

**Definition** (A path). A graph P

**Definition** (A path). A graph P = (V(P),

**Definition** (A path). A graph P = (V(P), E(P))

**Definition** (A path). A graph P = (V(P), E(P)) on a set of vertices  $V(P) = \{x_0, x_1, \dots, x_n\}$ 

**Definition** (A path). A graph P = (V(P), E(P)) on a set of vertices  $V(P) = \{x_0, x_1, \dots, x_n\}$  is called a path

**Definition** (A path). A graph P = (V(P), E(P)) on a set of vertices  $V(P) = \{x_0, x_1, \dots, x_n\}$  is called a path of length n

**Definition** (A path). A graph P = (V(P), E(P)) on a set of vertices  $V(P) = \{x_0, x_1, \dots, x_n\}$  is called a path of length n linking the "ends",

**Definition** (A path). A graph P = (V(P), E(P)) on a set of vertices  $V(P) = \{x_0, x_1, \dots, x_n\}$  is called a path of length n linking the "ends",  $x_0$  and  $x_n$ , if its set of edges is of the form,

# Notation:

# **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

# Notation:

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1}$ 

# Notation:

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

#### Notation:

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

# Proposition.

# Notation:

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

Proposition. A graph, G,

# Notation:

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length

#### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

# **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

Proof. Main observation:

# **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ ,

# **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ ,

# **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

#### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$ 

#### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours.

#### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

# **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

# **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

Definition.

# **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

**Definition** (A cycle). A graph C

# **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

**Definition** (A cycle). A graph C = (V(C),

# **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

**Definition** (A cycle). A graph C = (V(C), E(C))

# **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$ 

# **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle

# **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n + 1

#### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,

# **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form, E(C) =

# **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,  $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

#### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,  $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

#### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,  $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

Exercise.

#### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,  $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G,

### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,  $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length

### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,  $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

## **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,  $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

## Definition.

### Notation:

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := Px_{n+1} = x_0x_1x_2\dots x_nx_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq$  $\delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C))on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$ is called a cycle of length n+1 if its set of edges is of the form.  $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length at least  $\delta(G) + 1$ .

**Definition** (girth).

### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,  $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G

### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,  $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,  $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G,

## **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_1 + \dots + x_n x_1 x_2 \dots x_n x_n$ 

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,

 $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G, the distance between two vertices  $x_0, x_1 \in V(G)$ ,

## **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_1 + \dots + x_n x_1 x_2 \dots x_n x_n$ 

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,

 $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G, the distance between two vertices  $x_0, x_1 \in V(G)$ , denoted  $d_G(x_0, x_1)$ ,

### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,  $E(C) = \{x_0, x_1, \dots, x_n\}$ 

 $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G, the distance between two vertices  $x_0, x_1 \in V(G)$ , denoted  $d_G(x_0, x_1)$ , is the length of the shortest path joining  $x_0$  and  $x_1$ .

### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,

 $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G, the distance between two vertices  $x_0, x_1 \in V(G)$ , denoted  $d_G(x_0, x_1)$ , is the length of the shortest path joining  $x_0$  and  $x_1$ . The diameter of G, diam  $G := \max\{d_G(x,y) \mid x,y \in V(G)\}$ 

## **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_1 + \dots + x_n x_1 x_2 \dots x_n x_n$ 

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,

 $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G, the distance between two vertices  $x_0, x_1 \in V(G)$ , denoted  $d_G(x_0, x_1)$ , is the length of the shortest path joining  $x_0$  and  $x_1$ . The diameter of G, diam  $G := \max\{d_G(x,y) \mid x,y \in V(G)\}$ 

Proposition.

### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,

 $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G, the distance between two vertices  $x_0, x_1 \in V(G)$ , denoted  $d_G(x_0, x_1)$ , is the length of the shortest path joining  $x_0$  and  $x_1$ . The diameter of G, diam  $G := \max\{d_G(x,y) \mid x,y \in V(G)\}$ 

**Proposition.** Every graph, G,

## **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := Px_1 \dots = x_n x_n x_n \dots x_n x_n$ 

 $Q := Px_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,

 $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G, the distance between two vertices  $x_0, x_1 \in V(G)$ , denoted  $d_G(x_0, x_1)$ , is the length of the shortest path joining  $x_0$  and  $x_1$ . The diameter of G, diam  $G := \max\{d_G(x,y) \mid x,y \in V(G)\}$ 

### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,

 $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G, the distance between two vertices  $x_0, x_1 \in V(G)$ , denoted  $d_G(x_0, x_1)$ , is the length of the shortest path joining  $x_0$  and  $x_1$ . The diameter of G, diam  $G := \max\{d_G(x,y) \mid x,y \in V(G)\}$ 

### **Notation:**

 $P := x_0 x_1 x_2 \dots x_n$  denotes a path linking  $x_0$  with  $x_n$ .  $Q := P x_{n+1} = x_0 x_1 x_2 \dots x_n x_{n+1}$ 

**Proposition.** A graph, G, contains a path with length  $\delta(G)$ .

*Proof. Main observation*: If a path P ends at  $x_n$ , but does not contain a "neighbour",  $x_{n+1}$  of  $x_n$ , it can be made longer by including  $x_{n+1}$  to give  $Px_{n+1}$ 

A path P with the largest length ending at  $x_n$  must contain all of  $x_n$ s neighbours. P's length  $\geq d(x_n) \geq \delta(G)$ 

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,

 $E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$ 

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G, the distance between two vertices  $x_0, x_1 \in V(G)$ , denoted  $d_G(x_0, x_1)$ , is the length of the shortest path joining  $x_0$  and  $x_1$ . The diameter of G, diam  $G := \max\{d_G(x,y) \mid x,y \in V(G)\}$ 

$$g(G) \le 2diam \ G + 1$$

□ **Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,

$$E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$$

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G, the distance between two vertices  $x_0, x_1 \in V(G)$ , denoted  $d_G(x_0, x_1)$ , is the length of the shortest path joining  $x_0$  and  $x_1$ . The diameter of G, diam  $G := \max\{d_G(x, y) \mid x, y \in V(G)\}$ 

$$g(G) \le 2diam \ G + 1$$



**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,

$$E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$$

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G, the distance between two vertices  $x_0, x_1 \in V(G)$ , denoted  $d_G(x_0, x_1)$ , is the length of the shortest path joining  $x_0$  and  $x_1$ . The diameter of G, diam  $G := \max\{d_G(x, y) \mid x, y \in V(G)\}$ 

$$g(G) \le 2diam \ G + 1$$



**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,

$$E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$$

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G, the distance between two vertices  $x_0, x_1 \in V(G)$ , denoted  $d_G(x_0, x_1)$ , is the length of the shortest path joining  $x_0$  and  $x_1$ . The diameter of G, diam  $G := \max\{d_G(x, y) \mid x, y \in V(G)\}$ 

$$g(G) \le 2diam \ G + 1$$



**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,

$$E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$$

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G, the distance between two vertices  $x_0, x_1 \in V(G)$ , denoted  $d_G(x_0, x_1)$ , is the length of the shortest path joining  $x_0$  and  $x_1$ . The diameter of G, diam  $G := \max\{d_G(x, y) \mid x, y \in V(G)\}$ 

$$g(G) \le 2 \operatorname{diam} G + 1$$



Any cycle C has girth k, then it has at least two vertices with distance k/2.

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,

$$E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$$

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G, the distance between two vertices  $x_0, x_1 \in V(G)$ , denoted  $d_G(x_0, x_1)$ , is the length of the shortest path joining  $x_0$  and  $x_1$ . The diameter of G, diam  $G := \max\{d_G(x,y) \mid x,y \in V(G)\}$ 

$$g(G) \le 2diam \ G + 1$$



Any cycle C has girth k, then it has at least two vertices with distance k/2. If  $k/2 \ge \operatorname{diam} G + 1$ , then there is a path P joining the two points that is not in C. One can form cycle with smaller girth..

**Definition** (A cycle). A graph C = (V(C), E(C)) on a set of vertices  $V(C) = \{x_0, x_1, \dots, x_n\}$  is called a cycle of length n+1 if its set of edges is of the form,

$$E(C) = \{x_0x_1, x_1x_2, \dots, x_{n-1}x_n, x_nx_0\}.$$

**Exercise.** A graph, G, with at least one cycle contains a cycle with length  $at \ least \ \delta(G) + 1$ .

**Definition** (girth). The girth, g(G), of a graph G is the minimum length of a cycle contained in G.

**Definition.** Given a graph G, the distance between two vertices  $x_0, x_1 \in V(G)$ , denoted  $d_G(x_0, x_1)$ , is the length of the shortest path joining  $x_0$  and  $x_1$ . The diameter of G, diam  $G := \max\{d_G(x,y) \mid x,y \in V(G)\}$ 

$$g(G) \le 2diam \ G + 1$$



Any cycle C has girth k, then it has at least two vertices with distance k/2. If  $k/2 \ge \text{diam } G+1$ , then there is a path P joining the two points that is not in C. One can form cycle with smaller girth..

Definition.



Proof.

Any cycle C has girth k, then it has at least two vertices with distance k/2. If  $k/2 \ge \operatorname{diam} G + 1$ , then there is a path P joining the two points that is not in C. One can form cycle with smaller girth..



**Definition.** A (non-empty) graph, G, is connected

Proof.

Any cycle C has girth k, then it has at least two vertices with distance k/2. If  $k/2 \ge \operatorname{diam} G + 1$ , then there is a path P joining the two points that is not in C. One can form cycle with smaller girth..



**Definition.** A (non-empty) graph, G, is connected if any two of its vertices are linked by a path.

Any cycle C has girth k, then it has at least two vertices with distance k/2. If  $k/2 \ge \text{diam } G+1$ , then there is a path P joining the two points that is not in C. One can form cycle with smaller girth..



Any cycle C has girth k, then it has at least two vertices with distance k/2. If  $k/2 \ge \text{diam } G+1$ , then there is a path P joining the two points that is not in C. One can form cycle with smaller girth..

**Definition.** A (non-empty) graph, G, is connected if any two of its vertices are linked by a path.  $U \subset V(G)$  is connected



Any cycle C has girth k, then it has at least two vertices with distance k/2. If  $k/2 \ge \text{diam } G+1$ , then there is a path P joining the two points that is not in C. One can form cycle with smaller girth..

**Definition.** A (non-empty) graph, G, is connected if any two of its vertices are linked by a path.  $U \subset V(G)$  is connected if G[U] is connected.



Any cycle C has girth k, then it has at least two vertices with distance k/2. If  $k/2 \ge \text{diam } G+1$ , then there is a path P joining the two points that is not in C. One can form cycle with smaller girth..

**Definition.** A (non-empty) graph, G, is connected if any two of its vertices are linked by a path.  $U \subset V(G)$  is connected if G[U] is connected.

Definition.



Any cycle C has girth k, then it has at least two vertices with distance k/2. If  $k/2 \ge \text{diam } G+1$ , then there is a path P joining the two points that is not in C. One can form cycle with smaller girth..

**Definition.** A (non-empty) graph, G, is connected if any two of its vertices are linked by a path.  $U \subset V(G)$  is connected if G[U] is connected.

**Definition** (component).



Any cycle C has girth k, then it has at least two vertices with distance k/2. If  $k/2 \ge \text{diam } G+1$ , then there is a path P joining the two points that is not in C. One can form cycle with smaller girth..

**Definition.** A (non-empty) graph, G, is connected if any two of its vertices are linked by a path.  $U \subset V(G)$  is connected if G[U] is connected.

**Definition** (component). A maximal connected subgraph is called a component



**Definition.** Graphs,  $G_1$  and  $G_2$  are called isomorphic if

Any cycle C has girth k, then it has at least two vertices with distance k/2. If  $k/2 \ge \dim G + 1$ , then there is a path P joining the two points that is not in C. One can form cycle with smaller girth..



**Definition.** Graphs,  $G_1$  and  $G_2$  are called isomorphic if there is a bijection

Any cycle C has girth k, then it has at least two vertices with distance k/2. If  $k/2 \ge \text{diam } G+1$ , then there is a path P joining the two points that is not in C. One can form cycle with smaller girth..



Any cycle C has girth k, then it has at least two vertices with distance k/2. If  $k/2 \ge \text{diam } G+1$ , then there is a path P joining the two points that is not in C. One can form cycle with smaller girth..

**Definition.** Graphs,  $G_1$  and  $G_2$  are called isomorphic if there is a bijection  $\phi: V(G_1) \to V(G_2)$  satisfying,



Any cycle C has girth k, then it has at least two vertices with distance k/2. If  $k/2 \ge \text{diam } G+1$ , then there is a path P joining the two points that is not in C. One can form cycle with smaller girth..

**Definition.** Graphs,  $G_1$  and  $G_2$  are called isomorphic if there is a bijection

 $\phi: V(G_1) \to V(G_2)$  satisfying,  $\{x, y\} \in E(G_1) \iff \{\phi(x), \phi(y)\} \in E(G_2)$