

DEPARTAMENTO DE ARQUITECTURA Y TECNOLOGÍA DE COMPUTADORES

4. (0,75pto.) Complete el siguiente diagrama de tiempos para el circuito de la figura. Los biestables son de tipo T disparados por flanco de subida.

- **5.** (1,00pto.) Empleando biestables de tipo D y las puertas lógicas que se necesiten, diseñe un generador de secuencia síncrono con 2 salidas binarias $(Z_1 \ y \ Z_0)$, que genere cíclicamente la siguiente secuencia de valores de salida $Z=(Z_1Z_0)=\{1,3,2,0,1,3;1,3,2,0,1,3....\}$.
- **6. (0,75pto.)** Realice el diagrama de estados y la tabla de estados de un sistema secuencial síncrono con una entrada X y una salida Z, que sea capaz de detectar continuamente la secuencia 11001 que le va llegando por su única línea de entrada X, generando la salida Z = 1 durante la recepción del último bit de esa secuencia de entrada y Z = 0 en otro caso.

Ejemplo:

X	0	0	1	1	1	1	0	0	1	1	0	0	1	0	0
Z	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0

TECNOLOGÍ A Y ORGANIZACIÓN DE COMPUTADORES
1º Grado en Ingeniería Informática.

GRANADA, 19 de Junio de 2015 EXAMEN DE SEMINARIOS Y PRÁCTICAS.

Apellidos :		
Nombre :	Grupo :	
D.N.L.:		

- 1. (0,25 pto.) Un computador tiene almacenados distintos tipos de ficheros en su disco duro:
 - a) Un fichero audio de 1 hora en calidad radio FM (frecuencia de muestreo f_s=22,05KHz, 2 Bytes/muestra, 2 canales). ¿Qué tamaño (expresado en MBytes) ocuparía dicho fichero?.
 - b) Un fichero de video, de de 1 minuto de duración, grabado a 24 imágenes por segundo, con una resolución VGA (640x480 y 1 Byte por cada uno de los tres colores básicos). ¿Qué tamaño (expresado en MBytes) ocuparía dicho fichero?.
- 2. (0,25 pto.) En la práctica 3 se simularon circuitos para realizar algunas operaciones lógicas como parte de una ALU de 4 bits. En la figura se muestra la Etapa Lógica de 2 datos de un bit. Conteste a las siguientes cuestiones:
- a) Indicar las operaciones que se realizan en la Etapa Lógica de 2 datos de un bit con distintos valores en las entradas de control (S1, S0). Es decir, rellenar la tabla de más abajo.

Señales de control	Datos	Operación	Resultado (Gi)	
S ₁ S ₀	A _i B _i			
00	01	Ejemplo: Ai-Bi	0	
01	01			
10	11			
11	01			

b) Para la ALU de 4 bits de la práctica 3 qué resultado ($G=G_3G_2G_1G_0$) se obtendría con las señales de control: $S_2=1$ (que selecciona Etapa Lógica) y $S_1S_0=10$ con datos de entrada A=1100 y B=1011.

3. (0,50 pto.) En la tabla de la figura siguiente se indica el repertorio de las 4 instrucciones del computador simple CS1, indicando sus nombres en ensamblador, el resultado de su ejecución descrita a nivel de transferencia a registros (RT) y su formato en binario.

Ensamblador		Formato de la Instrucción en binario			
(\$DirDato en hexadecimal)	Descripción RT	со	Dirección del Dato en binario		
STOP	Fin ejecución	00	xxxxxx		
ADD \$DirDato	AC ← AC + M(\$DirDato)	01	A ₅ A ₄ A ₃ A ₂ A ₁ A ₀		
SUB \$DirDato	AC ← AC - M(\$DirDato)	10	A ₅ A ₄ A ₃ A ₂ A ₁ A ₀		
STA \$DirDato	M(\$DirDato) ← AC	11	A ₅ A ₄ A ₃ A ₂ A ₁ A ₀		

ROM	DIRECCIONES DE MEMORIA							
F	r Br	6 Ω	6 Ω	F.1	61	F.2	62	→ 00 - 0
E.								→ 08 – 0
0	00	00	00	00	00	00	00	→ 10 − 1
0	00	00	00	00	00	00	00	→ 18 − 1
0:	L 00	00	00	00	00	00	00	→ 20 – 2
0	00	00	00	00	00	00	00	→ 28 – 2
0	00	00	00	00	00	00	00	→ 30 – 3
01	00 0	00	00	00	00	00	00	→38 – 3

Tabla P2a

Dada la *Tabla P2b* correspondiente al contenido inicial de la memoria principal RAM del CS1, donde se almacenan las instrucciones de un programa y datos, ambos en formato hexadecimal, junto con una columna que indica el rango de direcciones de memoria en hexadecimal, correspondiente a cada fila. Realice lo siguiente:

a) Copiar la notación en hexadecimal de las instrucciones del programa almacenado en memoria (de la dirección 0 a la 6, es decir la primera fila de la memoria, Tabla P2b) en la última columna de la *Tabla P2c*. A partir de esta información completar el resto de la *Tabla P2c*, indicando para cada instrucción: 1) su notación en ensamblador, 2) su descripción RT, 3) su notación en binario.

Tabla P2b

- **b)** Sabiendo que antes de ejecutar el programa, el contenido de la memoria principal es el de la *Tabla P2b* y que al acumulador contiene el dato FF. Indicar los datos en hexadecimal que se verían en las direcciones \$20, \$21,\$22,\$23 y \$3F de la memoria principal al finalizar la ejecución del programa.
- c) A la vista de los resultados, ¿sabría decir resumidamente la serie de números qué calcula el programa?

Programa en		Ins	Instrucción		
ensamblador (\$DirDatoen hexadecimal)	Descripción RT del programa	CO 2 bits	Dirección del dato en binario con 6 bits	en hexadecimal	
STA \$3F	M(\$3F) ← AC	11	11 1111	FF	
			To the second se		
			SALEZAN EGONOCI-		
			vvvv-talalisis		
			VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV		
			1.6.Contrology		
			10000-100-100-100-100-100-100-100-100-1		