

Mitschrieb der Vorlesung "Systemtheorie und Regelungstechnik" (SS 2010)

Dozent: Dr.-Ing. A. Peter

Textsatz von William Glover

Stand: 19. Mai 2010

Inhaltsverzeichnis

0	Vorwort				
1	Bes	chreibı	ung dynamischer Systeme durch das Blockschaltbild (BSB)	3	
	1.1	Beispi	iele zum Aufstellen eines BSB	3	
	1.2	Häufig	g verwendete Übertragungsglieder	8	
	1.3 Nichtlineare Glieder und Linearisierung				
2	Syst	tembes	schreibung im Zeitbereich	10	
	2.1 Differentialgleichungen				
		2.1.1	Aufstellen der DGL	10	
		2.1.2	Lösung von Differentialgleichungen mit konstanten Koeffizienten .	11	
	2.2	Übert	ragungsverhalten	12	
		2.2.1	Gewichtsfunktion und Faltung	12	
		2.2.2	Eigenschaften	13	
		2.2.3	Sprungsantwort und Impulsantwort	14	
	2.3	2.3 Darstellung im Zustandsraum			
		2.3.1	Numerische Simulation	18	
		2.3.2	Lineare Systeme	19	
		2.3.3	Aufstellen der Zustandsgleichung aus BSB und DGL	19	
3	Systembeschreibung im Bildbereich				
	3.1	Lapla	ce-Transformation	22	
		3.1.1	Grundlagen	22	
		3.1.2	Lösung einer DGL	23	
	3 2	Übert	ragungsfunktion ÜF	24	

0 Vorwort

Systemtheorie, Kybernetik: Allgemeine, formale Wissenschaft von der Struktur, den Relationen und dem Verhalten dynamischer, insbesondere komplexer Systeme, die gewisse allgemeine Eigenschaften realer Systeme aus den verschiedenen Bereichen der Wirklichkeit widerspiegeln.

Ziele

Beschreibung dynamischer Systeme

Methoden: Modellierung (z.B. als Blockschaltbild, DGL oder Übertragungsfunktion), Simulation (kostengünstig, ungefährlich), ...

Analyse dynamischer Systeme

Fragestellungen wie z.B. ist das System...

- ...stabil?
- ...steuerbar?
- ...schwingungsfähig?

Beeinflussung dynamischer Systeme

Ziel der Systemtheorie ist ein automatisierter, sicherer, optimaler Betrieb von technischen Systemen. Dies kann auf zwei Arten erreicht werden

- Regelung (kont. Systemzustände): Ansteuerung des Systems, sodass die Ausgangsgröße den gewünschten Sollverlauf erreicht
- Steuerung (diskrete Systemzustände): Bei gestörten oder zum Teil unbekannten Systemen fortlaufende Systembeobachtung und Rückführung.

1 Beschreibung dynamischer Systeme durch das Blockschaltbild (BSB)

1.1 Beispiele zum Aufstellen eines BSB

Beispiel 1.1 (Füllen eines Behälters).

Lässt sich hier eine Gesetzmäßigkeit erkennen? Ja! Volumenbilanz:

$$v(t) = A \cdot h(t) = \int_0^t q(\tau)d\tau(+v_0)$$

 v_0 : Volumen zum Zeitpunkt t=0

 \Rightarrow für $v_0 = 0$ gilt:

$$h(t) = \frac{1}{A} \int_0^t q(\tau) d\tau$$

Diese Abhängigkeit lässt sich als ein sogenanntes Blockschaltbild wie folgt darstellen:

Es ist naheliegend, für übliche Operationen eine Bibliothek mit Standard-Blöcken anzulegen, im hier betrachteten Fall z.B. das sogenannte *Integrierglied* (I-Glied). Die allgemeine Integrationsfunktion

$$y(t) = k * \int_0^t u(\tau)d\tau$$

wird durch den folgenden Standardblock beschrieben:

Beispiel 1.2 (Erweiterung des Behälters um einen Ablauf).

Für diesen erweiterten Fall wird erneut die Vulumenbilanz aufgestellt:

$$v(t) = A \cdot h(t) = \int_0^t q(\tau) - q_{ab} d\tau = \int_0^t u(\tau) d\tau$$

Diese lässt sich unter der Annahme, dass q_{ab} von der aktuellen Füllhöhe abhängt, erneut in einem Blockschaltbild folgendermaßen darstellen:

Hier wurden bereits zwei weitere, wichtige Standardblöcke eingeführt:

Anhand des Blockschaltbild erkennt man sehr leicht, dass der Füllstand h(t) sich nach einer gewissen Zeit nicht mehr ändert. Der aktuelle Füllstand wird zurückgeführt und

vor der Integration von q(t) abgezogen. Sobald gilt $q_{ab} = q$, bleibt h(t) konstant. u(t) wird Null (Stationärer Zustand)!

Da das beschriebene Systemverhalten sehr häufig vorkommt, wird dieses Blockschaltbild zu einem eigenen Standardblock zusammengefasst:

Beispiel 1.3 (RC-Glied).

Das abgebildete RC Glied wird durch die Gleichungen

$$\begin{array}{rcl} U_a(t) & = & \frac{1}{C} * \int_0^t i(\tau) d\tau \\ \\ U_e & = & U_R + U_a & \Rightarrow U_R = U_e + U_a \\ \\ \rightarrow i & = & \frac{U_R}{R} \\ \\ \Rightarrow i & = & \frac{1}{R} (U_e - U_a) \end{array}$$

beschrieben. Für U_a ergibt sich daraus die Gleichung

$$U_a(t) = \frac{1}{RC} * \int_0^t U_e(\tau) - U_a(\tau) d\tau$$

Auch diese Funktion wird anschließend als Blockschaubild dargestellt:

Man erkennt: Es handelt sich hier ebenfalls um ein Verzögerungsglied 1. Ordnung. Unabhängig von der physikalischen Realisierung haben beide Systeme die gleiche dynamische Struktur!

Beispiel 1.4 (Erweiterung des Behälters um einen Schwimmer).

Die Auftriebskraft ist gegeben durch $F = (h(t) - y(t)) \cdot a \cdot \rho \cdot g$. Durch Umformen lässt sich hieraus die vom Zeiger des Schwimmers angezeigte Skalaposition berechnen:

$$F = m \cdot a = m \cdot \ddot{y} = (h(t) - y(t)) \cdot a \cdot \rho \cdot g$$

$$\Leftrightarrow \ddot{y} = \frac{a \cdot \rho \cdot g}{m} (h(t) - y(t))$$

$$\Rightarrow y(t) = \frac{a \cdot \rho \cdot g}{m} \int_{0}^{t} \int_{0}^{\tau} h(T) - y(T) dT d\tau$$

BSB

PT₂-Glied; Verzögerungsglied 2. Ordnung

Auch für das PT_2 -Glied wird ein eigenes Standardsymbol definiert:

Beispiel 1.5 (Zuleitung).

Die Zeit, bis eine Probemenge das Rohr durchflossen hat, wird $Totzeit\ T_t$ genennt. Sie ist gegeben durch

$$T_t = \frac{l}{v} = \frac{l \cdot a}{q}$$

 T_A und T_E sind die Temperaturen am Rohranfang bzw. Rohrende. Unter der Annahme, dass das Rohr perfekt isoliert ist, beim Transport also keine Wärme verloren geht, hängen diese beiden Größen über die Sprungfunktion

$$T_E(t) = T_A(t - T_t)$$

zusammen. Dieser Zusammenhang wird im Blockschaubild durch das sogenannte *Totzeit-glied* dargestellt:

$$\xrightarrow{T_{A}} \xrightarrow{T_{t}} \xrightarrow{T_{E}}$$

Blockschaltbilder

- beschreiben Ursache-Wirkungszusammenhänge in einer allgemeinen Form
- sind insbesondere bei komplexen Systemen oft übersichtlicher als Darstellungen in Gleichungen
- lassen sich schrittweise aufbauen und verifizieren
- sind Basis für numerische Simulationen(→ Simulink)

1.2 Häufig verwendete Übertragungsglieder

• elementare: P,I,D,S,T_t

• zusammengesetzte: PT_1, PT_2

• nichtlineare: KL, M

In der Vorlesung werden hauptsächlich elementare und zusammengesetzte Übertragungsglieder verwendet!

1.3 Nichtlineare Glieder und Linearisierung

Erneut wird das Blockschaltbild aufgestellt, unter Verwendung des sog. Kennliniengliedes (KL-Glied):

Ein nichtlineares System lässt sich zwar numerisch simulieren, stellt aber ein Problem bei der Analyse oder beim Regelentwurf dar. Als Hilfsmittel wird daher eine Linearisierung im Arbeitspunkt verwendet.

Arbeitspunkt: Betriebszustand eines Systems, in dem die zeitveränderlichen Größen fest sind (stationärer Zustand) und sich das System in einem gewünschten Sollzustand befindet.

Wird das System nun um den Arbeitspunkt linearisiert, sind die Abweichungen zwischen nichtlinearem und linearem Modell in der Umgebung um diesen Arbeitspunkt herum nur klein. Bei zu großer Abweichung vom Arbeitspunkt bildet das lineare Modell das nichtlineare nur unzureichend ab. Der Arbeitspunkt muss dann verändert/neu bestimmt werden.

Linearisierung eines KL-Gliedes

$$y = f(u)$$
$$y_0 + \Delta y = f(u_0 + \Delta u)$$

Es wird nun die Taylorreihen-Entwicklung für diese Funktion durchgeführt:

$$y_0 + \Delta y = f(u_0) + \left[\frac{df(u)}{du}\right]_{u_0} \cdot \Delta u + \dots$$

 $\Rightarrow y_0 = f(u_0)$
 $\Delta y = \left[\frac{df(u)}{du}\right]_{u_0} \cdot \Delta u + \dots$ (Nichtlineare Terme werden Vernachlässigt!)

z.B. $y = sin(\phi)$: Linearisierung um den Arbeitspunkt $\phi_0 = 0$

$$y_0 = 0$$

$$\Delta y = [\cos(\phi)]_{\phi_0 = 0} \cdot \Delta \phi$$

$$\Rightarrow T_y = 1 \cdot \Delta \phi$$

2 Systembeschreibung im Zeitbereich

2.1 Differentialgleichungen

2.1.1 Aufstellen der DGL

Die Differentialgleichung eines Systems kann auf 2 Arten bestimmt werden:

- aus den physikalischen Gleichungen, z.B.:
 - Bewegungsgleichungen: $F(t) = m \cdot \ddot{x}(t)$; $M(t) = J \cdot \ddot{\phi}$
 - Bilanzierung von Volumen: $q_{zu}(t) q_{ab}(t) = \dot{v}(t)$
- aus dem Blockschaubild:
 - eventuell Hilfsgrößen einführen (z.B. Ausgang von S-Gliedern,...
 - Entgegen der Signalflussrichtung durch das BSB gehen und Funktionsbeziehungen der Blöcke auswerten

Bsp.: PT_1 -Glied

$$h(t) = \frac{K}{T} \int_{0}^{t} u(\tau) d\tau$$

$$\rightarrow \dot{h}(t) = \frac{K}{T} \cdot u(t)$$

$$u(t) = q - \frac{1}{K} \cdot h(t)$$

$$\Rightarrow \dot{h}(t) = \frac{K}{T} \cdot (q(t) - \frac{1}{K} \cdot h(t))$$

$$\Rightarrow \frac{1}{T} \cdot h(t) + \dot{h}(t) = \frac{K}{T} \cdot q(t)$$

$$\Rightarrow homogene DGL, falls $q(t) = 0$ (Anregung = 0)$$

2.1.2 Lösung von Differentialgleichungen mit konstanten Koeffizienten

Beispiel 2.1 (Lösung der DGL des PT_1 -Gliedes).

Gegeben ist die Gleichung

$$T \cdot \dot{y}(t) + y(t) = k \cdot u(t)$$

mit $y(0) = y_0$ und beliebigem u(t) für t > 0.

• 1. Schritt: characteristische Gleichung:

$$T \cdot s + 1 = 0$$

 $\rightarrow s_1 = -\frac{1}{T}$
 $\Rightarrow y_h(t) = C_1 \cdot y_1(t) = c_1 * e^{-\frac{t}{T}}$ (Formelsammlung)

• 2. Schritt: Variation der Konstanten

$$y_p(t) = C_1(t)e^{-\frac{t}{T}}$$
 ableiten:
$$\dot{y_p}(t) = \frac{-C_1(t)}{T}e^{-\frac{t}{T}} + \dot{C_1}(t)e^{-\frac{t}{T}}$$

In die inhomogene DGL einsetzen:

$$K \cdot u(t) = T \cdot \left(-\frac{c_{L}(t)}{T} \cdot e^{-\frac{t}{T}} + \dot{C}_{1}(t) \cdot e^{-\frac{t}{T}}\right) + C_{L}(t) \cdot e^{-\frac{t}{T}}$$

$$\dot{C}_{1}(t) = \frac{K}{T} \cdot e^{\frac{t}{T}} \cdot u(t)$$
Integrieren: $C_{1}(t) = \int_{0}^{t} \frac{K}{T} \cdot e^{\frac{\tau}{T}} \cdot u(\tau) d\tau$

$$\Rightarrow y_{p}(t) = \left[\int_{0}^{t} \frac{K}{T} \cdot e^{\frac{\tau}{T}} \cdot u(\tau) d\tau\right] \cdot e^{-\frac{t}{T}}$$

$$= \int_{0}^{t} \frac{K}{T} \cdot e^{-\frac{t-\tau}{T}} \cdot u(\tau) d\tau$$

• 3. Schritt: Zusammenfassen zur Gesamtlösung

$$y(t) = y_n(t) + y_p(t)$$

= $c_1 \cdot e^{-\frac{t}{T}} + \int_0^t \frac{K}{T} \cdot e^{-\frac{t-\tau}{T}} \cdot u(\tau) d\tau$

• 4. Schritt: C_1 bestimmen

$$y(0) = C_1 = y_0$$

$$\Rightarrow \text{L\"{o}sung:} \quad y(t) = \underbrace{y_0 \cdot e^{-\frac{t}{T}}}_{1} + \underbrace{\int_0^t \frac{K}{T} \cdot e^{-\frac{t-\tau}{T}} \cdot u(\tau) d\tau}_{2}$$

- Formelteil ${\bf 1}$ ist die homogene Lösung. Sie ist nur vom Anfangswert y_0 abhängig. Man sagt: Sie beschreibt die freie Bewegung
- Formelteil 2 ist die Partikulärlösung. Sie ist nur von der Eingangsfunktion u(t) abhängig. Man sagt: Sie beschreibt die erzwungene Bewegung

2.2 Übertragungsverhalten

2.2.1 Gewichtsfunktion und Faltung

Das Übertragungsverhalten von u(t) zu y(t) wird durch den Term

$$y(t) = \int_{0}^{t} \frac{K}{T} \cdot e^{\frac{-t-\tau}{T}} \cdot u(\tau) d\tau$$

definiert. Er beschreibt das Übertragungsverhalten bei verschwindenden Anfangsbedingungen ($y_0 = 0$). Mit der Funktion

$$g(t) = \frac{K}{T} \cdot e^{-\frac{t}{T}}$$

lässt sich das Integral zu

$$y(t) = \int_{0}^{t} g(t - \tau) \cdot u(\tau) d\tau = g(t) * u(t)$$
Faltungsintegral

vereinfachen. Das Zeichen * wird als "gefaltet mit" (g(t) gefaltet mit u(t)) gelesen. g(t) nennt man Gewichtsfunktion. Sie beschreibt das Übertragungsverhalten des Systems vollständig!

Es gilt:
$$g(t) * u(t) = u(t) * g(t)$$

Die Gewichtsfunktion g(t) gibt an, mit welchem Gewicht der Wert der Eingangsfunktion u(t) von zurückliegenden Zeitpunkten $(t-\tau)$ in den Wert der Ausgangsfunktion y(t) zum aktuellen Zeitpunkt t eingeht.

Der Ausgang hängt nur vom aktuellen Eingang ab.

In diesem Fall hingegen ist der Ausgang auch von vergangenen Werten abhängig.

2.2.2 Eigenschaften

Lineare und zeitinvariante Systeme lassen sich durch die Gewichtsfunktion vollständig beschreiben. (Entspricht der linearen DGL mit konstanten Koeffizienten)

Linearität: Ein System ist linear, wenn...

- ...das Superpositionsprinzip: $y(t) = g(t)*[u_1(t)+u_2(t)] = g(t)*u_1(t)+g(t)*u_2(t)$
- ...das Verstärkungsprinzip: $y(t) = g(t) * [\alpha \cdot u(t)] = \alpha \cdot [g(t) * u(t)]$ gelten.

Zeitinvarianz: Das System ist invariant gegenüber Zeitverschiebungen:

Aus y(t) = g(t) * u(t) muss für eine beliebige Zeitverschiebung T folgen, dass y(t-T) = g(t) * u(t-T)

Kausalität: Das Ausgang y(t) eines kausalen Systems hängt nur vom Verlauf des Eingangs u(t) für Zeiten $t \leq t_0$ ab. Das System hängt also nur von vergangenen Eingangswerten ab. Für g(t) kausaler Systeme gilt also:

$$g(t) = 0$$
 für $t < 0$

2.2.3 Sprungsantwort und Impulsantwort

Sprungantwort: Auf den Systemeingang wird ein *Einheitssprung* gegeben

$$u(t) = \sigma(t) = \begin{cases} 0 \text{ für } t < 0 \\ 1 \text{ für } t \ge 0 \end{cases}$$

Die Antwort des Systems heißt Sprungantwort und wird beschrieben durch

$$h(t) := y(t)$$

Mit dem Flächenintegral $y(t) = \int_{0}^{t} g(\tau) \cdot u(t-\tau) d\tau$ vereinfacht sich das zu

$$h(t) = \int_{0}^{t} g(\tau) \cdot \underbrace{\sigma(t - \tau)}_{=1} d\tau$$
$$h(t) = \int_{0}^{t} g(\tau) d\tau$$

$$h(t) = \int_{0}^{t} g(\tau) d\tau$$

Die Sprungantwort, genau wie die Gewichtsfunktion, characterisiert das dynamische System vollständig!

Impulsantwort: Die Impulsfunktion $\delta(t)$ ist die formale Ableitung des Einheitssprungs.

$$\delta(t) = \frac{d}{dt}\sigma(t) \Leftrightarrow \int_{0}^{t} \delta(\tau)d\tau = \sigma(t)$$

Für die Impulsantwort gilt damit:

$$\int_{0}^{t} g(\tau) \cdot u(t-\tau) d\tau = \int_{0}^{t} g(\tau) \cdot \delta(t-\tau) d\tau = g(t)$$

 \Rightarrow Die Gewichtsfunktion g(t) kann auch als Impulsantwort interpretiert werden.

2.3 Darstellung im Zustandsraum

Beispiel 2.2 (System aus 3 verbundenen Wassertanks).

Volumenbilanz:

Tank 1:
$$\dot{h_1} = \frac{1}{A}(q_1 - q_{1,2})$$

Tank 2:
$$\dot{h_2} = \frac{1}{A}(q_{1,2} - q_{2,3})$$

Tank 3:
$$\dot{h_3} = \frac{1}{A}(q_2 + q_{2,3} - q_{ab})$$

Annahme: Der Ausgleichsfluss zwischen den Tanks ist proportional zur Füllstandsdifferenz:

$$q_{1,2} = c \cdot (h_1 - h_2); q_{2,3} = c \cdot (h_2 - h_3); q_{ab} = ch_3$$

damit:
$$\dot{h_1} = \frac{1}{A}(q_1 - ch_1 + ch_3)$$

 $\dot{h_2} = \frac{1}{A}(ch_1 - 2ch_2 + ch_3)$
 $\dot{h_3} = \frac{1}{A}(q_2 + ch_2 - 2ch_3)$

Kennt man h_1, h_2, h_3 , so ist der Zustand des Systems zum Zeitpunkt t vollständig bestimmt. $\Rightarrow h_1, h_2, h_3$ sind die Zustandsgrößen des Systems.

Geometrische Deutung: h_1, h_2, h_3 spannen einen dreidimensionalen Vektorraum auf, den sogenannten Zustandsraum.

 $\vec{x}(t)$: Zustandsvektor

$$\vec{x}(t) = \begin{pmatrix} h_1(t) \\ h_2(t) \\ h_3(t) \end{pmatrix}$$

Das System wird durch $q_1(t)$ und $q_2(t)$ angeregt, diese sind die Eingangsgrößen. Aus ihnen lässt sich der sogenannte Eingangsvektor bestimmen:

$$\vec{u}(t) = \begin{pmatrix} q_1(t) \\ q_2(t) \end{pmatrix}$$

Verallgemeinerung

Das Systrem lässt sich durch n Zustände beschreiben:

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Das Systrem besitzt m Eingänge:

$$\vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{pmatrix}$$

Dieses System lässt sich durch n DGL 1 Ordnung beschreiben:

$$\begin{array}{c} x_1 = f_1(\vec{x}, \vec{u}) \\ \vdots \\ x_n = f_n(\vec{x}, \vec{u}) \end{array} \right\} \begin{array}{c} \vec{x}(t) = \vec{f}(\vec{x}(t), \vec{u}(t)) \\ \text{Zustandsdifferentialgleichung} \end{array}$$

Durch Messung des Systems wird aus dem aktuellen Zustand $\vec{x}(t)$ und dem Eingang $\vec{u}(t)$ der Ausgangsvektor $\vec{y}(t)$ bestimmt. Die daraus resultierende Gleichung

$$\vec{y}(t) = g(\vec{x}(t), \vec{u}(t))$$

heißt $Ausgangsgleichung. \vec{y}(t)$ ist gegeben durch

$$\vec{y}(t) = \begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix}$$

Da man bei komplexen Systemen mit mehreren Ein- und Ausgängen für jedes Eingang/Ausgangpaar eine eigene Gewichtsfunktion aufstellen müsste, bietet sich bei der Simulation solcher Systeme die Zustandsraumdarstellung an.

Die Beschreibung eines Systems im Zustandsraum oder allgemein durch Gleichungen ist

der Darstellung im Blockschaubild äquivalent. Je nach Anwendung wird die optimale Beschreibung gewählt.

2.3.1 Numerische Simulation

gegeben:

$$\vec{\dot{x}}(t) = \vec{f}(\vec{x}(t), \vec{u}(t))(*)$$

Anfangswert
$$\vec{x}(0) = \vec{x_0}$$

gesucht: numerische Näherung \tilde{x} für die Lösung der DGL auf einem Zeitintervall $[0, t_{max}]$ **Idee:** Approximation von $\vec{x}(t)$ durch den Differenzenquotienten:

$$\vec{x} \approx \frac{\vec{x}(t+h) - \vec{x}(t)}{h}$$
 mit Zeitschritt h

Einsetzen in (*):

$$\begin{array}{ll} \frac{\vec{x}(t+h)-\vec{x}(t)}{h} & \approx & \vec{f}(\vec{x}(t),\vec{u}(t)) \\ \Rightarrow \vec{x}(t)+h\cdot\vec{f}(\vec{x}(t),\vec{u}(t)) & \approx & x(t+h) \end{array}$$

mit festen Zeitschritten $t_i = i \cdot h$

$$\underbrace{\vec{\tilde{x}}(t_{i+1})}_{\text{neuer Zustand}} = \underbrace{\vec{\tilde{x}}(t_i)}_{\text{alter Zustand}} + h \cdot \vec{f}(\vec{x}(t_i), \vec{u}(t_i))$$

Diese Gleichung lässt sich mithilfe des Euler-Verfahrens lösen.

2.3.2 Lineare Systeme

Fortsetzung Bsp 2.2:

Sortieren der Zustände und der Eingänge:

Die obige Gleichung lässt sich auch in Vektoren und Matrizen ausdrücken:

$$\underbrace{\begin{pmatrix} \dot{h_1} \\ \dot{h_2} \\ \dot{h_3} \end{pmatrix}}_{\vec{x}(t)} = \underbrace{\begin{pmatrix} -\frac{C}{A} & +\frac{C}{A} & 0 \\ \frac{C}{A} & -\frac{2C}{A} & \frac{C}{A} \\ 0 & \frac{C}{A} & -\frac{2C}{A} \end{pmatrix}}_{\text{Systemmatrix } \mathbf{A}} \cdot \underbrace{\begin{pmatrix} h_1(t) \\ h_2(t) \\ h_3(t) \end{pmatrix}}_{\mathbf{Zustands}} + \underbrace{\begin{pmatrix} \frac{1}{A} & 0 \\ 0 & 0 \\ 0 & \frac{1}{A} \end{pmatrix}}_{\text{Eingangs-}} \cdot \underbrace{\begin{pmatrix} q_1(t) \\ q_2(t) \\ 0 & \frac{1}{A} \end{pmatrix}}_{\text{Eingangs-wektor } \vec{u}}_{\text{Eingangs-wektor } \vec{u}}$$

Diese Gleichung gilt nur bei linearen Systemen und ist außerdem eine beliebte Klausuraufgabe! Allgemein gilt:

$$\vec{x}(t) = \mathbf{A} \cdot \vec{x}(t) + \mathbf{B} \cdot \vec{u}(t)$$
 Zustandsdifferentialgleichung $y(t) = \mathbf{C} \cdot \vec{x}(t) + \mathbf{B} \cdot \vec{u}(t)$ Ausgangsgleichung

2.3.3 Aufstellen der Zustandsgleichung aus BSB und DGL

aus dem Blockschaubild

Idee: Jedes I-Glied (und PT_1) speichert einen Zustand. Um die Zustandsgleichung aufzustellen muss also wie folgt vorgegangen werden:

- 1. PT_2 -Glieder zerlegen
- 2. Alle Ausgänge von I- und PT_1 -Gliedern als Zustände einführen (Buchstaben im BSB zuweisen!)
- 3. Entgegen der Signalflussrichtung die Gleichungen bestimmen

Beispiel 2.3.

$$y(t) = x_1(t) + x_2(t)$$

 $x_2(t) = \int x_1(\tau)d\tau \Rightarrow \dot{x_2}(t) = x_1(t)$
 $x_1(t) = \int u(\tau) - x_2(\tau)d\tau \Rightarrow \dot{x_1}(t) = -x_2(t) + u(t)$

Vektoriell:

$$\vec{x}(t) = \begin{pmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u(t)$$

$$\vec{x}(t) = \underbrace{\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}_{\mathbf{A}} \vec{x}(t) + \underbrace{\begin{pmatrix} 1 \\ 0 \end{pmatrix}}_{\mathbf{B}} u(t)$$

$$\vec{y}(t) = \underbrace{\begin{pmatrix} 1 & 1 \end{pmatrix}}_{\mathbf{C}} \vec{x}(t)$$

$$\mathbf{D} = \mathbf{0}$$

Aus der Differentialgleichung

$$y^{(n)}(t) + \dots + a_1 \dot{y}(t) + a_0 y(t) = b_0 u(t) + b_1 \dot{u}(t) + \dots + b_{n-1} u^{(n-1)}(t)$$

(mit $a_n = 1, b_n = 0$, sonstige a_i, b_j beliebig!)

Nach höchster Ableitung auflösen:

$$\Rightarrow y^{(n)}(t) = \underbrace{[b_0 u(t) - a_0 y(t)]}_{=x_1(t)} + [b_1 \dot{u}(t) - a_1 \dot{y}(t)] + \dots + [b_{n-1} u^{(n-1)}(t) - a_{n-1} y^{(n-1)}(t)]$$

$$= x_n^{(n)}(t) \Rightarrow y(t) = x_n(t)$$

$$y(t) = x_n(t)(**)$$

$$\Rightarrow \dot{x_1}(t) = -a_0x_n(t) + b_0u(t)$$

$$\dot{x_2}(t) = x_1 - a_1x_n(t) + b_1u(t)$$

$$\vdots$$

$$\dot{x_n}(t) = x_{n-1} - a_{n-1}x_n(t) + b_{n-1}u(t)$$

Vektoriell:

$$\vec{x}(t) = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix} \vec{x}(t) + \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_{n-1} \end{pmatrix} u(t)$$

Aus (**) folgt damit durch Integrieren von $x_n(t)$

$$y(t) = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \end{pmatrix} \vec{x}(t)$$

3 Systembeschreibung im Bildbereich

3.1 Laplace-Transformation

3.1.1 Grundlagen

Idee: Die Lösung einer algebraischen Gleichung ist einfacher als Lösung einer DGL. Allerdings ist eine Transformation notwendig.

$$Y(s) = \mathcal{L}\{y(t)\} = \int_{0}^{\infty} y(t)e^{-st}dt$$

$$y(s) = \mathcal{L}^{-1}\{Y(s)\} = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} Y(s)e^{ts}ds$$

Vorraussetzung

- 1. Es muss y(t)=0 für t<0 sein! Ansonsten stimmt das Modell nicht mit der Realität überein, das System würde antworten, bevor ein Eingang angelegt ist. Schreibweise am besten: $y(t)\cdot\sigma(t)$
 - y(t) kann Gewichtsfunktion eines Systems sein \Rightarrow System ist kausal!
- 2. Das uneigentliche Integral muss konvergieren.

Der "Umweg" wird durch tabellierte Korrespondenzen attraktiv. Im Allgemeinen ist die Rücktransformation am aufwendigsten, da die Lösung aufgespalten und in Teilen transformiert werden muss.

3.1.2 Lösung einer DGL

Beispiel 3.1 (Sprungantwort eines PT_1 -Gliedes).

DGL:

$$T\dot{y}(t) + y(t) = ku(t)$$

mit $y(0) = y_0$ und $u(t) = u_0 \sigma(t)$

Schritt 1: Regel 1 und Regel 5

$$T \cdot (sY(s) - y_0)) + Y(s) = k \cdot U(s)$$

 \Rightarrow Eingangssignal: Regel 1, Korr. 2

$$U(s) = u_0 \cdot \frac{1}{s}$$

Schritt 2: Nach Y(s) auflösen

$$Y(s)(sT+1) = kU(s) + Ty_0$$

$$Y(s) = \frac{T}{sT+1}y_0 + \frac{k}{sT+1}u(s)$$

$$\text{mit } U(s) = u_0 \cdot \frac{1}{s}$$

$$Y(s) = \underbrace{\frac{T}{sT+1}y_0}_{Y_s(s)} + \underbrace{\frac{k}{sT+1} \cdot \frac{u_0}{s}}_{Y_s(s)}$$

Schritt 3: Rücktransformation

$$Y_1(s) = \frac{1}{s + \frac{1}{T}} y_0$$

mit Korr. 6:

$$Y_1(t) = e^{-\frac{1}{T}t} \cdot y_0 \cdot \underbrace{\sigma(t)}_{=0 \text{ für } t < 0}$$

Partialbruchzerlegung für $Y_2(s)$:

$$\frac{ku_0}{(sT+1)s} = \frac{A}{sT+1} + \frac{B}{s}$$
$$\Rightarrow k \cdot u_0 = A \cdot s + B(sT+1)$$

HIER FEHLT WAS!!!!

3.2 Übertragungsfunktion ÜF

aus Bsp 3.1:

$$Y(s) = \underbrace{\frac{T}{sT+1}y_0} + \underbrace{\frac{k}{sT+1}u(s)}$$

nur vom Anfangswert abh. Freie Bewegung vom Eingang U(s) abh. Erzwungene Bew.:=G(s)

G(s) heißt Übertragungsfunktion. Sie beschreibt dsa System vollständig. Das Übertragungsverhalten bei verschwindendem Anfangswert, also $y(s) = G(s) \cdot u(s)$ entspricht y(t) = g(t) * u(t) im Zeitbereich. Es gilt also $G(s) = \mathcal{L}\{g(t)\}$. (Regel 9)

Im Bildbereich können Systeme sehr einfach verknüpft werden, z.B. durch Serienschaltungen:

$$V(s) = G_1(s) \cdot U(s)$$

$$Y(s) = G_2(s) \cdot V(s) = G_2(s) \cdot G_1(s) \cdot U(s)$$

Beziehung zwischen DGL und ÜF

z.B. Beispiel 3.1:

$$\underbrace{T}_{a_1} \cdot \dot{y}(t) + \underbrace{1}_{a_0} y(t) = \underbrace{k}_{b_0} \cdot U(t)$$

$$G(s) = \underbrace{\frac{k}{k}}_{a_1} \underbrace{T}_{a_0} s + \underbrace{1}_{a_0}$$

allgemein: DGL der Form

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 \dot{y}(t) + a_0 = b(u(t)) + b_1 \dot{u}(t) + \dots + b_m u^{(n)}(t)$$

⇒ Rationale ÜF (Regel 5 mit verschwindendem Anfangswert)

$$G(s) = \frac{Y(t)}{U(s)} = \frac{b_0 + b_1 \cdot s + b_m s}{\underbrace{a_0 + a_1 \cdot s + a_n s^n}}$$

Nullstellen des Nenners := Pole der ÜF

- Falls n < m: "Reales" System
- Falls n < m: differenzierendes Verhalten
- falls $a_0 = a_1 = \cdots = a_\rho = 0$: s^ρ kann im Nenner ausgeklammert werden $\Rightarrow \rho$ -fach integrierend.