CE362: MACHINE LEARNING

Credits and Hours:

Teaching Scheme	Theory	Practical	Tutorial	Total	Credit	
Hours/week	3	2	-	5	4	
Marks	100	50	-	150	-	

Pre-requisite courses:

• Probability, linear algebra, calculus and programming language

Outline of the Course:

Sr.	Title of the unit	Minimum number		
No.		of hours		
1.	Data cleaning and Preprocessing	06		
2.	Supervised Machine Learning	14		
3.	Unsupervised Machine Learning	11		
4.	Ensemble learning	04		
5.	Deep Neural Networks	10		
	Total hours (Theory):	45		
	Total hours (Lab):	30		
	Total hours :	75		

Detailed Syllabus:

1.	Data Cleaning and Pre-processing	06 Hours	13%
	Handling Missing data, Data Exploration and Visualization,		
	Handling Outliers, Data Integration and Aggregation, Feature		
	selection: Filter Methods, Wrapper Methods, Embedded		
	Methods, Data Transformation: Feature scaling and		
	normalization, Encoding categorical variables: one-hot		
	encoding, label encoding, Data transformation for skewed		
	distributions		
2.	Supervised Machine Learning	14 Hours	31%
	What is supervised ML, Linear Regression for univariate and		
	Multivariate data, Cost function, Gradient Descent, Logistic		
	regression, Under fitting and Over fitting, Support Vector		

© CHARUSAT 2024 Page **23** of **57**

	Machine, Decision Tree, Random Forest, Artificial Neural		
	Network architecture, Activation functions, Forward pass in		
	ANN, Back propogation in ANN, Model Evaluation		
	techniques.		
3.	Unsupervised Machine Learning	11 Hours	25%
	What is unsupervised ML, Distance Techniques: Euclidean		
	Distance, Manhattan Distance, Minkowski Distance, Cosine		
	Similarity, Hamming Distance. Different clustering		
	algorithm: K-means, Hierarchical Clustering, DBSCAN,		
	Evaluate clustering algorithm, Evaluation Techniques:		
	Evaluate Clustering metrics - Silhouette Score, Calinski-		
	Harabasz Index, Davies-Bouldin Index, Dunn Index.		
	Dimensionality reduction: Principal Component		
	Analysis(PCA)		
5.	Ensemble learning	04 Hours	09%
	Gradient Boosting, XGBoost (Extreme Gradient Boosting),		
	AdaBoost (Adaptive Boosting)		
5.	Deep Neural Networks	10 Hours	22%
	Introduction to Convolutional Neural Networks,		
	Convolutional Neural Network Layers, CNN Architectures		
	and Variants, Introduction to Recurrent Neural:		
	Understanding sequential data and its challenges, Anatomy		
	of a Recurrent Neural Network (RNN), vanishing gradient		
	problem Networks, Long Short-Term Memory (LSTM)		
	Networks.		

Course Outcome (COs):

At the end of the course, the students will be able to

CO1	Addressing data quality issues, effectively cleaning and preprocessing raw datasets,
	and preparing them for machine learning algorithm.
CO2	Capable of building predictive models for classification and regression tasks, and
	skilled in selecting, training, and evaluating machine learning algorithms on labeled
	data

© CHARUSAT 2024 Page **24** of **57**

CO3	Solid understanding of unsupervised learning methods, including clustering and
	dimensionality reduction
CO4	Proficient in implementing and optimizing gradient boosting models for both
	regression and classification tasks
CO5	Understand the principles and architecture of Convolutional Neural Networks
	(CNNs), Recurrent Neural Networks (RNNs) and Long Short-Term Memory
	(LSTM) Networks.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	1	1	-	-	-	-	-	-	-	-	-	-
CO2	3	-	3	2	-	-	-	-	-	-	-	-	1	-
CO3	3	-	3	2	1	-	-	-	-	-	-	-	1	-
CO4	3	-	3	2	-	-	-	-	-	-	-	-	1	-
CO5	3	-	3	2	-	-	-	-	-	-	-	-	1	-

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

Recommended Study Material:

Text book:

- Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow, 2nd Edition, Aurelien Géron, OReilly
- 2. Machine Learning Yearning, Andrew Ng, GitHub; eBook (Draft, 2018); eBook (MIT Licensed)
- Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville, The MIT Press (17 December 2016)

***** Reference book:

© CHARUSAT 2024 Page **25** of **57**

- 1. Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 2. Richard O. Duda, Peter E. Hart & David G. Stork, "Pattern Classification. Second Edition", Wiley & Sons, 2001.
- 3. Trevor Hastie, Robert Tibshirani and Jerome Friedman, "The elements of statistical learning", Springer, 2001.

***** Web material:

- 1. https://www.youtube.com/watch?v=foHSmB48rY&list=PLKvX2d3IUq586Ic9glhZj6ubpWV-OJfl4
- 2. https://www.youtube.com/watch?v=CS4cs9xVecg&list=PLkDaE6sCZn6EcXTbcX1uRg2_u4xOEky0
- 3. https://www.youtube.com/watch?v=UzxYlbK2c7E
- 4. https://www.youtube.com/playlist?list=PLAwxTw4SYaPkQXg8TkVdIvYv4H fLG7SiH
- 5. Recommended online course:
- 6. <u>Coursera:https://www.coursera.org/specializations/machine-learning-introduction</u>
- 7. Coursera: https://www.coursera.org/specializations/deep-learning

Software:

- 1. Anaconda
- 2. GoogleColab

© CHARUSAT 2024 Page **26** of **57**