Exercice 1: {5pts} (1pt pour chaque question)

L'alcootest

1
$$3CH_3CH_2OH_{(aq)} + 2Cr_2O_{7(aq)}^{2-} + 16H_{(aq)}^+ = 3CH_3COOH_{(aq)} + 4Cr_{(aq)}^{3+} + 11H_2O$$

2
$$n = \frac{m}{M} = \frac{\rho \times V}{M} = \frac{0.8 \times 100}{46} = 1.74 \text{ mol avec } M = 46 \text{ g/mol}.$$

3

Équation	$3 \text{ CH}_{3}\text{CH}_{2}\text{OH}_{(aq)} + 2 \text{ Cr}_{2}\text{O}_{7}^{2-}_{(aq)} + 16\text{H}^{+}_{(aq)} = 3\text{CH}_{3}\text{COOH}_{(aq)} + 4 \text{ Cr}^{3+}_{(aq)} + 11 \text{ H}_{2}\text{O}_{(l)}$					
État initial	1,74	3,0	Excès	0	0	Excès
État intermédiaire	1,74 – 3x	3,0 – 2x	Excès	3x	4x	Excès
État final	1,74 – 3x _{éq}	3,0 – 2x _{éq}	Excès	3x _{éq}	4x _{éq}	Excès

4 Pour trouver le réactif limitant, il faut calculer :

$$CH_3CH_2OH: 1,74 - 3x_{max} = 0$$
 $X_{max} = 0,58$ mol.

$$Cr_2O_7^{2-}$$
: $3-2X_{max} = 0$ $X_{max} = 1.5$ mol.

La valeur minimale de X_{max} nous donne le réactif limitant : CH_3CH_2OH . La bonne valeur de X_{max} est donc : 0,58 mol.

5 D'après le tableau, on peut obtenir $3X_{max}$ mol de CH_3COOH soit 1,74 mol.

$$m = n.M = 1,74 \times 60 = 104 g$$

Exercice 2: {5 pts} Formation d'ammoniac.

1. L'aluminium est un réducteur suivant l'ordre dans un couple Ox/Red, on a Al³+(aq)/Al(s)

L'aluminium Al(s) subit une **oxydation** en se transformant en $Al^{3+}(aq)$ avec **perte d'électrons**, suivant la demi-équation électronique suivante : $Al(s) = Al^{3+}(aq) + 3e^{-}$

2. La demi-équation électronique de réduction sera pour l'ion nitrate :

$$NO_3^-(aq) + 9 H^+(aq) + 8 e^- = NH_3^+(g) + 3 H_2O(l)$$

Pour trouver l'équation de la réaction on procède comme suit :

8 x
$$(Al(s) = Al^{3+}(aq) + 3 e^{-})$$

$$3 \times (NO_3^-(aq) + 9 \text{ H}^+(aq) + 8 \text{ e}^- = NH_3^+(g) + 3 H_2O(aq))$$

$$8 \text{ Al(s)} + 3 \text{ NO}_3(aq) + 27 \text{ H}^+(aq) \longrightarrow 8 \text{ Al}^{3+}(aq) + 3 \text{ NH}_3(g) + 9 \text{ H}_2O(l)$$

3. Calcul des quantités de matières initiales :

$$n(Al) = \frac{m}{M} = \frac{2.70}{27.0} = 0.100 \text{ mol} ; n(NO_3^-) = CxV = 0.100 \text{ x } 50.0.10^{-3} = 5.00.10^{-3} \text{ mol}$$

Tableau d'avancement:

Équation de la réaction		$8 \text{ Al(s)} + 3 \text{ NO}_3^{-+}(aq) + 27 \text{ H}^+(aq) \longrightarrow 8 \text{ Al}^{3+}(aq) + 3 \text{ NH}_3^{+}(g) + 9 \text{ H}_2\text{O(l)}$					
État du système	Avancement X (mol)	Quantités de matière présentes dans le système (mol)					
initial	x = 0	0,100	5,00.10 ⁻³		0	0	
en cours	x	0,100-8x	$5,00.10^{-3}-3x$	En excès	8x	3x	En excès
final	\mathcal{X}_f	0,100-8xf	5,00.10 ⁻³ -3xf		8xf	3xf	

Recherche de l'avancement final:

soit
$$0,100-8x_{\text{max}1}=0$$
 ; $x_{\text{max}1}=\frac{0,100}{8}=1,25.10^{-2}$ mol.

ou 5,00.10⁻³-3xmax2 = 0; xmax2 =
$$\frac{5,00.10-3}{3}$$
 = 1,67.10⁻³ mol.

donc $x_{max} = 1,67.10^{-3}$ mol et le réactif limitant est l'acide nitrique.

en on déduit $n(Al)_f = 0.100-8x_{max} = 0.100-8.1,67.10^{-3} = 8.66.10^{-2} \text{ mol.}$

d'où la masse d'Aluminium en excès (restante) est : $\mathbf{m} = \mathbf{n} \times \mathbf{M} = 8,66.10^{-2}$. 27,0 = 2,34 g.

Exercice 3: {10 pts} Entretien de l'eau d'une piscine

A.1. Le spectre présente une bande d'absorbance entre 500 et 560 nm.

La couleur absorbée est vert et la couleur de l'espèce chimique E opposée d'après le cercle chromatique est entre le violet et le rouge (pourpre).

A.2. La formule brute de la DPD est $C_{10}H_{16}N_2$

. Masse molaire de la DPD :
$$M = 10 \text{ x } M_C + 16 \text{ x } M_H + 2 \text{ x } M_N \\ = 10 \text{ x } 12,0 + 16 \text{ x } 1,01 + 2 \text{ x } 14,0 = \textbf{164 g.mol}^{-1}$$

.. Quantité de matière de la DPD contenue dans une pastille de 5,0 mg de DPD :

$$n = \frac{n}{m} = \frac{5.0.10^{-3}}{164} = 3.0.10^{-5} \text{ mol.}$$

A.3. « Pour une concentration en acide hypochloreux HClO supérieur à 7,0 mg.L-1 l'échantillon contenant le réactif DPD est susceptible de se décolorer et de conduire à un résultat faux. »

$$n_{HCIO} = \frac{m_{HCIO}}{M_{HCIO}}$$
 et $C_m = \frac{m_{HCIO}}{V}$ donc $m_{HCIO} = C_m \times V$

$$n_{HCIO} = \frac{m_{HCIO}}{M_{HCIO}}$$
 et $C_m = \frac{m_{HCIO}}{V}$ donc $m_{HCIO} = C_m \times V$
d'où : $n_{HCIO} = \frac{C_m \times V}{M_{HCIO}} = \frac{7,0.10^{-3} \times 10.10^{-3}}{1,0+35,5+16,0} = 1,3.10^{-6}$ mol

A.4. Tableau d'avancement:

(0,	5

Équation de la réaction		Chlore libre	+ DPD → es	pèce chimique E
État du système	Avancement x (mol)	Quantités de matière présentes dans le système (mol)		
initial	x = 0	1,3.10 ⁻⁶	3,0.10 ⁻⁵	0
en cours	x	1,3.10 ⁻⁶ - x	3,0.10 ⁻⁵ - x	X
final	x_f	$1,3.10^{-6}$ - x_f	$3,0.10^{-5}$ - x_f	Xf

Calcul de x_{max}:

soit
$$1,3.10^{-6} - x_{\text{max}1} = 0$$
; $x_{\text{max}1} = 1,3.10^{-6}$ mol.

ou
$$3.0.10^{-5} - x_{\text{max}2} = 0$$
; $x_{\text{max}2} = 3.0.10^{-5}$ mol.

 $x_{max} = x_{max1} = 1,3.10^{-6}$ mol et le réactif limitant est le chlore libre et la DPD est en excès. alors

A.5. En introduisant une seule pastille de DPD dans un tube test, le chlore libre est en défaut (voir question A.4) donc l'utilisation d'une seule pastille est suffisante pour que la DPD soit introduite en excès.

B.1. Lors d'une dilution la quantité de matière se conserve : $n_7 = n_1$

Or
$$n = C \times V$$
 donc $C_7 \times V_7 = C_1 \times V_1$ d'où $V_7 = \frac{C_1 \times V_1}{C_7} = \frac{20 \times V_1}{4,0} = 5 \times V_1$

 V_7 le volume fille est celui d'une fiole jaugée et V_1 le volume de la solution mère est prélevé avec une pipette jaugée. Ainsi nous utiliserons une fiole jaugée dont le volume est 5 fois plus grand que le volume de la pipette jaugée. Il faut prendre une pipette jaugée de 10,0 mL et une fiole jaugée de 50,0 mL.

Protocole expérimental :

- Verser la solution mère dans un bécher
- Prélever à l'aide d'une pipette jaugée V = 10,0 mL de la solution mère
- Introduire V dans une fiole jaugée 50,0 mL
- Ajouter de l'eau distillée jusqu'au trait de jauge
- Homogénéiser la solution

B.2. Indication du fabricant : « Au-delà de 7 mg.L⁻¹ les résultats du test peuvent s'avérer faux ».

L'absorbance est proportionnel à la concentation pour les valeurs de $C_m < 7.0 \text{ mg.L}^{-1}$.

Au-delà, ce n'est plus proportionnel. Cette représentation est **en accord** avec la recommandation du fabricant.

B.3.

$$C = \frac{C_m}{M} = \frac{7,0.10^{-3}}{1,0+35,5+16,0} = 1,3.10^{-4} \text{ mol.L}^{-1}.$$

(0,5)

L'absorbance est proportionnel à la concentration pour des valeurs de $C < 1,3.10^{-4} \text{ mol.L}^{-1}$

 $A = k \times C$ c'est la loi de Beer-Lambert.

C.1. Calculons le volume de la pscine :

L'air d'un trapèze : $A = \frac{(B+b) \times h}{2}$

Avec:

- B la grande base, ici B = 2.5 m
- b la petite base, ici b = 1.5 m
- h la longueur de la piscine, ici h = 8 m

Volume de la piscine : V = A x h' avec h' la largeur de la piscine, ici h' = 4 m

$$V = \frac{(B+b) \times h}{2} \times h^{2} = \frac{(2.5+1.5) \times 8}{2} \times 4 = 64 \text{ m}^{3}.$$

C.2. Le nombre de galets de 20 g de chlore libre conviendrait-il de rajouter dépend de la masse de chlore libre à ajouter : $m_{ajouter} = m_{minimale} - m_{présente}$, or $m = Cm \times V$, d'où :

$$\mathbf{m}_{ajouter} = (\mathbf{C}_{minimale} - \mathbf{C}_{mprésente}) \times \mathbf{V} = (2 - 1,5).10^{-3} \times 64.10^{3}$$

 $\mathbf{m}_{\mathbf{ajouter}} = 32 \,\mathbf{g}$, la masse à ajouter est la masse minimale, 1 galet a une masse de 20 g. Il faut ajouter 2 galets.

D.1. Schéma de Lewis :

Ion hypochlorite OCl	Acide hypochloreux HOCl		
:CI—O.	H Ö. Cİ.		

D.2. La molécule HClO possède une liaison **polarisée O-H** en raison de la différence d'électronégativité entre l'oxygène (χ = 3,44) et l'hydrogène (χ = 2,20), $\Delta \chi$ = 1,24 > 0,4; comprise entre 0,4 < $\Delta \chi$ <1,7. Tandis que la liaison **O-Cl est applaire** car la différence d'électronégativité entre l'oxygène (χ = 3,44) et le chlore

Tandis que la liaison **O-Cl est apolaire** car la différence d'électronégativité entre l'oxygène (χ = 3,44) et le chlore (χ = 3,16), $\Delta \chi$ = **0,28** < 0,4.Or les charges partielles δ^+ de l'hydrogène et δ^- de l'oxygène ne sont pas confondus alors

HClO est polaire.

D.3. couple Redox ClO^{-}/Cl^{-} ; $ClO^{-} + 2H^{+} + 2e^{-} = Cl^{-} + H_{2}O$ demi équation de **réduction** et l'ion ClO^{-} (espèce de départ) est un **oxydant** car il a gagné des électrons en se transformant en ion chlorure Cl^{-} .

