CPNM Lecture 16 - Interpolation

Mridul Sankar Barik

Jadavpur University

2022-23

Introduction I

▶ Suppose a function f(x) is not defined explicitly, but its value at some finite number of points $x_0, x_1, x_2, ..., x_n$ is given

X	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	 x _n
f(x)	$f(x_0)$	$f(x_1)$	$f(x_2)$	 $f(x_n)$

- ▶ **Interpolation**: to find f(x) at x in the interval $[x_0, x_n]$, if x is not among the tabulated points
- **Extrapolation**: to find f(x) at x outside the interval $[x_0, x_n]$ with the assumption that behavior of f(x) outside the range $[x_0, x_n]$ is identical to that inside the range

Polynomial Interpolation I

- ▶ To find a polynomial $\phi(x)$, such that f(x) agree with $\phi(x)$ at the given set of points
- ▶ If we have n + 1 data points then we can fit a n^{th} degree polynomial

$$\phi(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

Linear Interpolation I

Simplest form used when two data points are available

Linear Interpolation II

Connect two data points with a straight line

$$\frac{f_1(x) - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

or,

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) \tag{1}$$

- As the interval decreases, a continuous function will be better approximated by a straight line
- ▶ Exercise: Estimate the natural logarithm of 2 using linear interpolation. First, perform the computation by interpolating between ln 1 = 0 and ln 6 = 1.791759. Then, repeat the procedure, but use a smaller interval from ln 1 to ln 4 (1.386294). Note that the true value of ln 2 is 0.6931472.

Linear Interpolation III

Solution: Using equation 1 in the interval $x_0 = 1, x_1 = 6$, we get

$$f_1(2) = f(1) + \frac{f(6) - f(1)}{6 - 1}(2 - 1) = 0 + \frac{1.791759 - 0}{5} = 0.3583519$$

Percentage error $\varepsilon_p=\frac{0.6931472-0.3583519}{0.6931472}\times 100\%=48.3\%$ Using the smaller interval $x_0=1,x_1=4$, we get

$$f_1(2) = f(1) + \frac{f(4) - f(1)}{4 - 1}(2 - 1) = 0 + \frac{1.386294 - 0}{3} = 0.4620981$$

Percentage error now, $\varepsilon_p = \frac{0.6931472 - 0.4620981}{0.6931472} \times 100\% = 33.3\%$

Linear Interpolation IV

Quadratic Interpolation I

 Use a second order polynomial when three data points are available

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$
 (2)

Where,

$$b_{0} = f(x_{0})$$

$$b_{1} = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$b_{2} = \frac{\frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}}{x_{2} - x_{0}}$$
(3)

► Exercise: Estimate the value of ln 2 Using a second order polynomial and the given three points

Quadratic Interpolation II

X	$x_0 = 1$	$x_1 = 4$	$x_2 = 6$
$f(x) = \ln x$	$f(x_0)=0$	$f(x_1) = 1.386294$	$f(x_2) = 1.791759$

▶ **Solution**: Using equation 3, we get

$$b_0 = f(x_0) = f(1) = 0$$

$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(4) - f(1)}{4 - 1} = \frac{1.386294 - 0}{3} = 0.4620981$$

$$b_2 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{\frac{x_2 - x_0}{5}} = \frac{\frac{f(6) - f(4)}{6 - 4} - \frac{f(4) - f(1)}{4 - 1}}{6 - 1} = \frac{\frac{1.791759 - 1.386294 - 0}{5}}{\frac{1.386294 - 0}{5}} = -0.0518731$$

 Substituting these values into equation 2 yields the quadratic formula

$$f_2(x) = 0 + 0.4620981(x-1) - 0.0518731(x-1)(x-4)$$

- We evaluate $f_2(x)$ at x = 2 for $f_2(2) = 0.5658444$
- ▶ Percentage error $\varepsilon_p = \frac{0.6931472 0.5658444}{0.6931472} \times 100\% = 18.4\%$

Quadratic Interpolation III

► The curvature introduced by the quadratic formula improves the interpolation compared with the result obtained using straight lines

General Form of Newton's Interpolating Polynomial I

▶ To fit an n^{th} order polynomial to n+1 data points

$$f_n(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \dots + b_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

- The coefficients are evaluated as
 - $b_0 = f(x_0)$
 - $b_1 = \frac{f(x_1) f(x_0)}{x_1 x_0} = \Delta_d f_0$
 - $b_2 = \frac{\Delta_d f_1 \Delta_d f_0}{\gamma_2 \gamma_2} = \Delta_d^2 f_0$

 - $b_n = \frac{\Delta_d^{n-1} f_1 \Delta_d^{n-1} f_0}{x_n x_0} = \Delta_d^n f_0$

General Form of Newton's Interpolating Polynomial II

- ▶ In general, if we have (n+1) data points ranging from $(x_0, f(x_0))$ to $(x_n, f(x_n))$
 - ▶ 1st finite divided difference $\Delta_d f_i = \frac{(f(x_{i+1}) f(x_i))}{(x_{i+1} x_i)}$, for i = 0 to (n-1)
 - ▶ 2^{nd} finite divided difference $\Delta_d^2 f_i = \frac{(\Delta_d f_{i+1} \Delta_d f_i)}{(x_{2+i} x_i)}$, for i = 0 to (n-2)
 - ▶ 3rd finite divided difference $\Delta_d^3 f_i = \frac{(\Delta_d^2 f_{i+1} \Delta_d^2 f_i)}{(x_{3+i} x_i)}$, for i = 0 to (n-3)
 - ▶ 4th finite divided difference $\Delta_d^4 f_i = \frac{(\Delta_d^3 f_{i+1} \Delta_d^3 f_i)}{(x_{4+i} x_i)}$, for i = 0 to (n-4)

 - ▶ n^{th} finite divided difference $\Delta_d^n f_i = \frac{(\Delta_d^{n-1} f_{i+1} \Delta_d^{n-1} f_i)}{(x_{n+i} x_i)}$, for i = 0 to (n n)

General Form of Newton's Interpolating Polynomial III

► Divided difference table (for five data points)

X	f(x)	$\Delta_d f$	$\Delta_d^2 f$	$\Delta_d^3 f$	$\Delta_d^4 f$
<i>x</i> ₀	$f(x_0)$				
	<i>((</i>)	$\Delta_d f_0$	A 2 C		
x_1	$f(x_1)$	$\Delta_d f_1$	$\Delta_d^2 f_0$	$\Delta_d^3 f_0$	
<i>X</i> 2	$f(x_2)$	Δ_{d} $^{\prime}1$	$\Delta_d^2 f_1$	$\Delta_{d}^{\prime 0}$	$\Delta_d^4 f_0$
7.2	. (32)	$\Delta_d f_2$	— <i>a</i> ·1	$\Delta_d^3 f_1$	— <i>a</i> ·0
<i>X</i> 3	$f(x_3)$		$\Delta_d^2 f_2$	u -	
		$\Delta_d f_3$	_		
<i>X</i> 4	$f(x_4)$				

General Form of Newton's Interpolating Polynomial IV

Newton's divided difference interpolating polynomial

$$f(x) = f(x_0) + \Delta_d f_0(x - x_0) + \Delta_d^2 f_0(x - x_0)(x - x_1) + \ldots + \Delta_d^n f_0(x - x_0)(x - x_1) \ldots (x - x_{n-1})$$

where,

$$\Delta_d^n f_0 = \frac{(\Delta_d^{n-1} f_1 - \Delta_d^{n-1} f_0)}{(x_n - x_0)}$$

Exercise: Estimate the value of ln 2 Using a third order polynomial and the given four points

X	$x_0 = 1$	$x_1 = 4$	$x_2 = 5$	$x_3 = 6$
$f(x) = \ln x$	0	1.386294	1.609438	1.791759

► **Solution**: Divided difference table for the given four data points

General Form of Newton's Interpolating Polynomial V

X	f(x)	$\Delta_d f$	$\Delta_d^2 f$	$\Delta_d^3 f$
$x_0 = 1$	0			
		0.462098		
$x_1 = 4$	1.386294		-0.0597385	
		0.223144		0.0078654
$x_2 = 5$	1.609438		-0.0204115	
		0.182321		
$x_3 = 6$	1.791759			

 General form of Newton's divided difference third order formula is

$$f(x) = f(x_0) + \Delta_d f_0(x - x_0) + \Delta_d^2 f_0(x - x_0)(x - x_1) + \Delta_d^3 f_0(x - x_0)(x - x_1)(x - x_2)$$

Substituting values of respective divided differences, we get

$$f(x) = 0.462098(x-1) - 0.0597385(x-1)(x-4) + 0.0078654(x-1)(x-4)(x-5)$$

General Form of Newton's Interpolating Polynomial VI

- ▶ Putting x = 2, we get f(2) = 0.462098(2-1) 0.0597385(2-1)(2-4) + 0.0078654(2-1)(2-4)(2-5) = 0.462098 + 0.119477 + 0.0471924 = 0.6287674
- ▶ Percentage error $\varepsilon_{\it p} = \frac{0.6931472 0.6287674}{0.6931472} \times 100\% = 9.29\%$

General Form of Newton's Interpolating Polynomial VII

Algorithm 1 Algorithm for Newton's Divided Difference Interpolating Polynomial

```
Input: Array x and y contains n+1 numbers of x and f(x) values respectively, xi is
the point where the value of the function f has to be interpolated
Output: The value of f(xi)
1: /*fdd is an (n+1) \times (n+1) array which stores the finite divided differences*/
2: for i = 0 to n in steps of 1 do
       fdd[i][0] = y[i]
3: end for
4: /*computation of finite divided differences*/
5: for j = 1 to n in steps of 1 do
6:
      for i = 0 to n - i in steps of 1 do
          fdd[i][j] = (fdd[i+1][j-1] - fdd[i][j-1])/(x[i+j] - x[i])
7:
       end for
8: end for
9: /*computation of the value of the function at the point xi */
10: xterm = 1
11: yint[0] = fdd[0][0]
12: for order = 1 to n in steps of 1 do
13:
       x term = x term * (xi - x[order - 1])
       yint[order] = yint[order - 1] + fdd[0][order] * xterm
14:
15: end for
```

Lagrange Interpolation I

 Evaluation of polynomial coefficients become simpler when the following form is considered

$$f(x) = c_0(x - x_1)(x - x_2) \dots (x - x_n) + c_1(x - x_0)(x - x_2) \dots (x - x_n) \dots + c_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

where,

$$c_{0} = \frac{f(x_{0})}{(x_{0} - x_{1})(x_{0} - x_{2}) \dots (x_{0} - x_{n})}$$

$$c_{1} = \frac{f(x_{1})}{(x_{1} - x_{0})(x_{1} - x_{2}) \dots (x_{1} - x_{n})}$$

$$\vdots$$

$$c_{n} = \frac{f(x_{n})}{(x_{n} - x_{0})(x_{n} - x_{1}) \dots (x_{n} - x_{n-1})}$$

Lagrange Interpolation II

► This is known as Lagrange Polynomial, general form of which is as follows

$$f(x) = \sum_{i=0}^{n} f(x_i) \prod_{j=0, j \neq i}^{n} \frac{(x - x_j)}{(x_i - x_j)}$$

- ▶ It is easier to program in a computer
- Difficult for hand calculation

Lagrange Interpolation III

11: Write xi, sum

Algorithm 2 Algorithm for Lagrange Polynomial Interpolation

Input: Array x and y contains n+1 numbers of x and f(x) values respectively, xi is the point where the value of the function f has to be interpolated **Output**: The value of f(xi)1: sum = 02: **for** i = 0 to n in steps of 1 **do** 3: prod = 1for j = 0 to n in steps of 1 do 5: if $j \neq i$ then 6: prod = prod * (xi - x[j])/(x[i] - x[j])7: end if 8: end for sum = sum + f[i] * prod10: end for

Lagrange Interpolation IV

Exercise: Estimate the value of In 2 Using first and second order Lagrange polynomial and the given three points

X	$x_0 = 1$	$x_1 = 4$	$x_2 = 6$
$f(x) = \ln x$	$f(x_0)=0$	$f(x_1) = 1.386294$	$f(x_2) = 1.791759$

Solution:

▶ The first order Lagrange polynomial

$$f_1(x) = f(x_0) \frac{x - x_1}{x_0 - x_1} + f(x_1) \frac{x - x_0}{x_1 - x_0}$$
$$= 0 \times \frac{x - 4}{1 - 4} + 1.386294 \times \frac{x - 1}{4 - 1}$$

$$f_1(2) = 1.386294 \times \frac{2-1}{4-1} = 0.462098$$

Lagrange Interpolation V

▶ The second order Lagrange polynomial

$$f_2(x) = f(x_0) \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + f(x_1) \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$+ f(x_2) \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

$$= 1.386294 \times \frac{(x - 1)(x - 6)}{(4 - 1)(4 - 6)} + 1.791759 \times \frac{(x - 1)(x - 4)}{(6 - 1)(6 - 4)}$$

$$\begin{split} f_2(2) &= 1.386294 \times \frac{(2-1)(2-6)}{(4-1)(4-6)} + 1.791759 \times \frac{(2-1)(2-4)}{(6-1)(6-4)} \\ &= 1.386294 \times \frac{2}{3} - 1.791759 \times \frac{1}{5} = 0.924196 - 0.3583518 = 0.5658442 \end{split}$$

Differences of a Polynomial I

Let f(x) be a polynomial of n^{th} degree

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

Then we obtain

$$f(x+h)-f(x) = a_1[x+h-x]+a_2[(x+h)^2-x^2]+...+a_n[(x+h)^n-x^n]$$

or

$$f = f(x + h) - f(x) = a_1 h + a'_2 x + \dots + a'_{n-1} x^{n-1}$$

- ▶ This is a polynomial of order (n-1)
- By repeated application we get
 - $\Delta^2 f$ is a polynomial of degree (n-2)
 - ▶ $\Delta^3 f$ is a polynomial of degree (n-3)
 - $ightharpoonup \Delta^n f$ is a constant
- ► Thus by inspecting the difference table we can decide the order of the polynomial to be chosen

Newton's Forward Difference Formula I

- Figure Given a table of values (x_i, y_i) , i = 0, 1, 2, ..., n of any function y = f(x), and the value of x being equally spaced, i.e., $x_i = x_o + ih$, i = 0, 1, 2, ..., n
- ▶ We are required to find values of f(x) [or derivative of f(x)] in the range $x_0 \le x \le x_n$
- Forward Differences
 - Δ: forward difference operator
 - ▶ First forward difference: differences in y values

$$\Delta f_0 = f(x_1) - f(x_0), \Delta f_1 = f(x_2) - f(x_1), \dots, \Delta f_{n-1} = f(x_n) - f(x_{n-1})$$

 Second forward difference: differences in first forward differences

$$\Delta^2 f(x_0) = \Delta f(x_1) - \Delta f(x_0), \Delta^2 f(x_1) = \\ \Delta f(x_2) - \Delta f(x_1), \dots, \Delta^2 f(x_{n-2}) = \Delta f(x_{n-1}) - \Delta f(x_{n-2})$$

Similarly we can define third forward difference, fourth forward difference etc.

Newton's Forward Difference Formula II

X	f(x)	Δ	Δ^2	Δ^3	Δ^4	Δ^5
<i>x</i> ₀	$f(x_0)$					
	-4 >	Δf_0	. 0 -			
x_1	$f(x_1)$		$\Delta^2 f_0$. 2 .		
	<i>((</i>)	Δf_1	. 2 .	$\Delta^3 f_0$	• 1 6	
<i>x</i> ₂	$f(x_2)$	۸.	$\Delta^2 f_1$	$\Delta^3 f_1$	$\Delta^4 f_0$	$\Delta^5 f_0$
.,	f(,,)	Δf_2	$\Delta^2 f_2$	$\Delta^{\circ} t_1$	$\Delta^4 f_1$	$\Delta^{\circ} t_0$
<i>X</i> ₃	$f(x_3)$	Δf_3	ΔI_2	$\Delta^3 f_2$	ΔI_1	
<i>X</i> ₄	$f(x_4)$	Δ13	$\Delta^2 f_3$	ΔI_2		
74	7 (74)	Δf_4	△ 73			
<i>X</i> ₅	$f(x_5)$	4				

Table 1: Forward Difference Table

► For equal spaced intervals i.e. $x_i = x_0 + ih$, i = 0, 1, 2, ..., n, the divided differences become

Newton's Forward Difference Formula III

$$\Delta_d^3 f_0 = \frac{\Delta_d^2 f_1 - \Delta_d^2 f_0}{(x_3 - x_0)} = \frac{\frac{\Delta^2 f_1}{21h^2} - \frac{\Delta^2 f_0}{21h^2}}{3h} = \frac{\Delta^3 f_0}{3!h^3}$$

$$\dots \dots$$

$$\Delta_d^n f_0 = \frac{\Delta^n f_0}{1!6}$$

 Newton's divided difference interpolating polynomial thus becomes

$$f(x) = f(x_0) + \frac{\Delta f_0}{h}(x - x_0) + \frac{\Delta^2 f_0}{2! h^2}(x - x_0)(x - x_1) + \dots + \frac{\Delta^n f_0}{n! h^n}(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

where,

$$\Delta_d^n f_0 = \frac{\left(\Delta_d^{n-1} f_1 - \Delta_d^{n-1} f_0\right)}{nh}$$

- ► The above form is known as Newton's forward difference interpolating polynomial
- ► This polynomial can be expressed more concisely by considering $x = x_0 + uh$, so

Newton's Forward Difference Formula IV

- ► $x x_0 = uh$ ► $x - x_1 = (x_0 + uh) - (x_0 + h) = h(u - 1)$ ► $x - x_2 = x - (x_1 + h) = h(u - 1) - h = h(u - 2)$ ► $x - x_{n-1} = h(u - \overline{n-1})$
- Substituting above into the polynomial we get

$$f(x_0 + uh) = f(x_0) + \Delta f_0 u + \frac{\Delta^2 f_0}{2!} u(u - 1) + \dots + \frac{\Delta^n f_0}{n!} u(u - 1)(u - 2) \dots (u - \overline{n - 1})$$

- This is known as Newton Gregory Forward Interpolation Formula
- In general, Newton's forward difference formula is used to compute the approximate value of f(x) when the value of x is near to x_0 of the given table. But, if the value of x is at the end of the table, then this formula gives more error. In this case, Newton's backward formula is used.

Newton's Forward Difference Formula V

Exercise: If f(x) is known at the following data points, then find f(0.5) and f(1.5) using Newton's forward difference formula

X	0	1	2	3	4
f(x)	1	7	23	55	109

Solution: The given data satisfies $f(x) = x^3 + 2x^2 + 3x + 1$. It is a degree three polynomial. Hence, third forward differences are constant. Although, from the given five data points, we can fit a degree four polynomial. It is sufficient to approximate the function using a degree three polynomial.

Newton's Forward Difference Formula VI

X	f(x)	Δf	$\Delta^2 f$	$\Delta^3 f$	$\Delta^4 f$
0	1				
		6			
1	7		10		
		16		6	
2	23		16		0
		32		6	
3	55		22		
		54			
4	109				

Table 2: Forward Difference Table

Newton's Forward Difference Formula VII

Newton's forward difference formula for a degree three polynomial is

$$f(x_0 + uh) = f(x_0) + \Delta f_0 u + \frac{\Delta^2 f_0}{2!} u(u - 1) + \frac{\Delta^3 f_0}{3!} u(u - 1)(u - 2)$$
At, $x = 0.5$, $u = \frac{x - x_0}{h} = \frac{0.5 - 0}{1} = 0.5$

$$f(0.5) = 1 + 0.5 \times 6 + \frac{0.5 \times (0.5 - 1) \times 10}{2} + \frac{0.5 \times (0.5 - 1) \times (0.5 - 2) \times 6}{6} = 3.125$$

At,
$$x = 1.5$$
, $u = \frac{x - x_0}{h} = \frac{1.5 - 0}{1} = 1.5$
 $f(1.5) = 1 + 1.5 \times 6 + \frac{1.5 \times (1.5 - 1) \times 10}{2} + \frac{1.5 \times (1.5 - 1) \times (1.5 - 2) \times 6}{6} = 13.375$

Newton's Backward Difference Formula I

- Backward Differences
 - ightharpoonup: backward difference operator
 - **First backward difference**: differences in f(x) values

$$\nabla f_n = f(x_n) - f(x_{n-1}), \nabla f_{n-1} = f(x_{n-1}) - f(x_{n-2}), \dots, \nabla f_2 = f(x_2) - f(x_1), \nabla f_1 = f(x_1) - f(x_0)$$

- Second backward difference: differences in first backward differences
 - ▶ $\nabla^2 f_n = \nabla f_n \nabla f_{n-1}, \nabla^2 f_{n-1} = \nabla f_{n-1} \nabla f_{n-2}, \dots, \nabla^2 f_3 = \nabla f_3 \nabla f_2, \nabla^2 f_2 = \nabla f_2 \nabla f_1$
- Similarly we can define third backward difference, fourth backward difference etc.

Newton's Backward Difference Formula II

X	f(x)	∇	∇^2	∇^3	$ abla^4$	$ abla^5$
<i>x</i> ₀	$f(x_0)$					_
		∇f_1				
x_1	$f(x_1)$		$\nabla^2 f_2$			
		∇f_2	0	∇^{f_3}	4	
<i>x</i> ₂	$f(x_2)$		$\nabla^2 f_3$	2 -	$\nabla^4 f_4$	г.
	-()	∇_{f_3}	-2 -	$ abla^3 f_4$	_1.	$ abla^5 f_5$
<i>X</i> 3	$f(x_3)$		$\nabla^2 f_4$	_2 4	$ abla^4 f_5$	
	<i>c(</i>)	∇f_4	- 2.c	$ abla^3 f_5$		
<i>X</i> ₄	$f(x_4)$	- .	$\nabla^2 f_5$			
	<i>c(</i>)	∇f_5				
X ₅	$f(x_5)$					

Table 3: Backward Difference Table

Newton's Backward Difference Formula III

▶ The generic n^{th} order polynomial to fit n+1 data points can also be chosen as

$$f_n(x) = b_0 + b_1(x - x_n) + b_2(x - x_n)(x - x_{n-1}) + \dots + b_n(x - x_n)(x - x_{n-1}) \dots (x - x_1)$$

- f(x) and $f_n(x)$ must agree at given n+1 points
- The coefficients are evaluated as

$$b_0 = f(x_n)$$

$$b_1 = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}} = \frac{\nabla f_n}{h}$$

$$b_2 = \frac{\frac{\nabla f_n}{h} - \frac{\nabla f_{n-1}}{h}}{x_n - x_{n-2}} = \frac{\nabla^2 f_n}{2! h^2}$$

$$b_n = \frac{\sum_{n=1}^{n-1} f_n}{\sum_{n=1}^{n-1} f_{n-1} - \sum_{n=1}^{n-1} f_{n-1}} = \frac{\sum_{n=1}^{n} f_n}{n! h^n}$$

Newton's Backward Difference Formula IV

▶ Thus, the polynomial can be written as

$$f_n(x) = f(x_n) + \frac{\nabla f_n}{h}(x - x_n) + \frac{\nabla^2 f_n}{2! h^2}(x - x_n)(x - x_{n-1}) + \dots + \frac{\nabla^n f_n}{n! h^n}(x - x_n)(x - x_{n-1}) \dots (x - x_1)$$

- ► This polynomial can be expressed more concisely by considering $x = x_n + uh$, so
 - $x x_n = uh$
 - $x x_{n-1} = (x_n + uh) (x_n h) = h(u+1)$
 - -
 - $x x_1 = h(u + n 1)$
- Substituting above into the polynomial we get

$$f_n(x) = f(x_n) + u\nabla f_n + \frac{u(u+1)}{2!}\nabla^2 f_n + \dots$$
$$+ u(u+1)\dots(u+n-1)\frac{\nabla^n f_n}{\partial n!}$$

Newton's Backward Difference Formula V

- ▶ Backward difference formula is used to interpolate values of the function *f* nearer to the end of the tabular values
- ► Exercise: Population (in millions) of a city is given in the following table

X	1971	1981	1991	2001	2011
f(x)	46	66	81	93	101

Determine the population in the year 2005.

Solution:

Newton's Backward Difference Formula VI

X	f(x)	∇f	$\nabla^2 f$	$\nabla^3 f$	$\nabla^4 f$
1971	46				
		20			
1981	66		-5		
		15		2	
1991	81		-3		-3
		12		-1	
2001	93		-4		
		8			
2011	101				

Table 4: Backward Difference Table

Newton's Backward Difference Formula VII

Newton's backward difference formula for a degree four polynomial is

$$f(x) = f(x_n) + u\nabla f_n + \frac{u(u+1)}{2!}\nabla^2 f_n + \frac{u(u+1)(u+2)}{3!}\nabla^3 f_n + \frac{u(u+1)(u+2)(u+3)}{4!}\nabla^4 f_n$$
At, $x = 2005$, $u = \frac{x - x_n}{h} = \frac{2005 - 2011}{10} = -0.6$

$$f(2005) = 101 + -0.6 \times 8 + \frac{-0.6(-0.6 + 1)}{2} \times -4$$

$$+ \frac{-0.6(-0.6 + 1)(-0.6 + 2)}{6} \times -1$$

$$+ \frac{-0.6(-0.6 + 1)(-0.6 + 2)(-0.6 + 3)}{24} \times -3$$

$$= 101 - 4.8 + 0.48 + 0.056 + 0.1008 = 96.8368$$