Mathematica HEOM, general method with Matsubara frequencies and multiple baths per site

Written on 26.12.2014 by Tobias Kramer (email: tobias.kramer@mytum.de), tidied up 2014-2019 This notebook implements the HEOM algorithm as described in

- [1] Tanimura & Kubo "Time Evolution of a Quantum System in Contact with a Nearly Gaussian-Markoffian Noise Bath", J. Phys. Soc. Jpn. 58, pp. 101-114 (1989)
- [2] Tanimura "Stochastic Liouville, Langevin, Fokker–Planck, and Master Equation Approaches to Quantum Dissipative Systems", J. Phys. Soc. Jpn. 75, 082001 (2006)
- [3] Kreisbeck & Kramer "Long-Lived Electronic Coherence in Dissipative Exciton Dynamics of Light-Harvesting Complexes", J. Phys. Chem. Lett.319 2828-2833 (2012)
- [4] Kramer et al: "Efficient calculation of open quantum system dynamics and time-resolved spectroscopy with distributed memory HEOM (DM-HEOM)" and further references therein.

If you use this notebook for your research, please acknowledge this implementation and share your modifications publicly.

Physical constants

Basic parameters of the system and baths

Hamiltonian (system part)

This is the complete Hamiltonian, including ground state and 2 exciton states

```
In[76]:= Hex // MatrixForm
Out[76]//MatrixForm=
       100 50
       50 200
 In[77]:= HMSI = SetPrecision[Hex * invcmtoJoule, PRECISION];
      Integration time step
 ln[78]:= hSI = SetPrecision[5 * 10^{-15}, PRECISION]; (* time-step for integration [s] *)
       Bath parameters
 In[79]:= NMAX = 4; (* HEOM truncation depth *)
       MATSUBARAS = 1; (* Number of Matsubara frequencies *)
 In[81]:= TSI = 200; (* temperature, common to all baths [K] *)
      vinv = 50 * 10^{-15}; (* inverse bath correlation time [s] *)
      λinvcm = 15; (* reorganization energy [1/cm] *)
      Ωinvcm = 0; (* shift of spectral density peak,
      use pairs of peaks +/- shifted for building structured J(\omega) *)
 In[85]:= βSI = SetPrecision[1 / (kBSI TSI), PRECISION];
      v1SI = SetPrecision[2\pi/(\beta SI \hbar SI), PRECISION];
      νSI = SetPrecision[1 / νinv, PRECISION];
      \( \lambda SI = SetPrecision[\( \lambda invcm * invcmtoJoule, PRECISION] \);
      ΩSI = SetPrecision[Ωinvcm * invcmtoJoule / ħSI, PRECISION];
 In[90]:= NUMBATHS = 2; (* total number of independent baths *)
      MAXBATHSPERSITE = 1; (* maximum number of baths coupling to a site *)
       BASTable = {
          {0}, (* C++ indexing starts at site 0 = ground state,
          -1 indicates NO coupling *)
          {1}};
       (* for compatibility construct also the reverse map: *)
       (* coupling: bath2sites[[b]][[s]] → bath b is coupled to site s *)
       bath2sites = DeleteCases[
         Table[Flatten[Drop[Position[BASTable, s], {}, -1]], {s, 0, SITES - 1}], {}]
 Out[93]= \{\{1\}, \{2\}\}
 In[94]:= bath2sites[[1]] (* first bath connects to sites 1 in MM counting *)
       bath2sites[[2]] (* second bath connects to sites 2 in MM counting) *)
 Out[94]= \{1\}
 Out[95]= \{2\}
```

Initialize each bath

No shift Ω for the moment...

```
ln[96] = \nu NUMBATHS[\nu_{,} \Omega_{,}] = Table[\nu_{,} \{i, 1, NUMBATHS\}]
        \lambda NUMBATHS[\lambda] = Table[\lambda, \{i, 1, NUMBATHS\}]
Out[96]= \{ \vee, \vee \}
Out[97]= \{\lambda, \lambda\}
```

HEOM: construction of auxiliary density operators (ADO) and indexing setup

```
In[98]:= ADOWIDTH = NUMBATHS * MATSUBARAS;
     ADOTuple =.;
     ADOTuple = {};
     For [nd = 0, nd \leq NMAX,
        iplist = IntegerPartitions[nd, ADOWIDTH];
        For[i = 1, i ≤ Length[iplist],
         AppendTo[ADOTuple, Permutations[PadRight[iplist[[i]], ADOWIDTH]]];
         i++];
        nd++];
     ADOTuple = Partition[Flatten[ADOTuple], ADOWIDTH];
In[103]:= ADOTupleDict =
        Table[FromCharacterCode[ADOTuple[[i]]], {i, 1, Length[ADOTuple]}];
     assoc = Association[Table[ADOTupleDict[[i]] → i, {i, 1, Length[ADOTuple]}]];
     To implement the PLUS/MINUS actions on index tuples, we define the DD possibilities to add/sub-
     tract 1 from the tuple elements.
In[105]:= null = Table[0, {i, 1, ADOWIDTH}];
     poperator = Permutations[Table[If[i == 1, 1, 0], {i, 1, ADOWIDTH}]];
     moperator = Permutations[Table[If[i == 1, -1, 0], {i, 1, ADOWIDTH}]];
     For each tuple we now perform the PLUS operation and look up in the association map to which uid
     the PLUS operator leads.
     Note that only index tuples with a depth < NMAX do have a PLUS link. Non-existing links are point-
     ing to uid=-1.
In[108]:= PlusIndex = .;
     PlusIndex = Table[-1, {i, 1, ADOWIDTH * Length[ADOTuple]}];
     For [uid = 0, uid < Length [ADOTuple],
        For[j = 0, j < ADOWIDTH,</pre>
         tc = FromCharacterCode[ADOTuple[[uid + 1]] + poperator[[j + 1]]];
         PlusIndex[[ADOWIDTH * uid + j + 1]] = Lookup[assoc, tc, -1];
         j++];
        uid++1;
     PlusIndex = Partition[PlusIndex, ADOWIDTH];
```

For each tuple we now perform the MINUS operation and look up in the association map to which uid the MINUS operator leads.

Note that only tuple elements >= 1 do have a MINUS link. Non-existing links are pointing to uid=-1.

```
In[112]:= MinusIndex = .;
         MinusIndex = Table[-1, {i, 1, ADOWIDTH * Length[ADOTuple]}];
         For [uid = 0, uid < Length [ADOTuple],
             For[j = 0, j < ADOWIDTH,</pre>
               testADOTuple = ADOTuple[[uid + 1]] + moperator[[j + 1]];
               If[MemberQ[testADOTuple, -1],
                 MinusIndex[[ADOWIDTH * uid + j + 1]] = -1;
                 tc = FromCharacterCode[testADOTuple];
                 MinusIndex[[ADOWIDTH * uid + j + 1]] = Lookup[assoc, tc, -1];
               ];
               j++];
             uid++];
         MinusIndex = Partition[MinusIndex, ADOWIDTH];
In[116]:= Print["Total number of ADOs: ", Length[ADOTupleDict]]
         Total number of ADOs: 15
    Setup of the operators
 \text{ln[117]:= } \nu b k [b\_, k\_, \hbar\_, \nu\_, \lambda\_, \beta\_, \nu 1\_, \Omega\_] := \text{If}[k == 0, \nu \text{NUMBATHS}[\nu, \Omega][[b]], 2 \pi k / (\beta \hbar)] 
ln[118]:= cbk[b_, k_, \hbar_, \nu_, \lambda_, \beta_, \nu1_, \Omega_] :=
           If [k = 0, \nu NUMBATHS[\nu, \Omega][[b]] \lambda NUMBATHS[\lambda][[b]] Cot[\beta \hbar \nu NUMBATHS[\nu, \Omega][[b]] / 2],
              4 \lambdaNUMBATHS[\lambda][[b]] \nuNUMBATHS[\nu, \Omega][[b]]
               \frac{(2\,\pi\,k\,/\,(\beta\,\hbar)\,)}{(2\,\pi\,k\,/\,(\beta\,\hbar)\,)^{\,2}\,-\,(\nu NUMBATHS[\nu\,,\,\Omega]\,[\,[b\,]\,])^{\,2}}\Big]
ln[119]:= bktt[b_, k_] := (b-1) * MATSUBARAS + k + 1
In[120]= kkOp[k_] := DiagonalMatrix[Table[If[i == k, 1, 0], {i, 1, SITES}]]
ln[121] = \phi k[k_{,} A_{]} := i (kk0p[k].A - A.kk0p[k])
         Vcross[k_, A_] := kk0p[k].A - A.kk0p[k]
         Vcirc[k_{,}A_{]} := kk0p[k].A + A.kk0p[k]
\ln[124] = \theta \text{kMA}[b_, s_, k_, A_, \hbar_, \nu_, \lambda_, \beta_, \nu_1, \Omega_] :=
          If \left[k = 0, \left(\frac{i \lambda \vee \text{Cot}\left[\frac{\beta \vee h}{2}\right]}{\hbar}\right] \text{ Vcross[bath2sites[[b]][[s]], A]} +
                \frac{\text{Vcirc[bath2sites[[b]][[s]], A] } v \lambda}{},
              \frac{4\,\dot{\mathtt{n}}\,\,\gamma\,\lambda\,\,\nu\mathsf{bk}\,[\,\mathsf{b}\,,\,\mathsf{k}\,,\,\,\check{\mathtt{n}}\,,\,\,\gamma\,,\,\,\lambda\,,\,\,\beta\,,\,\,\gamma\,\mathbf{1}\,,\,\,\Omega\,]}{\left(\,-\,\beta\,\,v^{2}\,\,\check{\mathtt{n}}^{2}\,+\,\beta\,\,\check{\mathtt{n}}^{2}\,\,\nu\mathsf{bk}\,[\,\mathsf{b}\,,\,\,\mathsf{k}\,,\,\,\check{\mathtt{n}}\,,\,\,\gamma\,,\,\,\lambda\,,\,\,\beta\,,\,\,\nu\,\mathbf{1}\,,\,\,\Omega\,]^{\,2}\right)}\,\,\mathsf{Vcross}\,[\,\mathsf{bath2sites}\,[\,[\,\mathsf{b}\,]\,]\,[\,[\,\mathsf{s}\,]\,]\,,\,\,\mathsf{A}\,]\,\Big]}
```

The final HEOM equation (in similar notation to [R3])

```
log[125]:= dodtMASC[HM_, oM_, uid_, \hbar_, \nu_, \lambda_, \beta_, \nu1_, \Omega_] :=
                                       \begin{bmatrix} \frac{1}{n} \\ -\frac{1}{n} \end{bmatrix} (HM.\sigmaM[[uid]] - \sigmaM[[uid]] \cdot HM) - \sigmaM[[uid]]
                                                         \sum_{b=1}^{\text{NUMBATHS MATSUBARAS}-1} \sum_{k=0}^{\text{ADOTuple}[[\text{uid}]][[\text{bktt}[b, k]]]} \nu b k[b, k, \hbar, \nu, \lambda, \beta, \nu 1, \Omega] -
                                                                                   \sum_{k=0}^{MATSUBARAS-1} \frac{cbk[b, k, \hbar, \nu, \lambda, \beta, \nu 1, \Omega]}{\hbar \nu bk[b, k, \hbar, \nu, \lambda, \beta, \nu 1, \Omega]}
                                                                       Vcross[bath2sites[[b]][[s]], Vcross[bath2sites[[b]][[s]], \sigma M[[uid]]]] + \sigma M[[uid]] + \sigma M[[uid
                                                                                                                                                                           Sqrt[(ADOTuple[[uid]][[bktt[b, k]]] + 1)
                                                                                           Abs[cbk[b, k, \hbar, \nu, \lambda, \beta, \nu1, \Omega] / \hbar]]
                                                                             φk[bath2sites[[b]][[s]], σM[[PlusIndex[[uid]][[bktt[b, k]]]]]]
                                                                                                                                                                                            \sum_{k=0}^{1} Sqrt[ADOTuple[[uid]][[bktt[b, k]]] /
                                                                                           Abs[cbk[b, k, \hbar, \nu, \lambda, \beta, \nu1, \Omega] / \hbar]]
                                                                             θkMA[b, s, k, σM[[MinusIndex[[uid]][[bktt[b, k]]]]], ħ,

uNUMBATHS[
u, 
u][[
u]], 
uNUMBATHS[
u][[
u]], 
u, 
u]
```

Running the HEOM algorithm within Mathematica

Now use the matrices and include as last element a zero matrix, this ensures that whenever σ M[-1] is called, it does not contribute, since the array index -1 maps to the last element (=the zeroed matrix).

```
In[126]:= nM = DiagonalMatrix[Table[0, {i, 1, SITES}]]
       σM0 = Table[nM, {i, 1, Length[ADOTuple]}];
Out[126]= \{ \{ 0, 0 \}, \{ 0, 0 \} \}
       Set the initial density matrix
in[128]:= rho0 = DiagonalMatrix[Table[If[i == 1, 1, 0], {i, 1, SITES}]]
Out[128]= \{\{1, 0\}, \{0, 0\}\}
In[129]:= rho0 // MatrixForm
        1 0
        0 0
```

Initialize one member of the hierarchy with the initial density matrix, append the zero matrix at the end for the -1 links

```
In[130] = \sigma M0[[1]] = rho0;
       AppendTo [\sigmaM0, nM];
```

Taylor integration

```
In[132]:= m = 200; (* number of steps *)
      YTA4 = T = Table[0, {m + 1}];
      T[[1]] = 0;
      YTA4[[1]] = \sigmaM0;
      Timing[
        For [j = 1, j \le m, j++,
         k1 = SetPrecision[
            hSI Table[dσdtMASC[HMSI, YTA4[[j]],
                                                             i, \hbarSI, \nuSI, \lambdaSI, \betaSI, \nu1SI, \OmegaSI],
               {i, 1, Length[ADOTuple]}], PRECISION];
         AppendTo[k1, nM];
         YTA4[[j+1]] = SetPrecision[YTA4[[j]]+k1/1!, PRECISION];
         k2 = hSI Table[d\sigma dtMASC[HMSI, k1, i, \hbar SI, vSI, \lambda SI, \beta SI, v1SI, \Omega SI],
             {i, 1, Length[ADOTuple]}];
         AppendTo[k2, nM];
         YTA4[[j+1]] = SetPrecision[YTA4[[j+1]] + k2 / 2!, PRECISION];
         k1 = hSI Table[d\sigma dtMASC[HMSI, k2, i, \hbar SI, vSI, \lambda SI, \beta SI, v1SI, \Omega SI],
             {i, 1, Length[ADOTuple]}];
         AppendTo[k1, nM];
         YTA4[[j + 1]] = SetPrecision[YTA4[[j + 1]] + k1 / 3!, PRECISION];
         k2 = hSI Table[d\sigma dtMASC[HMSI, k1, i, \hbar SI, vSI, \lambda SI, \beta SI, v1SI, \Omega SI],
             {i, 1, Length[ADOTuple]}];
         AppendTo[k2, nM];
         YTA4[[j+1]] = SetPrecision[YTA4[[j+1]] + k2/4!, PRECISION];
         T[[j+1]] = hSI * j;
        ]]
Out[136]= {7.79, Null}
```

```
In[137]:= p = ListPlot[{
           Transpose[{T * 10 ^ 12, Re[YTA4[[All, 1, 1, 1]]]}],
           Transpose[{T * 10 ^ 12, Re[YTA4[[All, 1, 2, 2]]]}],
           Transpose[{T * 10 ^ 12, Re[YTA4[[All, 1, 1, 2]]]}],
           Transpose[{T * 10 ^ 12, Im[YTA4[[All, 1, 1, 2]]]}]
          }, PlotLabels \rightarrow {Text["\rho_{11}"], Text["\rho_{22}"], Text["Re\rho_{12}"], Text["Im\rho_{12}"]},
         Joined → True, PlotRange → All, ImageSize → 220,
         Frame → True, AspectRatio → 1.4, LabelStyle → Directive[Black, 15],
         FrameTicks \rightarrow {{{0, 0.5, 1.0}, None}, {{0, 0.5, 1.0}, None}},
         GridLines → Automatic]
        1.
                                  \rho_{11}
      0.5
                                  \rho_{22}
Out[137]=
                                  {
m Im}
ho_{12}
         0
                                  {\sf Re}
ho_{12}
          0
                   0.5
                              1.
```

In[138]:= (*Export["fig_oqsd.png",p,ImageResolution→200]*)