Южно-Уральский государственный университет (НИУ) Высшая школа электроники и компьютерных наук Кафедра «Информационно-измерительная техника»

	УТВЕРЖДАЮ
Заведующі	ий кафедрой
	(А.П.Лапин)
	2018 г.

ЗАДАНИЕ НА РАБОТУ

на курсовую работу студентам: группа: КЭ-463

- 1. Дисциплина: Программное обеспечение измерительных процессов.
- 2. Тема работы: Разработка датчика бесконтактного измерения температуры с передачей параметров по беспроводному интерфейсу
- 3. Требования к разработке:
 - Для разработки должна использоваться отладочная плата XNUCLEO-F411RE
 - Питание платы должно быть автономным и подаваться с солнечный батарей
 - Программное обеспечение должно измерять температуру
 - Период измерения должен быть 100 ms.

tau = int ((1-e^(-dt/(R*C)), RC > 0 sec), (1, RC<= 0 sec))

• К измеренной температуре должен быть применен цифровой фильтр вида:

```
"FilteredValue" = "OldFiltered" + ("Value" - "OldValue") * tau,

где dt - 100 мс;

Value – текущее нефильтрованное измеренное значение напряжения;
oldValue - предыдущее фильтрованное значение.
```

- Для измерения давления, влажности и температуры должен использоваться инфракрасный датчик температуры
- Общение с датчиком должно осуществляться по интерфейсу SPIx (где x любой не равный 1,2,3)
 - Вывод значений давления, влажности и температуры должен производиться на экран с жидкими чернилами
- Общение с индикатором должно осуществляться через интерфейс SMBus
- Период вывода информации на индикатор должен быть 3 секунды.
- формат вывода:
 - "Температура: " XXX.XX [Units]

- Передача значений по беспроводному интерфейсу должна осуществляться через модуль BlueTooth Bee HC-06
- Для подключения модуля BlueTooth должна использоваться плата Accessories Shield или I/O Expansion Shield
- Периоди вывода информации через BlueTooth модуль должен быть 1 секунда.
- Общение с платой расширения должно осуществляться через USART2
- формат вывод:

"Температура: " XXX.XX [Units]

- Архитектура должна быть представлена в виде UML диаграмм в пакете Star UML
- Приложение должно быть написано на языке C++ с использование компилятора ARM 8.40.2
- При разработке должна использоваться Операционная Система Реального Времени FreeRTOS и C++ обертка над ней
- \circ По нажатию кнопки USER на плате XNUCLEO-F411RE единцы измерения температуры должны изменяться в следующей циклической последовательности F → K → C.

1. Перечень вопросов, подлежащих разработке:

- В ходе работы необходимо разработать архитектуру программного обеспечения в виде диаграммы UML.
- В ходе работы необходимо разработать код программного обеспечения.
- Код должен соответствовать стандарту кодирования Стэнфордского университета, см также оригинал
 - Работа программы должна быть продемонстрирована совместно с платой XNUCLEO-F411RE.
 - Содержание работы должно соответствовать ГОСТ 19.402–78 «Единая система программной документации. Описание программы».
- работа должна быть оформлена в формате Asciidoc и выложена на Github
 - Описание архитектуры в виде UML диаграмм должно быть оформлено в разделе «Описание логической структуры» "Алгоритм программы".
 - Дополнительно к архитектуре, в разделе «Описание логической структуры» → "Структура программы с описанием функций составных частей и связи между ними" должен быть описан принцип работы программы и взаимодействия разных блоков программы друг с другом.
 - Оформление пояснительной записки к курсовой работе в соответствии с СТО ЮУрГУ 04–2008 «Курсовое и дипломное проектирование. Общие требования к содержанию и оформлению».

1. Календарный план:

• Сдача этапов выполнения курсовой работы осуществляется строго в соответствии с календарным планом.

Наименование разделов курсовой работы	Срок выполнения разделов работы	Отметка руководителя о выполнении
Разработка общей архитектуры программы	28 марта 2020 г.	
Разработка кода каркаса программы	4 апреля 2020 г.	
Разработка детальной архитектуры модуля работы с датчиком	11 апреля 2020 г.	
Разработка кода для модуля работы с датчиком	11 апреля 2020 г.	
Разработка детальной архитектуры модуля работы с индикатором	18 апреля 2020 г.	
Разработка кода для модуля работы с индикатором	18 апреля 2020 г.	
Разработка детальной архитектуры модуля работы с USART и блутуз	25 апреля 2020 г.	
Разработка кода для модуля работы с USART и блутуз	25 апреля 2020 г.	
Разработка детальной архитектуры и кода для оставшихся модулей	2 мая 2020 г.	
Сдача и демонстрация работы устройства	9 мая 2020 г.	
Оформление пояснительной записки к курсовой работе	20 мая 2020 г.	

Руководитель работы:	/C. B.		Колодий/	
	(подпись)			
Студент			/	
	(подпись)			
Студент			/	
	(подпись)			