Aula 10 – Corte de Arestas

Notas de Aula de Teoria dos Grafos

Prof^{a.}: Patrícia D. L. Machado

UFCG – Unidade Acadêmica de Sistemas e Computação

Sumário

Corte de Aresta	1
Exercícios sobre Corte de Arestas	3
Aresta de Corte	
Exercícios Propostos	
Referências	

Nesta aula, estudaremos o conceito de corte de arestas em grafos.

Corte de Aresta

Na resolução de problemas usando grafos, em muitas situações, é necessário determinar o conjunto de arestas que conecta um conjunto de vértices aos outros vértices do grafo. Como exemplo, temos problemas de alcançabilidade e definição de rotas. Este conjunto de arestas é chamado de **corte de arestas**. Corte de arestas não é uma operação de fragmentação do grafo como o termo sugere tal como a decomposição e a cobertura. O termo "corte" é na verdade sinônimo de "conjunto". Abaixo temos uma ilustração deste conjunto.

Sejam X e Y conjuntos de vértices de um grafo G, onde $Y = V \setminus X$ (Y é o complemento de X em V), onde V é o conjunto de vértices do grafo. O conjunto de arestas $\partial(X)$ – **corte de arestas** (edge cut) de G associado a X – é definido como o conjunto de todas as arestas de G com um terminal em X e um terminal em Y. Note que $\partial(X) = \partial(Y)$, visto que estamos observando

exatamente o mesmo conjunto de arestas já que Y é o complemento de X. Observe também que $\partial(V) = \emptyset$, uma vez que $V \setminus V$ é \emptyset .

Como exemplo, considere o grafo abaixo:

- Se X = {1,2}, Y = {3,4}, o corte de arestas é definido pelas arestas ∂(X) = {13, 23} que são as únicas arestas que possuem um terminal em X e outro em Y. Podemos dizer que estas arestas conectam os vértices de X aos vértices de Y;
- Se $X = \{3,4\}$ e $Y = \{1,2\}$, obtemos o mesmo corte. Como Y é o complemento de X, tanto faz calcular o corte para X quando para Y;
- Se $X = \{1,2,3,4\}$, então $\partial(X) = \emptyset$, visto que $Y = \emptyset$;
- Se $X = \{2,3\}$ e $Y = \{1,4\}$, $\partial(X) = \{12,13,34\}$.

O corte de arestas pode ser usado para expressar conceitos que estudamos antes.

Um grafo G é **bipartido** se $\partial(X) = E(G)$, onde X é uma das partições que podem ser usadas para comprovar a bipartição do grafo. Considere o grafo bipartido abaixo e as partições $X = \{1,2,3\}$ e $Y = \{4,5,6,7\}$. Tanto $\partial(X) = E(G)$, quanto $\partial(Y) = E(G)$.

Um grafo G é **conectado** se $\partial(X) \neq \emptyset$, para todo $X \subset V(G)$, onde $X \neq \emptyset$. Quando um grafo é desconectado, é possível encontrar um conjunto de vértices X para o qual $\partial(X) = \emptyset$. Para o grafo abaixo, considere $X = \{4\}$.

Por fim, dizemos que um corte $\partial(X)$ separa um vértice \boldsymbol{a} de um vértice \boldsymbol{b} se \boldsymbol{a} pertence a X e \boldsymbol{b} não pertence a X. Em outras palavras, $\partial(X)$ é um conjunto de todas as arestas que conectam os vértices de X aos vértices de X, sendo que X0 e um grafo desconectado.

Exercícios sobre Corte de Arestas

Seja G = (V(G), E(G)), onde $V(G) = \{1,2,3,4\}$ e $E(G) = \{12,13,23,24,34\}$.

Se
$$X = \{1\}$$
; $Y = \{2,3,4\}$, então $\partial(X) = \{12, 13, 14\}$

Se
$$X = \{2,3\}; Y = \{1,4\}, ent\tilde{a}o \partial(X) = \{12,13,34\}$$

Observe que o conjunto de arestas $\{23, 21, 13\}$ não representa um corte de arestas, visto que não conseguimos definir as partições X e Y.

Vamos considerar agora o grafo grid abaixo e o conjunto de arestas { ae, ef, fj, jk, cd, dh} (em destaque):

Este conjunto de arestas representa um corte de arestas obtido através da seguinte partição: $X = \{e, j, d, i\}$ e $Y = \{a, f, k, h, c, l, b, g\}$.

Neste grafo grid, podemos encontrar vários cortes de tamanho 6 (com 6 arestas). Considere, $X = \{a, e, i, d, h, l\}$, $X = \{a, d, i\}$, $X = \{c, g, k\}$, dentre outros. O corte associado ao conjunto $X = \{a, i, f, c, k, h\}$, tem como resultado todas as arestas do grafo. Observe que este grafo é bipartido.

Seja X um conjunto de vértices de um grafo G. Vamos demonstrar que $(V(G), \partial(X))$ é um subgrafo gerador bipartido de G.

Por definição $\partial(X)$ define todas as arestas em G que relacionam vértices de X aos demais vértices do grafo apenas. Então, no grafo (V(G), $\partial(X)$), podemos encontrar duas partições de vértices X e Y (o complemento de X) tal que os vértices de X e Y não são adjacentes entre si.

Por fim, podemos afirmar que o grafo $(V(G), \partial(X))$ é um subgrafo gerador de G, pois possui os mesmos vértices e um subconjunto de arestas de G.

Como exemplo, considere o grafo K_5 abaixo. Seja $X = \{a,d\}$.

O grafo (V(G), ∂_G ({a,d})), abaixo ilustrado, é um grafo bipartido, onde X = {a,d} e Y = {c,e,b}.

Aresta de Corte

Uma aresta de corte (cut edge) ou ponte (bridge) ou istmo (isthmus) em um grafo é qualquer aresta a tal que $\{a\}$ é o resultado de um corte de arestas.

П

Considere o exemplo abaixo. Observe que $\partial(\{a,b,h\}) = \{be\}$. Neste caso, be é uma aresta de corte. Outro exemplo de aresta de corte é gd, visto que $\partial(\{g\}) = \{gd\}$.

Observem que a aresta de corte é a única ligação entre dois grupos de vértices de um grafo: esta aresta é a única aresta resultante em um corte de arestas. Se esta aresta for removida, o grafo será desconectado. Assim, esta aresta nunca faz parte de um ciclo.

Proposição. Uma aresta e de um grafo G é uma aresta de corte se e somente se e não pertence a um ciclo de G.

Como consequência desta proposição, note que, se *e* é uma aresta de corte, esta aresta é o único caminho entre seus vértices terminais.

Exercícios Propostos

1. Encontre o menor corte de arestas que puder no grafo de Petersen (abaixo). Encontre o maior corte de arestas que puder neste mesmo grafo.

- 2. Mostre que em todo grafo simples existe um corte de arestas que contém pelo menos a metade das arestas do grafo.
- 3. Suponha que todos os vértices de um grafo G têm grau par. Mostre que G não tem arestas de corte.
- 4. Mostre que um grafo G é bipartido se e somente se seu conjunto de arestas é um corte de arestas de G.
- 5. Seja P um caminho em um grafo G. Seja X um conjunto de vértices que contém um e apenas um dos extremos de P. Mostre que $E(P) \cap \partial(X) <> \emptyset$ (onde <> representa a negação da igualdade).

Referências

- J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008,2010.
 - Seção 2.1 (Edge and Vertex Deletion; Acyclic Graphs)
 - Seção 2.2
 - Seção 2.3
 - Seção 2.4