Example 2

Show that The angle bisector of a triangle divides the opposite side into segments that are proportional to the adjacent sides.

$$\frac{AB}{AC} = \frac{BD}{CD}$$
 or $\frac{AB}{BD} = \frac{AC}{CD}$

Proof:

Draw $AH \perp BC$ at H. The ratio of the areas $\triangle ABD$ and

$$ADC \text{ is } \frac{S_{\triangle ABD}}{S_{\triangle ADC}} = \frac{\frac{1}{2}BD \times AH}{\frac{1}{2}CD \times AH} = \frac{BD}{CD}.$$

Draw $DE \perp AB, DF \perp AC$.

By Theorem 3.2, DE = DF.

The ratio of the areas
$$\triangle ABD$$
 and ADC is We also know that $\frac{S_{\triangle ABD}}{S_{\triangle ADC}} = \frac{\frac{1}{2}AB \times DE}{\frac{1}{2}AC \times DF} = \frac{AB}{AC}$

Therefore: $\frac{AB}{AC} = \frac{BD}{CD}$.