M1 - Compute Science Basics

Python et environnement de développement

HETIC

Table des matières

1. Le langage Python

- 1.1 Caractéristiques et versions
- 1.2 Usages en Data Science
- 1.3 Un écosystème de librairies

2. Installer Python

- 2.1 Interpréteur, IDE et Notebooks
- 2.2 En local (the easy way)
- 2.3 En local (the proper way)
- 2.4 Google Colaboratory

Table des matières

- 1. Le langage Python
- 1.1 Caractéristiques et versions
- 1.2 Usages en Data Science
- 1.3 Un écosystème de librairies
- 2. Installer Python
- 2.1 Interpréteur, IDE et Notebooks
- 2.2 En local (the easy way)
- 2.3 En local (the proper way)
- 2.4 Google Colaboratory

1.1 Le langage Python - Caractéristiques et versions

Créé en 1989 par Guido van Rossum (hollandais)

Python est un langage de programmation haut niveau :

- Multi-paradigme (programmation orientée objet et fonctionnelle)
- Multi-plateformes
- Muni d'un typage dynamique
- Doté d'un mécanisme de gestion automatique de la mémoire

On fera attention à distinguer les versions (en particulier la 2 et la 3):

- Python <= 3 (Python 2.1, Python 2.6 par exemple)
- Python >= 3 (Python 3.6 par exemple)
- Par exemple Python 3.9 publié le 9 Octobre 2020
- Dans le cadre de ce cours, je recommande Python 3.7 (sauf mention contraire)

1.2 Le langage Python - Usages en Data Science

Un langage particulièrement adapté aux problématiques Data

- Langage de haut niveau :
 - Permet aussi bien de manipuler, visualiser et modéliser des données
 - "Peu de lignes de codes" pour un haut niveau d'abstraction (manipulation, visualisation et modélisation)
- Effet boule de neige :
 - De nombreuses librairies pour la Data Science et le Machine Learning
 - Et tous les jours, encore plus : Pandas & Hugging Face-Transformers
- Maintenant, beaucoup de demande du côté des entreprises et administrations

1.2 Le langage Python - Usages en Data Science

1.3 Le langage Python - Un écosystème de librairies

Table des matières

- Le langage Python
- 1.1 Caractéristiques et versions
- 1.2 Usages en Data Science
- 1.3 Un écosystème de librairies
- 2. Installer Python
- 2.1 Interpréteur, IDE et Notebooks
- 2.2 En local (the easy way)
- 2.3 En local (the proper way)
- 2.4 Google Colaboratory

2.1 Installer Python - Interpréteur, IDE et Notebooks

L'interpréteur est le moteur, l'IDE est le volant

Pour développer en Python on a besoin de deux éléments primordiaux :

- Un interpréteur Python (dépend de la version) : c'est ce qui nous permettra d'exécuter notre code
- Un IDE (Integrated Development Environment) : c'est le logiciel qu'on utilisera pour développer c'est un éditeur de texte optimisé pour coder (en Python)

On distinguera script (.py) et notebooks (.ipynb)

On peut développer dans des fichiers scripts ou notebooks

- Scripts : manière classique de coder
- Notebooks : beaucoup utilisés pour la Data Science, la recherche et l'éducation

2.2 Installer Python - En local (the easy way)

Ces deux environments contiennent interpréteurs Python et IDE(s) :

- PyCharm: environnement très complet: Interpréteur, IDE, nombreux packages, plugins (Git, Linter etc...), environnements virtuels...
- Anaconda: environnement très complet: Interpréteur, IDE, nombreux packages et gestionnaire de package, environnements conda, Jupyter (notebooks)

Anaconda pour ce cours

• Anaconda : Installer la suite Anaconda

Ouvrir un notebook dans Anaconda

- Lancer Anaconda
- Ouvrir JupyterLab ou Jupyter Notebook
- Créer un nouveau Notebook

2.3 Installer Python - En local (the proper way)

Dépend de la plateforme :

- Mac OS / Linux : Installer Python via Homebrew
- Windows : Installer via MicrosoftStore / Full Installer

Quelques IDE:

- Sublim Text (conseillé)
- VS Code (conseillé)
- Atom
- Spider (Anaconda)
- PyCharm

2.4 Installer Python - Google Colaboratory

Google Colab est un environnement d'exécution de notebooks Python

- Google Colaboratory (nécessite un compte Google) :
 Accéder à Google Colaboratory
- Avantages :
 - Aucune configuration à faire
 - Très pratique pour travailler à plusieurs ou partager du code
 - N'utilise que des ressources pour accéder à la page internet (le code est interprété sur une machine de Google)
 - S'intègre bien avec Google Drive (accès à des fichiers par exemple)
- Inconvénients :
 - Aucune configuration : possibles opérations à refaire souvent
 - Nécessite une connexion internet
 - Debugging parfois un peu plus compliqué (versions de packages)

2.4 Installer Python - Google Colaboratory

Importer un notebook sur Google Colab

- Google Colaboratory (nécessite un compte Google) :
 Accéder à Google Colaboratory
- Télécharger ce notebook : Notebook
- L'importer dans Google Colab :
 "File > Upload Notebook" ou "Fichier > Importer Notebook"