Applied Quantitative Finance

Theory and Computational Tools

Contents

Preface	е		χV
Contril	butors		xix
Freque	ntly Us	ed Notation	xxi
I V	alue at	: Risk	1
1 Арі	oroxima	ting Value at Risk in Conditional Gaussian Models	3
Stefan	R. Jasci	hke and Yuze Jiang	
1.1	Introd	luction	3
	1.1.1	The Practical Need	3
	1.1.2	Statistical Modeling for VaR	4
	1.1.3	VaR Approximations	6
	1.1.4	Pros and Cons of Delta-Gamma Approximations	7
1.2	Gener	al Properties of Delta-Gamma-Normal Models	8
1.3	Cornis	sh-Fisher Approximations	12
	1.3.1	Derivation	12
	1.3.2	Properties	15
1.4	Fourie	er Inversion	16

		1.4.1	Error Analysis	16
		1.4.2	Tail Behavior	20
		1.4.3	Inversion of the cdf minus the Gaussian Approximation	21
	1.5	Variar	nce Reduction Techniques in Monte-Carlo Simulation	24
		1.5.1	Monte-Carlo Sampling Method	24
		1.5.2	Partial Monte-Carlo with Importance Sampling	28
		1.5.3	XploRe Examples	30
2	Арр	lication	ns of Copulas for the Calculation of Value-at-Risk	35
Jö	rn Ra	ank and	l Thomas Siegl	
	2.1	Copul	as	36
		2.1.1	Definition	36
		2.1.2	Sklar's Theorem	37
		2.1.3	Examples of Copulas	37
		2.1.4	Further Important Properties of Copulas	39
	2.2	Comp	uting Value-at-Risk with Copulas	40
		2.2.1	Selecting the Marginal Distributions	40
		2.2.2	Selecting a Copula	41
		2.2.3	Estimating the Copula Parameters	41
		2.2.4	Generating Scenarios - Monte Carlo Value-at-Risk	43
	2.3	Exam	ples	45
	2.4	Result	ts	47
3	Qua	ntifica	tion of Spread Risk by Means of Historical Simulation	51
Cl	hristo	ph Fris	ch and Germar Knöchlein	
	3.1	Introd	luction	51
	3 9	Rick (Satemaries - a Definition of Terms	51

Contents v

	3.3	Descri	ptive Statistics of Yield Spread Time Series	53
		3.3.1	Data Analysis with XploRe	54
		3.3.2	Discussion of Results	58
	3.4	Histori	ical Simulation and Value at Risk	63
		3.4.1	Risk Factor: Full Yield	64
		3.4.2	Risk Factor: Benchmark	67
		3.4.3	Risk Factor: Spread over Benchmark Yield	68
		3.4.4	Conservative Approach	69
		3.4.5	Simultaneous Simulation	69
	3.5	Mark-1	to-Model Backtesting	70
	3.6	VaR E	Stimation and Backtesting with XploRe	70
	3.7	P-P P	lots	73
	3.8	Q-Q P	Plots	74
	3.9	Discus	sion of Simulation Results	75
		3.9.1	Risk Factor: Full Yield	77
		3.9.2	Risk Factor: Benchmark	78
		3.9.3	Risk Factor: Spread over Benchmark Yield	78
		3.9.4	Conservative Approach	79
		3.9.5	Simultaneous Simulation	80
	3.10	XploR	e for Internal Risk Models	81
11	Cre	edit R	isk	85
4	Ratio	ng Mig	rations	87
St	effi H	$\ddot{s}se,Ste$	efan Huschens and Robert Wania	
	4.1	Rating	g Transition Probabilities	88
		111	From Credit Events to Migration Counts	22

		4.1.2	Estimating Rating Transition Probabilities	89
		4.1.3	Dependent Migrations	90
		4.1.4	Computation and Quantlets	93
	4.2	Analyz	ting the Time-Stability of Transition Probabilities	94
		4.2.1	Aggregation over Periods	94
		4.2.2	Are the Transition Probabilities Stationary?	95
		4.2.3	Computation and Quantlets	97
		4.2.4	Examples with Graphical Presentation	98
	4.3	Multi-	Period Transitions	101
		4.3.1	Time Homogeneous Markov Chain	101
		4.3.2	Bootstrapping Markov Chains	102
		4.3.3	Computation and Quantlets	104
		4.3.4	Rating Transitions of German Bank Borrowers	106
		4.3.5	Portfolio Migration	106
5	Sens	itivity a	analysis of credit portfolio models	111
$R\ddot{u}$	idiger	Kiesel	and Torsten Kleinow	
	5.1	Introd	uction	111
	5.2	Constr	ruction of portfolio credit risk models	113
	5.3	Depen	dence modelling	114
		5.3.1	Factor modelling	115
		5.3.2	Copula modelling	117
	5.4	Simula	tions	119
		5.4.1	Random sample generation	119
		5.4.2	Portfolio results	120

Ш	lm	plied	Volatility	125
6	The	Analys	sis of Implied Volatilities	127
Ma	tthis	as R. Fe	engler, Wolfgang Härdle and Peter Schmidt	
	6.1	Introd	uction	128
	6.2	The Ir	mplied Volatility Surface	129
		6.2.1	Calculating the Implied Volatility	129
		6.2.2	Surface smoothing	131
	6.3	Dynar	nic Analysis	134
		6.3.1	Data description	134
		6.3.2	PCA of ATM Implied Volatilities	136
		6.3.3	Common PCA of the Implied Volatility Surface	137
7	How	/ Precis	se Are Price Distributions Predicted by IBT?	145
Wo	olfgar	ng Härd	lle and Jun Zheng	
	7.1	Implie	d Binomial Trees	146
		7.1.1	The Derman and Kani (D & K) algorithm	147
		7.1.2	Compensation	151
		7.1.3	Barle and Cakici (B & C) algorithm	153
	7.2	A Sim	ulation and a Comparison of the SPDs	154
		7.2.1	Simulation using Derman and Kani algorithm	154
		7.2.2	Simulation using Barle and Cakici algorithm	156
		7.2.3	Comparison with Monte-Carlo Simulation	158
	7.3	Exam	ple – Analysis of DAX data	162
8	Esti	mating	State-Price Densities with Nonparametric Regression	171
Kii	$m H \iota$	iynh, P	ierre Kervella and Jun Zheng	
	8 1	Introd	uction	171

	8.2	Extra	cting the SPD using Call-Options	173
		8.2.1	Black-Scholes SPD	175
	8.3	Semip	parametric estimation of the SPD	176
		8.3.1	Estimating the call pricing function	176
		8.3.2	Further dimension reduction	177
		8.3.3	Local Polynomial Estimation	181
	8.4	An Ex	xample: Application to DAX data	183
		8.4.1	Data	183
		8.4.2	SPD, delta and gamma	185
		8.4.3	Bootstrap confidence bands	187
		8.4.4	Comparison to Implied Binomial Trees	190
9	Trac	ding on	Deviations of Implied and Historical Densities	197
O	liver .	Jim Bla	askowitz and Peter Schmidt	
	9.1	Introd	luction	197
	9.2	Estim	ation of the Option Implied SPD	198
		9.2.1	Application to DAX Data	198
	9.3	Estim	ation of the Historical SPD	200
		9.3.1	The Estimation Method	201
		9.3.2	Application to DAX Data	202
	9.4	Comp	anisan of Implied and Historical SDD	205
	9.5		parison of Implied and Historical SPD	
	0.0	Skewr	ness Trades	207
	0.0	Skewr		207 210
	9.6	9.5.1	ness Trades	
		9.5.1	Performance	210

Contents

IV Econometrics	219
10 Multivariate Volatility Models	221
Matthias R. Fengler and Helmut Herwartz	
10.1 Introduction	221
10.1.1 Model specifications	222
10.1.2 Estimation of the BEKK-model	224
10.2 An empirical illustration	225
10.2.1 Data description	225
10.2.2 Estimating bivariate GARCH	226
10.2.3 Estimating the (co)variance processes	229
10.3 Forecasting exchange rate densities	232
11 Statistical Process Control	237
Sven Knoth	
11.1 Control Charts	238
11.2 Chart characteristics	243
11.2.1 Average Run Length and Critical Values	247
11.2.2 Average Delay	248
11.2.3 Probability Mass and Cumulative Distribution Function	248
11.3 Comparison with existing methods	251
11.3.1 Two-sided EWMA and Lucas/Saccucci	251
11.3.2 Two-sided CUSUM and Crosier	251
11.4 Real data example – monitoring CAPM	253
12 An Empirical Likelihood Goodness-of-Fit Test for Diffusions	259
Song Xi Chen, Wolfgang Härdle and Torsten Kleinow	
12.1 Introduction	250

x		Content

	12.2	Discret	te Time Approximation of a Diffusion	260
	12.3	Hypotl	hesis Testing	261
	12.4	Kernel	Estimator	263
	12.5	The E	mpirical Likelihood concept	26 4
		12.5.1	Introduction into Empirical Likelihood	264
		12.5.2	Empirical Likelihood for Time Series Data	265
	12.6	Goodn	ess-of-Fit Statistic	268
	12.7	Goodn	ess-of-Fit test	272
	12.8	Applic	ation	27 4
	12.9	Simula	tion Study and Illustration	276
	12.10	Appen	dix	279
12	A sie	nnla et	ate space model of house prices	283
		-	and Axel Werwatz	200
LUC			uction	283
	13.2		istical Model of House Prices	284
		13.2.1	The Price Function	284
		13.2.2	State Space Form	285
	13.3	Estima	ation with Kalman Filter Techniques	286
		13.3.1	Kalman Filtering given all parameters	286
		13.3.2	Filtering and state smoothing	287
		13.3.3	Maximum likelihood estimation of the parameters \dots	288
		13.3.4	Diagnostic checking	289
	13.4	The D	ata	289
	13.5	Estima	ating and filtering in XploRe	293
		13.5.1	Overview	293
		13.5.2	Setting the system matrices	293

xi

	13.5.3	Kalman filter and maximized log likelihood	295
	13.5.4	Diagnostic checking with standardized residuals	298
	13.5.5	Calculating the Kalman smoother	300
13.6	Appen	dix	302
	13.6.1	Procedure equivalence	302
	13.6.2	Smoothed constant state variables	3 04
14 Long	g Mem	ory Effects Trading Strategy	309
Oliver J	Jim Bla	skowitz and Peter Schmidt	
14.1	Introd	uction	309
14.2	Hurst	and Rescaled Range Analysis	310
14.3	Station	nary Long Memory Processes	312
	14.3.1	Fractional Brownian Motion and Noise	313
14.4	Data A	Analysis	315
14.5	Tradin	g the Negative Persistence	318
15 Loca	ally tim	e homogeneous time series modeling	323
Danilo .	Mercuri	io	
15.1	Interva	als of homogeneity	323
	15.1.1	The adaptive estimator	326
	15.1.2	A small simulation study	327
15.2	Estima	ating the coefficients of an exchange rate basket	329
	15.2.1	The Thai Baht basket	331
	15.2.2	Estimation results	335
15.3	Estima	ating the volatility of financial time series	338
	15.3.1	The standard approach	339
	15.3.2	The locally time homogeneous approach	340

		15.3.3	Modeling volatility via power transformation \dots	34 0
		15.3.4	Adaptive estimation under local time-homogeneity $\ . \ . \ .$	341
	15.4	Techni	cal appendix	344
16	Sim	ulation	based Option Pricing	349
Je.	ns Lü	ssem ar	nd Jürgen Schumacher	
	16.1	Simula	tion techniques for option pricing	349
		16.1.1	Introduction to simulation techniques	349
		16.1.2	Pricing path independent European options on one underlying	350
		16.1.3	Pricing path dependent European options on one underlying	354
		16.1.4	Pricing options on multiple underlyings	355
	16.2	Quasi	Monte Carlo (QMC) techniques for option pricing	356
		16.2.1	Introduction to Quasi Monte Carlo techniques	356
		16.2.2	Error bounds	356
		16.2.3	Construction of the Halton sequence	357
		16.2.4	Experimental results	359
	16.3	Pricing	g options with simulation techniques - a guideline \dots	361
		16.3.1	Construction of the payoff function	362
		16.3.2	Integration of the payoff function in the simulation framework	362
		16.3.3	Restrictions for the payoff functions	365
17	Non	parame	etric Estimators of GARCH Processes	367
Jü	rgen .	Franke,	Harriet Holzberger and Marlene Müller	
	17.1	Decon	volution density and regression estimates	369
	17 9	Nonna	rametric ARMA Estimates	370

Contents		xiii

17.3 Nonparametric GARCH Estimates	379
18 Net Based Spreadsheets in Quantitative Finance	385
Gökhan Aydınlı	
18.1 Introduction	385
18.2 Client/Server based Statistical Computing	386
18.3 Why Spreadsheets?	387
18.4 Using MD*ReX	388
18.5 Applications	390
18.5.1 Value at Risk Calculations with Copulas	391
18.5.2 Implied Volatility Measures	393
Index	398