数学

試験時間:50分

平成28年度筑波大附属高校

大問は 1 から 5 まであります 解答は解答用紙に記入して下さい

- 1 次の① \sim ④の にあてはまる数を求めなさい.
- $(1) \ x = \sqrt{3} + \sqrt{2}, \ y = \frac{\sqrt{3} \sqrt{2}}{2}$ のとき, $(x+y)^2 y(2x+5y)$ の値は ① である.

(2) 4個の数字 1, ,2, 3, 4 が, はじめこの順に並んでいる. 1 回の操作で, でたらめに 2 つの数字の位置を入れかえる. この操作を 2 回続けて行ったとき, 1 が左端にある確率は $\boxed{2}$ である.

(3) 下の図 1 において、5 点 A、B、C、D、E は円周上の点であり、 $\angle CAD = 42^\circ$ 、 $\widehat{AB} = \widehat{BC}$ 、 $\widehat{AE} = \widehat{ED}$ である. 2 直線 BC、ED の交点を F とするとき、 $\angle CFD = \boxed{3}$ 度である.

(4) 下の図 2 のように, すべての辺の長さが 3 cm の正四角すい O-ABCD がある. 辺 OB, OD の中点をそれぞれ P, Q とし, 3 点 A, P, Q を含む平面と OC との交点を R とするとき, 線分 AR の長さは $\boxed{4}$ cm で ある.

2 40 人の生徒に 100 点満点の数学の試験を実施した. 下の度数分布表はその結果をまとめたものであるが,? となっている欄の人数はわからなくなっている. 40 人の得点はすべての整数値であり,中央値は 59.5 点で,満点の生徒はいなかった.

このとき、次の⑤の にあてはまる数を求め、⑥の解答欄には求め方と人数を書きなさい.

階級	階級値 (点)	度数 (人)
0 点以上~10 点未満	5	0
10 ~ 20	15	0
20 ~ 30	25	1
30 ~ 40	35	4
40 ~ 50	45	7
50 ~ 60	55	?
60 ~ 70	65	7
70 ~ 80	75	?
80 ~ 90	85	?
90 ~ 100	95	7
合計		40

(1) 50 点以上 60 点未満の生徒の人数は, ⑤ 人である.

(2) この度数分布表を利用して 40 人の得点の平均値を求めた結果, 平均値は整数値であった. このとき, 70 点以上 80 点未満の生徒の人数は何人であるか. ⑥ の解答欄に求め方と人数を書きなさい.

(-	ア) イ) ウ)	時速 30km で走らせると, 走行時間は 11 時間である. 速度の増加に応じて, 走行時間は一定の割合で減少する. 時速 40km で走らせる場合と, 時速 100km で走らせる場合の走行距離は等しい.
		走らせたところ, 走行時間は y 時間であった. y を x の式で表すと, $y = \boxed{ ⑦ }$ であ
Z WIII		
·速 akm	で走	Eらせたところ, 走行距離は $490 \mathrm{km}$ であった.このとき, $a = \boxed{ 8 }$ である.
步速 <i>a</i> km	で走	Eらせたところ, 走行距離は $490 \mathrm{km}$ であった.このとき, $a = \boxed{8}$ である.

(3) 時速 70km で b 時間走らせた後, 時速 98km で c 時間走らせたところ, 走行距離は 462km であった. 走行時

 $oxed{4}$ AD//BC, AD=4cm, \angle A が鋭角である台形 ABCD の辺上を動く 2 点 P, Q がある.

点 P は A を出発し、一定の速さで辺 AD 上を D まで動き、点 Q は P と同時に A を出発し、一定の速さで辺 AB、辺 BC 上を C まで動 く

P が D に到達すると同時に, Q は C に到達した.

台形 ABCD を線分 PQ で 2 つの図形にわけるとき, A を含む図形を F とする. 2 点 P, Q が A を出発してから x 秒後の図形 F の面積を y cm² とすると, x と y の関係を表すグラフは右図のようになった

このとき、次の $\hat{\mathbf{u}}$ ~ $\hat{\mathbf{u}}$ の のあてはまる数を求めなさい.

(1) 辺 BC の長さは 🕠 cm である.

(2) 辺 CD の長さは <u></u> ① cm である.

(3) PQ=5cm となるのでは、2 点 P, Q が A を出発してから \bigcirc 砂後である.

5 下図のように、AB=8cm、BC=16cm、CA=12cm の △ABC において、辺 BC を四等分する点を D、E、F とする.

 $\angle B$ の二等分線と AD、AE、AF、AC との交点をそれぞれ P、Q、R、S とするとき、次の3 ~ 6の に あてはまる数または式を求めなさい.

(1) 線分 AD の長さは, ③ cm である.

(2) 線分 PQ の長さは、 $\hfill \square$ cm である.