Generalized Ben-Porath Model

James Heckman

Econ 350 This draft, December 30, 2013

Table 1. Estimates of the human capital production function (males)^a.

Source	α	β	γ	A	r	σ	Restricted schooling and OJT model?	Labor supply	Synthetic cohorts?
Heckman (1976) two models	0.99 (.003)	-6.69 (.043)	-	45.49 (3.034)	0.10 (imposed)	0.0016 (0.00025)	No	Yes	Yes
US Bureau of the Census (1960) males	0.67 (0.052)	0 (imposed)	-	$^{0.14\times10^{-2}}_{(0.04\times10^{-2})}$	0.10 (imposed)	0 (constrained)	No	Yes	Yes
Heckman (1976)	0.812 (0.0225)	$\alpha^{\rm b}$ (restricted)	-	1.53 (1.62)	0.176 (0.275)	0.089 (0.068)	No	No	Yes
US Bureau of the Census (1960) males	0.52 (0.07)	$\alpha^{\rm b}$ (restricted)	-	17.3 (25.2)	0.196 (0.613)	0.037 (0.90)	No	Yes	Yes
Haley (1976) CPS (1956–1966) aggregates	0.578 (0.012)	α^{b} (restricted)	-	0.019-0.04	0.04-0.069 (0.004) (0.003)	0.005-0.04 (0.014) (0.008)	Noc	No	Yes
Brown (1976) ^d NLS young men	0.56-0.89	α^{b} (restricted)	-	f	0.33-0.15	0 (imposed)	Noe	No	No
Rosen (1976) US Census 1960 and 1970	0.5	1 (imposed)	-	$r + \varepsilon$ $(\varepsilon > 0)$ (see next column)	0.0725 (highschool) 0.0875 (college)	176 (0.275)	No	No	Yes

^a $H_{t+1} = (1-\sigma)H_t + AI_t^{\alpha}H_t^{\beta}D_t^{\gamma}$.

Source: Browning, Hansen and Heckman (1999)

r, interest rate; standard errors are given in parentheses.

 $b \alpha = \beta$.

c All schooling groups.

^d Brown makes alternative assumptions about the rate of growth of the price of labor services. See also Rosen.

Only highschool graduates.

f Not reported.

Table 2 (references cited)

- Heckman, J.J. (1976), "A life-cycle model of earnings, learning, and consumption", Journal of Political Economy 84(4, pt. 2): S11–S44.
- US Bureau of the Census (1960), 1960 Census Public Use Sample (United States Government Printing Office, Washington, DC).
- Haley, W.J. (1976), "Estimation of the earnings profile from optimal human capital accumulation", Econometrica 44: 1223–38.
- Brown, C. (1976), "A model of optimal human-capital accumulation and the wages of young high school graduates", *Journal of Political Economy* 84(2): 299–316.
- Rosen, S. (1976), "A theory of life earnings", *Journal of Political Economy* 84(Suppl.): 345–382.

Table 2. Estimated parameters for human capital production function.

Parameter	Estimated value								
	Males	S	Females						
	Highschool $(S=1)$	College $(S=2)$	Highschool $(S=1)$	College $(S=2)$					
α	0.945(0.017)	0.939(0.026)	0.967	0.968					
β	0.832(0.253)	0.871(0.343)	0.810	1.000					
A(1)	0.081(0.045)	0.081(0.072)	0.079	0.057					
$H_0(1)^*$	9.530(0.309)	13.622(0.977)	6.696	8.347					
A(2)	0.085(0.053)	0.082(0.074)	0.082	0.057					
$H_0(2)^*$	12.074(0.403)	14.759(0.931)	7.806	9.453					
A(3)	0.087(0.056)	0.082(0.077)	0.084	0.058					
$H_0(3)^*$	13.525(0.477)	15.614(0.909)	8.777	11.563					
A(4)	0.086(0.054)	0.084(0.083)	0.086	0.058					
$H_0(4)^*$	12.650(0.534)	18.429(1.095)	9.689	13.061					

Source: Heckman, Lochner and Taber (1998)

Table 2 (notes)

Human capital production function:

$$H_{a+1}^S = A^S(\theta)(I_a^S)^{\alpha_S}(H_a^S)^{\beta_S} + (1-\sigma)(H_a^S)^{\beta_S}$$
, with $S=1,2$. Standard errors are given in parentheses.

- Heckman, Lochner and Taber (1999) do not report the standard errors for females.
- Initial human capital for person of ability quantile using ability levels for NLSY.

- Convention: H(t), I(t) written as I, H unless it clarifies matters not doing so.
- Consider a more general Ben-Porath Model

$$\dot{H} = AI^{\alpha}H^{\beta} - \sigma H$$

Neutrality: $\alpha = \beta$.

- For simplicity assume no discounting (r = 0)
- No depreciation $\sigma = 0$
- Finite life = T
- Rental rate = R (efficiency units, price of human capital)
- Initial endowment = H_0

• Problem ($0 \le l \le 1$; $0 < \alpha < 1$ for smooth problems):

$$\max \int_0^T [RH(t) - RI(t)H(t)]dt$$

such that $\dot{H} = AI^{\alpha}H^{\beta}$ and $H(0) = H_0$.

Hamiltonian for problem:
 Maximized Hamilton must be concave in state variable:

$$\mathcal{H} = RH(t)(1 - I(t)) + \mu(AI^{\alpha}H^{\beta})$$

 $\beta \leq 1$ needed for Mangasarian sufficient conditions.

FOC:

$$\mu A \alpha I^{\alpha - 1} H^{\beta} \ge RH \tag{*}$$

Let "'" denote time rate of change.

$$\dot{\mu} = -\frac{\partial \mathcal{H}}{\partial H} = -R(1 - I) - \beta \mu A I^{\alpha} H^{\beta - 1}$$

- Rate of change of the shadow value of human capital declines with increases in the human capital stock.
- $\mu(T)H(T) = 0$ (transversality)

$$\mu(t) = \int_t^T \left[R(1 - I(u)) + eta(\mu(u)) A I^{lpha - 1}(u) H^{eta - 1}(u)
ight] du$$

• Now for the case with strict inequality in (*), we have l=1 (period of specialization associated with schooling or no earnings).

$$\alpha\mu AH^{\beta} > RH$$

$$H^{\beta-1} > \frac{R}{\alpha\mu A}$$

ullet If eta>1, we get specialization in investment (no work) if

$$H > \left[\frac{R}{\alpha\mu A}\right]^{\frac{1}{\beta-1}}.$$

• Specialization at t = 0 requires

$$H_0 > \left[\frac{R}{\alpha\mu(0)A}\right]^{\frac{1}{\beta-1}} = \left(\frac{R}{\alpha A}\right)^{\frac{1}{\beta-1}} (\mu_0)^{\frac{1}{1-\beta}}$$

ullet If eta < 1, specialization at t = 0 requires

$$H_0 < \left\lceil \frac{R}{\alpha \mu(0)A} \right\rceil^{\frac{1}{\beta-1}} = \left(\frac{R}{\alpha A} \right)^{\frac{1}{\beta-1}} (\mu_0)^{\frac{1}{1-\beta}}.$$

• When $\beta = 1$, specialization at t = 0 requires $\mu_0 > \frac{R}{\alpha \Delta}$.

ullet Person just specializing (I=1 is the interior solution) if

$$lpha \mu A H^{\beta} = R H$$
 $(I = 1)$

$$\mu = \left(\frac{R}{\alpha A}\right) H^{1-\beta}$$

• In a period of specialization, I=1

$$\dot{\mu} = -\beta \mu A H^{\beta - 1}$$
$$\dot{H} = A H^{\beta}$$

Then,

$$\frac{\dot{H}}{H^{\beta}} = A$$
 or $\frac{dH}{H^{\beta}} = Adt$

$$\frac{[H(t)]^{1-\beta}}{1-\beta} = At + c_0 \quad , \quad \beta \neq 1$$

$$H(t) = (At + c_0)^{\frac{1}{1-\beta}} (1-\beta)^{\frac{1}{1-\beta}}$$

(making t dependence explicit)

$$H(0) = H_0 = c_0^{\frac{1}{1-\beta}} (1-\beta)^{\frac{1}{1-\beta}}$$

$$\left(\frac{H_0}{(1-\beta)^{\frac{1}{1-\beta}}}\right)^{1-\beta}=c(0).$$

• When $\beta = 1$,

$$\ln H(t) = At + c_0$$
 $H(t) = e^{At + c_0}$
 $H(0) = H_0 = e^{c_0}$ $\ln H_0 = c_0$.

• When $\beta \neq 1$,

$$\dot{\mu} = -eta \mu A [H]^{eta-1} = -eta \mu A \left[rac{1}{(At+c_0)(1-eta)}
ight]$$

$$\frac{\dot{\mu}}{\mu} = \frac{-\beta}{1-\beta} \cdot \frac{A}{At+c_0} \qquad c_0 \ge 0$$

$$\ln \mu(t) = -\left(rac{eta}{1-eta}
ight) \cdot \ln(At+c_0) + c_1$$

$$\mu(t) = e^{c_1} e^{-rac{eta}{1-eta} \ln(At+c_0)} = rac{e^{c_1}}{(At+c_0)^{eta/1-eta}}$$

• At t = 0,

$$\mu(0) = \frac{e^{c_1}}{c_0^{\beta/1-\beta}} = \frac{e^{c_1}}{\left(\frac{H(0)}{(1-\beta)^{\frac{1}{1-\beta}}}\right)} = \frac{e^{c_1}}{H(0)^{\beta}} (1-\beta)^{\beta/1-\beta}$$

$$rac{\mu(0)H(0)^{eta}}{(1-eta)^{eta/1-eta}}=e^{c_1}$$

$$c_1 = \operatorname{In}\left[rac{\mu(0)[H(0)]^{eta}}{(1-eta)^{eta/1-eta}}
ight].$$

• When $\beta = 1$,

$$rac{\dot{\mu}}{\mu} = - \mathcal{A}$$

$$\ln \mu(t) = -At + c_1^*$$

$$\mu(t) = e^{c_1^*} e^{-At}$$

$$\mu(0) = e^{c_1^*} \qquad \ln \mu(0) = c_1^*$$

Now at end of period of specialization, we must have

$$\mu(t^*)A\alpha[H(t)]^{\beta}=RH(t).$$

• Thus for $\beta = 1$, specialization ends (schooling ends) when

$$\mu(t^*)A\alpha = R$$
 $\mu(t^*) = \left(\frac{R}{A\alpha}\right)$

$$e^{c_1^*}e^{-At^*}=\left(rac{R}{Alpha}
ight) \qquad \qquad rac{e^{c_1^*}Alpha}{R}=e^{At^*}$$

$$c_1^* + \ln\left(\frac{A\alpha}{R}\right) = At^* \qquad \qquad \frac{1}{A}\left[c_1^* + \ln\left(\frac{A\alpha}{R}\right)\right] = t^*.$$

• When $\beta \neq 1$

$$\mu(t^*) \frac{A\alpha}{R} = [H(t^*)]^{1-\beta} \qquad H(t^*) = \left[\frac{\mu(t^*)A\alpha}{R}\right]^{\frac{1}{1-\beta}}.$$

Substituting from above we find that we get

$$\frac{e^{c_1}}{(At+c_0)^{\beta/1-\beta}}\frac{A\alpha}{R}=(At+c_0)(1-\beta).$$

- The Ben Porath case is $\alpha = \beta$.
- Therefore, $\dot{\mu} = -R$ (trivial dynamics).

$$\mu(t) = -Rt + c_1, \quad \mu(T) = 0 \Rightarrow c_1 = RT$$

 $\mu(t) = -R(T - t)$

• General case:

$$\dot{\mu} = R \left[-1 + \underbrace{R^{\frac{1}{\alpha - 1}} \left(\frac{1}{A}\right)^{\frac{1}{1 - \alpha}} \alpha^{\frac{1}{1 - \alpha}} \mu^{\frac{1}{1 - \alpha}} H^{\frac{\beta - 1}{1 - \alpha}}}_{I} (1 - \beta/\alpha) \right]$$

$$= R[-1 + I \underbrace{(1 - \beta/\alpha)}_{\text{adjustment to } I}]$$

- Therefore, we have that if $\beta/\alpha > 1$, $\dot{\mu} < 0$.
- If β < 0, $\dot{\mu}$ might be > 0.
- Assume for the moment that $\beta \geq 0$. Then what do we have?
- $\dot{\mu} = -R$ during period of specialization.

21 / 27

 At the end of the period of specialization (if one occurs), we have that

$$I = 1 = \left(\frac{R}{A\alpha}\right)^{\frac{1}{\alpha - 1}} \mu^{\frac{1}{1 - \alpha}} H^{\frac{\beta - 1}{1 - \alpha}}. \tag{**}$$

- Assume that $\dot{\mu} < 0$ for $0 < \alpha < 1$.
- As t increases, right hand side of (**) decreases if $\frac{\beta-1}{1-\alpha}<0$, i.e., $\beta<1$.

$$\frac{\beta}{1-\beta}+1=\frac{\beta+1-\beta}{1-\beta}=\frac{1}{1-\beta}$$

$$\left[\frac{e^{c_1}}{1-\beta}\frac{A\alpha}{R}\right] = (At + c_0)^{\frac{1}{1-\beta}}$$

$$rac{1}{A}\left[rac{e^{c_1}}{1-eta}rac{Alpha}{R}
ight]^{1-eta}-c_0=t^*$$

 End of first specialization period. (This is associated with schooling.)

- Question: Is there more than one period of specialization?
- Look ahead to interior segment. In the interior we get:

$$\mu A \alpha I^{\alpha - 1} = RH^{1 - \beta}$$

$$I^{\alpha-1} = \left(\frac{R}{\mu A \alpha}\right) H^{1-\beta}$$

$$I = \left(\frac{R}{\mu A \alpha}\right)^{\frac{1}{\alpha - 1}} H^{\frac{1 - \beta}{\alpha - 1}} = \left(\frac{R}{A \alpha}\right)^{\frac{1}{\alpha - 1}} \mu^{\frac{1}{1 - \alpha}} H^{\frac{\beta - 1}{1 - \alpha}}$$

• Substitute into costate (shadow price) equation:

$$\dot{\mu} = -R(1-I) - \beta \mu A I^{\alpha} H^{\beta-1}$$

$$= -(R) + R^{\frac{\alpha}{\alpha - 1}} \left(\frac{1}{A}\right)^{\frac{1}{\alpha - 1}} \mu^{\frac{1}{1 - \alpha}} H^{\frac{\beta - 1}{1 - \alpha}}(\alpha)^{\frac{\alpha}{1 - \alpha}} (\alpha - \beta)$$

for $\beta > 0$, $\dot{\mu} < 0$.

- Then $I \downarrow$ monotonically over the life cycle when $\beta < 1$.
- $\beta = 1$, obviously $\mu(t) \downarrow \Rightarrow I(t) \downarrow$ monotonically.
- Therefore, we have at most one period of specialization, and it is early on (beginning of life).

- Take $\beta \neq 1$. For a person who specializes, the lifecycle is as follows:
 - [0, *t**] school
 - $[t^*, T]$ work
- Then we solve from t^* on

$$\dot{\mu} = -R + R^{\alpha/\alpha - 1} \left(\frac{1}{A}\right)^{\frac{1}{\alpha - 1}} \mu^{\frac{1}{1 - \alpha}} H^{\beta - 1/1 - \alpha} (\alpha)^{\alpha/1 - \alpha} (\alpha - \beta)$$

$$\dot{H} = A \left[\frac{R}{A\alpha} \right]^{\frac{\alpha}{\alpha - 1}} \mu^{\frac{\alpha}{\alpha - 1}} H^{\frac{\alpha(\beta - 1)}{1 - \alpha}} H^{\beta}$$

$$= A \left[\frac{R}{A\alpha} \right]^{\frac{\alpha}{\alpha - 1}} \mu^{\frac{\alpha}{1 - \alpha}} H^{(\beta - \alpha)/(1 - \alpha)}$$

for (μ, H) jointly. (This is a "split endpoint" problem.)

$$\mu(t) = \int_t^T \dot{\mu}(t)dt + c(3)$$

• Impose condition that $\mu(T) = 0$ for $t > t^* \Rightarrow c(3) = 0$.

$$H(t) = \int_{t^*}^t \dot{H}(au) d au + H(t^*)$$

- $\mu(t)$ and H(t) must be solved jointly.
- Substitute for (t^*) above and enforce condition on $\mu(0)$. (Thus, $H(t^*)$ depends on $\mu(0)$ and H(0), but $\mu(0)$ set in conjunction with $\mu(T) = 0$.)
- We know $\mu(t)$, H(t) and I(t) continuous.
- $\dot{\mu}(t)$ need not be continuous at t^* .