Calidad y Software

Construcción de sistemas complejos

- Visibilidad de los sistemas de software.
- Productos con ciclos de vida extensos.
- Alto cambio tecnológico.
- Dificultad en satisfacer las necesidades de los usuarios.
- Integración de sistemas.
- Intangibilidad del software.
- Sistemas críticos.

Calidad y Software

- Contexto del Negocio
 - Software como elemento estratégico.
 - Rápidos cambio del contexto del negocio.
 - Tendencia a las líneas de productos.
 - Tiempos de salida al mercado.
 - Alto costo de desarrollo y mantenimiento.
 - El valor del software esta en su utilización.

Calidad y Software

- La calidad de un producto de software se consigue mediante:
 - La calidad del producto (habilidades de los desarrolladores).
 - La calidad del proceso utilizado para construir el producto.
 - La calidad del diseño en el que se basa el producto.

Definición

- "Es el concepto de <u>mayor alto nivel</u> de un sistema en <u>su ambiente</u>" (IEEE Architecture Working Group).
 - Distinto de diseño e implementación
 - Sitúa al sistema en su entorno y que el sistema se ve influenciado por el mismo.

Otras definiciones

```
- As = {Elementos, Forma, Restricciones} (Perry 92)

(qué) (cómo) (porqué)
```

- "La arquitectura de software se ocupa: (Kruchten 95)
 - Del diseño e implementación de la estructura de más alto nivel del sistema.
 - Abstracción, descomposición, composición y estilo".

Otra definición

- La arquitectura de un programa o sistema de computación es <u>la estructura o estructuras</u> del sistema, que comprenden <u>sus componentes</u> de software, las <u>propiedades externas de los</u> <u>componentes</u>, y <u>la relación entre ellos</u>". (Kazmann)
 - Más de una estructura
 - Información sobre los componentes y como interactúan entre ellos y con su entorno

Conceptos generales

- La arquitectura de un sistema se focaliza en:
 - Elementos estructurales de alto nivel.
 - Elementos que tienen impacto en la perfomance, confiabilidad, adaptabilidad, integrabilidad, costo, etc.
 - En la selección de plataformas, sistemas operativos, middleware, dbms, etc.

Conceptos generales

- La arquitectura del sistema se describe utilizando diagramas que cubren aspectos de:
 - funcionalidad y restricciones
 - diseño lógico
 - diseño físico
 - topología del hardware
 - otros

• Beneficios de la Arquitectura

- Comunicarse con los accionistas
 - Comprender el sistema
- Permite realizar decisiones estratégicas
- Organizar el desarrollo
- Promover el reuso
- Evolucionar el sistema

Comunicarse con los accionistas

- Accionistas
 - Cliente
 - Usuario
 - Gerente de Proyecto
 - Desarrolladores
 - Arquitecto
 - otros
- Cada uno tiene intereses y visiones distintas sobre el sistema.
- La arquitectura establece un lenguaje común.

Comunicarse con los accionistas

- Comprender el sistema
 - Los sistemas de Software son:
 - Funcionalmente complejos
 - Involucran tecnologías complejas
 - Fácilmente cambiables

Permite realizar decisiones estratégicas

- Estrategia vs Táctica
 - Estratégica visión a largo plazo
 - Táctica visión a corto plazo

 La arquitectura permite validar tempranamente los atributos de calidad del sistema.

Organizar el desarrollo

- La arquitectura divide el sistema en sus componentes y sus interfaces. (PBS)
- Permite obtener tempranamente la división de las actividades del grupo de desarrollo (WBS).
- Permite realizar estimaciones tempranas de esfuerzo y duración.

Promover el reuso

- La arquitectura permite:
 - determinar tempranamente componentes candidatos a ser reusados o comprados.
 - reutilizar la arquitectura en sistemas similares. (experiencia del arquitecto)
 - establecer líneas de productos

• Evolucionar el sistema

- La arquitectura permite determinar el impacto de los cambios.
- Aislar los potenciales centros de cambios del sistema.

 Una buena arquitectura absorbe los cambios que se producen durante el ciclo de vida del producto

• Elementos que influyen en la Arquitectura

• Elementos que influyen en la Arquitectura

- Usuarios y Clientes
 - Cliente el que paga por el sistema
 - Usuario el que usa el sistema
 - Determinan los requerimientos (funcionales y no funcionales)
- Organización Productora de Software (OPS)
 - Estrategia empresarial
 - Plazos
 - Estructura organizacional

- Elementos que influyen en la Arquitectura
 - Arquitecto
 - Quien crea la arquitectura
 - Ambiente Técnico
 - Utilización de tecnologías
 - Estándares

• Niveles de Arquitectura

Arquitectura, Ciclos de Vida y Descripción

• INGENIERÍA

- Ingeniería de Requerimientos
- Diseño Arquitectónico.
- Construcción
- Pruebas
- Evolución yMantenimiento
- Modelos de Ciclos de vida

ADMINISTRATIVAS

- Gestión del proyecto
- Gestión de la Configuración del Software
- Aseguramiento de la Calidad del producto de Software
- Ingeniería de Procesos

Modelo Evolutivo

Modelo Incremental

28

Modelo Incremental Iterativo

Intro

Modelo RUP

Elementos de la Descripciones Arquitectónica

Descripción Arquitectónica

· Modelo del Sistema

 Es una representación abstracta del sistema creada para comprender su estructura y operación.

Descripción Arquitectónica

- "Es un documento, producto u otro artefacto utilizado para comunicar o registrar la arquitectura del sistema". (IEEE Architecture Working Group).
- Incluye un conjunto de vistas (views) las cuales describen determinados aspectos de la arquitectura del sistema.

Lecturas

- The 4+1 View Model of Architecture. P. Kruchten (Pbk4p1.PDF)
- Toward a Recommended Practice for Architectural
 Description. Ellis, et. al. (ieee_white_paper.PDF)
- Foundations for the Study of Software Architecture.
 D. Perry, A. Wolf (PW92.PDF)
- Capitulo 2. Software Architecture in Practice.
 L.Bass, P. Clements, R. Kazman