意优 CanOpen 快速调试手册 V2.0

目录

1,	EYouCanOpenTool 调试使用	3
	1.1 电机参数	
	1.2 打开设备	4
	1.3 操作电机	5
	1.4 参数查看和修改	5
	1.5 数据收发调试	8
2,	EyouCanableTool 调试使用	9
3,	应用开发	10
	3.1 PDO 配置及映射	10
	3.2 轨迹位置模式应用	15

1, EYouCanOpenTool 调试使用

EYouCanOpenTool 是我司开发配套 CanOpen 接口电机调试的专用上位机, windows 系统专用, 安装后打开界面如下, 大致分为 12 功能区域。

功能区 1: 打开设备即打开 usbcan 设备,选择对应的 usbcan 设备和波特率,如果打开失败 检查类型选择、usbcan 是否插入、usbcan 驱动是否安装 (canable 不需要安装驱动)、usbcan 是否被其他软件占用。关闭设备即关闭当前软件对 usbcan 的占用。

功能区 2: 扫描 usbcan 总线上 canopen 电机,可能会扫描出多个 id 的电机,请选择对应的电机进行操作。电机断电或重新插入请重新扫描。

功能区 3: 抱闸单独控制,只对有抱闸电机有效。常规控制不需要单独控制抱闸,运行中关闭抱闸(关闭抱闸励磁供电,抱闸抱死)会引起电机和抱闸摩擦。

功能区 4: 波形显示,可以根据右上角勾选框选择不同的数据波形,也可以通过在此区域缩放、拖动鼠标调整波形显示。

功能区 5: CanOpen 协议 NMT 指令区,此处可以不用过多关心,EYouCanOpenTool 中的相关电机控制指令已自动加入 NMT 的操作。

功能区 6: 波形暂停、恢复、缩放按钮。

功能区 7: 运动控制区域,可以选择不同的模式,输入对应的参数进行电机控制。位置单位:pulse,速度单位 pulse/s,加减速单位: pulser/(s*s).电机一圈脉冲分辨率默认=65536*减速比。额定电压下,最大速度=3276800(对应原始电机 3000rpm)。

功能区 8: 电机实时状态字显示。

功能区 9: CanOpen 控制字快捷按钮。

功能区 10: 电机产品信息区域。

功能区 11: 温度、错误码、电压显示区域。

功能区 12: 位置、温度、速度文字显示。

1.1 电机参数

1.1.1 输出轴分辨率

Canopen 协议电机输出轴一圈脉冲分辨率可以读取字典 6091-02 获取,如下图:

 226 0x6091 0x1 227 0x6091 0x2
 Gear Ratio Motor Revolutions 5308416 5308416
 5308416 5308416

 5308416 即为此电机输出轴转动一圈脉冲数(默认是 65536*减速比,即减速前原始电机按照 16bit 输出,所以减速后一圈=65536*减速比)。截图中两个字典为电子齿轮比的分子和分母,可以修改 6091-02 更改输出轴一圈分辨率。

1.1.2 输出角度范围

双磁编单圈绝对值机型,开机后输出角度为正负 180 度范围,如 81 减速比电机,开机上电后,角度会在-2654208 至+2654208 之内。

1.1.3 参数单位

位置:脉冲或用户脉冲单位,如 81 减速比默认一圈 360 度对应 5308416 个脉冲。

速度: 脉冲/秒, int32 类型, 有正负, 如 1000000, 代表按照 1 秒钟增加 1000000 脉冲单位的速度逆时针旋转。如-1000000(0Xfff0bdc0),代表按照 1 秒钟减少 1000000 脉冲单位的速度顺时针转动。原始电机 3000rpm 速度=50rps=50*65536=3276800 脉冲/秒, 我司原始电机统一按照 16bit(65536)分辨率输出。

加速度/减速度:脉冲/(秒*秒), uint32 类型, 只有正数。如 1000000 代表加速能力为 1 秒钟 可增加速度 1000000 脉冲/秒。加减速速度最大值 1E8,即 100000000 脉冲/(秒*秒)。

电流单位:千分比, 1000 对应额定扭矩(固件版本 V138 之前版本,500 对应额定扭矩)。

1.2 打开设备

EYouCanOpenTool 上位机目前适配 canable 和创芯的 USBCAN, canable 免驱动。将 USBCAN 的 USB 端连接至电脑,CAN1 口连接至电机端并打开一组 120R 终端电阻,并确保电源供电正常(PH08/PH11 为 24V 供电)接线图如下:

正确连线后,点击"打开设备"按钮,默认选择电机对应波特率(电机出厂默认 1000K),如下:

如果打开设备不成功,请检查 USBCAN 的驱动安装、硬件连接。正常打开后,软件会

设置电机相关的 PDO 并读取电机的全部字典数据。当多个电机连接时,点击"扫描"按钮刷新电机 ID. 并选择要操作的电机。

1.3 操作电机

电机正常连接后, 在电机操作区域可以实现对电机的各种控制, 如轨迹位置模式:

电机默认出厂设置的一圈 65536*减速比个脉冲(或读取 6091-02 字典查看),比如设置加减速度、速度设置成 1000000,目标位置为 1000000,电机会运行至绝对位置 1000000 处,如果勾选相对位置,电机会在当前位置基础上加上目标位置大小的增量。其他模式类似,可对比测试。

1.4 参数查看和修改

将上位机界面切换至"参数设置",可以对电机参数进行读写、保存。首先点击[刷新控制器参数]按钮,读取电机当前的数据。根据实际需要在修改值对应的编辑款输入修改值,然后点击[写入电机]按钮,如果修改值需要断电保存,需要点击[保存至控制器]按钮。

1.4.1 修改 id

参数设置界面下,修改 0x2001:01 后,断电重启生效,如下:

如果没法使用 EYouCanopenTool, 也可以用下面的指令方式修改, 如当前 id=1, 修改 id=2, 如下:

方向	Canid	Can 数据	说明
发送	601	2F 01 20 01 <u>02</u> 00 00 00	字典 2001:01 写入 02 表示设置 id=2
返回	581	60 01 20 01 00 00 00 00	
发送	601	23 10 10 01 <u>73 61 76 65</u>	字典 1010:01 写入 0x65766173 保存指令
返回	581	60 10 10 01 00 00 00 00	

以上指令发过后, 断电重启新 id 生效。

1.4.2 修改波特率

参数设置界面下,修改 0x2001:02 后,断电重启生效,如下:

如果没法使用 EYouCanopenTool, 也可以用下面的指令方式修改, 如波特率=500, 如下:

		-	
方向	Canid	Can 数据	说明
发送	601	2B 01 20 02 <u>F4 01</u> 00 00	字典 2001:02 写入 500 设置波特率=500
返回	581	60 01 20 02 00 00 00 00	
发送	601	23 10 10 01 <u>73 61 76 65</u>	字典 1010:01 写入 0x65766173 保存指令
返回	581	60 10 10 01 00 00 00 00	

以上指令发过后,断电重启波特率生效。

1.4.3 零点偏移

调整好零点后,将 homeoffset 字典设置=0(如果本来为 0 则无需操作),然后写入点击,保存至控制器,如下:

完成以上步骤后,此位置下断电重启(如果位置在正负 180 度内不需要断电重启)。重启后重新扫描获得当前位置,将当前位置的负方向位置数据写入 homeoffset 字典,然后写入电机,保存数据即可。

1.5 数据收发调试

为了更加直观的调试电机通信,将上位机切换至"数据收发"界面,将会直观的看到上位机同电机的通信数据,并且可以手动 SDO 调试电机。同样可以导入我们提供的调试命令表,快速调试。

2, EyouCanableTool 调试使用

EyouCanTool 是我司开发的配套硬件 canable 的 can 调试上位机,客户也可以使用其他 can 工具和上位机进行调试。EyouCanTool 打开后截图如下:

功能区 1: 选择电机对应波特率打开即可,如果打开失败检查 usbcan 是否插入或被占用。

功能区 2: 通信数据显示区域。

功能区 3:显示数据行数显示,如果需要记录更多数据加大此参数。同事支持数据导出功能。

功能区 4: can 数据发送。

功能区 5: 列表命令发送区域,通过<文件加载>按钮添加集成好的命令表.ini,可以快速调试调试。也可以把调试的好指令表导出保存。

3, 应用开发

3.1 PDO 配置及映射

Canopen 应用中, Rpdo 和 Tpdo 都是以 canopen 从机的角度定义的, rpdo 就是主机发数据到从机, 无需像 sdo 通信返回数据, tpdo 是从机向主机上传数据, 也无需主机返回。主从机怎么识别通信的数据需要根据 pdo 的配置和映射, 举例如下:

3.1.1TPDO 配置

举例 1, 配置 id=1 电机, 周期=1000ms 上传当前速度、当前位置、状态字、故障码, 配置命令表如下:

序号	名称	帧ID	数据	DLC	帧数	次数	格式	类型	时间间隔
1	NMT复位应用命令	0x00	81 00	0x02	1	1	数据帧	标准帧	10
2	心跳1000ms	0x601	2b 17 10 00 e8 03 00 00	0x08	1	1	数据帧	标准帧	10
3	无效TPDO1	0x601	23 00 18 01 81 01 00 80	0x08	1	1	数据帧	标准帧	10
4	无效TPDO2	0x601	23 01 18 01 81 02 00 80	0x08	1	1	数据帧	标准帧	10
6	TPDO1定时上传数据	0x601	2f 00 18 02 ff 00 00 00	0x08	1	1	数据帧	标准帧	10
7	TPDO2定时上传数据	0x601	2f 01 18 02 ff 00 00 00	0x08	1	1	数据帧	标准帧	10
7	TPDO1定时周期=1000ms	0x601	2b 00 18 05 e8 03 00 00	0x08	1	1	数据帧	标准帧	10
8	TPDO2定时周期=1000ms	0x601	2b 01 18 05 e8 03 00 00	0x08	1	1	数据帧	标准帧	10
12	TPDO1清空映射个数	0x601	2f 00 1a 00 00 00 00 00	0x08	1	1	数据帧	标准帧	10
13	TPDO2清空映射个数	0x601	2f 01 1a 00 00 00 00 00	0x08	1	1	数据帧	标准帧	10
15	TPDO1映射1=当前位置	0x601	23 00 1a 01 20 00 64 60	0x08	1	1	数据帧	标准帧	10
16	TPDO1映射2=当前速度	0x601	23 00 1a 02 20 00 6c 60	0x08	1	1	数据帧	标准帧	10
17	TPDO1映射数=2	0x601	2f 00 1a 00 02 00 00 00	0x08	1	1	数据帧	标准帧	10
18	TPDO2映射1=当前扭矩	0x601	23 01 1a 01 10 00 77 60	0x08	1	1	数据帧	标准帧	10
19	TPDO2映射2=状态字	0x601	23 01 1a 02 10 00 41 60	0x08	1	1	数据帧	标准帧	10
20	TPDO2映射3=错误码	0x601	23 01 1a 03 10 00 3f 60	0x08	1	1	数据帧	标准帧	10
21	TPDO2映射数=3	0x601	2f 01 1a 00 03 00 00 00	0x08	1	1	数据帧	标准帧	10
25	有效TPDO1	0x601	23 00 18 01 81 01 00 00	0x08	1	1	数据帧	标准帧	10
26	有效TPDO2	0x601	23 01 18 01 81 02 00 00	0x08	1	1	数据帧	标准帧	10
28	NMT start命令	0x00	01 00	0x02	1	1	数据帧	标准帧	10

EYouCanableTool 通信配置截图如下:

序号	帧ID	数据	DLC	传输方向	状态	时间标识	格式	类型
0	0x00	81 00	0x02	发送	成功	21:49:11:173	数据帧	标准帧
	0x701	00	0x01	接收	成功	21:49:11:174	数据帧	标准帧
2	0x601	2b 17 10 00 e8 03 00 00	0x08	发送	成功	21:49:11:184	数据帧	标准帧
	0x581	60 17 10 00 00 00 00 00	0x08	接收	成功	21:49:11:186	数据帧	标准帧
4	0x701	7f	0x01	接收	成功	21:49:11:186	数据帧	标准帧
5	0x601	23 00 18 01 81 01 00 80	0x08	发送	成功	21:49:11:195	数据帧	标准帧
6	0x581	60 00 18 01 00 00 00 00	0x08	接收	成功	21:49:11:196	数据帧	标准帧
7	0x601	23 01 18 01 81 02 00 80	0x08	发送	成功	21:49:11:204	数据帧	标准帧
8	0x581	60 01 18 01 00 00 00 00	0x08	接收	成功	21:49:11:206	数据帧	标准帧
9	0x601	2f 00 18 02 ff 00 00 00	0x08	发送	成功	21:49:11:214	数据帧	标准帧
10	0x581	60 00 18 02 00 00 00 00	0x08	接收	成功	21:49:11:215	数据帧	标准帧
11	0x601	2f 01 18 02 ff 00 00 00	0x08	发送	成功	21:49:11:224	数据帧	标准帧
12	0x581	60 01 18 02 00 00 00 00	0x08	接收	成功	21:49:11:226	数据帧	标准帧
13	0x601	2b 00 18 05 e8 03 00 00	0x08	发送	成功	21:49:11:234	数据帧	标准帧
14	0x581	60 00 18 05 00 00 00 00	0x08	接收	成功	21:49:11:237	数据帧	标准帧
15	0x601	2b 01 18 05 e8 03 00 00	0x08	发送	成功	21:49:11:245	数据帧	标准帧
16	0x581	60 01 18 05 00 00 00 00	0x08	接收	成功	21:49:11:248	数据帧	标准帧
17	0x601	2f 00 1a 00 00 00 00 00	0x08	发送	成功	21:49:11:254	数据帧	标准帧
18	0x581	60 00 1a 00 00 00 00 00	0x08	接收	成功	21:49:11:256	数据帧	标准帧
19	0x601	2f 01 1a 00 00 00 00 00	0x08	发送	成功	21:49:11:265	数据帧	标准帧
20	0x581	60 01 1a 00 00 00 00 00	0x08	接收	成功	21:49:11:266	数据帧	标准帧
21	0x601	23 00 1a 01 20 00 64 60	0x08	发送	成功	21:49:11:275	数据帧	标准帧
22	0x581	60 00 1a 01 00 00 00 00	0x08	接收	成功	21:49:11:278	数据帧	标准帧
23	0x601	23 00 1a 02 20 00 6c 60	0x08	发送	成功	21:49:11:285	数据帧	标准帧
24	0x581	60 00 1a 02 00 00 00 00	0x08	接收	成功	21:49:11:287	数据帧	标准帧
25	0x601	2f 00 1a 00 02 00 00 00	0x08	发送	成功	21:49:11:295	数据帧	标准帧
26	0x581	60 00 1a 00 00 00 00 00	0x08	接收	成功	21:49:11:296	数据帧	标准帧
27	0x601	23 01 1a 01 10 00 77 60	0x08	发送	成功	21:49:11:305	数据帧	标准帧
28	0x581	60 01 1a 01 00 00 00 00	0x08	接收	成功	21:49:11:307	数据帧	标准帧
29	0x601	23 01 1a 02 10 00 41 60	0x08	发送	成功	21:49:11:315	数据帧	标准帧
30	0x581	60 01 1a 02 00 00 00 00	0x08	接收	成功	21:49:11:317	数据帧	标准帧
31	0x601	23 01 1a 03 10 00 3f 60	0x08	发送	成功	21:49:11:325	数据帧	标准帧
32	0x581	60 01 1a 03 00 00 00 00	0x08	接收	成功	21:49:11:327	数据帧	标准帧
33	0x601	2f 01 1a 00 03 00 00 00	0x08	发送	成功	21:49:11:335	数据帧	标准帧
34	0x501	60 01 1a 00 00 00 00 00	0x08	接收	成功	21:49:11:335	数据帧	标准帧
35	0x561	23 00 18 01 81 01 00 00	0x08	授权 发送	成功		数据帧	标准帧
36	0x501	60 00 18 01 00 00 00 00	0x08	友 达 接收	成功	21:49:11:344	数据帧	标准帧
37	0x581	23 01 18 01 81 02 00 00	0x08	授収 发送	成功	21:49:11:345	数据帧	标准帧
38	0x581	60 01 18 01 00 00 00 00	0x08	接收	成功	21:49:11:355	数据帧	标准帧
39	0x00	01 00	0x02	发送	成功	21:49:11:364	数据帧	标准帧
40	0x181	51 80 d7 ff 00 00 00 00	0x08	接收	成功	21:49:11:365	数据帧	标准帧
41	0x281	f6 ff 50 02 00 00	0x06	接收	成功	21:49:11:365	数据帧	标准帧
42	0x701	05	0x01	接收	成功	21:49:12:186	数据帧	标准帧

Can 数据分析:

Carr 3X J	H 73 1/1 ·		
方向	id (hex)	Can data(hex)	说明
发送	00	81 00	Nmt 复位应用,配置 pdo 开始需要此指令
返回	无	无	
发送	601	2b 17 10 00 <u>e8 03</u> 00 00	配置电机发出心跳报文,周期=1000ms
返回	581	60 17 10 00 00 00 00 00	
发送	601	23 00 18 01 81 01 00 80	无效 TPDO1
返回	581	60 00 18 01 00 00 00 00	
发送	601	23 01 18 01 81 02 00 80	无效 TPDO2
返回	581	60 01 18 01 00 00 00 00	
发送	601	2f 00 18 02 ff 00 00 00	TPDO1 异步模式,定时上传
返回	581	60 00 18 02 00 00 00 00	
发送	601	2f 01 18 02 ff 00 00 00	TPDO2 异步模式,定时上传
返回	581	60 01 18 02 00 00 00 00	
发送	601	2b 00 18 05 e8 03 00 00	TPDO1 上传周期=1000ms
返回	581	60 00 18 05 00 00 00 00	

发送	601	2b 01 18 05 e8 03 00 00	TPDO2 上传周期=1000ms
返回	581	60 01 18 05 00 00 00 00	
发送	601	2f 00 1a 00 00 00 00 00	TPDO1 清空映射个数
返回	581	60 00 1a 00 00 00 00 00	
发送	601	2f 01 1a 00 00 00 00 00	TPDO2 清空映射个数
返回	581	60 01 1a 00 00 00 00 00	
发送	601	23 00 1a 01 20 00 64 60	TPDO1 映射 1=当前位置
返回	581	60 00 1a 01 00 00 00 00	
发送	601	23 00 1a 02 20 00 6c 60	TPDO1 映射 2=当前速度
返回	581	60 00 1a 02 00 00 00 00	
发送	601	2f 00 1a 00 02 00 00 00	TPDO1 映射数=2
返回	581	60 00 1a 00 00 00 00 00	
发送	601	23 01 1a 01 10 00 77 60	TPDO2 映射 1=当前扭矩
返回	581	60 01 1a 01 00 00 00 00	
发送	601	23 01 1a 02 10 00 41 60	TPDO2 映射 2=状态字
返回	581	60 01 1a 02 00 00 00 00	
发送	601	23 01 1a 03 10 00 3f 60	TPDO2 映射 3=错误码
返回	581	60 01 1a 03 00 00 00 00	
发送	601	2f 01 1a 00 03 00 00 00	TPDO2 映射数=3
返回	581	60 01 1a 00 00 00 00 00	
发送	601	23 00 18 01 81 01 00 00	有效 TPDO1
返回	581	60 00 18 01 00 00 00 00	
发送	601	23 01 18 01 81 02 00 00	有效 TPDO2
返回	581	60 01 18 01 00 00 00 00	
发送	00	01 00	NMT start 所有从机命令
以上完	成 tpdo 配	置, nmt start 指令后, tpc	do 开始按照 1000ms 周期上传,下面是收到
	女据及心跳?		
返回	181	<u>51 80 d7 ff</u> <u>00 00 00 00</u>	181 为 id=1 电机 tpdo1 的 canid
			<u>51 80 d7 ff</u> ->当前位置,int32 类型,
			0xffd78051 对应十进制-2654217
			<u>00 00 00 00</u> ->当前速度,int32 类型
返回	281	<u>f6 ff</u> <u>50 02</u> 00 00	281 为 id=1 电机的 tpdo2 的 canid
			<u>f6 ff</u> ->当前扭矩值,int16
			<u>50 02</u> ->状态字,uint16
\r	704	0.5	<u>00 00</u> ->错误码,uint16,0 代表无错误
返回	701	05	canId=700+id, 心跳 id, 05 为操作状态
			0x04: 停止状态
			0x7f: 预操作状态

举例 2,配置 id=11(0x0b) 电机,周期=1000ms 上传当前速度、当前位置、状态字、故障码,配置命令表如下:

序号	名称	帧ID	数据	DLC	帧数	次数	格式	类型	时间间
1	NMT复位应用命令	0x00	81 00	0x02	1	1	数据帧	标准帧	10
2	心跳1000ms	0x60b	2b 17 10 00 e8 03 00 00	0x08	1	1	数据帧	标准帧	10
3	无效TPDO1	0x60b	23 00 18 01 8b 01 00 80	0x08	1	1	数据帧	标准帧	10
4	无效TPDO2	0x60b	23 01 18 01 8b 02 00 80	0x08	1	1	数据帧	标准帧	10
5	TPDO1定时上传数据	0x60b	2f 00 18 02 ff 00 00 00	0x08	1	1	数据帧	标准帧	10
6	TPDO2定时上传数据	0x60b	2f 01 18 02 ff 00 00 00	0x08	1	1	数据帧	标准帧	10
7	TPDO1定时周期=1000ms	0x60b	2b 00 18 05 e8 03 00 00	0x08	1	1	数据帧	标准帧	10
8	TPDO2定时周期=1000ms	0x60b	2b 01 18 05 e8 03 00 00	0x08	1	1	数据帧	标准帧	10
9	TPDO1清空映射个数	0x60b	2f 00 1a 00 00 00 00 00	0x08	1	1	数据帧	标准帧	10
10	TPDO2清空映射个数	0x60b	2f 01 1a 00 00 00 00 00	0x08	1	1	数据帧	标准帧	10
11	TPDO1映射1=当前位置	0x60b	23 00 1a 01 20 00 64 60	0x08	1	1	数据帧	标准帧	10
12	TPDO1映射2=当前速度	0x60b	23 00 1a 02 20 00 6c 60	0x08	1	1	数据帧	标准帧	10
13	TPDO1映射数=2	0x60b	2f 00 1a 00 02 00 00 00	0x08	1	1	数据帧	标准帧	10
14	TPDO2映射1=当前扭矩	0x60b	23 01 1a 01 10 00 77 60	0x08	1	1	数据帧	标准帧	10
15	TPDO2映射2=状态字	0x60b	23 01 1a 02 10 00 41 60	0x08	1	1	数据帧	标准帧	10
16	TPDO2映射3=错误码	0x60b	23 01 1a 03 10 00 3f 60	0x08	1	1	数据帧	标准帧	10
17	TPDO2映射数=3	0x60b	2f 01 1a 00 03 00 00 00	0x08	1	1	数据帧	标准帧	10
18	有效TPDO1	0x60b	23 00 18 01 8b 01 00 00	0x08	1	1	数据帧	标准帧	10
19	有效TPDO2	0x60b	23 01 18 01 8b 02 00 00	0x08	1	1	数据帧	标准帧	10
28	NMT start命令	0x00	01 00	0x02	1	1	数据帧	标准帧	10

EYouCanableTool 通信配置截图如下:

序号	帧ID	数据	DLC	传输方向	状态	时间标识	格式	类型
0	0x00	81 00	0x02	发送	成功	09:51:56:323	数据帧	标准帧
1	0x70b	00	0x01	接收	成功	09:51:56:324	数据帧	标准帧
2	0x60b	2b 17 10 00 e8 03 00 00	0x08	发送	成功	09:51:56:334	数据帧	标准帧
3	0x58b	60 17 10 00 00 00 00 00	0x08	接收	成功	09:51:56:335	数据帧	标准帧
4	0x70b		0x01	接收	成功	09:51:56:335	数据帧	标准帧
5	0x60b	23 00 18 01 8b 01 00 80	0x08	发送	成功	09:51:56:344	数据帧	标准帧
6	0x58b	60 00 18 01 00 00 00 00	0x08	接收	成功	09:51:56:346	数据帧	标准帧
7	0x60b	23 01 18 01 8b 02 00 80	0x08	发送	成功	09:51:56:355	数据帧	标准帧
8	0x58b	60 01 18 01 00 00 00 00	0x08	接收	成功	09:51:56:356	数据帧	标准帧
9	0x60b	2f 00 18 02 ff 00 00 00	0x08	发送	成功	09:51:56:364	数据帧	标准帧
10	0x58b	60 00 18 02 00 00 00 00	0x08	接收	成功	09:51:56:367	数据帧	标准帧
11	0x60b	2f 01 18 02 ff 00 00 00	0x08	发送	成功	09:51:56:375	数据帧	标准帧
12	0x58b	60 01 18 02 00 00 00 00	0x08	接收	成功	09:51:56:377	数据帧	标准帧
13	0x60b	2b 00 18 05 e8 03 00 00	0x08	发送	成功	09:51:56:384	数据帧	标准帧
14	0x58b	60 00 18 05 00 00 00 00	0x08	接收	成功	09:51:56:385	数据帧	标准帧
15	0x60b	2b 01 18 05 e8 03 00 00	0x08	发送	成功	09:51:56:394	数据帧	标准帧
16	0x58b	60 01 18 05 00 00 00 00	0x08	接收	成功	09:51:56:397	数据帧	标准帧
17	0x60b	2f 00 1a 00 00 00 00 00	0x08	发送	成功	09:51:56:404	数据帧	标准帧
18	0x58b	60 00 1a 00 00 00 00 00	0x08	接收	成功	09:51:56:405	数据帧	标准帧
19	0x60b	2f 01 1a 00 00 00 00	0x08	发送	成功	09:51:56:414	数据帧	标准帧
20	0x58b	60 01 1a 00 00 00 00 00	0x08	接收	成功	09:51:56:415	数据帧	标准帧
21	0x60b	23 00 1a 01 20 00 64 60	0x08	发送	成功	09:51:56:424	数据帧	标准帧
22	0x58b	60 00 1a 01 00 00 00 00	0x08	接收	成功	09:51:56:426	数据帧	标准帧
23	0x60b	23 00 1a 02 20 00 6c 60	0x08	发送	成功	09:51:56:434	数据帧	标准帧
24	0x58b	60 00 1a 02 00 00 00 00	0x08	接收	成功	09:51:56:436	数据帧	标准帧
25	0x60b	2f 00 1a 00 02 00 00 00	0x08	发送	成功	09:51:56:444	数据帧	标准帧
26	0x58b	60 00 1a 00 00 00 00 00	0x08	接收	成功	09:51:56:446	数据帧	标准帧
27	0x60b	23 01 1a 01 10 00 77 60	0x08	发送	成功	09:51:56:454	数据帧	标准帧
28	0x58b	60 01 1a 01 00 00 00 00	0x08	接收	成功	09:51:56:455	数据帧	标准帧
29	0x60b	23 01 1a 02 10 00 41 60	0x08	发送	成功	09:51:56:464	数据帧	标准帧
30	0x58b	60 01 1a 02 00 00 00 00	0x08	接收	成功	09:51:56:465	数据帧	标准帧
31	0x60b	23 01 1a 03 10 00 3f 60	0x08	发送	成功	09:51:56:474	数据帧	标准帧
32	0x58b	60 01 1a 03 00 00 00 00	0x08	接收	成功	09:51:56:475	数据帧	标准帧
33	0x60b	2f 01 1a 00 03 00 00 00	0x08	发送	成功	09:51:56:484	数据帧	标准帧
34	0x58b	60 01 1a 00 00 00 00 00	0x08	接收	成功	09:51:56:486	数据帧	标准帧
35	0x60b	23 00 18 01 8b 01 00 00	0x08	发送	成功	09:51:56:494	数据帧	标准帧
36	0x58b	60 00 18 01 00 00 00 00	0x08	接收	成功	09:51:56:495	数据帧	标准帧
37	0x60b	23 01 18 01 8b 02 00 00	0x08	发送	成功	09:51:56:504	数据帧	标准帧
38	0x58b	60 01 18 01 00 00 00 00	0x08	接收	成功	09:51:56:505	数据帧	标准帧
39	0x00	01 00	0x02	发送	成功	09:51:56:514	数据帧	标准帧
40	0x18b	51 80 d7 ff 00 00 00 00	0x08	接收	成功	09:51:56:516	数据帧	标准帧
41	0x28b	f6 ff 50 02 00 00	0x06	接收	成功	09:51:56:516	数据帧	标准帧
42	0x70b	05	0x01	接收	成功	09:51:57:335	数据帧	标准帧
43	0x18b	51 80 d7 ff 0c fe ff ff	0x08	接收	成功	09:51:57:516	数据帧	标准帧
44	0x28b	f5 ff 50 02 00 00	0x06	接收	成功	09:51:57:516	数据帧	标准帧

Can 数据分析:

Can 数技			N 10
方向	id (hex)	Can data(hex)	说明
发送	00	81 00	Nmt 复位应用,配置 pdo 开始需要此指令
返回	无	无	
发送	60 <mark>b</mark>	2b 17 10 00 <u>e8 03</u> 00 00	配置电机发出心跳报文,周期=1000ms
返回	58 <mark>b</mark>	60 17 10 00 00 00 00 00	
发送	60 <mark>b</mark>	23 00 18 01 8b 01 00 80	无效 TPDO1
返回	58 <mark>b</mark>	60 00 18 01 00 00 00 00	
发送	60 <mark>b</mark>	23 01 18 01 8b 02 00 80	无效 TPDO2
返回	58 <mark>b</mark>	60 01 18 01 00 00 00 00	
发送	60 <mark>b</mark>	2f 00 18 02 ff 00 00 00	TPDO1 异步模式,定时上传
返回	58 <mark>b</mark>	60 00 18 02 00 00 00 00	
发送	60 <mark>b</mark>	2f 01 18 02 ff 00 00 00	TPDO2 异步模式,定时上传
返回	58 <mark>b</mark>	60 01 18 02 00 00 00 00	
发送	60 <mark>b</mark>	2b 00 18 05 e8 03 00 00	TPDO1 上传周期=1000ms
返回	58 <mark>b</mark>	60 00 18 05 00 00 00 00	
发送	60 <mark>b</mark>	2b 01 18 05 e8 03 00 00	TPDO2 上传周期=1000ms
返回	58 <mark>b</mark>	60 01 18 05 00 00 00 00	
发送	60 <mark>b</mark>	2f 00 1a 00 00 00 00 00	TPDO1 清空映射个数
返回	58 <mark>b</mark>	60 00 1a 00 00 00 00 00	
发送	60 <mark>b</mark>	2f 01 1a 00 00 00 00 00	TPDO2 清空映射个数
返回	58 <mark>b</mark>	60 01 1a 00 00 00 00 00	
发送	60 <mark>b</mark>	23 00 1a 01 20 00 64 60	TPDO1 映射 1=当前位置
返回	58 <mark>b</mark>	60 00 1a 01 00 00 00 00	
发送	60 <mark>b</mark>	23 00 1a 02 20 00 6c 60	TPDO1 映射 2=当前速度
返回	58 <mark>b</mark>	60 00 1a 02 00 00 00 00	
发送	60 <mark>b</mark>	2f 00 1a 00 02 00 00 00	TPDO1 映射数=2
返回	58 <mark>b</mark>	60 00 1a 00 00 00 00 00	
发送	60 <mark>b</mark>	23 01 1a 01 10 00 77 60	TPDO2 映射 1=当前扭矩
返回	58 <mark>b</mark>	60 01 1a 01 00 00 00 00	
发送	60 <mark>b</mark>	23 01 1a 02 10 00 41 60	TPDO2 映射 2=状态字
返回	58 <mark>b</mark>	60 01 1a 02 00 00 00 00	
发送	60 <mark>b</mark>	23 01 1a 03 10 00 3f 60	TPDO2 映射 3=错误码
返回	58 <mark>b</mark>	60 01 1a 03 00 00 00 00	
发送	60 <mark>b</mark>	2f 01 1a 00 03 00 00 00	TPDO2 映射数=3
返回	58 <mark>b</mark>	60 01 1a 00 00 00 00 00	
发送	60 <mark>b</mark>	23 00 18 01 8b 01 00 00	有效 TPDO1
返回	58 <mark>b</mark>	60 00 18 01 00 00 00 00	
发送	60 <mark>b</mark>	23 01 18 01 8b 02 00 00	有效 TPDO2
返回	58b	60 01 18 01 00 00 00 00	
发送	00	01 00	NMT start 所有从机命令
			do 开始按照 1000ms 周期上传,下面是收到

以上完成 tpdo 配置,nmt start 指令后,tpdo 开始按照 1000ms 周期上传,下面是收到 tpdo 数据及心跳数据

返回	18 <mark>b</mark>	51 80 d7 ff 00 00 00 00	18b 为 id=0x0b(11)电机 tpdo1 的 canid
			<u>51 80 d7 ff</u> ->当前位置,int32 类型,
			0xffd78051 对应十进制-2654217
			<u>00 00 00 00</u> ->当前速度,int32 类型
返回	28 <mark>b</mark>	<u>f6 ff 50 02 00 00</u>	28b 为 id=0x0b(11)电机的 tpdo2 的 canid
			<u>f6 ff</u> ->当前扭矩值,int16
			<u>50 02</u> ->状态字,uint16
			00 00 ->错误码, uint16, 0 代表无错误
返回	70 <mark>b</mark>	05	canId=700+id,心跳 id,05 为操作状态
			其他 nmt 状态如下:
			0x04: 停止状态
			0x7f: 预操作状态

3.2 轨迹位置模式应用

轨迹位置模式下,电机根据设置的加减速速度、匀速速度、目标位置规划运行轨迹。 举例 1,如 id=1,101 减速比(输出分辨率=6619136)的电机,sdo 方式控制指令如下: EYouCanableTool 指令表截图如下:

EYouCanableTool 实际通信截图:

序号	帧ID	数据	DLC	传输方向	状态	时间标识	格式	类型
0	0x601	2b 40 60 00 06 00 00 00	0x08	发送	成功	21:25:49:726	数据帧	标准帧
1	0x581	60 40 60 00 00 00 00 00	80x0	接收	成功	21:25:49:727	数据帧	标准帧
2	0x601	2f 60 60 00 01 00 00 00	0x08	发送	成功	21:25:49:829	数据帧	标准帧
3	0x581	60 60 60 00 00 00 00 00	80x0	接收	成功	21:25:49:830	数据帧	标准帧
4	0x601	23 81 60 00 55 d5 10 00	0x08	发送	成功	21:25:49:841	数据帧	标准帧
5	0x581	60 81 60 00 00 00 00 00	80x0	接收	成功	21:25:49:843	数据帧	标准帧
6	0x601	23 83 60 00 55 d5 10 00	0x08	发送	成功	21:25:49:850	数据帧	标准帧
7	0x581	60 83 60 00 00 00 00 00	80x0	接收	成功	21:25:49:852	数据帧	标准帧
8	0x601	23 84 60 00 55 d5 10 00	0x08	发送	成功	21:25:49:860	数据帧	标准帧
9	0x581	60 84 60 00 00 00 00 00	80x0	接收	成功	21:25:49:862	数据帧	标准帧
10	0x601	2b 40 60 00 07 00 00 00	0x08	发送	成功	21:25:49:871	数据帧	标准帧
11	0x581	60 40 60 00 00 00 00 00	0x08	接收	成功	21:25:49:873	数据帧	标准帧
12	0x601	2b 40 60 00 0f 00 00 00	0x08	发送	成功	21:25:49:881	数据帧	标准帧
13	0x581	60 40 60 00 00 00 00 00	0x08	接收	成功	21:25:49:884	数据帧	标准帧
14	0x601	2b 40 60 00 2f 00 00 00	0x08	发送	成功	21:25:49:891	数据帧	标准帧
15	0x581	60 40 60 00 00 00 00 00	0x08	接收	成功	21:25:49:892	数据帧	标准帧
16	0x601	23 7a 60 00 00 00 65 00	0x08	发送	成功	21:25:49:901	数据帧	标准帧
17	0x581	60 7a 60 00 00 00 00 00	0x08	接收	成功	21:25:49:903	数据帧	标准帧
18	0x601	2b 40 60 00 3f 00 00 00	0x08	发送	成功	21:25:49:911	数据帧	标准帧
19	0x581	60 40 60 00 00 00 00 00	80x0	接收	成功	21:25:49:913	数据帧	标准帧
20	0x601	2b 40 60 00 2f 00 00 00	80x0	发送	成功	21:25:59:906	数据帧	标准帧
21	0x581	60 40 60 00 00 00 00 00	80x0	接收	成功	21:25:59:907	数据帧	标准帧
22	0x601	23 7a 60 00 00 00 00 00	80x0	发送	成功	21:25:59:918	数据帧	标准帧
23	0x581	60 7a 60 00 00 00 00 00	80x0	接收	成功	21:25:59:921	数据帧	标准帧
24	0x601	2b 40 60 00 3f 00 00 00	0x08	发送	成功	21:25:59:928	数据帧	标准帧
25	0x581	60 40 60 00 00 00 00 00	80x0	接收	成功	21:25:59:931	数据帧	标准帧

Can 数据分析:

Call 致犯	位刀 切・		
方向	id (hex)	Can data(hex)	说明
发送	601	2b 40 60 00 <u>06 00</u> 00 00	控制字=06, shutdown 指令
返回	581	60 40 60 00 00 00 00 00	
发送	601	2f 60 60 00 <u>01</u> 00 00 00	模式=01,轨迹位置模式
返回	581	60 60 60 00 00 00 00 00	
发送	601	23 81 60 00 55 d5 10 00	设置匀速速度=60度/秒(101减速比,速度
			1103189/6619136*360 度=60 度/秒)
返回	581	60 81 60 00 00 00 00 00	
发送	601	23 83 60 00 55 d5 10 00	设置加速度=60度/(秒*秒)
返回	581	60 83 60 00 00 00 00 00	
发送	601	23 84 60 00 55 d5 10 00	设置减速度=60度/(秒*秒)
返回	581	60 84 60 00 00 00 00 00	
发送	601	2b 40 60 00 07 00 00 00	控制字=0x07, switch on 指令
返回	581	60 40 60 00 00 00 00 00	
发送	601	2b 40 60 00 0f 00 00 00	控制字=0x0f, operation enable 指令
返回	581	60 40 60 00 00 00 00 00	
以上流	程指令为」	上电使能及运动参数配置,	到此处电机应处于使能状态,可以通过查询
状态字	·反馈确认*	状态迁移是否正常	
发送	601	2b 40 60 00 2f 00 00 00	控制字=0x2f,绝对位置立即更新重置标志
返回	581	60 40 60 00 00 00 00 00	

发送	601	23 7a 60 00 00 00 65 00	目标位置=360 度位置(绝对位置)
返回	581	60 7a 60 00 00 00 00 00	
发送	601	2b 40 60 00 3f 00 00 00	控制字=0x3f, 绝对位置立即更新置位标志
返回	581	60 40 60 00 00 00 00 00	

以上三条指令为绝对位置更新指令,后续使能状态下,只需要更新这三条指令即可设置 新目标位置。

根据状态字 bit10 是否=1 或判断实际位置和目标位置差值来判断之前目标位置是否已经完成,然后根据需要更新后续新位置。

当然也可以根据实际需要直接更新目标位置,如果是在运行中,电机会打断之前的轨迹 重新规划新的运行轨迹。

发送	601	2b 40 60 00 2f 00 00 00	控制字=0x2f, 绝对位置立即更新重置标志
返回	581	60 40 60 00 00 00 00 00	
发送	601	23 7a 60 00 00 00 00 00	目标位置=0 度位置(绝对位置)
返回	581	60 7a 60 00 00 00 00 00	
发送	601	2b 40 60 00 3f 00 00 00	控制字=0x3f, 绝对位置立即更新置位标志
返回	581	60 40 60 00 00 00 00 00	

以上三条指令为绝对位置更新指令,后续使能状态下,如果一直保持输出运行,循环发送这三条指令即可。

运行过程中根据需要可以按照不同方式选择停止模式,此处选择 shutdown 停机方式和 halt 暂停停机两种方式举例,根据需要选其中一个即可。

发送	601	2b 40 60 00 06 00 00 00	控制字=0x06, shutdown 指令停机, 按照减速度斜坡停机, 停止后下使能停止输出, 抱闸抱死。需要再次走上使能指令流程才能继续控制输出。
返回	581	60 40 60 00 00 00 00 00	
发送	601	2b 40 60 00 0f 01 00 00	控制字=0x10f, halt 指令停机,按照减速度 斜坡停机,停止后不下使能,保持输出,后 续控制可以继续按照上面 2f-新位置-3f 指 令顺序继续更新位置
返回	581	60 40 60 00 00 00 00 00	

举例 2: 如 id=11 (0x0b), 121 减速比 (输出分辨率=7929856) 的电机, sdo 方式控制指令如下:

EYouCanableTool 指令表截图如下:

序号	名称	帧ID	数据	DLC	帧数	次数	格式	类型	时间间隔
1	控制字=06	0x60b	2b 40 60 00 06 00 00 00	0x08	1	1	数据帧	标准帧	100
2	轨迹位置模式	0x60b	2f 60 60 00 01 00 00 00	0x08	1	1	数据帧	标准帧	10
3	设置速度=90度/秒(121减速比)	0x60b	23 81 60 00 00 40 1e 00	0x08	1	1	数据帧	标准帧	10
4	设置加速度=90度/(秒*秒)	0x60b	23 83 60 00 00 40 1e 00	0x08	1	1	数据帧	标准帧	10
5	设置减速度=90度/(秒*秒)	0x60b	23 84 60 00 00 40 1e 00	0x08	1	1	数据帧	标准帧	10
6	控制字=07	0x60b	2b 40 60 00 07 00 00 00	0x08	1	1	数据帧	标准帧	10
7	控制字=0f	0x60b	2b 40 60 00 0f 00 00 00	0x08	1	1	数据帧	标准帧	10
8	控制字=2f	0x60b	2b 40 60 00 2f 00 00 00	0x08	1	1	数据帧	标准帧	10
9	目标位置=50度	0x60b	23 7a 60 00 39 ce 10 00	0x08	1	1	数据帧	标准帧	10
10	控制字=3f	0x60b	2b 40 60 00 3f 00 00 00	0x08	1	1	数据帧	标准帧	3000
11	控制字=2f	0x60b	2b 40 60 00 2f 00 00 00	0x08	1	1	数据帧	标准帧	10
12	目标位置=-10度	0x60b	23 7a 60 00 8e a3 fc ff	0x08	1	1	数据帧	标准帧	10
13	控制字=3f	0x60b	2b 40 60 00 3f 00 00 00	0x08	1	1	数据帧	标准帧	3000
14	控制字=2f	0x60b	2b 40 60 00 2f 00 00 00	0x08	1	1	数据帧	标准帧	10
15	目标位置=0度	0x60b	23 7a 60 00 00 00 00 00	0x08	1	1	数据帧	标准帧	10
16	控制字=3f	0x60b	2b 40 60 00 3f 00 00 00	0x08	1	1	数据帧	标准帧	3000

EYouCanableTool 实际通信数据截图:

序号	帧ID	数据	DLC	传输方向	状态	时间标识	格式	类型
0	0x60b	2b 40 60 00 06 00 00 00	0x08	发送	成功	20:37:47:114	数据帧	标准帧
1	0x58b	60 40 60 00 00 00 00 00	0x08	接收	成功	20:37:47:115	数据帧	标准帧
2	0x60b	2f 60 60 00 01 00 00 00	0x08	发送	成功	20:37:47:216	数据帧	标准帧
3	0x58b	60 60 60 00 00 00 00 00	0x08	接收	成功	20:37:47:218	数据帧	标准帧
4	0x60b	23 81 60 00 00 40 1e 00	0x08	发送	成功	20:37:47:228	数据帧	标准帧
5	0x58b	60 81 60 00 00 00 00 00	0x08	接收	成功	20:37:47:229	数据帧	标准帧
6	0x60b	23 83 60 00 00 40 1e 00	0x08	发送	成功	20:37:47:238	数据帧	标准帧
7	0x58b	60 83 60 00 00 00 00 00	0x08	接收	成功	20:37:47:240	数据帧	标准帧
8	0x60b	23 84 60 00 00 40 1e 00	0x08	发送	成功	20:37:47:248	数据帧	标准帧
9		60 84 60 00 00 00 00 00	0x08	接收	成功	20:37:47:249	数据帧	标准帧
10	0x60b	2b 40 60 00 07 00 00 00	0x08	发送	成功	20:37:47:258	数据帧	标准帧
11	0x58b	60 40 60 00 00 00 00 00	0x08	接收	成功	20:37:47:260	数据帧	标准帧
12	0x60b	2b 40 60 00 0f 00 00 00	0x08	发送	成功	20:37:47:268	数据帧	标准帧
13	0x58b	60 40 60 00 00 00 00 00	0x08	接收	成功	20:37:47:269	数据帧	标准帧
14	0x60b	2b 40 60 00 2f 00 00 00	0x08	发送	成功	20:37:47:278	数据帧	标准帧
15	0x58b	60 40 60 00 00 00 00 00	0x08	接收	成功	20:37:47:280	数据帧	标准帧
16	0x60b	23 7a 60 00 39 ce 10 00	0x08	发送	成功	20:37:47:288	数据帧	标准帧
17	0x58b	60 7a 60 00 00 00 00 00	0x08	接收	成功	20:37:47:289	数据帧	标准帧
18	0x60b	2b 40 60 00 3f 00 00 00	0x08	发送	成功	20:37:47:298	数据帧	标准帧
19	0x58b	60 40 60 00 00 00 00 00	0x08	接收	成功	20:37:47:299	数据帧	标准帧
20	0x60b	2b 40 60 00 2f 00 00 00	0x08	发送	成功	20:37:50:295	数据帧	标准帧
21	0x58b	60 40 60 00 00 00 00 00	0x08	接收	成功	20:37:50:297	数据帧	标准帧
22	0x60b	23 7a 60 00 8e a3 fc ff	0x08	发送	成功	20:37:50:307	数据帧	标准帧
23		60 7a 60 00 00 00 00 00	0x08	接收	成功	20:37:50:309	数据帧	标准帧
24	0x60b	2b 40 60 00 3f 00 00 00	0x08	发送	成功	20:37:50:317	数据帧	标准帧
25	0x58b	60 40 60 00 00 00 00 00	0x08	接收	成功	20:37:50:318	数据帧	标准帧
26	0x60b	2b 40 60 00 2f 00 00 00	0x08	发送	成功	20:37:53:324	数据帧	标准帧
27		60 40 60 00 00 00 00 00	0x08	接收	成功	20:37:53:326	数据帧	标准帧
28		23 7a 60 00 00 00 00 00	0x08	发送	成功	20:37:53:337	数据帧	标准帧
29		60 7a 60 00 00 00 00 00	0x08	接收	成功	20:37:53:338	数据帧	标准帧
30	0x60b	2b 40 60 00 3f 00 00 00	0x08	发送	成功	20:37:53:347	数据帧	标准帧
31	0x58b	60 40 60 00 00 00 00 00	0x08	接收	成功	20:37:53:348	数据帧	标准帧

Can 数据分析:

方向	id (hex)	Can data(hex)	说明
发送	60B	2b 40 60 00 <u>06 00</u> 00 00	控制字=06,shutdown 指令
返回	58B	60 40 60 00 00 00 00 00	

发送	60B	2f 60 60 00 <u>01</u> 00 00 00	模式=01,轨迹位置模式		
返回	58B	60 60 60 00 00 00 00 00			
发送	60B	23 81 60 00 <u>00 40 1e 00</u>	设置匀速速度=90度/秒(121减速比,速度		
			1982464/7929856*360 度=90 度/秒)		
返回	58B	60 81 60 00 00 00 00 00			
发送	60B	23 83 60 00 <u>00 40 1e 00</u>	设置加速度=60度/(秒*秒)		
返回	58B	60 83 60 00 00 00 00 00			
发送	60B	23 84 60 00 <u>00 40 1e 00</u>	设置减速度=60度/(秒*秒)		
返回	58B	60 84 60 00 00 00 00 00			
发送	60B	2b 40 60 00 <u>07 00</u> 00 00	控制字=0x07, switch on 指令		
返回	58B	60 40 60 00 00 00 00 00			
发送	60B	2b 40 60 00 <u>0f 00</u> 00 00	控制字=0x0f, operation enable 指令		
返回	58B	60 40 60 00 00 00 00 00			
以上流	程指令为」	上电使能及运动参数配置,	到此处电机应处于使能状态,可以通过查询		
状态字	反馈确认*	大态迁移是否正常			
发送	60B	2b 40 60 00 <u>2f 00</u> 00 00	控制字=0x2f, 绝对位置立即更新重置标志		
返回	58B	60 40 60 00 00 00 00 00			
发送	60B	23 7a 60 00 <u>39 ce 10 00</u>	目标位置=50 度位置(绝对位置)		
返回	58B	60 7a 60 00 00 00 00 00			
发送	60B	2b 40 60 00 <u>3f 00</u> 00 00	控制字=0x3f,绝对位置立即更新置位标志		
返回	58B	60 40 60 00 00 00 00 00			
以上三	以上三条指令为绝对位置更新指令,后续使能状态下,只需要更新这三条指令即可设置				
新目标	新目标位置。				
根据状	根据状态字 bit10 是否=1 或判断实际位置和目标位置差值来判断之前目标位置是否已经				
完成,	完成,然后根据需要更新后续新位置。				
当然也	当然也可以根据实际需要直接更新目标位置,如果是在运行中,电机会打断之前的轨迹				
重新抵	重新规划新的运行轨迹。				

| 重新规划新的运行轨迹。

发送	60B	2b 40 60 00 <u>2f 00</u> 00 00	控制字=0x2f,绝对位置立即更新重置标志
返回	58B	60 40 60 00 00 00 00 00	
发送	60B	23 7a 60 00 8e a3 fc ff	目标位置=-10 度位置(绝对位置)
返回	58B	60 7a 60 00 00 00 00 00	
发送	60B	2b 40 60 00 <u>3f 00</u> 00 00	控制字=0x3f,绝对位置立即更新置位标志
返回	58B	60 40 60 00 00 00 00 00	

判断位置到达后,继续更新下面的新位置指令

发送	60B	2b 40 60 00 <u>2f 00</u> 00 00	控制字=0x2f, 绝对位置立即更新重置标志
返回	58B	60 40 60 00 00 00 00 00	
发送	60B	23 7a 60 00 <u>00 00 00 00</u>	目标位置=0 度位置(绝对位置)
返回	58B	60 7a 60 00 00 00 00 00	
发送	60B	2b 40 60 00 <u>3f 00</u> 00 00	控制字=0x3f,绝对位置立即更新置位标志
返回	58B	60 40 60 00 00 00 00 00	

以上三条指令为绝对位置更新指令,后续使能状态下, 如果一直保持输出运行,循环发 送这三条指令即可。

运行过程中根据需要可以按照不同方式选择停止模式,此处选择 shutdown 停机方式和

halt 暂	halt 暂停停机两种方式举例,根据需要选其中一个即可。					
发送	60B	2b 40 60 00 06 00 00 00	控制字=0x06, shutdown 指令停机, 按照减速度斜坡停机, 停止后下使能停止输出, 抱闸抱死。需要再次走上使能指令流程才能继续控制输出。			
返回	58B	60 40 60 00 00 00 00 00				
发送	60B	2b 40 60 00 0f 01 00 00	控制字=0x10f, halt 指令停机, 按照减速度 斜坡停机, 停止后不下使能, 保持输出, 后 续控制可以继续按照上面 2f-新位置-3f 指 令顺序继续更新位置			
返回	58B	60 40 60 00 00 00 00 00				