Мультимодальные RAG модели

Поиск по документам

MISIS_Is All You Need

Почему это важно?

Необходимость улучшения пользовательского опыта

Пользователи ожидают интуитивно понятных и быстрых решений для поиска информации.

Большой объем данных

В современных организациях объем документов и информации постоянно растет, что затрудняет их эффективный поиск и использование.

Низкая эффективность традиционных методов

Существующие методы поиска часто не учитывают контекст и семантику, что приводит к низкой точности результатов.

Много разныхформатов

Документы могут быть представлены в различных форматах (текстовые файлы, изображения, PDF и т.д.), что усложняет процесс их индексации и поиска.

Что есть на рынке?

Ограниченные возможности интеграции

Сложность в использовании

Ограниченные функции поиска

Ограниченные возможности настройки

Высокая стоимость и малый пробный период

Доступ и контент для узкого круга лиц

ColPali & Qwen

как объединение новой и классической концепции вижн ретривала документов

ColPali

- о Квантизация вместе с соответствующей квантованной базой данных для консистентного инференса
- о Возможность дообучения модели на выданных данных данных для улучшения перформанса на узком домене пула документов
- о Адаптивное удаление нерелевантных документов, не соответствующих по схожести ни одному эталонному документу
- Удаление документов по айди по желанию юзера
- о Принимает pdf & docx

- о Эффективная утилизация гпу памяти с динамическим очищением
- Возможность корректировать time-memory tradeoff инференса модели под имеющиеся условия

QWen

- о Баланс между ответом в онлайне на запрос оффлайн описанием картинки для РАГ подхода
- о Адаптивный чанкинг текста и графиков документа + детекция с document yolo & clustering

Размер модели в 4-7 раз меньше других моделей, подходящих для данных целей

Принцип работы

Первая реализация

Получение файла \rightarrow Разделение на слайды картинки \rightarrow Получение embeddings из ColPali \rightarrow

Coxpaнeние эмбедингов в Qdrant

Пользователь вводит запрос \rightarrow (Переводим в embedding вопрос user \rightarrow

находим самый близкий слайд из БД Qdrant

Используем Qwen для ответа на вопрос user

Выдаём ответ

Результат не углублённый, местами не точный

Принцип работы

Вторая реализация

Пользователь вводит запрос

Находим самый близкий слайд и БД Qdrant

С помощью библиотеки doclayout-yolo разделяем слайд на: текст картинки графики таблицы

Делаем кластеризацию на 4 класса

Вырезаем 4 фрагмента текста

Обрабатываем каждый из фрагментов Qwen чтобы она описала картинку/текст (а не дала ответ)

Обрабатываем каждый из фрагментов Qwen ответ

Выдаём ответ

в 1,5 меньше занятой памяти

достигнуто на одной карточке благодаря оптимизации кода

Удобный интерфейс в виде чата

Адаптивный интерфейс

Удобно добавлять документы и искать по ним информацию в любом месте, в любое время

Удобное добавление и удаление файлов

Файлы добавляются в ассинхронном режиме— добавляйте файлы и не ждите, пока они загрузятся

Интуитивно понятный и доступный интерфейс

Настроена доступность, а система чатов достаточно проста для пользователей, есть возможность открытия файлов и приближения картинок

Кирилл Киреев Даня Малинин Лёша Земцов Даня Кузнецов Лиза Тарасова ML Backend Product MLFrontend @malinin_danila @biskwiq @lissey_t @daniilda @zzmtsvv