Advanced Software Security

8. Introduction to Program Verification

Kihong Heo

Towards Error-free SW

"Program testing can be used to show the presence of bugs, but never to show their absence!"

- Edsger W. Dijkstra, 1970

#ACMTuringAward recipient Edsger Wybe Dijkstra was born on this day in 1930. Dijkstra received the 1972 ACM A.M. Turing Award for fundamental contributions to programming as a high, intellectual challenge; for eloquent insistence and practical demonstration that programs should be composed correctly, not just debugged into correctness; for illuminating perception of problems at the foundations of program design.

https://bit.ly/3nVC3ux

Program Verification

- Prove a given program satisfies the target properties
- Property: points of interest in programs
 - E.g., "p == NULL?", "idx < size?", "arr sorted?", etc
- Two categories:
 - Trace properties = properties of individual execution traces
 - safety properties + liveness properties
 - Information-flow properties = properties of multiple execution traces

Trace

- Trace = a list of states
- Recall small-step operational semantics
- A program can have an (infinite) set of traces
- $[\![P]\!]$: a set of all possible execution traces

$$(2 \times 2 \times 2) \times (2 + 1)$$

$$\rightarrow (4 \times 2) \times (2 + 1)$$

$$\rightarrow 8 \times (2 + 1)$$

$$\rightarrow 8 \times 3$$

$$\rightarrow 24$$

Trace Properties

- A semantic property ${\mathscr P}$ that can be defined by a set of execution traces that satisfies ${\mathscr P}$
 - Ex1: "all traces that satisfies x != 0 at line 10"
 - Ex2: "all traces where the value of y at line 97 is the same as the one in the entry point"
- Program P satisfies property \mathscr{P} iff $[\![P]\!]\subseteq T_{\mathscr{P}}$
- State properties: defined by a set of states (so, obviously trace properties)
 - E.g., division-by-zero, integer overflow
- Any trace property: the conjunction of a safety and a liveness property

Safety Property

- A program never exhibit a behavior observable within finite time
 - "Bad things will never occur"
 - Bad things: integer overflow, buffer overrun, deadlock, etc
- If false, then there exists a finite counterexample
- To prove: all executions never reach error states

Invariant

- Assertions supposed to be always true
 - Starting from a state in the invariant, any computation step also leads to another state in the invariant (i.e., fixed point!)
 - E.g., "x has an int value during the execution", "y is larger than 1 at line 5"
- Loop invariant: assertion to be true at the beginning of every loop iteration

$$\frac{\{B \wedge I\} \ C \ \{I\}}{\{I\} \ \text{while} \ B \ C\{ \neg B \wedge I\}}$$

```
x = 0;
while (x < 10) {
  x = x + 1;
}
assert(x > 0);
assert(x == 10);
```

Loop invariant 1: "x is an integer"

Loop invariant 2: "x is a positive integer"

Loop invariant 3: "0 <= x <= 10"

Example: Division-by-Zero

```
1: int main(){
2:    int x = input();
3:    x = 2 * x - 1;
4:    while (x > 0) {
5:        x = x - 2;
6:    }
7:    assert(x != 0);
8:    return 10 / x;
9: }
```

```
1: int main(){
2:    int x = input();
3:    x = 2 * x;
4:    while (x > 0) {
5:        x = x - 2;
6:    }
7:    assert(x != 0);
8:    return 10 / x;
9: }
```

Liveness Property

- A program will never exhibit a behavior observable only after infinite time (A program will eventually exhibit a behavior observable within finite time)
 - "Good things will eventually occur"
 - Good things: termination, fairness, etc
- If false then there exists an infinite counterexample
- To prove: all executions eventually reach target states

Variant

- A quantity that evolves towards the set of target states (so guarantee any execution eventually reach the set)
- Usually, a value that is strictly decreasing for some well-founded order relation
 - Well-founded order: there exists a minimal element
 - E.g., an integer value is always positive and strictly decreasing

```
x = pos_int();
while (x > 0) {
  x = x - 1;
}
```

x is always a positive integer \land x is strictly decreasing \Rightarrow The program terminates

Example: Termination

- Introduce variable <u>c</u> that stores the value of "step counter"
 - Initially, <u>c</u> is equal to zero
 - Each program execution step increments <u>c</u> by one

```
// A factorial program
i = n;
r = 1;
while (i > 0) {
    r = r * i;
    i = i - 1;
}

c <= 3n + 2

// An instrumented program
i = n;
r = 1;
c = 2;
while (i > 0) {
    r = r * i;
    i = i - 1;
    c = c + 3;
}
// what is the value of c?
```

 $0 \le 3n + 2 - \underline{c}$ \wedge $3n + 2 - \underline{c}$ is strictly decreasing \Rightarrow termination

Example

Correctness of a sorting algorithm as trace property

Property	Safety or Liveness?	State?
Should not fail with a run-time error		
Should terminate		
Should return a sorted array (if terminated)		
Should return an array with the same elements and multiplicity (if terminated)		

Information Flow Properties

- Properties stating the absence of dependence between pairs of executions
 - Beyond trace properties: so called hyper-properties
- Mostly for security: multiple executions with public data should not derive private data
- E.g., a door lock beeps louder if a right digit is pressed at the right position

A pair of executions with insecure information flow

A pair of executions without insecure information flow

Example

Assume that variables s (secret) and p (public) take only 0 and 1

Input		Output	
р	S	р	
0	0	{0, 1}	
0	1	{0, 1}	
1	0	{0, 1}	
1	1	{0, 1}	

Input		Output	
р	S	p	
0	0	{0}	
0	1	{0}	
1	0	{0}	
1	1	{0, 1}	

Input		Output	
p	S	р	
0	0	{0, 1}	
0	1	{0, 1}	
1	0	{0, 1}	
1	1	{0, 1}	

A Hard Limit: Undecidability

Theorem (Rice's theorem). Any non-trivial semantic properties are undecidable.

- Non-trivial property: worth the effort of designing a program analyzer for
 - trivial: true or false for all programs
- Undecidable? If decidable, it can solves the Halting problem!

HP: Given a Turing machine T and an input i, does T eventually halt on i?

Undecidable: There is no Turing machine that can solve HP!

Informal Proof of Undecidability of HP

HP: Given a Turing machine T and an input i, does T eventually halt on i?

- Assume H(T, i) returns true or false
- Let F(x) = if H(x, x) then loop() else halt()
- Does F(F) terminate?

Informal Proof of Rice's Theorem

- Assumption: HP is undecidable
- An analyzer A for a property: "This program always prints 1 and finishes"
- Given a program P, generate P' = "P; print 1;"
- Analyze P' using A: A(P')
 - A(P') says "Yes": P halts,
 - A(P') says "No": P does not halt
- HP is decidable if we use A: contradiction!

Toward Computability

Undecidable

- ⇒ Automatic, terminating, and exact reasoning is impossible
 - ⇒ If we give up one of them, it is computable!
- Manual rather than automatic: assisted proving
 - require expertise and manual effort
- Possibly nonterminating rather than terminating: model checking, testing
 - require stopping mechanisms such as timeout
- Approximate rather than exact: static analysis
 - report spurious results

Soundness and Completeness

- Given a semantic property \mathcal{P} , and an analysis tool **A**
- If A were perfectly accurate,

For all program p, $A(p) = true \Leftrightarrow p$ satisfies \mathscr{P}

For all program p, $A(p) = true \Rightarrow p$ satisfies \mathscr{P} (soundness)

For all program p, $A(p) = true \leftarrow p$ satisfies \mathscr{P} (completeness)

Soundness and Completeness

Testing

- Check a set of finite executions
 - e.g., random testing, concolic (concrete + symbolic) testing
- In general, unsound yet complete
 - Unsound: cannot prove the absence of errors
 - Complete: produce counterexamples (i.e., erroneous inputs)
- Example: Google's oss-fuzz (https://github.com/google/oss-fuzz)

Assisted Proving

- Machine-assisted proof techniques
 - Relying on user-provided proofs or invariants
 - Using proof assistants (e.g., Coq, Isabelle/HOL)
- Sound and complete (up to the ability of the proof assistant)
 - require manual effort / expertise
- Example: CompCert (verified C compiler), seL4 (verified microkernel)

Model Checking

- Automatic technique to verify if a model satisfies a specification
 - Model of the target program (finite automata)
 - Specification written in logical formula
 - Verification via exhaustive search of the state space (graph reachability)
- Sound and complete with respect to the model
 - May incur infinite model refinement steps
- Example: SLAM (MS Windows device driver verifier)

Check: calls to lock and unlock must alternate

Static Analysis

- Over-approximate (not exact) the set of all program behavior
- In general, sound and automatic, but incomplete
 - May have spurious results
- Based on a foundational theory: Abstract interpretation
- Variants:
 - under-approximating static analysis: automatic, complete, unsound
 - bug finder: automatic, unsound, incomplete, and heuristics
- Example: type systems, ASTREE, Facebook Infer, Sparrow, etc.

Summary

- Property: point of interest in a program (safety, liveness, information flow, etc)
- Program analysis: check whether a property is satisfied or not
- Hard limit of program analysis: generally undecidable problem
- Practical solutions

	Automatic	Sound	Complete	Object	When
Testing	Yes	No	Yes	Program	Dynamic
Assisted Proving	No	Yes	Yes/No	Model	Static
Model Checking of finite-state model	Yes	Yes	Yes	Finite Model	Static
Conservative Static Analysis	Yes	Yes	No	Program	Static
Bug Finding	Yes	No	No	Program	Static