ANOVA & Testing in the Multiple Linear Regression Models

(EPI-809)

ANOVA in the Multiple Regression Model

- Variance decomposition
- Degrees of freedom (by factor and for the model)
- Type-I and Type-III SS
- Testing multiple effects jointly (Long and Short regression and the F-test)
- Type-I error control and sequential testing

ANOVA in the Multiple Regression Model

Model equation (Ha): $y_i = \beta_0 + \beta_1 E D_i + \beta_2 W_i + \beta_3 B_i + \varepsilon_i$

Null Hypothesis (H0): $\beta_1 = \beta_2 = \beta_3 = 0$ or $y_i = \beta_0 + \varepsilon_i$

Predictions & Residuals from Ha:

$$\hat{y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}ED_{i} + \hat{\beta}_{2}W_{i} + \hat{\beta}_{3}B_{i} \qquad \qquad \hat{\varepsilon}_{i} = y_{i} - \hat{y}_{i} = \left(y_{i} - \hat{\beta}_{0} + \hat{\beta}_{1}ED_{i} + \hat{\beta}_{2}W_{i} + \hat{\beta}_{3}B_{i}\right)$$

Predictions & Residuals from H0: $\hat{\varepsilon}_{i(0)} = (y_i - \bar{y})$

Variance partition:

Total:
$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$Un - Explained: SSE = \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} \qquad R^{2} = \frac{SSR}{SSE + SSR}$$

Explained (regression): SSR = SST - SSE

$$R^2 = \frac{SSR}{SSE + SSR}$$

Degrees of freedom

Model equation (Ha): $y_i = \beta_0 + \beta_1 E D_i + \beta_2 W_i + \beta_3 B_i + \varepsilon_i$ p=4 parameters

Null Hypothesis (H0): $y_i = \beta_0 + \varepsilon_i$ q=1 parameter

Residual degrees of freedom: n-p=n-4

Model degrees of freedom: p-q=3

Total degrees of freedom (that is residual df of H0): n-q=model df+res. df

Example in R:

https://github.com/gdlc/EPI809/blob/master/ANOVA_MLR.md

Testing in the Multiple Regression Model

- t-test for 1-df tests
- F-test for more than 1-df tests
- Testing groups of predictors
- Error control

Multiple Regression Model

Examples of tests of hypothesis that we can do once we fit the model

Type of Test	Example/Description	Set of Hypothesis	Stat. Test
Single-parameter	Are there differences between South & North?	$\begin{cases} H_0 & \beta_1 = 0 \\ Ha & \beta_1 \neq 0 \end{cases}$	t-test (Parameter Estimates Table)
Model as a whole	Do Region, Sex, Experience and Education together have any effect on wages?	$\begin{cases} H_0 & \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0 \\ Ha & \text{At least one of them } \neq 0. \end{cases}$	F-test (ANOVA table)
Groups of predictor	Do Experience and Education together	$\begin{cases} H_0 & \beta_3 = \beta_4 = 0 \\ Ha & \text{At least one of the two} \neq 0. \end{cases}$	F-test (we will calculate it)

Single-Effect Test

$$\begin{cases} H_0 & \beta_j = 0 \\ Ha & \beta_j \neq 0 \end{cases}$$

Standard Errors & t-statistic

Standard Error of Estimates

$$SE(\hat{\beta}) = \sqrt{Var(\hat{\beta})}$$

$$t = \frac{\hat{\beta}}{SE(\hat{\beta})}$$

pValue: We compare the t-statistic against a reference distribution (the distribution of the t-statistic under the null hypothesis (H0: b1=0). If the observed statistic is 'unusual' for this reference distribution that provides evidence against H0.

Specifically, the p-value is the probability of observing a t-statistic at least as extreme as the one observed if the null hypothesis holds.

Let's discuss this from the JMP output

Testing the Model as a whole (all effects together)

$$y_i = \beta_0 + South_{1i}\beta_1 + Fe_{2i}\beta_2 + Exp_{3i}\beta_3 + Edu_{4i}\beta_4 + \varepsilon_i$$

$$\begin{cases} H_0 & \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0 \\ Ha & \text{At least one of them } \neq 0. \end{cases}$$

If the NULL Hypothesis holds...

To test the model as a whole we will use the ANOVA Table...

ANOVA and F-test

$$H_0: y_i = \beta_0 + \varepsilon_i$$

$$H_a: y_i = \beta_0 + South_{1i}\beta_1 + Fe_{2i}\beta_2 + Exp_{3i}\beta_3 + Edu_{4i}\beta_4 + \varepsilon_i$$

Mean Square=Sum Sq. / DF

Is the F-ratio large enough to reject the NULL (see H0 above)?

ANOVA and F-test

Testing Groups of Predictors

(e.g., Do Education and Experience Have Any Effect on Wages?)

Null and Alternative

$$y_i = \beta_0 + South_{1i}\beta_1 + Fe_{2i}\beta_2 + Exp_{3i}\beta_3 + Edu_{4i}\beta_4 + \varepsilon_i$$

Short Regression

$$\begin{cases} H_0 \ y_i = \beta_0 + South_{1i}\beta_1 + Fe_{2i}\beta_2 + \varepsilon_i \\ Ha \ y_i = \beta_0 + South_{1i}\beta_1 + Fe_{2i}\beta_2 + Exp_{3i}\beta_3 + Edu_{4i}\beta_4 + \varepsilon_i. \end{cases}$$

Long Regression

Implementing the above test boils down to comparing the short and long regressions.

The R-squared of the Long Regression will always be > than that of the Short Regression

How can we test whether the reduction in R² we observed is large enough to reject the null hypothesis?

F-test

F Test for the Long Vs Short Regression

Long Regression
$$y_i = \beta_0 + South_{1i}\beta_1 + Fe_{2i}\beta_2 + Exp_{3i}\beta_3 + Edu_{4i}\beta_4 + \varepsilon_i$$

$$\int H_0: \beta_3 = \beta_4 = 0$$

$$\begin{cases} H_0: & \beta_3 = \beta_4 = 0 \\ H_a: & At least one \neq 0 \end{cases}$$
 Short Regression (H₀)
$$y_i = \beta_0 + South_{1i}\beta_1 + Fe_{2i}\beta_2 + \varepsilon_i$$

ANO\	VA Tabl	e of the	Short	Regression	າ (k=3)	ANO\	/A Tab	e of Lo	ng Regr	ression (k=	5)
Source	DF	SS	MS	R ²	f	Source	DF	SS	MS	R^2	f
Model Error Total	N-3	•	MSR ₀ MSE ₀ MST	SSR ₀ /SST	MSR _{0/} MSE ₀	Model Error Total	N-5	SSR _A SSE _A SST	MSE _A	SSR _A /SST	MSR _{A/} MSE _A

			F-Test		
Source	DF	SS	MS	R^2	F
Model (Ha) Error Total (H ₀)	N-5	*	$\frac{\left(SSE_0 - SSE_A\right)/2}{SSE_A/(N-5)}$	$(SSE_0 - SSE_A)/SSE_0$	$\frac{\left(SSE_0 - SSE_A\right)/2}{SSE_A/(N-5)}$

F Test for the Long Vs Short Regression

Long Regression
$$y_i = \beta_0 + South_{1i}\beta_1 + Fe_{2i}\beta_2 + Exp_{3i}\beta_3 + Edu_{4i}\beta_4 + \varepsilon_i$$

Short Regression (H₀) $y_i = \beta_0 + South_{1i}\beta_1 + Fe_{2i}\beta_2 + \varepsilon_i$

 $\begin{cases}
H_0: & \beta_3 = \beta_4 = 0 \\
H_a: & \text{At least one } \neq 0
\end{cases}$

ANOVA Short Regression (H₀)

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Ratio		
Model	2	950.000	475.000	19.1897		
Error	525	12995.252	24.753	Prob > F		
C. Total	527	13945.252		<.0001*		

ANOVA Long Regression (H_A)

Analysis of Variance							
Sum of							
Source	DF	Squares	Mean Square	F Ratio			
Model	4	3707.363	926.841	47.3474			
Error	523	10237.889	19.575	Prob > F			
C. Total	527	13945.252		<.0001*			

	ANOVA T	able For Te				
	DF	SS	MS	R2	f	P(F>f)
Model	2	2757.4	1378.7	0.2122	70.43	8.22909E-28
Error	523	10237.9	19.6			
Total	525	12995.3				

Sequential	Variance	Partition	and	the I	test	

Model

 $TSS \ge RSS_S \ge RSS_L$

 $y_i = \beta_0 + \varepsilon_i$

Short Regression $y_i = \beta_0 + x_{1i}\beta_1 + x_{2i}\beta_2 + \varepsilon_i$

Model Sum of Squares

Short Regression: $MSS_s = TSS - RSS_s$

Long Regression: $MSS_{I} = TSS - RSS_{I}$

"Null Model"

Long Regression

Sequential	Variance	Partition a	and the	F-test

Res. DF

N-1

N-3

 $y_i = \beta_0 + x_{1i}\beta_1 + x_{2i}\beta_2 + x_{3i}\beta_3 + \varepsilon_i \quad \text{N-4} \quad RSS_L : \sum_{i=1}^n (y_i - \hat{\beta}_0 - x_{1i}\hat{\beta}_1 - x_{2i}\hat{\beta}_2 - x_{3i}\hat{\beta}_3)^2$

R-Squared

 $R_S^2 = \frac{TSS - RSS_S}{TSS}$

 $R_L^2 = \frac{TSS - RSS_L}{TSS}$

Residual Sum of Squares

 $RSS_S: \sum_{i=1}^n (y_i - \hat{\beta}_0 - x_{1i}\hat{\beta}_1 - x_{2i}\hat{\beta}_2)^2$

 $R_I^2 \geq R_S^2$

By construction, because OLS

minimizes the RSS, the R-sq. of

the Long regression will be

larger than that of the short

regression.

 $TSS: \sum_{i=1}^{n} (y_i - \bar{y})^2$

Partial R-squared

What proportion of variance of Y can be Explained by X4, after we account for by differences due to X1, X2 and X3?

$$R_S^2 = \frac{TSS - RSS_S}{TSS}$$

$$R_L^2 = \frac{TSS - RSS_L}{TSS}$$

$$R_{L|S}^2 = \frac{RSS_S - RSS_L}{RSS_S}$$

(Partial R-squared)

Suppose we observe a given increase in R-squared between the Short and the Long Regression.

Is this statistically significant?

F-TEST

Special Cases of the F-test

(1) Suppose that the Short regression is the Null model. Then this is a test of the model as a whole. We are testing whether at least one predictor has an effect different than zero.

(2) Suppose that the Short and Long Regression differ only in 1 predictor (1df). Then the F-test is equivalent to the t-test (actually the F-ratio equals the squared of the t-statistic).

Let's verify this.....