Quiz 1 OFC (ECO305) Solutions (Answer This Quiz is applicable for the students who are all registered the subject EC0305. * Required

1. Email address *

2. Assuming no ISI, the maximum possible bandwidth of a multimode graded 2 points index fiber with 5 MHz, shows the total pulse broadening of 0.1s for the distance of about 12km. What would be the value of bandwidth length product?

Mark only one oval.

- 20 MHz
- 40 MHz
- 60 MHz
- () 80 MHz
- 3. In Rayleigh scattering of light in glass, at which type of temperature does

 1 point
 the glass attain the state of thermal equilibrium and exhibits its relativity to
 annealing temperature?

Mark only one oval.

- Junction
- Breakdown
- Fictive
- Decomposition

4.	In the structure of a fiber, which component provides additional strength and prevents the fiber from any damage?	1 point
	Mark only one oval.	
	Core	
	Buffer Coating	
	Cladding	
	None of the above	
5.	In the structure of fiber, the light is guided through the core due to total internal	1 point
	Mark only one oval.	
	Dispersion	
	Refraction	
	Diffraction	
	Reflection	
6.	Speckle pattern is generated due to interference of nodes from a coherent source especially when the coherence time of source is the intermodal dispersion time in the fiber.	2 points
	Mark only one oval.	
	Greater than	
	Less than	
	None of the above	
	Equal to	

7.	Which method determines the dispersion limitation of an optical link?	1 point
	Mark only one oval.	
	Rise Time Budget	
	Link Power Budget	
	Rise Time as well as Link Power Budget	
	None of the above	
8.	For a photo-diode with responsivity of 0.50 A/W & optical power of about 12µW, what would be the value of generated photocurrent?	2 points
	Mark only one oval.	
	3 μΑ	
	6 μΑ	
	9 μΑ	
	12 μΑ	
9.	Which among the following is a key process adopted for the laser beam	1 point
۶.	formation as it undergoes the light amplification?	i poiit
	Mark only one oval.	
	Absorption	
	Spontaneous Emission	
	Stimulated Emission	
	All the above	

10.	In spontaneous emission, the light source in an excited state undergoes the transition to a state with	1 point
	Mark only one oval.	
	Higher Energy	
	Lower Energy	
	Equal Energy	
	Moderate Energy	
11.	The radiative and non radiative recombination life times of minority carriers in the active region of a double heterojunction LED are 60 nsec and 90 nsec respectively. Determine the total carrier recombination life time and optical power generated internally if the peak emission wavelength si 870 nm and the drive currect is 40 mA.	3 points
	Mark only one oval.	
	36 ns and 34.22 mW	
	34.22 ns and 36 mW	
	26 ns and 45.33 mW	
	45.33 ns and 26 mW	
	2/2/202	O
		-

This content is neither created nor endorsed by Google.

Google Forms