北京邮电大学 2014——2015 学年第一学期

《大学物理 B(下)》期中考试试题(A)

考	一、学生参加考试须带学生证或学院证明,	未带者不准进入考场。	学生必须按照
壯	监考教师指定座位就坐。		

- 注 二、书本、参考资料、书包等物品一律放到考场指定位置。
- 意 三、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考场规则》,有考场违 事 纪或作弊行为者,按相应规定严肃处理。
- 项 | 四、学生必须将答题内容做在试题答卷上,做在试题及草稿纸上一律无效。
 - 五、学生的姓名、班级、学号、班内序号等信息由教材中心统一印制。

	,	H4/3L	- 1	~· , , , ,	/=1 4/4	2 17 17 10	. [1// 1	٠,٠	. 1 .4-3 .	
考证		大学物	理 B(下)	考试时间	间		年	月	日
课程	₹									
题号	<u>1</u> .	_	1 1	111	四	五	六	七	八	总分
满分	}									
得分	}									
阅老 教师	É									
教师	Fi .									

一. 填空题: (60分,每空6分)

(1)振子在负的最大位移处,则初相为; (2)振子在平衡位置向正方向运动则初相为。 则初相为。 2 一弹簧振子作简谐振动,总能量为 E ₁ ,如果简谐振动振幅增加为原来的两倍,重物的量增为原来的四倍,则它的总能量变为。 3 如图所画的是两个简谐振动的振动曲线,若这两个简谐振动可叠加,则合成的余弦振动	1 一个弹簧振子作简谐振动,振幅为 A,	周期为 T, 其运动方程用余弦函数表示。若 t=0 时,
2 一弹簧振子作简谐振动,总能量为 E ₁ ,如果简谐振动振幅增加为原来的两倍,重物的 量增为原来的四倍,则它的总能量变为。	(1)振子在负的最大位移处,则初相为	; (2)振子在平衡位置向正方向运动,
量增为原来的四倍,则它的总能量变为。	则初相为。	
	2 一弹簧振子作简谐振动,总能量为 E_1 ,	如果简谐振动振幅增加为原来的两倍, 重物的质
3.加图所画的基两个简谐振动的振动曲线。 若这两个简谐振动可叠加。则会成的全弦振动	量增为原来的四倍,则它的总能量变为_	о о
5 如图//画的是约十间相派约曲派约曲线,有这约十间相派约引重加,对自然的外互派约	3 如图所画的是两个简谐振动的振动曲线	,若这两个简谐振动可叠加,则合成的余弦振动的
初相为。	初相为。	

填空题3用图

填空题4用图

4 如图所示,质点质量为 m,轻弹簧倔强系数都为 k,则(a)(b)(c)三种情况下系统的故有圆频率之比为____。

5 一平面简谐波,频率为 300Hz,波速为 340m/s,在截面面积为 $3X10^{-2}m^2$ 的管内空气中传播 , 若 在 10s 内 通 过 截 面 的 能 量 为 $3.06x10^{-2}J$, 则 波 的 平 均 能 流 密 度 为_____。

6 在驻波中,两个相邻波节间各质点的振动振幅______,相位_____。(填不同或者相同)7 已知向左传播的平面简谐波 t=T/4 时的波形如图实线所示,则该波的波函数为_____。

填空题7用图

填空题8用图

8 在杨氏双缝干涉实验中,如图所示,穿过 S_1 的光线垂直经过一厚度为 e_1 、折射率为 n_1 的介质,而穿过 S_2 的光线垂直经过厚度为 e_2 、折射率为 n_2 的介质,则两条光线到达 P 点时的光程差为

二. 计算题(20分)

- $1(10 \, f)$ 平面简谐波 t 时刻的波形如图,此波波速为 u , 沿 x 正方向传播,振幅为 A , 频率为 v .
- (1) 以以 D 为坐标系原点,并以此时刻为 t=0 时刻,写出此波波函数;
- (2) 以 B 为反射点,且为波节,若以 B 为 x 轴坐标原点,并以此时刻为 t=0 时刻,写出入射波和反射波函数;

 $2(10 \, f)$ 在杨氏双缝干涉实验中,已知缝平面到屏的距离 D=2m,两缝之间的距离 d=1mm,10个明干涉条纹之间的距离 L=1.029cm,求:(1) 光源波长;(2) 第一级暗纹的位置;(3) $x=8.19x10^{-2}cm$ 处的 P 点相干光相位差(零级明条纹中心为坐标原点)