### A inversa: Simplex & Dualidade II

Alexandre Checoli Choueiri

29/01/2023

### Conteúdo

- 1 Obtendo a solução dual pelo quadro ótimo primal
- 2 Exemplo
- 3 Primal factivel dual infactivel

4 Conclusão

### **Objetivos**

#### Ferramentas e objetivos



Obtendo a solução dual pelo quadro ótimo primal

Agora possuímos todas as ferramentas para mostrar que ao encontrarmos a solução ótima do primal, automaticamente encontramos a solução ótima do dual. Considere o par primal dual, com o primal escrito na forma padrão:

#### Primal

$$\begin{aligned} \min \ \mathbf{z} &= \mathbf{c}^T \mathbf{x} \\ \mathbf{A} \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &> 0 \end{aligned}$$

#### Dual

$$\mathbf{A}^T \boldsymbol{\pi} \leq \mathbf{c}$$
 
$$\boldsymbol{\pi}^T \mathbf{r} \leq \mathbf{c}$$

Da mesma forma que fizemos antes, podemos particionar os problemas em relação às variáveis básicas e não básicas do problema original:

#### Primal

$$\begin{aligned} \min \ \mathbf{z} &= \mathbf{c}_B^T \mathbf{x}_B + \mathbf{c}_N^T \mathbf{x}_N \\ \mathbf{B} \mathbf{x}_B &+ \mathbf{N} \mathbf{x}_N = \mathbf{b} \\ \mathbf{x} &\geq 0 \end{aligned}$$

#### Dual

$$\mathbf{B}^T \pi \leq \mathbf{c}_B$$
 
$$\mathbf{N}^T \pi \leq \mathbf{c}_N$$
 
$$\pi \text{ irrestrito}$$

Pelo **teorema das folgas complementares**, na otimalidade, as variáveis com valores > 0 no primal  $(x_B)$  implicam variáveis de folga nulas no dual. Ou seja, após a inserção das folgas, sabemos que as restrições referentes a essas variáveis no dual são de igualdade:

$$\mathbf{max} \ \mathbf{v} = \pi^T \mathbf{b}$$
  $\mathbf{B}^T \pi \leq \mathbf{c}_B$   $\mathbf{N}^T \pi \leq \mathbf{c}_N$ 

Pelo **teorema das folgas complementares**, na otimalidade, as variáveis com valores > 0 no primal  $(x_B)$  implicam variáveis de folga nulas no dual. Ou seja, após a inserção das folgas, sabemos que as restrições referentes a essas variáveis no dual são de igualdade:

$$\mathbf{max} \ \mathbf{v} = \pi^T \mathbf{b}$$
  $\mathbf{B}^T \pi \leq \mathbf{c}_B$   $\mathbf{N}^T \pi \leq \mathbf{c}_N$ 

De forma que:

$$\mathbf{max} \ \mathbf{v} = \pi^T \mathbf{b}$$
 
$$\mathbf{B}^T \pi = \mathbf{c}_B$$
 
$$\mathbf{N}^T \pi \leq \mathbf{c}_N$$

Pelo **teorema das folgas complementares**, na otimalidade, as variáveis com valores > 0 no primal  $(x_B)$  implicam variáveis de folga nulas no dual. Ou seja, após a inserção das folgas, sabemos que as restrições referentes a essas variáveis no dual são de igualdade:

$$\mathbf{max} \ \mathbf{v} = \pi^T \mathbf{b}$$
 
$$\mathbf{B}^T \pi \leq \mathbf{c}_B$$
 
$$\mathbf{N}^T \pi \leq \mathbf{c}_N$$

De forma que:

$$\mathbf{max} \ \mathbf{v} = \pi^T \mathbf{b}$$
 
$$\mathbf{B}^T \pi = \mathbf{c}_B$$
 
$$\mathbf{N}^T \pi < \mathbf{c}_N$$

Aplicando a transposta em ambos os lados (lembre-se que  $(AB)^T = B^T A^T$ ):

$$\begin{aligned} \max \mathbf{v} &= \pi^T \mathbf{b} \\ &\pi^T \mathbf{B} &= \mathbf{c}_B^T \\ &\mathbf{N}^T \pi \leq \mathbf{c}_N \end{aligned}$$

$$\begin{aligned} \mathbf{max} \ \mathbf{v} &= \pi^T \mathbf{b} \\ \pi^T \mathbf{B} &= \mathbf{c}_B^T \\ \mathbf{N}^T \pi &\leq \mathbf{c}_N \end{aligned}$$

Como podemos derivar uma solução genérica para  $\pi$ ? (como isolar  $\pi$ ).

$$\begin{aligned} \mathbf{max} \ \mathbf{v} &= \pi^T \mathbf{b} \\ \pi^T \mathbf{B} &= \mathbf{c}_B^T \\ \mathbf{N}^T \pi &\leq \mathbf{c}_N \end{aligned}$$

Como podemos derivar uma solução genérica para  $\pi$ ? (como isolar  $\pi$ ). Multiplicando ambos os lados da igualdade por  $B^{-1}$ :

$$\begin{aligned} \max \mathbf{v} &= \pi^T \mathbf{b} \\ \pi^T &= \mathbf{c}_B^T \mathbf{B}^{-1} \\ \mathbf{N}^T \pi &\leq \mathbf{c}_N \end{aligned}$$

Chegamos então ao modelo equivalente:

$$\begin{aligned} \mathbf{max} \ \mathbf{v} &= \pi^T \mathbf{b} \\ \pi^T &= \mathbf{c}_B^T \mathbf{B}^{-1} \\ \mathbf{N}^T \pi &\leq \mathbf{c}_N \end{aligned}$$

Chegamos então ao modelo equivalente:

$$\begin{aligned} \max \mathbf{v} &= \pi^T \mathbf{b} \\ &\pi^T = \mathbf{c}_B^T \mathbf{B}^{-1} \\ &\mathbf{N}^T \pi \leq \mathbf{c}_N \end{aligned}$$

Que nos fornece uma forma também genérica de calcular os valores duais, em função da inversa da base primal:

$$\boldsymbol{\pi}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$$

Se olharmos a tabela genérica do Simplex, percebemos que esse mesmo termo aparece na linha da função objetivo, abaixo das variáveis não básicas. Analisando o termo da tabela com mais cuidado, distinguimos um caso em que o cálculo fica simplificado.

$$\pi^T = \mathbf{c}_B^T \mathbf{B}^{-1}$$

| $\mathbf{x}_B$ | $x_N$                                                                                      | -z                                                                     |
|----------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 0              | $\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} \\ \mathbf{B}^{-1} \mathbf{N}$ | $-\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$ |
| 1              | $B^{-1}N$                                                                                  | $\mathbf{B}^{-1}\mathbf{b}$                                            |

Embora o termo esteja em função dos coeficientes não básicos, podemos usá-lo para analisar quaisquer termos da função objetivo, básicos e não básicos, de forma que  $\mathbf{c}_N^T$  são os coeficientes que queremos atualizar na fo  $(c_i^T)$ , e N a submatriz composta pelas colunas referentes a esses coeficientes  $(A_i)$ .

### DADOS NÃO BÁSICOS

$$\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$$

### **QUAISQUER VALORES**

$$\mathbf{c}_i^T - \mathbf{c}_B^T \mathbf{B}^{-1} A_i$$

Lembrando que  $\mathbf{c}_N^T$  e  $\mathbf{N}$  são coletadas da matriz original. O que acontece se usarmos os dados das variáveis de folga para esse cálculo?

$$\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$$

|                    | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | -z |
|--------------------|-------|-------|-------|-------|-------|----|
| $\overline{ m VB}$ | -1    | -2    | 0     | 0     | 0     | 0  |
|                    | 1     | 1     | 1     | 0     | 0     | 6  |
|                    | 1     | -1    | 0     | 1     | 0     | 4  |
|                    | -1    | 1     | 0     | 0     | 1     | 4  |

Sempre os coeficientes das variáveis de folga (no inicio do quadro) são nulas.



De forma que  $c_N^T = 0$ .



Ainda, a submatriz composta pelas colunas das variáveis de folga no inicio do Simplex também sempre será a **identidade** (I) (no Simplex Fase I será a matriz das var. artificiais).

Ou seja, no caso das variáveis de folga:

- 1.  $\mathbf{c}_{N}^{T} = 0$
- 2. **N**=**I**

Ou seja, no caso das variáveis de folga:

- 1.  $\mathbf{c}_{N}^{T} = 0$
- 2. **N**=**I**

O que faz o termo ficar:

$$\underbrace{\mathbf{c}_N^T}_0 - \mathbf{c}_B^T \mathbf{B}^{-1} \underbrace{\mathbf{N}}_I = -\mathbf{c}_B^T \mathbf{B}^{-1} = -\pi^T$$

Ou seja, no caso das variáveis de folga:

- 1.  $\mathbf{c}_{N}^{T} = 0$
- 2. **N**=**I**

O que faz o termo ficar:

$$\underbrace{\mathbf{c}_N^T}_0 - \mathbf{c}_B^T \mathbf{B}^{-1} \underbrace{\mathbf{N}}_I = -\mathbf{c}_B^T \mathbf{B}^{-1} = -\pi^T$$

Que é exatamente o negativo da expressão que encontramos para o problema dual:

$$\pi^T = \mathbf{c}_B^T \mathbf{B}^{-1}$$

(lembre do negativo)!

Retomando o caminho da conclusão

$$\begin{aligned} \max \mathbf{v} &= \pi^T \mathbf{b} \\ &\mathbf{B}^T \pi \leq \mathbf{c}_B \\ &\mathbf{N}^T \pi \leq \mathbf{c}_N \\ &\pi \text{ irrestrito} \end{aligned}$$

Partimos da definição do problema dual, considerando os termos separados em básicos e não básicos.

Retomando o caminho da conclusão



Com isso chegamos a uma expressão para a solução dual em função de parâmetros do primal.

Retomando o caminho da conclusão



Percebemos que a expressão da solução dual está contida na própria tabela genérica do Simplex.

Retomando o caminho da conclusão



E que ao considerarmos somente os termos acima da matriz identidade inicial, os custos atualizados na funcão objetivo são **exatamente iguais ao negativo da solução dual**.

#### Conclusão

Os termos da função objetivo referentes a matriz identidade inicial (ou variáveis de folga ou artificiais), representam o negativo da solução do problema dual, de forma que ao resolvermos o primal pela tabela Simplex, automáticamente encontramos também a solução do dual (o seu negativo!).

#### Conclusão

Os termos da função objetivo referentes a matriz identidade inicial (ou variáveis de folga ou artificiais), representam o negativo da solução do problema dual, de forma que ao resolvermos o primal pela tabela Simplex, automáticamente encontramos também a solução do dual (o seu negativo!).

### Atenção

Como no caso da inversa, os valores duais estão acima da matriz identidade original. Se usarmos variáveis artificiais e quisermos coletar o valor dual:

- 1. Não remover as colunas artificiais ao final da fase I.
- 2. Ao resubstituir a função objetivo original, inicializar os coef. das variáveis artificiais = 0 (não usar esse valores como variáveis para entrar na base).
- 3. No final da otimização, os valores duais são os coef. das variáveis artificiais.

Exemplo

Exemplo

### Considere o seguinte par primal-dual de PLs:

$$\max z = x_1 + 2x_2$$
 
$$x_1 + x_2 \le 6$$
 
$$x_1 - x_2 \le 4$$
 
$$-x_1 + x_2 \le 4$$
 
$$x_1, x_2 \ge 0$$

$$\min \ v = 6\pi_1 + 4\pi_2 + 4\pi_3$$
 
$$\pi_1 + \pi_2 - \pi_3 \ge 1$$
 
$$\pi_1 - \pi_2 + \pi_3 \ge 2$$
 
$$\pi_1, \pi_2 \ge 0$$

Exemplo

|                    | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | -z |                    | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | -z |
|--------------------|-------|-------|-------|-------|-------|----|--------------------|-------|-------|-------|-------|-------|----|
| $\overline{ m VB}$ | -1    | -2    | 0     | 0     | 0     | 0  | $\overline{ m VB}$ | 0     | 0     | 3/2   | 0     | 1/2   | 11 |
|                    | 1     | 1     | 1     | 0     | 0     | 6  | $x_1$              | 1     | 0     | 1/2   | 0     | -1/2  | 1  |
|                    | 1     | -1    | 0     | 1     | 0     | 4  | $x_4$              | 0     | 0     | 0     | 1     | 1     | 8  |
|                    | -1    | 1     | 0     | 0     | 1     | 4  | $x_2$              | 0     | 1     | 1/2   | 0     | 1/2   | 5  |

O quadro inicial e o quadro ótimo para o problema primal são mostrados acima.

Exemplo

|                          | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | -z |                    | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | -Z |
|--------------------------|-------|-------|-------|-------|-------|----|--------------------|-------|-------|-------|-------|-------|----|
| $\overline{\mathrm{VB}}$ | -1    | -2    | 0     | 0     | 0     | 0  | $\overline{ m VB}$ | 0     | 0     | 3/2   | 0     | 1/2   | 11 |
|                          |       |       |       |       |       |    |                    |       |       |       |       | -1/2  |    |
|                          | 1     | -1    | O     | 1     | 0     | 4  | $x_4$              | 0     | 0     | 0     | 1     | 1     | 8  |
|                          | -1    | 1     | 0     | 0     | 1     | 4  | $x_2$              | 0     | 1     | 1/2   | 0     | 1/2   | 5  |

Verificando os elementos acima da identidade no quadro inicial.

Exemplo

|                          | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | -z |                          | $x_1$ | a |
|--------------------------|-------|-------|-------|-------|-------|----|--------------------------|-------|---|
| $\overline{\mathrm{VB}}$ | -1    | -2    | 0     | 0     | 0     | 0  | $\overline{\mathrm{VB}}$ | 0     | ( |
|                          | 1     | 1     | 1     | 0     | 0     | 6  | $x_1$                    | 1     | ( |
|                          | 1     | -1    | 0     | 1     | O     | 4  | $x_4$                    | 0     | ( |
|                          | -1    | 1     | 0     | 0     | 1     | 4  | $x_2$                    | 0     | 1 |

|                    |       |       | ν 1   | 772   | 713   |    |
|--------------------|-------|-------|-------|-------|-------|----|
|                    | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | -Z |
| $\overline{ m VB}$ | 0     | 0     | 3/2   | 0     | 1/2   | 11 |
| $x_1$              | 1     | 0     | 1/2   | 0     | -1/2  | 1  |
| $x_4$              | 0     | 0     | 0     | 1     | 1     | 8  |
| $x_2$              | 0     | 1     | 1/2   | 0     | 1/2   | 5  |

 $-\pi_1$   $-\pi_2$   $-\pi_2$ 

Sabemos que na otimalidade eles são o negativo da solução dual, ou seja,  $-\pi$ .

Exemplo

Lembrando que para deixar o problema na forma padrão fizemos

$$\max z = -\min z$$

Assim, temos que, para voltar à função original, multiplicamos os termos novamente por -1, o que gera:

1. 
$$-\pi_1 = -3/2 \rightarrow \pi_1 = 3/2$$

2. 
$$-\pi_2 = -0 \rightarrow \pi_2 = 0$$

3. 
$$-\pi_3 = -1/2 \rightarrow \pi_3 = 1/2$$

#### Exemplo

Substituindo as soluções primal-dual  $x^T=(x_1,x_2)=(1,5)$  e  $\pi^T=(\pi_1,\pi_2,\pi_3)=(1.5,0,0.5)$  nos modelos, temos:

$$\max z = x_1 + 2x_2$$
 
$$x_1 + x_2 \le 6$$
 
$$x_1 - x_2 \le 4$$
 
$$-x_1 + x_2 \le 4$$
 
$$x_1, x_2 \ge 0$$

$$\begin{aligned} \min \, v &= 6\pi_1 + 4\pi_2 + 4\pi_3 \\ \pi_1 + \pi_2 - \pi_3 &\geq 1 \\ \pi_1 - \pi_2 + \pi_3 &\geq 2 \\ \pi_1, \pi_2 &\geq 0 \end{aligned}$$

#### Exemplo

Substituindo as soluções primal-dual  $x^T=(x_1,x_2)=(1,5)$  e  $\pi^T=(\pi_1,\pi_2,\pi_3)=(1.5,0,0.5)$  nos modelos, temos:

$$\max z = 1 + 2 \cdot 5 \Rightarrow 11$$

$$1 + 5 \le 6 \Rightarrow 6 \le 6$$

$$1 - 5 \le 4 \Rightarrow -4 \le 4$$

$$-1 + 5 \le 4 \Rightarrow 4 \le 4$$

$$x_1, x_2 \ge 0$$

$$\begin{aligned} \min \, v &= 6 \cdot 1.5 + 4 \cdot 0 + 4 \cdot 0.5 \Rightarrow 11 \\ 1.5 + 0 - 0.5 &\geq 1 \Rightarrow 1 \geq 1 \\ 1.5 - 0 + 0.5 &\geq 2 \Rightarrow 2 \geq 2 \\ \pi_1, \pi_2 &\geq 0 \end{aligned}$$

# Solução dual pelo quadro primal

#### Exemplo

Vemos que todas as restrições são satisfeitas, e z=v, o que, pelo teorema fraco da dualidade garante que as soluções x e  $\pi$  são ótimas para seus respectivos problemas.

$$\begin{aligned} \max z &= 1 + 2 \cdot 5 \Rightarrow 11 \checkmark \\ 1 + 5 &\leq 6 \Rightarrow 6 \leq 6 \checkmark \\ 1 - 5 &\leq 4 \Rightarrow -4 \leq 4 \checkmark \\ -1 + 5 &\leq 4 \Rightarrow 4 \leq 4 \checkmark \\ x_1, x_2 &\geq 0 \end{aligned}$$

$$\begin{aligned} \min \, v &= 6 \cdot 1.5 + 4 \cdot 0 + 4 \cdot 0.5 \Rightarrow 11 \checkmark \\ 1.5 + 0 - 0.5 &\geq 1 \Rightarrow 1 \geq 1 \checkmark \\ 1.5 - 0 + 0.5 &\geq 2 \Rightarrow 2 \geq 2 \checkmark \\ \pi_1, \pi_2 &\geq 0 \end{aligned}$$

# **Objetivos**

#### Ferramentas e objetivos



Agora que sabemos que no quadro Simplex, além de obtermos a solução a partir de uma base **B**, obtemos também uma solução para o problema dual. No entanto, só analisamos a solução já considerando a **base ótima** (último quadro), **mas não sabemos o que ocorre com a solução dual nas iterações intermediárias do algoritmo**. Seja novamente o par primal-dual:

Agora que sabemos que no quadro Simplex, além de obtermos a solução a partir de uma base **B**, obtemos também uma solução para o problema dual. No entanto, só analisamos a solução já considerando a **base ótima** (último quadro), **mas não sabemos o que ocorre com a solução dual nas iterações intermediárias do algoritmo**. Seja novamente o par primal-dual:

$$\max z = x_1 + 2x_2$$

$$x_1 + x_2 \le 6$$

$$x_1 - x_2 \le 4$$

$$-x_1 + x_2 \le 4$$

$$x_1, x_2 \ge 0$$

$$\begin{aligned} \min \, v &= 6\pi_1 + 4\pi_2 + 4\pi_3 \\ \pi_1 + \pi_2 - \pi_3 &\geq 1 \\ \pi_1 - \pi_2 + \pi_3 &\geq 2 \\ \pi_1, \pi_2 &\geq 0 \end{aligned}$$

Podemos analisar a cada iteração do Simplex, o que ocorre com a solução dual.

|       | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | -z |
|-------|-------|-------|-------|-------|-------|----|
| VB    | -1    | -2    | 0     | 0     | 0     | 0  |
| $x_3$ | 1     | 1     | 1     | 0     | 0     | 6  |
| $x_4$ | 1     | -1    | 0     | 1     | 0     | 4  |
| $x_5$ | -1    | 1     | 0     | 0     | 1     | 4  |

$$\begin{aligned} \min \, v &= 6\pi_1 + 4\pi_2 + 4\pi_3 \\ \pi_1 + \pi_2 - \pi_3 &\geq 1 \\ \pi_1 - \pi_2 + \pi_3 &\geq 2 \\ \pi_1, \pi_2 &\geq 0 \end{aligned}$$

Na primeira iteração, a solução dual é factível?

Solução atual  $\pi^T=(0,0,0)$ 

|       | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | -Z |
|-------|-------|-------|-------|-------|-------|----|
| VB    | -1    | -2    | 0     | 0     | 0     | 0  |
| $x_3$ | 1     | 1     | 1     | 0     | 0     | 6  |
| $x_4$ | 1     | -1    | 0     | 1     | 0     | 4  |
| $x_5$ | -1    | 1     | 0     | 0     | 1     | 4  |

Não, nenhuma restrição dual é satisfeita.

$$\begin{aligned} \min \, v &= 6 \cdot 0 + 4 \cdot 0 + 4 \cdot 0 \Rightarrow 0 \\ 0 + 0 - 0 &\geq 1 \Rightarrow 0 \geq 1 \text{ $\chi$} \\ 0 - 0 + 0 &\geq 2 \Rightarrow 0 \geq 2 \text{ $\chi$} \\ \pi_1, \pi_2 &\geq 0 \end{aligned}$$

Solução atual  $\pi^T=(0,0,2)$ 

|       | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | -z |
|-------|-------|-------|-------|-------|-------|----|
| VB    | -3    | 0     | 0     | 0     | 2     | 8  |
| $x_3$ | 2     | 0     | 1     | 0     | -1    | 2  |
| $x_4$ | 0     | 0     | 0     | 1     | 1     | 8  |
| $x_2$ | -1    | 1     | 0     | 0     | 1     | 4  |

$$\begin{aligned} \min \, v &= 6 \cdot 0 + 4 \cdot 0 + 4 \cdot 2 \Rightarrow 8 \\ 0 + 0 - 2 &\geq 1 \Rightarrow -2 \geq 1 \, \\ 0 - 0 + 2 &\geq 2 \Rightarrow 2 \geq 2 \\ \pi_1, \pi_2 &\geq 0 \end{aligned}$$

Na segunda iteração a solução ainda é dual infactível, porém uma restrição é satisfeita.

Solução atual  $\pi^T = (1.5, 0, 0.5)$ 

|       | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | -z |
|-------|-------|-------|-------|-------|-------|----|
| VB    | 0     | 0     | 3/2   | 0     | 1/2   | 11 |
| $x_1$ | 1     | 0     | 1/2   | 0     | -1/2  | 1  |
| $x_4$ | 0     | 0     | 0     | 1     | 1     | 8  |
| $x_2$ | 0     | 1     | 1/2   | 0     | 1 /2  | 5  |

$$\begin{aligned} \min \, v &= 6 \cdot 1.5 + 4 \cdot 0 + 4 \cdot 0.5 \Rightarrow 11 \checkmark \\ 1.5 + 0 - 0.5 &\geq 1 \Rightarrow 1 \geq 1 \checkmark \\ 1.5 - 0 + 0.5 &\geq 2 \Rightarrow 2 \geq 2 \checkmark \\ \pi_1, \pi_2 &\geq 0 \end{aligned}$$

Somente na última iteração (ou seja, na otimalidade primal) a solução dual é factível.

Percebemos que para cada solução básica factível do primal, a solução correspondente do dual é infactível (exceto na otimalidade primal). Mas **por quê isso ocorre**? Para entender temos que recorrer novamente à tabela genérica Simplex.

| $\mathbf{x}_B$ | $x_N$                                                                                     | -z                                                                     |
|----------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 0              | $\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$ $\mathbf{B}^{-1} \mathbf{N}$ | $-\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$ |
| 1              | $B^{-1}N$                                                                                 | $B^{-1}b$                                                              |

$$\mathbf{max} \ \mathbf{v} = \pi^T \mathbf{b}$$
  $\mathbf{B}^T \pi \leq \mathbf{c}_B$   $\mathbf{N}^T \pi \leq \mathbf{c}_N$   $\pi$  irrestrito

Considere a tabela genérica, bem como o modelo dual com separação de variáveis básicas e não básicas.

| $\mathbf{x}_B$ | $x_N$                                                                                      | -z                                                                     |
|----------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 0              | $\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} \\ \mathbf{B}^{-1} \mathbf{N}$ | $-\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$ |
| 1              | $B^{-1}N$                                                                                  | $B^{-1}b$                                                              |

$$\begin{aligned} \mathsf{max} \ \mathsf{v} &= \pi^T \mathbf{b} \\ \pi^T &= \mathbf{c}_B^T \mathbf{B}^{-1} \\ \mathbf{N}^T \pi &\leq \mathbf{c}_N \\ \pi \ \text{irrestrito} \end{aligned}$$

Novamente, pelo **teorema das folgas complementares**, as variáveis com valores > 0 no primal implicam variáveis de folga nulas no dual. Ou seja, após a inserção das folgas, sabemos que as restrições referentes a essas variáveis no dual são de igualdade. Multiplicando a primeira inequação pela inversa da base  $(B^{-1})$  e aplicando a transposta:

| $\mathbf{x}_B$ | $x_N$                                                                                     | -z                                                                     |
|----------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 0              | $\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$ $\mathbf{B}^{-1} \mathbf{N}$ | $-\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$ |
| 1              | $\mathbf{B}^{-1}\mathbf{N}$                                                               | $B^{-1}b$                                                              |

$$\mathbf{max} \ \mathbf{v} = \mathbf{\pi}^T \mathbf{b}$$
  $\mathbf{\pi}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$   $\mathbf{N}^T \mathbf{\pi} \leq \mathbf{c}_N$   $\pi$  irrestrito

Aplicando a transposta em ambos os lados da inequação (conjunto de restrições 2), e movendo o termo  $(\pi^T \mathbf{N})$  para a direita.

| $\mathbf{x}_B$ | $x_N$                                                                                     | -z                                                                     |
|----------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 0              | $\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$ $\mathbf{B}^{-1} \mathbf{N}$ | $-\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$ |
| 1              | $B^{-1}N$                                                                                 | $B^{-1}b$                                                              |

$$\begin{aligned} \mathbf{max} \ \mathbf{v} &= \boldsymbol{\pi}^T \mathbf{b} \\ \boldsymbol{\pi}^T &= \mathbf{c}_B^T \mathbf{B}^{-1} \\ 0 &\leq \mathbf{c}_N^T - \boldsymbol{\pi}^T \mathbf{N} \\ \boldsymbol{\pi} \ \text{irrestrito} \end{aligned}$$

Agora podemos substituir o valor de  $\pi^T$  encontrado na inequação, gerando:

| $\mathbf{x}_B$ | $x_N$                                                                                      | -z                                                                     |
|----------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 0              | $\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} \\ \mathbf{B}^{-1} \mathbf{N}$ | $-\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$ |
| 1              | $B^{-1}N$                                                                                  | $B^{-1}b$                                                              |

$$\begin{aligned} \max \mathbf{v} &= \pi^T \mathbf{b} \\ &\pi^T = \mathbf{c}_B^T \mathbf{B}^{-1} \\ &0 \leq \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} \\ &\pi \text{ irrestrito} \end{aligned}$$

| $\mathbf{x}_B$ | $x_N$                                                                                     | -z                                                                     |
|----------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 0              | $\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$ $\mathbf{B}^{-1} \mathbf{N}$ | $-\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$ |
| ı              | $B^{-1}N$                                                                                 | $ar{B}^{-1}b$                                                          |

$$\begin{aligned} \max \mathbf{v} &= \pi^T \mathbf{b} \\ &\pi^T = \mathbf{c}_B^T \mathbf{B}^{-1} \\ &0 \leq \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} \\ &\pi \text{ irrestrito} \end{aligned}$$

Note que o termo que define a restrição de factibilidade do dual, é exatamente o mesmo que define os custos na função objetivo da tabela Simplex referentes às variáveis não básicas.

Assim, sabemos que quando a inequação

$$0 \le \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$$

for satisfeita no quadro Simplex, a solução do dual será factível. Acontece que esse termo define o **custo atualizado** das variáveis não básicas na função objetivo. Sabemos que o critério de parada do método Simplex é justamente quando não existirem mais custos negativos ( $c^T \geq 0$ ) das variáveis não básicas. Ou seja, enquanto:

Assim, sabemos que quando a inequação

$$0 \le \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$$

for satisfeita no quadro Simplex, a solução do dual será factível. Acontece que esse termo define o **custo atualizado** das variáveis não básicas na função objetivo. Sabemos que o critério de parada do método Simplex é justamente quando não existirem mais custos negativos ( $c^T \geq 0$ ) das variáveis não básicas. Ou seja, enquanto:

$$\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} < 0$$

O método continua,

Assim, sabemos que quando a inequação

$$0 \le \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$$

for satisfeita no quadro Simplex, a solução do dual será factível. Acontece que esse termo define o **custo atualizado** das variáveis não básicas na função objetivo. Sabemos que o critério de parada do método Simplex é justamente quando não existirem mais custos negativos ( $c^T \geq 0$ ) das variáveis não básicas. Ou seja, enquanto:

$$\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} < 0$$

O método continua, quando

$$\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} \ge 0$$

Estamos na solução ótima.

# Conclusão

#### Conclusão

O custo das variáveis não básicas na função objetivo é justamente o critério de factibilidade do problema dual. O critério só é atingido quando o a solução ótima do primal é encontrada. Ou seja, no método Simplex, a cada iteração temos uma solução primal factível e dual infactível, somente quando chegamos na otimalidade primal a solução dual é factível (e ótima).



Podemos entender as conclusões que chegamos pensando em grandes áreas da tabela Simplex:



Para verificar a factibilidade **primal**, olhamos para os valores de b.



Para verificar a factibilidade **dual**, olhamos para os valores de c.



Quando ambos os problemas são factíveis, sabemos que estamos no ótimo.

# **Objetivos**

#### Ferramentas e objetivos



### Próximos passos

As três conclusões que chegamos nos possibilitam entender 3 aplicações: o algoritmo **Simplex Revisado** (apresentação disponível no site), a **Análise de sensibilidade** e o algoritmo **Dual-Simplex**.

# **Objetivos**

#### Ferramentas e objetivos

