Tarea 8 - Métodos numéricos Giovanni Gamaliel López Padilla

Índice

1.	Introducción		
	1.1.	Métodos iterativos	2
	1.2.	Ecuaciones diferenciales parciales	2
		1.2.1. Condición de frontera de Dirichlet	2
		1.2.2. Ecuación de transferencia de calor	2
2.	Mét	odos	2
	2.1.	Ecuación de calor	2
	2.2.	Método de Jacobi	3
	2.3.	Métodos Gauss-Seidel	3
3.	Res	ultados	3
	3.1.	Ecuación de calor	3
		3.1.1. Problema 1a	3
		3.1.2. Problema 1b	4
	3.2.	Método de Jacobi	5
		3.2.1. Matriz 3x3	5
		3.2.2. Matriz 125x125	5
	3.3.	Métodos Gauss-Seidel	5
		3.3.1. Matriz 3x3	5
		3.3.2. Matriz 125x125	5
4.	Con	aclusiones	5
5.	Con	npilación y ejecucción de los programas	5
	5.1.	Ecuación de calor	5
		5.1.1. Problema 1a	5
		5.1.2. Problema 1b	5
	5.2.	Método de Jacobi	5
	5.3	Mótodos Causa Soidol	5

1. Introducción

1.1. Métodos iterativos

1.2. Ecuaciones diferenciales parciales

Se denomina a las ecuaciones diferenciales parciales (EDP) a aquellas ecuaciones que involucran derivadas parciales de una función desconocida con dos o más variables independientes. La mayoría de problemas físicos están descritos por EDP de segundo orden. El método análitico para resolver este tipo de ecuaciones es el método de variables separables.

En el caso de el método numérico, uno de los métodos para la solución de EDP es elementos finitos, este considera que el continuo se divide en un número finito de partes que se denominan como elementos. Un parámetro del método es el número de puntos característicos llamados nodos. Estos nodos son los puntos de unión de cada elemento adyacente.¹

1.2.1. Condición de frontera de Dirichlet

Las condiciones de frontera de Dirichlet son cantidades definidas en los extremos de una ecuación diferencial para obtener la solución particular.

1.2.2. Ecuación de transferencia de calor

La EDP empleada para modelar la transferencia de calor es la siguiente:

$$k\nabla^2 u - \frac{\partial^2 u}{\partial t^2} = 0$$

para el caso estacionario en una dimensión se tiene:

$$k\frac{\partial^2 u}{\partial x^2} + Q = 0 \tag{1}$$

La ecuación 1 es una ecuación diferencial ordinaria con coeficientes constantes.

2. Métodos

2.1. Ecuación de calor

Aplicando el método de diferencias finitas a la ecuación 1 obtenemos la ecuación 2.

$$\frac{k(u_{i+1} - 2u_i + u_{i-1})}{\Delta x^2} + Q = 0 (2)$$

Para el caso de cinco nodos se obtiene el sistema de ecuaciones señalado en la ecuación 3.

$$\begin{cases}
 u_0 + -2u_1 + u_2 &= \frac{-Q\Delta x^2}{K} \\
 u_1 + -2u_2 + u_3 &= \frac{-Q\Delta x^2}{K} \\
 u_2 + -2u_3 + u_4 &= \frac{-Q\Delta x^2}{K}
\end{cases}$$
(3)

El sistema de ecuaciones 3 puede ser descrito la ecuación matricial 4.

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} \frac{Q\Delta x^2}{k} + u_0 \\ \frac{Q\Delta x^2}{k} \\ \frac{Q\Delta x^2}{k} + u_4 \end{pmatrix}$$
(4)

Donde u_0 y u_4 son las condiciones de frontera del problema. Si expandemos el problema a n nodos, obtendremos que para describir el sistema como una ecuación matricial debemos seguir los siguientes parámetros. Para obtener la matriz del sistema se tiene que:

$$A = \begin{cases} 2 & \text{para } i = j \\ -1 & \text{para } |i - j| = 1 \\ 0 & \text{en otro lado} \end{cases} \qquad B = \begin{cases} \frac{Q\Delta x^2}{k} + u_0 & \text{para } i = 1 \\ \frac{Q\Delta x^2}{k} + u_n & \text{para } i = n - 1 \\ \frac{Q\Delta x^2}{k} & \text{en otro lado} \end{cases}$$
(5)

donde $i, j \in \{1, 2, 3, ..., n-1\}$. El sistema de la ecuación 5 describe una matriz tridiagonal, por lo que se obtara por resolver el sistema usando la factorización por Cholesky.

El algoritmo que resuelve esta EDP es el siguiente:

```
// inputs: k, Q, L, u_0, u_n, n
// output: solutions
matrix, results = create_matrix_system(Q,k,l,n)
L = Cholesky(matrix)
solutions_y = solve_triangular_inferior(L, results)
solutions_x = solve_triangular_superior(LT, solutions_y)
```

La funciones Cholesky, solve_triangular_inferior y solve_triangular_superior fueron creadas en tareas anteriores. La función create_matrix_system aplica la ecuación 5 para obtener la ecuación matricial.

2.2. Método de Jacobi

2.3. Métodos Gauss-Seidel

3. Resultados

3.1. Ecuación de calor

Los programas y resultados del problema 1a y 1b se encuentran en la carpeta Problema_1. Cada inciso tiene su propia carpeta llamadas Problema_1a yProblema_1b.

3.1.1. Problema 1a

Resolver la ecuación de calor considerando $\{Q=3,\,K=5,\,u_0=10,\,u_n=20,\,n=4,\,L=1\}$, L es la longitud de la barra.

Para este caso se puede visualizar el sistema de ecuaciones, el cual es el siguiente:

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 10.037500 \\ 0.037500 \\ 20.037500 \end{pmatrix}$$
 (6)

La solución del sistema 6 es el siguiente:

$$\begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} 10 \\ 12.556250 \\ 15.075000 \\ 17.556250 \\ 20 \end{pmatrix}$$
 (7)

■ Resolver la ecuación de calor considerando $\{Q=3,\,K=5,\,u_0=10,\,u_n=20,\,n=100,\,L=1\}.$

El sistema de ecuaciones para el problema es el siguiente:

$$\begin{pmatrix}
2 & -1 & 0 & 0 & \cdots & 0 \\
-1 & 2 & -1 & 0 & \cdots & 0 \\
0 & -1 & 2 & -1 & \cdots & 0 \\
0 & 0 & -1 & 2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & -1 & 2
\end{pmatrix}
\begin{pmatrix}
u_0 \\ u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{98} \\ u_{99}
\end{pmatrix} = \begin{pmatrix}
10.000060 \\
0.000060 \\
0.000060 \\
0.000060 \\
0.000060 \\
0.000060 \\
0.000060 \\
0.000060
\end{pmatrix}$$
(8)

La solución del sistema de ecuaciones 8 se encuentra en el archivo Solution_100.txt.

3.1.2. Problema 1b

Graficar la variación de temperatura u del nodo central contra el número de elementos $n \in \{10, 30, 50, 70, 100\}$ que equivale a n + 1 nodos.

Para este problema se creo un ciclo que repetirá el proceso del problema 1a. En este ciclo, el valor de n cambiará para obtener la solución del problema. El archivo que contiene a el nodo central de cada iteración es results.csv. Se creo un programa en python, el cual lee el archivo de resultados y realiza la gráfica 1.

Figura 1: Resultado del nodo central para cada valor de n.

- 3.2. Método de Jacobi
- 3.2.1. Matriz 3x3
- 3.2.2. Matriz 125x125
- 3.3. Métodos Gauss-Seidel
- 3.3.1. Matriz 3x3
- 3.3.2. Matriz 125x125
- 4. Conclusiones
- 5. Compilación y ejecucción de los programas
- 5.1. Ecuación de calor
- 5.1.1. Problema 1a
- 5.1.2. Problema 1b
- 5.2. Método de Jacobi
- 5.3. Métodos Gauss-Seidel

Referencias

¹ M. Acosta, C. R.de Coss. Solución numérica de ecuaciones diferenciales unidimensionales por el método de diferencias finitas. *Ingeniería*, 2016.