Real Analysis Homework 4

Alexander J. Tusa

December 11, 2018

1. Section 3.1

- 5) Use the definition of the limit of a sequence to establish the following limits.
 - (a) $\lim_{n \to \infty} \left(\frac{n}{n^2 + 1} \right) = 0$

Recall the definition of the limit of a sequence:

A sequence converges to a limit A if $\forall \ \varepsilon > 0, \ \exists N_{\varepsilon} \ \text{s.t.} \ |a_n - A| < \varepsilon \ \forall \ n \geq N_{\varepsilon},$

$$n \in \mathbb{N}, \ N_{\varepsilon} \in \mathbb{N}, \ \text{written} \ \lim_{n \to \infty} a_n = A$$

Thus, what we ultimately want to show here is that $\left|\frac{n}{n^2+1}-0\right|<\varepsilon, \forall\ n\geq N_{\varepsilon}$.

Let's first take care of the denominator. We want to maximize the size of the denominator. So, we have

$$n^2 + 1 > n^2 \ \forall \ n \in \mathbb{N}$$
, thus we have that $\frac{1}{n^2 + 1} < \frac{1}{n^2} \ \forall \ n \in \mathbb{N}$

Since there's no way to maximize the size of the numerator from what it currently is, combining both the numerator and denominator, we have

$$\frac{n}{n^2+1} < \frac{n}{n^2} = \frac{1}{n} \ \forall \ n \in \mathbb{N}$$

Now, given that $\varepsilon > 0$, we know that by Corollary 2.4.5 (If t > 0, then $\exists n_t \in \mathbb{N} \text{ s.t. } 0 < \frac{1}{n_t} < t$), we know that $\exists N_\varepsilon \in \mathbb{N} \text{ s.t. } 0 < \frac{1}{N_\varepsilon} < \varepsilon$, where $n = \varepsilon$. Let N_0 be the smallest of these numbers with this property. Then if $n \geq N_0$, $\frac{1}{n} < \frac{1}{N_0} < \varepsilon$. Thus we have

$$\left| \frac{n}{n^2 + 1} - 0 \right| = \left| \frac{n}{n^2 + 1} \right| = \frac{n}{n^2 + 1} < \frac{1}{n} < \varepsilon$$

 $\therefore \lim_{n\to\infty} \left(\frac{n}{n^2+1}\right) = 0.$

(c) $\lim \left(\frac{3n+1}{2n+5}\right) = \frac{3}{2}$

We want to show that $\left|\frac{3n+1}{2n+5} - \frac{3}{2}\right| < \varepsilon, \ \forall \ n \ge N_{\varepsilon}, \ n \in \mathbb{N}, \ N_{\varepsilon} \in \mathbb{N}, \ \forall \ \varepsilon > 0$

1

Since $n \in \mathbb{N}$, we know that $\left| \frac{3n+1}{2n+5} - \frac{3}{2} \right| = \frac{3n+1}{2n+5} - \frac{3}{2}$. So,

$$\frac{3n+1}{2n+5} - \frac{3}{2} = \frac{6n+2}{4n+10} - \frac{6n+15}{4n+10} = -\frac{13}{4n+10} < 0$$

and

$$\frac{13}{4n+10} < \frac{13}{4n} < \frac{16}{4n} < \frac{4}{n} \ \forall \ n \in \mathbb{N}$$

Given $\varepsilon > 0$, and since $\frac{4}{n} < \varepsilon \implies \frac{n}{4} > \varepsilon$, we know that by Corollary 2.4.5 $(t > 0 \implies \exists n_t \in \mathbb{N} \text{ s.t. } 0 < \frac{1}{n_t} < t)$, then $\exists N_\varepsilon \in \mathbb{N} \text{ s.t. } 0 < \frac{1}{N_\varepsilon} < \frac{\varepsilon}{4}$, where $n = \varepsilon$. Let $N_0 \in \mathbb{N}$ be the smallest of these numbers with this property. Thus, if $n \geq N_0$, we have that $\frac{1}{n} < \frac{\varepsilon}{4}$. This gives us that $\frac{1}{n} < \frac{\varepsilon}{4} = \frac{4}{n} < \varepsilon$. So

$$\left| \frac{3n+1}{2n+5} - \frac{3}{2} \right| = \left| -\frac{13}{4n+10} \right| = \frac{13}{4n+10} < \frac{4}{n} < \varepsilon$$

 $\therefore \lim \left(\frac{3n+1}{2n+5}\right) = \frac{3}{2}.$

(d)
$$\lim \left(\frac{n^2-1}{2n^2+3}\right) = \frac{1}{2}$$

We want to show that $\left|\frac{n^2-1}{2n^2+3}-\frac{1}{2}\right|<\varepsilon,\ \forall\ \varepsilon>0,\ \forall\ n\geq N_{\varepsilon}$, where $n,N_{\varepsilon}\in\mathbb{N}$. Since

$$\frac{n^2 - 1}{2n^2 + 3} - \frac{1}{2} = \frac{2n^2 - 2}{4n^2 + 6} - \frac{2n^2 + 3}{4n^2 + 6} = \frac{-5}{4n^2 + 6} < 0$$

So,

$$\left| \frac{n^2 - 1}{2n^2 + 3} - \frac{1}{2} \right| = \left| \frac{2n^2 - 2}{4n^2 + 6} - \frac{2n^2 + 3}{4n^2 + 6} \right| = \left| \frac{-5}{4n^2 + 6} \right| = \frac{5}{4n^2 + 6} < \frac{5}{4n^2} < \frac{5}{4n} < \frac{5}{n}$$

 $\forall n \in \mathbb{N}$

Given $\varepsilon > 0$, and since $\frac{5}{n}, \varepsilon \Longrightarrow \frac{n}{5} > \varepsilon$, we know that by Corollary 2.4.5 $(t > 0 \Longrightarrow \exists n_t \in \mathbb{N} \text{ s.t. } 0 < \frac{1}{n_t} < t)$, then $\exists N_\varepsilon \in \mathbb{N} \text{ s.t. } 0 < \frac{1}{N_\varepsilon} < \frac{\varepsilon}{5}$, where $n = \varepsilon$. Let N_0 be the smallest of these numbers with this property. Then if $n \geq N_0$, we have that $\frac{1}{n} < \frac{1}{n_0} < \frac{\varepsilon}{5}$. This yields $\frac{1}{n} < \frac{\varepsilon}{5} = \frac{5}{n} < \varepsilon$. So

$$\left| \frac{n^2 - 1}{2n^2 + 3} - \frac{1}{2} \right| = \left| -\frac{5}{4n^2 + 6} \right| = \frac{5}{4n^2 + 6} < \frac{5}{n} < \varepsilon$$

$$\therefore \lim \left(\frac{n^2 - 1}{2n^2 + 3}\right) = \frac{1}{2}$$

6) Show that

(a)
$$\lim_{\sqrt{n+7}} (\frac{1}{\sqrt{n+7}}) = 0$$

We want to show that $\left|\frac{1}{\sqrt{n+7}}-0\right|<\varepsilon,\ \forall\ \varepsilon>0,\ \forall\ n\geq N_{\varepsilon}$, where $n,N_{\varepsilon}\in\mathbb{N}$. Since $n+7>n\ \forall\ n\in\mathbb{N}$, we have that $\sqrt{n+7}>\sqrt{n}\ \forall\ n\in\mathbb{N}$ and therefore,

$$\frac{1}{\sqrt{n+7}} < \frac{1}{\sqrt{n}} \ \forall \ n \in \mathbb{N}.$$

Given $\varepsilon > 0$, we know by Corollary 2.4.5 $(t > 0 \implies \exists n_t \text{ s.t. } 0 < \frac{1}{n_t} < t)$, then $\exists N_{\varepsilon} \in \mathbb{N} \text{ s.t. } 0 < \frac{1}{N_{\varepsilon}} < \varepsilon^2$. Thus we have that $\frac{1}{\sqrt{N_{\varepsilon}}} < \varepsilon$.

Thus if $n \geq N_{\varepsilon}$, we have that $\sqrt{N_{\varepsilon}} \leq \sqrt{n}$ which gives us that $\frac{1}{\sqrt{n+7}} < \frac{1}{\sqrt{n}} \leq \frac{1}{\sqrt{N_{\varepsilon}}} < \varepsilon$. Therefore we have $\left| \frac{1}{\sqrt{n+7}} - 0 \right| = \left| \frac{1}{n+7} \right| = \frac{1}{\sqrt{n+7}} < \varepsilon \ \forall \ n \geq N_{\varepsilon}$.

$$\therefore \lim \left(\frac{1}{\sqrt{n+7}}\right) = 0$$

9) Show that if $x_n \geq 0 \ \forall \ n \in \mathbb{N}$ and $\lim(x_n)$, then $\lim(\sqrt{x_n}) = 0$.

Let (x_n) be a sequence such that $\forall n \in \mathbb{N}, x_n \geq 0$ and $\lim(x_n)$. We want to show that $\lim(\sqrt{x_n}) = 0$.

Let $\varepsilon > 0$. By the definition of the limit of a sequence, we know that $\exists N_{\varepsilon} \in \mathbb{N} \text{ s.t. } \forall n \geq N_{\varepsilon}$, the following inequality holds:

$$|x_n - 0| = |x_n| = x_n \ge 0 = x_n < \varepsilon^2$$

Thus, if $n \geq N_{\varepsilon}$, we have that

$$|\sqrt{x_n} - 0| = |\sqrt{x_n}| = \sqrt{x_n} > \sqrt{\varepsilon^2} = \varepsilon$$

and by the definition of the limit of a sequence, again, we have that $\lim(\sqrt{x_n}) = 0$.

11) Show that $\lim_{n \to \infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 0$.

We want to show the following:

$$\left| \left(\frac{1}{n} - \frac{1}{n+1} \right) - 0 \right| < \varepsilon, \ \forall \ \varepsilon > 0, \ \forall \ n \ge N_{\varepsilon}, \ \text{for } n, N_{\varepsilon} \in \mathbb{N}$$

Recall Theorem 3.1.10:

Theorem 3.1.10. Let (x_n) be a sequence of real numbers and let $x \in \mathbb{R}$. If (a_n) is a sequence of positive real numbers with $\lim(a_n) = 0$ and if for some constant C > 0 and some $m \in \mathbb{N}$ we have

$$|x_n - x| \le Ca_n \ \forall \ n \ge m,$$

then it follows that $\lim(x_n) = x$.

We want to find a constant C > 0 and a sequence (a_n) such that $a_n > 0$, $\lim(a_n) = 0$, and

$$\left| \left(\frac{1}{n} - \frac{1}{n+1} \right) - 0 \right| \le Ca_n \ \forall \ n \ge m, \text{ for some } m \in \mathbb{N}$$

Let's first find C and a_n .

$$\left| \left(\frac{1}{n} - \frac{1}{n+1} \right) - 0 \right| = \left| \frac{1}{n} - \frac{1}{n+1} \right|$$

$$= \frac{1}{n} - \frac{1}{n+1}$$

$$= \frac{(n+1) - n}{n(n+1)}$$

$$= \frac{1}{n^2 + n}$$

$$\left(\frac{1}{n} > \frac{1}{n+1} \right)$$

Since $n < n + n^2 \, \forall n$, we have that $\frac{1}{n^2 + n} < \frac{1}{n}$. Thus, choose C = 1, $(a_n) = \frac{1}{n}$ and m = 1.

Furthermore, we proved in class that $\lim_{n \to \infty} (\frac{1}{n}) = 0$.

Now that all of the conditions of Theorem 3.1.10 have been satisfied, apply it to our original sequence of $x_n = \frac{1}{n} - \frac{1}{n+1}$, which yields:

$$\lim \left(\frac{1}{n} - \frac{1}{n+1}\right) = 0$$

12) Show that $\lim(\sqrt{n^2 + 1} - n) = 0$.

Let $\varepsilon > 0$ be given. Then, we have the following:

$$\left| (\sqrt{n^2 + 1} - n) - 0 \right| = \left| \sqrt{n^2 + 1} - n \right|$$

$$= \left| (\sqrt{n^2 + 1} - n) * \frac{\sqrt{n^2 + 1} + n}{\sqrt{n^2 + 1} + n} \right|$$

$$= \left| \frac{1}{\sqrt{n^2 + 1} + n} \right|$$

Now, let's look at the denominator, $\sqrt{n^2+1}+n$. Then, we know that $n^2+1>n^2$. So, we have

$$n^{2} + 1 > n^{2}$$

$$\sqrt{n^{2} + 1} > n$$

$$\sqrt{n^{2} + 1} + n \ge 2n$$

$$\frac{1}{\sqrt{n^{2} + 1} + n} \le \frac{1}{2n} = \varepsilon$$

Choose $N \geq \frac{1}{2\varepsilon}$.

Thus we have that

$$\forall \varepsilon > 0$$
, choose $N \ge \frac{1}{2\varepsilon}$ then $|a_n - A| < \varepsilon \ \forall \ n \ge N$

13) Show that $\lim_{n \to \infty} \left(\frac{1}{3^n} \right) = 0$.

Since $n \leq 3n \iff \frac{1}{3^n} \leq \frac{1}{n}$, we have

$$\left|\frac{1}{3^n} - 0\right| \le \frac{1}{n}$$

Using Theorem 3.1.10 and $\lim_{n \to \infty} \frac{1}{n} = 0$ we get

$$\lim \frac{1}{3^n} = 0$$

- 2. Section 3.2
 - 1) For x_n given by the following formulas, establish either the convergence or the divergence of the sequence $X = (x_n)$.

(a)
$$x_n := \frac{n}{n+1}$$

$$x_n = \frac{1}{n+1} = \frac{1}{1 + \frac{1}{n}}$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = \frac{1}{1 + \lim_{n \to \infty} \frac{1}{n}} = 1$$

therefore we have that the sequence $\{x_n\}$ converges to 1.

- 2) Give an example of two divergent sequences X and Y such that:
 - (a) their sum X + Y converges,

Let X = (0, 1, 0, 1, 0, 1, ...) and let Y = (1, 0, 1, 0, 1, 0, ...). Clearly X and Y are divergent because the difference of two consecutive terms is equal to 1. Thus, X + Y = (1, 1, 1, 1, 1,), and thus the sequence converges as it's a constant sequence.

(b) their product XY converges.

Let $X=(0,1,0,1,0,1,\ldots)$ and let $Y=(1,0,1,0,1,0,\ldots)$. Once more, these two sequences clearly diverge as the difference of two consecutive terms is equal to 1.

Thus, XY = (0, 0, 0, 0, 0, ...), which clearly converges.

3) Show that if X and Y are sequences such that X and X+Y are convergent, then Y is convergent.

Recall Theorem 3.2.3:

- **Theorem 3.2.3.** (a) Let $X = (x_n)$ and let $Y = (y_n)$ be sequences of real numbers that converge to x and y, respectively, and let $c \in \mathbb{R}$. Then the sequences X + Y, X Y, X * Y, and cX converge to x + y, x y, xy, and cx, respectively.
- (b) If $X = (x_n)$ converges to x and $Z = (z_n)$ is a sequence of nonzero real numbers that converges to z and $z \neq 0$, then the quotient sequence X/Z converges to x/z

If X and X + Y are convergent, then by Theorem 3.2.3, Y = (X + Y) - X. is also convergent.

- 5) Show that the following sequence is not convergent.
 - (a) (2^n)

 $2^n > n$, and (n) is an unbounded sequence. Therefore, (2^n) is also unbounded.

Every convergent sequence must be bounded so we can conclude that (2^n) is unbounded.

- 6) Find the limits of the following sequence:
 - (a) $\lim_{n \to \infty} ((\frac{2+1}{n})^2)$

$$\lim \left(\left(2 + \frac{1}{n}\right)^2\right) = \lim \left(\left(2 + \frac{1}{n}\right) * \left(2 + \frac{1}{n}\right)\right)$$

$$= \text{By Theorem 3.2.3 (a): Limit of a product} = \text{Product of limits}$$

$$= \left(\lim \left(2 + \frac{1}{n}\right)\right) * \left(\lim \left(2 + \frac{1}{n}\right)\right)$$

$$= \text{By Theorem 3.2.3 (a): Limit of a sum} = \text{Sum of Limits}$$

$$= \left(\lim(2) + \lim \left(\frac{1}{n}\right)\right) * \left(\lim(2) + \lim \left(\frac{1}{n}\right)\right)$$

$$= (2 + 0) * (2 + 0)$$

$$= 4$$

9) Let $y_n := \sqrt{n_1} - \sqrt{n}$ for $n \in \mathbb{N}$. Show that $(\sqrt{n}y_n)$ converges. Find the limit.

To show that the sequences (y_n) and $(\sqrt{n}y_n)$ converge, we first need to recall Theorem 3.2.10:

Theorem 3.2.10. Let $X = (x_n)$ be a sequence of real numbers that converges to x and suppose that $x_n \ge 0$. Then the sequence $(\sqrt{x_n})$ of positive square roots converges and $\lim(\sqrt{x_n}) = \sqrt{x}$.

$$y_n = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{(\sqrt{n+1} + \sqrt{n})}$$
$$= \frac{(n+1) - n}{\sqrt{n+1} + \sqrt{n}}$$
$$= \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

 $\implies |y_n - 0| = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}}$. Now we have that $\lim(\frac{1}{n}) = 0$ implies $\lim(\frac{1}{\sqrt{n}}) = 0$ by Theorem 3.2.10.

Now, we have

$$\sqrt{n}y_n = \frac{\sqrt{n}}{\sqrt{n} + \sqrt{n+1}} = \frac{1}{1 + \sqrt{\frac{n+1}{n}}} = \frac{1}{1 + \sqrt{1 + \frac{1}{n}}}$$

Now, by the algebra of limits and of convergent sequences, we have that as $\lim(\frac{1}{n}) = 0 \implies \lim(1+\frac{1}{n}) = 1 \implies \lim\sqrt{1+\frac{1}{n}} = \sqrt{1} = 1$ and thus $\lim\left(\frac{1}{1+\sqrt{1+\frac{1}{n}}}\right) = \frac{1}{1+\sqrt{1+0}} = \frac{1}{2}$. Therefore $\lim(\sqrt{n}y_n)$ exists and is equal to $\frac{1}{2}$.

- 14) Use the Squeeze Theorem 3.2.7 to determine the limits of the following,
 - (a) (n^{1/n^2}) .

Recall Theorem 3.2.7 Squeeze Theorem:

Squeeze Theorem. Suppose that $X = (x_n)$, $Y = (y_n)$, and $Z = (z_n)$ are sequences of real numbers such that

$$x_n \le y_n \le z_n \ \forall \ n \in \mathbb{N}$$

and that $\lim(x_n) = \lim(z_n)$. Then $Y = (y_n)$ is convergent and

$$\lim(x_n) = \lim(y_n) = \lim(z_n)$$

So, notice that

$$1 \le n^{\frac{1}{n^2}} \le n^{\frac{1}{n}}$$

and $\lim_{n \to \infty} (n^{\frac{1}{n}}) = 1$. By the Squeeze Theorem,

$$1 \le \lim(n^{\frac{1}{n^2}}) \le \lim(n^{\frac{1}{n}}) = 1$$

Therefore we have that $\lim_{n \to \infty} (n^{\frac{1}{n^2}} = 1)$.

16) Apply Theorem 3.2.11 to the following sequences, where a, b satisfy 0 < a < 1, b > 1.

Recall Theorem 3.2.11:

Theorem 3.2.11. Let (x_n) be a sequence of positive real numbers such that $L := \lim(x_{n+1}/x_n)$ exists. If L < 1, then (x_n) converges and $\lim(x_n) = 0$.

(c) $\left(\frac{n}{b^n}\right)$ Since $\frac{n}{b^n} > 0 \ \forall \ n$, we have that

$$\lim \left(\frac{\frac{n+1}{b^{n+1}}}{\frac{n}{b^n}}\right) = \frac{1}{b} < 1$$

Thus, let (x_n) be a sequence of positive real numbers such $L := \lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n}\right)$ exists. If L < 1, then (x_n) converges and $\lim_{n \to \infty} (x_n) = 0$. Therefore we have that $\lim_{n \to \infty} \left(\frac{n}{h^n}\right) = 0$.

(d) $(2^{3n}/3^{2n})$ Since $\frac{2^{3n}}{3^{2n}} > 0 \ \forall \ n \in \mathbb{N}$, we have that

$$\lim \left(\frac{\frac{2^{3(n+1)}}{3^{2(n+1)}}}{\frac{2^{3n}}{3^{2n}}}\right) = \frac{8}{9} < 1$$

Thus, let (x_n) be a sequence of positive real numbers such that $L := \lim(\frac{x_{n+1}}{x_n})$ exists. If L < 1, then (x_n) converges and $\lim(x_n) = 0$. Therefore $\lim(\frac{2^{3n}}{3^{2n}}) = 0$.

17) (a) Give an example of a convergent sequence (x_n) of positive numbers with $\lim (x_{n+1}/x_n) = 1$.

Let (x_n) be a sequence such that $x_n = 1 \ \forall \ n \in \mathbb{N}$. This is a constant sequence and is thus convergent and $\lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n}\right) = 1$.

(b) Give an example of a divergent sequence with this property. (Thus, this property cannot be used as a test for convergence.)

Let (x_n) be a sequence such that $(x_n) = (n)$. This sequence is divergent because it's not bounded, however $\lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n} \right) = 1$.

22) Suppose that if (x_n) is a convergent sequence and (y_n) is such that for any $\varepsilon > 0$ there exists M such that $|x_n - y_n| < \varepsilon$ for all $n \ge M$. Does it follow that (y_n) is convergent?

It does follow that (y_n) is convergent. In fact, $\lim(y_n) = \lim(x_n)$. To show this, let $x = \lim(x_n)$.

For any $\varepsilon > 0$, choose $M_1, M_2 > 0$ s.t.

$$|x_n - x| < \frac{\varepsilon}{2}, \, \forall \, n \ge M_1$$
 (a)

and
$$|x_n - y_n| < \frac{\varepsilon}{2}, \forall n \ge M_2$$
 (b)

Choose $M = \max\{M_1, M_2\}$. Then $\forall n \geq M$,

$$|y_n - x| = |y_n - x_n + x_n - x|$$

$$\leq |y_n - x_n| + |x_n - x|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
 from (a) and (b)

Thus we have that $\lim(y_n) = x$.

3. Give an example of each of the following:

(a) A convergent sequence of rational numbers having an irrational limit.

Let $a_n = \left(1 + \frac{1}{n}\right)^n$ be a sequence of rationals. Then, notice that $a_n \in \mathbb{Q}$, but notice also that $\lim_{n\to\infty} a_n = e$.

(b) A convergent sequence of irrational numbers having a rational limit.

Let $a_n = \frac{\sqrt{2}}{n}$. Then we have that $a_n \notin \mathbb{Q}$, but we also have that $\lim_{n\to\infty} a_n = 0$, and $0 \in \mathbb{Q}$

4. Prove: Let a_n and b_n be sequences of real numbers and $A \in \mathbb{R}$. If for some k > 0 and some $m \in \mathbb{N}$, we have $|a_n - A| \le k|b_n|$ for all n > m, and if $\lim_{n \to \infty} b_n = 0$, then $\lim_{n \to \infty} a_n = A$.

Proof. Let a_n and b_n be sequences of real numbers and let $A \in \mathbb{R}$. Let k > 0, and some $m \in \mathbb{N}$. We have $|a_n - A| \le k|b_n| \ \forall \ n > m$, and $\lim_{n \to \infty} b_n = 0$. We want to show that $\lim_{n \to \infty} a_n = A$.

Let $\varepsilon > 0$ be given. Since $\lim b_n = 0$, we know that b_n converges. So by the definition of the limit of a sequence, we know that $\exists N_1$ s.t. $|b_n - 0| = |b_n| < \varepsilon \ \forall \ n \ge N_1$. This also means that since $\lim b_n = 0$, we have $k|b_n| < \varepsilon \implies |b_n| < \frac{\varepsilon}{k}$, by algebra.

Recall that we have $|a_n - A| \leq k|b_n| \ \forall \ n > m$. So, let $N = \max\{m, N_1\}$. Then we have that $\forall n \geq N$, $|a_n - A| \leq k|b_n| \leq k\left(\frac{\varepsilon}{k}\right) = \varepsilon$. Thus we have that a_n converges since it is also always less than ε . This is by the definition of the limit of a sequence.

$$\therefore \lim_{n\to\infty} a_n = A$$
; That is, the sequence a_n converges to A .

- 5. (Similar to Section 3.2, problem 7)
 - (a) Suppose that $\lim_{n\to\infty} a_n = 0$. If b_n is a bounded sequence, prove that $\lim_{n\to\infty} a_n b_n = 0$.

Proof. Let b_n be a bounded sequence. Then by the definition of a bounded sequence we know that $\exists M > 0, M \in \mathbb{R}$ s.t. $|b_n| \leq M \ \forall n \in \mathbb{N}$.

Let $\varepsilon > 0$ be given. Since a_n converges, we know that by the definition of the limit of a sequence, $\exists N \text{ s.t. } |a_n - 0| = |a_n| < \frac{\varepsilon}{M} \ \forall n \geq N$, since we know that by the definition of bounded, $|b_n| \leq M$. Thus, by the utilization of the triangle inequality, we have that $|a_n b_n| \leq |a_n| |b_n| \leq M \left(\frac{\varepsilon}{M}\right) = \varepsilon, \ \forall n \geq N$.

 \therefore we have that $a_n b_n$ converges to 0.

(b) Show by counterexample that the boundedness of b_n is a necessary condition for part (a).

Let
$$a_n = \frac{1}{n}$$
, and let $b_n = n^3$. Then we have $\lim_{n \to \infty} a_n = 0$, and $\lim_{n \to \infty} b_n = \infty$

, since n^3 is an unbounded sequence since n^3 is not bounded above, and in order to be bounded, the sequence must be both bounded above and bounded below. So, we have the following:

$$\lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} \left(\frac{1}{n}\right) (n^3) = \lim_{n \to \infty} \left(\frac{n^3}{n}\right) = \lim_{n \to \infty} n^2 = \infty \neq 0$$

 \therefore the boundedness of b_n is a necessary condition for part (a) to be true.

- 6. Prove or justify, if true. Provide a counterexample, if false.
 - (a) If a_n converges, then a_n/n also converges.

This is true.

Proof. Let $\lim a_n = A$. Let $b_n = n$, and let $\lim b_n = B$. Recall Theorem 3.2.3. Since $n \in \mathbb{N}$, we know that $n \neq 0$, and thus we know that $0 \notin b_n$. Thus by Theorem 3.2.3, we have that $\lim \frac{a_n}{b_n} = \frac{A}{B}$. And thus since the limit exists, we have that $\frac{a_n}{n}$ also converges.

(b) If a_n does not converge, then a_n/n does not converge.

This is false.

Counterexample: Let $a_n = n$. Then we know that a_n does not converge, however $\frac{a_n}{n} = \frac{n}{n} = 1$, which converges since $\lim 1 = 1$.

(c) If a_n converges and b_n is bounded, then a_nb_n converges.

This is false.

Counterexample: Let $a_n = (\frac{1}{n} + 1)$, and let $b_n = (-1)^n$. Then we have that $\lim a_n = 1$, and b_n is bounded both above and below, by -1 and 1, respectively. Thus $(-1)^n$ is bounded. So if we multiply the two together, we have

$$a_n b_n = (\frac{1}{n} + 1)(-1)^n$$

which is not convergent since this sequence oscillates. Thus by the fact that a convergent sequence multiplied by a divergent sequence diverges, we have that even though a_n is convergent and b_n is bounded, a_nb_n does not converge.

(d) If a_n converges to zero and $b_n > 0$ for all $n \in \mathbb{N}$, then $a_n b_n$ converges.

This is false.

Counterexample: Let $a_n = \frac{1}{n}$, and let $b_n = n^3$. Then we have that $\lim a_n = 0$, and that $b_n > 0 \ \forall \ n \in \mathbb{N}$. Then, we have that $a_n b_n = (\frac{1}{n})(n^3) = \frac{n^3}{n} = n^2$. And thus we have that $\lim a_n b_n = \lim n^2 = \infty$, thus $a_n b_n$ diverges.

(e) If $a_n \to A$ and $b_n \to A$ as $n \to \infty$, then $a_n = b_n$ for all $n \in \mathbb{N}$.

This is false.

Counterexample: Let $a_n = \frac{n}{3n+1}$, and let $b_n = \frac{1}{n} + 1$. Then we have $\lim a_n = 1$, and $\lim b_n = 1$, thus $\lim a_n = \lim b_n = 1$. However, $a_n \neq b_n$, since $\frac{n}{3n+1} \neq \frac{1}{n} + 1 = \frac{n}{n+1} \neq \frac{n}{3n+1}$.

(f) Every convergent sequence is bounded.

This is true.

Proof. Refer to proof of Theorem 3.2.2.

(g) Every bounded sequence is convergent.

This is false.

Counterexample: Let $a_n = (-1)^n$. Then we have that a_n is bounded both above and below, and thus a_n is bounded. However since a_n oscillates, we know that a_n is not convergent.

(h) If $a_n \to 0$ as $n \to \infty$, then for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that if n > N, then $a_n < \epsilon$.

This is true.

Proof. Since we have that $\lim_{n\to\infty} a_n = 0$, then by the definition of the limit of a sequence, we have

$$\forall \ \varepsilon > 0, \ \exists \ N \in \mathbb{N} \text{ s.t. } |a_n - A| < \varepsilon, \ \forall \ n \geq N$$

Thus we have that

$$|a_n - 0| < \varepsilon$$

$$|a_n| < \varepsilon$$

$$-\varepsilon < a_n < \varepsilon$$

Thus we have that if n > N, then $a_n < \varepsilon$, by the definition of the limit of a sequence.

(i) If for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that n > N implies $a_n < \epsilon$, then $a_n \to 0$ as $n \to \infty$.

This is false.

Counterexample: Let $a_n = -1$, $\forall n \in \mathbb{N}$. Then we have that by the definition of the limit of a sequence, for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that n > N

implies that $a_n < \varepsilon$, but a_n does not converge to 0 as $n \to \infty$. Rather, we have that $a_n \to -1$.

(j) Given sequences a_n and b_n , if for some $A \in \mathbb{R}, k > 0$ and $m \in \mathbb{N}$ we have $|a_n - A| \le k|b_n|$ for all n > m, then $a_n \to A$ as $n \to \infty$.

This is false.

Counterexample: Note the proof of question 4: We showed that the above statement is true if $\lim b_n = 0$ is also given. However, given that this limit is omitted, we have that we can provide a counterexample to disprove said statement.

Suppose $b_n = \frac{1}{n} + 1$. Then we have that $\lim b_n = 1$. Let $a_n = -2$. Assume for some $A \in \mathbb{R}, k > 0, m \in \mathbb{N}$, we have $|-2 - (-2)| \le k|1| \ \forall \ n > m = 2 \le k$. However, note that there doesn't exist an m such that $2 \le k \ \forall \ n > m$, since $m = n \ \forall \ m \in \mathbb{N}, \ n \in \mathbb{N}$.