Annotated slides from Thursday

Limits; The Squeeze Theorem Dr Niall Madden

University of Galway

Thursday, 25 September, 2025

Outline

- 1 Recall... Limits
- 2 Properties of Limits
- 3 Evaluating limits
- 4 Limits of rational functions
- 5 Completing the square
- 6 The Squeeze Theorem
 - $=\sin(\theta)/\theta$
- 7 Exercises

For more, see Chapter 2 (Limits) of Strang and Herman's Calculus, especially Section and 2.3 (Limit Laws).

Slides are on canvas, and at niallmadden.ie/2526-MA140

Recall... Limits

Yesterday, we learned that

$$\lim_{x\to a} f(x) = L,$$

means that we can make f(x) as close to L as we like, by taking x as close to a as needed.

Properties of Limits

We finish with the following "Limit Laws": Suppose that

$$\lim_{x\to a} f_1(x) = L_1 \qquad \text{ and } \qquad \lim_{x\to a} f_2(x) = L_2,$$

and $c \in \mathbb{R}$ is any constant. Then,

$$(1) \lim_{x\to a} c = c, \ c\in\mathbb{R}$$

$$\lim_{x \to a} x = a$$

(3)
$$\lim_{x \to a} [cf_1(x)] = cL_1$$

$$\lim_{x \to a} [f_1(x) + f_2(x)] = L_1 + L_2$$

$$\lim_{x \to \infty} \left[f_1(x) - f_2(x) \right] = I_1$$

$$\lim_{x \to a} [f_1(x) - f_2(x)] = L_1 - L_2$$

(5)
$$\lim_{x \to a} (f_1(x)f_2(x)) = L_1 L_2$$

(6) $\lim_{x \to a} ((f_1(x))^n) = (L_1)^n$

(6)
$$\lim_{x \to a} ((f_1(x))^n) = (L_1)^n$$

7)
$$\lim_{x \to a} \left(\frac{f_1(x)}{f_2(x)} \right) = \frac{L_1}{L_2}$$
providing $L_2 \neq 0$.

$$\lim_{x \to a} [f_1(x) - f_2(x)] = L_1 - L_2 \quad (8) \quad \lim_{x \to a} \sqrt[n]{f_1(x)} = \sqrt[n]{L_1}$$

$$\lim_{x\to a} \left(f_1(x) + f_2(x) \right) = \lim_{x\to a} f_1(x) + \lim_{x\to a} f_2(x)$$

Evaluating limits

Note: we can combine these properties as needed. For example,

(5) and (8) together give that

$$\lim_{x\to a} x^n = a^n$$

Example

Evaluate the limit
$$\lim_{x \to 1} (x^3 + 4x^2 - 3)$$

By Property (4):

$$\lim_{x \to 1} (x^3 + 4x^2 - 3) = \lim_{x \to 1} x^3 + \lim_{x \to 1} 4x^2 + \lim_{x \to 1} (-3)$$

$$= \lim_{x \to 1} x^3 + \lim_{x \to 1} x^2 + (-3)$$

$$= (1)^3 + \lim_{x \to 1} (1)^2 - 3 = 2$$

Evaluating limits

Example

Evaluate $\lim_{x \to 1} \frac{x^4 + x^2 - 1}{x^2 + 5}$ using the Properties of Limits.

Properly (7) 1
$$\lim_{x\to 2a} \frac{f_1(x)}{f_2(x)} = \frac{x^{-7}a}{\lim_{x\to 2a} f_2(x)}$$

Providing $\lim_{x\to 2a} f_2(x) = 0$.

Here $f_2(x) = x^2 + 5 = 0$ $\lim_{x\to 1} x^2 + 5 = 0 \neq 0$

So we can apply the Property:
$$\lim_{x\to 1} \frac{x^6 + x^2 - 1}{x^2 + 5} = \lim_{x\to 1} \frac{x^6 + x^2 - 1}{x^{-3}} = \frac{1}{x^{-3}}$$

In many cases, evaluating limits is more complicated. In particular, we'll consider numerous examples where we want to evaluate $\lim_{x\to a} f(x)$ where a is not in the domain of f.

A typical example of this is when we evaluate a rational function:

$$\lim_{x \to a} \frac{p(x)}{q(x)}$$

where **both** p(a) = 0 and q(a) = 0.

Idea: Since we care about the value of p and q near x = a, but not actually at x = a, it is safe to factor out an (x - a) term from both.

Three examples

Evaluate the limits:

General form
$$\lim_{x\to a} \frac{P(x)}{p(x)}$$

(a)
$$\lim_{x \to 0} \frac{x}{x}$$
 (b) $\lim_{x \to 0} \frac{x^2}{x}$ (c) $\lim_{x \to 0} \frac{x}{x^2}$

(a) as
$$x \rightarrow a$$
 both $p(x) \rightarrow 0$ $(x) \rightarrow 0$

However, if
$$x \neq 0$$
 $\frac{x}{x} = 1$
So $\lim_{x \to 0} \frac{x}{x} = 1$

(b) as
$$x \to 0$$
 $\frac{x^2}{x} \to x$ =) $\lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0$.

(c) as
$$x \to 0$$
 $\frac{x}{x^2} \to \frac{1}{x}$. But $\lim_{x \to 0} \frac{1}{x}$ is undefined

Example

Evaluate the limit

$$\lim_{x\to 1} \frac{x^2+x-2}{x^2-x} = \lim_{x\to 1} \frac{\rho(x)}{q(x)}$$

where
$$p(x) = x^2 + x - 2$$
, $q(x) = x^2 - x$.
Chech: $p(i) = 1 + i - 2 = 0$ $q(i) = 1 - 1 = 0$.
So factorize (since both must have $x - 1$ as a factor):
 $p(x) = (x - i)(x + 2)$ $q(x) = (x - i)x$.
So $x \neq 1$ $\frac{p(x)}{q(x)} = \frac{(x - i)(x + 2)}{(x - 1)x} = \frac{x + 2}{x}$
So $x \neq 1$ $\frac{p(x)}{q(x)} = \frac{3}{1} = 3$

In that last example, we found that

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \lim_{x \to 1} \frac{x + 2}{x}$$

But these are different functions:

They are different because they have different domains:

$$x=1$$
 is not in the domain of $\frac{x^2+x-2}{x^2-x}$
but it is in the domain of $\frac{x+2}{x}$

Evaluate the limit

$$\lim_{x\to 2} \left(\frac{\frac{1}{2}-\frac{1}{x}}{x-2}\right) = \lim_{x\to 2} \frac{P(x)}{?(x)}$$

$$\rho(x) = \frac{1}{2} - \frac{1}{x} = \frac{x-2}{2x} \qquad \qquad q(x) = x-2.$$
Chech: $\rho(z) = \frac{0}{4} = 0 \qquad \qquad q(z) = 0.$
But, at $x \neq z$, $\left(\frac{x-z}{2x}\right) \cdot \frac{1}{x-2} = \frac{1}{2x}.$
So $\lim_{x \to 2} \frac{1}{x-2} = \lim_{x \to 2} \frac{1}{2x} = \frac{1}{4}$

Completing the square

Very often, we'll evaluate limits of the form:

$$\lim_{x\to a}\frac{f(x)}{g(x)}$$

where f and g are not polynomials. Some of the same ideas still apply.

Completing the square

We have
$$\frac{\sqrt{1+x^2} - 1}{x^2} = \frac{(\sqrt{1+x^2} - 1)(\sqrt{1+x^2} + 1)}{x^2 (\sqrt{1+x^2} + 1)}$$

$$= \frac{(\sqrt{1+x^2})(\sqrt{1+x^2}) - \sqrt{1+x^2} + \sqrt{1+x^2} - 1}{x^2 (\sqrt{1+x^2} + 1)}$$

$$= \frac{(\sqrt{1+x^2}) - 1}{x^2 (\sqrt{1+x^2} + 1)} = \frac{x^2}{x^2 (\sqrt{1+x^2} + 1)}$$

$$= \frac{1}{(\sqrt{1+x^2})}$$

$$= \frac{1}{(\sqrt{1+x^2} + 1)}$$

$$= \frac{1}{(\sqrt{1+x^2} + 1)}$$

The Squeeze Theorem

There are various approaches to evaluating limits, including...

The Squeeze Theorem (a.k.a. Sandwich Theorem)

Suppose that we have three functions
$$f$$
, g and h on some interval $[x_0,x_1]$, with
$$g(x)\leqslant f(x)\leqslant h(x), \qquad \text{between } g$$
 and
$$\lim_{x\to a}g(x)=\lim_{x\to a}h(x)=L, \qquad \text{have some}$$
 for some $a\in[x_0,x_1]$. Then
$$\lim_{x\to a}f(x)=L. \qquad \text{have some}$$

$$\lim_{x\to a}f(x)=L. \qquad \text{have some}$$

That is: if f(x) and g(x) have the same limit as $x \to a$, and f(x) is "squeezed" between them, then f(x) has the same limit as $x \to a$.

The Squeeze Theorem

The Squeeze Theorem

Example

Suppose f(x) is a function such that

$$1 - \frac{x^2}{4} \leqslant f(x) \leqslant 1 + \frac{x^2}{2}, \ \forall x \neq 0$$

Find $\lim_{x \to 0} f(x)$.

$$g(x) = 1 - \frac{x^2}{4}$$
 $\lim_{x \to 0} g(x) = 1 - \frac{0}{4} = 1$.
 $h(x) = 1 + \frac{x^2}{2}$ $\lim_{x \to 0} h(x) = 1$
So $\lim_{x \to 0} f(x) = 1$ as well.

Next week, we will use the Squeese Theorem to explain an important limit:

$$\left[\lim_{\theta\to 0}\frac{\sin\theta}{\theta}=1\right]$$

For now, let's just convince ourselves:

Finished here (!).

Exercises

Exercise 2.3.1

Evaluate the following limits

(a)
$$\lim_{x \to \frac{1}{2}} \frac{x - \frac{1}{2}}{x^2 - \frac{1}{4}}$$

(b)
$$\lim_{x \to -4} \frac{x^2 + 3x - 4}{x^2 + x - 12}$$

Exercise 2.3.2

(From 2023/2024 MA140 exam, Q1(a)) Evaluate the limit

$$\lim_{x \to 4} \frac{x-4}{(\sqrt{x}-2)(x+9)}$$

Exercises

Exercise 2.3.3

Suppose that $g(x) = 9x^2 - 3x + 1/4$, and f(x) is such that $-g(x) \le f(x) \le g(x)$ for all x.

- 1. Can one use the Squeeze Theorem to determine $\lim_{x\to 1/3} f(x)$? If so, do so. If not, explain why.
- 2. Can one use the Squeeze Theorem to determine $\lim_{x\to 1/6} f(x)$? If so, do so. If not, explain why.

Exercises

Exercise 2.3.4 (from 2425-MA140 exam)

Let $f(x) = \frac{x^2 - 2x - 15}{3x^3 - 6x^2 - 45x}$. For each of the following, evaluate the limit, or determine that it does not exist.

$$(i) \lim_{x \to -3} f(x)$$

(ii)
$$\lim_{x\to 0} f(x)$$

(iii)
$$\lim_{x \to \infty} f(x)$$