Iterative DPS - DPS with ever increasing max depth limit

Uniform cost search - put all into priority queue and pick the best

A* - select node with min f:

 $f = g(\cos t \sin far + \cos t \cos node) + h(est. best case cost to finish)$

Greedy BFS - A* with f = h

Beam search - evaluate all possible directions and pick the best

Local beam search - evaluate some subset

Hill climbing - always pick the best

Stochastic hill-climbing - pick a random direction and decide whether to go there

Simulated annealing - Stochastic hill-climbing but worse fitness is accepted sometimes

Simple Reflex agent - react to now

Model-based reflex agent - compare now to internal model

Goal-based agents - long term planning

Utility-based agents - like goal... but also optimize for efficiency/utility by measuring it

Learning Agents - learn and adjust

Admissible heuristic - doesn't overestimate the cost

Consistent heuristic - cost so far plus cost to end is more than cost from start to end

Horizon effect - a significant change may exist just outside the depth limit of a game tree Quiescence - dormancy

Begin min max from max

CNF form: ORs separated by ANDs. Combine by eliminating contradictions

- 1. $P \rightarrow L \Rightarrow \neg P \lor L$
- 2. DeMorgan to move negations inward

$$Init(At(C_1, SFO) \land At(C_2, JFK) \land At(P_1, SFO) \land At(P_2, JFK) \land Cargo(C_1) \land Cargo(C_2) \land Plane(P_1) \land Plane(P_2) \land Airport(JFK) \land Airport(SFO))$$
 $Goal(At(C_1, JFK) \land At(C_2, SFO))$
 $Action(Load(c, p, a),$
 $PRECOND: At(c, a) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a)$
 $EFFECT: \neg At(c, a) \land In(c, p))$

Agent	Performance measure	Environment	Actuator	Sensor
Automated submarine	Scientific usefulness of the scans	Ocean	Controlled with a remote	Camera (+IR), GPS, pressure sensors

Automated online shopper	Price paid/value received ratio		Sale alerts. New posting alerts	Content of the web page
online shopper	received ratio	wide web	posting alerts	web page

Agent	Observabl e	Agents	Determinis tic	Episodic	Static	Discrete
Automated submarine	Partially	Single	Stochastic	Sequential	Dynamic	Continuou s
Automated online shopper	Fully	Multiple	Determinis tic	Episodic	Semi	Discrete

a. Planar map task

- i. States: the state is determined by country boundaries, 4 sets of colored countries (one set for each color) and a set of uncolored countries
- ii. Initial state: initial state is any state in which 4 sets that store colored countries are all empty
- iii. Actions: Each state can color any one country into one of 4 colors
- iv. Transition model: The actions have their expected effects, except each country can only be colored with one color at a time. Repainting of a country shell be permitted if agent can not do backtracking
- v. Goal test: Checks whether all countries are colored and no two neighboring countries have the same color
- vi. Path cost: Each coloring has a cost of 1. Thus, the agent is discouraged from repainting the same country needlessly

DPLL (stolen from Tani):