EECS 16A Designing Information Devices and Systems I Discussion 5C

1. Timer Circuit

In this problem, we will walk through another useful, real-world circuit, the timer circuit. The circuit is shown below. All resistors have a resistance of $1 \,\mathrm{k}\Omega$ and $C_1 = 1 \,\mu\mathrm{F}$.

- (a) Find the current through the capacitor C_1 in terms of the voltage V_3 and the resistor R_1 .
- (b) Suppose that at time t = 0, C_1 is uncharged. Find the voltage v_1 in terms of t, v_3 , and R_1 . What is the maximum $|v_1|$ could be?
- (c) How is v_2 related to v_1 ? What is the voltage v_2 ?

Now, let's independently analyze the circuit in the two possible outputs of the comparator, when $v_3 = 1 \text{ V}$ and when $v_3 = -1 \text{ V}$.

- (d) Assume that the output of the comparator v_3 has railed to the top rail. With this value of v_3 , what is v_2 as a function of time? What is the voltage at the positive input of the comparator? At what time will the two inputs of the comparator be equal?
- (e) Now assume that the reverse occurs, that is, the output of the comparator has railed to the bottom rail. Repeat part (d) with this value of v_3 .
- (f) What is v_3 as a function of time? Draw a graph of v_3 and v_2 . Since the graph is periodic, find its period and frequency.
- (g) Suppose that we changed the value of C_1 to be $2\mu F$? What is the new period? Suppose that we change R_5 to be $2k\Omega$. What is the new period? What if we change R_5 to be 0Ω ? Will this circuit still operate?

2. Practice: Dividers for Days

(a) Solve the following circuit for v_x .

- (b) You have access to two voltage sources, V_1 and V_2 . You can use two resistors (as long as $0 \le R < \infty$). How would you design a circuit that produces a voltage $v_x = \frac{1}{3}V_1 + \frac{2}{3}V_2$?
- (c) You have two current sources I_1 and I_2 . You also have a load resistor $R_L = 6k\Omega$. Similar to the first part, you can use whatever resistors you want (as long as they are finite integer values). How would you design a circuit such that the current running through R_L is $I_L = \frac{2}{5}(I_1 + I_2)$?