FCC ID: XR2WIZFI220

Report No.: DRTFCC1106-0224

Total 30 Pages

RF TEST REPORT

Wireless LAN Module

Model No.

: WizFi220

Order No.

1105-00700

Date of receipt

: 2011-05-25

Test duration

2011-05-30 ~ 2011-06-03

Date of issue

2011-06-08

Use of report

: FCC Original Grant

Applicant

WIZNET Co., LTD.

4F Humax Village, 11-4 Sunae-dong, Bundang-gu, Seongnam-si

Gyeonggi-do, 463-825, Korea

Test laboratory

Digital EMC Co., Ltd.

683-3, Yubang-Dong, Cheoin-Gu, Yongin-Si, Kyunggi-Do, 449-080, Korea

Test specification

: FCC Part 15 Subpart C 247

Test environment

: See appended test report

Test result

□ Pass

Fail

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DIGITAL EMC CO., LTD.

Tested by:

Witnessed by:

Reviewed by:

Engineer S.K. Ryu N/A

Manager W.J. Lee

CONTENTS

1. Equipment information	3
1.1 Equipment description	3
1.2 Ancillary equipment	3
2. Information about test items	4
2.1 Test mode	4
2.2 Auxiliary equipment	4
2.3 Tested frequency	4
2.4 Tested environment	4
2.5 EMI Suppression Device(s)/Modifications	4
3. Test Report	5
3.1 Summary of tests	5
3.2 Transmitter requirements	6
3.2.1 6 dB Bandwidth	6
3.2.2 Peak Output Power	9
3.2.3 Out of Band Emissions / Band Edge	12
3.2.4 Out of band Emission – Radiated	16
3.2.5 Transmitter Power Spectral Density	20
3.2.6 AC Conducted Emissions	23
3.2.7 Antenna Requirements	26
APPENDIX	27

1. Equipment information

1.1 Equipment description

FCC Equipment Class	Digital Transmission System (DTS)
Equipment type	Wireless LAN Module
Equipment model name	WizFi220
Equipment add model name	N/A
Equipment serial no.	Identical prototype
Frequency band	2412 ~ 2462 MHz
Modulation type	ССК
Channel Access Protocol	CSMA/CA
Channel Spacing	5.0 MHz
Antenna type	External Type: Dipole antenna (Max. Peak Gain: 3.377 dBi)
Power Supply	DC 3.3 V

1.2 Ancillary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-	-	-
-	-	-	-	-

2. Information about test items

2.1 Test mode

This device was tested in continuous transmitting mode at maximum power.

Test Case 1	802.11b 1Mbps
Test Case 2	-

Note: The maximum power was investigated at each transmission rate. (The Maximum power mode: 1Mbps)

2.2 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
WizFi2xo Test Board	N/A	N/A	WIZnet	V1.0
AC-DC Adapter	DP-05020DG	N/A	-	-

2.3 Tested frequency

	TX Frequency (MHz)	RX Frequency (MHz)
Lowest Channel	2412	2412
Middle Channel	2437	2437
Highest Channel	2462	2462

2.4 Tested environment

Temperature	:	22 ~ 25 °C
Relative humidity content	:	32 ~ 38 % R.H.
Details of power supply	:	DC 3.3 V AC-DC Adapter : 120 V 60 Hz

2.5 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit (Using in 2400 ~ 2483.5MHz)	Test Condition	Status Note 1
I. Test Items				
15.247(a)(2)	6 dB Bandwidth	> 500 kHz		С
15.247(b)(3)	Transmitter Output Power	< 1Watt	C Conducted C	С
15.247(c)	Out of Band Emissions / Band Edge	20dBc in any 100kHz BW		С
15.247(d)	Transmitter Power Spectral Density	< 8dBm / 3kHz		С
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	<fcc 15.209="" limits<="" td=""><td>Radiated</td><td>С</td></fcc>	Radiated	С
15.207	AC Conducted Emissions	EN 55022	AC Line Conducted	С
15.203	Antenna Requirements	FCC 15.203	-	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

The sample was tested according to the following specification: ANSI C-63.4-2003, DA00-705

3.2 Transmitter requirements

3.2.1 6 dB Bandwidth

- Procedure:

The bandwidth at 6 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level.

The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest Frequencies

Span = 50 MHz (Greater than EBW)

RBW = 100 kHz Sweep = auto

VBW = ≥ RBW Detector function = peak

Trace = max hold

- Measurement Data: Comply

Test Mode	Frequency	Test Results (MHz)
	Lowest	9.135
Test case 1	Middle	9.119
	Highest	9.375

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

The minimum 6 dB bandwidth shall be at least 500 kHz

6 dB Bandwidth

Test case 1 & Lowest Frequency

6 dB Bandwidth

Test case 1 & Middle Frequency

TRF-RF-201(02)100714 Page 7 / 30

6 dB Bandwidth

Test case 1 & Highest Frequency

3.2.2 Peak Output Power

- Test Procedure and Spectrum Analyzer setting:

This is an RF conducted test. Use a direct connection between the antenna port of the transmitter and the spectrum analyzer, through suitable attenuation. Power Output Option 1 is a peak measurement. Power Output Option 2 is the same procedure used for UNII output power measurements. Either option can be used for DTS devices.

This test items was used Power Output Option 1.

- Measurement Data: Comply

Test Mode	F	Test Results	
	Frequency	dBm	w
	Lowest	19.68	0.093
Test case 1	Middle	19.55	0.090
	Highest	20.06	0.101

Note 1: See next pages for actual measured spectrum plots.

Minimum Standard:	< 1W
wiiiiiiiuiii Stailuaru.	- 1vv

Peak Output Power

Test case 1 & Lowest Frequency

Peak Output Power

Test case 1 & Middle Frequency

TRF-RF-201(02)100714 Page 10 / 30

Peak Output Power

Test case 1 & Highest Frequency

3.2.3 Out of Band Emissions / Band Edge

- Procedure:

All harmonics/spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. If the device complies with the use of power option 2 the attenuation under this paragraph shall be 30 dB instead of 20 dB.

For Band-edge testing the spectrum analyzer is set to:

Tested frequency = the highest and the lowest Frequencies

Center frequency = 2400MHz, 2483.5MHz

Span = 100MHz Detector function = peak

RBW = 1% of the span VBW = 100 kHz
Trace = max hold Sweep = auto

For spurious testing the spectrum analyzer is set to:

Tested frequency = the highest, middle and the lowest Frequencies

RBW = 100 kHz
Detector function = peak

VBW = 100 kHz
Sweep = auto

Trace = max hold

- Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots.

Minimum Standard:

Test case 1

Conducted Spurious Emissions

Test case 1 & Lowest Frequency

Reference for limit

Test case 1 & Middle Frequency

Conducted Spurious Emissions

Test case 1 & Middle Frequency

Test case 1 & Highest Frequency

Conducted Spurious Emissions

Test case 1 & Highest Frequency

3.2.4 Out of band Emission - Radiated

- Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Tested frequency = Low, Middle, High Frequencies Frequency Range = 30 MHz ~ 10th harmonic.

RBW and VBW = 1. Frequency range: 30MHz ~ 1GHz

RBW = 120KHz / VBW = \geq RBW 2. Frequency range: 1GHz \sim 10th harmonics

Peak mode: RBW = 1MHz / VBW = ≥ RBW

Average mode: RBW = 1MHz / VBW = 10Hz

Detector function = Peak Sweep = auto

Trace = max hold

- Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots and data.

- Minimum Standard:

- FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	3600 ~ 4400	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	4.5 ~ 5.15	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~	149.9 ~ 150.05	1645.5 ~ 1646.5	5.35 ~ 5.46	17.7 ~ 21.4
4.125 ~ 4.128	12.52025	156.52475 ~	1660 ~ 1710	7.25 ~ 7.75	22.01 ~ 23.12
4.17725 ~ 4.17775	12.57675 ~	156.52525	1718.8 ~ 1722.2	8.025 ~ 8.5	23.6 ~ 24.0
4.20725 ~ 4.20775	12.57725	156.7 ~ 156.9	2200 ~ 2300	9.0 ~ 9.2	31.2 ~ 31.8
6.215 ~ 6.218	13.36 ~ 13.41	162.0125 ~ 167.17	2310 ~ 2390	9.3 ~ 9.5	36.43 ~ 36.5
6.26775 ~ 6.26825	16.42 ~ 16.423	167.72 ~ 173.2	2483.5 ~ 2500	10.6 ~ 12.7	Above 38.6
6.31175 ~ 6.31225	16.69475 ~	240 ~ 285	2655 ~ 2900	13.25 ~ 13.4	
8.291 ~ 8.294	16.69525	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	16.80425 ~	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	16.80475	608 ~ 614	3345.8 ~ 3358		
	25.5 ~ 25.67	960 ~ 1240			
	37.5 ~ 38.25				
	73 ~ 74.6				
	74.8 ~ 75.2				

[•] FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

30MHz ~ 25GHz Radiated Spurious Emissions

Lowest Channel

Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
54.936	V	Y Axis	QP	52.30	-14.20	38.10	40.00	1.90
123.429	Н	X Axis	QP	44.48	-13.90	30.58	43.50	12.92
266.281	Н	X Axis	QP	45.00	-8.40	36.60	46.00	9.40
2235.300	V	X Axis	PK	57.20	-6.00	51.20	74.00	22.80
2237.400	V	X Axis	AV	48.18	-5.98	42.20	54.00	11.80
2281.200	V	X Axis	PK	61.26	-5.83	55.43	74.00	18.57
2281.400	V	X Axis	AV	52.43	-5.83	46.60	54.00	7.40
2324.000	V	X Axis	PK	55.65	-5.68	49.97	74.00	24.03
2324.000	V	X Axis	AV	46.01	-5.68	40.33	54.00	13.67
2369.200	V	X Axis	PK	54.60	-5.52	49.08	74.00	24.92
2369.210	V	X Axis	AV	45.14	-5.52	39.62	54.00	14.38
2543.700	V	X Axis	PK	53.61	-4.91	48.70	74.00	25.30
2544.230	V	X Axis	AV	43.09	-4.91	38.18	54.00	15.82
2587.800	V	X Axis	PK	59.23	-4.75	54.48	74.00	19.52
2588.100	V	X Axis	AV	50.19	-4.75	45.44	54.00	8.56

Note.

1. No other spurious and harmonic emissions were detected greater than listed emissions on above table.

2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

30MHz ~ 25GHz Radiated Spurious Emissions

Middle Channel

Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
54.877	V	Y Axis	QP	51.80	-14.20	37.60	40.00	2.40
123.511	Н	X Axis	QP	45.10	-13.90	31.20	43.50	12.30
266.278	Н	X Axis	QP	45.20	-8.40	36.80	46.00	9.20
2206.300	Н	Y Axis	PK	54.54	-6.09	48.45	74.00	25.55
2206.560	Н	Y Axis	AV	48.52	-6.09	42.43	54.00	11.57
2260.300	V	X Axis	PK	62.88	-5.90	56.98	74.00	17.02
2261.540	V	X Axis	AV	53.89	-5.90	47.99	54.00	6.01
2279.500	V	Y Axis	PK	55.61	-5.84	49.77	74.00	24.23
2280.770	V	Y Axis	AV	43.40	-5.83	37.57	54.00	16.43
2305.300	V	X Axis	PK	62.09	-5.75	56.34	74.00	17.66
2305.580	V	X Axis	AV	53.69	-5.74	47.95	54.00	6.05
2568.700	V	Y Axis	PK	54.88	-4.82	50.06	74.00	23.94
2569.100	V	Y Axis	AV	44.99	-4.82	40.17	54.00	13.83
2612.800	V	X Axis	PK	59.55	-4.66	54.89	74.00	19.11
2613.200	V	X Axis	PK	50.56	-4.66	45.90	74.00	28.10

Note.

Margin = Limit – Result / Result = Reading + T.F / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

^{1.} No other spurious and harmonic emissions were detected greater than listed emissions on above table.

^{2.} Sample Calculation.

30MHz ~ 25GHz Radiated Spurious Emissions

Highest Channel

Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
54.917	V	Y Axis	QP	52.10	-14.20	37.90	40.00	2.10
123.400	Н	X Axis	QP	45.20	-13.90	31.30	43.50	12.20
266.300	Н	X Axis	QP	45.50	-8.40	37.10	46.00	8.90
2287.800	V	X Axis	PK	66.38	-5.81	60.57	74.00	13.43
2286.520	V	X Axis	AV	58.03	-5.81	52.22	54.00	1.78
2306.200	V	X Axis	PK	60.09	-5.74	54.35	74.00	19.65
2305.900	V	X Axis	AV	48.07	-5.74	42.33	54.00	11.67
2332.000	V	X Axis	PK	60.81	-5.65	55.16	74.00	18.84
2331.400	V	X Axis	AV	52.78	-5.65	47.13	54.00	6.87
2483.640	V	X Axis	PK	63.30	-5.12	58.18	74.00	15.82
2483.500	V	X Axis	AV	52.16	-5.11	47.05	54.00	6.95
2593.700	V	Y Axis	PK	53.73	-4.73	49.00	74.00	25.00
2594.000	V	Y Axis	AV	44.40	-4.73	39.67	54.00	14.33
2637.000	V	X Axis	PK	60.00	-4.58	55.42	74.00	18.58
2637.870	V	X Axis	AV	50.14	-4.57	45.57	54.00	8.43

Note.

1. No other spurious and harmonic emissions were detected greater than listed emissions on above table.

2. Sample Calculation.

3.2.5 Transmitter Power Spectral Density

- Procedure:

The same method of determining the conducted output power shall be used to determine the power spectral density. If a peak output power is measured, then a peak power spectral density measurement is required. If an average output power is measured, then an average power spectral density measurement should be used. Use PSD Option 1 if Power output Option 1 was used. Use PSD Option 2 if power output Option 2 was used.

This test item was used PSD Option 1.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest Frequencies

Span = 900KHz

RBW = 3KHz

VBW = ≥ RBW

Sweep = 300s

Trace = max hold

- Measurement Data: Comply

Test Mode	Frequency	Test Results (dBm)
	Lowest	-10.230
Test case 1	Middle	-10.650
	Highest	-10.250

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

The transmitter power density average over 1-second interval shall not be greater than 8 dBm in any 3kHz BW.

Test case 1 & Lowest Frequency

Transmitter Power Spectral Density

Test case 1 & Middle Frequency

TRF-RF-201(02)100714 Page 21 / 30

Transmitter Power Spectral Density

Test case 1 & Highest Frequency

3.2.6 AC Conducted Emissions

- Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. Emissions closest to the limit are measured in the quasi-peak mode (QP) and average mode (AV) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

- Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots and data.

- Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range		Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

^{*} Decreases with the logarithm of the frequency

AC Line Conducted Emissions (Graph)

Results of Conducted Emission

Digital EMC Date : 2011/06/03

Model No. : WizFi220
Type : WLAN Module
Serial No. : N/A
Test Condition : 802.11b Transmitting mode

 Referrence No.
 : FCC Part 15

 Power Supply
 : 120V 60Hz

 Temp/Humi.
 : 25°C 32% R.H.

 Operator
 : S.K.RYU

Memo : Channel: 6

LIMIT : CISPR22_B QP CISPR22_B AV

TRF-RF-201(02)100714 Pigital FMC Co. Ltd.

AC Line Conducted Emissions (Data List)

Results of Conducted Emission Digital EMC Date: 2011/06/03

Model No. Type Serial No. Test Condition : WizFi220 : WLAN Module : N/A : 802.11b Transmitting mode : FCC Part 15 : 120V 60Hz : 25°C 32% R.H. : S.K.RYU Referrence No. Power Supply Temp/Humi. Operator

: Channel: 6

LIMIT : CISPR22_B QP CISPR22_B AV

NC	FREQ [MHz]	READ QP [dBuV]	ING AV [dBuV]	C.FACTOR	RES QP [dBuV]	AV	LIM QP [dBuV]	IIT AV [dBuV]	QP	GIN AV [dBuV]	PHASE	
1	0.15174	47.3	34.1	0.1	47.4	34.2	65.9	55.9	18.5	21.7	N	
2	0.29833	36.8	27.8	0.1	36.9	27.9	60.3	50.3	23.4	22.4	N	
3	0.57850	37.1	30.4	0.1	37.2	30.5	56.0	46.0	18.8	15.5	N	
4	7.61200	25.5	19.8	0.4	25.9	20.2	60.0	50.0	34.1	29.8	N	
5	0.20173	44.6	36.5	0.1	44.7	36.6	63.5	53.5	18.8	16.9	N	
6	0.25350	40.6	31.6	0.1	40.7	31.7	61.6	51.6	20.9	19.9	N	
7	0.32329		34.2	0.1	39.8	34.3	59.6	49.6	19.8	15.3	N	
8	0.37614	39.4	34.8	0.1	39.5	34.9	58.4	48.4	18.9	13.5	N	
9	0.45691	34.3	28.2	0.1	34.4	28.3	56.7	46.7	22.3	18.4	N	
10	0.66494	35.7	30.4	0.2	35.9	30.6	56.0	46.0	20.1	15.4	N	
11	1.02700	34.2	27.5	0.2	34.4	27.7	56.0	46.0	21.6	18.3	N	
12	1.38350		26.1	0.2	32.8	26.3	56.0	46.0	23.2	19.7	N	
13	1.71000		26.3	0.2	32.0	26.5	56.0	46.0	24.0	19.5	N	
14	2.14550	31.2	25.0	0.2	31.4	25.2	56.0	46.0	24.6	20.8	N	
15	2.52050	32.0	26.5	0.2	32.2	26.7	56.0	46.0	23.8	19.3	N	
16	3.25250	34.0	28.7	0.3	34.3	29.0	56.0	46.0	21.7	17.0	N	
17	18.89200	15.2	9.5	0.6	15.8	10.1	60.0	50.0	44.2	39.9	N	
18	0.15213	44.0	30.4	0.1	44.1	30.5	65.9	55.9	21.8	25.4	L1	
19	0.18555	42.2	33.0	0.1	42.3	33.1	64.2	54.2	21.9	21.1	L1	
20	0.37341	38.6	34.1	0.1	38.7	34.2	58.4	48.4	19.7	14.2	L1	
21	0.57819	35.7	28.6	0.1	35.8	28.7	56.0	46.0	20.2	17.3	L1	
22	7.65300	28.5	22.4	0.4	28.9	22.8	60.0	50.0	31.1	27.2	L1	
23	0.25975	37.0	27.6	0.1	37.1	27.7	61.4	51.4	24.3	23.7	L1	
24	0.65865	34.6	28.6	0.2	34.8	28.8	56.0	46.0	21.2	17.2	L1	
25	0.95794	31.5	25.1	0.2	31.7	25.3	56.0	46.0	24.3	20.7	L1	
26	1.38950	28.9	22.1	0.2	29.1	22.3	56.0	46.0	26.9	23.7	L1	
27	1.77550	27.2	20.9	0.2	27.4	21.1	56.0	46.0	28.6	24.9	L1	
28	3.32800		23.4	0.3	30.3	23.7	56.0	46.0	25.7	22.3	L1	
29	17.23150	15.7	9.9	0.6	16.3	10.5	60.0	50.0	43.7	39.5	L1	

3.2.7 Antenna Requirements

- Procedure:

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

- Conclusion: Comply

→ This module uses a Dipole antenna. The antenna connector is a left hand SMA. And the antenna with a cable is connected to the module using U-FL connector. (Refer to External photo file.)

- Minimum Standard:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

APPENDIX

TEST EQUIPMENT FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

	Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
	Spectrum Analyzer	Agilent	E4440A	10/09/30	11/09/30	MY45304199
\boxtimes	Spectrum Analyzer	Rohde Schwarz	FSQ26	11/01/11	12/01/11	200445
	Spectrum analyzer	Agilent	E4404B	11/03/08	12/03/08	US41061134
	Spectrum Analyzer(RE)	H.P	8563E	10/10/04	11/10/04	3551A04634
	MXA Signal Analyzer	Agilent Technologies, Inc	N9020A	11/01/07	12/01/07	MY49100833
	Power Meter	H.P	EPM-442A	10/07/01	11/07/01	GB37170413
	Power Sensor	H.P	8481A	10/07/01	11/07/01	3318A96332
	Power Divider	Agilent	11636B	10/10/05	11/10/05	56471
	4-Way Power Divider	ET Industries	D-0526-4	10/12/24	11/12/24	210195001
	Power Splitter	Anritsu	K241B	10/10/05	11/10/05	020611
	Power Splitter	Anritsu	K241B	10/07/01	11/07/01	017060
	Power Splitters & Dividers	Aeroflex/Weinschel	1594	11/02/21	12/02/21	1177
	Frequency Counter	H.P	5342A	10/07/01	11/07/01	2119A04450
	TEMP & HUMIDITY Chamber	JISCO	KR-100/J-RHC2	10/10/04	11/10/04	30604493/021031
\boxtimes	Digital Multimeter	H.P	34401A	11/03/07	12/03/07	3146A13475, US36122178
	Multifunction Synthesizer	HP	8904A	10/10/11	11/10/11	3633A08404
\boxtimes	Signal Generator	Rohde Schwarz	SMR20	11/03/08	12/03/08	101251
	Signal Generator	H.P	ESG-3000A	10/07/01	11/07/01	US37230529
	Vector Signal Generator	Rohde Schwarz	SMJ100A	11/01/11	12/01/11	100148
	Vector Signal Generator	Rohde Schwarz	SMBV100A	11/01/11	12/01/11	255571
	Audio Analyzer	H.P	8903B	10/07/02	11/07/02	3011A09448
	Modulation Analyzer	H.P	8901B	10/07/01	11/07/01	3028A03029
	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	11/03/07	12/03/07	GB43461134
	Universal Radio communication Tester	Rohde Schwarz	CMU200	11/03/07	12/03/07	106760
	Bluetooth Tester	TESCOM	TC-3000B	10/07/01	11/07/01	3000B000268
	Thermo hygrometer	BODYCOM	BJ5478	11/01/13	12/01/13	090205-3
	Thermo hygrometer	BODYCOM	BJ5478	11/01/13	12/01/13	090205-2
\boxtimes	Thermo hygrometer	BODYCOM	BJ5478	11/01/13	12/01/13	090205-4
	AC Power supply	DAEKWANG	5KVA	11/03/08	12/03/08	20060321-1
	DC Power Supply	HP	6622A	11/03/07	12/03/07	3448A03760
	DC Power Supply	HP	6633A	11/03/07	12/03/07	3524A06634
	DC Power Supply	Protek	PWS-3010D	10/10/04	11/10/04	4072702
	BAND Reject Filter	Microwave Circuits	N0308372	10/10/05	11/10/05	3125-01DC0352
	BAND Reject Filter	Wainwright	WRCG1750	10/10/05	11/10/05	2
	High-Pass Filter	ANRITSU	MP526D	10/10/04	11/10/04	M27756
	High-pass filter	Wainwright	WHNX2.1	N/A	N/A	1
\boxtimes	High-pass filter	Wainwright	WHNX3.0	N/A	N/A	9
	High-pass filter	Wainwright	WHNX5.0	N/A	N/A	8

	Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
	High-Pass Filter	Wainwright	WHKX8.5	N/A	N/A	1
	High-Pass Filter	Wainwright	D82346	N/A	N/A	9
	Tunable Notch Filter	Wainwright	WRCT800.0 /960.0-0.2/40-8SSK	N/A	N/A	32
	Tunable Notch Filter	Wainwright	WRCD1700.0 /2000.0-0.2/40- 10SSK	N/A	N/A	53
	Tunable Notch Filter	Wainwright	WRCT1900.0/ 2200.0-5/40-10SSK	N/A	N/A	30
	HORN ANT	ETS	3115	10/10/04	11/10/04	21097
	HORN ANT	ETS	3115	11/03/22	12/03/22	6419
\boxtimes	HORN ANT	A.H.Systems	SAS-574	11/03/25	13/03/25	154
	HORN ANT	A.H.Systems	SAS-574	11/03/25	13/03/25	155
	HORN ANT	SCHWARZBECK	BBHA9120A	10/04/13	12/04/13	322
	Dipole Antenna	Schwarzbeck	VHA9103	10/11/29	11/11/29	2116
	Dipole Antenna	Schwarzbeck	VHA9103	10/11/29	11/11/29	2117
	Dipole Antenna	Schwarzbeck	UHA9105	10/11/29	11/11/29	2261
	Dipole Antenna	Schwarzbeck	UHA9105	10/11/29	11/11/29	2262
	LOOP Antenna	ETS	6502	10/11/29	11/11/29	3471
	Coaxial Fixed Attenuators	Agilent	8491B	10/07/01	11/07/01	MY39260700
\boxtimes	Attenuator (3dB)	WEINSCHEL	56-3	10/10/05	11/10/05	Y2342
	Attenuator (3dB)	WEINSCHEL	56-3	10/10/05	11/10/05	Y2370
	Attenuator (10dB)	WEINSCHEL	23-10-34	10/10/01	11/10/01	BP4386
	Attenuator (10dB)	WEINSCHEL	23-10-34	11/01/11	12/01/11	BP4387
	Attenuator (10dB)	WEINSCHEL	86-10-11	10/10/05	11/10/05	446
	Attenuator (10dB)	WEINSCHEL	86-10-11	10/10/05	11/10/05	408
	Attenuator (20dB)	WEINSCHEL	86-20-11	10/10/05	11/10/05	432
	Attenuator (30dB)	JFW	50FH-030-300	11/03/07	12/03/07	060320-1
	Attenuator (40dB)	WEINSCHEL	57-40-33	10/10/01	11/10/01	NN837
	Termination	H.P	HP-909D	10/07/02	11/07/02	02750
	Termination	H.P	HP-909D	10/07/02	11/07/02	02702
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	10/07/01	11/07/01	788
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	10/07/01	11/07/01	790
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0215CAN	10/07/01	11/07/01	112
	Amplifier (30dB)	Agilent	8449B	11/03/07	12/03/07	3008A01590
\boxtimes	Amplifier (30dB)	H.P	8449B	11/03/07	12/03/07	3008A00370
	Amplifier	EMPOWER	BBS3Q7ELU	10/10/04	11/10/04	1020
	RF Power Amplifier	OPHIRRF	5069F	10/07/01	11/07/01	1006
\boxtimes	EMI TEST RECEIVER	R&S	ESU	11/01/20	12/01/20	100014
\boxtimes	BILOG ANTENNA	SCHAFFNER	CBL6112B	10/07/14	11/07/14	2737
\boxtimes	Amplifier (22dB)	H.P	8447E	11/01/11	12/01/11	2945A02865

	Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
	BICONICAL ANT.	Schwarzbeck	VHA 9103	10/11/29	11/11/29	91032789
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A1	10/11/29	12/11/29	1098
	BICONICAL ANT.	Schwarzbeck	VHA 9103	10/12/21	12/12/21	91031946
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A1	10/07/07	11/07/07	0590
\boxtimes	Low Noise Pre Amplifier	TSJ	MLA-100K01-B01-2	11/03/07	12/03/07	1252741
	Low Noise Pre Amplifier	TSJ	MLA-00108-B02-36	11/01/11	12/01/11	1518831
	Amplifier (25dB)	Agilent	8447D	11/03/07	12/03/07	2944A10144
	Amplifier (25dB)	Agilent	8447D	10/07/01	11/07/01	2648A04922
	Spectrum Analyzer(CE)	H.P	8591E	11/03/07	12/03/07	3649A05889
	Spectrum Analyzer(CE)	H.P	8591E	11/03/07	12/03/07	3649A05889
	LISN	Kyoritsu	KNW-407	11/01/11	12/01/11	8-317-8
	LISN	Kyoritsu	KNW-242	10/07/02	11/07/02	8-654-15
\boxtimes	LISN	R&S	ESH2-Z5	10/10/01	11/10/01	828739006
	CVCF	NF Electronic	4420	11/03/08	12/03/08	304935/337980
\boxtimes	CVCF	NF Electronic	4420	11/03/08	12/03/08	3049354420023
	50 ohm Terminator	HME	CT-01	11/01/11	12/01/11	N/A
	RFI/FIELD Intensity Meter	Kyoritsu	KNM-2402	10/07/02	11/07/02	4N-170-3
\boxtimes	EMI TEST RECEIVER	R&S	ESCI	11/03/08	12/03/08	100364