

Machine Vision

Lecture 2: Linear Filters

Pinhole camera model

- Light travels on a straight line from the object through then centre of projection
- The image is then created at the intersection with the image plane

Simple lens optics

- In reality lenses have to be used to gather light
- A sharp image is only produced for objects at a specific distance

Simple lens optics

 Unless perfectly focused a blurred image of every scene point is projected onto a circle on the image plane

Image sensing

- The image plane is covered with a grid of picture cells (aka pixels) that "count" the number of photons during exposure
- The probability of a photon originating from a scene point being detected by a pixel is proportional to the sensor area covered by its blurred image and the exposure time
- The number of detected photons, and therefore the intensity value of each pixel, is affected by quantum fluctuations causing independent white noise in each pixel

Linear, shift-invariant systems

- For now we consider an intensity image as 2-dimensional continuous signal $f: \mathbb{R}^2 \to \mathbb{R}$
- An image processing algorithm is taking images as input and produces a processed image as output
- Let's assume the algorithm would produce the following outputs

$$f_1 \to g_1$$

$$f_2 \to g_2$$

The algorithm is called a linear system, if

$$\alpha f_1 + \beta f_2 \rightarrow \alpha g_1 + \beta g_2$$

Linear, shift-invariant systems

• An algorithm is called **shift-invariant**, if the output of a shifted input image is the shifted output image, i.e. if

$$f[x,y] \rightarrow g[x,y]$$

then

$$f[x-a, y-b] \rightarrow g[x-a, y-b]$$

Linear, shift-invariant systems

- An algorithm that is both linear and shift-invariant is called a linear, shift-invariant system
- Every linear, shift-invariant system can be calculated as follows

$$g[x,y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f[x - \xi, y - \eta] h[\xi, \eta] d\xi d\eta$$

- For some function $h[\xi, \eta]$, called the **point-spread function** or **convolution kernel**
- This operation is called a convolution

$$g = f \otimes h$$

1	3	5	3	5
3	4	5	3	5
3	5	2	1	3
1	2	3	4	1
5	7	3	2	6
			_	

24		

1	×	3
+1	×	3
+2	×	4
+1	×	5
+1	×	5
= 2	24	

_					
1	3	5	3	5	
3	4	5	3	5	
3	5	2	1	3	
1	2	3	4	1	
5	7	3	2	6	
f[x,y]					

\otimes	1	2	1
	0	1	0
	<i>h</i> Γ-	_ \& _	.n]

24	24	

1	×	5
+1	×	4
+2	×	5
+1	×	3
+1	×	2
= 2	24	

1	3	5	3	5
3	4	5	3	5
3	5	2	1	3
1	2	3	4	1
5	7	3	2	6
		·	7	

	0	1	0			
\otimes	1	2	1			
	0	1	0			
$h[-\xi, -\eta]$						

24	24	20	

1	×	3
+1	×	5
+2	×	3
+1	×	5
+1	×	1
= 2	20	

1	3	5	3	5	
3	4	5	3	5	
3	5	2	1	3	
1	2	3	4	1	
5	7	3	2	6	
f[x,y]					

	0	1	0	
\otimes	1	2	1	
	0	1	0	
$h[-\xi -n]$				

h[$-\xi$,	$-\eta$]

24	24	20	
21			

1	×	4
+1	×	3
+2	X	5
+1	×	2
+1	×	2
	21	

1	3	5	3	5
3	4	5	3	5
3	5	2	1	3
1	2	3	4	1
5	7	3	2	6

	0	1	0
\otimes	1	2	1
	0	1	0
,			$\overline{\cdot \eta}$

	24	24	20	
	21	18		
•				
ı				<u> </u>

1	X	5
+1	×	5
+2	×	2
+1	×	1
+1	×	3
=	18	

1	3	5	3	5					
3	4	5	3	5					
3	5	2	1	3					
1	2	3	4	1					
5	7	3	2	6					

	0	1	0
\otimes	1	2	1
	0	1	0
	h[-	_ξ	$[\cdot \eta]$

	24	24	20	
	21	18	14	
•				

1		×	3
+1	1	×	2
+2	2	×	1
+1	1	×	3
+1	1	×	4
=	1	4	

1	3	5	3	5
3	4	5	3	5
3	5	2	1	3
1	2	3	4	1
5	7	3	2	6

	0	1	0	
\otimes	1	2	1	
	0	1	0	
$h[-\xi,-\eta]$				

24	24	20	
21	18	14	
20			

1	×	5
+1	×	1
+2	×	2
+1	×	3
+1	×	7
= 2	20	

1	3	5	3	5
3	4	5	3	5
3	5	2	1	3
1	2	3	4	1
5	7	3	2	6

	0	1	0	
\otimes	1	2	1	
	0	1	0	
$h[-\xi, -n]$				

	24	24	20	
	21	18	14	
	20	17		

	1	×	2
+	1	×	2
+	-2	×	3
+	1	×	4
+	-1	×	3
=	: 1	7	

1	3	5	3	5
3	4	5	3	5
3	5	2	1	3
1	2	3	4	1
5	7	3	2	6

	0	1	0	
\otimes	1	2	1	
	0	1	0	
$h[-\xi,-\eta]$				

24	24	20	
21	18	14	
20	17	15	

1	×	1
+1	×	3
+2	×	4
+1	×	1
+1	×	2
$=$ \hat{x}	15	

Point-spread function

• The Dirac δ -function is a generalised function which is zero everywhere, except at the origin where it is "infinite"

$$\delta[x,y] = \begin{cases} \lim_{\epsilon \to 0} \frac{1}{4\epsilon^2} & \text{if } |x| < \epsilon, |y| < \epsilon \\ 0 & \text{otherwise} \end{cases}$$

- It represents a unit impulse (or a single point) at the origin
- Applying a convolution kernel to this single point yields the kernel itself as result

$$h[x,y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta[x - \xi, y - \eta] h[\xi, \eta] d\xi d\eta$$

Point-spread function

 The convolution of a single point with a kernel yields the kernel as result

$$h = \delta \otimes h$$

 This is the reason it is called the point-spread function, because the kernel determines how a single impulse is spread

0	0	0	0	0										
0	0	0	0	0	1	0 1	0]		0	1	0		
					1	0		U	_		1	2	1	
0	0	1	0	0	\otimes	1	2	1	 				Т	
								<u> </u>] —		0	1	\cap	
0	0	0	0	0		0	1	0			U		U	
					1	U		U						
0	0	0	0	0		م مار ع مار								
\$[24, 24]				$h[-\xi,-\eta]$			h[x,y]							
$\delta[x,y]$					$\mathcal{L}[x, y]$									

Machine Vision

Blurring

- Applying a kernel with only positive numbers spreads out intensity
- These kernels are the basis for all blurring operations

- Edges are local image features where brightness changes between two areas
- Edges in images typically derive from occluding contours, i.e. where one object is in front of another object

$$E[x,y] = B_1 + (B_2 - B_1)u[x\sin\theta + y\cos\theta + \rho]$$

Using the step function

$$u[z] = \int_{-\infty}^{z} \delta[t] dt$$

- Edges are local image features where brightness changes between two areas
- Edges in images typically derive from occluding contours, i.e. where one object is in front of another object

$$\frac{\partial E}{\partial x} = \sin \theta (B_2 - B_1) \delta[x \sin \theta + y \cos \theta + \rho]$$

$$\frac{\partial E}{\partial x} = -\cos\theta (B_2 - B_1)\delta[x\sin\theta + y\cos\theta + \rho]$$

- Edges are local image features where brightness changes between two areas
- Edges in images typically derive from occluding contours, i.e. where one object is in front of another object
- The derivatives are only non-zero on the edge and proportional to the contrast of the edge
- Therefore, to find edges in the image (i.e. the object boundaries) it is useful to look at the image gradient

Image gradients

 The derivative is a linear, shift-invariant operation, therefore it can be computed using convolution

$$\frac{\partial E}{\partial x} = \lim_{\epsilon \to 0} \frac{E[x + \epsilon, y] - E[x - \epsilon, y]}{2\epsilon} = E \otimes \delta_x[x, y]$$

$$\frac{\partial E}{\partial y} = \lim_{\epsilon \to 0} \frac{E[x, y + \epsilon] - E[x, y - \epsilon]}{2\epsilon} = E \otimes \delta_y[x, y]$$

with

$$\delta_{x}[x,y] = \lim_{\epsilon \to 0} \frac{\delta[x+\epsilon,y] - \delta[x-\epsilon,y]}{2\epsilon}$$

$$\delta_{y}[x,y] = \lim_{\epsilon \to 0} \frac{\delta[x,y+\epsilon] - \delta[x,y-\epsilon]}{2\epsilon}$$

The discrete version of the two doublets

$$\delta_{x}[x,y] = \lim_{\epsilon \to 0} \frac{\delta[x+\epsilon,y] - \delta[x-\epsilon,y]}{2\epsilon}$$

$$\delta_{y}[x,y] = \lim_{\epsilon \to 0} \frac{\delta[x,y+\epsilon] - \delta[x,y-\epsilon]}{2\epsilon}$$

Allows to calculate derivatives of images using convolution filters

Properties of convolutions

Convolutions are commutative, i.e.

$$g = f \otimes h = h \otimes f$$

and associative

$$g = (f \otimes h_1) \otimes h_2 = f \otimes (h_1 \otimes h_2)$$

- Therefore, the order in which convolution operations are applied does not matter
- In particular, convolutions can be pooled together and applied as one single convolution to an input image

The modulation-transfer function

Applying a convolution to the complex function

$$f[x,y] = e^{i(ux+vy)} = \cos[ux+vy] + i\sin[ux+vy]$$

Yields

$$g[x,y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(u(x-\xi)+v(y-\eta))} h[\xi,\eta] d\xi d\eta$$

$$=e^{i(ux+vy)}\underbrace{\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i(u\xi+v\eta)}h[\xi,\eta]d\xi d\eta}_{H(u,v)}$$

• The **modulation transfer function** H(u,v) does not depend on x or y, therefore the convolution operation has a multiplicative effect on individual frequencies (i.e. $e^{i(ux+vy)}$ is an eigenfunction of convolution in two dimensions)

Fourier transformation

 Every function can be considered as a sum of an infinite number of sinusoidal waves

$$f[x,y] = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F[u,v] e^{i(ux+vy)} du dv$$

- This frequency representation F[u,v] is called the **Fourier transformation** of the function f[x,y]
- Using the modulation transfer function the convolution is then

$$g[x,y] = f \otimes h = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H[u,v] F[u,v] e^{i(ux+vy)} du dv$$

- Now looking at the Fourier transformation of g[x,y] one can see that G[u,v]=F[u,v]H[u,v]
- Convolution is simply a multiplication in the frequency domain!

Fourier spectrum

Fourier spectrum

Convolution in the frequency domain

Convolution in the spatial domain

$$g[x,y] = f[x,y] \otimes h[x,y]$$

Becomes multiplication in the frequency domain

$$G[u,v] = F[u,v]H[u,v]$$

- The modulation transfer function attenuates/dampens certain frequencies and directions
- White noise is uniform across the spectrum, so the modulation transfer function also tells us what noise components are attenuated and what noise components are dampened by the application of a filter
- We can also use this to understand how convolution filters can be inverted by observing that this is only possible if the kernel spectrum is non-zero everywhere, in which case the inverse is simply

$$F[u,v] = \frac{G[u,v]}{H[u,v]}$$

Linear Filters and FFT

To calculate the convolution

$$g = f \otimes x$$

- We can do the following
 - Calculate Fourier transform of f and h
 - Calculate G = FH by multiplication
 - Calculate the inverse Fourier transform of G

• Because spatial convolution requires $O(n^2)$ multiplications and the Fast-Fourier-Transform algorithm runs in $O(n \log n)$ this strategy can be faster (usually depending on the size of h)

FFT in Python

```
sigma = 50
x,y = np.meshgrid(np.arange(0,len(img[0])),np.arange(0,len(img)))
kernel = np.exp(-((x-len(img[0])/2)**2+(y-len(img)/2)**2)/(2*sigma**2))/(2*np.pi*sigma**2)
ft img = np.fft.fft2(img)
ft_kernel = np.fft.fft2(np.fft.fftshift(kernel))
result = abs(np.fft.ifft2(ft_img * ft_kernel))/255
# result = cv2.filter2D(img, -1, kernel)
cv2.imshow("result", result)
                                 0.00006
                                 0.00005
```


Machine Vision

Low-pass filter

- Removing high frequencies from the image is called low-pass filtering
- It only retains homogeneous areas and removes all highfrequency edges
- The result is a blurred image

Machine Vision

High-pass filter

- Removing low frequencies from the image is called high-pass filtering
- It only retains edges and removes all low-frequency homogeneous areas
- The result is an image with homogeneous areas removed

Machine Vision

Smoothing at different scales

• We can filter the image with Gaussians of different size

$$g_{\sigma} = \frac{1}{2\pi\sigma^2} \exp{-\frac{x^2 + y^2}{2\sigma^2}}$$

To generate images at different smoothing scales

$$\bar{f} = g_{\sigma} \otimes f$$

Derivatives at different scales

 Calculating derivatives on a discrete image using convolution filters is not practical (because it would require infinitely small pixels)

$$\delta_{x}[x,y] = \lim_{\epsilon \to 0} \frac{\delta[x+\epsilon,y] - \delta[x-\epsilon,y]}{2\epsilon}$$

$$\delta_{y}[x,y] = \lim_{\epsilon \to 0} \frac{\delta[x,y+\epsilon] - \delta[x,y-\epsilon]}{2\epsilon}$$

 Instead, we have to calculate derivatives on a smoothed version of the image (remember, convolution is associative and commutative)

$$\bar{f}_{x} = (\delta_{x} \otimes g_{\sigma}) \otimes f$$

$$\bar{f}_y = (\delta_y \otimes g_\sigma) \otimes f$$

Derivatives at different scales

We can calculate the derivative of the Gaussian function directly

$$\frac{\partial g_{\sigma}}{\partial x} = -\frac{x}{2\pi\sigma^4} \exp{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$\frac{\partial g_{\sigma}}{\partial y} = -\frac{y}{2\pi\sigma^4} \exp{-\frac{x^2 + y^2}{2\sigma^2}}$$

 And calculate the (scale-dependent) derivatives using the following convolutions

$$\bar{f}_x = \frac{\partial g_\sigma}{\partial x} \otimes f$$

$$\bar{f}_{y} = \frac{\partial g_{\sigma}}{\partial y} \otimes f$$

 If we want to have a direction independent edge detector we can look at the squared gradient image

$$\left(\frac{\partial g_{\sigma}}{\partial x} \otimes f\right)^{2} + \left(\frac{\partial g_{\sigma}}{\partial y} \otimes f\right)^{2}$$

- The Derivative of Gaussian operator is still scale-dependent, which suggests that every edge does not only have a particular direction, but also a particular scale
- We will see later how scale invariant feature detection can be achieved (SIFT)

Sobel operator

 In practical applications it makes sense to choose convolution kernels that approximate derivatives of Gaussians while at the same time are efficient to compute

1	0	-1		
2	0	-2		
1	0	-1		

 The Sobel operator applies a 3x3 convolution filter which applies a difference operation in xdirection and a smoothing operation in y-direction (and vice versa) similar to a derivative of Gaussian operator

1	2	1		
0	0	0		
-1	-2	-1		

 The scale in this case is fixed to the image resolution

Summary

- Every linear, shift-invariant system can be expressed as convolution
- A convolution in the spatial domain corresponds to a multiplication in the frequency domain
- Image smoothing and image derivatives are two important examples of linear, shift-invariant operations
- Occluding object boundaries create edges in images, which can be detected using such linear, shift-invariant filters
- These edge features are characterised by their direction and by their scale

Thank you for your attention!