Отчет по лабораторной работе №5

Модель хищник-жертва

Габриэль Тьерри

Содержание

Цель работы	5
Задание	6
Теоретическое введение	7
Выполнение лабораторной работы	11
Выводы	16
Список литературы	17

Список таблиц

Список иллюстраций

1	эволюция популяции жертв и хищников	8
2	мягкая модель борьбы за существование	9
1	Sol (Julia)	12
2	Изменение числа хищников и хищников(JULIA)	13
3	Изменение числа хищников и хищников(ОМ)	15

Цель работы

Реализовать на языках программирования Julia и Openmodelica модель Лотки-Вольтерры, также известную как моедль взаимодействия "хищник-жертва".

Задание

Для модели «хищник-жертва»:

$$\begin{cases} \frac{dx}{dt} = -0.47 * x(t) + 0.021 * x(t) * y(t) \\ \frac{dy}{dt} = 0.57 * y(t) - 0.044 * x(t) * y(t) \end{cases}$$

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях:

$$x_0 = 12, y_0 = 37$$

Найдите стационарное состояние системы. @Lab

Теоретическое введение

Простейшая модель взаимодействия двух видов типа «хищник — жертва» - модель Лотки-Вольтерры. Данная двувидовая модель основывается на следующих предположениях:

- 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории)
- 2.В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает
- 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными
 - 4. Эффект насыщения численности обеих популяций не учитывается
- Скорость роста численности жертв уменьшается пропорционально численности хищников

$$\begin{cases} \frac{dx}{dt} = a * x(t) - b * x(t) * y(t) \\ \frac{dy}{dt} = -c * y(t) + d * x(t) * y(t) \end{cases}$$

В этой модели х — число жертв, у — число хищников. Коэффициент а описывает скорость естественного прироста числа жертв в отсутствие хищников, с — естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (ху). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены — bxy

и dxy в правой части уравнения).

Рис. 1: эволюция популяции жертв и хищников

Математический анализ этой (жесткой) модели показывает, что имеется стационарное состояние (А на рис.1), всякое же другое начальное состояние (В) приводит к периодическому колебанию численности как жертв, так и хищников, так что по прошествии некоторого времени система возвращается в состояние В.

Стационарное состояние системы (положение равновесия, не зависящее от времени решение) будет в точке:

$$x_0 = \frac{c}{d}, y_0 = \frac{a}{b}$$

Если начальные значения задать в стационарном состоянии

$$x(0) = x_0, y(0) = y_0$$

то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период определяется начальными значениями численностей $\mathbf{x}(0)$, $\mathbf{y}(0)$. Колебания совершаются в противофазе.

При малом изменении модели

$$\begin{cases} \frac{dx}{dt} = a * x(t) - b * x(t) * y(t) + \varepsilon f(x, y) \\ \frac{dy}{dt} = -c * y(t) + d * x(t) * y(t) + \varepsilon g(x, y), \varepsilon \ll 1 \end{cases}$$

(прибавление к правым частям малые члены, учитывающие, например, конкуренцию жертв за пищу и хищников за жертв), вывод о периодичности (возвращении системы в исходное состояние В), справедливый для жесткой системы Лотки-Вольтерры, теряет силу. Таким образом, мы получаем так называемую мягкую модель «хищник-жертва». В зависимости от вида малых поправок f и g возможны следующие сценарии 1-3 (рис.2).

Рис. 2: мягкая модель борьбы за существование

В случае 1 равновесное состояние А устойчиво. При любых других начальных условиях через большое время устанавливается именно оно.

В случае 2 система стационарное состояние неустойчиво. Эволюция приводит то к резкому увеличению числа хищников, то к их почти полному вымиранию. Такая система в конце концов попадает в область столь больших или столь малых значений х и у, что модель перестает быть применимой.

В случае 3 в системе с неустойчивым стационарным состоянием А с течением времени устанавливается периодический режим. В отличие от исходной жесткой модели Лотки-Вольтерры, в этой модели установившийся периодический режим не зависит от начального условия. Первоначально незначительное отклонение от стационарного состояния А приводит не к малым колебаниям около А, как в модели Лотки-Вольтерры, а к колебаниям вполне определенной (и не зависящей от малости отклонения) амплитуды. Возможны и другие структурно устойчивые сценарии

(например, с несколькими периодическими режимами).

Вывод: жесткую модель всегда надлежит исследовать на структурную устойчивость полученных при ее изучении результатов по отношению к малым изменениям модели (делающим ее мягкой).

В случае модели Лотки-Вольтерры для суждения о том, какой же из сценариев 1-3 (или иных возможных) реализуется в данной системе, совершенно необходима дополнительная информация о системе (о виде малых поправок f и g в нашей формуле). Математическая теория мягких моделей указывает, какую именно информацию для этого нужно иметь. Без этой информации жесткая модель может привести к качественно ошибочным предсказаниям. Доверять выводам, сделанным на основании жесткой модели, можно лишь тогда, когда они подтверждаются исследованием их структурной устойчивости.

Выполнение лабораторной работы

1. На первом этапе смоедлировали задачу, используя язык программирования Julia. Получили следующий код:

```
begin
   import Pkg
   Pkg.add("LaTeXStrings")
   Pkg.activate()
   using DifferentialEquations
   using LaTeXStrings
   import Plots
end
begin
   X0 = 12.0
   Y0 = 37.0
   a = 0.47
   b = 0.021
   c = 0.57
   d = 0.044
\quad \text{end} \quad
function F!(du, u, p, t)
   du[1] = -a^*u[1] + b^*u[1]^*u[2]
```

```
\begin{array}{l} du[2] = c^*u[2] \text{-} d^*u[1]^*u[2] \\ \\ end \\ \\ begin \\ U0 = [X0,\,Y0] \\ \\ T = [0.0,\,100.0] \\ \\ prob = ODEProblem(F!,\,U0,\,T) \\ \\ end \end{array}
```


Рис. 1: Sol (Julia)

sol = solve(prob, saveat = 0.05)

В результате работы программы получили следующие результат.

Рис. 2: Изменение числа хищников и хищников(JULIA)

Plots.plot(sol)

Найдем стационарное состояние системы в точке х

begin

$$x = c/d$$

end

Найдем стационарное состояние системы в точке у

begin

$$y = a/b$$

end

2. На втором этапе смоделировали задачу в среде моделирования Openmodelica. Получили следующие код:

model LAB5

```
constant Real a = 0.47; //значение a constant Real b = 0.021; //значение b constant Real c = 0.57; //значение c constant Real d = 0.044;//значение d
```

Real x;//хищники

Real y;//жертвы

initial equation

x=12;//начальное количество хищников y=37;//начальное количество жертв

equation

$$der(x)=a*x-b*x*y;//уравнение системы $der(y)=-c*y+d*x*y;//уравнение системы$$$

end LAB5;

В результате работы программы получили следующие результат.

Рис. 3: Изменение числа хищников и хищников(ОМ)

Выводы

В ходе выполнения лабораторной работы я научился строить график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при заданных начальных условиях. Нашел стационарное состояние системы.

Список литературы