02. Symmetric Encryption

Hyung Tae Lee

Spring 2025

Symmetric Encryption

- Assume that a sender and a receiver have the same key
 - ⇒ Symmetric/Private key

Figure 2.1 Simplified Model of Symmetric Encryption

- Classical encryption, block cipher (DES, AES, ARIA, SEED), stream cipher (RC4, ChaCha)
- Pros: Faster than asymmetric (public key) encryption
- Cons: Key share problem, large number of keys

Picture from [SB15]

Block Cipher

(a) Block cipher encryption (electronic codebook mode)

- Input: One block of elements at a time
- Output: A block for each input block
- Can reuse keys
- More common
- e.g., Substitution cipher, Permutation cipher, DES, AES, ARIA, SEED

Picture from [SB15]

Stream Cipher

- Input: Elements continuously
- Output: One element at a time
- Faster than block cipher
- Use a key only once
 - ▶ Insecure against known plaintext attack: $M \oplus C = M \oplus (M \oplus k) = k$
- e.g., LFSR cipher, RC4, ChaCha

Block Cipher

Design of Block Cipher

- A symmetric block cipher consists of a sequence of rounds which are composed of substitutions and permutations controlled by a key
- Parameters and design features for a symmetric block cipher
 - Block size
 - Key size
 - Number of rounds
 - Subkey generation algorithm
 - Round function
 - ► Fast software/hardware encryption/decryption
 - Ease of (security) analysis

Computationally Secure

- An encryption scheme is computationally secure if the ciphertext generated by the scheme meets one or both the following criteria:
 - ▶ The cost of breaking the cipher exceeds the value of the encrypted information
 - ► The time required to break the cipher exceeds the useful lifetime of the information
- Example: Cryptographic key sizes (https://www.keylength.com)

Table: Keys Length Recommendations by NIST (2020)

Date	Minimum	Symmetric	Factoring		te Logarithm	Elliptic	Hash (A)	Hash (B)
	of Strength	Algorithms	Modulus	Key	Size	Curve	. ,	. ,
(Legacy)	80	2TDEA	1024	160	1024	160	SHA-1	
		3TDEA					SHA-224	
2019-2030	112	JIDEA	2048	224	2048	224	SHA-512/224	
		AES-128				1	SHA3-224	
2019-2030							SHA256	SHA-1
2019-2030	128	AES-128	3072	256	3072	256	SHA-512/256	JIIA-1
& beyond							SHA3-256	KMAC128
2019-2030							SHA-384	SHA-224
2019-2030	192	AES-192	7680	384	7680	384		
& beyond							SHA3-384	SHA-512/224
2019-2030							SHA-512	SHA-256, 384, 512
2019-2030	256	AES-256	15360	512	15360	512		SHA-512/256
& beyond							SHA3-512	SHA3-512

Data Encryption Standard (DES)

Feistel Cipher Structure

- First designed by Horst Feistel in 1973
- Input: A plaintext block of length 2w bits and a key K
- Divide an input plaintext into two halves, L₀ and R₀
- They pass n rounds and then are combined to produce the ciphertext block
- All rounds have the same structure

Data Encryption Standard (DES)

- Adopted in 1977 by the National Bureau of Standards, now the National Institute of Standards and Technology (NIST), as Federal Information Processing Standard 46 (FIPS PUB 46)
- Plaintext: 64 bits in length
- Key: 56 bits in length
- 16 rounds which were designed based on a variant of Feistel cipher structure
- 16 subkeys are generated from a key, one of which is used for each round.
- Key schedule for encryption/decryption (K_i: i-th subkey)
 - ► Encryption: $K_1 \rightarrow K_2 \rightarrow \cdots \rightarrow K_{16}$
 - \Rightarrow Decryption: $K_{16} \rightarrow K_{15} \rightarrow \cdots \rightarrow K_{1}$

DES Overview

DES: Initial Permutation

Table: Initial Permutation

Table: Inverse of Initial Permutation

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

DES: Single Round

Picture from [Sta05]

DES: Permutation Tables E, P

Table: Expansion Permutation (E)

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Table: Permutation Function (P)

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

DES: S Boxes

- S-box $S_i:\{0,1\}^6 \rightarrow \{0,1\}^4$ for $1 \leq i \leq 8$
- $S_i(b_0b_1b_2b_3b_4b_5)$: (b_0b_5) -row $(b_1b_2b_3b_4)$ -column in S_i table where $b_i \in \{0,1\}$

ſ								5	91							
ſ	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

Picture from [Sta05]

DES: Key Schedule I

• Permuted choice 1: Key $K \mapsto (C_0, D_0)$ where C_0 and D_0 are 28-bit.

Table: Permuted choice 1 (PC-1)

			Left							Right	:		
57	49	41	33	25	17	9	63	55	47	39	31	23	15
1	58	50	42	34	26	18	7	62	54	46	38	30	22
10	2	59	51	43	35	27	14	6	61	53	45	37	29
19	11	3	60	52	44	36	21	13	5	28	20	12	4

DES: Key Schedule II

Table: Permuted choice 2 (PC-2)

14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

Table: Rotations in the key-schedule

ſ	Rounds	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ſ	Num of left shifts	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

DES: Security Analysis

- All parts are linear, except S-box
- Brute-force attack: 2⁵⁶ candidates for a key
 - ▶ At CRYPTO '93 Rump Session, Michael Wiener gave a very detailed design of a DES key search machine: Expected record 1.5 days using 1993 technology for \$100,000
 - In 1998, Electronic Frontier Foundation built a key search machine costing \$250,000 (Record: 56 hours in July 1998)
 - ▶ In 1999, RSA Laboratory found a DES key in 22 hours and 15 minutes.
- Linear cryptanalysis (LC) proposed by Mitsuru Matsui
 - ► Generate 2⁴³ pairs: 40 days
 - Find a key: 10 days

Enhancing Security: Triple DES

Triple DES

- $Enc(K = (K_1, K_2, K_3), P) = E(K_3, D(K_2, E(K_1, P)))$
- $Dec(K = (K_1, K_2, K_3), C) = D(K_1, E(K_2, D(K_3, C)))$

where P: plaintext, C: ciphertext, E: encryption algorithm, and D: decryption algorithm

Properties of Triple DES

- Standardized for use in financial applications in ANSI standard X9.17 in 1985
- Incorporated as part of DES in 1999, with the publication of FIPS PUB 46-3
- The encryption algorithm follows an encrypt-decrypt-encrypt (EDE) sequence
- Plaintext size = Ciphertext size: 64 bits in length
- Key size: $3 \times DES$ keys = 168 bits in length
 - ▶ FIPS 46-3 also allows for the use of two keys, with $K_1 = K_3 \Rightarrow 112$ bits
- Attractions
 - Secure against brute-force attacks of DES
 - Underlying cryptographic algorithm is DES
- Weak points
 - ▶ 64-bit block size (vs 168-bit key size)
 - Algorithm is slow in software

Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES)

- Also known as Rijndal
- Developed by Vincent Rijmen and Joan Daemen
- Selected by the five-year NIST standardization process in 2001
- Specification

Underlying structure	Substitut	ion-Permutation	Network
Number of rounds	10	12	14
Key size (bits)	128	192	256
Block size (bits)		128	

Preliminaries for AES

Hexadecimal notation

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F

• State: 128 bits \rightarrow (4×4) matrix of bytes

EA	04	65	85
83	45	5D	96
5C	33	98	B0
F0	2D	AD	C5

AES: Overview of the Encryption/Decryption Algorithms

AES: Single Round

- Substitution bytes: Byte-by-byte substitution of the block using S-box (all rounds)
- Shift rows: A simple permutation that is performed row by row (all rounds)
- Mix columns: A substitution that alters each byte in a column as a function of all of the bytes in the column (1-9 rounds)
- Add round keys: A simple bitwie XOR of the current block with a portion of the explanded key (all rounds)

Mathematical Background: Finite Fields

- Loosely speaking, a field $\mathbb F$ is a set that has the operations of addition, multiplication, subtraction, and division by nonzero elements. It is also required that the associative, commutative, and distributive laws hold: For $a,b,c\in\mathbb F$,
 - (associative) (a + b) + c = a + (b + c), $a \times (b \times c) = (a \times b) \times c$
 - ightharpoonup (commutative) a+b=b+a, $a\times b=b\times a$
 - (distributive) $a \times (b + c) = a \times b + a \times c$
- The set of real numbers, the set of complex numbers are fields. But, the set of integers is not a field. (e.g., 1/3 is not an integer.)
- $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ is a field if p is prime. It is not a field if p is composite.
- $GF(p^n)$: a field with p^n elements $(\mathbb{Z}_p[X] \pmod{P(X)})$ where P(X) is an irreducible polynomial mod p of degree n)

$GF(2^8)$ for AES

- $P(X) = X^8 + X^4 + X^3 + X + 1$ is irreducible in $\mathbb{Z}_2[X]$.
- $GF(2^8)$: the set consisting of

$$b_7X^7 + b_6X^6 + b_5X^5 + b_4X^4 + b_3X^3 + b_2X^2 + b_1X^1 + b_0$$

where $b_i \in \{0,1\}$ for $0 \le i \le 7$

- $B(X) = b_7 X^7 + b_6 X^6 + b_5 X^5 + b_4 X^4 + b_3 X^3 + b_2 X^2 + b_1 X^1 + b_0$ is corresponded to a 8-bit vector $b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$.
- Addition: $A(X) + B(X) \mod P(X)$ for $A(X), B(X) \in GF(2^8)$
 - $A(X) = X^7 + X^6 + X^3 + X + 1$
 - $B(X) = X^4 + X^3 + 1$
 - $A(X) + B(X) = (X^7 + X^6 + X^3 + X + 1) + (X^4 + X^3 + 1) = X^7 + X^6 + X^4 + X$
 - ► Bitwise XOR between corresponded vectors

 $11001011 \oplus 00011001 = 11010010$

$GF(2^8)$ for AES (Cont.)

- Multiplication: $A(X) \cdot B(X) \pmod{P(X)}$
 - $A(X) = X^7 + X^6 + X^3 + X + 1$
 - \triangleright $B(X) = X^4 + X^3 + 1$

$$A(X) \cdot B(X) \pmod{P(X)}$$

$$= (X^7 + X^6 + X^3 + X + 1)(X^4 + X^3 + 1)$$

$$= (X^7 + X^6 + X^3 + X + 1)X^4 + (X^7 + X^6 + X^3 + X + 1)X^3 + (X^7 + X^6 + X^3 + X + 1)$$

$$= (X^{11} + X^{10} + X^7 + X^5 + X^4) + (X^{10} + X^9 + X^6 + X^4 + X^3) + (X^7 + X^6 + X^3 + X + 1)$$

$$= X^{11} + X^9 + X^5 + X + 1 \pmod{X^8 + X^4 + X^3 + X + 1}$$

$$= X^7 + X^6 + X^3 + X^2 + 1$$

$GF(2^8)$ for AES (Cont.)

- Inverse: Extended Euclidean Algorithm
 - $A(X) = X^7 + X^6 + X^3 + X + 1 \Rightarrow A(X)^{-1} \mod P(X)$?

$$\gcd(X^7 + X^6 + X^3 + X + 1, X^8 + X^4 + X^3 + X + 1) = 1$$

$$X^8 + X^4 + X^3 + X + 1 = (X + 1)(X^7 + X^6 + X^3 + X + 1) + (X^6 + X^2 + X)$$

$$X^7 + X^6 + X^3 + X + 1 = (X + 1)(X^6 + X^2 + X) + \underbrace{1}_{GCD}$$

Then,

$$1 = (X^{7} + X^{6} + X^{3} + X + 1) + (X + 1)(X^{6} + X^{2} + X)$$

$$= (X^{7} + X^{6} + X^{3} + X + 1)$$

$$+ (X + 1)((X + 1)(X^{7} + X^{6} + X^{3} + X + 1) + (X^{8} + X^{4} + X^{3} + X + 1))$$

$$= (1 + (X + 1)^{2})(X^{7} + X^{6} + X^{3} + X + 1) + (X^{8} + X^{4} + X^{3} + X + 1)(X + 1)$$

$$= (X^{2})(X^{7} + X^{6} + X^{3} + X + 1) + (X^{8} + X^{4} + X^{3} + X + 1)(X + 1)$$

$$\therefore (X^{7} + X^{6} + X^{3} + X + 1)^{-1} = X^{2} \pmod{X^{8} + X^{4} + X^{3} + X + 1}$$

Euclidean Algorithm I

Theorem

Let \mathbb{F} be a field and $A(x), P(x) \in \mathbb{F}[x]$. Then, there exist polynomials $S(X), T(X) \in \mathbb{F}[X]$ such that

$$P(X)S(X) + A(X)T(X) = \gcd(P(X), A(X)).$$

(In fact, it holds if $\mathbb F$ is an Euclidean domain, e.g., $\mathbb F=\mathbb Z$ (the set of integers))

- P(X) is irreducible in $\mathbb{F}[X]$
 - $\Rightarrow \gcd(P(X), A(X)) = 1$ if A(X) is not a multiple of P(X)
 - $\Rightarrow P(X)S(X) + A(X)T(X) = \gcd(P(X), A(X)) = 1$
 - $\Rightarrow A(X)T(X) \equiv 1 \pmod{P(X)}$
 - $T(X) \equiv A(X)^{-1} \pmod{P(X)}$

Euclidean Algorithm II

• Assume that $\deg(P(X)) \ge \deg(A(X))$.

$$\underbrace{P(X)}_{:=R_{0}(X)} = Q_{0}(X) \cdot \underbrace{A(X)}_{:=R_{1}(X)} + R_{2}(X)$$

$$R_{1}(X) = Q_{1}(X) \cdot R_{2}(X) + R_{3}(X)$$

$$R_{2}(X) = Q_{2}(X) \cdot R_{3}(X) + R_{4}(X)$$

$$\vdots$$

$$R_{n-2}(X) = Q_{n-2}(X) \cdot R_{n-1}(X) + R_{n}(X)$$

$$R_{n-1}(X) = Q_{n-1}(X) \cdot R_{n}(X)$$

$$\Rightarrow R_n(X) = \gcd(P(X), A(X))$$

Example of Euclidean Algorithm

•
$$A(X) = X^7 + X^6 + X^3 + X + 1$$

•
$$P(X) = X^8 + X^4 + X^3 + X + 1$$

•
$$gcd(P(X), A(X)) = 1$$

$$\underbrace{\frac{X^{8} + X^{4} + X^{3} + X + 1}{R_{0}(X) := P(X)}}_{R_{0}(X)} = \underbrace{\frac{(X+1)}{Q_{0}(X)}}_{Q_{0}(X)} \underbrace{\frac{(X^{7} + X^{6} + X^{3} + X + 1)}{R_{1}(X) := A(X)}}_{R_{1}(X) := A(X)} + \underbrace{\frac{(X^{6} + X^{2} + X)}{R_{2}(X)}}_{R_{2}(X)} + \underbrace{\frac{1}{R_{3}(X)}}_{R_{3}(X)}$$

$$\underbrace{\frac{(X^{6} + X^{2} + X)}{R_{2}(X)}}_{R_{2}(X)} = \underbrace{\frac{(X^{6} + X^{2} + X)}{Q_{2}(X)}}_{R_{3}(X)} \cdot \underbrace{\frac{1}{R_{3}(X)}}_{R_{3}(X)} + \underbrace{0}$$

Extended Euclidean Algorithm

Theorem

- $S_0(X) = 1, S_1(X) = 0$
- $T_0(X) = 0, T_1(X) = 1$
- $S_{i+1} = S_{i-1} S_i Q_i$, $T_{i+1} = T_{i-1} T_i Q_i$

Then, $P(X)S_i(X) + A(X)T_i(X) = R_i(X)$.

Proof. (Use the mathematical induction on i)

- 3

$$PS_{i} + AT_{i} = P(S_{i-2} - S_{i-1}Q_{i-1}) + A(T_{i-2} - T_{i-1}Q_{i-1})$$

$$= \underbrace{(PS_{i-2} + AT_{i-2})}_{R_{i-2}} - \underbrace{(PS_{i-1} + AT_{i-1})}_{R_{i-1}} Q_{i-1}$$

$$= R_{i-2} - R_{i-1}Q_{i-1} = R_{i}$$

Example of Extended Euclidean Algorithm I

- $S_0(X) = 1, S_1(X) = 0$
- $T_0(X) = 0, T_1(X) = 1$
- $S_2 = S_0 S_1 Q_1 = 1, \ T_2 = T_0 T_1 Q_1 = -(X+1)$ $\Rightarrow P(X) (X+1)A(X) = R_2(X)$ $\Rightarrow P(X) = (X+1)A(X) + R_2(X)$
- ② $S_3 = S_1 S_2 Q_2 = -(X+1)$, $T_3 = T_1 T_2 Q_2 = 1 + (X+1)^2 = X^2$ $\Rightarrow P(X)(X+1) + X^2 A(X) = 1$

Example of Extended Euclidean Algorithm II

$$1 = (X^{7} + X^{6} + X^{3} + X + 1) + (X + 1)(X^{6} + X^{2} + X)$$

$$= (X^{7} + X^{6} + X^{3} + X + 1)$$

$$+ (X + 1)((X + 1)(X^{7} + X^{6} + X^{3} + X + 1) + (X^{8} + X^{4} + X^{3} + X + 1))$$

$$= (1 + (X + 1)^{2})\underbrace{(X^{7} + X^{6} + X^{3} + X + 1)}_{A(X)} + \underbrace{(X^{8} + X^{4} + X^{3} + X + 1)(X + 1)}_{P(X)}$$

$$= (X^{2})(X^{7} + X^{6} + X^{3} + X + 1) + (X^{8} + X^{4} + X^{3} + X + 1)(X + 1)$$

$$\therefore (X^{7} + X^{6} + X^{3} + X + 1)^{-1} = X^{2} \pmod{X^{8} + X^{4} + X^{3} + X + 1}$$

AES: Substitue Bytes Transformation

• S(xy) = (x, y)-component in S-box where x, y are hexadecimal digits.

Table: S-box for AES

		у															
x		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	B3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	С	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

AES: Inverse S-Box

Table: Inverse S-box for AES

										,							
		0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
	0	52	09	6A	D5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FB
	1	7C	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	CB
	2	54	7B	94	32	A6	C2	23	3D	EE	4C	95	0B	42	FA	C3	4E
	3	08	2E	A1	66	28	D9	24	B2	76	5B	A2	49	6D	8B	D1	25
	4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	B6	92
	5	6C	70	48	50	FD	ED	B9	DA	5E	15	46	57	A7	8D	9D	84
	6	90	D8	AB	00	8C	BC	D3	0A	F7	E4	58	05	B8	B3	45	06
×	7	D0	2C	1E	8F	CA	3F	0F	02	C1	AF	BD	03	01	13	8A	6B
^	8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	F0	B4	E6	73
	9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1C	75	DF	6E
	Α	47	F1	1A	71	1D	29	C5	89	6F	B7	62	0E	AA	18	BE	1B
	В	FC	56	3E	4B	C6	D2	79	20	9A	DB	C0	FE	78	CD	5A	FA
	С	1F	DD	A8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
	D	60	51	7F	A9	19	B5	4A	0D	2D	E5	7A	9F	93	C9	9C	EF
	Е	A0	E0	3B	4D	AE	2A	F5	B0	C8	EB	BB	3C	83	53	99	61
	F	17	2B	04	7E	BA	77	D6	26	E1	69	14	63	55	21	0C	7D

AES: Example of S-Box Evaluation

Example

EA	04	65	85
83	45	5D	96
5C	33	98	B0
F0	2D	AD	C5

87	F2	4D	97
EC	6E	4C	90
4A	C3	46	E7
8C	D8	95	A6

AES: Design Principle of S-Box

- Regard a two-byte element as an element in $\mathbb{Z}_2[X]/\langle X^8+X^4+X^3+X+1\rangle$
- S-Box: Given $x = (x_7x_6x_5x_4x_3x_2x_1x_0)$ with $x_i \in \{0, 1\}$ for $0 \le i \le 7$,
 - ① Compute $y_7y_6y_5y_4y_3y_2y_1y_0 \longleftrightarrow x^{-1}$ (cf. 00000000 \longleftrightarrow 00000000)
 - Compute

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} z_0 \\ z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \\ z_6 \\ z_7 \end{pmatrix}$$

3 Output z₇z₆z₅z₄z₃z₂z₁z₀

AES: S-Box Computation in $GF(2^8)$

- Bytes: $00 \longrightarrow x=00000000 \xrightarrow{x^{-1}} y = 00000000 \longrightarrow z = 01100011 \longrightarrow 63$
- Bytes: $01 \longrightarrow x=00000001 \xrightarrow{x^{-1}} y = 00000001 \longrightarrow z = 01111100 \longrightarrow 7C$
- Bytes: CB \longrightarrow x=11001011 $\stackrel{x^{-1}}{\longrightarrow}$ y = 00000100 \longrightarrow z = 00011111 \longrightarrow 1F

AES: Shift Row Transformation

Shift row transformation

▶ 1st row: No change

▶ 2nd row: 1-byte circular left shift

▶ 3rd row: 2-byte circular left shift

▶ 4th row: 3-byte circular left shift

Example

87	F2	4D	97		87	F2	4D	97
EC	6E	4C	90		6E	4C	90	EC
4A	C3	46	E7	\longrightarrow	46	E7	4A	C3
8C	D8	95	A6		A6	8C	D8	95

Inverse of the shift row transformation: left ⇒ right

AES: Mix Column Transformation

• Multiply the current state by a matrix in $GF(2^8)$

$$\underbrace{ \begin{pmatrix} 00000010 & 00000011 & 00000001 & 00000001 \\ 00000001 & 00000010 & 00000011 & 00000001 \\ 00000001 & 00000001 & 00000010 & 00000011 \\ 00000011 & 00000001 & 0000001 & 00000010 \end{pmatrix} \begin{pmatrix} c_{0,0} & c_{0,1} & c_{0,2} & c_{0,3} \\ c_{1,0} & c_{1,1} & c_{1,2} & c_{1,3} \\ c_{2,0} & c_{2,1} & c_{2,2} & c_{2,3} \\ c_{3,0} & c_{3,1} & c_{3,2} & c_{3,3} \end{pmatrix} } \\ =: \mathbf{M} \\ = \begin{pmatrix} d_{0,0} & d_{0,1} & d_{0,2} & d_{0,3} \\ d_{1,0} & d_{1,1} & d_{1,2} & d_{1,3} \\ d_{2,0} & d_{2,1} & d_{2,2} & d_{2,3} \\ d_{3,0} & d_{3,1} & d_{3,2} & d_{3,3} \end{pmatrix}$$

- M is invertible
- Inverse of the mix column transformation: Multiply by the inverse of M

AES: Example of the Mix Column Transformation

Example

87	F2	4D	97	
6E	4C	90	EC	
46	E7	4A	C3	–
A6	8C	D8	95	

$$\underbrace{\begin{pmatrix} X & X+1 & 1 & 1 \\ 1 & X & X+1 & 1 \\ 1 & 1 & X & X+1 \\ X+1 & 1 & 1 & X \end{pmatrix}}_{X}$$

$$\begin{pmatrix} X & X+1 & 1 & 1 \\ 1 & X & X+1 & 1 \\ 1 & 1 & X & X+1 \\ X+1 & 1 & 1 & X \end{pmatrix} \begin{pmatrix} 87 & (=X^7+X^2+X+1) \\ 6E & (=X^6+X^5+X^3+X^2+X) \\ 46 & (=X^6+X^2+X) \\ A6 & (=X^7+X^5+X^2+X) \end{pmatrix}$$

M in
$$GF(2^8)$$

$$= X(X^7 + X^2 + X + 1) + (X + 1)(X^6 + X^5 + X^3 + X^2 + X) +1(X^6 + X^2 + X) + 1(X^7 + X^5 + X^2 + X)$$

$$= X^8 + X^6 + X^4 + X^3 + X^2$$

$$= X^6 + X^2 + X + 1 \pmod{X^8 + X^4 + X^3 + X + 1}$$

AES: Add Round Key Transformation

- Add round key transformation: Bitwise XOR of the 128 bits of the current state with the 128 bits of the round key.
- Example

47	40	А3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A6	ВС

\oplus	

	AC	19	28	57
	77	FA	D1	5C
)	66	DC	29	00
	F3	21	41	6E

EB	59	8B	1B
40	2E	A1	C3
F2	38	13	42
1E	84	E7	D2

Current state

Round key

Output of the round

• Inverse of the add round key transformation:

(Output of the round) \oplus (Round key) = (Current state)

AES: Key Expansion

• Key K = (W(0), W(1), W(2), W(3))

w _{0,0}	$w_{0,1}$	<i>w</i> _{0,2}	<i>w</i> _{0,3}
w _{1,0}	$w_{1,1}$	<i>w</i> _{1,2}	w _{1,3}
W _{2,0}	W _{2,1}	W _{2,2}	W _{2,3}
W _{3,0}	W _{3,1}	W _{3,2}	W _{3,3}
W(0)	W(1)	W(2)	W(3)

• $W(i) = \begin{cases} W(i-4) \oplus W(i-1) & \text{if } i \text{ is not a multiple of 4} \\ W(i-4) \oplus T(W(i-1)) & \text{if } i \text{ is a multiple of 4} \end{cases}$ where T is a transformation performed as follows.

Let
$$W(i-1) = (w_{0,i-1}, w_{1,i-1}, w_{2,i-1}, w_{3,i-1})$$
. Then,

- **1** Shift one byte circular left: $(w_{1,i-1}, w_{2,i-1}, w_{3,i-1}, w_{0,i-1})$
- ② Evaluate the S-box: $(S(w_{1,i-1}), S(w_{2,i-1}), S(w_{3,i-1}), S(w_{0,i-1}))$
- **3** Compute $r(i) = X^{(i-4)/4}$ in $GF(2^8)$
- $(W(i-1)) = (S(w_{1,i-1}) \oplus r(i), S(w_{2,i-1}), S(w_{3,i-1}), S(w_{0,i-1}))$

AES: Security

- Only Add Round Key Transformation uses a key
- Brute-force attacks: 2¹²⁸ candidates for a key of AES-128
- The best known attack: Biclique attacks by A. Bogdanov, D. Khovratovich, and C. Rechberger (at ASIACRYPT 2011)
 - ▶ 2^{126.1} for AES-128
 - ▶ 2^{189.7} for AES-192
 - ▶ 2^{254.4} for AES-256

Comparison of Representative Block Ciphers

	DES	Triple DES		AES	
Block size (bit)	64	64		128	
Key size (bit)	56	112 or 168	128	192	256
Number of rounds	16	3×16	10	12	14
Underlying		Feistel		SPN	
Structure		i eistei		SEIN	

Stream Cipher

Stream Cipher

- Input: Elements continuously
- Output: One element at a time
- Faster than block cipher
- Use a key only once
 - ▶ Insecure against known plaintext attack: $M \oplus C = M \oplus (M \oplus k) = k$
- e.g., LFSR cipher, RC4, ChaCha

Random Numbers

- Wide range of uses in cryptography, e.g.,
 - private keys in public-key encryption
 - keys for stream cipher
 - symmetric key for use as a temporary session key

Requirements

- Randomness
 - Uniform distribution: Frequency of occurrence of each number should be identical
 - ★ Independence: No one value can be inferred from the others
- Unpredictability
 - * Each number is statistically independent of other numbers
 - Anyone should not be able to predict future elements of the sequence on the basis of earlier elements

Random vs. Pseudorandom

- True random number generator (TRNG)
 - Expensive to be realized
 - Use a nondeterministic source to produce randomness
 - Operate by measuring unpredictable natural processes such as radiation, gas discharge and leaky capacitors
 - Increasingly provided on recent processors
- Pseudorandom numbers
 - Sequences produced that satisfy statistical randomness tests
 - ► Use a deterministic source ⇒ likely to be predictable

Recall: LFSR Cipher

- A shift register whose input bit is a linear function of its previous state
- Example: a shift register satisfying

$$\underbrace{x_{m+3} = x_{m+1} + x_m}_{\text{linear relation}}$$

LFSR Cipher

For a linear function $f(z_1, \ldots z_\ell) = \sum_{i=1}^{\ell} c_i z_i$ with constant c_i 's and a key $K = (k_1, \ldots, k_\ell) \in (\mathbb{Z}_2)^{\ell}$

- $\operatorname{Enc}(K,(x_1,\ldots,x_m))=(x_1\oplus k_1,\ldots,x_m\oplus k_m)$
- $Dec(K, (y_1, ..., y_m)) = (y_1 \oplus k_1, ..., y_m \oplus k_m)$

where
$$k_j = f(k_{j-\ell}, k_{j-\ell+1}, \dots k_{j-1})$$
 for $\ell+1 \leq j \leq m$

• Insecure against known plaintext attacks

Picture and example from [TW06]

RC4: Overview

- Designed by Ron Rivest in 1987, but leaked in 1994
- RC = Rivest Cipher (cf. RC2, RC5, RC6: Block cipher)
- Variable-key-size stream cipher with byte-oriented operations
 - Expected to be fast in software

Cipher	Key length	Speed (Mbps)		
DES	56	21		
3DES	168	10		
AES	128	61		
RC4	Variable	113		

• Based on the use of a random permutation

RC4: Initialization of S

 \bullet $\boldsymbol{S} \mathrm{:}$ Set equal to the values from 0 through 255 in ascending order

$$\Rightarrow$$
 S[0]=0, **S**[1]=1, ..., **S**[255]=255

 T: A temporary vector where the first keylen elements of T are copied from the key K and then K is repeated as many times as necessary to fill out T (keylen = the byte-size of K)

/* Initialization */
for i=0 to 255 do
$$S[i] = i;$$

$$T[i] = K[i \text{ mod } keylen];$$

Permute S using T

```
/* Initial Permutation of \mathbf{S} */ j=0; for i=0 to 255 do j=(j+S[i]+T[i]) mod 256; \mathbf{Swap}(S[i],S[j]);
```

RC4: Stream Generation

- Cycling through all the elements of S[i]
- For each S[i], swapping S[i] with S[j] where j is determined by the scheme description
- \bullet After $\boldsymbol{S}[255]$ is reached, the process continues starting over again at $\boldsymbol{S}[0]$

```
\label{eq:continuity} $$ /*Stream Generation*/ $$ i, j = 0; $$ while (true) $$ i = (i+1) mod 256; $$ j = (j+S[i]) mod 256; $$ Swap(S[i], S[j]); $$ t = (S[i]+S[j]) mod 256; $$ k = S[t]; $$
```

- Encryption: XOR the value k with the next byte of plaintext
- Decryption: XOR the value k with the next byte of ciphertext

RC4: Graphical Explanation

RC4: Security

- None of attacks is practical against RC4 itself if a key size is reasonable, e.g.,
 128 bit
- In 2001, there was reported that the WEP (Wired Equivalent Privacy) protocol with RC4 is vulnerable to a particular attack approach.
- As of 2015, some cryptography agencies may possess the capability to break RC4 when used in the TLS (Transport Layer Security) protocol.
- IETF (Internet Engineering Task Force), Mozilla and Microsoft recommended to prohibit the use of RC4 in TLS protocols.

Modes of Operation

Modes of Operation

- Limitation of block cipher: Fixed length of plaintexts
- Modes of operations
 - ► To encrypt various-sized plaintexts with block cipher
 - Defined by NIST (Special Publication 800-38A)
 - * Electronic Codebook (ECB) Mode
 - ★ Cipher Block Chaining (CBC) Mode
 - ★ Cipher Feedback (CFB) Mode
 - Output Feedback (OFB) Mode
 - ★ Counter (CTR) Mode

Electronic Codebook (ECB) Mode I

Electronic Codebook (ECB) Mode II

Electronic Codebook (ECB) Mode

- $\operatorname{Enc}(K, P_i) = C_i$
- $Dec(K, C_i) = P_i$
- Pros
 - ► No need block synchronization
 - Transmission error affects the corresponding block only
 - Can be parallelized
- Cons
 - Deterministic encryption
 - Insecure against substitution attack: Replace the 4-th block by my account number!

Block #	1	2	3	4	5
	Sending	Sending	Receiving	Receiving	Amount
	Bank A	Account #	Bank B	Account #	\$

Cipher Block Chaining (CBC) Mode I

Cipher Block Chaining (CBC) Mode II

Cipher Block Chaining (CBC) Mode

•
$$\operatorname{Enc}(K, P_i) = \begin{cases} \operatorname{Enc}_{\operatorname{Block}}(K, IV \oplus P_1) & \text{for the first block} \\ \operatorname{Enc}_{\operatorname{Block}}(K, C_{i-1} \oplus P_i) & \text{for other blocks} \end{cases}$$

•
$$\mathsf{Dec}(K, C_i) = \begin{cases} \mathsf{Dec}_{\mathsf{Block}}(K, C_1) \oplus \mathit{IV} & \text{for the first block} \\ \mathsf{Dec}_{\mathsf{Block}}(K, C_i) \oplus C_{i-1} & \text{for other blocks} \end{cases}$$

- Chained together
- Randomized by using the initialization vector (IV)
- IV should be non-predictable. If the IV is kept the same for several transfers, the adversary can modify the amount of money being transferred.

Cipher Feedback (CFB) Mode I

Cipher Feedback (CFB) Mode II

Cipher Feedback (CFB) Mode

- $\operatorname{Enc}(K, P_i) = \begin{cases} F_s(\operatorname{Enc}_{\operatorname{Block}}(K, IV)) \oplus P_1 & \text{for the first block} \\ F_s(\operatorname{Enc}_{\operatorname{Block}}(K, C_{i-1})) \oplus P_i & \text{for other blocks} \end{cases}$
- $Dec(K, C_i) = \begin{cases} F_s(Enc_{Block}(K, IV)) \oplus C_i & \text{for the first block} \\ F_s(Enc_{Block}(K, C_{i-1})) \oplus C_i & \text{for other blocks} \end{cases}$

where F_s is the function that returns the first s-bit of input.

- Use a block cipher as a building block for a stream cipher
- Randomized by using the initialization vector (IV)

Output Feedback (OFB) Mode I

Figure 6.6 Output Feedback (OFB) Mode

Output Feedback (OFB) Mode II

Output Feedback (OFB) Mode

- $\operatorname{Enc}(K, P_i) = X_i \oplus P_i$
- $Dec(K, C_i) = X_i \oplus C_i$

where
$$X_i = \begin{cases} \mathsf{Enc}_{\mathsf{Block}}(K, IV) & \text{for the first block} \\ \mathsf{Enc}_{\mathsf{Block}}(K, X_{i-1}) & \text{for other blocks} \end{cases}$$

- Use a block cipher as a building block for a stream cipher, like CFB
- Randomized by using the initialization vector (IV)
- The block cipher computations are independent of the plaintext, thus it is possible to precompute X_is

Counter (CTR) Mode I

Counter (CTR) Mode II

Counter (CTR) Mode

- $\operatorname{Enc}(K, P_i) = X_i \oplus P_i$
- $Dec(K, C_i) = X_i \oplus C_i$

where
$$X_i = \text{Enc}_{\text{Block}}(K, CTR + i - 1)$$

- Use a block cipher as a building block for a stream cipher, like CFB and OFB
- Non-deterministic if CTR is changed.
- Can be parallelized/precomputed

References

- PP10 C. Paar and J. Pelzl, Understanding Cryptography, Springer, 2010
- SB15 W. Stallings and L. Brown, Computer Security: Principles and Practice, 3rd edition, Pearson Prentice Hall, 2015
- Sta05 W. Stallings, Cryptography and Network Security, 4th edition, Pearson Prentice Hall, 2005
- TW06 W. Trappe and L. C. Washington, Introduction to Cryptography with Coding Theory, 2nd edition, Pearson Prentice Hall, 2006