This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-330867

(43)Date of publication of application: 15.12.1998

(51)Int.CL

C22C 9/00 H01L 23/48 H01L 23/50

(21)Application number: 09-117067

(71)Applicant: NIKKO KINZOKU KK

(22)Date of filing:

07.05.1997

(72)Inventor: TOMIOKA YASUO

(30)Priority

Priority number: 09 80778

Priority date: 31.03.1997

Priority country: JP

(54) COPPER ALLOY FOR LEAD FRAME, INCREASED IN ADHESION OF OXIDE FILM

(57)Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy in which the occurrence of package peeling and package crack is prevented and further the operating speed as well as heat dissipation property of package is increased, by improving the adhesion of an oxide film of a lead frame of semiconductor package.

SOLUTION: This copper alloy has a composition consisting of, by weight, 0.05-0.4% Cr, 0.03-0.25% Zr, 0.06-2.0% Zn, and the balance Cu with inevitable impurities. In this copper alloy, oil pits of ≥5 ì m width, formed in the material surface, exist ≥15 pieces in 10000 i m2, and also the mean spacing (Sm) of ruggedness in a direction perpendicular to rolling direction, resultant from the striped pattern introduced by transfer of rolling roll marks and surface grinding, is regulated to ≥0.04 mm. By using this copper alloy, the reliability of semiconductor package can be improved, and a semiconductor having required strength and electric conductivity can be obtained.

LEGAL STATUS

[Date of request for examination]

05.02.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998.2000 Japan Patent Office

(19)日本国特許庁 (JP)

四公開特許公報(A)

(11)特許出額公開番号

特開平10-330867

(43)公開日 平成10年(1998)12月15日

(51) Int.Cl.*	識別記号	FI	٠.	٠.	
C 2 2 C 9/00		C 2 2 C	9/00		
HO1L 23/48		H01L	23/48	v	
23/50			23/50	v	

審査請求 未請求 請求項の数5 OL (全 7 頁)

(21)出願番号	特顏平9 -117067	(71)出願人	397027134 日飲金属株式会社
(22)出顧日	平成9年(1997)5月7日	(72)発明者	東京都港区虎ノ門二丁目10番1号 富岡 靖夫
(31) 優先権主張番号 (32) 優先日 (33) 優先権主張国	特顧平9-80778 平 9 (1997) 3 月31日 日本(J P)	(74)代理人	神奈川県高座郡寒川町倉見三番地 日鉱金 属株式会社倉見工場内 弁理士 三好 秀和 (外8名)

(54) 【発明の名称】 酸化膜密着性の高いリードフレーム用網合金

(57)【要約】

【課題】 半導体パッケージのリードフレームの酸化膜 密着性を向上させるととによって、パッケージの剥離及 びパッケージクラックを防止し、しかもパッケージの熱 放散性や動作速度を高めた銅合金を提供する。

【解決手段】 材料表面に形成された幅5 μ m以上のオイルビット数が10000μm² 中に15個以上存在し、圧延ロール目の転写あるいは表面研磨で導入されたすじ模様による圧延直角方向の凹凸の平均間隔(S。)を0.04mm以上としたCr:0.05~0.4重量%、Zr:0.03~0.25重量%、Zn:0.06~2.0重量%を含有し残部がCuおよび不可避的不純物からなる銅合金である。この銅合金により半導体バッケージの信頼性を高め、必要な強度と導電率を有する半導体を得ることができる。

【特許請求の範囲】

【請求項1】 材料表面に形成された幅5 μm以上のオイルピット数が10000μm³ 中に15個以上存在

圧延ロール目の転写あるいは表面研磨で導入されたすじ 模様による圧延直角方向の凹凸の平均間隔(S.)を0. 04mm以上とすることを特徴とするリードフレーム用銅合 全

【請求項2】 請求項1 に記載の銅合金において、 Cr:0.05~0.4重量%、Zr:0.03~0.25重量%、Zn:0.06~2.0重量%を含有し、残部がCuおよび不可避的不純物からなるととを特徴とするリードフレーム用銅合金。

【請求項3】 請求項1 化配載の組合金において、 Cr:0.05~0.4重量%、Zr:0.03~0.25重量%、Zn:0.06~2.0重量%を含有し、

更に、Ni,Sn,In,Mn,P,MgおよびSiからなる群より選択される1又は2種以上の金属であって、総量で0.01~1.0重量%を含有し、残部がCuおよび不可避的不純物からなるととを特徴とするリードフレ 20 一人用銅合金。

【請求項4】 請求項1 に記載の銅合金において、 Cr:0.05~0.4重量%、Zr:0.03~0.25重量%、Zn:0.06~2.0重量%、Fe:0.1~1.8重量%、Ti:0.1~0.8重量%を含有し、残部がCuおよび不可避的不純物からなるととを特徴とするリードフレーム用銅合金。

【請求項5】 請求項1 に配載の組合金において、 Cr:0.05~0.4重量%、Zr:0.03~0.25重量%、Zn:0.06~2.0重量%、Fe:0.1~1.8重量%、Ti:0.1~0.8重量%を含有し、

更に、Ni、Sn、In、Mn、P、MgおよびSiからなる群より選択される1又は2種以上の金属であって、総量で0.01~1.0重量%を含有し、残部がCuおよび不可避的不純物からなることを特徴とするリードフレーム用銅合金。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体の信頼性を 確保するため酸化膜の密着性を高めたリードフレーム用 40 銅合金に関するものである。

[0002]

【従来の技術】半導体バッケージを封止構造で見ると大きく二つに分けられる。その一つはセラミックバッケージであり、もう一つはブラスチックバッケージである。 このうち、ブラスチックバッケージは熱硬化性樹脂によって封止するパッケージであり、経済性と量産性に優れるととから、現在の半導体バッケージの主流となっている。 ブラスチックバッケージの構造としては、以前はリード挿入実装デバイスであるDIP(デュアルインラ 50

インバッケージ)が主流であった。しかし、実装密度の向上の要求から、表面実装デバイスであるSOP (スモールアウトラインパッケージ)、QFP (クワッドフラットバッケージ)等が次第に主流となり、特に入出力信号の増加に対応可能なQFPが多用されている。さらに、最近の電子部品の小型化の要求に伴って厚さ 1 mmのTSOP (シンスモールアウトラインバッケージ)やTQFP (シンクワッドフラットバッケージ)、厚さの、5mmのUSOP (ウルトラスモールアウトラインバッケージ)といった薄型のバッケージも登場している。

[0003] これらのバッケージの信頼性に関する最大 の課題は、表面実装時に発生するバッケージクラックや 剥離の問題である。バッケージの剥離のメカニズムは、 半導体パッケージを組み立てた後、樹脂とダイパッドと の密着性が弱い場合、後の熱処理時の熱応力によって生 じるものである。バッケージクラックの発生メカニズム は以下の通りである。半導体パッケージを組み立てた 後、モールド樹脂が大気より吸湿するため、後の表面実 装での加熱において水分が気化し、パッケージ内部に剥 離があると剥離面に水蒸気圧が印加されて、内圧として 作用する。この内圧によりパッケージに膨れを生じた り、樹脂が内圧に耐えられずクラックを生じたりする。 表面実装後のパッケージにクラックが発生すると水分や 不純物が侵入しチップを腐食させるため半導体としての 機能を害する。また、パッケージが膨れることで外観不 良となり商品価値が失われる。このようなパッケージク ラックや剝離の問題は、近年のパッケージの薄型化の進 展に伴って顕著となっている。

0 【0004】 CCで、パッケージクラックや剥離の問題 は樹脂とダイバッドとの密着性に起因するが、樹脂とダ イバッドとの密着性に最も大きな影響を及ぼしているの がリードフレーム材の酸化膜密着性である。半導体の組 立工程においてリードフレーム材は種々の加熱工程を経 るため、その表面には酸化膜が生成している。従って樹 脂とダイバッドは酸化膜を介して接しているため、この 酸化膜のリードフレーム母材への密着性が樹脂とダイバッドとの密着性を決定する。

【0005】ところで、現在リードフレーム用素材としては42重量%NiーFe合金を代表するFe-Ni系合金と網合金が使われている。42重量%Ni-Fe合金はセラミクスと熱膨張係数が近似するため、セラミクスパッケージ用素材として従来より用いられ、ブラスチックパッケージにおいても高信頼性リードフレーム素材として用いられてきた。しかし、Fe-Ni系合金はCu合金に比べて導電率が低いという欠点があり、近年のバッケージへの要求である高熱放散化や信号伝達の高速化への対応には不利である。

[0006]

0 【発明が解決しようとする課題】しかしながら、銅合金

3

は前述の酸化膜密着性においてFe-Ni系合金に比べ ると劣るため樹脂とダイパッドの間に剥離を生じやす く、そのためバッケージクラックや剥離といった問題が 発生しやすかった。このために信頼性の高いバッケージ を製造するための酸化膜密着性の高い銅合金の開発が待 たれていた。また、上記以外にリードフレーム材には次 のような性能が要求される。まず、リードフレームパッ ケージの薄肉化の要求からは、リードフレーム材を薄く する必要があり、その結果、板厚は最近では0.15mm、 0.125mmといった薄い材料が主流となっている。この ようなリードフレームの薄板化、リードの狭小化はフレ ーム全体やリードの剛性を低下させ、アセンブリー工程 中でのインナーリードの変形、デバイス実装時のアウタ ーリードの変形を引き起とす。とのようなトラブルを防 止するためには、使用されるリードフレーム材料はより 高い強度も要求される。さらに、リードフレーム材はリ ードフレームのパターン形成時に必要な優れたエッチン グ性およびブレス加工性を必要とし、さらに実装におけ る半田接合部の信頼性が高いこと等多岐多様な特性が要 求される。との点、高い導電性を持つ銅合金は熱放散や 20 高速の信号伝達において有利であり、より高性能なパっ ケージの設計が可能である。

【0007】そこで、本発明はパッケージクラックや剥離の問題に対処するために酸化膜密着性を向上させ、しかもパッケージの熱放散性や動作速度を高め、強度、エッチング性、プレス加工性等を満足するリードフレーム用銅合金を提供することを目的としている。

[8000]

【課題を解決するための手段】本発明のリードフレーム 用銅合金は、材料表面に形成された幅5μm以上のオイ 30 ルピット数が10000μm²中に15個以上存在し、 **肝延ロール目の転写あるいは表面研磨で導入されたすじ** 模様による圧延直角方向の凹凸の平均間隔(S。)を0. 04m以上とし、必要により、Cr:0.05~0.4重量%、 Zr:0.03~0.25重量%、Zn:0.06~2.0重量%を含 有し、さらに必要により、Fe: 0.1~1.8重量%、T i:0.1~0.8重量%を含有し、さらに必要により、N i. Sn. In, Mn. P. MgおよびSiからなる群 より選択される1又は2種以上の金属であって、絵量で 0.01~1.0重量%を含有する残部がCuおよび不可避的 不純物からなるリードフレーム用銅合金である。とれに より、酸化密着性を向上させることによりパッケージク ラックや剥離の発生を防止し半導体パッケージの信頼性 を高め、更に必要な強度と導電率を確保したリードフレ ーム用銅合金を得るととができる。

【0009】なお、とこにいうオイルピットとは、冷間 圧延時に圧延ロールと材料の間に取り込まれた潤滑油に よって板材表面に現れる局部的な凹部をいう。凹部の発 生は、直径、粗さ等の圧延ロールの条件、加工率、圧延 速度の加工条件、粘度等の潤滑用オイル条件、強度、結 50

晶粒界等の大きさ等の板材の条件等によって変化させる ことができるものである。ことにいう凹凸の平均間隔 (以下S。と記す。)は、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜き取り部分において一つの山及びそれに関り合う一つの谷に対応する平均 長さの和を求め、この多数の凹凸の間隔の算術平均値を 表したものである。

【0010】本発明の銀合金の表面性状及び成分組成は 以下に詳述する作用を示す。

【0011】請求項1 に記載の銅合金の表面性状は酸化 膜密着性に大きく影響を及ぼし以下のように作用する。 まず、冷間圧延工程において、表面性状は局部的な凹部 (オイルピット) のある形態となる。 このような材料を 加熱した場合、生成した酸化膜はこのオイルビットのア ンカー効果によって母材との密着性を向上させることが できる。このオイルピットの程度はSEM観察によりオ イルビットの数を数えることによって評価することがで きるが、酸化膜密着性の向上に必要なオイルビットの数 は、幅5μm以上の大きさのものが10000μm゚中 に15個以上必要である。また、圧延時のワークロール の研磨面が転写した場合や、表面研磨を行った場合には 圧延方向に沿ったすじが形成され、すじの尾根の部分は 突起状の凸部になる。このような材料を加熱した場合、 凸部に生成した酸化膜は膜内に生ずる圧縮の内部応力を 支えられずに母材からの剥離を生じやすくなり、酸化膜 密着性が極端に低下する。従って、凸部の頻度が低い方 がとの機構による酸化膜の剥離が生じにくくなる。との ような凸部の頻度は圧延直角方向のS。を測定するとと によって評価できる。酸化密着性を良好とするためには S. を0.04mm以上とすることが必要である。これによ って、リードフレーム材である銅合金表面に密着性の高 いの酸化膜を得るととができ、パッケージの剥離、パッ ケージクラックの発生を防止することができる。

【0012】請求項2に記載の成分組成Crは以下のよ うに作用する。Crは、合金を溶体化処理後、時効させ ることにより母相中に析出して強度を向上させる作用を するが、その含有量が0.05重量%未満ではこの作用 による所望の効果が得られず、一方、0.4重量%を超 えて含有させると製品化後に粗大なCrが母相中に残留 する。その結果、エッチング性が劣化する。以上の理由 によりCr含有量を0.05~0.4重量%と定めた。 同様に請求項2 に記載の成分組成2 r は以下のように作 用する。Zrには、時効処理によりCuと化合物を形成 して母材中に析出しこれを強化する作用があるが、その 含有量が0.03%重量未満では前記作用による所望の 効果が得られない。一方、0.25重量%を超えてZr を含有させると、溶体化処理後に租大な未固溶2 r が母 材料中に残留するようになってエッチング性の低下を招 くとととなる。従って、Zェ含有量は0.03~0.2 5重量%と定めた。同様に請求項2に記載の2nは以下 のように作用する。 Znは、半田の耐熱剥離性および酸化膜の密着性を向上させる作用を有しているため添加される成分であるが、その含有量が0.06重量%未満では前記作用による所望の効果が得られない。一方、2.0重量%を超えてZnを含有させると導電率が劣化するととなる。従って、Zn含有量は0.06~2.0重量%と定めた。

【0013】請求項4に記載の成分組成Ti及びFeは以下のように作用する。TiおよびFeは、合金を時効処理した時に母相中にTiとFeとの金属間化合物を形 10成し、その結果として合金強度をさらに向上させる作用を発揮するため必要に応じて添加されるが、これらの含有量がそれぞれ0.1重量%未満では上記作用による所望の強度が得られない。一方、Ti含有量が0.8重量%を超えたり、Fe含有量が1.80重量%を超える場合には、TiとFeを主成分とする租大な介在物が残存し、エッチング性を著しく阻害する。従って、Tiは0.1重量%~0.8重量%、Feは0.1重量%~1.8重量%とした。

【0015】請求項3及び5に記載の成分組成Ni,S 20n,In,Mn,P,MgおよびSiは以下のように作用する。これらの成分は、何れも合金の導電性を大きく低下させずに主として固溶強化により強度を向上させる作用を有しており、従って必要により1種または2種以上の添加がなされるが、その含有量が終量で0.01重量%未満であると前記作用による所望の効果が得られず、一方、総量で1.0重量%を超える含有量になると合金の導電性を著しく劣化する。このため、単独添加あるいは2種以上の復合添加がなされるNi,Sn,In,Mn,P,MgおよびSiの含有量は総量で0.0 301~1.0重量%と定めた。

【0016】とれによって、強度、エッチング性、ブレス加工性等を満足し、半導体パッケージの高熱放散性や 高動作速度に対応可能な銅合金を得ることができる。

[0017]

【発明の実施の形態】

(実施例) 次に、本発明の効果を、好ましい組成範囲を示す本実施例及び比較例により具体的に説明する。まず、電気銅(Cu)あるいは無酸素銅(Cu)を主原料とし、銅クロム母合金(Cu-Cr)、銅ジルコニウム 40 母合金(Cu-Zr)、亜鉛(Zn)、チタン(Ti)、ニッケル(Ni)、スズ(Sn)、インジウム(In)、マンガン(Mn)、マグネシウム(Mg)、軟銅(Fe等)、シリコン(Si)、銅リン母合金(Cu-P)を副原料とし、高周波溶解炉にて表1及び表2

に示す各種成分組成の銅合金を真空中またはAr 雰囲気中にて溶製し、厚さ30mmのインゴットを得た。 【0018】

【表1】

	ス ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Mg P In Mn Cu及び (個/10000 不純物 μm2)	- 0.01 % 25 0.065	- 0,04 級 7 0.036	0.12 39. 19 0.077	0, 10	- 0.03 数 20 0.061	- 0.05		8 8 0.035
数1 実施的で用いた個系リードフレーム	4 成 分(wt%)	- s	1	1	0.84	0.68	1	ı	1	<u>'</u>
	华 成 允	- Z - U S	1	1	2.85	2.55	2.10 0.19	1.95 0.17	0.24 -	0.26
	يخ	ę,	2.50	2.35	<u>.</u>	<u> </u>	1	<u>-</u>		1
		1.	!	ı	1	1	1	1	1	ı
	! !	u 2	0. 16	0. 13	1.	r	0. 18	0.17	0. 22	0. 20
		1 2	,	1	ı	ı	1	1	ı	1
		ر 1	,	1	1	ı	ı	1	0. 23	0.24
	 	•	E	۵	υ	ט	U	٠,	t#	ᅜ
		Να	朴轼稻 庭	玩	· 村 城 統 立	元数例	本汉福色	元 数 室	本公路四	光数室

【表2】

が西	e ê																				
は角が向	8 E E E E	0.055	0.01	0.011	0.055	0.038	0.061	0.081	0.066	0.053	0.059	0.083	0.069	0.061	0.026	0.034	0.053	0.026	9. 046	0.036	0.034
ギイボアット	(2010年)	=	91	62	26	20	100	11	88	27	30	3 8	22	19	28	08	9.1	9.	=	. 01	. 97
	CA など 予想物	既	髹	Æ	65	ex.	ex —	ř.	E	既	쐈	E T.	赵	武	20	*	æ	2(#	駁	歉
	G N	Ŀ		1.		,	1	1	0.12	ı	,		1	0.13	,	ı	ı	ı	 I	,	,
	1 n		ı		. 1	,	ì	0.03	1	ı	1	,	ı	1	,	ı		1	1		,
Į	ρ.		ı	ı	ı		\$. OZ		1	1	1	•	0.03	1	,	1	ı	ı	0.01	ı	,
ê	X	 <u> </u>	1	ı	,	1. 29	1	ı	ł	ı		0.50	1	1	 '_	1	ı	,	. 1		
1. (w t %)		-	ı	١.	21.0	1	ı	ı	1	ı	0. 29		1		1	,	_!	,	,	1	0. 62
耳公	z	,		0. 11	1	ı	ı	ı	1	1	,		ı	ı		ı	0. 19	ï	,	ı	
#	מ	1	62 .0	ı	ı		,	1	1	ı	1	,	1	ı	-	ı	,	0. 18	,	1	-
] بج	6 .	1	_ı	1	1	1	1	1	1_	9. 44	0. 20	19.0	1. 12	0.87	1	,	ı		÷ .	0. 20	0. 61
Ĺ				1	. 1	,	ı	ı	ı	0. 29	0. 35	0. 42	0. 43	9. 35	1		ı	, 1	0.41	0, 25	0. 42
L	2 2		9. 51	0. 23	0. ‡1	0.14	0.18	0. 13	0:18	0. 16	0. 80	0.30	1: 10	0.65	0. 18	0. 62	0. 22	0.21	0.86	0.80	9. 30
[ZF	0.08	9.13	9. 1.	90.0	0.08	0.13	6. 19	9. 10	:	0.08	61.0	0. 11	0.09	0.02	0. 12	0.18	90.0	0. 12	0.08	0. 19
	ů	0. 25	9.30	9. 1.9	9.18	9. 11		. 2.	0.16	9. 19	0. 12	0. 20	0. 21	0.37	0. 25	0. 16	0.19		0.18	0. 12	0. 20
		-	69	os .	4	Ю	10		C4	65	2	=	12	=	7	10	10	11	=	13	2
	분	予照器室	并依然之	本 本	本省語色	水灰配 空	长地面 空	本教施例	大独在的	未沒結例	子女 題包	外 資格包	本状态包	米 大 大 大 大 大 大 大 大 大 大 大	元双宫	不及包	光教例	II KO SI	花数色	共农党	お客室

【0019】次に、これらの各インゴットを熱間加工お よび溶体化処理、1回目の冷間圧延、時効処理、表面研 磨、最終の冷間圧延、歪取焼純の順に行い、厚さ0.1 5 mmの板とした。最終の冷間圧延において所望の表面 40 性状を得るため、圧延前の表面研磨および冷間圧延条件 に注意する必要がある。表面研磨は時効処理中に酸化し た膜を除去するために行うが、との研磨により表面狙さ が大きくなりすぎると圧延後にすじが残り酸化密着性を 低下させるために、研磨後の材料表面の直角方向のR ... は3 µm以下、好ましくは1.5 µm以下とするこ とが必要である。最終圧延の合計の加工度は10~70 %の範囲とし、複数回の圧延を行って目標厚さとする。 との際、用いる圧延ロールの軸方向のR... は2 μm以

は5~30%として少なくとも3回以上の圧延を行うと とが必要である。

【0020】以下に評価方法を述べる。作成した各板材 の表面性状のSEM写真を撮影し、写真上でオイルピッ トの数を計測した。また、Smの測定はJIS BO6 01 (表面粗さー定義及び表示) に従って行った。具体 的には、Sm は圧延方向に対して直角方向に、基準長さ を0.8mm として5回測定しその平均値で表した。次に、 酸化膜の密着性をテープピーリング試験により評価し た。各板材から20×50mmの試験片を切り出し、大 気中で所定時間加熱した後、酸化膜の生成した試験片表 面に市販のテープ (スリーエム#851)を張り付け、 引き剥した。その時テープに付着した酸化膜の面積で密 下、好ましくは1μm以下とし、また、各パスの加工度 50 着性を評価した。酸化膜が全く剥離しなかった場合を

【表4】

○、部分的に剥離したものを△、全面剥離したものを× として評価を行った。また、リードフレーム材として必 要な特性である強度および導電性の評価も行った。強度 は引張試験により行い、導電性は導電率を求めることに より行った。表3及び表4に評価結果を示す。

[0021]

【表3】

					**		以即都在》	取几威的举在汉万特在即后按某	中南经班						
		早期配比	由別款					鯔	か 取	新	和				
	星	(1 mm/N)	(%IVCS)		2092			300C.			360℃			400C	
				1010	1001	30m i n	1 m l n	10m1n	30min	lmin .	3min	Sula	ıını	Suin	6min
本域施例	ಪ	029	99	0	0	0	0	0	0	0	0.	0	0	×	×
共农员	٩	210	89	0	0	0	o	0	0	0	0	4	٥	×	×
有無額密	U	710	87	0	0	0	0	0	0	0	×	×	٥	×	×
光数定	v	120	21	0	0	0	0	٥	٥	0	×	×	٥	×	×
本實施包	v	650	31	0	0	0	0	×	×	×	×	×	×	×	×
比较色	~	099	72	0	0	٥	×	×	×	×	×	×	×	×	×
谷贵稻安	20	290	14	0	0	0	0	0	0	0	٥	×	×	×	×
比较例	r.	670	1.6	0	0	0	0	0	4	٥	×	×	×	×	×
											-				

10

20

30

40 .

厳化原密着性及び特性の評価結果

<u></u>			· ·				数化	[記載性				
	Ho	引張強さ (パ/#82)	容電字 (XIACS)	 -	300		Ι	35 D		<u> </u>	400	
				leia	10min	30ain	Jalo	3min	Sniu	loio	3min	Sain
本实施例	ı	510	32	0	0	0	0	0	0	0	Δ	×
本实施例	ż	620	73	0	0	o	0	0	0	0	×	×
本史施钢	. 3	. 410	64	Ο.	0	0	0	0	0	О	Δ	×
本实施例	. 4	610	77	0	0	0	0	0	0	Δ	×	×
本实施例	\$	510	77	0	0	0	D	0	0	0	Δ	×
本实施例	6	590	. 69	0	0	0	0	0	٥	O ,	` Д	×
本奖系例	7	630	. #1	0	0	0	0	0	0	0	Δ	×
本実施例		620	TS	0	0	0	0	0	0	0	Δ	×
本実革例	9	680	. 10	0	0	0	0	.0	0	0	×	×
本实施例	10	720	63	0	Ö	0	O	0	0	Δ	×	×
本尖施钥	l1	700	61	0	0	0	Ο.	o	0	0	×	×
本実施例	12	690	61	٥	0	0	٥	0	0	Δ	×	×
本実施例	13	- 690	69	0	0	0	Ο.	0	0	Δ	×	×
比较例	14	590	81	0	0	0	0	Δ	Δ	Δ	x	x
比較例	15	580	85	Ο.	0	0	0	0	Δ	Δ	×	×
比較例	18	620	72	0	0	0	0	٥	Δ	Δ	×	×
比較例	.11	600	84	0	0	0	0	Δ	Δ.	×	х	x
比較例	18	670	69	О	0	Ó	0	Δ	Δ	×	×	x
比較例	13	710	87	Ò	0	·o	· 0	Δ	Δ	×	×	×
比較例	20	700	71	0	0	0	0		×	×	. x	x /

[0022] 本実施例については、良好な酸化膜密着性 角方向のSmのいずれか又は両方が適正範囲をはずれて いるために酸化膜密着性が劣る例である。

[0023]

【発明の効果】以上説明したように、本発明の銅合金に

よって、強度、エッチング性、プレス加工性等を満足 が得られた。一方、各比較例はオイルピットの個数、直 30 し、半導体パッケージの熱放散性や高速動作に有利であ り、さらに酸化膜の密着性を向上させることによって半 導体バッケージのバッケージクラックや剥離の発生を防 止することができる。