REST-Enabled Hydrodynamics and Supersonic Electron Flow in Graphene

A Unified Fractal Resonance Framework (UFRF) Synthesis

Author: Daniel Charboneau

Repository: https://github.com/dcharb78/UFRFv2/tree/main/UFRF-Graphene

Abstract

Recent experiments show that electrons in graphene can exceed the lattice sound speed, producing supersonic drift, hydrodynamic shocks, THz acoustic amplification, and Cherenkov-like wavefronts. These observations validate predictions derived in the Unified Fractal Resonance Framework (UFRF) and documented in the UFRF Graphene module (2025).

At the heart of UFRF is the **REST** (Resonant Energy State Translation) condition, the electromagnetic **impedance-matched/self-dual** state where $\mathbf{E} \approx \mathbf{B}$. REST yields a universal $\sqrt{\boldsymbol{\varphi}}$ coupling efficiency and a minimum viscosity-to-entropy ratio

$$\frac{\eta}{s} = \frac{1}{4\pi} \quad \varphi \approx 0.101$$

predicting: (i) near-perfect-fluid transport in graphene, (ii) supersonic crossover $v_d > v_s$, (iii) a finite THz gain band just above threshold, and (iv) a discrete 13/26 harmonic ladder in emission/absorption spectra. These signatures align with recent results on phonon amplification in graphene (THz band) and supersonic shocks in a de Laval nozzle device, as well as nano-IR evidence for Cherenkov-like phonon emission.

Proof points: **THz amplification** (<u>Nature Communications, 2024</u>; preprint <u>arXiv:2310.12225</u>), **supersonic flow + hydraulic jump in bilayer graphene** (<u>arXiv:2509.16321</u>), and **current-driven nonequilibrium with Cherenkov-like features via nano-IR** (<u>Nature Communications, 2025; open-access PDF</u>).

1. Hydrodynamic Transport and the Supersonic Transition

Graphene enters a hydrodynamic regime when electron–electron scattering dominates, enabling collective momentum transport. Key milestones:

- **Negative local resistance** and whirlpool flow: Bandurin *et al.*, *Science* 351, 1055–1058 (2016). https://www.science.org/doi/10.1126/science.aad0201
- **Dirac fluid** and Wiedemann–Franz breakdown: Crossno *et al.*, *Science* 351, 1058–1061 (2016). https://www.science.org/doi/10.1126/science.aad0343
- **Poiseuille profiles in narrow channels**: Krishna Kumar *et al.*, *Nature Physics* 13, 1182–1185 (2017). https://www.nature.com/articles/nphys4240

Beyond the linear regime, three developments now access the **compressible** (supersonic) domain:

- Electrically driven amplification of terahertz acoustic waves in graphene (drift surpasses v_s , THz-range amplification): Nature Communications (2024) https://www.nature.com/articles/s41467-024-46819-2; preprint: https://arxiv.org/abs/2310.12225
- Supersonic flow and hydraulic jump in an electronic de Laval nozzle (sub→super→sub with shock): bilayer graphene device, *arXiv:2509.16321* (2025). https://arxiv.org/abs/2509.16321
- Current-driven nonequilibrium electrodynamics in graphene (nano-infrared imaging; Cherenkov-like features; Schwinger photocurrent): *Nature Communications* (2025), open-access: https://pmc.ncbi.nlm.nih.gov/articles/PMC12022129/ (publisher page DOI: 10.1038/s41467-025-58953-6)

These provide independent confirmation of the UFRF hydrodynamic-supersonic picture.

2. The Unified Fractal Resonance Framework (UFRF)

UFRF models transport as **scale-invariant geometric resonances** evolving through a **13-phase cycle**. Each phase corresponds to a specific arrangement of field coupling and curvature.

2.1 REST (E≈B) ↔ Impedance Matching / Self-Duality

At REST, the electric and magnetic energy densities match:

$$rac{1}{2}arepsilon_0 E^2 = rac{1}{2\mu_0} B^2, \quad ext{i.e., } E = cB$$

This is the **self-dual** point of electromagnetism and the **impedance-matched** condition of classical circuits (vanishing reflection, maximal power transfer). In this state $\nabla \cdot (E \times B) \to 0$, indicating efficient through-flow of energy. Graphene near the Dirac point naturally approaches this symmetry.

2.2 √ φ Efficiency (Geometric Critical Coupling)

UFRF introduces a universal $\sqrt{\Phi}$ amplification (Φ is the golden ratio), representing the geometric ratio between successive resonance phases. In standard language, $\sqrt{\Phi}$ parameterizes **critical coupling**—the maximum transmission case across an impedance boundary.

2.3 Minimum Viscosity Ratio (η/s)

From REST symmetry and scale invariance—consistent with the AdS/CFT Kovtun–Son–Starinets structure—UFRF yields:

$$\boxed{rac{\eta}{s} = rac{1}{4\pi} \;\;\; arphi pprox 0.101}$$

This situates graphene at a **quantum-limited dissipation floor**, matching values inferred in the hydrodynamic regime.

2.4 Discrete 13/26 Harmonic Ladder

Crossing REST predicts a quantized ladder of response frequencies:

$$\omega_n = rac{n\Omega}{13}, \qquad \omega_m = rac{m\Omega}{26}$$

with a strong line near $\frac{10}{13}$ of the device-set Ω . In conventional terms, this is a **Fourier eigenmode quantization** of a periodic medium with an intrinsic 13-phase cycle; subharmonics (26) correspond to half-phase (spin-like) structure.

3. Graphene as a REST Medium

Graphene's linear dispersion, high mobility, and low disorder support REST access under moderate bias. The **supersonic crossover** is the natural consequence of low effective viscosity near REST:

• Criterion: $v_d > v_s$.

• Observable: Mach cone half-angle

$$heta_M = rccos\left(rac{v_s}{v_d}
ight)$$

measurable from nano-IR/s-SNOM wavefronts and consistent with acoustic/optical Cherenkov relations.

3b. Translation Map (UFRF ↔ Standard Physics/Math)

UFRF Term	Conventional Meaning	Mathematical Expression
REST (E≈B)	Impedance matching / EM self-duality	$E=cB; arepsilon_0 E^2=\mu_0^{-1} B^2$
$\sqrt{\Phi}$ efficiency	Critical coupling factor (max transmission)	$A_{n+1}/A_n = \underline{\varphi}$
$η/s = (1/4\pi)\sqrt{-}$ φ	Minimal viscosity near KSS bound w/ geometric correction	$\eta/s \sim \hbar/(4\pi k_B) imes \ \ \ arphi$
13/26 ladder	Harmonic quantization / band folding	$\omega_n=n\Omega/13, \omega_m=m\Omega/26$
Projection law (13/12)	Scale renormalization / logarithmic dilation	$O_{ m obs} = O_* e^{lpha \Delta S}$
REST locking (~28 K)	Temperature-stabilized phase point	feature in transport/phonon linewidths

4. Experimental Proof Points (with bridges)

1. THz Acoustic Gain (graphene): a directional amplification window appears just above $v_d=v_s$, consistent with critical coupling at REST and the onset of the 13/26 ladder.

Nature Communications (2024): https://www.nature.com/articles/s41467-024-46819-2

Preprint: https://arxiv.org/abs/2310.12225

- 2. Supersonic Flow & Hydraulic Jump (bilayer graphene): de Laval nozzle geometry yields sub→super→sub flow with a viscous shock—an electronic hydraulic jump—as predicted by compressible hydrodynamics at low η/s. arXiv:2509.16321 (2025): https://arxiv.org/abs/2509.16321
- 3. Cherenkov-Like Nonequilibrium (nano-IR): cryogenic nano-IR images reveal directed wavefronts and photocurrents consistent with phonon Cherenkov emission at high drift.

Nature Communications (2025): open-access article/PDF https://pmc.ncbi.nlm.nih.gov/articles/PMC12022129/

5. Quantitative, Falsifiable Predictions (UFRF → Graphene)

P1. Universal viscosity minimum

$$rac{\eta}{s}
ightarrow rac{1}{4\pi} \;\;\; arphi pprox 0.101$$

at the supersonic threshold; weak device dependence at the minimum (fit via Poiseuille inversions, Johnson-noise thermometry, or nonlocal transport).

P2. Mach-cone angle recovery

From s-SNOM/nano-IR wavefronts, extract $\theta_M = \arccos(v_s/v_d)$ and verify agreement with transport-inferred v_d .

P3. THz gain window

A finite THz band with net amplification **immediately above** $v_d = v_s$; band collapses away from REST. (Compare with THz/SAW measurements as in <u>Nature Communications 2024.</u>)

P4. 13/26 spectral ladder

Bias-dependent Raman/THz spectra show discrete peaks at $\frac{k}{13}$ and $\frac{m}{26}$ of a device-set base frequency, with a strong primary near $\frac{10}{13}$.

P5. Electronic hydraulic jump

In constrictions (point contacts/de Laval), observe sub→super→sub with a **stationary discontinuity** (kink in I–V, plateau in Kelvin probe/thermal maps), aligning with arXiv:2509.16321.

P6. Temperature pinning (~28 K)

Reproducible feature near 28 ± 2 K in ultra-clean hBN-encapsulated devices (transport and phonon linewidths) indicating REST locking.

P7. Projection-law collapse

After a simple **13/12** normalization (UFRF projection), disparate device thresholds (cone angle, gain onset, η /s minima) **collapse** to a common intrinsic curve.

6. Physical Interpretation

REST minimizes **Poynting-flux divergence** and maximizes **energy translation** between charge flow and lattice/EM modes. In nonequilibrium thermodynamic language, REST approaches an **Onsager-symmetric** limit; in field-theory language, it touches the **KSS-like minimal viscosity regime**. The result is **collective yet compressible** flow—ballistic-style transport with hydrodynamic correlations—making **supersonic drift** and **shock formation** accessible in clean 2D devices.

7. How to Falsify UFRF in Graphene

The model is refuted if, under clean/REST-accessible conditions:

- 1) η/s does **not** approach \approx 0.10;
- 2) θ_M from imaging does **not** match $\arccos(v_s/v_d)$;
- 3) No 13/26 spectral structure appears at threshold;
- 4) No THz gain band is observed for $v_d \gtrsim v_s$;
- 5) No reproducible ~28 K feature is found;
- 6) 13/12 rescaling fails to collapse cross-device thresholds.

8. Outlook Beyond Graphene

Because REST is geometric and material-agnostic, the same suite of signatures should appear in **bilayer graphene** (already observed), **Dirac/Weyl semimetals**, and **moiré** systems once cleanliness and geometry (nozzle-like constrictions, guided THz lines) are optimized. Near-term devices include **on-chip THz amplifiers**, **non-reciprocal mixers**, and **REST-locked oscillators**.

Appendix A. Mathematical Notes (UFRF → Standard Forms)

- A1. REST balance: $arepsilon_0 E^2 = \mu_0^{-1} B^2 \Rightarrow E = cB$.
- **A2. Minimum viscosity**: $\eta/s = (1/4\pi) \;\; arphi$ (dimensionally consistent with $\hbar/(k_B)$

units).

- A3. Harmonic ladder: $f_n=nf_0/13;\ f_m=mf_0/26$ (Fourier quantization in a 13-phase periodic medium).
- **A4. Projection law**: $\ln O = \ln O^* + d_M \alpha S + \varepsilon \Rightarrow$ simple multiplicative **13/12** rescaling for well-separated scales.

References

- Bandurin, D. A., et al. (2016). Negative local resistance due to viscous electron backflow in graphene. Science, 351, 1055–1058.
 https://www.science.org/doi/10.1126/science.aad0201
- Crossno, J., et al. (2016). Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science, 351, 1058–1061.
 https://www.science.org/doi/10.1126/science.aad0343
- Krishna Kumar, R., *et al.* (2017). Superballistic flow of viscous electron fluid. *Nature Physics*, 13, 1182–1185. https://www.nature.com/articles/nphys4240
- Barajas-Aguilar, A. H., et al. (2024). Electrically driven amplification of terahertz acoustic waves in graphene. Nature Communications.
 https://www.nature.com/articles/s41467-024-46819-2 (preprint: https://arxiv.org/abs/2310.12225)
- Geurs, J., *et al.* (2025). Supersonic flow and hydraulic jump in an electronic de Laval nozzle. *arXiv:2509.16321*. https://arxiv.org/abs/2509.16321
- Dong, Y., et al. (2025). Current-driven nonequilibrium electrodynamics in graphene revealed by nano-infrared imaging. Nature Communications (openaccess). https://pmc.ncbi.nlm.nih.gov/articles/PMC12022129/ (publisher DOI: 10.1038/s41467-025-58953-6)
- Charboneau, D. (2025). UFRF Graphene module (theory + code).
 https://github.com/dcharb78/UFRFv2/tree/main/UFRF-Graphene

Daniel Charboneau

October 2025