PRUEBA DE ACCESO (LOGSE)

UNIVERSIDAD DE CASTILLA Y LEÓN

SEPTIEMBRE - 2008

MATEMÁTICAS II

Tiempo máximo: 1 horas y 30 minutos

<u>Criterios generales de evaluación de la prueba</u>: Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

<u>Datos o tablas (si ha lugar):</u> Podrá utilizarse una calculadora no programable y no gráfica.

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos problemas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma en el orden deseado.

PRUEBA A

PROBLEMAS

- 1°) Sea a un parámetro real. Se considera el sistema $\begin{cases} x + ay + z = 2 + a \\ (1 a)x + y + 2z = 1. \text{ Se pide:} \\ ax y z = 1 a \end{cases}$
- a) Discutir el sistema en función del valor de a.
- b) Resolver el sistema para a=0.
- c) Resolver el sistema para a=1.
- 2°) Hallar, de entre los puntos de la parábola de ecuación $y = x^2 1$, los que se encuentran a distancia mínima del punto $A\left(-2, -\frac{1}{2}\right)$.

CUESTIONES

 1^a) Sea A una matriz 3 x 3 de columnas C_1 , C_2 y C_3 (en ese orden). Sea B la matriz de columnas $C_1 + C_2$, $2C_1 + 3C_3$ y C_2 (en ese orden). Calcular el determinante de B en fun-

ción del de A.

- 2^a) Hallar la distancia entre el punto A(2, 1, 4) y la recta $r = \frac{x-1}{2} = y+1 = \frac{z}{3}$.
- 3^a) Estudiar la continuidad en R de la función $f(x) = \begin{cases} \frac{1-\cos x}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$.
- 4^a) Calcular: $I = \int \frac{dx}{x(x+1)}$.

PRUEBA B

PROBLEMAS

- 1°) Se consideran las rectas el sistema $r = \begin{cases} y=1 \\ z=0 \end{cases}$ y $s = \begin{cases} x=0 \\ z=2 \end{cases}$. Se pide:
- a) Estudiar la posición relativa de r y s.
- b) Determinar la recta t que corta perpendicularmente a r y s.
- c) Hallar la distancia entre r y s.
- 2°) Sea f(x)=2-x+Lx con $x \in (0, +\infty)$. Se pide:
- a) Determinar los intervalos de crecimiento y decrecimiento, los extremos relativos , los intervalos de concavidad y convexidad y la asíntotas de f. Esbozar la gráfica de f.
- b) Probar que existe un punto $c \in \left[\frac{1}{e^2}, 1\right]$ tal que f(c) = 0.

CUESTIONES

- 1^a) Sea a un número real. Discutir el sistema $\begin{cases} ax + y = 0 \\ 2x + (a-1)y = 0 \end{cases}$, según los valores de a.
- 2ª) Hallar el seno del ángulo formado por la recta $r = \begin{cases} x = z \\ 2y + z = 3 \end{cases}$ y el plano $\pi = x + y = z$.
- 3^a) Calcular los valores del número real a sabiendo que $\frac{lím}{x \to 0} \frac{e^{ax} 1 ax}{x^2} = 8.$
- 4^a) Calcular: $I = \int \frac{dx}{\sqrt{9 (x 1)^2}}$.
