

MICROCONTROLADORES

Dr. Eduardo López Sandoval

Introducción

Este curso está diseñado para introducir al estudiante en el mundo de la programación a bajo nivel utilizando el lenguaje ensamblador, enfocado al microcontrolador ATmega328P. A través de este curso, los participantes aprenderán los principios básicos de la arquitectura de un microcontrolador, el uso de herramientas profesionales como Atmel Studio, y desarrollarán prototipos sencillos.

Justificación

El conocimiento del lenguaje ensamblador proporciona un entendimiento profundo del funcionamiento del hardware, permitiendo una programación eficiente y optimizada. El microcontrolador ATmega328P es una plataforma ideal para aprender estas habilidades por su facilidad de uso y amplia documentación.

Objetivo General

Formar a los participantes en el uso del lenguaje ensamblador aplicado al microcontrolador ATmega328P, desarrollando habilidades para uso de herramientas profesionales, integrando conocimientos teóricos y prácticos mediante el desarrollo de prototipos funcionales.

Descripción del Servicio

Del 16 al 20 de Junio de 2025 en un horario de 9:00 a 15:00 Hrs.

Tipo de servicio: Curso presencial

Duración: 40 horas totales (20 teoría + 20 práctica).

Contenido Temático del Curso

Tema	Hrs.	Descripción	
Tema 1: Arquitectura básica de un microcontrolador	2	Se estudia la estructura interna del ATmega328P, incluyendo el concepto de puertos, periféricos, registros, tipos de registros, configuración de un microcontrolador en entradas y salidas, Mnemónicos, Instrucciones.	
Tema 2: Arquitectura básica de un microcontrolador (Ejercicios)	2	Se explica cómo se organiza el código en ensamblador utilizando Atmel Estudio, uso de etiquetas, instrucciones de salto, carga de un archivo Hex a la tarjeta de Arduino ONE.	
Tema 3: Sub Rutinas	5	Definición de Subrutinas	

Contenido Temático del Curso

Tema	Hrs.	Descripción	
Tema 4: Registros de Estado	6	Identificar los estados que se presentan en la memoria del microcontrolador	
Tema 5: Saltos Condicionales	5	Crear estructuras de programación para generar saltos condicionales	
Tema 6: Mascara Booleanas	4	Cómo se utilizan las mascaras en el uso del microcontrolador	
Tema 7: Ejercicios	4	Ejercicio práctico para uso de mascaras	

Contenido Temático del Curso

Tema	Hrs.	Descripción
Tema 8: Interrupciones	6	Se aprende a configurar el microcontrolador para el uso de interrupciones externas.
Tema 9: Buenas prácticas y optimización, integración del proyecto final uso de display de 7 segmentos con catodo	6	Se desarrolla un proyecto integrador que combine todos los conocimientos adquiridos
Total	40 Hrs.	

Criterio de evaluación

No.	Criterio	Valor	Instrumento de evaluación
1	Ejercicios de laboratorio entregados	40 %	Lista de cotejo y revisión de código
2	Examen	30 %	Prueba de opción múltiple / problemas
3	Proyecto final funcionando	30 %	Rúbrica: funcionalidad, eficiencia,

Competencias a desarrollar

- **C1 Comprender la arquitectura** de microcontroladores y su set de instrucciones.
- C2 Escribir y optimizar código ensamblador
- C3 Configurar y utilizar interrupciones.
- C4 Implementar rutinas y técnicas de programación en tiempo real.

Fuentes de Información

The Definitive Guide to ARM[®] Cortex[®]-M0 and M0+ Processors, Joseph Yiu.

Microchip – PIC18FxxK42 Family Data Sheet o equivalente para el MCU elegido.

Programming and Customizing the AVR Microcontroller, Dhananjay Gadre.

Documentación oficial del ensamblador / toolchain (GCC ASM, MPLAB ASM, etc.).

Artículos técnicos de IEEE y Microchip App Notes sobre optimización en ensamblador.