UNCLASSIFIED

AD NUMBER ADB049608 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; Aug 1979. Other requests shall be referred to Air Force Flight Dynamic Latoratory, Attn: FBG, Wright-Patterson AFB, OH 45433. **AUTHORITY** AFWAL 1tr, 30 May 1985

AD 3049668

AUTHORITY. A FUIAL It, 30MAY 85

The second secon

AFFDL-TR-79-3111 **VOLUME II**

STOL AIRCRAFT STRUCTURAL VIBRATION PREDICTION METHOD B049493

VOLUME II

ACOUSTIC PREDICTION DETAILS AND ADDITIONAL PLOTS FOR SMALL STOL AIRCRAFT

Boeing Aerospace Company Boeing Military Airplane Development P.O. Box 3999, Seattle, Wa. 98124

AUGUST 1979

FINAL REPORT FOR PERIOD AUGUST 1977 - AUGUST 1979

Distribution limited to U.S. Government agencies only; test and evaluation; statement applied in August 1979. Other requests for this document must be referred to AF Flight Dynamic Laboratory (FB), Wright-Patterson AFB, Ohio 45433

B049608

AD

AIR FORCE FLIGHT DYNAMICS LABORATORY (AFFDL/FBG) AIR FORCE SYSTEM COMMAND WRIGHT PATTERSON AFB, OHIO 45433

HOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

JEROME PEARSON Project Engineer RALPH N. BINGMAN Technical Manager

FOR THE COMMANDER:

RALPA L. KUSTER, JR., Colonel, USAF Chief, Structures and Dynamics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFFDL/FB ,W-P AFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obliquations, or notice on a specific document,

AIR FORCE/86780/23 July 1980 - 150

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
19 REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
(8) AEFOLT (R-79-3111-VOI-12) AD-BO49 608A	
STOL Aircraft Structural Vibration Prediction 9	FINAL REPORT A PERIOD COVERED Aug 77 - Aug 79
V olume III Appenditus	S. CONTRACT OR GRANT NUMBER(a)
10 C. S. Doherty L. M./Butzel	F33615-77-C-3035
BOEING AEROSPACE COMPANY BOEING MILITARY AIRPLANE DEVELOPMENT P.O. BOX 3999, SEATTLE, WA 98124	10. PROGRAM ELEMENT, PROJECT, TASK Project (6)2401 Task 240104 W.O. 24010407
AIR FORCE FLIGHT DYNAMICS LABORATORY (AFFDL/FBG) AIR FORCE/WRIGHT AERONAUTICAL/LABORATORIES WRIGHT PATTERSON AFB, OHIO \$5433	August 179 286
Redictional Plate for Small	Unclassified
STOL RIVEYART	5a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Distribution limited to U.S. Government agencies of statement applied in August 1979. Other requests be referred to AF Flight Dynamic Laboratory (FBG) 45433	for this document must. Wright-Patterson AFB, Ohio
18. SUPPLEMENTARY NOTES	
This report consists of two volumes. Volume I con	
STRUCTURAL VIBRATION, UPPER SURFACE BLOWN FLAPS, S LANDING AIRCRAFT, VIBRATION PREDICTION TECHNIQUES	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
Structural response predictions have been made for STOL-type aircraft. The method was developed to senvironmental prediction methods that have been us cally rigorous spectral analysis approach was developed structure with a finite element model and used con acoustic input data for the forcing function	two important areas of significantly improve sed in the past. A mathemati-
DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASS	SIFIED
	ISSIFICATION OF THIS PAGE (When Date Entered)

and a superior the contract of the superior of

The structural vibration predictions were successful in predicting operating levels and describing the spectral frequency content of chosen locations on the structure. Comparisons of predicted and measured data show that the method developed and described here, may be used for a more precise way in which to predict complex structural response to jet engine excitation.

The development of a method for prediction of the external acoustic environment of USB flap-type STOL aircraft was also accomplished in a concise manner. The method is described in detail with comparisons of actual measurements to prediction. The method is seen to give good results and represents a significant improvement in acoustic prediction methods for STOL aircraft.

Accession For			
NTIS GRAAI			
DDC TAB			
Unamounced			
Justification			
Ву			
Distribution/			
Availability Codes			
	Avail a	and/or	
Dist.	apec:	ļal	
8			
		1	

SELECTE AUG 7 1980 ED

Sec alen: AD -30494031., VI I

FOREWORD

This report was prepared by the Boeing Aerospace Company, Military Airplane Development Division, Seattle, Washington, for the Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, under Contract F33615-77-C-3035. This research was conducted under Project 2401 and Task 240104, "Vibration Prediction and Control, Measurement and Analysis." Mr. Jerome Pearson (AFFDL/FBG) was project engineer.

This report entitled, "STOL Aircraft Structural Vibration Prediction Method," has been divided into two volumes, Volume I is entitled, "Prediction Procedure and Aircraft Parameteric Studies", and Volume II is entitled, "Acoustic Prediction Details and Additional Plots For Small STOL Aircraft."

The performance period for this project was August 1977 through August 1979.

Overall cognizance of the project including technical method development and application was carried out by the Structural Dynamics Group of the Boeing Military Airplane Division. Key personnel associated with this program were as follows:

B. F. Dotson	Program Manager
C. S. Doherty	Technical Leader
L. M. Butzel	Acoustics Staff
C. D. Larkins	Structural Dynamics Staff
S. J. Nanevicz	Structural Dynamics Staff

Acknowledgements are given to Mr. Leo Butzel as co-author of the report who largely was responsible for development of the ribbon external acoustic prediction method. Mr. C. D. Larkins helped in the early stages of the report with timely suggestions for interpolating and extrapolating the pressure data to each panel of the finite element structural math model. Mr. Stan Nanevicz did the lion's share of the finite element modeling analyses and performed the response calculations using the Random Harmonic Analysis Program, TEV156. Valuable aid and comments were received from both Mr. Hussein Nijim and Mr. Gautam Sen Gupta on methods to simulate fuselage structure for acoustic response predictions. Thanks are also due Diane Ellis for the considerable work of typing, and to Kristi Pepper for the graphics layout and assembly of the final document.

This report was submitted by the authors in August 1979 for publication as an AFFDL Technical Report.

VOLUME II

ACOUSTIC PREDICTION DETAILS (APPENDIX A)

ADDITIONAL PLOTS FOR SMALL STOL AIRCRAFT (APPENDIX B)

APPENDIX A ACOUSTIC FIELD PREDICTION PROCEDURE

APPENDIX A TABLE OF CONTENTS

Section		Page
ī.	ARRANGEMENT OF PROCEDURE	5
II.	LIST OF INPUT/OUTPUT FOR SECTION 3.1-3.9	6
m.	ESTIMATION PROCEDURE	
	3.1 Characterization of the Flow Ribbon	
	3.1.1 General	13
	3.1.2 Determination of Characterizing Parameters	14
	3.1.3 Adjustment for Open Nozzle Side Door	15
	3.2 Geometry Computations	16
	3.2.1 General	16
	3.2.2 Dimensional Frame of Reference	16
	3.2.3 Computation of S	17
	3.2.4 Computation of 6	17
	3.2.5 Computation of S $_{ extsf{TE}}$ and $oldsymbol{\delta}_{ extsf{TE}}$	18
	3.3 Jet Mixing Noise	18
	3.3.1 General	18
	3.3.2 Jet Mixing Noise Estimation Procedure	19
	3.3.3 Adjustment Due to Deployed Vortex Generators	21
	3.4 Near Nozzle Noise	21
	3.4.1 General	21
	3.4.2 Near Nozzle Noise Estimation Procedure	22
	3.5 Trailing Edge Noise	23
	3.5.1 General	23
	3.5.2 Trailing Edge Noise Estimation Procedure	23
	3.6 Separation Noise	24
	3.6.1 General	24
	3.6.2 Separation Noise Estimation Procedure	26

APPENDIX A TABLE OF CONTENTS (Continued)

Section			Page
III.	3.7	Turbulent Boundary Layer Noise	27
		3.7.1 General	27
		3.7.2 Turbulent Boundary Layer Noise Estimation	
		Procedure	27
	3.8	Exhaust Shock Noise	29
		3.8.1 General	29
		3.8.2 Shock Noise Estimation Procedure	29
	3.9	Estimation of Indirect Field Points	31

SECTION I ARRANGEMENT OF PROCEDURE

The procedure has been broken up into sections as:

Section	Subject Addressed
3.1	Characterization of the Flow Ribbon
3.2	Geometry Computations
3.3	Jet Mixing Noise
3.4	Near-Nozzle Noise
3.5	Trailing-Edge Noise
3.6	Separation Noise
3.7	Turbulent Boundary Layer Noise
3.8	Exhaust Shock Noise
3.9	Estimation for Indirect Field Points

Section 3.1 addresses computation of parameters fixing the engine exhaust flow field idealization, (i.e., the flow ribbon) employed for purposes of noise estimation.

Section 3.2 addresses computation of the coordinates of a field point (at which a noise estimate is desired) with respect to the flow ribbon determined in section 3.1.

Sections 3.3 through 3.8 then deal with computation of the spectra of the various noise components making up the overall noise estimate.

Section 3.9 discusses noise estimation of field points that are not really in direct view of most of the jet exhaust flow field, as points in the shadow zone of the wing, or on the underside of the wing, or well forward of the engine nozzle.

SECTION II LIST OF INPUTS AND OUTPUTS FOR SECTIONS 3.1 THROUGH 3.9

In this section, inputs to and outputs of the various parts (per section division indicated in sec. I) are listed. Note that inputs are divided into fixed geometry and operational inputs. Fixed geometry inputs include those that described non-changeable geometric features of an airplane, such as the position of the engine nozzle in relationship to the fuselage. The coordinates of a field point at which an estimate is required are treated as a fixed geometry input. Operational inputs characterize the operating configuration of the airplane. These include airplane speed, altitude, engine power setting, USB flap angle, nozzle door status, VG status, etc.

English units listed for inputs will ensure consistent English units for the outputs, with output 1/3 octave band sound pressure level units of dB re 200 picobars.

Note that outputs of one section of the estimation procedure often become inputs to another section.

For section 3.1 - Characterization of the Flow Ribbon (fig. 1)

a. Fixed geometry inputs (fig. 2)

ADOOR = side lacing open area of nozzle, when side door is open, \underline{ft}^2 (fig. 1)

w = nozzle width ft (fig. 2)

 L_{w} = distance from nozzle exit plane to start of highly curved portion of flap system, typically at fixed wing trailing edge, \underline{ft}

b. Operational inputs

The state of the s

 V_A = airplane forward velocity, ft/s

V_i = engine mixed exhaust jet velocity, <u>ft/s</u>

 θ_{FT} = static flow turning capability of propulsion/flap system when trailing edge of flap system is at θ_F degrees, deg (fig. 1).

Note: The relationship between θ_{FT} and θ_F for the YC-14 is given in figure 7.2-7 of Reference 5.

c. Outputs (fig. 1)

= flow ribbon widths with nozzle side door closed and open, \underline{ft}

6*
a: flow ribbon skew and trail-off angles, deg

For section 3.2 - Geometry Computations

a. Fixed geometry inputs (figs. 3 and 4)

 (X_0, Y_0, Z_0) = coordinates of point P_0 at middle of nozzle exit plane, \underline{ft}

coordinates of point
$$P_1$$
, \underline{ft}

$$(X_1,Y_1,Z_1)$$
 = Note that $X_1 = X_0 + L_w \tan \theta *$
 $Y_1 = Y_0 + L_w$

L,

section 3.1 input

£,

length of flat terminating section of flap if any, ft

 (X_p, Y_p, Z_p) = coordinates of field point P at which noise required, \underline{ft}

b. Operational inputs

 θ_{F}

angle of trailing edge flap, deg, fig. 1)

c. Outputs

5,6 = coordinates of field point, P, re flow ribbon, ft (fig. 3)

STE' & TE = coordinates of flap trailing edge re flow ribbon, ft (fig. 3)

For section 3.3 - Jet Mixing Noise

a. Fixed geometry inputs

= blockage area of single vortex generator plate, <u>ft</u>²

 A_{VG}

number of vortex generator plates per engine

 N_{VG}

b. Operational inputs

$$\begin{pmatrix} V_A, V_j \\ \theta_{FT} \end{pmatrix}$$
 = section 3.1 inputs

S, δ
S_{TE} } = section 3.2 outputs

engine mixed exhaust jet density, $\underline{lb-s^2/ft}^4$

c. Outputs

1/3 octave band spectrum of jet mixing noise with and without vortex generators deployed, and which is fixed by:

- o General spectrum shape without vortex generators deployed (fig 11)
- o Frequency, f_{R1} , of peak spectrum level, \underline{Hz}
- o Peak level, SPL_{R1}, of spectrum, dB re 200 <u>picobars</u>
- o Spectrum addition shape due to VG's being deployed (fig. 12)
- o Reference frequency, f'pEAK, of spectrum addition, hz
- o Addition level, Δ SPL, dB re 200 picobars

For section 3.4 - Near-Nozzle Noise

a. Fixed geometry inputs

b. Operational inputs

$$S, \delta$$
 = section 3.2 outputs

$$\rho_i$$
 = section 3.3 inputs

c. Outputs

1/3 octave band spectrum of near nozzle noise, and which is fixed by:

- o General spectrum shape per jet mixing noise (fig. 11)
- o Frequency, $f_{R1} = (f_{R1})_{NN}$ of peak spectrum level, <u>Hz</u>
- o Peak level $SP_{R1} = (SPL_{R1})_{NN}$, of spectrum, dB re 200 picobars.

For section 3.5 - Trailing-edge Noise

a. Fixed geometry inputs

$$(X_p, Y_p, Z_p) = section 3.2 input$$

b. Operational inputs

$$V_A$$
, V_j = section 3.1 inputs

c. Outputs

1/3 octave band spectrum for trailing-edge noise, and which is fixed by:

- o General spectrum shape for trailing edge noise (fig. 15)
- o Frequency, f_{R1} , of peak spectrum level, \underline{Hz}
- o Peak level, SPL_{TP}, of spectrum, dB re 200 picobars

For section 3.6 - Separation Noise

a. Fixed geometry inputs

b. Operational inputs

r = section 3.5 intermediate output

c. Outputs

1/3 octave band spectrum of separation noise, and which is fixed by:

- o General spectrum shape for separation noise (fig. 16)
- o Frequency, f_{Sp}, of peak spectrum level, Hz
- o Peak level, SPLSP of spectrum, dB re 200 picobars

For section 3.7 - Turbulent Boundary Layer Noise

a. Fixed geometry inputs

$$\mathbf{X}$$
 = surface flow length, \mathbf{ft}

b. Operational inputs

$$\overline{V}$$
 = representative flow velocity, $\underline{ft/s}$

$$\bar{\rho}$$
 = representative flow density, $\frac{1b-s^2/ft^4}{}$

c. Outputs

1/3 octave band spectrum of turbulent boundary layer noise, and which is fixed by:

- o General spectrum shape for turbulent boundary layer noise (fig. 18)
- o Frequency, f_{BP}, of peak spectrum level, <u>Hz</u>
- o Peak level, SPLBP, of spectrum, dB re 200 picobars

For section 3.8 - Exhaust Shock Noise

a. Fixed geometry inputs

b. Operational inputs

$$V_A$$
, = section 3.1 input

$$V_i^i$$
 = ideally expanded engine mixed exhaust jet velocity, $\underline{ft/s}$

$$p_i$$
 = section 3.1 input

c. Outputs

1/3 octave band spectrum of exhaust shock noise, and which is fixed by:

- o General spectrum shape (fig. 19)
- o Frequency, f_s , of peak spectrum level, \underline{Hz}
- o Peak level, SPL_S, of spectrum, dB re 200 picobars

SECTION III ESTIMATION PROCEDURE

3.1 Characterization of the Flow Ribbons

3.1.1 General

For purposes of noise estimation, the engine exhaust field is characterized as a flow ribbon, of Vol I. The ribbon is described in terms of (see fig. 1) (a) its maximum width w* (or $W*_{DOOR}$ in the case of a nozzle with an open side door), (b) the skew angle, 0*, of the initial spreading portion of the ribbon, and (c) the trail-off angle, 9', of the ribbon.

Conceptually, the flow ribbon is viewed as emanating from the nozzle, attached to the wing surface. It spreads laterally as it flows toward the start of the highly curved portion of the flap system at $S = L_w$, reaching its maximum width at $S = L_w$. Thereafter, its width is taken to remain constant, and its direction of flow (as viewed from above) parallel to the engine centerline axis. It initially remains attached to the strongly curved portion of the flap, turning to an angle, θ , at which point it separates from the flap and continues on a straight course at the elevation angle, θ .

Note that the above characterization is more akin to the flow of turbulence than the thrust flow. Hence the trail-off angle, θ , is not necessarily similar to the flow turning angle, θ_{FT} , of the system. Based on the (Tulalip) data source for θ' and θ_{FT} , θ' is typically much less than θ_{FT} .

Finally, due to the usual case of unequal nozzle side lip angles, θ_{KI}^0 and θ_{KO}^I (see Fig. 2), and/or a nozzle exit plane skewed at an angle, θ_{SK} , the centerline of the initial part of the flow ribbon need not be parallel to the centerline axis of the engine. The nonparallelism is reflected in a nonzero flow ribbon skew angle, θ_{*} , per figure 1.

3.1.2 Determination of Characterizing Parameters

a. Calculate effective nozzle kickdown angle, as:

$$\theta_{\mathrm{KD}} = \begin{cases} \theta_{\mathrm{KD}}^{\mathrm{i}}; \; \theta_{\mathrm{KD}}^{\mathrm{i}} \geq 0 \\ 0 \; ; \; \theta_{\mathrm{KD}}^{\mathrm{i}} < 0 \end{cases}$$

where

$$\theta_{KD} = \frac{1}{2} \left[\theta_{KD}^{U} - \theta_{KU}^{D} \right] - \left[\theta_{KO}^{U} + \theta_{KI}^{0} \right] \frac{h'}{w} - \frac{1}{4} \theta_{w}$$

b. Determine the equivalent wing length, L'W (accounts for effect of forward velocity), as

$$L_{w}' = \frac{L_{w}}{1 + V_{A}/V_{J}}$$

where

c. Enter figure 5 with θ_{KD} to find the normalized uncorrected flow ribbon width, $(W'-W)/L_W'$

d. Correct $(W'-W)/L_w'$ for the effect of nozzle tip-back angle, θ_{TB} (see fig. 2), to obtain the (door closed) normalized flow ribbon width, $(W*-W)/L_w'$, as

$$\frac{\mathbf{W}^* - \mathbf{W}}{\mathbf{L}_{\mathbf{w}}^*} = \left[1 - 0.5 \sin^2 TB\right] \left\{ \frac{\mathbf{W}^* - \mathbf{W}}{\mathbf{L}_{\mathbf{w}}^*} \right\}$$

and then solve for W#

 Locate W* at S = L_w per figure 1 and where the flow ribbon skew angle, 0*, is given by

$$\theta * = \tan^{-1} \left\{ \tan \theta_S^* / (1 + V_A / V_j) \right\}$$

where

$$\theta_S^*$$
 = $\frac{1}{4} \left(\theta_{KO}^I - \theta_{KI}^0 \right) + \frac{1}{4} \theta_{SK}$

with θ_{KO}^{I} , θ_{KI}^{O} , and θ_{SK}^{O} defined on figure 2

- f. Find the static trail-off angle, θ_S , by entering figure 6 with the propulsion/flap system static flow turning angle, θ_{FT} .
- g. Correct θ'_S for the effect of airplane forward velocity to obtain the actual flow ribbon trail-off angle, θ' , as

$$\theta' = \tan^{-1} \left\{ \sin \theta_{S}' / \left[\cos \theta_{S}' + 0.25 (V_{A}/V_{j}) \right] \right\}$$

where

V_A = airplane forward velocity

V_i = engine mixed exhaust jet velocity

3.1.3 Adjustment for Open Nozzle Side Door

Referring to step (e) of section 3.1.2, and figure 1, move the outer edge of the flow ribbon outwards (but leave the inboard edge position unchanged), to achieve a flow ribbon width, $W*_{DOOR}$, as

$$W_{DOOR}^{*} = W* + \frac{A_{DOOR}}{h^{1/2}} (W*-W)$$

where

$$h' = A_{EFF}/W$$

(See fig. 2, view B)

3.2 Geometry Computations

3.2.1 General

This section contains procedures for determining the S and δ coordinates of a field point \underline{P} (per fig. 3). In general the noise at P is a smooth, relatively slowly varying function of S, but a much more rapidly varying function of δ .

3.2.2 Dimensional Frame of Reference

For the following computations, the frame of reference used is tied to the fuselage, per figure 4. Referring now to figure 3, we define the coordinates of certain points basic to computations in section 3.2.2 and 3.2.3.

 (X_0, Y_0, Z_0) = coordinates of point P_0 (at the nozzle exit plane)

 (X_1,Y_1,Z_1) = coordinates of Point P₁ (at the start of the strongly curved portion of the USB flap system)

 (X_p, Y_p, Z_p) = coordinates of field point P.

Note that (per fig. 3)

$$X_1 = X_0 + L_w \tan \theta *$$

$$Y_1 = Y_0 + L_w$$

The coordinates of point P' (where the flow ribbon departs from the flap surface) are given by

$$X_{p}' = X_{1}$$

$$Y_{p}' = Y_{1} + 2 R_{F} \sin \left(\frac{\theta' - \theta_{w}}{2}\right) \cos \left(\frac{\theta' + \theta_{w}}{2}\right)$$

$$Z_{p}' = Z_{1} - 2 R_{F} \sin \left(\frac{\theta' - \theta_{w}}{2}\right) \cos \left(\frac{\theta' + \theta_{w}}{2}\right)$$

For future reference, the coordinates of the useful point, P_{TE}, on the flap trailing edge are given by

$$X_{TE} = X_{1}$$

$$Y_{TE} = Y_{1} + 2R_{F} \sin \left(\frac{\theta_{F} - \theta_{W}}{2}\right) \cos \left(\frac{\theta_{F} + \theta_{W}}{2}\right) + \ell_{T} \cos \theta_{F}$$

$$Z_{TE} = Z_{1} - 2R_{F} \sin \left(\frac{\theta_{F} - \theta_{W}}{2}\right) \sin \left(\frac{\theta_{F} + \theta_{W}}{2}\right) - \ell_{T} \sin \theta_{F}$$

3.2.3 Computation of S

Referring to figure 3, s is the distance downstream of the nozzle exit plane (as measured along the flow ribbon), of the point, P_T, on the ribbon that is closest to the field point, P, and is given by

$$S = \begin{cases} Y_{p} - Y_{o} & ; & Y_{p} - Y_{o} \le L_{w} \\ L_{w}; & L_{w} < Y_{p} - Y_{o} \le L_{w} + (Z_{p} - Z_{o}) \tan \theta' \\ L_{w} + (Y_{p} - Y_{1}) \cos \theta^{2} - (Z_{p} - Z_{o}) \sin \theta'; Y_{p} - Y_{o} > L_{w} + (Z_{p} - Z_{o}) \tan \theta' \end{cases}$$

3.2.4 Computation of 5

The generalized expression for § is given by

$$\delta = \sqrt{R.R - \frac{(R.r)^2}{\bar{r}.\bar{r}}}$$

with
$$\overline{R} \cdot \overline{R} = R_x^2 + R_y^2 + R_z^2$$

$$\overline{R} \cdot \overline{r} = R_x r_x + R_y r_y + R_z r_z$$

$$\overline{r} \cdot \overline{r} = r_x^2 + r_y^2 + r_z^2$$

and the expressions for R_x , R_y , R_z , r_x , r_y , and r_z depend upon the regional location of the field point, \underline{P} . Eight distinct regions are identified in figure 7 in each of which a unique set of expressions apply. These are given in fig. 21 and fig. 22. Note the field points in the shadow zone of the wing and/or forward of the nozzle exit plane are not considered here, but rather in section 3.9.

3.2.5 Computation of S_{TE} and δ_{TE}

Since the S and δ coordinates of the flap trailing edge are often required (S_{TE} is needed in the jet mixing noise computation, while S_{TE} and δ _{TE} are required in the separation and trailing-edge noise computations), the formulas for these are given in this section.

$$S_{TE} = \begin{cases} L_w + \frac{\pi}{180} (\theta' - \theta_w) R_F + \mathbf{L}_T; \theta_F = \theta' \\ L_w + \frac{\pi}{180} (\theta' - \theta_w) R_F + \\ 2R_F \sin(\frac{\theta_F - \theta'}{2}) \cos(\frac{\theta_F + \theta'}{2}) + \mathbf{L}_T \cos(\theta_F - \theta') \end{cases}; \theta_F > \theta'$$

$$\delta_{TE} = \begin{cases} 0 ; \theta_F = \theta' \\ 2R_F \sin(\frac{\theta_F - \theta'}{2}) \sin(\frac{\theta_F + \theta'}{2}) + \mathbf{L}_T \sin(\theta_F - \theta'); \theta_F > \theta' \end{cases}$$

3.3 Jet Mixing Noise

3.3.1 General

This estimate is for jet mixing noise in the presence of a scrubbed wing/flap system with or without vortex generators. (The vortex generators, if present, are viewed as amplifiers of certain portions of the basic jet mixing noise spectrum. The amplification

effect is treated in sec. 3.3.4). The estimate applies to scrubbed or nonscrubbed wing, flap, and body sections.

The mixing noise is characterized as having a simple, single peaked spectrum shape whose peak frequency depends upon engine mixed exhaust velocity, V_j , airplane velocity, V_A , the downstream S coordinate, and distance, δ , of the field point from the flow ribbon (idealization of the flow field, per sec. 3.1). The peak spectrum level is taken to depend on these same parameters, and additionally on engine mixed exhaust density, ρ_i

There appears to be an additional component of the jet mixing noise, which is observed close to the nozzle exit plane. This component, referred to as near-nozzle noise, is likely due to interaction of the flow with the nozzle lip and perhaps to primary/secondary mixing. It is treated separately in section 3.4.

3.3.2 Jet Mixing Noise Estimation Procedure

a. Determine the reference peak level frequency, f_{S1} , as

$$f_{S1} = \frac{1.8V_j/D_H}{\frac{S}{D_H} + 3.0}$$

where

 V_j = engine mixed exhaust jet velocity $D_H = \text{engine hydraulic diameter} = \sqrt{\frac{4}{\pi}} A_{EFF}$

and A_{EFF} = is defined on view A of figure 2

b. Determine the reference peak level frequency, \mathbf{f}_{R1}^{\prime} , by adjusting \mathbf{f}_{S1} as

$$f_{R1} = \begin{pmatrix} V_j + V_A \\ V_j - V_A \end{pmatrix} \begin{pmatrix} \frac{V_j + V_A}{V_j} \end{pmatrix} f_{S1}$$

where

c. Enter figure 8 with $^{6}/D_{H}$ to obtain the final correction, C_{R1} , to f_{R}^{*} , and then compute the frequency, f_{R1} , of the peak level of the jet mixing noise as

$$f_{R1} = C_{R1} f'_{R1}$$

- d. Determine the reference static peak jet mixing noise level, SPL_{S1}, via the construction of figure 9.
- e. Obtain the reference peak level, SPL'_{R1}, by adjusting SPL_{S1} to local airplane conditions as

$$SPL_{R1}' = SPL_{S1} - \Delta SPL_{1}$$

where

$$\Delta SPL_1 = -20 \log \left[\frac{\rho_j(V_j - V_A^2)}{\rho_o V_o^2} \right]$$

and

 P_j = at-altitude engine mixed exhaust jet density

 P_0 = (sea level static density) = 2.38 x 10^{-3} lb-s²/ft⁴

V = engine mixed exhaust jet velocity

VA = airplane velocity

 $V_{\rm o} = 750 \, \rm ft/s$

f. Enter figure 10 with $^{\delta}/D_{H}$ to obtain $^{\Delta}_{R1}$, the final correction to SPL_{R1} , and then form SPL_{R1} , the peak level of the jet mixing noise spectrum as

$$SPL_{R1} = SPL_{R1}' - \Delta_{R1}$$

g. Apply f_{R1} and SPL_{R1} to obtain the dimensional jet mixing noise spectrum from the dimensionless spectrum of figure 11. This applies for the case of no vortex deployed.

3.3.3 Adjustment Due to Deployed Vortex Generators

Obtain the adjustment Δ_{VG} to the jet mixing noise spectrum (obtained in sec. 3.3.2) due to deployed vortex generators from figure 11, in which

 N_{VG} = number of vortex generators per engine

A_{VG} = flow blockage area of each vortex generator plate

This adjustment is to be added to the jet noise spectrum obtained in section A.4.2.

3.4 Near-Nozzle Noise

3.4.1 General

In a number of USB installations, a noise peak is observed close to the nozzle having its corresponding frequency about five times higher than that predicted by jet mixing, per section 3.3.2. This peak may be due to direct interaction of the flow with the nozzle lip, or, perhaps, due to primary/secondary flow mixing. However, to date no simple intuitively comfortable model has been found to handle this phenomenon. In the absence of such a model, the following approach has been used: the noise source, referred to as "near nozzle noise," is taken to have a spectrum shape the same as that for jet mixing noise (without vortex generators!) specified in section 3.3. The peak frequency is taken

to be five times the static reference frequency, f_{S1} , of the jet mixing noise spectrum, as evaluated at the nozzle exit plane (i.e., at $S/D_H=0$). The peak frequency, and peak level, are taken to be independent of airplane velocity. The peak level is based upon NASA 1 x 6 slot data in which the near-nozzle noise is most clearly observable.

3.4.2 Near Nozzle Noise Estimation Procedure

a. Determine the peak frequency, $(f_{R1})_{NN}$, of the near-nozzle noise spectrum as

$$(f_{R1})_{NN} = 3.6 \frac{V_j}{D_H}$$

where

V; = engine mixed exhaust jet velocity

$$D_{H}$$
 = engine hydraulic diameter = $\sqrt{\frac{4}{\pi}A_{EFF}}$

and $A_{\mbox{\footnotesize EFF}}$ is defined in view A of figure 2.

b. Determine the near-nozzle noise spectrum peak level, (SPL_{R1})_{NN}, as

$$(SPL_{R1})_{NN} = 20 \log \left[\frac{\rho_j v_j^2}{\rho_o v_o} \right] - 20 \log \left(1 + \frac{S}{D_H} + \left(\frac{\delta}{D_H} \right)^2 \right) + 146 \text{ (dB)}$$

where

P = engine mixed exhaust jet density

 ρ_0 = (sea level ambient density) = 2.38 x 10⁻³ lb-s²/ft⁴

 $V_0 = 750 \text{ ft/s}$

c. Apply these values of f_{R1} and SPL_{R1} to the dimensionless spectrum of figure 11 to obtain the dimensionless near-nozzle noise spectrum.

3.5 Trailing-Edge Noise

3.5.1 General

Trailing-edge noise is viewed as due to conversion of jet mixing fluctuations past the flap trailing edge into acoustic radiation. In the near field, this noise is taken to decrease as $1/r^2$, where r is the distance to the field point, P, from the trailing edge (point directly under the center of the flow ribbon, see fig. 13), and also to depend upon the distance, δ_{TE} of this same trailing-edge point from the flow ribbon.

3.5.2 Trailing-Edge Noise Estimation Procedure

- a. Determine δ_{TE} and S_{TE} (using the procedure of sec. 3.2.5) for point P_{TE} , per figure 13.
- b. Determine f_{R1} and SPL_{R1} for point P_{TE} using the procedure of section 3.3.2.
- c. Adjust SPL_{R1} to obtain the peak level SPL_{TP}, of the trailing-edge noise spectrum at field point, P, as

$$SPL_{TP} = SPL_{R1} + 10 \log \left[\left(\frac{V_C}{C} \right) \left(1 + \left(\frac{W^*}{r} \right)^2 \right] + 10 \log \left[\left| \cos \eta \right| \left| \sin^2 \frac{\theta}{2} \right| \right] - 14 \text{ (dB)}$$

where

$$V_c = (V_j + V_A)/2$$

c = local ambient air sound speed

W* = flow ribbon width (from sec. 3.1.2)

 $r, \eta, \theta = coordinates$ of field point, P, with respect to trailing-edge point, $P_{\tau p}$, per Figure 14.

Appropriate expressions for r, η , and 0 consistent with Figure 14 are

$$r = \sqrt{(x_p - x_{TE})^2 + (Y_p - Y_{TE})^2 + (z_p - z_{TE})^2}$$

$$n = \tan^{-1} \frac{\Delta x}{\Delta Y}$$

$$\theta = \sin^{-1} \frac{\Delta z}{r}$$

where
$$\Delta X = X_{TE} - X_{p}$$

$$\Delta Y = (Y_{p} - Y_{TE}) \cos \theta' - (Z_{p} - Z_{TE}) \sin \theta'$$

$$\Delta Z = (Y_{p} - Y_{TE}) \sin \theta' + (Z_{p} - Z_{TE}) \cos \theta'$$

In these expressions, 9' is the flow ribbon trail-off angle (from sec. 3.1), while (X_p, Y_p, Z_p) are the coordinates of the field point P, and (X_{TE}, Y_{TE}, Z_{TE}) are the coordinates of the trailing-edge point (see sec. 3.2).

d. Apply these values of SPL_{TP} and f_{R1} to the dimensionless trailing-edge noise spectrum of figure 15 to obtain the dimensional trailing-edge noise spectrum.

3.6 Separation Noise

3.6.1 General

Separation noise is typically observed only on the aft portion of the USB flaps, and typically only at frequencies below the peak (frequency) of the jet mixing noise spectrum, per section 3.3. Noise associated with aft flap flow separation would seem to be similar to wing separation with no reattachment point, or perhaps base flow separation. Both are discussed in volume II of AFFDL-TR-76-91, but the contents are not very satisfying. In all cases, however, a spectrum shape for separation noise not unlike that for turbulent boundary layer is suggested. Hence the approach here is to model the separation noise spectra with a TBL spectrum shape, as

SPL =
$$\frac{2}{\pi} \left[\tan^{-1} \left(2\pi \cdot 2^{\frac{1}{6}} \cdot \hat{s} \right) \cdot \tan^{-1} \left(2\pi \cdot 2^{-\frac{1}{6}} \cdot \hat{s} \right) + K \right]$$

where SPL is the 1/3 octave band value at a Strouhal number, \hat{s} . \hat{s} is taken to have the form

$$\hat{s} = \frac{2\delta_{TE}f}{V_{j}}$$

and

 δ_{TF} = distance of flow ribbon from flap trailing edge

V_i = engine mixed exhaust jet velocity

f = frequency

and K has the form

$$K = 20 \log \left[\frac{\delta_{TE}}{D_H} \cdot \frac{\rho_j v_j^2}{\rho_{VQ}^2} \right] - f(r) + K'$$

with

D_H = nozzle hydraulic diameter

ρ = engine mixed exhaust jet density

 ρ_0 = sea level static air density

 $V_o = 750 \text{ ft/s}$

and where K' is chosen to fit a particular data source, in this case YC-14 Tulalip test data, and f(r) accounts for the distance of the field point from the separation region.

3.6.2 Separation Noise Estimation Procedure

a. Determine the peak frequency, \mathbf{f}_{SP} , of the separation noise spectrum as

$$f_{SP} = \frac{1}{4\pi} \frac{V_j}{\delta_{TE}}$$

where

V_i = engine mixed exhaust jet velocity

 δ_{TE} = distance of flow ribbon (per sec. 3.2.5) from flap trailing edge

b. Determine the separation noise specturm peak level, SPLSP, as

SPL_{SP} =
$$20 \log \left[\frac{\delta_{TE}}{D_{H}} \right] + 20 \log \left(\frac{\rho_{j} V_{j}^{2}}{\rho_{0} V_{0}^{2}} \right) - 20 \log \left(1 + \frac{r}{w^{*}} \right) + 151 \text{ (dB)}$$

where

p; = engine mixed exhaust jet density

 ρ_0 = (sea level ambient density) = 2.38 x 10^{-3} lb-s²/ft⁴

 $V_0 = 750 \text{ ft/s}$

r = distance between field point, P, and trailing-edge point, P_{TE}, per section 3.2.5

w* = width of flow ribbon, per section 3.1.2

c. Apply these values of f_{SP} and SPL_{SP} to the dimensionless separation noise spectrum of figure 16 to obtain the dimensional separation noise spectrum.

3.7 Turbulent Boundary Layer Noise

3.7.1 General

The spectrum of turbulent boundary layer noise displays a simple, single peaked, gently rolling off spectrum whose peak level scales reasonably well with the dynamic pressure of the flow field scrubbing the field point. The peak frequency scales reasonably with the ratio of the scrubbing flow velocity to the local boundary layer thickness, but even in the case where the flow is associated with the airplane velocity, there is some confusion as to the actual proportionality constant. The constants used in this estimation procedure are based entirely on YC-14 flight data for fuselage points/conditions for which engine noise is not important. The general spectrum shape is taken to be the same as that used for the separation noise spectrum of section 3.5. The same constants and spectrum shape are also taken to apply to field points where the characteristic scrubbing velocity is the engine mixed exhaust jet velocity.

3.7.2 Turbulent Boundary Layer Noise Estimation Procedure

- a. Determine the characteristic distance, \overline{X} , velocity, \overline{V} , and density, $\overline{\rho}$, to be used:
 - 1. For field points clearly away from the engine exhaust flow field (i.e., $\delta/D_H \ge 1$)

 \overline{X} = X_1 = distance from airplane noise to fuselage field point, or wing leading edge to wing field point

 ∇ = V_A = airplane velocity

 $\overline{\rho}$ = ρ = ambient air density

2. For field points distinctly scrubbed by the engine exhaust flow

 \overline{X} = X_2 = sum of the distance from the nozzle exit plane to the field point and the fan duct length

 $\overline{V} = V_i = \text{engine mixed exhaust jet velocity}$

 $\vec{\rho}$ = ρ_j = engine mixed exhaust jet density

3. For other field points, take
$$X = (X_1 + X_2)/2$$

 $\overline{V} = (V_j + V_A)/2$
 $\overline{\rho} = (\rho_j + \rho)/2$

b. Determine the boundary layer noise spectrum peak frequency, f_{BP}, as

$$f_{BP} = 1/2 \frac{\nabla}{\delta_{BL}}$$

where

$$\delta_{BL}$$
 = boundary layer thickness = $\frac{0.37\vec{X}}{(R_{\vec{X}})^{1/5}}$

with

$$R_{\overline{X}}$$
 = Reynold number = $\frac{1}{v}$ \vec{X} \vec{V}

and $\frac{1}{0}$ is obtained from figure 17.

c. Determine the turbulent boundary layer noise peak spectral level, SPLBP, as

$$SPL_{BP} = 20 \log \left(\frac{\vec{p} \vec{v}^2}{\rho_{V_0}^2} \right) + 125 \text{ (dB)}$$

where

$$\rho_{o}$$
 = (sea level air density) = 2.38 x 10^{-3} lb-s²/ft⁴

$$V_{o}$$
 = 750 (t/s

d. Apply these values of f_{pB} and SPI_{pB} to the dimensionless spectrum of figure 18 to obtain the dimensional turbulent boundary layer noise spectrum.

3.8 Exhaust Shock Noise

3.8.1 General

When the engine mixed exhaust <u>ideal</u> velocity, V_j^i exceeds the local sound speed, c, of the exhaust mixture, additional engine noise is observed beyond that predicted in the previous sections. This noise is found to scale in level with a classical shock noise parameter, β , as 40 log β ' (refs 6,7 - see reference list for Vol. I) where

$$\beta' = \sqrt{\frac{v_1^1}{c^2}^2-1}$$

The additional noise is hence referred to as shock noise. For USB STOL airplanes with high-bypass engines, as for the YC-14 such additional noise is typically observed only at high-altitude, high-speed operations, as in cruise.

3.8.2 Shock Noise Estimation Procedure

a. Determine the peak frequency, f_s , of the shock noise spectrum as

$$f_s = \left(\frac{1.8}{S/D_H^{+3.0}}\right)\left(\frac{V_j^1 + V_A}{D_H}\right)\left(\frac{V_j^1 + V_A}{V_J^1 - V_A}\right)$$

where

S = downstream coordinate of field point

$$D_{H}$$
 = engine hydraulic diameter = $\sqrt{\frac{4}{\pi}} A_{EFF}$, and A_{EFF} is defined in view A of figure 2

$$V_{j}$$
 = ideally expanded mixed exhaust jet velocity

b. Determine the peak level, SPLS of the shock noise spectrum as

$$SPL_S = SPL_{S1} + \Delta_1 - \Delta_2 \quad \Delta(dB)$$

where

$$SPL_{S1} = 20 \log \left(\frac{\rho_j}{\rho_0} \right) + 40 \log \beta$$

$$\Delta_{i} = \begin{cases} 150 & ; \delta/D_{H} \leq 0.37 \\ 150 - 20 \log (2.70 \delta/D_{H}); \delta/D_{H} > 0.37 \end{cases}$$

$$A_2 = \begin{cases} 0 & ; S/D_H \le 3 \\ & 20 \log (S/3D_H); S/D_H > 3 \end{cases}$$

In the equation for SPL_{S1}

$$\beta = \sqrt{\left(\frac{v_j^1}{c}\right)^2_{-1}}$$

$$\mathbf{p}_{\mathbf{j}}$$
 = engine mixed exhaust jet density

$$\rho_{o}$$
 = (sea level air density) = 2.38 x 10^{-3} lb-s²/ft⁴

and

- c = engine mixed exhaust jet sound speed.
- c. Apply the values of f_S and SPL_S to the dimensionless spectrum of figure 19 to obtain the dimensional shock noise spectrum.

3.9 Estimation for Indirect Field Points

For field points that are in the shadow zone of the wing and/or forward of the nozzle exit plane (i.e., in region B) per figure 20, the following approach is suggested.

- a. Determine the shortest overwing path length, L_0 , from the nozzle exit plane to the field point \underline{P}
- b. Determine the shortest underwing path length, \mathbf{L}_{u} , from the flow ribbon to the field point, \underline{P}
- c. Determine the levels at \underline{P} due to jet mixing noise and near-nozzle noise with

$$S = 0$$

and the jet mixing noise and trailing-edge noise with

- d. Determine the turbulent boundary layer noise at \underline{P}
- e. Sum the above five noise contributions.

Figure 1. Flow Ribbon Characterization Parameters

The state of the s

Figure 2. Wing/Flap/Nozzie Parameters

and the state of t

Figure 3. General Geometry for S and δ

And the state of t

NOTE: X_P = TYPICALLY REFERRED TO AS BUTTOCK LINE (BL)
Y_P = TYPICALLY REFERRED TO AS BODY STATION (BS)
Z_P = TYPICALLY REFERRED TO AS WATERLINE (WL) COORDINATE OF P

Figure 4. General Coordinate System for Points

Figure 5. Dependence of Flow Spreading on Effective Nozzle Kickdown Angle

Figure 6. Dependence of Static Trall-Off Angle, θ'_S , on Static Flow-Turning Angle

Figure 7. 8-Computation Regions

Figure 8. Final Correction, CR1, to Obtain fR1

Figure 9. Construction for Determining Reference Static Peak Jet Mixing Noise Level, SPLS1

Figure 10. Final Correction, Δ_{R1} , to Obtain SPLR1

Figure 11. Spectrum Shape for Jet Mixing Noise (No Vortex Generators Present)

Figure 12. Adjustment to Jet Noise Mixing Spectrum for Vortex Generator Effects

Figure 13. Conceptual Geometry for Trailing-Edge Noise Model

Figure 14. Coordinate Geometry for Field Point P, Relative to Trailing-Edge Point PTE

Figure 15. Dimensionless Trailing-Edge Noise Spectum

Figure 16. Dimensionless Separation Noise Spectrum

Figure 17. Variation of Kinematic Viscosity With Altitude

Figure 18. Dimensionless Turbulant Boundary Layer Noise Spectrum

Figure 19. Spectrum Shape for Shock Noise

Figure 20. General Indication of Length Scales for Region & Field Points

and the state of t

Region	R _X	R _y	R _z	
1	0	0	0	
2	Χ _p - Χ ₀ + w /2	Y _p - Y ₀	z _p - z ₀	
②	√x _p - x ₀ - ₩	Y _p - Y ₀	z _p - z ₀	
3	$X_{p} - X_{1} + \frac{w^{0}}{2}$	Y _p - Y ₁	z _p - z ₁	
3	х _р - х ₁ - а	Y _p - Y ₁	z _p - z ₁ z _p - z ₁	
	where $Q = \begin{cases} \frac{W^b}{2} \text{ ; side door closed} \\ (W^b DOOR - \frac{W^b}{2}) \text{ ; door open} \end{cases}$			
•	0	Υ _p - Υ' _p	Z _p - Z' _p	
⑤	$X_p - X_p' + \frac{w''}{2}$	Y _p - Y' _p	Z ₍₁ - Z'p	
⑤ ′	$X_p - X_p' - Q$ where Q is as for 3	Y _p - Y' _p	Z _p - Z' _p	

Figure 21. Expressions for R_X , R_Y , and R_Z

Region	r _×	ľy	rz
①	1	0	0
3	x ₁ - x ₀ - \frac{w}{2} + \frac{w}{2}	Lw	z ₁ - z ₀
②	x ₁ - x ₀ + a - \frac{\frac{w}{2}}{2}	L _w	z ₁ - z ₀
	where $Q = \begin{cases} \frac{W^a}{2}$; side door closed $\{w^a_{DOOR} - \frac{W^a}{2}\}$; door open		
3	0	Y' _p - Y ₁	Z' _p - Z ₁
3	0	Y' _p - Y ₁	z' _p - z ₁ z' _p - z ₁
•	0	cos #'	-sin ∂'
(3)	0	con 0'	⊸sin ∂'
③	0	cos ø'	-sin P'

Figure 22. Expressions for r_{χ} , r_{γ} , and r_{z}

APPENDIX B TABULATIONS AND PLOTS OF EXTERIOR SURFACE NOISE ESTIMATES FOR A SMALL STOL AIRPLANE

APPENDIX B TABLE OF CONTENTS

Section	;	Page
I.	Computer Tabulations for Field Point Noise Levels at STOL Operation Due to Inboard Engines	48
II.	Computer Tabulations for Field Noise Levels at Brake Release Due to Inboard Engines	67
111.	Computer Tabulations for Field Point Noise Levels at STOL Operation Due to Outboard Engines	83
IV.	Computer Tabulations for Field Point Noise Levels at Brake Release Due to Outboard Engines	102
v.	Computer Plots of QSR A Sized Airplane	811

SECTION I COMPUTER TABULATIONS FOR FIELD POINT NOISE LEVELS AT STOL OPERATION DUE TO INBOARD ENGINES

PROGRAM USBEST-VERSION 06/MAY/78
UPDATED MARCH,1979..L.BUTZEL
GENERATES SPL ESTIMATE OF EXTERIOR
FUSELAGE/FLAP,WING FLUCTUATING
PRESSURE LEVELS FOR USB AIRCRAFT

AUTHORS=L.BUTZEL; W.LUNDT USER DOCUMENTATION=D6-XXXXX RUN DATE= 79/03/21.

这种资本的对象的政策和关系的关系的关系的对象的人类的对象的对象的对象的对象

AZP GEOMETRY CHANGES ARE

PARAM	NEW	OL.D
THUKD	20.0	1
THDKU	0.0	i
THOKI	0.0	1
THIKD	12.0	1
THTE	0.0	1
THSK	12.0	i
ТНИ	19.0	i
HEFF	770.0	ī
ADDOR	0.0	1
AUG	5.0	ī
NU6	12.0	-1.0
М	54.0	1
ĹМ	80.0	î
ŘĒ	26.0	1
X0	88.0	î
Ϋ́O	345.0	î
Z0	213.0	1
Z1	201.0	1
LT	25.0	1
YR	P.O	1
LFAN	150.0	1
XBBL	57.0	1

CASE 1,801,ST50 (STDL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/S DODR= CLOSED THETAS= 5. DEG VJ = 680. FT/S VGS = UP THETAP=33. DEG

RIBBON STA NL BL (IN) BL (DUT) AT NOZ EX 345. 213. 61. 115. AT WHE TE 425. 57. 201. 133. 198. 57. AT TR OFF 431. 133. AT TR EDG 460. 179. 57. 133.

TRAIL EDGE 450. 168. 57. 133.

FIELD POINT 460. 190. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 115.4 DELTA = 9.1

PEAK JET MIX LEVEL= 139. DB AT 113. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NOZ LEVEL= 117. DB AT 938. HZ
STE= 122. ,DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 94. DB AT 110. HZ
PEAK SEP LEVEL= 124. DB AT 33. HZ
PEAK TBL LEVEL= 90. DB AT 115. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HΖ MIM MM TE SEP TOL SUM 25. 132. 124. 132.8 98. 81. 88. 31. 133. 99. 84. 124. 98. 133.9 87. 101. 40. 135. 124. 89. 135.2 102. 89, 50. 136. 123. 39. 136.3 63. 137. 104. 98. 123. 90. 137.5 80. 138. 105. 93. 122. 90. 138.4 100. 139. 122. 106. 94. 90. 138.7 125. 139. 107. 94. 121. 138.7 90. 93. 160. 138. 109. 121. 90. 138.3 91. 200. 137. 110. 120. 89. 137.4 250. 136. 112. 89. 120. 89. 136.2 134.9 315. 113. 135. 119. 89. 86. 133.6 400. 133. 83. 119. 114. 88. 500. 132. 115. 118. 88. 132.4 81, 132.3 630. 132. 117. 117. 87. 78. 75. 132.2 800. 132. 87. 117. 116. 1000. 132. 117. 73. 116. 86. 131.8 1250. 131. 70. 115. 85. 131.2 117. 116. 1600. 130. 85. 130.3 67. 114. 113. 2000. 129. 115. 65. 84. 129,3 113. 2500. 129. 62. 112. 83. 128.0 3150. 126. 59. 82. 126.4 111. 112. 57. 124.5 4000. 124. 111. 111. 81. 54. 5000. 122. 109. 110. 81. 122.5

DASPL 148.4 126.6 101.9 133.8 101.5 148.6

CASE 2:B02:BKRL (STOL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/S DOOR= CLOSED THETAS= 5. DEG VJ = 680. FT/S VGS = UP THETAP=33. DEG

RIBBON STA ЫL BL(IN) BL(OUT) AT NOZ EX 61. 115. 345. 213. AT WMG TE 425. 201. 57. 133. 57. AT TR OFF 431. 198. 133. AT TR EDG 57. 460. 179. 133.

TRAIL EDGE 450. 162. 57. 133.

FIELD POINT 460. 160. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 131.7 DELTA = 16.1

PEAK JET MIX LEVEL= 130. DB AT 105. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR MOZ LEVEL= 108. DB AT 938. HZ
STE= 122. DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 79. DB AT 110. HZ
PEAK SEP LEVEL= 124. DB AT 33. HZ
PEAK TBL LEVEL= 90. DB AT 115. HZ

SPL-IN DB RE 200 PICEBAR (BY CEMP AND SUM)

HZ MIX HH TE SEF TEI SUM 89. 66. 124. 25. 124. 88. 127.0 124. 31. 126 . 90. 69. 88. 127.8 4ŭ. 127. 72. 89. 92. 124. 128.6 50. 74. 128. 93. 123. 89. 129.4 63. 129. 94. 77. 123. 90. 130.2 80. 130. 96. 79. 122. 90. 130.6 97. 79. 90. 100. 130. 122. 130.7 125. 130. 98. 79. 121. 90. 130.5 78. 121. 160. 100. 129. 90. 130.0 200. 128. 101. 76. 129.0 120. 89. 250. 127. 102. 74. 120. 89. 127.9 119. 315. 71. 89. 126.7 126. 104. 105. 88. 125.4 400. 124. 68. 119. 500. 123. 106. 66. 118. 88. 124.3 630. 123. 107. 63. 117. 87. 124.1 800. 123. 108. 60. 87. 123.8 116. 1000. 123. 108. 58. 116. 86. 123.4 1250. 122. 108. 55. 115. 85. 122.8 52. 1600. 121. 107. 114. 121.9 85. 2000. 120. 106. 50. 113. 84. 120.9 2500. 119. 104. 47. 112. 83. 119.7 3150. 103. 45. 117. 111. 82. 118.2 4006. 115. 42. 81. 116.5 102. 111. 39. 5000. 113. 100. 110. 81. 114.9

DASPL 139.9 117.5 87.1 133.8 101.5 140.8

Commence of the second

CASE 3,803,ST50 (STDL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 UA = 110. FT/S DODR= CLOSED THETAS= 5. DEG UJ = 680. FT/S UGS = UP THETAF=33. DEG

RIBBON STA ML BL(IN) BL(DUT) 345. 213. AT MOZ EX 61. 115. 57. AT WHE TE 425. 201. 133. AT TR OFF 198. 57. 431. 133. AT TR EDG 460. 179. 57. 133.

TRAIL EDGE 450. 162. 57. 133.

FIELD FOINT 460. 130. 57.

FIELD POINT IN 20NE 3 AND IS INBOARD OF FLOW RIBBON S= 148.1 DELTA = 41.3

PEAK JET MIX LEVEL= 120. DB AT 228. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NOZ LEVEL= 99. DB AT 938. HZ
STE= 122. *DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 96. DB AT 110. HZ
PEAK SEP LEVEL= 104. DB AT 33. HZ
PEAK TBL LEVEL= 90. DB AT 115. HZ

SPL-IN DE RE 200 PICCEAR (BY COMP AND SUM)

SEP SUM HZ MIX MM ΤE TEL 83. 25. 103. SB. 114.5 114. ΘŬ. 81. 103. 88. 115.3 31. 115. 86, 40. 116. 83. 88. 103. 89. 111.1 50. 116.9 117. 84. 91. 103. 89. 94. 117.7 63. 85. 103. 90. 118. 95. 90. 80. 118. 87. 102. 118.6 100. 119. 88. 96. 102. 90. 119.4 89. 125. 120. 96. 101. 90. 120.1 91. 160. 121. 95. 101. 90. 120.6 93. 200. 120. 92. 100. 99. 120.5 91. 250. 120. 93. 100. 89. 120,2 95. 99. 89. 119.9 315. 120. 88. 119. 85. 96. 98, 88. 119.0 400. 97. 83. 98. 88. 117.8 500. 118. 630. 118. 98. 80. 97. 87. 117.7 96. 800. 118. 99. 77. 87. 117.6 75. 95. 86. 117.3 1000. 117. 99. 1250. 99. 72. 94. 85. 116.7 117. 93. 85. 115.8 1600. 116. 98. 69. 114.7 93. 84. 115. 97. 67. 2000. 95. 92. 83. 113.4 2500. 113. 64. 3150. 112. 94. 61. 91. 82. 111.8 109.9 4000. 110. 93. 59. 90. 91. 91. 56. 89. 81. 107.9 5000. 108.

DASPL 131.3 108.4 103.8 113.4 101.5 131.4

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/S DDDR= CLOSED THETAS= 5. DEG VJ = 680. FT/S VGS = UP THETAP=33. DEG

RIBBON BL (IN) BL (DUT) WL STA AT NOZ EX 345. 213. 61. 115. 57. AT WNG TE 425. 201. 133. 57. AT TR OFF 198. 133. 431. AT TR EDG 179. 57. 460. 133.

TRAIL EDGE 450. 162. 57. 133.

FIELD POINT 500. 190. 57.

FIELD POINT IN ZONE 3 AND IS IMBOARD OF FLOW RIBBON S= 149.0 DELTA = 30.8

PEAK JET MIX LEVEL= 123. DB AT 176. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NOZ LEVEL= 101. DB AT 938. HZ
STE= 122. ,DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 101. DB AT 110. HZ
PEAK SEP LEVEL= 107. DB AT 33. HZ
PEAK TBL LEVEL= 90. DB AT 108. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ MIX HH SEP TEL SUM TE 25, ee. 88. 88. 116.7 116. 107. 31. 107. 117. 四件。 90. 88. 117.5 85. 107. 89. 40. 118. 93. 118.6 EE. 96. 50. 107. 119. 89. 119.5 63. 120. BB. 98. 106. 90. 120.4 80. 121. 89. 100. 106. 90. 121.4 91. 101. 100. 122. 105. 90. 122.3 125. 123. 92. 90. 101. 105. 122.8 90. 160. 123. 93. 100. 104. 122.9 95. 98. 122.7 200. 123. 104. 69. 250. 96. 95. 122.3 122. 103. 89. 315. 121. 97. 93. 103. 88. 121.4 400. 120. 99. 90. 102. 88. 120.1 100. 118.8 500. 119. 87. 87. 101. 85. 101. 630, 119. 101. 87. 118.7 ΘE. 86. 800. 118. 101. 100. 118.6 1000. 118. 101. 79. 99. 86. 118.3 1250. 118. 77. 98. 85. 117.7 101. 74. 97. 1600. 117. 84, 100. 116.8 71. 97. 2000. 116. 84. 99. 115.72500. 114. 98. 69. 96. 83. 114.4 95. 3150. 113. 36. 66. 82. 112.8 94. 4000. 111. 95. 63. 81. 110.9 5000. 109. 94. 61. 93. 80. 108.9

DASPL 133.2 110.9 108.4 117.3 101.5 133.3

CASE 5,805,8750 (STDL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/S DODR= CLOSED THETAS= 5. DEG VJ = 680. FT/S VGS = UP THETAP=33. DEG

RIBBON STA ML BL (IN) BL (DUT) 345. 61. AT NOZ EX 213. 115. AT WHG TE 425. 201. 57. 133. AT TR OFF 431. 198. 57. 133. 57. AT TR EDG 179. 460. 133.

TRAIL EDGE 450. 162. 57. 133.

FIELD PDINT 500. 160. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 165.3 DELTA = 5.7

PEAK JET MIX LEVEL≃ 138. DB AT 91. HZ CORRECTION FOR UGS APPLIED DSPL= 5. DB F1= 2190. HZ PEAK NEAR NOZ LEVEL= 117. DB AT 938. HZ STE= 122. • DELTATE≃ 20. PEAK TRAIL EDGE LEVEL= 96. DB AT 110. HZ PEAK SEP LEVEL= 97. DB AT 33. HZ PEAK TEL LEVEL= 106. DB AT 343. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

SEP HZ MIN MM TEL SUM TE 97. 99. 132.5 25. 133. 99. 83. 97. 134. 86. 31. 100. 100. 133.7 135. 89. 97. 101. 135.2 40. 101. 50. 136. 103. 91. 97. 102. 136.4 96. 104. 94, 63. 137. 103. 137.4 95. 80. 103. 138. 105. 96. 137.8 100. 138. 107. 96. 95. 104. 137.8 125. 138. 108. 96. 95. 104. 137.5 160. 137. 109. 95. 94. 105. 136.6 135. 93. 105. 200. 111. 94. 135.4 134. 93. 112. 91. 105. 250. 134.1 93. 106. 315. 133. 132.8 113. 88. 105. 400. 131. 115. 85. 92. 131.5 500. 130. 116. 83. 91. 105. 130.2 117. 630. 130. 80. 90. 105. 130.2 117. 90. 800. 130. 77. 104. 130.1 117. 75. 104. 1000. 130. 89. 129.8 1250. 129. 72. 88. 103. 129.2 117. 128.3 116. 69. 103. 1600. 128. 87. 127. 115. 67. 102. 127.2 2000. 86. 85. 102. 125.9 2500. 126. 114. 64. 85. 124.3 3150. 124. 112. 61. 101. 59. 84. 101. 122.5 4000. 122. 111. 83. 100. 5000. 120. 110. 56. 120.5

DASPL 147.4 126.9 103.9 107.0 117.2 147.5

CASE 6,806,ST50 (STDL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/S DOOR= CLOSED THETAS= 5. DEG VJ = 680. FT/S VGS = UP THETAP=33. DEG

RIBBON STA WL BLKIND BLKOUTS AT NOZ EX 345. 213. 61. 115. AT WNG TE 425. 201. 57. 133. AT TRIDEF 431. 198. 57. 133. AT TR EDG 460. 179. 57. 133.

TRAIL EDGE 450. 162. 57. 133.

FIELD POINT 500. 130. 57,

FIELD POINT IN ZONE 3 AND IS
INBOARD OF FLOW RIBBON
S= 181.6 DELTA = 19.5

PEAK JET MIX LEVEL= 123. DB AT 86. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NOZ LEVEL= 104. DB AT 938. HZ
STE= 122. ,DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 52. DB AT 110. HZ
PEAK SEP LEVEL= 89. DB AT 33. HZ
PEAK TBL LEVEL= 90. DB AT 108. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

SEP TE TEL SUM HZ MIX HH 85. 25. 119. 39. 88. 88. 119.0 41. 89. 31. 120. 86. 88. 120.1 89. 40. 121. 88. 44. 89. 121.4 47. 50. 89. 122.5 123. 89. 88. 63. 123. 90. 49. 88. 90. 123.2 90. 80. 123. 92. 87. 123.4 51. 93. 90. 100. 123. 52. 87. 123.3 86. 90. 125. 123. 94. 52. 122.8 86. 90. 96. 51. 160. 122. 121.7 49. 89. 120.5 200. 120. 97. 85. 98. 250. 119. 46. 85. 89. 119.2 315. 118. 100. 44. 84. 88. 117.9 88. 400. 116. 101. 41. 84. 116.6 500. 115. 102. 38. 83. 87. 115.4 82. 87. 630. 115. 103. 35. 115.4 104. 81. 800. 115. 33. 86. 115.3 115.0 1000. 115. 104. 30. 80. 86. 28. 80. 85. 1250. 114. 103. 114.4 113. 25. 79. 84. 113.5 1600. 103. 2000. 112. 101. 22. 78. 84. 112.4 77. 20. 100. 83. 2500. 111. 111.1 82. 3150. 109. 99. 17. 76. 109.5 4000. 107. 97. 14. 75. 81. 107.6 75. 96. 12. 80. 105.7 5000. 105.

DASPL 133.0 113.3 59.4 98.7 101.5 133.0

CASE 7,807,ST50 (STOL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/8 DDDR= CLDSED THETAS= 5. DEG VJ = 680. FT/8 VGS = UP THETAP=33. DEG

BL (IN) BL (OUT) RIBBON STA WL AT NOZ EX 345. 213. 115. 61. AT WNG TE 425. 57. 133. 201. AT TR OFF 431. 198. 57. 133. AT TR EDG 460. 179. 57. 133.

TRAIL EDGE 450. 162. 57. 133.

FIELD POINT 550. 190. 57.

FIELD POINT IN ZONE 3 AND IS-INBOARD OF FLOW RIBBON S= 190.9 DELTA = 58.1

PEAK JET MIX LEVEL≃ 113. DB AT 245. HZ CORRECTION FOR VGS APPLIED DSPL= 5. DB F1= 2190. HZ PEAK NEAR NOZ LEVEL= 94. DB AT 938. HZ 20. 122. , DELTATE= 100. DB AT 110. HZ PEAK TRAIL EDGE LEVEL= PEAK SEP LEVEL= 82. DB AT 33. HZ PEAK TEL LEVEL= 90. DB AT 100. HZ

SPL-IN DB RE 200 PICCEAR (BY COMP AND SUM)

HZ MIX HH TE SEP TEL SUM 25. 109. 75. 87. 81. 88. 108.6 31. 109. 89. 81. 89. 109.3 76. 81. 40. 110. 92. 89. 110.0 78. 50. 95. 110.7 111. 79. 81. 89. 97. 111. 80. 90. 63. 81. 111.5 112. 99. 80. 90. 80. 82. 112.2 100. 113. 83. 100. 80. 90. 112.9 90. 125. 79. 113.5 113. 84. 100. 99. 79. 90. 113.9 160. 114. 86. 97. 78. 200. 114. 87. 89. 113.8 88. 94. 250. 113. 78. 89. 113.4 315. 113. 90. 92. 77. 88. 113.1 91. 89. 112.4 400. 112. 76. 88. 500. 92. 76. 87. 111. 86. 111.2 630. 93. 75. 111. 83. 87. 111.2 74. 111. 81. 111.1 800. 94. 86. 73. 1000. 78. 86. 111. 94. 110.7 94. 85. 1250. 76. 72. 110. 110.1 93. 71. 1600. 109. 73. 84. 109.2 71. 92. 70. 83. 2000. 108. 108.2 70. 2500. 90. 107. 68. 83. 106.8 3150. 105. 89. 65. 69. 82. 105.2 81. 103.3 4000. 103. 88. 62. 68. 5000. 101. 86. 60. 67. 80. 101.3

MASPL 124.7 103.4 107.4 91.4 101.4 124.9

ALT= 6500, FT USB =50. DEG R/RD = .848 UA = 110. FT/S DDDR= CLOSED THETAS= 5. DEG UJ = 680. FT/S UGS = UP THETAP=33. DEG

RIBBON STA ML BL (IN) BL (DUT) AT NOZ EX 345. 213. 61. 115. AT WNG TE 425. 57. 201. 133. AT TR OFF 57. 431. 198. 133. AT TR EDG 460. 179. 57. 133.

TRAIL EDGE 450. 162. 57. 133.

FIELD POINT 550. 160. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 207.2 DELTA = 32.9

PEAK JET M%X LEVEL≕ 118. DB AT 151. HZ CORRECTION FOR VGS APPLIED DSPL= 5. DB F1≈ 2190. HZ PEAK NEAR NOZ LEVELM 98. DB AT 938. HZ STE= 122. ,DELTATE= 20. PEAK TRAIL EDGE LEVEL⊏ 96. DB AT 110. HZ 33. HZ 79. DB AT PEAK SEP LEVEL= PEAK TBL LEVEL= 90. DB AT 100. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HΖ MIX MM TE SEP TEL SUM 25. 112. 79. 79. 112.1 83. 88. 79. 31. 80. 89. 113. 86. 113.0 4ú. 114. 82. 89. 79. 89. 114.1 115. 50. 83. 91. 79. 89. 115.0 63. 116. 85. 94. 78. 90. 116.0 117. 80. 86. 96. 78. 90. 117.0 100. 118. 87. 96. 77. 90. 117.7 125. 118. 96. 77. 90. 89. 117.9 95. 160. 90. 76. 90. 117.7 118. 76. 89. 200. 117. 91. 93. 117.4 93. 91. 250. 117. 75. 89. 116.7 315. 115. 94. 88. 75. 88. 115.5 74. 95. 400. 88. 114.1 114. 86. 97. 73. 500. 113. 83. 87. 112.9 98. 630. 113. 73. 87. 112.8 SO. 800. 113. 98. 72. 77. 86. 112.7 1000. 112. 98. 75. 71. 86. 112.4 1250. 98. 70. 85. 112. 72. 111.8 111. 1600. 97. 69. 69. 84. 110.9 96. 2000. 110. 68. 83. 109.8 67. 108. 95. 83. 108.5 2500. 64. 68. 107. 3150. 93. 62. 67. 82. 106.9105.0 92. 4000. 105. 59. 66. 81. 5000. 103. 91. 56. 65. 80. 103.0

The second second second

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/S DDDR= CLOSED THETAS= 5. DEG VJ = 680. FT/S VGS = UP THETAP=33. DEG

RIBBON STA ИL BL(IN) BL(OUT) AT NOZ EX 345. 213. 61. 115. AT WNG TE 425. 201. 57. 133. AT TR OFF 431. 198. 57. 133. AT TR EDG 179. 57. 460. 133.

TRAIL EDGE 450, 162, 57, 133.

FIELD POINT 550. 130. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 223.6 DELTA = 7.7

PEAK JET MIX LEVEL= 133. DB AT 74. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NOZ LEVEL= 113. DB AT 938. HZ
STE= 122. | DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 90. DB AT 110. HZ
PEAK SEP LEVEL= 75. DB AT 33. HZ
PEAK TBL LEVEL= 91. DB AT 109. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ 25. SEP MIX MM TE TEL SUM 94. 89. 129. 77. 75. 128.6 31. 130. 75. 90. 95. 79. 129.8 40. 131. 97. 90. 82. 75. 131.2 50. 132. 98. 74. 85. 90. 132.2 74. 63. 133. 100. 87. 91. 132.6 74. 89. 133. 91. 80. 101. 132.7 100. 132. 73. 102. 90. 91. 132.4 125. 132. 90. 73. 91. 103. 131.7 160. 130. 89. 105. 72. 91. 130.4 129. 87. 200. 106. 72. 90. 129.1 250. 128. 84. 71. 108. 90. 127.8 82. 315. 126. 109. 70. 90. 126.5 400. 125. 110. 79. 70. 89. 125.2 500. 111. 124. **76.** 69. 89. 124.0 630. 74. 68. 88. 124. 113. 124.0 71. 800. 124. 113. 67. 88. 123.9 123. 113. 1000. 68. 67. 87. 123.6 1250. 123. 113. 66. 123.0 66. 86. 1600. 122. 112. 63. 65. 122.1 86. 2000. 121. 111. 60. 64. 85. 121.0 2500. 58. 119. 109. 63. 84. 119.7 3150. 118. 108. 55. 62. 83. 118.2 4000. 116. 107. 52. 62. 82. 116.3 5000. 114. 105. 50. 61. 82. 114.3

DASPL 142.1 122.6 97.6 84.9 102.6 142.2

CASE 13, W01, ST50 (STOL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RO = .848 VA = 110. FT/S DODR= CLOSED THETAS= 5. DEG VJ = 680. FT/S VGS = UP THETAP=33. PEG

RIBBON STA ЫL BL (IN) BL (OUT) AT NOZ EX 345. 213. 61. 115. 57. AT WHE TE 425. 201. 133. AT TR OFF 57. 431. 198. 133. AT TR EDG 179. 57. 460. 133.

TRAIL EDGE 450. 162. 57. 133.

FIELD POINT 375. 212. 90.

FIELD POINT IN ZONE 1 AND IS
ABOVE, ON OR UNDER FLOW RIBBON
S= 30.0 DELTA = 3.5

PEAK JET MIX LEVEL= 127. DB AT 191. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NOZ LEVEL= 130. DB AT 938. HZ
STE= 122. ,DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 64. DB AT 110. HZ
PEAK SEP LEVEL= 88. DB AT 33. HZ
PEAK TBL LEVEL= 114. DB AT 912. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

1414 SEP SUM HZ MIX TE TEL 25. 117. 101. 11.3 111. 51. 88. 31. 119. 113. 53. 88. 102. 119.6 40. 120. 114. 56. 88. 104. 121.1 50. 59. 88. 106. 122.4 121. 115. 61. 63. 123. 117. 87. 107. 123.7 80. 124. 118. 63. 87. 108. 125.1 125. 109. 100. 119. 64. 86. 126.3 125. 126. 121. 64. 86. 110. 127.4 160. 127. 122. 85. 111. 63. 128.2 200. 127. 123. 61. 85. 111. 128.6 127. 250. 125. 58. 84. 112. 128.9 126. 84. 129.1 315. 126. 56. 112. 125. 83. 129.3 400. 127. 53. 113. 500. 123. 129. 50. 82. 113. 129.8 82. 130.6 630. 123. 130. 113. 47. 800. 123. 130. 45. 81. 114. 131.0 1000. 123. 130. 42. 80. 114. 131.0 113. 1250. 122. 130. 40. 79. 130.7 121. 129. 78. 113. 129.8 1600. 37. 2000. 120. 129. 34. 77. 113. 128.7 32. 127.4 2500. 119. 127. 77. 112. 3150. 117. 125. 29. 76. 112. 126.1 4000. 115. 124. 26. 75. 111. 124.6 74. 123.3 5000. 113. 123. 24. 111.

DASPL 137.1 139.7 71.4 98.2 125.1 141.7

Control of the last of the las

CASE 14,W02,ST50 (STDL FLAPS≃50)

ALT= 6500. FT USB =50. DEG R/RD = .848VA = 110. FT/S DOOR= CLOSED THETAS= 5. DEG VJ = 680. FT/S VGS = UPTHETAP=33. DEG ML BL (IN) BL (OUT) RIBBON STA AT NOZ EX 345. 213. 61. 115. AT WNG TE 425. 201. 57. 133. AT TR DFF 431. 198. 57. 133. AT TR EDG 460. 179. 57. 133. TRAIL EDGE 450. 162. 57. 133.

FIELD POINT 395. 206. 90.

FIELD POINT IN ZONE 1 AND IS ABOVE,ON OR UNDER FLOW RIBBON S= 50.0 DELTA = .5

PEAK JET MIX LEVEL= 132. DB AT 164. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK MEAR NOZ LEVEL= 127. DB AT 938. HZ
STE= 122. ;DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 94. DB AT 110. HZ
PEAK SEP LEVEL= 95. DB AT 33. HZ
PEAK TBL LEVEL= 121. DB AT 1785. HZ

SPL-IN DB RE 200 PICEBAR (BY COMP AND SUM)

HZ MIX MM TE SEP TEL SUM 25. 94. 123.4 123. 108. 71. 103. 74. 95. 105. 124.7 31. 124. 109. 77. 106. 126.1 40. 126. 94. 110. 50. 127. 112. 79. 94. 127.4 108. 63. 129. 82. 94. 113. 110. 128.8 80. 84. 93. 111. 130. 115. 130.2 84. 100. 131. 93. 131.3 116. 113. 92. 125. 132. 117. 94. 114. 132.0 83. 92. 160. 132. 119. 115. 132.4 91. 200. 132. 120. 81. 116. 132.3 250. 131. 79. 121. 91. 117. 132.0 315. 130. 122. 76. 90. 118. 131.2 129. 400. 124. 73. 89. 119. 130.4 500. 128. 125. 71. 89. 119. 130.0 630. 128. 126. 68. 88. 120. 130.3 800. 127. 127. 65. 120. 130.5 87. 1000. 127. 127. 63. 86. 120. 130.4 1250. 127. 60. 126. 86. 121. 130.0 1600. 126. 57. 85. 121. 126. 129.3 2000. 125. 124. 55. 84. 121. 128.3 52, 2500. 123. 123. 83. 120. 127.2 50. 120. 3150. 122. 122. 82. 126.0 4000. 120. 120. 120. 47. 81. 124.7 81. 5000. 118. 119. 44. 119. 123.5 DASPL 142.1 136.2 92.1 104.6 131.7 143.4

ALT= 6500° FT USB ≃50. DEG R/RD = .848 VA = 110. FT/S DOOR= CLOSED THETAS= 5. DEG VJ = 680. FT/S VGS = UP THETAP=33. DEG RIBBON STA WL BL(IN) BL(OUT) AT NOZ EX 213. 61. 345. 115. AT WNG TE 425. 201. 57. 133. 57. 133. AT TR OFF 431. 198. AT TR EDG 460. 179. 57. 133. TRAIL EDGE 450. 162. 57. 133. FIELD POINT 432. 199. 6ŭ.

FIELD POINT IN ZONE 3 AND IS ABOVE,ON OR UNDER FLOW RIBBON S= 87.0 DELTA = 1.4

PEAK JET MIX LEUEL= 140. DB AT 131. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NOZ LEUEL= 123. DB AT 938. HZ
STE= 122. ,DELTATE= 20.
PEAK TRAIL EDGE LEUEL= 93. DB AT 110. HZ
PEAK SEP LEUEL= 106. DB AT 33. HZ
PEAK TBL LEUEL= 119. DB AT 1298. HZ

SPL-IN DB RE 200 PICCBAR (BY COMP AND SUM)

HZ	MIX	MM	TE	SEP	TEL	SUM
25.	133.	104.	83.	106.	104.	132.7
31.	134.	105.	86.	106.	105.	133.9
40.	135.	106.	89.	106.	107.	135.4
50.	137.	108.	91.	105.	109.	136.7
63.	138.	109.	94.	105.	11Ü.	138.0
80.	139.	110.	95.	104.	112.	139.3
100.	140.	112.	96.	104.	113.	139.9
125.	140.	113.	96.	103.	114.	140.2
160.	140.	114.	95.	103.	115.	140.1
200.	140.	116.	93.	102.	116.	139.6
250.	138.	117.	91.	102.	116.	138.5
315.	137.	118.	88.	101.	117.	137.2
400.	136.	120.	85.	101.	117.	135.9
500.	134.	121.	83.	100.	118.	134.7
630.	134.	122.	80.	99.	118.	134.7
800.	134.	122.	77.	98.	119.	134.6
1000.	134.	123.	75.	97.	119.	134.3
1250.	133.	122.	72.	97.	119.	133.8
1600.	132.	121.	69.	96.	119.	132.9
2000.	131.	120.	67.	95.	119.	131.9
2500.	130	119.	64.	94.	118.	130.6
3150.	128.	118.	61	93.	118.	129.1
4000.	126.	116.	59.	92.	117.	127.3
5000.	124.	115.	56.	92.	117.	125.5
		****	CONT. B		1 •	

DASPL 150.0 132.0 103.9 115.8 130.2 150.1

CASE 16,F02,ST50 (STOL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848VA = 110. FT/SDODR= CLOSED THETAS= 5. DEG VJ = 680. FT/S V68 = UPTHETAP=33. DEG RIBBON STA ML BL(IN) BL(DUT) 345. 61. AT NOZ EX 213. 115. 57. AT WMG TE 425. 201. 133. AT TR OFF 431. 198. 57. 133. AT TR EDG 57. 460. 179. 133. TRAIL EDGE 450. 162. 57. 133.

FIELD POINT 432. 199. 90.

FIELD POINT IN ZONE 3 AND IS ABOVE,ON OR UNDER FLOW RIBBON S= 87.0 DELTA = 1.4

PEAK JET MIX LEVEL= 140. DB AT 131. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NOZ LEVEL= 123. DB AT 938. HZ
STE= 122. ,DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 101. DB AT 110. HZ
PEAK SEP LEVEL= 114. DB AT 33. HZ
PEAK TBL LEVEL= 119. DB AT 1298. HZ

SPL-IN DB RE 200 PICCERR (BY COMP AND SUM)

HΖ MIX MM TE SEP TEL SUM 25. 133. 104. 132.7 88. 113. 104. 31. 134. 105. 90. 114. 105. 134.0 135. 93. 40. 106. 113. 107. 135.4 50. 137. 108. 96. 113. 109. 136.7 63. 138. 109. 98. 113. 110. 138.0 80. 139. 110. 100. 112. 112. 139.3 100. 140. 112. 101. 112. 113. 140.0 125. 140. 113. 101. 111. 114. 140.2 160. 140. 114. 100. 111. 115. 140.1 200. 116. 140. 116. 98. 110. 139.6 117. 95. 250. 138. 110. 116. 138.5 315. 137. 93. 118. 109. 117. 137.2 400. 136. 120. 90. 108. 117. 135.9 500. 134. 121. 87. 108. 118. 134.7 630. 122. 134. 85. 134.7 107. 118. 800. 134. 122. 82. 106. 119. 134.6 1000. 134. 123. 79. 105. 119. 134.3 133. 1250. 122. 77. 104. 119. 133.8 121. 1600. 132, 74. 104. 119. 132.9 2000. 131. 120. 71. 103. 119. 131.9 2500. 130. 119. 69. 102. 118. 130.6 3150. 128. 66. 118. 101. 118. 129.1 4000. 126. 117. 116. 63. 100. 127.3 5000. 124. 115. 61. 99. 117. 125.5

MASPL 150.0 132.0 108.5 123.5 130.2 150.2

CASE 17, F03, ST50 (STOL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/8 DDDR= CLESED THETAS= 5. DEG VU = 680. FT/8 UGS = UP THETAS=33. DEG

RIBBON STA ML BL(IN) BL(DUT) AT NOZ EX 345. 213. 115. 61. 425. 201. 57. AT WHE TE 133. AT TROFF 431. 198. 57. 133. AT TR EDG 179. 57. 133. 460. TRAIL EDGE 450. 162. 57. 133.

FIELD POINT 432. 199. 130.

FIELD POINT IN ZONE 3 AND IS ABOVE,ON OR UNDER FLOW RIBBON S= 87.0 DELTA = 1.4

PEAK JET MIX LEVEL= 140. DB AT 131. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK MEAR NOZ LEVEL= 123. DB AT 938. HZ
STE= 122. ,DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 96. DB AT 110. HZ
PEAK SEP LEVEL= 117. DB AT 33. HZ
PEAK TBL LEVEL= 119. DB AT 1298. HZ

SPL-IN DB RE 200 PICCIBAR (BY COMP AND SUM)

MIX SEP SUM HZ NN TE TEL 104. 133. 83. 117. 25. 104. 132.8 31. 134. 105. 86. 117. 105. 134.0 40. 135. 106. 89. 117. 107. 135.4 50. 137. 108. 91. 116. 109. 136.7 63. 138. 109. 94. 116. 110. 138.0 80. 139. 139.3 110. 96. 115. 112. 100. 140. 112. 96. 115. 113. 140.0 125. 140. 113. 96. 114. 114. 140.2 160. 140. 95. 114. 114. 115. 140.1 140. 93. 200. 116. 139.6 116. 113. 250. 138. 117. 91. 113. 116. 138.5 315. 137. 137.2 118. 88. 112. 117. 85. 400. 136. 120. 112. 117. 135.9 111. 500. 134. 121. 83. 118. 134.8 134.7 630. 134. 122. 80. 110. 118. 800. 134. 122. 77. 109. 119. 134.7 123. 1000. 134. 75. 108. 119. 134.4 122. 1250. 133. 72. 108. 119. 133.8 121. 1600. 132. 69. 107. 119. 132.9 131. 120. 106. 119. 131.9 2000. 67. 130. 119. 64. 105. 118. 130.6 2500. 118. 3150. 120. 61. 104. 118. 129.1 126. 59. 103. 117. 127.3 4000. 116. 124. 56. 103. 117. 125.5 5000. 115.

MASPL 150.0 132.0 104.0 126.7 130.2 150.2

CASE 10,F04,ST50 (STOL FLAPS=50)

ALY= 6500. FT USB =50. DEG R/RD = .848 UA = 110. FT/S N/DR= CLOSED THETAS= 5. DEG UJ = 680. FT/S UGS = UP THETAP=33. DEG

BL(IN) BL(DUT) RUBBON STA WL AT NOZ EX 213. 345. 61. 115. AT WNG TE 425. 201. 57. 133. 57. 133. AT TR OFF 431. 198. AT TR EDG 133. 460. 179. 57.

TRAIL EDGE 450. 168. 57. 133.

FIELD POINT 445. 177. 60.

FIELD POINT IN ZONE 3 AND IS ABOVE,ON OR UNDER FLOW FIBBON S= 109.9 DELTA = 10.0

PEAK JET MIX LEVEL= 137. IB AT 116. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NOZ LEVEL= 117. DB AT 938. HZ
STE= 122. *DELTATE* 20.
PEAK TRAIL EDGE LEVEL= 90. DB AT 110. HZ
PEAK SEP LEVEL= 127. DB AT 33. HZ
PEAK TBL LEVEL= 90. DB AT 118. HZ

SPL-IN DB RE 200 PICEBAR (BY CEMP AND SUM)

HZ MIX NN. TE SEP TEL. SUM 98. 25. 131. 77. 127. 88. 132.2 99. 132. 79. 127. 88. 133.2 31. 133. 100. 82. 127. 89. 134.3 40. 85. 89. 50. 135. 102. 126. 135.3 126. 136. 87. 89. 136.4 63. 103. 125. 80. 137. 104. 89. 90. 137.2 100. 137. 106. 89. 125. 90. 137.6 125. 137. 89. 124. 90. 137.6 107. 160. 137. 108. 88. 124. 90. 137.2 200. 136. 110. 87. 123. 89. 136.4 250. 135. 84. 123. 89. 135.3 111. 89. 134.0 315. 134. 122. 112. 81. 122. ĕ8. 132.7 400. 132. 114. 79. 500. 131. 115. 76. 121. 88. 131.5 630. 131. 73. 120. 87. 131.4 116. 800. 87. 131.2 131. 116. 71. 119. 1000. 130. 117. 68. 119. 86. 130.9 130. 1250. 116. 65. 118. 85. 130.3 1600. 129. 115. 117. 85. 129.4 63. 128. ₿4. 128.3 2000. 114. 60. 116. 83. 115. 127.0 2500. 127. 113. 57. 82. 125.5 3150. 125. 112. 55. 114. 52. 4000. 163. 110. 113. 81. 123.7 49. 113. 81. 121.8 5000. 121. 109.

DASPL 147.2 126.0 97.2 136.8 101.5 147.6

64

CASE 11,F05,ST50 (STOL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 UA = 110. FT/S DODR= CLOSED THETAS= 5. DEG UU = 680. FT/S UGS = UP THETAP=33. DEG

RIBBON BL (IN) BL (OUT) STA WL AT NOZ EX 213. 115. 345. Si. 425 57. AT UNG TE 201. 133. AT TR OFF 431. 198. 57. 133. AT TR EDG 460. 179. 57. 133.

TRAIL EDGE 450. 162. 57. 133.

FIELD POINT 445. 177. 90.

FIELD POINT IN ZONE 3 AND IS ABDUE,ON OR UNDER FLOW RIBBON S= 109.9 DELTA = 10.0

PEAK JET MIX LEVEL™ 137. DB AT 116. HZ CORRECTION FOR UGS APPLIED DSPL= 5. DD F1= 2190. HZ PEAK NEAR NOZ LEVEL= 938. HZ 117. DB AT 122. DELTATE= STE= 20. PEAK TRAIL EDGE LEVEL≔ 103. DB AT 110. HZ PEAK SEP LEVEL= 135. DB AT 33. HZ PEAK TEL LEVEL= 90. DB AT 118. HZ

SPL-IN DB RE 200 PICDBAR (BY COMP AND SUM)

HZ r11X NM TE SEP TEL SUM 25. 131. 98. 90. 134. 88. 135.9 88. 31. 132, 99. 92. 135. 136.5 40. 133. 100. 95. 134. 89. 136.9 50. 135. 102. 98. 134. 89. 137.4 63. 136. 103. 100. 134. 89. 138.0 30. 137. 104. 102. 133. 90. 138.5 137. 133. 90. 100. 106. 103. 138.6 132. 90. 125. 137. 107. 103. 138.5 160. 137. 108. 102. 132. 90. 138.1 89. 200. 136. 110. 100. 131. 137.4 250. 135. 111. 97. 131. 89. 136.4 315. 134. 112. 95. 130. 89. 135.3 400. 132. 92. 129. 88. 134.1 114. 500. 131. 89. 133.1 115. 129. 88. 630. 131. 116. 87. 128. 87. 132.8 132.4 800. 131. 87. 116. 84. 127. 1000. 130. 81. 86. 132.0 117. 126. 1250. 130. 79. 125. 85. 131.3 116. 125. 85. 1600. 129. 115. 76. 130.4 84.114. 124. 2000. 128. 73. 129.4 2500. 127. 113. 71. 123. 83. 128.3 3150. 125. 112. 68. 122. 82. 126.9 4000. 123. 65. 121. 31. 125.4 110. 5000. 121. 109. 63. 120. 81. 123.9

DASPL 147.2 126.0 110.6 144.5 101.5 149.1

CASE 12,F06,ST50 (STDL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 UA = 110. FT/8 DDDR= CLUSED THETAS= 5. DEG UU = 680. FT/8 UGS = UP THETAP=33. DEG

RIBBUN STR ML BL (1N) BL (DUT) AT NOZ EX 345. 213. 61. 115. AT MMG TE 425. 57. 201. 133. AT TR DEF 198. 57. 431. 133. AT TR EDS 57. 460. 179. 133.

TRAIL EDGE 450. 162. 57. 133.

FIELD POINT 445. 177. 130.

FIELD POINT IN ZONE 3 AND IS ABOVE,ON OR UNDER FLON RIBBON S= 109.9 DELTA = 10.0

PEAK JET MIX LEUEL≃ 137. DB AT 116. HZ CORRECTION FOR VGS APPLIED DSPL= 5. DB F1= 2190. HZ PERK NEAR NOZ LEVEL# 117. DB AT 938. HZ 182. BELTATES 20. PEAK TRAIL EDGE LEVEL= 90. BB AT 110. HZ PEAK SEP LEVEL= 138. DB AT 33. HZ PEAK TBL LEVEL= 90. DB AT 118. HZ

SPL-IN DB RE 200 PICEBAR (BY CEMP AND SUM)

HΖ MIX HN TE. SEP TEL SLM 25. 131. 77. 93. 138. 88. 138.4 132. 99. 79. 138. 31. 89. 130.8 40. 133. 100. 138. 89. 139.0 82. 50. 135. 102. 85. 137. 89. 139.2 130. 103. 89. 139.5 63. 87. 137. 139.7 80. 137. 89. 136. 90. 104. 100. 137. 90. 90. 139.7 106. 136. 125. 137. 107. 90. 135. 90. 179.5 90. 160. 137. 108, 89. 135. 139.1 200. 136. 110. 87. 134. £9, 138.4 250. 135. 111. 84. 134. 89. 137.5 315. 134. 112. 82. 133, 89. 136.5 79. 400. 132. 114. 133. 88. 135.5 131. 115. 132. 500. 76. 88. 134.6 630. 131. 116. 74. 131. 87. 134.1 131. 130. 800. 116. 71. 87. 133.6 86. 1000. 130. 68. 130. 117. 133.1 85. 1250. 130. 125. 116. 66. 132.4 115. 85. 129. 63. 128. 131.5 1600. 2000. 128. 114. 60, 127. 84. 130.6 127. 113. 128. 83. 129.5 2500. 58. 125. 125, 82. 3150. 112. 55. 128.3 4000. 123. 52. 124. 81. 126.9 1i0. 5000. 121. 109. 50. 124. 81. 125.6

DASPL 147.2 126.0 97.4 147.8 101.5 150.5

SECTION II COMPUTER TABULATIONS FOR FIELD POINT NOISE LEVELS AT BRAKE RELEASE DUE TO INBOARD ENGINES

Vitale Control of the

经保护股份的股份的股份的股份的股份的股份的股份的股份的股份的

PROGRAM USBEST-VERSION 06/MAY/78
UPDATED MARCH,1979..L.BUTZEL
GENERATES SPL ESTIMATE OF EXTERIOR
FUSELAGE/FLAP,WING FLUCTUATING
PRESSURE LEVELS FOR USB AIRCRAFT

AUTHORS=L.BUTZEL,W.LUNDT USER DOCUMENTATION=D6-XXXXX RUN DATE= 79/03/21.

没会还还还是我就还是我们的的,我们还是我们的我们的我们还是这个人的。

AMP GEOMETRY CHANGES ARE

MEM	OLD
20.0	1
0.0	1
0.0	1
12.0	1
0.0	1
12.0	1
19.0	1
770.0	1
0.0	1
5.0	i
12.0	-1.0
54.0	1
80.0	1
26.0	1
88.0	1
345.0	i
	1
201.0	1
25.0	1
0.0	1
150.0	1
57.0	1
	20.0 0.0 12.0 12.0 19.0 19.0 5.0 12.0 26.0 26.0 26.0 27.0 28.0 28.0 28.0 29.0 20.0

CASE 1, BO1, BKRL (BRAKE RELEASE)

ĤLT≕ Q. FT USB = 0. DEG R/R□ ≈1.000 UA = O. FT/S DOOR= CLOSED THETAS= 6. DEG VJ = 870. FT/S VGS = UPTHETAP=19. DEG RIBBON WL BL(IN) BL(OUT) STA AT NOZ EX 213. 345. 61. 115.

AT NOZ EX 345. 213. 61. 115. AT WNG TE 425. 201. 57. 136. AT TR OFF 425. 201. 57. 136. AT TR EDG 449. 193. 57. 136.

TRAIL EDGE 449. 193. 57. 136.

FIELD POINT 460. 190. 57.

FIELD POINT IN ZONE 3 AND IS ABOVE,ON OR UNDER FLOW RIBBON S= 116.7 DELTA = .7

PEAK JET MIX LEVEL= 149. DB AT 89. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 128. DB AT 1200. HZ
STE= 105. ;DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 87. DB AT 94. HZ
PEAK SEP LEVEL= 93. DB AT 4743. HZ
PEAK TBL LEVEL= 126. DB AT 1857. HZ

SPL-IN DB RE 200 PICCEAR (BY COMP AND SUM)

HZMIX MM TE SEF TBL SUM 108. 25. 143. 75. 68. 108. 143.4 31. 145. 109. 78. 70. 109. 144.6 40. 146. 72. 111. 146.1 110. 81. 112. 83. 50. 147. 73. 113. 147.3 75. 63. 148. 85. 114. 113. 148.2 77. 80. 86. 149. 114. 116. 148.6 118. 116. 78. 100. 149. 87. 148.6 125. 148. 117. 86. 80. 119. 148.3 160. 147. 118. 84. 82. 120. 147.3 146.1 200. 146. 120. 82. 83. 121. 250. 145. 121. 79. 85. 122. 144.8 315. 143. 122. 123. 77. 87. 143.5 400. 142. 124. 74. 123. 88. 142.2 125. 141.0 500. 141. 71. 89. 124. 630. 90. 124. 139. 126. 69. 139.8 127. 90. 125. 800. 139. 66. 139.6 1000. 139. 128. 91. 125. 139.6 63. 125. 1250. 139. 128. 61. 91. 139.4 126. 1600. 138. 128. 58. 92. 138.8 55. 92. 126. 2000. 137. 127. 138.0 2500. 136. 126. 53. 93. 125. 137.0 125. 93. 3150. 135. 125. 50. 135.8 93. 125. 4000. 133. 123. 47. 134.2 93. 5000. 132. 122. 45. 124. 132.7

158.2

DASPL 158.2 137.5 94.3 102.7 136.6

CASE 2,802,8KRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DODR= CLOSED THETAS= 6. DEG VJ = 870. FT/S UGS = UP THETAP=19. DEG

RIBBON STA WL BL(IN) BL(OUT) AT NOZ EX 345. 213. 61. 115. AT WNG TE 425. 201. 57. 136. AT TR OFF 425. 201. 57. 136. AT TR EDG 449. 193. 57. 136.

TRAIL EDGE 449. 193. 57. 136.

FIELD POINT 460. 160. 57.

FIELD POINT IN ZONE 3 AND IS ABOVE, ON OR UNDER FLOW RIBBON S= 126.2 DELTA = 27.7

PEAK JET MIX LEVEL= 132. DB AT 138. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 112. DB AT 1200. HZ
STE= 105. , DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 116. DB AT 94. HZ
PEAK SEP LEVEL= 65. DB AT 4743. HZ
NO TBL ACTIVITY, A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ 25. 31. 40. 50. 63. 80. 125. 160. 250.	MIX 126. 127. 128. 129. 131. 132. 132. 132. 132.	NN 91. 92. 94. 95. 97. 98. 100. 102. 103.	TE 105. 107. 110. 113. 115. 116. 116. 114. 112.	SEP 40. 42. 43. 45. 47. 48. 50. 53. 55.	TBL 0. 0. 0. 0. 0. 0.	SUM 126.3 127.3 128.5 129.6 130.7 131.7 132.2 132.1 131.6 130.7
100. 125. 160. 200.	132. 132. 132. 132.	99. 100. 102. 103.	116. 116. 114. 112.	50. 52. 53. 55.	0. 0. 0.	132.2 132.3 132.1 131.6
2000. 2500. 3150. 4000. 5000.	123. 122. 121. 119. 117.	111. 109. 108. 107. 105.	85. 82. 80. 77. 74.	64. 64. 65. 65.	0. 0. 0. 0.	183.5 182.5 181.1 119.5 117.7

DASPL 142.2 120.9 123.9 74.3 0.0 142.3

CASE 3,803,8KRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DDDR= CLOSED THETAS= 6. DEG VJ = 870. FT/S VGS = UP THETAP=19. DEG

RIBBON STA WL BL(IN) BL(DUT) AT NOZ EX 345. 213. 61. 115. AT WHE TE 425. 201. 57. 136. 425. 57. AT TR OFF 201. 136. 57. AT TR EDG 449. 193. 136.

TRAIL EDGE 449. 193. 57. 136.

FIELD POINT 460. 130. 57.

FIELD FOINT IN ZONE 3 AND IS ABOVE,ON OR UNDER FLOW RIBBON S= 135.8 DELTA = 56.1

PEAK JET MIX LEVEL= 125. DB AT 236. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 105. DB AT 1200. HZ
STE= 105. DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 120. DB AT 94. HZ
PEAK SEP LEVEL= 49. DB AT 4743. HZ
NO TBL ACTIVITY,A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICTBAR (BY COMP AND SUM)

SUM HΖ MIX NN TE SEP TEL 25. 121. 84. 109. 24. ŭ. 120.9 111. 26. Û. 121.7 31. 121. 86. 87. 28. Ů. 40. 122. 114. 122.7 50. 123. 88. 116. 29. Ũ. 123.6 90. 31. 124.6 63. 119. Ũ. 123. 91. 80. 33. 125.4 124. 120. 0. 100. 125. 92. 120. 34. 126.0 0. 94. 125. 125. 36. 126.4 119. Ŭ. 95. 38. 160. 126. 118. 0. 126.4 200. 126. 96. 115. 39. 0. 126.1 250. 125. 98. 113. 41. 0. 125.5 99. 315. 125. 110. 42. 0. 125.2 107. 400. 124. 101. 43. ũ. 124.3 ŭ. 500. 123. 102. 105. 44. 123,1 103. 102. 45. 121,8 630. 122. ű. 800. 121. 104. 99. 46. Ũ. 121.6 97. 121.5 105. 47. 1000. 121. 0. 105. 121.2 1250. 121. 94. 47. Ü. 1600. 120. 105. 91. 48. Ŭ. 120.6 89. 119.8 2000. 120. 104. 48. ů. 103. 86. 48. 118.7 2500. 119. Ũ, 83. 3150. 117. 101. 49. Û. 117.4 81. 100. 49. 115.7 4800. 116. 0. 5000. 114. 99. 78. 49. Û. 113.9 DASPL 136.6 114.2 127.5 58.4 0.0 137.1

CASE 4,804,8KRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DOOR= CLOSED THETAS= 6. DEG VJ = 870. FT/S VGS = UP THETAP=19. DEG

RIBBON STA ИL BL(IN) BL(OUT) AT NOZ EX 345. 213. 61. 115. 425. AT WMG TE 201. 57. 136. AT TR OFF 425. 57. 136. 201. 57. AT TR EDG 449. 193. 136. TRAIL EDGE 449. 193. 57. 136.

FIELD POINT 500. 190. 57.

FIELD POINT IN ZONE 3 AND IS ABOVE,ON OR UNDER FLOW RIBBON S= 154.6 DELTA = 13.5

PEAK JET MIX LEVEL= 137. DB AT 76. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 117. DB AT 1200. HZ
STE= 105. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 110. DB AT 94. HZ
PEAK SEP LEVEL= 55. DB AT 4743. HZ
NO TBL ACTIVITY,A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HΖ MIX SEP HH TE TEL SUM 25. 133. 97. 0. 133.4 98. 30. 135. 98. 134.6 31. 101. 31. Ű. 136. 33. 40. 99. 104. Ů. 135.9 50. 35. 136.9 137. 101. 106. θ. 63. 137. 102. 108. 37. Û. 137.4 80. 137. 103. 109. 38. Û. 137.4 137.1 100. 137. 105. 109. 40. O. 136. 42. 125. 106. 109. Ũ. 136.4 135.1 160. 135. 43. 108. 107. Ü. 200. 134. 109. 105. 45. O. 133.8 250. 133. 132.6 110. 102. 47. Ũ. 315. 48. 131. 131.2 111. 100. 0. 400. 130. 113. 97. 49. Ŭ. 129.9 128.7 500. 129. 114. 94. 50. O. 127.5 630. 127. 115. 92. 51. Û. 800. 127. 117. 89. 52. 0. 127.4 1000. 127. 117. 86. 52. Ũ. 127.3 1250. 127. 84. 53. 127.0 117. O. 126. 117. 81. 53. 1600. Ű. 126.5 78. 2000. 125. 116. 54. Ú. 125.7 124. 76. 54. 2500. 115. 0. 124.6 3150. 123. 114. 73. 54. Ű. 123.2 70. 4000. 121. 55. O. 121.6 112. 119. 119.9 5000. 111. 68. 55. ο. DASPL 146.8 126.5 117.2 64.1 0.0 146.9

CASE 5,805,8KRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RO =1.000 VA = 0. FT/S DOOR= CLOSED THETAS= 6. DEG VJ = 870. FT/S VGS = UP THETAP=19. DEG

RIBBON STA WL BL (IN) BL (DUT) AT NOZ EX 345. 213. 61. 115. AT WHE TE 57. 425. 201. 136. AT TRIDEF 425. 201. 57. 136. AT TR EDG 449. 193. 57. 136.

TRAIL EDGE 449. 193. 57. 136.

FIELD POINT 500. 160. 57.

FIELD POINT IN ZONE 3 AND IS ABOVE,ON OR UNDER FLOW RIBBON S= 164.2 DELTA = 14.9

PEAK JET MIX LEVEL= 135. DB AT 73. HZ
CORRECTION FOR UGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 115. DB AT 1200. HZ
STE= 105. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 109. DB AT 94. HZ
PEAK SEP LEVEL= 50. DB AT 4743. HZ
NO TBL ACTIVITY,A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZMIX MM. TE SEP TEL SUM 25. 25. 131. 95. 98. Ü. 131.5 27. 133. 100. 31. 96. 0. 132.6 97. 134. 103. 29. 0. 40. 134.0 135. 99. 50. 106. 30. Ü. 134.8 135. 100. 108. 32. 63. 0. 135.2 135. 109. 80. 101. 34. Ü. 135. 100. 103. 109. 35. 134.8 Ũ. 37. 125. 108. 134. 104. Ü. 134.1 39. 160. 133. 105. 0. 132.7 107. 131. 40. 200. 107. 104. Ù. 131.4 250. 130. 108. 102. 4E. Ũ. 130.1 315. 129. 109. 99. 44. 128.8 Q. 400. 127. 111. 96. 45. 0. 127.5 500. 94. 126. 112. 46. 126.3 0. 630. 125. 113. 91. 46. 0. 125.1 88. 800. 125. 114. 47. ŭ. 125.0 48. 124. 86. 1000. 115. 0. 124.9 1250. 124. 115. 83. 48. Û. 124.7 1600. 124. 115. 49. 80. 0. 124.1 2000. 123. 114. 78. 49. Û. 123.3 2500. 122. 113. 75. 50. 122.2 Ū. 50. 3150. 120. 112. 72. Û. 120.9 119. 4000. 110. 70. 50. 0. 119.3 5000. 117. 109. 67. 50. 117.5 0. DASPL 144.6 124.5 116.7 59.7 0.0144.6

CASE 6,806,8KRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DODR= CLOSED THETAS= 6. DEG VJ = 870. FT/S VGS = UP THETAP=19. DEG

RIBBON STA WL BL(IN) BL(OUT) AT NOZ EX 61. 345. 213. 115. AT WHE TE 425. 57. 201. 136. AT TR OFF 425. 201. 57. 136. AT TR EDG 449. 193. 57. 136.

TRAIL EDGE 449. 193. 57. 136.

FIELD POINT 500. 130. 57.

FIELD POINT IN ZONE 3 AND IS ABOVE, ON OR UNDER FLOW RIBBON S= 173.7 DELTA = 43.4

PEAK JET MIX LEVEL= 125. DB AT 170. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK HEAR NOZ LEVEL= 105. DB AT 1200. HZ
STE= 105. ;DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 116. DB AT 94. HZ
PEAK SEP LEVEL= 43. DB AT 4743. HZ
NO TBL ACTIVITY;A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ	MIX	NN	TE	SEF	TEL	SUM
25.	120.	85.	105.	18.	0.	120.3
31.	121.	86.	107.	19.	0.	121.2
40.	122.	87.	110.	21.	0.	122.2
50.	123.	89.	113.	23.	0.	123.1
63.	124.	90.	115.	25.	0.	124.0
80.	124.	91.	116.	26.	0.	124.9
100.	125.	93.	116.	28.	0.	125.6
125.	125.	94.	115.	30.	0.	125.7
160.	125.	95.	114.	31.	0.	125.4
200.	125.	97.	111.	33.	0.	125. 1
250.	124.	98.	109.	35.	0.	124.5
315.	123.	99.	106.	36.	0.	123.5
400.	122.	101.	103.	37.	0.	122.2
500.	121.	102.	101.	38.	0.	120.9
630.	119.	103.	98.	39.	Ũ.	119.6
800.	119.	104.	95.	40.	٥.	119,4
1000.	119.	105.	93.	40.	0.	119.3
1250.	119.	105.	90.	41.	0.	119.0
1600.	118.	105.	87.	41.	Û.	118.4
2000.	117.	104.	85.	42.	0.	117.6
2500.	116.	103.	82.	42.	٥.	116.5
3150.	115.	102.	79.	42.	Û.	115.2
4000.	113.	100.	77.	43.	0.	113.6
5000.	112.	99.	74.	43.	0.	111.8

DASPL 135.7 114.5 123.7 52.2 0.0 136.0

CASE 7, \$07, BKRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DOOR= CLOSED THETAS= 6. DEG VJ = 870. FT/S VGS = UPTHETAP=19. DEG RIBBON STA WL BL(IN) BL(OUT) 213. 61. AT NOZ EX 345. 115. AT WHE TE 425. 201. 57. 136. AT TR OFF 425. 201. 57. 136. AT TR EDG 57. 449. 193. 136. TRAIL EDGE 449. 193. 57. 136.

FIELD POINT 550. 190. 57.

FIELD POINT IN ZONE 3 AND IS ABOVE, ON OR UNDER FLOW RIBBON S= 202.0 DELTA = 29.4

PEAK JET MIX LEVEL= 127. DB AT 109. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NUZ LEVEL= 107. DB AT 1200. HZ
STE= 105. ;DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 110. DB AT 94. HZ
PEAK SEP LEVEL= 37. DB AT 4743. HZ
NO TBL ACTIVITY;A/P VELDCITY TOO SMALL

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ	MIX	MM	TE	SEP	TBL	SUM
25.	123.	87.	99.	12.	ű.	122.7
31.	124.	88.	101.	14.	٥.	123.7
40.	125.	90.	104.	16.	ø.	124.9
50.	126.	91.	107.	17.	0.	125.9
63.	127.	92.	109.	19.	0.	126.9
80.	127.	94.	110.	21.	0.	127.4
100.	127.	95.	110.	22.	Ŭ.	127.5
125.	127.	96.	110.	24.	Ű.	127.3
160.	127.	98.	108.	26.	0.	126.8
200.	126.	99.	106.	27.	0.	125.8
250.	125.	100.	103.	29.	0.	124.6
315.	123.	101.	100.	30.	0.	123.3
400.	122.	103.	98.	31.	O.	121.9
500.	121.	104.	95.	32.	0.	120.6
630.	119.	105.	92.	33.	Ű.	119.4
800.	119.	107.	89.	34.	0.	119.3
1000.	119.	107.	87.	35.	Ũ.	119.2
1250.	119.	107.	84.	35.	0.	118.9
1600.	118.	107.	81.	36.	Û.	118.3
2000.	117.	106.	79.	36.	0.	117.5
2500.	116.	105.	76.	36.	0.	116.4
3150.	115.	104.	74.	37.	Ü.	115.1
4000.	113.	102.	71.	37.	0.	113.5
5000.	111.	101.	68.	37.	0.	111.7
DASPL	137.3	116.6	117.8	46.4	0.0	137.4

CASE 8,808,8KRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DDDR= CLOSED THETAS= 6. DEG VJ = 870. FT/S UGS = UP THETAP=19. DEG

RIBBON STA ML BL (IN) BL (OUT) AT NOZ EX 345. 213. 61. 115. 425. 201. 136. AT WNG TE 57. 425. AT TR OFF 57. 201. 136. AT TR EDG 449. 193. 57. 136.

TRAIL EDGE 449, 193, 57, 136.

FIELD POINT 550. 160. 57.

FIELD POINT IN ZONE 3 AND IS ABOVE,ON OR UNDER FLOW RIBBON S= 211.5 DELTA = 1.0

PEAK JET MIX LEVEL= 143. DB AT 62. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 123. DB AT 1200. HZ
STE= 105. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 82. DB AT 94. HZ
PEAK SEP LEVEL= 36. DB AT 4743. HZ
PEAK TBL LEVEL= 125. DB AT 1400. HZ

SPL-IN DB RE 200 PICCBAR (BY COMP AND SUM)

SUM HZ MIX MM TE SEP TEL 25. 109. 103. 11. 140.3 140. 70. 31. 142. 104. 73. 12. 111. 141.5 4Û. 143. 106. **76.** 14. 112. 142.8 16. 114. 50. 143. 107. 78: 143.3 108. 80. 63. 143.5 143. 18. 116. 143. 80. 110. 81. 19. 117. 143.2 111. 100. 143. 142.6 81. 21. 119. 125. 141. 22. 141.4 112. 81. 120. 160. 140. 114. 79. 24. 121. 140.0 200. 139. 77. 115. 26. 122. 138.8 250. 137. 116. 74. 27. 122. 137.5 315. 136. 118. 72. 29. 123. 136.3 400. 135. 123. 135.1 119. 69. 30. 500. 133. 120. 66. 31. 124. 134.0 630. 132. 122. 64. 32. 124. 133.0 800. 132. 123. 33. 125. 133.0 61. 123. 125. 1000. 132. 33. 133.0 58. 1250. 131. 123. 56. 34. 125. 132.8 131. 1600. 123. 53. 34. 125. 132.4 2000. 35. 130. 122. 50. 125. 131.6 2500. 129. 121. 48. 35. 124. 130.7 35. 3150. 120. 45. 128. 124. 129.6 4000. 126. 118. 42. 36. 123. 128.3 5000. 124. 36. 123. 127.0 117. 40.

45.1 136.1

152.0

89.2

DASPL 152.6 132.7

CASE 9, B09, BKRL (BRAKE RELEASE)

HLT= 0. FT USB = 0. DFG R/RD =1.000 0. FT/S DOOR= CLOSED THETAS≃ 6. DEG Ufi = UJ = 870. FT/8 UGS = UP THETAP=19. DEG

RIBBON BLKIND BLKOUTD STA ИL AT NOZ EX 345. 213. 61. 115. 425. 57. BT WMG TE 201. 136. 57. 425. AT TR OFF 201. 136. 57. RT TR EDG 449. 193. 136.

449. 193. 136. TRAIL EDGE 57.

550. 57. FIELD POINT 130.

FIELD POINT IN ZONE 3 AND IS ABOUE,ON OR UNDER FLOW RIBBON S= 221.1 DELTA ≈ 27.4

PEAK JET MIX LEVEL= 127. DB AT 95. HZ CORRECTION FOR VGS APPLIED DSPL= 5. DB F1= 2801. HZ PEAK NEAR NOZ LEVEL⊨ 107. DB AT 1200. HZ STE= 105. DELTATE= Ũ. PEAK TRAIL EDGE LEVEL⊨ 107. DB AT PEAK SEP LEVEL= 33. DB AT 4743. HZ NO TBL ACTIVITY, AZP VELOCITY TOO SMALL

SPL-IN DB RE 200 PICCBAR (BY COMP PID SUM)

TE SEP SUM. HΖ MIX MM TEL 25. 123. 123.2 87. 96. 8, Ũ. Û. 31. 124. 88. 99. 9. 124.2 89, 125.4 40. 125. 101. 0. 11. 0. 126.4 50. 126. 91. 104. 13. 63. 127. 92. 106. 15. ٥. 127.2 93. 127.4 80. 127. 107. 16. 0. 100. 127. 95. 107. 18. 0. 127.3 125. 127. 96. 107. 20. 0. 127.1 97. 0. 126.3 160. 126. 105. 21. 99. 0. 200. 125. 103. 23. 125.1 100. 250. 25. 123.8 124. 100. 0. 122. 97. 122.5 315. 101. 26. 0. 95. 400. 121. 103. 27. 0. 121.1 119.9 500. 120. 104. 92. 28. 0. 630. 118. 105. 89. 29. O. 118.6 106. 118.5 800. 118. 87. 30. 0. 1000. 118. 107. 84. 30. Ü. 118.4 1250. 118. 107. 82. 31. 0. 118.2 117. 79. 107. 31. 0. 117.6 1600. 116.7 2000. 116. 106. 76. 32. 0. 2500. 115. 105. 74. 32. Ű. 115.7 71. 32. 3150. 114. 104. O. 114.3 68. 102. 33. 112.7 4000a112. Ŭ. 5000. 111. 101. 65. 33. 0. 111.0 DASPL 137.1 116.5 115.0

42.2

137.2

0.0

CASE 13, WO1, BKRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DOOR= CLOSED THETAS= 6. DEG VJ = 870. FT/S VGS = UP THETAP=19. DEG

RIBBON STA ML BL (IN) BL (DUT) AT NOZ EX 345. 213. 61. 115. 425. 201. AT WHE TE 57. 136. AT TR DFF 425. 201. 57. 136. AT TR EDG 449. 193. 57. 136. TRAIL EDGE 449. 193. 57. 136.

17(12 CDOL 447) 1501 011 1

FIELD POINT 375. 212. 90.

FIELD POINT IN ZONE 1 AND IS ABOVE,ON OR UNDER FLOW RIBBON S= 30.0 DELTA = 3.5

PEAK JET MIX LEVEL= 136. DB AT 152. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. IB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 138. DB AT 1200. HZ
STE= 105. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 100. DB AT 94. HZ
PEAK SEP LEVEL= 55. DB AT 4743. HZ
PEAK TBL LEVEL= 117. DB AT 1091. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ. MIX MM TE SEP TEL SUM 25. 127. 118. 89. 31. 103. 127.9 91. 32. 105. 129.1 31. 129. 119. 40. 130. 120. 94. 34. 107. 130.6 97. 50. 122. 131. 36. 108. 131.9 99. 63. 133. 123. 37. 110. 133.2 80. 134. 124. 100. 39. 111. 134.6 135.6 135. 112. 100. 126. 100. 41. 125. 136. 127. 100. 4ã. 113. 136.2 160. 136. 128. 98. 44. 114. 136.5 200. 135. 130. 96. 115. 136.5 46. 93. 136.4 250. 135. 131. 47. 115. 315. 134. 132. 90. 49. 116. 136.1 88. 400. 132. 50. 116. 136.1 134. 51. 85. 136.5 500. 131. 135. 116. 82. 52. 117. 137.2 630. 130. 136. 52. 138.1 129. 80. 117. 800. 137. 1000. 129. 138. 77. 53. 117. 138.5 138. 138.6 1250. 129. 74. 54. 117. 1600. 128. 138. 72. 54. 117. 138.3 54. 2000. 128. 137. 69. 117. 137.5 2500. 66. 55. 116. 136.4 126. 136. 55. 135.0 3150. 125. 135. 64. 116. 55. 133.6 4000. 123. 61. 115. 133. 132. 55. 115. 132.3 5000. 122. 58.

149.7

DASPL 145.6 147.5 108.0 64.8 128.6

CASE 14, WĎ2, PKRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DODR= CLOSED THETAS= 6. DEG VJ = 870. FT/S USS = UP THETAP=19. DEG

RIBBON BL (IN) BL (DUT) STA WL AT NOZ EX 345. 213. €1. 115. 425. 57. AT WHO TE 201. 136. 425. 201. AT TR OFF 57. 136. AT TR EDG 449. 193. 57. 136.

TRAIL EDGE 449. 193. 57. 136.

FIELD POINT 395. 206. 90.

FIELD POINT IN ZONE (AND IS ABOVE,ON OR UNDER FLOW RIBBON S= 50.0 DELTA = .5

PEAK JET MIX LEVEL= 141. DB AT 131. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 135. DB AT 1200. HZ
STE= 105. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 103. DB AT 94. HZ
PEAK SEP LEVEL= 64. DB AT 4743. HZ
PEAK TBL LEVEL= 126. DB AT 2436. HZ

SPL-IN DB RE 200 PICTBAR (BY COMP AND SUM)

HZ MIX SEP HH TE TEL SUM 25. 39. 133. 92. 114. 106. 133.4 94. 31. 135. 115. 40. 108. 134.7 97. 117. 4**2**. 40. 136. 110. 136.1 137. 118. 100. 50. 44. 111. 137.4 63. 139. 120. 102. 45. 113. 138.8 47. 80. 140. 121. 103. 115. 140.0 49. 100. 141. 122. 140.7 103. 116. 125. 141. 124. 102. 50. 118. 141.0 52. 141. 101. 160. 125. 120. 140.9 126. 98. 54. 140.4 200. 140. 121. 250. 139. 128. 96. 55. 122. 139.5 138.4 315. 138. 129. 93. 57. 123. 130. 58. 400. 136. 90. 137.5 123. 500. 135. 132. 88. 59. 124. 136.9 134. 133. 85. 630. 60. 124. 136.6 134. 800. 134. 82. 125. 137.1 60. 134. 1000. 134. 80. 61. 125. 137.3 1250. 133. 135. 77. 126. 137.3 62. 1600. 133, 134. 74. 62. 126. 136.9 2000. 132. 134. 72. 63. 126. 136.2 2500. 131. 132. 69. 63. 126. 135.2 3150. 129. 131. 66. 63. 126. 134.0 130. 4000. 128. 64. 63. 126. 132.8 5000. 126. 128. 61. 64. 125. 131.5

DASPL 150.6 144.0 110.6 72.9 136.9

CASE 10, F04, BKRL (BRAKE RELEASE)

ĤLT≕ O. FT USB = 0. DEG R/RD =1.000 UA ≕ O. FT/S DOOR= CLOSED THETAS= 6. DEG 870. FT/S VGS = UP THETAP=19. DEG BL(IN) BL(DUT) RIBBON STA 141 AT NOZ EX 213. 61. 345. 115. 425. 201. AT WNG TE 57. 136. 57. AT TR OFF 425. 201. 136. AT TR EDG 449. 193. 57. 136. TRAIL EDGE 449. 193. 57. 136. FIELD POINT 199. 433. 60. FIELD POINT IN ZONE 3 AND IS

FIELD POINT IN ZONE 3 AND IS ABOVE:ON OR UNDER FLOW RIBBON S= 88.2 DELTA = .7

PEAK JET MIX LEVEL= 149. DB AT 103. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 130. DB AT 1200. HZ
STE= 105. ;DELTATS= 0.
PEAK TRAIL EDGE LEVEL= 88. DB AT 94. HZ
PEAK SEP LEVEL= 87. DB AT 4743. HZ
PEAK TBL LEVEL= 126. DB AT 2053. HZ

SPL-IN DB RE 200 PICEBAR (BY CEMP AND SUM)

HΖ MIX MM TE SEP TEL SUM 25. 62. 107. 142.7 143. 110. 76. 144. 79. 63. 109. 143.9 31. 111. 65. 111. 145.4 40. 145. 113. 82. 50. 147. 114. 84. 67. 112. 146.7 147.9 69. 63. 148. 115. 87. 114. 88. 80. 149. 117. 70. 148.6 116. 149. 100. 118. 72. 117. 148.9 88. 125. 149. 119. 87. 74. 119. 148.7 75. 148.2 160. 148. 121. 86. 120. 200. 147. 122. 83. 77. 121. 147.1 81. 122. 250. 146. 123. 79. 145.8 315. 144. 125. 78. 80. 123. 144.5 143. 143.2 400. 126. 75. 81. 123. 500. 142.0 142. 127. 73. 82. 124. 140.8 83, 630. 140. 129. 70. 124. 800. 140. 130. 67. 84. 125. 140.7 140.7 1000. 140. 84. 125. 130. 65. 125. 140.4 1250. 140. 130. 62. 85. 1600. 139. 130. 85. 126. 139.9 59. 139.1 2000. 138. 129. 56. 86. 126. 2500. 137. 128. 54. 86. 138.1 126. 3150. 136. 127. 51. 86. 125. 136.8 134. 4000. 125. 48. 87. 125. 135.3 87. 5000. 133. 124. 46. 125. 133.7 DASPL 158.4 139.7 95.4 96.2 136.7 158.5

CASE 11, F05, BKRL (BRAKE RELEASE)

ÄLT≍ USB = 0. DEG O. FT R/RD =1.000 0. FT/S DOOR= CLOSED THETAS= 6. DEG UA ≃ UJ = 870. FT/S VGS = UPTHETAP=19. DEG RIBBON STA ИL BL(IN) BL(DUT) AT NOZ EX 345. 213. 61. 115. 425. AT WMG TE 201. 57. 136. AT TROOFF 425. 201. 57. 136. AT TR EDG 57. 449. 193. 136. TRAIL EDGE 449. 193. 57. 136. FIELD FOINT 433. 199. 90.

FIELD PUINT 433. 199. 90.

FIELD POINT IN ZONE 3 AND IS ABOVE,ON OR UNDER FLOW RIBBON S= 88.2 DELTA = .7

PEAK JET MIX LEVEL= 149. DB AT 103. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK MEAR NOZ LEVEL= 130. DB AT 1200. HZ
STE= 105. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 99. DB AT 94. HZ
PEAK SEP LEVEL= 95. DB AT 4743. HZ
PEAK TBL LEVEL= 126. DB AT 2053. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

 $H\mathbb{Z}$ SEP TEL SUM MIX HH TE 25. 143. 110. 88. 70. 107. 142.7 143.9 31. 144. 90. 71. 109. 111. 145. 93. 40. 113. 73. 111. 145.4 50. 147. 96. 75. 112. 146.7 114. 63. 148. 115. 98. 76. 114. 147.9 80. 149. 117. 99. 78. 116. 148.6 100. 149. 99. 148.9 118. 80. 117. 98. 148.7 125. 149. 119. 81. 119. 160. 148. 121. 97. 83. 120. 148.2 200. 147. 122. 94. 85. 121. 147.1 250. 123. 92. 122. 145.8 146. 86. 315. 144. 125. 88. 123. 144.5 89. 89. 123. 143.2 400. 143. 126. 86. 500. 142. 127. 90. 124. 142.0 84. 91. 124. 140.8 630. 140. 129. 81. 800. 140. 130. 78. 91. 125. 140.7 92. 125. 1000. 130. 140.7 140. 76. 93. 1250. 140. 130. 73. 125. 140.4 139. 130. 93. 126. 139.9 1600. 70. 93. 2000. 138. 129. 126. 139.1 68. 94. 126. 138.1 2500. 137. 128. 65. 3150. 136. 127. 62. 94. 125. 136.8 60. 94. 4000. 134. 125. 125. 135.35000. 133. 124. 57. 94. 125. 133.7

DASPL 158.4 139.7 106.7 103.8 136.7

81

158.5

CASE 12, F06, BKRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DDDR= CLOSED THETAS= 6. DEG VJ = 870. FT/S UGS = UP THETAP=19. DEG

STR BL (IN) BL (DUT) RIBBON HL AT NOZ EX 213. 345. 61. 115. AT WNG TE 425. 201. 57. 136. 425. AT TR OFF 201. 57. 136. AT TR EDG 449. 193. 57. 136.

TRAIL EDGE 449. 193. 57. 136.

FIELD POINT 433. 199. 130.

FIELD POINT IN ZONE 3 AND IS ABOVE, ON OR UNDER FLOW RIBBON S= 88.2 DELTA = .7

PEAK JET MIX LEVEL= 149. DB AT 103. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 130. DB AT 1200. HZ
STE= 105. ;DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 89. DB AT 94. HZ
PEAK SEP LEVEL= 98. DB AT 4743. HZ
PEAK TBL LEVEL= 126. DB AT 2053. HZ

SPL-IN DB RE 200 PICCBAR (BY COMP AND SUM)

HZMIX SEP TEL SUM MM TE 25. 143. 73. 110. 78. 107. 142.7 144. 111. 80. 31. 74. 109. 143.9 40. 145. 113. 83. 76. 111. 145.4 50. 147. 114. 86. 78. 112. 146.7 63. 148. 115. 88. 79. 114. 147.9 80. 149. 148.6 117. 89. 81. 116. 149. 100. 118. 89. 83. 117. 148.9 125. 149. 119. 88. 84. 119. 148.7 160. 148. 121. 87. 86. 120. 148.2 122. 121. 200. 147. 88. 147.1 84. 146. 123. 122. 250. se. 89. 145.8 315. 144. 125. 79. 91. 123. 144.5 143. 400. 92. 123. 143.2 126. 76. 500. 142. 74. 93. 124. 142.0 127. 630. 140. 94. 129. 71. 124. 140.8 125. 800. 140. 130. 68. 95. 140.7 1000. 140. 95. 125. 130. 66. 140.7 125. 1250. 140. 130. 63. 96. 140.4 96. 1600. 139. 130. 60. 126. 139.9 97. 2006. 138. 129. 126. 139.1 58. 2500. 137. 97. 138.1 128. 55. 126. 127. 52. 97. 3150. 136. 125. 136.8 98. 134. 125. 50. 125. 135.3 4000. 5000. 133. 47. 98. 125. 124. 133.7

DASPL 158.4 139.7 96.6 107.1 136.7 158.5

SECTION III COMPUTER TABULATIONS FOR FIELD POINT NOISE LEVELS AT STOL OPERATION DUE TO OUTBOARD ENGINES

PROGRAM USBEST-VERSION 06/MAY/78
UPDATED MARCH,1979..L.BUTZEL
GENERATES SPL ESTIMATE OF EXTERIOR
FUSELAGE/FLAP, WING FLUCTUATING
PRESSURE LEVELS FOR USB AIRCRAFT

AUTHORS=L.BUTZEL,W.LUNDT USER DOCUMENTATION=D6-XXXXX RUN DATE= 79/03/22.

AZP GEOMETRY CHANGES ARE

PARAM	NEW	OLD
THUKD	20.0	1
THDKU	0.0	1
THOKI	12.0	1
THIKD	0.0	1
THTB	0.0	1
THSK	-12.0	1
THW	19.0	1
HEFF	770.0	1
ADDOR	0.0	1
AUG	5.0	1
NU5	12.0	-1.0
М	54.0	1
LW	51.0	1
RF	26.0	 1
ΧO	182.0	1
Υ0	374.0	1
Z0	208.0	1
Z1	201.0	1
LT	25.0	1
YR	0.0	1
LFAN	150.0	1
XBBL	57.0	1

<u>ئۇللى ياسىم ، ئۇدىن ئاد - دەن بولۇنى</u>

CASE 1,801,ST50 (STOL FLAPS≈50)

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/S DOOR= CLOSED THETAS=-5. DEG VJ = 680. FT/S VGS = UP THETAP=33. DEG

RIBBON STA WL BL(IN) BL(OUT) AT NOZ EX 374. 208. 155. 209. AT WHE TE 425. 201. 143. 211. AT TR OFF 431. 198. 143. 211. AT TR EDG 460. 179. 143. 211.

TRAIL EDGE 450. 162. 143. 211.

FIELD POINT 460. 190. 57.

FIELD POINT IN ZONE 3 AND IS
INBOARD OF FLOW RIBBON
S= 86.4 DELTA = 86.8

PEAK JET MIX LEVEL= 116. DB AT 482. HZ CORRECTION FOR VGS APPLIED DSPL= 5. DB F1= 2190. HZ PEAK NEAR NOZ LEVELE 97. DB AT 938. HZ STE= 93. ,DELTATE= 20. PEAK TRAIL EDGE LEVEL= 76. DB AT 127. HZ PERK SEP LEVEL= 85. DB AT 33. HZ PEAK TBL LEVEL= 90. DB AT 115. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HΖ MIX MM TE SEP TEL SUM 25. 109. 61. 84. 78. 88. 109.5 31. 110. 85. 79. 63. 88. 110.1 40. 111. 81. 66. 84 . 89, 110.9 50. 111. 82. 69. 84. 89. 111.5 63. 112. 83. 72. 84. 90. 112.2 80. 113. 85. 83. 74. 90. 112.9 100. 113. 75. 86. 83. 90. 113.5 125. 114. 87. 76. 82. 90. 114.2 160. 115. 89. 75. 82. 90. 114.9 200. 116. 90. 81. 74. 89. 115.5 250. 116. 91. 72. 81. 89. 116.2 315. 117. 92. 69. 80. 89. 116.6 94. 400. 116. 66. 79. 88. 116.5 116. 500. 95. 79. 64. 88. 116.1 630. 117. 96. 61. 78. 87. 117.1 800. 118. 97. 58. 77. 87. 117.6 1000. 97. 117. 56. 76. 86. 117.4 117. 1250. 96. 85. 53. 76. 116.8 1600. 116. 96. 50. 75. 85. 115.9 2000. 74. 115. 48. 94. 84. 114.8 2500. 113. 93. 45. 73. 83. 113.5 3150. 112. 92. 43. 72. 82. 111.9 110. 90. 4000. 40. 71. 81. 110.0 5000. 108. 89. 37. 71. 81. 107.9 DASPL 128,4 106.2 83.5 94.6 101.5 128.5

CASE 2,802,8KRL (STDL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/S DDDR= CLOSED THETAS=-5. DEG VJ = 680. FT/S VGS = UP THETAP=33. DEG

RIBBON STA WL BL(IN) BL(OUT) AT NOZ EX 155. 374. 208. 209. 201. 143. AT MNG TE 425. 211. 431. AT TR OFF 198. 143. 211. AT TR EDG 179. 143. 211. 460.

TRAIL EDGE 450. 162. 143. 211.

FIELD POINT 460. 160. 57.

FIELD POINT IN ZONE 3 AND IS
INBOARD OF FLOW RIBBON
S= 102.7 DELTA = 87.8

PEAK JET MIX LEVEL= 116. DB AT 445. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NOZ LEVEL= 95. DB AT 938. HZ
STE= 93. ,DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 60. DB AT 127. HZ
PEAK SEP LEVEL= 84. DB AT 33. HZ
PEAK TBL LEVEL= 90. DB AT 115. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ MIX NN ΤE SEP TEL SUM 25. 76. 45. 88. 109.2 109. 84. 31. 110. 78. 48. 84. 88. 109.8 89. 40. 111. 79. 50. 84. 110.6 50. 111. 80. 53. 84. 89. 111.2 112. 63. 82. 56. 83. 90. 111.9 83. 58. 80. 113. 83. 90. 112.6 90. 100. 113. 84. 59. 82. 113.2 125. 86. 82. 90. 113.9 114. 60. 9û. 160. 115. 87. 59. 81. 114.6 88. 58. 81. 89. 200. 115. 115.2 90. 259. 116. 56. 80. 89. 115.8 91. 53. 89. 315. 116. 80. 116.1 50. 116. 92. 79. 115.8 400. 88. 115. 94. 78. 88. 115.5 500. 48. 95. €30. 116. 45. 77. 87. 116.3 800. 95. 77. 117. 42. 87. 116.7 95. 40. 1000. 116. 76. 86. 116.4 85. 1250. 95. 37. 75. 116. 115.8 115. 94. 1600. 34. 85. 114.9 74. 93. 2000. 114. 32. 73. 84. 113.8 92. 29. 83. 2500. 112. 72. 112.5 111. 90. 27. 3150. 72. 82. 110.9 24. 71. 4000. 109. 89. 81. 109.0 5000. 107. 88. 21. 70. 81. 106.9

DASPL 127.8 104.8 67.5 94.1 101.5 127.8

CASE 3,803,8T50 (STOL FLAPS=50)

RIBBON STA BL(IN) BL(DUT) WL AT NOZ EX 208. 374. 155. 209. 425. 201. 143. 211. AT WNG TE AT TR DFF 431. 198. 143. 211. 179. AT TR EDG 460. 143. 211.

TRAIL EDGE 450, 162, 143, 211.

FIELD POINT 460, 130, 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 119.1 DELTA = 95.7

PEAK JET MIX LEVEL⊨ 113. DB AT 428. HZ CORRECTION FOR VGS APPLIED DSPL= 5. DB F1= 2190. HZ PERK NEAR NOZ LEVEL# 93. DB AT 938. HZ 20. STE= 93. ,DELTATE= PERK TRAIL EDGE LEVEL= 79. DB AT 127. HZ PERK SEP LEVEL= 80. DB AT 33. HZ PEAK TBL LEVEL= 90. DB AT 115. HZ

SPL-IN DB RE 200 PICCIBAR (BY COMP AND SUM)

TE SEP TEL HZ MIXNN SUM 25. 107. 74. 64. 80. 88. 107.2 67. 31. 108. 76. 80. 88. 107.8 70. 80. 40. 109. 77. 89. 108.6 109. 78. 50. 72. 79. 89. 109.2 90. 63. 110. 80. 75. 79. 109.9 79. 80. 111. 81. 78. 90. 110.6 100. 111. 82. 79. 78. 90. 111.3 125. 112. 79. 78. 111.9 84. 90. 85. 79. 77. 160. 113. 90. 112.6 86. 77. 200. 113. 78. 89. 113.3 250. 114. 88. 75. 76. 89. 113.8 73. 89. 315. 114. 76. 89. 114.0 14. 88. 91. 70. 75. 113.6 400. 500. 92. 74. 113. 67. 88. 113.4 93. 73. 630. 114. 65. 87. 114.1 114. 93. 800. 62. 73. 87. 114.4 114. 93. 59. 72. 114.1 1000. 86. 93. 57. 85. 1250. 113. 71. 113.5 92. 54. 85. 1600. 113. 70. 112.6 91. 51. 69. 84. 111.5 2000. 111. 90. 49. 68. 83. 110.2 2500. 110. 88. 82. 46. 109. 68. 108.6 3150. 87. 81. 107. 43. 67. 106.6 4000. 66. 81. 5000. 105. 86. 41. 104.6

DASPL 125,6 102.9 86.8 90.0 101.5 125.7

CASE 4,804,8750 (STOL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RO = .848 VA = 110. FT/S DDDR= CLOSED THETAS=-5. DEG VJ = 680. FT/S UGS = UP THETAP=33. DEG

RIBBON STA WL BL (IN) BL (DUT) AT NOZ EX 374. 208. 155. 209. AT WHE TE 425. 201. 143. 211. AT TR OFF 431. 198. 143. 211. AT TR EDG 460. 179. 143. 211.

TRAIL EDGE 450. 162. 143. 211.

FIELD POINT 500. 190. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 120.0 DELTA = 91.7

PEAK JET MIX LEUEL 114. DB AT 418. HZ
CORRECTION FOR UGS APPLIED
DSPL 5. DB F1 2190. HZ
PEAK MEAR NOZ LEVEL 94. DB AT 938. HZ
STE 93. , DELTATE 20.
PEAK TRAIL EDGE LEVEL 86. DB AT 127. HZ
PEAK SEP LEVEL 81. DB AT 33. HZ
PEAK TBL LEVEL 90. DB AT 108. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ MIX MM TE SEP TEL SUM 25. 108. 75. 71. 81. ଷଷ. 107.6 31. 108. 76. 74. 81. 88. 108.2 40. 77. 109. 76. 89. 81. 109.0 50. 79. 110. 79. 109.6 81. 89. 63. 80. 110. 82. 80. 90. 110.3 80. 111. 81. 84. 80. 90. 111.0 100. 83. 112. 85. 79. 111.6 90. 125. 84. 112. 86. 79, 90. 112.3 160. 113. 86. 85. 78. 90. 113.0 200. 114. 87. 84. 78. 113.6 89. 250. 88. 114. 82. 114.2 77. 89. 315. 114. 89. 79. 77. 114.3 88. 400. 114. 91. 77. 76. 88. 113.9 500. 114. 92. 74. 75, 113.6 87. 114. 630. 93. 71. 75. 114.4 87. 800. 114. 94. 68. 74. 86. 114.5 94. 1000. 114. 66. 73. 86. 114.2 1250. 114. 93. 63. 72. 85. 113.6 1600. 93. 113. 60. 71. 84. 112.7 91. 2000. 112. 58. 70. 84. 111.6 2500. 90. 110. 55. 70. 83. 110.3 3150. 109. 89. 53. 69. 82. 108.7 4000. 107. 87. 50. 68. ₿1. 106.8 5000. 105. 86. 47. 67. 80. 104.8

DASPL 125.9 103.2 93.5 91.2 101.5 125.9

CASE 5,805,8750 (STOL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/S DODR= CLOSED THETAS=-5. DEG VJ = 680. FT/S VGS = UP THETAP=33. DEG

RIBBON STA ML BL(IN) BL(DUT) 155. AT NOZ EX 374. 208. 209. 425. 143. AT WNG TE 201. 211. 431. 143. AT TR OFF 198. 211. AT TR EDG 460. 179. 143. 211.

TRAIL EDGE 450. 162. 143. 211.

FIELD POINT 500. 160. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 136.3 DELTA = 86.5

PEAK JET MIX LEVEL= 113. ID AT 377. HZ CORRECTION FOR VGS APPLIED DSPL= 5. DB F1= 2190. HZ PEAK NEAR NOZ LEVEL= 93. DB AT 938. HZ 20. STE= 93. ; DELTATE= PEAK TRAIL EDGE LEVEL= 92. DB AT 127. HZ PEAK SEP LEVEL= 80. DB AT 33. HZ PERK TBL LEVEL= 90. DB AT 108. HZ

SPL-IN DB RE 200 PICCBAR (BY COMP AND SUM)

HZ MIX MM TE SEP TEL SUM 107. 74. 88. 25. 67. 80. 107.0 75. 70. 31. 108. 80. 88. 107.7 40. 108. 77. 80. 89. 73. 108.4 50. 109. 78. 75. 80. 89. 109.1 63. 110. 80. 78. 79. 90. 109.7 79. 80. 110. 81. 80. 90. 100. 111. 82. 81. 78. 90. 111.1 125. 112. 84. 82. 78. 90. 111.7 112. 85. 81. 160. 77. 90. 112.4 113. 86. 80. 113.1 77. 200. 89. 88. 113.4 250. 113. 78. 76. 89. 315. 113. 89. 75. 76. 88. 113.3 90. 73. 75. 113. 112.9 400. 88. 500. 113. 92. 70. 74. 87. 112.6 93. 630. 67. 74. 113. 87. 113.1 800. 113. 93. 65. 73. 86. 113.1 1000. 113. 93. 72. 112.8 62. 86. 112.2 93. 59. 71. 1250. 85. 112. 111. 57. 70. 1600. 92. 84. 111.3 2000. 110. 91. 54. 69. 84. 110.2 90. 51. 2500. 109. 69. 83. 108.9 3150. 88. 49. 68. 82. 107.3 107. 105. 87. 46. 67. 105.4 4000. 81. 5000. 103. 86. 43. 66. 80. 103.3

CASE 6,806,ST50 (STOL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/S DODR= CLOSED THETAS=-5. DEG VJ = 680. FT/S UGS = UP THETAP=33. DEG

STA BL (IN) BL (DUT) RIBBON ML 155. AT NOZ EX 374. 208. 209. AT WHE TE 425. 201. 143. 211. AT TR OFF 431. 198. 143. 211. 143. AT TR EDG 460. 179. 211.

TRAIL EDGE 450. 162. 143. 211.

FIELD POINT 500. 130. 57.

FIELD POINT IN ZONE 3 AND IS INDOARD OF FLOW RIBBON S= 152.6 DELTA = 88.5

PEAK JET MIX LEVEL= 111. DB AT 356. HZ CORRECTION FOR UGS APPLIED DSPL= 5. DB F1= 2190. HZ 92. DB AT 938. HZ PEAK NEAR NOZ LEVEL= STE= 93. , DELTATE= 20. 39. DB AT 127. HZ PEAK TRAIL EDGE LEVELE PEAK SEP LEVEL= 33. HZ 77. DB AT PEAK TBL LEVEL= 90. DB AT 108. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

SEP TEL SUM HZ KIM NN TE 106. 88. 25. 24. 77. 105.7 73. 27. 77. 88. 31. 106. 106.3 74. 30. 89. 107.0 40. 107. 77. 76. 76. 50. 108. 77. 32. 89. 107.7 63. 108. 78. 35. 76. 90. 108.4 80. 109. 80. 38. 75. 90. 109.1 110. 81. 39. 75. 90. 109.7 100. 82. 39. 125. 110. 74. 90. 110.3 39. 160. 111. 84. 74. 90. 111.1 73. 89. 111.6 200. 112. 85. 38. 111.9 35. 73. 89. 250. 112. 86. 33. 72. 80. 111.6 315. 112. 88. 111. 89. 30. 72. 88. 400. 90. 27. 71. 87. 500. 111. 25. 630. 111. 91. 70. 87. 111.3 22. 111.3 800. 92. 69. 86. 111. 19. 92. 86. 110.9 1000. 111. 68. 92. 17. 85. 110.3 1250. 110. 68. 91. 84. 109.4 1600. 109. 14. 67. 90. 84. 108.3 2000. 108. 11. 66. 107.0 2500. 107. 88. 9. 65. 83. 87. 6. 64. 82. 105.4 3150. 105. 81. 103.5 4000. 103. 86. з. 63. 101. 63. 80. 101.5 5000. 84. 1.

DASPL 123.3 101.6 46.9

86.7 101.5 123.3

AND CLEARED FOR PUBLIC RELEASE.

IDER DOD DIRECTIVE 5200.20 AMD

INSERTICITIONS ARE IMPOSED UPON

USE AND DISCLOSURE.

ISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;

CASE 7,807,ST50 (STOL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/R□ = .848 VA = 110. FT/S DOOR= CLOSED THETAS=-5. DEG W = 680. FT/S VGS = UP THETAP=33. DEG

RIBBON STA WL BL (IN) BL (DUT) AT NOZ EX 374. 208. 155. 209. AT WHE TE 425. 201. 143. 211. AT TR DEF 431. 198. 143. 211. AT TR EDG 460. 179. 143. 211.

TRAIL EDGE 450. 162. 143. 211.

FIELD POINT 550. 190. 57.

FIELD POINT IN ZONE 3 AND IS IMBOARD OF FLOW RIBBON S= 161.9 DELTA = 104.0

PEAK JET MIX LEVEL≈ 109. DB AT 370. HZ CORRECTION FOR UGS APPLIED DSPL= 5. DB F1= 2190. HZ PERK MEAR MOZ LEVEL# 90. DB AT 938. HZ 93. , DELTATE= 20. PERK TRAIL EDGE LEVEL= 90. DB AT 127. HZ PEAK SEP LEVEL 72. DB AT 33. HZ PEAK TEL LEVEL= 90. DR AT 100. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ MIX MM TE SEP TEL SUM 25. 103. 71. 72. *76.* ୧୫. 103.4 31. 104. 72. 78. 72. 89. 104.1 40. 105. 74. 72, 81. 89. 50. 105. 75. 84. 72. 89. 105.563. 106. 77. 71. 86. 90. 106.2 80. 107. 78. 89. 71. 90. 106.9 100. 107. 79. 90. 70. 90. 107.5 125. 108. 81. 90. 70. 90. 160. 109. 82. 90. 69, 90. 108.8 200. 83. 109. 89. 69. 89. 109.4 250. 85. 110. 87. 68. 89. 109.8 315. 110. 86. 84. 88. 68. 109.6 400. 87. 109. 81. 67. 88. 109.2 500. 109. 89. 79. 66. 87. 108.9 630. 109. 90. 76. 65. 87. 109.3 800. 90. 109. 73. 65. 86. 109.3 1000. 109. 90. 71. 64. 86. 109.0 1250. 108. 90. 68. 63. 85. 108.4 1600. 107. 89. 65. 62. 84. 107.5 2000. 106. 88. 63. 61. 83, 106.4 2500. 105. 87. 60. 61. 83. 105.1 3150. 103. 85. 57. 60. 82. 103.5 4000. 101. 84. 55. 59. 81. 101.6 5000. 99, 83. 52. 58. 80. 99.6 DASPL 121.1

98.2

99.7

82.1 101.4 121.2

CASE 8,808,8750 (STOL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/S DODR= CLOSED THETAS=-5. DEG VJ = 680. FT/S VGS = UP THETAP=33, DEG

RIBBON STA ML BL(IN) BL(DUT) 155. AT NOZ EX 374. 209. 208. AT WNG TE 425. 143. 201. 211. AT TR OFF 431. 198. 143. 211. AT TR EDG 460. 179. 143. 211.

TRAIL EDGE 450. 162. 143. 211.

FIELD POINT 550. 160. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 178.2 DELTA = 92.4

PEAK JET MIX LEVEL= 109. DB AT 329. HZ CORRECTION FOR VGS APPLIED DSFL= 5. DB F1= 2190. HZ PEAK NEAR NOZ LEVELE 90. DB AT 938. HZ STE= 93. ;DELTATE= 20. PEAK TRAIL EDGE LEVEL= 88. DB AT 127. HZ PEAK SEP LEUEL= 71. DB AT 33. HZ PEAK TBL LEVEL= 90. DB AT 100. HZ

SPL-IN DB RE 200 PICTBAR (BY COMP AND SUM)

SEP HZ MIX MM TE TBL SUM 25. 104. 73. 71. 88. 103.8 71. 31. 104. 73. 75. 71. 89. 104.4 105. 71. 89. 40. 105.2 74. 78. 50. 75. 106. 81. 71. 89. 105.8 70. 63. 106. 77. 84. 90. 106.5 70. 90. 80. 107. 78. 86. 107.2 100. 108. 70. 87. 90. 107.8 80. 125. 108. 81. 88. 69. 90. 108.5 160. 109. 90. 82. 87. 69. 109.2 200. 110. 84. 86. 89. 109.7 68. 250. 110. 85. 84. 68. 89. 109.7 86. 81. 88. 315. 109. 67. 109.3 400. 109. 88. 78. 88. 109.1 66. 500. 109. 76. 89. 87. 108.6 66. 630. 109. 90. 73. 65. 87. 108.7 108.7 800. 109. 90. 70. 64. 86. 63. 1000. 108. 90. 68. 86. 108.3 1250. 108. 65. 90. 62. 85. 107.8 1600. 107. 89. 62. 61. 84. 106.8 106. 83. 105.8 2000. 60. 88. 61. 104. 2500. 87. 57. 60. 83. 104.4 3150. 103. 85. 55. 59. 82. 102.8 4000. 101. 84. 52. 58. **91.** 100.9 5000. 99. 83. 49. 57. 80. 98.9

DASPL 121.0 99.9 95.5 81.3 101.4 121.1

USB =50. DEG ALT= 6500. FT R/RD = .848 VA = 110. FT/SDOOR= CLOSED THETAS=-5. DEG VJ = 680. FT/S VGS = UPTHETAP=33. DEG

RIBBON BL (IN) BL (OUT) STR ML AT NOZ EX 374. 208. 155. 209. AT WNG TE 425. 201. 143. 211. 198. AT TR OFF 431. 143. 211. AT TR EDG 460. 179. 143. 211.

TRAIL EDGE 450. 162. 143. 211.

550. FIELD FOINT 130. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S = 194.6 DELTA = 86.7

PEAK JET MIX LEVEL⊨ 109. DB AT 301. HZ CORRECTION FOR UGS APPLIED DSPL= 5. DB F1= 2190. HZ PEAK NEAR NOZ LEVEL= 90. DB AT 938. HZ 93. ,DELTATE⊨ 20. STE= PEAK TRAIL EDGE LEVEL⊨ 82. DB AT 127. HZ 69. DB AT PEAK SEP LEVEL= 33. HZ PEAK TEL LEVEL= 90. DB AT 100. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

TEL MIX MM SEP SUM HZ TE 25. 104. 71. 67. 69. 88. 104.1 105. 69. 89. 104.7 31. 73. 70. 40. 105. 74. 73. 69. 89. 105.4 75. 75. 69. 89. 50. 106. 106.1 78. 63. 107. 77. 68. 90. 106.7 80. 107. 78. 81. 68. 90. 107.4 90. 79. 108.1 100. 108. 82. 67. 125. 109. 82. 90. 108.7 81. 67. 160. 109. 82. 82. 66. 90. 109.4 200. 83, 81. 89. 109.8 110. 66. 109.7 250. 110. 85. 78. 65. 89. 88. 109.2 315. 109. 86. 76. 65. 109.0 400. 109. 87. 73. 64. 88. 63. 108.3 500. 108. 89. 70. 87. 90. 630. 108. 68. 63. 87. 108.3 90. 800. 108. 65. 62. 86. 108.2 1000. 108. 90. 62. 61. 86. 107.9 1250. 107.3 107. 90. 85. 60. 60. 1600. 57. 59. 84. 106.4 106. 89. 2000. 105. 88. 54. 58. 83. 105.3 87. 2500. 104. 52. 58. 83. 104.0 3150. 102. 85. 49. 57. 82. 102.4 84. 56. 4000. 100. 46. 81. 100.5 5000. 98. 83. 44. 55. 80. 98.4 99.7 89.8 79.2 101.4 121.0

DASPL 120.9

CASE 13,W01,ST50 (STOL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/S DOOR= CLOSED THETAS=-5. DEG VJ = 680. FT/S VGS = UP THETAP=33. DEG

RIBBON STA WL BL(IN) BL(OUT) AT NOZ EX 374. 208. 155. 209. AT WHE TE 425. 201. 143. 211. 198. AT TR OFF 431. 143. 211. AT TR EDG 179. 460. 143. 211.

TRAIL EDGE 450. 162. 143. 211.

FIELD POINT 375. 212. 90.

FIELD POINT IN ZONE 1 AND IS INBOARD OF FLOW RIBBON S= 1.0 DELTA = 63.4

PEAK JET MIX LEVEL= 104. DB AT 775. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NOZ LEVEL= 118. DB AT 938. HZ
STE= 93. ,DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 57. DB AT 127. HZ
PEAK SEP LEVEL= 82. DB AT 33. HZ
PEAK TBL LEVEL= 90. DB AT 136. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ MIX NN SEP TE TEL SUM 25. 96. 99. 42. 82. 87. 101.0 96. 31. 100. 45. 82. 88. 102.1 40. 97. 102. 47. 82. 88. 103.3 50. 98. 50. 81. 103. 89. 104.4 63. 99. 104. 53. 89. 105.6 81. 80. 99. 55. 106. 81. 90. 106.8 100. 100. 107. 56. 80. 90. 108.0 125. 101. 108. 57. 80. 90. 109.1 160. 101. 110. 56. 79. 90. 110.5 55. 200. 102. 79. 111. 90. 111.7 250. 103. 112. 53. 78. 89. 112.9 315. 103. 50. 89. 114. 77. 114.2 400. 88. 104. 115. 47. 77. 115.5 104. 500. 45. 76. 116. 88. 116.7 630. 106. 117. 42. 75. 87. 117.7 106. 39. 800. 118. 74. 87. 118.2 1000. 107. 118. 37. 74. 86. 118.4 1250. 107. 118. 34. 73. 86. 118.1 72. 31. 85. 1600. 106. 117. 117.3 2000. 105. 116. 29. 71. 84. 116.1 2500. 104. 84. 114. 26. 70. 114.8 24. 83. 3150. 102. 113. 69. 113.4 4000. 100. 21. 69. 82. 112.0 112. 5000. 98. 110. 18. 68. 81. 110.7

DASPL 117.0 127.5 64.5 91.9 101.6 127.9

CASE TALMOS STOTE TELEPHONES

ALT= 6500. FT USB =50. DEG R/RD = .848 UA = 110. FT/S DOOR= CLOSED THETAS=-5. DEG UJ = 680. FT/S UGS = UP THETAP=33. DEG

RIBBON STA ML BL(IN) BL(DUT) 155. AT NOZ EX 374. 208. 209. AT WNG TE 425. 201. 143. 211. 211. 198. 143. AT TR OFF 431. 179. AT TR EDG 460. 143. 211.

TRAIL EDGE 450. 162. 143. 211.

FIELD POINT 395. 206. 90.

FIELD POINT IN ZONE 1 AND IS INBOARD OF FLOW RIBBON S= 21.0 DELTA = 58.7

PEAK JET MIX LEUEL= 110. DB AT 611. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NDZ LEUEL= 110. DB AT 938. HZ
STE= 93. ;DELTATE= 20.
PEAK TRAIL EDGE LEUEL= 75. DB AT 127. HZ
PEAK SEP LEUEL= 88. DB AT 33. HZ
PEAK TBL LEUEL= 90. DB AT 130. HZ

SPL-IN DB RE 200 PICCBAR (BY COMP AND SUM)

TE SEP TBL SUM HZ MIX HH 91. 25. 102. 61. 87. 87. 102.8 88. 88. 103.5 31. 103. 92. 63. 104. 87. 89. 104.3 40. 94. 66. 50. 104. 95. 69. 87. 89. 105.0 89. 105.7 63. 105. 96. 71. 87. 106.5 98. 86. 90. 74. 80. 106. 107.2 99. 75. 86. 90. 100. 106. 85. 90. 107.9 125. 107. 100. 75. 90. 108.8 85. 160. 108. 102. 75. 200. 108. 103. 74. 84. 90. 109.5 84. 109. 89. 110.3 250. 104. 71. 83. 89. 111.2 315. 110. 106. 69. 400. 110. 107. 66. 82. 88. 111.9 82. 112.3 500. 110. 108. 88. 63. 81. 87. 113.2 630. 111. 109. 61. 110. 58. 80. 87. 114.0 800. 112. 114.2 55. 79. 86. 1000. 112. 110. 79. 113.8 53. 86. 1250. 112. 110. 50. 78. 85. 112.9 1600. 111. 109. 47. 84. 111.8 2000. 110. 108. 77. 84. 110.5 2500. 108. 106. 45. 76. 3150. 107. 105. 42. 75. 83. 109.0 74. 104. 39. 82. 107.3 4000. 105. 102. 37. 74. 81. 105.6 5000. 103. DASPL 122.4 119.4 83.1 97.6 101.6 124.2

14 144 12 CT 3 2 Pr 1 2 3

CASE 15, F01, ST50 (STOL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/S DOOR= CLOSED THETAS=-5. DEG VJ = 680. FT/S VGS = UP THETAP=33. DEG

RIBBON STA BL (IN) BL (DUT) WL AT NOZ EX 208. 155. 374. 209. AT WNG TE 425. 201. 143. 211. 211. AT TR OFF 431. 198. 143. AT TR EDG 460. 179. 143. 211. TRAIL EDGE 450. 162. 143. 211.

FIELD POINT 432. 199. 60.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 58.0 DELTA = 83.3

PERK JET MIX LEVEL= 115. DB AT 561. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PERK NEAR NOZ LEVEL= 100. DB AT 938. HZ
STE= 93., DELTATE= 20.
PERK TRAIL EDGE LEVEL= 80. DB AT 127. HZ
PERK SEP LEVEL= 84. DB AT 33. HZ
PERK TBL LEVEL= 90. DB AT 121. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ TE SEP SUM MIX MM TBL 25. 108. 81. 65. 84. 88. 107.7 31. 108. 82. 84. 88. 108.3 68. 40. 109. 84. 71. 84. 89. 109.1 50. 110. 85. 73. 84. 89. 109.7 110. 63. 84. 89. 110.4 87. 76. 80. 111. 88. 79. 83. 90. 111.1 100. 111.7 112. 89. 80. 83. 90. 82. 125. 112. 91. 80. 90. 112.4 92. 80. 160. 113. 82. 90. 113.1 93. 200. 114. 79. 81. 89. 113.8 114.4 76. 89. 250. 114. 95. 81. 315. 74. 89. 115.0 115. 96. 80. 115. 97. 71. 79. 115.3 400. 88. 500. 115. 98. 68. 79. 88. 115.1 78. 87. 630. 116. 100. 66. 116.0 100. 63. 77. 800. 117. 87. 116.8 60. 1000. 76. 116.9 117. 100. 86. 58. 1250. 75. 85. 116.4 116. 100. 55. 85. 115.5 115. 99. 74. 1600. 74. 2000. 114. 98. 52. 84. 114.4 97. 73. 83. 2500. 113. 50. 113.1 72. 82. 3150. 95. 47. 111.5 111. 71. 4000. 109. 94. 44. 82. 109.5 92. 81. 42. 70. 107.5 5000. 107.

CASE 16, F02, ST50 (STOL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 UA = 110. FT/S DOOR= CLOSED THETAS=-5. DEG UJ = 680. FT/S UGS = UP THETAP=33. DEG

RIBBON STA ML BL(IN) BL(OUT) AT NOZ EX 374. 208. 155. 209. AT WNG TE 425. 201. 143. 211. AT TR OFF 431. 198. 143. 211. AT TR EDG 460. 179. 143. 211. 211. TRAIL EDGE 450. 162. 143.

FIELD POINT 432. 199. 90.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 58.0 DELTA = 53.3

PEAK JET MIX LEVEL= 119. DB AT 405. H2
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NOZ LEVEL= 104. DB AT 938. HZ
STE= 93. →DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 85. DB AT 127. HZ
PEAK SEP LEVEL= 101. DB AT 33. HZ
PEAK TBL LEVEL= 90. DB AT 121. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ MIX HN TE SEP TBL SUM 112. 25. 85. 70. 101. 88. 112.2 31. 112. 86. 101. 88. 73. 112.8 40. 113. 88. 76. 89. 101. 113.5 50. 89. 114.2 114. 89. 78. 101. 90. 63. 115. 81. 100. 89. 114.8 92. 84. 100. 115.5 80. 115. 90. 93. 95. 100. 116. 85. 90. 116.2 85. 99. 125. 117. 94. 90. 116.9 98. 160. 85. 118. 96. 90. 117.6 97. 200. 84. 118. 98. 89. 118.3 250. 119. 98. 81. 97. 89. 118.9 315. 119. 97. 100. 79. 89. 119.1 76. 400. 119. 101. 96. 88. 118.9 500. 118. 102. 73. 95. 88. 118.6 630. 119. 103. 71. 95. 87. 119.4 87. 800. 120. 104. 68. 94. 119.7 9: 1000. 119. 104. 119.4 65. 86, 1250. 119. 104. 63. Ģr. . 118.8 85. 118. 1600. 103. 60. 85. 117.9 >1. 102. 2000. 117. 57. 90. 84. 116.8 115. 100. 2500. 55. 90. 115.5 83. 3150. 114. 99. 52. 89. 82. 113.9 98. 4000. 112. 49. 88. 82. 112.0 96. 5000. 110. 47. 87. 81. 110.0

DASPL 130.7 113.5 92.9 111.2 101.5 130.8

CASE 17:F03:SY50 (STOL FLAPS:50)

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/S DOOR= CLOSED THETAS=-5. DEG VJ = 680. FT/S VGS = UP THETAP=33. DEG

RIBBON STA WL BL(IN) BL(OUT) 155. 374. 208. AT NOZ EX 209. AT WHE TE 425. 201. 143. 211. AT TR OFF 198. 143. 431. 211. AT TR EDG 179. 460. 143. 211.

TRAIL EDGE 450. 162. 143. 211.

FIELD POINT 432, 199, 130.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 58.0 DELTA = 13.4

PEAK JET MIX LEVEL= 132. DB AT 156. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NOZ LEVEL= 117. DB AT 938. HZ
STE= 93. *DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 93. DB AT 127. HZ
PEAK SEP LEVEL= 113. DB AT 33. HZ
PEAK TBL LEVEL= 90. DB AT 121. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ NN TE SEP TEL SUM MIX 98. 78. 88. 25. 113. 124. 124.0 99. 81. 31. 125. 113. 88. 125.1 89. 126. 101. 40. 84. 113. 126.4 50. 127. 102. 86. 112. 89. 127.6 63. 129. 103. 89. 112. 89. 128.8 112. 90. 130.1 80. 130. 105. 92. 93. 90. 106. 111. 131.1 100. 131. 125. 132. 107. 93. 90. 131.6 111. 90. 109. 160. 132. 93. 110. 131.7 89. 200. 131. 110. 92. 110. 131.4 250. 131. 111. 89. 109. 89. 130.8 315. 130. 113. 108. 89. 129.7 87. 108. 400. 128. 114. 84. 88. 128.4 500. 127. 107. 127.2 115. 81. 88. 127.2 127. 630. 116. 79. 106. 87. 800. 127. 117. 76. 105. 87. 127.1 126. 105. 86. 1000. 117. 73. 126.8 126. 85. 104. 1250. 117. 71. 126.3 1600. 125. 116. 68. 103. 85. 125.4 2000. 124. 115. 65. 102. 84. 124.3 122. 83. 2500. 113. 63. 101. 123.0 3150. 121. 112. 60. 100. 82. 121.4 119. 111. 82. 119.6 4000. 57. 100. 5000. 117. 109. 55. 99. 81. 117.6

DASPL 141.7 126.5 101.0 122.9 101.5 141.9

CASE 10,F04,ST50 (STOL FLAPS=50)

ALT= 6500. FT USB =50. DEG R/RD = .848 VA = 110. FT/S DOOR= CLOSED THETAS=-5. DEG VJ = 680. FT/S UGS = UP THETAP=33. DEG

RIBBON STA ИL BL (IN) BL (DUT) 155. AT NOZ EX 374. 208. 209. 425. AT WNG TE 201. 143. 211. 198. 143. AT TR OFF 431. 211. AT TR EDG 460. 179. 143. 211.

TRAIL EDGE 450, 162, 143, 211,

FIELD POINT 445. 177. 60.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 80.9 DELTA = 83.9

PEAK JET MIX LEVEL= 116. DB AT 489. HZ CORRECTION FOR VGS APPLIED DSPL= 5. DB F1= 2190. HZ PEAK NEAR NOZ LEVEL= 98. DB AT 938. HZ STE= 93. , DELTATE= 20. PEAK TRAIL EDGE LEVELE 70. DB AT 127. HZ PEAK SEP LEVEL= 87. DB AT 33. HZ FEAK TEL LEVEL= 90. DB AT 118. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ MIX TE SEP TEL SUM ИH 25. 109. 79. 55. 109.4 87. 88. 31. 57. 110. 80. 87. 98. 110.0 111. 40. 87. 89. 81. 60. 110.8 50. 87. 111. 83. 63. 89. 111.4 63. 112. 84. 66. 86. 89. 112.1 85. 80. 113. 68. 86. 90. 112.8 113. 87. 85. 90. 113.4 100. 69. 70. 85. 125. 114. 88. 90. 114.1 69. 84. 160. 115. 89. 90. 114.8 91. 84. 115.5 200. 115. 68. 89. 250. 116. 92. 66. 83. 89. 116.1 93. 315. 117. 63. 83. 89. 116.6 400. 95. 116.5 116. 82. 88. 60. 500. 116. 96. 58. 81. 88. 116.1 97. 81. 87. 630. 117. 55. 117.1 80. 800. 118. 97. 52. 87. 117.6 1000. 117. 98. 50. 79. 86. 117.4 47. 97. 78. 1250. 117. 85. 116.9 44. 1600. 116. 96. 77. 85. 115.9 76. 2000. 115. 95. 42. 84. 114.9 94. 83. 2500. 39. 76. 113.5 113. 93. 3150. 75. 82. 112. 36. 111.9 4000. 110. 91. 34. 74. 81. 110.0 73. 5000. 108. 90. 31. 81. 108.0

77.4

DASPL 128.4 107.0

97.1 101.5

128.5

CASE 11,F05,ST50 (STOL FLAPS=50)

BL (IN) BL (OUT) RIBBON STA ML. AT NOZ EX 374. 208. 155. 209. AT WNG TE 425. 201. 143. 211. AT TR OFF 431. 211. 198. 143. AT TR EDG 460. 179. 143. 211.

TRAIL EDGE 450, 162, 143, 211.

FIELD POINT 445, 177, 90.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 80.9 DELTA = 54.3

PEAK JET MIX LEVEL= 120. DB AT 383. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NOZ LEVEL= 101. DB AT 938. HZ
STE= 93., DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 75. DB AT 127. HZ
PEAK SEP LEVEL= 109. DB AT 33. HZ
PEAK TBL LEVEL= 90. DB AT 118. HZ

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ MIX HH SEP SUM TE. TEL 25. 114. 108. 82. 6ŭ. 88. 114.7 31. 114. 84. 109. 63. 88. 115.2 40. 115. 85. 66. 108. 89. 115.8 50. 86. 108. 89. 116. 68. 116.3 88. 116.9 63. 116. 71. 108. 89. 80. 89. 107. 90. 117.5 117. 74. 90. 75. 90. 100. 118. 107. 118.1 125. 118. 92. 75. 106. 90. 118.7 160. 119. 93. 75. 106. 90. 119.4 200. 120. 94. 74. 105. 89. 120.0 250. 120. 96. 71. 105. 89. 120.4 97. 120. 69. 89. 315. 104. 120.3 120. 98. 88. 119.9 400. 103. 66. 500. 120. 100. 63. 103. 88. 119.7 101. 630. 120. 61. 102. 87. 120.2 800. 120. 87. 120.2 101. 58. 101. 1000. 120. 101. 55. 100. 86. 119.9 1250. 119. 53. 85. 99. 119.3 101. 99. 118. 50. 85. 118.4 1600. 100. 2000. 117. 99. 47. 98. 84. 117.3 45. 2500. 116. 98. 97. 83. 116.0 96. 114. 3150. 96. 42. 82. 114.4 4000. 112. 95. 39. 95. 81. 112.5 94. 94. 5000. 110. 37. 81. 110.5

DASPL 131.8 110.8 82.9 118.5 101.5 132.0

CASE 12,F06,ST50 (STDL FLAPS=50)

R/RD = .848ALT= 6500. FT USB =50. DEG VA = 110. FT/S BOOR= CLOSED THETAS=-5. DEG 680. FT/S UGS = UP THETAP=33. DEG RIBBON STR ИL BL (IN) BL (DUT) AT NOZ EX 208. 155. 374. 209. AT WNG TE 425. 201. 143. 211. AT TR OFF 431. 198. 143. 211. AT TR EDG 460. 179. 143. 211.

TRAIL EDGE 450. 162. 143. 211.

FIELD POINT 445. 177. 130.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 80.9 DELTA = 16.7

PEAK JET MIX LEVEL= 130. DB AT 135. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2190. HZ
PEAK NEAR NOZ LEVEL= 112. DB AT 938. HZ
STE= 93. ,DELTATE= 20.
PEAK TRAIL EDGE LEVEL= 85. DB AT 127. HZ
PEAK SEP LEVEL= 135. DB AT 33. HZ
PEAK TBL LEVEL= 90. DB AT 118. HZ

SFL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ MIX MM TE SEP TEL SUM 25. 123. 93. 71. 135. 88. 134.9 31. 124. 135. 94. 73. 88. 135.3 95. 40. 126. 76. 135. 89. 135.2 127. 97. 79. 50. 135.1 134. 89. 63. 128. 98. 134. 89. 81. 135.0 80. 129. 99. 84. 134. 90. 134.9 100. 130. 101. 85. 133. 90. 134.8 125. 102. 130. 85. 133. 90. 134.5 160. 130. 103. 85. 132. 90. 134.1 200. 89. 129. 105. 84. 132. 133.7 250. 128. 106. 131. 81. 89. 133.0 315. 127. 107. 79. 130. 89. 132.1 76. 400. 126. 109. 130. 88. 131.2 125. 73. 500. 129. 88. 110. 130.4 124. 630. 111. 71. 128. 87. 129.8 124. 800. 112. 68. 127. 87. 129.2 124. 1000. 112. 65. 127. 86. 128.6 1250. 123. 111. 63. 126. 85. 127.9 1600. 122. 110. 60. 125. 85. 127.0 57. 109. 2000. 121. 84. 126.1 124. 2500. 120. 55. 108. 123. 83. 125.1 3150. 118. 107. 52. 122. 82. 124.0 117. 49. 4000. 105. 122. 81. 122.9 121. 5000. 114. 104. 47. 81. 121.8 DASPL 140.0 121.1 93.0 144.9 101.5 146.1

age plat the heart is a way of the greater might be the

SECTION IV COMPUTER TABULATIONS FOR FIELD POINT NOISE LEVELS AT BRAKE RELEASE DUE TO OUTBOARD ENGINES

PROGRAM USBEST-VERSION 06/MAY/78
UPDATED MARCH,1979..L.BUTZEL
GENERATES SPL ESTIMATE OF EXTERIOR
FUSELAGE/FLAP, WING FLUCTUATING
PRESSURE LEVELS FOR USB AIRCRAFT

AUTHORS=L.BUTZEL,W.LUNDT USER DOCUMENTATION=D6-XXXXX RUN DATE= 79/03/22.

然深水淡淡水淡淡淡淡淡淡淡淡淡淡淡淡淡淡淡淡淡淡淡淡淡淡淡淡

AZP GEOMETRY CHANGES ARE

PARAM	NEW	DLD
THUKD	20.0	1
THIDKU	0.0	i
THOKI	12.0	ī
THIKD	0.0	- <u>. ī</u>
THTB	0.0	ī
THSK	-12.0	$\bar{1}$
THN	19.0	ī
AEFF	770.0	1
ADOOR	0.0	î
AUG	5.0	1
NVG	12.0	-1.0
M	54.0	 1
LW	51.0	1
RF	26.0	1
ΧO	182.0	1
Y0	374.0	1
Z0	208.0	1
Z1	201.0	1
LT	25.0	1
YR	0.0	1
LFAN	150.0	1
XBBL	57.0	1

CASE 1,801,8KRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RO =1.000 UA = 0. FT/8 DOOR= CLOSED THETAS=-6. DEG UJ = 870. FT/8 UGS = UP THETAP=19. DEG

ИL BLKIND BLKOUTD RIBBON STA 155. AT NOZ EX 374. 208. 209. 425. 212. AT WNG TE 201. 141. AT TR OFF 425. 201. 212. 141. AT TR EDG 449. 193. 141. 212.

TRAIL EDGE 449. 193. 141. 212.

FIELD POINT 460. 190. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 87.7 DELTA = 84.4

PEAK JET MIX LEVEL= 123. DB AT 375. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 105. DB AT 1200. HZ
STE= 76. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 68. DB AT 111. HZ
PEAK SEP LEVEL= 41. DB AT 4743. HZ
NO TBL ACTIVITY,A/P VELDCITY TOO SMALL

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

SEP MIX HH TE TEL SUM HZ 25. 55. 117.3 117. 84. O. 16. 86. 57. 17. Ũ. 118.0 31. 118. 40. 119. 87. 60. 19. Ű. 118.7 63. 88. Û. 119.4 50. 119. 21. 22. 120.0 120. 90. 65. 0. 63. 91. 24. 0. 120.7 80. 121. 67. 121.4 100. 121. 92. 68. 26. Ũ. Ũ. 122.0 27. 125. 122. 94. 68. 95. 122.8 160. 123. 67. 29. 0. 31. 123.4 200. 123. 96 65. 0. 98. 123.8 250. 124. 62. 32. Q. 99. 123.6 315. 34. 124. Û. 60. 35. 123. 123.2 57. Ũ. 400. 100. 122.9 500. 123. 102. 54. 36. Ũ. 52. 630. 122. 103. 37. 0. 122.2 122.1 800. 122. 104. 49. 37. Ŭ. 46. 122.1 122. 105. 38. 0. 1000. 122. 105. 44. 39. 0. 121.7 1250. 1600. 121. 104. 41. 39. 0. 121.1 120. 104. 38. 40. 0. 120.3 2000. 103. 36. 0. 119.3 2500. 119. 40. 0. 118. 33. 40. 117.9 3150. 101. 30. 116.3 116. 100. 40. 0. 4000. 0. 114.5 99. 41. 5000. 114. 28. DASPL 135.0 114.1 75.5 49.9 0.0 135.0

CASE 2,802,8KRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DODR= CLOSED THETAS=-6. DEG VJ = 870. FT/S VGS = UP THETAP=19. DEG

RIBBON STA ML BE(IN) BE(DUT) AT NOZ EX 374. 208. 155. 209. AT WNG TE 425. 141. 201. 212. AT TR OFF 425. 201. 141. 212. AT TR EDG 449. 193. 141. 212.

TRAIL EDGE 449. 193. 141. 212.

FIELD POINT 460. 160. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 97.2 DELTA = 88.9

PEAK JET MIX LEVEL= 122. DB AT 366. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 104. DB AT 1200. HZ
STE= 76. ;DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 100. DB AT 111. HZ
PEAK SEP LEVEL= 39. DB AT 4743. HZ
NO TBL ACTIVITY;A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICCBAR (BY COMP AND SUM)

HZ	MIX	NN	TE	SEP	TEL	SUM
25.	116.	83.	86.	14.	0.	116.4
31.	117.	84.	89.	15.	0.	117.1
40.	118.	86.	92.	17.	Û.	117.8
50.	118.	87.	94.	19.	Ú.	118.5
63.	119.	88.	97.	21.	Ü.	119.1
80.	120.	90.	99.	22.	Ŭ.	119.9
100.	120.	91.	99.	24.	0.	120.5
125.	121.	92.	99.	26.	Q.	121.2
160.	122.	94.	98.	27.	0.	121.9
200.	122.	95.	97.	29.	0.	122.5
250.	123.	96.	94.	31.	0.	122.8
315.	123.	98.	91.	32.	0.	122.6
400.	122.	99.	89.	33.	0.	122.2
500.	122.	100.	86.	34.	0.	121.9
630.	121.	102.	83.	35.	0.	121.1
800.	121.	i03.	81.	36.	0.	121.0
1000.	121.	103.	78.	36.	Ů.	120.9
1250.	121.	104.	75.	37.	0.	120.6
1600.	120.	103.	73.	37.	0.	120.0
2000.	119.	102.	70.	38.	0.	119.2
2500.	118.	101.	67.	38.	0.	118.1
3150.	117.	100.	65.	38.	0.	116.8
4000.	115.	99.	62.	39.	0.	115.1
5000.	113.	97.	59.	39.	0.	113.4
	474 0		40-0-0-	4		474.6

CASE 3, B03, BKRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DDDR= CLOSED THETAS=-6. DEG VJ = 870. FT/S UGS = UP THETAP=19. DEG

RIBBON STA BL (IN) BL (OUT) WL 155. AT NOZ EX 374. 208. 209. AT WNG TE 425. 201. 141. 212. 141. AT TR OFF 425. 212. 201. AT TR EDG 449. 193. 141. 212.

TRAIL EDGE 449. 193. 141. 212.

FIELD POINT 460. 130. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 106.8 DELTA = 101.4

PEAK JET MIX LEVEL= 121. DB AT 371. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 102. DB AT 1200. HZ
STE= 76. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 106. DB AT 111. HZ
PEAK SEP LEVEL= 35. DB AT 4743. HZ
NO TBL ACTIVITY,A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICCIBAR (BY COMP AND SUM)

MIX TEL SUM HZ MM TE SEP 115. 93. O. 114.7 81. 25. 10. 31. 115. 95. 115.4 82. 12. Ŭ. 13. 40. 116. 84. 98. ø. 116.1 50. 117. 85. 101. 15. 0. 116.8 117.6 63. 117. 87. 103. 17. Û. 80. 118. 88. 105. 18. Ŭ. 118.3 100. 119. 89. 106. 20. 0. 119.0 119. 125. 91. 106. 22. 119.6 Û. 120. 92. 105. 160. 23. 0. 120.3 103. 200. 121. 93. 25. 0. 120.8 Q. 121.1 250. 121. 95. 101. 27. 315. 121. 96. 98. 28. 0. 120.9 97. 400. 121. 95. 29. ű. 120.5 500. 99. 93. 120. 30. 0. 120.2 119.5 630. 119. 100. 90. 31. 0. 800. 119. 101. 87. 32. 0. 119.4 1000. 119. 101. 85. 32. 119.3 0. 1250. 119. 33. 119.0 102. 82. ũ. 33. 1600. 118. 101. 79. 0. 118.4 2000. 77. 34. 117.6 117. 101. 0. 2500. 74. 99. 34. 116.5 11€. o. 71. 3150. 115. 98. 34. Q. 115.2 97. 35. 113.5 4000. 113. 69. 0. 95. 35. 5000. 112. 66. Ú. 111.7

DASPL 132.3 111.0 113.8

44.3

0.0

132.4

CASE 4, BO4, BKRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DOOR= CLOSED THETAS=-6. DEG VJ = 870. FT/S VGS = UP THETAP=19. DEG

RIBBON STA WL BL(IN) BL(OUT) 155. AT NOZ EX 374. 208. 209. AT WHE TE 425. 201. 141. 212. AT TR DFF 425. 201. 141. 212. AT TR EDG 449. 193. 141. 212.

TRAIL EDGE 449. 193. 141. 212.

FIELD PDINT 500. 190. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 125.6 DELTA = 85.5

PEAK JET MIX LEVEL= 121. DB AT 313. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 102. DB AT 1200. HZ
STE= 76. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 96. DB AT 111. HZ
PEAK SEP LEVEL= 37. DB AT 4743. HZ
NO TBL ACTIVITY, A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ MIX HH TE SEP TBL SUM 25. 116. 81. 83. 12. 0. 115.6 31. 116. 85. Û. 116.2 83. 13. 40. 117. 84. 88. 15. 0. 117.0 85. 50. 118. 91. 17. Ũ. 117.6 93. 0. 118.3 63. 118. 87. 18. 95. 80. 119. 88. 20. 0. 119.0 96. 22. 0. 100. 120. 89. 119.7 91. 96. 23. 120.3 125. 120. 0. 95. 25. Û. 160. 121. 92. 121.0 93. 200. 122. 93. 27. 121.5 0. 250. 121. 95. 91. 28. Û. 121.4 315. 121. 96. 88. 30. O. 121.0 0. 31. 400. 121. 97. 85. 120.8 500. 120. 99. 120.2 83. 32. Û. 630. 119. 100. 80. 33. 0. 119.0 34. 800. 119. 101. 77. Ŭ. 118.8 75. 34. 0. 1000. 119. 102. 118.7 1250. 118. 102. 72. 35. 0. 118.4 35. 0. 117.8 118. 69. 1600. 101. 2000. 117. 101. 67. 36. 0. 117.0 36. 115.9 2500. 116. 100. €4. Ō. 36. 3150. 115. 98. 61. Û. 114.6 97. 59. 37. 113.0 4000. 113. 0. 5000. 111. 96. 56. 37. Ũ. 111.2

DASPL 132.5 111.2 103.8 46.1

QQQAYAA

0.0 132.6

CASE 5,805,8KRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DODR= CLOSED THETAS=-6. DEG VJ = 870. FT/S VGS = UP THETAP=19. DEG

STA WL BL(IN) BL(OUT) RIBBON 208. 155. 209. AT NOZ EX 374. 425. 141. 212. AT WNG TE 201. 425. AT TR OFF 141. 212. 201. 193. 212. AT TR EDG 449. 141.

TRAIL EDGE 449. 193. 141. 212.

FIELD POINT 500. 160. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 135.2 DELTA = 85.7

PEAK JET MIX LEVEL= 120. DB AT 300. HZ
CORRECTION FOR UGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 101. DB AT 1200. HZ
STE= 76. , DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 97. DB AT 111. HZ
PEAK SEP LEVEL= 35. DB AT 4743. HZ
NO TBL ACTIVITY, A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICCEAR (BY COMP AND SUM)

SEP SUM MIX NN TE TEL HZ 81. 10. 115.2 25. 115. 84. O. 31. 116. 86. 12. 0. 115.8 82. 14. 116.5 84. 89. Û. 40. 117. 92. 15. 117.2 85. O. 50. 117. 63. 86. 94. 17. 117.9 ٥. 118. 96. 88. 19. 80. 119. O. 118.6 119.2 89. 97. 20. 0. 100. 119. 119.9 90. 97. 0. 125. 120. 22. 120.6 121. 96. 24. 0. 160. 92. 25. 120.9 200. 121. 93. 94. O. 94. 92. 27. 0. 120.8 250. 121. 95. 120.4 120. 89. 29. Û. 315. O. 97. 30. 120.1 120. 86. 400. 119.4 119. 98. 84. 31. Ü. 500. 81. 0. 99. 32. 118.2 630. 118. 78. 32. 800. 101. 0. 118.0 118. 101. 75. 33. Ũ. 117.9 1000. 118. 73. 33. 117.6 1250. 118. 101. 0. 70. 34. 0. 117.0 117. 1600. 101. 116.2 67. 34. 0. 2000. 116. 100. 35. 115.1 2500. 115. 99. 65. 0. 35. 62. 3150. 114. 98. 0. 113.8 96. 59. 35. 112.2 112. Û. 4000. 95. 57. 35. O. 110.4 110. 5000.

DASPL 131.9 110.6 104.6

44.7

0.0

131.9

CASE 6,806,8KRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/8 DODR= CLOSED THETAS=-6. DEG VJ = 870. FT/8 UGS = UP THETAP=19. DEG

RIBBON BL(IN) BL(DUT) STA ML AT NOZ EX 374. 208. 155. 209. 425. AT WNG TE 201. 141. 212. AT TR OFF 425. 201. 141. 212. AT TR EDG 449. 193. 141. 212.

TRAIL EDGE 449. 193. 141. 212.

FIELD PDINT 500. 130. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 144.7 DELTA = 94.9

PEAK JET MIX LEVEL= 119. DB AT 302. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 100. DB AT 1200. HZ
STE= 76. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 106. DB AT 111. HZ
PEAK SEP LEVEL= 32. DB AT 4743. HZ
NO TBL ACTIVITY,A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

MIX HH SEP SUM HZ TE TEL 114. 7. 25. 79. 93. Ü. 113.7 31. 114. 95. 9. 114.4 81. 0. 115. 82. 98. 115.2 40. 11. ٥. 83. 12. 50. 116. 101. 115.9 Ö. 63. 116. 85. 103. 14. 0. 116.6 117.4 80. 117. 86. 105. 16. 0. 100. 118. 87. O. 106. 17. 118.0 125. 118. 89. 106. 19. 118.6 0. 119. 119.3 160. 90. 105. 21. Ö. 200. 120. 91. 22. 119.6 103. Ö. 250. 119. 93. 100. 24. 0. 119.4 119. 98. 26. 315. 94. 0. 119.0 95. 119. 400. 95. 27. Q. 118.7 500. 118. 97. 92. 28. Û. 118.0 117. 98. 90. 630. 28. O. 116.8 800. 99. 117. 87. 29. Õ. 116.6 1000. 116. 30. 116.6 100. 84. Ŭ. 30. 116. 100. O. 1250. 82. 116.3 79. 115.6 99. 1600. 116. 31. 0. 115. 99. 114.8 2000. 76. 31. 0. 114. 98. 74. 32. 2500. ŭ. 113.8 32. 3150. 112. 96. 0. 112.4 71. 32. 4000. 111. 95. 68. O. 110.8 32. 5000. 109. 94. 66. 0. 109.0 DASPL 130.5 109.1 113.4 41.6 0.0 130.6

CASE 7,807,8KRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DODR= CLOSED THETAS=-6. DEG VJ = 870. FT/S VGS = UP THETAP=19. DEG

WL BL (IN) BL (DUT) RIBBON STA AT NOZ EX 374. 208. 155. 209. AT WNG TE 425. 201. 141. 212. 425. 201. AT TR DEF 141. 212. AT TR EDG 449. 193. 141. 212.

TRAIL EDGE 449. 193. 141. 212.

FIELD POINT 550. 190. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 173.0 DELTA = 89.4

PEAK JET MIX LEVEL= 118. DB AT 263. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 99. DB AT 1200. HZ
STE= 76. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 102. DB AT 111. HZ
PEAK SEP LEVEL= 29. DB AT 4743. HZ
NO TBL ACTIVITY, A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

MIX	NH	TE	SEP	TBL	SUM
113.	78.	89.	4.	0.	113.3
114.	80.	91.	6.	Û.	113.9
115.	81.	94.	8.	0.	114.7
115.	82.	97.		Û.	115.4
116.	84.	99.	11.	0.	116.1
117.	85.	101.		0.	116.8
117.	86.	102.	14.	0.	117.5
118.	88.	102.	16.	0.	118.1
119.	89.	101.	18.	Û.	118.7
119.	90.	99.	19.	¢.	118.7
118.	92.	97.	21.	0.	118.3
118.	93.	94.	22.	0.	118.0
117.	94.	91.	23.	O.	117.5
116.	96.	89.	24.	0.	116.4
115.	97.	86.	25.	0.	115.2
115.	98.	83.	26.	0.	115.0
115.	99.	81.	27.	0.	114.9
114.	99.	78.	27.	0.	114.6
114.	99.	75.	28.	0.	114.0
113.	98.	73.	28.	0.	113.2
112.	97.	70.	28.	0.	112.1
111.	95.	67.	29.	0.	110.8
109.	94.	65.	29.	0.	109.1
107.	93.	62.	29.	0.	107.4
	113. 114. 115. 116. 117. 118. 119. 118. 117. 116. 115. 115. 114. 114. 113. 111.	113. 78. 114. 80. 115. 81. 115. 82. 116. 84. 117. 85. 117. 86. 118. 88. 119. 99. 119. 90. 118. 92. 118. 93. 117. 94. 116. 96. 115. 97. 115. 98. 115. 99. 114. 99. 114. 99. 113. 98. 112. 97. 111. 95.	113. 78. 89. 114. 80. 91. 115. 81. 94. 115. 82. 97. 116. 84. 99. 117. 85. 101. 117. 86. 102. 118. 88. 102. 119. 89. 101. 119. 90. 99. 118. 92. 97. 118. 93. 94. 117. 94. 91. 116. 96. 89. 115. 97. 86. 115. 98. 83. 115. 99. 81. 114. 99. 78. 114. 99. 75. 113. 98. 73. 112. 97. 70. 111. 95. 67. 109. 94. 65.	113. 78. 89. 4. 114. 80. 91. 6. 115. 81. 94. 8. 115. 82. 97. 9. 116. 84. 99. 11. 117. 85. 101. 13. 117. 86. 102. 14. 118. 88. 102. 16. 119. 89. 101. 18. 119. 90. 99. 19. 118. 92. 97. 21. 118. 93. 94. 22. 117. 94. 91. 23. 116. 96. 89. 24. 115. 97. 86. 25. 115. 98. 83. 26. 115. 99. 81. 27. 114. 99. 78. 27. 114. 99. 75. 28. 113. 98. 73. 28. 112. 97. 70. 28. <td< td=""><td>113. 78. 89. 4. 0. 114. 80. 91. 6. 0. 115. 81. 94. 8. 0. 115. 82. 97. 9. 0. 116. 84. 99. 11. 0. 117. 85. 101. 13. 0. 117. 86. 102. 14. 0. 118. 88. 102. 16. 0. 119. 89. 101. 18. 0. 119. 90. 99. 19. 0. 118. 92. 97. 21. 0. 118. 93. 94. 22. 0. 117. 94. 91. 23. 0. 115. 97. 86. 25. 0. 115. 98. 83. 26. 0. 115. 99. 81. 27. 0. 114. 99. 78. 27. 0. 114. 99. 75. 28.</td></td<>	113. 78. 89. 4. 0. 114. 80. 91. 6. 0. 115. 81. 94. 8. 0. 115. 82. 97. 9. 0. 116. 84. 99. 11. 0. 117. 85. 101. 13. 0. 117. 86. 102. 14. 0. 118. 88. 102. 16. 0. 119. 89. 101. 18. 0. 119. 90. 99. 19. 0. 118. 92. 97. 21. 0. 118. 93. 94. 22. 0. 117. 94. 91. 23. 0. 115. 97. 86. 25. 0. 115. 98. 83. 26. 0. 115. 99. 81. 27. 0. 114. 99. 78. 27. 0. 114. 99. 75. 28.

DASPL 129.5 108.2 109.8 38.5

110

0.0 129.6

CASE 8, BOS, BKRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RO =1.000 VA = 0. FT/S DODR= CLOSED THETAS=-6. DEG VJ = 870. FT/S VGS = UP THETAP=19. DEG

RIBBON STA WL BL(IN) BL(OUT) AT NOZ EX 374. 208. 155. 209. AT WNG TE 201. 141. 425. 212. AT TR OFF 425. 201. 141. 212. AT TR EDG 449. 193. 141. 212.

TRAIL EDGE 449. 193. 141. 212.

FIELD POINT 550. 160. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON 3= 182.5 DELTA = 84.4

PEAK JET MIX LEVEL= 118. DB AT 247. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 99. DB AT 1200. HZ
STE= 76. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 74. DB AT 111. HZ
PEAK SEP LEVEL= 28. DB AT 4743. HZ
NO TBL ACTIVITY,A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICTBAR (BY COMP AND SUM)

HZ	MIX	NN	TE	SEP	TBL	SUM
25.	114.	78.	61.	з.	0.	113.7
31.	114.	80.	63.	5.	0.	114.3
40.	115.	81.	66.	7.	0.	115.0
50.	116.	83.	69.	8.	0.	115.7
63.	116.	84.	71.	10.	0.	116.4
80.	117.	85.	73.	12.	0.	117.1
100.	118.	87.	74.	14.	0.	117.7
125.	118.	88.	74.	15.	Ů.	118.4
160.	119.	89.	73.	17.	0.	118.9
200.	119.	91.	71.	19.	0.	118.8
250.	118.	92.	69.	20.	0.	118.3
315.	118.	93.	66.	22.	O.	118.1
400.	117.	95.	63.	23.	0.	117.4
500.	116.	96.	61.	24.	0.	116.3
630.	115.	97.	58.	25.	0.	115.0
800.	115.	98.	55.	25.	0.	114.8
1000.	115.	99.	53.	26.	0.	114.8
1250.	114.	99.	50.	27.	0.	114.4
1600.	114.	99.	47.	27.	0.	113.8
2000.	113.	98.	45.	27.	0.	113.0
2500.	112.	97.	42.	28.	Û.	112.0
3150.	110.	95.	39.	28.	0.	110.6
4000.	109.	94.	37.	28.	0.	109.0
5000.	107.	93.	34.	28.	0.	107.2
DASPL	129.6	108.3	81.7	37.8	0.0	129.7

CASE 9,809,8KRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RO =1.000 VA = 0. FT/S DOOR= CLOSED THETAS=-6. DEG VJ = 870. FT/S VGS = UP THETAP=19. DEG

WE BEKIND BEKOUTD RIBBON STA AT NOZ EX 208. 155. 374. 209. 141. AT WNG TE 425. 201. 212. 201. AT TR DEF 425. 141. 212. 193. AT TR EDG 449. 141. 212.

TRAIL EDGE 449. 193. 141. 212.

FIELD POINT 550. 130. 57.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON 8= 192.1 DELTA = 88.8

PEAK JET MIX LEVEL= 118. DB AT 244. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 98. DB AT 1200. HZ
STE= 76. , DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 101. DB AT 111. HZ
PEAK SEP LEVEL= 27. DB AT 4743. HZ
NO TBL ACTIVITY, A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICEBAR (BY CEMP AND SUM)

HZ	MIX	ИH	TE	SEP	TBL	SUM
25.	113.	78.	87.	2.	0.	113.0
31.	114.	79.	90.	3.	Û.	113.6
40.	114.	80.	93.	5.	Û.	114.3
50.	115.	82.	95.	7.	0.	115.0
63.	116.	83.	98.	8.	0.	115.7
80.	116.	84.	100.	10.	0.	116.4
100.	117.	86.	100.	12.	0.	117.1
125.	118.	87.	100.	13.	0.	117.7
160.	118.	88.	100.	15.	0.	118.2
200.	118.	90.	98.	17.	0.	118.1
250.	118.	91.	95.	18.	0.	117.6
315.	117.	92.	93.	20.	0.	117.4
400.	117.	94.	90.	21.	0.	116.7
500.	115.	95.	87.	22.	0.	115.5
630.	114.	96.	85.	23.	0.	114.2
800.	114.	97.	82.	23.	0.	114.0
1000.	114.	98.	79.	24.	Q.	114.0
1250.	114.	98.	77.	25.	٥.	113.7
1600.	113.	98.	74.	25.	0.	113.0
2000.	112.	97.	71.	25.	0.	112.2
2500.	111.	96.	69.	26.	0.	111.2
3150.	110.	94.	66.	26.	0.	109.8
4000.	108.	93.	63.	26.	0.	108.2
5000.	106.	92.	61.	26.	0.	106.4
DASPL	128.9					

CASE 13, WO1, BKRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 UA = 0. FT/S DODR= CLOSED THETAS=-6. DEG UJ = 870. FT/S UGS = UP THETAP=19. DEG

BL(IN) BL(DUT) RIBBON STA HL AT NOZ EX 374. 208. 155. 209. AT WHG TE 425. 201. 141. 212. AT TR DEF 425. 201. 141. 212. 449. 193. 141. AT TR EDG 212.

TRAIL EDGE 449. 193. 141. 212.

FIELD POINT 375. 212. 90.

FIELD POINT IN ZONE 1 AND IS INBOARD OF FLOW RIBBON S= 1.0 DELTA = 62.9

PEAK JET MIX LEVEL= 113. DB AT 613. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 126. DB AT 1200. HZ
STE= 76. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 92. DB AT 111. HZ
PEAK SEP LEVEL= 45. DB AT 4743. HZ
NO TBL ACTIVITY,A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

SEP TEL SUM MIX HH TE HZ 20. 108.5 105. 106. 79. 0. 25. 31. 106. 107. 81. 22. Ũ. 109.5 23. 107. 108. 84. Ũ. 110.6 40. 87. 25. 111.7 50. 107. 110. Û. 63. 108. 111. 90. 27. Ů. 112.8 91. 109. 28. 113.9 80. 112. Û. 115.1 100. 109. 114. 92. 30. 0. 125. 110. 115. 92. 32. 0. 116.2 91. 33. 0. 117.4 160. 111. 116. 89. 35. 200. 111. 118. ŭ. 118.6 87. 0. 250. 119. 37. 119.8 112. 38. 0. 121.0 315. 113. 120. 84. 39. Û. 122.2 400. 113. 122. 81. 500. 113. 123. 79. 40. Û. 123.4 76. 41. 124.6 124. Û. 630. 113. 73. 42. 0. 125.6 800. 114. 125. 114. 126. 71. 43. O. 126.1 1000. 126.2 126. 68. 43. 1250. 114. 0. 125.9 1600. 113. 126. 65. 44. O. 113. 125. 63. 44. 0. 125.2 2000. 124.0 124. 44. 0. 2500. 112. 60. 45. 122. 57. Õ. 122.7 3150. 110. 121. 55. 45. 0. 121.3 109. 4000. 45. 120.0 5000. 107. 120. 52. 0. DASPL 125.1 135.4 99.8 54.3 0.0135.8

113

CASE 14, WOZ, BKRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RO =1.000 VA = 0. FT/S DOOR= CLOSED THETAS=-6. DEG VJ = 870. FT/S UGS = UP THETAP=19. DEG

RIBBON STA WL BL(IN) BL(OUT) AT NOZ EX 208. 155. 374. 209. AT WHE TE 141. 425. 201. 212. AT TR DFF 425. 201. 141. 212. AT TR EDG 449. 193. 141. 212.

TRAIL EDGE 449. 193. 141. 212.

FIELD PDINT 395. 206. 90.

FIELD POINT IN ZONE 1 AND IS INBOARD OF FLOW RIBBON S= 21.0 DELTA = 57.5

PEAK JET MIX LEVEL= 119. DB AT 480. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 118. DB AT 1200. HZ
STE= 76. ;DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 92. DB AT 111. HZ
PEAK SEP LEVEL= 50. DB AT 4743. HZ
NO TBL ACTIVITY;A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICCEAR (BY COMP AND SUM)

HZ	MIX	NN	TE	SEP	TEL	SUM
25.	112.	98.	79.	25.	0.	112.0
З1.	112.	99.	81.	27.	Û.	112.7
40.	113.	100.	84.	29.	٥.	113.5
50.	114.	102.	87.	30.	0.	114.2
63.	115.	103.	89.	32.	0.	114.9
80.	115.	104.	91.	34.	0.	115.7
100.	116.	106.	92.	35.	O.	116.4
125.	117.	107.	92.	37.	0.	117.1
160.	117.	108.	91.	39.	0.	117.9
200.	118.	110.	89.	41.	0.	118.6
250.	119.	111.	86.	42.	0.	119.4
315.	119.	112.	84.	44.	٥.	119.9
400.	119.	114.	81.	45.	0.	120.1
500.	119.	115.	78.	46.	0.	120.2
630.	118.	116.	76.	47.	0.	120.4
800.	119.	117.	73.	47.	0.	121.1
1000.	119.	118.	70.	48.	0.	121.4
1250.	118.	118.	68.	49.	0.	121.2
1600.	118.	118.	65.	49.	0.	120.8
2000.	117.	117.	62.	49.	0.	120.0
2500.	116.	116.	60.	50.	0.	118.9
3150.	115.	114.	57.	50.	0.	117.5
4000.	113.	113.	54.	50.	Q.	116.0
5000.	111.	112.	52.	50.	0.	114.5
DASPL	130.6	127.4	99.4	59.7	0.0	132.3

CASE 10, F04, BKRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DODR= CLOSED THETAS=-6. DEG VJ = 870. FT/S VGS = UP THETAP=19. DEG

RIBBON STA WL BL(IN) BL(OUT) AT NOZ EX 209. 374. 208. 155. 141. AT WNG TE 425. 201. 212. AT TR OFF 425. 201. 141. 212. AT TR EDG 449. 193. 141. 212.

TRAIL EDGE 449, 193, 141, 212,

FIELD POINT 433. 199. 60.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 59.2 DELTA = 81.4

PEAK JET MIX LEVEL= 124. DB AT 437. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 108. DB AT 1200. HZ
STE= 76. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 69. DB AT 111. HZ
PEAK SEP LEVEL= 43. DB AT 4743. HZ
NO TBL ACTIVITY,APP VELOCITY TOO SMALL

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ	MIX	NN	TE	SEP	TBL	SUM
25.	117.	88.	56.	18.	Ŭ.	117.2
31.	118.	89.	58.	20.	0.	117.9
40.	119.	90.	61.	21.	0.	118.6
50.	119.	92.	64.	23.	0.	119.3
63.	120.	93.	66.	25.	Ú.	119.9
80.	121.	94.	68.	26.	0.	120.6
100.	121.	96.	69.	28.	0.	121.3
125.	122.	97.	69.	30.	0.	121.9
160.	123.	98.	68.	31.	0.	122.7
200.	123.	100.	66.	33.	0.	123.3
250.	124.	101.	64.	35.	0.	123.9
315.	124.	102.	61.	36.	0.	124.1
400.	124.	104.	58.	37.	0.	123.8
500.	123.	105.	56.	38.	0.	123.5
630.	123.	106.	53.	39.	0.	123.1
800.	123.	107.	50.	40.	0.	123.3
1000.	123.	108.	48.	40.	0.	123.3
1250.	123.	108.	45.	41.	0.	123.0
1600.	122.	108.	42.	42.	0.	122.4
2000.	121.	107.	40.	42.	0.	121.6
2500.	120.	106.	37.	42.	0.	120.5
3150.	119.	104.	34.	43.	0.	119.2
4000.	117.	103.	31.	43.	0.	117.6
5000.	116.	102.	29.	43.	0.	115.8
DASPL	135.5	117.4	76.7	52.3	0. 0	135.6

CASE 11, F 05, BKRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DODR= CLOSED THETAS=-6. DEG VJ = 870. FT/S VGS = UP THETAP=19. DEG

RIBBON STA WL BL(IN) BL(OUT) AT NOZ EX 374. 208. 155. 209. AT WMG TE 425. 201. 141. 212. AT TR OFF 425. 201. 141. 212. AT TR EDG 449. 193. 141. 212.

TRAIL EDGE 449. 193. 141. 212.

FIELD POINT 433. 199. 90.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 59.2 DELTA = 51.4

PERK JET MIX LEVEL= 128. DB AT 335. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 112. DB AT 1200. HZ
STE= 76. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 75. DB AT 111. HZ
PEAK SEP LEVEL= 61. DB AT 4743. HZ
NO TBL ACTIVITY,A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZ 25. 31.	MIX 121. 122.	NN 92. 93.	TE 61. 64.	SEP 36. 37.	TBL 0. 0.	SUM 121.4 122.1
40. 50.	123. 124.	94. 96.	67. 69.	39. 41.	0. 0.	122.9 123.6
63.	124.	97.	72.	42.	0.	124.3
80.	125.	98.	74.	44.	0.	125.1
100.	126.	100.	74.	46.	0.	125.8
125.	126.	101.	74.	47.	Õ.	126.5
160.	127.	102.	73.	49.	Ō.	127.3
200.	128.	104.	72.	51.	Ö.	127.9
250.	128.	1.05.	69.	52.	0.	128.0
315.	128.	106.	66.	54.	0.	127.7
400.	127.	108.	64.	55.	0.	127.5
500.	127.	109.	61.	56.	0.	127.0
630.	126.	110.	58.	57.	0.	126.0
800.	126.	111.	56.	57.	0.	125.9
1000.	126.	112.	53.	58.	O.	125.8
1250.	125.	112.	50.	59.	0,	125.5
1600.	125.	112.	48.	59.	0.	124.9
£J00.	124.	111.	45.	59.	٥.	124.1
2500.	123.	110.	42.	60.	Ũ.	123.1
3150.	121.	108.	40.	60.	0.	121.7
4000.	120.	107.	37.	60.	0.	120.1
5000.	118.	106.	34.	60.	0.	118.3

DASPL 139.1 121.4 82.1 69.8 0.0 139.1

we a mind the problem which have a tra things mind we want to be a city of the allower by

CASE 12, F06, BKRL (BRAKE RELEASE)

ALT= 0. FT USB = 0. DEG R/RD =1.000 VA = 0. FT/S DODR= CLOSED THETAS=-6. DEG VJ = 870. FT/S VGS = UP THETAP=19. DEG

WE BEKIND BEKOUTS RIBBON STA AT NOZ EX 374. 208. 155. 209. 425. AT WNG TE 201. 141. 212. AY TR OFF 425. 201. 141. 212. AT TR EDG 449. 193. 141. 212.

TRAIL EDGE 449. 193. 141. 212.

FIELD POINT 433. 199. 130.

FIELD POINT IN ZONE 3 AND IS INBOARD OF FLOW RIBBON S= 59.2 DELTA = 11.5

PEAK JET MIX LEVEL= 143. DB AT 123. HZ
CORRECTION FOR VGS APPLIED
DSPL= 5. DB F1= 2801. HZ
PEAK NEAR NOZ LEVEL= 127. DB AT 1200. HZ
STE= 76. ,DELTATE= 0.
PEAK TRAIL EDGE LEVEL= 84. DB AT 111. HZ
PEAK SEP LEVEL= 89. DB AT 4743. HZ
NO TBL ACTIVITY,A/P VELOCITY TOO SMALL

SPL-IN DB RE 200 PICOBAR (BY COMP AND SUM)

HZMIX MM TE SEP TEL SUM 71. 135.8 25. 136. 107. 64. Ü. 108. 74. 66. 0. 31. 137. 137.0 40. 138. 109. 77. 68. Ŭ. 138.5 79. 0. 139.7 50. 140. 111. 69. 82. 0. 141.0 141. 112. 71. 63. 80. 142. 113. 83. 73. 0. 142.1 115. 84. 74. Û. 142.6 100. 143. 143. 125. 116. 84. 76. Ü. 142.7 142. 117. 83. 78. 0. 142.4 160. 79. 141.8 200. 142. 119. 81. 0. 140.6 250. 141. 120. 79. 81. 0. 139. 121. 76. 82. ű. 139.3 315. 138. 123. 73. 83. Û. 138.0 400. 137. 71. 84. 0. 136.8 500. 124. 68. 85. Ũ. 135.6 630. 135. 125. 135. 127. 65. 800. 86. ů. 135.6 87. 135.6 1000. 135. 127. 63. Û. 0. 87. 135.3 1250. 135. 127. 60. 127. 57. 0. 134.7 1600. 134. 88. 55. 88. 134.0 2000. 133. 126. 0. 132. 125. 52. 88. 0. 132.9 2500. 89. 3150. 131. 124. 50. 0. 131.5 129.9 89. 4000. 129. 122. 47. 0. 89. 5000. 127. 121. 44. Ù. 128.2

7 4 10

فتستعونها أستاك فالمستعارة والمتعاقبا والمتعارة

A Maria Carant

SECTION V COMPUTER PLOTS

IOTES		
0	PREDICTED TOTAL NOISE CREATED	79/03/21.
V	PREDICTED TBL NOISE	79/03/21.
Ď	PREDICTED SEP NOISE	79/03/21.
	PREDICTED EDGE NOISE	79/03/21.
\$	PREDICTED NN NOISE	79/03/21.
Ă	PREDICTED MIXING NOISE	79/03/21.
_	•	

O M M O

OCTAVE

110

100

30f

I	7311							Se Se		
#	0 - j	10 6					1111	اندرا	10	₫
#			م	9-8-1	FB -B	-0-0				
#	-	1					8 8			∄
土	: !!		1418	* *		1111				劃
	2 3	4 5 (i i 10 ²		3 4 S	5 6 0 :	103 8	2 3	4 5 6	• 104

PLOT	X-DUCER	COND. ALT.	SPEED	N1	X 1MV	USBFA	OVERALL
SYMBOL	<u>NQ</u>	NO. LEIL	LEPSI	LRPMI	LFPSI	LDEGI	_1.DB.1
0	B04	\$150					133
Ÿ	804	\$150					101
Ō	B04	STSO					117
፟	804	\$150					109
Ó	B04	\$150					111
Ă	804	\$150					133

NOTES		
₩	PREDICTED TOTAL HOISE CREATED	79/03/21.
Ÿ	PREDICTED TBL WOISE	79/03/21.
Ò	PREDICTED SEP NOISE	79/03/21.
8	PREDICTED EDGE NOISE	79/03/21.
8	PREDICTED NN NOISE	79/03/21.
Ă	PREDICTED MIXING NOISE	79/03/21.

PLOT	X-DUCER	COND.	ALT.	SPEED	N I	YMIX	USBFA	OVERALL
SYMBOL	NO	_NQ	<u> LELL</u>	LEPSI	LRPM 1	IFPSI	10101	<u> 1081 </u>
Õ	805	S 150						148
₹	805	S T 50						117
Ō	805	ST50						107
Ø	805	S 7 50						104
Ø	805	S T 50						127
Ă	805	S T 50						148

NOTES		
0	PREDICTED TOTAL NOISE CREATED	79/03/21.
Ÿ	PREDICTED TBL NOISE	79/03/21.
Ó	PREDICTED SEP NOISE	79/03/21.
<u> </u>	PREDICTED EDGE NOISE	79/03/21.
Ó	PREDICTED NN NOISE	79/03/21.
Ă	PREDICTED MIXING NOISE	79/03/21.

PLOT	X-DUCER	COND.	ALT.	SPEED	NI	AMI X	USBFA	OVERALL
SYMBOL	<u>ND</u>	NO	<u> IEIL</u>	LFPS 1	LRPM 1	IFPS I	10661	1081
0	B07	S150						125
Ÿ	807	\$150						101
Ō	807	\$150						91
₹	807	\$150						108
Ø	807	\$150						103
Ă	807	\$150						125

HOTES		
Õ	PREDICTED TOTAL NOISE, CREATED	79/03/21.
7	PREDICTED TBL NOISE	79/03/21.
Ó	PREDICTED SEP NOISE	79/03/21.
ō	PREDICTED EDGE NOISE	79/03/21.
Ó	PREDICTED NN NOISE	79/03/21.
Ă	PREDICTED MIXING NOISE	79/03/21.

PLOT	X-OUCER	COND.	ALT.	SPEED	N 1	X IMV	USBFA	OVERALL
SYMBOL	<u>NO</u>	_NO_	TEIL	LFPS 1	LRPM 1	1 F.P.S.1	LDEG 1	_ I DB I
0	F04	\$150						147
Ÿ	F04	\$150						102
Ō	F 0 4	\$150						137
Ø	FO4	\$150						97
0	FQ4	\$150						126
Ā	FO4	ST50						1 47

MOTES		
0	PREDICTED TOTAL NOISE, CREATED	79/03/21.
V	PREDICTED TBL NOISE	79/03/21.
Ð	PREDICTED SEP NOISE	79/03/21.
<u>⊡</u> ◊	PREDICTED EDGE NOISE	79/03/21.
Ø	PREDICTED NN NOISE	79/03/21.
Δ	PREDICTED MIXING NOISE	79/03/21.

PLOT	X-DUCER	COND.	ALT.	SPEED	N I	X I MV	USBFA	OVERALL
SYMBOL	<u>NO.</u>	NO	<u>IFTI</u>	<u>l FPS 1</u>	I RPM 1	IFPS 1	LDEGI	1001
0	F 0 5	\$150						149
Ÿ	F 0 5	ST50						102
Ō	FOS	\$150						145
♦	FOS	ST50						111
0	FO5	ST50						126
Ā	FO5	\$150						1 47

NOTES		
0	PREDICTED TOTAL NOISE, CREATED	79/03/21.
Ŏ	PREDICTED TOL NOISE	79/03/21.
Ò	PREDICTED SEP NOISE	79/03/21.
፟	PREDICTED EDGE NOISE	79/03/21.
8	PREDICTED NN NOISE	79/03/21.
Ă	PREDICTED MIXING NOISE	79/03/21.

PREDICTION FOR OSRA TYPE AIRPLANE, BRAKE RELEASE-INBOARD ENGINE

PLOT	X-DUCER	COND.	ALT.	SPEED	NI	X IMV	USBFA	OVERALL
SYMBOL	NO.	NO.	IFIL	IFPS 1	LRPM 1	IFPS I	LDEGI	_LDB_L
0	BQ 1	BKRL						158
₹	B01	BKRL						137
Ō	801	BKRL						103
Ø	801	BKRL						94
0	B01	BKRL						137
Ã	801	BKRL						158

MOTES		
0	PREDICTED TOTAL NOISE.CREATED	79/03/16.
Ÿ	PREDICTED TBL NOISE	79/03/16.
Ò	PREDICTED SEP NOISE	79/03/16.
Ø	PREDICTED EDGE NOISE	79/03/16.
Ŏ	PREDICTED NN NOISE	79/03/16.
Ă	PREDICTED MIXING NOISE	79/03/16.

PREDICTION FOR OSRA TYPE AIRPLANE, BRAKE RELEASE-INBOARD ENGINE

PLOT	X-DUCER	COND.	ALT.	SPEED	NI	X IMV	USBFA	OVERALL
SYMBOL	NO.	NO	IFIL	LEPS 1	I RPM 1	I FPS I	LDEGI	<u> </u>
0	B02	BKRL						142
Ÿ	B 02	BKRL						0
Ó	B02	BKRL						124
Ø	B02	BKRL						121
Ø	802	BKRL						142

MOIES		
0	PREDICTED TOTAL NOISE CREATED	79/03/16.
Ÿ	PREDICTED SEP NOISE	79/03/16.
Ŏ O	PREDICTED EDGE NOISE	79/03/16.
 ✓	PREDICTED NN NOISE	79/03/15.
Ŏ	PREDICTED MIXING NOISE	79/03/16.

PLOT	X-DUCER	COND.	ALT.	SPEED	NI	XIMV	USBFA	OVERALL
SYMBOL	NO.	NO	IFIL	I FPS 1	I RPM I	LEPSI	TOEGI	1081
0	B03	BKRL						137
∀	B03	BKRL						Ü
0	803	BKRL						128
ø	B03	BKRL						114
0	B03	BKRL						137

NOTES		
0	PREDICTED TOTAL NOISE CREATED	79/03/16.
Ÿ	PREDICTED SEP NOISE	79/03/16.
Ò	PREDICTED EDGE NOISE	79/03/16.
8	PREDICTED NN NOISE	79/03/16.
Ó	PREDICTED MIXING NOISE	79/03/16.

PLOT	X-DUCER	COND. ALT.	SPEED	NI	X IMV	USBFA	OVERALL
SYMBOL	<u>NO.</u>	NO. IFT	IFPS 1	LRPM 1	IFPS !	LDEGI	LDBI
0	BO4	BKRL					1 47
₹	804	BKRL					0
•	B04	BKRL					117
Ø	BO4	BKRL					127
0	804	BKRL					1 47

FREQUENCY (HZ)

NOTES		
0	PREDICTED TOTAL NOISE, CREATED	79/03/16.
Ÿ	PREDICTED SEP NOISE	79/03/16.
ā	PREDICTED EDGE NOISE	79/03/16.
ō	PREDICTED NN NOISE	79/03/16.
Ó	PREDICTED MIXING NOISE	79/03/16.

PLOT	X-DUCER	COND. ALT.	SPEED	N1	VMLX	USBFA	OVERALL
SYMBOL	NO.	NO. IFTI	<u>LFPS I</u>	L RPM 1	I FPS 1	LDEGI	1081
<u> </u>	805	BKRL					1.45
Ÿ	805	BKRL					0
Ō	805	BKRL					117
Ō	B05	BKRL					124
Ó	905	BKRL					145

NOTES		
0	PREDICTED TOTAL NOISE CREATED	79/03/16.
V	PREDICTED SEP NOISE	79/03/16.
Ó	PREDICTED FOGE NOISE	79/03/16.
⊙⊽⊡⊗ଚ	PREDICTED NN HOISE	79/03/16.
Ó	PREDICTED MIXING NOISE	79/03/16.

PREDICTION FOR OSRA TYPE AIRPLANE, BRAKE RELEASE-INBOARD ENGINE 4 0 0 0 a I 00 100 102 2 FREQUENCY [HZ]

PLOT	X-DUCER	COND. AL	T. SPEED	N I	X IMV	USBFA	OVERALL
SYMBOL	NO.	NO. JE	TI IFPSI	I RPM I	<u> I FPS I</u>	<u>L DEG 1</u>	1081
<u> </u>	806	BKRL					136
Ÿ	B06	BKRL					0
Ó	B06	BKRL					124
□	B06	BKRL					114
Ó	806	BKRL					136

NOTES O O O O		
0	PREDICTED TOTAL NOISE, CREATED	79/03/16.
Ÿ	PREDICTED SEP NOISE	79/03/16.
Ò	PREDICTED EDGE NOISE	79/03/16.
<u> </u>	PREDICTED NN NOISE	79/03/16.
Ò	PREDICTED MIXING NOISE	79/03/16.

PREDICTION FOR OSRA TYPE AIRPLANE, BRAKE RELEASE-INBOARD ENGINE 150 40 **60** 1 - 0 02 20 1 40 ٩X 0 00 130 8 120 ت. مں S BANC 110 100 90 102 8 104 5 6 8 103 4 5 6 FREQUENCY [HZ] X-DUCER COND. ALT. NO. NO. IFTI SPEED NI VMIX USBFA IFPSI IRPMI IFPSI IDEGI PLOT USBFA OVERALL SYMBOL 1.08.1 BKRL B07 137 BKRL B07 000 BKRL B07 118 BKRL B07 117 BKRL **B07** 137

PREDICTED TOTAL NOISE CREATED	79/03/16.
PREDICTED SEP NOISE	79/03/16.
PREDICTED EDGE NOISE	79/03/16.
PREDICTED NN NOISE	79/03/16.
PREDICTED MIXING NOISE	79/03/16.
	PREDICTED SEP NOISE PREDICTED EDGE NOISE PREDICTED NN NOISE

NOTES		
0	PREDICTED TOTAL NOISE CREATED	79/03/16.
♥	PREDICTED TBL NOISE	79/03/16.
Ō	PREDICTED SEP NOISE	79/03/16.
Ö	PREDICTED EDGE NOISE	79/03/16.
Ŏ	PREDICTED NN NOISE	79/03/16.
Ă	PREDICTED MIXING NOISE	79/03/16.

PLOT Symbol	X-DUCER NO.	COND.	ALT.	SPEED LEPS 1	NI (RPM)	VMIX LEPSI	USBFA LDEGI	OVERALL
0	702	BKRL		## !!#	1.111.11	11111	1000	152
Ÿ	V02	BKRL						137
Ò	V02	BKRL						0
Ø	V02	BKRL						111
0	V02	BKRL						144
Ā	V02	BKRL						151

HOTES		
0	PREDICTED TOTAL NOISE, CREATED	79/03/16.
₹	PREDICTED TBL NOISE	79/03/16.
0	PREDICTED SEP NOISE	79/03/16.
⊘	PREDICTED EDGE NOISE	79/03/16.
Ø	PREDICTED NN NOISE	79/03/16.
Δ	PREDICTED MIXING NOISE	79/03/16.

PLOT	X-DUCER	COND.	ALT.	SPEED	N I	XIMV	USBFA	OVERALL
SYMBOL	NO	NO.	LFIL	[FPS]	L RPM]	[FPS]	L DEG 1	1081
0	FO4	BKRL						159
⊽	F04	BKRL						137
0	F04	BKRL						96
٥	F04	BKRL						96
0	FO4	BKRL						140
Å	F04	BKRL						159

NOTES		
0	PREDICTED TOTAL NOISE CREATED	79/03/16.
Ä	PREDICTED TBL NOISE	79/03/16.
Ó	PREDICTED SEP NOISE	79/03/16.
<u> </u>	PREDICTED EDGE NOISE	79/03/16.
Ö	PREDICTED NN NOISE	79/03/16.
Ã	PREDICTED MIXING NOISE	79/03/16.

PREDICTION FOR OSRA TYPE AIRPLANE.BRAKE RELEASE-INBOARD ENGINE **∢** ⇔ **⇔** ₁ . 0 04 uu 140 ٩Z 00 130 œ 8 0 120 سرب من S 0 BANI 110 CTAVE 100 0 90 102 8 103 104 2 4 5 6 2 В 2 3 FREQUENCY LHZ I COND. SPEED NI X IMV USBFA OVERALL PLOT X-DUCER ALT. LDB.L SYMBOL NO. NO. IFTI IFPSI IRPNI IFPSI IDEGI 0 159 F06 BKRL 137 F06 BKRL Ò 107 F06 BKRL 97 F08 BKRL 140 FO6 BKRL 159 F06 BKRL NOTES 79/03/16. PREDICTED TOTAL NOISE.CREATED 79/03/16. PREDICTED TBL NCISE 79/03/16. PREDICTED SEP NOISE 79/03/16. PREDICTED EDGE NOISE 79/03/16. PREDICTED NN NOISE PREDICTED MIXING NOISE 79/0...16.

PLOT	X-DUCER	COND.	ALT.	SPEED	N1	VMI X	UŞBFA	OVERALL
SYMBOL	<u>NO</u>	NO.	TEIT	<u>LEPS I</u>	I RPM]	IFPSI	10101	<u> 1081 </u>
0	B01	\$150						129
7	B01	STSO						102
Ō	BOI	5150						95
•	B01	S150						83
Ø	BOI	S150						106
Ā	B01	S150						128

NOTES		
0	PREDICTED TOTAL NOISE CREATE	0 79/03/22.
⊙	PREDICTED TBL NOISE	79/03/22.
Ò	PREDICTED SEP NOISE	79/03/22.
ŏ	PREDICTED EDGE NOISE	79/03/22,
Ò	PREDICTED NN NOISE	79/03/22.
Ă	PREDICTED MIXING NOISE	79/03/22.

PLOT Symbol	X-DUCER NO.	COND.	ALT. IFTI	SPEED LFES 1	N ({ RPM }	VMIX LEPSI	USBFA LDEG1	OVERALL
9	B04	\$150	-	-	المستديد	-	*****	126
Ÿ	804	\$150						101
Ō	B04	S T50						91
•	B04	\$150						93
Ø	B04	\$150						103
۵	804	\$150						126

79/03/22.
79/03/22.
79/03/22.
79/03/22.
79/03/22.
79/03/22.

PLOT	X-DUCER	COND.	ALT.	SPEED	N1	X IMV	USBFA	OVERALL
SYMB OL	<u>NO</u>	NO	JELL	IFPS.I	I RPM I	<u>LEPS I</u>	T DEC 1	<u> 1081</u>
0	B05	\$150						125
Ÿ	B05	S150						101
Ò	B05	S150						90
፟	B05	\$150						89
Ò	B05	\$150						103
Ă	B05	\$150						125

NOTES		
0	PREDICTED TOTAL NOISE CREATED	79/03/22.
Ť	PREDICTED TBL NOISE	79/03/22.
Ó	PREDICTED SEP NOISE	79/03/22.
፟	PREDICTED EDGE NOISE	79/03/22.
Ò	PREDICTED NN NOISE	79/03/22.
Ā	PREDICTED MIXING NOISE	79/03/22.

PLOT	X-OUCER	COND.	ALT.	SPEED	N 1	X IMV	USBFA	OVERALL
SYMBOL	<u>NO.</u>	NO.	JII	[FPS]	[RPM]	LEPSI	[DEG]	1081
0	B07	\$150						121
Ā	807	S150						101
Ò	BO <i>7</i>	5150						82
□	807	ST50						98
Ó	907	S150						100
Ā	B07	\$150						121

NOTES		
0	PREDICTED TOTAL NOISE CREATED	79/03/22.
Ÿ	PREDICTED TBL NOISE	79/03/22.
Ò	PREVICTED SEP NOISE	79/03/22.
⊡ ♦	PREDICTED EDGE NOISE	79/03/22.
Ŏ	PREDICTED NN NOISE	79/03/22.
Ã	PREDICTED MIXING HOISE	79/03/22.

PLOT SYMBOL	X-DUCER NO.	COND.	ALT. <u>IFT</u>	SPEED LEPS 1	NI LRPM I	VMIX LEPSI	USBFA LDEG1	OVERALL 1081
9	809	\$150						121
Ÿ	809	STSO						101
Ó	BUB	S150						0
Ø	809	\$150						90
Ó	809	S 150						100
Ă	809	ST50						121

NOTES		
0	PREDICTED TOTAL NOISE CREATED	79/03/22.
Ť	PREDICTED TBL NOISE	79/03/22.
Ò	PREDICTED SEP NOISE	79/03/22.
	PREDICTED EDGE NOISE	79/03/22.
8	PREDICTED NN NOISE	79/03/22.
Ā	PREDICTED MIXING NOISE	79/03/22.

我是他们的时候,我们就是这种的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就会会会会会会会会会会会会会会会

PLOT SYMBOL	X-DUCER NO.	COND. ALT.	SPEED LFPS1	51 18201	VMIX LFPS I	USBFA Loegi	OVERALL [DB]
0	VOI	\$150					128
Ÿ	WO1	\$150					102
Ö	V01	\$150					92
Ø	WOI	5150					0
Ø.	104	5150					127
Δ	VOI	S150					117

NOTES		
อ	PREDICTED TOTAL NOISE CREATED	79/03/22,
Ÿ	PREDICTED TBL NOISE	79/03/22.
Ō	PREDICTED SEP NOISE	79/03/22.
8	PREDICTED EDGE NOISE	79/03/22.
Ó	PREDICTED NN NOISE	79/03/22.
Ā	PREDICTED MIXING NOISE	79/03/22.

TOJ9 108my2	X - DUCER	COND.	ALT.	SPEED LFPS I	N 1 [R P M 1	VMIX [FPS]	USBFA I DEG 1	OVERALL 1081
9	V02	\$150						124
Ť	V02	\$150						102
Ò	W02	\$150						98
♦	¥02	\$150						83
٥	V02	ST50						119
Ă	¥02	\$150						122

2 3 4 5 6 FREQUENCY LHZ I 9 10³

NOTES		
0	PREDICTED TOTAL NOISE, CREATED	79/03/22.
Ÿ	PREDICTED TBL NOISE	79/03/22.
Ò	PREDICTED SEP NOISE	79/03/22.
፟	PREDICTED EDGE NOISE	79/03/22.
Õ	PREDICTED NN NOISE	79/03/22.
Ā	PREDICTED MIXING NOISE	79/03/22.

8 104

PLOT	X-DUCER	COND.	ALT.	SPEED	Ņ1	X I MV	USBFA	OVERALL
SYMBOL	<u>NO</u>	<u>NO</u>	IFTL.	<u>LFPS I</u>	[RPM]	<u> </u>	<u>LQEG1</u>	<u> 1 DB 1</u>
0	FO1	S150						127
Ÿ	FOI	S T50						102
Ō	FO1	\$150						94
<u></u>	FOI	\$150						88
Ó	FOI	ST50						110
Ă	FOI	\$150						127

NOTES			
0	PREDICTED TOTAL NO	ISE, CREATED	79/03/22.
Ÿ	PREDICTED TBL NOIS	E	79/03/22.
Ò	PREDICTED SEP NOIS	E	79/03/22.
ō	PREDICTED EDGE NOT	SE	79/03/22,
Ó	PREDICTED NN NOISE		79/03/22.
Ā	PREDICTED MIXING N	OISE	79/03/22.

PLOT	X-DUCER	COND.	ALT.	SPEED	NI	X IMV	USBFA	OVERALL
SYMBOL	NO.	NO.	IFIL	IFPS I	<u> I RPM I</u>	[FPS]	LDEGI	1081
0	F 0 2	\$150						131
Ÿ	FQ2	STSO						1 0 2
Ó	FO2	\$150						111
Ø	FO2	STSO						93
0	F 0 2	STSO						113
Ā	F 0 2	S150						131

NOTES		
<u> </u>	PREDICTED TOTAL NOISE CREATED	79/03/22.
Ÿ	PREDICTED TBL NOISE	79/03/22.
Ó	PREDICTED SEP NOISE	79/03/22.
⊡ ♦	PREDICTED EDGE NOISE	79/03/22.
Ò	PREDICTED NN NOISE	79/03/22.
Ā	PREDICTED MIXING NOISE	79/03/22.

PLOT SYMBOL	X-DUCER NO.	COND.	ALT. _IFTI	SPEED LFPS I	NI I RPM I	VMIX Lepsi	USBFA LDEGI	OVERALL
0	FQ3	\$150						142
Ÿ	F03	\$150						102
0	F03	\$150						123
◊	F03	S T 5 0						101
0	FQ3	S150						126
Δ	F03	STSO						142

FREQUENCY [HZ]

MOTES		
· O	PREDICTED TOTAL NOISE CREATED	79/03/22.
A	PREDICTED TBL NOISE	79/03/22.
0	PREDICTED SEP NOISE	79/03/22.
•	PREDICTED EDGE HOISE	79/03/22.
0	PREDICTED NN NOISE	79/03/22.
Δ	PREDICTED MIXING NOISE	79/03/22.

PLOT	X-DUCER	COND.	ALT.	SPEED	N I	X IMV	USBFA	OVERALL
SYMBOL	<u>NO.</u>	NO	FIL	IFPS 1	I RPM I	I FPS 1	1 DEG 1	<u> [0 B] </u>
0	F04	\$150	•					128
▽	FO4	ST50						102
•	FO4	ST50						97
Ø	FO4	S 1 5 0						77
Ó	FO4	\$150						107
Ā	FO4	\$150						128

<u>notes</u>		
0	PREDICTED TOTAL NOISE CREATED	79/03/22.
Ÿ	PREDICTED TOL NOISE	79/03/22.
0	PREDICTED SEP NOISE	79/03/22.
Ó	PREDICTED EDGE NOISE	79/03/22.
Ò	PREDICTED NN NOISE	79/03/22.
Δ	PREDICTED MIXING NOISE	79/03/22.

PREDICTION FOR OSRA TYPE AIRPLANE. BRAKE RELEASE-OUTBOARD ENGINE

PLOT Symbol	X-DUCER	COND.	ALT.	SPEED (FPS)	N1 I RPM I	YM1X LEPS I	USBFA	OVERALL I DB I
	<u> NO.</u>			11621	TKPMI	11621	LULUI	
0	801	BKRL						135
Ÿ	BO 1	BKRL						0
0	B O1	BKRL						0
፟	801	BKRL						114
Ó	BO 1	BKRL						135

NOTES		
0	PREDICTED TOTAL NOISE, CREATED	79/03/22.
Ÿ	PREDICTED SEP NOISE	79/03/22.
Ó	PREDICTED EDGE NOISE	79/03/22.
□ ◊ ◊	PREDICTED NN NOISE	79/03/22.
Ò	PREDICTED MIXING NOISE	79/03/22.

PLOT	X-DUCER	COND.	ALT.	SPEED	N1	VMIX	USBFA	OVERALL
SYMBOL	<u> NO.</u>	NO	<u> IEIL</u>	[FPS]	[RPM]	LFPS.1	1 DEG 1	1081
0	802	BKRL	_					134
Ÿ	B05	BKRL						0
Ó	B02	BKRL						107
ŏ	B02	BKRL						113
Ó	B02	BKRL						134

<u>notes</u>		
0	PREDICTED TOTAL NOISE.CREATED	79/03/22.
Ÿ	PREDICTED SEP NOISE	79 /03/22.
Ó	PREDICTED EDGE NOISE	79/03/22.
ŏ	PREDICTED NN NOISE	79/03/22.
Ò	PREDICTED MIXING NOISE	79/03/22.

PLOT	X-DUCER	COND.	ALT.	SPEED	NI	X I MV	USBFA	OVERALL
SYMBOL	<u>NO</u>	NO.	IFIL	IFPS 1	I RPM I	IFPS I	10201	
0	B03	BKRL						132
V	B03	BKRL						0
Ō	B03	BKRL						114
0	803	BKRL						111
Ø	B03	BKRL						132

MOTES		
0	PREDICTED TOTAL NOISE, CREATED	79/03/22.
V	PREDICTED SEP NOISE	79/03/22.
Ó	PREDICTED EDGE NOISE	79/03/22.
፟	PREDICTED NN NOISE	79/03/22.
Ò	PREDICTED MIXING NOISE	79/03/22.

PREDICTION FOR OSRA TYPE AIRPLANE. BRAKE RELEASE-OUTBOARD ENGINE

PLOT	X-DUCER	COND.	ALT.	SPEED	N I	X IMV	USBFA	OVERALL
SYMB OL	NO.	NO.	IFTL	I FPS 1	[RPM]	IFPS 1	LDEGI	1 DB 1
0	804	BKRL						133
▽	B04	BKRL						0
•	B04	BKRL						104
◊	B04	BKRL						111
0	B04	BKKL						133

PREDICTED TOTAL NOISE CREATED	79/03/22.
PREDICTED SEP NOISE	79/03/22.
PREDICTED EDGE NOISE	79/03/22.
PREDICTED NN NOISE	79/03/22.
PREDICTED MIXING NOISE	79/03/22.
	PREDICTED SEP NOISE Predicted edge noise Predicted NN Noise

PREDICTION FOR OSRA TYPE AIRPLANE. BRAKE RELEASE-OUTBOARD ENGINE

PLOT	X-DUCER	COND.	ALT.	SPEED	N1	VM1 X	USBFA	OVERALL
SYMBOL	NO	NO.	<u>IFII</u>	I FPS I	LRPM.I	LFPS I	10561	
0	B05	BKRL						132
▽	BOS	BKRL						0
0	BOS	BKRL						105
Ø	B05	BKRL						111
0	B05	BKRL						132

NOTES			
0-	PREDICTED	TOTAL NOISE CREATED	79/03/22.
Ÿ	PREDICTED	SEP NOISE	79/03/22.
Ó	PREDICTED	EDGE NOISE	79/03/22.
Ō	PREDICTED	NN NOISE	79/03/22.
Ó	PREDICTED	MIXING NOISE	79/03/22.

PREDICTION FOR OSRA TYPE AIRPLANE. BRAKE RELEASE-OUTBOARD ENGINE

PLOT	X-DUCER	COND.	ALT.	SPEED	N1	XIMV	USBFA	OVERALL
SYMBOL	<u> NO.</u>	<u>NO.</u>	111	<u> FPS 1</u>	<u> I RPM I</u>	[FPS]	L DEG 1	<u> 1 08 1 </u>
0	806	BKRL						131
∀	B06	BKRL						0
0	B06	BKRL						114
♦	806	BKRL						109
Ø	806	BKRL						131

NOTES		
0	PREDICTED TOTAL NOISE, CREATED	79/03/22.
Ÿ	PREDICTED SEP NOISE	79/03/22.
Ö	PREDICTED EDGE NOISE	79/03/22.
♦	PREDICTED NN NOISE	79/03/22.
Ó	PREDICTED MIXING NUISE	79/03/22.

PLOT	X-DUCER	COND.	ALT.	SPEED	N I	X IMV	USBFA	OVERALL
SYMBOL	<u>NO.</u>	<u>NO.</u>	<u> [F]</u>	I FPS I	I RPM :	LFPS 1	LDESI	1081
0	B07	BKRL						130
V	B07	BKRL						0
0	B07	BKRL						110
Ø	807	BKRL						108
Ø	B07	BKRL						130

NOTES		
<u> </u>	PREDICTED TOTAL NOISE CREATED	79/03/22.
∀	PREDICTED SEP NOISE	79/03/22.
0	PREDICTED EDGE NOISE	79/03/22.
ô	PREDICTED NN NOISE	79/03/22.
0	PREDICTED MIXING NOISE	79/03/22.

PREDICTION FOR OSRA TYPE AIRPLANE, BRAKE RELEASE-OUTBOARD ENGINE

PLOT	X-DUCER	COND.	ALT.	SPEED	N 1	X IMV	USBFA	OVERALL
SYMBOL	NO.	<u>NO.</u>	IFTI	IFPS I	I RPM I	IFPS 1	LDEGI	I DB 1
0	808	BKRL				-		130
▽	808	BKRL						0
Ó	908	BKRL						82
Ō	808	9KRL						108
Ø	808	BKRL						130

NOTES		
0	PREDICTED TOTAL NOISE CREATED	79/03/22.
Ÿ	PREDICTED SEP NOISE	79/03/22.
Ō	PREDICTED EDGE NOISE	79/03/22.
<u> </u>	PREDICTED NN NOISE	79/03/22.
ò	PREDICTED MIXING NOISE	79/03/22.

PLOT SYMBOL	X-DUCER NO.	COND.	ALT.	SPEED [FPS]	N1 [RPM]	VMIX LFPS I	USBFA LDEGI	OVERALL 1081
0	BO9	BKRL						129
Ÿ	809	BKRL						0
0	809	BKRL						108
፟	BO9	BKRL						107
Ø	B09	BKRL						129

NOTES		
0	PREDICTED TOTAL NOISE CREATED	79/03/22.
Ÿ	PREDICTED SEP NOISE	79/03/22.
Ò	PREDICTED EDGE NOISE	79/03/22.
♦	PREDICTED NN NOISE	79/03/22.
Ó	PREDICTED MIXING NOISE	79/03/22.

PLO T	X-DUCER	COND.	ALT.	SPEED	N I	X IMV	USBFA	OVERALL
SYMBOL	<u>NO.</u>	NO.	IFIL	IFPSI	I RPM I	I FPS 1	LDEGI	<u> 1081</u>
0	WO1	BKRL						136
Ÿ	WOL	BKRL						0
Ó	VOI	BKRL						100
ቒ	VOI	BKRL						135
Ó	VOI	BKRL						125

NOTES		
0	PREDICTED TOTAL NOISE.CREATED	79/03/22.
Q V	PREDICTED SEP NOISE	79/03/22.
Ò	PREDICTED EDGE NOISE	79/03/22.
ō	PREDICTED NN NOISE	79/03/22.
ò	PREDICTED MIXING NOISE	79/03/22.

PREDICTION FOR OSRA TYPE AIRPLANE, BRAKE RELEASE-OUTBOARD ENGINE

PLOT Symbol	X-DUCER NO.	CONB.	ALT. LETL	SPEED [FPS]	N 1 [R P M]	VM[X [FPS]	USBFA LDEG1	OVERALL 1081
0	¥02	BKRL						132
Ý	VO2	BKRL						0
Ó	V02	BKRL						100
Ō	V02	BKRL						127
Ø	V02	8KRL						131

NOTES		
0	PREDICTED TOTAL HOISE CREATED	79/03/22.
Ÿ	PREDICTED SEP NOISE	79/03/22.
Ō	PREDICTED EDGE NOISE	79/03/22.
<u> </u>	PREDICTED NN HOISE	79/03/22.
Ŏ	PREDICTED MIXING NOISE	79/03/22.

PLOY Symbol	X-DUCER NO.	COND.	ALT. LFTL	SPEED (FPS)	N 1 [R P M]	VMIX LFPS.I	USBFA LDEGI	OVERALL
0	F04	BKRL						136
V	FO4	BKRL						O
Ó	F04	BKRL						0
Ø	F04	BKRL						117
٥	F04	BKRL						135

NOTES		
0	PREDICTED TOTAL HOISE CREATE	D 79/03/22.
ğ	PREDICTED SEP NOISE	79/03/22.
Ó	PREDICTED EDGE NGISE	79/03/22.
<u> </u>	PREDICTED NN NOISE	79/03/22.
Ô	PREDICTED MIXING NOISE	79/03/22.

PLOT	X-DUCER	COND.	ALT.	SPEED	NI	VM1 X	USBFA	OVERALL
SYMBOL	<u>NO</u>	NO.	<u>IFIL</u>	IFPS 1	[RPM]	IFPS1	LDEGI	1081
0	FOS	BKRL						139
Ā	FO5	BKRL						0
Ò	FOS	BKRL						82
Ø	F05	BKRL						121
Ó	FO5	BKRL						139

NOTES		
0	PREDICTED TOTAL NOISE, CREATE	0 79/03/22.
Ÿ	PREDICTED SEP NOISE	79/03/22.
Ò	PREDICTED EDGE NOISE	79/03/22.
⊡ ♦	PREDICTED NN NOISE	79/03/22.
Ŏ	PREDICTED MIXING NOISE	79/03/22.

