Programação com Scilab - Seções 1, 2 e 3 João L. R. Neto

28 de Maio de 2020

Conteúdo

1	Intr	dução	4
	1.1	Endereço para download e instalação	4
2	Con	eçando a trabalhar com o Scilab	4
	2.1	A interface do Scilab	4
		2.1.1 A interface básica ativada ao iniciar o Scilab	4
		2.1.2 A interface básica e o editor de scripts ativado a partir do acionamento do	
		icone em destaque	4
		2.1.3 Componentes dos ítens do menu da interface básica (click do curso na área	
		do console)	5
		2.1.4 File	6
		2.1.5 Edit	6
		2.1.6 Control	7
		2.1.7 Applications	7
		2.1.8 Help (?)	7
	2.2	Criando um diário da seção	8
3	Iten	fundamentais do Scilab	8
	3.1	Constantes	8
		3.1.1 Contantes pré-definidas	8
	3.2	Variáveis	
		3.2.1 Identificadores válidos	11
		3.2.2 Tipos de dados	12
	3.3	Expressões aritméticas	15
			15
		3.3.2 Operações de um escalar por uma matriz	17
			18
	3.4	Expressões lógicas	24
		3.4.1 Operadores lógicos	
		3.4.2 Conectivos lógicos	26

Lista de Figuras

1	2020-05-28_13-39-17	4
2	2020-05-26_17-34-04	5
3	2020-05-26_17-40-00	5
4	2020-05-27_15-18-35	6
5	2020-05-27_15-43-34	6
6	2020-05-27_16-05-18	7
7	2020-05-27_16-17-05	7
8	2020-05-27 16-46-02	7

T	1	TT 1	1 1	1
Lista	ae	Tal	bel	las

1 Tabela Verdade			26
------------------	--	--	----

1 Introdução

O Scilab é um software livre para computação numérica. Inclui centenas de funções matemáticas pré-definidas, além de uma linguagem de programação de alto nível, permitindo acesso a estruturas de dados avançadas e funções gráficas de 2 e 3 dimensões. Possuí um grande número de funcionalidades como: controle, simulação, otimização, processamento de sinais, dentre outras e o Xcos, um modelador e simulador de sistemas dinâmicos híbridos que é fornecido com a plataforma.

1.1 Endereço para download e instalação

Figura 1: 2020-05-28_13-39-17

https://www.scilab.org/

2 Começando a trabalhar com o Scilab

2.1 A interface do Scilab

2.1.1 A interface básica ativada ao iniciar o Scilab

Vide a Figura 2

2.1.2 A interface básica e o editor de scripts ativado a partir do acionamento do icone em destaque

Vide a Figura 3

Figura 2: 2020-05-26_17-34-04

2.1.3 Componentes dos ítens do menu da interface básica (click do curso na área do console)

Figura 3: 2020-05-26_17-40-00

2.1.4 File

Figura 4: 2020-05-27_15-18-35

- Execute ou Ctrl+E: Executa arquivos de scripts
- Open a File ou Ctrl+O: Carrega arquivos de scripts
- Load environment ou Ctrl+L: Carrega arquivos binários(de variáveis) salvos com o save
- Save environment ou Crtl+S: Salva um arquivo binário contendo variáveis
- Current Working Directory: Altera diretório de trabalho
- Page setup ou Ctrl+P: Imprime scripts
- Quit ou Crtl+Q: Fecha a seção e sai do ambiente do Scilab

2.1.5 Edit

Figura 5: 2020-05-27_15-43-34

- Cut ou Ctrl+X: 'Recorta' um texto
- Copy ou Ctrl+C: Copia para a área de transferência um texto selecionado
- Paste ou Ctrl+V: 'Cola'o que foi copiado
- Empty clipboard: 'Limpa' o clipboard
- Select all ou Ctrl+A: Seleciona todo o texto atual do ambiente
- Clear History: 'Limpa'a área de histórico
- Clear Console: 'Limpa' a área de console
- Preferences: Personaliza o ambiente do Scilab

2.1.6 Control

Figura 6: 2020-05-27_16-05-18

- Resume: Continua a execução a execução de uma instrução depois de uma pausa ou devido a uma parada
- Abort: Interrompe a execução de um processo
- Interrupt: Interrompe um processo, equivalente ao Ctrl+C

2.1.7 Applications

Figura 7: 2020-05-27_16-17-05

- SciNotes: Carrega o editor de scripts (editor de texto)
- Xcos: Carrega o modelador e simulador de sistemas dinâmicos híbridos, permitindo criar diagrama de blocos e interfaces gráficas
- Matlab to Scilab translator: Opção de conversão de códigos do Matlab para o Scilab
- Variable Browser: Visualiza o navegador de variáveis
- Command History: Visualiza o histórico de comandos
- File Browser: Visualiza o navegador de arquivos e pastas

2.1.8 Help(?)

Figura 8: 2020-05-27_16-46-02

- Scilab Help ou F1: Referência dos recursos do Scilab
- Scilab Demonstrations: Demonstrações de aplicações com o Scilab
- News feed: Noticias sobre o Scilab
- Link: Endereços sobre o Scilab
- Scilab Interprises: Sitio da empresa desenvolvedora e prestadora de suporte do Scilab
- About Scilab ou Shift+F1: Sobre o Scilab

2.2 Criando um diário da seção

Obs: Verificar a criação do arquivo 'diario.txt' na pasta onde estiver trabalhando

3 Itens fundamentais do Scilab

3.1 Constantes

As constantes não alteram o valor durante a execução de um algoritmo

3.1.1 Contantes pré-definidas

O valor da constante pi=3.1415927

[3]: *%pi*

```
3.1415927
    Base dos logaritmos naturais e=2.7182818
[4]:  %e
      %e =
        2.7182818
    Unidade imaginária; raiz quadrada de -1
[5]: %i
      %i =
        0. + i
    Infinito
[6]: \( \%inf
      %inf
        Inf
    Valor Lógico verdade (true)
[7]: //t
      ans
       Т
    Valor Lógico Falso (false)
[8]: %f
```

%pi =

```
ans
        F
     Not a number (não é um número)
 [9]:
      %nan
       %nan
         Nan
[10]:
      %eps
       %eps =
         2.220D-16
     Precisão do Scilab
[11]: %s
       %s
        S
     Polinômio com uma raiz em zero e variável s
[12]: \ \%z
       %z =
        z
```

Polinômio com uma raiz em zero e variável z

3.2 Variáveis

Alteram o valor durante a execução de um algoritmo. As variáveis são criadas dinamicamente. Ao atribuir (operador =) um valor a um identificador válido a variável esta criada.

Criar uma variável representa referenciar um espaço na memória principal(RAM).

3.2.1 Identificadores válidos

Caracteres de a...z e A...Z. Combinações de letras e números, começando com uma letra. Combinações com caracteres especiais também são permitidos: #, !, \$, _. Outros caracteres especiais não são permitidos.

[10].	
	A=5
	a20=100
	a =
	10.
	A =
	5.
	0.
	a20 =
	dzv –
	100
	100.
[14]:	v I = 1 ()
[11].	A. 10
	$\mathbf{x}!$ =
	10.
F4 = 7	#0 00
[15]:	c#3=30
	c#3 =
	30.
[16]:	v\$=0.3
	v\$ =
	0.3
[17]:	a 9=5

```
a 9=5
     Error: syntax error, unexpected =, expecting end of file
     Obs: O espaço em branco por exemplo não é um caractere especial válido na combinação de
     caracteres para criar uma variável
     3.2.2 Tipos de dados
     Numérico
[18]: a1=27
      a2=4.56
      a1 =
        27.
      a2 =
        4.56
[19]: a3 = 4 + \%i
      a3 =
        4. + i
     Literal
[20]: frase = "Esta é uma variável literal"
      frase =
       "Esta é uma variável literal"
```

[21]: frase = 'Esta é uma variável literal'

frase =

"Esta é uma variável literal"

```
[22]: letra = "B"
       letra =
        "B"
[23]: letra = 'B'
       letra =
        "B"
     Lógico: T (True - verdade) e F (False - falso)
[24]: opcao = %f
       opcao =
       F
[25]: opcao = %t
       opcao =
       Т
     Agregados homogêneos - matrizes Obs: Atribuir os dados a um identificador entre colchetes
     (espaço ou vírgula é coluna e ponto e virgula é linha)
[26]: matriz1 = [3 2 6 4;7 4 8 3;1,2,3,4]
      matriz1 =
         3.
              2.
                    6.
                         4.
         7.
              4.
                         3.
                    8.
         1.
              2.
                    3.
                         4.
```

```
[27]: matriz2 = ["Uma", "matriz"; "com duas linhas", "duas colunas"]
      matriz2 =
       "Uma"
                           "matriz"
       "com duas linhas" "duas colunas"
[28]: matriz3 = [4 5 "literal"]
     Undefined operation for the given operands.
     check or define function %s_c_c for overloading.
     Agregados heterogêneos - listas
[29]: lista1 = list("dados pessoais",["nome";"endereço"],[1250.45 45])
      lista1 =
            lista1(1)
       "dados pessoais"
            lista1(2)
       "nome"
       "endereço"
            lista1(3)
        1250.45
                   45.
```

Variável <u>ans</u> Quando não criamos nenhum identificador o Scilab atribui um dado a uma variável chamada 'ans', de answer (responda). A variável 'ans' terá sempre o conteúdo da última operação executada.

```
[30]: 345

ans =
```

```
345.
```

```
"Outro exemplo"
[31]:
       ans =
        "Outro exemplo"
     [4 3 6;6 4 7]
[32]:
       ans
         4.
              3.
                   6.
              4.
                   7.
         6.
[33]: list(["nome"],[5 3])
       ans
             ans(1)
        "nome"
             ans(2)
        5.
              3.
     3.3 Expressões aritméticas
     3.3.1 Operadores aritméticos
     Adição (+)
     Subtração ( - )
     Multiplicação (*)
     Divisão ( / ) Mumerador/Denominador
     Divisão ( \ ) Denominador/Numerador
[34]: x=20
```

x = 20. [35]: x=x+5x = 25. [36]: y=10 10. [37]: z=x-y 15. [38]: **a**=5 b=10 a = 5. b = 10. [39]: c=a*b

c =

50.

[40]: d=a/b

d =

0.5

[41]: e=a\b

e =

2.

3.3.2 Operações de um escalar por uma matriz

Obs: Ao criar uma matriz - Espaço é mudança de coluna e '; ' é mudança de linha.

[42]: m=[3 4 5 6 7 8]

m =

3. 4. 5. 6. 7. 8.

[43]: n=5+m

n =

8. 9. 10. 11. 12. 13.

[44]: [1=[4;6;2;8]

1 =

4.

6.

2.

8.

```
[45]: u=3+1
```

- 7.
- 9.
- 5.
- 11.

3.3.3 Operações com matrizes

Adição. As matrizes devem ser do mesmo tamanho (igual número de linhas e colunas).

- a =
 - 4. 5. 6. 1.
 - 8. 9. 0. 1.

- b =
 - 9. 1. 5. 3.
 - 7. 1. 0.5 9.

- c =
 - 13. 6. 11. 4.
 - 15. 10. 0.5 10.

- e =
 - 9. 4.
 - 9. 0.

- 2. 1.
- 8. 6.

[50]: f=a+e

Inconsistent row/column dimensions.

Subtração. As mesmas regras da adição.

[51]: x=[5 3 6;6 3 9]

x =

- 5. 3. 6.
- 6. 3. 9.

[52]: y=[7 1 9; 0 3 1]

у =

- 7. 1. 9.
- 0. 3. 1.

[53]: z=x-y

z =

- -2. 2. -3.
- 6. 0. 8.

[54]: p=[4 2;5 6;9 3]

p =

- 4. 2.
- 5. 6.
- 9. 3.

[55]: w=z-p

Inconsistent row/column dimensions.

Multiplicação matricial. Número de colunas de uma matriz deve ser igual ao número de linhas da outra matriz.

[56]: a=[4 6 1 4]

a =

4. 6. 1. 4.

[57]: b=[5 3 7;6 4 9;1 2 3;6 4 5]

b =

- 5. 3. 7.
- 6. 4. 9.
- 1. 2. 3.
- 6. 4. 5.

[58]: c=a*b

c =

81. 54. 105.

[59]: d=[5 5 2;5 6 4]

d =

- 5. 5. 2.
- 5. 6. 4.

[60]: e=[2 3 4;8 6 7]

e =

- 2. 3. 4.
- 8. 6. 7.

[61]: f=d*e

Inconsistent row/column dimensions.

Multiplicação ponto a ponto (.*). Matrizes do mesmo tamanho.

[62]: x=[1 2 3;5 4 6;8 7 9]

y=[5 4 7;1 2 3;-9 4 0]

x =

- 1. 2. 3.
- 5. 4. 6.
- 8. 7. 9.

y =

- 5. 4. 7.
- 1. 2. 3.
- -9. 4. 0.

[63]: z=x.*y

z =

- 5. 8. 21.
- 5. 8. 18.
- -72. 28. 0.

Divisão matricial. A operação de divisão será a multiplicação da inversa de uma matriz pela outra matriz. Observações:

- 1) Neste exemplo estamos utilizando a função rand(). Gera aleatóriamente valores.
- 2) Utilizamos também a função inv(), que calcula a inversa de uma matriz.

```
[64]: x=rand(3,3)
     x =
                 0.3303271 0.8497452
       0.2113249
       0.7560439
                  0.6653811
                             0.685731
       0.0002211
                             0.8782165
                  0.6283918
[65]: y=rand(3,1)
       0.068374
       0.5608486
       0.6623569
[66]: z=x\y
     z =
      -0.3561912
       1.7908789
      -0.5271342
[67]: z=inv(x)*y
      -0.3561912
       1.7908789
      -0.5271342
    Divisão ponto a ponto ( ./ e .\ ). Matrizes do mesmo tamanho.
[68]: a=rand(3,3)
     b=rand(3,3)
     a =
```

```
0.1985144
                    0.2312237
                                 0.6525135
        0.5442573
                    0.2164633
                                 0.3076091
      b =
        0.9329616
                    0.3616361
                                 0.4826472
        0.2146008
                    0.2922267
                                 0.3321719
        0.312642
                    0.5664249
                                 0.5935095
[69]:
     c=a./b
      c =
        0.7785429
                    0.6417357
                                 1.8302992
        0.9250403
                                 1.964385
                    0.7912479
        1.7408324
                    0.3821571
                                 0.5182884
[70]: d=a.\b
      d
        1.2844507
                    1.558274
                                 0.5463588
        1.0810339
                    1.2638265
                                 0.5090652
        0.5744378
                    2.6167252
                                 1.9294277
     Potência com matrizes (^ e .^)
[71]: x=rand(2,3)
      x =
        0.5015342
                    0.2693125
                                 0.4051954
        0.4368588
                    0.6325745
                                 0.9184708
[72]: y=x^2
                20 of function %s_pow ( C:\Program
     at line
     Files\scilab-6.1.0\modules\overloading\macros\%s_pow.sci line 32 )
                 3 of function %s_p_s ( C:\Program
     Files\scilab-6.1.0\modules\overloading\macros\%s_p_s.sci line 15 )
```

%s_pow: Wrong size for input argument #1: Square matrix expected.

```
[73]:
     y=x.^2
      у
        0.2515365
                     0.0725292
                                 0.1641833
        0.1908456
                     0.4001505
                                 0.8435886
[74]: a=rand(3,3)
      a
        0.0437334
                                 0.7783129
                     0.4148104
        0.4818509
                     0.2806498
                                 0.211903
        0.2639556
                     0.1280058
                                 0.1121355
```

Obs: Com uma matriz quadrada é possível utilizar o operador (^). Observando que ocorrerá uma multiplicação matricial.

```
[75]: b=a^2

b =

0.4072294  0.2341861  0.2092143

0.2122373  0.3057659  0.4582631

0.1028222  0.1597703  0.2451392
```

3.4 Expressões lógicas

3.4.1 Operadores lógicos

Os operadores lógicos, relacionam dois objetos(constantes, variáveis, expressões) e retornam Falso (F) ou Verdadeiro (T). Também são chamados operadores relacionais.

```
Maior ( > )
Menor ( < )
Maior ou igual ( >= )
Menor ou igual ( <= )
Igual ( == )
```

Diferente (~=) ou (<>)

Obs: O operador relacional de igualdade é (==), diferente do operador de atribuição (=).

[76]: a=5 b=6

a =

5.

b =

6.

[77]: c=a>b

c =

F

[78]: d=a<b

d =

T

[79]: e=a>=10

e =

F

[80]: g=a~=b

g =

Т

3.4.2 Conectivos lógicos

ans =

Tabela verdade Obs: Uma proposição pode ser uma relação simples, uma expressão.

Na Tabela 1 consideramos duas proposições quaisquer P e Q. Podendo estas proposições assumirem os valores Verdade (V) ou Falso (F). Desta forma, todas as possíveis combinações estão indicadas na primeira e segunda colunas da tabela.

Tabela 1: Tabela Verdade

Proposição	Proposição	PeQ	Pou Q	<u>não</u> P	<u>não</u> Q
P	Q	P && Q	PIIQ	\sim P	\sim Q
V	V	V	V	F	F
V	F	F	V	F	V
F	V	F	V	V	F
F	F	F	F	V	V

T

```
[85]: x>y | x==y

ans =

T

[86]: ~(x>y) || (x==y)

ans =

F
```

Referências

- [1] Mário Leite. *Scilab: Uma abordagem Prática e Didática*. Editora Ciência Moderna, Rio de janeiro, 2009.
- [2] https://scilab.org. Consultado em 28/05/2020.