Matemática Discreta - 2019/2020

Teste Nº2 22-06-2020

Apenas inclui uma versão de cada pergunta.

Equações de recorrência 1

a) Sabendo que $a_n=\frac{3^{n+2}}{4}$ é solução da equação $a_n=2a_{n-1}-a_{n-2}+3^n$, resolva a equação de recorrência

$$b_n = 2b_{n-1} - b_{n-2} + 3^n + 5,$$

com condições iniciais $b_0 = \frac{1}{4}$ e $b_1 = \frac{27}{4}$.

Resolução:

Equação característica: $x^2 - 2x + 1 = 0$

Solução da eq. característica: x = 1 (dupla) Solução geral da eq. homogénea: $b_n^H = A + Bn$

Equação (1): $b_n = 2b_{n-1} - b_{n-2} + 5$ Solução particular (1): $b_n^{(1)} = Cn^r$ onde r=2 $Cn^2 - 2C(n^2 - 2n + 1) + C(n^2 - 4n + 4) = 5$

C = 5/2

 $b_n^{(1)} = \frac{5n^2}{2}$

Equação (2): $b_n = 2b_{n-1} - b_{n-2} + 3^n$ $b_n^{(2)} = \frac{3^{n+2}}{4}$

Solução geral: $b_n = b_n^H + b_n^{(1)} + b_n^{(2)}$ $b_n = A + Bn + \frac{5n^2}{2} + \frac{3^{n+2}}{4}$ Cálculo de A e B: $b_0 = \frac{1}{4}$ e $b_1 = \frac{27}{4}$ $\frac{1}{4} = A + \frac{9}{4}$ e $\frac{27}{4} = A + B + \frac{5}{2} + \frac{27}{4}$ A = -2 e $B = \frac{1}{2}$

Solução: $b_n = -2 + \frac{n}{2} + \frac{5n^2}{2} + \frac{3^{n+2}}{4}$

b) Escreva uma equação de recorrência que tenha solução geral

$$a_n = A + (Bn + C)2^n + n.$$

Resolução:

Soluções da eq. característica: 1 (simples) e 2 (dupla)

> $(x-1)(x-2)^2 = 0$ Equação característica:

> > $x^3 - 5x^2 + 8x - 4 = 0$

Solução particular: $a_n^p = n$

r = 1

f(n) = K, K constante

n-5(n-1)+8(n-2)-4(n-3)=K

 $a_n - 5a_{n-1} + 8a_{n-2} - 4a_{n-3} = 1$ Equação de recorrência:

2 Funções Geradoras

A função geradora ordinária de uma sucessão (b_n) , $n \in \mathbb{N}_0$, é

$$G(x) = \frac{2}{(1-x)(1-x^2/4)} + \frac{x^{300}}{(1-x)^4}.$$

Determina b_{222} .

Resolução:

$$\frac{2}{(1-x)(1-x^2/4)} = \frac{A}{(1-x)} + \frac{B}{(1-x/2)} + \frac{C}{(1+x/2)}$$

$$A = \frac{2}{(1-x/2)(1+x/2)} \Big|_{x=1} = \frac{8}{3}$$

$$B = \frac{2}{(1-x)(1+x/2)} \Big|_{x=2} = -1$$

$$C = \frac{2}{(1-x)(1-x/2)} \Big|_{x=-2} = \frac{1}{3}$$
Logo,

$$G(x) = \frac{8}{3} \times \frac{1}{1-x} - \frac{1}{1-x/2} + \frac{1}{3} \times \frac{1}{1+x/2} + x^{300} \times \frac{1}{(1-x)^4}$$

$$= \frac{8}{3} \sum_{n=0}^{\infty} x^n - \sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n + \frac{1}{3} \sum_{n=0}^{\infty} \left(-\frac{x}{2}\right)^n + x^{300} \sum_{n=0}^{\infty} \binom{n+4-1}{n} x^n$$

$$= \sum_{n=0}^{\infty} \left(\frac{8}{3} - (\frac{1}{2})^n + \frac{1}{3}(-\frac{1}{2})^n\right) x^n + \sum_{n=0}^{\infty} \binom{n+3}{n} x^{n+300}.$$

Uma vez que o coeficiente do termo de ordem 222 em $\sum_{n=0}^{\infty} \binom{n+3}{n} x^{n+300}$ é igual a 0, concluímos que $b_{222} = \frac{8}{3} - (\frac{1}{2})^{222} + \frac{1}{3}(-\frac{1}{2})^{222}$.

3 Grafos I

a) Mostre que se G tem ordem 201 e $\delta(G) \ge 100$ então $diam(G) \le 2$.

Resolução:

Suponhamos que existem vertices v e w tais que $dist(v, w) \ge 3$. Então $\mathscr{V}(v) \cap \mathscr{V}(w) = \emptyset$ logo, por um lado

$$|\mathcal{V}(v) \cup \mathcal{V}(w)| \le n - |\{v, w\}| = n - 2 = 201 - 2 = 199.$$

Por outro lado $|\mathscr{V}(v) \cup \mathscr{V}(w)| = d(v) + d(w) \ge 2\delta(G) = 200$, que é uma contradição. Concluímos assim que dist(v,w) < 3 para todo $v,w \in V(G)$. Consequentemente, $diam(G) \le 2$.

b) Qual o número máximo de componentes conexas que deve ter uma floresta com 200 vertices para garantir que, qualquer que seja o número de arestas de cada componente, uma das componentes tem pelo menos 20 arestas?

2

Resolução:

Sejam m e n a dimensão e a ordem de G respectivamente. Temos que m=n-cc(G)=200-cc(G). Para garantir que uma componente tenha pelo menos 20 arestas, pelo Princípio da Gaiola de Pombos, m>19cc(G). Ou seja 200-cc(G)>19cc(G), donde resulta cc(G)<10. Logo G tem no máximo 9 componentes conexas.

c) Quantas florestas de ordem 200 não isomorfas com $\Delta(G) = 197$ existem?

Resolução:

Seja v é o vertice de grau 197.

Existem 3 grafos não isomorfos conexos.

No 1° a sequência de graus dos vertices é $(197,3,1,\ldots,1)$ e o diâmetro igual a 3; no 2° a sequência de graus dos vertices é $(197,2,2,1,1,\ldots,1)$ e o diâmetro é igual a 3; no 3° a sequência de graus de vertices é $(197,2,2,1,\ldots,1)$ e o diâmetro é igual a 4.

Os 3 grafos seguintes, não conexos, também estão nas condições do problema.

O 1º não tem vertices isolados, o 2º tem um vertice isolado e a 3ª com dois vertices isolados. No total existem 6 florestas não isomorfas.

d) Determine o número de árvores abrangentes do grafo seguinte.

Resolução:

$$T\left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}\right) = T\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) + T\left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}\right)$$

$$= \Lambda \cdot \left(T\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) + T\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right)$$

$$= \Lambda \cdot \left(T\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) + T\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = 4 + 2 \times 2$$

$$= 8$$

$$T\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = T\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) + T\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) + T\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right)$$

$$= \frac{1}{4} + T\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) + 3 \times 2$$

$$= \frac{1}{4} + 3 + 6 = 13$$

$$T\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = 8 + 13 = 2 \Lambda$$

4 Grafos II

- 1. Considera o grafo $G = (V, E, \Psi)$, em que $V = \{1, 2, 3, 4\}$, $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$ e $\Psi(e_1) = \{1, 2\}$, $\Psi(e_2) = \{1, 3\}$, $\Psi(e_3) = \{1, 4\}$, $\Psi(e_4) = \{1, 1\}$, $\Psi(e_5) = \{4, 1\}$, $\Psi(e_6) = \Psi(e_7) = \{3, 4\}$.
 - (a) Indica a matriz de incidência de G.
 - (b) Indica, justificando, um passeio em G de comprimento 3 que não seja um caminho.
 - (c) Averigua, justificando, se existe em G alguma ponte.
 - (d) Determina, justificando, o centro de G.
- 2. Sabe-se que em qualquer grafo bipartido, G = (X, Y, E),

$$\sum_{x \in X} d_G(x) = \sum_{y \in Y} d_G(y).$$

Prova que num qualquer grafo bipartido e *r*-regular, com r > 0, |X| = |Y|.

Resolução:

1. (a)

	e_1	e_2	e_3	e_4	e_5	e_6	e_7
1	1	1	1	2	1	0	0
2	1	0	0	0	0	0	0
3	0	1	0	0	0	1	1
4	0	e_2 1 0 1 0	1	0	1	1	1

- (b) Por exemplo, $P = 1e_41e_23e_64$ é um passeio de comprimento 3 (3 arestas) que não é um caminho pois repete vértices intermédios.
- (c) A aresta e_1 é uma ponte pois cc(G) = 1 enquanto $cc(G e_1) = 2$.
- (d) A matriz das distâncias entre vértices é

A excentricidade de um vértice $u \in V(G)$ é $e(u) = \max_{v \in V(G)} \operatorname{dist}(u, v)$, logo e(1) = 1, e(2) = 2, e(3) = 2 e e(4) = 2.

O raio de $G \notin r(G) = \min_{u \in V(G)} e(u) = 1$.

Assim, o centro de $G \notin \{u \in V(G) : e(u) = r(G)\} = \{1\}.$

2. Se G é r-regular então $\sum_{x \in X} d_G(x) = \sum_{x \in X} r = r|X|$ e $\sum_{y \in Y} d_G(y) = \sum_{y \in Y} r = r|Y|$. Se, além disso, G é bipartido então r|X| = r|Y| e portanto |X| = |Y|.