Lab1

Name: Daniel Mehta Student ID: n01753264

Read the Salaries.csv into a dataframe called df_data and use the head() method to check that you have read in the data correctly. Make sure you import pandas.

```
In [2]: import pandas as pd
fp = 'Salaries.csv'

df_data = pd.read_csv(fp)

df_data.head()
```

Out[2]:	Id EmployeeName		EmployeeName	JobTitle	BasePay	OvertimePay	OtherPay	Benefits	TotalPay	То
	0	1	NATHANIEL FORD	GENERAL MANAGER- METROPOLITAN TRANSIT AUTHORITY	167411.18	0.00	400184.25	NaN	567595.43	
	1	2	GARY JIMENEZ	CAPTAIN III (POLICE DEPARTMENT)	155966.02	245131.88	137811.38	NaN	538909.28	
	2	3	ALBERT PARDINI	CAPTAIN III (POLICE DEPARTMENT)	212739.13	106088.18	16452.60	NaN	335279.91	
	3	4	CHRISTOPHER CHONG	WIRE ROPE CABLE MAINTENANCE MECHANIC	77916.00	56120.71	198306.90	NaN	332343.61	
	4	5	PATRICK GARDNER	DEPUTY CHIEF OF DEPARTMENT, (FIRE DEPARTMENT)	134401.60	9737.00	182234.59	NaN	326373.19	

Use the dtypes attribute to view how each column is stored

```
In [4]: df_data.dtypes
```

```
Out[4]: Id
                               int64
        EmployeeName
                              object
        JobTitle
                              object
        BasePay
                             float64
        OvertimePay
                             float64
        OtherPay
                             float64
        Benefits
                             float64
        TotalPay
                             float64
        TotalPayBenefits
                             float64
        Year
                               int64
        Notes
                             float64
        Agency
                             object
        Status
                             float64
        dtype: object
```

Slice the first two columns using .loc and store the result in a variable.

```
In [5]: #Write you code here
    result_1 = df_data.loc[:, ['Id', 'EmployeeName']]
    result_1.head()
```

```
Out [5]: Id EmployeeName

0 1 NATHANIEL FORD

1 2 GARY JIMENEZ

2 3 ALBERT PARDINI

3 4 CHRISTOPHER CHONG

4 5 PATRICK GARDNER
```

Slice the first two rows using .loc and store the result in a variable called result_2.

```
In [6]: #Write you code here
  result_2 = df_data.loc[0:1, :]
  result_2.head()
```

Out[6]:		Id	EmployeeName	JobTitle	BasePay	OvertimePay	OtherPay	Benefits	TotalPay	То
	0	1	NATHANIEL FORD	GENERAL MANAGER- METROPOLITAN TRANSIT AUTHORITY	167411.18	0.00	400184.25	NaN	567595.43	
	1	2	GARY JIMENEZ	CAPTAIN III (POLICE DEPARTMENT)	155966.02	245131.88	137811.38	NaN	538909.28	

Slice the first four rows and the first five columns and store the result in a variable called result_3.

```
In [7]: #Write you code here
  result_3 = df_data.iloc[0:3,0:4]
  result_3.head()
```

```
Out[7]:
                                                                            JobTitle
            Id
                 EmployeeName
                                                                                      BasePay
               NATHANIEL FORD
                                GENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY
                                                                                      167411.18
         1
            2
                 GARY JIMENEZ
                                                     CAPTAIN III (POLICE DEPARTMENT)
                                                                                     155966.02
         2
            3
                ALBERT PARDINI
                                                     CAPTAIN III (POLICE DEPARTMENT)
                                                                                     212739.13
```

Slice rows 0,4,6 and select two columns randomly and store the result in variable called result_4.

```
import random
rows = df_data.iloc[[0, 4, 6]]
random_columns = random.sample(list(df_data.columns), 2)
result_4 = rows[random_columns]
result_4.head()
```

```
Out [8]: Year Agency

O 2011 San Francisco

4 2011 San Francisco

6 2011 San Francisco
```

Store the number rows in a variable called num_rows.

```
In [9]: #Write you code here
  num_rows = len(df_data.index)
  num_rows
```

Out[9]: 148654

Print out the last row of the data to dataframe.

```
In [12]: #Write you code here
df_data.tail(1)
```

Out[12]:	Id		Id EmployeeName		JobTitle BasePay		OtherPay	Benefits	TotalPay	
	148653	148654	Joe Lopez	Counselor, Log Cabin Ranch	0.0	0.0	-618.13	0.0	-618.13	

```
In []:
```

Compute the average and max TotalPay. Store the results in variables called avg_TotalPay and max_TotalPay

```
In [14]: #Write your code here
    avg_TotalPay = df_data.TotalPay.mean()
    max_TotalPay = df_data.TotalPay.max()

print(f"Average: {avg_TotalPay}")
    print(f"Max: {max_TotalPay}")
```

Average: 74768.32197169267

Max: 567595.43

Create a column called "final", which is BasePay*2.

```
In [16]: #Write your code here
    df_data["final"] = df_data.BasePay*2
    df_data.head()
```

Out[16]:	Out[16]: I		EmployeeName	JobTitle	BasePay	OvertimePay	OtherPay	Benefits	TotalPay	То
	0	1	NATHANIEL FORD	GENERAL MANAGER- METROPOLITAN TRANSIT AUTHORITY	167411.18	0.00	400184.25	NaN	567595.43	
	1	2	GARY JIMENEZ	CAPTAIN III (POLICE DEPARTMENT)	155966.02	245131.88	137811.38	NaN	538909.28	
	2	3	ALBERT PARDINI	CAPTAIN III (POLICE DEPARTMENT)	212739.13	106088.18	16452.60	NaN	335279.91	
	3	4	CHRISTOPHER CHONG	WIRE ROPE CABLE MAINTENANCE MECHANIC	77916.00	56120.71	198306.90	NaN	332343.61	
	4	5	PATRICK GARDNER	DEPUTY CHIEF OF DEPARTMENT, (FIRE DEPARTMENT)	134401.60	9737.00	182234.59	NaN	326373.19	

Use the drop() method to delete the column OvertimePay from the dataframe df_data.

```
In [20]: #Write your code here
df_data.drop(["OvertimePay"], axis = 1, inplace = True)
df_data.head()
```

	Id	EmployeeName	JobTitle	BasePay	OtherPay	Benefits	TotalPay	TotalPayBenefits
0	1	NATHANIEL FORD	GENERAL MANAGER- METROPOLITAN TRANSIT AUTHORITY	167411.18	400184.25	NaN	567595.43	567595.43
1	2	GARY JIMENEZ	CAPTAIN III (POLICE DEPARTMENT)	155966.02	137811.38	NaN	538909.28	538909.28
2	3	ALBERT PARDINI	CAPTAIN III (POLICE DEPARTMENT)	212739.13	16452.60	NaN	335279.91	335279.91
3	4	CHRISTOPHER CHONG	WIRE ROPE CABLE MAINTENANCE MECHANIC	77916.00	198306.90	NaN	332343.61	332343.61
4	5	PATRICK GARDNER	DEPUTY CHIEF OF DEPARTMENT, (FIRE DEPARTMENT)	134401.60	182234.59	NaN	326373.19	326373.19

Out[20]:

In this set of practice exercises, we will be working with a demographic data regarding the passengers aboard the Titanic. Read in the data frame and use the head() method to check that it was read in correctly.

```
In [22]: import pandas as pd
#Write your code here
fp = 'Titanic.csv'

df_data = pd.read_csv(fp)

df_data.head()
```

	PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

Use the rename method to change the column "Name" to "Passenger_Name" and the column "Ticket" to "Ticket_Num".

```
In [25]: #Write your code here
    df_data.rename(columns={"Name": "Passenger_Name", "Ticket": "Ticket_Num"}, inplace=True)
    df_data.head()
```

Out[25]:		PassengerId	Pclass	Passenger_Name	Sex	Age	SibSp	Parch	Ticket_Num	Fare	Cabin
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN
	2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN
	3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN
	4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN

Select the name of passenger 896

Out[22]:

```
In [35]: #Write your code here
   passenger_name = df_data.loc[df_data['PassengerId'] == 896, 'Passenger_Name'].iloc[0]
   print(passenger_name)
```

Hirvonen, Mrs. Alexander (Helga E Lindqvist)

How many missing entries are there in the Age column?

```
In [37]: #Write you code here
    df_data.isnull().sum()["Age"]
```

```
Out[37]: 86
```

Compute the avg age of passengers ignoring the missing data.

```
In [40]: #Write your code here
         df_data.Age.mean(skipna=True)
Out[40]: 30.272590361445783
         Using the fillna() method replace the missing values in the Age column with the mean.
In [44]: #Write your code here
         df_data['Age'] = df_data.Age.fillna(df_data.Age.mean())
         df_data['Age']
Out[44]: 0
                 34.50000
                 47.00000
          1
          2
                 62.00000
          3
                 27.00000
          4
                 22.00000
          413
                 30.27259
          414
                 39.00000
          415
                 38.50000
          416
                 30.27259
          417
                 30.27259
          Name: Age, Length: 418, dtype: float64
 In [ ]: #Bonus: for students who wants to practice more
```

What is the average age of the 5 oldest passengers? The reset_index method will be helpful here.

```
In [47]: #Write your code here
sorted_df = df_data.sort_values(by='Age', ascending=False).reset_index(drop=True)
oldest_passengers = sorted_df.head(5)
average_age = oldest_passengers['Age'].mean()
average_age
```

Out[47]: 67.0

In []: