Példa SLR(1) elemzésre

Definíció: LR(0) elem

Ha $A \to \alpha$ a grammatika egy helyettesítési szabálya, akkor az $\alpha = \alpha_1 \alpha_2$ tetszőleges felbontás esetén $A \to \alpha_1.\alpha_2$ a grammatika egy LR(0)-eleme.

(Ha a szabály jobboldala n szimbólumot tartalmaz, akkor n + 1darab LR(0)-elem tartozik hozzá.)

Definíció: lezárás (closure)

Ha I a grammatika egy LR(0) elemhalmaza, akkor closure(I) a legszűkebb olyan halmaz, amely az alábbi tulajdonságokkal rendelkezik:

- $I \subseteq closure(I)$
- ha $A \to \alpha.B\gamma \in closure(I)$ és $B \to \beta$ a grammatika egy szabálya, akkor $B \to .\beta \in closure(I)$

Definíció: olvasás (read)

Ha I a grammatika egy LR(0) elemhalmaza, X pedig terminális vagy nemterminális szimbóluma, akkor read(I, X) a legszűkebb olyan halmaz, amely az alábbi tulajdonsággal rendelkezik:

• ha $A \to \alpha . X\beta \in I$, akkor closure $(A \to \alpha X.\beta) \subseteq read(I, X)$.

Példa SLR(1) elemzésre

- (0) S' \rightarrow S
- (1) $S \rightarrow bBb$
- (2) $S \rightarrow \varepsilon$
- (3) A \rightarrow BS
- (4) $B \rightarrow cAc$
- (5) $B \rightarrow a$

LR(0)-ás kanonikus halmazok:

$$\begin{split} I_0 &= closure(\{\:S' \to .S\:\}) = \{\:S' \to .S,\: S \to .bBb,\: S \to .\:\} \\ I_1 &= read(I_0,S) = \{\:S' \to S.\:\} \\ I_2 &= read(I_0,b) = \{S \to b.Bb,\: B \to .cAc,\: B \to .a\} \\ I_3 &= read(I_2,B) = \{S \to bB.b\} \\ I_4 &= read(I_2,c) = \{B \to c.Ac,\: A \to .BS,\: B \to .cAc,\: B \to .a\} \\ I_5 &= read(I_2,a) = \{B \to a.\:\} \\ I_6 &= read(I_3,b) = \{S \to bBb.\:\} \\ I_7 &= read(I_4,A) = \{B \to cA.c\} \\ I_8 &= read(I_4,B) = \{A \to B.S,\: S \to .bBb,\: S \to .\:\} \\ &= read(I_4,c) = I_4 \\ &= read(I_4,a) = I_5 \\ I_9 &= read(I_7,c) = \{B \to cAc.\:\} \\ I_{10} &= read(I_8,S) = \{A \to BS.\:\} \\ &= read(I_8,b) = I_2 \end{split}$$

 $Megjegyz\acute{e}s$: A fenti grammatika nem LR(0) grammatika, mert I₀ és I₈ estén léptetni és redukálni is kellene.

A goto tábla kitöltése:

Annyi sora van, ahány kanonikus halmaz van, és annyi oszlopa van, ahány terminális és nemterminális és még egy a #.

Ha read $(I_i,X) = I_j$, akkor az *i.sor* X oszlopába j-t kell írni, azaz az automata i állapotból X hatására j állapotba lép.

Az action tábla kitöltése:

Oszlopainak indexe a terminálisok és a #, azaz az előreolvasási szimbólumok.

Léptetést (shift) kell előírni az i-edik sor a indexű oszlopába, ha read(I_i ,a)= I_j .

Redukálást kell előírni az *i*-edik sor *b* indexű oszlopába, ha $A \to \alpha \in I_i$ és $b \in Follow(A)$.

A példa Follow halmazai:

Follow(S') =
$$\{\#\}$$

Follow(S) = Follow(S') U Follow(A) = $\{\#, c\}$
Follow(A) = $\{c\}$
Follow(B) = $\{b\}$ U First(S)\ $\{\epsilon\}$ U Follow(A) = $\{b,c\}$

Példa SLR(1) elemzésre

SLR(1) elemző táblázat:

action				goto			
	a	b	с	#	S	A	В
0		shift 2	$S \rightarrow \epsilon$	$S \rightarrow \epsilon$	1		
1				accept			
2	shift 5		shift 4				3
3		shift 6					
4	shift 5		shift 4			7	8
5		$B \rightarrow a$	$B \rightarrow a$				
6			$S \rightarrow bBb$	$S \rightarrow bBb$			
7			shift 9				
8		shift 2	$S \rightarrow \epsilon$	$S \rightarrow \epsilon$	10		
9		$B \rightarrow cAc$	$B \rightarrow cAc$				
10			$A \rightarrow BS$				

Megjegyzés: A goto tábla terminális része az action táblázattal össze van vonva, azaz a shift melletti szám jelenti az új állapotot. Az accept a (0) szabály szerinti redukciót jelent. A többi helyen szereplő szabály redukciót jelent az adott szabály szerint.

Példa egy szó elemzésére:

u = bcacb

verem	input	
(#0,	bcacb#	:)
(#0b2,	cacb#)	
(#0b2c4,	acb#)	
(#0b2c4a5,	cb#)	redukció: B → a
(#0b2c4B8,	cb#)	redukció: $S \rightarrow \epsilon$
(#0b2c4B8S10), cb#)	redukció: A → BS
(#0b2c4A7,	cb#)	
(#0b2c4A7c9,	b#)	redukció: B \rightarrow cAc
(#0b2B3,	b#)	
(#0b2B3b6,	#)	redukció: $S \rightarrow bBb$
(#0S1,	#)	accept

Tehát a szó jó szó, és a legjobb levezetése a következő: