Grid-Like Posets

Clay Thomas claytont@cs.princeton.edu

Corey Sinnamon sinnamon@cs.princeton.edu

July 15, 2019

1 Definitions and Basic Properties

Define tangled grid.

Definition 1. Let tg(n) denote the maximum number of downward closed sets that a tangled $n \times n$ grid can have.

Let $tg = \inf\{\theta | tg(n) = O(\theta^n)\}$, i.e. tg denotes the base of the exponential growth of tg(n).

Cite a source to prove tg is finite.

2 A Lower Bound

We define Cyl_n , the *cylinder poset* of order n as follows: its elements are pairs $\{(i,j)|i,j\in[n]\}$, and its covering relations take two forms:

- $(i,j) \succ (i,j-1)$ for $i \in [n], j \in [2,n]$. These relations define the "vertical chains" $V_i = \{(i,j)\}_{j \in [n]}$.
- $(i,j) \succ (i-1,j-1)$ for $i \in [n], j \in [2,n]$ and $(1,j) \succ (n,j-1)$ for $j \in [2,n]$. These relations form define the "diagonal chains" $D_k = \{(i,k+(i-1) \mod n)\}_{i \in [n]}$, where \mod "wraps around" to 1 instead of to 0.

It's called a cylinder poset because the diagonal grids "jump" from one side to the other as if the poset were on the surface of a cylinder.

The main result of this section is to count the number of downward closed sets in Cyl_n using known path-counting results.

First, it's helpful to observe that there's a bijection between the downward closed sets of Cyl_n and the set of sequences (a_1, \ldots, a_n) such that $a_i \in [0, n]$ for $i \in [n]$, $a_{i+1} \leq a_i + 1$ for $i \in [n-1]$, and $a_1 \leq a_n + 1$. Given a downward closed set $S \subseteq \operatorname{Cyl}_n$, the bijection is given by letting a_i be the height along V_i of the highest element in $S \cap V_i$ (or zero if S does not intersect V_i).

Now, fix ℓ as the height along V_i of the highest element of $S \cap V_i$ (or $\ell = 0$ if $S \cap V_i = \emptyset$). Note that taking $\ell = 0, 1, \ldots, n$ partitions the collection of downward closed sets. Now we identify the downward closed set S with its upward boundary in the Hasse diagram of Cyl_n . This upward boundary can then be uniquely identified with a lattice path starting at $(1, \ell)$ where at each node you can take an upward edge along a diagonal chain D_k or a downward edge along a vertical chain V_i . This ensures that S is downward closed along each V_i and for the "internal" diagonal relations, i.e. those of the form $(i+1,j+1) \succ (i,j)$. To satisfy the relations $(1,j+1) \succ (n,j)$, we just need the path to terminate at $(n,\ell-1)$. To properly represent the fact that $S \cap V_i = \emptyset$ for a given i, we draw elements of height 0 and -1, and when $S \cap V_i = \emptyset$ we let the path pass through (i-1,-1) and (i,0). It's easy to see that a path of this form uniquely determines a downward-closed set ((IS IT??)).

Thus, the problem is reduced to counting lattice paths in a square grid with "missing corners", i.e. those paths which avoid certain "translated diagonals":

Theorem 2 (Cite something). The number of monotonic integer lattice paths from (0,0) to (a,b) avoiding the lines y = x + s and y = x - t is equal to

$$\mathscr{L}(a,b;s,t) = \sum_{k \in \mathbb{Z}} \left[\binom{a+b}{b+k(s+t)} - \binom{a+b}{b+k(s+t)+t} \right]$$

where $\binom{u}{v} = 0$ for v < 0 or v > u.

For a fixed n, in the reduction to the above problem a=n-1 and b=n are constant. With some careful counting you see that $t=\ell+1$ and $s=n-\ell+2$ (The number of "forbidden nodes" in the bottom corner is $n-\ell-1$, so $t=n-1-(n-\ell-1)+1$. Likewise, there are $\ell-1$ forbidden nodes in the upper corner, so $s=n-(\ell-1)+1$.)

Thus, the number of downward closed sets in Cyl_n is exactly

$$\begin{split} \sum_{\ell=0}^{n} \mathcal{L}(n-1,n;n-\ell+2,\ell+1) &= \sum_{\ell=0}^{n} \sum_{k \in \mathbb{Z}} \binom{2n-1}{n+k(n+3)} - \binom{2n-1}{n+\ell+1+k(n+3)} \\ &= \sum_{\ell=0}^{n} \binom{2n-1}{n} - \binom{2n-1}{n+\ell+1} - \binom{2n-1}{\ell-2} \\ &= (n+1) \binom{2n-1}{n} - \sum_{\ell=0}^{n} \binom{2n-1}{n+\ell+1} + \binom{2n-1}{\ell-2} \\ &= (n+1) \binom{2n-1}{n} - \left(-\binom{2n-1}{n-1} - \binom{2n-1}{n} + \sum_{k=0}^{2n-1} \binom{2n-1}{k} \right) \\ &= (n+3) \binom{2n-1}{n} - 2^{2n-1} \end{split}$$

Acknowledgements: We thank Linda Cai for helpful discussions and pointing us towards valuable references.