Université Abou Bakr Belkaid - Tlemcen

Faculté des Sciences Département de Mathématiques Année universitaire : 2021-2022.

Master I: Probabilités-Statistiques Module: Analyse Fonctionnelle I

Durée: 1h30

Contrôle Continu

Exercice-01: (06 points)

I. Soit $(f_n)_n$ une suite dans E'. Montrer que si $x_n \to x$ et $f_n \rightharpoonup f$ faible* $\Longrightarrow \langle f_n, x_n \rangle \to \langle f, x \rangle$.

- II. Citer le théorème de Hahn-Banach (deuxième forme géométrique).
- III. Citer le théorème de Baire.

Exercice-02: (06 points)

Soit $\mathcal{C}([0,1]) = \mathcal{C}([0,1];\mathbb{R})$ muni de la norme usuelle :

$$||u|| = \max_{t \in [0,1]} |u(t)|.$$

On considère $E = \{u \in \mathcal{C}([0,1]); u(0) = 0\}$, de sorte que E est un sous-espace fermé de $\mathcal{C}([0,1])$.

On considère la forme linéaire

$$f: u \in E \longmapsto f(u) = \int_0^1 u(t) dt.$$

- 1. Montrer que $f \in E'$ et calculer $||f||_{E'}$.
- 2. Peut-on trouver $u \in E$ tel que ||u|| = 1 et $f(u) = ||f||_{E'}$

Exercice-03: (08 points)

Soit $Y = \mathcal{C}([0,1])$ l'espace des fonctions réelles continues définies sur [0,1], muni de la norme uniforme $\|.\|_{\infty}$, et soit X un sous espace vectoriel fermé de $\mathcal{C}([0,1])$, dont tous les éléments sont continûment dérivables. On définit $T: X \to Y$ par $\forall f \in X, Tf = f'$. On note

$$G(T) = \{(f, Tf), f \in X\}$$

le graphe de T.

- 1. Montrer que G(T) est fermé dans $X \times Y$.
- 2. En déduire qu'il existe un entier $N \ge 1$ telque $||f'||_{\infty} \le N$ pour toute $f \in X$ telle que $||f||_{\infty} \le 1$.
- 3. On pose $x_n = \frac{n}{N}$ pour $0 \le n \le N$, et on définit $S: X \to \mathbb{R}^{n+1}$ par $S(f) = (f(x_0), f(x_1), ..., f(x_n))$. a. On suppose que $||f||_{\infty} = 1$ et S(f) = 0. Montrer en utilisant le Théorème des accroissements finis, que l'on aboutit à une contradiction.
 - b. En déduire que X est de dimension finie et $dimX \leq N + 1$.

Bonne chance.

Correction du control continu

Exercice-01 (05 points) (Questions du cours)

Voir le cours

- 1-...(01 point)
- 2-...(02 points)
- 3-...(02 points)

Exercice-02 (06 points)

- 1- $||f||_{E'} = 1$ (Notons qu'on peut prendre par exemple $u(t) = t^a$ pour tout a>0). ... (03 points = 1.5 points +1.5 points)
- 2- Si u existe tel que, il faut avoir

$$\int_0^1 (1 - u) \, dt = 0$$

Ce qui implique que u=1 (absurde) car u appartient à E.

..... (03 points)

Exercice 03 (09 points)

- 1) Soit $f_n \in X$ tels que $f_n \xrightarrow[n \to \infty]{} f \in X$ et $Tf \xrightarrow[n \to \infty]{} g \in \mathcal{C}([0,1])$. Cela signifie que $(f_n)_{n\geqslant 1}$ converge uniformément vers f et que $f'_n = Tf_n$ converge uniformément vers g. D'après un théorème classique de Weierstrass, il en résulte que f est continûment dérivable et que g = f'. Cela montre que le graphe de T est fermé.
- 2) Puisque X (fermé dans un espace complet) et $\mathscr{C}([0,1])$ sont des espaces de Banach, le Théorème du graphe fermé dit que l'application linéaire T est continue. Soit $N \ge 1$ un entier tel que ||T|| < N. Puisque $||Tf||_{\infty} \le ||T|| \, ||f||_{\infty}$ pour toute $f \in X$, on a bien $||f'||_{\infty} < N$ pour toute $f \in X$ telle que $||f||_{\infty} \le 1$.
- 3) a) Si S(f) = 0, on a $f(x_0) = f(x_1) = \cdots = f(x_N) = 0$. Soit $t \in [0,1]$ tel que |f(t)| = 1. Il existe un $j \in \{0, \ldots, N-1\}$ tel que $x_j < t < x_{j+1}$ (t ne peut être l'un des x_i). D'après le Théorème des accroissements finis, il existe un ξ entre t et x_{j+1} tel que $f(x_{j+1}) f(t) = (x_{j+1} t) f'(\xi)$. Alors:

$$1 = |f(t)| = |f(x_{j+1} - f(t))| = (x_{j+1} - t)|f'(\xi)| \leqslant (x_{j+1} - t)||f'||_{\infty} \leqslant \frac{1}{N}||f'||_{\infty} < 1,$$

ce qui n'est pas possible.

b) S étant clairement linéaire, il résulte du a), par homogénéité, que, pour toute $f \neq 0$, on a $S(f) \neq 0$. Autrement dit, S est injective. Par conséquent dim $X \leq N+1$.