[Brief Review*]

Towards a Reconstruction of General Bulk Metrics[1]

N. Engelhardt and G.T. Horowitz

A new approach for the bulk reconstruction, the method using the light-cone cuts, is introduced. The past (future) light-cone cut of the bulk point p is defined as

$$C^{-}(p) = \partial J^{-}(p) \cap \partial M \ (C^{+}(p) = \partial J^{+}(p) \cap \partial M), \tag{1}$$

where M is the spacetime assumed to be asymptotically AdS_n with some natural conditions for mathematical reasons. From now on, we focus on past cuts, but the same discussion can be applied to future cuts.

First, using the "bulk-point singularity" [2], we can get the past cuts of the points in $J^+(\partial M) \cap J^-(\partial M)$. The divergence of a boundary to boundary correlator, whose fields are massless, is caused by that the interaction vertex is a bulk point which is null-related to all points in the correlator, under certain conditions. The divergence of this class is called bulk-point singularity. Let us consider n boundary points x_1, \dots, x_n which are spacelike separated each other, and two boundary points z_1 and z_2 in the past of x_i . Then moving z_1 and z_2 while keeping

$$\langle \mathcal{O}(z_1)\mathcal{O}(z_2)\mathcal{O}(x_1)\cdots\mathcal{O}(x_n)\rangle \to \infty$$
 (2)

for fixed x_i traces out the past cut of the unique bulk point which is null-separated from x_i . Since we do not know about the bulk geometry, we cannot know whose past cut it is. In principle, however, the past cut can be labeled by some n parameters related to x_i . Let us set the parameters $\lambda = (\lambda^1, \dots, \lambda^n)$ and denote the cut by C_{λ}^- . By repeating this step, all past cuts related one-to-one to points in $J^+(\partial M) \cap J^-(\partial M)$ can be collected, then we define the vector space of λ 's, $\mathcal{M}^- := \{\lambda\}$.

Let $\lambda_1, \lambda_2, \cdots$ be vectors on \mathcal{M}^- , meaning that $C_{\lambda_1}^-, C_{\lambda_2}^- \cdots$ are the past cuts. In the appendix, it is shown that, if $C_{\lambda_1}^- = C^-(p)$ and $C_{\lambda_2}^- = C^-(q)$ are tangent each other precisely at one point, then p and q are null related. Therefore, taking a boundary point $x \in C_{\lambda_1}^-$ and collecting the past cuts tangent to $C_{\lambda_1}^-$ at x, the unique null geodesic from p to x via q is obtained. Then we can identify this null geodesic to the one connecting λ_1 and other λ 's corresponding to other cuts tangent to $C_{\lambda_1}^-$ at x, because of the existence of the one-to-one map from $J^+(\partial M) \cap J^-(\partial M)$ to \mathcal{M}^- . Repeating this process for points on $C_{\lambda_1}^-$, we get null geodesics through λ_1 , and they form light-cone of λ_1 in \mathcal{M}^- .

Once the causal structure is introduced in \mathcal{M}^- , the conformal metric (the metric up to conformal factors) can be determined. The null generators at $\lambda \in \mathcal{M}^-$ are obtained by looking for other past cuts tangent to C_{λ}^- . Let $\sigma = (\sigma^1, \dots, \sigma^{n-2})$ be the parameter describing the points on C_{λ}^- as $C_{\lambda}^-(\sigma) \in \partial M$. The condition which $C_{\lambda_2}^-$ is tangent to $C_{\lambda_1}^-$ is as follows:

$$\exists \sigma_1, \ \exists \sigma_2, \quad C_{\lambda_1}^-(\sigma_1) = C_{\lambda_2}^-(\sigma_2) \quad \text{and} \quad \nabla_{\sigma} C_{\lambda_1}^-(\sigma) \Big|_{\sigma = \sigma_1} = \nabla_{\sigma} C_{\lambda_2}^-(\sigma) \Big|_{\sigma = \sigma_2}. \tag{3}$$

^{*} The reviewer: Daichi Takeda (takedai.gauge@gmail.com)

A null generator N at λ satisfies the above condition for $\lambda_1 = \lambda$ and $\lambda_2 = \lambda + \varepsilon N$, where ε is any infinitesimal real variable. By solving the conditions, we can find out n(n+1)/2 generators at λ . Imposing the condition that the n(n+1)/2 null generators are null at λ determines the metric at λ up to conformal factors. Since \mathcal{M}^- can be regarded as the copy of $J^+(\partial M) \cap J^-(\partial M)$, the reconstruction of the bulk metric has been completed now.

References

- [1] N. Engelhardt and G.T. Horowitz, Towards a Reconstruction of General Bulk Metrics, Class. Quant. Grav. 34 (2017) 015004 [1605.01070].
- [2] J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, *Looking for a bulk point*, *JHEP* **01** (2017) 013 [1509.03612].