

東南大學

毕业设计(论文)任务书

院(系) 仪器科学与工程学院

专 业 _____测控技术与仪器_____

设计(论文)题目 <u>基于 FPGA 的机器视觉算法实现</u>								
学	生	姓	名_	戴天宇 学号 22011229				
起	止	日	期	2015年01月——2015年06月				
设	计	地	点	中心楼 5 楼, Xilinx				
指	导	教	师_	王立辉				
顾	问	教	师	<u></u>				
教研室主任								
教学院长(教学系主任)								

发任务书日期

2015年3月5日

毕业设计(论文)任务的内容和要求

(包括任务内容、原始条件及数据、技术要求、工作要求等)

任务内容

机器视觉即为用机器代替人眼来做测量和判断,通过图像输入装置、图像处理系统来根据 周围环境的视觉信息来进行判断和输出,这使得机器在某些场合下替代人类的眼睛成为可能, 在某些人类难以胜任的领域,亦或是超出了人类所能够达到的效率的领域,利用机器视觉可以 达到良好的效果。

传统的机器视觉是软件实现的,比如基于著名的 OpneCV 的各种机器视觉系统,然而随着 FPGA 的发展,使得硬件的图像处理成为可能,FPGA 高速并行的特点和图像处理的某些算法有着 高度的匹配度,而且速度比起软件实现要快许多,于是越来越多的研究者都在考虑如何将一些 软件图像算法移植到 FPGA 上对其进行加速,并且已然获得了不少骄人的成果。

在以上背景下,本次课题将研究基于 FPGA 的机器视觉,学习并实现一些 FPGA 的图像处理,并在其基础上对现有的一些机器视觉算法进行加速。由于机器视觉的涵盖面非常广泛,其难度也并不均一,所以决定采用软件和硬件结合的方式,灵活调整软件和 FPGA 各自负责的比例,以到达一个效率和结果上的平衡。

预计在 Xilinx 的 Zynq7000 平台上完成设计,使用 FPGA 完成采集和识别的工作,而使用软件完成分支预测的部分,最大程度利用双方的优势,这也完全符合 Zynq7000 平台的设计理念,旨在构造一个比较完整的"采集->识别->预测->行为"机器视觉系统,同时基于这个系统做出实例,初步定为真人交互的五子棋游戏,为了保证项目的基本可行性,先采用一部分的先验知识对难度进行合理的分割。

综上,此次任务分为以下几个部分:

- 1. 完成基于 FPGA 的图像数据采集、图像识别系统。
- 2. 结合软件的分支预测程序,连接软件和硬件部分。
- 3. 综合以上成果,做成实例。

原始条件及数据

Xilinx 公司提供了 Zybo 开发板与 Basys3 开发板,同时还有指导人员。

个人已经在 Xilinx 的开发环境下完成过一些 FPGA 的图像处理的工作,也有一些软件功底。

技术要求

1. FPGA 对摄像头的驱动和图像处理工作,图像处理部分包含软件仿真、功能仿真和板上

验证,并采用模块化设计,符合 Xilinx 现在建议的 IP 设计流程。

2. 软件和硬件部分的接口,采用 AXI 总线进行交互。

工作要求

遵守学校及	学院的工作纪律、	规定安排,	勤学好问,	独立完成毕业设计,	掌握控制原理及
仿真分析方法,等	完成性能评价。				

附:普适工作要求:(如针对本课题另有特别规定的工作要求,请填于上面空白栏) 1、在深刻领会任务内容及要求的基础上,通过查阅文献资料、调查研究和方案论证, 写出开题报告。然后开展实验研究、理论研究、设计、研制、开发以及数据处理、 分析总结、资料整理等与任务书要求相应的工作,并撰写成毕业论文或设计说明书, 独立地完成毕业设计的各项任务;

- 2、查找有关专业文献(10篇以上);
- 3、毕业论文或设计说明书需符合规范化要求,即:由中外文题名、目录、中外文摘要、引言(前言)、正文、结论、谢辞、参考文献和附录组成,中文摘要在 400 汉字左右,外文摘要在 250 个实词左右,中文题名字数一般不超过 20 个,设计说明书、论文或软件说明书的总字数在 1.5~2 万汉字(文、管等学科可根据具体情况,另行规定总字数,报教务处备案)。

学生应提交的软硬件的名称、内容及主要的技术指标(可按以下类型选择填写):

□计算机软件:	
全套设计程序(FPGA设计、仿真,软件)	1 套
□图纸 (名称、图幅、张数):	
设计流程图 1份	
□电路板:	
□机电装置:	

□新材料、新制剂:
□结构模型:
□其它:

应提交的其它文档:

- 1、开题报告一份
- 2、与设计(论文)相关的英文资料译文一份(中文字数>5000字,并附保留阅读痕迹的资料原文)

参考文献(至少五篇,含供学生翻译的英文资料,按规范开列):

- [1] Donald G. Bailey. 基于 FPGA 的嵌入式图像处理系统设计[M]. 原魁, 何文浩, 肖晗译. 北京: 电子工业出版社, 2013.
- [2] Sanir Palnitkar. Verilog HDL 数字设计与综合(第二版)[M]. 夏宇闻, 胡燕祥, 刁岚松译. 北京:中国电子工业出版社, 2009:7.
- [3] 克里斯. 斯皮尔. SystemVerilog 验证[M]. 张春, 麦宋平, 赵益新译. 北京: 科学出版社, 2009.
- [4] 陆佳华等. 嵌入式系统软硬件协同设计实战指南: 基于 Xilinx ZYNQ (第2版) [M]. 北京. 机械工业出版社. 2014. 7.
- [5] F. Bensaali, A. Amira, Accelerating colour space conversion on reconfigurable hardware, Image and Vision Computing, Volume 23, Issue 11, 1 October 2005, Pages 935-942, ISSN 0262-8856.
- [6] Hu, Yueli; Huijie Ji, "Research on Image Median Filtering Algorithm and Its FPGA Implementation," Intelligent Systems, 2009. GCIS '09. WRI Global Congress on , vol.3, no., pp.226,230, 19-21 May 2009

毕业设计(论文)进度安排

起止日期	工作内容	备 注
第1周~第2周	查阅收集相关资料文献,了解	
	机器视觉的一些基本算法。	
第 3 周	完成开题报告。	
第 4 周~第 10 周	完成程序设计、仿真以及板上	
	验证。	
第 11 周~第 12 周	完成调试及相关的数据分析。	
第 13 周~第 16 周	进行资料整理,论文的撰写、	
	修改、打印提交、制作 PPT、	
	验收、并完成答辩。	

注: 只需按阶段作出安排, 更细的安排应由学生自己在开题报告中作出。

指导教师签名:王立辉

2015年3月5日