

SUN-P6570

UNITED STATES PATENT APPLICATION

FOR

SMART CARD SECURITY FOR COMPUTER SYSTEM

Inventors:

BRIAN RASMUSSEN

Prepared by:

WAGNER, MURABITO & HAO, LLP
Two North Market Street
Third Floor
San Jose, California 95113
(408) 938-9060

1
2
3
4

5 SMART CARD SECURITY FOR COMPUTER SYSTEM

6
7

8 FIELD OF THE INVENTION

9 This invention relates generally to the field of computer security. More
10 particularly, this invention relates to a smart card-based computer access system
11 with logging of user activity.

12
13

14 BACKGROUND OF THE INVENTION

15 When personal computers are utilized in a home environment or small office
16 environment, it is often desirable to impose some measure of security and/or
17 parental control over use of the computer. Generally, the security requirements for
18 such an environment are dramatically less than those for larger business
19 enterprises and government computer systems. Moreover, the level of
20 sophistication of the user in a home computer environment or small business
21 computer environment varies greatly, as does the availability of high quality,
22 responsive technical support. Accordingly, it is desirable that in such environments
23 the level of security not be so overwhelming as to prevent the owner of the
24 computer system from being able to overcome the security measures and access
25 computer information. But, it is equally important that such use be detectable as
26 a parental oversight or security measure.

27
28

SUMMARY OF THE INVENTION

The present invention relates generally to computer security. Objects,

1 advantages and features of the invention will become apparent to those skilled in
2 the art upon consideration of the following detailed description of the invention.

3 In one embodiment of the present invention a computer security system
4 utilizes smart cards for computer access. A system for home or small business
5 use generally is presented in which smart cards are utilized to gain access to
6 computer functions. The user is presented with a login prompt that permits login
7 using the smart card. The user is permitted to bypass use of the smart card and
8 obtain access to the computer system, but such use of the computer system is
9 logged for review by an administrator. Such an arrangement has the advantage
10 that the user is able to log in without the smart card if need be, but such use can
11 be detected by an administrator (e.g., a parent).

12 A method of controlling access to a computer system consistent with an
13 embodiment of the present invention includes receiving a request to log into the
14 computer system; determining if a smart card is being used as a part of a login
15 protocol to log in to the computer system; if so, permitting use of the computer
16 system and logging use of the computer system for the user associated with the
17 smart card; and if not, permitting use of the computer system and logging use of
18 the computer system to an unknown user.

19 Instructions for execution on a programmed processor can be stored in any
20 suitable computer readable storage medium for carrying out the above method.

21 A computer system having an access control system consistent with an
22 embodiment of the present invention has a central processor and a smart card
23 reader accessible by the central processor. A security program runs on the central
24 processor that: determines if a smart card is being used as a part of a login
25 protocol to log in to the computer system; if so, permits use of the computer system
26 and logs use of the computer system for the user associated with the smart card;
27 and if not, permits use of the computer system and logs use of the computer
28 system to an unknown user.

29 The above summaries are intended to illustrate exemplary embodiments of
30 the invention, which will be best understood in conjunction with the detailed

1 description to follow, and are not intended to limit the scope of the appended
2 claims.

3

4 BRIEF DESCRIPTION OF THE DRAWINGS

5 The features of the invention believed to be novel are set forth with
6 particularity in the appended claims. The invention itself however, both as to
7 organization and method of operation, together with objects and advantages
8 thereof, may be best understood by reference to the following detailed description
9 of the invention, which describes certain exemplary embodiments of the invention,
10 taken in conjunction with the accompanying drawings in which:

11 **FIGURE 1** is a block diagram showing a computer system suitable for
12 implementation of an embodiment of the present security system.

13 **FIGURE 2** depicts an exemplary opening screen consistent with one
14 embodiment of the present invention.

15 **FIGURE 3** depicts an exemplary access administration menu consistent with
16 one embodiment of the present invention.

17 **FIGURE 4** depicts an exemplary smart card initialization screen consistent
18 with one embodiment of the present invention.

19 **FIGURE 5** depicts an exemplary program selection window consistent with
20 one embodiment of the present invention.

21 **FIGURE 6** depicts an exemplary smart card initialization log screen
22 consistent with one embodiment of the present invention.

23 **FIGURE 7** depicts an exemplary access log screen consistent with one
24 embodiment of the present invention.

25 **FIGURE 8** depicts an exemplary shut down counter screen consistent with
26 one embodiment of the present invention.

27 **FIGURE 9** depicts an exemplary access control screen consistent with one
28 embodiment of the present invention.

1 **FIGURE 10** is a flow chart of the basic operational flow of an embodiment
2 consistent with the present invention.
3

4 **DETAILED DESCRIPTION OF THE INVENTION**

5 In the following detailed description of the present invention, numerous
6 specific details are set forth in order to provide a thorough understanding of the
7 present invention. However, it will be recognized by one skilled in the art that the
8 present invention may be practiced without these specific details or with
9 equivalents thereof. In other instances, well known methods, procedures,
10 components, and circuits have not been described in detail as not to unnecessarily
11 obscure aspects of the present invention.

12

13 **NOTATION AND NOMENCLATURE**

14 Some portions of the detailed descriptions which follow are presented in
15 terms of procedures, steps, logic blocks, processing, and other symbolic
16 representations of operations on data bits that can be performed on computer
17 memory. These descriptions and representations are the means used by those
18 skilled in the data processing arts to most effectively convey the substance of their
19 work to others skilled in the art. A procedure, computer executed step, logic block,
20 process, etc., is here, and generally, conceived to be a self-consistent sequence
21 of steps or instructions leading to a desired result. The steps are those requiring
22 physical manipulations of physical quantities.

23 Usually, though not necessarily, these quantities take the form of electrical
24 or magnetic signals capable of being stored, transferred, combined, compared, and
25 otherwise manipulated in a computer system. It has proven convenient at times,
26 principally for reasons of common usage, to refer to these signals as bits, values,
27 elements, symbols, characters, terms, numbers, or the like.

28 It should be borne in mind, however, that all of these and similar terms are
29 to be associated with the appropriate physical quantities and are merely convenient

1 labels applied to these quantities. Unless specifically stated otherwise as apparent
2 from the following discussions, it is appreciated that throughout the present
3 invention, discussions utilizing terms such as "processing" or "computing" or
4 "timing" or "presenting" or "determining" or "logging" or "displaying" or "permitting"
5 or the like, refer to the action and processes of a computer system, or similar
6 electronic computing device, that manipulates and transforms data represented as
7 physical (electronic) quantities within the computer system's registers and
8 memories into other data similarly represented as physical quantities within the
9 computer system memories or registers or other such information storage,
10 transmission or display devices.

11
12 **SMART CARD SECURITY FOR COMPUTER SYSTEM IN ACCORDANCE WITH**
13 **THE INVENTION**

14 While this invention is susceptible of embodiment in many different forms,
15 there is shown in the drawings and will herein be described in detail specific
16 embodiments, with the understanding that the present disclosure is to be
17 considered as an example of the principles of the invention and not intended to limit
18 the invention to the specific embodiments shown and described. In the description
19 below, like reference numerals are used to describe the same, similar or
20 corresponding parts in the several views of the drawings.

21 A computer system suitable for implementing the present invention is
22 depicted in **FIGURE 1** as 100. Computer system 100 includes a central processor
23 unit (CPU) 10 with an associated bus 15 used to connect the central processor unit
24 10 to Random Access Memory 20 and Non-Volatile Memory 30 in a known
25 manner. An output mechanism at 40 may be provided in order to display or print
26 output for the computer administrator. Similarly, input devices such as keyboard
27 and mouse 50 may be provided for the input of information from the computer
28 administrator. Computer 100 also may include disc storage 60 for storing large
29 amounts of information as required. Computer system 100 may be coupled to a

1 computer network using a network connection 70 such as an Ethernet adapter.
2 System 100 may also include a modem or other access device (not shown) for
3 connection to the Internet. In accordance with the present invention, computer 100
4 also has a smart card reader 80, either as an internal or externally connected
5 device, that reads smart cards as an access control mechanism. In addition to the
6 components shown, the computer system 100 may also be connected to various
7 other printing, scanning and communication devices.

8 Smart card reader 80 reads smart card devices which are generally credit
9 card type devices incorporating some form of computer readable storage device
10 and, preferably, a computer processor. However, for purposes of this invention, a
11 smart card may be considered to be any form of identification device that can be
12 readily carried by the user and contains computer readable information storage
13 media that can be adapted to the computer security methods and apparatus
14 described herein.

15 The computer system 100 operates in conjunction with an operating system
16 such as one of the Windows™ operating systems available from Microsoft, Corp.,
17 Redmond, WA., to permit users to carry out various operations including word
18 processing, database operations, games, etc. The present invention is carried out
19 in a security program operating in conjunction with, or as a part of, the operating
20 system. Computer readable instructions for carrying out the processes of the
21 present invention can be stored on the disc storage 60 or any other suitable
22 computer readable storage medium.

23 In a home computer system incorporating a computing device such as that
24 illustrated as computer system 100 of **FIGURE 1**, it may be desirable to exercise
25 security measures and parental control utilizing a smart card device in a manner
26 which provides oversight and restricted access without overwhelming the users.

27 When computer system 100 is booted, in accordance with an embodiment
28 of the present invention, and there is no user logged into the computer system, the
29 computer system may present a screen image similar to exemplary image 200 of
30 **FIGURE 2**. Image 200 includes a window 104 that welcomes the user to log in by

inserting a smart card in smart card reader 80. Once the user has inserted the smart card into smart card reader 80, the "OK" button 108 is selected or pointed to with cursor or pointer 112 and the user clicks a mouse button to log in. At this point, a login is conducted by the computer system CPU, by using a suitable login protocol including reading the information on the smart card using smart card reader 80. The user identified by the smart card inserted into smart card reader 80 is then permitted access to the computer resources in accordance with whatever access privileges have been designated for the user of the smart card.

In accordance with a feature of embodiments of the present invention, a user without a smart card or who has lost his smart card may still log into the computer system by first checking the bypass box 120 and then selecting the "OK" button 108. This permits the user to still access the computer without a smart card, but creates a log of that use that can be inspected and investigated if necessary by the user that administers use of the smart cards and the computer system. In this manner, a user is never prohibited access to the computer system, but access to the computer system without use of the smart card is logged and can therefore be investigated. By way of example, in a family computer system, with the family consisting of two parents and a child, use of the computer system by the child without his or her smart card will appear in an access log as an unknown user.

The parents can readily determine, in general, which of the three approved users have accessed the computer system without the smart card. Appropriate measures can then be taken to address any parental issues arising from a child making unauthorized use of the computer. Thus, the present invention provides for a measure of parental control over a child's use of the computer.

In accordance with an embodiment of the invention, an icon 130 may appear on the computer screen either in the working area of the computer screen, the control area of the computer screen 136 or on a control bar 142 of the computer screen that can be used after logging in to access various features of the smart card and access administration in accordance with the present invention. In one embodiment, icon 130 is also used as an alert to bring to the attention of the

1 administrator that a bypassed access to the computer system has taken place. In
2 this embodiment, a visual attribute of the icon 130 may be modified to alert the
3 computer administrator to the fact that the computer has been accessed by a
4 bypass. In one embodiment, the colors of icon 130 can be changed or other visual
5 attributes about the icon can change. Other examples of changing visual attributes
6 of icon 130 include animating the icon or causing the icon to flash. Those skilled
7 in the art will appreciate that this is actually accomplished not by changing the
8 attribute of the icon itself but by substituting a different icon file for the normal icon
9 file. Similarly, flashing icons or moving GIF icons can be utilized to bring a
10 bypassed login to the attention of the administrator.

11 In accordance with one embodiment of the present invention, after the user
12 has logged in with a smart card, and the system determines that the user has
13 administrative rights, the user may select icon 130 or select to administer access
14 rights from a program menu (or using any other conventional mechanism for
15 launching a program) can obtain a menu of access administration features at an
16 access administration menu 300 as illustrated in **FIGURE 3**. This exemplary menu
17 gives the user the choice of initializing a smart card at 204, viewing the smart card
18 log at 208, viewing an access log for determining which users have accessed the
19 computer system at 212, entering an access control menu at 216 or exiting at 220.
20 Launching any of these activities is accomplished by pointing to the selection with
21 pointer 112 and clicking, or striking the first character of the menu selection from
22 the keyboard in a conventional manner. In the case of selections 204, 208, 212
23 and 216, the arrow heads to the right of the selection indicate that a new window
24 will appear when that item is selected.

25 If the user elects to initialize a smart card (or otherwise adjust the
26 administration of a smart card) by selecting menu selection 204, the user is taken
27 to the smart card initialization window 400. This window may include a name
28 identification region 304 where the administrator types the name of the user. In
29 region 308, the administrator can determine some of the users rights, such as the
30 users right to initialize the smart card, clear a log, disable access control and turn

1 off (reset) the bypass alert indicator (i.e., the flashing icon 130.) In addition, the
2 user can determine whether unrestricted access is permitted or whether controls
3 over access times and programs are to be instituted. If the administrator selects
4 "allow access only:", the user then fills in a time range in region 310 during which
5 the new user is permitted access to the computer system. The administrator can
6 also determine that the user is permitted to access all programs at 314 or a
7 restricted set of programs at 318 that are selected from a list.

8 **FIGURE 5** illustrates an exemplary program selection list 500 used to select
9 from available executable programs those which the current user is permitted to
10 access. Window 500 appears when selection 318 is selected and the user scrolls
11 through a list of programs that can be selected by pointer 112 and a mouse button
12 to determine which programs the user is permitted to access. When the
13 administrator clicks the "OK" button 420, the user returns to window 400. When
14 the process is completed, the administrator clicks the "OK" button 330 and is led
15 through a sequence of steps to program the smart card. For example, the user will
16 then receive a window instructing the user to insert a new smart card into smart
17 card reader 80, the smart card is then programmed by the computer and the user
18 may be instructed to remove the smart card and replace it with his or her own
19 smart card. Thus, a smart card can be initialized or reprogrammed using the
20 initialized smart card selection 204 of menu 300.

21 When a user with administration privileges wishes to see the smart card log,
22 selection 208 is selected from menu 300 and the administrator is taken to
23 exemplary window 600 of **FIGURE 6**. This window shows a list of all activity in
24 initializing or modifying or revoking a smart card. The administrator can select any
25 of the users listed on the smart card initialization log by placing the pointer 112 over
26 the users log entry and clicking the mouse. This takes the user to a screen that
27 details the rights associated with that user and/or changes that were made in the
28 particular log entry. Log entries can be scrolled for viewing larger numbers of log

1 entries in a conventional manner. When the user wishes to return to the access
2 administration menu 300 the "Exit" button 510 is operated.

3 If the user wishes to view the access log, selection 212 is made from the
4 access administration menu 300. This results in window 700 of **FIGURE 7** being
5 displayed on the computer system display. This access log provides a listing of all
6 times and users that have accessed the computer system. Whenever a user logs
7 in using their smart card, an entry such as 608 is created. Entry 608 shows that a
8 user named Joe accessed the computer system from 4:37pm to 5:35pm on
9 04/16/2001. In certain embodiments of the invention, by clicking on the log entry
10 using pointer 112 and the mouse button, more detailed information may be
11 available such as what programs were accessed during this time period. In other
12 embodiments, only a log of use of the computer in some manner is provided.
13 Whenever the computer is accessed without using the smart card by selecting by
14 selecting bypass selection 120 as illustrated in **FIGURE 2**, an entry such as 616 is
15 created to show that a bypassed access to the computer system occurred between
16 9:22pm and 9:58pm on 04/15/2001. In this event, the entry is logged as bypassed
17 which indicates that the user is unknown to the computer system but the entry was
18 made without benefit of a smart card.

19 If a user has administrative privileges that permit disabling the access
20 control, the disabling and re-enabling of the access control is also logged as shown
21 by an entry stating that the system was disabled such as 620 and enabled such as
22 630. During the time period that the access control was disabled, the system
23 continues to log uses of the computer as unnamed users as illustrated by entries
24 634 and 638. When the administrator wishes to leave the access log, this is
25 accomplished by clicking the "Exit" button 650. If the user selects access control
26 selection 216 from menu 300 of **FIGURE 3**, and the user has privileges for access
27 control; the user is taken to menu 800 of **FIGURE 8**. In this menu, the user can
28 elect to either enable the smart card access control or disable it. The user can then
29 return to the access administration menu 300 by selection of "OK" button 710.

1 Selection 220 from access administration menu 300 of **FIGURE 3** exits the access
2 administration menu.

3 In order to assure that a single user does not simply login and leave the
4 computer unattended for large periods of time permitting uncontrolled access to the
5 computer, a timer is set whenever a user logs in. This timer can be, for example,
6 a 10-minute timer, but this is not to be limiting. In this example, when there has
7 been no screen activity for a period of time (e.g. 5 minutes) a shut down warning
8 message such as message 900 of **FIGURE 9** appears on the screen to warn the
9 user that he will be automatically logged out in 5 minutes. The window then may
10 count down the time until the log out will occur. At the end of the count down, an
11 automatic log out procedure is carried out including closing down all currently
12 opened files and programs to prevent malfunctioning of those programs the next
13 time they are used. In order to regain access to the computer system, the user
14 simply logs in again as illustrated in **FIGURE 2**.

15 Whenever the icon 130 indicates that a bypassed login has taken place, a
16 user with the privilege of turning off the bypass alert can observe that a bypassed
17 login has taken place and can turn off the alert in any number of manners. For
18 example, the art of logging in itself may be used to turn off the bypass alert. In
19 other examples, an authorized user can click on icon 130 and before being
20 presented with an access administration window 300 can be given the option to
21 turn off the bypass alert. In other embodiments, using a second button on the
22 mouse to click on icon 130 can give the option of turning off the alert. Those skilled
23 in the art will appreciate many mechanisms for accomplishing the turning off of the
24 bypass alert. Similarly, users that are permitted to clear a log may do so using
25 similar techniques such as invoking a menu from the log window in some manner
26 or invoking a window from an icon or program control menu. Those skilled in the
27 art will appreciate that the specific manner of operation illustrated should not be
28 considered limiting since many other mechanisms for access control consistent

1 with the present invention can be utilized and such techniques are considered
2 implementation details for purposes of this discussion.

3 Referring now to FIGURE 10, a process 1000 is illustrated starting at 902 for
4 the basic operation of the present access control system. In accordance with
5 process 1000, the system first presents a login screen 200 to the user at 904. If
6 bypass is not selected from this login screen at 908, the system inspects the smart
7 card in the system for the user attempting to login and determines what that users
8 access restrictions are at 912. Access restrictions may include time of day or other
9 access restrictions. If those access restrictions are met at 912, then the user is
10 logged in and that login activity is logged under the user name at 916. The system
11 then permits the login at 920 in accordance with any restrictions associated with
12 the user. At 922 the timer is set for timing inactivity of the computers user.

13 In the event the user is permitted to clear an access alert, in one
14 embodiment the user is presented with the option of clearing that alert at 924. If
15 the user is enabled to clear that alert and elects to do so, the alert is cleared at 928.
16 Otherwise, the clearing of the alert at 928 is bypassed and the user is permitted
17 access to programs residing on the computer at 932 in accordance with restrictions
18 defined for that particular user smart card.

19 During the conventional program access at 932, the timer is periodically
20 inspected to determine if a time out has occurred at 940. If so, the user is
21 presented with a shutdown screen 900 at 944 and if no activity occurs at 948 the
22 automatic shutdown is carried out at 952. Also, if the user initiates a shutdown or
23 logout at 956 control passes to 952 where programs and data are saved to prevent
24 loss of information or malfunction as previously described. In the event activity
25 occurs (e.g., keyboard or mouse activity) at 948 the timer is reset at 954 and control
26 returns to 940. During the timer activity, the user can simultaneously carry out
27 other computer functions with the timing taking place in the background.

28 In the event at 908, the user chooses to login by bypassing use of the smart
29 card, that use is logged at 960 as a bypassed user (i.e., an unnamed user) and the

1 login is permitted at 964. At 968 the bypass alert is turned on and the timer is set
2 at 972. Control then passes to 940 to determine if a time out has occurred.

3 In the event access restrictions are not met at 912, the user is prohibited
4 access at 974 and denial of access is logged in the access log 700. A screen is
5 presented to the user indicating that access has been denied at 980 and then the
6 login screen 200 is presented again at 904. Those skilled in the art will appreciate
7 that many variations on this process are possible and that this process is only
8 presented as an overview of the general workings of the current invention with
9 further details being considered implementation

10 Those skilled in the art will recognize that the present invention has been
11 described in terms of exemplary embodiments based upon use of a programmed
12 processor. However, the invention should not be so limited, since the present
13 invention could be implemented using hardware component equivalents such as
14 special purpose hardware and/or dedicated processors which are equivalents to
15 the invention as described and claimed. Similarly, general purpose computers,
16 microprocessor based computers, micro-controllers, optical computers, analog
17 computers, dedicated processors and/or dedicated hard wired logic may be used
18 to construct alternative equivalent embodiments of the present invention.

19 Those skilled in the art will appreciate that the program steps used to
20 implement the embodiments described above can be implemented using disc
21 storage as well as other forms of storage including Read Only Memory (ROM)
22 devices, Random Access Memory (RAM) devices; optical storage elements,
23 magnetic storage elements, magneto-optical storage elements, flash memory, core
24 memory and/or other equivalent storage technologies without departing from the
25 present invention. Such alternative storage devices should be considered
26 equivalents.

27 The present invention is preferably implemented using a programmed
28 processor executing programming instructions that are broadly described above in
29 flow chart form, and that can be stored in any suitable electronic storage medium
30 or that can be transmitted over any electronic communication medium. However,

1 those skilled in the art will appreciate that the processes described above can be
2 implemented in any number of variations and in many suitable programming
3 languages without departing from the present invention. For example, the order of
4 certain operations carried out can often be varied, and additional operations can be
5 added without departing from the invention. Error trapping can be added and/or
6 enhanced and variations can be made in user interface and information
7 presentation without departing from the present invention. Such variations are
8 contemplated and considered equivalent.

9 While the invention has been described in conjunction with specific
10 embodiments, it is evident that many alternatives, modifications, permutations and
11 variations will become apparent to those skilled in the art in light of the foregoing
12 description. Accordingly, it is intended that the present invention embrace all such
13 alternatives, modifications and variations as fall within the scope of the appended
14 claims.

15 What is claimed is:
16