Linear Regression with Multiple Regressors

Osman DOGAN

Outline: Linear Regression with Multiple Regressors

- Linear Regression with Multiple Regressors
 - Omitted variable bias
 - Multiple regression and OLS
 - Measures of fit
 - Sampling distribution of the OLS estimator
 - Multicollinearity
- Readings
 - ① Stock and Watson (2020, Chapter 6),
 - 2 Hanck et al. (2021, Chapters 6).

Omitted variable bias

Recall the OLS model:

$$Y = \beta_0 + \beta_1 X + u. \tag{1}$$

■ The error *u* arises because of factors, or variables, that influence *Y* but are not included in the regression function.

Definition 1 (Omitted variable bias)

The bias in the OLS estimator that occurs as a result of an omitted factor, or variable, is called omitted variable bias.

- For omitted variable bias to occur, the omitted variable Z must satisfy two conditions:
 - \bigcirc Z is a determinant of Y (i.e., Z is part of u); and
 - 2 Z is correlated with the regressor X (i.e., $corr(Z, X) \neq 0$).
- Both conditions must hold for the omission of Z to result in omitted variable bias.

Omitted variable bias

■ To see the omitted variable bias, recall the following formula that we derived in Chapter 5:

$$\hat{\beta}_1 - \beta_1 = \frac{\sum_{i=1}^n (X_i - \bar{X}) u_i}{\sum_{i=1}^n (X_i - \bar{X})^2} = \frac{\frac{1}{n} \sum_{i=1}^n v_i}{\left(\frac{n-1}{n}\right) s_X^2},\tag{2}$$

where $v_i = (X_i - \bar{X})u_i \approx (X_i - \mu_X)u_i$.

If $E[(X_i - \mu_X)u_i] = cov(X_i, u_i) = \sigma_{Xu} \neq 0$, then we have

$$\hat{\beta}_1 - \beta_1 = \frac{\sum_{i=1}^n (X_i - X)u_i}{\sum_{i=1}^n (X_i - \bar{X})^2} \xrightarrow{p} \frac{\sigma_{Xu}}{\sigma_X^2} = \frac{\sigma_u}{\sigma_X} \times \frac{\sigma_{Xu}}{\sigma_X \sigma_u} = \frac{\sigma_u}{\sigma_X} \times \rho_{Xu}, \quad (3)$$

where $\rho_{Xu} = \frac{\sigma_{Xu}}{\sigma_X \sigma_u}$.

■ If Assumption 1 is correct, then $\rho_{Xu} = 0$, but if **not** we have the **omitted** variable bias formula:

$$\hat{\beta}_1 \xrightarrow{p} \beta_1 + \frac{\sigma_u}{\sigma_X} \times \rho_{Xu},\tag{4}$$

Conclusion: This formula shows that the OLS estimator $\hat{\beta}_1$ is biased and inconsistent.

How to avoid the omitted variable bias?

- Three possible ways to overcome omitted variable bias:
 - Use a regression in which the omitted variable is no longer omitted: run a multiple regression.
 - Q Run a randomized controlled experiment in which treatment is randomly assigned.
 - Include some variables to the regression that can control for the omitted variable bias, i.e., includes control variables to the regression.
- To introduce the first and the third approach, we need to introduce the multiple linear regression model.

The population multiple regression model

■ Consider the case of two regressors:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i, \quad i = 1, 2, \dots, n,$$
 (5)

where

- \square Y is the dependent variable,
- \square X_1 and X_2 are the two independent variables (regressors),
- \square (Y_i, X_{1i}, X_{2i}) denote the *i*th observation on Y, X_1 , and X_2 ,
- \sqcup β_0 is the unknown population intercept,
- \square β_1 is the effect on Y of a change in X_1 , holding X_2 constant,
- \square β_2 is the effect on Y of a change in X_2 , holding X_1 constant,
- \square *u* is the regression error (omitted factors).
- Population regression function is:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2.$$

The population multiple regression model

- Consider changing X_1 by ΔX_1 while holding X_2 constant:
 - \square Before the change: $E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$.
- □ After the change: $E(Y^*) = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2$.
- Then, the expected change in Y is $\Delta Y = \mathrm{E}(Y^*) \mathrm{E}(Y) = \beta_1 \Delta X_1$. This result suggests that

$$\begin{split} \beta_1 &= \frac{\Delta Y}{\Delta X_1}, \quad \text{holding } X_2 \text{ constant,} \\ \beta_2 &= \frac{\Delta Y}{\Delta X_2}, \quad \text{holding } X_1 \text{ constant.} \end{split}$$

- Thus, β_1 gives the effect of a change in X_1 on the expected change in Y, holding X_2 constant. Similarly, β_2 gives the effect of a change in X_2 on the expected change in Y, holding X_1 constant.
- Alternatively, we can call β_1 the **partial effect** on Y of X_1 , holding X_2 constant. Similarly, β_2 is the **partial effect** on Y of X_2 , holding X_1 constant.
- lacksquare Finally, the intercept term eta_0 is the expected value of Y when $X_1=X_2=0$. $\dot{f I} \ddot{f T} \ddot{f U}$

The OLS estimator in multiple regression

■ With two regressors, the OLS estimator solves:

$$\min_{b_0,b_1,b_2} \sum_{i=1}^n \left[Y_i - (b_0 + b_1 X_{1i} + b_2 X_{2i}) \right]^2.$$

- The OLS estimator minimizes the sum of the squared residuals.
- This minimization problem is solved using calculus.
- This yields the OLS estimators of β_0 , β_1 and β_2 .

- In the test score example, an omitted student characteristic is the percentage of students who are still learning English in the districts. These students are largely located in the immigrant communities.
- These communities are relatively poor and thus have smaller school budgets and higher student-teacher ratio.
- Therefore, the percentage of English learners (PctEL) is correlated with the student-teacher ratio, the first condition for omitted variable bias holds.
- It is plausible that students who are still learning English will do worse on standardized tests than native English speakers, in which case the percentage of English learners is a determinant of test scores and the second condition for omitted variable bias holds.

Using caschools.xlsx, we will consider the following linear model.

TestScore =
$$\beta_0 + \beta_1 \times STR + \beta_2 \times PctEL + u$$
 (7)

Listing 1: Using R

```
# Regression Models---
install.packages("stargazer")
library(stargazer)
install.packages("readxl")
library(readxl)

# Import data
mydata<-read.table("caschool.csv", sep=",", header=TRUE)
# mydata=read_excel("caschool.xlsx",col_names=T,skip=0)
head(mydata)

# OLS estimates---
results!<-lm(testscr~str,data=mydata)
results2<-lm(testscr~str+el_pct,data=mydata)
# Print results
stargazer(results!,results2, type="text", title="OLS Estimation Results")</pre>
```

Listing 2: Using Python

```
# Import data
mydata=pd.read_excel("caschool.xlsx")
# Column names
mydata.columns
# Estimation
model1=smf.ols(formula='testscr~str',data=mydata)
result1=model1.fit()
model2=smf.ols(formula='testscr~str+el pct',data=mvdata)
result2=model2.fit()
# Print results in table form
models=['Model 1', 'Model 2']
results table=summary col(results=[result1.result2].
                          float format = '%0.3f'.
                           stars=True,
                          model_names=models)
results table
```

■ According to results in Table 1, the estimated OLS regression equations are

$$\widehat{TestScore} = 698.9 - 2.280 \times STR,$$

 $\widehat{TestScore} = 686 - 1.10 \times STR - 0.65 \times PctEL.$

Table 1: OLS Estimation Results

	Dependent variable:			
	testscr			
	(1)	(2)		
str	-2.280***	-1.101***		
	(0.480)	(0.380)		
el_pct		-0.650***		
•		(0.039)		
Constant	698.933***	686.032***		
	(9.467)	(7.411)		
Observations	420	420		
R^2	0.051	0.426		
Adjusted R ²	0.049	0.424		
Residual Std. Error	18.581 (df = 418)	14.464 (df = 417)		
F Statistic	22.575*** (df = 1; 418)	155.014*** (df = 2; 417)		
Note:	*p<0.1; **p<0.05; ***p<0.01			

According to results in Table 1, the estimated OLS regression equations are

$$\begin{aligned} & \mathsf{SLRM}: TestScore = 698.9 - 2.280 \times STR, \\ & \mathsf{MLRM}: TestScore = 686 - 1.10 \times STR - 0.65 \times PctEL. \end{aligned}$$

- Notice here that when PctEL is a part of the error term in the SLRM, it is negatively related to Test Score.
- Hence, ρ_{Xu} is negative here and there is downward bias on the OLSE in the SLRM.
- The estimate $\hat{\beta}_1 = -1.10$ in MLRM indicates that when STR increases by one, the test score on average declines by 1.10 points, holding PctEL constant.
- The estimate $\hat{\beta}_2 = -0.65$ indicates that a one percent increase in PctEL reduces the test score on average by 0.65, holding STR constant.

Measure of fit in multiple regression

- The predicted values are $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i}$ for i = 1, 2, ..., n.
- The residuals are $\hat{u}_i = Y_i \hat{Y}_i$. Thus

Actual = Predicted + Residual

$$\implies Y_i = \hat{Y}_i + \hat{u}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i} + \hat{u}_i.$$

The standard error of the regression (SER) is the standard deviation of residuals:

$$\mathsf{SER} = \sqrt{\frac{1}{n-k-1} \sum_{i=1}^{n} \hat{u}_{i}^{2}} = \sqrt{\frac{1}{n-k-1} SSR},$$

where SSR is the sum of squared residuals $SSR = \sum_{i=1}^n \hat{u}_i^2$ and k is the number of regressors.

- The root mean square errors: $RMSE = \sqrt{\frac{1}{n}}SSR$.
- Both SER and RMSE are measures of the spread of the distribution of Y around the regression line.

Measure of fit in multiple regression

■ The \mathbb{R}^2 is the fraction of the variance explained - same definition as in regression with a single regressor:

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{SSR}{TSS},$$

where

- **1** Explained sum of squares: $ESS = \sum_{i=1}^{n} (\hat{Y}_i \bar{\hat{Y}})^2$,
- ② Sum of squared residuals: $SSR = \sum_{i=1}^{n} \hat{u}_{i}^{2}$
- **3** Total sum of squares: $TSS = \sum_{i=1}^{n} (Y_i \bar{Y})^2$.
- In general, the SSR will decrease whenever a new regressor is added to the regression.
- But this means that R^2 generally increases (and never decreases) when a new regressor is added a bit of a problem for a measure of "fit".
- Because the R^2 increases when a new variable is added, an increase in the R^2 does not mean that adding a variable actually improves the fit of the model.
- In this sense, the R^2 gives an inflated estimate of how well the regression fits the data.

Measure of fit in multiple regression

■ The \bar{R}^2 (the adjusted R^2) corrects this problem by "penalizing" you for including another regressor. This measure does not necessarily increase when you add another regressor.

$$\bar{R}^2 = 1 - \frac{n-1}{n-k-1} \times \frac{SSR}{TSS} = 1 - \frac{s_{\hat{u}}^2}{s_V^2}.$$

- Note that $\bar{R}^2 < R^2$, however if n is large the two will be very close.
- Application to test score:
 - ① Table 1 shows that including PctEL in the regression increases the R^2 from 0.051 to 0.426.
 - Thus, including PctEL substantially improves the fit of the regression.
 - § Because n is large and we have only two regressors, the difference between R^2 and \bar{R}^2 is very small: $R^2=0.426$ vs. $\bar{R}^2=0.424$.
 - lacktriangle The SER value 18.6 falls to 14.5 when PctEL is included as a second regressor.

The sampling distribution of OLS estimators

■ Consider the following multiple linear regression model:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_k X_{ki} + u_i, \quad i = 1, 2, \ldots, n.$$
 (8)

■ We will consider this model under the following assumptions:

Assumption 1

The conditional distribution of u given X_{1i}, \ldots, X_{ik} has mean zero, that is, $\mathrm{E}\left(u_i | X_{1i}, X_{i2}, \ldots, X_{ik}\right) = 0$ for $i = 1, 2, \ldots, n$.

Assumption 2

 $(X_{1i},X_{i2},\ldots,X_{ik},Y_i)$, $i=1,2,\ldots,n$, are i.i.d. draws from their joint distribution.

Assumption 3

Large outliers are unlikely: X_1, \ldots, X_k , and Y have finite fourth moments.

Assumption 4

There is no perfect multicollinearity.

The sampling distribution of OLS estimators

- Assumption 1 has the same interpretation as in regression with a single regressor.
- Failure of this condition leads to omitted variable bias, specifically, if an omitted variable
 - lacktriangle belongs in the equation (so is in u) and
 - ${f @}$ is correlated with an included X then this condition fails and there is omitted variable bias.
- Assumption 2 is satisfied automatically if the data are collected by simple random sampling.
- Assumption 3 is the same assumption as we had before for a single regressor. As in the case of a single regressor, OLS can be sensitive to large outliers, so you need to check your data (scatterplots!) to make sure there are no crazy values (typos or coding errors).
- Perfect multicollinearity in Assumption 4 is when one of the regressors is an exact linear function of the other regressors.

The sampling distribution of OLS estimators

- Under Assumptions 1–4, we have the following properties:
 - **1** The sampling distribution of $\hat{\beta}_1$ has mean β_1 , i.e., $E(\hat{\beta}_1) = \beta_1$.

 - \odot When n is large, we have
 - $\hat{\beta}_1$ is consistent: $\hat{\beta}_1 \xrightarrow{p} \beta_1$ (law of large numbers), and
 - ② $\frac{\hat{\beta}_1 \beta_1}{\sqrt{\text{var}(\hat{\beta}_1)}}$ is approximately distributed N(0,1) (CLT)
 - 4 All these results hold for $\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_k$.
- Conceptually, there is nothing new here!

ine Omitted Variable Bias Multiple Regression Model Measure of Fit Sampling Distribution Multicollinearity Matrix Form References

Multicollinearity

- Perfect multicollinearity is when one of the regressors is an exact linear function of the other regressors.
- Suppose there are multiple categories and every observation falls in one and only one category (Freshmen, Sophomores, Juniors, Seniors, Other).
- If you include all these dummy variables and a constant, you will have perfect multicollinearity. This is sometimes called the dummy variable trap.
- Solutions to the dummy variable trap:
 - 1 Omit one of the groups (e.g. Senior), or
 - Omit the intercept
- Imperfect multicollinearity occurs when two or more regressors are very highly correlated.
 - Imperfect multicollinearity (correctly) results in large standard errors for one or more of the OLS coefficients.

Dummy variable trap

- To illustrate the dummy variable trap, we will use a data set from the textbook.
- This data set comes from a survey known as "Current Population Survey" (CPS), done by the Bureau of Labor Statistics in the U.S. Department of Labor.
- The data set provides data on labor force characteristics of the population, including the level of employment, unemployment, and earnings. Approximately 60,000 randomly selected U.S. households are surveyed each month.
- These data are from the March 2016 survey. The file ch8_cps.xlsx contains the following variables.

Variable	Description	
Female	1 if female; 0 if male	
Age	Age (in Years)	
Ahe	Average Hourly Earnings in 2015	
Yrseduc	Years of Education	
Northeast	1 if from the Northeast, 0 otherwise	
Midwest	1 if from the Midwest, 0 otherwise	
South	1 if from the South, 0 otherwise	
West	1 if from the West, 0 otherwise	

There are four regional dummies: northeast, midwest, south and west.
 Observations are collected from these regions.

Dummy variable trap

Consider the following interaction with R.

```
# Dummy Variable Trap---
install.packages("stargazer")
library(stargazer)
install.packages("readxl")
library(readxl)

# Import data
mydata=read_excel("ch8_cps.xlsx",col_names=T,skip=0)

# Summary Statistics
stargazer(as.data.frame(mydata),type="text",title="Summary Statistics")

# Regional dummay variables sum to one: dummy variable trap
mydata$northeast+mydata$midwest+mydata$south+mydata$west+mydata$midwest

# Run Regression---
result=lm(ahe-yrseduc+female+northeast+midwest+south+west,data=mydata)
stargazer(result,type = "latex", title = "Estimation Results")
```


Dummy variable trap

■ The following table includes the summary statistics on the variables.

Table 2: Summary Statistics

Statistic	N	Mean	St. Dev.	Min	Max
ahe	59,668	25.214	17.289	2.000	228.365
yrseduc	59,668	14.094	2.598	6	20
female	59,668	0.439	0.496	0	1
age	59,668	42.885	12.584	15	85
northeast	59,668	0.157	0.364	0	1
midwest	59,668	0.195	0.396	0	1
south	59,668	0.370	0.483	0	1
west	59,668	0.278	0.448	0	1

■ We will consider the following regression model:

$$\begin{aligned} \mathsf{Ahe} &= \beta_0 + \beta_1 \mathsf{Yrseduc} + \beta_2 \mathsf{female} + \beta_3 \mathsf{Northeast} \\ &+ \beta_4 \mathsf{Midwest} + \beta_5 \mathsf{South} + \beta_6 \mathsf{West} + u \end{aligned}$$

■ This regression suffers from the dummy variable trap since

$$Northeast + Midwest + South + West = 1.$$

If you run this regression, R will drop the last dummy variable. That is, the last dummy variable will be the base category.

Table 3: Estimation Results

	Dependent variable:
	ahe
yrseduc	2.981***
	(0.024)
female	-6.367***
	(0.126)
northeast	1.105***
	(0.197)
midwest	-1.382***
	(0.184)
south	-1.108***
	(0.156)
west	
Constant	-13.501***
Constant	(0.356)
Observations	59,668
R^2	0.226
Adjusted R ²	0.226
Residual Std. Error	15.214 (df = 59662) 3,478.146*** (df = 5; 59662)
F Statistic	3,478.146*** (df = 5; 59662)
Note:	*p<0.1; **p<0.05; ***p<0.01

Dummy variable trap

- In Table 3, R dropped the west variable to avoid the dummy variable trap.
- How should we interpret the coefficients on the regional dummies?
- The coefficient on the dummy variable shows the average difference in the dependent variable relative to the base category.
- For example, the estimated coefficient on northeast is 1.105: Holding the other variables constant, a person living in the northeast on average earns 1.105 more dollars hourly than a person living in the west.
- How should we interpret the coefficients on female and yrseduc?
- The coefficient on female is -6.367: Holding other variables constant, women on average earn 6.367 fewer dollars hourly than men.
- \blacksquare The coefficient on yrseduc is 2.981: When yrseduc increases by one year, the average hourly earnings increase by 2.981 dollars, holding other variables constant.

■ Consider the following multiple linear regression model:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_k X_{ki} + u_i, i = 1, 2, \ldots, n.$$
 (9)

Define the following vectors and matrices:

$$\boldsymbol{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}, \, \boldsymbol{U} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}, \, \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix}, \, \boldsymbol{X} = \begin{pmatrix} 1 & X_{11} & \cdots & X_{k1} \\ 1 & X_{12} & \cdots & X_{k2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{1n} & \cdots & X_{kn} \end{pmatrix},$$

where

- $oldsymbol{0}$ $oldsymbol{Y}$ is the $n \times 1$ dimensional vector of n observations on the dependent variable,
- ② X is the $n \times (k+1)$ dimensional matrix of n observations on the k+1 regressors (including the "constant" regressor for the intercept),
- \bullet U is the $n \times 1$ dimensional vector of the n error terms, and
- ${\bf 0}\ \, {\bf \beta}$ is the $(k+1)\times 1$ dimensional vector of the k+1 unknown regression coefficients.

lacksquare We can also express $oldsymbol{X}$ as

$$\boldsymbol{X} = \begin{pmatrix} 1 & X_{11} & \cdots & X_{k1} \\ 1 & X_{12} & \cdots & X_{k2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{1n} & \cdots & X_{kn} \end{pmatrix} = \begin{pmatrix} \boldsymbol{X}_1' \\ \boldsymbol{X}_2' \\ \vdots \\ \boldsymbol{X}_n' \end{pmatrix},$$

where $\pmb{X}_i=(1,X_{1i},\cdots,X_{ki})^{'}$ is the $(k+1)\times 1$ dimensional column vector for $i=1,2,\ldots,n$.

lacksquare Alternatively, we can express $oldsymbol{X}$ as

$$oldsymbol{X} = egin{pmatrix} 1 & X_{11} & \cdots & X_{k1} \ 1 & X_{12} & \cdots & X_{k2} \ \vdots & \vdots & \ddots & \vdots \ 1 & X_{1n} & \cdots & X_{kn} \end{pmatrix} = egin{pmatrix} oldsymbol{l}, oldsymbol{X}_1, oldsymbol{X}_2, \ldots, oldsymbol{X}_k \end{pmatrix},$$

where ${\pmb l}$ is the $n \times 1$ vector of ones and ${\pmb X}_j$ is the jth column of ${\pmb X}$ for $j=1,2,\ldots,k$.

■ Using X_i and β , we can express the model for the *i*th observation as

$$Y_{i} = X_{i}'\beta + u_{i}, i = 1, ..., n.$$
 (10)

Stacking all n observations in (10) yields the multiple regression model in matrix form:

$$Y = X\beta + U. (11)$$

■ The OLS estimator is defined by

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{b}} \sum_{i=1}^{n} (Y_i - \boldsymbol{X}_i' \boldsymbol{b})^2 = \operatorname{argmin}_{\boldsymbol{b}} (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{b})' (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{b}).$$
 (12)

- Let S(b) denote (Y Xb)'(Y Xb).
- The first-order condition for a minimum is

$$\frac{\partial S(\boldsymbol{b})}{\partial \boldsymbol{b}} = -2\boldsymbol{X}'\boldsymbol{Y} + 2\boldsymbol{X}'\boldsymbol{X}\boldsymbol{b} = 0.$$
 (13)

lacktriangle Then, the solution from (13) follows given X is full column rank, i.e., $X^{'}X$ is invertible,

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y}.\tag{14}$$

Two algebraic properties of the OLS estimator

(1) X is orthogonal to the residuals by construction, i.e., the inner product of every column of X and \widehat{U} is zero (they form a right angle):

$$X'\widehat{U} = X'(Y - X\widehat{\beta}) = X'Y - X'X\widehat{\beta} = X'Y - X'X(X'X)^{-1}X'Y$$
$$= X'Y - X'Y = 0.$$
(15)

(2) The least-squares residuals sum to zero. From (15),

$$oldsymbol{X}^{'}\widehat{oldsymbol{U}} = egin{pmatrix} oldsymbol{l}_{i} oldsymbol{X}_{1} & oldsymbol{\hat{U}} = egin{pmatrix} oldsymbol{l}_{i}'\widehat{oldsymbol{U}} & oldsymbol{X}_{1}'\widehat{oldsymbol{U}} \ & oldsymbol{\hat{U}} \ & oldsymbol{\hat{U}} & oldsymbol{X}_{k}'\widehat{oldsymbol{U}} \end{pmatrix} = oldsymbol{0}.$$

■ Notice that $l'\hat{U} = \sum_{i=1}^n \hat{u}_i$ is the sum of least squares residuals and equals zero.

Bibliography I

Hanck, Christoph et al. (2021). Introduction to Econometrics with R. URL: https://www.econometrics-with-r.org/index.html.

Stock, James H. and Mark W. Watson (2020). *Introduction to Econometrics*. Fourth, Pearson.

