Bits, bytes, y enteros

95.57/75.03 Organización del computador

Docentes: Patricio Moreno y Adeodato Simó

1.er cuatrimestre de 2020

Última modificación: Tue Aug 27 14:59:00 2019 -0300

Facultad de Ingeniería (UBA)

Créditos

Para armar las presentaciones del curso nos basamos en:

R. E. Bryant and D. R. O'Hallaron, *Computer systems: a programmer's perspective*, Third edition, Global edition. Boston Columbus Hoboken Indianapolis New York San Francisco Cape Town: Pearson, 2016.

D. A. Patterson and J. L. Hennessy, *Computer organization and design: the hardware/software interface*, RISC-V edition. Cambridge, Massachusetts: Morgan Kaufmann Publishers, an imprint of Elsevier, 2018.

J. L. Hennessy and D. A. Patterson, *Computer architecture: a quantitative approach*. 2019.

1. Representando la información como bits

Sistemas de numeración

La información se mueve en bits

Organización de la memoria

Lilliput & Blefuscu

- 2. Manipulación de bits
- 3. Representación de enteros

Representaciones signed y unsigned

Uso en C

Aritmética

- 4. Representaciones en memoria
- 5. Code Security

1. Representando la información como bits

Sistemas de numeración

La información se mueve en bits

Organización de la memoria

Lilliput & Blefuscu

- 2. Manipulación de bits
- Representación de enteros

Representaciones signed y unsigned

Uso en C

Aritmétics

- 4. Representaciones en memoria
- 5. Code Security

1. Representando la información como bits

Sistemas de numeración

La información se mueve en bits

Organización de la memoria

Lilliput & Blefuscu

- 2. Manipulación de bit
- 3. Representación de enteros

Representaciones signed y unsigned

Uso en (

Aritmética

- 4. Representaciones en memoria
- 5. Code Security

- Posicionales
 - $\qquad \qquad \textbf{Decimal: } 2953253037_{10} = 2953253037_{10}$

$$2953253037_{10} = 2 \cdot 10^9 + 9 \cdot 10^8 + 5 \cdot 10^7 + 3 \cdot 10^6 + 2 \cdot 10^5 + 5 \cdot 10^4 + 3 \cdot 10^3 + 3 \cdot 10^1 + 7 \cdot 10^0$$

- Posicionales
 - Decimal: 2953253037₁₀ = 2953253037₁₀
 - Hexadecimal alias hexa: 2953253037₁₀ = b00710ad₁₆

$$b00710ad_{16} = b \cdot 16^7 + 7 \cdot 16^4 + 1 \cdot 16^3 + a \cdot 16^1 + d \cdot 16^0$$

- Posicionales
 - Decimal: 2953253037₁₀ = 2953253037₁₀
 - Hexadecimal alias hexa: 2953253037₁₀ = b00710ad₁₆

- Posicionales
 - Decimal: 2953253037₁₀ = 2953253037₁₀
 - Hexadecimal alias hexa: 2953253037₁₀ = b00710ad₁₆

 - Binario: $2953253037_{10} = 1011000000001110001000010101101_2$

$$101100000000111000100010101101_{10} = 1 \cdot 2^{31} + 0 \cdot 2^{30} + 1 \cdot 2^{29} + 1 \cdot 2^{28} + 0 \cdot 2^{27}$$

- Posicionales
 - Decimal: 2953253037₁₀ = 2953253037₁₀
 - Hexadecimal alias hexa: 2953253037₁₀ = b00710ad₁₆

 - Binario: $2953253037_{10} = 1011000000001110001000010101101_2$

$$N_b = \sum_{i=-\infty}^{\infty} c_i \cdot b^i$$

- Posicionales
 - Decimal: 2953253037₁₀ = 2953253037₁₀
 - Hexadecimal alias hexa: 2953253037₁₀ = b00710ad₁₆

 - Binario: 2953253037₁₀ = 10110000000001110001000010101101₂

$$N_b = \sum_{i=-\infty}^{\infty} c_i \cdot b^i$$

- No posicionales
 - Romano: 2019₁₀ = MMXIX

1. Representando la información como bits

Sistemas de numeración

La información se mueve en bits

Organización de la memoria

Lilliput & Blefuscu

- 2. Manipulación de bits
- 3. Representación de enteros

Representaciones signed y unsigned

Uso en C

Aritmética

- 4. Representaciones en memoria
- 5. Code Security

Todo está compuesto por bits

- Cada bit es 0 o es 1
- Al encodear/interpretar los bits de distintas maneras
 - las computadoras determinan qué hacer (instrucciones)
 - representan y manipulan numeros, caracteres, cadenas, etc.
- ¿por qué bits? Por la electrónica subyacente
 - fáciles de almacenar en elementos biestables
 - se transmiten de manera confiable

Todo está compuesto por bits

- Cada bit es 0 o es 1
- Al encodear/interpretar los bits de distintas maneras
 - las computadoras determinan qué hacer (instrucciones)
 - representan y manipulan numeros, caracteres, cadenas, etc.
- ¿por qué bits? Por la electrónica subyacente
 - fáciles de almacenar en elementos biestables
 - se transmiten de manera confiable

Ejemplos: representaciones en binario

Representación de números en Base 2

El número 13548250₁₀ se representa como 110011101011101011011010₂

Ejemplos: representaciones en binario

Representación de números en Base 2

- El número 13548250₁₀ se representa como 110011101011101011011010₂
- El número 1,20₁₀ se representa como 1.001100110011 [0011]...₂

$$1,20_{10} = 1 \cdot 2^{0} + 0 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} + 1 \cdot 2^{-4} + 0 \cdot 2^{-5} + 0 \cdot 2^{-6} + 1 \cdot 2^{-7} + 1 \cdot 2^{-8} + 0 \cdot 2^{-6} + 1 \cdot 2^{-7} + 1 \cdot 2$$

8

Ejemplos: representaciones en binario

Representación de números en Base 2

- El número 13548250₁₀ se representa como 110011101011101011011010₂
- El número 1,20₁₀ se representa como 1.00110011[0011]...₂

$$1,20_{10} = 1 \cdot 2^{0} + 0 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} + 1 \cdot 2^{-4} + 0 \cdot 2^{-5} + 0 \cdot 2^{-6} + 1 \cdot 2^{-7} + 1 \cdot 2^{-8} + 0 \cdot 2^{-6} + 1 \cdot 2^{-7} + 1 \cdot 2$$

■ El número $1,3548250 \times 10^7$ se representa como $1.100111010111011011011010_2 \times 2^{23}$

8

- Binario: 00000000₂ a 11111111₂
- Decimal: 0₁₀ a 255₁₀
- Hexa: 00₁₆ a FF₁₆
 - del 0 al 9 ¿y después? ¿113 es 1-13 u 11-3?

- Binario: 000000002 a 1111111112
- Decimal: 0₁₀ a 255₁₀
- Hexa: 00₁₆ a FF₁₆
 - del 0 al 9 ¿y después? ¿113 es 1-13 u 11-3?

nex	a deci	mal binario
No.	de	p,,
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
C	12	1100
D	13	1101
Ε	14	1110
F	15	1111

- Binario: 000000002 a 1111111112
- Decimal: 0₁₀ a 255₁₀
- Hexa: 00₁₆ a FF₁₆
 - del 0 al 9 ; y después? ; 113 es 1-13 u 11-3?
 - Se utilizan los caracteres '0' a '9' y 'A' a 'F'

hex	a deci	mal binario
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
C	12	1100
D	13	1101
Ε	14	1110
F	15	1111

- Binario: 000000002 a 1111111112
- Decimal: 0₁₀ a 255₁₀
- Hexa: 00₁₆ a FF₁₆
 - del 0 al 9 ; y después? ; 113 es 1-13 u 11-3?
 - Se utilizan los caracteres '0' a '9' y 'A' a 'F'
- En C, un entero en hexa se escribe de la siguiente manera:
 - $b00710ad_{16} \rightarrow 0xb00710ad$
 - o bien: 0xB00710AD

net	a deci	mal binario
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
C	12	1100
D	13	1101
Е	14	1110
F	15	1111

1 Byte = 8 bits

- Binario: 000000002 a 1111111112
- Decimal: 0₁₀ a 255₁₀
- Hexa: 00₁₆ a FF₁₆
 - del 0 al 9 ; y después? ; 113 es 1-13 u 11-3?
 - Se utilizan los caracteres '0' a '9' y 'A' a 'F'
- En C, un entero en hexa se escribe de la siguiente manera:
 - $b00710ad_{16} \rightarrow 0xb00710ad$
 - o bien: 0xB00710AD

; para qué me sirve?

hexa	deci	mal binario
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
C	12	1100
D	13	1101
Е	14	1110
F	15	1111

1. Representando la información como bits

Sistemas de numeración

La información se mueve en bits

Organización de la memoria

Lilliput & Blefuscu

- Manipulación de bits
- Representación de enteros

Representaciones signed y unsigned

Uso en C

Aritmética

- 4. Representaciones en memoria
- 5. Code Security

- Los programas acceden a los datos usando direcciones de memoria
 - conceptualmente, la ven como un arreglo de bytes
 - no lo es, pero sirve pensarlo así

- Los programas acceden a los datos usando direcciones de memoria
 - conceptualmente, la ven como un arreglo de bytes
 - no lo es, pero sirve pensarlo así

una dirección de memoria es como un índice en ese arreglo

- Los programas acceden a los datos usando direcciones de memoria
 - conceptualmente, la ven como un arreglo de bytes
 - no lo es, pero sirve pensarlo así

- una dirección de memoria es como un índice en ese arreglo
 - un puntero es una variable que guarda direcciones de memoria

- Los programas acceden a los datos usando direcciones de memoria
 - conceptualmente, la ven como un arreglo de bytes
 - no lo es, pero sirve pensarlo así

- una dirección de memoria es como un índice en ese arreglo
 - un puntero es una variable que guarda direcciones de memoria p = 0xFF...D;

- Los programas acceden a los datos usando direcciones de memoria
 - conceptualmente, la ven como un arreglo de bytes
 - no lo es, pero sirve pensarlo así

- una dirección de memoria es como un índice en ese arreglo
 - un puntero es una variable que guarda direcciones de memoria
 p = 0xFF...D;

- Los programas acceden a los datos usando direcciones de memoria
 - conceptualmente, la ven como un arreglo de bytes
 - no lo es, pero sirve pensarlo así

- una dirección de memoria es como un índice en ese arreglo
 - un puntero es una variable que guarda direcciones de memoria p = 0xFF...D;
- Cada proceso tiene su espacio de direcciones privado
 - piensen un proceso como un programa en ejecución
 - un programa puede modificar sus datos, pero no los de otro
 - no siempre fue así :-S

Tamaño de palabras

Todo sistema tiene un tamaño de palabra (word size)

- Tamaño nominal de los datos enteros
 - incluyendo las direcciones de memoria
- Máquinas de 32 bits:
 - word size: 4 bytes
 - address space: limitado a 4GB (2³² bytes)
- Máquinas de 64 bits:
 - word size: 8 bytes
 - address space: "limitado" a 18+ EB (exabyte) (2⁶⁴ bytes)
 - 4294967296

18446744073709552000

; Y los datos de otros tamaños?

Organización de la memoria: de a palabras

Las direcciones

- indican las posiciones de bytes
- en particular, del primer byte de una palabra
- palabras sucesivas difieren en 4 u 8

addr = 0000

addr =

Tamaños de datos

Tipo (C)	32-bit	64-bit	×86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	_	_	10/16
int *	4	8	8
char *	4	8	8
cualquier puntero	4	8	8

1. Representando la información como bits

Sistemas de numeración

La información se mueve en bits

Organización de la memoria

Lilliput & Blefuscu

- 2. Manipulación de bits
- Representación de enteros

Representaciones signed y unsigned

Uso en C

Aritmética

- 4. Representaciones en memoria
- 5. Code Security

Byte ordering

¿Cómo se pueden ordenar los bytes de datos multi-byte en memoria?

Supongamos

- La variable kiwi almacena el valor de 4-bytes: 0x01234567
- La posición de memoria dada por &kiwi es: 0x100
- El byte más significativo es 0x01, el menos significativo es 0x67

Big E	ndian:		0x100	0x101	0x102	0x103		
• • •			01	23	45	67		
Little	Endian	:	0x100	0x101	0x102	0x103		
			67	45	23	01		

Byte ordering

¿Cómo se ordenan los bytes de datos multi-byte en memoria?

¡Por convención!

Byte ordering

¿Cómo se ordenan los bytes de datos multi-byte en memoria?

¡Por convención!

Convenciones

- Big Endian: las viejas Sun SPARC y iMac PowerPC (hoy son bi-).
 - El byte menos significativo tiene la dirección más alta.

Byte ordering

¿Cómo se ordenan los bytes de datos multi-byte en memoria?

¡Por convención!

Convenciones

- Big Endian: las viejas Sun SPARC y iMac PowerPC (hoy son bi-).
 - El byte menos significativo tiene la dirección más alta.
- Little Endian: x86, ADM64/x86-64, los ARM que corren Android, iOS y Windows.
 - El byte menos significativo tiene la dirección más baja.

C Puzzles

- 32-bit *word-size*, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones

```
1 int x = foo();
2 int y = bar();
3 unsigned ux = x;
4 unsigned uy = y;
```

- ux >= 0
- $x \& 7 == 7 \Rightarrow (x << 30) < 0$
- 11x > -1
- x > y ⇒ -x < -y
- x * x >= 0
- $x > 0 \&\& y > 0 \Rightarrow x + y > 0$
- x >= 0 ⇒ -x <= 0
- x <= 0 ⇒ -x >= 0

Tabla de contenidos

1. Representando la información como bits

Sistemas de numeración

La información se mueve en bits

Organización de la memoria

Lilliput & Blefuscu

2. Manipulación de bits

3. Representación de enteros

Representaciones signed y unsigned

Uso en C

Aritmética

- 4. Representaciones en memoria
- 5. Code Security

Álgebra de Boole

Desarrollada por George Boole en el siglo 19

- Representación algebráica de la lógica
- Codifica los valores de verdad "Verdadero" como 1 y "Falso" como 0

AND

$$A\&B = 1$$
 cuando $A = 1 \lor B = 1$

NOT

$$\sim A = 1$$
 cuando $A = 0$

OR

$$A\&B = 1$$
 cuando $A = 1$ y $B = 1$ $A \mid B = 1$ cuando $A = 1$ o $B = 1$

	0	1
0	0	1
1	1	1

EXclusive-OR (XOR)

 $A \cap B = 1$ cuando A = 1 o B = 1, pero no ambos

Álgebras de Boole en general

Operan con vectores de bits

Aplican bit a bit

Aplican todas las propiedades del Álgebra Booleana

- $\langle \{0,1\}, |, \&, ,0,1 \rangle$ forman un álgebra
- OR es la operación "suma"
- AND es la operación "producto"
- NOT es la operación "complemento"
- 0 es la identidad para la "suma"
- 1 es la identidad para el "producto"

Operaciones con bits en C

Operaciones & (AND), | (OR), ~ (NOT), ^ (XOR)

- Aplican a cualquier dato "entero"
 - long, int, short, char, unsigned
- Vectores de bits

Ejemplos

- $\sim 0x41 \Rightarrow 0xBE$
 - $\sim 01000001_2 \Rightarrow 101111110_2$
- \sim 0x00 \Rightarrow 0xFF
 - $\sim 00000000_2 \Rightarrow 11111111_2$

- $0x69 \& 0x55 \Rightarrow 0x41$
 - \bullet 01101001₂&01010101₂ \Rightarrow 01000001₂
- $0x69 \mid 0x55 \Rightarrow 0x7D$
 - \bullet 01101001₂|01010101₂ \Rightarrow 011111101₂

Contraste: operaciones lógicas en C

Operaciones && (AND), || **(OR),** ! **(NOT)**

- 0 es "Falso"
- Cualquier cosa distintas de cero es "Verdadera"
- Retornan 0 ó 1
- Evaluación mínima: ¡short-circuits!

Ejemplos

- $10x41 \Rightarrow 0x00$
- $!0x00 \Rightarrow 0x01$
- $!!0x41 \Rightarrow 0x01$

- $0x69 \mid 1 \mid 0x55 \Rightarrow 0x01$
- p && *p (evita el acceso a punteros nulos)

Desplazamientos: shift

Left Shift: u << k

Desplaza	los	bits	de	u	а	la	izquierda ${\tt k}$	
posicione	S							

Diale Chife >> 1-		
Completa con ceros a la derecha	Arit. >> 2	00011000
 Descarta los k bits de la izquierda 	Log. >> 2	00011000
posiciones	<< 3	00010000

Right Shift: u >> k

- Desplaza los bits de u a la derecha
 - Descarta los k bits de la derecha
- Desplazamiento lógico
 - Completa con ceros a izquierda
- Desplazamiento aritmético
 - Replica el msb k veces a izquierda

Argumento u	10100010		
<< 3	00010000		
Log. >> 2	00101000		
Arit. >> 2	11101000		

Argumento u 01100010

Si k < 0 ó $k \ge al$ word-size \Rightarrow Undefined Behaviour

Tabla de contenidos

1. Representando la información como bits

Sistemas de numeración

La información se mueve en bits

Organización de la memoria

Lilliput & Blefuscu

- Manipulación de bits
- 3. Representación de enteros

Representaciones signed y unsigned

Uso en C

Aritmética

- 4. Representaciones en memoria
- 5. Code Security

Tabla de contenidos

1. Representando la información como bits

Sistemas de numeración

La información se mueve en bits

Organización de la memoria

Lilliput & Blefuscu

- 2. Manipulación de bits
- 3. Representación de enteros

Representaciones signed y unsigned

Uso en C

Aritmética

- 4. Representaciones en memoria
- 5. Code Security

No signado

$$B2U_w(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Complemento a 2

$$B2T_w(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short: 2 bytes

1	short	int	X	=	16162;
2	short	int	у	=	-16162;

	Decimal	Hexa	Binario
x	16162	3F 22	00111111 00100010
У	-16162	CO DE	11000000 11011110

Bit de signo

En complemento a dos, el bit más significativo (MSB) indica el signo

0 para positivo

No signado

Complemento a 2

$$B2U_w(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

$$B2T_w(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short: 2 bytes

1	short	int	X	=	16162;
2	short	int	У	=	-16162;

	Decimal	Hexa	Binario			
x	16162	3F 22	00111111 00100010			
У	-16162	CO DE	11000000 11011110			

Bit de signo

En complemento a dos, el bit más significativo (MSB) indica el signo

0 para positivo

No signado

Complemento a 2

$$B2U_w(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

$$B2T_{w}(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_{i} \cdot 2^{i}$$

short: 2 bytes

1	short	int	X	=	16162;
2	short	int	У	=	-16162;

	Decimal	Hexa		Binario			
x	16162	3F	22	<u>0</u> 0111111	00100010		
у	-16162	CO	DE/	11000000	11011110		

Bit de signo

En complemento a dos, el bit más significativo (MSB) indica el signo

0 para positivo

No signado

Complemento a 2

$$B2U_w(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

$$B2T_w(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short: 2 bytes

short int x = 16162;
short int y = -16162;

	Decimal	Hexa	Binario			
X	16162	3F 22	00111111	00100010		
У	-16162	CO DE/	11000000	11011110		

Bit de signo

En complemento a dos, el bit más significativo (MSB) indica el signo

0 para positivo

Ejemplos $B2U_w(X)$ **y** $B2T_w(X)$

x = 16162 : 00111111 00100010y = -16162 : 11000000 11011110

Peso (2^i)	16162		-	16162
1	0	0	0	0
2	1	2	1	2
4	0	0	1	4
8	0	0	1	8
16	0	0	1	16
32	1	32	0	0
64	0	0	1	64
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	1	1024	0	0
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Suma:		16162		-16162

Rangos numéricos

Límites: no signados

Límites: complemento a dos

UMin = 0 (000...0)
$$TMin = -2^{w-1}$$
 (100...0)
UMax = $2^{w} - 1$ (111...1) $TMax = 2^{w-1} - 1$ (011...1)

Valores para w = 16

	Decimal	Hexa	Binario
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Valores para distintos tamaño de palabra

	tamaño de palabra (<i>w</i>)				
	8	16	32	64	
UMax	255	65535	4294967296	18 446 744 073 709 551 615	
TMax	127	32767	2147483647	9 223 372 036 854 775 807	
TMin	-128	-32768	-2147483648	-9 223 372 036 854 775 808	

Observaciones

- \blacksquare $|\mathsf{TMin}| = \mathsf{TMax} + 1$
 - Rango asimétrico
- $UMax = 2 \cdot TMax + 1$

Programación en C

- #include <limits.h>
- Declara constantes
 - ULONG_MAX,
 - LONG_MAX,
 - LONG_MIN,
 - USHRT_MAX, etc.
- Los valores son dependientes de la plataforma

Relación entre signado y no signado

X	B2U(X)	B2T(X)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

DO 11/3/

Equivalencia

 Mismo encoding para valores no negativos

Unicidad

- Cada patrón representa un único entero
- A cada entero representable le corresponde un único patrón

■ ⇒ se pueden invertir los mapeos

•
$$U2B(X) = B2U^{-1}(X)$$

 Patrón de bits para un entero sin signo

•
$$T2B(X) = B2T^{-1}(X)$$

 Patrón de bits para un entero en complemento a dos

Conversión de signado a no signado

C permite convertir enteros signados a no signados

```
short int x = 16162;
unsigned short int ux = (unsigned short) x;
short int y = -16162;
unsigned short int uy = (unsigned short) y;
```

Resultado

- NO cambia la representación binaria
- Los valores no negativos se mantienen igual
 - ux = 16162
- Los valores negativos cambian a valores (muy) grandes
 - uv = 49374

Conversión de signado a no signado

No cambia el patrón de bits: mantener los bits y reinterpretar

Relación entre signado y no signado

$$ux = \begin{cases} x & x \ge 0 \\ x + 2^w & x < 0 \end{cases}$$

Un peso negativo grande se convierte en un peso positivo grande

Relación entre signado y no signado

Peso (2 ⁱ)		-16162	49374	
1	0	0	0	0
2	1	2	1	2
4	1	4	1	4
8	1	8	1	8
16	1	16	1	16
32	0	0	0	0
64	1	64	1	64
128	1	128	1	128
256	0	0	0	0
512	0	0	0	0
1024	0	0	0	0
2048	0	0	0	0
4096	0	0	0	0
8192	0	0	0	0
16384	1	16384	1	16384
±32768	1	-32768	1	32768
Suma:		-16162		49374

Tabla de contenidos

1. Representando la información como bits

Sistemas de numeración

La información se mueve en bits

Organización de la memoria

Lilliput & Blefuscu

- Manipulación de bits
- 3. Representación de enteros

Representaciones signed y unsigned

Uso en C

Aritmética

- 4. Representaciones en memoria
- 5. Code Security

Constantes

- por omisión, son signadas
- U es el sufijo unsigned0U, 4294967259U

Casting

Explícito

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implícito: asignaciones, evaluaciones, llamadas

```
1 tx = ux;
2 uy = ty;
```

- si hay mezcla de signados y no signados en una expresión los valores con signo se castean implícitamente a unsigned
- Ejemplos para W = 32: TMIN = -2147483648, TMAX = 2147483647

Constante ₁	Constante ₂	Relación	Evaluación
0	OU	==	
-1	0	<	
-1	OU	>	
2147483647	-2147483647-1	>	
2147483647U	-2147483647-1	<	
-1	-2	>	
(unsigned)-1	-2	>	
2147483647	2147483648U	<	
2147483647	(int)2147483648U	>	

- si hay mezcla de signados y no signados en una expresión los valores con signo se castean implícitamente a unsigned
- Ejemplos para W = 32: TMIN = -2147483648, TMAX = 2147483647

Constante ₁	Constante ₂	Relación	Evaluación
0	OU	==	unsigned
-1	0	<	
-1	OU	>	
2147483647	-2147483647-1	>	
2147483647U	-2147483647-1	<	
-1	-2	>	
(unsigned)-1	-2	>	
2147483647	2147483648U	<	
2147483647	(int)2147483648U	>	

- si hay mezcla de signados y no signados en una expresión los valores con signo se castean implícitamente a unsigned
- Ejemplos para W = 32: TMIN = -2147483648, TMAX = 2147483647

Constante ₁	Constante ₂	Relación	Evaluación
0	OU	==	unsigned
-1	0	<	signed
-1	OU	>	
2147483647	-2147483647-1	>	
2147483647U	-2147483647-1	<	
-1	-2	>	
(unsigned)-1	-2	>	
2147483647	2147483648U	<	
2147483647	(int)2147483648U	>	

- si hay mezcla de signados y no signados en una expresión los valores con signo se castean implícitamente a unsigned
- Ejemplos para W = 32: TMIN = -2147483648, TMAX = 2147483647

Constante ₁	Constante ₂	Relación	Evaluación
0	OU	==	unsigned
-1	0	<	signed
-1	OU	>	unsigned
2147483647	-2147483647-1	>	
2147483647U	-2147483647-1	<	
-1	-2	>	
(unsigned)-1	-2	>	
2147483647	2147483648U	<	
2147483647	(int)2147483648U	>	

- si hay mezcla de signados y no signados en una expresión los valores con signo se castean implícitamente a unsigned
- Ejemplos para W = 32: TMIN = -2147483648, TMAX = 2147483647

Constante ₁	Constante ₂	Relación	Evaluación
0	OU	==	unsigned
-1	0	<	signed
-1	OU	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	
-1	-2	>	
(unsigned)-1	-2	>	
2147483647	2147483648U	<	
2147483647	(int)2147483648U	>	

- si hay mezcla de signados y no signados en una expresión los valores con signo se castean implícitamente a unsigned
- Ejemplos para W = 32: TMIN = -2147483648, TMAX = 2147483647

Constante ₁	Constante ₂	Relación	Evaluación
0	OU	==	unsigned
-1	0	<	signed
-1	OU	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	
(unsigned)-1	-2	>	
2147483647	2147483648U	<	
2147483647	(int)2147483648U	>	

- si hay mezcla de signados y no signados en una expresión los valores con signo se castean implícitamente a unsigned
- Ejemplos para W = 32: TMIN = -2147483648, TMAX = 2147483647

Constante ₁	Constante ₂	Relación	Evaluación
0	OU	==	unsigned
-1	0	<	signed
-1	OU	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	
2147483647	2147483648U	<	
2147483647	(int)2147483648U	>	

- si hay mezcla de signados y no signados en una expresión los valores con signo se castean implícitamente a unsigned
- Ejemplos para W = 32: TMIN = -2147483648, TMAX = 2147483647

Constante ₁	Constante ₂	Relación	Evaluación
0	OU	==	unsigned
-1	0	<	signed
-1	OU	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	
2147483647	(int)2147483648U	>	

- si hay mezcla de signados y no signados en una expresión los valores con signo se castean implícitamente a unsigned
- Ejemplos para W = 32: TMIN = -2147483648, TMAX = 2147483647

Constante ₁	Constante ₂	Relación	Evaluación
0	OU ==		unsigned
-1	0	<	signed
-1	OU	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int)2147483648U	>	

- si hay mezcla de signados y no signados en una expresión los valores con signo se castean implícitamente a unsigned
- Ejemplos para W = 32: TMIN = -2147483648, TMAX = 2147483647

Constante ₁	Constante ₂	Relación	Evaluación
0	OU	==	unsigned
-1	0	<	signed
-1	OU	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int)2147483648U	>	signed

Extensión de signo

Queremos:

- Dado un entero signado de w-bits
- Convertirlo a un entero de w + k-bits con el mismo valor

Regla:

Propagar el bit de signo a los nuevos k bits (MSB)

$$X' = \underbrace{x_{w-1}, \dots, x_{w-1}}_{k \text{ copias del MSB}}, \underbrace{x_{w-1}, x_{w-2}, \dots, x_1, x_0}_{\text{entero original}}$$

Extensión de signo: ejemplo

```
1 short int x = 16162;
2 int         ix = (int) x;
3 short int y = -16162;
4 int         iy = (int) y;
```

	Decimal	Hex	Binario
х	16162	3F 22	00111111 00100010
ix	16162	00 00 3F 22	00000000 00000000 00111111 00100010
У	-16162	CO DE	11000000 11011110
iy	-16162	FF FF CO DE	11111111 11111111 11000000 11011110

Se aumenta la cantidad de bits en la representación: expansión ó *up casting*.

Tabla de contenidos

1. Representando la información como bits

Sistemas de numeración

La información se mueve en bits

Organización de la memoria

Lilliput & Blefuscu

- 2. Manipulación de bit
- 3. Representación de enteros

Representaciones signed y unsigned

Uso en C

Aritmética

- 4. Representaciones en memoria
- 5. Code Security

Suma de enteros no signados

$$UAdd_w(u, v) = u + v \mod 2^w$$

Suma de enteros no signados

Suma teórica de enteros

Suma real de enteros

Suma de enteros en complemento a dos

- A nivel binario: comportamiento idéntico a la suma unsigned
 - int s, t, u, v;
 s = (int) ((unsigned) u + (unsigned) v);
 t = u + v;
 - dat == s

Suma de enteros signados

Ejemplo con $w = 4 \Longrightarrow$

- Requiere w+1 bits
- Descarta el MSB
- El resultado es en complemento a dos
- wraps around
 - Si la suma $> 2^{w-1}$
 - Se vuelve negativa
 - No más de una vez
 - Si la suma $< -2^{w-1}$
 - Se vuelve positiva
 - No más de una vez

u		V		sun	suma TAdd ₄ (u,v)		/)	
bin	dec	bin	dec	bin	dec	msb	4-bit	dec
0111	7	0111	7	01110	14	0	1110	-2
0111	7	0110	6	01101	13	0	1101	-3
0111	7	0101	5	01100	12	0	1100	-4
0110	6	0100	4	01010	10	0	1010	-6
0011	3	0110	6	01001	9	0	1001	-7
0110	6	0010	2	01000	8	0	1000	-8
0100	4	0011	3	00111	7	0	0111	7
0000	0	0110	6	00110	6	0	0110	6
0101	5	0000	0	00101	5	0	0101	5
1101	-3	0110	6	00011	3	0	0011	3
1111	-1	0010	2	00001	1	0	0001	1
1001	-7	0111	7	00000	0	0	0000	0
0011	3	1100	-4	11111	-1	1	1111	-1
1000	-8	0101	5	11101	-3	1	1101	-3
0100	4	1000	-8	11100	-4	1	1100	-4
1001	-7	0010	2	11011	-5	1	1011	-5
1000	-8	0001	1	11001	-7	1	1001	-7
1010	-6	1110	-2	11000	-8	1	1000	-8
1000	-8	1111	-1	10111	-9	1	0111	7
1010	-6	1100	-4	10110	-10	1	0110	6
1001	-7	1100	-4	10101	-11	1	0101	5
1000	-8	1100	-4	10100	-12	1	0100	4
1000	-8	1001	-7	10001	-15	1	0001	1
1000	-8	1000	-8	10000	-16	1	0000	0

Multiplicación de enteros

- Multiplicación estándar
 - ignora los w bits superiores
- Implementa aritmética modular
 - como ocurre con la suma:

$$\mathsf{UMult}_w(u, v) = u \cdot v \mod 2^w$$

Multiplicación de enteros

Multiplicación estándar

- ignora los w bits superiores
- los bits dentro de los w superiores pueden diferir
- los bits inferiores son iguales a UMult_w(u, v)

Multiplicar por potencias de 2

Representación numérica

$$N_2 = \sum_{i=0}^{w-1} b_i \cdot 2^i$$

- Multiplicar por 2^k
 - requiere k bits más

$$N_2 \cdot 2^k = \left(\sum_{i=0}^{w-1} b_i \cdot 2^i\right) \cdot 2^k$$

$$= \sum_{i=0}^{w-1} b_i \cdot 2^{i+k}$$

$$= \sum_{i=k}^{w+k-1} b_i \cdot 2^i + \sum_{j=0}^{k-1} 0 \cdot 2^j$$

• ignora los *k* bits superiores

Multiplicar por potencias de 2: shift

Operación

- $u \cdot 2^k$ se puede hacer con desplazamientos: u << k
- Tanto para signados como para no signados

Ejemplos

- u << 3 == u * 8
- (u << 5) (u << 3) == u * 24
- 64 1 << 3 * 2 1 ==

Multiplicar por potencias de 2: shift

Operación

- $u \cdot 2^k$ se puede hacer con desplazamientos: u << k
- Tanto para signados como para no signados

Ejemplos

- u << 3 == u * 8
- (u << 5) (u << 3) == u * 24
- 64 1 << 3 * 2 1 == 2016

Dividir por potencias de 2: shift

Operación

- $|u/2^k|$ se puede hacer con desplazamientos: u >> k
- Tanto para signados como para no signados

Ejemplos

	Teórica	Real	Hex	Binario	
х	16162	16162	3F 22	00111111 00100010	
x >> 1	8081.0	8081	1F 91	00011111 10010001	
x >> 2	4040.50	4040	OF C8	00001111 11001000	
x >> 8	63.133	63	00 3F	00000000 00111111	
У	-16162	-16162	CO DE	11000000 11011110	
y >> 1	-8081.0	-8081	EO 6F	11100000 01101111	
y >> 2	-4040.50	-4041	FO 37	11110000 00110111	
y >> 8	-63.133	-64	FF CO	11111111 11000000	

¿Cuándo usar unsigned?

- No usar sólo porque un número es no negativo
 - sin entender las consecuencias
 - es fácil cometer errores

```
1 unsigned i;
2 for (i = cnt-2; i >= 0; i--)
3    a[i] += a[i+1];
```

algunos muy sutiles

```
1 #define DELTA sizeof(int)
2 int i;
3 for (i = CNT; i-DELTA >= 0; i-= DELTA) ...
```

- Usar cuando se opera con aritmética modular
 - Por ejemplo: aritmética de precisión arbitaria
- Usar cuando se utilizan los bits para representar información en grupos

Contar hacia abajo usando unsigned

Manera correcta de usar unsigned en un ciclo

```
1 unsigned i;
2 for (i = cnt - 2; i < cnt; --i)
3     a[i] += a[i+1];</pre>
```

el estándar de C garantiza que la suma unsigned es modular:

```
0-1 	o \mathsf{UMax}
```

Versión mejorada

```
1 size_t i;
2 for (i = cnt - 2; i < cnt; --i)
3     a[i] += a[i+1];</pre>
```

Versión mejorada y concisa

```
while (cnt--)
a[cnt] += a[cnt + 1]; /* ?`cuál es el problema? */
```

Tabla de contenidos

1. Representando la información como bits

Sistemas de numeración

La información se mueve en bits

Organización de la memoria

Lilliput & Blefuscu

- 2. Manipulación de bits
- Representación de enteros

Representaciones signed y unsigned

Uso en C

Aritmética

- 4. Representaciones en memoria
- 5. Code Security

Representación en memoria: enteros

Decimal: 16162

Binario: 0011 1111 0010 0010 **Hex:** 3 F 2 2

int x = 16162;

int x = -16162;

long int x = 16162;

Representación en memoria: punteros

```
int i = -16162;
int *p = &i;
```

Sun	IA32	x86-64
EF	AC	3C
FF	28	1B
FB	F5	FE
2C	FF	82
		FD
		7F
		00
		00

Representación en memoria: cadenas

Cadenas en C

- Arreglo de chars
- Encoding ASCII
 - Set de caractères estándar de 7-bit.
 - El caracter '0' tiene el código 0x30
 - Dígito i: código 0x30 + i
 - El caracter 'a' tiene el código 0x61
 - El caracter 'A' tiene el código 0x41
- null-terminated (último caracter = 0)

Compatibilidad

No hay problema con el endianness

char s[] = "Orga 95.57";

Representación en memoria: programas

Cada programa se almacena como una secuencia de instrucciones

- Cada instrucción es una operación
 - una operación aritmética
 - leer o escribir la memoria
 - un salto condicional
- Cada instrucción se codifica con una secuencia de bytes
 - Reduced Instruction Set Computer (RISC)
 - Instrucciones simples y más veloces
 - Requiere más instrucciones para una operación compleja
 - Complex Instruction Set Computer (CISC)
 - Instrucciones complejas y más lentas
 - · Requiere menos instrucciones para una operación compleja
- El tipo de instrucciones y su codificación varía de máquina a máquina
 - Código binario no compatible

Representación en memoria: programas

```
int multstore (int x, int y, int *r) {
     *r = x * y;
3
 return *r;
4
```

\$ \$CC -std=c99 -o \$ARCH-multsore -c -Og multstore.c

Ì	itel/gc	C
	89	
	F8	
	OF	
	AF	
	C6	
	89	
	02	
	C3	

arm/gcc

FB
01
F0
00
60
10
47
70

08 mc
nac/gc
E0
00
00
91
E5
82
00
00
E1
2F
FF

1E

Examinando datos en C

Código para imprimir los datos

```
typedef unsigned char *byte_pointer;
2
 void show_bytes(byte_pointer start, size_t len) {
      size t i;
4
     for (i = 0; i < len; i++)</pre>
6
          printf("%p\t0x%02x\n",start+i, start[i]);
     printf("\n");
8
9
```

Especificadores de printf:

imprimir puntero:

%pimprimir valor hexadecimal:

Examinando datos en C

Código para imprimir los datos

```
typedef unsigned char *byte_pointer

void show_bytes(byte_pointer start, size_t len) {
    size_t i;

for (i = 0; i < len; i++)
        printf("%p\tox%02x\n",start+i, start[i]);
    printf("\n");
}</pre>
```

Especificadores de printf:

imprimir puntero: %p-

imprimir valor hexadecimal: %x-

Castear byte_pointer a unsigned char * nos permite trabajar los datos como un arreglo de bytes

Ejemplo de ejecución

Código

```
1 unsigned int manzana = 2953253037;
2 puts("unsigned int manzana = 2953253037;")
3 show_bytes((byte_pointer) &manzana, sizeof(unsigned int));
```

Resultado (GNU/Linux x86-64)

Ejemplo de ejecución

Código

```
1 unsigned int manzana = 2953253037;
2 puts("unsigned int manzana = 2953253037;")
3 show_bytes((byte_pointer) &manzana, sizeof(unsigned int));
```

Resultado (GNU/Linux x86-64)

¿En qué endianness está guardado?

Descifrando código desensamblado

Desensamblado

- Texto que representa código de máquina binario
- Generado por un programa que lee el código de máquina

Ejemplo

	Address	Instruction C	ode	Assembly	
	8048365:	5b		pop %ebx	
	8048366:	81 c3 <u>a</u> b 12	00 00	\$0x12ab, %ebx	
	804836c:	83 bb 28 00	00 00	00 \$0x0,0x28(%ebx)	
	Descifrando	valores			
	Valor:		\	0x12ab	
Pad a 32-bits:		0x000012ab			
Separar en bytes:			00 00 12 ab		
	Invertir:			ab 12 00 00	

Descifrando código desensamblado

Desensamblado

- Texto que representa código de máquina binario
- Generado por un programa que lee el código de máquina

Ejemplo

```
Address
            Instruction Code
                                     Assembly
8048365: 5b
                                     pop %ebx
8048366: 81 c3 ab 12 00 00
                                     $0x12ab, %ebx
804836c:
            83 bb 28 00 00 00 00
                                     $0x0,0x28(%ebx)
Descifrando valores
 Valor:
                                      0x12ab
 Pad a 32-bits:
                                 0x000012ab
 Separar en bytes:
                                00 00 12 ab
 Invertir:
                                ab 12 00 00
```

¿En qué endianness está guardado?

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

1.
$$x < 0$$
 \Rightarrow $((x*2) < 0)$ Falso:

$$2. ux >= 0$$

3.
$$x \& 7 == 7$$
 \Rightarrow $(x << 30) < 0$

4.
$$ux > -1$$

5.
$$x > y$$
 \Rightarrow $-x < -y$

6.
$$x * x >= 0$$

8.
$$x \ge 0$$
 \Rightarrow $-x \le 0$

9.
$$x \le 0$$
 \Rightarrow $-x >= 0$

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

1.
$$x < 0$$

$$\Rightarrow$$
 ((x*2) < 0)

Falso: TMin

$$2. ux >= 0$$

$$3. \times \& 7 == 7$$

$$\Rightarrow$$
 (x<<30) < 0

$$4. 11x > -1$$

5.
$$x > y$$

$$\Rightarrow$$
 -x < -y

6.
$$x * x >= 0$$

7.
$$x > 0 \& y > 0 \implies x + y > 0$$

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

1.
$$x < 0$$
 \Rightarrow ((x*2) < 0) Falso: TMin 2. $ux >= 0$ Verdadero:

3.
$$x \& 7 == 7$$
 \Rightarrow $(x << 30) < 0$

4.
$$ux > -1$$

5.
$$x > y$$
 \Rightarrow $-x < -y$

6.
$$x * x >= 0$$

8.
$$x \ge 0$$
 \Rightarrow $-x \le 0$

9.
$$x \le 0$$
 \Rightarrow $-x >= 0$

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

1.
$$x < 0$$
 \Rightarrow (($x*2$) < 0) Falso: TMin
2. $ux >= 0$ Verdadero: $0 = UMin$

3.
$$x \& 7 == 7$$
 \Rightarrow $(x << 30) < 0$

5.
$$x > y$$
 \Rightarrow $-x < -y$

6.
$$x * x >= 0$$

7.
$$x > 0 \&\& y > 0 \implies x + y > 0$$

8.
$$x \ge 0$$
 \Rightarrow $-x \le 0$

9.
$$x \le 0$$
 \Rightarrow $-x >= 0$

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

1.
$$x < 0$$
 \Rightarrow (($x*2$) $<$ 0) Falso: TMin

2.
$$ux >= 0$$
 Verdadero: $0 = UMin$

3.
$$x \& 7 == 7$$
 \Rightarrow $(x << 30) < 0$ **Verdadero:**

4.
$$ux > -1$$

5.
$$x > y$$
 \Rightarrow $-x < -y$

6.
$$x * x >= 0$$

7.
$$x > 0 \&\& y > 0 \implies x + y > 0$$

8.
$$x \ge 0$$
 \Rightarrow $-x \le 0$

9.
$$x \le 0$$
 \Rightarrow $-x >= 0$

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

1.
$$x < 0$$
 \Rightarrow ((x*2) < 0) Falso: TMin

2.
$$ux >= 0$$
 Verdadero: $0 = UMin$

3. x & 7 == 7
$$\Rightarrow$$
 (x<<30) < 0 **Verdadero:** $x_1 = 1$

4.
$$ux > -1$$

5.
$$x > y$$
 \Rightarrow $-x < -y$

6.
$$x * x >= 0$$

8.
$$x \ge 0$$
 \Rightarrow $-x \le 0$

9.
$$x \le 0$$
 \Rightarrow $-x >= 0$

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

5.
$$x > y$$
 $\Rightarrow -x < -y$
6. $x * x >= 0$
7. $x > 0 && y > 0 $\Rightarrow x + y > 0$$

8.
$$x \ge 0$$
 \Rightarrow $-x <= 0$

9.
$$x \le 0$$
 \Rightarrow $-x >= 0$

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

1.
$$x < 0$$
 \Rightarrow ((x*2) < 0) Falso: TMin
2. $ux >= 0$ Verdadero: $0 = UMin$

3. x & 7 == 7
$$\Rightarrow$$
 (x<<30) < 0 **Verdadero:** $x_1 = 1$

4.
$$ux > -1$$
 Falso: 0

5.
$$x > y$$
 \Rightarrow $-x < -y$

6.
$$x * x >= 0$$

7.
$$x > 0 & y > 0 \Rightarrow x + y > 0$$

8.
$$x \ge 0$$
 \Rightarrow $-x \le 0$

9.
$$x \le 0$$
 \Rightarrow $-x >= 0$

8. x >= 0

9. x <= 0

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

1.
$$x < 0$$
 \Rightarrow $((x*2) < 0)$ Falso: TMin
2. $ux >= 0$ Verdadero: $0 = UMin$
3. $x & 7 == 7$ \Rightarrow $(x<<30) < 0$ Verdadero: $x_1 = 1$
4. $ux > -1$ Falso: 0
5. $x > y$ \Rightarrow $-x < -y$ Falso: 0
7. $x > 0$ && $y > 0$ \Rightarrow $x + y > 0$

 \Rightarrow -x <= 0

 \Rightarrow -x >= 0

TMin

Falso:

1. x < 0

8. x >= 0

9. x <= 0

C Puzzles

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

 \Rightarrow -x <= 0 \Rightarrow -x >= 0

9. x <= 0

C Puzzles

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

1.
$$x < 0$$
 \Rightarrow ((x*2) < 0)
 Falso: TMin

 2. $ux >= 0$
 Verdadero: $0 = UMin$

 3. $x & 7 == 7$
 \Rightarrow (x<<30) < 0
 Verdadero: $x_1 = 1$

 4. $ux > -1$
 Falso: 0

 5. $x > y$
 \Rightarrow -x < -y
 Falso: -1, TMin

 6. $x * x >= 0$
 Falso: 0

 7. $x > 0 & x > 0$
 $x + y > 0$

 8. $x >= 0$
 $x + y > 0$

 \Rightarrow -x >= 0

9. x <= 0

C Puzzles

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

1.
$$x < 0$$
 \Rightarrow ((x*2) < 0)
 Falso: TMin

 2. $ux >= 0$
 Verdadero: $0 = UMin$

 3. $x & 7 == 7$
 \Rightarrow (x<<30) < 0
 Verdadero: $x_1 = 1$

 4. $ux > -1$
 Falso: 0

 5. $x > y$
 \Rightarrow -x < -y
 Falso: -1, TMin

 6. $x * x >= 0$
 Falso: 49374

 7. $x > 0 & x > 0$
 $x > 0 < x > 0$

 8. $x >= 0$
 $x > 0$

 \Rightarrow -x >= 0

9. x <= 0

C Puzzles

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

 \Rightarrow -x >= 0

8. x >= 0

9. x <= 0

C Puzzles

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

→ -x <= 0</p>

 \Rightarrow -x >= 0

1.
$$x < 0$$
 \Rightarrow ((x*2) < 0)
 Falso: TMin

 2. $ux >= 0$
 Verdadero: $0 = UMin$

 3. $x & 7 == 7$
 \Rightarrow (x<<30) < 0
 Verdadero: $x_1 = 1$

 4. $ux > -1$
 Falso: 0

 5. $x > y$
 \Rightarrow -x < -y
 Falso: -1, TMin

 6. $x * x >= 0$
 Falso: 49374

 7. $x > 0 & x > 0$
 $x + y > 0$
 Falso: TMax, TMax

62

9. x <= 0

C Puzzles

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

 \Rightarrow -x >= 0

1.
$$x < 0$$
 \Rightarrow ((x*2) < 0)
 Falso: TMin

 2. $ux >= 0$
 Verdadero: $0 = UMin$

 3. $x & 7 == 7$
 \Rightarrow (x<30) < 0
 Verdadero: $x_1 = 1$

 4. $ux > -1$
 Falso: 0

 5. $x > y$
 \Rightarrow -x < -y
 Falso: -1, TMin

 6. $x * x >= 0$
 Falso: TMax, TMax

 7. $x > 0 & x > 0$
 $x > 0$
 $x > 0$

 8. $x >= 0$
 $x > 0$
 $x > 0$

 7. $x > 0$
 $x > 0$
 $x > 0$

 8. $x >= 0$
 $x > 0$
 $x > 0$

C Puzzles

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

C Puzzles

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

1.
$$x < 0$$
 \Rightarrow ((x*2) < 0)
 Falso: TMin

 2. $ux >= 0$
 Verdadero: $0 = UMin$

 3. $x & 7 == 7$
 \Rightarrow (x<<30) < 0
 Verdadero: $x_1 = 1$

 4. $ux > -1$
 Falso: 0

 5. $x > y$
 \Rightarrow -x < -y
 Falso: -1, TMin

 6. $x * x >= 0$
 Falso: TMax, TMax

 7. $x > 0 & x > 0$
 $x > 0$
 Falso: TMax, TMax

 8. $x >= 0$
 $x > 0$
 $x > 0$
 Falso: TMax < 0

 9. $x <= 0$
 $x > 0$
 Falso: TMax

C Puzzles

- 32-bit word-size, complemento a dos
- Argumentar si es cierto, o dar un contraejemplo en las siguientes expresiones (x, y: int, ux, uy: unsigned)

1.
$$x < 0$$
 \Rightarrow ((x*2) < 0)
 Falso: TMin

 2. $ux >= 0$
 Verdadero: $0 = UMin$

 3. $x & 7 == 7$
 \Rightarrow (x<<30) < 0
 Verdadero: $x_1 = 1$

 4. $ux > -1$
 Falso: 0

 5. $x > y$
 \Rightarrow -x < -y
 Falso: -1, TMin

 6. $x * x >= 0$
 Falso: TMax, TMax

 7. $x > 0 & x > 0$
 $x > 0$
 Falso: TMax < 0

 9. $x <= 0$
 $x > 0$
 Falso: TMin

Tabla de contenidos

1. Representando la información como bits

Sistemas de numeración

La información se mueve en bits

Organización de la memoria

Lilliput & Blefuscu

- 2. Manipulación de bits
- Representación de enteros

Representaciones signed y unsigned

Uso en (

Aritmética

- 4. Representaciones en memoria
- 5. Code Security

Code Security

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

- ¡Hay alguna vulnerabilidad a la vista?
- Hay legiones de personas buscando vulnerabilidades en los programas.. y no siempre para reportarlas y mejorar el software.

Code Security: uso típico

```
1 #define MSIZE 528
2 void getstuff(void) {
3   char buf[MSIZE];
4   copy_from_kernel(buf, MSIZE);
5   printf("%s\n", buf);
6 }
```

Code Security: uso malicioso

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff(void) {

char buf[MSIZE];

copy_from_kernel(buf, -MSIZE);

printf("%s\n", buf);

}

/* Declaration of library

function memcpy */

void *

nemcpy(void *dest,

void *src,

size_t n)
```

Licencia del estilo de beamer

Obtén el código de este estilo y la presentación demo en

github.com/pamoreno/mtheme

El estilo *en sí* está licenciado bajo la Creative Commons Attribution-ShareAlike 4.0 International License. El estilo es una modificación del creado por Matthias Vogelgesang, disponible en

github.com/matze/mtheme

