Unit 1, Lesson 2 Graphical and Tabular/Numerical Limits

Graphical and Tabular/Numerical Limits.

OBJECTIVES:

Evaluate limits by way of tables and graphs.

• Determine the existence of and find limits at real numbers.

Use rules of limits.

Limits are a tool that helps us to describe the behavior of a function as x values approach a particular number.

What happens to $f(x) = x^2$ when x is really close to 2, but not necessarily equal to 2?

			x approaches 2 from left		\downarrow	x approaches 2 from right			
x	1.9	1.99	1.999	1.9999	2	2.0001	2.001	2.01	2.1
f(x)	3.61	3.9601	3.996001	3.99960001	4	4.00040001	4.004001	4.0401	4.41
f(x) approaches 4						f(x) approach	ches 4		

We denote this by

$$\lim_{x \to 2} x^2 = 4$$

and we say

"the limit of $f(x) = x^2$ as $x \to 2$ is 4.

This is an example of a **two-sided limit.**

One Sided Limits

- Limit from the left: $\lim_{x \to 2^{-}} f(x) = 4$ Limit from the right: $\lim_{x \to 2^{+}} f(x) = 4$

NOTE: The two sided limit can only exist if both one-sided limits exist and are equal to one another.

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2} f(x)$$

If
$$\lim_{x \to 2^{-}} f(x) = 5$$
 and $\lim_{x \to 2^{+}} f(x) = 6$, then $\lim_{x \to 2} f(x) = ?$

A. 6

B. 5.5

C. It does not exist

D. 5

Limit of a Function

Let f be a function and let a and L be real numbers. If

- 1. as x takes values closer and closer (but not equal) to a on both sides of a, the corresponding values of f(x) get closer and closer (and perhaps equal) to L; and
- 2. the value of f(x) can be made as close to L as desired by taking values of x close enough to a;

then L is the **limit** of f(x) as x approaches a, written

$$\lim_{x\to a}f(x)=L.$$

Find
$$\lim_{x\to 2} g(x)$$
 where $g(x) = \frac{x^3 - 2x^2}{x - 2}$.

	x approact	es 2 from left		x approaches 2 from right			
1.99	1.999	1.9999	2	2.0001	2.001	2.01	2.1
3.960	1 3.996001	3.99960001		4.00040001	4.004001	4.0401	4.41
		3.9601 3.996001		3.9601 3.996001	3.9601 3.996001 4.00040001	3.9601 3.996001 4.00040001 4.004001	3.9601 3.996001 4.00040001 4.004001 4.0401

$$\lim_{x \to 2^{-}} g(x) = 4$$

$$\lim_{x \to 2^{+}} g(x) = 4$$

$$\lim_{x \to 2} g(x) = 4$$

Use a table to find

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

- A. 2
- B. Does not exist
- **C**. 0
- D. 6

$$\lim_{x \to -2^{-}} \frac{3x + 2}{2x + 4} = \infty$$

$$\lim_{x \to -2^+} \frac{3x + 2}{2x + 4} = -\infty$$

$$\lim_{x \to -2} \frac{3x + 2}{2x + 4} =$$

Existence of Limits

The limit of f as x approaches a may not exist.

- 1. If f(x) becomes infinitely large in magnitude (positive or negative) as x approaches the number a from either side, we write $\lim_{x\to a} f(x) = \infty$ or $\lim_{x\to a} f(x) = -\infty$. In either case, the limit does not exist.
- 2. If f(x) becomes infinitely large in magnitude (positive) as x approaches a from one side and infinitely large in magnitude (negative) as x approaches a from the other side, then $\lim_{x\to a} f(x)$ does not exist.
- 3. If $\lim_{x\to a^-} f(x) = L$ and $\lim_{x\to a^+} f(x) = M$, and $L \neq M$, then $\lim_{x\to a} f(x)$ does not exist.

Limits at Infinity

For any positive real number n,

$$\lim_{x \to \infty} \frac{1}{x^n} = 0 \quad \text{and} \quad \lim_{x \to -\infty} \frac{1}{x^n} = 0.$$

Finding Limits at Infinity

If f(x) = p(x)/q(x), for polynomials p(x) and q(x), $q(x) \neq 0$, $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$ can be found as follows.

- 1. Divide p(x) and q(x) by the highest power of x in q(x).
- 2. Use the rules for limits, including the rules for limits at infinity,

$$\lim_{x \to \infty} \frac{1}{x^n} = 0 \quad \text{and} \quad \lim_{x \to -\infty} \frac{1}{x^n} = 0,$$

to find the limit of the result from step 1.

Find
$$\lim_{x\to\infty} \frac{2x^2 + 3x - 4}{6x^2 - 5x + 7}$$
.

Solution: Here, the highest power of x is x^2 , which is used to divide each term in the numerator and denominator.

$$\lim_{x \to \infty} \frac{\frac{2x^2}{x^2} + \frac{3x}{x^2} - \frac{4}{x^2}}{\frac{6x^2}{x^2} - \frac{5x}{x^2} + \frac{7}{x^2}} = \lim_{x \to \infty} \frac{2 + \frac{3}{x} - \frac{4}{x^2}}{6 - \frac{5}{x} + \frac{7}{x^2}}$$
$$= \frac{2}{6} = \frac{1}{3}$$

$$\lim_{x\to\infty}\frac{1}{x^n}=0$$

$$\lim_{x \to \infty} \frac{2x^2 - 1}{3x^4 + 2} =$$

$$=\lim_{X\to\infty}\frac{2x^2}{x^4}-\frac{1}{x^4}$$

$$=\lim_{X\to\infty}\frac{3x^4}{x^4}+\frac{2}{x^4}$$

$$= \lim_{x \to \infty} \frac{\frac{2}{x^2} - \frac{1}{x^4}}{3 + \frac{2}{x^4}} = 0$$

Question:

If
$$f(1) = 5$$
, then must $\lim_{x \to 1} f(x)$ exist?

If indeed the limit does exist, then must $\lim_{x\to 1} f(x) = 5$?

Explain your answer.