Coframe formalisms

Yi-Fan Wang

May 13, 2019

Contents

1	U(1)	-regular theory	1
	1.1	Differential geometry	1
	1.2	Complex Klein–Fock–Gordon theory	2
		1.2.1 Noether current	2
2	U(1)	gauge theory	3
	2.1	Connection on the principal bundle	3
	2.2		3
		· · · · · · · · · · · · · · · · · · ·	4
		2.2.2 Noether's invariances	4
3	Poi	ncaré-regular theory	4
4	Poi	ncaré gauge theory	4
			4
			5
		4.2.1 Noether's invariances	5

1 U(1)-regular theory

1.1 Differential geometry

Interior product Let z be a vector, ω be a 1-form, χ be a k-form. The interior product is defined inductively as the bilinear map satisfying

$$z - \omega := \omega(z) \,, \tag{1}$$

$$z \rightharpoonup (\omega \land \chi) := (z \rightharpoonup \omega) \land \chi - \omega \land (z \rightharpoonup \chi). \tag{2}$$

Equation (2) is also known as the anti-product rule.

By induction one can show that for a p-form ϕ ,

$$z \rightharpoonup (\phi \land \chi) = (z \rightharpoonup \phi) \land \chi + (-)^p \chi \land (z \rightharpoonup \chi). \tag{3}$$

Hodge star Let ω be an 1-form, χ be a k-form. The Hodge star \star is defined inductively as the linear map [4, sec. 24]

$$\star 1 := \text{vol}\,,\tag{4}$$

$$\star(\chi \wedge \omega) := \omega^{\sharp} - \star \chi \,. \tag{5}$$

Non-gravitational theories features $[\delta, \star] = 0$, which means [7, sec. 3.2]

$$\delta g_{\mu\nu} = -2\omega_{(\mu\nu)}, \qquad \delta\vartheta^{\mu} = \omega_{\nu}^{\ \mu}\,\vartheta^{\nu}\,; \tag{6}$$

for an orthonormal coframe, the allowed variations are $\omega_{(\alpha\beta)} = 0$.

Codifferential The *codifferential* \mathbb{d}^{\dagger} is the adjoint of the exterior derivative \mathbb{d} in the following sense. Let ϕ be a k-form, χ be a (k-1)-form.

$$\int d(\chi^* \wedge \star \phi) \equiv \int d\chi^* \wedge \star \phi - (-)^k \chi^* \wedge d \star \phi =: \int d\chi^* \wedge \star \phi - \chi^* \wedge \star d^{\dagger} \phi \quad (7)$$

$$= \int d\chi^* \wedge \star \phi - \chi^* \wedge \star (-)^k \star^{-1} d \star \phi. \tag{8}$$

$$\boxed{\mathbf{d}^{\dagger}\phi = (-)^k \star^{-1} \mathbf{d} \star \phi.} \tag{9}$$

1.2 Complex Klein-Fock-Gordon theory

The action reads

$$S = \int -d\phi^* \wedge \star d\phi - m^2 \phi^* \wedge \star \phi . \tag{10}$$

Variation commutes with exterior derivative

$$[\delta, \mathsf{d}]\phi = 0. \tag{11}$$

A generic variation of the kinetic terms reads

$$\delta(\mathrm{d}\phi^* \wedge \star \mathrm{d}\phi) = \mathrm{d}(\delta\phi^* \wedge \star \mathrm{d}\phi + \delta\phi \wedge \star \mathrm{d}\phi^*)$$
$$+ \delta\phi^* \wedge \star \mathrm{d}^{\dagger}\mathrm{d}\phi + \delta\phi \wedge \star \mathrm{d}^{\dagger}\mathrm{d}\phi^*.$$
(12)

A generic variation of the action reads

$$\delta S = \int d(-\delta\phi^* \wedge \star d\phi - \delta\phi \wedge \star d\phi^*)$$
$$-\delta\phi^* \wedge \star (d^{\dagger}d + m^2)\phi - \delta\phi \wedge \star (d^{\dagger}d + m^2)\phi^*. \tag{13}$$

1.2.1 Noether current

The action is invariant $(\delta_A S \equiv 0)$ under the rigid transformation

$$\phi \to e^{-ie\Lambda}\phi$$
, $\phi^* \to e^{+ie\Lambda}\phi^*$. (14)

When the equations of motion are satisfied, infinitesimal transformation leads to

$$0 = \int \Lambda \, \mathrm{d} \mathfrak{J}_0 \,,$$

$$\mathfrak{J}_0 := \mathrm{i} e(-\phi \wedge \star \mathrm{d} \phi^* + \phi^* \wedge \star \mathrm{d} \phi) \,, \tag{15}$$

which is the Noether current, a twisted 3-form, satisfying the continuity equation

$$d\mathfrak{J}_0 = 0. (16)$$

2 U(1) gauge theory

2.1 Connection on the principal bundle

Exterior covariant derivative Let χ be a \mathbb{C} -valued k-form. The exterior covariant derivative of χ reads

$$\mathbb{D}\chi := (\mathbb{d} - ieA)\chi, \qquad \mathbb{D}\chi^* := (\mathbb{d} + ieA)\chi^*, \tag{17}$$

where A is a $\mathfrak{u}(1)$ -valued connection form.

Covariant codifferential The covariant codifferential \mathbb{D}^{\dagger} is the adjoint of the exterior covariant derivative \mathbb{D} in the following sense. Let ϕ be a \mathbb{C} -valued k-form, χ be a \mathbb{C} -valued (k-1)-form.

$$\int d(\chi^* \wedge \star \phi) \equiv \int d\chi^* \wedge \star \phi - (-)^k \chi^* \wedge d \star \phi =: \int \mathbb{D}\chi^* \wedge \star \phi - \chi^* \wedge \star \mathbb{D}^{\dagger} \phi \quad (18)$$

$$= \int \mathbb{D}\chi^* \wedge \star \phi - ieA \wedge \chi^* \wedge \star \phi - (-)^k \chi^* \wedge d \star \phi$$

$$= \int \mathbb{D}\chi^* \wedge \star \phi + \chi^* \wedge (-)^k ieA \star \phi - (-)^k \chi^* \wedge d \star \phi$$

$$= \int \mathbb{D}\chi^* \wedge \star \phi - \chi^* \wedge \star (-)^k \star^{-1} (d - ieA) \star \phi. \quad (19)$$

$$\boxed{\mathbb{D}^{\dagger} \phi = (-)^k \star^{-1} (d - ieA) \star \phi.}$$

2.2 Maxwell-Klein-Fock-Gordon theory

$$S = \int -\mathbb{D}\phi^* \wedge \star \mathbb{D}\phi - m^2 \phi^* \wedge \star \phi - \frac{1}{2} F \wedge \star F. \tag{21}$$

Variation does not commute with exterior covariant derivative.

$$[\delta, \mathbb{D}]\phi = -ie\delta A\phi. \tag{22}$$

$$\delta(\mathbb{D}\phi^* \wedge \star \mathbb{D}\phi) = d(\delta\phi^* \star \mathbb{D}\phi + \delta\phi \star \mathbb{D}\phi^*) + \delta\phi^* \wedge \star \mathbb{D}^{\dagger}\mathbb{D}\phi + \delta\phi \wedge \star \mathbb{D}^{\dagger}\mathbb{D}\phi^* + \delta A \wedge \mathfrak{J}_A, \qquad \mathfrak{J}_A := ie(\phi^* \star \mathbb{D}\phi - \phi \star \mathbb{D}\phi^*),$$
(23)

$$\delta(F \wedge \star F) = 2\,\delta F \wedge \star F \tag{24}$$

$$= 2 \operatorname{d}(\delta A \wedge \star F) + 2 \delta A \wedge \operatorname{d} \star F. \tag{25}$$

Variation of the action

$$\delta S = \int d(-\delta \phi^* \wedge \star \mathbb{D} \phi - \delta \phi \wedge \star \mathbb{D} \phi^* - \delta A \wedge \star F)$$
$$-\delta \phi^* \wedge \star (\mathbb{D}^{\dagger} \mathbb{D} + m^2) \phi - \delta \phi \wedge \star (\mathbb{D}^{\dagger} \mathbb{D} + m^2) \phi^*$$
$$-\delta A \wedge (d \star F - \mathfrak{J}_A). \tag{26}$$

2.2.1 Lorenz gauge

The Laplace-de Rham operator, or in our Lorentzian metric signature the d'Alembertian

$$\Box^2 := \left(d + d^{\dagger} \right)^2 = dd^{\dagger} + d^{\dagger} d. \tag{27}$$

$$\mathbf{d} \star F = \mathbf{d} \star \mathbf{d} A = \star (-)^2 \star^{-1} \mathbf{d} \star \mathbf{d} A = \star \mathbf{d}^\dagger \mathbf{d} A = \star (\Box^2 - \mathbf{d} \mathbf{d}^\dagger) A \,. \tag{28}$$

One would like to have $dd^{\dagger}A = 0$, or $d^{\dagger}A = \text{const.}$ This would be fulfilled if

$$d^{\dagger}A = 0, \qquad (29)$$

which is the Lorenz gauge [2, 3, 6].

2.2.2 Noether's invariances

The action is invariant under the generic transformation

$$\phi \to e^{-ie\Lambda}\phi$$
, $\phi^* \to e^{+ie\Lambda}\phi^*$, $A \to A - d\Lambda$. (30)

There are two scenarios [1].

If the transformation is rigid, dA = 0, one obtains \mathfrak{J}_A as the Noether current from the boundary term as before, which satisfies the continuity equation $\mathfrak{dJ}_A =$

If the transformation is gauge with a compact support, the boundary term can be dropped, and one obtains the Noether identity identity

$$123$$
 (31)

3 Poincaré-regular theory

Poincaré gauge theory 4

4.1 Differential forms

Untwisted orthonormal k-cobases Let $\{\vartheta^{\alpha}\}$ be an orthonormal coframe. The orthonormal basis for untwisted k-form is defined inductively as

$$1, (32)$$

$$\begin{array}{ccc}
1, & (32) \\
\vartheta^{\alpha_1 \alpha_2 \dots \alpha_k} := \vartheta^{\alpha_1} \wedge \vartheta^{\alpha_2 \dots \alpha_k}. & (33)
\end{array}$$

Upon variation of ϑ^{α} , $\vartheta^{\alpha_1\alpha_2...\alpha_k}$ goes under

$$\delta \vartheta^{\alpha_1 \alpha_2 \dots \alpha_k} = \delta \vartheta^{\alpha} \wedge (e_{\alpha} - \vartheta^{\alpha_1 \alpha_2 \dots \alpha_k}), \tag{34}$$

which can be proved by induction.

Twisted orthonormal k**-cobases** Let $\{\vartheta^{\alpha}\}$ be an orthonormal coframe. The orthonormal basis for twisted (D-k)-form is defined inductively as

$$\epsilon := \text{vol}\,,\tag{35}$$

$$\epsilon_{\alpha_1\alpha_2\dots\alpha_k} \coloneqq e_{\alpha_k} - \epsilon_{\alpha_1\dots\alpha_{k-1}}. \tag{36}$$

By using eq. (5) and induction, one can show that

$$\epsilon_{\alpha_1 \alpha_2 \dots \alpha_k} = \star \vartheta_{\alpha_1 \alpha_2 \dots \alpha_k} \,. \tag{37}$$

Upon variation of ϑ^{α} , $\epsilon_{\alpha_1\alpha_2...\alpha_k}$ goes under [7, sec. A.2]

$$\delta\epsilon_{\alpha_1\alpha_2...\alpha_k} = \delta\vartheta^\alpha \wedge \left(e_\alpha \, \neg \, \epsilon_{\alpha_1\alpha_2...\alpha_k}\right). \tag{38}$$

Variation of Hodge star In gravitational theories [7, sec. 3.2] with an orthonormal cobasis,

$$[\delta,\star]\phi = \delta\vartheta^\alpha \wedge (e_\alpha \, \lrcorner \, \star \phi) - \star (\delta\vartheta^\alpha \wedge (e_\alpha \, \lrcorner \, \phi)) \, . \tag{39}$$

Let χ be a *p*-form, ϕ another form [5, sec. 5].

$$\delta(\chi \wedge \star \phi) = \delta\chi \wedge \star \phi + \delta\phi \wedge \star \chi - \delta\vartheta^{\alpha} \wedge \Sigma_{\alpha}, \tag{40}$$

$$\Sigma_{\alpha} := \chi \wedge \left\{ \star (e_{\alpha} - \phi) - (-)^{p} (e_{\alpha} - \star \phi) \right\}. \tag{41}$$

4.2 Maxwell-Klein-Fock-Gordon theory

$$\begin{split} \varSigma_{\alpha} &= -\mathbb{D}\phi^* \wedge \{\star(e_{\alpha} \, \lrcorner \, \mathbb{D}\phi) + (e_{\alpha} \, \lrcorner \, \star \mathbb{D}\phi)\} - m^2\phi^*\phi \, \epsilon_{\alpha} \\ &- \frac{1}{2}F \wedge \{\star(e_{\alpha} \, \lrcorner \, F) - (e_{\alpha} \, \lrcorner \, \star F)\} \,. \end{split} \tag{42}$$

4.2.1 Noether's invariances

[1]

Rigid translation

References

- S. G. Avery and B. U. W. Schwab, "Noether's second theorem and ward identities for gauge symmetries", Journal of High Energy Physics 2016 (2015), arXiv:1510.07038v2 [hep-th] (cit. on pp. 4, 5).
- [2] J. van Bladel, "Lorenz or lorentz?", IEEE Antennas and Propagation Magazine **33**, 69–69 (1991) (cit. on p. 4).
- [3] J. van Bladel, "Lorenz or lorentz? [addendum]", IEEE Antennas and Propagation Magazine **33**, 56–56 (1991) (cit. on p. 4).
- [4] W. L. Burke, Applied differential geometry (Cambridge University Press, 1985) (cit. on p. 2).

- [5] Y. Itin, "On variations in teleparallelism theories", (1999), arXiv:gr-qc/9904030 [gr-qc] (cit. on p. 5).
- [6] L. Lorenz, "XXXVIII. on the identity of the vibrations of light with electrical currents", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science **34**, 287–301 (1867) (cit. on p. 4).
- [7] U. Muench, F. Gronwald, and F. W. Hehl, "A brief guide to variations in teleparallel gauge theories of gravity and the kaniel-itin model", General Relativity and Gravitation 30, 933–961 (1998), arXiv:gr-qc/9801036 [gr-qc] (cit. on pp. 2, 5).