Theoretische Physik 6 Höhere Quantenmechanik und Quantenfeldtheorie

T. Hurth

8. Übungsblatt

Ausgabe: 11. 12. 2012 Abgabe: Donnerstag, 20. 12. 2012 Besprechung: 10. 01. 2013

Aufgabe 19: Drehgruppe (1+1+2)

Betrachten Sie die Drehungen von 3-dimensionalen Koordinatenvektoren $\vec{x} \to \vec{x}' = \mathbf{R}\vec{x}$.

- (a) Geben Sie die explizite Form der Drehmatrizen R für Drehungen um die Koordinatenachsen mit den Winkeln α_1 , α_2 , α_3 an.
- (b) Geben Sie die explizite Darstellung der Erzeugenden $J_k=i\left.\frac{\partial \boldsymbol{R}(\vec{\alpha})}{\partial \alpha_k}\right|_{\alpha_k=0}, k=1,2,3$ als 3×3 -Matrizen an.
- (c) Leiten Sie die Vertauschungsrelationen $[J_k, J_\ell] = i\epsilon_{k\ell m} J_m$ her.

Aufgabe 20: (3+3)

In der Vorlesung haben wir gesehen, dass im Raum der Spinoren

- Drehungen $R(\vec{\alpha})$ um eine Achse $\vec{\alpha} \in \mathbb{R}^3$ als $U(\vec{\alpha}) = \exp(i\vec{\alpha} \cdot \vec{\sigma})$,
- Boosts $L(\vec{v})$ in Richtung $\vec{v} \in \mathbb{R}^3$ als $H(\vec{v}) = \exp(1/2\lambda \vec{\sigma} \cdot \vec{\omega})$, $\vec{\omega} = \vec{v}/|\vec{v}|$, $\lambda = \operatorname{arctanh}|\vec{v}|$ dargestellt werden können. Hierbei sind $\vec{\sigma}$ die bekannten Paulimatrizen.
- (a) Zeigen Sie die Gleichheit

$$U(\vec{\alpha}) = \mathbb{1}_{2 \times 2} \cos(|\vec{\alpha}|) + \frac{i}{|\vec{\alpha}|} \vec{\alpha} \cdot \vec{\sigma} \sin(|\vec{\alpha}|)$$
 (67)

(b) Wie transformiert die Matrix $X = x^{\mu}\sigma_{\mu}$, wobei x^{μ} ein Element des Minkowski-Raumes und $\sigma_{\mu} = (1, \vec{\sigma})$ ist, unter Boosts in x-, y- und z-Richtung? Was bedeutet das für das Transformationsverhalten der einzelnen Koordinaten x^0, x^1, x^2, x^3 ?

Aufgabe 21: (2+2+1+1+1)

Betrachten Sie zwei nicht quantisierte komplexe Skalarfelder ϕ_1 und ϕ_2 .

(a) Zeigen Sie, dass die Lagrange-Dichte

$$\mathcal{L} = \mathcal{L}_{KG}(\phi_1, \partial_\mu \phi_1) + \mathcal{L}_{KG}(\phi_2, \partial_\mu \phi_2) \tag{68}$$

invariant unter SU(2)-Transformationen $U \in SU(2)$ mit $\phi_i \to \phi_i' = \sum_j U_{ij}\phi_j$ ist (siehe Aufgabe 14). \mathcal{L}_{KG} bezeichnet die bekannte Lagrange-Dichte für ein wechselwirkungsfreies komplexes Klein-Gordon-Feld mit Masse m.

In der quantisierten Version dieses Modells transformieren sich die Feldoperatoren $\Phi = \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix}$ nach der Vorschrift

$$\Phi \to \Phi' = U\Phi U^{\dagger},\tag{69}$$

wobei U jetzt ein unitärer Operator auf dem Hilbert-Raum der Zustände ist. Den Feldoperatoren Φ_1 und Φ_2 seien Erzeugungs- und Vernichtungsoperatoren a_i^{\dagger}, a_i und b_i^{\dagger}, b_i (i=1,2) zugeordnet. Der Vakuumzustand soll invariant unter den Transformationen U sein: $U|0\rangle = |0\rangle$.

- (b) Nach welcher Vorschrift transformieren sich die durch a_i^\dagger und b_i^\dagger erzeugten 1-Teilchenzustände?
- (c) Wäre die Lagrange-Dichte auch dann SU(2)-invariant, wenn man zwei skalare Teilchen mit verschiedenen Massen kombiniert hätte?
- (d) Unter welchen Transformationen wäre ein System von zwei reellen Skalarfeldern invariant?
- (e) Welche Rolle spielt in all diesen Fällen die Forderung, dass die Determinante der jeweiligen Transformationen gleich 1 sein soll?