Two-Way Fixed Effects, the Two-Way Mundlak Regression, and Difference-in-Differences Estimators

Jeff Wooldridge Department of Economics Michigan State University

Brown University
Department of Economics
April 19, 2022

- 1. Introduction
- 2. Equivalence of TWFE and Two-Way Mundlak
- 3. Application to Difference-in-Differences
- 4. Identification of ATTs and Imputation Estimation
- 5. Equivalence Between POLS and Imputation
- 6. All Units Eventually Treated
- 7. Testing and Relaxing Parallel Trends
- 8. Small Simulation Study
- 9. Concluding Remarks

1. Introduction

- For panel data, two-way fixed effects (TWFE) is a staple in empirical research.
 - ► Applied to "structural" models say, production functions.
 - ► Applied to policy analysis difference-in-differences.
- Used for all configurations of *N* and *T*.
- With small T, large N, time effects often absorbed into covariates.
 - ► Analyze as a one-way FE estimator.

- One-way Mundlak regression has proven useful for many purposes.
- ► Leads to simple, robust, regression-based comparisons between FE and RE estimation: Arellano (1993).
- ► Produces insight into the pre-testing problem with Hausman tests.
- ➤ Suggests how to allow heterogeneity to correlate with covariates in nonlinear models: Mundlak-Chamberlain device.

- Wooldridge (2019, J of E): The one-way Mundlak regression applies to unbalanced panels.
- ► In the linear case, Mundlak still produces the complete-cases FE estimator.
- ➤ Suggests correlated random effects approaches for heterogeneous slopes and nonlinear models.

- Current paper: Equivalence between the TWFE estimator and the obvious two-way Mundlak regression.
- Equivalence is simple but useful.
 - ► Further reveals the workings of TWFE.
 - ► Applications to staggered interventions and DiD.

- Advantages of TWFE for intervention analysis:
- 1. We know properties of TWFE when the panel is unbalanced.
- 2. It is easy to test the null that treatment effects are homogeneous in a robust way.
- 3. Immediate extensions of the TWFE etimator to removing unit-specific trends can be applied with heterogenous treatment effects.
- Advantages of POLS: Can be extended to nonlinear models.

2. Equivalence of TWFE and Two-Way Mundlak

• Motivation for TWFE estimation:

$$y_{it} = \mathbf{x}_{it}\mathbf{\beta} + c_i + f_t + u_{it}, \ t = 1, ..., T; i = 1, ..., N$$

- $ightharpoonup \mathbf{x}_{it}$ is $1 \times K$.
- $ightharpoonup c_i$ are the unit-specific effects.
- $\blacktriangleright f_t$ are the time-specific effects.

- Equivalence results are algebraic.
- The two-way dummy variable regression (TWFE):

$$y_{it}$$
 on \mathbf{x}_{it} , 1, $c2_i$, ..., cN_i , $f2_t$, ..., fT_t , $t = 1, ..., T$; $i = 1, ..., N$.

- ► Coefficients on \mathbf{x}_{it} are $\hat{\boldsymbol{\beta}}_{FE}$ ($K \times 1$).
- \mathbf{x}_{it} only includes variables that have some variation across i and t.

• Alternatively, consider the two-way Mundlak regression.

$$\mathbf{\bar{x}}_{i\cdot} \equiv T^{-1} \sum_{t=1}^{T} \mathbf{x}_{it}$$

$$\mathbf{\bar{x}}_{\cdot t} \equiv N^{-1} \sum_{i=1}^{N} \mathbf{x}_{it}$$

• Pooled OLS of

$$y_{it}$$
 on 1, \mathbf{x}_{it} , $\mathbf{\bar{x}}_{i\cdot}$, $\mathbf{\bar{x}}_{\cdot t}$, $t = 1, ..., T$; $i = 1, ..., N$.

▶ Let $\hat{\beta}_M$ be the coefficients \mathbf{x}_{it} .

THEOREM: Let $\ddot{\mathbf{x}}_{it} = \mathbf{x}_{it} - \overline{\mathbf{x}}_{i\cdot} - \overline{\mathbf{x}}_{\cdot t} + \overline{\mathbf{x}}$. Provided the $K \times K$ matrix

$$\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{\mathbf{x}}_{it}' \ddot{\mathbf{x}}_{it}$$

is nonsingular,

$$\hat{oldsymbol{eta}}_{M}=\hat{oldsymbol{eta}}_{FE}$$

Moreover, in the extended regression

$$y_{it}$$
 on 1, \mathbf{x}_{it} , $\mathbf{\bar{x}}_{i\cdot}$, $\mathbf{\bar{x}}_{\cdot t}$, \mathbf{z}_{i} , \mathbf{m}_{t} , $t = 1, ..., T$; $i = 1, ..., N$

for time-constant variables \mathbf{z}_i and unit-constant variables \mathbf{m}_t , the coefficients on \mathbf{x}_{it} are still $\hat{\boldsymbol{\beta}}_{FE}$. \square

- Proof uses Frisch-Waugh partialling out.
- Coefficients on $\bar{\mathbf{x}}_i$ and $\bar{\mathbf{x}}_{t}$ do change with the inclusion of \mathbf{z}_i , \mathbf{m}_t .
 - ▶ Basis of robust, regression-based Hausman tests.
- Suppose a regressor is an interaction of the form

$$x_{it} = z_i \cdot m_t$$

► Then

$$\bar{x}_{i\cdot} = z_i \cdot \bar{m}, \ \bar{x}_{\cdot t} = \bar{z}m_t$$

▶ Mundlak regression: Sufficient to include z_i , m_t as controls.

3. Application to Difference-in-Differences Common Timing

- *T* time periods.
 - ▶ t = 1, ..., q 1 are control periods.
 - ▶ Intervention happens at t = q, remains in place.
- Treatment indicator:

$$w_{it} = d_i \cdot p_t = d_i \cdot (fq_t + \dots + fT_t)$$

$$d_i = 1$$
 if (eventually) treated

$$p_t = fq_t + \cdots + fT_t = 1$$
 if a post treatment period

- Estimate a single treatment effect.
- Equation that motivates TWFE:

$$y_{it} = \tau w_{it} + c_i + g_t + u_{it}, t = 1, \dots, T; i = 1, 2, \dots, N$$

$$\bar{w}_{i \cdot} = d_i \bar{p}$$

$$\bar{w}_{\cdot t} = \bar{d} p_t$$

• TWM regression is equivalent to the DID (Mundlak) regression

$$y_{it}$$
 on 1, w_{it} , d_i , p_t , $t = 1,...,T$; $i = 1,...,N$

• The TWFE estimator has the familiar form

$$\hat{\tau}_{FE} = \hat{\tau}_{DD} = (\bar{y}_1^{post} - \bar{y}_0^{post}) - (\bar{y}_1^{pre} - \bar{y}_0^{pre})$$

- Enough to control for d_i ; unit-specific fixed effects not needed.
- Using separate time dummies $f2_t$, ..., fT_t in place of p_t has no effect on $\hat{\tau}_{DD}$.
- Adding time-constant controls, \mathbf{x}_i or $d_i \cdot \mathbf{x}_i$, has no effect on $\hat{\tau}_{DD}$.

- Allow TEs to change over treatment period, add covariates.
- Motivating equation:

$$y_{it} = \tau_q(d_i \cdot fq_t) + \dots + \tau_T(d_i \cdot fT_t) + [d_i \cdot fq_t \cdot (\mathbf{x}_i - \overline{\mathbf{x}}_1)] \boldsymbol{\gamma}_q$$

$$+ \dots + [d_i \cdot fT_t \cdot (\mathbf{x}_i - \overline{\mathbf{x}}_1)] \boldsymbol{\gamma}_T$$

$$+ (fq_t \cdot \mathbf{x}_i) \boldsymbol{\delta}_q + \dots + (fT_t \cdot \mathbf{x}_i) \boldsymbol{\delta}_T + c_i + g_t + u_{it}$$

$$\mathbf{x}_1 \equiv N_1^{-1} \sum_{t=1}^N d_t \mathbf{x}_t$$

• Estimate by TWFE.

- Same estimates using TWM while including time-constant variables d_i , \mathbf{x}_i , d_i \mathbf{x}_i .
- Need time dummies for fq_t , ..., fT_t .
 - ▶ Harmless to include fs_t for s = 2, ..., q 1.

$$y_{it} = \tau_{q}(w_{it} \cdot fq_{t}) + \cdots + \tau_{T}(w_{it} \cdot fT_{t})$$

$$+ [w_{it} \cdot fq_{t} \cdot (\mathbf{x}_{i} - \overline{\mathbf{x}}_{1})] \boldsymbol{\gamma}_{q} + \cdots + [w_{it} \cdot fT_{t} \cdot (\mathbf{x}_{i} - \overline{\mathbf{x}}_{1})] \boldsymbol{\gamma}_{T}$$

$$+ \alpha + \zeta d_{i} + \mathbf{x}_{i} \boldsymbol{\xi} + (d_{i} \cdot \mathbf{x}_{i}) \boldsymbol{\lambda}$$

$$+ \theta_{2} f 2_{t} + \cdots + \theta_{T} f T_{t}$$

$$+ (f 2_{t} \cdot \mathbf{x}_{i}) \boldsymbol{\delta}_{2} + \cdots + (f T_{t} \cdot \mathbf{x}_{i}) \boldsymbol{\delta}_{T} + e_{it}$$

Pooled OLS regression

$$y_{it}$$
 on $w_{it} \cdot d_i \cdot fq_t$, ..., $w_{it} \cdot d_i \cdot fT_t$
 $w_{it} \cdot d_i \cdot fq_t \cdot \dot{\mathbf{x}}_i$, ..., $w_{it} \cdot d_i \cdot fT_t \cdot \dot{\mathbf{x}}_i$
 $1, d_i, \mathbf{x}_i, d_i \cdot \mathbf{x}_i, f2_t$, ..., $fT_t, f2_t \cdot \mathbf{x}_i$, ..., $fT_t \cdot \mathbf{x}_i$,
 $\dot{\mathbf{x}}_i = \mathbf{x}_i - \overline{\mathbf{x}}_1$

- \blacktriangleright Estimation is same without w_{it} .
- ▶ Introducing w_{it} is convenient for obtaining standard errors that account for sampling error in $\bar{\mathbf{x}}_1$.

Staggered Interventions

- Assume:
 - ▶ First intervention at $1 < q \le T$.
 - ► No reversibility.
 - ► Existence of a never treated group.
- Cohort dummies (exhaustive, mutually exclusive):

$$d_{iq}, d_{i,q+1}, ..., d_{iT}, d_{i\infty}$$

• TWFE estimation includes treatment indicators

$$d_{ig} \cdot fs_t, s \in \{g, ..., T\}; g \in \{q, ..., T\}$$

• Estimated effects:

$$\hat{\tau}_{gs}, s \in \{g, ..., T\}; g \in \{q, ..., T\}$$

- ▶ Time average of $d_{ig} \cdot fs_t$ is proportional to d_{ig} .
- ▶ Cross-sectional average of $d_{ig} \cdot fs_t$ is proportional to fs_t ,

$$s \in \{g, \ldots, T\}.$$

• With covariate interactions in TWFE

$$fs_t \cdot \mathbf{x}_i, d_{ig} \cdot fs_t \cdot \mathbf{x}_i$$

► In Mundlak, need to include

$$\mathbf{x}_i, d_{iq} \cdot \mathbf{x}_i, ..., d_{iT} \cdot \mathbf{x}_i$$

• For TWM, it is enough to control for

$$d_{iq}, ..., d_{iT}, \mathbf{x}_i, d_{iq} \cdot \mathbf{x}_i, ..., d_{iT} \cdot \mathbf{x}_i$$

• The POLS and RE versions of Mundlak are also identical.

4. Identification of ATTs and Imputation Estimation

- Wooldridge (2005, REStat): TWFE with heterogeneous slopes and using intensity of treatment for heterogeneous effects.
- TWFE under recent scrutiny for staggered interventions.
- de Chaisemartin and D'Haultfœuille (2020, AER), Goodman-Bacon (2021, J of E), Callaway and Sant'Anna (2021, J of E), Sun and Abraham (2021, J of E).

- First intervention period is t = q.
- Subsequent treatment in each period after q, up to T.
 - ► Might have gaps.
- No reversibility.
- Initially, a never treated group.

• Define potential outcomes:

 $y_t(\infty)$: never treated state

 $y_t(g), g \in \{q, q+1, \dots, T\}$: first exposure in g

- Define treatment cohorts by dummies: d_q , ..., d_T , d_∞ .
 - ▶ $d_g = 1$ if unit first enters treatment in period g.
 - ▶ $d_{\infty} = 1$ indicates never treated.

• Define ATTs relative to the never treated state:

$$\tau_{gs} = E[y_s(g) - y_s(\infty)|d_g = 1], g = q, ..., T; s = g, ..., T$$

- ▶ For cohort g, can estimate ATTs for s = g, g + 1, ..., T.
- Case without covariates is a special case.

Assumption CNAS (Conditional No Anticipation, Staggered):

For treatment cohorts g = q, q + 1, ..., T,

$$E[y_t(g) - y_t(\infty)|d_g = 1, \mathbf{x}] = 0, t < g. \square$$

► No anticipatory treatment effects for each subpopulation defined by **x**.

Assumption CCTS (Conditional Common Trends, Staggered):

For cohort indicators d_g and covariates \mathbf{x} ,

$$E[y_t(\infty) - y_1(\infty)|d_q, \dots, d_T, \mathbf{x}] = E[y_t(\infty) - y_1(\infty)|\mathbf{x}], t = 2, \dots, T. \square$$

• Also assume conditional expectations are linear in **x**:

$$E[y_1(\infty)|d_q,\ldots,d_T,\mathbf{x}] = \alpha + \sum_{g=q}^T \beta_g d_g + \mathbf{x}\mathbf{\kappa} + \sum_{g=q}^T (d_g \cdot \mathbf{x})\mathbf{\eta}_g$$

- ▶ Without covariates, above always holds.
- For $t \ge 2$:

$$E[y_t(\infty)|d_q,\ldots,d_T,\mathbf{x}] = \alpha + \sum_{g=q}^T \beta_g d_g + \mathbf{x}\mathbf{\kappa} + \sum_{g=q}^T (d_g \cdot \mathbf{x})\mathbf{\eta}_g + \gamma_t + \mathbf{x}\mathbf{\pi}_t$$

$$E[y_t(\infty)|d_q,\ldots,d_T,\mathbf{x}]-E[y_1(\infty)|d_q,\ldots,d_T,\mathbf{x}]=\gamma_t+\mathbf{x}\boldsymbol{\pi}_t$$

• Define time-varying treatment indicator:

$$w_{it} = d_{iq} \cdot (fq_t + \dots + fT_t) + \dots + d_{iT} \cdot pT_t$$

$$\equiv d_{iq} \cdot pq_t + \dots + d_{iT} \cdot pT_t$$

• For observable variables:

$$E(y_{it}|d_{iq},...,d_{iT},\mathbf{x}_i,w_{it}=0) = \alpha + \sum_{g=q}^{T} \beta_g d_{ig} + \mathbf{x}_i \mathbf{\kappa} + \sum_{g=q}^{T} (d_{ig} \cdot \mathbf{x}_i) \mathbf{\eta}_g$$

$$+ \sum_{s=2}^{T} \gamma_s f_{st} + \sum_{s=2}^{T} (f_{st} \cdot \mathbf{x}_i) \mathbf{\pi}_s$$

Imputation Procedure:

1. Using the $w_{it} = 0$ observations, estimate the parameters

$$(\alpha, \beta_q, \dots, \beta_T, \kappa, \eta_q, \dots, \eta_T, \gamma_2, \dots, \gamma_T, \pi_2, \dots, \pi_T)$$

by pooled OLS. The explanatory variables are

1,
$$d_{iq}$$
, ..., d_{iT} , \mathbf{x}_i , $d_{iq} \cdot \mathbf{x}_i$, ..., $d_{iT} \cdot \mathbf{x}_i$,
$$f2_t, \ldots, fT_t, f2_t \cdot \mathbf{x}_i, \ldots, fT_t \cdot \mathbf{x}_i$$

2. For cohort $g \in \{q, ..., T\}$, impute $y_{is}(\infty)$ for $w_{is} = 1$:

$$\hat{y}_{igs}(\infty) \equiv \hat{\alpha} + \hat{\beta}_g + \mathbf{x}_i \hat{\mathbf{x}} + \mathbf{x}_i \hat{\mathbf{\eta}}_g + \hat{\gamma}_s + \mathbf{x}_i \hat{\mathbf{\pi}}_s, s = g, \dots, T$$

3. For s = g, ..., T, obtain the imputation estimator of τ_{gs} :

$$\hat{\tau}_{gs} = N_g^{-1} \sum_{i=1}^{N} d_{ig} [y_{is} - \hat{y}_{igs}(\infty)]$$

$$= \bar{y}_{gs} - N_g^{-1} \sum_{i=1}^{N} d_{ig} (\hat{\alpha} + \hat{\beta}_g + \mathbf{x}_i \hat{\mathbf{k}} + \mathbf{x}_i \hat{\mathbf{\eta}}_g + \hat{\gamma}_s + \mathbf{x}_i \hat{\mathbf{\pi}}_s)$$

$$= \bar{y}_{gs} - (\hat{\alpha} + \hat{\beta}_g + \bar{\mathbf{x}}_g \hat{\mathbf{k}} + \bar{\mathbf{x}}_g \hat{\mathbf{\eta}}_g + \hat{\gamma}_s + \bar{\mathbf{x}}_g \hat{\mathbf{\pi}}_s)$$

$$\bar{\mathbf{x}}_g = N_1^{-1} \sum_{i=1}^{N} d_{ig} \mathbf{x}_i$$

5. Equivalence Between POLS and Imputation

• Starting point: Act as if

$$E(y_{it}|d_{iq},...,d_{iT},\mathbf{x}_{i}) = \alpha + \sum_{g=q}^{T} \beta_{g}d_{ig} + \mathbf{x}_{i}\mathbf{\kappa} + \sum_{g=q}^{T} (d_{ig} \cdot \mathbf{x}_{i})\mathbf{\eta}_{g}$$

$$+ \sum_{s=2}^{T} \gamma_{s}fs_{t} + \sum_{s=2}^{T} (fs_{t} \cdot \mathbf{x}_{i})\mathbf{\pi}_{s}$$

$$+ \sum_{g=q}^{T} \sum_{s=g}^{T} \tau_{gs}(w_{it} \cdot d_{ig} \cdot fs_{t})$$

$$+ \sum_{g=q}^{T} \sum_{s=g}^{T} (w_{it} \cdot d_{ig} \cdot fs_{t} \cdot \mathbf{x}_{ig})\boldsymbol{\xi}_{gs}$$

• Imputation:

- (i) Set $w_{it} = 0$, runs pooled OLS to estimate parameters.
- (ii) For the $w_{it} = 1$ subsample, obtain

$$\widehat{te}_{it} = y_{it} - \left[\hat{\alpha} + \sum_{g=q}^{T} \hat{\beta}_g d_{ig} + \mathbf{x}_i \hat{\mathbf{k}} + \sum_{g=q}^{T} (d_{ig} \cdot \mathbf{x}_i) \hat{\mathbf{\eta}}_g + \sum_{s=2}^{T} \hat{\gamma}_s f s_t + \sum_{s=2}^{T} (f s_t \cdot \mathbf{x}_i) \hat{\mathbf{\pi}}_s \right]$$

$$\hat{\tau}_{gs} = N_g^{-1} \sum_{i=1}^N d_{ig} \cdot \hat{te}_{is}$$

• POLS obtains the $\tilde{\tau}_{gs}$ as the coefficients on $w_{it} \cdot d_{ig} \cdot fs_t$ in the regression using all data:

$$y_{it}$$
 on $1, d_{iq}, ..., d_{iT}, \mathbf{x}_{i}, d_{iq} \cdot \mathbf{x}_{i}, ..., d_{iT} \cdot \mathbf{x}_{i},$

$$f2_{t}, ..., fT_{t}, f2_{t} \cdot \mathbf{x}_{i}, ..., fT_{t} \cdot \mathbf{x}_{i},$$

$$w_{it} \cdot d_{iq} \cdot fq_{t}, ..., w_{it} \cdot d_{iq} \cdot fT_{t}, ...,$$

$$w_{it} \cdot d_{i,q+1} \cdot f(q+1)_{t}, ..., w_{it} \cdot d_{i,q+1} \cdot fT_{t}, ..., w_{it} \cdot d_{iT} \cdot fT_{t},$$

$$w_{it} \cdot d_{iq} \cdot fq_{t} \cdot \dot{\mathbf{x}}_{iq}, ..., w_{it} \cdot d_{iq} \cdot fT_{t} \cdot \dot{\mathbf{x}}_{iT},$$

$$w_{it} \cdot d_{i,q+1} \cdot f(q+1)_{t} \cdot \dot{\mathbf{x}}_{iq}, ..., w_{it} \cdot d_{i,q+1} \cdot fT_{t} \cdot \dot{\mathbf{x}}_{iT}, ...,$$

$$w_{it} \cdot d_{iT} \cdot fT_{t} \cdot \dot{\mathbf{x}}_{iT}$$

$$\dot{\mathbf{x}}_{ig} \equiv \mathbf{x}_i - \mathbf{\bar{x}}_g$$

• The appendix shows that

$$\tilde{\tau}_{gs} = \hat{\tau}_{gs}, g = q, \dots, T; s = g, \dots, T$$

- ► Extension from regression adjustment in the cross-sectional case.
- Also, the estimates $\hat{\alpha}$, $\hat{\beta}_g$, $\hat{\kappa}$, $\hat{\eta}_g$, $\hat{\gamma}_s$, $\hat{\pi}_s$ from the first step of the imputation method are the same as the POLS estimates.
- Not the same imputation as BJS (2021), who use fixed effects in the first step.
 - ▶ But the estimates with time-constant covariates are still identical.
 - ▶ BJS (2021) allows time-varying covariates.

- RE = POLS.
 - ▶ Under classical error components assumptions, RE = GLS.
- ► Improving over POLS requires allowing more general patterns of serial correlation and maybe time-varying variances.
- Equivalently, use TWFE (dropping all time-constant variables).
- Imputation, POLS, RE and TWFE are all the same.
- ▶ Problem with the standard analysis is with the model, not the estimator.

- Advantages of POLS/TWFE over Imputation:
- 1. Standard errors easy to obtain without resampling.
 - ▶ Including aggregation and linear combinations of $\hat{\tau}_{gs}$.
- 2. Obtain estimates of the ξ_{gs} which give the "moderating" effects.

6. All Units Eventually Treated

- Regression approach (POLS/ETWFE) extends immediately if all units are treated by period *T*.
- Generally, the TEs are

$$y_s(g) - y_s(T), g = q, ..., T-1; s = g, ..., T$$

► The gain in period s from first being treated in the earlier period g rather than the last period.

• The identified parameters are

$$\tau_{(g:T),s} \equiv E[y_s(g) - y_s(T)|d_g = 1], g = q, ..., T-1; s = g, ..., T$$

- The NA and CT assumptions are stated for the potential outcome $y_t(T)$.
- If there *could* have been a never treated group, under (the strong form of) NA

$$y_t(T) = y_t(\infty), t < T$$

$$\tau_{(g:T),s} = \tau_{(g:\infty),s}, s < T$$

• Cannot estimate a TE for the $d_T = 1$ cohort.

7. Testing and Relaxing Parallel Trends

- Need at least two pre-treatment periods.
- Suppose T = 3, intervention at t = 3.
- Without covariates, run the regression

$$\Delta y_{i2}$$
 on 1, d_i , $i = 1,...,N$

 \blacktriangleright Heteroskedasticity-robust t statistic on d_i .

- Two pooled OLS approaches yield the same statistic.
- 1. Run the regression

$$y_{it}$$
 on 1 , d_i , $f2_t$, $d_i \cdot f2_t$, $f3_t$, $d_i \cdot f3_t$, $t = 1, 2, 3$; $i = 1, ..., N$ and use the cluster-robust t statistic on $d_i \cdot f2_t$.

2. Run the regression

$$y_{it}$$
 on 1, d_i , $f2_t$, $d_i \cdot t$, $f3_t$, $d_i \cdot f3_t$, $t = 1, 2, 3$; $i = 1, ..., N$ and use the cluster-robust t statistic on $d_i \cdot t$.

- Statistics are identical.
 - ► Coefficients on $d_i \cdot f3_t$ can be very different.

• When including $d_i \cdot t$, the coefficient on $d_i \cdot f3_t$ is a DiDiD estimator:

$$\hat{\tau}_{3} = N_{1}^{-1} \sum_{i=1}^{N} d_{i} \cdot \Delta^{2} y_{i3} - N_{0}^{-1} \sum_{i=1}^{N} (1 - d_{i}) \cdot \Delta^{2} y_{i3}$$

$$= \left[(\bar{y}_{3,treat} - \bar{y}_{2,treat}) - (\bar{y}_{2,treat} - \bar{y}_{1,treat}) \right]$$

$$- \left[(\bar{y}_{3,control} - \bar{y}_{2,control}) - (\bar{y}_{2,control} - \bar{y}_{1,control}) \right]$$

$$= (\bar{\Delta} \bar{y}_{3,treat} - \bar{\Delta} \bar{y}_{3,control}) - (\bar{\Delta} \bar{y}_{2,treat} - \bar{\Delta} \bar{y}_{2,control})$$

- Testing strategies in the general case:
- 1. In the full POLS regression, add interactions $d_{ig} \cdot fs_t$ for s < g, do joint test: the event study regression.
 - ▶ Not a sensible correction.
- 2. In the full POLS regression, add heterogenous linear trends

$$d_{iq} \cdot t, ..., d_{iT} \cdot t$$

and use a joint test.

▶ Works as a correction if the differences in trends are linear in t.

- The imputation equivalence result holds when adding heterogeneous trends.
- ▶ So the test is identical to using only the $w_{it} = 0$ observations and doing a joint test on

$$d_{iq} \cdot t, ..., d_{iT} \cdot t$$

- ► Implication: Provided fully heterogeneous TEs are allowed, the test for pre-trends is not contaminated by using the long regression.
 - ► Same property as the BJS (2021) test for pre-trends.

8. Small Simulation Study

- N = 500, T = 6, staggered entry at q = 4.
- One covariate. Common trends holds conditional on x.
- $\bullet R^2 = 0.241.$
- Approximate cohort shares:

$$\rho_{\infty} = 0.358, \ \rho_4 = 0.290, \ \rho_5 = 0.225, \ \rho_6 = 0.127$$

- 1,000 replications.
- CS = Callaway and Sant'Anna (2021, Journal of Econometrics).

	ATT	POLS		C	CS	Het. Trends		
N = 500	Mean	Mean	SD	Mean	SD	Mean	SD	
τ 44	3.99	3.99	0.288	3.99	0.362	3.99	0.396	
τ45	4.19	4.19	0.289	4.20	0.367	4.20	0.513	
τ46	4.59	4.60	0.316	4.60	0.372	4.61	0.662	
τ55	3.03	3.03	0.326	3.03	0.446	3.02	0.423	
τ56	3.62	3.63	0.358	3.63	0.430	3.62	0.521	
τ66	2.05	2.04	0.474	2.04	0.644	2.05	0.546	

- Rejection rate of event study test (9 df, 5% level): 0.061
- Rejection rate of common trends test (3 df, 5% level): 0.045

- N = 500, T = 6, staggered entry at q = 4.
- One covariate.
- Heterogeneous linear trends based on D_{ig} .
- $\bullet R^2 = 0.314.$
- Approximate cohort shares:

$$\rho_{\infty} = 0.358, \ \rho_4 = 0.290, \ \rho_5 = 0.225, \ \rho_6 = 0.127$$

• 1,000 replications.

	ATT	POLS		CS		Het. Trends		Event Study	
N = 500	Mean	Mean	SD	Mean	SD	Mean	SD	Mean	SD
τ 44	3.99	4.34	0.288	4.24	0.362	3.99	0.396	4.74	0.367
τ45	4.19	4.82	0.289	4.70	0.367	4.20	0.513	5.19	0.366
τ46	4.59	5.55	0.317	5.35	0.372	4.61	0.662	5.85	0.369
τ55	3.03	3.34	0.326	3.20	0.446	3.02	0.423	3.70	0.409
τ56	3.62	4.19	0.358	3.96	0.430	3.62	0.521	4.46	0.415
τ66	2.05	2.43	0.474	2.16	0.644	2.05	0.546	2.69	0.551

- Rejection rate of event study test (9 df, 5% level): 0.266
- Rejection rate of common trends test (3 df, 5% level): 0.401

9. Concluding Remarks

- Equivalence between TWFE and TWM has applications to DiD estimators with staggered entry.
 - ▶ "Extended" TWFE allows for flexible treatment effects.
 - ► In leading cases, equivalent to imputation.
- TWFE has some resilience to unbalanced panels.
 - ▶ Allows sample selection to depend on unobserved heterogeneity.

- Can accomodate staggered exit.
 - ► Cohorts are now indexed by entry and exit date.
- The pooled OLS methods extend to nonlinear models and pooled QMLE.
 - ▶ Binary and Fractional: Logit mean, Bernoulli QMLE.
 - ► Nonnegative: Exponential mean, Poisson QMLE.