Machine Learning

Lecture 04: Generative Models and Naive Bayes

Nevin L. Zhang lzhang@cse.ust.hk

Department of Computer Science and Engineering The Hong Kong University of Science and Technology

This set of notes is based on internet resources and KP Murphy. Machine learning: a probabilistic perspective. MIT Press. (Chapters 3, 4, 8) Andrew Ng. Lecture Notes on Machine Learning. Stanford.

Introduction

Outline

- 1 Introduction
- 2 Gaussian Discriminant Analysis
- 3 Generative vs Discriminative Classifiers
- 4 Generative Models for Discrete Data

Approaches to Classification

- Optimization approach:
 - Data $\rightarrow y = \operatorname{sign}(z) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$.
 - Learn parameters by minimizing surrogate loss function:

$$\frac{1}{N}\sum_{i=1}^{N}L(y_i,z_i).$$

- Probabilistic approach:
 - Data $\rightarrow P(y|\mathbf{x},\mathbf{w})$.
 - Learn parameters by minimizing (conditional) cross entropy:

$$-\frac{1}{N}\sum_{i=1}^{N}\log P(y_i|\mathbf{x}_i,w).$$

■ Both models *directly* tell us what how to predict *y* from **x**. Such models are called **discriminative models**.

Generative Approach

■ Assume data generation process:

$$c \sim P(y)$$

 $\mathbf{x} \sim P(\mathbf{x}|y=c)$

■ Learn parameters of the generation process from data:

Data
$$\rightarrow p(y)$$
, $p(\mathbf{x}|y)$

by maximizing the loglikelihood,

$$\sum_{i=1}^{N} \log P(y_i, \mathbf{x}_i | \theta).$$

Or, equivalently, minimizing (joint) cross entropy:

$$-\frac{1}{N}\sum_{i=1}^{N}\log P(y_i,\mathbf{x}_i|\theta).$$

Question: What are the two distributions involved in the cross entropy?

Generative Learning

- To learn p(y = c) ($c \in \{1, 2, ..., C\}$) is to determine the sizes of the classes. They are called **prior probabilities** of the classes.
- To learn $p(\mathbf{x}|y=c)$ ($c \in \{1,2,\ldots,C\}$) is to determine the characteristics of the classes.
 - Here, we need to assume that features **x** follow certain distributions, e.g., Gaussian. In other words, we assume the data are **generated** from Gaussian distributions.
 - To learn $p(\mathbf{x}|y=c)$ is to determine the parameters of the **generative** model. A common way to do this is to use MLE.
 - $p(\mathbf{x}|y=c)$ ($c \in \{1,2,\ldots,C\}$) are called **class conditional densities**.

Generative Learning

How to predict y from x using p(y) and p(x|y)?

■ Use Bayes rule get the **posterior distribution**:

$$p(y|\mathbf{x}) = \frac{p(y)p(\mathbf{x}|y)}{p(\mathbf{x})}$$

■ Rule for classification:

$$\hat{y} = \arg\max_{y} p(y|\mathbf{x}) = \arg\max_{y} p(y)p(\mathbf{x}|y) = \arg\max_{y} [\log p(y) + \log p(\mathbf{x}|y)]$$

Outline

- 1 Introduction
- 2 Gaussian Discriminant Analysis
- 3 Generative vs Discriminative Classifiers
- 4 Generative Models for Discrete Data

Gaussian Discriminant Analysis

■ Gaussian Discriminant Analysis (GDA) is for applications with real-valued input features x. It assumes that the class conditional densities are Gaussian:

$$p(\mathbf{x}|y=c, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c).$$

Let $\pi_c = P(y = c)$ and $\boldsymbol{\pi} = (\pi_1, \dots, \pi_C)^{\top}$. All parameters of GDA are: $\boldsymbol{\theta} = \{\pi_c, \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c | c = 1, \dots, C\}$.

GDA: Parameter Estimation

■ The log-likelihood function is as follows:

$$\log p(\mathcal{D}|\boldsymbol{\theta}) = \sum_{i=1}^{N} \log p(\mathbf{x}_{i}, y_{i}|\boldsymbol{\theta})$$

$$= \sum_{i=1}^{N} [\log p(y_{i}|\boldsymbol{\theta}) + \log p(\mathbf{x}_{i}|y_{i}, \boldsymbol{\theta})]$$

$$= \sum_{i=1}^{N} \sum_{c=1}^{C} \mathbf{1}(y_{i} = c) [\log p(y = c|\boldsymbol{\theta}) + \log p(\mathbf{x}_{i}|y = c, \boldsymbol{\theta})]$$

$$= \sum_{c=1}^{C} \sum_{i:y_{i}=c} \log \pi_{c} + \sum_{c=1}^{C} \sum_{i:y_{i}=c} \log \mathcal{N}(\mathbf{x}_{i}|\boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c})$$

$$= \sum_{c=1}^{C} n_{c} \log \pi_{c} + \sum_{c=1}^{C} \sum_{i:y_{i}=c} \log \mathcal{N}(\mathbf{x}_{i}|\boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c})$$

where $n_c = \sum_{i=1}^{N} \mathbf{1}(y_i = c)$ is the size of class c.

GDA: Parameter Estimation

- lacktriangle To maximize $\log p(\mathcal{D}|oldsymbol{ heta})$, we can separately maximize
- By Gibbs' inequality,

$$\sum_{c=1}^{C} n_c \log \pi_c \le \sum_{c=1}^{C} n_c \log \frac{n_c}{N}$$

where $N = \sum_{c} n_{c}$. Hence, the MLE of π_{c} is:

$$\hat{\pi_c} = \frac{n_c}{N}$$

GDA: Parameter Estimation

■ The MLE μ_c and Σ_c are as follows:

$$\hat{\mu_c} = \frac{1}{n_c} \sum_{i:y_i=c} \mathbf{x}_i$$
 (sample mean)
$$\hat{\mathbf{\Sigma}_c} = \frac{1}{n_c} \sum_{i:y_i=c} (\mathbf{x}_i - \hat{\mu_c}) (\mathbf{x}_i - \hat{\mu_c})^{\top}$$
 (sample covariance matrix)

GDA: Classification Rule and Decision Boundary

■ The classification rule of GDA is:

$$\hat{y} = \arg\max_{c}[\log p(y=c) + \log p(\mathbf{x}|y=c)]$$

$$= \arg\max_{c} \left[\log(\pi_c) - \frac{D}{2} \log(2\pi_c) - \frac{1}{2} \log(|\mathbf{\Sigma}_c|) - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_c)^{\top} \mathbf{\Sigma}_c^{-1} (\mathbf{x} - \boldsymbol{\mu}_c) \right]$$

■ This is a quadratic function. So, DGA in this case is also called **quadratic discriminant analysis**. The decision boundary is generally parabolic, but can also be linear.

Relationship with Softmax Regression

$$\begin{split} \rho(y = c | \mathbf{x}, \boldsymbol{\theta}) & \propto \quad \rho(y = c | \boldsymbol{\theta}) \rho(\mathbf{x} | y = c, \boldsymbol{\theta}) \quad \text{(Bayes rule)} \\ & \propto \quad \pi_c \exp \left[-\frac{(\mathbf{x} - \boldsymbol{\mu}_c)^\top \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_c)}{2} \right] \\ & = \quad \pi_c \exp \left[\boldsymbol{\mu}_c^\top \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_c^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c \right] \exp \left[-\frac{1}{2} \mathbf{x}^\top \boldsymbol{\Sigma}^{-1} \mathbf{x} \right] \\ & \propto \quad \exp \left[\boldsymbol{\mu}_c^\top \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_c^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c + \log \pi_c \right] \end{split}$$

- \blacksquare Here, terms not depending on c are removed in steps 2 and 4.
- Let $b_c = -\frac{1}{2}\mu_c^\top \Sigma^{-1}\mu_c + \log \pi_c$, and $\mathbf{w}_c^\top = \mu_c^\top \Sigma^{-1}$. Then

$$p(y = c | \mathbf{x}, \boldsymbol{\theta}) \propto \exp \left[\mathbf{w}_c^{\top} \mathbf{x} + b_c \right]$$

■ This leads us back to the **softmax regression model**, and when C = 2, the **logistic regress model**.

Relationship with Softmax Regression

■ The decision boundary is therefore linear:

■ So, in this case, Gaussian discriminant analysis becomes **linear discriminant analysis**.

Outline

- 1 Introduction
- 2 Gaussian Discriminant Analysis
- 3 Generative vs Discriminative Classifiers
- 4 Generative Models for Discrete Data

Gaussian Discriminant Analysis (GDA) vs Logistic Regression

- GDA makes stronger assumptions than logistic regression
 - $p(\mathbf{x}|y)$ is Gaussian (with shared Σ) implies that $p(y|\mathbf{x})$ is a logistic function $\sigma(\mathbf{w}^{\top}\mathbf{x})$.
 - The opposite is not true. Here is a counter-example.

■ For parameter estimation, logistic regression maximizes the conditional log-likelihood $\sum_{i=1}^{N} \log p(y_i|\mathbf{x}_i,\mathbf{w})$, while GDA maximizes the joint log-likelihood $\sum_{i=1}^{N} \log p(y_i,\mathbf{x}_i|\boldsymbol{\theta})$.

GDA vs Logistic Regression

- Parameter estimation is easier in generative classifiers than in discriminative classifiers. For example, GDA has closed-form formulae for MLE, while logistic regression requires gradient descent to compute MLE.
- When the Gaussian assumptions made by GDA are correct, the GDA will need less training data than logistic regression to achieve a certain level of performance.
- In contrast, by making significantly weaker assumptions, logistic regression is more robust and less sensitive to incorrect modeling assumptions.

Generative vs Discriminative Classifiers

- It is easier to deal with missing data with generative classifiers: Use the EM algorithm during training and marginalization during testing. No principled way to handle missing data with discriminative classifiers.
- In generative classifiers, we can use unlabeled data to help with the training. There is a subfield called **semi-supervised learning** that does this. It is much harder to do in discriminative classifiers.
- In discriminative classifiers, we can do basis function expansion, replacing \mathbf{x} with some $\phi(\mathbf{x})$. This is hard to do with generative models because the new feature are correlated in complex ways.

Outline

- 1 Introduction
- 2 Gaussian Discriminant Analysis
- 3 Generative vs Discriminative Classifiers
- 4 Generative Models for Discrete Data

Problem Statement

- So far, we have been considering training set $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^N$, where $y_i \in \{1, 2, ..., C\}$ and **continuous-valued features** $\mathbf{x}_i \in \mathbb{R}^D$. We assume $p(\mathbf{x}|y=c, \theta) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)$. The number of parameters for each class is $D + \frac{D(D+1)}{2}$.
- Next, we consider problems with **discrete-valued features** $\mathbf{x}_i \in \{1, 2, ..., K\}^D$
 - For each class, we have the joint distribution $p(\mathbf{x}|y=c,\theta)=p(x_1,\ldots,x_D|y=c,\theta).$
 - When all features are binary, the number of parameters is $2^D 1$. This is too many to handle. We need to reduce the number of parameter by making independence assumptions.

Naive Bayes Model

■ In the Naive Bayes model, we assume that the features are conditionally independent of each other given the class label

$$p(\mathbf{x}|y=c, \boldsymbol{\theta}) = \prod_{i=1}^{D} p(x_i|y=c, \boldsymbol{\theta}_{jc})$$

■ In the case of binary features (K = 2), we can use the Bernoulli distribution for each feature:

$$p(\mathbf{x}|y=c,oldsymbol{ heta}) = \prod_{j=1}^D Ber(x_j|\mu_{jc})$$

where μ_{jc} is the probability that feature j occurs in class c.

■ In the general case (K > 2), we can use the categorical distribution for each feature:

$$p(\mathbf{x}|y=c,oldsymbol{ heta}) = \prod_{j=1}^{D} extit{Cat}(x_j|oldsymbol{\mu}_{jc})$$

where $\mu_{jc} = (\mu_{jc1}, \dots, \mu_{jcK})^{\top}$ where μ_{jck} is the probability that x_j takes value k in class c.

Naive Bayes: Parameter Estimation

■ The log-likelihood function is as follows:

$$\log p(\mathcal{D}|\boldsymbol{\theta}) = \sum_{i=1}^{N} \log p(\mathbf{x}_i, y_i|\boldsymbol{\theta})$$

$$= \sum_{i=1}^{N} [\log p(y_i|\boldsymbol{\theta}) + \log p(\mathbf{x}_i|y_i, \boldsymbol{\theta})]$$

$$= \sum_{i=1}^{N} \sum_{c=1}^{C} \mathbf{1}(y_i = c) [\log p(y = c|\boldsymbol{\theta}) + \log p(\mathbf{x}_i|y = c, \boldsymbol{\theta})]$$

$$= \sum_{c=1}^{C} \sum_{i:y_i = c} \log \pi_c + \sum_{c=1}^{C} \sum_{i:y_i = c} \log \prod_{j=1}^{D} Cat(x_{ij}|\boldsymbol{\mu}_{jc})$$

$$= \sum_{i=1}^{N} \sum_{c=1}^{C} \mathbf{1}(y_i = c) \log \pi_c + \sum_{c=1}^{C} \sum_{i=1}^{D} \sum_{i:y_i = c} \log p(x_{ij}|\boldsymbol{\mu}_{jc})$$

Naive Bayes: Parameter Estimation

- To maximize $\log p(\mathcal{D}|\theta)$, we can separately maximize

 - $\sum_{i=1}^{N} \sum_{c=1}^{C} \mathbf{1}(y_i = c) \log \pi_c$, and $\sum_{i=1}^{D} \sum_{i:v_i=c} \log p(x_{ij}|\mu_{ic})$ for different c.
- As in the case of GDA.

$$\hat{\pi}_c = \frac{n_c}{N} \quad (n_c = \sum_{i=1}^N \mathbf{1}(y_i = c) \text{ is the size of class } c)$$

■ By Gibbs' inequality,

$$\sum_{j=1}^{D} \sum_{i:y_i=c} \log p(x_{ij}|\mu_{jc})) = \sum_{j=1}^{D} n_{jck} \log p(x_{ij}|\mu_{jc})) \leq \sum_{j=1}^{D} n_{jck} \log \frac{n_{jck}}{n_c}$$

Where n_{jck} is the number of examples in class c where $x_{ij} = k$. Hence,

$$\hat{\mu}_{jck} = \frac{n_{jck}}{n_c}$$

Laplace Smoothing

- In practice, we might encounter the case where $n_c = 0$. In such a case, $\hat{\mu}_{jck} = 0/0$.
- Laplace smoothing is used t avoid the division-by-zero problem:

$$\hat{\mu}_{jck} = \frac{n_{jck} + \alpha}{n_c + K\alpha}$$

where $\alpha > 0$ is the **smoothing parameter**.

■ The Naive Bayes algorithm is still considered very good, and very popular.

Independence Assumption for Continuous-Valued Data

■ For continuous-value data, we can also make the conditional independence assumption

$$p(\mathbf{x}|y=c,\boldsymbol{\theta}) = \prod_{j=1}^{D} p(x_j|y=c,\boldsymbol{\theta}_{jc})$$

■ If we further assume x_j follows a Gaussian distribution, we get

$$p(\mathbf{x}|y=c, \boldsymbol{ heta}) = \prod_{j=1}^{D} \mathcal{N}(x_j | \mu_{jc}, \sigma_{jc}^2)$$

This is equivalent to Gaussian discriminant analysis with diagonal covariance matrix.

■ The independence assumption reduces the number of parameters for each class from $D + \frac{(D+1)D}{2}$ to 2D.