Областная олимпиада по математике, 2002 год, 9 класс

- **1.** Докажите, что сумма $2 \cdot 2 + 3 \cdot 2^2 + 4 \cdot 2^3 + \dots + 2002 \cdot 2^{2001}$ делится на 2001.
- **2.** Найдите минимальное и максимальное значение суммы a+b+c, если известно, что $a^2+b^2 \le c \le 1$.
- **3.** На окружности, описанной около треугольника ABC, выбрана точка P, и из этой точки на прямые AB и BC опущены перпендикуляры с основаниями D и E соответственно. Найдите геометрическое место точек центров окружностей, описанных около треугольника PDE, когда P пробегает все точки окружности, описанной около треугольника ABC.
- **4.** В каждой клетке клетчатой доски 3×3 расставлены стрелки \leftarrow , \uparrow , \rightarrow , \downarrow . Первоначально жук сидит в одной из клеток. В каждый год жук переходит в соседнюю клетку, на которую указывает стрелка той клетки, где он сидел. При этом, когда жук осуществляет переход, стрелка в покинутой клетке поворачивается на 90° по часовой стрелке. Каково наибольшее число , в течение которых жук может находиться внутри доски? (Жук делает свой первый переход ровно через год)
- **5.** Найдите все возможные значения числа n, при котором прямоугольная доска $9 \times n$ может быть покрыта без наложения фигурками вида уголка состоящее из трёх клеток.
- 6. Найдите все тройки вещественных положительных чисел $x,\ y$ и z для которых одновременно выполняются равенства x+y+z=6 и

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 2 - \frac{4}{xyz}.$$

7. На доске написаны все целые числа от 1 до 2002. Два ученика A и B играют в игру, поочередно стирая по одному числу на доске. Игра заканчивается, когда на доске остается два числа. Ученик B выигрывает, если сумма двух оставшихся чисел делится на 3, в противном случае выигрывает A. Кто выигрывает при правильной игре, если первый ход делает ученик A?

8. В треугольнике $ABC \ \angle ACB > \angle ABC$. Биссектриса угла BAC пересекает сторону BC в точке D. На сторонах AB и AC выбраны точки E и F таким образом, что $\angle EDB = 90^\circ$ и $\angle BED = \angle DEF$. Докажите, что $\angle BAD = \angle FDC$.