

- Published Aug 10
- 👺 Fork of Unsupervised Learning by 🦣 Kris Sankaran

Unsupervised Learning

IFT6758, Fall 2020

Reading: ISLR sections 10.1, 10.2 and PDS pg. 462 - 476

What is unsupervised learning?

- Supervised learning: Learn some mapping $x_i o y_i$
- Unsupervised learning
 - \circ Usual definition: "Exploring the data x_i "
- Less orthodox interpretations
 - Learning with hidden labels (clusters: missing classes)
 - Data compression for human consumption
 - o Generation of derived data for human consumption

Common Themes

. Much handauta analusta

- Much narger to evaluate
- Most methods can be categorized as either,
 - Dimensionality reduction: Few features that summarize many
 - Clustering: Few "prototypes" that are representative of whole dataset
- We'll review canonical examples,
 - PCA (dimensionality reduction)
 - K-means and Hierarchical Clustering (clustering)

PCAWhat is this?

PCAWhat is this?

Credit for the idea: Prof. Julie Josse

PCA

Idea: Certain views of high-dimensional data are more informative than others.

Can you find a low-dimensional representation with as much variation as possible?

Can you find a low-dimensional representation with as much variation as possible?

To implement the idea,

- What will be the candidate family of low-dimensional representations?
- How will we choose one of the many candidates?

Candidates: Linear Mixings

Can you find a **low-dimensional representation** with as much variation as possible?

• For a representation, consider linear combinations of high-dimensional vectors,

$$egin{aligned} z_i &= \sum_{j=1}^p arphi_{1j} x_{ij} \ &= arphi_1^T x_i \end{aligned}$$

• φ_1 is a free parameter. E.g., if $\varphi_1 = \left(\frac{1}{p}, \dots, \frac{1}{p}\right)$, then we summarize x_i by averaging over its coordinates

Selection Criteria: Maximal Variance

Can you find a low-dimensional representation with **as much variation** as possible?

• The z_i 's should be as spread out as possible:

$$ext{maximize}_{arphi_1} rac{1}{n} \sum_{i=1}^n z_i^2$$

 \circ Subject to constraint $\|arphi_1\|^2=1$.

See the example here. The red arrow is φ_1 and the points along the 1D axes are the associated z_i 's.

Can you find a low-dimensional representation with **as much variation** as possible?

• The z_i 's should be as spread out as possible:

$$ext{maximize}_{arphi_1}rac{1}{n}\sum_{i=1}^n z_i^2$$

 \circ Subject to constraint $\|arphi_1\|^2=1$.

See the example here. The red arrow is φ_1 and the points along the 1D axes are the associated z_i 's.

Second, third, ... PCA directions

- Once you find φ_1 , you can find a "second" direction φ_2
- Found by solving the exact same optimization, but with a

- new constraint that it's at 90 degrees to the previous directions
- Interpretation: PCA is finding a new, better coordinate system for your data

Semantics

Alternative Interpretation: Linear Approximation

- The first K directions in PCA find the best Kdimensional linear approximation (using sum of squared
 error to measure approximation quality).
- This means it's fair to say

$$x_{ij}pprox \sum_{k=1}^K z_{ik} arphi_{kj}$$

- Or, in matrix notation, $x_i pprox \Phi z_i$, where Φ concatenates the φ_k 's vertically
 - $\circ \ x_i$ is a mixture of the components $arphi_k$ with weights z_{ik} .

•

Example with two principal components

We'll practice reading PCA plots using USArrests --- a little dark but you will see more of such *breaking bad* themed examples in ISLR

- z_i 's give the states' coordinates
- Can interpret components by looking at how variables contribute. Variable j is plotted at $(\varphi_{1j}, \varphi_{2j})$.
 - E.g., the second PC mostly captures variation related to urban population

-0.5

-1.0

0.5

First principal component

1.0

Biplots

Arrows come from the φ_1 and φ_2 . The (x, y)-coordinate of the arrows comes from viewing these PCs in 2D.

Biplots

• The coordinate of r_i on the hiplot is (x_i, x_i)

The coordinate of ω_i on the diplot is (z_{i1}, z_{i2})

• Since $x_i \approx z_{i1}\varphi_1 + z_{i2}\varphi_2$, they have large values for variables with large loadings in the coordinate directions where x_i is farther along

Biplots

- For example, California $pprox -2.5 arphi_1 1.52 arphi_2$
- Since φ_1 puts negative weight on the crimes, California has more than the average # of crimes $(-\times -=+)$
- Since φ_2 puts negative weight on urban population, California has larger than the average population

Explained Variation

• Amount explained by k^{th} component,

$$rac{\sum_{i=1}^{n}\|z_{ki}\|^2}{\sum_{i=1}^{n}\|x_i\|^2}$$

- If no directions are preferred, get $pprox rac{1}{p}\%$ everywhere
- How to compute?
 - Consider the covariance matrix of the data. Check total variance. Now look at the transformed covariance matrix and find the ratio of variances of each component.

- Exercise: What would the plot below look like if the data were shaped like...
 - a pancake (two long directions, one short one)
 - a cigar (one long direction, two short ones).

Things to watch out for

- Even though the method is easy to run, there are lots of potential issues,
 - Variables might be at different scales, and there might be ambiguity about whether to rescale them
 - o The directions are only unique up to sign

• Choosing *K* is tricky (although might not be crucial)

Clustering

Idea: Partition the observations, so that those that are similar to each other appear together

Look for homogeneous subgroups in your heterogeneous data.

Formalization

A partition C_1, \ldots, C_k is a collection of subsets satisfying,

• Each sample is in a subset:

$$\cup_{k=1}^K C_k = \{1,\ldots,n\}$$

• Subsets are disjoint: For any pair,

$$\alpha \circ \alpha = \alpha$$

A partition C_1, \ldots, C_k is a collection of subsets satisfying,

• Each sample is in a subset:

$$\cup_{k=1}^K C_k = \{1,\ldots,n\}$$

• Subsets are disjoint: For any pair,

$$C_k \cap C_{k'} = \emptyset$$

A partition C_1, \ldots, C_k is a collection of subsets satisfying,

• Each sample is in a subset:

$$\cup_{k=1}^K C_k = \{1,\ldots,n\}$$

• Subsets are disjoint: For any pair,

$$C_k \cap C_{k'} = \emptyset$$

A partition C_1, \ldots, C_k is a collection of subsets satisfying,

• Each sample is in a subset:

$$\cup_{k=1}^K C_k = \{1,\ldots,n\}$$

• Subsets are disjoint: For any pair,

$$C_k\cap C_{k'}=\emptyset$$

We don't want just any partition, but the one that minimizes within group variation, which we'll call W.

$$\mathop {\operatorname {minimize}}\limits_{{C_k}} \sum\limits_{k = 1}^K {W\left({{C_k}}
ight)}$$

Usually, we use $W\left(C_k
ight) = rac{1}{|C_k|} \sum_{i,i' \in C_k} \|x_i - x_i'\|^2$.

Algorithm

This is a combinatorial optimization problem, and finding the global optimum is computationally challenging.

However the following algorithm usually finds good local optima,

- 1. Arbitrarily assign each x_i to one of the clusters, C_1, \ldots, C_K .
- 2. Iterate until convergence,
 - a. Compute the mean \bar{x}_k of the points in C_k .
 - b. Reassign the points x_i , so they are put in the cluster whose centroid they are closest to.

Here is a nice demo. The procedure reduces the criterion under study at each step, which means we will converge to a local optimum.

Limitations of K-means

K-means often does not do a good job in clustering when there are variations in density, nonspherical shapes of clusetrs and outliers.

How to evaluate K-means results?

- Supervised evaluation: use a pre-classified dataset as a benchmark
 - Given the knowledge of the ground truth class assignments of the samples, use some metric, e.g., homogeneity, completeness, v-score, to evaluate the goodness of the the clustering (higher score is better)

- Python: from **sklearn** import **metrics**; metrics.homogeneity_score(labels_true, labels_pred)
- Unsupervised evaluation: minimize intra-cluser distance (maximize cohesiveness) and maximize inter-clusetr distance (separation)

Details: Cluster Analysis Using K-means Explained

Hierarchical Clustering

- *K* controls the "magnification" at which we do the clustering.
- What if we could do the clustering at many different scales, all at once?

Hierarchical Clustering

Behold, the cluster dendrogram.

Interpretation

• Samples which are similar to each other are put on the

same subtree.

- Pairs of samples that are very similar to one another share very recent common ancestors
 - Beware: Samples can be close by at the leaves without being close in the subtree sense
- You can get a standard clustering by "cutting" tree at some horizontal level

That's cool, how do I make it?

- These trees are informative. We'd like an automated procedure for creating them.
 - Agglomerative: *bottom-up*
 - Divisive: *top-down*

Agglomerative

a. Initialize: Associate each point with a cluster $C_i := \{x_i\}$ b. Iterate until only one cluster: Look at all pairs of clusters. Merge the pair C_k , $C_{k'}$ which are the most similar.

That's cool, how do I make it?

• These trees are informative. We'd like an automated procedure for creating them.

Agglomerative

a. Initialize: Associate each point with a cluster $C_i := \{x_i\}$ b. Iterate until only one cluster: Look at all pairs of clusters. Merge the pair C_k , $C_{k'}$ which are the most similar.

That's cool, how do I make it?

• These trees are informative. We'd like an automated procedure for creating them.

Agglomerative

a. Initialize: Associate each point with a cluster $C_i := \{x_i\}$ b. Iterate until only one cluster: Look at all pairs of clusters. Merge the pair C_k , $C_{k'}$ which are the most similar.

That's cool, how do I make it?

• These trees are informative. We'd like an automated procedure for creating them.

Agglomerative

a. Initialize: Associate each point with a cluster $C_i := \{x_i\}$

Merge the pair C_k , $C_{k'}$ which are the most similar.

That's cool, how do I make it?

• These trees are informative. We'd like an automated procedure for creating them.

Agglomerative

a. Initialize: Associate each point with a cluster $C_i := \{x_i\}$ b. Iterate until only one cluster: Look at all pairs of clusters. Merge the pair C_k , $C_{k'}$ which are the most similar.

