

# QCM de mathématiques

## QCM de révisions (Arnaud)

Répondre en cochant la ou les cases correspondant à des assertions vraies (et seulement celles-ci).

### Logique

| Question 1. Soit l'équation $E: x^n = 27$ .                                                             |                                                                             |  |  |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
|                                                                                                         | [Faux] $E$ a une unique solution réelle quel que soit $n \ge 1$ .           |  |  |
|                                                                                                         | [Vrai] $E$ a au moins une solution réelle quel que soit $n \ge 1$ .         |  |  |
|                                                                                                         | [Faux] $E$ a $n$ solutions réelles quel que soit $n \ge 1$ .                |  |  |
|                                                                                                         | [Vrai] $E$ a au moins $n$ solutions complexes quel que soit $n \ge 1$ .     |  |  |
|                                                                                                         | [Vrai] $E$ a exactement $n$ solutions complexes quel que soit $n \ge 1$ .   |  |  |
|                                                                                                         |                                                                             |  |  |
| Question 2. Soit $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2 + 1$ .                                    |                                                                             |  |  |
|                                                                                                         | [Faux] $f$ est injective.                                                   |  |  |
|                                                                                                         | [Vrai] $f$ n'est pas injective.                                             |  |  |
|                                                                                                         | [Faux] $f$ est surjective.                                                  |  |  |
|                                                                                                         | [Vrai] $f$ n'est pas surjective.                                            |  |  |
|                                                                                                         | [Vrai] La restriction de $f, f_{ }: [1,2] \rightarrow [2,5]$ est bijective. |  |  |
|                                                                                                         |                                                                             |  |  |
| Ques                                                                                                    | tion 3. Soit $f: \mathbb{C} \to \mathbb{C}, z \mapsto z^2 + 1$ .            |  |  |
|                                                                                                         | [Faux] $f$ est injective.                                                   |  |  |
|                                                                                                         | [Vrai] $f$ n'est pas injective.                                             |  |  |
|                                                                                                         | [Vrai] $f$ est surjective.                                                  |  |  |
|                                                                                                         | [Faux] $f$ n'est pas surjective.                                            |  |  |
|                                                                                                         | [Vrai] La restriction de $f, f_{ }: [1,2] \rightarrow [2,5]$ est bijective. |  |  |
|                                                                                                         |                                                                             |  |  |
| Question 4. Pour $x, y \in \mathbb{R}$ et $z = x + iy$ , on pose $e^z = e^x \times e^{iy} = e^{x+iy}$ . |                                                                             |  |  |
|                                                                                                         | [Vrai] $ e^z  = e^x$ .                                                      |  |  |
|                                                                                                         | [Faux] $ e^z  = \sqrt{x^2 + y^2}$ .                                         |  |  |

 $\square$  [Vrai] Arg  $e^z = y$ .  $\square$  [Faux] Arg  $e^z = x + y$ .  $\square$  [Faux] La fonction  $f: \mathbb{C} \to \mathbb{C}$ ,  $z \mapsto e^z$  est injective. Question 5. Par quoi peut on compléter les pointillés pour que les deux assertions suivantes soient vraies:  $z \in \mathbb{C}$   $z = \overline{z} \dots z \in \mathbb{R}$  ;  $z \in \mathbb{C}$   $z^3 = -1 \dots z = -1$  $\square$  [Vrai]  $\Longrightarrow$  et  $\Longleftarrow$ .  $\square$  [Faux]  $\iff$  et  $\iff$ .  $\square$  [Faux]  $\iff$  et  $\iff$ .  $\square$  [Faux]  $\Longrightarrow$  et  $\Longrightarrow$ .  $\square$  [Vrai]  $\iff$  et  $\iff$ . **Question 6.** Soit la suite  $(x_n)_{n\in\mathbb{N}^*}$  définie par  $x_n=\frac{(-1)^n}{n}$ .  $\square \quad [\text{Faux}] \ \exists N > 0 \quad \forall n \in \mathbb{N}^* \qquad (n \geqslant N \implies x_n \geqslant 0).$  $\square \quad [\text{Faux}] \ \exists \varepsilon > 0 \quad \forall n \in \mathbb{N}^* \qquad x_n \leqslant \varepsilon.$  $\square$  [Vrai]  $\forall N \in \mathbb{N}^* \quad \exists n \geqslant N \qquad x_n < 0.$  $\square$  [Faux]  $\exists n \in \mathbb{N}^*$   $x_n = 0$ . Question 7. Soit E un ensemble,  $A, B \subset E$ , soit  $A\Delta B = (A \cup B) \setminus (A \cap B)$ . Les assertions suivantes sont-elles vraies quels que soient A et B inclus dans E?  $\square$  [Vrai]  $A\Delta B = (A \setminus B) \cup (B \setminus A)$ .  $\square$  [Faux]  $A\Delta B = (E \setminus A) \cap (E \setminus B)$ .  $\square$  [Faux] Si  $B \subset A$  alors  $A\Delta B = A$ .  $\square$  [Vrai] Si E est un ensemble fini, Card $(A\Delta B) \leq \operatorname{Card} A + \operatorname{Card} B$ .  $\square$  [Faux] Si E est un ensemble fini,  $\operatorname{Card}(A\Delta B) < \operatorname{Card} A + \operatorname{Card} B$ . **Question 8.** Soit la suite  $(x_n)_{n\in\mathbb{N}}$  définie par  $x_0=1$  puis pour  $n\geqslant 1$   $x_n=\frac{x_{n-1}}{n}$ .  $\square$  [Vrai]  $\forall n \in \mathbb{N}$   $x_n > 0$ .  $\square$  [Vrai]  $\forall n \in \mathbb{N}$   $x_{n+1} \leqslant x_n$ .  $\square$  [Faux]  $\exists N \in \mathbb{N}$   $\exists c \in \mathbb{R}$   $\forall n \in \mathbb{N}$   $(n \geqslant N \implies x_n = c)$ . 

**Question 9.** On lance de façon aléatoire deux dés identiques à 6 faces (numérotées de 1 à 6). On ne tient pas compte de l'ordre, par exemple le tirage 1 puis 5 est le même que 5 puis 1, mais les tirages 3 puis 3, et 3 puis 4 sont distincts.

| <ul> <li>□ [Faux] Il y a 36 tirages distincts possibles.</li> <li>□ [Vrai] Il y a 30 tirages distincts possibles.</li> <li>□ [Faux] Il y a 21 tirages distincts possibles.</li> <li>□ [Vrai] La somme des deux chiffres a strictement plus de chances d'être 7 que 2.</li> <li>□ [Faux] La somme des deux chiffres a strictement plus de chances d'être ≥ 11 que ≤ 3.</li> </ul>                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question 10. Soit $E$ un ensemble fini de cardinal $n$ , soit $A \subset E$ un ensemble à $q$ éléments, et $B \subset E$ un ensemble à $q$ éléments. On note $S = \{(a,b) \in A \times B \mid a \neq b\}$ et $\mathcal{T} = \{(I,b) \text{ avec } I \subset A \mid \operatorname{Card} I = r \text{ et } b \in B\}.$ $\square$ [Faux] Si $A \cap B = \emptyset$ alors $\operatorname{Card} S = p + q$ . $\square$ [Vrai] Si $A \cap B = \emptyset$ alors $\operatorname{Card} S = pq$ . $\square$ [Faux] Si $A \subset B$ alors $S = \emptyset$ . $\square$ [Faux] Card $\mathcal{T} = C_n^p \times r$ . $\square$ [Vrai] Card $\mathcal{T} = C_p^r \times q$ . |
| Arithmétique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Question 11. Les propositions suivantes sont-elles vraies quels que soient $\ell \geqslant 2$ en $p_1, \ldots, p_\ell$ des nombres premiers $> 2$ ? $\square$ [Faux] $p_1 p_2 \ldots p_\ell$ est un nombre premier. $\square$ [Faux] Le carré de $p_1$ est un nombre premier. $\square$ [Faux] $p_1 p_2 \ldots p_\ell + 1$ est un nombre premier. $\square$ [Vrai] $\prod_{i=1}^{\ell} p_i$ est un nombre impair. $\square$ [Faux] $\sum_{i=1}^{\ell} p_i$ est un nombre impair.                                                                                                                                                                                |
| <ul> <li>Question 12. □ [Vrai] Soit n ∈ N un entier, alors (n + 1)(n + 2)(n + 3)(n + 4) est divisible par 24.</li> <li>□ [Faux] Soit n ≥ 6 un entier pair alors n/2 est impair.</li> <li>□ [Vrai] La somme et le produit de deux nombres pairs est un nombre pair.</li> <li>□ [Faux] a b et a' b' ⇒ aa' bb'.</li> <li>□ [Faux] a b et a' b' ⇒ a + a' b + b'.</li> </ul>                                                                                                                                                                                                                                                                                         |
| Question 13. $\square$ [Vrai] Le pgcd de 924, 441 et 504 est 21. $\square$ [Faux] 627 et 308 sont premiers entre eux. $\square$ [Faux] Si $p \ge 3$ est premier, alors $p!$ est premier. $\square$ [Vrai] Soit $n \ge 2$ alors $n$ et $n + 1$ sont premiers entre eux. $\square$ [Vrai] Soit $n \ge 2$ un entier, le pgcd de $\{in^i \text{ pour } i = 1, \dots, 100\}$ est $n$ .                                                                                                                                                                                                                                                                               |

| Question         | 14. Soient $a, b, c \geqslant 1$ des entiers.                                                                                                                                          |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Box$ [Vr       | ai] $ab = \operatorname{pgcd}(a, b) \times \operatorname{ppcm}(a, b)$ .                                                                                                                |
| □ [Fa            | $[abc] = pgcd(a, b, c) \times ppcm(a, b, c).$                                                                                                                                          |
| $\Box$ [Vr       | ai] $ppcm(a, b, c)$ est divisible par $c$ .                                                                                                                                            |
| □ [Fa            | [ux] ppcm(1932, 345) = 19320.                                                                                                                                                          |
| □ [Fa            | [ux] ppcm(5, 10, 15) = 15.                                                                                                                                                             |
| Question $a c$ . | <b>15.</b> $\square$ [Faux] Soit $a, b, c \geqslant 1$ des entiers. Si $a bc$ et $a$ ne divise pas $b$ alors                                                                           |
| $\Box$ [Vr       | ai] Sachant que 7 divise $86419746 \times 111$ alors 7 divise $86419746$ .                                                                                                             |
| □ [Vra           | ai] Si $a = bq + r$ est la division euclidienne de $a$ par $b$ alors $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(b, r)$ .                                                         |
| □ [Vr            | ai] Il existe $u, v \in \mathbb{Z}$ tels que $195u + 2380v = 5$ .                                                                                                                      |
| ☐ [Far<br>39.    | ux] Sachant qu'il existe $u, v$ tels que $2431u + 65520v = 39$ alors $pgcd(2431, 65520) = 39$                                                                                          |
| Question         | <b>16.</b> $\square$ [Vrai] $\exists P \in \mathbb{Z}[X]  \forall x \in \mathbb{R} \qquad P(x) > 0.$                                                                                   |
| □ [Fa            | $[ux] \forall P \in \mathbb{Z}[X]  \exists x \in \mathbb{R} \qquad  P(x)  < 1.$                                                                                                        |
| □ [Vr            | ai] $\forall P \in \mathbb{Q}[X]$ $x \in \mathbb{Q} \implies P(x) \in \mathbb{Q}$ .                                                                                                    |
| □ [Vr            | ai] $\forall P \in \mathbb{C}[X]$ de degré $\geqslant 1$ $\exists z \in \mathbb{C}$ $P(z) = 0$ .                                                                                       |
| -                | ux] Tout polynôme de degré 2 ne s'annulant pas, prend uniquement des valeurs tives.                                                                                                    |
|                  | <b>17.</b> Soit $P, Q \in \mathbb{C}[X]$ des polynômes non nuls $P = \sum_{i=0}^{n} a_i X^i$ , soit $I_P = \{i \in \mathbb{C}[X] \mid x \in \mathbb{C}[X] \mid x \in \mathbb{C}[X] \}$ |
|                  | $\begin{cases} \text{soit val}(P) = \min I_P. \\ \text{soil}(-V^7 + V^3 + 7V^2) = 0 \end{cases}$                                                                                       |
|                  | ai] $\operatorname{val}(-X^7 + X^3 + 7X^2) = 2$ .                                                                                                                                      |
| -                | ai] $\operatorname{val}(P+Q) \geqslant \operatorname{val}(P)$ .<br>ai] $\operatorname{val}(P \times Q) \geqslant \operatorname{val}(P) + \operatorname{val}(Q)$ .                      |
|                  |                                                                                                                                                                                        |
| -                | $\operatorname{ux}] \operatorname{val}(k.P) = k \cdot \operatorname{val}(P) \text{ où } k \in \mathbb{N}^*.$                                                                           |
| □ [VI            | ai] Si $Q P$ alors $val(P/Q) = val(P) - val(Q)$ .                                                                                                                                      |
| Question         | <b>18.</b> $\square$ [Vrai] $X^4 + X^3 - X^2 - X$ est divisible par $X(X - 1)$ .                                                                                                       |
|                  | ux] Le reste la division euclidienne de $X^3 + X^2 + 3$ par $X - 1$ est $X + 4$ .                                                                                                      |
| =                | ai] Le quotient de $X^5 + 2X^3 + X^2 + 2X + 1$ par $X^2 + 1$ est $X^3 + X + 1$ .                                                                                                       |
|                  | ai] $X-1$ divise $X^n-1$ pour $n\geqslant 1$ .                                                                                                                                         |
|                  | $[X+1]$ divise $X^n+1$ pour $n\geqslant 1$ .                                                                                                                                           |
| Question         | <b>19.</b> $\square$ [Vrai] Soit $P \in \mathbb{C}[X]$ . $X - a$ divise $P$ ssi $P(a) = 0$ .                                                                                           |
| □ [Vr            | ai] Soit $P \in \mathbb{R}[X]$ de degré impair. Il existe $x \in \mathbb{R}$ tel que $P(x) = 0$ .                                                                                      |
|                  | ai] Soit $P \in \mathbb{R}[X]$ , les racines de $P^2$ sont d'ordre au moins 2.                                                                                                         |

| □ [Faux] Soit $P \in \mathbb{R}[X]$ , $x$ est racine simple ssi $P(x) = 0$ .<br>□ [Faux] Un polynôme $P \in \mathbb{C}[X]$ de degré $n$ a $n$ racines réelles.                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question 20. $\square$ [Faux] $X^4 + 1$ est irréductible dans $\mathbb{R}[X]$ .<br>$\square$ [Vrai] $X^2 + 7$ est irréductible dans $\mathbb{Q}[X]$ .<br>$\square$ [Faux] $X^2 + 7$ est irréductible dans $\mathbb{C}[X]$ .<br>$\square$ [Faux] Dans $\mathbb{Z}[X]$ , $\operatorname{pgcd}(X(X-1)^2(X^2+1), X^2(X-1)(X^2-1)) = X(X-1)$ .<br>$\square$ [Vrai] Dans $\mathbb{Z}[X]$ , $\operatorname{pgcd}(X^4 + X^3 + X^2 + X, X^3 - X^2 - X + 1) = X + 1$ . |
| Réels                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Question 21. Réel et rationnels                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\square \text{ [Vrai] } (x \in \mathbb{Q} \text{ et } y \in \mathbb{Q}) \implies x + y \in \mathbb{Q}$                                                                                                                                                                                                                                                                                                                                                      |
| $\square  [\text{Faux}] \ (x \in \mathbb{R} \setminus \mathbb{Q} \text{ et } y \in \mathbb{R} \setminus \mathbb{Q}) \implies x + y \in \mathbb{R} \setminus \mathbb{Q}$                                                                                                                                                                                                                                                                                      |
| $ \Box  [\text{Vrai}] \ \forall x \in \mathbb{R} \setminus \mathbb{Q}  \forall y \in \mathbb{R} \setminus \mathbb{Q}  x < y \implies (\exists z \in \mathbb{Q}  x < z < y) $ $ \Box  [\text{Vrai}] \ (\forall x \in \mathbb{R} \setminus \mathbb{Q})  (\forall y \in \mathbb{R} \setminus \mathbb{Q})  x < y \implies (\exists z \in \mathbb{R} \setminus \mathbb{Q}  x < z < y) $                                                                           |
| $\square \text{ [Faux] Pour } n \geqslant 3, \text{ $n$ impair } \Longrightarrow \sqrt{n} \in \mathbb{R} \setminus \mathbb{Q}$                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Question 22. Soient $A, B, C$ des parties de $\mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\square$ [Faux] Si sup A existe alors max A existe.                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\square$ [Vrai] Si max A existe alors sup A existe.                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\Box \text{ [Vrai] Pour } A, B \text{ majorées et } C \subset A \cap B \text{ alors } \sup C \leqslant \sup A \text{ et } \sup C \leqslant \sup B.$                                                                                                                                                                                                                                                                                                         |
| $\square \text{ [Faux] Si } A = \left\{ \frac{(-1)^n}{n} + 1 \mid n \in \mathbb{N}^* \right\} \text{ alors inf } A = 0 \text{ et sup } A = 1.$                                                                                                                                                                                                                                                                                                               |
| $\square$ [Vrai] Si $B = \left\{ \frac{E(x)}{x} \mid x > 0 \right\}$ alors inf $B = 0$ et sup $B = 1$ .                                                                                                                                                                                                                                                                                                                                                      |
| Question 23. Limites de suites                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\square$ [Vrai] Si $u_n = n \sin(\frac{1}{n})$ alors $(u_n)$ tend vers 1.                                                                                                                                                                                                                                                                                                                                                                                   |
| $\square$ [Faux] Si $u_n = \ln(\ln(n))$ alors $(u_n)$ a une limite finie.                                                                                                                                                                                                                                                                                                                                                                                    |
| $\square$ [Faux] $u_n = \frac{(\ln n)^2}{\sqrt{n}}$ alors $(u_n)$ tend vers $+\infty$ .                                                                                                                                                                                                                                                                                                                                                                      |
| $\square$ [Faux] $u_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$ alors $(u_n)$ diverge.                                                                                                                                                                                                                                                                                                                                          |
| $\square$ [Vrai] $u_n = \sin(n)$ , il existe une sous-suite de $(u_n)$ convergente.                                                                                                                                                                                                                                                                                                                                                                          |
| Question 24. Suites définies par récurrence. Soit $f(x) = 2x(1-x)$ et la suite définie pa $u_0 \in [0,1]$ et $u_{n+1} = f(u_n)$ .                                                                                                                                                                                                                                                                                                                            |
| $\square$ [Vrai] $\forall n \in \mathbb{N}$ $u_n \in [0, 1]$ .                                                                                                                                                                                                                                                                                                                                                                                               |
| $\square$ [Faux] Quelque soit $u_0$ dans $[0,1]$ , $(u_n)$ est monotone.                                                                                                                                                                                                                                                                                                                                                                                     |
| $\square$ [Faux] Si $(u_n)$ converge vers $\ell$ alors $\ell=0$ ou $\ell=1$ .                                                                                                                                                                                                                                                                                                                                                                                |

|       | [Vrai] Si $(u_n)$ converge vers $\ell$ alors $\ell = 0$ ou $\ell = \frac{1}{2}$ .                                                                                                         |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | [Vrai] $u_0 \in ]0,1[$ alors $(u_n)$ ne converge pas vers 0.                                                                                                                              |
| Quest | tion 25. Fonctions continues                                                                                                                                                              |
|       | [Faux] La somme, le produit et le quotient de deux fonctions continues est continue.                                                                                                      |
|       | [Vrai] La fonction $\sqrt{\sqrt{x}} \ln x$ est prolongeable par continuité en 0.                                                                                                          |
|       | [Faux] Il existe $a, b \ge 0$ tels que fonction définie par $f(x) = -e^x$ si $x < 0$ et $f(x) = ax^2 + b$ si $x \ge 0$ soit continue.                                                     |
|       | [Faux] Toute fonction impaire de $\mathbb R$ dans $\mathbb R$ est continue en 0.                                                                                                          |
|       | [Faux] La fonction $\frac{\sqrt{ x }}{x}$ est prolongeable par continuité en 0.                                                                                                           |
| Quest | tion 26. Théorème des valeurs intermédiaires, fonctions bornées                                                                                                                           |
|       | [Vrai] La méthode de dichotomie est basée sur le théorème des valeurs intermédiaires.                                                                                                     |
|       | [Faux] Tout polynôme de degré $\geqslant 3$ a au moins une racine réelle.                                                                                                                 |
|       | [Faux] La fonction $f(x) = \frac{1}{x^3(x^2+1)}$ admet au moins une racine réelle dans ] $-1, +1$ [.                                                                                      |
|       | [Vrai] Pour $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ continue admettant une limite finie en $+\infty$ , $f$ est bornée.                                                               |
|       | [Faux] Pour $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ continue admettant une limite finie qui vaut $f(0)$ en $+\infty$ alors $f$ est bornée et atteint ses bornes.                     |
| Quest | tion 27. Dérivation                                                                                                                                                                       |
|       | [Faux] La fonction $f(x) = 1/x$ est décroissante sur $\mathbb{R}^*$ .                                                                                                                     |
|       | [Vrai] La fonction $f(x) = x \sin \frac{1}{x}$ est continue et dérivable en 0.                                                                                                            |
|       | [Vrai] La fonction définie par $x\mapsto 0$ si $x\in\mathbb{Q}$ et $x\mapsto x^2$ si $x\notin\mathbb{Q}$ est dérivable en 0.                                                              |
|       | [Vrai] Si $f(x) = P(x)e^x$ avec $P$ un polynôme alors pour tout $n \in \mathbb{N}$ il existe un polynôme $Q_n$ tel que $f^{(n)}(x) = Q_n(x)e^x$ .                                         |
|       | [Faux] Si $f(x) = \sqrt{x} \ln x$ si $x \in \mathbb{R}^*$ et $f(0) = 0$ alors $f$ est dérivable en 0.                                                                                     |
| Quest | tion 28. Théorème de Rolle et des accroissements finis                                                                                                                                    |
|       | [Faux] Si $f$ est dérivable sur $[a, b]$ avec $f(a) = f(b)$ il existe un unique $c \in ]a, b[$ tel que $f'(c) = 0$ .                                                                      |
|       | [Vrai] Si $f$ est une fonction continue sur $[a,b]$ et dérivable sur $[a,b]$ et $f'(x)$ tend vers $\ell$ quand $x$ tend vers $a$ alors $f$ est dérivable en $a$ et $f'(a) = \ell$ .       |
|       | [Faux] Soit $f(x) = \ln x$ si $x > 0$ et $f(0) = 0$ . Pour $x > 0$ il existe $c \in ]0, x[$ tel que $\ln x = \frac{x}{c}$ .                                                               |
|       | [Vrai] Si $f$ est dérivable sur $\mathbb{R}$ et $\lim f(x) = +1$ quand $x \to +\infty$ et $\lim f(x) = +1$ quand $x \to -\infty$ alors il existe $c \in \mathbb{R}$ tel que $f'(c) = 0$ . |
|       | [Vrai] $\forall x > 0 \ e^x \leqslant xe^x + 1$ .                                                                                                                                         |

#### Question 29. Fonctions usuelles

- $\square$  [Vrai]  $\forall x \in \mathbb{R} \ \operatorname{ch} x \geqslant \operatorname{sh} x$ .
- $\square$  [Vrai]  $\frac{\operatorname{ch} x}{\operatorname{sh} x}$  tend vers 1 quand x tend vers  $+\infty$ .
- $\Box$  [Faux] th $(a+b) = \frac{\tanh a + \tanh b}{1 \ln a + \ln b}$

### Question 30. Fonctions réciproques

- $\square$  [Faux] Un fonction continue  $\mathbb{R} \longrightarrow \mathbb{R}$  strictement décroissante est bijective.
- $\square$  [Vrai] Si f est une fonction continue bijective croissante alors  $f^{-1}$  est croissante.
- $\square$  [Faux] Si f est une fonction continue bijective ne s'annulant jamais alors  $(\frac{1}{f})^{-1} = f$ .
- $\square$  [Faux]  $\arcsin(\sin x) = x$  pour tout  $x \in [0, 2\pi[$ .
- $\square$  [Faux] Si  $f(x) = \arctan(x^2)$  alors  $f'(x) = \frac{1}{1+x^4}$ .