Minimum Concurrency for Assembling Computer Music

Carlos Eduardo Marciano Presenter

Abilio Lucena

Felipe M. G. França

Luidi G. Simonetti

Systems and Computing Engineering Program Federal University of Rio de Janeiro (UFRJ)

INOC 2019

cemarciano@poli.ufrj.br

- 1 Introduction
- 2 SER
- 3 Minimum Concurrency
- 4 Musical Application
- 5 Conclusion

Motivation

in 1965 to illustrate deadlocks, starvation and race condition. Variant with two states:

■ The *Dining Philosophers*: proposed by Edsger Dijkstra

"eating" (consuming resources) or "hungry" (ready to eat).

Figure 1: The Dining Philosophers [1].

Resource Graph

- Nodes represent processes to be scheduled.
- Edges represent shared resources between two nodes.
- How to schedule nodes in order to attain justice and prevent classic scheduling problems?

Figure 2: Resource Graph for the *Dining Philosophers*.

Scheduling by Edge Reversal (SER)

- Distributed solution for heavily loaded neighborhood-constrained systems.
- Acyclic orientation: sinks operate simultaneously and revert their edges, forming new sinks.
- Justice: all nodes operate the same number of times within a period.

Figure 3: DAG representing the Dining Philosophers.

SER Example

SER

Applications

(d) Road junctions [2].

(f) Firefighting by autonomous robots [4]. Figure 4: SER applications.

Definitions

$$\kappa_{3} = \{i_{0}, ..., i_{|\kappa_{3}-1|}, i_{0}\}$$

$$\kappa_{1} = \{i_{0}, ..., i_{|\kappa_{1}-1|}, i_{0}\}$$

$$\kappa_{2} = \{i_{0}, ..., i_{|\kappa_{2}-1|}, i_{0}\}$$

$$n_{cw}(\kappa,\omega) = 3$$

 $n_{ccw}(\kappa,\omega) = 1$

Definitions

Simple Cycle

$$\kappa_{3} = \{i_{0}, ..., i_{|\kappa_{3}-1|}, i_{0}\}$$

$$\kappa_{1} = \{i_{0}, ..., i_{|\kappa_{1}-1|}, i_{0}\}$$

$$\kappa_{2} = \{i_{0}, ..., i_{|\kappa_{2}-1|}, i_{0}\}$$
...

$$n_{cw}(\kappa,\omega) = 3$$

 $n_{ccw}(\kappa,\omega) = 1$

Simple Cycle

$$\kappa_{3} = \{i_{0}, ..., i_{|\kappa_{3}-1|}, i_{0}\}$$

$$\kappa_{1} = \{i_{0}, ..., i_{|\kappa_{1}-1|}, i_{0}\}$$

$$\kappa_{2} = \{i_{0}, ..., i_{|\kappa_{2}-1|}, i_{0}\}$$
...

Acyclic Orientation

$$n_{cw}(\kappa,\omega) = 3$$

 $n_{ccw}(\kappa,\omega) = 1$

Definitions

$\frac{\mathsf{Simple}}{\mathsf{Cycle}}$

$$\kappa_{3} = \{i_{0}, ..., i_{|\kappa_{3}-1|}, i_{0}\}$$

$$\kappa_{1} = \{i_{0}, ..., i_{|\kappa_{1}-1|}, i_{0}\}$$

$$\kappa_{2} = \{i_{0}, ..., i_{|\kappa_{2}-1|}, i_{0}\}$$
...

Acyclic Orientation

Direction of Orientation

$$n_{cw}(\kappa,\omega) = 3$$

 $n_{ccw}(\kappa,\omega) = 1$

\overline{SER} Concurrency $(\gamma:\Omega\to\mathbb{R})$, dynamic definition

$$\gamma(\omega) = \frac{\# of times each node operates}{period length}$$

SER Concurrency $(\gamma:\Omega\to\mathbb{R})$, static definition

$$\gamma(\omega) = \min_{\kappa \in K} \left\{ \frac{\min \left\{ n_{cw}(\kappa, \omega), n_{ccw}(\kappa, \omega) \right\}}{|\kappa|} \right\}$$

Roadmap

- 1 Introduction
- 2 SER
- 3 Minimum Concurrency
- 4 Musical Application
- 5 Conclusion

$$\gamma(\omega) = \min_{\kappa \in K} \left\{ \frac{\min \left\{ n_{cw}(\kappa, \omega), n_{ccw}(\kappa, \omega) \right\}}{|\kappa|} \right\}$$

■ NP-Complete [5]: Minimize $\gamma(\omega)$ over all $\omega \in \Omega$:

$$\gamma^* = \min_{\omega \in \Omega} \left\{ \min_{\kappa \in K} \left\{ \frac{\min \left\{ n_{cw}(\kappa, \omega), n_{ccw}(\kappa, \omega) \right\}}{|\kappa|} \right\} \right\}$$

■ NP-Complete [5]: Minimize $\gamma(\omega)$ over all $\omega \in \Omega$:

$$\gamma^* = \min_{\omega \in \Omega} \left\{ \min_{\kappa \in K} \left\{ \frac{\min \left\{ n_{cw}(\kappa, \omega), n_{ccw}(\kappa, \omega) \right\}}{|\kappa|} \right\} \right\}$$

■ NP-Complete [5]: Minimize $\gamma(\omega)$ over all $\omega \in \Omega$:

$$\gamma^* = \min_{\omega \in \Omega} \left\{ \min_{\kappa \in K} \left\{ \frac{\min \left\{ n_{cw}(\kappa, \omega), n_{ccw}(\kappa, \omega) \right\}}{|\kappa|} \right\} \right\}$$

■ NP-Complete [5]: Minimize $\gamma(\omega)$ over all $\omega \in \Omega$:

$$\gamma^* = \min_{\omega \in \Omega} \left\{ \min_{\kappa \in K} \left\{ \frac{\min \left\{ n_{cw}(\kappa, \omega), n_{ccw}(\kappa, \omega) \right\}}{|\kappa|} \right\} \right\}$$

Lemma 1

$$\gamma^* = \min_{\kappa \in K} \left\{ \frac{1}{|\kappa|} \right\}$$

■ We still need to find ω^* such that $\gamma(\omega^*) = \gamma^*$:

Algorithm 1: Obtaining an orientation in linear time that leads to minimum concurrency.

Input: Undirected graph G = (V, E) and longest cycle $\kappa^* \subseteq V$

- Assign increasing ids to each vertex of κ^*
- Assign increasing ids (strictly greater than the ones in κ^*) to remaining vertices
- Create an "empty" orientation ω^*
- Orient edges towards the smaller (or larger) ids

return ω^*

Experimental Results

■ Simple Cycle Problem model from Lucena et al. [6]:

Nodes	р	Avg. Edges	Solved	Avg. Min. Conc.	CPU Time (s)
200	0.01	391	10	1/178	0.6 (± 0.9)
200	0.1	3 780	10	1/200	6.5 (± 7.3)
1000	0.002	2 062	10	1/905	$73.2~(\pm~51.4)$
1000	0.02	19 695	10	1/1000	797.0 (\pm 547.3)
1000	0.2	179 806	3	1/1000	$2\ 619.9\ (\pm\ 1\ 015.0)$
2000	0.001	4 091	10	1/1805	$425.9 \ (\pm\ 371.3)$
2000	0.01	39 807	3	1/2000	$2\ 107.9\ (\pm\ 1\ 561.5)$
2000	0.1	380 199	0	_	_

Table 1: Experiments for finding minimum concurrency of random graphs G(n,p).

Musical Application

Roadmap

- Minimum Concurrency
- 4 Musical Application
- 5 Conclusion

Musical Context

(i) Buddy Rich, jazz.

(k) Joe Bonamassa, blues,

Figure 5: Virtuosos (Creative Commons).

- Computer generation of melody has been studied since the early 1950's [7].
- Two approaches: explicit (in which composition rules are specified by humans) and implicit [8].
- Western music: features counterpoint (or polyphony), with multiple melodic voices [9].

Musical Phrases

■ In blues, jazz and rock music, it's common to exist a "question/answer" dynamic with musical phrases:

Figure 6: Examples of music tablature [10].

Assembling Maximum-length Tracks

- We'd like our model to capture the following restrictions:
 - A consequent phrase may only be played after an antecedent phrase, forming a lick;
 - Only phrases of the same type (antecedent or consequent) may be played simultaneously;

- Phrases of different intensities (e.g. note counts) may not go well together;
- The final composition must be a loop, include all phrases and be of maximum length.

Figure 7: Modelling example.

Conclusion

- Contributions: computational strategy for obtaining minimum concurrency and new approach for creating musical tracks.
- The *MIDI* standard: hour-long tracks and potential source of inspiration for artists.
- Future work: computational model for maximum concurrency under SER; investigate octave information for better-quality polyphony.

(a) Maximum concurrency.

(b) Minimum concurrency.

Figure 8: Extreme concurrencies.

troduction SER Minimum Concurrency Musical Application Conclusion

Closure

Thank you!

Questions & Answers

This presentation is available in PDF format at: https://tinyurl.com/inoc2019-32

Bibliography I

- [1] TANENBAUM, A. S., Modern Operating Systems. 3rd ed., pp. 143-165.
 - Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2007.
- [2] CARVALHO, D., PROTTI, F., DE GREGORIO, M., et al., "A Novel Distributed Scheduling Algorithm for Resource Sharing Under Near-Heavy Load", Lecture Notes in Computer Science, v. 3544, pp. 431-442, 2004.
- LENGERKE, O., ACUÑA, H. G., DUTRA, M. S., et al., "Distributed control of job-shop [3] systems via edge reversal dynamics for automated guided vehicles", 1st International Conference on Intelligent Systems and Applications, pp. 25–30, 2012.
- [4] ALVES, D. S. F., SOARES, E. E., STRACHAN, G. C., et al., A Swarm Robotics Approach to Decontamination, In: Mobile Ad Hoc Robots and Wireless Robotic Systems: Design and Implementation.

1st ed., pp. 107-122.

Hershev, PA, USA: IGI Publishing Hershev, 2012.

- [5] ARANTES JR, G. M., Trilhas, Otimização de Concorrência e Inicialização Probabilística em Sistemas sob Reversão de Arestas, Ph.D. Thesis, Prog. de Eng. de Sist. e Comp., Univ. Fed. do Rio de Janeiro, 2006.
- [6] LUCENA, A., DA CUNHA, A. S., SIMONETTI, L., "A New Formulation and Computational Results for the Simple Cycle Problem", Electronic Notes in Discrete Mathematics, v. 44, no. 5, pp. 83-88, 2013.

Bibliography II

- [7] NIERHAUS, G., Algorithmic Composition: Paradigms of Automated Music Generation. Springer-Verlag: Vienna, Austria, 2009.
- [8] SHAN, M.-K., CHIU, S.-C., "Algorithmic compositions based on discovered musical patterns", Multimedia Tools and Applications, v. 46, n. 1, pp. 1–23, Jan. 2010.
- [9] SCHMIDT-JONES, C., Understanding Basic Music Theory. OpenStax CNX: Houston, TX, USA, 2007.
- [10] BELL, J., 144 Blues Guitar Licks. JamString: East Midlands, UK, 2015, mobile application. Version 15.41942290.