

UNIVERSIDADE FEDERAL DO TOCANTINS CAMPUS UNIVERSITÁRIO DE PALMAS CURSO DE CIÊNCIA DA COMPUTAÇÃO

MATERIAL DIDÁTICO TRANSFORMAÇÃO LINEAR

Jhonatan Sousa Santiago

Orientador: Prof.^a Dr.^a Hellena Christina Fernandes Apolinário

> Palmas Fevereiro de 2018

Sumário

1 Transformação Linear	1
Referências Bibliográficas	2

1 Transformação Linear

Transformação linear é um tipo particular de função entre dois espaços vetoriais que preserva as operações de adição vetorial e multiplicação por escalar. Uma transformação linear também pode ser chamada de aplicação linear ou mapa linear. No caso em que o domínio e contradomínio coincidem, é usada a expressão operador linear. Na linguagem da Álgebra abstrata, uma transformação linear é um homomorfismo de espaços vetoriais.

Definição:

Uma função T : $\mathbb{R}^n \to \mathbb{R}^m$ é denominada de transformação linear de \mathbb{R}^n em \mathbb{R}^m se para quaisquer u, v $\in \mathbb{R}^n$ e $\alpha \in \mathbb{R}$ temos:

i)
$$T(u + v) = T(u) + T(v)$$

ii)
$$T(\alpha u) = \alpha T(u)$$
.

A transformação linear de \mathbb{R}^n no próprio \mathbb{R}^n é denominada de operador linear sobre \mathbb{R}^n .

Exemplo de transformação linear:

Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$, definida por T(x, y, z) = (x-y, x-z). Verificaremos se T é uma transformação linear.

Seja U =
$$(x_u, y_u, z_u)$$
, V = $(x_v, y_v, z_v) \in \mathbb{R}^3$. Temos que:

i)
$$T(u + v) = ((x_u + x_v) - (y_u + y_v), (x_u + x_v) - (z_u + z_v))$$

$$= (x_u + x_v - y_u - y_v, x_u + x_v - z_u - z_v)$$

$$= (x_u - y_u + x_v - y_v, x_u - z_u + x_v - z_v)$$

$$= (x_u - y_u, x_u - z_u) + (x_v - y_u, x_v - z_u)$$

$$= T(u) + T(v)$$

ii)
$$T(\alpha u) = (\alpha x_u - \alpha y_u, \alpha x_u - \alpha z_u)$$

= $\alpha (x_u - y_u, x_u - z_u)$
= $\alpha T(u)$

Logo temos que T é uma transformação linear.

Referências Bibliográficas

- 1 STEINBRUCH, A.; WINTERLE, P. $\acute{A}lgebra\ Linear$. 2. ed. [S.l.]: São Paulo: Pearson Education do Brasil, 1987.
- 2 BOLDRINI, J. L. et al. $\acute{A}lgebra\ linear$. 3. ed. [S.l.]: São Paulo: Harper Row do Brasil, 1986.

(1)(2)