АРХИТЕКТУРА Х86

I-8086

Регистровая структура универсального МП

Программная модель микропроцессора представляет собой программно-доступную часть его внутренней архитектуры.

- основные функциональные;
- процессора с плавающей запятой;
- системные;
- отладки и тестирования.

Структура регистров процессора

Регистры общего назначения, базовые и индексные регистры

Структура регистров процессора

Сегментные регистры Биты 15	Ö.
cs	Регистр сегмента команд
DS	Регистр сегмента данных
ES	Регистр дополнительного сегмента данных
FS	Регистр дополнительного сегмента данных
GS	Регистр дополнительного сегмента данных
SS	Регистр сегмента стека

Регистры процессора с плавающей запятой

Регистры управления

Регистры системных адресов и системных сегментов

Регистры отладки и тестирования

Схема формирования физического адреса в защищенном режиме

Форматы дескрипторов для микропроцессоров 80286 и 80386 – Pentium 4

Пример вычисления границ сегмента

```
Пример 1 G = 0 Limit = 001FFH Base = Start = 10000000H End = Base + Limit = 10000000H + 001FFH = 100001FFH
```

Пример 2
G = 1
Limit = 001FFH
Base = Start = 10000000H
End = Base + Limit = 10000000H + 001FFxxxH = 101FFFFFH

Байт прав доступа

Содержимое сегментного регистра в защищенном режиме

Использование регистра DS при выборе дескриптора из глобальной таблицы дескрипторов

Программно-недоступные регистры микропроцессоров 80286 – Pentium 4

Cen	иентные регистры	Кэш дескрипторов		
cs		Базовый адрес	Предел	Доступ
DS				
ES				
SS				
FS				
GS [
r				1
TR		Базовый адрес	Предел	Доступ
LDTR				
LDTR				
LDTR [Адреса таблиц ,	дескрипторов		
LDTR [Адреса таблиц , Базовый адрес	дескрипторов Предел	Программно-	недоступно

Получение дескриптора из LDT

M∏ i80386

- 32-разрядная архитектура;
- поддержка виртуальной памяти;
- более высокая скорость и разрядность;
- управление памятью реализовано на аппаратном уровне;
- конвейерная адресация.

Регистры отладки и тестирования

31 16 15	0							
Линейный адрес точки останова 0								
Линейный адрес точки останова 1								
Линейный адрес точки останова 2								
Линейный адрес точки останова 3								
Зарезервировано								
Зарезервировано								
0 B B B D O O O O O O O B B B B B T S D O O O O O O O O O O O O O O O O O O								
LEN R W LEN R W LEN R W LEN R W 0 0 0 D	0 G L G L G L G L DR7							
31. 16 15 0								
31 12 11	0							
Линейный адрес V D D #	U W W 0 0 0 0 C TR6							
Физический адрес 0 0 0 0 0 0 0 <mark>P</mark> REP 0								

Структура МП і80486

Структура памяти

Структура внутренней кэш-памяти

Управляющий регистр CR0 и тестовые регистры

Структурные отличия микропроцессоров 80486, Pentium Pro, Pentium II, Pentium III и Pentium 4

Особенности процессоров Pentium

- близкая к суперскалярной архитектура;
- раздельные типы кэш-памяти команд и данных;
- предсказание переходов;
- высокопроизводительные операции с плавающей точкой;
- усовершенствованная 64-разрядная шина данных;
- средства обеспечения целостности данных;
- SL-технология со средствами управления энергопотреблением;
- поддержка многопроцессорности;
- мониторинг производительности;
- поддержка различных размеров страницы памяти.

Структура микропроцессора Pentium

Организация банков памяти

Отличия Pentium MMX

- Поддержка выполнения мультимедийного набора команд;
- Удвоенные объемы типов кэш-памяти данных и команд (по 16 Кбайт каждый);
- Улучшенная логика предсказания переходов;
- Расширенная конвейеризация;
- Более глубокая буферизация записи.

Структурная схема Pentium MMX

Выполнение команд в Pentium и в Pentium MMX

Выполнение умножения с накоплением

Отличия Pentium Pro

- Ядро состоит из трех конвейеров.
- Введена кэш-память второго уровня (L2) объемом 256 Кбайт.
- Оптимизирована обработка 32-разрядных данных.
- Адресное пространство увеличено до 64 Гбайт; ширина шины адреса 36 бит.
- Разнесенная архитектура.
- Динамическое выполнение команд.
- Двойная независимая шина.

Структура микропроцессора Pentium Pro

Особенности процессоров Pentium II

- Динамическое исполнение кода;
- Двойная независимая шина;
- Содержит блок ММХ;
- Выполнен в виде печатной платы, на которой дополнительно установлена кэш-память второго уровня L2 (512 Кбайт).

Особенности процессоров Pentium III

- Тактовая частота от 450 МГц до 1 ГГц;
- При изготовлении используется 0,25 мкм технологический процесс;
- В систему команд, наряду с командами ММХ-расширения, включено 70 новых SIMD-инструкций, улучшающих работу с приложениями трехмерной графики, потокового аудио, видео и распознавания речи;
- Применена архитектура двойной независимой шины;
- Содержит неблокируемую кэш-память первого уровня емкостью 32 Кбайт и унифицированную неблокируемую кэш-память второго уровня емкостью 512 Кбайт;
- Поддерживает кэширование памяти с объемом адресного пространства до 4 Гбайт.

Категории новых команд процессора Pentium III

- SIMD-команды обработки данных в формате с плавающей точкой одинарной точности (SPFP-команды);
- Дополнительные SIMD-команды для обработки целочисленных данных;
- Команды управления кэшированием;
- Команды сохранения и восстановления состояния процессора (MXCSR регистр состояния и управления).

Формат представления SPFP-данных

Особенности процессоров Pentium 4

- Работа с системной шиной, имеющей эффективную частоту 400 МГц;
- Удвоение частоты работы блоков АЛУ микропроцессора;
- Значительное увеличение длины исполнительного конвейера;
- Добавлены 144 новые команды поточной SIMD-обработки SSE-2;
- Размещение кэш-памяти второго уровня на кристалле.

Структура микропроцессора Pentium 4

