

Université Mohammed Premier Ecole Nationale des Sciences Appliquées d'Al-Hoceima Département de Mathématiques et d'Informatique

F.M ORADI

Devoir surveillé Analyse 4

Mardi 24 avril 2018, durée: 1h30.

CP2, Semestre 4. Année universitaire: 2017-2018

N.B: il sera tenu compte de la rédaction des réponses.

Exercice 1: (6 points)

1- Calculer les intégrales suivantes :

4pt

$$I = \int_2^3 \frac{2}{x^2 - 1} dx , \qquad J = \int_0^{\sqrt{3}} \operatorname{Arctanx} dx,$$

$$K = \int_0^{\pi} \sqrt{1 - (\sin x)^2} dx$$
, $L = \int_{-\frac{\pi}{2}}^{0} \frac{(\cos x)^3}{(2 + \sin x)^2} dx$

2- Calculer les limites suivantes :

$$M = \lim_{x \to +\infty} \int_{x}^{2x} e^{-t^2} dt ,$$

2pt

1pt

2pt

$$N = \lim_{x \to +\infty} e^{-x^2} \int_0^x e^{t^2} dt$$

Exercice 2: (9 points)

1- Montrer que:

$$\forall x \in \mathbb{R}^+$$
: $ln(1+x) \leq x$

2- Montrer que:

$$\lim_{n \to +\infty} \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} dx = 1$$

	3- Soit $(f_n(x))_{n\geq 1}$ une suite de fonctions définies par :
	$f_n(x) = \frac{\ln\left(1 + \frac{x}{n}\right)}{x(1 + x^2)}$
1pt	a- Montrer que la fonction f_n est intégrable sur \mathbb{R}_+^* . b- Etudier la limite :
1.5pt	$\lim_{n\to+\infty}n\int_0^{+\infty}f_n(x)dx$
	4- Soit $g(x) = ln(1+x)$ pour $x \in [0, +\infty[$. a- Montrer que :
0,5	$\forall x \in [0,1]: g(x) = \int_0^1 \frac{x}{1+xy} dy$
	b- En utilisant le théorème de Fubini calculer: $P = \int_{0}^{1} \frac{\ln(1+x)}{1+x^{2}} dx$
2pt	$F = \int_0^{\infty} \frac{1 + x^2}{1 + x^2} dx$ c- En déduire la valeur de :
	$Q = \int_{0}^{1} \frac{Arctanx}{1+x} dx$
1pt	$J_0 = 1 + x$
	Exercice 2 : (5 points) 1- Calculer les intégrales doubles suivantes :
	$A = \int_{1}^{\sqrt{b}} \left(\int_{y}^{y^{2}} \cos \left(\frac{\pi x}{2y} \right) dy \right),$
3pt	$B = \int_0^1 \left(\int_0^x x^2 e^{xy} dy \right) dx$
	2- Calculer l'aire du domaine D limité par les paraboles :
2pt	$y = x^2$ et $y = 5 - \frac{x^2}{4}$ et $-2 \le x \le 2$.

BONNE CHANCE