

Project: MSS54 Module: Idle control

Page 1 of 29

Project: MSS54

Module: Idle control without moment structure

	Department	Date	name	Filename
editor		16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 2 of 29

Table of contents

Change documentation	3
3. Idle control	4
3.1 Overview of idle control	4
3.2 Pre-control	6
3.2.1 Pre-control at "engine_standstill" or "start" or "run-on"	
3.2.2 Pre-control at ("Engine_running" or "Kl.15_off") and "S_gear = no traction and inactive catalytic	c converter heater"6
3.2.3 Pre-control at ("Engine_running" or "Kl.15_off") and "S_gear = power transmission and inactive	e catalytic converter heater"6
3.2.4 Pre-control at ("Engine_running" or "Kl.15_off") and "S_gear = no traction and active catalytic	converter heating"6
3.2.5 Pre-control at ("Engine_running" or "Kl.15_off") and "S_gear = power transmission and active of	catalytic converter heating"
3.2.6 Filtering the pre-tax value:	8
3.2.7 Gearbox intervention in LLR_pre-control	
3.2.8 Pre-control data	
3.3 Disturbance control for air conditioning system	9
3.3.1 Filtering of the disturbance variable feedforward	
3.3.2 Data of the disturbance control	10
3.4 Dashpot function	11
3.5 Target speed calculation	
3.6 Idle speed control	14
3.6.1 P-component of the idle controller	
3.6.2 I-component of the idle speed controller	15
3.6.3 Ignition angle intervention of the idle speed controller	
3.7 Demand adaptation	19
3.7.1 Adaptation conditions	19
3.7.2 States of demand adaptation	21
3.7.3 Calculation steps of demand adaptation	24
3.7.4 Data of demand adaptation	26
3.7.5 Non-volatile storage	26
3.8 Setpoint idle control	27
3.9 ZWD control	28
3.10Replacement value for switch S_GANG	29
3.11Possible modifications to the idle control	29

	Department	Date	name	Filename
editor	-	16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 3 of 29

3. idle control

This chapter describes the calculation of the target air mass flow rate for idle control and the conversion of the Q_soll specification into a duty cycle for idle actuator control.

A two-winding rotary actuator ZWD is used. The opening and closing coils are controlled with an inverse duty cycle at a fixed frequency of 100 Hz.

The calculation of the duty cycle of the ZWD control refers to the coil to be opened.

3.1 Overview of idle control

The entire idle control is shown schematically in Figure 3.1 - Overview of idle control - shown.

It consists of the submodules

- feedforward control
- disturbance feedforward control
- Dashpot function
- Target speed calculation
- idle control
- adaptation to needs
- Q_target calculation
- ZWD control

Unless explicitly stated in the description of the sub-modules, the idle control is active in all operating states of the MSS50. The interpolation of the characteristic curves/characteristic maps with slowly changing input variables takes place in the background. Otherwise, the idle control is calculated synchronously in 20 ms intervals.

	Department	Date	name	Filename
editor		16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 4 of 29

Figure 3.1: Overview of idle control

	Department	Date	name	Filename
editor	•	16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 5 of 29

3.2 Pre-control

The feedforward control is active in every operating state of the MSS50 and calculates a base value for the air mass flow rate of the idle control.

The composition of the underlying "Ilr_qvsroh" differs depending on the Operating states and the conditions B_KRAFTS (power closure) and B_KATH_AKTIV (Cat heating function active)

3.2.1 Pre-control at "Engine_standstill" or "Start" or "After-run"

3.2.2 Pre-control at "engine_running" or "terminal 15_off"

	Department	Date	name	Filename
editor		16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 6 of 29

Figure 3.4: idle speed control pre-control

	Department	Date	name	Filename
editor	•	16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 7 of 29

3.2.3 Filtering the input tax value:

The subsequent filter for the pre-control value has a pt1-like behavior. The filter time constant llr_zqvs is applicable and differs for four ranges:

while engine is stopped or starting: | Ilr_zqvs = 0 (unfiltered)

in the post-start until the map value is reached: Ilr_zqvs = KL_LLR_TAU_VS_NS

= f(tmot)

thereafter:

= f(tmot)

The filter time constant is standardized so that after one tau in a jump of the input value, starting from the value zero, approx. 65%, and after five tau approx. 99% of the input value is reached.

3.2.7 Gearbox intervention in LLR feedforward control

If the condition B_GETR_LLS_AUF (ASG downshifts in overrun mode) is met, the pilot control value of the idle control is switched to the value K_LLR_QVS_GETR. The pilot control filter is bridged in this case.

3.2.8 Pre-control data

Description of the feedforward control variables:

name	Description	Type Resolution
Ilr zgvs	current time constant for Qvs filter unfiltered	uc 5.12 sec / x
IIr gysroh	value of the VS filtered value	uw 1/2 5 6 ka/h
Ilr gvs	of the VS	uw 1/2 5 6 kg/h

name	type	Dim. x-ax	s	y-axis
KL LLR QVS START N	KL	3 x 1	n - speed tmot	
KL_LLR_QVS_START_TMO T	KL	4 x 1	cooling water temp.	
KF_LLR_QVS_KAT_GRUND	KF	6 x 4 n - s	peed	tmot - cooling water temp.
KF_LLR_QVS_KAT_GANG	KF	6 x 4 n - s	peed	tmot - cooling water temp.
KL LLR QVS TAN	KL	4 x 1 _{tan} -	intake air temperature 10 x	
KF_LLR_QVS_N_DK	KF	8 n - speed		wdk_adapt - DK angle related to LL
KL_LLR_TAU_VS_NST	KL	3 x 1	tmot - cooling water temp.	
KL_LLR_TAU_VS_AUFREG	KL	3 x 1	tmot - cooling water temp.	

	Department	Date	name	Filename
editor		16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 8 of 29

K LLR TALL VS ABREG	K		
K LLR OVS GETR	К	11	

	Department	Date	name	Filename
editor		16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 9 of 29

3.3 Disturbance control air conditioning system

The air conditioning disturbance compensation has the task of compensating the load change reactions caused by the activation of the air conditioning compressor by means of an increased air supply.

The additional air mass flow rate of the disturbance variable compensation is composed as follows: together:

Ilr_qacroh = K_LLR_QVS_AC; Pre-control value for air conditioning readiness

 $(S_AC = active)$

Ilr_qacroh = KL_LLR_QVS_KO; Correction offset when compressor is switched on (B_KO = active)

= f(n)

Ilr_qacroh = 0 ; otherwise no disturbance compensation is active

Figure 3.3: disturbance control air conditioning

	Department	Date	name	Filename
editor	•	16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 10 of 29

3.3.1 Filtering of the disturbance feedforward

The result of the disturbance feedforward is, analogous to the feedforward control, by means of a pt1 similar filter element. The filter time constant is K_LLR_TAU_QAC.

If the air conditioning compressor is switched on within the time period K_LLR_T_AC after the air conditioning readiness has been detected (S_AC: inactive ÿ active), an initial filter increase is activated. This means that the filter output value is immediately set to the value K_LLR_DQKO. Switching on the air conditioning compressor outside of this time period does not result in an initial filter increase. The remaining active time for the initial value increase is stored in the variable "Ilr_tdqko".

When changing from active to inactive air conditioning compressor activation, the new filter input value is adopted unfiltered.

3.3.2 Data of the disturbance control

Description of the variables:

name	Description	Type F	esolution
llr_tdqko	Timer for time monitoring of the filter	uc	0.02 sec
llr_qacroh	unfiltered value of the climate control	uw 1/2	56 kg/h
Llir avs	filtered value of the air conditioning control	uw 1/256	ka/h

name	type	Dim. x-a	kis	v-axis
KL LLR OVS KO	KL	4 x 1	n - speed	-
K_LLR_QVS_AC	K	1		
K LLR TAU VS AC	K	1		
K TIB DOKO	K	1		
KURTAC	K	1		

	Department	Date	name	Filename
editor		16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 11 of 29

3.4 Dashpot function

The Dashpot function is designed to ensure a slower torque reduction during closing the throttle valve.

For this purpose, the dashpot function calculates an offset for the target specification of the filling (characteristic curve, which depends on the throttle valve position control KL_LLR_Q_DASHPOT). Increases in this dashpot offset are passed on without delay. If the offset value is reduced, however, a change limitation with the applicable change rate K_LLR_DQ_DASHPOT comes into effect.

Figure 3.4: Dashpot function of the idle control

data from the Dashpot function

Description of the variables:

name	Description	Type Resolution
Ilr_qdashpot	Q-Offset of the Dashpot function	uw 1/2/56 kg/h

type	Dim. x-a	kis	y-axis
KL	6 x 1 wdl	_adapt - LL related	
		DK-	
		position	
K	1		
		type	KL 6 x 1 wdk_adapt - LL related DK- position

	Department	Date	name	Filename
editor		16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 12 of 29

3.5 Target speed calculation

The target speed is the reference variable for the PI controller of the idle speed control. Figure 3.5 gives an overview of the target speed calculation.

Figure 3.5: Calculation of the target speed

The target speed is the maximum of the stationary target speed "IIr_nstat" and the tracked target speed "IIr_nnachf".

The stationary target speed is calculated as follows:

In the operating state "Engine_standstill" or "Start"

Ilr_nstat =KL_LLR_NSOLL_START ;Target speed during start = f(tmot)

In all other operating conditions

Ilr_nstat =Maximum from

KL_LLR_NSOLL_GRUND; Basic characteristic curve target speed = f(tmot)

 $\label{eq:K_LLR_NSOLL_AC} \textbf{K_LLR_NSOLL_AC} \qquad \qquad ; \textbf{Target speed for air conditioning readiness}$

	Department	Date	name	Filename
editor		16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 13 of 29

The tracked target speed corresponds to the current engine speed weighted with the factor K_LLR_NNACHF_FAKTOR, whereby the factor can be between 0 and 0.997. The tracked target speed is limited to the value K_LLR_NNACHF_MAX.

If the stationary speed is greater than the tracked speed, it is filtered via a pt1 filter with the filter time constant Ilr_znsoll, which is calculated from the characteristic curve KL_LLR_TAU_NSOLL. If the tracked speed is used as the target speed, this filter is bypassed.

data of the target speed calculation

Description of the variables:

Name	Description		
Ilr_nstat	stationary target speed	uw 1 rpm	
Ilr_nnachf	tracked target speed resulting,	uw 1 rpm	
Ilr_nsoll	filtered target speed	uw 1 rpm	
llr_znsoll	time constant for target speed filter	uw 1 rpm	

name	type	Dim. x-ax	is	y-axis
KL_LLR_NSOLL_START	KL	3 x 1	tmot -	
	8 0		cooling water temp.	
KL_LLR_NSOLL_GRUND	KL	4 x 1	tmot -	
			cooling water temp.	
K_LLR_NSOLL_AC	K		-	
K_LLR_NNACHF_FAKTOR	K			
K_LLR_NNACHF_MAX	K		-	
KL_LLR_TAU_NSOLL	KL	1114x1	tmot -	
			cooling water temp.	

	Department	Date	name	Filename
editor		16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 14 of 29

3.6 Idle control

Figure 3.6: Overview of the idle control

	Department	Date	name	Filename
editor		16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 15 of 29

An idle speed controller is superimposed on the stationary Qsoll calculation, which is intended to compensate for deviations from the specified idle speed.

The idle speed controller is designed as a PI controller. The input variable of the controller is the deviation of the actual speed from the target speed.

speed difference IIr_dn = target speed - IIr_nsoll actual speed = r

A positive speed difference means that the engine speed is too low in relation to the target speed. A negative speed difference means that the engine speed is too high.

To support the control of the idle speed via the air supply, the LLR also intervenes in the ignition angle calculation using the correction offset "tz_llr_offset".

3.6.1 P-component of the idle controller

The P component is calculated from the characteristic curve KL_LLR_DQP_POS and depends on the amount of the speed difference between the target and actual speed. It is calculated synchronously in 20 ms.

The P-component of the idle controller is active under the following conditions:

 $\label{eq:bilinear} \begin{array}{ll} \text{BIT_P_REGLER_ON (BIT 0) set in K_LLR_CONTROL} \\ \text{and} & \text{Operating state} = \text{Motor_running (B_ML)} \\ \text{and} & (& \text{S_GANG} = \text{no power transmission} \\ \text{or S_GANG} = \text{power transmission and } \text{v} <= \text{K_LLR_V_MAX}) \\ \text{and} & \text{Speed too low (IIr_dn} > 0) \\ \end{array}$

The P component can be set to zero for test or application purposes using BIT_P_REGLER_ON (bit 0) in the constant K_LLR_CONTROL.

3.6.2 I-component of the idle speed controller

When calculating the I component, a distinction must be made between different operating states of the I controller. These are the states:

- I-controller stop: B_LLR_STOP

The I component is set to zero.

Idle control:
 Starting control:
 B_AFR

The I controller is active IIr_qi t = IIr_qi t-1 + dqi

- Integrator control range 1: B_IA1

The I component is set to zero via a pt1 filter with

the time constant K_LLR_TAU_IA1.

	Department	Date	name	Filename
editor		16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 16 of 29

- Integrator control area 2:

B IA2

The I component is guided to the maximum of IIr_uew and zero via a pt1 filter with the time constant K_LLR_TAU_IA2. The variable IIr_reg.uew is the I component at the time of the state transition from idle control to start-up control.

Within the states B_LLR and B_AFR there are four special cases:

If the idle speed falls below the value K_LLR_NDIFF_RESET and the I component is negative at this time, it is immediately set to zero (B_LLR_RESET).

If the load tl falls below the minimum load threshold $Ilr_reg.tl_min$, calculated from $KL_LLR_TL_MIN = f(tmot)$, a further reduction of the I-component is blocked (B_LLR_NEGSTOP).

If the sum of the P and I components is outside the controller limits defined with K_LLR_QREG_MIN and K_LLR_QREG_MAX, the I component is frozen (B_LLR_HALT).

The start-up control can only increase the I component, but not reduce it.

Figure 3.6 shows the state diagram and the transition conditions for the idle controller.

Figure 3.6: idle speed controller state diagram

	Department	Date	name	Filename
editor		16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 17 of 29

State transitions of the idle controller:

and !B_SA

Transition from start-up control to idle control

 $B_AFR_LLR = B_LL$

and !S_GANG) and !B_SA

Transition start-up control \ddot{y} Integrator de-control area 1 B_AFR_IA1 = B_ML

and B_SA

Transition start-up control ÿ Integrator de-control area 2

 $B_AFR_IA2 = B_ML$

and !(B_LLR and !S_GANG)

and !B_SA

and time K_LLR_TFBR expired

Transition Integrator Control Area 2 ÿ Area 1

B_IA2_IA1

= B_ML and B_SA

Transition Integrator de-control area 2 ÿ Idle control

 $B_IA2_LLR = B_LL$

and !S_GANG

and !B_SA

Transition Integrator de-control Range 1 \ddot{y} Idle control

 $B_IA1_LLR = B_LL$

and !S_GANG

and !B_SA

Transition idle control ÿ Integrator de-control area 1

 $B_LLR_IA1 = B_SA$

	Department	Date	name	Filename
editor	•	16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 18 of 29

The I component can be set to zero for test or application purposes using BIT_I_REGLER_ON (bit 1) in the constant K_LLR_CONTROL.

idle speed controller data

Description of the variables:

name	Description	Type Resolution
Ilr dn	speed difference	sw 1 rpm
Ilr gp	P-component	sw 1/256 kg/h
IIr gi	I-part	sw 1/256 kg/h
IIr greg	limited regulator contribution	sw 1/256 kg/h
Ilr_status	LLR status information	uc
	Bit 0: B_LLR_STOP	
	1: B_LLR	
	2: B_AFR	
	3: B_IA1	
	4: B IA2	
llr_flags	internal flags of the LLR	uc
	Bit 0: Flag for starting air mass (Qvs)	
	 Time monitoring B_KO active 	
	2: B_KO was last active	
	4: B_LLR_NEGSTOP	
	5: B LLR HALT	
Ilr uew	I-component at the end of the idle control	sw 1/256 kg/h
IIr tlmin	minimum load for negative stop	uw 1 µs/rev.
llr_tfbr	Timer for underbrake release at AFR	uc 0.02 sec
Ilr tz offset	ignition angle offset of the idle speed controller	sw 0.1 °kW

name	type	Dim. x-a	ris	y-axis
KL LLR DQP POS	KL	16 x 1	llr.dn	
			speed deviation	
KF_LLR_DQI	KF	15 x 8 llr.d	ln	- d_n40
			speed deviation	speed gradient
K LLR QREG MIN	K		-	
K LLR QREG MAX	K		-	
KL_LLR_TL_MIN	KL	114x1	tmot	-
			cooling water temp.	
K LLR NDIFF RESET	K	1		
K LLR T FBR	K	1	-	
K LLR TAU IA1	K	1	-	
K LLR TAU IA2	K	1		
K LLR V MAX	K	1	-	
KL LLR TZ NEG	KL	12	llr.dn	-
			speed deviation	
KL_LLR_TZ_POS	KL	12	Ilr.dn	-
			speed deviation	

	Department	Date	name	Filename
editor	•	16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 19 of 29

3.6.3 Ignition angle intervention of the idle speed controller

To support idle control via the air supply, the controller also intervenes in the ignition angle calculation via the global variable "tz_llr_offset". The variable "tz_llr_offset" is calculated as follows:

Condition

B_LLR or B_AFR & ; Status of the LLR: LLR or AFR active

 $II_dn \ddot{y} 0$; speed too low

tz_llr_offset = KL_LLR_TZ_POS ; ignition angle offset = f(llr.dn)

Condition

B_LLR or B_AFR & ; Status of the LLR: LLR or AFR active

 $IIr_dn < 0$; speed too high

tz_llr_offset = KL_LLR_TZ_NEG ; Ignition angle offset = f(-llr.dn)

otherwise

tz_llr_offset = 0 ; no ignition angle measures

The TZ intervention of the LLR is calculated segment-synchronously into the ignition angle path and is not subject to the ignition angle change limitation.

3.7 Demand adaptation

The purpose of demand adaptation is to correct a deviation in the pilot control of the idle air quantity, caused by manufacturing variations, air leakage and signs of aging, in relation to the air mass actually required at idle. This deviation is to be determined by demand adaptation and the pilot control values are to be shifted in parallel by this offset. A distinction is made between two adaptation ranges.

- Adaptation value with inactive air conditioning compressor activation
- Additional adaptation offset with active air conditioning compressor activation

3.7.1 Adaptation conditions

To activate demand adaptation, the following conditions must be met:

B_LLRA = B_LLR ; Idle control active state

(see LLR state machine)

and tmot > $K_LLR_TMOT_ADAPT$; engine temperature greater than threshold

and !B_TMOT_FEHLER and ! ; error-free tmot recording

B_LLR_IBEGR ; Integrator is not in a limitation

In the following documentation, these conditions are summarized in the condition B_LLRA (LLR demand adaptation).

	Department	Date	name	Filename
editor	•	16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 20 of 29

During the development and test phase, the complete demand adaptation (B_LLRA_ENABLED) can be switched off via bit 2 in the control byte K_LLR_CONTROL. All adaptation values are then equal to zero.

B_LLRA_ENABLE = 1 demand adaptation released B_LLRA_ENABLE = 0 demand adaptation switched off

	Department	Date	name	Filename
editor		16.04.20135		LLR.DOC

Project: MSS54 Module: Idle control

Page 21 of 29

3.7.2 States of demand adaptation

The control of demand adaptation can be described as a state machine with seven states.

Figure 3.7.2: state machine of demand adaptation

	Department	Date	name	Filename
editor	•	March 25, 2005		LLR.DOC

Project: MSS54 Module: Idle control

Page 22 of 29

adaptation inactive

Condition: B_LLRA not fulfilled

Mark: Ila_flags = 0 (inactive)

Ila_kflags = 0 (inactive)

Adaptation values: Ila_qadapt (t) = Ila_qadapt (t - 20 ms)

Ila_kqadapt (t) = Ila_kqadapt (t - 20 ms)

Lock time monitoring for LLRA without K0 active

Condition: B_LLRA fulfilled

and !B_KO and lla_timer !=0

(Lockout period not yet expired

Mark: Ila_flags = 1 (lock time)

Ila_ko_flags = 0 (inactive)

Adaptation values: Ilra_qadapt (t) = Ila_qadapt (t - 20 ms)

Ila_kqadapt (t) = Ila_kqadapt (t - 20 ms)

Adaptation running (without K0)

Condition: B_LLRA

and !B_K0

and Ila_timer == 0 (lock time expired)

and | Ila_qadapt - Ila_qstart | ÿ K_LLR_DQADAPT_MAX

(adaptation path not limited)

Mark: Ila_flags = 3 (adapted)

lla kflags = 0 (inactive)

Adaptation values: Ila_qadapt (t) = Ila_qadapt (t - 20 ms) + (Ilr_qi(t - 20 ms) +

K_LLR_QADAPT_OFFSET) * K_LLR_TAU_ADAPT

(without taking into account any limitation) lla_kqadapt (t) = lla_kqadapt (t - 20 ms)

adaptation value (without K0) limited

Condition: B_LLRA

and !B_KO and lla_timer == 0

and | Ila_qadapt - Ila_qstart | > K_LLR_DQADAPT_MAX

(adaptation path limited)

Mark: Ila_flags = 7 (limited)

lla kflags = 0 (inactive)

Adaptation values: Ila_qadapt (t) = Ila_qstart ÿ K_LLR_DQADAPT_MAX

lla_kqadapt (t) = lla_kqadapt (t - 20 ms)

Note: If the difference between the calculated adaptation value and the starting

value at the beginning of the adaptation phase becomes smaller than the maximum adaptation path, the system switches back to the "Adaptation in

progress" state.

	Department	Date	name	Filename
editor	•	April 16, 2013		LLR.DOC

Project: MSS54 Module: Idle control

Page 23 of 29

Lock time monitoring for LLRA with K0 active

Condition: B_LLRA fulfilled

and !B_KO and lla_timer !=0

(Lockout period not yet expired

Mark: Ila_flags = 1 (lock time)

lla_kflags = 0 (inactive)

Adaptation values: Ila_qadapt (t) = Ila_qadapt (t - 20 ms)

lla_kqadapt (t) = lla_kqadapt (t - 20 ms)

Adaptation running (with K0)

Condition: B_LLRA

and !B_K0

and lla_timer == 0 (lock time expired)

and | Ila_qadapt - Ila_qstart | ÿ K_LLR_DQADAPT_MAX

(adaptation path not limited)

Mark: Ila_flags = 3 (adapted)

Ila_kflags = 0 (inactive)

Adaptation values: Ila_ko_qadapt (t) = Ila_kqadapt (t - 20 ms) +

K_LLR_QADAPT_OFFSET) * K_LLR_TAU_ADAPT

(without taking into account any limitation)

 $lla_qadapt (t) = lla_qadapt (t - 20 ms) + (llr.qi(t - 20 ms))$

adaptation value (with K0) limited

Condition: B LLRA

and !B_KO and lla_timer == 0

and | Ila_qadapt - Ila_qstart | > K_LLR_DQADAPT_MAX

(adaptation path limited)

Mark: Ila_flags = 7 (limited)

Ila_kflags = 0 (inactive)

Adaptation values: lla_kqadapt (t) = lla_kqadapt (t - 20 ms)

Ila_qadapt (t) = Ila_qstart ÿ K_LLR_DQADAPT_MAX

For all states applies

Initial value of demand adaptation:

Ilr_qadaption (t) = Ilra_qadapt (t), if !B_KO

= lla_qadapt (t)

+ Ila_kqadapt (t) , if B_KO

Correction of the integrator component IIr.gi of the idle control

when compressor activation is inactive

 $IIr_qi(t) = IIr_qi(t)$

- (lla_qadapt (t) - lla_qadapt (t - 20 ms))

when compressor activation is active

 $IIr_qi(t) = IIr_qi(t)$

- (lla_kqadapt (t) - lla_kqadapt (t - 20 ms))

	Department	Date	name	Filename
editor	•	April 16, 2013		LLR.DOC

Project: MSS54 Module: Idle control

Page 24 of 29

3.7.3 Calculation steps of demand adaptation

Figure 3.7.3: Block diagram of the LLR adaptation

	Department	Date	name	Filename
editor	·	April 16, 2013		LLR.DOC

Project: MSS54 Module: Idle control

Page 25 of 29

integrator

If the active condition for the adaptation integrator is fulfilled (B_LLRA fulfilled and blocking time expired), a new integration cut for the current adaptation mode (B_K0 or !B_K0) is calculated synchronously every 20 ms:

```
lqadapt (t) = qadapt (t-20 ms)
+ (ᡎr_qi (t - 20 ms) + K_LLR_QADAPT_OFFSET)
K_LLR_TAU_ADAPT
```

limiting the adaptation path

A maximum adaptation path of ÿ K_LLR_DQADAPT_MAX is possible per adaptation phase.

An adaptation phase begins when the condition B_LLRA = fulfilled is recognized and ends as soon as this condition is no longer fulfilled. A change in the condition B_K0 or a retriggering of the blocking time does not lead to a new adaptation phase.

At the beginning of the adaptation phase, the two adaptation values Ilra_qadapt and Ila_kqadapt are saved in the variables Ila_qstart and Ila_kqstart. During the adaptation phase, the current adaptation value is then limited to the value ..._qstart ÿ K_LLR_DQADAPT_MAX.

limiting the adaptation values

The resulting adaptation value for inactive compressor activation is set to -

K_LLR_DQADAPT_MAX, K_LLR_DQADAPT_MIN which limits the active compressor circuit to the values K_LLR_QADAPT_K0_MAX and K_LLR_QADAPT_K0_MIN.

initial value of demand adaptation

The output value of the adaptation Ilr_qadaption, which is added to the pre-control value of the idle control, is always calculated - regardless of the condition B_LLRA and is composed as follows:

Correction of the integration component of the idle controller

The LLR demand adaptation must not change the air specification of the idle control llr_qsoll, but only transfer a correction offset from the I component of the idle controller llr_qi to the adaptation value llr_qadaption. This means that with each change in the adaptation value, the I component llr_qi must be corrected by this amount.

```
\label{eq:local_continuous_section} \begin{split} \text{Ilr\_qi (t)} &= & \quad \text{Ilr\_qi (t)} \\ &\quad &\quad \text{- (lla\_qadapt (t) - lla\_qadapt (t - 20 ms))} \\ \text{when B\_k0 is active} \\ &\quad &\quad \text{Il\_qi (t)} &= & \quad \text{Ilr\_qi (t)} \\ &\quad &\quad &\quad &\quad \text{- (lla\_kadapt (t) - lla\_kqadapt (t - 20 ms))} \end{split}
```

	Department	Date	name	Filename
editor	•			LLR.DOC

roject: MSS54 Module: Idle control

Page 26 of 29

3.7.4 Data of demand adaptation

Description of the variables:

name	2		1.4
Hame	Description	type	resolution
lla_timer	remaining adaptation blocking time	uw	0.02 sec.
lla.qadapt	Value of the adaptation integrator without	sw	1/256 kg/h
lla.qstart	Value of the adaptation integrator at the beginning of a new adaptation phase (without K0)	sw	1/256 kg/h
lla.flags	Flags for adaptation without compressor activation Value 0: Adaptation inactive Value 1: Lockout time running Value 3: adapted Value 7: Adaptation path limited	uc	-
lla_kqadapt	Value of the adaptation integrator with	sw	1/256 kg/h
lla_kqstart	Value of the adaptation integrator at the beginning of a new	sw	1/256 kg/h
lla_kflags	Flags for adaptation with compressor activation Value 0: Adaptation inactive Value 1: Lockout time running Value 3: adapted Value 7: Adaptation path limited	uc	

Description of the application data:

name	type	Meaning
K LLR QADAPT OFFSET	FW	adaptation offset for integrator component
K LLR TAU ADAPT	FW	time constant for demand adaptation
K LLR DOADAPT MAX	FW	max. adaptation path per adaptation phase
K LLR T ADAPT	FW	adaptation blocking time
K LLR QADAPT MIN	FW	lower adaptation value limit (without K0)
K_LLR_QADAPT_MAX	FW	upper adaptation value limit (without K0)
K LLR QADAPT KO MIN	FW	lower adaptation value limit (with K0)
K LLR QADAPT KO MAX	FW	upper adaptation value limit (with K0)
K LIR TMOT ADAPT	FW	temperature threshold for demand adaptation

3.7.5 Non-volatile storage

In the control unit's run-on phase, the current values

lla_qadapt

and lla_kqadapt

the demand adaptation is stored non-volatilely in the E2PROM of the control unit

In the initialization phase, the current adaptation values are preset with the stored values. If data is lost from the E^2PROM , the adaptation values are preset with the value zero.

	Department	Date	name	Filename
editor				LLR.DOC

Project: MSS54 Module: Idle control

Page 27 of 29

3.8 Setpoint idle control

The setpoint for the air mass flow rate of the idle control is composed additively of the individual results of the described sub-modules.

The constant K_LLR_Q_MCS offers the application engineer the possibility to easily influence the air specification using the MCS system.

The minimum setpoint IIr_qsoll is limited to the value K_LLR_QSOLL_MIN.

data of the Q setpoint calculation

Description of the variables:

name	Description	Type F	esolution
llr_qsoll	resulting output variable of the	uw 1/2	56 kg/h
	idle control		

name	type	Dim. x-a	kis	y-axis
K LLR Q MCS	K			
KL LLR QSOLL MIN	K	11		

	Department	Date	name	Filename
editor				LLR.DOC

Project: MSS54 Module: Idle control

Page 28 of 29

3.9 ZWD control

The S50 motor uses a two-winding rotary controller ZWD with one opening and one closing winding as the idle speed controller. The windings are controlled with a clocked pulse width modulated signal. The PWM frequency is 100Hz. The PWM signal for the closing winding corresponds to the inverted signal of the opening winding.

The air flow rate specification IIr_qsoll is converted into a duty cycle for the control signal of the idle speed actuator via the ZWD actuator characteristic curve, corrected depending on the on-board voltage and limited to the values K_LLS_TV_MIN or K_LLS_TV_MAX.

Figure 3.9: Calculation of the duty cycle for the opening ZWD winding

The duty cycle is stored as a high time in the variable lls_tv. The resolution is 2µs.

 $lls_tv = tv(f(llr_qsoll)) + (tv(f(llr_qsoll)) - K_LLS_TV_DREHPUNKT) * ub_korr(f(ub))$

To improve the charge balance, the output stages for the ZWD activation are only switched through in the operating states "Start" and "Engine running" or when terminal 50 (starter) is active. In the operating states "Engine stopped", "Terminal 15 off" or "After-run" the output stages are switched off and the idle speed controller only releases the emergency running cross-section.

	Department	Date	name	Filename
editor				LLR.DOC

Project: MSS54 Module: Idle control

Page 29 of 29

data of the actuator control

Description of the variables:

name	Description	Type F	esolution
lls tv	high time of the control signal	1JW 2 I	g
status_lls	status information of the LLS	uc	
_	Bit 0: Error in control		
6	7: Power amplifiers switched off		

Description of the application data:

name	type	Dim. x-a	kis	v-axis
KLUSTV ZWD	KL	28 x 1	Ilr gsoll - air specification ub	
KL LIS UB KORR	KL	5 x 1 1	- vehicle electrical system voltag	
K IIS TV DREHPINKT	К			
KILS TV MIN	К			
K LLS TV MAX	К	11		

3.10 Replacement value for switch S_GANG

Since the switch S_GANG for detecting a switched drive train has not yet been 100% tested and is not yet installed in all vehicles, it is possible to use the constant K_LLR_SGANG to switch to a substitute value for S_GANG, which is derived from the vehicle speed v.

K_LLR_SGANG = 0: S_GANG = 0 if v <= K_LLR_V_MAX S_GANG = 1 if v > K_LLR_V_MAX

K_LLR_SGANG ⊨ 0 (requires that switch is installed)

S_GANG = 0 if drive train not engaged

S_GANG = 1 if drive train is switched through

3.11 Possible modifications of the idle control

	50.2			
	Department	Date	name	Filename
editor				LLR.DOC