සියලු ම හිමිකම් ඇවිරිනි / (முழுப் பதிப்புநிமையுடையது / $All\ Rights\ Reserved$)

නව නිර්දේශය/பුනිய பாடத்திட்டம்/New Syllabus

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

රසායන විදනවIIஇரசாயனவியல்IIChemistryII

02 S II

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අ**මතර කියවීම කාලය** - **මිනිත්තු 10** යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

විහාග අංකය :

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුවත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදා ගන්න.

- 💥 ආවර්තිතා වගුවක් 15 වැනි පිටුවෙහි සපයා ඇත.
- * ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * සාර්වතු වායු නියතය, $R = 8.314 \,\mathrm{J} \,\mathrm{K}^{-1} \,\mathrm{mol}^{-1}$
- * ඇවගාඩ්රෝ නියතය, $N_A = 6.022 \times 10^{23} \; \mathrm{mol}^{-1}$
- ※ මෙම පුශ්න පතුයට පිළිතුරු සැපයීමේදී ඇල්කයිල් කාණ්ඩ සංක්ෂිප්ත ආකාරයකින් නිරුපණය කළ හැකි ය.

- A කොටස වපුහගත රචනා (පිටු 02 08)
- * සියලුම පුශ්නවලට මෙම පුශ්න පතුයේම පිළිතුරු සපයන්න.
- * ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බවද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බවද සලකන්න.
 - B කොටස සහ C කොටස රචනා (පිටු 09 14)
- * එක් එක් කොටසින් පුශ්න **දෙක** බැගින් තෝරා ගනිමින් පුශ්න **හතරකට** පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න.
- * සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු A, B සහ C කොටස් තුනට පිළිතුරු, A කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B සහ f C කොටස් **පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුගෝජනය සඳහා පමණි

කොවස	පුශ්න අංකය	ලැබූ ලකුණු
	1	
	2	
A	3	
	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
	එකතුව	

	එකතුව
ඉලක්කමෙන්	
අකුරින්	

සංකේත අංක

උත්තර පතු පරීක්ෂක l	
උත්තර පතු පරීක්ෂක 2	
පරීක්ෂා කළේ :	
අධීක්ෂණය කළේ :	

A කොටස - වපුහගත රචනා

පුශ්න හතරටම මෙම පතුයේම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය 100 කි.)

මෙම තීරයේ කිසිවක් නො ලියන්න

- 1. (a) පහත දැක්වෙන පුශ්නවලට තික් ඉරි මත පිළිතුරු සපයන්න.
 - (i) Na^+, Mg^{2+} සහ F^- යන අයන තුන අතුරෙන්, **කුඩාම** අයනික අරය ඇත්තේ කුමකට ද?
 - (ii) C,N සහ O යන මූලදුවා තුන අතුරෙන්, **වැඩීම** දෙවන අයනීකරණ ශක්තිය ඇත්තේ කුමකට ද?
 - (iii) H_2O , HOCl සහ OF_2 යන සංයෝග තුන අතුරෙන්, **වඩාත්ම** විදයුත් සෘණ ඔක්සිජන් පරමාණුව ඇත්තේ කුමක ද?
 - (iv) Be, C සහ N යන මූලදුවා තුන අතුරෙන්, වායුමය අවස්ථාවේදී පරමාණුවකට ඉලෙක්ටෝනයක් එකතු කළ විට $[Y(g) + e o Y^{\bar{}}(g); Y = Be, C, N]$ ශක්තිය පිටකරනුයේ කුමක් ද?
 - (v) NaF, KF සහ KBr යන අයනික සංයෝග තුන අතුරෙන්, ජලයේ **වැඩීම** දුංවාතාව ඇත්තේ කුමකට ද?
 - (vi) HCHO, $\mathrm{CH_3F}$ සහ $\mathrm{H_2O_2}$ යන සංයෝග තුන අතුරෙන්, **පුවලම** අන්තර්-අණුක බල ඇත්තේ කුමකට ද?

(ලකුණු 24 යි)

(b) (i) $N_2O_3^{2-}$ අයනය සඳහා **වඩාත්ම** පිළිගත හැකි ලුවිස් තිත්-ඉරි වහුනය අඳින්න. එහි සැකිල්ල පහත දක්වා ඇත.

(ii) මෙම අයනය සඳහා තවත් ලුවිස් තිත්-ඉරි වයුහ (සම්පුයුක්ත වයුහ) **තුනක්** අඳින්න. ඉහත (i) හි අඳින ලද වඩාත්ම පිළිගත හැකි වයුහය සමග සංසන්දනය කිරීමේදී ඔබ විසින් අඳින ලද වයුහවල සාපේක්ෂ ස්ථායිතාවයන් සඳහන් කිරීමට එම වයුහ යටින් '**අඩු ස්ථායි**' හෝ '**අස්ථායි**' වශයෙන් ලියා දක්වන්න.

(iii) පහත සඳහන් ලුවිස් තිත්-ඉරි වාුුහය සහ එහි ලේබල් කරන ලද සැකිල්ල පදනම් කරගෙන දී ඇති වගුව සම්පූර්ණ කරන්න.

$$Cl - N^1 - N^2 - C^3 - C^4 - N$$

	N^1	N ²	O^3	C ⁴
පරමාණුව වටා VSEPR යුගල්				
පරමාණුව වටා ඉලෙක්ටෝන යුගල් ජනාමිතිය				
පරමාණුව වටා හැඩය				
පරමාණුවේ මුහුම්කරණය				

• · · · · · · · · · · · · · · · · · · ·	:) 83 (vii)	හත (iii) කොටසෙහි දෙන ලද ලුවිස්	තිත්-රේ වාෘහය මත පදනම් වේ. පර	ණු ලේබල් ්
● කොටස (සිරීඹ (iii)	iv) සට (vii), ඉං) කොටසෙහි ආස	තත් (III) කොටසෙහි දෙවා උද පුමණ කාරයටම වේ.	and go again	
(iv) 8	3තත උක්වෙන -	පරමාණු දෙක අතර σ බන්ධන ස	ාැදීමට සහභාගි වන පරමාණුක/මු	හුම් කාක්ෂික
(11)	ගඳුනාගන්න.			
	I. Cl—N ¹	Cl	N ¹	
	II. N¹—O	N^1	0	
Ι	II. $N^1 - N^2$	$N^1 \ \dots $	N ²	
I	$V. N^2 - O^3$	N^2	O ³	
	V. $O^3 - C^4$	O ³	C ⁴	
•	VI. C ⁴ —N	C ⁴	N	Ì
(v) a	පහත දැක්වෙන ද	පරමාණු දෙක අතර π බන්ධන සෑදීම)ට සහභාගි වන පරමාණුක කාක්ෂික	ා හඳුනාගන්න.
		\mathbf{N}^1	N^2	į
	II. C ⁴ —N	C ⁴	N	
		C ⁴	N	į
(vi)	N^1,N^2,O^3 සහ	${f C}^4$ පරමාණු වටා ආසන්න බන්ධන	කෝණ සඳහන් කරන්න.	
		, N ² ,		
(vii)	N^1, N^2, O^3 జుజ	ා C^4 පරමාණු විදාුුත් සෘණතාව වැඩි වි	වන පිළිවෙළට සකසන්න.	
		< <		(ලකුණු 56 යි)
(c) පහත	සඳහන් තොරස			_
		පරමාණු සංයෝජනය වී σ බන්ධනයෘ - Β ලෙස නිරූපණය කරනු ලැබේ.	ක් සහිත විෂමජාතීය ද්විපරමාණුක A	B අණුව සාදයි.
	II. A වල විර	දාපුත් සෘණතාවය ${f B}$ වල එම අගයට	වඩා අඩු ය $(X_A < X_B)$.	
		වාණුවේ විදායුත් සෘණතාවය		
		ක්වෙන සමීකරණයෙන් ${f AB}$ අණු	වේ ${f A}$ සහ ${f B}$ පරමාණු අතර අෘ	න්තර්-නාාෂ්ටක
		_B) ලබා ඉද්.		
		$r_A + r_B - c(X_B - X_A)$		
		ාණුක අරය; c = 9 pm	2 (1 10-12)	
		සහ r පිකෝමීටරවලින් (pm) මනිනු		
		තුරු පදනම් කරගෙන පහත දැක්ණ		•
(i)	A සහ B අතර	σ බන්ධන වර්ගය හඳුනාගැනීමට σ	යොදාගන්නා නම් කුමක් ද?	
	•••••			
(ii)	AB අණුවෙහි	භාගික ආරෝපණ (δ+ සහ δ–) ස්ථ	වානගත වී ඇත්තේ කෙසේදැයි මපි	නනුම කරනන.
(iii)	AB අණුවේ ද්වි කරන්න.	විධුැව ඝූර්ණය (μ) ගණනය කිරීමට භ	හාවිත කරන සමීකරණය ලියා එහි	දශාව පෙන් නුම්

(i	IV) පහත දැ පුතිශතය	ක්වේද ගණ:	න දත්ත උපයෝගී නය කරන්න.		4 % - 11 1 % - 0.0	අගවාක සට	92
	H ₂ වල අ	අන්තර්	ර-නාෂ්ටික දුර $\left(extbf{d}_{ extbf{H-J}} ight)$	$_{\rm H}$)= 74 pm	F වල විදයුත් ඍණතාවය	= 4.0	
	F_2 වල අ	‡න්තර්	-නාෂ්ටික දුර $(\mathbf{d}_{ extbf{F-F}})$	= 144 pm	HFවල ද්විධුැව ඝූර්ණය	$= 6.0 \times 10$	⁻³⁰ C m
			සෘණතාවය		ඉලෙක්ටුෝනයක ආරෝපණ		0 ⁻¹⁹ C
20) ට අඩු ය. A	. සීමිත	් ජලය පුමාණයක් ස)ලදුවාාවල ක්ෙ ාහ B, C සහ l	ලා්රයිඩ වේ. මෙම මූලදුවාවල D වැඩිපුර ජලය සමග පුතිකිය	ි පරමාණුක _ව	මු 20 යි) කුමාංක බාදෙන
20) ට අඩු ය. A ලවල (P ₁ – P	. සීමිත	<i>p-</i> ගොනුවට අයත් මූ ජලය පුමාණයක් ස ්තර පහත දී ඇත.	සහ B, C සහ 1	D වැඩිපුර ජලය සමග පුතිකිු	ි පරමාණුක _ව	§ 20 යි) කුමාංක
20) ට අඩු ය. A	. සීමිත ඉ) විස්	ජලය පුමාණයක් ස කර පහත දී ඇත.	හ B, C සහ l ඵලව ල	D වැඩිපුර ජලය සමග පුතිකිුං ල විස්තර	ි පරමාණුක _ව	§ 20 යි) කුමාංක
20) ට අඩු ය. A ලවල (P ₁ – P	. සීමිත ලා විස් P ₁	ජලය පුමාණයක් ස කර පහත දී ඇත. ජාල සහසංයුජ වුහු	හන B , C සහ l ඵලව හයක් ඇති සං	D වැඩිපුර ජලය සමග පුතිකිුං ල විස්තර	ි පරමාණුක _ව	§ 20 යි) කුමාංක
20	ට අඩු ය. A ලවල (P ₁ – P ₁ සංයෝගය A	ලීම ත ලා විස් P ₁ P ₂	ජලය පුමාණයක් ස තර පහත දී ඇත. ජාල සහසංයුජ වුපුෘ පුබල ඒකභාස්මික අ	හ B, C සහ l එළවු හයක් ඇති සං අම්ලයක්	D වැඩිපුර ජලය සමග පුතිකිුං ල විස්තර යෝගයක්	ි පරමාණුක _ව	§ 20 යි) කුමාංක
20) ට අඩු ය. A ලුවල (P ₁ – P	සීමිත ල) විස් P ₁ P ₂ P ₃	ජලය පුමාණයක් ස කර පහත දී ඇත. ජාල සහසංයුජ වුහු	හන B , C සහ l එලවැ හයක් ඇති සං අම්ලයක් ත්වන වායුවක්	D වැඩිපුර ජලය සමග පුතිකිුං ල විස්තර යෝගයක්	ි පරමාණුක _ව	§ 20 යි) කුමාංක
20	ව අඩු ය. A ලවල (P ₁ – P ₁ සංයෝගය A B	සීමිත 9) විස් P ₁ P ₂ P ₃ P ₄	ජලය පුමාණයක් ස කර පහත දී ඇත. ජාල සහසංයුජ වුපු පුබල ඒකභාස්මික ර රතු ලිටීමස් නිල් ගැ	එලව හයක් ඇති සං අම්ලයක් න්වන වායුවක්	D වැඩිපුර ජලය සමග පුතිකිුං ල විස්තර යෝගයක්	ි පරමාණුක _ව	§ 20 යි) කුමාංක
20	ට අඩු ය. A ලවල (P ₁ – P ₁ සංයෝගය A	සීමිත P ₉) විස් P ₁ P ₂ P ₃ P ₄	ජලය පුමාණයක් ස තර පහත දී ඇත. ජාල සහසංයුජ වුපුෘ පුබල ඒකභාස්මික අ රතු ලිටීමස් නිල් ගෘ විරංජන ලක්ෂණ ස	එලව හයක් ඇති සං අම්ලයක් ත්වන වායුවක් හිත සංලයාගය	D වැඩිපුර ජලය සමග පුතිකිුං ල විස්තර යෝගයක්	ි පරමාණුක _ව	§ 20 යි) කුමාංක
20	ව අඩු ය. A ලවල (P ₁ – P ₁ සංයෝගය A B	ළීම්ත 9) විස් P ₁ P ₂ P ₃ P ₄ P ₅ P ₆ P ₇	ජලය පුමාණයක් ස තර පහත දී ඇත. ජාල සහසංයුජ වනු පුබල ඒකභාස්මික ශ රතු ලිටීමස් නිල් ගෘ විරංජන ලක්ෂණ ස තිුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි	එළව හයක් ඇති සං අම්ලයක් ත්වත වායුවක් හිත සංයෝගය ශ් අම්ලයක්	D වැඩිපුර ජලය සමග පුතිකිුං ල විස්තර යෝගයක් යක්	ි පරමාණුක _ව	§ 20 යි) කුමාංක
20 එල්	ට අඩු ය. A ලවල (P ₁ – P සංයෝගය A B C D	ල් සීම්ත ඉ) විස් P ₁ P ₂ P ₃ P ₄ P ₅ P ₆ P ₇ P ₈ P ₉	ජලය පුමාණයක් ස තර පහත දී ඇත. ජාල සහසංයුජ වනු පුබල ඒකභාස්මික ශ රතු ලිටීමස් නිල් ගෘ විරංජන ලක්ෂණ ස නිහාස්මික අම්ලයක් පුබල ඒකභාස්මික ශ ආමලික KMnO ₄ දුය කලිල ඝනයක් පුබල ඒකභාස්මික ශ	එලව හයක් ඇති සං අම්ලයක් න්වන වායුවක් හිත සංයෝගය ශ් අම්ලයක් වෙණයක් අවර්	D වැඩිපුර ජලය සමග පුතිකිුග ල විස්තර යෝගයක් කක් ණ කරන වායුවක්	ල පරමාණුක ද යා කළවිට ලබ	§ 20 යි) කුමාංක
20 එල් (i	ට අඩු ය. A ලවල (P ₁ – P ₁ සංයෝගය A B C D	ළුම්ත P ₉) විස් P ₂ P ₃ P ₄ P ₅ P ₆ P ₇ P ₈ P ₉	ජලය පුමාණයක් ස තර පහත දී ඇත. ජාල සහසංයුජ වුපුෘ පුබල ඒකභාස්මික ද රතු ලිටීමස් නිල් ගෘ විරංජන ලක්ෂණ ස තිහාස්මික අම්ලයක් පුබල ඒකභාස්මික ද ආම්ලික KMnO ₄ දුය කලිල ඝනයක් පුබල ඒකභාස්මික ද හඳුනාගන්න (රසාය	වෙන B, C සහ ව එලව හයක් ඇති සං අම්ලයක් න්වන වායුවක් න්වත සංයෝගය ශ්රීත සංයෝගය අම්ලයක් වෙණයක් අවර්	D වැඩිපුර ජලය සමග පුතිකිුග ල විස්තර යෝගයක් කක් ණ කරන වායුවක්	ල පරමාණුක ද යා කළවිට ලබ	දු 20 යි) කුමාංක බාදෙන
20 එල් (i	ට අඩු ය. A ලවල (P ₁ – P ₁ සංයෝගය A B C D	ළුම්ත P ₉) විස් P ₂ P ₃ P ₄ P ₅ P ₆ P ₇ P ₈ P ₉	ජලය පුමාණයක් ස තර පහත දී ඇත. ජාල සහසංයුජ වුපුෘ පුබල ඒකභාස්මික ද රතු ලිටීමස් නිල් ගෘ විරංජන ලක්ෂණ ස තිහාස්මික අම්ලයක් පුබල ඒකභාස්මික ද ආම්ලික KMnO ₄ දුය කලිල ඝනයක් පුබල ඒකභාස්මික ද හඳුනාගන්න (රසාය	වෙන B, C සහ ව එලව හයක් ඇති සං අම්ලයක් න්වන වායුවක් න්වත සංයෝගය ශ්රීත සංයෝගය අම්ලයක් වෙණයක් අවර්	 ව වැඩිපුර ජලය සමග පුතිකිුංග ම විස්තර යෝගයක් ණ කරන වායුවක් ත්න). D: 	ල පරමාණුක ද යා කළවිට ලබ	දු 20 යි) කුමාංක බාදෙන

	(iii) පහත	සඳහන්	් පුතිකිුයා සඳහා තුලි	දිත රසායනික සමීකරණ ලියන්න.		මෙම තීරයේ කිසිවක් නො ලියන්න
	I. :	P ₁ සම	စ NaOH(aq)			Ç.
	II.	 P ₃ සම	യ Mg			
	III.		ග ආම්ලික K ₂ Cr ₂ O.	7		
		• • • • • • •			(ලකුණු 50 යි)	
	(b) $Al_2(SO_4)_2$,	H ₂ SO	A, Na ₂ S ₂ O ₂ , BaCl ₂	,, Pb(Ac) ₂ සහ KOH වල ජලීය දාවණ අඩංගු P, C		
	(පිළිවෙළින් ෙ	නාවේ)	ලෙස ලේබල් කර අ	ැති බෝතල්, ශිෂායෙකුට ලබා දෙන ලදී. ඒවා හ	ඳුනාගැනීම සඳහා	
	වරකට දුාව (Ac - ඇසිෙෙ	•	_	වන් ලැබුණු සමහර පුයෝජනවත් නිරීක්ෂණ පහත) දකථා ඇත.	
			මිශු කළ දුාවණ	නිරීක්ෂණ	7	
	·	I	T + R	පැහැදිලි අවර්ණ දුාවණයක්	-	
		II	P+R	සුදු අවක්ෂේපයක්		
		III	T + S	සුදු ජෙලටිනීය අවක්ෂේපයක්		
		IV	U + R	සුදු අවක්ෂේපයක්		
		V	P+Q	සුදු අවක්ෂේපයක්, රත් කළවිට කළුපැහැ ගනී		
		VI	P + U	සුදු අවක්ෂේපයක්, රත් කළවිට දුවණය වේ		
	(i) P සිට	U හඳු	තාගත්ත.			
	P:		•••••	Q: R:		
	S :	• • • • • • •		T: U:		
	(ii) ඉහත	[සිට '	VI දක්වා ඇති එක් ස	එක් පුතිකිුයාව සඳහා තුලිත රසායනික සමීකරණ	දෙන්න.	
	I:		•••••			
	II:				·····	
	III:		•••••			
	IV:					
	V:	සුදු අව	ටක්ෂේපය සෑදීම:			
			-			()
	VI:					100
		(සැ.යු. :	අවක්ෂේප 🌡 යනුණ		(ලකුණු 50 යි)	100
3 .	1.0 dm³ තුළ	E AB ₂	(s) වැඩිපුර පුමාණය	නම් ලවණයෙහි සංතෘප්ත ජලීය දුාවණයක්, 25 ⁰ ර ක් මන්ථනය කිරීමෙන් සාදන ලදී. මෙම සංතෘප්ස 10 ^{–3} mol බව සොයා ගන්නා ලදී.		
	(i) 25 °C	දී ඉහස	ා පද්ධතියේ $\mathrm{AB}_2(\mathrm{s})$	හි දුාවාහතාව හා සම්බන්ධ සමතුලිතය ලියා දක්වන්	ත.	
	 (ii) 25 °C	දී ඉහත	o (i) හි ලියන ලද ස®	 මතුලිතතාවයේ සමතුලිතතා නියතය සඳහා පුකාශන		
	•••••	•••••				

	(iii)	25 °C දී ඉහත (ii) හි සඳහන් කළ සමතුලිතතා නියතයේ අගය ගණනය කරන්න.	කිරි කිසි නො
	(iv)	AB_2 හි වෙනත් සංතෘප්ත ජලීය දුාවණයක්, $25~^{\circ}\mathrm{C}$ දී ආසුැත ජලය $2.0~\mathrm{dm}^3$ තුළ $AB_2(\mathrm{s})$ වැඩිපුර	
	(17)	පුමාණයක් මන්ථනය කිරීමෙන් සාදා ගන්නා ලදී. මෙම පද්ධතිය සඳහා සමතුලිතතා නියතයේ අගය	
		හේතු දක්වමින් පුරෝකථනය කරන්න.	
	(v)	$25~^{\circ}\mathrm{C}$ හි පවතින AB_2 හි ජලීය සංකෘප්ත දුාවණයකට $\mathrm{NaB}(\mathrm{s})$ නැමැති පුබල විදයුත් විච්ඡේදකයක ස්වල්ප පුමාණයක් එකතු කරන ලදී. $\mathrm{A}^{2+}(\mathrm{aq})$ වල සාන්දුණය වැඩිවේ ද, අඩුවේ ද යන වග හේතු	
		දක්වමින් පුරෝකථනය කරන්න.	
		(om < 60 2)	
<i>(1</i> -)		(ලකුණු 60 යි) _{3 දාවණයකදී පොපනොයික් අම්ලය (C₂H₅COOH) පහත දැක්වෙන ආකාරයට අයනීකරණය වේ.}	
(<i>b</i>)) පලං	$C_2H_5COOH(aq) + H_2O(l) \Rightarrow C_2H_5COO^-(aq) + H_3O^+(aq)$	
		$C_2 \Pi_5$ COON(aq) + Π_2 O(t) ← $C_2 \Pi_5$ COO (aq) + Π_3 O (aq) = 25 °C දී K_a (ලෙපාපනොයික් අම්ලය) = 1.0×10^{-5} වේ.	
	(i)	$25~{}^{\circ}\mathrm{C}$ දී ඉහත පුතිකිුයාවේ සමතුලිතතා නියතය සඳහා පුකාශනය ලියා දක්වන්න.	
	(1)		
		$25^{\circ}\mathrm{C}$ දී $\mathrm{C_2H_5COOH}$ වලින් $0.74\mathrm{cm^3}$ ආසුැත ජලයේ දවණය කිරීමෙන් $\mathrm{C_2H_5COOH}$ හි $100.0\mathrm{cm^3}$ ක	
	(11)	25 °C & C ₂ H ₅ COOH 263 0.74 cm² quagus 2666 g2666 g2666 nH eng negative 2012	
		ජලීය දාවණයක් සාදාගන්නා ලදී. 25 °C දී මෙම දාවණයේ pH අගය ගණනය කරන්න.	
		(C = 12; O = 16; H = 1; C2H5COOH වල ඝනත්වය 1.0 g cm-3 ලෙස සලකන්න.)	

100

අම ම
තීරයේ
කිසිවක්
නො ලියන්න

4. (a) ${\bf A}$, ${\bf B}$, ${\bf C}$ සහ ${\bf D}$ යනු අණුක සූතුය ${\bf C}_6{\bf H}_{10}$ සහිත ව්යුහ සමාවයවික වේ. මේවායින් එකක්වත් පුකාශ සමාවයවිකතාවය නොපෙන්වයි. ${\bf A}$, ${\bf B}$, ${\bf C}$ සහ ${\bf D}$ යන සමාවයවික හතරම, ${\rm HgSO_4}/$ තනුක ${\rm H_2SO_4}$ සමග පිරියම් කළවිට ලබාදෙන ඵල 2,4-ඩයිනයිටුොෆෙනිල්හයිඩුසීන් (2,4-DNP) සමග පුතිකියා කර වර්ණවත් අවක්ෂේප ලබා දෙයි.

ඇමෝනීකෘත $AgNO_3$ සමග A පමණක් අවක්ෂේපයක් ලබා දෙයි. A සඳහා එක් ස්ථාන සමාවයවිකයක් පමණක් ඇති අතර, එය B වේ. B යනු C හි දාම සමාවයවිකයක් වේ. C, $HgSO_4$ / තනුක H_2SO_4 සමග පුතිකිුයා කර E සහ F ඵල දෙක ලබා දෙයි. D, $HgSO_4$ / තනුක H_2SO_4 සමග පුතිකිුයා කර, එක් ඵලයක් පමණක් ලබාදෙන අතර, එය E වේ.

(i) ${f A},{f B},{f C},{f D},{f E}$ සහ ${f F}$ වල වනුහයන් පහත දී ඇති කොටු තුළ අඳින්න.

 $(ii)~{
m H_2}/{
m Pd ext{-BaSO}_4}$ / ක්විනොලීන් සමග ${
m A,B,C}$ සහ ${
m D}$ සංයෝග වෙන වෙනම පුතිකිුයා කළවිට, කුමන සංයෝගය පාරතිුමාන සමාවයවිකතාවය නොපෙන්වන ඵලයක් ලබාදෙන්නේ ද?

(iii) f A වැඩිපුර f HBr සමග පුතිකිුයා කර ලබාදෙන f G ඵලයේ වපුහය පහත දී ඇති කොටුව තුළ අඳින්න.

(iv) ${f E}$ පහත දී ඇති පුතිකිුිිියාවලදී ලබාදෙන ${f X}$ සහ ${f Y}$ එලවල වසුහ අදාළ කොටු තුළ අදිත්න.

old X සහ old Y එකිනෙකින් වෙන් කර හඳුනාගැනීමට පරීක්ෂාවක් නම් කරන්න.

(ලකුණු 60 යි.)

(b) (i) දී ඇති කොටු තුළ ${f K}, {f L}$ සහ ${f M}$ සංයෝගවල වාුහ ඇඳීමෙන් සහ ${f P}, {f Q}$ සහ ${f R}$ පුතිකාරක/උත්පේුරක දෙමින් පහත දී ඇති පුතිකිුයා අනුකුම තුන සම්පූර්ණ කරන්න.

මෙම තීරයේ කිසිවක් නො ලියන්න

(ii) පුතිකිුයා I - VI අතුරෙන් තෝරාගනිමින් පහත දක්වා ඇති එක් පුතිකිුයා වර්ගය සඳහා **එක් (01)** නිදසුනක් බැගින් දෙන්න.

නියුක්ලියෝෆිලික ආකලනය

නියුක්ලියෝෆිලික ආදේශය(ලකුණු 10 යි)

100

නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

රසායන විදූනාව II

இரசாயனவியல் II Chemistry II

* සාර්වනු වායු නියතය $R=8.314~{
m J~K}^{-1}_{
m mol}^{-1}$ * ඇවගාඩ්රෝ නියතය $N_A=6.022~{
m x~10}^{23}_{
m mol}^{-1}$

B කොටස — රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 150** බැගින් ලැබේ.)

5. (a) $\mathrm{XY}_2\mathrm{Z}_2(\mathrm{g})$ නමැති සංයෝගය $300~\mathrm{K}$ ට වඩා ඉහළ උෂ්ණත්වවලට රත්කළ විට පහත පරිදි වියෝජනය වේ.

$$XY_2Z_2(g) \stackrel{\Delta}{\rightleftharpoons} XY_2(g) + Z_2(g)$$

 $XY_2Z_2(g)$ හි 7.5~g ක සාම්පලයක් රේචනය කරන ලද $1.00~\mathrm{dm}^3$ දෘඪ-සංවෘත බඳුනක් තුළ තබා උෂ්ණත්වය $480~\mathrm{K}$ දක්වා වැඩිකරන ලදී.

 $\mathrm{XY_2Z_2(g)}$ හි මවුලික ස්කන්ධය $150~\mathrm{g~mol}^{-1}$ වේ. $480~\mathrm{K}$ හිදී RT හි ආසන්න අගය ලෙස $4000~\mathrm{J~mol}^{-1}$ යොදාගන්න. සියලුම වායුන් පරිපූර්ණ වායු ලෙස හැසිරෙන බව උපකල්පනය කරන්න.

- (i) වියෝජනය වීමට පෙර භාජනය තුළ ඇති $\mathrm{XY}_2\mathrm{Z}_2(\mathrm{g})$ මවුල සංඛාාව ගණනය කරන්න.
- (ii) ඉහත පද්ධතිය $480~{\rm K}$ දී සමතුලිතතාවයට එළඹි විට භාජනය තුළ ඇති මුළු මවුල පුමාණය $7.5\times 10^{-2}~{\rm mol}$ බව සොයාගන්නා ලදී. $480~{\rm K}$ දී සමතුලිතතා මිශුණය තුළ ඇති ${\rm XY}_2{\rm Z}_2({\rm g}), {\rm XY}_2({\rm g})$ සහ ${\rm Z}_2({\rm g})$ හි මවුල සංඛාහ ගණනය කරන්න.
- (iii) $480~{
 m K}$ දී මෙම පුතිකිුයාව සඳහා සමතුලිතතා නියතය $K_{_{C}}$ ගණනය කරන්න.
- $({
 m iv})$ $480~{
 m K}$ දී සමතුලිතතාවය සඳහා ${
 m \emph{K}}_{
 m \emph{p}}$ ගණනය කරන්න.

(ලකුණු 75 යි)

- (b) ඉහත (a) හි විස්තර කළ පුතිකියාව වන $XY_2Z_2(g) \to XY_2(g) + Z_2(g)$ සඳහා 480 K හිදී, $XY_2Z_2(g)$, $XY_2(g)$ සහ $Z_2(g)$ හි ගිබ්ස් ශක්තීන් (G) පිළිවෙළින් -60 kJ mol^{-1} , -76 kJ mol^{-1} සහ -30 kJ mol^{-1} වේ.
 - (i) $480~\mathrm{K}$ දී පුතිකිුයාවෙහි $\Delta G~\mathrm{(kJ~mol}^{-1}$ වලින්) ගණනය කරන්න.
 - (ii) ඉහත පුතිකුියාවෙහි $480~{
 m K}$ දී ΔS හි විශාලත්වය $150~{
 m J~K}^{-1}~{
 m mol}^{-1}$ වේ. ΔS සඳහා නිවැරදී ලකුණ (+ හෝ –) භාවිත කරමින් $480~{
 m K}$ දී පුතිකුියාව සඳහා ΔH ගණනය කරන්න.
 - (iii) ඉහත (ii) හි ලබාගත් ΔH හි ලකුණ (+ හෝ –) අනුව මෙම පුතිකිුිිියාව තාපදායක ද තාපාවශෝෂක ද යන වග පැහැදිලි කරන්න.
 - (iv) $480 \ \mathrm{K}$ දී $\mathrm{XY}_2(\mathrm{g})$ හා $\mathrm{Z}_2(\mathrm{g})$ මගින් $\mathrm{XY}_2\mathrm{Z}_2(\mathrm{g})$ සෑදීමේදී එන්තැල්පි වෙනස අපෝහනය කරන්න.
 - $(v)\ XY_2Z_2(g)$ හි X-Z බන්ධනයෙහි බන්ධන එන්තැල්පිය $+250\ kJ\ mol^{-1}$ වේ නම් Z-Z බන්ධනයෙහි බන්ධන Y එන්තැල්පිය ගණනය කරන්න. $(XY_2Z_2(g)$ හි වසුහය Z-X-Z බව සලකන්න.)
 - (vi) වායුමය XY_2Z_2 වෙනුවට දුව XY_2Z_2 භාවිත කළේනම්, එවිට $XY_2Z_2(l) \to XY_2(g) + Z_2(g)$ පුතිකිුයාව සඳහා ලැබෙන ΔH හි අගය ඉහත (ii) හි ලබාගත් ΔH හි අගයට සමාන ද, නැතහොත් වඩා විශාල ද හෝ කුඩා ද යන වග හේතු දක්වමින් පහදන්න. (ලකුණු 75 යි)

 ${f 6}$. ${f (a)}$ දී ඇති ${f T}_C$ ෂ්ණත්වයේදී සංවෘත බඳුනක් තුළ සිදුවන පහත දක්වා ඇති පුතිකිුිිිිියාව සලකන්න.

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

- (i) පුතිකිුයාවේ දක්වා ඇති එක් එක් සංයෝගයට අදාළව පුතිකිුයාවේ ශීඝුතාව සඳහා පුකාශන **තුනක්** ලියන්න.
- (ii) මෙම පුතිකියාව, T උෂ්ණත්වයේදී, $N_2O_5(g)$ හි $0.10\,\mathrm{mol}\,\mathrm{dm}^{-3}$ ආරම්භක සාන්දුණයක් සහිතව සිදු කරන ලදී. $400\,\mathrm{s}$ කාලයකට පසුව ආරම්භක පුමාණයෙන් $40\%\,\mathrm{m}$ වියෝජනය වී ඇති බව සොයාගන්නා ලදී.
 - I. මෙම කාල පරාසයේදී $N_2O_5(g)$ වියෝජනය වීමේ සාමානා ශීඝුතාව (average rate of decomposition) ගණනය කරන්න.
 - II. $NO_2(g)$ සහ $O_2(g)$ සැදෙන සාමානා ශීසුතාවයන් (average rates of formation) ගණනය කරන්න.
- (iii) වෙනත් පරීක්ෂණයකදී, මෙම පුතිකිුයාව සඳහා $300~{
 m K}$ දී ආරම්භක ශීඝුතා මනින ලද අතර, එහි පුතිඵල පහත දක්වා ඇත.

$[N_2O_5(g)]$ / mol dm ⁻³	0.01	0.02	0.03	
ආරම්භක ශීසුතාව / mol dm ⁻³ s ^{–1}	6.930×10^{-5}	1.386×10^{-4}	2.079×10^{-4}	

300 K දී පුතිකියාව සඳහා ශීඝුතා පුකාශනය වනුත්පන්න කරන්න.

- (iv) වෙනත් පරීක්ෂණයක් $300~{\rm K}$ දී ${
 m N_2O_5(g)}$ හි $0.64~{
 m mol~dm}^{-3}$ ආරම්භක සාන්දුණයක් සහිතව සිදු කරන ලදී. $500~{
 m s}$ කාලයකට පසුව ඉතිරි වී ඇති ${
 m N_2O_5(g)}$ සාන්දුණය $2.0\times 10^{-2}~{
 m mol~dm}^{-3}$ බව සොයාගන්නා ලදී.
 - I. $300~{
 m K}$ දී පුතිකිුයාවේ අර්ධ-ජීව කාලය $(t_{1/2})$ ගණනය කරන්න.
 - II. 300 K දී පුතිකිුයාවේ ශීඝුතා-නියතය ගණනය කරන්න.
- (v) මෙම පුතිකිුයාව පහත සඳහන් මූලික පියවර සහිත යන්තුණයක් හරහා සිදුවේ.

පියවර $1: N_2O_5(g) \Rightarrow NO_3(g) + NO_2(g)$: වේගවත් පියවර $2: NO_3(g) + NO_2(g) \rightarrow 2NO_2(g) + O(g)$: සෙමින්

පියවර 3 : $N_2O_5(g)$ + O(g) ightarrow $2NO_2(g)$ + $O_2(g)$: වේගවත්

ඉහත යන්තුණය පුතිකිුයාවෙහි වේග නියමයට අනුකූල වන බව පෙන්වන්න. (ලකුණු 80 යි)

- (b) T උෂ්ණත්වයේදී ${f A}$ සහ ${f B}$ නමැති දුව දෙකක් රේචනය කළ සංවෘත බඳුනක් තුළ මිශු කිරීමෙන් පරිපූර්ණ ද්වයංගී දුව මිශුණයක් සාදන ලදී. T උෂ්ණත්වයේදී සමතුලිතතාවයට එළඹි පසු වාෂ්ප කලාපයෙහි ${f A}$ සහ ${f B}$ හි අාංශික වාෂ්ප පීඩන පිළිවෙළින් $P_{{f A}}$ සහ $P_{{f B}}$ වේ. දාවණය තුළ ${f A}$ සහ ${f B}$ හි මවුලභාග පිළිවෙළින් $X_{{f A}}$ සහ $X_{{f B}}$ වේ.
 - (i) $P_{\bf A} = P_{\bf A}^{\circ} X_{\bf A}$ බව පෙන්වන්න. (සමතුලිත අවස්ථාවේදී වාෂ්පීකරණයේ හා ඝනීභවනයේ ශීසුතාවයන් සමාන බව සලකන්න.)
 - (ii) $300 \, \mathrm{K}$ දී ඉහත පද්ධතියේ මුළු පීඩනය $5.0 \times 10^4 \, \mathrm{Pa}$ වේ. $300 \, \mathrm{K}$ හිදී සංශුද්ධ \mathbf{A} සහ \mathbf{B} හි සංකෘප්ත වාෂ්ප පීඩන පිළිවෙළින් $7.0 \times 10^4 \, \mathrm{Pa}$ හා $3.0 \times 10^4 \, \mathrm{Pa}$ වේ.
 - I. සමතුලිත මිශුණයෙහි දුව කලාපයේ ඇති A හි මවුලභාගය ගණනය කරන්න.
 - II. සමතුලිත මිශුණයෙහිදී A හි වාෂ්ප පීඩනය ගණනය කරන්න. (ලකුණු 70 යි)

7. (a) (i) විදයුත් විච්ඡේද හා ගැල්වානී කෝෂවල ගුණ සංසන්දනය කිරීම සඳහා පහත වගුව පිටපත් කර දී ඇති පද යොදා සම්පූර්ණ කරන්න.

පද: ඇනෝඩය, කැතෝඩය, ධන, ඍණ, ස්වයංසිද්ධ, ස්වයංසිද්ධ නොවන

		විදුපුත් විවිපේද කෝෂය	ගැල්වානී කෝෂය
A.	ඔක්සිකරණ අර්ධ පුතිකිුිිිියාව සිදු වන්නේ		
B.	ඔක්සිහරණ අර්ධ පුතිකිුයාව සිදු වන්නේ		
C.	$E_{ m cell}^{ m o}$ හි ලකුණ		
D.	ඉලෙක්ටුෝන ගලා යන්නේ	සිට දක්වා	සිට දක්වා
E.	කෝෂ පුතිකිුයාවෙහි ස්වයංසිද්ධතාවය		

(ii) පහත දැක්වෙන පරිදි $300~{
m K}$ දී Zn(s) ඇනෝඩයක්, භාස්මික ජලීය විදයුත් විච්ඡේදෳයක් හා වාතයේ ඇති $O_2(g)$ වායුව ලබාගැනීමට උපකාරී වන සවිවර Pt කැතෝඩයක් භාවිතයෙන් විදයුත් රසායනික කෝෂයක් ගොඩනගන ලදී. කෝෂය කිුිියාත්මක වනවිට ZnO(s) සෑදේ.

$$E_{\rm ZnO(s)\,|\,Zn(s)\,|\,OH^-(aq)}^{\circ} = -1.31\,{
m V}$$
 සහ $E_{\rm O_2(g)\,|\,OH^-(aq)}^{\circ} = +0.34\,{
m V}$ ${
m Zn} = 65\,{
m g\,mol}^{-1},\,{
m O} = 16\,{
m g\,mol}^{-1}$ සහ

1 F = 96,500 C බව දී ඇත.

- අැනෝඩය හා කැතෝඩය මත සිදුවන අර්ධ පුතිකියා ලියා දක්වන්න.
- II. සම්පූර්ණ කෝෂ පුතිකිුයාව ලියා දක්වන්න.
- III. $300\,\mathrm{K}$ දී කෝෂයේ විභවය E° ගණනය කරන්න.
- IV. ඉලෙක්ටුෝඩ අතර $OH^-(aq)$ හි ගමන් මගෙහි දිශාව සඳහන් කරන්න.
- m V.~~300~K දී කෝෂය m 800~s කාලයක් තුළ කිුයාත්මක වනවිටදී $m O_2(g)~2~mol$ වැය වේ.
 - A. කෝෂය හරහා ගමන් කරන ඉලෙක්ටුෝන මවුල සංඛ්‍යාව ගණනය කරන්න.

ඇනෝඩය

- B. සෑදෙන ZnO(s) හි ස්කන්ධය ගණනය කරන්න.
- ${f C}.$ කෝෂය තුළින් ගමන් කරන ධාරාව ගණනය කරන්න.

(ලකුණු 75 යි)

සව්වර

කැතෝඩය

විදුසුත්

විච්ඡේදාය

 $oxed{(b)} \ \mathbf{M(NO_3)}_{\mathbf{n}}$ ලවණය ආසුැත ජලයේ දුවණය කළවිට $oxed{P}$ නම් වර්ණවත් සංකීර්ණ අයනය සැදේ. $oxed{M,3d}$ ගොනුවට අයත් ආන්තරික මූලදුවෳයකි. $oxed{P}$ පහත දැක්වෙන පුතිකිුයාවලට භාජනය වේ.

f T සහ f U මූලදුවා හතරක් බැගින් අඩංගු සංගත සංයෝග වේ. f P, f R සහ f S සංකීර්ණ අයන වේ.

- (i) ${f M}$ ලෝහය හඳුනාගන්න. ${f P}$ සංකීර්ණ අයනයේ ${f M}$ වල ඔක්සිකරණ අවස්ථාව දෙන්න.
- (ii) $\mathbf{M}(NO_3)_n$ හි n වල අගය දෙන්න.
- (iii) P සංකීර්ණ අයනයේ M වල සම්පූර්ණ ඉලෙක්ටුෝනික විනාහසය ලියන්න.
- (iv) P,Q,R,S,T සහ U වල රසායනික සූතු ලියන්න.
- (v) P,R,S,T සහ U වල IUPAC නම් ලියන්න.
- (vi) P වල වර්ණය කුමක් ද?
- (vii) පහත I හා II හිදී ඔබ බලාපොරොත්තු වන නිරීක්ෂණ මොනවා ද?
 - I. කාමර උෂ්ණත්වයේදී f P අඩංගු ආම්ලික දුාවණයකට $H_{\gamma}S$ වායුව යැවූ විට
 - II. I න් ලැබෙන මිශුණයේ දුවණය වී ඇති $H_{\gamma}S$ ඉවත් කිරීමෙන් පසු තනුක HNO_3 සමග රත්කළ විට
- (viii) ජලීය දාවණයක පවතින Mⁿ⁺ වල සාන්දුණය නිර්ණය කිරීමට කුමවේදයක් පහත දැක්වෙන රසායනික දවා උපයෝගී කරගනිමින්, තුලිත රසායනික සමීකරණ ආධාරයෙන් කෙටියෙන් විස්තර කරන්න.

KI, $Na_2S_2O_3$ සහ පිෂ්ටය

(ලකුණු **7**5 යි)

C කොටස _ රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 150** බැගින් ලැබේ.)

8. (a) (i) එකම කාබනික ආරම්භක සංයෝගය ලෙස ${
m CH_2CH_2OH}$ භාවිත කරමින් ${
m G}$ සංයෝගය සංශ්ලේෂණය කිරීම සඳහා පුතිකිුයා අනුකුමයක් පහත දී ඇත.

A,B,C,D,E සහ F සංයෝගවල වයුහ ඇඳිමෙන් සහ පියවර 1-7 සඳහා සුදුසු පුතිකාරක ලැයිස්තුවේ දී ඇති ඒවායින් පමණක් තෝරාගෙන ලිවීමෙන්, මෙම පුතිකියා අනුකුමය සම්පූර්ණ කරන්න.

$$CH_3CH_2CH_2OH \xrightarrow{B\omega DO \ 1} A \xrightarrow{B\omega DO \ 2} B \xrightarrow{B\omega DO \ 3} C$$

$$CH_3CH_2CH_2OH \xrightarrow{B\omega DO \ 4} A \xrightarrow{B\omega DO \ 2} B \xrightarrow{B\omega DO \ 3} C$$

$$E \xrightarrow{B\omega DO \ 5} CH_3CH_2CH_2CH_2CH_2CH_3 \xrightarrow{B\omega DO \ 6} F \xrightarrow{B\omega DO \ 7} CH_3CH_2CH_2CH_3$$

$$CH_3 \xrightarrow{CH_3} CH_3$$

$$CH_3 \xrightarrow{CH_3} G$$

$$CH_3 \xrightarrow{CH_$$

(ii) පහත දැක්වෙන පුතිකිුයා දාමය සලකන්න.

 \mathbf{G},\mathbf{H} සහ \mathbf{K} සංෂයා්ගවල වුනුහ අඳින්න. \mathbf{X},\mathbf{Y} සහ \mathbf{Z} පුතිකාරක දෙන්න.

 ${f K}$, NaNO $_2$ / තනුක HCl සමග පුතිකිුයා කළ විට බෙන්සිල් ඇල්කොහොල් (${f CH}_2{
m OH}$) ලබා දෙන බව සලකන්න.

(ලකුණු 24 යි)

(b) (i) පහත දැක්වෙන පරිවර්තනය **තුනකට නොවැඩි** පියවර සංඛාෟවකින් සිදු කරන්නේ කෙසේදැයි පෙන්වන්න.

(ii) පහත පුතිකිුයාව සලකන්න.

මෙම පුතිකුියාව සිදු කිරීම සඳහා අවශා වන ${f P}$ සහ ${f Q}$ රසායනික දුවායන් හඳුනාගන්න. මෙම පුතිකුියාවේ යන්තුණය ලියන්න. (ලකුණු 20 යි)

- (c) (i) බෙන්සීන්වලට වඩා ෆීනෝල් ඉලෙක්ටොෆිලික ආදේශ පුතිකිුයාවලදී පුතිකිුයාශීලී වන්නේ මන්දැයි ඒවායේ සම්පුයුක්ත දෙමුහුම් සලකමින් පැහැදිලි කරන්න.
 - (ii) සුදුසු පුතිකියාවක් අනුසාරයෙන් ෆීනෝල් සහ බෙන්සීන් අතර ඉහත (i) හි දක්වා ඇති පුතිකියාශීලිතාවයේ වෙනස විදහා දක්වන්න.
 - (iii) ඔබ ඉහත (ii) හි විස්තර කරන ලද පුතිකිුයාවේ ඵලයේ/ඵලයන්හි වහුහය/වහුහ අඳින්න. (ලකුණු 34 යි)

9. (a) (i) පහත දැක්වෙන ගැලීමේ සටහනේ දී ඇති ${f A} - {f Q}$ දක්වා ඇති දුවා (substances) වල රසායනික සූතු ලියන්න.

 $(\mathbf{a} \mathbf{x} \cdot \mathbf{G} \cdot \mathbf{A} - \mathbf{Q}$ දක්වා දුවා හඳුනාගැනීම සඳහා රසායනික සමීකරණ සහ හේතු බලාපොරොත්තු නොවේ.) කොටුව (කඩ ඉරි) තුළ දැක්වෙන සංකේතවලින් ඝන, අවක්ෂේප, දුාවණ සහ වායු නිරූපණය වේ.

- (ii) A වල සම්පූර්ණ ඉලෙක්ටුෝනික විනාහසය ලියන්න.
- (iii) ${f D},{f F}$ බවට පරිවර්තනය කිරීමේදී ${f E}$ හි කාර්යය සඳහන් කරන්න. සඳහන් කළ කාර්යය සඳහා අදාළ තුලිත රසායනික සමීකරණ දෙන්න. (ලකුණු 75යි)
- (b) \mathbf{X} ඝනයේ $\mathrm{Cu}_2\mathrm{S}$ සහ CuS පමණක් අඩංගු වේ. \mathbf{X} වල අඩංගු $\mathrm{Cu}_2\mathrm{S}$ පුතිශතය නිර්ණය කිරීමට පහත දැක්වෙන කි්යාපිළිවෙළ යොදාගන්නා ලදී.

තියාපිළිවෙළ

f X ඝනයෙහි $1.00\,g$ කොටසක් තනුක H_2SO_4 මාධායේදී $0.16\,mol\,dm^{-3}\,KMnO_4\,100.00\,cm^3$ මගින් පිරියම් කරන ලදී. මෙම පුතිකියාව Mn^{2+},Cu^{2+} සහ SO_4^{2-} එල ලෙස ලබා දුනි. ඉන්පසු මෙම දුාවණයේ ඇති වැඩිපුර $KMnO_4$ $0.15\,mol\,dm^{-3}\,Fe^{2+}$ දුාවණයක් සමග අනුමාපනය කරන ලදී. අනුමාපනය සඳහා අවශා වූ පරිමාව $35.00\,cm^3$ වෙයි.

- (i) ඉහත කියාපිළිවෙළේදී සිදුවන පුතිකියා සඳහා තුලිත අයනික සමීකරණ ලියන්න.
- (ii) ඉහත (i) හි පිළිතුරු පදනම් කරගෙන පහත දැක්වෙන ඒවායේ මවුල අනුපාතය නිර්ණය කරන්න.
 - I. Cu₂S జుల KMnO₄
 - II. CuS සහ KMnO₄
 - III. Fe²⁺ జున KMnO₄
- (iii) X හි Cu_2S වල පුතිශතය බර අනුව ගණනය කරන්න. (Cu=63.5, S=32)

(ලකුණු 75 යි)

- ${f 10.}\;(a)$ පහත සඳහන් පුශ්න ටයිටේනියම් ඩයොක්සයිඩ් $({
 m TiO_2})$ වල ගුණ සහ එහි නිෂ්පාදනය ''ක්ලෝරයිඩ් කිුියාවලිය'' මගින් සිදු කිරීම මත පදනම් වේ.
 - (i) මෙම කිුයාවලිය සඳහා භාවිත වන අමුදුවා නම් කරන්න.
 - (ii) නිසි අවස්ථාවන්හි තුලිත රසායනික සමීකරණ භාවිත කරමින් ${
 m TiO}_2$ නිෂ්පාදන කිුිිියාවලිය කෙටියෙන් විස්තර කරන්න.
 - (iii) TiO, වල ගුණ **තුනක්** සඳහන් කර, එක් එක් ගුණයට අදාළ භාවිතයක් බැගින් දෙන්න.
 - (iv) ශී ලංකාවේ TiO_2 නිෂ්පාදන කර්මාන්ත ශාලාවක් ස්ථාපිත කිරීමට ඔබ සලකා බලන්නේ නම්, සපුරාලිය යුතු අවශාතා **තුනක්** සඳහන් කරන්න.
 - (v) ඉහත (ii) හි විස්තර කළ නිෂ්පාදන කිුියාවලිය ගෝලීය උණුසුම සඳහා දායකවන්නේ ද? ඔබේ පිළිතුර සාධාරණීකරණය කරන්න. (ලකුණු 50 යි)
 - (b) හරිතාගාර ආචරණයෙහි වෙනස්වීම හේතුකොටගෙන වර්තමානයේ පෘථිවිගෝලයේ උණුසුම් වීම කාර්මික විප්ලවයට පෙර පැවැති තත්ත්වයට වඩා සැලකිය යුතු ලෙස වැඩි වී ඇත.
 - (i) හරිතාගාර ආචරණය යනුවෙන් අදහස් වන්නේ කුමක්දැයි කෙටියෙන් පැහැදිලි කරන්න.
 - (ii) පෘථිවිගෝලය උණුසුම් වීම නිසා සිදුවන පුධාන පාරිසරික ගැටලුව හඳුනාගන්න.
 - (iii) ගෝලීය උණුසුම ඉහළ යාමට දායක වන **පධාන** ස්වාභාවික වායුන් **දෙකක්** සඳහන් කරන්න.
 - (iv) ඔබ (iii) හි සඳහන් කළ වායුන් **දෙක** පරිසරයට මුදාහැරීමට ක්ෂුදු ජීවීන් දායක වන ආකාරය කෙටියෙන් පැහැදිලි කරන්න.
 - (v) ඉහත (iii) හි සඳහන් කළ වායුවලට අමතරව ගෝලීය උණුසුම ඉහළ යාමට සෘජුවම දායක වන කෘතිම වාෂ්පශීලී සංයෝග කාණ්ඩ **දෙකක්** නම් කර, එක් කාණ්ඩයකින් එක් සංයෝගය බැගින් තෝරාගෙන ඒවායේ වාූහ අඳින්න.
 - (vi) ඉහත (v) හි සඳහන් කළ සංයෝග කාණ්ඩ දෙක අතුරෙන් ඉහළ වායුගෝලයේ ඕසෝන් වියෝජනය උත්ජේරණයට දායක වන **එක්** සංයෝග කාණ්ඩයක් හඳුනාගන්න.
 - (vii) කොවිඩ්-19 අධිවසංගතය හේතුවෙන් කාර්මික කටයුතු අඩාල වීම නිසා බොහෝ රටවල ගෝලීය පාරිසරික පුශ්න තාවකාලිකව සමනය වී ඇත. ඔබ ඉගෙන ගත් පුධාන ගෝලීය පාරිසරික පුශ්න **දෙකක්** අනුසාරයෙන් මෙම පුකාශය සනාථ කරන්න. (ලකුණු **50** යි)
 - (c) පහත සඳහන් පුශ්න දී ඇති බහුඅවයවක මත පදනම් වේ.
 - පොලිවයිනයිල් ක්ලෝරයිඩ් (PVC), පොලිඑතිලීන් (PE), පොලිස්ටයිරීන් (PS), බේක්ලයිට්, නයිලෝන් 6.6, පොලිඑතිලීන් ටෙරිප්තැලේට් (PET), ගටා පර්චා (Gutta percha)
 - (i) ඉහත සඳහන් බහුඅවයවක **හතරක** පුනරාවර්තී ඒකක අඳින්න.
 - (ii) ඉහත සඳහන් බහුඅවයවක හත (7)
 - I. ස්වාභාවික හෝ කෘතිුම බහුඅවයවක
 - II. ආකලන හෝ සංඝනන බහුඅවයවක

ලෙස වර්ගීකරණය කරන්න.

- (iii) බේක්ලයිට් සෑදීමේදී භාවිත වන ඒක අවයවක **දෙක** නම් කරන්න.
- (iv) බහුඅවයවක ඒවායේ තාපජ ගුණ අනුව වර්ග දෙකකට බෙදිය හැක. එම වර්ග **දෙක** සඳහන් කරන්න. PVC සහ බේක්ලයිට් මින් කුමන වර්ගයන්ට අයත්දැයි ලියන්න.
- (v) ඉහත ලැයිස්තුවෙහි බහුඅවයවක **තුනක්** සඳහා භාවිත **එක** බැගින් සඳහන් කරන්න. (ලකුණු **50** යි)

ආවර්තිතා වගුව

1	1																	2
1	H																	He
1	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	0	F	Ne
_	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
3	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
7	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
3	<u> </u>													82	83	84	85	86
	55	56	La-	72	73	74	75	76	77	<i>7</i> 8	79	80	81	1				1 1
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po_	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr