

ALGUNOS EJEMPLOS DE DISTRIBUCIONES

Alan Reyes-Figueroa Introducción a la Ciencia de Datos

(AULA 09) 02.FEBRERO.2022

- distribución Uniforme *U*[*a*..*b*],
- distribución Normal $\mathcal{N}(\mu, \sigma^2)$,
- distribución Lognormal $\mathcal{LN}(\mu, \sigma^2)$,
- distribución Exponencial $Exp(\lambda)$,
- distribución Erlang $Erlang(n, \lambda)$,
- distribución Gamma $\Gamma(\alpha,\beta)$,
- distribución Beta $Beta(\alpha, \beta)$,
- distribución Weibull,
- distribución Pareto,
- distribuciones de valores extremos.

1. Distribución Uniforme

$$X \sim U[a..b] \Leftrightarrow f_X(t) = \frac{1}{b-a} \mathbf{1}_{[a,b]}(t).$$

Obs. Aquí la función $\mathbf{1}_{[a,b]}$ es una función indicadora o función característica, que indica cuál es el soporte de la distribución.

Recordemos que para cualquier subconjunto $A\subseteq\mathbb{R}$

$$\mathbf{1}_{A}(t) = \begin{cases} 1, & t \in A; \\ 0, & t \notin A. \end{cases}$$

Preguntas: ¿Cuál es la función de distribución F_X ? ¿ $\mathbb{E}(X)$, Var(X)?

2. Distribución Exponencial Dado un parámetro $\lambda >$ 0, la distribución exponencial tiene densidad

$$f_X(t) = \lambda e^{-\lambda t} \, \mathbf{1}_{[\mathbf{0},\infty)}(t), \quad F_X(t) = (\mathbf{1} - e^{-\lambda t}) \, \mathbf{1}_{[\mathbf{0},\infty)}(t).$$

Obs.

- $\mathbb{E}(X) = \frac{1}{\lambda}$ y $Var(X) = \frac{1}{\lambda^2}$.
- En ocasiones, se parametriza en términos de su valor esperado $\theta = \frac{1}{\lambda}$:

$$f_X(t) = \frac{1}{\theta} e^{-t/\theta} \mathbf{1}_{[0,\infty)}(t).$$

3. Distribución Normal Dados dos parámetros $\mu \in \mathbb{R}$, $\sigma >$ 0, la distribución normal tiene densidad

$$f_{\mathsf{X}}(t) = rac{\mathsf{1}}{(2\pi\sigma^2)^{1/2}} \exp\Big(-rac{(\mathsf{X}-\mu)^2}{2\sigma^2}\Big)\, \mathsf{1}_{\mathbb{R}}(t).$$

Obs.

- $\mathbb{E}(X) = \mu$ y $Var(X) = \sigma^2$.
- La distribución es simétrica alrededor de μ .
- X no tiene una función de distribución elemental

$$F_X(x) = \int_{-\infty}^x f_X(t) dt.$$

Propiedades

- 1. Si $X \sim \mathcal{N}(\mu, \sigma^2)$, se tiene que $Z = \frac{X \mu}{\sigma} \sim \mathcal{N}(1)$.
- 2. Si $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ y $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$, y X_1, X_2 son independientes, entonces

$$X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

- 3. Si X $\sim \mathcal{N}(\mu, \sigma^2)$, se tiene que $-X \sim \mathcal{N}(-\mu, \sigma^2)$.
- 4. En general, si $X \sim \mathcal{N}(\mu, \sigma^2)$, y $a, b \in \mathbb{R}$, entonces Y = aX + b es normal, con

$$\mathbf{Y} \sim \mathcal{N}(\mathbf{a}\mu + \mathbf{b}, \mathbf{a}^2\sigma^2).$$

Teoremas importantes

Teorema (Desigualdad de Markov)

Si X es una v.a. no-negativa, a > o, entonces

$$\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}.$$

Teorema (Desigualdad de Tchebyshev)

Si X es una v.a. con $\mathbb{E}(X)$ y Var(X) finitas, a > o, entonces

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge a) \le \frac{Var(X)}{a}.$$

Teoremas importantes

Teorema (Ley débil de los números grandes)

Sean X_1, X_2, \ldots, X_n variables aleatorias i.i.d., con $\mathbb{E}(X_i) < \infty$. Entonces, para todo $\epsilon > 0$

$$\lim_{n\to\infty}\mathbb{P}\Big(\Big|\frac{X_1,X_2,\ldots,X_n}{n}-\mathbb{E}(X)\Big|>\epsilon\Big)=0.$$

Interpretación:

Se repite el experimento n veces, con resultados X_i . $\mathbb{E}(X) = \mathbb{P}(A)$, entonces $\frac{X_1, X_2, \dots, X_n}{n}$ es el porcentaje de veces que ocurrió A.

La ley débil dice que el porcentaje de veces A ocurrió en n repiticiones se aproxima a $\mathbb{E}(X)$.

Teoremas importantes

Teorema (Teorema Central de Límite)

Sean X_1, X_2, \ldots, X_n variables aleatorias i.i.d., con $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2$ finitas. Entonces

$$\lim_{n\to\infty}\mathbb{P}\Big(\frac{\mathsf{S}_n/n-\mu}{\sigma^2/\sqrt{n}}\leq x\Big)=\int_{-\infty}^x\frac{1}{\sqrt{2\pi}}e^{-t^2/2}\,dt.$$

Consecuencias:

$$\frac{S_n}{n} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}),$$

o equivalentemente

$$X_1 + \ldots + X_n = S_n \sim \mathcal{N}(n\mu, n\sigma^2).$$

Sea $X = (X_1, X_2, \dots, X_d) \in \mathbb{R}^d$ un vector aleatorio (esto es, cada componente X_i es una variable aleatoria $X_i \Omega \to \mathbb{R}$).

Definición

Definimos el **valor esperado** de X como el vector $\mu \in \mathbb{R}^d$ dado por

$$\mathbb{E}(X) = \mu = (\mu_1, \mu_2, \dots, \mu_d)^T \in \mathbb{R}^d,$$

donde $\mu_i = \mathbb{E}(X_i)$, para $i = 1, 2, \dots, d$.

Definición

Definimos la **varianza** de X como la matriz $\Sigma \in \mathbb{R}^{d \times d}$ dada por

$$Var(X) = \Sigma = (Cov(X_i, X_j))_{i,j}$$
.

La entrada (i,j) de esta matriz corresponde a la covarianza de las variables X_i y X_j . A Σ también se le conoce como la **matriz de covarianza** de X.

Propiedades

Para cualquier vector aleatorio $X \in \mathbb{R}^d$, la matriz de covarianzas $\Sigma = Var(X)$ satisface

- 1. Σ es simétrica (como consecuencia, tiene autovalores reales).
- 2. Σ es semi-definida positiva (todos sus autovalores son no-negativos). En particular, para todo vector $\mathbf{x} \in \mathbb{R}^d$, se cumple que $\mathbf{x}^T \Sigma \mathbf{x} \geq 0$.
- 3. La diagonal de Σ contiene a las varianzas $\sigma_i^2 = Var(X_i)$, para i = 1, 2, ..., d.

Sea $X_1, X_2, \ldots, X_n \in \mathbb{R}^d$ es una muestra aleatoria de vectores i.i.d (independientes e identicamente distribuidos), todos con distribución X. Podemos codificar esta muestra dentro de una matriz, $X \in \mathbb{R} \times \mathbb{R}$, llamada la **matriz de datos** (cada dato de la muestra es un renglón de X).

$$\mathbb{X} = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1d} \\ X_{21} & X_{22} & \dots & X_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nd} \end{pmatrix},$$

donde

$$X_i = (x_{i1}, x_{i2}, \dots, x_{id}) \in \mathbb{R}^d, \quad i = 1, 2, \dots, n.$$

Observe que la i-ésima columna de $\mathbb X$ corresponde a una muestra (de tamaño n) de la variable aleatoria X_i . Podemos entonces restar a cada columna su correspondiente media $\mu_i = \mathbb E(X_i)$. Así, obtenemos una versión centrada de la matriz de datos:

$$\mathbb{X}_{c} = \mathbb{X} - \mu = \begin{pmatrix} \mathbf{X}_{11} - \mu_{1} & \mathbf{X}_{12} - \mu_{2} & \dots & \mathbf{X}_{1d} - \mu_{d} \\ \mathbf{X}_{21} - \mu_{1} & \mathbf{X}_{22} - \mu_{2} & \dots & \mathbf{X}_{2d} - \mu_{d} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{X}_{n1} - \mu_{1} & \mathbf{X}_{n2} - \mu_{2} & \dots & \mathbf{X}_{nd} - \mu_{d} \end{pmatrix}.$$

Es posible mostrar (con las propiedades de la página siguiente) que la matriz de covarianzas empírica (muestral) se puede escribir como

$$\Sigma = Var(X) = \mathbb{X}_c^T \mathbb{X}_c$$
.

Propiedades

Sea $X, Y \in \mathbb{R}^d$ vectores aleatorios, $a, b \in \mathbb{R}$, $c \in \mathbb{R}^d$ constantes, $A \in \mathbb{R}^{p \times d}$ una matriz constante. Entonces

- 1. $\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$,
- 2. $\mathbb{E}(c) = c$,
- 3. $\mathbb{E}(\mathbb{E}(X)) = \mathbb{E}(X)$,
- 4. $Var(aX) = a^2Var(X)$,
- 5. $Var(AX) = A^TVar(X)A$,
- 6. $Var(aX + bY) = a^2Var(X) + b^2Var(Y) + 2abCov(X, Y),$
- 7. Si $X \perp Y$, entonces Cov(X, Y) = 0,
- 8. Si $X \perp Y$, entonces $Var(aX + bY) = a^2Var(X) + b^2Var(Y)$.

Sea $X=(X_1,X_2,\ldots,X_d)\in\mathbb{R}^d$ un vector aleatorio. Decimos que X sigue una **distribución normal multivariada** $\mathcal{N}_d(\mu,\Sigma)$ si su densidad está dada por

$$f_X(\mathbf{x}) = \int_{\mathbb{R}^d} \frac{1}{(2\pi)^{d/2} \sqrt{|\Sigma|}} \exp\left(-\frac{1}{2} (\mathbf{x} - \mu)^\mathsf{T} \Sigma^{-1} (\mathbf{x} - \mu)\right) d\mathbf{x}.$$

Aquí,

$$\mathbb{E}(\mathbf{X}) = \boldsymbol{\mu} = (\mu_1, \mu_2, \dots, \mu_d)^{\mathsf{T}},$$

У

$$Var(X) = \Sigma = \begin{pmatrix} Cov(X_1, X_1) & Cov(X_1, X_2) & \dots & Cov(X_1, X_d) \\ Cov(X_2, X_1) & Cov(X_2, X_2) & \dots & Cov(X_2, X_d) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(X_d, X_1) & Cov(X_d, X_2) & \dots & Cov(X_d, X_d) \end{pmatrix}.$$

Densidad de una normal bivariada: (a) como nube de puntos, (b) como función.

Típicamente la matriz Σ proporciona información sobre la relación entre las variables componentes.

$$Cov(X) = [Cov(X_i, X_i)]$$
 es una matriz simétrica y pos. definida.

Caso d = 2:

$$\left(\begin{array}{cc} Var(X_1) & Cov(X_1,X_2) \\ Cov(X_1,X_2) & Var(X_2) \end{array} \right) = \left(\begin{array}{cc} \sigma_{X_1}^2 & Cor(X_1,X_2)\sigma_{X_1}\sigma_{X_2} \\ Cor(X_1,X_2)\sigma_{X_1}\sigma_{X_2} & \sigma_{X_2}^2 \end{array} \right)$$

Cambiar $\rho = Cor(X_1, X_2)$:

http://personal.kenyon.edu/hartlaub/MellonProject/images/Bivariate52.gif.

Una forma práctica de ver esta información de covarianza o correlación entre las componentes es a través de *pair-plots*.

Pairplot de una muestra para una normal 3-variada.

<u>Problema</u>: ¿Cómo generar una muestra de una distribución normal d-variada con μ y Σ específicas?

Algoritmo (o receta):

1. Generar d muestras (de tamaño n), independientes, de distribuciones normales estándar $Z_1, Z_2, \ldots, Z_d \in \mathbb{R}^n$, y construir una matriz de datos \mathbb{Z} con las muestras Z_i como columnas.

Como son independientes y estándar el vector $Z = (Z_1, \dots, Z_d)$ sigue una distribución normal estándar $\mathcal{N}_d(\mathbf{0}, I_d)$.

- 2. Asegurarse que la matriz Σ es simétrica y positiva definida. Luego, construir descomposición de Cholesky $L^TL = \Sigma$, (el algoritmo que vieron en análisis numérico).
- 3. Construir la variable aleatoria $X = LZ + \mu$, la cual tiene una matriz de datos dada por $\mathbb{X} = L\mathbb{Z} + \mu$ (la muestra que queremos). De las propiedades anteriores, tenemos que $\mathbb{E}(Z) = \mu$ y $Var(X) = L^T I_d L = L^T L = \Sigma$.