Chomsky Hierarchy

Dr G Sudha Sadasivam

Language is a process of free creation; its laws and principles are fixed, but the manner in which the principles of generation are used is free and infinitely varied. Even the interpretation and use of words involves a process of free creation.

Noam Chomsky

Agenda

- Language notation
- Grammar
- Chomsky hierarchy of languages

Recap

______deals with computational problems that can be solved by abstract machines
 _____ solves problems through mathematical models and algorithms
 _____ classifies the problems on their degree of difficulty
 _____ classifies problems as being solvable or unsolvable

Language – an Introduction

- Noam Chomsky is an American linguist, philosopher, cognitive scientist and social activist. He is one of the fathers of modern linguistics
- **Symbol** An atomic unit, such as a digit, character, lower-case letter, for example 1,2,a, b...
- Alphabet A finite set of symbols, usually denoted by Σ .

$$\Sigma = \{0, 1\} \ \Sigma = \{0, a, 9, 4\} \ \Sigma = \{a, b, c, d\}$$

• **String** – A finite length sequence of symbols from some alphabet. Ex, 011011

Example Consider strings w = 0110 y = 0aa x = aabcaa z =
 111

Special string: ϵ (also denoted by λ)

Concatenation: wz = 0110111

Length: $|w| = 4 |\epsilon| = 0 |x| = 6$

Reversal: $y^R = aa0$

• Special strings:

```
\Sigma^* All strings of symbols from \Sigma
\Sigma^+ is \Sigma^* - \{\epsilon\}
```

Example : Consider $\Sigma = \{0,1\}$

{ ε, 0, 1, 00, 01, 10, 11, 000, 100, 010, 001, 110, 011, 101, 111,}

 $\{x \mid x \text{ is in } \Sigma^*\}$

Language (L) is

- 1) A set of strings from some alphabet
- 2) In other words, any subset L of Σ^*
- Special languages:
 - {} The empty set / language, containing no string.
 - $-\{\epsilon\}$ A language containing one string, the empty string.

Examples:

- $\Sigma = \{0, 1\}$ $L = \{x \mid x \text{ is in } \Sigma^* \text{ and } x \text{ contains an even number of 0's} \}$ $= \{010,001,...1001010...\}$
- $\Sigma = \{0, 1, 2, ..., 9, .\}$ $L = \{x \mid x \text{ is in } \Sigma^* \text{ and } x \text{ forms a finite length real no}\}$ $= \{0, 1.5, 9.326, ...\}$
- Languages are sets. Therefore, all set operations like Union, Intersection, Difference, and Complement can be applied.

Language rules

- $L\{\epsilon\} = \{\epsilon\} L = L$
- (L1L2)L3=L1(L2L3)
- L+ = LL*
- $L^+ = L^* \{\epsilon\}$
- L={}= Φ
- $L \Phi = \Phi L = \Phi$
- Union operation L1 U L2 = {x | x ε L1 or xε L2}
- Intersection operation L1 \cap L2 = {x | x \(\epsilon \) L1 and x\(\epsilon \) L2}
- Difference operation L1 L2 = $\{x \mid x \in L1 \text{ and } x \notin L2\}$
- Complement : $^{\sim}(L1) = \Sigma^* L1$

- Non-Terminals or Variables (V) are capital letters A to Z
- Terminals are symbols from alphabet Σ given by a to z letters
- α , β , γ represent strings containing terminals and non-terminals
- Grammar is 4 tuple G = (V,Σ,P, S)

V is a finite set of variables

 Σ is a finite set of terminals

P is a finite set of rules

S is the start symbol

Grammars are categorized based on the form of the rules/productions

Example: Write the grammar to recognise $L = \{a^nb^n \mid n \ge 0\}$ Language L has ϵ , ab, aabb....

P: S
$$\rightarrow$$
 \in | aSb ; V={S}, Σ ={a,b}, G: {V, Σ , P, S}

Noam Chomsky divided Grammars / Languages into four classes:

- Recursively enumerable grammars –recognizable by a Turing machine
- Context-sensitive grammars —recognizable by the linear bounded automaton
- Context-free grammars recognizable by the pushdown automaton
- **Regular grammars** –recognizable by the finite state automaton

 $RG \subset CFG \subset CSG \subset recursively enumerable$

Type $3 \subset \text{Type } 2 \subset \text{Type } 1 \subset \text{Type } 0$

Type 0 or Recursively Enumerable Languages

- Unrestricted grammars include all formal grammars that generate language accepted by Turing Machines
- Production / Rules for Type 0 grammar is of the form $\alpha \to \beta$ Where α , $\beta \in \{ V \cup \Sigma \}^*$
- Any decision problem is a formal language L, where x ∈ L iff the answer on input x is "yes".

 $A \rightarrow SCA \mid \epsilon$ $C \rightarrow ab$ $Sab \rightarrow ba$

Grammar for $L = \{(ba)^n \mid n \ge 1\}$

 $A \rightarrow SCA \rightarrow SabA \rightarrow baA \rightarrow baSCA \rightarrow baSab\varepsilon \rightarrow baba$

Type 1 or Context Sensitive Language

- CSG generate language accepted by Linear Bounded Automaton
- Production / Rules for Type 1 grammar is of the form $\alpha \rightarrow \beta$ and $|\alpha| \le |\beta|$ Where $\alpha, \beta \in \{ V \cup \Sigma \} *$

Grammar for $L = \{(bc)^nb^mc : n >= 0\}$

$$AB \rightarrow AbBc$$
 $A \rightarrow bcA$
 $B \rightarrow b$

Grammar for L = $\{a^nb^nc^n : n > 0\}$

$$S \rightarrow abc \mid aAbc$$

$$Ab \rightarrow bA$$

$$Ac \rightarrow Bbcc$$

$$bB \rightarrow Bb$$

$$aB \rightarrow aa \mid aaA$$

Type 2 or Context Free Language

- CFG generate language accepted by Push Down Automaton
- Production / Rules for Type 2 grammar is of the form $\alpha \to \beta$ and $\alpha \in \{V\}$ Where $\beta \in \{V \cup \Sigma\}^*$

Grammar for
$$L = \{w c w^r : w \in \{a,b\}^* \}$$

$$S \rightarrow aSa \mid bSb \mid c$$

Generating string "abacaba"

$$S \rightarrow aSa \rightarrow abSba \rightarrow abaSaba \rightarrow abacaba$$

Type 3 or Regular Language

- RG generate language accepted by Finite Automaton
- Production / Rules for Type 3 grammar is of the form
 A → a | aB

Grammar for L generating all strings belonging to $\Sigma = \{a,b\}$

$$S \to aS \mid bS \mid \varepsilon$$

Generating string "abb"

$$S \rightarrow aS \rightarrow abS \rightarrow abbS \rightarrow abb$$

Every Type i Language is of Type i-1

Type of Language	Language Defined By	Acceptor	Rules	Example
regular language	regular expression	finite automaton	A → a aB	a*
context-free language	context-free grammar	pushdown automaton	$\alpha \rightarrow \beta \&$ $\alpha \in \{ V \}$ Where $\beta \in \{ V \}$ $\cup \Sigma \} *$	a ⁿ b ⁿ
recursive language CSG	phrase- structure grammar	Turing machine that never loops	$\alpha \rightarrow \beta$ and $ \alpha \le \beta $ Where $\alpha, \beta \in \{ V \cup \Sigma \}$	a ⁿ b ⁿ c ⁿ
recursively enumerable language	phrase- structure grammar	Turing machine	$\alpha \rightarrow \beta$ Where α , $\beta \in \{$ V U Σ $\}$ *	(ab) ⁿ

Work Out

- LL* =?
- $L^*-\{E\}=?$
- $L\Phi = ?$
- Identify the language type and string generated
 - Sab -> ba
 - $-S \rightarrow AB$
 - $A \rightarrow a$
 - $B \rightarrow b$
 - $-S \rightarrow AB$
 - AB -> abc
 - -S->a