考研数学重要公式及性质

目 录

第一篇 高等数学

第1章	函数、极限与连续 ······	(1)
第 2 章	一元函数微分学	(2)
第3章	一元函数积分学	(4)
第4章	向量代数与空间解析几何	(6)
第5章	多元函数微分学	(9)
第6章	多元函数积分学	(11)
第7章	无穷级数	
第8章	常微分方程	(21)
	第二篇 线性代数	
第1章	行列式	
第 2 章	矩阵及其运算	
第3章	矩阵的初等变换与线性方程组	
第4章	向量组的线性相关性	
第 5 章	相似矩阵及二次型 ·······	
第6章	线性空间与线性变换	(32)
	第三篇 概率论与数理统计	
第1章	概率论的基本概念 ·····	(33)
第 2 章	随机变量及其分布 ······	(34)
第3章	随机变量的数字特征 ······	(35)
第4章	几种重要的分布	(37)
第5章	大数定律及中心极限定理	
第6章	样本分布	(40)
第7章	参数估计	
第8章	假设检验	(42)

第一篇 高等数学

第1章 函数、极限与连续

1. 极限的四则运算法则

若
$$\lim f(x) = A, \lim g(x) = B(A, B$$
 均为有限数),则
$$\lim [f(x) \pm g(x)] = A \pm B, \lim f(x) \cdot g(x) = A \cdot B,$$

$$\lim \frac{f(x)}{g(x)} = \frac{A}{B} (\text{ if } B \neq 0).$$

- 2. 极限存在的两个准则
- (1) 单调有界数列必有极限.
- (2) 夹逼准则

若当 $x \in \{x \mid 0 < |x - x_0| < h\}$ (或 |x| > M) 时,恒有 $g(x) \leqslant f(x) \leqslant h(x)$,

$$\coprod \lim_{x \to x_0 \atop (x \to \infty)} g(x) = \lim_{x \to x_0 \atop (x \to \infty)} h(x) = A, \iiint_{x \to x_0 \atop (x \to \infty)} f(x) = A.$$

3. 两个重要极限

(1)
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
. (2) $\lim_{n\to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{x\to \infty} \left(1 + \frac{1}{x}\right)^x = \lim_{y\to 0} (1+y)^{\frac{1}{y}} = e$.

- 4. 无穷小量的运算性质
- (1) 有限个无穷小量的代数和仍为无穷小量.
- (2) 有限个无穷小量的积仍是无穷小量.
- (3) 无穷小量与有界函数的乘积仍是无穷小量.
- (4) 等价无穷小代换. 设 $\alpha,\beta,\alpha',\beta'$ 是自变量同一变化过程中的无穷小且 $\alpha \sim \alpha',$

$$\beta \sim \beta'$$
, $\lim \frac{\beta}{\alpha}$ 存在,则 $\lim \frac{\beta'}{\alpha'} = \lim \frac{\beta}{\alpha}$.

- 5. 闭区间上连续函数的性质
- 设 f(x) 在闭区间[a,b] 上连续,则有:
- (1) f(x) 在 [a,b] 上有界.
- (2) 最大、最小值定理: f(x) 在[a,b] 上有最大值和最小值,即至少存在点 ξ 和 $\eta \in [a,b]$,使对一切 $x \in [a,b]$,有 $f(\eta) \leq f(x) \leq f(\xi)$.
- (3) 介值定理: 设 μ 是介于 f(a), f(b)($f(a) \neq f(b)$) 间的任何一个数,则至少存在一点 $\xi \in (a,b)$,使 $f(\xi) = \mu$.
 - (4) 零点定理:若 $f(a) \cdot f(b) < 0$,则至少存在一点 $\xi \in (a,b)$,使 $f(\xi) = 0$.

第2章 一元函数微分学

1. 基本初等函数的导数公式

$$(1)C' = 0$$

$$(2)(r^a)' = ar^{a-1}$$

$$(3)(a^x)' = a^x \ln a, (e^x)' = e^x$$

$$(4)(\log_a x)' = \frac{1}{x \ln a}, (\ln x)' = \frac{1}{x}$$

$$(5)(\sin x)' = \cos x$$

$$(6)(\cos x)' = -\sin x$$

$$(7)(\tan x)' = \sec^2 x = \frac{1}{\cos^2 x}$$

$$(8)(\cot x)' = -\csc^2 x = -\frac{1}{\sin^2 x}$$

$$(9)(\sec x)' = \sec x \cdot \tan x$$

$$(10)(\csc x)' = -\csc x \cdot \cot x$$

$$(11)(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

$$(12)(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

$$(13)(\arctan x)' = \frac{1}{1+x^2}$$

$$(14)(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$

- 2. 四则运算法则:设u = u(x), v = v(x)均可导,则
- $(1)(u \pm v)' = u' \pm v', d(u \pm v) = du \pm dv.$
- (2)(uv)' = u'v + uv', d(uv) = udv + vdu.

若 u(x), v(x) 均 n 阶可导,则有下面的莱布尼茨公式:

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)}, \sharp v^{(0)} = u, v^{(0)} = v,$$

$$(3)\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}, d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2} (v \neq 0).$$

- 3. 对数求导法则: 当函数 f(x) 的表达式是幂指函数形式或是若干因式连乘积、商或乘方、开方的形式,可在函数式两边先取对数,然后在等式两端对x求导.
- 4. 复合函数求导法则:设 $u=\phi(x)$ 在 x 处可导, y=f(u) 在 $u=\phi(x)$ 可导,则复合函数 $y=f[\phi(x)]$ 在点 x 处可导,且

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x} \not \boxtimes y'_x = y'_u \cdot u'_x.$$

5. 反函数求导法则: 设 y = f(x) 在(a,b) 内可导且 $f'(x) \neq 0$,则其反函数 $x = \phi(y)$ 也可导且反函数的导数为

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}} \mathbf{x'}_{y} = \frac{1}{y'_{x}}.$$

6. 参数方程求导法则:设函数 y = f(x) 由参数方程 $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ ($\alpha < t < \beta$) 给出,其中 $\varphi(t)$, $\psi(t)$ 都在 (α,β) 内可导,且 $\varphi'(t) \neq 0$,则

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\phi'(t)}{\varphi'(t)},$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{\psi''(t)\varphi'(t) - \varphi''(t)\psi'(t)}{[\varphi'(t)]^3}$$

- 7. 隐函数求导法则:由方程 F(x,y)=0 所确定的函数 y=y(x) 称为 y 是自变量 x 的隐函数,求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 的方法有以下两种.
- (1) 在方程两边分别对 x 求导,特别要注意 y 是 x 的函数,于是 y 的函数对 x 来说就是复合函数.
 - (2) 利用一阶微分形式不变性,在方程两边求微分,然后解出 $\frac{\mathrm{d} y}{\mathrm{d} x}$.
- 8. 罗尔定理: 设函数 f(x) 在闭区间[a,b] 上连续, 在开区间(a,b) 内可导, 且 f(a) = f(b),则在开区间(a,b) 内至少存在一点 ξ ,使得

$$f'(\xi) = 0, \xi \in (a,b).$$

9. 拉格朗日中值定理:设函数 f(x) 在闭区间[a,b] 上连续,在开区间(a,b) 内可导,则在开区间(a,b) 内至少存在一点 ε ,使得

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}, \xi \in (a, b).$$

10. 柯西定理:设函数 f(x) 和 g(x) 在闭区间[a,b] 上连续,在开区间(a,b) 内可导,且 $g'(x) \neq 0$,则在开区间(a,b) 内至少存在一点 ξ ,使得

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

- 11. 泰勒中值定理
- (1) 泰勒公式 设函数 f(x) 在 x_0 处的某邻域内具有 n+1 阶导数,则对该邻域内异于 x_0 的任意点 x, 在 x_0 与 x 之间至少存在一点 ξ , 使得

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x),$$

其中
$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}$$
, 它称为 $f(x)$ 在 x_0 处的拉格朗日型余项.

在不需要余项的精确表达式时,n阶泰勒公式也可以写成

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x).$$

其中 $R_n(x) = o[(x-x_0)^n]$,它称为 f(x) 在 x_0 处的佩亚诺型余项.

若令 $x_0 = 0$,则 n 阶泰勒公式成为

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n),$$

称为 n 阶带佩亚诺型余项的麦克劳林公式.

(2) 常用的麦克劳林公式

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n}), \quad (x \to 0)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{m-1} \frac{x^{2m-1}}{(2m-1)!} + o(x^{2m}), \quad (x \to 0)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{m} \frac{x^{2m}}{(2m)!} + o(x^{2m+1}), \quad (x \to 0)$$

$$\ln(1+x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} + \dots + (-1)^{m-1} \frac{x^{n}}{n} + o(x^{n}), \quad (x \to 0)$$

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!}x^{2} + \dots + \frac{m(m-1)\cdots(m-n+1)}{n!}x^{n} + o(x^{n}), \quad (x \to 0)$$

第3章 一元函数积分学

1. 不定积分的基本性质

$$(1) \int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$

$$(2)\int kf(x)dx = k\int f(x)dx \qquad (k 为非零常数)$$

$$(3) \int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx (分部积分法)$$

(4) 设
$$x = \varphi(t)$$
 为单调可导且导函数连续的函数,则

$$\int f(x) dx = \int f[\varphi(t)] \varphi'(t) dt \quad (换元积分法)$$

2. 基本积分公式

$$(1)\int x^{a} dx = \frac{1}{a+1}x^{a+1} + C, a \neq -1$$

$$(2)\int \frac{1}{x} dx = \ln|x| + C$$

$$(3)\int e^x dx = e^x + C$$

$$(4)\int a^x dx = \frac{1}{\ln a}a^x + C, a \neq 1$$

$$(5) \int \cos x dx = \sin x + C \qquad (6) \int \sin x dx = -\cos x + C$$

$$(7)\int \sec^2 x dx = \tan x + C \qquad (8)\int \csc^2 x dx = -\cot x + C$$

$$(9)\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$$

$$(10) \int \frac{1}{1+r^2} \mathrm{d}x = \arctan x + C$$

$$(11) \int \tan x dx = -\ln|\cos x| + C$$

$$(12) \int \cot x dx = \ln|\sin x| + C$$

$$(13) \int \sec x dx = \ln|\sec x + \tan x| + C \qquad (14) \int \csc x dx = \ln|\csc x - \cot x| + C$$

$$(14) \int \csc x dx = \ln|\csc x - \cot x| + C$$

$$(15) \int \frac{\mathrm{d}x}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C, a \neq 0 \qquad (16) \int \frac{\mathrm{d}x}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

$$(16) \int \frac{\mathrm{d}x}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

$$(17)\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin\frac{x}{a} + C(a > 0)$$

$$(18) \int \frac{\mathrm{d}x}{\sqrt{x^2 \pm a^2}} = \ln|x + \sqrt{x^2 \pm a^2}| + C$$

3. 定积分性质

$$(1) \int_a^b \left[f(x) \pm g(x) \right] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

$$(2) \int_a^b k f(x) dx = k \int_a^b f(x) dx \quad (k 为常数)$$

$$(3) \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

$$(4) \int_{a}^{b} f(x) \cdot g'(x) dx = f(x) \cdot g(x) \Big|_{a}^{b} - \int_{a}^{b} g(x) f'(x) dx (分部积分法)$$

(5)
$$\int_{a}^{b} f(x) dx = \int_{a}^{\beta} f[\varphi(t)] \varphi'(t) dt$$
, 其中 $x = \varphi(t)$ 存在连续导数, 其值域 $R_{\varphi} = [a,b]$,

且 $a = \varphi(\alpha), b = \varphi(\beta)$ (换元积分法).

(6) 若在[
$$a,b$$
] 上恒有 $f(x) \geqslant g(x)$,则 $\int_{a}^{b} f(x) dx \geqslant \int_{a}^{b} g(x) dx$.

(7) 积分中值定理:若 f(x) 在[a,b] 上连续,则存在 $\xi \in [a,b]$,使得

$$\int_{a}^{b} f(x) dx = f(\xi)(b-a).$$

(8) 若
$$f(x)$$
 在[a,b] 上连续,则在[a,b] 上有 $\frac{d}{dx}\int_{a}^{x} f(t)dt = f(x)$.

4. 牛顿 — 莱布尼茨公式

若函数 f(x) 在[a,b] 上连续,F(x) 为 f(x) 的任一个原函数,则 $\int_{a}^{b} f(x) dx = F(b)$ -F(a).

第4章 □向量代数与空间解析几何

1. 向量的线性运算

(1) 向量的加减法

坐标表示式: $\mathbf{a} \pm \mathbf{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$.

(2) 向量的数乘 $设 \lambda, \mu$ 是数,则

$$\lambda a = \begin{cases} |\lambda a| = |\lambda| |\alpha| \\ |\beta a| = |\alpha|, |\alpha| \end{cases}$$

与 a 同向, \(\frac{\pi}{\pi} \lambda < 0.

坐标表示式: $\lambda a = (\lambda a_x, \lambda a_y, \lambda a_z)$.

运算规律:
$$\lambda(\mu a) = (\lambda \mu)a, (\lambda + \mu)a = \lambda a + \mu a, \lambda(a+b) = \lambda a + \lambda b.$$

2. 向量的乘法

(1) 向量的数量积

定义式:
$$a \cdot b = |a| |b| \cos(a, b)$$
.

坐标表示式:
$$\mathbf{a} \cdot \mathbf{b} = a_r b_r + a_v b_v + a_z b_z$$
.

性质:
$$a \cdot a = |a|^2$$
, $a \cdot b = |a| \operatorname{Prj}_a b = |b| \operatorname{Prj}_b a$,

$$a \perp b \Leftrightarrow a \cdot b = 0 (a \neq 0, b \neq 0).$$

运算规律:
$$a \cdot b = b \cdot a$$
, $\lambda(a \cdot b) = (\lambda a) \cdot b$, $a \cdot (b+c) = a \cdot b + a \cdot c$.

(2) 向量的向量积

定义式:
$$a \times b$$
 $\left(\begin{vmatrix} a \times b \end{vmatrix} = \begin{vmatrix} a \end{vmatrix} \mid b \mid \sin(a, b) \right)$ 方向:同时垂直于 $a \setminus b$,指向:按右手法则从 $a \ni b$ 确定.

坐标表示式:
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$
.

性质: $\mathbf{a} \times \mathbf{a} = \mathbf{0}$: \mathbf{a} , \mathbf{b} 平行 $\Leftrightarrow \mathbf{a} \times \mathbf{b} = \mathbf{0}$,

运算规律: $a \times b = -b \times a$ (无交换律);

$$\lambda(a \times b) = (\lambda a) \times b = a \times (\lambda b);$$

$$a \times (b+c) = a \times b + a \times c$$
.

几何意义: $|a \times b|$ 等于以 $a \times b$ 为边的平行四边形的面积.

(3) 向量的混合积

定义式:
$$[abc] = a \cdot (b \times c)$$
.

坐标表示式:
$$\begin{bmatrix} abc \end{bmatrix} = \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{bmatrix}$$
.

性质:
$$a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$$
.
 $a, b, c 共而 \Leftrightarrow a \cdot (b \times c) = 0$.

几何意义: $|a \cdot (b \times c)|$ 等于以 $a \cdot b \cdot c$ 为棱的平行六面体的体积.

3. 平面方程

点法式:
$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$
.
一般式: $Ax + By + Cz + D = 0$.

截距式:
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
.

三点式:
$$\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0.$$

4. 空间直线方程

一般式:
$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

对称式(标准式、点向式): $\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{b}$.

两点式:
$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$
.

参数式: $x = x_0 + mt$, $y = y_0 + nt$, $z = z_0 + tt$.

5. 两平面的夹角

设两平面方程为 $A_1x + B_1y + C_1z + D_1 = 0$, $A_2x + B_2y + C_2z + D_2 = 0$, 其夹角 为 φ ,则

$$\cos\varphi = \frac{|A_1A_2 + B_1B_2 + C_1C_2|}{\sqrt{A_1^2 + B_1^2 + C_1^2} \cdot \sqrt{A_2^2 + B_2^2 + C_2^2}}.$$

点 (x_0, y_0, z_0) 到平面 Ax + By + Cz + D = 0的距离:

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

6. 两直线的夹角

设两直线方程为 $\frac{x-x_1}{m_1} = \frac{y-y_1}{n_2} = \frac{z-z_1}{n_2}, \frac{x-x_2}{m_2} = \frac{y-y_2}{n_2} = \frac{z-z_2}{n_2}$,其夹角为 φ ,则

$$\cos\varphi = \frac{\mid m_1 m_2 + n_1 n_2 + p_1 p_2 \mid}{\sqrt{m_1^2 + n_1^2 + p_1^2} \cdot \sqrt{m_2^2 + n_2^2 + p_2^2}}.$$

7. 直线与平面的夹角

设直线
$$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$$
,平面 $Ax + By + Cz + D = 0$,其夹角为 φ ,则 $\sin \varphi = \frac{|Am + Bn + Cp|}{\sqrt{A^2 + B^2 + C^2}}$.

8. 平行条件

第4章 向量代数与空间解析几何

平面与平面:
$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$$
.

直线与直线:
$$\frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2}$$
.

直线与平面:mA + nB + pC = 0.

9. 垂直条件

平面与平面: $A_1A_2 + B_1B_2 + C_1C_2 = 0$.

直线与直线: $m_1 m_2 + n_1 n_2 + p_1 p_2 = 0$.

直线与平面:
$$\frac{A}{m} = \frac{B}{n} = \frac{C}{p}$$
.

10. 球面方程 $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$,其中球心坐标为(a,b,c),半径为R.

11. 柱面方程

准线为
$$\begin{cases} f(x,y) = 0 \\ z = 0 \end{cases}$$
 母线平行于 z 轴的柱面方程为 $f(x,y) = 0$.

12. 旋转曲面

曲线
$$\begin{cases} f(x,y) = 0 \\ z = 0 \end{cases}$$
 绕 Ox 轴旋转的旋转曲面方程为 $f(x, \pm \sqrt{y^2 + z^2}) = 0$;绕 Oy

轴旋转的旋转曲面方程为 $f(\pm \sqrt{x^2 + z^2}, y) = 0$.

13. 几种常用二次曲面方程

椭球面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
,其中 a,b,c 为椭球面的半轴.

单叶双曲面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
,其中 a,b,c 为它的半轴.

双叶双曲面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$
,其中 $a \ b \ c$ 为它的半轴.

椭圆抛物面:
$$\frac{x^2}{2p} + \frac{y^2}{2q} = z$$
,其中 p, q 同号.

双曲抛物面:
$$-\frac{x^2}{2p} - \frac{y^2}{2q} = z$$
,其中 $p < q$ 异号.

二次锥面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$
.

14. 曲线

空间曲线可以看成是空间两张曲面的交线. 设两曲面方程为 F(x,y,z)=0, G(x,y,z)=0

$$y,z)=0$$
,则空间曲线方程为 $\begin{cases} F(x,y,z)=0, \\ G(x,y,z)=0 \end{cases}$ 或用参数写成 $x=\varphi(t)$, $y=\psi(t)$, $z=\omega(t)$ ($t_1 \leqslant t \leqslant t_2$).

15. 空间曲线在坐标面上的投影曲线方程

空间曲线
$$\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$$
 在 xOy 面上的投影曲线方程是在上式中消去 z 得投影

柱面方程
$$f(x,y) = 0$$
, 再与 $z = 0$ 联立, 即 $\begin{cases} f(x,y) = 0, \\ z = 0. \end{cases}$

第5章 多元函数微分学

1. 偏导数

$$\begin{split} f_x(x,y) &= \frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \\ f_y(x,y) &= \frac{\partial z}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} \end{split}$$

- 2. 全微分
- (1) 全微分公式 $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$
- (2) 可微的充分条件 如果函数 z = f(x,y) 在点 $P_0(x_0,y_0)$ 处两个偏导数连续,则 z = f(x,y) 在点 $P_0(x_0,y_0)$ 处可微.
- (3) 可微的必要条件 如果函数 z = f(x,y) 在点 $P_0(x_0,y_0)$ 处可微,则 z = f(x,y) 在点 $P_0(x_0,y_0)$ 处两个偏导数存在.
 - 3. 复合函数微分法

设 z = f(u,v),并设 u = u(x,y), v = v(x,y),则 z = f(u(x,y),v(x,y)) 是 x,y 的复合函数. 如果 z = f(u,v) 可微, u = u(x,y), v = v(x,y) 对 x,y 的偏导数存在,则 z = f(u(x,y),v(x,y)) 对 x,y 的偏导数存在,且

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial y}.$$

4. 方向导数的计算公式

如果函数 z = f(x,y) 在点 $M_0(x,y)$ 可微,l 方向的方向余弦为 $\cos \alpha$, $\cos \beta$,则函数 在 M_0 处沿 l 方向的方向导数存在,且

$$\frac{\partial u}{\partial l} = \frac{\partial u}{\partial x} \cos_{\alpha} + \frac{\partial u}{\partial y} \cos_{\beta}.$$

函数 u = f(x,y,z) 在点 $P_0(x,y,z)$ 沿 l 方向的方向导数计算公式为

$$\frac{\partial u}{\partial l} = \frac{\partial u}{\partial x} \cos\alpha + \frac{\partial u}{\partial y} \cos\beta + \frac{\partial u}{\partial z} \cos\gamma,$$

其中 $\cos\alpha$, $\cos\beta$, $\cos\gamma$ 为 l 方向的方向余弦.

5. 梯度的计算公式

设数量场 u=u(x,y,z) 具有连续的偏导数,则 $\mathbf{grad}u=\frac{\partial u}{\partial x}\mathbf{i}+\frac{\partial u}{\partial y}\mathbf{j}+\frac{\partial u}{\partial z}\mathbf{k}$

- 6. 隐函数微分法
- (1) 公式法 $F(x_1, x_2, \dots, x_n, y) = 0$ 确定的具有连续偏导数的函数 $y = f(x_1, x_2, \dots, x_n)$ 的偏导数公式

$$\frac{\partial y}{\partial x_i} = -\frac{F_{x_i}}{F_{x_i}} \quad (i = 1, 2, \dots, n)$$

第5章 多元函数微分学

(2) 利用复合函数微分法 设方程 F(x,y) = 0 确定隐函数 y = y(x),将 y = y(x)代人方程后,方程变为恒等式

$$F(x, y(x)) = 0,$$

应用复合函数微分法,有

$$F_r(x, y) \cdot 1 + F_v(x, y) \cdot y_r = 0.$$

从中解出 yx.

反复利用上述方法,可以求得隐函数的高阶偏导数,

- 7. 多元函数的极值
- (1) 普诵极值问题

定理 1(极值的必要条件) 设二元函数 z = f(x,y) 在点 $P_0(x_0,y_0)$ 有极值,且函数 z = f(x,y) 在点 $P_0(x_0,y_0)$ 的两个偏导数存在,则 $F_x(x_0,y_0) = 0$, $F_y(x_0,y_0) = 0$.

定理 2(极值的充分条件) 设函数 z = f(x,y) 在点 $P_0(x_0,y_0)$ 的某一邻域内有二阶连续偏导数,又 $F_x(x_0,y_0) = 0$, $F_y(x_0,y_0) = 0$,令 $F_{xx}(x_0,y_0) = A$, $F_{xy}(x_0,y_0) = B$, $F_{yy}(x_0,y_0) = C$,则

- ① 当 $AC B^2 > 0$, f(x, y) 在 (x_0, y_0) 处有极值,且 A > 0 时为极小值,A < 0 时为极大值.
 - ② 当 $AC B^2 < 0$, f(x, y) 在 (x_0, y_0) 处无极值.
 - ③ 当 $AC B^2 = 0$,不能判定 f(x,y) 在 (x_0, y_0) 是否有极值.
 - (2) 条件极值问题

可微函数 z = f(x,y) 满足条件 $\varphi(x,y) = 0$ 的条件极值的必要条件为

$$\begin{cases} F_x = f_x(x, y) + \lambda \varphi_x(x, y) = 0, \\ F_y = f_y(x, y) + \lambda \varphi_y(x, y) = 0, \\ \varphi(x, y) = 0. \end{cases}$$

上述方程组可以认为是函数 $F(x,y,\lambda) = f(x,y) + \lambda \varphi(x,y)$ 的无条件极值点的必要条件,其中 F 称为拉格朗日函数, λ 为拉格朗日乘数.

- 8. 空间曲线的切线、法平面和曲面的切平面、法线
- (1) 空间曲线的切线和法平面:设空间曲线的参数方程为x = x(t), y = y(t), z =
- z(t),则在曲线上对应于 $t=t_0$ 的点处的切线方程为 $\frac{x-x_0}{x'(t_0)}=\frac{y-y_0}{y'(t_0)}=\frac{z-z_0}{z'(t_0)}$.

切线的方向矢量为 $(x'(t_0), y'(t_0), z'(t_0))$.

法平面方程为 $x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0$.

(2) 空间曲面的切平面和法线:若曲面由 F(x,y,z) = 0 给出,则在曲面上点 (x_0, y_0, z_0) 处的切平面方程为

$$F_x(x_0, y_0, z_0)(x-x_0) + F_y(x_0, y_0, z_0)(y-y_0) + F_z(x_0, y_0, z_0)(z-z_0) = 0.$$

法线方程为
$$\frac{x-x_0}{F_x(x_0,y_0,z_0)} = \frac{y-y_0}{F_y(x_0,y_0,z_0)} = \frac{z-z_0}{F_z(x_0,y_0,z_0)}.$$

若曲面由 z = f(x,y) 给出,则在曲面上点 (x_0, y_0) 处的切平面方程为 $z-z_0 = f_x(x_0, y_0)(x-x_0) + f_y(x_0, y_0)(y-y_0)$.

法线方程为
$$\frac{x-x_0}{f_x(x_0,y_0)} = \frac{y-y_0}{f_y(x_0,y_0)} = \frac{z-z_0}{-1}$$
.

第6章 多元函数积分学

- 1. 多元函数积分的性质
- (1) 被积函数中,常数因子可提到积分号外面.即

$$\int_{K} Cf(P) dW = C \int_{K} f(P) dW.$$

(2) 函数代数和的积分等于各函数积分的代数和.即

$$\int_{K} [f(P) \pm g(P)] dW = \int_{K} f(P) dW \pm \int_{K} g(P) dW.$$

(3) 若积分可分成两个子域 K_1 、 K_2 ,则

$$\int_{K} f(P) dW = \int_{K_1} f(P) dW + \int_{K_2} f(P) dW.$$

(4) 若在区域 $K \perp f(P) = 1,$ 则 $_{K} dW = K^{*}$.

在二重积分中 K^* 为平面域K的面积;三重积分中 K^* 为空间域K的体积;第一类曲线积分中 K^* 为曲线长度;第一类曲面积分中 K^* 为曲面面积.

(5) 若在域 K上, $f(P) \leqslant g(P)$, 则 $\int_{K} f(P) dW \leqslant \int_{K} g(P) dW$, 特别地, 因为 $-|f(P)| \leqslant f(P) \leqslant |f(P)|$, 所以

$$|\int_{K} f(P) dW| \leqslant \int_{K} |f(P)| dW.$$

- (6) 设M、m分别为f(P) 在区域K上的最大值与最小值,则 $mK^* \leqslant \int_K f(P) dW \leqslant MK^*$.
- (7)(中值定理) 如果 f(P) 在 K 上连续,则在 K 上至少存在一点 P',使 $\int_K f(P) dW$ = $f(P') \cdot K^*$.
 - 2. 二重积分的计算
 - (1) 在直角坐标系中计算二重积分 如图 6-1 所示 D 为 X 型域且

$$D = \{(x,y) \mid a \leqslant x \leqslant b, \varphi_1(x) \leqslant y \leqslant \varphi_2(x)\},$$
$$\iint f(x,y) dxdy = \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy.$$

则

若 D 为 Y 型域(图 6-2),且

$$D = \{(x,y) \mid c \leqslant y \leqslant d, \phi_1(y) \leqslant x \leqslant \phi_2(y)\},$$
$$\iint_{\mathcal{E}} f(x,y) dxdy = \int_{c}^{d} dy \int_{\phi_1(y)}^{\phi_2(y)} f(x,y) dx.$$

则

第6章 多元函数积分学

图 6-2

- (2) 极坐标系中计算二重积分
- ① 极点在 D外(图 6-3),目

$$D = \{ (r, \theta) \mid \alpha \leqslant \theta \leqslant \beta, \varphi_1(\theta) \leqslant r \leqslant \varphi_2(\theta) \},$$

$$\text{Ind} f(r\cos\theta, r\sin\theta) r dr d\theta = \int_{a}^{\beta} d\theta \int_{\varphi_{1}(\theta)}^{\varphi_{2}(\theta)} f(r\cos\theta, r\sin\theta) r dr.$$

② 极点在 D 的边界上(图 6-4),且 $D = \{(r,\theta) \mid \alpha \leqslant \theta \leqslant \beta, 0 \leqslant r \leqslant \varphi(\theta)\}.$

$$\text{Mil}_D f(r\cos\theta, r\sin\theta) r dr d\theta = \int_a^\beta d\theta \int_0^{\varphi(\theta)} f(r\cos\theta, r\sin\theta) r dr.$$

③ 极点在 D 内(图 6-5),且 $D = \{(r,\theta) \mid 0 \leqslant \theta \leqslant 2\pi, 0 \leqslant r \leqslant \varphi(\theta)\}$,

$$\iiint_{\Omega} f(r\cos\theta, r\sin\theta) r dr d\theta = \int_{0}^{2\pi} d\theta \int_{0}^{\varphi(\theta)} f(r\cos\theta, r\sin\theta) r dr.$$

图 6-4

- 3. 三重积分的计算
- (1) 在直角坐标系中计算三重积分

$$\iint_{\Omega} f(x,y,z) dV = \iint_{D_{xy}} dx dy \int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) dz$$

$$= \int_a^b dx \int_{y_1(x)}^{y_2(x)} dy \int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) dz.$$

其中 Ω 之边界曲面与平行于z轴且穿过 Ω 内部直线相交不多于两点. D_{xx} 为 Ω 在 xOy 平面上的投影, $z_1(x,y)$, $z_2(x,y)$ 分别为 Ω 下方和上方的曲面方程,dV = dxdydz为直角坐标系中的体积元素.

类似的可将三重积分化为其他次序的累次积分,

(2) 在柱面坐标系中计算三重积分

$$\iint_{\Omega} f(x, y, z) dV = \iint_{\Omega} f(r\cos\theta, r\sin\theta, z) r dr d\theta dz$$

$$= \int_{a}^{\beta} d\theta \int_{\varphi_{1}(\theta)}^{\varphi_{2}(\theta)} r dr \int_{z_{1}(r, \theta)}^{z_{2}(r, \theta)} f(r\cos\theta, r\sin\theta, z) dz.$$

此时 $dV = r dr d\theta dz$ 为体积元素.

$$\Omega = \{ (r, \theta, z) \mid \alpha \leqslant \theta \leqslant \beta, \varphi_1(\theta) \leqslant r \leqslant \varphi_2(\theta), z_1(r, \theta) \leqslant z \leqslant z_2(r, \theta) \}.$$

(3) 在球面坐标系中计算三重积分

若积分域 Ω 可表示为: $\Omega = \{(r,\theta,\varphi) \mid \alpha \leqslant \theta \leqslant \beta, \phi_1(\theta) \leqslant \varphi \leqslant \phi_2(\theta), z_1(\theta,\varphi) \leqslant r \}$ $\leq z_2(\theta, \varphi)$, 它与直角坐标系的关系为

$$\begin{cases} x = r \sin\varphi \cos\theta, \\ y = r \sin\varphi \sin\theta, \\ z = r \cos\varphi. \end{cases}$$

体积元素为 $dV = r^2 \sin \varphi dr d\theta d\varphi$, 则

$$\begin{split} & \coprod_{\Omega} f(x,y,z) \, \mathrm{d}V = \coprod_{\Omega} f(r \mathrm{sin}\varphi \mathrm{cos}\theta, r \mathrm{sin}\varphi \mathrm{sin}\theta, r \mathrm{cos}\varphi) r^2 \, \mathrm{sin} \, \varphi \mathrm{d}r \mathrm{d}\theta \mathrm{d}\varphi \\ & = \int_{a}^{\beta} \mathrm{d}\theta \int_{\phi_1(\theta)}^{\phi_2(\theta)} \mathrm{sin}\varphi \mathrm{d}\varphi \int_{z_1(\theta,\varphi)}^{z_2(\theta,\varphi)} f(r \mathrm{sin}\varphi \mathrm{cos}\theta, r \mathrm{sin}\varphi \mathrm{sin}\theta, r \mathrm{cos}\varphi) r^2 \, \mathrm{d}r. \end{split}$$

4. 求面积

- (1) 平面闭域 D 的面积 $A = \iint d\sigma$.
- (2) 若曲面 Σ 方程为 z = z(z,y), Σ 在 xOy 上投影域为 D, f(x,y) 在 D 上有连续 偏导数,则 Σ 的面积为

$$A = \iint_{D} \sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} \, \mathrm{d}x \mathrm{d}y.$$

另外两种形式的曲面方程同理有相应的曲面面积公式,

5. 求体积

设柱体上顶是连续曲面,方程为 $z = f(x,y)((x,y) \in D$, (1) 曲顶柱体体积 $f(x,y) \ge 0$),下底为平面 z = 0上的区域 D,侧面是以 D的边界曲线为准线,母线平行 干 z 轴的柱面,则该柱体体积为

$$V = \iint_D f(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$

(2) 已知边界曲面的空间区域 Ω 的体积 $V = \iint dV$.

第6章 多元函数积分学

6. 质心坐标

(1) 占有平面区域 D且质量密度 $\rho(x,y)$ 的平面薄片的质量 $M = \iint_D \rho(x,y) d\sigma$,对 x、

$$y$$
 轴静力矩为 $M_x = \iint_D y \rho(x, y) d\sigma, M_y = \iint_D x \rho(x, y) d\sigma, 则 D$ 的质心坐标为

$$\overline{x} = \frac{M_{y}}{M} = \frac{\iint_{D} x \rho(x, y) d\sigma}{\iint_{D} \rho(x, y) d\sigma}, \overline{y} = \frac{M_{x}}{M} = \frac{\iint_{D} y \rho(x, y) d\sigma}{\iint_{D} \rho(x, y) d\sigma}.$$

(2) 占有空间域 Ω 且密度为 $\rho(x,y,z)$ 的空间立体其质心坐标为

$$\overline{x} = \frac{1}{M} \iint_{\Omega} x \rho(x, y, z) dV, \overline{y} = \frac{1}{M} \iint_{\Omega} y \rho(x, y, z) dV, \overline{z} = \frac{1}{M} \iint_{\Omega} z \rho(x, y, z) dV.$$

7. 转动惯量

(1) 平面薄片对 Ox、Oy 轴及坐标原点的转动惯量分别为

$$I_x = \iint_D y^2 \rho(x, y) d\sigma, I_y = \iint_D x^2 \rho(x, y) d\sigma, I_0 = \iint_D (x^2 + y^2) \rho(x, y) d\sigma.$$

其中 D 为平面薄片占有的平面域, $\rho(x,y)$ 为薄片质量密度.

(2) 空间物体对于坐标面的转动惯量分别为

$$I_{xy} = \iint_{\Omega} z^2 \rho(x,y,z) dV, I_{yz} = \iint_{\Omega} x^2 \rho(x,y,z) dV, I_{zx} = \iint_{\Omega} y^2 \rho(x,y,z) dV.$$

对坐标轴 Ox、Oy、Oz 的转动惯量为

$$\begin{split} I_x &= \coprod_\Omega (y^2 + z^2) \rho(x,y,z) \mathrm{d} V, I_y = \coprod_\Omega (z^2 + x^2) \rho(x,y,z) \mathrm{d} V, \\ I_z &= \coprod_\Omega (x^2 + y^2) \rho(x,y,z) \mathrm{d} V. \end{split}$$

对坐标原点转动惯量为

$$I_0 = \iint_{\Omega} (x^2 + y^2 + z^2) \rho(x, y, z) dV.$$

- 8. 对弧长的曲线积分(第一型曲线积分)
- ① 曲线 L 由参数方程 $x = x(t), y = y(t) (\alpha \le t \le \beta)$ 表示,则

$$\int_{\alpha} f(x, y) ds = \int_{\alpha}^{\beta} f[x(t), y(t)] \sqrt{x'^{2}(t) + y'^{2}(t)} dt.$$

② 曲线 L 由方程 $y = y(x)(a \le x \le b)$ 表示,则

$$\int_{a} f(x,y) ds = \int_{a}^{b} f[x,y(x)] \sqrt{1 + y'^{2}(x)} dx.$$

③ 曲线 L 由方程 x = x(y) ($c \le y \le d$) 表示,则

$$\int f(x,y) ds = \int_{c}^{d} f[x(y),y] \sqrt{1 + x'^{2}(y)} dy.$$

④ 空间曲线 Γ 由参数方程 x = x(t), y = y(t), z = z(t) ($\alpha \leqslant t \leqslant \beta$) 表示,则

$$\int_{a}^{\beta} f(x, y, z) ds = \int_{a}^{\beta} f[x(t), y(t), z(t)] \sqrt{x'^{2}(t) + y'^{2}(t) + z'^{2}(t)} dt.$$

9. 对坐标的曲线积分(第二型曲线积分)

① 曲线 L 由参数方程 x = x(t), y = y(t) 表示, L 的起点 A 对应于 $t = \alpha$, 终点 B对应于 $t = \beta$,则

$$\int_{a} P(x,y) dx + Q(x,y) dy = \int_{a}^{\beta} \{ P[x(t), y(t)]x'(t) + Q[x(t), y(t)]y'(t) \} dt.$$

- ② 曲线 L 由方程 y = y(x) 表示,L 的起点 A 与终点 B 对应的横坐标分别为 a、b,则 $\int P(x,y) dx + Q(x,y) dy = \int_a^b \{ P[x,y(x)] + Q[x,y(x)]y'(x) \} dx.$
- ③ 曲线 L 由方程 $x = x(y)(c \le y \le d)$ 表示,则

$$\int_{c} P(x,y) dx + Q(x,y) dy = \int_{c}^{d} \{ P[x(y),y]x'(y) + Q[x(y),y] \} dy.$$

④ 空间曲线 Γ 由参数方程 x = x(t), y = y(t), $z = z(t)(\alpha \le t \le \beta)$ 表示,则有 $\int P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz$

$$= \int_{a}^{\beta} \{ P[x(t), y(t), z(t)] x'(t) + Q[x(t), y(t), z(t)] y'(t) + R[x(t), y(t), z(t)] z'(t) \} dt.$$

10. 两种曲线积分之间的关系

设 Γ 为空间有向曲线, Γ 上点M(x,y,z)处切线的方向余弦为 $\cos\alpha$ 、 $\cos\beta$ 、 $\cos\gamma$,则

$$\int_{\Gamma} P dx + Q dy + R dz = \int_{\Gamma} (P \cos \alpha + Q \cos \beta + R \cos \gamma) ds.$$

11. 格林公式

设函数 P(x,y) 和 Q(x,y) 在区域 D 及其边界 L 上具有一阶连续偏导数,则

$$\iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \oint\limits_{I} P dx + Q dy.$$

其中 L 取正向.

12. 四个等价命题

设函数 P(x,y)、Q(x,y) 在平面单连通区域 D内具有一阶连续偏导数,则以下四 个条件等价:

- (1) 在 D 内曲线积分 $\oint P dx + Q dy$ 与路径无关,而只与路径起点、终点有关.
- (2) 沿 D 内任—闭曲线 L, $\oint P dx + Q dy = 0$.
- (3) 微分式 Pdx + Qdy 在 D 内是某个函数 u(x,y) 的全微分,即 du = Pdx + Qdy.
- (4) 在 D 内恒有 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$.
- 13. 曲线积分的应用
- 设空间曲线 Γ 上任一点(x,y,z) 处的密度为 $\rho = \rho(x,y,z)$,则此曲 (1) 求质量 线的质量为

$$M = \int_{\Gamma} \rho(x, y, z) \, \mathrm{d}s.$$

(2) 求质心坐标 设空间物质曲线 Γ 上质量分布是均匀的,则曲线 Γ 的质心坐标是

$$\overline{x} = \frac{\int_{\Gamma} x \, ds}{\int_{\Gamma} ds}; \quad \overline{y} = \frac{\int_{\Gamma} y \, ds}{\int_{\Gamma} ds}; \quad \overline{z} = \frac{\int_{\Gamma} z \, ds}{\int_{\Gamma} ds}.$$

(3) 求功 在力场 $\mathbf{F}=(P(x,y,z),Q(x,y,z),R(x,y,z))$ 作用下,质点沿曲线 Γ 由 A 移动到 B,则力 \mathbf{F} 所作功为

$$W = \int_{\Gamma} \mathbf{F} \cdot d\mathbf{s} = \int_{\Gamma} P dx + Q dy + R dz,$$

其中 $d\mathbf{s} = (dx, dy, dz)$.

- 14. 对面积的曲面积分(第一型曲面积分)
- ① 设曲面 Σ 的方程为 z = z(x,y), Σ 在 xOy 面上投影区域为 D_{xy} ,则

$$\iint_{\Sigma} f(x,y,z) dS = \iint_{D_{xy}} f[x,y,z(x,y)] \sqrt{1 + z'_{x}^{2} + z'_{y}^{2}} dxdy.$$

② 设曲面 Σ 的方程为 y=y(x,z), Σ 在 zOx 面上投影区域为 D_{zx} ,则

$$\iint_{\Sigma} f(x, y, z) dS = \iint_{D_{xx}} f[x, y(x, z), z] \sqrt{1 + y'_{x}^{2} + y'_{z}^{2}} dz dx.$$

③ 设曲面 Σ 的方程为 x = x(y,z), Σ 在 yOz 面上投影区域为 D_x , 则

$$\iint_{\Sigma} f(x,y,z) dS = \iint_{D_{xx}} f[x(y,z),y,z] \sqrt{1 + x'_{y}^{2} + x'_{z}^{2}} dydz.$$

- 15. 对坐标的曲面积分(第二型曲面积分)
- ① 设有向曲面 Σ 的方程为z=z(x,y), Σ 在xOy 面上投影区域为 D_{xy} ,则

$$\iint_{\Sigma} R dx dy = \pm \iint_{D_{xy}} R[x, y, z(x, y)] dx dy.$$

上式中若 Σ 的正向与z轴正向夹角小于 $\frac{\pi}{2}$ 取"+"号,大于 $\frac{\pi}{2}$ 时取"-"号.

② 类似地有下面两式:

16. 两类曲面积分之间的关系

设 Σ 为有向曲面, Σ 上点 M(x,y,z) 处的法向量 \mathbf{n}^0 的方向余弦为 $\cos\alpha$ 、 $\cos\beta$ 、 $\cos\gamma$,则有

$$\iint_{\Sigma} P \, dy dz + Q dz dx + R dx dy = \iint_{\Sigma} (P \cos_{\alpha} + Q \cos{\beta} + R \cos{\gamma}) \, dS.$$

17. 高斯公式

设函数 P(x,y,z)、Q(x,y,z)、R(x,y,z) 在空间闭区域 Ω 上具有一阶连续偏导数,

则∭
$$\left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dV = \iint_{\Sigma} P dy dx + Q dz dx + R dx dy,$$

其中 Σ 是 Ω 的边界曲面外侧.

18. 斯托克斯公式

设函数 P(x,y,z)、Q(x,y,z)、R(x,y,z) 在包含曲面 Σ 的空间域 Ω 内具有一阶连续偏导数,记 Γ 为曲面 Σ 的边界曲线,则

$$\iint_{\Sigma} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) dydz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) dzdx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy = \oint_{\Gamma} P dx + Q dy + R dz,$$

其中曲线 Γ 的正向与曲面 Σ 的法矢量方向遵循右手法则.

- 19. 曲面积分的应用
- (1) 曲面的面积 空间曲面 Σ 的面积为 $A = \iint_{\Sigma} dS$.
- (2) 曲面的质量 若曲面 Σ 上点(x,y,z) 处的密度为 $\rho=\rho(x,y,z)$,则曲面 Σ 的质量为

$$M = \iint_{S} \rho(x, y, z) dS.$$

类似于曲线积分的应用,也可用对面积的曲面积分表示物质曲面的质心坐标及转动惯量.

(3) 流量 设有不可压缩的流体(密度 ρ = 1) 在恒稳地流动,如果在点(x,y,z)处的流速是 ν = $(P(x,y,z),Q(x,y,z),R(x,y,z)),\Sigma$ 是流速场中一有向曲面,则在单位时间内从曲面 Σ 正侧流出的流量

$$\Phi = \iint_{\mathbf{x}} \mathbf{v} \cdot d\mathbf{S} = \iint_{\mathbf{x}} P \, d\mathbf{y} d\mathbf{z} + Q \, d\mathbf{z} d\mathbf{x} + R \, d\mathbf{x} d\mathbf{y}.$$

此处 $d\mathbf{S} = (dydz, dzdx, dxdy)$.

第7章 无穷级数

- 1. 级数的性质
- (1) 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,其和为 S,k 为常数,则级数 $\sum_{n=1}^{\infty} ku_n$ 也收敛,且其和为 kS,即

$$\sum_{n=1}^{\infty} k u_n = k \sum_{n=1}^{\infty} u_n = k S.$$

(2) 若级数 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 分别收敛于 S_1 和 S_2 ,则级数 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 也收敛,且

$$\sum_{n=1}^{\infty} (u_n \pm v_n) = \sum_{n=1}^{\infty} u_n \pm \sum_{n=1}^{\infty} v_n = S_1 \pm S_2.$$

- (3) 在级数的前面部分去掉或加上有限项,不影响级数的敛散性,在原级数收敛时,仅可能改变级数的和.
- (4) 收敛级数的各项按原次序分组加括号后,所成的新级数仍收敛,且其和不变; 反之,不一定成立.
 - (5) 级数收敛的必要条件: 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛, 则 $\lim_{n\to\infty} u_n = 0$.
 - 2. 正项级数的敛散性
 - (1) 基本定理 正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛的充要条件是其部分和数列 S_n 有界.
 - (2) 比较审敛法 设 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 都是正项级数:
 - (i) 若 $u_n \leqslant v_n (n = 1, 2, \cdots)$ 且 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 也收敛;
 - (ii) 若 $u_n \geqslant v_n (n=1,2,\cdots)$ 且 $\sum_{n=1}^{\infty} v_n$ 发散,则 $\sum_{n=1}^{\infty} u_n$ 也发散.
- (3) 比较审敛法的极限形式 设 $\sum_{n=1}^{\infty}u_n$ 和 $\sum_{n=1}^{\infty}v_n$ 是两个正项级数,且 $\lim_{n\to\infty}\frac{u_n}{v_n}=l(0)$ 《 l 《 + ∞):
 - ① 若 $0 \leqslant l < + \infty$ 且 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 也收敛;
 - ② 若 $0 < l \le + \infty$ 且 $\sum_{n=1}^{\infty} v_n$ 发散,则 $\sum_{n=1}^{\infty} u_n$ 也发散.
 - (4) 比值审敛法 设有正项级数 $\sum_{n=1}^{\infty} u_n$,若 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$,则

(i) 当
$$0 \leqslant \rho < 1$$
 时,级数 $\sum_{n=1}^{\infty} u_n$ 收敛;

(ii) 当
$$1 < \rho \le + \infty$$
时,级数 $\sum_{n=1}^{\infty} u_n$ 发散.

(5) 根值审敛法 设有正项级数
$$\sum_{n=1}^{\infty} u_n$$
,若 $\lim_{n\to\infty} \sqrt[n]{u_n} = \rho$,则

(i) 当
$$0 \leqslant \rho < 1$$
 时,级数 $\sum_{n=1}^{\infty} u_n$ 收敛;

(ii) 当
$$1 < \rho \leqslant + \infty$$
 时,级数 $\sum_{n=1}^{\infty} u_n$ 发散.

3. 交错级数审敛法

若交错级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n$$
满足(|) $u_n \geqslant u_{n+1}$;(||) $\lim_{n \to \infty} u_n = 0$.

则该交错级数收敛,且其和 $S \leq u_1$,余项的绝对值 $|r_n| \leq u_{n+1}$.

4. 绝对收敛与条件收敛

若
$$\sum_{n=1}^{\infty} |u_n|$$
 收敛,则称 $\sum_{n=1}^{\infty} u_n$ 为绝对收敛级数;若 $\sum_{n=1}^{\infty} |u_n|$ 发散,而 $\sum_{n=1}^{\infty} u_n$ 收敛,则

称 $\sum_{n=1}^{\infty} u_n$ 为条件收敛.

5. 幂级数收敛的阿贝尔定理

设幂级数
$$\sum_{n=0}^{\infty} a_n x^n$$
 在点 $x = x_0 (x_0 \neq 0)$ 收敛,则对一切 $|x| < |x_0|$ 的 x 值,级数

$$\sum_{n=0}^{\infty} a_n x^n$$
 绝对收敛;若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在点 $x = x_0$ 处发散,则对一切 $|x| > |x_0|$ 的 x 值,

幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 发散.

6. 幂级数的收敛半径

设
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$$
,其中 a_n 、 a_{n+1} 是幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的相邻两项的系数,有

(i)
$$\rho \neq 0$$
,则 $R = \frac{1}{\rho}$;

(ii)
$$\rho=0$$
,则 $R=+\infty$;

(iii)
$$ho=+\infty$$
,则 $R=0$.

- 7. 幂级数的和函数的性质
- (1) 幂级数的和函数 S(x) 在收敛区间(-R,R) 内是连续的.
- (2) 幂级数的和函数 S(x) 在收敛区间(-R,R) 内是可导的,并且有逐项求导公式

$$S'(x) = \left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=1}^{\infty} n a_n x^{n-1},$$

且逐项求导后所得到的幂级数和原级数有相同的收敛半径.

(3) 幂级数的和函数 S(x) 在收敛区间(-R,R) 内是可积的,并且有逐项积分公式

$$\int_{0}^{x} S(x) dx = \int_{0}^{x} \left[\sum_{n=0}^{\infty} a_{n} x^{n} \right] dx = \sum_{n=0}^{\infty} \int_{0}^{x} a_{n} x^{n} dx = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1},$$

目逐项积分后所得到的幂级数和原级数有相同的收敛半径

8. 泰勒定理

设函数 f(x) 在点 x_0 的某个邻域内具有任意阶导数,则 f(x) 在点 x_0 处的泰勒级 数在该邻域内收敛于 f(x) 的充要条件是: 当 $n \to \infty$ 时, f(x) 在点 x_0 的泰勒余项 $R_n(x)$ 的极限为零.

9. 狄里克雷充分条件

设 f(x) 是周期为 2π 的周期函数, 如果它满足条件, 在一个周期内连续或只有有限 个第一类间断点,并且至多只有有限个极值点,则 f(x) 的傅里叶级数收敛,并且

- (1) 当 x 是 f(x) 的连续点时,级数收敛于 f(x).
- (2) 当 x 是 f(x) 的间断点时,级数收敛于 $\frac{f(x-0)+f(x+0)}{2}$
- (3) 当 x 是端点 $x = -\pi$ 或 $x = \pi$ 时,级数收敛于 $\frac{f(-\pi + 0) + f(\pi 0)}{2}$.
- 10. 以 2π 为周期的函数 f(x) 的傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right),$$

其中
$$\begin{cases} a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx & (n = 0, 1, 2, \dots), \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx & (n = 1, 2, \dots). \end{cases}$$

- 11. 正弦级数 $\sum b_n \sin nx$,其中 $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx$.
- 12. 余弦级数 $\frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos nx$,其中 $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx$.
- 13. 以 2l 为周期的函数 f(x) 的傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right),$$

$$\cos \frac{n\pi x}{l} dx \quad (n = 0, 1, 2, \dots).$$

其中
$$\begin{cases} a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx & (n = 0, 1, 2, \cdots), \\ b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx & (n = 1, 2, \cdots). \end{cases}$$

17. 常用函数的幂级数展开式

(1)
$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots (-1 < x < 1).$$

(2)
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots + (-\infty < x < +\infty).$$

$$(3)\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots + (-\infty < x < +\infty).$$

$$(4)\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots + (-\infty < x < +\infty).$$

$$(5)\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots + (-1 < x < 1).$$

$$(6)(1 + x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^{2} + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^{3} + \cdots + \frac{\alpha(\alpha - 1)(\alpha - 2)\cdots(\alpha - n + 1)}{n!} x^{n} + \cdots \quad (-1 < x < 1)$$

第8章 常微分方程

1. 变量可分离方程

形如 $\frac{dy}{dx} = f(x)g(y)$ 的方程. 分离变量后积分可得通解

$$\int \frac{\mathrm{d}y}{g(y)} = \int f(x) \, \mathrm{d}x$$

2. 齐次方程

形如 $\frac{dy}{dx} = f(\frac{y}{x})$ 的方程. 经换元 $u = \frac{y}{x}$,可化齐次方程为变量可分离方程求解.

3. 一阶线性方程

形如
$$\frac{dy}{dx} + P(x)y = Q(x)$$
的方程. 其通解为

$$y = e^{-\int P(x)dx} [C + \int Q(x) e^{\int P(x)dx} dx]$$

4. 伯努利方程

经过整理,可化为形如 $\frac{dy}{dx}$ + $P(x)y=Q(x)y^n(n\neq 0,1)$ 形式的方程,令 $z=y^{1-n}$ 可

化成 z 的一阶线性方程 $\frac{dz}{dx}$ + (1-n)P(x)z = (1-n)Q(x)

5. 全微分方程

如果方程 P(x,y) dx+Q(x,y) dy=0 的左边恰好是某一函数 u=u(x,y) 的全微分,即 du=Pdx+Qdy,则称这样的微分方程为全微分方程. 通解是

$$\int_{x_0}^{x} P(x, y_0) dx + \int_{y_0}^{y} Q(x, y) dy = C$$

或

$$\int_{x_0}^{x} P(x, y) dx + \int_{y_0}^{y} Q(x_0, y) dy = C.$$

第 章 常微分方程

6, 可降阶的高阶微分方程

形如 $y^{(n)} = f(x), y'' = f(x, y')$ 及 y'' = f(y, y') 的微分方程均称为可降阶的高阶微分方程. 分别用逐次积分法和变量代换 p = y' 降阶计算.

7. 二阶线性微分方程的性质

性质 1 如果 $y_1(x)$ 、 $y_2(x)$ 是二阶线性齐次方程

$$y'' + P(x)y' + Q(x)y = 0$$
 (1)

的两个解,则 $y = C_1 y_1(x) + C_2 y_2(x)$ 也是方程(1) 的解,其中 C_1 与 C_2 为两个任意的常数. 当 $y_1(x)$ 与 $y_2(x)$ 线性无关,且 C_1 与 C_2 是相互独立的两个任意常数时, $y = C_1 y_1(x) + C_2 y_2(x)$ 是方程(1) 的通解.

性质 2 若复值函数 $y = y_1(x) + iy_2(x)$ 是方程(1) 的解,则 $y_1(x) \setminus y_2(x)$ 也是方程(1) 的解.

性质 3 如果 ν* 是二阶线性非齐次方程

$$y'' + P(x)y' + Q(x)y = f(x)$$
 (2)

的一个特解, $Y = C_1 y_1(x) + C_2 y_2(x)$ 是方程(2) 对应的齐次方程的通解,则 $y = Y + y^*$ 是方程(2) 的通解.

8. 二阶常系数线性齐次方程

$$y'' + py' + qy = 0$$

的通解可按下表求出:

特征方程 $r^2 + pr + q = 0$ 的根	微分方程 $y'' + py' + qy = 0$ 的通解
实根 $r_1 \neq r_2$	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
实根 $r_1 = r_2 = r$	$y = (C_1 + C_2 x)e^{rx}$
复根 $r_{1,2} = \alpha \pm i\beta$	$y = (C_1 \cos \beta x + C_2 \sin \beta x) e^{\alpha x}$

9. 二阶常系数非齐次方程

$$y'' + py' + qy = P_n(x)e^{\alpha x}$$

的特解形式为

$$y^* = x^k Q_n(x) e^{\alpha x}$$
,

其中 $P_n(x)$ 是已知n次多项式函数, $Q_n(x)$ 是待定的n次多项式函数,k的取值按 α 不是特征根、是特征单根或特征重根,依次取0、1或2.

10. 二阶常系数非齐次方程

$$y'' + py' + qy = e^{\alpha x} (P_l(x) \cos \beta x + P_m(x) \sin \beta x)$$

的特解形式为

$$y^* = x^k e^{\alpha x} \left[Q_n^{(1)}(x) \cos \beta x + Q_n^{(2)}(x) \sin \beta x \right]$$

其中 $P_l(x)$ 、 $P_m(x)$ 分别是l次、m次多项式函数, $Q_n^{(1)}(x)$ 、 $Q_n^{(2)}(x)$ 的待定的n次多项式函数, $n = \max\{l, m\}$,k 按 $\alpha + i\beta$ 不是特征根或是特征根分别取 0 或 1.

第二篇 线性代数

第1章 行列式

- 1. 排列 i_1, i_2, \dots, i_n 的逆序数 $N(i_1, i_2, \dots, i_n) = i_1$ 后面比 i_1 小的数的个数 $+ \dots + i_{n-1}$ 后面比 i_{n-1} 小的数的个数 $+ \dots + i_{n-1}$ 后面比 i_{n-1} 小的数的个数.
 - 2. n 个元素所有排列的种数为 $P_n = n(n-1)\cdots 3 \cdot 2 \cdot 1 = n!$.

3.
$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{m} \end{vmatrix} = \sum_{j_{1} \cdots j_{n}} (-1)^{N(j_{1} \cdots j_{n})} a_{1j_{1}} a_{2j_{2}} \cdots a_{nj_{n}}.$$
4.
$$\begin{vmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{vmatrix} = \lambda_{1} \lambda_{2} \cdot \cdots \cdot \lambda_{n}.$$

- 5. n次排列中 $(n \ge 2)$,奇排列与偶排列的个数相等,各为 $\frac{1}{2}n$!个.
- 6. $N(x_1x_2\cdots x_n) = \frac{1}{2}n(n-1) N(x_nx_{n-1}\cdots x_2x_1).$
- 7. 关于代数余子式的重要性质

$$egin{aligned} \sum_{k=1}^n a_{ki} A_{kj} &= D \! \delta_{ij} = egin{cases} D, & i = j, \ 0, & i
eq j, \ \sum_{k=1}^n a_{ik} A_{jk} &= D \! \delta_{ij} = egin{cases} D, & i = j, \ 0, & i
eq j, \ \end{pmatrix} \end{aligned}$$

其中 $\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$, D 为原行列式的值.

- 8. 行列式的计算方法
- (1) 行列式定义法.
- (2) 行列式按一行、列展开.
- (3) 加边法(升阶法).
- (4) 递推公式法.
- (5) 数学归纳法.
- (6) 范德蒙德行列式法.
- (7) 媒介法(借用"第三者").

矩阵及其运算

9. 范德蒙德行列式

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \cdots & \cdots & \cdots & \cdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \leqslant j < i \leqslant n} (x_i - x_j).$$

10. 克莱姆法则

n 元线性方程组

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1, \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2, \\ \dots \\ a_{n1} x_1 + a_{n2} x_2 + \dots + a_{nn} x_n = b_n, \end{cases}$$

若方程组系数矩阵 $D \neq 0$,则方程组有唯一解

$$x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, \dots, x_n = \frac{D_n}{D}.$$

其中 $D_i(j=1,2,\cdots,n)$ 是把系数行列式D中第i列的元素用方程组右端的常数项代替 后所得到的 n 阶行列式.

第2章 单矩阵及其运算

- 1. 关于矩阵的加法运算的公式
- (1) A + B = B + A:
- (3) A + (-A) = 0:
- 2. 关于数乘矩阵运算的公式
- (1) (kl)A = k(lA):
- (2) (k+l)A = kA + lA:
- (3) k(A + B) = kA + kB.
- 3. 关于矩阵的乘法运算的公式
- (1) (AB)C = A(BC);
- (3) A(B+C) = AB + AC; (4) (B+C)A = BA + CA;
- (5) EA = AE = A;
- (7) $A^k A^l = A^{k+l}$;
- (9) 一般情况下, $AB \neq BA$.
- 4. 关于矩阵的转置运算的公式
- (1) $(A^T)^T = A$:

- (2) (A+B)+C=A+(B+C):
- $(4) \mathbf{A} \mathbf{B} = \mathbf{A} + (-\mathbf{B}).$

- (2) $k(\mathbf{A}\mathbf{B}) = (k\mathbf{A})\mathbf{B} = \mathbf{A}(k\mathbf{B});$

 - (6) $(\lambda \mathbf{E})\mathbf{A} = \lambda \mathbf{A} = \mathbf{A}(\lambda \mathbf{E})$:
 - (8) $(A^k)^l = A^{kl}$:
 - (2) $(A + B)^T = A^T + B^T$:

(3)
$$(k\mathbf{A})^T = k\mathbf{A}^T$$
;

$$(4) (\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T.$$

5. 关于方阵的行列式的公式

若 $A \setminus B$ 是 n 阶方阵,

- (1) $|A^T| = |A|$;
- (2) $|\lambda \mathbf{A}| = \lambda^n |\mathbf{A}|$:
- (3) |AB| = |A| |B|:
- (4) | AB | = | BA |.
- 6. 关于伴随矩阵的公式

(1)
$$AA^* = A^*A = |A|E;$$
 $|A| \neq 0,$ $|A| = |A|A^{-1},$ $|A|^{-1} = \frac{1}{|A|}A,$

$$= |A| (A^*)^{-1}.$$

- (2) $(AB)^* = B^*A^*$;
- (3) $(\mathbf{A}^*)^T = (\mathbf{A}^T)^*$:
- (4) $(\mathbf{A}^*)^* = |\mathbf{A}|^{n-2}\mathbf{A};$
- (5) $(kA)^* = k^{n-1}A^*$, A 为 n 阶可逆方阵;
- (6) $(\mathbf{A}^*)^{-1} = (\mathbf{A}^{-1})^*$.
- 7. 关于逆矩阵的公式

(1)
$$A^{-1} = \frac{1}{|A|} A^*$$
;

- (2) 若 AB = E 或 BA = E,则 $B = A^{-1}$;
- (3) $(\mathbf{A}^{-1})^{-1} = \mathbf{A};$
- (4) $(k\mathbf{A})^{-1} = \frac{1}{b}\mathbf{A}^{-1}, \sharp \psi \ k \neq 0;$
- (5) $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$:
- (6) $(AB)^{-1} = B^{-1}A^{-1}$:
- (7) $|\mathbf{A}^{-1}| = |\mathbf{A}|^{-1}$:
- (8) —般情况下, $(A+B)^{-1} \neq A^{-1} + B^{-1}$.
- 8. 关于分块矩阵的公式

(1) 若
$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & & & \\ & \mathbf{A}_2 & & \\ & & \ddots & \\ & & & \mathbf{A}_s \end{bmatrix}$$
,其中 $\mathbf{A}_i (i=1,2,\cdots,s)$ 是方阵,则 $|\mathbf{A}| = |\mathbf{A}_1|$

 $|\mathbf{A}_2| \cdots |\mathbf{A}_s|$. $\ddot{\mathbf{A}} |\mathbf{A}_i| \neq 0 (i = 1, 2, \cdots, s), \mathbf{M} |\mathbf{A}| \neq 0$

第3章 矩阵的初等变换与线性方程组

(2)
$$\begin{bmatrix} & & \mathbf{A}_1 \\ & \mathbf{A}_2 \\ & \ddots & \end{bmatrix}^{-1} = \begin{bmatrix} & & & \mathbf{A}_s^{-1} \\ & & \ddots & \\ & \mathbf{A}_2^{-1} & & \end{bmatrix};$$

(3) 若 **A**、**B** 为可逆方阵,

$$\begin{bmatrix} \boldsymbol{A} & \boldsymbol{C} \\ \boldsymbol{O} & \boldsymbol{B} \end{bmatrix}^{-1} = \begin{bmatrix} \boldsymbol{A}^{-1} & -\boldsymbol{A}^{-1}\boldsymbol{C}\boldsymbol{B}^{-1} \\ \boldsymbol{O} & \boldsymbol{B}^{-1} \end{bmatrix},$$
$$\begin{bmatrix} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{B} \end{bmatrix}^{-1} = \begin{bmatrix} \boldsymbol{A}^{-1} & \boldsymbol{O} \\ -\boldsymbol{B}^{-1}\boldsymbol{C}\boldsymbol{A}^{-1} & \boldsymbol{B}^{-1} \end{bmatrix};$$

$$(4) \begin{vmatrix} A & O \\ O & B \end{vmatrix} = |A| \cdot |B|;$$

(5)
$$\begin{vmatrix} A & C \\ O & B \end{vmatrix} = |A| \cdot |B|;$$

(6)
$$\begin{vmatrix} A & O \\ C & B \end{vmatrix} = |A| \cdot |B|.$$

第3章 矩阵的初等变换与线性方程组

1. 初等变换求矩阵 A 的逆矩阵, 三种方法

(2)
$$\begin{bmatrix} \mathbf{A} \\ \cdots \\ \mathbf{E} \end{bmatrix} \xrightarrow{\text{Monse phase}} \begin{bmatrix} \mathbf{E} \\ \cdots \\ \mathbf{A}^{-1} \end{bmatrix};$$

(3)
$$\begin{bmatrix} A & E \\ E & O \end{bmatrix} \xrightarrow{\text{Ni \mathbb{R}^{2}}} \underbrace{ \begin{bmatrix} E & C \\ B & O \end{bmatrix}}, A^{-1} = BC.$$

2. 初等矩阵的逆和转置

$$\mathbf{E}^{\mathrm{T}}(i,j) = \mathbf{E}(i,j),$$

$$\mathbf{E}^{\mathrm{T}}(i(k)) = \mathbf{E}(i(k)),$$

$$\mathbf{E}^{\mathrm{T}}(i,j(k)) = \mathbf{E}(j,i(k))$$

$$\mathbf{E}^{-1}(i,j) = \mathbf{E}(i,j),$$

$$\mathbf{E}^{-1}(i(k)) = \mathbf{E}\left(i\left(\frac{1}{k}\right)\right),\,$$

$$\mathbf{E}^{-1}(i,j(k)) = \mathbf{E}(i,j(-k)).$$

3. 方阵A可逆 \Leftrightarrow 存在有限个初等矩阵 P_1, P_2, \cdots, P_t 使 $A = P_1P_2 \cdots P_t \Leftrightarrow A$ 与E等价.

第二音 矩阵的初等变换与线性方程组

4. $m \times n$ 矩阵 A 与 B 等价 ⇔ 存在 m 阶可逆阵 P 以及 n 阶可逆阵 Q, 使得 PAQ =

B.

5. 初等矩阵的推广

$$(1) \diamondsuit \mathbf{A}_{m \times n} = (a_{ii}),$$

 $E_{ii}A$ 相当于把A 中第i 行换成第i 行元素,其余元素为0, AE_{ii} 相当于把A中第i列换成第i列元素,其余元素为0.

(2) 设
$$\mathbf{A} = \begin{bmatrix} \mathbf{\alpha}_1 \\ \mathbf{\alpha}_2 \\ \vdots \\ \mathbf{\alpha}_n \end{bmatrix}$$
,其中 $\mathbf{\alpha}_i$ 为 \mathbf{A} 中行向量

$$\begin{bmatrix} & & & & 1 \\ & & & 1 \\ & & 1 & \\ & \vdots & & \\ 1 & & & \end{bmatrix} \mathbf{A} = \begin{bmatrix} \mathbf{\alpha}_n \\ \mathbf{\alpha}_{n-1} \\ \vdots \\ \mathbf{\alpha}_1 \end{bmatrix}$$

相当于把矩阵 A 中行向量顺序颠倒了一下.

同理,设 $\mathbf{A} = [\mathbf{\beta}_1, \dots, \mathbf{\beta}_n]$,其中 $\mathbf{\beta}_j$ 为 \mathbf{A} 中列向量, $j = 1, 2, \dots, n$,

$$egin{align*} oldsymbol{A} \left[egin{array}{ccc} & & 1 \ & \ddots & \end{array}
ight] = \left[oldsymbol{eta}_{n}, oldsymbol{eta}_{n-1}, \cdots, oldsymbol{eta}_{1}
ight], \end{split}$$

相当于把矩阵 A 的列向量顺序颠倒了一下.

(3) 设
$$\mathbf{A} = \begin{bmatrix} \mathbf{\alpha}_1 \\ \mathbf{\alpha}_2 \\ \vdots \\ \mathbf{\alpha}_n \end{bmatrix}$$
,其中 $\mathbf{\alpha}_i$ 为 \mathbf{A} 的行向量, $i = 1, 2, \dots, n$.

第3章 矩阵的初等变换与线性方程组

相当于把矩阵 A 的各行向上递推了一次.

$$\begin{bmatrix} 0 & & & & \\ 1 & 0 & & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{\alpha}_1 \\ \boldsymbol{\alpha}_2 \\ \vdots \\ \boldsymbol{\alpha}_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{\alpha}_1 \\ \vdots \\ \boldsymbol{\alpha}_{n-1} \end{bmatrix},$$

相当于把 A 的各行向下递推一次.

同理,设 $\mathbf{A} = [\beta_1, \dots, \beta_n]$,其中 β_i 为 \mathbf{A} 的列向量, $j = 1, 2, \dots, n$,

相当于把A的列向量向右递推一次.

$$[\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_n]$$
 $\begin{bmatrix} 0 & & & \\ 1 & \ddots & & \\ & \ddots & & \\ & & & 1 & 0 \end{bmatrix}$ $= [\boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_n, \boldsymbol{0}]$

相当于把A的列向量向左递推一次.

- 6. $m \times n$ 矩阵 **A** 的 k 阶子式共有 $C_m^k \cdot C_n^k$ 个.
- 7. 矩阵秩的性质
- $(1) \ 0 \leqslant r(\mathbf{A}_{m \times n}) \leqslant \min\{m, n\}.$
- (2) $r(A^T) = r(A)$.
- (3) 若 $\mathbf{A} \sim \mathbf{B}$,则 $r(\mathbf{A}) = r(\mathbf{B})$.
- (4) 若P,O可逆,则r(PAO) = r(A).
- (5) $r(\mathbf{A}\mathbf{B}) \leqslant r(\mathbf{A}) + r(\mathbf{B}) n$.
- (6) $r(\mathbf{A} \pm \mathbf{B}) \leqslant r(\mathbf{A}) + r(\mathbf{B})$.
- (7) $r(\mathbf{AB}) \leqslant \min\{r(\mathbf{A}), r(\mathbf{B})\}.$
- (8) 若 $\mathbf{A}_{m \times n} \mathbf{B}_{n \times l} = \mathbf{0}$,则 $r(\mathbf{A}) + r(\mathbf{B}) \leqslant n$.
- (9) $m \times n$ 阵 A 行满秩 $\Leftrightarrow r(A) = m \Leftrightarrow A$ 的等价标准形为 $[E_m : O]$.
- (10) $m \times n$ 阵 A 列满秩 $\Leftrightarrow r(A) = n \Leftrightarrow A$ 的等价标准形为 $\begin{bmatrix} E_n \\ O \end{bmatrix}$.

(11)
$$r \begin{bmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{O} & \mathbf{B} \end{bmatrix} = r(\mathbf{A}) + r(\mathbf{B}).$$

- (12) $r(AB) \ge r(A) + r(B) B$ 的行数.
- (13) $r(ABC) \geqslant r(AB) + r(BC) r(B)$.
- (14) 若 G 为列向量无关的矩阵,H 为行向量无关的矩阵,则 r(GA) = r(AH) = r(A).

(15)
$$r(\mathbf{A}^*) = \begin{cases} n \Leftrightarrow r(\mathbf{A}) = n, \\ 1 \Leftrightarrow r(\mathbf{A}) = n-1,$$
其中 \mathbf{A}^* 为 \mathbf{A} 的伴随矩阵. $0 \Leftrightarrow r(\mathbf{A}) < n-1,$

- 8. 求矩阵秩的方法
- (1) 利用定义法.
- (2) 初等变换法.
- (3) 计算子式法.
- 9. n 元线性方程组 Ax = b 的解的判定
- (1) 方程组无解 $\Leftrightarrow r(\mathbf{A}) < r(\mathbf{A} : \mathbf{b})$.
- (2) 方程组有唯一解 $\Leftrightarrow r(\mathbf{A}) = r(\mathbf{A} : \mathbf{b}) = n$.
- (3) 方程组有无穷多的解 $\Leftrightarrow r(\mathbf{A}) = r(\mathbf{A} : \mathbf{b}) < n$.
- 10. n 元齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 有非零解 $\Leftrightarrow r(\mathbf{A}) < n$.
- 11. 矩阵方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有解 $\Leftrightarrow r(\mathbf{A}) = r(\mathbf{A} : \mathbf{b})$.
- 12. 矩阵方程 $A_{n \times n} X_{n \times l} = \mathbf{0}$ 只有零解 $\Leftrightarrow r(A) = n$.

第4章 向量组的线性相关性

- 1. 关于向量组线性相关性的性质
- (1) 在向量组 α_1 , α_2 , …, α_m 中, 若有一个部分组线性相关, 则整个向量组线性相关; 若向量组 α_1 , α_2 , …, α_m 线性无关, 则向量组的任一部分组也线性无关.
- (2) 向量组 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, …, $\boldsymbol{\alpha}_m$ 线性相关的充分必要条件是矩阵 $\boldsymbol{A} = [\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, …, $\boldsymbol{\alpha}_m$] 的 秩小于向量个数 m; 向量组线性无关的充要条件是矩阵 $\boldsymbol{A} = [\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, …, $\boldsymbol{\alpha}_m$] 的秩等于 m.
- (3) 向量组 α_1 , α_2 , ..., α_m 线性相关的充分必要条件是向量组 α_1 , α_2 , ..., α_m 中至少有一个向量可以由其余的向量线性表示; 向量组 α_1 , α_2 , ..., α_m 线性无关的充分必要条件是向量组 α_1 , α_2 , ..., α_m 中任一向量都不能由其余的向量线性表示.
- (4) $m \uparrow n$ 维向量组成的向量组,当维数 n 小于向量个数 m 时一定线性相关,特别地, $n+1 \uparrow n$ 维向量一定线性相关.
- (5) 若向量组 α_1 , α_2 , …, α_m 线性无关, 而向量组 α_1 , α_2 , …, α_m , β 线性相关, 则向量 β 可由向量组 α_1 , α_2 , …, α_m 线性表示, 并且表示式是唯一的.
 - 2. 关于线性方程组的解的公式
- (1) (j) 若齐次线性方程组 Ax = 0 的基础解系为 $\zeta_1, \zeta_2, \dots, \zeta_r$,则方程组 Ax = 0 的通解为 $x = k_1 \zeta_1 + k_2 \zeta_2 + \dots + k_r \zeta_r$,其中 k_1, k_2, \dots, k_r 为任意实数;
 - (ii) 若 ζ_1 , ζ_2 为齐次线性方程组 Ax = 0 的解,则 $\zeta_1 + \zeta_2$ 也是方程组 Ax = 0 的解;
- (iii) 若A是 $m \times n$ 矩阵 且r(A) = r,则n元齐次线性方程组Ax = 0的解集S的 秩 $R_S = n r$.

第5章 相似矩阵及二次型

- (2) (i) 若非齐次线性方程组 Ax = b 对应的齐次线性方程组 Ax = 0 的基础解系为 $\zeta_1, \zeta_2, \dots, \zeta_{n-r}, \eta^*$ 为 Ax = b 的一个特解,则 Ax = b 的任一解总可表示为 $x = k_1 \zeta_1 + k_2 \zeta_2 + \dots + k_{n-r} \zeta_{n-r} + \eta^*$,其中 k_1, k_2, \dots, k_{n-r} 为任意实数;
- (ii) 若 η_1 , η_2 都是方程组Ax = b的解,则 $\eta_1 \eta_2$ 是对应的齐次线性方程组Ax = 0的解;
- (iii) 若 η 是方程组 Ax = b 的解, ζ 是方程组 Ax = 0 的解,则 $\zeta + \eta$ 仍是方程组 Ax = b 的解.

第5章 相似矩阵及二次型

- 1. 内积的性质
- 设x,y,z为n维向量, λ 为实数.
- (1) (x, y) = (y, x).
- (2) $(\lambda x, y) = \lambda(x, y)$.
- (3) (x+y,z) = (x,z) + (y,z).
- (4) $(x,x) \ge 0, (x,x) = 0 \Leftrightarrow x = 0.$
- (5) $(x, y)^2 \leq (x, x)(y, y)$.
- 2. 向量长度的性质
- (1) $\|x\| \ge 0$,等号成立 $\Leftrightarrow x = 0$.
- (2) $\| \lambda x \| = | \lambda | \| x \|$.
- (3) $\|x+y\| \leq \|x\| + \|y\|$.
- 3. 施密特正交化

设 a_1, a_2, \dots, a_r 为向量空间 V 的一组基,令

$$b_1=a_1$$
,

$$b_2 = a_2 - \frac{(a_2, b_1)}{(b_1, b_1)} b_1$$

....

$$b_r = a_r - rac{(a_r, b_1)}{(b_1, b_1)} b_1 - \cdots - rac{(a_r, b_{r-1})}{(b_{r-1}, b_{r-1})} b_{r-1}$$
 ,

则得 b_1, \dots, b_r 彼此正交.

- 4. 正交矩阵的性质
- (1) 若 A 为正交阵,则 $A^{-1} = A^{T}$ 也为正交阵,且 |A| = 1 或 -1.
- (2) 若 A,B 为正交阵,则 AB 也是正交阵.

5. 方阵特征值的性质

(1)

矩 阵	A	A^m	A -1	k A	A *	$f(\mathbf{A}) = \sum_{i=0}^{m} a_i \mathbf{A}^i$	$\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$
特征值	λ	λ^m	$\frac{1}{\lambda}$ $\lambda \neq 0$	kλ	$ \begin{array}{c c} $	$f(\lambda) = \sum_{i=0}^{m} a_i \lambda^i$	λ
对应特 征向量	x	х	х	х	x	x	P ^{−1} x

- (2) 设 $\mathbf{A} = (a_{ij})_{n \times n}$ 的 n 个特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n, \mathbb{M}$ $\lambda_1 + \lambda_2 + \dots + \lambda_n = a_{11} + a_{22} + \dots + a_m, \lambda_1 \lambda_2 \cdot \dots \cdot \lambda_n = |\mathbf{A}|.$
- (3) 实对称矩阵 A 的特征值都是实数,属于不同特征值的特征向量正交.
- (4) A 与 A^T 特征值相同.
- (5) AB 与 BA 有相同的特征值.
- (6) 幂零矩阵有 n 重特征值 0.
- (7) 幂等矩阵($A^2 = A$) 的特征值只可能是 0 或 1.
- (8) 对合矩阵($\mathbf{A}^2 = \mathbf{E}$) 的特征值只可能是 -1 或 1.
- (9) 幺幂矩阵($A^k = E$) 的特征值是 1 的 k 次方根.
- 6. 特征向量的性质
- (1) $x \neq A$ 的属于 λ 的特征向量,则 $x \neq 0$,且对任意 $k \neq 0$,kx 也是属于特征值 λ 的特征向量.
 - (2) A 的属于不同特征值的特征向量线性无关.
- (3) 若 x_1 , x_2 , \cdots , x_m 是属于A 的同一特征值 λ_0 的特征向量,且 $k_1x_1 + \cdots + k_mx_m \neq \mathbf{0}$,则 $k_1x_1 + \cdots + k_mx_m$ 也是A 的属于特征值 λ_0 的特征向量.
- (4) 设 λ_1 , λ_2 是方阵 A 的两个不同特征值, x_1 , x_2 是 A 的分别属于 λ_1 , λ_2 的特征向量,则 $x_1 + x_2$ 不是 A 的特征向量.
 - 7. 相似矩阵的性质.
 - (1) 若 $A \sim B$, $B \sim C$,则 $A \sim C$.
 - (2) 若 $A \sim B$,则 |A| = |B|,且 $A \setminus B$ 具有相同的特征值.
 - (3) 若 $A \sim B$,则 tr(A) = tr(B).
 - (4) 若 $\mathbf{A} \sim \mathbf{B}$,则 $r(\mathbf{A}) = r(\mathbf{B})$.
 - (5) 若 $\mathbf{A} \sim \mathbf{B}$,则 $\mathbf{A}^{\mathrm{T}} \sim \mathbf{B}^{\mathrm{T}}$, $\mathbf{A}^{k} \sim \mathbf{B}^{k}$, $\mathbf{A}^{-1} \sim \mathbf{B}^{-1}$, $f(\mathbf{A}) \sim f(\mathbf{B})$.
 - 8. 化二次型为标准形的方法
 - (1) 正交变换法.
 - (2) 初等变换法.
 - (3) 配方法.
 - 9. 二次型正定性的判定充要条件
 - (1) A 是正定矩阵.

- (2) **A**的顺序主子式大于 0.
- (3) A 的特征值全大于 0.
- (4) A 合同于单位矩阵 E.
- (5) **A** 的正惯性指数 p = n.
- (6) 存在可逆阵 P,使 $P^TP = A$.
- (7) 存在可逆上(下) 三角阵 P,使 $A = P^T P$.

第6章 线性空间与线性变换

1. 关于基变换和坐标变换的公式

(1) 若 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n$ 及 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_n$ 是线性空间 \boldsymbol{V}_n 中的两个基,且有

$$\begin{cases}
\boldsymbol{\beta}_{1} = p_{11} \boldsymbol{\alpha}_{1} + p_{21} \boldsymbol{\alpha}_{2} + \cdots + p_{n1} \boldsymbol{\alpha}_{n}, \\
\boldsymbol{\beta}_{2} = p_{12} \boldsymbol{\alpha}_{1} + p_{22} \boldsymbol{\alpha}_{2} + \cdots + p_{n2} \boldsymbol{\alpha}_{n}, \\
\dots \\
\boldsymbol{\beta}_{n} = p_{1n} \boldsymbol{\alpha}_{1} + p_{2n} \boldsymbol{\alpha}_{2} + \cdots + p_{nn} \boldsymbol{\alpha}_{n}.
\end{cases}$$

$$\mathbb{D} : \begin{bmatrix}
\boldsymbol{\beta}_{1} \\
\boldsymbol{\beta}_{2} \\
\vdots \\
\boldsymbol{\beta}_{n}
\end{bmatrix} = \begin{bmatrix}
p_{11} & p_{21} & \cdots & p_{n1} \\
p_{12} & p_{22} & \cdots & p_{n2} \\
\vdots \\
p_{1n} & p_{2n} & \cdots & p_{nn}
\end{bmatrix} \begin{bmatrix}
\boldsymbol{\alpha}_{1} \\
\boldsymbol{\alpha}_{2} \\
\vdots \\
\boldsymbol{\alpha}_{n}
\end{bmatrix} = \mathbf{P}^{T} \begin{bmatrix}
\boldsymbol{\alpha}_{1} \\
\boldsymbol{\alpha}_{2} \\
\vdots \\
\boldsymbol{\alpha}_{n}
\end{bmatrix}$$

$$\vec{\mathbf{D}} \begin{bmatrix} \boldsymbol{\beta}_{1} , \boldsymbol{\beta}_{2} , \cdots , \boldsymbol{\beta}_{n} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\alpha}_{1} , \boldsymbol{\alpha}_{2} , \cdots , \boldsymbol{\alpha}_{n} \end{bmatrix} \mathbf{P}.$$

① 或 ② 式称为基变换公式. 矩阵 P 称为由基 α_1 , α_2 , \cdots , α_n 到基 β_1 , β_2 , \cdots , β_n 的过渡矩阵.

(2) 设 V_n 中的元素 α 在基 α_1 , α_2 , …, α_n 下的坐标为 $(x_1, x_2, \dots, x_n)^T$, 在基 β_1 , β_2 , …, β_n 下的坐标为 $(x'_1, x'_2, \dots, x'_n)^T$, 若由基 α_1 , α_2 , …, α_n 到基 β_1 , β_2 , …, β_n 的过渡矩阵为 P,则坐标变换公式为

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \mathbf{P} \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix} \stackrel{\mathbf{R}}{\Rightarrow} \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix} = \mathbf{P}^{-1} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

2. 线性变换在不同基下矩阵之间的关系式:

设线性空间 V_n 中取定两个基 α_1 , α_2 ,…, α_n 和 β_1 , β_2 ,…, β_n ,由基 α_1 , α_2 ,…, α_n 到基 β_1 , β_2 ,…, β_n 的过渡矩阵为P, V_n 中的线性变换T在这个基下的矩阵依次为A和B,那么 $B = P^{-1}AP$.

第三篇 概率论与数理统计

第1章 概率论的基本概念

- 1. 事件的运算律
- (1) 交換律 $A \cup B = B \cup A, AB = BA$.
- (2) 结合律 $(A \cup B) \cup C = A \cup (B \cup C)$, $(A \cap B) \cap C = A \cap (B \cap C)$.
- (3) 分配律 $(A \cup B)C = (AC) \cup (BC)$, $A \bigcup (BC) = (A \bigcup B)(A \bigcup C).$
- (4) 摩根律 $\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = \overline{A} \cup \overline{B}.$
- (5) 减法运算 $A B = A \overline{B}$.
- 2. 条件概率

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$
 (若 $P(A) > 0$), $P(A \mid B) = \frac{P(AB)}{P(B)}$ (若 $P(B) > 0$).

3. 乘法法则

$$P(AB) = P(A)P(B \mid A)(\stackrel{.}{E} P(A) > 0),$$

 $P(AB) = P(B)P(A \mid B)(\stackrel{.}{E} P(B) > 0),$

 $P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 A_2) \cdots P(A_n \mid A_1 \cdots A_{n-1}).$

4. 全概率公式

若事件 A_1, A_2, \cdots 构成一个完备事件组,且都具有正概率,则对任何一个事件 B,有 $P(B) = \sum P(A_i)P(B \mid A_i).$

5. 贝叶斯公式

 若 A_1, A_2, \cdots 构成一个完备事件组,且均具有正概率,则对任何一个概率不为零的 事件B,有

$$P(A_m \mid B) = \frac{P(A_m)P(B \mid A_m)}{\sum_i P(A_i)P(B \mid A_i)}.$$

- 6. 事件独立性结论
- (1) 事件 A 与 B 独立 $\Leftrightarrow P(AB) = P(A)P(B)$.
- (2) 若事件 A = B 独立,则 $A = \overline{B}$, $\overline{A} = B$ 中的每一对事件都相互独立.
- (3) 若事件 A_1, \dots, A_n 相互独立,则 $P(A_1 \dots A_n) = \prod_{i=1}^n P(A_i)$.

第2章 随机变量及其分布

(4) 若事件
$$A_1, \dots, A_n$$
 相互独立,则 $P(\sum_{i=1}^n A_i) = 1 - \prod_{i=1}^n P(\overline{A}_i)$.

7. 伯努利定理

设一次试验中事件A发生的概率为p(0 ,则<math>n重伯努利试验中,事件A恰好发生k次的概率 $P_n(k)$ 为

$$P_n(k) = C_n^k p^k q^{n-k}$$
 $(k = 0, 1, \dots, n),$

其中 q = 1 - p.

第2章 随机变量及其分布

- 1. 一元离散型随机变量概率函数的性质
- (1) $p_k \geqslant 0$, $k = 1, 2, \dots$; (2) $\sum_{k} p_k = 1$.
- 2. 一元连续型随机变量概率密度的性质
- (1) 对一切实数 $x, f(x) \ge 0$; (2) $\int_{-\infty}^{+\infty} f(x) dx = 1$.
- 3. 随机变量分布函数的性质
- (1) $0 \leqslant F(x) \leqslant 1, x \in (-\infty, +\infty)$;
- (2) F(x) 是 x 的不减函数;
- (3) $F(-\infty) = \lim_{x \to -\infty} F(x) = 0, F(+\infty) = \lim_{x \to +\infty} F(x) = 1;$
- (4) F(x) 至多有可列个间断点,而在其间断点上也是右连续的.
- 4. 二元离散型随机变量(ξ,η) 的联合概率分布(联合分布律) 性质

(1)
$$p_{ij} \geqslant 0$$
; (2) $\sum_{i} \sum_{i} p_{ij} = 1$.

5. 边缘分布与联合分布的关系

$$P\{\xi = x_i\} = \sum_{j} P\{\xi = x_i, \eta = y_j\} = \sum_{j} p_{ij} \triangleq p_i^{(1)}; \qquad (i = 1, 2, \cdots)$$

$$P\{\eta = y_j\} = \sum_{i} P\{\xi = x_i, \eta = y_j\} = \sum_{i} p_{ij} \triangleq p_j^{(2)}. \qquad (j = 1, 2, \cdots)$$

- 6. 条件分布
- (1) 在 $\eta = y_i$ 条件下,关于 ξ 的条件分布:

$$P\{\xi = x_i \mid \eta = y_j\} = \frac{p_{ij}}{p_j^{(2)}} (i = 1, 2, \cdots);$$

(2) 在 $\xi = x_i$ 条件下关于 η 的条件分布:

$$P\{\eta = y_j \mid \xi = x_i\} = \frac{p_{ij}}{p_i^{(1)}}(j = 1, 2, \cdots).$$

- 7. 二元连续型随机变量 (ξ,η) 的联合概率密度的性质
- (1) 对一切实数 $x, y, \varphi(x, y) \ge 0$;

(2)
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \varphi(x, y) dx dy = 1.$$

8. 边缘分布函数

$$\begin{split} F_{\xi}(x) &= P\{\xi \leqslant x, -\infty < \eta < +\infty\} = \int_{-\infty}^{x} \mathrm{d}s \int_{-\infty}^{+\infty} \varphi(s, t) \, \mathrm{d}t; \\ F_{\eta}(y) &= P\{-\infty < \xi < +\infty, \eta \leqslant y\} = \int_{-\infty}^{y} \mathrm{d}t \int_{-\infty}^{+\infty} \varphi(s, t) \, \mathrm{d}s. \end{split}$$

- 9. 条件概率密度
- (1) 在 $\eta = y$ 条件下,关于 ξ 的条件概率密度 若 $\varphi_n(y) > 0$,则

$$\varphi(x \mid y) = \frac{\varphi(x, y)}{\varphi_{\eta}(y)};$$

(2) 在 $\xi = x$ 条件下,关于 η 的条件概率密度 若 $\varphi_{\varepsilon}(x) > 0$,则

$$\varphi(y \mid x) = \frac{\varphi(x, y)}{\varphi_{\varepsilon}(x)}.$$

- 10. 随机变量的独立性: $F(x,y) = F_{\varepsilon}(x) \cdot F_{\eta}(y)$
- (1) 离散型 $\xi = \eta$ 独立 \Leftrightarrow 对一切 $i,j = 1,2,\cdots$ $p_{ii} = p_i^{(1)} p_i^{(2)}$;
- (2) 连续型 $\xi = \eta$ 独立 \Leftrightarrow 对任何实数 x, y,

$$\varphi(x,y) = \varphi_{\xi}(x) \cdot \varphi_{\eta}(y).$$

第3章 随机变量的数字特征

1. 离散型随机变量的数学期望

$$E\xi=\sum_{k=1}^{\infty}x_{k}p_{k},$$

其中 p_k 为事件" $\xi = x_k$ " 发生的概率.

2. 连续型随机变量的数学期望

$$E\xi = \int_{-\infty}^{+\infty} x\varphi(x) \, \mathrm{d}x,$$

其中 $\varphi(x)$ 是随机变量 ξ 的概率密度.

- 3. 期望的性质
- (1) E(c) = c (c 为常数);
- (2) $E(\xi + c) = E\xi + c;$
- (3) $E(c\xi) = cE\xi;$

- (4) $E(k\xi + b) = kE\xi + b(k, b)$ 为常数);
- (5) $E(\xi + \eta) = E\xi + E\eta;$
- (6) 相互独立两随机变量 $E(\xi_{\eta}) = E\xi \cdot E_{\eta}$.
- 4. 随机变量函数的期望
- (1) ξ 是离散型随机变量,且 $P\{\xi = x_k\} = p_k(k = 1, 2, \cdots)$.

若 $\eta = f(\xi)$,则

$$E\eta = E[f(\xi)] = \sum_{k} f(x_k) p_k;$$

(2) ξ 是连续型随机变量,且其概率密度为 $\varphi(x)$.

若 $\eta = f(\xi)$,则

$$E\eta = E[f(\xi)] = \int_{-\infty}^{+\infty} f(x)\varphi(x)dx.$$

- 5. 条件期望
- (1) 给定 $\xi = x_i$ 时, η 的条件期望
- ① 二元离散型时 $E\{\eta \mid \xi = x_i\} = \sum_i y_i P\{\eta = y_i \mid \xi = x_i\};$
- ② 二元连续型时 $E\{\eta \mid x\} = \int_{-\infty}^{+\infty} y \varphi(y \mid x) dy.$
- (2) 给定 $\eta = y_i$ 时, ξ 的条件期望
- ① 二元离散型时 $E\{\xi \mid \eta = y_j\} = \sum_i x_i P\{\xi = x_i \mid \eta = y_j\};$
- ② 二元连续型时 $E(\xi \mid y) = \int_{-\infty}^{+\infty} x \varphi(x \mid y) dx$.
- 6. 方差: $D\xi = E(\xi E\xi)^2$
- (1) ξ 为离散型时,若 $P(\xi = x_k) = p_k(k = 1, 2, \cdots), D\xi = \sum (x_k E\xi)^2 p_k;$
- (2) ξ 为连续型时,若其概率密度为 $\varphi(x)$, $D\xi = \int_{-\infty}^{+\infty} (x E\xi)^2 \varphi(x) dx$.
- 7. 方差性质
- (1) D(c) = 0(c 为常数);
- (2) $D(\xi + c) = D\xi;$
- (3) $D(c\xi) = c^2 D\xi;$
- (4) $D(\xi+\eta) = D\xi + D\eta + 2E[(\xi-E\xi)(\eta-E\eta)]$,特别地,若 ξ , η 相互独立,则 $D(\xi+\eta) = D\xi + D\eta$;
 - (5) $D\xi = E\xi^2 (E\xi)^2$.
 - 8. 协方差

$$Cov(\xi, \eta) = E[(\xi - E\xi)(\eta - E\eta)].$$

9. 相关系数

$$\rho_{\xi\eta} = \frac{\operatorname{Cov}(\xi,\eta)}{\sqrt{D\xi} \sqrt{D\eta}}.$$

第4章 ■ 几种重要的分布

1. 二项分布

随机变量 を的分布律

- ① 0-1 分布 $P(\xi=k)=p^kq^{1-k}(k=0,1)$.
- ② 二项分布: $P(\xi = k) = C_n^k p^k q^{n-k} (k = 0, 1, \dots, n)$.
- ③ 二项分布函数: $F(x) = \sum C_n^k p^k q^{n-k};$

事件最多出现 m 次的概率: $P\{0 \leqslant \xi \leqslant m\} = \sum_{n=0}^{\infty} C_n^k p^n q^{n-k};$ 事件出现次函数不小于 l 不大于 m 的概率:

$$P\{l \leqslant \xi \leqslant m\} = \sum_{k=1}^{m} C_n^k p^k q^{n-k}.$$

2. 二项分布的期望和方差

$$E\xi=np$$
 , $E\xi^2=npq+n^2\,p^2$, $D\xi=npq$.

3. 二项分布的最可能值 k_0

$$k_0 = \begin{cases} np + p & \text{in } np + p - 1, & np + p & \text{end}; \\ [np + p], & \text{ite.} \end{cases}$$

4. 超几何分布的概率函数

$$P\{\xi=m\}=rac{C_{N_1}^nC_{N_2}^{n-m}}{C_N^n}(m=0,\cdots,n).$$

5. 超几何分布的期望和方差

$$E\xi = n \cdot \frac{N_1}{N}, \quad D\xi = n \cdot \frac{N_1}{N} \cdot \frac{N_2}{N} \cdot \frac{N-n}{N-1}.$$

6. 泊松分布的概率函数

$$P_{\lambda}(m) = P\{\xi = m\} = \frac{\lambda^{m}}{m!} e^{-\lambda} (m = 0, 1, \dots).$$

7. 泊松分布的期望和方差

$$E\xi = \lambda,$$
$$D\varepsilon = \lambda.$$

8. 指数分布的概率密度

$$\varphi(x) = \begin{cases} \lambda e^{-\lambda x}, \exists x > 0, \\ 0, \quad \text{i.i.} \end{cases}$$

9. 指数分布的期望和方差

$$E\xi = \frac{1}{\lambda}, D\xi = \frac{1}{\lambda^2}.$$

10. Γ分布的概率密度

$$\varphi(x) = \begin{cases} \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x}, x > 0, \\ 0, & x \leq 0. \end{cases}$$

11. Г分布的期望和方差

$$E\xi = \frac{r}{\lambda}, D\xi = \frac{r}{\lambda^2}$$

12. 正态分布的概率密度

$$\varphi(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

- 13. 标准正态分布概率密度 $\varphi_0(x)$ 的性质
- (1) $\varphi_0(x)$ 有各阶导数;
- (2) $\varphi_0(-x) = \varphi_0(x)$;
- (3) $\varphi_0(x)$ 在($-\infty$,0) 内严格上升,在(0,+ ∞) 内严格下降,在x=0 处达到最大值

$$\varphi_0(0) = \frac{1}{\sqrt{2\pi}} \approx 0.3989;$$

- (4) $\varphi_0(x)$ 在 $x = \pm 1$ 处有两个拐点;
- $(5) \lim_{\varphi_0} (x) = 0.$
- 14. 一般正态分布与标准分布的关系

(1)
$$\varphi(x) = \frac{1}{\sigma} \varphi_0 \left(\frac{x - \mu}{\sigma} \right);$$

(2)
$$\Phi(x) = \Phi_0\left(\frac{x-\mu}{\sigma}\right)$$
.

15. 二元正态分布的二元连续型随机变量的联合概率密度

$$\varphi(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} \cdot \exp\left\{-\frac{1}{2(1-\rho^{2})} \left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2} - 2\rho \frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}\right] + \left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right\}.$$

16. 具有 n 个自由度的 t 分布的概率密度

$$\varphi(x) = \frac{\Gamma\!\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\!\left(\frac{n}{2}\right)} \!\left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}.$$

17. *F*(*n*₁, *n*₂) 分布的概率密度

$$\varphi(x) = \begin{cases} \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} x^{\frac{n_1}{2}-1} \left(1 + \frac{n_1}{n_2}x\right)^{-\frac{n_1 + n_2}{2}}, x > 0; \\ 0, & x \leq 0. \end{cases}$$

第5章 ■大数定律及中心极限定理

1. 切比雪夫不等式

$$P\{\mid \xi - E\xi \mid \geqslant \epsilon\} \leqslant \frac{D\xi}{\epsilon^2},$$

$$P\{\mid \xi - E\xi \mid < \epsilon\} \geqslant 1 - \frac{D\xi}{\epsilon^2}.$$

2. 切比雪夫定理

设 ξ_1,ξ_2,\cdots 是相互独立的随机变量序列,各有数学期望 $E\xi_1,E\xi_2$ 及方差 $D\xi_1,D\xi_2$, … 且对于所有 $i = 1, 2, \dots$ 都有 $D_{\epsilon_i} < l$,其中 l 是与 i 无关的常数,则 $\forall \epsilon > 0$ 有

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^n \xi_i - \frac{1}{n} \sum_{i=1}^n E \xi_i \right| < \varepsilon \right\} = 1.$$

3. 李雅普诺夫定理

设 ξ_1,ξ_2,\cdots 是相互独立的随机变量,有期望值 $E\xi_i=a_i$ 及方差 $D\xi_i=\sigma_i^2<+\infty$ (i

 $=1,2,\cdots$),若每个 ξ_i 对总和 $\sum_{i=1}^n \xi_i$ 影响不大,令 $S_n=\left(\sum_{i=1}^n \sigma_i^2\right)^{\frac{1}{2}}$,则

$$\lim_{n\to\infty} P\left\{\frac{1}{S_n}\sum_{i=1}^n (\xi_i - a_i) \leqslant x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt = \Phi_0(x).$$

- 4. 拉普拉斯定理
- (1) 局部极限定理

当 $n \rightarrow \infty$ 时,

$$P(\xi=k) \approx \frac{1}{\sqrt{2\pi npq}} \mathrm{e}^{\frac{(k-np)^2}{2npq}} = \frac{1}{\sqrt{npq}} \varphi_0\left(\frac{k-np}{\sqrt{npq}}\right);$$

(2) 积分极限定理

当 $n \rightarrow \infty$ 时,

$$P\{a < \xi < b\} \approx \Phi(b) - \Phi(a) = \Phi_0\left(\frac{b - np}{\sqrt{npq}}\right) - \Phi_0\left(\frac{a - np}{\sqrt{npq}}\right).$$

第6章 样本分布

1. 样本平均数

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

2. 样本方差

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
.

3. 设 X_1, \dots, X_n 相互独立, X_i 服从正态分布 $N(\mu_i, \sigma_i^2)$,则其线性函数 $\eta = \sum_{i=1}^n a_i X_i (a_i$ 不全为零),也服从正态分布,且

$$E\eta = \sum_{i=1}^{n} a_i \mu_i , D\eta = \sum_{i=1}^{n} a_i^2 \sigma_i^2 .$$

- 4. 设 (X_1, \dots, X_n) 是取自正态总体 $N(\mu, \sigma^2)$ 的样本,则
- (1) $\overline{X} \sim N(\mu, \sigma^2/n)$;
- (2) $(\overline{X} \mu) \sqrt{n} / \sigma \sim N(0, 1)$.
- 5. 设 X_1 ,…, X_n 相互独立,均服从标准正态分布,则其平均数 $\overline{X} = \sum_{i=1}^n X_i/n$ 与它们对平均数 \overline{X} 的离差平方和 $\sum_{i=1}^n (X_i \overline{X})^2$ 相互独立,且 $\sum_{i=1}^n (X_i \overline{X})^2 \sim \chi^2(n-1)$.
 - 6. 设 (X_1, \dots, X_n) 是取自正态总体 $N(\mu, \sigma^2)$ 的样本,则

$$(1) \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \chi^2(n-1);$$

- (2) \overline{X} 与 $\sum_{i=1}^{n} (X_i \overline{X})^2$ 相互独立.
- 7. 设两个随机变量 ξ 与 η 相互独立,且 ξ $\sim N(0,1)$, η $\sim \chi^2(n)$,则 $T = \frac{\xi}{\sqrt{\eta/n}}$ 服从具有 n 个自由度的 t 分布.
- 8. 设 X_1, \dots, X_n 是取自正态总体 $N(\mu, \sigma^2)$ 的样本, \overline{X} ,S 分别为样本的平均数和标准差,则

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1).$$

9. 设 $X_1, \cdots, X_{n_1}, Y_1, \cdots, Y_{n_2}$ 分别是来自两个相互独立的正态总体 $N(\mu_1, \sigma^2)$ 和 $N(\mu_2, \sigma^2)$,则

$$T = \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}} \sim t(n_1 + n_2 - 2).$$

10. 设两个随机变量 ξ_1 和 ξ_2 相互独立,且 $\xi_i \sim \chi^2(n_i)(i=1,2)$,则

$$F = \frac{\xi_1/n_1}{\xi_2/n_2} \sim F(n_1, n_2).$$

11. 设 X_1, \dots, X_{n_1} 和 Y_1, \dots, Y_{n_2} 分别是取自两个相互独立的正态总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2,\sigma_2^2)$,则

$$F = \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1).$$

第7章 ■参数估计

1. 从总体 ξ 中取一样本 (X_1, \dots, X_n) , $E\xi = \mu$, $D\xi = \sigma^2$, 则 $E\overline{X} = \eta$

$$EX = \mu,$$

 $ES^2 = \sigma^2.$

2. 从总体中随机取出两个相互独立的样本 $(X_{11}, \dots, X_{1n_1})$ 和 $(X_{21}, \dots, X_{2n_2})$,则

$$\overline{X} = \frac{1}{n_1 + n_2} (n_1 \overline{X_1} + n_2 \overline{X_2}),$$

$$S^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}.$$

3. 设样本 (X_1, \dots, X_n) 来自正态总体 $N(\mu, \sigma^2)(\sigma$ 已知),则 μ 的置信度为 $1-\alpha$ 的置 信区间为

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}}u_{\alpha}, \overline{X} + \frac{\sigma}{\sqrt{n}}u_{\alpha}\right)$$

4. 对方差未知的正态总体,小样本下 段 的区间估计:

 μ 的置信度为 $1-\alpha$ 的置信区间由

$$P\Big(\overline{X} - \frac{S}{\sqrt{n}} t_{\scriptscriptstyle a} < \mu < \overline{X} + \frac{S}{\sqrt{n}} t_{\scriptscriptstyle a} \Big) = 1 - \alpha \, \text{来确定}.$$

5. 小样本下正态总体方差 & 的区间估计:

 σ^2 的置信区间由

$$P\left(\frac{(n-1)S^2}{b} < \sigma^2 < \frac{(n-1)S^2}{a}\right) = 1 - \alpha$$
来确定.

第8章 假设检验

1. 一个正态总体期望的假设检验方法

表 8-1

总体 方差	假 H ₀	设 H ₁	检验 统计量	μ = μ ₀ 时 检验统计 量的分布	拒绝域 R
σ ² 已知	$\mu = \mu_0$ $\mu \leqslant \mu_0$ $\mu \geqslant \mu_0$	$\mu \neq \mu_0$ $\mu > \mu_0$ $\mu < \mu_0$	$U = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$	N(0,1)	$ U \geqslant_{\lambda} P(U \geqslant_{\lambda}) = \alpha$ $U \geqslant_{\lambda} P(U \geqslant_{\lambda}) = \alpha$ $U \leqslant_{-\lambda} P(U \leqslant_{-\lambda}) = \alpha$
σ ² 未知		$\mu \neq \mu_0$ $\mu > \mu_0$ $\mu < \mu_0$	$T = \frac{\overline{X} - \mu_0}{S} \sqrt{n}$	t(n-1)	$ T \geqslant \lambda, P\{ T \geqslant \lambda\} = \alpha$ $T \geqslant \lambda, P\{T \geqslant \lambda\} = \alpha$ $T \leqslant -\lambda, P\{T \leqslant -\lambda\} = \alpha$

2. 一个正态总体方差的假设检验方法

表 8-2

总体期望	假 H ₀	设 <i>H</i> ₁	检验统计量	$\sigma = \sigma_0^2$ 时 检验统计 量的分布	拒绝域R			
μ 已知		$\sigma^2 \neq \sigma_0^2$ $\sigma^2 > \sigma_0^2$ $\sigma^2 < \sigma_0^2$	$\sum_{i=1}^{n}(x_{i}-\mu)^{2}$	$\chi^2(n)$	$ K \geqslant \lambda_2$ 或 $K \leqslant \lambda_1$, $P\{K \leqslant \lambda_1\} = P\{K \geqslant \lambda_2\}$ $= \frac{\alpha}{2}$ $K \geqslant \lambda_2, P\{K \geqslant \lambda_2\} = \alpha$ $K \leqslant \lambda_1, P\{K \leqslant \lambda_1\} = \alpha$			
μ 未知	$\sigma^2 = \sigma_0^2$ $\sigma^2 \leqslant \sigma_0^2$ $\sigma^2 \geqslant \sigma_0^2$	$\sigma^2 > \sigma_0^2$	或 $\sum_{i=1}^{n} (X_i - \overline{X})^2$	$\chi^2 (n-1)$	$K \geqslant \lambda_2$ 或 $K \leqslant \lambda_1$, $P\{K \geqslant \lambda_2\} = P\{K \leqslant \lambda_1\}$ $= \frac{\alpha}{2}$ $K \geqslant \lambda_2 \cdot P\{K \geqslant \lambda_2\} = \alpha$ $K \leqslant \lambda_1 \cdot P\{K \leqslant \lambda_1\} = \alpha$			

3. 两个正态总体期望的假设检验方法

表 8-3

总体 方差	假 H ₀	设 H ₁	检验统计量	μ₁ = μ₂ 时检验统计	拒绝域 <i>R</i>
	$\mu_1 = \mu_2$ $\mu_1 \leqslant \mu_2$ $\mu_1 \geqslant \mu_2$	$\mu_1 \neq \mu_2$ $\mu_1 > \mu_2$	$U=rac{\overline{X}-\overline{Y}}{\sqrt{rac{\sigma_1^2}{m}+rac{\sigma_2^2}{n}}}$	量的分布 N(0,1)	$ U \geqslant \lambda,$ $P\{ U \geqslant \lambda\}$ $= \alpha$ $U \geqslant \lambda,$ $P\{U \geqslant \lambda\}$ $= \alpha$ $U \leqslant -\lambda,$ $P\{U \leqslant -\lambda\}$ $= \alpha$
$\sigma_1^2 = \sigma_2^2$ $= \sigma^2$ σ^2 未知	$\mu_1 = \mu_2$ $\mu_1 \leqslant \mu_2$ $\mu_1 \geqslant \mu_2$	$\mu_1 > \mu_2$	$T = \frac{\overline{X} - \overline{Y}}{\sqrt{\left(\frac{1}{m} + \frac{1}{n}\right)S^2}}$ $S^2 = \frac{(m - 1)S_1^2 + (n - 1)S_2^2}{m + n - 2}$	t(m+n-2)	$ T \geqslant \lambda,$ $P\{ T \geqslant \lambda\}$ $= \alpha$ $T \geqslant \lambda,$ $P\{T \geqslant \lambda\}$ $= \alpha$ $T \leqslant -\lambda,$ $P\{T \leqslant -\lambda\}$ $= \alpha$

4. 两个正态总体方差和假设检验方法

表 8-4

74.0 1							
总体 均值	假 H ₀	设 <i>H</i> ₁	检验统计量	$ \sigma_1^2 = \sigma_2^2 $ 时 检验统计 量的分布	拒绝域 R		
μ ₁ ,μ ₂ 已知	$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 eq \sigma_2^2$	$F = \frac{n \sum_{i=1}^{m} (X_i - \mu_1)^2}{m \sum_{i=1}^{n} (Y_i - \mu_2)^2}$	型 B9 ガ 4p F(m,n)	$F\geqslant \lambda_2$ 或 $F\leqslant \lambda_1$, $P\{F\geqslant \lambda_2\}=$ $P\{F\leqslant \lambda_1\}=rac{lpha}{2}$ $F\geqslant \lambda_2$, $P\{F\geqslant \lambda_2\}$		
		$\frac{\sigma_1 > \sigma_2}{\sigma_1^2 < \sigma_2^2}$	$m \sum_{i=1} (Y_i - \mu_2)^2$		$ \begin{aligned} &= \alpha \\ &F \leqslant \lambda_1, \\ &P \langle F \leqslant \lambda_1 \rangle \\ &= \alpha \end{aligned} $		
<i>u</i> 1 • <i>u</i> 2		$\sigma_1^2 eq \sigma_2^2$	$F = \frac{S_1^2}{S_2^2}$	F(m-1,n-1)	$F\geqslant \lambda_2 \ ext{of} \ F\leqslant \lambda_1 , \ P\langle F\geqslant \lambda_2 angle = \ P\langle F\leqslant \lambda_1 angle = rac{lpha}{2} \ F\geqslant \lambda_2 ,$		
	$\boxed{ \begin{aligned} \sigma_1^2 \leqslant \sigma_2^2 \\ \\ \sigma_1^2 \geqslant \sigma_2^2 \end{aligned} }$	$egin{aligned} \sigma_1^2 > \sigma_2^2 \ & \ & \ & \ & \ & \ & \ & \ & \ & \ $			$P\{F \geqslant \lambda_2\}$ $= \alpha$ $F \leqslant \lambda_1,$ $P\{F \leqslant \lambda_1\}$ $= \alpha$		