DEPARTMENT OF DATA SCIENCE & COMPUTER APPLICATIONS

MCA 4223 OPERATING SYSTEMS: MISAC-1 ANSWER SCHEME SET-1

DATE: 08-02-2024 DURATION: 20 MINS MAX. MARKS: 5

- **Q)** Consider a scenario in which every process executes as follows:
 - Initially it will run in the CPU for a specific amount of time (CPU burst).
 - After the CPU burst, it will wait for I/O to complete (I/O burst).
 - Once it completes the I/O burst, it will again run in CPU and then terminate (CPU burst).

Please Note: The I/O bursts will be happening concurrently, meaning no process needs to wait for other processes to complete their I/O.

Given a set of 4 processes whose arrival time and burst time are listed as follows:

PID	Arrival Time	Burst Time				
110	Airivai iiiic	CPU Burst	I/O Burst	CPU Burst		
101	0	3	2	2		
102	0	2	4	1		
103	2	1	3	2		
104	5	2	2	1		

- 1) Draw the Gantt Charts that illustrate the execution of the following algorithms.
 - a) FCFS (Break the tie, if any, by considering the process with smaller value of PID first).
 - b) Shortest Remaining Time First (Break the tie, if any, by considering the process that has arrived first. If again a tie exist, consider the process with smaller value of PID first)

[3 marks]

2) Which among the above 2 scheduling algorithms performs better for the above given scenario. Justify your statement with necessary computations.

[2 marks]

Answer:

1) a) Gantt chart for FCFS:

	101	102	103	101	104	103	102	104	
0	1 3		; <i>6</i>	5 8	10	12	,	13	14

1) b) Gantt chart for SRTF:

	102	103	101	102	104	103	104	101
Λ	2	, ,	6	. 7	, Q	11		12 14

Process	Arrival	CT	TAT	WT	CT	TAT	WT
	Time	(FCFS)	(FCFS)	(FCFS)	(SRTF)	(SRTF)	(SRTF)
101	0	8	8	1	14	14	7
102	0	13	13	6	7	7	0
103	2	12	10	4	11	9	3
104	5	14	9	4	12	7	2
		Average:	10	3.75	Average:	9.25	3

Note: I/O time is not considered as waiting time. So, WT = TAT - CPU time – I/O time

As per the above table, SRTF performs better than FCFS for the given scenario with lesser values for Average TAT and WT.

DEPARTMENT OF DATA SCIENCE & COMPUTER APPLICATIONS

MCA 4223 OPERATING SYSTEMS: MISAC-1 ANSWER SCHEME SET-2

DATE: 08-02-2024 DURATION: 20 MINS MAX. MARKS: 5

- **Q)** Consider a scenario in which every process executes as follows:
 - Initially it will run in the CPU for a specific amount of time (CPU burst).
 - After the CPU burst, it will wait for I/O to complete (I/O burst).
 - Once it completes the I/O burst, it will again run in CPU and then terminate (CPU burst).

Please Note: The I/O bursts will be happening concurrently, meaning no process needs to wait for other processes to complete their I/O.

Given a set of 4 processes whose arrival time, burst time and priority are listed as follows:

PID Priority		Arrival Time	Burst Time			
110	11101111	Affivatifine	CPU Burst	I/O Burst	CPU Burst	
101	2	0	3	2	2	
102	3	0	2	4	1	
103	1	2	1	3	2	
104	4	5	2	2	1	

- 1) Draw the Gantt Charts that illustrate the execution of the following algorithms:
 - a) Non-Preemptive Priority (smaller number has higher priority)
 - b) Shortest Remaining Time First (Break the tie, if any, by considering the process that has arrived first. If again a tie exist, consider the process with smaller value of PID first)

[3 marks]

2) Which among the above 2 scheduling algorithms performs better for the above given scenario. Justify your statement with necessary computations.

[2 marks]

Answer:

1) a) Gantt chart for Non-Preemptive Priority:

	101	103	102	101	103	102	104	104
0	3	4	. 6	5 8	10	11	13 15	5 16

1) b) Gantt chart for SRTF:

	102	103	101	102	104	103	104	101
0	2	: 3	6	7	' 9	11	. 12	14

Process	Arrival	CT	TAT	WT	CT	TAT	WT
	Time	(Priority)	(Priority)	(Priority)	(SRTF)	(SRTF)	(SRTF)
101	0	8	8	1	14	14	7
102	0	11	11	4	7	7	0
103	2	10	8	2	11	9	3
104	5	16	11	6	12	7	2
		Average:	9.5	3.25	Average:	9.25	3

Note: I/O time is not considered as waiting time. So, WT = TAT - CPU time – I/O time

As per the above table, SRTF performs better than Non-Preemptive Priority for the given scenario with lesser values for Average TAT and WT.