

Факультет ПИиКТ

Лабораторная работа №2 по Информатике Синтез помехоустойчивого кода Вариант 11

Выполнил:

Давааням Баясгалан

группа Р3111

Преподаватель:

Малышева Татьяна Алексеевна

г. Санкт-Петербург 2021 год

Оглавление

Текст задания	
Вариант	
Выполнение задания	
Программа на языке С++	
Вывод	
Список литературы	

Текст задания

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений, имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений, имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Написать программу на любом языке программирования, которая на вход из командной строки получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение и указывает бит с ошибкой при его наличии.

Вариант

Вариант		1	1		2
11	54	46	68	90	12

ALT	1	2	3	4	5	6	7
7121	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i_2	i ₃	i 4
54	1	1	0	1	0	1	1
46	0	0	1	1	0	1	1
68	1	1	0	1	1	0	0
90	0	1	1	0	1	1	0

ALT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1121	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	\mathbf{r}_3	i_2	i_3	i_4	r_4	i ₅	i_6	\mathbf{i}_7	i_8	i ₉	i ₁₀	i ₁₁
12	0	1	1	1	0	0	0	1	1	0	0	0	0	0	0

Выполнение задания

Схема декодирования классического кода Хэмминга (7;4) на Рисунок 1

Рисунок 1 - декодирования классического кода Хэмминга (7,4)

Таблица кода Хэмминга

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i ₂	i ₃	i 4	S
1	X		X		X		X	S_1
2		X	X			X	X	S_2
4				X	X	X	X	S_3

$$r_1 = i_1 \oplus i_2 \oplus i_4$$
 $s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4$

$$\mathbf{r}_2 = \mathbf{i}_1 \oplus \mathbf{i}_3 \oplus \mathbf{i}_4$$
 $\mathbf{s}_2 = \mathbf{r}_2 \oplus \mathbf{i}_1 \oplus \mathbf{i}_3 \oplus \mathbf{i}_4$

$$\mathbf{r}_3 = \mathbf{i}_2 \oplus \mathbf{i}_3 \oplus \mathbf{i}_4$$
 $\mathbf{s}_3 = \mathbf{r}_3 \oplus \mathbf{i}_2 \oplus \mathbf{i}_3 \oplus \mathbf{i}_4$

Синдром S (s1,s2,s3)	000	001	010	011	100	101	110	111
Конфигурация ошибок (позиция в сообщении)	НЕТ	0001000	0100000	0000010	1000000	0000100	0010000	0000001
Ошибка в символе	НЕТ	\mathbf{r}_3	\mathbf{r}_2	i ₃	\mathbf{r}_1	\mathbf{i}_2	\mathbf{i}_1	\mathbf{i}_4

Задание 1.

	1	2	3	4	5	6	7	
54	1	1	0	1	0	1	1	
2 ^x	\mathbf{r}_1	r_2	i_1	r ₃	i_2	i ₃	i ₄	S
1	X		X		X		X	S_1
2		X	X			X	X	S_2
4				X	X	X	X	S_3

$$S_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$$

$$S_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$$

$$\mathbf{S}_3 = \mathbf{r}_3 \oplus \mathbf{i}_2 \oplus \mathbf{i}_3 \oplus \mathbf{i}_4 = \mathbf{1} \oplus \mathbf{0} \oplus \mathbf{1} \oplus \mathbf{1} = \mathbf{1}$$

Ошибка в бите $\dot{\mathbf{i}}_3$ (011) 11010 $\mathbf{1}$ 1 => 11010 $\mathbf{0}$ 1

Правильное сообщение: 1101001

	1	2	3	4	5	6	7	
46	0	0	1	1	0	1	1	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i_2	i ₃	i 4	S
1	X		X		X		X	S_1
2		X	X			X	X	S_2
4				X	X	X	X	S_3

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = \mathbf{0} \oplus \mathbf{1} \oplus \mathbf{0} \oplus \mathbf{1} = \mathbf{0}$$

$$\mathbf{S}_2 = \mathbf{r}_2 \oplus \mathbf{i}_1 \oplus \mathbf{i}_3 \oplus \mathbf{i}_4 = \mathbf{0} \oplus \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1} = \mathbf{1}$$

$$S_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$$

Ошибка в бите \mathbf{i}_3 (011) 00110 $\mathbf{1}$ 1 => 00110 $\mathbf{0}$ 1

Правильное сообщение: 0011001

	1	2	3	4	5	6	7	
68	1	1	0	1	1	0	0	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	\mathbf{i}_2	i ₃	i 4	S
1	X		X		X		X	S_1
2		X	X			X	X	S_2
4				X	X	X	X	S_3

$$S_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

$$S_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

$$S_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$$

Ошибка в бите \mathbf{r}_2 (010) 1101100 => 1001100

Правильное сообщение: 1001100

	1	2	3	4	5	6	7	
90	0	1	1	0	1	1	0	
2 ^x	\mathbf{r}_1	r ₂	i_1	r ₃	i_2	i ₃	i 4	S
1	X		X		X		X	S_1
2		X	X			X	X	S_2
4				X	X	X	X	S_3

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = \mathbf{0} \oplus \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{0} = \mathbf{0}$$

$$S_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$$

$$\mathbf{S}_3 = \mathbf{r}_3 \, \oplus \, \mathbf{i}_2 \, \oplus \, \mathbf{i}_3 \, \oplus \, \mathbf{i}_4 = \mathbf{0} \, \oplus \, \mathbf{1} \, \oplus \, \mathbf{1} \, \oplus \, \mathbf{0} = \mathbf{0}$$

Ошибка в бите \mathbf{r}_2 (010) 0110110 => 0010110

Правильное сообщение: 0010110

Схема декодирования классического кода Хэмминга (15;11) на Рисунок 2

Рисунок 2

Задание 2.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
12	0	1	1	1	0	0	0	1	1	0	0	0	0	0	0	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i_2	i ₃	i ₄	r_4	i ₅	i_6	i ₇	i_8	i ₉	i ₁₀	i ₁₁	S
1	X		X		X		X		X		X		X		X	S1
2		X	X			X	X			X	X			X	X	S2
4				X	X	X	X					X	X	X	X	S 3
8								X	X	X	X	X	X	X	X	S4

$$\begin{split} \mathbf{S}_1 &= \mathbf{r}_1 \, \oplus \, \mathbf{i}_1 \, \oplus \, \mathbf{i}_2 \, \oplus \, \mathbf{i}_4 \, \oplus \, \mathbf{i}_5 \, \oplus \, \mathbf{i}_7 \, \oplus \, \mathbf{i}_9 \, \oplus \, \mathbf{i}_{11} = \mathbf{0} \, \oplus \, \mathbf{1} \, \oplus \, \mathbf{0} \, \oplus \, \mathbf{0} \, \oplus \, \mathbf{1} \, \oplus \, \mathbf{0} \, \oplus \, \mathbf{0$$

Правильное сообщение: 011100001000000

Задание 3.

$$i = (54 + 46 + 68 + 90 + 12) * 4 = 1080$$

Минимальное число проверочных разрядов:

$$2^r \! \geq r+i+1$$

$$2^{10} \ge 10 + 1080 + 1 \Longrightarrow 1024 \ge 1091$$

При r = 10, не подходит

$$2^{11} \ge 11 + 1080 + 1 \Longrightarrow 2048 \ge 1092$$

$$r = 11$$

Коэффицент избыточности:

$$k = \frac{r}{i+r} = \frac{11}{1091} \approx 0.01008$$

Программа на языке С++

```
hamming_code.cpp
       #include <bits/stdc++.h>
       using namespace std;
 4 int check_err(int s1, int s2, int s3){

return s3*pow(2,2)+s2*pow(2,1)+s1*pow(2,0);
 7 = main(){
            string bits;
             int s1,s2,s3,s;
             bool err_bit, entered_bits;
11 📮
                  entered_bits = true;
cout << "Enter 7 bits: ";</pre>
                  getline(cin,bits);
 15 📮
                  if(bits.length() == 7){
16 <del>-</del>
17 <del>-</del>
                       for(int i=0; i<7; i++){
   if(bits[i] < 48 || bits[i] > 49){
                                  entered_bits = false;
                  else entered_bits = false;
                  if(!entered_bits) cout << "Please enter correct bits!!!"<< endl;</pre>
            while(!entered_bits);
s1 = (bits[0]^bits[2]^bits[4]^bits[6]);
s2 = (bits[1]^bits[2]^bits[5]^bits[6]);
s3 = (bits[3]^bits[4]^bits[5]^bits[6]);
             s = check_err(s1, s2, s3);
 30 📥
             if(s!=0){
                  cout << "Error in " << s << " bit" << endl;</pre>
                  err_bit = !(bool)bits[s-1];
                  bits[s-1] = (int)err_bit+48;
cout << "Corrected information bits: " << bits[2] << bits[4] << bits[5] << bits[6];</pre>
 36 📥
```

Пример №1:

■ D:\ITMO\1st Semester\Computer Science (Basics)\lab2\hamming_code.exe

```
Enter 7 bits: 1101011
Error in 6 bit
Corrected information bits: 0001
------
Process exited after 2.929 seconds with return value 0
Press any key to continue . . .
```

Пример №2:

Вывод

При выполнении второй лабораторной работы я научился, что такое код Хэмминга и декодирование кода Хэмминга (7,4); (15,11). Я познакомился с помехоустойчивыми кодами.

Список литературы

https://en.wikipedia.org/wiki/Hamming(7,4)

https://habr.com/ru/post/140611/