IOS: Inter-Operator Scheduler for CNN Acceleration

Yaoyao Ding¹², Ligeng Zhu³, Zhihao Jia⁴, Gennady Pekhimenko^{1 2}, Song Han³

Efficient Deployment of CNNs is Important

Face Recognition Self Driving Language Translation

Is CNN inference in current DL libraries well utilizing underlying hardware?

Motivation for Inter-Operator Parallelization

1. More small convs in CNN design.

2. GPU peak performance increased

3. Intra- and Inter-operator Parallelization

Inter-Operator Scheduler (IOS)

Time Complexity of IOS: $\mathcal{O}\left((n/d+1)^{2d}\right)$

d: width of computation graph(max number of parallelizable ops)

Comparison of cuDNN-based Frameworks

TensorFlow: A widely-used machine learning framework.

TensorFlow-XLA: TensorFlow with compilation optimization.

TASO: Transformation-based optimizer.

TVM-cuDNN: TVM backed with cuDNN convolution kernel.

TensorRT: NVIDIA high-performance inference engine.

IOS: Our method

IOS outperforms all frameworks and achieves **1.1-1.5x** speedup.

Conclusion

- Sequential execution suffers from under utilization problem.
- Inter-Operator Scheduler (IOS):
 - Utilize both intra- and inter-operator parallelism in CNNs.
 - Dynamic-programming explores the schedule space exhaustively.
 - Time Complexity: $O\left((n/d+1)^{2d}\right)$, d is usually small.
- Key Results: 1.1-1.5x speedup on diverse CNNs.

https://github.com/mit-han-lab/inter-operator-scheduler
We provide scripts to reproduce results in every figure and table!

