Level 3 Condensed Matter Physics

Example Workshop 2

1. Properties of electrons in Bloch energy bands.

This problem will look at the properties of electrons, and how they can be determined from knowledge of the *E-k* relationship (the energy band structure).

- (a) Write down the formula for the effective mass of an electron within an energy band E(k) of a simple one-dimensional crystal.
- (b) Obtain an expression for the effective mass of electrons in an energy band described by the energy wavevector relationship $E(k) = A\cos(ka)$ where A > 0 at the points i) k = 0, and ii) $k = \pi/a$.
- (c) What is the group velocity of electrons at k = 0 and $k = \pi/a$?
- (d) Consider the situation where the energy band is almost full except for a small number of states n_h per unit length near the top of the energy band (k = 0). Show that the total current carried by the band is equal to $+en_hv$ where v is the velocity of the missing electrons and -e is the charge on an electron.
- (e) How do you interpret the result in part (d) in terms of positively charged pseudoparticles (called 'holes')?
- (f) Draw a simple sketch of the energy band structure for the first Brillouin zone indicating the position of electrons and holes as described in part (d).

2. The important ingredients of the quantum nearly free electron theory

- (a) Consider a one-dimensional chain of atoms of lattice constant a. Starting from the energy wavevector E(k) relationship for free electrons explain why the introduction of a periodic potential causes band gaps to open up at the wavevectors $k = \pm \pi/a$.
- (b) Show that the wavefunctions at $k = \pm \pi/a$ are not travelling waves of the form $\exp(\pm i\pi x/a)$ but are instead standing waves.
- (c) By considering the distribution of probability densities of these standing waves show that the energy gap, U, is equal to the Fourier component of the crystal potential.
- (d) Show that the group velocity of an electron at the bottom of an energy band in the nearly-free electron model is

$$v_{\text{group}} = \frac{\hbar k}{m^*}$$

where $\hbar k$ is the crystal momentum of the Bloch electrons and m^* is the effective mass of the electron. Use this to show that a completely filled band makes no contribution to the current carried by a crystal.