Due: 12 September 2016

Homework #3: Proof

Dario A Lencina-Talarico

INSTRUCTIONS: before completing your homework, make sure you have considered the following:

- You are allowed to use only primitive inference rules.
- Remember to include vertical lines to represent the scope any assumptions.
- Remember that all assumptions in your proofs must be discharged.
- Double-check that your line references are correct when applying inference rules.

I. Proof: Propositional Logic

In this section use only the primitive inference rules of propositional calculus.

1. Provide derivations for each of the following, using natural deduction:

a.
$$(p \wedge q) \wedge r \vdash p \wedge (q \wedge r)$$

b.
$$p \wedge q, p \Rightarrow s, q \Rightarrow t \vdash s \wedge t$$

c.
$$q \Rightarrow \neg p, p \land q \vdash r$$

d.
$$p \land q \vdash p \Rightarrow q$$

1.
$$p \wedge q$$
 premise

2.
$$p \wedge -elim, 1$$

3.
$$q \wedge -elim, 1$$

4.
$$p \Rightarrow q \Rightarrow -intro,2,3$$

e.
$$\neg \neg q \vdash q \lor r$$

1.
$$\neg \neg q$$
 premise

2.
$$\neg q$$
 $\neg - elim, 1$

3.
$$q - elim, 2$$

4.
$$q \vee r \vee -intro, 3$$

f.
$$p \Rightarrow (q \land r), \neg p \Rightarrow r, p \lor \neg p \vdash r$$

II. Proof: Predicate Logic

In this section use only the primitive inference rules of predicate calculus.

2. Show using natural deduction:

```
a. \forall x: T \bullet P(x) \land Q(x) \dashv \vdash (\forall x: T \bullet P(x)) \land (\forall y: T \bullet Q(y))
b. \exists x: T \bullet P(x) \lor Q(x) \dashv \vdash (\exists x: T \bullet P(x)) \lor (\exists x: T \bullet Q(x))
```

(Note: $p \dashv \vdash q$ is a shorthand for " $p \vdash q$ and $q \vdash p$." That is, for $p \dashv \vdash q$ you need to show two separate derivations: one for $p \vdash q$ and another for $q \vdash p$.)