Fourier <u>coefficients</u> for <u>Continuous</u> signal $x(t) \rightarrow a_k$ Asking deriving coefficients comes with periodic signal.

(CT FS) Basic concept of continuous Fourier coefficients
$$x(t): \textit{Periodic signal} \\ T: \textit{Fundamental Period} \\ x(t) \qquad \omega_0 = \frac{2\pi}{T} \quad \& \quad f_0 = \frac{1}{T}(freq) \\ x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$

(CT FS) Continuous-Time, Fourier Series
$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$
 or
$$a_k = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$$

(CT IFS) Continuous-Time, Inverse Fourier Series
$$a_k \stackrel{IFS}{\longrightarrow} x(t) \qquad x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$

Properties of Continuous-Time Fourier Series		
Property	Periodic Signal $x(t)$	Fourier Series Coefficients a_k
Linearity	Ax(t)+By(t)	$Aa_k + Bb_k$
Time Shifting	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0}$ $= a_k e^{-jk(2\pi/T)t_0}$
Frequency Shifting	$e^{jM\omega_0 t}$ $= e^{jM(2\pi/T)t}x(t)$	a_{k-M}
Conjugation	$x^*(t)$	a_{-k}^*
Time Reversal	x(-t)	a_{-k}
Time Scaling	$x(\alpha t), \alpha > 0$ (Periodic with period T/α)	a_{-k}
Periodic convolution	$\sum_{r=\langle N\rangle} x[r]y[n-r]$	Na_kb_k
Multiplicatio n	x(t)y(t)	$\sum_{l=\langle N\rangle} a_l b_{k-1}$
Different- iation	$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$
Running Sum	$\sum_{k=-\infty}^n x[k]$ (finite valued and periodic only if $a_0=0$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$
Real & Even Signal	x[n] real and even	a_k real and even
Real & Odd Signal	x[n] real and odd	a_k purely imaginary and odd
Even-Odd Decompositi on of Real S ignal	$ \begin{cases} x_e(t) = \mathcal{E}v\{x(t)\}[\mathbf{x}(t) \text{ real }] \\ x_o(t) = \theta d\{x(t)\}[\mathbf{x}(t) \text{ real }] \end{cases} $	$Re \{a_k\}$ $j Im\{a_k\}$

Convert Trigonometric to exponential form Many cases require to convert Trigonometric to $e^{j\theta}$ form.

$$\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j} \qquad \cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
$$\tan(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{j(e^{j\theta} + e^{-j\theta})}$$

Fourier <u>coefficients</u> for <u>Discrete</u> signal $x[n] \rightarrow a_k$ Asking deriving coefficients comes with periodic signal.

(DT FS) Basic concept of discrete Fourier coefficients
$$x[n]: Periodic \ signal \\ N: Fundamental \ Period \ (LCM \ of \ 2\pi) \\ x[n] \qquad \omega_0 = \frac{2\pi}{N} \quad \& \quad f_0 = \frac{1}{T} (freq) \\ x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

(DT FS) Discrete-Time, Fourier Series
$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n}$$

$$x[n] \xrightarrow{FS} a_k \qquad \text{or}$$

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$

(DT IFS) Discrete-Time, Inverse Fourier Series
$$a_k \xrightarrow{IFS} x[n] \qquad x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

Properties of Discrete-Time Fourier Series			
Property	Periodic Signal $x[n]$	Fourier Series Coefficients a_k	
Linearity	Ax[n] + By[n]	$Aa_k + Bb_k$	
Time Shifting	$x[n-n_0]$	$a_k e^{-jk(2\pi/N)n_0}$	
Frequency Shifting	$e^{jM(2\pi/N)n}x[n]$	a_{k-M}	
Conjugation	$x^*[n]$	a_{-k}^*	
Time Reversal	x[-n]	a_{-k}	
Time Scaling	$x_{(m)}[n]$ = $\begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple} \end{cases}$	$\frac{1}{m}a_k \left(\substack{\text{viewed as periodic} \\ \text{with period } mN} \right)$	
Periodic convolution	$\sum_{r=\langle N\rangle} x[r]y[n-r]$	Na_kb_k	
Multiplicatio n	x[n]y[n]	$\sum_{l=\langle N\rangle} a_l b_{k-1}$	
Running Sum	$\sum_{k=-\infty}^{n} x[k]$ (finite valued and periodic only if $a_0 = 0$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$	
Real & Even Signal	x[n] real and even	a_k real and even	
Real & Odd Signal	x[n] real and odd	a_k purely imaginary and odd	
Even-Odd Decompositi on of Real S ignal	$ \begin{cases} x_e[n] = \mathcal{E}v\{x[n]\}[\mathbf{x}[\mathbf{n}] \text{ real }] \\ x_o[n] = \theta d\{x[n]\}[\mathbf{x}[\mathbf{n}] \text{ real }] \end{cases} $	$\operatorname{Re}\left\{a_{k}\right\}$ $j\operatorname{Im}\left\{a_{k}\right\}$	

Fourier transform for <u>Continuous</u>-time signal x(t) Most of case, aperiodic signals comes...

(CT FT) Continuous-Time, Fourier Transform (periodic)
$$\tilde{x}(t) : single \ sliced \ periodic \ sig$$

$$x(t) \stackrel{FT}{\longrightarrow} X(j\omega) \qquad a_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \tilde{x}(t) e^{-jk\omega_0 t} dt$$

$$X(j\omega) = T \ a_k$$

(CT FT) Continuous-Time, Fourier Transform (aperiodic)
$$x(t) \xrightarrow{FT} X(j\omega) \qquad X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$$

(CT IFT) Continuous-Time, Inverse Fourier Transform
$$X(jw) \xrightarrow{IFT} x(t) \qquad x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

Properties of Continuous Fourier Transform		
Property	Periodic Signal $x(t)$	Fourier Transform $X(j\omega)$
Linearity	a x(t) + b y(t)	$a X(j\omega) + b Y(j\omega)$
Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
Frequency Shifting	$e^{j\omega_0t}x(t)$	$X(j(\omega-\omega_0))$
Conjugation	$x^*(t)$	$X^*(-j\omega)$
Time Reversal	x(-t)	$X(-j\omega)$
Time and Freq Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
Multipli- cation	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[X(j\theta) \right. \\ \left. Y(j(\omega - \theta)) \right] d\theta$
Differentiati on in time	$\frac{d}{dt} x(t)$	$j\omega X(j\omega)$
Integration	$\int_{-x}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
symmetry for Real & Even	x(t) real and even	$X(j\omega)$ real and even
symmetry for Real & Odd	x(t) real and odd	X(jω) pure imaginary, and odd
Even-Odd decompositi on for Real-Signal	$x_e(t) = Ev\{x(t)\}$ $x_o(t) = Od\{x(t)\}$ $[x(t) \text{ real }]$	Re $\{X(j\omega)\}\$ $j \operatorname{Im}\{X(j\omega)\}\$
Parseval's Relation	$\int_{-\infty}^{+\infty} x(t) ^2 dt =$	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^2 d\omega$

Basic Continuous Fourier Transform Pairs		
	Fourier Transform $X(j\omega)$	
Signal $x(t)$	Fourier Series Coefficients $oldsymbol{a_k}$ (if periodic)	
+∞	$X(j\omega) = +\infty$	
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi \sum_{k=0}^{\infty} a_k \delta(\omega - k\omega_0)$	
$k=-\infty$	<i>k</i> =-∞	
	$a_k = a_k$	
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$ $a_1=1$	
	$a_k = 0$, otherwise	
200 W #	$\frac{\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]}{1}$	
$\cos\omega_0 t$	$a_1 = a_{-1} = \frac{1}{2}$	
	$a_k = 0$, otherwise	
	$\frac{n}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	
$\sin \omega_0 t$	$a_1 = -a_{-1} = \frac{1}{2i}$	
	$a_k = 0$, otherwise	
x(t) = 1	$2\pi\delta(\omega)$	
.,	$a_0 = 1, a_k = 0, k \neq 0$	
Periodic square wave : $(1, t < T_1)$	$\sum_{k=0}^{+\infty} 2\sin k\omega_0 T_1$	
$x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	
and $\binom{0}{1}$		
x(t+T) = x(t)	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$ $\frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$	
+∞	$\frac{2\pi}{2}\sum^{+\infty}\delta\left(\omega-\frac{2\pi k}{2}\right)$	
$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$T \underset{k=-\infty}{\overset{\frown}{\sum}} \sigma \left(\overset{\circ}{\sigma} T \right)$	
n=-∞	$a_k = \frac{1}{T}$ for all k	
$x(t)$ $\begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$2\sin \omega T_1$	
$(0, t > T_1)$	ω	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	
$\delta(t)$	1	
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$e^{-at}u(t), Re\{a\} > 0$	$\frac{1}{a+j\omega}$	
$t e^{-at}u(t), Re\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	1	
	$\frac{1}{(a+j\omega)^n}$	
$Re\{a\} > 0$	 래칸 Coefficients 에 대한 기술)	

(1칸에 2칸이 있는 경우, 아래칸 Coefficients 에 대한 기술)

Fourier transform for <u>Discrete</u>-time signal x[n] Most of case, aperiodic signals comes...

(DT FT) Discrete-Time, Fourier Transform
$$x[n] \xrightarrow{FT} X(e^{j\omega}) \qquad X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

(DT IFT) Discrete-Time, Inverse Fourier Transform
$$X(e^{j\omega}) \xrightarrow{IFT} x[n] \qquad x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Properties of <u>Discrete</u> Fourier <u>Transform</u>		
Property	Periodic Signal $x[n]$	Fourier Transform $X(e^{j\omega})$
	x[n] $y[n]$	$X(e^{j\omega})$ periodic with $Y(e^{j\omega})$ period 2π
Linearity	a x[n] + b y[n]	$a X(e^{j\omega}) + b Y(e^{j\omega})$
Time Shifting	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
Frequency Shifting	$e^{j\omega_0n}x[n]$	$X(e^{j(\omega-\omega_0)})$
Conjugation	<i>x</i> *[<i>n</i>]	$X^*(e^{-j\omega})$
Time Reversal	x[-n]	$X(e^{-j\omega})$
Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n = k \\ 0, & \text{if } n \neq k \\ n = \text{multiple of } k \\ n \neq \text{multiple of } k \end{cases}$	$X(e^{jk\omega})$
Convolution	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
Multipli- cation	x[n]y[n]	$\frac{\frac{1}{2\pi}\int_{2\pi}X(e^{j\theta})Y}{\left(e^{j(\omega-\theta)}\right)d\theta}$
Differencing in time	x[n] - x[n-1]	$(1 - e^{-j\omega})X(e^{j\omega})$
Accumul- ation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1 - e^{-j\omega}} X(e^{j\omega}) + \pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$
Differentiati on in Freq	n x[n]	$j\frac{dX(e^{j\omega})}{d\omega}$
symmetry for Real & Even	x[n] real and even	$X(e^{j\omega})$ real and even
symmetry for Real & Odd	x[n] real and odd	$X(e^{j\omega})$ pure imaginary, and odd
Even-Odd decompositi on for Real-Signal	$x_e[n] = Ev\{x[n]\}$ $x_o[n] = Od\{x[n]\}$ $[x[n] \text{ real }]$	Re $\{X(e^{j\omega})\}$ $j \operatorname{Im} \{X(e^{j\omega})\}$
Parseval's Relation	$\sum_{n=-\infty}^{+\infty} x[n] ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2 d\omega$	

Basic <u>Discrete</u> Fourier <u>Transform Pairs</u>		
Signal $x(t)$	Fourier Transform $X(e^{j\omega})$ Fourier Series Coefficients a_k (if periodic)	
$\sum_{k=\langle N\rangle} a_k e^{jk(2n/N)n}$	$X(e^{j\omega}) = 2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	
$e^{j\omega_0 n}$	$a_k = a_k$ $2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	
$\cos\omega_0 n$	$\pi \sum_{l=-\infty}^{+\infty} \left\{ \delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l) \right\}$ $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$	
$\sin \omega_0 n$	$\frac{\omega_0}{2\pi} = \text{irrational, The signal is aperiodic}$ $\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \left\{ \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \right\}$ $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi} \text{ irrational} \Rightarrow \text{The signal is aperiodic}$	
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$ $a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$	
Periodic square wave : $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$ $a_k = \frac{\sin\left[\left(2\pi k/N\right)\left(N_1 + \frac{1}{2}\right)\right]}{N\sin\left[2\pi k/2N\right]}, k \neq 0, \pm N, \pm 2N, \dots$	
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$a_k = \frac{2N_1 + 1}{N}, k = 0, \pm N, \pm 2N, \dots$ $\frac{2\pi}{N} \sum_{k = -\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$ $a_k = \frac{1}{N} \text{ for all } k$	
$a^n u[n] , a < 1$	$\frac{1}{1 - ae^{-j\omega}}$	
$x[n] \begin{cases} 1, & n < N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin\left[\omega\left(N_1+\frac{1}{2}\right)\right]}{\sin\left(\omega/2\right)}$	
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$	
$\frac{0 < W < \pi}{\delta[n]}$	$X(\omega)$ periodic with period 2π	
u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{+\infty} \pi \delta(\omega - 2\pi k)$	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$(n+1)a^nu[n]$ $, a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$ \frac{ a < 1}{(n+r-1)!} \frac{(n+r-1)!}{n! (r-1)!} a^n u[n] $	$\frac{1}{(1-ae^{-j\omega})^r}$	
(1카에 2 카이 있는 경우.	 아래칸 Coefficients 에 대한 기술)	