

INTERNATIONAL A-LEVEL MATHEMATICS MA04

(9660/MA04) Unit S2 Statistics

Mark scheme

January 2023

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√ or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

–x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

Q	Answer	Marks	Comments
1(a)	$E(3Y - 2X) = 3 \times 15 - 2 \times 12$	M1	
	= 21	A 1	
		2	

Q	Answer	Marks	Comments
1(b)	$Var(3Y-2X)=3^2\times 2.5+2^2\times 5$	M1	Condone a sign error
	= 42.5	A 1	oe eg 85/2 85÷2 85
		2	

	Question 1 Total	4	
--	------------------	---	--

Q	Answer	Marks	Comments
2(a)	Stages 1, 4 and 8 contain errors	B1	At least two stages correctly identified
	Stage 1 – Hypothesis are wrong should be $H_0: \mu = 18.3$ $H_1: \mu \neq 18.3$	E1	Clear comment regarding population parameter μ not the sample \overline{x}
	Stage 4 – $[z_{\text{critical}}$ = 1.2816] should be z_{critical} = (\pm) 1.6449	E1	Allow ± but not –
	Stage 8 – wrong conclusion: should not reject H ₀ : Insufficient evidence to suggest a change in mean has occurred at the 10% level of significance	E1	oe
		4	

Q	Answer	Marks	Comments
2(b)	The sample was taken from a normal distribution so the sample is also normally distributed.	E1	oe for example 'a sample inherits the characteristics of the parent population'
		1	

Q	Answer	Marks	Comments
2(c)	A Critical Region	B1	
		1	

Question 2 Total	6	
------------------	---	--

Q	Answer	Marks	Comments
3(a)	$\frac{\mathrm{d}\mathrm{F}(t)}{\mathrm{d}t} = \frac{3t^2}{64}$	M1	Obtains kt^2
	$f(t) = \frac{3t^2}{64}, 0 \le t \le 4$	A 1	Requires both parts
	0, otherwise	B1	
		3	

Q	Answer	Marks	Comments
3(b)(i)	$\left[\mu = \mathrm{E}(T) = \int_0^4 t \times \frac{3t^2}{64} dt = \left[\frac{3t^4}{256}\right]_0^4$	М1	Attempt to integrate their $t { m f} (t)$ with correct limits ${ m PI}$
	= 3	A 1	
		2	

Q	Answer	Marks	Comments
3(b)(ii)	$\left[E(T^2) = \right] \int_0^4 t^2 \times \frac{3t^2}{64} dt = \left[\frac{3t^5}{320} \right]_0^4$	М1	Attempt to integrate their $t^2 f(t)$ with correct limits PI
	= 9.6	A1ft	PI, oe
	$\sigma^2 = \left[E(T^2) - E(T)^2 = \right] 9.6 - 3^2$	M1	ft their $E(t^2) - E(t)^2$ PI Condone $\sigma = 0.6$
	$\sigma = \sqrt{0.6} = 0.775 \ (3 \ sf)$	A 1	CAO to 3 sf
		4	

Q	Answer	Marks	Comments
3(c)	$P(3-2\sqrt{0.6} \le T \le 3+2\sqrt{0.6})$	M1	Allow their $\mu \& \sigma$
	$= P(1.45[0806662] \le T \le 4.54[9193338])$		
	F(4.54) - F(1.45[0806662])	M1	
	F(4.54) = [F(4) =] 1	B1	PI by correct answer
	1-0.04771431013 = 0.952 (3 sf)	A 1	AWRT 0.952
		4	

Question 3 Tota	I 13	
-----------------	------	--

Q	Answer	Marks	Comments
4	$H_0: \mu = 25$ $H_1: \mu < 25$	B1	Both hypotheses
	$\overline{x} = 24.86$	B1	
	$s^2 = \frac{1}{500 - 1} \times \left(310000 - \frac{12430^2}{500}\right)$	М1	Attempt at variance formula Allow one slip Implied by correct answer
	=1.98[4368737]	A 1	AWRT 1.98 Accept $s = 1.40[8676236]$
	$\overline{X} \sim N\left(25, \frac{1.98[]}{500}\right)$	M1	$\mathbf{PI}, \ \overline{X} \sim N\left(25, \frac{s^2}{500}\right)$
	$z = \frac{24.86 - 25}{\sqrt{\frac{1.98[]}{500}}}$	M1	Calculates z with their s^2
	=-2.2[22295719]	A 1	AWRT -2.2 or $ z =2.2$ or probability of 0.013
	$z_{\text{critical}} = -2.3263$	B1	AWRT -2.3 Allow $z_{\text{critical}} = \pm 2.3263$
	Do not reject H_0 as $-2.2[222] > -2.3[263]$ or $z > z_{crit}$	A1ft	ft their z and $z_{\rm crit}$ provided signs are consistent Allow a correct comparison of $z_{\rm crit}$ and $ z $ or compares their 0.013 to 0.01 and correct statement
	Evidence to suggest that the hand-drying time does not have a mean lower than 25 [at the 1% level of significance]	E1ft	Must be consistent with their conclusion on whether or not to reject H_0 , or their z and z_{crit} if not explicitly stated
		10	

Question 4 Total 10

Q	Answer	Marks	Comments
5(a)(i)	Condition 1: The number of events/trials, n must be large; and Condition 2: The probability of a successful outcome, p , must be small	В1	n must be large and the p value must be small Allow eg $n \ge 50$ and $p \le 0.1$
		1	

Q	Answer	Marks	Comments
5(a)(ii)	[Mean = np =] $\lambda = 500 \times 0.02 = 10$	B1	
		1	

Q	Answer	Marks	Comments
5(a)(iii)	$P(X<10) = P(X\leq 9)$	M1	PI
	[=0.4579297391]		
	= 0.458	A 1	AWRT 0.458
		2	

Q	Answer	Marks	Comments
5(b)(i)	$H_0: \lambda = 8$	B1	Allow H_0 : $\lambda = 240$
	$H_1: \lambda \neq 8$		$H_1: \lambda \neq 240$
	X = 5 [per hectare]	M1	PI
	$P(X \le 5) = 0.191[2360621]$	A 1	
	0.191 > 0.05	A 1	Comparison of their probabilities or a lower CR of $ X \leq 3 $
	Do not reject H ₀	B1ft	Correct conclusion on H ₀ based on their comparison of test statistic with critical value
	Insufficient evidence to suggest the mean number of ground nests [per hectare] has changed from 8 [at the 10% level of significance]	E1	Must be in context, must not be definite and all the previous 5 marks must have been awarded
		6	

Q	Answer	Marks	Comments
5(b)(ii)	$P(X \le c) < 0.05$ $P(X \le 3) = 0.0424$ [or $P(X \ge 4) = 0.9576$] and $P(X \le 4) = 0.0996$ [or $P(X \ge 5) = 0.9004$]	M1	PI by correct CR, could be written as a single CR later
	$P(X \ge c) < 0.05$ $P(X \ge 14) = 0.0342$ [or $P(X \le 13) = 0.9658$] and $P(X \ge 13) = 0.0638$ [or $P(X \le 12) = 0.9362$]	М1	PI by correct CR, could be written as a single CR later
	Both included CR = {0, 1, 2, 3, 14, 15,}	A 1	Allow $X \le 3$ and $X \ge 14$ oe
		3	

Q	Answer	Marks	Comments
5(c)(i)	Concluding that the mean number of ground nests [per hectare] has changed [from 8] even though it hasn't.	B1	
		1	

Q	Answer	Marks	Comments
5(c)(ii)	[0.0424 + 0.0342 =] 0.0766	B1	CAO
		1	

Question 5 Total 15

Q	Answer	Marks	Comments
6(a)	$P(X_1 < 10) = P(Z < \frac{10 - 12}{1.5})$	M1	Attempt to standardise PI oe, e.g. $P(Z < -1.33[3]) \text{ or } 1-P(Z < 1.33[3])$
	=0.0912[1121973]	A 1	AWFW 0.0912 to 0.0918
		2	

Q	Answer	Marks	Comments
6(b)	$P(X_2 < a) = 0.9$		
	z = 1.28[1551638]	B1	Allow ±1.28[1551638]
	$\frac{a-8}{0.8} = 1.28$	M1	Forms an equation with their $1.2 < z < 1.3$
	9.03 [mins] (to 3 sf)	A 1	9.025[241311] AWRT 9.03 oe , e.g. 9 minutes, 2 seconds
		3	

Q	Answer	Marks	Comments
6(c)	z = 0.915[3645453] or $z = [-]0.075[26985986]$	B1	PI by correct standardisation 0.9154 or 0.0753 from tables
	$0.915[3645453] = \frac{16 - \mu}{\sigma}$ or $-0.075[26985986] = \frac{10 - \mu}{\sigma}$	M1	oe At least one correct standardisation PI by at least one correct value for μ or σ
	$0.915[3645453] = \frac{16 - \mu}{\sigma}$ and $-0.075[26985986] = \frac{10 - \mu}{\sigma}$	A 1	oe Both correct standardisations PI by at least one correct value for μ or σ
	$ (0.915[3645453]+0.075[26985986])\sigma $ $= 16-10$	M1	Attempt to eliminate one variable simultaneously PI by at least one correct value for μ or σ
	σ = 6.06 (3 sf)	A 1	AWFW 6.05 to 6.06
	$\mu = 10.5 \ (3 \text{ sf})$	A 1	AWRT 10.5
		6	

Q	Answer	Marks	Comments
6(d)	$\mu-2\sigma<0$ or $\mu-3\sigma<0$ or time cannot be less than zero in this context	B1	A clear comment about the lower tail having $t < 0$
		1	

Q	Answer	Marks	Comments
6(e)	$T = X_1 + X_2 + X_3 + X_4$		
	$T \sim N(12+8+7+14,1.5^2+0.8^2+1^2+2^2)$	M1	
	$T \sim N(41, 7.89)$		
	$P(T < 35) = P\left(Z < \frac{35 - 41}{\sqrt{7.89}}\right)$	M1	PI
	[=P(Z<-2.136056564)]		
	= 0.0163[3740189]	A 1	AWFW 0.0162 to 0.0164
		3	

Question 6 Total	15	
------------------	----	--

Q	Answer	Marks	Comments
7(a)	$P(X=4) = \frac{e^{-2.5} \times 2.5^4}{4!}$	M1	PI
	= 0.1336[018858]	A 1	
		2	

Q	Answer	Marks	Comments
	$\lambda = 6 \times 2.5 = 15$	B1	PI
7(b)	$P(X > 18) = 1 - P(X \le 18)$	M1	
	= 1 – 0.8194[717351]		
	= 0.1805 (to 4 sf)	A 1	AWRT 0.1805
		3	

Q	Answer	Marks	Comments
7(c)(i)	$\left[\frac{1}{\lambda}\right] 0.4$	B1	
		1	

Q	Answer	Marks	Comments
7(c)(ii)	$\left[\left(\frac{1}{\lambda} \right)^2 = 0.4^2 = \right] 0.16$	B1	
		1	

Q	Answer	Marks	Comments
7(d)	$1 - e^{-2.5c} = 0.9$	M1	$1-e^{-kc}=0.9$ for $k>0$ or correct integration with correct limits
7(d)	$e^{-2.5c} = 0.1$		
	$-2.5c = \ln 0.1$		
	$c = \frac{2}{5}\ln 10$	M1	oe Finds their c in exact form or as a value for the number of weeks
	c = 0.9210[340372] [weeks]		
	c = 6 [days]	A 1	
		3	

Question 7 Total	10
------------------	----

Q	Answer	Marks	Comments
8(a)	$\left[F(x) = \int_{2}^{x} f(x) dx = \right] \int_{2}^{x} \frac{96}{(5x+k)^{2}} dx$		
	$= \left[\frac{96}{-5(5x+k)}\right]_2^x$	M1	Attempt at integration to obtain $a(5x+k)^{-1}$ with $a \neq 96$
	$= -\frac{96}{5} \left(\frac{1}{5x+k} - \frac{1}{10+k} \right)$	M1	oe Substitute limits into their integration of the form $a(5x+k)^{-1}$ with $a \ne 96$
	$= -\frac{96}{5} \left(\frac{(10+k) - (5x+k)}{(10+k)(5x+k)} \right)$ or $= \frac{96}{5} \left(\frac{5x-10}{(10+k)(5x+k)} \right)$ or $= \frac{96}{5} \left(\frac{5(x-2)}{(10+k)(5x+k)} \right)$	A 1	oe Correct single fraction
	$F(x) = \begin{cases} 0 & x < 2 \\ \frac{96(x-2)}{(10+k)(5x+k)} & 2 \le x \le d \\ 1 & x > d \end{cases}$	A 1	AG Must be convincingly shown SC2 for correctly differentiating $F(x)$ w.r.t. to x to show $f(x) = \frac{96}{(5x+k)^2}$
		4	

Q	Answer	Marks	Comments
8(b)	$[F(4.4) = 0.8 \Rightarrow] 0.8 = \frac{96(4.4-2)}{(10+k)(5\times4.4+k)}$	M1	ое
	$220 + 32k + k^2 = 288$		
	$k^2 + 32k - 68 = 0$		$0.8k^2 + 25.6k - 54.4 = 0$
	(k-2)(k+34)=0	m1	Attempts to solve the correct quadratic equation \mathbf{PI} by $k=2$
	k=2	A 1	Must not include $k = -34$
		3	

Question 8 Total	7
------------------	---