Dependency Tree Automata

Colin Stirling cps@inf.ed.ac.uk

LFCS School of Informatics University of Edinburgh

FOSSACS 2009, York, March 23rd

- ▶ Notable Success in Computer Science
- ► model checking + equivalence checking

- ▶ Notable Success in Computer Science
- ► model checking + equivalence checking
- System = finite/infinite state transition graph

- ▶ Notable Success in Computer Science
- ► model checking + equivalence checking
- System = finite/infinite state transition graph
- ▶ Model checking: does state $s \models \Phi$?
- apply automata/game theoretic techniques to solve it: mostly computing monadic fixed points, reachability sets by traversing graph (possibly repeatedly)

- ▶ Notable Success in Computer Science
- ► model checking + equivalence checking
- System = finite/infinite state transition graph
- ▶ Model checking: does state $s \models \Phi$?
- apply automata/game theoretic techniques to solve it: mostly computing monadic fixed points, reachability sets by traversing graph (possibly repeatedly)
- Equivalence checking: is state s equivalent to t?
- ► Mostly computing dyadic fixed points e.g. bisimulations to solve it. May need algebraic/combinatorial properties of reachability sets/generators of graph

Active research goal: transfer these techniques to

finite/infinite state systems with binding

 Deciding observational equivalence for fragments of idealized Algol (w.r.t. finite value sets)
 [Ghica + McCusker 2000, Ong 2002, ...]

Active research goal: transfer these techniques to

finite/infinite state systems with binding

- Deciding observational equivalence for fragments of idealized Algol (w.r.t. finite value sets)
 [Ghica + McCusker 2000, Ong 2002, ...]
- Model checking higher-order trees
 [Knapik + Niwinski + Urzyczyn 2002, Caucal 2002, Ong
 2006, Hague + Murawski + Ong +Serre, 2008]

Active research goal: transfer these techniques to

finite/infinite state systems with binding

- Deciding observational equivalence for fragments of idealized Algol (w.r.t. finite value sets)
 [Ghica + McCusker 2000, Ong 2002, ...]
- Model checking higher-order trees
 [Knapik + Niwinski + Urzyczyn 2002, Caucal 2002, Ong
 2006, Hague + Murawski + Ong +Serre, 2008]
- 3. : : :
- 4. Application of tree automata to higher-order matching [Comon + Jurski 1997, Stirling 2007, work described here]

Simply typed λ -calculus: fundamental exemplar of binding

▶ types $A ::= 0 \mid A \rightarrow A$

Simply typed λ -calculus: fundamental exemplar of binding

- ▶ types $A ::= \mathbf{0} \mid A \rightarrow A$
- ▶ $A \rightarrow B$ type of functions from A to B
- lacksquare $A_1
 ightarrow (\dots (A_n
 ightarrow {f 0}) \dots)$ written $(A_1, \dots, A_n, {f 0})$

Simply typed λ -calculus: fundamental exemplar of binding

- ▶ types $A ::= \mathbf{0} \mid A \rightarrow A$
- ▶ $A \rightarrow B$ type of functions from A to B
- ▶ $A_1 \rightarrow (\dots (A_n \rightarrow \mathbf{0}) \dots)$ written $(A_1, \dots, A_n, \mathbf{0})$
- ▶ order of **0** is 1;
- ▶ order of $(A_1, ..., A_n, \mathbf{0})$ is $1 + \max\{\text{order of } A_i \text{s}\}$

Variables and constants each have a unique type (Church style)

1. if x(f) has type A then $x : A \in T(f : A \in T)$

- 1. if x(f) has type A then $x : A \in T(f : A \in T)$
- 2. if $t: B \in T$ and $x: A \in T$ then $\lambda x.t: A \rightarrow B \in T$

- 1. if x(f) has type A then $x : A \in T(f : A \in T)$
- 2. if $t: B \in T$ and $x: A \in T$ then $\lambda x.t: A \rightarrow B \in T$
- 3. if $t: A \rightarrow B \in T$ and $u: A \in T$ then $(tu): B \in T$

- 1. if x(f) has type A then $x : A \in T(f : A \in T)$
- 2. if $t: B \in T$ and $x: A \in T$ then $\lambda x.t: A \rightarrow B \in T$
- 3. if $t: A \rightarrow B \in T$ and $u: A \in T$ then $(tu): B \in T$
- ightharpoonup order of t: A = order A

- 1. if x(f) has type A then $x : A \in T(f : A \in T)$
- 2. if $t: B \in T$ and $x: A \in T$ then $\lambda x.t: A \rightarrow B \in T$
- 3. if $t: A \rightarrow B \in T$ and $u: A \in T$ then $(tu): B \in T$
- ightharpoonup order of t: A = order A
- closed t : A no free variables

- 1. if x(f) has type A then $x : A \in T(f : A \in T)$
- 2. if $t: B \in T$ and $x: A \in T$ then $\lambda x.t: A \rightarrow B \in T$
- 3. if $t: A \rightarrow B \in T$ and $u: A \in T$ then $(tu): B \in T$
- ightharpoonup order of t:A= order A
- closed t : A no free variables
- ightharpoonup t, t': A are α -equivalent renamings of each other

(
$$\beta$$
) $(\lambda x.t)v \rightarrow_{\beta} t\{v/x\}$ {·/·} Substitution (η) $\lambda x.(tx) \rightarrow_{\eta} t$ x not free in t

(
$$\beta$$
) $(\lambda x.t)v \rightarrow_{\beta} t\{v/x\}$ {·/·} Substitution (η) $\lambda x.(tx) \rightarrow_{\eta} t$ x not free in t

- ightharpoonup t in normal form = no β or η reductions in t
- ▶ Fact Each term has a unique $\beta\eta$ -normal form

(
$$\beta$$
) $(\lambda x.t)v \rightarrow_{\beta} t\{v/x\}$ {·/·} Substitution (η) $\lambda x.(tx) \rightarrow_{\eta} t$ x not free in t

- ▶ t in normal form = no β or η reductions in t
- ► Fact Each term has a unique $\beta\eta$ -normal form
- $ightharpoonup =_{eta\eta}$ means same normal form

(
$$\beta$$
) $(\lambda x.t)v \rightarrow_{\beta} t\{v/x\}$ {·/·} Substitution (η) $\lambda x.(tx) \rightarrow_{\eta} t$ x not free in t

- ▶ t in normal form = no β or η reductions in t
- ► Fact Each term has a unique $\beta\eta$ -normal form
- $ightharpoonup =_{\beta\eta}$ means same normal form
- η -long form for t:A defined by cases on A

$$\begin{array}{lll} (\beta) & (\lambda x.t)v \to_{\beta} t\{v/x\} & \{\cdot/\cdot\} \text{ Substitution} \\ (\eta) & \lambda x.(tx) \to_{\eta} t & x \text{ not free in } t \end{array}$$

- ▶ t in normal form = no β or η reductions in t
- ► Fact Each term has a unique $\beta\eta$ -normal form
- $ightharpoonup =_{\beta\eta}$ means same normal form
- \blacktriangleright η -long form for t:A defined by cases on A
 - 1. **0** t is u : **0** or u $t_1 \dots t_k$ where u : $(B_1, \dots, B_k, \mathbf{0})$ constant/variable and each t_i : B_i is in η -long form

(
$$\beta$$
) $(\lambda x.t)v \rightarrow_{\beta} t\{v/x\}$ {·/·} Substitution (η) $\lambda x.(tx) \rightarrow_{\eta} t$ x not free in t

- ▶ t in normal form = no β or η reductions in t
- ► Fact Each term has a unique $\beta\eta$ -normal form
- $ightharpoonup =_{eta\eta}$ means same normal form
- \blacktriangleright η -long form for t:A defined by cases on A
 - 1. **0** t is u : **0** or u $t_1 ldots t_k$ where u : $(B_1, ldots, B_k, \mathbf{0})$ constant/variable and each t_i : B_i is in η -long form
 - 2. $(A_1, \ldots, A_n, \mathbf{0})$ t is $\lambda y_1 \ldots y_n . t'$ where each $y_i : A_i$ and $t' : \mathbf{0}$ is in η -long form $(\lambda y_1 \ldots y_n . t')$ abbreviates $\lambda y_1 \ldots \lambda y_n . t')$

(
$$\beta$$
) $(\lambda x.t)v \rightarrow_{\beta} t\{v/x\}$ {·/·} Substitution (η) $\lambda x.(tx) \rightarrow_{\eta} t$ x not free in t

- ▶ t in normal form = no β or η reductions in t
- ► Fact Each term has a unique $\beta\eta$ -normal form
- $ightharpoonup =_{\beta\eta}$ means same normal form
- η -long form for t: A defined by cases on A
 - 1. **0** t is u : **0** or u $t_1 ldots t_k$ where u : $(B_1, ldots, B_k, \mathbf{0})$ constant/variable and each t_i : B_i is in η -long form
 - 2. $(A_1, \ldots, A_n, \mathbf{0})$ t is $\lambda y_1 \ldots y_n \cdot t'$ where each $y_i : A_i$ and $t' : \mathbf{0}$ is in η -long form $(\lambda y_1 \ldots y_n \cdot t')$ abbreviates $\lambda y_1 \ldots \lambda y_n \cdot t'$
- ▶ Fact Each term in normal form has a unique η -long form
- When η -long forms $=_{\beta}$ is $=_{\beta\eta}$

```
\{t : A \mid t \text{ in normal form and } t \models \phi\}
```

▶ Given a type A and property ϕ , is the following set non-empty?

```
\{t : A \mid t \text{ in normal form and } t \models \phi\}
```

▶ Is this set recognisable by an automaton?

```
\{t : A \mid t \text{ in normal form and } t \models \phi\}
```

- ▶ Is this set recognisable by an automaton?
- Standard representation of terms is as trees: therefore,

```
\{t : A \mid t \text{ in normal form and } t \models \phi\}
```

- ▶ Is this set recognisable by an automaton?
- Standard representation of terms is as trees: therefore,
- Is this set recognisable by a tree automaton?

```
\{t : A \mid t \text{ in normal form and } t \models \phi\}
```

- ▶ Is this set recognisable by an automaton?
- Standard representation of terms is as trees: therefore,
- Is this set recognisable by a tree automaton?
- ▶ BUT: PROBLEM

▶ Let $f:(((\mathbf{0},\mathbf{0}),\mathbf{0}),\mathbf{0}), g_i:(\mathbf{0},\mathbf{0}), x:\mathbf{0}$

- ▶ Let $f:(((\mathbf{0},\mathbf{0}),\mathbf{0}),\mathbf{0}), g_i:(\mathbf{0},\mathbf{0}), x:\mathbf{0}$
- ▶ for all $n \ge 0$ the following terms belong to M

- ▶ Let $f:(((\mathbf{0},\mathbf{0}),\mathbf{0}),\mathbf{0}), g_i:(\mathbf{0},\mathbf{0}), x:\mathbf{0}$
- ▶ for all $n \ge 0$ the following terms belong to M
- ▶ To write down this subset of terms up to α -equivalence requires an alphabet of unbounded size

- ▶ Let $f:(((\mathbf{0},\mathbf{0}),\mathbf{0}),\mathbf{0}), g_i:(\mathbf{0},\mathbf{0}), x:\mathbf{0}$
- ▶ for all $n \ge 0$ the following terms belong to M
- ▶ To write down this subset of terms up to α -equivalence requires an alphabet of unbounded size
- ► There are automata with infinite alphabets but none applicable e.g. [Segoufin 2006 survey: "Automata and logics for words and trees over an infinite alphabet"]

Binding Trees

▶ $\Sigma = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ is alphabet, each $s \in \Sigma$ has arity $\operatorname{ar}(s) \geq 0$. Σ_1 are binders (with arity 1); Σ_2 are (bound) variables; Σ_3 other symbols (such as constants)

Binding Trees

- ▶ $\Sigma = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ is alphabet, each $s \in \Sigma$ has arity $\operatorname{ar}(s) \geq 0$. Σ_1 are binders (with arity 1); Σ_2 are (bound) variables; Σ_3 other symbols (such as constants)
- A binding Σ-tree is a finite tree

Binding Trees

- ▶ $\Sigma = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ is alphabet, each $s \in \Sigma$ has arity $\operatorname{ar}(s) \ge 0$. Σ_1 are binders (with arity 1); Σ_2 are (bound) variables; Σ_3 other symbols (such as constants)
- \triangleright A binding Σ -tree is a finite tree
 - 1. each node labelled with an element of Σ
 - 2. extra binary relation ↓ (representing binding)

Binding Trees

- ▶ $\Sigma = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ is alphabet, each $s \in \Sigma$ has arity $\operatorname{ar}(s) \ge 0$. Σ_1 are binders (with arity 1); Σ_2 are (bound) variables; Σ_3 other symbols (such as constants)
- \triangleright A binding Σ -tree is a finite tree
 - 1. each node labelled with an element of Σ
 - 2. extra binary relation ↓ (representing binding)
 - 3. if node n labelled with s, ar(s) = k then n has k successors

Binding Trees

- ▶ $\Sigma = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ is alphabet, each $s \in \Sigma$ has arity $\operatorname{ar}(s) \ge 0$. Σ_1 are binders (with arity 1); Σ_2 are (bound) variables; Σ_3 other symbols (such as constants)
- \triangleright A binding Σ -tree is a finite tree
 - 1. each node labelled with an element of Σ
 - 2. extra binary relation ↓ (representing binding)
 - 3. if node n labelled with s, ar(s) = k then n has k successors
 - 4. if node n labelled $s \in \Sigma_2$ then a unique b above n labelled with $s' \in \Sigma_1$ and $b \downarrow n$

Binding Trees

- ▶ $\Sigma = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ is alphabet, each $s \in \Sigma$ has arity $\operatorname{ar}(s) \ge 0$. Σ_1 are binders (with arity 1); Σ_2 are (bound) variables; Σ_3 other symbols (such as constants)
- A binding Σ-tree is a finite tree
 - 1. each node labelled with an element of Σ
 - 2. extra binary relation ↓ (representing binding)
 - 3. if node n labelled with s, ar(s) = k then n has k successors
 - 4. if node n labelled $s \in \Sigma_2$ then a unique b above n labelled with $s' \in \Sigma_1$ and $b \downarrow n$
- Compare nested words/trees [Alur + Chaudhuri + Madhusudan, 2006]

Terms of monster type M as binding trees

▶ Let $f:(((\mathbf{0},\mathbf{0}),\mathbf{0}),\mathbf{0}), g:(\mathbf{0},\mathbf{0}), x:\mathbf{0}$

Terms of monster type M as binding trees

- ▶ Let $f:(((\mathbf{0},\mathbf{0}),\mathbf{0}),\mathbf{0}), g:(\mathbf{0},\mathbf{0}), x:\mathbf{0}$
- Now we have:

Terms of monster type M as binding trees

- ▶ Let $f:(((\mathbf{0},\mathbf{0}),\mathbf{0}),\mathbf{0}), g:(\mathbf{0},\mathbf{0}), x:\mathbf{0}$
- Now we have:

► Finite alphabet + edge relation ↓

▶ A = (Q, Σ, q_0, Δ) where Q finite set of states, Σ finite alphabet, $q_0 \in Q$ initial state and Δ finite set of transitions

▶ A = (Q, Σ, q_0, Δ) where Q finite set of states, Σ finite alphabet, $q_0 \in Q$ initial state and Δ finite set of transitions

```
1. qs \Rightarrow (q_1, \dots, q_k) where s \in \Sigma_2 \cup \Sigma_3, ar(s) = k, q, q_1, \dots, q_k \in Q
```

- ▶ A = (Q, Σ, q_0, Δ) where Q finite set of states, Σ finite alphabet, $q_0 \in Q$ initial state and Δ finite set of transitions
 - 1. $qs \Rightarrow (q_1, \dots, q_k)$ where $s \in \Sigma_2 \cup \Sigma_3$, ar(s) = k, $q, q_1, \dots, q_k \in Q$
 - 2. $qs \Rightarrow q's'$ where $s \in \Sigma_1$, $s' \in \Sigma_3$ and $q, q' \in Q$

- ▶ A = (Q, Σ, q_0, Δ) where Q finite set of states, Σ finite alphabet, $q_0 \in Q$ initial state and Δ finite set of transitions
 - 1. $qs \Rightarrow (q_1, \dots, q_k)$ where $s \in \Sigma_2 \cup \Sigma_3$, ar(s) = k, $q, q_1, \dots, q_k \in Q$
 - 2. $qs \Rightarrow q's'$ where $s \in \Sigma_1$, $s' \in \Sigma_3$ and $q, q' \in Q$
 - 3. $(q',q)s \Rightarrow q_1x$ where $s \in \Sigma_1$, $x \in \Sigma_2$ and $q',q,q_1 \in Q$

- ▶ A = (Q, Σ, q_0, Δ) where Q finite set of states, Σ finite alphabet, $q_0 \in Q$ initial state and Δ finite set of transitions
 - 1. $qs \Rightarrow (q_1, \dots, q_k)$ where $s \in \Sigma_2 \cup \Sigma_3$, ar(s) = k, $q, q_1, \dots, q_k \in Q$
 - 2. $qs \Rightarrow q's'$ where $s \in \Sigma_1$, $s' \in \Sigma_3$ and $q, q' \in Q$
 - 3. $(q',q)s \Rightarrow q_1x$ where $s \in \Sigma_1$, $x \in \Sigma_2$ and $q',q,q_1 \in Q$
- ▶ Alternating dependency tree; change transitions 1. to

- ▶ A = (Q, Σ, q_0, Δ) where Q finite set of states, Σ finite alphabet, $q_0 \in Q$ initial state and Δ finite set of transitions
 - 1. $qs \Rightarrow (q_1, \ldots, q_k)$ where $s \in \Sigma_2 \cup \Sigma_3$, ar(s) = k, $q, q_1, \ldots, q_k \in Q$
 - 2. $qs \Rightarrow q's'$ where $s \in \Sigma_1$, $s' \in \Sigma_3$ and $q, q' \in Q$
 - 3. $(q',q)s \Rightarrow q_1x$ where $s \in \Sigma_1$, $x \in \Sigma_2$ and $q',q,q_1 \in Q$
- ▶ Alternating dependency tree; change transitions 1. to
 - 1. $qs \Rightarrow (Q_1, \dots, Q_k)$ where $s \in \Sigma_2 \cup \Sigma_3$, ar(s) = k, $q \in Q$ and $Q_1, \dots, Q_k \subseteq Q$.

▶ An additional labelling of t with states Q defined top-down. The root is labelled with initial state q_0

- ▶ An additional labelling of t with states Q defined top-down. The root is labelled with initial state q_0
- ▶ Consider a node *n* labelled $s \in \Sigma$ and with state *q*

- ▶ An additional labelling of t with states Q defined top-down. The root is labelled with initial state q_0
- ▶ Consider a node *n* labelled $s \in \Sigma$ and with state *q*
- ▶ If $s \in \Sigma_2 \cup \Sigma_3$ and $qs \Rightarrow (q_1, ..., q_k) \in \Delta$ then each successor ni is labelled q_i

- ▶ An additional labelling of t with states Q defined top-down. The root is labelled with initial state q_0
- ▶ Consider a node *n* labelled $s \in \Sigma$ and with state *q*
- ▶ If $s \in \Sigma_2 \cup \Sigma_3$ and $qs \Rightarrow (q_1, ..., q_k) \in \Delta$ then each successor ni is labelled q_i
- ▶ If $s \in \Sigma_1$, n1 is labelled $s' \in \Sigma_3$ and $qs \Rightarrow q's' \in \Delta$ then n1 is labelled q'.

- ▶ An additional labelling of t with states Q defined top-down. The root is labelled with initial state q_0
- ▶ Consider a node *n* labelled $s \in \Sigma$ and with state *q*
- ▶ If $s \in \Sigma_2 \cup \Sigma_3$ and $qs \Rightarrow (q_1, ..., q_k) \in \Delta$ then each successor ni is labelled q_i
- ▶ If $s \in \Sigma_1$, n1 is labelled $s' \in \Sigma_3$ and $qs \Rightarrow q's' \in \Delta$ then n1 is labelled q'.
- ▶ If $s \in \Sigma_1$, n1 is labelled $x \in \Sigma_2$, $m \downarrow n1$ in t, m labelled q' and $(q', q)s \Rightarrow q_1x \in \Delta$ then n1 is labelled q_1

- ▶ An additional labelling of t with states Q defined top-down. The root is labelled with initial state q_0
- ▶ Consider a node *n* labelled $s \in \Sigma$ and with state *q*
- ▶ If $s \in \Sigma_2 \cup \Sigma_3$ and $qs \Rightarrow (q_1, \dots, q_k) \in \Delta$ then each successor ni is labelled q_i
- ▶ If $s \in \Sigma_1$, n1 is labelled $s' \in \Sigma_3$ and $qs \Rightarrow q's' \in \Delta$ then n1 is labelled q'.
- ▶ If $s \in \Sigma_1$, n1 is labelled $x \in \Sigma_2$, $m \downarrow n1$ in t, m labelled q' and $(q', q)s \Rightarrow q_1x \in \Delta$ then n1 is labelled q_1

▶ A accepts the Σ -tree t iff there is a run of A on t such that every node of t is labelled with a state in Q.

- A accepts the Σ -tree t iff there is a run of A on t such that every node of t is labelled with a state in Q.
- ▶ Let $T_{\Sigma}(A)$ be the set of Σ -trees accepted by A

- A accepts the Σ -tree t iff there is a run of A on t such that every node of t is labelled with a state in Q.
- ▶ Let $T_{\Sigma}(A)$ be the set of Σ -trees accepted by A
- ▶ Fact The nonemptiness problem, given A is $T_{\Sigma}(A) \neq \emptyset$?, is decidable.

- A accepts the Σ -tree t iff there is a run of A on t such that every node of t is labelled with a state in Q.
- ▶ Let $T_{\Sigma}(A)$ be the set of Σ -trees accepted by A
- ▶ Fact The nonemptiness problem, given A is $T_{\Sigma}(A) \neq \emptyset$?, is decidable.
- ► Fact Dependency tree automata closed under intersection and union

- A accepts the Σ -tree t iff there is a run of A on t such that every node of t is labelled with a state in Q.
- ▶ Let $T_{\Sigma}(A)$ be the set of Σ -trees accepted by A
- ▶ Fact The nonemptiness problem, given A is $T_{\Sigma}(A) \neq \emptyset$?, is decidable.
- ► Fact Dependency tree automata closed under intersection and union
- ► OPEN PROBLEM IN PAPER: is non-emptiness decidable for the alternating automata? (Undecidable shown in [Ong + Tzevelekos 2009], to appear at LICS 09)

- ► Higher-order unification
- v = u contains free variables x_1, \ldots, x_n

- ► Higher-order unification
- v = u contains free variables x_1, \dots, x_n
- ► Solution $\theta = \{t_1/x_1, \dots, t_n/x_n\}$ such that $v\theta =_{\beta\eta} u\theta$ Simultaneous substitution

- ► Higher-order unification
- v = u contains free variables x_1, \dots, x_n
- Solution $\theta = \{t_1/x_1, \dots, t_n/x_n\}$ such that $v\theta =_{\beta\eta} u\theta$ Simultaneous substitution
- ▶ Decision question: given v = u, does it have a solution ?
- Order is max order of the x_is

- ► Higher-order unification
- v = u contains free variables x_1, \ldots, x_n
- Solution $\theta = \{t_1/x_1, \dots, t_n/x_n\}$ such that $v\theta =_{\beta\eta} u\theta$ Simultaneous substitution
- ▶ Decision question: given v = u, does it have a solution ?
- Order is max order of the x_is
- Undecidable (even at order 2) [Huet 1972, Goldfarb 1981]

- ► Higher-order unification
- v = u contains free variables x_1, \ldots, x_n
- Solution $\theta = \{t_1/x_1, \dots, t_n/x_n\}$ such that $v\theta =_{\beta\eta} u\theta$ Simultaneous substitution
- ▶ Decision question: given v = u, does it have a solution ?
- Order is max order of the x_is
- Undecidable (even at order 2) [Huet 1972, Goldfarb 1981]

- Higher-order matching
- v = u contains free variables x_1, \dots, x_n BUT u closed

- Higher-order matching
- v = u contains free variables x_1, \dots, x_n BUT u closed
- ► Solution $\theta = \{t_1/x_1, \dots, t_n/x_n\}$ such that $v\theta =_{\beta\eta} u$ W.l.o.g assume $v, u : \mathbf{0}$

- Higher-order matching
- v = u contains free variables x_1, \dots, x_n BUT u closed
- ► Solution $\theta = \{t_1/x_1, \dots, t_n/x_n\}$ such that $v\theta =_{\beta\eta} u$ W.l.o.g assume $v, u : \mathbf{0}$
- ▶ Decision question: given v = u, does it have a solution ?
- ▶ Order is max order of the x_is

- Higher-order matching
- v = u contains free variables x_1, \dots, x_n BUT u closed
- ► Solution $\theta = \{t_1/x_1, \dots, t_n/x_n\}$ such that $v\theta =_{\beta\eta} u$ W.l.o.g assume $v, u : \mathbf{0}$
- ▶ Decision question: given v = u, does it have a solution ?
- ightharpoonup Order is max order of the x_i s
- ► Huet conjecture decidable [Huet 1976]

- Higher-order matching
- v = u contains free variables x_1, \dots, x_n BUT u closed
- ► Solution $\theta = \{t_1/x_1, \dots, t_n/x_n\}$ such that $v\theta =_{\beta\eta} u$ W.l.o.g assume $v, u : \mathbf{0}$
- ▶ Decision question: given v = u, does it have a solution ?
- Order is max order of the x_is
- ► Huet conjecture decidable [Huet 1976]
- ▶ Up to order 4 decidable + special cases [Huet 1976, Dowek 1993, Padovani 2000, ...]

- Higher-order matching
- v = u contains free variables x_1, \dots, x_n BUT u closed
- ► Solution $\theta = \{t_1/x_1, \dots, t_n/x_n\}$ such that $v\theta =_{\beta\eta} u$ W.l.o.g assume $v, u : \mathbf{0}$
- ▶ Decision question: given v = u, does it have a solution ?
- \triangleright Order is max order of the x_i s
- ▶ Huet conjecture decidable [Huet 1976]
- ▶ Up to order 4 decidable + special cases [Huet 1976, Dowek 1993, Padovani 2000, ...]
- ▶ Undecidable for $=_{\beta}$ [Loader 2003]

Matching is essentially monadic

• Given v = u with $x_1 : A_1, \dots, x_n : A_n$ in v

Matching is essentially monadic

- Given v = u with $x_1 : A_1, \dots, x_n : A_n$ in v
- \times $x(\lambda x_1 \dots x_n.v) = u$ where $x: ((A_1, \dots, A_n, \mathbf{0}), \mathbf{0})$
- ► Conceptually simpler problem: just one free variable

- Given v = u with $x_1 : A_1, \dots, x_n : A_n$ in v
- \times $x(\lambda x_1 \dots x_n \cdot v) = u$ where $x : ((A_1, \dots, A_n, \mathbf{0}), \mathbf{0})$
- ► Conceptually simpler problem: just one free variable
- ► Called "interpolation": x w = u where $x : (B, \mathbf{0}), w : B, u : \mathbf{0}$ in normal form.

- Given v = u with $x_1 : A_1, \dots, x_n : A_n$ in v
- ► Conceptually simpler problem: just one free variable
- ► Called "interpolation": x w = u where $x : (B, \mathbf{0}), w : B, u : \mathbf{0}$ in normal form.
- ▶ Solution t in normal form such that $tw \rightarrow_{\beta} u$

- Given v = u with $x_1 : A_1, \dots, x_n : A_n$ in v

► Canonical solution $x = \lambda z.z \ t_1 ... t_n$ where t_i s are closed \Rightarrow $v\{t_1/x_1, ..., t_n/x_n\} \rightarrow_{\beta} u$ Solves v = u

- Given v = u with $x_1 : A_1, \dots, x_n : A_n$ in v
- \triangleright $x(\lambda x_1 \dots x_n \cdot v) = u$ where $x : ((A_1, \dots, A_n, \mathbf{0}), \mathbf{0})$

- ► Canonical solution $x = \lambda z.z t_1...t_n$ where t_i s are closed \Rightarrow $v\{t_1/x_1,...,t_n/x_n\} \rightarrow_{\beta} u$ Solves v = u
- ▶ Restrict constants in solution terms to be those in *u* plus fresh*c* : 0: finite alphabet

Example

 $x_1(\lambda z.x_1(\lambda z'.za)) = a$ 4th-order when z, z': (0, 0) and $x_1: (((0, 0), 0), 0)$

Example

- $x_1(\lambda z.x_1(\lambda z'.za)) = a$ 4th-order when z, z' : (0, 0) and $x_1 : (((0, 0), 0), 0)$
- Associated interpolation problem $\frac{x(\lambda x_1.x_1(\lambda z.x_1(\lambda z'.za))) = a}{x : (((((0,0),0),0),0),0).}$

Example

- $x_1(\lambda z.x_1(\lambda z'.za)) = a$ 4th-order when z, z' : (0, 0) and $x_1 : (((0, 0), 0), 0)$
- Associated interpolation problem $x(\lambda x_1.x_1(\lambda z.x_1(\lambda z'.za))) = a$ x : (((((0,0),0),0),0),0).
- A canonical solution has the form $\lambda x.x(\lambda y.y(\lambda y_1^1...y(\lambda y_1^k.s)...))$

where s is the constant a or one of the variables y_1^j , $1 \le j \le k$.

▶ $t \equiv_A^u t'$ if t, t' : A solve same interpolation problems with u on right hand side

 $t \equiv_{\mathcal{A}}^{u} t'$ "observational equivalence"

- ▶ $t \equiv_A^u t'$ if t, t' : A solve same interpolation problems with u on right hand side $t \equiv_A^u t'$ "observational equivalence"
- ▶ Set of normal forms T_A/\equiv^u_A is finite Up to order 4, representatives for each equivalence class can be decided

- ▶ $t \equiv_A^u t'$ if t, t' : A solve same interpolation problems with u on right hand side $t \equiv_A^u t'$ "observational equivalence"
- ▶ Set of normal forms T_A/\equiv^u_A is finite Up to order 4, representatives for each equivalence class can be decided
- ► [Comon + Jurski 1997]

Theorem

Set of solutions to a 4th-order problem is regular: recognizable by a tree automaton

- ► $t \equiv_A^u t'$ if t, t' : A solve same interpolation problems with u on right hand side $t \equiv_A^u t'$ "observational equivalence"
- ▶ Set of normal forms T_A/\equiv^u_A is finite Up to order 4, representatives for each equivalence class can be decided
- ► [Comon + Jurski 1997]

Theorem

Set of solutions to a 4th-order problem is regular: recognizable by a tree automaton

▶ In the proof states of automaton built from $\equiv_{A'}^{u'}$ representatives where u' subterm of u, A' subtype of A.

Open Question

Given xw = u, is set of solutions automaton recognisable? Two problems extending Comon+ Jurski's result

Open Question

- Given xw = u, is set of solutions automaton recognisable? Two problems extending Comon+ Jurski's result
 - 1. Ensuring finitely many states in automaton
 - \leq 4th-order: only need to examine finitely many terms to build $\equiv_{u'}^{u'}$ classes
 - > 4th-order, need to examine infinitely many terms to build $\equiv^{u'}_{\Delta'}$ classes
 - equivalent to solving matching problem! [Padovani 2001]

Open Question

- Given xw = u, is set of solutions automaton recognisable? Two problems extending Comon+ Jurski's result
 - 1. Ensuring finitely many states in automaton
 - \leq 4th-order: only need to examine finitely many terms to build $\equiv_{u'}^{u'}$ classes
 - > 4th-order, need to examine infinitely many terms to build $\equiv^{u'}_{A'}$ classes
 - equivalent to solving matching problem! [Padovani 2001]
 - 2. Ensuring finite alphabet in automaton

Overcoming one of the problems

• Given xw = u, is set of solutions automaton recognisable?

Overcoming one of the problems

- Given xw = u, is set of solutions automaton recognisable?
- ▶ Theorem

The set of solutions built out of a fixed finite alphabet of variables is regular (recognised by a classical tree automaton)

[Stirling 2007]

Overcoming one of the problems

- Given xw = u, is set of solutions automaton recognisable?
- ► Theorem

The set of solutions built out of a fixed finite alphabet of variables is regular (recognised by a classical tree automaton)

[Stirling 2007]

 States of automaton built from variable profiles (based on [Ong 2006] schema paper). Proof uses game-theoretic characterisation of interpolation from [Stirling 2005,2006]

• Given xw = u, is set of solutions automaton recognisable?

- Given xw = u, is set of solutions automaton recognisable?
- ► Theorem

 The set of solutions is recognised by a alternating dependency tree automaton

- Given xw = u, is set of solutions automaton recognisable?
- ► Theorem

 The set of solutions is recognised by a alternating dependency tree automaton
 - Proof uses games

- Given xw = u, is set of solutions automaton recognisable?
- ► Theorem

 The set of solutions is recognised by a alternating dependency tree automaton
 - Proof uses games
 - ▶ OPEN QUESTION: is there a class of tree automata between dependency tree automata and alternating tree automata that can recognise solutions to matching.