

Duale Hochschule Baden-Württemberg Mannheim

Bachelorarbeit

Entwicklung einer Zwischenschicht für die Nutzung weiterer Anwendungen in Verbindung mit der Berechnungskomponente des Liquidity Risk Managements

Studiengang Wirtschaftsinformatik

Vertiefungsrichtung Softwaremethodik

Verfasser: Fabian Kajzar

Matrikelnummer: 428094 Firma: SAP AG

Abteilung: Application Strategic Innovation - HPA

Kurs: WWI 09 SW B

Studiengangsleiter: Prof. Dr.-Ing. Jörg Baumgart

Wissenschaftlicher Betreuer: Prof. Dr. Hans-Henning Pagnia

hans-henning.pagnia@dhbw-mannheim.de

0621 4105-1131

Firmenbetreuer: Jens Mett

jens.mett@sap.com 06227 7-61785

Bearbeitungszeitraum: 13. Februar 2012 bis 4. Mai 2012

Kurzfassung

Verfasser: Fabian Kajzar Kurs: WWI 09 SW B

Firma: SAP AG

Thema: Entwicklung einer Zwischenschicht für die Nutzung weiterer Anwendungen in

Verbindung mit der Berechnungskomponente des Liquidity Risk Managements

Inhaltsverzeichnis

V	Abk Abb Tab	idungsverzeichnis	V V T
1		ingverzeichnis	1
2	2.1 2.2 2.3	Liquidität	2 3 4
3	SAF	LRM und Xcelsius	5
	3.1	Einleitung	5
	3.2		5
			5
		3.2.2 Architektur	5
		3.2.2.1 NGAP	5
			6
		3.2.2.3 Oberon	7
		3.2.3 Berechnungskomponente	7
	3.3	Xcelsius	7
		3.3.1 Grundprinzip	7
		3.3.2 Funktionen	7
		3.3.3 Architektur	7
		3.3.4 Erweiterungsmöglichkeiten	7
	3.4	Zusammenfassung	7
4	Anfo	orderung	8
	4.1		8
	4.2		8
	4.3		8
	4.4		8

5	Um	setzungsmöglichkeiten	9		
	5.1	Einleitung	9		
	5.2	WebService			
	5.3	Zusammenfassung			
6	Um	setzung	10		
	6.1	Einleitung	10		
	6.2	Analyse	10		
	6.3	Entwurf	10		
	6.4	Implementierung	10		
	6.5	Zusammenfassung	10		
7	Evaluation				
	7.1	Einleitung	11		
	7.2	Möglichkeiten			
	7.3	Vergleich			
	7.4	Performance			
	7.5	Zusammenfassung	11		
8	Zus	ammenfassung	12		
Α	Anh	ang	111		
GI	ossar		ΙX		
Lit	terati	ırverzeichnis	X		

DHBW Mannheim III

Verzeichnisse

Abkürzungsverzeichnis

DBMS Datenbankmanagementsystem

HANA SAP High Performance Analytic Appliance

SQL Structured Query Language

DHBW Mannheim IV

Abbildungsverzeichnis

Tabellenverzeichnis

DHBW Mannheim VI

Listingverzeichnis

DHBW Mannheim VII

1 Einleitung

2 Grundlagen

2.1 Liquidität

Der Begriff der Liquidität ist weit verbreitet und im allgemeinen Sprachgebrauch festgesetzt. Allerdings ist eine eindeutige Definition des Begriffs schwierig, da Liquidität sehr vielschichtig ist, mehrere Dimensionen besitzt und die jeweilige Bedeutung von der Perspektive der Betrachtung abhängt. Für diese Arbeit ist vor allem die betriebswirtschaftliche Sicht auf Liquidität entscheidend, die volkswirtschaftliche Sicht wird daher nicht näher erläutert. 2

In der betriebswirtschaftlichen Sicht kann wird zunächst die Liquidität von Objekten von der Liquidität von Subjekten unterschieden. Die Objektliquidität ist die Eigenschaft eines Vermögensgegenstandes in Zahlungsmittel umwandeln zu können.³ Sie hängt demnach von der Nähe des Objektes zu Geld ab, Zahlungsmittel haben die höchste Objektliquidität, Immobilien eine geringe.⁴ Die Liquidität von Subjekten bezeichnet die Fähigkeit eines Subjekts, z.B. einer Bank, alle Zahlungsverpflichtungen erfüllen zu können ⁵

Zeitlich kann Liquidität in kurz und langfristig unterschieden werden. Bei der kurzfristigen Liquidität steht der Zahlungsaspekt im Vordergrund, meist nur auf einen Tag bezogen.⁶. Es muss zu jeder Zeit sichergestellt werden, dass alle fälligen Zahlungen in der entsprechenden Höhe beglichen werden können. Diese Bedingung ist bei der Steuerung von Banken zu jedem Zeitpunkt streng einzuhalten. ⁷. Synonym werden auch die Begriffe operative Liquidität sowie dispositive Liquidität verwendet.⁸

```
<sup>1</sup> vgl. [Dür11, S.3] und [Bar08, S.13]

<sup>2</sup> vgl. [ADF<sup>+</sup>10, S.10]

<sup>3</sup> vgl. [Moc07, S.10]

<sup>4</sup> vgl. [Dür11, S.3]

<sup>5</sup> vgl. [Dür11, S.3] und [ADF<sup>+</sup>10, S.11]

<sup>6</sup> vgl. [Dür11, S.3f]

<sup>7</sup> vgl. [Bar08, S.13] und [ADF<sup>+</sup>10, S.12]

<sup>8</sup> vgl. [Bar08, S.13]
```

Kapitel 2 Grundlagen

Die langfristige Liquidität bezeichnet die Fähigkeit langfristige Refinanzierungsmittel auf der Passiv-Seite der Bilanz aufzunehmen um dadurch die gewünschte Entwicklung auf der Aktiv-Seite der Bilanz ermöglichen zu können. Sie ist also mit den Zielen des Subjektes verknüpft.⁹ Für Banken ist dies besonders wichtig, da es einen wichtigen Wettbewerbsvorteil gegenüber Konkurrenzen darstellt¹⁰ Zwischen der kurz und langfristigen Liquidität besteht eine beidseitige Wechselwirkung, eine niedrige kurzfristige Liquidität führt zu Problemen bei der langfristigen Liquidität.¹¹

Die Folgen der Liquidität können weitreichend sein. Probleme mit sowohl der kurzfristigen als auch der langfristigen Liquidität können zu einem Reputationsverlust
führen. Gerade bei Banken hat dies schwere Auswirkungen, da Fremdkapitalgeber das Vertrauen in die Bank verlieren. Dies wiederum hat Auswirkungen auf die
Passiv-Seite der Bilanz, viel Fremdkapital wird verloren gehen. Im schlimmsten Fall,
wenn die Bank ihren Zahlungsverpflichtung nicht mehr nachkommen kann, muss sie
Insolvenz anmelden.¹²

2.2 Liquiditätsrisiko

Die Finanzinstitute haben in der Vergangenheit dem Liquiditätsrisiko keine besondere Bedeutung zugewandt. Ob ein Institut das Risiko gesondert behandelt hat oder nicht konnte frei gewählt werden. Erst im Jahr 2007, als die Grundstückspreise in den USA zusammengebrochen sind und dadurch viele Banken in Liquiditätsschwierigkeiten gekommen sind, rückte die Behandlung des Liquiditätsrisikos in den Fokus - nicht zuletzt durch die Pleite der Lehman Brothers Bank [TODO ref?]¹³

Das Liquiditätsrisiko ist das Risiko, gegenwärtige oder zukünftige Zahlungsverpflichtungen entweder nicht, nicht vollständig oder nicht zeitgerecht nachkommen zu können. Grundsätzlich ist das Liquiditätsrisiko bei allen Unternehmen vorhanden. Bei Banken ist es allerdings besonders stark ausgeprägt, da hier sowohl die Einals auch die Auszahlungen in hohem Maße von dem Kundenverhalten abhängen. Im weitesten Sinne wird zu dem Liquiditätsrisiko auch die Opportunitätskosten hinzugezogen, die entstehen wenn eine gewinnbringende Transaktion aufgrund fehlender

```
<sup>9</sup> vgl. [Dür11, S.4]

<sup>10</sup> vgl. [Bar08, S.13]

<sup>11</sup> vgl. [Bar08, S.15]

<sup>12</sup> vgl. [Dür11, S.4] und [Rom10, S.65]

<sup>13</sup> vgl. [Bar08, S.5]

<sup>14</sup> vgl. [Hul10, S.467f], [Rom10, S.167] und [Dür11, S.6]

<sup>15</sup> vgl. [ADF<sup>+</sup>10, S.90] und [Bar08, S.79]
```

Kapitel 2 Grundlagen

Zahlungsmittel nicht durchgeführt werden kann. 16

Analog zu der Unterteilung des Liquiditätsbegriffes kann auch das Liquiditätsrisiko weiter unterteilt werden. Zunächst unterscheidet man in dem bankenbezogenen Liquiditätsrisiko das Liquiditätsspannungsrisiko und das Zahlungsmittelbedarfsrisiko.

Das Liquiditätsanpassungsrisiko beinhaltet grundsätzlich Risiken aufgrund von Zuflüssen und kann in das Refinanzierungsrisiko und das Marktliquiditätsrisiko unterteilt werden. Henn im Falle eines Engpass nicht genügend Mittel beschafft werden können, oder dies nur unter erhöhten Marktpreisen erreicht werden kann wird von dem Refinanzierungsrisiko gesprochen. Das Vertrauen der Marktteilnehmer ist hier entscheidend, beeinflusst werden kann es vor allem durch die Veränderung des Leitzinses der Notenbank. Das Marktliquiditätsrisiko bezieht sich auf die Geldnähe von Aktiva (siehe TODO->Liquidität) und bezeichnet das Risiko, einen Aktivposten nur zu hohen Transaktionskosten liquidieren zu können. Es ist nur schwer beeinflussbar, da es von dem aktuellen Angebot und der Nachfrage auf dem jeweiligen Markt abhängt.

Das Zahlungsmittelbedarfsrisiko, auch originäres Liquiditätsrisiko genannt, beruht im Gegensatz zu dem Liquiditätsspannungsrisiko auf den Abflüssen von Liquidität. Es wird hauptsächlich das Terminrisiko und das Abrufrisiko unterschieden.²⁰ Das Terminrisiko resultiert aus verspäteten Zahlungseingängen, genauer gesagt aus außerplanmäßigen Prolongationen von Aktivgeschäften über die vereinbarte Kapitalbindungsdauer hinaus.²¹. Ein Beispiel ist die Verlängerung eines Kredites, da der Kreditnehmer die Tilgung oder die Zinsen des Kredites nicht bezahlen kann.²² Das Abrufrisiko beruht auf einer unerwarteten Ausnutzung von zugesagten Kreditlinien. Hier findet ein Liquiditätsabfluss in unerwarteter Höhe statt.²³ Der bekannteste und zugleich extremste Fall des Abrufrisikos ist eine Bankenpanik^{GL}.

2.3 Liquiditätsrisikomanagement

```
<sup>16</sup>vgl. [Bar08, S.79]

<sup>17</sup>vgl. [Dür11, S.7]

<sup>18</sup>vgl. [Dür11, S.7f]

<sup>19</sup>vgl. [Dür11, S.9]

<sup>20</sup>vgl. [Dür11, S.7f] und [ADF+10, S.12]

<sup>21</sup>vgl. [Poh08, S.12] und [Zer05, S.51]

<sup>22</sup>vgl. [Dür11, S.10]

<sup>23</sup>vgl. [SLK08, S.513f]
```

3 SAP LRM und Xcelsius

- 3.1 Einleitung
- 3.2 SAP LRM
- 3.2.1 Funktionen
- 3.2.2 Architektur
- 3.2.2.1 NGAP

3.2.2.2 HANA

Die SAP High Performance Analytic Appliance (HANA) ist ein Produkt der SAP und besteht aus Softwarekomponenten, die in Kombination mit zertifizierter Hardware verkauft werden. Es ist die Reaktion auf den Bedarf nach der schnellen Auswertung von großen Datenmengen. Dies soll durch die Ausnutzung der Leistungssteigerung von modernen Computern erreicht werden. Hier ist zum einen die Entwicklung von Einkernprozessoren zu Mehrkernprozessoren zu nennen und zum Anderen die Verfügbarkeit von schnellem Hauptspeicher in der benötigten Größe zu vertretbaren Kosten. ²⁴ Das Ziel von HANA ist es aktuelle operationale Daten in Verbindung mit bestehenden historischen Daten in Echtzeit zu Analysieren und somit Informationen zu gewinnen. ²⁵

Der Kern der HANA bildet dabei ein hauptspeicherbasiertes Datenbankmanagementsystem (DBMS). Dabei werden alle Daten nicht wie bei traditionellen DBMSen auf Festplatten gespeichert, sondern im Hauptspeicher gehalten um höhere Zugriffsgeschwindigkeiten zu erreichen.²⁶ Außerdem ist neben der zeilenbasierten Organisation der Daten im Speicher auch die spaltenbasierte Organisation möglich. Die zeilenbasierte Organisation ist von Vorteil, wenn auf einzelne Datensätze komplett zugegriffen werden soll, die spaltenbasierte Organisation ist bei Tabellen mit einer hohen Anzahl an Spalten und bei spaltenbasierten Operationen wie der Aggregation oder der Suche überlegen. Durch die Unterstützung von beiden Organisationsformen kann die jeweils beste Form gewählt werden.²⁷

Veränderungen in einem Datensatz einer Tabelle können auf Wunsch nicht in dem Eintrag der Tabelle direkt geändert, sondern nur die Differenzen an die Tabelle angefügt werden. Dadurch bleibt die Information, wie sich der Datensatz im Laufe der Zeit verändert hat, erhalten und kann in späteren Auswertungen als weitere Information hinzugezogen werden. Zusätzlich ist das Anfügen der Veränderung schneller durchzuführen wie die Veränderung des bestehenden Datensatzes.²⁸

Zu den genannten Veränderungen wird in Anwendungen, die auf Basis von HANA entwickelt werden, versucht, ein Teil der Anwendungslogik schon auf der Datenbank selbst zu berechnen.²⁹ Erreicht wird dies durch die Erweiterung der Abfragesprache Structured Query Language (SQL) zu SQLScript^{GL}. Mit SQLScript ist es unter

²⁴vgl. [PZ11, S.14f]

²⁵vgl. [AG12]

²⁶vgl. [Kle10, TODO]

²⁷vgl. [Kle10, S.13f]

²⁸vgl. [PZ11, S.109f]

²⁹vgl. [PZ11, S.155f]

Anderem durch das Hinzufügen von Datentypen, Prozeduren und Operationen möglich, Anwendungslogik abzubilden. Diese Berechnungen können von der Datenbank durch Parallelisierung sehr schnell durchgeführt werden. Als Resultat kann die Datenübertragung zwischen dem DBMS und der Anwendung verringert werden, da nur noch das Ergebnis und nicht die Datensätze, auf denen das Ergebnis basiert, übertragen werden muss und die Komplexität der Anwendung verringert werden, da ein Teil der Logik von dem DBMS übernommen wird.

- 3.2.2.3 Oberon
- 3.2.3 Berechnungskomponente
- 3.3 Xcelsius
- 3.3.1 Grundprinzip
- 3.3.2 Funktionen
- 3.3.3 Architektur
- 3.3.4 Erweiterungsmöglichkeiten
- 3.4 Zusammenfassung

³⁰vgl. [AG11, S.9f]

4 Anforderung

- 4.1 Einleitung
- **4.2 Ziel**
- 4.3 Anwendungsfälle
- 4.4 Zusammenfassung

5 Umsetzungsmöglichkeiten

- 5.1 Einleitung
- 5.2 WebService
- 5.3 Zusammenfassung

6 Umsetzung

- 6.1 Einleitung
- 6.2 Analyse
- 6.3 Entwurf
- 6.4 Implementierung
- 6.5 Zusammenfassung

7 Evaluation

- 7.1 Einleitung
- 7.2 Möglichkeiten
- 7.3 Vergleich
- 7.4 Performance
- 7.5 Zusammenfassung

8 Zusammenfassung

A Anhang

Inhalt des Anhangs

DHBW Mannheim VIII

Glossar

Bankenpanik

Eine Bankenpanik ist ein Ereignis, bei dem eine große Anzahl von Anlegern versucht, ihre Einlagern bei einer Bank abzuziehen. Der Grund kann zum Einen in der Veröffentlichung von schlechten Ergebnissen der Bank und damit einem Vertrauensverlust begründet sein, zum Anderen aber auch rein spekulativ sein. Für die Bank besteht die Gefahr der Insolvenz. Im Englischen spricht man von einem Bank Run.³¹

SQLScript

SQLScript ist eine Erweiterung der Abfragesprache SQL und wird in der Datenbank von SAP HANA verwendet. Mit Hilfe von SQLScript lässt sich Anwendungslogik in die Datenbank auslagern. Dazu wurden unter Anderem Datentypen, Prozeduren und Kontrollstrukturen hinzugefügt.³²

DHBW Mannheim IX

³¹vgl. [Sch11, S.1f]

³²vgl. [AG11, S.9f]

Literaturverzeichnis

- [ADF⁺10] Anja Albert, Thomas Dietz, Claus-Peter Fiack, Rainer Haas, Marianne Höhler, Holger Nielsen und Thomas Nordheim: Ertragsorientiertes Liquiditätsrisikomanagement: in mittelständischen Banken. Finanz-Colloquium, Heidelberg, 2. Auflage, 2010. ISBN: 978-3-936974-99-7.
- [AG11] SAP AG: SAP HANA Database: SQLScript Guide, 2011.
- [AG12] SAP AG: SAP HANA Overview, 2012.
- [Bar08] PETER BARTETZKY: Handbuch Liquiditätsrisiko: Identifikation, Messung und Steuerung. Schäffer-Poeschel, Stuttgart, 2008. ISBN: 978-3-7910-2747-0.
- [Dür11] DÜRRNAGEL: Management des Liquiditätsrisikos in Banken: Analyse und Beurteilung der Methoden zur Liquiditätsrisikomessung unter Berücksichtigung bankaufsichtlicher Richtlinien. Diplomica Verlag, Hamburg, 2011. ISBN: 978-3-8428-6186-2.
- [Hul10] JOHN HULL: Risikomanagement in Banken und Finanzinstituten. Pearson Studium, München, 2. Auflage, 2010. ISBN: 978-3-86894-043-5.
- [Kle10] WOLFRAM KLEIS: SAP In-Memory Computing Engine: SAP Architecture Bluebook. Walldorf, 2010.
- [Moc07] NILS MOCH: Liquiditätsrisikomanagement in Kreditinstituten: Eine kritische Analyse des Status quo in kleineren Kreditinstituten unter Berücksichtigung regulativer und betriebswirtschaftlicher Anforderungen. Eul, Lohmar and and Köln, 2007. ISBN: 3899366352.
- [Poh08] MICHAEL POHL: Das Liquiditätsrisiko in Banken: Ansätze zur Messung und ertragsorientierten Steuerung. Knapp, Frankfurt am Main, 2008. ISBN: 978-3831408283.

- [PZ11] HASSO PLATTNER und ALEXANDER ZEIER: In-memory data management: An inflection point for enterprise applications. Springer, Heidelberg, 2011. ISBN: 978-3-642-19363-7.
- [Rom10] Frank Romeike (Herausgeber): Die Bankenkrise: Ursachen und Folgen im Risikomanagement. Bank-Verlag Medien, Köln, 2010. ISBN: 978-3-86556-230-2.
- [Sch11] TIMO SCHRAND: Die Finanzmarktkrise- Bank-Run und Regulierung des Bankensystems. GRIN Verlag GmbH, München, 2011. ISBN: 978-3640920037.
- [SLK08] HENNER SCHIERENBECK, MICHAEL LISTER und STEFAN KIRMSSE: Risiko-controlling und integrierte Rendite-, Risikosteuerung. Gabler, Wiesbaden, 9. Auflage, 2008. ISBN: 978-3834904478.
- [Zer05] Stefan Zeranski: Liquidity at risk zur Steuerung des liquiditätsmässigfinanziellen Bereiches von Kreditinstituten. GUC, Verl. der Ges. für Unternehmensrechnung und Controlling, Chemnitz, 2005. ISBN: 978-3934235359.

DHBW Mannheim XI

Ehrenwörtliche Erklärung

"Ich erkläre hiermit ehrenwörtlich:

1. dass ich meine Bachelorarbeit mit dem Thema

Entwicklung einer Zwischenschicht für die Nutzung weiterer Anwendungen in Verbindung mit der Berechnungskomponente des Liquidity Risk Managements

ohne fremde Hilfe angefertigt habe;

- 2. dass ich die Übernahme wörtlicher Zitate aus der Literatur sowie die Verwendung der Gedanken anderer Autoren an den entsprechenden Stellen innerhalb der Bachelorarbeit gekennzeichnet habe;
- 3. dass ich meine Bachelorarbeit bei keiner anderen Prüfung vorgelegt habe;
- 4. dass die eingereichte elektronische Fassung exakt mit der eingereichten schriftlichen Fassung übereinstimmt.

Ich bin mir bewusst, dass eine falsche Erklärung rechtliche Folgen haben wird."

Ort, Datum Unterschrift