ISTANBUL TECHNICAL UNIVERSITY COMPUTER ENGINEERING DEPARTMENT

BLG 242E DIGITAL CIRCUITS LABORATORY EXPERIMENT REPORT

EXPERIMENT NO : 1

EXPERIMENT DATE : 10.03.2028

LAB SESSION : FRIDAY - 10.30

GROUP NO : G3

GROUP MEMBERS:

150200010: Ahmet Emre Buz

150200097 : Mustafa Can Çalışkan

SPRING 2023

Contents

1	INTRODUCTION	1
2	PRELIMINARY	1
3	EXPERIMENT	4
	3.1 Part 1	4
	3.2 Part 2	5
	3.3 Part 3	7
	3.4 Part 4	9
	3.5 Part 5	10
	3.6 Part 6	12
4	DISCUSSION	12
5	CONCLUSION	12
	REFERENCES	13

1 INTRODUCTION

In this experiment, we observed given axioms and theorems, and implemented them in the experimental environments.

2 PRELIMINARY

$$a + a.b = a \qquad (1)$$
$$(a+b)(a+b') = a \qquad (2)$$

• Proving the given equality (1) by using the axioms of Boolean algebra:

$$a+a.b$$

$$a.(1+b) \to \text{Distributivity}$$

$$a \to \text{Identity}$$

• Proving the given equality (2) by using the axioms of Boolean algebra:

$$(a+b)(a+b')$$

 $a+(b.b') \to \text{Distributivity}$
 $a+0 \to \text{Inverse}$
 $a \to \text{Identity}$

• Determine and prove the dual of the equality (1):

$$a+a.b \xrightarrow{dual} a.(a+b)$$

$$a.(a+b)$$

$$a.a+a.b \to \text{Distributivity}$$

$$a+a.b \to \text{Idempotency}$$

• Determine and prove the dual of the equality (2):

$$(a+b)(a+b') \xrightarrow{dual} (a.b) + (a.b')$$

$$(a.b) + (a.b')$$

$$a.(b+b') \to \text{Distributivity}$$

$$a+1 \to \text{Inverse}$$

$$a = (a.b) + (a.b') = (a+b)(a+b')$$

• Complement of

$$F = ab + a'c$$

is:

$$F' = (a' + b').(a + c') \rightarrow \text{De Morgan's Rule}$$

Figure 1: Design of F

Figure 2: Design of F'

• Simplification of given function:

$$F(a, b, c, d) = \bigcup_{1} (1, 2, 5, 6, 9, 10, 13, 14)$$

Figure 3: Karnaugh Map (created using the tool provided by boolean-algebra.com)

Expression obtained from Karnaugh map is:

$$F(a, b, c, d) = c'd + cd'$$

Figure 4: Design of F

3 EXPERIMENT

3.1 Part 1

In the first part of the experiment, 1 AND, 1 OR and 1 NOT gates are used to implement given expressions. The circuits below are designed.

Figure 5: Design of F1

a	b	FlAAb
0	0	0
0	1	0
1	0	1
1	1	1

Figure 6: Truth Table of F1

Figure 7: Design of F2

a	b	F2abab
0	0	0
0	1	0
1	0	1
1	1	1

Figure 8: Truth Table of F2

Moreover, these circuits are tested on C.A.D.E.T using a 7404 Hex Inverter, a 7408 Quadruple 2-input Positive-AND Gate and a 7432 Quadruple 2-input Positive-OR Gate.

3.2 Part 2

In the second part of the experiment, we determined the dual of the given theorem:

$$a + a.b \xrightarrow{dual} a.(a + b)$$

and implemented using AND and OR gates. The circuits below are designed.

Figure 9: Design of F

a	b	FlAAb
0	0	0
0	1	0
1	0	1
1	1	1

Figure 10: Truth Table of F

Figure 11: Design of Dual

a	b	aab
0	0	0
0	1	0
1	0	1
1	1	1

Figure 12: Truth Table of Dual

Moreover, these circuits are tested on C.A.D.E.T using a 7408 Quadruple 2-input Positive-AND Gate and a 7432 Quadruple 2-input Positive-OR Gate.

3.3 Part 3

In the third part of the experiment, we determined the complement of the given function:

$$F = ab + a'c$$

$$F' = (a' + b').(a + c')$$

and we implemented the complementary function using AND, OR and NOT gates. The circuit below is designed.

Figure 13: Design of F'

a	b	c	$(a \wedge b) \vee (\neg a \wedge c)$
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	0

Figure 14: Truth of F (created using the tool provided by emathhelp.net)

a	b	c	$(\neg a \vee \neg b) \wedge (a \vee \neg c)$
1	1	1	0
1	1	0	0
1	0	1	1
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	1

Figure 15: Truth of F' (created using the tool provided by emathhelp.net)

Moreover, these circuits are tested on C.A.D.E.T using a 7404 Hex Inverter, a 7408 Quadruple 2-input Positive-AND Gate and a 7432 Quadruple 2-input Positive-OR Gate.

3.4 Part 4

In the fourth part of the experiment, we simplified given function:

$$F(a, b, c, d) = \bigcup_{1} (1, 2, 5, 6, 9, 10, 13, 14)$$

Figure 16: Karnaugh Map (created using the tool provided by boolean-algebra.com)

and we found the simplified expression:

$$F(a, b, c, d) = c'd + cd'$$

then, we implemented the simplified expression using AND, OR and NOT gates. The circuit below is designed.

Figure 17: Design of F

c	d	$(c \wedge \neg d) \vee (\neg c \wedge d)$
1	1	0
1	0	1
0	1	1
0	0	0

Figure 18: Truth Table of F (created using the tool provided by emathhelp.net)

Moreover, these circuits are tested on C.A.D.E.T using a 7404 Hex Inverter, a 7408 Quadruple 2-input Positive-AND Gate and a 7432 Quadruple 2-input Positive-OR Gate.

3.5 Part 5

In the fifth part of the experiment, we observed some experimental environments.

Figure 19: Potentiometer

Figure 20: Display

3.6 Part 6

In the last part of the experiment, we obtained a basic knowledge of the use of the function generator and the oscilloscope.

Figure 21: Oscilloscope

4 DISCUSSION

In the part 5, we were not able to show "7" number entirely in display due to a problem in our experimental environment.

5 CONCLUSION

In this experiment, we observed given axioms and theorems, implemented them in the experimental environments, and we obtained a basic knowledge of the use of the function generator and the oscilloscope.

REFERENCES