בעיית כדור הזכוכית

תיאור הבעיה

- לפניכם בניין בן $\bf n$ קומות ולרשותכם $\bf b$ כדורי זכוכית.
- עליכם לגלות, באמצעות זריקת הכדורים מהקומות, מהי הקומההנמוכה ביותר שאם תזרקו ממנה כדור היא תישבר.
- ⇒ מובן שאם הכדור שזרקתם נשברה, לא תוכלו להשתמש בה שוב להמשך הבדיקה.

- הערות

- **1.** אם הכדור נשבר מקומה כלשהי, הוא גם יישבר מכל הקומות הגבוהות יותר.
 - **.2** אם הכדור לא נשבר לאחר זריקה, נשתמש בו שוב.
- i+1 אם הכדור נשבר מקומה i אז היא תשבר גם בכל קומה i
- 4. אם הכדור לא נשבר מקומה i אז היא לא תישבר גם בכל קומה i-1.
- **5.** אם אני למשל עם 100 כדורים וקומה אחת בלבד, אז מספיק לי כדור אחד בשביל הבעיה.

פתרון הבעיה

⇒ בידינו b=1 כדורים בלבד, ו-n קומות.

- ⇒ מתחילים את זריקות הכדור מקומה אחת אם הוא יישבר, מצאנו את הקומה, במקרה שהכדור לא ישבר זורקים אותו מקומה 2 .וכך עולים קומה-קומה וזורקים את הכדור עד שהוא ישבר.
 - . במקרה הגרוע O(n) במקרה הגרוע \sim

⇒ בידינו b=2 כדורים בלבד, ו-n קומות.

נחלק את הבניין ל**שני חלקים שווים**, זורקים כדור ראשון \in מקומה $\frac{n}{2}$:

אם הכדור הראשון נשבר, נתחיל מהקומה הראשונה ונעבור

בכל

קומה עד שישבר.

אם הכדור הראשון לא נשבר, נבדוק מקומה $\frac{3n}{4}$ וכן הלאה..

- במקרה הטוב $\log_2 n$ ניסיונות. שזה בעצם מקרה שיש לנו $\log_2 n$ כדורים או יותר. $\log_2 n$
- במקרה הגרוע יש לנו $\frac{n}{2}+1$ ניסיונות (כי אם הכדור הראשון \sim

(נשבר, נשאר לי עוד $\frac{n}{2}$ ניסיונות).

נחלק את הבניין ל**שלושה חלקים שווים,** זורקים \in כדור ראשון מקומה $\frac{n}{3}$:

אם הכדור הראשון נשבר, נתחיל מהקומה הראשונה ונעבור בכל קומה עד שישבר.

 $\frac{2n}{3}$ אם הכדור הראשון לא נשבר, נבדוק מקומה וכן הלאה...

סך הכל: $2+\frac{n}{3}$ ניסיונות (כפי שאפשר לראות בציור ניסינו בקומות הראשונות $\frac{n}{3}$ ולא נשבר, קפצנו 1+, ולכן במקרה ניסינו $1+\frac{n}{3}$ לא נשבר, קפצנו עוד 1+, ולכן במקרה הגרוע ניסינו $1+\frac{n}{3}$).

. ראינו שאם נחלק ל**שני חלקים שווים**, במקרה הגרוע לשני חלקים שווים, במקרה הגרוע

. ראינו שאם נחלק ל**שלושה חלקים שווים,** במקרה הגרוע ל**שלושה חלקים שווים,** במקרה הגרוע

. ניסיונות אם נחלק את הבניין ל-**k חלקים שווים**, במקרה הגרוע יש לכן, אם נחלק את הבניין ל-

. ניסיונות את הבניין ל-**n חלקים שווים**, במקרה הגרוע יש ל-**n חלקים שווים**, ניסיונות

נרצה לדעת מהי החלוקה האופטימלית ביותר

תזכורת - כדי לחשב מינימום של קטע, נגזור את הקטע, נשווה לאפס ואז נמצא את הערך המינימלי שלו. מזכורת - כדי לחשב מינימום של קטע, נגזור את הקטע, נשווה לאפס ואז נמצא את הערך של k לכן, מהו הערך של

(נחשב $f(x) = (\frac{n}{x} + x)$ לכן נגזור, $f(x) = (\frac{n}{x} + x)$

$$f'(x) = -\frac{n}{x^2} + 1 = 0$$
$$-\frac{n}{x^2} + 1 = 0 \times + \frac{n}{x^2}$$
$$1 = \frac{n}{x^2} \times x^2$$
$$x^2 = n \times \sqrt{x}$$
$$x = \sqrt{n}$$

לכן, קיבלנו שהחלוקה האופטימלית היא \sqrt{n} חלקים שווים. $f(\sqrt{n}) = \frac{n}{\sqrt{n}} + (\sqrt{n}-1) \approx 2\sqrt{n}$ ובמקרה הגרוע כאשר

 $k=\sqrt{n}$ אם n הוא מספר ריבועי, אז

. $(m-1)^2 \le n \le m^2$:כך שמתקיים מספר ריבועי, אז ניקח מספר ריבועי מינימלי m אם n אם n הוא לא

בידינו עדיין $\mathbf{b}=\mathbf{2}$ כדורים בלבד, ו-n קומות, אבל נציג חלוקה אחרת - מספרים משולשים. n בידינו עדיין \mathbf{r} -, והוא שווה לסכום כל המספרים הטבעיים מ-1 עד n. ישנם אינסוף מספרים משולשיים וניתן להציג כל מספר משולשי בצורת משולש שווה-צלעות.

, (נוסחת גאוס) $n=1+2+...+k=rac{k\cdot(k+1)}{2}$ (נוסחת נוסחת הוא מספר משולשי: (k נחלק את הבניין ל-k חלקים: (k נחלק את הבניין ל-

כאשר זורקים את הכדור הראשון מקומה k **והוא נשבר**, נשארים לנו עוד k-1 ניסיונות. כלומר, סך הכל - k ניסיונות.

, k+(k-1) מקומה את הכדור הראשון מקומה k ו**הוא לא נשבר**, זורקים אותו מקומה k-1 ניסיונות.

. מנות, סך הכל שוב - k-2+2=k ניסיונות.

- תמיד יהיה לנו k ניסיונות.

:כאשר ח מספר משולשי ו-
$$\frac{k\cdot(k+1)}{2}$$
 -מספר משולשי ו- $2n=k(k+1)$ 2 $n=k^2+k$ 2 $n-k=k^2$

 $k < \sqrt{2n}$ - נוציא שורש ונקבל ש $k^2 < 2n$ נקבל: 2n - k < 2n ומכיוון ש

מסקנה - $\sqrt{n} < 2\sqrt{n} < 2\sqrt{n}$, ולכן חלוקה לפי מספר משולשים טובה יותר מחלוקה למספרים שווים - \sqrt{n} . כי הראנו שמקרה הגרוע עבור חלוקה למספרים שווים נקבל \sqrt{n} , ואם מקרה זה יכול להיות גדול יותר מהחלוקה המינימלית שמצאנו עבור מספרים משולשים - $\sqrt{2n}$ אז ברור שעדיף לנו להשתמש בשיטת המספרים המשולשיים.

בידינו 2<b כדורים , ו-n קומות. ❖

בהינתן b כדורים ובניין בעל n קומות, נגדיר את הפונקציה b בהינתן b בהינתן בעל בעל היין בעל בעל הארוע:

$$f(n,2) = \min_{1 \le i \le n} \max(f(n-i,2), f(i-1,1)) + 1$$

⇒ כאן משתמשים בתכנות דינמי מורכב יותר: בכל שלב משתמשים בכל התוצאות של השלבים הקודמים.

כאשר זורקים כדור מקומה i יש שתי אפשרויות:

- .1. הכדור לא נשבר, נשארו 2 כדורים ו- n-i קומות.
- 2. הכדור נשבר, נשאר כדור אחד ו-i-1 קומות. הולכים על המקרה הגרוע ומחשבים את המספר המינימלי עבור כל הקומות.

$$f(1,2) = 1$$
 נציין כי $f(2,2) = 2$ וגם

במקרה הכללי:

$$f(n,b) = \min_{1 \le i \le n} \max(f(n-i,b), f(i-1,b-1)) + 1$$

.(בערך עליון) בערך תחתון) כאשר $b \geq log_2 n$ בערך תחתון) בערך $log_2 n$ הפונקציה f(n,b) הפונקציה

נציג מטריצת פתרון תכנות דינאמי עבור מקרה זה:

כמות ניסיונות		כדורים			
		0	1	2	3
קומות	0	0	0	0	0
	1	0	1	1	1
	2	0	2	2	2
	3	0	3	2	2
	4	0	4	3	3
	5	0	5	3	3
	6	0	6	3	3

הסבר למילוי המטריצה

עבור כל תא במטריצה נחשב את הנוסחה הבאה:

$$f(n,b) = \min_{1 \le i \le n} [1 + max(f(n-i,b), f(i-1,b-1))]$$

נזכר שכאשר זורקים כדור מקומה i יש שתי אפשרויות:

- .1 הכדור לא נשבר, נשארו b כדורים ו- n-i קומות.
 - .2 הכדור נשבר, נשאר i-1 כדורים ו- i-1 קומות.

הולכים על המקרה הגרוע ומחשבים את המספר המינימלי עבור כל הקומות.

למשל, עבור תא (3,2) במטריצה שלנו, כלומר **3 קומות ו-2 כדורים**, נחשב בצורה הבאה:

אם אני זורק את הכדור הראשון מהקומה ה-i:	אם הכדור לא נשבר $f(n-i,b)$	אם הכדור נשבר f(i-1,b-1)	1+ max	min 1≤ <i>i≤n</i>
i = 1	f(3-1,2) = f(2,2) = 2	f(1-1,2-1) = f(0,1) = 0	1 + max(2,0) = 3	:-[2 2 2] - 2
i = 2	f(3-2,2) = f(1,2) = 1	f(2-1,2-1) = f(1,1) = 1	1 + max(1,1) = 2	min[3,2,3] = 2
i = 3	f(3-3,2) = f(0,2) = 0	f(3-1,2-1) = f(2,1) = 2	1 + max(0,2) = 3	

f(3,2) = 2 נציב (3,2) לכן בתא

'משל, עבור תא $(4,3)$ במטריצה שלנו, כלומר 4 קומות ו-3 כדורים , נחשב בצורה הבאה:
--

אם אני זורק את הכדור הראשון מהקומה ה-i:	אם הכדור לא נשבר $f(n-i,b)$	אם הכדור נשבר f(i-1,b-1)	1+ max	min 1≤ <i>i≤n</i>
i = 1	f(4-1,3) = f(3,3) = 2	f(1-1,3-1) = f(0,2) = 0	1 + max(2,0) = 3	
i = 2	f(4-2,3) = f(2,3) = 2	f(2-1,3-1) = f(1,2) = 1	1 + max(2, 1) = 3	min[3,3,3,3] = 3
i = 3	f(4-3,3) = f(1,3) = 1	f(3-1,3-1) = f(2,2) = 2	1 + max(1,2) = 3	IIIII[3,3,3,3] - 3
i = 4	f(4-4,3) = f(0,3) = 0	f(4-1,3-1) = f(3,2) = 2	1 + max(0, 2) = 3	

f(4,3)=3 **נציב (4,3) נציב** f(6,3)=3 נמשיך להציב עד סוף המטריצה ונקבל כי עבור

מימוש **אינדוקטיבי**

```
public static int minimalAttempts(int floors, int balls) {
   int[][] attempts = new int[floors+1][balls+1];
   for(int i = 0; i < attempts.length; i++)</pre>
       attempts[i][1] = i;
   for(int j = 1 ; j < attempts[0].length; j++)</pre>
       attempts[1][j] = 1;
   for(int b = 2; b < attempts[0].length; b++) { // balls</pre>
       for(int n = 2; n < attempts.length ; n++) { // floors</pre>
           int min = Integer.MAX_VALUE;
           for(int i = 1; i <= n; i++) {</pre>
               int max = Math.max(attempts[i-1][b-1], attempts[n-i][b]) + 1;
               if(min > max) {
                    min = max;
           attempts[n][b]= min;
       }
   }
   return attempts[floors][balls];
}
public static void main(String[] args) {
   System.out.println("minimal: " + minimalAttempts(105,2));
```

מימוש **רקורסיבי**

```
public static int minimalAttempts(int floors, int balls) {
   int[][] attempts = new int[floors+1][balls+1];
   for(int i = 0; i < attempts.length; i++)</pre>
       attempts[i][1] = i;
   for(int j = 1 ; j < attempts[0].length; j++)</pre>
       attempts[1][j] = 1;
   generateRec(attempts,2,2,1, Integer.MAX_VALUE);
   return attempts[floors][balls];
}
private static void generateRec(int[][] attempts, int b, int n, int i, int min) {
   if(b == attempts[0].length) {
       return;
   } else if(n == attempts.length) {
       generateRec(attempts,b+1,2,1,min);
   } else if(i == n) {
       attempts[n][b] = min;
       generateRec(attempts,b,n+1,1,Integer.MAX_VALUE);
   } else {
       int max = Math.max(attempts[i-1][b-1], attempts[n-i][b]) + 1;
       if(min > max) {
           min = max;
       generateRec(attempts,b,n,i+1,min);
   }
}
public static void main(String[] args) {
  System.out.println("minimal: " + minimalAttempts(105,2));
}
```

. מספר הכדורים = b , הקומות הקומות - n . $O(n^2 \cdot b)$: (לא כולל הדפסה) = מספר הכדורים - מספר הכרים - מספר הכדורים - מספר הכ

מימוש עבור $\mathbf{2}$ כדורים בלבד ו- \mathbf{n} קומות

```
public static int twoBalls(int n) {
   int[] f = new int[n+1];
   f[0] = 0;
   f[1] = 1;

for (int i = 3; i <= n; i++) {
     int min = n;
     for (int j = 1; j < i-1; j++) {</pre>
```

מימוש עבור ${\bf n}$ כדורים בלבד ו- ${\bf n}$ קומות

```
public static int threeBalls(int n) {
   int[] f3 =new int[n+1];
   if(n==1) {
       f3[n] = 1;
  else if(n==2) {
       f3[n] = 2;
   else { // if n>=3
       int[] f2 = new int[n+1];
       for(int i = 1; i < n ; i++) {</pre>
           f2[i] = twoBalls(i);
       }
       f3[0] = 0;
       f3[1] = 1;
       f3[2] = 2;
       f3[3] = 2;
       for(int i = 4; i <= n ; i++) {</pre>
           int min = n;
           for(int j = 1; j < i ; j++) {</pre>
                int x = Math.max(f2[j-1]+1, f3[i-j]+1);
                if(x < min) {</pre>
                    min = x;
                }
           f3[i] = min;
       }
   }
   return f3[n];
}
```