Principles of Communications (通信系统原理)

Undergraduate Course

Chapter 5: Analog Modulation

José Rodríguez-Piñeiro (Xose) <u>j.rpineiro@tongji.edu.cn</u>

Wireless Channel Research Laboratory

Department of Information and Communication Engineering

College of Electronics and Information Engineering China-Deutsch Center for Intelligent Systems

Tongji University

- 1. Introduction
- 2. Linear Modulation
 - Amplitude Modulation (AM)
 - Double-Sideband Modulation (DSB)
 - Vestigial Sideband Modulation (VSB)
- 3. Non-linear Modulation
 - Phase Modulation
 - Frequency Modulation
- 4. Summary

1. Introduction

- 2. Linear Modulation
 - Amplitude Modulation (AM)
 - Double-Sideband Modulation (DSB)
 - Vestigial Sideband Modulation (VSB)
- 3. Non-linear Modulation
 - Phase Modulation
 - Frequency Modulation
- 4. Summary

Introduction

- Modulation refers to the modification of one signal's characteristics in sympathy with another signal.
- Analog modulation: Modulation of a carrier by utilizing a source baseband analog signal
- Carrier: A deterministic periodic waveform, e.g.:

$$c(t) = A\cos(\omega_0 t + \varphi_0)$$

where A is amplitude, ω_0 is angular frequency, and φ_0 is initial phase.

• Modulation enables a parameter of the carrier, c(t), to vary with the source signal, m(t), i.e. the value of m(t) is represented by the value of a parameter of c(t).

Introduction

- The source signal m(t) is called modulating signal.
- The carrier after being modulated, s(t), is called modulated signal.
- The device for modulation is called modulator.
- Purposes of modulation
 - To realize frequency spectrum movement: Accommodating the requirement of channel transmission or conducting multi-channel transmission
 - To improve the anti-jamming ability
- Classification
 - Linear modulation: The frequency spectrum structure of modulated signal remains the same as that of modulating signal.
 - Nonlinear modulation (also called angle modulation): The frequency spectrum structures of modulated and modulating signals are different (new frequency components are generated)

- 1. Introduction
- 2. Linear Modulation
 - Amplitude Modulation (AM)
 - Double-Sideband Modulation (DSB)
 - Vestigial Sideband Modulation (VSB)
- 3. Non-linear Modulation
 - Phase Modulation
 - Frequency Modulation
- 4. Summary

Linear ModulationDefinitions

- Let the carrier signal be $c(t) = A \cos \omega_0 t = A \cos 2\pi f_0 t$, where A is amplitude (V), f_0 is frequency (Hz), $\omega_0 = 2\pi f_0$ is angular frequency (rad/s).
- The principle model of a linear modulator is to pass the multiplication of m(t) and c(t), i.e.

$$s'(t) = m(t)A\cos\omega_0 t$$

through a bandpass filter with transfer function H(f).

Linear ModulationDefinitions

- Assume m(t) to be an energy signal with frequency spectral density M(f), i.e. $m(t) \stackrel{\text{FT}}{\Leftrightarrow} M(f)$. We have: $m(t)A\cos\omega_0 t \stackrel{\text{FT}}{\Leftrightarrow} S'(f) = \frac{A}{2}[M(f-f_0) + M(f+f_0)]$
- The signal s'(t) is cosinusoidal wave, whose amplitude is proportional to m(t), i.e. the amplitude of the carrier waveform is modulated.
- S'(f) is the displacement result of M(f).

(b) Frequency spectral density of output signal

- 1. Introduction
- 2. Linear Modulation
 - Amplitude Modulation (AM)
 - Double-Sideband Modulation (DSB)
 - Vestigial Sideband Modulation (VSB)
- 3. Non-linear Modulation
 - Phase Modulation
 - Frequency Modulation
- 4. Summary

Linear Modulation Amplitude Modulation (AM)

- Let $m(t) = 1 + m'(t), |m'(t)| \le 1$
 - 1 can be seen as the DC component, m'(t) is the AC component
 - The maximum of |m'(t)| is called modulation index m ($m \le 1$)
- The output of the multiplier is

$$s'(t) = [1 + m'(t)]A\cos\omega_0 t$$

Linear Modulation Amplitude Modulation (AM)

- The frequency spectral density contains discrete carrier components
- The bandwidth is $2f_m$, where f_m is the highest frequency of the baseband signal
 - Spectral efficiency of AM is low
- Most part of the power is occupied by the carrier signal, which does not contain information
 - Power efficiency of AM is low.

Waveform and spectrum of modulated signal₁₁

Linear Modulation Amplitude Modulation (AM)

- [Example 4.1]
- Let the modulating signal $m(t) = 1 + m \cos \Omega t$, calculate, when m = 1 (or 100%) and m = 0.5 (or 50%), the ratio of the sum of the two sideband powers to the total modulated signal power.

Linear Modulation Demodulation of AM Signals

- An envelope detector is normally used to restore the original modulating signal.
- The envelope detector consists of a rectifier and a lowpass filter.
- A capacitor is used to separate the DC component

- 1. Introduction
- 2. Linear Modulation
 - Amplitude Modulation (AM)
 - Double-Sideband Modulation (DSB)
 - Vestigial Sideband Modulation (VSB)
- 3. Non-linear Modulation
 - Phase Modulation
 - Frequency Modulation
- 4. Summary

Linear Modulation Double-sideband Modulation (DSB)

- When the modulating signal m(t) does not contain DC component, there is no carrier in the output signal of the multiplier.
- This kind of modulation is called DSB, since its frequency spectrum contains two sidebands.
- The two sidebands are called upper-sideband and lowersideband respectively, which contain the same information.

Linear Modulation Demodulation of DSB Signals

• Assume that the received DSB signal is $m'(t) \cos \omega_0 t$, then

$$r'(t) = m'(t)\cos \omega_0 t \cos \omega_0 t = \frac{1}{2}m'(t)(1 + \cos 2\omega_0 t)$$

- The output of the low-pass filter is $\frac{1}{2}m'(t)$
- If the frequency and phase of the local carrier have errors, i.e. assume its expression is $\cos((\omega_0 + \Delta\omega)t + \varphi)$, we have

$$r'(t) = \frac{1}{2}m'(t)\left(\cos(\Delta\omega t + \varphi) + \cos((2\omega_0 + \Delta\omega)t + \varphi)\right)$$

output:
$$\frac{1}{2}m'(t)\cos(\Delta\omega t + \varphi)$$

Single-sideband Modulation (SSB)

- SSB transmits only one sideband of the DSB signal.
- To allow the filter to separate the sidebands, the modulating signal should not contain very low frequency components.
- The filter

$$H_H(f) = \begin{cases} 1 & |f| \ge f_0 \\ 0 & |f| < f_0 \end{cases}$$

$$H_L(f) = \begin{cases} 1 & |f| \le f_0 \\ 0 & |f| > f_0 \end{cases}$$

 Both power efficiency and spectrum efficiency of SSB signals are higher than AM and DSB signals.

(a) Signal frequency spectrum before filtering

(b) Upper-sideband filter characteristic and signal frequency spectrum

(c) Lower-sideband filter characteristic and signal frequency spectrum

Linear Modulation Demodulation of SSB Signals

- Demodulation: A carrier is multiplied to the received signal
- Time-domain and frequency-domain operations

$$x(t) * y(t) \stackrel{\text{FT}}{\Leftrightarrow} X(\omega)Y(\omega)$$

$$x(t)y(t) \stackrel{\text{FT}}{\Leftrightarrow} X(\omega) * Y(\omega)$$

- The multiplication of carrier $\cos \omega_0 t$ with the received signal is equivalent to the convolution of the carrier frequency spectrum with the signal frequency spectrum in the frequency domain.
- [Example] The demodulation of an upper-sideband signal.

- 1. Introduction
- 2. Linear Modulation
 - Amplitude Modulation (AM)
 - Double-Sideband Modulation (DSB)
 - Vestigial Sideband Modulation (VSB)
- 3. Non-linear Modulation
 - Phase Modulation
 - Frequency Modulation
- 4. Summary

Linear Modulation Vestigial Sideband Modulation (VSB)

- Despite the high power and spectrum efficiency, SSB requires high system complexity
 - The local carrier at the demodulator must have the same frequency and phase as that in the transmitter
 - The modulator should have a very high-quality filter to attain SSB from DSB or AM signals.
- VSB allows the modulating signal to contain very low frequency and DC components

Vestigial Sideband Modulation (VSB)

- Frequency spectrum expression of the output signal of the multiplier is $S'(f) = \frac{A}{2} [M(f f_0) + M(f + f_0)]$
- After being filtered, the frequency spectrum of VSB signal s(t) is:

$$S(f) = \frac{A}{2} [M(f - f_0) + M(f + f_0)]H(f)$$

- What condition should be satisfied, to realize demodulation without distortion?
- The frequency spectrum of the output signal of the multiplier at the demodulator, r'(t), is

$$\frac{1}{2}[S(f+f_0) + S(f-f_0)]$$

$$= \frac{A}{4}\{[M(f+2f_0) + M(f)]H(f+f_0) + [M(f-2f_0) + M(f)]H(f-f_0)\}$$

Vestigial Sideband Modulation (VSB)

The output demodulated signal after the low-pass filter is

$$\frac{A}{4}M(f)[H(f+f_0) + H(f-f_0)]$$

Transmission without distortion requires

$$H(f + f_0) + H(f - f_0) = C$$

where C is a constant.

- Since M(f) is the frequency spectral density function of the baseband modulating signal, let its highest frequency component be f_m , i.e. M(f) = 0 when $|f| > f_m$.
- We have

$$H(f + f_0) + H(f - f_0) = C$$
 $|f| \le f_m$

Vestigial Sideband Modulation (VSB)

Linear Modulation Vestigial Sideband Modulation (VSB)

- The cut-off characteristic of the filter is complementary symmetry with respect to the carrier frequency f_0 .
- In addition to the whole frequency spectrum of SSB signal, a part of the carrier frequency component and a small part of another sideband frequency spectrum are reserved in the frequency spectrum of VSB modulated signal.
- The filter in the modulator can be easily manufactured.
- The main disadvantage is that the occupied frequency band is a little wider than that of the SSB signal.

- 1. Introduction
- 2. Linear Modulation
 - Amplitude Modulation (AM)
 - Double-Sideband Modulation (DSB)
 - Vestigial Sideband Modulation (VSB)

3. Non-linear Modulation

- Phase Modulation
- Frequency Modulation
- 4. Summary

Non-linear Modulation Definitions

- Nonlinear modulation is also called angle modulation, which enables frequency and phase of the carrier to vary with the modulating signal.
- Let a carrier signal be expressed as

$$c(t) = A\cos\varphi(t) = A\cos(\omega_0 t + \varphi_0)$$

where φ_0 is the initial phase, $\varphi(t) = \omega_0 t + \varphi_0$ is the instantaneous phase, and $\omega_0 = d\varphi(t)/dt$ is the angular frequency of the carrier.

• After being modulated, the signal's instantaneous frequency $\omega_i(t)$ becomes a function of time, i.e.

$$\omega_i(t) = \frac{d\varphi(t)}{dt}$$

Equivalently

$$\varphi(t) = \int \omega_i(t)dt + \varphi_0$$

• Angle modulation: $\varphi(t)$ varies with the modulating signal m(t).

- 1. Introduction
- 2. Linear Modulation
 - Amplitude Modulation (AM)
 - Double-Sideband Modulation (DSB)
 - Vestigial Sideband Modulation (VSB)
- 3. Non-linear Modulation
 - Phase Modulation
 - Frequency Modulation
- 4. Summary

Non-linear Modulation Phase Modulation

• Phase modulation: Phase $\varphi(t)$ linearly varies with m(t), i.e.

$$\varphi(t) = \omega_0 t + \varphi_0 + k_p m(t)$$

where k_p is a constant.

The modulated signal can be expressed as

$$s_p(t) = A\cos[\omega_0 t + \varphi_0 + k_p m(t)]$$

The instantaneous frequency of the modulated signal is

$$\omega_i(t) = \omega_0 + k_p \frac{d}{dt} m(t)$$

 The instantaneous frequency in phase modulation varies with the derivative of the modulating signal.

- 1. Introduction
- 2. Linear Modulation
 - Amplitude Modulation (AM)
 - Double-Sideband Modulation (DSB)
 - Vestigial Sideband Modulation (VSB)

3. Non-linear Modulation

- Phase Modulation
- Frequency Modulation
- 4. Summary

Non-linear Modulation Frequency Modulation

 Frequency modulation: Instantaneous frequency linearly varies with the modulating signal, i.e.

$$\omega_i(t) = \omega_0 + k_f m(t)$$

where k_f is a constant.

• The phase of the modulated signal is:

$$\varphi(t) = \int \omega_i(t)dt + \varphi_0 = \omega_0 t + k_f \int m(t)dt + \varphi_0$$

The modulated signal is

$$s_f(t) = A \cos \left[\omega_0 t + \varphi_0 + k_f \int m(t) dt \right]$$

Non-linear Modulation Phase and Frequency Modulations

- The phase $\varphi(t)$ of a phase modulated signal varies linearly with modulating signal m(t).
- The phase $\varphi(t)$ of a frequency modulated signal varies linearly with the integration of modulating signal m(t).
- Essentially there is no difference between them.
 - If m(t) is integrated first, and the phase of the carrier is modulated, then a frequency modulated signal is obtained.
 - If m(t) is differentiated first, and the frequency of the carrier is modulated, then a phase modulated signal is obtained.
 - In both cases, the amplitude of a modulated signal is a constant.
 - It is not possible to distinguish them by modulated signal waveforms: The difference between them lies only in the relationship between the modulated and modulating signals.

Non-linear Modulation Phase and Frequency Modulations

Non-linear Modulation Phase and Frequency Modulations

- The instantaneous frequency varies linearly between ω_0 and $2\omega_0$.
- If the waveform of m(t)
 varies along straight lines as
 the instantaneous frequency,
 then the modulated signal is
 a frequency modulated
 signal.
- If the waveform of m(t)
 varies with t² (the
 instantaneous frequency
 varies along straight lines),
 then the modulated signal is
 a phase modulated signal.

Non-linear Modulation Frequency Spectrum and Bandwidth

- Let m(t) be a cosinusoidal wave $m(t) = \cos \omega_m t$.
- The instantaneous angular frequency obtained from frequency modulation is $\omega_i(t) = \omega_0 + k_f m(t) = \omega_0 + k_f \cos \omega_m t$.
- The largest deviation of angular frequency is $\Delta \omega = k_f$ (rad/s).
- Setting $\varphi_0 = 0$, the modulated signal is expressed as

$$s_f(t) = A\cos\left(\omega_0 t + k_f \int \cos \omega_m t \, dt\right)$$
$$= A\cos[\omega_0 t + (\Delta \omega/\omega_m) \sin \omega_m t]$$

• $m_f = \frac{\Delta \omega}{\omega_m} = \frac{\Delta f}{f_m} = \frac{k_f}{\omega_m}$ is the ratio of the largest frequency deviation to the frequency of the baseband signal, and is called frequency modulation index.

Non-linear Modulation Frequency Spectrum and Bandwidth

• The expression of $s_f(t)$ can be expended as the following infinite series:

$$s_f(t)$$

$$= A\{J_0(m_f)\cos\omega_0 t + J_1(m_f)[\cos(\omega_0 + \omega_m)t - \cos(\omega_0 - \omega_m)t] + J_2(m_f)[\cos(\omega_0 + 2\omega_m)t + \cos(\omega_0 - 2\omega_m)t]$$

The Bessel function has the following properties

$$J_n(m_f) = J_{-n}(m_f)$$
 for even n
 $J_n(m_f) = -J_{-n}(m_f)$ for odd n

Non-linear Modulation

Frequency Spectrum and Bandwidth

We have

$$s_f(t) = A \sum_{n=-\infty}^{\infty} J_n(m_f) \cos(\omega_0 + n\omega_m) t$$

• There are side frequencies in pair with angular frequencies $(\omega_0 \pm \omega_m), (\omega_0 \pm 2\omega_m), ...,$ appearing on both sides of the carrier frequency in the frequency spectrum, which means that the bandwidth of modulated signal is infinity.

Non-linear Modulation Frequency Spectrum and Bandwidth

- However, most of the power concentrates within a limited bandwidth centered at the carrier frequency.
- When $m_f \ll 1$, the bandwidth is approximately $2\omega_m$.
- Frequency modulation with small modulation index is called narrowband frequency modulation, otherwise it is called broadband frequency modulation.
- The bandwidth increases as the modulation index increases.
- For broadband frequency modulation, if we neglect the side frequencies with amplitudes smaller than 10% of unmodulated carrier amplitude, then we can omit those $J_n(m_f)$ with $n > m_f + 1$.

Non-linear Modulation Frequency Spectrum and Bandwidth

 The bandwidth B of the modulated signal for frequency modulation is approximately (Carson bandwidth)

$$B \approx 2(m_f + 1)\omega_m = 2(\Delta\omega + \omega_m)$$
 (rad/s)
 $B \approx 2(m_f + 1)f_m = 2(\Delta f + f_m)$ (Hz)

where $\Delta f = \Delta \omega/2\pi$ is frequency deviation, and f_m is the frequency of the modulating signal.

• The above example discusses single sinusoidal wave modulation. For a modulating signal with multiple frequency components, f_m in the above equation should be the frequency of the highest frequency component of the modulating signal.

Non-linear Modulation Reception of Angular Modulation Signals

- The amplitude of an angular modulated signal is constant and does not contain information.
- The change of amplitude due to fading and noise in the channel does not affect information reception.
- The impact of fading and noise on the angle (frequency and phase) of a signal is not as significant as that on amplitude.
- The anti-jamming ability of angular modulation is stronger than that of linear modulation.
- To eliminate the impact of fading and noise, an amplitude limiter is applied before demodulation to remove amplitude variation.

- 1. Introduction
- 2. Linear Modulation
 - Amplitude Modulation (AM)
 - Double-Sideband Modulation (DSB)
 - Vestigial Sideband Modulation (VSB)
- 3. Non-linear Modulation
 - Phase Modulation
 - Frequency Modulation
- 4. Summary

Summary

- Analog modulation can be classified as linear modulation and nonlinear modulation.
- Frequency spectrum structure of a linear modulated signal is the displacement of that of the modulating signal.
- Linear modulation includes AM, DSB, SSB, and VSB.
- Nonlinear modulation is also called angle modulation, including frequency modulation and phase modulation.
- Frequency spectrum structure of a nonlinear modulated signal is different from that of the modulating signal.
- New frequency components appear, resulting in increased bandwidth.

Principles of Communications (通信系统原理)

Undergraduate Course

Chapter 5: Analog Modulation

José Rodríguez-Piñeiro (Xose) <u>j.rpineiro@tongji.edu.cn</u>

Wireless Channel Research Laboratory

Department of Information and Communication Engineering

College of Electronics and Information Engineering China-Deutsch Center for Intelligent Systems

Tongji University