Разнобой 3

- 1. На плоскости расставлены 200 точек, никакие три из них не лежат на одной прямой. Каждая точка помечена числом 1, 2 или 3, после этого проведены все отрезки, соединяющие пары точек, помеченных различными числами. Каждый отрезок помечен числом (1, 2 или 3), отличным от чисел в его концах. В результате оказалось, что каждое из трех чисел написано на плоскости ровно по n раз. Найдите n.
- **2.** Пусть K поле. Отображение $\delta: K[x] \to K[x]$ задано следующим образом:
- 1) $\forall a \in K \ \delta(a) = 0$;
- 2) $\forall f, g \in K[x] \ \delta(f+g) = \delta(f) + \delta(g);$
- 3) $\forall f, g \in K[x] \ \delta(fg) = \delta(f)g + f\delta(g)$.

Пусть
$$f = a_n x^n + ... a_0, g = (x - x_1)(x - x_2) ... (x - x_n)$$
. Найдите а) $\delta(f)$, б) $\delta(g)$.

- **3.** Целые числа a и b таковы, что при любых натуральных m и n число $am^2 + bn^2$ является точным квадратом. Докажите, что ab = 0.
- 4. Компания "ДолгоДорогСтрой" строит участок дороги Москва Санкт-Петербург, длиной 40 км. В первый день работники компании построили 1 км, а каждый последующий стоили $1/x^{10}$ км дороги, где x длина уже построенной дороги в километрах. Выполнят ли заказ работники компании "ДолгоДорогСтрой"?
- **5.** На диаметре AB окружности ω со выбрана точка C. На отрезках AC и BC как на диаметрах построены окружности ω_1 и ω_2 соответственно. Прямая l пересекает окружность ω в точках A и D, окружность ω_1 в точках A и E, а окружность ω_2 в точках M и N. Докажите, что MD = NE.
- **6.** Конечное множество S точек на плоскости будем называть сбалансированным, если для любых различных точек A и B из множества S найдется точка C из множества S такая, что AC = BC.
- а) Докажите, что для любого целого n>3 существует сбалансированное множество, состоящее из n точек.
- б) Множество S будем называть супер сбалансированным, если для любых трех различных точек $A,\,B$ и C из множества S существует точки P из множества S такой, что PA=PB=PC. Существует ли для какого-нибудь n супер сбалансированные множество?