## MAT 473: Intermediate Real Analysis II

Trey Manuszak Arizona State University

February 27, 2020

Problems 21 - 22 finish the proof of the implicit function theorem in two variables. Let  $f: U \subseteq \mathbb{R}^2 \to \mathbb{R}$ ,  $(a,b) \in U$ , c = f(a,b), and  $g: (a-s,a+s) \to (b-r,b+r)$  be as in the implicit function theorem (Theorem 9.1 in the notes). It has been shown that g is continuous on (a-s,a+s). Complete the proof of the theorem by showing that g is differentiable on (a-s,a+s), with derivative  $g'(x) = -D_1 f(x,g(x))/D_2 f(x,g(x))$ , using the following outline.

**Problem 21.** First prove it for x = a as follows. Let  $A = D_1 f(a, b)$  and  $B = D_2 f(a, b)$  (so that f'(a, b) has a matrix  $(A \ B) \in M_{1 \times 2}$ .) Let  $x \in (a-s, a+s)$  and set h = x-a, k = g(x)-b.

(a) Prove that there are real-valued functions  $\psi_1$  and  $\psi_2$  defined in a neighborhood of 0 such that  $\lim_{(x,y)\to 0} \phi_i(x,y) = 0$  for i=1,2, and such that

$$\frac{h}{k} + \frac{A}{B} + \frac{1}{B}\psi_1(h, k) + \frac{1}{B}\psi_2(h, k)\frac{k}{h} = 0.$$

(Hint: let  $\phi(h, k)$  be as in the alternate version of differentiability of f (notes, Lemma 3.16), and write

$$\phi(h,k)\|(h,k)\| = \phi(h,k)\frac{\|(h,k)\|}{|h|+|k|}\left(\frac{|h|}{h}h + \frac{|k|}{k}k\right).$$

Proof. Let  $f: U \subseteq \mathbb{R}^2 \to \mathbb{R}$  be continuously differentiable, let  $(a,b) \in U$  with  $D_2 f(a,b) \neq 0$ . Let c = f(a,b). Let  $g: B_s(a) \to B_r(b)$  with f(x,g(x)) = c. Let  $A = D_1 f(a,b)$  and  $B = D_2 f(a,b)$ . Now, there exists  $\phi: B_r(0) \to \mathbb{R}$ , since f is differentiable, such that  $\phi(0) = 0$ ,  $\phi$  is continuous at 0, and  $f(a+h) = f(a) + T(h) + \phi(h) ||h||$ . Define  $\psi_1, \psi_2: B_r(0) \to \mathbb{R}$  by

$$\psi_1(h,k) = \begin{cases} \frac{\phi(h,k)\|(h,k)\||h|}{(|h|+|k|)h}, & \text{if } h \neq 0\\ 0, & \text{if } h = 0 \end{cases}$$

and

$$\psi_2(h,k) = \begin{cases} \frac{\phi(h,k)||(h,k)|||k|}{(|h|+|k|)k}, & \text{if } k \neq 0\\ 0, & \text{if } k = 0. \end{cases}$$

Note,  $\lim_{(h,k)\to 0} \phi(h,k) = 0$  because of the definition of  $\phi$ , which implies that  $\lim_{(h,k)\to 0} \psi_1(h,k) = 0$  and  $\lim_{(h,k)\to 0} \psi_2(h,k) = 0$ . Let  $x \in (a-s,a+s) \setminus \{a\}$  such that  $(x-a,g(x)-b) \in B_r(0)$ . Let h=x-a and k=g(x)-b. Therefore, by definition of  $\phi$ ,  $f((a,b)+(h,k))=f(a,b)+f'(a,b)(h,k)+\phi(h,k)\|(h,k)\|$ . So, f((a,b)+(h,k))=

$$f((a,b) + (x - a, g(x) - b)) = f(x, g(x)) = c \text{ and } f(a,b) = c, \text{ which gives us}$$

$$0 = f'(a,b)(h,k) + \phi(h,k) || (h,k) ||$$

$$= (A B)(h,k) + \phi(h,k) \frac{|| (h,k) ||}{|h| + |k|} \left( \frac{|h|}{h} h + \frac{|k|}{k} k \right)$$

$$= (A B)(h,k) + \frac{\phi(h,k) || (h,k) || |h|}{(|h| + |k|)} \cdot h + \frac{\phi(h,k) || (h,k) || |k|}{(|h| + |k|)} \cdot k$$

$$= (A B)(h,k) + \psi_1(h,k) \cdot h + \psi_2(h,k) \cdot k \qquad \text{(By definition of } \psi_1 \text{ and } \psi_2)$$

$$= Ah + Bk + \psi_1(h,k) \cdot h + \psi_2(h,k) \cdot k$$

$$= Bh \left( \frac{A}{B} + \frac{k}{h} + \frac{1}{B} \psi_1(h,k) + \frac{1}{b} \psi_2(h,k) \frac{k}{h} \right)$$

$$= \frac{h}{k} + \frac{A}{B} + \frac{1}{B} \psi_1(h,k) + \frac{1}{B} \psi_2(h,k) \frac{k}{h}. \qquad \text{(Since } B = D_2 f(a,b) \neq 0)$$

(b) Prove that g'(a) = -A/B. (Hint: solve for  $\frac{h}{k}$  in part (a).)

*Proof.* Solving  $\frac{h}{k} + \frac{A}{B} + \frac{1}{B}\psi_1(h,k) + \frac{1}{B}\psi_2(h,k)\frac{k}{h} = 0$  for  $\frac{k}{h}$ , then we get

$$\frac{k}{h} = \frac{-(A + \psi_1(h, k))}{B + \psi_2(h, k)}.$$

Then,

$$\lim_{x \to a} \frac{g(a) - g(x)}{a - x} = \lim_{x \to a} \frac{g(x) - g(a)}{x - a}$$

$$= \lim_{x \to a} \frac{g(x) - b}{x - a}$$

$$= \lim_{(h,k) \to 0} \frac{k}{h}$$
(By definition of  $h$  and  $k$ )
$$= \frac{-(A + \psi_1(h, k))}{B + \psi_2(h, k)}$$

$$= \frac{-A}{B}.$$
(Since  $\lim_{(h,k) \to 0} \psi_{1,2} = 0$ )

Therefore,  $g'(a) = \frac{-A}{B}$ .

**Problem 22.** Finish the proof of the implicit function theorem. Also show that if f in the statement is  $C^k$  for k > 1 the g is also  $C^k$ .

*Proof.* Continuing, we must show that g is continuous at all  $a \in B_s(a)$ . Let  $\epsilon > 0$  be arbitrary but fixed. Let  $a' \in B_s(a)$  be arbitrary but fixed. Let  $b' \in B_r(b)$  such that g(a') = b'.

Let  $Z = \{(x,y) \in \mathbb{R}^2 : x \in B_s(a), y \in B_r(b), |y-b'| < \epsilon\}$ . Now, by construction of s,  $D_2 f|_Z(a',b') \neq 0$ . So, we now have a  $B_s(a)', B_r(b)'$  such that  $B_s(a)' \subseteq B_s(a)$  and  $B_r(b)' \subseteq B_r(b)$  and  $g_1$  such that  $g_1 : B_s(a)' \to B_r(b)'$  such that for each  $x \in B_s(a), D_i(x,g_1(x)) = 0$  for i = 1, 2 and  $d(g_1(x),b') < \epsilon$ . But, by uniqueness of g(x), we get  $g_1(x)$  for all  $x \in B_s(a)$ . Thus, for all  $x \in B_s(a), d(g(x),g_1(x)) < \epsilon$ . Hence, g is continuous at g(x) but, since g(x) was arbitrary in g(x), then g is continuous in over g(x).

Now, on showing f is  $C^k$  implies g is  $C^k$ , we have already proven the base case of if f is  $C^1$ , then g is  $C^1$ . So, we will continue with the inductive step. Suppose the theorem is true for some k > 1. So, when f is  $C^{k+1}$ , then g is  $C^k$ . This is because  $A, B^{-1} \in C^k$  and g is a composition of the two. Therefore,  $g' \in C^k$ , which implies  $g \in C^{k+1}$ . Therefore, if f is  $C^k$ , then g is  $C^k$ .

**Problem 23.** Let  $f: \mathbb{R}^3 \to \mathbb{R}^2$  be given by  $f(\rho, \phi, \theta) = (\rho \sin \phi \sin \theta, \rho \cos \phi)$ .

(a) Use the implicit function theorem to show that the equation  $f(\rho, \phi, \theta) = (1, 1)$  can be solved for  $(\phi, \theta)$  as a function of  $\rho$  near the point  $(\sqrt{3}, \tan^{-1} \sqrt{2}, \pi/4)$ .

*Proof.* Consider the surface  $S := \{(\rho, \phi, \theta) \in \mathbb{R}^3 : \rho \sin \phi \sin \theta = 1 \text{ and } \rho \cos \phi = 1\}$ . This can be rewritten as  $\{(\rho, \phi, \theta) \in \mathbb{R}^3 : f(\rho, \phi, \theta) = (0, 0)\}$  where  $f : \mathbb{R}^3 \to \mathbb{R}^2$  is given by  $f(\rho, \phi, \theta) := (\rho \sin \phi \sin \theta - 1, \rho \cos \phi - 1)$ . Then,

$$f'(\rho, \phi, \theta) = \begin{pmatrix} D_1 f_1 & D_2 f_1 & D_3 f_1 \\ D_1 f_2 & D_2 f_2 & D_3 f_2 \end{pmatrix}$$
$$= \begin{pmatrix} \sin(\phi) \sin(\theta) & \rho \cos(\phi) \sin(\theta) & \rho \cos(\theta) \sin(\phi) \\ \cos(\phi) & -\rho \sin(\phi) & 0 \end{pmatrix}.$$

Now, at  $(\sqrt{3}, \tan^{-1}\sqrt{2}, \pi/4)$ , we have

$$f'(\sqrt{3}, \tan^{-1}\sqrt{2}, \pi/4) = \begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} & 1\\ \frac{\sqrt{3}}{3} & -\sqrt{2} & 0 \end{pmatrix}.$$

So,  $\frac{\partial f}{\partial(\phi,\theta)}(\sqrt{3},\tan^{-1}\sqrt{2},\pi/4) = \begin{pmatrix} \frac{\sqrt{2}}{2} & 1\\ -\sqrt{2} & 0 \end{pmatrix}$  and has a determinant  $0 + \sqrt{2} = \sqrt{2} \neq 0$ . Since the matrix is invertible, then by the implicit function theorem, there exists

since the matrix is invertible, then by the implicit function theorem, there exists r, s > 0, and a unique function  $g: (\sqrt{3} - s, \sqrt{3} + s) \to B_r((\tan^{-1}\sqrt{2}, \pi/4))$ , such that  $f(\rho, g(\rho)) = (0, 0)$  for all  $x \in (\sqrt{3} - s, \sqrt{3} + s)$ .

(b) Use the implicit function theorem to find  $\phi'(\sqrt{3})$  and  $\theta'(\sqrt{3})$ .

*Proof.* We have that  $\frac{\partial f}{\partial \theta}(\sqrt{3}, \tan^{-1}\sqrt{2}, \pi/4) = \begin{pmatrix} \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \end{pmatrix}$ . So,

$$g'(\sqrt{3}) = -\begin{pmatrix} \frac{\sqrt{2}}{2} & 1\\ -\sqrt{2} & 0 \end{pmatrix}^{-1} \begin{pmatrix} \frac{\sqrt{3}}{3}\\ \frac{\sqrt{3}}{3} \end{pmatrix}$$
$$= -\begin{pmatrix} \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & -\sqrt{2}\\ 2 & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{3}\\ \frac{\sqrt{3}}{3} \end{pmatrix}$$
$$= \begin{pmatrix} \frac{\sqrt{6}}{6}\\ -\frac{\sqrt{3}}{2} \end{pmatrix}.$$

Therefore,  $\phi'(\sqrt{3}) = \frac{\sqrt{6}}{6}$  and  $\theta'(\sqrt{3}) = -\frac{\sqrt{3}}{2}$ .

(c) Give a geometric description of the situation, and explain why the results are reasonable.



Note, the point P is after our change in x. So,  $\phi'(\sqrt{3}) = \frac{\sqrt{6}}{6} > 0$  and  $\theta'(\sqrt{3}) = -\frac{\sqrt{3}}{2} < 0$ , which makes sense because when  $\rho$  increases, then  $\theta$  decreases and  $\phi$  increases, which is what the math tells us.

**Problem 24.** Consider the equation  $xe^y + ye^x = 0$ .

(a) Prove that this equation defines y as a  $C^{\infty}$  function of x in a neighborhood of (0,0).

Proof. Let  $f: \mathbb{R}^2 \to \mathbb{R}$  be defined by  $f(x,y) = xe^y + ye^x$ . Then,  $D_1 f(x,y) = e^y + ye^x$ ,  $D_{1,1} f(x,y) = ye^x$ ,  $D_2 f(x,y) = xe^y + e^x$ ,  $D_{2,2} f(x,y) = xe^y$ , and  $D_{1,2} f(x,y) = e^y + e^x$ .

Let P(n) be the statement " $\frac{\partial^n f}{\partial y^n}(x,y) = xe^y$ ".

<u>Base Case</u>:  $\frac{\partial^2 f}{\partial u^2} = xe^y$ . Thus, the base case is true.

Inductive Step: Suppose P(k) is true for some  $k \geq 2$ . Then,  $\frac{\partial^k f}{\partial y^k}(x,y) = xe^y$ , which implies  $\frac{\partial^{k+1} f}{\partial y^{k+1}}(x,y) = xe^y$ . So, P(k+1) is true.

Now, let P(n) be the statement " $\frac{\partial^n f}{\partial x^n}(x,y) = ye^{x}$ ".

Base Case:  $\frac{\partial^2 f}{\partial x^2}(x,y) = ye^x$ . Thus, the base case is true.

Inductive Step: Suppose P(k) is true for some  $k \geq 2$ . Then,  $\frac{\partial^k f}{\partial x^k}(x,y) = ye^x$ , which implies  $\frac{\partial^{k+1} f}{\partial x^{k+1}}(x,y) = ye^x$ . So, P(k+1) is true. Let  $m \geq 2$  be arbitrary but fixed. Then,  $\frac{\partial^m f}{\partial y^m}(x,y) = xe^y$  implies  $\frac{\partial^{m+1} f}{\partial y^m x}(x,y) = e^y$ . Also,  $\frac{\partial^m f}{\partial x^m}(x,y) = ye^x$  implies  $\frac{\partial^{m+1} f}{\partial x^m y}(x,y) = e^x$ .

Lastly, let P(n) now be the statement " $\frac{\partial^{m+n} f}{\partial x^m y^n}(x,y) = 0$ .

<u>Base Case</u>:  $\frac{\partial^{m+1} f}{\partial x^m y} = e^x$ , which implies  $\frac{\partial^{m+2} f}{\partial x^m y^2}(x,y) = 0$ . Thus, the base case is true.

Inductive Step: Suppose P(k) is true for some  $k \geq 2$ . Then,  $\frac{\partial^{m+k} f}{\partial x^m y^k}(x,y) = 0$ , which implies  $\frac{\partial^{m+k+1} f}{\partial x^m y^{k+1}} = 0$ . So, P(k+1) is true.

In total, we have  $\frac{\partial f}{\partial x}(x,y) = e^y + ye^x$ ,  $\frac{\partial f}{\partial y}(x,y) = xe^y + e^x$ ,  $\frac{\partial^n f}{\partial x^n}(x,y) = ye^x$ ,  $\frac{\partial^{n+1} f}{\partial x^n}(x,y) = e^x$ ,  $\frac{\partial^n f}{\partial y^n}(x,y) = xe^y$ ,  $\frac{\partial^{n+1} f}{\partial y^n}(x,y) = e^y$ , and  $\frac{\partial^{m+n} f}{\partial x^m y^n}(x,y) = 0$  for all  $n,m \geq 2$ . Clearly, they are all continuous. Therefore, f is  $C^{\infty}$ . Note, f(0,0) = 0 and  $D_2 f(0,0) = 1 \neq 0$ , so by the implicit function theorem, there exists r,s > 0 and  $g: B_s(0) \to B_r(0)$  defined by f(x,g(x)) = 0. Therefore, f and g are  $C^{\infty}$  and f(x,y) = 0 defines g as a g function of g in a neighborhood of g and g are g function of g in a neighborhood of g.

(b) Let y = g(x) be this implicitly defined function. Find g'(0) and g''(0).

Proof. Note,

$$g'(x) = -\frac{D_1 f}{D_2 f} = -\frac{e^y + y e^x}{x e^y + e^x}$$

and

$$g''(x) = \frac{-(\frac{\partial f}{\partial y})^2 \frac{\partial^2 f}{\partial x^2} + 2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial^2 f}{\partial xy} - (\frac{\partial f}{\partial x})^2 \frac{\partial^2 f}{\partial y^2}}{(\frac{\partial f}{\partial y})^3}$$

$$= \frac{-(xe^y + e^x)^2 (ye^x) + 2(e^y + ye^x)(xe^y + e^x)(e^y + e^x) - (e^y + ye^x)^2 (xe^y)}{(xe^y + e^x)^3}.$$

So, from evaluating, we get g'(0) = -1 and g''(0) = -4.

(c) Use this information to explain the appearance of the curve  $xe^y + ye^x = 0$  near (0,0). As (x,y) approaches (0,0), the slope is directed downward at a decreasing rate.