MATH 414 Analysis I, Homework 5

Mobina Amrollahi

Deadline: 10/08/2024, 11:59 PM

1 Section 2.1: Problem 15

Find $\lim_{x\to\infty} f(x)$ if it exists, and justify your answer directly from Definition 2.1.7.

- (a) $\frac{1}{x^2+1}$
- (d) $e^{-x} \sin x$
- (e) $\tan x$

Answer

(a) We will show $\lim_{x\to\infty} \frac{1}{x^2+1} = 0$. $f = \frac{1}{x^2+1}$ is defined on $(0,\infty)$, since $x^2+1>0 \ \forall x$. Now, let $\epsilon>0$, then we have to show $\exists \beta$ such that:

$$|f(x) - 0| < \epsilon \text{ if } x > \beta$$

Let $\epsilon_0 := \min\{\epsilon, 1\}$. We will show the following hold for ϵ_0 , which results in the proof holding for all $\epsilon > 0$.

$$|f(x)| < \epsilon_0 \Leftrightarrow \left| \frac{1}{x^2 + 1} \right| < \epsilon_0$$

$$(x^2 > 0 \to \frac{1}{x^2 + 1} > 0) \Leftrightarrow \frac{1}{x^2 + 1} < \epsilon_0$$

$$(x^2 + 1 > 0) \Leftrightarrow 1 < \epsilon_0(x^2 + 1)$$

$$\Leftrightarrow 1 < \epsilon_0 x^2 + \epsilon_0$$

$$\Leftrightarrow 1 - \epsilon_0 < \epsilon_0 x^2$$

$$\Leftrightarrow \frac{1 - \epsilon_0}{\epsilon} < x^2$$

Since x > 0, we can take $\beta = \sqrt{\frac{1-\epsilon_0}{\epsilon_0}}$ ($\epsilon_0 \le 1$). Now, if we take $\sqrt{\frac{1-\epsilon_0}{\epsilon_0}} < x$, then we have

$$\frac{1 - \epsilon_0}{\epsilon_0} < x^2 \Rightarrow 1 - \epsilon_0 < \epsilon_0 x^2 \Rightarrow 1 < \epsilon_0 (x^2 + 1) \Rightarrow \frac{1}{x^2 + 1} < \epsilon_0$$

Thus, $\lim_{x\to\infty} \frac{1}{x^2+1} = 0$.

(d) We will show $\lim_{x\to\infty} e^{-x} \sin x = 0$

 $f = e^{-x} \sin x$ is defined on $(0, \infty)$ both $h = e^{-x}$ and $g = \sin x$ are defined in this domains, hence $(0, \infty) \subseteq D_{hq}$. Now, let $\epsilon > 0$, then we have to show $\exists \beta$ such that:

$$|f(x) - 0| < \epsilon \text{ if } x > \beta$$

$$|f(x) - 0| < \epsilon \Leftrightarrow |e^{-x} \sin x| < \epsilon$$

$$\Leftrightarrow |e^{-x}| |\sin x| < \epsilon$$

$$(|\sin x| < 1) \Leftrightarrow |e^{-x}| |\sin x| < |e^{-x}|$$

$$(\frac{1}{e} > 0 \Rightarrow |e^{-x}| = (\frac{1}{e})^x) \Leftrightarrow |e^{-x}| |\sin x| < (\frac{1}{e})^x$$

Thus, if could find β such that $x > \beta$ the following holds:

$$(\frac{1}{e})^x < \epsilon$$

then:

$$|e^{-x}\sin x| < (\frac{1}{e})^x < \epsilon$$

$$\left(\frac{1}{e}\right)^x < \epsilon \Leftrightarrow \ln\left(\frac{1}{e}\right)^x < \ln\epsilon$$

$$\Leftrightarrow \ln 1 - \ln e^x < \ln\epsilon$$

$$\Leftrightarrow 0 - x < \ln\epsilon$$

$$\Leftrightarrow x > -\ln\epsilon$$

This means $\forall \epsilon > 0$ if we take $\beta = -\ln \epsilon$, then for $\beta < x$, we have the following:

$$|f(x) - 0| < \epsilon$$

Thus, $\lim_{x\to\infty} e^{-x} \sin x = 0$.

- (e) We will show $\lim_{x\to\infty} \tan x$ does not exist. To show this, we have to study three cases: 1) $\lim_{x\to\infty} \tan x \neq L \in \mathbb{R}$, 2) $\lim_{x\to\infty} \tan x \neq \infty$ and 3) $\lim_{x\to\infty} \tan x \neq -\infty$.
 - 1) Prove by Contradiction

Suppose $\exists L \in \mathbb{R}$ and β , such that:

$$\forall \epsilon > 0: |\tan x - L| < \epsilon \text{ if } x > \beta$$

Let $\epsilon=\frac{1}{2}$. Now, take $x_1=2\lceil |\beta|\rceil k\pi$ and $x_2=2\lceil |\beta|\rceil k\pi+\frac{\pi}{4}$ $(k\in\mathbb{Z}^+)$. We know x_1 and $x_2>\beta$, thus:

$$|\tan x_1 - L| < \epsilon \text{ and } |\tan x_2 - L| < \epsilon$$

 $\Rightarrow |\tan x_1 - L| + |\tan x_2 - L| < 2\epsilon$

$$\Rightarrow |\tan x_1 - L| + |L - \tan x_2| < 2\epsilon$$

$$\Rightarrow |\tan x_1 - \tan x_2| = |\tan x_1 - L + L - \tan x_2| < |\tan x_1 - L| + |L - \tan x_2| < 2\epsilon$$

$$\Rightarrow |0 - 1| < 2\epsilon$$

$$\Rightarrow |0 - 1| < 1$$

Which contradicts our initial assumption. Hence $\lim_{x\to\infty} \tan x$ cannot be a real number.

2) Prove by Contradiction

Suppose $\forall M \in \mathbb{R} \exists \beta \text{ such that:}$

$$\forall x : \tan x > M \quad \text{if} \quad x > \beta$$

Now, take $x_0 = 2\lceil |\beta| \rceil k\pi - \frac{\pi}{4} \ (k \in \mathbb{Z}^+)$ and $M = \frac{1}{2}$. We know $x_0 > \beta$, thus:

$$\tan x_0 > M$$

However:

$$\tan x_0 = \tan(-\frac{\pi}{4}) > M$$

 $\tan(-\frac{\pi}{2}) = -1$ is less than M which contradicts our initial assumption. Hence $\lim_{x\to\infty} \tan x$ cannot be a ∞ .

3) Prove by Contradiction

Suppose $\forall m \in \mathbb{R} \exists \beta \text{ such that:}$

$$\forall x : \tan x < m \quad \text{if} \quad x > \beta$$

Now, take $x_0 = 2\lceil |\beta| \rceil k\pi + \frac{\pi}{4} \ (k \in \mathbb{Z}^+)$ and $m = \frac{1}{2}$. We know $x_0 > \beta$, thus:

$$\tan x_0 < m$$

However:

$$\tan x_0 = \tan(\frac{\pi}{4}) < m$$

 $\tan(\frac{\pi}{4}) = 1$ is greater than m which contradicts our initial assumption. Hence $\lim_{x\to\infty} \tan x$ cannot be a $-\infty$.

Hence $\lim_{x\to\infty} \tan x$ does not exist.

2 Section 2.1: Problem 20

Find

- (c) $\lim_{x\to 0^+} \frac{1}{x^6}$
- (d) $\lim_{x\to 0^-} \frac{1}{x^6}$

Answer

(c) We will show $\lim_{x\to 0^+}\frac{1}{x^6}=\infty$. $f=\frac{1}{x^6}$ is defined on $(0,\infty)$. We will show for each real number M, there is a $\delta>0$ such that:

$$f > M$$
 if $0 < x < \delta$

Let $M_0 := \max\{1, M\}$. We will show the following holds for M_0 , which results in the proof holding for all M.

$$\frac{1}{x^6} > M$$
 and $(M > 0) \Rightarrow \frac{1}{M} > x^6$ $\Leftrightarrow -\sqrt[6]{\frac{1}{M}} < x < \sqrt[6]{\frac{1}{M}}$

Thus, if we pick $\delta = \sqrt[6]{\frac{1}{M}}$, then:

$$0 < x < \delta = \sqrt[6]{\frac{1}{M}}$$

(d) We will show $\lim_{x\to 0^-} \frac{1}{x^6} = \infty$.

 $f=\frac{1}{x^6}$ is defined on $(-\infty,0)$. We will show for each real number M, there is a $\delta>0$ such

$$f > M$$
 if $-\delta < x < 0$

Let $M_0 := \max\{1, M\}$. We will show the following holds for M_0 , which results in the proof holding for all M.

$$\frac{1}{x^6} > M \text{ and } (M > 0) \Rightarrow \frac{1}{M} > x^6$$

$$\Leftrightarrow -\sqrt[6]{\frac{1}{M}} < x < \sqrt[6]{\frac{1}{M}}$$

Thus, if we pick $\delta = \sqrt[6]{\frac{1}{M}}$, then:

$$-\sqrt[6]{\frac{1}{M}} = -\delta < x < 0$$

Section 2.1: Problem 23 $\mathbf{3}$

Define

(a)
$$\lim_{x \to \infty} f(x) = \infty$$

Answer

We say f(x) approaches ∞ as x approaches ∞ if f is defined on an interval (a, ∞) , and for any real number M, there is a number β such that:

$$f(x) > M$$
 if $x > \beta$

4 Section 2.1: Problem 24

Find

(3) $\lim_{x\to\infty} \sqrt{x} \sin x$

Answer

We will show $\lim_{x\to\infty} \sqrt{x} \sin x$ does not exist. To show this, we have to study three cases: 1) $\lim_{x\to\infty} \sqrt{x} \sin x \neq L \in \mathbb{R}$, 2) $\lim_{x\to\infty} \sqrt{x} \sin x \neq \infty$ and 3) $\lim_{x\to\infty} \sqrt{x} \sin x \neq -\infty$.

1) Prove by Contradiction

Suppose $\exists L \in \mathbb{R}$ and β , such that:

$$\forall \epsilon > 0 : |\sqrt{x}\sin x - L| < \epsilon \quad \text{if} \quad x > \beta$$

Let $\epsilon = \frac{1}{2}$. Now, take $x_1 = 2\lceil |\beta| \rceil k\pi$ and $x_2 = 2\lceil |\beta| \rceil k\pi + \frac{\pi}{2}$ $(k \in \mathbb{Z}^+)$. We know x_1 and $x_2 > \beta$, and x_1 and $x_2 > 1$ thus:

$$\begin{split} |\sqrt{x_1}\sin x_1 - L| < \epsilon \text{ and } |\sqrt{x_2}\sin x_2 - L| < \epsilon \\ \Rightarrow |\sqrt{x_1}\sin x_1 - L| + |\sqrt{x_2}\sin x_2 - L| < 2\epsilon \\ \Rightarrow |\sqrt{x_1}\sin x_1 - L| + |L - \sqrt{x_2}\sin x_2| < 2\epsilon \\ \Rightarrow |\sqrt{x_1}\sin x_1 - L| + |L - \sqrt{x_2}\sin x_2| < |\sqrt{x_1}\sin x_1 - L| + |L - \sqrt{x_2}\sin x_2| < |\sqrt{x_1}\sin x_1 - L| + |L - \sqrt{x_2}\sin x_2| < 2\epsilon \\ \Rightarrow |0 - \sqrt{x_2}| < 2\epsilon \\ \Rightarrow 1 < |\sqrt{x_2}| < 1 \end{split}$$

Which contradicts our initial assumption. Hence $\lim_{x\to\infty} \sqrt{x} \sin x$ cannot be a real number.

2) Prove by Contradiction

Suppose $\forall M \in \mathbb{R} \exists \beta \text{ such that:}$

$$\forall x : \sqrt{x} \sin x > M$$
 if $x > \beta$

Now, take $x_0 = 2\lceil |\beta| \rceil k\pi$ $(k \in \mathbb{Z}^+)$ and M = 1. We know $x_0 > \beta$, thus:

$$\sqrt{x_0}\sin x_0 > M$$

However:

$$\sqrt{x_0}\sin x_0 = \sqrt{x_0}\sin 0 > M$$

 $\sqrt{x_0}\sin 0 = 0$ is less than M which contradicts our initial assumption. Hence $\lim_{x\to\infty} \sqrt{x}\sin x$ cannot be a ∞ .

3) Prove by Contradiction

Suppose $\forall m \in \mathbb{R} \exists \beta \text{ such that:}$

$$\forall x : \sqrt{x} \sin x < m \quad \text{if} \quad x > \beta$$

Now, take $x_0 = 2\lceil |\beta| \rceil k\pi + \frac{\pi}{2} \ (k \in \mathbb{Z}^+)$ and m = 1. We know $x_0 > \beta$, thus:

$$\sqrt{x_0} \sin x_0 < m$$

However:

$$\sqrt{x_0} \sin x_0 = \sqrt{x_0} \sin \frac{\pi}{2} = \sqrt{x_0} < m$$

 $\sqrt{x_0} > \sqrt{2\pi} > 1$. This means $\sqrt{x_0}$ is greater than m which contradicts our initial assumption. Hence $\lim_{x\to\infty} \sqrt{x} \sin x$ cannot be a $-\infty$.

Hence $\lim_{x\to\infty} \sqrt{x} \sin x$ does not exist.

5 Section 2.1: Problem 31

Find

(f)
$$\lim_{x \to \infty} \frac{x + \sqrt{x} \sin x}{2x + e^{-x}}$$

Answer

We will show $\lim_{x \to \infty} \frac{x + \sqrt{x} \sin x}{2x + e^{-x}} = \frac{1}{2}$

 $f = \frac{x + \sqrt{x} \sin x}{2x + e^{-x}}$ is defined on $(0, \infty)$ both $g = x + \sqrt{x} \sin x$ and $h = 2x + e^{-x}$ are defined in this domains, and h is non-zero in it. Hence $(0, \infty) \subseteq D_{\frac{g}{h}}$. Now, let $\epsilon > 0$, then we have to show $\exists \beta$ such that:

$$|f(x) - \frac{1}{2}| < \epsilon$$
 if $x > \beta$

Let $\epsilon_0 := \min\{\epsilon, \frac{1}{4}\}$. We will show the following hold for ϵ_0 , which results in the proof holding for all $\epsilon > 0$.

$$\begin{split} |f(x) - \frac{1}{2}| < \epsilon_0 \Leftrightarrow |\frac{x + \sqrt{x}\sin x}{2x + e^{-x}} - \frac{1}{2}| < \epsilon_0 \\ \Leftrightarrow |\frac{2x + 2\sqrt{x}\sin x - 2x - e^{-x}}{2(2x + e^{-x})}| < \epsilon_0 \\ \Leftrightarrow |\frac{2\sqrt{x}\sin x - e^{-x}}{2(2x + e^{-x})}| < \epsilon_0 \end{split}$$

We know:

$$|\frac{2\sqrt{x}\sin x - e^{-x}}{2(2x + e^{-x})}| < \frac{|2\sqrt{x}\sin x| + |e^{-x}|}{2(2x + e^{-x})} < |\frac{2\sqrt{x}}{2(2x)}| + \frac{e^{-x}}{2(2x + e^{-x})} < \frac{\sqrt{x}}{2x} + \frac{1}{2(2x)} < \frac{2\sqrt{x} + 1}{4x} < \frac{1}{2(2x + e^{-x})} < \frac{$$

Suppose:

$$\frac{2\sqrt{x}+1}{4x} < \epsilon_0$$

Then .

$$\left| \frac{x + \sqrt{x}\sin x}{2x + e^{-x}} - \frac{1}{2} \right| < \frac{2\sqrt{x} + 1}{4x} < \epsilon_0$$

Thus, if could find β such that $x > \beta$ and the following holds:

$$\frac{2\sqrt{x}+1}{4x} < \epsilon_0$$

Then:

$$\left| \frac{x + \sqrt{x} \sin x}{2x + e^{-x}} - \frac{1}{2} \right| < \epsilon_0$$

$$(x > 0) : \left| \frac{2\sqrt{x} + 1}{4x} \right| < \epsilon_0 \Leftrightarrow \frac{2\sqrt{x} + 1}{4x} < \epsilon_0$$

$$\Leftrightarrow 2\sqrt{x} + 1 < 4\epsilon_0 x$$

$$\Leftrightarrow 0 < 4\epsilon_0 x - 2\sqrt{x} + 1$$

This means $\forall \epsilon_0 > 0$ if we take $\beta = \frac{2+\sqrt{4-16\epsilon}}{8\epsilon}$ ($\epsilon_0 < 1/4$), then for $\beta < x$, we have the following:

$$|f(x) - \frac{1}{2}| < \epsilon_0$$

Thus,
$$\lim_{x \to \infty} \frac{x + \sqrt{x} \sin x}{2x + e^{-x}} = \frac{1}{2}$$
.