

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME									
CENTRE NUMBER					CANE NUMI	DIDATE BER			
FURTHER MATH	EMATICS							923	1/11
Paper 1							May/	June 2	2019
								3 h	ours
Candidates answe	er on the C	Question	Paper.						
Additional Materia	ls: Lis	st of For	mulae (MF1	10)					

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

International Education

1 A curve C has equation $\cos y = x$, for $-\pi < x < \pi$.

(i)	Use implicit differentiation to	show that			
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\cot y \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2.$	[4]		
ii)	Hence find the exact value of	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$ at the point $\left(\frac{1}{2}, \frac{1}{3}\pi\right)$ on C .	[2		

2	Let $u =$	$4\sin(n-\frac{1}{2})\sin\frac{1}{2}$
4	Let u_n –	cos(2n-1) + cos 1

(i)	Heing the fo	rmulae for c	$\alpha c P + c \alpha c \Omega$	given in th	A List of For	mulae MF10,	chow that
111	Osme die it	ninuiae ioi e	0 3 I \perp 0 0 3 O	21VCH III UI	C LIST OF LOI	mulac mir io.	snow mat

()	2 0	
	1 1	F23
	$u_n = \frac{1}{\cos n} - \frac{1}{\cos(n-1)}.$	[2]
		•••••
		•••••
		••••••
(::)	Use the method of differences to find $\sum_{n=1}^{N} u_n$.	[2]
(11)	Use the method of differences to find $\sum_{n=1}^{\infty} u_n$.	[2]
	n=1	
		••••••
		•••••
(iii)	Explain why the infinite series $u_1 + u_2 + u_3 + \dots$ does not converge.	[1]
(111)	Explain why the immite series $u_1 + u_2 + u_3 + \dots$ does not converge.	[+]
		•••••
		••••••

		•••••		•••••		
••••••	••••••	••••••	•••••	••••••••••	••••••	
						•••••
••••••	••••••	••••••	•••••	••••••••••	••••••	
	•••••	•••••		•••••		
						•••••

1	Tt io		that	for		_	Λ
4	It 1S	given	tnat.	IOT	n	2	U

$$I_n = \int_0^1 x^n e^{x^3} dx.$$

i)	Show that $I_2 = \frac{1}{3}(e - 1)$.	[
		•••••
)	Show that, for $n \ge 3$,	
	$3I_n = e - (n-2)I_{n-3}$.	
		•••••
		•••••
		•••••

		••••
		••••
		••••
		••••
		••••
		• • • •
		••••
(iii)	Hence find the exact value of I_8 .	[3]
		• • • •
		,
		••••
		• • • •
		••••
		• • • •

5 A curve C is defined parametrically by

$$x = \frac{2}{e^t + e^{-t}}$$
 and $y = \frac{e^t - e^{-t}}{e^t + e^{-t}}$,

for $0 \le t \le 1$. The area of the surface generated when C is rotated through 2π radians about the x-axis is denoted by S.

(i)	Show that $S = 4\pi \int_0^1 \frac{e^t - e^{-t}}{(e^t + e^{-t})^2} dt$.	[5]
		•••••
		•••••

 •••••
 •••••
•••••
••••••
•••••
••••••••••
 •••••
•••••
••••••
 •••••
••••••
•••••

6	The	eq	uation

$$x^3 - x + 1 = 0$$

has roots α , β , γ .

(i) 1	Use the relation $x = y^{\frac{1}{3}}$ to show that the equation
	$y^3 + 3y^2 + 2y + 1 = 0$
1	has roots α^3 , β^3 , γ^3 . Hence write down the value of $\alpha^3 + \beta^3 + \gamma^3$. [3]
•	
•	
•	
•	
•	
•	
•	
•	
•	

Le	Let $S_n = \alpha^n + \beta^n + \gamma^n$.	
(i	(ii) Find the value of S_{-3} .	[2]
(ii	iii) Show that $S_6 = 5$ and find the value of S_9 .	[4]
(11	In Show that $B_6 = S$ and find the value of B_9 .	[ד]
		•••••

	7	Find the	particular	solution	of the	differential	equation
--	---	----------	------------	----------	--------	--------------	----------

$10\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + 3\frac{\mathrm{d}x}{\mathrm{d}t} - x = t + 2,$
given that when $t = 0$, $x = 0$ and $\frac{dx}{dt} = 0$. [10]

$1 + z + z^2 + \dots + z^{n-1} = \frac{z^n - 1}{z - 1}.$	[5

	∞	2 cin A	
	$\sum \left(\frac{1}{2}\right)^m \sin m\theta$	$\theta = \frac{2\sin\theta}{5 - 4\cos\theta}.$	[5
	$\overline{m=1}$	3 – 4 008 0	
			 •••••
••••••	••••••	•••••	 •••••
			 •••••
	•••••	•••••	 •••••
	•••••		
			 •
•••••	•••••	•••••	
	•••••		
	••••••		 ••••••
	•••••	•••••	 •••••
			 •••••
			 •••••
			 •••••

1) Show that e is an	eigenvector of A^2 , with co	orresponding eigenvalue λ^2 .	
here I is the 3×3 ide	$\mathbf{A} = \begin{pmatrix} n & 1 & 3 \\ 0 & 2n & 0 \\ 0 & 0 & 3n \end{pmatrix}$ entity matrix and n is a not		
	entity matrix and n is a not		h that $\mathbf{B} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$
	entity matrix and n is a not	n-zero integer.	h that $\mathbf{B} = \mathbf{P}\mathbf{D}\mathbf{P}^-$
	entity matrix and n is a not	n-zero integer.	h that B = PDP
	entity matrix and n is a not	n-zero integer.	h that B = PDP
	entity matrix and n is a not	n-zero integer.	h that B = PDP ⁻
	entity matrix and n is a not	n-zero integer.	h that B = PDP
	entity matrix and n is a not	n-zero integer.	h that B = PDP
	entity matrix and n is a not	n-zero integer.	h that B = PDP
	entity matrix and n is a not	n-zero integer.	h that B = PDP

••••••
•••••
•••••••••••

10 The curves C_1 and C_2 have equations

$$y = \frac{ax}{x+5}$$
 and $y = \frac{x^2 + (a+10)x + 5a + 26}{x+5}$

respectively, where a is a constant and a > 2.

(i)	Find the equations of the asymptotes of C_1 .	[2]
(ii)	Find the equation of the oblique asymptote of C_2 .	[2]
(iii)	Show that C_1 and C_2 do not intersect.	[2]

(iv)	Find the coordinates of the stationary points of C_2 . [3]
(v)	Sketch C_1 and C_2 on a single diagram. [You do not need to calculate the coordinates of any points where C_2 crosses the axes.] [3]

11 Answer only **one** of the following two alternatives.

EITHER

The curve C_1 has polar equation $r^2=2\theta$, for $0 \leqslant \theta \leqslant \frac{1}{2}\pi$.

(i)	The point on C_1 furthest from the line $\theta = \frac{1}{2}\pi$ is denoted by P . Show that, at P ,
	$2\theta \tan \theta = 1$
	and verify that this equation has a root between 0.6 and 0.7.

(ii) Find the exact value of θ at Q.

The curve C_2 has polar equation $r^2 = \theta \sec^2 \theta$, for $0 \le \theta < \frac{1}{2}\pi$. The curves C_1 and C_2 intersect at the pole, denoted by O, and at another point Q.

[2]

(iii) The diagram below shows the curve C_2 . Sketch C_1 on this diagram. [2]

OR

The linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^4$ is represented by the matrix

$$\mathbf{M} = \begin{pmatrix} -1 & 2 & 3 & 4 \\ 1 & 0 & 1 & -1 \\ 1 & -2 & -3 & a \\ 1 & 2 & 5 & 2 \end{pmatrix}.$$

- (i) For $a \neq -4$, the range space of T is denoted by V.
 - (a) Find the dimension of V and show that

$$\begin{pmatrix} -1\\1\\1\\1 \end{pmatrix}, \quad \begin{pmatrix} 2\\0\\-2\\2 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 4\\-1\\a\\2 \end{pmatrix}$$

form a basis for V .	[5]

(b)	Show that if $\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$ belongs to V then $x + 2y = t$. [4]

(ii)	i) For $a = -4$, find the general solution of				
		$\mathbf{M}\mathbf{x} = \begin{pmatrix} -1\\1\\1\\1 \end{pmatrix}$			[5]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.