Smart Fashion Recommender Application

ABSTRACT:

With an increase in the standard of living, peoples' attention gradually moved towards fashion that is concerned to be a popular aesthetic expression. Humans are inevitably drawn towards something that is visually more attractive. This tendency of humans has led to the development of the fashion industry over the course of time. However, given too many options of garments on the e-commerce websites, has presented new challenges to the customers in identifying their correct outfit. Thus, in this project, we proposed a personalized Fashion Recommender system that generates recommendations for the user based on an input given. Unlike the conventional systems that rely on the user's previous purchases and history, this project aims at using an image of a product given as input by the user to generate recommendations since many-a-time people see something that they are interested in and tend to look for products that are similar to that. We use neural networks to process the images from Fashion Product Images Dataset and the Nearest neighbour backed recommender to generate the final recommendations.

INTRODUCTION:

Humans are inevitably drawn towards something that is visually more attractive. This tendency of humans has led to development of fashion industry over the course of time. With introduction of recommender systems in multiple domains, retail industries are coming forward with investments in latest technology to improve their business. Fashion has been in existence since centuries and will be prevalent in the coming days as well. Women are more correlated with fashion and style, and they have a larger product base to deal with making it difficult to take decisions. It has become an important aspect of life for modern families since a person is more often than not judged based on his attire. Moreover, apparel providers need their customers to explore their entire product line so they can choose what they like the most which is not possible by simply going into a cloth store.

In recent years, the huge amount of information and users of the internet service, it is hard to know quickly and accurately what the user wants. This phenomenon leads to an extremely low utilization of information, also known as the information overload problem.

Traditionally, keywords are used to retrieve images, but such methods require a lot of annotations on the image data, which will lead to serious problems such as inconsistent, inaccurate, and incomplete descriptions, and a huge amount of work. To solve this problem, Content Based Information Retrieval (CBIR) has gradually become a research hotspot. CBIR retrieves picture objects based entirely on the content. The content of an image needs to be represented by features

that represent its uniqueness. Basically, any picture object can be represented by its specific shapes, colors, and textures. These visual characteristics of the image are used as input conditions for the query system, and a result the system will recommended nearest images and data set.

This research designs and implements two-stage deep learning-based model that recommends a clothing fashion style. This model can use deep learning approach to extract various attributes from images with clothes to learn the user's clothing style and preferences. These attributes are provided to the correspondence model to retrieve the contiguous related images for recommendation. Based on data-driven, this thesis uses convolutional neural network as a visual extractor of image objects. This experimental model shows and achieves better results than the ones of the previous schemes.

CONCLUSION:

In this project, we have presented a novel framework for fashion recommendation that is driven by data, visually related and simple effective recommendation systems for generating fashion product images. The proposed approach uses a two-stage phase. Initially, our proposed approach extracts the features, for instance allowing the customers to upload any random fashion image from any E-commerce website and later generating similar images to the uploaded image based on the features and texture of the input image. It is imperative that such research goes forward to facilitate greater recommendation accuracy and improve the overall experience of fashion exploration for direct and indirect consumers alike.

REFERENCES:

- [1] Muhammad KHALID1, Mao KEMING1, Tariq HUSSAIN chool of Computer Science and Information Engineering, Zhejiang Gongshang University Hangzhou, China
- [2] Shaghayegh Shirkhani Master Programme in Data Science 2021 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering