GANS AND GRAPHS

Deep Learning becomes a game

GENERATIVE ADVERSARIAL NETWORKS

Two neural networks compete against each other

One of them generates fake data, and other tries to distinguish real from fake

 Input to generate: noise sampled from a uniform distribution

 By putting in different types of noise, we generate all different types of data

 Say we want to generate fake pictures of apples

• There can be green apples, red apples, yellow apples, etc.

THE GENERATOR

• The generator can be any type of neural network

 MLP, CNN are two possibilities (depending on the type of data

• Generator: makes fake data to try to trick the discriminator

THE DISCRIMINATOR

- The discriminator can be any type of neural network
- MLP, CNN are two possibilities (depending on the type of data)
- Discriminator: learns from both real and fake data (tries to tell them apart)

TRAINING A GAN

- Remember, this is a game
- If the discriminator does well, the generator must be losing
- If the generator does well, the discriminator must be losing
- Lower loss for the discriminator = higher loss for the generator
- Higher loss for the discriminator = lower loss for the generator

TRAINING A GAN

- If we train both networks at the same time, it will be like trying to hit a moving target (much harder)
- We train the generator for a few epochs, and do not change the weights of the discriminator
- We then train the discriminator for a few epochs, do not change the weights of the generator
- Repeat for a certain number of epochs until the discriminator fails half the time (random guessing)

GENERAL GUIDELINES

Use the same things you would on a regular neural network

Activation functions

Optimization functions

Loss functions

Batch normalization (prevents GANs from replicating the same sample over and over)

Dropouts

 We just reviewed the vanilla GAN – the most basic model

 Now, we will discuss more complicated architectures!

DC-GAN, Cycle GAN, text-to-image

 All can be implemented quickly via Pytorch/online resources

 It is important to understand how these work so you can design projects

DC-GAN

TLDR – GAN for images

• Integrates CNN with vanilla GAN for improved results on images

Maps data from one type to the other

For example, horse to zebra

Generators: uses domain #1 to create domain #2 and domain #2 to create domain #1

Discriminator: checks the quality of the translation

BIOMED APPLICATIONS?

Graphs let us represent relationships between data points

GRAPHS

A data point can be a node with edges connected to neighboring (similar) data points

We can learn from the network, not just individual data points

GRAPH NEURAL NETWORKS

You have to make the graph first

Scikit-learn has many ways to do this – see here

GNNS

Most traditional application is supervised classification

Each node has a label (i.e. cell type)

Use info from that node and nearby nodes to predict the label

Learn a model that can be used to predict new labels

$$\mathbf{h}_v = f(\mathbf{x}_v, \mathbf{x}_{co[v]}, \mathbf{h}_{ne[v]}, \mathbf{x}_{ne[v]})$$

$$\mathbf{o}_v = g(\mathbf{h}_v, \mathbf{x}_v)$$

BIOMED APPLICATIONS?