MATH214

Linear algebra

Homework 3

Manuel — UM-JI (Spring 2023)

Reminders

- Write in a neat and legible handwriting or use LATEX
- Clearly explain the reasoning process
- Write in a complete style (subject, verb, and object)
- Be critical on your results

Questions preceded by a * are optional. Although they can be skipped without any deduction, it is important to know and understand the results they contain.

Ex. 1 — Rank

Determine the rank of the following sets.

1.
$$S = \{X^2 + X + 1, X^2 + 3X + 1, 2X, X^3 + 3\} \subset \mathbb{C}[X];$$

- * 2. Before next question.
 - 3. $S = \{x + z, -x + 2y, x + y z + t, y + t\} \subset \mathcal{L}(\mathbb{R}^4, \mathbb{R});$ *Hints.*
 - What are the elements of $\mathcal{L}(\mathbb{R}^4, \mathbb{R})$ looking like?
 - Why is $S \subset \mathcal{L}(\mathbb{R}^4, \mathbb{R})$?

Ex. 2 — Kernel of linear forms

- * 1. What is a linear form and what is its kernel?
 - 2. In \mathbb{R}^4 write the subspace spanned by $\{(2,1,0,2),(-1,-2,3,1)\}$ as the intersection of the kernel of two linear forms.

Ex. 3 — Matrix, kernel, and image

Let $u \in \mathcal{L}(\mathbb{R}^3)$ whose matrix in the canonical basis is

$$\begin{pmatrix}
1 & 1 & 1 \\
-1 & 2 & -2 \\
0 & 3 & -1
\end{pmatrix}$$

Determine a basis of ker u and of im u.

Ex. 4 — *Projections*

Let V be a K-vector space. Any endomorphism p of V such that $p^2 = p \circ p = p$ is called a projection.

- 1. Prove that p is a projection if and only if $ld_V p$ is also a projection.
- 2. Show that if p is a projection then $\operatorname{im}(\operatorname{Id}_V p) = \ker p$ and $\operatorname{ker}(\operatorname{Id}_V p) = \operatorname{im} p$. Hint: proceed by double inclusion.
- 3. Prove that if p is a projection then $V = \operatorname{im} p \oplus \ker p$.

4. Show that a projection p commutes with an endomorphism u of V if and only if both its kernel and image are closed under u.

Hint: take advantage of the result from 3.

* Ex. 5 — Challenging problem

Let V be a finite dimensional \mathbb{K} -vector space and $u \in \mathcal{L}(V)$.

- 1. Prove that the following properties are equivalent.
 - (i) $\ker u = \ker u^2$;
 - (ii) im $u = \text{im } u^2$;
 - (iii) $V = \ker u \oplus \operatorname{im} u$;
- 2. Provide some examples of such endomorphisms.
- 3. Is this result still valid in infinite dimension?