### The OSI Model

- Open Systems Interconnection (OSI).
- Developed by the International Organization for Standardization (ISO).
- Model for understanding and developing computer-tocomputer communication architecture that is flexible, robust and interoperable.
- It is not a protocol.
- Developed in the 1980s.
- · Divides network architecture into seven layers.

### OSI cont.

- Each layer performs a subset of the required communication functions
- Each layer relies on the next lower layer to perform more primitive functions
- Each layer provides services to the next higher layer
- Changes in one layer should not require changes in other layers
- Layer 1,2,3 are the network support layer, deals with the physical aspects of moving data from one device to another.
- Layer 5,6,7 are the user support layer, allow the interoperability among unrelated software.
- Layer 4 ensures that what the lower layer have transmitted is in a form that the upper layers can use.

## **OSI** layer

- Application layer
- Presentation layer
- Session layer
- Transport layer
- Network layer
- Data Link layer
- Physical layer

### OSI layer



## **Layer 1: Physical Layer**

#### Responsible of:

- Transmitting individual bits from one to the next.
- Physical characteristics of interface and media.
- Representation of bits: a stream of bit(0s,1s),
- Data rate.
- Synchronize of bits
- Line configuration
- Physical topology
- Transmission mode

## Physical Layer cont.



## Layer 2: Data Link layer

- Responsible of:
  - Moving frames from one hop (node) to the next.
  - Framing: divided the stream of bits received from the network layer manageable data units called frames.
  - Physical address (MAC address).
  - Flow control.
  - Error control: added trailer to the end of frame.
  - Access control.
  - Hop to hop delivery

### Data Link layer cont.





### Hop-to-Hop delivery



# Layer 3: Network Layer

- The network layer is responsible:
  - The delivery of individual packets from the original source to the final destination .
  - Logical addressing: if the packet passes the network boundary we need another addressing system to help (source to destination) connection.
  - Routing: route or switch the packet to final destination.
  - Source-to-destination delivery (End-to-End).

# Network Layer cont.



### **Layer 4: Transport Layer**

- The transport layer is responsible for:
  - Service point or Port addressing
  - Segmentation and reassembly: a message is divided into transmittable segments each segment containing a sequence no.
  - Connection Control: connection oriented or connectionless.
  - Flow control
  - Error control

### Transport Layer cont.



#### Reliable process-to-process delivery of a message



## **Layer 5: Session Layer**

- Dialog control: design to establish, maintain, and synchronize the interaction between communicating systems.
- Synchronization: it allows a process to add checkpoints or synchronization points to a data stream.

# Session Layer cont.



### Layer 6: Presentation Layer

- Design to the handle the syntax and semantic of the information exchanged between 2 systems.
- And design for data translation, encryption, decryption, and compression.

## Presentation Layer cont.



### **Layer 7: Application Layer**

- The application layer is responsible for providing services to the user.
- Mail services
- File transfer, access and management
- Remote log-in or network virtual terminal
- Accessing the World Wide Web
- Directory service

### Application Layer cont.



### Summary

To allow access to network Application resources To translate, encrypt, and Presentation compress data To establish, manage, and Session terminate sessions To provide reliable process-toprocess message delivery and Transport To move packets from source error recovery Network to destination; to provide internetworking To organize bits into frames; Data link to provide hop-to-hop delivery To transmit bits over a medium: Physical to provide mechanical and electrical specifications





# TCP/IP Protocol Suite

- The <u>TCP/IP protocol suite</u> is a hierarchical protocol, made of five layers:
  - Physical layer
  - Data link layer
  - Network layer
  - Transport layer
  - Application layer.

# TCP/IP PROTOCOL SUITE

- The layers in the TCP/IP protocol suite do not exactly match those in the OSI model.
- The original TCP/IP protocol suite was defined as having four layers: host-tonetwork, internet, transport, and application.
- However, when TCP/IP is compared to OSI, we can say that the TCP/IP protocol suite is made of five layers: physical, data link, network, transport, and application.

#### TCP/IP and OSI model



### **ADDRESSING**

 Four levels of addresses are used in an internet employing the TCP/IP protocols: physical address, logical address, port address and specific address.