Algebra z geometrią analityczną dr Joanna Jureczko

Zestaw 1

Przekształcanie wyrażeń algebraicznych Wzór dwumianowy Newtona

- 1.1. Poniższe wyrażenia przedstawić w najprostszej postaci:
- a) $(x-y)(x^2+y^2)$;
- b) $2a(a+b)(a^3-ab^2)$;
- c) (v-t)(2t+2v)(t-3v);
- d) $(x-y^2)(y^2+x)(2x+1)(2x-1)$.
- 1.2. Korzystając z dwumianu Newtona zapisać rozwinięcia następujących wzorów skróconego mnożenia:
- a) $(a-2b)^3$; b) $(2x+y^2)^3$; c) $(z+2)^4$; d) $(a-b)^4$; e) $(x+y)^5$.
- **1.3.** Znaleźć *k*-ty wyraz rozwiniecia:
- a) $(3x-2)^9$ dla k=2;
- b) $(x-2y)^5$ dla k=4;
- c) $(x+y^2)^{11}$ dla k=10;
- d) $(2 + \sqrt{3})^7$ dla k = 4;
- e) $(\frac{1}{x} y^2)^6$ dla k = 3; f) $(\sqrt[3]{x} + \frac{2}{y})^{20}$ dla k = 20.
- $\mathbf{1.4.}^*$ Wykazać, że dla dowolnych $k,n\in\mathbb{N}$ takich, że $k\leqslant n$ prawdziwe są równości:
- a) $\binom{n}{0} = 1;$
- b) $\binom{n}{n} = 1;$
- c) $\binom{n}{k} = \binom{n}{n-k};$ d) $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1};$
- e) $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n-1} + \binom{n}{n} = 2^n$. Skojarzyć wyrażenia w a)-e) z trójkątem Pascala.

ODPOWIEDZI

- **1.1.** a) $x^3 + xy^2 x^2y y^3$; b) $2a^5 2a^3b^2 2a^2b^3 + 2a^4b$; c) $-2t^3 + 6t^2v + 2v^2t 6v^3$; d) $4x^4 4x^2y^4 + y^4 x^2$.
- **1.2.** a) $a^3 6a^2b + 12ab^2 8b^3$; b) $8x^3 + 12x^2y^2 + 6xy^4 + y^6$; c) $z^4 + 8z^3 + 24z^2 + 32z + 16$; d) $a^4 4a^3b + 6a^2b^2 4ab^3 + b^4$; e) $x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$.
- **1.3.** a) $314\ 928x^7$; b) $80xy^4$; c) $11xy^{20}$; d) 2520; e) $-20x^{-3}y^6$; f) $2^{20}y^{-20}$.