Problem statement:

To check which model is best suitable for the dataset insurance

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

Data cleaning and Preprocessing

```
In [2]:

df=pd.read_csv(r"C:\Users\DELL\Downloads\insurance.csv")
df
```

Out[2]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

```
In [3]:
                                                                                                          H
df.head()
Out[3]:
                   bmi
                        children
                                 smoker
   age
           sex
                                             region
                                                         charges
                                          southwest 16884.92400
0
                27.900
                               0
     19
         female
                                     yes
1
     18
          male 33.770
                               1
                                                      1725.55230
                                           southeast
                                      no
2
     28
          male 33.000
                               3
                                                      4449.46200
                                           southeast
                                      no
3
     33
                22.705
          male
                               0
                                           northwest 21984.47061
                                      no
4
     32
          male 28.880
                               0
                                                      3866.85520
                                          northwest
                                      no
In [4]:
                                                                                                          H
df.tail()
Out[4]:
       age
              sex
                     bmi children smoker
                                               region
                                                          charges
1333
        50
             male
                   30.97
                                 3
                                             northwest
                                                       10600.5483
                                        no
                                                        2205.9808
1334
        18
           female
                   31.92
                                 0
                                        no
                                             northeast
1335
        18
           female
                   36.85
                                 0
                                        no
                                             southeast
                                                        1629.8335
1336
        21
           female
                   25.80
                                 0
                                            southwest
                                                        2007.9450
        61 female 29.07
1337
                                             northwest 29141.3603
                                 0
                                       yes
In [5]:
                                                                                                          M
df.shape
Out[5]:
(1338, 7)
In [6]:
                                                                                                          M
df.size
Out[6]:
9366
In [7]:
                                                                                                          M
df.columns
Out[7]:
```

Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'], dt

ype='object')

In [8]: ▶

df.describe()

Out[8]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

In [9]: ▶

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):

#	Column	Non-I	Null Count	Dtype
0	age	1338	non-null	int64
1	sex	1338	non-null	object
2	bmi	1338	non-null	float64
3	children	1338	non-null	int64
4	smoker	1338	non-null	object
5	region	1338	non-null	object
6	charges	1338	non-null	float64
dtyp	es: float6	4(2),	int64(2),	object(3)

dtypes: float64(2), int
memory usage: 73.3+ KB

```
In [10]: ▶
```

```
convert={"sex":{"male":0,"female":1}}
df=df.replace(convert)
df
```

Out[10]:

	age	sex	bmi	children	smoker	region	charges
0	19	1	27.900	0	yes	southwest	16884.92400
1	18	0	33.770	1	no	southeast	1725.55230
2	28	0	33.000	3	no	southeast	4449.46200
3	33	0	22.705	0	no	northwest	21984.47061
4	32	0	28.880	0	no	northwest	3866.85520
1333	50	0	30.970	3	no	northwest	10600.54830
1334	18	1	31.920	0	no	northeast	2205.98080
1335	18	1	36.850	0	no	southeast	1629.83350
1336	21	1	25.800	0	no	southwest	2007.94500
1337	61	1	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

```
In [11]: ▶
```

```
convert={"smoker":{"yes":1,"no":0}}
df=df.replace(convert)
df
```

Out[11]:

age	sex	bmi	children	smoker	region	charges
19	1	27.900	0	1	southwest	16884.92400
18	0	33.770	1	0	southeast	1725.55230
28	0	33.000	3	0	southeast	4449.46200
33	0	22.705	0	0	northwest	21984.47061
32	0	28.880	0	0	northwest	3866.85520
50	0	30.970	3	0	northwest	10600.54830
18	1	31.920	0	0	northeast	2205.98080
18	1	36.850	0	0	southeast	1629.83350
21	1	25.800	0	0	southwest	2007.94500
61	1	29.070	0	1	northwest	29141.36030
	19 18 28 33 32 50 18 18 21	19 1 18 0 28 0 33 0 32 0 50 0 18 1 18 1 21 1	19	19 1 27.900 0 18 0 33.770 1 28 0 33.000 3 33 0 22.705 0 32 0 28.880 0 50 0 30.970 3 18 1 31.920 0 18 1 36.850 0 21 1 25.800 0	19 1 27.900 0 1 18 0 33.770 1 0 28 0 33.000 3 0 33 0 22.705 0 0 32 0 28.880 0 0 50 0 30.970 3 0 18 1 31.920 0 0 18 1 36.850 0 0 21 1 25.800 0 0	19 1 27.900 0 1 southwest 18 0 33.770 1 0 southeast 28 0 33.000 3 0 southeast 33 0 22.705 0 0 northwest 32 0 28.880 0 0 northwest 50 0 30.970 3 0 northwest 18 1 31.920 0 0 northeast 18 1 36.850 0 0 southeast 21 1 25.800 0 0 southwest

In [12]: ▶

from sklearn.preprocessing import StandardScaler

```
In [13]: ▶
```

```
convert={"region":{"southwest":0,"southeast":1,"northwest":3,"northeast":4}}
df=df.replace(convert)
df
```

Out[13]:

	age	sex	bmi	children	smoker	region	charges
0	19	1	27.900	0	1	0	16884.92400
1	18	0	33.770	1	0	1	1725.55230
2	28	0	33.000	3	0	1	4449.46200
3	33	0	22.705	0	0	3	21984.47061
4	32	0	28.880	0	0	3	3866.85520
1333	50	0	30.970	3	0	3	10600.54830
1334	18	1	31.920	0	0	4	2205.98080
1335	18	1	36.850	0	0	1	1629.83350
1336	21	1	25.800	0	0	0	2007.94500
1337	61	1	29.070	0	1	3	29141.36030

1338 rows × 7 columns

In [14]:

sns.pairplot(df)

<seaborn.axisgrid.PairGrid at 0x1d5104a98d0>

In [15]: ▶

sns.displot(df['age'])

Out[15]:

<seaborn.axisgrid.FacetGrid at 0x1d515ad0b80>

In [16]:
sns.displot(df['smoker'])

Out[16]:

<seaborn.axisgrid.FacetGrid at 0x1d57edaa860>

Out[18]:

	age	sex	bmi	children	smoker	region	charges
0	19	1	27.900	0	1	0	16884.92400
1	18	0	33.770	1	0	1	1725.55230
2	28	0	33.000	3	0	1	4449.46200
3	33	0	22.705	0	0	3	21984.47061
4	32	0	28.880	0	0	3	3866.85520
1333	50	0	30.970	3	0	3	10600.54830
1334	18	1	31.920	0	0	4	2205.98080
1335	18	1	36.850	0	0	1	1629.83350
1336	21	1	25.800	0	0	0	2007.94500
1337	61	1	29.070	0	1	3	29141.36030

In [19]: ▶

```
features=df.columns[0:4]
target=df.columns[-1]
x=df[features].values
y=df[target].values
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=17)
print("The dimension of X_train is {}".format(x_train.shape))
print("The dimension of X_test is {}".format(x_test.shape))
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
```

The dimension of X_{train} is (936, 4) The dimension of X_{test} is (402, 4)

In [20]:

```
#Model
lr = LinearRegression()
#Fit model
lr.fit(x_train, y_train)
#predict
#prediction = lr.predict(x_test)
#actual
actual = y_test
train_score_lr = lr.score(x_train, y_train)
test_score_lr = lr.score(x_test, y_test)
print("\nLinear Regression Model:\n")
print("The train score for lr model is {}".format(train_score_lr))
print("The test score for lr model is {}".format(test_score_lr))
```

Linear Regression Model:

The train score for lr model is 0.1203468852993338 The test score for lr model is 0.09987297545748941 In [130]: ▶

```
lm=LinearRegression()
lm.fit(x_train,y_train)
predictions=lm.predict(x_test)
plt.scatter(y_test,predictions)
```

Out[130]:

<matplotlib.collections.PathCollection at 0x1d5209899f0>

Ridge Regression

In [21]:

from sklearn.linear_model import Ridge,RidgeCV,Lasso

In [22]: ▶

```
#Ridge Regression Model
ridgeReg = Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
#train and test scorefor ridge regression
train_score_ridge = ridgeReg.score(x_train, y_train)
test_score_ridge = ridgeReg.score(x_test, y_test)
print("\nRidge Model:\n")
print("The train score for ridge model is {}".format(train_score_ridge))
print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.12033561350484978 The test score for ridge model is 0.10024774091471034

```
In [23]:

plt.figure(figsize = (10, 10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,color
plt.plot(features,ridgeReg.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color
plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='gree
plt.xticks(rotation = 90)
plt.legend()
plt.show()
```


Lasso Regression

In [24]: ▶

```
#Lasso regression model
print("\nLasso Model: \n")
lasso = Lasso(alpha = 10)
lasso.fit(x_train,y_train)
train_score_ls =lasso.score(x_train,y_train)
test_score_ls =lasso.score(x_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is {}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.12034453842851467 The test score for ls model is 0.10002810543470508

In [25]: ▶

pd.Series(lasso.coef_, features).sort_values(ascending = True).plot(kind = "bar")

Out[25]:

<Axes: >

Elastic Net

```
In [27]:
                                                                                         M
from sklearn.linear_model import ElasticNet
regr = ElasticNet()
regr.fit(x,y)
print(regr.coef_)
print(regr.intercept_)
regr.score(x,y)
[ 240.50365352 -441.64432419 326.22952678 401.3182634 ]
-6383.214926157012
Out[27]:
0.1215573874611382
In [28]:
                                                                                         M
y_pred_elastic=regr.predict(x_train)
In [30]:
mean_squared_error = np.mean((y_pred_elastic-y_train)**2)
print("Mean squared Error on test set", mean_squared_error)
```

Mean squared Error on test set 560157769.1020994

Logistic Regression

```
In [31]:

from sklearn.linear_model import LogisticRegression
```

In [32]:

```
df=pd.read_csv(r"C:\Users\DELL\Downloads\insurance.csv")
df
```

Out[32]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

```
In [33]: ▶
```

```
convert={"sex":{"male":0,"female":1}}
df=df.replace(convert)
df
```

Out[33]:

	age	sex	bmi	children	smoker	region	charges
0	19	1	27.900	0	yes	southwest	16884.92400
1	18	0	33.770	1	no	southeast	1725.55230
2	28	0	33.000	3	no	southeast	4449.46200
3	33	0	22.705	0	no	northwest	21984.47061
4	32	0	28.880	0	no	northwest	3866.85520
1333	50	0	30.970	3	no	northwest	10600.54830
1334	18	1	31.920	0	no	northeast	2205.98080
1335	18	1	36.850	0	no	southeast	1629.83350
1336	21	1	25.800	0	no	southwest	2007.94500
1337	61	1	29.070	0	yes	northwest	29141.36030

```
In [34]: ▶
```

```
convert={"smoker":{"yes":1,"no":0}}
df=df.replace(convert)
df
```

Out[34]:

	age	sex	bmi	children	smoker	region	charges
0	19	1	27.900	0	1	southwest	16884.92400
1	18	0	33.770	1	0	southeast	1725.55230
2	28	0	33.000	3	0	southeast	4449.46200
3	33	0	22.705	0	0	northwest	21984.47061
4	32	0	28.880	0	0	northwest	3866.85520
1333	50	0	30.970	3	0	northwest	10600.54830
1334	18	1	31.920	0	0	northeast	2205.98080
1335	18	1	36.850	0	0	southeast	1629.83350
1336	21	1	25.800	0	0	southwest	2007.94500
1337	61	1	29.070	0	1	northwest	29141.36030

1338 rows × 7 columns

```
In [35]: ▶
```

```
convert={"region":{"southwest":0,"southeast":1,"northwest":3,"northeast":4}}
df=df.replace(convert)
df
```

Out[35]:

	age	sex	bmi	children	smoker	region	charges
0	19	1	27.900	0	1	0	16884.92400
1	18	0	33.770	1	0	1	1725.55230
2	28	0	33.000	3	0	1	4449.46200
3	33	0	22.705	0	0	3	21984.47061
4	32	0	28.880	0	0	3	3866.85520
1333	50	0	30.970	3	0	3	10600.54830
1334	18	1	31.920	0	0	4	2205.98080
1335	18	1	36.850	0	0	1	1629.83350
1336	21	1	25.800	0	0	0	2007.94500
1337	61	1	29.070	0	1	3	29141.36030

```
H
In [69]:
features=df[['age','sex','bmi','region']]
features.columns=['age','sex','bmi','region']
target=df[['smoker']]
target.columns=['smoker']
                                                                                        M
In [70]:
print('The Features Matrix Has %d Rows And %d Columns(s)'%(features.shape))
The Features Matrix Has 1338 Rows And 4 Columns(s)
In [71]:
                                                                                        M
features_standardized=StandardScaler().fit_transform(features)
In [72]:
                                                                                        H
algorithm=LogisticRegression(max_iter=1000)
In [73]:
from sklearn.preprocessing import StandardScaler
In [74]:
                                                                                        H
Logistic Regression_Model=algorithm.fit(features_standardized,target)
C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\utils\validation.py:1143: DataConversionWarning: A column-vector y w
as passed when a 1d array was expected. Please change the shape of y to (n
_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
In [75]:
                                                                                        M
observation=[[28,1,28.880,2]]
In [76]:
                                                                                        H
predictions=Logistic Regression Model.predict(observation)
print('The model predicted the observation to belong to class %s'%(predictions))
The model predicted the observation to belong to class [0]
In [77]:
                                                                                        H
print('The algorithm was trained to predict one of the two classes:%s'%(algorithm.classes
The algorithm was trained to predict one of the two classes:[0 1]
```

```
In [134]:

print("""The model says the probability of the observation we passed belonging to class['print()
print("""The model says the probability of the observation we passed belonging to class['print()
```

The model says the probability of the observation we passed belonging to c lass['0']is 0.9580033379487249

The model says the probability of the observation we passed belonging to c lass['1']is 0.041996662051275016

```
In [135]:
x1=np.array(df["charges"]).reshape(-1,1)
In [82]:
sns.regplot(x=x1,y=target,data=df,logistic=True,ci=None)
```

Out[82]:

<Axes: ylabel='smoker'>

Decision Tree

```
In [83]:
                                                                                            H
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
In [84]:
x=["age","sex","bmi","children","region"]
y=["Yes","No"]
all_inputs=df[x]
all_classes=df["smoker"]
In [86]:
(x_train,x_test,y_train,y_test)=train_test_split(all_inputs,all_classes,test_size=0.30)
In [87]:
                                                                                            H
clf=DecisionTreeClassifier(random_state=0)
In [88]:
clf.fit(x_train,y_train)
Out[88]:
DecisionTreeClassifier(random_state=0)
In a Jupyter environment, please rerun this cell to show the HTML representation or
trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page
with nbviewer.org.
In [89]:
                                                                                            M
```

```
score=clf.score(x_test,y_test)
print(score)
```

0.6865671641791045

Random Forest

```
In [91]:
                                                                                          M
import matplotlib.pyplot as plt,seaborn as sns
In [92]:
                                                                                          H
x=df.drop('smoker',axis=1)
y=df['smoker']
```

```
In [93]:
                                                                                           H
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.7)
x_train.shape,x_test.shape
Out[93]:
((936, 6), (402, 6))
In [94]:
                                                                                           H
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[94]:
RandomForestClassifier()
In a Jupyter environment, please rerun this cell to show the HTML representation or
trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page
with nbviewer.org.
                                                                                           M
In [95]:
rf=RandomForestClassifier()
In [97]:
                                                                                           H
params={'max_depth':[2,3,5,10,20],
 'min_samples_leaf':[5,10,20,50,100,200],
 'n_estimators':[10,25,30,50,100,200]}
In [99]:
                                                                                           M
from sklearn.model_selection import GridSearchCV
grid search=GridSearchCV(estimator=rf,param grid=params,cv=2,scoring='accuracy')
grid_search.fit(x_train,y_train)
Out[99]:
GridSearchCV(cv=2, estimator=RandomForestClassifier(),
             param_grid={'max_depth': [2, 3, 5, 10, 20],
                          'min_samples_leaf': [5, 10, 20, 50, 100, 200],
                          'n_estimators': [10, 25, 30, 50, 100, 200]},
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

scoring='accuracy')

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
H
In [100]:
grid_search.best_score_
Out[100]:
0.9476495726495726
In [101]:
                                                                                    M
rf_best=grid_search.best_estimator_
print(rf_best)
RandomForestClassifier(max depth=20, min samples leaf=5, n estimators=200)
In [102]:
                                                                                    M
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[5],feature_names=x.columns,class_names=["1","0"],filled=Tru
Out[102]:
[Text(0.65, 0.95, 'bmi <= 34.885\ngini = 0.303\nsamples = 589\nvalue =</pre>
[762, 174] \setminus class = 1'),
Text(0.4888888888888889, 0.85, 'age <= 60.5\ngini = 0.281\nsamples = 43
7\nvalue = [570, 116]\nclass = 1'),
 418\nvalue = [553, 104]\nclass = 1'),
Text(0.17777777777778, 0.65, 'children <= 2.5\ngini = 0.235\nsamples
= 307\nvalue = [412, 65]\nclass = 1'),
Text(0.08888888888888889, 0.55, 'region <= 0.5 \ngini = 0.216 \nsamples =
258\nvalue = [348, 49]\nclass = 1'),
Text(0.044444444444444446, 0.45, 'charges <= 12995.738\ngini = 0.264\ns
amples = 85\nvalue = [108, 20]\nclass = 1'),
Text(0.022222222222223, 0.35, 'gini = 0.0\nsamples = 67\nvalue = [10
0, 0] \nclass = 1'),
Text(0.0666666666666667, 0.35, 'bmi <= 30.35\ngini = 0.408\nsamples =
18\nvalue = [8, 20]\nclass = 0'),
```

Text(0.04444444444444446, 0.25, 'bmi <= 26.9\ngini = 0.488\nsamples =

In [103]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[7],feature_names=x.columns,class_names=["Yes","No"],filled=
```

Out[103]:

```
[Text(0.3287037037037037, 0.95, 'bmi <= 24.602\ngini = 0.311\nsamples = 58
2\nvalue = [756, 180]\nclass = Yes'),
 Text(0.07407407407407, 0.85, 'age <= 19.5\ngini = 0.154\nsamples = 88
\nvalue = [131, 12]\nclass = Yes'),
 Text(0.037037037037037035, 0.75, 'gini = 0.0\nsamples = 15\nvalue = [22,
0]\nclass = Yes'),
 Text(0.11111111111111, 0.75, 'charges <= 14453.74\ngini = 0.179\nsample
s = 73\nvalue = [109, 12]\nclass = Yes'),
 Text(0.07407407407407, 0.65, 'gini = 0.0\nsamples = 62\nvalue = [106,
0]\nclass = Yes'),
 Text(0.14814814814814, 0.65, 'region <= 2.0\ngini = 0.32\nsamples = 11
\nclass = No'),
 Text(0.18518518518517, 0.55, 'gini = 0.0\nsamples = 6\nvalue = [0, 8]
\nclass = No'),
 Text(0.5833333333333333334, 0.85, 'sex <= 0.5 \ngini = 0.334 \nsamples = 494 \nsamples = 494
value = [625, 168]\nclass = Yes'),
 Text(0.4074074074074, 0.75, 'age <= 54.5\ngini = 0.396\nsamples = 243

    | value = [284, 106] \rangle = Yes'),

 Text(0.2962962962963, 0.65, 'charges <= 15355.588\ngini = 0.43\nsample
s = 186\nvalue = [200, 91]\nclass = Yes'),
 Text(0.25925925925925924, 0.55, 'gini = 0.0\nsamples = 117\nvalue = [185,
0]\nclass = Yes'),
 value = [15, 91]\nclass = No'),
 Text(0.2962962962963, 0.45, 'charges <= 30508.63\ngini = 0.201\nsample
s = 63\nvalue = [11, 86]\nclass = No'),
 Text(0.25925925925925924, 0.35, 'bmi <= 31.45\ngini = 0.381\nsamples = 26
\nvalue = [11, 32]\nclass = No'),
 Text(0.22222222222222, 0.25, 'charges <= 20213.564\ngini = 0.157\nsampl
es = 20\nvalue = [3, 32]\nclass = No'),
 Text(0.18518518518517, 0.15, 'gini = 0.0\nsamples = 9\nvalue = [0, 15]
\nclass = No'),
 Text(0.25925925925925924, 0.15, 'age <= 44.5\ngini = 0.255\nsamples = 11
Text(0.2222222222222, 0.05, 'gini = 0.49\nsamples = 5\nvalue = [3, 4]
\nclass = No'),
 Text(0.2962962962963, 0.05, 'gini = 0.0\nsamples = 6\nvalue = [0, 13]
\nclass = No'),
\nclass = Yes'),
 Text(0.5185185185185185, 0.25, 'bmi <= 29.307\ngini = 0.18\nsamples = 13
```

Text(0.48148148148145, 0.15, 'gini = 0.444\nsamples = 6\nvalue = [4,

 $| value = [18, 2] \\
 | value = [18, 2] \\$

```
2]\nclass = Yes'),
                                                                                                                                                                                                                                                                                                                                                                                                                                        H
<sup>I</sup> tek\frac{1}{1} tek\frac{1} tek\frac{1}{1} tek\frac{1} tek\frac{1}{1} tek\frac{1}{1} tek\frac{1} tek\frac{1}{1} tek\frac{1} tek\frac{1}{1} tek\frac{1} t
\nclass = Yes'),
rf best feature importances
rext(0.5185185185185185, 0.45, 'gini = 0.0\nsamples = 13\nvalue = [28, 0]
0 \text{00} \frac{1}{5}5555555555555556, 0.55, 'gini = 0.0\nsamples = 11\nvalue = [0, 13]
                                                                               s = 251\nvalue = [341, 62]\nclass = Yes'),
    Text(0.7222222222222, 0.65, 'gini = 0.0\nsamples = 196\nvalue = [312,
ወስ\ሱ¢ውā$s = Yes'),
                                                                                                                                                                                                                                                                                                                                                                                                                                        M
39\nvalue = [8, 55]\nclass = No'),
OText0015925925925925926, 0.45, 'charges <= 28809.44\ngini = 0.254\nsample
s = 28\nvalue = [7, 40]\nclass = No'),
    Te Wa (near be 555555 b b 5555556, 0.35, 'gini = 0.434 \nsamples = 13 \nvalue = [7, 1]
5] \ln 2 = No'
     fext(095296296296297, 0.35, 'gini = 0.0\nsamples = 15\nvalue = [0, 25]
 \nclassbmi No.'0)69830
     Text(0.7407407407407, 0.45, 'charges <= 35808.301\ngini = 0.117\nsampl
e^{0} = 11\Re value^{0.33384}[1, 15]\nclass = No'),
   fext(R) = 0.219 \times 10^{-20} = 0.37037037, 0.35, 'gini = 0.219 \times 10^{-20} = 0.219 \times 10^{-
\nclass = No'),

\frac{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\exit{\text{\text{\text{\text{\text{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\tet{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te
calass = slo ' 0:010057
     Text(0.9259259259259259, 0.55, 'children <= 1.5\ngini = 0.375\nsamples =
16\nvalue = [21, 7]\nclass = Yes'),
Ime\{10\}888888888888888888, 0.45, 'age <= 45.0\ngini = 0.278\nsamples = 11\n
                                                                                                                                                                                                                                                                                                                                                                                                                                        H
value = [15, 3]\nclass = Yes'),
print(0.8589186485185199-5.35n))gini = 0.375\nsamples = 5\nvalue = [6, 2]
 \nclass = Yes'),
176xt(0.9259259259259259, 0.35, 'gini = 0.18 \nsamples = 6 \nvalue = [9, 1]
\nclass = Yes'),
    Text(0,9629629629629629, 0.45, 'gini = 0.48\nsamples = 5\nvalue = [6, 4]
                                                                                                                                                                                                                                                                                                                                                                                                                                        M
 ˈnclass'≐ Yes')]
print(rfc.score(x_test,y_test))
```

0.9552238805970149

Model Saving for all the models

For Linear Regression

```
import pickle
fname="y_pred"
pickle.dump=lr,open(fname,'wb')
```

In [120]: ▶

```
import pickle
fname="y_pred"
pickle.dump=algorithm,open(fname,'wb')
```

Conclusion:

By observing all the models the logistic regression has highest accuracy. Therefo re we can say that logistic regression is the best fit model for the insurance d ata set