Summary of $\chi \mathrm{pod}$ / Chameleon EQ14 Analysis

Andy Pickering

June 14, 2017

Contents

1	Ove	rview	2
2	Data and Processing		3
3	Res	ults	4
	3.1	Overview	4
	3.2	ϵ_{χ} vs ϵ	7
	3.3	Comparing individual estimates of ϵ	8
	3.4	Dependence of bias on actual ϵ	12
	3.5	Normalized eps vs chi plots	14
	3.6	Averaging multiple profiles of ϵ	15
	3.7	Averaging over different-sized depth bins	18
	3.8	γ computed from averaged quantities	21
	3.9	Summary	22

1 Overview

- This document is an attempt to provide an overview/summary of what i've found in my χ pod analysis so far.
- The motivation/goal for all this work is to show if /how well the CTD- χ pod method works for estimating χ , ϵ , K_T , etc from fast temperature (thermistor) profiles. The idea is to deploy χ pods on regular CTD casts on WOCE/CLIVAR cruises etc. to making mixing measurements.
- Before dealing with all the issues with the CTD deployments (depth loops, entrained water, rosette-induced turbulence etc.), I wanted to verify that the method itself worked w/out these complications.
- The Chameleon microstructure profiler has both thermistor and shear probes, so this seemed like an ideal way to test the method. I would apply the χ pod method to the chameleon thermistor data only $(\chi_{\chi}, \epsilon_{\chi})$, and compare to the 'true' results computed using the shear probes (χ, ϵ) .

2 Data and Processing

- Data are from Chameleon profiles near the equator during the 'EQ14' experiment.
 On my laptop, they are located in the folder: /Cham_Eq14_Compare/Data/chameleon/processed/
- Sally shared w/ me Chameleon data that she and Jim processed. I ended up reprocessing it using a smaller fmax (7Hz) because it looked like the thermistor spectra rolled off much lower than the normally-assumed 32Hz. These data are located at: /Cham_Eq14_Compare/Data/chameleon/processed_AP_7hz/
- The χpod method is applied to Chameleon profiles (thermistor only, not shear probe) from EQ14 in ComputeChi_Chameleon_Eq14.m
- The noise floor of Chamleon ϵ was determined to be $log_{10}[\epsilon] = -8.5$. Values below this threshold were discarded. χ pod values below this threshold were also discarded, in order to make a valid comparison. An upper limit of $log_{10}[\epsilon] = -5$ (determined by Jim?) was also applied.
- Data including surface convection was identified and excluded in the analysis. The mixed layer depth was identified (Identify_mixedlayer_eq14.m) using a criteria of σ -surface = 0.04. This depth is shown in figures 1 and 2.
- Make_Overview_Plots.m Makes the figures in this document.

3 Results

3.1 Overview

• Both χ_{χ} and ϵ_{χ} appear to capture the depth and time structure of χ and ϵ well (Figures 1,2).

Figure 1: Comparison of χ from chameleon method and chi-pod method, for EQ14 chameleon profiles. Each profile was averaged in 2m bins. Black line shows shows convective regions excluded in further analysis.

Figure 2: Comparison of ϵ from chameleon method and chi-pod method, for EQ14 chameleon profiles. Each profile was averaged in 2m bins. Values of ϵ_{χ} and ϵ below chameleon noise floor $(log_{10}[\epsilon] = -8.5)$ have been nan'd out. Black line shows shows convective regions excluded in further analysis.

3.2 ϵ_{χ} vs ϵ

I first compared ϵ_χ vs ϵ_χ vs ϵ for the Chameleon data, where

$$\epsilon_{\chi} = \frac{N^2 \chi}{2\gamma T_z^2} \tag{1}$$

, using $\gamma=0.2$. ϵ_χ underestimates ϵ , showing that that relationship (assumed in χ pod processing does not hold here.

Figure 3: 2D histogram of ϵ_χ vs ϵ for Chameleon data.

3.3 Comparing individual estimates of ϵ

- Both χ_{χ} and ϵ_{χ} are biased low (Figures 4,5); the ϵ_{χ} bias is larger (more negative).
- The bias in χ is relatively constant with depth; the bias in ϵ is more negative at shallower depths (Figure 6).

Figure 4: Comparison of χ (top) and ϵ (lower) from chameleon method and chi-pod method, for EQ14 chameleon profiles. Each profile was averaged in 2m bins. Values of below chameleon noise floor ($log_{10}[\epsilon] = -8.5$) have been nan'd out. Black line is 1:1, red lines are +/- order of magnitude.

Figure 5: Histograms of the ratios of χ_ϵ/χ (top) and ϵ_χ/ϵ (lower) .

Figure 6: 2D histograms of ratios χ_{χ} and ϵ_{χ} ratios vs depth.

3.4 Dependence of bias on actual ϵ

Figure 7 shows that the bias in χ and ϵ is inversely proportional to the actual ϵ measured by Chameleon. The dependence of bias in χ not as strong as for ϵ .

Figure 7: 2D histograms of ratios χ_{χ}/χ and ϵ_{χ}/ϵ ratios vs ϵ .

3.5 Normalized eps vs chi plots

Assuming that

$$\gamma = \frac{N^2 \chi}{2\epsilon < T_z > 2} \tag{2}$$

, plotting $[\chi/t_z^2]$ vs $[\epsilon/N\hat{2}]$ should follow a straight line with slope equal to 2γ . Chameleon data from EQ14 tend to fall near $\gamma=0.05$ (Figure 8).

Figure 8: EQ14: 2m binned chameleon $\epsilon/N\hat{2}$ vs χ/t_z^2 . Lines show different values of γ .

3.6 Averaging multiple profiles of ϵ

• Averaging over multiple profiles does not seem to have much of an effect on the bias in both χ and ϵ (Figures 9,10).

Figure 9: 2D Histograms of χ_{chi} vs χ (left) and ϵ_{χ} vs ϵ (right) for different numbers of profiles averaged.

Figure 10: (log10) Ratio of ϵ_{χ}/ϵ for different numbers of profiles averaged. Consecutive chunks of N profiles were averaged, and then (normalized) histogram of the ratios was plotted. Vertical lines and numbers to right are mean of $log_{10}[\epsilon_{\chi}/\epsilon]$ for each distribution.

3.7 Averaging over different-sized depth bins

• Averaging over large depth bins reduces the bias in both χ and ϵ (Figures 11,12).

Figure 11: 2D Histograms of χ_{chi} vs χ (left) and ϵ_{χ} vs ϵ (right) averaged over different size depth bins

Figure 12: Histogram of log10 of ratio ϵ_{χ}/ϵ for different amounts of vertical averaging. Vertical lines are mean of $log_{10}[\epsilon_{\chi}/\epsilon]$ for each distribution.

3.8 γ computed from averaged quantities

If we compute gamma from time-averaged N^2, T_z, χ, ϵ do we get $\gamma = 0.2$ (or a different gamma)? Estimates from the averaged data are larger (Figure 13) but still slightly less than 0.2.

Figure 13: Boxplots of $log_{10}[\gamma]$ for a set of profiles from EQ14. Left is for all 1m avg data. Right is for data from all profiles averaged in 10m bins. Horizontal dashed line indicates $\gamma = 0.2$.

3.9 Summary

- Both χ_{χ} and ϵ_{χ} appear to capture the depth and time structure of χ and ϵ well (Figures 1,2).
- Both χ_{χ} and ϵ_{χ} are biased low (Figures 4,5); the ϵ_{χ} bias is larger (more negative).
- The bias in χ is relatively constant with depth; the bias in ϵ is more negative at shallower depths (Figure 6).
- Figure 7 shows that the bias in χ and ϵ is inversely proportional to the actual ϵ measured by Chameleon. The dependence of bias in χ not as strong as for ϵ .
- Averaging over multiple profiles does not seem to have much of an effect on the bias in both χ and ϵ (Figures 9,10).
- Averaging over large depth bins reduces the bias in both χ and ϵ (Figures 11,12).