

Exam File Provided By The UofS IEEE Student Branch

ieee.usask.ca

EE323

Instructor: A. Dinh

Final Examination

Date: December 11, 2001 Time: 9:00am – 12:00pm

Solution

Open books, open notes.

Good luck and have a Merry Christmas.

1. Question 1: (20 marks)

For the circuits (a) and (b) below, derive transfer functions V_{OUT}/V_{IN} as a function of frequency. For R=10K and C=15.9nF, sketch amplitude and phase response of V_{OUT}/V_{IN} .

$$v_1 = -\frac{Rc}{R}v_{in}, v_0 = -\frac{R}{Rc}v_1$$

$$\begin{array}{c}
\Rightarrow v_o = \left(-\frac{2}{2\sigma}\right) \left(-\frac{2c}{R}\right) v_{in} \\
v_o = v_{in} \Rightarrow T(s) = \frac{v_o}{v_i} = 1
\end{array}$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1$$

2. Question 2: (20 marks)

The feedback diagram shown below describes an oscillator circuit. In this case, $|P(\omega)|=0.1$ and $\nabla P(\omega)=-135^{\circ}$ for all ω .

- a) Find the frequency of oscillation.
- b) Find the minimum value of A_O needed to maintain oscillation.

The get -180°,
$$A\beta$$
 must be -45° some $AP(\omega) = -135°$

$$-45° = -tan(\frac{1}{6}) \text{ or } \frac{\omega}{6} = 1 \quad |\omega = 6| \text{ perfs}$$

$$f = \frac{6}{247} = 0.95 \text{ Hz}$$

$$A\beta P = 1 \Rightarrow A = \frac{1}{\beta P} = \frac{1}{|B_{co}|} = 0.1$$

$$|B(\omega)|_{-\frac{3}{1+j}} = \frac{3}{\sqrt{3}}$$

$$A = \frac{1}{\sqrt{3}} = \frac{\sqrt{2}}{\sqrt{3}} = 4.7$$

3. Question 3: (20 marks)

For the circuit below, find the loop gain L(s), L(j\omega), the frequency for zero loop-phase. Find R2/R1 for oscillation.

$$\frac{v_{\mathcal{F}}}{v_{o}} = \frac{1}{s_{\mathcal{R}C} + 3 + \frac{1}{s_{\mathcal{R}C}}} = \frac{1}{3 + j(\omega_{\mathcal{R}C} - \frac{1}{\omega_{\mathcal{R}C}})}$$

phase = 0
$$\Rightarrow$$
 $\omega RC = \frac{1}{RC}$ or $\omega = \frac{1}{RC}$

then at
$$\omega = \frac{1}{RC}$$
, $\frac{v_f}{v_o} = \frac{1}{3}$

4. Question 4: (20 marks)

Consider the circuit in a temperature measurement below. The A/D is a 5-bit successive-approximation A/D converter type with an analog span of 0 to 10V, find the input voltage of the A/D converter. The thermistor, R_T , has a resistance of 2K at 20° C and the coefficient β is assumed to be constant at 3650, find temperature of the thermistor.

5. Question 5: (20 marks)

In a digital instrumentation system to measure velocity of a fluid pipe, the A/D converter has a sampling rate of 20Ksample/second. Find the Nyquyst frequency of the analog signal from the transducer. Design an <u>active filter</u> for anti-aliasing purpose in front of the A/D converter. The filter should have a cut off frequency at Nyquist frequency with a selection of F_{50}/F_3 is at least 3. Since the output signal of the transducer has a wide range of frequency, no ripple is allowed in the filter passband and only 10K resistors are available to realize the filter.

		Table 12-1. Design Data for Chebyshev Filters								
Ripple = 0 dB (Butterworth)	Cutoff frequency = section frequency = 1.0									
Number of sections	F ₂	Q Sct 1	Q Sct 2	Q Sc 3	Q Sct 4	Q Sct 5	Q Set 6	Q Sct 7	Q Sct 8	
1	17.79	0.7071				***************************************				
2	4.22	0,5411	1,305				_			
3	2.61	0.5176	0.7071	1.932						
4	2.05	0.5098	0.8014	0.8999	2.563					
5	1.78	0.5062	0.6612	0.7071	1,101	3,196				
6	1.61	0.5043	0.5412	0.6302	0.8213	1,307	3.831			
7	1.51	0.5032	0.5297	0.5905	0.7071	0.9401	1.514	4.485		
å	1.43	0.5024	0.6225	0.5669	0.6486	0.7882	1.081	1.722	5.101	
Number of sections	Foo Fo	F Sct 1 Q Sct 1	F Set 2 Q Set 2	F Set 3 Q Set 3	F Sot 4 Q Sot 4	F Sat 5 Q Sat 5	F Set 6 Q Set 6	F Set 7 Q Set 7	F Sot 8 Q Sot 8	
1	F ₃	0.9321								
		0.7674						•		
2	3.36	0.6491	0.9491							
_		0.6190	2.185							
3	1.95	0.4688	0.7628	0.9717						
		0.5007	1.333	4.639						
4	1.52	0.3623	0.6129	0.8493	0.9828			-	•	
		0.5024	1.184							
5	1.32	0.3623 0.5934 0.2940	0.5065	2.456	8.092			-		
	1406	0.5906	1.128	0.7292	0.8984	0.9867				
6	1.22			2.046	3.926	12.54		•		
•	1-42	0.2469	0.4296	0.6314	0.8038	0.9275	0.9920			
7	4.44	0.5860	1.100	1.083	3.123	6.733	17.98			
,	1.16	0.2126	0.3723	0.5639 1.798	0.7187	0.8623 4.403	0.9459	0.9941		
		0.5881	1.084	1.798	2.794	4.408	7.871	24.40 ·		
8 .	1.12	0.1866	0.3260	0.4920	0.6463	0.7796	0.8862	0.9502	0.9965	
		0.5875	1.074	1.748	2,619	3.860	5,863	10.34	34.82	

$$f_N = \frac{f_S}{2} = \frac{20KH_S}{2} = 10KH_S$$

$$\frac{f_{SO}}{f_S} = 3 \Rightarrow 3 \text{ section Use f Sallen Key (Ripple = odls)}$$

(2: 1.537NF

TAKURANI SUAPATRALIA SUBGONIAN PERINTI WESTIN INISANG BERUBAHAN SUBGO SERGIO SE ENGINE SERGIA DE PERINTI PERINT