Math 110BH Homework 5

Sample Student

February 8, 2023

Problem 1

Let R be a nontrivial commutative ring. Prove that if $f(t) \in R[t]$ is a zero divisor then there exists a nonzero element $b \in R$ such that bf(t) = 0.

Problem 2

Let F be a field and $p(t) \in F[t]$. Describe all ideals of the quotient ring F[t]/(p(t)) in terms of the factorization of p(t).

Problem 3*

Let R be a commutative ring. Prove that a polynomial $f(t) \in R[t]$ is nilpotent if and only if all of the coefficients from f(t) are nilpotent in R.

Problem 4

Determine if the following statements are true or false. If true, provide brief justification (you can cite a result(s) from class or the textbook). If false, provide a concrete counterexample showing why it is false.

- a) If R is an integral domain, then R[t] is an integral domain.
- b) If R is a UFD, then R[t] is a UFD.
- c) If R is a PID, then R[t] is a PID.
- d) If R is a Euclidean domain, then R[t] is a Euclidean domain.

Problem 5*

Let R be an integral domain. Let $f(t) \in R[t]$ be a monic polynomial of degree 2 or degree 3. Prove that f(t) is reducible in R[t] if and only if f(t) has a root in R.

Problem 6

Give an example of a reducible polynomial in $\mathbb{Q}[t]$ that has no roots in \mathbb{Q} .

Problem 7

Decide if the following statements are true or false. If true, provide brief justification (you can cite a result(s) from class or the textbook). If false, provide a concrete counterexample showing why it is false.

- a) Let f(t) be a monic polynomial in $\mathbb{Z}[t]$. If f(t) is irreducible over $\mathbb{Z}[t]$, then f(t) is irreducible over $\mathbb{Q}[t]$.
- b) Let f(t) be a monic polynomial in $\mathbb{Q}[t]$. If f(t) is irreducible over $\mathbb{Q}[t]$, then f(t) is irreducible over $\mathbb{R}[t]$.

Problem 8*

Consider the subring $R = \mathbb{Z} + t\mathbb{Q}[t]$ of the ring $\mathbb{Q}[t]$. In words R is the ring of all polynomials in $\mathbb{Q}[t]$ whose constant term is an integer.

- a) Show that the irreducibles in R are $\pm p$ where $p \in \mathbb{Z}$ is prime in \mathbb{Z} and the polynomials $f(t) \in R$ with constant term ± 1 that are irreducible in $\mathbb{Q}[t]$.
- b) Prove that t cannot be written as a product of irreducibles in R (in particular, t is not irreducible). Conclude that R is not a UFD.

Problem 9

Let R be a ring and M be a left R-module. Prove for all $m \in M$ that 0m = 0 and (-1)m = -m.

Problem 10

Let R be a ring and M be a left R-module. Prove that if rm = 0 for some $r \in R$ and some nonzero $m \in M$ then r is not a unit in R.