Análise

— Folha de exercícios 9 —

2018'19 —

- 1. Calcule o valor do integral $\iiint_{\mathcal{R}} f(x,y,z) \, d(x,y,z)$, onde:
 - (a) f(x, y, z) = x + y + z e $\mathcal{R} = [1, 2] \times [0, 1] \times [-2, 1]$;
 - (b) $f(x, y, z) = ze^{x+y}$ e $\mathcal{R} = [0, 1]^3$;
 - (c) $f(x, y, z) = xy \in \mathcal{R} = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, z \ge 0, x + y + z \le 1\};$
 - (d) $f(x,y,z) = x \in \mathcal{R} = \{(x,y,z) \in \mathbb{R}^3 : x \ge 0, x^2 + y^2 \le z \le 3\}.$
- 2. Use integrais triplos para expressar o volume do sólido definido pela superfície $z=2-x^2-y^2$ e pelo plano XOY.
- 3. Determine as coordenadas cilíndricas dos pontos cuja representação cartesiana é

$$A = (1, \sqrt{3}, -1),$$
 $B = (2, 0, 0),$ $C = (0, -5, 3)$ e $D = (3, -3, 2).$

- 4. Usando coordenadas cilíndricas, calcule $\iiint_{\mathcal{R}} f(x,y,z) \, d(x,y,z)$, para
 - (a) f(x,y,z) = x e $\mathcal{R} = \{(x,y,z) \in \mathbb{R}^3 : 0 \le z \le 3, x^2 + y^2 \le z\};$
 - (b) $f(x,y,z) = ze^{x^2+y^2}$ e $\mathcal{R} = \{(x,y,z) \in \mathbb{R}^3 : 2 \le z \le 3, \ x^2+y^2 \le 4\};$
 - (c) $f(x,y,z)=z\sqrt{x^2+y^2}$ e $\mathcal R$ a região do primeiro octante limitada pelas superfícies cilíndricas de equações $x^2+y^2=1$ e $x^2+y^2=9$ e pelos planos de equações z=0, z=1, x=0 e x=y;
 - (d) f(x,y,z) = x+y e $\mathcal{R} = \left\{ (x,y,z) \in \mathbb{R}^3 : x \geq 0, y \geq 0, 0 \leq z \leq 4 (x^2+y^2) \right\}$
- 5. Seja $V=\left\{(x,y,z)\in\mathbb{R}^3:z^2\leq x^2+y^2\leq 9\right\}$. Calcule o volume de V, usando coordenadas cilíndricas.
- 6. Determine as coordenadas esféricas dos pontos cuja representação cartesiana é

$$A = (1, -1, 0),$$
 $B = (1, 1, \sqrt{2}),$ $C = (-1, -1, \sqrt{2})$ e $D = (0, 1, -1).$

- 7. Calcule o volume da esfera de centro na origem e raio 2.
- 8. Usando coordenadas esféricas, calcule o valor do integral

$$\iiint_{\mathcal{S}} \frac{1}{x^2 + y^2 + z^2} d(x, y, z),$$

onde
$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + (z - 2)^2 \le 4 \}.$$

- 9. Calcule o volume do sólido que é:
 - (a) definido pelas condições $3z \ge x^2 + y^2$ e $x^2 + y^2 + z^2 \le 4$;
 - (b) definido pelas condições $x^2 + y^2 \le z \le \sqrt{x^2 + y^2}$;
 - (c) limitado pela superfície esférica de equação $\rho=1$ e pela superfície cónica de equação $\varphi=\frac{\pi}{4}$
- 10. Calcule o volume do sólido S, onde S é descrito por

(a)
$$S = \{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le z \le \sqrt{16 - x^2 - y^2} \};$$

(b)
$$S = \left\{ (x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le z \le 2 + \sqrt{4 - x^2 - y^2} \right\}.$$