

Stochastic Variance-Reduced Policy Gradient

Matteo Papini

Damiano Binaghi Giuseppe Canonaco Matteo Pirotta Marcello Restelli

35th International Conference on Machine Learning, Stockholm, Sweden

Policy Gradient

An effective Reinforcement Learning (RL) solution to continuous control problems:

Robotics (Heess et al., 2017)

Video games (OpenAI, 2018)

Mostly based on **Stochastic Gradient Ascent** (Robbins and Monro, 1951)

maximize $J(\boldsymbol{\theta})$ by iterating $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \widehat{\nabla} J(\boldsymbol{\theta})$

Can we do something better?

Visualization idea from Bach (2016)

Stochastic Variance-Reduced Gradient

A solution from finite-sum optimization:

$$\max_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{i=1}^{N} f_i(\boldsymbol{\theta})$$

$$V J(\theta) = V J(\widetilde{\theta}) + V J(\widetilde{$$

- Unbiased
- Linear convergence

- More data-efficient than FG
- Supervised Learning (SL)

In Reinforcement Learing (RL) we maximize expected return:

$$\max_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \int p(\tau|\boldsymbol{\theta}) R(\tau) d\tau \qquad \text{(Peters and Schaal, 2008)}$$

SVRG for RL so far:

- Du et al. (2017) apply SVRG to policy evaluation
- Xu et al. (2017) apply SVRG to off-line control

Our work: on-policy control

Nontrivial! There are three challenges:

- **I** Non-concavity of $J(\theta)$ (Allen-Zhu and Hazan, 2016; Reddi et al., 2016)
- Infinite dataset: we would need infinite samples to compute FG (Harikandeh et al., 2015; Bietti and Mairal, 2017)
- **3** Non-stationarity: $\tau \sim p_{\theta}$ (new!)

Stochastic Variance-Reduced Policy Gradient

$$\underbrace{\nabla J(\boldsymbol{\theta})}_{\text{SVRPG estimator}} = \underbrace{\widehat{\nabla}_N J(\widetilde{\boldsymbol{\theta}})}_{\text{Large N}} + \underbrace{\widehat{\nabla}_B J(\boldsymbol{\theta})}_{\text{Eagle N}} - \underbrace{\omega(\boldsymbol{\theta}, \widetilde{\boldsymbol{\theta}})\widehat{\nabla}_B J(\widetilde{\boldsymbol{\theta}})}_{\text{Importance weighting for non-stationarity}}$$

- Unbiased
- More data-efficient than FG
- On-policy: only the correction term is weighted

Convergence to local optimum:

$$\mathbb{E}\left[\|\nabla J(\boldsymbol{\theta})\|^2\right] \leq \frac{J(\boldsymbol{\theta}^*) - J(\boldsymbol{\theta}_0)}{\psi T} + \underbrace{\frac{\zeta}{\mathbf{N}}}_{\text{Infinite dataset}} + \underbrace{\frac{\xi}{\mathbf{B}}}_{\text{Nonstationarity}}$$

- Linear convergence + error (similar to Harikandeh et al., 2015)
- ullet ψ, ζ, ξ depend only on step size and epoch size

Meta-parameter selection

Adaptive step size: two ADAM (Kingma and Ba, 2014) annealing schedules

$$\underbrace{\alpha_{FG}}_{\text{used at the snapshot}} \underbrace{\alpha_{SG}}_{\text{used inside epoch}}$$

Adaptive epoch size: new snapshot when effective step size becomes too small

$$\frac{lpha_{SG}}{B} < \frac{lpha_{FG}}{N} \implies {\sf snapshot}$$

 $\mathsf{SVRPG} \ldotp N = 100, B = 10 \mathsf{, ADAM}$

GPOMDP: N=10, ADAM

Tasks from rllab (Duan et al., 2016)

11 Conclusions

- Efficient policy optimization is challenging
- SVRPG: on-policy control based on SVRG
- Meta-parameters still crucial to tame different sources of variance
- Future work: adaptive batch size, natural gradient, actor-critic

12 Thank You

Thank you for your attention

■ Poster: today 06:15 – 09:00 PM @ Hall B #65

Contact: matteo.papini@polimi.it

Online resources: t3p.github.io

- Allen-Zhu, Z. and Hazan, E. (2016). Variance reduction for faster non-convex optimization. In *International Conference on Machine Learning*, pages 699–707.
- Bach, F. (2016). Stochastic optimization: Beyond stochastic gradients and convexity part i.
- Baxter, J. and Bartlett, P. L. (2001). Infinite-horizon policy-gradient estimation. *Journal of Artificial Intelligence Research*, 15:319–350.
- Bietti, A. and Mairal, J. (2017). Stochastic optimization with variance reduction for infinite datasets with finite sum structure. In *Advances in Neural Information Processing Systems*, pages 1622–1632.
- Du, S. S., Chen, J., Li, L., Xiao, L., and Zhou, D. (2017). Stochastic variance reduction methods for policy evaluation. In *ICML*, volume 70 of *Proceedings of Machine Learning Research*, pages 1049–1058. PMLR.
- Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Benchmarking deep reinforcement learning for continuous control. In *International Conference on Machine Learning*, pages 1329–1338.
- Harikandeh, R., Ahmed, M. O., Virani, A., Schmidt, M., Konečný, J., and Sallinen, S. (2015). Stopwasting my gradients: Practical svrg. In *Advances in Neural Information Processing Systems*, pages 2251–2259.
- Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang, Z., Eslami, A., Riedmiller, M., et al. (2017). Emergence of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286.
- Johnson, R. and Zhang, T. (2013). Accelerating stochastic gradient descent using predictive variance reduction. In *Advances in neural information processing systems*, pages 315–323.

- Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- OpenAl (2018). Openai five.
- Peters, J. and Schaal, S. (2008). Reinforcement learning of motor skills with policy gradients. Neural networks, 21(4):682-697.
- Reddi, S. J., Hefny, A., Sra, S., Poczos, B., and Smola, A. (2016). Stochastic variance reduction for nonconvex optimization. In International conference on machine learning, pages 314–323.
- Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals of mathematical statistics, pages 400-407.
- Xu, T., Liu, Q., and Peng, J. (2017). Stochastic variance reduction for policy gradient estimation. CoRR, abs/1710.06034.

```
For s=1,\ldots
     Sample N trajectories using \widehat{\theta}
     Compute FG = \widehat{\nabla}_N J(\widetilde{\theta})
     For t = 1, \ldots, m
           Sample B trajectories using \theta
          Compute \mathrm{SG} = \widehat{\nabla}_B J(\theta)
Compute correction = \omega(\theta, \widetilde{\theta}) \widehat{\nabla}_B J(\widetilde{\theta})
                                                                                                                                              epoch
                                                                                                             iteration
           Update \theta \leftarrow \theta + \alpha \nabla J(\theta)
     Update \widetilde{\theta} \leftarrow \theta
```

ADAM (Kingma and Ba, 2014):

- adapts to gradient variance
- can manage different batch sizes
- has memory of past gradients (momentum)

Problem: FG and SG have very different variance magnitudes

⇒ spurious momentum

We use two *separate* annealing schedules:

$$\widetilde{m{ heta}} \leftarrow \widetilde{m{ heta}} + lpha_{FG} \widehat{
abla}_N J(\widetilde{m{ heta}})$$
 at the snapshot $m{ heta} \leftarrow m{ heta} + lpha_{SG} m{m{ foldsymbol{ heta}}} J(m{ heta})$ otherwise

Note that $\widehat{\nabla}_N J(\widetilde{\boldsymbol{\theta}}) \equiv \nabla J(\boldsymbol{\theta})$ at the snapshot

Epoch size (m) trade-off:

- Large $m \implies$ large importance-weighting variance \implies unstable
- \blacksquare Small $m \implies$ frequent snapshots \implies data-inefficient

Idea: ADAM already relates gradient variance and efficiency

Our stopping criterion:

$$\frac{\alpha_{SG}}{B} < \frac{\alpha_{FG}}{N} \implies \text{snapshot}$$

When going on is not convenient, take new snapshot

Regular importance weighting (unbiased):

$$\omega(\boldsymbol{\theta}, \widetilde{\boldsymbol{\theta}}) \widehat{\nabla}_B J(\widetilde{\boldsymbol{\theta}}) = \frac{1}{B} \sum_{i=1}^B \frac{p(\tau_i | \widetilde{\boldsymbol{\theta}})}{p(\tau_i | \boldsymbol{\theta})} \nabla \log p(\tau_i | \widetilde{\boldsymbol{\theta}}) R(\tau_i)$$

Normalized importance weighting:

$$\omega(\boldsymbol{\theta}, \widetilde{\boldsymbol{\theta}}) \widehat{\nabla}_B J(\widetilde{\boldsymbol{\theta}}) = \frac{\sum_{i=1}^B \frac{p(\tau_i | \widetilde{\boldsymbol{\theta}})}{p(\tau_i | \boldsymbol{\theta})} \nabla \log p(\tau_i | \widetilde{\boldsymbol{\theta}}) R(\tau_i)}{\sum_{i=1}^B \frac{p(\tau_i | \widetilde{\boldsymbol{\theta}})}{p(\tau_i | \boldsymbol{\theta})}}$$

- Less variance at the price of small bias
- Only affects the correction term
- Benefits are task-dependent

Swimmer 70 50 40 20 10 Self-Normalized SVRPG SVRPG -10 0.5 1.5 Trajectories $\cdot 10^{4}$

Gradient sample:
$$\sum_{t=1}^{H} \left(\sum_{k=1}^{t} \nabla \log \pi_{\boldsymbol{\theta}}(a_t|s_t) \right) (\gamma^t r_t - \underbrace{\mathbf{b}}_{\mathsf{baseline}}) \quad \text{(Peters and Schaal, 2008)}$$

Not trivial to combine SVRG with critic: variance reduction is not additive

We combine SVRG with a simple critic from Duan et al. (2016)

Future work: ad hoc critic

The Full Story

20

- For Swimmer, we employ normalized weights in our final result
- For Half-Cheetah, we employ normaized weights and critic in our final result
- We compare **SVRPG** with GPOMDP (Baxter and Bartlett, 2001) with batch size B = 10
- This shows the advantage of correcting SG with more data
- However, GPOMDP with batch size N=100 is even worse

Half-Cheetah

