Lecture 16: Population ecology: models without age structure

- Defining populations and individuals
- Taxonomy of simplest possible mathematical models
 - Exponential and geometric population growth models without density dependence
 - Incorporating density dependence; logistic growth model
 - More complex density dependence: time delays,
 Allee effects

1

(c) BIO120 2018

The goal of most population models

- Predict the trajectory of population growth through time, i.e., N as a function of t
- How many individuals are in the population now? N_t
- (Time advances one step) $t \rightarrow t + 1$
- How many individuals are in the population one step later? N_{t+1}

4

Simple bookkeeping model: how can N change from N_t to N_{t+1} ?

- D = number who die during one time step
- B = number born during one time step
- **E** = number who emigrate " " "
- / = number who immigrate " " "
- So, $N_{t+1} = N_t D + B E + I$
- · Death and emigration are equivalent;
- Birth and immigration are equivalent:
- So, can simplify the model by modeling only death and birth

Change in population size (N)

How can we calculate how much a population has changed from one time step to another?

change in $N = N_{t+1} - N_t$

But this just tells us the number of individual that were added or lost between time steps – can't make prediction

How can we predict change?

6

	Population Size (N)	Change in N
2015	230	
2016	345	115
2017	518	173
2018	777	259

7

Predicting growth

How can we predict change?

Look at the **proportion** that it grew by (its **growth rate**)

	Population Size (N)	Change in N	Growth rate
2015	230		
2016	345	115	345/230 = 1.5
2017	518	173	518/345 = 1.5
2018	777	259	777/518 = 1.5

0

Growth rate (λ)

The general model is $N_{t+1} = (N_t) \lambda$ where λ (lambda) is a multiplicative factor by which the population size changes over one time step (t+1)

But what if we want to figure out other time steps, further in time (e.g., t+2, t+3, etc)?

$$N_{(1)} = (N_0) \lambda$$

 $N_{(2)} = [(N_0) \lambda] \lambda = (N_0) \lambda^2$
 $N_{(3)} = (N_0) \lambda^3$

9

Geometric growth

What is λ?

- =the per capita growth rate of a population
- =difference between per capita birth rate and per capita death rate
- =average number of offspring (contribution) left
 by an individual during one time interval

Geometric growth

- One discrete reproductive event per unit time
- Growth rate (λ) is fixed (per capita birth and death rates are constant)
- · Population growth is unlimited

12

Alternative version with continuous time

- Instantaneous, per-capita rates of birth and death fixed (b and d)
- Instantaneous, per-capita rate of population change = b d = r (a constant)
- Differential equation is <u>dN/dt = r N</u>

instantaneous rate of change in population size

average contribution of each individual to population growth population size

13

Solving the 2 simplest models of unlimited growth

Discrete-time

Continuous-time

•
$$N_{t+1} = \lambda N_t$$

•
$$dN/dt = r N$$

- Solve for *N vs. t*:
- Solve for N vs. t:

•
$$N_t = N_o \lambda^t$$

•
$$N_t = N_0 e^{rt}$$

- Geometric growth (step function) if λ > 1
- Exponential growth
 1 (smooth function) if r > 0

14

Regardless of which model is adopted, the important consequence is the same

- In both models, the growth rate (λ or r) is a constant that simply reflects biology...
- ...but a constant positive growth rate produces a population size that is not constant, but rather exploding in an exponential way.

16

So, all species have the potential for positive population growth under good conditions ($\lambda > 1.0$)

All species have the potential for negative population growth under bad conditions ($\lambda < 1.0$)...

...but no species has ever sustained $\lambda > 1.0$ for a long period...and no extant species has maintained $\lambda < 1.0$ for long

17

The staggering implications

- Simple exponential growth is a bad model of reality over the long term!
- Some factors must tend to keep populations from exploding or going extinct
- Two kinds of factors may be acting
 - Density-dependent regulation (growth depends on N)
 - Density-independent reduction (e.g., weather, predators)

18

Measuring population growth in nature

Empty rocks were placed in the intertidal zone.

Beginning of April

- Cages were placed on the rocks to prevent predation.
- The population of settling barnacles on these rocks was observed daily for the month of April.

Trenckmann, E., Smith, M.K., Pelletreau, K.N., Summers, M.M. 2017. An active-learning lesson that targets student 19 understanding of population growth in ecology. CourseSource. https://doi.org/10.24918/cs.2017.11

(c) BIO120 2018 10

Classically, d-d growth modeled by the logistic equation (Verhulst 1837)

Exponential growth with a new term added for "brakes"

$$\frac{dN}{dt} = rN \frac{K - N}{K}$$

$$K = \text{carrying capacity}$$

$$\text{CO!} \quad \text{STOP!}$$

22

(c) BIO120 2018

Solving logistic for *N_t* vs. *t* gives famous "sigmoid growth curve"...

$$N_{t} = \frac{KN_{0}e^{rt}}{K + N_{0}(e^{rt} - 1)}$$

24

Logistic model: good and bad features

- Model of intraspecific competition for resources
- Simple (only one extra parameter beyond exponential)
- Can be expanded to consider multispecies competition
- Too simple: specifies one particular kind of density dependence: perfect compensation
- Always a gradual approach to carrying capacity
- In reality, densitydependence is likely to be non-linear, may see overshoots of K

29

Possible ways to add more reality and flexibility

- The effect of crowding is probably not a linear function of N.
- Could model different braking terms, for example, by using ((K-N)/K)^z instead of ((K-N)/K)
- Add time lags to density dependence (organisms can persist and even reproduce using stored resources).
- Robert May's difference equation model is one way to do this:
- $N_{t+1} = N_t e^{(r(1-Nt/K))}$

30

In the models above, per-capita growth rate is fastest when population is near zero. But sometimes more density may be beneficial

- Allee effects are negative effects of low density, arising from social benefits such as mate finding, group living, group defense
 - Populations may fluctuate between carrying capacity K (upper limit) and another, lower limit
 - Dropping below the lower limit goes to extinction

Very important in conservation

32

Population growth

Geometric (discrete) vs Exponential (continuous) Growth Model

BUT growth unlimited

Logistic (density-dependent)
Growth Model

Better BUT can be more realistic with:

Time lags
Allee threshold

34

