

Radiofrekvencijski sustavi 2012./13.

Auditorne vježbe – 2. dio

Davor Bonefačić, Branimir Ivšić

TERMIČKI ŠUM

(Nyquistov, bijeli, Gaussov)

- Posljedica nasumičnog toplinskog gibanja nosioca naboja; ili kao atmosfersko i kozmičko zračenie
- ➤ Opisuje se statističkim metodama (*T*-temperatura, *B*-širina pojasa, *R*-otpor)
 - ⇒ Napon šuma (Srednja kvadratna vrijednost) : $V_{s} = \sqrt{4 \cdot k \cdot T \cdot B \cdot R}$
 - \Rightarrow Snaga šuma (\propto Varijanca): $P_{\S} = \frac{V_{\S}^2}{4R} = k \cdot T \cdot B$
 - \Rightarrow Spektralna gustoća (Fourierova transformacija AKF): $S_{\tilde{S}}(\omega) = \frac{P_{\tilde{S}}}{2R} = \frac{k \cdot T}{2}$
- ightharpoonup Ekvivalentna temperatura dodanog šuma sustava: $T_e = \frac{P_{\S, \text{dodani}}}{k \cdot B} = \frac{P_{\S, \text{iz}}}{G \cdot k \cdot B} \bigg|_{P_{\S, \text{iz}} = 0}$

šuma na ulazu sustava

sustava (pojačanje)

Boltzmannova konstanta $k = 1.38 \cdot 10^{-23} \text{ J/K}$

N3

2

TERMIČKI ŠUM

(Nyquistoy, bijeli, Gaussoy)

Faktor šuma – pogoršanje odnosa signal-šum na izlazu iz sustava

$$F = \frac{SNR_{ul}}{SNR_{iz}} = \frac{P_{\hat{S},ul}}{\cancel{G} \cdot P_{\hat{S},ul}} = 1 + \frac{k \cdot T_e \cdot B}{k \cdot T_0 \cdot B} \longrightarrow \frac{\text{Napomena: Po konvenciji}}{\cancel{G} \cdot \left(P_{\hat{S},ul} + P_{\hat{S},dodani}\right)} = 1 + \frac{k \cdot T_e \cdot B}{k \cdot T_0 \cdot B}$$

N2

Dvoprolazna pasivna mreža $F = 1 + \frac{T_e}{T_0}$ $F [dB] = 10 \log F$ $T_e = (F - 1)T_0$ $P_{\S,iz} = k \cdot G \cdot B \cdot (T + T_e)$ $L = \frac{1}{G}$ L[dB] = -G[dB] $T = 1 + (L - 1) \cdot T$ $F = 1 + (L - 1) \cdot T$ $T = 1 + (L - 1) \cdot T$ $F = 1 + (L - 1) \cdot \frac{T}{T_0}$ **Uočiti:** Ako je $T=T_0$, tada ie $F=I_{\alpha}$

TERMIČKI ŠUM

(Nyquistov, bijeli, Gaussov)

Miera šuma

 $G = G_1 \cdot G_2 \cdot \dots$ $T_e = T_{e1} + \frac{T_{e2}}{G_1} + \frac{T_{e3}}{G_1 G_2} + \dots$ $M_{\S} = \frac{F - 1}{1 - \frac{1}{G}}$ Na prvo mjesto u kaskadi treba ići komponenta s najmanjom mjerom šuma.

 $P_{\S,iz}' = P_{\S,iz} + SNR_{min} [dB]$

- \triangleright Kompresija pojačanja (P_1) i presjecišna točka 3. reda (P_3)
- \Rightarrow Linearno dinamičko područje: $DP_{\text{lin}} = \frac{P_1}{P_{\text{lin}}} \rightarrow P_1[dB] P_{\hat{s},iz}'[dB]$
- \Rightarrow Dinamičko područje bez intermodulacije: $DP_{\text{int}} = \frac{P_{o_1}}{P_{o_2}} \rightarrow \frac{2}{3} (P_3[dB] P_{S,iz}'[dB])$
- \Rightarrow Kaskada: $P_3 = \left(\frac{1}{G_1 P_1} + \frac{1}{P_1}\right)^{-1}$

 $F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_2 G_2} + \dots$

ZADATAK

Na slici je prikazana shema digitalnog mobilnog prijemnika. Frekvencijsko područje rada je $1805 \div 1880$ MHz (GSM 1800 pojas), a fizička temperatura sustava iznosi 300 K. Na ulaz sustava doveden je šum snage $P_{\text{Š.ul}} = -95$ dBm.

Odrediti ekvivalentnu temperaturu izvora šuma.

Odrediti faktor šuma pojačala te faktor šuma kaskade prijenosne linije i pojačala.

Odrediti izlaznu snagu šuma duž promatranog frekvencijskog područja.

5

A55-Z7R1

RJEŠENJE

Određivanje ekvivalentne temperature šuma na ulazu:

$$P_{\text{š,ul}} = 10^{\frac{-95}{10}} = 3.16 \cdot 10^{-10} \text{ mW} = 0.316 \text{ pW}$$

$$T_a = \frac{P_{\text{š,ul}}}{kB} = \frac{0.316 \cdot 10^{-12}}{1.38 \cdot 10^{-23} \cdot 75 \cdot 10^6} = 305.5 \text{ K}$$

➤ Određivanje faktora šuma pojačala:

$$F_2 = 1 + \frac{T_{e2}}{T_0} = 1 + \frac{180}{290} = 1.62$$

ZADATAK - skica

6

RJEŠENJE

110 110 111

Faktor šuma kaskade:

$$F = F_1 + \frac{F_2 - 1}{G_1} = F_1 + L_1 (F_2 - 1)$$

$$L_1 = 10^{\frac{1.5}{10}} = 1.413$$

$$Faktor šuma linije: F_1 = 1 + (L_1 - 1)\frac{T}{T_0} = 1 + (1.413 - 1)\frac{300}{290} = 1.43$$

$$F = 1.43 + 1.413 \cdot (1.62 - 1) = 2.3$$

$$F[dB] = 10 \log F = 10 \log 2.3 = 3.6 \text{ dB}$$

> Temperatura unesenog šuma kaskade:

$$T_e = (F-1)T_0 = (2.3-1) \cdot 290 = 377 \text{ K}$$

A55-Z7R2

A55-Z8R1

RJEŠENJE

➤ Određivanje izlazne snage šuma:

$$P_{\S,iz} = k \cdot (T_a + T_e) \cdot B \cdot G = 1.38 \cdot 10^{-23} (305.5 + 377) \cdot 75 \cdot 10^6 \cdot 11.18 = 7.9 \cdot 10^{-12} \text{ W}$$

$$B = 1880 - 1805 = 75 \text{ MHz}$$

$$G = G_1 G_2 = \frac{G_2}{L_1} = \frac{15.8}{1.413} = 11.18$$

$$P_{\S,iz}[dBm] = 10\log\frac{P_{\S,iz}}{1\cdot10^{-3}} = 10\log\frac{7.9\cdot10^{-12} \text{ W}}{1\cdot10^{-3}} = -81 \text{ dBm}$$

9

RJEŠENJE

Računamo snagu šuma na izlazu:

$$P_{\S,iz} = k \cdot (T_a + T_e) \cdot B \cdot G = 1.38 \cdot 10^{-23} \cdot (150 + 1162) \cdot 100 \cdot 10^6 \cdot 10^4 = 1.81 \cdot 10^{-8} \text{ W}$$

$$T_e = (F - 1) \cdot T_0 = (5.01 - 1) \cdot 290 = 1162.9 \text{ K}$$

$$F = 10^{\frac{7}{10}} = 5.01$$

$$G = 10^{\frac{40}{10}} = 10^4$$

$$P_{\hat{S},iz}[dBm] = 10 \cdot \log \frac{P_{\hat{S},iz}}{1 \cdot 10^{-3}} = 10 \cdot \log \frac{1.81 \cdot 10^{-8} \text{ W}}{1 \cdot 10^{-3}} = -47.4 \text{ dBm}$$

R

ZADATAK

Prijemnik ima faktor šuma 7 dB, točku kompresije 1 dB pri izlaznoj snazi od 25 dBm, pojačanje 40 dB, te presjecišnu točku 3. reda pri 35 dBm izlazne snage.

Ako je na ulazu prijemnika antena s ekvivalentnom temperaturom šuma $T_A = 150$ K, a željeni izlazni odnos signal-šum 10 dB, odrediti linearno dinamičko područje te dinamičko područje bez intermodulacije.

Širina pojasa prijemnika je 100 MHz.

10

RJEŠENJE

A55-Z8R2

Određivanje linearnog dinamičkog područja:

$$DP_{lin} = P_1 - (P_{\tilde{s},iz} + SNR) = 25 \text{ dBm} - (-47.4 + 10) \text{ dBm} = 62.4 \text{ dB}$$

➤ Određivanje dinamičkog područja bez intermodulacije:

$$DP_{INT} = \frac{2}{3} (P_3 - (P_{S,iz} + SNR)) = \frac{2}{3} (35 - (-47.4 + 10)) = 48.3 \text{ dB}$$

Uočiti: Pri određivanju dinamičkog područja minimalna razina signala mora biti iznad šuma za zadani minimalni SNR → "margina" sustava.

A55-2M-Z

ZADATAK

Na slici je prikazana kaskada niskošumnog pojačala i mješala frekvencija. Pojačanje pojačala iznosi 20 dB a presjecišna točka 3. reda se nalazi pri 22 dBm izlazne snage.

Mješalo unosi gubitke miješanja od 6 dB, a presjecišna točka 3. reda se nalazi pri 13 dBm ulazne snage.

Odrediti presjecišnu točku 3. reda cijelog sustava.

13

ZADATAK

Zadan je podsustav prijemnika koji se sastoji od pojasnopropusnog filtra širine 150 MHz i kaskade dvaju pojačala. Snaga signala na ulazu je -85 dBm, šuma -105 dBm, a parametri pojačala dani su u tablici. Projektirati sustav na minimalni faktor šuma (tj. odrediti najpovoljniji redoslijed pojačala u kaskadi). Fizička temperatura sustava neka iznosi 290 K. Za tako projektirani sustav odrediti:

- a) odnos signal-šum na izlazu
- b) presjecišnu točka 3. reda cijelog sustava (filtar kao pasivni sklop nema utjecaj na P_3)
- c) dinamičko područje bez intermodulacije (uz minimalni odnos signal-šum na izlazu od 3 dB)

RJEŠENJE

Odredimo izlaznu snagu presiecišne točke 3. reda:

$$P_3$$
" = P_3 " [u1] + G_2 = 13 dBm - 6 dB = 7 dBm

> Pretvorimo izraze u decibelima u numeričke vrijednosti:

$$P_3' = 10^{\frac{22}{10}} = 158 \text{ mW}$$
 $P_3' = 10^{\frac{7}{10}} = 5 \text{ mW}$ $G_2 = 10^{\frac{-6}{10}} = 0.25$

$$P_3' = 10^{\frac{7}{10}} = 5 \text{ mW}$$

$$G_2 = 10^{\frac{-6}{10}} = 0.25$$

Naposljetku računamo presjecišnu točku 3. reda za cijeli sustav:

$$P_3 = \left(\frac{1}{G_2 P_3'} + \frac{1}{P_3''}\right)^{-1} = \left(\frac{1}{0.25 \cdot 158 \cdot 10^{-3}} + \frac{1}{5 \cdot 10^{-3}}\right)^{-1} = 4.4 \text{ mW}$$

$$P_3$$
 [dBm] = $10 \log \frac{P_3}{10^{-3}} = 10 \log \frac{4.4 \cdot 10^{-3}}{10^{-3}} = 6.4 \text{ dBm}$

14

16

ZADATAK - skica

A55-2M-Zs

	PP filtar	Kaskada pojačala
ULAZ — $P_{S,ul}, P_{\check{S},ul}$	$L_1 = 1.5 \text{ dB}$	$ \longrightarrow IZLAZ $ $ P_{S,iz}, P_{\tilde{S},iz} $

Pojačalo	Pojačanje [dB]	Faktor šuma [dB]	P_3 [dBm, izlazno]
A	3	2.5	17
В	13	3.5	7

RJEŠENJE

Na prvo mjesto u kaskadi pojačala treba ići pojačalo s najmanjom mjerom šuma koja je funkcija faktora šuma i pojačanja:

$$M_{\S} = \frac{F - 1}{1 - \frac{1}{G}}$$

Računamo mjeru šuma svakog pojačala:

$$G_A = 10^{\frac{3}{10}} = 2$$

$$F_A = 10^{\frac{2.5}{10}} = 1.78$$

$$M_{\S,A} = \frac{1.78 - 1}{1 - \frac{1}{2}} = 1.56$$

$$G_B = 10^{\frac{13}{10}} = 20$$

$$F_B = 10^{\frac{3.5}{10}} = 2.24$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

$$M_{\S,B} = \frac{2.24 - 1}{1 - \frac{1}{20}} = 1.3$$

povoljnije staviti na prvo

RJEŠENJE

Pojačalo B Pojačalo A 3

Računanje ukupnog faktora šuma sustava:

$$F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} = 1.41 + \frac{2.24 - 1}{\frac{1}{1.41}} + \frac{1.78 - 1}{\frac{1}{1.41} \cdot 20} = 3.22 = 5.08 \text{ dB}$$

Ekvivalentna temperatura šuma sustava:

$$T_e = (F-1) \cdot T_0 = (3.22-1) \cdot 290 = 643.8 \text{ K}$$

Napomena

 $F_1 = L_1 = 1.5 \text{dB} = 1.41$ (pasivna dvoprolazna mreža)

$$G_1 = -L_1 = -1.5 dB = \frac{1}{1.41}$$

$$G_2 = G_B = 13 \text{ dB} = 20$$

17

A55-2M-R3 RJEŠENJE

Računanje odnosa signal-šum na izlazu:

$$\left(\frac{S}{N}\right)_{iz} = \frac{P_{S,iz}}{P_{\S,iz}} = \frac{P_{S,ul} \cdot \mathcal{G}}{k\mathcal{G}B(T_a + T_e)} = \frac{3.16 \cdot 10^{-9} \cdot 10^{-3}}{1.38 \cdot 10^{-23} \cdot 150 \cdot 10^6 \cdot (15.27 + 643.8)} = 2.32 = 3.64 \text{ dB}$$

$$S_{ul} = 10^{-8.5} = 3.16 \cdot 10^{-9} \text{ mW}$$

$$T_a = \frac{P_{\text{S,ul}}}{kB} = \frac{10^{-10.5} \cdot 10^{-3}}{1.38 \cdot 10^{-3} \cdot 150 \cdot 10^6} = 15.27 \text{ K}$$

Presjecišna točka 3. reda za kaskadu pojačala:

$$P_3 = \left(\frac{1}{G"P_3"} + \frac{1}{P_3"}\right)^{-1} = \left(\frac{1}{2 \cdot 5} + \frac{1}{50}\right)^{-1} = 8.33 \text{ mW}$$

$$P_3[dBm] = 10\log\frac{P_3}{10^{-3}} = 9.2 dBm$$

Napomena

2.33 mW
$$P_{3}' = P_{3,B} = 7 \text{ dBm} = 5 \text{ mW}$$

$$P_{3}'' = P_{3,A} = 17 \text{ dBm} = 50 \text{ mW}$$

$$P_{3}'' = P_{3,A} = 17 \text{ dBm} = 50 \text{ mW}$$

$$P_{3}'' = P_{3,A} = 3 \text{ dB} = 2$$

18

RJEŠENJE

A55-2M-R4

Naposljetku računamo dinamičko područje bez intermodulacije:

$$DP_{INT} = \frac{2}{3} (P_3 - (P_{S,iz} + SNR)) = \frac{2}{3} (9.2 - (-74.15 + 3)) = 53.56 \text{ dB}$$

Uočiti: U ovaj izraz izravno uvrštavamo vrijednosti u dB.

$$P_{\hat{S},iz} = k \cdot G \cdot B \cdot (T_a + T_e) = 1.38 \cdot 10^{-23} \cdot 28.18 \cdot 150 \cdot 10^6 \cdot (15.27 + 643.8) =$$

$$= 3.84 \cdot 10^{-11} \text{ W} = -74.15 \text{ dBm}$$

$$G = G_1 \cdot G_2 \cdot G_3 = \frac{1}{L_1} \cdot G_B \cdot G_A = \frac{1}{1.41} \cdot 20 \cdot 2 = 28.18$$

$$G[dB] = 10 \log G = 14.5 \text{ dB}$$

Blok dijagram bežičnog prijemnika zajedno s potrebnim parametrima dan je na slici. Izračunati ukupni faktor šuma prijemnika.

Ukoliko je na ulaz priključena antena s ekvivalentnom temperaturom šuma $T_a = 15$ K, odrediti izlaznu snagu šuma u dBm. Kolika je spektralna gustoća snage izlaznog šuma?

Ukoliko se zahtijeva minimalni odnos signal-šum od 20 dB na izlazu iz prijemnika, odrediti minimalni napon dozvoljen na ulazu prijemnika (tj. naponsku osjetljivost prijemnika).

Pretpostaviti da sustav radi na sobnoj temperaturi ($T_0 = 290 \text{ K}$), uz karakterističnu impedanciju 50 Ω i širinu međufrekvencijskog područja od 10 MHz.

21

A55-Z6R1

RJEŠENJE

Primijenimo izraz za ukupni faktor šuma kaskade:

$$F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2}$$

> Pretvorimo parametre zadane u decibelima u linearne vrijednosti:

$$G_1 = 10^{\frac{10}{10}} = 10$$

$$G_2 = 10^{\frac{-1}{10}} = 0.79$$

$$G_1 = 10^{\frac{10}{10}} = 10$$
 $G_2 = 10^{\frac{-1}{10}} = 0.79$ $G_3 = 10^{\frac{-3}{10}} = 0.5$

$$F_1 = 10^{\frac{2}{10}} = 1.58$$

$$F_1 = 10^{\frac{2}{10}} = 1.58$$
 $F_2 = L_2 = \frac{1}{G_2} = 1.26$ $F_3 = 10^{\frac{4}{10}} = 2.51$

$$F_3 = 10^{\frac{4}{10}} = 2.51$$

Proizlazi iz uvjeta zadatka $T=T_0$, a prema izrazu za faktor šuma pasivne dvoprolazne mreže:

$$F = 1 + (L - 1) \cdot \frac{T}{T_0}$$

ZADATAK - skica

22

RJEŠENJE

A55-Z6R2

> Uvrštavanjem dobivamo ukupni faktor šuma:

$$F = 1.58 + \frac{1.26 - 1}{10} + \frac{2.51 - 1}{10 \cdot 0.79} = 1.8$$

$$F[dB] = 10 \log F = 10 \log 1.8 = 2.55 dB$$

Računamo ekvivalentnu temperaturu šuma i prijenosnu funkciju cijelog sustava kako bismo dobili izlaznu snagu šuma:

$$T_e = (F-1) \cdot T_0 = (1.8-1) \cdot 290 = 232 \text{ K}$$

$$G = G_1 \cdot G_2 \cdot G_3 = 10 \cdot 0.79 \cdot 0.5 = 3.95$$

A55-Z10

RJEŠENJE

Lizlazna snaga šuma ovisi o snazi ulaznog šuma i šuma koji je dodao sustav, te o prijenosnoj funkciji G:

$$P_{\text{S}_{iz}} = k \cdot G \cdot B \cdot (T_a + T_e) = 1.38 \cdot 10^{-23} \cdot 3.95 \cdot 10 \cdot 10^6 \cdot (15 + 232)$$

$$P_{S_{iz}} = 1.35 \cdot 10^{-13} \text{ W} = -98.7 \text{ dBm}$$

> Spektralna gustoća snage šuma:

$$S_{\S}(\omega) = \frac{P_{\S,iz}}{2B} = \frac{1.35 \cdot 10^{-13}}{2 \cdot 10 \cdot 10^{6}} = 6.8 \cdot 10^{-21} \frac{W}{Hz}$$

25

ZADATAK

Zadan je GaAs FET sa slijedećim parametrima na frekvenciji 4 GHz:

$$S_{11} = 0.6 \angle -60^{\circ}; S_{12} = 0.05 \angle 26^{\circ};$$

 $S_{21} = 1.9 \angle 81^{\circ}; S_{22} = 0.5 \angle -60^{\circ};$

$$F_{min} = 1.445$$
; $\Gamma_{opt} = 0.62 \angle 100^{\circ}$; $R_N = 20 \Omega$

Pretpostaviti (radi jednostavnosti) da je pojačalo unilateralno te izračunati pogrešku u proračunu prijenosnog pojačanja snage.

Projektirati pojačalo za faktor šuma 2 dB uz maksimalno moguće pojačanje pri navedenom faktoru šuma. Karakteristična impedancija sustava iznosi 50 Ω .

RJEŠENJE

Ukoliko se na izlazu iz prijemnika zahtijeva minimalan odnos signal-šum od 20 dB (tj. $(S/N)_{iz}$ = 100), tada minimalnu ulaznu snagu određujemo na slijedeći način:

$$P_{\text{S,ul}} = \frac{P_{\text{S,iz}}}{G} = \frac{P_{\text{S,iz}}}{P_{\text{S,iz}}} \cdot \frac{P_{\text{S,iz}}}{G} = 100 \cdot \frac{1.35 \cdot 10^{-13}}{3.95} = 3.42 \cdot 10^{-12} \text{ W} = -84.7 \text{ dBm}$$

Dobivena snaga na ulazu odgovara slijedećem naponu (vršna vrijednost):

$$V_{\text{ul}} = \sqrt{2 \cdot P_{\text{S,ul}} \cdot Z_0} = \sqrt{2 \cdot 3.42 \cdot 10^{-12} \cdot 50} = 1.85 \cdot 10^{-5} \text{ V} = 18.5 \ \mu\text{V}$$

26

RJEŠENJE

A55-Z10R1

Računamo mjeru unilateralnosti:

$$U = \frac{|S_{11}||S_{12}||S_{21}||S_{22}|}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)} = 0.059$$

 \triangleright Omjer stvarnog i unilateralnog prijenosnog pojačanja $G_{\tau}/G_{\tau IJ}$ nalazi se u rasponu:

$$\frac{1}{(1+U)^2} < \frac{G_T}{G_{TU}} < \frac{1}{(1-U)^2} \qquad 0.891 < \frac{G_T}{G_{TU}} < 1.13$$

$$0.891 < \frac{G_T}{G_{TL}} < 1.13$$

➤ U decibelima navedeni omjer iznosi:

$$-0.5 \text{ dB} < G_T - G_{TU} < 0.53 \text{ dl}$$

 $-0.5 \text{ dB} < G_T - G_{TU} < 0.53 \text{ dB}$ Zbog pretpostavke unilateralnosti očekujemo pogrešku od ±0.5 dB.

27

RJEŠENJE

Korištenjem slijedećih izraza dobivamo centar i radijus kružnice konstantnog faktora šuma 2 dB:

$$F = 10^{\frac{2}{10}} = 1.58$$
 Pretvorba iz dB u numeričku vrijednost

$$N = \frac{F - F_{\min}}{4 \frac{R_N}{Z_0}} \cdot \left| 1 + \Gamma_{opt} \right|^2 = \frac{1.58 - 1.445}{4 \frac{20}{50}} \cdot \left| 1 + 0.62 \angle 100^{\circ} \right|^2 = 0.0986$$

$$C_F = \frac{\Gamma_{opt}}{N+1} = 0.56 \angle 100^{\circ}$$
 Centar kružnice

$$R_F = \frac{\sqrt{N(N+1-\Gamma_{opt})^2}}{N+1} = 0.24$$
 Radijus kružnice

29

A55-Z10R4

RJEŠENJE

Odredimo centar i radijus kružnice konstantnog dobitka prilagodne mreže ulaznog kruga:

$$C_G = \frac{d_G S_{11}^*}{1 - (1 - d_G)|S_{11}|^2}$$

$$C_G = \frac{d_G S_{11}^*}{1 - (1 - d_G)|S_{11}|^2} \qquad R_G = \frac{\sqrt{1 - d_G} \left(1 - |S_{11}|^2\right)}{1 - (1 - d_G)|S_{11}|^2}$$

Računamo centar i radijus za nekoliko proizvoljno odabranih vrijednosti D_G – tražimo najpovoljniju vrijednost uz zadani uvjet F=2dB:

$D_G(dB)$	d_G	$C_{ m G}$	$R_{ m G}$
1	0.805	0.52∠60°	0.3
1.5	0.904	0.56∠60°	0.205
1.7	0.946	0.58∠60°	0.15

30

A55-Z10R5

RJEŠENJE

- > Iz Smithovog dijagrama uočimo kako je maksimalno moguće pojačanje ulazne prilagodne mreže (uz faktor šuma 2 dB) jednako 1.7 dB.
- > Iz presjecišta dviju kružnica očitamo potrebni koeficijent refleksije generatora:

$$\Gamma_G = 0.53 \angle 75^{\circ}$$

➤ Izlazna prilagodna mreža – radi maksimalnog pojačanja izaberemo slijedeći koeficijent refleksije tereta:

$$\Gamma_T = S_{22}^* = 0.5 \angle 60^\circ$$

A55-Z10R6

RJEŠENJE

$$D_T = \frac{1}{1 - |S_{22}|^2} = 1.33 = 1.25 \text{ dB}$$

> Intrinsično pojačanje tranzistora:

$$G_0 = |S_{21}|^2 = 3.61 = 5.58 \text{ dB}$$

➤ Ukupno pojačanje pojačala (u dB):

$$G_{TU} = D_G + G_0 + D_T = 1.7 \text{ dB} + 5.58 \text{ dB} + 1.25 \text{ dB} = 8.53 \text{ dB}$$

➤ Prilagođenje impedancije možemo postići upotrebom stabova ili λ/4 transformatora...