Trigonometric Ratios						3-Dimensional Cartesian Plane
						Z
	0°	30°	45°	60°	90°	. ★
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	Z P
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	P_y
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	n. d.	P_x $P(x, y, z)$
						^

Lecture 5: Vectors

Vector Operations

- The **negative vector of a vector u** is denoted by -u and it has the same length as u but is opposite in direction
- In either case, the magnitude (or length) of ca is the length of c multiplied by the length of a. i.e. ||ca|| = |c|||a||
- For any vector $a \neq 0$, the **unit vector** in the direction of a is denoted by $\hat{a} = \frac{a}{\|a\|}$
- Finally, notice that a and b are parallel if and only if a = cb for some scalar

Analytic Representation

- Consider the Cartesian plane with origin O. For any $P(a_1, a_2)$, we can write its **position vector** as $\overrightarrow{OP} = [a_1, a_2]$
- Furthermore, consider $P(a_1, a_2)$, for any $Q(b_1, b_2)$, we can write its position vector as $\overrightarrow{PQ} = [b_1 a_1, b_2 a_2]$
- For $\mathbf{a} = [a_1, a_2, a_3]$ and $\mathbf{b} = [b_1, b_2, b_3]$ we find: $\mathbf{a} + \mathbf{b} = [a_1 + b_1, a_2 + b_2, a_3 + b_3], c\mathbf{a} = [ca_1, ca_2, ca_3]$ and $\|\mathbf{a}\| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

Standard Unit Basis Vectors

- i = [1,0] and j = [0,1] in 2 space and i = [1,0,0] and j = [0,1,0] and k = [0,0,1] in 3 space
- For any $\mathbf{a} = [a_1, a_2, a_3]$, $\mathbf{a} = [a_1, a_2, a_3] = [a_1, 0, 0] + [0, a_2, 0] + [0, 0, a_3] = a_1[1, 0, 0] + a_2[0, 1, 0] + a_3[0, 0, 1] = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$

Dot Product

- The dot product (or scalar product) of $a = [a_1, a_2, a_3]$ and $b = [b_1, b_2, b_3]$ is $a \cdot b = a_1b_1 + a_2b_2 + a_3b_3$
- Consider a and b with an angle θ between them, $0^{\circ} \le \theta \le 180^{\circ}$. Suppose we locate both vectors with their initial points at the origin, a. $b = ||a|| ||b|| \cos \theta$ and if $a \ne 0$ and $b \ne 0$, then $\cos \theta = \frac{a.b}{||a|| ||b||}$
- We say that a and b are **orthogonal** (or perpendicular) if the angle between them is 90° .
- In this case, $\frac{a.b}{\|a\| \|b\|} = \cos 90^\circ = 0 \rightarrow a.b = 0$

Projection: The scalar projection of ${\pmb a}$ on ${\pmb b}$ is $p_s = \| \overrightarrow{OB} \| = {\pmb a}. \widehat{{\pmb b}}$ and the vector projection of ${\pmb a}$ on ${\pmb b}$ is ${\pmb p}_v = \| \overrightarrow{OB} \| = p_s \widehat{{\pmb b}}$

Work Done by a Force: Work = $F \cdot s = ||F|| \cos \theta ||s||$

Direction Cosines

- Consider a vector $\mathbf{a} = [a_1, a_2, a_3]$ and let α, β and γ be the angles which \mathbf{a} makes with \mathbf{i}, \mathbf{j} and \mathbf{k} , respectively
- Then $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are the **direction cosines** of a
- We have $\cos \alpha = \frac{a_1}{\|a\|}$, $\cos \beta = \frac{a_2}{\|a\|}$, $\cos \gamma = \frac{a_1}{\|a\|}$. Therefore, $[\cos \alpha, \cos \beta, \cos \gamma] = \frac{a}{\|a\|} = \hat{a}$

Lecture 6: Vectors & Introduction to Matrices

Cross Product

- The cross product of $\mathbf{a} = [a_1, a_2, a_3]$ and $\mathbf{b} = [b_1, b_2, b_3]$ is $\mathbf{a} \times \mathbf{b} = [a_2b_3 a_3b_2, a_3b_1 a_1b_3, a_1b_2 a_2b_1]$
- $a.(b \times c)$ is called the scalar triple product of a, b and c
- $a \times (b \times c)$ is called the **vector triple product of** a, b and c
- a, b and c are **coplanar** (lie in the same plane) if and only if a. ($b \times c$) = 0

Area of a Parallelogram	Area of a Triangle	Volume of a Parallelepiped
Area = $\ \overrightarrow{PQ} \times \overrightarrow{PR}\ $ Area = $\ \mathbf{u} \times \mathbf{v}\ $ = $\ \mathbf{u}\ \ \mathbf{v}\ \sin \theta$	Area = $\frac{1}{2} \ \overrightarrow{PQ} \times \overrightarrow{PR} \ $ Area = $\frac{1}{2} \ \boldsymbol{u} \times \boldsymbol{v} \ $ = $\frac{1}{2} \ \boldsymbol{u} \ \ \boldsymbol{v} \ \sin \theta$	$V = \mathbf{a}.(\mathbf{b} \times \mathbf{c}) $ $= \mathbf{a} \times \mathbf{b} \mathbf{c} \sin \theta $

Matrix Addition	Scalar Multiplication	Matrix Multiplication
$C = A + B = [c_{ij}] = [a_{ij} + b_{ij}]$	$kA = k[a_{ij}] = [ka_{ij}]$	$A_{m \times n} B_{n \times p} = C_{m \times p}$ where $c_{ij} = a_{i1} + b_{1j} + a_{i2} + b_{2j} + a_{i3} + b_{3j} \dots + a_{in} + b_{nj}$

- Valid properties of matrix multiplication: (1) A(B+C) = AB + AC (2) (A+B)C = AC + BC (3) AB(C) = A(BC)
- The **transpose** of an $m \times n$ matrix $A = [a_{ij}]$ is the matrix $A^T = [a'_{ij}]$ where $a'_{ij} = a_{ji}$
- We say that a square matrix A is **symmetric** if $A^T = A$
- Note: (1) $(AB)^T = A^T B^T$ (2) $(A^T)^T = A$ (3) $(A + B)^T = A^T + B^T$

Identities and Inverses

• An identity matrix is a square matrix with all main diagonal entries equal to 1 and all other entries equal to 0

 $\bullet \qquad \text{E.g. } I_1 = \begin{bmatrix} 1 \end{bmatrix}, \, I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \, I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- Note: I is the **identity element** of matrix multiplication, i.e. for $A_{m \times n}$, $AI_n = A$ and $I_m A = A$
- If A is square and of order n, and if there exists a B such that $AB = BA = I_n$, then we say that A is invertible and we call B the inverse of A and we write $B = A^{-1}$ to denote the inverse

Lecture 7: Systems of Linear Equations & Gaussian Elimination

Linear system of m equations in n variables	Matrix of system	Augmented matrix of system
$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$ $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$ \dots $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$	$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$ i.e. $A\mathbf{x} = \mathbf{b}$	$\begin{bmatrix} a_{11} & \cdots & a_{1n} \mid b_1 \\ \vdots & \ddots & \vdots & \mid \vdots \\ a_{m1} & \cdots & a_{mn} \mid b_m \end{bmatrix}$ i.e. $[A \pmb{b}]$

- A system of linear equations can have no solutions, one solution or infinitely many solutions
- If [A|b] is in **row echelon** form, it will be easy to determine the solution(s)
- For any matrix, the first non-zero entry in a particular row is called the **leading entry** of that particular row
- . A matrix is said to be in row echelon form if the leading entry in each row lies to the right of that in the preceding row

Gaussian Elimination: Method for reducing [A|b] to row echelon form

• EROs: (1) Multiply a row by a non-zero constant (2) Add or subtract a multiple of one row to or from another, respectively (3) Interchange two rows

Linear Dependence and Independence

- Consider a set of vectors $\{u_1, u_2, u_3, ..., u_n\}$ and the equation $c_1u_1 + c_2u_2 + c_3u_3 + \cdots + c_nu_n = 0$,
- Given the above, one of the following will always occur:
 - 1. $c_1 = c_2 = c_3 = \cdots = c_n = 0$, set of vectors is **linearly independent**
 - 2. Solution with at least one $c_i \neq 0$, set of vectors is **linearly dependent**

Rank of a Matrix: The **rank** of a matrix A, denoted by r(A), is simply the number of linearly independent rows in A

Recognising the Nature of Solutions

- Consider a general system of m linear equations in n unknowns, Ax = b
- i.e. A is $m \times n$, $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$. Let $[A | \mathbf{b}]$ be the augmented matrix for the system
 - 1. $r(A) \neq r([A|b])$, equations are inconsistent and there are no solutions
 - 2. r(A) = r([A|b]) = n, equations are **consistent** and have a **unique solution**
 - 3. r(A) = r([A|b]) = r < n, equations are **consistent** and have **infinitely many solutions**, which we can express in terms of n r parameters

Lecture 8: More on Linear Systems & Inverses

Homogenous System of m Equations in n Variables	Matrix of System
$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = 0$	
$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = 0$	
$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = 0$	Ax = 0
$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = 0$	

- Note: x = 0 is always a solution (the **trivial solution**), i.e. a homogenous system is always consistent
 - 1. r(A) = n, trivial solution is the only solution
 - 2. r(A) < n, infinitely many solutions. Includes trivial solution and infinite non-trivial solutions

Calculating Inverses

• To find the inverse of A, form the augmented matrix [A|I], then apply EROs to this augmented matrix until the LHS turns into the identity. The resulting RHS will represent A^{-1}

Invertibility and Solutions of Systems

- Consider a system of n equations in n unknowns, i.e. Ax = b, where A is $n \times n$, $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$
- Clearly, if A is invertible with inverse A^{-1} , we have $A^{-1}Ax = A^{-1}b \Rightarrow Ix = A^{-1}b \Rightarrow x = A^{-1}b$