Course Type	Course Code	Name of Course	L	Т	P	Credit
DC	CSC501	ADVANCED DATA STRUCTURES AND	3	0	0	9
		ALGORITHMS				

Course Objective

To provide knowledge of advanced level computer algorithms with considerable depth, analysis and their applications. This course will also provide a strong foundation for research in many areas of computer science.

Learning Outcomes

- To impart knowledge of advanced algorithms
- To familiar with some advanced data structures
- To know the application areas of such algorithms and data structures

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Amortized Analysis: Aggregate Analysis, Accounting Method And Potential Method.	3	To understand how to analyse algorithms using advanced techniques with some examples.
2	Dynamic Programming: Assembly Line Scheduling, Matrix Chain Multiplication.	3	To understand how to design algorithms using dynamic Programming for specific applications.
3	Graph Algorithms: Topological Sorting, Strongly Connected Components, Single Source Shortest Paths In DAG, Johnson's Algorithm.	7	To familiar with advanced level graph algorithms with their applications.
4	Computational Geometric Algorithms: Geometric Searching Algorithms, Segment Intersection Problems.	3	To familiar with some geometric algorithms and their real applications.
5	Polynomials And FFT: Representation, DFT, FFT(Recursive & Iterative).	3	To impart knowledge about DFT computation and FFT
6	String Matching Algorithms: Naïve Approach, Finite Automata Approach, Rabin-Karp And Knuth-Morris-Pratt Algorithm.	5	To understand of designing various string matching algorithms.
7	Matrix Algorithms: LU Decomposition, LUP Decomposition, Linear System of Equations Solver, Matrix Inversion.	4	To learn how to use matrix methods to solve linear system of equations and how to obtain inverse of a high dimensional matrix.
8	Approximation Algorithms: Vertex Cover Problem, Travelling Salesman Problem, Set Cover .	2	To understand how to develop approximation algorithms for some NP complete/NP hard problems.
9	Randomized Algorithms: Randomized Quicksort, Minimum Cost Spanning Tree, Parallel Algorithms: Mesh Algorithms, Hypercube Algorithms.	5	To familiar with design of some specific randomized and parallel algorithms.
10	Advanced Data Structures: kd-Tree, Binomial and Fibonacci Heaps.	5	To learn how to represent and design algorithms for various operations on these advanced level data structures.

Text Books:

- 1. Cormen, Leiserson, Rivest and Stein, *Introduction to Algorithms*, Prentice Hall of India, 3rd Edition, 2010. **Reference Books:**
 - 1. Mark De Berg et al., Computational geometry: Algorithms and Application, 3rd edition, Springer, 2008.