УДК 543.612.2 DOI 10.26456/vtchem2023.4.18

СПОСОБ ОПРЕДЕЛЕНИЯ СООТНОШЕНИЯ КАЛЬЦИЙ: МАГНИЙ В РАСТВОРАХ

С.С. Уварова

ФГБОУ ВО «Тверской государственный университет», г. Тверь

Рассмотрены способы определения кальция и магния в аналитической химии. Представлен разработанный нами инновационный способ определения соотношения кальций : магний в растворах. Изучена возможность применения данного способа для исследования проб воды и т.п.

Ключевые слова: соотношение кальций: магний, инновационный способ определения, титриметрический метод анализа, спектрофотометрический метод анализа

В настоящее время главной задачей аналитической химии является проведение эффективного, быстрого и точного анализа. Поэтому вопросы разработки или усовершенствования различных методов проведения анализа с целью повышения их эффективности с наименьшими затратами – одна из современных мировых тенденций.

Оптимальный режим жизнедеятельности живого организма обеспечивается поступлением из окружающей среды различных микрои макроэлементов. Особенно важно не только стабильное поступление, например, ионов металлов, но и их сбалансированность. Известно, что жизнедеятельность живого организма напрямую зависит от поступления в него кальция и магния. Установлено, что для оптимального функционирования человеческого организма соотношение кальций : магний в организме должно быть 2:1 [1]. Контроль этого соотношения важен как в физиологических растворах организма (слюна, кровь, лимфа, моча), так и в окружающей среде, откуда поступают эти металлы (почва, вода, растения), так как, например, при активном насыщении организма кальцием кости могут приобретать хрупкость, мышцы твердеть, а суставы терять свою подвижность. Для того, чтобы кальций и магний живом организме гармонично, сосуществовали В необходимо планировать как рацион питания, так и контролировать среду, в которой произрастают или существуют потребляемые продукты питания. Поэтому, контроль соотношения кальция и магния в различных растворах высоко актуален.

Методы определения кальция и магния в почве установлены соответствующими стандартами [2]. Однако, представленные в стандарте три метода анализа: атомно-абсорбционный,

комплексонометрический и фотометрический подвергаются специалистами критическому анализу. Специалистов сельского хозяйства стандартные методики не устраивают либо из-за дороговизны оборудования, требующего специального обустройства лабораторного помещения, либо из-за малой производительности и кропотливости, либо из-за ошибок, вызванных дополнительной реакцией индикаторов на обилие мешающих катионов в анализируемых пробах почвы [3].

Учитывая, что химический состав воды является одним из определяющих факторов элементного гомеостаза человека, необходимо нормирование в питьевой воде не только показателей безопасности, но и рекомендуемых концентраций всех химических соответственно уровню физиологической полноценности [4]. указанной работе свидетельствуется, что, уровень макроэлементов Са (26,4-68,3 мг/л) и Mg (9,0-15,6 мг/л) во всех источниках питьевого водоснабжения г. Минска находится в интервале физиологической полноценности воды, однако, соотношение кальций: магний в воде не оптимальное 2:1, а значительно выше, 3-4:1. В другой научной статье [5], анализируется также состав воды, но уже в верхней Волге. Авторы свидетельствуют о том, что, если на истоке, где антропогенное вмешательство отсутствует, соотношение кальций : магний близко к оптимальному, а именно составляет 2,5 : 1, то в районе Твери это соотношение возрастает до 3:1.

В процессах контроля уровня кальция и магния в живом организме актуальной проблемой медицины является уточнение роли магния в формировании патологических состояний этого живого организма. Известно, что магний обладает природным антагонистическим действием в отношении ионов кальция [6]. Установлена роль магния в развитии атеросклероза и других патологических состояний [7]. А дефицит магния в организме влечет за собой уже дефицит калия, что может быть причиной дисфункции миокарда и развития аритмий [8-10].

Существующие способы диагностики магниедефицитных состояний, заключающиеся в определении содержания общего магния в эритроцитах, лимфоцитах крови методом атомно-абсорбционной спектрофотометрии, опять же являются трудоемкими, дорогостоящими и малодоступными для практического здравоохранения.

Некоторые изобретения [11] предлагают осуществлять одновременное тестирование общего магния в сыворотке крови и слюне фотометрическим методом с последующим вычислением коэффициента распределения для магния у здоровых лиц и больных.

Представленный спектр востребованности анализов как содержания, так и соотношения кальция и магния в живом организме и в окружающей среде свидетельствует об актуальности разработки новых

и, по возможности, простых аналитических методов определения кальция и магния.

Нами разработан специфический способ определения как количественного содержания кальция и магния, так и их соотношения в одной подготовленной пробе раствора при одном и том же значении рН > 12 [12].

Задачей, на решение которой направлен разработанный нами способ, является оперативный и точный анализ содержания магния, а также кальция в одном подготовленном растворе.

Поставленная задача решается тем, что в анализируемый раствор, содержащий соли кальция и магния, добавляется несколько крупинок сахарозы или маннита для удержания кальция в растворе в виде комплекса с константой нестойкости равной 1,79*10⁻³. Затем осуществляется спектрофотометрический анализ магния с титановым желтым при 545 нм. По этому способу не мешает определению магния даже пятикратный избыток кальция. После спектрофотометрического определения магния используется комплексонометрический метод определения кальция при этом же значении рН > 12 в той же аликвоте приготовленного раствора титрованием Трилоном Б в присутствии мурексида. В результате определения содержания магния и кальция устанавливается соотношение магний : кальций в анализируемом объекте.

Предложенный метод обеспечивает оперативность определения, исключает приготовление, а также использование кислот, щелочей и буферных растворов для корректировки рН среды, что значительно упрощает процесс. Новым способом анализа были получены результаты определения содержания кальция и магния в воде реки Волга, которые опубликованы в журнале РАН «Водные ресурсы» [5].

Пример 1. Пробу воды из истока реки Волга объемом 10 мл помещали в мерную колбу на 50 мл, добавляли раствор NaOH до pH >12 и дистиллированную воду до метки. Аликвоту приготовленного раствора титровали Трилоном Б в присутствии мурексида. Установлено содержание кальция $7,21~{\rm Mr/n}$.

Пример 2. Пробу воды из реки Волга в районе г. Твери объемом 10 мл помещали в мерную колбу на 50 мл, добавляли раствор NaOH до рН >12 и дистиллированную воду до метки. Аликвоту приготовленного раствора титровали Трилоном Б в присутствии мурексида. Установлено содержание кальция 37,00 мг/л.

Пример 3. Пробу воды из истока реки Волга объемом $10\,$ мл помещали в мерную колбу на $50\,$ мл, добавляли несколько крупинок сахарозы для удержания кальция в растворе в виде комплекса, добавляли раствор NaOH до pH >12, 0,2 мл 0,1% раствора титанового желтого и дистиллированную воду до метки. Аликвоту окрашенного раствора

фотометрировали при $\lambda = 545$ нм. Установлено содержание магния 2,92 мг/л.

Пример 4. Пробу воды из реки Волга в районе г. Твери объемом 10 мл помещали в мерную колбу на 50 мл, добавляли несколько крупинок сахарозы для удержания кальция в растворе в виде комплекса, добавляли раствор NaOH до pH >12, 0,2 мл 0,1% раствора титанового желтого и дистиллированную воду до метки. Аликвоту окрашенного раствора фотометрировали при λ = 545 нм. Установлено содержание магния 11,00 мг/л.

Определяли соотношение кальций : магний в истоке реки Волга 7,21:2,92=2,5 и в реке Волга в районе г. Твери 37,00:11,00=3,36.

Список литературы

- 1. Кальций и магний совместимость. https://www.realbrest.by/interesnye-sovety/kalciy-i-magniem-sovmestimost.html
- 2. ГОСТ 26487-85 Почвы. Определение обменного кальция и обменного (подвижного) магния методами ЦИНАО. Дата актуализации: 01.01.2021.
- 3. Логинов Ю.М., Газов Е.В. Определение обменного магния в одномолярной КСІ-вытяжке из почв // Агрохимия, 2020, №11, С.74-82.
- 4. Гресь Н.А., Гузик Е.О., Романюк А.Г., Гресь Н.А. мл., Сокол В.П. Соотношение содержания в питьевой воде г. Минска кальция, магния, стронция, калия с уровнем их депонирования в организме жителей столицы / Молекулярные, мембранные и клеточные основы функционирования биосистем: Междунар. науч. конф.; Десятый съезд Белорусскогообщественного объединения фотобиологов и биофизиков, 19–21 июня 2012 г.,Минск, Беларусь: сб. ст.: в 2 ч. Ч. 2 / редкол.: И.Д. Волотовский,С.Н. Черенкевич [и др.]. Минск: Изд. Центр БГУ, 2012. С. 166-169.
- 5. Тихомиров О.А., Бочаров А.В., Никольский В.М., Сердитова Н.Е., Смирнов С.Н. Региональный ретроспективный анализ воды и донных отложений Верхней Волги // Водные ресурсы, 2022, Т.49, №3, С. 325-332.
- 6. Андреев Н.А., Моисеев В.С. Антагонисты кальция в клинической медицине. М.: ФАРМЕДИНФО,1995; 161 с.
- 7. Городецкий В.В., Талибов О.Б. Препараты магния в медицинской практике, М.: ИД Медпрактика М., 2003, С. 44.
- 8. Спасов А.А., Иежица И.Н., Харитонова М.В., Желтова А.А. Нарушение обмена магния и калия и его фармакологическая коррекция // Вестник ОГУ, 2011, №15 (134), С. 131-135.
- 9. Whang R., Whang D.D., Ryan M.P. Refractory potassium repletion. A consequence of magnesium deficiency. // Arch Intern Med, 1992, V. 152, №1, P. 40-45.
- 10.Ryan M.P. Interrelationships of magnesium and potassium homeostasis // Miner Electrolyte Metab, 1993, V. 19, №4-5, P. 290-295.
- 11.Патент РФ №2263316, опубл. 27.10.2005, Способ диагностики дефицита магния при внутренней патологии / Постникова Л.Б., Алексеева О.П.

Вестник Тверского государственного университета. Серия «Химия». 2023. № 4(54)

12.Патент РФ №2788746, опубл. 24.01.2023, Способ определения соотношения кальций : магний в растворах / Уварова С.С, Никольский В.М., Толкачева Л.Н., Гридчин С.Н.

Об авторе:

УВАРОВА Софья Сергеевна – студентка 2-го курса магистратуры химикотехнологического факультета, ФГБОУ ВО «Тверской государственный университет», e-mail: draconofus@gmail.com

AN INNOVATIVE WAY TO DETERMINE THE RATIO OF CALCIUM: MAGNESIUM IN SOLUTIONS

S.S. Uvarova

Tver State University, Tver

The paper considers methods for determining calcium and magnesium in analytical chemistry. An innovative method developed by us for determining the ratio of calcium: magnesium in solutions is presented. The possibility of using this method for the study of water samples , etc. is considered.

Keywords: calcium: magnesium ratio, innovative method of determination, titrimetric method of analysis, spectrophotometric method of analysis

Дата поступления в редакцию: 14.11.2023. Дата принятия в печать: 29.11.2023.