4.3 Exercise 2 – pH calculations

- 1. Calculate the pH of the following solutions:
- a) 0.001 moldm⁻³ HCl
- b) 0.002 moldm⁻³ KOH
- c) 0.10 moldm⁻³ C₆H₅COOH (K_a of benzoic acid = 6.3 x 10⁻⁵ moldm⁻³)
 d) 0.30 moldm⁻³ NH₄Br (K_a of NH₄⁺ = 5.6 x 10⁻¹⁰ moldm⁻³)
 e) 0.05 moldm⁻³ NaHSO₄ (K_a of HSO₄⁻ = 1.0 x 10⁻² moldm⁻³)

- f) 0.02 moldm⁻³ Ba(OH)₂.
- 2. Calculate the molarity of the following solutions:
- a) HCl, pH = 3.
- b) HCOOH ($K_a = 1.6 \times 10^{-4} \text{ moldm}^{-3}$), pH = 3.
- c) NaOH, pH = 11.
- 3. The pH of a 0.10 moldm⁻³ solution of a weak monoprotic acid, HA is 2.85. Determine the Ka of the acid
- 4. A 500 cm³ solution containing 1.9g of a weak acid HA has a pH of 3.5. Calculate the molar mass of the acid, given that it has a K_a of 2.0 x 10^{-6} moldm⁻³.