10

15

AMENDMENT

In the Claims:

- A. Kindly cancel Claim 4, without prejudice.
- B. Kindly amend Claims 1, 2, 5, 12, and 14, as follows.
- 1. (currently amended) A method of fabricating a semiconductor device, having a nitride/high-k material/nitride gate dielectric stack, comprising:

initiating formation of the nitride/high-k material/nitride gate dielectric stack by:

depositing a first ultra-thin nitride film on a semiconductor substrate,

wherein the first ultra-thin nitride film is deposited by using an atomic layer deposition (ALD) technique;

depositing a high-k material on the first ultra-thin nitride film,

wherein the high-k material comprises a thin metal film, and

wherein the thin metal film comprises at least one material selected from a group consisting essentially of zirconium (Zr), hafnium (Hf), and titanium (Ti); and

depositing a second ultra-thin nitride film on the high-k material,

thereby forming a sandwich structure, wherein the second ultra-thin nitride film is deposited using an atomic layer deposition (ALD) technique;

completing formation of the nitride/high-k material/nitride gate dielectric stack from the sandwich structure; and

completing fabrication of the device.

2. (currently amended) A method as recited in claim 1, wherein the substrate comprises a material selected from a group consisting of a silicon wafer [or] and a silicon-on-insulator (SOI) wafer.

- 3. **(originally filed)** A method as recited in claim 1, wherein the first ultra-thin nitride film comprises silicon nitride (Si₃N₄), and wherein the first ultra-thin nitride film has a thickness in a range of 1 to 2 atomic layer(s).
- 4. (canceled)

8.

5

- 5. (currently amended) A method as recited in claim 1, wherein the thin metal film <u>further</u> comprises [at least one metal selected from a group consisting essentially of zirconium (Zr), hafnium (Hf), titanium (Ti), and] tantalum (Ta).
- 6. **(originally filed)** A method as recited in claim 1, wherein the thin metal film comprises a metal oxide.
- 7. **(previously amended)** A method as recited in claim 1, wherein the second ultra-thin nitride film comprises silicon nitride (Si₃N₄), and wherein the second ultra-thin nitride film has a thickness in a range of 1 to 2 atomic layer(s).
- the nitride/high-k material/nitride gate dielectric stack from the sandwich structure comprises:

 depositing a thick gate material on the second ultra-thin nitride film;

 patterning the thick gate material, thereby forming a gate electrode; and etching portions of the sandwich structure uncovered by the gate electrode, thereby completing formation of the nitride/high-k material/nitride gate dielectric stack.

(currently amended) A method as recited in claim 1, wherein completing formation of

- 9. **(originally filed)** A method as recited in claim 1, wherein completing fabrication of the device comprises forming of a MOSFET structure comprising the gate dielectric stack.
- 10. (originally filed) A method as recited in claim 8, wherein the thick gate material comprises a material selected from a group consisting essentially of polysilicon (poly-Si) and polysilicon-germanium (poly-SiGe), and wherein the thick gate material is patterned using a material such as photoresist.

5

•	
11.	(originally filed) A method as recited in claim 1, wherein completing fabrication of the device comprises:
	forming a source/drain structure in the substrate and flanking the gate dielectric stack;
	forming at least one spacer on at least one sidewall of the gate dielectric stack; and
	silicidizing a shallow source/drain region as well as the high-k gate stack, thereby
	forming a source/drain silicide in a shallow source/drain region of the substrate and a gate silicide on the gate dielectric stack.
	and a gate smelde on the gate dielectric stack.
12.	(currently amended) A method of fabricating a semiconductor device, having a
	nitride/high-k material/nitride gate dielectric stack, comprising:
	initiating formation of the nitride/high-k material/nitride gate dielectric stack by:
	depositing a first ultra-thin nitride film on a semiconductor substrate,
	wherein the first ultra-thin nitride film is deposited by using an atomic
	layer deposition (ALD) technique, and
	wherein the substrate comprises a material selected from a group
	consisting of a silicon wafer [or] and a silicon-on-insulator (SOI)
	wafer;
	depositing a high-k material on the first ultra-thin nitride film,
	wherein the high-k material comprises a thin metal film, and
	wherein the thin metal film comprises at least one material selected from
	a group consisting essentially of zirconium (Zr), hafnium (Hf),
	and titanium (Ti); and
	depositing a second ultra-thin nitride film on the high-k material,
	thereby forming a sandwich structure, wherein the second ultra-thin

15

20

10

thereby forming a sandwich structure, wherein the second ultra-thin nitride film is deposited by using an atomic layer deposition (ALD) technique;

completing formation of the nitride/high-k material/nitride gate dielectric stack from the sandwich structure; and completing fabrication of the device.

5

- 13. **(previously amended)** A method as recited in claim 12, wherein the first ultra-thin nitride film comprises silicon nitride (Si₃N₄), and wherein the first ultra-thin nitride film has a thickness in a range of 1 to 2 atomic layer(s).
- 14. (currently amended) A method as recited in claim 13, [wherein the high-k material comprises a thin metal film,] wherein the thin metal film <u>further</u> comprises [at least one metal selected from a group consisting essentially of zirconium (Zr), hafnium (Hf), titanium (Ti), and] tantalum (Ta), and

wherein the thin metal film further comprises a metal oxide.

- 15. **(previously amended)** A method as recited in claim 14, wherein the second ultra-thin nitride film comprises silicon nitride (Si₃N₄), and wherein the second ultra-thin nitride film has a thickness in a range of 1 to 2 atomic layer(s).
- 16. (currently amended) A method as recited in claim 15, wherein completing formation of the nitride/high-k material/nitride gate dielectric stack from the sandwich structure comprises: depositing a thick gate material on the second ultra-thin nitride film; patterning the thick gate material, thereby forming a gate electrode; and etching portions of the sandwich structure uncovered by the gate electrode, thereby completing formation of the nitride/high-k material/nitride gate dielectric stack.
- 17. **(originally filed)** A method as recited in claim 16, wherein completing fabrication of the device comprises forming of a MOSFET structure comprising the gate dielectric stack.
- 18. (originally filed) A method as recited in claim 17,
 wherein the thick gate material comprises a material selected from a group consisting
 essentially of polysilicon (poly-Si) and polysilicon-germanium (poly-SiGe), and
 wherein the thick gate material is patterned using a material such as photoresist.

19. **(originally filed)** A method as recited in claim 18, wherein completing fabrication of the device comprises:

forming a source/drain structure in the substrate and flanking the gate dielectric stack; forming at least one spacer on at least one sidewall of the gate dielectric stack; and silicidizing a shallow source/drain region as well as the high-k gate stack, thereby forming a source/drain silicide in a shallow source/drain region of the substrate and a gate silicide on the gate dielectric stack.

20. (previously canceled)