TD11: Représentations des groupes finis I

Exercices * : à préparer à la maison avant le TD, seront corrigés en début de TD.

Exercices $\star\star$: seront traités en classe en priorité.

Exercices $\star \star \star$: plus difficiles.

Exercice 1: *

Montrer que tout groupe fini G admet une représentation fidèle sur tout corps K.

Exercice 2: *

Soit G un groupe fini, soit H un sous-groupe distingué dans G, notons $\pi: G \to G/H$ la projection canonique. Soit ρ une représentation complexe de G/H.

- a) Montrer que $\rho \circ \pi$ est une représentation de G.
- b) Montrer que ρ est irréductible si et seulement si $\rho \circ \pi$ est irréductible.

Exercice 3: *

Soit V un \mathbb{C} -espace vectoriel, soit G un groupe et soit (V, ρ) une représentation de G. On suppose qu'il existe $v \in V$ tel que $\{\rho(g)v \mid g \in G\}$ forme une base de V. Montrer que (V, ρ) est isomorphe à la représentation régulière de G.

Exercice 4: **

Soit V une représentation complexe d'un groupe fini G. On note S la représentation $S^2(V)$ et A la représentation $\bigwedge^2 V$.

- a) Calculer les caractères χ_S et χ_A de S et de A en fonction du caractère χ_V de V.
- b) Calculer $\chi_{V \otimes V}$ en fonction de χ_A et χ_S .

Exercice 5: **

Soit $G = \mathfrak{S}_3$ et soit V un \mathbb{C} -espace vectoriel possédant une base indexée par les éléments de G. On considère l'application $T: G \to \mathrm{GL}(V)$ définie par $T(g)e_{\tau} = e_{q\tau q^{-1}}$.

- a) Montrer que T est une représentation de G.
- b) Soit j une racine cubique primitive de 1. Soit W le sous-espace de V dont une base est

$$\alpha = e_{(1,2)} + je_{(1,3)} + j^2e_{(2,3)}, \qquad \beta = e_{(1,2)} + j^2e_{(1,3)} + je_{(2,3)}.$$

Montrer que W est une sous-G-représentation de V. Est-ce que W est irréductible?

- c) Déterminer la décomposition de V en somme directe de sous-espaces irréductibles et expliciter l'action de G sur chacun de ces sous-espaces.
- d) Soit U une représentation irréductible de \mathfrak{S}_3 de dimension 2. Décomposer $U \otimes U$, $S^2(U)$ et $\bigwedge U$ en somme de représentations irrédutibles.

Exercice 6:

Soit p un nombre premier et soit K un corps algébriquement clos de caractéristique différente de p. Soit G un p-groupe. Montrer que G possède une représentation non triviale de dimension 1 sur K.

Exercice 7:

Soit G un groupe fini et soit χ un caractère de G vérifiant

$$\forall g \in G \qquad g \neq 1 \Rightarrow \chi(g) = 0.$$

Montrer que χ est un multiple entier du caractère de la représentation régulière de G.

Exercice 8:

a) Soit A un groupe fini abélien et χ un caractère de A sur \mathbb{C} . Montrer

$$\sum_{a \in A} |\chi(a)|^2 \ge |A| \cdot \chi(1).$$

b) Soit G un groupe fini et soit A un sous-groupe abélien de G d'indice $n \ge 1$. Montrer que si χ est un caractère irréductible de G, on a $\chi(1) \le n$. Que peut-on dire si $\chi(1) = n$?

Exercice 9: **

Soit G un groupe fini et soient ϕ et ψ des caractères de G dans \mathbb{C} .

- a) Montrer que si ψ est de degré 1, $\phi\psi$ est irréductible si et seulement si ϕ est irréductible.
- b) Montrer que si ψ est de degré strictement supérieur à 1, le caractère $\psi \bar{\psi}$ n'est pas irréductible.
- c) Soit ϕ un caractère irréductible de G. On suppose que ϕ est le seul caractère irréductible de son degré. Montrer que s'il existe un caractère ψ de degré 1 et $g \in G$ tel que $\psi(g) \neq 1$, alors $\phi(g) = 0$.

Exercice $10: \star\star$

- a) Établir la table de caractère de D₄.
- b) Établir la table de caractère de \mathbf{H}_8 .
- c) Que peut-on en conclure?

Exercice 11:

- a) En considérant la représentation naturelle de \mathfrak{S}_4 sur un \mathbb{C} -espace vectoriel de dimension 4, construire une (sous-)représentation irréductible de dimension 3, de caractère valant (3, 1, 0, -1, -1) sur les différentes classes de conjugaisons.
- b) Dresser les tables de caractères de \mathfrak{S}_4 et \mathfrak{A}_4 et interpréter géométriquement certaines représentations obtenues.
- c) Dresser les tables de caractères de \mathfrak{S}_5 et \mathfrak{A}_5 et interpréter géométriquement certaines représentations obtenues.

Exercice 12: **

Soit p un nombre premier et soit $f \ge 1$ un entier; on pose $q = p^f$. Soit G le groupe $\{x \mapsto ax + b \mid a \in \mathbb{F}_q^{\times}, b \in \mathbb{F}_q\}$.

- a) Déterminer la table des caractères de G sur \mathbb{C} .
- b) Déterminer les représentations irréductibles de G sur \mathbb{C} .

Exercice 13:

Soient G_1 et G_2 deux groupes finis. Déterminer l'ensemble des représentations irréductibles de $G_1 \times G_2$ en fonction des représentations irréductibles de G_1 et G_2 .

Exercice 14: **

Soient p un nombre premier, G un p-groupe fini et K un corps de caractéristique p.

- a) Montrer que toute représentation linéaire de G sur un K-espace vectoriel non nul admet des vecteurs fixes non nuls.
- b) Montrer que toute représentation irréductible de G à coefficients dans K est isomorphe à la représentation triviale.

Exercice 15: **

Soient G un groupe fini, χ le caractère d'une représentation et $K_{\chi} := \{g \in G : \chi(g) = \chi(e)\}.$

a) Montrer que K_{χ} est un sous-groupe distingué de G.

b) Montrer que G est simple si et seulement si $K_{\chi}=\{e\}$ pour tout caractère irréductible $\chi\neq 1$.

Exercice 16:

Soit G un groupe fini et soit X un ensemble fini sur lequel G agit transitivement. Soit ρ la représentation de permutation sur $\mathbb C$ définie par X et soit χ son caractère.

a) Montrer la décomposition $\rho=1\oplus\theta,$ où θ ne contient pas la représentation triviale 1.

On fait opérer diagonalement G sur le produit $X \times X$ en posant g(x,y) = (gx,gy) pour tout $g \in G$ et tous $x,y \in X$.

- b) Montrer que le caractère de la représentation de permutation sur $X \times X$ est égal à χ^2 .
- c) Montrer que les assertions suivantes sont équivalentes
 - (i) l'action de G sur X est doublement transitive;
 - (ii) on a l'égalité $\langle \chi^2, 1 \rangle = 2$;
 - (iii) la représentation θ est irréductible.

Exercice 17: $\star\star\star$

- a) Soit G un groupe abélien (éventuellement infini) et (V, ρ) une représentation complexe irréductible de G (de dimension éventuellement infinie). Sous quelles hypothèses cette représentation est-elle de dimension 1? Est-ce toujours le cas?
- b) Soit K un corps de caractéristique nulle, G un groupe (éventuellement infini) et (V, ρ) une représentation de G sur K (de dimension éventuellement infinie). Sous quelles hypothèses cette représentation est-elle somme directe de sous-représentations irréductibles? Est-ce toujours le cas?