84	119	100	100	100	100	100	100	95	95
107	107	103	114	96	105	87	122	121	101
107	108	103	114	96	105	87	109	90	101
83	89	102	114	96	86	87	109	90	101
111	89	102	81	96	86	87	92	90	101
111	99	99	81	94	93	87	92	97	101
74	99	99	110	94	93	98	88	97	101
104	106	117	110	94	93	98	98	91	91
104	106	110	115	94	93	98	98	91	91
79	79	110	115	94					

Графік значень квантелів наведений у Додатку 1 Гістограма частот наведена у Додатку 2

Інтервал	n	ui	φ(ui)	ni'	ni - ni'	(ni - ni')^2/ni'
[74;80]	3	-1.86	0.0721	4.15	-1.15	0.32
(80;86]	6	-1.26	0.1849	10.64	-4.64	2.02
(86;92]	17	-0.65	0.3251	18.71	-1.71	0.16
(92;98]	22	-0.05	0.3986	22.94	-0.94	0.04
(98;104]	22	0.56	0.341	19.62	2.38	0.29
(104;110]	14	1.16	0.2036	11.72	2.28	0.45
(110;116]	7	1.77	0.0848	4.88	2.12	0.92
(116;122]	4	2.38	0.0246	1.42	2.58	4.72

$$x = 98.46316$$
 $h = 6$
 $\sigma = 9.905671$

$$\chi^{2}_{CHOCT} = 8.909$$

$$\chi^{2}_{KP} (0,01;5) = 15.1$$

Оскільки $\chi^2_{
m cnoct}$ < $\chi^2_{
m \kappa p}$ то гіпотеза справджується

Додаток 1

Кінець інтервалу	Накопичувальна частота	Відносна накопичувальна частота	%	Квантилі
80	3	0.032	3.2	-1.852
86	9	0.095	9.5	-1.311
92	26	0.274	27.4	-0.601
98	48	0.505	50.5	0.013
104	70	0.737	73.7	0.634
110	84	0.884	88.4	1.195
116	91	0.958	95.8	1.728
122	95	1	100	3.09

