What is claimed is:

_	_			
1	1.	A method of filling an opening in an oxide layer, over a liner layer formed on a		
2	surfa	surface of a silicide substrate underlying both the oxide layer and the liner layer,		
3	com	comprising the steps of:		
4		forming a first continuous layer comprising silicon, on the oxide layer and on the		
5	liner	liner layer; and		
6		forming a second layer, comprising a refractory material, on the first layer so as to		
7	cove	cover the same and to also substantially fill the opening.		
1	2.	The method according to claim 1, wherein:		
2		the first layer is a continuous layer of one of amorphous or polycrystalline that has		
3	a thi	a thickness not greater than about 50Å.		
4	3.	The method according to claim 1, wherein:		
5		the second layer is formed by either a physical vapor deposition (PVD) or a		
6	chen	chemical vapor deposition (CVD) process step at a first temperature in the range 500°C to		
7		650°C.		
8	4.	The method according to claim 3, wherein:		
9		the first temperature is approximately 600°C.		
10	5.	The method according to claim 1, wherein:		
11		the refractory material contains a metal selected from a group of refractory metals		
12	cons	consisting of titanium, tantalum, molybdenum and tungsten.		
13	6.	The method according to claim 5, wherein:		
14		the refractory material comprises one of the selected metals deposited as a metal,		
15	as a c	as a component of a nitride of the metal, or as a component of an alloy of the metal.		
1	7.	The method according to claim 1, wherein:		
2		the first layer sacrificially protects the underlying liner and the silicide layer		
3	durin	during the step of forming the second layer.		
4	8.	The method according to claim 7, wherein:		
5		the first layer serves as a nucleation layer for deposition of the second layer		
6	there	thereon		

8

BUR920000119US1

7	9.	The process according to claim 3, wherein:		
8		a second layer is formed at a second temperature that is lower than the first		
. 9	temp	temperature.		
10	10.	The method according to claim 8, wherein:		
11		the first layer is a continuous polysilicon layer that has a thickness not greater		
12	than	than about 50Å.		
13	11.	The method according to claim 10, wherein:		
14		the second layer is formed by either a physical vapor deposition (PVD) or a		
15	chemical vapor deposition (CVD) process step at a first temperature in the range 500°C to			
16	650°C.			
17	12.	The method according to claim 11, wherein:		
18		the refractory material contains a metal selected from a group of refractory metals		
19	consisting of titanium, tantalum, molybdenum and tungsten.			
20	13.	The method according to claim 12, wherein:		
21		the refractory material comprises one of the selected metals deposited as a metal,		
22	as a component of a nitride of the metal, or as a component of an alloy of the metal.			
23	14.	The method according to claim 13, wherein:		
24		the first layer sacrificially protects the underlying liner and the silicide layer		
25	during the step of forming the second layer.			
26	15.	The method according to claim 14, wherein:		
27		the first temperature is approximately 600°C; and		
28		the second layer is formed at a second temperature that is lower than the first		
29	temperature.			
30	16.	A multilayer structure, comprising:		
31		a silicide layer, having a first surface;		
32		an oxide layer, formed on the first surface and having a second surface, with an		
33	opening through the oxide layer defined by an opening wall extending from the second			
34	surface to the first surface;			
35		a liner layer, formed on the first surface at a bottom of the opening;		
36		a continuous silicon layer, formed to extend over the second surface, the opening		
37	surface and the liner layer; and			
88	BUR9	a refractory material layer, formed on the silicon layer and substantially filling the 20000119US1 9		

39	openi	opening.		
40	17.	The structure according to claim 16, wherein:		
41		the first layer is a continuous polysilicon layer that has a thickness not greater than		
42	about	about 50Å; and		
43		the second layer is formed by either a physical vapor deposition (PVD) or a		
44	chem	chemical vapor deposition (CVD) process step at a first temperature in the range 500°C to		
45		650°C.		
46	18.	The structure according to claim 17, wherein:		
47		the refractory material comprises a metal selected from a group of refractory		
48	metal	metals consisting of titanium, tantalum molybdenum and tungsten; and		
49		the refractory material comprises one of the selected metals deposited as a metal,		
50	as a component of a nitride of the metal, or as a component of an alloy of the metal.			
1	19.	The structure according to claim 18, wherein:		
2		the first layer sacrificially protects the underlying liner and the silicide layer		
3	during	during the step of forming the second layer; and		
4		the first layer serves as a nucleation layer for deposition of the second layer		
5	thereo	thereon.		
6	20.	The structure according to claim 19, wherein:		
7		the first temperature is approximately 600°C; and		
8		the second layer is formed at a second temperature that is lower than the first		
9	temperature.			
1	21.	The method according to claim 1, wherein:		
2		the first layer is formed by a chemical vapor deposition (CVD) process and		
3	extends continuously on the oxide layer, a wall of the opening and the liner layer.			
1	22.	The method according to claim 1, wherein:		
2		the liner layer comprises at least one of titanium, titanium nitride, tungsten, and an		
3	alloy of titanium and tungsten.			
4				

23. The method according to claim 1 wherein said first silicide layer is formed on a silicon substrate.