

FIG. 1

FIG. 4A^{2A}

FIG. 4B^{2B}

FIG. 3

FIG. 8

GENERAL RANGING PROCESS

~~FIG. 7A~~
SA

CU MONITORS GAP DURING PLURALITY OF SIGNATURE SEQUENCE FRAMES IN THE AUTHENTICATION INTERVAL AND PERFORMS CORRELATIONS DURING EACH GAP.

196 197

CU COUNTS THE NUMBER OF GAPS IN AUTHENTICATION INTERVAL THAT HAVE ACTIVITY AND COMPARES THAT NUMBER TO THE TOTAL NUMBER OF FRAMES IN THE AUTHENTICATION INTERVAL TO DETERMINE IF THE 50% ACTIVITY LEVEL LIMIT HAS BEEN EXCEEDED.

GREATER THAN 50% ACTIVITY

204

CU BROADCASTS MESSAGE TO ALL RU'S INSTRUCTING ALL RU'S ATTEMPTING SYNCHRONIZATION TO EXECUTE THEIR COLLISION RESOLUTION PROTOCOLS.

CU IDENTIFIES RU FROM SIGNATURE AND BROADCASTS IDENTITY SO DETERMINED.

EACH RU ATTEMPTING TO SYNCHRONIZE EXECUTES A RANDOM DECISION WHETHER TO CONTINUE ATTEMPTING TO SYNCHRONIZE OR TO STOP, WITH A 50% PROBABILITY OF EITHER OUTCOME.

RU WITH IDENTITY BROADCAST BY CU RECOGNIZES ITS IDENTITY IN BROADCAST AND ENTERS FINE TUNING MODE.

206

CU INSTRUCTS RU ON HOW TO ADJUST ITS DELAY IN ORDER TO CENTER THE CORRELATION PEAK IN THE MIDDLE OF THE GAP/GUARD BAND.

202

RU'S THAT HAVE DECIDED TO CONTINUE RETRANSMIT THEIR SIGNATURE WITH THE SAME TIMING AS WAS USED ON THE LAST ITERATION

208

FIG. 7B

5B

TO FIG. 7C

FIG. 7C
5C

6
FIG. 8
DEAD RECKONING RE-SYNC

CU CONCLUDES IT
MUST ALTER ITS
DELAY VECTOR TO
ALLOW THE FARDEST
RU'S TO SYNCHRONIZE
TO THE SAME FRAME
AS THE NEAREST RU'S
AND BROADCASTS A
MESSAGE TO ALL RU'S
INDICATING WHEN AND
BY HOW MUCH IT WILL
ALTER ITS DELAY
VECTOR

7
FIG. 9
PRECURSOR EMBODIMENT

DIGITAL MODEM BLOCK DIAGRAM

FIG. 12

FIG. 13¹⁰

15
FIG. 17

11
FIG. 18

FIG. 14

FIG. 15

FIG. 16

16
FIG. 20

PREFERRED TRELLIS ENCODER

FIG. 42

17

MAPPING FOR FALL-BACK MODE - LSB'S

21
FIG. 43

¹⁸
FIG. 21

CODE	INPHASE	QUADRATURE	
0000	111	111	= -1 -
0001	001	111	= 1 -
0010	001	001	= 1 +
0011	111	001	= -1 +
0100	011	111	= 3 -
0101	001	011	= 1 + 3 * j
0110	101	001	= -3 + j
0111	111	101	= -1 - 3 * j
1000	011	011	= +3 + 3 * j
1001	101	011	= -3 + 3 * j
1010	101	101	= -3 - 3 * j
1011	011	101	= 3 - 3 * j
1100	111	011	<u>= -1 + 3 * j</u>
1101	101	111	= -3 - j
1110	001	101	= 1 - 3 * j
1111	011	001	= 3 + j

403

¹⁹
FIG. 22

INFORMATION
VECTOR [B]
FOR EACH
SYMBOL

ORTHOGONAL
CODE MATRIX

$$483 \begin{bmatrix} 0110 \\ 1111 \\ 1101 \\ 0100 \\ \vdots \end{bmatrix} \times \begin{bmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,144} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,144} \\ \vdots & \vdots & & \vdots \end{bmatrix}$$

Zo A

FIG. 23A

REAL
PART OF
INFO
VECTOR
[b] FOR
FIRST
SYMBOL

$$405 \begin{bmatrix} +3 \\ -1 \\ -1 \\ +3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ -1 & 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 0 \\ -8 \end{bmatrix} \quad 407 \quad 409$$

$$\begin{bmatrix} b_{\text{REAL}} \end{bmatrix} \times \begin{bmatrix} \text{CODE MATRIX} \end{bmatrix} = \begin{bmatrix} R_{\text{REAL}} \end{bmatrix} = \text{"CHIPS OUT"} \text{ ARRAY-REAL}$$

Zo B

FIG. 23B

LSBs y1 y0	PHASE	$1+jQ$
00	0	$3-j$
01	90	$1+j3$
10	180	$-3+j$
11	-90	$-1-j3$

MSBs y3 y2	PHASE difference (2nd+1st symbol)	$1+jQ$ WHEN $LSB=00$	$1+jQ$ WHEN $LSB=01$	$1+jQ$ WHEN $LSB=10$	$1+jQ$ WHEN $LSB=11$
00	0	$3-j$	$1+j3$	$-3+j$	$-1-j3$
01	90	$1+j3$	$-3+j$	$-1-j3$	$3-j$
10	180	$-3+j$	$-1-j3$	$3-j$	$1+j3$
11	-90	$-1-j3$	$3-j$	$1+j3$	$-3+j$

LSB & MSB FALBACK MODE MAPPINGS

FIG. 44
22

FIG. 24
23

FIG. 25
24

EMBODIMENT 1
CARRIER RECOVERY

FIG. 35

FIG. 36

FIG. 27

~~REVERSE~~ DIGITAL MODEM BLOCK DIAGRAM

29
FIG. ~~26~~

FIG. 27 33 T_d RU / CU (LAT, HOP)
SEED TGS B'

P, DATA, RU/CU

FIG. 39 35

³⁶
FIG. 40

³⁷
FIG. 41

FINE TUNING
TO CENTER
BARKER CODE

FIG. 27

38

FIG. 28B
39

FIG. 28C
40

FIG. 28D
41

43

FIG. 47

44

FIG. 48

RU RANGING

FIG. 29

~~45~~

CU RANGING & CONTENTION RESOLUTION

RANGING AND CONTENTION RESOLUTION

CROSSLAYER

FIG. 31⁴⁸

CONTENTION RESOLUTION - RU
USING BINARY STACK

FIG. 33 49
112

RANGING - RU SIDE

BINARY TREE ALGORITHM

FIG. 32

FIG. 52

51

STATE MACHINE

FIG. 53

52

EQUALIZATION
TRAINING ALGORITHM

FIG. 45B
53B

DOWNSTREAM
EQUALIZATION

FROM FIG. 45B

54c
FIG. 45C

53c

FIG. 49
54

SIMPLE Cu SPREAD SPECTRUM RECEIVER

FIG. 50 56

55

56

FIG. 5A

SIMPLE RU SPREAD SPECTRUM TRANSMITTER

SYNCHRONOUS TDMA SYSTEM

FIG. 54

57
57

OFFSET (Chips)	1B ASIC		2A ASIC	
	RGSRH	RGSRL	RGSRH	RGSRL
0	0x0000	0x8000	0x0001	0x0000
1/2	0x0000	0xC000	0x0001	0x8000
1	0x0000	0x4000	0x0000	0x8000
-1	0x0001	0x0000	0x0002	0x0000

FIG. 58

Training Algorithm

FIG. 59

Initial 2-Step Training Algorithm

2 - STEP INITIAL EQUALIZATION TRAINING

FIG. 60

EQ Stability Check

Note: $Thrl{coeff} = 7F00H$ $Thrl{stable} = 10^{-3}$

FIG. 61

Periodic 2-Step Training Algorithm

FIG. 62

RACM Correction

Note: $Thrld_{amp} = TBD$

$Thrld_{phase} = TBD$

OPTIMAL AMPLIFIER CORRECTION

FIG. 63

CONFIDENTIAL

EQ Convergence Check

Note: $Thrl_{converge} = 10^{-5}$

FIG. 64

Power Alignment Flow Chart

Note: TH = 600H
N = 12

FIG. 65

FIG. 66

Total Turn Around (TTA) in frames = Offset

FIG. 67

FIG. 68

Figure 3.1: Frame start propagation along the channel

FIG. 69

~~Control message~~ Control message (downstream) and function (upstream) propagation in a 3 frames TTA channel

FIG. 70

Center of gap no. 1

CONFIDENTIAL

Figure 3.4: Overall view of the CU sensing windows in a "boundless ranging" algorithm

FIG. 71

§

Chip\FR	1	2	3	4	5	6	7		33
1	0	0	1	0	0	1	1	...	0
2	1	0	0	1	1	1	1	...	
3	0	0	0	1	1	1			
4	0	0	0	1	0	0	0	...	0
5	0	1	0	0	1				
6	0	0	1	1	1				
7	0	0	0	1	1				
8	0	0	0	0	1	0	0	...	

FIG. 72

UPS EQUALIZATION

CU SENDS MESSAGE TO RU TELLING IT TO SEND EQUALIZATION DATA TO CU USING ALL 8 OF THE FIRST 8 ORTHOGONAL CYCLIC CODES AND BPSK MODULATION.

1116

RU SENDS SAME TRAINING DATA TO CU ON 8 DIFFERENT CHANNELS SPREAD BY EACH OF FIRST 8 ORTHOGONAL CYCLIC CODES.

1118

CU RECEIVER RECEIVES DATA, AND FFE 765, DFE 820 AND LMS 830 PERFORM ONE ITERATION OF TAP WEIGHT(COEFFICIENT) ADJUSTMENTS.

1120

TAP WEIGHT (COEFFICIENT) ADJUSTMENTS CONTINUE UNTIL CONVERGENCE WHEN ERROR SIGNALS DROP OFF TO NEAR ZERO.

1122

AFTER CONVERGENCE DURING TRAINING INTERVAL, CU SENDS FINAL FFE AND DFE COEFFICIENTS TO RU.

1124

CONVOLVED SE CIRCUIT
Takes FINAL FFE & DFE WITH
COEFFICIENTS INTO PRECODE
FFE/DFE FILTER IN COEFFICIENTS
TRANSMITTER AND LOAD NEWLY

TRANSPARENCY
VALUES

CALCULATED
COEFFICIENTS
INTO RU.
XMTR PRECODE
FILTER

CU SETS COEFFICIENTS OF
FFE 765 AND DFE 820 TO
ONE FOR RECEPTION OF
UPSTREAM PAYLOAD DATA.

1126

FIG. 45B
54B
53B

FAXED TO
DI MUELLER
10/25/00
(909) 596-3733

DOWNTSTREAM
EQUALIZATION

FROM FIG. 45B

CONVOLVES THESE SE FILTER TAP WEIGHTS WITH THE OLD FILTER TAP WEIGHTS OF THE FFE AND DFE FILTERS OF CE CIRCUIT 764 AND LOADS THE NEWLY CALCULATED TAP WEIGHTS INTO THE FFE AND DFE FILTERS OF THE CE CIRCUIT

FIG. 45C

530

54C

Initial 2-Step Training Algorithm

2 - STEP INITIAL EQUALIZATION TRAINING

FIG. 60