seq2seq中的两种attention机制(图+公式)

前言

本文来讲一讲应用于seq2seq模型的两种attention机制: Bahdanau Attention和Luong Attention。文中用公式+图片清晰地展示了两种注意力机制的结构,最后对两者进行了对比。seq2seq传送门: click here.

文中为了简洁使用基础RNN进行讲解,当然一般都是用LSTM,这里并不影响,用法是一样的。另外同样为了简洁,公式中省略掉了偏差。

第一种attention结构: Bahdanau Attention

两种机制基于上篇博客第一种seq2seq结构。Encoder生成的语义向量 c 会传给Decoder的每一时刻,传给每一时刻的语义向量都是同一个 c ,这是不合理的。比如翻译一句话, I like watching movie。翻译成: 我喜欢看电影。 ,其中 喜欢 基本上是由 like 得来的, I like watching movie。中每个词对翻译成 喜欢 的影响是不同的。所以,在Decoder中,每个时刻的语义向量 c 都应该是不同的。

该模型来自于Bahdanau et.al(2014),模型框架如下图:

计算公式如下更方便理解。

Encoder:

$$egin{aligned} h_i &= tanh(W[h_{i-1}, x_i]) \ o_i &= softmax(Vh_i) \end{aligned}$$

Decoder:

分为两步:

第一步, 生成该时刻语义向量:

$$egin{aligned} oldsymbol{c_t} &= \sum_{i=1}^T lpha_{ti} h_i \ lpha_{ti} &= rac{exp(e_{ti})}{\sum_{k=1}^T exp(e_{tk})} \ e_{ti} &= v_a^ op tanh(W_a[s_{i-1},h_i]) \end{aligned}$$

其中 c_t 是 t 时刻的语义向量; e_{ti} 是Encoder中 i 时刻 Encoder隐层状态 h_i 对Decoder中 t 时刻隐层状态 s_t 的影响程度; 通过softmax函数 (第二个式子) 将 e_{ti} 概率归一化为 α_{ti} 。

第二步, 传递隐层信息并预测:

$$s_t = tanh(W[s_{t-1}, y_{t-1}, c_t])$$

 $o_t = softmax(Vs_t)$

第二种attention结构: Luong Attention

该模型来自于Luong et.al(2015),模型框架如下图:

与第一种attention结构**区别在Decoder部分**,Encoder部分完全相同。 Decoder还是分两步,与前者的区别部分在公式中用绿色字体标出:

第一步, 生成该时刻语义向量:

$$egin{aligned} oldsymbol{c_t} &= \sum_{i=1}^T lpha_{ti} h_i \ lpha_{ti} &= rac{exp(e_{ti})}{\sum_{k=1}^T exp(e_{tk})} \ s_t &= tanh(W[s_{t-1}, y_{t-1}]) \ e_{ti} &= s_t^ op W_a h_i \end{aligned}$$

可以看出区别在计算影响程度 eti 这个公式,这里我只写出了最优公式,有兴趣可以研读下论文。

第二步, 传递隐层信息并预测:

$$egin{aligned} ilde{s}_t &= tanh(W_c[s_t, extbf{c_t}]) \ o_t &= softmax(V ilde{s}_t) \end{aligned}$$

先计算出初始的隐层状态 s_t ,再计算注意力层的隐层状态 \tilde{s}_t ,最后送入 softmax层输出预测分布。

Bahdanau Attention与Luong Attention两种注意力机制大体结构一致,区别在于计算影响程度的对齐函数。在计算时刻的影响程度时,前者使用 h_i 和 s_{t-1} 来计算,后者使用 h_i 和 s_t 来计算。从逻辑来看貌似后者更合逻辑,但两种机制现在都有在用,TensorFlow中两者都有对应的函数,效果应该没有很大差别。

References:

- [1] Bahdanau et.al (2014) Neural Machine Translation by Jointly Learning to Align and Translate
- [2] <u>Luong et.al (2015) Effective Approaches to Attention-based Neural</u> Machine Translation