Commutative Algebra 1

Labix

November 26, 2024

Abstract

Contents

1	Basic Notions of Commutative Rings 1.1 Local Rings	4 4 5 5 6
2	2.4 Extensions and Contractions of Ideals	8 8 10 12 13
3	3.2 Monomial Ideals	15 15 16 16
4	I.2 Nakayama's Lemma	17 18 19 20 21
5	Localization at a Prime Ideal	23 24 25 26 27
6	Associated Prime	28 28 28 28 28
7	Integral Dependence 7.1 Integral Elements 7.2 Integral Extensions 7.3 The Going-Up and Going-Down Theorems 7.4 Normal Domains 7.5 Dedekind Domains	30 30 31 32 32
8	Algebra Over a Commutative Ring 3.1 Commutative Algebras	33 33 34 34
9	Discrete Valuation Rings 9.1 Discrete Valuation Rings	35 35
10	Dimension Theory for Rings 10.1 Krull Dimension and Height	37 37 37 38

Commutative Algebra 1		Labix
10.4 Global Dimension of a Ring		39

1 Basic Notions of Commutative Rings

1.1 Local Rings

Definition 1.1.1: Local Rings

Let R be a commutative ring. We say that R is a local ring if it has a unique maximal ideal m. In this case, we say that R/m is the residue field of R.

Example 1.1.2

Consider the following commutative rings.

- $\mathbb{Z}/6\mathbb{Z}$ is not a local ring.
- $\mathbb{Z}/8\mathbb{Z}$ is a local ring.
- $\mathbb{Z}/24\mathbb{Z}$ is not a local ring.
- $\mathbb{R}[x]$ is not a local ring.

Proof.

- The only ideals of $\mathbb{Z}/6\mathbb{Z}$ are $(2+6\mathbb{Z})$ and $(3+6\mathbb{Z})$. They do not contain each other and so they are both maximal.
- The only ideals of $\mathbb{Z}/8\mathbb{Z}$ are $(2+8\mathbb{Z})$ and $(4+8\mathbb{Z})$. But $(2+8\mathbb{Z})\supseteq (4+8\mathbb{Z})$. Hence $\mathbb{Z}/8\mathbb{Z}$ has a unique maximal ideal.
- A similar proof as above ensues.
- Any irreducible polynomial $f \in \mathbb{R}[x]$ is such that (f) is a maximal ideal. Indeed the evaluation homomorphism gives an isomorphism $\frac{\mathbb{R}[x]}{(f)} \cong \mathbb{R}$.

Proposition 1.1.3

Let R be a ring and I an ideal of R. Then I is the unique maximal ideal of R if and only if I is the set containing all non-units of R.

Proof. Let I be the unique maximal ideal of R. Clearly I does not contain any unit else I=R. Now suppose that r is a non-unit. Suppose that $r\notin I$. Define $J=\{sr|s\in R\}$ Clearly J is an ideal. It must be contained in some maximal ideal. Since I is the unique maximal ideal, $J\subseteq I$. But this means that $r\in I$, a contradiction. Thus every non-unit is in I.

Suppose that I contains all non-units of R. Let $r \notin I$. Then there exists $s \notin I$ such that rs = 1. Then (r+I)(s+I) = 1+I in R/I. This means that every element of R/I has a multiplicative inverse which means that R/I is a field and thus I is a maximal ideal. Now let $J \neq I$ be another maximal ideal. Then J contains some unit r. This implies that J = R and thus I is the unique maximal ideal.

Example 1.1.4

Let k be a field. Then the ring of power series k[[x]] is a local ring.

Proof. Let M be the set of all non-units of k[[x]]. I first show that $f \in M$ if and only if the constant term of f is non-zero. Let g be a power series. Then the nth coefficient of $f \cdot g$ is given by

$$c_n = \sum_{k=0}^n a_k b_{n-k}$$

If the constant term of f is 0, then $c_0 = 0$ and so $f \cdot g \neq 1$. Now if the constant term of f is

 $a_0 \neq 0$, then set $b_0 = \frac{1}{a_0}$. Now we can use the formula $0 = c_n$ to deduce

$$b_n = -\frac{\sum_{k=1}^{n} a_k b_{n-k}}{a_0}$$

. This is such that $a_n \cdot b_n = 0$. Define $g = \sum_{k=0}^{\infty} b_k x^k$. Then $f \cdot g = 1$. Thus f is a unit.

By the above proposition, we conclude that M is the unique maximal ideal of k[[x]].

We will discuss more of local rings in the topic of localizations.

1.2 Noetherian Commutative Rings

We recall some facts about Noetherian rings. In the following, let R be a commutative ring, although they are also true if R is non-commutative if we take all modules defined below to be left (right) R-modules.

• If we have a short exact sequence of *R*-modules:

$$0 \longrightarrow M_1 \stackrel{f}{\longrightarrow} M_2 \stackrel{g}{\longrightarrow} M_3 \longrightarrow 0$$

Then M_2 is Noetherian if and only if M_1 and M_3 are Noetherian.

- If M and N are R-modules, then $M \oplus N$ is Noetherian if and only if M and N are Noetherian.
- If M is an R-module and N is an R-submodule of M, then M is Noetherian if and only if N and M/N are Noetherian.
- If R is Noetherian and I is an ideal of R, then R/I is Noetherian.
- Later when once has seen localization, we can also prove that: If R is Noetherian then $S^{-1}R$ is Noetherian for any multiplicative subset S of R.

Theorem 1.2.1: Hilbert's Basis Theorem

Let R be a commutative ring. If R is Noetherian, then

$$R[x_1,\ldots,x_n]$$

is a Noetherian ring.

Proposition 1.2.2

Let $R = \bigoplus_{i=0}^{n} R_i$ be a graded ring. Then R is Noetherian if and only if R_0 is Noetherian and R is finitely generated as an R_0 -module.

1.3 Artinian Commutative Rings

We recall some facts about Artinian rings. In the following, let R be a commutative ring, although they are also true if R is non-commutative if we take all modules defined below to be left (right) R-modules.

• If we have a short exact sequence of *R*-modules:

$$0 \longrightarrow M_1 \stackrel{f}{\longrightarrow} M_2 \stackrel{g}{\longrightarrow} M_3 \longrightarrow 0$$

Then M_2 is Artinian if and only if M_1 and M_3 are Artinian.

• If M and N are R-modules, then $M \oplus N$ is Artinian if and only if M and N are Artinian.

- If M is an R-module and N is an R-submodule of M, then M is Artinian if and only if N and M/N are Artinian.
- If R is Artinian and I is an ideal of R, then R/I is Artinian.

Proposition 1.3.1

Let R be an integral domain. Then R is Artinian if and only if R is a field.

Proposition 1.3.2

Let R be a commutative ring. If R is Artinian, then the following are true.

- Every prime ideal of R is maximal
- There is an equality N(R) = J(R)
- R has only a finite number of maximal ideals

Theorem 1.3.3: (Hopkins)

Let R be a commutative ring. If R is Artinian then R is Noetherian.

1.4 Spectra of a Ring

Definition 1.4.1: Max Spectrum of a Ring

Let A be a commutative ring. Define the max spectrum of A to be

$$\max \operatorname{Spec}(A) = \{ m \subseteq A \mid m \text{ is a maximal ideal of } A \}$$

Definition 1.4.2: Spectrum of a Ring

Let A be a commutative ring. Define the spectrum of A to be

$$Spec(A) = \{ p \subseteq A \mid p \text{ is a prime ideal of } A \}$$

Example 1.4.3

Consider the following commutative rings.

- Spec($\mathbb{Z}/6\mathbb{Z}$) = {(2 + 6 \mathbb{Z}), (3 + 6 \mathbb{Z})}
- Spec($\mathbb{Z}/8\mathbb{Z}$) = {(2 + 8 \mathbb{Z})}
- Spec($\mathbb{Z}/24\mathbb{Z}$) = {(2 + 24 \mathbb{Z}), (3 + 24 \mathbb{Z})}
- $\bullet \ \operatorname{Spec}(\mathbb{R}[x]) = \{(f) \mid f \text{ is irreducible } \}$

Proof.

- The only ideals of $\mathbb{Z}/6\mathbb{Z}$ are $(2+6\mathbb{Z})$ and $(3+6\mathbb{Z})$. We need to find which ones are prime ideals. Now $\mathbb{Z}/6\mathbb{Z}\setminus(2+6\mathbb{Z})$ consists of $1+6\mathbb{Z}$, $3+6\mathbb{Z}$ and $5+6\mathbb{Z}$. No multiplication of these elements give an element of $(2+6\mathbb{Z})$. So any two elements in $\mathbb{Z}/6\mathbb{Z}$ which multiply to an element of $(2+6\mathbb{Z})$ must contain one element that lie in $(2+6\mathbb{Z})$. Hence $(2+6\mathbb{Z})$ is prime. This is similar for $(3+6\mathbb{Z})$. Hence $\operatorname{Spec}(\mathbb{Z}/6\mathbb{Z})=\{(2+6\mathbb{Z}),(3+6\mathbb{Z})\}$.
- The only ideals of $\mathbb{Z}/8\mathbb{Z}$ are $(2+8\mathbb{Z})$ and $(4+8\mathbb{Z})$. A similar argument as above shows that $(2+8\mathbb{Z})$ is a prime ideal. However, $6+8\mathbb{Z}\notin (4+8\mathbb{Z})$ while $(6+8\mathbb{Z})^2=4+8\mathbb{Z}\in (4+8\mathbb{Z})$ which shows that $(4+8\mathbb{Z})$ is not a prime ideal.
- A similar proof as above ensues.
- Recall that $\mathbb{R}[x]$ is a principal ideal domain. Let I = (f) be a prime ideal of $\mathbb{R}[x]$. Then f is irreducible. Thus every prime ideal of $\mathbb{R}[x]$ is of the form (f) for f an irreducible

polynomial.

Lemma 1.4.4

Let R, S be commutative rings. Let $f_1: R \times S \to R$ and $f_2: R \times S \to S$ denote the projection maps. Then the map

$$f_1^* \coprod f_2^* : \operatorname{Spec}(R) \coprod \operatorname{Spec}(S) \to \operatorname{Spec}(R \times S)$$

is a bijection.

Proof. The core of the proof is the fact that P is a prime ideal of $R \times S$ if and only if $P = R \times Q$ or $P = V \times S$ for either a prime ideal Q of P or a prime ideal V of S. It is clear that if Q is a prime ideal of S and S are both prime ideals of S of S.

So suppose that P is a prime ideal in $R \times S$. Let $e_1 = (1,0)$ and $e_2 = (0,1)$. Since $P \neq R$, at least one of e_1 or e_2 is not in P. Without loss of generality assume that $e_1 \notin P$. But $e_1e_2 = 0 \in P$ and P being prime implies that $e_2 \in P$. Since e_2 is the identity of $\{0\} \times S \cong S$, we conclude that $\{0\} \times S \subseteq P$. By the correspondence theorem, the projection map $f_1: R \times S \to R$ gives a bijection between prime ideals of $R \times S$ that contain $\{0\} \times S$ and prime ideals of R. So $f_1(P)$ is a prime ideal of R. Thus $P = f_1(P) \times S$ which is exactly what we wanted.

Now the bijection is clear. $f_1^* \coprod f_2^*$ sends a prime ideal P of R to $P \times S$ and it sends a prime ideal Q of S to $R \times Q$. This map is surjective by the above argument. It is injective by inspection.

2 Ideals Of a Commutative Ring

2.1 Operations on Ideals

Proposition 2.1.1

Let *R* be a commutative ring. Let $S, T \subseteq R$ be subsets of *R*. Then

$$\langle S \cup T \rangle = \langle S \rangle + \langle T \rangle$$

Proposition 2.1.2

Let R be a commutative ring. Let I,J be ideals of R. Suppose that $I\subseteq J$. Let \overline{J} denote the ideal of R/I corresponding to J under the correspondence theorem. Then there is an isomorphism

$$\frac{R/I}{\overline{J}} \cong \frac{R}{I+J}$$

given by the formula $(r+I) + \overline{J} \mapsto r + (I+J)$.

Example 2.1.3

There is an isomorphism given by

$$\frac{\mathbb{Z}[x]}{(x+1, x^2+2)} \cong \mathbb{Z}/3\mathbb{Z}$$

Proof. Using the above propositions, we have that

$$\frac{\mathbb{Z}[x]}{(x+1, x^2+2)} = \frac{\mathbb{Z}[x]}{(x+1) + (x^2+2)}$$
$$\cong \frac{\mathbb{Z}[x]/(x+1)}{(3)}$$

Indeed, the ideal (x^2+2) corresponds to the ideal (3) in $\frac{\mathbb{Z}[x]}{(x+1)}$ because the remainder of x^2+2 divided by (x+1) is (3). Now $\mathbb{Z}[x]/(x+1)\cong\mathbb{Z}$ by the evaluation homomorphism. Thus quotieting by the ideal (3) gives the field $\mathbb{Z}/3\mathbb{Z}$.

Some more important results from Groups and Rings and Rings and Modules include:

- If I and J are coprime, then $IJ = I \cap J$
- Chinese Remainder Theorem: If *I* and *J* are coprime, then there is an isomorphism

$$\frac{R}{I \cap J} \cong \frac{R}{I} \times \frac{R}{J}$$

2.2 Radical Ideals

The radical of an ideal is a very different notion from the radical of module.

Definition 2.2.1: Radical of an Ideal

Let I be an ideal of a ring R. Define the radical of I to be

$$\sqrt{I} = \{ r \in R | r^n \in I \text{ for some } n \in \mathbb{N} \}$$

Proposition 2.2.2

Let R be a commutative ring. Let I be an ideal. Then the following are true.

- $I \subseteq \sqrt{I}$
- $\sqrt{\sqrt{I}} = \sqrt{I}$
- $\sqrt{I^m} = \sqrt{I}$ for all $m \ge 1$
- $\sqrt{I} = R$ if and only if I = R

Proof.

- Let $r \in I$. Then $r^1 \in I$ Thus by choosing n = 1 we shows that $r^n \in I$. Thus $r \in \sqrt{I}$.
- By the above, we already know that $\sqrt{I} \subseteq \sqrt{\sqrt{I}}$. So let $r \in \sqrt{\sqrt{I}}$. Then there exists some $n \in \mathbb{N}$ such that $r^n \in \sqrt{I}$. But $r^n \in \sqrt{I}$ means that there exists some $m \in \mathbb{N}$ such that $(r^n)^m \in I$. But $nm \in \mathbb{N}$ is a natural number such that $r^{nm} \in I$. Hence $r \in \sqrt{I}$ and so we conclude.

Proposition 2.2.3

Let R be a commutative ring. Let I, J be ideals of R. Then the following are true.

- If $I \subseteq J$ then $\sqrt{I} \subseteq \sqrt{J}$
- $\bullet \ \sqrt{IJ} = \sqrt{I \cap J}$
- $\sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}}$

Proof.

• Let $x \in \sqrt{IJ}$. Then $x^n \in IJ$. This means that there exists $i \in I$ and $j \in J$ such that $x^n = ij$. Since I and J are two sided ideals, we can conclude that $x^n = ij \in I$, J. Hence $x^n = ij \in I \cap J$. We conclude that $x \in \sqrt{I \cap J}$. Now let $x \in \sqrt{I \cap J}$. Then there exists $n \in \mathbb{N}$ such that $x^n \in I \cap J$. Then $x^n \in I$ and $x^n \in J$ implies that $x^{2n} = x^n \cdot x^n \in IJ$. We conclude that $x \in \sqrt{IJ}$.

Proposition 2.2.4

Let R be a commutative ring. Let I be an ideal. Then

$$\sqrt{I} = \bigcap_{\substack{p \text{ a prime ideal} \\ I \subseteq p \subseteq R}} p$$

Definition 2.2.5: Radical Ideals

Let R be a commutative ring. Let I be an ideal of R. We say that I is radical if

$$\sqrt{I} = I$$

In particular, by the above lemma it follows that the radical of an ideal is a radical ideal.

Lemma 2.2.6

Let R be a ring. Let P be a prime ideal of R. Then P is radical.

We conclude that there is an inclusion of types of ideal in which each inclusion is strict:

$$\underset{ideals}{\text{Maximal}} \subset \underset{ideals}{\text{Prime}} \subset \underset{ideals}{\text{Radical}}$$

Theorem 2.2.7

Let R be a commutative ring. Let I be an ideal of R. Denote φ to be the inclusion preserving one-to-one bijection

$$\left\{ \begin{smallmatrix} \text{Ideals of } R \\ \text{containing } I \end{smallmatrix} \right\} \quad \overset{1:1}{\longleftrightarrow} \quad \left\{ \begin{smallmatrix} \text{Ideals of } R/I \end{smallmatrix} \right\}$$

from the correspondence theorem for rings. In other words, $\varphi(A) = A/I$. Let $J \subseteq R$ be an ideal containing I. Then the following are true.

- J is a radical ideal if and only if $\varphi(J) = J/I$ is a radical ideal.
- *J* is a prime ideal if and only if $\varphi(J) = J/I$ is a prime ideal.
- J is a maximal ideal if and only if $\varphi(J) = J/I$ is a maximal ideal.

Proof.

• Let J be a radical ideal. Suppose that $r+I \in \sqrt{J/I}$. This means that $(r+I)^n = r^n + I \in J/I$ for some $n \in \mathbb{N}$. But this means that $r^n \in J$. This implies that $r \in \sqrt{J} = J$. Thus $r+I \in J/I$ and we conclude that $\sqrt{J/I} \subseteq J/I$. Since we also have $J/I \subseteq \sqrt{J/I}$, we conclude.

Now suppose that J/I is a radical ideal. Let $r \in \sqrt{J}$. This means that $r^n \in J$ for some $n \in \mathbb{N}$. Now $r^n + I = (r+I)^n \in J/I$ implies that $r+I \in \sqrt{J/I} = J/I$. Hence $r \in J$ and so $\sqrt{J} \subseteq J$. Since we also have that $J \subseteq \sqrt{J}$, we conclude.

- Let J be a prime ideal. Then R/J is an integral domain. By the second isomorphism theorem, we have that $R/J\cong (R/I)/(J/I)$ and hence (R/I)/(J/I) is also an integral domain. Hence J/I is a prime ideal. The converse is also true.
- Let J be a maximal ideal. Then R/J is a field. By the second isomorphism theorem, we have that $R/J \cong (R/I)/(J/I)$ and hence (R/I)/(J/I) is also a field. Hence J/I is a maximal ideal. The converse is also true.

Another way to write the bijections is via spectra:

$$\operatorname{Spec}(R/I) \ \stackrel{1:1}{\longleftrightarrow} \ \{P \in \operatorname{Spec}(R) \mid I \subseteq P\}$$

and

$$\mathsf{maxSpec}(R/I) \ \stackrel{1:1}{\longleftrightarrow} \ \{m \in \mathsf{maxSpec}(R) \mid I \subseteq m\}$$

2.3 Nilradical and Jacobson Ideals

Let R be a ring. Recall that an element $r \in R$ is nilpotent if $r^n = 0_R$ for some $n \in \mathbb{N}$. When R is commutative, we can form an ideal out of nilpotent elements.

Definition 2.3.1: Nilradicals

Let R be a ring. Define the nilradical of R to be

$$N(R) = \{r \in R \mid r \text{ is nilpotent}\}$$

Note that this is different from nilpotent ideals, as nilpotency is a property of an ideal. However the Nilradical ideal is a nil ideal and every sub-ideal of the nilradical is a nil ideal.

Proposition 2.3.2

Let R be a ring and N(R) its nilradical. Then the following are true.

- N(R) is an ideal of R
- N(R/N(R)) = 0

Proof.

- Suppose that r, s are nilpotent, meaning that $r^n = 0$ and $s^m = 0$. Then $(r + s)^{n+m} = 0$. Moreover, if $t \in R$ then $t \cdot r$ is also nilpotent
- Let $r \notin N(R)$. Every element $r + N(R) \in R/N(R)$ has the property that $r^n \neq 0$. Consider $(r + N(R))^n = r^n + N(R)$. If $r^n \in N(R)$ then $r^n = u$ for some nilpotent u, which means that r^n is nilpotent and thus r is nilpotent, a contradiction. This means that $r + N(R) \notin N(R/N(R))$ for all $r \notin N(R)$ and thus N(R/N(R)) = 0

Proposition 2.3.3

Let R be a commutative ring. The nilradical of R is the intersection of all prime ideals of R.

Proof. We want to show that

$$N(R) = \bigcap_{P \in \operatorname{Spec}(R)} P$$

Trivially N(R) is a prime ideal. Now suppose that $r \in R$ is in the intersection of all prime ideals. Then r^n also lies in every prime ideal.

Example 2.3.4

Consider the ring

$$R = \frac{\mathbb{C}[x, y]}{(x^2 - y, xy)}$$

Then its nilradical is given by N(R) = (x, y).

Proof. Notice that in the ring R, $x^3=x(x^2)=xy=0$ and $y^3=x^6=(x^3)^2=0$ and hence x and y are both nilpotent elements of R. By definition of the nilradical, we conclude that $(x,y)\subseteq N(R)$. Now (x,y) is a maximal ideal of $\mathbb{C}[x,y]$ because $\mathbb{C}[x,y]/(x,y)\cong\mathbb{C}$. Also notice that $(x,y)\supseteq (x^2-y,xy)$ because for any element $f(x)(x^2-y)+g(x)(xy)\in (x^2-y,xy)$, we have that

$$f(x)(x^2 - y) + g(x)(xy) \in (x^2 - y, xy) = (xf(x))x - f(x)y + (g(x)x)y$$
$$= (xf(x))x + (xg(x) - f(x))y \in (x, y)$$

By the correspondence theorem, $(x,y)/(x^2-y)$ is an maximal ideal of R. In particular, (x,y) is also a prime ideal. But the N(R) is the intersection of all prime ideals and hence $N(R) \subseteq (x,y)$. We conclude that N(R) = (x,y).

Definition 2.3.5: Reduced Rings

Let R be a commutative ring. We say that R is reduced if N(R) = 0.

Proposition 2.3.6

Let R be a commutative ring. Let I be an ideal of R. Then R/I is reduced if and only if I is a radical ideal.

So radical, prime and maximal ideals all have characterizations using the quotient ring:

- I is maximal if and only if R/I is a field.
- I is prime if and only if R/I is an integral domain.
- I is radical if and only if R/I is reduced.

Recall the notion of the Jacobson radical from Rings and Modules. Let R be a ring. The Jacobson radical of R is the radical

$$J(R) = \operatorname{rad}(R) = \bigcap_{\substack{S \leq R \\ R \text{ is cosimple}}} S$$

of R considered as a left R-module. But when R is a commutative ring, this description can be simplified.

Proposition 2.3.7

Let R be a commutative ring. Then

$$J(R) = \bigcap_{m \in \max \operatorname{Spec}(R)} m$$

Proof. Submodules of R are precisely ideals of R and cosimple ideals are ideals I of R for which R/I is simple. But if R/I is simple, then R/I contains no ideals which means that R/I is a field. So I is a maximal ideal.

Recall some properties of the Jacobson radical from Rings and Modules. For a (not necessarily commutative ring R),

• J(R/J(R)) = 0

Proposition 2.3.8

Let R be a commutative ring. Then $x \in J(R)$ if and only if $1 - xy \in R^{\times}$ for all $y \in R$.

Proof.

2.4 Extensions and Contractions of Ideals

Definition 2.4.1: Extension of Ideals

Let R, S be commutative rings. Let $f: R \to S$ be a ring homomorphism. Let I be an ideal of R. Define the extension I^e of I to S to be the ideal

$$I^e = \langle f(i) \mid i \in I \rangle$$

Proposition 2.4.2

Let R, S be commutative rings. Let $f: R \to S$ be a ring homomorphism. Let I, I_1, I_2 be an ideal of R. Then the following are true regarding the extension of ideals.

- Closed under sum: $(I_1 + I_2)^e = I_1^e + I_2^e$
- $(I_1 \cap I_2)^e \subseteq I_1^e \cap I_2^e$
- Closed under products: $(I_1I_2)^e = I_1^eI_2^e$
- $\bullet \ (I_1/I_2)^e \subseteq I_1^e/I_2^e$
- $rad(I)^e \subseteq rad(I^e)$

Definition 2.4.3: Contraction of Ideals

Let R, S be commutative rings. Let $f: R \to S$ be a ring homomorphism. Let J be an ideal of S. Define the contraction J^c of J to R to be the ideal

$$J^c = f^{-1}(J)$$

Proposition 2.4.4

Let R, S be commutative rings. Let $f: R \to S$ be a ring homomorphism. Let J, J_1, J_2 be an ideal of S. Then the following are true regarding the extension of ideals.

- $(J_1 + J_2)^e \supseteq J_1^e + J_2^e$
- Closed under intersections: $(J_1 \cap J_2)^e = J_1^e \cap J_2^e$
- $\bullet \ (J_1J_2)^e\supseteq J_1^eJ_2^e$
- $\bullet \ (J_1/J_2)^e \subseteq J_1^e/J_2^e$
- Closed under taking radicals: $rad(J)^e = rad(J^e)$

Proposition 2.4.5

Let R, S be commutative rings. Let $f: R \to S$ be a ring homomorphism. Let I be an ideal of R and let J be an ideal of S. Then the following are true.

- \bullet $I \subseteq I^{ec}$
- $\bullet \ \ J^{ce} \subseteq J$
- $\bullet \ \ I^e = I^{ece}$
- $\bullet \ J^c = J^{cec}$

2.5 Revisiting the Polynomial Ring

Proposition 2.5.1

Let R be a commutative ring. Then we have

$$N(R[x]) = N(R)[x]$$

Proof. Let $f = \sum_{k=0}^{n} a_k x^k \in N(R)[x]$. Then each a_k is nilpotent in R, and there exists $n_k \in \mathbb{N}$ such that $a_k^{n_k} = 0$. This also proves that $a_k x^k$ is nilpotent. Since the sum of nilpotents is a nilpotent, we conclude that f is nilpotent.

Now suppose that $f \in N(R[x])$. We induct on the degree of f. Let $\deg(f) = 0$. Then f is nilpotent and f lies in R. Thus $f \in N(R)[x]$. Now suppose that the claim is true for $\deg(f) \leq n-1$. Let $\deg(g) = n$ with leading coefficient b_n . Since g is nilpotent in R[x], there exists $m \in \mathbb{N}$ such that $g^m = 0$. Then in particular, $b_n^m = 0$ so that b_n is nilpotent. Then $b_n x^n$ is also nilpotent. Now since N(R[x]) is an ideal of R[x], we have that $g - b_n x^n \in N(R[x])$. By inductive hypothesis, $g - b_n x^n \in N(R)[x]$. Since N(R) is an ideal of R[x]. So $g = (g - b_n x^n) + b_n x^n \in N(R)[x]$. Thus we are done. \square

Some more important results from Groups and Rings and Rings and Modules include:

- If R is an integral domain, then R[x] is an integral domain.
- R is a UFD if and only if R[x] is a UFD
- $\bullet \ \ \mbox{If } F \mbox{ is a field, then } F[x] \mbox{ is an Euclidean domain, a PID and a UFD}$
- If F is a field, then the ideal generated by p is maximal if and only if p is irreducible.

Regarding ideals of the polynomial ring, the following maybe useful:

- I[x] is an ideal of R
- $\bullet \ \ \mbox{There is an isomorphism} \ \frac{R[x]}{I[x]} \cong \frac{R}{I}[x] \ \mbox{given by the map}$

$$\left(f = \sum_{k=0}^{n} a_k x^k + I[x]\right) \mapsto \left(\sum_{k=0}^{n} (a_k + I) x^k\right)$$

• If I is a prime ideal of R, then I[x] is a prime ideal of R[x].

Simplifying Generators of an Ideal 3

Ordering on the Monomials

Recall that a monomial in $R[x_1,\ldots,x_n]$ is an element in the polynomial ring of the form $x_1^{a_1}\cdots x_n^{a_n}$. For simplicity we write this as $x^{(a_1,\dots,a_n)}$.

Definition 3.1.1: Monomial Ordering

A monomial ordering on a polynomial ring $k[x_1,\ldots,x_n]$ is a relation > on \mathbb{N}^n . This means that the following are true.

- > is a total ordering on \mathbb{N}^n
- If a > b and $c \in \mathbb{N}^n$ then a + c > b + c
- > is a well ordering on \mathbb{N}^n (any nonempty subset of \mathbb{N}^n has a smallest element)

Definition 3.1.2: Lexicographical Order

Let $a=(a_1,\ldots,a_n)$ and $b=(b_1,\ldots,b_n)$ in \mathbb{N}^n . We say that $a>_{\mathrm{lex}} b$ if in the first nonzero entry of a - b is positive.

In practise this means that the we value more powers of x_1

Definition 3.1.3: Graded Lex Order

Let $a=(a_1,\ldots,a_n)$ and $b=(b_1,\ldots,b_n)$ in \mathbb{N}^n . We say that $a>_{\mathsf{grlex}} b$ if either of the following

- $\begin{array}{ll} \bullet & |a| = \sum_{k=1}^n a_k > \sum_{k=1}^n b_k = |b| \\ \bullet & |a| = |b| \text{ and } a >_{\operatorname{lex}} b \end{array}$

Definition 3.1.4: Graded Lex Order

Let $a=(a_1,\ldots,a_n)$ and $b=(b_1,\ldots,b_n)$ in \mathbb{N}^n . We say that $a>_{\mathsf{grlex}} b$ if either of the following

- $|a| = \sum_{k=1}^{n} a_k > \sum_{k=1}^{n} b_k = |b|$ |a| = |b| and the last nonzero entry of a-b is negative.

In practise we value lower powers of the last variable x_n .

Proposition 3.1.5

The above three orders are all monomial orderings of $k[x_1, \ldots, x_n]$.

Definition 3.1.6: Multidegree

Let $f \in k[x_1,\ldots,x_n]$ be a polynomial in the form $f = \sum_{v \in \mathbb{N}^n} c_v x^v$. Define the multidegree of

$$\mathrm{multideg}(f) = \max\{v \in \mathbb{N}^n | a_v \neq 0\}$$

where > is a monomial ordering on $k[x_1, \ldots, x_n]$.

Definition 3.1.7: Leading Objects

Let $f \in k[x_1, \dots, x_n]$ be a polynomial in the form $f = \sum_{v \in \mathbb{N}^n} c_v x^v$.

- Define the leading coefficient of f to be $LC(f) = c_{\text{multideg}(f)} \in k$
- Define the leading monomial of f to be $LM(f) = c_{multideg(f)} \in k$
- Define the leading term of f to be $LT = LC(f) \cdot LM(f)$

Proposition 3.1.8: Division Algorithm in $k[x_1, \ldots, x_n]$

3.2 Monomial Ideals

Definition 3.2.1: Monomial Ideals

An ideal $I \subset k[x_1, \dots, x_n]$ is said to be a monomial ideal if I is generated by a set of monomials $\{x^v|v\in A\}$ for some $A\subset \mathbb{N}^n$. In this case we write

$$I = \langle x^v | v \in A \rangle$$

Lemma 3.2.2

Let $I = \langle x^v | v \in A \rangle$ be an ideal of $k[x_1, \dots, x_n]$. Then a monomial x^w lies in I if and only if $x^v | x^w$ for some $v \in A$. Moreover, if $f = \sum_{w \in \mathbb{N}^n} c_w x^w \in k[x_1, \dots, x_n]$ lies in I, then each x^w is divisible by x^v for some $v \in A$.

Theorem 3.2.3: Dickson's Lemma

Every monomial ideal is finitely generated. In particular, every monomial ideal $I=\langle x^v|v\in A\rangle$ is of the form

$$I = \langle x^{v_1}, \dots, x^{v_n} \rangle$$

where $v_1, \ldots, v_n \in A$.

3.3 Groebner Bases

4 Modules over a Commutative Ring

Recall from Rings and Modules that a module consists of an abelian group M and a ring R such that there is a binary operation $\cdot : R \times M \to M$ that mimic the notion of a group action:

- For $r, s \in R$, $s \cdot (r \cdot m) = (sr) \cdot m$ for all $m \in M$.
- For $1_R \in R$ the multiplicative identity, $1_R \cdot m = m$ for all $m \in M$.

When R is a commutative ring, the first axiom is relaxed so that the resulting element of M makes no difference whether you apply r first or s first. This makes module act even more similarly than fields (although one still need the notion of a basis, which appears in free modules). Therefore the first section concerns transferring techniques in linear algebra such as the Cayley Hamilton theorem to module over a ring that mimic the notion of vector spaces.

4.1 Cayley-Hamilton Theorem

Definition 4.1.1: Characteristic Polynomial

Let R be a commutative ring. Let $A \in M_{n \times n}(R)$ be a matrix. Define the characteristic polynomial of A to be the polynomial

$$c_A(x) = \det(A - xI)$$

Theorem 4.1.2: Cayley-Hamilton Theorem

Let R be a commutative ring. Let $A \in M_{n \times n}(R)$ be a matrix. Then $c_A(A) = 0$.

Corollary 4.1.3

Let R be a commutative ring. Let M be a finitely generated R-module. Let I be an ideal of R. Let $\varphi \in \operatorname{End}_R(M)$. If $\varphi(M) \subseteq IM$, then there exists $a_1, \ldots, a_n \in I$ such that

$$\varphi^n + a_1 \varphi^{n-1} + \dots + a_{n-1} \varphi + \mathrm{id}_M = 0 : M \to M$$

Proof. Suppose that M is generated by x_1,\ldots,x_n . There exists a surjective map $\rho:R^n\to M$ given by $(r_1,\ldots,r_n)\mapsto \sum_{k=1}^n r_kx_k$. Since $\varphi(M)\subseteq IM$, we havt that

$$\varphi(x_k) = \sum_{i=1}^n r_{ki} x_i$$

for some $r_{ki} \in I$. Write A to be the matrix $A = (a_{ki})$. We now have a commutative diagram:

In other words, we have the diagram:

$$\begin{array}{ccc} R^n & \stackrel{\rho}{----} & M \\ \downarrow^{\varphi} & & \downarrow^{\varphi} \\ R^n & \stackrel{\rho}{----} & M \end{array}$$

By Cayley-Hamilton theorem, we have that $c_A(A) = 0$ is the zero function. For all $x \in \mathbb{R}^n$, we have that

$$\begin{array}{l} c_A(A)(x)=0\\ c_A(Ax)=0\\ \rho(c_A(Ax))=\rho(0)\\ c_A(\rho(Ax))=0\\ c_A(\varphi(\rho(x)))=0 \end{array} \qquad \qquad (\rho \text{ is R-linear})\\ c_A(\varphi(\rho(x)))=0 \qquad \qquad (\text{Diagram is commutative}) \end{array}$$

Since ρ is surjective, we conclude that for any $m \in M$, the above calculation gives $c_A(\varphi(m)) = 0$ so that $c_A(\varphi)$ is the zero map.

4.2 Nakayama's Lemma

Lemma 4.2.1: Nakayama's Lemma I

Let R be a commutative ring. Let M be a finitely generated R-module. Let I be an ideal of R. If IM = M, then there exists $r \in R$ such that rM = 0 and $r - 1 \in I$.

Proof. Choose $\varphi = \mathrm{id}_M$. Then φ is surjective so that $M = \varphi(M) \subseteq IM$. By crl 4.1.3, there exists $r_1, \ldots, r_n \in I$ such that $(1 + r_1 + \cdots + r_n)M = 0$. By choosing $r = 1 + r_1 + \cdots + r_n$, we see that rM = 0 and $r - 1 \in I$ so that we conclude.

Lemma 4.2.2: Nakayama's Lemma II

Let R be a commutative ring. Let M be a finitely generated R-module. Let I be an ideal of R such that $I \subseteq J(R)$ and IM = M. Then M = 0.

Proof. By Nakayama's lemma I, there exists $r \in R$ such that rM = 0 and $r - 1 \in I \subseteq J(R)$. By 2.3.8, we have that $1 - (r - 1)(-1) = r \in R^{\times}$. This means that r is invertible. Hence rM = 0 implies $M = r^{-1}rM = 0$.

Corollary 4.2.3

Let R be a commutative ring. Let M be a finitely generated R-module. Let I be an ideal of R such that $I \subseteq J(R)$. Let N be an R-submodule of M. If

$$M = IM + N$$

then M = N.

Proof. Since quotients of finitely generated modules are finitely generated, we know that M/N is finitely generated. Define the map

$$\phi: IM + N \to I\frac{M}{N}$$

by $\phi(im+n)=i(m+N)$. This map is clearly surjective. Now I claim that $\ker(\phi)=N$. For any $im+n\in\ker(\phi)$, we see that i(m+N)=N means that $im\in N$. Hence $im+n\in N$. On the other hand, if $im+n\in N$ then $im\in N$. But this means that im+N=N. Hence $im+n\in\ker(\phi)$. By the first isomorphism theorem for modules, we conclude that

$$\frac{M}{N} = \frac{IM + N}{N} \cong I\frac{M}{N}$$

We can now apply Nakayama's lemma II to conclude that M/N = 0 so that M = N.

Corollary 4.2.4

Let (R,m) be a local ring. Let M be a finitely generated R-module. Then the following are true

- M/mM is a finite dimensional vector space over R/m.
- $a_1, \ldots, a_n \in M$ generates M as an R-module if and only if $a_1 + mM, \ldots, a_n + mM$

generates M/mM as a R/m vector space.

Proof. For the first part, we already know that M/mM is an R-module. We notice that for any $k \in m$ and $t + mM \in M/mM$ we have that k(t + mM) = kt + kmM. But $kt \in m$ means that kt + kmM = mM. Hence M/mM is well defined as an R/m-module. Now suppose that M is finitely generated by the elements a_1, \ldots, a_n . Let $x + mM \in M/mM$. Then there exists $r_k \in R$ such that $x = r_1a_1 + \cdots + r_na_n$. But this means that

$$x + mM = r_1(a_1 + mM) + \dots + r_n(a_n + mM)$$

This means that M/mM is generated by $a_1 + mM, \dots, a_n + mM$. We conclude that M/mM is finite dimensional.

Suppose that $a_1,\ldots,a_n\in M$ generates M as an R-module. By the same argument as above, we can see that a_1+mM,\ldots,a_n+mM is a set of generators for M/mM. For the other direction, suppose that a_1+mM,\ldots,a_n+mM generates M/mM as an R/m-vector space. Define $N=Ra_1+\cdots+Ra_n\leq M$. Set I=J(R)=m. We want to show that M=IM+N. It is clear that $IM+N\leq M$. If $x\in M$, then there exists $r_k\in R$ such that $x+mM=r_1(a_1+mM)+\cdots+r_n(a_n+M)$. In particular, this means that

$$x - \sum_{k=1}^{n} r_k a_k \in mM$$

Hence $x \in IM + N$. We can now apply the above corollary to deduce that $M = N = Ra_1 + \cdots + Ra_n$ so that M is generated by a_1, \ldots, a_n . And so we are done.

4.3 Change of Rings

Definition 4.3.1: Extension of Scalars

Let R, S be commutative rings. Let $\varphi: R \to S$ be a ring homomorphism. Let M be an R-module. Define the extension of M to the ring S to be the S-module

$$S \otimes_R M$$

Definition 4.3.2: Restriction of Scalars

Let R,S be commutative rings. Let $\varphi:R\to S$ be a ring homomorphism. Let M be an S-module. Define the restriction of M to the ring R to be the R-module M equipped with the action

$$r \cdot_R m = \varphi(r) \cdot_S m$$

for all $r \in R$.

Theorem 4 3 3

Let R,S be commutative rings. Let $\varphi:R\to S$ be a ring homomorphism. Then there is an isomorphism

$$\operatorname{Hom}_S(S \otimes_R M, N) \cong \operatorname{Hom}_R(M, N)$$

for any R-module M and S-module N given as follows.

• For $f \in \operatorname{Hom}_S(S \otimes_R M, N)$, define the map $f^+ \in \operatorname{Hom}_R(M, N)$ by

$$f^+(m) = f(1 \otimes m)$$

• For $g \in \operatorname{Hom}_R(M,N)$, define the map $g^- \in \operatorname{Hom}_S(S \otimes_R M,N)$ by

$$g^-(s \otimes m) = s \cdot g(m)$$

4.4 Properties of the Hom Set

Let R be a ring. Let M, N be R-modules. Recall that in Rings and Modules that $\operatorname{Hom}_R(M, N)$ is a Z(R)-modules. When R is commutative, Z(R) = R so that the Hom set becomes an R-module.

Proposition 4.4.1

Let R be a commutative ring. Let M, N be R-modules. Then

$$\operatorname{Hom}_R(M,N)$$

is an *R*-module with the following binary operations.

- For $\phi, \varphi: M \to N$ two R-module homomorphisms, define $\phi + \varphi: M \to N$ by $(\phi + \varphi)(m) = \phi(m) + \varphi(m)$ for all $m \in M$
- For $\phi: M \to N$ an R-module homomorphism and rR, define $r\phi: M \to N$ by $(r\phi)(m) = r \cdot \phi(m)$ for all $m \in M$.

In particular, it is an abelian group.

Proof. We first show that the addition operation gives the structure of a group.

- ullet Since M is associative as an additive group, associativity follows
- Clearly the zero map $0 \in \operatorname{Hom}_R(M,N)$ acts as the additive inverse since for any $\phi \in \operatorname{Hom}_R(M,N)$, we have that $\phi(m)+0=0+\phi(m)=\phi(m)$ since 0 is the additive identity for M
- For every $\phi \in \operatorname{Hom}_R(M,N)$, the map taking m to $-\phi(m)$ also lies in $\operatorname{Hom}_R(M,N)$. Since $-\phi(m)$ is the inverse of $\phi(m)$ in M for each $m \in M$, we have that $-\phi$ is the inverse of ϕ

We now show that

- Let $r, s \in R$, we have that $((sr)\phi)(m) = (sr) \cdot \phi(m) = s \cdot (r \cdot \phi(m)) = s(r(\phi))(m)$ and hence we showed associativity.
- It is clear that $1_R \in R$ acts as the identity of the operation.

Thus we are done.

Proposition 4.4.2

Let R be a ring. Let I be an indexing set. Let M_i, N be R-modules for $i \in I$. Then the following are true.

• There is an isomorphism

$$\operatorname{Hom}\left(\bigoplus_{i\in I} M_i, N\right) \cong \bigoplus_{i\in I} \operatorname{Hom}(M_i, N)$$

• There is an isomorphism

$$\operatorname{Hom}\left(\prod_{i\in I} M_i, N\right) \cong \prod_{i\in I} \operatorname{Hom}(M_i, N)$$

Definition 4.4.3: Induced Map of Hom

Let R be a commutative ring. Let M_1, M_2, N be R-modules. Let $f: M_1 \to M_2$ be an R-module homomorphism. Define the induced map

$$f^*: \operatorname{Hom}_R(M_2, N) \to \operatorname{Hom}(M_1, N)$$

by the formula $\varphi \mapsto \varphi \circ f$

Lemma 4.4.4

Let R be a commutative ring. Let M_1, M_2, N be R-modules. Let $f: M_1 \to M_2$ be an R-module homomorphism. Then the induced map

$$f^*: \operatorname{Hom}(M_2, N) \to \operatorname{Hom}(M_1, N)$$

is an R-module homomorphism.

4.5 Applying Hom and Tensor to Exact Sequences

Proposition 4.5.1

Let R be a commutative ring. Let the following be an exact sequence of R-modules.

$$0 \longrightarrow M_1 \stackrel{f}{\longrightarrow} M_2 \stackrel{g}{\longrightarrow} M_3 \longrightarrow 0$$

Let N be an R-module. Then the following sequence

$$0 \longrightarrow \operatorname{Hom}_R(M_3.N) \xrightarrow{g^*} \operatorname{Hom}_R(M_2,N) \xrightarrow{f^*} \operatorname{Hom}_R(M_1,N)$$

is exact.

Proof.

• We first show that g^* is injective. Let $\phi, \rho \in \operatorname{Hom}(C,G)$ such that $g^*(\phi) = g^*(\rho)$. This means that $\phi \circ g = \rho \circ g$. Let $c \in C$. Since g is surjective, there exists $b \in B$ such that g(b) = c. Then

$$\phi(c) = \phi(g(b)) = \rho(g(b)) = \rho(c)$$

Hence $\phi = \rho$.

Now we show that $\operatorname{im}(g^*) \subseteq \ker(f^*)$. Let $g^*(\phi) \in \operatorname{Hom}(B,G)$ for $\phi \in \operatorname{Hom}(C,G)$. We want to show that $f^*(g^*(\phi)) = 0$. But we have that

$$(\phi \circ g \circ f)(a) = \phi(g(f(a))) = \phi(0) = 0$$

since im(f) = ker(g). Thus we conclude.

Finally we show that $\ker(f^*) \subseteq \operatorname{im}(g^*)$. Let $f^*(\phi) = 0$ for $\phi \in \operatorname{Hom}(B,G)$. This means that $\phi \circ f = 0$ or in other words, $\operatorname{im}(f) \subseteq \ker(\phi)$. Since $\phi(k) = 0$ for all $k \in \operatorname{im}(f)$, ϕ descends to a map $\overline{\phi} : \frac{B}{\operatorname{im}(f)} \to G$. But $\operatorname{im}(f) = \ker(g)$ hence this is equivalent to a map $\overline{\phi} : \frac{B}{\ker(g)} \to G$. But by the first isomorphism theorem and the fact that g is surjective,

we conclude that $\overline{g}: \frac{B}{\ker(g)} \stackrel{g}{\cong} C$, where $b + \ker(g) \mapsto g(b)$. Thus we have constructed a map $\overline{\phi} \circ \overline{g}^{-1}: C \to G$ given by $g(b) \mapsto b + \ker(g) \mapsto \phi(b)$. But now $g^*(\overline{\phi} \circ \overline{g}^{-1})$ is the map defined by

$$b \mapsto g(b) \mapsto b + \ker(g) \mapsto \phi(b)$$

and so this map is exactly ϕ . Thus $\phi \in \text{im}(g^*)$.

Proposition 4.5.2

Let R be a ring. Let the following be an exact sequence of R-modules.

$$0 \longrightarrow M_1 \stackrel{f}{\longrightarrow} M_2 \stackrel{g}{\longrightarrow} M_3 \longrightarrow 0$$

Let N be an R-module. Then the following sequence

$$M_1 \otimes N \xrightarrow{f \otimes \mathrm{id}_N} M_2 \otimes N \xrightarrow{g \otimes \mathrm{id}_N} M_3 \otimes N \longrightarrow 0$$

is exact.

However, one can observe that we did not imply that $M_1 \otimes N \to M_2 \otimes N$ is injective. Indeed, this is because tensoring does not preserve injections.

Localization 5

5.1 Localization of a Ring

Definition 5.1.1: Multiplicative Set

Let R be a commutative ring. $S \subseteq R$ is a multiplicative set if $1 \in S$ and S is closed under multiplication: $x, y \in S$ implies $xy \in S$

Definition 5.1.2: Localization of a Ring

Let R be a commutative ring and $S \subseteq R$ be a multiplicative set. Define the ring of fractions of R with respect to S by

$$S^{-1}R = \left\{ \frac{r}{s} \mid r \in R, s \in S \right\} / \sim$$

where \sim is defined by

$$\frac{r}{s} \sim \frac{r'}{s'}$$
 if and only if $\exists v \in S \text{ such that } v(ru'-r'u) = 0$

If $S = \{1, f, f^2, \dots\}$ then we write

$$S^{-1}R = R_f = R[1/f]$$

Proposition 5.1.3

Let $S^{-1}R$ be a ring of fractions.

- ullet \sim as defined in the ring of fractions is an equivalence relation
- $(S^{-1}R,+,\times)$ is a ring The map $k:R\to S^{-1}R$ defined by $r\mapsto r/1$ is a ring homomorphism, called the localization map.

Proof.

- Trivial
- Define addition by $\frac{r}{s} + \frac{r'}{s'} = \frac{rs' + r's}{ss'}$ and multiplication by $\frac{r}{s} \cdot \frac{r'}{s'} = \frac{rr'}{ss'}$. Clearly addition is abelian, and has identity $\frac{0}{1}$ and inverse $\frac{-r}{s}$ for any $\frac{r}{s} \in S^{-1}R$. Multiplication also has identity $\frac{1}{1}$.

Proposition 5.1.4: Universal Property

Let R be a commutative ring. Let S be a multiplicative subset of R. Let $k: R \to S^{-1}R$ be localization map. Then the following is true.

For all commutative rings B and ring homomorphisms $\phi: R \to B$ such that $\phi(s) \in B^{\times}$ for all $s \in S$, there exists a unique ring homomorphism $\psi: S^{-1}R \to B$ such that the following diagram commutes:

$$R \xrightarrow{k} S^{-1}R$$

$$\downarrow \exists ! \psi$$

$$B$$

Lemma 5.1.5

Let R be a commutative ring. Let $S \subseteq R$ be a multiplicative subset of R. If R is Noetherian, then $S^{-1}R$ is Noetherian.

5.2 Localization at a Prime Ideal

Lemma 5.2.1

Let *R* be a ring and *P* a prime ideal of *R*. Then $R \setminus P$ is a multiplicative set.

Proof. By definition, $xy \in P$ implies $x \in P$ or $y \in P$, since $R \setminus P$ removes all these elements, we have that $x \notin P$ and $y \notin P$ implies that $xy \notin P$.

Definition 5.2.2: Localization on Prime Ideals

Let R be a commutative ring. Let P be a prime ideal. Denote

$$R_p = (R \setminus P)^{-1}R$$

the localization of R at P.

Lemma 5.2.3

Let R be an integral domain. Then we have

$$Frac(R) = R_{(0)}$$

Proposition 5.2.4

Let R be a commutative ring and let p be a prime ideal of R. Then R_p is a local ring with unique maximal ideal given by

$$PR_p = \left\{ \frac{r}{s} \mid r \in P, s \notin P \right\}$$

Proof. Let I be the set of all non-units of R_p . It is sufficient to show that I is an ideal by the above lemma. Clearly if $i \in I$ then $r \cdot i$ is also not invertible. Explicitly, we have

$$I = \left\{ \frac{r}{s} \in R_p \middle| r \in p \right\}$$

Let $\frac{r_1}{s_1}, \frac{r_2}{s_2} \in I$, then $\frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1 s_2 + r_2 s_1}{s_1 s_2}$ is in I since $r_1, r_2 \in P$ and P being an ideal implies $r_1 s_2 + r_2 s_1 \in P$.

Be wary that in general localizations does not result in a local ring. This happens only when we are localizing with respect to a prime ideal. The importance of prime ideals is not explicit in the above because only using prime ideals P can $R \setminus P$ be a multiplicative set which ultimately allows localization to make sense.

5.3 Localization of a Module

Definition 5.3.1: Localization of a Module

Let R be a commutative ring and $S \subseteq R$ be a multiplicative set Let M be a R-module. Define the ring of fractions of M with respect to S by

$$S^{-1}M = \left\{ \frac{m}{s} | m \in M, s \in S \right\} / \sim$$

where \sim is defined by

$$\frac{m}{s} \sim \frac{m'}{s'}$$
 if and only if $\exists v \in S$ such that $v(mu' - m'u) = 0$

If $S = \{1, f, f^2, \dots\}$ then we write

$$S^{-1}M = M_f = M[1/f]$$

Lemma 5.3.2

Let R be a commutative ring. Let M be an R-module. Let $S \subseteq R$ be a multiplicative subset. Then $S^{-1}M$ is an $S^{-1}R$ -module with operation given by

$$\left(\frac{r}{s_1}, \frac{m}{s_2}\right) \mapsto \frac{r \cdot m}{s_1 s_2}$$

Definition 5.3.3: Induced Map of Localization

Let R be a commutative ring. Let $S \subseteq R$ be a multiplicative subset. Let M, N be R-modules. Let $\phi: M \to N$ be an R-module homomorphism. Define the induced map

$$S^{-1}\phi: S^{-1}M \to S^{-1}N$$

by the formula $\frac{m}{s} \mapsto \frac{\phi(n)}{s}$.

Lemma 5.3.4

Let R be a commutative ring. Let $S \subseteq R$ be a multiplicative subset. Let M, N be R-modules. Let $\phi: M \to N$ be an R-module homomorphism. Then the induced map

$$S^{-1}\phi: S^{-1}M \to S^{-1}N$$

is a well defined ring homomorphism.

Proposition 5.3.5

Let R be a commutative ring. Let $S \subseteq R$ be a multiplicative subset. Let the following be an exact sequence of R-modules.

$$0 \longrightarrow M_1 \stackrel{f}{\longrightarrow} M_2 \stackrel{g}{\longrightarrow} M_3 \longrightarrow 0$$

Then the following is an exact sequence of $S^{-1}R$ -modules.

$$0 \, \longrightarrow \, S^{-1}M_1 \, \stackrel{S^{-1}f}{\longrightarrow} \, S^{-1}M_2 \, \stackrel{S^{-1}g}{\longrightarrow} \, S^{-1}M_3 \, \longrightarrow \, 0$$

Corollary 5.3.6

Let R be a commutative ring. Let $S \subseteq R$ be a multiplicative subset. Let M be an R-module. Then the following are true.

• If N_1, N_2 are R-submodules of M, then

$$S^{-1}(N_1 + N_2) = S^{-1}N_1 + S^{-1}N_2$$

as $S^{-1}R$ -submodules of $S^{-1}M$.

• If N_1, N_2 are R-submodules of M, then

$$S^{-1}(N_1 \cap N_2) = S^{-1}N_1 \cap S^{-1}N_2$$

as $S^{-1}R$ -submodules of $S^{-1}M$.

• If N is an R-submodule of M, then

$$S^{-1}\frac{M}{N} \cong \frac{S^{-1}M}{S^{-1}N}$$

as $S^{-1}R$ -modules.

 \bullet If N is an R-module, then

$$S^{-1}(M \oplus N) \cong S^{-1}M \oplus S^{-1}N$$

as $S^{-1}R$ -modules.

Proposition 5.3.7

Let R be a commutative ring. Let M be an R-module. Then there is an isomorphism

$$S^{-1}M \cong S^{-1}R \otimes_R M$$

of $S^{-1}R$ -modules given by $\frac{m}{s} \mapsto \frac{1}{s} \otimes m$.

Lemma 5.3.8

Let R be a commutative ring. Let $S \subseteq R$ be a multiplicative subset. Let M, N be R-modules. Let $\phi: M \to N$ be an R-module homomorphism. Then the following are true.

• Localization commutes with kernels:

$$S^{-1} \ker(\phi) \cong \ker(S^{-1}\phi)$$

• Localization commutes with images:

$$S^{-1}(\operatorname{im}\phi) \cong \operatorname{im}(S^{-1}\phi)$$

• Localization commutes with cokernels:

$$S^{-1}\frac{N}{\operatorname{im}(\phi)} \cong \frac{S^{-1}N}{\operatorname{im}(S^{-1}\phi)}$$

5.4 Local Properties

Definition 5.4.1: Local Properties

Let R be a commutative ring. Let M be an R-module.

- A property of R-modules is local if the following is true. M has the property if and only if M_P has the property for all prime ideals P.
- A property of an element of M is local if the following is true. $m \in M$ has the

property if and only if $m \in M_P$ has the property.

More local properties: zero, nilpotent, injective, surjective, isomorphic Non-local properties: freeness, domain

Proposition 5.4.2: Exactness is Local

Let R be a commutative ring. Let M_1, M_2, M_3 be R-modules. Let $f: M_1 \to M_2$ and $g: M_2 \to M_3$ be R-module homomorphisms. Then the following conditions are equivalent.

• The following sequence is exact:

$$0 \longrightarrow M_1 \stackrel{f}{\longrightarrow} M_2 \stackrel{g}{\longrightarrow} M_3 \longrightarrow 0$$

• The following sequence is exact:

$$0 \longrightarrow (M_1)_P \xrightarrow{f_P} (M_2)_P \xrightarrow{g_P} (M_3)_P \longrightarrow 0$$

for all prime ideals P of R.

• The following sequence is exact:

$$0 \longrightarrow (M_1)_m \xrightarrow{f_m} (M_2)_m \xrightarrow{g_m} (M_3)_m \longrightarrow 0$$

for all maximal ideals m of R.

5.5 Ideals of a Localization

Definition 5.5.1: Ideals Closed Under Division

Let R be a commutative ring. Let I be an ideal of R. Let $S \subseteq R$ be a multiplicative subset. We say that I is closed under division by s if for all $s \in S$ and $a \in R$ such that $sa \in I$, we have $a \in I$.

Lemma 5.5.2: L

t R be a commutative ring. Let I be an ideal of R. Let $S \subseteq R$ be a multiplicative subset. Let $\iota : R \hookrightarrow S^{-1}R$ be the inclusion homomorphism. Then we have

$$I^e = S^{-1}I$$

Theorem 5.5.3

Let R be a commutative ring. Let I be an ideal of R. Let $S \subseteq R$ be a multiplicative subset. Let $\iota: R \hookrightarrow S^{-1}R$ be the inclusion homomorphism. Then there is a one-to-one bijection

$$\left\{J\mid J \text{ is an ideal of } S^{-1}R\right\} \ \stackrel{1:1}{\longleftrightarrow} \ \left\{I\mid_{I \text{ is closed under division by } S}\right\}$$

given by $J \mapsto J^c$.

Proposition 5.5.4

Let R be a commutative ring. Let I be an ideal of R. Let $S \subseteq R$ be a multiplicative subset. Then the above bijection restricts to the following bijection

$$\left\{J\mid J \text{ is a prime ideal of }S^{-1}R\right\} \ \stackrel{\text{1:1}}{\longleftrightarrow} \ \left\{I\mid I \text{ is a prime ideal of }R \text{ and } \atop I\cap S=\emptyset\right\}$$

6 Primary Decomposition

6.1 Support of a Module

Definition 6.1.1: Support of a Module

Let A be a commutative ring. Let M be an A-module. The support of M is the subset

$$Supp(M) = \{ P \text{ a prime ideal of } A \mid M_P \neq 0 \}$$

6.2 Associated Prime

Definition 6.2.1: Associated Prime

Let M be an A-module. An associated prime P of M is a prime ideal of A such that there exists some $m \in M$ such that $P = \operatorname{Ann}(m)$.

6.3 Primary Ideals

Definition 6.3.1: Primary Ideals

Let R be a commutative ring. Let Q be a proper ideal of R. We say that Q is a primary ideal of R if $fg \in Q$ implies $f \in Q$ or $g^m \in Q$ for some m > 0.

Lemma 6.3.2

Let A be a commutative ring. Let Q be a primary ideal of A. Then \sqrt{Q} is the smallest prime ideal containing Q.

Lemma 6.3.3

Let R be a Noetherian ring and I be a proper ideal that is not primary. Then

$$I = J_1 \cap J_2$$

for some ideals $J_1, J_2 \neq I$.

Definition 6.3.4: P-Primary Ideals

Let A be a commutative ring. Let P be a prime ideal. Let Q be an ideal. We say that Q is a P-primary ideal of A if

$$Q=\sqrt{P}$$

Theorem 6.3.5

Let A be a Noetherian ring and Q an ideal of A. Then Q is P-primary if and only if $Ann(A/Q) = \{P\}$.

6.4 Primary Decomposition

We want to express ideal I in R as $I = P_1^{e_1} \cdots P_n^{e_n}$ similar to a factorization of natural numbers, for some prime ideals P_1, \dots, P_n . However this notion fails and thus we have the following new type of ideal.

Definition 6.4.1: Primary Decompositions

Let A be a commutative ring. Let I be an ideal of A. A primary decomposition I consists of primary ideals Q_1, \ldots, Q_r of A such that

$$I = Q_1 \cap \dots \cap Q_r$$

Definition 6.4.2: Minimal Primary Decompositions

Let A be a commutative ring. Let I be an ideal of A. Let

$$I = Q_1 \cap \dots \cap Q_r$$

be a primary decomposition of I. We say that the decomposition is minimal if the following are true.

- Each $\sqrt{Q_i}$ are distinct for $1 \le i \le r$
- Removing a primary ideal changes the intersection. This means that for any i, $I \neq \bigcap_{j \neq i} Q_j$

Theorem 6.4.3

Every proper ideal in a Noetherian ring has a primary decomposition.

Lemma 6.4.4

Let $\phi:R\to S$ be a ring homomorphism and Q be a primary ideal in S. Then $\phi^{-1}(Q)$ is primary in R.

7 Integral Dependence

7.1 Integral Elements

Definition 7.1.1: Integral Elements

Let B be a commutative ring and let $A\subseteq B$ be a subring. Let $b\in B$. We say that b is integral over A if there exists a monic polynomial $p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_0\in A[x]$ such that p(b)=0.

When *A* and *B* are field, this is a familiar notion in Field and Galois theory.

Lemma 7.1.2

Let K be a field. Let $F \subseteq K$ be a subfield. Let $k \in K$. Then k is integral over F if and only if k is algebraic over F.

Proposition 7.1.3

Let *B* be a commutative ring and let $A \subseteq B$. Let $b \in B$. Then the following are equivalent.

- ullet b is integral over A
- $A[b] \subseteq B$ is finitely generated A-submodule.
- There exists an A sub-algebra $A' \subseteq B$ such that $A[b] \subseteq A'$ and A' is finitely generated as an A-module.

Proposition 7.1.4

Let B be a commutative ring and let $A \subseteq B$ be a subring. Let $b_1, b_2 \in B$ be integral over A. Then $b_1 + b_2$ and b_1b_2 are both integral over A.

7.2 Integral Extensions

Definition 7.2.1: Integral Extensions

Let B be a commutative ring and let $A \subseteq B$ be a subring. We say that B is integral over A if all elements of B are integral over A.

Lemma 7.2.2

Let $A \subseteq B \subseteq C$ be commutative rings. If C is integral over B and B is integral over A, then C is integral over A.

Proposition 7.2.3

Let A, B be commutative rings such that $A \subset B$ is an integral extension. Let J be an ideal of B. Then $\frac{B}{J}$ is integral over $\frac{A}{J \cap A}$.

Proposition 7.2.4

Let A, B be commutative rings such that $A \subset B$ is an integral extension. Let S be a multiplicative subset of B. Then $S^{-1}B$ is integral over $S^{-1}A$.

Lemma 7.2.5

Let A, B be integral domains such that $A \subset B$ is an integral extension. Then A is a field if and only if B is a field.

Definition 7.2.6: Integral Closure

Let B be a commutative ring. Let $A \subseteq B$ be a subring. Define the subring

$$\overline{A} = \{b \in B \mid b \text{ is integral over } A\}$$

to be the integral closure of A in B. If $\overline{A} = A$, then we say that A is integrally closed in B.

Lemma 7.2.7

Let *B* be a ring and let $A \subseteq B$ be a subring. Then \overline{A} is an integral extension of *A*.

7.3 The Going-Up and Going-Down Theorems

We want to compare prime ideals between integral extensions.

Proposition 7.3.1

Let A, B be rings such that $A \subset B$ is an integral extension. Let Q be a prime ideal of B. Then $Q \cap A$ is a maximal ideal of A if and only if Q is a maximal ideal of B.

Proposition 7.3.2

Let A,B be rings such that $A\subset B$ is an integral extension. Let P be a prime ideal of A. Then the following are true.

- There exists a prime ideal Q of B such that $P = Q \cap A$
- If Q_1, Q_2 are prime ideals of B such that $Q_1 \cap A = P = Q_2 \cap B$ and $Q_1 \subseteq Q_2$, then $Q_1 = Q_2$.

Theorem 7.3.3: The Going-Up Theorem

Let A,B be rings such that $A\subset B$ is an integral extension. Let $0\leq m< n$. Consider the following situation

where $Q_i \cap A = P_i$ for $1 \le i \le m$. Then there exists prime ideals Q_{m+1}, \ldots, Q_n of B such that the following are true.

- $Q_{m+1} \subseteq \cdots \subseteq Q_n$
- $Q_i \cap A = P_i$ for $m+1 \le i \le n$

7.4 Normal Domains

Definition 7.4.1: Normal Domains

Let R be a domain. We say that R is normal (intergrally closed) if A is integrally closed in its field of fractions.

The integral closure of R in Frac(R) is called the normalization of R.

7.5 Dedekind Domains

Definition 7.5.1: Dedekind Domains

Let R be a ring. We say that R is a dedekind domain if the following are true.

- \bullet R is an integral domain
- ullet R is an integrally closed
- R is Noetherian
- \bullet Every non-zero prime ideal of R is maximal

8 Algebra Over a Commutative Ring

8.1 Commutative Algebras

Definition 8.1.1: Commutative Algebras

Let R be a commutative ring. A commutative R-algebra is an R-algebra A that is commutative.

Proposition 8.1.2

Let R be a commutative ring. Then the following are equivalent characterizations of a commutative R-algebra.

- \bullet A is a commutative R-algebra
- A is a commutative ring together with a ring homomorphism $f: R \to A$

Proof. Suppose that A is an R-algebra. Then define a map $f: R \to A$ by $f(r) = r \cdot 1$ where $r \cdot 1$ is the module operation on A. Then clearly this is a ring homomorphism.

Suppose that A is a commutative ring together with a ring homomorphism $f: R \to A$. Define an action $\cdot: R \times A \to A$ by $r \cdot a = f(r)a$. Then this action clearly allows A to be an R-module.

Under the correspondence of associative algebra, the above proposition gives a another correspondence between the first one.

$$\left\{ (A,R) \;\middle|\; \substack{A \text{ is a commutative} \\ R\text{-algebra}} \right\} \;\; \stackrel{1:1}{\longleftrightarrow} \;\; \left\{ \phi: R \to A \;\middle|\; \substack{\phi \text{ is a ring homomorphism} \\ \text{such that } f(R) \subseteq Z(A) = A} \right\}$$

In particular, the construction above are inverses of each other so that it gives the one-to-one correspondence.

8.2 Finitely Generated Algebra

Definition 8.2.1: Finitely Generated Algebras

Let R be a commutative ring. Let A be an R-algebra. We say that A is finitely generated if there exists $a_1, \ldots, a_n \in A$ such that every element $a \in A$ can be written as a polynomial in a_1, \ldots, a_n . This means that

$$a = \sum_{i_1, \dots, i_n} r_{i_1, \dots, i_n} a_1^{i_1} \cdots a_n^{i_n}$$

Finitely generated algebras are also called algebra of finite type.

Theorem 8.2.2

Let A be a commutative algebra over a ring R. Then the following are equivalent.

- A is a finitely generated algebra over R
- There exists elements $a_1, \ldots, a_n \in A$ such that the evaluation homomorphism

$$\phi: R[x_1,\ldots,x_n] \to A$$

given by $\phi(f) = f(a_1, \dots, a_n)$ is a surjection

• There is an isomorphism

$$A \cong \frac{R[x_1, \dots, x_n]}{I}$$

for some ideal I

Definition 8.2.3: Finitely Presented Algebra

Let R be a ring. Let $A = R[x_1, \dots, x_n]/I$ be a finitely generated algebra over R for some ideal I. We say that A is finitely presented if I is finitely generated.

Lemma 8.2.4

Let R be a ring, considered as an algebra over \mathbb{Z} . If R is finitely generated over \mathbb{Z} , then R is finitely presented.

Proof. Trivial since \mathbb{Z} is a principal ideal domain.

8.3 Finite Algebras

Definition 8.3.1: Finite Algebras

Let R be a commutative ring. Let A be an R-algebra. We say that A is finite if A is finitely generated as an R-module.

Example 8.3.2

Let R be a commutative ring. Then R[x] is a finitely generated algebra over R but is not a finite R-algebra.

8.4 Zariski's Lemma

Lemma 8.4.1

Let F be a field. Let $f \in F[x]$. Then the localization $F[x]_f$ is not a field.

Theorem 8.4.2: Zariski's Lemma

Let F be a field. Let K be a field that is also a finitely generated algebra over F. Then K is a finite algebra. In particular, K is a finitely generated vector space over F.

Corollary 8.4.3

Let F be an algebraically closed field. Let K be a field that is also a finitely generated algebra over F. Then the inclusion homomorphism $F \hookrightarrow K$ is an F-algebra isomorphism.

Corollary 8.4.4

Let F be an algebraically closed field. Then every maximal ideal of $F[x_1, \ldots, x_n]$ is of the form $(x_1 - a_1, \ldots, x_n - a_n)$ for some $a_1, \ldots, a_n \in F$.

9 Discrete Valuation Rings

9.1 Discrete Valuation Rings

Definition 9.1.1: Totally Ordered Group

A totally ordered group is a group G with a total order " \leq " such that it is

- a left ordered group: $a \le b$ implies $ca \le cb$ for all $a, b, c \in G$
- a right ordered group: $a \le b$ implies $ac \le bc$ for all $a, b, c \in G$

Definition 9.1.2: Valuation on a Field

Let K be a field. Let G be a totally ordered abelian group. A valuation on K with values in G is a map $v: K \setminus \{0\} \to G$ such that for all $x, y \in K^*$, we have

- $\bullet \ v(xy) = v(x) + v(y)$
- $v(x+y) \ge \min\{v(x), v(y)\}$

We use the convention that $v(0) = \infty$.

v is said to be a discrete valuation if $G = \mathbb{Z}$.

Proposition 9.1.3

Let K be a field and $v:K\to\mathbb{Z}$ a discrete valuation. Then

$$\{x \in K | v(x) \ge 0\}$$

is a subring of K.

Definition 9.1.4: Discrete Valuation Rings

The discrete valuation ring of a discrete valuation $v: K \to \mathbb{Z}$ is the subset

$$A=\{x\in K|v(x)\geq 0\}$$

Alternatively, any ring isomorphic to a discrete valuation ring of some discrete valuation is also called a discrete valuation.

Proposition 9.1.5

Let R be a discrete valuation ring with respect to the valuation v. Let $t \in R$ be such that v(t) = 1. Then the following are true.

- A nonzero element $u \in R$ is a unit if and only if v(u) = 0
- Every non-zero ideal of R is a principal ideal of the form (t^n) for some $n \geq 0$
- Every $r \in R \setminus \{0\}$ can be written in the form $r = ut^n$ for some unit u and $n \ge 0$.

Proof.

• Let R be a discrete valuation ring. Suppose that $x \in R$ is a unit. Then $v(x^{-1}) = -v(x)$. Then $-v(x), v(x) \ge 0$ implies v(x) = 0. Now if v(y) > 0, suppose for contradiction that $u \in R$ is an inverse of y, then

$$0 = v(1) = v(uy) = v(u) + v(y)$$

But v(y) > 0 implies that v(u) < 0 which implies that $u \notin R$, a contradiction.

- Let $t \in R$ such that v(t) = 1. Let $x \in m$ where v(x) = n > 0. Then $v(x) = nv(t) = v(t^n)$ means that every $x \in m$ is of the form t^n . Thus m = (t). Since every ideal I is a subset of this maximal ideal, any ideal is of the form $I = (t^n)$ for some n > 0.
- Follows from the fact that (t^n) is the unique maximal ideal.

Proposition 9.1.6

Let R be an integral domain. Then the following are equivalent.

- *R* is a discrete valuation ring
- *R* is a UFD with a unique irreducible element up to multiplication of a unit
- \bullet R is a Noetherian local ring with a principal maximal ideal

Proof.

• (1) \Longrightarrow (3): We have seen that the set of non-units is precisely the set $m=\{x\in K|v(x)>0\}$. We show that this is an ideal. Clearly $x,y\in m$ implies $v(x+y)=\min\{v(x),v(y)\}>0$. Let $u\in R$. Then v(ux)=v(u)+v(x)>0 since v(x)>0 and $v(u)\geq 0$.

We have seen that every ideal is of the form (t^n) for some n>0. Thus every ascending chains of ideal must be of the form

$$(t^{n_1}) \subset (t^{n_2}) \subset \dots$$

for $n_1 > n_2 > \dots$. Since n_1, n_2, \dots is strictly decreasing, the chain must eventually stabilizes. This proves that R is Noetherian and has principal maximal ideal.

 \bullet (1) \Longrightarrow (3):

10 Dimension Theory for Rings

10.1 Krull Dimension and Height

Definition 10.1.1: Krull Dimension

Let R be a commutative ring. Define the Krull dimension of R to be

$$\dim(R) = \max\{t \in \mathbb{N} \mid p_0 \subset \cdots \subset p_t \text{ for } p_0, \ldots, p_t \text{ prime ideals } \}$$

Lemma 10.1.2

Let R be a commutative ring. Then the following are true.

- If R is a field, then $\dim(R) = 0$
- If R is Artinian, then $\dim(R) = 0$

Definition 10.1.3: Height of a Prime Ideal

Let p be a prime ideal in a ring R. Define the height of p to be

$$\mathsf{ht}(p) = \sup\{t \in \mathbb{N} | p_0 \subset \dots \subset p_t = p \text{ for } p_0, \dots, p_t \text{ prime ideals } \}$$

Lemma 10.1.4

Let p be a prime ideal in a ring R. Then

$$ht(p) = \dim(R_p)$$

Theorem 10.1.5: Krull's Principal Ideal Theorem

Let R be a Noetherian ring. Let I be a proper and principal ideal of R. Let p be the smallest prime ideal containing I. Then

$$\operatorname{ht}_R(p) \leq 1$$

10.2 Length of a Module

Definition 10.2.1: Length of a Module

Let R be a ring and let M be an R-module. Define the length of M to be

$$l_R(M) = \sup\{n \in \mathbb{N} \mid 0 = M_0 \subset M_1 \subset \cdots \subset M_n = M\}$$

Lemma 10.2.2

Let R be a ring. Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence of R-modules. Then

$$l_R(M) = l_R(M') + l_R(M'')$$

Lemma 10.2.3

Let (A, m) be a local ring and let M be an A-module. If mM = 0, then

$$l_A(M) = \dim_{A/m}(M)$$

Proposition 10.2.4

Let R be a ring and let M be an R-module. Then the following are equivalent.

- *M* is simple
- $l_R(M) = 1$
- $M \cong A/m$ for some maximal ideal m of A

10.3 The Hilbert Polynomial

Definition 10.3.1: The Hilbert Polynomial

Let $R = \bigoplus_{k=0}^{\infty} R_k$ be a Noetherian graded ring. Let $M = \bigoplus_{k=0}^{\infty} M_k$ be a graded R-module. Define the Hilbert function $H_M : \mathbb{N} \to \mathbb{N}$ of R to be the function defined by

$$H_M(n) = l_{R_0}(M_n)$$

Definition 10.3.2: The Hilbert Series

Let $R = \bigoplus_{k=0}^{\infty} R_k$ be a Noetherian graded ring. Let $M = \bigoplus_{k=0}^{\infty} M_k$ be a graded R-module. Define the Hilbert series $HS_M \in \mathbb{Z}[[t]]$ of M to be the formal series

$$HS_M(t) = \sum_{k=0}^{\infty} H_M(k) t^k = \sum_{k=0}^{\infty} l_{R_0}(M_k) t^k$$

Theorem 10.3.3

Let $R = \bigoplus_{k=0}^{\infty} R_k$ be a Noetherian graded ring such that R_0 is Artinian. Let $M = \bigoplus_{k=0}^{\infty} M_k$ be a graded R-module. Let $\lambda : \{M_i \mid i \in I\} \to \mathbb{Z}$ be an additive function Then the function

$$g(t) = \sum_{k=0}^{\infty} \lambda(M_k) t^k$$

is a rational function and can be written in the form

$$g(t) = \frac{f(t)}{\prod_{i=1}^{r} (1 - t^{d_i})}$$

for some $f(t) \in \mathbb{Z}[t]$ and $d_i \in \mathbb{N}$.

Theorem 10.3.4: The Fundamental Theorem of Dimension Theory

Let (R,m) be a local Noetherian ring. Let I be an m-primary ideal. Then the following numbers are equal.

- Let $J = \bigoplus_{k=0}^{\infty} \frac{I^k}{I^{k+1}}$. The order of the pole at 1 of the rational function HS_J .
- ullet The minimum number of elements of R that can generate an m-primary ideal of R
- The dimension $\dim_{R/m}(R)$

The following is a generalization of Krull's principal ideal theorem. Both of the theorems can actually be deduced directly from the fundamental theorem.

Theorem 10.3.5: Krull's Height Theorem

Let R be a Noetherian ring. Let I be a proper ideal generated by n elements. Let p be the smallest prime ideal containing I. Then

$$ht_R(p) \leq n$$

Theorem 10.3.6

Let (R,m) be a Noetherian local ring and let k=R/m be the residue field. Then $\dim(R) \leq \dim_k(m/m^2)$

10.4 Global Dimension of a Ring