Predicate logic: semantics

Methods: Logic, Part 5

Michael Franke

Propositional logic $V(\varphi) \in \{0,1\}$

$$V_{\mathbf{M}}(\varphi) \in \{\mathsf{o}, \mathsf{1}\}$$

Model of predicate logic

A model $M = \langle D, I \rangle$ for $\mathfrak L$ consists of: domain $D \neq \emptyset$: set of entities interpretation function I: if c is a constant of $\mathfrak L$, then $I(c) \in D$, and if P is an n-ary predicate letter of $\mathfrak L$, then $I(P) \subseteq D^n$.

Assignments and term interpretations

Assignment function

An assignment function g for model $M = \langle D, I \rangle$ and language $\mathfrak L$ maps all variables in $\mathfrak L$ to elements in D.

Term interpretation

If *t* is a term of *L*, then $[\![t]\!]_{M,g}$ is the term interpretation relative to $M=\langle D,I\rangle$ and *g*:

$$[\![t]\!]_{M,g} = I(t)$$
 if t is a constant, and $[\![t]\!]_{M,g} = g(t)$ otherwise.

Valuation functions for predicate logic (1)

Simple formulas

$$V_{M,g}(At_1...t_n) = \mathbf{1} \quad \text{iff} \quad \left\langle \llbracket t_1 \rrbracket_{M,g}, \ldots, \llbracket t_n \rrbracket_{M,g} \right\rangle \in I(A)$$

Sentential connectives

$$\begin{array}{lll} V_{M,g}(\neg\phi)=\mathbf{1} & \text{iff} & V_{M,g}(\phi)=\mathbf{0} \\ V_{M,g}(\phi\wedge\psi)=\mathbf{1} & \text{iff} & V_{M,g}(\phi)=\mathbf{1} \text{ and } V_{M,g}(\psi)=\mathbf{1} \\ V_{M,g}(\phi\vee\psi)=\mathbf{1} & \text{iff} & V_{M,g}(\phi)=\mathbf{1} \text{ or } V_{M,g}(\psi)=\mathbf{1} \\ V_{M,g}(\phi\to\psi)=\mathbf{0} & \text{iff} & V_{M,g}(\phi)=\mathbf{1} \text{ and } V_{M,g}(\psi)=\mathbf{0} \\ V_{M,g}(\phi\leftrightarrow\psi)=\mathbf{1} & \text{iff} & V_{M,g}(\phi)=V_{M,g}(\psi) \end{array}$$

Valuation functions for predicate logic (2)

Quantifiers

$$V_{M,\mathcal{G}}(\forall x \, \phi) = \mathbf{1}$$
 iff $V_{M,\mathcal{G}_{[x/d]}}(\phi) = \mathbf{1}$ for all $d \in D$ $V_{M,\mathcal{G}}(\exists x \, \phi) = \mathbf{1}$ iff $V_{M,\mathcal{G}_{[x/d]}}(\phi) = \mathbf{1}$ for at least one $d \in D$

Notation

We write $g_{[x/d]}$ and read "g with x mapped to d," for the assignment function which is like g except that x is mapped to $d \in D$.

Truth in a model

If $V_{M,g}(\phi) = 1$ for all g, we write $V_M(\phi) = 1$ and say " ϕ is true in M". Similarly for *false*.

Any sentence (no free variables) is either true or false in any given model M.

Example

Model

$$D = \{1, 2, 3, 4, 5\}$$

$$I(a) = 3$$

$$I(P) = \{1, 2, 5\}$$

$$I(Q) = \{2, 5\}$$

$$I(R) = \{\langle 1, 2 \rangle, \langle 2, 2 \rangle, \langle 1, 4 \rangle, \langle 1, 5 \rangle\}$$

Truth of formulas in the model

(i)
$$V_M(\exists x (Px \land Qx)) = \mathbf{1}$$

(ii)
$$V_M(Pa) = 0$$

(iii)
$$V_M(\forall x (Px \to Qx)) = 0$$

(iv)
$$V_M(\forall x (Rax \rightarrow Qx)) = 1$$