EE270 Large scale matrix computation, optimization and learning

Instructor: Mert Pilanci

Stanford University

Tuesday, Feb 11 2020

Randomized Linear Algebra and Optimization Lecture 12: Gradient Descent

Summary of randomized least squares solvers

Left Sketch

$$\min_{x} \|Ax - b\|_2^2$$

- $ightharpoonup \min_{x} \|S(Ax b)\|_{2}^{2}$
- Fast Johnson Lindenstrauss Transform (Randomized Hadamard Transform)
 - SA and Sb can be computed in O(ndlogn) time
- ► Gaussian sketch

 SA and Sb can be computed in O(ndm) time
- total complexity:

Summary of randomized least squares solvers

Right Sketch

$$\min_{Ax=b} \|x\|_2^2$$

- Fast Johnson Lindenstrauss Transform (Randomized Hadamard Transform)
 - AS can be computed in O(ndlogn) time
- Gaussian sketch AS can be computed in O(ndm) time
- total complexity:

Optimization: Gradient Descent

- ▶ Consider unconstrained minimization of $f : \mathbb{R}^d \to \mathbb{R}$, differentiable function
- we want to solve

$$\min_{x \in \mathbb{R}^d} f(x)$$

▶ **Gradient descent:** choose initial $x_0 \in \mathbb{R}^d$ and repeat

$$x_{t+1} = x_t - \mu_t \nabla f(x_t)$$

▶ for t = 1, ..., T

Convex vs Non-convex functions

a function f is called convex if

$$\forall x_1, x_2 \in \mathcal{X}, \ \forall t \in [0,1]: \quad f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2)$$

Convex vs Non-convex functions

▶ a function *f* is called **strictly convex** if

$$\forall x_1 \neq x_2 \in \mathcal{X}, \ \forall t \in [0,1]: \quad f(tx_1 + (1-t)x_2) < tf(x_1) + (1-t)f(x_2)$$

Concave functions

▶ a function f is called (strictly) concave if −f is (strictly) convex

Differentiable functions

▶ A one dimensional function $f: \mathbb{R} \to \mathbb{R}$ is differentiable if the derivative

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 exists

▶ Suppose that all partial derivatives of $f: \mathbb{R}^d \to \mathbb{R}$ exists The gradient $\nabla f(x)$ is the vector of partial derivatives $[\nabla f(x)]_i = \frac{\partial}{\partial x_i} f(x)$

Alternative definitions of convexity

Assume that $f(x): \mathbb{R}^d \to \mathbb{R}$ is differentiable. Then f is convex, if and only if for every x,y the inequality

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

is satisfied

Twice differentiable functions

Suppose that all second derivatives of $f: \mathbb{R}^d \to \mathbb{R}$ $\frac{\partial}{\partial x_i} \frac{\partial}{\partial x_i} f(x) \text{ exists}$

The Hessian $\nabla^2 f(x)$ is the matrix of partial derivatives $[\nabla^2 f(x)]_{ij} = \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_i} f(x)$

Twice differentiable convex functions

- A twice differentiable function f(x) is convex if and only if the Hessian $\nabla^2 f(x)$ is positive semi-definite for all $x \in \mathbb{R}^d$
- Suppose that f is convex and differentiable, then x^* is a global minimizer of f if and only if $\nabla f(x^*) = 0$

Gradient descent for differentiable functions

- $-\nabla f(x)$ is the direction of largest instantaneous decrease
- ► Gradient Descent (GD):

$$x_{t+1} = x_t - \mu_t \nabla f(x_t)$$

- where μ_t is the step size at iteration t.
- ▶ if μ_t is sufficiently small and $\nabla f(x_t) \neq 0$, guaranteed to decrease the value of f
- If f is convex, converges to global minimum under mild conditions

Gradient descent for convex functions

slide credit: R. Tibshirani

Gradient descent for non-convex functions

slide credit: R. Tibshirani

Gradient descent iterations

slide credit: A. Quesada 16/22

Gradient descent on highly curved functions

Rosenbrock function (non-convex) $f(x_1, x_2) = (a - x_1)^2 + b(x_2 - x_1^2)^2$ where a and b are parameters, e.g., a = 1, b = 100 has a global minimum at $(x_1, x_2) = (a, a^2)$

Consider

$$\min_{x} \frac{1}{2} ||Ax - b||_2^2$$

- gradient $\nabla f(x) = A^T(Ax b)$
- Gradient Descent:

$$x_{t+1} = x_t - \mu A^T (Ax_t - b)$$

▶ fixed step size $\mu_t = \mu$

- ► Basic (in)equality method
 - (1) x^* minimizes f(x), hence $\nabla f(x^*) = A^T(Ax^* b) = 0$
 - (2) $x_{t+1} = x_t \mu A^T (Ax_t b)$
 - (3) define error $\Delta_t = x_t x^*$

- ► Basic (in)equality method
 - (1) x^* minimizes f(x), hence $\nabla f(x^*) = A^T(Ax^* b) = 0$
 - (2) $x_{t+1} = x_t \mu A^T (Ax_t b)$
 - (3) define error $\Delta_t = x_t x^*$

- run gradient descent M iterations, i.e., t = 1, ..., M
- ▶ $\|\Delta_M\|_2 \le \sigma_{\max} \left((I \mu A^T A)^M \right) \|\Delta_0\|_2$ $\sigma_{\max} \left(I - \mu A^T A \right)^M = \max_{i=1,..,d} \left| 1 - \lambda_i (A^T A) \right|^d$ where λ_i is the *i*-th eigenvalue in decreasing order

Questions?