Formell ladning = valenselektron - fri elektron - bindinger

$$0 = 5 - 2 - x$$

$$x = 3$$

Tre kovalente bindinger, alternativ D

2.

Molekylet er av klassen AB_3E og sentralatomet får da sp^3 hybridisering, alternativ C

3.

Karbonatomet har 4 sigma-bindinger og ingen frie elektron par og er da sp^3 hybridisert alternativ C

Ett kiralt senter I karbon 11, alternativ A

Alternativ 5 er den eneste med en karboksylgruppe så detmå bli rett alternativ

6.

Ett brom adderes og det vil ha en tendens til å adderes til det karbonatomet med flest hydrogen (av de I karbonatomene I dobbeltbindingene) etter markovnikovs lov som da gir alternativ A

Oksidasjon av sekundære alkohol gir keton som er alternativ D

En enhetscelle I en flatesentrert kubisk krystall inneholder 4 atomer og hvert atom veier 195.08 u.

$$m_{celle} = 4 \cdot 195.08 \, u \cdot 1.66 \cdot 10^{-24} \, \frac{g}{u} = 1.295 \cdot 10^{-21} \, g$$

$$m_{celle} = 4 \cdot 195.08 \ u \cdot 1.66 \cdot 10^{-24} \frac{g}{u} = 1.295 \cdot 10^{-21} \ g$$

$$V_{celle} = \frac{m}{\rho} = \frac{1.295 \cdot 10^{-21} \ g}{21.5 \frac{g}{cm^3}} = 6.025 \cdot 10^{-23} \ cm^3$$

$$V = a^3 \Rightarrow a = \sqrt[3]{6.025 \cdot 10^{-23} cm^3} = 3.920 \cdot 10^{-8} cm$$

Radiusen I et atom I en fcc celle er gitt ved:

$$r = \frac{a}{\sqrt{8}} = \frac{3.92 \cdot 10^{-8} cm}{\sqrt{8}} = 1.386 \cdot 10^{-8} cm \approx 139 \ pm$$

Alternativ C

9.

Bruker korrekterte verdier for oppgaven

$$K_c = \frac{[NO]^2 \cdot [Br_2]}{[NOBr]^2} = \frac{0.0105^2 \cdot 0.00524}{0.00586} = 9.86 \cdot 10^{-5}$$

$$PV = nRT$$

$$P = n \frac{RT}{V}$$

$$K_p = \frac{P_{NO}^2 \cdot P_{Br_2}}{P_{NOBr}^2} = \frac{\left(\frac{n_{NO}}{V}\right)^2 \cdot \frac{n_{Br_2}}{V}}{\left(\frac{n_{NOBr}}{V}\right)^2} \cdot RT = K_c \cdot RT = 9.86 \cdot 10^{-5} \cdot 0.0821 \cdot 373.15 = 3.02 \cdot 10^{-3}$$

$$p = n\frac{RT}{V} = (0.0105 + 0.00524 + 0.00586)mol \cdot \frac{0.0821\frac{L\ atm}{mol\ K} \cdot 373.15K}{1L} = 0.662\ atm$$

c)

Ut fra støliometrien i reaksjonsligningen må de da ble tilsatt 0.1 mol NO og 0.05 mol Br₂.

10.

a)

Basis: 100 g

$$\begin{aligned} &\text{N:} \, \frac{21.55 \, g}{14.01 \frac{g}{mol}} = 1.54 \, mol \\ &\text{O:} \, \frac{49.23 \, g}{16.00 \frac{g}{mol}} = 3.08 \, mol \\ &\text{F:} \, \frac{29.23 g}{19.00 \frac{g}{mol}} = 1.54 \, mol \end{aligned}$$

$$0: \frac{49.23 \ g}{16.00 \frac{g}{mol}} = 3.08 \ mo$$

$$F: \frac{29.23g}{19.00\frac{g}{mol}} = 1.54 \ mol$$

$$\frac{3.08}{1.54} = 2$$

Empirisk formel:

 NO_2F

I Den første lewis strukturen over blir molekylet et bøyd lineært molekyl og I den andre blir det en resonansstruktur av klassen AB_3 som har en trigonal plan struktur. I begge disse strukturene er molekylet ha en usymetrisk elektronfordeling siden fluor har høyere elektronegativitet enn oksygen som igjen har høyere enn nitrogen og derfor få et svakt dipolmoment.

10.41

a)

 4σ bindinger

 5σ bindinger og 1π binding.

 10σ bindinger og 3π bindinger

12.12

A er upolart så det kan ikke danne hydrogenbindinger.

B er ikke elektronegativitetsforskjellen stor nok til å danne hydrogenbindinger.

C mangler hydrogen

I d er hydrogenene negativt ladd og molekylet er en rett linje og har derfor ingen dipolmoment så det kan ikke danne hydrogenbindinger

Karboksylgruppen I e kan danne hydrogenbindinger.

12.17

a)

Ammoniakk er bundet av hydrogenbindinger og har derfor et høyerekokepunkt enn metan som ikke er har hydrogenbindinger.

b)

KCl er bundet I en ionisk krystall og må derfor overkomme gitterenergien for å smelte. Iod er upolare molekyler som er bundet sammen av svake Van der Wahlske krefter og trenger derfor mye mindre energi for å smelte.

$$1 \ mol \ Ba = 137.33 \frac{g}{mol} \cdot 1 \ mol = 137.33 \ g$$

$$\frac{137.33 \ g}{3.50 \frac{g}{cm^3}} = 39.24 \ cm^3$$

$$V_{cell} = \left(502 \ cm \cdot 10^{-10}\right)^3 = 1.265 \cdot 10^{-22} \ cm^3$$

$$\frac{cell}{mol} = \frac{39.24}{1.265 \cdot 10^{-22}} = 3.102 \cdot 10^{23}$$

Det er 2 atomer per enhetscelle I en bcc krystall $atomer = 3.102 \cdot 10^{23} \cdot 2 = 6.20 \cdot 10^{23}$