COMP7606/DASC7606-1B Deep Learning

Linear Models (in Machine Learning)

Dr Bethany Chan
Professor Francis Chin

2021

Outline

Fundamental Machine Learning Techniques

- Introduction to Machine Learning
- Linear Classification
- Linear Regression
- Logistic Regression
- Binary vs. Multi-classification

Outline

Fundamental Machine Learning Techniques

- Introduction to Machine Learning
- Linear Classification
- Linear Regression
- Logistic Regression
- Binary vs. Multi-classification

Nature of machine learning (ML) algorithms

Algorithms that **learn** from **experience** (past data) to make **accurate predictions**

learning ⇒ the algorithm **improves** with **more experience** to make **more accurate predictions**

Why would we be interested in developing algorithms that improve their performance over time with experience?

- Many algorithms that solve real world problems, which get the job done well, don't improve over time.
- E.g. algorithms ranging from banking and e-commerce to navigation systems in our cars and landing a spacecraft on the moon
- Why do we need machine learning?
- Answer: for certain tasks it is easier to develop an algorithm that learns/improves its performance with experience than to develop an algorithm manually.

When should you use ML?

- Pattern is expected to exist in the data
- Have lots of data to learn from

How much data is enough?

Sample complexity

sample size (amount of data) required to learn a family of concepts

How did we learn in school?

Asked Questions given Answers

Questions & Answers

- → Practice exercises (training data)
- → Mock exams (validation)
- → Final exams (testing)

Supervised Learning

Learning Scenarios

Supervised learning

Given data, predict labels

Unsupervised learning

Given data, learn about that data

Reinforcement learning

Given data, choose action to maximize expected long-term reward

Supervised Learning

Learning scenario where...

for each example, told what correct label is

Given data, predict labels

Classification problems

(discrete labels)

e.g. determine whether e-mail is spam or not

Regression problems

(continuous labels)

e.g. how much you should turn the steering wheel

Machine Learning Model (supervised learning)

Outline

Fundamental Machine Learning Techniques

- Introduction to Machine Learning
- Linear Classification
- Linear Regression
- Logistic Regression

Classification

Problem:

Given a set of labeled (*classified*) data points (\mathbf{x} , \mathbf{y}), learn a function $f: X \rightarrow Y$ in order to predict the label (*class*) of new unseen data points \mathbf{x}'

- Binary Classification:
 Y has only two values, e.g. Y = {-1, +1}
- Multi-class Classification:
 Y has more than two values

Problem: credit approval

Applicant information: $x = (x_1, ..., x_N)$

X_1	salary	150,000
x ₂	current debt	75,000
X ₃	age	28 years old
X ₄	years in current job	3
•••	•••	•••

Approve or *deny* credit? \Rightarrow binary classification

Problem: handwritten digits

labels Y = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \Rightarrow multi-class$

Pr(Class n)

Linear Classification

A **linear classifier** achieves this by making a classification decision based on the value of a linear combination of the characteristics.

The data points
can be separated by a
hyperplane (here a line)
that helps to correctly
classify all points.

Linear Classification

Line (decision boundary)

Equation of the line:

$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots = 0$$

If we introduce $x_0 = 1$:

$$\theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots = 0$$

Then we can use $\theta x = 0$ as shorthand for the equation

Linear Classification

Problem: credit approval

Applicant information: $x = (x_1, ..., x_N)$

X_1	salary	150,000
x ₂	current debt	75,000
X ₃	age	28 years old
X ₄	years in current job	3
•••	•••	•••

Approve credit if $\sum_{j=1}^{N} \theta_j x_j \ge threshold$

Deny credit if $\sum_{j=1}^{N} \theta_j x_j < threshold$

Problem: credit approval

Applicant information: $x = (x_1, ..., x_N)$

X_1	salary 150 0
X ₂	current debt θ s TO BE
X ₃	age
X ₄	years in current
•••	

Approve credit -if
$$\sum_{j=1}^{N} \theta_j x_j \ge threshold$$
 if $\theta x \ge 0$
Deny credit -if $\sum_{j=1}^{N} \theta_j x_j < threshold$ if $\theta x < 0$

$$[\theta_0$$
= -threshold and $x_0 = 1]$

How to find the Linear Classifier?

Not possible! How to find the best.

Shortcomings of Classifier Algorithms

- Complicated
- Problem with outliners
- updates (new or obsolete data)
- Dynamic situation (classification criteria might change with time)

An Algorithm to find Linear Classifier

Start with a random line, say, the one shown

Equation of this line $x_1 + 0.5x_2 = 0$

Equation of this line is:

$$egin{aligned} oldsymbol{ heta} oldsymbol{x} &= 0 \ where & oldsymbol{ heta} &= (0, 1, 0.5) \ and & x_0 &= 1 \end{aligned}$$

Consider the points one by one, say, the one circled: $(x_1, x_2) = (1,1)$

Correct classification since $\theta x > 0$

Consider next circled:

$$(x_1, x_2) = (1.5, -0.5)$$

Correct classification since $\theta x > 0$

Consider circled: $(x_1, x_2) = (2,-2)$

Misclassified! since $\theta x > 0$

Need to adjust the line. But how?

Correct label

Use formula:

$$\theta \leftarrow \theta + \alpha yx$$

where α is a parameter.

Let's set α =0.2 here

Rotate "Learning rate" wise

$$\theta \leftarrow (0, 1, 0.5) + 0.2 * -1 * (1, 2, -2) = (-0.2, 0.6, 0.9)$$

Use formula:

$$\theta \leftarrow \theta + \alpha y x$$

where α is a parameter.

Let's set $\alpha = 0.2$ here

$$\theta \leftarrow (0, 1, 0.5) + 0.2 * -1 * (1, 2, -2) = (-0.2, 0.6, 0.9)$$

 $0.6x_1 + 0.9x_2 = 0.2$

Consider next circled:

$$(x_1, x_2) = (-1, -1.5)$$

Correct classification since

$$\theta x < 0$$

$$-0.2 + 0.6 (-1) + 0.9 (-1.5) < 0$$

Consider next circled:

$$(x_1, x_2) = (-2, -1)$$

Correct classification since

$$\theta x < 0$$

$$-0.2 + 0.6(-2) + 0.9(-1) < 0$$

Consider circled:

$$(x_1, x_2) = (-2, 1)$$

Misclassified!

$$\theta x < 0$$

$$-0.2 + 0.6(-2) + 0.9(1) < 0$$

Need to adjust the line.

Again use formula:

$$\theta \leftarrow \theta + \alpha y x$$

with $\alpha = 0.2$

Rotate θ counter-clockwise

$$\theta \leftarrow (-0.2, 0.6, 0.9) + 0.2 * 1 * (1, -2, 1) = (0, 0.2, 1.1)$$

Circled in red: Originally correctly classified, now misclassified Use formula: $\theta \leftarrow \theta + \alpha y x$ again with $\alpha = 0.2$

$$\theta \leftarrow (-0.2, 0.6, 0.9) + 0.2 * 1 * (1, -2, 1) = (0, 0.2, 1.1)$$

Linear Classification

Given data set (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , ..., (\mathbf{x}_M, y_M) Make an initial guess for θ

Repeat for the data set

For each point (x_i, y_i) :

check that the point is correctly classified

if misclassified, then update θ

Learning the weights θ, try to improve with each data point

Not always possible to find a decision boundary that will separate the data

Takeaway Messages

- Parameters θ are to be learned
- Learned (by adjusting θ) by using the given labeled data iteratively and repeatedly (epoch)
- Adjustment amount depends on
 - Learning rate
 - Amount of error (loss function)
- Converge to the best solution independent of the initial guess of θ (only affect the efficiency)

Deep Learning takes similar approach

Outline

Fundamental Machine Learning Techniques

- Introduction to Machine Learning
- Linear Classification
- Linear Regression
- Logistic Regression
- Binary vs. Multi-classification

Regression

• Problem:

Given a set of data points (\mathbf{x}, \mathbf{y}) , learn a function $f: X \to Y$ in order to predict the label (value) of new unseen data points $\mathbf{x'}$

Linear Regression with One Variable

- Predict single output y from single input x
- Linear hypothesis *h* :

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Another example

х	у
1.00	1.00
2.00	2.00
3.00	1.30
4.00	3.75
5.00	2.25

Norm2 error (L²)

$$=\sqrt{\sum_{i=1}^{n}(h_{\theta}(x_i)-y_i)^2}$$

Mean square error

$$= \frac{1}{n} \sum_{i=1}^{n} (h_{\theta}(x_i) - yi)^2$$

Loss and Cost function

- In ML, we want to minimize the error (defined by the loss function) for each training example during the learning process.
- A loss function maps decisions to their associated costs, like gradient descent (to be learned later).
- A loss function is for a single training example (sometimes called error function). A cost function is the average loss over the entire training dataset, which optimization strategies aim to minimize.

Loss Function (one variable)

- Machines learn by means of a loss function.
- Loss functions (denoted by J) evaluate how well your algorithm models your dataset.
- A good cost function which can **penalize** a model effectively while it is training on a dataset.
- If predictions are off, the loss function/cost is high.
 - this huge value will be used to change the parameters θ
 - the weights will be changed more than usual.
- If predictions are good, the loss function/cost be low.
 - the parameters θ won't change much.
- Different loss functions for different problems, broadly categorized into 2 types:
 - Classification (-1, 1) and Regression Loss.

Regression Loss Functions

Squared Error Loss:

$$(h(x) - y)^2$$

Cost = MSE (mean sq error)

Absolute Error Loss:

$$|h(x) - y|$$

Cost function (Mean MAE)

MAE is more robust to outlier

• Huber Loss: $\begin{cases} \frac{1}{2}(h_{\theta}(x)-y)^2 & if \ |h_{\theta}(x)-y| \leq \delta \\ \delta \ |h_{\theta}(x)-y| - \frac{1}{2}\delta^2 & otherwise \end{cases}$

combine MSE and MAE, quadratic for small error, and is linear otherwise.

Look at cost
$$\frac{1}{M}\sum_{i=1}^{M}(h_{\theta}(x_i)-y_i)^2$$
 (norm 2)

where
$$h_{\theta}(x_i) = \theta_0 + \theta_1 x_i = 0.785 + 0.425 x_i$$

x	у	h(x)	h(x) - y	$(h(x)-y)^2$
1.00	1.00	1.210	0.210	0.044
2.00	2.00	1.635	-0.365	0.133
3.00	1.30	2.060	0.760	0.578
4.00	3.75	2.485	-1.265	1.600
5.00	2.25	2.910	0.660	0.436

$$\theta_0 = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$$

$$\theta_1 = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

Iterative way to learn θ

```
Make an initial guess for \theta
Calculate the error J(\theta)
Repeat until error is small enough:
make a better guess for \theta
calculate the error J(\theta)
Return \theta
```

Iterative way to learn θ

Make an initial guess for θ

Calculate the error $J(\theta)$

Repeat until error is small enough:

make a better guess for θ

calculate the error $J(\theta)$

Return θ

Technique: Gradient Descent

Gradient Descent (one variable)

Objective is to minimize cost function:

$$J(\theta_0, \theta_1) = \frac{1}{M} \sum_{i=1}^{M} (h_{\theta}(x_i) - y_i)^2$$

Move in opposite direction of gradient (steepest descent)

Move in opposite direction of gradient (steepest descent) Step size is determined by the gradient magnitude $\Delta J(\theta)$, larger step size for steeper tangent line Small step when close to the minimum, $\Delta J(\theta)$ is small as the tangent line is almost horizontal.

Move in opposite direction of gradient (steepest descent)

Gradient Descent (one variable)

Make steps of size α (learning rate) down the cost function J in the direction with the steepest descent (as determined by slope of the tangent at (θ_0, θ_1))

Repeat until error is small enough:

$$\theta_0 \leftarrow \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_1 \leftarrow \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

Cost Function for Gradient Descent (one variable)

Mean-square error:

$$J(\theta_0, \theta_1) = \frac{1}{M} \sum_{i=1}^{M} (h_{\theta}(x_i) - y_i)^2$$

Half mean-square error:

$$J(\theta_0, \theta_1) = \frac{1}{2M} \sum_{i=1}^{M} (h_{\theta}(x_i) - y_i)^2$$

Taking derivatives (one variable)

$$J(\theta_0, \theta_1) = \frac{1}{2M} \sum_{i=1}^{M} (h_{\theta}(x_i) - y_i)^2 \quad \text{and} \quad h_{\theta}(x_i) = \theta_0 + \theta_1 x_i$$

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{M} \sum_{i=1}^{M} (h_{\theta}(x_i) - y_i)$$

$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{M} \sum_{i=1}^{M} (h_{\theta}(x_i) - y_i) x_i$$

Repeat:

$$\theta_0 \leftarrow \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_1 \leftarrow \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

Repeat until error is small enough:

$$\theta_{0} \leftarrow \theta_{0} - \alpha \frac{\partial}{\partial \theta_{0}} J(\theta_{0}, \theta_{1}) \qquad \theta_{0} \leftarrow \theta_{0} - \alpha \frac{1}{M} \sum_{i=1}^{M} (h_{\theta}(x_{i}) - y_{i})$$

$$\theta_{1} \leftarrow \theta_{1} - \alpha \frac{\partial}{\partial \theta_{1}} J(\theta_{0}, \theta_{1}) \qquad \theta_{1} \leftarrow \theta_{1} - \alpha \frac{1}{M} \sum_{i=1}^{M} (h_{\theta}(x_{i}) - y_{i}) x_{i}$$

Problem: Learning Rate

Small learning rate:

- Many iterations till convergence
- Trapped in local minimum

Large learning rate:

- Overshooting
- No convergence

Learning Rate and No. of Iterations

- Plot no. of iterations x-axis $cost J(\theta)$ y-axis
- If increases then decrease learning rate α
- Stop when $\Delta J(\theta)$ smaller than chosen threshold

Linear Regression (multiple variables)

- Predict single output yfrom vector input $x = (x_1, ..., x_N)$
- Linear hypothesis h:

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_N x_N$$

• If we add $x_0 = 1$, we can express

$$h_{\Theta}(\mathbf{x}) = \mathbf{x} \; \Theta$$

Gradient Descent (multiple variables)

Repeat until error is small enough:

$$\theta_0 \leftarrow \theta_0 - \alpha \frac{1}{M} \sum_{i=1}^{M} (h_{\theta}(\mathbf{x}_i) - y_i) \mathbf{x}_{i,0}$$

$$\theta_1 \leftarrow \theta_1 - \alpha \frac{1}{M} \sum_{i=1}^{M} (h_{\theta}(\mathbf{x}_i) - y_i) \mathbf{x}_{i,1}$$

$$\theta_2 \leftarrow \theta_2 - \alpha \frac{1}{M} \sum_{i=1}^{M} (h_{\theta}(\mathbf{x}_i) - y_i) \mathbf{x}_{i,2}$$

 $\theta_N \leftarrow \theta_2 - \alpha \frac{1}{M} \sum_{i=1}^{M} (h_{\theta}(\boldsymbol{x}_i) - y_i) x_{i,N}$

⇒ Repeat until error is small enough:

$$\theta_{j} \leftarrow \theta_{j} - \alpha \frac{1}{M} \sum_{i=1}^{M} (h_{\theta}(\mathbf{x}_{i}) - y_{i}) x_{i,j} \text{ for } j = 0,...,N$$

Gradient Descent (multiple variables)

Make steps of size α (learning rate) down the cost function J in the direction with the steepest descent (as determined by slope of the tangent at $(\theta_0, \theta_1, ..., \theta_N)$)

Repeat until error is small enough:

$$\theta_j \leftarrow \theta_j - \alpha \frac{1}{M} \sum_{i=1}^{M} (h_{\theta}(\boldsymbol{x}_i) - y_i) x_{i,j} \text{ for } j = 0,...,N$$

[Or
$$\theta \leftarrow \theta - \frac{\alpha}{M} X^{T} (X\theta - y)$$
 in vectorized form]

Linear Regression

	1 st feature	2 nd feature	3 rd feature	4 th feature	labe
	Size (sq.ft.)	No. of Bedrooms	No. of Bathrooms	Age of Building (yrs)	Rent p Month
1 st example	1700	4	3	10	70k
2 nd example	1420	3	2	12	54k
3 rd example	1290	4	1.5	8	45k
4 th example	880	2	2	2	40k
5 th example	510	2	2	3	26.5

label			
Rent per Month (\$)			
70k			
54k			
45k			
40k			
26 5k			

 $x_{ij} = j^{\text{th}}$ feature of i^{th} example

 y_i = label associated with i^{th} example

Feature Scaling

- Note that the value ranges of different variables are very different, e.g., size of flat is in hundreds or thousands sq ft, age of flat is in tens.
- As α used across all N features (variables), would like input values to be roughly in same range
 - ⇒ feature scaling or mean normalization

$$x_j \leftarrow \frac{x_j - \text{mean}_j}{\text{max}_i - \text{min}_i}$$