SENIOR FOUR TEST-PAPERS WITH MARKING GUIDES

SENIOR FOUR TEST-PAPERS WITH MARKING GUIDES

456/1 MATHEMATICS PAPER 1 Feb 2023 $2\frac{1}{2}$ hours

S.4 MATH 1 MOCK SET 1 2023

Time: 2 Hours 30 Minutes

NAME: STREAM:

INSTRUCTIONS:

- Answer **all** the **eight** questions in section **A** and only **five** questions in section **B**.
- ➤ Show your working clearly.

Section A (40 Marks)

Answer all the questions in this section.

Qn 1: Factorise completely:
$$q^2 - x^2 + 4x - 4$$
. [4]

Qn 2: The bearing of *B* from *A* is 230°. What is the bearing of *A* from *B*? [2]

Qn 3: Solve simultaneously the equations:

$$\begin{aligned}
 x &= 6 - y \\
 2x - 8 + y &= 0
 \end{aligned}
 \tag{4}$$

Qn 4: Given that p * q = 3p - 2q, find the value of y for which (2 * 1) * y = 0. [4]

Qn 5: Mukiibi calculated the area of a circle of radius 100 cm using $\pi=3.142$ instead of $\frac{22}{7}$. What was the percentage error in his answer?[4]

Qn 6: In the diagram shown, 0 is the centre, angle $ACB = 60^{\circ}$.

Find:

(i). angle x.

(ii). angle
$$y$$
. [4]

Qn 7: A water tank is $\frac{3}{7}$ full. After adding 52 litres, it is $\frac{4}{5}$ full. What is its total capacity? [4]

Qn 8: Find the integral solution set of:
$$1 \le 3x - 3 < 7$$
.

Qn 9: Given that P varies directly as the square of Q and that P=18 when Q=6,

(i). Express P in terms of Q.

(ii). Calculate the value of *P* when
$$Q = \frac{2}{3}$$
. [6]

Qn 10: Given that matrices $\mathbf{P} = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix}$ and $\mathbf{R} = \begin{pmatrix} -2 & 6 \\ -1 & 9 \end{pmatrix}$, find matrix \mathbf{Q} such that $\mathbf{PQ} = \mathbf{R}$.

Section B (60 Marks)

Answer any **five** questions from this section. **All** questions carry equal marks.

Question 11:

40 students carried out an experiment and recorded the following measurements.

3.2	4.1	2.6	3.1	3.8	1.7	3.9	3.6	
4.3	2.9	2.8	2.0	1.8	3.5	4.9	2.9	
3.5	3.2	2.1	3.7	3.1	4.2	4.7	2.8	
2.4	4.0	1.6	3.3	3.6	3.4	2.7	3.7	
4.4	3.3	1.4	3.8	1.1	4.5	2.3	4.6	

- (a). Draw a frequency distribution table starting with 1.0-1.4 as the first class.
- (b). State the class interval.
- (c). Calculate the mean using a working mean of 3.2.

Question 12:

- (a). Find the inverse of $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix}$.
- (b). Hence, use the matrix method to solve simultaneously:

$$x + y = 3$$

(c). Given that matrices
$$\mathbf{K} = \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix}$$
 and $\mathbf{L} = \begin{pmatrix} 0 & 3 \\ -1 & 1 \end{pmatrix}$, find:

(i). K^2 .

(ii).
$$2L + 3K$$
. [12]

Question 13:

Two fair dice are designed in such a way that the first one is green in colour with its six faces numbered 1, 1, 2, 2, 3, and 4 while the second one is yellow in colour with its faces numbered 1, 2, 3, 4, 4, and 5.

- (a). Show the possibility space when both dice are rolled once.
- (b). Hence, calculate the probability that the two scores will:
 - (i). be the same.
 - (ii). have a sum of more than 8. [12]

[12]

Question 14:

- (a). Given that $3\cos\theta = 1$ and that $0^{\circ} \le \theta \le 90^{\circ}$, find the value of $\sin\theta$ and $\tan\theta$, without using tables or a calculator. (leave surds in your answers).
- (b). In the given diagram below, BC = 5.9 cm, $\angle ABC = 90^{\circ}$, $\angle BAC = 42^{\circ}$ and $\angle BAD = 62^{\circ}$. Calculate the lengths \overline{AB} and \overline{CD} .

Calculate the lengths \overline{AB} and \overline{CD} .

[12]

Question 15:

- (a). A room, whose width is 3 metres less than the length, has an area of 108 m². Find the dimensions and perimeter of the room.
- (b).

In the given diagram, \overline{QP} is the diameter of the circle PQCD, and ABCD is a rectangle with $\overline{AB} = 12$ cm and $\overline{CB} = 8$ cm. Calculate the area of the shaded region (correct to 2 d.p). [12]

MARKING GUIDE

[Total Marks = 100]

SNo.	Working	Marks
1	$q^2 - x^2 + 4x - 4 = q^2 - (x^2 - 4x + 4)$	M1
	$= q^2 - (x - 2)^2$	M1
	= [q - (x - 2)][q + (x - 2)]	M1
	= (q - x + 2)(q + x - 2)	A1
	$-(q \times 1 \times 2)(q \times 2)$	
		04
2	A	
	A 230°	B1
	The bearing of A from B is 050°.	A1
		02
3	2x - 8 + y = 0	
	2(6-y)-8+y=0	M1
	12 - 2y - 8 + y = 0	
	4-y=0	
	4 = y	A1
	y = 4	
	x = 6 - 4 = 2	M1 A1
		04
4	(2*1)*y=0	01
1	$(2 \times 1) \times y = 0$ $(3 \times 2 - 2 \times 1) \times y = 0$	M1
	4 * y = 0	B1
	$3 \times 4 - 2 \times y = 0$	M1
	$ \begin{array}{c} 3 \times 4 - 2 \times y = 0 \\ 12 = 2y \end{array} $	141 1
	6 = y	A1
	y = 6	111
		04
5	Using $\pi = 3.142$	
	Area, $A_1 = 3.142 \times 100^2 = 31420 \text{ cm}^2$	B1
	Using $\pi = \frac{22}{7}$	
	7	
		B1

	Area, $A_2 = \frac{22}{7} \times 100^2 = \frac{220000}{7} = 31428.57 \text{ cm}^2$ %error = $\frac{32428.57 - 31420}{32428.57} \times 100 = 0.0273$	M1 A1
		04
6	(i). $x = 2 \times 60^{\circ} = 120^{\circ}$ (ii).	M1 A1
	$x + 2y = 180^{\circ}$ $120^{\circ} + 2y = 180^{\circ}$ $2y = 180^{\circ} - 120^{\circ}$ $2y = 60^{\circ}$	M1
	$y = 30^{\circ}$	A1
		04
7	$\frac{3}{7}x + 52 = \frac{4}{5}x$ $L. C. D = 35$ $35 \times \frac{3}{7}x + 35 \times 52 = 35 \times \frac{4}{5}x$	M1
	$ \begin{array}{r} 35 \times \overline{7}x + 35 \times 52 = 35 \times \overline{5}x \\ 15x + 1820 = 28x \\ 1820 = 28x - 15x \end{array} $	M1
	1820 = 13x	M1
	140 = x $x = 140 litres$	A1
		04
8	$1 \le 3x - 3 < 7$ $1 + 3 \le 3x - 3 + 3 < 7 + 3$ $4 \le 3x < 10$ $\frac{4}{3} \le x < \frac{10}{3}$	M1 M1
	$1.33 \le x < 3.33$ The integral solution set is: $\{2, 3\}$.	B1 A1
	(2)	04
9	(i). $P = KQ^2$ $18 = K \times 6^2$	B1 M1
	$18 = 36K$ $\frac{1}{2} = K$	B1
	$P = \frac{1}{2}Q^2$ (ii).	A1
	$P = \frac{1}{2} \left(\frac{2}{3}\right)^2 = \frac{2}{9}$	M1 A1

		06
10	Det $P = 2 - 0 = 2$	
	$P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ -3 & 2 \end{pmatrix}$ $PQ = R$	M1
	$Q = P^{-1}R = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} -2 & 6 \\ -1 & 9 \end{pmatrix}$	M1
	$=\frac{1}{2}\begin{pmatrix} -2 & 6\\ 4 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 3\\ 2 & 0 \end{pmatrix}$	M1 A1
		04
11	(a). Let $d = x - 3.2$.	
	Class Tally f x d fd 1.0 - 1.4 // 2 1.2 - 2.0 - 4	B2- for Class
	1.5 - 1.9 /// 3 1.7 - 1.5 - 4.5 2.0 - 2.4 //// 4 2.2 - 1.0 - 4.0	B2- for Tally
	2.5 - 2.9 //// / 6 2.7 - 0.5 - 3 3.0 - 3.4 //// // 7 3.2 0 0	B2- for <i>f</i>
	3.5 - 3.9 //// /// 9 3.7 0.5 4.5	B1- for <i>x</i>
	4.0 - 4.4 //// 5 4.2 1.0 5.0 4.5 - 4.9 //// 4 4.7 1.5 6.0	B1- for <i>d</i>
	Total 40 0	B1- for <i>fd</i>
	(b). The class interval is 0.5. (c).	B1
	Mean, $\overline{x} = 3.2 + \frac{\sum fd}{\sum f} = 3.2 + \frac{0}{40} = 3.2$	
		M1 A1
10		12
12	(a). $A = \begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix}, \implies \text{Det } A = 4 - 2 = 2$	B1
	$\therefore A^{-1} = \frac{1}{2} \begin{pmatrix} 4 & -1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1/2 \\ -1 & 1/2 \end{pmatrix}$	M1 A1
	(b).	
	$ \begin{array}{c c} 1 & x + y = 3 \\ 2 & x + 2y = 4 \end{array} $	
	x + y = 3 $2x + 4y = 8$	
	$\begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 8 \end{pmatrix}$	B1
	$\binom{x}{y} = \binom{2}{-1} \frac{-1/2}{1/2} \binom{3}{8}$	M1
	$\binom{x}{y} = \binom{2}{1}$	B1

	$\Rightarrow x = 2, \qquad y = 1$	A1
	(c). (i). $\mathbf{K}^{2} = \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix}$	M1
	$=\begin{pmatrix} 1 & -2 \\ 6 & -3 \end{pmatrix}$	A1
	(ii). $2\mathbf{L} + 3\mathbf{K} = 2\begin{pmatrix} 0 & 3 \\ -1 & 1 \end{pmatrix} + 3\begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 6 \\ -2 & 2 \end{pmatrix} + \begin{pmatrix} 6 & -3 \\ 9 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 3 \\ 7 & 2 \end{pmatrix}$	M1 M1 A1
4.0		12
13	(a). Die 1	B8
	(b). (i). $\frac{7}{36}$. (ii). $\frac{1}{36}$.	M1 A1 M1 A1
14		12
14	(a). $3\cos\theta = 1, \qquad \Rightarrow \cos\theta = \frac{1}{3}$	
	$x = \sqrt{3^2 - 1^2} = \sqrt{8}$	M1 B1
	$\sin \theta = \frac{\sqrt{8}}{2}$	M1 A1
	$\sin \theta = \frac{\sqrt{8}}{3}$ $\tan \theta = \frac{\sqrt{8}}{1} = \sqrt{8}$	M1 A1
	(b).	

456/2 MATHEMATICS PAPER 2 Feb 2023 $2\frac{1}{2}$ hours

S.4 MATH 2 MOCK SET 1 2023

Time: 2 Hours 30 Minutes

NAME: STREAM:

INSTRUCTIONS:

- Answer **all** the **eight** questions in section **A** and only **five** questions in section **B**.
- ➤ Show your working clearly.

Section A (40 Marks)

Answer **all** *the questions in this section.*

Qn 1: Find the L.C.M of 12, 18 and 42.

[4]

Qn2: Given that $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 2 \\ -6 \end{pmatrix}$, find:

(i).
$$a + b$$

(ii).
$$\begin{vmatrix} \tilde{a} + \tilde{b} \\ \tilde{c} \end{vmatrix}$$
. [4]

Qn 3: Simplify:
$$2 \log_{10} 2 + \log_{10} 75 - \log_{10} 3$$
. [4]

Qn 4: Solve the inequality: 10 - 3x < 4(x - 1). Hence represent on a number line. [4]

Qn 5: Find the equation of a line that passes through point A(-2,7) and the origin. [4]

Qn 6: Solve for
$$x: \frac{1}{2}(x-4) - \frac{1}{3}(3-2x) = \frac{1}{6}(x-1)$$
. [4]

Qn 7: Simplify:
$$\frac{\left(3\frac{1}{3} - 1\frac{5}{6}\right)}{\left(2\frac{3}{4} + 1\frac{1}{6} + \frac{1}{3}\right)}$$
 [4]

Qn 8: Solve for *x* and *y*:

$$-x + 2y = 10$$
$$y - 4 = x$$
 [4]

Qn 9: A man bought a shirt at 20% discount. If he paid shs 20,000, find the original price of the shirt. [4]

Qn10: Make
$$x$$
 the subject: $T = 2\pi \sqrt{\frac{m}{x-a}}$. [4]

Section B (60 Marks)

Answer any five questions from this section. All questions carry equal marks.

Question 11:

Of the 35 candidates in S.4, 13 registered for Biology (B), 20 registered for History (H) and 17 registered for Fine Art (F).

9 registered for both Biology and Fine Art.

3 registered for both Biology and History.

8 registered for only History and Fine Art.

2 registered for all the three subjects.

- (a). Represent the information on a Venn diagram.
- (b). Find:
 - (i). the number of candidates who registered for History only.
 - (ii). the number of candidates who registered for at least two subjects.
- (c). How many candidates did not take any of the three subjects? [12]

Question 12:

Write down the inequalities which satisfy the unshaded region in the graph above. [12]

Question 13:

A man 1.6 m tall observed the angle of elevation of a bird on top of the tree from P as 30°. He moved in a straight line a distance of 10 m towards point Q nearer to the tree and observed the angle of elevation of the bird as 55°. Determine the height of the tree. [12]

Question 14:

In the figure above, \overrightarrow{OPQ} is a triangle in which $\overrightarrow{OS} = \frac{1}{3}\overrightarrow{OP}$ and $\overrightarrow{OR} = \frac{1}{3}\overrightarrow{OQ}$. Tis a point on \overrightarrow{QS} such that $4\overrightarrow{QT} = 3\overrightarrow{QS}$. If $\overrightarrow{OP} = \boldsymbol{p}$ and $\overrightarrow{OQ} = \boldsymbol{q}$,

(a). Express the following in terms of p and q:

(i).
$$\overrightarrow{QS}$$
, (ii). \overrightarrow{SR} , (iii). \overrightarrow{PT} , (iv). \overrightarrow{TR} . [8]

(b). Hence, show that *P*, *T* and *R* lie on a straight line.

Question 15:

Copy and complete the table below for $y = x^2 - 4x + 2$.

(a).

$\boldsymbol{\chi}$	-2	-1	0	1	2	3	4	5	6
x^2									
-4x									
2	2	2	2	2	2	2	2	2	2
у									

- (b). Draw the graph of $y = x^2 4x + 2$; use a scale of 1 cm to represent 1 unit on both axes.
- (c). Use your graph to solve:

(i).
$$x^2 - 4x + 2 = 0$$
,

(ii).
$$x^2 - 6x + 2 = 0$$
.

[12]

[4]

MARKING GUIDE

[Total Marks = 100]

	[10tal Marks - 100]	
SNo.	Working	Marks
1		
	2 12 18 42	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D1 D1
	3 3 9 21	B1 B1
	2 6 9 21 3 3 9 21 3 1 3 7 7 1 1 7	
	1 1 1	
	L. C. $M = 2^2 \times 3^2 \times 7 = 252$	M1 A1
		04
2	(1) (2) (3)	_
2	$\mathbf{a} + \mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ -6 \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$	M1 A1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	354.44
	$\begin{vmatrix} a + b \\ a \end{vmatrix} = \sqrt{3^2 + (4)^2} = 5$ units	M1 A1
	·	
		04
3	$2\log_{10} 2 + \log_{10} 75 - \log_{10} 3$	
3	$= \log_{10} 4 + \log_{10} 75 - \log_{10} 3$	M1
	$=\log_{10}\left(\frac{4\times75}{3}\right)$	M1
	\ \ \ \ \ \ \	
	$= \log_{10} 100$	A1
	$= 2\log_{10} 10 = 2$	B1
		04
4	10 - 3x < 4(x - 1)	
	10 - 3x < 4x - 4	M1
	10 + 4 < 4x + 3x	M1
	14 < 7x	M1
	2 < x	
		A 1
	x > 2	A1
		04
5	Points are: $A(-2,7)$ and $O(0,0)$,	
	Gradient of line, $m = \frac{7 - 0}{-2 - 0} = -\frac{7}{2}$	
	Gradient of line, $m = \frac{1}{-2-0} = -\frac{1}{2}$	M1 B1
	y - intercept, c = 0	
	The equation of the line is:	B1
	$y = mx + c$ $y = -\frac{7}{2}x + 0$ $y = -\frac{7}{2}x$	
	$v = -\frac{1}{2}x + 0$	
	2 7	
	$v = -\frac{1}{2}v$	
	$\int_{\gamma} - \int_{2}^{\lambda}$	A1
		A1

		04
6	$\frac{1}{2}(x-4) - \frac{1}{3}(3-2x) = \frac{1}{6}(x-1)$ $L. C. D = 6$ $6 \times \frac{1}{2}(x-4) - 6 \times \frac{1}{3}(3-2x) = 6 \times \frac{1}{6}(x-1)$	
	3(x-4) - 2(3-2x) = (x-1) $3x - 12 - 6 + 4x = x - 1$	M1 M1
	$3x + 4x - x = -1 + 12 + 6$ $6x = 17$ $x = \frac{17}{6}$	M1 A1
	6	
		04
7	$3\frac{1}{3} - 1\frac{5}{6} = \frac{10}{3} - \frac{11}{6} = \frac{20 - 11}{6} = \frac{9}{6} = \frac{3}{2}$ $2\frac{3}{4} + 1\frac{1}{6} + \frac{1}{3} = \frac{1}{4} + \frac{7}{6} + \frac{1}{3} = \frac{33 + 14 + 4}{12} = \frac{17}{4}$	B1
	$2\frac{3}{4} + 1\frac{1}{6} + \frac{1}{3} = \frac{1}{4} + \frac{7}{6} + \frac{1}{3} = \frac{33 + 14 + 4}{12} = \frac{17}{4}$	B1
	$\frac{\left(3\frac{1}{3} - 1\frac{5}{6}\right)}{\left(2\frac{3}{4} + 1\frac{1}{6} + \frac{1}{3}\right)} = \frac{3}{2} \div \frac{17}{4} = \frac{3}{2} \times \frac{4}{17} = \frac{12}{34} = \frac{6}{17}$	M1 A1
		04
8	-x + 2y = 10 -(y - 4) + 2y = 10	M1
	$-y + 4 + 2y = 10$ $-y + 2y = 10 - 4$ $y = 6$ $x = y - 4 = 6 - 4 = 2$ $\therefore x = 2, y = 6$	A1 M1 A1
		04
9	Let the original price be x . $100\% - 20\% = 80\%$	M1
	$\frac{80}{100} \times x = 20000$ $0.8x = 20000$ $0.8x = 20000$	M1
	$\frac{0.8x}{0.8} = \frac{20000}{0.8}$ $x = 25000$	M1
	The original price of the shirt is shs 25,000.	A1
		04
10	$T = 2\pi \sqrt{\frac{m}{x - a}}$ $T^2 = 4\pi^2 \left(\frac{m}{x - a}\right)$	M1

	$T^{2} = \frac{4\pi^{2}m}{x - a}$ $T^{2}(x - a) = 4\pi^{2}m$ $T^{2}x - T^{2}a = 4\pi^{2}m$ $T^{2}x = T^{2}a + 4\pi^{2}m$ $x = \frac{T^{2}a + 4\pi^{2}m}{T^{2}}$	M1 M1 A1
11	(a). $n(\mathcal{E}) = 35$ $n(B) = 13$ $x = 1$ $y = $	B1-for entry 1 B1-for entry 2 B1-for entry 7 B1-for entry 8
	(b). (i). $n(H) = y + 8 + 2 + 1 = 20$ $20 = y + 11$ $y = 20 - 11 = 9$ $\therefore n(\text{only History}) = 9 \text{ students}$	M1
	(ii). $n(\text{at least two subjects}) = 1 + 2 + 7 + 8 = 18 \text{ students}$ (c). $n(B) = x + 7 + 2 + 1 = 13, \qquad \Rightarrow x = 13 - 10 = 3$ $n(F) = z + 8 + 2 + 7 = 17, \qquad \Rightarrow z = 17 - 17 = 0$	M1 A1
	$n(\varepsilon) = 13 + y + 8 + z + w$ $35 = 13 + 9 + 8 + 0 + w$ $35 = 30 + w$	B1 B1 M1

	w = 5	
	n(none of the three subjects) = 5 students	
		A1
		12
12	For (0, 1) and (-4, -4)	
	y = mx + c	M1 D1
	$m = \frac{-4-1}{-4-0} = \frac{-3}{-4} = \frac{3}{4}$	M1 B1
	$m = \frac{-4 - 1}{-4 - 0} = \frac{-5}{-4} = \frac{5}{4}$ $1 = \frac{5}{4} \times 0 + c, \qquad \Longrightarrow c = 1$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1
	$y = \frac{5}{4}x + 1$	
	4y = 5x + 4	B1
	Suppose the inequality: $4y \le 5x + 4$. Test it using $(0,0)$. $0 \le 0 + 4$, $\Rightarrow 0 \le 4$, True	
	$0 \le 0 + 4, \qquad 0 \le 4, \qquad \text{11 ue}$ $\therefore \text{ The required inequality is: } 4y \le 5x + 4.$	A1
	For $(0,1)$ and $(4,-4)$	112
	y = mx + c	M4 D4
	$m = \frac{-4-1}{4} = \frac{-5}{4} = -\frac{5}{4}$	M1 B1
	5	
	$m = \frac{-4 - 1}{4 - 0} = \frac{-5}{4} = -\frac{5}{4}$ $1 = -\frac{5}{4} \times 0 + c, \implies c = 1$	M4
	$y = -\frac{5}{4}x + 1$	M1
	4y = -5x + 4	
	4y + 5x = 4 Suppose the inequality $4x + 5x < 4$. Test it using (0, 0)	D4
	Suppose the inequality: $4y + 5x \le 4$. Test it using $(0,0)$. $0 + 0 \le 4$, $\Rightarrow 0 \le 4$, True	B1
	$\therefore \text{ The required inequality is: } 4y + 5x \le 4.$	
	For $(-4, -4)$ and $(4, -4)$	A1
	\therefore The required inequality is: $y > -4$.	B1 B1
		12
13		
	∕ ∏₹	
	(h – 1.6)	
	30° 55°	B1 B1
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1.6 m	
	↓ ↓	
	< 10 m	
	$\tan 30^{\circ} = \frac{h - 1.6}{x + 10}$	B1
	x + 10	

	$(x + 10) \tan 30^{\circ} = h - 1.6$ 0.577x + 5.77 = h - 1.6	M1
	0.577x = h - 7.37	
	$x = \frac{h - 7.37}{0.577} \rightarrow (1)$	M1
	$x = \frac{1}{0.577} \rightarrow (1)$	
	$\tan 55^\circ = \frac{h - 1.6}{x}$	B1
	$x \tan 55^{\circ} = h - 1.6$	M1
	1.428x = h - 1.6	l'II
	$x = \frac{h - 1.6}{1.428} \rightarrow (2)$	M1
	$x = \frac{1.428}{1.428} \rightarrow (2)$	
	Equating the two equations;	
	$\frac{h - 7.37}{0.577} = \frac{h - 1.6}{1.428}$	M1
	0.577 1.428	
	1.428(h - 7.37) = 0.577(h - 1.6) 1.428h - 10.524 = 0.577h - 0.9232	3.54
	1.428h - 10.524 = 0.577h = 0.9232 $1.428h - 0.577h = -0.9232 + 10.524$	M1
	0.851h = 9.6008	A1
	h = 11.282 m	AI
		12
14	(a). (i).	
	$\overrightarrow{OS} = \frac{1}{3}\overrightarrow{OP} = \frac{1}{3}\boldsymbol{p}$	
	QS = OS - OQ	B1
	$\overrightarrow{QS} = \overrightarrow{OS} - \overrightarrow{OQ}$ $= \frac{1}{3}\overrightarrow{OP} - \overrightarrow{OQ} = \frac{1}{3}\mathbf{p} - \mathbf{q}$	M1
	$=\frac{1}{3}(\boldsymbol{p}-3\boldsymbol{q})$	
	5 (~ ~,	A1
	(ii).	
	$\overrightarrow{OR} = \frac{1}{3}\overrightarrow{OQ} = \frac{1}{3}q$	
	$\overrightarrow{SR} = \overrightarrow{OR} - \overrightarrow{OS}$	
		B1
	$=\frac{1}{3}\mathbf{q}-\frac{1}{3}\mathbf{p}$	M1
	$=\frac{1}{3}\left(\mathbf{q}-\mathbf{p}\right)$	A1
	(iii).	
	$\overrightarrow{PT} = \overrightarrow{OT} - \overrightarrow{OP}$	
	but, $4\overrightarrow{QT} = 3\overrightarrow{QS}$, $\Longrightarrow \overrightarrow{QT} = \frac{3}{4}\overrightarrow{QS}$	
	$\overrightarrow{QT} = \frac{3}{4} \times \frac{1}{3} \left(\mathbf{p} - 3\mathbf{q} \right) = \frac{1}{4} \left(\mathbf{p} - 3\mathbf{q} \right)$	B1
	$\overrightarrow{OT} = \overrightarrow{OQ} + \overrightarrow{QT} = \mathbf{q} + \frac{1}{4} (\mathbf{p} - 3\mathbf{q})$	M1
	$=\frac{4\boldsymbol{q}+\boldsymbol{p}-3\boldsymbol{q}}{\overset{\sim}{4}}=\frac{1}{4}\left(\boldsymbol{q}+\boldsymbol{p}\right)$	
<u> </u>	T T(~ ~/	

	(iv). $\overrightarrow{PT} = \overrightarrow{OT} - \overrightarrow{OP} = \frac{1}{4} \left(\mathbf{q} + \mathbf{p} \right) - \mathbf{p}$ $= \frac{\mathbf{q} + \mathbf{p} - 4\mathbf{p}}{4} = \frac{1}{4} \left(\mathbf{q} - 3\mathbf{p} \right)$	A1
	$\overrightarrow{TR} = \overrightarrow{OR} - \overrightarrow{OT} = \frac{1}{3} \mathbf{q} - \frac{1}{4} \left(\mathbf{q} + \mathbf{p} \right)$ $= \frac{4\mathbf{q} - 3\mathbf{q} - 3\mathbf{p}}{12} = \frac{1}{12} \left(\mathbf{q} - 3\mathbf{p} \right)$	M1 A1
	(b). $\frac{\overrightarrow{PT}}{\overrightarrow{TR}} = \frac{\frac{1}{4} \left(\mathbf{q} - 3\mathbf{p} \right)}{\frac{1}{12} \left(\mathbf{q} - 3\mathbf{p} \right)}$	
	$\frac{\overline{PT}}{\overline{TR}} = 3$ $\overline{PT} = 3\overline{TR}$ Since $\overline{PT} = 3\overline{TR}$ and T is common to both lines \overline{PT} and \overline{TR} , then points P, T and R lie on a straight line.	B1
15	(a). $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B1 B1 B1 B1
		B1-for plotting B1-for line B1-for smooth curve

SENIOR FOUR MATHEMATICS March 2023

 $1\frac{1}{2}$ hours

S.4 MATH BI-WEEKLY TEST 1 2023

Time: 1 Hour 30 Minutes

NAME: STREAM:

INSTRUCTIONS:

Attempt ALL questions in this paper. Show your working clearly.

Qn 1: Simplify:

$$\frac{2x-3}{3} - \frac{3x+2}{5}$$

Qn 2: Suppose that after being given a discount of 12% of the marked price, David paid 5,280/= for a shirt. What was its marked price?

Qn 3: If n(A) = 6, n(B) = 5 and $n(A \cap B) = 2$, what is $n(A \cup B)$?

Qn 4: Find the size of each angle of a triangle if they are in the ratio 1:3:5.

Qn 5: Express 0.666..... as a rational number in its simples form.

Qn 6: Find the equation of the line whose gradient is $-\frac{1}{2}$ and passes through the point (-4,5).

Qn 7: Given that $\mathbf{O}\mathbf{A} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ and $\mathbf{O}\mathbf{B} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$, find:

- (i). AB,
- (ii). magnitude of AB.

Qn 8: Given that $\log a = n$ and $\log b = m$, express the following in terms of m and n.

- (i). $\log ab$
- (ii). $\log\left(\frac{b}{a}\right)$
- (iii). $\log a^2$

Qn 9: Use logarithm tables to evaluate:

$$\frac{0.00479}{548 \times 0.00984}$$

- **Qn 10:** Given that $2^{2y} = \frac{1}{8}$, find the value of y.
- **Qn 11:** The marked price of a dress is 80,000/= . However, by hire purchase, this price is increased by 5% and distributed into 10 equal monthly installments. Calculate the:
 - (i). Hire purchase price,
 - (ii). Amount of each installment,
 - (iii). Difference between the marked and hire purchase price.
- **Qn 12:** A man drives from town P to Q, which is 200 km away and on a bearing of 030° from P. From Q, he drives for 150 km to town R, whose bearing from P is 060°. Using a scale of 1 cm for 50 km, construct a plan for his journey. Hence find:
 - (i). the bearing of P from R.
 - (ii). distance \overline{PR} .

MARKING GUIDE

[Total Marks = 60]

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[I otal Marks = 60]	
$ \frac{2x-3}{3} - \frac{3x+2}{5} = \frac{5(2x-3) - 3(3x+2)}{15} \\ = \frac{10x-15 - 9x - 6}{15} = \frac{x-21}{15} $ M1 M1 M1 A1 2 Let the marked price be x. $ 100\% - 12\% = 88\% \\ 88\% \text{ of } x = 5280 \\ 888 \\ 100 \times x = 5280 \\ 0.88x = 5280 \\ 0.88x = 5280 \\ 0.88x = 6000 $ The marked price was shs 6,000. 3 $ n(A \cup B) = 4 + 2 + 3 = 9 $ M1 A1 $ n(A \cup B) = 4 + 2 + 3 = 9 $ M1 A1 $ Total ratio = 1 + 3 + 5 = 9 $ First angle = $\frac{1}{9} \times 180 = 20^{\circ}$ Second angle = $\frac{3}{9} \times 180 = 60^{\circ}$ Third angle = $\frac{5}{9} \times 180 = 60^{\circ}$ B1 Third angle = $\frac{5}{9} \times 180 = 60^{\circ}$ B1		Working	Marks
$=\frac{10x - 15 - 9x - 6}{15} = \frac{x - 21}{15}$ M1 M1 A1 2 Let the marked price be x. $100\% - 12\% = 88\%$ $88\% \text{ of } x = 5280$ $\frac{88}{100} \times x = 5280$ $\frac{0.88x}{0.88} = \frac{5280}{0.88}$ $\frac{0.88x}{0.88} = \frac{5280}{0.88}$ M1 The marked price was shs 6,000. 3 $n(A) = 6$ $(6 - 2)$ $= 4$ 2 $(5 - 2)$ $= 3$ $n(A \cup B) = 4 + 2 + 3 = 9$ M1 A1 Total ratio = 1 + 3 + 5 = 9 First angle = $\frac{1}{9} \times 180 = 20^{\circ}$ Second angle = $\frac{3}{9} \times 180 = 60^{\circ}$ Third angle = $\frac{5}{2} \times 180 = 100^{\circ}$ B1 Third angle = $\frac{5}{2} \times 180 = 100^{\circ}$	1	2x-3 $3x+2$ $5(2x-3)-3(3x+2)$	M1
Let the marked price be x . $100\% - 12\% = 88\%$ 88% of $x = 5280$ $\frac{88}{100} \times x = 5280$ $0.88x = 5280$ $0.88x = \frac{5280}{0.88}$ $x = 6000$ The marked price was shs 6,000. $n(A) = 6$ $(6-2)$ $= 4$ $100\% - 12\% = 88\%$ $\frac{88}{100} \times x = 5280$ $\frac{0.88x}{0.88} = \frac{5280}{0.88}$ $x = 6000$ A1 $n(A) = 6$ $(6-2)$ $= 4$ 2 $(5-2)$ $= 3$ $(5-2)$ $= 3$ $(5-2)$ $= 3$		$\frac{-3}{3} = \frac{-5}{5} = \frac{15}{15}$ $= \frac{10x - 15 - 9x - 6}{15} = \frac{x - 21}{15}$	M1 M1 A1
Let the marked price be x . $100\% - 12\% = 88\%$ 88% of $x = 5280$ $\frac{88}{100} \times x = 5280$ $0.88x = 5280$ $0.88x = \frac{5280}{0.88}$ $x = 6000$ The marked price was shs 6,000.			04
3 $n(A) = 6$ $(6-2) = 4$ 2 $(5-2) = 3$ 4 $Total ratio = 1 + 3 + 5 = 9$ $First angle = \frac{1}{9} \times 180 = 20^{\circ}$ $Second angle = \frac{3}{9} \times 180 = 60^{\circ}$ $Third angle = \frac{5}{1} \times 180 = 100^{\circ}$ $B1$ $B1$ $B1$ $B1$ $B1$ $B1$ $B1$ $B1$	2	$100\% - 12\% = 88\%$ $88\% \text{ of } x = 5280$ $\frac{88}{100} \times x = 5280$ $0.88x = 5280$ $\frac{0.88x}{0.88} = \frac{5280}{0.88}$ $x = 6000$	M1 M1
3 $n(A) = 6$ $(6-2)$ $= 4$ 2 $(5-2)$ $= 3$ $M1 A1$ 4 $Total ratio = 1 + 3 + 5 = 9$ $First angle = \frac{1}{9} \times 180 = 20^{\circ}$ $Second angle = \frac{3}{9} \times 180 = 60^{\circ}$ $Third angle = \frac{5}{9} \times 180 = 100^{\circ}$ $B1$ $B1$		The marked price was sits 0,000.	02
Total ratio = $1 + 3 + 5 = 9$ First angle = $\frac{1}{9} \times 180 = 20^{\circ}$ Second angle = $\frac{3}{9} \times 180 = 60^{\circ}$ Third angle = $\frac{5}{9} \times 180 = 100^{\circ}$	3	(6-2) $(5-2)$	
Total ratio = $1 + 3 + 5 = 9$ First angle = $\frac{1}{9} \times 180 = 20^{\circ}$ Second angle = $\frac{3}{9} \times 180 = 60^{\circ}$ Third angle = $\frac{5}{9} \times 180 = 100^{\circ}$		$n(A \cup B) = 4 + 2 + 3 = 9$	M1 A1
First angle = $\frac{1}{9} \times 180 = 20^{\circ}$ Second angle = $\frac{3}{9} \times 180 = 60^{\circ}$ Third angle = $\frac{5}{9} \times 180 = 100^{\circ}$			03
Third angle $= \frac{5}{-} \times 180 = 100^{\circ}$	4	First angle $=\frac{1}{9} \times 180 = 20^{\circ}$	B1
		Third angle $=\frac{5}{9} \times 180 = 60^{\circ}$	
03			03
5 Let $x = 0.666 \dots$	5	Let $x = 0.666 \dots$	

		$10x = 0.666 \dots$	× 10	
		10x = 6.666)	B1
	_	$ \begin{vmatrix} 10x & = & 6.666 \\ x & = & 0.666 \\ 9x & = & 6 \end{vmatrix} $		M1
		$x = \frac{6}{9} = \frac{2}{3}$ $\therefore 0.666 \dots = \frac{2}{3}$		M1 A1
				04
6		y = mx + c		
		$y = mx + c$ $5 = -\frac{1}{2} \times (-4) + c$ $5 = 2 + c$	- <i>c</i>	M1
		c = 2	1	B1
	∴ The required equ	ation of the line is: ງ	$y = -\frac{1}{2}x + 2.$	M1 A1
				04
7	(i).	(_2\	(-1) (-1)	M1 A1
		$= \mathbf{O}\mathbf{B} - \mathbf{O}\mathbf{A} = {-2 \choose 3}$	$-\binom{1}{2}=\binom{1}{1}$	MIAI
	(ii).	$ B = \sqrt{(-1)^2 + 1^2}$	- √2 ~ 1 414	N/4 A 4
	Į <i>F</i>	$ \mathbf{B} = \sqrt{(-1)^2 + 1^2}$	— V2 ≈ 1.414	M1 A1
	6.2			04
8	(i).	$\log ab = \log a + \log a$	$\sigma h = n + m$	M1 A1
	(ii).	108 40 108 4 108	50 10 1 110	
		$\log\left(\frac{b}{a}\right) = \log b - \log b$	ga = m - n	M1 A1
	(iii).	(60)		MIAI
		$\log a^2 = 2\log a$	a = 2n	M1 A1
				06
9	Number	Standard form	Logarithm	
	0.00479	Standard form 4.79×10^{-3}	Logarithm 3.6803	B1
	548	5.48×10^2	2.7387	B1
	0.00984	9.84×10^{-3}	+ 3.9930	B1 B1
			0.7317	DI
		1	3.6803	
			<u> </u>	B1
			4 .9486	p1
				M1 A1

	antilog $(0.9486) \times 10^{-4} \approx 8.884 \times 10^{-4} = 0.0008884$	
	$\therefore \frac{0.00479}{548 \times 0.00984} \approx 0.0008884$	
10	$2^{2y} = 8^{-1}$	07 M1
	$2^{2y} = (2^{3})^{-1}$ $2^{2y} = 2^{-3}$ $2y = -3$ $y = -\frac{3}{2}$	M1 M1 A1
		04
11	(i). $100\% + 5\% = 105\%$ Hire purchase price = $\frac{105}{100} \times 80000 = 84000/=$	M1 A1
	(ii). Each installment = $\frac{84000}{10}$ = $8400/$ = (iii). Difference = $84000 - 80000 = 4000/$ =	M1 A1
	Difference = 84000 - 80000 = 4000/=	M1 A1 06
12	$\overline{PQ} = 200 \text{ km} \equiv \frac{200}{50} = 4 \text{ cm}$ $\overline{QR} = 150 \text{ km} \equiv \frac{150}{50} = 3 \text{ cm}$	B1
	Sketch: $\sqrt{N} = \frac{130 \text{ km}}{50} = 3 \text{ cm}$	B1
	P 3 cm R	B2
	Accurate diagram:	

_^	B1- for north lines
↑ S C R	B2- for dimensions
	B1- for 30°
P	B1- for 60°
(i). Bearing of P from $R = 240^{\circ} \pm 001^{\circ}$	B1
(ii). Length $\overline{PR} = (5.8 \pm 0.1) \text{cm}$ Distance $\overline{PR} = (290 \pm 5) \text{km}$	B1 B1
	12

SENIOR FOUR MATHEMATICS March 2023

 $1\frac{1}{2}$ hours

S.4 MATH BI-WEEKLY TEST 2 2023

Time: 1 Hour 30 Minutes

NAME: STREAM:

INSTRUCTIONS:

Attempt ALL questions in this paper.

Show your working clearly.

Qn 1: Solve for *x*:

$$\frac{1}{3x - 4} + \frac{x}{x + 1} = 1$$

Qn2: A line is given by the equation 45 - 15x + 3y = 0. Find the coordinates of its x-intercept.

Qn3: A trade made a 35% profit after selling a goat at shs 45,900. What was the cost price of the goat?

Qn4: The height of a small box is 2 cm and its volume 10 cm³. If the height of a similar box is 6 cm, what is its volume?

Qn5: Under an enlargement scale factor 3, the image of the point P(0,3) is P'(4,5). Find the coordinates of the centre of enlargement.

Qn6: Show that the points (3x, 3y), (2x, y) and (0, 7y) lie on a straight line.

Qn7: Solve the simultaneous equations:

$$x^{2} + 4y^{2} = 4 \longrightarrow (i)$$

$$y - x = -1 \longrightarrow (ii)$$

Qn8: In the figure ABC, $\overline{AB} = 6$ cm, $\overline{ED} = 2$ cm, $\overline{CD} = 4$ cm and $\overline{CE} = 5$ cm.

If \overline{ED} is parallel to \overline{AB} , find length AE.

Qn 9: (a). Copy and complete the following table of values for the curve y = (x - 1)(x - 3) between x = -1 and x = 5.

x	-1	0	1	2	3	4	5
x-1							
x-3							
y = (x-1)(x-3)							

- (b). Use your table to draw a graph of y = (x 1)(x 3) for $-1 \le x \le 5$. Use a scale of 1 cm to represent 1 unit on both axes.
- (c). Use your graph to solve:
 - (i). $x^2 4x + 3 = 0$,
 - (ii). $x^2 4x + 1 = 0$.
- (d). Using dotted line, indicate the line of symmetry on your graph in (b) above. Hence state the equation of the line of symmetry.
- (e). From your graph, find the:
 - (i). minimum value of the function.
 - (ii). range of values for which (x 1)(x 3) < 0.

Qn 10: Use the inverse matrix method to find the values of x and y.

$$2x - 3y = 12 \longrightarrow (i)$$

$$x + 2y + 1 = 0 \longrightarrow (ii)$$

MARKING GUIDE

[Total Marks = 50]

SNo.	Working	Marks
1	1 2	T-TGT T-TG
1	$\frac{1}{3x-4} + \frac{x}{x+1} = 1$	
	L. C. M for the denominator = $(3x - 4)(x + 1)$	
	$(x+1) \times 1 + (3x-4) \times x = 1 \times (3x-4)(x+1)$	M1
	$x + 1 + 3x^2 - 4x = 3x^2 + 3x - 4x - 4$	M1
	x + 1 = 3x - 4	1.11
	5 = 2x	M1
		1.11
	$x = \frac{5}{2} = 2.5$	A1
	<i>L</i>	111
		04
2	45 - 15x + 3y = 0	
	when $y = 0$, $45 - 15x + 3 \times 0 = 0$	M1
	45 = 15x	M1
	45 15 <i>x</i>	
	$\frac{15}{15} = \frac{15}{15}$	
	x = 3	A1
	\therefore The coordinates of its x-intercept is (3, 0).	B1
		04
3	Let the cost price be <i>x</i> .	
	100% + 35% = 135%	B1
	135% of x = 45900	
	135	
	$\frac{135}{100} \times x = 45900$	M1
	1.35x = 45900	
	$1.35x ext{ } 45900$	
	$\frac{1.35}{1.35} = \frac{1.35}{1.35}$	M1
	x = 34,000	A1
	The cost price of the goat is shs 34,000.	
		04
4	$h_1 = 2 \text{ cm}, \qquad v_1 = 10 \text{ cm}^3, \qquad h_2 = 6 \text{ cm}$	
	$L S F = \frac{h_2}{h_2} = \frac{6}{h_2} = 3$	
		B1
	$L.S.F = \frac{h_2}{h_1} = \frac{6}{2} = 3$ $V.S.F = \frac{v_2}{v_1} = \frac{v_2}{10}$	
	v_1 10	
	but, $V.S.F = (L.S.F)^3$ $\frac{v_2}{10} = 3^3$	
	$\frac{\nu_2}{4.2} = 3^3$) D.
	$v_2 = 27 \times 10 = 270 \text{ cm}^3$	M1 B1
	$\nu_2 - 27 \times 10 = 270 \mathrm{cm}^2$	A 4
		A1
		04

5	Let $P(x, y)$ be the centre of enlargement.	
	C(x, y) P(0, 3) P'(4, 5)	
	$\overrightarrow{CP'} = 3\overrightarrow{CP}$	
	$\begin{pmatrix} 4-x \\ 5-y \end{pmatrix} = 3\begin{pmatrix} 0-x \\ 3-y \end{pmatrix}$	M1
	$ \binom{4-x}{5-y} = \binom{0-3x}{9-3y} $	
	$4-x = -3x, \qquad \Rightarrow 2x = -4, \qquad \therefore x = -2$ $5-y = 9-3y, \qquad \Rightarrow 2y = 4, \qquad \therefore y = 2$	A1
	\therefore Centre, $C(-2,2)$	A1 B1
		04
6	For $(3x, 3y)$ and $(2x, y)$,	
	Gradient = $\frac{y-3y}{2x-3x} = \frac{-2y}{-x} = \frac{2y}{x}$	B1
	For $(2x, y)$ and $(0, 7y)$ $7y - y = 6y = 3y$	
	Gradient = $\frac{7y - y}{0 - 2x} = \frac{6y}{-2x} = \frac{3y}{x}$	B1
	The points don't lie on a straight line.	B1
		03
7	$y = x - 1$ $x^2 + 4(x - 1)^2 = 4$	M1
	$x^2 + 4(x^2 - 2x + 1) = 4$	M1
	$x^2 + 4x^2 - 8x + 4 = 4$ $5x^2 - 8x = 0$	
	x(5x-8) = 0	
	x = 0, or, $(5x - 8) = 0x = 0, or, x = \frac{8}{5}$	
	, L	B1
	when $x = 0$, $y = 0 - 1 = -1$ when $x = \frac{8}{5}$, $y = \frac{8}{5} - 1 = \frac{3}{5}$	
	Hence $(0,-1), (\frac{8}{5},\frac{3}{5}).$	B1 A1 A1
	Tience (0, 1), (5, 5).	
8	r . AD	06
8	Let $\overline{AE} = x$	
	5 cm 4 cm	
	$(x+5)$ $E \xrightarrow{2 \text{ cm}} D$	
	∫ B Z GIII	
	A 6 cm	
	By similarity,	

$\frac{x+5}{5} = \frac{6}{2}$ $x+5=15$ $x=15-5$	M1 B1
$\frac{x = 10}{AE = 10 \text{ cm}}$	A1
	03
9 (a). $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1 B1 B1
y-axis 91 8- 7- 4- 3 4- 3 4- 4-3 -2 -1 0 1 2 3 4 5 6 x-axis -1- -2- (c). (i). $y = (x-1)(x-3) = x^2 - 4x + 3$	B1-line $x = 2$ and $y = 2$ B1-curve
$y = x^{2} - 4x + 3$ $- \begin{vmatrix} 0 = x^{2} - 4x + 3 \\ 0 = x^{2} - 4x + 3 \end{vmatrix}$ $y = 0$ The roots are: $x = 1$ and $x = 3$.	B1
(ii).	A1 A1
$ \begin{vmatrix} y = x^2 - 4x + 3 \\ - 0 = x^2 - 4x + 1 \\ y = 2 \end{vmatrix} $ The weath are $x = 0.3$ and $y = 3.7$	B1
The roots are: $x = 0.3$ and $x = 3.7$. (d). The line of symmetry is $x = 2$.	A1 A1 A1
(e). (i). Minimum value is: -1 . (ii). The range of values is: $1 < x < 3$.	A1 A1 A1
	14

10	$2x - 3y = 12 \longrightarrow (i)$ $x + 2y = -1 \longrightarrow (ii)$ $\binom{2}{1} - \binom{3}{2} \binom{x}{y} = \binom{12}{-1}$ $Det = 4 + 3 = 7$	M1
	$\frac{1}{7} \begin{pmatrix} 2 & 3 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 2 & 3 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 12 \\ -1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 21 \\ -14 \end{pmatrix}$	M1
		A1 A1
		04

SENIOR FOUR MATHEMATICS April 2023 $1\frac{3}{4}$ hours

S.4 MATH BI-WEEKLY TEST 3 2023

Time: 1 Hour 45 Minutes

INSTRUCTIONS:

Attempt ALL questions in this paper. Show your working clearly.

- **Qn 1:** Without using tables or calculator, simplify $\sqrt{243} \sqrt{108} + \sqrt{75}$. [4]
- **Qn 2:** The midpoint of the segment \overline{AB} is T. Given that the coordinates of B are (6,5) and T are (2,3), determine the coordinates of A.
- **Qn 3:** Given the function $f(x) = \frac{1}{x}$ and g(x) = 2x 1. Determine an expression for gf(x) and find the value of x for which gf(x) = 0. [4]
- **Qn 4:** The base areas of two similar tins are 24 cm² and 54 cm². If the volume of the smaller tin is 144 cm³, determine the volume of the larger tin. [4]
- **Qn 5:** Given that the position vectors of **A** and **B** are $\binom{-2}{4}$ and $\binom{7}{7}$ respectively and also that X is on **AB** such that \overrightarrow{AX} : $\overrightarrow{XB} = 1$: 2. Determine the column vector:
- (i). \overrightarrow{AB} (ii). \overrightarrow{OX} . [4]
- **Qn 6:** Two quantities x and y are such that y is partly constant and partly varies inversely as x and that, y = 11, when x = 2 and y = 7when x = 6. Determine the value of y when x = 4.
- **Qn 7:** On a map, a forest of area 7.2 km² is represented by 5 cm². Find the length of a road represented by 9 cm on the map. [4]

Qn 8: A sum of money is put to compound interest; the first year's interest is shs 75,000 and the second year's is shs 82,500. Find:

(a). T	'he rate per annum,	[6]
--------	---------------------	-----

Qn 9: The diagram shows how children come to school, by walking (W), by bicycle (B) ot by car (C).

Use the information on the Venn diagram to find:

- (i). $n(C \cup W \cup B)$,
- (ii). $n(C \cup W')$.

Qn 10: The diagram below shows a lampshade made out of the lower part of a cone. The base radius is 28 cm, the top radius is 12 cm and the slant height is 20 cm.

Calculate the:

(a). height
$$h$$
, of the lamp shade. [3]

(b). surface area of the lampshade. (Use
$$\pi = 3.14$$
) [2]

[Total Marks = 64]

SNo.	Working	Marks
1	$\sqrt{243} - \sqrt{108} + \sqrt{75} = \sqrt{81 \times 3} - \sqrt{36 \times 3} + \sqrt{25 \times 3}$	M1
	$=9\sqrt{3}-6\sqrt{3}+5\sqrt{3}$	M1
	$= (9-6+5)\sqrt{3} = 8\sqrt{3}$	A1
		03
2	Let $P(x, y)$ be the centre of enlargement.	
	 	
	A(x, y) $T(2, 3)$ $B(6, 5)$	
	$\frac{x+6}{2} = 2, \qquad \Rightarrow x+6 = 4, \qquad \Rightarrow x = -2$ $\frac{y+5}{2} = 3, \qquad \Rightarrow y+5 = 6, \qquad \Rightarrow y = -1$	M1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IVI I
	$\frac{y+5}{3}=3, \Rightarrow y+5=6, \Rightarrow y=-1$	M1
	A(-2,-1)	A1
	11(2, 1)	
		03
3	$a_{\alpha}(a) = a^{1}$	
	$gf(x) = g\left(\frac{1}{x}\right)$	M1
	$=2(\frac{1}{-})-1$	
	$\left(x\right)_{2}^{2}$	D4
	$= 2\left(\frac{1}{x}\right) - 1$ $gf(x) = \frac{2}{x} - 1$	B1
	for $af(x) = 0$	
	2	M1
	$\frac{1}{x} - 1 = 0$	
	for, $gf(x) = 0$ $\frac{2}{x} - 1 = 0$ $\frac{2}{x} = 1$	
	$ \begin{array}{c} x - 1 \\ 2 = x \end{array} $	
	$ \begin{array}{c} 2 = x \\ x = 2 \end{array} $	
	$\chi - Z$	A1
		04
4	54	
	$A.S.F = \frac{54}{24} = 2.25$	B1
	$L.S.F = \sqrt{2.25} = 1.5$	B1
	$V.S.F = (1.5)^3 = 3.375$	M1
	$V.S.F = \frac{\text{volume of larger tin}}{\text{volume of smaller tin}}$	
	volume of smaller tin	
	$3.375 = \frac{v}{144}$	M1
	$v = 3.375 \times 144$	171 1
	$v = 486 \text{ cm}^3$	A1
	The volume of the larger tin is 486 cm ³ .	
		04
5	(i).	

	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 7 \\ 7 \end{pmatrix} - \begin{pmatrix} -2 \\ 4 \end{pmatrix} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$	M1 A1
	(ii). $\overrightarrow{AX}: \overrightarrow{XB} = 1:2$	
	$\overrightarrow{AX}: \overrightarrow{AB} = 1:2$ $\overrightarrow{AX} = \frac{1}{3}\overrightarrow{AB}$	
	$\overrightarrow{ox} - \overrightarrow{oA} = \frac{1}{3} \binom{9}{3}$	M1
	$\overrightarrow{ox} - {\binom{-2}{4}} = {\binom{3}{1}}$	
	$\overrightarrow{OX} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} -2 \\ 4 \end{pmatrix}$	
	$\overrightarrow{OX} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$	A1
	(5)	
6	h	04
	$y = a + \frac{b}{x}$	
	when $x = 2$, $y = 11$	B1
	$11 = a + \frac{b}{2}$	B1
	22 = 2a + b $22 - 2a = b$	
	b = 22 - 2a	
	when $x = 6$, $y = 7$	
	$7 = a + \frac{b}{6}$	B1
	42 = 6a + b $42 = 6a + (22 - 2a)$	M1
	42 = 4a + 22 $42 - 22 = 4a$	
	42 - 22 - 4a $20 = 4a$	
	$5 = a$ $b = 22 - 2a = 22 - 2 \times 5 = 22 - 10 = 12$	B1
	$b = 2z - 2u = 2z - 2 \times 3 = 2z - 10 = 12$ $2z - 5 + \frac{12}{2}$	M1 B1
	$y = 5 + \frac{12}{x}$ When $x = 4$, $y = 5 + \frac{12}{4} = 5 + 3 = 8$	B1
	When $x = 4$, $y = 5 + \frac{1}{4} = 5 + 3 = 8$	A1
		08
7	The area scale is $5 \text{ cm}^2 : 7.2 \text{ km}^2$	
	$1 \text{ cm}^2 : \frac{7.2}{5} \text{ km}^2$	
	$1 \text{ cm}^2 : 1.44 \text{ km}^2$	M1
	The linear scale is	
	$\sqrt{1} \text{ cm} : \sqrt{1.44} \text{ km}$ $1 \text{ cm} : 1.2 \text{ km}$	B1
	9 cm : 1.2 × 9 km	M1
	9 cm : 10.8 km	A1

	The actual length of the road is 10.8 km.	
		04
8	(a). Interest for the 1st year, $I_1 = P_1 \times \frac{R}{100} \times T$	
	$7500000 = P_1 R$ $P_1 = \frac{7500000}{R}$	B1
	Ammount at the end of the 1 st year, $A_1 = I_1 + P_1 = 75000 + P_1$ Interest for the 2 nd year,	B1
	$I_2 = P_2 \times \frac{R}{100} \times T$ $82500 = (75000 + P_1) \times \frac{R}{100} \times 1$ $8250000 = (75000 + P_1)R$	M1
	$8250000 = 75000R + P_1R$ $8250000 = 75000R + \frac{7500000}{R} \times R$ $8250000 = 75000R + 7500000$ $8250 = 75R + 7500$ $8250 - 7500 = 75R$	M1
	$750 = 75R$ $10 = R$ $\therefore R = 10\%$	B1
	(b). $P_1 = \frac{7500000}{R} = \frac{7500000}{10} = 750,000$ Sum inested is shs 750,000.	A1 M1 A1
	(c). $P_2 = I_1 + P_1 = 7500 + 750000 = 825000$ $P_3 = I_2 + P_2 = 82500 + 825000 = 907500$ Interest for the 3 rd year, $I_3 = P_3 \times \frac{R}{100} \times T$	B1 B1
	$I_3 = 907500 \times \frac{10}{100} \times 1 = 90750$	M1 A1
9	(i)	12
フ	(i). $n(C \cup W \cup B) = 6 + 5 + 9 + 10 + 12 + 8 + 7 + 4 = 57$	M1 A1
	(ii). $n(C \cup W') = 12 + 10 + 6 + 5 + 9 + 4 = 46$	M1 A1
		04
10	(a).	

456/1 MATHEMATICS PAPER 1 April 2023 $2\frac{1}{2}$ hours

S.4 MATH 1 MOCK SET 2 2023

Time: 2 Hours 30 Minutes

NAME: STREAM:

INSTRUCTIONS:

- ➤ Answer all the eight questions in section A and only five questions in section B.
- > Show your working clearly.

Section A (40 Marks)

Answer **all** the questions in this section.

Qn 1: Given that
$$a * b = a^3 - b^2$$
, find the value of $4 * (3 * 5)$. [4]

Qn 2: Solve the equation
$$2x^2 + 3x - 27 = 0$$
. [4]

Qn 3: Solve for x:

$$\frac{x+1}{3} - \frac{2-x}{2} = \frac{x}{4}$$
 [4]

- **Qn 4:** A translation T maps (4,0) onto (-2,2). Determine the coordinates of the image of (0,1) under T. [4]
- **Qn 5:** Without using tables of calculators, simplify leaving your answer in surd form.

$$\frac{\sin 45^{\circ} + \cos 45^{\circ}}{\tan 60^{\circ}}$$
 [4]

- **Qn 6:** A bag contains blue, green and red balls. The probability of picking a blue ball is $\frac{1}{4}$ and the probability of picking a green ball is $\frac{7}{12}$.
 - (a). Find the probability of picking a red ball. [2]
 - (b). If the bag contains 84 balls, find the number of red balls in the bag.

[2]

Qn 7:

In the figure shown above, *O* is the centre of the circle. Find:

(i). angle a.

Qn 8: Factorise completely:

$$25a^3 - ab^2 - b^3 + 25a^2b$$
 [4]

Qn 9: Given that f(x) = x + 3 and g(x) = 2 - x, find:

(i).
$$gf(x)$$
,
(ii). $gf(-2)$. [4]

Qn 10: A man of height 1.6 m is 15 m from the foot of a tree. When he looks at the top of the tree, the angle of elevation is 50°. Determine the height of the tree. [4]

Section B (60 Marks)

Answer any **five** questions from this section. **All** questions carry equal marks.

Question 11:

(a). If
$$\mathbf{A} = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} -1 & 5 \\ 6 & -6 \end{pmatrix}$, find $2\mathbf{A} - \mathbf{B}\mathbf{A}$. [4]

(b). Determine the inverse of matrix
$$\mathbf{P} = \begin{pmatrix} 3 & 2 \\ -1 & 2 \end{pmatrix}$$
. [4]

(c). Given that matrix
$$\mathbf{A} = \begin{pmatrix} 2 & 5 \end{pmatrix}$$
, matrix $\mathbf{B} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$ and matrix $\mathbf{C} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$. Find $\mathbf{AB} + \mathbf{AC}$.

Question 12:

(a). Draw a table for values of x and y for the curve $y = x^2$ where $x \le 5$.

(b). Using a scale of:

Horizontal axis 1 cm : 1 unit

Vertical axis 1 cm: 5 units,

draw a graph of
$$y = x^2$$
.

[3]

(c). Use your graph to solve the equation:

$$x^2 - 2x - 8 = 0.$$

[6]

(d). State the minimum value of the graph $y = x^2$.

[1]

Question 13:

The table below shows the weights of 100 boys in Ndejje S.S.S.

Weights	Number of boys
10 - 19	3
20 - 29	8
30 - 39	12
40 – 49	8
50 - 59	15
60 - 69	20
70 – 79	15
80 - 89	10
90 – 99	9

- (a). Using an assumed mean of 54.5, calculate the mean weight. [6]
- (b). (i). Draw a histogram for the data.
 - (ii). Use the histogram to estimate the mode. [6]

Question 14:

A transformation represented by the matrix $\begin{pmatrix} 6 & 10 \\ 1 & 2 \end{pmatrix}$ maps the vertices A, B, C and D of a rectangle onto the points A'(22,4), B'(62,12), C'(80,15) and D'(40,7) respectively.

- (a). Find the:
 - (i). inverse of the matrix.
 - (ii). coordinates of A, B, C and D using the inverse matrix.
- (b). (i). Plot the points A, B, C and D on a squared paper.
 - (ii). Find the area of the rectangle *ABCD*.
 - (iii). Use the area of the rectangle ABCD to determine the are of A'B'C'D'. [5]

Question 15:

[7]

Using a ruler, a pencil and a pair of compasses only,

- (a). Construct a triangle ABC, with $\overline{AB}=8$ cm, $\overline{BC}=12$ cm and angle $BAC=120^{\circ}$.
- (b). (i). Draw a perpendicular line to BC from A. The perpendicular meets BC at point D.
 - (ii). Measure the distance \overline{AD} and find the area of triangle ABC. [4]
- (c). Inscribe triangle *ABC* and state the radius. [4]

[Total Marks = 100]

CNI	[Total Marks = 100]	126 1
SNo.	Working	Marks
1	(i). $3*5 = 3^3 - 5^2 = 27 - 25 = 2$	M1 A1
	(ii). $4*(3*5) = 4*2 = 4^3 - 2^2 = 64 - 4 = 60$	M1 A1
		04
2	$2x^2 + 3x - 27 = 0$	01
2	sum = -54, product = 3, factors = -9, 6 $2x^{2} - 9x + 6x + 27 = 0$ $x(2x - 9) - 3(2x - 9) = 0$	M1
	(x-3)(2x-9) = 0 (x-3) = 0, or, $(2x-9) = 0$	M1
	x = 3, or, $2x = 9x = 3, or, x = -\frac{9}{2}$	A1 A1
		04
3	$12 \times \frac{(x+1)}{3} - 12 \times \frac{(2-x)}{2} = 12 \times \frac{x}{4}$ $4(x+1) - 6(2-x) = 3x$	M1
	4x + 4 - 12 + 6x = 3x $10x - 8 = 3x$	M1
	$7x = 8$ $x = \frac{8}{7}$	M1
	$x = \frac{1}{7}$	A1
		04
4	$T = {\binom{-2}{2}} - {\binom{4}{0}} = {\binom{-6}{2}}$ ${\binom{0}{1}} + {\binom{-6}{2}} = {\binom{-6}{3}}$	M1
	\therefore The image of $(0,1)$ under T is $(-6, 3)$.	M1 B1
	The image of (0, 1) under 1 is (-0, 3).	A1
		04
5	but, $\sin 45^\circ + \cos 45^\circ = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2}$	B1
	$\therefore \frac{\sin 45^{\circ} + \cos 45^{\circ}}{\tan 60^{\circ}} = \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{2} \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{6}}{3}$	M1 M1 A1
		04
6	(a). $\frac{1}{4} + \frac{7}{12} + P(R) = 1$ $\frac{5}{6} + P(R) = 1$	M1
	$\frac{-}{6} + P(R) = 1$	

	$P(R) = 1 - \frac{5}{6} = \frac{1}{6}$	A1
	(b). Number of red balls = $\frac{1}{6} \times 84 = 14$	M1 A1
		04
7	(i).	
	a + 127 = 180 $a = 180 - 127$	M1
	$a = 53^{\circ}$	A1
	(ii).	
	A a° C° C° D° B 127° B	
	$c = 360 - 2a = 360 - 2 \times 53 = 254^{\circ}$ $b + 43 + 53 + 254 = 360$	M1
	b + 350 = 360 $b = 10^{\circ}$	A1
		04
8	$25a^{3} - ab^{2} - b^{3} + 25a^{2}b$ $= a(25a^{2} - b^{2}) + b(25a^{2} - b^{2})$ $= (a + b)[(5a)^{2} - b^{2}]$ $= (a + b)(5a - b)(5a + b)$	M1 M1 M1 A1
		04
9	(i).	
	gf(x) = g(x+3) = 2 - (x+3) = 5 - x	M1 A1
	(ii). $gf(-2) = 5 - ^-2 = 5 + 2 = 7$	M1 A1
		04
10		

	(h – 1.6)	B1 M1 B1
	15 m →	
	$\tan 50^{\circ} = \frac{h - 1.6}{15}$	A1
	$15 \tan 50^{\circ} = h - 1.6$	
	$h = 15 \tan 50^{\circ} + 1.6$ h = 19.476 m	
	∴ The height of the tree is 19.476 m.	
		04
11	(a). $2\mathbf{A} - \mathbf{R}\mathbf{A} = 2\begin{pmatrix} 2 & 4 \end{pmatrix} - \begin{pmatrix} 2 & 4 \end{pmatrix} \begin{pmatrix} -1 & 5 \end{pmatrix}$	M1
	$= \begin{pmatrix} 4 & 8 \\ -2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ -2 + 24 & 10 - 24 \end{pmatrix}$	B1
	$2A - BA = 2 \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} - \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} -1 & 5 \\ 6 & -6 \end{pmatrix}$ $= \begin{pmatrix} 4 & 8 \\ 2 & 6 \end{pmatrix} - \begin{pmatrix} -2 + 24 & 10 - 24 \\ -1 + 18 & 5 - 18 \end{pmatrix}$ $= \begin{pmatrix} 4 & 8 \\ 2 & 6 \end{pmatrix} - \begin{pmatrix} 22 & -14 \\ 17 & -13 \end{pmatrix} = \begin{pmatrix} -18 & 22 \\ -15 & 18 \end{pmatrix}$	M1 A1
	(b).	
	$\mathbf{P} = \begin{pmatrix} 3 & 2 \\ -1 & 2 \end{pmatrix}$ Det $\mathbf{P} = 6 - 2 = 8$	D4
	$\mathbf{P}^{-1} = \frac{1}{8} \begin{pmatrix} 2 & -2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 3/8 & -1/4 \\ 1/8 & 1/4 \end{pmatrix}$	B1
	$\frac{1}{8} = \frac{1}{3} = \frac{1}{8} = \frac{1}{4}$ (c).	M1 B1 A1
	$\mathbf{AB} + \mathbf{AC} = \begin{pmatrix} 2 & 5 \end{pmatrix} \begin{pmatrix} 4 \\ 6 \end{pmatrix} + \begin{pmatrix} 2 & 5 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$	M1
	= (8+30) + (4-15) = 38 - 11 = 27	M1 M1 A1
		12
12	(a). $y = x^2$	
	x -5 -4 -3 -2 -1 0 1 2 3 4 5 y 25 16 9 4 1 0 1 4 9 16 25	B1 B1
		DI
	y = 2x + 8	
	x 0 -4 y 8 0	M1 M1

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1-locating mode A1
		12
14	(a). (i). Inverse matrix = $\frac{1}{12-10} \begin{pmatrix} 2 & -10 \\ -1 & 6 \end{pmatrix}$ = $\frac{1}{2} \begin{pmatrix} 2 & -10 \\ -1 & 6 \end{pmatrix} = \begin{pmatrix} 1 & -5 \\ -0.5 & 3 \end{pmatrix}$	B1
	2\-1 6 \ \-0.5 3 \ \ (ii).	B1
	$ \begin{pmatrix} 1 & -5 \\ -0.5 & 3 \end{pmatrix} \begin{pmatrix} 22 & 62 & 80 & 40 \\ 4 & 12 & 15 & 7 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 5 & 5 \\ 1 & 5 & 5 & 1 \end{pmatrix} $	B1
	A(2,1), B(2,5), C(5,5), D(5,1)	A1 A1A1A1
	(ii). y-axis 5- 4- 3- 2- 1- A B 0-1-1-1-3-4-5-x-axis	B1
	(ii). From the graph, the area of the square ABCD is 12 sq. units.	B1 B1
	(iii). Determinant $A'B'C'D' = \text{Det } M \times 12$ = $ (12 - 10) \times 12 = 2 \times 12 = 24 \text{ sq. units}$	M1 A1
15	(2)	12
15	(a). Sketch:	

456/2 MATHEMATICS PAPER 2 April 20023 $2\frac{1}{2}$ hours

S.4 MATH 2 MOCK SET 2 2023

Time: 2 Hours 30 Minutes

NAME: STREAM:

INSTRUCTIONS:

- Answer **all** the **eight** questions in section **A** and only **five** questions in section **B**.
- Show your working clearly.

Section A (40 Marks)

Answer all the questions in this section.

Qn 1: Evaluate without using calculators:

$$(0.4)^2 \times (0.125)^{1/3} \div \left(2\frac{1}{2}\right)^{-3}$$

[4]

- **Qn 2:** Given that $\frac{\sqrt{8}-\sqrt{18}}{1-\sqrt{2}} = a + b\sqrt{2}$, determine the value of a and b. [4]
- **Qn 3:** Set A and B are such that n(A) = 12, n(B) = 13, $n(A \cup B) = 20$ and $n(\varepsilon) = 24$.
 - (a). Draw a Venn diagram to represent the given information.
 - (b). Find $n(A \cup B')$. [4]
- **Qn 4:**Find the equation of line passing through the points (1, -3) and (7, 6). Hence determine the coordinates of a point where the line cuts the x-axis. [4]
- **Qn 5:** Express $0.4\overline{2}$ in the simplest form of $\frac{x}{y}$; hence evaluate (y x). [4]
- **Qn 6:** The value of a car depreciates by 12% per year. If the value is now shs 6,195,200, what was the value of the car two years ago. [4]

Qn 7: Given that g(x) = x + 3 and fg(x) = 2x - 1, determine:

(i).
$$f(x)$$
,

(ii).
$$f(4)$$
. [4]

Qn 8: The position vectors of **A** and **B** are $\begin{pmatrix} -2 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$ respectively. **T** divides \overrightarrow{AB} in the ratio 2: 1. Determine:

(a). Column vector \overrightarrow{AB} .

(b). coordinates of
$$T$$
. [4]

Qn 9:Using logarithmic tables, evaluate:

$$\frac{2460 \times 8.72}{63.1 \times 204}$$
 [4]

Qn 10: John deposited shs 56,000 in a bank. The bank gives a compound interest of 15% per annum. Find the amount of money he had in the bank after 3 years. [4]

Section B (60 Marks)

Answer any **five** questions from this section. **All** questions carry equal marks.

Question 11:

(a). Simplify:

$$\frac{\left(3\frac{5}{6} \div 2\frac{2}{15}\right) \times \frac{3}{23}}{5\frac{1}{3} - 2\frac{7}{12}}$$

(b). A forest reserve covering an area of 605 km² is represented on a map by a green area of 24.2 cm². Determine the scale of the map.

Question 12:

(a). Given that $f(x) = x^2 - 4x + 3$ and $g(x) = \frac{1}{x}$, find:

(i). gf(x).

(ii).
$$gf(-2)$$
. [5]

(b). If h(x) = 5x + 7, find:

(i). $h^{-1}(x)$.

(ii). $h^{-1}(8)$.

(iii). The value of
$$x$$
 for which $h^{-1}(x) = 0$. [7]

Question 13:

A group of 24 students were asked who played Football (F),Volley ball (V) and Hockey (H). The response were; 10 play football, 14 play volley ball and 9 play hockey. The number of student who play all the three games equals thenumber of those who do not play any of these games. 5 students play both football and hockey, 6 play both football and volley balland 2 play only volley ball and hockey.

- (a). Draw a Venn diagram representing the above information
- (b). Determine the number of students who play
 - (i). all the three games.
 - (ii). only one game
- (c). Find the probability that a student selected at random from the group plays at least two games.

Question 14:

The figure below is a triangle \overrightarrow{OAB} where $\overrightarrow{OA} = \overrightarrow{a}$ and $\overrightarrow{OB} = \overrightarrow{b}$. Points \overrightarrow{C} and \overrightarrow{E} are points on line. \overrightarrow{OA} and \overrightarrow{AB} such that they divide the lines \overrightarrow{OA} and \overrightarrow{AB} in the ratios 1: 2 and 3: 1 respectively. Point \overrightarrow{D} lies on \overrightarrow{OE} such that $\overrightarrow{OD} = 2\overrightarrow{DE}$.

- (a). Find the vectors \overrightarrow{AB} , \overrightarrow{OE} and \overrightarrow{CB} in terms of vectors \boldsymbol{a} and \boldsymbol{b} .
- (b). Show that **B**, **D** and **C** are collinear.

[12]

Question 15:

Given that $\log_{10} 2 = 0.3010$ and $\log_{10} 3 = 0.4771$.

- (a). Express 12 as a product of primes.
- (b). Use the given information and the result in (a) above to write down:
 - (i). $\log_{10} 12$,
 - (ii). $\log_{10} 0.12$.
- (c). Find x if $\log_{10} x = 3.6020$.

[12]

Question 16:

Below is a cube of sides 10cm. T is the midpoint of \overrightarrow{BC} .

Find:

- (a). (i). length \overline{AC} ,
 - (ii). Length \overline{BH} .
- (b). (i). angle between \overline{BH} and plane ADHE,
 - (ii). angle between planes **ETH** and **ADHE**. [12]

Question 17:

The figure above (in thick, heavy lines) shows a lampshed ABCD bounded by circles of radii 15 cm and 25 cm. The slanting side AB is 30 cm . If the lampshed was cut from an original figure OABCD, of a complete cone, calculate the

- (a). (i). Slanting length of the cone OAB
 - (ii). The angle formed by producing CD and BA to O.
- (b). (i). Vertical height of the lampshed
 - (ii). Volume of the lampshed. [12]

[Total Marks = 100]

SNo.	Working	Marks
1	$\left(\frac{4}{10}\right)^2 \times \left(\frac{125}{1000}\right)^{1/3} \div \left(\frac{5}{2}\right)^{-3} = \left(\frac{2}{5}\right)^2 \times \left(\frac{5^3}{10^3}\right)^{1/3} \div \left(\frac{2}{5}\right)^3$	M1
	$\frac{2^2}{5^2} \times \frac{5}{10} \div \frac{2^3}{5^3} = \frac{2^2}{5^2} \times \frac{1}{2} \times \frac{5^3}{2^3}$	M1
	$= 2^{(2-1-3)} \times 5^{(3-2)} = 2^{-2} \times 5^{1} = \frac{1}{2^{2}} \times 5 = \frac{5}{4}$	M1 A1
		04
2	$\frac{\sqrt{8} - \sqrt{18}}{1 - \sqrt{2}} = \frac{\sqrt{4} \times \sqrt{2} - \sqrt{9} \times \sqrt{2}}{1 - \sqrt{2}} = \frac{2\sqrt{2} - 3\sqrt{2}}{1 - \sqrt{2}} = \frac{-\sqrt{2}}{1 - \sqrt{2}}$	M1
	$=\frac{-\sqrt{2}\times(1+\sqrt{2})}{\left(1-\sqrt{2}\right)\times\left(1+\sqrt{2}\right)}$	M1
	$=\frac{-\sqrt{2}-2}{1-2}=\frac{-\sqrt{2}-2}{-1}=\sqrt{2}+2$	B1
	$\Rightarrow a = 2, \qquad b = 1$	A1
		04
3	(a). Let $n(A \cap B) = x$ n(E) = 24 $n(A) = 12$ $12 - x$ x $13 - x$ $24 - 20$ $= 4$ $n(E) = 12 - x + x + 13 - x + 4$ $24 = 29 - x$ $x = 29 - 24$	B1
	$x = 5$ $\therefore n(A \cap B) = 5$ (ii).	B1 A1
	$n(A \cup B') = 12 - x + x + 4 = 16$	A1
		04
4	Points are: $(1, -3)$ and $(7, 6)$, Gradient of line, $m = \frac{-3 - 6}{1 - 7} = \frac{-9}{-6} = \frac{3}{2}$	

	Using $y = mx + c$ and $(7, 6)$,	
	$0\sin g y = mx + c \sin (7,0),$ 3	
	$6 = \frac{3}{2} \times 7 + c$ $6 - \frac{21}{2} = c$ $c = -\frac{9}{2}$	M1
	$6 - \frac{21}{2} - c$	
	$0 \frac{1}{2} = c$	
	$c=-\frac{9}{2}$	
	$\frac{2}{1}$ The required equation of the line is: $\frac{3}{10}$	A 4
	∴ The required equation of the line is: $=\frac{3}{2}x-\frac{9}{2}$.	A1
	At the x-axis, $y = 0$	
	$0 = \frac{3}{2}x - \frac{9}{2}$ $\frac{3}{2}x = \frac{9}{2}$	M1
	3 9 2	
	$\frac{1}{2}x = \frac{1}{2}$	
	3x = 9	
	x = 3	
	∴ The coordinates are: (3, 0)	A1
		04
5	Let $w = 0.42222 \dots$	UT
	$10w = 0.42222 \dots \times 10$	
	$10w = 4.22222 \dots$	
	$ \begin{array}{rcl} & 10w = & 4.22222 \dots \dots \\ & - w = & 0.42222 \dots \dots \\ & 9w = & 3.8 \end{array} $	
	$\frac{- W = 0.42222}{ Q_{W} } = \frac{1}{2}$	M1
	1.9W = 3.8	
	3.8	
	$w = \frac{3.8}{9}$	
	$w = \frac{3.8 \times 10}{}$	M1
	$w = \frac{3.8 \times 10}{9 \times 10}$ 38 19	
	$w = \frac{36}{90} = \frac{19}{45}$	A1
	$\therefore (y - x) = 45 - 19 = 26$	A 4
		A1
		04
6	Current price = $P\left(\frac{100 - R}{100}\right)^n$	
	100 /	
	$6195200 = P\left(\frac{100 - 12}{100}\right)^2$	M1
		INIT
	6195200 = 0.7744P 6195200	M1
	$\frac{6195200}{0.7744} = P$	M1
	P = shs 8,000,000	A1
		04
7		D1
	fg(x) = f(x+3) = a(x+3) + b = ax + 3a + b $ax + 3a + b = 2x - 1$	B1
	By comparison, $ax + 3a + b - 2x - 1$	
	- y	

			a = 2 $3a + b = -1$		B1
		$3 \times 2 + b = -1$ $6 + b = -1$			
			b = -7 $f(x) = 2x -$	7	B1
	(ii).	C (A			
		<i>f</i> (4	$(x) = 2 \times 4 - 7 = 8$	- / = 1	A1
	()				04
8	(a).	$\overrightarrow{AB} = \overrightarrow{C}$	$\overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} - $	$\begin{pmatrix} -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \end{pmatrix}$	M1 A1
	(b).		`1'	. 1,,	MIAI
		\overrightarrow{AT} : \overrightarrow{TB} =	$= 2:1, \qquad \Rightarrow \overrightarrow{AT}:$	·- ·	
			$\overrightarrow{OT} - \overrightarrow{OA} = \frac{2}{3} \left(\begin{array}{c} \\ \\ \end{array} \right)$		
			$\overrightarrow{or} - \begin{pmatrix} -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 10 \\ 10 \end{pmatrix}$,, 0,	
			$= {4 \choose 10/3} + {-2 \choose -1}$	\ <i>\ \ - \</i>	M1 A1
		∴ Т	B1		
					05
9					
		Number	Standard form	Logarithm	
		2460	2.46×10^3	3.3909	
		8.72	8.72×10^{0}	+ 0.9405	
				4.3314	B1
		63.1	6.31×10^{1}	1.8000	
		204	2.04×10^{2}	+ 2.3096	D4
				4.1096	B1
			010	4.3314	
		100.22	218 = 1.6665	- 4.1096 0.2218	B1
			0.0347		
		$\frac{1}{0.02}$	$\frac{0.0347}{14 \times 0.984} \approx 1.66$	65 (4 d. p)	A1
					04

10	$(100 + R)^n$ $(100 + 15)^3$	
	Ammount, $A = P\left(\frac{100 + R}{100}\right)^n = 56000 \left(\frac{100 + 15}{100}\right)^3$ = shs 85,169	M1 M1 A1
		03
11	(a).	
	$\frac{\left(3\frac{5}{6} \div 2\frac{2}{15}\right) \times \frac{3}{23}}{5\frac{1}{3} - 2\frac{7}{12}} = \frac{\left(\frac{23}{6} \div \frac{32}{15}\right) \times \frac{3}{23}}{\frac{16}{3} - \frac{31}{12}} = \frac{\left(\frac{23}{6} \times \frac{15}{32} \times \frac{3}{23}\right)}{\left(\frac{64 - 31}{12}\right)}$ $= \frac{15}{64} \div \frac{33}{12} = \frac{15}{64} \times \frac{12}{33} = \frac{15}{176}$	B1 B1B1
	$= \frac{15}{64} \div \frac{33}{12} = \frac{15}{64} \times \frac{12}{33} = \frac{15}{176}$ (b).	M1 M1 A1
	The area scale is	
	24.2 cm ² : 605 km ²	
	$1 \text{ cm}^2 : \frac{605}{24.2} \text{km}^2$	M1
	$1 \text{ cm}^2 : 25 \text{ km}^2$	B1
	The linear scale is	M1
	$\sqrt{1}$ cm : $\sqrt{25}$ km	B1
	1 cm : 5 km Representative fraction is	
	1 cm : 5 × 100,000 cm	M1
	1 cm : 500,000 cm	IVI I
	The scale of the map is 1: 500000	A1
12	(.) (.)	12
12	(a). (i).	
	$gf(x) = g(x^2 - 4x + 3) = \frac{1}{x^2 - 4x + 3}$	B1B1
	(ii). $gf(-2) = \frac{1}{(-2)^2 - 4 \times {}^{-2}2 + 3} = \frac{1}{4 + 8 + 3} = \frac{1}{15}$	M1 B1 A1
	(b). (i).	
	h(x) = 5x + 7 $Y = 5X + 7$	B1
	Y-7=5X	M1
	$X = \frac{Y - 7}{5}$	IVI I
	$\therefore h^{-1}(x) = \frac{x-7}{5}$	A1
	(ii).	
	$h^{-1}(8) = \frac{8-7}{5} = \frac{1}{5}$	M1 A1
	(iii).	
	$h^{-1}(x) = 0$ $x - 7$	
	$\frac{x-7}{5}=0$	M1

	x - 7 = 0	
	x = 7	A1
		12
13	(a). Let $n(F \cap V \cap H) = x$	12
	$n(\mathcal{E}) = 24$	
	n(F) = 10 $n(V) = 14$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	5 - x 2	В3
	c /	
	x n(H) = 9	
	(b).	
	n(F) = a + 6 - x + x + 5 - x	
	10 = a + 11 - x $a = x - 1$	B1
	n(V) = b + 6 - x + x + 2	
	14 = b + 8 $b = 6$	B1
	n(H) = c + 5 - x + x + 2	DI
	9 = c + 7	D4
	c=2 (i).	B1
	$n(\varepsilon) = 10 + b + c + 2 + x$	M1
	24 = 12 + 6 + 2 + x $24 = 20 + x$	
	x = 24 - 20 = 4	A1
	\therefore $n(\text{all the three games}) = 4 \text{ students}$ (ii).	
	$\therefore n(\text{only one game}) = a + b + c = (4 - 1) + 6 + 2$	
	= 11 students	A1
	(c). $n(\text{at least two games}) = 6 + 5 - x + 2 = 13 - 4 = 9 \text{ students}$	B1
	$P(\text{at least two games}) = \frac{9}{24} = \frac{3}{8}$	N#1 A 1
	24 8	M1 A1
1.4	(-) (:)	12
14	(a). (i). $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -a + b = b - a$	B1
	(ii).	

	$\overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{AE}$	
	but, $\overrightarrow{AE} : \overrightarrow{EB} = 3:1$, $\Rightarrow \overrightarrow{AE} = \left(\frac{3}{3+1}\right) \overrightarrow{AB} = \frac{3}{4} \left(\mathbf{b} - \mathbf{a}\right)$	B1
	$\vec{o}\vec{E} = \vec{a} + \frac{3}{4} (\vec{b} - \vec{a}) = \frac{4\vec{a} + 3\vec{b} - 3\vec{a}}{4} = \frac{\vec{a} + 3\vec{b}}{4} = \frac{1}{4} (\vec{a} + 3\vec{b})$ (iii).	B1 B1
	$\overrightarrow{CB} = \overrightarrow{CA} + \overrightarrow{AB}$	
	but, $\overrightarrow{OC}: \overrightarrow{CA} = 1:2$, $\Rightarrow \overrightarrow{CA} = \left(\frac{2}{1+2}\right) \overrightarrow{OA} = \frac{2}{3} \overset{a}{\sim}$	B1
	$\vec{c} \cdot \vec{c} \cdot \vec{c} = \frac{2}{3} \vec{a} + (\vec{b} - \vec{a}) = \frac{2\vec{a} + 3\vec{b} - 3\vec{a}}{4} = \frac{\vec{a} + 3\vec{b}}{4} = \frac{1}{4} (\vec{a} + 3\vec{b})$	D4 D4
	$\therefore \mathbf{C}\mathbf{B} = \frac{1}{3}\mathbf{a} + (\mathbf{b} - \mathbf{a}) = \frac{1}{4}\mathbf{a} =$	B1 B1
	(b).	
	$\overrightarrow{OD} = 2\overrightarrow{DE}, \qquad \Longrightarrow \overrightarrow{DE} = \frac{1}{2}\overrightarrow{OD}$	
	$\overrightarrow{OE} = \overrightarrow{OD} + \overrightarrow{DE}$	
	$\frac{1}{4} \left(\mathbf{a} + 3\mathbf{b} \right) = \overrightarrow{\mathbf{O}} \overrightarrow{\mathbf{D}} + \frac{1}{2} \overrightarrow{\mathbf{O}} \overrightarrow{\mathbf{D}}$	
	$\frac{1}{4}(\mathbf{a}+3\mathbf{b})=\frac{3}{2}\overrightarrow{\mathbf{OD}}$	
	$\overrightarrow{OD} = \frac{2}{3} \times \frac{1}{4} (a + 3b) = \frac{1}{6} (a + 3b)$	B1
	.) 4 \~ ~/ () \~ ~/	B1
	$\overrightarrow{DB} = \overrightarrow{DO} + \overrightarrow{OB} = -\frac{1}{6} \left(a + 3b \right) + b = \frac{-a - 3b + 6b}{6}$	B1
	$=\frac{3\mathbf{b}-\mathbf{a}}{\overset{\sim}{6}}=\frac{1}{6}\left(3\mathbf{b}-\mathbf{a}\right)$	
	$\overrightarrow{CP} = \frac{1}{2}(3\mathbf{h} - \mathbf{a})$	B1
	$\frac{\overrightarrow{CB}}{\overrightarrow{DB}} = \frac{\frac{1}{3}(3b - a)}{\frac{1}{6}(3b - a)}$	
	0 (~ ~)	
	$\frac{\overrightarrow{CB}}{\overrightarrow{DB}} = \frac{1}{3} \div \frac{1}{6}$	
	$\frac{\overrightarrow{CB}}{\overrightarrow{DB}} = 2$	
	$\frac{\overrightarrow{DB} - 2}{\overrightarrow{CB}} = 2\overrightarrow{DB}$	B1
	Since \overrightarrow{CB} can be expressed as a multiple of \overrightarrow{DB} , then points \overrightarrow{B} ,	
	$m{D}$ and $m{C}$ are collinear.	
		12
15	(a).	
	2 12	
	$\begin{array}{c c} 2 & 6 \\ \hline 3 & 3 \end{array}$	M1
		141
		B1

	$12 = 2 \times 2 \times 3 = 2^{2} \times 3$ (b). (i). $\log_{10} 12 = \log_{10} (2^{2} \times 3) = 2 \log_{10} 2 + \log_{10} 3$ $= 2 \times 0.3010 + 0.4771 = 1.0791$	B1 M1 A1
	(ii). $\log_{10} 0.12 = \log_{10} \left(\frac{12}{100} \right) = \log_{10} 12 - \log_{10} 100$ $= 1.0791 - 2\log_{10} 10 = 1.0791 - 2$	B1 M1
	$ \begin{array}{c c} $	M1 A1
	$ \log_{10} 0.12 = \overline{1.0791} $ (c). $ \log_{10} x = 3.6020 $ $ \log_{10} x = 3 + 2 \times 0.3010 $ $ \log_{10} x = 3 \log_{10} 10 + 2 \log_{10} 2 $	B1 M1
	$\log_{10} x = \log_{10} 1000 + \log_{10} 4$ $\log_{10} x = \log_{10} (4 \times 1000)$ $\log_{10} x = \log_{10} 4000$ $x = 4000$	A1
16		12
	(a). (i). C 10 cm $\overline{AC}^2 = \overline{AB}^2 + \overline{BC}^2$	B1
	$\overline{AC}^{2} = 10^{2} + 10^{2}$ $\overline{AC} = \sqrt{200} = 14.142 \text{ cm}$ (ii). $\overline{BH}^{2} = \overline{BD}^{2} + \overline{DH}^{2}$	M1 A1
	but, $\overline{BD} = \overline{AC} = \sqrt{200}$ $\therefore \overline{BH}^2 = 200 + 10^2$ $\overline{BH} = \sqrt{300} = 17.321 \text{ cm}$ (b). (i).	B1 M1 A1

$= \frac{1}{3} \times \frac{22}{7} \times 28.284 \times (15^{2} + 15 \times 25 + 25^{2})$ $= 29.631 \times 1225 = 36297.975 \text{ cm}^{3}$		
	12	

456/1 MATHEMATICS PAPER 1 June 2023 $2\frac{1}{2}$ hours

S.4 MATH 1 MOCK SET 3 2023

Time: 2 Hours 30 Minutes

NAME: STREAM:

INSTRUCTIONS:

- Answer **all** the **eight** questions in section **A** and only **five** questions in section **B**.
- Show your working clearly.

Section A (40 Marks)

Answer all the questions in this section.

- **Qn 1:** An increase of 15% in salaries makes the monthly expenditure on salaries for a factory to be shs 22,425,000. Find the expenditure before the increase. [4]
- **Qn 2:** The distance between the two points A(2,2) and B(6,y) of a line is 5 units. Calculate the possible values of y. [4]
- **Qn 3:** Given that $\log_{10} 3 = 0.4771$, without using tables or calculator, evaluate $\log_{10} 8.1$.
- **Qn 4:** Given that M and N are two sets such that $n(\varepsilon) = 39$, $n(M \cap N) = 12$, n(M) = 26 and $n(M' \cap N') = 5$, find:
 - (i). $n(M' \cap N)$,

(ii). n(N'). [4]

Qn 5: In the figure below $\mathbf{OP} = \mathbf{a}$, $\mathbf{OQ} = \mathbf{b}$ and $\mathbf{PR} = \frac{1}{3}\mathbf{PQ}$.

Express \mathbf{OR} in terms of \mathbf{a} and \mathbf{b} .

[4]

- **Qn 6:** The force (*F*) which acts between two magnetic poles in inversely proportional to the square of the distance (d) between them. If F = 18when d = 4, find F when d = 3. [4]
- **Qn 7:** The total surface area of a cuboid measuring 4 cm by 0.05 cm by xcm is 76 cm². Calculate the value of x. [4]
- **Qn 8:** Given that $f(x) = \frac{1-2x}{3x}$, find the value of

(i).
$$f^{-1}(x)$$

(ii). $f^{-1}(0)$.

(ii).
$$f^{-1}(0)$$
.

[4]

- **Qn 9:** Express $\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ in the form $a+b\sqrt{c}$; hence state the values of a, b and c. [4]
- **Qn 10:** An employee's gross salary is shs 6.72 million per month. He pays an income tax of 15% of his gross monthly income. Find his net income per month. [4]

Section B (60 Marks)

Answer any **five** questions from this section. **All** questions carry equal marks.

Question 11:

In a certain school, there are students who play football (F), Tennis (T) or Volleyball (V). 24 play Football, 25 play Tennis and 29 play Volleyball. 11 play both F and T, 10 play both T and V while 13 play both F and V. the number of students who play Tennis or Volleyball but not Football is equal to twice those who play neither of the three games. If those who play neither of the three games are 12,

- (a). Represent the above information on a Venn diagram. [7]
- (b). Find the:
 - (i). total number of students in the school.
 - (ii). Number of students who play only two games. [3]
- (c). Find the probability that a student chosen at random plays not more than one game. [2]

Question 12:

- (a). Given that $g(x) = px^2 qx + 1$, g(2) = 11 and g(1) = 2; find the values of p and q. [5]
- (b). Given that $f(x) = \frac{x+5}{6}$ and $fg(x) = \frac{7-x}{2}$, find
 - (i). f(-17),
 - (ii). An expression for g(x) and hence evaluate g(4). [7]

Question 12:

In the diagram below, \underline{p} and \underline{q} are position vectors of \underline{P} and \underline{Q} respectively. Point \tilde{R} lies on \overrightarrow{OP} produced such that $\overrightarrow{OP} = \frac{1}{2} \overrightarrow{OR}$ and point \underline{T} lies on \overrightarrow{OQ} such that $\overrightarrow{OT} = 2 \overrightarrow{TQ}$.

If point S lies on \overrightarrow{PQ} such that $\overrightarrow{QS} = \overrightarrow{SP}$,

- (a). Express in terms of p and q the vectors:
 - (i). \overrightarrow{QP} ,
 - (ii). \overrightarrow{TS} ,
 - (iii). \overrightarrow{TR} ,
 - (iv). \overrightarrow{SR} .
- (b). Show that T, S and R are collinear.

[12]

Question 14:

The time, T, taken to dig a spring well partly varies as the depth, D, of the well and partly varies as the square of the depth, D. If T = 80, D = 20 and when T = 150, D = 30.

- (a). Write down an expression connecting *T* and *D*. [8]
- (b). Find T when D = 40. [4]

Question 15:

- (a). Mr. Okello bought three cars; Audi, Benz and Corsa for a total of shs 150,000,000. The amounts he paid for these cars were in the ratio 3: 5: 7. Calculate the amount he paid for each car. [6]
- (b). The scale of the map is 1: 250,000. Find the actual perimeter in km of a rectangular plot which measures 15 cm by 9 cm on the map. [6]

Question 16:

A cyclist covered a journey of 48 km from station \mathbf{A} to station \mathbf{B} in $5\frac{1}{2}$ hours. The cyclist rode at 12 km h⁻¹ for the first $2\frac{1}{2}$ hours are changed speed for the remaining part of the journey.

- (a). (i). Determine the speed of the cyclist for the remaining part of the journey. [6]
 - (ii). Represent the cyclist journey on a distance-time graph. [4]
- (b). Calculate the average speed of the cyclist from station **A**to **B**. [2]

Question 17:

The base of a right pyramid ABCDV is a square ABCD of side 24 cm. the slant edges are each 20 cm long.

- (a). Draw the pyramid. [2]
- (b). Calculate the:
 - (i). Height of the pyramid, [6]
 - (ii). Volume of the pyramid. [4]

[Total Marks = 100]

SNo.	Working	Marks
1	Let the expenditure before the increase be x .	Marks
1		D1
	100% + 15% = 115%	B1
	$\frac{115}{100} \times x = 22,425,000$	
		M1
	1.15x = 22,425,000	
	$\frac{1.15x}{2} = \frac{22,425,000}{2}$	
	${1.15} = {1.15}$	M1
	x = 19,500,000	A1
	The expenditure before the increase was shs 19,500,000.	
		04
2	Length $AB = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$	
-		
	$5 = \sqrt{(y-2)^2 + (6-2)^2}$	M1
	$5^2 = (y-2)^2 + 4^2$	141.1
	$25 = y^2 - 4y + 4 + 16$	
	$25 = y^2 - 4y + 20$	
	$y^2 - 4y - 5 = 0$	3-4
	sum = -4 , product = -5 , factors = -5 , 1	M1
	$y^2 - 5y + y - 5 = 0$	
	y(y-5) + (y-5) = 0	
	(y+1)(y-5) = 0	
		M1
	(y+1) = 0, or, $(y-5) = 0$	
	y = -1, or, $y = 5$	A1
		04
3	(81)	
	$\log_{10} 8.1 = \log_{10} \left(\frac{81}{10} \right)$	
	$= \log_{10} 81 - \log_{10} 10$	M1
	$= 4 \log_{10} 3 - 1$	M1
	$= 4 \times 0.4771 - 1$ = 1.9084 - 1	M1
		A 1
	= 0.9084	A1
		04
4	$(:)$ Let $(M' \cap M)$	UT
4	(i). Let $n(M' \cap N) = x$	

	n(E) = 39	
	n(M) = 26 $26 - 12$ $= 14$ 12 x 5	B1- entry 14, 12 B1- entry 39, 26, 5
	$n(\varepsilon) = 14 + 12 + x + 5 = 39$ $31 + x = 39$	M1
	$ \begin{aligned} x &= 39 - 31 \\ x &= 8 \end{aligned} $	A1
	(ii). $n(N') = 14 + 5 = 19$	A1
		04
5	$PR = \frac{1}{3}PQ = \frac{1}{3}(b - a)$ $\therefore OR = OP + PR$	B1
	$= \underbrace{a}_{\widetilde{a}} + \underbrace{\frac{1}{3}}_{3} \underbrace{\left(\underline{b} - \underline{a} \right)}_{\widetilde{a}}$ $3 \underline{a} + \underline{b} - \underline{a}$	M1
	$=\frac{3\mathbf{a}+\mathbf{b}-\mathbf{a}}{\frac{2}{3}}$	M1
	$=\frac{1}{3}\left(2\boldsymbol{a}+\boldsymbol{b}\right)$	A1
		04
6	$F \propto \frac{1}{d}$ $F = \frac{k}{d}$ But $F = 18$ when $d = 4$,	B1
	$18 = \frac{k}{4}$ $k = 18 \times 4$	M1
	$k = 72$ $\therefore F = \frac{72}{d}$	B1
	when $d = 3$, $F = \frac{72}{3} = 24$	A1

		04
7	T.S.A = 2(lw + lh + wh) = 76	
	$2(4 \times 0.05 + 4x + 0.05x) = 76$	M1
	0.4 + 8x + 0.1x = 76	B1
	8.1x = 75.6	
	$\frac{8.1x}{8.1} = \frac{75.6}{8.1}$	M1
	x = 9.3333 cm	A1
		04
3	(i).	
	$f(x) = \frac{1 - 2x}{3x}$ $Y = \frac{1 - 2X}{3X}$	
	$\frac{3x}{1}$	
	$Y = \frac{1 - 2\lambda}{1 - 2\lambda}$	
	3X	M1
	3XY = 1 - 2X	
	3XY + 2X = 1	
	X(3Y+2) = 1	
	$X = \frac{1}{3Y+2}$ $\therefore f^{-1}(x) = \frac{1}{3x+2}$	
	3Y+2	B1
	$\therefore f^{-1}(x) = \frac{1}{x^{-1}}$	
		A1
	(ii).	
	$f^{-1}(0) = \frac{1}{3 \times 0 + 2} = \frac{1}{5}$	A1
	$3 \times 0 + 2 5$	
		04
9	$\sqrt{2}$ $\sqrt{2} \times (\sqrt{3} - \sqrt{2})$	
	$\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}} = \frac{\sqrt{2}\times(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})\times(\sqrt{3}-\sqrt{2})}$	M1
	$=\frac{\sqrt{6}-2}{3-2}$	M1
	$={3-2}$	
	$=\frac{\sqrt{6}-2}{1}$	
	= -1	
	$=-2+\sqrt{6}$	B1
	$=a+b\sqrt{c}$	
	a = -2, b = 1, c = 6	A1
	$\cdots u - 2, b - 1, t - 0$	04
10	15	
10	Income tax = $\frac{15}{100}$ × 6,720,000 = shs 1,008,000	M1 B1
	Net income = $6,720,000 - 1,008,000 = $ shs $5,712,000$	M1 A1
	2,000,000	
		04
11	(a). Let $n(F \cap T \cap V) = x$	

$$n(F) = a + 11 - x + 13 - x + x = 24$$

$$a + 24 - x = 24$$

$$a = x$$

$$n(T) = b + 11 - x + 10 - x + x = 25$$

$$b + 21 - x = 25$$

$$b = 4 + x$$

$$n(V) = c + 13 - x + 10 - x + x = 29$$

$$c + 23 - x = 29$$

$$c = 6 + x$$

Since the number of students who play Tennis or Volleyball but not Football is equal to twice those who play neither of the three games, then,

$$b + c + 10 - x = 2 \times 12$$

$$4 + x + 6 + x + 10 - x = 24$$

$$20 + x = 24$$

$$x = 24 - 20$$

$$x = 4$$

B1-entry 24, 25, 29

B1-entry x, 12

B1-entry
$$(11 - x)$$
, $(13 - x)$, $(10 - x)$

	(ii). $ let g(x) = ax + b $	
	fg(x) = ax + b $fg(x) = f(ax + b)$	
	$=\frac{(ax+b)+5}{6}$	
	$\frac{-6}{6}$	
	$=\frac{ax+b+5}{6}$	
	$=\frac{ax}{6} + \frac{b+5}{6}$	B1
	$-\frac{1}{6} + \frac{1}{6}$	
	also, $fg(x) = \frac{7-x}{2} = \frac{7}{2} + \frac{-1}{2}x$	
	By comparing coefficients,	
	$\frac{b+5}{6} = \frac{7}{2}$	
	2b + 10 = 42	
	2b = 32	
	b = 16	B1
	a -1	
	$\frac{a}{6} = \frac{-1}{2}$	
	2a = -6 $a = -3$	
	$\therefore g(x) = -3x + 16$	B1 B1
	$g(4) = -3 \times 4 + 16 = -12 + 16 = 4$	A1
		12
13	(a). (i).	12
	$\overrightarrow{QP} = \overrightarrow{QO} + \overrightarrow{OP}$	
	$= -\mathbf{q} + \mathbf{p}$ $= \mathbf{p} - \mathbf{q}$	B1
	= p - q	B1
	(ii).	
	$\overrightarrow{QS} = \frac{1}{2}\overrightarrow{QP} = \frac{1}{2}(p-q)$	B1
	$\frac{2}{\overrightarrow{OT}} = 2\overrightarrow{TQ}$	
	$\frac{31-21}{100}$	
	$\overrightarrow{TQ} = \frac{1}{3}\overrightarrow{OQ}$	
	$=\frac{1}{3}q$	B1
	$\therefore \overrightarrow{TS} = \overrightarrow{TQ} + \overrightarrow{QS}$	
	$=\frac{1}{3}\mathbf{q}+\frac{1}{2}(\mathbf{p}-\mathbf{q})$	
	$ \begin{array}{c c} -3 \stackrel{\mathbf{q}}{\sim} 2 \stackrel{\mathbf{p}}{\sim} \stackrel{\mathbf{q}}{\sim} \\ 2 \stackrel{\mathbf{q}}{q} + 3 \stackrel{\mathbf{p}}{\sim} - 3 \stackrel{\mathbf{q}}{q} \end{array} $	
	$=\frac{2\mathbf{q}+3\mathbf{p}-3\mathbf{q}}{6}$	M1
	$=\frac{1}{6}\left(3\boldsymbol{p}-\boldsymbol{q}\right)$	
	(iii).	A1

	T	
	$\overrightarrow{OP} = \frac{1}{2}\overrightarrow{OR}$	
	$\overrightarrow{OR} = 2\overrightarrow{OP}$	
	= 2 p	B1
	$\overrightarrow{\boldsymbol{o}}\overrightarrow{\boldsymbol{r}} = 2\overrightarrow{\boldsymbol{T}}\overrightarrow{\boldsymbol{Q}}$	
	$=2\times\frac{1}{3}q$	
	$=\frac{2}{3}q$	D1
		B1
	$\therefore \overrightarrow{TR} = \overrightarrow{TO} + \overrightarrow{OR}$	
	$= -\frac{2}{3} \mathbf{q} + 2\mathbf{p}$ $-2\mathbf{q} + 6\mathbf{p}$	M1
	$=\frac{-2\mathbf{q}+6\mathbf{p}}{\frac{\sim}{3}}$	
	$=\frac{1}{3}\left(6\mathbf{p}-2\mathbf{q}\right)$	
	$=\frac{2}{3}\left(3\boldsymbol{p}-\boldsymbol{q}\right)$	
	(iv).	A1
	$\overrightarrow{SR} = \overrightarrow{ST} + \overrightarrow{TR}$ $= -\frac{1}{6} \left(3\mathbf{p} - \mathbf{q} \right) + \frac{2}{3} \left(3\mathbf{p} - \mathbf{q} \right)$	
		M1
	$= \left(\frac{1}{6} + \frac{2}{3}\right) \left(3\mathbf{p} - \mathbf{q}\right)$	
	$=\frac{5}{6}(3\boldsymbol{p}-\boldsymbol{q})$	
	(b).	A1
	$\overrightarrow{TS} = \frac{1}{6} \left(3 \overrightarrow{p} - \overrightarrow{q} \right)$	
	$\overline{\overrightarrow{SR}} = \frac{2}{5} \left(3p - q \right)$	
	(~ ~)	
	$\frac{\overline{\overrightarrow{SR}}}{\overline{SR}} = \frac{1}{6} \div \frac{1}{6}$	
	$\frac{\overrightarrow{TS}}{\overrightarrow{SR}} = \frac{1}{6} \times \frac{6}{5}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{\overrightarrow{TS}}{\overrightarrow{SR}} = \frac{1}{5}$	B1
	$\overrightarrow{SR} = 5\overrightarrow{TS}$	
	Since \overrightarrow{SR} can be expressed as a multiple of \overrightarrow{TS} , then points T , S and R are collinear.	
		12
14	(a).	14
	$T = k_1 D + k_2 D^2$	B1
	Where k_1 and k_2 are constants of proportionality.	

but, $T = 80$ when $D = 20$,	
$80 = 20k_1 + k_2 \times 20^2$	M1
$80 = 20k_1 + 400k_2$	
$4 = k_1 + 20k_2 \longrightarrow (1)$	B1
also, $T = 150$ when $D = 30$,	
$150 = 30k_1 + k_2 \times 30^2$	
$150 = 30k_1 + 900k_2$	
$5 = k_1 + 30k_2 \longrightarrow (2)$	7.4
Equation (2) $-$ (1) gives:	B1
$\begin{vmatrix} 5 = k_1 + 30k_2 \\ 4 - k_1 + 20k_2 \end{vmatrix}$	M1
$\begin{array}{c c} + & 4 = k_1 + 20k_2 \\ \hline & 1 = 10k_2 \end{array}$	1411
$10k_2$ 1	
$\frac{10}{10} = \frac{10}{10}$	M1
$\frac{10k_2}{10} = \frac{1}{10}$ $k_2 = \frac{1}{10}$	
	B1
From equation (1),	
$k_1 = 4 - 20k_2 = 4 - 20 \times \frac{1}{10} = 4 - 2 = 2$	M1 D1
1 1	M1 B1
$\therefore T = 2D + \frac{1}{10}D^2$	B1
(b). when $D = 40$	
$T = 2 \times 40 + \frac{1}{10} \times 40^2 = 80 + 160 = 240$	
$1 - 2 \times 10^{-1} 10^{-100} = 30 \times 100 = 210^{-100}$	M1 A1
	12
15 (a).	12
Total ratio = $3 + 5 + 7 = 15$	B1
$\frac{3}{150,000,000}$ Ammount naid for Audi $=\frac{3}{150,000,000} \times 150,000,000 = 80,830,000,000$,
Ammount paid for Audi = $\frac{3}{15} \times 150,000,000 = \text{shs}30,000,000$	M1 B1
Ammount paid for Benz = $\frac{5}{15} \times 150,000,000 = \text{shs } 50,000,000$	0
7	
Ammount paid for Benz = $\frac{7}{15} \times 150,000,000 = \text{shs } 70,000,000$	0 M1 B1
(b).	MIDI
Perimeter on map = $15 + 9 = 24$ cm	M1 B1
Map scale is	
1 cm : 250,000 cm	
The linear scale is	
$1 \text{ cm} : \frac{250,000}{100,000} \text{ km}$	
100,000 1 cm : 2.5km	M1
$24cm : 2.5 \times 24km$	M1
24 cm : 60km	M1 A1
The actual perimeter is 60km.	AI
	12
16 (a). (i).	

	$h^2 = 112$	M1
(;;)	$h = \sqrt{112} = 4\sqrt{7} \approx 10.583$ cm ∴ Height = 10.583 cm	A1
(ii).	1	
	Volume = $\frac{1}{3}$ × (base area) × (height)	
	$= \frac{1}{3} \times (24 \times 24) \times 4\sqrt{7}$	M1 M1
	$= 768\sqrt{7}$ ≈ 2031.937cm ³	
	≈ 2031.93/CIII	A1
		12

SENIOR FOUR MATHEMATICS June 2023 $1\frac{1}{2}$ hours

S.4 MATH BI-WEEKLY TEST 1 2023

Topic: Business Mathematics Time: 1 Hour 30 Minutes

NAME: STREAM:

INSTRUCTIONS:

Attempt ALL questions in this paper. Show your working clearly.

- **Qn 1:** A dealer in Owino market adds 10% to the cost price of the goods he sells. A pair of bed sheets costs him shs 56,000. Calculate:
 - (i). the profit.
 - (ii). the selling price.
- **Qn 2:** During Christmas season, a dealer in ready-made garments, announced a discount of 20% on cash sales. Peter bought a shirt and paid shs 48,000 in cash. Find:
 - (i). the marked price of the shirt.
 - (ii). the amount discount allowed.
- **Qn 3:** Three friends Albert, Benjamin and Chris decide to buy a car. Albert pays $\frac{1}{4}$ of the cost; Benjamin pays $\frac{1}{3}$ of the cost and Chris pays the rest. Benjamin pays shs 1,500,000 more than Albert. Calculate the cost of the car.
- **Qn 4:** An estate agent arranged for a sale of a house and got a commission of $1\frac{1}{2}\%$ on the selling price. If the amount of commission he received was shs 3,600,000, find the selling price of the house.
- **Qn 5:** Find the principal that will amount to shs 100,000, when invested at simple interest of 10% p.a for 8 months.
- **Qn 6:** Jane bought a house and later sold it at shs 21,000,000 thereby making a profit of 5%. Calculate:

- (i). the cost price of the house.
- (ii). the amount profit.
- **Qn 7:** Find by how much the compound interest exceeds the simple interest on shs 60,000 invested for 2 years at a 12% p.a.
- **Qn 8:** Find the cost of covering a floor 5 m by 4.5 m with a carpet costing shs $17,000 \text{ per m}^2$.
- **Qn 9:** The marked price of an article is shs 2,500,000. Opio bought the article by paying a deposit of shs 500,000 and a number of equal installments of shs 250,000 each. If the hire purchase price is 20% higher than the marked price, calculate the number of installments.
- **Qn 10:** Amongin bought a photocopier at shs 3,500,000. If the depreciation rate of the machine is 10.5% p.a, calculate the value of the copier after 2 years.

[Total Marks = 48]

SNo.	Working	Marks
1	(i).	
	Profit = $\frac{10}{100} \times 56,000 = \text{shs } 5,600$ (ii). Selling price = $56,000 + 5,600 = \text{shs } 61,600$	M1 A1 M1 A1
	55	1.11 111
		04
2	(i). Let the marked price be x . $100\% - 20\% = 80\%$ 80	B1
	$\frac{80}{100} \times x = 48000$ $0.8x = 48000$ $\frac{0.8x}{0.8} = \frac{48000}{0.8}$	M1
	x = 60,000	M1 A1
	The marked price of the shirt is shs60,000.	AI
	(ii). Discount = $60,000 - 48,000 = $ shs 12,000	
		04
3	Let the cost price be x . Albert Benjamin Chris Amount paid $\frac{1}{4}x$ $\frac{1}{3}x$ $\left(1-\frac{1}{4}-\frac{1}{3}\right)x$ $=\frac{5}{12}x$	B1
	$\frac{1}{3}x - \frac{1}{4}x = 1,500,000$ $\left(\frac{4-3}{12}\right)x = 1,500,000$	M1
	$x = 12,000,000 \times 12$ The cost of the car is shs12,000,000.	M1 A1
		04
4	Let the selling price be x . $1\frac{1}{2}\% \text{ of } x = 3,600,000$ $\frac{1.5}{100} \times x = 3,600,000$	M1
	$ \begin{array}{r} 100 \\ 0.015x = 3,600,000 \\ \hline 0.015x = 3,600,000 \end{array} $	M1 M1
	$\frac{0.015}{0.015} = \frac{0.015}{0.015}$	

	x = 240,000,000	A1
	The selling price of the house is $shs240,000,000$.	AI
_	_ PRT	04
5	Ammount = $P + \frac{PRT}{100}$ $10,000 = P + P \times \frac{10}{100} \times \frac{8}{12}$ $10,000 = P + \frac{1}{15}P$	
	$10.000 - P + P \times \frac{10^{-8}}{10^{-8}} \times \frac{8}{10^{-8}}$	
	10,000 = 1 1 1 1 100 12	M1
	$10,000 = P + \frac{1}{15}P$	
	$10.000 = \left(\frac{15+1}{2}\right)P$	M1
	$10,000 = \left(\frac{15 + 1}{15}\right)P$ $10,000 = \frac{16}{15}P$ $10,000 \times \frac{15}{16} = P$	
	$10,000 = \frac{1}{15}P$	
	$10,000 \times \frac{15}{100} = P$	M1
	9,375 = P	A 1
	The principal is shs 9,375.	A1
		04
6	(i).	04
	Let the cost price be <i>x</i> .	
	100% + 5% = 105% 105	B1
	$\frac{105}{100} \times x = 21,000,000$	M1
	1.05x = 21,000,000	
	$\frac{1.05x}{1.05} = \frac{21,000,000}{1.05}$	M1
	x = 20,000,000	A1
	The cost price of the house is shs 20,000,000.	
	(ii). Profit = $21,000,000 - 20,000,000 = $ shs $1,000,000$	M1 A1
	20,000,000 = 3113 1,000,000	WII AI
	DDE 40	06
7	Simple interest, $S.I = \frac{PRT}{100} = 60,000 \times \frac{12}{100} \times 2 = 14,400$	M1 B1
	Amount obtained using compound interest	MIDI
	$A = P\left(\frac{100 + R}{100}\right)^n = 60,000 \times \left(\frac{100 + 12}{100}\right)^2$	
	$A = F\left(\frac{100}{100}\right) = 60,000 \times \left(\frac{100}{100}\right)$ $= 60,000 \times (1.12)^2 = 75,264$	M1 B1
	$= 60,000 \times (1.12)^{2} = 75,264$ Compound interest, $C.I = 75,264 - 60,000 = 15,264$	M1 B1
	$\therefore C.I - S.I = 15,264 - 14,400 = shs 864$	M1 A1
	The compound interest exceeds the simple interest by shs 864.	
		08
8	Area of floor = $5 \times 4.5 = 22.5 \text{ m}^2$	M1 B1
	Total cost = $22.5 \times 17000 = $ shs 382,500	M1 A1
		04
		U 1

9	100% + 20% = 120%	B1
	Hire purchase price = $\frac{120}{100} \times 2,500,000 = \text{shs } 3,000,000$	M1 B1
	Let x be the number of equal installments. Hire purchase price = $500,000 + 250,000x$ 3,000,000 = 500,000 + 250,000x 3,000,000 - 500,000 = 250,000x 2,500,000 = 250,000x	M1
	$\frac{2,500,000}{250,000} = \frac{250,000x}{250,000}$ $x = 10 \text{ equal installments}$	M1 A1
		06
10	Current price = $P\left(\frac{100 - R}{100}\right)^n = 3,500,000 \times \left(\frac{100 - 10.5}{100}\right)^2$ = 3,500,000 × (0.895) ² = shs 2,8803,587.5	M1 M1 B1 A1
		04

SENIOR FOUR MATHEMATICS June 2023

 $1\frac{1}{2}$ hours

S.4 MATH BI-WEEKLY TEST 2 2023

Topic: Functions & Vectors Time: 1 Hour 30 Minutes

NAME: STREAM:

INSTRUCTIONS:

Attempt ALL questions in this paper.

Show your working clearly.

Qn 1: Given that $g(x) = 4x^2 + 3x + c$ and g(4) = 0, find the value of c.

Qn 2: A function $f(x) = \frac{2}{x} + 3$, find the value of x for which f(x) = 4.

Qn 3: If f(x) = x - 1 and $g(x) = x^2 - 5x + 4$, find the value of x for which:

- (i). $\frac{f(x)}{g(x)}$ is undefined.
- (ii). $f(x) \bullet g(x) = 0$.
- (iii). gf(x) = 0.

Qn 4: Given that $(x) = \frac{4x+9}{x+4}$, find $g^{-1}(x)$; hence evaluate $g^{-1}(3)$.

Qn 5: Given that g(x) = px + q and g(2) = 17, then g(-1) = 2. Find:

- (i). the values of p and q.
- (ii). the values of x for which g(x) = 0.

Qn 6: Show that the points A(-2, -2), B(2, 1) and C(10, 7) are collinear.

Qn 7: Given that $\overrightarrow{PQ} = {5 \choose 2}$ and Q(7,5). Find the coordinates of P.

Qn 8: Given A(2,3) and B(5,7), find:

- (i). \overrightarrow{AB} ,
- (ii). $|\overrightarrow{AB}|$,

Qn 9: OAB is a triangle such that OM: OB = 1: 4, AN: NB = 1: 2, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b} \cdot \overrightarrow{ON}$ and \overrightarrow{AM} meet at X.

- (a). Find, in terms of \mathbf{a} and \mathbf{b} , the vectors:
 - (i). \overrightarrow{AB}
 - (ii). \overrightarrow{AM}
 - (iii). \overrightarrow{ON}
- (b). Given that $\overrightarrow{OX} = h \ \overrightarrow{ON}$ and $\overrightarrow{AX} = k \ \overrightarrow{AM}$ where h and k are scalars, find the values of h and k. Hence find the ratio $\overrightarrow{AX} : \overrightarrow{AM}$.
- **Qn 10:** The diagram below is a parallelogram. $2\overrightarrow{BC} = 3\overrightarrow{PC}$, $\overrightarrow{AQ} = 2\overrightarrow{AB}$, $\overrightarrow{AB} = \mathbf{b}$ and $\overrightarrow{AD} = \mathbf{d}$.

- (a). Express, in terms of \boldsymbol{b} and \boldsymbol{d} ,
 - (i). \overrightarrow{AC} ,
 - (ii). \overrightarrow{BD}
 - (iii). \overrightarrow{BP} ,
 - (iv). \overrightarrow{AP} ,
 - (v). \overrightarrow{PQ} .
- (b). Show that the points M, P and Q lie on a straight line.

[Total Marks = 70]

SNo.	Working	Marks
1	$g(x) = 4x^2 + 3x + c$	
	$g(4) = 4 \times 4^2 + 3 \times 4 + c = 0$	M1
	64 + 12 + c = 0	
	76 + c = 0	A 1
	c = -76	A1
		02
2	2	02
	$f(x) = \frac{2}{x} + 3 = 4$ $\frac{2}{x} = 4 - 3$ $x \times \frac{2}{x} = 1 \times x$	
	$\frac{2}{2} - 4 - 3$	
	$\frac{1}{x}$	M1
	$x \times \frac{2}{x} = 1 \times x$	
	$\overset{x}{2} = x$	M1
	$\begin{array}{c} z - x \\ \therefore x = 2 \end{array}$	A1
	$\cdots \lambda = 2$	
		03
3	(i).	
	$\frac{f(x)}{g(x)} = \frac{x-1}{x^2 - 5x + 4}$	
		B1
	$\frac{f(x)}{g(x)}$ is undefined when,	
	$x^2 - 5x + 4 = 0$	M1
	sum = -5 , product = 4, factors = -1 , -4	1411
	$x^2 - x - 4x + 4 = 0$	
	x(x-1) - 4(x-1) = 0	
	(x-4)(x-1)=0	M1
	(x-4) = 0, or, $(x-1) = 0$	
	$x = 4, \qquad \text{or,} \qquad x = 1$	A1
	(ii). $f(x) \bullet g(x) = 0$	
	$(x-1)(x^2-5x+4)=0$	M 1
	(x-1)(x-4)(x-1) = 0	M1
	$(x-1)^2(x-4) = 0$	M1
	$(x-1)^2 = 0$, or, $(x-4) = 0$	1.11
	x = 1, or, $x = 4$	A1
	(iii).	
	gf(x) = g(x-1)	
	$= (x-1)^2 - 5(x-1) + 4$ = $x^2 - 2x + 1 - 5x + 5 + 4$	M1
	$= x^{2} - 2x + 1 - 5x + 5 + 4$ $= x^{2} - 7x + 10$	D4
	-x - /x + 10	B1
	but, $gf(x) = 0$	
	$x^2 - 7x + 10 = 0$	M1
	sum = -7 , product = 10 , factors = -2 , -5	

	2 2	
	$x^2 - 2x - 5x + 10 = 0$	
	x(x-2) - 5(x-2) = 0	
	(x-5)(x-2)=0	M1
	(x-5) = 0, or, $(x-2) = 0x = 5,$ or, $x = 2$	
	x = 5, or, $x = 2$	A1
		12
4	$g(x) = \frac{4x+9}{x+4}$ $Y = \frac{4X+9}{X+4}$	
	$g(x) = \frac{1}{x+4}$	
	4X+9	
	$Y = \frac{1}{X+4}$	M1
	Y(X + 4) = 4X + 9	M1
	XY + 4Y = 4X + 9	1.12
	XY - 4X = 9 - 4Y	
	X(Y-4) = 9 - 4Y	
	9-4Y	B1
	$X = \frac{1}{V - A}$	DI
	$X = \frac{9 - 4Y}{Y - 4}$ $\therefore g^{-1}(x) = \frac{9 - 4x}{x - 4}$	B1
	$\therefore g^{-1}(x) = \frac{1}{x}$	DI
	For the hence part:	
	$9-4\times3$ -3	N/4 A4
	$g^{-1}(3) = \frac{9-4\times3}{3-4} = \frac{-3}{-1} = 3$	M1 A1
	3-4 -1	
		06
5	(i).	
	g(x) = px + q	
	$g(2) = p \times 2 + q = 17, 2p + q = 17 \longrightarrow (1)$	B1
	$g(2) = p \times 2 + q = 17, 2p + q = 17$ $g(-1) = p \times (-1) + q = 2, -p + q = 2 \longrightarrow (2)$	B1
	Equation (1) – (2) gives, $p+q-2$	
	2p + q = 17	
	$\begin{vmatrix} 2p + q - 17 \\ -n + q - 2 \end{vmatrix}$	M1
	$ \begin{array}{c c} -p+q=2\\ \hline 3p=15 \end{array} $	M1
	1 3p = 15 1	
	2n 1E	
	$\frac{3p}{3} = \frac{15}{3}$	
	p=5	M1
	and, $q = 2 + p = 2 + 5 = 7$	A1
	(ii).	M1 A1
	g(x) = 5x + 7 = 0	
	5x = -7	M1
	$\frac{5x}{5} = \frac{-7}{5}$	
	5 5	
	$x=-\frac{7}{5}$	M1
	5	
		A1
		10
6	$\overrightarrow{AP} = \overrightarrow{OP} \overrightarrow{OA} = (2) (-2) = (4)$	
	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - \begin{pmatrix} -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$	B1
	$\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} = {10 \choose 7} - {2 \choose 1} = {8 \choose 6} = 2 {4 \choose 3}$	

	<u> </u>	D4
	$\Rightarrow \overrightarrow{BC} = 2\overrightarrow{AB}$	B1 B1
	Since \overrightarrow{BC} can be expressed as a multiple of \overrightarrow{AB} , then points A , B and C are collinear.	B1
		04
7	$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$ $\binom{5}{2} = \binom{7}{5} - \overrightarrow{OP}$ $\overrightarrow{OP} = \binom{7}{5} - \binom{5}{2}$	M1
	$\overrightarrow{OP} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ $\therefore P(2,3)$	B1 A1
		03
8	(i). $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = {5 \choose 7} - {2 \choose 3} = {3 \choose 4}$ (ii).	M1 A1
	$ \vec{AB} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \text{ units}$	M1 A1
		04
9	(i). $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\boldsymbol{a} + \boldsymbol{b} = \boldsymbol{b} - \boldsymbol{a}$	B1
	(ii).	
	$OM: OB = 1: 4$ $\overrightarrow{OM} = \frac{1}{4} \overrightarrow{OB} = \frac{1}{4} \mathbf{b}$	B1
	$\therefore \overrightarrow{AM} = \overrightarrow{AO} + \overrightarrow{OM} = -\mathbf{a} + \frac{1}{4}\mathbf{b}$	
	$AM = AO + OM = -\mathbf{a} + \frac{1}{4}\mathbf{b}$ $= \frac{-4\mathbf{a} + \mathbf{b}}{4\mathbf{a}} = \frac{1}{4}(\mathbf{b} - 4\mathbf{a})$	B1
	$= \frac{2}{4} = \frac{2}{4} \left(\frac{\boldsymbol{b}}{2} - 4 \frac{\boldsymbol{a}}{2} \right)$ (iii). $AN: NB = 1: 2$	
	$\overrightarrow{AN} = \frac{1}{3}\overrightarrow{AB} = \frac{1}{3}(\mathbf{b} - \mathbf{a})$	B1
	$\therefore \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AN} = \mathbf{a} + \frac{1}{3} (\mathbf{b} - \mathbf{a})$	
	$= \frac{3\boldsymbol{a} + \boldsymbol{b} - \boldsymbol{a}}{3} = \frac{1}{3} \left(2\boldsymbol{a} + \boldsymbol{b} \right)$	B1
	(b). $\overrightarrow{OX} = h \overrightarrow{ON} = \frac{1}{3} h \left(2 \alpha + b \right) = \frac{2}{3} h \alpha + \frac{1}{3} h b$	B1
	$\overrightarrow{AX} = k \overrightarrow{AM} = \frac{1}{4} k \left(\mathbf{b} - 4\mathbf{a} \right) = \frac{1}{4} k \mathbf{b} - k \mathbf{a}$ but, $\overrightarrow{OX} = \overrightarrow{OA} + \overrightarrow{AX}$	B1
	but, $OX = OA + AX$ $\frac{2}{3}h\mathbf{a} + \frac{1}{3}h\mathbf{b} = \mathbf{a} + \frac{1}{4}k\mathbf{b} - k\mathbf{a}$	

$\frac{2}{3}h\mathbf{a} + \frac{1}{3}h\mathbf{b} = (1-k)\mathbf{a} + \frac{1}{4}k\mathbf{b}$	M1
Comparing coefficients of \mathbf{a} ,	
$\frac{2}{3}h = (1-k)$ $2h = 3 - 3k$ $2h + 3k = 3 \longrightarrow (1)$ Comparing coefficients of \boldsymbol{b} ,	B1
~	
$\frac{1}{3}h = \frac{1}{4}k$ $4h = 3k$ $4h - 3k = 0 \longrightarrow (2)$ Equation (1) + (2) gives,	B1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1
$\frac{6h}{6} = \frac{3}{6}$ $h = \frac{1}{2}$	A1
	AI
and, $k = \frac{4}{3}h = \frac{4}{3} \times \frac{1}{2} = \frac{2}{3}$ For the hence part,	A1
$\overrightarrow{AX} = k \overrightarrow{AM}$	
$\overrightarrow{AX} = \frac{2}{3}\overrightarrow{AM}$	M1
$\frac{\overrightarrow{AX}}{\overrightarrow{AM}} = \frac{2}{3}$	
${\overrightarrow{AM}} = \frac{1}{3}$	
$\therefore \overrightarrow{AX} : \overrightarrow{AM} = 2:3$	A1
	15
(a). (i). $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{b} + \overrightarrow{d}$	B1
(ii). $\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD} = -b + d = d - b$	B1
(iii). $2\overline{BC} = 3\overline{PC}$	
$\overrightarrow{PC} = \frac{2}{3}\overrightarrow{BC} = \frac{2}{3}\overrightarrow{a}$	B1
but, $\overrightarrow{BC} = \overrightarrow{BP} + \overrightarrow{PC}$	
$\overrightarrow{BP} = \overrightarrow{d} - \frac{2}{3} \overrightarrow{d} = \frac{3\overrightarrow{d} - 2\overrightarrow{d}}{3} = \frac{1}{3} \overrightarrow{d}$ (iv).	B1

<u></u>	, , , , , , , , , , , , , , , , , , , ,
$\overrightarrow{AP} = \overrightarrow{AB} + \overrightarrow{BP} = \mathbf{b} + \frac{1}{3}\mathbf{d} = \frac{3\mathbf{b} + \mathbf{d}}{3} = \frac{1}{3}(3\mathbf{b} + \mathbf{d})$ (v).	B1
$\overrightarrow{AQ} = 2\overrightarrow{AB} = 2\overrightarrow{b}$	
$\overrightarrow{PQ} = \overrightarrow{PA} + \overrightarrow{AQ} = -\frac{1}{3} (3\mathbf{b} + \mathbf{d}) + 2\mathbf{b}$	
$= \frac{-3\boldsymbol{b} - \boldsymbol{d} + 6\boldsymbol{b}}{3} = \frac{1}{3} \left(3\boldsymbol{b} - \boldsymbol{d} \right)$ (b).	B1
$\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AC} = \frac{1}{2} \begin{pmatrix} \mathbf{b} + \mathbf{d} \\ \sim \end{pmatrix}$ $\overrightarrow{MQ} = \overrightarrow{MA} + \overrightarrow{AQ} = -\frac{1}{2} \begin{pmatrix} \mathbf{b} + \mathbf{d} \end{pmatrix} + 2\mathbf{b}$	B1
$m\mathbf{Q} = m\mathbf{A} + A\mathbf{Q} = -\frac{1}{2}(\mathbf{b} + \mathbf{d}) + 2\mathbf{b}$ $= \frac{-\mathbf{b} - \mathbf{d} + 4\mathbf{b}}{2} = \frac{1}{2}(3\mathbf{b} - \mathbf{d})$	
	B1
$\frac{\overrightarrow{MQ}}{\overrightarrow{PQ}} = \frac{\frac{1}{2}(3\mathbf{b} - \mathbf{d})}{\frac{1}{3}(3\mathbf{b} - \mathbf{d})}$	M1
3 (~ ~/	
$\frac{\overrightarrow{MQ}}{\overrightarrow{PQ}} = \frac{1}{2} \div \frac{1}{3}$	
$\frac{\overrightarrow{MQ}}{\overrightarrow{PO}} = \frac{3}{2}$	
$2\overline{\boldsymbol{M}}\overline{\boldsymbol{Q}} = 3\overline{\boldsymbol{P}}\overline{\boldsymbol{Q}}$	
Since $2\overline{MQ} = 3\overline{PQ}$ and Q is common to both lines \overline{MQ} and \overline{PQ} , then points M , P and Q lie on a straight line.	D4
then pointsm, r and Que on a straight line.	B1
	10

456/1 MATHEMATICS PAPER 1 July 2023 $2\frac{1}{2}$ hours

S.4 MATH 1 MOCK SET 4 2023 Time: 2 Hours 30 Minutes

NAME: STREAM:

INSTRUCTIONS:

Answer **all** the **eight** questions in section **A** and only **five** questions in section **B**.

Section A (40 Marks)

Answer **all** the questions in this section.

Qn 1: Simplify:
$$\left(1\frac{2}{3} - \frac{1}{4} + 2\frac{1}{2}\right) \div \left(\frac{1}{3} + \frac{1}{4}\right)$$
. [4]

- **Qn 2:** Let the operation (\sim) be defined as "Add the square of the first number to twice the second one". Express ($p \sim q$) algebraically. Hence evaluate $(-3 \sim 4) \sim 1$.
- **Qn 3:** Solve equation $x^2 5x = 14$ by factorization. [4]
- **Qn 4:** (i). Use a suitable identity to expand and simplify: $(x + 3)^2$. (ii). Use the identity $(\mathbf{a} \mathbf{b})^2 = \mathbf{a}^2 2\mathbf{a}\mathbf{b} + \mathbf{b}^2$ to evaluate (999)². [4]
- **Qn 5:** Find the actual distance of a road section represented by a length of 3.5 cm on a map of scale 1:250000. [4]
- **Qn 6:** Find the equation of a straight line passing through point (3, -2) and is parallel to the line whose equation is 2y = 6x 3. [4]
- **Qn 7:** Express the inequality [(3y-2) < (y+10) < (5y+2)] in the form a < y < b. Hence state the integral values of y.

Qn 8: If
$$\begin{pmatrix} 4 & 1 \\ x & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix}$$
, determine the value of x and y . [4]

Qn 9: Given that $\sin(\theta + 30^\circ) = 0.700$, evaluate $\cos \theta$. [4]

Qn 10: With the use of a diagram, express the following as *3-figure bearings:*

(i). North West,

(ii). $S70^{\circ}W$. [4]

Section B (60 Marks)

Answer any **five** questions from this section. **All** questions carry equal marks.

Question 11:

- (a). A bag contains **8** red, **4** black and **6** blue identical pens. Three pens are drawn at random from the bag in succession. Find the probability that:
 - (i). the three pens are all black in colour.
 - (ii). the first two pens are red in colour.
- (b). In a school of **300** boys and **200** girls, the number of boys and girls is increased in the ratios **4**: **3** and **3**: **2**, respectively.
 - (i). Find the new school enrollment.
 - (ii). Suppose that the students were proportionately distributed in each class according to gender, what would be the expected number of girls in a new class of **56** students? [12]

Question 12:

- (a). If transformation matrix $\begin{pmatrix} 1 & n \\ k & -4 \end{pmatrix}$ maps point P(3, -2) onto P'(-1, 17); find the values of n and k.
- (b). Triangle A'B'C' is the image of $\triangle ABC$ under transformation "T", where: A(1,1), B(1,3), C(4,1), A'(-1,1), B'(-1,3) and C'(-4,1).
 - (i). Fully describe transformation "T".
 - (ii). Find the matrix representation for transformation "T" above. [12]

Question 13:

- (a). Consider a matrix $\mathbf{A} = \begin{pmatrix} y 3 & 1 \\ 4 & y \end{pmatrix}$. Find:
 - (i). an expression for |A|, the determinant of the given matrix.
 - (ii). the value(s) of 'y' for which matrix **A** is singular.
- (b). A triangle whose vertices are at A(1,0), B(1,2) and C(2,3) has its enlargement as A'(3,-2), B'(3,2) and C'(5,4). Find the centre and scale factor of enlargement. [12]

Question 14:

Ntake Transporter's company plans to transport cartons of soap from Kampala to Masaka using the 'Fuso-4 wheel drive' and a 'Daina truck'. When the Fuso makes **6** journeys and the Diana **10** journeys, the number of cartons delivered must not exceed **60**. The number of cartons carried by the Fuso must not exceed those of the Daina by **2**. For each carton, a Fuso makes a profit of shs 2,500 while the Diana makes shs 1,000. Let 'x' and 'y' be the number of cartons a Fuso and Diana can load at a time, respectively.

(i). Write down four inequalities for the given constraints.

- (ii). Write down the expression that maximizes the profit.
- (iii). Draw a graph for the inequalities in part (i) above.
- (iv). Hence, find the maximum profit that the company can make. [12]

Question 15:

Use the frequency table below to answer the accompanying questions:

Class	10 - 19	20 – 29	30 – 39	40 – 49	50 – 59	60 - 69	70 – 79
f	2	1	7	3	4	1	2

- (a). Calculate the:
 - (i). Mean score, using a *Working mean* of 34.5.
 - (ii). Modal score.
- (b). If the given data represents the marks scored by students in a Mock examination, determine the percentage number of students who passed the examination, given that 50% was the pass mark. [12]

Question 16:

- (i). Construct a $\triangle ABC$ such that $\overline{AB} = 6.2$ cm, $\overline{AC} = 7.1$ cm and $\angle BAC = 90^\circ$. Hence, measure and state the length of \overline{BC} .
- (ii). Then construct a circle whose centre is equidistant from all the vertices of ΔABC . Measure and state the size of this radius.
- (iii). Also calculate the area of the circle in part (ii) above. [12]

Question 17:

(a). In the diagram below, \overline{NK} and \overline{NM} are tangents to the circle at points K and M, respectively. If $K\widehat{N}M=48^\circ$, calculate the size of $K\widehat{L}M$.

- (b). How many complete revolutions must be made on a circular track of radius **35** metres in running a **4500** metre-race?
- (c). A sector of a circle of radius 14 cm, has an angle of 60° at the centre. Find its perimeter. [12]

[Total Marks = 100]

	[10tal Marks = 100]	,
SNo.	Working	Marks
1	$\left(1\frac{2}{3} - \frac{1}{4} + 2\frac{1}{2}\right) = \frac{5}{3} - \frac{1}{4} + \frac{5}{2} = \frac{20 - 3 + 30}{12} = \frac{47}{12}$	M1
	$\left(\frac{1}{3} + \frac{1}{4}\right) = \frac{4+3}{12} = \frac{7}{12}$ $\frac{47}{12} \div \frac{7}{12} = \frac{47}{12} \times \frac{12}{7} = \frac{47}{7} = 6\frac{5}{7}$	M1
	$\frac{1}{12} \cdot \frac{1}{12} = \frac{1}{12} \times \frac{7}{7} = \frac{6}{7}$	M1 A1
		04
2	Question 2: $p \sim q = p^2 + 2q$ $-3 \sim 4 = (-3)^2 + 2 \times 4 = 9 + 8 = 17$ $(-3 \sim 4) \sim 1 = 17 \sim 1 = 17^2 + 2 \times 1 = 289 + 2 = 291$	B1 B1 M1 A1
		04
3	$x^{2} - 5x = 14$ $x^{2} - 5x - 14 = 0$ $sum = -5, product = -14, factors = -7, 2$ $x^{2} - 7x + 2x - 14 = 0$ $x(x - 7) + 2(x - 7) = 0$ $(x - 7)(x + 2) = 0$ $(x - 7) = 0, or, (x + 2) = 0$ $x = 7, or, x = -2$	M1 B1 A1 A1
		04
4	(i). $ (x+3)^2 = x^2 + 2(3x) + 3^2 = x^2 + 6x + 9 $ (ii). $ (999)^2 = (1000 - 1)^2 = 1000^2 - 2 \times 1000 \times 1 + 1^2 $ $ = 1000000 - 2000 + 1 = 998,001 $	M1 A1 M1 A1
		04
5	The representative fraction is $1 \text{ cm} \leftrightarrow 250000 \text{ cm}$ The linear scale is $1 \text{ cm} \leftrightarrow \frac{250,000}{100,000} \text{ km}$ $1 \text{ cm} \leftrightarrow 2.5 \text{ km}$ The area scale is $3.5 \text{ cm} \leftrightarrow 3.5 \times 2.5 \text{ km}$ $3.5 \text{ cm} \leftrightarrow 8.75 \text{ km}$ The actual distance is 8.75 km.	B1-correct interpretation M1-dividing by 100,000 M1 A1
		04
6	$2y = 6x - 3, \qquad \Rightarrow y = 3x - \frac{3}{2}$	M1

	From $y = mx + c$ $-2 = (3 \times 3) + c$ $c = -11$ $\therefore y = 3x - 11$ Alternatively: $\frac{y - (-2)}{x - 3} = 3$ $y + 2 = 3(x - 3)$ $y + 2 = 3x - 9$ $y = 3x - 11$	B1 B1 A1
7		04
	3y-2 < y+10 $y+10 < 5y+23y-y < 10+2$ $10-2 < 5y-y2y < 12$ $8 < 4yy < 6$ $2 < y < 6hence, y = 3, 4, 5$	M1-collecting like terms M1- simplifying B1 A1-for both correct
		04
8	Adding: $ \begin{pmatrix} 4 & 1 \\ x & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4x + y = 4 \\ x^2 - y = 8 \end{pmatrix} $ $ 4x + y = 4 \longrightarrow (1) $ $ x^2 - y = 8 \longrightarrow (2) $ Adding: $ \begin{vmatrix} 4x + y = 4 \\ x^2 - y = 8 \end{vmatrix} $ $ \begin{vmatrix} x^2 + 4x = 12 \\ x^2 + 4x - 12 = 0 \end{cases} $ $ x^2 - 2x + 6x - 12 = 0 $ $ x(x - 2) + 6(x - 2) = 0 $	B1-both eqns correct
	(x-2)(x+6) = 0 (x-2) = 0, or, $(x+6) = 0x = 2$, or, $x = -6From equation (1),if x = 2, y = -4and if x = -6, y = 28$	B1-correct Q.E B1-correct factors
		B1-correct pairs
9	$\sin(\theta + 30^{\circ}) = 0.700$ $\theta + 30^{\circ} = \sin^{-1}(0.7) = 44.43^{\circ}$ $\theta = 44.43^{\circ} - 30^{\circ} = 14.43^{\circ}$	B1- for 44.43°

10	$\cos\theta = \cos 44.43^{\circ} \approx 0.9685$	M1- subtracting 30° M1 A1 04
10	(i). $W = A5^{\circ}$ $\alpha = 360 - 45 = 315^{\circ}$	B1- correct sketch
	$\therefore NW = 225^{\circ}$ (ii).	B1
	$\beta = 180 + 70 = 250^{\circ}$ $\therefore S 70^{\circ} E = 250^{\circ}$	B1- correct sketch
		B1 04
11	(a). $n(\text{Red}) = 8$, $n(\text{Black}) = 4$, $n(\text{Blue}) = 6$ (i).	
	(ii). $P(\text{All Black}) = \frac{4}{18} \times \frac{3}{17} \times \frac{2}{16} = \frac{1}{204}$ $P(1^{\text{st}} \text{ two are red}) = \left(\frac{8}{18} \times \frac{7}{17} \times \frac{4}{16}\right) + \left(\frac{8}{18} \times \frac{7}{17} \times \frac{6}{16}\right)$	M1 A1

$= \frac{7}{153} + \frac{7}{102} = \frac{35}{306}$	A1
(b). Original poulation = 300 + 200 = 500 (i).	B1
New number of boys = $\frac{4}{3} \times 300 = 400$	B1
New number of girls = $\frac{3}{2} \times 200 = 300$	B1
New enrollment = $400 + 300 = 700$ (ii).	M1 A1
Proportion of girls $=$ $\frac{300}{700} = \frac{3}{7}$	B1
Expected number of girls = $\frac{3}{7} \times 56 = 24$	M1 A1
	12
(a).	B1-correct matrix eqn B1 B1
From equation (1), $2n = 4$, $\Rightarrow n = 2$	B1
From equation (2), $3k = 9$, $\Rightarrow k = 3$	B1
(b).	B1- good scale
B' 3 - B	B1 -for ABC
C' A' 1 A C -5 -4 -3 -2 -1 1 1 2 3 4 <i>x</i> -axis	B1- for A'B'C'
(i). T represents reflection in the y-axis.	B1
(ii). Using points $I(1,0)$ and $J(0,1)$ or otherwise, $I(1,0) \rightarrow I'(-1,0)$	M1 M1
$J(0,1) \rightarrow J'(0,1)$ $\therefore \text{Matrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	A1
	12
13 (a). (i). $ A = y(y-3) - 4 = y^2 - 3y - 4$	M1 A1
(ii). for singular matrix, $ A = 0$	

		$y^{2} - 3y - 4 = 0$ $y^{2} - 4y + y - 4 = 0$ $y(y - 4) + (y - 4)$ $(y - 4)(y + 1) = 0$ $4) = 0, \text{or,} (y - 4)$ $y = 4, \text{or,} y$	= 0 = 0 0	M1 M1 A1-for both correct
(b).	y- 4 3 2 2 1 1 -2 -1 -1	Centre is $(-1, 2)$ cale factor = $\frac{A'B'}{AB}$	\overrightarrow{x} -axis	B1-for ABC B1-for A'B'C' B1-locating the centre
	S	cale factor $={AB}=$	2 = 2	M1 A1
14	Type Fuso Diana	Number of cartons x y	Profit 2500 1000	
(i). (ii). (iii)	6x + 2	$\begin{array}{ll} 2 & 0, & y \ge 0, & x \\ 10y \le 60, & \Longrightarrow 3x \end{array}$ $\text{Profit} = 2500x + 10$	$+5y \le 30$	B1 B1 B1 B1 B1
	Region $x \le y + 2$ $3x + 5y \le 30$ $x \ge 0$ $y \ge 0$	Border line $x = y + 2$ $3x + 5y = 30$ $x = 0$ $y = 0$	Coordinates (2, 0), (4, 2) (0, 6), (10, 0) y-axis x-axis	B1-any two correct points on 1st line B1-any two correct points on 2nd line
				B1- correct plotting of

	Mode = $L_m + \left(\frac{\Delta_1}{\Delta_1 + \Delta_2}\right)c = 29.5 + \left(\frac{6}{6+4}\right) \times 10$ = 29.5 + 6 = 35.5 (b). Percentage number that passed = $\left(\frac{4+1+2}{20}\right) \times 100\%$ = $\frac{7}{20} \times 100\% = 35\%$	M1 A1 (accept 36) M1 A1 12
16	(i). Sketch: 7.1 cm A 6.2 cm B Accurate diagram:	B1-correct sketch (seen or implied) B1- angle 90° at A. B1- for AB=6.2 cm B1-for AC=7.1 cm B2-for perpendicula r bisectors B2-for circumcircle

(ii). (iii).	Length $\overline{BC} = 9.4 \text{ cm} \pm 0.2 \text{ cm}$ $\text{Radius} = 4.6 \text{ cm or } 4.7 \text{ cm}$ $\text{Area} = \pi r^2 = \frac{22}{7} \times (4.6)^2 \approx 66.5 \text{ cm}^2$	B1 B1 (accept 4.5 - 4.8 cm) M1 A1
17 (a).	K a 48° N	12
(b).	$\alpha + \alpha + 48 = 180$ $2\alpha = 132$ $\alpha = 66^{\circ}$ angle KLM = angle NKM (alternate seegment theorem) $\therefore \text{ angle KLM} = 66^{\circ}$ $c = 2\pi r = 2 \times \frac{22}{7} \times 35 = 220 \text{ m}$ $\text{Number of revolutions} = \frac{4500}{220}$ $= 20.45 (2 \text{ d. p}) \approx 20 \text{ revolutions}$ $\text{Perimeter} = 2r + \frac{60}{360} \times 2\pi r = 2 \times 14 + \frac{60}{360} \times 2 \times \frac{22}{7} \times 14$ $= 28 + 14\frac{2}{3} = 42\frac{2}{3} = 42.7 \text{ cm}$	M1 A1 B1 M1 A1 M1 A1 M1 M1 M1 M1
		12

456/2 MATHEMATICS PAPER 2 July 2023 $2\frac{1}{2}$ hours

S.4 MATH 2 MOCK SET 4 2023

Time: 2 Hours 30 Minutes

NAME: STREAM:

INSTRUCTIONS:

- Answer all the eight questions in section A and only five questions in section B.
- ➤ Show your working clearly.

Section A (40 Marks)

Answer all the questions in this section.

Qn 1: Simplify:
$$\left(3\frac{3}{8}\right)^{\frac{-2}{3}} + \frac{1}{2}$$
. [4]

Qn 2: Simplify:
$$\frac{x^2 + 3x - 10}{x + 5}$$
. [4]

- **Qn 3:** In a group of 20 students, 7 did not pass Math (M), 11 did not pass English (E), and 5 passed both subjects.
 - (a). Represent the information on a Venn diagram.
 - (b). How many passed Math but not English. [4]

Qn 4: Without using a calculator, simplify
$$\frac{1}{2-\sqrt{3}} - \frac{1}{2+\sqrt{3}}$$
. [4]

- **Qn 5:** Given A(x, 7) and B(5, 4) and that $|\overrightarrow{AB}| = 5$ units, find the possible values of x.
- **Qn 6:** Determine the equation of the line parallel to 3x + 2y = 8, which passes through (-1, 2).
- **Qn 7:** Given $g^{-1}(x) = \frac{2x+1}{3}$, determine the:
 - (a). expression for g(x).
 - (b). value of g(5). [4]

Qn 8: On a map of area 75 km² is represented by 12 cm². Determine the scale of the map in form of 1: n. [4]

Qn 9: A bus set off from town P at 8:30 pm for town Q at an average speed of 80 km/hr. It arrived at Q at 3:15 am. Determine the distance \overline{PQ} . [4]

Qn 10: The figure below shows a cone ABC with circular end of radius 7.5 cm from which cone APT is cut off at radius 3 cm.

Determine the ratio of the volume for the cut off cone to the volume of the frustum BCTP. [4]

Section B (60 Marks)

Answer any **five** questions from this section. **All** questions carry equal marks.

Question 11:

(a). Simplify: $\frac{2\frac{1}{2} + 1\frac{1}{3} \times 2\frac{1}{4}}{\frac{5}{6} + 1\frac{2}{3}}.$

- (b). The cost (c) of hiring a car is partly constant and partly varies as the distance (d). When d=10, c= shs 45,000 yet when d=35, c= shs 82,500. Determine:
 - (i). an equation relating c and d.
 - (ii). the value of c when d = 50.
 - (iii). The value of d when c = shs 72,000.

[12]

Question 12:

(a). A machine costs shs 3,500,000. It depreciates at a rate of 5% per annum. Calculate its value after two years.

(b). The tax structure of a certain country is as follows:

Taxable income (shs)	Tax rate (%)
1 – 150,000	Free
150,001 – 400,000	5
400,001 – 700,000	8
Above 700,000	12

Ofono has an allowance of shs 50,000 which is exempted from tax, but pays tax of shs 58,100. Calculate Ofono's;

(i). gross pay

(ii). net pay. [12]

Question 13:

(a). Given $\log_{10} x = 1.3586$ and $\log_{10} y = 2.1428$. Use the information to find $\log_{10} \left(\frac{\sqrt{x}}{y}\right)$.

(b). The distance between two towns A and B is 20 km. Peter walked from town A to town B, covered two-fifth of the journey in 2 hours and the remaining journey he moved at 3 km h⁻¹. Calculate:

(i). the speed for the first part of the journey.

(ii). the time taken to cover the remaining journey.

(iii). Average speed for the whole journey.

(c). Draw a distance time graph showing the route of Peter. [12]

Question 14:

In the diagram below, A divides \overrightarrow{XT} in a ratio 1: 1. B is on \overrightarrow{XR} , such that $\overrightarrow{BR} = 3\overrightarrow{XB}$. If $\overrightarrow{XA} = t$ and $\overrightarrow{XB} = r$.

(a). Express the following vectors in terms of \mathbf{r} and \mathbf{t} .

(i). \overrightarrow{XT} ,

(ii). \overrightarrow{BT} ,

(iii). \overrightarrow{TR} .

(b). If
$$\overrightarrow{AT} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$
 and $\overrightarrow{XB} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, express \overrightarrow{TR} as a column vector. Hence determine $|\overrightarrow{TR}|$. [12]

Question 15:

A group of 40 students were asked whether they were members of scripture union (S), school choir (C) or interact club (I). 18 belonged to interact club; the number of those in scripture union was equal to the number of those in school choir. 10 belonged to S and C, 3 belonged to S and I only, 8 belonged to C and I only, 4 belonged to the three clubs, 7 do not belong to any of these clubs.

- (a). Represent the information on a Venn diagram.
- (b). How many students belong to S only?
- (c). What is the probability of picking one who does not belong to the church choir? [12]

Question 16:

Below is a cuboid with $\overline{BC}=8$ cm, $\overline{AB}=6$ cm, $\overline{AE}=4$ cm. T is the midpoint of DC.

Calculate:

- (a). length
- (i). \overline{AT} ,
- (ii). \overline{TE} .
- (b). angle between line TE and plane DCGH.
- (c). angle between planes *EFT* and *EFGH*.

[12]

Question 17:

Line T has x and y —intercepts —2 and 4 respectively. Line R is perpendicular to y+5=3x and passes through (2, 1). Determine:

- (a). equation of line
- (i). T, (ii). R.
- (b). point of intersection of T and R.
- (c). x —intercept of line R.
- (d). area between T, R and the x —axis. [12]

[Total Marks = 100]

	[10tal Marks = 100]	
SNo.	Working	Marks
1	$\left(3\frac{3}{8}\right)^{\frac{-2}{3}} = \left(\frac{27}{8}\right)^{\frac{-2}{3}} = \left(\frac{3^3}{2^3}\right)^{\frac{-2}{3}} = \left(\frac{3}{2}\right)^{3 \times \frac{-2}{3}}$	B1
	$= \left(\frac{3}{2}\right)^{-2} = \left(\frac{2}{3}\right)^2 = \frac{4}{9}$	B1
	$\therefore \left(3\frac{3}{8}\right)^{\frac{-2}{3}} + \frac{1}{2} = \frac{4}{9} + \frac{1}{2} = \frac{8+9}{18} = \frac{17}{18}$	M1 A1
		04
2	$x^{2} + 3x - 10 = x^{2} - 2x + 5x - 10$ $= x(x - 2) + 5(x - 2)$ $= (x + 5)(x - 2)$ $\therefore \frac{x^{2} + 3x - 10}{x + 5} = \frac{(x + 5)(x - 2)}{x + 5} = x - 2$	B1 B1 B1 B1
		04
3	(a). Let $n(M \cap E) = x$	04
	$n(\varepsilon) = 20$ $n(M)$ $11 - x$ 5 $7 - x$ x $n(\varepsilon) = 11 - x + 5 + 7 - x + x$ $20 = 23 - x$ $x = 23 - 20$	B1 B1
	x = 23 $x = 3$	B1
	(b). $n(\text{passed math but not english}) = 11 - x = 11 - 3 = 8$	B1
		04
4	$\frac{1}{2-\sqrt{3}} - \frac{1}{2+\sqrt{3}} = \frac{(2+\sqrt{3})-(2-\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}$	B1
	$= \frac{2 + \sqrt{3} - 2 + \sqrt{3}}{4 - 3}$	B1
	$-\frac{4-3}{}$	B1
	$=2\sqrt{3}$	B1
		04
	1	UT

$\begin{pmatrix} -x \\ -3 \end{pmatrix}$
-3 / B1
M1
M1
= 0 A1
04
- 01
B1
M1 B1
A1
04
B1
B1 M1 A1
04
B1

	$ \begin{array}{rcl} & 1 \text{ cm} & : & 2.5 \text{ km} \\ & 1 \text{ cm} & : & 2.5 \times 100,000 \text{ cm} \\ & 1 \text{ cm} & : & 250,000 \text{ cm} \\ & 1 & : & 250,000 \\ & \Rightarrow n = 250,000 \end{array} $	B1 M1
9	24: 00 hours - 20: 30 hours 03: 30 hours 03: 30 hours + 03: 15 hours 06: 45 hours	04 B1
	Total time taken, $t = 6 + \frac{45}{60} = 6.75$ hours $Distance = 80 \times 6.75 = 540 \text{ km}$	B1 M1 A1
10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	04
	By similarity, for ΔTMA and ΔCQT , $\frac{h_1}{h} = \frac{3}{4.5} , \qquad \Longrightarrow h_1 = \frac{3}{4.5} h = \frac{2}{3} h$	B1
	Volume of cut off cone : Volume of frustrum $ \frac{1}{3}\pi r^{2}h_{1} : \frac{1}{3}\pi h(r^{2}+rR+R^{2}) $ $ r^{2} \times \frac{2}{3}h : h(r^{2}+rR+R^{2}) $ $ \frac{2r^{2}}{3} : (r^{2}+rR+R^{2}) $ $ \frac{2\times 3^{2}}{3} : (3^{2}+3\times 7.5+7.5^{2}) $	B1

	$6 : \frac{207}{1}$	
	24 : 207	
		N/1
		M1
		A1
		04
11	(a).	
	$\left(2\frac{1}{2} + 1\frac{1}{3} \times 2\frac{1}{4}\right) = \frac{5}{2} + \frac{4}{3} \times \frac{9}{4}$	B1
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	B1
	$=\frac{3}{2}+3=\frac{3+6}{2}=\frac{11}{2}$	DI
	$= \frac{5}{2} + 3 = \frac{5 + 6}{2} = \frac{11}{2}$ $\left(\frac{5}{6} + 1\frac{2}{3}\right) = \frac{5}{6} + \frac{5}{3} = \frac{5 + 10}{6} = \frac{15}{6} = \frac{5}{2}$	D4
	$\begin{pmatrix} 5 & 2 \\ -+1- \end{pmatrix} = -+- = \frac{5}{} = \frac{5}{} = -$	B1
	$\begin{bmatrix} 1 & 6 & -31 & 6 & 3 & 6 & 6 & 2 \end{bmatrix}$	
	$ \frac{2\frac{1}{2} + 1\frac{1}{3} \times 2\frac{1}{4}}{\frac{5}{5} + 1\frac{2}{5}} = \frac{11}{2} \div \frac{5}{2} = \frac{11}{2} \times \frac{2}{5} = \frac{11}{5} = 2\frac{1}{5} $	
	$ \therefore \frac{-2}{5} = \frac{3}{3} \times \frac{4}{3} = \frac{11}{3} \div \frac{3}{3} = \frac{11}{3} \times \frac{2}{5} = \frac{11}{5} = 2\frac{1}{5} $	M1 A1
	$\frac{5}{5+10}$ 2 2 2 5 5 5	
	6 3	
	(b). (i).	
	$c = k_1 + k_2 d$	
	When $d = 10$, $c = \text{shs } 45,000$	B1
	$45000 = k_1 + 10k_2 \longrightarrow (1)$	
	When $d = 35$, $c = \text{shs } 82,500$	B1
	$82500 = k_1 + 35k_2 \longrightarrow (2)$	
	(2) - (1) gives,	
	$37500 = 25k_2$	B1
	$k_2 = 1500$	
	From equation (2),	B1
	$k_1 = 45000 - 10 \times 1500 = 30000$	
	$\therefore c = 30000 + 1500d$	M1 A1
	(ii).	MIAI
	$c = 30000 + 1500 \times 50 = $ shs 105,000	
	(iii).	
	72000 = 30000 + 1500d	
	72000 - 30000 = 1500d	M1
	42000 = 1500d	A1
	28 = d	
	d = 28	
	u – 20	12
10	(.)	12
12	(a).	
	$A = P\left(1 - \frac{R}{100}\right)^n = 3500000 \times \left(1 - \frac{5}{100}\right)^2$	
	$A - F \left(1 - \frac{1}{100}\right) = 3500000 \times \left(1 - \frac{1}{100}\right)$	M1
	$= 3500000 \times 0.95^2 = shs 3,158,750$	M1 A1
	(b).	
		•

Le	et taxable income be <i>y</i> .			
	Taxable income	Tax rate (%)	Tax	B1
	1st 150,000	0	0	
	Next 250,000	5	12,500	B1
	Next 300,000	8	24,000	
	Last $(y - 700,000)$	12	$\frac{3}{25}(y - 700,000)$	
	$\frac{3}{25}(y-700,\frac{3}$	000) = 58100 $-700,000) = 5$	- (12,500 + 24,000) 8100 - 36500	M1
	$\begin{array}{c} 25 \\ \underline{3} \\ \hline \end{array}$	$\frac{1}{5}(y-700,000)$) = 21600	M1
	3	3y - 2100000 = 3y = 2640	= 540000 000	A1
		y = 880,0	000	
(i)	(i). Gross pay = taxable income + allowances = $880,000 + 50,000 = 930,000$			M1 A1
				354 44
(ii		50,000 + 50,00	U = 93U,UUU	M1 A1
(11		= 930,000 - 58	8,100 = 871,900	
				12
13 (a	•	$\int_{0}^{\infty} \left(\frac{\sqrt{x}}{y}\right) = \frac{1}{2} \log_{10} \left(\frac{\sqrt{x}}{y}\right) = \frac{1}{2} \times 1.3586 - \frac{1}{2} \times$	$\log_{10} x - \log_{10} y$ - 2.1428	B1 M1
	= 0.6793 - 2.1428			
		$ \begin{array}{r r} $		M1 A1
		$\therefore \log_{10} \left(\frac{\sqrt{x}}{y} \right) =$	= 2 . 5365	
Fo		urney, $= \frac{\text{Distance}}{\text{Time}} = \frac{2}{3}$	$\frac{20}{2} = 10 \text{ km h}^{-1}$	M1 A1
(ii Le	et x be the total distance	for the whole j $\frac{2}{5} \text{ of } x = 2$	ourney. AB	
	$\frac{2}{5}$	$\frac{2}{5} \text{ of } x = 2$ $x = 20, \implies$	x = 50 km	

	For the second part of the journey, Distance = $50 - 20 = 30 \text{ km}$ Time = $\frac{\text{Distance}}{\text{Speed}} = \frac{30}{3} = 10 \text{ hours}$ (iii). Average speed = $\frac{\text{Total distance}}{\text{Total time}} = \frac{50}{2 + 10} = 4.1667 \text{ km h}^{-1}$ (c).	M1 A1 M1 A1 B1 B1
		12
14	(a). (i). $\overrightarrow{XA} : \overrightarrow{AT} = 1:1$ $\overrightarrow{XA} = \frac{1}{2}\overrightarrow{XT}$ $\overrightarrow{XT} = 2\overrightarrow{XA} = 2\mathbf{t}$ (ii).	B1 B1
	(ii). $ \overrightarrow{BT} = \overrightarrow{BX} + \overrightarrow{XT} $ $ = -\mathbf{r} + 2\mathbf{t} $ $ = 2\mathbf{t} - \mathbf{r} $	B1 B1
	(iii). $\overrightarrow{BR} = 3\overrightarrow{XB} = 3\mathbf{r}$ $\overrightarrow{TR} = \overrightarrow{TX} + \overrightarrow{XB} + \overrightarrow{BR}$ $= -2\mathbf{t} + \mathbf{r} + 3\mathbf{r}$	B1
	$= \overset{\sim}{4} \tilde{r} - 2 \tilde{t}$ (b). $\overrightarrow{XA} = \overrightarrow{AT}, \qquad \Rightarrow \tilde{t} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ $\overrightarrow{XB} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \qquad \Rightarrow \tilde{r} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$	B1 B1 B1
	$\overrightarrow{TR} = 4\mathbf{r} - 2\mathbf{t} = 4 \begin{pmatrix} 2 \\ -1 \end{pmatrix} - 2 \begin{pmatrix} 4 \\ 4 \end{pmatrix} = \begin{pmatrix} 8 \\ -4 \end{pmatrix} - \begin{pmatrix} 8 \\ 8 \end{pmatrix} = \begin{pmatrix} 0 \\ -12 \end{pmatrix}$ Alternatively: $\overrightarrow{XT} = 2\overrightarrow{AT} = 2 \begin{pmatrix} 4 \\ 4 \end{pmatrix} = \begin{pmatrix} 8 \\ 8 \end{pmatrix}$	M1 B1

	$\overrightarrow{BR} = 3\overrightarrow{XB} = 3 \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \end{pmatrix}$ $\overrightarrow{TR} = \overrightarrow{TX} + \overrightarrow{XB} + \overrightarrow{BR} = \begin{pmatrix} -8 \\ -8 \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 6 \\ -3 \end{pmatrix} = \begin{pmatrix} 0 \\ -12 \end{pmatrix}$ $ \overrightarrow{TR} = \sqrt{0^2 + (-12)^2} = 12$	M1 A1
		12
15	(a). $n(\mathcal{E}) = 40$ $n(S) = n(C)$ $x + 3 + 4 + 6 = y + 6 + 4 + 8$ $x + 13 = y + 18$ $y = x - 5$ $n(\mathcal{E}) = 18 + 7 + x + 6 + y$ $40 = 31 + x + (x - 5)$ $14 = 2x$ $x = 7$ $\Rightarrow y = 7 - 5 = 2$ $n(I) = z + 3 + 4 + 8 = 18, \Rightarrow z = 18 - 15 = 3$ (b). $n(S \text{ only}) = 7 \text{ students}$ (c). $n(\text{not in C}) = x + z + 3 + 7 = 7 + 3 + 10 = 20 \text{ students}$ $P(\text{not in C}) = \frac{20}{40} = 0.5$	B3 M1 B1 M1 B1 B1 B1 B1 B1 B1 A1 B1 M1 A1

		12
(a). (i). A	8 cm $\overline{AT}^2 = \overline{AD}^2 + \overline{DT}^2$ $\overline{AT}^2 = 8^2 + 3^2$ $\overline{AT}^2 = 64 + 9$ $\overline{AT} = \sqrt{73} = 8.544 \text{ cm}$ $AT = \sqrt{73} = 8.544 \text{ cm}$	M1 M1 A1
(b).	$\sqrt{73}$ cm $\overline{TE}^2 = \overline{AT}^2 + \overline{AE}^2$ $\overline{TE}^2 = 73 + 4^2$ $\overline{TE}^2 = 73 + 16$ $\overline{TE} = \sqrt{89} = 9.434 \text{ cm}$ E 8 cm	M1 M1 A1 B1
$\sin \theta$ (c).	$=\frac{8}{\sqrt{89}} , \qquad \Rightarrow \theta = 58.0^{\circ}$	M1 A1

	F A cm A A cm B 8 cm C	B1
	$\tan \alpha = \frac{8}{4}$, $\Rightarrow \alpha = 63.435^{\circ}$	M1 A1
		12
17	(a). (i). Line T passes through the points $(-2,0)$ and $(0,4)$ Gradient, $m = \frac{0-4}{-2-0} = 2$ y intercept, $c = 4$	B1
	Using $y = mx + c$, $y = 2x + 4$ (ii). for $y + 5 = 3x$, $m_1 = 3$	A1
	$m_1 m_2 = -1$ $3m_2 = -1, \Rightarrow m_2 = -\frac{1}{3}$ Using $y = mx + c$ and $(2, 1)$,	
	$1 = -\frac{1}{3} \times 2 + c, \qquad \Longrightarrow c = \frac{5}{3}$	B1
	$y = -\frac{1}{3}x + \frac{5}{3}$	A1
	(b). At the point of intersection, $2x + 4 = -\frac{1}{3}x + \frac{5}{3}$ $6x + 12 = -x + 5$ $6x + x = 5 - 12$ $7x = -7$	M1
	x = -1 when $x = -1$, $y = 2 \times (-1) + 4 = -2 + 4 = 2$	B1
	The point of intersection is $(-1,2)$. (c).	A1
	$y = -\frac{1}{3}x + \frac{5}{3}$ When $y = 0$, $0 = -\frac{1}{3}x + \frac{5}{3}$	M1
	$\frac{1}{3}x = \frac{5}{3}$ $x = 5$ The <i>x</i> -intercept of line <i>R</i> is 5.	A1
	(d).	

