Clase 17

IIC 2133 - Sección 4

Prof. Sebastián Bugedo

# Sumario

#### Obertura

Algoritmos codiciosos

Dos aplicaciones

Epílogo

# ¿Cómo están?





Entendez-vous dans le feu tous ces bruits mystérieux?

Ce sont les tisons qui chantent: Compagnon, sois joyeux!

# Tercer Acto: Los jinetes de la salvación Estrategias de diseño de algoritmos



# Playlist 3



Playlist: DatiWawos Tercer Acto

Además sigan en instagram:

@orquesta\_tamen

# Problemas en computación

Hasta este punto hemos estudiado diversos tipos de problemas

- Ordenar una secuencia
- Buscar en un diccionario
- Determinar si un CSP tiene solución
- Determinar las soluciones de un CSP, en caso que tenga
- Determinar la mejor solución de un CSP, en caso que tenga
- . . . .

¿Podríamos agrupar estos problemas según rasgos comunes?

# Problemas en computación

Diremos que un problema computacional es un problema que puede resolverse con un algoritmo

¿Qué tipos de problemas computacionales existen?

Distinguiremos 5 tipos

# Tipos de problemas computacionales

- 1. Problemas de decisión
  - Pregunta binaria (Sí o No)
  - E.g. "Determine si el tablero de Sudoku T tiene solución"
- 2. Problemas de búsqueda
  - Secuencia de estados hasta alcanzar un estado objetivo
  - E.g. "Determine un camino para salir del laberinto L desde Θ"
- 3. Problemas de conteo
  - Número de soluciones diferentes
  - E.g. "Determine el número de configuraciones válidas de 8 reinas"
- 4. Problemas de optimización
  - Mejor solución de acuerdo a alguna métrica
  - E.g. "Determine el camino más corto de A a B en el mapa G"
- 5. Problemas de función
  - Solución explícita
  - E.g. "Determine una solución del Sudoku T"

# Backtracking y optimización

Backtracking es una técnica de diseño muy flexible

- Podemos atacar muchos tipos de problemas con ella
- PERO, no es la mejor solución para algunos

Especialmente, Backtracking no suele ser la mejor solución a los problemas de **optimización** 

¿Tenemos una mejor estrategia para optimización?

#### Problema de la mochila

#### Ejemplo

Considere el problema de la mochila con objetos fraccionables.

Tenemos n objetos y una mochila

- Los objetos tienen pesos  $\{w_1, \ldots, w_n\}$
- Los objetos tienen ganancias por unidad de peso  $\{p_1, \ldots, p_n\}$
- La mochila tiene una capacidad m, en peso
- Incluir una fracción  $x_k$  del objeto k proporciona ganancia  $p_k x_k$

### Problema de la mochila

### Ejemplo

Interesa llenar la mochila cumpliendo tres condiciones

Queremos maximizar la ganancia total

$$\sum_{k=1}^n p_k x_k$$

Esta es la función objetivo.

No podemos exceder la capacidad de la mochila

$$\sum_{k=1}^n w_k x_k \le m$$

Las fracciones deben cumplir

$$0 \le x_k \le 1, \quad 1 \le k \le n$$

#### Problema de la mochila

#### Ejemplo

Interesa llenar la mochila cumpliendo tres condiciones

- Maximizar función objetivo  $\sum_{k=1}^{n} p_k x_k$
- No podemos exceder la capacidad  $\sum_{k=1}^{n} w_k x_k \le m$
- Las fracciones deben cumplir  $0 \le x_k \le 1$  para  $1 \le k \le n$

Una **solución factible** es  $\{x_1, \ldots, x_n\}$  que cumple las dos últimas condiciones. Una **solución óptima** es una solución factible que maximiza la función objetivo.

¿Cómo escoger los valores  $x_k$  adecuados para encontrar una solución óptima? ¿Alguna idea?

## Objetivos de la clase

- ☐ Comprender el paradigma de algoritmos codiciosos
- ☐ Demostrar que una estrategia no es correcta como estrategia codiciosa
- ☐ Aplicar la estrategia codiciosa para obtener óptimos en problemas particulares

# Sumario

Obertura

Algoritmos codiciosos

Dos aplicaciones

Epílogo

Los algoritmos codiciosos plantean una estrategia algorítmica basada en el paradigma de subconjuntos

- 1. Tenemos conjunto  $S = \{s_1, \dots, s_n\}$  con n inputs
- 2. Queremos un subconjunto  $S' \subseteq S$  que satisfaga restricciones
- Queremos solución factible que maximice o minimice una función objetivo

Un subconjunto S' que cumple las restricciones se llama factible. Una solución que maximiza/minimiza se llama óptima

Esta es una concepción teórica Veremos su aplicación a problemas concretos

#### Los algoritmos codiciosos trabajan en etapas

- Consideran un input a la vez
- Una vez que se decide sobre un input, la decisión es final
- Ninguna decisión posterior cambia la actual

#### En el caso del problema de la mochila

- Se trata de seleccionar un subconjunto de objetos
- Y determinar la fracción  $x_k$

Para lograr este objetivo, debemos considerar los input en cierto orden

- Se usa un procedimiento de selección
- Si la inclusión del próximo input en la solución óptima parcial produce solución infactible, no lo consideramos
- En otro caso, el input se agrega a la solución

¿Qué diferencia hay con backtracking?

El procedimiento de selección se basa en una medida de optimización o estrategia codiciosa

- Seleccionamos un input de forma localmente óptima
- Esperamos que esa selección nos lleve a una solución globalmente óptima

¿Qué estrategias codiciosas podemos usar?

#### Ejemplo

Para el problema de la mochila, podemos considerar las siguientes estrategias codiciosas *para la etapa actual del algoritmo* 

- Incluir el objeto con mayor ganancia
- Incluir el con menor peso
- Incluir el que tenga mayor cuociente ganancia/peso

Normalmente, la mayoría de las estrategias no producen soluciones óptimas

#### Ejemplo

Considere la siguiente instancia del problema de la mochila con m = 20 y n = 3

- pesos  $w_1 = 18$ ,  $w_2 = 15$ ,  $w_3 = 10$
- ganancias  $p_1 = 25$ ,  $p_2 = 24$ ,  $p_3 = 15$

#### Algunas soluciones factibles

| estrategia          | $x_1$ | <i>x</i> <sub>2</sub> | <i>X</i> <sub>3</sub> | $\sum_{k=1}^{n} w_k x_k$ | $\sum_{k=1}^{n} p_k x_k$ |
|---------------------|-------|-----------------------|-----------------------|--------------------------|--------------------------|
| mayor ganancia      | 1     | 2/15                  | 0                     | 20                       | 28.2                     |
| menor peso          | 0     | 2/3                   | 1                     | 20                       | 31                       |
| mayor ganancia/peso | 0     | 1                     | 1/2                   | 20                       | 31.5                     |

En este problema, el óptimo se encuentra privilegiando ganancia/peso

#### Dado un problema

- Varias estrategias codiciosas pueden ser plausibles
- La mayoría produce soluciones subóptimas

Para garantizar que una estrategia produce soluciones óptimas es necesario demostrarlo

En este curso, no nos preocuparemos de ese último aspecto

```
\begin{array}{ll} \textbf{input} & : \text{Arreglo de inputs } A[0 \ldots n-1], \text{ cantidad de inputs } n \\ & \text{Greedy}(A,n) \colon \\ 1 & S \leftarrow \varnothing \\ 2 & \textbf{for } i=1 \ldots n \colon \\ 3 & \times \leftarrow \text{Select}(A) \\ 4 & \textbf{if } \text{Feasible}(S,x) \colon \\ 5 & S \leftarrow \text{Union}(S,x) \\ 6 & \textbf{return } S \end{array}
```

Tal como en backtracking, esta es una idea abstracta... Su implementación dependerá de cada problema

# Sumario

Obertura

Algoritmos codiciosos

Dos aplicaciones

Epílogo

Consideremos el problema de escoger tareas

- La tarea *i* tiene un plazo *d<sub>i</sub>* (día del mes)
- Además tiene una ganancia  $p_i$  que se obtiene si la tarea se hace a tiempo (antes del plazo)

Una tarea toma **un día en completarse** y solo se puede realizar **una tarea al día** y

Objetivo: maximizar la ganancia total

Una solución factible será un subconjunto T se tareas que se pueden realizar en algún orden

■ El **valor** de *T* será

$$p(T) = \sum_{k \in T} p_k$$

Una solución factible T es óptima si su valor p(T) es máximo

#### Ejemplo

Suponiendo que hoy es el día 0, sean las tareas  $\{1, 2, 3, 4\}$  tales que

- Sus plazos son  $[d_1, d_2, d_3, d_4] = [2, 1, 2, 1]$
- Sus ganancias son  $[p_1, p_2, p_3, p_4] = [100, 10, 15, 27]$

Consideremos la estrategia: escoger la tarea que entrega más ganancia cada día

Es decir, estamos usando la función objetivo como estrategia codiciosa

### Ejemplo

Suponiendo que hoy es el día 0, sean las tareas  $\{1,2,3,4\}$  tales que

- Sus plazos son  $[d_1, d_2, d_3, d_4] = [2, 1, 2, 1]$
- Sus ganancias son  $[p_1, p_2, p_3, p_4] = [100, 10, 15, 27]$

#### Tenemos entonces

| Solución factible $T$ | Orden de procesam. | Valor $p(T)$ |
|-----------------------|--------------------|--------------|
| {1,2}                 | 2,1                | 110          |
| {1,3}                 | 1,3 o 3,1          | 115          |
| {1,4}                 | 4,1                | 127          |
| {2,3}                 | 2,3                | 25           |
| {3,4}                 | 4,3                | 42           |
| {1}                   | 1                  | 100          |
| {2}                   | 2                  | 10           |
| {3}                   | 3                  | 15           |
| {4}                   | 4                  | 27           |

Consideremos ahora el problema de asignar charlas en una misma sala

- Tenemos *n* charlas por asignar
- La charla i tiene hora de inicio  $s_i$  y de término  $f_i$
- **E**s decir, se define el intervalo de tiempo  $[s_i, f_i)$

Solo se puede realizar una charla a la vez

Objetivo: maximizar el número de charlas ofrecidas en la sala



#### Ejemplo

Posibles estrategias codiciosas: elegir primero la charla...

- que empieza más temprano
- más corta
- tiene menos incompatibilidades con otras charlas

En general, ninguna de estas estrategias produce una solución óptima

### Ejemplo

Escojamos según la charla que termina más temprano

- i = 1, [0, 5)
- i = 4, [2, 11)
- i = 2, [1,7)
  - i = 5, [9, 12)
- i = 3, [6, 9)
- i = 6, [10, 13)



Veamos otro ejemplo

#### Ejemplo 13 2022-2

Dado un intervalo cerrado [s,f] considere un conjunto de intervalos cerrados no necesariamente disjuntos  $S = \{[s_i,f_i] \mid i=1,\ldots,n\}$  tales que  $s \le s_i < f_i \le f$  para todo i.

El conjunto  $\Omega \subseteq S$  es un cubrimiento de [s,f] si la unión de sus elementos contiene a [s,f] y diremos que es un cubrimiento óptimo si es el cubrimiento más pequeño (en cantidad de intervalos) para el S dado.

(a) Muestre un intervalo [s, f] y un conjunto S que sirvan como contraejemplo para la siguiente estrategia codiciosa que no es óptima: el siguiente intervalo de S que se escoge es  $[s_i, f_i]$  tal que se solapa con el último intervalo escogido y  $s_i$  es el menor posible.

#### Ejemplo

Sea el intervalo [s, f] = [0, 3] y el conjunto de intervalos

$$S = \{[0,2],[1,2],[2,3]\}$$

- La estrategia propuesta escoge los siguientes intervalos en orden
  - [0,2], pues tiene el menor  $s_i$  posible
  - [1,2], pues de los dos que se solapan con el escogido antes, es el que empieza primero
  - [2,3], pues es el que queda y llega al extremo del intervalo

Es decir,  $|\Omega|$  = 3 con esta estrategia. Notamos que la unión de estos intervalos cubre [0,3] por completo, por lo que es un cubrimiento válido.

Por inspección notamos que un cubrimiento más pequeño es  $\Omega^* = \{[0,2],[2,3]\}$  que tiene  $|\Omega^*| = 2$ , por lo que  $\Omega$  no es óptimo.

#### Ejemplo

(b) Proponga el pseudocódigo de un algoritmo codicioso que efectivamente encuentre un cubrimiento óptimo para [s, f] y S cualesquiera. *Hint:* escoja el intervalo que se solapa con el último escogido y que tiene mayor  $f_i$ .

```
Ejemplo
  input: límite inferior s, límite superior f, conjunto de intervalos S
  Greedy(s, f, S):
       S \leftarrow S ordenado por f_i
1
    \Omega \leftarrow \emptyset
3 	 t \leftarrow s
     while t < f:
       f_i \leftarrow \max\{f_i \mid s_i \leq t \leq f_i\}
        \Omega \leftarrow \Omega \cup \{i\}
       t \leftarrow f_i
7
       return S
8
```

# Sumario

Obertura

Algoritmos codiciosos

Dos aplicaciones

Epílogo

Consideremos el problema de asignar charlas en una misma sala

- Tenemos n charlas por asignar
- La charla i tiene hora de inicio  $s_i$  y de término  $f_i$
- **E**s decir, se define el intervalo de tiempo  $[s_i, f_i)$

Solo se puede realizar una charla a la vez

ADEMÁS: si la charla i es realizada, produce una ganancia  $v_i$ 

¿La estrategia codiciosa sigue siendo correcta?



#### Ejemplo

El caso que sabemos resolver consideraba  $v_i = c$  para cada charla

- $i = 1, [0,5), v_1 = c$   $i = 4, [2,11), v_4 = c$
- $i = 2, [1, 7), v_2 = c$   $i = 5, [9, 12), v_5 = c$
- $i = 3, [6, 9), v_3 = c$   $i = 6, [10, 13), v_6 = c$



Cuando la ganancia es la misma, la estrategia codiciosa de elegir la charla que termina antes es óptima

#### Ejemplo

Sean las siguientes charlas con sus intervalos y ganancias

- $i = 1, [0,5), v_1 = 2$   $i = 4, [2,11), v_4 = 7$

- $i = 2, [1, 7), v_2 = 4$   $i = 5, [9, 12), v_5 = 2$
- $i = 3, [6, 9), v_3 = 4$   $i = 6, [10, 13), v_6 = 1$



Con ganancias diferentes, el problema no es equivalente a maximizar el número de charlas

#### Ejemplo

Podemos pensar en una instancia del problema de forma que la estrategia codiciosa mencionada **no funciona** 

$$i = 1$$
  $v_1 = 1$   $v_2 = 4$   $v_3 = 2$ 

En este caso,

estrategia charlas ganancia codiciosa 
$$\{1,3\}$$
 3  $6$ ptima  $\{2\}$  4

Con ganancias diferentes, la estrategia codiciosa no sirve... ¿Qué hacemos?

## Objetivos de la clase

- ☐ Comprender el paradigma de algoritmos codiciosos
- ☐ Demostrar que una estrategia no es correcta como estrategia codiciosa
- ☐ Aplicar la estrategia codiciosa para obtener óptimos en problemas particulares