Tuesday, October 30, 2018 9:28 AM

STATISTICAL MACHINE LEARNING
- Given a data set $S:=\{j: j: j$
ric X CIR
closed and bounded (compact)
y' E / C IR
Def (ML in this class): ML is the task of
learning the unknown function $f(\vec{x})$: $y' = f(\vec{x})$
given an incomplète information déscribed by
the data set $S:=3$ \overline{Z}^{i}, y^{i} , Y^{i}
- Define the product space 2:= X x 7.
equipped with a "porel" probability measure
T(x)y). Let T(y/x) be the corditional probability
measure of y given de and
$\overline{\Pi(X)} := \int \overline{\Pi(X,y)} dy = \left(\overline{\Pi(X,dy)}\right)$

EM397Fall2018 Page 1

. If $(x,y) = \pi(y)\pi(x)$ theorem $\pi(x,y) = \pi(y)\pi(x) \times \pi(x)$ Least square error $(\pi k) \text{ w.r.t. } \pi(x,y)$ $\pi(h) = \int (h(x) - y)^2 d\pi(x,y)$ Where h(x) is an approximation of y = f(x)