ISEN 2017/2018

PARTIEL 12/03/2018

Consignes:

- Pour cette épreuve de 2 heures aucun document n'est autorisé et la calculatrice collège est tolérée.
- Les 3 exercices qu'il comporte sont indépendants.
- Expliquez vos raisonnements avec un maximum de clarté et avec le vocabulaire adapté.
- Une copie soignée est gage d'une bonne note!

Exercice 1.

Soit
$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in M_{3,1}(\mathbb{R})$$
, soient $A = \frac{1}{3} \begin{bmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{bmatrix}$ et $P = \frac{1}{3} \begin{bmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{bmatrix}$.

1. Calculer P^TP .

La matrice P est inversible ? Si oui **pourquoi** et donner son inverse P^{-1} .

2. Calculer $D = P^{-1}AP$.

La matrice D sera une matrice diagonale. À partir de cette relation, comment on peut retrouver A?

- 3. Calculer $X^T A X$.
- 4. On pose $X' = P^{-1}X = \begin{bmatrix} x'_1 \\ x'_2 \\ x'_3 \end{bmatrix}$.
 - (a) À partir de cette relation, comment on peut retrouver X?
 - (b) Calculer $(X')^T D X'$ et montrer que ce réel est strictement positif pour $X' \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.
 - (c) En déduire que pour tout $X \in M_{3,1}(\mathbb{R}), X \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, on a $X^TAX \geq 0$.

Suggestion : vous pouvez utiliser les relations déterminées aux questions précédentes.

Exercice 2.

- 1. Énoncer le Théorème de Fermat.
- 2. Est-ce que 91 est premier ? En utilisant le Théorème de Fermat avec a=2, justifier votre réponse.
- 3. On considère un entier naturel a et le premier nombre de Carmichaël n = 561.
 - (a) Calculer le reste de la division euclidienne de a^{560} par 3, par 11 et par 17.
 - (b) Montrer que pour tout a premier avec 561 on a : $a^{561} \equiv a$.
- 4. Écrire la réciproque du Théorème de Fermat. Est-elle vraie ? Expliquer votre réponse.
- 5. Donner une définition de "nombre de Carmichaël".

Exercice 3.

On considère la fraction rationnelle $F = \frac{P}{Q} = \frac{X^4}{X^4 - 1}$.

En justifiant et en expliquant vos raisonnements et vos résultats déterminer :

- 1. les pôles de F sur $\mathbb R$ et sur $\mathbb C$ avec leur multiplicité ;
- 2. la factorisation de Q sur sur $\mathbb R$ et sur $\mathbb C$;
- 3. la décomposition en éléments simples de F sur $\mathbb R$ et sur $\mathbb C.$