

Mathématiques

Classe: BAC

Chapitre: Primitive

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Soit f la fonction définie sur $]0,+\infty[$ par : $f(x) = \frac{3x^4 - 2x^2 + 4}{x^2}$

- 1) Montrer que f admet au moins une primitive F sur $]0,+\infty[$.
- 2) Déterminer la fonction F tel que F(1) = 0.

Exercice 2

(5) 20 min

4 pt

Soit les fonctions f et g définie sur \mathbb{R} par : $f(x) = x \cos x$ et $g(x) = x \sin x$.

1)

- a) Calculer f'(x) + g(x).
- b) En déduire une primitive G de g sur $\mathbb R$.

2)

- a) Calculer f(x) g'(x).
- b) En déduire une primitive F de f sur \mathbb{R} .

Exercice 3

(S) 30 min

6 pt

Soit f la fonction définie sur I =]-1,1[par : $f(x) = \frac{1}{\sqrt{1-x^2}}$.

- 1) Montrer f admet une unique primitive F sur I tel que F(0) = 0.
 - 2) On pose : $\forall x \in I$; h(x) = F(-x) + F(x).
 - a) Montrer que $\forall x \in I$, on a : h'(x) = 0.
 - b) En déduire h(x).
 - c) Montrer alors que la fonction F est impaire.
 - 3) Soit G la fonction définie sur $J = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ par $G(x) = F(\sin(x))$.
 - a) Montrer que G est dérivable sur J et déterminer G'(x).
 - b) En déduire que $\forall x \in J$, on a : G(x) = x.
 - c) Calculer: $F\left(\frac{1}{2}\right)$; $F\left(\frac{\sqrt{2}}{2}\right)$ et $F\left(\frac{\sqrt{3}}{2}\right)$
 - d) Montrer que f^{-1} est continue et dérivable sur $[-1, +\infty[$.

Exercice 4

(5) 30 min

6 pt

Soit f la fonction définie sur [-2,2] par : $f(x) = \sqrt{4-x^2}$.

1)

- a) Montrer que f admet au moins une primitive sure [-2,2].
- b) Soit F la primitive de f sur $\left[-2,2\right]$ qui s'annule en 0. Etudier la partie de F .
- 2) Soit G_1 la fonction définie sur $[0,\pi]$ par $G_1(x) = F(2\cos x)$ et C sa courbe représentative.
 - a) Calculer $G_1\left(\frac{\pi}{2}\right)$.
 - b) Montrer que le point $I\!\left(\frac{\pi}{2},0\right)$ est un centre de symétrie de $\left(C\right)$.
 - c) Montrer que G_1 est dérivable sur $[0,\pi]$ et que $\forall x \in [0,\pi]$, on a : $G_1(x) = -4\sin^2 x$.

3)

- a) En déduire que $\forall x \in [0, \pi]$, on a : $G_1(x) = \pi 2x + \sin 2x$.
- b) Etudier les variations de G_1 .
- c) Calculer F(1); F(2); $F(\sqrt{2})$ et $F(\sqrt{3})$.
- 4) Soit G_2 la fonction définie sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ par $G_2(x) = F(2\sin x)$ et (C') sa courbe représentative.
 - a) Etudier la parité de G_2 .
 - b) En déduire que pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$; $G_2(x) = 2x + \sin 2x$.
 - c) Retrouver F(1); F(2); $F(\sqrt{2})$ et $F(\sqrt{3})$.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

