Réseaux Euclidiens

Recherche du vecteur le plus court: énumération

- Soit $D=B^{-T}=d_1,...,d_n\in\mathbb{R}^n$ la base du réseaux dual de L(B)
 - D est telle que $b_i d_j = \delta_{i,j}$ (1 si i=j et 0 sinon)
- . Soit $w = \min_{b_i \in B} \|b_i\|$ la norme du plus petit vecteur de la base
- On peut borner les coefficients du plus court vecteur $v = \sum_{i=1}^{n} x_i b_i$ par

$$|x_i| \leq ||d_i||w$$

Réseaux Euclidiens

Algorithme de Lenstra-Lenstra-Lovász

- Soit $B=b_1,\ldots,b_n\in\mathbb{R}^n$ la base d'un réseau L(B) et $0.25<\delta<1$
- [Lenstra, 1982] B^* une base δ -LLL réduite de L(B) est telle que

$$||b_1^*|| \le \frac{2}{\sqrt{4\delta - 1}}^{n-1} \lambda$$

- Résout SVP_{γ} pour γ exponentiel en temps polynomial