Homework 5

Due Thursday, 9/24/20

This homework goes through the most important properties of the "hat" matrix. Throughout this problem set, the matrix $X \in \mathbb{R}^{n \times p}$ is assumed to be a non-random, full rank matrix with $p \le n$. In simple linear regression, p = 2. We let $Y \in \mathbb{R}^n$ be any vector and define

$$H = X(X^TX)^{-1}X^T$$
, $Q = I_n - H$.

I have also provided some definitions and properties below that will be useful throughout the problem set.

- Let $x \in \mathbb{R}^n$. Then the **2-norm** $\|\cdot\|_2$ is defined as $(\|x\|_2)^2 = \|x\|_2^2 = x^T x$.
- Let $A \in \mathbb{R}^{n \times d}$. The **image** of A is defined as

$$\operatorname{Im}(\boldsymbol{A}) = \left\{ \boldsymbol{A}\boldsymbol{v} : \boldsymbol{v} \in \mathbb{R}^d \right\} \subseteq \mathbb{R}^n$$

This is also called the **column space** of A or the **span** of the columns of A.

• Suppose $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$ and let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Then $\nabla_x f(x)$ is defined as

$$\nabla_{\boldsymbol{x}} f(\boldsymbol{x}) = \begin{pmatrix} \frac{\partial f(\boldsymbol{x})}{\partial x_1} \\ \vdots \\ \frac{\partial f(\boldsymbol{x})}{\partial x_n} \end{pmatrix}$$

- The **trace** of a matrix $A \in \mathbb{R}^{n \times n}$ is defined as $\text{Tr}(A) = \sum_{i=1}^{n} A_{ii}$. If $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A, then $\text{Tr}(A) = \sum_{i=1}^{n} \lambda_i$. You may find this useful in problem 3(c).
- 1. Deriving *H* in ordinary least squares.
 - (a) Let $B \in \mathbb{R}^p$ and define

$$f(B) = (Y - XB)^{T} (Y - XB).$$

Use the properties on slide 12 of Lecture 8 to show that

notes + stanford

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{B} \in \mathbb{R}^p} f(\boldsymbol{B}) = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{Y}.$$

(b) Let $\hat{Y} = X\hat{\beta}$ and $\hat{\epsilon} = Y - \hat{Y}$ be the predicted values and estimated residuals. Show that $\hat{Y} = HY$ and $\hat{\epsilon} = QY$.

notes + stanford

- 2. The action of H.
 - (a) Use the definition of H to show that Im(H) = Im(X).
 - (b) Show that \boldsymbol{H} and \boldsymbol{Q} are symmetric, idempotent and orthogonal to one another. That is, show
 - i. $H = H^T$ and $Q = Q^T$.
 - ii. $H^2 = H$ and $Q^2 = Q$.
 - iii. HQ = 0.
 - (c) Use parts (a) and (b) to show that H projects vectors in \mathbb{R}^n onto the image of X, AND is an **orthogonal projection matrix**. That is, prove the following:
 - i. If $v \in \mathbb{R}^n$, then $Hv \in \text{Im}(X)$. If $u \in \text{Im}(X)$, then Hu = u.
 - ii. Let $v \in \mathbb{R}^n$. Then Hv is the closest vector in Im(X) to v. That is,

$$Hv = \underset{u \in Im(X)}{\arg \min} ||v - u||_2^2.$$

(Hint: write v - u as v - u = H(v - u) + Q(v - u) and expand $||v - u||_2^2$.)

- 3. The eigen-decomposition of H and Q. For this part, let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of H. Note a consequence of 2(a) is rank (H) = rank(X).
 - (a) Use the fact that H is idempotent to show that $\lambda_i = 0$ or $\lambda_i = 1$ for all i = 1, ..., n. In terms of n and p, how many eigenvalues are 1 and how many are 0?
 - (b) If $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of H, what are the eigenvalues of Q?
 - (c) Use parts (a) and (b) to show that Tr(H) = p and Tr(Q) = n p.
- 4. Now suppose $Y = X\beta + \epsilon$ for some constant $\beta \in \mathbb{R}^p$, where $\mathbb{E}(\epsilon) = 0$ and $\text{Var}(\epsilon) = \sigma^2 I_n$. Note that in simple linear regression, p = 2.
 - (a) Use the definition of $\hat{\beta}$, derived in 1(a), to show that $\mathbb{E}(\hat{\beta}) = \beta$.
 - (b) Recall that for two random vectors $W, Z \in \mathbb{R}^n$,

$$\operatorname{Cov}\left(\boldsymbol{W},\boldsymbol{Z}\right) = \mathbb{E}\left[\left\{\boldsymbol{W} - \mathbb{E}\left(\boldsymbol{W}\right)\right\}\left\{\boldsymbol{Z} - \mathbb{E}\left(\boldsymbol{Z}\right)\right\}^{T}\right] \in \mathbb{R}^{n \times n}.$$

Use 2(b) to show that $Cov(\hat{Y}, \hat{\epsilon}) = 0$.

- (c) **PhD problem**: Does 3(b) hold if $Var(\epsilon)$ is not a multiple of the identity matrix?
- (d) **PhD problem**: Now assume $\epsilon \sim N(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$.
 - (i) Show that part (b) implies $(\hat{Y}, \hat{\beta})$ is independent of $\hat{\epsilon}$
 - (ii) Is (i) true if $Var(\epsilon)$ is not a multiple of the identity matrix?
 - (iii) If $\epsilon \sim N(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$, what would you expect to see if you plotted $\hat{\mathbf{Y}}$ vs. $\hat{\epsilon}$? Explain.