



# MATEMÁTICAS AVANZADAS



Transformada de Fourier

Anexo

# FACULTAD DE INGENIERÍA

Universidad Nacional de Cuyo 2020

Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Transformada de Fourier

Anexo



## MATEMÁTICAS AVANZADAS 2020

### Transformada de Fourier - Anexo



Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Transformada de Fourier

Anexo



Señal:



f(t) = sen(t)



g(t) = sen(3t)



h(t) = sen(10t)



p(t) = 4 sen(t) + 1 sen(3t) + 0.5 sen(10t)



Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Transformada de Fourier





Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Transformada de Fourier

**Anexo** 



2°) Escribimos la serie compleja de Fourier:
$$f(t) = \sum_{n=-\infty}^{+\infty} c_n e^{in\omega_n t} \longrightarrow f(t) = \frac{Ad}{T} + \frac{Ad}{T} \sum_{\substack{n=-\infty \\ n \neq 0}}^{+\infty} \frac{\text{sen}(\frac{n \pi d}{T})}{(\frac{n \pi d}{T})} e^{in\omega_n t}$$

# Observamos que, siendo C<sub>n</sub> un número real, el espectro de fase es nulo. Esto también podría haberse anticipado, ya que f(t) es función periodica par y par lo tanto su Desarrollo en Serie de Tourier tiene solo términos en cosenos $[b_n=0]$ . $tg \phi_n = \frac{bn}{Q} = 0$ ].

¿ Cómo obtenemos el espectro de amplitud?

El espectro de amplitud lo obtendremos representando Cn en función de la variable discreta w\_=nw\_

$$\omega_{o} = \frac{2\pi}{\Gamma}$$
 Entonces:  $\omega = 0$ ,  $\omega = \frac{2\pi}{\Gamma}$ ,  $\omega = \frac{4\pi}{\Gamma}$ ,  $\omega = -\frac{2\pi}{\Gamma}$ ,  $\omega = \frac{4\pi}{\Gamma}$ ,  $\omega = \frac{4\pi}{\Gamma}$ 

Representaremos el espectro de frecuencia compleja de un tren de pulsos rectangulares para dos casos:

CASO(a): d= 1/20 , T= 1/4 seg CASO(b): d= 1/20 , T= 1/2 seg

CASO (3) representaremos C<sub>n</sub> en función de la variable discreta  $\omega_n = n\omega_0$ Siendo  $\omega_0 = \frac{2\pi}{T} = 8\pi$ , tenemos los siguientes valores posibles para  $\omega_n$ :  $0, \pm 8\pi, \pm 16\pi, \pm 24\pi, \pm 32\pi, \pm 40\pi, \pm 48\pi$ ;.....

Siendo  $C_o = \frac{Ad}{T}$ , para el caso(a) resulta:  $C_o = \frac{A}{5}$ Y  $C_n = \frac{Ad}{T}$  Sen  $(\frac{n\pi d}{T})$  queda:  $C_n = \frac{A}{5}$  sen  $(\frac{n\pi}{5})$ T  $(\frac{n\pi d}{T})$ 

Vermos para que valores de con se anula con m= ±1, ±2,... (n≠0, m≠0)

Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Transformada de Fourier





Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Transformada de Fourier

Anexo



Observaciones:

/ Cuando el espectro discreto de una función periodica con período T se dibuja en función de la frecuencia duscreta  $\omega_n = n \omega_0$ , la distancia entre armónicos adyacentes es la frecuencia fundamental  $\omega_0 = \frac{2\pi}{T}$ . Por lo tanta, a medida que el período T aumenta,  $\omega_0$  disminuye y las líneas en el espectro de frecuencia se acercan. Es decir, si el período T aumenta, el número de líneas en una banda de frecuencias aumenta.

Por otra parte, siendo  $C_n = Ad \frac{sen(nH)}{(nHd)}$ , si el período Taumenta, las amplitudes de toolos los armónicos disminuyen.

A partir de una función periodica de periodo T que llamaremos  $f_T(t)$ . Si hacemos que el periodo T trenda a múnito, entences, la función resultante f(t) lim f(t) deja de ser periodica.

Pademos illustrar este concepto a partir de un tren de pulsos rectangulares:



Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Transformada de Fourier







Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Transformada de Fourier



