EEE205 – Digital Electronics (II) Lecture 9

Xiaoyang Chen, Jiangmin Gu, Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

Quine-McCluskey Method

A Revision of Some Terminology

	Boolean Algebra View	Karnaugh Map View
Minterm	a product term with all variables	a 1 cell
Implicant	a product term	a group of 1's
Prime Implicant	a shortest product term	a group of 1's that is not fully contained in another group of 1's
Essential Prime Implicant	product terms which must stay	has a 1 not included in other group

A Revision of Some Terminology

This K-map contains:

- 7 minterms
- 14 implicants
- 4 prime implicants.
- 3 essential prime implicants.

Quine-McCluskey Method

- The Karnaugh map method is for logic functions with a small number of variables.
- Quine-McCluskey method can simplify logic functions with a large number of variables.
- The latter is a systematic approach that can be readily programmed for a digital computer.

Quine-McCluskey Method

The *procedure* consists of two steps:

- 1. Finding prime implicants. Eliminate as many as literals as possible from each term by repeatedly applying XY + XY' = X.
- 2. Select a minimum set of prime implicants by using a prime implicant chart.

- We will start from a standard SOP form consisting of minterms only.
- By using the Theorem XY + XY' = X, two minterms will be combined if they differ in only one variable.

$$AB'CD' + AB'CD = AB'C$$

$$\underbrace{1 \ 0 \ 1}_{X} \ 0 + \underbrace{1 \ 0 \ 1}_{X} \ 1 = \underbrace{1 \ 0 \ 1}_{X} - \text{(the dash indicates a missing variable)}$$

$$A'BC'D + A'BCD' \text{ (will not combine)}$$

$$0 \ 1 \ 0 \ 1 + 0 \ 1 \ 1 \ 0 \text{ (will not combine)}$$

$$f(a, b, c, d) = \sum m(0, 1, 2, 5, 6, 7, 8, 9, 10, 14)$$

- The binary minterms are sorted into groups according to the number of 1's.
- This is to reduce the unnecessary comparisons.

	0	0000
ſ	1	0001
{	2	0010
l	8	1000
	5	0101
	6	0110
	9	1001
	10	1010
{	7	0111
l	14	1110
		$ \begin{cases} $

- Only terms in adjacent groups must be compared.
- Terms in non-adjacent groups differ in at least two variables.
- Two terms within a group differ in at least two variables.

group 0		0	0000
	ſ	1	0001
group 1	{	2	0010
	l	8	1000
		5	0101
group 2		6	0110
8-1-1F		9	1001
		10	1010
group 3	[7	0111
2	l	14	1110

	Col	umn l		Colum	n II
group 0	0	0000	1	0, 1	000-
,	1	0001	✓	0, 2	00–0
group 1 {	2	0010	✓	0, 8	-000
l	8	1000	✓	1, 5	0-01
ſ	5	0101	✓	1, 9	-001
group 2 {	6	0110	1	2, 6	0–10
group 2	9	1001	1	2, 10	-010
l	10	1010	✓	8, 9	100-
group 3	7	0111	✓	8, 10	10–0
group 3 {	14	1110	✓	5, 7	01–1
				6, 7	011–
				6, 14	-110
				10, 14	1–10

- Terms 0000 and 0001 can be combined to yield 000- (a'b'c'), and so on.
- The outcomes are listed in a new column.
- The terms which can be combined are checked off.
- The remaining ones are prime implicants.

Karnaugh Map's View

$$f(a, b, c, d) =$$

 $\sum m(0, 1, 2, 5, 6, 7, 8, 9, 10, 14)$

- To find groups of 2.
- If a 1 is not in any group of
 2, it is a prime implicant.

Colu	umn l		Colum	n II
0	0000	✓	0, 1	000-
1	0001	✓	0, 2	00–0
2	0010	1	0, 8	-000
8	1000	✓	1, 5	0-01
5	0101	✓	1, 9	-001
6	0110	1	2, 6	0–10
9	1001	1	2, 10	-010
10	1010	✓	8, 9	100-
7	0111	✓	8, 10	10–0
14	1110	✓	5, 7	01–1
			6, 7	011–
			6, 14	-110
			10, 14	1–10
	0 1 2 8 5 6 9	1 0001 2 0010 8 1000 5 0101 6 0110 9 1001 10 1010 7 0111	0 0000 ✓ 1 0001 ✓ 2 0010 ✓ 8 1000 ✓ 5 0101 ✓ 6 0110 ✓ 9 1001 ✓	0 0000 ✓ 0, 1 1 0001 ✓ 0, 2 2 0010 ✓ 0, 8 8 1000 ✓ 1, 5 5 0101 ✓ 1, 9 6 0110 ✓ 2, 6 9 1001 ✓ 2, 10 10 1010 ✓ 8, 9 7 0111 ✓ 8, 10 14 1110 ✓ 5, 7 6, 7 6, 14

- Terms in the new column are grouped according to the number of 1's.
- Terms which have dashes in the same place and which differ in only one variable can be combined.
- Terms 000- (a'b'c')
 and 100- (ab'c') yield
 -00- (b'c').

Find and delete the duplicate terms.

	Colu	ımn l	Columi	า	Column III	
group 0	0	0000 🗸	0, 1	000- 🗸	0, 1, 8, 9	-00-
	₁	0001 🗸	0, 2	00-0 🗸	0, 2, 8, 10	-0-0
group 1 <	2	0010 🗸	0, 8	-000 ✓	0, 8, 1, 9	-00-
Į	8	1000 🗸	1, 5	0-01	0, 8, 2,10	-0-0
	5	0101 🗸	1, 9	- 001 ✓	2, 6, 10, 14	10
group 2 <	6	0110 🗸	2, 6	0-10 🗸	2, 10, 6, 14	10
group z	9	1001 🗸	2, 10	-010 ✓		
	l <u>10</u>	1010 🗸	8, 9	100- 🗸		
group 3	7	0111 🗸	8, 10	10-0 🗸		
group 3	14	1110 🗸	5, 7	01–1		
			6, 7	011–		
			6, 14	-110 ✓		
			10, 14	1–10 🗸		

- Keep comparing terms and forming new groups of terms until no more terms could be combined.
- Terms which have not been checked off are prime implicants.

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$

(1, 5) (5, 7) (6,7) (0, 1, 8, 9) (0, 2, 8, 10) (2, 6, 10, 14)

• Each term has a minimum number of literals, but the number of terms is not minimum. This is left to the **prime implicant chart**.

Karnaugh Map's View

- To find groups of 4.
- If a group of 2 is not in any group of 4, it is a prime implicant.

EEE205 – Digital Electronics (II) Lecture 10

Xiaoyang Chen, Jiangmin Gu, Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

- The minterms are listed across the top.
- The prime implicants are listed down the side.
- If a prime implicant covers a given minterm, an X is placed at the intersection.

		0	1	2	5	6	7	8	9	10	14
(0, 1, 8, 9)	b'c'	×	×					×	\otimes		
(0, 2, 8, 10)	b'd'	×		×				X		×	
(2, 6, 10, 14)	cd'			×		X			-	×	\otimes
(1, 5)	a'c'd		×		×						
(5, 7)	a'bd				×		×				
(6, 7)	a'bc					×	X				

- If a minterm is covered by only one prime implicant (a column contains only one X), the prime implicant is an essential prime implicant and the X is circled.
- Essential prime implicants must be included in the minimum sum of products.

		0	1	2	5	6	7	8	9	10	14
(0, 1, 8, 9)	b'c'	×	×					×	\otimes		
(0, 2, 8, 10)	b'd'	×		×				X		×	
(2, 6, 10, 14)	cd'			×		X				×	\otimes
(1, 5)	a'c'd		×		×						
(5, 7)	a'bd				×		×				
(6, 7)	a'bc					×	X				

- Each time a prime implicant is selected for inclusion in the minimum sum, cross out:
 - The corresponding row
 - The columns which correspond to all minterms covered by that prime implicant.

- The essential prime implicants are chosen first.
- Then additional non-essential prime implicants are selected by trial.
- They should cover as many minterms as possible.

$$f = b'c' + cd' + a'bd$$
 (minimum sum of products)

		0	1	2	5	6	7	8	9	10	14
(0, 1, 8, 9)	b'c'	*	*					*	- ×		
(0, 2, 8, 10)	b'd'	*		*				\star		*	
(2, 6, 10, 14)	cd'			*		*				*	
(1, 5)	a'c'd		\star		X						
(5, 7)	a'bd				×	+	¥				
(6, 7)	a'bc					\star	×				

Karnaugh Map's View

This example is to show how to select non-essential prime implicants when alternative solutions exist.

$$F = \sum m(0, 1, 2, 5, 6, 7)$$

Step 1
$$0 000 \checkmark 0, 1 00-$$

 $1 001 \checkmark 0, 2 0-0$
 $2 010 \checkmark 1, 5 -01$
 $5 101 \checkmark 2, 6 -10$
 $6 110 \checkmark 5, 7 1-1$
 $7 111 \checkmark 6, 7 11-$

Step 2

$$F = a'b' + bc' + ac.$$

$$F = a'c' + b'c + ab$$

There are two minimum sum-of-products solutions.

Equivalent Karnaugh Maps

$$F = a'b' + bc' + ac.$$

$$F = a'c' + b'c + ab$$

- In finding the prime implicants, the don't cares are treated as minterms.
- When forming the prime implicant chart, the don't cares are NOT listed at the top.

$$F(A, B, C, D) = \sum m(2, 3, 7, 9, 11, 13) + \sum d(1, 10, 15)$$

1	0001 🗸	(1, 3)	00-1 🗸
2	0010 🗸	(1, 9)	-001 🗸
3	0011 🗸	(2, 3)	001- ✔
9	1001 🗸	(2, 10)	-010 🗸
10	1010 🗸	(3, 7)	0-11 🗸
7	0111 🗸	(3, 11)	-011 🗸
11	1011 🗸	(9, 11)	10–1 🗸
13	1101 🗸	(9, 13)	1-01 🗸
15	1111 🗸	(10, 11)	101- 🗸
		(7, 15)	-111 ✓
		(11, 15)	1-11 🗸
		(13, 15)	11-1 🗸

Karnaugh Map's View

Karnaugh Map's View

- This is to find the minimum set of prime implicants.
- Always start from essential prime implicants.

^{*}indicates an essential prime implicant.

Karnaugh Map's View

