MA2108 Cheatsheet by Yiyang, AY23/34

1. Pre-requisites

Well-Ordering Principle of \mathbb{N} Every non-empty subset $S \in \mathbb{N}$ has a least (smallest) element.

2. The Real Numbers

Algebric Properties, ~

Different types of means

- Arithmetic Means $A_n = \frac{1}{n} \sum_{k=1}^n a_k$
- Geometric Means $G_n = \left(\prod_{k=1}^n a_k\right)^{1/n}$
- Harmonic Means $H_n = n \left(\sum_{k=1}^n a_k^{-1} \right)^{-1}$

, for $n\in\mathbb{N}_{\geq 2}$ and $a_1,a_2,...,a_n\in\mathbb{R}$ are positive. For the means, we have the **AM-GM-HM Inequality** :

$$H_n \leq G_n \leq A_n$$

, taking "=" iff. $a_1 = ... = a_n$.

Bernoulli's Inequality For x > -1, we have $(1 + x)^n \ge 1 + nx$, for any $n \in \mathbb{N}$.

Triangle Inequity $|a+b| \le |a| + |b|$, for all $a, b \in \mathbb{R}$.

Derived: $[1] ||a| - |b|| \le |a - b|, [2] |a - b| \le |a| + |b|.$

Neighbourhood

For any $a \in \mathbb{R}$ and $\epsilon > 0$, the ϵ -neighbourhood of a is the set:

$$V_{\epsilon}(a) = \{x \in \mathbb{R} : |x - a| < \epsilon\}$$

Theorem 2.2.8 For $a \in \mathbb{R}$, if $x \in V_{\epsilon}(a)$ for every $\epsilon > 0$, then x = a.

Completeness Properties, ~

For a non-empty $S \subseteq \mathbb{R}$, it is **Bounded Above** (**Bounded Below**) if S has an upper bound (a lower bound). S is **Bounded** if it is bounded above and below, and is **Unbounded**, otherwise.

For a non-empty $S \subseteq \mathbb{R}$, u is the Supremum of S if the following conditions are met, and we denote it as $\sup S$:

- 1. *u* is an upper bound of *S*.
- 2. $\forall v \in \mathbb{R}$, if v is an upper bound of S, then $v \ge u$.

For a non-empty $S \subseteq \mathbb{R}$, w is the Infinum of S if the following conditions are met, and we denote it as inf S:

- 1. *w* is a lower bound of *S*.
- 2. $\forall v \in \mathbb{R}$, if v is a lower bound of S, then $v \leq w$.

<u>Note</u>: Sup. and Inf. are **uniquely determined**, if they exist.

Alternative Definition (Similarly for Infinum):

Lemma 2.3.4 For *u* an upper bound of $S \subseteq \mathbb{R}$, $u = \sup S$ iff.

$$\forall \epsilon > 0, \exists s_{\epsilon} \in S, u - \epsilon < s_{\epsilon}$$

For a non-empty $S \subseteq \mathbb{R}$, u is the Maximum (Minimum) of S, if $u = \sup S$ ($u = \inf S$) and $u \in S$.

 $\underline{\text{Note:}}$ Sup. and Inf. are not necessarily elements in S (if they exist), but maximum and minimum are.

Supremum Property of \mathbb{R} Every non-empty subset of \mathbb{R} that has an upper bound has a supremum.

The Archimedeam Property If $x \in \mathbb{R}$, then $\exists n_x \in \mathbb{N}$ s.t. $x < n_x$.

Corollary 2.4.6 If x > 0, then $\exists n \in \mathbb{N}$ such that $n - 1 \le x < n$.

Density Theorems For $x, y \in \mathbb{R}$ with x < y, tehre exists $r \in \mathbb{Q}$ $(z \in \mathbb{R} \setminus \mathbb{Q})$ s.t. x < r < y (x < z < y).

Intervals

A sequence of intervals I_n , $n \in \mathbb{N}$ is Nested if

$$I_1 \supseteq I_2 \supseteq ... \supseteq I_n \supseteq I_{n+1} \supseteq ...$$

<u>Properties</u>: [1] If $I_n = [a_n, b_n]$, $n \in \mathbb{N}$ is a nested seq. of closed bounded intervals, then $\exists \xi \in \mathbb{R}$ s.t. $\xi \in I_n, \forall n \in \mathbb{N}$. [2] If $I_n = [a_n, b_n]$, $n \in \mathbb{N}$ satisfying $\inf\{b_n - a_n : n \in \mathbb{N}\} = 0$, then ξ contained in all I_n is unique.

3. Sequences & Series

Sequence & Convergence

Sequence in \mathbb{R} : a real-valued function $X: \mathbb{R} \to \mathbb{R}$. We write $x_n = X(n)$ for the n-th term of the sequence, and denote the sequence as $(x_n, : n \in \mathbb{N})$.

A sequence $X=(x_n)$ in $\mathbb R$ is Convergent to $x\in \mathbb R$ iff. for every $\epsilon>0$, there exists $K=K(\epsilon)\in \mathbb N$ s.t.

$$n \ge K(\epsilon) \implies |x_n - x| < \epsilon$$

, and we call x the Limit of (x_n) , denoted as $\lim_{n\to\infty} x_n = x$. A sequence is Divergent if it is not convergent.

Technique for proving convergence:

- 1. Express $|x_n x|$ in terms of n and find a simpler upper bound L = L(n), i.e. $|x_n x| < L$.
- 2. Let $\epsilon > 0$ be arbitrary, find $K \in \mathbb{N}$ s.t. for all $n \geq K$, $L = L(n) < \epsilon$, then

$$n \ge K \implies |x_n - x| < L < \epsilon$$

Squeeze Theorem If $x_n \le y_n \le z_n$, for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a$, then

$$\lim_{n\to\infty}y_n=a$$

A sequence $X = (x_n)$ is **Bounded** if there exists M > 0 such that $|x_n| \le M$ for all $n \in \mathbb{N}$.

Monotone Convergence Theorem Let (x_n) be a monotone sequence of real numbers, then (x_n) is convergent iff. (x_n) is bounded. If it is bounded and increasing, then $\lim_{n\to\infty} x_n = \sup\{x_n : n \in \mathbb{N}\}$. (Similarly for decreasing.)

For a sequence (x_n) , it tends to $+\infty$, i.e. $\lim_{n\to\infty} x_n = +\infty$ if for all $\alpha\in\mathbb{R}$, there exists $K=K(\alpha)\in\mathbb{N}$ such that if $n\geq K(\alpha)$, then $x_n>\alpha$. (Similarly for $\lim_{n\to\infty} x_n=-\infty$.)

A sequence (x_n) is **Properly Divergent** if $\lim_{n\to\infty} x_n = \pm \infty$.

Subsequences

A Subsequence of $X = (x_n)$ is $X' = (x_{n_k})$:

$$X'=(x_{n_1},x_{n_2},...,x_{n_3})$$

, where $n_1 < n_2 < ... < n_k < ...$ is a strictly increasing sequence in $\mathbb N$. Note: $n_k \ge n$, $\forall k$.

Theorem 3.4.2 If (x_n) converges to x, then any subsequence (x_{n_k}) also converges to x,

$$\lim_{n_k \to \infty} x_{n_k} = \lim_{k \to \infty} x_{n_k} = x$$

Theorem 3.4.5 If (x_n) has either of the following properties, it is divergent: [1] (x_n) has two convergent subsequences with different limits. [2] (x_n) is unbounded.

Theorem 3.4.7 Every sequence has a monotone subsequence.

Bolzano-Weierstrass Theorem
vergent subsequence.

Every bounded sequence has a convergent subsequence.

Cauchy Sequences

A Cauchy Sequence (x_n) is a sequence where for all $\epsilon>0$, there exists $H=H(\epsilon)\in\mathbb{N}$ such that

$$\forall n, m \in \mathbb{N}, n, m \ge H \implies |x_n - x_m| < \epsilon$$

Cauchy Criterion A sequence is convergent iff. it is Cauchy.

A Contractive Sequence (x_n) is a sequence where there exists $C \in (0,1)$ s.t.

$$|x_{n+2} - x_{n+1}| \le C|x_{n+1} - x_n|, \ \forall n \in \mathbb{N}$$

Theorem 3.5.8 Every contractive sequence is Cauchy.

Infinite Series

For (x_n) , its (Infinite) Series is sequence (s_n) , where $s_n = \sum k = 1^n x_k$ is called a Partial Sum of the series, and x_k is a Term. Tests for infinite series' convergence:

- *n*-th Term Test If $\sum x_n$ converges, then $\lim_{n\to\infty} x_n = 0$.
- Cauchy Criterion Test
- Partial Sum Bounded Test, for series w. non-negative terms
 Suppose x_n ≥ 0, ∀n ∈ N, then ∑_{x_n} converges iff. (s_n) is bounded.
- Comparison Test For (x_n) , (y_n) with some $K \in \mathbb{N}$, s.t. $n \ge K \implies 0 \le x_n \le y_n$. Then $[1] \sum y_n$ converges $\implies \sum x_n$ converges, and $[2] \sum x_n$ diverges $\implies \sum y_n$ diverges.
- Limit Comparison Test For strictly positive (x_n) , (y_n) with limit $r = \lim_{n \to \infty} (\frac{x_n}{y_n})$. Then [1] if r = 0, $\sum y_n$ converges $\implies \sum x_n$ converges. [2] if r > 0, $\sum y_n$ converges iff $\sum x_n$ converges.

Absolute Convergence

Series $\sum x_n$ is Absolutely Convergent if series $\sum |x_n|$ is convergent. A series is Conditionally Convergent if it is convergent but not absolutely convergent.

Tests for absolutely convergence:

- Limit Comparison Test Consider convergence of positive sequences $|x_n|$ and $|y_n|$ if (x_n) , (y_n) non-negative.
- Root Test For (x_n) , [1] if $\exists r \in \mathbb{R}$, 0 < r < 1 and $K \in \mathbb{N}$ s.t. $|x_n|^{1/n} \le r$, $\forall n \ge K$, then $\sum x_n$ is abs. convergent. [2] If $\exists r \in \mathbb{R}, r > 1$ and $K \in \mathbb{N}$ s.t. $|x_n|^{1/n} \ge r > 1$, $\forall n \ge K$, then $\sum x_n$ is divergent.
- Ratio Test For (x_n) nonzero, [1] if $\exists r \in \mathbb{R}$, 0 < r < 1 and $K \in \mathbb{N}$ s.t. $|\frac{x_{n+1}}{x_n}| \le r$, $\forall n \ge K$, then $\sum x_n$ is abs. convergent. [2] If $\exists K \in \mathbb{N}$ s.t. $|\frac{x_{n+1}}{x_n}| \ge 1$, $\forall n \ge K$, then $\sum x_n$ is divergent.

4. Limits

For $A \subseteq \mathbb{R}$, c is the Cluster Point of A iff. $\forall \delta > 0$, there exists $x \in A$ s.t. $0 < |x - c| < \delta$.

Theorem 4.1.2 (Sequential Criterion) $c \in \mathbb{R}$ is a cluster point of A iff. there exists a sequence (a_n) in A s.t. $\lim a_n = c$ and $a_n \neq c$, $\forall n \in \mathbb{N}$.

Limit of a function $f: A \to \mathbb{R}$ at $c \in A$, $L = \lim_{x \to c} f(x)$ iff. $\forall \epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ s.t. $0 < |x - c| < \delta \implies |f(x) - L| < \epsilon$.

Theorem 4.1.8 (Sequential Criterion) $\lim_{x\to c} f(x) = L$ iff. for every seq. (x_n) in A w. $\lim_{n\to\infty} x_n = c$ and $x_n \neq c, \forall n\in\mathbb{N}$, $\lim_{n\to\infty} f(x_n) = L$.

For $f:A\to\mathbb{R}$ and c a cluster point of A,f is Bounded on a neighbourhood of c if $\exists V_{\delta}(c)$ and constant M>0 s.t. $|f(x)|< M, \forall x\in A\cap V_{\delta}(c)$.

Theorem 4.2.2 If $f : A \to \mathbb{R}$ has a limit at cluster point c, then f is bounded on some neighbourhood of c.

Theorem 4.2.9 If $\lim_{x\to c} f(x) > 0$, then $\exists V_{\delta}(c)$ s.t. f(x) > 0, $\forall x \in A \cap V_{\delta}(c), x \neq c$.

Similar statements for f(x) < 0.

For $A\subseteq\mathbb{R}$, function $f:A\to\mathbb{R}$ and a cluster point c of A, Right Hand Limit $L_+=\lim_{x\to c^+}f(x)$ iff. $\forall \epsilon>0, \exists \delta>0, x\in V_\delta(c)$ $\{c\}\Longrightarrow f(x)\in V_\varepsilon(L_+)$.

Similar definition for **Left-Hand Limit** $L_{-} = \lim_{x \to c^{-}} f(x)$.

Sequential Criteria for One-sided Limits exist.

Theorem 4.3.3 $\lim_{x\to c^+} f(x) = L$ iff. both $\lim_{x\to c^+} f(x)$ and $\lim_{x\to c^-} f(x)$ exist and

$$\lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x) = L$$

5. Continuous Functions

Continuity

For $A\subseteq\mathbb{R}$ and $f:A\to\mathbb{R}$, f is Continuous at $c\in A$ iff $\forall \epsilon>0, \exists \delta>0$ s.t. $x\in V_{\delta}(c)\Longrightarrow f(x)\in V_{\epsilon}(f(c))$. f is continuous at $c\in A$ iff. $\lim_{x\to c}f(x)=f(c)$.

(Sequential Criterion) $f: A \to \mathbb{R}$ is continuous at x = c iff. for every sequence (x_n) in A s.t. $x_n \to c$, we have $f(x_n) \to f(c)$.

Continuous Function on Intervals

Boundedness Theorem bounded on [a, b]. If f is continuous on [a, b], then f is

Note: It only applies to **closed bounded** intervals.

Max-Min Theorem If f is continuous on [a, b], then f has an absolute maximum and an absolute minimum on [a, b].

Location of Roots Theorem If f is continuous on [a,b] and $\overline{f(a)f(b)} < 0$, then there exists a point c in (a,b) s.t. f(c) = 0.

Bolzano's Intermediate Value Theorem For interval I and function f continuous on I, and $a, b \in I$ with $f(a) \le f(b)$, then for any $k \in [f(a), f(b)], \exists c \in I$ s.t. f(c) = k.

Preservation of Closed Intervals Theorem For f continuous on [a,b],

$$f([a,b]) := \{f(x) : x \in [a,b]\} = [m,M]$$

, with $m = \inf f([a, b])$ and $M = \sup f([a, b])$.

Monotonicity & Bijectivity

A function $f: A \to \mathbb{R}$ is Increasing (Decreasing) on A if $\forall x_1, x_2 \in A, x_1 \leq x_2 \implies f(x_1) \leq f(x_2)$ ($x_1 \leq x_2 \implies f(x_1) \geq f(x_2)$). f is Monotone if it is increasing or decreasing. Strictly $\sim: x_1 < x_2 \implies f(x_1) < f(x_2)$ and so on.

For a function $f: A \rightarrow B$, it is

- Injective (One-One), iff $\forall x_1 \neq x_2 \in A$, $f(x_1) \neq f(x_2)$.
- Surjective, iff f(A) = B.
- Bijective, iff it is injective and surjective.

Uniform Continuity

For $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$, f is Uniformly Continuous on A if for all $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ s.t.

$$\forall x, y \in A, |x - y| < \delta \implies |f(x) - f(y)| < \epsilon$$

i.e. $\delta = \delta(\epsilon)$ is independent of $x, y \in A$.

Note: f is not uniformly continuous on A iff. $\exists \epsilon_0 > 0$ s.t. $\forall \delta > 0$, $\exists x_\delta, y_\delta \in A$ with $|x_\delta - y_\delta| < \delta$ and $|f(x_\delta) - f(y_\delta)| \ge \epsilon$. Sequential Criterion

- Uniformly continuous For any (x_n) , (y_n) in A with $\lim_{n\to\infty} x_n y_n = 0$, we have $\lim_{n\to\infty} f(x_n) f(y_n) = 0$.
- Not uniformly continuous There exists $\epsilon_0>0$ and $(x_n),(y_n)$ in A, $\lim_{n\to\infty}x_n-y_n=0$ and $\lim_{n\to\infty}f(x_n)-f(y_n)\geq\epsilon_0$.

<u>Uniform Continuity Theorem</u> If f is continuous on a **closed** bounded interval [a, b], then it is uniformly continuous on [a, b].

A function $f:A\to\mathbb{R}$ is a Lipschitz Function on A iff. there exists K>0 s.t.

$$|f(x)-f(y)| \leq K|x-y|, \forall x,y \in A$$

Theorem 5.4.5 If $f: A \to \mathbb{R}$ is a Lipschitz function, then f is uniformly continuous on A.

Theorem 5.4.7 If $f: A \to \mathbb{R}$ is uniformly continuous on A and (x_n) a Cauchy sequence in A, then $(f(x_n))$ is a Cauchy sequence in \mathbb{R} . i.e. Uniformly continuous functions preserve Cauchy sequences. Continuous Extension Theorem f is uniformly continuous on interval (a,b) iff. it can be defined at the endpoints a and b s.t. the extended function is continuous on [a,b].

<u>Note</u>: Define $f(a) = \lim_{x \to a^+} f(x)$ and $f(b) = \lim_{x \to b^-} f(x)$ provided both limits exist.

Jumps

Theorem 5.6.1 For interval $I \subseteq \mathbb{R}$ and increasing function $f: I \to \mathbb{R}$, $c \in I$ not an endpoint, then

- $\lim_{x \to c^{-}} f(x) = \sup\{f(x) : x \in I, x < c\}$
- $\lim_{x \to c^+} f(x) = \inf\{f(x) : x \in I, x > c\}$

Jump of f at c is defined as

$$j_f(c) = \lim_{x \to c^+} f(x) - \lim_{x \to c^-} f(x)$$

, and at endpoints, $j_f(a) = \lim_{x \to a^+} f(x) - f(a)$ and so on for b. Theorem 5.6.4 For interval $I \subseteq \mathbb{R}$ and $f: I \to \mathbb{R}$ monotone on I, the set of points $\overline{D} \subseteq I$ at which f is discontinuous is a countable set. Continuous Inverse Theorem For interval $I \subseteq \mathbb{R}$ and $f: I \to \mathbb{R}$ strictly monotone and continuous, the inverse f^{-1} exists and is also strictly monotone and continuous on J = f(I).

11. Topology Introduction

Open & Closed Sets

A set V is the Neighbourhood of a point $x \in \mathbb{R}$ iff there exists $\epsilon > 0$ s.t. $V_{\epsilon}(x) \subseteq V$.

A subset $G \subseteq \mathbb{R}$ is Open in \mathbb{R} iff. for each $x \in G$, there exists $\epsilon_x > 0$ s.t. $V_{\epsilon_x}(x) \subseteq G$.

A subset $F \subseteq \mathbb{R}$ is Closed in \mathbb{R} if the complement $C(F) = \mathbb{R}$ F is open in \mathbb{R} .

Note: [1] \mathbb{R} and \emptyset are both open and closed. [2] \mathbb{Z} is closed but not open. [3] \mathbb{Q} is neither open nor closed.

Open & Closed Set Properties

- Open: [1] Union of any collection of open subsets is open.
 [2] Intersection of finitely many open subsets is open.
- Closed: [1] Intersection of any collection of closed subsets is closed. [2] Union of finitely many closed subsets is closed.

Characterisation of Closed Sets Theorem A subset $F \subseteq \mathbb{R}$ is closed iff. any convergence sequence (x_n) in F has $\lim_{n\to\infty} x_n \in F$. Theorem 11.1.8 A subset $F \subseteq \mathbb{R}$ is closed iff. it contains all its cluster points.

Theorem 11.1.9 A subset $G \subseteq \mathbb{R}$ is open iff it is the union of countably many disjoint open intervals in \mathbb{R} .

Global Continuity Theorem A function $f:A\to\mathbb{R}$ is continuous on A iff. for every open set $G\subseteq\mathbb{R}$, there exists open set $H\subseteq\mathbb{R}$ such that $H\cap A=f^{-1}(G)$ where $f^{-1}(G)=\{x\in A:f(x)\in G\}$. Corollary 11.3.3 Function $f:\mathbb{R}\to\mathbb{R}$ is continuous iff. $f^{-1}(G)$ is open in \mathbb{R} for every open G.

Metric Space

A Metric on a set *S* is a function $d: S \times S \to \mathbb{R}$ that satisfies

- Positivity $d(x, y) \ge 0, \forall x, y \in S$
- **Definiteness** $d(x, y) = 0 \iff x = y$
- Symmetry $d(x, y) = d(y, x), \forall x, y \in S$
- Triangle Inequality $d(x, y) \le d(x, z) + d(z, y), \forall x, y, z \in S$

A Metric Space (S,d) is a set S with a metric d on S. Generalised definition for a metric space (S,d)

• Neighbourhood: $V_{\epsilon}(x_0) = \{x \in S : d(x, x_0) < \epsilon\}$ for $\epsilon > 0$ and $x_0 \in S$

- **Boundedness** of $K \subseteq S$: $\exists M > 0, x_0 \in S, d(x, x_0) \le M, \forall x \in K$.
- Convergence to $x \in S$ of sequence (x_n) : $\forall \epsilon > 0, \exists K = K(\epsilon) \in \mathbb{N}, n \geq K \implies x_n \in V_{\epsilon}(x)$
- Continuity of $f: S_1 \to S_2$ at $c \in S_1$: $\forall \epsilon > 0, \exists \delta > 0, d_1(x,c) < \delta \implies d_2(f(x),f(c)) < \epsilon$.
- Open & Closed Set

Compact Set

For a metric space S, an Open Cover of a subset $A \subseteq S$ is a collection $G = \{G_{\lambda} : \lambda \in \Lambda\}$ of open subsets of S satisfying

$$A \subseteq \bigcup_{\lambda \in \Lambda} G_{\lambda}$$

If $G' \subseteq G$ whose union also contains A, then G' is a Subcover of G. If G' is finite, it is a Finite Subcover of G.

For a metric space S, a subset $K \subseteq S$ is Compact iff. for every open cover of K there is a finite subcover.

<u>Heine-Borel Theorem</u> For a metric space (S, d), a subset $K \subseteq S$ is compact iff. it is closed and bounded.

Bolzano-Weierstrass Theorem A bounded sequence in (S, d) has a convergent subsequence.

Theorem 11.2.6 $K \subseteq S$ is compact iff. every sequence in K has a subsequence that converges to a point in K.

Preservation of Compactness Theorem If (S,d) is compact and $f: S \to \mathbb{R}$ is continuous, then f(S) is compact in \mathbb{R} .

A subset $U \subseteq S$ is **Disconnected** iff. U has an open cover $\{A, B\}$

s.t. $A \cap B \cap U = \emptyset$ and $A \cap U = \emptyset$, $B \cap U = \emptyset$. Otherwise it is **Connected**.

Note: $E \subseteq \mathbb{R}$ is connected iff E is an interval, i.e. $x, y \in E, x < y \implies [x, y] \in E$.

Intermediate Value Theorem For $f: S \to \mathbb{R}$ continuous, if E is connected then f(E) is connected.

Intermediate Results & Lemmas

 $\underbrace{(Tut10Qn4)}_{f(x)=g(x)}$ For any two functions $f,g:\mathbb{R}\to\mathbb{R}$ continuous on \mathbb{R} , if $\overline{f(x)=g(x)}$, $\forall x\in\mathbb{Q}$, then f(x)=g(x), $\forall x\in\mathbb{R}$. Useful statements

•
$$\sum_{i=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
.