Зміст

1	Топ	Топологічні простори		
	1.1	Топологія	2	
	1.2	Зв'язок з метричними просторами	3	
	1.3	Конструкція топології за базою	4	
	1.4	Конструкція топології за передбазою	7	
	1.5	Збіжність в топологічному просторі	7	
	1.6	Неперервні відображення	8	
	1.7	Гомеоморфність топологічних просторів	10	
	1.8	Характеристики точок множин	11	
	1.9	Замикання та внутрішність	11	
	1.10	Топологічний підпростір	13	
	1.11	Добуток просторів	15	
	1.12	Фактортопологія	18	
2	Компактні простори 21			
	2.1	Компактність	21	
	2.2	Компактність та підпростори	22	
	2.3	Компактність та добуток просторів	23	
	2.4	Компактність та факторпростори	24	
3	Зв'язні простори			
	3.1	Зв'язність	25	
	3.2	Лінійна зв'язність	26	
	3.3	Компоненти зв'язності та лінійної зв'язності	29	
4	Лема Урисона та теорема Тітце			
	4.1	Корисні леми	31	
	4.2	Простори з аксіомами $T_{3\frac{1}{2}}$	33	
	4.3	Функціональна збіжність	33	
	4.4	Теорема Тітце	34	
5	Teo	рема Урисона про метризацію	37	
	5.1	Вступ	37	
	5.2	Вкладення та про метризуючі простори	38	
	5.3	Доведення теореми Урисона про метризацію	39	
	5.4	Трохи додаткової інфи	40	
6	Теорема Тіхонова в загальному вигляді 4			
	6.1	Властивість скінченного перетину	41	
	6.2	Фільтри	42	
	6.3	Доведення теореми Тіхонова	43	
7	Дея	кі топологічні твердження	44	

Топологічні простори 1

1.1 Топологія

Definition 1.1.1 Задано X – деяка множина.

Клас τ , що містить підмножини X, називається **топологією**, якщо:

$$X,\emptyset \in \tau$$

$$\forall \{U_{\alpha} \in \tau\} : \bigcup_{\alpha} U_{\alpha} \in \tau$$

$$\forall U, V \in \tau : U \cap V \in \tau$$

Пару (X, τ) називатимемо **топологічним простором**.

Definition 1.1.2 Задано (X, τ) – топологічний простір. Множина U називається **відкритою**, якщо

 $U \in \tau$

Множина V називається **замкненою**, якщо

$$X \setminus V \in \tau$$

Example 1.1.3 Зокрема будь-який метричний простір (X, ρ) задає топологію $\tau_{\rho} = \{$ всі відкриті множини в $(X, \rho)\}$. Тому що там виконуються твердження: X, \emptyset – відркиті, будьяке об'єднання сім'ї відкритих – відкрита, будь-який перетин двох відкритих – відкрита.

Example 1.1.4 Розглянемо множину X та $\tau = 2^X$. Тоді вона також задає топологію. (X, τ) , де $\tau = 2^X$, ще називають дискретною топологією.

Example 1.1.5 Розглянемо множину X та $\tau = \{\emptyset, X\}$. Тоді вона також задає топологію. (X,τ) , де $\tau = \{\emptyset, X\}$, ще називають **недискретною топологією**.

Example 1.1.6 Маємо $X=\mathbb{R}$ та розглянемо $\tau=\{U\subset\mathbb{R}\mid U=\emptyset \text{ або } U=\mathbb{R}\backslash S, S\subset\mathbb{R}-\text{деяка скінченна}\}.$ Вона утворює топологію, а називається вона топологія Заріского.

Дійсно, $\emptyset \in \tau$, а також $X \in \tau$, тому що $X = \mathbb{R} \setminus \emptyset$.

Нехай $\{U_{\alpha}\in \tau\}$ – сім'я, поки нехай всі такі, що $U_{\alpha}=\mathbb{R}\setminus S_{\alpha}$ для декяої $\{S_{\alpha}\}$ сім'ї скінченних підмножин. Тоді звідси $\bigcup_{\alpha} U_{\alpha} = \mathbb{R} \setminus \bigcap_{\alpha} S_{\alpha}$. Зрозуміло цілком, що $\bigcap_{\alpha} S_{\alpha}$ буде скінченною, тож $\bigcup_{\alpha} U_{\alpha} \in \tau$. Якщо існує принаймні одна множина U_{α} , де $U_{\alpha} = \emptyset$, то тоді прибираємо їх – повертаємось до пер-

шого випадку.

Нехай $U_1,U_2\in au,$ тобто $U_1=\mathbb{R}\setminus S_1$ та $U_2=\mathbb{R}\setminus S_2,$ де множини S_1,S_2 – скінченні. Тоді $U_1\cap U_2=$ $\mathbb{R}\setminus (S_1\cup S_2)$, де $S_1\cup S_2$, зрозуміло, скінченна. Тож $U_1\cap U_2\in \tau$. Якщо серед них $U_i=\emptyset$, то тоді все

Definition 1.1.7 Задано (X, τ) та (X, τ') – два топологічних простори. τ' називається **сильнішою за** τ , якщо

$$\tau'\supset \tau$$

 τ' називається слабшою за τ , якщо

$$\tau' \subset \tau$$

Example 1.1.8 Якщо є множина X, то дискретна топологія є найсильнішою серед всіх інших топології; а недискретна топологія є найслабшою серед всіх інших топологій.

Definition 1.1.9 Задано (X, τ) – топологічний простір та $x \in X$.

Відкритим околом точки x назвемо таку відкриту множину U, де

$$U\ni x$$

Околом точки x назвемо таку множину V, що містить відкритий окіл точки x, тобто

$$\exists U$$
 – відкритий окіл точки $x:V\supset U$

Example 1.1.10 Розглянемо \mathbb{R} зі стандартною метрикою. Тоді $(-\varepsilon, \varepsilon)$ буде відкритим околом точки 0, тому що даний інтервал відкритий та містить 0.

Водночас $[-\varepsilon,\varepsilon],(-\varepsilon,\varepsilon],[-\varepsilon,\varepsilon)$ будуть околами точки 0, тому що всі вони містять відкритий окіл точки 0 (наприклад) $(\varepsilon,\varepsilon)$.

Remark 1.1.11 Відкритий окіл точки x – також окіл точки x.

Дійсно, нехай U — відкритий окіл x. Тоді $\exists U$ — відкритий окіл точки $x:U\supset U$. Тобто за означенням, U — просто окіл точки x.

Definition 1.1.12 Задано (X, τ) – топологічний простір та $A \subset X$.

Точка x називається **внутрішньою** для A, якщо

$$\exists V$$
 – окіл точки $x:V\subset A$

Proposition 1.1.13 Задано (X, τ) – топологічний простір.

U – відкрита $\iff \forall x \in U : x$ – внутрішня точка для U.

Це те саме звичне означення відкритої множини, яку ми давали в метричному просторі.

Proof.

 \implies Дано: U — відкрита. Тоді якщо $x \in U$, то тоді U — відкритий окіл точки x, причому $U \subset U$. Тобто x — внутрішня точка для U.

 \sqsubseteq Дано: $\forall x \in U: x$ – внутрішня точка для U. Тобто це означає, що $\exists V_x$ – окіл точки $x: V_x \subset U$. Оскільки V_x – окіл точки x, то тоді $\exists U_x$ – відкритий окіл точки $x: U_x \subset V_x \subset U$.

Зауважимо, що $U = \bigcup_{x \in U} U_x$. Оскільки $\{U_x, x \in U\}$ — сім'я відкритих множин, то в силу означення

топології, U буде відкритою як об'єднання.

1.2 Зв'язок з метричними просторами

Definition 1.2.1 Задано (X, τ) – топологічний простір.

Топологічний простір називається метризуючим, якщо

$$\exists \rho$$
 – метрика на множині $X: \tau_{\rho} = \tau$

Інакше кажучи, метрика ρ **індукує ту саму топологію**, що була на початку.

Example 1.2.2 Зокрема дискретний топологічний простір (X,τ) буде метризуючим. Тому що існує метрика $d(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$ – дискретна метрика. У цьому випадку (із теорії метричних просторів) будь-яка підмножина X буде відкритою. Значить, $\tau_d = \tau$.

Example 1.2.3 Але недискретний топологічний простір (X,τ) не буде метризуючим при $\#X \ge 2$. !Припустимо, що існує метрика ρ , яка індукує ту саму топологію. Зауважимо, що існує відкритий окіл $\emptyset \subsetneq B(x;r) \subsetneq X$ при деякому r>0. Якби було навпаки, тобто $\forall r>0$ було б B(x;r)=X, то звідси $\bigcap_{r>0} B(x;r)=X=\{x\}$, проте у нас X містить більше одного елементу.

Таким чином, знайшли $B(x;r) \neq X, B(x;r) \neq \emptyset$ — ще одна відкрита множина, але $B(x;r) \notin \tau$ — суперечність!

Remark 1.2.4 Один й той самий топологічний простір можна метризувати двома різними метриками (тобто нема ін'єктивності переходу з метричного в топологічний простори).

Example 1.2.5 Маємо (\mathbb{Z},τ) — дискретний топологічний простір, яка метризується метрикою d. Розглянемо іншу метрику $\rho(m,n)=|m-n|$ на \mathbb{Z} . Зауважимо, що тоді кожна множина — відкрита. І дійсно, $B\left(\frac{1}{2},x\right)=\left\{y\in\mathbb{Z}:|x-y|<\frac{1}{2}\right\}=\{x\}$ — будь-яка одноточкова множина відкрита. Тому якщо брати довільні об'єднання, то тоді вони будуть відкритими.

Remark 1.2.6 Не кожний топологічний простір може бути метризуючим (тобто нема сюр'єктивності переходу з метричного в топологічний простори).

Дійсно, ми довели, що недискретний топологічний простір не може бути метризуючим.

Definition 1.2.7 Задані (X, ρ) та (X, ρ') – два метричних простори. Метрики називаються топологічно еквівалентнтими, якщо

$$\tau_{\rho} = \tau_{\rho'}$$

Тобто вони індукують одну й ту саму топологію. Позначення: $\rho \sim^{\tau} \rho'$.

Definition 1.2.8 Задані (X, ρ) та (X, ρ') – два метричних простори. Метрики називаються Ліпшицево еквівалентнтими, якщо

$$\exists C, c > 0 : \forall x, y \in X : c\rho(x, y) \le \rho'(x, y) \le C\rho(x, y)$$

Позначення: $\rho \stackrel{\text{Lipsch}}{\sim} \rho'$.

Remark 1.2.9 Зрозуміло, що два означення задають відношення еквівалентності.

Proposition 1.2.10 Задані (X, ρ) та (X, ρ') – два метричних простори. Відомо, що $\rho \stackrel{\text{Lipsch}}{\sim} \rho'$. Тоді $\rho \stackrel{\tau}{\sim} \rho'$.

Proof.

Нам треба доввести, що $\tau_{\rho} = \tau_{\rho'}$. Це теж саме, що довести, що U – відкрита в $(X, \rho) \iff U$ – відкрита в (X, ρ') .

Нехай U – відкрита в (X, ρ) . Нехай $x \in U$, тоді за умовою, $\exists B_{\rho}(x; r) \subset U$. За умовою твердження, існують константи c, C > 0, для яких $c\rho(x,y) \le \rho'(x,y) \le C\rho(x,y)$. Із цієї нерівності випливає $ho'(x,y) \leq C
ho(x,y),$ а з неї випливає, що $B_{
ho'}(x,cr) \subset B_{
ho}(x,r).$ І дійсно,

 $y\in B_{\rho'}(x,cr)\implies \rho'(x,y)\leq cr\implies \rho(x,y)\leq \frac{1}{c}\rho'(x,y)\leq r\implies y\in B_{\rho}(x,r).$ Отже, $B_{\rho'}(x,cr)\subset U$, тобто знайшли такий окіл, а тому x – внутрішня точка U відносно $(X,\rho').$

Оскільки це для довільної точки, то U – відкрита в (X, ρ') .

Нехай U – відкрита в (X, ρ') , то тоді аналогічно доводиться. Просто цього разу в нерівності $c\rho(x,y) \le \rho'(x,y) \le C\rho(x,y)$ використовується права частина нерівності.

Remark 1.2.11 Якщо $\rho \stackrel{\tau}{\sim} \rho'$, то не обов'язково $\rho \stackrel{\text{Lipsch}}{\sim} \rho'$.

Example 1.2.12 Зокрема маємо (\mathbb{Z},d) та (\mathbb{Z},ρ) – два метричних простори. Тут d – дискретна метрика та ρ задається як $\rho(m,n) = |m-n|$. Із **Ех. 1.2.5**, вони генерують одну й ту саму топологію, тобто $\tau_d = \tau_\rho$. А це означає, що $d \stackrel{\tau}{\sim} \rho$.

тут $x, y \in \mathbb{Z}$, для яких $\rho(x, y) > Cd(x, y)$.

Конструкція топології за базою 1.3

Definition 1.3.1 Задано (X, τ) – топологічний простір. Клас \mathcal{B} підмножин X назвемо **базою топології** τ , якщо

$$\forall U \in \tau : U = \bigcup_{V \in \tilde{\mathcal{B}}} V, \ \tilde{\mathcal{B}} \subset \mathcal{B}$$

Тобто \mathcal{B} – база, якщо кожна відкрита множина записується як об'єднання множин з класу \mathcal{B} .

Remark 1.3.2 Всі множини з класу \mathcal{B} – відкриті автоматично, тобто $\mathcal{B}\subset au$, просто тому що їх можна сприймати як об'єднання з одного елементу.

Example 1.3.3 Зокрема маємо метричний простір (X, ρ) , де індукується топологія τ_{ρ} . Тоді для неї база $\mathcal{B} = \{B(x;r) \mid x \in X, r > 0\}$ – набір всіх відкритих куль. Дійсно, нехай U – відкрита множина, тоді $\forall x \in U: x$ – внутрішня, а тому $\exists B(x; r_x) \subset U.$ Тоді звідси $U = \bigcup_{x \in X} B(x; r_x).$

Example 1.3.4 Якщо $(X, \tau_{\mathrm{discr}})$ – дискретна топологія, то тоді $\mathcal{B} = \{\{x\} \mid x \in X\}$ – база. Дійсно, кожна підм
ножина $U = \bigcup_{x \in U} \{x\}$, ну й U уже апріорі відкрита.

Proposition 1.3.5 Задано (X,τ) – топологічний простір та \mathcal{B} – база топології. Тоді:

- 1) $X = \bigcup U$ тобто X записуємо як об'єданання всіх множин із бази;
- 2) $\forall B_1, B_2 \in \mathcal{B}: B_1 \cap B_2 = \bigcup U$, де $\tilde{\mathcal{B}} \subset \mathcal{B}$ тобто перетин елементів з бази записуються як об'єднання з цієї самої бази.

Proof.

Дійсно, оскільки \mathcal{B} – база топології, то кожна відкрита множина – це об'єдання множин із бази.

- 1) Зокрема X відкрита, тому $X = \bigcup U$.
- 2) Нехай $B_1, B_2 \in \mathcal{B}$. Вони вдвох відкриті (див. зауваження). Значить, $B_1 \cap B_2$ є відкритою множиною, а тому $B_1 \cap B_2 = \bigcup_{U \in \mathcal{R}} U$.

Довели.

Definition 1.3.6 Нехай задано множину X (просто множина без топології). Клас \mathcal{B} підмножин X назвемо **базою множини** X, якщо

1)
$$X=\bigcup_{U\in\mathcal{B}}U$$

2) $\forall B_1,B_2\in\mathcal{B}:B_1\cap B_2=\bigcup_{U\in\tilde{\mathcal{B}}}U,$ де $\tilde{\mathcal{B}}\subset\mathcal{B}$

Якщо (X, τ) – топологія та \mathcal{B} – база топології, то \mathcal{B} – база множини (щойно вище довели). Виявляється, що якщо в нас ϵ множина X, для якої ми хочемо згенерувати топологію, то нам потрібно створити базу \mathcal{B} множини X.

Proposition 1.3.7 Конструкція топології за базою

Задано X — множину та \mathcal{B} — база цієї множини. Створимо $au_{\mathcal{B}} = \left\{ \bigcup_{U \in \tilde{\mathcal{B}}} U \mid \tilde{\mathcal{B}} \subset \mathcal{B} \right\}$ — тобто клас, що

складається з усіх можливих об'єднань елементів з бази. Тоді $(X, \tau_{\mathcal{B}})$ утворює топологічний простір. Ми $\tau_{\mathcal{B}}$ називаємо **топологією**, що породжена базою \mathcal{B} . Причому це єдина така топологія, де \mathcal{B} - база топології.

Маємо
$$au_{\mathcal{B}} = \left\{ \bigcup_{U \in \tilde{\mathcal{B}}} U \mid \tilde{\mathcal{B}} \subset \mathcal{B} \right\}$$
, перевіримо всі пункти для топології.

- 1) $\emptyset \in \tau_{\mathcal{B}}$, тому що можна записати $\emptyset = \bigcup_{U \in \emptyset} U$, де $\emptyset \subset \mathcal{B}$. Також $X \in \tau_{\mathcal{B}}$, тому що \mathcal{B} база множини
- X, а значить, $X = \bigcup_{U \in \mathcal{B}} U;$
- 2) Нехай $\{U_{\alpha}\mid U_{\alpha}\in \tau_{\mathcal{B}}\}$ сім'я відкритих множин. Тобто $U_{\alpha}=\bigcup_{\mathcal{B}_{\alpha}}U,$ де $\mathcal{B}_{\alpha}\subset \mathcal{B}.$ Тоді звідси

$$\bigcup_{\alpha} U_{\alpha} = \bigcup_{\square B_{\alpha}} U, \text{ причому } \bigcup_{\alpha} \mathcal{B}_{\alpha} \subset \mathcal{B}. \text{ Отже, } \bigcup_{\alpha} U_{\alpha} \in \tau_{\mathcal{B}};$$

- $\bigcup_{\alpha}U_{\alpha}=\bigcup_{\bigcup_{\alpha}B_{\alpha}}U,$ причому $\bigcup_{\alpha}\mathcal{B}_{\alpha}\subset\mathcal{B}.$ Отже, $\bigcup_{\alpha}U_{\alpha}\in\tau_{\mathcal{B}};$ 3) Нехай $U_{1},U_{2}\in\tau_{\mathcal{B}}.$ Тобто звідси $U_{1}=\bigcup_{U\in\mathcal{B}_{1}}U$ та $U_{2}=\bigcup_{U\in\mathcal{B}_{2}}U,$ де $\mathcal{B}_{1},\mathcal{B}_{2}\subset\mathcal{B}.$ Значить, звідси $U_{1}\cap U_{2}=\bigcup_{U\in\mathcal{B}_{1}}(U\cap V).$ Оскільки $U,V\in\mathcal{B},$ то в силу того, що \mathcal{B} база множини X, звідси
- $U\cap V=igcup_{W\in ilde{\mathcal{B}}_{U,V}}^{U\in \mathcal{B}_1}W.$ Тоді $U_1\cap U_2=igcup_{U\in \mathcal{B}_1}^U\bigcup_{W\in ilde{\mathcal{B}}_{U,V}}W=igcup_{W\in ilde{\mathcal{B}}}^U$. Детально треба уточнити, що кожний
- $\tilde{\mathcal{B}}_{U,V} \subset \mathcal{B}$, тоді $\bigcup_{V \in \mathcal{B}} \tilde{\mathcal{B}}_{U,V} \stackrel{\text{позн.}}{=} \tilde{\tilde{\mathcal{B}}} \subset \mathcal{B}$. Висновок: $U_1 \cap U_2$ записали як об'єднання множин з бази \mathcal{B} ,

тож $U_1 \cap U_2 \in \tau_{\mathcal{B}}$

Із цих пунктів випливає, що $au_{\mathcal{B}}$ – дійсно топологія.

Також з цього випливає, що \mathcal{B} – не просто база множини X, а ще й база топології $\tau_{\mathcal{B}}.$

Припустимо, що існує τ' – якась інша топологія на X, яка має базу топології \mathcal{B} . Нам треба довести,

Нехай $U\in au'$, тоді звідси за означенням бази топології, $U=\bigcup_{V\in \tilde{\mathcal{B}}}V$, де $\tilde{\mathcal{B}}\subset \mathcal{B}.$ Але в силу того, як

ми визначали $\tau_{\mathcal{B}}$, випливає, що $U \in \tau_{\mathcal{B}}$.

Нехай $U\in au_{\mathcal{B}},$ тоді звідси за побудовою, $U=\bigcup_{V\in \tilde{\mathcal{B}}}V,$ але тоді $V\in au'$ — відкрита множина як

об'єднання однієї множини з бази. За означенням топології, $U \in \tau'$.

Власне, з цього випливає, що $\tau_{\mathcal{B}} = \tau'$.

Remark 1.3.8 Не хочеться це вставляти як окреме твердження, але ϵ ось така еквівалентність:

$$\forall B_1, B_2 \in \mathcal{B}: B_1 \cap B_2 = \bigcup_{U \in \tilde{\mathcal{B}}} U, \text{ de } \tilde{\mathcal{B}} \subset \mathcal{B} \iff \forall B_1, B_2 \in \mathcal{B}: \forall x \in B_1 \cap B_2: \exists W \in \mathcal{B}: x \in W \subset B_1 \cap B_2.$$

Зазвичай саме праву частину використовують в якості другої умови бази множини та в твердженні про конструкцію топології за базою. Тим не менш, цю еквівалетність доведу.

Proof.

 \Rightarrow Дано: ліва частина. Нехай $B_1, B_2 \in \mathcal{B}$, тоді звідси $B_1 \cap B_2 = \bigcup_{W \in \tilde{\mathcal{B}}} W$. Оберемо точку $x \in B_1 \cap B_2$, тоді звідси $x \in W_0$, де $W_0 \in \mathcal{B}$. Отже, ми знашли $W_0 \in \mathcal{B}$, для якої $x \in W_0 \subset B_1 \cap B_2$.

 \sqsubseteq Дано: права частина. Нехай $B_1, B_2 \in \mathcal{B}$, тоді $\forall x \in B_1 \cap B_2 : \exists W_x \in \mathcal{B} : x \in W_x \subset B_1 \cap B_2$. Зауважимо, що звідси $B_1\cap B_2=\bigcup_{x\in B_1\cap B_2}W_x$, причому ми об'єднуємо елементи з $\mathcal{B}.$

Proposition 1.3.9 Задані $(X, \tau), (Y, \tilde{\tau})$ – топологічні простіри та $\tilde{\mathcal{B}}$ – база топології $\tilde{\tau}$. Відомо, що $\forall U \in \tilde{\mathcal{B}} : f^{-1}(U) \in \tau$. Тоді $f: X \to Y$ – неперервне. (TODO: move to other subsection)

Remark 1.3.10 Тобто коли топологія побудована за базою, то для неперервності достатньо перевірити умову для елементів з бази, а не з усієї топології.

Нехай U — відкрита множина в Y, тобто звідси $U=\bigcup_{V\in\mathcal{B}'}V$, де $\mathcal{B}'\subset\tilde{\mathcal{B}}$ за визначенням бази.

Тоді звідси $f^{-1}(U)=\bigcup_{V\in\mathcal{B}'}f^{-1}(V)$, де всі $f^{-1}(V)$ відкриті за умовою. Отже, $f^{-1}(U)$ – відкрита як об'єднання. Отже, $f\colon X\to Y$ – неперервне.

Definition 1.3.11 Задано (X, τ) – топологічний простір та \mathcal{B} – його база.

Простір задовольняє другу аксіому зліченності (англ. second-countable), якщо

 ${\cal B}$ має зліченне число множин.

Example 1.3.12 Зокрема (\mathbb{R} , τ) з евклідовою топологією буде second-countable.

Розглянемо $\mathcal{B} = \{(a,b) \mid a,b \in \mathbb{Q}\}$. Варто спочатку довести, що вона утворює базу стандартної топології. Дійсно, нехай $U \in \tau$. Її можемо в стандартній топології записати як $U = \bigcup_{x \in U} (x-r, x+r)$.

Надалі вся увага на $(x-r,x+r)\stackrel{\text{позн.}}{=}(u,v)$. Слід зауважити, що тут $u,v\in\mathbb{R}$. Але відомо, що для u існує послідовність раціональних чисел $\{q_n, n \geq 1\}$ так, щоб $v \geq q_n \geq u$, а також $q_n \to u$. Аналогічно існує послідовність раціональних чисел $\{r_n, n \geq 1\}$ так, щоб $u \leq r_n \leq v$, а також $r_n \to v$. Тоді запишемо $(u,v)=\bigcup_{\substack{q_n,r_n\in\mathbb{Q}\\q_n< r_n}}(q_n,r_n).$ Таким чином, отримали (u,v) як об'єднання множин з бази,

тобто U записується як об'єднання множин з бази.

Висновок: \mathcal{B} — база стандартної топології. Оскільки \mathbb{Q} — зліченна множина, то кількість інтервалів (a,b) також буде зліченною, тому second-countable.

Конструкція топології за передбазою

Definition 1.4.1 Задано (X, τ) – топологічний простір.

Клас S підмножин X назвемо **передбазою топології** τ , якщо

$$\mathcal{B} \stackrel{\mathrm{def.}}{=} \left\{ \bigcap_{i=1}^n S_i \mid S_i \in \mathcal{S} \right\}$$
 утворює базу топології au .

Тобто звідси випливає, що кожна відкрита множина записується як об'єднання скінченних перетинів множин з S.

Ми вже знаємо, що якщо є база \mathcal{B} , то тоді можна побудувати топологію. Тобто якщо ми хочемо, щоб S була передбазою, то треба спочатку утворити базу B, а із бази вже утворити топологію.

Proposition 1.4.2 Задано (X, τ) – топологічний простір.

$$\mathcal{S}$$
 – передбаза $X \iff \bigcup_{U \in \mathcal{S}} U = X$ (тут об'єднання всіх множин із класа \mathcal{S}).

Proof.

 \implies Дано: \mathcal{S} – передбаза X, тоді $\mathcal{B} = \left\{ \bigcap_{i=1}^n S_i \mid S_i \in \mathcal{S} \right\}$ утвроює базу топології, тому й базу X. Значить, $\bigcup_{V \in \mathcal{S}} V = X$. У цьому об'єднанні беруть участь множини $U \in \mathcal{S}$, а всі решта з об'єдання

будуть перетинами з двох чи більше елементів $\mathcal{S}.$ Таким чином, достатньо об'єднати $\bigcup_{U \in \mathcal{S}} U = X.$

$$\sqsubseteq$$
 Дано: $\bigcup_{U \in \mathcal{S}} U = X$. Нам треба показати, що $\mathcal{B} = \left\{\bigcap_{i=1}^n S_i \mid S_i \in \mathcal{S}\right\}$ – база X . Дійсно, $X = \bigcup_{U \in \mathcal{S}} U = \bigcup_{V \in \mathcal{B}} V = X$ (пояснення вище).

$$U \in \mathcal{S}$$
 $V \in \mathcal{B}$
Нехай $B_1, B_2 \in \mathcal{B}$, тобто $B_1 = \bigcap_{i=1}^{n_1} S_i$ та $B_2 = \bigcap_{j=1}^{n_2} S_j$. Тоді звідси $B_1 \cap B_2 = \bigcap_{i=1}^{n_1} S_i \cap \bigcap_{j=1}^{n_2} S_j = \bigcap_{k=1}^m S_k$.

Proposition 1.4.3 Задано (X, τ) – топологічний простір та ${\mathcal S}$ – передбаза топології. Тоді τ – найслабша топологія, що містить S.

Proof.

Дано: S – передбаза топології. Для зручності позначу початкову топологію за τ_S .

Припустимо, що τ – слабша топологія, що містить S, тобто $\tau \subset \tau_S$. Залишилося довести, що $\tau_S \subset \tau$.

Беремо
$$U \in \tau_{\mathcal{S}}$$
, тоді звідси $U = \bigcup_{\text{скінченний}} \bigcap_{\text{скінченний}} W$, де $W \in \mathcal{S}$. Зауважимо, що $W \in \tau$ також, бо τ містить \mathcal{S} . Таким чином, $\bigcap_{\text{скінченний}} W \in \tau \implies U \in \tau$.

Збіжність в топологічному просторі 1.5

Definition 1.5.1 Задані (X, τ) – топологічний простір та послідовність $\{x_n \in X, n \ge 1\}$. Послідовність збігається до точки $x \in X$, якщо

$$\forall U$$
 – відкритий окіл точки $x:\exists N\in\mathbb{N}:\forall n>N:x_n\in U$

Example 1.5.2 Розглянемо (X, au_{disc}) – дискретний топологічний простір.

Послідовність $\{x_n \in X, n \ge 1\}$ збігається до точки $x \in X \iff \exists N : \forall n \ge N : x_n = x.$

 \Rightarrow Дано: $\{x_n\}$ збігається до $x \in X$. Тоді для будь-якого відкритого околу точки x, зокрема для $\overline{\{x\}}$ існує номер N, де $\forall n \geq N : x_n \in \{x\}$, тобто $x_n = x, \forall n \geq N$.

 $otin \Box$ Дано: $\exists N: \forall n \geq N: x_n = x$. Нехай U – відкритий окіл точки x. У нас ϵ номер N, де $\forall n \geq N : x \in U$, зокрема звідси $x_n \in U$, а тому звідси $\{x_n\}$ збігається до точки $x \in X$.

Example 1.5.3 Розглянемо $(X, \tau_{\text{indisc}})$ – недискретний топологічний простір. Тоді довільна послідовність $\{x_n \in X, n \geq 1\}$ збігається до будь-якої точки $x \in X$.

Дійсно, нехай U — відкритий окіл точки $x \in X$. У недискретному просторі лише U = X буде відкритим околом точки x. А значить, існує номер N = 1, де $\forall n \geq N : x_n \in X$.

Для того, щоб позбутися такої аномалії, нам треба нова класифікація топологічних просторів. Але це буде трошки пізніше.

1.6 Неперервні відображення

Definition 1.6.1 Задані (X, τ) та $(Y, \tilde{\tau})$ – два топологічних простори. Відображення $f: X \to Y$ називається **неперервним**, якщо

$$\forall U \in \tilde{\tau} : f^{-1}(U) \in \tau$$

Простіше кажучи, ми маємо ось це:

$$\forall U$$
 – відкрита в $Y:f^{-1}(U)$ – відкрита в X

Example 1.6.2 Задано неперервне відображення $f: X \to Y$, де $(X, \rho), (Y, \rho')$ – два метричних простори. Тоді звідси f – неперервне (в топологічному сенсі).

Example 1.6.3 Задано відображення $f: X \to Y$, де (X, τ_{discr}) – дискретний топологічний простір, а на Y стоїть довільна топологія. Тоді f – неперервне.

Справді, беремо U — відкриту множину в Y. Тоді прообраз $f^{-1}(U)$ буде відкритим в X, бо в дискретній топології всі множини — відкриті.

Example 1.6.4 Задано відображення $f: X \to Y$, де $(Y, \tau_{\text{indiscr}})$ – недискретний топологічний простір, а на X стоїть довільна топологія. Тоді f – неперервне.

Справді, оберемо \emptyset, Y — єдині відкриті множини в Y. Тоді $f^{-1}(\emptyset) = \emptyset$ та $f^{-1}(Y) = X$ — обидва відкриті в X.

Example 1.6.5 Задано відображення іd: $X \to X$, тут відображення між (X, τ) та (X, τ') . Тоді іd – неперервне $\iff \tau$ сильніша за τ' .

 \Longrightarrow Дано: id – неперервне. Тобто $\forall U \in \tau' : \mathrm{id}^{-1}(U) = U \in \tau$. А це в точності $\tau' \subset \tau$.

 \vdash Дано: $\tau' \subset \tau$. Тобто $\forall U \in \tau' : U \in \tau$, але при цьому $U = \mathrm{id}^{-1}(U) \in \tau$. Отже, id – неперервне.

Proposition 1.6.6 Задані (X, τ) та $(Y, \tilde{\tau})$ – два топологічних простори. Відображення $f: X \to Y$ – неперервне $\iff \forall U$ – замкнена в $Y: f^{-1}(U)$ – замкнена в X.

Proof.

 \implies Дано: f – неперервне. Оберемо U – замкнену в Y. За означенням, $X \setminus U$ – відкрита в Y, а тому за неперервністю, $f^{-1}(X \setminus U)$ – відкрита в X. Зауважимо, що $f^{-1}(X \setminus U) = X \setminus f^{-1}(U)$ – відкрита в X. Отже, $f^{-1}(U)$ – замкнена в X.

Е Цілком аналогічно доводиться.

В принципі, часто про відображення кажуть просто про неперервність, не уточнюючи в якій точці. Але для такого сценарія означення теж ϵ .

Definition 1.6.7 Задані (X, τ) та $(Y, \tilde{\tau})$ – два топологічних простори.

Відображення $f\colon X\to Y$ називається неперервним в точці $x\in X$, якщо

$$\forall V$$
 – окіл точки $f(x):\exists U$ – окіл точки $x:f(U)\subset V$

Proposition 1.6.8 Задані (X, τ) та $(Y, \tilde{\tau})$ – два топологічних простори. Відображення $f: X \to Y$ – неперервне $\iff \forall x \in X: f$ – неперервне в точці x.

Proof.

 \Longrightarrow Дано: f – неперервне. Оберемо будь-яку точку $x\in X$. Нехай V – окіл точки f(x). Тоді існує \tilde{V} – відкритий окіл точки f(x), де $V\supset \tilde{V}$. Значить, за неперервністю, $f^{-1}(\tilde{V})$ – відкритий окіл точки x. Також із $V\supset \tilde{V}$ випливає $f^{-1}(V)\supset f^{-1}(\tilde{V})$. Таким чином, $f^{-1}(V)$ – окіл точки x. Нарешті, варто зауважити, що виконується $f(f^{-1}(V))\subset V$.

Таким чином, f – неперервне в точці $x \in X$, причому довільній.

 \sqsubseteq Данл: $\forall x \in X : f$ – неперервне в точці x. Нехай U – відкрита множина в Y. Хочемо показати, що $f^{-1}U$ – відкрита, тобто всі точки внутрішні.

Нехай $x \in f^{-1}U$, тобто $f(x) \in U$, тоді за означення неперервності в точці, існує окіл U_x точки x, де $f(U_x) \subset U \implies U_x \subset f^{-1}U$. Отже, x – внутрішня точка.

Таким чином, f – неперервне відображення.

Proposition 1.6.9 "Означення Гайне"

Задані (X,τ) та $(Y,\tilde{\tau})$ – два топологічних простори та відображення $f\colon X\to Y$ – неперервне. Тоді виконується "означення Гейне", тобто: Нехай $\{x_n\in X, n\geq 1\}$ збігається до точки $x\in X$. Тоді $\{f(x_n)\in Y, n\geq 1\}$ збігається до точки $f(x)\in Y$.

Proof.

Нехай $\{x_n \in X, n \geq 1\}$ збігається до точки x. Оберемо U – відкритий окіл точки f(x), тоді за неперервністю, $f^{-1}(U)$ – відкритий окіл точки x, а тому звідси за збіжністю, існує N, де $\forall n \geq N$: $x_n \in f^{-1}(U) \implies f(x_n) \in U$.

Remark 1.6.10 Якщо виконано означення Гайне, то з цього в загальному випадку неперервність НЕ випливає.

Proposition 1.6.11 Інші властивості

- 1. id: $X \to X$ неперервне відображення будь-якій топології τ ;
- 2. Нехай $f:X\to Y$ та $g\colon Y\to Z$ обидва неперервні. Тоді $g\circ f\colon X\to Z$ неперервне.
- 1. $B\kappa asi \kappa a$: $id^{-1}(U) = U$.
- 2. Brasiera: $(q \circ f)^{-1}(U) = f^{-1}(q^{-1}(U))$.

Remark 1.6.12 Нехай відображення $f \colon X \to Y$ бієктивне. Якщо f – неперервне, то не обов'язково (!), щоб f^{-1} було неперервним.

Example 1.6.13 Зокрема вже відомо, що іd: $\mathbb{R} \to \mathbb{R}$ буде неперервним відображенням, якщо в першому (\mathbb{R}, d) – дискретний метричний простір та в другому (\mathbb{R}, ρ) – стандартний евклідів простір. Тут виконується неперервність, оскільки τ_{discr} – найсильніша топологія.

Утім відображення $id^{-1}: \mathbb{R} \to \mathbb{R}$ уже не буде неперервним. Тому що [-1,1] – відкрита множина відносно дискретної топології, але $id^{-1}([-1,1]) = [-1,1]$ – НЕ відкрита множина відносно евклідової топології.

Example 1.6.14 Більш геометричний приклад буде наступним. Маємо відображення $f:(0,1] \to S$, де $S = \{z \in \mathbb{C} : |z| = 1\}$ – одиничне коло (метрика буде стандартною всюду). Визначимо $f(t) = e^{2\pi i t}$. Зрозуміло, що це бієктивне відображення та є неперервним.

У цьому напрямку неперервність означає, що ми (0,1] деформували в коло S, просто об'єднавши тіпа края.

Але $f^{-1} \colon S \to (0,1]$ уже не буде неперервним.

!Припустимо, що все-таки неперервне. Тоді оскільки $\left\{1-\frac{1}{n}, n\geq 1\right\}$ збігається до 1, а тому $f\left(1-\frac{1}{n}\right) \to f(1) = e^{2\pi i} = 1$. Утім в силу неперервності f^{-1} ми маємо $f^{-1}\left(f\left(1-\frac{1}{n}\right)\right) = 1-\frac{1}{n} \to 1$, хоча $f^{-1}(1) = 0$. Суперечність!

Тут щоб із кола зробити палку, треба розірвати її в точці z=1. Тому нема неперервності. Саме тому приходить новий розділ, де ми хочемо, щоб, деформувавши один об'єкт, отримали топологічно той самий об'єкт і навпаки.

1.7 Гомеоморфність топологічних просторів

Definition 1.7.1 Задані (X, τ) та $(Y, \tilde{\tau})$ – два топологічних простори. Відображення $f: X \to Y$ називається **гомеоморфізмом**, якщо

f – неперервне f – бієктивне f^{-1} – неперервне

Definition 1.7.2 Задані (X, τ) та $(Y, \tilde{\tau})$ – два топологічних простори. Вони будуть називатися **гомеоморфними**, якщо

$$\exists f \colon X \to Y$$
 – гомеоморфізм

Позначення: $X \cong Y$.

Remark 1.7.3 Топологічні простори, які є гомеоморфними, задають відношення еквівалентності. $X \cong X$, оскільки іd: $X \to X$ (одна топологія) – гомеоморфізм.

 $X\cong Y\iff Y\cong X$ просто за означенням гомеоморфізма.

 $X\cong Y,Y\cong Z\implies X\cong Z,$ тому що $g\circ f$ задає гомеоморфізм між ними. У цьому випадку $f\colon X\to Y,g\colon Y\to Z$ – гомеоморфізми.

Example 1.7.4 Зокрема відрізок $[0,1] \cong [a,b]$, якщо встановити $f: [0,1] \to [a,b]$ як f(t) = (1-t)a + tb – і це відображення буде гомеоморфізмом.

Дійсно, $f \in C([0,1])$ як лінійна функція. Далі знайдемо обернене відображення — воно дорівнює $f^{-1}(u) = \frac{u-a}{b-a}$, причому $f^{-1} \in C([a,b])$ знову як лінійна функція.

Example 1.7.5 Із цього прикладу можна отримати $[a,b]\cong [c,d]$, тому що $[a,b]\cong [0,1]$ та $[0,1]\cong [c,d]$ \Longrightarrow $[a,b]\cong [c,d]$.

Аналогічно можна довести, що $(a,b)\cong(c,d)$, $(a,b]\cong(c,d)\cong[c,d)\cong[a,b)$.

Example 1.7.6 За **Ex. 1.6.14**, ми отримали $(0,1] \not\cong S$.

Example 1.7.7 Також маємо $(a,b)\cong \mathbb{R}$. Можна спочатку довести, що $(-1,1)\cong \mathbb{R}$, якщо задати $f(x)=\frac{x}{1-|x|}$ — це дійсно буде гомеоморфізмом.

А вже далі в силу транзитивності, ми отримаємо $(a,b) \cong \mathbb{R}$.

Example 1.7.8 Тепер розглянемо такі два об'єкти. Перший: кільце з внутрішнім радіусом 1 та зовнішнім радіусом 2, для зручності розташуємо центр на початку координат. Другий: циліндр без двох основ. Інтуїтивно вони будуть гомеоморфними, тому що:

циліндр отримаємо з кільця, якщо його кільце намагатися розтягнути вгору; кільце отримаємо з циліндра, якщо його сплющити.

Строго можна довести гомеоморфність цих об'єктів, якщо задати відображення $(r\cos\theta, r\sin\theta) \mapsto (\cos\theta, \sin\theta, r)$, що буде гомеоморфізмом. У цьому випадку $r \in [1, 2]$ та $\phi \in [0, 2\pi]$.

Example 1.7.9 Ще важливий приклад, $[a,b] \not\cong \mathbb{R}$.

!Припустимо, що все ж таки $[a,b]\cong \mathbb{R}$, тобто існує між ними гомеоморфізм $f\colon [a,b]\to \mathbb{R}$. Оскільки $f\in C([a,b])$, то звідси воно досягає найбільшого значення M та найменшого значення m. Тобто f([a,b])=[m,M]. Але оскільки f — бієкція, то звідси $f([a,b])=\mathbb{R}$. Але при цьому $[m,M]\neq \mathbb{R}$ — суперечність!

Example 1.7.10 Мабуть, в алгебраїчній топології буде доведено, що $\mathbb{R}^n \cong \mathbb{R}^m \iff n=m$.

1.8 Характеристики точок множин

Нам вже відоме означення внутрішньої точки. Ще раз нагадаю:

Definition 1.8.1 Задано (X, τ) – топологічний простір та $A \subset X$. Точка x називається **внутрішньою для** A, якщо

$$\exists V$$
 – окіл точки $x:V\subset A$

Definition 1.8.2 Задано (X, τ) – топологічний простір та $A \subset X$. Точка $x \in X$ називається **граничною для** A, якщо

$$\forall V$$
 – окіл точки $x:V\cap (A\setminus \{x\})\neq \emptyset$

Є ще різні види точок, але поки зосередимось на них.

У метричному просторі ми вводили поняття відкритих та замкнених множин як раз через внутрішні та граничні точки. У топологічному просторі ми означення відкритої множини звели до означення з використанням внутрішніх точок. Зробимо те саме для замкнених множин.

Proposition 1.8.3 Задано (X,τ) – топологічний простір та $A\subset X$. A – замкнена $\iff A$ містить всі граничні точки A.

Proof.

 \Rightarrow Дано: A – замкнена, тобто $X \setminus A$ – відкрита множина.

Припустимо, що x – гранична точка A, але $x \notin A$. Тобто $x \in X \setminus A$. Водночас звідси x буде внутрішньою точкою $X \setminus A$, тобто існує V – окіл точки x, для якого $V \subset X \setminus A \implies V \cap (A \setminus \{x\}) = \emptyset$. Але для цього ж околу ми знаємо, що $V \cap A \setminus \{x\} \neq \emptyset$ – суперечність! Отже, обов'язково треба вимагати $x \in A$.

 \sqsubseteq Дано: A містить всі свої граничні точки. Доведемо, що $X\setminus A$ відкрита.

Нехай $x \in X \setminus A$, тоді вона уже не є граничною точкою, тобто $\exists V$ – окіл точки $x : V \cap (A \setminus \{x\}) = \emptyset$, зокрема звідси $V \subset X \setminus A$. Отже, x – внутрішня точка.

Тож звідси $X \setminus A$ – відкрита, тобто A – замкнена.

1.9 Замикання та внутрішність

Definition 1.9.1 Задано (X, τ) – топологічний простір та $A \subset X$. Замиканням множини A називають таку річ:

$$\operatorname{Cl} A = \bigcap_{\substack{V \text{-} \text{3amkheha} \\ V \supset A}} V$$

Тобто замиканням A називають перетин всіх замкнених множин, що містить A. Альтернативне позначення: \overline{A} .

Proposition 1.9.2 $\operatorname{Cl} A$ – найменша замкнена множина, що містить A.

Proof.

Нескінченний перетин замкнених множин V – замкнений, тому $\operatorname{Cl} A$ – замкнена.

Усі замкнені множини $V \supset A$, тому звідси $\operatorname{Cl} A \supset A$.

Нехай існує замкнена множина $W\supset A$, але при цьому $W\subset\operatorname{Cl} A$. Тоді $\operatorname{Cl} A\subset W$, оскільки

Отже, $W=\operatorname{Cl} A$, тобто нічого меншого за замикання нема.

Proposition 1.9.3 Властивості замикання

Задано (X,τ) – топологічний простір та $A,B\subset X.$ Тоді

- 1) A замкнена множина \iff $\operatorname{Cl} A = A$;
- 2) Cl(Cl A) = Cl A;
- 3) $A \subset B \implies \operatorname{Cl} A \subset \operatorname{Cl} B$.

Proof.

Доведемо кожну властивість.

- 1) Тут треба довести в обидві сторони.
- \implies Дано: A замкнена. Тоді $\operatorname{Cl} A \subset A$ (бо замикання найменша замкнена). Із іншого боку, $\operatorname{Cl} A \supset A$. Отже, $\operatorname{Cl} A = A$.
- \sqsubseteq Дано: Cl A = A. Тоді автоматично A замкнена (бо замикання замкнена).
- 2) Оскільки $\operatorname{Cl} A$ замкнена множина, то за попередньою властивістю, $\operatorname{Cl}(\operatorname{Cl} A) = \operatorname{Cl} A$.
- 3) Нехай $A \subset B$. Маємо наступне:

Усі властивості доведені.

Proposition 1.9.4 Інше визначення замикання

 $\operatorname{Cl} A = \{x \in X : \forall U - \text{ окіл точки } x : U \cap A \neq \emptyset\}.$

Proof.

Позначимо $V=\{x\in X: \forall U$ – окіл точки $x:U\cap A\neq\emptyset\}$. Хочемо довести, що $\operatorname{Cl} A=V$. V – замкнена множина.

Ми будемо доводити, що $X\setminus V$ – відкрита множина. Нехай $x\in X\setminus V$, тобто існує U_x – такий окіл, де $U_x\cap A=\emptyset$. Стверджую, що $U_x\subset X\setminus V$. Дійсно, нехай $z\in U_x$. Ми знайшли окіл точки z так, що $U_x\cap A=\emptyset$, а тому вже $z\notin V\implies z\in X\setminus V$.

Справді, нехай $x \in A$. Тоді $U \cap A \neq \emptyset$ для будь-якого окола $U \ni x$. Отже, $x \in V$.

V – найменша замкнена множина, що містить A.

Припустимо, що $K\supset A$ – замкнена множина, але $K\subset V$. Ми хочемо довести, що $K\supset V$, а краще доведемо $X\setminus K\subset X\setminus V$. Нехай $z\in X\setminus K$. Оскільки $K\supset A$, то звідси $A\cap (X\setminus K)=\emptyset$. Тому отримаємо $z\notin V\implies z\in X\setminus V$.

Отже, ми трьома етапами довели, що $V = \operatorname{Cl} A$.

Corollary 1.9.5 $\operatorname{Cl} A = A \cup \{$ граничні точки $A \}$.

Proposition 1.9.6 Означення неперервного відображення через замикання

Задані (X, τ) , $(Y, \tilde{\tau})$ – два топологічні простори та відображення $f: X \to Y$. f – неперервне $\iff \forall A \subset X: f(\operatorname{Cl} A) \subset \operatorname{Cl} f(A)$.

Proof

 \implies Дано: f — неперервне. Нехай $A \subset X$. Оскільки $\operatorname{Cl} f(A)$ — замкнена множина в Y, то за неперервністю $f^{-1}(\operatorname{Cl} f(A))$ — замкнена. Причому $f^{-1}(\operatorname{Cl} f(A)) \supset f^{-1}(f(A)) \supset A$. Таким чином, $\operatorname{Cl} A \subset f^{-1}(\operatorname{Cl} f(A))$ (як найменша замкнена, що містить A). Отже, $f(\operatorname{Cl} A) \subset f(f^{-1}(\operatorname{Cl} f(A)) \subset \operatorname{Cl} f(A)$.

 \models Дано: $\forall A \subset X : f(\operatorname{Cl} A) \subset \operatorname{Cl} f(A)$. Оберемо V – замкнену множину на Y. Хочемо довести, що

 $f^{-1}(V)$ – замкнена в X. Це теж саме, що довести рівність $\operatorname{Cl} f^{-1}(V) = f^{-1}(V)$. У нас вже є $\operatorname{Cl} f^{-1}V \supset f^{-1}V$. Із іншого боку, оскільки $f^{-1}(V) \subset X$, то за дано $f(\operatorname{Cl} f^{-1}(V)) \subset \operatorname{Cl} f(f^{-1}(V)) \subset \operatorname{Cl} V \overset{V - \text{ замкнена}}{=} V$. Значить, $\operatorname{Cl} f^{-1}(V) \subset f^{-1}(V)$.

Definition 1.9.7 Задано (X, τ) – топологічний простір та $A \subset X$.

Внутрішністю множини A називають таку річ:

$$\operatorname{Int} A = \bigcup_{\substack{U - \text{відкриті} \\ U \subset A}} U$$

Тобто внутрішністю A називають об'єднання всіх відкритих множин, що містяться в A.

Proposition 1.9.8 Задано (X, τ) – топологічний простір та $A \subset X$. Тоді

 $Cl(X \setminus A) = X \setminus Int A;$

 $\operatorname{Int}(X \setminus A) = X \setminus \operatorname{Cl} A.$

Випливае зі законів де Моргана.

Нижчі твердження можна довести, скориставшись рівністю $\operatorname{Int} A = X \setminus \operatorname{Cl}(X \setminus A)$.

Proposition 1.9.9 Int A — найбільша відкрита множина, що міститься в A.

Proposition 1.9.10 Int $A = \{x \in X : \exists U - \text{окіл точки } x : U \subset A\} = \{\text{внутрішні точки } A\}.$

1.10 Топологічний підпростір

Definition 1.10.1 Задано (X, τ) – топологічний простір та $A \subset X$.

Топологією підпростору на A називають таку множину:

$$\tau_A = \{ U \subset A \mid \exists W \in \tau : U = A \cap W \}$$

Пара (A, τ_A) називається **підпростором** топологічного простору (X, τ) .

Якщо $U \in \tau_A$, то будемо казати, що U відкрита на A. Також якщо $A \setminus U \in \tau_A$ будемо казати, що U – замкнена на A.

Proposition 1.10.2 au_A задає топологію та (A, au_A) теж утворює топологічний простір.

Proof.

Треба перевірити всі три пунктів.

- 1) \emptyset , $A \in \tau_A$ зі зрозумілих причин;
- 2) Нехай $\{U_{\alpha} \in \tau_A\}$ сім'я відкритих. Тобто $U_{\alpha} = A \cap W_{\alpha}$, де $\{W_{\alpha} \in \tau\}$ сім'я відкритих в (X, τ) . Тоді звідси $\bigcup U_{\alpha} = A \cap \bigcup W_{\alpha}$, де множина $\bigcup W_{\alpha} \in \tau$. Отже, $\bigcup U_{\alpha} \in \tau_A$;
- 3) Нехай $U_1, U_2 \in \tau_A$, тобто $U_1 = A \cap W_1$ та $U_2 = A \cap W_2$ при $W_1, W_2 \in \tau$. Звідси маємо $U_1 \cap U_2 = A \cap (W_1 \cap W_2)$, де $W_1 \cap W_2 \in \tau$, але звідси $U_1 \cap U_2 \in \tau_A$. Отже, дійсно τ_A топологія.

Example 1.10.3 Зокрема в метричному просторі (X, ρ) , якщо $A \subset X$, ми вже знаємо, що U – відкрита на $A \iff U = A \cap W$ для деякої W – відкритої в X. Тобто, по суті, індукований простір (A, ρ_A) індукує топологію підпростору τ_A .

Example 1.10.4 Маємо $(X, \tau_{\mathrm{discr}})$ — дискретний топологічний простір. Оберемо $A \subset X$, тоді підпростір (A, τ_A) — теж дискретний топологічний простір.

Ну дійсно, $U\subset A\subset X$, а будь-яка підмножина в дискретному просторі — відкрита.

Example 1.10.5 Маємо $(X, \tau_{\text{indiscr}})$ – дискретний топологічний простір. Оберемо $A \subset X$, тоді підпростір (A, τ_A) – теж дискретний топологічний простір.

Дійсно, нехай U — відкрита в A, тобто звідси $U = A \cap W$, де W — відкрита в X. Значить, або $W = \emptyset$, або W = X. Тоді звідси $U = A \cap X = A$ або $U = \emptyset$. Інших відкритих — нема.

Proposition 1.10.6 Задано (X, τ) – топологічний простір та $A \subset X$.

V – замкнена на $A \iff \exists S$ – замкнена в $X:V=A\cap S$.

Proof.

 \implies Дано: V — замкнена на A, тобто $A \setminus V$ — відкрита на A, а тому $A \setminus V = A \cap W$ при W — відкрита на X. Значить, звідси $V = A \setminus (A \setminus V) = A \setminus (A \cap W) = A \cap (X \setminus W)$. Позначимо $X \setminus W = S$, яка є замкненою в X. Звідси випливає, що $V = A \cap S$.

Proposition 1.10.7 Задано (X,τ) – топологічний простір та $U\subset A\subset X$. Відомо, що U – відкрита на A та A – відкрита на X. Тоді U – відкрита на X.

Аналогічно виконується, якщо всюди – замкнені множини.

Proof.

За умовою, U – відкрита на A, тобто звідси $U = A \cap W$; причому W – відкрита на X та A – відкрита на X за умовою. Отже, U – відкрита на X як перетин.

Remark 1.10.8 У цьому твердженні дуже важливо, щоб A була відкритою на X!

Example 1.10.9 Маємо $X = \mathbb{R}$ із евклідовою метрикою, $A = [0, +\infty)$ та U = [0, 1).

У цьому випадку A не ε відкритою на X – зрозуміло. Далі зауважимо, що U – відкрита на A, просто тому що $[0,1)=[0,+\infty)\cap(1,+\infty)$, де $(1,+\infty)$ – відкрита на X. Але U – не відкрита на X.

(TODO: move to another subsection)

Remark 1.10.10 Задано (X,τ) – топологічний простір та $A\subset X$. Означення топології підпростору на A можна переписати по-інакшому. Для цього розглянемо вкладення $\imath_A\colon A\to X$, а далі зауважимо, що для кожної $W\subset X$ маємо $\imath_A^{-1}(W)=W\cap A$. Тоді звідси маємо:

$$\tau_A = \imath_A^{-1}(\tau)$$

Тоді τ_A ще інколи називають **індукованою топологією** на A.

Proposition 1.10.11 Задано (X, τ) – топологічний простір та A – підпростір. Тоді вкладення $i_A \colon A \to X$ неперевне.

Bказівка: $\iota_A^{-1}(W) = W \cap A$.

Remark 1.10.12 τ_A — найслабша на A топологія серед всіх інших, для якої \imath — неперервне. Тому що τ_A визначено так, що лише $\imath_A^{-1}(W)$ — відкриті, більше нічого.

Proposition 1.10.13 Задано (X,τ) – топологічний простір та A – підпростір. Нехай $(Y,\tilde{\tau})$ – інший топологічний простір.

Відображення $f: Y \to A$ – неперервне $\iff i \circ f: Y \to X$ – неперервне.

Proof

 \implies Дано: $f\colon Y\to A$ – неперервне. Тоді автоматично $i\circ f\colon Y\to X$ буде неперервним як композиція неперервних.

 \sqsubseteq Дано: $i \circ f \colon Y \to X$ — неперервне. Оберемо U — відкриту на A, тобто $U = A \cap W$ при деякому W — відкрита на X. Розглянемо $f^{-1}(U) = f^{-1}(A \cap W) = f^{-1}(i^{-1}(W)) = (i \circ f)^{-1}(W)$. Але оскільки W — відкрита на X, то за умовою, $(i \circ f)^{-1}(W)$ — відкрита на Y.

Example 1.10.14 Зокрема на стандартних топологіях маємо відображення $f: \mathbb{R} \to [-1, 1]$ як $f(x) = \sin x$. Із мат. аналізу, воно є неперервним. Але за твердженням вище, $i \circ f: \mathbb{R} \to \mathbb{R}$, де мається $i: [-1, 1] \to \mathbb{R}$, – неперервне теж відображення.

Тобто твердження каже, що властивість неперервності залишається, якщо збільшити чи зменшити область значень.

Proposition 1.10.15 Задано (X,τ) – топологічний простір та $f\colon X\to Y$ – неперервне. Тоді звуження $f\Big|_A\colon A\to Y$ – теж неперервне, де $A\subset X$. Bказівка: $f\Big|_A=f\circ \imath,\; \partial e\;\imath\colon A\to X.$

Example 1.10.16 Тобто маємо $f: \mathbb{R} \to [-1, 1]$, що задано $f(x) = \sin x$, що неперервне. Тоді $f\Big|_{[-\pi, \pi]}: [-\pi, \pi] \to [-1, 1]$ – теж неперервне.

Example 1.10.17 Тепер маємо $f: \mathbb{R} \to \mathbb{R}$, що задається як $f(x) = \frac{1}{x}$. У цьому випадку $f\Big|_{(0,+\infty)}$ буде неперервним відображенням з мат. аналізу, але f – не є неперервним.

1.11 Добуток просторів

Нехай задані (X_1, τ_1) та (X_2, τ_2) – два топологічні простори. Хочеться задати топологію на $X_1 \times X_2$. Перше вгадування: чи буде множина $\{U_1 \times U_2 \mid U_1 \in \tau_1, U_2 \in \tau_2\}$ утворювати топологію? Ні, цього недостатньо.

Example 1.11.1 Зокрема маємо (\mathbb{R} , τ_1) та \mathbb{R} , τ_2) – дві евклідові топології. Розглянемо множину $U_1 \times U_2 = (0,2) \times (0,2)$ та множину $V_1 \times V_2 = (1,3) \times (1,3)$. А далі треба подивитися на ($U_1 \times U_2$) \cup ($V_1 \times V_2$) та зауважити наступне: це буде відкрита множина, але не потрапляє в нашу "топологію", тому що я не можу її записати як $W_1 \times W_2$.

Значить, треба трошки по-інакшому до цього підійти.

Розглянемо $\mathcal{B} = \{U_1 \times U_2 \mid U_1 \in \tau_1, U_2 \in \tau_2\}$. Якщо вона ще не утворює топологію, то спробуємо показати, що це утворює базу множини $X_1 \times X_2$. Дійсно:

- 1) $X_1 \times X_2 \in \mathcal{B}$, навіть не обов'язково розписувати як об'єднання. Хоча можна це зробити, $X_1 \times X_2 = \bigcup_{U_1 \times U_2, \ i} U_1 \times U_2$, і в це же об'єднання буде входити $X_1 \times X_2$, а тому рівність легітимна;
- 2) Нехай $U, V \in \mathcal{B}$, тобто $U = U_1 \times U_2$ та $V = V_1 \times V_2$, у цьому випадку U_1, V_1 відкриті в X_1 та U_2, V_2 відкриті в X_2 . Тоді звідси зауважимо, що $U \cap V = (U_1 \times U_2) \cap (V_1 \times V_2) = (U_1 \cap V_1) \times (U_2 \cap V_2)$. Оскільки $U_1 \cap V_1$ та $U_2 \cap V_2$ залишаються відкритими у себе, то звідси $U \cap V$ записали як добуток відкритих, тож $U \cap V \in \mathcal{B}$.

Таким чином, \mathcal{B} – дійсно база $X_1 \times X_2$, а тому можна спородити топологію.

Definition 1.11.2 Задані (X_1, τ_1) та (X_2, τ_2) – два топологічні простори. Добутком топологій τ_1, τ_2 назвемо топологію, яка породжена базою

$$\mathcal{B} = \{ U_1 \times U_2 \mid U_1 \in \tau_1, U_2 \in \tau_2 \}$$

Позначення: $\tau_1 \times \tau_2 \stackrel{\text{def.}}{=} \tau_{\mathcal{B}}$.

Це ще інколи називають тіхоновською топологією.

Proposition 1.11.3 Задані (X_1, τ_1) та (X_2, τ_2) – два топологічних простори. Наступні твердження еквівалентні:

- 1) U відкрита на $X_1 \times X_2$;
- 2) $U=\bigcup U_1^{lpha} imes U_2^{lpha}$ для деяких сімей $\{U_1^{lpha}\}$ та $\{U_2^{lpha}\}$ відкритих множин відповідно на $X_1,X_2;$
- 3) $\forall (x_1, x_2) \in U : \exists U_1, U_2$ відповідно відкриті околи точки $x_1, x_2 : U_1 \times U_2 \subset U$.

Proof.

 $(1) \Leftrightarrow (2) \mid випливае з означення добутку топологій.$

 $(2) \Rightarrow 3)$ зрозуміло.

 $[2) \Leftarrow 3)$ Дано: виконується 3), тоді для кожної точки $(x_1, x_2) \in U$ існують відкриті околи U_1^x, U_2^x , причому $U_1^x \times U_2^x \subset U$. Зауважимо, що $U = \bigcup_{(x_1, x_2) \in U} U_1^x \times U_2^x$, тож 2) виконано.

Theorem 1.11.4 Задано \mathbb{R}^n із евклідовою топологією. Тоді вона буде збігатися з добутком топології $\mathbb{R} \times \cdots \times \mathbb{R}$, де в \mathbb{R} стоїть стандартна топологія.

Remark 1.11.5 Зауважимо, що топологія з евклідовою метрикою збігається з топологією, що породжена метрикою $d_{\infty} = \max_{i=1,n} |x_i - y_i|$. Це суттєво спростить доведення теореми.

Proof.

Тобто треба довести, що U – відкрита в $\mathbb{R}^n \iff U$ – відкрита в $\mathbb{R} \times \cdots \times \mathbb{R}$.

 \Rightarrow Дано: U – відкрита в \mathbb{R}^n .

Нехай $(x_1,\ldots,x_n)\in U$, тоді звідси існує окіл $B_{d_\infty}(\vec x,r)=(x_1-r,x_1+r)\times\cdots\times(x_n-r,x_n+r)\subset U$. Позначимо $U_i=(x_i-r,x_i+r)$ – отримали, що існують U_i – відкриті околи точок $x_i,i=\overline{1,n}$, для яких $U_1\times\cdots\times U_n\subset U$. А тому звідси U – відкрита на $\mathbb{R}\times\cdots\times\mathbb{R}$.

 \leftarrow Дано: U – відкрита в $\mathbb{R} \times \cdots \times \mathbb{R}$.

Нехай $(x_1,\ldots,x_n)\in U$, тоді існують відкриті околи U_i точок $x_i,i=\overline{1,n}$, для яких $U_1\times\cdots\times U_n\subset U$. Оскільки U_i – відкриті околи, то існує $(x_i-r_i,x_i+r_i)\subset U_i$ при $r_i>0$. Значить, $(x_1-r_1,x_1+r_1)\times\cdots\times (x_n-r_n,x_n+r_n)\subset U$. Покладемо $r=\min_{i=\overline{1,n}}r_i$, тоді звідси $(x_1-r,x_1+r)\times\cdots\times (x_n-r,x_n+r)\subset U$.

Або, інакше кажучи, $B_{d_{\infty}}(\vec{x},r)\subset U$. Тобто звідси U – відкрита на \mathbb{R}^n відносно d_{∞} , а тому й відносно еквлідової метрики.

Proposition 1.11.6 Задані (X_1, τ_1) та (X_2, τ_2) – два топологічних простори. Тоді відображення $\operatorname{pr}_1\colon X_1\times X_2\to X_1$ та $\operatorname{pr}_2\colon X_1\times X_2\to X_2$ – неперервні.

$$X_1 \stackrel{\operatorname{pr}_1}{\longleftarrow} X_1 \times X_2 \stackrel{\operatorname{pr}_2}{\longrightarrow} X_2$$

Proof.

Достатньо показати для pr_1 , бо з pr_2 все симетрично.

Нехай U_1 — відкрита в X_1 . Тоді звідси $\operatorname{pr}_1^{-1}(U_1)=\{(x_1,x_2)\in X_1\times X_2\mid x_1\in U_1\}=U_1\times X_2$ — відкрита як добуток двох відкритих.

Proposition 1.11.7 Задані (X_1, τ_1) та (X_2, τ_2) – два топологічних простори. Нехай (Z, σ) – також топологічний простір, встановимо відображення $f: Z \to X_1 \times X_2$ як $z \mapsto (f_1(z), f_2(z))$. f – неперервне $\iff f_1, f_2$ – обидва неперервні (покоординатно).

Proof.

 \implies Дано: f – неперервне. Зауважимо, що $f_1 = \operatorname{pr}_1 \circ f$ та $f_2 = \operatorname{pr}_2 \circ f$. Тоді f_1, f_2 – неперервні як композиція неперервних.

 \leftarrow Дано: f_1, f_2 – обидва неперервні.

Нехай $U \in \mathcal{B}$ — база топології $\tau_1 \times \tau_2$, тобто $U = U_1 \times U_2$, де U_1, U_2 — відкриті на X_1, X_2 . Звідси $f^{-1}(U) = \{z \in Z \mid (f_1(z), f_2(z)) \in U_1 \times U_2\} = f_1^{-1}(U_1) \cap f_2^{-1}(U_2)$. За умовою, маємо $f_1^{-1}(U_1), f_2^{-1}(U_2)$ — відкриті на Z. Тобто звідси випливає, що $f^{-1}(U)$ — відкрита на Z.

Proposition 1.11.8 Еквівалентний спосіб побудувати топологію

Задані (X_1, τ_1) та (X_2, τ_2) – два топологічних простори. Розглянемо такий клас:

$$\mathcal{S} = \left\{ \operatorname{pr}_1^{-1}(U), U \in \tau_1 \right\} \cup \left\{ \operatorname{pr}_2^{-1}(V), V \in \tau_2 \right\}$$

Тоді S утвроює передбазу множини $X_1 \times X_2$. У нас утвориться топологія для $X_1 \times X_2$ – і це буде та сама топологія, що була визначена через базу.

Proof.

Нам треба об'єднати всі елементи даного класу. Маємо

$$\bigcup_{U \in \tau_1} \operatorname{pr}_1^{-1}(U) \cup \bigcup_{V \in \tau_2} \operatorname{pr}_2^{-1}(V) = \bigcup_{U \in \tau_1} (U \times X_2) \cup \bigcup_{V \in \tau_2} (X_1 \times V) = \left(\left(\bigcup_{U \in \tau_1} U \right) \times X_2 \right) \cup \left(X_1 \times \left(\bigcup_{V \in \tau_2} V \right) \right) = \left(\left(\bigcup_{U \in \tau_1} U \right) \times \left(\bigcup_{U \in \tau_2} U \right) \times \left(\bigcup_{U \in \tau_2} V \right) \right) = \left(\left(\bigcup_{U \in \tau_1} U \right) \times \left(\bigcup_{U \in \tau_2} V \right) \right) = \left(\left(\bigcup_{U \in \tau_1} U \right) \times \left(\bigcup_{U \in \tau_2} V \right) \right) = \left(\left(\bigcup_{U \in \tau_2} U \right) \times \left(\bigcup_{U \in \tau_2} V \right) \right) = \left(\bigcup_{U \in \tau_2} V \right$$

$$= (X_1 \times X_2) \cup (X_1 \times X_2) = X_1 \times X_2.$$

У передостанній рівності два об'єднання замінилися на X_1, X_2 відповідно, просто тому що це найбільші множини, які також відкриті.

Таким чином, у нас вже є топологія $\tau_{\mathcal{S}}$. Переконаємося, що це та сама топологія, що й $\tau_{\mathcal{B}}$.

 $au_{\mathcal{S}} \subset au_{\mathcal{B}}$ – цілком зрозуміло.

$$au_{\mathcal{B}} \subset au_{\mathcal{S}}$$
, просто лише варто зауважити, що $U \times V = \mathrm{pr}_1^{-1}(U) \cap \mathrm{pr}_2^{-1}(V)$.

Remark 1.11.9 Таким чином, $\tau_1 \times \tau_2$ — найслабша на $X_1 \times X_2$ топологія серед всіх інших, для якої проєкції — неперервні. Просто тому що вона породжена передбазою, а така топологія — найменша.

Узагальнення добутку топологій

Припустимо, що $\{(X_{\alpha}, \tau_{\alpha}), \alpha \in I\}$ – довільна сім'я топологічних просторів. Ми вже з'ясували, що набору множин $\prod_{\alpha \in I} U_{\alpha}$, де $U_{\alpha} \in \tau_{\alpha}$, недостатньо для формування топології. Однак ми можемо знову розглянути наступний клас:

$$\mathcal{B}_{\blacksquare} = \left\{ \prod_{\alpha \in I} U_{\alpha} \mid U_{\alpha} \in \tau_{\alpha} \right\}$$

Це утворює базу множини $\prod_{\alpha \in I} X_{\alpha}$, тому ми знайшли топологію $\tau_{\mathcal{B}_{\blacksquare}}$ для множини $\prod_{\alpha \in I} X_{\alpha}$. Така топологія в зарубіжній літературі називається **box topology**.

На жаль, дане наївне узагальнення призводить до певних проблем.

Example 1.11.10 Розглянемо відображення $f \colon \mathbb{R} \to \mathbb{R}^{\mathbb{N}}$ таким чином: $f(x) = (x, x, x, \dots)$ Зауважимо, що множина $U = \prod_{n=1}^{\infty} \left(-\frac{1}{2^n}, \frac{1}{2^n} \right)$ — відкрита множина в сенсі box topology. Проте $f^{-1}(U) = \{0\}$

уже не буде відкритою, якщо розглядати стандартну топологію. Тобто ми вже маємо відображення f, яке не ϵ неперервним.

При цьому подивимося на це відображення з іншої сторони, як на $f(x) = (f_1(x), f_2(x), \dots)$, де кожний $f_i(x) = x, f : \mathbb{R} \to \mathbb{R}$. Маючи стандартну топологію, ясно, що це неперервне відображення. Отже, у нас не виконується таке:

f – неперервне $\iff f_i$ – неперервні (тобто покоординатна неперервність).

Цей приклад можна трактувати інакше: у нас "дуже багато" відкритих множин, які нам заважають жити. Аби працювала еквівалентність вище, ми трошки змінимо базу ось таким чином:

$$\mathcal{B} = \left\{ \prod_{\alpha \in I} U_\alpha \mid U_\alpha \in \tau_\alpha, U_\alpha \neq X_\alpha \text{ лише скінченне число разів} \right\}$$

Даний клас також задаватиме базу топології за аналогічними міркуваннями. Тільки треба зазначити, що для $\prod_{\alpha} X_{\alpha}$ справедливе обмеження. Також якщо для $U, V \in \mathcal{B}$ виконано обмеження, то для $U \cap V$ теж. Така топологія в зарубіжні літературі називається **product topology**.

Існує альтернативний спосіб побудувати саме product topology. Розглянемо клас

$$S = \bigcup_{\alpha \in I} \left\{ \operatorname{pr}_{\alpha}^{-1}(U_{\alpha}) \mid U_{\alpha} \in \tau_{\alpha} \right\}$$

Зауважимо, що $\mathcal S$ утвроює передбазу множини $\prod_{\alpha\in I} X_\alpha$: аналогічним чином треба пооб'єднати всі елементи. Тоді в нас утвориться топологія $\tau_{\mathcal S}$, яка, насправді, збігається з product topology, тобто $\tau_{\mathcal S}=\tau_{\mathcal B}$.

$$au_{\mathcal{S}}\subset au_{\mathcal{B}}.$$
 Дійсно, нехай $U\in au_{\mathcal{S}},$ тоді звідси $U=\bigcup_{\substack{\mathrm{скінченний}\\ \mathrm{на}\ \alpha_0}}W,$ де кожний $W\in \mathcal{S},$ тобто $W=\mathrm{pr}_{\alpha_0}^{-1}(U_{\alpha_0})=\prod_{\substack{\alpha\in I\\ \mathrm{на}\ \alpha_0\ \mathrm{стоїть}\ U_{\alpha_0}}}X_{\alpha}.$ Оскільки в нас скінченний перетин, то в нас буде скінченне число $\{lpha_1,lpha_2,\ldots,lpha_k\}.$ Тобто будуть $W_{\alpha_i}.$ Отримаємо, що $\bigcap_{\substack{\alpha\in I\\ \mathrm{на}\ \alpha_i,i=\overline{1,k}\ \mathrm{croїть}\ U_{\alpha_i}}}X_{\alpha}^{\mathrm{nosh.}}R.$ Отри-

мали елемент $R \in \mathcal{B}$, бо там виконані обмеження. Отже, $U = \bigcup R, R \in \mathcal{B}$, тобто $U \in \tau_{\mathcal{B}}$. $au_{\mathcal{B}} \supset au_{\mathcal{S}}$. Дійсно, зауважимо, що $\prod_{\alpha \in I} U_{\alpha} = \bigcap_{\alpha \in I} \operatorname{pr}_{\alpha}^{-1}(U_{\alpha})$ при $U_{\alpha} \neq X_{\alpha}$ лише при скінченній кількості. Із даного обмеження випливатиме, що перетин тут скінченний.

Remark 1.11.11 Box topology та product topology мають однаковий сенс при скінченній сім'ї топологічних просторів.

Фактортопологія 1.12

Тут ϵ куча варіантів, як це визначати, тому розглянемо всі.

Definition 1.12.1 Задано (X, τ) – топологічний простір та $q: X \to Y$ – сюр'єктивне відображення. **Фактортопологію на** Y визначимо таким чином:

$$U \subset Y$$
 – відкрита на $Y \iff q^{-1}U$ – відкрита на X

Позначення: $\tau/_{\sim}$ (скоро це позначення буде виправданим).

Remark 1.12.2 $au/_\sim$ дійсно задає топологію та (Y, au_\sim) утворює топологічний простір. Це випливає з властивостей прообразів.

Оскільки q сюр'єктивне відображення, то для кожної $y \in Y$ знайдеться $x \in X$, щоб y = q(x). По-інакшому це можна сказати як $q^{-1}(\{y\}) \neq \emptyset$.

Також в силу сюр'єктивності ми маємо розбиття множини X. Тобто звідси отримали $X = \bigsqcup_{y \in Y} q^{-1}(\{y\})$.

 Навпаки, нехай множина X має розбиття, тобто $X = \bigsqcup_y S_y$. Тоді можна визначити відображення qтаким чином: якщо $y \in S_y$, то тоді $S_y \ni x \stackrel{q}{\mapsto} y$, причому це задає сюр'єктивне відображення.

Нехай знову є розбиття множини X, тоді вона має відношення еквівалентності $x_1 \sim x_2 \iff x_1, x_2$ лежать в одній множині розбиття.

А якщо є відношення еквівалентності на X, то зрозуміло, що відбувається розбиття класами еквівалентності [x].

Коротше, у нас виникла така діаграма:

Мораль така: ми можемо трьома різними способами задати фактортопологію: або через довільну сюр'єкцію, або через розбиття (досить рідко), або через відношення еквівалентності. Запишу інше означення:

Definition 1.12.3 Задано (X, τ) – топологічний простір та \sim – відношення еквівалентності на X. **Фактортопологію на** $X/_{\sim}$ визначимо таким чином:

$$U \subset X/_{\sim}$$
 – відкрита на $X/_{\sim} \iff \pi^{-1}(U)$ – відкрита на X ,

де $\pi: X \to X/_{\sim}$ – факторвідображення (яке є сюр'єктивним).

Remark 1.12.4 Із означення випливає, що $\pi \colon X \to X/_{\sim}$ – неперервне.

Proposition 1.12.5 Задано (X, τ) – топологічний простір та \sim – відношення еквівалентності на X. $V \subset X/_{\sim}$ – замкнена на $X/_{\sim} \iff \pi^{-1}(V)$ – замкнена на X. Вправа: довести.

Proposition 1.12.6 Задано (X, τ) – топологічний простір та \sim – відношення еквівалентності на X. Також нехай (Y, σ) – інший топологічний простір та відображення $f \colon X/_{\sim} \to Y$. f – неперервне $\iff f \circ \pi$ – неперервне.

Proof.

 \Rightarrow випливає з того, що f, π одночасно неперервні.

 \sqsubseteq Дано: $f \circ \pi$ – неперервне. Нехай тепер U – відкрита в Y. За умовою, $(f \circ \pi)^{-1}(U)$ відкрита на X, але тоді $\pi^{-1}f^{-1}(U)$ відкрита на X. Значить, за означенням, $f^{-1}(U)$ – відкрита на $X/_{\sim}$.

Суть фактортопології полягає в тому, щоб створити новий топологічний простір шляхом "склеювання" точок. Не прикладі це стане зараз ясніше.

Example 1.12.7 Розглянемо відрізок X = [-1, 1]. Ми можемо задати на ній відношення еквівалентності таким чином: $-1 \sim 1$. Інтуїтивно кажучи, відношення еквівалентності "склеює" точки один з одним (тобто в цьому випадку -1, 1 будуть склеєними). У результаті маємо отримати коло:

Тобто, інтуїтивно кажучи, $X/_{\sim} \cong S^1$, саме гомеоморфні.

Розглянемо функцію $f\colon X/_\sim \to \mathcal{S}^1$ ось таким чином: $f([t])=(\sin\pi t,\cos\pi t)$. Нам треба довести, що f – гомеоморфізм.

f – коректно визначене. Коректність треба тільки перевірити для [-1], [1]. Все ок там:

 $f([1]) = (\cos \pi, \sin \pi) = (-1, 0) = (\cos(-\pi), \sin(-\pi)) = f([-1]).$

f – неперервне, оскільки композиція $f \circ \pi \colon X \to \mathcal{S}^1$, що задається як $(f \circ \pi)(t) = (\sin \pi t, \cos \pi t)$, буде неперервною функцією через покоординатну неперервність.

f – бієкція (мабуть, тут все зрозуміло чому).

Оскільки X — компактний простір та $\pi\colon X\to X/_{\sim}$ — сюр'єкція, то тоді $X/_{\sim}$ має бути також компактним. Оскільки $X/_{\sim}$ компактний, \mathcal{S}^1 — гаусдорфів (TODO: доводили?) та f — неперервна бієкція, то звідси (TODO: вставити твердження) f має бути гомеоморфізмом.

Example 1.12.8 Маємо квадрат $X = [0, 1] \times [0, 1]$. Задамо на ній відношення еквівалентності $(0, t) \sim (1, t)$ при $t \in [0, 1]$. У результаті маємо таке "склеювання" — отримали циліндр:

Тобто, інтуїтивно кажучи, $X/_{\sim} \cong S^1 \times [0,1]$.

Розглянемо функцію $f: X/_{\sim} \to \mathcal{S}^1 \times [0,1]$ ось таким чином: $f([(s,t)]) = (\cos(2\pi s), \sin(2\pi s), t)$. Можна аналогічними міркуваннями довести, що це задаватиме гомеоморфізм.

Example 1.12.9 Знову маємо квадрат $X = [0,1] \times [0,1]$. Тільки цього разу задамо інше відношення еквівалентності: $(0,t) \sim (1,1-t)$ при $t \in [0,1]$. У результаті отримаємо так звану **стрічку Мьобіуса**.

Цей приклад дуже специфічний, тому просто залишу ось так.

Example 1.12.10 Ще раз квадрат $X = [0,1] \times [0,1]$. Вчерговий раз інше відношення еквівалентності: $(0,t) \sim (1,t)$ при $t \in [0,1]$, а також $(s,0) \sim (s,1)$ при $s \in [0,1]$. Отримаємо тор.

Тобто, інтуїтивно кажучи, $X/_{\sim}\cong \mathcal{S}^1\times\mathcal{S}^1.$

(TODO: записати параметричне рівняння, яке задає тор).

Example 1.12.11 Задовбався вже, але знову маємо квадрат $X = [0,1] \times [0,1]$, тільки цього разу відношення еквівалентності таке: $(0,t) \sim (1,t)$ при $t \in [0,1]$, а також $(s,0) \sim (1-s,1)$ при $s \in [0,1]$. Отримаємо так звану **пляшку Кляйна**. (TODO: вставити малюнок).

$\mathbf{2}$ Компактні простори

Компактність 2.1

Definition 2.1.1 Задано (X, τ) – топологічний простір.

Покриттям X назвемо сім'ю підмножин $\{U_i \mid i \in I\}$ множини X, для яких

$$\bigcup_{i \in I} U_i = X$$

Якщо множина індексів I скінченна, то покриття називається **скінченним**. Якщо всі множини в сім'ї відкриті, то покриття називається відкритим.

Definition 2.1.2 Задано (X, τ) – топологічний простір. Нехай $\{U_i \mid i \in I\}$ – покриття X. **Підпокриттям** назвемо набір $\{U_i \mid i \in J\}$, де $J \subset I$, якщо це теж покриття.

Example 2.1.3 Зокрема множини $(n-1, n+1), n \in \mathbb{Z}$ утворюють відкрите покриття \mathbb{R} .

Definition 2.1.4 Задано (X, τ) – топологічний простір.

Даний простір назвемо компактним, якщо

$$\forall \{U_i \mid i \in I\}$$
 – відкрите : $\exists \{U_i \mid i \in J\}, J \subset I, J$ – скінченний індекс

Тобто для будь-якого відкриттого покриття X існує скінченне підпокриття.

Example 2.1.5 \mathbb{R} не ε компактом.

Дійсно, оберемо відкрите покриття $\{(n-1,n+1)\mid n\in\mathbb{Z}\}$. Якби існувало скінченне підпокриття $\{(n-1,n+1)\mid n\in J\}$, то тоді в $J\subset\mathbb{Z}$ є найбільший елемент $N\in\mathbb{Z}$. Тоді з цього випливає, що $N+1 \notin \bigcup_{n \in J} (n-1,n+1)$. Але водночас $\bigcup_{n \in J} (n-1,n+1) = \mathbb{R}$, тобто $N+1 \notin \mathbb{R}$ – це неможливо. Висновок: знайшли покриття $\{(n-1,n+1) \mid n \in \mathbb{Z}\}$, яка не містить скінченне підпокриття.

Example 2.1.6 Недискретний топологічний простір $(X, \tau_{\text{indiscr}})$ – компактний.

Дійсно, оберемо будь-яке відкрите покриття $\{U_i \mid i \in I\}$, у нас $\bigcup_{i \in I} U_i = X$. Кожний $U_i = \emptyset$ або X.

Значить, існує множина $U_{i_0} = X$. Тоді $\{U_{i_0}\}$ формує скінченне підпокриття.

Example 2.1.7 Будь-який скінченний простір – компактний.

Маємо відкрите покриття $\{U_i \mid i \in I\}$, тобто $\bigcup U_i = X$. Топологічний простір скінченний, тобто X –

скінченний, тож $X=\{x_1,\ldots,x_n\}$. Кожний $x_j\in U_{i_j}$. Тож існує скінченне підпокриття $\{U_{i_1},\ldots,U_{i_j}\}$.

Example 2.1.8 Дискретний простір $(X, \tau_{\mathrm{discr}})$ – компактний \iff це скінченний простір.

 \Rightarrow Дано: $(X, au_{ ext{discr}}$ – компактний. Тобто для будь-якого відкритого покриття, зокрема для $\{\{x\} \mid$ $x \in X$ } існує скінченне підпокриття $\{x_1, x_2, \dots, x_n\}$, звідси $X = \bigcup \{x_i\}$.

 \Leftarrow ∂ue . Ex. 2.1.7

Definition 2.1.9 Задано множину X та $A \subset X$.

Покриттям множини A назвемо сім'ю $\{W_i \mid i \in I\}$ підмножин X, для яких

$$A \subset \bigcup_{i \in I} W_i$$

 $\{W_i \mid i \in J\}, J \subset I$ називаєтсья **підпокриттям**, якщо це теж покриття множини A.

Remark 2.1.10 Особливий випадок при A = X, із першим означенням збігається.

Definition 2.1.11 Задано (X, τ) – топлогічний простір та $A \subset X$.

Множина (!) A називається компактом, якщо

$$(A, \tau_A)$$
– компактний простір,

тобто будь-яке відкрите покриття A підмножинами A має скінченне підпокриття.

Proposition 2.1.12 Задано (X, τ) – топологічний простір та $A \subset X$.

A – компактна \iff будь-яке покриття A відкритими підмножинами X містить скінченне підпокриття.

Proof.

 \Rightarrow Дано: A – компактна, тобто (A, τ_A) – компактний простір. Нехай $\{W_i \subset X \mid i \in I\}$ – відкрите

покриття множини A, тобто звідси $A \subset \bigcup_{i \in I} W_i$. Але звідси випливає, що $A \cap \bigcup_{i \in I} W_i = \bigcup_{i \in I} (A \cap W_i) = A$. Отримали покриття $\{A \cap W_i \mid i \in I\}$ множини A підмножинами A. Оскільки (A, τ_A) – компактний, то звідси існує скінченне підпокриття $\{A \cap W_i \mid i \in J\}$, тобто звідси $\bigcup_{i \in J} (A \cap W_i) = A = A \cap \bigcup_{i \in J} (A \cap W_i)$.

3начить, звідси $A\subset\bigcup_{i\in J}W_i$. Тобто $\{W_i\subset X\mid i\in J\}$ — скінченне підпокриття.

 \sqsubseteq Дано: будь-яке покриття A відкритими підмножинами X містить скінченне підпокриття. Насправді, ідейно все те саме робиться.

Proposition 2.1.13 Властивість компактності зберігається при гомеоморфності.

Тобто нехай існують два гомеоморфних простори $X\cong Y$ та припустимо, що X – компактний. Доведемо, що У – компактний.

Нехай $\{U_i \mid i \in I\}$ – відкрите покриття Y. Позначимо гомеоморфізм за $f \colon X \to Y$. Зауважимо, що $\{f^{-1}(U_i)\mid i\in I\}$ – відкрите покриття множини X. Справді, $X=f^{-1}(Y)=f^{-1}\left(\bigcup_{i\in I}U_i\right)=0$

 $\bigcup f^{-1}(U_i)$, а також в силу неперервності кожний $f^{-1}(U_i)$ буде відкритим. Оскільки X – компа-

ктний, то існує скінченне підпокриття $\{f^{-1}(U_i) \mid i=\overline{1,n}\}$, звідси $f^{-1}(Y)=X=\bigcup_{i=1}^n f^{-1}(U_i)=$

 $f^{-1}\left(igcup_{i=1}^n U_i
ight)$, із цієї рівності отримаємо $Y=igcup_{i=1}^n U_i$. Отже, знайшли скінченне підпокриття $\{U_i\mid i=1\}$

2.2 Компактність та підпростори

Example 2.2.1 Із курсу математичного аналізу, [0,1] – компактний (лема Гайне-Бореля). Однак $(0,1) \subset [0,1]$ більше не є компактом, тому що відкрите покриття $\{(\varepsilon,1) \mid \varepsilon>0\}$ не містить скінченного підпокриття.

Тобто цей приклад показує, що треба додати певні обмеження, щоб підмножина була теж автоматично компактною.

Proposition 2.2.2 Задано (X,τ) – компактний простір та $A\subset X$ – замкнена. Тоді (A,τ_A) – компактний.

Proof.

Нехай $\{W_i\subset X\mid i\in I\}$ – відкрите покриття A, тобто $\bigcup W_i\supset A$. Але ми знаємо, що A – замкнена, тобто $X\setminus A$ – відкрита. Зауважимо, що $(X\setminus A)\cup\bigcup_{i\in I}W_i=X$. Тобто $\{X\setminus A\}\cup\{W_i\mid i\in I\}$ утворює відкрите покриття X. За компактністю, існує скінченне підпокриття $\{X\setminus A\}\cup\{W_i\mid i\in J\}$, тож

звідси $(X \setminus A) \cup \bigcup W_i = X$.

Із цього випливає, що $\bigcup W_i \supset A$. Тобто знайшли скінченне підпокриття $\{W_i \subset X \mid i \in J\}$.

Висновок: А – компактна множина.

Окремо варто звернути увагу, коли із відкритого покриття $\{X \setminus A\} \cup \{W_i \mid i \in I\}$ може бути скінченне підпокриття $\{W_i \mid i \in K\}$. Тоді звідси $\bigcup_{i \in K} W_i = X \supset A$ — автоматично доводиться.

Коротше, будь-яка замкнена множина – компактна. Але не кожна компактна множина буде замкненою.

Example 2.2.3 Зокрема маємо $(X, \tau_{\text{indiscr}})$ – недискретний простір, оберемо $Y \subsetneq X$, утворимо знову недискретний простір (Y, τ_Y) за **Ex. 1.10.5**.

Зауважимо, що Y – компактна множина, тому що (Y, τ_Y) – компактний простір в силу недискретності. Але Y – НЕ замкнена множина, тобто $X \setminus Y$ – НЕ відкрита множина, тому що в $(X, \tau_{\text{indiscr}})$ лише \emptyset, X – відкриті.

Утім можна зробити певні зміни, аби в зворотному напрямку це спрацювалю.

Proposition 2.2.4 Задано (X,τ) – гаусдорфів (уже не компактний) простір та A – компактна множина. Тоді A – замкнена.

Proof.

Ми хочемо зараз довести, що $X \setminus A$ – відкрита множина. Значить, нехай $x \in X \setminus A$. Оберемо також будь-який $a \in A$. У силу гаусдорфовості, існують околи U_a, V_a — відповідно відкриті околи точки x,a такі, що $U_a\cap V_a=\emptyset$. Зауважимо, що $\bigcup_{a\in A}V_a\supset A$. Маємо $\{V_a\subset X\mid a\in A\}$ – відкрите покриття, а за компактністю A, можна знайти скінченне підпокриття $\{V_a\subset X\mid a\in B\}$.

Зафіксуємо $U = \bigcap U_a$, який є теж відкритим (в силу скінченного перетину) та околом точки x.

Доведемо, що $U \subset X \setminus A$.

Нехай $y \in A$, тобто $y \in V_b$ при деякому $b \in B$. Але відомо, що $V_b \cap U_b = \emptyset$, а тому $b \notin U_b \implies b \notin U$. Висновок: $X \setminus A$ – відкрита, а тому A – замкнена.

Corollary 2.2.5 Задано (X, τ) – компактний та гаусдорфів простір.

A – компактна \iff A – замкнена.

2.3 Компактність та добуток просторів

Theorem 2.3.1 Теорема Тіхонова (скінченний варіант)

Задані (X, τ_1) та (Y, τ_2) – компактні топологічні простори. Тоді $(X \times Y, \tau_1 \times \tau_2)$ – теж компактний топологічний простір.

Proof.

Отже, нехай $\{S_i \mid i \in I\}$ – відкрите покриття $X \times Y$. Для кожного $(x,y) \in X \times Y$ можна обрати $S_i \ni (x,y),$ а звідси можна обрати відкриті $U_{x,y}, W_{x,y}$ — відповідно околи точки x,y, для яких $U_{x,y} \times W_{x,y} \subset S_i$. Сім'я множин $\{U_{x,y} \times W_{x,y} \mid x \in X, y \in Y\}$ – відкрите покриття $X \times Y$, бо $\bigcup_{(x,y) \in X \times Y} (U_{x,y} \times W_{x,y}) = \bigcup_{x \in X} U_{x,y} \times \bigcup_{y \in y} W_{x,y} = X \times Y.$

$$\bigcup_{(x,y)\in X\times Y} (U_{x,y}\times W_{x,y}) = \bigcup_{x\in X} U_{x,y}\times \bigcup_{y\in Y} W_{x,y} = X\times Y.$$

Тому достатньо шукати скінченне підпокриття саме для цієї сім'ї.

Фіксуємо $x \in X$ та дослідимо множину $\{x\} \times Y \cong Y$. Оскільки Y – компакт та гомеоморфізм

эберігає компакт на томеоморфізм зберігає компакт на томеоморфізм зберігає компактність, то існує скінченне підпокриття із покриття
$$\{U_{x,y} \times W_{x,y} \mid x \in X, y \in Y\}$$
, що містить $\{x\} \times Y$. Маємо вже $\bigcup_{i=1}^{n_x} U_{x_i,y} \times W_{x_i,y} \supset \{x\} \times Y$. Позначимо $U_x = \bigcap_{i=1}^{n_x} U_{x_i,y}$, що буде теж відкритою множиною. Тоді $\bigcup_{i=1}^{n_x} U_{x_i,y} \times W_{x_i,y} \supset U_x \times Y$ (ну дійсно, кожний $U_{x_i,y} \supset U_x$).

Сім'я $\{U_x\mid x\in X\}$ буде відкритим покриттям X. Просто тому що коли фіксували $x\in X$, то ми знаходили $x\in U_x$. Оскільки X – компакт, то існує скінченне підпокриття, тож $X=\bigcup_{j=1}^m U_{x_j}.$

Зокрема звідси випливає, що $X\times Y=\bigcup_{j=1}^m(U_{x_j}\times Y)\subset\bigcup_{j=1}^m\bigcup_{i=1}^{n_{x_j}}(U_{x_i,y}\times W_{x_i,y}).$ Ми знайшли скінченне підпокриття для множини $X \times Y$. Зокрема знайшли скінченне підпокриття із $\{S_i \mid i \in I\}$.

Remark 2.3.2 Цілком зрозуміло, що теорема Тіхонова працює, коли в нас n штук компактних топологічний просторів.

Example 2.3.3 Зокрема звідси $[0,1]^n$ буде компактною множиною, оскільки [0,1] – компактна.

2.4 Компактність та факторпростори

Lemma 2.4.1 Задані $(X,\tau),(Y,\tilde{\tau})$ — два топологічних простори та $f\colon X\to Y$ — неперервне. Якщо X — компактна, то тоді fX — компактна.

Proof.

Маємо $\{W_i \subset Y \mid i \in I\}$ – відкрите покриття fX. Візьмемо сім'ю прообразів $\{f^{-1}(W_i) \subset X \mid i \in I\}$. Зауважимо:

$$\bigcup_{i \in I} f^{-1}(W_i) = f^{-1}\left(\bigcup_{i \in I} W_i\right) \supset f^{-1}f(X) = X.$$

Отже, $\{f^{-1}(W_i)\subset X\mid i\in I\}$ — відкрите покриття X, але в силу компактності існує скінченне підпокриття $\{f^{-1}(W_i)\subset X\mid i\in J\}$. Залишилось показати, що $\{W_i\subset Y\mid i\in J\}$ (яке вже є скінченним) буде підпокриттям fX. І дійсно, ми маємо $X=\bigcup_{i\in J}f^{-1}(W_i)=\bigcup_{i\in J}W_i$. Але тоді

$$fX = f\left(f^{-1}\bigcup_{i\in J}W_i\right)\subset\bigcup_{i\in J}W_i.$$

Corollary 2.4.2 Будь-який факторпростір – компактний простір.

Випливає з того, що $\pi\colon X\to X/_{\sim}$ – неперервне відображення.

Definition 2.4.3 Задані $(X, \tau), (Y, \tilde{\tau})$ – два топологічних простори та $f \colon X \to Y$ – відображення. f називається **відкритим**, якщо

$$\forall U \subset -$$
 відкрита в $X: fU$ — відкрита в Y

f називається замкненим, якщо

$$\forall V \subset -$$
 замкнена в $X: fU-$ замкнена в Y

Proposition 2.4.4 Задані $(X, \tau), (Y, \tilde{\tau})$ — один компактний, а другий — гаусдорфів простори та $f \colon X \to Y$ — неперервне відображення. Тоді f — замкнене.

Proof

Нехай V – замкнена на X, тоді V – компакт як множина. Значить, fV – компакт. У силу гаусдорфовості, fV – замкнена в Y.

Уже якось було, що неперервна бієкція не гарантує гомеоморфність між двома просторами. Але, додавши певні обмеження, можна саме так і ствердити:

Proposition 2.4.5 Задані $(X, \tau), (Y, \tilde{\tau})$ — один компактний, а другий — гаусдорфів простори та $f \colon X \to Y$ — неперервна бієкція. Тоді f — гомеоморфізм.

Proof.

Нам треба лишень довести, що $f^{-1}: Y \to X$ буде неперервним відображенням.

Нехай V – замкнена в X та розглянемо $(f^{-1})^{-1}(V) \stackrel{f - \text{бієкція}}{=} fV$. Нам уже відомо, що f – замкнене відображення, а тому fV має бути замкненою на Y. Тобто $(f^{-1})^{-1}(V)$ – замкнена на Y.

Example 2.4.6 Зокрема будь-які дві компактно-гаусдорфові простори будуть між собою гомеоморфиими.

Proposition 2.4.7 Задані $(X, \tau), (Y, \tilde{\tau})$ – один компактний, а другий – гаусдорфів простори та $f \colon X \to Y$ – неперервна сюр'єкція. Тоді $Y \cong X/_{\sim}$. Тут відношення еквівалентності $x_1 \sim x_2 \iff f(x_1) = f(x_2)$.

TODO: доробити!

3 Зв'язні простори

3.1 Зв'язність

Definition 3.1.1 Задано (X, τ) — топологічний простір. Ми назвемо простір **незв'язним**, якщо

$$\exists U, V \in \tau : U \neq \emptyset, V \neq \emptyset : X = U \sqcup V$$

У протилежному випадку ми будемо це називати зв'язним.

Example 3.1.2 Зокрема $X = \mathbb{R} \setminus \{0\}$ – незв'язнии, тому що існують відкриті непорожні та неперетинні $(-\infty,0),(0,+\infty)$, які дають $(-\infty,0)\cup(0,+\infty)=X$.

Example 3.1.3 Простір \mathbb{Q} (як підпростір \mathbb{R}) — незв'язний. Дійсно, нехай $U = (-\infty, \sqrt{2}) \cap \mathbb{Q}$ та $V = (\sqrt{2}, +\infty) \cap \mathbb{Q}$ — два відкритих, непорожніх та неперетинних множин. Тоді $U \cap V = \mathbb{Q}$ (оскільки $\sqrt{2}$ ірраціональне).

Example 3.1.4 Будь-який (X, τ_{dicsr}) – дискретний топологічний простір – незв'язний, якщо $\#X \ge 2$. Оберемо $x \in X$, тоді $\{x\} \sqcup (X \setminus \{x\}) = X$.

Example 3.1.5 Будь-який $(X, \tau_{\text{indicsr}})$ – недискретний топологічний простір – зв'язний, якщо $X \neq \emptyset$. Розпишемо $X = U \sqcup V$, тут обидва відкриті. Але звідси вилпиває, що $U \in \{X, \emptyset\}$ та $V \in \{X, \emptyset\}$. Тобто дійсно, $U = \emptyset$ або $V = \emptyset$. Це означає, що порушується означення незв'язності.

Lemma 3.1.6 Задані $(X,\tau),(Y,\tilde{\tau})$ — топологічних простори та $f\colon X\to Y$ — відображення. Нехай U,V — такі відкриті підмножини, що $U\sqcup V=X$.

f – неперервне $\iff f|_U, f|_V$ – неперервні.

Дану лему часто називають pasting lemma.

Proof.

 \implies Дано f — неперервне. Тоді треба згадати, що $f|_U = f \circ \imath_U$ та $f|_V = f \circ \imath_V$. Вкладення вже неперервне, тобто звідси $f|_U, f|_V$ — неперервні як композиція.

 \Leftarrow Дано: $f|_U$, $f|_V$ – неперервні. Нехай W – відкрита в Y. Тоді $f^{-1}(W) = \{x \in U \mid f(x) \in W\} \sqcup \{x \in V \mid f(x) \in W\} = (f|_U)^{-1}(W) \sqcup (f|_V)^{-1}(W)$. За умовою, $(f|_U)^{-1}(W)$ – відкрита в U, але сама U – відкрита в X. Значить, $(f|_U)^{-1}(W)$ – відкрита в X. Аналогічним чином $(f|_V)^{-1}(W)$ – відкрита в U. Разом отримаємо $f^{-1}(W)$ – відкрита в X.

Remark 3.1.7 Згідно з означенням, ∅ буде зв'язним. Бачив авторів, які не вважали дану множину ані зв'язною, ані незв'язною.

Proposition 3.1.8 Еквівалентні означення

Задано $(X, \tau), X \neq \emptyset$ – топологічний простір. Наступні еквівалентні:

- 1) (X, τ) зв'язний;
- 2) єдині підмножини X, що є відкритими та замкненими одночасно, це \emptyset, X ;
- 3) будь-яке неперервне відображення $f \colon X \to D$, де D дискрений простір, буде сталим.
- 4) будь-яке неперервне відображення $f \colon X \to \{y_1, y_2\}$, де $\{y_1, y_2\}$ двоточковий дискретний простір, буде сталим.

Proof.

 $\lfloor 1) \Rightarrow 2 \rfloor$ Дано: (X, τ) – зв'язний. Нехай U – замкнена та відкрита одночасно. Тобто $U, X \setminus U$ одночасно відкриті. При цьому вони неперетинні, непорожні, а тому звідси $U \sqcup (X \setminus U) = X$. У силу зв'язності єдина можлива опція – це бути U = X або $U = \emptyset$.

 $(2)\Rightarrow 3)$ Дано: єдині підмножини X, що є відкритими та замкненими одночасно, — це \emptyset,X . Розглянемо неперервне відображення $f\colon X\to D$, де D — дискретний. Оберемо $x\in X$, тоді $\{f(x)\}$ — відкрита й замкнена одночасно в D. У силу неперервності, $f^{-1}\{f(x)\}$ — відкрита та замкнена в X, тоді $f^{-1}\{f(x)\}=\emptyset$ або $f^{-1}\{f(x)\}=X$. Перша рівність неможлива, бо точка x там лежить. Значить, $f^{-1}\{f(x)\}=X$. Висновок: $f(y)=f(x), \forall y\in X$, тобто тут f(x) грає роль константи.

 $3) \Rightarrow 4$ Дано: будь-яке неперервне відображення $f: X \to D$, де D – дискрений простір, буде сталим. Зокрема фіксуємо $D_{2 \text{ points}}$ – довільний двоточковий дискретний простір – закінчили.

 $4)\Rightarrow 1)$ Дано: будь-яке неперервне відображення $f\colon X\to \{y_1,y_2\}$, де $\{y_1,y_2\}$ – двоточковий дискретний простір, буде сталим. Нехай U,V – відкриті підмножини так, щоб $U\sqcup V=X$. Визначимо відображення $g\colon X\to \{y_1,y_2\}$, що задано як $g(x)=\begin{cases} y_1,&x\in U\\ y_2,&x\in V \end{cases}$. Тоді $g|_U,g|_V$ неперервні (легко ручками перевірити), а звідси g – неперервне за лемою. Але оскільки g задовольняє умові 'дано', то звідси g приймає стале значення. Тобто $U=X,V=\emptyset$ або навпаки.

Lemma 3.1.9 Задано (X,τ) — топологічний простір. Нехай $A,B\subset X$ такі, що $A\subset B\subset \mathrm{Cl}(A)$. Також нехай A — зв'язна. Тоді B — також зв'язна.

Proof.

Нехай $f\colon B\to D$ – неперервне відображення до дискретного простору. Тоді $f|_A\colon A\to D$ також неперервне (композиція неперервних, бо $f|_A=f\circ \imath_A$). Тоді це стала функція, оскільки A – з'єднана область за умовою. Скажімо, $f|_A(a)=d, \forall a\in A$. Тепер, d та f – обидва неперервні функції з B в D (який є гаусдорфовим). Зауважимо, що A – щільна на B в силу $A\subset B\subset \mathrm{Cl}(A)$. Дійсно, якщо розглянути підпростір (B,τ_B) , то B – замкнена та містить A, а тому $B\supset \mathrm{Cl}(A)$; отже, $B=\mathrm{Cl}(A)$. На щільній множині A виконано A0 — A1 тому A2 — A3 на всій множині A4. Отже, A3 тому A4 — A4 на всій множині A8.

Lemma 3.1.10 Задані $(X,\tau),(Y,\tilde{\tau})$ – топологічні простори та $f\colon X\to Y$ – неперервне. Відомо, що X – зв'язний. Тоді f(X) – також зв'язний.

Proof.

Спочатку розглянемо випадок, коли f – сюр'єктивне. У цьому випадку f(X) = Y. Маємо $U \sqcup V = Y$, де U, V – відкриті в Y, тоді $f^{-1}(U), f^{-1}(V)$ – неперетинні та відкриті в X, при цьому $f^{-1}(Y) = X = f^{-1}(U) \sqcup f^{-1}(V)$. Оскільки X – зв'язний, то (наприклад) $f^{-1}(U) = \emptyset$, а за сюр'єктивністю, $U = \emptyset$. Якщо $f \colon X \to Y$ – довільне, то тоді $g \colon X \to f(X)$, де $g \equiv f$, – сюр'єктивне, і там закінчили.

Proposition 3.1.11 Задані (X, τ_1) та (Y, τ_2) – два зв'язних топологічних простори. Тоді $(X \times Y, \tau_1 \times \tau_2)$ – також зв'язний.

Proof.

Розглянемо неперервне відображення $f\colon X\times Y\to D$, де D – дискретний простір. Оберемо $(x,y),(x',y')\in X\times Y$. Зауважимо, що $\{x\}\times Y\cong Y$, тож звідси $\{x\}\times Y$ має бути зв'язною також. Значить, $f|_{\{x\}\times Y}$ буде сталою. Зокрема звідси f(x,y)=f(x,y').

Аналогічним чином $X \times \{y'\} \cong X$, а там через зв'язність отримаємо f(x',y') = f(x,y'). Разом отримали f(x,y) = f(x',y'), тобто f – стала. Отже, $X \times Y$ – зв'язна.

Example 3.1.12 Із курсу матана, [a,b] – зв'язний. Але за твердженням, звідси випливає, що всі куби $[a_1,b_1] \times \cdots \times [a_n,b_n]$ будуть зв'язними в \mathbb{R}^n .

Lemma 3.1.13 Задано (X, τ) – топологічний простір та $(A_i, i \in I)$ – покриття X, причому всі A_i – зв'язні, та всі вони перетинаються між собою. Тоді X – зв'язна.

Proof.

Нехай $f\colon X\to D$ — неперервне відображення, де D — дискретний простір. Тоді неперервним буде $f|_{A_i}\colon A_i\to D$, але в силу зв'язності A_i , ми маємо $f|_{A_i}\equiv d_i$. Оберемо інше звуження $f|_{A_j}\colon A_j\to D$, тоді аналогічно $f|_{A_j}\equiv d_j$. Проте $A_i\cap A_j\neq\emptyset$, тож звідси $d_i=d_j$. Таким чином, стала не залежить від $i\in I$, а тому f буде сталою на X. Отже, X — зв'язна.

3.2 Лінійна зв'язність

Definition 3.2.1 Задано (X, τ) – топологічний простір.

Шляхом в X називають неперервне відображення $\gamma \colon [0,1] \to X$. Ми називаємо γ **шляхом від** x до y, якщо $\gamma(0) = x, \gamma(1) = y$.

Простір $X \neq \emptyset$ називається **лінійно зв'язним**, якщо

$$\forall x, y \in X : \exists \gamma -$$
шлях від x до y

Lemma 3.2.2 Задано (X, τ) – топологічний простір. Нехай X – лінійно зв'язний. Тоді X – (просто) зв'язний.

Proof.

Нехай $f\colon X\to D$ — неперервне, де D — дискретний простір. Оберемо $x,y\in X$, тоді, за умовою, існує шлях $\gamma\colon [0,1]\to X$, причому $\gamma(0)=x,\gamma(1)=y$. Звідси відображення $f\circ\gamma\colon [0,1]\to D$ — також неперервне. Оскільки [0,1] — зв'язна, то тоді $f\circ\gamma$ — стале відображення, зокрема $f(x)=f(\gamma(0))=f(\gamma(1))=f(y)$. Отже, f — також стале, а тому X — зв'язний.

Example 3.2.3 Підмножина $X \subset \mathbb{R}^n$ називається **випуклою**, якщо $\forall x,y \in X, \forall t \in [0,1]: (1-t)x+ty \in X$. Тоді кожна випукла підмножина \mathbb{R}^n буде лінійно зв'язною, оскільки $t \mapsto (1-t)x+ty$ визначає довільний шлях з x в y.

Отже, всі випуклі підмножини \mathbb{R}^n – зв'язні.

Нехай задані шлях γ з x в y та шлях δ з y в z. Ми можемо їх об'єднати ці шляхи таким чином: визначаємо $\gamma * \delta \colon [0,1] \to X$, який задається ось так:

$$(\gamma * \delta)(t) = \begin{cases} \gamma(2t), & t \in \left[0, \frac{1}{2}\right] \\ \delta(2t - 1), & t \in \left[\frac{1}{2}, 1\right] \end{cases}$$

Задане відображення досі залишається шляхом, тільки тепер з x в z.

Example 3.2.4 Простір $\mathbb{R}^n\setminus\{0\}$ буде лінійно зв'язним при $n\geq 2$. Нехай $x,y\in\mathbb{R}^n$.

Якщо пряма між x, y не проходить через 0, то тоді дана пряма визначає шлях з x в y.

Інакше ми можемо обрати точку $z \in X$, що не лежить на цій прямій (це можливо в силу умови $n \ge 2$). Пряма через x, z не проходить через 0, тому це — шлях з x в z. Аналогічно пряма через z, y не проходить через 0, тому це — шлях з z в y. Отже, можна об'єднати два шляхи — отримаємо шлях з x в y.

Lemma 3.2.5 Задано $(X,\tau),(Y,\tilde{\tau})$ – топологічні простори та $f\colon X\to Y$ – неперервне. Тоді $\Gamma_f\cong X,$ де $\Gamma_f=\{(x,y)\in X\times Y:y=f(x)\}$ – графік функції (для дійснозначних функцій це був би справді графік).

Proof.

Визначимо такі функції:

$$p: \Gamma_f \to X$$
 $(x,y) \mapsto x$
 $q: X \to \Gamma_f$ $x \mapsto (x, f(x)).$

Зауважимо, що $p\circ q=\mathrm{id}_X$ та $q\circ p=\mathrm{id}_{\Gamma_f}.$ Тож вони взаємно оборотні. Залишилося довести, що ці два відображення – неперервні.

Для p маємо $p=\operatorname{pr}\circ\imath$, де $\operatorname{pr}\colon X\times Y\to X,\ \imath\colon \Gamma_f\to X\times Y.$ Оскільки ці два відображення неперервні, то композиція теж буде неперервною.

Для q ми розглянемо $i \circ q \colon X \to X \times Y$. Зауважимо, що $(i \circ q)(x) = (x, f(x)) = (\mathrm{id}_X(x), f(x))$ – обидві функції неперервні, тож $i \circ q$ – неперервне. За **Prp. 1.10.13**, q – неперервне.

Remark 3.2.6 Тепер, нарешті, можемо поговорити про те, що зворотне твердження не працює. Тобто зі зв'язності не випливає лінійна зв'язність в загальному випадку.

Example 3.2.7 Розглянемо підмножини $L = \{(0,y) \in \mathbb{R}^2 : -1 \le y \le 1\}$ та $C = \left\{ \left(x, \sin \frac{1}{x} \right) \in \mathbb{R}^2 : x > 0 \right\}$. Будемо зосереджені підпросторі $X = L \cup C$, яка називається **сіносуїдальною кривою тополога**.

$I. \ X$ – зв'язна.

Спочатку зауважимо, що $C\cong (0,+\infty)$ за **Lm. 3.2.5** та $(0,+\infty)$ – зв'язна, тож сама C буде також зв'язною. Залишилося довести, що $\mathrm{Cl}(C)\supset X\supset C$ – і тоді вже X буде зв'язною за $\mathbf{Lm.~3.1.9}.$ Нехай $(0,y)\in L$, тут $|y|\leq 1$. Оберемо довільне $\varepsilon>0$. Тоді існує елемент $z>\frac{1}{\varepsilon}$, для якого $y=\sin z$.

Покладемо $x=\frac{1}{z}$, тоді отримаємо $(x,y)\in C$, при цьому $\|(0,y),(x,y)\|=|x|<\varepsilon$. Таким чином, $(0,y)\in \mathrm{Cl}(C)$, що дає нам вкладення $\mathrm{Cl}(C)\supset L$. Проте оскільки $\mathrm{Cl}(C)\supset C$, то з цих двох вкладень випливає $Cl(C) \supset X$. (насправді кажучи, X = Cl(C)).

II. X – не лінійно зв'язна.

II. X – не лінійно зв'язна. !Припустимо, що існує шлях γ із точки (0,0) до точки $\left(\frac{1}{\pi},0\right)$. Маємо $\gamma(t)=(\gamma_1(t),\gamma_2(t))$, де $t\in[0,1]$. Оскільки γ – неперервний, то γ_1,γ_2 – також неперервні. Але [0,1] – компакт, тож γ_1,γ_2 – рівномірно неперервні, тож $\exists \delta>0: \forall t,t'\in[0,1]: |t-t'|<\delta \Longrightarrow |\gamma_2(t)-\gamma_2(t')|<2$. Оберемо таке $N \in \mathbb{N}$, щоб $\frac{1}{N} < \delta$. Далі відрізок [0,1] розіб'ємо на підвідрізки довжини $\frac{1}{N}$ рівномірним чином. Тобто $\left[0,\frac{1}{N}\right], \left[\frac{1}{N},\frac{2}{N}\right],\dots, \left[\frac{N-1}{N},1\right]$. Оскільки γ_1 – шлях від 0 до $\frac{1}{\pi}$, то за теоремою

Коші про середнє, існують $t_k \in [0,1]$, для яких $\gamma_1(t_k) = \frac{1}{\left(2k + \frac{1}{2}\right)\pi}$. Тут в нас $k \ge 1$.

Оскільки кількість t_k нескінченна, то має знайтися інтервал $\left[\frac{i-1}{N},\frac{i}{N}\right]$, який містить хоча б дві точки формату t_k . Тобто тут будуть точки $t_k, t_m \in \left[\frac{i-1}{N}, \frac{i}{n}\right]$, де припустимо $1 \le k < m$. Звідси випливає, що $\frac{1}{\left(2k+\frac{1}{2}\right)\pi} > \frac{1}{\left(2k+\frac{3}{2}\right)\pi} > \frac{1}{\left(2m+\frac{1}{2}\right)\pi}$. Знову за теоремою Коші про середнє, знайдеться точка t між t_k та t_m , для якої $\gamma_1(t) = \frac{1}{\left(2k+\frac{3}{2}\right)\pi}$. Але тоді

$$|\gamma_2(t_k) - \gamma_2(t)| = |1 - (-1)| = 2$$
, при цьому $|t_k - t| \le \frac{1}{N} < \delta$ – суперечність!

Тим не менш, існує критерій, для якого зв'язність та лінійна зв'язність – це однакові речі, просто треба додати дещо.

Proposition 3.2.8 Задано
$$(X, \tau)$$
 — топологічний простір. X — лінійно зв'язний $\iff \begin{cases} X - \text{зв'язний} \\ \text{кожна точка } X \text{ має хоча 6 один окіл, який є лінійно зв'язний} \end{cases}$

Proof.

⇒ Уже доводили, що із лінійної зв'язності випливає зв'язність. Друга умова виконується, бо

кожна точка $x \in X$ містить окіл X, який ϵ лінійно зв'язним.

 \Leftarrow Дано: $\begin{cases} X - \text{зв'язний} \\ \text{кожна точка } X \text{ має хоча б один окіл, який є зв'язний шляхом} \end{cases}$

Зафіксуємо $x \in X$. Розглянемо множину $U = \{y \in X : \text{існує шлях між } x \text{ та } y\}$. Хочемо довести, що U є відкритою та замкненою одночасно: таким чином, оскільки X зв'язна, то U = X (бо $x \in U$), а це буде означати, що між двома довільними точками знайдеться шлях; а тому X буде лінійно зв'язним.

Отже, нехай $y \in U$, тобто існує шлях між x та y. За умовою, для точки y можна взяти окіл W_y , який є лінійно зв'язним. Тоді для кожної точки $w \in W_y$ існує шлях між y та w_y . Якщо склеїти два шляхи, отримаємо шлях між x та w. Тож $w \in W_y$. Таким чином, $W_y \subset U \Longrightarrow U$ — відкрита. Тепер нехай $y \in X \setminus U$. За умовою, для точки y можна взяти окіл W_y , який є лінійно зв'язним. Значить, $W_y \subset X \setminus U$. Якщо припустити, що це не так, то знайдеться точка $w \in W_y \cap U$; значить, існує шлях між x, w та шлях між w, y — отримаємо шлях між x, y, але тоді $y \in U$ — суперечить умові. Отже, $X \setminus U$ — відкрита, тобто U — замкнена.

Lemma 3.2.9 Задані $(X,\tau),(Y,\tilde{\tau})$ — топологічні простори та $f\colon X\to Y$ — неперервне. Відомо, що X — лінійно зв'язний. Тоді f(X) — також лінійно зв'язний.

Proof.

Нехай $y, y' \in f(X)$. Тоді $y = f(x), \ y' = f(x')$ для $x, x' \in X$. Оскільки X – лінійно зв'язний, то існує шлях $\gamma \colon [0, 1] \to X$ між x, x' в просторі X. Тоді $f \circ \gamma \colon [0, 1] \to Y$ – шлях між y, y' в просторі Y.

Proposition 3.2.10 Задані (X, τ_1) та (Y, τ_2) – два лінійно зв'язних топологічних простори. Тоді $(X \times Y, \tau_1 \times \tau_2)$ – також лінійно зв'язний.

Proof

Нехай $(x,y),(x',y') \in X \times Y$. Оскільки X,Y – лінійно зв'язні, то існують шляхи: γ_1 між x,x' в X; γ_2 між y,y' в Y. Тож $\gamma = (\gamma_1,\gamma_2) \colon [0,1] \to X \times Y$ задає шлях між (x,y),(x',y') уже в $X \times Y$.

3.3 Компоненти зв'язності та лінійної зв'язності

Задано (X, τ) – непорожній топологічний простір. Задамо **відношення зв'язності**:

$$x \sim y \iff \exists C \subset X, C$$
 — зв'язна : $x, y \in C$

Lemma 3.3.1 Відношення зв'язності задає відношення еквівалентності.

Proof.

- І. Рефлексивність. Беремо $\{x\} \subset X$, що є зв'язною, тоді $x, x \in \{x\}$, тобто $x \sim x$.
- II. Симетричність. Миттєво видно з означення.
- III. Транзитивність. Маємо $x\sim y,y\sim z$, тобто існують множини $C,D\subset X$, що є зв'язними та $x,y\in C,\,y,z\in D$. Зауважимо, що $C\cup D\subset X$ буде також зв'язною, причому $x,z\in C\cup D$. Отже, $x\sim z$

Клас еквівалентності називають **компонентом зв'язності** X.

Proposition 3.3.2 Задано (X, τ) – топологічний простір та відношення зв'язності. Тоді:

- 1) кожний компонент зв'язності множини X зв'язний;
- 2) кожний компонент зв'язності множини X максимальний серед інших зв'язних підпросторів;
- 3) найбільший зв'язний підпростір X компонент зв'язності.

Отже, компоненти зв'язності топологічного простору – найбільші зв'язні підпростори.

Proof.

Доведемо кожний пункт окремо.

1) Нехай C — компонент зв'язності X. Оскільки це клас еквівалентності, то C=[x]. Оберемо довільний $y\in C$, тоді $x\sim y$, тобто існує зв'язна підмножина $D_y\subset X$, для якої $x,y\in D_y$. Зауважимо, що для всіх $y\in C$ ми маємо $D_y\subset C$, оскільки для кожного $z\in D_y$ ми маємо $z\sim x$, тобто $z\in C$. Значить, $C=\bigcup_{y\in C}D_y$. Всі D_y зв'язні, тож об'єднання буде також зв'язним.

2) Нехай C – компонент зв'язності X.

Припустимо, що існує $D \subset X$ — такий зв'язний підпростір, що $D \supset C$. Тобто існує ще більша множина. Маємо C = [x]. Зауважимо, що $D \subset C$, адже при $z \in D$ маємо $x \in C \subset D$, тобто $x \sim z$ (за означенням \sim). Тобто $z \in C$. Таким чином, D = C.

3) Нехай C — найбільший зв'язний підпростір X. У нас точно $C \neq \emptyset$, тож оберемо точку $x \in C$. Для кожного $y \in C$ ми маємо $x \sim y$, бо $C \ni x, y$ та є зв'язним. Значить, $C \subset [x]$. Із іншого боку, [x] — зв'язний за 1), тоді за максимальністю C, маємо C = [x].

Усі пункти доведені.

Proposition 3.3.3 Задано (X, τ) – топологічний простір.

X — зв'язний $\iff X$ містить лише один компонент зв'язності.

Proof.

 \implies Дано: X — зв'язний. Тоді дана множина є компонентом зв'язності X. Дійсно, $X\subset X, X$ — зв'язна та $x,y\in X$.

 \sqsubseteq Дано: X має лише один компонент зв'язності. Даний компонент зв'язності дорівнює X. Кожний компонент зв'язності — зв'язний, тобто X — зв'язний.

Proposition 3.3.4 Задано (X, τ) – топологічний простір. Тоді кожний компонент зв'язності – замкнена множина.

Proof.

Нехай C – компонент зв'язності X. За **Lm. 3.1.9**, маємо Cl(C) – зв'язна множина та $Cl(C) \supset C$. Оскільки C – максимальна зв'язна множина, то звідси C = Cl(C), що гарантує замкненість.

Example 3.3.5 Компонентами зв'язності $\mathbb{R} \setminus \{0\}$ будуть $(-\infty, 0)$ та $(0, +\infty)$.

Definition 3.3.6 Задано (X, τ) – топологічний простір.

Простір називається цілком незв'язним, якщо

кожний компонент зв'язності - одноточкова множина.

Еквівалентно кажучи, якщо кожний зв'язний підпростір має рівно один елемент.

Example 3.3.7 Ми знаємо, що дискретний простір – зв'язний, тільки якщо це простір з однієї точки. Оскільки кожний підпростір дискретного простору – дискретний, то єдині зв'язні підпростори – ці, що з одним елементом. Отже, дискретний простір – цілком незв'язний.

Example 3.3.8 \mathbb{Q} – цілком незв'язна множина (яка не є дискретною, бо $\{0\}$ не відкрита). Нехай $x,y\in\mathbb{Q}$ при $x\neq y$, тоді звідси $x\not\sim y$. Дійсно, ми можемо обрати ірраціональне число $u\in\mathbb{R}$ між x,y, а потім якщо $C\subset\mathbb{Q}$ містить x,y, ми матимемо неперетинні непорожні відкриті підмножини $(-\infty,u)\cap C$ та $C\cap(u,+\infty)$, об'єднання якого дає C. Тоді C – незв'язна.

Лема Урисона та теорема Тітце 4

Корисні леми 4.1

Lemma 4.1.1 Задано (X,τ) – топологічний простір. Для всіх $r \in [0,1] \cap \mathbb{Q}$ задамо відкриті множини $V_r \subset X$, для яких виконується $\mathrm{Cl}(V_r) \subset V_{r'}$ при r < r'. Тоді існує неперервна функція $f \colon X \to [0,1]$, для якої $f(x) = 0, x \in V_0$ та $f(x) = 1, x \notin V_1$.

Схематична картина умови $\operatorname{Cl}(V_r) \subset V_{r'}$ при r < r'.

Proof.

Визначимо функцію $f\colon X\to [0,1]$ ось таким чином: $f(x)=\begin{cases} 1, & x\notin V_1\\ \inf_{x\in V_r}\{r\}, & x\in V_1\end{cases}$. Зауважимо, що в нашому випадку, що при $x\in V_0$ маємо f(x)=0. Дійсно, оскільки $x\in V_0$, то

звідси $x \in V_r, \forall r \in [0,1] \cap \mathbb{Q}$, найменше можливе значення – це нуль. Тож звідси f(x) = 0.

Для доведення неперервності ми спочатку розглянемо сім'ю $\mathcal{S} = \bigcup \{[0,a),(a,1]\}$. Вона буде

утворювати передбазу топології [0,1]. Це випливає з того факту, що $\mathcal{S}_{\mathbb{R}} = \bigcup \{(-\infty,a),(b,+\infty)\}$

утворює передбазу топології \mathbb{R} , а також з того факту, що [0,1] – топологічний підпростір \mathbb{R} . Нам залишилося перевірти два прообрази для кожного $a \in [0,1]$.

$$f^{-1}([0,a)) = \bigcup_{r \in S} V_r.$$

 $f^{-1}([0,a)) = \bigcup_{r < a} V_r.$ Дійсно, маємо $x \in f^{-1}([0,a)) \iff f(x) < a \iff \inf_{x \in V_r} \{r\} < a \iff x \in V_r$ для деякого r < a.

Ми отримали, що $f^{-1}([0,a))$ – відкрита як зліченне об'єднання відкритих.

$$f^{-1}((a,1]) = \bigcup (X \setminus \operatorname{Cl}(V_r)).$$

Маємо $x \in f^{-1}((a,1]) \implies a < f(x) \le 1 \implies x \notin V_r$ для деякого r > a, але тоді $x \notin \mathrm{Cl}(V_{r'})$ для r' < r (ми можемо знайти r' так, щоб $r' \in (a,r)$). Тобто $x \in X \setminus \mathrm{Cl}(V_{r'})$ при деякому r' > a. Якщо $x \notin \operatorname{Cl}(V_r)$ при деякому r > a, то отримаємо f(x) > a. Адже якби $f(x) \le a$, то $x \in V_{r'}$ при $r' \leq a < r$, але тоді $\operatorname{Cl}(V_{r'}) \subset V_r \subset \operatorname{Cl}(V_r)$. Таким чином, $f(x) > a \implies x \in f^{-1}((a,1])$.

Lemma 4.1.2 Задано (X,τ) – нормальний топологічний простір. Припустимо, що A – замкнена та U – відкрита, де $A \subset U$. Тоді існує V – відкрита множина, для якої $A \subset V$, $\mathrm{Cl}(V) \subset U$.

Тобто між замкненою та відкритою множинах можна підібрати проміжну відкриту множину, яка містить замкнену, а замикання міститься в відкритій.

Proof.

Оберемо $A, X \setminus U$ — обидва замкнені множини. За нормальністю, існують відкриті множини V, W, що неперетинні, для яких $V \supset A, W \supset X \setminus U$. Тобто $V \supset A$ та $X \setminus W \subset U$. Із того, що V, W — неперетинні, тобто $V \cap W = \emptyset$, випливає $V \subset X \setminus W$. Маємо ланцюг $A \subset V \subset X \setminus W \subset U$. Оскільки $V \subset X \setminus W$, то тоді й $Cl(V) \subset Cl(X \setminus W) = X \setminus W$. Власне, звідси довели: $A \subset V, Cl(V) \subset U$.

Theorem 4.1.3 Лема Урисона

Задано (X,τ) — нормальний топологічний простір та A,B — замкнені та неперетинні. Тоді існує неперервна функція $f\colon X\to [0,1]$, для якої $f(x)=0,x\in A$ та $f(x)=1,x\in B$.

Схематичний план доведення.

Proof

Ідея доведення полягає в наступному: ми хочемо побудувати відкриті множини $V_r \subset X, r \in [0,1] \cap \mathbb{Q}$, що задовольняє таким вимогам:

- 1) $A \subset V_0$;
- 2) $B \subset X \setminus V_1$;
- 3) $r < r' \implies \operatorname{Cl}(V_r) \subset V_{r'}$.

Оскільки $[0,1] \cap \mathbb{Q}$ — зліченна множина, то ми маємо послідовність $r_1, r_2, r_3, \ldots, r_n, \ldots$ різних раціональних чисел. Не втрачаючи загальності, $r_1 = 1, r_2 = 0$, а всі решта $0 < r_n < 1$.

База індукції (їх будуть дві): треба побудувати $V_{r_1} = V_1$ та $V_{r_2} = V_0$. Покладемо $V_1 = X \setminus B$ – уже відкрита. Оскільки $A \subset X, V_1 \subset X$ – одна замкнена, інша відкрита, то за другою лемою, існує відкрита множина V_0 , для якої $A \subset V_0$ та $\mathrm{Cl}(V_0) \subset V_1$. Уже маємо V_{r_1}, V_{r_2} , які задовольняють вимогам 1, 2, 3.

Для всіх інших V_{r_n} нам досить буде довести 3).

 Π рипущення індукції: V_{r_3}, \dots, V_{r_n} побудовані так, що задовольняють нашим умовам вище.

Крок індукції: побудуємо $V_{r_{n+1}}$. Із нашої послідовності r_1, r_2, \ldots, r_n оберемо два якнайближчих числа r_i, r_j , щоб $r_i < r_{n+1} < r_j$. Нам досить довести, що $\mathrm{Cl}(V_{r_i}) \subset V_{r_{n+1}}$, $\mathrm{Cl}(V_{r_{n+1}}) \subset V_{r_j}$.

Зауважимо, що $\operatorname{Cl}(V_{r_i})$ та V_{r_j} – відповідно замкнена та відкрита множини. Тоді за другою лемою, існує відкрита множина (яку як раз-таки позначимо й за $V_{r_{n+1}}$), для якої справджуються ці два вкладення.

МІ доведено.

Значить, за першою лемою, існує неперервна функція $f\colon X\to [0,1]$, для якої $f(x)=0, x\in V_0$ та $f(x)=1, x\notin V_1$. За умовами 1),2), отримаємо $f(x)=0, x\in A$ та $f(x)=1, x\in B$.

Remark 4.1.4 Справедливе й зворотне твердження. Маємо (X, τ) та A, B – довільні замкнені та неперетинні, для яких завжди існує неперервна функція $f \colon X \to [0, 1]$, для якої $f(x) = 0, x \in A$ та $f(x) = 1, x \in B$. Тоді X – нормальний простір.

Proof.

Припустимо, що A,B – замкнені та неперетинні множини. Тоді існує $f\colon X\to [0,1]$, що неперервна та задовольняє іншим умовам. Зауважимо, що $A\subset f^{-1}\left(\left[0,\frac{1}{2}\right)\right)$ та $B\subset f^{-1}\left(\left(\frac{1}{2},1\right]\right)$. Ці прообрази

відкриті в силу неперервності, а також неперетинні в силу неперетинностей цих інтервалів. Тобто ми довели означення нормальності.

Remark 4.1.5 Лему Урисона можна дещо узагальнити. Якщо маємо (X, τ) – нормальний простір та A, B – неперетинні замкнені, то ми можемо навіть підібрати функцію $g: X \to [a, b]$, для якої $f(x) = a, x \in A$ та $f(x) = b, x \in B$. Тобто не обов'язково на відрізку [0, 1], а на будь-якому. Вказівка: $h: [0, 1] \to [a, b], \ h(x) = a + (b - a)x$.

4.2 Простори з аксіомами $T_{3\frac{1}{2}}$

Пригадаємо, що ми переважно працювали з нормальними топологічними просторами (X,τ) . Іншими словами, такий простір задовольняє аксіомі T_4 (або ще називають нормальним Гаусдорфовим). Щойно з'ясували, що (X,τ) задовольняє аксіомі $T_4 \iff$ існує функція $f\colon X\to [0,1]$, для якої $f(x)=0, x\in A$ та $f(x)=1, x\in B$.

Також в нас були регулярні простори (X, τ) , тобто задовольняють аксіомі T_3 . Виникає отримати таку саму еквівалентність:

 (X,τ) задовольняє аксіомі $T_3 \stackrel{?}{\Longleftrightarrow}$ існує функція $f\colon X\to [0,1]$, для якої $f(x)=0, x\in A$ та f(y)=1. Насправді, виконується лише напрямок $[\Leftarrow]$.

Ми можемо добитися еквівалентності лише в просторі з новим аксіомом.

Definition 4.2.1 Задано (X, τ) – топологічний простір.

Він задовольняє аксіомі $T_{3\frac{1}{2}}$ (це ще називають повним регулярним простором), якщо

для кожної точки $x \in X$ та замкненої $x \notin A \subset X$ існує неперервна $f \colon X \to [0,1]$, для якої f(x) = 1 та $f|_A = 0$.

Такий простір ще називають тіхоновським.

Proposition 4.2.2 $T_4 \implies T_{3\frac{1}{2}} \implies T_3$.

Proof.

$$T_4 \implies T_{3\frac{1}{2}}.$$

Нехай (X,τ) задовольняє T_4 (тобто нормальний простір). Оберемо довільну точку $x\in X$ та $A\not\ni x$ – замкнена множина. Маємо дві замкнені неперетинні множини $\{x\},A$, тому за лемою Урисона, існує неперервна функція $f\colon X\to [0,1]$, для якої f(x)=1 та $f|_A=0$. Отже, (X,τ) задовольняє $T_{3\frac{1}{2}}$.

$$T_{3\frac{1}{2}} \implies T_3$$
.

Нехай (X,τ) задовольняє $T_{3\frac{1}{2}}$. Хочемо довести, що (X,τ) буде регулярним. Оберемо $x\in X$ та замкнену множину $A\not\ni x$. За умовою, існує неперервна функція $f\colon X\to [0,1]$, для якої f(x)=1 та $f|_A=0$. Аналогічно (як в зауваженні вище) маємо $A\subset f^{-1}\left(\left[0,\frac{1}{2}\right)\right)\stackrel{\text{позн.}}{=} U$ та $\{x\}\subset f^{-1}\left(\left(\frac{1}{2},1\right]\right)\stackrel{\text{позн.}}{=} V$. Знайшли неперетинні відкриті множини $U\supset A,V\supset \{x\}$.

4.3 Функціональна збіжність

Definition 4.3.1 Задані $(X,\tau), (Y,\tilde{\tau})$ – топологічні простори та $\{f_n, n \geq 1\}, f_n \colon X \to Y$ – функціональна послідовність.

Послідовність $\{f_n\}$ збігається поточково до функції $f\colon X\to Y$, якщо

$$\forall x \in X : \{f_n(x)\} \subset Y$$
 збігається до $f(x)$.

Remark 4.3.2 Якщо $f_n \to f$ поточково та $f_n \colon X \to Y$ – неперервні, то не обов'язково $f \colon X \to Y$ буде неперервною. Тому для нас поточкова збіжність – проблематичне означення. Контрприклад дивіться в мат. аналізі II.

Definition 4.3.3 Задані $(X, \tau), (Y, \rho)$ – топологічний та метричний простори та $\{f_n, n \geq 1\}, f_n \colon X \to Y$ – функціональна послідовність.

Послідовність $\{f_n\}$ збігається рівномірно до функції $f: X \to Y$, якщо

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : \forall x \in X : \rho(f_n(x), f(x)) < \varepsilon$$

Proposition 4.3.4 Задані $(X, \tau), (Y, \rho)$ – топологічний та метричний простори. Відомо, що $\{f_n\}, f_n \colon X \to Y$ – збіжна рівномірно. Тоді $\{f_n\}$ – збіжна поточково.

Proof.

Нехай $x \in X$, також нехай $B(f(x), \varepsilon)$ – відкритий окіл f(x). Тоді за нашим $\varepsilon > 0$ (в силу рівномірної збіжності) $\exists N : \forall n \geq N : \rho(f_n(x), f(x)) < \varepsilon$, тобто звідси $f_n(x) \in B(f(x), \varepsilon)$.

Remark 4.3.5 Зворотне твердження не працює.

Контрприклад дивіться в мат. аналізі II.

Мабуть, перед важливою теоремою я наведу еквівалентне означення неперервності відображення $f\colon X\to Y$, коли саме Y — метричний та X — топологічний. Цього робити мені було не обов'язково, але це для мого власного сприйняття.

Proposition 4.3.6 Нехай $(X,\tau), \ (Y,\rho)$ – топологічний та метричний простори та $f\colon X\to Y$. f – неперервний в точці $x_0\iff \forall \varepsilon>0:\exists U_\varepsilon$ – окіл точки $x_0:\forall x\in U_\varepsilon:\rho(f(x),f(x_0))<\varepsilon.$

Proof.

 \Longrightarrow Дано: f — неперервний в точці x_0 . Нехай $\varepsilon > 0$. Зафіксуємо $B(f(x_0), \varepsilon)$ — відкрита куля. За означенням неперервності в точці (із топології), існує U_{ε} окіл точки x_0 так, що $f(U_{\varepsilon}) \subset B(f(x_0), \varepsilon)$. Зокрема якщо $x \in U_{\varepsilon}$, то звідси $\rho(f(x), f(x_0)) < \varepsilon$.

 \sqsubseteq Дано: $\varepsilon > 0$: $\exists U_{\varepsilon}$ – окіл точки x_{0} : $\forall x \in U_{\varepsilon}$: $\rho(f(x), f(x_{0})) < \varepsilon$. Нехай V – окіл точки $f(x_{0})$, тоді існує відкрита куля $B(f(x_{0}), \varepsilon) \subset V$. Те, що нам дано, означає, що $\forall x \in U_{\varepsilon}$: $f(x) \in B(f(x_{0}), \varepsilon)$. Тобто маємо ланцюг $f(U_{\varepsilon}) \subset B(f(x_{0}), \varepsilon) \subset V$. Отже, f – неперервний в точці x_{0} .

Theorem 4.3.7 Задані $(X, \tau), (Y, \rho)$ — топологічний та метричний простори. Відомо, що послідовність $\{f_n\}, f_n \colon X \to Y$ — збіжна рівномірно до f та всі f_n — неперервні. Тоді f — неперервне.

Proof.

Нехай $\varepsilon > 0$. За умовою, рівномірної збіжності, $\exists N: \rho(f_N(x), f(x)) < \varepsilon$, причому $\forall x \in X$. Також саме f_N неперервне, тому $\exists U_N$ – окіл точки x_0 так, що $\forall x \in U_N: \rho(f_N(x), f_N(x_0)) < \varepsilon$. Тоді $\rho(f(x), f(x_0)) \leq \rho(f(x), f_N(x)) + \rho(f_N(x), f_N(x_0)) + \rho(f_N(x_0), f(x_0)) < 3\varepsilon$ – виконано $\forall x \in U_N$. Отже, f – неперервний в будь-якій точці $x_0 \in X$.

4.4 Теорема Тітце

Lemma 4.4.1 Задано (X,τ) — нормальний простір, $A\subset X$ — замкнена множина та $f\colon A\to \mathbb{R}$ — неперервна функція, причому $\exists C>0: \forall x\in A: |f(x)|\leq C.$ Тоді існує неперервна функція $g\colon X\to \mathbb{R}$, для якої $\forall x\in X: |g(x)|\leq \frac{1}{3}C$ та $\forall x\in A: |f(x)-g(x)|\leq \frac{2}{3}C.$

Proof.

Розглянемо прообрази $Y=f^{-1}\left(\left[\frac{1}{3}C,C\right]\right)$ та $Z=f^{-1}\left(\left[-C,-\frac{1}{3}C\right]\right)$. Обидві множини Y,Z — замкнені, оскільки в прообраз (неперервної функції) передаємо замкнені множини в \mathbb{R} . Також оскільки ці відрізки неперетинні, то Y,Z також неперетинні. Значить, за лемою Урисона (трошки в загальній формі) (ТОДО: вставити), існує функція $g\colon X\to \left[-\frac{1}{3}C,\frac{1}{3}C\right]$, де $g|_Y=\frac{1}{3}C$ та $g|_Z=-\frac{1}{3}C$.

Зважаючи на область значень, маємо $|g(x)| \leq \frac{1}{3}C$.

Залишилося довести, що $|f(x)-g(x)| \leq \frac{2}{3}C$. Розглянемо три випадки:

$$x \in Y$$
, тоді $g(x) = \frac{1}{3}C$ та $\frac{1}{3}C \le f(x) \le C$, тож звідси $0 \le f(x) - g(x) \le \frac{2}{3}C$; $x \in Z$, тоді $g(x) = -\frac{1}{3}C$ та $-C \le f(x) \le -\frac{1}{3}C$, тож звідси $-\frac{2}{3}C \le f(x) - g(x) \le 0$; $x \notin Y \sqcup Z$, тоді $|f(x)| \le \frac{1}{3}C$ та $|g(x)| \le \frac{1}{3}C$, тож за нерівністю трикутника $|f(x) - g(x)| \le \frac{2}{3}C$.

Theorem 4.4.2 Теорема Тітце

Задано (X,τ) — нормальний простір, $A\subset X$ — замкнена множина та $f\colon A\to [a,b]$ — неперервна функція. Тоді існує неперервна функція $\overline{f}\colon X\to [a,b]$ — розширення f, тобто $\overline{f}|_A=f$.

Proof.

За умовою, функція f повертає значення відрізка [a,b], тому маємо $\forall x \in A: |f(x)| \leq C.$ Ми стверджуємо, що для кожного $n \in \mathbb{N}$ існує неперервна функція $g_n \colon X \to \mathbb{R}$, що задовольняє таким

1)
$$\forall x \in X : |g_n(x)| \le \frac{1}{3} \left(\frac{2}{3}\right)^{n-1} C;$$

2)
$$\forall x \in A : \left| f(x) - \sum_{k=1}^{n} g_k(x) \right| \le \left(\frac{2}{3}\right)^n C.$$

 $\mathit{База}\ in \partial y \varkappa u i \ddot{i}$: при $\tilde{n}=1$ така функція g_1 існує за попередньою лемою.

 Π рипущення індукції: уже побудовані функції $g_1,\ldots,g_n,$ що задовольняють вимогам вище.

 $\mathit{Kpok}\ indykuii$: позначмио функцію $\varphi(x) = f(x) - \sum_{k=1}^n g_k(x)$. Маємо функцію $\varphi \colon A \to \mathbb{R},$ яка непе-

рервна (як сума неперервних) та обмежена ось так: $\forall x \in A : |\varphi(x)| \leq \left(\frac{2}{3}\right)^n C$. Звідси за лемою

вище існує функція $g_{n+1}\colon X\to\mathbb{R}$, що неперервна та задовольняє оцінкам $|g_{n+1}(x)|\leq \frac{1}{3}\left[\left(\frac{2}{3}\right)^nC\right]$

та
$$|\varphi(x) - g_{n+1}(x)| = \left| f(x) - \sum_{k=1}^{n+1} g_k(x) \right| \le \left(\frac{2}{3}\right)^{n+1} C.$$

MI доведено.

Тепер визначимо функцію $\overline{f}_\infty\colon X\to\mathbb{R}$ ось таким чином: $\overline{f}_\infty(x)=\sum_{k=1}^\infty g_k(x)$. Дана функція визна-

чена коректно (тобто ряд при кожному $x \in X$ збіжний в силу оцінки $|g_n(x)| \leq \frac{1}{3} \left(\frac{2}{3}\right)^{n-1} C$; навіть рівномірно збіжний ряд за мажорантою Ваєрштраса).

Доведемо, що дана функція буде неперервною. Для цього позначимо $\overline{f}_n(x) = \sum_{k=1}^n g_k(x);$ ці функції

є неперервними як сума неперервних. Далі зазначимо, що \overline{f}_n збігається рівномірно до \overline{f}_∞ в силу

рівномірної збіжності ряду. Отже,
$$\overline{f}_{\infty}$$
 буде точно неперервною. Причому зазначимо, що $\forall x \in A: \left| \overline{f}_{\infty}(x) = f(x).$ Справді, маємо оцінку:
$$\forall x \in A: \left| f(x) - \sum_{k=1}^n g_k(x) \right| \leq \left(\frac{2}{3}\right)^n C \stackrel{n \to \infty}{\Longrightarrow} f(x) = \overline{f}_{\infty}(x).$$

Утім все ж таки ми знайшли функцію $\overline{f}_\infty\colon X o \mathbb{R},$ а нам потрібна функція $\overline{f}\colon X o [a,b].$ Питань

нема, визначимо її ось таким чином: $\overline{f}(x)=egin{cases} \overline{f}_{\infty}(x),&x\in\overline{f}_{\infty}^{-1}([a,b])\\ a,&x\in\overline{f}_{\infty}^{-1}((-\infty,a)). \end{cases}$ Така функція буде непеby, $x\in\overline{f}_{\infty}^{-1}((b,+\infty))$

рервною (в принципі, зрозуміло), а також $\overline{f}|_A=f$. Дійсно, якщо $x\in A$, то тоді $f(x)=\overline{f}_\infty(x)\in [a,b]$, тобто $x\in \overline{f}_\infty^{-1}([a,b])$. Значить, $\overline{f}(x)=\overline{f}_\infty(x)=f(x)$.

Це ми довели лише теорему Тітце для функції, що приймають значення лише на деякому відрізку. Трошки розшириимо клас функцій.

Theorem 4.4.3 Теорема Тітце (розширення)

Задано (X,τ) – нормальний простір, $A\subset X$ – замкнена множина та $f\colon A\to \mathbb{R}$ – неперервна функція. Тоді існує неперервна функція $\overline{f}\colon X\to\mathbb{R}$ — розширення f, тобто $\overline{f}|_A=f$.

Ми будемо доводити розширення теореми для випадку, коли задана функція $f: A \to (-1,1)$. Оскільки маємо $(-1,1) \subset [-1,1]$, то за теоремою вище, існує функція $\overline{f} \colon X \to [-1,1]$ – неперервна та $\overline{f}_A = f$. На жаль, це ще не все, бо нам треба функція $\overline{g} \colon A \to (-1,1)$, у нас там проблемки в

Проте якщо взяти множину $B=\overline{f}^{-1}(\{-1,1\})$, що буде замкненою та $A\cap B=\emptyset$, то за лемою Урисона існуватиме функція $\varphi\colon X\to [0,1]$, де $\varphi|_A=1$ та $\varphi|_B=0$. Тепер визначимо функцію $\overline{g}(x) = \overline{f}(x) \cdot \varphi(x)$. Функція $g \colon X \to (-1,1)$, неперервна як добуток та $\overline{g}|_A = f$.

Далі ми згадуємо той факт, що $(-1,1)\cong\mathbb{R}$ – отримаємо бажане.

Theorem 4.4.4 Нехай (X, τ) – топологічний простір, що задовольняє T_1 . Нижче еквівалентні твердження:

- 1) X нормальний простір;
- 2) Для кожних неперетинних замкнених множин $A,B\subset X$ існує неперервна функція $f\colon X\to [0,1],$ де $f|_A=0$ та $f|_B=1;$
- 3) Якщо $A\subset X$ замкнена та $f\colon A\to\mathbb{R}$ неперервна, то тоді існує неперервна функція $\overline{f}\colon X\to\mathbb{R},$ для якої $\overline{f}|_A=f.$

Proof.

- $1) \iff 2)$ та $1) \implies 3)$ ми вже довели.
- $(3) \implies 1$). Нехай A,B замкнені множини, що не перетинаються. (TODO: ?)

5 Теорема Урисона про метризацію

Theorem 5.0.1 Теорема Урисона про метризацію

Нехай (X,τ) – нормальний та second-countable простір. Тоді (X,τ) – метризуючий.

5.1 Вступ

Ми вже знаємо, що кожний метризуючий простір – топологічний. Але не навпаки. У будь-якому випадку виникає питання, коли можна сказати в зворотний бік. Відповідь на питання дає результат вище – та сама теорема Урисона.

Одразу зазначу, що якщо простір просто нормальний, то це не обов'язково метризуючий. Перед контрприкладом треба дати одну важливу теорему.

Theorem 5.1.1 Нехай (X, τ) – метризуючий та сепарабельний простір. Тоді X – second-countable.

Proof.

Hехай D — скрізь щільна підмножина X (уже метричного простору). Розглянемо сім'ю множин $\mathcal{B} = \{B(x;r): x \in D, r \in \mathbb{Q}_{>0}\}$. Така множина точно зліченна. Залишилося довести, що \mathcal{B} – база. Нехай $B(x;r_1),B(y;r_2)$ — базові множини та $w\in B(x;r_1)\cap B(y;r_2)$. Наша задача знайти базову множину B(z;R) так, що $w \in B(z;R) \subset B(x;r_1) \cap B(y;r_2)$.

Оскільки мноина $B(x;r_1)\cap B(y;r_2)$ залишається відкритою множиною, то існує відкрита куля $B(w; \varepsilon) \subset B(x; r_1) \cap B(y; r_2)$. Оскільки D – скрізь щільна множина, то ми можемо знайти такий елемент $w_n \in D$ так, що $w_n \in B\left(w, \frac{\varepsilon}{3}\right)$. На проміжку $\left(\frac{\varepsilon}{3}, \frac{\varepsilon}{2}\right)$ оберемо раціональне число $R \in \mathbb{Q}$

– наш майбутній радіус майбутнього кола. Звідси отримаємо $w \in B(w_n;R)$, бо $\rho(w,w_n) < \frac{\varepsilon}{2} < R$. Зауважимо, що $B(w_n; R) \subset B(w; \varepsilon)$. Справді,

 $u \in B(w_n; R) \implies \rho(u, w_n) < R \implies \rho(u, w) \le \rho(u, w_n) + \rho(w_n, w) < R + R < \varepsilon \implies u \in B(w; \varepsilon).$ Значить, $w \in B(w_n; R) \subset B(w; \varepsilon) \subset B(x; r_1) \cap B(y; r_2)$.

Залишилося довести, що $X = \bigcup_{\substack{x \in D \\ r \in \mathbb{Q}_{>0}}} B(x;r)$, але це буде неважко.

Example 5.1.2 Задамо на \mathbb{R} іншу топологію, що породжується базою $\mathcal{B} = \{[a,b) \mid a,b \in \mathbb{R}\}$. Це називають lower limit topology (або прямою Зоргенфрі) та часто таку топологію позначають

Зауважимо, що (a, b] – відкрита та замкнена одночасно. Відповідь на друге:

$$\mathbb{R}\setminus(a,b]=(-\infty,a)\cup[b,+\infty)=\bigcup_{n=1}^{\infty}[a-n,a)\cup\bigcup_{n=1}^{\infty}[b,b+n).$$

 \mathbb{R}_l – нормальний простір.

Дійсно, нехай A,B — замкнені підмножини, що неперетинні. Оскільки $\mathbb{R}\setminus A$ відкрита, то за базою дінспо, педан A, B замінсті підміножині, що пенеретинії. Сектики $\mathbb{R} \setminus A = \bigcup [a,b)$, але тоді $A = \bigcap \mathbb{R} \setminus [a,b) \subset \bigcap_{\text{скінченний}} \mathbb{R} \setminus [a,b)$ — в кінці скінченний перетин відкритих множин. Аналогічно $B = \bigcap \mathbb{R} \setminus [c,d) \subset \bigcap_{\text{скінченний}} \mathbb{R} \setminus [c,d)$. Єдине ми прагнемо, щоб ці скінченні перетини самі по собі не перетиналися. Такого добитися

можна.

Нехай $x \in A$, тобто $x \in \mathbb{R} \setminus [a,b)$ будь-який. Але тоді $x \notin B$, тобто $x \notin \mathbb{R} \setminus [c,d)$ деякому. Серед цих деяких оберемо скінченне число таких множин – побудуємо $\bigcap \mathbb{R} \setminus [c,d)$.

Нехай $x \in B$, аналогічним чином побудуємо $\bigcap \mathbb{R} \setminus [a,b)$.

Отже, для неперетинних замкнених A, B ми можемо знайти відкриті множини, що неперетинні та містять кожну зі замкнених.

 \mathbb{R}_l – не second countable.

За означенням бази, $\forall U$ – відкрита: $\forall x \in U : \exists B \in \mathcal{B} : x \in B \subset U$.

Для всіх $x \in \mathbb{R}$ оберемо відкриті $[x, x + \varepsilon)$ для деякого $\varepsilon > 0$. Тобто $\forall x \in \mathbb{R} : \exists B_x \in \mathcal{B} : x \in B_x \subset$ [x,x+arepsilon). Зауважимо, що inf $B_x=x$. Отже, для $x_1 \neq x_2$ ми маємо $B_{x_1} \neq B_{x_2}$. Інакше кажучи, відображення $x\mapsto B_x$ – ін'єктивний та $\mathcal B$ має бути незліченним.

 \mathbb{R}_l – сепарабельний.

Стверджуємо, що $\mathrm{Cl}(\mathbb{Q})=\mathbb{R}_l$. Нехай $x\in\mathbb{R}_l$, тоді хочу $x\in\mathrm{Cl}(\mathbb{Q})$, тобто для кожного U_x – відкритого околу матимемо $U_x \cap \mathbb{Q} \neq \emptyset$.

!Припустимо, що $U_x\cap\mathbb{Q}=\emptyset$. Оскільки U_x – відкрита, то за базою існує $[a,b)\subset U_x$. Власне, тоді $[a,b)\cap\mathbb{Q}=\emptyset$. Тобто для кожного $z\in[a,b)$ не існує раціонального числа $q\in[a,b)$. Із іншого боку, на інтервалі (z,b) існує раціональне число $q \in (z,b)$, а тому $[a,b) \cap \mathbb{Q} \neq \emptyset$ – суперечність!

Пригадаємо, що сепарабельний та метризуючий – автоматично second countable. Але в нас не second countable, тож звідси ми не можемо казати на метризуючніть.

Висновок: пряма Зоргенфрі – нормальний простір, який не метризуючий.

Довгий вступ закінчився. Тепер перейдемо до основного інструментарію, як пруфанути.

5.2 Вкладення та про метризуючі простори

Definition 5.2.1 Нехай $(X, \tau), (Y, \tilde{\tau})$ – топологічні простори, $i: X \to Y$ – неперервне відображення. Відображення i називається вкладенням (embedding), якщо

$$X \cong i(X)$$

Приклад вкладень з диференціальної топології можна побачити тут: *клік* (на сторінку 14).

Lemma 5.2.2 Нехай $(X,\tau),\ (Y,\tilde{\tau})$ – топологічні простори та $\jmath\colon X\to Y$ – вкладення. Відомо, що Y- метризуючий простір. Тоді X теж метризуючий.

Справді, нехай ρ — метрика для Y. Зокрема ρ — метрика на $\imath(X)$ (на підпросторі). Значить, $\jmath(X)$ – метризуючий. Оскільки $X\cong\jmath(X),$ то звідси X – метризуючий (можна задати метрику $\tilde{
ho}(x,y)=$ $\rho(\jmath(x),\jmath(y))$ для всіх $x,y\in X$).

Proposition 5.2.3 Задані $\{X_i \mid i \in \mathbb{N}\}$ — зліченна сім'я метризуючих просторів. Тоді $\prod X_i$ теж метризуючий.

Proof.

Нехай ρ_i – метрика X_i . Побудуємо нову функцію $\rho_i'(x,y) = \min\{\rho_i(x,y), 1\}$. У принципі, неважко буде переконатися, що ρ_i' задаватиме метрику.

Установимо нову функцію $d(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \rho_i'(x_i,y_i)$, де в цьому випадку $x = (x_1,x_2,\dots), y = (x_1,x_2,\dots)$

 $(y_1,y_2,\dots)\in\prod X_i$. Дана функція буде задавати метрику (в принципі, ясно). Важливо підкре-

слити, що за рахунок оновлення метрики на X_i ми тепер матимемо завжди збіжний ряд, тому dцілком коректно визначена. Доведемо, що d породжує ту саму топологію. Тобто $\tau_{\rm prod} = \tau_d$.

Нехай U – відкрита відносно метрики d. Хочемо довести, що U – відкрита в au_{prod} .

Нехай $x \in U$. За умовою, $\exists B(x;r) \subset U$. Стверджується, що

 $B\left(x_1;\frac{r}{2N}\right) imes\cdots imes B\left(x_1;\frac{r}{2N}\right) imes X_{N+1} imes\cdots\subset B(x;r)\subset U.$ Ми оберемо такий N, щоб $\frac{1}{2^N}<\frac{r}{2}.$

$$d(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \rho_i'(x_i,y_i) = \sum_{i=1}^{N} \frac{1}{2^i} \rho_i'(x_i,y_i) + \sum_{i=N+1}^{\infty} \frac{1}{2^i} \rho_i'(x_i,y_i) \leq \sum_{i=1}^{N} \rho_i'(x_i,y_i) + \sum_{i=N+1}^{\infty} \frac{1}{2^i} < \frac{r}{2N} \cdot N + \frac{1}{2^N} < \frac{r}{2} + \frac{r}{2} = r.$$
 Отже, довели, що U – відкрита в τ_{prod} . Хочемо довести, що U – відкрита в τ_d .

Нехай $x\in U$ (поки припустимо, що U – базова відкрита множина). Маємо $U=\prod^\infty U_i$, де $U_i\neq X_i$ лише для скінченного числа i. Нехай це будуть множини $U_{i_1}, U_{i_2}, \dots, U_{i_k}$ – всі відкриті в X_{i_p} . Тоді для кожного існуватиме куля $B_{\rho'_{i_p}}(x_{i_p}, r_{i_p}) \subset U_{i_p}$ при $p = \overline{1, k}$. Ми тепер оберемо радіус 0 < r < 1так, що $r \leq \frac{r_{i_1}}{2^{i_1}}, \dots, r \leq \frac{r_{i_k}}{2^{i_k}}$

Ми доведемо, що відкрита куля $B_d(x;r) \subset U$. Нехай $y \in B_d(x;r)$, тобто d(x,y) < r. Зауважимо, що $\frac{\rho'_{i_p}(x_{i_p},y_{i_p})}{2^{i_p}} \leq d(x,y) < r \leq \frac{r_{i_p}}{2^{i_p}}$. Звідси випливає, що $\rho'_{i_p}(x_{i_p},y_{i_p}) < r_{i_p}$. Отже, $y_{i_p} \in B_{\rho'_{i_p}}(x_{i_p},r_{i_p}) \subset U_{i_p}$. Тому наша точка $y \in U$.

Якщо $U \in x$ – просто відкрита, тобто $U = \bigcup V$, де V – базова, то існує $V \ni x$, а далі за попереднім існує куля $B(x;r) \subset V \subset U$.

 $\bf Remark~5.2.4$ Зокрема ось така множина $[0,1]^{\aleph_0}\stackrel{\rm def.}{=}\prod_{i\in\mathbb{N}}[0,1]$ буде метризуючим простором при

метриці
$$d((t_i),(s_i)) = \sum_{i\in\mathbb{N}} \frac{1}{2^i} |t_i - s_i|.$$

Definition 5.2.5 Нехай (X,τ) – топологічний простір та $\{f_i\colon X\to [0,1]\}_{i\in I}$ – сім'я неперервних функцій.

Така сім'я відокремлює точки від замкнених множин, якщо

$$\forall x_0 \in X : \forall A \subset X : A$$
 — замкнена та $x_0 \notin A : \exists f_j \in \{f_i\} : f_j(x_0) > 0, \ f_j|_A = 0$

Lemma 5.2.6 Нехай (X,τ) – T_1 -простір. Припустимо, що $\{f_i\colon X\to [0,1]\}_{i\in I}$ – сім'я функцій, що відокремлює точки від замкнених множин. Тоді відображення $f_\infty\colon X\to \prod_{i\in I} [0,1]$, що заданий як

$$f_{\infty}(x) = (f_i(x))_{i \in I}$$
, – вкладення.

Proof.

 f_{∞} – неперервне відображення.

Справді, зауважимо, що $\pi_j \circ f_\infty = f_j$, де $\pi_j \colon \prod_{i \in I} [0,1] \to [0,1]$ – проєкція на j-ту координату. Всі f_j неперервні за умовою, тому зокрема й f_∞ .

 f_{∞} – iн ' ϵ кція.

Нехай $x,y\in X$ такі, що $x\neq y$. Хочемо довести, що $f_\infty(x)\neq f_\infty(y)$.

Оскільки ми в просторі T_1 , то $\{y\}$ — замкнена множина. Значить, за означенням сім'ї функції, існуватиме $f_j\colon X\to [0,1]$ так, що $f_j|_{\{y\}}=0$ та $f_j(x)>0$. Власне, звідси $f_j(x)\neq f_j(y)$. Але тоді $f_\infty(x)\neq f_\infty(y)$, тому що щонайменше j-та координата вже не збігається.

$$f_{\infty}(X) \cong \prod_{i \in I} [0, 1].$$

Якщо звузити f_{∞} до відображення $f_{\infty}\colon X\to f_{\infty}(X)$, то отримаємо бієкцію, неперервність залишається досі. Залишилося довести, що f_{∞}^{-1} – неперервне. На жаль, у явному вигляді не знайдемо функцію, але доведемо інакшим чином.

Нам буде досить довести, що якщо U – відкрита в X, то $f_{\infty}(U)$ – відкрита в $f_{\infty}(X)$.

Нехай $x\in U$ — відкрита. Нам треба знайти відкритий окіл V точки $f_{\infty}(x)$, щоб $V\subset f_{\infty}(U)$. Оскільки U — відкрита, то $X\setminus U$ замкнена. За сім'єю існує функція $f_j\colon X\to [0,1]$ так, що $f_j|_{X\setminus U}=0$ та $f_j(x)>0$. Визначимо множину $V=f_{\infty}(X)\cap \pi_j^{-1}((0,1])$. Зауважимо, що V — відкрита множина. $V=\{f_{\infty}(x)\mid y\in X, \pi_j\circ f_{\infty}(y)>0\}=\{f_{\infty}(y)\mid y\in X, f_j(y)>0\}=\{f_{\infty}(y)\mid y\in U, f_j(y)>0\}$ \Longrightarrow $V\subset f_{\infty}(U)$.

5.3 Доведення теореми Урисона про метризацію

Proof.

Нехай $\mathcal{B} = \{V_i\}_{i \in I}$ – зліченна база. Визначимо множину $S = \{(i,j) \mid \operatorname{Cl} V_i \subset V_j\}$ – так само зліченна множина. Нехай $(i,j) \in S$. У нас множини $X \setminus V_j, \operatorname{Cl} V_i$ – замкнені, тож за лемою Урисона, існує функція $f_{ij} \colon X \to [0,1]$ така, що $f|_{X \setminus V_j} = 0, \ f|_{\operatorname{Cl} V_i} = 1$.

Стверджуємо, що $\{f_{ij}\}_{(i,j)\in S}$ буде утворювати сім'ю функцій, яка відокремлює точки від замкнених множин. Дійсно, нехай $A\subset X$ – замкнена та $x_0\notin A$. Значить, $X\setminus A$ – відкрита, а тому існує $V_j\in \mathcal{B}$ так, що $x_0\in V_j\subset X\setminus A$. Оскільки $\{x_0\}$ – замкнена (ми в T_1) та V_j – відкрита, то існує відкрита множина $V_i\in \mathcal{B}$ так, що $x_0\in V_i$ та $\mathrm{Cl}\,V_i\subset V_j$. Значить, $f_{ij}(x_0)=1>0$ та $f_{ij}|_A=0$ – довели бажане. Застосуємо тоді лему про те, що тоді існує вкладення $X\hookrightarrow \prod [0,1]$. Ми вже знаємо, що простір

 \prod [0,1] – метризуючий (бо S – зліченна та [0,1] – метризуючий). Власне, отримаємо тоді, що X- метризуючий.

Трохи додаткової інфи

Теорему Урисона можна дещо послабити. Замість нормального простору можна замінити на регулярний. Причина:

Proposition 5.4.1 Нехай (X,τ) – регулярний, second-countable топологічний простір. Тоді (X,τ) – нормальний.

Proof.

Нехай A, B – неперетинні замкнені множини.

Для кожної точки $x \in A$ множина $X \setminus B$ буде околом x, тому за регулярністю існує $U_x \in \mathcal{B}$ так, що $x\in U_x\subset \mathrm{Cl}\,U_x\subset X\setminus B$. Сім'я $\{U_x\mid x\in A\}$ буде зліченною (у нас second-countable простір), тому ми їх проіндексуємо, буде $\{U_i\mid i\in\mathbb{N}\}$. Тоді маємо $A\subset\bigcup_{i=1}^\infty U_i$ та $B\cap\mathrm{Cl}\,U_i=\emptyset$.

Для кожної точки $x\in B$ аналогічно поступимо та отримаємо сім'ю $\{V_i\mid i\in\mathbb{N}\}$ так, що $B\subset\bigcup^{-1}V_i$ та $A \cap \operatorname{Cl} V_i = \emptyset$.

Визначимо нові множини Y_i, Z_i таким чином: $Y_i = U_i \setminus \bigcup_{n=1}^i \operatorname{Cl} V_n$ та $Z_i = V_i \setminus \bigcup_{n=1}^i \operatorname{Cl} U_n$. Всі множини

 Y_i, Z_i будуть відкритими. Позначимо $U=\bigcup_{i=1}^\infty Y_i$ та $V=\bigcup_{i=1}^\infty Z_i$ – знову відкриті множини. Стверджуємо, що $U\cap V=\emptyset$, а також $U\supset A, V\supset B$ – таким чином, ми завершимо доведення нормальності. !Припустимо $x\in U\cap V$, тоді $x\in Y_i\cap Z_j$ для деяких (i,j). Не втрачаючи загальності, $i\geq j$, тому $x\in Y_i=U_i\setminus\bigcup_{n=1}^i\operatorname{Cl} V_n\subset U_i\setminus\operatorname{Cl} V_j$, а також $x\in Z_j\subset V_i$ – суперечність! (при $i\leq j$ ситуація аналогічна). Значить, дійсно $U\cap V=\emptyset$.

чна). Значить, дійсно
$$U\cap V=\emptyset$$
.
$$A\subset U, \text{ тому що }A\subset \bigcup_{i=1}^\infty U_i \text{ та }A\cap \operatorname{Cl} V_j=\emptyset. \text{ Аналогічно }B\subset V.$$

Remark 5.4.2 Я тут скористався фактом, про який я не знав.

Якщо X – регулярний, то для кожної точки $x \in X$ та окола U_x існуватиме замкнений окіл $V_x \subset U_x$. Дійсно, поки нехай $x \in X$ та U_x – відкритий окіл. Для $x \in X$ та замкненого $X \setminus U_x \not\ni x$ існуватимуть відкриті множини $Y\ni x,\ Z\supset X\setminus U_x$, причому $Y\cap Z=\emptyset$. Значить, $x\notin Z$, але $x\in X\setminus Z\subset U_x$.

Отже, кожний регулярний та second-countable топологічний простір – метризуючий.

 ${f Remark}$ 5.4.3 Зворотне до теореми Урисона не працює. Тобто якщо X – метризуючий, то X – нормальний, але не обов'язково second-countable.

Зокрема (X, τ_{discr}) – дискретний простір (який метризуючий та нормальний), де X – незліченна множина. Але не second-countable.

Постає питання, яка теорема існує, щоб було пряме та звортне твердження.

Theorem 5.4.4 Теорема Наґата-Смірнова про метризацію

Нехай (X, τ) – топологічний простір.

 (X,τ) – метризуючий \iff (X,τ) – регулярний та має базу, який зліченно локально скінченний. Без доведення.

Definition 5.4.5 Hexaй (X, τ) – топологічний простір.

Сім'я відкритих множин $\{U_i\}_{i\in I}$ називається **локально скінченним**, якщо

$$\forall x \in X : \exists V_x : V_x \cap U_i \neq \emptyset,$$
 де i – скінченна кількість

Cім'я відкритих множин $\mathcal{U} = \{U_i\}_{i \in I}$ називається **зліченно локально скінченним**, якщо

$$\mathcal{U} = \bigcup_{n=1}^{\infty} \mathcal{U}_n, \ \mathcal{U}_n$$
 – локально скінченний.

6 Теорема Тіхонова в загальному вигляді

Theorem 6.0.1 Нехай $\{X_{\lambda}: \lambda \in I\}$ – сім'я компактних топологічних просторів. Тоді $\prod_{\lambda \in I} X_{\lambda}$ – компактний (добуток в сенсі product topology, але не box topology).

Перед доведенням даної теореми треба буде повчити деякі речі.

6.1 Властивість скінченного перетину

Definition 6.1.1 Нехай (X, τ) – топологічний простір та \mathcal{F} – набір підмножин X. Набір \mathcal{F} має властивість **скінченного перетину**, якщо

$$\forall \{F_1, \dots, F_n\} \subset \mathcal{F}: \bigcap_{i=1}^n F_i \neq \emptyset$$

Тобто для кожного скінченного піднабору перетин непорожній.

Англійською кажуть, що \mathcal{F} satisfies finite intersection property (скорочено FIP).

Theorem 6.1.2 (X, τ) – компактний \iff для кожного \mathcal{F} – набору замкнених підмножин X, що має властивість скінченного перетину – ми маємо $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$.

Proof.

 \implies Дано: (X, τ) – компактний. Нехай \mathcal{F} – набір замкнених підмножин X, що має властивість скінченного перетину.

!Припустимо, що $\bigcap_{F \in \mathcal{F}} F = \emptyset$, це буде означати $\bigcup_{F \in \mathcal{F}} (X \setminus F) = X$. Отримали відкрите покриття $\{X \setminus F \mid F \in \mathcal{F}\}$, проте в силу компактності X ми знайдемо скінченне підпокриття $\{X \setminus F_i \mid i = \overline{1,n}\}$, тож звідси $\bigcup_{i=1}^n (X \setminus F_i) = X \implies \bigcap_{i=1}^n F_i = \emptyset$. Із іншого боку, $\{F_1, \dots, F_n\} \subset \mathcal{F}$, що має властивість скінченного перетину – суперечність!

 $\begin{align*} \begin{align*} \begin*\\ \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin*\\ \begin{align*} \begin{align*}$

Definition 6.1.3 Нехай (X,τ) – топологічний простір та $\mathcal C$ – набір підмножин X, що має властивість скінченного перетину.

Набір C називається максимальним, що має властивість скінченного перетину, якщо

$$\forall \mathcal{A}$$
 – набір підмножин X , що має скінченний перетин : $\mathcal{A}\supset\mathcal{C}\implies\mathcal{A}=\mathcal{C}$

Proposition 6.1.4 Для кожного набору підмножин C, із властивістю скінченного перетину, існує максимальний набір A, причому $A \supset C$.

Перед доведенням варто згадати лему Цорна. Там потрібна пара (P, \leq) , що формує частково впорядковану множину.

У контексті даного твердження в нас буде пара (T, \subset) . У цьому випадку T – це сім'я всіх наборів підмножин X з властивістю скінченного перетину, яка буде мітстити \mathcal{C} . У нас $T \neq \emptyset$, оскільки $\mathcal{C} \in T$.

Proof.

Отже, нехай A – лінійно впорядкована підмножина T. Хочемо довести, що A має верхню межу.

$$\bigcup_{\mathcal{F} \in \Lambda} \mathcal{F}$$
 – верхня межа для A .

 $\bigcup_{\mathcal{F}\in A}\mathcal{F}\text{ - верхня межа для }A.$ Нам треба довести, що $\bigcup_{\mathcal{F}\in A}\mathcal{F}\in T\text{, a що саме:}$ I. $\bigcup_{\mathcal{F}\subset A}\mathcal{F}\text{ мае властивість скінченного перетину.}$

 $\mathcal{F}_i \in A$ Дійсно, нехай взяли $F_1, \dots, F_n \in \bigcup_{\mathcal{F} \in A} \mathcal{F}$, тоді існують набори $\mathcal{F}_1, \dots, \mathcal{F}_n$, для яких $F_1 \in \mathcal{F}_i, i = \overline{1, n}$. Множина A в нас лінійно впорядкована, тому серед цих \mathcal{F}_i знайдеться найбільший набір, тобто $\mathcal{F}_i \subset \mathcal{F}_N$ для всіх $i = \overline{1, n}$ та деякого $N = \overline{1, n}$. Звідси $F_i \in \mathcal{F}_n$ для всіх $i = \overline{1, n}$, але оскільки \mathcal{F}_N має властивість скінченного перетину, то $\bigcap_{i=1}^n F_i \neq \emptyset$.

II.
$$\bigcup_{\mathcal{F}\in A}\mathcal{F}\supset\mathcal{C}.$$

Тут все зрозуміло, оскільки кожний $\mathcal{F} \in A \subset T$, а тому звідси $\mathcal{F} \supset \mathcal{C}$. Нарешті, $\bigcup_{\mathcal{F} \in A} \mathcal{F}$ обмежує множину зверху. Справді, для всіх $\tilde{\mathcal{F}} \in A$ ми маємо $\tilde{\mathcal{F}} \subset \bigcup_{\mathcal{F} \in A} \mathcal{F}$. Отже, $A \subset T$ містить верхню грань, а тому за лемою Цорна, T містить максимальний елемент.

6.2 Фільтри

Definition 6.2.1 Нехай (X, τ) – топологічний простір та \mathcal{F} – набір підмножин X. Набір \mathcal{F} називається фільтром, якщо

$$\forall \{F_1, \dots, F_n\} \subset \mathcal{F} : \bigcap_{i=1}^n F_i \in \mathcal{F}$$
$$\emptyset \notin \mathcal{F}, \ X \in \mathcal{F}$$
$$B \subset A \subset X, B \in \mathcal{F} \implies A \in \mathcal{F}$$

Тобто фільтр означає, що всі скінченні перетини містяться в наборі, X міститься та \emptyset не міститься в наборі, а також є замкненою згори (так текстово називається третя властивість, англійською це називають closed upwards).

Remark 6.2.2 Якщо \mathcal{F} – фільтр, то він задовольняє властивості скінченного перетину.

Дійсно, беремо $\{F_1,\ldots,F_n\}\subset\mathcal{F},$ тоді за першою властивістю, $\bigcap_{i=1}^nF_i\in\mathcal{F},$ а за другою властивістю,

$$\emptyset \notin \mathcal{F}$$
. Тому автоматично $\bigcap_{i=1}^n F_i \neq \emptyset$.

Theorem 6.2.3 Нехай (X, τ) – топологічний простір та \mathcal{F} – максимальний набір підмножин X, що має властивість скінченного перетину. Тоді \mathcal{F} – фільтр.

Proof.

Нехай $\{F_1,\ldots,F_n\}\subset\mathcal{F}$, тоді за властивістю скінченного перетину $\bigcap_{i=1}^n F_i\neq\emptyset$. Зауважимо, що набір

 $\left\{\bigcap_{i=1}^n F_i\right\} \cup \mathcal{F}$ теж буде задовольняти властивості скінченного перетину. У силу максимальності \mathcal{F}

ми будемо мати
$$\mathcal{F}=\left\{\bigcap_{i=1}^nF_i\right\}\cup\mathcal{F}$$
, внаслідок чого $\bigcap_{i=1}^nF_i\in\mathcal{F}$.

Ясно, що $\emptyset \notin \mathcal{F}$, оскільки \mathcal{F} має властивість скінченного перетину. Також $X \in \mathcal{F}$, оскільки $X \cap F =$ $F \neq \emptyset$ для всіх $F \in \mathcal{F}$, тому набір $\mathcal{F} \cup \{X\}$ теж буде мати властивість скінченного перетину, а далі аналогічно за максимальністю отримаємо бажане.

Нехай тепер $B\subset A\subset X$ та $B\in \mathcal{F},$ тоді звідси $B\cap F\subset A\cap F\subset X\cap F=F$ для всіх $F\in \mathcal{F}.$ За властивістю скінченного перетину $B \cap F, F \neq \emptyset$, а тому звідси $A \cap F \neq \emptyset$, а далі аналогічними міркуваннями (як було з $X \in \mathcal{F}$) отримаємо $A \in \mathcal{F}$.

Theorem 6.2.4 Нехай (X, τ) – топологічний простір та \mathcal{F} – максимальний набір підмножин X, що має властивість скінченного перетину; також $A \subset X$.

$$A \in \mathcal{F} \iff \forall F \in \mathcal{F} : A \cap F \neq \emptyset.$$

Proof.

 \Rightarrow Усе зрозуміло.

скінченного перетину, а там вже отримаємо $A \in \mathcal{F}$.

Дійсно, якщо $F_1,\dots,F_n\in\mathcal{F}$, то ми маємо $\bigcap_{i=1}^nF_i\in\mathcal{F}$ в силу фільтра, тому $\bigcap_{i=1}^nF_i
eq\emptyset$, внаслідок

чого
$$\left(\bigcap_{i=1}^n F_i\right) \cap A
eq \emptyset.$$

6.3Доведення теореми Тіхонова

Proof.

Нехай \mathcal{C} — набір замкнених підмножин $\prod_{\lambda \in I} X_{\lambda}$, що має властивість скінченного перетину. Хочемо довести, що $\bigcap_{U \in \mathcal{C}} U \neq \emptyset$, за іншим означення компактності.

Розширимо $\mathcal C$ до максимального набору $\mathcal F$ за $\mathbf{Prp.}$ **6.1.4** (не забуваємо, що $\mathcal F$ є фільтром за Розширимо \mathcal{C} до максимального насору \mathcal{F} за ггр. (.... U). Тh. **6.2.3**). У силу того, що $\mathcal{F} \supset \mathcal{C}$, то звідси зрозуміло цілком, що $\bigcup_{U \in \mathcal{C}} U \supset \bigcup_{U \in \mathcal{F}} U$. Насправді,

ми маємо $\bigcap_{U\in\mathcal{C}}U\supset\bigcap_{U\in\mathcal{F}}\mathrm{Cl}(U)$. Отже, нам буде досить довести, що $\bigcap_{U\in\mathcal{F}}\mathrm{Cl}(U)\neq\emptyset$. Позначимо $\mathcal{F}_{\lambda}=\{\pi_{\lambda}(U):U\in\mathcal{F}\}$. Такий набір множин буде мати властивість скінченного перетину. Справді, $U_1\cap U_2\neq\emptyset$ (бо \mathcal{F} має властивість скінченного перетину), а звідси $\pi_{\lambda}(U_1)\cap\pi_{\lambda}(U_2)\supset$ $\pi_{\lambda}(U_1 \cap U_2) \neq \emptyset$. Звідси випливає, що набір $\{\operatorname{Cl}(\pi_{\lambda}(U)) : U \in \mathcal{F}\}$ буде також мати властивість скінченного перетину (просто тому що $\mathrm{Cl}(\pi_\lambda(U))\supset\pi_\lambda(U)\neq\emptyset$). Оскільки, за умовою, X_λ – компакт, то за **Th. 6.1.2** $\bigcap_{U\in\mathcal{F}}\operatorname{Cl}(\pi_{\lambda}(U))\neq\emptyset$. Тож можемо обрати точку $x_{\lambda}\in\bigcap_{U\in\mathcal{F}}\operatorname{Cl}(\pi_{\lambda}(U))$. Ми сформували точку $\prod_{\lambda\in I}X_{\lambda}\ni x=(x_{\lambda}:\lambda\in I)$. Залишилося довести, що $x\in\bigcap_{U\in\mathcal{F}}\operatorname{Cl}(U)$.

Тут буде кілька етапів, щоб завершити доведення.

Спочатку оберемо $S=\pi_{\lambda}^{-1}(U_{\lambda})$ – передбазову відкриту множину таким чином, щоб $S\ni x$. Ми доведемо, що $S\in\mathcal{F}$. Дійсно, за умовою, $x\in\pi_{\lambda}^{-1}(U_{\lambda})\implies x_{\lambda}\in U_{\lambda}$. За вибором точок x_{λ} , ми маємо $x_{\lambda}\in\bigcap \mathrm{Cl}(\pi_{\lambda}(U))$. Значить, для всіх $U\in\mathcal{F}$ маємо $x\in\mathrm{Cl}(\pi_{\lambda}(U))$, а це означає, що для кожного

відкритого околу V точки x маємо $V \cap \pi_{\lambda}(U) \neq \emptyset$ для всіх $U \in \mathcal{F}$. Зокрема U_{λ} — відкритий окіл x, таким чином $U_{\lambda} \cap \pi_{\lambda}(U) \neq \emptyset$ для всіх $U \in \mathcal{F} \implies \pi_{\lambda}^{-1}(U_{\lambda}) \cap U \neq \emptyset$ для всіх $U \in \mathcal{F}$, внаслідок чого $\pi_{\lambda}^{-1}(U_{\lambda}) \in \mathcal{F} \text{ sa Th. 6.2.4}.$

Тепер оберемо B – базову відкриту множину таким чином, щоб $B\ni x.$ Але оскільки $B=\bigcap S_i,$

маємо передбазові множини $S_i \ni x$, тоді всі $S_i \in \mathcal{F}$, зокрема $B \in \mathcal{F}$.

Тепер нашо ми доводили це? Тому що, взявши будь-яку базову відкриту множину $B \ni x$, отримаємо $B \in \mathcal{F} \implies B \cap U \neq \emptyset$ для всіх $U \in \mathcal{F}$. Візьмемо будь-який відкритий окіл V_x точки x, тоді звідси $V_x = \bigcup B$, де B — базові відкриті множини. Але тоді $V_x \cap U = \bigcup B \cap U \neq \emptyset$ для всіх $U \in \mathcal{F}$. Отже, $x \in Cl(U)$ для кожного $U \in \mathcal{F}$.

Remark 6.3.1 Міні-епілог. Виявляється, що ми не зможемо довести теорему Тіхонова без використання леми Цорна. Або можемо, але тоді будуть використані інші доволі специфічні теореми (наприклад, аксіома вибору). Якщо зробити *клік*, там в четвертому розділі можна про це зауваження прочитати детальніше.

7 Деякі топологічні твердження

Lemma 7.0.1 Лема трубки

Задані $(X,\tau),\ (Y,\tilde{\tau})$ – топологічні простори, причому Y – компактний, $x_0\in X$. Нехай N – відкрита в $X\times Y$ так, що $\{x_0\}\times Y\subset N$. Тоді існує відкритий окіл W точки x_0 , для якого $\{x_0\}\times Y\subset W\times Y\subset N$.

Proof.

Оскільки N — відкритий в $X \times Y$, то звідси $N = \bigcup_i U \times W$, де U,W — відповідно відкриті множини X,Y. Оскільки $\{x_0\} \times Y$ — компакт (тому що $\{x_0\} \times Y \cong Y$ та Y — компакт), то існує скінченне підпокриття, тоді $\{x_0\} \times Y \subset \bigcup_{i=1}^n U_i \times W_i$. Надалі вважаємо, що $(U_i \cap W_i) \cap (\{x_0\} \times Y) \neq \emptyset$ (якщо такий $U_i \cap W_i$ існує, що не перетинається, то ми його можемо нафіг викинути зі скінченного набору, все одно формуватиме підпокриття).

Позначимо $W = \bigcap_{i=1}^n W_i$, що є відкритим околом точки x_0 (за останнім зауваженням). Стверджуємо, що $W \times Y \subset N$. Припустимо, що $(x,y) \in W \times Y$. Нам вже відомо, що точка $(x_0,y) \in U_i \times W_i$, тому звідси $y \in V_i$. Також $x \in W = \bigcap_{i=1}^n U_i \subset U_i$, внаслідок чого $(x,y) \in U_i \times W_i \subset N$.

Remark 7.0.2 Лему трубки можна було використати в теоремі Тіхонова, коли мали дві компактні множини.

Використані джерела

- $1. \ \, {\rm Tom \ Leinster}, \, {\rm General \ Topology}, \, 2014\text{-}2015$
- $2.\,$ Micheal Pawliuk, The Tychonoff Theorem, 2011
- $3.\,$ Tychonoff's Theorem and Zorn's Lemma, 2021
- 4. 3 COUNTABILITY AND CONNECTEDNESS AXIOMS
- 5. MTH 427/527 Introduction to General Topology at the University at Buffalo