Student Number: Name: Bryan Hoang

- 2. (15 points)
- (a) Answer:

Denote $f(D) = \sum_{i=1}^{7} D^{-l_i}$ For the integers l_1, \ldots, l_7 to satisfy Kraft's inequality, we want

$$f(D) = \sum_{i=1}^{7} D^{-l_i}$$

$$= D^{-l_1} + D^{-l_2} + D^{-l_3} + D^{-l_4} + D^{-l_5} + D^{-l_6} + D^{-l_7}$$

$$= 2D^{-1} + 2D^{-2} + 2D^{-3} + D^{-4}$$

$$\leq 1$$

Trying values of $D \in \mathbb{Z}_{\geq 2}$ yields

$$f(2) = \frac{29}{16} \nleq 1$$
$$f(3) = \frac{79}{81} \le 1.$$

... the integers l_1, \ldots, l_7 satisfy Kraft's inequality in base D = 3.

(b) Answer:

Claim. $l_7^* = 3$ makes l_1, \ldots, l_6, l_7^* satisfy Kraft's inequality in base 3 with equality.

Proof.

$$f(3) = 3^{-l_1} + 3^{-l_2} + 3^{-l_3} + 3^{-l_4} + 3^{-l_5} + 3^{-l_6} + 3^{-l_7^*}$$

= $2(3)^{-1} + 2(3)^{-2} + 3(3)^{-3}$
= 1

Student Number: Name: Bryan Hoang

(c) Answer:

Figure 1: Ternary Huffman tree

From Figure 1, a ternary prefix code with the integers l_1, \ldots, l_6, l_7^* as its codeword lengths is $\mathcal{C} = \{0, 1, 20, 21, 220, 221, 222\}$.

(d) **Answer:**

Let $\{X_i\}_{i=1}^{\infty}$ be a DMS with alphabet $\mathcal{X} = \{a_1, \ldots, a_7\}$ and PMF $p_X(a_i) = p_i = 3^{-l_i}$ where l_i is the length of codeword c_i for source symbol a_i for $i \in \{1, \ldots, 7\}$. Then the Ternary Huffman code is

$$f: \mathcal{X} \to \{0, 1, 2\}^*$$

$$a_1 \to 0$$

$$a_2 \to 1$$

$$a_3 \to 20$$

$$a_4 \to 21$$

$$a_5 \to 220$$

$$a_6 \to 221$$

$$a_7 \to 222.$$

The source's entropy is

$$H_3(X) = -\sum_{i=1}^{7} p_i \log_3 p_i$$

$$= 1.\overline{4} \text{ trits}$$