Machine Learning - Assignment 6

Wei-Ju Lin

October 15, 2025

1 Classification Using GDA

1.1 Implementation

For each class $y \in \{0, 1\}$, the model estimates:

- Class prior $\phi = P(y=1)$
- Class means μ_0, μ_1
- Covariance matrices Σ_0, Σ_1

The decision function is

$$g(x) = \log P(x|y=1) + \log P(y=1) - [\log P(x|y=0) + \log P(y=0)]$$

and the prediction rule is

$$\hat{y} = \begin{cases} 1, & \text{if } g(x) \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

A small regularization term $\lambda = 10^{-6}I$ was added to each covariance matrix to stabilize matrix inversion and avoid numerical singularities.

1.2 Model Explanation

- GDA assumes that data from each class follows a multivariate Gaussian distribution. By estimating the parameters (μ_k, Σ_k) , the model determines the region in the feature space where each class is most likely to occur.
- It is suitable for this dataset because the valid and invalid grid points form spatial clusters that approximately follow Gaussian-like distributions in the (lon, lat) space.

1.3 Training and performance

- Data split: 80% training, 20% testing (stratified).
- Class balancing: The minority class (valid points) was oversampled in the training set.

- Prior adjustment: After training, the prior probability ϕ was reset to the original (unbalanced) distribution.
- Evaluation metric: Test set accuracy.

Test accuracy: ≈ 0.8352

Figure 1: QDA confusion matrix

1.4 Decision boundary visualization

A decision boundary was plotted using a dense grid of (lon, lat) values while the black curve represents the boundary g(x) = 0.

The contour plot shows that the model successfully separates valid (1) and invalid (0) regions.

Figure 2: QDA decision boundary

2 Piecewise Regression

2.1 Implementation

We combine a classifier C(x) and a regressor R(x) into

$$h(x) = \begin{cases} R(x), & \text{if } C(x) = 1, \\ -999, & \text{if } C(x) = 0. \end{cases}$$

- Classifier C: RBFSampler → StandardScaler → LogisticRegression (class_weight="balanced", max_iter=2000)
- Regressor R: RBFSampler \rightarrow StandardScaler \rightarrow Ridge ($\alpha=1.0$)

Define h_predict:

- Compute c = C(x).
- Initialize output with -999.
- For indices where c=1, replace with R(x).
- Return the vectorized result so it works for grids or arbitrary batches.

2.2 Application and results

- We train C on all grid points (lon, lat) with labels $\{0,1\}$ and R on valid points only (-999 removed), evaluating on held-out test sets and compute **coverage** of h: the fraction of test locations where C(x) = 1 and h returns a temperature (printed as "Coverage on regression test set").
- Coverage on regression test set $(C(x) = 1 \text{ ratio}) \approx 0.974$
- Visual inspection of the rendered map confirms that regions predicted invalid by C are assigned -999, while valid regions carry continuous predictions from R, matching the piecewise definition.

Figure 3: True data vs. piecewise model