0422

3. 用标准的 Runge-Kutta 方法解初值问题

$$\begin{cases} y' = \frac{3y}{1+x} & , & 0 < x < 1 \\ y(0) = 1 & . \end{cases}$$

取步长h = 0.2 (结果保留 5 为小数)

解:

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4) \\ k_1 = \frac{3y_n}{1 + x_n} \\ k_2 = \frac{3(y_n + \frac{h}{2}k_1)}{1 + x_n + \frac{h}{2}} \\ k_3 = \frac{3(y_n + \frac{h}{2}k_2)}{1 + x_n + \frac{h}{2}} \\ k_4 = \frac{3(y_n + hk_3)}{1 + x_n + h} \end{cases}$$

计算结果如下表:

x_n	0.0	0.2	0.4	0.6	0.8	1.0
y_n	1.00000	1. 72755	2. 74295	4. 09418	5. 82921	7. 99601

8. 写出用 Euler 方法和改进的 Euler 方法解初值问题

$$\begin{cases} y'' = \cos y , & 0 < x < 1 \\ y(0) = 1 , & y'(0) = 3 \end{cases}$$

的计算值

解:

(1)利用 Euler 方法,令y'=z,原问题变为:

$$\begin{cases} y' = z \\ z' = \cos y \\ y(0) = 1, z(0) = 3 \end{cases}$$

利用公式:

$$\begin{cases} y_{n+1} = y_n + hz_n \\ z_{n+1} = z_n + h\cos y_n \\ y_0 = 1, z_0 = 3 \end{cases}$$

取步长h = 0.2, 得下表:

x_n	0.0	0.2	0.4	0.6	0.8	1.0
\mathcal{Y}_n	1.0000	1.6000	2. 2216	2. 8421	3. 4383	3. 9963
z_n	3.0000	3. 1081	3. 1022	2. 9811	2. 7900	2. 5987

(2)用改进的 Euler 方法,利用公式:

$$\begin{cases} y_{n+1} = y_n + \frac{h}{2}(z_n + z_n + h\cos y_n) \\ z_{n+1} = z_n + \frac{h}{2}[\cos y_n + \cos(y_n + hz_n)] \end{cases}$$

仍取步长h = 0.2, 得下表:

x_n	0.0	0.2	0.4	0.6	0.8	1.0
y_n	1.0000	1.6108	2. 2202	2. 8054	3. 3528	3. 8612
z_n	3.0000	3. 0511	2. 9866	2. 8313	2. 6395	2. 4679

0424

5. 讨论解初值问题

$$\begin{cases} y' = -10y , \ a < x < b \\ y(a) = y_0 . \end{cases}$$

的二阶 Runge-Kutta 方法的绝对稳定性对步长的限制。

解:在该题条件的二阶方法下:

$$k_1 = -10y_n$$
, $k_2 = (100\beta h - 10)y_n$

则:

$$y_{n+1} = [100\beta\lambda_2 h^2 - 10(\lambda_1 + \lambda_2)h + 1]y_n$$

由于有条件:

$$\lambda_1 + \lambda_2 = 1$$
, $\beta \lambda_2 = \frac{1}{2}$

$$y_{n+1} = (50h^2 - 10h + 1)y_n$$

$$\exists :$$

$$|50h^2 - 10h + 1| \le 1$$

$$0 \le h \le 0.2$$

得到:

$$y_{n+1} = (50h^2 - 10h + 1)y_n$$

稳定性条件需要满足:

$$|50h^2 - 10h + 1| \le 1$$

则:

$$0 \le h \le 0.2$$

6. 证明用单步法

$$y_{n+1} = y_n + hf[x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n)]$$

解方程y' = -2ax的初值问题,可以给出准确解

解: 单步法的增量函数:

$$\varphi(x,y,h) = f\left[x + \frac{h}{2}, y + \frac{h}{2}f(x,y)\right] = -2ax - ah$$

由y' = -2ax得其原函数:

$$y(x_k) = -a(x_k^2 - x_0^2) + y_0$$

则有:

$$y(x_{n+1}) = y(x_n) - 2ahx_n - ah^2$$

由数学归纳法:

①初值时有 $y(x_0) = y_0$,截断误差为零

② 设存在
$$y(x_n) = y_n$$
,即: $\varepsilon_{n+1} = y(x_n) - y_n$,则:
$$\varepsilon_{n+1} = y(x_{n+1}) - y_{n+1}$$
$$= y(x_n) - 2ahx_n - ah^2 - y_n - h(-2ahx_n - ah^2) = 0$$
则 $e_n = 0$,该题能给出准确解。

补充题: 讨论初值问题

$$\begin{cases} y' = -10y , & 0 < x < 1 \\ y(0) = 1 . \end{cases}$$

的最简隐格式、最简显格式、梯形法格式的绝对稳定性对步长的限制。 解:

(1) 最简显格式为:

$$y_{n+1} = y_n + hf(x_n + y_n) = (1 - 10h)y_n$$

令:

$$|1 - 10h| \le 1$$

则:

$$0 \le h \le 0.2$$

(2) 最简显格式为:

$$y_{n+1} = y_n + hf(x_{n+1} + y_{n+1}) = y_n - 10hy_{n+1}$$
$$y_{n+1} = \left(\frac{1}{1 + 10h}\right)y_n$$

对任意的h >0均满足

(3) 梯形法格式为:

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n + y_n) + f(x_{n+1} + y_{n+1})]$$

化简得:

$$y_{n+1} = \left(\frac{1-5h}{1+5h}\right) y_n$$

对任意的h>0均满足