Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Домашнее Задание №1 по дисциплине «Методы машинного обучения» на тему

«Распознавание рукописных цифр MNIST с помощью PyTorch»

Выполнил: студент группы ИУ5-23М Ся Тунтун

Москва — 2021 г.

1. Задаче обучения

В этой статье мы построим простую сверточную нейронную сеть в PyTorch и обучим ее распознаванию рукописных цифр на основе набора данных MNIST. 70 000 изображений рукописных цифр включены в MNIST: 60 000 для обучения и 10 000 для тестирования. Изображения имеют серый масштаб, 28х28 пикселей, и центрированы для уменьшения предварительной обработки и ускорения работы.

2. Настройка среды

Сначала перейдите на официальный сайт и, следуя руководству, установите среду РуТогсh на свой ПК, а затем ознакомьтесь с библиотекой.

```
import torch
import torchvision
from torch.utils.data import DataLoader
```

3.Подготовка набора данных

Когда импорт готов, мы можем приступить к подготовке данных, которые мы будем использовать. Но перед этим мы определим гиперпараметры, которые будем использовать для экспериментов. Здесь число эпох определяет количество циклов, в течение которых мы будем проходить весь набор данных для обучения, а скорость обучения и импульс - это гиперпараметры оптимизатора, который мы будем использовать позже.

```
[2] n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
random_seed = 1
torch.manual_seed(random_seed)

<torch._C.Generator at 0x7f0551d95730>
```

Теперь нам также нужен загрузчик данных для набора данных, и здесь в игру вступает TorchVision. Это позволяет нам загружать набор данных MNIST удобным способом. Мы будем использовать batch_size=64 для обучения и size=1000 для тестирования на этом наборе данных. Значения 0,1307 и 0,3081, используемые в преобразовании Normalize() ниже, являются глобальным средним и стандартным отклонением набора данных MNIST, и здесь мы принимаем их как данность.

TorchVision предлагает ряд удобных преобразований, таких как обрезка или нормализация.

```
train_loader - torch.utils.data.DataLoader(
        torchvision.datasets.MNIST('./data/', train=True, download=True,
                                                            transform-torchvision.transforms.Compose([
                                                               torchvision.transforms.ToTensor(),
                                                                torchvision. transforms. Normalize (
                                                                   (0.1307,), (0.3081,))
                                                            ])),
       batch_size=batch_size_train, shuffle=True)
    test_loader - torch.utils.data.DataLoader(
        torchvision.datasets.MNIST(°./data/°, train=False, download=True,
                                                            transform-torchvision.transforms.Compose([
                                                               torchvision. transforms. ToTensor(),
                                                               torchvision. transforms. Normalize (
                                                                  (0.1307,), (0.3081,))
                                                            ])),
        batch_size=batch_size_test, shuffle=True)
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
```

Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz

9913344/? [00:00<00:00, 16573223.05it/s]

Extracting ./data/MNIST/raw/train-images-idx3-ubyte.gz to ./data/MNIST/raw

example_targets - это фактические числовые метки, соответствующие изображениям.

Мы можем использовать matplotlib для построения графика некоторых из них

4.Создание сети

Теперь давайте начнем строить нашу сеть. Мы будем использовать два двухмерных конволюционных слоя, а затем два полностью связанных (или линейных) слоя. В качестве функции активации мы выберем выпрямленные линейные единицы (сокращенно ReLU), а в качестве средства регуляризации будем использовать два отсеивающих слоя. Хорошим способом построения сети в РуТогсh является создание нового класса для сети, которую мы хотим построить. Давайте импортируем здесь некоторые подмодули, чтобы получить более читабельный код.

```
[6] import torch.nn as nn
     import torch.nn.functional as F
     import torch.optim as optim
     class Net(nn. Module):
            def __init__(self):
                   super(Net, self). __init__()
                    self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
                    self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
                    self.conv2_drop = nn.Dropout2d()
                    self. fc1 - nn. Linear (320, 50)
                   self. fc2 - nn. Linear (50, 10)
             def forward(self, x):
                    x - F. relu(F. max_pool2d(self. conv1(x), 2))
                    x - F. relu(F. max_pool2d(self. conv2_drop(self. conv2(x)), 2))
                    x - x. view(-1, 320)
                    x - F. relu(self. fc1(x))
                    x - F. dropout(x, training-self. training)
                    x - self. fc2(x)
                    return F. log_softmax(x)
```

Инициализация сети и оптимизатора.

```
[7] network - Net()
optimizer - optim.SGD(network.parameters(), lr-learning_rate,
momentum-momentum)
```

5. Модельное обучение

Пришло время установить наш тренировочный цикл. Во-первых, мы убедимся, что наша сеть находится в режиме обучения. Затем для каждой эпохи выполняется одна итерация всех обучающих данных. Загрузка отдельных пакетов осуществляется с помощью DataLoader.

Во-первых, нам нужно вручную установить градиент на ноль с помощью optimizer.zero_grad(), поскольку PyTorch накапливает градиенты по умолчанию. Затем мы генерируем выход сети (прямой проход) и вычисляем отрицательную логарифмическую потерю вероятности между выходом и истинной меткой. Теперь мы собираем новый набор градиентов и распространяем их обратно на каждый параметр сети с помощью optimizer.step().

```
[8] train_losses = []
   train_counter = []
   test_losses = []
   test_counter = [i*len(train_loader.dataset) for i in range(n_epochs + 1)]
```

Перед началом обучения мы запустим тестовый цикл, чтобы посмотреть, сколько точности/потерь можно получить, используя только случайно инициализированные параметры сети.

```
[9] def train(epoch):
       network. train()
        for batch_idx, (data, target) in enumerate(train_loader):
           optimizer.zero_grad()
           output - network(data)
           loss - F. nll_loss(output, target)
           loss.backward()
            optimizer.step()
            if batch_idx % log_interval -- 0:
               print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                  epoch, batch_idx * len(data), len(train_loader.dataset),
                   100. * batch_idx / len(train_loader), loss.item()))
                train_losses.append(loss.item())
                train_counter.append(
                   (batch_idx*64) + ((epoch-1)*len(train_loader.dataset)))
                torch. save(network.state_dict(), './model.pth')
                torch. save (optimizer. state_dict(), './optimizer.pth')
    train(1)
    /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:20: UserWarning: Implicit dimension
    Train Bpoch: 1 [0/60000 (0%)] Loss: 2.319280
    Train Epoch: 1 [640/60000 (1%)] Loss: 2.290954
    Train Bpoch: 1 [1280/60000 (2%)] Loss: 2.318535
```

Модули нейронных сетей, а также оптимизаторы могут сохранять и загружать свои внутренние состояния с помощью функции .state_dict(). Таким образом, при необходимости мы можем продолжить обучение на основе ранее сохраненного диктата состояния - просто вызвав .load state dict(state dict).

Теперь войдите в цикл тестирования. Здесь мы суммируем потери при тестировании и отслеживаем количество правильных классификаций, чтобы рассчитать точность сети.

```
[10] def test():
        network.eval()
         test_loss - 0
         correct - 0
         with torch.no_grad():
            for data, target in test_loader:
                output - network(data)
                test_loss +- F.nll_loss(output, target, size_average-False).item()
                pred - output. data. max (1, keepdim-True) [1]
                correct += pred. eq (target. data. view_as (pred)). sum()
         test_loss /- len(test_loader.dataset)
         test_losses.append(test_loss)
         print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))
     test()
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:20: UserWarning: Implicit dime:
     /usr/local/lib/python3.7/dist-packages/torch/nn/ reduction.py:42: UserWarning: size_average
      warnings. warn (warning. format (ret))
     Test set: Avg. loss: 0.1922, Accuracy: 9440/10000 (94%)
```

Используя контекстный менеджер no_grad(), мы можем избежать хранения вычислительных результатов вывода генеративной сети в вычислительном графе.

Пора начинать тренировки! Мы вручную добавим вызов test() перед циклом через n_epochs, чтобы оценить нашу модель, используя случайно инициализированные параметры.

```
[21] test()
for epoch in range(1, n_epochs + 1):
    train(epoch)
    test()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.
/usr/local/lib/python3.7/dist-packages/torch/nn/_reduction
    warnings.warn(warning.format(ret))

Test set: Avg. loss: 0.0380, Accuracy: 9876/10000 (99%)

Train Bpoch: 1 [0/60000 (0%)] Loss: 0.392204
Train Bpoch: 1 [040/60000 (1%)] Loss: 0.202859
Train Bpoch: 1 [1280/60000 (2%)]
Train Bpoch: 1 [1920/60000 (3%)]
Loss: 0.133428
Train Bpoch: 1 [1920/60000 (3%)]
Loss: 0.154377
```

Нарисуйте кривую обучения

```
[25] import matplotlib.pyplot as plt

fig = plt.figure()
plt.plot(train_counter, train_losses, color='blue')

plt.legend(['Train Loss', 'Test Loss'], loc='upper right')
plt.xlabel('number of training examples seen')
plt.ylabel('negative log likelihood loss')
plt.show()
```


Продолжить обучение

```
[26] examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
with torch.no_grad():
    output = network(example_data)
fig = plt.figure()
for i in range(6):
    plt.subplot(2, 3, i+1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Prediction: {}".format(
        output.data.max(1, keepdim=True)[1][i].item()))
    plt.xticks([])
    plt.yticks([])
plt.show()
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:20: UserWarning

6. Постоянное обучение сотрудников контрольно-пропускных

пунктов

Теперь давайте перейдем к обучению сети или посмотрим, как можно продолжить обучение на основе state_dicts, сохраненных после первого запуска обучения. Мы инициализируем новый набор сетей и оптимизаторов.

```
[27] continued_network - Net()
continued_optimizer - optim. SGD(network.parameters(), lr-learning_rate,
momentum-momentum)
```

Используя .load_state_dict(), мы можем загрузить внутренние состояния сети и оптимизировать их на момент последнего сохранения.

```
[28] network_state_dict = torch.load('model.pth')
continued_network.load_state_dict(network_state_dict)
optimizer_state_dict = torch.load('optimizer.pth')
continued_optimizer.load_state_dict(optimizer_state_di
```

Опять же, запуск тренировочного цикла должен немедленно возобновить нашу предыдущую тренировку. Чтобы проверить это, мы просто используем тот же список, что и раньше, для отслеживания значений потерь. Из-за того, как мы построили счетчик количества обучающих примеров для теста, здесь нам пришлось добавить его вручную

И снова мы видим улучшение точности тестового набора от одной эпохи к другой (работает медленнее, намного медленнее). Давайте воспользуемся изображениями для дальнейшей проверки хода обучения.

```
fig = plt.figure()
plt.plot(train_counter, train_losses, color='blue')

plt.legend(['Train Loss', 'Test Loss'], loc='upper right')
plt.xlabel('number of training examples seen')
plt.ylabel('negative log likelihood loss')
plt.show()

C*

- Train Loss

- O秒 完成时间: 15:35
```

Список литературы

- [1] Гапанюк Ю. Е. Домашнее задание (вариант 1) «решение задачи обучения с учителем» [Электронный ресурс] // GitHub. 2021. Режим доступа:
- [2] Li Yandong, Hao Zongbo, Lei Hang. Обзор исследований в области конволюционных нейронных сетей[J]. Computer Applications,2016(9):2508-2515,2565.https://github.com/ugapanyuk/ml_course_2021/wiki/DZ_MMO__SUP ERVISED