Lynx & Binomial RV Simulation

Oliver Hannaoui

5/27/2019

Simulating a binomial random variable. Considering a class of 80 students and that the probability that a student does not turn in a homework is 0.15. Assuming independence and no change in probability as well.

a. Using the sample function, the number of students who don't turn in their homework is 5.

[1] 5

b. Due to the fact that $n \ge 30$ the distribution of the histogram is symmetric and has a normal shape.

Number of Students Who Don't Turn in Their Homework

c. The average and standard number of successes in 80 trials:

[1] 11.99925

[1] 3.195229

d. The probability that all students turn in their homework based on our simulation:

[1] 4e-06

e. The probability that at least four students did not turn in their homework:

f. The median number of students who will forget their homework:

II.

a. Data is used from built in "lynx" dataset.

The distribution of the histogram is skewed right.

Lynx Histogram

Mean and Variance

b. Mean of the random sample of 10.

c. Mean and standard deviation of the 1000000 vector means.

[1] 1537**.**531

[1] 498.9672

The distribution is slightly skewed right and the means are spread out in terms of frequency.

Histogram of the Means

d. Mean of the sample size of 50:

[1] 1535.886

e. Mean stays approximately the same as before, however our standard deviation decreases substantially.

[1] 1537.611

[1] 70.60939

f. The distribution is approximately normally distributed and the means are a lot less spread out than our previous histogram, as the sample size increased our histogram become more normally distributed and our

standard deviation decreased.

Histogram of the Increased Sample Size

Appendix:

```
knitr::opts_chunk$set(echo = TRUE)
set.seed(10)
#1(a)
experiment = sample(c("X","F"),80,prob=c(0.15,0.85),replace=TRUE)
sum(experiment=="X")
many.binom = sapply(1:1000000, function(i) {
 binom = sample(c("X","F"), 80,
                 prob = c(0.15, 0.85), replace = TRUE)
 num.of.success = sum(binom == "X")
 return(num.of.success)
 })
hist1 = hist(many.binom, main = "Number of Students Who Don't Turn in Their Homework", x
lab = "Students Who Don't Turn in Their Homework", ylab = "Frequency")
#1(c)
mean(many.binom)
sd(many.binom)
#1(d)
prob1 = sum(many.binom == 0)
prob1/length(many.binom)
#1(e)
prob3 = sum(many.binom >= 4)
prob3/length(many.binom)
#1(f)
median(many.binom)
#2(a)
hist(lynx, main="Lynx Histogram", xlab="Heights")
mean(lynx)
var(lynx)
#2b
experiment = sample(lynx, 10, replace=TRUE)
mean(experiment)
#2c
many.experiments = sapply(1:1000000, function(i){
 experiment = sample(lynx,10, replace = TRUE)
 sample.mean= mean(experiment)
 return(sample.mean)
})
mean(many.experiments)
sd(many.experiments)
hist(many.experiments, xlab='Means', main= 'Histogram of the Means')
experiment = sample(many.experiments, 50, replace=TRUE)
mean(experiment)
#2e
more.experiments = sapply(1:1000000, function(i){
 experiment = sample(many.experiments, 50, replace = TRUE)
 sample.mean= mean(experiment)
 return(sample.mean)
})
mean(more.experiments)
```

```
sd(more.experiments)
#2f
hist(more.experiments, xlab='Means', main= 'Histogram of the Increased Sample Size')
```