Production Line Scheduling - Integer Program Model

Summary

Describe the problem briefly

Problem Statement

The above problem can be formulated mathematically as a linear programming problem using the following model.

INPUTS

Symbol Description

N number of batches

 D_i deadline of batch i

 T_{pi} time needed to produce batch i

 D_s time to start scheduling

 D_l last deadline, max(D_i)

 T_r total time available, $D_l - D_s$

VARIABLES

Symbol Description

 T_{si} start time of batch i

$$P_{ij} \qquad \begin{cases} 1 & T_{si} < T_{sj} \\ 0 & T_{si} > T_{sj} \end{cases}$$

 T_f finish time of all batches $\max(T_{si} + T_{pi})$

Constraints

Deadline and Overlapping

This ensures that the deadline is met for batch i.

$$T_{si} + T_{pi} \le D_i$$
$$0 \le T_{si} \le T_r$$

This ensures that any two batches i and j are not separated by more than the total time available for production.

$$-T_r \times P_{ij} \le T_{si} - T_{sj} \le T_r \times (1 - P_{ij})$$

This ensures that the production times of any two batches i and j do not overlap.

$$T_{sj} - (T_{si} + T_{pi}) \ge T_r \times (P_{ij} - 1)$$

OBJECTIVE

minimize T_f