Math 10

Lesson 2–4 Answers

Lesson Questions

Question 1

If possible, factor each trinomial.

a)
$$x^2 + 2x - 8$$

b)
$$a^2 + 7a - 18$$

c)
$$-30 + 7m + m^2$$

2 factors of –8 that add up to 2

$$4 - 2 = -8$$

$$4 - 2 = 2$$

$$-2 + 9 = 7$$

2 factors of
$$-18$$
 that add up to 7

$$-3(10) = -30$$

 $-3 + 10 = 7$

$$x^2 + 2x - 8$$

= $(x + 4)(x - 2)$

$$a^2 + 7a - 18$$

= $(a + 9)(a - 2)$

$$-30 + 7m + m2$$

= $(-3 + m) (10 + m)$
= $(m - 3) (m + 10)$

2 factors of -30 that add up to 7

Question 2

If possible, factor each binomial.

a)
$$x^2 - 9$$

$$x^2 - 9$$

$$= x^{2} - (3)^{2}$$
$$= (x + 3)(x - 3)$$

b)
$$16a^2 - 25c^2$$

$$16a^2 - 25c^2$$

= $(4a)^2 - (5c)^2$

$$= (4a + 5c)(4a - 5c)$$

c)
$$7g^3h^2 - 28g^5$$

first factor out GCF $7g^3h^2 - 28g^5$

$$= 7g^{3} (h^{2} - 4g^{2})$$
$$= 7g^{3} (h^{2} - (2g)^{2})$$

$$=7g^3 (h + 2g)(h - 2g)$$

c) $h^2 - 12h - 36$

This trinomial is not factorable for

integers. There are no factors of a -36 that add up to -12.

Question 3

Show why it is not possible to factor $m^2 + 16$.

If it were possible, the only possible factors would be $\frac{4}{4}$ and $\frac{4}{4}$ or $\frac{4}{4}$ or $\frac{-4}{4}$ and $\frac{-4}{4}$ When we multiply the possible factors we get different results:

$$(x + 4)(x + 4)$$

$$= x^2 + 4x + 4x + 16$$

$$= x^2 + 8x + 16$$

$$(x+4)(x-4)$$
 $(x-4)(x-4)$

$$(x + 4)(x - 4)$$

= $x^2 - 16$

$$(x-4)(x-4)$$

$$= x^2 - 4x - 4x + 16$$

$$= x^2 - 8x + 16$$

Question 4

If possible, factor each trinomial.

a)
$$x^2 + 6x + 9$$

$$3^2 = 9$$
 and $3 + 3 = 6$

$$\therefore x^2 + 6x + 9$$

= $(x + 3)(x + 3)$

$$= (x + 3)^2$$

b)
$$2a^2 - 44a + 242$$

$$2(a^2 - 22a + 121)$$

$$(-11)^2 = 121$$
 and $-11 + -11 = -22$

$$\therefore 2(a^2 - 22a + 121)$$

$$= 2(a - 11)(a - 11)$$

$$= 2(a - 11)^2$$

Assignment

1. a)
$$(x + 2)(x - 2)$$
 b) $(2x + 3)(2x - 3)$

c)
$$(x + 4)(x + 4)$$
 d) $(x - 3)(x - 3)$

2. a)
$$x^2 - 64$$
 b) $4x^2 - 25$
c) $9a^2 - 4b^2$ d) $3t^2 - 75$

3. a)
$$x^2 + 6x + 9$$
 b) $25a^2 - 30ab + 9b^2$
c) $4h^2 + 12h + 9$ d) $5x^2 - 20xy + 20y^2$

4. a)
$$(x + 4)(x - 4)$$
 b) $(b + 11)(b - 11)$
c) not factorable d) $(3a + 4b)(3a - 4b)$
e) $(6c + 7d)(6c - 7d)$ f) not factorable

g) not factorable h)
$$(10 + 3t)(10 - 3t)$$

5. a)
$$(x + 6)(x + 6)$$
 b) $(x + 5)(x + 5)$ c) not factorable d) $(m - 13)(m - 13)$ e) $(4k - 1)(4k - 1)$ f) $(7 - m)(7 - m)$ g) not factorable h) $(6a + 7)(6a + 7)$

6. a)
$$5(t^2 - 20)$$
 b) $10xy(x + 3)(x - 3)$ c) $4(x^2 - 12x + 9)$ d) $2x(3x + 2)(3x + 2)$ e) $(x^2 + 4)(x + 2)(x - 2)$ f) $(x + 3)^2(x - 3)^2$

- 7. a) -16b is not a perfect square term.
 - b) There are no pairs of integers that have a product of -12 and a sum of -7.
 - c) The trinomial is not of the form $(ax)^2 2abx + b^2$.
 - d) $49t^2 + 100$ is not a difference of squares.

9. a)
$$\pi(r + 4)^2 - \pi r^2$$

b) $8\pi(r + 2)$
c) 201.1 cm²

10. a) Never true.
$$(-b)^2 \neq -b^2$$

b) Sometimes true. It is true if a = 0 or b = 0.

c) Sometimes true. When b = 0,

$$a^2 - 0^2 = a^2 - 2a(0) + 0^2$$

 $a^2 = a^2$

d) Always true.
$$(a + b)^2 = a^2 + 2ab + b^2$$
.

11. Rahim is correct; $4(4x^2 + y^2)$ cannot be factored further.