ARE213 Problem Set #2A

Peter Alstone & Frank Proulx

November 3, 2013

1 Problem #1

1.1 Part A

Here we will consider the within estimator, as suggested. This suggests that we want to find $\widehat{\beta_{FE}}$ by running the following regression:

$$\ddot{Y}_{it} = \ddot{X}'_{it}\widehat{\beta_{FE}} + \ddot{\epsilon_{it}} \tag{1}$$

Where $\ddot{Y}_{it} = Y_{it} - \bar{Y}_i$, $\ddot{X}_{it} = X_{it} - \bar{X}_i$, $\bar{Y}_i = \frac{1}{T} \sum_{t=1}^T Y_{it}$, and $\bar{X}_i = \frac{1}{T} \sum_{t=1}^T X_{it}$. Our fixed effects estimator is therefore

$$\widehat{\beta_{FE}} = (\ddot{X}'_{it}\ddot{X}_{it})^{-1}\ddot{X}'_{it}\ddot{Y}_{it}$$
(2)

Because we have T=2, this can be rewritten as

$$\widehat{\beta_{FE}} = ((X_{it} - \frac{1}{2}X_{i1} - \frac{1}{2}X_{i2})'(X_{it} - \frac{1}{2}X_{i1} - \frac{1}{2}X_{i2}))^{-1}(X_{it} - \frac{1}{2}X_{i1} - \frac{1}{2}X_{i2})'(Y_{it} - \frac{1}{2}Y_{i1} - \frac{1}{2}Y_{i2})$$

And looking at the first differences estimator, where we get $\widehat{\beta_{FD}}$ by running the regression

$$\Delta Y_{it} = \Delta X_{it}' \widehat{\beta_{FD}} + \Delta \epsilon_{it} \tag{4}$$

where $\Delta Y_{it} = Y_{it} - Y_{it-1}$, $\Delta X_{it} = X_{it} - X_{it-1}$, and $\Delta \epsilon_{it} = \epsilon_{it} - \epsilon_{it-1}$.

Because we only have T=2, this differencing estimator can only be estimated for t=2, so we regress

$$\Delta Y_{i2} = \Delta X'_{i2} \widehat{\beta_{FD}} + \Delta \epsilon_{i2} \tag{5}$$

$$Y_{i2} - Y_{i1} = (X_{i2} - X_{i1})' \widehat{\beta_{FD}} + \epsilon_{i2} - \epsilon_{i1}$$
 (6)

thus, our first difference estimator is

$$\widehat{\beta_{FD}} = ((X_{i2} - X_{i1})'(X_{i2} - X_{i1}))^{-1}(X_{i2} - X_{i1})'(Y_{i2} - Y_{i1})$$
(7)

2 Problem #3

2.1 Part A

Running pooled bivariate OLS, adding a quadratic time trend, and adding the covariates that we expect to belong produces the models shown in Table

Does this typeset correctly?

Table 1: Pooled Models of Fatalities Per Capita

	Dependent variable:		
	logfatalpc		
	bivariate	quadratic time	covariates
	(1)	(2)	(3)
primary	-0.144***	-0.082^{***}	-0.090^{***}
	(0.026)	(0.026)	(0.025)
squetyears		-0.001***	
		(0.0001)	
secondary			-0.093***
			(0.020)
college			-3.263***
			(0.181)
unemploy			0.004
			(0.004)
beer			0.299***
			(0.032)
totalvmt			-0.00000***
			(0.00000)
precip			-0.028***
			(0.006)
snow32			-0.316***
			(0.018)
$rural_speed$			0.003**
			(0.002)
urban_speed			0.006***
			(0.002)
Constant	-1.703***	-1.626***	-1.669***
	(0.011)	(0.014)	(0.128)
Observations	1,127	1,127	1,127
$ m R^2$	0.027	0.079	0.566
Adjusted \mathbb{R}^2	0.027	0.079	0.560
F Statistic	$31.007^{***} (df = 1; 1125)$	$348.494^{***} (df = 2; 1124)$	145.468^{***} (df = 10; 1116)

Note:

*p<0.1; **p<0.05; ***p<0.01