Author Index to Volume 25

(The issue number is given in front of the pagination) -

Akiyama, M., see Mizusawa, Ji.	(10)	1041-1053	Cailliau, R., see Berners-Lee, T.J.	(4-5)	454- 459
Algayres, B., V. Coelho, L. Doldi, H. Garave	l,		Chang, CJ. and SY. Wang, Performance		
Y. Lejeune and C. Rodríguez, VESAR:	a		analysis of a statistical multiplexer for		
pragmatic approach to formal specifica	1-		integrated service in the customer-pre-		
tion and verification	(7)	779- 790	mise equipment	(2)	191- 201
Alvestrand, H.T., Electronic mail routing i	n		Chanson, S.T., A.A.F. Loureiro and S.T.		
a heterogeneous world	(4-5)	535- 539	Vuong, On tools supporting the use of		
Amer, P.D. and D. New, Protocol visualiza			formal description techniques in protocol		
tion in Estelle		741- 760	development	(7)	723 - 739
Ashby, P., FTAM interoperability: meeting	-		Chlamtac, I. and M.G. Kienzle, Multitasking		
the needs of the research community		531- 534	in high-speed interconnection systems	2	701- 716
Auge, E. and P. Brun, Distributed manage			Clark, D.D., B.S. Davie, D.J. Farber, I.S.		
ment of an MHS environment		577- 582	Gopal, B.K. Kadaba, W.D. Sincoskie,		
Azcorra, A., see Mañas, J.A.	(7)	815- 839	J.M. Smith and D.L. Tennenhouse, The		
			AURORA gigabit testbed	-	599- 621
Bär, U., see Schneider, J.M.		43- 61	Coelho, V., see Algayres, B.		779- 790
Barber, D., see Kalin, T.		227- 239	Coulson, G., G.S. Blair, N. Davies and N.		
Baumgarten, T., see Holleczek, P.		351- 356	Williams, Extensions to ANSA for multi-		
Bem, D.J., NASK—Research and academ			media computing		305 - 323
computer network in Poland		431- 437	Courtiat, JP. and P. de Saqui-Sannes, ES-		
Benford, S. and J. Palme, A standard for			TIM: an integrated environment for the		
OSI group communication	4-6	933- 946	simulation and verification of OSI proto-		
Berners-Lee, T.J., R. Cailliau and JF. Gro		454 450	cols specified in Estelle	(1)	83- 98
The world-wide web		454- 459	Cullen, J., B. Day and M. Planes, The use of		
Berrino, C. and D. Manuello, Y-NET-Th			FTAM to access graphical pictures across		255 202
Esprit pan-European community Of		554 5CD	wide area networks	(4-5)	377- 383
network		554- 560	Posthing A Family Project OSI OF Nov		
Biersack, E.W. and D.C. Feldmeier,			Danthine, A., Esprit Project OSI 95. New		
timer-based connection managemen			transport services for high-speed net- working		384- 399
protocol with synchronized clocks and i verification		1303-1319	Davie, B.S., see Clark, D.D.		599- 621
Binding, C., see Karjoth, G.		853- 874	Davies, D., Is there life after COSINE?		518- 520
Bisdikian, C., A queueing model with app		633- 674	Davies, N., see Coulson, G.		305- 323
cations to bridges and the DQDB (IEE			Davoli, F., see Bolla, R.		1079-1087
802.6) MAN		1279-1289	Day, B., see Cullen, J.		377- 383
Bishop, A.P., Electronic networking for eng		12//-120/	de Miguel, T., see Mañas, J.A.		815- 839
neers: research from a user perspective		344- 350	Deng, R.H., see Du, J.		1321-1333
Blair, G.S., see Coulson, G.		305- 323	De Nicola, R., A. Fantechi, S. Gnesi and G		1361-1350
Blair, G.S., see Macartney, A.J.		145- 157	Ristori, An action-based framework for		
Bolla, R. and F. Davoli, Dynamic hierarch		110 101	verifying logical and behavioural proper		
cal control of resource allocation in			ties of concurrent systems		761- 778
integrated services broadband network		1079-1087	De Prycker, M., ATM technology: a back		
Bovio, D., The regionalization of EARN		546- 553	bone for high speed computer network		
Brun, P., see Auge, E.		577- 582	ing		357- 362
Bruneel, H., Packet delay and queue leng			de Saqui-Sannes, P., see Courtiat, JP.		83- 98
for statistical multiplexers with low-spec			Desmet, E., see Steyaert, B.		1227-1241
access lines		1267-1277	Dobosiewicz, W., P. Gburzyński and P. Rud		
Bruneel, H., see Steyaert, B.		1227-1241	nicki, On two collision protocols for high		
Brusilovsky, S., see Sokolov, N.		1165-1173	speed bus LANs		1205-1225
Budkowski, S., Estelle development tools	et		Doelz, R., The EMBnet Project-European	1	
(EDT)		63- 82	molecular biology network		464- 469

Doldi, L., see Algayres, B.	(7) 779- 790	Jhunjhunwala, A., see Krishna Thilakam, R.	(3)	241- 257
Du, J., R.H. Deng and C.C. Ko, Performance			400	***
analysis of interconnected LANs wit		Kadaba, B.K., see Clark, D.D.	(6)	599- 621
server/client configuration	(12) 1321–1333	Kalin, T. and D. Barber, Has the OSI oppor-	4=8	
Dziong, Z., KQ. Liao and L. Mason, Effect		tunity been fully realised?		227- 239
tive bandwidth allocation and buffer d		Kameda, H., see Li, J.	(12) 1	335-1348
mensioning in ATM based networks wit	h	Kaniyil, J., Y. Onozato and S. Noguchi, On		
priorities	(10) 1065-1078	the behavioral aspects of alternate rout-		
		ing in non-hierarchical networks	(3)	275- 294
Ekhriel, I., see Sokolov, N.	(10) 1165-1173	Kao, SK., see Mukherjee, B.	(2)	103- 120
		Karjoth, G., C. Binding and J. Gustafsson,		
Fantechi, A., see De Nicola, R.	(7) 761- 778	LOEWE: A LOTOS engineering work-		
Farber, D.J., see Clark, D.D.	(6) 599- 621	bench	(7)	853- 874
Feldmeier, D.C., see Biersack, E.W.	(12) 1303-1319	Kelleher, L.A., Navigating the Internet-a		
Fernández, A., see Miguel, C.	(7) 791- 814	merit network cruise	(4-5)	460- 463
Flückiger, F., Euro-networking and indus	3-	Kienzle, M.G., see Chlamtac, I.	(6)	701- 716
trial policies: lessons from the past	(4-5) 501- 511	Kim, Y.H., B.C. Shin and C.K. Un, Perfor-		
Foudriat, E.C., see Maly, K.J.	(2) 203- 223	mance analysis of leaky-bucket band-		
Frieder, O. and R.L. Shuey, Communicatio	n	width enforcement strategy for bursty		
needs in a data engineering world	(3) 259- 273	traffics in an ATM network	(3)	295- 303
		Kirstein, P.T. and P. Williams, Piloting au-		
Game, D., see Maly, K.J.	(2) 203- 223	thentication and security services within		
Garavel, H., see Algayres, B.	(7) 779- 790	OSI applications for RTD information		
Gburzyński, P., see Dobosiewicz, W.	(11) 1205-1225	(PASSWORD)	(4-5)	483- 489
Geurts, P. and G. Theis, A formal approach	h	Ko, C.C., see Du, J.	(12)	1321-1333
to the description of communications se	r-	Ko, KT., P.P. Mishra and S.K. Tripathi,		
vices: the case of the Space Data Ne		Interaction among virtual circuits using		
work (SDN)	(4-5) 583- 591	predictive congestion control	(6)	681- 699
Gnesi, S., see De Nicola, R.	(7) 761- 778	Krishna Thilakam, R. and A. Jhunjhunwala,	(-)	
Gopal, I.S., see Clark, D.D.	(6) 599- 621	The design and flow control of a high		
Gotzhein, R., Formal definition and repre	2-	speed, integrated, packet switched net-		
sentation of interaction points	(1) 3- 22	work	(3)	241- 257
Gouda, M.G., Protocol verification mad	le	Kunft, W., Developments in academic net-		
simple: a tutorial	(9) 969- 980		(4-5)	561- 565
Greaves, D.J. and K. Zieliński, The Can			,	001
bridge Backbone Network. An overvie		Le Bon, A., see Rosenberg, C.	(10)	1155-1163
and preliminary performance	(10) 1127-1133	Leduc, G., A framework based on implemen-	(/	
Greisen, F., The operational unit for r		tation relations for implementing LO-		
search and academic networking in E		TOS specifications	(1)	23- 41
rope	(4-5) 521- 525	Lejeune, Y., see Algayres, B.		779- 790
Groff, JF., see Berners-Lee, T.J.	(4-5) 454- 459	Li, J. and H. Kameda, Optimal load balanc-	(.,	
Gruntorad, J., Research and academic ne		ing in tree networks with two-way traffic	(12)	1335_1348
working in the Czech and Slovak Feder		Liao, KQ., see Dziong, Z.		1065-1078
Republic	(4-5) 438- 443	Lipp, P. and R. Posch, An inter-bridge-	(10)	1005-1076
Gustafsson, J., see Karjoth, G.	(7) 853- 874		(4-5)	496- 500
outsides, gr, see margorit, Gr	(1) 033 014	Liu, S.S., Impacts of signaling-intensive local	(4-5)	490- 300
Hayes, J.F., see Luan, Z.	(2) 183 190	services (SILS) on B-ISDN switching sys-		
Heinanen, J., Frame relay as a multiprotoc		tems: a simulation study	(2)	121- 143
backbone interface	(4-5) 363- 369	Lombardo, A., S. Palazzo, D. Panno, R. Pig-	(2)	121- 143
Henderson, W., Finding and using exa		natelli and L. Susanna, An adaptive		
equilibrium distributions for stochast		policing mechanism for a DODB MAN	(10)	1119-1126
Petri nets	(10) 1143–1153			
Holleczek, P. and T. Baumgarten, Throug		Loureiro, A.A.F., see Chanson, S.T.	(/)	723 – 739
		Luan, Z., J.F. Hayes and M.K. Mehmet Ali,		
put measurements in a 2 Mbps X.25 ne work		Frame synchronization performance of	(2)	102 100
Holzmann, G.J., Design and validation	(4-5) 351- 356	SONET signals	(2)	183- 190
		Manufact AT and GG Blot W. 11		
protocols: a tutorial	(9) 981–1017	Macartney, A.J. and G.S. Blair, Flexible	(2)	145 157
Husemann, D., ISO CONS in LANs—ma		trading in distributed multimedia systems		145- 157
ing it all work. A European contribution to 4.4 BSD Unix	on (4-5) 411- 419	Mackert, L.F., see Schneider, J.M.	(1)	43- 61
to 4.4 DSD UIIX	(4-3) 411- 419	Maly, K.J., E.C. Foudriat, R. Mukkamala,		

C.M. Overstreet and D. Game, Dynamic allocation of bandwidth in multichannel			Petit, G.H., see Steyaert, B.		1227-1241
metropolitan area networks	(2)	203- 223	Pignatelli, R., see Lombardo, A.		119-1126
Mañas, J.A., T. de Miguel, J. Salvachúa and	(2) 2	203- 223	Pinse, D. and P. Sylvester, An electronic		
A. Azcorra, Tool support to implement			mail gateway between EARN/INTER- NET and the IBM internal network	(4 5)	526- 530
LOTOS formal specifications	(7)	815- 839			377- 383
Mannie, E. and B. Sales, 3L, a software	(1)	515- 659	Popescu, A. and R.P. Singh, An alternative	(4-3)	311- 303
	(4_5)	120- 425	solution to the electro-optic and service		
		554- 560			
Martinez, D., Frame relay and SMDS ser-	(4-3)	554- 500	bottleneck problems in integrated multi- Gbit/s LANs: the SUPERLAN architec-		
vices on a common ATM-based platform ((A 5) 3	270 276	ture		1089-1105
Mason, L., see Dziong, Z.		065-1078	Posch, R., see Lipp, P.		
Maxemchuk, N.F., Dispersity routing in	(10) 10	003-1076		(4-3)	496- 500
high-speed networks	(6)	645- 661	Purser, M., COSINE Sub-Project P8: secu- rity services	(4 5)	476- 482
Mehmet Ali, M.K., see Luan, Z.		183- 190	Tity services	(4-3)	4/0- 402
Miguel, C., A. Fernández, J.M. Ortuño and	(2)	183- 190	Quemada, J., On tools for FDTs	(7)	719- 721
L. Vidaller, A LOTOS based perfor-			Quemaua, J., On tools for FD1s	(/)	119- 121
mance evaluation tool	(7)	791- 814	Rangan, P.V., Video conferencing, file stor-		
Mishra, P.P., see Ko, KT.		681- 699	age, and management in multimedia		
Mitra, D. and J.B. Seery, Dynamic adaptive	(0)	001- 099			901- 919
windows for high speed data networks			computer systems Reijs, V., RARE/COSINE connectionless		201- 313
with multiple paths and propagation de-			mode network service pilot		426- 430
lays	(6)	663- 679			1165-1173
Mizusawa, Ji. and M. Akiyama, Experi-	(0)	003~ 079	Rerle, R., see Sokolov, N. Richards, P.S., Rapid service delivery and		1105-1175
ences and expectations of introducing			customization in a developing network		
PSTN new services	(10) 1	041-1053	infrastructure		102 1201
Morrow, T., BIDS ISI: a new national biblio-	(10) 1	041-1055			103- 1201
graphic data service for the UK academic			Ristori, G., see De Nicola, R. Roberts, J.W., Traffic control in the B-ISDN		761 – 778 1055 – 1064
	(4.5)	448- 453	Roberts, M.M., The university role in the		1055-1064
Muftic, S., Implementation of the Compre-	(4-3)	440- 433	United States National Research and		
hensive Integrated Security System for			Education Network		512- 517
	(4 5)	469- 475			623- 644
•	(4-3)	409- 4/3	Rodeheffer, T.L., Experience with Autonet		
Mukherjee, B. and SK. Kao, An improved voice-data integration protocol for fiber			Rodríguez, C., see Algayres, B.		779- 790
optic bus networks	(2)	103- 120	Rosenberg, C. and A. Le Bon, Performance models for hybrid broadband networks		1155-1163
Mukkamala, R., see Maly, K.J.		203 - 223	Rudnicki, P., see Dobosiewicz, W.		1205-1225
Mukamaia, K., See Maiy, K.J.	(2)	203- 223	Rysavy, F.R., Users and services providers		1203-1223
Najmabadi Kia, R. and B. Sales, Routing			interoperability		339- 343
architectures for the support of the OSI			interoperatinity	(4-3)	337- 343
	(4.5)	405- 410	Sales, B., see Mannie, E.	(4.5)	420- 425
Nakajima, A., Construction of optimal com-	(4-3)	405- 410	Sales, B., see Najmabadi Kia, R.		405- 410
munication structures for weighted dis-			Salvachúa, J., see Mañas, J.A.		815- 839
tributed match-making	(12) 1	291-1301	Sato, H., see Yokotani, T.		1107-1117
Nakatsuka, S., see Yokotani, T.		107-1117	Schneider, J.M., L.F. Mackert, G. Zörntlein		1107-1117
Nam, S.H. and C.K. Un, Performance analy-	(10) 1	10/-111/	R.J. Velthuys and U. Bär, An integrated	•	
sis of broadcast star network with colli-			environment for developing communica-		
sion-avoidance switch	(2)	169- 182	tion protocols		43- 61
Neggers, K., Next steps for European net-	(2)	109- 102	Seery, J.B., see Mitra, D.		663- 679
	(4.5)	592- 593	Shin, B.C., see Kim, Y.H.		295- 303
New, D., see Amer, P.D.		741- 760	Shuey, R.L., see Frieder, O.	-	259- 273
Noguchi, S., see Kaniyil, J.		275- 294	Sijelmassi, R. and B. Strausser, The PET		239- 213
Nogucii, 3., see Kalilyli, J.	(3)	213- 274	and DINGO tools for deriving dis		
Onorato V see Kanivil I	(3)	275- 294	tributed implementations from Estelle		841- 851
Onozato, Y., see Kaniyil, J. Ortuño, J.M., see Miguel, C.		791- 814	Simoni, N. and S. Znaty, Interconnection o		041- 031
Overstreet, C.M., see Maly, K.J.		203- 223	high-speed data networks: contribution		
Oversatett, Caria, see Maly, R.J.	(2)	205- 225	of dynamic control and quality of service		570_ 576
Palazzo, S., see Lombardo, A.	(10) 1	1119-1126	Sincoskie, W.D., see Clark, D.D.		599- 621
Palme, J., see Benford, S.		933- 946	Singh, R.P., see Popescu, A.		1089-1105
Panno, D., see Lombardo, A.		1119-1126	Smith, J.M., see Clark, D.D.		599- 621
Partridge, C., Protocols for high-speed net-		1120	Sokolov, N., I. Ekhriel, R. Rerle and S		377- 021
works: some questions and a few answers		1019-1028	oundry in a smaller, it here alle o		
Joine questions and a ten answers	101				

Brusilovsky, On some teletraffic mod	lels		Van Binst, P., Guest editorial	(4-5)	327- 328
simplification	(10)	1165-1173	van Dijk, N.M., On the arrival theorem for	r	
Stals, B., Users and networks-survival	of		communication networks	(10)	1135-1142
the fittest?	(4-5)	335- 338	Varvitsiotis, A.P. and G.I. Stassinopoulos	,	
Stassinopoulos, G.I., see Varvitsiotis, A.P.	. (11)	1243-1263	Extending ASN.1 into a full-fledged con		
Sterba, M., ISDN in European research n	et-		straint language in the context of OS	I	
working	(4-5)	400- 404	protocol conformance testing	(11)	1243-1263
Steyaert, B., H. Bruneel, G.H. Petit and	E.		Velthuys, R.J., see Schneider, J.M.	(1)	43- 61
Desmet, End-to-end delays in multista	age		Veltink, G., The PSF toolkit	(7)	875-898
ATM switching networks: approxim	ate		Vidaller, L., see Miguel, C.	(7)	791-814
analytic derivation of tail probabilities	(11)	1227-1241	Vuong, S.T., see Chanson, S.T.	(7)	723- 739
Strausser, B., see Sijelmassi, R.	(7)	841-851			
Susanna, L., see Lombardo, A.	(10)	1119-1126	Wallace, B., OSI migration	(4-5)	540- 545
Sylvester, P., see Pinse, D.	(4-5)	526- 530	Wang, SY., see Chang, CJ.	(2)	191- 201
			Wang, W. and F.A. Tobagi, The Christmas	-	
Tennenhouse, D.L., see Clark, D.D.	(6)	599- 621	tree switch: an output queuing space-di	-	
Thachenkary, C.S., Integrated Services D	igi-		vision fast packet switch based on inter	-	
tal Networks (ISDN): six case study	as-		leaving distribution and concentration	n	
sessments of a commercial implement	nta-		functions	(6)	631- 644
tion	(8)	921- 932	Wijgerde, J., The COSINE quality of service	e	
Theis, G., see Geurts, P.	(4-5)	583- 591	project	(4-5)	565- 569
Tobagi, F.A., see Wang, W.	(6)	631- 644	Williams, N., see Coulson, G.	(3)	305- 323
Tripathi, S.K., see Ko, KT.	(6)	681- 699	Williams, P., see Kirstein, P.T.	(4-5)	483- 489
Turchanyi, G., Networking in Hungary	(4-5)	444- 447	Wu, S., MHS security—a concise survey	(4-5)	490- 495
Tusch, J., Performance measurement in	to-				
ken ring networks	(2)	159- 168	Yokotani, T., H. Sato and S. Nakatsuka, A	4	
			study on a performance improvement a	l-	
Ullmann, K., Data networks for the Eu	1го-		gorithm in DQDB MAN	(10)	1107-1117
pean research and education secto	r—				
analysis and perspectives	(4-5)	329- 334	Zieliński, K., see Greaves, D.J.	(10)	1127-1133
Un, C.K., see Kim, Y.H.	(3)	295- 303	Znaty, S., see Simoni, N.	(4-5)	570- 576
Un, C.K., see Nam, S.H.	(2)	169- 182	Zörntlein, G., see Schneider, J.M.	(1)	43- 61

Subject Index to Volume 25

Abstract data types 875

Abstraction 23

Access control 1079

Access network 1041

Achievements 518

ACOnet 561

Admission control 1055

Aerospace 344

Aggregation 1143

AIP techniques 570

Alternate routing 275

Analysis 329

Analysis and verification 853

Analytic approximation 1227

ANSA 305

Application 454

Approximate models 103

Architectural concept 3

ARGOSI 377

Arrival theorem 1135

ASN.1 1243

Asymptotic analyses 663

Asynchronous traffic 203

Asynchronous Transfer Mode (ATM) 121 295 357 363 370 599 631 1065 1127 1279

ATM crossconnect 357

ATM switches 357

ATM switching 1227

Authentication 490

Automatic implementation 63

Automatic management 623

Automatic reconfiguration 623

Average delay time 1107

Bandwidth allocation 1079

Bandwidth enforcement 295

Behavioural equivalences 761

Bibliographic database 448

BIDS 448

Biological sequence data 464

Birth-death Markov chain 191

Blocking probability 191

Bridges 496 501

Broadband 384

Broadband ISDN (B-ISDN) 121 241 295 357

370 631 1079 1279

B-ISDN services 1055

Broadcast star network 169

Browser 454

4.4 BSD CONS 411

Budgetary requirements 329

Bulletin boards 933

Burstiness 295

Call admission control 1065

CCS No. 7 121

Certification authority 476

CGM 377

Circuit switched network 1135

Citation index 448

Client/server model 339

CLNP 540

CLNS 426

Closed-form expressions 1267

CO/CL interworking 405 420

Coercions 145

Collision-avoidance switch 169

Collision protocols 1205

Commercial ISDN 921

Communication complexity 1291

Communication infrastructure 431

Communication networks 1135

Communication protocol 43 63 431

Communication structures 1291

Compiler 841

Computer conferencing 933

Computer graphics metafile 377

Computer network 431 438 561 599

Computer tools 875

Conference management 901

Conferencing systems 464

Conformance 23

Conformance testing 1243

Congestion 275

Congestion control 681

Connectionless Broadband Networking Ser-

vices (CBDS) 370

Connectionless-mode network service

(CLNS) 405 420

Connectionless service 357

Connection management 1303

Connection-mode network service (CONS)

405 420

Connection-oriented communication 701

Connection-oriented network service 411

Constraint specification 1243

Convolution 1143

Cooperation 535

Correlated arrivals 1267

COSINE 426 476 501 518 521 531 566

CO-switched video services 121

Cross traffic 663

Cryptography 496

CSMA 1135

CSMA/CD 203 1205

Data communication 259 357

Data engineering 259

Data networks 329 Debugging 63

Decomposition 1143 1155

Decomposition algorithm 1335

Delay-bandwidth product 663

Delay convention 275

Delay jitter 1227

Delay protocol 1135

Design 981

Design equation 663

Design tools 981

Directory 483

Discrete-time queueing model 1267

Distance vector routing 405

Distributed architecture 933

Distributed computer networks 512

Distributed computing 259 339

Distributed database 464

Distributed match-making 1291

Distributed name service 1291

Distributed resources 464

Distributed shared memory 599

Distributed system 3 305 841

Distributed systems architecture 145

Distribution function 1165

DNA sequence data 464

DQDB 1119 1279

Dynamic bandwidth allocation 203

Dynamic control 570

Early packet switching research networks 227

EARN 438 526 546

Effective bandwidth 1065

Electronic mail (E-mail) 460 483 535

Electronic mail gateway 526

Electronic networks 344

EMBL database 464

EMBnet 464

Encapsulation 400

Encipherment 490

End-to-end cell delay 1227

Engineers 344

Error 1165

Error recovery 159

Esprit 554

Estelle 63 83 723 741 841

Estelle specification 779

Ethernet 1205

EUnet 438

Euro-networking 501

European backbone 521

European IT-industry policy 329

European SMDS Interest Group (ESIG) 370

European Telecommunications Standards

Institute (ETSI) 370

Fair allocation 663

Fairness 103 203 1205

Fast packet switching 631

Fault-tolerance 969

FDDI 501

FDT 23 723 741

FDT tools 723

Fibre 1127

Finite state machines 841

First-come first-served 169

Flow control 241

Fold catastrophe 275

Formal description technique (FDT) 3 43 63

83 741 761 815 841 853 875 981

Formal method 969

Formal program derivation 815

Formal protocol development 43

Formal verification 779

Frame 183

Frame relay 363

FTAM 531 540

FTAM document types 377

FTP 460 540

FTP server 464

Functional simulator 570

Funding 518

Future options for OSI 227

Gateway 540

Gigabit network 512 599

Gigabit networks 1019

Global information 454

GOPHER 464

Group communication 933

HDLC 411

HGMP 339

Hierarchical control 1079

High-speed local area networks 1205 High-speed networks 384 570 645 681

High speed packet switch 241

HIPPI standard 701

HIPPI standa

Hungary 444

Hybrid broadband network 1155

Hypertext 454

IBM Mail Exchange 526

IEEE 802.6 1279

IEEE 802 Committee 1107

Impact of technology on OSI 227

Implementation 23

Implementation issues 103

Implementation process 23

Implementation relation 23

Industry 501

Information models 933

Information systems 259

Integrated CONS environment 411

Integrated multimedia services 901

Integrated services 191

Integrated tools environment 43

Integrated traffic 203

Intelligent Network 1031

Interaction point 3

Interconnected LANs 1321

Interconnectivity 339
Internet 438 460 512
Internet mail 526
Interoperability 339
Interoperability testing 531
Interworking 535 583
Interworking unit 411 570
Invariant 969
ISDN 400 1041
ISDN systems 921
ISDN tariff 921
ISI 448
ISO 741 1243
IXI 566

JANET 448

LAN 411
LAN interconnection 363
Leaky Bucket 1119
Liapunov function 275
Lifetime enforcement 1303
Link state routing 405
LLC2 411
Local and metropolitan area networks 103
Local area network 159 411 496 623 1107
LOTOS 23 384 723 791 815
Lower layer technologies 411

MAN 357 363 1279 Marketing 501 Maxwell convention 275 Mean value analysis 1321 Mean waiting time 191 Medical imaging 645 Metropolitan area network (MAN) 203 370 1107 M/G/1 queue 1107 MHS 540 554 566 MHS security 490 MHS security services provision 490 Migration 420 540 **MMPP 295** Moderate usage 663 Moments of queue length and delay 1267 Movable boundary scheme 103 Multiaccess 1127 Multi-Gbit/s LANs 1089 Multi-layered logic 570 Multimedia 145 305 357 384 1019 Multimedia communication 599 Multiprotocol backbone 438 Multiprotocol backbone infrastructure 583 Multiprotocol routing 363 Multiserver output queues 1227 Multiservice 1089 Multistage networks 1227

Y-NET 554 Network architecture 1089

Multitasking 701

Network connectivity 400 Network design 1041 Networked information retrieval 454 Network evolution 1041 Network infrastructure 438 Networking 339 Networking activities 444 Networking partnership 512 Network integration 921 Network interconnection 405 420 Network Internal Layer Service (NILS) 420 Network management 546 Network modernization 1031 Network performance 1205 Network performance evaluation 546 Network protocols 969 Network security 496 Network services 400 New services 518 **NJE/IP 546 NREN 512 NSFNET 512**

Objectives 518 Object-oriented database 570 Object-oriented language (Eiffel) 570 Object-oriented methodology 570 Observers 779 **ODA 483** Open distributed processing 305 Open systems interconnection 83 841 Optimal load balancing 1335 Optimization 1079 Organization 554 Organizational issues 329 Organization in Europe 521 Organizations 444 Origins of open systems standards 227 OSI 95 384 405 420 531 540 554 561 933

Packet-switched network 431 Packet switching 351 561 599 **PARADISE 566** Performance 103 351 Performance analysis 191 1279 Performance bounds 1065 Performance evaluation 791 1155 1321 Performance guarantees 1019 Performance measurement 159 p_i-Persistent protocol 103 Pilot services 483 Policies 501 Policing 1055 1119 Policy issues 921 Policy routing 535 Predictive mechanisms 681 Preemptive buffering 103 Priority queue 1279 Privacy enhanced mail 476 Process algebra 23 761 875

Product form 1135 1143

Progress 969

Project description 426

Projects 444

PROMELA 981

Protocol 512 599 981 1303

Protocol engineering 43 723 853

Protocol engineering tools 83

Protocol implementation 420 815

Protocol specification 741

Protocol specification and verification 83

Protocol validation 43

Prototyping 853

Prototyping formal specification compilation

815

PSTN 1041

Public key cryptology 476

QOS 570

Quality 566

Quality of service 145

Quasi-gated priority discipline 1279

Queueing systems 1155

Queue length distribution 191

Random order of service 169

RARE 426

Refinement 23

Relay system 420

Reliability 339

Remote switching 121

Requirements analysis 259

Research, Europe 329

Resource allocation 203

Restrictions 329

Retransmission protocol 1135

Ring 1127

Routers 501 561

Routing 405 546 645

SDL 723

Secure access control 476

Security 476 483

Security architecture 469

Security mechanisms 490

Security protocols 469

Security services 469 490

Security systems 469 Security threats 490

Server 454

Service requirements 535

Service vacation 169

Service velocity 1031

Services 460 554

Signaling 121

Simulation 63 121 779 791 853

Single server 1267

SMTP 540

Software environments 853

Sojourn ratio 275

SONET 183

Space-division switch architectures 631

Specification 23

Specification languages 83 815 875

SPIN 981

Stability 275

Standards 535

Standards, X.500 Directory Service, X.400

message handling service 933

Statistical multiplexer 191

Statistical multiplexing 1055

Stochastic Petri nets 1143

Subnetwork address resolution entity 411

Subtyping 145

Support 460

Switch-based network 623

Switched Multimegabit Data Service (SMDS)

370

Synchronization 183 1089

Synchronized clocks 1303

Synchronous Digital Hierarchy (SDH) 370

Synchronous traffic 203

TCP/IP 420 501 512 540 561

TDM 1079

Technology evaluation 921

Technology options 329

Telecommunications 259

Telecommunication service 1041

Teletraffic model 1165

Telnet 460 540

Temporal logic 3 761

Testbed 159 Testing 815

Throughput 351

Timed and probabilistic FDTs 791

Token ring 159

Token-ring LAN 1321

Tools 460 791

Trading 145

Traffic control 295 1089

Traffic placement 203

Transfer of graphics across networks 377

Transformation 23

Transport layer relay 420

Transport protocol 384

Transport service 384

Tree networks 1335 Tunnelling 540

Two-way traffic 1335

Unidirectional fiber-optic bus networks 103

Unix 411

Upper layers 1243

User education 464

User requirement 583

User studies 344

User-support 335

User support 464

Validation 981
Validation tools 981
Verification 969 981
Verification environments 761
Video conferencing 901
Video file storage 901
Virtual circuits 645
Virtual terminal 540
Visualization 741
Voice—data integration 103

WAIS 464
Wavelength Division Multiplexing (WDM) 1089
World-wide web 454

X.25 351 411 561 X.25 packet layer protocol (X.25/PLP) 405 420 X.400 526 540 X.500 566