Introduction to Statistics Note

2024 Spring Semester

21 CST H3Art

Chapter 11: Multiple Regression

11.1 Inference for Multiple Regression

The linear regression model in which the mean response, μ_y , is related to **one explanatory variable** x:

$$\mu_{\nu} = \beta_0 + \beta_1 x$$

The data for a **simple linear regression** problem consist of n observations (x_i, y_i) of **two variables**.

In multiple regression, the response variable y depends on p explanatory variables x_1, x_2, \ldots, x_p :

$$\mu_{\nu} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Data for **multiple linear regression** consist of the value of a response variable y and p **explanatory variables** (x_1, x_2, \ldots, x_p) on each of n cases.

The statistical model for multiple linear regression is:

$$y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_n x_{in} + \varepsilon_i$$

for $i=1,2,\ldots,n$

The **mean response** μ_y is a linear function of the explanatory variables:

$$\mu_{\nu} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

The **deviations** ε_i (偏差) are independent and Normally distributed $N(0,\sigma)$

The parameters of the model (模型参数) are $\beta_0, \beta_1, \ldots, \beta_p$ and σ .

The coefficient $\beta_i (i=1,\ldots,p)$ represents **the average change in the response** when the variable x_i increases by one unit and all other x variables are held constant. (每个 x_i 对应的系数 β_i 只代表了该变量变化单位值且其他变量 x_j ($j\neq i$)保持不变时,响应变量变化的值)

Estimation of the Parameters (参数值估计)

Select a random sample of n individuals on which p+1 variables (x_1,\ldots,x_p,y) are measured. The least-squares regression method chooses b_0,b_1,\ldots,b_p to minimize the sum of squared deviations $(y_i-\hat{y_i})^2$, where:

$$\hat{y_i} = b_0 + b_1 x_{i1} + \dots + b_n x_{in}$$

As with simple linear regression, the constant b_0 is the **y-intercept**.

The parameter σ^2 measures the variability of the responses about the population response mean. The estimator of σ^2 is:

$$s^2 = rac{\sum e_i^2}{n-p-1} = rac{\sum (y_i - \hat{y_i})^2}{n-p-1}$$

Confidence Interval for β_i rely on the t-distribution, with n-p-1 degrees of freedom, a level C confidence interval for β_i is:

$$b_j \pm t^* \cdot \mathbf{SE}_{b_j}$$

where \mathbf{SE}_{b_j} is the standard error of b_j and t^* is the t critical for the t(n-p-1) distribution with area C between $-t^*$ and t^*

Significance Test for β_j (β_j 的显著性检验):

• Null hypothesis $H_0: \beta_j = 0$, calculate the t statistic:

$$t=rac{b_j}{\mathbf{SE}_{b_i}}$$

which has the t(n-p-1) distribution.

- · Alternative hypothesis:
 - \bullet $H_a: \beta_i > 0$ is $P(T \geq t)$
 - \bullet $H_a: \beta_j < 0$ is $P(T \leq t)$
 - $\bullet \ H_a: eta_j
 eq 0 ext{ is } 2P(T \geq |t|)$
 - Note: Software typically provides two-sided P-values

Significance Test for β_i

- Suppose we test $H_0: \beta_j = 0$ for each j and find that **none of the** p **tests is significant**, we **should not** conclude that **none of the explanatory variables is related to the response(不应得出结论认为所有解释变量均与响应无关)**.
- When we fail to reject $H_0: \beta_j = 0$, this means that we **probably don't need** x_j **in the model with all the other variables (我们可能不需要在模型中包含** x_j **)**, so it merely means that it's **safe to throw away at least one of the variables (安全地丢弃至少一个变量)**.

ANOVA F-test for Multiple Regression (对多变量回归的ANOVA F检验)

In multiple regression, the ANOVA F statistic tests the hypotheses:

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$$
 vs. $H_a:$ at least one $\beta_i \neq 0$

by computing the F statistic $F = \mathbf{MSM}/\mathbf{MSE}$, When H_0 is true, F follows the F(p, n-p-1) distribution. The P-value is $P(F \ge f)$.

p is number of predictors (p是自变量/预测变量的数量)

A significant P-value doesn't mean that all p explanatory variables have a significant influence on y—only that at least one does.

ANOVA Table for Multiple Regression

Source	Sum of Squares SS	df	Mean square ${f MS}$	F	P-value
Model	$\sum (\hat{y_i} - ar{y})^2$	p	$\mathbf{MSM} = \mathbf{SSM}/\mathbf{DFM}$	MSM/MSE	Tail area above ${\cal F}$
Error	$\sum (y_i - \hat{y_i})^2$	n-p-1	$\mathbf{MSE} = \mathbf{SSE}/\mathbf{DFE}$		
Total	$\sum (y_i - ar{y})^2$	n-1			

 $\mathbf{SSM} = \mathsf{model}$ sum of squares, $\mathbf{SSE} = \mathsf{error}$ sum of squares

 $\mathbf{SST} = \mathsf{total}$ sum of squares, $\mathbf{SST} = \mathbf{SSM} + \mathbf{SSE}$

$$\mathbf{DFM} = p, \mathbf{DFE} = n - p - 1, \mathbf{DFT} = n - 1, \mathbf{DFT} = \mathbf{DFM} + \mathbf{DFE}$$

Squared Multiple Correlation R^2 (多变量相关系数R方)

 \mathbb{R}^2 , the squared multiple correlation, is the proportion of the variation in the response variable y that is explained by the model.

$$R^2 = rac{\sum (\hat{y_i} - ar{y})^2}{\sum (y_i - ar{y})^2} = rac{\mathbf{SSM}}{\mathbf{SST}}$$

The square root of \mathbb{R}^2 , namely \mathbb{R} , called the **multiple correlation coefficient (多变量相关系数)**, is the **correlation between the observations and the predicted values (观测值和预测值的相关性)**.