

(19) 世界知的所有権機関
国際事務局(43) 国際公開日
2005年7月14日 (14.07.2005)

PCT

(10) 国際公開番号
WO 2005/063455 A1

(51) 国際特許分類 ⁷ :	B25J 13/00	[JP/JP]; 〒8060004 福岡県北九州市八幡西区黒崎城石2番1号 Fukuoka (JP).
(21) 国際出願番号:	PCT/JP2004/018821	
(22) 国際出願日:	2004年12月16日 (16.12.2004)	
(25) 国際出願の言語:	日本語	
(26) 国際公開の言語:	日本語	
(30) 優先権データ:		
特願 2003-432213		
	2003年12月26日 (26.12.2003) JP	
(71) 出願人(米国を除く全ての指定国について):	株式会社 安川電機 (KABUSHIKI KAISHA YASKAWA DENKI)	
		(72) 発明者; および (75) 発明者/出願人(米国についてのみ): 萩原 淳 (HAGI-HARA, Jun) [JP/JP]; 〒8060004 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 Fukuoka (JP).
		(81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,

[続葉有]

(54) Title: ROBOT CONTROLLER

(54) 発明の名称: ロボットの制御装置

(57) Abstract: A robot controller leading to drastic reduction of the computational complexity of a CPU and reduction of the load on the CPU. A robot having axes interfering with each other comprises motors (8, 18), arms (9, 19) connected to the motors (8, 18) through reducers, and motor position sensors (10, 20). A controller for controlling this robot is composed of position control sections (1, 11) for moving the axes according to the respective commands for the axes and speed control sections (2, 12). The controller further comprises interference force calculating sections (7, 17) for determining, by calculation from the command on one of the axes, the interference force acting on the other axis, non-interference torque signal generating sections (6, 16) for generating a motor torque command signal to cause the one axis to move according to a command even if there is an interference force exerted by the other axis, and non-interference position signal generating sections (5, 15) for generating a motor position signal to cause the one axis to move according to the command even if there is the interference force exerted by the other axis.

(57) 要約: 計算量を大幅に低減してCPUの負担を軽減することができるロボットの制御装置を提供する。互いに干渉する複数軸から構成されるロボットであって、モータ(8), (18)と、モータ(8), (18)に減速機等を介して結合されたアーム(9), (19)と、モータ位置検出器(10), (20)とから構成され、各軸を各軸毎の指令通りに動作させるための位置制御部(1), (11)および速度制御部(2), (12)を備えたロボットの制御装置において、自軸の指令から他軸に作用する干渉力を計算で求める干渉力計算部(7), (17)と、他軸から作用する干渉力がある場合も自軸が指令どおり動作するようなモータトルク指令信号を求める非干渉

トルク信号作成部(6), (16)と、他軸から作用する干渉力がある場合も自軸が指令どおり動作するようなモータ位置信号を求める非干渉位置信号作成部(5), (15)とを備えた。

WO 2005/063455 A1

NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SI, SZ, TZ, UG, ZM, ZW), ヨーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR),

OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明 細 書

ロボットの制御装置

技術分野

[0001] 本発明は、互いに干渉する複数軸で構成されるロボットを、干渉力が作用しても各軸が指令どおり動作するように、制御を行うロボットの制御装置に関する。

背景技術

[0002] 従来のロボット制御装置は、モデル制御器を有し、モデル制御器内部では、擬似モデルと、擬似モデル用の制御部と、干渉トルクを相殺するためにモデル補償トルクを算出する補正量算出部とを有し、モデル補償トルクが加算されたモデルフィードフォワード指令を、フィードフォワード信号として出力することで、非干渉化を行っている(例えば、特許文献1参照)。

図5は特許文献1に開示された従来の実施の一形態のロボット制御装置の構成を示す制御ブロック図であり、図6は、図5のモデル制御器の構成を示す制御ブロック図である。図6において、54U、54Lは補正量演算部、60U、60Lはフィードバック制御系への出力信号である。図5では、各軸ごとに2慣性系(電動機+減速機等のバネ+アーム)に近似した2軸のロボット制御系の基本構成を示している。図5および図6では、2軸をL軸、U軸とし、L軸に関する指令や量についてはそのサフィックスに“_L”付加し、U軸に関する指令や量についてはそのサフィックスに“_U”を付加している。

[0003] このロボット制御装置は、各軸ごとの電動機位置指令 X_{ref_L} 、 X_{ref_U} に基づいてL軸及びU軸の制御を行うものであり、2軸のフィードバック制御系(フィードバック制御器)53L、53Uと制御対象(電動機、減速機、ロボットアーム)との擬似モデルであるモデル制御器51を有している。モデル制御器51は、電動機位置指令 X_{ref_L} 、 X_{ref_U} を入力とし、ロボットのダイナミクスを考慮して各軸のフィードフォワード指令 U_{FF_L} 、 U_{FF_U} を計算し、各軸の電動機の加速度項へのフィードフォワード補償を行うとともに、規範となるモデルにおける各軸の電動機位置 θ_{Mm_L} 、 θ_{Mm_U} 、電動機速度

[数1]

$$\dot{\theta}_{Mm_L}, \dot{\theta}_{Mm_U}$$

ねじれ角 $\theta_{Mm_L}, \theta_{Mm_U}$ 、ねじれ角速度

[数2]

$$\dot{\theta}_{Ms_L}, \dot{\theta}_{Ms_U}$$

を算出して出力する。

[0004] 以下、モデル制御器51の出力である各要素には、接頭語「モデル」を付加する。

一方、フィードバック制御系(フィードバック制御器)53L, 53Uにおいて、各軸の位置ゲインは K_{p_L}, K_{p_U} 、速度ゲインは K_{v_L}, K_{v_U} 、トルク定数は K_{t_L}, K_{t_U} であり、電動機に与えられる最終的な加速度指令はそれぞれ U_{ref_L}, U_{ref_U} である。また、各軸の電動機の慣性モーメントはそれぞれ J_{m_L}, J_{m_U} 、電流指令は I_{ref_L}, I_{ref_U} である。電動機の実際の位置は $\theta_{m_L}, \theta_{m_U}$ であり、電動機の実際の速度は

[数3]

$$\dot{\theta}_{m_L}, \dot{\theta}_{m_U}$$

であり、電動機の実際の加速度は

[数4]

$$\ddot{\theta}_{m_L}, \ddot{\theta}_{m_U}$$

である。

さらに減速機での減速比が N_L, N_U 、減速機のバネ定数が K_{c_L}, K_{c_U} 、アームの慣性モーメントが J_{L_L}, J_{L_U} 、アームの実際の位置が $\theta_{L_L}, \theta_{L_U}$ 、アームの加速度(負荷加速度)が

[数5]

$$\ddot{\theta}_{L_L}, \ddot{\theta}_{L_U}$$

で表わされている。そして、両軸間の干渉を表わすために、ロボットアームの質量や両軸間の角度により決定される M_{LU}/M^2 の値が L 軸の負荷トルクに乘じられて U 軸の負荷加速度に作用し、同様に、 M_{UL}/M^2 の値が U 軸の負荷トルクに乘じられて L

軸の負荷加速度に作用する構成となっている。

[0005] このロボット制御系には、L軸、U軸のそれぞれごとに、電動機への最終的な加速度指令 $U_{ref,L}$ 、 $U_{ref,U}$ と電動機の実際の位置 $\theta_{m,L}$ 、 $\theta_{m,U}$ を入力として、実際のねじれ角 $\theta_{s,L}$ 、 $\theta_{s,U}$ とその角速度

[数6]

$$\dot{\theta}_{s,L}, \dot{\theta}_{s,U}$$

とを推定する状態観測器52L、52Uが設けられている。さて、このフィードバック制御器では、モデル制御器51から出力されるモデル電動機位置 $\theta_{Mm,L}$ 、 $\theta_{Mm,U}$ と実際の電動機位置 $\theta_{m,L}$ 、 $\theta_{m,U}$ との偏差に対して位置ゲイン $K_{p,L}$ 、 $K_{p,U}$ を乗算して、それぞれの軸の速度指令としている。

このように得られた各速度指令に、モデル電動機速度

[数7]

$$\dot{\theta}_{Mm,L}, \dot{\theta}_{Mm,U}$$

と実際の電動機速度

[数8]

$$\dot{\theta}_{m,L}, \dot{\theta}_{m,U}$$

との偏差を加算し、速度ゲイン $K_{v,L}$ 、 $K_{v,U}$ を乗算して、それぞれ、加速度指令としている。

[0006] このような加速度指令に対して、(a) モデル制御器51からのフィードフォワード指令 $U_{FF,L}$ 、 $U_{FF,U}$ と、(b) モデルねじれ角 $\theta_{Ms,L}$ 、 $\theta_{Ms,U}$ と状態観測器52L、52Uから出力されるねじれ角 $\theta_{s,L}$ 、 $\theta_{s,U}$ との偏差にフィードバックゲイン $K_{1,L}$ 、 $K_{1,U}$ を乗じたものと、(c) モデルねじれ角速度

[数9]

$$\dot{\theta}_{Ms,L}, \dot{\theta}_{Ms,U}$$

と状態観測器52L、52Uから出力されるねじれ角速度

[数10]

$$\dot{\theta}_{s_L}, \dot{\theta}_{s_U}$$

との偏差にフィードバックゲイン K_{2_L}, K_{2_U} を乗じたものを加算し、それぞれ、各軸に対する最終的な電動機加速度指令 U_{ref_L}, U_{ref_U} としている。

このロボット制御系では、このように得られた最終的な電動機加速度指令 U_{ref_L}, U_{ref_U} により各軸の電動機が駆動され、減速比がそれぞれ N_L, N_U である減速機を介して、各軸のアームが駆動される。その際、上述したように、軸間の干渉力が各軸の負荷加速度に作用する。

[0007] 次に、モデル制御器51の構成を説明する。図6は、フィードバック制御系や電動機、減速機、ロボットアームを表す擬似モデルからなるモデル制御器51の構成の詳細を示している。擬似モデルにおける各軸の位置ゲインと速度ゲインがそれぞれモデル位置ゲイン K_{pM_L}, K_{pM_U} とモデル速度ゲイン K_{vM_L}, K_{vM_U} である。同様に、モデル電動機慣性モーメント J_{mM_L}, J_{mM_U} 、モデルアーム慣性モーメント J_{LM_L}, J_{LM_U} 、モデル減速比 N_{M_L}, N_{M_U} 、モデル減速機バネ定数 K_{cM_L}, K_{cM_U} が、モデルパラメータとして定められている。

モデル制御器51は、各軸の電動機位置指令 X_{ref_L}, X_{ref_U} を入力とし、この電動機位置指令 X_{ref_L}, X_{ref_U} とモデル電動機位置 $\theta_{Mm_L}, \theta_{Mm_U}$ との偏差にモデル位置ゲイン K_{pM_L}, K_{pM_U} を乗じて各軸のモデル速度指令としている。そして、これらのモデル速度指令から各軸のモデル電動機速度

[数11]

$$\dot{\theta}_{Mm_L}, \dot{\theta}_{Mm_U}$$

を減算した値にモデル速度ゲイン K_{vM_L}, K_{vM_U} を乗算して、それぞれ各軸のモデル加速度指令としている。

[0008] このモデル加速度指令に、モデル減速機から得られるモデルねじれ角 $\theta_{Ms_L}, \theta_{Ms_U}$ にモデルフィードバックゲイン K_{1M_L}, K_{1M_U} を乗じて得られる値と、モデルねじれ角 $\theta_{Ms_L}, \theta_{Ms_U}$ を微分して得られるモデルねじれ角速度

[数12]

$$\dot{\theta}_{Ms_L}, \dot{\theta}_{Ms_U}$$

にモデルフィードバックゲイン K_{2M_L} , K_{2M_U} を乗じて得られる値とを減算し、モデル加速度指令 U_{Mref_L} , U_{Mref_U} としている。このモデル加速度指令 U_{Mref_L} , U_{Mref_U} が、モデル電動機に入力されている。

したがって、モデル加速度指令 U_{Mref_L} , U_{Mref_U} は、
[数13]

$$U_{Mref_L} = K_{pM_L} \cdot K_{vM_L} (X_{ref_L} - \theta_{Mm_L}) - K_{vM_L} \cdot \dot{\theta}_{Mm_L} - K_{1M_L} \cdot \theta_{Ms_L} - K_{2M_L} \cdot \dot{\theta}_{Ms_L} \quad (1)$$

$$U_{Mref_U} = K_{pM_U} \cdot K_{vM_U} (X_{ref_U} - \theta_{Mm_U}) - K_{vM_U} \cdot \dot{\theta}_{Mm_U} - K_{1M_U} \cdot \theta_{Ms_U} - K_{2M_U} \cdot \dot{\theta}_{Ms_U} \quad (2)$$

と表わすことができる。

しかし、ここで想定している2軸ロボットでは、干渉により、L軸の負荷トルクに、ロボットアームの質量や両軸間の角度により決定される値 M_{LUM} / M_{oM}^2 が乗じられて、U軸の負荷加速度に作用する。同様に、U軸の負荷トルクに、値 M_{ULM} / M_{oM}^2 が乗じられて、L軸の負荷加速度に作用する。

[0009] このような干渉をアーム側に作用する外乱としてとらえると、L軸に関しては、下式に示すモデル補正トルク T_{comp_L} をモデル電動機加速度指令 U_{Mref_L} に加算すれば、干渉によるアームの振動を軽減することができる。

[数14]

$$T_{comp_L} = -\frac{K_{pM_L} \cdot K_{vM_L} \cdot N_{M_L} \cdot D_{is_UL}}{K_{cM_L}} - \frac{K_{vM_L} \cdot N_{M_L} \cdot \dot{D}_{is_UL}}{K_{cM_L}} - \frac{K_{1M_L} \cdot D_{is_UL}}{K_{cM_L}} - \frac{K_{2M_L} \cdot \dot{D}_{is_UL}}{K_{cM_L}} - \frac{D_{is_UL}}{J_{mM_L} \cdot N_{M_L}} - \frac{N_{M_L} \cdot \ddot{D}_{is_UL}}{K_{cM_L}} \quad (3)$$

ここで、 D_{is_UL} は、U軸からL軸に作用する干渉トルクであって、

[数15]

$$D_{is_UL} = J_{LM_L} \cdot K_{cM_U} \cdot \frac{M_{ULM}}{M_{oM}^2} \cdot \theta_{Ms_U} \quad (4)$$

と表わすことができる。よって、最終的なモデル電動機加速度指令 $U_{FF,L}$ を

$$U_{FF,L} = U_{Mref,L} + T_{comp,L} \quad (5)$$

として、電動機の加速度項へフィードフォワード補償を行う。このモデル制御器51には、モデルねじれ角 $\theta_{Ms,U}$ を入力として上述の式(3), (4)に基づいてモデル補正トルク $T_{comp,L}$ を算出する補正量演算部54Lが設けられており、補正量演算部54Lからのモデル補正トルク $T_{comp,L}$ がモデル電動機加速度指令 $U_{Mref,L}$ に加算される。

[0010] 同様に、U軸についても、モデル補正トルク $T_{comp,U}$ を
[数16]

$$T_{comp,U} = -\frac{K_{pM,U} \cdot K_{vM,U} \cdot N_{M,U} \cdot D_{is,LU}}{K_{cM,U}} - \frac{K_{vM,U} \cdot N_{M,U} \cdot \dot{D}_{is,LU}}{K_{cM,U}} - \frac{K_{1M,U} \cdot D_{is,LU}}{K_{cM,U}} \\ - \frac{K_{2M,U} \cdot \dot{D}_{is,LU}}{K_{cM,U}} - \frac{D_{is,LU}}{J_{mM,U} \cdot N_{M,U}} - \frac{N_{M,U} \cdot \ddot{D}_{is,LU}}{K_{cM,U}} \quad (6)$$

のように定める。ここで $D_{is,LU}$ は、L軸からU軸に作用する干渉トルクであって、

[数17]

$$D_{is,LU} = J_{LM,U} \cdot K_{cM,L} \cdot \frac{M_{LUM}}{M_{oM}^2} \cdot \theta_{Ms,L} \quad (7)$$

である。モデルねじれ角 $\theta_{Ms,L}$ を入力として式(6), (7)に基づきモデル補正トルク $T_{comp,U}$ を求める補正量演算部54Uが設けられている。その結果、最終的なモデル電動機加速度指令 $U_{FF,U}$ は、

$$U_{FF,U} = U_{Mref,U} + T_{comp,U} \quad (8)$$

となる。

[0011] 以上のように、特許文献1に開示された従来技術においては、このようにモデル制御器51により干渉トルク補正を行った上で、規範となる各状態量を指令としてフィードバック制御系に入力するので、各ロボットアームは、他軸からの干渉による影響を受けなくなる。

このように、従来のロボット制御装置は、他軸から受ける干渉力をモデル制御器で補正し、それを基に規範となる各状態量をフィードバック制御器に入力することにより、補正トルクにノイズ成分が重畠することがなくなり、ロボットアームは干渉による振動

を受けずにツール先端の軌跡精度を向上させるのである。

[0012] 特許文献1:特開平10-329063号公報(第2-5頁、図1、図2)

発明の開示

発明が解決しようとする課題

[0013] しかしながら、従来のロボット制御装置は、この制御器を実現するために、フィードバック制御部の演算以外に、モデル制御器51内で、制御周期毎に、ねじれ角の計算など擬似モデルの計算を行う必要があり各軸毎の計算量が膨大になるという問題があった。

また、モデル制御器51内で、フィードバック制御部の演算以外に、制御周期毎に、擬似モデルを制御するためのモデル用のフィードバック制御の計算を行う必要があり各軸毎の計算量がさらに増えるという問題がある。

また、非干渉化をトルクの補正のみで行うため、モデル補正トルク T_{comp} の計算にモデル位置ゲイン K_{pM} やモデル速度ゲイン K_{vM} の値まで必要となり、さらに計算が複雑になるという問題もある。

そして、結果として、各軸毎の計算量が膨大になり、制御演算時間が長くなり、本制御装置を実現するために高速なCPUを必要とするという問題がある。

本発明はこのような問題点に鑑みてなされたものであり、互いに干渉する複数軸から構成されるロボットであって、モータに減速機等のばね要素(ばね定数)を介して結合されたアームと、モータの位置を検出するモータ位置検出器とから構成された各軸を、各軸毎の指令通りに動作させるための位置制御部および速度制御部を備えたロボットの制御装置において、他軸から作用する干渉力がある場合も自軸が指令どおり動作するようにモータを動作させることができ、干渉の影響を受けないで、ロボットアームを動作させることができ、計算量を大幅に低減してCPUの負担を軽減することのできるロボットの制御装置を提供することを目的とする。

また、自軸に対し複数の軸からの干渉力が作用する場合も、複数軸の関係を考慮して複雑な計算をすることなく、各軸から自軸へ作用する干渉力の合計値を計算する処理を行うだけで、後は2軸間の非干渉化と同様の処理を行うだけで簡単に複数軸間の非干渉化することを目的とする。

また、考慮していなかった軸間の干渉を追加する場合もプログラム修正はほとんどなく、各軸から作用する干渉力の合計値を計算する処理を追加するだけで簡単に全ての軸の非干渉化することを目的とする。

課題を解決するための手段

[0014] 上記問題を解決するため、本発明の第1の構成は、互いに干渉する複数軸から構成されるロボットであって、モータと、前記モータに減速機等のね要素を介して結合されたアームと、前記モータの位置を検出するモータ位置検出器とから構成された各軸を、各軸毎の指令通りに動作させるための位置制御部および速度制御部を備えたロボットの制御装置において、自軸の指令から他軸に作用する干渉力を計算で求める干渉力計算部と、他軸から作用する干渉力がある場合も自軸が指令どおり動作するようなモータトルク指令信号を、自軸の指令と他軸から作用する干渉力の計算値から求める非干渉トルク信号作成部と、他軸から作用する干渉力がある場合も自軸が指令どおり動作するようなモータ位置信号を、自軸の指令と他軸から作用する干渉力の計算値から求める非干渉位置信号作成部とを備えたことを特徴とするものである。

この第1の構成においては、干渉力計算部と非干渉トルク信号作成部と非干渉位置信号作成部を有し、擬似モデルの計算と擬似モデル用の制御の計算は行わず、且つ、モータトルク信号だけではなく、モータ位置信号を干渉を考慮して作成することで、計算量が大幅に低減する。

[0015] 本発明の第2の構成は、軸が2軸である場合の干渉について、前記干渉力計算部における干渉力は、次式

$$d_{is1} = B * x_{ref1} * s^2$$

$$d_{is2} = A * x_{ref2} * s^2$$

によって計算し、

前記非干渉トルク信号作成部における非干渉トルク信号は、次式

$$t_{ref_ff1} = (J_{m1} * J_{L1} / K1 * s^4 + (J_{m1} + J_{L1}) s^2) * x_{ref1} - (J_{m1} / K1 * s^2 + 1) * d_{is2}$$

$$t_{ref_ff2} = (J_{m2} * J_{L2} / K2 * s^4 + (J_{m2} + J_{L2}) s^2) * x_{ref2}$$

$-(J_{m2}/K2 * s^2 + 1) * d_{is1}$
によって計算し、

前記非干渉位置信号作成部における非干渉位置信号は、次式

$$x_{refl1} = (J_{L1}/K1 * s^2 + 1) * x_{refl1} - 1/K1 * d_{is2}$$

$$x_{refl2} = (J_{L2}/K2 * s^2 + 1) * x_{refl2} - 1/K2 * d_{is1}$$

によって計算することを特徴とする。

但し、 J_{m1} ：1軸目モータ慣性モーメント

J_{L1} ：1軸目アーム慣性モーメント

$K1$ ：1軸目減速機ばね定数

J_{m2} ：2軸目モータ慣性モーメント

J_{L2} ：2軸目アーム慣性モーメント

$K2$ ：2軸目減速機ばね定数

$A (= B)$ ：2軸の構成、成す角度、幾何学的関係から求まる係数

s ：ラプラス演算子

d_{is1} ：1軸目から2軸目に作用する干渉力

d_{is2} ：2軸目から1軸目に作用する干渉力

x_{refl1} ：1軸目位置指令

x_{refl2} ：2軸目位置指令

この第2の構成においては、干渉力、非干渉トルク信号、および非干渉位置信号を計算する数式が特定される。

[0016] また、本発明の第3の構成は、前記、非干渉トルク信号作成部および非干渉位置信号作成部の処理で使用する、他軸から作用する干渉力の計算値は、軸が2軸を超える場合、各軸から自軸へ作用する干渉力計算値の総和であることを特徴とするものである。

この第3の構成においては、複数軸間に干渉力が作用する場合に、自軸に対しても複数の軸から干渉力を受ける。その場合、2軸間の干渉力の総和を計算することにより、自軸に作用する干渉力を求めることができる。

発明の効果

[0017] 本発明の第1の構成によれば、他軸から作用する干渉力がある場合も自軸が指令どおり動作するようにモータを動作させることができ、結果として干渉の影響を受けないで、指令どおりロボットアームを動作させることができる。また、非干渉化を実現するための計算を非常に少なくできる。その結果、CPUの計算量を大幅に低減することができるため、安価なCPUを用いることができる。

本発明の第2の構成によれば、干渉力、非干渉トルク信号、および非干渉位置信号を計算する数式を特定することにより、ロボット制御を具体化することができる。

また、第3の構成によれば、自軸に対し複数の軸からの干渉力が作用する場合も、複数軸の関係を考慮して複雑な計算をすることなく、各軸から自軸へ作用する干渉力の合計値を計算する処理を行うだけで、後は2軸間の非干渉化と同様の処理を行うのみでよく、簡単に複数軸間の非干渉化が可能になる。

また、考慮していなかった軸間の干渉を追加する場合などもプログラム修正はほとんどなく、各軸から作用する干渉力の合計値を計算する処理を追加するだけで簡単に全ての軸の非干渉化を実現することができる。

図面の簡単な説明

[0018] [図1]本発明の第1実施例の構成を示すブロック図である。

[図2]本発明の第2実施例の構成を示すブロック図である。

[図3]干渉力の計算に必要な係数A, Bを求める際の力学モデルである。

[図4]単軸を2慣性系とし、互いの干渉力を考慮した制御対象モデルである。

[図5]従来のロボット制御装置の構成を示すブロック図である。

[図6]従来のロボット制御装置のモデル制御器内部の処理を示すブロック図である。

符号の説明

[0019] 1 位置制御部

2 速度制御部

3 微分器

4 微分器

5 非干渉位置信号作成部

6 非干渉トルク信号作成部

- 7 干渉力計算部
- 8 モータ
- 9 アーム
- 10 位置検出器
- 11 位置制御部
- 12 速度制御部
- 13 微分器
- 14 微分器
- 15 非干渉位置信号作成部
- 16 非干渉トルク信号作成部
- 17 干渉力計算部
- 18 モータ
- 19 アーム
- 20 位置検出器
- 38 モータ
- 39 アーム
- 30 位置検出器
- 51 モデル制御器
- 52L、52U 状態観測器
- 53L、53U フィードバック制御系(フィードバック制御器)
- 54L、54U 補正量演算部
- 60L、60U フィードバック制御系への出力される信号
- 100 1軸目ロボットの制御装置
- 200 2軸目ロボットの制御装置
- 300 n軸目ロボットの制御装置
- 500 干渉力加算器

発明を実施するための最良の形態

[0020] 以下、本発明の実施の形態について図を参照して説明する。

実施例 1

[0021] 図1は、本発明のロボットの制御装置を説明する全体構成図である。図において、100は1軸目ロボットの制御装置、200は2軸目ロボットの制御装置を表している。

1軸目ロボットの制御装置100は、1軸目位置指令 x_{ref1} と1軸目モータ位置検出値 x_{fb1} と2軸目から1軸目に作用する干渉力計算値 d_{is2} を入力し、制御対象が指令通り動作するよう制御演算を行い、1軸目トルク指令 t_{ref1} を出力する。8は1軸目モータを表し1軸目ロボットの制御装置100から出力される1軸目トルク指令 t_{ref1} により動作する。9は1軸目アームであり、モータ8と減速機等を介して結合されている。10は1軸目モータ8の位置 x_{fb1} を検出する1軸目モータ位置検出器である。

2軸目ロボットの制御装置200は、2軸目位置指令 x_{ref2} と2軸目モータ位置検出値 x_{fb2} と1軸目から2軸目に作用する干渉力計算値 d_{is1} を入力し、制御対象が指令通り動作するよう制御演算を行い、2軸目トルク指令 t_{ref2} を出力する。18は2軸目モータを表し2軸目ロボットの制御装置200から出力される2軸目トルク指令 t_{ref2} により動作する。19は2軸目アームであり、2軸目モータ18と減速機等を介して結合されている。20は2軸目モータ18の位置 x_{fb2} を検出する2軸目モータ位置検出器である。

また、両軸とも、通常、出力されたトルク指令値 t_{ref} は電流指令値に変換され電流アンプを経てモータが動作するが、その応答は無視できるほど十分に速く、また本発明では特に関係がないため省略している。

[0022] ここで、モータ8, 18とアーム9, 19を結合する減速機は、ばね要素を有するため、ロボットの制御装置100およびロボットの制御装置200の制御対象は、どちらも、モータ慣性モーメントとアーム慣性モーメントが、ばね要素で結合された2慣性系と考えられる。

本実施例では、単軸ごとの制御対象を2慣性系とし、互いの軸間の干渉を考えた図4に示す伝達関数で表される構成を考える。

図4中、各記号の意味は以下の通りである。

J_{m1} : 1軸目モータ慣性モーメント

J_{L1} : 1軸目アーム慣性モーメント

$K1$: 1軸目減速機ばね定数

J_{m2} :2軸目モータ慣性モーメント

J_{L2} :2軸目アーム慣性モーメント

K2:2軸目減速機ばね定数

A, B:2軸の構成、成す角度、幾何学的関係から求まる係数

s:ラプラス演算子

d_{is1} :1軸目から2軸目に作用する干渉力

d_{is2} :2軸目から1軸目に作用する干渉力

$x1$:アーム1の位置

$x2$:アーム2の位置

また、上記A, Bは力学計算で求めることが可能である。

例えば2つの軸が図3に示すような関係の場合を考える。1軸目と2軸目の成す角度を θ とし、1軸目と2軸目の軸間の距離をLで表し、各軸、回転中心から質量中心までの距離をL1, L2で表し、それぞれの質量をM1, M2とすると、A, Bは式(9)のようになる。

$$A=B=M2*L2*L*\cos(\theta)+M2*L2^2 \cdots (9)$$

[0023] 以下、実際に1軸目ロボットの制御装置100内部の構成を説明する。

図1において、1は1軸目の位置制御部であり、1軸目非干渉位置信号 $x_{ref_{ff1}}$ と1軸目位置検出値 x_{fb1} が一致するよう、それらの差である1軸目位置偏差err1を入力し、制御演算を行い、1軸目速度指令 v_{ref1} を出力する。

位置制御部1内の処理はどのように行っても良いが、例えば式(10)に示すように1軸目位置ループ比例ゲイン K_{p1} を用いて比例制御を行えばよい。

$$v_{ref1} = K_{p1} * err1 \cdots (10)$$

2は1軸目速度制御部であり、1軸目非干渉速度信号 $v_{ref_{ff1}}$ と1軸目の速度検出値 v_{fb1} が一致するように、式(11)で計算される1軸目速度偏差 v_{err1} を入力し、制御演算を行い、1軸目トルク指令値 $t_{ref_{fb1}}$ を出力する。

$$v_{err1} = v_{ref_{ff1}} + v_{ref1} - v_{fb1} \cdots (11)$$

[0024] 速度制御部2内の処理はどのように行っても良いが、例えば式(12)に示すように1軸目速度ループ比例ゲイン K_{v1} および1軸目速度ループ積分ゲイン K_{i1} を用いて比例

積分制御を行えばよい。

$$t_{ref_fb1} = K_{v1} * (1 + K_{i1} / s) * v_{err1} \cdots (12)$$

3と4は微分器を表す。

5は1軸目非干渉位置信号作成部であり、1軸目位置指令 x_{refl} と2軸目から1軸目へ作用する干渉力計算値 d_{is2} を入力し、干渉力 d_{is2} が作用しても、1軸目位置指令 x_{refl} 通りにアーム9先端 $x1$ が動作するための1軸目モータ位置信号を図4に示す2軸の干渉モデルの関係を用いて作成し、1軸目非干渉位置信号 x_{ref_ff1} として出力する。 x_{ref_ff1} の計算式を式(13)に示す。

$$x_{ref_ff1} = (J_{L1} / K1 * s^2 + 1) * x_{refl} - 1 / K1 * d_{is2} \cdots (13)$$

[0025] 6は1軸目非干渉トルク信号作成部であり、1軸目位置指令 x_{refl} と2軸目から1軸目へ作用する干渉力計算値 d_{is2} を入力し、干渉力 d_{is2} の影響が作用しても、1軸目位置指令 x_{refl} 通りにアーム9先端 $x1$ が動作するための1軸目モータトルク指令信号を図4に示す2軸の干渉モデルの関係を用いて作成し、1軸目非干渉トルク信号 t_{ref_ff1} として出力する。 t_{ref_ff1} の計算式を式(14)に示す。

$$t_{ref_ff1} = (J_{m1} * J_{L1} / K1 * s^4 + (J_{m1} + J_{L1}) * s^2) * x_{refl} - (J_{m1} / K1 * s^2 + 1) * d_{is2} \cdots (14)$$

7は1軸目干渉力計算部であり、1軸目位置指令 x_{refl} を入力し、1軸目から2軸目へ作用する干渉力 d_{is1} を計算し出力する。図4から分かるように、 d_{is1} は式(15)で計算される。

$$d_{is1} = B * x_{refl} * s^2 \cdots (15)$$

最終的に1軸目ロボットの制御装置100からモータ8へ出力される1軸目トルク指令値 t_{refl} は以下の式(16)で計算される。

$$t_{refl} = t_{ref_ff1} + t_{ref_fb1} \cdots (16)$$

[0026] 次に、2軸目ロボットの制御装置200内部の構成を説明する。

図において、11は2軸目の位置制御部であり、2軸目非干渉位置信号 x_{ref_ff2} と2軸目位置検出値 x_{fb2} が一致するよう、それらの差である2軸目位置偏差 $err2$ を入力し、制御演算を行い、2軸目速度指令 v_{ref2} を出力する。

位置制御部11内の処理はどのように行っても良いが、例えば式(17)に示すように

2軸目位置ループ比例ゲイン K_{p2} を用いて比例制御を行えばよい。

$$v_{ref2} = K_{p2} * err2 \quad \cdots (17)$$

12は2軸目速度制御部であり、2軸目非干渉速度信号 $v_{ref,fb2}$ と2軸目の速度検出値 v_{err2} が一致するように、式(18)で計算される2軸目速度偏差 v_{err2} を入力し、制御演算を行い、2軸目トルク指令値 $t_{ref,fb2}$ を出力する。

$$v_{err2} = v_{ref,fb2} + v_{ref2} - v_{fb2} \quad \cdots (18)$$

[0027] 速度制御部12内の処理はどのように行っても良いが、例えば式(19)に示すように2軸目速度ループ比例ゲイン K_{v2} および2軸目速度ループ積分ゲイン K_{i2} を用いて比例積分制御を行えばよい。

$$t_{ref,fb2} = K_{v2} * (1 + K_{i2} / s) * v_{err2} \quad \cdots (19)$$

13と14は微分器を表す。

15は2軸目非干渉位置信号作成部であり、2軸目位置指令 x_{ref2} と1軸目から2軸目へ作用する干渉力計算値 d_{is1} を入力し、干渉力 d_{is1} が作用しても、2軸目位置指令 x_{ref2} 通りにアーム19先端 $x2$ が動作するための2軸目モータ位置信号を図4に示す2軸の干渉モデルの関係を用いて作成し、2軸目非干渉位置信号 $x_{ref,ff2}$ として出力する。 $x_{ref,ff2}$ の計算式を式(20)に示す。

$$x_{ref,ff2} = (J_{L2} / K2 * s^2 + 1) * x_{ref2} - 1 / K2 * d_{is1} \quad \cdots (20)$$

[0028] 16は2軸目非干渉トルク信号作成部であり、2軸目位置指令 x_{ref2} と1軸目から2軸目へ作用する干渉力計算値 d_{is1} を入力し、干渉力 d_{is1} の影響が作用しても、2軸目位置指令 x_{ref2} 通りにアーム19先端 $x2$ が動作するための2軸目モータトルク指令信号を図4に示す2軸の干渉モデルの関係を用いて作成し、2軸目非干渉トルク信号 $t_{ref,ff2}$ として出力する。 $t_{ref,ff2}$ の計算式を式(21)に示す。

$$t_{ref,ff2} = (J_{m2} * J_{L2} / K2 * s^4 + (J_{m2} + J_{L2}) * s^2) * x_{ref2} - (J_{m2} / K2 * s^2 + 1) * d_{is1} \quad \cdots (21)$$

17は2軸目干渉力計算部であり、2軸目位置指令 x_{ref2} を入力し、2軸目から1軸目へ作用する干渉力 d_{is2} を計算し出力する。図4から分かるように、 d_{is2} は式(22)で計算される。

$$d_{is2} = A * x_{ref2} * s^2 \quad \cdots (22)$$

最終的に2軸目ロボットの制御装置200からモータ18へ出力される2軸目トルク指令値 t_{ref2} は以下の式(23)で計算される。

$$t_{ref2} = t_{ref,ff2} + t_{ref,fb2} \cdots (23)$$

[0029] このように、干渉力が作用しても、各軸アーム9, 19が各軸指令通りに動作するようモータ位置信号と、モータトルク指令信号を作成し、それらの通りモータ8, 18が動作するようにフィードバック制御を行う構成にしているので、軸間干渉があった場合も、各軸アーム9, 19は自軸の指令通りに動作することができる。

本発明が特許文献1と異なる部分は、擬似モデルやモデル用の制御器を有さず、非干渉位置信号作成部と非干渉トルク信号作成部とを備え、モータトルク補正信号だけではなく、モータ位置信号も干渉を考慮して作成する部分である。

実施例 2

[0030] 図2は第2実施例の構成を示す図である。本実施例が実施例1と異なる点は、実施例1では2軸の干渉を考慮していたのに対し、本実施例では複数軸間に干渉力が作用する場合を考慮している点である。

図2に示すように、n軸で構成されたロボットについて考える。ここでは、2軸目からn軸目それぞれから1軸目へ干渉が作用している場合の1軸目の非干渉化を例に取り説明するが、他の軸間の干渉に関しても全く同様に実現できる。

図中、38はn軸目モータを表しn軸目ロボットの制御装置300から出力されるn軸目トルク指令 t_{refn} により動作する。39はn軸目アームであり、モータ38と減速機等を介して結合されている。30はn軸目モータ38の位置 x_{fbn} を検出するn軸目モータ位置検出器である。

500は干渉力加算器であり、2軸目から1軸目に作用する干渉力計算値 d_{is2} からn軸目から1軸目に作用する干渉力計算値 d_{isn} までの干渉力の総和 d_{is_all} を求める処理を式(24)に示すように行う。

$$d_{is_all} = d_{is2} + d_{is3} + \cdots + d_{isn} \cdots (24)$$

ここで、 d_{is2} から d_{isn} までは、実施例1で図3を用いて説明したのと同様に、1軸目からn軸目までの各軸の構成、成す角度、幾何学的関係から求まる。

[0031] このように、複数軸間に干渉が作用する場合でも、それぞれの軸から自軸へ作用す

る干渉力計算値の合計値を入力とし、後は、実施例1と同様の処理を行うだけで、簡単な構成で計算量も少なくすべての軸間の非干渉化を行うことが可能である。

また、軸が増えた場合や、考慮していなかった干渉を新たに考慮する場合なども、各軸の処理は全く変更することなく、各軸間の干渉力計算値の和を計算する部分を追加修正するだけなので、簡単に対応できる。

産業上の利用可能性

[0032] 本発明は、複数軸間で干渉力が作用しても、計算量は少なく、ロボットの非干渉化が実現できるため、軸数の多いロボットの非干渉化制御や、安価なCPUを用いたロボットの制御装置などの用途にも使用できる。

請求の範囲

[1] 互いに干渉する複数軸から構成されるロボットであって、モータと、前記モータに減速機等のばね要素を介して結合されたアームと、前記モータの位置を検出するモータ位置検出器とから構成された各軸を、各軸毎の指令通りに動作させるための位置制御部および速度制御部を備えたロボットの制御装置において、
 自軸の指令から他軸に作用する干渉力を計算で求める干渉力計算部と、
 他軸から作用する干渉力がある場合も自軸が指令どおり動作するようなモータトルク指令信号を、自軸の指令と他軸から作用する干渉力の計算値から求める非干渉トルク信号作成部と、
 他軸から作用する干渉力がある場合も自軸が指令どおり動作するようなモータ位置信号を、自軸の指令と他軸から作用する干渉力の計算値から求める非干渉位置信号作成部と
 を備えたことを特徴とするロボットの制御装置。

[2] 軸が2軸である場合の干渉について、
 前記干渉力計算部における干渉力は、次式

$$d_{is1} = B * x_{ref1} * s^2$$

$$d_{is2} = A * x_{ref2} * s^2$$

によって計算し、
 前記非干渉トルク信号作成部における非干渉トルク信号は、次式

$$t_{ref_{ff1}} = (J_{m1} * J_{L1} / K1 * s^4 + (J_{m1} + J_{L1}) s^2) * x_{ref1} - (J_{m1} / K1 * s^2 + 1) * d_{is2}$$

$$t_{ref_{ff2}} = (J_{m2} * J_{L2} / K2 * s^4 + (J_{m2} + J_{L2}) s^2) * x_{ref2} - (J_{m2} / K2 * s^2 + 1) * d_{is1}$$

によって計算し、
 前記非干渉位置信号作成部における非干渉位置信号は、次式

$$x_{ref_{ff1}} = (J_{L1} / K1 * s^2 + 1) * x_{ref1} - 1 / K1 * d_{is2}$$

$$x_{ref_{ff2}} = (J_{L2} / K2 * s^2 + 1) * x_{ref2} - 1 / K2 * d_{is1}$$

によって計算することを特徴とする請求項1記載のロボットの制御装置。

但し、 J_{m1} : 1軸目モータ慣性モーメント

J_{L1} : 1軸目アーム慣性モーメント

$K1$: 1軸目減速機ばね定数

J_{m2} : 2軸目モータ慣性モーメント

J_{L2} : 2軸目アーム慣性モーメント

$K2$: 2軸目減速機ばね定数

$A (= B)$: 2軸の構成、成す角度、幾何学的関係から求まる係数

s : ラプラス演算子

d_{is1} : 1軸目から2軸目に作用する干渉力

d_{is2} : 2軸目から1軸目に作用する干渉力

x_{ref1} : 1軸目位置指令

x_{ref2} : 2軸目位置指令

[3] 前記非干渉トルク信号作成部および非干渉位置信号作成部の処理で使用する、
他軸から作用する干渉力の計算値は、軸が2軸を超える場合、各軸から自軸へ作用
する干渉力計算値の総和であることを特徴とする請求項1記載のロボットの制御装置

。

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/018821

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ B25J13/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁷ B25J1/00-21/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2005
Kokai Jitsuyo Shinan Koho 1971-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 7-246580 A (Sony Corp.), 26 September, 1995 (26.09.95), Par. Nos. [0002] to [0100] & EP 671245 A1 & US 5634377 A	1-3

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search 07 March, 2005 (07.03.05)	Date of mailing of the international search report 22 March, 2005 (22.03.05)
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer

Facsimile No.

Telephone No.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1. 7 B25J13/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1. 7 B25J1/00-21/02

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2005年
日本国登録実用新案公報	1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	J P 7-246580 A (ソニー株式会社), 1995. 09. 26, 段落【0002】-【0100】& E P 671245 A 1 & U S 5634377 A	1-3

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
 「O」口頭による開示、使用、展示等に言及する文献
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
 「&」同一パテントファミリー文献

国際調査を完了した日 07.03.2005	国際調査報告の発送日 22.03.2005
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 齊藤 健児 3C 3118 電話番号 03-3581-1101 内線 3324