王舒悦

15021810623 | henri_w_91@hotmail.com | 上海 WeChat: fakeCFDer | https://orcid.org/0000-0001-8452-5602 30岁 | 男 | 汉族

工作经历

上汽集团人工智能实验室 - 算法工程师

2022年03月 - 至今

复旦大学 - 博士后

2020年02月 - 2022年02月

2022年优秀博士后出站

2020年上海市超级博士后

主持2项横向课题

涉及深度学习、流场图像识别、优化设计、非定常空气动力学、微尺度流动、多学科仿真

发表SCI分区文章13篇,国家发明专利10篇

中国航发商用航空发动机有限责任公司 - 工程师

2019年07月 - 2020年02月

C919和CR929航空发动机短舱的优化设计

完成高效气动优化设计平台搭建

专业技能

熟练掌握linux,python,pytorch深度学习与优化设计工具 熟练掌握ANSYS,Fluent,OpenFOAM等流体模拟软件

熟练掌握VAE, CNN, LSTM, RL等人工智能机器学习算法应用和方法原理

熟悉html5/css/javascript等语言

熟悉可压缩亚跨声速空气动力学和微尺度流体力学及其应用

熟悉小样本、大数据(爬虫、清洗)和无/半监督学习等科研或开发经验

熟悉UG NX, CATIA,等造型软件的几何建模及二次开发

熟练掌握英语(商务洽谈和技术交流)和法语(日常对话)

个人特点

- 1.兼有人工智能开发和制造业的工作/学术背景,熟悉该语境下如何结合算法落地与业界需求的现有方法和特点;
- 2.具备较多项目经验,熟悉人力物力的统筹协调的重要性和现有方式,有很强的团队协作观念;
- 3.重视big picture在具体事务中的作用,有较强创新意识。

教育经历

复旦大学 - 流体力学 博士

2014年09月 - 2019年06月

2019.06博士生国家奖学金

2019.05上海市优秀毕业生

2015.06硕士生国家奖学金

复旦大学 - 飞行器设计与工程 本科 力学与工程科学系

2010年09月 - 2014年08月

2010.09 新生奖学金一等奖

SCI代表作

人工智能+流体力学

Wang, S., Wang, C., Sun, G. (2020). The objective space and the formulation of design requirement in natural laminar flow optimization. Applied Sciences, 10(17), 5943.

Wang, S., Sun, G., Chen, W., et al. (2018). Database self-expansion based on artificial neural network: An approach

1 of 3

in aircraft design. Aerospace Science and Technology, 72, 77-83.

Sun, G., & **Wang**, **S.*** (2019). A review of the artificial neural network surrogate modeling in aerodynamic design. Proceedings of the Institution of Mechanical Engineers (Part G) 233(16), 5863-5872.

Zhang, Y., **Wang, S.**, Sun, G., & Mao, J. (2021). Aerodynamic surrogate model based on deep long short-term memory network. Proceedings of the Institution of Mechanical Engineers (Part G), 09544100211027023.

Wang, X., Wang, S., Tao, J., Sun, G., & Mao, J. (2018). A PCA-ANN-based inverse design model of stall lift robustness for high-lift device. Aerospace Science and Technology, 81, 272-283.

Sun, G., Sun, Y., & **Wang, S.*** (2015). Artificial neural network based inverse design: Airfoils and wings. Aerospace Science and Technology, 42, 415-428.

优化设计算法

Wang, S., Sun, G., & Li, C. (2019). Natural laminar flow optimization of transonic nacelle based on differential evolution algorithm. Journal of Aerospace Engineering, 32(4), 06019001.

Wang, S., Cao, C., Wang, C., Wang, L., & Sun, G. (2021). A nacelle inlet design approach with more three-dimensional geometric consideration. Aerospace Science and Technology, 112, 106624.

Wang, S., Wang, C., & Sun, G. (2021). Modifications of class-shape transformation driven by aerodynamic concerns over leading-edge region. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 0954410020984570.

Qin, S., **Wang, S.**, et al. (2021). Multi-Objective Optimization of Cascade Blade Profile Based on Reinforcement Learning. Applied Sciences, 11(1), 106.

Wang, C., **Wang, S.**, et al. (2021). Design and analysis of micro-nano scale nested-grooved surface structure for drag reduction based on 'Vortex-Driven Design'. European Journal of Mechanics-B/Fluids, 85, 335-350.

Wang, C., **Wang, S.**, et al. (2021). A boundary surrogate model for micro/nano grooved surface structure applied in turbulence flow control over airfoil. Chinese Journal of Aeronautics. 10.1016/j.cja.2021.04.026.

国家发明专利

王舒悦, 王聪, 王恺迪等. 基于目标空间的自然层流翼型的优化问题指标获取方法. CN202011572071.0. 2020 王舒悦, 王聪, 王恺迪等. 一种翼型前缘CST的垂直补偿修正方法及装置. 202110115011.4. 2021.

王舒悦, 曹晨, 王聪等. 考虑三维因素的短舱进气道设计几何参数化方法. 202110471565.8. 2021.

孙刚, 王舒悦等. 基于人工神经网络的飞机翼型优化设计方法, CN104778327. 2015.

孙刚, 王舒悦等. 基于人工神经网络的飞机翼型/机翼反设计方法, CN104834772. 2015.

孙刚, 王舒悦等. 基于人工神经网络的跨音速翼型自然层流延迟转捩设计方法, CN 2018104721680. 2018.

孙刚, 游波, 陶俊, 王舒悦. 一种基于微纳米涂层的飞机转捩延迟技术, CN106189631. 2019.

孙刚, 王聪, 王舒悦等. 一种翼型前缘CST的全局转换修正方法及装置. CN 202110109940.4. 2021.

孙刚, 王聪, 王舒悦等. 一种基于涡驱动设计的微纳米尺度嵌套沟槽表面减阻结构. CN202011334090.X.2020.

孙刚, 王聪, 王舒悦等. 基于微纳米沟槽壁面滑移效应的跨尺度数值模拟方法. CN202011334037.X. 2020.

项目经历

主持

燃气涡轮发动机总体性能多学科仿真和优化方法研究,2021.10~2022.10,中国航发商发

融合气动性能目标空间信息的智能气动设计变量的生成和应用,2020.02~2022.02,上海"超级博士后"计划

参研

大型客机涡致阻力机理研究(2014CB744800),国家重点基础研究发展计划973项目 自然层流翼型和短舱设计(AR909),上海市政府教委和经信委以及中国航发商发

考虑动力影响的民机发动机与飞机一体化设计技术 (GXB[2016]92), 工业与信息化部 上海固定翼长航时无人机关键技术研究论证(15DZ1160600), 上海市科委

基于深度学习的宽体客机超临界机翼优化设计技术,上海飞机设计院

层流短舱气动优化设计技术研究技术开发,中国航发商发

2 of 3

侧风条件下短舱和风扇非定常模拟仿真,中国航发商发 基于叶片尾迹预测的压气机多级匹配技术研究项目,中国航发商发

创业

应用大数据和深度学习进行B2B的客户估值,挖掘削减营销成本的潜力。主要涉及技术包括互联网爬虫、数据库SQL保存、数据标签整理和清洗、算法的运行和定性经验的转化等(2016.02—2016.08)万绪・上海

3 of 3 4/7/22, 12:58