37. Внешний фотоэффект. Основные законы фотоэффекта. Уравнение Эйнштейна

Гипотеза Планка, блестяще решившая задачу теплового излучения абсолютно черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта — явления, открытие и исследование которого сыграло важную роль в становлении квантовой теории.

Фотоэффектом называется испускание электронов веществом под действием света.

Фотоэффект бывает трех видов:

- 1. Внешним фотоэлектрическим эффектом называется испускание электронов веществом под действием электромагнитного излучения.
- 2. *Внутренний фотоэффект* это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу.
- 3. *Вентильный фотоэффект* возникновение э. д. с. (фото э. д. с.) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля).

В вакуумном стеклянном сосуде находятся два металлических электрода, например, анод – медный, катод – цинковый, которые включены в электрическую цепь, состоящую из гальванометра и источника тока. При отсутствии освещения фототок равен нулю. Если на катод направить световой поток определенной частоты, то гальванометр покажет наличие тока в цепи, т. к. из катода вырываются электроны, которые, достигнув анода, замыкают цепь.

Свет представляет собой поток фотонов. Энергия одного фотона равна $\varepsilon_0=h\,v=hc/\lambda$

Падая на металл, фотон отдает свою энергию электрону (сам при этом исчезает). Благодаря этой энергии фотоэлектрон выходит с поверхности металла и достигает анода, замыкая цепь.

ВАХ фотоэффекта

 $I_{
m насыщ}$ – фототок насыщения, при котором все электроны, испускаемые катодом, достигают анода

 U_0 – **задерживающее напряжение**, при котором ни один из электронов не может достигнуть анода

Законы фотоэффекта

- I. При фиксированной частоте падающего света число фотоэлектронов, вырываемых из катода в единицу времени, пропорционально интенсивности света (сила фототока насыщения пропорциональна энергетической освещенности E_e катода).
- II. Максимальная начальная скорость (максимальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой ω.
- III. Для каждого металла существует красная граница фотоэффекта, т.е. минимальная частота ω_0 света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

Уравнение Эйнштейна

Классическая физика не смогла объяснить явление фотоэффекта. Это удалось квантовой физике. Эйнштейн предположил, что фотоны не только испускаются порциями (квантами), но распространяются и поглощаются в виде квантов с энергией $\varepsilon = h\nu$. Им была предложена формула, которая выражает закон сохранения энергии для фотоэффекта

А. Эйнштейн предположил, что свет поглощается такими же порциями $\hbar\omega$ (квантами), какими он, по предположению Планка, испускается.

(по закону сохранения энергии)

$$\hbar\omega = A + \frac{1}{2}mv_m^2$$
 — уравнение Эйнштейна

 $A-pабота \ выхода, \ v_{\scriptscriptstyle m}$ — максимальная скорость фотоэлектрона

все закономерности фотоэффекта объясняются

$$\omega_0 = rac{A}{\hbar}$$
 — красная граница фотоэффекта