Матричная запись

Краткий план:

• Линейная комбинация векторов;

Краткий план:

- Линейная комбинация векторов;
- Зависимые и независимые наборы векторов.

Линейная комбинация

Определение

Вектор ${\bf v}$ называется линейной комбинацией векторов ${\bf x}_1$, ${\bf x}_2$, ..., ${\bf x}_k$, если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{v} = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_k \mathbf{x}_k$$

Линейная комбинация

Определение

Вектор ${\bf v}$ называется линейной комбинацией векторов ${\bf x}_1$, ${\bf x}_2$, ..., ${\bf x}_k$, если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{v} = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_k \mathbf{x}_k$$

Пример. Вектор
$$\binom{4}{5}$$
 — это линейная комбинация векторов

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} = -1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Линейная комбинация: геометрия

Любой вектор — линейная комбинация

Любой вектор $\mathbf{v} \in \mathbb{R}^2$ — линейная комбинация векторов

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Любой вектор — линейная комбинация

Любой вектор $\mathbf{v} \in \mathbb{R}^2$ — линейная комбинация векторов

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Аналогично, любой вектор $\mathbf{v} \in \mathbb{R}^3$ представим в виде:

$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + v_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Линейная зависимость

Определение

Набор A из двух и более векторов называется линейно зависимым, если хотя бы один вектор является линейной комбинацией остальных.

Набор $A = \{ \mathbf{0} \}$ из одного нулевого вектора также называется линейно зависимым.

Линейная зависимость: геометрия

Набор $\{{f a},{f b},{f c}\}$ — линейно зависим.

Набор $\{{f a},{f b},{f d}\}$ — линейно независим.

Линейная зависимость: примеры

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$$
 — линейно независимый.

Линейная зависимость: примеры

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$$
 — линейно независимый.

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$
 — линейно зависимый:

$$\begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Эквивалентное пределение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_k\}$ называется линейно зависимым, если можно найти такие веса $\alpha_1,\alpha_2,...,\alpha_k$, что

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0},$$

и при этом хотя бы одно из чисел α_i отлично от 0.

Эквивалентное пределение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_k\}$ называется линейно зависимым, если можно найти такие веса $\alpha_1,\alpha_2,...,\alpha_k$, что

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0},$$

и при этом хотя бы одно из чисел α_i отлично от 0.

Доказательство эквивалентности

Вектор с ненулевым коэффициентом α_i перед ним можно выразить через остальные.

Эквивалентное пределение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_k\}$ называется линейно зависимым, если можно найти такие веса $\alpha_1,\alpha_2,...,\alpha_k$, что

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0},$$

и при этом хотя бы одно из чисел α_i отлично от 0.

Доказательство эквивалентности

Вектор с ненулевым коэффициентом α_i перед ним можно выразить через остальные.

Если вектор ${\bf v}_2$ выражен через ${\bf v}_1$ и ${\bf v}_3$, ${\bf v}_2=\alpha_1{\bf v}_1+\alpha_3{\bf v}_3$, то искомая нулевая линейная комбинация имеет вид:

$$\alpha_1 \mathbf{v}_1 + (-1)\mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = \mathbf{0}.$$

Линейная оболочка

Краткий план:

• Линейная комбинация векторов;

Краткий план:

- Линейная комбинация векторов;
- Зависимые и независимые наборы векторов.

Линейная комбинация

Определение

Вектор ${\bf v}$ называется линейной комбинацией векторов ${\bf x}_1$, ${\bf x}_2$, ..., ${\bf x}_k$, если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{v} = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_k \mathbf{x}_k$$

Линейная комбинация

Определение

Вектор ${\bf v}$ называется линейной комбинацией векторов ${\bf x}_1$, ${\bf x}_2$, ..., ${\bf x}_k$, если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{v} = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_k \mathbf{x}_k$$

Пример. Вектор
$$\binom{4}{5}$$
 — это линейная комбинация векторов

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} = -1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Любой вектор — линейная комбинация

Любой вектор $\mathbf{v} \in \mathbb{R}^2$ — линейная комбинация векторов

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Любой вектор — линейная комбинация

Любой вектор $\mathbf{v} \in \mathbb{R}^2$ — линейная комбинация векторов

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Аналогично, любой вектор $\mathbf{v} \in \mathbb{R}^3$ представим в виде:

$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + v_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Линейная зависимость

Определение

Набор A из двух и более векторов называется линейно зависимым, если хотя бы один вектор является линейной комбинацией остальных.

Набор $A = \{0\}$ из одного нулевого вектора также называется линейно зависимым.

Линейная зависимость: примеры

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$$
 — линейно независимый.

Линейная зависимость: примеры

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$$
 — линейно независимый.

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$
 — линейно зависимый:

$$\begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Эквивалентное пределение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_k\}$ называется линейно зависимым, если можно найти такие веса $\alpha_1,\alpha_2,...,\alpha_k$, что

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0},$$

и при этом хотя бы одно из чисел α_i отлично от 0.

Эквивалентное пределение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_k\}$ называется линейно зависимым, если можно найти такие веса $\alpha_1,\alpha_2,...,\alpha_k$, что

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0},$$

и при этом хотя бы одно из чисел α_i отлично от 0.

Доказательство эквивалентности

Вектор с ненулевым коэффициентом α_i перед ним можно выразить через остальные.

Эквивалентное пределение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_k\}$ называется линейно зависимым, если можно найти такие веса $\alpha_1,\alpha_2,...,\alpha_k$, что

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0},$$

и при этом хотя бы одно из чисел α_i отлично от 0.

Доказательство эквивалентности

Вектор с ненулевым коэффициентом α_i перед ним можно выразить через остальные.

Если вектор ${\bf v}_2$ выражен через ${\bf v}_1$ и ${\bf v}_3$, ${\bf v}_2=\alpha_1{\bf v}_1+\alpha_3{\bf v}_3$, то искомая нулевая линейная комбинация имеет вид:

$$\alpha_1 \mathbf{v}_1 + (-1)\mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = \mathbf{0}.$$