

Universidade estadual do Paraná Campus Apucarana (FECEA) Centro de Ciências Sociais Aplicadas Ciência da Computação

# TRABALHO PRÁTICO DO 3º BIMESTRE DERIVAÇÃO DE GRAMÁTICAS REGULARES

#### **OBJETIVO**

Implementar um programa que realize mostre as derivações de uma palavra de uma Gramática Regular.

## **DESCRIÇÃO**

O trabalho consiste em implementar um programa que receba como entrada a descrição formal de uma Gramática Linear Unitária à Direita ou Gramática Linear Unitária à Esquerda, e receber uma palavra mostrando as derivações realizadas para se chegar à palavra Exemplo:

```
Gramática Linear à Direita para \{a^nb^m / n, m > 0\}

G = \{V = (S,A,B), T = (a,b), P, S\}, onde:

P = \{1 S \rightarrow aA

2 A \rightarrow aA

3 A \rightarrow B

4 B \rightarrow bB

5 B \rightarrow b
```

O programa deve receber os dados da gramática (V, T, P, S) e em seguida receber uma palavra da linguagem acima, por exemplo, "aaabb". Para esta palavra deve-se mostrar as derivações realizadas para se chegar à essa palavra.

```
S

Utilizando regra 1 (S \rightarrow aA)

aA

Utilizando a regra 2 (A \rightarrow aA)

aaA

Utilizando a regra 2(A \rightarrow aA)

aaaA

Utilizando a regra 3 (A \rightarrow B)
```



Universidade estadual do Paraná CAMPUS APUCARANA (FECEA) CENTRO DE CIÊNCIAS SOCIAIS APLICADAS CIÊNCIA DA COMPUTAÇÃO

aaaB Utilizando a regra 4 (B → bB)

aaabB

Utilizando a regra 5 (B  $\rightarrow$  b)

aaabb

Para a palavra "aaabb", temos as seguintes derivações 1-2-2-3-4-5

Como estas gramáticas devem ser do tipo GLUD ou GLUE a palavra sempre crescerá para a direita ou para esquerda, de acordo com o tipo da gramática, assim ao analisar a palavra deve-se ver os símbolos a partir da direita ou esquerda de acordo com a gramática.

## **OBSERVAÇÕES**

Serão aceitos trabalhos nas seguintes linguagens de programação: C, C++, C#, Pascal, Delphi, Java, JavaScript, ArnoldC ou qualquer uma linguagem de programação esotérica. Demais linguagens sob consulta com o professor.

#### **ENTREGA**

Cada dupla deve entregar dois arquivos, um relatório técnico e o arquivo fonte do programa, bem como as instruções para compilar e rodar o programa.

O relatório deve conter:

- Introdução
- Objetivos/Justificativa
- Gramáticas regulares
  - o Gramática Linear Unitária à Direita
  - o Gramática Linear Unitária à Esquerda
- Decisões de projeto para a implementação
- Conclusão
- Referências



Universidade estadual do Paraná Campus Apucarana (FECEA) Centro de Ciências Sociais Aplicadas Ciência da Computação

O código fonte deve estar **comentado** em suas partes principais, e **bem estruturado**.

## **AVALIAÇÃO**

A avaliação do trabalho será a soma das seguintes notas:

- Código fonte (0 a 6) + Executável
- Relatório (0 a 2)
- Apresentação (0 a 2)

Trabalhos copiados serão **zerados**.

Trabalhos que não atendam as especificações deste documento serão **zerados**.

A apresentação do trabalho será no dia da prova de LFA (data provável da prova 02/10)

Para anexar o arquivo executável pode-se alterar a extensão de .EXE para .EZE e anexar o arquivo no e-mail

#### DATA DE ENTREGA

Envio dos arquivo(s) fonte(s) via e-mail até as **23:59** do dia **01/10/2015** para maurilio.campanojr@gmail.com

O assunto do e-mail deve obrigatoriamente ser "**LFA – TRABALHO**"

## REFERÊNCIAS

Vieira, Newton José. Introdução aos Fundamentos da Computação. São Paulo. Pioneira Thomson Learning. 2006;

Menezes, P. B.; Linguagens Formais e Autômatos. 6ª edição. Ed. Artmed. 2011

Sipser M. Introdução à Teoria da Computação. 2 ed. Cengage Learning.2007

Hopcroft, John E.; Ullman, Jeffrey D.; Motwani, Rajeev Introdução à Teoria de Autômatos, Linguagens e Computação Ed.Campus 2002



Universidade estadual do Paraná Campus Apucarana (FECEA) CENTRO DE CIÊNCIAS SOCIAIS APLICADAS CIÊNCIA DA COMPUTAÇÃO