Definition 2.1

A graph having no cycles is acyclic or a forest.

- A graph having no cycles is acyclic or a forest.
- A connected forest is a tree.

- A graph having no cycles is acyclic or a forest.
- ► A connected forest is a tree.
- ► A leaf or a pendant vertex is a vertex of degree one.

- A graph having no cycles is acyclic or a forest.
- A connected forest is a tree.
- ► A leaf or a pendant vertex is a vertex of degree one.
- ▶ A subgraph of *G* is spanning if it has all the vertices of *G*.

- A graph having no cycles is acyclic or a forest.
- ► A connected forest is a tree.
- ▶ A leaf or a pendant vertex is a vertex of degree one.
- ightharpoonup A subgraph of G is spanning if it has all the vertices of G.
- ▶ The distance between vertices u and v of G, written d(u,v) or $d_G(u,v)$, is the length of the shortest path in G that contains both u and v. (Such a path is called a uv-path and u and v are its ends.)

- A graph having no cycles is acyclic or a forest.
- A connected forest is a tree.
- A leaf or a pendant vertex is a vertex of degree one.
- ▶ A subgraph of G is spanning if it has all the vertices of G.
- ▶ The distance between vertices u and v of G, written d(u,v) or $d_G(u,v)$, is the length of the shortest path in G that contains both u and v. (Such a path is called a uv-path and u and v are its ends.) If a uv-path does not exist, then $d(u,v)=\infty$.

- A graph having no cycles is acyclic or a forest.
- A connected forest is a tree.
- A leaf or a pendant vertex is a vertex of degree one.
- ▶ A subgraph of G is spanning if it has all the vertices of G.
- ▶ The distance between vertices u and v of G, written d(u,v) or $d_G(u,v)$, is the length of the shortest path in G that contains both u and v. (Such a path is called a uv-path and u and v are its ends.) If a uv-path does not exist, then $d(u,v)=\infty$.
- ▶ The distance between sets U and W of vertices of G, written d(U,W), is the length of a shortest uw-path where $u \in U$ and $w \in W$, or infinity if no such path exists.

Theorem 2.2

Every tree with at least two vertices has at least two leaves.

Theorem 2.2

Every tree with at least two vertices has at least two leaves. Deleting a leaf from a tree of order n produces a tree of order n-1.

Theorem 2.2

Every tree with at least two vertices has at least two leaves. Deleting a leaf from a tree of order n produces a tree of order n-1.

Proof.

In an acyclic graph, the ends of a maximal non-trivial path have degree one.

Theorem 2.2

Every tree with at least two vertices has at least two leaves. Deleting a leaf from a tree of order n produces a tree of order n-1.

Proof.

In an acyclic graph, the ends of a maximal non-trivial path have degree one. Let v be a leaf of a tree T and let T'=T-v.

Theorem 2.2

Every tree with at least two vertices has at least two leaves. Deleting a leaf from a tree of order n produces a tree of order n-1.

Proof.

In an acyclic graph, the ends of a maximal non-trivial path have degree one. Let v be a leaf of a tree T and let $T^\prime=T-v$.

Then T' is acyclic.

Theorem 2.2

Every tree with at least two vertices has at least two leaves. Deleting a leaf from a tree of order n produces a tree of order n-1.

Proof.

In an acyclic graph, the ends of a maximal non-trivial path have degree one. Let v be a leaf of a tree T and let $T^\prime=T-v$.

Then T' is acyclic.

Suppose u and w are vertices of T'. Then, in T there is a uw-path P.

Theorem 2.2

Every tree with at least two vertices has at least two leaves. Deleting a leaf from a tree of order n produces a tree of order n-1.

Proof.

In an acyclic graph, the ends of a maximal non-trivial path have degree one. Let v be a leef of a tree T and let T' = T

Let v be a leaf of a tree T and let T' = T - v.

Then T' is acyclic.

Suppose u and w are vertices of $T^{\prime}.$ Then, in T there is a uw-path P.

But P cannot contain v as $d_T(v) = 1$, and so it also lies in T'.

Theorem 2.3

For a simple graph G of order n the following are equivalent:

(A) G is connected and acyclic;

Theorem 2.3

For a simple graph G of order n the following are equivalent:

- (A) G is connected and acyclic;
- (B) G is connected and has size n-1;

Theorem 2.3

For a simple graph G of order n the following are equivalent:

- (A) G is connected and acyclic;
- (B) G is connected and has size n-1;
- (C) G is acyclic and has size n-1; and

Theorem 2.3

For a simple graph G of order n the following are equivalent:

- (A) G is connected and acyclic;
- (B) G is connected and has size n-1;
- (C) G is acyclic and has size n-1; and
- (D) For every two vertices u and v, the graph G contains exactly one uv-path.

Theorem 2.4

If T and T' are two spanning trees of a connected graph G and $e \in E(T) \setminus E(T')$, then there is an edge $e' \in E(T') \setminus E(T)$ such that $T \setminus e \cup e'$ is a spanning tree of G.

Theorem 2.4

If T and T' are two spanning trees of a connected graph G and $e \in E(T) \setminus E(T')$, then there is an edge $e' \in E(T') \setminus E(T)$ such that $T \setminus e \cup e'$ is a spanning tree of G.

Proof.

Consider $T \setminus e$: it is disconnected with exactly two connected components (maximal connected subgraphs) S and S'.

Theorem 2.4

If T and T' are two spanning trees of a connected graph G and $e \in E(T) \setminus E(T')$, then there is an edge $e' \in E(T') \setminus E(T)$ such that $T \setminus e \cup e'$ is a spanning tree of G.

Proof.

Consider $T\setminus e$: it is disconnected with exactly two connected components (maximal connected subgraphs) S and S'. Since T' is connected, it must have an edge e' with one endpoint in each S and S'.

Theorem 2.4

If T and T' are two spanning trees of a connected graph G and $e \in E(T) \setminus E(T')$, then there is an edge $e' \in E(T') \setminus E(T)$ such that $T \setminus e \cup e'$ is a spanning tree of G.

Proof.

Consider $T\setminus e$: it is disconnected with exactly two connected components (maximal connected subgraphs) S and S'. Since T' is connected, it must have an edge e' with one endpoint in each S and S'. Clearly, $T\setminus e\cup e'$ is a spanning tree of G.

Suppose G is a graph and $c:E(G)\to\mathbb{N}$ is a cost function.

Suppose G is a graph and $c:E(G)\to\mathbb{N}$ is a cost function. The cost of a subgraph H of G is $\sum_{e\in E(H)}c(e)$.

Suppose G is a graph and $c:E(G)\to\mathbb{N}$ is a cost function. The cost of a subgraph H of G is $\sum_{e\in E(H)}c(e)$. We want to find a minimum-cost spanning tree T of G.

Suppose G is a graph and $c:E(G)\to\mathbb{N}$ is a cost function. The cost of a subgraph H of G is $\sum_{e\in E(H)}c(e)$. We want to find a minimum-cost spanning tree T of G.

Algorithm 2.5 (Kruskal)

Start with V(T) = V(G) and $E(T) = \emptyset$.

Suppose G is a graph and $c:E(G)\to\mathbb{N}$ is a cost function. The cost of a subgraph H of G is $\sum_{e\in E(H)}c(e)$. We want to find a minimum-cost spanning tree T of G.

- Start with V(T) = V(G) and $E(T) = \emptyset$.
- Order the edges of G so that their costs are non-decreasing.

Suppose G is a graph and $c:E(G)\to\mathbb{N}$ is a cost function. The cost of a subgraph H of G is $\sum_{e\in E(H)}c(e)$. We want to find a minimum-cost spanning tree T of G.

- Start with V(T) = V(G) and $E(T) = \emptyset$.
- Order the edges of G so that their costs are non-decreasing.
- Proceed with each edge of G, one by one, in the above order: if its joins two components of T, add it to T; otherwise do nothing.

Suppose G is a graph and $c:E(G)\to\mathbb{N}$ is a cost function. The cost of a subgraph H of G is $\sum_{e\in E(H)}c(e)$. We want to find a minimum-cost spanning tree T of G.

Algorithm 2.5 (Kruskal)

- Start with V(T) = V(G) and $E(T) = \emptyset$.
- ► Order the edges of G so that their costs are non-decreasing.
- Proceed with each edge of G, one by one, in the above order: if its joins two components of T, add it to T; otherwise do nothing.

Example 2.6

Suppose G is a graph and $c:E(G)\to\mathbb{N}$ is a cost function. The cost of a subgraph H of G is $\sum_{e\in E(H)}c(e)$. We want to find a minimum-cost spanning tree T of G.

- Start with V(T) = V(G) and $E(T) = \emptyset$.
- Order the edges of G so that their costs are non-decreasing.
- ▶ Proceed with each edge of G, one by one, in the above order: if its joins two components of T, add it to T; otherwise do nothing.

Suppose G is a graph and $c:E(G)\to\mathbb{N}$ is a cost function. The cost of a subgraph H of G is $\sum_{e\in E(H)}c(e)$. We want to find a minimum-cost spanning tree T of G.

- Start with V(T) = V(G) and $E(T) = \emptyset$.
- Order the edges of G so that their costs are non-decreasing.
- ▶ Proceed with each edge of G, one by one, in the above order: if its joins two components of T, add it to T; otherwise do nothing.

Suppose G is a graph and $c:E(G)\to\mathbb{N}$ is a cost function. The cost of a subgraph H of G is $\sum_{e\in E(H)}c(e)$. We want to find a minimum-cost spanning tree T of G.

- Start with V(T) = V(G) and $E(T) = \emptyset$.
- Order the edges of G so that their costs are non-decreasing.
- ▶ Proceed with each edge of G, one by one, in the above order: if its joins two components of T, add it to T; otherwise do nothing.

Suppose G is a graph and $c:E(G)\to\mathbb{N}$ is a cost function. The cost of a subgraph H of G is $\sum_{e\in E(H)}c(e)$. We want to find a minimum-cost spanning tree T of G.

- Start with V(T) = V(G) and $E(T) = \emptyset$.
- Order the edges of G so that their costs are non-decreasing.
- ▶ Proceed with each edge of G, one by one, in the above order: if its joins two components of T, add it to T; otherwise do nothing.

Suppose G is a graph and $c:E(G)\to\mathbb{N}$ is a cost function. The cost of a subgraph H of G is $\sum_{e\in E(H)}c(e)$. We want to find a minimum-cost spanning tree T of G.

- Start with V(T) = V(G) and $E(T) = \emptyset$.
- Order the edges of G so that their costs are non-decreasing.
- ▶ Proceed with each edge of G, one by one, in the above order: if its joins two components of T, add it to T; otherwise do nothing.

Suppose G is a graph and $c:E(G)\to\mathbb{N}$ is a cost function. The cost of a subgraph H of G is $\sum_{e\in E(H)}c(e)$. We want to find a minimum-cost spanning tree T of G.

- Start with V(T) = V(G) and $E(T) = \emptyset$.
- Order the edges of G so that their costs are non-decreasing.
- ▶ Proceed with each edge of G, one by one, in the above order: if its joins two components of T, add it to T; otherwise do nothing.

Suppose G is a graph and $c:E(G)\to\mathbb{N}$ is a cost function. The cost of a subgraph H of G is $\sum_{e\in E(H)}c(e)$. We want to find a minimum-cost spanning tree T of G.

- Start with V(T) = V(G) and $E(T) = \emptyset$.
- Order the edges of G so that their costs are non-decreasing.
- ▶ Proceed with each edge of G, one by one, in the above order: if its joins two components of T, add it to T; otherwise do nothing.

Minimum Cost Spanning Tree

Suppose G is a graph and $c:E(G)\to\mathbb{N}$ is a cost function. The cost of a subgraph H of G is $\sum_{e\in E(H)}c(e)$. We want to find a minimum-cost spanning tree T of G.

Algorithm 2.5 (Kruskal)

- Start with V(T) = V(G) and $E(T) = \emptyset$.
- Order the edges of G so that their costs are non-decreasing.
- ▶ Proceed with each edge of G, one by one, in the above order: if its joins two components of T, add it to T; otherwise do nothing.

Theorem 2.7 (Kruskal)

In a connected graph, Kruskal's Algorithm produces a minimum-cost spanning tree.

Theorem 2.7 (Kruskal)

In a connected graph, Kruskal's Algorithm produces a minimum-cost spanning tree.

Proof.

It is clear that the algorithm produces a spanning tree.

Theorem 2.7 (Kruskal)

In a connected graph, Kruskal's Algorithm produces a minimum-cost spanning tree.

Proof.

It is clear that the algorithm produces a spanning tree.

Let T be the resulting graph, and suppose T^\prime is a spanning tree of minimum cost.

Theorem 2.7 (Kruskal)

In a connected graph, Kruskal's Algorithm produces a minimum-cost spanning tree.

Proof.

It is clear that the algorithm produces a spanning tree.

Let T be the resulting graph, and suppose T' is a spanning tree of minimum cost. If T'=T, then there is nothing to prove.

Theorem 2.7 (Kruskal)

In a connected graph, Kruskal's Algorithm produces a minimum-cost spanning tree.

Proof.

It is clear that the algorithm produces a spanning tree.

Let T be the resulting graph, and suppose T' is a spanning tree of minimum cost. If T'=T, then there is nothing to prove. If $T\neq T'$, let e be the first edge chosen for T that is not in T'.

Theorem 2.7 (Kruskal)

In a connected graph, Kruskal's Algorithm produces a minimum-cost spanning tree.

Proof.

It is clear that the algorithm produces a spanning tree.

Let T be the resulting graph, and suppose T' is a spanning tree of minimum cost. If T'=T, then there is nothing to prove. If $T\neq T'$, let e be the first edge chosen for T that is not in T'. Adding e to T' creates a cycle C, but since T does not have cycles, T' has an edge $e'\notin E(T)$.

Theorem 2.7 (Kruskal)

In a connected graph, Kruskal's Algorithm produces a minimum-cost spanning tree.

Proof.

It is clear that the algorithm produces a spanning tree.

Let T be the resulting graph, and suppose T' is a spanning tree of minimum cost. If T'=T, then there is nothing to prove. If $T\neq T'$, let e be the first edge chosen for T that is not in T'. Adding e to T' creates a cycle C, but since T does not have cycles, T' has an edge $e'\notin E(T)$. Consider the spanning tree $T'\setminus e'\cup e$.

Theorem 2.7 (Kruskal)

In a connected graph, Kruskal's Algorithm produces a minimum-cost spanning tree.

Proof.

It is clear that the algorithm produces a spanning tree.

Let T be the resulting graph, and suppose T' is a spanning tree of minimum cost. If T'=T, then there is nothing to prove. If $T\neq T'$, let e be the first edge chosen for T that is not in T'. Adding e to T' creates a cycle C, but since T does not have cycles, T' has an edge $e'\notin E(T)$. Consider the spanning tree $T'\setminus e'\cup e$.

Since T' contains e' and all edges of T chosen before e, both e and e' are available when the algorithm chooses e, and hence $c(e) \leq c(e')$.

Theorem 2.7 (Kruskal)

In a connected graph, Kruskal's Algorithm produces a minimum-cost spanning tree.

Proof.

It is clear that the algorithm produces a spanning tree.

Let T be the resulting graph, and suppose T' is a spanning tree of minimum cost. If T'=T, then there is nothing to prove. If $T\neq T'$, let e be the first edge chosen for T that is not in T'. Adding e to T' creates a cycle C, but since T does not have cycles, T' has an edge $e'\notin E(T)$. Consider the spanning tree $T'\setminus e'\cup e$.

Since T' contains e' and all edges of T chosen before e, both e and e' are available when the algorithm chooses e, and hence $c(e) \leq c(e')$. Thus $T' \setminus e' \cup e$ is a spanning tree with cost at most T' that agrees with T for a longer initial list of edges than T' does.

Theorem 2.7 (Kruskal)

In a connected graph, Kruskal's Algorithm produces a minimum-cost spanning tree.

Proof.

It is clear that the algorithm produces a spanning tree.

Let T be the resulting graph, and suppose T' is a spanning tree of minimum cost. If T'=T, then there is nothing to prove. If $T\neq T'$, let e be the first edge chosen for T that is not in T'. Adding e to T' creates a cycle C, but since T does not have cycles, T' has an edge $e'\notin E(T)$. Consider the spanning tree $T'\setminus e'\cup e$.

Since T' contains e' and all edges of T chosen before e, both e and e' are available when the algorithm chooses e, and hence $c(e) \leq c(e')$. Thus $T' \setminus e' \cup e$ is a spanning tree with cost at most T' that agrees with T for a longer initial list of edges than T' does. Repeating this argument yields a minimum-cost spanning tree that equals T, proving that the costs of T and T' are the same.

We would like to know how many different (and here we really mean different rather than non-isomorphic) trees with the vertex set $\{1,2,\ldots,n\}$ are there?

We would like to know how many different (and here we really mean different rather than non-isomorphic) trees with the vertex set $\{1, 2, \dots, n\}$ are there?

Theorem 2.8 (Cayley's Formula)

There are n^{n-2} trees with vertex set $\{1, 2, \dots, n\}$.

We would like to know how many different (and here we really mean different rather than non-isomorphic) trees with the vertex set $\{1, 2, \dots, n\}$ are there?

Theorem 2.8 (Cayley's Formula due to Borchardt (1860))

There are n^{n-2} trees with vertex set $\{1, 2, \dots, n\}$.

We would like to know how many different (and here we really mean different rather than non-isomorphic) trees with the vertex set $\{1,2,\ldots,n\}$ are there?

Theorem 2.8 (Cayley's Formula due to Borchardt (1860))

There are n^{n-2} trees with vertex set $\{1, 2, \dots, n\}$.

Proof.

There are n^{n-2} sequences of length n-2 with entries from $\{1,2,\ldots,n\}$. \square

We would like to know how many different (and here we really mean different rather than non-isomorphic) trees with the vertex set $\{1, 2, \dots, n\}$ are there?

Theorem 2.8 (Cayley's Formula due to Borchardt (1860))

There are n^{n-2} trees with vertex set $\{1, 2, \dots, n\}$.

Proof.

There are n^{n-2} sequences of length n-2 with entries from $\{1,2,\ldots,n\}$. We will establish a bijection between such sequences and trees on the vertex set $\{1,2,\ldots,n\}$.

To find a Prüfer sequence f(T) of a labeled tree T,

To find a Prüfer sequence f(T) of a labeled tree T,

be delete the leaf with the smallest label, and

To find a Prüfer sequence f(T) of a labeled tree T,

- be delete the leaf with the smallest label, and
- ▶ append the label of its neighbor to the sequence until one edge remains.

To find a Prüfer sequence f(T) of a labeled tree T,

- be delete the leaf with the smallest label, and
- ▶ append the label of its neighbor to the sequence until one edge remains.

Example 2.9

Prüfer sequence:

To find a Prüfer sequence f(T) of a labeled tree T,

- be delete the leaf with the smallest label, and
- ▶ append the label of its neighbor to the sequence until one edge remains.

Example 2.9

Prüfer sequence: 6

To find a Prüfer sequence f(T) of a labeled tree T,

- be delete the leaf with the smallest label, and
- ▶ append the label of its neighbor to the sequence until one edge remains.

Example 2.9

Prüfer sequence: 6, 2

To find a Prüfer sequence f(T) of a labeled tree T,

- be delete the leaf with the smallest label, and
- ▶ append the label of its neighbor to the sequence until one edge remains.

Example 2.9

Prüfer sequence: 6, 2, 2

To find a Prüfer sequence f(T) of a labeled tree T,

- delete the leaf with the smallest label, and
- ▶ append the label of its neighbor to the sequence until one edge remains.

Example 2.9

Prüfer sequence: 6, 2, 2, 6

To find a Prüfer sequence f(T) of a labeled tree T,

- be delete the leaf with the smallest label, and
- ▶ append the label of its neighbor to the sequence until one edge remains.

Example 2.9

Prüfer sequence: 6, 2, 2, 6, 1

To find a Prüfer sequence f(T) of a labeled tree T,

- be delete the leaf with the smallest label, and
- ▶ append the label of its neighbor to the sequence until one edge remains.

Example 2.9

Prüfer sequence: 6, 2, 2, 6, 1, 8

To find a Prüfer sequence f(T) of a labeled tree T,

- be delete the leaf with the smallest label, and
- ▶ append the label of its neighbor to the sequence until one edge remains.

Example 2.9

Prüfer sequence: 6, 2, 2, 6, 1, 8, 8

To find a Prüfer sequence f(T) of a labeled tree T,

- be delete the leaf with the smallest label, and
- ▶ append the label of its neighbor to the sequence until one edge remains.

Example 2.9

Prüfer sequence: 6, 2, 2, 6, 1, 8, 8, 1

To find a Prüfer sequence f(T) of a labeled tree T,

- be delete the leaf with the smallest label, and
- ▶ append the label of its neighbor to the sequence until one edge remains.

Example 2.9

Prüfer sequence: 6, 2, 2, 6, 1, 8, 8, 1, 7

Now we describe how to produce a tree from a Prüfer sequence.

ightharpoonup Begin with a forest having n isolated vertices labeled 1, 2, ..., n.

- ightharpoonup Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- ightharpoonup Proceed with all n-2 elements of the sequence, and, at the *i*th step,

- ightharpoonup Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the ith step,
 - let x be the label in position i.

- ightharpoonup Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the *i*th step,
 - ightharpoonup let x be the label in position i.
 - ▶ let y be the smallest label that does not appear at the ith or later position and has not yet been marked as "finished".

- ightharpoonup Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the ith step,
 - let x be the label in position i.
 - ▶ let y be the smallest label that does not appear at the ith or later position and has not yet been marked as "finished".
 - ightharpoonup add the edge xy, and

- ightharpoonup Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the ith step,
 - let x be the label in position i.
 - let y be the smallest label that does not appear at the ith or later position and has not yet been marked as "finished".
 - ightharpoonup add the edge xy, and
 - mark y as finished.

- ightharpoonup Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the ith step,
 - let x be the label in position i.
 - let y be the smallest label that does not appear at the ith or later position and has not yet been marked as "finished".
 - ightharpoonup add the edge xy, and
 - mark y as finished.
- Join the two remaining unfinished vertices with an edge.

- ▶ Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the ith step,
 - let x be the label in position i.
 - let y be the smallest label that does not appear at the ith or later position and has not yet been marked as "finished".
 - ightharpoonup add the edge xy, and
 - mark y as finished.
- Join the two remaining unfinished vertices with an edge.

- ▶ Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the ith step,
 - let x be the label in position i.
 - let y be the smallest label that does not appear at the ith or later position and has not yet been marked as "finished".
 - ightharpoonup add the edge xy, and
 - mark y as finished.
- Join the two remaining unfinished vertices with an edge.

- **ightharpoonup** Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the ith step,
 - let x be the label in position i.
 - let y be the smallest label that does not appear at the ith or later position and has not yet been marked as "finished".
 - ightharpoonup add the edge xy, and
 - mark y as finished.
- Join the two remaining unfinished vertices with an edge.

- **ightharpoonup** Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the ith step,
 - let x be the label in position i.
 - ▶ let y be the smallest label that does not appear at the ith or later position and has not yet been marked as "finished".
 - ightharpoonup add the edge xy, and
 - mark y as finished.
- Join the two remaining unfinished vertices with an edge.

- **ightharpoonup** Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the ith step,
 - let x be the label in position i.
 - ▶ let y be the smallest label that does not appear at the ith or later position and has not yet been marked as "finished".
 - ightharpoonup add the edge xy, and
 - mark y as finished.
- Join the two remaining unfinished vertices with an edge.

- **ightharpoonup** Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the ith step,
 - let x be the label in position i.
 - ▶ let y be the smallest label that does not appear at the ith or later position and has not yet been marked as "finished".
 - ightharpoonup add the edge xy, and
 - mark y as finished.
- Join the two remaining unfinished vertices with an edge.

- **ightharpoonup** Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the ith step,
 - let x be the label in position i.
 - ▶ let y be the smallest label that does not appear at the ith or later position and has not yet been marked as "finished".
 - ightharpoonup add the edge xy, and
 - mark y as finished.
- Join the two remaining unfinished vertices with an edge.

Now we describe how to produce a tree from a Prüfer sequence.

- **ightharpoonup** Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the ith step,
 - let x be the label in position i.
 - let y be the smallest label that does not appear at the ith or later position and has not yet been marked as "finished".
 - ightharpoonup add the edge xy, and
 - mark y as finished.
- Join the two remaining unfinished vertices with an edge.

Sequence: 6, 2, 2, 6, 1, 8, 8, 1, 7

Finished: 3, 4, 5, 2, 6, 9, 10

Now we describe how to produce a tree from a Prüfer sequence.

- **ightharpoonup** Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the ith step,
 - let x be the label in position i.
 - let y be the smallest label that does not appear at the ith or later position and has not yet been marked as "finished".
 - ightharpoonup add the edge xy, and
 - mark y as finished.
- Join the two remaining unfinished vertices with an edge.

Example 2.10

Sequence: 6, 2, 2, 6, 1, 8, 8, 1, 7

Finished: 3, 4, 5, 2, 6, 9, 10, 8

Now we describe how to produce a tree from a Prüfer sequence.

- **b** Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the ith step,
 - let x be the label in position i.
 - let y be the smallest label that does not appear at the ith or later position and has not yet been marked as "finished".
 - ightharpoonup add the edge xy, and
 - mark y as finished.
- ▶ Join the two remaining unfinished vertices with an edge.

Example 2.10

Sequence: 6, 2, 2, 6, 1, 8, 8, 1, 7

Finished: 3, 4, 5, 2, 6, 9, 10, 8, 1

Now we describe how to produce a tree from a Prüfer sequence.

- **b** Begin with a forest having n isolated vertices labeled 1, 2, ..., n.
- lacktriangle Proceed with all n-2 elements of the sequence, and, at the ith step,
 - let x be the label in position i.
 - let y be the smallest label that does not appear at the ith or later position and has not yet been marked as "finished".
 - ightharpoonup add the edge xy, and
 - mark y as finished.
- ▶ Join the two remaining unfinished vertices with an edge.

Example 2.10

Sequence: 6, 2, 2, 6, 1, 8, 8, 1, 7

Finished: 3, 4, 5, 2, 6, 9, 10, 8, 1

Corollary 2.11

The number of trees with vertex set $\{1, 2, ..., n\}$ in which vertices 1, 2, ..., n have respective degrees $d_1, d_2, ..., d_n$ is

$$\frac{(n-2)!}{\prod (d_i-1)!}.$$

Corollary 2.11

The number of trees with vertex set $\{1, 2, ..., n\}$ in which vertices 1, 2, ..., n have respective degrees $d_1, d_2, ..., d_n$ is

$$\frac{(n-2)!}{\prod (d_i-1)!}.$$

Proof.

When we delete vertex x from T when constructing the Prüfer sequence, all neighbors of x except for one have already been deleted.

Corollary 2.11

The number of trees with vertex set $\{1, 2, ..., n\}$ in which vertices 1, 2, ..., n have respective degrees $d_1, d_2, ..., d_n$ is

$$\frac{(n-2)!}{\prod (d_i-1)!}.$$

Proof.

When we delete vertex x from T when constructing the Prüfer sequence, all neighbors of x except for one have already been deleted. We record x in the sequence once for each deleted neighbor and x does not appear in the sequence again.

Corollary 2.11

The number of trees with vertex set $\{1, 2, ..., n\}$ in which vertices 1, 2, ..., n have respective degrees $d_1, d_2, ..., d_n$ is

$$\frac{(n-2)!}{\prod (d_i-1)!}.$$

Proof.

When we delete vertex x from T when constructing the Prüfer sequence, all neighbors of x except for one have already been deleted. We record x in the sequence once for each deleted neighbor and x does not appear in the sequence again. Hence x appears in the sequence d(x)-1 times.

Corollary 2.11

The number of trees with vertex set $\{1, 2, ..., n\}$ in which vertices 1, 2, ..., n have respective degrees $d_1, d_2, ..., d_n$ is

$$\frac{(n-2)!}{\prod (d_i-1)!}.$$

Proof.

When we delete vertex x from T when constructing the Prüfer sequence, all neighbors of x except for one have already been deleted. We record x in the sequence once for each deleted neighbor and x does not appear in the sequence again. Hence x appears in the sequence d(x)-1 times.

Therefore we count the trees by counting sequences of length n-2 having d_i-1 copies of i, for each i.

Corollary 2.11

The number of trees with vertex set $\{1, 2, ..., n\}$ in which vertices 1, 2, ..., n have respective degrees $d_1, d_2, ..., d_n$ is

$$\frac{(n-2)!}{\prod (d_i-1)!}.$$

Proof.

When we delete vertex x from T when constructing the Prüfer sequence, all neighbors of x except for one have already been deleted. We record x in the sequence once for each deleted neighbor and x does not appear in the sequence again. Hence x appears in the sequence d(x)-1 times.

Therefore we count the trees by counting sequences of length n-2 having d_i-1 copies of i, for each i. If we distinguish between various copies of i, then there are (n-2)! such sequences.

Corollary 2.11

The number of trees with vertex set $\{1, 2, ..., n\}$ in which vertices 1, 2, ..., n have respective degrees $d_1, d_2, ..., d_n$ is

$$\frac{(n-2)!}{\prod (d_i-1)!}.$$

Proof.

When we delete vertex x from T when constructing the Prüfer sequence, all neighbors of x except for one have already been deleted. We record x in the sequence once for each deleted neighbor and x does not appear in the sequence again. Hence x appears in the sequence d(x)-1 times.

Therefore we count the trees by counting sequences of length n-2 having d_i-1 copies of i, for each i. If we distinguish between various copies of i, then there are (n-2)! such sequences. Since we really cannot distinguish between the copies, we have over-counted by a factor of $(d_i-1)!$ for each i.

Definition 2.12

▶ If e is an edge of G incident with two distinct vertices u and v, then the contraction of e is the operation of deleting e and identifying u and v.

- ▶ If e is an edge of G incident with two distinct vertices u and v, then the contraction of e is the operation of deleting e and identifying u and v.
- Contracting a loop is the same as deleting it.

- ▶ If e is an edge of G incident with two distinct vertices u and v, then the contraction of e is the operation of deleting e and identifying u and v.
- Contracting a loop is the same as deleting it.
- ▶ The graph obtained from G by contracting e is denoted G/e (extended to G/F if $F \subseteq E(G)$).

- ▶ If e is an edge of G incident with two distinct vertices u and v, then the contraction of e is the operation of deleting e and identifying u and v.
- Contracting a loop is the same as deleting it.
- ▶ The graph obtained from G by contracting e is denoted G/e (extended to G/F if $F \subseteq E(G)$).
- A graph H is a minor of G if it can be obtained from G by a sequence of operation each of which is one of the following:
 - deleting an edge;

- ▶ If e is an edge of G incident with two distinct vertices u and v, then the contraction of e is the operation of deleting e and identifying u and v.
- Contracting a loop is the same as deleting it.
- ▶ The graph obtained from G by contracting e is denoted G/e (extended to G/F if $F \subseteq E(G)$).
- A graph H is a minor of G if it can be obtained from G by a sequence of operation each of which is one of the following:
 - deleting an edge;
 - deleting an isolated vertex; and

- ▶ If e is an edge of G incident with two distinct vertices u and v, then the contraction of e is the operation of deleting e and identifying u and v.
- Contracting a loop is the same as deleting it.
- ▶ The graph obtained from G by contracting e is denoted G/e (extended to G/F if $F \subseteq E(G)$).
- A graph H is a minor of G if it can be obtained from G by a sequence of operation each of which is one of the following:
 - deleting an edge;
 - deleting an isolated vertex; and
 - contracting an edge.

- ▶ If e is an edge of G incident with two distinct vertices u and v, then the contraction of e is the operation of deleting e and identifying u and v.
- Contracting a loop is the same as deleting it.
- ▶ The graph obtained from G by contracting e is denoted G/e (extended to G/F if $F \subseteq E(G)$).
- A graph H is a minor of G if it can be obtained from G by a sequence of operation each of which is one of the following:
 - deleting an edge;
 - deleting an isolated vertex; and
 - contracting an edge.
- ▶ We write $H \leq_m G$ to indicate that H is isomorphic to a minor of G.

Definition 2.12

- ▶ If e is an edge of G incident with two distinct vertices u and v, then the contraction of e is the operation of deleting e and identifying u and v.
- Contracting a loop is the same as deleting it.
- ▶ The graph obtained from G by contracting e is denoted G/e (extended to G/F if $F \subseteq E(G)$).
- A graph H is a minor of G if it can be obtained from G by a sequence of operation each of which is one of the following:
 - deleting an edge;
 - deleting an isolated vertex; and
 - contracting an edge.
- ▶ We write $H \leq_m G$ to indicate that H is isomorphic to a minor of G.

Note 2.13

The order of operations of deleting and contracting to get a minor of a graph is irrelevant.

Theorem 2.14

Let $\tau(G)$ denote the number of distinct spanning trees of a (labeled) graph G.

Theorem 2.14

Let $\tau(G)$ denote the number of distinct spanning trees of a (labeled) graph G. If e is a non-loop edge of G, then $\tau(G) = \tau(G \setminus e) + \tau(G/e)$.

Theorem 2.14

Let $\tau(G)$ denote the number of distinct spanning trees of a (labeled) graph G. If e is a non-loop edge of G, then $\tau(G) = \tau(G \setminus e) + \tau(G/e)$.

Example 2.15

Theorem 2.14

Let $\tau(G)$ denote the number of distinct spanning trees of a (labeled) graph G. If e is a non-loop edge of G, then $\tau(G) = \tau(G \setminus e) + \tau(G/e)$.

Example 2.15

Theorem 2.14

Let $\tau(G)$ denote the number of distinct spanning trees of a (labeled) graph G. If e is a non-loop edge of G, then $\tau(G) = \tau(G \setminus e) + \tau(G/e)$.

Example 2.15 $G \setminus e$ G/e

Theorem 2.14

Let $\tau(G)$ denote the number of distinct spanning trees of a (labeled) graph G. If e is a non-loop edge of G, then $\tau(G)=\tau(G\setminus e)+\tau(G/e)$.

Example 2.15

▶ The spanning trees of $G \setminus e$ are precisely the spanning trees of G that avoid e.

- ▶ The spanning trees of $G \setminus e$ are precisely the spanning trees of G that avoid e.
- ▶ The spanning trees of G/e correspond to the spanning trees of G using e.

- ▶ The spanning trees of $G \setminus e$ are precisely the spanning trees of G that avoid e.
- ▶ The spanning trees of G/e correspond to the spanning trees of G using e. (If T is a spanning tree of G/e, then $E(T) \cup e$ form the edge-set of a spanning tree of G.)

- ▶ The spanning trees of $G \setminus e$ are precisely the spanning trees of G that avoid e.
- ▶ The spanning trees of G/e correspond to the spanning trees of G using e. (If T is a spanning tree of G/e, then $E(T) \cup e$ form the edge-set of a spanning tree of G.)
- ► The formula follows.

- ▶ The spanning trees of $G \setminus e$ are precisely the spanning trees of G that avoid e.
- ▶ The spanning trees of G/e correspond to the spanning trees of G using e. (If T is a spanning tree of G/e, then $E(T) \cup e$ form the edge-set of a spanning tree of G.)
- The formula follows.

Using the deletion-contraction formula for calculating the number of spanning trees is inefficient.

- ▶ The spanning trees of $G \setminus e$ are precisely the spanning trees of G that avoid e.
- ▶ The spanning trees of G/e correspond to the spanning trees of G using e. (If T is a spanning tree of G/e, then $E(T) \cup e$ form the edge-set of a spanning tree of G.)
- ► The formula follows.

Using the deletion-contraction formula for calculating the number of spanning trees is inefficient. A much more efficient method is to construct a special matrix, called the Laplacian of the graph, and to compute its determinant.