六、Theory of Generalization 泛化理论(举一 反三)

6.1 Restriction of Break Point 突破点的限制

回顾一下上一章中提到的成长函数 $m_H(N)$ 的定义:假设空间在N个样本点上能产生的最大二分(dichotomy)数量,其中二分是样本点在二元分类情况下的排列组合。

上一章还介绍了突破点(break point)的概念,即不能满足完全分类情形的样本点个数,完全二分类情形(shattered)是可分出 $\mathbf{2^N}$ 种二分类(dichotomy)的情形。

继续举例说明,假设一种分类情形最小的突破点为2,即 k=2。

容易求出在N=1 时,成长函数 $m_H(N)=2$

在N=2时,成长函数 $m_H(N) < 2_N = 4$ (突破点是2),因此最大的二分类个数不可能超过3,假设为3。

继续观察N=3时的情形,因理解稍微有些复杂,还是以图的形式表达,如图6-1所示。

如图**6-1a**)表示在三个样本点时随意选择一种二分的情况,这种分类没有任何问题,不会违反任意两个样本点出现四种不同的二分类情况(因为突破点是**2**);

如图6-1b)表示在a)的基础上,添加不与之前重复的一种二分类,出现了两种不冲突的二分类,此时同样也没有任何问题,不会违反任意两个样本点出现四种不同的二分类情况;

如图**6-1c**) 表示在**b**)的基础上,再添加不与之前重复的一种二分类,出现了三种不冲突的二分类,此时同样也没有任何问题,不会违反任意两个样本点出现四种不同的二分类情况;

如图6-1d) 表示在c)的基础上,再添加不与之前重复的一种二分类,问题出现了,样本 x_2, x_3 出现了四种不同的二分情况,和已知条件中k=2矛盾(最多只能出现三种二分类),因此将其删去。

如图6-1e) 表示在c)的基础上,再添加不与之前重复的一种二分类,此时同样也没有任何问题,不会违反任意两个样本点出现四种不同的二分类情况;

如图6-1f) 表示在e)的基础上,再添加不与之前重复的一种二分类,问题又出现了,样本 x_1, x_3 出现了四种不同的二分情况,和已知条件中k=2的条件不符(最多只能出现三种二分类),因此将其删去。

\mathbf{x}_1	X ₂	X 3
0	0	0
X ₁	x ₂	x ₃
X ₁	x ₂	x ₃

a) b)

c) d)

e) f)

图6-1 样本数为3时的二分类情形

在突破点是2,样本点为3时,最多只能有四种二分类情况,而 $\mathbf{4} \ll \mathbf{2^3}$ 。

从上述情形,可以做一个猜想,成长函数 $m_H(N)$ 小于等于某个与突破点k有关的二次项,如果可以证明这一结论,即能寻找到一个可以取代无限大M的数值,同理即能公式4-6在假设空间为无限大时也是成立,即机器是可以学习的。

假设突破点k=1,在样本数为3时,最大的二分类个数是多少?答案是1,可以想象,在样本为1时,只有一种分类情形,假设这种情形是正,则以后所有样本也为正,才能满足上述条件,所以样本N不论为多少,其最大二分类数都是1。

6.2 Bounding Function - basic function 上限函数的基本情形

根据上一小节的例子,提出一个新的概念,上限函数 B(N,k)(bounding function),其定义为在最小突破点为k时,表示成长函数 $m_H(N)$ 最大值的函数。此函数将成长函数从各种假设空间的关系中解放出来,不用再去关心具体的假设,只需了解此假设的突破点,突破点相同的假设视为一类,抽象化成长函数与假设的关系。

二分类的个数或者称之为成长函数 $m_H(N)$ 说白了就是二元(在图中表示为" \times "或者" \circ "的符号)符号在在长度为N的情况下的排列组合(每个不同的排列代表一个二分类,每种二分类可看做一个向量)个数。

在强调一遍,提出这种上限函数的好处在于,它的性质可以不用关心到底使用的是何种假设空间,只需要知道突破点便可以得到一个上限函数来对成长函数做约束。

例如:B(N,3) 可以同时表示一维空间的感知器(1D perceptrons)和间隔为正(positive intervals)的两种假设空间,因为两者都满足k=3。注意一维的成长函数为 $m_H(N)=2N$,而间隔为正的成长函数为 $m_H(N)=1/2N^2+1/2N+1$,B(N,3) 一定比这两种情况中最大的还要大,才能约束成长函数,回忆上限函数的定义,是成长函数 $m_H(N)$ 最大值的函数表示,从这个例子中可以理解为何还会出现"最大值"。

想要证明B(N,k) < poly(N)。

先观察已知的 B(N,k)如何表示,通过列表方式找出规律,如图6-2所示。

					k			
	B(N,k)	1	2	3	4	5	6	
	1	1	2	2	2	2	2	
	2	1	3	4	4	4	4	
	3	1	4	7	8	8	8	
Ν	4	1			15	16	16	
	5	1				31	32	
	6	1					63	
	:	:						$\gamma_{i,j}$

图6-2 已知的B(N,k) 取值

在 N=k的这条斜线上,所有值都等于 2^N-1 ,这一原因在上一节推导中已经提到过,原因是突破点代表不能完全二分类的情况,因此在此情况下最大的二分类数可以是 2^N-1 。在这条斜线的右上角区域所有的点都满足完全二分类的,因此值为 2^N 。

而在斜线右下角上已给出数值的点都是在上一节中已求出答案的点,空白地方的值则是下节需要介绍的内容。

当突破点等于K的时候,成长函数的上限成为上限函数,公式如下

 $B(N,k) = \max(m_H(N))$

6.2 Bounding Function - Inductive Cases 上限函数的归纳情形

这一小节主要是将上一小节空白的内容填写上,从已有的数据上可以看出一个似乎是正确的结论:每个值等于它正上方与左上方的值相加。如公式6-1所示。B(N,k)=B(N-1,k)+B(N-1,k-1)

当然单从观察是无法证明该公式是成立的,以下从结论出发来验证它的正确性。

首先通过计算机求出N=4, k=3 的所有二分情况(自己编写程序加上限制条件,在16个二分类中找出符合条件的),其结果如图6-3所示。

	X ₁	\mathbf{x}_2	X 3	\mathbf{x}_4
01	0	0	0	0
02	×	0	0	0
03	0	×	0	0
04	0	0	×	0
05	0	0	0	×
06	×	×	0	×
07	×	0	×	0
08	×	0	0	×
09	0	×	×	0
10	0	×	0	×
11	0	0	×	×

图6-3 N=4,k=3的所有二分类

图6-3中的展示效果还是有些混乱,对这11种情况做一次重新排序,将 x_4 与 x_1 x_3 分开观察,如图6-4所示,橙色部分为 x_1 x_3 两两一致、 x_4 成对(pair)出现的二分类,设橙色部分一共 α 对二分类,即 2α 种二分类;紫色部分为各不相同的 x_1 x_3 ,设紫色部分一共 β 种,得公式6-2。 $B(4,3)=11=2\times 4+3=2\alpha+\beta$

	X ₁	\mathbf{x}_2	X 3	X ₄
01	0	0	0	0
05	0	0	0	×
02	×	0	0	0
08	×	0	0	×
03	0	×	0	0
10	0	×	0	×
04	0	0	×	0
11	0	0	×	×
06	×	×	0	×
07	×	0	×	0
09	0	×	×	0

图6-4 以成对和单个的形式展示

注意k=3,意味着在样本点为3时,不能满足完全二分的情形。需要观察在样本数为3时,这11种分类会有何变化,不妨假设这三个样本是 x_1 x_3 ,于是只剩如图6-5所示的7种二分类情形。

图6-5 三个样本时缩减之后的二分类

其中橙色部分,原本两两成对出现的二分类,在去掉 x_4 所属的那列样本之后,就合并成了4种二分类情况($\alpha=4$),紫色部分不变依然为3种二分情况($\beta=3$)。因为已知N=4,k=3,在样本数为3时,图6-5中即表示样本书为3的情况,其一定不能满足完全二分,因此与 $\alpha=\beta$ 一定满足公式6-3。 $\alpha+\beta\leq B(3,3)$

继续观察橙色部分的区域,如图6-6所示。

图6-6 三个样本时橙色区域的二分类

以下使用反证法证明。假设 x_1 x_3 三个样本在如上图所示的四种二分类情况下,满足任意两个样本都可完全二分类。将 x_1 x_3 中任意两列取出,同之前被删除的 x_4 列相结合,一定可得到一种三个样本都满足完全二分类的情形(因为不论是哪两列与相结合都会得到8种二分类,每一行二分类都对应两个不同标记的,因此为8种。且两列四行的二分类是全完二分的,在此基础上加上不同属性的列,应该也不会重复,因此一定也是全完二分的)。但是此结论和己知任意三个样本不能完全二分冲突了,因此假设不成立,即在图6-6中一定存在某两个样本点不能完全二分

的情况,因此得出如公式6-4所示的结论。 $\alpha \leq B$

由公式6-2~公式6-4推导出公式6-5。

$$B(4,3) = 2\alpha + \beta$$

= $\alpha + (\alpha + \beta)$
 $\leq B(3,3) + B(3,2)$

最终还能推导出公式6-6的通用结论,也就是开始时公式6-1的猜想。

$$B(N,k) = 2\alpha + \beta$$

= $\alpha + (\alpha + \beta)$
 $\leq B(N-1) + B(N-1,k-1)$

根据这一结论将图6-2补齐,如图6-7所示。

					k		
	B(N,k)	1	2	3	4	5	6
	1	1	2	2	2	2	2
	2	1	3	4	4	4	4
	3	1	4	7	8	8	8
Ν	4	1	≤ 5	11	15	16	16
	5	1	≤ 6	≤ 16	≤ 26	31	32
	6	1	≤ 7	≤ 22	≤ 42	≤ 57	63

图6-7 补齐后的上限函数表

最后可以通过如下方式证明公式6-7是成立的。

$$B(N,k) = \sum_{i=0}^{k-1} C_N^i$$

首先需要预先了解组合中的一个定理,如公式6-8所示。

$$C_n^k = C_{N-1}^k + C_{N-1}^{k-1}$$

很容易证明K=1情况下公式6-7成立,如公式6-9所示。

$$B(N,1) = 1 = C_N^0 \le \sum_{i=0}^{1-1} C_N^i$$

上一节中已经给出了证明,不仅仅是满足不等号条件,而且满足等号。

再使用数学归纳法证明在的情况,公式6-7成立。

假设公式6-10成立,则可以得到在的情况下公式6-11成立,同时结合公式6-6的结论,公式6-12也能被推导出来。

$$B(N-1,k) \le \sum_{i=0}^{k-1} C_{N-1}^i$$
 (公式6-10)

$$B(N-1,k-1) \le \sum_{i=0}^{k-2} C_{N-1}^i = \sum_{i=1}^{k-1} C_{N-1}^i \qquad (\text{in } \underline{\tau}_{N}^k 6-11)$$

$$\begin{split} &B(\mathbf{N},\mathbf{k}) \leq B(\mathbf{N}-1,\mathbf{k}) + B(\mathbf{N}-1,\mathbf{k}-1) \\ &\leq \sum_{i=0}^{k-1} C_{N-1}^{i} + \sum_{i=0}^{k-2} C_{N-1}^{i} \\ &= \sum_{i=0}^{k-1} C_{N-1}^{i} + \sum_{i=1}^{k-1} C_{N-1}^{i} \\ &= C_{N-1}^{0} + \sum_{i=1}^{k-1} (C_{N-1}^{i} + C_{N-1}^{i}) \\ &= 1 + \sum_{i=1}^{k-1} C_{N}^{i} \\ &= C_{N}^{0} + \sum_{i=1}^{k-1} C_{N}^{i} \\ &= \sum_{i=0}^{k-1} C_{N}^{i} \end{split}$$

这一结果意味着:成长函数 $m_H(N)$ 的上限函数B(N,k) 的上限为 N^{k-1} 。

6.4 A Pictorial Proof 一种形象化的证明

至此说明了(不敢叫证明)一个在机器学习领域很著名的理论——V-C上界制(Vapnik-Chervonenkis bound)。

2维的感知器,其突破点为4,因此其成长函数为 $O(N^3)$,可以使用这个VC上界来说明在样本N足够大时候,发生坏事的情况很少,即选择一个在样本中错误率很小的g,可以得出其在整个数据上错误率也很低的结论,说明机器学习是可能的。