{c} p \to q \\ \hline \therefore \ q \end{array}$

Modus Tollens (MT)

Hypothetical Syllogism (HS)

$$\frac{q \to r}{\therefore p \to r}$$

Disjunctive Syllogism (DS)

Addition

$$\frac{p}{\therefore p \vee q}$$

Simplification

Conjunction

$$\begin{array}{c} p \\ q \\ \hline \therefore \ p \wedge q \end{array}$$

Resolution

See Table 1 in (Rosen, 2018, pp. 76)

Prove that $A \land (A \rightarrow B) \land (B \rightarrow \neg C) \rightarrow \neg C$

Prove that $A \land (A \rightarrow B) \land (B \rightarrow \neg C) \rightarrow \neg C$

- ① A
- $2 A \rightarrow B$
- $3 B \to \neg C$

- (hypothesis)
- (hypothesis)
- (hypothesis)

Prove that $A \land (A \rightarrow B) \land (B \rightarrow \neg C) \rightarrow \neg C$

$$② A \to B$$
 (hypothesis)

$$\P$$
 (from 1 and 2 using MP)

Prove that $A \land (A \rightarrow B) \land (B \rightarrow \neg C) \rightarrow \neg C$

$$\bigcirc A \to B$$
 (hypothesis)

$$\textcircled{4}$$
 B (from 1 and 2 using MP)

Example (Without using TT)

Prove that $A \land (B \to C) \land ((A \land B) \to (D \lor \neg C)) \land B \to D$

Example (Without using TT)

Prove that $A \land (B \to C) \land ((A \land B) \to (D \lor \neg C)) \land B \to D$

① A (hypothesis)

 $② B \to C$ (hypothesis)

Example (Without using TT)

Prove that $A \land (B \rightarrow C) \land ((A \land B) \rightarrow (D \lor \neg C)) \land B \rightarrow D$

① A (hypothesis)

Example (Without using TT)

Prove that $A \land (B \to C) \land ((A \land B) \to (D \lor \neg C)) \land B \to D$

① A (hypothesis)

 $② \ B \to C$ (hypothesis)

4 B (hypothesis)

(2, 4, MP)

Example (Without using TT)

Prove that $A \land (B \rightarrow C) \land ((A \land B) \rightarrow (D \lor \neg C)) \land B \rightarrow D$

① A (hypothesis)

 $② \ B \to C$ (hypothesis)

♠ B (hypothesis)

(2, 4, MP)

Example (Without using TT)

Prove that $A \land (B \rightarrow C) \land ((A \land B) \rightarrow (D \lor \neg C)) \land B \rightarrow D$

 $② \ B \to C$ (hypothesis)

 $(A \land B) \to (D \lor \neg C)$ (hypothesis)

♠ B (hypothesis)

⑤ *C* (2, 4, MP)

Example (Without using TT)

Prove that $A \land (B \to C) \land ((A \land B) \to (D \lor \neg C)) \land B \to D$

① A (hypothesis)

 $② B \to C$ (hypothesis)

 $(A \land B) \to (D \lor \neg C)$ (hypothesis)

4 B (hypothesis)

⑤ *C* (2, 4, MP)

Example (Without using TT)

Prove that $A \land (B \rightarrow C) \land ((A \land B) \rightarrow (D \lor \neg C)) \land B \rightarrow D$

1 A

 $\mathbf{2} B \to C$

 $(A \land B) \rightarrow (D \lor \neg C)$

4 B

(5) C

 $A \wedge B$

 $\bigcirc D \lor \neg C$

 \bullet $\neg C \lor D$

 $\mathbf{9} \ C \to D$

10 D

(hypothesis)

(hypothesis) (hypothesis)

(hypothesis)

(2, 4, MP)

(1, 4, conjunction)

(3, 6, MP)

(7, commutativity)

(8, implication)

(5, 9, MP)

Example (Without using TT)

Prove that $(U \wedge V) \wedge (U \rightarrow \neg R) \wedge (\neg V \vee S) \rightarrow (S \wedge \neg R)$

Is the argument

$$U \wedge V \\ U \rightarrow \neg R \\ \neg V \vee S$$
$$\therefore S \wedge \neg R$$

valid?

Is the argument

 $U \wedge V$ $U \rightarrow \neg R$

 $\neg V \vee S$ $\therefore S \wedge \neg R$

Example (Without using TT)

Prove that $(U \wedge V) \wedge (U \rightarrow \neg R) \wedge (\neg V \vee S) \rightarrow (S \wedge \neg R)$

 $(U \wedge V)$

(hypothesis)

 $(U \rightarrow \neg R)$

(hypothesis) (hypothesis)

 $(\neg V \vee S)$

4) *IJ*

(1, Simplification)

valid?

Example (Without using TT)

Prove that $(U \wedge V) \wedge (U \rightarrow \neg R) \wedge (\neg V \vee S) \rightarrow (S \wedge \neg R)$

 $(U \wedge V)$

(hypothesis) (hypothesis)

 $(U \rightarrow \neg R)$

(hypothesis)

 $(\neg V \vee S)$

(1, Simplification)

4) *IJ*

(5) V

(1, Simplification)

 $\neg V \vee S$ $\therefore S \wedge \neg R$

 $U \wedge V$ $U \rightarrow \neg R$

Is the argument

valid?

Is the argument

 $U \wedge V$ $U \to \neg R$

 $\neg V \vee S$

 $\therefore S \wedge \neg R$

Example (Without using TT)

Prove that $(U \wedge V) \wedge (U \rightarrow \neg R) \wedge (\neg V \vee S) \rightarrow (S \wedge \neg R)$

 \bigcirc $(U \wedge V)$

(hypothesis)

 $(U \rightarrow \neg R)$

(hypothesis)
(hypothesis)

(1, Simplification)

4 *U*

1 C: 1:0 .:

6 V

(1, Simplification)

⑥ ¬*R*.

valid?

 $\neg R$ (2, 4, MP)

Is the argument

 $U \wedge V$ $U \rightarrow \neg R$

 $\neg V \vee S$

 $\therefore S \wedge \neg R$

Example (Without using TT)

Prove that $(U \wedge V) \wedge (U \rightarrow \neg R) \wedge (\neg V \vee S) \rightarrow (S \wedge \neg R)$

- \bigcirc $(U \wedge V)$
- (hypothesis) (hypothesis) $(U \rightarrow \neg R)$
- $(\neg V \vee S)$

(hypothesis)

4) *IJ*

(1, Simplification)

(1, Simplification)

 $\bigcirc R$

(2, 4, MP)

(7) $V \rightarrow S$

valid?

(3, Implication)

Example (Without using TT)

Prove that $(U \wedge V) \wedge (U \rightarrow \neg R) \wedge (\neg V \vee S) \rightarrow (S \wedge \neg R)$

 \bigcirc $(U \wedge V)$

(hypothesis)

Is the argument (2) $(U \rightarrow \neg R)$

(hypothesis) (hypothesis)

 $\mathbf{3} \ (\neg V \vee S)$

(1, Simplification)

4) *II*

1 (. 1.0. 1.)

(E) 17

(1, Simplification)

⑥ ¬*R*.

(2, 4, MP)

 $\nabla V \to S$

(3, Implication)

8 S

(5, 7, MP)

valid?

 $U \wedge V$ $U \to \neg R$

 $\neg V \vee S$

 $\therefore S \wedge \neg R$

Example (Without using TT)

Prove that $(U \wedge V) \wedge (U \rightarrow \neg R) \wedge (\neg V \vee S) \rightarrow (S \wedge \neg R)$

 \bigcirc $(U \wedge V)$ (hypothesis)

 $(U \rightarrow \neg R)$ (hypothesis) $(\neg V \vee S)$ (hypothesis)

4) *IJ* (1, Simplification)

(1, Simplification)

 $\bigcirc R$ (2, 4, MP)

(7) $V \rightarrow S$

(3, Implication) **8** S

(5, 7, MP)

 \bullet $S \wedge \neg R$ (6, 8, Conjunction)

Is the argument

$$U \wedge V \\ U \rightarrow \neg R \\ \neg V \vee S \\ \therefore S \wedge \neg R$$

valid?

Is the argument

$$U \wedge V \\ U \rightarrow \neg R \\ \neg V \vee S \\ \therefore S \wedge \neg R$$

valid?

Example (Without using TT)

Prove that $(U \wedge V) \wedge (U \rightarrow \neg R) \wedge (\neg V \vee S) \rightarrow (S \wedge \neg R)$

- $(U \to \neg R)$ (hypothesis)
- 4 U (1, Simplification)
- (1, Simplification)
- ⑥ $\neg R$ (2, 4, MP)
- - $V \rightarrow S$ (5, iniplication)
- § S (5, 7, MP)

Answer: YES; the argument is valid!

- ▶ Show that: $p \to q \to r \leftrightarrow p \land q \to r$.
- ▶ Show that: $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$.

- ▶ Show that: $p \to q \to r \leftrightarrow p \land q \to r$.
- ▶ Show that: $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$.

Not exactly... they have applications:

▶ In Haskell, addition has the type $Int \rightarrow Int \rightarrow Int$

- ▶ Show that: $p \to q \to r \leftrightarrow p \land q \to r$.
- ▶ Show that: $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$.

Not exactly... they have applications:

- In Haskell, addition has the type $Int \rightarrow Int \rightarrow Int$
- The resolution inference rule:

- ▶ Show that: $p \to q \to r \leftrightarrow p \land q \to r$.
- ▶ Show that: $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$.

Not exactly... they have applications:

- ▶ In Haskell, addition has the type $Int \rightarrow Int \rightarrow Int$
- ► The resolution inference rule:
 - Used in PROLOG and other automatic reasoning & theorem proving programs

- ▶ Show that: $p \to q \to r \leftrightarrow p \land q \to r$.
- ▶ Show that: $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$.

Not exactly... they have applications:

- ▶ In Haskell, addition has the type $Int \rightarrow Int \rightarrow Int$
- ► The resolution inference rule:
 - Used in PROLOG and other automatic reasoning & theorem proving programs
 - The disjunction in its conclusion is called: "resolvent"

- ▶ Show that: $p \to q \to r \leftrightarrow p \land q \to r$.
- ▶ Show that: $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$.

Not exactly... they have applications:

- ▶ In Haskell, addition has the type $Int \rightarrow Int \rightarrow Int$
- ► The resolution inference rule:
 - Used in PROLOG and other automatic reasoning & theorem proving programs
 - The disjunction in its conclusion is called: "resolvent"
 - The hypotheses and the conclusion must be expressed as "clauses", where a clause is a disjunction of variables or negations of these variables.

- ▶ Show that: $p \to q \to r \leftrightarrow p \land q \to r$.
- ▶ Show that: $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$.

Not exactly... they have applications:

- ▶ In Haskell, addition has the type $Int \rightarrow Int \rightarrow Int$
- ► The resolution inference rule:
 - Used in PROLOG and other automatic reasoning & theorem proving programs
 - The disjunction in its conclusion is called: "resolvent"
 - The hypotheses and the conclusion must be expressed as "clauses", where a clause is a
 disjunction of variables or negations of these variables.
 - ullet Non-clauses can be replaced by ≥ 1 equivalent statements that are clauses.

Example

▶ Show that the premises $(A \land B) \lor C$ and $C \to D$ imply the conclusion $A \lor D$.

Example

- ▶ Show that the premises $(A \land B) \lor C$ and $C \to D$ imply the conclusion $A \lor D$.
- Show that both of the hypotheses:

Example

- ▶ Show that the premises $(A \land B) \lor C$ and $C \to D$ imply the conclusion $A \lor D$.
 - Show that both of the hypotheses:
 - "I left my notes in the library or I finished the rough draft of the paper", and

Example

- Show that the premises $(A \wedge B) \vee C$ and $C \to D$ imply the conclusion $A \vee D$.
- Show that both of the hypotheses:
 - "I left my notes in the library or I finished the rough draft of the paper", and
 - "I did not leave my notes in the library or I revised the bibliography"

Example

- ▶ Show that the premises $(A \land B) \lor C$ and $C \to D$ imply the conclusion $A \lor D$.
- Show that both of the hypotheses:
 - "I left my notes in the library or I finished the rough draft of the paper", and
 - "I did not leave my notes in the library or I revised the bibliography" imply that:

Example

- ▶ Show that the premises $(A \land B) \lor C$ and $C \to D$ imply the conclusion $A \lor D$.
- Show that both of the hypotheses:
 - "I left my notes in the library or I finished the rough draft of the paper", and
 - "I did not leave my notes in the library or I revised the bibliography"

imply that:

• "I finished the rough draft of the paper or I revised the bibliography".

الحامعة الألمانية بالقاهرة

Rosen, K. (2018). Discrete Mathematics and Its Applications. McGraw-Hill Education, 8th edition.

