Incomplete Information Dynamic Games

Incomplete Information

Partially Observable Markov Decision Process (POMDP)

- S State space
- $T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution
- A Action space
- ullet $R:\mathcal{S} imes\mathcal{A} o\mathbb{R}$ Reward
- *O* Observation space
- $Z: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times \mathcal{O} \rightarrow \mathbb{R}$ Observation probability distribution

Alleatory

Epistemic (Static)

Epistemic (Dynamic)

Partially Observable Markov Game

- *S* State space
- $T(s' \mid s, \boldsymbol{a})$ Transition probability distribution
- ullet $\mathcal{A}^i,\,i\in 1..k$ Action spaces
- $R^i(s, \boldsymbol{a})$ Reward function
- $\mathcal{O}^i,\,i\in 1..k$ Observation space
- $Z(o^i \mid \boldsymbol{a}, s')$ Observation probability distribution

Hierarchy of Problems

Belief updates?

Reduction to Simple Game

Reduction to Simple Game

Pruning in Dynamic Programming

$$\sum_{\pi^{-i}} \sum_{s} b(\pi^{-i}, s) U^{\pi^{i'}, \pi^{-i}, i}(s) \ge \sum_{\pi^{-i}} \sum_{s} b(\pi^{-i}, s) U^{\pi^{i}, \pi^{-i}, i}(s)$$

$$\begin{split} \text{maximize} \quad \delta \\ \text{subject to} \quad b(\pi^{-i},s) &\geq 0 \text{ for all } \pi^{-i},s \\ \sum_{\pi^{-i}} \sum_{s} b(\pi^{-i},s) &= 1 \\ \sum_{\pi^{-i}} \sum_{s} b(\pi^{-i},s) \left(U^{\pi^{i\prime},\pi^{-i},i}(s) - U^{\pi^{i},\pi^{-i},i}(s) \right) &\geq \delta \text{ for all } \pi^{i\prime} \end{split}$$

Extensive Form Game

(Alternative to POMGs that is more common in the literature)

- Similar to a minimax tree for a turntaking game
- Chance nodes
- Information sets

King-Ace Poker Example

- 4 Cards: 2 Aces, 2 Kings
- Each player is dealt a card
- P1 can either raise (r) the payoff to 2 points or check (k) the payoff at 1 point
- If P1 raises, P2 can either call (c)
 Player 1's bet, or fold (f) the payoff back to 1 point
- The highest card wins

Extensive to Matrix Form

	2: <i>cc</i>	2: <i>cf</i>	2:ff	2:fc
1:rr	0	-1/6	1	7/6
1:kr	-1/3	-1/6	5/6	2/3
1:rk	1/3	0	1/6	1/2
1:kk	0	0	0	0

Exponential in number of info states!

A more interesting example: Kuhn Poker

Fictitious Play in Extensive Form Games

```
Algorithm 2 General Fictitious Self-Play
   function FICTITIOUS SELFPLAY (\Gamma, n, m)
       Initialize completely mixed \pi_1
       \beta_2 \leftarrow \pi_1
      j \leftarrow 2
       while within computational budget do
           \eta_i \leftarrow \text{MIXINGPARAMETER}(j)
           \mathcal{D} \leftarrow \text{GENERATEDATA}(\pi_{i-1}, \beta_i, n, m, \eta_i)
          for each player i \in \mathcal{N} do
              \mathcal{M}_{RL}^{i} \leftarrow \text{UPDATERLMEMORY}(\mathcal{M}_{RL}^{i}, \mathcal{D}^{i})
              \mathcal{M}_{SL}^{i} \leftarrow \text{UpdateSLMemory}(\mathcal{M}_{SL}^{i}, \mathcal{D}^{i})
              \beta_{i+1}^i \leftarrow \text{ReinforcementLearning}(\mathcal{M}_{RL}^i)
              \pi_i^i \leftarrow \text{SUPERVISEDLEARNING}(\mathcal{M}_{SI}^i)
          end for
          j \leftarrow j + 1
       end while
       return \pi_{i-1}
   end function
   function GENERATEDATA(\pi, \beta, n, m, \eta)
       \sigma \leftarrow (1 - \eta)\pi + \eta\beta
       \mathcal{D} \leftarrow n episodes \{t_k\}_{1 \le k \le n}, sampled from strategy
       profile \sigma
       for each player i \in \mathcal{N} do
           \mathcal{D}^i \leftarrow m episodes \{t_k^i\}_{1 \leq k \leq m}, sampled from strat-
          egy profile (\beta^i, \sigma^{-i})
          \mathcal{D}^i \leftarrow \mathcal{D}^i \cup \mathcal{D}
       end for
       return \{\mathcal{D}^k\}_{1 \leq k \leq N}
   end function
```


Deep Stack: Scaling to Heads Up No Limit Texas Hold 'Em

Tree-Based Planning in POSGs

Real-time processing delay 80 ms

Training days

Real-time processing delay 30 ms

Alpha Star

Deep Nash

Start with an arbitrary regularization policy: $\pi_{0,\mathrm{reg}}$

- 1. Reward transformation: Construct the transformed game with: $\pi_{n,\text{reg}}$
- 2. Dynamics: Run the replicator dynamics until convergence to: $\pi_{n,\text{fix}}$
- 3. Update: Set the regularization policy:

$$\pi_{n+1,\text{reg}} = \pi_{n,\text{fix}}$$

Repeat steps until convergence

(b) Algorithmic steps

Lyapunov function

Replicator dynamics

(c) Dynamics and Lyapunov function

Stratego

Phase 1: Private deployment

Phase 2: Game play

Bomb: immobile; only captured by Miner
Flag: immobile, game over when captured

Piece types

Miner: diffuses Bombs

Scout: long range move

Spy: defeats Marshal

Marshal ← General

Colonel

Captain

Lieutenant

Sergeant

$$\begin{array}{l} \text{Replicator dynamics: } \frac{d}{d\tau}\pi_{\tau}^{i}(a^{i}) = \pi_{\tau}^{i}(a^{i}) \left[Q_{\pi_{\tau}}^{i}(a^{i}) - \sum_{b^{i}}\pi_{\tau}^{i}(b^{i})Q_{\pi_{\tau}}^{i}(b^{i})\right] \\ \text{Reward transformation: } r^{i}(\pi^{i},\pi^{-i},a^{i},a^{-i}) = r^{i}(a^{i},a^{-i}) - \eta\log\left(\frac{\pi^{i}(a^{i})}{\pi_{\mathrm{reg}}^{i}(a^{i})}\right) + \eta\log\left(\frac{\pi^{-i}(a^{-i})}{\pi_{\mathrm{reg}}^{-i}(a^{-i})}\right) \end{array}$$