Valued Fields

1 Setup

Let k be a field. A norm on k is a function $\|\cdot\|$: $k\to\mathbb{R}_+$ such that

- (non-degeneracy) $||x|| = 0 \iff x = 0$;
- (normalization) ||1|| = 1;
- (multiplicativity) $\forall x, y \in \mathbf{k}, ||xy|| = ||x|| ||y||$;
- (triangle inequality) $\forall x, y \in \mathbf{k}, ||x + y|| \le ||x|| + ||y||$.

A norm is called *non-Archimedean* if it satisfies the strong triangle inequality

$$||x + y|| \le \max\{||x||, ||y||\}.$$

A field **k** equipped with a non-Archimedean norm is called a *non-Archimedean field*. A norm induces a metric d(x,y) = ||x-y|| on **k**. With this metric, **k** is a metric space. We say **k** is *complete* if it is complete as a metric space.

2 Fundamental fact about ultra-metric space

Appendix

