PC3. Indeling gewyzigd GOIN 39/48, CO7H23/00.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification: (11) International Publication Number: WO 79/00880-A1 (43) International Publication Date: 1 November 1979 (01.11.79) G01N 33/16 (81) Designated States: DE (European patent), FR (Euro-(21) International Application Number: PCT/US79/00210 pean patent), GB (European patent), JP. 4 April 1979 (04.04.79) (22) International Filing Date: Published with: International search report 893,524 (31) Priority Application Number: 4 April 1978 (04.04.78) (32) Priority Date: (33) Priority Country: (71) Applicant: ALLEN, Robert, H.; 4001 S. Dexter, Englewood, CO 80110, United States of America. (72) Inventor: Applicant is also the inventor. (74) Agent: MARGOLIS, Donald, W.; 26 Garden Center. Suite 4, Broomfield, CO 80020, United States of Ame-

(54) Title: QUANTITATIVE TESTING FOR VITAMIN B12

(57) Abstract

The vitamin B12 (cobalamin) level of human blood and mammalian tissue is routinely assayed utilizing radioisotope dilution assay (RIDA) techniques. The presence of vitamin "B12 analogues" in such samples, which analogues are erroneously assayed as true vitamin B12 utilizing prior art RIDA techniques, has been determined. Such errors are due to the fact that binding proteins commonly used in prior art RIDA techniques normally include proteins which bind both true vitamin B12 and previously unrecognized vitamin B12 analogues. The errors caused by the B12 analogues are avoided by using a composition for binding vitamin B12 which is substantially free of substances which bind vitamin B12 analogues. Moreover, by using both types of binders in separate assays, the amount of analogue present may be arrived at by taking the difference of the assays.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT

AT	Austria	LU	Luxembourg
BR	Brazil	MC	Мопасо
CF	Central African Empire	MG	Madagascar
CG	Congo	MW	Malaŵi
CH	Switzerland	NL	Netherlands
CM	Cameroon	RO	Roumania
DE	Germany, Federal Republic of	SE	Sweden
DK	Denmark	SN	Senegal
FR	France	SU	Soviet Union
GA	Gabon	TD	Chad
GB	United Kingdom	TG	Togo
JР	Japan	US	United States of America

WO 79/00880 PCT/US79/00210

1

QUANTITATIVE TESTING FOR VITAMIN B₁₂ BACKGROUND OF THE INVENTION Field of the Invention

The present invention relates to methods and materials 5 for assaying mammalian blood and tissue. More specifically it relates to methods and materials for determining the amounts of vitamin B_{12} and vitamin B_{12} analogues in human plasma. Prior Art

For many years it has been recognized that the assay of 10 the vitamin B_{12} level in humans is a valuable technique for diagnosing and subsequently treating certain diseases, such as for example, pernicious anaemia, post gastrectomy states, nutritional deficiencies, intestinal disorders, and others. Initially, vitamin B_{12} was assayed microbiologically using 15 either Euglena gracilis or Lactobacillus leichmannii. More

- 15 either <u>Euglena gracilis</u> or <u>Lactobacillus leichmannii</u>. More recently, radioisotope dilution (RID) assays for B₁₂ have been utilized. Such radioisotope dilution assay techniques are well documented in the literature, see for example Lau, et.al. (1965) "Measurement of Serum B₁₂ Levels Using Radio-
- 20 isotope Dilution and Coated Charcoal," BLOOD, <u>26</u>, 202, as modified by Raven et.al. (1968) "The Effect of Cyanide Serum and Other Factors on the Assay of Vitamin B₁₂ by Radio-Isotope Method Using ⁵⁷Co-B₁₂, Intrinsic Factor and Coated Charcoal," GUYS HOSPITAL REPORTS, <u>117</u>, 89; and (1969) "Improved Method
- 25 for Measuring Vitamin B_{12} in Serum Using Intrinsic Factor, $^{57}\text{Co-B}_{12}$ and Coated Charcoal," JOURNAL OF CLINICAL PATHOLOGY, 22, 205.

Such prior art radioisotope dilution assay of vitamin B_{12} generally includes the steps of freeing the endogenous B_{12} from its natural hinding protein by boiling at a selected pH

- 30 from its natural binding protein by boiling at a selected pH and then adding a measured amount of radioisotope $^{57}\text{Co-B}_{12}$ and a limited amount of binding protein. All of the binding protein will be bound by some form of B_{12} since the amount of radioisotope B_{12} added is, by itself, sufficient to bind the
- 35 small amount of protein. As both the natural B_{12} and the radioactive B_{12} compete to bind with the protein, the degree to which the radioactive count of the protein bound B_{12} was

inhibited was thought to be indicative of the amount of natural $B_{1,2}$ present in the sample undergoing testing.

More specifically, in the technique of Lau et.al. as modified by Raven et.al., serum B₁₂ is separated from 5 binding protein in the plasma sample by boiling with 0.25NHCl. Radioisotope B₁₂ is added to the reaction mixture and the $B_{1,2}$ mixture is reacted with protein, normally in the form of a commercially available binder. Then the free or unbound B_{12} is separated from the protein bound B_{12} by 10 protein-coated charcoal and the radioactivity of the supernatant liquid containing the mixture of bound radioactive ${\bf B}_{12}$ and bound non-radioactive ${\bf B}_{12}$ counted for radioactivity. The serum B₁₂ concentration is then calculated from the count, often by comparison with a standard chart. Almost as 15 soon as this technique began to be utilized it was recognized that the vitamin B12 measurements it provided were usually inconsistent with the results obtained by other measuring techniques for \mathbf{B}_{12} , such as the microbiological assays. Most often, the vitamin B_{12} assay obtained by radioisotope 20 dilution techniques have been found to be high. Many theories have been advanced to explain the cause of the high vitamin B₁₂ readings. However, it is believed that nowhere in the prior art is it recognized that there are substances in mammalian blood and tissue which react with certain non-25 specific protein binders in the radioisotope dilution assay technique to provide an analysis of vitamin ${\bf B_{J\,2}}$ which is apparently higher than the amount of B12 actually in the sample. Additionally, it is believed that nowhere in the prior art is it recognized that most common and commercial 30 RID assay protein binders are not specific to vitamin B_{12} , but that they are also capable of binding with the heretofore unknown B_{12} analogues and thus provide erroneous B_{12} assays.

BRIEF DESCRIPTION OF THE INVENTION

As has already been indicated, in the standard radioisotope binding assay for vitamin B₁₂, a known amount of radioactive vitamin B₁₂ is mixed with a prepared to-betested sample. Then, a known, but extremely limited, amount

of protein which is capable of binding with both the natural and radioactive vitamin B₁₂ is added to the mixture. Then, utilizing well known techniques, the radioactivity of the bound sample is compared, for example, with a standard curve to determine the amount of natural vitamin B₁₂ present in the tested sample. Such standard curves are initially established for use in RID assay, for example, by measuring the amount of bound radioactive B₁₂ in the presence of the same type and amount of protein binder, but with several different amounts of known non-radioactive B₁₂.

It has now been discovered, for what is believed to be the first time, that mammalian blood and tissue contain materials other than vitamin ${\bf B}_{12}$ which couple with certain binding proteins which are commonly used in RID assays. 15 purposes of this specification and claims the non-vitamin B₁₂ materials which are capable of binding with such proteins will be herein referred to as "vitamin B₁₂ analogues," "B₁₂ analogues" or simply as "analogues." They are referred to as analogues, not due to their chemical structure, which 20 is not known with certainty, nor in the commonly accepted chemical sense of the word "analogue." Rather they are referred to as analogues due to their reactivity with the binding proteins commonly used in RID assays. As will be shown in more detail, hereinafter, there are other similar-25 ities which have been discovered between vitamin B_{12} and the newly discovered analogues which are present in mammalian blood and tissue.

After the presence of B_{12} analogues was discovered it was then determined that protein binders commonly present in RID assays were: (1) Non-specific in binding to only vitamin B_{12} ; and (2) reactive in binding with both vitamin B_{12} and B_{12} analogues; and (3) capable of reacting with both B_{12} and B_{12} analogues independent of pH. These are most commonly R proteins. Additionally, it has been determined that other protein binders, are: (1) Very specific in their reactivity substantially only with vitamin B_{12} ; (2) substantially non-reactive with the B_{12} analogues; and

(3) non-reactive with either vitamin B_{12} or B_{12} analogues

BUREAU
OMPI
WIPO
FERNATIONA

in highly acid environments. These are most commonly proteins in the form of pure human intrinsic factor (IF), hog IF, rabbit IF, other IFs and vitamin $\rm B_{12}$ specific binders.

- In the past the problem has been that RID binders include substantial amounts of protein which is not specific to vitamin B_{12} . Therefore, the radioisotope dilution assay utilizing that binder on samples which contain B_{12} analogues will produce a measurement which indicates a
- 10 greater amount of B₁₂ present in the plasma than exists in fact. As will be shown in more detail hereinafter, commercially available protein binders, which have heretofore been labeled as containing intrinsic factor, in fact include only about 10% to about 30% intrinsic factor protein, while
- the balance of the protein in the binder is of a non-specific type, such as R protein. Thus, the protein materials in the commercial protein binders are capable of indiscriminate reaction with the heretofore unrecognized vitamin B₁₂ analogue materials in mammalian blood and tissue.
- These extraneous reactions give RID analyses having the appearance of apparently higher vitamin B_{12} content than the samples in fact contain. This is due to the fact that when the binder includes protein which is non-specific to vitamin B_{12} and which is capable of reacting with both vitamin B_{12}
- and B₁₂ analogues, then the use of this protein in the radiobinding assay measures both the vitamin B₁₂ and the vitamin B₁₂ analogues which are present in the sample. However, in accordance with the present invention, when the proteins which are utilized are substantially specific to
- vitamin B_{12} , such as substantially pure intrinsic factor, then in the RID assay one binds and measures substantially only the vitamin B_{12} in the sample, without the measurement of extraneous B_{12} analogues. This provides a more accurate vitamin B_{12} RID assay.
- Based on these discoveries it is proposed that in the practice of RID assay only protein which is specific in its reaction to vitamin B_{12} be utilized. Alternatively, it is proposed that mixtures of vitamin B_{12} specific and

non-specific binding proteins be treated, for example, with an excess of material which will bind or inactivate only the non-specific binding proteins, such as vitamin B_{12} analogues, prior to its use in RID assays, so that the non-specific

- protein will be substantially unavailable for reaction with any vitamin B₁₂ or analogues in a sample when the RID assay is conducted. In yet another modification of the present invention, crude binder, including non-specific binding proteins, is subjected to proteolytic enzyme treatment prior
- 10 to utilization as a vitamin B₁₂ binder in RID assays. Such proteolytic enzyme treatment destroys the binding ability of the non-specific proteins without destroying the binding ability of the proteins which are specific to vitamin B₁₂.

Utilizing the techniques of the present invention, 15 the $\rm B_{12}$ analogues can by assayed by analyzing the amount of vitamin $\rm B_{12}$ present utilizing, for example, a vitamin $\rm B_{12}$ specific binder, then assaying the sample utilizing a non-specific binder and determining the difference between the two assays as a measure of the amount of vitamin $\rm B_{12}$ analogues present.

These and other techniques are readily determined, once, as taught for the first time by the present invention, the presence of ${\rm B}_{12}$ analogues in mammalian blood and tissue is recognized.

The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention.

DETAILED DESCRIPTION OF THE INVENTION

In the following examples and tables certain chemical components were utilized. For ease of communication they have been given shortened names in the text. The concordance between the "component" names and their actual compositions is as follows:

35 Components

A. Buffer

Actual Composition
1.0M Tris (hydroxymethyl)
aminomethane-HCl pH 10.0

B. Albumin

C. Salt

D. Boiled buffer

5

10

E. Standard
(100 pg/ml B₁₂)

15

20

F. Standard (1000 pg/ml B₁₂)

25 G. (57 Co) B₁₂

H. Binder

30

35

Bovine serum albumin, 2 mg per ml in H₂O 0.15M NaCl (1 part) 0.5M sodium acetate-HC1 pH 4.5 (1 part) 0.01M KPO $_{ll}$ pH 7.5, 0.15M NaC1 (2 parts) 50 µg per ml KCN in 0.15M NaCl The complete solution is heated of 45 min. at 100°C. Solution D containing 100 pg per ml vitamin B₁₂. The solution is heated for 45 min. at 100°C after the vitamin B₁₂ is added. The concentration of vitamin B_{12} in the stock solution used to make component E is determined by its light absorbance at 278, 361 and 550 nm.

Same as component E except that the vitamin B_{12} concentration is pg/ml.

1000 pg per ml of (^{57}Co) B₁₂, $(150-300~\mu\text{Ci/\mug})$, in H₂O. Present in 0.01M Tris-HCl pH 8.2, containing 0.15M NaCl and 50 µg per ml bovine serum albumin. Binders are diluted in this solution to reach a concentration of 700 pg per ml of vitamin B₁₂ binding ability.

Individual binders are as follows:

1) Human intrinsic factor
 (Human IF) Human gastric juice containing more than 95% intrinsic

35

factor based on assays employing inhibition of vitamin B₁₂ binding with anti-intrinsic factor anti-bodies (95% inhibition) and cobinamide (5% inhibition).

- 2) Human R protein (Human R)—
 Human saliva containing more
 than 95% R protein based
 on assays employing inhi—
 bition of vitamin B₁₂
 binding with cobinamide
 (95% inhibition) and anti—
 intrinsic factor antibodies
 (5% inhibition)
- 3) Hog intrinsic factor (Hog IF) - This protein was purified from "Hog intrinsic factor concentrate" by affinity chromatography on vitamin B_{1,2}-Sepharose employing gradient elution with guanidine-HCl followed by gel filtration. The final preparation contained more than 95% intrinsic factor based on assays employing inhibition of vitamin B₁₂ binding with anti-intrinsic factor antibodies (95% inhibition) and cobinamide (5% inhibition).
- 4) Hog R protein (Hog R) (Also designated in the scientific literature as Hog non-intrinsic factor concentrate)

8

This protein was purified from "Hog intrinsic factor concentrate" as described above in 3). The final preparation contained more than 95% R protein based on assays employing inhibition of vitamin B₁₂ binding with anti-intrinsic factor antibodies (5% inhibition) and cobinamide (:95% inhibition).

- (Rabbit intrinsic factor (Rabbit IF) An extract of rabbit gastric mucosa containing more than 95% intrinsic factor based on assays employing inhibition of vitamin B₁₂ binding with anti-intrinsic factor antibodies (95% inhibition) and cobinamide (5% inhibition).
- 6) Hog intrinsic factor concentrate (Hog IFC) A crude extract of hog pyloric mucosa. It contained 25% Hog IF and 75% Hog R based on assays employing inhibition of vitamin B₁₂ binding with anti-intrinsic factor antibodies (25% inhibition) and cobinamide (75% inhibition).
- 7) Hog IFC + Cobinamide Hog IFC containing the vitamin B₁₂ analogue cobinamide

5

10

15

20

25

30

35

5 10 15 20 I. Charcoal 25 J. unknown sample 30 35

([CN, OH] Cbi) in a molar amount equal to 100 times the total vitamin B₁₂ binding ability, i.e. a 100 fold excess of cobinamide.

9

- 8) Hog IFC + CN-Cbl [bde-OH] The same as item 7) above
 except that the analogue
 added is CN-Cbl [bde-OH]
 and is present in a 1000
 fold molar excess.
- 9) Hog IFC + [3,5,6-Me₃BZA] (CN,OH)Cba - The same as item 7) above except that the analogue added is [3,5,6-Me₃BZA] (CN, OH)Cba.
- 10) Digested Hog IEC Hog IFC incubated with bovine pancreatic trypsin (2 mg per ml) and bovine pancreatic chymotrypsin (2 mg per ml) for 60 min. at 37°C.

A solution containing 25 mg per ml neutral charcoal (Norit) and 5 mg per ml bovine serum albumin in $\rm H_2O$. Samples containing unbound vitamin $\rm B_{12}$ are diluted in solution D (see above). Samples containing bound vitamin $\rm B_{12}$, such as serum, are prepared as follows:

(1 part) sample (1 part) 0.5M sodium acetate-HCl pH 4.5 (2 parts) 50 µg per ml KCN in 0.15M NaCl

10

The complete mixture is heated at 100°C for 45 min. followed by centrifugation at 5000x g at 4°C for 20 min. The supernatant is removed and used for assay.

5

Each of the RID assays referred to herein utilized the components referred to above. The method and order of utilizing the components is that set forth in Table 1. That is, components A, B, C, etc. or the buffer, albumin, and salt, respectively, etc. were added in the order, from left to right, shown in Table 1. After the addition of ⁵⁷Co-B₁₂ the components are mixed thoroughly to mix both the naturally occurring B₁₂ and the radioisotope B₁₂ to make them compete and equally available to react with the binder. After the addition of the binder, H, the components were again mixed thoroughly, and then incubated for 45 minutes at about 37°C. Charcoal was then added to the incubated mixture and the components again mixed thoroughly and incubated for another

5 minutes at room temperature. This was followed by centrifuging at 2000 x g at 4°C for 30 minutes. Then 1000 µl of the resulting supernatant liquid is pipetetted from the sample and a determination of the amount of ⁵⁷Co-B₁₂ present is made. The amount of ⁵⁷Co-B₁₂ is indicative of the amount of natural B₁₂ in the tested sample, with lesser amounts of ⁵⁷Co-B₁₂ being indicative of greater amounts of natural vitamin B₁₂ in the sample.

Calculations of vitamin B_{12} , utilizing the datea obtained in the foregoing manner, is made as follows:

30

35

Calculation of data from radiobinding assay for plasma vitamin ${\bf B}_{1,2}$ assay as outlined in Table I

- 1) The values in tubes 3 and 4, the "blank" tubes without binder are averaged and subtracted from all other tubes starting with tube 5.
- 2) The background radiation is subtracted from tubes 1 and 2 and these values are averaged.
- 3) Tubes 5 and 6 are averaged. This value should be at

Table I

Flow Sheet for Radiobinding Assay for Vitamin B12

	• ⊶	Charcoal (u1)	1	200	200	200		.1	200	200	200		005	200	200	005	2	
	Ħ	Binder (ul)	i	ı	20	C S	3 9	05	20	20	<u>ر</u> ت	2	. 20	05	20	C	<u> </u>	
	9	[57co] B ₁₂	20	20	O.) <u></u>	00	20	. 20	20		<u> </u>	20	20	20		000	
_	J Unknown	Sample (ul)	t	1		ı 	:	1	!	. 1	,	1	l ———	1	ı		800	
_	F	1000pg/ml B ₁₂ Sample (u1)	ı	i		1	ı	l			1	80	160	350	800			
-	E3 7	Scandard 100pg/ml B12 10 (u1)	1	1	1	ı	80	160	240		200	ı	1	ı	1		1	
		Boiled Buffer (ul)	800		008	800	720	940	2,60	3	300	720	079	450	1		ı	
: } •	U	Salt (u1)	u F	5/0	375	325	325	325		325	325	325	325	325	325	275	325	
	æ	Albumin (ul)	C	2	20	20	. 50	20		00	20	20	20			2	20	
		Buffer (ul)	i.	577	225	225	225	225		225	225	225	225	400	777		. 225	;
		Tube #	•	1,2	3,4	5,6	7	a	0	σ.	10		1 2			14 B	Unknown	1

BUREAU OMPS WIPO VERNATION 10

least 15% below the average value for tubes 1 and 2 to insure that all of the binder is saturated in the presence of (57 Co) $\rm B_{12}$ alone.

- 4) Values for each tube beginning with tube 7 are divided by the average of tubes 5 and 6 to give values for "% trace binding."
 - 5) Percent trace binding for tubes 7-14 are used to obtain a standard curve. We plot % trace binding on the ordinate of logit-log paper versus pg vitamin B₁₂ on the log scale.
 - 6) The amount of vitamin B₁₂ in unknown samples is determined by interpolation from the standard curve or data of % trace binding versus pg vitamin B₁₂.
- 7) The standard curves for all of the various binders used are virtually indistinguishable and vary little from day to day. Nevertheless, a complete standard curve is always obtained for every binder with each set of assays. Representative data obtained with the assays are present in Table II.

20 Evidence as to the Origin and Existence of Vitamin B_{12} Analogues in Mammalian Blood and Tissue

Once the problem of the prior art is recognized, that is, that there are vitamin B₁₂ analogues present in mammalian blood and tissue, it becomes a relatively simple matter to prove the existence and chemistry of such analogues. It is also appropriate to prove that the various steps of the RID assay do not cause the B₁₂ analogues to be formed, for example, from vitamin B₁₂.

In one instance this has been most convincingly shown

30 by obtaining pure crystalline vitamin B₁₂, subjecting various known concentrations of it to the same conditions used to extract endogenous vitamin B₁₂ from blood and tissue samples (boiling for 45 minutes in the same extraction solution) and then analyzing them by RID assay using several binding proteins, for example, in the form of human IF, hog IF, human R, hog R and hog IFC on different portions of the same extracted vitamin B₁₂ samples.

Table II

Standard Curves obtained with the radiobinding assay for vitamin B12 using various binders

% trace binding observed with various binders(b)	HOG IF HOG R HOG IFC	(100) (100) (100)	68 68 76	83 83 80	74 76 76	58 . 56 . 59	44 43 43	28 27 28	15 14 14	
binding obs	Human R	(100)	93	84	78	09	44	28	14	v
		(100)	. 06	85	79	79	45	30	. 15	v
Vitamin B12 added (a)	(8d)	0	80	16	24	. 50	80	160	350	008

The vitamin \mathbf{B}_{12} was boiled for 45 min. at 100°C in the same solution used to extract endogenous vitamin \mathbf{B}_{12} from human plasma. (a)

(b) Assays were performed on different days.

Referring to Table II, it will be seen that when various known amounts of pure vitamin B12, ranging from about 8 pg to about 800 pg were tested with various protein binders, that in each instance, the percent of radioactive trace binding, or more accurately, the inhibition of ⁵⁷Co-B₁₂ binding, observed was substantially the same for each binder. It is thus seen, that regardless of which protein binder is utilized, the percent binding, i.e. inhibition of the $(^{57}\text{Co})-B_{12}$ is substantially the same. This is indicative of the fact that during preparation for RID assay the pure vitamin $B_{1,2}$ was not converted to analogues of the type which have now been observed in mammalian blood and tissue. It is also indicative of the fact that in the absence of interferring masking components in the samples, such as B₁₂ analogues, any of the binding proteins can be utilized to provide substantially equally acurate RID assays of vitamin $B_{1,2}$. Furthermore, the data in Table II should be suitable as a standard in the determination of vitamin B_{12} by the same RID assay.

By comparison, when endogenous vitamin $B_{1,2}$ was extracted from serum from 74 normal blood donors (37 women, 37 men, ages 17-61) and tested utilizing the same binding proteins with the exception of hog IFC which was not used, the results were quite different. In every case in which serum from normal donors was tested greater inhibition of ⁵⁷Co-B₁₂. and therefore greater apparent vitamin B₁₂, was observed with assays employing, as the binder, human R or hog R than was observed with assays employing human IF or hog IF. The data on the 74 normal donors is included in Table III. Other data concerning patients with diagnosed vitamin B₁₂ deficiencies are present, and comparisons between the normal donors and patients have also been made on Table III, and will be discussed in more detail hereinafter. Referring 35 to Table III it is seen that the mean endogenous vitamin B_{12} RID assay levels, in terms of pg of vitamin B_{12} per ml of serum, are 548 and 542 for human R and hog R,

Distribution of serum vitamin B₁₂ values as measured with various binders for 74 normal subjects and 71 patients with climical evidence of vitamin B₁₂ deficiency

All assays were performed at p2 9.0

Serus				-						R sinus		t minus
Vitamin B ₁₂ (pg/ml)	Hornels	Patients	Normale	g R Patients	Hum Kormala	Patients	Hog Formals	Patlents		Patients		Patients
						8		11				
0-24						6		5				
25-49						5		š		1	2	1
50-74						2		2		•	3	•
75-99		1 .		1		•		-	2			•
100-124		2		1		•			. 2	3	9 .	3
125-149		2		5	4		1		7	3	5	3
150-174		3		1	5		3		6	5	,	5.
175-199		4		3	2		3	-	6	3	8	3
200-224	1	1		2	` 5		4		8	2	11	2
225-249		3	1	1	6		4		2	3	6	3
250-274				3	10		,		10		4	
275-299		1	2	1	4		3		5		1	
300-324	1	2	4	2	12		4		6		3	
325-349	3	1	2	1	5		6		4	1	5	1.
350-374	5	1	1				10		4		1	¥
375-399	3		2		3		4		4		2	
400-424	5		3		4		5		5		1	•
425-449	3		4		3		2.		2			
450-474	4		6		2		3				1	
475-499	5		5				3 .				1	
500-524	7		4		1		3					
525-549	3		4		1							
\$50-574	5		3		2		1				1	
575-599	1		2		1				1			
600-624	. 2		4		1		3				1	
625-649	5		4									
675-699	2		3									
	3											
700-724	2		•				. 1					
725-749												
750-774	3		1				1					
775-799			1		1							
800-824			_2									
625-849												
250-874	1		1				•					
875-899	1		2 **				1					
900-924	1		1			•						
925-949	2		1									
950-974	1											
975-999	1											
1000-1024												
1025-1049											•	
1050-1074	1											•
1075-1099												
1100-1124										•	•	
1125-1149			1									
1150-1174												
1175-1199												
1200-1224												
1225-1249	1										•	•
range of serum 312	-	85-355	245-1135	84-342	330-785	0-78	135-880	0-86	70-575	56-337	50-605	72-332
mean of (a	3 348	•	542		298	. 36	361	33	25'4	169	2'12'	171
mean ± 2 5td. Dev.	282-		276	<u> </u>	136-		157-		70	_	_58_	•
	Offor		106)	656		717		661		537	

¹⁰⁶⁵ 717 656 661 1040 531

BUREAU OMPI

⁽a) Rased on values obtained with log vitamin \$12. Log values using untransformed values were shewed to the right.

respectively, but only 298 and 361 for human IF and hog IF, respectively. This demonstrates that something is present in extracts of normal human serum which inhibits the vitamin ⁵⁷Co-B₁₂ binding ability of human R and hog R to a greater extent than it inhibits the binding ability of human IF and hog IF. Under current RID assay techniques the greater inhibition which is found using human R and hog R is analyzed to indicate a higher vitamin B₁₂ content. It is those substances, which have now been found to be present in human blood serum and which preferentially inhibit ⁵⁷Co-B₁₂ binding of human R and hog R, which have been herein denominated as "vitamin B₁₂ analogues."

Chemical Nature and Properties of Vitamin B₁₂ Analogues

The vitamin B_{12} analogues, which are herein for the 15 first time identified as being present in mammalian blood and tissue, have been isolated by paper chromatography and compared with pure vitamin B12. Vitamin B12 and the socalled "vitamin B₁₂ analogues" were found to have the following properties in common: (1) Both were adsorbed 20 to charcoal and remained adsorbed when the charcoal was washed with 5% phenol; (2) Both were eluted from charcoal - when the charcoal was washed with 67% acetone; (3) Both were extracted from aqueous solution into phenol and remained in the phenol phase even when the phenol was washed 25 repeatedly with water; (4) Both passed into the aqueous phase when the phenol layer was dissolved in an excess of diethyl ether; (5) Both eluted with similar apparent molecular weights (approximately 1356) during gel filtration on columns of Bio-Rad P-4 polyacrylamide; (6) Both 30 were adsorbed to a column of Sepharose-2B agarose that contained covalently bound hog R protein and both remained bound when the column was washed with 0.1M glycine-NaOH pH 10.0, 1.0M NaCl, and both were eluted from the Sepharose with either 85% phenol or 60% pyridine. Because of these 35 similarities the newly discovered material is seen to be similar to vitamin B_{12} and is thus referred to as vitamin B₁₂ analogue.

BUREAU

Themchemical nature and structure of the newly discovered vitamin B12 analogues which are now found to be present in mammalian blood and tissue is not known. effort was made to compare them with chemically true forms 5 of vitamin B₁₂, sometimes referred to in the literature as analogues of vitamin B_{12} , namely $CN-B_{12}$, $OH-B_{12}$, adenosyl- ${\rm B}_{12}$ and ${\rm CH}_3 - {\rm B}_{12}$, already known to be present in serum and tissues. This was done by adding 500 pg of each of these four known forms of vitamin $B_{1,2}$ to four different portions 10 of the same human serum, in the dark. Prior to the additions the serum contained 250 pg and 450 pg of vitamin B₁₂ as assayed by RID using human IF and human R, respectively, thus exhibiting a difference of 200 pg. After addition of the materials to the serum, each was allowed to 15 incubate in the dark for 15 minutes to allow binding of the added known forms of vitamin B12 to the binding proteins normally present in the serum. Then the serum, with the added forms of vitamin B₁₂ was extracted utilizing standard conditions and the apparent amount of vitamin B_{12} assayed 20 by RID utilizing both human R protein and human IF protein. Both the human R and human IF assays showed an increase in the apparent amount of vitamin B_{12} of about 500 pg. However, the original difference observed between the values obtained with the human R protein and the human IF protein, i.e. 200 pg, did not change. If any of the added known forms of vitamin $B_{1,2}$ in the human serum had been converted to the newly discovered analogues, then the assays would have shown an increase in the difference. This provides evidence that the newly discovered vitamin B, analogues 30 were not formed from any of the known endogenous forms of native viatime B_{12} during the extraction procedure.

Isolation of Vitamin B₁₂ Analogue

The materials which are herein designated as "vitamin B_{12} analogues" and which have been found to preferentially inhibit R proteins in the vitamin B_{12} assays were substantially separated from endogenous vitamin B_{12} by the following purification scheme. A trace amount of 150 pg $^{57}\text{Co-B}_{12}$, was added to 1800 ml of freshly collected normal human

plasma. The added ⁵⁷Co-B₁₂ was sufficiently small that it did not interfere with subsequent RID assays. After incubating at room temperature for 30 minutes the vitamin B₁₂ was extracted and assayed under standard conditions.

5 When human IF binder was utilized in the RID assay the extract was found to contain 1050 ng of vitamin B₁₂, but when human R protein was utilized as the binder it appeared to contain 2030 ng of vitamin B₁₂, almost twice as much vitamin

 B_{12} . The extract was then passed through a column of Sepharose containing covalently bound hog R protein. The column retained greater than 99% of the $^{57}\text{Co-B}_{12}$ as well as the endogenous vitamin B_{12} as assayed by RID with human IF or human R protein. After the column was washed with a variety of buffers and water the material was eluted with

15 60% pyridine, taken to dryness under vacuum, dissolved in water, and adsorbed onto charcoal. The charcoal was washed with 5% phenol followed by water and the mixture of vitamin B_{12} , $^{57}\text{Co-B}_{12}$ and analogue B_{12} was eluted from the charcoal with 67% acetone. The material was again taken

20 to dryness under vacuum, dissolved in water, and then separated utilizing 19 inch long Whatman 3MM paper for paper chromatography and a solvent system consisting of 800 ml sec-butanol, 8 ml glacial acetic acid, 6 mmol HCN and 400 ml water. The chromatography was performed in the descend-

25 ing manner for 30 hours at room temperature in an environment that inhibited evaporation of the solvent. The paper chromatogram was allowed to dry in a fune oven and divided into 38 one-half inch fractions and numbered, with fraction 1 starting at the point of application and number 38 being

30 at the lowest point on the chromatogram. Each one-half inch fraction was then incubated with 5 ml of water at 4 °C for twelve hours to elute the vitamin 57 Co- 8 l2 and 8 l2 analogues. The water was then removed and taken to dryness under vacuum. Each dried fraction was then dissolved

35 in 2.5ml of water and assayed for $^{57}\text{Co-B}_{12}$ and for vitamin $^{\text{B}}_{12}$ using a variety of binding proteins. The final recovery of $^{57}\text{Co-B}_{12}$ was 64%. The apparent recoveries of vitamin $^{\text{B}}_{12}$ were 75% when using human IF in the assay

and 66% when using human R in the assay. The results of the assays employing the 38 fractions obtained by paper chromatography are presented in Table IVA, IVB, and IVC. Similar data concerning paper chromatography of ⁵⁷Co-B₁₂ and pure vitamin B₁₂, for reference as a control, are presented in Table IVD. The data in these several chromatography tables summarized for convenience in Table IVE reveals that the behavior of ⁵⁷Co-B₁₂ that was extracted from human plasma did not change its chromatographic behavior, and thus was not altered during the standard extraction procedure or any of the purification steps. In a similar manner it is postulated that true vitamin B₁₂ is not altered in any of the purification or process steps of the assay.

15 Referring to the control chromatogram of Table IVD, it is seen that the several RID assays of pure vitamin B₁₂ performed variously with human R protein, human IF protein and hog IFC gave substantially a single symmetrical peak of activity. In each instance greater than 95% of the vitamin B₁₂ was found to be present in fraction 14 through 16. Similar results, as shown in Table IVB, were obtained from the paper chromatogram of the plasma extract when the binding protein was human IF, hog IF and rabbit IF. These data are an indication that these three IF binding proteins are substantially specific in their binding ability to vitamin B₁₂, and substantially non-reactive with vitamin B₁₂ analogues present in plasma.

Efforts were made to modify hog IFC, which is a commonly used binder in RID assays and which has been found to contain as much as 90% hog R protein and as little as 10% hog IF, by removing or inactivating the hog R. In several instances the hog IFC was incubated with an excess amount of three chemically synthesized vitamin B₁₂ analogues before it was utilized in the RID assay. Referring to Table IVC, it is seen that after this modification the chromatogram results obtained utilizing the modified hog IFC closely resemble the results obtained with substantially pure hog IF. It is therefore seen, that in the practice of the

		(%)									-	7	m	7	7	17	94	Φ	2	4	-	7	7	н				٦					
		ng)	,-	4			7	7	က	က	5	16	5 6	19	22	180	414	91	53	42	15	24 .	21	'n	4	ന	4	'n	7	-1	~ -	4	
• 5	8.5	× (%)	 									7	m	7	4	16	37	œ	œ	9	7	4	က	٦.	7								:
ia rea ci	pH 1.8	nog (ng)	-	4		7	m	7	S	'n	8	29	65	38	55	240	576	122	128	100	27	09	52	∞	œ	7	ო	4	7		H		
ere zi binde		× (%)	<u> </u>								н	7	6	7	<u>~</u>	16	41	7	ထ	9	7	m	7	-				-1		ų.			
All assays were periormed at ph 9.0 except where indicated. The assayed with various binders		HOB (ng)	-	4			7	7	4	4	9	56	36	26	30	176	461	84	85	6 8	17	39	25	7	S	5	9	10	m	H	~ 5	4	
with	_	x (%)	<u>. </u>	-		-		-				7	4	7	ന	16	43	6	ω	S		د	7				_						
at ph y.v e	Hd .	(ng)	-	4		-		က	4	ന	9	29	54	34	44	235	615	122	118	68	17	39	25	'n	7	7	н	-	Н				
ormed R12 A	,	¥ ⊛									Н	7	ო	7	7	16	42	80	9	2	7	က	ო	7	, –	-		Н					
e peri	,	Human (ng)	,	٧	-		2	က	7	7	^	24	42	25	31	209	562	103	85	68	23	45	. 42	80	∞	7	6	16	2	7	4,	- r	
ys wer	1	B12 (%)	_ 										7	-	-	20	9		-							•		•	,		•		
l assa	, i	(cpm)										300	200	300	200	4600	14000	2100	300	300	200							•					
4				•		`		•			-																•			•	•		_
	raction		•	- 7	m	4	5	9	7	დ	6	10	11	12	13	17	15	16	17	18	19	20	21	22	23	. 24	25	26	27	28	29	8 F	31. 32-38

Assay of $\{^{57}\text{Co}\}$ Bl₂ and plasma Bl₂ after elution from paper chromatography. All assays were performed at pH 9.0. Table IKB

t IF	123 100 110 110 110 110 110 110 110 110 11
Rabbit (ng)	1 1 16 10 170 480 87 87 87 87 87
various IF	44442000444
State Stat	1 1 1 1 10 169 450 450 72 72 72 72
1 1 1	11777 1177 1177 1177
Human (ng)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3
B12 (%)	1777 1777 1777 1777
[57co] B12 (cpm) (x)	300 500 300 200 4600 1400 2100 300 300
Fraction #	1 2 4 4 5 7 6 10 11 11 11 11 11 12 12 20 21 21 21 22 38

Table

Hog IFC Digested 14 153 402 (ng) 3,5,6-Me3BZA] OH) Cba with various binders and plasma B12 after elution from paper chromatography. All assays were performed at pH 9.0. S S 148 396 Hog IFC + (ng) B12 assayed Cobinamide (%) Hog IFC + (gu) 8 HOR IFC Assay of [57co] B12 (gu) 12445 613444 [57co] B12 300 500 300 200 4600 14000 2100 300 300 (cpm) 19 20 21 22 24 24 25 26 27 28 30 31-38 Fraction OMPI WIPO

Assay of [57Co] Bl2 and native Bl2 after elution from paper chromatography. All assays were performed at pH 9.0.

3 5 1	(Z) (Z)	Human R (ng)	n R (Z)	Human IF (ng)	(Z)	(Z) Human IF Hog (Z) (ng) (ng)	Hog IFC
	200 600 400 400 15800 11 200 100	1 1 1 2 86 40 40 1	17 17 11	1 198 198 1	15 17 17	18 90 18 73 73	1 4 4 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

24

Table TyE

Summary of the data in Tables IVA \sim IVD involving assays of I⁵⁷Co] B₁₂ and B₁₂ after elution from paper chromatography. Assays for B₁₂ were performed at pH 9.0 except where indicated.

	(%)	100	100	1.00	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	1–38 (ng) (3	1	348	329	337	t	1343	1434	1133	1539	1030	799	784	874	818	752	785	801
suo	38 (%)	7	~	-	7	е	24	20	24	26	18	'n	7	10	7	11	60	13
Fractions	17-38 (ng) (1	'n	7		1	324	283	274	402	185	38	. 56	78	54	. 81	. 61	102
Chromatogram	(%)	92	. 97	86	95	91	65	89	99	61	72	16	88	84	68	83	87	80
Chroma	14-16 (ug) (1	336	322	319	t	874	972	721	938	745	730	691	737	731	624	989	639
	<u>-13</u> (%)	S	2	7	,E	9	11	12	12	13	10	4	5	9	4	9	Ŋ	7
	1- (ng)	ı	. 7	'n	1	1	145	179	1.38	199	100	31	37	53	32	47	38	09:
Assay	Binder		Human R	Human IF	Hog IFC	ı.	Human R	Human R (pH 1.8)	Hog R	Hog R (pH 1.8)	Hog IFC	Human IF	Hog IF	Rabbit IF	Hog IFC + Cobinamide	Hog IFC + CN-Cb1[bde-OH]	Hog IFC + [3,5,6-Me3BZA] (CN,0H)Cba	Hog IFC - Digested
Ttem .	Assayed	[57co] B ₁₂	B12 ·	B12	B ₁₂	[57co] B ₁₂	B12	B12	B12	B12	B12	B12	B12	B12	B12	B12	B12	B12
	Sample Chromatographed	$[57co] B_{12} + B_{12}$		2	=	[57co] Bl2 + plasma Bl2		=	Ξ	5	=	=		=	=	=	=	=

present invention, mixtures of protein including both vitamin $B_{1,2}$ specific binding protein and binding protein which is not specific to vitamin B_{12} can be modified by the addition of an excess amount of vitamin B_{12} analogue, 5 by which process the analogue binds with the non-specific protein to render it substantially bound or inactive so that it is not available to react with vitamin B, or (^{57}Co) B₁₂ present in samples undergoing RID tests. The amount of vitamin B₁₂ analogue to be added to a mixture of 10 specific and non-specific proteins in order to bind or inactivate the non-specific proteins may vary over a wide range, depending on both the proteins which are present and the vitamin B, analogues which are utilized as the binding or inactivating material. Generally speaking, for the exam-15 ples shown in Table IVC, cobinamide may be added in an amount equal to that required for complete binding of the non-specific protein, up to an amount as much as ten million times greater than the amount needed to bind the protein, with the preferred range being about ten to about ten 20 thousand times in excess of that required for complete binding. CN-Cb (bde-OH), known as CoB-cyano-cobamic a,c,gtriamide may be utilized in an amount at least about ten times to about ten million times in excess of the amount required to bind with the non-specific protein, with an 25 amount of about one hundred to about one hundred thousand times excess being preferred. The (3,5,6-Me₃BZA) (CN,OH)-cba, known as Co (3,5,6-trimethylbenzimidazole) cobamide should also be utilized in amounts from about one to ten million times in excess of the amount of non-30 specific protein, with an amount in the range of about ten to about ten thousand times excess being preferred. Suitable amounts of other vitamin B_{12} analogues may be utilized in a similar manner to bind or inactivate non-specific proteins present in mixtures with specific proteins in order 35 to obtain a preparation of binding protein which will substantially bind only ⁵⁷Co-B₁₂, or the vitamin B₁₂ naturally present in the samples being tested, and thus

give a more accurate quantitative RID assay of vitamin B_{12} in samples undergoing tests.

Again, referring to Table IVC, data on samples of hog IFC digested with trypsin and chymotrypsin are shown. 5 and other proteolytic enzymes are specific in their ability to substantially digest R proteins while leaving intrinsic factor proteins unaffected and available as substantially the only protein for binding $^{57}\text{Co-B}_{12}$ and vitamin B_{12} in RID assays. Other enzymes, including, for example, elastase 10 may be utilized for the same purpose. The amount of the enzymes utilized is in the range of about 0.01 to about 100 milligrams per mililiter of protein treated, with a preferred amount being about 0.05 to about 40 milligrams per mililiter of protein. Utilizing this proteolytic enzyme 15 digestion process a protein binder is provided which substantially binds only $^{57}\text{Co-B}_{12}$ and vitamin B_{12} and is not affected by vitamin B₁₂ analogues in the samples being tested and which therefore gives a more accurate RID assay than is obtained when utilizing the original mixture of hog 20 IFC proteins which included non-specific proteins which would have been capable of reacting with the newly discovered vitamin B₁₂ analogues in samples to give inaccurate assays as to the amount of vitamin B_{12} in test samples.

Now, referring to Table IVA, when samples from the plasma extract chromatogram were assayed for vitamin B₁₂ with human R, hog R and hog IFC, different results were obtained than when those samples were assayed with human IF, hog IF, rabbit IF or hog IFC treated with vitamin B₁₂ analogues or hog IFC digested with proteolytic enzymes.

In each case where human R, hog R or untreated hog IFC were utilized as the binding protein the tests gave the appearance that more vitamin B₁₂ was present in the chromatogram samples, especially in fraction 1 through 13 and 17 through 38. This observation, when taken with the above data, pro-

vides strong evidence that normal human plasma contains a number of vitamin B_{12} analogues that compete with $^{57}\text{Co-B}_{12}$, in significant amounts, for binding to R protein. It also indicates that such activity on the part of the B_{12}

10

analogues is substantially absent when the binding protein utilized in the RID assay is substantially specific to vitamin B₁₂.

It should also be noted, see Table IVA, that the 5 chromatogram data suggests that the lack of specificity of human R and hog R is unchanged when RID assays are performed This indicates that erroneous results will be at acid pH. obtained for the true vitamin \mathbf{B}_{12} content of samples which contain vitamin B_{12} analogues when RID assays are performed at acid pH.

Using the same techniques and criteria described above it has been discovered that vitamin \mathbf{B}_{12} analogues are not only present in serum obtained from human blood, but are also present in mammalian tissues in even higher concen-15 trations than they are in blood. Vitamin B_{12} analogues extracted from mammalian tissues have been purified using the same schemes as described above. When analyzed utilizing paper chromatography, they exhibited similar mobilities to those of the witamin B_{12} analogues observed in 20 the samples extracted from blood serum. Since larger amounts of the vitamin B₁₂ analogues are present in tissue, they can be observed visually as red or orange spots during paper chromatography. The absorption spectra of vitamin B₁₂ analogues purified from tissue extracts have been de-25 termined and demonstrate that they are similar to, but distinct from, the absorption spectrum of true vitamin B_{12} These observations provide additional evidence that the materials in blood serum which preferentially react with R proteins and not intrinsic factor proteins are in fact varieties of vitamin B₁₂ analogues.

The newly discovered vitamin B12 analogues also differ from vitamin B₁₂ in terms of their biological activity. Thus, as shown in Table V, the serum vitamin B12 values obtained with Euglena gracilis for eleven patients diagnosed 35 to have vitamin B_{12} deficiency were substantially similar to the results obtained by RID assay using human IF or hog IF as the binding protein. It is to be further noted, that all of the values obtained by either microbiologic assay or

28 Table V

Vitamin \mathbf{B}_{12} levels in 21 patients with clinical evidence of vitamin \mathbf{B}_{12} deficiency

					Vitamin B assayed
5	Vitamin	B12 assayed t		binders	with Euglena
Patient	Human R	Hog R	Human IF	Hog IF	Gracilis
	(pg/ml)	(pg/ml)	(pg/ml)	(pg/ml)	(pg/ml)
1	155	138	16	0	43
2	310 ·	295	51	86	52
3	310	255	24	35	46
4	135	132	0	22	. 40
· 5	215	250	52	60	25:
6	347	342	. 0	0	56
7	102	120	. 0	Ö	· 35
8	240	242	58	65	
9	160	125	38	23	79
10	85	84	ő	12	0
11	235	255	5 ·	11	23
12	188	190	41	38-	0
13 ·	178	192	48	38	
14	298	305	53 ·		
15	355	310	78	57 82	
16	178	210	48	82	•
17	128	140	31	22	
18	106	190	50	8	•
19	163	155	0	40	
20	178	132	25	Ö	
21	230	215	75	. 0	·
	250	21.).	75	41	
Mean (1-11)	209	203	22	29	36
Mean (1-21)	205	204	33	30	
Normal Range (mean + 2 std. dev.)	220-1230	245-1135	136-656	157-717	(>130)
Number within normal range	9 (43%)	10 (48%)	0	0	0 .

by assay using human IF or hog IF were substantially lower than the values obtained when the RID assay was carried out utilizing human R or hog R as the binding protein. This indicates that the vitamin B₁₂ analogues which have now been identified in mammalian blood and tissue do not possess vitamin B₁₂ activity of the type which is required to promote the growth of <u>Euglena gracilis</u>.

Data was obtained on ten additional patients diagnosed to be vitamin B_{12} deficient and the total of 21 patients 10 with vitamin B_{12} deficiency are shown in Table V. In each of the 21 patients the vitamin B_{12} values found when the RID assay was carried out utilizing human IF or hog IF were below the range of vitamin \mathbf{B}_{12} values found in a control group of 74 normal subjects. However, when the RID assay 15 was carried out utilizing human R or hog R only about half of the 21 vitamin B12 deficient patients were found to assay below the range of normal subjects for vitamin B₁₂ This indicates that where the newly found vitamin B₁₂ analogues are present in the samples being tested, and the 20 binding protein is not specific to vitamin B_{12} , the resulting assays may suggest that a truly vitamin B12 deficient patient is not within the deficient range. This may lead to delay of treatment of that patient for vitamin B12 deficiency. It also indicates that the vitamin $B_{1,2}$ ana-25 logues that have now been discovered lack the therapeutic or beneficial activity of vitamin \mathbf{B}_{12} in the sense of being unable to prevent the hematologic and/or neurologic abnormalities associated with vitamin B₁₂ deficiency.

There are many commercial RID assay type kits available for the assay of vitamin B₁₂ in clinical laboratories. Table VI sets forth an analysis of several such kits, and a comparison of the types of protein found in those kits with hog IF, hog R and hog IFC. By reference to Table VI, it is seen that the commercial kits appear to have only about 13% to about 35% intrinsic factor and from about 60% to about 85% R.protein. It is therefore suspected, that the use of these kits will give substantially erroneous assays of the amount of vitamin B₁₂ present in a sample

Table TT

Analysis of vitamin B12 binders and assay pH used in commercial kits sold for the assay of vitamin B12 in clinical laboratories

	Vitamin B12 Binding Protein	ing Protein	(F)
Source of Binder	intrinsic factor(a) R protein(b) (2)	R protein(b)	Assay pH of Kittu
HOE IF	26	o	
2 6 CH	0	86 .	•
UPI SON	25	75	•
nies Diaenostic Products Corp. Kit	35	09	1.7
New England Nuclear Kit	20	82	4.1
	30	7.1	1.9
Medvak Diagnostic Products Kit	13	85	1.8
Schwarz/Mann Kit	34	29	1.6
Pharmacla Diagnostics Kit	1 (33) ^c	67	4.1

- [57co] Bl2 binding observed with anti-IF antibodies at pH 7.5. Inhibition of |
- [57co] B12 binding observed with a 100 fold molar excess of cobinamide at pH 7.5. Inhibition of **E E**
- In this kit the binder is covalently attached to an insoluble matrix and because of steric factors it may not be accesible to anti-intrinsic factor antibodies. Thus the value for % intrinsic factor may be as high as 33%. છ
- % Intrinsic factor than is indicated in the table while those that use pH 1.7-1.9 its Bl2 binding ability R protein retains its full B12 binding ability over the range at pH 4.1 and 1.9, respectively. Thus kits that use pH 4.1 have slightly less Refers to the pH measured after the addition of all of the components of each of pH 1.7-9.1 but intrinsic factor loses 10% and 99% of are employing essentially no intrinsic factor. individual kit. E

when the sample also includes vitamin B₁₂ analogues, such as those newly discovered to exist in mammalian blood and tissues. It has also been determined that the effectiveness of intrinsic factor to bind vitamin B₁₂ is somewhat pH dependent, with intrinsic factor losing about 10% of its binding ability at a pH of about 4.1 and losing about 99% of its binding ability at a pH of about 1.9. Thus, to the extent that the commercial kits use a pH of about 4.1 during binding they would have about 10% less intrinsic factor than shown in Table VI. Those kits having a pH during binding of about 1.7 to about 1.9 would obtain substantially no binding from intrinsic factor.

While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other modifications or changes in form and details may be made therein without departing from the spirit and scope of the invention.

What is claimed is:

- l. A composition for use in the assay of vitamin B₁₂

 (cobalamin) wherein the active component is substantially specific to vitamin B₁₂ and substantially
 free of substances which react with vitamin B₁₂
 analogues.
- 2. The composition of claim 1 wherein the active com-
 - 3. The composition of claim 2 wherein the binding protein is intrinsic factor.
 - 42. The composition of claim 3 wherein the intrinsic factor is selected from the group consisting of human IF, hog IF and rabbit IF:
 - 5. The composition of claim 4 wherein the intrinsic factor includes human Tr.
 - 6. The composition of claim 4 wherein the intrinsic factor includes hog IF.
 - 7. The composition of claim 1 wherein one or more protein binder which is non-specific to vitamin B₁₂ is present and has been rendered substantially inactive or inoperative as to its ability to bind with vitamin B₁₂ by treatment with a vitamin B₁₂ analogue, said analogue being substantially reactive with said non-specific protein and substantially non-reactive with the material which is a specific binder for B₁₂, said analogue being present in an amount sufficient to render substantially all of the non-specific binder inactive or inoperative in its ability to bind with vitamin B₁₂.
 - 8. The composition of claim 7 wherein the specific active binder includes intrinsic factor protein and the non-specific protein binder includes an R protein.
 - 9. The composition of claim 8 wherein a portion of the vitamin B_{12} analogue is selected from the group consisting of cobinamide, CN-Cbl(bde-OH) and (3,5,6-Me₃BZA) (CN,OH) Cba.

i...

- 10. The composition of claim 7 wherein the vitamin B₁₂ analogue is present in the amount of about a 10-fold to about a 100,000-fold excess, based on the molar amount of the non-specific protein.
- 11. The composition of claim 9 wherein the vitamin B₁₂ analogue is present in the amount of about a 1-fold to about a 10,000,000-fold excess based on the molar amount of the non-specific protein.
- wherein a composition including binding material substantially specific to vitamen B₁₂ and binding materials substantially non-specific to vitamin B₁₂ and including a protein is treated with vitamin B₁₂ analogues to remove substantially all of the non-specific vitamin B₁₂ binding material, said vitamin B₁₂ analogue being substantially reactive with said non-specific binder and substantially non-reactive with the material which is a specific binder for B₁₂, said analogue being added in an amount sufficient to render substantially all of the non-specific binder inactive or inoperative in its ability to bind with vitamin B₁₂.
 - 13. The method of preparing the binder of claim 7 wherein a composition including protein binding material substantially specific to vitamin B₁₂ and binding material substantially non-specific to vitamin B₁₂ is treated with vitamin B₁₂ analogue to render the binder non-specific to vitamin B₁₂ substantially inactive or inoperative as to its ability to bind with vitamin B₁₂, said vitamin=B₁₂ analogue being substantially reactive with said non-specific binder and substantially non-reactive with the material which is a specific binder for B₁₂, said analogue being added in an amount sufficient to render substantially all of the non-specific binder inactive or inoperative in its ability to bind with vitamin B₁₂.

gaaaa\(97854 <u>77.4</u>	
	The state control	•
•	The method of claim-13 wherein the specific active	
14.	binder includes intrinsic factor protein and the	- i. F.a.
	non-specific protein binder includes an R protein.	is: idea(3
	A radioisotope dilution assay for measuring the	
15.		
	vitamin B ₁₂ level in a sample comprising: contacting said sample with a known amount of a	
	radioisotope of vitamin B ₁₂ and a composition con-	
	taining a binding protein substantially specific	1
·	to vitamin Bio, said composition being substantia	lly .
	free of substances which bind Vitamin Bis analogue	သင့္။
ming: at	The method of claim 15-wherein the binding protein	Calegory
16.,		}
	is intrinsicofactore to bedshired 213,144,6 p. 20	X.
17.	The method of claim 15 wherein the binding protein	u X
	consists essentially of protein selectediffrom the	l z l
	group consisting of human IF; hog IF and rabbit I	ė.
18.	The method of claim 15 wherein the source of	:
•	vitamin B ₁₂ is selected from the group consisting	Æ
	of mammalian tissue and mammalian blood	. A
19.	The method of claim 15 wherein the source of	A, P
	vitamin B ₁₂ is human blood. Is as accived with A. A. St.	A.P
20.	to the second of	sent
	in a sample which also includes vitamin B ₁₂ , in-	I.A
	cluding the steps of: 12 best 124 600.11	A
	assaying a portion of the sample with a binder wh	ich
	is a binder for both vitamin B_{12} and vitamin B_{12}	i
ر ماد مداد مسیسی بیسو بیسو ا	analogues;	
भाद्या तमञ्जूषात्रकी	assaying a portion of the sample with a binder wh	1Ch
ลูกเกิ เมเนเราก	is substantially specific to vitamin B ₁₂ and sub-	
Sumpatur (27)	Istantially free of substances which bind vitamin	P12: : '''
4 agustus	then determining the difference between the two	::
<i>.</i>	assays, as being substantially indicative of the	a erQ a a
	amount of vitamin B, analogue in the sample.	:
	The state of the s	

BAD ORIGINAL

BEST AVAILABLE COPY

PCT/US79/00210

International Application No PCT/US79/00210				
I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 3				
According to International Patent Classification (IPC) or to both National Classification and IPC INT. CL. GOIN 33/16; U.S. CL. 23/230B, 230.3, 230.6; 252/408; 424/1, 1, 5, 96				
II. FIELDS SEARCHED				
Minimum Documentation Searched 4				
Classification System- 27 7 73 2572 2011 1907 Classification Symbols 011109 257100				
US 23/230B,,,230.3,5230.60				
vitamin By level in a comple constini				
to the Extent that such Documents are included in the Fields Searched				
audo corresponde e cus éle deuenta es afrastes.				
ugining a binding probesh substantiably apequate				
			op bill term alle co	enio en.
III. DOCUMENTS CONSIDERED TO BE RELEVANT:14 Category Citation of Document, 16 with indication, where appropriate, of the relevant passages 17 Relevant to Claim No. 16				
Category *				
X z	Highlev e	t al.	25: March, 19695	1-11
X	US,A, 3,442,81	9 Published I-III, Herbe	06 May 1969; 5ee	.dn = 15-20
X ·	US-A-93-937,79	9 Published	10 Feb: 1976,	ST .
Х,	US,A, 3,591,67	8 Published	of July 1971,	13-20
A	US,A, 2,892,75	4 Published	30 June 1959,	
A	Nîmegûenî US., Az : 2,912,36		10 Nov. 1959,	1-11
A	Baum et a	1.	14 Sept. 1976,	1-11
A,P	Adams. US,A, 4,133,95			1-11
A,P	Charlton US,A, 4,136,15	et al.	e en la companya de	1-11
	ero = Stone = = 3 US,A, 4,146,60			1-11
A., P	Gutcho et	SPA SOUPTRUED	2/ Haren 13/3,	1-11
A·			March 1957.	ţ
Ä	GB,A, 791,186	Published 26	Feb. 1958.	1-11
A	GB,A, 900,459	Published 02	July 19629 5 C	1-11
	instant p	ក្នុធ ការមនុវ	lader for blass vi	d 6 =1
	<u> </u>		;;;;	roo lana
* Special categories of cited documents 15				
"A" document defining the general state of the art "P" document published prior to the international filing date but				
filing	date	m aust üle nususnossi	on or after the priority date. "T" later document published or	
"I later document published on or after the international filing date or priority date and not in conflict with the application, bo. in the other categories bounded to understand the principle or theory underlying the invention or document referring to an oral disclosure, use, exhibition or				
	means to an draf disci	esura, usa, exploition of	"X" document of particular telev	
IV. CERTIFICATION				
Date of the Actual Completion of the International Search 2 Date of Mailing of this International Search Report 2 10 July 1979				
		 		NI V
ISA/US Signature of Authority 1 Signature of Authority 2 Signature of Authority 2				Jasanta
STINEVIMADANTZ				

Form PCT/ISA/210 (second sheet) (October 1977)

BAD URIGINAL