Respostas dos Exercícios das Aulas (Cálculo 3)

Aula 2:

Exercício: Calcule o comprimento das seguintes curvas:

(a)
$$L = 20\sqrt{29}$$

(b)
$$L = e - e^{-1}$$

(c)
$$L = 15$$

Exercício: Reparametrize pelo comprimento de arco...

(d)
$$r(t(s)) = \left(\left(\frac{s}{\sqrt{2}} + 1\right)\cos\left(\ln\left(\frac{s}{\sqrt{2}} + 1\right)\right), 2, \left(\frac{s}{\sqrt{2}} + 1\right)\sin\left(\ln\left(\frac{s}{\sqrt{2}} + 1\right)\right)\right)$$

(e)
$$r(t(s)) = \left(3 \operatorname{sen}\left(\frac{s}{5}\right), \frac{4s}{5}, 3 \operatorname{cos}\left(\frac{s}{5}\right)\right)$$

Exercício: Calcule a integral de linha de 2x sobre um arco de parábola e um segmento de reta vertical...

Resposta:
$$\frac{(5\sqrt{5}-1)}{6} + 2$$

Exercício: Calcule as integrais de linha:

(a)
$$\frac{17\sqrt{17}-1}{12}$$

(b)
$$\frac{(125-13\sqrt{13})}{48}$$

(c)
$$\frac{2^{13}}{5}$$

(e)
$$\frac{\sqrt{14}}{12}$$
 ($e^6 - 1$)

(f)
$$\frac{1}{6}(14^{3/2}-1)$$

Exercício: Centro de massa e momentos de inércia de um arame:

$$CM = \left(0, \frac{4-\pi}{2(\pi-2)}\right)$$

$$I_x = \frac{\pi}{2} - \frac{4}{3}$$

$$I_y = \frac{\pi}{2} - \frac{2}{3}$$

Exercício: Massa e centro de massa de arame com forma de hélice...

$$m = \sqrt{2} \left(\frac{8}{3} \pi^2 + 2\pi \right)$$

$$CM = \left(\frac{3\pi(2\pi^2 + 1)}{4\pi^2 + 3}, 0, 0\right)$$

Aula 3:

Exercícios: Calcule as integrais de linha:

- (a) $\frac{464}{5}$ + 9 ln 3
- **(b)** $\frac{17}{3}$
- (c) $\frac{1}{5}$
- (d) $\frac{3}{2}$

Exercício: Calcule as integrais de linha

(d) 64 (a) $\frac{6}{5} - \cos 1 - \sin 1$ (c) $\frac{11}{8} - e^{-1}$

Exercício: Trabalho num círculo: Resposta: 0

Exercício: Trabalho na cicloide: **Resposta:** $2\pi^2$

Exercício: Trabalho na parábola: Resposta: $\frac{1}{2}(15 + \cos 1 - \cos 4)$

Exercício: Trabalho num segmento de reta: Resposta: 26

Exercício: (b) Sim.

Aula 4:

(a)
$$e-1$$
 (b) 0 (c) 24π (d) 0 (e) $\frac{4}{3}-2\pi$ (f) -16 (g) $-\pi$

Exercício: Área entre o arco da curva (uma cicloide) e o eixo x: \mathbf{R} : 3π

Exercício: Mostrar que a integral de linha vale zero para toda curva fechada simples que não passe nem circunde a origem. Basta ver que as derivadas parciais de primeira ordem de P e Q são contínuas na região delimitada pela curva, que $P_y = Q_x$ e aplicar o Teorema de Green.

Aula 5:

Exercício: Uma função potencial para o campo conservativo de um dos exemplos: \mathbf{R} : $f(x,y) = 3x + x^2y - y^3$

Exercício: Determinar se o campo é conservativo ou não, e se for, encontrar um potencial:

(a) Não é. (b) É.
$$f(x,y) = xe^y$$
 (c) É. $f(x,y) = x^2 \cos y - y \sin x$

(d) É.
$$f(x, y) = x^2y + x \ln x$$
 (e) É. $f(x, y) = ye^x + x \sin y$

Exercício: Encontrar um potencial para o campo e calcular a integral de linha.

(a) Copiei errado. Devia ser F(x,y)=(y,x+2y). Nesse caso $f(x,y)=xy+y^2$. A integral dá 2.

(b)
$$f(x, y) = \frac{x^4y^4}{4}$$
. A integral dá 4.

(c)
$$f(x,y) = y^2 \arctan x$$
. A integral dá π .

(d)
$$f(x, y, z) = xyz + z^2$$
. A integral dá 77.

(e)
$$f(x, y, z) = xy^2 \cos z$$
. A integral dá 0.

(f)
$$f(x, y, z) = xe^y + ze^z$$
. A integral dá $2e$.

Exercício: O de 2012.1

- (a) Parametrização $r(t)=\left(\cos t\,, \sin t\,, e^{(\sin t\cos t)}\right), \ t\in [0,2\pi].$ Um vetor tangente é $r'(t)=\left(-\sin t\,, \cos t\,, e^{(\sin t\cos t)}(\cos^2 t-\sin^2 t)\right).$ Os extremos de C s'ao r(0)=(1,0,1) e $r\left(\frac{\pi}{2}\right)=(0,1,1).$
- **(b)** $f(x, y, z) = xyz^2 + y$.
- (c) 1