ÁLGEBRA II (61.08 - 81.02)

Evaluación Integradora Duración: 2 horas.

Segundo cuatrimestre – 2021 9/III/22 - 13:00 hs.

Apellido y Nombres:

Legajo:

1. Sea $T: \mathbb{R}_2[x] \to \mathbb{R}^3$ la transformación lineal definida por

$$[T]_{\mathcal{B}}^{\mathcal{C}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix},$$

donde ${\mathcal B}$ y ${\mathcal C}$ son las bases de ${\mathbb R}_2[x]$ y ${\mathbb R}^3,$ respectivamente, definidas por

$$\begin{split} \mathcal{B} &= \left\{ x^2 + x + 1, x + 1, 1 \right\}, \\ \mathcal{C} &= \left\{ \begin{bmatrix} -1 & 2 & 2 \end{bmatrix}^T, \begin{bmatrix} 2 & -1 & 2 \end{bmatrix}^T, \begin{bmatrix} 2 & 2 & -1 \end{bmatrix}^T \right\}. \end{split}$$

Hallar $T^{-1} \left(\begin{bmatrix} 0 & 1 & -1 \end{bmatrix}^T \right)$.

2. Hallar una matriz simétrica $A \in \mathbb{R}^{3\times 3}$ de traza 0 tal que $A^3 = 9A$ y nul $(A) = \text{gen} \left\{ \begin{bmatrix} 2 & -1 & 2 \end{bmatrix}^T \right\}$.

3. Sea $A \in \mathbb{R}^{3\times 3}$ la matriz de rango 1 tal que $\begin{bmatrix} 1 & -2 & 1 \end{bmatrix}^T \in \operatorname{col}(A^T)$ y $A \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}^T = \begin{bmatrix} 2 & 4 & 2 \end{bmatrix}^T$. Hallar todos los vectores $b \in \mathbb{R}^3$ para los cuales $\hat{x} = \begin{bmatrix} -2 & 4 & -2 \end{bmatrix}^T$ sea la solución por cuadrados mínimos de norma mínima de la ecuación Ax = b.

4. Hallar el mínimo de $3x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_3$ sujeto a la restricción $-x_1^2 + 2x_2^2 - x_3^2 - 10x_1x_3 = 1$ y los vectores que lo realizan.