INTERPOLATING VALUES USING A TETRAHEDRAL MESH

Murray, Alex (TheComet) alex.murray@gmx.ch

July 8, 2016

1 The Math

A 3D tetrahedron, a polyhedron having four triangular faces and four vertices, is defined by its four vertices v_1 , v_2 , v_3 and v_4 , where v_n is a 3 dimensional point in Cartesian space $v_n = \begin{bmatrix} x_n & y_n & z_n \end{bmatrix}^T$. The barycentric coordinates are defined so that the first vertex r_1 maps to barycentric coordinates $\lambda_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$, $r_2 \rightarrow \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$, etc. and that the sum of barycentric parameters $\sum \lambda_n = 1$.

This is a linear transformation and the problem can be written in matrix form so that $v = R\lambda$ with $R = \begin{bmatrix} v_1 | v_2 | v_3 | v_4 \end{bmatrix}$ and $\lambda = \begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 \end{bmatrix}^T$. The condition $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 1$ can be augmented into the matrix to form the final equation:

$$\begin{bmatrix} v_{1_x} & v_{2_x} & v_{3_x} & v_{4_x} \\ v_{1_y} & v_{2_y} & v_{3_y} & v_{4_y} \\ v_{1_z} & v_{2_z} & v_{3_z} & v_{4_z} \\ 1 & 1 & 1 & 1 \end{bmatrix} \lambda = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
 (1)

Where x, y, and z define a 3D point in Cartesian space. The barymetric coordinates λ can be solved as the solution of the linear equation 1.

Given a subspace $V = \text{span}(\vec{e_1}|\vec{e_2}|...)$ where $\vec{e_n}$ is the basis for V and $\vec{x}, \vec{e_n} \in \mathbb{R}^N$, the projection of \vec{x} onto V is defined as:

$$\operatorname{proj}_{V} \vec{x} = A \left(A^{\mathsf{T}} A \right)^{-1} A^{\mathsf{T}} \vec{x} \tag{2}$$

The face of a tetrahedron is defined by the three vertices v_1 , v_2 and v_3 , where $v_n \in \mathbb{R}^3$. A point $\vec{x} \in \mathbb{R}^3$ is projected into the triangle:

$$\begin{split} \vec{a} &= \vec{v_2} - \vec{v_1} \\ \vec{b} &= \vec{v_3} - \vec{v_1} \\ \text{proj}_V \vec{x} &= A \left(A^\intercal A \right)^{-1} A^\intercal \vec{x} \\ &= \begin{bmatrix} a_x & b_x \\ a_y & b_y \\ a_z & b_z \end{bmatrix} \left(\begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \end{bmatrix} \begin{bmatrix} a_x & b_x \\ a_y & b_y \\ a_z & b_z \end{bmatrix} \right)^{-1} \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \end{bmatrix} \end{split}$$