Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1. Suppose a MAC system (S,V) is used to protect files in a file system

1/1 point

by appending a MAC tag to each file. $\;\;$ The MAC signing algorithm S

is applied to the file contents and nothing else. What tampering attacks $\,$

are not prevented by this system?

- Changing the last modification time of a file.
- Replacing the contents of a file with the concatenation of two files on the file system.
- Changing the first byte of the file contents.
- Replacing the tag and contents of one file with the tag and contents of a file from another computer protected by the same MAC system, but a different key.
- Correct
 The MAC signing algorithm is only applied to the file contents and does not protect the file meta data.
- 2. Let (S,V) be a secure MAC defined over (K,M,T) where $M=\{0,1\}^n$ and $T=\{0,1\}^{128}$. That is, the key space is K, message space is $\{0,1\}^n$, and tag space is $\{0,1\}^{128}$.

Which of the following is a secure MAC: (as usual, we use $\|$ to denote string concatenation)

- $egin{aligned} igspace S'(k,m) &= S(k,\ m[0,\ldots,n-2]ig\|0) \quad ext{and} \ V'(k,m,t) &= V(k,\ m[0,\ldots,n-2]ig\|0,\ t) \end{aligned}$
- $S'(k,m) = S(k,\ mig\|m)$ and $V'(k,m,t) = V(k,\ mig\|m,\ t).$
 - \bigcirc Correct a forger for (S', V') gives a forger for (S, V).
- $S'((k_1,k_2),\ m)=ig(S(k_1,m),S(k_2,m)ig)$ and $V'ig((k_1,k_2),m,(t_1,t_2)ig)=ig[V(k_1,m,t_1)\ ext{and}\ V(k_2,m,t_2)ig]$ (i.e., $V'ig((k_1,k_2),m,(t_1,t_2)ig)$ outputs ``1" if both t_1 and t_2 are valid tags)

(<) Correct

a forger for (S', V') gives a forger for (S, V).

 $oxed{\Box} \quad S'(k,m) = S(k,m)$ and

$$V'(k,m,t) = egin{cases} V(k,m,t) & ext{if } m
eq 0^n \ ext{``1''} & ext{otherwise} \end{cases}$$

 $lacksquare{s} S'(k,\,m) = igl[t \leftarrow S(k,m), ext{ output } (t,t)igr)$ and

$$V'ig(k,m,(t_1,t_2)ig) = egin{cases} V(k,m,t_1) & ext{if } t_1 = t_2 \ ext{"0"} & ext{otherwise} \end{cases}$$

(i.e., $V'ig(k,m,(t_1,t_2)ig)$ only outputs "1"

if t_1 and t_2 are equal and valid)

 \bigcirc Correct a forger for (S', V') gives a forger for (S, V).

$$igsqcup S'(k,m) = S(k,m\oplus m)$$
 and $V'(k,m,t) = V(k,\,m\oplus m,\,t)$

3. Recall that the ECBC-MAC uses a fixed IV (in the lecture we simply set the IV to 0).

1/1 point

Suppose instead we chose a random IV for every message being signed and include the IV in the tag. In other words, $S(k,m):=ig(r,\ \mathrm{ECBC}_r(k,m)ig)$

where $\mathrm{ECBC}_r(k,m)$ refers to the ECBC function using r as

the IV. The verification algorithm V given key k, message m,

and tag (r,t) outputs ``1" if $t=\mathrm{ECBC}_r(k,m)$ and outputs

``0" otherwise.

The resulting MAC system is insecure.

An attacker can query for the tag of the 1-block message m and obtain the tag (r,t). He can then generate the following

existential forgery: (we assume that the underlying block cipher

operates on n-bit blocks)

- igotimes The tag $(r\oplus m,\ t)$ is a valid tag for the 1-block message $0^n.$
- igcup The tag $(r\oplus t,\ r)$ is a valid tag for the 1-block message $0^n.$
- \bigcirc The tag $(m\oplus t,\ r)$ is a valid tag for the 1-block message 0^n .
- igcap The tag $(r,\ t\oplus r)$ is a valid tag for the 1-block message $0^n.$
 - ✓ Correct

The CBC chain initiated with the IV $r \oplus m$ and applied

to the message 0^n will produce exactly the same output as the CBC chain initiated with the IV r and applied to the message m. Therefore, the tag $(r\oplus m,\ t)$ is a valid existential forgery for the message 0.

4. Suppose Alice is broadcasting packets to 6 recipients

1/1 point

 B_1, \ldots, B_6 . Privacy is not important but integrity is.

In other words, each of B_1,\dots,B_6 should be assured that the packets he is receiving were sent by Alice.

Alice decides to use a MAC. Suppose Alice and B_1,\ldots,B_6 all share a secret key k. Alice computes a tag for every packet she sends using key k. Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid.

Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking

that these packets are from Alice.

Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\ldots,k_4\}.$

She gives each user B_i some subset $S_i \subseteq S$

of the keys. When Alice transmits a packet she appends 4 tags to it

by computing the tag with each of her 4 keys. When user B_i receives

a packet he accepts it as valid only if all tags corresponding

to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 .

How should Alice assign keys to the 6 users so that no single user

can forge packets on behalf of Alice and fool some other user?

$$S_1 = \{k_1, k_2\}, \; S_2 = \{k_1, k_3\}, \; S_3 = \{k_1, k_4\}, \; S_4 = \{k_2, k_3\}, \; S_5 = \{k_2, k_4\}, \; S_6 = \{k_3, k_4\}$$

✓ Correct

Every user can only generate tags with the two keys he has.

Since no set S_i is contained in another set S_j , no user i can fool a user j into accepting a message sent by i.

	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
5.	Consider the encrypted CBC MAC built from AES. Suppose we	1 / 1 point
	compute the tag for a long message m comprising of n AES blocks.	
	Let m^\prime be the n -block message obtained from m by flipping the	
	last bit of m (i.e. if the last bit of m is b then the last bit	
	of m' is $b \oplus 1$). How many calls to AES would it take	
	to compute the tag for m^\prime from the tag for m and the MAC key? (in this question please ignore message padding and simply assume that the message length is always a multiple of the AES block size)	
	\bigcirc n	
	4	
	O 5	
	O 6	
	⊘ Correct	
	You would decrypt the final CBC MAC encryption step done using k_2 ,	
	the decrypt the last CBC MAC encryption step done using k_1 ,	
	flip the last bit of the result, and re-apply the two encryptions.	
6.	Let $H:M o T$ be a collision resistant hash function.	1 / 1 point
	Which of the following is collision resistant:	
	(as usual, we use to denote string concatenation)	
	$oxed{\Box} H'(m) = H(m)[0,\ldots,31]$	
	(i.e. output the first 32 bits of the hash)	
	$oxed{\Box} H'(m) = H(m) \oplus H(m)$	
	lacksquare H'(m) = H(H(m))	
	\bigcirc Correct a collision finder for H' gives a collision finder for H .	

 $oxedsymbol{\square} \quad H'(m) = H(0)$

- $lacksquare H'(m) = H(m \| m)$
- \bigcirc Correct a collision finder for H' gives a collision finder for H.
- $lacksquare H'(m) = H(m) \| H(0) \|$
- \bigcirc Correct a collision finder for H' gives a collision finder for H.
- $igcup H'(m) = H(m) igoplus H(m \oplus 1^{|m|})$ (where $m \oplus 1^{|m|}$ is the complement of m)
- 7. Suppose H_1 and H_2 are collision resistant hash functions mapping inputs in a set M to $\{0,1\}^{256}$. Our goal is to show that the function $H_2(H_1(m))$ is also collision resistant. We prove the contra-positive:

1/1 point

suppose $H_2(H_1(\cdot))$ is not collision resistant, that is, we are given x
eq y such that $H_2(H_1(x)) = H_2(H_1(y))$.

We build a collision for either H_1 or for H_2 .

This will prove that if H_1 and H_2 are collision resistant then so is $H_2(H_1(\cdot))$. Which of the following must be true:

- $igodesign{ igodesign{ igodesign{ \hfill \hfill$
- $igcup ext{Either}\, x, H_1(y)$ are a collision for H_2 o $H_2(x), y$ are a collision for H_1 .
- $igcap = \operatorname{Either} x,y$ are a collision for H_2 or $H_1(x),H_1(y)$ are a collision for $H_1.$
- $igcap = {}$ Either $H_2(x), H_2(y)$ are a collision for H_1 or x,y are a collision for H_2 .
 - Correct If $H_2(H_1(x))=H_2(H_1(y))$ then either $H_1(x)=H_1(y)$ and $x\neq y$, thereby giving us a collision on H_1 . Or $H_1(x)\neq H_1(y)$ but $H_2(H_1(x))=H_2(H_1(y))$ giving us a collision on H_2 . Either way we obtain a collision on H_1 or H_2 as required.

$$f_1(x,y) = AES(y,x) \bigoplus y$$

where $\operatorname{AES}(x,y)$ is the AES-128 encryption of y under key x.

Your goal is to find two distinct pairs (x_1,y_1) and (x_2,y_2) such that $f_1(x_1,y_1)=f_1(x_2,y_2)$.

Which of the following methods finds the required (x_1, y_1) and (x_2, y_2) ?

igcup Choose x_1,y_1,x_2 arbitrarily (with $x_1
eq x_2$) and let $v := AES(y_1,x_1)$.

Set
$$y_2 = AES^{-1}(x_2,\ v \oplus y_1 \oplus x_2)$$

igcup Choose x_1,y_1,y_2 arbitrarily (with $y_1
eq y_2$) and let $v := AES(y_1,x_1)$.

Set
$$x_2=AES^{-1}(y_2,\ v\oplus y_1)$$

lacktriangledown Choose x_1,y_1,y_2 arbitrarily (with $y_1
eq y_2$) and let $v:=AES(y_1,x_1)$.

Set
$$x_2 = AES^{-1}(y_2,\ v \oplus y_1 \oplus y_2)$$

igcup Choose x_1,y_1,y_2 arbitrarily (with $y_1
eq y_2$) and let $v := AES(y_1,x_1)$.

Set
$$x_2=AES^{-1}(y_2,\ v\oplus y_2)$$

✓ Correct

You got it!

9. Repeat the previous question, but now to find a collision for the compression function $f_2(x,y) = \operatorname{AES}(x,x) \bigoplus y$.

1/1 point

Which of the following methods finds the required (x_1,y_1) and (x_2,y_2) ?

igotimes Choose x_1, x_2, y_1 arbitrarily (with $x_1
eq x_2$) and set

$$y_2=y_1\oplus AES(x_1,x_1)\oplus AES(x_2,x_2)$$

igcup Choose x_1, x_2, y_1 arbitrarily (with $x_1
eq x_2$) and set

$$y_2 = AES(x_1,x_1) \oplus AES(x_2,x_2)$$

igcirc Choose x_1, x_2, y_1 arbitrarily (with $x_1
eq x_2$) and set

$$y_2=y_1\oplus x_1\oplus AES(x_2,x_2)$$

igcup Choose x_1, x_2, y_1 arbitrarily (with $x_1
eq x_2$) and set

$$y_2=y_1\oplus AES(x_1,x_1)$$

⊘ Correct

Awesome!

10. Let H:M o T be a random hash function where $|M|\gg |T|$ (i.e. the size of M is much larger than the size of T).

In lecture we showed that finding a collision on H can be done with $Oig(|T|^{1/2}ig)$ random samples of H. How many random samples would it take until we obtain a three way collision, namely distinct strings x,y,z in M such that H(x)=H(y)=H(z)?

- $O(|T|^{2/3})$
- $O(|T|^{1/2})$
- $\bigcirc O(|T|)$
- $O(|T|^{1/3})$
 - **⊘** Correct

An informal argument for this is as follows: suppose we collect n random samples. The number of triples among the n samples is n choose 3 which is $O(n^3)$. For a particular triple x,y,z to be a 3-way collision we need H(x)=H(y) and H(x)=H(z). Since each one of these two events happens with probability 1/|T| (assuming H behaves like a random function) the probability that a particular triple is a 3-way collision is $O(1/|T|^2)$. Using the union bound, the probability that some triple is a 3-way collision is $O(n^3/|T|^2)$ and since we want this probability to be close to 1, the bound on n follows.