Грамматики

Романенко Владимир Васильевич, к.т.н., доцент каф. АСУ ТУСУР

Грамматикой называется четверка $G = (N, \Sigma, P, S)$, где:

- N конечное множество нетерминальных символов или нетерминалов;
- Σ непересекающееся с N конечное множество терминальных символов (терминалов);
- P конечное подмножество множества $(N \cup \Sigma)^* N(N \cup \Sigma)^* \times (N \cup \Sigma)^*$, элемент (α, β) множества P называется правилом (порождающим правилом или продукцией) и записывается $\alpha \to \beta$;
- S выделенный символ из N, называемый начальным (стартовым, исходным) символом.

3

Классификация грамматик по виду правил:

• Грамматики общего вида (или грамматики без ограничений):

$$\alpha \rightarrow \beta$$

• Контекстно-зависимые грамматики:

$$\alpha \to \beta, |\alpha| \le |\beta|$$

$$\alpha \in (N \cup \Sigma)^* N(N \cup \Sigma)^*, \beta \in (N \cup \Sigma)^*$$

• Контекстно-свободные грамматики:

$$A \rightarrow \beta, A \in \mathbb{N}$$

 $A \in \mathbb{N}, \beta \in (\mathbb{N} \cup \Sigma)^*$

4

Грамматика определяет язык рекурсивным образом. Рекурсивность проявляется в задании особого рода цепочек, называемых выводимыми цепочками грамматики $G = (N, \Sigma, P, S)$, где:

- 1) S выводимая цепочка;
- 2) если $\alpha\beta\gamma$ выводимая цепочка и $\beta{\to}\delta\in P$, то $\alpha\delta\gamma$ тоже выводимая цепочка.

Выводимая цепочка грамматики G, не содержащая нетерминальных символов, называется терминальной цепочкой, порождаемой грамматикой G.

Обозначение вывода:

- $\phi \Rightarrow_G \psi$ цепочка ψ непосредственно выводится из цепочки ϕ в языке, заданном грамматикой G (или просто $\phi \Rightarrow \psi$).
- $\phi \Rightarrow^k \psi$ цепочка ψ выводится из цепочки ϕ за k операций вывода;
- $\phi \Rightarrow^+ \psi$ для вывода цепочки ψ из цепочки ϕ требуется от 1 и более операций вывода;
- $\phi \Rightarrow^* \psi$ для вывода цепочки ψ из цепочки ϕ требуется от о и более операций вывода.

6

Обозначение вывода:

• Левосторонний вывод. Если $\alpha \to \beta \in P$, то вывод $\phi \alpha \psi \Rightarrow \phi \beta \psi$

называется левосторонним и обозначается

$$\varphi \alpha \psi \Rightarrow_L \varphi \beta \psi$$

• Правосторонний вывод. Если $\alpha \to \beta \in P$, то вывод $\phi \beta \psi \Rightarrow \phi \alpha \psi$

называется правосторонним и обозначается

$$\varphi \alpha \psi \Rightarrow_R \varphi \beta \psi$$

7

Пример КЗ-грамматики:

$$S \rightarrow 0A1$$

$$0A \rightarrow 00A1$$

$$A \rightarrow e$$

Левосторонний вывод:

$$S \Rightarrow_L 0 \land A \Rightarrow_L 0 \land 0 \land A \Rightarrow_L 0 \land 0 \Rightarrow_L 0 \land$$

Поэтому можно сказать, что $S \Rightarrow_L^3$ о о 1 1, или $S \Rightarrow_L^*$ о о 1 1, или $S \Rightarrow_L^*$ о о 1 1.

8)

Пример КЗ-грамматики:

$$S \rightarrow 0A1$$

$$0A \rightarrow 00A1$$

$$A \rightarrow e$$

Правосторонний вывод:

$$0 \ 0 \ 1 \ 1 \Leftarrow_R 0 \ 0 \ A \ 1 \ 1 \Leftarrow_R 0 \ A \ 1 \Leftarrow_R S$$

Поэтому можно сказать, что $S \Rightarrow_R^3$ о о 1 1, или $S \Rightarrow_R^*$ о о 1 1, или $S \Rightarrow_R^*$ о о 1 1.

Контекстно-свободные грамматики

9

10

Классификация КС-грамматик:

11

Как проверить, что входная цепочка α является правильной в языке L?

• Используя левосторонний вывод, вывести из стартового символа грамматики *S* искомую цепочку:

$$S \Rightarrow_L^* \alpha$$

• Используя правосторонний вывод, вывести из искомой цепочки стартовый символ грамматики S:

$$S \Leftarrow_{R}^{*} \alpha$$

• Построить деревья вывода. Если искомая цепочка является кроной одного из деревьев вывода, то она является правильной.

Упрощённый способ построения дерева вывода для цепочки $\alpha = \alpha_1 \alpha_2 ... \alpha_n$:

- 1. Поместить цепочку α в корень дерева вывода.
- 2. Выбрать произвольный элемент цепочки α_i.
- 3. Если это нетерминал $\alpha_i = A \in N$, а во множестве правил P имеется правило вида $A \to \beta_1 \mid \beta_2 \mid ... \mid \beta_m$, то добавить в дерево новые узлы с цепочками $\alpha_1 \alpha_2 ... \alpha_{i-1} \beta_j \alpha_{i+1} ... \alpha_n$, где j=1,2,...,m.
- 4. Если в цепочке α не осталось нетерминалов, то это лист дерева. Повторять пункты 2-3, пока в дереве не останутся только листья.

13

Пример. Построим дерево вывода для грамматики

FIXED → SIGN MANT

 $SIGN \rightarrow + |-|e|$

MANT → . NUM | NUM FRACT

 $NUM \rightarrow 0-9 NUM2$

 $NUM2 \rightarrow NUM \mid e$

FRACT \rightarrow . NUM2 | e

Подряд идущие символы – конкатенация (читается как «и»), альтернатива – объединение (читается как «или»).

Примечание. Эту грамматику можно записать без использования знака альтернативы:

. . .

 $SIGN \rightarrow +$

 $SIGN \rightarrow -$

 $SIGN \rightarrow e$

• • •

 $MANT \rightarrow . NUM$

MANT → NUM FRACT

и т.д.

LL(k)- и LR(k)-грамматики

16)

Расшифровка названия:

- L входная цепочка разбирается слева направо;
- L используется левосторонний вывод;
- k варианты порождающего правила выбираются с помощью предварительного просмотра k символов входной цепочки ($k \ge 1$).

Проверка корректности грамматики типа LL(1) осуществляется анализом множеств направляющих символов T. Если у альтернатив какого-либо правила множества T пересекаются, то грамматика не является LL(1)-грамматикой.

Пример 1:

Правило	Множество Т
$FIXED \rightarrow SIGN MANT$	{+, -, ., o-9}
$SIGN \rightarrow +$	{+}
$SIGN \rightarrow -$	{-}
$SIGN \rightarrow e$	{. , 0-9}
$MANT \rightarrow . NUM$	{.}
$MANT \rightarrow NUM FRACT$	{0-9}
$NUM \rightarrow 0-9 NUM2$	{0-9}
$NUM2 \rightarrow NUM$	{0-9}
$NUM2 \rightarrow e$	{., ⊥}
FRACT \rightarrow . NUM2	{.}
$FRACT \rightarrow e$	{⊥}

Пример 2:

Правило	Множество Т
$FIXED \rightarrow SIGN MANT$	{+, -, ., o-9}
$SIGN \rightarrow +$	{+}
$SIGN \rightarrow -$	{-}
$SIGN \rightarrow e$	{. , 0-9}
$MANT \rightarrow . NUM$	{. }
$MANT \rightarrow NUM$. NUM	{0-9}
$MANT \rightarrow NUM$.	{0-9}
$MANT \rightarrow NUM$	{0-9}
$NUM \rightarrow 0-9 NUM2$	{0-9}
$NUM2 \rightarrow NUM$	{0-9}
$NUM2 \rightarrow e$	{., ⊥}

Пример 3. Проверим, является ли правильной цепочка +12.5

Используем левосторонний вывод:

FIXED
$$\Rightarrow$$
 SIGN MANT \Rightarrow + MANT \Rightarrow
 \Rightarrow + NUM FRACT \Rightarrow +1 NUM2 FRACT \Rightarrow

FIXED \rightarrow SIGN MANT SIGN \rightarrow + | - | eMANT \rightarrow . NUM | NUM FRACT NUM \rightarrow 0-9 NUM2 NUM2 \rightarrow NUM | eFRACT \rightarrow . NUM2 | e

Пример 3. Проверим, является ли правильной цепочка +12.5

Используем левосторонний вывод:

$$FIXED \Rightarrow SIGN MANT \Rightarrow + MANT \Rightarrow$$

$$\Rightarrow$$
 + NUM FRACT \Rightarrow +1 NUM2 FRACT \Rightarrow

Продолжение вывода невозможно без построения таблицы разбора!

```
FIXED \rightarrow SIGN MANT

SIGN \rightarrow + | - | e

MANT \rightarrow . NUM | NUM FRACT

NUM \rightarrow 0-9 NUM2

NUM2 \rightarrow NUM | e

FRACT \rightarrow . NUM2 | e
```

22

Пример 3. Проверим, является ли правильной цепочка +12.5

Используем левосторонний вывод:

$$FIXED \Rightarrow SIGN MANT \Rightarrow + MANT \Rightarrow$$

$$\Rightarrow$$
 + NUM FRACT \Rightarrow +1 NUM2 FRACT \Rightarrow

$$\Rightarrow$$
 +1 NUM FRACT \Rightarrow +12 NUM FRACT \Rightarrow +12 FRACT \Rightarrow

$$\Rightarrow$$
 +12. NUM2 \Rightarrow +12.5 NUM2 \Rightarrow +12.5

FIXED → SIGN MANT

 $SIGN \rightarrow + |-|e|$

 $MANT \rightarrow . NUM | NUM FRACT$

 $NUM \rightarrow 0-9 NUM2$

 $NUM2 \rightarrow NUM \mid e$

FRACT \rightarrow . NUM2 | e

23

Расшифровка названия:

- L входная цепочка разбирается слева направо;
- *R* используется правосторонний вывод;
- k варианты порождающего правила выбираются с помощью предварительного просмотра k символов входной цепочки ($k \ge 0$).

Проверка корректности грамматики типа LR(o) и LR(1) осуществляется при заполнении таблицы разбора по наличию LR-конфликтов.

24

Пример. Проверим, является ли правильной цепочка +12.5

Для начала преобразуем грамматику из предыдущего примера к виду LR. Для этого используем алгоритм устранения *e*-правил:

FIXED → **SIGN** MANT

 $SIGN \rightarrow + |-|e|$

MANT → . NUM | NUM FRACT

 $NUM \rightarrow 0-9 NUM2$

 $NUM2 \rightarrow NUM \mid e$

 $FRACT \rightarrow . NUM2 \mid e$

Пример. Проверим, является ли правильной цепочка +12.5

Для начала преобразуем грамматику из предыдущего примера к виду LR. Для этого используем алгоритм устранения *e*-правил:

FIXED → SIGN MANT | MANT

 $SIGN \rightarrow + | -$

MANT → . NUM | NUM FRACT

 $NUM \rightarrow 0-9 NUM2$

 $NUM2 \rightarrow NUM \mid e$

 $FRACT \rightarrow . NUM2 \mid e$

26

Пример. Проверим, является ли правильной цепочка +12.5

Для начала преобразуем грамматику из предыдущего примера к виду LR. Для этого используем алгоритм устранения *e*-правил:

FIXED → SIGN MANT | MANT

 $SIGN \rightarrow + | -$

MANT → . NUM | NUM FRACT

 $NUM \rightarrow 0-9 NUM \mid 0-9$

 $FRACT \rightarrow . NUM | . | e$

27

Пример. Проверим, является ли правильной цепочка +12.5

Для начала преобразуем грамматику из предыдущего примера к виду LR. Для этого используем алгоритм устранения *e*-правил:

FIXED → SIGN MANT | MANT

 $SIGN \rightarrow + | -$

MANT → . NUM | NUM FRACT | NUM

 $NUM \rightarrow 0-9 NUM \mid 0-9$

FRACT \rightarrow . NUM | .

28

Пример. Проверим, является ли правильной цепочка +12.5

Для начала преобразуем грамматику из предыдущего примера к виду LR. Возможны и другие формы записи, например:

FIXED \rightarrow + MANT | - MANT | MANT | MANT \rightarrow . NUM | NUM . NUM | NUM . | NUM NUM \rightarrow 0-9 NUM | 0-9

Пример. Проверим, является ли правильной цепочка +12.5

Используем правосторонний вывод:

 $+12.5 \Rightarrow SIGN 12.5 \Rightarrow SIGN NUM 2.5 \Rightarrow SIGN MANT 2.5 \Rightarrow$

 \Rightarrow FIXED 2.5 \Rightarrow FIXED NUM . 5 \Rightarrow ² FIXED FIXED . 5 \Rightarrow

 \Rightarrow FIXED FIXED FRACT 5 \Rightarrow FIXED FIXED FRACT NUM \Rightarrow

⇒² FIXED FIXED FRACT FIXED

FIXED \rightarrow SIGN MANT | MANT SIGN \rightarrow + | – MANT \rightarrow . NUM | NUM FRACT | NUM NUM \rightarrow 0-9 NUM | 0-9 FRACT \rightarrow . NUM | .

Пример. Проверим, является ли правильной цепочка +12.5

Используем правосторонний вывод:

 $+12.5 \Rightarrow SIGN \ 12.5 \Rightarrow SIGN \ NUM \ 2.5 \Rightarrow SIGN \ MANT \ 2.5 \Rightarrow$

 \Rightarrow FIXED 2.5 \Rightarrow FIXED NUM . 5 \Rightarrow ² FIXED FIXED . 5 \Rightarrow

 \Rightarrow FIXED FIXED FRACT 5 \Rightarrow FIXED FIXED FRACT NUM \Rightarrow

⇒² FIXED FIXED FRACT FIXED

Вывод зашёл в тупик. Причина – неправильно выполненные свёртки. Для решения проблемы нужна таблица разбора!

Пример. Проверим, является ли правильной цепочка +12.5

Используем правосторонний вывод:

 $+12.5 \Rightarrow SIGN 12.5 \Rightarrow SIGN 1 NUM . 5 \Rightarrow$

 \Rightarrow SIGN NUM . 5 \Rightarrow SIGN NUM . NUM \Rightarrow

 \Rightarrow SIGN NUM FRACT \Rightarrow SIGN MANT \Rightarrow FIXED

FIXED \rightarrow SIGN MANT | MANT SIGN \rightarrow + | -MANT \rightarrow . NUM | NUM FRACT | NUM NUM \rightarrow 0-9 NUM | 0-9 FRACT \rightarrow . NUM | .

32

КС-грамматика:

$$G = (N, \Sigma, P, S)$$

Алгоритм построения грамматики:

- 1. Определяем алфавит языка Σ .
- **2.** Строим множество правил P.
- 3. Множество нетерминалов N определяется по левым частям правил, т.е. по символам, стоящим слева от знака вывода.
- 4. Стартовым символом S будет нетерминал, с которого должен начинаться вывод (корень дерева вывода).

Как строить правила?

Вариант 1. Подобно построению функции переходов ДКА или ДМПА, продвигаясь по синтаксису входной цепочки слева направо:

1. Записываем стартовое правило грамматики

$$S \rightarrow \langle \lambda \rangle$$
,

где $<\lambda>$ — описание правильного предложения языка L на естественном языке. За стартовый символ грамматики принимаем S. Добавляем S во множество нетерминалов N.

2. В построенном множестве правил выбираем все правила вида

$$X \rightarrow \alpha < \lambda >$$
,

где α – уже составленная часть правила, $\alpha \in (N \cup \Sigma)^*$, а $<\lambda>$ – ещё не формализованная часть правила на естественном языке.

35

3. Если предложение $<\lambda>$ может начинаться с какой-то конструкции Y_1 , то производим уточнение правила:

$$X \rightarrow \alpha Y_1 < \lambda_1 >$$

Если таких конструкций может быть несколько $(Y_1, Y_2, ...)$, то получим несколько альтернатив уточнённого правила

$$X \rightarrow \alpha Y_1 < \lambda_1 > |\alpha Y_2 < \lambda_2 > |\dots$$

Здесь $<\lambda_1>$ — оставшаяся часть входной цепочки, которая может следовать за Y_1 , $<\lambda_2>$ — за Y_2 , и т.д.

- 4. Если предложение $<\lambda>$ может быть пустым, то также добавляем правило $X \to \alpha$.
- 5. Если конструкции Y_1 , Y_2 и т.д. не являются элементами алфавита языка (терминальными символами), то добавляем их во множество нетерминалов N, и для каждого Y_i записываем новое правило

$$Y_i \rightarrow \langle \mu_i \rangle$$

36

Примечание. Следует также проверить, возможно, некоторые требуемые конструкции Y_i уже описаны в других правилах грамматики $Z \to \beta$. Тогда новый нетерминал Y_i не вводится, а в правых частях правил вместо Y_i используем Z. Т.е. нетерминал — это некоторый аналог состояния KA, и мы стараемся избегать ввода в грамматику состояний, которые дублируют друг друга (хотя, по аналогии с KA, позже их можно удалить с помощью специальных алгоритмов).

6. Повторяем шаги 2-5 до тех пор, пока в грамматике не останется правил вида

$$X \rightarrow \alpha < \lambda >$$
,

т.е. пока все предложения на естественном языке не будут формализованы и удалены из правил. Другими словами, все правила будут иметь вид

$$X \to \alpha$$
,

где цепочка α либо является пустой ($\alpha = e$), либо состоит только из терминалов и нетерминалов грамматики, $\alpha \in (N \cup \Sigma)^*$.

Как строить правила?

Вариант 2. Методом декомпозиции, когда конструкции естественного языка декомпозируются до тех пор, пока не будут представлены в виде цепочек терминалов и нетерминалов:

1. Записываем стартовое правило грамматики

$$S \rightarrow \langle \lambda \rangle$$
,

где $<\lambda>$ — описание правильного предложения языка L на естественном языке. За стартовый символ грамматики принимаем S. Добавляем S во множество нетерминалов N.

2. В построенном множестве правил выбираем все правила вида

$$X \rightarrow \alpha < \lambda >$$
,

где α – уже составленная часть правила, $\alpha \in (N \cup \Sigma)^*$, а $<\lambda>$ – ещё не формализованная часть правила на естественном языке.

38

3. Анализируем предложение $<\lambda>$ — из каких конструкций $Y_1, Y_2,$ и т.д. оно состоит, и производим уточнение правила:

$$X \rightarrow \alpha Y_1 Y_2 \dots$$

Если вариантов таких конструкций может быть несколько, то получим несколько альтернатив уточнённого правила

$$X \rightarrow \alpha Y_{11} Y_{12} \dots \mid \alpha Y_{21} Y_{22} \dots \mid \dots$$

- 4. Если предложение $<\lambda>$ может быть пустым, то также добавляем правило $X \to \alpha$.
- 5. Если конструкции Y_1 , Y_2 и т.д. не являются элементами алфавита языка (терминальными символами), то добавляем их во множество нетерминалов N, и для каждого Y_i записываем новое правило

$$Y_i \rightarrow \langle \mu_i \rangle$$

6. Аналогично предыдущему случаю, повторяем шаги 2-5 до тех пор, пока в правилах не останется предложений на естественном языке.

39

При составлении правил можно использовать следующие типовые приёмы:

Приём 1. Конкатенация. Если конструкции а и b должны следовать друг за другом, то этому будет соответствовать правило

$$X \rightarrow a b$$

Приём 2. Объединение. Если следующей конструкцией входной цепочки является либо а, либо b, то этому будет соответствовать правило

$$X \rightarrow a \mid b$$

40

При составлении правил можно использовать следующие типовые приёмы:

Приём 3. Положительная итерация. Если конструкция а в данной части входной цепочки может повторяться от 1 и более раз, то этому будут соответствовать правила LL(1)-грамматики

$$X \rightarrow$$
 а Y
 $Y \rightarrow$ а $Y \mid e$ или $Y \rightarrow X \mid e$
или $LR(k)$ -грамматики
 $X \rightarrow$ а \mid а X или $X \rightarrow$ а \mid X X

41

При составлении правил можно использовать следующие типовые приёмы:

Приём 4. Обычная итерация. Если в предыдущем случае цепочка а может вообще отсутствовать, то в LL(1)-грамматике получим правила

$$X \rightarrow a X \mid e$$

Примечание. В LR(k)-грамматиках такое описать невозможно. Если X не является стартовым символом, то описываем положительную итерацию, но для всех правил вида $Y \to \alpha X \beta$ (т.е. с символом X в правой части) добавляем альтернативу $Y \to \alpha \beta$.

42

При составлении правил можно использовать следующие типовые приёмы:

Приём 5. Конкатенация с итерацией. Если в данной части входной цепочки после конструкции а может повторяться от о и более раз другая конструкция b, то

$$X \rightarrow a Y$$

$$X \rightarrow a \mid a \mid Y$$

$$Y \rightarrow b Y \mid e$$

$$Y \rightarrow b \mid Y Y$$
 или $Y \rightarrow b \mid b Y$

Если конструкция b должна повторяться от 1 и более раз, то

$$X \rightarrow a b Y$$

$$X \rightarrow ab \mid abY$$

$$Y \rightarrow b Y \mid e$$

$$Y \rightarrow b \mid Y Y$$
 или $Y \rightarrow b \mid b Y$

43

При составлении правил можно использовать следующие типовые приёмы:

Приём 6. Итерация объединения. Если в данной части входной цепочки может в произвольном порядке располагаться произвольное количество (от о и более) конструкций а и b, то в LL(1)-грамматике получим правила

$$X \rightarrow Y X \mid e$$
 или $X \rightarrow a X \mid b X \mid e$ $Y \rightarrow a \mid b$

Примечание. Для LR(k)-грамматик – аналогично предыдущему замечанию.

При составлении правил можно использовать следующие типовые приёмы:

Приём 6. Итерация объединения. Если должна быть как минимум одна такая конструкция, то этому будут соответствовать правила LL(1)-грамматики

$$X \rightarrow a Y \mid b Y$$

 $Y \rightarrow a Y \mid b Y \mid e$ или $Y \rightarrow X \mid e$

или LR(k)-грамматики

$$X \rightarrow a \mid b \mid a X \mid b X$$
 или $X \rightarrow a \mid b \mid X X$

45

При составлении правил можно использовать следующие типовые приёмы:

Приём 7. Итерация конкатенации. Если в данной части входной цепочки может располагаться произвольное количество (от о и более) конструкций а и b, следующих друг за другом, то в LL(1)-грамматике получим правила

 $X \rightarrow a b X \mid e$

Примечание. Для LR(k)-грамматик – аналогично предыдущему замечанию.

46

При составлении правил можно использовать следующие типовые приёмы:

Приём 7. Итерация конкатенации. Если должно быть как минимум одно вхождение таких конструкций, то этому будут соответствовать правила LL(1)-грамматики

$$X \rightarrow a b Y$$

$$Y \rightarrow a b Y \mid e$$
 или $Y \rightarrow X \mid e$

или LR(k)-грамматики

$$X \rightarrow a b \mid a b X или X \rightarrow a b \mid X X$$

47

Как строить правила?

Вариант 3. Если имеется ДКА $M = (Q, \Sigma, \delta, q_o, F)$, можно построить соответствующую ему праволинейную грамматику $G = (Q, \Sigma, P, q_o)$. Правила грамматики P формируются следующим образом:

- 1) если имеется функция переходов $\delta(X_i, a) = X_j, a \in \Sigma$, то добавить в грамматику правило $X_i \to a \, X_j$;
- 2) если состояние X_i является конечным ($X_i \in F$ или $\delta(X_i,$
- \perp) = HALT), то добавить в грамматику правило $X_i \rightarrow e$.

Несложно выполнить обратное действие – преобразовать праволинейную грамматику в ДКА.

48

Пример 1. Рассмотрим язык L, описывающий число с плавающей точкой. Такое число может начинаться со знака «+» или «-», далее следует мантисса числа, затем необязательная экспонента. Как мы уже говорили, разные языки программирования допускают различные формы записи мантиссы, в общем случае они могут быть следующими: «N.M», «N.», «M», «N», где N- целая, а M- дробная часть числа. Оба числа N и M имеют одинаковый формат – это последовательность из одной и более цифр в диапазоне от о до 9. Т.е. это обычные целые числа, и можно считать, что N = M (имеется в виду формат чисел, а не их значения).

49

Экспонента начинается с буквы «Е» или «е», далее может быть указан знак (если не указан — экспонента считается положительной). Далее следует от 1 и более цифр в диапазоне от 0 до 9. Таким образом, общий формат числа с плавающей точкой следующий:

$$[+|-](N.N|N.|.N|N)[(E|e)[+|-]N],$$

где $N = (0-9)^+$. Примеры:

Используем вариант построения правил №1:

FLOAT → <число с плавающей точкой>

Используем вариант построения правил №1:

```
FLOAT \rightarrow <число без знака\triangleright |
```

- + <число без знака> |
- <число без знака>

Используем вариант построения правил №1:

```
FLOAT → UNSIGNED |
```

- + UNSIGNED |
- UNSIGNED

UNSIGNED \rightarrow <число без знака>

Используем вариант построения правил №1:

Используем вариант построения правил №1:

```
FLOAT \rightarrow + UNSIGNED |
```

- UNSIGNED |
- o-9 INTNUM |
- . FRACTNUM

UNSIGNED \rightarrow <число без знака>

 $INTNUM \rightarrow \langle$ число с целой частью \rangle

FRACTNUM → <число без целой части>

Используем вариант построения правил №1:

FLOAT \rightarrow <знак> <число без знака>

FLOAT

Используем вариант построения правил №1:

FLOAT → SIGN NUMBER

 $SIGN \rightarrow <3$ Hak>

NUMBER \rightarrow <число без знака>

FLOAT SIGN NUMBER

Используем вариант построения правил №1:

FLOAT → SIGN NUMBER

$$SIGN \rightarrow + |-|e|$$

NUMBER → <mantucca> <экспонента>

FLOAT SIGN NUMBER

Используем вариант построения правил №1:

FLOAT → SIGN NUMBER

 $SIGN \rightarrow + |-|e|$

NUMBER → MANT EXP | MANT

MANT → <mantucca>

 $EXP \rightarrow \langle Экспонента \rangle$

FLOAT SIGN NUMBER MANT EXP

Используем вариант построения правил №1:

```
FLOAT \rightarrow SIGN NUMBER
```

```
SIGN \rightarrow + |-|e|
```

NUMBER \rightarrow MANT EXP | MANT

MANT \rightarrow . <дробная часть> \mid 0-9 <целая и дробная часть>

 $EXP \rightarrow E$ <знак экспоненты> <значение> | е <знак экспоненты> <значение>

FLOAT SIGN NUMBER MANT EXP

Используем вариант построения правил №1:

FLOAT → SIGN NUMBER

 $SIGN \rightarrow + |-|e|$

NUMBER → MANT EXP | MANT

MANT \rightarrow . DIGITS | 0-9 <целая и дробная часть>

EXP → E SIGN <3Haчeниe> | e SIGN <3Haчeниe>

DIGITS \rightarrow <дробная часть>

FLOAT SIGN NUMBER MANT EXP DIGITS

Используем вариант построения правил №1:

FLOAT → SIGN NUMBER

 $SIGN \rightarrow + |-|e|$

NUMBER → MANT EXP | MANT

MANT \rightarrow . DIGITS | 0-9 <целая и дробная часть>

EXP → E SIGN <3Haчeниe> | e SIGN <3Haчeниe>

DIGITS \rightarrow 0-9 < оставшиеся цифры>

FLOAT SIGN NUMBER MANT EXP DIGITS

Используем вариант построения правил №1:

 $FLOAT \rightarrow SIGN NUMBER$

 $SIGN \rightarrow + |-|e|$

NUMBER → MANT EXP | MANT

MANT \rightarrow . DIGITS | 0-9 <целая и дробная часть>

EXP → E SIGN <3Haчeниe> | e SIGN <3Haчeниe>

DIGITS \rightarrow 0-9 DIGITS2

 $\text{DIGITS2} \rightarrow \text{DIGITS} \mid \boldsymbol{e}$

FLOAT
SIGN
NUMBER
MANT
EXP
DIGITS

Используем вариант построения правил №1:

FLOAT → SIGN NUMBER

 $SIGN \rightarrow + |-|e|$

NUMBER \rightarrow MANT EXP | MANT

MANT \rightarrow . DIGITS | 0-9 <целая и дробная часть>

 $EXP \rightarrow E$ SIGN DIGITS | e SIGN DIGITS

DIGITS \rightarrow 0-9 DIGITS2

 $\text{DIGITS2} \rightarrow \text{DIGITS} \mid \boldsymbol{e}$

FLOAT
SIGN
NUMBER
MANT
EXP
DIGITS
DIGITS2

Используем вариант построения правил №1:

FLOAT → SIGN NUMBER

 $SIGN \rightarrow + |-|e|$

NUMBER \rightarrow MANT EXP | MANT

 $MANT \rightarrow . DIGITS \mid 0-9 MANT2$

 $EXP \rightarrow E$ SIGN DIGITS | e SIGN DIGITS

DIGITS \rightarrow 0-9 DIGITS2

 $DIGITS2 \rightarrow DIGITS \mid e$

 $MANT2 \rightarrow \langle octabшаяся целая часть \rangle \langle дробная часть \rangle$

FLOAT

SIGN

NUMBER

MANT

EXP

DIGITS

DIGITS2

MANT₂

Используем вариант построения правил №1:

FLOAT → SIGN NUMBER

 $SIGN \rightarrow + |-|e|$

NUMBER \rightarrow MANT EXP | MANT

 $MANT \rightarrow . DIGITS \mid 0-9 MANT2$

 $EXP \rightarrow E$ SIGN DIGITS | e SIGN DIGITS

DIGITS \rightarrow 0-9 DIGITS2

 $DIGITS2 \rightarrow DIGITS \mid e$

MANT2 → DIGITS2 FRACT

FRACT → <дробная часть>

FLOAT SIGN NUMBER MANT EXP DIGITS

MANT2

DIGITS2

FRACT

Используем вариант построения правил №1:

FLOAT → SIGN NUMBER

 $SIGN \rightarrow + |-|e$

NUMBER \rightarrow MANT EXP | MANT

 $MANT \rightarrow . DIGITS \mid 0-9 MANT2$

 $EXP \rightarrow E$ SIGN DIGITS | e SIGN DIGITS

DIGITS \rightarrow 0-9 DIGITS2

 $DIGITS2 \rightarrow DIGITS \mid e$

MANT2 → DIGITS2 FRACT

FRACT $\rightarrow e \mid . \mid . <$ цифры>

FLOAT SIGN NUMBER MANT EXP DIGITS

DIGITS2

MANT₂

FRACT

Используем вариант построения правил №1:

FLOAT → SIGN NUMBER

 $SIGN \rightarrow + |-|e|$

NUMBER \rightarrow MANT EXP | MANT

 $MANT \rightarrow . DIGITS \mid 0-9 MANT2$

 $EXP \rightarrow E$ SIGN DIGITS | e SIGN DIGITS

DIGITS \rightarrow 0-9 DIGITS2

 $DIGITS2 \rightarrow DIGITS \mid e$

MANT2 → DIGITS2 FRACT

FRACT $\rightarrow e$ | . | . DIGITS или FRACT $\rightarrow e$ | . DIGITS2

FLOAT

SIGN

NUMBER

MANT

EXP

DIGITS

DIGITS2

MANT2

FRACT

Используем вариант построения правил №2:

FLOAT \rightarrow <знак> <мантисса> <экспонента>

FLOAT

Используем вариант построения правил №2:

FLOAT → SIGN MANT EXP

SIGN \rightarrow <3HaK>

MANT → <mantucca>

 $EXP \rightarrow \langle Экспонента \rangle$

FLOAT SIGN MANT EXP

Используем вариант построения правил №2:

```
FLOAT \rightarrow SIGN MANT EXP
```

```
SIGN \rightarrow + |-|e|
```

MANT → NUM . NUM | NUM . | . NUM | NUM

 $EXP \rightarrow \langle$ символ экспоненты $\rangle \langle$ знак экспоненты $\rangle \langle$ значение экспоненты $\rangle | e$

 $NUM \rightarrow \langle \mu \phi \rho \omega \rangle$

FLOAT SIGN MANT EXP NUM

Используем вариант построения правил №2:

```
FLOAT \rightarrow SIGN MANT EXP
```

```
SIGN \rightarrow + |-|e|
```

MANT → NUM . NUM | NUM . | . NUM | NUM

 $EXP \rightarrow ESIGN SIGN NUM \mid e$

 $NUM \rightarrow 0-9 NUM2$

 $NUM2 \rightarrow 0$ -9 $NUM2 \mid e$ или $NUM2 \rightarrow NUM \mid e$

ESIGN \rightarrow E | e

FLOAT SIGN MANT EXP NUM NUM2 ESIGN

72

Получили грамматику $G = (N, \Sigma, P, S)$, где:

- *N* = {FLOAT, SIGN, MANT, EXP, NUM, NUM2, ESIGN};
- $\Sigma = \{+, -, o-9, ., E, e\};$
- $P = \{FLOAT \rightarrow SIGN MANT EXP, SIGN \rightarrow + | | e, MANT \rightarrow NUM . NUM | NUM . | . NUM | NUM, EXP \rightarrow ESIGN SIGN NUM | e, NUM \rightarrow 0-9 NUM2, NUM2 \rightarrow NUM | e, ESIGN \rightarrow E | e};$
- S = FLOAT.

Данная грамматика не является ни LL(1)-грамматикой, ни LR(k)-грамматикой.

73

Правило	Множество <i>Т</i>
$FLOAT \rightarrow SIGN MANT EXP$	{+, -, ., o-9}
$SIGN \rightarrow +$	{+}
$SIGN \rightarrow -$	{-}
$SIGN \rightarrow e$	{. , 0-9}
$MANT \rightarrow NUM$. NUM	{0-9}
$MANT \rightarrow NUM$.	{0-9}
$MANT \rightarrow . NUM$	{. }
$MANT \rightarrow NUM$	{0-9}
$EXP \rightarrow ESIGN SIGN NUM$	{E, e}
$EXP \rightarrow e$	$\{ot\}$
$NUM \rightarrow 0-9 \text{ NUM2}$	{0-9}
$NUM2 \rightarrow NUM$	{0-9}
$NUM2 \rightarrow e$	{. , E, e, ⊥}
$ESIGN \rightarrow E \mid e$	{E, e}

74

Приведём грамматику к виду LL(1):

 $FLOAT \rightarrow SIGN MANT EXP$

 $SIGN \rightarrow + |-|e|$

MANT -> NUM . NUM | NUM . | NUM | . NUM

 $EXP \rightarrow ESIGN SIGN NUM \mid e$

 $NUM \rightarrow 0-9 NUM2$

 $NUM2 \rightarrow NUM \mid e$

75

Приведём грамматику к виду LL(1):

FLOAT → SIGN MANT EXP

 $SIGN \rightarrow + |-|e|$

MANT → NUM . NUM2 | NUM | . NUM

 $EXP \rightarrow ESIGN SIGN NUM \mid e$

 $NUM \rightarrow 0-9 NUM2$

 $NUM2 \rightarrow NUM \mid e$

76

Приведём грамматику к виду LL(1):

 $FLOAT \rightarrow SIGN MANT EXP$

 $SIGN \rightarrow + |-|e|$

MANT → NUM FRACT | . NUM

FRACT \rightarrow . NUM2 | e

 $EXP \rightarrow ESIGN SIGN NUM \mid e$

 $NUM \rightarrow 0-9 NUM2$

 $NUM2 \rightarrow NUM \mid e$

ESIGN \rightarrow E | e

77

Правило	Множество <i>Т</i>
$FLOAT \rightarrow SIGN MANT EXP$	{+, -, ., o-9}
$SIGN \rightarrow +$	{+}
$SIGN \rightarrow -$	{-}
$SIGN \rightarrow e$	{. , 0-9}
$MANT \rightarrow NUM FRACT$	{0-9}
$MANT \rightarrow . NUM$	{.}
FRACT \rightarrow . NUM2	{. }
$FRACT \rightarrow e$	$\{E, e, \bot\}$
$EXP \rightarrow ESIGN SIGN NUM$	{E, e}
$EXP \rightarrow e$	$\{ot\}$
$NUM \rightarrow 0-9 \text{ NUM2}$	{0-9}
$NUM2 \rightarrow NUM$	{0-9}
$NUM2 \rightarrow e$	{. , E, e, ⊥}
$ESIGN \rightarrow E \mid e$	{E, e}

78

Приведём грамматику к праволинейному виду:

FLOAT
$$\rightarrow$$
 + UNSIGNED | $-$ UNSIGNED | o - 9 INT | . FRACT

UNSIGNED \rightarrow 0-9 INT | . FRACT

 $INT \rightarrow o-9 INT \mid . FRACT2 \mid e EXP \mid E EXP \mid e$

 $FRACT \rightarrow 0-9 FRACT2$

FRACT2 \rightarrow 0-9 FRACT2 | e EXP | E EXP | e

 $EXP \rightarrow + NUM \mid - NUM \mid 0-9 NUM2$

 $NUM \rightarrow 0-9 NUM2$

 $NUM2 \rightarrow 0-9 NUM2 \mid e$

79

Праволинейную грамматику можно легко преобразовать в ДКА. Или, наоборот, из ДКА легко получить праволинейную грамматику.

Но для выполнения лабораторной работы это неприемлемый вариант. Праволинейная грамматика (равно как и ДКА) не позволяет описывать языки, содержащие рекурсивные конструкции.

Приведём грамматику к виду LR(k):

 $FLOAT \rightarrow SIGN MANT EXP$

$$SIGN \rightarrow + |-|e|$$

MANT

NUM . NUM | NUM . | . NUM | NUM

 $EXP \rightarrow ESIGN SIGN NUM \mid e$

 $NUM \rightarrow 0-9 NUM2$

 $NUM_2 \rightarrow NUM \mid e$

81

Приведём грамматику к виду LR(k):

FLOAT → SIGN MANT EXP | MANT EXP

 $SIGN \rightarrow + | -$

MANT -> NUM . NUM | NUM . | . NUM | NUM

EXP → ESIGN SIGN NUM | ESIGN NUM | e

 $NUM \rightarrow 0-9 NUM2$

 $NUM2 \rightarrow NUM \mid e$

82

Приведём грамматику к виду LR(k):

FLOAT → SIGN MANT EXP | MANT EXP | SIGN MANT | MANT

 $SIGN \rightarrow + | -$

MANT

NUM . NUM | NUM . | . NUM | NUM

EXP → ESIGN SIGN NUM | ESIGN NUM

 $NUM \rightarrow 0-9 NUM2$

 $NUM2 \rightarrow NUM \mid e$

83

Приведём грамматику к виду LR(k):

FLOAT → SIGN MANT EXP | MANT EXP | SIGN MANT | MANT

 $SIGN \rightarrow + | -$

MANT

NUM . NUM | NUM . | . NUM | NUM

EXP → ESIGN SIGN NUM | ESIGN NUM

 $NUM \rightarrow 0-9 NUM \mid 0-9 или$

 $NUM \rightarrow NUM NUM \mid 0-9$

Приведём грамматику к нормальной форме Хомского:

FLOAT → SIGN UNSIGNED | MANT EXP | NUM EXP |
SIGN MANT | SIGN NUM | NUM FRACT |
DOT NUM | NUM NUM | 0-9

 $SIGN \rightarrow + | -$

UNSIGNED → MANT EXP | NUM EXP

MANT → NUM FRACT | DOT NUM

 $NUM \rightarrow NUM NUM \mid 0-9$

FRACT \rightarrow DOT NUM | .

EXP → ESIGN EXP2 | ESIGN NUM

EXP2 → SIGN NUM

ESIGN \rightarrow E | e

Приведём грамматику к нормальной форме Грейбаха:

```
FLOAT \rightarrow + MANT EXP \mid - MANT EXP \mid + MANT \mid
           - MANT | o-9 NUM FRACT EXP |
           o-9 FRACT EXP | o-9 NUM EXP | o-9 EXP |
           . NUM EXP | 0-9 NUM FRACT | 0-9 FRACT |
           0-9 NUM | 0-9 | . NUM
MANT \rightarrow 0-9 NUM FRACT | 0-9 FRACT | 0-9 NUM | 0-9 |
          . NUM
FRACT \rightarrow . NUM | .
NUM \rightarrow 0-9 NUM \mid 0-9
EXP → E SIGN NUM | e SIGN NUM
SIGN \rightarrow + | -
```

86

Пример 2. Язык, описывающий двоичные числа без незначащих нулей.

	O	1	<u></u>
q_{o}	$q_{_1}$	${ m q_2}$	ERROR
$q_{_1}$	ERROR	ERROR	HALT
$ m q_{_2}$	$ m q_{2}$	${f q_2}$	HALT

Построим правила праволинейной грамматики:

$$q0 \rightarrow 0 \ q1 \ | \ 1 \ q2$$
 $q1 \rightarrow e$
 $q2 \rightarrow 0 \ q2 \ | \ 1 \ q2 \ | \ e$

T.e. $N = \{q0, q1, q2\}, \Sigma = \{0, 1\}, S = q0.$

87)

Упростим:

$$q0 \rightarrow 0 \mid 1 q2$$

 $q2 \rightarrow 0 q2 \mid 1 q2 \mid e$

Получили грамматику $G = (N, \Sigma, P, S)$, где

- $N = \{q0, q2\};$
- $\Sigma = \{0, 1\};$
- $P = \{(q0, 0), (q0, 1 q1), (q2, 0 q2), (q2, 1 q2), (q2, e)\};$
- S = qo.

Преобразуем в LR(1)-грамматику:

$$q0 \rightarrow 0 | 1 | 1 q2$$

 $q2 \rightarrow 0 q2 | 1 q2 | 0 | 1$

ИЛИ

$$qo \to o | 1 | 1 q2$$

 $q2 \to o | 1 | q2 q2$

ИЛИ

$$q0 \rightarrow q1 \mid 1 q2$$

 $q1 \rightarrow 0 \mid 1$
 $q2 \rightarrow q1 \mid q2 q2$

89

Пример 3. Язык, описывающий число с фиксированной точкой.

	+,-	•	0-9	Τ
q_{o}	$q_{_1}$	q_2	\mathbf{q}_3	
$\mathbf{q_{i}}$		q_2	\mathbf{q}_3	
${f q}_2$			q_4	
${f q}_3$		q_4	q_3	HALT
q_4			q_4	HALT

$$qo \rightarrow + q1 | - q1 | . q2 | o-9 q3$$

 $q1 \rightarrow . q2 | o-9 q3$
 $q3 \rightarrow . q4 | o-9 q3 | e$
 $q2 \rightarrow o-9 q4$
 $q4 \rightarrow o-9 q4 | e$

90

Упростим:

$$q0 \rightarrow + q1 \mid -q1 \mid q1$$

 $q1 \rightarrow . q2 \mid 0-9 q3$
 $q2 \rightarrow 0-9 q4$
 $q3 \rightarrow . q4 \mid 0-9 q3 \mid e$
 $q4 \rightarrow 0-9 q4 \mid e$

$$q0 \rightarrow + q1 \mid -q1 \mid q1$$

 $q1 \rightarrow .0-9 \ q4 \mid 0-9 \ q3$
 $q3 \rightarrow .q4 \mid 0-9 \ q3 \mid e$
 $q4 \rightarrow 0-9 \ q4 \mid e$

$$q0 \rightarrow + q1 \mid -q1 \mid q1$$

 $q1 \rightarrow . q2 \mid 0-9 q3$
 $q2 \rightarrow 0-9 q4$
 $q3 \rightarrow . q4 \mid 0-9 q3 \mid e$
 $q4 \rightarrow q2 \mid e$

$$qo \rightarrow sign \ q1$$

 $sign \rightarrow + | - | e$
...

91

Пример 4. Язык, описывающий десятичные числа в диапазоне от 0 до 255, без ведущих нулей.

Правила LL(1)-грамматики:

BYTE \rightarrow 0 | 1 NUM2 | 2 N200 | 3-9 NUM1 NUM2 \rightarrow 0-9 NUM1 | e NUM1 \rightarrow 0-9 | e N200 \rightarrow 0-4 NUM1 | 5 N250 | 6-9 | e N250 \rightarrow 0-5 | e

92

Пример 4. Язык, описывающий десятичные числа в диапазоне от 0 до 255, без ведущих нулей.

Правила LR(1)-грамматики:

93

Пример 5. Язык, описывающий обращение к элементу массива:

	a-z, e	0-9, 🥴	[, e],+	,, +	⊥,Ø
q_{o}	q_1, e					
$\mathbf{q_{\scriptscriptstyle 1}}$	q_1 , e	q_1 , e	q ₂ , +			
q_2	q ₄ , e	q ₃ , <i>e</i>				
${f q}_3$		q ₃ , <i>e</i>		q ₅ , <i>e</i>	q ₂ , +	
q_4	q ₄ , <i>e</i>	q ₄ , <i>e</i>	q ₂ , +	q ₅ , <i>e</i>	q ₂ , +	
${f q}_5$				q ₅ , <i>e</i>	q ₂ , +	HALT

Пример 5. Язык, описывающий обращение к элементу массива:

$$q0 \rightarrow a-z q1$$

$$q1 \rightarrow a-z q1$$

$$q1 \rightarrow 0-9 q1$$

$$q1 \rightarrow [q2]$$

$$q2 \rightarrow a-z q4$$

$$q2 \rightarrow 0-9 q3$$

$$q3 \rightarrow 0-9 q3$$

$$q3 \rightarrow e$$

$$q3 \rightarrow , q2$$

$$q4 \rightarrow a-z \ q4$$

$$q4 \rightarrow 0-9 \ q4$$

$$q1 \rightarrow a-z \ q1$$

$$q4 \rightarrow [\ q2\]$$

$$q1 \rightarrow 0-9 \ q1$$

$$q4 \rightarrow e$$

$$q1 \rightarrow [\ q2\]$$

$$q4 \rightarrow q2$$

$$q2 \rightarrow a-z \ q4$$

$$q2 \rightarrow a-z$$

$$q2 \rightarrow 0-9 \ q3$$

$$q3 \rightarrow 0-9$$

$$q3 \rightarrow 0-9$$

$$q3 \rightarrow 0-9$$

$$q4 \rightarrow a-z \ q4$$

$$q4 \rightarrow a-z$$

$$q4 \rightarrow 0-9 \ q4$$

$$q4 \rightarrow 0-9$$

 $q4 \rightarrow [q2]$

 $q4 \rightarrow , q2$

Пример 5. Язык, описывающий обращение к элементу массива:

- a[1];
- a2[5,b[2],z];
- mas[x[4],y[4]] и т.д.

Правила LL(1)-грамматики:

MASSELEM \rightarrow ID [INDICES] INDICES \rightarrow INDEX MOREINDEX MOREINDEX \rightarrow , INDICES | eINDEX \rightarrow NUMBER | ID MAYBEMASS MAYBEMASS \rightarrow [INDICES] | e

ID \rightarrow a-z MOREID MOREID \rightarrow ID | 0-9 MOREID | eNUMBER \rightarrow 0-9 MORENUM MORENUM \rightarrow NUMBER | e

Пример 5. Язык, описывающий обращение к элементу массива:

- a[1];
- a2[5,b[2],z];
- mas[x[4],y[4]] и т.д.

MAYBEMASS \rightarrow [INDICES] | e

Правила LL(1)-грамматики:

```
MASSELEM \rightarrow a-z ID [ INDICES ] ID \rightarrow a-z ID | o-9 ID | e INDICES \rightarrow INDEX MOREINDEX NUMBER \rightarrow o-9 NUMBER | e MOREINDEX \rightarrow , INDICES | e INDEX \rightarrow o-9 NUMBER | a-z ID MAYBEMASS
```


Правила LR(1)-грамматики:

MASSELEM \rightarrow ID [INDICES]

INDICES \rightarrow INDEX , INDICES | INDEX

INDEX → NUMBER | ID | ID [INDICES]

 $ID \rightarrow a-z \mid a-z \text{ MOREID}$

 $MOREID \rightarrow a-z \mid o-9 \mid MOREID MOREID$

NUMBER \rightarrow 0-9 | 0-9 NUMBER

Или:

• • •

INDEX → NUMBER | ID | MASSELEM

• • •

NUMBER \rightarrow 0-9 | NUMBER NUMBER