M444 – Complex Analysis

Pierre-Olivier Parisé

University of Hawai'i at $M\overline{a}$ noa Chapter 3

Section 3.1: Paths (Contours) in the Complex Plane

Figure – Circle $x^2 + y^2 = 1$

1 From Calculus :

$$\begin{cases} x(t) = \cos(t) \\ y(t) = \sin(t) \end{cases}$$

$$0 \leq t \leq 2\pi$$
.

② Complex numbers :

$$z(t) = x(t) + iy(t)$$

$$= \cos(t) + i\sin(t)$$

$$= e^{it}$$

$$0 < t < 2\pi$$
.

Definition

A **parametric form** of a curve in the complex plane is a function $z:[a,b]\to\mathbb{C}$ where z(t)=x(t)+iy(t).

Remarks:

- 1 In the textbook (see Definition 3.1.1), the authors also use the notation $\gamma(t)$ to represent a parametric form of a curve.
- Representation of a curve :
 https://www.desmos.com/calculator/ardibjhbww.
- ③ Here, z(a) is the **initial point** and z(b) is the **terminal point**.
- 4) If z(a) = z(b), the curve is said to be **closed**.

Useful examples:

① A directed line segment from z_1 to z_2 :

$$z(t)=(1-t)z_1+tz_2$$

for $0 \le t \le 1$. We use the notation $[z_1, z_2]$.

② A **circle** with center z_0 and radius R:

$$z(t) = z_0 + Re^{it}$$

for $0 \le t \le 2\pi$.

3 An epicycloid (see #26 in problem set) :

$$z(t) = (a+b)e^{it} - be^{\frac{a+b}{b}it}.$$

Visualization: https://www.desmos.com/calculator/hqvgaimgtr

 $\underline{\text{GOAL}}$: Given a parametrization $z:[a,b]\to\mathbb{C}$ of a curve, get another parametrization $w: [a, b] \to \mathbb{C}$ starting at z(b) and ending at z(a).

(1) Notice that to start the parameter t at b, we can map the parameter a to b using

$$t \mapsto b + a - t$$

Therefore, setting

$$w(t) = z(b + a - t)$$

for $a \le t \le b$ achieves what we want!

Click Desmos.

Definition

Given a parametrization z(t) of a curve, the new parametrization w(t) = z(b + a - t) is called the **reverse parametrization** of z(t). Let $z:(a,b)\to\mathbb{C}$ be a complex-valued function defined (a,b).

Since $z(t) \in \mathbb{C}$ there are two real-valued functions $x : (a, b) \to \mathbb{C}$ and $y : (a, b) \to \mathbb{C}$ such that

$$z(t) = x(t) + iy(t).$$

Definition

For a complex-valued function $z:(a,b)\to\mathbb{C}$, the derivative of z at t is defined as

$$\frac{dz}{dt}(t) = \frac{dx}{dt}(t) + i\frac{dy}{dt}(t)$$

if $\frac{dx}{dt}(t)$ and $\frac{dy}{dt}(t)$ exists at t.

Remarks:

- ① We also denote the derivative $\frac{dz}{dt}(t)$ by z'(t).
- (2) All the rules for differentiation still hold.

(1) Let $z(t) = (1+t) + t^2i$. Then,

$$\frac{d}{dt}z(t) = \frac{d}{dt}(1+t) + \frac{d}{dt}(t^2)i = 1 + 2ti.$$

(2) Let $z(t) = \frac{1+t^2+i}{1+t^2+i}$. By the quotient rule

$$z'(t) = \frac{(1+t^2+i)'(1-i+t) - (1+t^2+i)(1-i+t)'}{(1-i+t)^2}$$

$$= \frac{(2t)(1-i+t) - (1+t^2+i)(1)}{(1-i+t)^2}$$

$$= \frac{2t-i2t+2t^2-1-t^2-i}{(1-i+t)^2}$$

$$= \frac{-1+2t+t^2-i(2t+1)}{(1-i+t)^2}.$$

Example : Let $w(t) = (2+i) \cos(3it)$. Then, we see that

$$w(t) = F(z(t))$$

where $F(z) = (2 + i)\cos(z)$ and z(t) = 3it. Therefore

$$w'(t) = F'(z(t))z'(t) = -(2+i)\sin(3it)(3i) = -(-3+6i)\sin(3it).$$

Theorem (Theorem 3.1.8)

- Assume that z(t) is a differentiable complex-valued function on (a, b).
- Assume that F is an analytic function on an open set U containing all the values of z(t).
- (3) Let w(t) = F(z(t)), for a < t < b.

Then w is differentiable on (a, b) and

$$w'(t) = F'(z(t))z'(t).$$

Example: The curve

$$z(t) = \begin{cases} 3t(1+i) & 0 \le t \le \frac{1}{3} \\ 3+i-6t & \frac{1}{3} \le t \le \frac{2}{3} \\ (-1+i)(3-3t) & \frac{2}{3} \le t \le 1 \end{cases}$$

has the following characteristics:

- ① Continuous on [0,1].
- ② Differentiable and continuous everywhere, except at a finite number of points.

Definition

A path is a curve z(t) defined on a closed interval [a, b] which is piecewise continuously differentiable, that is

- ① continuous on the interval of definition [a, b].
- (2) differentiable everywhere, except at a finite number of points.
- \bigcirc the derivative z'(t) is continuous where it exists.

Definition

A **polygonal path** $[z_1, z_2, ..., z_n]$ is the union of the directed segments $[z_1, z_2]$, $[z_2, z_3]$, ..., $[z_{n-1}z_n]$.

Figure – The polygonal curve from the previous example