# 1 Тропическая геометрия нейронных сетей

В разделе 5 нейронные сети определяются с помощью тропической алгебры, что позволяет нам изучать их с помощью тропической алгебраической геометрии. Мы покажем, что граница принятий решений нейронной сети — это подмножество тропической гиперповерхности, соответствующего тропического полинома (Раздел 6.1). Мы увидим, что в некотором смысле, зонотопы образуют геомтрические строительные блоки для нейронных сетей (Раздел 6.2). Затем мы докажем, что геометрия функции, представленной нейронной сетью, становится значиттельно более сложной с увеличением ее количества слоёв.

### 1.1 Границы решений нейронной сети

Предоставим оценки на количество положительных и отрицательных областей и покажем, что существует тропический многочлен, чья тропическая гиперповерхность содержит границу решений.

Утверждение 1 (Тропическая геометрия границы решений). Пусть  $\nu$ :  $\mathbf{R}^d \to \mathbf{R} - L$ -слойная нейронная сеть, удовлетворяющая предположению (a)-(c) с  $t^{(L)}=-\infty$ . Пусть функция счета  $s:\mathbf{R}\to\mathbf{R}$  является иньъективной с порогом принятия решений с в его диапазоне. Если  $\nu=f\otimes g$ , где f и g — тропические многочлены, тогда

- 1. Его граница решений  $B = \{x \in \mathbf{R}^d : \nu(x) = s^{-1}(c)\}$  делит  $\mathbf{R}^d$  на не более чем N(f) связных положительных областей и не более, чем N(g) связных отрицательных областей;
- 2. Его раница решений содержится в тропической гиперповерхности тропического многочлена  $s^{-1} \odot g(x) \oplus f(x) = \max\{f(x), g(x) +$

$$s^{-1}(c)$$
, mo есть 
$$B \subset T(s^{-1}(c) \odot q \oplus f)$$

Функция  $s^{-1}(c) \odot g \oplus f$  не обязательно линейна на каждой положительной или отрицательной области и поэтому ее тропическая гиперповерхность  $T(s^{-1}(c) \odot g \oplus f)$  может дальше делить положительные или отрицательные области, полученные из B на несколько линейных областей. B общем случае  $\subset$  нельзя заменить на =.

# 1.2 Зонотопы, как геометрические строительные блоки нейронной сети

Из раздела 3, мы знаем, что число областей тропической гиперповерхности T(f) делит пространство на равное число вершин в двойственном разбиении многоугольника Ньютона, связанного с тропическим многочленом f. Это позволяет нам ограничить количество линейных областей нейронной сети, ограничивая число вершин в двойственном разбиении многоугольника Ньютона.

Мы начнём изучение того, как геометрия меняется от одного слоя к следующему в нейронной сети, более точнее:

Вопрос 1 Как тропические гиперповерхности тропических многочленов в (l+1)-ом слое нейронной сети связаны с ими в l-ом слое? содержимое...

Рекуррентное соотношение (2) описывает, как тропические многочлены, встречающиеся в (l+1)-ом слое получаются из многочленов в l-ом слое, а именно, через три операции: тропическая сумма, тропическую степень и тропическое умножение. Напомним, что тропическая гиперповерхность тропического многочлена — двойственно разбиение многогранника Ньютона тропического многочлена, который задается проекцией верхних граней на многогранники, определяемые формулой (1). Отсюда вопрос сводится к тому, как эти три операции преобразуют многогранники, а это рассматривается в утверждениях 3.1 и 3.2. Мы следуем обозначениям из Утверждения 5.1 для следующего результата.

**Лемма 1** Пусть  $f_i^{(l)}, g_i^{(l)}, h_i^{(l)}$  тропические многочлены, созданные i-ым узлом в l-ом слое нейронной сети, то есть они определяются как (2). Тогда  $P(f_i^{(l)}, P(g_i^{(l)}, P(h_i^{(l)}, \text{являющиеся подмножествами } \mathbf{R}^{d+1}, \text{ задаются следующим образом:}$ 

1. 
$$P(g_i^{(1) \ u \ P(h_i^{(1)})}$$
 являются точками.

2. 
$$P(f_i^{(1)} - ompeso\kappa.$$

3. 
$$P(g_i^{(1) \ u \ P(h_i^{(1)})} - зонотопы.$$

4. Для 
$$l \geq 1,$$
 
$$P(h_i^{(l)}) = Conv[P(g_i^{(l)} \odot t_i^{(l)}) \cup P(h_i^{(l)})]$$

Если 
$$t_i^{(l)} \in \mathbf{R}, \ u \ P(f_i^{(l)}) = P(h_i^{(l)}), \ eсли \ t_i^{(l)} = -\infty$$

5. Для  $l \ge 1, P(g_i^{(l+1)})$  и  $P(h_i^{(l+1)})$  взвешены суммы Минковского,

$$P(g_i^{(l+1)}) = \sum_{j=1}^{n_l} a_{ij}^- P(f_i^{(l)}) + \sum_{j=1}^{n_l} a_{ij}^+ P(g_i^{(l)}),$$

$$P(h_i^{(l+1)}) = \sum_{j=1}^{n_l} a_{ij}^+ P(f_i^{(l)}) + \sum_{j=1}^{n_l} a_{ij}^- P(g_i^{(l)}) + \{b_i e\},$$

 $\Gamma \partial e \ a_{ij}, b_i \ записаны \ в \ матрице \ весов \ A^{(l+1)} \in \mathbf{Z}^{n_{l+1} \times n_l} \ u \ вектор$  смещения  $b^{(l+1)} \in \mathbf{R}^{n_l+1} \ u \ e := (0, \dots, 0, 1) \in \mathbf{R}^{d+1}$ .

Завершение леммы 6.2 состоит в том, что зонотопы являются строительными блоками в тропической геометрии нейронных сетей. Зонотопы широко изучены в выпуклой геометрии и, среди прочего, они тесно связаны с расположением гиперплоскостей. Лемма 6.2 связывает нейронные сети с этим обширным объёмом работы, но полный смысл этого еще предстоит изучить. В разделе С.2, кроме того, мы покажем, как можно построить эти многогранники для двуслойных нейронных сетей.

# 1.3 Геометрическая сложность глубоких нейронных сетей

Мы обращаемся к инструментам из раздела 3 для изучения сложности нейронной сети, показывая, что глубокая сеть более выразительна, чем неглубокая. Наша мера сложности является геометрической: мы будему следовать (Montufar et al., 2014; Raghu et al., 2017) и использовать количество линейных областей кусочно-линейной функции  $\nu: \mathbf{R}^d \to \mathbf{R}^p$  для измерения сложности  $\nu$ .

**Теорема 1** Пусть  $\nu: \mathbf{R}^d \to \mathbf{R}$  является L-слоем вещественной нейронной сетью с прямой связью, удовлетворяющей (a)-(c). Пусть  $t^{(L)} = -\infty$  и  $n_l \geq d$  для всех  $l = 1, \ldots, L-1$ . Тогда  $\nu = \nu^{(L)}$  имеет максимум

$$\prod_{l=1}^{L-1} \sum_{i=0}^{d} \binom{n_l}{i}$$

линейных областей. В частности, если  $d \leq n_1, \ldots, n_{L-1} \leq n$ , то число линейных областей  $\nu$  ограничено  $O(n^{d(L-1)})$ .

**Доказательство.** Если L=2, то это следует непосредственно из Леммы 6.2 и Следствия 3.4. Случай, когда  $L\geq 3$  находится в разделе 7, в дополнении.

Как отмечалось в (Raghu et al., 2017), эта верхняя граница близко соответствует нижней границе  $\Omega((\frac{n}{d}^{(l-1)d})n^d)$  в (Montufar et al., 2014, Corollary 5), когда  $n_1 = \cdots = n_{L-1} = n \geq d$ . отсюда мы предполагаем, что число линейных областей нейронной сети растёт полиномиально с шириной n и экспоненциально с количеством слоёв L.

#### 1.4 Заключение

Мы утверждаем, что прямые нейронные сети с выпрямленными узлами не что иное, как тропические рациональные карты. Чтобы понять их, нам зачастую нужно понимать соответствующую тропическую геометрию.

В этой статье мы сделали первый шаг, чтобы предоставить подтверждение концепции: вопросы, касающиеся границ решений, линейных областей, как глубина влияет на выразительность и т.д. можно перевести на вопросы, касающиеся тропических гиперповерхностей, разбиений многоугольника Ньютона, многогранников, построенных из зонотопов и др.

Как новая ветвь алгебраической геометрии, новшество тропической геометрии происходит из алгебры и геометрии и их взаимодействует друг с другом. Она связана множеством других областей математики. Среди прочих вещей, существует тропический аналог линейной алгебры и тропический аналог выпуклой геометрии. Мы затронули лишь небольшую часть этого богатого предмета. Мы надеемся, что дальнейшее исследование под тропическим углом поможет разгадать другие загадки глубоких нейронных сетей.

# 1.5 Дополнительный материал: Тропическая геометрия нейронных сетей



Рис. 1: Общая форма ReLU прямой нейронной сети  $\nu: \mathbf{R}^d \to \mathbf{R}^P$  с L слоями

### 1.6 Тропическая степень

В разделе 2 мы пишем  $x^a=x^{\odot a}$ ; кроме этого небольшого злоупотребления обозначениями,  $\oplus$  и  $\odot$  соответствуют тропической сумме и умножению, + и - соответствуют классической сумме и умножению во всех других контекстах. Тропическая степень, очевидно, имеет следующие свойства:

• Для  $x,y \in \mathbf{R}$  и  $a \in \mathbf{R}, a \ge 0$ 

$$(x\oplus)^a = x^a \oplus y^a$$

$$(x \odot y)^{\alpha} = x^{\alpha} \odot y^{\alpha}$$

Если a отрицательное число, то мы теряем первой свойство. В общем  $(x \oplus y)^a \neq x^a \oplus y^a$  для a < 0.

• Для  $x,y \in \mathbf{R}$ 

$$x^{0} = 0$$

• Для  $x \in \mathbf{R}$  и  $a, b \in \mathbf{N}$ 

$$(x^a)^b = x^{a \cdot b}$$

ullet Для  $x \in \mathbf{R}$  и  $a,b \in \mathbf{Z}$ 

$$x^a \odot x^b = x^{a+b}$$

• Для  $x \in \mathbf{R}$  и  $a, b \in \mathbf{Z}$ 

$$x^a \oplus x^b = x^a \odot (x^{a-b} \oplus 0) = x^a \odot (0 \oplus x^{a-b})$$

### 1.7 Примеры

# 1.7.1 Примеры тропических кривых и двойственное разбиение многоугольника Ньютона

Пусть  $f \in Pol(2,1) = \mathbf{T}[x_1,x_2]$ , то есть двумерный тропический полином. В соответствии нашим рассуждениям в разделе 3 следует, что тропическая гиперповерхность T(f) — планарный граф двойственный двойственному разбиению  $\delta(f)$  в следующем смысле:

- 1. Каждой двумерной грани в  $\delta(f)$  соответствует вершина в T(f).
- 2. Каждому одномерному ребру грани в  $\delta(f)$  соответствует ребро в T(f). В частности, ребро многогранника Ньютона  $\Delta(f)$  соответствует неограниченному ребру в T(f), когда другие ребра соответствуют ограниченным ребрам.

Рисунок 2 показывает как можно найти двойственное разбиение тропического полинома  $f(x_1,x_2)=1\odot x_1^2\oplus 1\odot x_2^2\oplus 2\odot x_1x_2\oplus 2\odot x_1\oplus 2\odot x_2\oplus 2$ . Во-первых, найдем выпуклую оболочку

$$P(f) = Conv\{(2,0,1), (0,2,1), (1,1,2), (1,0,2), (0,1,2), (0,0,2)\}$$

Тогда, проецируя верхнюю оболочку P(f) на  ${\bf R}^2$ , мы получим  $\delta(f)$ , двойственное разбиение многоугольника Ньютона.

#### 1.7.2 Многогранники двухслойной нейронной сети

Продемонстрируем наши рассуждения в Разделе 6.2 на двухслойном примере. Пусть  $\nu: \mathbf{R}^2 \to \mathbf{R}$  будет с  $n_0=2$  входными узлами,  $n_1=5$  в первом слое и  $n_2=1$  узлов в выходе:

$$y = \nu^{(1)}(x) = \max \left\{ \begin{bmatrix} -1 & 1\\ 1 & -3\\ 1 & 2\\ -4 & 1\\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} 1\\ -1\\ 2\\ 0\\ -2 \end{bmatrix}, 0 \right\}$$

$$y = \nu^{(2)}(y) = \max\{y_1 + 2y_2 + y_3 - y_4 - 3y_5, 0\}$$

Сначала мы выражаем  $\nu^{(1)}$  и  $\nu^{(2)}$ , как тропическое рациональное отображение.

$$\nu^{(1)} = F^{(1)} \oslash G^{(1)}, \nu^{(2)} \oslash g^{(2)},$$

Где

$$y := F^{(1)}(x) = H^{(1)}(x) \oplus G^{(1)}(x)$$

$$z := G^{(1)}(x) = \begin{bmatrix} x_1 \\ x_2^3 \\ 0 \\ x_1^4 \\ 0 \end{bmatrix}$$

$$H^{(1)}(x) = \begin{bmatrix} 1 \odot x_2 \\ (-1) \odot x_1 \\ 2 \odot x_1 x_2^2 \\ x_2 \\ (-2) \odot x_1^3 x_2^2 \end{bmatrix}$$

И

$$f^{(2)}(x) = g^{(2)}(x) \oplus h^{(2)}(x)$$

 $g^{(2)}(x)=y_4\odot y_5^3\odot z_1\odot z_2^2\odot z_3=(x_2\oplus x_1^4)\odot ((-2)\odot x_1^3x_2^2\oplus 0)^3\odot x_1\odot (x_2^3)^2$   $h^{(2)}(x)=y_1\odot y_2^2\odot y_3\odot z_4\odot z_5^3=(1\odot x_2\oplus x_1)\odot ((-1)\odot x_1\oplus x_2^3)^2\odot (2\odot x_1x_2^2\oplus 0)\odot x_1^4.$  Запишем  $F^{(1)}=(f_1^{(1)},\ldots,f_5^{(1)})$  и аналогично для  $G^{(1)}$  и  $H^{(1)}$ . Мономы



встречающиеся в  $g_j^{(1)}(x)$  и  $h_j^{(1)}(x)$  являются всеми формами  $cx_1^{\alpha_1}x_2^{\alpha_2}$ . Следовательно  $P(g_j^{(1)})$  и  $P(h_j^{(1)})$  — точки в  ${\bf R}^3$  Так как  $F^{(1)}=G^{(1)}\oplus H^{(1)}, P(f_j^{(1)})$  — выпуклая оболочка двух то-

Так как  $F^{(1)} = G^{(1)} \oplus H^{(1)}, P(f_j^{(1)})$  — выпуклая оболочка двух точек, и является отрезком в  $\mathbf{R}^3$ . Многоугольники Ньютона связаны с  $f_j^{(1)}$ , равные их двойственным разбиениям, в этом случае, полученные проецированием этих отрезков на плоскость, натянутую на  $\alpha_1, \alpha_2$ , что показано на рисунке ниже.

В всех рисунках ниже, двойственные разбиения были проведены вдоль направления c(вниз) и отделены от многогранников для наглядности.



Рис. 2:  $P(F^{(1)})$  и двойственное разбиение  $F^{(1)}$ 



Рис. 3:  $P(g^{(2)})$  и двойственное разбиение  $g^{(2)}$ 



Рис. 4: Многогранник, связанный с  $h^{(2)}$  и его двойственное разбиение



Рис. 5:  $P(f^{(2)})$  и двойственное разбиение  $f^{(2)}$ 

Отрезки  $P(f_j^{(1)}), j=1,\ldots,5$  и точки  $P(g_j^{(1)})j=1,\ldots,5$ ,служат в качестве строительных блоков для  $P(h^{(2)})$  и  $P(g^{(2)})$ , которые простроенны, как взвешенные суммы Минковского:

$$P(h^{(2)}) = P(f_4^{(1)}) + 3P(f_5^{(1)}) + P(g_1^{(1)}) + 2P(g_2^{(1)}) + P(g_3^{(1)})$$

$$P(g^{(2)}) = P(f_1^{(1)}) + 2P(f_2^{(1)}) + P(f_3^{(1)}) + P(g_4^{(1)}) + 3P(g_5^{(1)})$$