Thomaeova funkcija

Beno Učakar

Oglejmo si Thomaeovo funkcijo, ki je primer funkcije prvega Bairovega razreda. Take funkcije lahko definiramo na naslednji način. Naj bo $D \subseteq \mathbb{R}$. Funkcija $f: D \to \mathbb{R}$ je funkcija prvega Bairovega razreda, če obstaja funkcijsko zaporedje $\{f_n\}$ zveznih funkcij na D, ki po točkah konvergira k f. Ta razred označimo z $\mathscr{B}^1(D)$ oziroma, če ne bo nevarnosti zmede, kar z \mathscr{B}^1 .

Zgled (Thomaeova funkcija). Funkcijsko zaporedje $f_n:(0,1)\to\mathbb{R}$ definiramo na sledeč način. Za vsak $p,q\in\mathbb{N}_0,\,1\leq q< n$ in $0\leq p\leq q$ definiramo

•
$$f_n(x) = \max\left\{\frac{1}{n}, \frac{1}{q} + 2n^2\left(x - \frac{p}{q}\right)\right\}$$
 na intervalu $\left(\frac{p}{q} - \frac{1}{2n^2}, \frac{p}{q}\right)$ in

•
$$f_n(x) = \max\left\{\frac{1}{n}, \frac{1}{q} - 2n^2\left(x - \frac{p}{q}\right)\right\}$$
 na intervalu $\left(\frac{p}{q}, \frac{p}{q} + \frac{1}{2n^2}\right)$.

V vseh ostalih točkah naj bo $f_n(x) = \frac{1}{n}$. Preverimo lahko, da so intervali $\left(\frac{p}{q} - \frac{1}{2n^2}, \frac{p}{q} + \frac{1}{2n^2}\right)$ paroma disjunktni in zgornja definicija je dobra. Opazimo, da je $f_n(x)$ odsekoma linearna zvezna. Če vzamemo limito po točkah, dobimo

$$f(x) = \begin{cases} \frac{1}{q}; & x = \frac{p}{q} \text{ je pokrajšan ulomek za } p, q \in \mathbb{N} \\ 0; & x \text{ je iracionalen} \end{cases}$$

Pokazali smo, da Thomaeova funkcija pripada \mathscr{B}^1 .

Literatura

[1] B. Gelbaum and J. Olmsted, *Counterexamples in Analysis*, Dover Books on Mathematics, Dover Publications, 2003.