2/6/2022

EXPERIMENT NO.7

EC111

VISHAL KUMAR PRAJAPATI

ROLL NO. 2101227 GROUP NO.18 Name: Vishal Kuması Prayapati Roll. NO. 2101227 work Bench-18

Experiment No. 7 Aim: Implementation of Atter and substractor circuit.

Apparlatus: bread board, Resistors, wires, etc.

Circuit Diagram:

For Aenuerting affect circuit:

observation!

ಫ, N _o ,	V 1	V ₂	$V_0 = -(V_1 + V_2)$	
1,	2.0985	5.033	- 7.041	
2,	4.095	5.056	-8.874	
3	1.623	4.614	- 6.124	
ч	2.578	5.584	- 8.075	

for Substractor:

Circuit diagram!

R= IKVZ

observation;

Z.No. V

٧,

Vo = V2 - V1

1, 2.639

5.585

2.9734

2 1.668

5.867

3.429

3 1.0973

5.067

3.906

9 2.0619

4.547

2.522

2,6.22

EXPERIMENT NO. 7

TITLE: IMPLEMENTATION OF ADDER AND SUBTRACTOR CIRCUIT.

OBJECTIVE:

- To design an adder amplifier circuit and draw the VTC.
- To design a subtractor/difference amplifier circuit and draw the VTC

APPARATUS REQUIRED:

- Breadboard
- Connecting wires
- Resister
- Power supply
- 741 IC (op-amp)

THOREY:

ADDER:

An adder is an electronic circuit that produces an output, which is equal to the sum of the applied inputs. This section discusses

the op-amp-based adder circuit. An op-amp-based adder produces an output equal to the sum of the input voltages applied at its inverting terminal. It is also called a summing amplifier since the output is an amplified one.

FORMULA USED:

```
Vo = -((Rf/R1)V1 + (Rf/R2)V2 + (Rf/R3)V3)

If Rf =R1=R2=R3=R in ohms

Therefore, Vo = -(V1 + V2 + V3)
```

SUBTRACTOR:

A subtractor is an electronic circuit that produces an output, which is equal to the difference between the applied inputs. This section discusses the op-amp-based subtractor circuit. An op-amp-based subtractor produces an output equal to the difference between the input voltages applied at its inverting and non-inverting terminals. It is also called a difference amplifier since the output is an amplified one.

FORMULA USED:

```
Vo = (R2/R1) * (V2 - V1)
If R2=R1=R then, Vo = (V2 - V1)
```

CIRCUIT DIAGRAM:

ADDER:

SUBTRACTOR:

OBSERVATION:

ADDER:

S.NO.	V1	V2	V0=-(V1+V2)
1	2.095	5.033	-7.041
2	4.095	5.056	-8.874
3	1.623	4.614	-6.124
4	2.578	5.584	-8.075

SUBTRATOR:

S.NO.	V1	V2	V0=(V2-V1)
1	2.639	5.585	2.9734
2	1.668	5.067	3.429
3	1.0973	5.067	3.906
4	2.0619	4.547	2.522

RESULT:

- Successfully verified the adder amplifier circuit.
- Successfully verified the subtractor amplifier circuit.

PRECAUTIONS:

- Connections should be made accordingly to the circuit diagram only.
- Do not be on the DC power supply for a long time otherwise diode may be burned.
- Wires should be tight and no short-circuiting should be there.
- Do not cross the maximum power rating.