Lab1 test report

一、测试输入:

测试输入在基础 test1,test1000 的基础上,为了测试报告的准确完整性,所以添加了 test3, test5, test10, test20, test50, test70, test100, test500 等测试样例输入。(注明:测试样例名称为 testn(n代表了组数))

二、性能结果:

- 1.Compare the performance of your "super-fast" Sudoku solving program with a simple single thread version, using the same input and under the same environment.
- (1) singlethread 单线程时运行不同的 input,以下是部分测试的结果。

```
wyj@wyj-virtual-machine:/mnt/hgfs/Sudoku/1$ ./sudoku test1
693784512487512936125963874932651487568247391741398625319475268856129743274836159
2.427350 sec 2427.350000 ms each 1
wyj@wyj-virtual-machine:/mnt/hgfs/Sudoku/1$ ./sudoku test3
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
6937845124875129361259638749326514875682473917413986253194752<u>68856129743274836159</u>
8.495021 sec 2831.673667 ms each 3
8.495021 Sec 2831.073007 MS each 3
wyj@wyj-virtual-machine:/mnt/hgfs/Sudoku/1$ ./sudoku test5
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
16.032981 sec 3206.596200 ms each 5
wyj@wyj-virtual-machine:/mnt/hgfs/Sudoku/1$ ./sudoku test10
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
29.790543 sec 2979.054300 ms each 10
```

(2) super-fast 即多线程时运行不同的 input,以下是部分测试的结果

(3) 进行对比:

	简单单线程	super-fast 即多线程
Test1	2.427350 sec 2427.350000 ms each 1	0.002652 sec 2.652000 ms each 1
Test3	8.495021 sec 2831.673667 ms each 3	0.003118 sec 1.039333 ms each 3
Test5	16.032981 sec 3206.596200 ms each 5	0.002281 sec 0.456200 ms each 5
Test10	29.790543 sec 2979.054300 ms each 10	0.006885 sec 0.688500 ms each 10
Test20	56.692589 sec 2834.629450 ms each 20	0.003866 sec 0.193300 ms each 20
Test50	因耗时过长故未测试完毕	0.006719 sec 0.134380 ms each 50
Test70		0.010900 sec 0.155714 ms each 70
Test100		0.011969 sec 0.119690 ms each 100
Test500		0.044765 sec 0.089530 ms each 500
Test1000		0.106440 sec 0.106440 ms each 1000

我们固定输入和环境条件,进行横向对比。由此可见,结合测试时的时间长短,可以得出:当输入和环境条件都相同时,用多线程进行数独求解速度更快,性能更好。

2. Change the input (e.g., change file size) and environment (e.g., using machines

with difffferent CPUs and hard drives), and draw several curves of your program's performance under various conditions.

(1) change the input 即更改输入

从1的测试输出结果来看,纵向对比之后,随着输入样例的增多,两个程序之间的差距变得越来越大,整体呈现一个单线程的曲线对比于多线程的曲线整体上升速度极快,而且差距较大。