class 07: Machine learning 1

Trinity Lee A16639698

#clustering

We will start today's lab with clustering methods, in particular so-called K-means. The main function for this is in R is kmeans().

Lets try it on some made up data where we know what the answer should be.

```
x<-rnorm(10000,mean=3)
hist(x)</pre>
```


60 points We can pass the function to plot()

```
tmp<-c(rnorm(30,mean=3),rnorm(30,-3))</pre>
  x<-cbind(x=tmp,y=rev(tmp))</pre>
  X
              X
                         У
 [1,] 3.7521348 -2.6768698
 [2,] 3.5274651 -2.9392110
 [3,] 0.9402528 -3.2753738
 [4,] 2.5106483 -3.2444738
 [5,] 1.4151658 -3.8269727
 [6,] 3.7029144 -2.1374934
 [7,] 2.1798670 -2.5891148
 [8,] 3.9539282 -3.0051297
 [9,] 1.8223841 -3.5788155
[10,] 2.6204334 -3.0250348
[11,] 3.4278350 -2.7739875
[12,] 3.4191140 -1.9893891
[13,] 2.7277342 -2.6387420
[14,] 4.3803821 -1.1848370
[15,] 4.1140120 -3.5844066
[16,] 3.2775672 -3.4300224
[17,] 1.7506709 -3.8391432
[18,] 1.8248036 -2.3012990
[19,] 3.4856530 -3.3942753
[20,] 3.5644250 -2.3532672
[21,] 3.8778454 -4.6126922
[22,] 2.2151803 -2.7695832
[23,] 3.9206566 -3.4166090
[24,] 2.9188138 -1.5324979
[25,] 3.6968538 -3.7123009
[26,] 3.2628197 -3.1684774
[27,] 3.6405467 -3.7592933
[28,] 3.6720885 -3.3779871
[29,] 3.3465937 -4.7791904
[30,] 3.7131531 -1.2063464
[31,] -1.2063464 3.7131531
[32,] -4.7791904 3.3465937
[33,] -3.3779871 3.6720885
[34,] -3.7592933 3.6405467
[35,] -3.1684774 3.2628197
[36,] -3.7123009 3.6968538
```

[37,] -1.5324979 2.9188138

```
[38,] -3.4166090 3.9206566
[39,] -2.7695832 2.2151803
[40,] -4.6126922 3.8778454
[41,] -2.3532672 3.5644250
[42,] -3.3942753 3.4856530
[43,] -2.3012990 1.8248036
[44,] -3.8391432 1.7506709
[45,] -3.4300224 3.2775672
[46,] -3.5844066 4.1140120
[47,] -1.1848370 4.3803821
[48,] -2.6387420
                 2.7277342
[49,] -1.9893891 3.4191140
[50,] -2.7739875 3.4278350
[51,] -3.0250348 2.6204334
[52,] -3.5788155 1.8223841
[53,] -3.0051297 3.9539282
[54,] -2.5891148 2.1798670
[55,] -2.1374934 3.7029144
[56,] -3.8269727 1.4151658
[57,] -3.2444738 2.5106483
[58,] -3.2753738 0.9402528
[59,] -2.9392110 3.5274651
[60,] -2.6768698 3.7521348
```

head(x)

x y
[1,] 3.7521348 -2.676870
[2,] 3.5274651 -2.939211
[3,] 0.9402528 -3.275374
[4,] 2.5106483 -3.244474
[5,] 1.4151658 -3.826973
[6,] 3.7029144 -2.137493

plot(x)

k<-kmeans(x,centers=2,nstart=20)
k</pre>

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

x y 1 3.088731 -3.004095 2 -3.004095 3.088731

Clustering vector:

Within cluster sum of squares by cluster:

[1] 44.23246 44.23246 (between_SS / total_SS = 92.6 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"

Q1. How many points are in each cluster?

k\$size

- [1] 30 30
- Q2. CLuster membership?

k\$cluster

Q3. CLuster centers?

k\$centers

x y 1 3.088731 -3.004095 2 -3.004095 3.088731

Q4. plot my clustering results.

plot(x, col=k\$cluster,pch=16)

Q5. cluster the data again with kmeans() into 4 groups and plot the results.

```
k4<-kmeans(x,centers=4,nstart=20)
plot(x, col=k4$cluster,pch=16)</pre>
```


k-means is popular mostly because it is fast and relatively straightforward to run and understand. It has a big limitation in that you need to tell it how many groups (k, or centers) you want.

#Hierarchial clustering the main fucntion in base R is called hclust(). You have to pass it in a "distance matrix" nto just your input data.

You can generate a distance matrix with the dist() fucntion.

```
hc<-hclust(dist(x))
hc</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

plot(hc)

Cluster Dendrogram

dist(x) hclust (*, "complete")

To find clusters (cluster membership vector) from a hclust() reuslt we can "cut" the tree at a certain height that we like.

```
grps<-cutree(hc,h=8)
plot(x, col=grps,pch=16)
abline(h=8,col="red")</pre>
```


table(grps)

#Principal component analysis

##PCA of UK food data Read data showing the comsumption of food in grams (per person, per week) of 17 different types of food-stuff measured and averaged in the four countries of the United Kingdom in 1997.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	Х	England	Wales	${\tt Scotland}$	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93

5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	${ t Fresh_potatoes}$	720	874	566	1033
8	${\sf Fresh_Veg}$	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	Fresh_fruit	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	Soft_drinks	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

```
ans<-dim(x)
```

[1] 17 5

Preview the first 6 rows

```
head(x)
```

	Х	${\tt England}$	Wales	${\tt Scotland}$	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139

The row names seem to be incorrect with X as the first one. Let's try to fix this and get the correct amount of rows.

```
# Note how the minus indexing works
rownames(x) <- x[,1]
x <- x[,-1]</pre>
```

head(x)

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
ans1<-dim(x)
ans1</pre>
```

[1] 17 4

To fix the issue we have when rerunning the data file again we will use read.csv()

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

I prefer using the row.names argument set to read.csv() due to it fixing the issue while allowing us to rerun the data without messing it up. Therefore it is more robust and less prone to error.

#Spotting major differences and trends A cursory glance over the numbers in this table does not reveal much of anything. Indeed in general it is difficult to extract meaning in regard to major differences and trends from any given array of numbers. Generating regular bar-plots and various pairwise plots does not help too much either

Q3: Changing what optional argument in the above barplot() function results in the following plot?

```
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```


Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

```
pairs(x, col=rainbow(10), pch=16)
```


The figure shows graphs of the comparison of the amounts of each food consumed by two countries. If a point lies on the diagonal for a graph it means that exactly the same amount or similar amounts of that food are consumed in the two countries being compared. Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set?

There seems to be two major food categories that are different or deviate from the diagonal between N.IReland and other UK countries but we cannot determine which ones exactly from just looking at the graph.

##PCA

PCA can help us make sense of these types of datasets. Let's see how it works.

The main function in "base R" is called prcomp(). In this case we want to first take the transpose of our input x so the columns are the food types and the countries are the rows.

head(t(x))

	Cheese	Carcass_meat	Other_meat	Fish	Fats_and_oils	Sugars
England	105	245	685	147	193	156
Wales	103	227	803	160	235	175
Scotland	103	242	750	122	184	147
N.Ireland	66	267	586	93	209	139

	Fresh_potatoes	Fresh_Veg	Other_Veg	Processed	d_potatoes
England	720	253	488	3	198
Wales	874	265	570)	203
Scotland	566	171	418	3	220
N.Ireland	1033	143	355	; ;	187
	Processed_Veg	Fresh_fruit	Cereals	Beverages	Soft_drinks
England	360	1102	1472	57	1374
Wales	365	1137	1582	73	1256
Scotland	337	957	1462	53	1572
N.Ireland	334	674	1494	47	1506
	Alcoholic_drink	s Confectio	nery		
England	3'	75	54		
Wales	4'	75	64		
Scotland	4.	58	62		
N.Ireland	13	35	41		

```
pca<-prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

Q7. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points.

```
# Plot PC1 vs PC2
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x))
```


Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

```
plot(pca$x[,1], pca$x[,2], col=c("orange","red","blue","green"),pch=16,xlab="PC1", ylab="F
text(pca$x[,1], pca$x[,2], colnames(x))
```


The "loadings" tell us how much of the original variables -foods contribute to the new variables -PCs

head(pca\$rotation)

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.01601285	0.02394295	-0.694538519
Carcass_meat	0.047927628	0.01391582	0.06367111	0.489884628
Other_meat	-0.258916658	-0.01533114	-0.55384854	0.279023718
Fish	-0.084414983	-0.05075495	0.03906481	-0.008483145
Fats_and_oils	-0.005193623	-0.09538866	-0.12522257	0.076097502
Sugars	-0.037620983	-0.04302170	-0.03605745	0.034101334

we can use the square of pca\$sdev , which stands for "standard deviation", to calculate how much variation in the original data each PC accounts for.

```
v <- round( pca$sdev^2/sum(pca$sdev^2) * 100 )
v</pre>
```

[1] 67 29 4 0

```
## or the second row here...
z <- summary(pca)
z$importance</pre>
```

This information can be summarized in a plot of the variances (eigenvalues) with respect to the principal component number (eigenvector number), which is given below.

```
barplot(v, xlab="Principal Component", ylab="Percent Variation")
```


Principal Component

#Digging deeper We can also consider the influence of each of the original variables upon the principal components (typically known as loading scores). This information can be obtained from the prcomp() returned \$rotation component. It can also be summarized with a call to biplot()

```
## Lets focus on PC1 as it accounts for > 90% of variance
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
      0.4
      0.2
      0.0
    -0.2
    -0.4 -
-0.6 -
                                      Fats_and_oils
Sugars
                                                   Fresh_potatoes
Fresh_Veg
Other_Veg
                                                                                     Cereals
                                                                                           Beverages
                              Other_meat
                         Carcass_meat
                                                                     Processed_potatoes
                                                                          Processed_Veg
                                                                                                Soft_drinks
```

Q9: Generate a similar 'loadings plot' for PC2. What two food groups feature prominantely and what does PC2 maniply tell us about?

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2 )
```


The two food groups are fresh potatoes and soft drinks. PC2 mainly tells us about the left over varience that PC1 does not cover.