DIT181: Data Structures and Algorithms

Lecture 4: Divide and conquer, Quicksort

Michał Pałka, Gül Calikli

Email: michal.palka@chalmers.se, calikli@chalmers.se

This lecture

- Divide-and-conquer
- Big-O for recurrences
- Quicksort

Divide-and-conquer

Multiplication

Works in any base

Multiplication: divide and conquer

- We want to compute the multiplication XY of two numbers represented in base B
- We split the digits of X and Y into

$$X = X_1 B^m + X_0$$

$$Y = Y_1 B^m + Y_0$$

We compute

$$XY = X_1 Y_1 B^{2m} + (X_1 Y_0 + X_0 Y_1) B^m + X_0 Y_0$$

- This requires performing multiplications for smaller numbers, which are performed in the same way
- When we reach single digits, we multiply them normally
- This the same pattern of multiplications as in the naïve method

Multiplication: faster

- We want to compute the multiplication XY of two numbers represented in base B
- We split the digits of X and Y into

One multiplication $X_0 \\ Y_0$ Two multiplications $Z_0 = X_0 Y_0 \\ Z_2 = X_1 Y_1 \\ Z_1 = (X_1 + X_0)(Y_1 + Y_0) - Z_2 - Z_0 = X_1 Y_0 + X_0 Y_1 \\ XY = Z_2 B^{2m} + Z_1 B^m + Z_0$

 As a result, we perform 3 recursive multiplications instead of 4 (Karatsuba algorithm)

Multiplication: complexity

- The complexity of divide-and-conquer algorithms can be given as recurrences
- $T_1(n) = 4T_1(n/2) + \Theta(n)$ (slow version)
- $T_2(n) = 3T_2(n/2) + \Theta(n)$ (fast version)

Slow versus fast multiplication

Slow versus fast multiplication

Multiplication: complexity

- $T_1(n) = 4T_1(n/2) + \Theta(n)$ (slow version) $T_1(n) \in \Theta(n^2)$ $T_1(n) = 4T_1(n/2) + \Theta(n)$ $= 16T_1(n/4) + 4\Theta(n/2) + \Theta(n)$ $= 64T_1(n/8) + 16\Theta(n/4) + 4\Theta(n/2) + \Theta(n)$...
- $T_2(n) = 3T_2(n/2) + \Theta(n)$ (fast version) $T_2(n) \in \Theta(n^{1.585})$ (lg 3 \approx 1.585)
- In practice: the 'fast' algorithm is faster for large inputs; it still pays off to use the 'slow' one for small inputs.

Maximum subarray

 Given an array of integers, find the contiguous subarray that has the largest sum

• Naïve algorithm: $\Theta(n^2)$

Maximum subarray: divide and conquer

 Divide the array into two halves, and solve the problem for both halves

- The resulting maximum subarray is either among the results from the subproblems, or is a subarray that crosses the border
- The cost of find the border-crossing maximum subarray is $\Theta(n)$

Maximum subarray: complexity

•
$$T_1(n) = 2T_1(n/2) + \Theta(n)$$

 $T_1(n) \in \Theta(n \lg n)$
 $T_1(n) = 2T_1(n/2) + \Theta(n)$
 $= 4T_1(n/4) + 2\Theta(n/2) + \Theta(n)$
 $= 8T_1(n/8) + 4\Theta(n/4) + 2\Theta(n/2) + \Theta(n) \dots$

Divide-and-conquer algorithms

- We have seen two divide-and-conquer algorithms
- In each, the problem is first decomposed into subproblems
- Then, the subproblems are solved
- Finally, the results of solving the subproblems are combined
- D-a-c algorithms may be easier to explain and implement
- D-a-c allows us to come up with optimisations
- Typically d-a-c algorithms are implemented using recursive functions
- D-a-c allows for parallelisation

Maximum subarray: implementation

Solving subproblems

```
public static int maxInterval (int[] arr
                               int lo,
  if (hi - lo == 1) return array[lo];
  int mid = lo + (hi - lo) / 2;
  int loRes = maxInterval (array, lo, mid);
  int hiRes = maxInterval (array, mid, hi);
  int maxBorder;
  // Find the maximum subarray that crosses the border
  // ...
  return Math.max(loRes, Math.max(hiRes, maxBorder));
```

Combining results

Maximum subarray: implementation

Solving subproblems

```
public static int maxInterval (int[] arr
                               int lo,
  if (hi - lo == 1) return array[lo];
  int mid = lo + (hi - lo) / 2;
  int loRes = maxInterval (array, lo, mid);
  int hiRes = maxInterval (array, mid, hi);
  int maxBorder;
  // Find the maximum subarray that crosses the border
  // ...
  return Math.max(loRes, Math.max(hiRes, maxBorder));
```

Combining results

Mergesort

Mergesort

- Split the array into two subarrays
- Sort them recursively
- Merge the results $(\Theta(n))$
- Complexity:

$$T(n) = 2T(n/2) + \Theta(n)$$

Mergesort (Complexity)

Solving recurrences

Solving recurrences

Recurrences describing divide-and-conquer algorithm complexity often look as follows

$$T(n) = 2T\binom{n}{2} + \Theta(n)$$

 To solve a recurrence (get a closed-form complexity), we may expand the recurrence to get an idea of the kind of a solution

$$T(n) = 2T(n/2) + \Theta(n)$$

= $4T(n/4) + 2\Theta(n/2) + \Theta(n)$
= $8T(n/8) + 4\Theta(n/4) + 2\Theta(n/2) + \Theta(n)$...

• Once we make a guess e.g. $T(n) \in \Theta(n \lg n)$, we can try to prove it.

Solving recurrences, cont.

$$T(n) = 2T\binom{n}{2} + \Theta(n)$$

- So we hypothesise that $T(n) \in \Theta(n \lg n)$
- We will first show that $T(n) \in O(n \lg n)$
- $T(n) \le 2T(n/2) + dn$ for some constant d
- We will perform a proof by induction
- From the induction hypothesis, $T(^n/_2) \le c^n/_2 \lg^n/_2$ for some constant c
- We have $T(n) \le 2c^n/2 \lg^n/2 + dn = cn (\lg n 1) + dn = cn \lg n cn + dn$
- Since we can increase constant c, we can ensure that c > d, and thus $T(n) \le cn \lg n$

Solving recurrences, cont.

$$T(n) = 2T\binom{n}{2} + \Theta(n)$$

- So we hypothesise that $T(n) \in \Theta(n \lg n)$
- After showing that $T(n) \in O(n \lg n)$, we can show that $n \lg n \in O(T(n))$
- $T(n) \ge 2T(n/2) + dn$ for some constant d
- This part is usually easier
- From the induction hypothesis, $T(^n/_2) \ge c^n/_2 \lg^n/_2$ for some constant c
- We have $T(n) \ge 2c^n/2 \lg^n/2 + dn = cn (\lg n 1) + dn = cn \lg n cn + dn$
- Since we can decrease constant c, we can ensure that c < d, and thus $T(n) \ge cn \lg n$

Some pitfalls

- Instead of $T(n) = 2T(n/2) + \Theta(n)$ it is really $T(n) = T(\lfloor n/2 \rfloor) + T(\lfloor n/2 \rfloor) + \Theta(n)$ In most cases it is not a problem (the computations work in the same way)
- The O and Θ definitions talk about all n above n_0 But since we are interested in asymptotic results, we only care about what happens above certain numbers

Solving recurrences, cont.

- Expand recurrence
- Make a guess
- Try to prove it

The master method

• But... if the recurrence has he form

$$T(n) = aT\binom{n}{b} + f(n)$$

then there is a 'cookbook' solution

The master method, cont.

- Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let $T(n) = aT(^n/_b) + f(n)$, where we interpret $^n/_b$ to mean either $[^n/_b]$ or $[^n/_b]$. Then T(n) has the following asymptotic bounds:
- If $f(n) \in O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$ then $T(n) \in \Theta(n^{\log_b a})$
- If $f(n) \in \Theta(n^{\log_b a})$ then $T(n) \in \Theta(n^{\log_b a} \lg n)$
- If $n^{\log_b a + \epsilon} \in O(f(n))$ for some constant $\epsilon > 0$, and if $af(^n/_b) \le cf(n)$ for some constant c < 1, and all sufficiently large n then $T(n) \in \Theta(f(n))$
- See ch. 4, Introduction to Algorithms, T. H. Cormen et. al., or ch. 5 from the textbook

Quicksort

Partition

Recall the code for partitioning an array

```
private static int partition (int[] array,
                               int lo, int hi) {
   if (hi - lo <= 1) return 0;
   int pivot = array[lo];
   int i = -1;
   int j = hi;
   while(true) {
     do { ++i; } while (array[i] < pivot);</pre>
     do { --j; } while (array[j] > pivot);
     if (i >= j) return j + 1;
     swap(array, i, j);
```

Example execution

```
5
1
      2
        0
        3
     2
     2
        3
        3
   5
     4 | 3
```

```
private static int partition
(int[] array, int lo, int hi) {
    if (hi - lo <= 1) return 0;
    int pivot = array[lo];
    int i = -1;
    int j = hi;
    while(true) {
      do { ++i; }
     while (array[i] < pivot);</pre>
      do { --j; }
      while (array[j] > pivot);
      if (i >= j) return j + 1;
      swap(array, i, j);
```

Quicksort

Here is the code of quicksort proper

 We partition the array, and then perform quicksort recursively for the resulting subarrays

Quicksort: complexity

- Worst case: the pivot element is always the smallest one $T(n) = T(n-1) + \Theta(n), T(n) \in \Theta(n^2)$
- Average case: we need an assumption on the distribution of all possible arrays that we will get as inputs
- If the elements of the array are randomly placed (have random positions), then we can expect the partition to be approximately balanced, for example in 1:9 ratio

$$T(n) = T(9/_{10}n) + T(1/_{10}n) + \Theta(n)$$

Quicksort: complexity

- $T(n) = T(^{9}/_{10}n) + T(^{1}/_{10}n) + \Theta(n)$ $= T(^{81}/_{100}n) + T(^{9}/_{100}n) + \Theta(^{9}/_{10}n) + T(^{9}/_{100}n)$ $+ T(^{1}/_{100}n) + \Theta(^{1}/_{10}n) + \Theta(n)$
- Each level of the expansion will be at most $\Theta(n)$, and the will be at most $\Theta(\lg n)$ levels
- This argument makes a 'reasonable', but false assumption
- For a rigorous argument, see ch. 7, *Introduction to Algorithms*, T. H. Cormen et. al.

What could possibly go wrong?

- Worst-case complexity: $\Theta(n^2)$
- Will this terminate at all in the worst case?
- Are there no off-by-one errors in the code?

Pre-conditions and post-conditions

- Pre-condition is a condition that concerns inputs to a method, and/or the state of the object and/or the environment before the invocation
- Post-condition is a condition that concerns the result of a method and/or the state of the object and/or the environment after the invocation
- We can state that a particular pre-condition is required before an invocation of a method
- We can state that a particular post-condition holds after an invocation of a method
- Pre- and post-conditions can also concern lines of code/blocks

Pre-conditions and post-conditions: example

- Pre-condition 1: $lo \ge 0, hi \ge 0, lo \le hi$
- Post-condition 1: given pre-condition 1, $lo \le res \le hi$
- Post-condition 2: ...

```
private static int mid(int lo, int hi) {
  return lo + (hi - lo) / 2;
}
```

What post-conditions do we need?

- We need to be sure that lo , as otherwise the procedure will loop (infinite recursion)
- We need to be sure that after partition all elements of the array before index p are not greater than all elements starting from p+1 on

How to show the first post-condition?

- We want to show that when the return statement is executed (return j + 1), then lo < j + 1 < hi holds
- But the method contains loops
- We will need invariants

```
private static int partition
(int[] array, int lo, int hi) {
    if (hi - lo <= 1) return 0;
    int pivot = array[lo];
    int i = -1;
    int j = hi;
    while(true) {
      do { ++i; }
      while (array[i] < pivot);</pre>
      do { --j; }
      while (array[j] > pivot);
      if (i >= j) return j + 1;
      swap(array, i, j);
```

Invariants

- Invariant is a condition that is always true in a given method/block of code, possibly assuming pre-condition
- Exampe: pre-condition: array.length > 0
- Invariant: if cur and I are defined, then cur = maximum(array[0], ..., array[i-1])

How to show the first post-condition?

- We want to show that when the return statement is executed (return j + 1), then lo < j + 1 < hi holds
- Invariant:

```
array[k] \le pivot \forall k < i,

array[k] \ge pivot \forall k > j
```

```
private static int partition
(int[] array, int lo, int hi) {
    if (hi - lo <= 1) return 0;
    int pivot = array[lo];
    int i = -1;
    int j = hi;
    while(true) {
      do { ++i; }
      while (array[i] < pivot);</pre>
      do { --j; }
      while (array[j] > pivot);
      if (i >= j) return j + 1;
      swap(array, i, j);
```

How to show the first post-condition?

- We want to show that when the return statement is executed (return j + 1), then lo < j + 1 < hi holds
- Invariant:

```
private static int partition
(int[] array, int lo, int hi) {
    if (hi - lo <= 1) return 0;
    int pivot = array[lo];
    int i = -1;
    int j = hi;
    while(true) {
      do { ++i; }
      while (array[i] < pivot);</pre>
      do { --j; }
      while (array[j] > pivot);
      if (i >= j) return j + 1;
      swap(array, i, j);
```

Conclusion

- Divide-and-conquer algorithms offer an effective way of solving certain problems
- The complexity of divide-and-conquer algorithms can be often estimated using recurrences
- Quicksort is a fast sorting algorithm, but its worst-case performance is $\Theta(n^2)$, and its analysis is pretty complex