

I M M - N Y U 2 6 4
D E C E M B E R 1 9 5 9

NEW YORK UNIVERSITY
INSTITUTE OF
MATHEMATICAL SCIENCES

The Functional Synthesis of Linear Plots

R. F. DRESSLER AND J. P. VINTI

DEPARTMENT OF MATHEMATICS

INSTITUTE OF MATHEMATICAL SCIENCES

PREPARED UNDER
CONTRACT NO. AF 49(638)-161
WITH THE
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
AIR RESEARCH AND DEVELOPMENT COMMAND

111-11111

NEW YORK UNIVERSITY

Institute of Mathematical Sciences

THE FUNCTIONAL SYNTHESIS OF LINEAR PLOTS

R. F. Dressler and J. P. Vinti¹

Prepared under the sponsorship of the Air Force Office of Scientific Research, Air Research and Development Command, Contract No. AF 49(638)-161,

¹National Bureau of Standards, Washington, D. C.

Abstract

In practical engineering or experimental work one often encounters a function F of many variables, $F(x's, y's, z's)$, represented only by the families of curves obtained by plotting F against each of the x 's on Cartesian graph paper, against each of the y 's on semi-log paper, and against each of the z 's on double-log paper. It frequently happens that these curves are all approximately straight lines over some limited range of interest. On the assumption that they are all true straight lines, the present note shows how to synthesize all the graphical representations for any number of parameters into the most general formula possible, expressing F as the product of a general multilinear function of the x 's and the exponential of a constant-free multilinear function of the y 's and of the log z 's, with the coefficients in both multilinear functions being independent of the x 's, y 's, and z 's.

1.

INTRODUCTION

In a comprehensive investigation by one of the authors on assemblages of elastic shells, the various results for certain components of stress and displacement exhibited approximately linear behavior over the limited ranges of interest of the relevant parameters, when plotted on Cartesian graph paper, semi-log paper, or double-log paper. These results, derived from various numerical calculations and corroboratory experiments, are functions of many parameters, such as the various geometrical ratios defining shell shapes, the shell thickness, Poisson's ratio, the number of coupled shells, and other significant quantities. Rather than to retain these extensive results in the form of cumbersome families of graphs, it was desirable and useful to combine them in such a way as to obtain a single explicit formula for each dependent quantity, in terms of the above-mentioned independent parameters.

The problem of combining such results is, of course, not peculiar to investigations in elasticity, but often arises in experimental or engineering work of any nature. One can easily construct simple functions which will exhibit such "linear" properties, but the most general answer to the inverse problem is less obvious, especially when the number of parameters is large. Then, an unsystematic attempt to effect such a synthesis may prove infeasible or incomplete, and furnish no assurance that one has indeed constructed the most general function with these

properties. Our present note, therefore, formulates the general problem in a precise manner, derives its most general solution, and then illustrates this solution with some simple examples.

2.

THE GENERAL PROBLEM

Consider a function F of the independent variables

$x_1, x_2, \dots, x_m; y_1, y_2, \dots, y_p; z_1, z_2, \dots, z_q;$ and $u_1, u_2, \dots, u_r,$ such that a straight line results when we plot F against any x on ordinary Cartesian graph paper, against any y on semi-log paper, or against any z on double-log paper. Let the u 's denote all other variables on which F may depend, but for which no such "linear" property exists. It is understood, of course, that in practice such linearity may hold only approximately, and only for a certain bounded range of the variable used as abscissa, and only for certain bounded ranges of the remaining variables, which appear as parameters. In this analysis, however, we relax these restrictions, assuming that each plot is a straight line for all values of abscissa and parameters.

We put

(1) $\ln z_1 = y_{p+1}, \ln z_2 = y_{p+2}, \dots, \ln z_q = y_n, \quad (n = p+q);$
 then $F(x_1, \dots, y_n, u)$ is a function such that the plot of F against any x or of $\ln F$ against any F is a straight line on Cartesian graph paper. Here u denotes the set $u_1, u_2, \dots, u_r.$

Then

$$(2) \quad \ln F = A_k y_k + B_k, \quad (k=1, 2, \dots, n)$$

where A_k and B_k are functions of $x_1 \dots x_m$, $y_1 \dots y_{k-1}$, $y_{k+1}, \dots y_n$, and of the u 's. We then ask: if $\ln F$ is linear in each y when the other y 's are all held constant, what is the most general form for $\ln F$, as a function of the y 's, that will represent such a property?

To answer this question, we first recall the definition of a multilinear function G , of several variables t_1, t_2, \dots, t_s , as a function which is the sum of a constant and a linear combination of all the products of the t 's taken one at a time, two at a time, ... s at a time, without repetition. For example, if $s=3$,

$$(3) \quad G(t_1, t_2, t_3) = a_0 + a_1 t_1 + a_2 t_2 + a_3 t_3 + b_1 t_1 t_2 + b_2 t_1 t_3 + b_3 t_2 t_3 + c t_1 t_2 t_3$$

Any such multilinear function satisfies the differential equations

$$(4) \quad \partial^2 G / \partial t_k^2 = 0 \quad (k=1, 2, \dots, s)$$

(When the constant term vanishes, we term G a constant-free multilinear function.) It is then easily shown by induction that $G(t_1, t_2, \dots, t_s)$ is the most general function of t_1, t_2, \dots, t_s which is linear in each t .

The Synthesis for the y 's Alone:

On applying these considerations to (2), we find that

$$(5) \quad \ln F = g(x_1, x_2, \dots, x_m, u) + N^{(x, u)}(y_1, y_2, \dots, y_n),$$

where $N^{(x,u)}$ denotes a general constant-free multilinear function of the y 's, with coefficients which are, a priori, functions of x_1, \dots, x_m, u . On placing

$$(6) \quad \exp g = f(x_1, x_2, \dots, x_m, u),$$

we obtain

$$(7) \quad F = f(x_1, x_2, \dots, x_m, u) \exp N^{(x,u)},$$

which gives the synthesis of the linearities of $\ln F$ versus the y 's.

The Complete Synthesis:

Since F is linear in each x , it follows from the property of multilinear functions that

$$(8) \quad F = P^{(y,u)}(x_1, x_2, \dots, x_m),$$

where $P^{(y,u)}$ is a general multilinear function of the x 's, the coefficients being functions of the y 's and the u 's. Then

$$(9) \quad F = f(x_1, x_2, \dots, x_m, u) \exp N^{(x,u)} = P^{(y,u)}(x_1, x_2, \dots, x_m),$$

where by (4)

$$(10) \quad \partial^2 N / \partial y_k^2 = 0 \quad (k = 1, 2, \dots, n)$$

$$(11) \quad \partial^2 P / \partial x_j^2 = 0 \quad (j = 1, 2, \dots, m)$$

We next show that f is a multilinear function of the x 's. To do so, put every y equal to zero in (9). Since N contains no constant term, it then vanishes, so that (9) becomes

$$(12) \quad f(x_1, x_2, \dots, x_m, u) = M^{(u)}(x_1, x_2, \dots, x_m)$$

Here $M^{(u)}$ is simply the expression for $P^{(y,u)}$ with each coefficient evaluated at each $y=0$, so that it is a multilinear function of the x 's with coefficients depending only upon the u 's.

We now show that the coefficients in $N^{(x,u)}$ are independent of the x 's, as follows. Insert (12) into (7), so that

$$(13) \quad F = M^{(u)} \exp^{N(x,u)}$$

and require that (13) satisfy (11). It follows that

$$(14) \quad \frac{\partial^2 M}{\partial x_j^2} + M \frac{\partial^2 N}{\partial x_j^2} + 2 \frac{\partial M}{\partial x_j} \frac{\partial N}{\partial x_j} + M \left(\frac{\partial N}{\partial x_j} \right)^2 = 0,$$

where we have omitted the superscripts for convenience. Since M is multilinear in the x 's, it follows from (4) that

$$(15) \quad \frac{\partial^2 M}{\partial x_j^2} = 0,$$

so that

$$(16) \quad M \frac{\partial^2 N}{\partial x_j^2} + 2 \frac{\partial M}{\partial x_j} \frac{\partial N}{\partial x_j} + M \left(\frac{\partial N}{\partial x_j} \right)^2 = 0$$

If we now differentiate (16) twice with respect to y_k , we find with use of (10) that

$$(17) \quad 2M \left(\frac{\partial^2 N}{\partial x_j \partial y_k} \right)^2 = 0,$$

whence

$$(18) \quad \frac{\partial}{\partial y_k} \left(\frac{\partial N}{\partial x_j} \right) = 0 \quad \begin{matrix} j = 1, 2, \dots, m \\ k = 1, 2, \dots, n \end{matrix}$$

Eq. (18) means that $\partial N / \partial x_j$ can be a function only of the x 's and the u 's. But N and $\partial N / \partial x_j$ are constant-free multilinear functions of the y 's, with coefficients that are, a priori, functions of the x 's and the u 's. These results are compatible if and only if

$$(19) \quad \partial N / \partial x_j = 0 \quad (j = 1, 2, \dots, m)$$

so that each coefficient in the constant-free multilinear function N must be independent of the x 's.

We may thus rewrite (13) as

$$(20) \quad F = M^{(u)}(x_1, x_2, \dots, x_m) \exp N^{(u)}(y_1, y_2, \dots, y_n).$$

When we return to the original formulation of the problem in terms of the x 's, y 's and z 's, it follows that the most general functional form for F is given by

$$(21) \quad F = M^{(u)}(x_1, x_2, \dots, x_m) \exp N^{(u)}(y_1, y_2, \dots, y_p, \ln z_1, \ln z_2, \dots, \ln z_q),$$

where $M^{(u)}$ is a general multilinear function of the x 's and $N^{(u)}$ a general constant-free multilinear function of the y 's and $\ln z$'s, the coefficients in both being functions only of the u 's.

3.5

SOME ELEMENTARY EXAMPLES

As short illustrations of the general result (21), we now give a few examples where F has linear plots against just three variables. In each case we list the specific form that (21)

assumes and the slopes and intercepts on the appropriate plots. By comparing the behavior of the slopes and intercepts in the various experimentally given families of curves that define the function F with these listed formulas, one can readily determine which coefficients vanish, if any, and thus obtain a specific formula for F in any actual case. Here "ln" denotes a natural logarithm and "log" a common logarithm. For an x or a y the intercept is taken at zero, while for a z it is taken at $z = 1$. For the logarithmic plots the slopes and intercepts are those of $\log F$. In the following formulas, it is understood that the constants may be functions of the u 's,

(a)

x, y_1, y_2

$$F = (k_1 x + k_2) \exp(a_1 y_1 + a_2 y_2 + b y_1 y_2)$$

Cartesian plot vs x:

$$\text{Slope } S = k_1 \exp(a_1 y_1 + a_2 y_2 + b y_1 y_2)$$

$$\text{Intercept } I = k_2 \exp(a_1 y_1 + a_2 y_2 + b y_1 y_2)$$

Semi-log plot vs y_1 :

$$\text{Slope } S = 0.4343(a_1 + b y_2)$$

$$\text{Intercept } I = \log(k_1 x + k_2) + 0.4343 a_2 y_2$$

(b)

x, y, z

$$\begin{aligned} F &= (k_1 x + k_2) \exp(a_1 y + a_2 \ln z + b y \ln z) \\ &= (k_1 x + k_2) e^{a_1 y} z^{a_2 + b y} \end{aligned}$$

Cartesian plot vs x:

Slope $S = k_1 e^{a_1 y} z^{a_2 + b y}$

Intercept $I = k_2 e^{a_1 y} z^{a_2 + b y}$

Semi-log plot vs y:

Slope $S = 0.4343 a_1 + b \log z$

Intercept $I = \log(k_1 x + k_2) + a_2 \log z$

Double-log plot vs z:

Slope $S = a_2 + b y$

Intercept $I = \log(k_1 x + k_2) + 0.4343 a_1 y$

(c)

y ₁ , y ₂ , z

$$F = k \exp(a_1 y_1 + a_2 y_2 + a_3 \ln z + b_1 y_1 \ln z + b_3 y_1 y_2 + c y_1 y_2 \ln z)$$

$$= k e^{a_1 y_1 + a_2 y_2 + b_3 y_1 y_2} z^{a_3 + b_1 y_1 + b_2 y_2 + c y_1 y_2}$$

Semi-log plot vs y_1 :

$$\text{Slope } S = 0.4343(a_1 + b_3 y_2) + (b_1 + c y_2) \log z$$

$$\text{Intercept } I = \log k + 0.4343 a_2 y_2 + (a_3 + b_2 y_2) \log z$$

Double-log plot vs z :

$$\text{Slope } S = a_3 + b_1 y_1 + b_2 y_2 + c y_1 y_2$$

$$\text{Intercept } I = \log k + 0.4343(a_1 y_1 + a_2 y_2 + b_3 y_1 y_2)$$

(d)

y, z_1, z_2

$$F = k \exp(a_1 y + a_2 \ln z_1 + a_3 \ln z_2 + b_1 y \ln z_1 + b_2 y \ln z_2 + b_3 \ln z_1 \ln z_2 + c y \ln z_1 \ln z_2)$$

$$= k e^{a_1 y} z_1^{a_2 + b_1 y} z_2^{a_3 + b_2 y} H,$$

where

$$H = z_1^{(b_3 + c y) \ln z_2} = z_2^{(b_3 + c y) \ln z_1}$$

Semi-log plot vs y :

$$\text{Slope } S = 0.4343 a_1 + b_1 \log z_1 + b_2 \log z_2 + 2.303 c \log z_1 \log z_2$$

$$\text{Intercept } I = \log k + a_2 \log z_1 + a_3 \log z_2 + 2.303 b_3 \log z_1 \log z_2$$

Double-log plot vs z_1 :

$$\text{Slope } S = a_2 + b_1 y + 2.303(b_3 + c y) \log z_2$$

$$\text{Intercept } I = \log k + 0.4343 a_1 y + (a_3 + b_2 y) \log z_2$$

DISTRIBUTION LIST

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
MECHANICS DIVISION

18 SEPTEMBER 1959

AIR FORCE

Commander Armed Services Technical Information Agency ATTN: TIPDR Arlington Hall Station Arlington 12, Virginia	(10)	Commander Arnold Engineering Development Center ATTN: AEOI Post Office Box 162 Tullahoma, Tennessee	(1)
Commander Air Force Ballistic Missile Division ATTN: WDSOT Air Force Unit Post Office Los Angeles 45, California	(1)	Commander Air Force Flight Test Center ATTN: FTOTL Edwards Air Force Base Muroc, California	(1)
Commander Air Force Office of Scientific Research ATTN: Mechanics Division Tempo X Washington 25, D. C.	(2)	Commander Air Force Special Weapons Center ATTN: SWOI Kirtland Air Force Base New Mexico	(1)
Commander Air Force Office of Scientific Research ATTN: Library, SRLT Tempo X Washington 25, D. C.	(2)	Commander Air Force Missile Development Center ATTN: HDOI Holloman Air Force Base Alamogordo, New Mexico	(1)
Commander, European Office Air Research and Development Command Shell Building 47 rue Cantersteen Brussels, Belgium	(2)	Commander Air Force Missile Test Center ATTN: MTOI Patrick Air Force Base Cocoa, Florida	(1)
Commander Air Materiel Command Wright-Patterson Air Force Base ATTN: Library Ohio	(1)	Commander Wright Air Development Center ATTN: Aircraft Laboratory Wright-Patterson Air Force Base Ohio	(1)
Commander Air Research and Development Command ATTN: Library Andrews Air Force Base Washington 25, D. C.	(1)	Commander Wright Air Development Center ATTN: WCOSI Wright-Patterson Air Force Base Ohio	(2)

Commander (2)
 Wright Air Development Center
 ATTN: WCOSR
 Wright-Patterson Air Force Base
 Ohio

Commander (1)
 Wright Air Development Center
 ATTN: Aeronautical
 Research Laboratory
 Wright-Patterson Air Force Base
 Ohio

Commander (1)
 Wright Air Development Center
 ATTN: WCLC
 Wright-Patterson Air Force Base
 Ohio

Commander (1)
 Wright Air Development Center
 ATTN: Director of Weapons
 Systems Operations
 Wright-Patterson Air Force Base
 Ohio

Commandant (1)
 Air Force Institute of Technology
 ATTN: MCLI
 Wright-Patterson Air Force Base
 Ohio

Director (1)
 Air University Library
 Maxwell Air Force Base
 Alabama

Commander (1)
 Air Proving Ground Center
 ATTN: ACOT
 Eglin Air Force Base,
 Florida

Commander (1)
 Air Force Cambridge Research Center
 ATTN: CROT
 L. G. Hanscom Field
 Bedford, Massachusetts

P. O. Box AA
 Wright-Patterson Air Force Base
 Ohio

ARMY

Director (1)
 Ballistics Research Laboratory
 ATTN: Library
 Aberdeen Proving Ground,
 Maryland

Commanding General (1)
 Office of Ordnance Research
 Department of the Army
 Box CM
 Duke Station
 Durham, North Carolina

Commanding General
 Army Rocket and
 Guided Missile Agency
 ATTN: Technical Library,
 ORDXR-OOL
 Redstone Arsenal, Alabama

NAVY

Chief, Office of Naval Research (1)
 Department of the Navy
 ATTN: Mechanics Branch
 Washington 25, D. C.

Chief, Office of Naval Research
 Department of the Navy
 ATTN: Air Branch
 Washington 25, D. C. (1)

Commanding Officer (1)
 Naval Research Laboratory
 ATTN: Documents Library
 Washington 25, D. C.

Commander (1)
 U.S. Naval Ordnance Laboratory
 ATTN: Library
 (Please route to Dr. H. H. Kurzweg
 White Oak
 Silver Spring, Maryland

Commanding Officer and Director (1)
 David Taylor Model Basin
 Aerodynamics Laboratory
 ATTN: Library
 Washington 7, D. C.

Chief, Bureau of Ordnance (1)
 Department of the Navy
 ATTN: Mr. Jerome Persh,
 Special Projects Office, SP-2722
 Washington 25, D. C.

NASA

Director (5)
 National Aeronautics and
 Space Administration
 ATTN: Chief, Document Library
 1520 H. Street, N. W.
 Washington 25, D. C.

DEPARTMENT OF COMMERCE

Director (1)
 National Bureau of Standards
 U. S. Department of Commerce
 ATTN: Library
 Washington 25, D. C.

Director (1)
 Office of Technical Services
 U. S. Department of Commerce
 ATTN: Technical Reports Section
 Washington 25, D. C.

AGENCIES

National Science Foundation (1)
 ATTN: Engineering Sciences Div.
 1951 Constitution Avenue, N. W.
 Washington 25, D. C.

U. S. Atomic Energy Commission (1)
 Technical Information Service
 1901 Constitution Avenue, N. W.
 Washington 25, D. C.

U. S. Atomic Energy Commission (1)
 Technical Information Extension
 Post Office Box 62
 Oak Ridge, Tennessee

JOURNALS

Southwest Research Institute (2)
 ATTN: Applied Mechanics Reviews
 8500 Culebra Road
 San Antonio 6, Texas

Aeronautical Engineering Review
 2 East 64th Street (1)
 New York 21, New York

Institute of Aeronautical Sciences
 ATTN: Library (1)
 2 East 64th Street
 New York 21, New York

EDUCATIONAL INSTITUTIONS

Brown University (1)
 Division of Engineering
 ATTN: Library
 Providence 12, Rhode Island

University of California (1)
 Institute of Engineering Research
 Low Pressures Research Project
 Berkeley 4, California

University of California (1)
 Engineering Department
 ATTN: Library
 (Please route to
 Professor M. K. Boeltes)
 Los Angeles, California

Jet Propulsion Laboratory (1)
 California Institute of Technology
 ATTN: Library
 (Please route to Dr. P. Wegener)
 4800 Oak Grove Drive
 Pasadena 3, California

Guggenheim Aeronautical Laboratory
 California Institute of Technology
 ATTN: Aeronautics Library
 (Please route to
 Professor H. W. Liepmann)
 Pasadena 4, California (1)

Carnegie Institute of Technology
 ATTN: Library
 Pittsburgh 18, Pennsylvania (1)

Catholic University of America
 Aeronautical Mechanical Engineering
 ATTN: Library
 Washington, D. C. (1)

Cornell University Graduate School of Aeronautical Engineering ATTN: Library (Please route to Dr. W. R. Sears) Ithaca, New York	(1)	Johns Hopkins University Applied Physics Laboratory ATTN: Library 8621 Georgia Avenue Silver Spring, Maryland	(1)
Columbia University Department of Civil Engineering and Engineering Mechanics ATTN: Library (Please route to Prof. G. Herrmann) New York 27, New York	(1)	Johns Hopkins University Department of Aeronautics ATTN: Library (Please route to Dr. Francis H. Clauser) Baltimore 18, Maryland	(1)
University of Florida Engineering Mechanics Department ATTN: Library Gainesville, Florida	(1)	Lehigh University Department of Physics ATTN: Library (Please route to Prof. H. J. Emrich) Bethlehem, Pennsylvania	(1)
Georgia Institute of Technology Department of Mechanical Engineering ATTN: Library Atlanta, Georgia	(1)	University of Maryland Institute for Fluid Dynamics and Applied Mathematics College Park, Maryland	(1)
Harvard University Department of Engineering Sciences ATTN: Library Cambridge 38, Massachusetts	(1)	University of Maryland ATTN: Engineering Library College Park, Maryland	(1)
Harvard University Department of Applied Physics ATTN: Library (Please route to Prof. H. W. Emmons) Cambridge 38, Massachusetts	(1)	Massachusetts Institute of Technology Naval Supersonic Laboratory Cambridge 39, Massachusetts	(1)
Illinois Institute of Technology Armour Research Foundation ATTN: Library Chicago, Illinois	(1)	Massachusetts Institute of Technology ATTN: Library (Please route to Mech. and Aero. Engr. and Mechanics) Cambridge 39, Massachusetts	(1)
University of Illinois Aeronautical Institute ATTN: Library (Please route to Prof. H. O. Barthel) Urbana, Illinois	(1)	Massachusetts Institute of Technology Fluid Dynamics Research Group ATTN: Dr. Leon Trilling Cambridge 39, Massachusetts	(1)
John Crerar Library 86 E. Randolph Street Chicago 1, Illinois	(1)	University of Michigan Department of Aeronautical Engineering ATTN: Library East Engineering Building Ann Arbor, Michigan	(1)

Midwest Research Institute (1)
ATTN: Library
425 Volker Boulevard
Kansas City 10, Missouri

University of Minnesota (1)
Institute of Technology
ATTN: Engineering Library
Minneapolis, Minnesota

Rosemount Aeronautical Laboratories
University of Minnesota
Department of Aeronautical
Engineering
ATTN: Library
Minneapolis, Minnesota (1)

North Carolina State College (1)
Division of Engineering Research
ATTN: Technical Library
Raleigh, North Carolina

Ohio State University (1)
Department of Aeronautical
Engineering
ATTN: Library
Columbus, Ohio

Polytechnic Institute of Brooklyn
Department of Aeronautical Engineering and Applied Mechanics
ATTN: Library
333 Jay Street
Brooklyn 1, New York (1)

Aerodynamics Laboratory (1)
Polytechnic Institute of Brooklyn
527 Atlantic Avenue
Freeport, New York

Pennsylvania State University (1)
Department of Aeronautical
Engineering
ATTN: Library
University Park, Pennsylvania

The James Forrestal Research Center
Princeton University
ATTN: Library
(Please route to Prof. S. Bogdonoff)
Princeton, New Jersey (1)

Princeton University (1)
Department of Aeronautical
Engineering
ATTN: Library
Princeton, New Jersey

Rensselaer Polytechnic Institute
Department of
Aeronautical Engineering
ATTN: Library
Troy, New York (1)

University of Southern California
Engineering Center
ATTN: Library
3518 University Avenue
Los Angeles 7, California (1)

Stanford Research Institute (1)
Documents Center
ATTN: Acquisitions
Menlo Park, California

Stanford University (1)
Department of
Aeronautical Engineering
ATTN: Library
Stanford, California

Defense Research Laboratory
University of Texas
Post Office Box 8029
Austin 12, Texas (1)

University of Virginia (1)
Ordnance Research Laboratory
Charlottesville, Virginia

University of Washington (1)
Department of
Aeronautical Engineering
ATTN: Library
Seattle, Washington

New York University (1)
Institute of Mathematical Sciences
ATTN: Library
New York 3, New York

INDUSTRIAL ORGANIZATIONS

- Allied Research Associates (1)
 ATTN: Library
 (Please route to Dr. T. R. Goodman)
 43 Leon Street
 Boston 5, Massachusetts
- AVCO Manufacturing Company (1)
 Research Laboratories
 ATTN: Chief, Technical Library
 2385 Revere Beach Parkway
 Everett 49, Massachusetts
- AVCO Manufacturing Company (1)
 Research and Advanced Development
 Division
 ATTN: Research Library,
 Mrs. H. M. Page
 201 Lowell Street
 Wilmington, Massachusetts
- Bell Aircraft Corporation (1)
 ATTN: Library
 Post Office Box 1
 Buffalo 5, New York
- Boeing Airplane Company (1)
 ATTN: Library
 Post Office Box 3107
 Seattle 14, Washington
- Chance-Vought Aircraft, Inc. (1)
 ATTN: Library
 Dallas, Texas
- CONVAIR (1)
 Fort Worth Division
 ATTN: Library
 Fort Worth 1, Texas
- CONVAIR (1)
 ATTN: Library
 Post Office Box 1011
 Pomona, California
- CONVAIR (1)
 Scientific Research Laboratory
 ATTN: Library
 Post Office Box 950
 San Diego 12, California
- CONVAIR (1)
 Scientific Research Laboratory
 ATTN: Library
 Post Office Box 950
 San Diego 12, California
- Cornell Aeronautical Laboratories, Inc. (1)
 ATTN: Library
 4455 Genesee Street
 Buffalo 21, New York
- Douglas Aircraft Company, Inc.
 ATTN: Library
 827 Lapham Street
 El Segundo, California (1)
- Douglas Aircraft Company, Inc.
 ATTN: Library
 3000 Ocean Park Boulevard
 Santa Monica, California (1)
- Fairchild Engine and Aircraft Company (1)
 Guided Missiles Division
 ATTN: Library
 Wyandanch, L.I., New York
- Flight Sciences Laboratory (1)
 ATTN: Library
 1965 Sheridan Avenue
 Buffalo 23, New York
- General Applied Science Laboratories, Inc. (1)
 Meadowbrook National Bank Building
 60 Hempstead Avenue
 Hempstead, New York
- General Electric Company (1)
 Aircraft Gas Turbine Division
 ATTN: Library
 Cincinnati 15, Ohio
- General Electric Company (1)
 Aerospace Laboratory - MSVD
 ATTN: Library
 (Please route to Dr. H. Lew)
 3750 "D" Street
 Philadelphia 24, Pennsylvania

General Electric Company Research Laboratory Post Office Box 1088 Schenectady 5, New York	(1)	The Ramo-Wooldridge Corporation ATTN: Chief Librarian 5730 Arbor Vitae Los Angeles 45, California (1)
General Electric Company (1) Special Defense Products Division 3198 Chestnut Street Philadelphia 4, Pennsylvania		Rand Corporation (1) 1700 Main Street Santa Monica, California
Grumman Aircraft Engineering Corporation (1) ATTN: Library Bethpage, L.I., New York		Republic Aviation Corporation ATTN: Library Farmingdale, L.I., New York (1)
Hughes Aircraft Company (1) Research and Development Laboratories ATTN: Library Culver City, California		RIAS, Inc, (1) ATTN: Library 7212 Bellona Avenue Baltimore 12, Maryland
Lockheed Aircraft Corporation (1) ATTN: Library Post Office Box 551 Burbank, California		United Aircraft Corporation (1) Research Department ATTN: Library 400 Main Street East Hartford 8, Connecticut
Lockheed Aircraft (1) Missile Systems Division ATTN: Library Palo Alto, California		VITRO Laboratories (1) West Orange Laboratory 200 Pleasant Valley Way West Orange, New Jersey
The Martin Company (1) ATTN: Library Baltimore 3, Maryland		Westinghouse Electric Corporation Aviation Gas Turbine Division ATTN: Engineering Library P. O. Box 288 Kansas City, Missouri (1)
McDonnell Aircraft Corporation ATTN: Library Post Office Box 516 St. Louis 66, Missouri (1)		<u>FOREIGN ORGANIZATIONS</u>
North American Aviation, Inc. (1) Missile Division ATTN: Library 12214 Lakewood Boulevard Downey, California		Director (1) National Aeronautical Establishment Ottawa, Ontario Canada
Northrop Aircraft, Inc. (1) ATTN: Library Hawthorne, California		University of Toronto (1) Institute of Aerophysics ATTN: Library Toronto 5, Canada
Plasmadyne Corporation (1) ATTN: Library 3839 South Main Street Santa Ana, California		

Trailing Center for (1)
Experimental Aerodynamics
ATTN: Library
Rhode-Saint-Genese (Belgique)
72, Chaussee de Waterloo
Belgium

Chairman (1)
Defence Research Board
ATTN: DSIS
Ottawa, Ontario
Canada

Date Due

NYU c.1
IMM-
264 Dressler

The functional synthesis of
linear plots

NYU c.1
IMM-
264 Dressler

AUTHOR
The functional synthesis of

TITLE
linear plots

ITEM NUMBER
BORROWER'S NAME

N. Y. U. Institute of
Mathematical Sciences
25 Waverly Place
New York 3, N. Y.

