

Everylez: mpte3: 2 droite de r.p. - 2-16 11 B (7;-1;-4) arrabient- a) 1- rep entémerent des li 2) E(3;3:,-2) B (7·-1:-4) Værteur directeur de D'est! Je plus BÉ (4) 7. BE - 3×2 +1×4 + (-5)×2 a, BE - 10-10 = 0 donc m'outrogenele à ÉÉ donc Doubogonale à (BE).

BF (4) 2- 1 (3)

BF. W = 4x3 +3-15=0

BF est subregenale à W

donc (BF) est oubregenale à D.

Rque: Dans l'espace clean droites

a brownales à une même troisie

- sixios some of colored - sixios en en en en en en en en en elebert

31 De st tell 31 De st tell 3 Diviage De siriage De s

W. ~ = 5×3+5×1 -5×4=0

rest of sont orthogonour den C de le le Lond Con défermine si de l'accommendation de sécontes en révolution de seguirons. (u+3t=5& L1" 1-5t= 4k 13 n.p. 2001 $\frac{-2+t}{-2+t} = 5k - 5k - 12$ -2+t = 5k - 12 1-5t = 4k - 13 $= \begin{cases} 6+2t=0 & t=-3 \\ -2-3=5k \end{cases}$ 1-5×(-3)=48

En a des équations mansalles dans le aussilme n'a flas de solution, dans il et d'anti-outrooprales et non récentes. Elles sent non coplanaires. tecteur not mat d'in plan 2 caupe I en A man Ti = AB avec I colindured To = AC avec The colindured To avec I IN = AB over Bt)

T = FC over (E) m divige a DIS = 50. 12 = 0 C//C crobo 21 C xs 7/1/D les vecteurs directeurs de Det D

	sont colinearies
(Les recteurs normales a
701	a plan sont colinderer
<i>/</i> W	•
	· rue extre
	Enercice 27 p. 315
	1)W CC 21/1, 5 \ 5
	A(-1,1,2) B(1;0-1) C(v;3;1)
	1) Démontrons que A, B, C définis- sent en plan:
	- sent en plan!
	AB 2 2 0'- (-1)
	AB = 1
	$\begin{pmatrix} -1 \\ -3 \end{pmatrix}$ $\begin{pmatrix} 3-1 \\ 1-2 \end{pmatrix}$
	\rightarrow
	TC 2
	AE (2)
	` /
	AB et AC colineaures soi il emistre un règle RELque AB=RAC
	Color And Raid
	K we grup MB= RAC

AD. AC = -7+2+5=0

AD est outhogonales AB et à
AD est outhogonales AB et à Ac donc c'estud verteur normal
au plan.
Frempleh: A(2,0;1) II (1,1,1)
1) D'hoite ressont et de verteur deserteur
$\int x = 2 + t \times 1$
$\int_{x=2}^{x=2} + t \times 1$ $\int_{x=0}^{x=2} + t \times 1$ over $t \in \mathbb{R}$
7x=1++x1
八
2) Court B (3;2;4)
a) (3 = 2 + t (t = 1)
$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
(h=1+t (t=3)
Eliterpromitas anilarge asos
Ses Equations antimompostibles Loc Brapparlient all

& H projete outrograd de Bour 3 Ti ssi Starrarbient à d on vale traduise over la produit over la r.P. ded on va le traduine over la produit ser ner de part et en ver teur directeur de d Harparlient à Dessi Renside FER cel que H(2+t) (BH) I Dessi BH M = 0 $\frac{1}{\sqrt{1}} = 0 = 1$ $\frac{1}{\sqrt{1}} = 0$ $\frac{1}{\sqrt{1}} = 0$ (=) 3 -(1+2+3)=0

