(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 March 2001 (22.03.2001)

PCT

(10) International Publication Number WO 01/19161 A2

- (51) International Patent Classification: Not classified
- (21) International Application Number: PCT/US00/25272
- (22) International Filing Date:

14 September 2000 (14.09.2000)

- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:

60/154,546 17 September 1999 (17.09.1999) US

- (71) Applicant (for all designated States except US): ISIS PHARMACEUTICALS, INC. [US/US]; 2292 Faraday Avenue, Carlsbad, CA 92008 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): DEAN, Nicholas, M. [GB/US]; 2110 Whisperwind Lane, Olivenheim, CA 92024 (US). MURRAY, Susan, F. [US/US]; 12348 Ann-O-Reno Lane, Poway, CA 92064 (US).
- (74) Agents: LICATA, Jane, Massey et al.; Law Offices of Jane Massey Licata, 66 E. Main Street, Marlton, NJ 08053 (US).

- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 With declaration under Article 17(2)(a); without classification and without abstract; title not checked by the International Searching Authority.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

-1-

ANTISENSE MODULATION OF TRANSFORMING GROWTH FACTOR-S EXPRESSION

This application claims the benefit of U.S.

5 Provisional Application No. 60/154,546 filed September 17,
1999.

FIELD OF THE INVENTION

The present invention provides compositions and methods for modulating the expression of transforming 10 growth factor-ß (TGF-ß). In particular, this invention relates to antisense compounds, particularly oligonucleotides, specifically hybridizable with nucleic acids encoding human TGF-ß. Such oligonucleotides have been shown to modulate the expression of TGF-ß.

15 BACKGROUND OF THE INVENTION

30 function similarly in vitro.

Transforming growth factor-ß (TGF-ß) is a cytokine which regulates biological processes such as cell proliferation, differentiation and immune reaction. It has been found to have many actions in tissue repair,

- 20 stimulating the deposition of extracellular matrix in multiple ways. TGF-ß stimulates the synthesis of matrix proteins including fibronectin, collagens and proteoglycans. It also blocks the degradation of matrix by inhibiting protease secretion and by inducing the
- expression of protease inhibitors. It also facilitates cell-matrix adhesion and matrix deposition via modulation of expression of integrin matrix receptors, and lastly TGF-ß also upregulates its own expression. TGF-ß exists in three isoforms in mammals: TGF-ß1, -2 and -3. These
- Fibrosis is a pathological process, usually resulting from injury, which can occur in any organ. Excessive amounts of extracellular matrix accumulate within a tissue, forming scar tissue which causes dysfunction and,
- 35 potentially, organ failure. Fibrosis can be either chronic

or acute. Chronic fibrosis includes fibrosis of the major organs, most commonly liver, kidney and/or heart, and normally has a genetic or idiopathic origin. Progressive fibrosis of the kidney is the main cause of chronic renal disease. In diabetics, fibrosis within glomeruli (glomerulosclerosis) and between tubules (tubulointerstitial fibrosis) causes the progressive loss of renal function that leds to end-stage renal disease. Fibrotic lung disorders include some 180 different conditions and result in severe impairment of lung function.

-2-

PCT/US00/25272

Acute fibrosis is associated with injury, often as a result of surgery. Surgical adhesion represents the largest class of acute fibrosis. Surgery often results in excessive scarring and fibrous adhesions. It is estimated that over 90% of post-surgical patients are affected by adhesions. Abdominal adhesions can lead to small bowel obstruction and female infertility. Fibrosis after neck and back surgery (laminectomy, discectomy) can cause significant pain.

20 Fibrosis after eye surgery can impair vision. Pericardial adhesions after coronary bypass surgery, fibrosis after organ transplant rejection and general scarring after plastic surgery are other examples. This represents a major

25 Antisense and other inhibitors of TGF-ß have been used to elucidate the role of TGF-ßs in cancer, anaphylaxis, fibrosis and other conditions. As examples:

unmet medical need.

Dzau (WO 94/26888) discloses use of antisense sequences which inhibit the expression of cyclins and 30 growth factors including TGF- \mathfrak{G}_1 , TGF, bFGF, PDGF for inhibiting vascular cellular activity of cells associated with vascular lesion formation in mammals.

Shen et al. discloses use of phosphorothicate antisense oligonucleotides targeted to TGF-\$2 to reduce

-3-

WO 01/19161 PCT/US00/25272

TGF-&2 expression in U937 cells (Bioorg. Med. Chem. Lett., 1999, 9, 13-18).

Schuftan et al. (1999, Eur. J. Clin Invest., 29, 519-528) disclose use of a2-macroglobin or antisense to TGF-ß1 to reduce extracellular matrix synthesis in cultured rat hepatic stellate cells.

Kim et al. have used antisense oligonucleotides targeted to TGF-ß1 to inhibit passive cutaneous anaphylaxis and histamine release. 1999, J. Immunol. 162, 4960-4965.

10 Kim et al. have also used an antisense TGF-ß1 oligodeoxynucleotide to inhibit wound-induced expression of TGF-ß1 mRNA in mouse skin. Pharmacol. Res., 1998, 37, 289-293.

Liu et al. used TGF-ß antibody or antisense to TGF-ß1

15 to inhibit secretion of plasminogen activator inhibitor-1

in EGR-1 regulated cells. 1999, J. Biol. Chem. 274, 4400
4411. Arteaga et al. used antibodies or antisense

oligonucleotides targeted to TGF-ß2 to enhance sensitivity

of cancer cells to NK cells in the presence of tamoxifen.

Tzai et al. , 1998, Anticancer Res., 18, 1585-1589, used antisense oligonucleotides specific for TGF-ß1 to inhibit in vitro and in vivo growth of murine bladder cancer cells.

20 1999, J. Nat. Cancer Inst. 91, 46-53.

The role of TGF-ß in diabetic nephropathy is reviewed in Hoffman, et al.,1998, Electrolyte Metab., 24, 190-196.

Neutralizing anti-TGF-ß antibodies or antisense oligonucleotides directed to TGF-ß1 are reported to prevent the hypertrophic effects of high glucose and the stimulation of matrix synthesis in renal cells.

Antisense phosphorothioate oligodeoxynucleotides targeted to TGF-ß3 were used by Nakajima et al. (1998, Japan. Dev. Biol, 194, 99-113; abstract only) and others to

-4-

block transformation of atrioventricular canal endothelial cells into invasive mesenchyme.

Chung et al. (US Patent 5,683,988) disclose and claim particular antisense oligodeoxynucleotides targeted to TGF-5 ß and use of these to inhibit scarring.

SUMMARY OF THE INVENTION

The present invention is directed to antisense compounds, particularly oligonucleotides, which are targeted to a nucleic acid encoding TGF-ß, and which

10 modulate the expression of TGF-ß. Pharmaceutical and other compositions comprising the antisense compounds of the invention are also provided. Further provided are methods of modulating the expression of TGF-ß in cells or tissues comprising contacting said cells or tissues with one or

15 more of the antisense compounds or compositions of the invention. Further provided are methods of treating an animal, particularly a human, suspected of having or being prone to a disease or condition associated with expression of TGF-ß by administering a therapeutically or

20 prophylactically effective amount of one or more of the antisense compounds or compositions of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention employs oligomeric antisense compounds, particularly oligonucleotides, for use in

25 modulating the function of nucleic acid molecules encoding TGF-ß, ultimately modulating the amount of TGF-ß produced. This is accomplished by providing antisense compounds which specifically hybridize with one or more nucleic acids encoding TGF-ß. As used herein, the terms "target nucleic acid" and "nucleic acid encoding TGF-ß" encompass DNA encoding TGF-ß, RNA (including pre-mRNA and mRNA) transcribed from such DNA, and also cDNA derived from such RNA. The specific hybridization of an oligomeric compound with its target nucleic acid interferes with the normal

-5-

PCT/US00/25272

function of the nucleic acid. This modulation of function of a target nucleic acid by compounds which specifically hybridize to it is generally referred to as "antisense". The functions of DNA to be interfered with include 5 replication and transcription. The functions of RNA to be interfered with include all vital functions such as, for example, translocation of the RNA to the site of protein translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic 10 activity which may be engaged in or facilitated by the RNA. The overall effect of such interference with target nucleic acid function is modulation of the expression of TGF-S. the context of the present invention, "modulation" means either an increase (stimulation) or a decrease (inhibition) 15 in the expression of a gene product. In the context of the present invention, inhibition is a preferred form of modulation of gene expression and mRNA is a preferred target. Further, since many genes (including TGF-ß) have multiple transcripts, "modulation" also includes an 20 alteration in the ratio between gene products, such as alteration of mRNA splice products.

It is preferred to target specific nucleic acids for antisense. "Targeting" an antisense compound to a particular nucleic acid, in the context of this invention, is a multistep process. The process usually begins with the identification of a nucleic acid sequence whose function is to be modulated. This may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, the target is a nucleic acid molecule encoding TGF-\$\mathbb{G}\$. The targeting process also includes determination of a site or sites within this gene for the antisense interaction to occur

such that the desired effect, e.g., detection or modulation of expression of the protein, will result. Within the context of the present invention, a preferred intragenic site is the region encompassing the translation initiation 5 or termination codon of the open reading frame (ORF) of the Since, as is known in the art, the translation initiation codon is typically 5'-AUG (in transcribed mRNA molecules; 5'-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the 10 "AUG codon," the "start codon" or the "AUG start codon". minority of genes have a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG or 5'-CUG, and 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in Thus, the terms "translation initiation codon" and 15 "start codon" can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in prokaryotes). It is also known in the art that eukaryotic and prokaryotic genes may have two or more 20 alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, "start codon" and "translation initiation codon" refer to the 25 codon or codons that are used in vivo to initiate translation of an mRNA molecule transcribed from a gene encoding TGF-S, regardless of the sequence(s) of such codons.

It is also known in the art that a translation

30 termination codon (or "stop codon") of a gene may have one of three sequences, i.e., 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA, respectively). The terms "start codon region" and "translation initiation codon region" refer to a portion of

-7-

such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terms "stop codon region" and "translation termination codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon.

The open reading frame (ORF) or "coding region," 10 which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Other target regions include the 5' untranslated region (5'UTR), known in the art to refer to 15 the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene, and the 3' untranslated region (3'UTR), known in 20 the art to refer to the portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene. The 5' cap of an mRNA comprises an N7-methylated 25 guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap. The 5' cap region may also be a preferred target region.

Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as "introns," which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as "exons" and are spliced

30

-8-

together to form a continuous mRNA sequence. mRNA splice sites, i.e., intron-exon junctions, may also be preferred target regions, and are particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular mRNA splice product is implicated in disease. Aberrant fusion junctions due to rearrangements or deletions are also preferred targets. It has also been found that introns can also be effective, and therefore preferred, target regions for antisense compounds targeted, for example, to DNA or pre-mRNA.

Once one or more target sites have been identified, oligonucleotides are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect.

In the context of this invention, "hybridization" means hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases. For example, 20 adenine and thymine are complementary nucleobases which pair through the formation of hydrogen bonds. "Complementary," as used herein, refers to the capacity for precise pairing between two nucleotides. For example, if a nucleotide at a certain position of an oligonucleotide is 25 capable of hydrogen bonding with a nucleotide at the same position of a DNA or RNA molecule, then the oligonucleotide and the DNA or RNA are considered to be complementary to each other at that position. The oligonucleotide and the DNA or RNA are complementary to each other when a 30 sufficient number of corresponding positions in each molecule are occupied by nucleotides which can hydrogen bond with each other. Thus, "specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity or precise pairing

-9-

such that stable and specific binding occurs between the oligonucleotide and the DNA or RNA target. It is understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. An antisense compound is specifically hybridizable when binding of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of utility, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, or in the case of in vitro assays, under conditions in which the assays are performed.

Antisense compounds are commonly used as research reagents and diagnostics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes. Antisense compounds are also used, for example, to distinguish between functions of various members of a biological pathway. Antisense modulation has, therefore, been harnessed for research use.

25 The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Antisense oligonucleotides have been employed as therapeutic moieties in the treatment of disease states in animals and man. Antisense oligonucleotides have been 30 safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that oligonucleotides can be useful therapeutic modalities that can be configured to be useful in treatment regimes of cells, tissues and animals, especially humans.

-10-

PCT/US00/25272

In the context of this invention, the term
"oligonucleotide" refers to an oligomer or polymer of
ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or
mimetics thereof. This term includes oligonucleotides

5 composed of naturally-occurring nucleobases, sugars and
covalent internucleoside (backbone) linkages as well as
oligonucleotides having non-naturally-occurring portions
which function similarly. Such modified or substituted
oligonucleotides are often preferred over native forms

10 because of desirable properties such as, for example,
enhanced cellular uptake, enhanced affinity for nucleic
acid target and increased stability in the presence of
nucleases.

While antisense oligonucleotides are a preferred form 15 of antisense compound, the present invention comprehends other oligomeric antisense compounds, including but not limited to oligonucleotide mimetics such as are described below. The antisense compounds in accordance with this invention preferably comprise from about 8 to about 30 20 nucleobases. Particularly preferred are antisense oligonucleotides comprising from about 8 to about 30 nucleobases (i.e. from about 8 to about 30 linked nucleosides). As is known in the art, a nucleoside is a base-sugar combination. The base portion of the nucleoside 25 is normally a heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that 30 include a pentofuranosyl sugar, the phosphate group can be linked to either the 2'-, 3'- or 5'- hydroxyl moiety of the In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn the respective ends

-11-

PCT/US00/25272

of this linear polymeric structure can be further joined to form a circular structure. However, open linear structures are generally preferred. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3'-5' phosphodiester linkage.

Specific examples of preferred antisense compounds useful in this invention include oligonucleotides

10 containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the

15 backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

Preferred modified oligonucleotide backbones include,
for example, phosphorothioates, chiral phosphorothioates,
phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates
including 3'-alkylene phosphonates and chiral phosphonates,
phosphinates, phosphoramidates including 3'-amino

25 phosphoramidate and aminoalkylphosphoramidates,
thionophosphoramidates, thionoalkylphosphonates,
thionoalkylphosphotriesters, and boranophosphates having
normal 3'-5' linkages,2'-5' linked analogs of these, and
those having inverted polarity wherein the adjacent pairs
30 of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to
5'-2'. Various salts, mixed salts and free acid forms are
also included.

Representative United States patents that teach the preparation of the above phosphorus-containing linkages

-12-

PCT/US00/25272

include, but are not limited to, U.S. Patents 3,687,808;
4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897;
5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131;
5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677;
5 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111;
5,563,253; 5,571,799; 5,587,361; and 5,625,050, each of which is herein incorporated by reference.

Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that

10 are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages

15 (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino

20 and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH₂ component parts.

Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Patents 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 30 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439, each of which is herein incorporated by reference.

In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups.

-13-

PCT/US00/25272

The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is 5 referred to as a peptide nucleic acid (PNA). compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza 10 nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Patents 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further 15 teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500.

Most preferred embodiments of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular -CH₂-NH-O-CH₂-, -CH₂-N(CH₃)-O-CH₂- [known as a methylene (methylimino) or MMI backbone], -CH₂-O-N(CH₃)-CH₂-, -CH₂-N(CH₃)-N(CH₃)-CH₂- and -O-N(CH₃)-CH₂-CH₂- [wherein the native phosphodiester backbone is represented as -O-P-O-CH₂-] of the above referenced U.S. Patent 5,489,677, and the amide backbones of the above referenced U.S. Patent 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above-referenced U.S. Patent 5,034,506.

Modified oligonucleotides may also contain one or 30 more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1

-14-

to C_{10} alkyl or C_2 to C_{10} alkenyl and alkynyl. Particularly preferred are O[(CH₂)_nO]_mCH₃, O(CH₂)_nOCH₃, O(CH₂)_nNH₂, $O(CH_2)_nCH_3$, $O(CH_2)_nONH_2$, and $O(CH_2)_nON[(CH_2)_nCH_3)]_2$, where n and m are from 1 to about 10. Other preferred oligonucleotides 5 comprise one of the following at the 2' position: C_1 to C_{10} lower alkyl, substituted lower alkyl, alkaryl, aralkyl, Oalkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH₃, SO₂CH₃, ONO₂, NO₂, N₃, NH₂, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, 10 substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred 15 modification includes an alkoxyalkoxy group, 2'methoxyethoxy (2'-O-CH₂CH₂OCH₃, also known as 2'-O-(2methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504). A further preferred modification includes 2'-dimethylaminooxyethoxy, i.e., a O(CH₂)₂ON(CH₃)₂ 20 group, also known as 2'-DMAOE.

Other preferred modifications include 2'-methoxy (2'-O-CH₃), 2'-aminopropoxy (2'-OCH₂CH₂CH₂CH₂NH₂) and 2'-fluoro (2'-F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3'
25 position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Patent 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,0531

5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920, each of which is herein incorporated by reference.

Oligonucleotides may also include nucleobase (often referred to in the art simply as "base") modifications or 5 substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine 10 (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil 15 and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8thioalkyl, 8-hydroxyl and other 8-substituted adenines and quanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-20 methylguanine and 7-methyladenine, 8-azaguanine and 8azaadenine, 7-deazaguanine and 7-deazaadenine and 3deazaquanine and 3-deazaadenine. Further nucleobases include those disclosed in U.S. Patent 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science 25 And Engineering, pages 858-859, Kroschwitz, J.I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y.S., Crooke, S.T., and Lebleu, B. eds., Antisense Research and Applications, CRC 30 Press, Boca Raton, 1993, pp. 289-302. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6-

PCT/US00/25272

azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2°C (Sanghvi, Y.S., Crooke, S.T. and Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications.

Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Patent 3,687,808, as well as U.S. Patents 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121; 5,596,091; 5,614,617; 5,681,941; and 5,750,692, each of which is herein incorporated by reference.

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Let., 1994, 4, 1053-1060), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-

-17-

PCT/US00/25272 WO 01/19161

Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), a phospholipid, e.g., dihexadecyl-rac-glycerol or triethylammonium 1,2-di-O-5 hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid 10 (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), or an octadecylamine or hexylaminocarbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923-937. Representative United States patents that teach the 15 are not limited to, U.S. Patents 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124;

preparation of such oligonucleotide conjugates include, but 20 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 25 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, each of which is herein

30 incorporated by reference.

It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated

-18-

PCT/US00/25272

in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes antisense compounds which are chimeric compounds. "Chimeric" antisense compounds or "chimeras," in the 5 context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically 10 contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide 15 may serve as a substrate for enzymes capable of cleaving RNA: DNA or RNA: RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA: DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing 20 the efficiency of oligonucleotide inhibition of gene expression. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.

Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Such compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Patents 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355;

-19-

PCT/US00/25272

5,652,356; and 5,700,922, each of which is herein incorporated by reference.

The antisense compounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis.

Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.

The antisense compounds of the invention are synthesized *in vitro* and do not include antisense compositions of biological origin, or genetic vector constructs designed to direct the *in vivo* synthesis of antisense molecules.

The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as 20 for example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting 25 formulations include, but are not limited to, U.S. Patents 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 30 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.

The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of

-20-

such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.

The term "prodrug" indicates a therapeutic agent that

10 is prepared in an inactive form that is converted to an
active form (i.e., drug) within the body or cells thereof
by the action of endogenous enzymes or other chemicals
and/or conditions. In particular, prodrug versions of the
oligonucleotides of the invention are prepared as SATE

15 [(S-acetyl-2-thioethyl) phosphate] derivatives according to
the methods disclosed in WO 93/24510 or in WO 94/26764.

The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto.

Pharmaceutically acceptable base addition salts are formed with metals or amines, such as alkali and alkaline earth metals or organic amines. Examples of metals used as cations are sodium, potassium, magnesium, calcium, and the like. Examples of suitable amines are N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-methylglucamine, and procaine (see, for example, Berge et al., "Pharmaceutical Salts," J. of Pharma Sci., 1977, 66, 1-19). The base addition salts of said acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be

-21-

regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner. free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility 5 in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present invention. As used herein, a "pharmaceutical addition salt" includes a pharmaceutically acceptable salt of an acid form of one of the components of the compositions of 10 the invention. These include organic or inorganic acid salts of the amines. Preferred addition salts are acid salts such as the hydrochlorides, acetates, salicylates, nitrates and phosphates. Other suitable pharmaceutically acceptable salts are well known to those skilled in the art 15 and include basic salts of a variety of inorganic and organic acids, such as, for example, with inorganic acids, such as for example hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid; with organic carboxylic, sulfonic, sulfo or phospho acids or N-substituted sulfamic 20 acids, for example acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, fumaric acid, malic acid, tartaric acid, lactic acid, oxalic acid, gluconic acid, glucaric acid, glucuronic acid, citric acid, benzoic acid, cinnamic acid, 25 mandelic acid, salicylic acid, 4-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, embolic acid, nicotinic acid or isonicotinic acid; and with amino acids, such as the 20 alpha-amino acids involved in the synthesis of proteins in nature, for example glutamic acid or 30 aspartic acid, and also with phenylacetic acid, methanesulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, ethane-1,2-disulfonic acid, benzenesulfonic aci, 4-methylbenzenesulfoic acid, naphthalene-2-sulfonic acid, naphthalene-1,5-disulfonic

-22-

PCT/US00/25272

acid, 2- or 3-phosphoglycerate, glucose-6-phosphate,
N-cyclohexylsulfamic acid (with the formation of
cyclamates), or with other acid organic compounds, such as
ascorbic acid. Pharmaceutically acceptable salts of
5 compounds may also be prepared with a pharmaceutically
acceptable cation. Suitable pharmaceutically acceptable
cations are well known to those skilled in the art and
include alkaline, alkaline earth, ammonium and quaternary
ammonium cations. Carbonates or hydrogen carbonates are
10 also possible.

For oligonucleotides, preferred examples of pharmaceutically acceptable salts include but are not limited to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as 15 spermine and spermidine, etc.; (b) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; (c) salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric 20 acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, 25 polygalacturonic acid, and the like; and (d) salts formed from elemental anions such as chlorine, bromine, and iodine.

The antisense compounds of the present invention can be utilized for diagnostics, therapeutics, prophylaxis and 30 as research reagents and kits. For therapeutics, an animal, preferably a human, suspected of having a disease or disorder which can be treated by modulating the expression of TGF-ß is treated by administering antisense compounds in accordance with this invention. The compounds

-23-

PCT/US00/25272

of the invention can be utilized in pharmaceutical compositions by adding an effective amount of an antisense compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the antisense compounds and methods of the invention may also be useful prophylactically, e.g., to prevent or delay infection, inflammation or tumor formation, for example.

The antisense compounds of the invention are useful for research and diagnostics, because these compounds

10 hybridize to nucleic acids encoding TGF-ß, enabling sandwich and other assays to easily be constructed to exploit this fact. Hybridization of the antisense oligonucleotides of the invention with a nucleic acid encoding TGF-ß can be detected by means known in the art.

15 Such means may include conjugation of an enzyme to the oligonucleotide, radiolabelling of the oligonucleotide or any other suitable detection means. Kits using such detection means for detecting the level of TGF-ß in a sample may also be prepared.

The present invention also includes pharmaceutical 20 compositions and formulations which include the antisense compounds of the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or 25 systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by 30 nebulizer; intratracheal, intranasal, epidermal, intradermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., WO 01/19161 P

-24-

PCT/US00/25272

intrathecal or intraventricular, administration. Oligonucleotides with at least one 2'-O-methoxyethyl modification are believed to be particularly useful for oral administration.

5 Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.

Compositions and formulations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets.

15 Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.

Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

Pharmaceutical compositions and/or formulations comprising the oligonucleotides of the present invention
25 may also include penetration enhancers in order to enhance the alimentary delivery of the oligonucleotides.

Penetration enhancers may be classified as belonging to one of five broad categories, i.e., fatty acids, bile salts, chelating agents, surfactants and non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, 8, 91-192; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33). One or more penetration enhancers from one or more of these broad categories may be included.

PCT/US00/25272

Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, recinleate, monoolein (a.k.a. 1-monooleoyl-racglycerol), dilaurin, caprylic acid, arichidonic acid, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, mono- and di-glycerides and physiologically acceptable salts thereof (i.e., oleate,

10 laurate, caprate, myristate, palmitate, stearate,
linoleate, etc.) (Lee et al., Critical Reviews in
Therapeutic Drug Carrier Systems, 1991, 8:2, 91-192;
Muranishi, Critical Reviews in Therapeutic Drug Carrier
Systems, 1990, 7:1, 1-33; El-Hariri et al., J. Pharm.

15 Pharmacol., 1992, 44, 651-654). Examples of some presently preferred fatty acids are sodium caprate and sodium laurate, used singly or in combination at concentrations of 0.5 to 5%.

The physiological roles of bile include the

20 facilitation of dispersion and absorption of lipids and
fat-soluble vitamins (Brunton, Chapter 38 In: Goodman &
Gilman's The Pharmacological Basis of Therapeutics, 9th
Ed., Hardman et al., eds., McGraw-Hill, New York, NY, 1996,
pages 934-935). Various natural bile salts, and their

25 synthetic derivatives, act as penetration enhancers. Thus,
the term "bile salt" includes any of the naturally
occurring components of bile as well as any of their
synthetic derivatives. A presently preferred bile salt is
chenodeoxycholic acid (CDCA) (Sigma Chemical Company, St.

30 Louis, MO), generally used at concentrations of 0.5 to 2%.

Complex formulations comprising one or more penetration enhancers may be used. For example, bile salts may be used in combination with fatty acids to make complex

-26-

formulations. Preferred combinations include CDCA combined with sodium caprate or sodium laurate (generally 0.5 to 5%).

Chelating agents include, but are not limited to,

5 disodium ethylenediaminetetraacetate (EDTA), citric acid,
salicylates (e.g., sodium salicylate, 5-methoxysalicylate
and homovanilate), N-acyl derivatives of collagen,
laureth-9 and N-amino acyl derivatives of beta-diketones
(enamines) (Lee et al., Critical Reviews in Therapeutic Drug

10 Carrier Systems, 1991, 8:2, 92-192; Muranishi, Critical
Reviews in Therapeutic Drug Carrier Systems, 1990, 7:1, 133; Buur et al., J. Control Rel., 1990, 14, 43-51).
Chelating agents have the added advantage of also serving
as DNase inhibitors.

Surfactants include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, 8:2, 92-191); and perfluorochemical emulsions, such as FC-43

(Takahashi et al., J. Pharm. Pharmacol., 1988, 40, 252-257).

Non-surfactants include, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, 8:2, 92-191); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).

As used herein, "carrier compound" refers to a

30 nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological

activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation.

The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance,

5 can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. For example, the recovery of a partially phosphorothicated oligonucleotide in hepatic tissue is reduced when it is coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-4'-isothiccyano-stilbene-2,2'-disulfonic acid (Miyao et al., Antisense Res. Dev., 1995, 5, 115-121; Takakura et al.,

15 Antisense & Nucl. Acid Drug Dev., 1996, 6, 177-183).

-27-

PCT/US00/25272

In contrast to a carrier compound, a "pharmaceutically acceptable carrier" (excipient) is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering 20 one or more nucleic acids to an animal. pharmaceutically acceptable carrier may be liquid or solid and is selected with the planned manner of administration in mind so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other 25 components of a given pharmaceutical composition. pharmaceutically acceptable carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other 30 sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn

PCT/US00/25272

starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrates (e.g., starch, sodium starch glycolate, etc.); or wetting agents (e.g., sodium lauryl sulphate, etc.). Sustained release oral delivery systems and/or enteric coatings for orally administered dosage forms are described in U.S. Patents 4,704,295; 4,556,552; 4,309,406; and 4,309,404.

The compositions of the present invention may additionally contain other adjunct components

10 conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions may contain additional compatible pharmaceutically-active materials such as, e.g., antipruritics, astringents, local anesthetics or

15 anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the composition of present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However,

20 such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the invention.

compounds of the invention are introduced into a patient,

colloidal dispersion systems may be used as delivery

vehicles to enhance the *in vivo* stability of the compounds

and/or to target the compounds to a particular organ,

tissue or cell type. Colloidal dispersion systems include,

but are not limited to, macromolecule complexes,

nanocapsules, microspheres, beads and lipid-based systems

including oil-in-water emulsions, micelles, mixed micelles,

liposomes and lipid:oligonucleotide complexes of

uncharacterized structure. A preferred colloidal

dispersion system is a plurality of liposomes. Liposomes

Regardless of the method by which the antisense

-29-

PCT/US00/25272

are microscopic spheres having an aqueous core surrounded by one or more outer layer(s) made up of lipids arranged in a bilayer configuration (see, generally, Chonn et al., Current Op. Biotech., 1995, 6, 698-708).

Certain embodiments of the invention provide for liposomes and other compositions containing (a) one or more antisense compounds and (b) one or more other chemotherapeutic agents which function by a non-antisense mechanism. Examples of such chemotherapeutic agents 10 include, but are not limited to, anticancer drugs such as daunorubicin, dactinomycin, doxorubicin, bleomycin, mitomycin, nitrogen mustard, chlorambucil, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine (CA), 5-fluorouracil (5-FU), floxuridine 15 (5-FUdR), methotrexate (MTX), colchicine, vincristine, vinblastine, etoposide, teniposide, cisplatin and diethylstilbestrol (DES). See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed., Berkow et al., eds., 1987, Rahway, N.J., pp. 1206-1228. Anti-inflammatory 20 drugs, including but not limited to nonsteroidal antiinflammatory drugs and corticosteroids, and antiviral drugs, including but not limited to ribivirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention. See, generally, The Merck 25 Manual of Diagnosis and Therapy, 15th Ed., Berkow et al., eds., 1987, Rahway, N.J., pp. 2499-2506 and 46-49,

In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds

respectively. Other non-antisense chemotherapeutic agents are also within the scope of this invention. Two or more combined compounds may be used together or sequentially.

targeted to a second nucleic acid target. Two or more combined compounds may be used together or sequentially.

-30-

PCT/US00/25272

The formulation of therapeutic compositions and their subsequent administration is believed to be within the 5 skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules 10 can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and 15 can generally be estimated based on $EC_{50}s$ found to be effective in in vitro and in vivo animal models. general, dosage is from 0.01 μg to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. 20 Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy 25 to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 μg to 100 g per kg of body weight, once

While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same.

or more daily, to once every 20 years.

-31-

PCT/US00/25272

EXAMPLES

WO 01/19161

Example 1

Nucleoside Phosphoramidites for Oligonucleotide Synthesis Deoxy and 2'-alkoxy amidites

phosphoramidites were purchased from commercial sources
(e.g. Chemgenes, Needham MA or Glen Research, Inc. Sterling
VA). Other 2'-O-alkoxy substituted nucleoside amidites are
prepared as described in U.S. Patent 5,506,351, herein
incorporated by reference. For oligonucleotides
synthesized using 2'-alkoxy amidites, the standard cycle
for unmodified oligonucleotides was utilized, except the
wait step after pulse delivery of tetrazole and base was
increased to 360 seconds.

Oligonucleotides containing 5-methyl-2'-deoxycytidine (5-Me-C) nucleotides were synthesized according to published methods (Sanghvi, et. al., Nucleic Acids Research, 1993, 21, 3197-3203] using commercially available phosphoramidites (Glen Research, Sterling VA or ChemGenes, Needham MA).

2'-Fluoro amidites

2'-Fluorodeoxyadenosine amidites

2'-fluoro oligonucleotides were synthesized as described previously by Kawasaki, et. al., J. Med. Chem.,
25 1993, 36, 831-841 and U.S. Patent 5,670,633, herein incorporated by reference. Briefly, the protected nucleoside N6-benzoyl-2'-deoxy-2'-fluoroadenosine was synthesized utilizing commercially available 9-beta-D-arabinofuranosyladenine as starting material and by
30 modifying literature procedures whereby the 2'-alpha-fluoro atom is introduced by a S_N2-displacement of a 2'-beta-trityl group. Thus N6-benzoyl-9-beta-D-arabinofuranosyladenine was selectively protected in moderate yield as the 3',5'-

ditetrahydropyranyl (THP) intermediate. Deprotection of the THP and N6-benzoyl groups was accomplished using standard methodologies and standard methods were used to obtain the 5'-dimethoxytrityl-(DMT) and 5'-DMT-3'-5 phosphoramidite intermediates.

2'-Fluorodeoxyguanosine

The synthesis of 2'-deoxy-2'-fluoroguanosine was accomplished using tetraisopropyldisiloxanyl (TPDS) protected 9-beta-D-arabinofuranosylguanine as starting

10 material, and conversion to the intermediate diisobutyryl-arabinofuranosylguanosine. Deprotection of the TPDS group was followed by protection of the hydroxyl group with THP to give diisobutyryl di-THP protected arabinofuranosylguanine. Selective O-deacylation and

15 triflation was followed by treatment of the crude product with fluoride, then deprotection of the THP groups.

Standard methodologies were used to obtain the 5'-DMT- and 5'-DMT-3'-phosphoramidites.

2'-Fluorouridine

20 Synthesis of 2'-deoxy-2'-fluorouridine was accomplished by the modification of a literature procedure in which 2,2'-anhydro-1-beta-D-arabinofuranosyluracil was treated with 70% hydrogen fluoride-pyridine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-25 3'phosphoramidites.

2'-Fluorodeoxycytidine

2'-deoxy-2'-fluorocytidine was synthesized via amination of 2'-deoxy-2'-fluorouridine, followed by selective protection to give N4-benzoyl-2'-deoxy-2'-30 fluorocytidine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-O-(2-Methoxyethyl) modified amidites

2'-O-Methoxyethyl-substituted nucleoside amidites are

prepared as follows, or alternatively, as per the methods of Martin, P., Helvetica Chimica Acta, 1995, 78, 486-504.

PCT/US00/25272

2,2'-Anhydro[1-(beta-D-arabinofuranosyl)-5methyluridine]

5-Methyluridine (ribosylthymine, commercially available through Yamasa, Choshi, Japan) (72.0 g, 0.279 M), diphenylcarbonate (90.0 q, 0.420 M) and sodium bicarbonate (2.0 q, 0.024 M) were added to DMF (300 mL). The mixture was heated to reflux, with stirring, allowing the evolved 10 carbon dioxide gas to be released in a controlled manner. After 1 hour, the slightly darkened solution was concentrated under reduced pressure. The resulting syrup was poured into diethylether (2.5 L), with stirring. The ether was decanted and the product formed a qum. 15 residue was dissolved in a minimum amount of methanol (ca. 400 mL). The solution was poured into fresh ether (2.5 L) to yield a stiff gum. The ether was decanted and the gum was dried in a vacuum oven (60°C at 1 mm Hg for 24 hours) to give a solid that was crushed to a light tan powder (57 g, 20 85% crude yield). The NMR spectrum was consistent with the structure, contaminated with phenol as its sodium salt (ca. 5%). The material was used as is for further reactions or purified further by column chromatography using a gradient of methanol in ethyl acetate (10-25%) to give a white 25 solid, mp 222-4°C.

2'-O-Methoxyethyl-5-methyluridine

2,2'-Anhydro-5-methyluridine (195 g, 0.81 M), tris(2methoxyethyl)borate (231 g, 0.98 M) and 2-methoxyethanol (1.2 L) were added to a 2 L stainless steel pressure vessel 30 and placed in a pre-heated oil bath at 160°C. After heating for 48 hours at 155-160°C, the vessel was opened and the solution evaporated to dryness and triturated with MeOH (200 mL). The residue was suspended in hot acetone (1 L).

-34-

The insoluble salts were filtered, washed with acetone (150 mL) and the filtrate evaporated. The residue (280 g) was dissolved in CH₃CN (600 mL) and evaporated. A silica gel column (3 kg) was packed in CH₂Cl₂/Acetone/MeOH (20:5:3) containing 0.5% Et₃NH. The residue was dissolved in CH₂Cl₂ (250 mL) and adsorbed onto silica (150 g) prior to loading onto the column. The product was eluted with the packing solvent to give 160 g (63%) of product. Additional material was obtained by reworking impure fractions.

2'-0-Methoxyethyl-5'-0-dimethoxytrityl-5methyluridine

10

2'-O-Methoxyethyl-5-methyluridine (160 g, 0.506 M) was co-evaporated with pyridine (250 mL) and the dried residue dissolved in pyridine (1.3 L). A first aliquot of 15 dimethoxytrityl chloride (94.3 g, 0.278 M) was added and the mixture stirred at room temperature for one hour. A second aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) was added and the reaction stirred for an additional one hour. Methanol (170 mL) was then added to stop the 20 reaction. HPLC showed the presence of approximately 70% product. The solvent was evaporated and triturated with CH₃CN (200 mL). The residue was dissolved in CHCl₃ (1.5 L) and extracted with 2x500 mL of saturated NaHCO3 and 2x500 mL of saturated NaCl. The organic phase was dried over Na2SO4, 25 filtered and evaporated. 275 g of residue was obtained. The residue was purified on a 3.5 kg silica gel column, packed and eluted with EtOAc/Hexane/Acetone (5:5:1) containing 0.5% Et₃NH. The pure fractions were evaporated to give 164 g of product. Approximately 20 g additional 30 was obtained from the impure fractions to give a total yield of 183 g (57%).

-35-

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5methyluridine (106 g, 0.167 M), DMF/pyridine (750 mL of a 5 3:1 mixture prepared from 562 mL of DMF and 188 mL of pyridine) and acetic anhydride (24.38 mL, 0.258 M) were combined and stirred at room temperature for 24 hours. reaction was monitored by tlc by first quenching the tlc sample with the addition of MeOH. Upon completion of the 10 reaction, as judged by tlc, MeOH (50 mL) was added and the mixture evaporated at 35°C. The residue was dissolved in CHCl, (800 mL) and extracted with 2x200 mL of saturated sodium bicarbonate and 2x200 mL of saturated NaCl. water layers were back extracted with 200 mL of CHCl₃. 15 combined organics were dried with sodium sulfate and evaporated to give 122 g of residue (approx. 90% product). The residue was purified on a 3.5 kg silica gel column and eluted using EtOAc/Hexane(4:1). Pure product fractions were evaporated to yield 96 g (84%). An additional 1.5 g was 20 recovered from later fractions.

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine

A first solution was prepared by dissolving 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-525 methyluridine (96 g, 0.144 M) in CH₃CN (700 mL) and set aside. Triethylamine (189 mL, 1.44 M) was added to a solution of triazole (90 g, 1.3 M) in CH₃CN (1 L), cooled to -5°C and stirred for 0.5 hours using an overhead stirrer. POCl₃ was added dropwise, over a 30 minute period, to the stirred solution maintained at 0-10°C, and the resulting mixture stirred for an additional 2 hours. The first solution was added dropwise, over a 45 minute period, to the latter solution. The resulting reaction mixture was

25

-36-

PCT/US00/25272

stored overnight in a cold room. Salts were filtered from the reaction mixture and the solution was evaporated. The residue was dissolved in EtOAc (1 L) and the insoluble solids were removed by filtration. The filtrate was washed with 1x300 mL of NaHCO₃ and 2x300 mL of saturated NaCl, dried over sodium sulfate and evaporated. The residue was triturated with EtOAc to give the title compound.

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine

A solution of 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine (103 g, 0.141 M) in dioxane (500 mL) and NH₄OH (30 mL) was stirred at room temperature for 2 hours. The dioxane solution was evaporated and the residue azeotroped with MeOH (2x200 mL).

The residue was dissolved in MeOH (300 mL) and transferred to a 2 liter stainless steel pressure vessel. MeOH (400 mL) saturated with NH₃ gas was added and the vessel heated to 100°C for 2 hours (tlc showed complete conversion). The vessel contents were evaporated to dryness and the residue was dissolved in EtOAc (500 mL) and washed once with saturated NaCl (200 mL). The organics were dried over sodium sulfate and the solvent was evaporated to give 85 g (95%) of the title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine

2'-0-Methoxyethyl-5'-0-dimethoxytrityl-5-methyl-cytidine (85 g, 0.134 M) was dissolved in DMF (800 mL) and benzoic anhydride (37.2 g, 0.165 M) was added with stirring. After stirring for 3 hours, tlc showed the reaction to be approximately 95% complete. The solvent was evaporated and the residue azeotroped with MeOH (200 mL). The residue was dissolved in CHCl₃ (700 mL) and extracted with saturated NaHCO₃ (2x300 mL) and saturated NaCl (2x300

-37-

PCT/US00/25272

mL), dried over MgSO₄ and evaporated to give a residue (96 g). The residue was chromatographed on a 1.5 kg silica column using EtOAc/Hexane (1:1) containing 0.5% Et₃NH as the eluting solvent. The pure product fractions were 5 evaporated to give 90 g (90%) of the title compound.

N4-Benzoyl-2'-0-methoxyethyl-5'-0-dimethoxytrityl-5-methylcytidine-3'-amidite

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5methylcytidine (74 g, 0.10 M) was dissolved in CH_2Cl_2 (1 L). 10 Tetrazole diisopropylamine (7.1 g) and 2-cyanoethoxy-tetra-(isopropyl)phosphite (40.5 mL, 0.123 M) were added with stirring, under a nitrogen atmosphere. The resulting mixture was stirred for 20 hours at room temperature (tlc showed the reaction to be 95% complete). The reaction 15 mixture was extracted with saturated NaHCO₃ (1x300 mL) and saturated NaCl (3x300 mL). The aqueous washes were backextracted with CH2Cl2 (300 mL), and the extracts were combined, dried over MgSO4 and concentrated. The residue obtained was chromatographed on a 1.5 kg silica column 20 using EtOAc/Hexane (3:1) as the eluting solvent. fractions were combined to give 90.6 g (87%) of the title compound.

Example 2

25

Oligonucleotide synthesis

Unsubstituted and substituted phosphodiester (P=O) oligonucleotides are synthesized on an automated DNA synthesizer (Applied Biosystems model 380B) using standard phosphoramidite chemistry with oxidation by iodine.

Phosphorothioates (P=S) are synthesized as per the phosphodiester oligonucleotides except the standard oxidation bottle was replaced by 0.2 M solution of 3H-1,2-benzodithiole-3-one 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphite linkages. The thiation

wait step was increased to 68 seconds and was followed by the capping step. After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55°C (18 hr), the oligonucleotides were purified by precipitating twice with 2.5 volumes of ethanol from a 0.5 M NaCl solution.

Phosphinate oligonucleotides are prepared as described in U.S. Patent 5,508,270, herein incorporated by reference.

Alkyl phosphonate oligonucleotides are prepared as described in U.S. Patent 4,469,863, herein incorporated by reference.

3'-Deoxy-3'-methylene phosphonate oligonucleotides are prepared as described in U.S. Patents 5,610,289 or 15 5,625,050, herein incorporated by reference.

Phosphoramidite oligonucleotides are prepared as described in U.S. Patent 5,256,775 or U.S. Patent 5,366,878, herein incorporated by reference.

Alkylphosphonothioate oligonucleotides are prepared 20 as described in published PCT applications PCT/US94/00902 and PCT/US93/06976 (published as WO 94/17093 and WO 94/02499, respectively), herein incorporated by reference.

3'-Deoxy-3'-amino phosphoramidate oligonucleotides are prepared as described in U.S. Patent 5,476,925, herein 25 incorporated by reference.

Phosphotriester oligonucleotides are prepared as described in U.S. Patent 5,023,243, herein incorporated by reference.

Borano phosphate oligonucleotides are prepared as 30 described in U.S. Patents 5,130,302 and 5,177,198, both herein incorporated by reference.

Example 3

Oligonucleoside Synthesis

Methylenemethylimino linked oligonucleosides, also

-39-

PCT/US00/25272

identified as MMI linked oligonucleosides, methylenedimethylhydrazo linked oligonucleosides, also identified as
MDH linked oligonucleosides, and methylenecarbonylamino
linked oligonucleosides, also identified as amide-3 linked
oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for
instance, alternating MMI and P=O or P=S linkages are
prepared as described in U.S. Patents 5,378,825, 5,386,023,
5,489,677, 5,602,240 and 5,610,289, all of which are
herein incorporated by reference.

Formacetal and thioformacetal linked oligonucleosides are prepared as described in U.S. Patents 5,264,562 and 5,264,564, herein incorporated by reference.

Ethylene oxide linked oligonucleosides are prepared as described in U.S. Patent 5,223,618, herein incorporated by reference.

Example 4

WO 01/19161

PNA Synthesis

Peptide nucleic acids (PNAs) are prepared in accordance with any of the various procedures referred to in Peptide Nucleic Acids (PNA): Synthesis, Properties and Potential Applications, Bioorganic & Medicinal Chemistry, 1996, 4, 5-23. They may also be prepared in accordance with U.S. Patents 5,539,082, 5,700,922, and 5,719,262, herein incorporated by reference.

Example 5

Synthesis of Chimeric Oligonucleotides

Chimeric oligonucleotides, oligonucleosides or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the "gap" segment of linked nucleosides is positioned between 5' and 3' "wing" segments of linked

-40-

PCT/US00/25272

nucleosides and a second "open end" type wherein the "gap" segment is located at either the 3' or the 5' terminus of the oligomeric compound. Oligonucleotides of the first type are also known in the art as "gapmers" or gapped oligonucleotides. Oligonucleotides of the second type are also known in the art as "hemimers" or "wingmers".

[2'-O-Me] -- [2'-deoxy] -- [2'-O-Me] Chimeric Phosphorothicate Oligonucleotides

Chimeric oligonucleotides having 2'-O-alkyl 10 phosphorothioate and 2'-deoxy phosphorothioate oligonucleotide segments are synthesized using an Applied Biosystems automated DNA synthesizer Model 380B, as above. Oligonucleotides are synthesized using the automated synthesizer and 2'-deoxy-5'-dimethoxytrityl-3'-O-phosphor-15 amidite for the DNA portion and 5'-dimethoxytrityl-2'-Omethyl-3'-O-phosphoramidite for 5' and 3' wings. standard synthesis cycle is modified by increasing the wait step after the delivery of tetrazole and base to 600 s repeated four times for RNA and twice for 2'-O-methyl. 20 fully protected oligonucleotide is cleaved from the support and the phosphate group is deprotected in 3:1 Ammonia/Ethanol at room temperature overnight then lyophilized to dryness. Treatment in methanolic ammonia for 24 hours at room temperature is then done to deprotect 25 all bases and sample was again lyophilized to dryness. pellet is resuspended in 1M TBAF in THF for 24 hours at room temperature to deprotect the 2' positions. reaction is then quenched with 1M TEAA and the sample is then reduced to 1/2 volume by rotovac before being desalted 30 on a G25 size exclusion column. The oligo recovered is then analyzed spectrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometry.

[2'-O-(2-Methoxyethyl)]--[2'-deoxy]--[2'-O-(Methoxyethyl)] Chimeric Phosphorothioate Oligonucleotides

[2'-O-(2-methoxyethyl)]--[2'-deoxy]--[-2'-O-(methoxy5 ethyl)] chimeric phosphorothicate oligonucleotides were
prepared as per the procedure above for the 2'-O-methyl
chimeric oligonucleotide, with the substitution of 2'-O(methoxyethyl) amidites for the 2'-O-methyl amidites.

[2'-O-(2-Methoxyethyl) Phosphodiester] -- [2'-deoxy Phosphorothioate] -- [2'-O-(2-Methoxyethyl) Phosphodiester] Chimeric Oligonucleotides

[2'-O-(2-methoxyethyl phosphodiester]--[2'-deoxy phosphorothioate]--[2'-O-(methoxyethyl) phosphodiester] chimeric oligonucleotides are prepared as per the above procedure for the 2'-O-methyl chimeric oligonucleotide with the substitution of 2'-O-(methoxyethyl) amidites for the 2'-O-methyl amidites, oxidization with iodine to generate the phosphodiester internucleotide linkages within the wing portions of the chimeric structures and sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) to generate the phosphorothioate internucleotide linkages for the center gap.

Other chimeric oligonucleotides, chimeric oligonucleosides and mixed chimeric oligonucleotides/oligonucleosides are synthesized according to U.S. Patent 5,623,065, herein incorporated by reference.

Example 6

10

Oligonucleotide Isolation

After cleavage from the controlled pore glass column 30 (Applied Biosystems) and deblocking in concentrated ammonium hydroxide at 55°C for 18 hours, the oligonucleotides or oligonucleosides were purified by precipitation twice out of 0.5 M NaCl with 2.5 volumes

-42-

PCT/US00/25272

ethanol. Synthesized oligonucleotides were analyzed by polyacrylamide gel electrophoresis on denaturing gels and judged to be at least 85% full length material. The relative amounts of phosphorothicate and phosphodiester

5 linkages obtained in synthesis were periodically checked by ³¹P nuclear magnetic resonance spectroscopy, and for some studies oligonucleotides were purified by HPLC, as described by Chiang et al., J. Biol. Chem. 1991, 266, 18162-18171. Results obtained with HPLC-purified material were similar to those obtained with non-HPLC purified material.

Example 7

WO 01/19161

Oligonucleotide Synthesis - 96 Well Plate Format

Oligonucleotides are synthesized via solid phase
P(III) phosphoramidite chemistry on an automated
synthesizer capable of assembling 96 sequences
simultaneously in a standard 96 well format.
Phosphodiester internucleotide linkages are afforded by
oxidation with aqueous iodine. Phosphorothicate
internucleotide linkages are generated by sulfurization
utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage
Reagent) in anhydrous acetonitrile. Standard baseprotected beta-cyanoethyldiisopropyl phosphoramidites are
purchased from commercial vendors (e.g. PE-Applied
Biosystems, Foster City, CA, or Pharmacia, Piscataway, NJ).
Non-standard nucleosides are synthesized as per known
literature or patented methods. They are utilized as base
protected beta-cyanoethyldiisopropyl phosphoramidites.

Oligonucleotides are cleaved from support and
deprotected with concentrated NH₄OH at elevated temperature
(55-60°C) for 12-16 hours and the released product then
dried in vacuo. The dried product is then re-suspended in
sterile water to afford a master plate from which all

-43-

PCT/US00/25272

analytical and test plate samples are then diluted utilizing robotic pipettors.

Example 8

WO 01/19161

Oligonucleotide Analysis - 96 Well Plate Format

The concentration of oligonucleotide in each well is assessed by dilution of samples and UV absorption spectroscopy. The full-length integrity of the individual products is evaluated by capillary electrophoresis (CE) in either the 96 well format (Beckman P/ACEJ MDQ) or, for 10 individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACEJ 5000, ABI 270). Base and backbone composition is confirmed by mass analysis of the compounds utilizing electrospray-mass spectroscopy. All assay test plates are diluted from the master plate using single and 15 multi-channel robotic pipettors. Plates are judged to be acceptable if at least 85% of the compounds on the plate are at least 85% full length.

Example 9

Cell culture and oligonucleotide treatment

The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. This can be routinely determined using, for example, PCR, RNAse protection assay (RPA) or Northern blot analysis. The following four human cell types are provided for illustrative purposes, but other cell types can be routinely used.

T-24 cells:

The transitional cell bladder carcinoma cell line T30 24 is obtained from the American Type Culture Collection
(ATCC) (Manassas, VA). T-24 cells are routinely cultured
in complete McCoy's 5A basal media (Gibco/Life
Technologies, Gaithersburg, MD) supplemented with 10% fetal

-44-

PCT/US00/25272

calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD). Cells are routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells are seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

A549 cells:

WO 01/19161

The human lung carcinoma cell line A549 is obtained from the American Type Culture Collection (ATCC) (Manassas, 15 VA). A549 cells are routinely cultured in DMEM basal media (Gibco/Life Technologies, Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD). Cells are routinely passaged by trypsinization and dilution when they reached 90% confluence.

NHDF cells:

Human neonatal dermal fibroblast (NHDF) are obtained from the Clonetics Corporation (Walkersville MD). NHDFs are routinely maintained in Fibroblast Growth Medium (Clonetics Corporation, Walkersville MD) supplemented as recommended by the supplier. Cells are maintained for up to 10 passages as recommended by the supplier.

30 HEK cells:

Human embryonic keratinocytes (HEK) are obtained from the Clonetics Corporation (Walkersville MD). HEKs are routinely maintained in Keratinocyte Growth Medium (Clonetics Corporation, Walkersville MD) formulated as

recommended by the supplier. Cells are routinely maintained for up to 10 passages as recommended by the supplier.

Treatment with antisense compounds:

When cells reached 80% confluency, they are treated with oligonucleotide. For cells grown in 96-well plates, wells are washed once with 200 μ L OPTI-MEMJ-1 reduced-serum medium (Gibco BRL) and then treated with 130 μ L of OPTI-MEMJ-1 containing 3.75 μ g/mL LIPOFECTINJ (Gibco BRL) and the desired oligonucleotide at a final concentration of 150 nM. After 4 hours of treatment, the medium is replaced with fresh medium. Cells are harvested 16 hours after oligonucleotide treatment.

Example 10

15 Analysis of oligonucleotide inhibition of TGF-ß expression

Antisense modulation of TGF-ß expression can be assayed in a variety of ways known in the art. For example, TGF-ß mRNA levels can be quantitated by Northern blot analysis, RNAse protection assay (RPA), competitive 20 polymerase chain reaction (PCR), or real-time PCR (RT-PCR). RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. Methods of RNA isolation are taught in, for example, Ausubel, et al., Current Protocols in Molecular Biology, Volume 1, John Wiley & Sons, Inc., 1993, pp. 25 4.1.1-4.2.9 and 4.5.1-4.5.3. Northern blot analysis is routine in the art and is taught in, for example, Ausubel, et al., Current Protocols in Molecular Biology, Volume 1,

et al., Current Protocols in Molecular Biology, Volume 1,
John Wiley & Sons, Inc., 1996, pp. 4.2.1-4.2.9. Real-time
quantitative (PCR) can be conveniently accomplished using
the commercially available ABI PRISMJ 7700 Sequence
Detection System, available from PE-Applied Biosystems,
Foster City, CA and used according to manufacturer's

instructions. Other methods of PCR are also known in the art.

of ways well known in the art, such as immunoprecipitation,

Western blot analysis (immunoblotting), ELISA, flow
cytometry or fluorescence-activated cell sorting (FACS).
Antibodies directed to TGF-ß can be identified and obtained
from a variety of sources, such as PharMingen Inc., San
Diego CA, or can be prepared via conventional antibody
generation methods. Methods for preparation of polyclonal
antisera are taught in, for example, Ausubel, et al.,
Current Protocols in Molecular Biology, Volume 2, John
Wiley & Sons, Inc., 1997, pp. 11.12.1-11.12.9. Preparation
of monoclonal antibodies is taught in, for example,
Ausubel, et al., Current Protocols in Molecular Biology,
Volume 2, John Wiley & Sons, Inc., 1997, pp. 11.4.111.11.5.

Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, et al., Current Protocols in Molecular Biology, Volume 2, John Wiley & Sons, Inc., 1998, pp. 10.16.1-10.16.11. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, et al., Current Protocols in Molecular Biology, Volume 2, John Wiley & Sons, Inc., 1997, pp. 10.8.1-10.8.21. Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, Ausubel, et al., Current Protocols in Molecular Biology, Volume 2, John Wiley & Sons, Inc., 1991, pp. 11.2.1-11.2.22.

30 Example 11

Poly(A) + mRNA isolation

Poly(A) + mRNA is isolated according to Miura et al., Clin. Chem., 1996, 42, 1758-1764. Other methods for

-47-

PCT/US00/25272

poly(A) + mRNA isolation are taught in, for example, Ausubel, et al., Current Protocols in Molecular Biology, Volume 1, John Wiley & Sons, Inc., 1993, pp. 4.5.1-4.5.3. Briefly, for cells grown on 96-well plates, growth medium 5 is removed from the cells and each well is washed with 200 μ L cold PBS. 60 μ L lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 0.5 M NaCl, 0.5% NP-40, 20 mM vanadylribonucleoside complex) is added to each well, the plate is gently agitated and then incubated at room temperature for 10 five minutes. 55 μL of lysate is transferred to Oligo d(T) coated 96-well plates (AGCT Inc., Irvine CA). Plates are incubated for 60 minutes at room temperature, washed 3 times with 200 μL of wash buffer (10 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.3 M NaCl). After the final wash, the plate is 15 blotted on paper towels to remove excess wash buffer and then air-dried for 5 minutes. 60 μL of elution buffer (5 mM Tris-HCl pH 7.6), preheated to 70°C is added to each well, the plate is incubated on a 90°C hot plate for 5 minutes, and the eluate is then transferred to a fresh 96-well 20 plate.

Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.

Example 12

25 Total RNA Isolation

Total mRNA is isolated using an RNEASY 96J kit and buffers purchased from Qiagen Inc. (Valencia CA) following the manufacturer's recommended procedures. Briefly, for cells grown on 96-well plates, growth medium is removed from the cells and each well is washed with 200 μ L cold PBS. 100 μ L Buffer RLT is added to each well and the plate vigorously agitated for 20 seconds. 100 μ L of 70% ethanol is then added to each well and the contents mixed by pipetting three times up and down. The samples are then

-48-

transferred to the RNEASY 96J well plate attached to a QIAVACJ manifold fitted with a waste collection tray and attached to a vacuum source. Vacuum is applied for 15 seconds. 1 mL of Buffer RW1 is added to each well of the 5 RNEASY 96J plate and the vacuum again applied for 15 seconds. 1 mL of Buffer RPE is then added to each well of the RNEASY 96J plate and the vacuum applied for a period of 15 seconds. The Buffer RPE wash is then repeated and the vacuum is applied for an additional 10 minutes. 10 is then removed from the QIAVACJ manifold and blotted dry on paper towels. The plate is then re-attached to the QIAVACJ manifold fitted with a collection tube rack containing 1.2 mL collection tubes. RNA is then eluted by pipetting 60 μL water into each well, incubating 1 minute, 15 and then applying the vacuum for 30 seconds. The elution step is repeated with an additional 60 μL water.

Example 13

Real-time Quantitative PCR Analysis of TGF-ß mRNA Levels

Quantitation of TGF-S mRNA levels is determined by 20 real-time quantitative PCR using the ABI PRISMJ 7700 Sequence Detection System (PE-Applied Biosystems, Foster City, CA) according to manufacturer's instructions. is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of 25 polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR, in which amplification products are quantitated after the PCR is completed, products in real-time quantitative PCR are quantitated as they accumulate. This is accomplished by including in the PCR 30 reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye (e.g., JOE or FAM, obtained from either Operon Technologies Inc., Alameda, CA or PE-Applied Biosystems, Foster City, CA) is attached to

-49-

PCT/US00/25272

the 5' end of the probe and a quencher dye (e.g., TAMRA, obtained from either Operon Technologies Inc., Alameda, CA or PE-Applied Biosystems, Foster City, CA) is attached to the 3' end of the probe. When the probe and dyes are 5 intact, reporter dye emission is quenched by the proximity of the 3' quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5'-exonuclease activity of Taq polymerase. During the extension phase of the PCR 10 amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved 15 from their respective probes, and the fluorescence intensity is monitored at regular intervals by laser optics built into the ABI PRISMJ 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples 20 generates a standard curve that is used to quantitate the percent inhibition after antisense oligonucleotide treatment of test samples.

PCR reagents are obtained from PE-Applied Biosystems, Foster City, CA. RT-PCR reactions are carried out by adding 25 μL PCR cocktail (1x TAQMANJ buffer A, 5.5 mM MgCl₂, 300 μM each of dATP, dCTP and dGTP, 600 μM of dUTP, 100 nM each of forward primer, reverse primer, and probe, 20 Units RNAse inhibitor, 1.25 Units AMPLITAQ GOLDJ, and 12.5 Units MuLV reverse transcriptase) to 96 well plates containing 25 μL poly(A) mRNA solution. The RT reaction is carried out by incubation for 30 minutes at 48°C. Following a 10 minute incubation at 95°C to activate the AMPLITAQ GOLDJ, 40 cycles of a two-step PCR protocol are

carried out: 95°C for 15 seconds (denaturation) followed by 60°C for 1.5 minutes (annealing/extension).

Example 14

5

Antisense inhibition of murine TGF-&1

Antisense oligonucleotides were designed to hybridize to the mouse TGF-S1 nucleic acid sequence, using published sequence information (GenBank accession No AJ009862; Locus name MMU009862, provided herein as SEQ ID NO: 1). All oligonucleotides have phosphorothicate backbones and are 10 2'-methoxyethyl (2'-MOE) gapmers.

Table 1 Antisense oligonucleotides targeted to mouse TGF-£1

	ISIS #	Nucleotide sequence ¹ (5'> 3')	SITE ON TARGET SEQUENCE ²	SEQ ID NO.
15	105193	TGTCTGGAGGATCCGCGCCG	49	2
	105194	TGCTCCTTTGCCGGCTCCCA	149	3
20	105195	CGAGACAGCGCAGTGCCAAG	325	4
20	105196	GGCTCCCGAGGGCTGGTCCG	435	5
	105197	GCAGGAGTCGCGGTGAGGCT	696	6
25	105198	AAAGG TGGGATGCGG AGGCC	801	7
	105199	CAGTAGCCGCAGCCCCGAGG	875	8
30	105200	AGTCCCGCGGCTGGCCTCCC	937	9
30	105201	GGCTTCGATGCGCTTCCGTT	992	10
	105202	GGCGGTACCTCCCCCTGGCT	1057	11
35	105203	CGCCTGCCACCCGGTCGCGG	1119	12

-51-

	ISIS #	Nucleotide sequence ¹ (5'> 3')	SITE ON TARGET SEQUENCE ²	SEQ ID NO.
	105204	GTCCACCATTAGCACGCGGG	1193	13
	105205	GGCACTGCTTCCCGAATGTC	1282	14
5	105206	GTCAGCAGCCGGTTACCAAG	1411	15
	105207	AGTGAGCGCTGAATCGAAAG	1515	16
	105208	GATGGTGCCCAGGTCGCCCC	1598	17
10	105209	AGGAG CAGGAAGGGC CGGTT	1627	18
	105210	TCCGGTGCCGTGAGCTGTGC	1680	19
15	105211	GCCCTTGGGCTCGTGGATCC	1796	20
	105212	CGCCGGGTTGTGTTGGTTG	1896	21
	105213	GGCTT GCGACCCACG TAGTA	1969	22
20	105214	GGCGGGGCTTCAGCTGCACT	2030	23
	110409	CGCCCGGGTTGTGCTGGTTG 1 base mismatch to 105212	1896	24
25	110410	GTGCTCCCATTGAAAGCCGG 8 base mismatch to 105204	1193	25

¹ Emboldened residues, 2'-methoxyethoxy- residues (others are 2'-deoxy-). All C residues, including 2'-MOE and 2'-deoxy residues, are 5-methyl-cytosines.

30 ² Position of first nucleotide at the target site on GenBank accession No AJ009862; Locus name MMU009862, provided herein as SEQ ID NO: 1).

The antisense compounds in the table above were screened by Northern blot at 200 nM oligonucleotide

35 concentration in mouse bEND3 endothelial cells (see Montesano et al., Cell, 1990, 62, 435, and Stepkowski et

-52-

al., J. Immunol., 1994, 153, 5336). Cells were treated with oligonucleotide (200 nM) and 10 μg/ml of Lipofectin (Life Technologies, Inc., Gaithersburg, MD) for 4 hours. Cells were then washed and allowed to recover for a further 24
5 hr. RNA was isolated and TGF-ßl mRNA expression was measured by Northern blotting. The gels were stripped and reprobed for expression of a housekeeping gene (G3PDH) to confirm equal loading. TGF-ßl levels are expressed as a percent of control activity, normalized to G3PDH. Results
10 are shown in Table 2.

Table 2

Antisense inhibition of mouse TGF-S1

	isis #	% of Control Activity	% Inhibition	SEQ ID NO.
15	105193	6 .	94	2
	105194	3	97	3
20	105195	20	80	4
_ ,	105196	8	92	5
	105198	19	81	7
25	105199	69	31	8
	105200	18	82	9
30	105201	86	14	10
	105202	209		11
	105203	160		12

	ISIS #	% of Control Activity	% Inhibition	SEQ ID NO.
	105204	47	53	13
	105205	12	88	14
5	105206	11	89	15
	105207	31	69	16
10	105208	148		17
	105209	20	80	18
	105211	148		20
15	105212	16	84	21
	105213	9	. 91	22
20	105214	10	90	23

Oligonucleotides ISIS 105193, 105194, 105195, 105196, 105198, 105200, 105204, 105205, 105206, 105207, 105209, 105212, 105213 and 105214 gave greater than 50% inhibition of TGF-ß1 mRNA in this experiment and are preferred.

Example 15

Dose response of antisense oligonucleotides targeted to murine TGF-ß1

bEND.3 cells were treated with oligonucleotides at various concentrations with 15 $\mu g/ml$ Lipofectin for 4 hours, then washed and allowed to recover for 24 hours. TGF- β 1 mRNA levels were determined by Northern blot

-54-

analysis and normalized to G3PDH levels. Results are shown in Table 3.

Table 3

Dose response of antisense oligonucleotides targeted to

murine TGF-S1

	Oligonucleotide	Dose (nM)	% of	% Inhib.
			Control	
	Lipofectin		100	
10	ISIS 105195			
		25	47	53
15		50	35	65
13		100	25	75
		200	18	82
20		300	8	92
	ISIS 105199			
25		25	115	
		50	126	
		100	125	
30		200	103	
	ISIS 105204			
35		25	31	69
		50	22	78
		100	16	84
40		200	11	89
		300	11	89

PCT/US00/25272

	Oligonucleotide	Dose (nM)	% of	% Inhib.
			Control	
	ISIS 105212			
		25	43	57
5		50	29	71
		100	26	74
10		200	18	82
		300	24	76
	ISIS 105214			
15		25	30	70
		50	17	83
20		100	17	83
		200	11	89
		300	14	86

25

ISIS 105195, 105204, 105212 and 105214 had IC50s below 25 nM in this experiment and are preferred.

Example 16

WO 01/19161

"Humanized" mouse TGF-&1 antisense oligonucleotide

It was determined by BLAST analysis (Altschul SF et al., J. Mol. Biol. 1990, 215, 403-10) that ISIS 105204, designed to target mouse TGF-ß1, has only a single mismatch to the human TGF-ß1 gene target, and, except for the 5'-most base on the oligonucleotide, is complementary to a site beginning at nucleotide 1167 on the human target (GenBank accession no. X02812; locus name HSTGFB1; Derynck,R., et al., 1985, Nature 316, 701-705). An

oligonucleotide (TTCCACCATTAGCACGCGGG; ISIS 113849; SEQ ID NO: 26) was designed and synthesized which was a complete match to the human target sequence at this site. This compound is a phosphorothicate backbone with 2'-MOE nucleotides shown in bold. All C residues are 5-methyl C.

Example 17

Efficacy of ISIS 105204 in rat kidney cells

ISIS 105204, designed to target mouse TGF-ß1, was tested in rat NRK kidney cells (available from American

Type Culture Collection, Manassas VA). This oligonucleotide has 100% complementarity to the rat TGF-ß1 sequence (GenBank accession no.X52498; locus name RNTGFB1, provided herein as SEQ ID NO: 27). A dose response is shown in Table 4. ISIS 105195, which is targeted to a region of the mouse TGF-ß1 sequence which shares only 9 of 20 nucleobases with the rat sequence, is shown for comparison.

Table 4

Dose response of antisense oligonucleotides targeted to mouse TGF-S1 in rat NRK cells

20	ISIS #	Dose	% of Control	% Inhibition	SEQ ID NO
			activity	_	
	Lipofectin		100		
25	105195				4
		100	115		
		200	98	2	
30		300	97	3	

-57**-**

20	ISIS #	Dose (nM)	% of Control activity	% Inhibition	SEQ ID NO
	105204				13
		50	56	44	
5		100	50	50	
		200	39	61	

10 Example 18

Effect of antisense inhibition of TGF-\$1 on fibrotic scarring

A model for fibrosis has been developed in which osmotic pumps are implanted subcutaneously in rats.

15 Normally the pump becomes encapsulated by fibrotic scar tissue. The effect of antisense inhibition of TGF-£1 on scarring can be analyzed and quantitated.

2 ml Alzet osmotic pumps (Alza corporation, Palo Alto, CA) were implanted subcutaneously on the back of female Sprague Dawley rats. Four rats per experimental group were implanted with pumps containing PBS, 5 mgs of TGF-ßl antisense oligonucleotide and 5 mgs of an eight base mismatch control oligonucleotide, ISIS 110410. After 3 weeks the encapsulation tissue surrounding the pump was removed, weighed, snap frozen, and evaluated for TGF-ßl mRNA by Northern blot analysis or RNAse protection assay using the rCK3b template (Pharmingen, San Diego CA) and by immunohistochemistry. For the latter, formalin fixed, paraffin embedded tissues were stained with Masson's

-58-

localization of oligonucleotide. Frozen tissues were antibody-stained for TGF-ßl (antibody from Santa Cruz Biotechnologies, Santa Cruz, CA), and EDA Fibronectin (antibody from Harlan Bioproducts, Sussex, England). The antibodies were detected with secondary reagents directly conjugated to HRP and DAB (brown) was used as the substrate.

TGF-£1 expression in the scar tissue was reduced by greater than 50% after 28-day treatment with ISIS 105204

10 (oligonucleotide dose 15 mg/kg; and to greater than 30% with a dose of 5 mg/kg), as measured by Northern blot analysis of TGF-£1 mRNA levels. This is shown in Table 5.

Table 5

Effect of ISIS 105204 on TGF-ß1 expression in rat scar

tissue

Oligonucleotide	% of control	% inhibition	SEQ ID NO
Saline control	100		
ISIS 110410 (8-base mismatch of 105204)	83	17	25
ISIS 105204	44	56	13

25

20

Immunohistochemical staining showed that TGF-ß1 protein expression is reduced in scar tissue from mice treated with ISIS 105204. Levels of collagen and fibronectin, which are markers for fibrosis, were also reduced in scar tissue from these mice. Staining also showed a decrease in the number of CD18 positive cells.

Example 19

10

Antisense oligonucleotides targeted to human TGF-K1

Antisense oligonucleotides were designed to hybridize to the human TGF-ß1 nucleic acid sequence, using published sequence information; Derynck,R., et al., 1985, Nature 316, 701-705; GenBank accession number X02812; locus name HSTGFB1, incorporated herein as SEQ ID NO: 28. Oligonucleotides have phosphorothicate backbones and are 2'MOE gapmers. Sequences are shown in Table 6.

Table 6

Antisense oligonucleotides targeted to human TGF-ß

	ISIS #	Nucleotide sequence ¹ (5'> 3')	SITE on TARGET SEQUENCE ²	SEQ ID NO:
15	104978	CGACTCCTTCCTCCGCTCCG	113	29
	104979	CTCGTCCCTCCCGCTCC	209	30
	104980	AAGTCCTGCCTCCTCGCGGG	317	31
20	104981	AAGGGTCTAGGATGCGCGGG	531	32
	104982	CTCAGGGAGAAGGGCGCAGT	692	33
25	104983	GCACTGCCGAGAGCGCGAAC	802	34
	104984	GTAGCAGCAGCAGCAGC	862	35
	104985	ATGGCCTCGATGCGCTTCCG	968	36
30	104986	GCGTAGTAGTCGGCCTCAGG	1136	37
	104987	ACCACTGCCGCACAACTCCG	1447	38
35	104988	TCGGCGGCCGGTAGTGAACC	1557	39
	104989	GAAGTTGGCATGGTAGCCCT	1788	40

-60-

	ISIS #	Nucleotide sequence ¹ (5'> 3')	SITE ON TARGET SEQUENCE ²	SEQ ID NO:
	104990	GGCGCCCGGGTTATGCTGGT	1875	41
	104991	CTCCACCTTGGGCTTGCGGC	1956	42
5	104992	AATGACACAGAGATCCGCAG	2155	43
	104993	TAGATCTAACTACAGTAGTG	2305	44
10	104994	CGCCTGGCCTGAACTACTAT	2525	45
	104995	CCCAGGCTGGTCTCAAATGC	2609	46

1 Emboldened residues, 2'-methoxyethoxy- residues (others
15 are 2'-deoxy-). All C residues, including 2'-MOE and 2'deoxy residues, are 5-methyl-cytosines.

² Position of first nucleotide at the target site on GenBank accession number X02812; locus name HSTGFB1, provided herein as SEQ ID NO: 28.

Oligonucleotides were screened in 293T human kidney cells at a concentration of 200 nM with 10 µg/ml of Lipofectin for a period of four hours. Cells were washed and allowed to recover for a further 24 hr. At this point RNA was isolated and TGF-ß1 mRNA levels were determined by Ribonuclease Protection Assay (RPA) using the hCK-3 template (Pharmingen, San Diego CA) according to the manufacturer's instructions. TGF-ß1 mRNA levels were normalized to GAPDH and expressed as a percentage of untreated control. Results are shown in Table 7.

Table 7

Antisense Inhibition of Human TGF-£1

	isis #	% of Control Activity	% Inhibition	SEQ ID NO:
5	104978	150		29
	104979	94	6	30
10	104980	82	18	31
	104981	86	14	32
	104982	94	6	33
15	104983	52	48	34
	104985	59	41	36
20	104986	59	41	37
	104987	63	37	38
	104988	71	29	39
25	104989	86	14	40
	104990	57	43	41
30	104991	52	48	42
	104992	47	53	43
	104993	84	16	44
35	104994	60	40	45
	104995	64	36	46
40	105204	23	77	13
4 0		<u> </u>	<u> </u>	

-62-

In this experiment ISIS 104983, 104985, 104986, 104990, 104991, 104992, 104994 and 105204 gave at least 40% inhibition of human TGF-ß1 mRNA and are preferred. ISIS 104992 and 105204 gave over 50% inhibition.

5 Example 20

Dose responses of antisense oligonucleotides targeted to human TGF-&1

ISIS 113849, 105204, 110410 (8 base mismatch of 105204) and 104992 were tested at 50, 100 and 200 nM for ability to inhibit TGF-ß1 mRNA levels. Results are shown in Table 8.

Table 8

Dose response of oligonucleotides targeted to human TGF-ß1

	isis #	Dose (nM)	% of Control Activity	% Inhibition	SEQ ID NO:
5	104992	50	65	35	43
		100	68	32	
10		200	93	7	
	105204	50	31	69	13
		100	16	84	
15		200	23	77	
	110410	50	85	15	25
20		100	64	36	
		200	50	50	
	113849	50	29	71	26
25		100	24	76	
		200	36	64	

30 ISIS 105204 and 113849 had IC50s below 50 nM in this experiment. These oligonucleotides were found to have little effect on TGF-ß2 or TGF-ß3 mRNA levels.

Example 21

Antisense compounds targeted to murine TGF-S2

Antisense oligonucleotides were designed to hybridize to the mouse TGF-ß2 nucleic acid sequence, using published sequence information from GenBank accession number X57413;
Miller,D.A., et al., Mol. Endocrinol. 1989, 3, 1108-1114;

locus name MMTGFB2, incorporated herein as SEQ ID NO: 47. The oligonucleotides are shown in Table 9.

Table 9

Antisense sequences targeted to murine TGF-82

5	ISIS #	Nucleotide sequence ¹ (5'> 3')	SITE on TARGET SEQUENCE ²	SEQ ID
	104996	GCCGGCAGTTTCAGCAGCTC	34	48
10	104997	CTCGCACCCTTCCCTAGCTT	259	49
	104998	TTTCTTGCTCCAGGCGGCCA	362	50
	104999	GAGCAGGCGGCGAGGATCCC	493	51
15	105000	GCCCTGCCTTCCACACGTGT	671	52
	105001	GTGCGGAGTGGCTGATCTGA	830	53
20	105002	AAAATGCAACGCGTTCCCAA	1016	54
	105003	CCGGGACCAGATGCAGGAGC	1247	55
	105004	TCCGGCTTGCCTTCTCCTGC	1451	56
25	105005	GGGTTTTGCAAGCGGAAGAC	1668	57
	105006	CGATGTAGCGCTGGGTGGGA	1754	58
30	105007	GGTCTTCCCACTGGTTTTT	2032	59
	105008	AAGCTTCGGGATTTATGGTG	2321	60
	105009	ACCGTGATTTTCGTGTCCTG	2478	61
35	105010	GCGGGCTGGAAACAATACGT	2854	62
	105011	CCCTGGCTTATTTGAGTTC	3075	63
40	105012	ACCGGCTTGCTTAAACTGGC	3297	64

PCT/US00/25272

5	ISIS #	Nucleotide sequence ¹ (5'> 3')	SITE on TARGET SEQUENCE ²	SEQ ID NO.
	105013	CAGCCACTTCACGGTCAAAA	3352	65
	105014	ATGGACCCAGGTAGCTCATG	3753	66
5	105015	CACCCGCCACATGACTCACA	3874	67
	105016	TACACCCCATGAGCACCAAA	4097	68

- 10 ¹ Emboldened residues, 2'-methoxyethoxy- residues (others are 2'-deoxy-). All C residues, including 2'-MOE and 2'-deoxy residues, are 5-methyl-cytosines.
 - ² Position of first nucleotide at the target site on GenBank accession number X57413; Miller,D.A., et al., Mol.
- 15 Endocrinol. 1989, 3, 1108-1114; locus name MMTGFB2, incorporated herein as SEQ ID NO: 47.

The oligonucleotides shown in Table 9 were screened for the ability to inhibit mouse TGF-&2 mRNA expression by ribonuclease protection assay (RPA) in mouse R6 +/+

- fibroblast cells. Cells were treated with oligonucleotide (200 nM) and 10 $\mu g/ml$ of Lipofectin (Life Technologies, Inc.) for 4 hours. Cells were then washed and allowed to recover for a further 24 hours. RNA was isolated and TGF-\$2 mRNA expression was measured by RPA using the mCK3b
- 25 template (Pharmingen, Inc., San Diego CA) according to manufacturer's directions. Results were normalized to GAPDH and expressed as a percent of RNA levels in untreated control cells. Results are shown in Table 10.

Table 10

Antisense inhibition of mouse TGF-82 mRNA expression

	ISIS #	% of control activity	% inhibition	SEQ ID NO:
5	104996	83	17	48
	104997	79	21	49
10	104998	70	30	50
	104999	90	10	51
	105000	64	36	52
15	105001	37	63	53
	105002	51	49	54
20	105003	28	72	55
20	105004	52	48	56
	105005	77	23	57
25	105006	53	47	58
	105007	60	40	59
30	105008	55	45	60
30	105009	28	72	61
	105010	27	73	62
35	105011	48	52	63
	105012	35	65	64
40	105013	40	60	65
10	105014	43	57	66
	105015	64	36	67
45	105016	89	11	68

ISIS 105001, 105002, 105003, 105004, 105006, 105008, 105009, 105010, 105011, 105012, 105013 and 105014 gave at least about 45% inhibition of TGF-ß2 mRNA expression in this experiment and are preferred. Of these, ISIS 105003, 105009 and 105010 gave at least 70% inhibition.

Interestingly, it was found that oligonucleotides that reduced TGF-ß2 also reduced TGF-ß3 mRNA levels. This is shown in Table 11.

Table 11

10 Common inhibition of murine TGF-ß2 and TGF-ß3 by antisense oligonucleotides targeted to murine TGF-ß2

	ISIS #	% inhibition of TGF-ß2	% inhibition of TGF-ß3	SEQ ID NO:
15	104996	17	3	48
	104997	21	11,	49
	104998	30		50
20	104999	10	14	51
	105000	36	16	52
25	105001	63	48	53
23	105002	49	23	54
	105003	72	67	55
30	105004	48	49	56
	105005	23	20	57
35	105006	47	60	58
33	105007	40	29	59
	105008	45	23	60
40	105009	72	55	61
	105010	73	49	62

ISI	s #	% inhibition of TGF-ß2	% inhibition of TGF-ß3	SEQ ID NO:
105	011	52	57	63
105	012	65	42	64
105	013	60	55	65
105	014	57	43	66
105	015	36	52	67
105	016	11	12	68

Example 22

5

10

15 Reduction in peritoneal adhesions by antisense inhibition of TGF-£1

The surface of the peritoneal cavity and the enclosed organs are coated with a layer of mesothelial cells that are easily damaged by injury or infection. Following injury 20 (surgery, for example), adhesions form which cause permanent scarring. This scarring can result in bowel obstruction, pain, and/or female infertility. A rat model for peritoneal adhesions has been developed (Williams et al., 1992, J. Surg. Res. 52, 65-70). Animal models have demonstrated that TGF-β promotes the formation of postoperative pelvic adhesions.

In these experiments bilateral uterine injuries were created in 250 gm Sprague Dawley rats by cautery, scraping and crushing. Rats then received 5 mg (20 mg/kg) of an antisense oligonucleotide (ISIS 105204), 5 mg of a scrambled control oligonucleotide (ISIS 110410) or 1 mL of saline vehicle via intraperitoneal injection.

Uterine adhesions were then graded by masked evaluators using a clinical scale of 0-3 on days 3, 7 and 35 14 after injury.

In order to localize the target tissue of the antisense oligonucleotides, an additional group of rats were injected with a reporter oligonucleotide and biopsies were perfomed on the uterus, liver and kidney of the treated animals. The tissues were then fixed and the reporter oligonucleotide was immunolocalized with a specific antibody. The reporter oligonucleotide was concentrated heavily in the area of uterine injury at 2 hours and persisted in uterine cells at 72 hours indicating that the oligonucleotide does localize to the injured area.

A single dose of the antisense oligonucleotide (ISIS 105204) to TGF-β1 significantly reduced the severity of peritoneal adhesions, from a mean of 3.0 for control animals to 1.2 for antisense treated animals. A scrambled control oligonucleotide (ISIS 110410) gave a mean adhesion score of 2.4 over the entire study.

Example 23

Effect of antisense inhibition of TGF-£1 on lung fibrosis

A model of lung fibrosis has been developed using 20 bleomycin to induce pulmonary fibrosis in mice. Wild, JS, SN Giri et al., 1996, Exp. Lung Res. 22, 375-391. Mice receive an intratracheal dose of bleomycin (0.125U/mouse) or saline, followed by treatment with antisense oligonucleotide (i.p.) over 2 weeks. Mice were treated with 25 ISIS 105204 or 110410. RNA was isolated from lungs and TGF-£1 mRNA levels were determined for mice treated with saline or bleomycin alone, saline or bleomycin plus ISIS 105204, and bleomycin plus the scrambled control ISIS 110410. Results are shown in Table 12. These studies showed a 30 significant reduction of bleomycin-induced lung hydroxyproling content, prolyly hydroxylase and lipid peroxidation. Lung histopathology showed fibrotic lesions to be reduced in bleomycin treated animals receiving the TGF-B1 oligonucleotide compared to saline or mismatch

-70-

treated animals. Also, RPA (ribonuclease protection assay) analysis revealed a 45% reduction in TGF- $\beta1$ RNA in animals treated with ISIS 105204.

Table 12
5 Effect of antisense inhibition of TGF-£1 on lung fibrosis

Treatment	% of control	% inhibition
Saline	100	
Saline + 105204	81	19
Bleomycin	70	30
Bleomycin + 110410	73	27
Bleomycin + 105204	37	63

Example 24

10

15

20 Effect of antisense inhibition of TGF-£1 on conjunctival scarring

Animal models for a variety of fibrotic diseases and conditions exist. Conjunctival scarring is a major predictor of visual prognosis in a variety of eye

25 conditions, including post-surgical healing. For example, the most common cause of failure of glaucoma filtration surgery is scarring at the bleb and sclerostomy sites. A model of conjunctival scarring in the mouse eye has been developed to investigate potential determinants, modes of prevention and treatments for conjunctival scarring.

Reichel et al., 1998, Br. J. Ophthalmol. 82, 1072-1077. This model is used to evaluate the effects of locally or systemically delivered antisense to TGF-ß on conjunctival scarring.

Alternatively, antisense compounds can be administered at the time of trabeculectomy filtration surgery. Animals are anesthetized, and the general glaucoma

filtration trabeculectomy procedure is followed. A conjunctival flap is raised and a viscoelastic solution (e.g., Healon) is injected into the anterior chamber. A paracentesis stab incision is made using a 75 Beaver blade into the anterior chamber. A sclerotomy is performed through the paracentesis incision using a membrane punch and a peripheral iridectomy is done through the sclerostomy. The conjunctival flap is repositioned and closed with suture in two layers. Oligonucleotide solution (100 µl of 40 µM in the case of rabbits, less in mouse or rat) is injected into the bleb by tunneling a 30 gauge needle through the conjunctiva adjacent to the bleb. Animals are sacrificed 24 hours after treatment and eyes are fixed and examined histologically for collagen,

-71-

PCT/US00/25272

In these experiments Balb-c mice, a highly inbred strain of mice used to produce monoclonal antibodies, were randomly allocated to one of five treatment groups; subconjunctival injection (5μl) of 25 μg or 12.5 μg of 20 either a TGF-β1 antisense oligonucleotide (ISIS 105204) or a scrambled control oligonucleotide (ISIS 110410), or the carrier saline control. Cellular distribution of oligonucleotide in glaucoma surgery was assessed following subconjunctival administration of a reporter cligonucleotide into the filtration bleb immediately after surgery in NZW rabbits. Mice and rabbits were assessed clinically and enucleated eyes were analyzed at set time intervals histologically.

At days 3 and 7 mouse eyes (n=4) showed significantly reduced white cell infiltration and collagen fibril deposition in the TGF- β 1 oligonucleotide treated groups compared to controls. There was also a significant decrease in localization of fibroblasts and elastin related

-72-

fibers on days 3,7 and 14 in groups treated with the TGF- $\beta 1$ antisense oligonucleotide.

At 7 days mouse eyes (4 eyes/treatment group) showed significantly reduced (p<0.05) conjunctival scar formation in the TGF- β 1 treated animals as compared to the control group.

The cellular profile suggested that TGF-β1 oligonucleotide delayed the development of the wound healing response. Immunohistochemical staining with an antibody specific for the reporter oligonucleotide in rabbit eyes revealed intense and localized staining of the TGF-β1 oligonucleotide to fibroblasts, epithelial cells and macrophages in the sclera and conjunctiva at the surgical site.

15 Example 25

Effect of antisense inhibition of TGF-\$1 on inflammationhuman skin xenograft model in the SCID mouse.

Another model used to investigate the processes of inflammation and scarring involves the use of SCID mice 20 transplanted with human skin. SCID mice lack an enzyme necessary to fashion an immune system and can therefore be converted into a model of the human immune system when injected with human cells or tissues. In these experiments human skin (2 cm²) from various surgical procedures (breast 25 reductions or neonatal foreskin) or from cadavers was transplanted onto the side of SCID mice with sutures or surgical staples. After four to six weeks, the mice were bled and tested for Ig to ensure the SCID lineage. After 8 to 10 weeks, the xenograft skin was treated with antisense 30 oligonucleotide, ISIS 105204, SEQ ID NO: 13) in a cream formulation at 48, 24, and 4 hours prior to the injection of 4000U of tumor necrosis factor-alpha (TNF- α). Levels of $TGF-\beta$ protein were then assayed in the epidermis and dermis of the xenograft skin by immunohistochemical staining 24

-73-

hours after TNF- α injection. Levels were reported as a percentage of the area showing positive staining for the presence of TGF- β protein.

In the epidermis, 3% of the area showed positive staining after treatment with TGF- β antisense oligonucleotide relative to basal levels of 50% and levels of 37% for the placebo cream group. This data was shown to be statistically significant (P=0.0001).

In the dermis, TGF- β levels were below 0.5% with 10 basal levels at 2.5% and placebo cream group levels of 2%.

-74-

WO 01/19161 PCT/US00/25272

What is claimed is:

- A compound 8 to 50 nucleobases in length targeted to a nucleic acid molecule encoding TGF-β1, wherein said compound comprises at least a portion of a
 sequence selected from the group consisting of SEQ ID NO:2, 3, 4, 5, 7, 9, 13, 14, 15, 16, 18, 21, 22, 23, 26, 34, 36, 37, 41, 42, 43, or 45 and wherein said compound modulates the expression of TGF-β1.
- The compound of claim 1 which is an antisense
 oligonucleotide.
 - 3. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified internucleoside linkage.
- The compound of claim 3 wherein the modified
 internucleoside linkage of the antisense oligonucleotide is a phosphorothioate linkage.
 - 5. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified sugar moiety.
- 20 6. The compound of claim 5 wherein the modified sugar moiety of the antisense oligonucleotide is a 2'-O-methoxyethyl sugar moiety.
 - 7. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified nucleobase.
- 8. The compound of claim 7 wherein the modified nucleobase of the antisense oligonucleotide is a 5-methylcytosine.
 - 9. The compound of claim 2 wherein the antisense oligonucleotide is a chimeric oligonucleotide.
- 30 10. A composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier or diluent.
 - 11. The composition of claim 10 further comprising a colloidal dispersion system.

12. The composition of claim 10 wherein the compound is an antisense oligonucleotide.

- 13. A compound 8 to 50 nucleobases in length targeted to a nucleic acid molecule encoding TGF-β2,
 5 wherein said compound comprises at least a portion of a sequence selected from the group consisting of SEQ ID NO:53, 54, 55, 56, 58, 60, 61, 62, 63, 64, 65 or 66 and wherein said compound modulates the expression of TGF-β2.
- 14. The compound of claim 13 which is an antisense 10 oligonucleotide.
 - 15. The compound of claim 14 wherein the antisense oligonucleotide comprises at least one modified internucleoside linkage.
- 16. The compound of claim 15 wherein the modified 15 internucleoside linkage of the antisense oligonucleotide is a phosphorothicate linkage.
 - 17. The compound of claim 14 wherein the antisense oligonucleotide comprises at least one modified sugar moiety.
 - 18. The compound of claim 17 wherein the modified sugar moiety of the antisense oligonucleotide is a 2'-O-methoxyethyl sugar moiety.

20

25

- 19. The compound of claim 14 wherein the antisense oligonucleotide comprises at least one modified nucleobase.
- 20. The compound of claim 19 wherein the modified nucleobase of the antisense oligonucleotide is a 5-methylcytosine.
- 21. The compound of claim 14 wherein the antisense oligonucleotide is a chimeric oligonucleotide.
- 30 22. A composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier or diluent.
 - 23. The composition of claim 22 further comprising a colloidal dispersion system.

-76-

WO 01/19161 PCT/US00/25272

24. The composition of claim 22 wherein the compound is an antisense oligonucleotide.

- 25. A method of inhibiting the expression of TGF- β 1 in cells or tissues comprising contacting said cells or 5 tissues with the compound of claim 1 so that expression of TGF- β 1 is inhibited.
- 26. A method of inhibiting the expression of TGF- $\beta 2$ in cells or tissues comprising contacting said cells or tissues with the compound of claim 13 so that expression of 10 TGF- $\beta 2$ is inhibited.
- 27. A method of treating an animal having a disease or condition associated with TGF- β 1 comprising administering to said animal a therapeutically or prophylactically effective amount of the compound of claim 15 1 so that expression of TGF- β 1 is inhibited.
 - 28. The method of claim 27 wherein said disease or condition is inflammation.
 - 29. The method of claim 27 wherein said disease or condition is fibrosis or a fibrotic disease or condition.
 - 30. The method of claim 29 wherein said fibrotic disease or condition is fibrotic scarring, peritoneal adhesions, lung fibrosis or conjunctival scarring.

20

- 31. A method of treating an animal having a disease or condition associated with TGF-β2 comprising
 25 administering to said animal a therapeutically or prophylactically effective amount of the compound of claim
 13 so that expression of TGF-β2 is inhibited.
 - 32. The method of claim 31 wherein said disease or condition is inflammation.
- 30 33. The method of claim 31 wherein said disease or condition is fibrosis or a fibrotic disease or condition.
 - 34. The method of claim 33 wherein said fibrotic disease or condition is fibrotic scarring, peritoneal adhesions, lung fibrosis or conjunctival scarring.

SEQUENCE LISTING

<110> Nicholas M. Dean Susan F. Murray ISIS PHARMACEUTICALS, INC. <120> ANTISENSE MODULATION OF TRANSFORMING GROWTH FACTOR BETA EXPRESSION <130> ISPH-0489 <150> 1999-09-17 <151> 60/154,546 <160> 68 <210> 1 <211> 2094 <212> DNA <213> Mus musculus <221> CDS <222> (868)...(2040) <400> 1 equequeque quequente gegenerage destacement entretenes desaggates 60 tecaqacaqe caggececeg geeggggeag gggggaegee cettegggge acceegget 120 ctgagccgca ctcggagtcg gcctccgctg ggagccggca aaggagcagc cgaggagccg 180 tecqaqqee caqaqtetga gaccageege egeegeaggg aggagggga ggaggagtgg 240 gaggagggac gagetggttg agagaagagg aaaaaagttt tgagactttt ccgctgctac 300 tqcaaqtcag agacgtgggg acttcttggc actgcgctgt ctcgcaagga ggcaggacct 360 gaggactica gacagecetg etcacegteg tggacacteg ategetacee ggegtteete 420 agacgcccct attccggacc agccctcggg agccacaaac cccgcctccc gcgaagactt 480 caccccaaag ctgggggga ccccttgcac gccgccctcc ccccagcctg cctcttgagt 540 ccctcgcatc ccaggaccct ctctcccccg agaggcagat ctccctcgga cctgctggca 600 gtagctcccc tatttaagaa cacccacttt tggatctcag agagcgctca tctcgatttt 660 taccetggtg gtatactgag acacettggt gtcagageet cacegegact cetgetgett 720 totocotcaa cotcaaatta ttoaggacta toacotacot ttoottggga gaccocacco 780 cacaageeet geagggegg ggeeteegea teecacettt geegagggtt eeegetetee 840 gaagtgeegt ggggegeege eteceee atg eeg eec teg ggg etg egg eta etg 894 Met Pro Pro Ser Gly Leu Arg Leu Leu 942 ccg ctt ctg ctc cca ctc ccg tgg ctt cta gtg ctg acg ccc ggg agg Pro Leu Leu Pro Leu Pro Trp Leu Leu Val Leu Thr Pro Gly Arg 15 10 cca gcc gcg gga ctc tcc acc tgc aag acc atc gac atg gag ctg gtg 990 Pro Ala Ala Gly Leu Ser Thr Cys Lys Thr Ile Asp Met Glu Leu Val 30 aaa cgg aag cgc atc gaa gcc atc cgt ggc cag atc ctg tcc aaa cta 1038 Lys Arg Lys Arg Ile Glu Ala Ile Arg Gly Gln Ile Leu Ser Lys Leu

1

agg Arg	ctc Leu	gcc Ala 60	agt Ser	ccc Pro	cca Pro	agc Ser	cag Gln 65	G1Å 888	gag Glu	gta Val	ccg Pro	ccc Pro 70	ggc Gly	ccg Pro	ctg Leu	1086
	gag Glu 75															1134
ggc Gly 90	gag Glu	agc Ser	gcc Ala	gac Asp	cca Pro 95	gag Glu	ccg Pro	gag Glu	ccc Pro	gaa Glu 100	gcg Ala	gac Asp	tac Tyr	tat Tyr	gct Ala 105	1182
	gag Glu															1230
gag Glu	aaa Lys	acc Thr	aaa Lys 125	gac Asp	atc Ile	tca Ser	cac His	agt Ser 130	ata Ile	tat Tyr	atg Met	ttc Phe	ttc Phe 135	aat Asn	acg Thr	1278
	gac Asp															1326
	ctg Leu 155	_	_	_	_				_							1374
ctc Leu 170	tac Tyr	cag Gln	aaa Lys	tat Tyr	agc Ser 175	aac Asn	aat Asn	tcc Ser	tgg Trp	cgt Arg 180	tac Tyr	ctt Leu	ggt Gly	aac Asn	cgg Arg 185	1422
ctg Leu	ctg Leu	acc Thr	ccc Pro	act Thr 190	gat Asp	acg Thr	cct Pro	gag Glu	tgg Trp 195	ctg Leu	tct Ser	ttt Phe	gac Asp	gtc Val 200	act Thr	1470
	gtt Val															1518
cga Arg	ttc Phe	agc Ser 220	gct Ala	cac His	tgc Cys	tct Ser	tgt Cys 225	gac Asp	agc Ser	aaa Lys	gat Asp	aac Asn 230	aaa Lys	ctc Leu	cac His	1566
gtg Val	gaa Glu 235	atc Ile	aac Asn	Gly ggg	atc Ile	agc Ser 240	ccc Pro	aaa Lys	cgt Arg	cgg Arg	ggc Gly 245	gac Asp	ctg Leu	ggc Gly	acc Thr	1614
atc Ile 250	cat His	gac Asp	atg Met	aac Asn	cgg Arg 255	ccc Pro	ttc Phe	ctg Leu	ctc Leu	ctc Leu 260	atg Met	gcc Ala	acc Thr	ccc Pro	ctg Leu 265	1662
	agg Arg															1710
	aac Asn															1758
ctg Leu	tac Tyr	att Ile 300	gac Asp	ttt Phe	agg Arg	aag Lys	gac Asp 305	ctg Leu	ggt Gly	tgg Trp	aag Lys	tgg Trp 310	atc Ile	cac His	gag Glu	1806

ccc aag ggc tac cat gcc aac ttc tgt ctg gga ccc tgc ccc tat att Pro Lys Gly Tyr His Ala Asn Phe Cys Leu Gly Pro Cys Pro Tyr Ile 315 320 325	1854										
tgg agc ctg gac aca cag tac agc aag gtc ctt gcc ctc tac aac caa Trp Ser Leu Asp Thr Gln Tyr Ser Lys Val Leu Ala Leu Tyr Asn Gln 330 335 340	1902										
cac aac ccg ggc gct tcg gcg tca ccg tgc tgc gtg ccg cag gct ttg His Asn Pro Gly Ala Ser Ala Ser Pro Cys Cys Val Pro Gln Ala Leu 350 355 360	1950										
gag cca ctg ccc atc gtc tac tac gtg ggt cgc aag ccc aag gtg gag Glu Pro Leu Pro Ile Val Tyr Tyr Val Gly Arg Lys Pro Lys Val Glu 365 370 375	1998										
cag ttg tcc aac atg att gtg cgc tcc tgc aag tgc agc tga Gln Leu Ser Asn Met Ile Val Arg Ser Cys Lys Cys Ser * 380 385 390	2040										
ageceegeee egeceegeee eteceggeag geeeggeeee geeeegeee egec	2094										
<210> 2 <211> 20 <212> DNA <213> Artificial Sequence											
<223> Antisense Oligonucleotide											
<400> 2 tgtctggagg atccgcggcg											
<210> 3 <211> 20 <212> DNA <213> Artificial Sequence											
<223> Antisense Oligonucleotide											
<400> 3 tgctcctttg ccggctccca	20										
<210> 4 <211> 20											
<212> DNA <213> Artificial Sequence											
<223> Antisense Oligonucleotide											
<400> 4 cgagacagcg cagtgccaag	20										
<210> 5 <211> 20 <212> DNA <213> Artificial Sequence											
<223> Antisense Oligonucleotide											
<400> 5 ggetecegag ggetggteeg	20										

<210> 6 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 6 gcaggagtcg cggtgaggct	20
<210> 7 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 7 aaaggtggga tgcggaggcc	20
<210> 8 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 8 cagtageege ageeeegagg	20
<210> 9 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 9 agtcccgcgg ctggcctccc	20
<210> 10 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 10 ggcttcgatg cgcttccgtt	20
<210> 11 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 11 ggcggtacct cccctggct	20
<210> 12 <211> 20 <212> DNA	

<213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 12 cgcctgccac ccggtcgcgg	20
<210> 13 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 13 gtccaccatt agcacgcggg	20
<210> 14 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 14 ggcactgctt cccgaatgtc	20
<210> 15 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 15 gtcagcagcc ggttaccaag	20
<210 > 16 <211 > 20 <212 > DNA <213 > Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 16 agtgagcgct gaatcgaaag	20
<210> 17 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 17 gatggtgccc aggtcgcccc	20
<210> 18 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	

WO 01/19161	PCT/US00/25272
400. 10	
<400> 18 aggagcagga agggccggtt	20
<210 > 19 <211 > 20 <212 > DNA	
<213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 19 tccggtgccg tgagctgtgc	20
<210> 20 <211> 20	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 20 gcccttgggc tcgtggatcc	20
<210> 21 <211> 20	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 21	
cgcccgggtt gtgttggttg	20
<210> 22	
<211> 20	
<212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 22	
ggcttgcgac ccacgtagta	20
<210> 23	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 23	
ggcggggctt cagctgcact	20
<210> 24	
<211> 20	
<212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	

20

<400> 24 ccacgtagta gacgatgggc

```
<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Antisense Oligonucleotide
<400> 25
                                                                   20
gtccaccatt agcacgcggg
<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Antisense Oligonucleotide
<400> 26
                                                                   20
gtccaccatt agcacgcggg
<210> 27
<211> 1585
<212> DNA
<213> Rattus norvegicus
<221> CDS
<222> (413)...(1585)
<400> 27
accgcctccc gcaaagactt caccccaaag ctggggcgca ccccttgcac gccaccctcc 60
ccccagcctg cttcttgagt cccccgcatc ccaggaccct ctctcctctg ggaggccgat 120
ctccctcgga cctgctggca atagcttcct atttaagaac accccacttt tgggtcccag 180
agagegetea tetegatitt tateeeggtg geataetgag acaetetggt gteagagegt 240
cacogogact cotgetgett teteceteaa ceteaaatta tteaggacta teacetacet 300
ttccttqqqa gaccccaccc caccccacaa gccctgcagg ggcggggcct ccgcatccca 360
cetttgeeeg gggttegege teteegaagt teegtgggge geegeeteee ee atg eeg 418
                                                           Met. Pro
                                                                   466
ccc teg ggg ctg egg etg eeg ett etg etc eea etc eeg tgg ett
Pro Ser Gly Leu Arg Leu Leu Pro Leu Leu Pro Leu Pro Trp Leu
                             10
cta gtg ctg acg ccc ggg agg cca gcc gcg gga ctc tcc acc tgc aag
                                                                   514
Leu Val Leu Thr Pro Gly Arg Pro Ala Ala Gly Leu Ser Thr Cys Lys
acc atc gac atg gag ctg gtg aaa cgg aag cgc atc gaa gcc atc cgt
                                                                   562
Thr Ile Asp Met Glu Leu Val Lys Arg Lys Arg Ile Glu Ala Ile Arg
                     40
gge cag ate etg tee aaa eta agg ete gee agt eee eeg age cag ggg
                                                                   610
Gly Gln Ile Leu Ser Lys Leu Arg Leu Ala Ser Pro Pro Ser Gln Gly
gag gta ccg ccg ggc ccg ctg ccc gag gcg gtg ctc gct ttg tac aac
                                                                   658
Glu Val Pro Pro Gly Pro Leu Pro Glu Ala Val Leu Ala Leu Tyr Asn
             70
                                 75
                                                     80
```

agc Ser	acc Thr	cgc Arg 85	gac Asp	cgg Arg	gtg Val	gca Ala	ggc Gly 90	gag Glu	agc Ser	gct Ala	gac Asp	ccg Pro 95	gag Glu	ccc Pro	gag Glu	706
ccc Pro	gag Glu 100	gcg Ala	gac Asp	tac Tyr	tac Tyr	gcc Ala 105	aaa Lys	gaa Glu	gtc Val	acc Thr	cgc Arg 110	gtg Val	cta Leu	atg Met	gtg Val	754
											gac Asp					802
											gaa Glu					850
											cag Gln					898
											tat Tyr					946
tgg Trp	cgt Arg 180	tac Tyr	ctt Leu	ggt Gly	aac Asn	cgg Arg 185	ctg Leu	ctg Leu	acc Thr	ccc Pro	act Thr 190	gat Asp	acg Thr	cct Pro	gag Glu	994
tgg Trp 195	ctg Leu	tct Ser	ttt Phe	gac Asp	gtc Val 200	act Thr	gga Gly	gtt Val	gtc Val	cgg Arg 205	cag Gln	tgg Trp	ctg Leu	aac Asn	caa Gln 210	1042
											cac His					1090
agc Ser	aaa Lys	gat Asp	aat Asn 230	gta Val	ctc Leu	cac His	gtg Val	gaa Glu 235	atc Ile	aat As n	Gly 999	atc Ile	agt Ser 240	ccc Pro	aaa Lys	1138
cgt Arg	cga Arg	ggt Gly 245	gac Asp	ctg Leu	ggc Gly	acc Thr	atc Ile 250	cat His	gac Asp	atg Met	aac Asn	cga Arg 255	ccc Pro	ttc Phe	ctg Leu	1186
ctc Leu	ctc Leu 260	atg Met	gcc Ala	acc Thr	ccc Pro	ctg Leu 265	gaa Glu	agg Arg	gct Ala	caa Gln	cac His 270	ctg Leu	cac His	agc Ser	tcc Ser	1234
agg Arg 275	cac His	cgg Arg	aga Arg	gcc Ala	ctg Leu 280	gat Asp	acc Thr	aac Asn	tac Tyr	tgc Cys 285	ttc Phe	agc Ser	tcc Ser	aca Thr	gag Glu 290	1282
aag Lys	aac Asn	tgc Cys	tgt Cys	gta Val 295	cgg Arg	cag Gln	ctg Leu	tac Tyr	att Ile 300	gac Asp	ttt Phe	agg Arg	aag Lys	gac Asp 305	ctg Leu	1330
ggt Gly	tgg Trp	aag Lys	tgg Trp 310	atc Ile	cac His	gag Glu	ccc Pro	aag Lys 315	ggc Gly	tac Tyr	cat His	gcc Ala	aac Asn 320	ttc Phe	tgt Cys	1378
											aca Thr					1426

325 330 335 gto ott goo oto tac aac caa cac aac cog ggt got too goa toa cog 1474 Val Leu Ala Leu Tyr Asn Gln His Asn Pro Gly Ala Ser Ala Ser Pro 345 tgc tgc gtg ccg cag gct ttg gag cca ctg ccc atc gtc tac tac gtg 1522 Cys Cys Val Pro Gln Ala Leu Glu Pro Leu Pro Ile Val Tyr Tyr Val 360 1570 ggt cgc aag ccc aag gtg gag cag ttg tcc aac atg atc gtg cgc tcc Gly Arg Lys Pro Lys Val Glu Gln Leu Ser Asn Met Ile Val Arg Ser 375 380 1585 tgc aag tgc agc tga Cys Lys Cys Ser 390 <210> 28 <211> 2745 <212> DNA <213> Homo sapiens <221> CDS <222> (842)...(2017) <400> 28 acctecetee geggageage cagacagega gggceeegge egggggeagg ggggaegeee 60 cgtccggggc acccccccg gctctgagcc gcccgcgggg ccggcctcgg cccggagcgg 120 aggaaggagt cgccgaggag cagcctgagg ccccagagtc tgagacgagc cgccgccgcc 180 cccgccactg cggggaggag ggggaggagg agcgggagga gggacgagct ggtcgggaga 240 agaggaaaaa aacttttgag acttttccgt tgccgctggg agccggaggc gcggggacct 300 cttggcgcga cgctgccccg cgaggaggca ggacttgggg accccagacc gcctcccttt 360 geogeoggg acgettgete cetecetgee ceetacaegg egteceteag gegeeeceat 420 teeggaceag ceetegggag tegeegacee ggeeteeege aaagaetttt eeecagaeet 480 egggegeace coetgeacge egeetteate eeeggeetgt etcetgagee eeeggeate 540 ctagaccett tetectecag gagacggate tetetecgae etgecacaga teccetatte 600 aaqaccaccc acettetggt accagatege geccatetag gttattteeg tgggataetg 660 agacacccc ggtccaagcc tecectecae caetgegeee ttetecetga ggageeteag 720 ettteeeteg aggeeeteet acettttgee gggagaeeee cageeeetge aggggegggg 780 cetececace acaceagece tgttegeget eteggeagtg eeggggggeg eegeeteece 840 c atq ccq ccc tcc qqq ctq cqq ctg ctg ccg ctg cta ccg ctg ctg 889 Met Pro Pro Ser Gly Leu Arg Leu Leu Pro Leu Leu Pro Leu Leu 1.0 15 tgg cta ctg gtg ctg acg cct ggc ccg ccg gcc gcg gga cta tcc acc 937 Trp Leu Leu Val Leu Thr Pro Gly Pro Pro Ala Ala Gly Leu Ser Thr 985 tgc aag act atc gac atg gag ctg gtg aag cgg aag cgc atc gag gcc Cys Lys Thr Ile Asp Met Glu Leu Val Lys Arg Lys Arg Ile Glu Ala 40 ate ege gge cag ate etg tee aag etg egg ete gee age eee eeg age 1033

Ile	Arg 50	Gly	Gln	Ile	Leu	Ser 55	Lys	Leu	Arg	Leu	Ala 60	Ser	Pro	Pro	Ser	
cag Gln 65	gly aaa	gag Glu	gtg Val	ccg Pro	ccc Pro 70	ggc Gly	ccg Pro	ctg Leu	ccc Pro	gag Glu 75	gcc Ala	gtg Val	ctc Leu	gcc Ala	ctg Leu 80	1081
tac Tyr	aac Asn	agc Ser	acc Thr	cgc Arg 85	gac Asp	cgg Arg	gtg Val	gcc Ala	999 999 90	gag Glu	agt Ser	gca Ala	gaa Glu	ccg Pro 95	gag Glu	1129
ccc Pro	gag Glu	cct Pro	gag Glu 100	gcc Ala	gac Asp	tac Tyr	tac Tyr	gcc Ala 105	aag Lys	gag Glu	gtc Val	acc Thr	cgc Arg 110	gtg Val	cta Leu	1177
atg Met	gtg Val	gaa Glu 115	acc Thr	cac His	aac Asn	gaa Glu	atc Ile 120	tat Tyr	gac Asp	aag Lys	ttc Phe	aag Lys 125	cag Gln	agt Ser	aca Thr	1225
cac His	agc Ser 130	ata Ile	tat Tyr	atg Met	ttc Phe	ttc Phe 135	aac Asn	aca Thr	tca Ser	gag Glu	ctc Leu 140	cga Arg	gaa Glu	gcg Ala	gta Val	1273
cct Pro 145	gaa Glu	ccc Pro	gtg Val	ttg Leu	ctc Leu 150	tcc Ser	cgg Arg	gca Ala	gag Glu	ctg Leu 155	cgt Arg	ctg Leu	ctg Leu	agg Arg	agg Arg 160	1321
ctc Leu	aag Lys	tta Leu	aaa Lys	gtg Val 165	gag Glu	cag Gln	cac His	gtg Val	gag Glu 170	ctg Leu	tac Tyr	cag Gln	aaa Lys	tac Tyr 175	agc Ser	1369
aac Asn	aat Asn	tcc Ser	tgg Trp 180	cga Arg	tac Tyr	ctc Leu	agc Ser	aac Asn 185	cgg Arg	ctg Leu	ctg Leu	gca Ala	ccc Pro 190	agc Ser	gac Asp	1417
tcg Ser	cca Pro	gag Glu 195	tgg Trp	tta Leu	tct Ser	ttt Phe	gat Asp 200	gtc Val	acc Thr	gga Gly	gtt Val	gtg Val 205	cgg Arg	cag Gln	tgg Trp	1465
ttg Leu	agc Ser 210	cgt Arg	gga Gly	Gly 999	gaa Glu	att Ile 215	gag Glu	ggc Gly	ttt Phe	cg c Arg	ctt Leu 220	agc Ser	gcc Ala	cac His	tgc Cys	1513
tcc Ser 225	tgt Cys	gac Asp	agc Ser	agg Arg	gat Asp 230	aac Asn	aca Thr	ctg Leu	caa Gln	gtg Val 235	gac Asp	atc Ile	aac Asn	Gly aaa	ttc Phe 240	1561
							Leu	Ala		Ile		ggc Gly				1609
cct Pro	ttc Phe	ctg Leu	ctt Leu 260	ctc Leu	atg Met	gcc Ala	acc Thr	ccg Pro 265	ctg Leu	gag Glu	agg Arg	gcc Ala	cag Gln 270	cat His	ctg Leu	1657
caa Gln	agc Ser	tcc Ser 275	cgg Arg	cac His	cgc Arg	cga Arg	gcc Ala 280	ctg Leu	gac Asp	acc Thr	aac Asn	tat Tyr 285	tgc Cys	ttc Phe	agc Ser	1705
tcc Ser	acg Thr 290	gag Glu	aag Lys	aac Asn	tgc Cys	tgc Cys 295	gtg Val	cgg Arg	cag Gln	ctg Leu	tac Tyr 300	att Ile	gac Asp	ttc Phe	cgc Arg	1753

aag gac ctc ggc tgg aag tgg atc cac gag ccc aag ggc tac cat gcc Lys Asp Leu Gly Trp Lys Trp Ile His Glu Pro Lys Gly Tyr His Ala 305 310 315 320	1801										
aac ttc tgc ctc ggg ccc tgc ccc tac att tgg agc ctg gac acg cag Asn Phe Cys Leu Gly Pro Cys Pro Tyr Ile Trp Ser Leu Asp Thr Gln 325 330 335	1849										
tac agc aag gtc ctg gcc ctg tac aac cag cat aac ccg ggc gcc tcg Tyr Ser Lys Val Leu Ala Leu Tyr Asn Gln His Asn Pro Gly Ala Ser 340 345 350	1897										
gcg gcg ccg tgc tgc gtg ccg cag gcg ctg gag ccg ctg ccc atc gtg Ala Ala Pro Cys Cys Val Pro Gln Ala Leu Glu Pro Leu Pro Ile Val 355 360 365	1945										
tac tac gtg ggc cgc aag ccc aag gtg gag cag ctg tcc aac atg atc Tyr Tyr Val Gly Arg Lys Pro Lys Val Glu Gln Leu Ser Asn Met Ile 370 375 380	1993										
gtg cgc tcc tgc aag tgc agc tga ggtcccgccc cgccccgccc	2047										
ggcccggccc caccccgccc cgcccccgct gccttgccca tgggggctgt atttaaggac	2107										
acceptaccc aagcccacct ggggccccat taaagatgga gagaggactg cggatctctg											
tgtcattggg cgcctgcctg gggtctccat ccctgacgtt cccccactcc cactccctct											
ctctccctct ctgcctcctc ctgcctgtct gcactattcc tttgcccggc atcaaggcac											
aggggaccag tggggaacac tactgtagtt agatctattt attgagcacc ttgggcactg											
ttgaagtgcc ttacattaat gaactcattc agtcaccata gcaacactct gagatggcag											
ggactctgat aacacccatt ttaaaggttg aggaaacaag cccagagagg ttaagggagg	2467										
agttcctgcc caccaggaac ctgctttagt gggggatagt gaagaagaca ataaaagata	2527										
gtagttcagg ccaggcgggg tgctcacgcc tgtaatccta gcacttttgg gaggcagaga	2587										
tgggaggata cttgaatcca ggcatttgag accagcctgg gtaacatagt gagaccctat	2647										
ctctacaaaa cacttttaaa aaatgtacac ctgtggtccc agctactctg gaggctaagg	2707										
tgggaggatc acttgatect gggaggteaa ggetgeag	2745										
<210> 29 <211> 20 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide											
<400> 29 cgactccttc ctccgctccg	20										
<210> 30											
<211> 20 <212> DNA											
<213> Artificial Sequence											
<223> Antisense Oligonucleotide											
<400> 30 ctcgtccctc ctcccgctcc	20										

<210> 31 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 31 aagteetgee teetegeggg	20
<210> 32 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 32 aagggtetag gatgegeggg	20
<210> 33 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 33 ctcagggaga agggcgcagt	20
<210> 34 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 34 gcactgccga gagcgcgaac	20
<210> 35 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 35 gtagcagcag cggcagcagc	20
<210> 36 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 36 atggcctcga tgcgcttccg	20
<210> 37 <211> 20 <212> DNA	

<213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 37 gcgtagtagt cggcctcagg	20
<210> 38 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 38 accactgccg cacaactccg	20
<210> 39 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 39 teggeggeeg gtagtgaace	20
<210> 40 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 40 gaagttggca tggtagccct	20
<210> 41 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 41 ggcgcccggg ttatgctggt	20
<210> 42 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 42 ctccaccttg ggcttgegge	20
<210> 43 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	

<400> 43 aatgacacag agatccgcag				20								
<210> 44 <211> 20 <212> DNA <213> Artificial Sequence												
<223> Antisense Oligonucleotide												
<400> 44 tagatetaae tacagtagtg				20								
<210> 45 <211> 20 <212> DNA <213> Artificial Sequence												
<223> Antisense Oligonucleotic	le											
<400> 45 cgcctggcct gaactactat				20								
<210> 46 <211> 20 <212> DNA <213> Artificial Sequence												
<223> Antisense Oligonucleotic	le											
<400> 46 cccaggctgg teteaaatge				20								
<210> 47 <211> 4267 <212> DNA <213> Mus musculus												
<221> CDS <222> (1218)(2462)												
<400> 47 ggttatctgc tggcagcagg tttgctcg												
cgagtgggag agaaagagag aaggcgct												
ggagagaagt attagggttt aaagagco												
teggeagagg tetattttag ggtegeaa												
cttggtggaa gctaggagaa gctaggga												
cgcgcccagg aggcggtgtt gttccaca												
ttggccgcct ggagcaagaa aaggagga												
tgcaggcagc agcggcggct gcaacgtg												
geeggeagga gegggateet egeegeet												
gtateceace gagteteega gtgageeg												
caggetegee eteggegege gegeaege												
actcatccac acacgtgtgg aaggcagg												
agagecegge geagecegg cegeeget	ca gegeteeeeg	cggccctgcg	tgcctcctgc	780								

cageceeegg acettetegt etegteeett ttggeeggag gateggagtt cagateagee 84	40
actocgoaco gagootgaca cactgaacto catttottoo tottaagttt atttotactt 90	00
cagagecaet caecetetee ettecaggag aaaaaaaaa caaacettte ttaeteetta 96	60
aagtgagaga ttcccccccc accccgcccc agcatcgcat attaatatct ccacgttggg 10	020
aacgcgttgc attttctttt ttaaaggaat cccagccagg aacgtttttc tattgggcat 10	080
taactttega etgetttgea aaagtttegt attaaagaae aaetetaeet gaeegetetg 1	140
agaattacta gtttcttttt tatatatatt ttttcttact ttaaataaca acatcaacgt 12	200
ttcttccttt taaaaac atg cac tac tgt gtg ctg agc acc ttt ttg ctc 12 Met His Tyr Cys Val Leu Ser Thr Phe Leu Leu 1 5 10	250
ctg cat ctg gtc ccg gtg gcg ctc agt ctg tct acc tgc agc acc ctc 1: Leu His Leu Val Pro Val Ala Leu Ser Leu Ser Thr Cys Ser Thr Leu 15 20 25	298
gac atg gat cag ttt atg cgc aag agg atc gag gcc atc cgc ggg cag 1: Asp Met Asp Gln Phe Met Arg Lys Arg Ile Glu Ala Ile Arg Gly Gln 30 35 40	346
atc ctg agc aag ctg aag ctc acc agc ccc ccg gaa gac tat ccg gag 1: Ile Leu Ser Lys Leu Lys Leu Thr Ser Pro Pro Glu Asp Tyr Pro Glu 45 50 55	394
ccg gat gag gtc ccc ccg gag gtg att tcc atc tac aac agt acc agg Pro Asp Glu Val Pro Pro Glu Val Ile Ser Ile Tyr Asn Ser Thr Arg 60 65 70 75	442
gac tta ctg cag gag aag gca agc cgg agg gca gcc gcc	490
gag cgg agc gag cag gag tac tac gcc aag gag gtt tat aaa atc gac 19 Glu Arg Ser Glu Gln Glu Tyr Tyr Ala Lys Glu Val Tyr Lys Ile Asp 95 100 105	538
atg ccg tcc cac ctc ccc tcc gaa aat gcc atc ccg ccc act ttc tac Met Pro Ser His Leu Pro Ser Glu Asn Ala Ile Pro Pro Thr Phe Tyr 110 115 120	586
aga ccc tac ttc aga atc gtc cgc ttt gat gtc tca aca atg gag aaa 10 Arg Pro Tyr Phe Arg Ile Val Arg Phe Asp Val Ser Thr Met Glu Lys 125 130 135	634
aat gct tcg aat ctg gtg aag gca gag ttc agg gtc ttc cgc ttg caa 100 Asn Ala Ser Asn Leu Val Lys Ala Glu Phe Arg Val Phe Arg Leu Gln 140 145 150 155	682
aac ccc aaa gcc aga gtg gcc gag cag cgg att gaa ctg tat cag atc 1'Asn Pro Lys Ala Arg Val Ala Glu Gln Arg Ile Glu Leu Tyr Gln Ile 160 165 170	730
ctt aaa tcc aaa gac tta aca tct ccc acc cag cgc tac atc gat agc 1' Leu Lys Ser Lys Asp Leu Thr Ser Pro Thr Gln Arg Tyr Ile Asp Ser 175 180 185	778
aag gtt gtg aaa acc aga gcg gag ggt gaa tgg ctc tcc ttc gac gtg 18 Lys Val Val Lys Thr Arg Ala Glu Gly Glu Trp Leu Ser Phe Asp Val 190 195 200	826
aca gac gct gtg cag gag tgg ctt cac cac aaa gac agg aac ctg ggg 1	874

Thr	Asp 205	Ala	Val	Gln	Glu	Trp 210	Leu	His	His	Lys	Asp 215	Arg	Asn	Leu	Gly	
									tgt Cys							1922
aat Asn	tac Tyr	atc Ile	atc Ile	ccg Pro 240	aat Asn	aaa Lys	agc Ser	gaa Glu	gag Glu 245	ctc Leu	gag Glu	gcg Ala	aga Arg	ttt Phe 250	gca Ala	1970
ggt Gly	att Ile	gat Asp	ggc Gly 255	acc Thr	tct Ser	aca Thr	tat Tyr	gcc Ala 260	agt Ser	ggt Gly	gat Asp	cag Gln	aaa Lys 265	act Thr	ata Ile	2018
aag Lys	tcc Ser	act Thr 270	agg Arg	aaa Lys	aaa Lys	acc Thr	agt Ser 275	Gly aaa	aag Lys	acc Thr	cca Pro	cat His 280	ctc Leu	ctg Leu	cta Leu	2066
									tca Ser							2114
aag Lys 300	aag Lys	cgc Arg	gct Ala	ttg Leu	gat Asp 305	gct Ala	gcc Ala	tac Tyr	tgc Cys	ttt Phe 310	aga Arg	aat Asn	gtg Val	cag Gln	gat Asp 315	2162
									gat Asp 325							2210
									tac Tyr							2258
gly aaa	gca Ala	tgc Cys 350	cca Pro	tat Tyr	cta Leu	tgg Trp	agt Ser 355	tca Ser	gac Asp	act Thr	caa Gln	cac His 360	acc Thr	aaa Lys	gtc Val	2306
ctc Leu	agc Ser 365	ctg Leu	tac Tyr	aac Asn	acc Thr	ata Ile 370	aat Asn	ccc Pro	gaa Glu	gct Ala	tcc Ser 375	gct Ala	tcc Ser	cct Pro	tgc Cys	2354
tgt Cys 380	gtg Val	tcc Ser	cag Gln	gat Asp	ctg Leu 385	gaa Glu	cca Pro	ctg Leu	acc Thr	att Ile 390	ctc Leu	tat Tyr	tac Tyr	att Ile	gga Gly 395	2402
aat Asn	acg Thr	ccc Pro	aag Lys	atc Ile 400	gaa Glu	cag Gln	ctt Leu	tcc Ser	aat Asn 405	atg Met	att Ile	gtc Val	aag Lys	tct Ser 410	tgt Cys	2450
	tgc Cys		taa *	agto	ccttg	ggg a	aago	ccago	ga ca	acgaa	aaato	c acq	ggtga	acaa		2502
tgad	atat	aa t	gaca	аасца	at ora	cgae	cato	r ato	attto	at.ga	cago	aaaa	aaa o	aaaat	tttga	2562
															acatt	
															accac	
															aaaca	
															atgtg	
															tattgt	
auuc				Juda			~~33,			,	~5~5	יב~כי	5			

```
ttccagcccg catttcaccc cacgcctctc ctggttcctc tgtattgctc tctgcagtgg 2922
qtqccctccc cqtcccttcc tccaagctaa cagtgggtta tttattgtgt gttactatat 2982
aatgaacctt tcattaccct tggaaaacaa aacaggtgta taaatcgaga ccaaatactt 3042
tgccacaaac tcatggatgg cttaaggagt ttgaactcaa ataagccagg gggaaggagg 3102
tcatagtgga tgacccctg tgagttgtta taggactaag caagtcttct gtggaaaaat 3162
caaageeeca geaaacaegt gtetgeegaa getteatgga egeeatatge eeagaaggee 3222
tqttaacaaa qaaaacttqq aatcaqtqqc aatctggaag atttttttt ccttttaatt 3282
gtaaatggtt ctttgccagt ttaagcaagc cggtgaaatg ttgacctgtt ttgatatgta 3342
ttgtcagact tttgaccgtg aagtggctgt tgatctacaa tacaggtttt tcctttgtct 3402
tggtatatgt aattacatgg atactattaa aatagacggg tctagaagcc agcatgattg 3462
aaaacacact gcagatctgt ttttccaaac tattaaatcg aaacagtaac tactttacat 3522
qtaatqtqta gatcttacca catttttaat attctgtaat aatggttatg atttagattg 3582
aacttaaatt tggacttttt tttttaatga tcattcagat tgtatatttg tttcctttag 3642
ctggccagta cctttgaata aaacccctag attttgactt gcactacaaa ttcaattttt 3702
tttatatact atcttccctg cctgtatttt atgtattgtc catttaatga catgagctac 3762
ctqqqtccat tcctcccca accccagttc cttctatttt ccaaaagata aaaaccaaag 3822
cccaaaaagc taggtttgag ctccacagtg tttcagcctt ttctgcgtca gtgtgagtca 3882
tgtggcgggt gagcggtggg gcttctggga tggatggttc tgtgtgaaca cagaagttcg 3942
cacaaatgta ggcttagcta gggtttaaga atctcaactc agagtcttag tgactgggct 4002
aggaaaagtt totttaacto otatatttat ggactotott tgoogttoaa aagcagacag 4062
ttcaaaggaa gcaccttttt ctttaattgg tttttttggt gctcatgggg tgtattaaaa 4122
gacacacagt ttggttgagt ttttcaaagg gggaaaaagt ccaggccagc actcgtcatt 4182
ttattcataa tttcatccat tatttccctg atttcattga aatacaggtt ttgaaagaca 4242
ttctttgcag gctgattaaa aaaaa
                                                                  4267
<210> 48
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Antisense Oligonucleotide
<400> 48
                                                                  20
gccggcagtt tcagcagctc
<210> 49
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Antisense Oligonucleotide
<400> 49
                                                                  20
ctcqcaccct tccctagctt
<210> 50
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Antisense Oligonucleotide
```

WO 01/19161	PCT/US00/25272
<400> 50	
tttcttgctc caggcggcca	20
<210> 51	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 51	
gagcaggcgg cgaggatccc	20
<210> 52	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 52	
gccctgcctt ccacacgtgt	20
<210> 53	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 53	
gtgcggagtg gctgatctga	20
<210> 54	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 54	
aaaatgcaac gcgttcccaa	20
<210> 55	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 55	
ccgggaccag atgcaggagc	20
<210> 56	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 56	
teeggettge etteteetge	20

WO 01/19161	PCT/US00/25272
W O 01/15/101	1 0 1/ 0 5 0 0/20 2 / 2

<210> 57 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 57 gggttttgca agcggaagac	20
<210> 58 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 58 cgatgtagcg ctgggtggga	20
<210> 59 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 59 ggtcttccca ctggtttttt	20
<210> 60 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 60 aagcttcggg atttatggtg	20
<210> 61 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 61 accgtgattt tcgtgtcctg	20
<210> 62 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 62 gcgggctgga aacaatacgt	20
<210> 63 <211> 20 <212> DNA	

<213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 63 cccctggctt atttgagttc	20
<210> 64 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 64 accggcttgc ttaaactggc	20
<210> 65 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 65 cagccacttc acggtcaaaa	20
<210> 66 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 66 atggacccag gtagctcatg	20
<210> 67 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 67 caccegecae atgaeteaea	20
<210> 68 <211> 20 <212> DNA <213> Artificial Sequence	
<223> Antisense Oligonucleotide	
<400> 68 tacaccccat gagcaccaaa	20