Sign Language Recognition System

Project Report

Submitted by

Mahesh Randale 111708050 Rushikesh Sabale 111708052 Sahil Jadhav 111708053

in partial fulfilment for the award of the degree of

B.Tech (Information Technology)

Under the guidance of

Prof. Shirish Gosavi

College of Engineering, Pune

DEPARTMENT OF COMPUTER ENGINEERING AND

INFORMATION TECHNOLOGY,
COLLEGE OF ENGINEERING, PUNE-5

DEPARTMENT OF COMPUTER ENGINEERING

AND

INFORMATION TECHNOLOGY,

COLLEGE OF ENGINEERING, PUNE

CERTIFICATE

Certified that the project titled, "Sign Language Recognition System" has been successfully completed by

Mahesh M. Randale 111708050

Rushikesh R. Sabale 111708052

Sahil N. Jadhav 111708053

and is approved for the partial fulfillment of the requirements for the degree of "B.Tech. Information Technology".

SIGNATURE SIGNATURE

Prof. Shirish Gosavi Dr.(Mrs.) V.Z.Attar

Project Guide Head

Department of Computer Engineering Department of Computer Engineering

and Information Technology, and Information Technology,

College of Engineering Pune, College of Engineering Pune,

Shivajinagar, Pune - 5. Shivajinagar, Pune - 5.

Abstract

A large number of deaf and mute people are present around the world and communicating with them is a bit difficult at times; because not everyone can understand Sign language(a system of communication using visual gestures and signs). In addition, there is a lack of official sign language interpreters. In India, the official number of approved sign language interpreters is only 250[1] . This makes communication with deaf and mute people very difficult. The majority of deaf and dumb teaching methods involve accommodating them to people who do not have disabilities - while discouraging the use of sign language. There is a need to encourage the use of sign language. People communicate with each other in sign language by using hand and finger gestures. The language serves its purpose by bridging the gap between the deaf-mute and speaking communities. Sign language identification is a challenging area in the field of computer vision, and recent developments have made some progress but not been able to build an efficient system with many challenges still to be solved. In this project, we propose an optimal recognition engine whose main objective is to translate static American Sign language alphabets, numbers, and words into human and machine understandable English script and the other way around. We propose a machine learning based approach for American Sign Language identification using Neural Networks.

Contents

Li	st of	Tables	ii
Li	st of	Figures	iii
Li	st of	Symbols	iv
1	Inti	roduction	1
	1.1	Nature and Scope of Project	2
	1.2	Motivation	2
	1.3	Principal objectives	2
2	$\operatorname{Lit}_{\epsilon}$	erature Review	3
3	Res	earch Gaps and Problem Statement	10
	3.1	Research Gaps	10
	3.2	Aim	10
4	Pro	posed System Architecture	11
	4.1	System Design and Workflow	11
5	Imp	olementation	13
	5.1	Dataset creation	13
	5.2	Image pre-processing	15
	5.3	CNN Model	18

		5.3.1	Why CNN?	. 18
		5.3.2	Training a CNN Model	20
	5.4	Sign to	o Speech Conversion	. 21
	5.5	Speech	n to Sign Conversion	. 21
	5.6	Word	Suggestion Functionality	. 21
	5.7	Graph	ical User Interface	. 22
		5.7.1	Desktop Application	. 22
		5.7.2	Web Application	. 24
6	Exp	erimeı	ntal Setup	26
	6.1	Hardw	vare Requirements	26
	6.2	Softwa	are Requirements	26
7	Res	ults an	nd Discussion	27
	7.1	Improv	vements in Binary Dataset	. 27
	7.2	Improv	vements in Canny Edge Dataset	. 28
8	Futi	ure Sco	ope	29
9	Con	clusio	\mathbf{n}	30
${f A}$	Refe	erences	S	31

List of Tables

0.1	T., ., . D	1.												0
Z.1	Literature Review Tal	ne .	 •	•		•		•			•	•	•	9

List of Figures

4.1	System Design	12
5.1	A code snippet of Image Preprocessing	14
5.2	RGB Image	15
5.3	Grayscale Image	16
5.4	Binary Image	16
5.5	Final Resized Binary Image	17
5.6	Canny Edge Image	17
5.7	Final resized Canny Edge Image	18
5.8	Architecture of CNN Model	19
5.9	Performance analysis for binary image classification by Open-	
	Genus IQ	19
5.10	Model Summary	20
5.11	Screen 1	23
5.12	Screen 2	23
5.13	Screen 1 of Web App	24
5.14	Screen 2 of Web App	25
5.15	Screen 3 of Web App	25

List of Symbols

Introduction

The majority of the world's deaf community uses American Sign Language (ASL), a visual gesture language. The use of a sign language recognition system is also quite important and necessary in a country like India. ASL is a globally recognised standard for sign language, but only a small number of people understand it, limiting user's ability to converse in real-life scenarios. We propose an ASL recognition system in this project to address this issue and thus make communication between the speaking and non-speaking communities much easier and simpler. The proposed system employs a series of pre-processing steps to convert a gesture image into boundary highlighted images that are then fed into a machine learning algorithm for identification. Existing solutions necessitate the use of external devices to capture finger movements, such as motion sensing gloves or the Microsoft Kinect. As a result, the feasibility and accessibility are reduced. Furthermore, they employ a highly complex system of neural networks, which is computationally expensive. The systems rely heavily on hardware components in their operation, which raises the system cost and makes it difficult to use for ordinary people.

1.1 Nature and Scope of Project

With the backing of advanced technology, as personal interpreters for deaf and mute people are limited, the need of a computer system to carry out the task of sign language recognition is important. With advancements in science and technology, one can consider developing a highly efficient framework that interprets gestures into human or machine understandable text, making it easier for common people to understand and converse with the hearing impaired society.

1.2 Motivation

With many constraints, factors and limitations, Sign Language Recognition(SLR) is a challenging and motivating task. SLR is an important task because of the impact it has on society in terms of bridging the communication gap between the speaking and non-speaking communities. Sign Language Recognition system is difficult to implement because of the variations in hand gestures, facial expressions, body movements and many other variations and constraints. The social impact, the limitations in current implementations, cost constraints etc. were the motivating factors for developing this system.

1.3 Principal objectives

- Acquisition of gesture image
- Pre-processing the input image
- Translation from treated image to text
- Speech to Sign conversion for effortless two way communication.

Literature Review

Sr	Title/Author	Overview	Features	Accuracy
No) .		Considered	
1	Machine Recog-	The use of Power Glove for	Distance,	IBL:
	nition of Aus-	detecting hand and wrist	Energy and	80.6%
	lan Signs Using	movements is proposed	time, Bound-	Decision
	Power Gloves:	in this paper. Instance-	ing Box,	Tree:
	Towards Large-	Based Learning(IBL) and	coordinates,	55%
	Lexicon Recog-	decision-tree learning are	Wrist ro-	
	nition of Sign	used to process the ob-	tation and	
	Language	served movements. This	finger bend	
	(Mohammed	device is designed to un-		
	Waleed Kadous	derstand approximately 60		
	Computer	Australian Sign Language		
	Science and	movements.		
	Engineering,			
	University of			
	New South			
	Wales)[2]			

2	COHST and	The paper proposes two	Orientation	OH:
	Wavelet Fea-	new feature extraction	His-	82.92%
	tures Based	strategies for identification	togram(OH),	ST:
	Static ASL	of static signs of num-	Statisti-	74.69%
	Numbers	bers 0 to 9 in American	cal Mea-	COHST:
	Recognition by	Sign Language: Combined	sures(ST),	87.94%
	Asha Thalange,	Orientation Histogram	COHST	WF:
	Dr.S.K.Dixit[3]	and Statistical(COHST)	Features	98.17%
		Features and Wavelet Fea-	and Wavelet	
		tures(WF). For the various	Features	
		extraction techniques used,		
		the aim is to achieve full		
		accuracy and then use the		
		best technique for future		
		use. The project expands		
		only the number signs and		
		does not cover the letters		
		and words of ASL.		

3	Nearest neigh-	The system was built with	Matlab 90.68%
	bour classifica-	Microsoft Kinect, which	R2011b,
	tion of Indian	means that ambient light	MeshLab,
	sign language	and object colour have a	libraries
	gestures us-	marginal impact on the	of OpenNI
	ing Microsoft	system's performance. The	and OpenK-
	Kinect cam-	device proposes a method	inect, Point
	era[4]	for recognising Indian	Cloud Li-
		Sign Language using the	brary(PCL)
		Microsoft Kinect camera	
		in a novel, low-cost and	
		simple-to-use application.	

4	Sign Language	The Microsoft Kinect,	Depth Map 91.70%
	Recognition	Convolutional Neural Net-	and skeleton
	Using Con-	works(CNNs) and GPU	Map (cre-
	volutional	acceleration are used in	ated using
	Neural Net-	this paper to propose a	Kinect), Up-
	works (Sander	recognition scheme. The	per body
	Dieleman,	predictive model will	coordinates
	Pieter-Jan	generalise to users and	and binary
	Kindermans	environments that were not	image, Higher
	and Benjamin	present during training.	hand co-
	Schrauwen	This machine is capable	ordinates,
	ELIS, Ghent	of correctly recognising 20	CNN
	University,	sign language movements.	
	Ghent, Bel-		
	gium)[5]		

5	American	Using the Leap Motion	Hand Palm	SVM:
	Sign Language	Controller(LMC), this	position,	72.79%
	Recognition	study produced a sign	Fingertip	DNN:
	Using Leap	language recognition pro-	position,	88.79%
	Motion Con-	totype. The LMC is	Distance	
	troller with	a low-cost, palm-sized	between	
	Machine Learn-	portable peripheral device	fingertips	
	ing Approach	with built-in camera and	and palm,	
	(Teak-Wei	infrared sensors that is	Angle be-	
	Chong and	specifically designed to	tween arms,	
	Boon-Giin Lee,	monitor hand and finger	distance	
	Department	motion with high precision	between	
	of Electronics	in the 3D Cartesian coor-	fingertips	
	Engineering,	dinate system. The data		
	Keimyung	is fed to Support Vector		
	University,	Machine(SVM) and Deep		
	Daegu 42601,	Neural Network(DNN)		
	Korea)[6]	models which is then used		
		to identify 26 letters of		
		ASL.		

6	Real-Time	The author of the paper	Hidden	Desk
	American	describes two extensible	Markov	mounted
	Sign Language	systems that use a single	Models	camera:
	Recognition	colour camera to moni-		92%
	Using Desk and	tor unadorned hands in		User-
	Wearable Com-	real time and use Hidden		worn
	puter Based	Markov Models(HMMs) to		Camera:
	Video[7]	translate American Sign		98%
		Language. Instead of at-		
		tempting a fine definition		
		of hand form, the moni-		
		toring stage of the device		
		focuses on the evolution		
		of the gesture over time.		
		Speech recognition and		
		more recently, handwrit-		
		ing recognition have also		
		benefited from HMMs. As		
		a result, they seem to be		
		suitable for recognising		
		complex, structured hand		
		movements such as those		
		used in sign languages.		

7	Recognition	In this paper, a novel	Skin Fil-	96.25%
	of Indian	method for understanding	tering,	
	Sign Lan-	various alphabets of In-	Histogram	
	guage in Live	dian Sign Language is sug-	Matching,	
	Video(Joyeeta	gested, which takes into ac-	Eigenvalues,	
	Singha De-	count continuous video se-	Eigenvectors,	
	partment of	quences of the signs. Pre-	Eigenvalue	
	Electronics and	processing, Feature Extrac-	weighted	
	Communica-	tion, and Classification are	Euclidean	
	tion DBCET,	the three phases of the pro-	Distance	
	Assam Don	posed method. Skin filter-		
	Bosco Univer-	ing and histogram match-		
	sity Guwahati,	ing are part of the pre-		
	Assam)[8]	processing stage. The fea-		
		ture extraction stage used		
		Eigenvalues and Eigenvec-		
		tors and the sign recog-		
		nition stage used Eigen-		
		value weighted Euclidean		
		distance. In the video se-		
		quences, we found 24 sepa-		
		rate alphabets.		

Table 2.1: Literature Review Table

Research Gaps and Problem Statement

3.1 Research Gaps

A limited volume of work has been done in this field to recognize the different phenomena that are involved in making sign language recognition more efficient. Also, there is no noticeable work that has been done predominantly for real time gesture recognition by considering various research findings with respect to static and dynamic environments. Most of the techniques used for SLR involve use of hardware components which most of the time affect the cost and thus are not cost-efficient. No such recognizable research has been done to use systems fully based on software. Extensive use of hardware components sometimes inhibits the main objective of using SLR that is to provide a cost-effective option to the deaf and mute community.

3.2 Aim

- To create and train a Sign language Detection Model which can recognize sign gestures and display the predicted text.
- To recognize random sign gestures in real time with high accuracy.

Proposed System Architecture

Our proposed solution consists of four main steps:

- Dataset Creation
- Image Pre-processing
- Training CNN Model
- Creating a GUI

To achieve a 2-way communication between deaf people and normal people, we have added following features to the system:

- Sign to Speech conversion
- Speech to Sign Conversion
- Word Suggestion and Correction

4.1 System Design and Workflow

A dataset is created by capturing ample amount of images through webcam. When the system starts up, it begins collecting gesture images from the previously generated dataset. The images are then pre-processed and cropped so that only the hand gesture is visible. This is accomplished by drawing contours and determining the contour with the greatest area. The contour region is then photographed and resized to 128 x 128 pixels. These images are then divided into three categories: Training, Validation, and Testing.

After this, the model starts building by adding different layers to the image for the accuracy purpose to all the input images. Then, different layers are added to Model. After the addition of the layers, the training of CNN model begins. With the help of CNN, the model builds a network and creates a prediction model which will be used in the prediction of the result. After this, 'validation' and 'testing' of model is performed to check whether model is over-fitting or under-fitting. Further steps are taken to increase the accuracy of model later on.

Figure 4.1: System Design

Implementation

5.1 Dataset creation

We are using OpenCV library to capture images through web-cam. The main objective of using Opencv library is to apply various filters provided by the library. Filters like grayscale conversion and gaussian blur were applied on the target images. Grayscale conversion simply converts the image into black and white image. The input image is in color which is converted into a grayscale image. Gaussian blur removes some of the noise before further processing the image. We are using the 'adaptive-threshold' function to highlight the image borders. The above functions are discussed in detail in further subsections.

We are using Region of interest(ROI) of 300 x 300 pixels for capturing the hand signs. Below is a code snippet of how the gestures in Region of interest are captured.

We have resized all the images to 128 x 128 resolution to minimize the training time of the model. We have created two folders in our dataset, namely Train and Test, both consisting individual folders having 600 images of each symbol.

```
Spyder (Python 3.7)
File Edit Search Source Run Debug Consoles Projects Tools View Help
create_dataset.py
                                                                                                                                                                                                    Q.
    1 import cv2
2 from PIL import Image, ImageDraw
3 #global fileno = 1
4 camera = cv2.VideoCapture(0)
     6 gesture = '1
7 minValue = 13
8 while(True):
               ret, img = camera.read()
              img2 = cv2.flip(img , 1)
img = cv2.flip(img , 1)
               cv2.rectangle(img2 , (400 , 100) , (600 , 300) , (0 , 0,255),5) cv2.putText(img2, 'ROI', (400, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36,255,12), 2) cv2.imshow('RGB', img2)
   15
16
17
18
19
20
21
22
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
               gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imshow('Grayscate', gray)
gray = cv2.GaussianBlur(gray,(5,5),cv2.BORDER_DEFAULT)
               blur = cv2.GaussianBlur(gray,(5,5),2)
th2 = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2)
th3 = cv2.adaptiveThreshold(th2,257,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,11,2)
ret, res = cv2.threshold(th3, minValue, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
cv2.imshow("Outline", res)
#cv2.imshow("01",th2)
               binary = img_binary = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY)[1] cv2.imshow('binary' , binary)
               binary_crop = binary[100:300 ,400:600]
cv2.imshow('Binary Crop' , binary_crop)
               crop = res[100:300 ,400:600]
cv2.imshow('Outline crop' , crop)
height = 300
               mergit
width = 300
dim = (width , height)
resized = cv2.resize(crop, dim, interpolation = cv2.INTER_AREA)
heigh("img")
  Editor Variable explorer Online help File explorer Help
```

Figure 5.1: A code snippet of Image Preprocessing

5.2 Image pre-processing

We are using two types of images to train the dataset namely binary images and canny edge images. Binary image consists of pixels of only two colours, usually black and white. Canny edge image shows all the edges present in the image which increase the amount of data to be processed but in turn helps in getting useful structural information from an image.

For less symbol classes (10 symbols), using binary images to train the dataset yields good results. But for all 26 English alphabets, canny edge data was found to be more useful than binary data images.

For creating a dataset, we implemented a program and captured the live feed through web-cam.

These steps are followed while preprocessing dataset:

1. Capture a RGB image

Figure 5.2: RGB Image

2. Convert the RGB image into grayscale and apply gausian blur to it

Figure 5.3: Grayscale Image

3. Applying desired threshold to convert grayscale into binary image. Applying a threshold means selecting some specific value for pixels in image and converting the pixels in image such that:

if (pixel) is less than (threshold) : change the color of pixel to white else : change color of pixel to black

Figure 5.4: Binary Image

4. Cropping and resizing the (Region of Interest)ROI to desired size. In our case, the size of image is 128 x 128 pixels

Figure 5.5: Final Resized Binary Image

5. Converting the grayscale image into canny edge using adaptive-threshold filter

Adaptive-threshold method calculates threshold value for smaller regions and helps in finding more features in image. This leads to different threshold values for different regions with respect to the change in lighting.

Figure 5.6: Canny Edge Image

6. Cropping and resizing the ROI to desired size. In our case, the size of image is 128×128 pixels

Figure 5.7: Final resized Canny Edge Image

7. Saving both images into Local disk for training and testing purpose.

5.3 CNN Model

We are using Convolutional Neural Network(CNN) to train the model. CNN is a deep learning algorithm which takes input as images, assigns weights or biases to various aspects of image which helps in distinguishing the images from one another.

5.3.1 Why CNN?

- 1. CNNs are automatic feature extractors.
- 2. We can use max pooling to reduce size of image without compromising with image quality.
- 3. CNN provide usage of convolutions, which act as feature emphasizer.

Figure 5.8: Architecture of CNN Model

The OpenGenus IQ[9] team conducted a performance study of various image classifiers in order to determine which was the best classifier for image classification. The findings of an image classification task used to distinguish lymphoblastic leukaemia cells from non-lymphoblastic ones have been presented to support their performance review. The features were extracted using a convolutional neural network and they were fed to different classifiers.

CLASSIFIER	ACCURACY	PRECISION	RECALL	ROC	
SVM	85.68%	0.86	0.87	0.86	
Decision Trees	84.61%	0.85	0.84	0.82	
KNN	86.32%	0.86	0.86	0.88	
ANN(for 100 epoc	hs) 83.10%	0.88	0.87	0.88	
CNN(for 300 epoc	hs) 91.11%	0.93	0.89	0.97	

Figure 5.9: Performance analysis for binary image classification by OpenGenus IQ

5.3.2 Training a CNN Model

In our model, we have added one convolution layer with 32 filters of size (3, 3) which will help in highlighting different features like gesture boundaries in Binary images and minute finger features like emerging thumb between ring finger and middle finger. The output of convolution layer is a feature map which highlights the features of gesture.

We have added a max pool layer, which helps in reducing the size of input data to learning layers of model while ensuring that the details in image are not lost. This is done in order to reduce the computing time.

Lastly, we have 3 fully connected layers with 128, 96 and 64 neurons each and an output layer. This layer learns from the input data and produces weights which are then used to classify signs.

Model: "sequential"			
Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	126, 126, 32)	320
max_pooling2d (MaxPooling2D)	(None,	63, 63, 32)	0
flatten (Flatten)	(None,	127008)	0
dense (Dense)	(None,	128)	16257152
dropout (Dropout)	(None,	128)	0
dense_1 (Dense)	(None,	96)	12384
dropout_1 (Dropout)	(None,	96)	0
dense_2 (Dense)	(None,	64)	6208
dense_3 (Dense)	(None,	5)	325
Total params: 16,276,389 Trainable params: 16,276,389 Non-trainable params: 0			

Figure 5.10: Model Summary

5.4 Sign to Speech Conversion

We have implemented Text-to-Speech Conversion using Pyttsx3, a speech engine which converts text to speech. It is python library which works offline and converts Text into Speech. The characters which are recognised using CNN model are grouped together to form meaningful words which are then pronounced using Pyttsx3.

5.5 Speech to Sign Conversion

We are using speech recognition to convert voice commands into text. The text is then fed into a converter function and the results are then displayed through a sequence of images displayed on screen. This is an independent feature and it is provided through a separate GUI.

5.6 Word Suggestion Functionality

Even though we are creating words from recognised characters, it may take some time to spell big words. Also, there is a possibility of incorrect spellings. This is where "Word suggestion and correction" feature comes into play.

We are using US English dictionary to suggest words based on some characters in word. This is done using Hunspell module in python.

5.7 Graphical User Interface

We want a product that allows users to predict sign language in real time. Since the aim is to make it easily accessible without much dependencies, we have created both desktop application and web application.

5.7.1 Desktop Application

This application is created using Tkinter module in Python and has all features of system built in it.

The features include:

- Sign to Text Conversion
- Sign to Speech Conversion
- Speech to Sign Conversion
- Text to Sign Conversion
- Word Suggestions
- Shortcut Mode
- Emergency Mode

The images below display "Sign to Speech/Text Conversion" page and "Text/Speech to Sign Conversion" page.

Figure 5.11: Screen 1

Figure 5.12: Screen 2

5.7.2 Web Application

We have used Streamlit to create the Web application. Streamlit is an opensource app framework for creating and deploying data science applications.

The features included in current version of web-app are:

- Sign to Text Conversion
- Text to Sign Conversion
- Real time Audio-Video Feed

Figure 5.13: Screen 1 of Web App

Figure 5.14: Screen 2 of Web App

Figure 5.15: Screen 3 of Web App

Experimental Setup

6.1 Hardware Requirements

- 1. Web Camera
- 2. 8 GB Ram

6.2 Software Requirements

- 1. Tensorflow A math library based on differentiable programming.
- 2. OpenCV Capturing and processing images
- 3. Keras A deep learning API written in Python, running on top of the machine learning platform TensorFlow
- 4. NumPy For array manipulation
- 5. Matplotlib To plot images on graphs
- 6. Tkinter To create a desktop application
- 7. Hunspell For word suggestions
- 8. Pyttsx Text-to-Speech conversion
- 9. Streamlit To create a real-time web application

Results and Discussion

In current CNN Model, we are using one convolution layer and one max pooling layer. We are using two datasets which are:

- Binary Dataset
- Canny Edge Dataset

We trained the model until it had an accuracy of 99% on training dataset. After the training, during validation of version model, we have achieved:

- 98% accuracy while using canny edge dataset
- 100% accuracy while using binary dataset

7.1 Improvements in Binary Dataset

While using binary dataset, the model was over-fitting. We stopped the training phase early after a certain number of iterations to prevent over-fitting.

The model was either providing low accuracy of 80% or was over-fitting, even after adding different methods to avoid over-fitting.

Furthermore, the model was unable to differentiate between signs with slight variations, such as (S, M, N) and so on. Binary images were not capable of showing minute differences in different characters.

Hence we decided to work on canny edge dataset, as it shows a lot of promise for improving the accuracy rate.

7.2 Improvements in Canny Edge Dataset

The canny edge dataset had good accuracy on trained data, but 89% accuracy on test data implied that the model needs to be trained with a variety of input images.

We improved the accuracy of the canny edge dataset by using image augmentation, which allows us to access an infinite number of images. By using max pooling, which shows the most common features of existing feature maps, we were able to increase accuracy even further.

Following these measures, we were able to achieve a 98% accuracy on the canny edge dataset.

Future Scope

- 1. Introduce Hand Tracking Algorithm in existing system
- 2. Extend the model to recognize motion gestures
- 3. Complete the web application
- 4. Deploy the Web Application with web hosting platforms like Heroku, Streamlit, et

Conclusion

In this project, we built a system which will correctly recognize ASL Alphabets and Numbers, which mainly depend on hand and fingers. The model used in this project uses CNN for detection of 26 English ASL alphabets using different image enhancement techniques. This model also uses Convolution layer to highlight the dominant features and max pooling layers to reduce computing cost. The current version of model has one convolution, one max pooling and three fully connected layers. These layers may change while increasing the accuracy of model. The current version of model has accuracy of 98%. Furthermore, added features provide the means for an effortless two way communication between the corresponding entities.

Appendix A

References

- 1. Using Machine Learning to Interpret Hand Sign Language by Vivek Khurana https://www.youtube.com/watch?v=hfUsL6bUPss
- 2. Machine Recognition of Auslan Signs Using PowerGloves: Towards Large-Lexicon Recognition of Sign Language(Mohammed Waleed Kadous Computer Science & Engineering, University of New South Wales)

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.
 2721&rep=rep1&type=pdf
- 3. COHST and Wavelet Features Based Static ASL Numbers Recognition
 Asha Thalange, Dr. S.K. Dixit https://www.sciencedirect.com/science/article/pii/S1877050916316234
- 4. Nearest neighbour classification of Indian sign language gestures using kinect camera ZAFAR AHMED ANSARI and GAURAV HARIT https://www.ias.ac.in/public/Volumes/sadh/041/02/0161-0182.pdf
- 5. Sign Language Recognition Using Convolutional Neural Networks https://link.springer.com/chapter/10.1007/978-3-319-16178-5_40
- 6. American Sign Language Recognition Using Leap Motion Controller with Machine Learning Approach (Teak-Wei Chong and Boon-Giin Lee

- , Department of Electronics Engineering, Keimyung University, Daegu 42601, Korea) https://www.mdpi.com/1424-8220/18/10/3554
- 7. Real-Time American Sign Language Recognition Using Desk and Wearable Computer Based Video Thad Starner, Student Member, IEEE, Joshua Weaver, and Alex Pentland, Member, IEEE Computer Society http://luthuli.cs.uiuc.edu/~daf/courses/Signals\%20AI/Papers/HMMs/00735811.pdf
- 8. Recognition of Indian Sign Language in Live Video(Joyeeta Singha Department of Electronics and Communication DBCET, Assam Don Bosco University Guwahati, Assam) https://arxiv.org/ftp/arxiv/papers/1306/1306.1301.pdf
- 9. A Comparison study of image classification techniques https://iq.
 opengenus.org/basics-of-machine-learning-image-classification-techniques
- 10. https://www.tensorflow.org/tutorials/images/cnn
- 11. https://www.guru99.com/convnet-tensorflow-image-classification.
- 12. https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ EarlyStopping
- 13. Dataset Researches: https://facundoq.github.io/datasets/lsa64/add