Assignment -5

LDA & PCA

2148059

```
In [35]:
          import pandas as pd
In [36]:
         df=pd.read_csv("/Users/persie/Downloads/bank-12.csv")
In [37]: df.head(5)
Out [37]:
                         job marital education default balance housing loan
                                                                         contact day
             age
              30
                  unemployed married
                                      primary
                                                      1787
                                                                         cellular
                                                                                 19
           0
                                                                no
                                                                     no
           1
              33
                     services married secondary
                                                                         cellular
                                                no
                                                      4789
                                                               yes
                                                                    yes
                                                                                 11
           2
              35 management
                                                                         cellular
                                                                                 16
                              single
                                      tertiary
                                                      1350
                                                no
                                                               yes
                                                                    no
           3
              30
                  management married
                                      tertiary
                                                no
                                                      1476
                                                               yes
                                                                    yes
                                                                        unknown
                                                                                  3
           4
              59
                                                                                  5
                    blue-collar married secondary
                                                         0
                                                               yes
                                                                        unknown
                                                no
In [38]: #value counts of the target variable
          df["y"].value counts()
Out[38]: no
                  4000
          yes
                   521
          Name: y, dtype: int64
In [39]: rem=["contact","day"]
          df=df.drop(rem,axis=1)
          df.columns
Out[39]: Index(['age', 'job', 'marital', 'education', 'default', 'balance',
          'housing',
                  'loan', 'month', 'duration', 'campaign', 'pdays', 'previous
                  'poutcome', 'y'],
                 dtype='object')
In [40]:
          #asssigning 1 if target variable is yes and 0 if target is no
          df["y"]=[1 if x=="yes" else 0 for x in df["y"]]
          #x as dataframe of features and y as the target variable
          x=df_drop("y",1)
          y=df.y
```

```
In [41]: x.head(5)
Out [41]:
                          job marital education default balance housing loan month duration
              age
               30
                   unemployed
                              married
                                                          1787
                                                                                        79
           0
                                        primary
                                                    no
                                                                    no
                                                                         no
                                                                               oct
            1
               33
                                                                                       220
                       services married secondary
                                                          4789
                                                                   yes
                                                                        yes
                                                                               may
                                                   no
           2
               35 management
                                single
                                         tertiary
                                                          1350
                                                                                       185
                                                   no
                                                                   yes
                                                                         no
                                                                               apr
           3
                   management married
                                         tertiary
                                                          1476
                                                                               jun
                                                                                        199
                                                    no
                                                                   yes
                                                                        yes
               59
                     blue-collar married secondary
                                                            0
                                                                                       226
                                                   no
                                                                   yes
                                                                         no
                                                                               may
In [42]: y.head(5)
Out [42]:
                 0
           1
                 0
           2
                 0
           3
                 0
           4
           Name: y, dtype: int64
           Data Cleaning
           A. dealing with the data types
           converting categorical data to numerical data
In [43]: |#categorical variable
           x["marital"].head()
Out [43]:
           0
                 married
           1
                 married
           2
                  single
           3
                 married
           4
                 married
           Name: marital, dtype: object
In [44]: #cheking the no of categories in all the features
           for col_names in x.columns:
               if x[col names].dtype=="object":
```

features: job has 12 categories features: marital has 3 categories features: education has 4 categories features: default has 2 categories features: housing has 2 categories features: loan has 2 categories features: month has 12 categories features: poutcome has 4 categories

cat=len(x[col_names].unique())

print("features: {col_names} has {cat} categories".format(c

Categorise all the other features exceopth month and job

```
In [45]: #list of features to dummy
         todummy=["marital","education","default","housing","loan","poutcome
In [46]: #function to dummy all the categorical variables for modelling
         def dummy(df,todummy):
              for x in todummy:
                  dummies=pd.get_dummies(df[x],prefix=x,dummy_na=False)
                  df=df.drop(x.1)
                  df=pd.concat([df,dummies],axis=1)
              return df
In [47]: x = dummy(x, todummy)
         x.head(5)
Out [47]:
            age balance duration campaign pdays previous marital divorced marital married n
                                                   0
             30
                   1787
                            79
                                      1
                                           -1
                                                                0
                                                                             1
          0
          1
             33
                   4789
                           220
                                     1
                                          339
                                                   4
                                                                0
                                                                             1
          2
             35
                   1350
                           185
                                      1
                                          330
                                                   1
                                                                0
                                                                             0
          3
                                     4
                                                                0
             30
                   1476
                           199
                                           -1
                                                                             1
                                     1
                                                   0
                                                                0
          4 59
                     0
                           226
                                          -1
                                                                             1
         5 rows × 47 columns
In [48]: x.columns
Out[48]: Index(['age', 'balance', 'duration', 'campaign', 'pdays', 'previou
         s',
                 'marital_divorced', 'marital_married', 'marital_single',
                 'education_primary', 'education_secondary', 'education_tert
         iary',
                 'education_unknown', 'default_no', 'default_yes', 'housing_
         no',
                 'housing_yes', 'loan_no', 'loan_yes', 'poutcome_failure',
                 'poutcome_other', 'poutcome_success', 'poutcome_unknown', '
         job admin.',
                 'job_blue-collar', 'job_entrepreneur', 'job_housemaid',
                 'job_management', 'job_retired', 'job_self-employed', 'job_
         services',
                 'job_student', 'job_technician', 'job_unemployed', 'job_unk
         nown',
                 'month_apr', 'month_aug', 'month_dec', 'month_feb', 'month_
         jan',
                 'month_jul', 'month_jun', 'month_mar', 'month_may', 'month_
         nov',
                 'month_oct', 'month_sep'],
                dtvpe='object')
```

b. handling missing values

```
In [49]: | x.isnull().sum().sort_values(ascending=True)
Out[49]: age
                                  0
                                  0
          job_entrepreneur
          job_housemaid
                                  0
          job_management
                                  0
          job_retired
                                  0
          job_self-employed
                                  0
          job_services
                                  0
          job_student
                                  0
          job_technician
                                  0
          job_unemployed
                                  0
          job_blue-collar
                                  0
          job_unknown
                                  0
          month_aug
                                  0
                                  0
          month_dec
          month_feb
                                  0
                                  0
          month_jan
          month_jul
                                  0
          month_jun
                                  0
          month_mar
                                  0
                                  0
          month_may
                                  0
          month_nov
          month_apr
                                  0
          month_oct
                                  0
          job_admin.
                                  0
          poutcome_success
                                  0
          balance
                                  0
          duration
                                  0
                                  0
          campaign
                                  0
          pdays
          previous
                                  0
                                  0
          marital_divorced
          marital_married
                                  0
                                  0
          marital_single
          education_primary
                                  0
          poutcome_unknown
                                  0
          education_secondary
                                  0
          education unknown
                                  0
          default_no
                                  0
          default_yes
                                  0
          housing_no
                                  0
          housing_yes
                                  0
                                  0
          loan_no
          loan_yes
          poutcome_failure
                                  0
          poutcome other
                                  0
          education_tertiary
                                  0
          month_sep
          dtype: int64
```

there is no missing values in the data

the above values are the outliers

in [50]: x.head(5)	In [50]: x
--------------------	------------

Λı	11	[50	1.	
U	u C	שען	1 .	

		age	balance	duration	campaign	pdays	previous	marital_divorced	marital_married	n
-	0	30	1787	79	1	-1	0	0	1	
	1	33	4789	220	1	339	4	0	1	
	2	35	1350	185	1	330	1	0	0	
	3	30	1476	199	4	-1	0	0	1	
	4	59	0	226	1	-1	0	0	1	

5 rows × 47 columns

PCA

In [51]:	<pre>from sklearn.preprocessing import StandardScaler</pre>
In [52]:	df=pd.DataFrame(x)
In [53]:	y_target=pd.DataFrame(y)
In [54]:	scalar=StandardScaler()
In [55]:	scalar.fit(df)
Out[55]:	StandardScaler()
In [56]:	scalar_data=scalar.transform(df)
In [57]:	#importing PCA from sklearn.decomposition import PCA

In [104]: #components=2 pca=PCA(n_components=10) pca.fit(scalar_data) x_pca=pca.transform(scalar_data) print(x_pca.shape) pca_df=pd.DataFrame(x_pca) pca_df.head()

(4521, 10)

Out[104]:

	0	1	2	3	4	5	6	7	
0	-0.881322	1.654261	1.640155	-0.408573	-0.837181	0.671860	1.467470	0.254911	(
1	4.664252	-2.135589	0.953058	2.355156	0.813990	-2.101071	-0.653068	-0.243735	(
2	4.491902	1.489892	-2.184596	-0.710582	1.610306	-0.343370	0.375299	0.362673	-(
3	-1.107909	-0.227722	-0.692657	0.510633	3.334351	-2.305847	0.216432	-0.930444	(
4	-0.175611	-2.285620	1.393156	-1.397413	-0.201409	0.520988	-0.452758	-0.096852	-(

```
In [105]: import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

#giving a larger plot
plt.figure(figsize=(8,8))

#plt.scatter(x_pca[:,0],x_pca[:,1],c=y_train,cmap='plasma')
plt.scatter(x_pca[:,0],x_pca[:,1])

#labelling x and y axes
plt.xlabel('First Principal Component')
plt.ylabel('Second Principal Component')
```

Out[105]: Text(0, 0.5, 'Second Principal Component')

LDA

```
In [92]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test= train_test_split(x,y,test_size=0.5)
In [93]: sc=StandardScaler()
    x_train=sc.fit_transform(x_train)
    x_test=sc.transform(x_test)
```

```
In [94]: from sklearn.discriminant_analysis import LinearDiscriminantAnalysi
          lda=LDA(n_components=1)
          x_train=lda.fit_transform(x_train,y_train)
          x_test=lda.transform(x_test)
          lda_df=pd.DataFrame(x_test)
          lda_df.head(5)
 Out [94]:
                   0
           0 -1.181641
           1 -0.451614
           2.114893
           3 0.450902
             1.688223
In [101]: from sklearn.ensemble import RandomForestClassifier
          classifier=RandomForestClassifier(max_depth=2, random_state=0)
          classifier.fit(x_train,y_train)
          y_pred=classifier.predict(x_test)
          y_pred2=classifier.predict(x_train)
          from sklearn.metrics import accuracy_score
          from sklearn.metrics import confusion_matrix
          print('Accuracy'+str(accuracy_score(y_train,y_pred2)))
          Accuracy0.9061946902654867
In [103]: cm=confusion_matrix(y_test, y_pred)
          print(cm)
           [[1956]
                    381
                    69]]
            [ 198
  In [ ]:
```