Linear Algebra. Midterm exam. Variant 2.

First name	Last name	Group	Points#1/2	Points#3
		BS1-		

I am, _____ (initials), confirming that I have read the following rules and agree to comply with them, that all solutions on this paper is my own work.

(signature)

Rules:

- no talking AT ALL is allowed during the exam and after it (if you are still in the room)
- when time is up, you have to put down your pen (pencil) and do NOT write anything else
- you can NOT leave your seat till the end of the test
- any electronic devices are not allowed
- 1. (1 point for each correct answer)Indicate whether the statements are true or false:
 - Rank is the number of the columns minus the number of rows.

True / False

• The columns of a matrix are a basis for the column space.

True / False

• If A is invertible then A⁻¹ and A² are invertible.

True / False

2. (4 points) Let $S_1 = \{x, y, z : x + 7y - 3z = 13\}$ and $S_2 = \{x, y, z : x + y = 5\}$.

$$\vec{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 – is the intersection of S_1 and S_2 . Find \vec{v} .

3. (**4 points**) Subspace S of \mathbb{R}^3 is formed by linear combination of vectors v_1 and v_2 . Find a vector v_2

that is orthogonal to
$$S$$
, if: $v_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}$.

Linear Algebra. Midterm exam. Variant 2.

First name	Last name	Group	Points#4	Points#5
		BS1-		

I am, _____ (initials), confirming that I have read the following rules and agree to comply with them, that all solutions on this paper is my own work.

_____ (signature)

4. (**7 points**) For each real parameter λ construct a linear independent system that contains the maximum number of the following vectors:

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \vec{b} = \begin{pmatrix} -3 \\ -2 \\ -1 \\ \lambda \end{pmatrix} \vec{c} = \begin{pmatrix} -2 \\ -3 \\ \lambda \\ -1 \end{pmatrix} \vec{d} = \begin{pmatrix} -1 \\ \lambda \\ -3 \\ -2 \end{pmatrix} \vec{e} = \begin{pmatrix} \lambda \\ -1 \\ -2 \\ -3 \end{pmatrix}$$

5. (**6 points**) Find the dimensions of the four fundamental subspaces associated with A, depending on the parameters α and β .

$$A = \begin{pmatrix} 8 & \alpha & 7 & 14 \\ 1 & 2 & 1 & 2 \\ 1 & 1 & \beta & 0 \\ 5 & 9 & 4 & 8 \end{pmatrix}$$

Linear Algebra. Midterm exam. Variant 2.

First name	Last name	Group	Points#6	Points#7
		BS1-		

I am,	(initials), confirming that I have read the following rules and agree to comply with them, that all solutions on this paper is my own
work.	
	(signature)

6. (**5 points**) Let $A[n \times m]$ and $B[n \times k]$ matrixes with real components, $rank(A) = r_a$, $rank(B) = r_b$. Find rank(C).

$$C = \begin{pmatrix} A & 2018B \\ 4A & B \end{pmatrix}$$
 – block matrix

7. (**6 points**) Find a polynomial (with real coefficients) for which: $P(0)=y_1, P(1)=y_2, P(-1)=y_3, P(2)=y_4$