Homework 3_Solutions

Problem 1 (10pts)

What is ambiguous grammars? Is the following grammar ambiguous? Justify your answer.

$$S --> aSbS|bSaS|\epsilon$$

An ambiguous grammar is a context-free grammar for which there exists a string that can have more than one leftmost derivation or parse tree.

S --> aSbS|bSaS| ϵ is an ambiguous grammar.

For input "abab", there are two parse trees:

Problem 2 (10pts)

Given the grammar G(S): S-->S+aF|aF|+aF F-->*aF|*a

- (1) Give the parse tree for the string a*a*a+a*a
- (2) Give the canonical reduction for the string **a*a*a+a*a**, and the handle of each sentential form at each step.

		Handle
a*a*a+a*a	F -> *a	*a
a*aF+a*a	F→*aF	*aF
aF+a*a	S→aF	aF
S+a*a	F -> *a	*a
S+aF	S→S+aF	S+aF
S		

Problem 3 (15pts)

Given the grammar G[E]: $E \longrightarrow (L)|a$ $L \longrightarrow L, E \mid E$

- (1) Try to modify the given grammar to LL(1) grammar.
- (2) Compute FIRST and FOLLOW of the result grammar.
- (3) Construct a predictive parse table for the result grammar.

		Follow
E	{ (, a }	{ \$, , , <mark>)</mark> }
L	{ (, a }	{) }
L,	{ , , ^ε }	{) }

(3)					
	()	a	9	\$
Е	E→(L)		E→a		
L	L→EL'		L→EL'		
L'		L'-> ε		L'→EL'	

Problem 4 (15pts)

Given the grammar G[E]: $E \longrightarrow (L)|a$ $L \longrightarrow L, E \mid E$

- (1) Construct LR(0) automaton for G[E]
- (2) Using the LR(0) automaton to parse the input string (a, (a, a)).
- (3) Construct SLR(1) parsing table for G[E].

```
(1)The augmented grammar: E' \rightarrow E \qquad E \rightarrow (L)|a \qquad L \rightarrow L, E|E The LR(0) automaton:
```


	STACK	SYMBOLS	INPUT	
1	0	\$	(a,(a,a))\$	
2	02	\$(a,(a,a))\$	
3	023	\$ (a	,(a,a))\$	
4	025	\$(E	,(a,a))\$	
5	024	\$(L	,(a,a))\$	
6	0247	\$(L,	(a,a))\$	
7	02472	\$(L,(a,a))\$	
8	024723	\$(L,(a	, a))\$	
9	024725	\$(L,(E	,a))\$	
10	024724	\$(L,(L	, a))\$	
11	0247247	\$(L,(L,	a))\$	
12	02472473 \$(L,(L,a))\$	
13	02472478	\$(L,(L,E))\$	
14	024724	\$(L,(L))\$	

15	0247246	\$(L,(L))\$	
16	02478	\$(L,E)\$	
17	024	\$(L)\$	
18	0246	\$(L)	\$	
19	01	\$E	\$	

(3)
$$0:E' \rightarrow E \qquad 1:E \rightarrow (L) \qquad 2:E \rightarrow a \qquad 3:L \rightarrow L,E \qquad 4:L \rightarrow E$$

$$Follow(E') = \{\$\} \qquad Follow(E)=\{,,\},\$ \qquad Follow(L)=\{\},,\}$$

State	Action				GoTo		
	а	و	()	\$	E	L
0	S3		S2			1	
1					acc		
2	S3		S2			5	4
3		r2		r2	r2		
4		S7		S6			
5		r4		r4			
6		r1		r1	r1		
7	S3		S2			8	
8		r3		r3			