Europäisches Patentamt European Patent Office Office européen des brevets

(i) Veröffentlichungsnummer: 0 521 334 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 92110119.2

2 Anmeldetag: 16.06.92

(a) Int. Cl.5. **C07D** 207/38, C07D 209/54, C07F 9/572, A01N 43/36, A01N 57/08, A01N 57/24

(30) Priorität: 28.06.91 DE 4121365

Veröffentlichungstag der Anmeldung: 07.01.93 Patentblatt 93/01

 Benannte Vertragsstaaten: BE CH DE ES FR GB GR IT LI NL

71 Anmelder: BAYER AG

W-5090 Leverkusen 1 Bayerwerk(DE)

2 Erfinder: Fischer, Reiner, Dr. **Nelly-Sachs-Strasse 23** W-4019 Monhelm 2(DE)

Erfinder: Krüger, Bernd-Wieland, Dr.

Unterboschbach 19

W-5060 Berglsch-Gladbach 2(DE) Erfinder: Bretschneider, Thomas, Dr. Scheerengasse 7-9

W-5200 Siegburg(DE)

Erfinder: Erdelen, Christoph, Dr.

Unterbüscherhof 22 W-5653 Leichlingen(DE)

Erfinder: Wachendorff-Neumann, Ulrike, Dr.

Krischerstrasse 81 W-4019 Monheim(DE) Erfinder: Lürssen, Klaus, Dr. August-Kierspel-Strasse 145 W-5060 Bergisch Gladbach 2(DE) Erfinder: Santel, Hans-Joachim, Dr.

Grünstrasse 9a

W-5090 Leverkusen(DE)

Erfinder: Schmldt, Robert R., Dr.

Im Waldwinkel 110

W-5060 Bergisch Gladbach 2(DE)

- Substituierte 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate.
- Es wurden neue substituierte 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I)

bereitgestellt,

in welcher

- für Alkyl, Halogen, Alkoxy steht, Χ
- Υ für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,
- Z für Alkyl, Halogen, Alkoxy steht,
- für eine Zahl von 0-3 steht,

- A für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,
- B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gegebenenfalls substituierten gesättigten oder ungesättigten Cyclus bilden, der durch Sauerstoff und/oder Schwefel unterbrochen sein kann.

R für die Gruppen

$$Z_{n} \xrightarrow{B} A$$

$$Z_{n} \xrightarrow{X} (I)$$

steht.

worin L, M sowie R^1 , R^2 , R^3 , R^4 , R^5 und R^6 die im Anmeldungstext angegebene Bedeutung besitzen.

Die neuen Verbindungen (I) besitzen stark ausgeprägte insektizide akarizide und herbizide Eigenschaften.

Die Erfindung betrifft neue substituierte 3-Aryl-pyrrolidin-2,4-dion-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Insektizide, Akarizide und Herbizide.

Von 3-Acyl-pyrrolidin-2,4-dionen sind pharmazeutische Eigenschaften vorbeschrieben (S. Suzuki et. al. Chem. Pharm. Bull. 15 1120 (1967)). Weiterhin wurden N-Phenyl-pyrrolidin-2,4-dione von R. Schmierer und H. Mildenberger Liebigs Ann. Chem. 1985 1095 synthetisiert. Eine biologische Wirksamkeit dieser Verbindungen wurde nicht beschrieben.

In EP-A 0 262 399 werden ähnlich strukturierte Verbindungen (3-Aryl-pyrrolidin-2,4-dione) offenbart, von denen jedoch keine herbizide, insektizide oder akarizide Wirkung bekannt geworden ist.

In DE-A 3 525 109 werden ähnlich strukturierte 1-H-3-Arylpyrrolidin-2,4-dione offenbart, die als Zwischenprodukte für Farbstoffsynthesen verwendet werden.

Es wurden nun neue substituierte 3-Aryl-pyrrolidin-2,4-dion-Derivate gefunden, die durch die Formel (I) dargestellt sind,

15

20

25

30

35

in welcher

X für Alkyl, Halogen, Alkoxy steht,

Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht,

für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,

B für Wasserstoff, Alkyl oder Alkoxyalkyl steht, oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gegebenenfalls substituierten gesättigten oder ungesättigten Cyclus bilden, der durch Sauerstoff und/oder Schwefel unterbrochen sein kann.

R für die Gruppen

40

$$\mathbb{R}^1$$
 \mathbb{R}^2
 \mathbb{R}^2

45

50

55

steht,

in welchen

L und M für Sauerstoff oder Schwefel stehen und wobei L und M nicht gleichzeitig für Sauerstoff stehen,

R1, R2 und R3

unabhängig voneinander für gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Alkinylthio, Cycloalkylthio und für gegebenenfalls substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio stehen,

R⁴ und R⁵ unabhängig voneinander für Wasserstoff, gegebenenfalls durch Halogen substituiertes

Alkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls substituiertes Phenyl, für gegebenenfalls substituiertes Benzyl stehen oder wobei R⁴ und R⁵ zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen Alkenylrest stehen,

Кe

5

für gegebenenfalls durch Halogen substituiertes Alkyl, das durch Sauerstoff unterbrochen sein kann, für gegebenenfalls durch Halogen, Halogenalkyl oder Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, Halogenalkyl, Alkyl und Alkoxy substituiertes Benzyl, für Alkenyl oder Alkinyl steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c) und (d) der Gruppe R der allgemeinen Formel (I) ergeben sich folgende hauptsächlichen Strukturen (la) bis (ld):

$$\begin{array}{c|c}
L & & \\
R^1 & & \\
\hline
R^2 & & \\
H-N & & \\
\end{array}$$
(Ia)

20

15

30

25

$$\begin{array}{c|c}
 & \mathbb{R}^4 \\
 & \mathbb{R}^5 \\
 & \mathbb{R}^5
\end{array}$$
(Ic)

35

40

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

45 wobei

A, B, L, M, X, Y, Z,, R1, R2, R3, R4, R5 und R6 die oben angegebenen Bedeutungen besitzen.

Weiterhin wurde gefunden, daß man 3-Aryl-pyrrolidon-2,4-dion-Derivate der Formel (la)

50

$$\begin{array}{c|c}
L & & \\
R^1 & & \\
B & & \\
H-N & & \\
\end{array}$$

$$\begin{array}{c|c}
R^2 & & \\
\end{array}$$

$$\begin{array}{c|c}
Y & & \\
\end{array}$$
(Ia)

in welcher

5

10

15

20

25

30

35

40

45

50

55

A, B, L, X, Y, Z, R^1 , R^2 und n die oben angegebene Bedeutung haben, erhält, wenn man

A) 3-Aryl-pyrrolidin-2,4-dione der Formel (II) bzw. deren Enole

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben mit Phosphorverbindungen der allgemeinen Formel (III)

in welcher L, R^1 und R^2 die oben angegebene Bedeutung haben und

Hal für Halogen, insbesondere Chlor und Brom steht, gegebenenfalls in Gegenwart eines Verdünnungsmittels, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Phasentransferkatalysators umsetzt.

B) Außerdem wurde gefunden, daß man Verbindungen der Formel (lb)

in welcher

A, B, X, Y, Z, ${\sf R}^3$ und n die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (II)

$$\begin{array}{c|c}
A & OH & X \\
H-N & O & X
\end{array}$$
(11)

in welche

A, B, X, Y, Z und n die oben angegebene Bedeutung haben mit Sulfonsäurechloriden der allgemeinen Formel (IV)

R3-SO₂-CI (IV)

in welcher

R³ die oben angegebene Bedeutung hat gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt.

C) Ferner wurde gefunden, daß man Verbindungen der Formel (lc)

 $\begin{array}{c|c}
L & R^4 \\
\hline
 & R^5 & X \\
\hline
 & R^5 & X
\end{array}$ (1c)

10

5

in welcher

A, B, L, X, Y, Z, R⁴, R⁵ und n die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (II),

15

$$\begin{array}{c|c}
A & OH X \\
B & & & \\
H-N & O & & \\
\end{array}$$

20

25

35

40

45

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben

wenn man

α) mit Isocyanaten der allgemeinen Formel (V)

$$R^4-N=C=O$$
 (V)

30 in welcher

R4 die oben angegebene Bedeutung hat

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators

oder

β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der allgemeinen Formel (VI)

$$\begin{array}{c|c}
R^4 & C_1 \\
\hline
R^5 & C_1
\end{array}$$

in welcher

L, R⁴ und R⁵ die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt.

D) Ferner wurde gefunden, daß man Verbindungen der Formel (ld)

50

$$\begin{array}{c|c}
 & L \\
 & \parallel \\$$

in welcher

A, B, L, M, R⁶, X, Y, Z und n die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (II)

5

$$\begin{array}{c|c}
A & OH X \\
\hline
H-N-O & Z_n
\end{array}$$
(11)

10

15

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben

a) mit Chlormonothioameisensäureestern, Chlorameisensäurethioestern oder Chlordithioameisensäureestern der allgemeinen Formel VII

20

25

30

35

50

55

in welcher

L, M, R⁶ die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

ode

β) mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der allgemeinen Formel VIII

R6-Hal (VIII)

in welcher

R6 die oben angegebene Bedeutung hat

und

Hal für Chlor, Brom, Jod

steht.

umsetzt.

Überraschenderweise wurde gefunden, daß die neuen substituierten 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) sich durch hervorragende insektizide, akarizide und herbizide Wirkungen auszeichnen.

Bevorzugt sind substituierte 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I), in welcher

X für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,

Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

45 n für eine Zahl von 0-3 steht,

A für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₁-C₁₀-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl, C₁-C₁₀-Alkylthio-C₂-C₈-alkyl, Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder gegebenenfalls durch Halogen, C₁-C₆-Alkyl-, C₁-C₆-Haloalkyl-, C₁-C₆-Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₆-alkyl steht,

B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₁-C₈-Alkoxyalkyl steht, oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 8-gliedrigen gesättigten oder ungesättigten Ring bilden, der durch Sauerstoff und/oder Schwefel unterbrochen und durch gegebenenfalls halogeniertes Alkyl, Alkoxy, Phenyl und Halogen substituiert sein kann,

für die Crusses

R für die Gruppen

15

20

25

30

35

40

45

steht,

in welchen

L und M jeweils für Sauerstoff oder Schwefel steht und wobei L und M nicht gleichzeitig für Sauerstoff stehen,

R1, R2 und R3

unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C_1 - C_8 -Alkyl, C_1 - C_8 -Alkoxy, C_1 - C_8 -Alkylamino, Di- $(C_1$ - C_8)-Alkylamino, C_1 - C_8 -Alkylthio, C_2 - C_5 -Alkenylthio, C_2 - C_5 -Alkinylthio, C_3 - C_7 -Cycloalkylthio, für gegebenenfalls durch Halogen, Nitro, Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogenalkyl substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio stehen,

R4 und R5

unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C_1 - C_{20} -Alkyl, C_1 - C_{20} -Alkoxy, C_2 - C_8 -Alkenyl, C_1 - C_{20} -Alkoxy- C_1 - C_{20} -Alkyl, für gegebenenfalls durch Halogen, C_1 - C_{20} -Alkyl oder C_1 - C_{20} -Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl oder C_1 - C_{20} -Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen C_2 - C_6 -Alkylenring stehen,

R6

für gegebenenfalls durch Halogen substituiertes C_1 - C_{20} -Alkyl, das durch Sauerstoff unterbrochen sein kann für gegebenenfalls durch Halogen, C_1 - C_{20} -Halogenalkyl, C_1 - C_{20} -Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C_1 - C_{20} -Halogenalkyloder C_1 - C_{20} -Alkoxy substituiertes Benzyl, für C_2 - C_8 -Alkenyl oder für C_2 - C_5 -Alkinyl steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Besonders bevorzugt sind Verbindungen der Formel (I) in welcher

X für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,

Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl steht,

Z für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,

n für eine Zahl von 0-3 steht,

A für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₈-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl, C₁-C₈-Alkylthio-C₂-C₆-alkyl, Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatomen unterbrochen sein kann oder gegebenenfalls durch Halogen, C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₄-alkyl steht,

B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₁-C₆-Alkoxyalkyl steht, oder worin

50 A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 7-gliedrigen gesättigten oder ungesättigten Ring bilden, der durch C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_3 -Haloalkoxy, Fluor, Chlor und substituiertes Phenyl substituiert und der durch Sauerstoff und/oder Schwefel unterbrochen sein kann,

R für die Gruppen

in welchen

15

20

25

30

35

40

45

L und M

jeweils für Sauerstoff oder Schwefel stehen und worin L und M nicht gleichzeitig für Sauerstoff stehen,

R1, R2 und R3

unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C_1 - C_6 -Alkyl, C_1 - C_6 -Alkylamino, C_1 - C_6 -Alkylamino, C_1 - C_6 -Alkylamino, C_1 - C_6 -Alkylamino, C_3 - C_6 -Alkylamino, C_3 - C_6 -Alkylamino, C_3 - C_6 -Alkylamino, C_3 - C_6 -Alkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkylthio, C_1 - C_3 -Alkyl, C_1 - C_3 -Halogenalkyl substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio stehen,

R4 und R5

unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C_1 - C_2 0-Alkyl, C_1 - C_2 0-Alkoxy, C_2 - C_3 -Alkenyl, C_1 - C_2 0-Alkoxy- C_1 - C_2 0-Alkoxy, für gegebenenfalls durch Halogen, C_1 - C_5 -Halogenalkyl, C_1 - C_5 -Alkyl oder C_1 - C_5 -Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C_1 - C_5 -Alkyl, C_1 - C_5 -Halogenalkyl oder C_1 - C_5 -Alkoxy substituiertes Benzyl steht,

R⁶

für gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, das durch Sauerstoff unterbrochen sein kann für gegebenenfalls durch Halogen, C₁-C₅-Halogenalkyl, C₁-C₅-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C₁-C₅-Halogenalkyl oder C₁-C₅-Alkoxy substituiertes Benzyl steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Ganz besonders bevorzugt sind Verbindungen der Formel (I) in welcher

X für Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,

Y für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht,

Z für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,

n für eine Zahl von 0-3 steht,

A für Wasserstoff, gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, C₁-C₆-Alkylthio-C₂-C₄-alkyl, Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatomen unterbrochen sein kann oder gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-, Ethoxy-, Trifluormethyl-, Nitro substituiertes Aryl, Pyridin, Imidazol, Pyrazol, Triazol, Indol, Thiazol oder Aryl-C₁-C₃-alkyl steht,

B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₁-C₄-Alkoxyalkyl steht,

oder worin A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 6-gliedrigen gesättigten oder ungesättigten Ring bilden, der durch C₁-C₄-Alkyl,C₁-C₄-Alkoxy, Trifluormethyl, Trifluormethoxy, Fluor, Chlor und substituiertes Phenyl substituiert und der durch Sauerstoff und/oder Schwefel unterbrochen sein kann,

R für die Gruppen

55

steht.

in welchen

5

10

15

20

25

30

jeweils für Sauerstoff oder Schwefel stehen und worin L und M nicht gleichzeitig für L und M Sauerstoff stehen,

R1, R2 und R3 unabhängig voneinander für gegebenenfalls durch Fluor oder Chlor substituiertes C1-

C4-Alkyl, C1-C4-Alkoxy, C1-C4-Alkylamino, Di-(C1-C4-Alkyl)amino, C1-C4-Alkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C1-C2-Alkoxy, C1-C4-Fluoralkoxy, C₁-C₂-Chloralkoxy, C₁-C₂-Alkylthio, C₁-C₂-Fluoralkylthio, C₁-C₂-Chloralkylt-

hio, C₁-C₃-Alkyl substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio stehen,

R4 und R5 unabhängig voneinander für gegebenenfalls durch Fluor, Chlor, Brom substituiertes

> C₁-C₁₀-Alkyl, C₁-C₁₀-Alkoxy, C₁-C₁₀-Alkoxy-(C₁-C₁₀)alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₂₀-Halogenalkyl, C₁-C₂₀-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, C1-C4-Alkyl, C1-C4-Haloge-

nalkyl oder C1-C4-Alkoxy substituiertes Benzyl steht,

R6 für gegebenenfalls durch Fluor, Chlor, Brom substituiertes C1-C10-Alkyl, das durch Sauerstoff unterbrochen sein kann für gegebenenfalls durch Fluor, Chlor, Brom, C1-C4-

Halogenalkyl, C1-C4-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, C1-C4-Halogenalkyl oder C1-C4-Alkoxy substituiertes Benzyl steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden substituierten 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate der allgemeinen Formel (I) genannt:

35

40

45

50

			1												
			æ	x	H	x	I	I	I	×	×	x	x	x	I
5			4	СНЗ	CH ₃	CH3	снз	снз	СНЗ	снэ	CH ₃	CH ₃	снэ	CH ₃	CH ₃
10				ທ	2(CH(CH ₃) ₂			•••	208-	-180		0C ₃ H ₇ -i	200	- <u>-</u> :
			R2	nC ₃ H ₇ S	NCH3	SCH2-	6н20	OC2H5	OC3H2	0C4H9	0C4H9	6но0	OC3H2	OC4H9	0C4H9-1
20		(18)	R1	oc ₂ H ₅	N(CH ₃) ₂	снз	снз	снз	снз	снз	снз	C2H5	C2H5	C2H2	C2H5
25		÷	د	v	0	w	ທ	ဟ	ဟ	ဖ	v	ဟ	w	v	w
30	π, ,	RZ L	2 _n	6-CH ₃	6-сн3	6-сн3	6-сн3	6-сн3	6-CH ₃	6-CH ₃	6-СН3	6-сн3	6-CH ₃	€-сн3	6-CH ₃
40	7≕9	4	-	CH ₃	CH3	снэ	CH ₃	СНЭ	CH ₃	CH ₃	снэ	снэ	CH ₃	снэ	CH ₃
45	Tabelle 1:		*	CH ₃	СНЗ	снэ	CH ₃	CH ₃	CH3	CH ₃	CH ₃	СНЭ	сн _э	СНЭ	СНЭ

		60	СНЗ	СНЗ	СН3	СН3	CH ₃	CH ₃	СНЗ	СНЗ	CH3	СНЗ	CH ₃
5		4	снэ	СНЗ	CH ₃	CH3	СН3	СНЭ	сн3	CH3	CH ₃	CH ₃	СН3
10			10	2				06 8.	180		•	-88C	•==
15		R ²	nC ₃ H ₇ S	N(CH ₃)	6н20	OC2H5	OC3H2	OC4H9.	0C4H9.	0CH ₃	OC3H2-	0C4H9-88c	0C4H9.
20	(eI)	R1	OC2H5	N(CH3)2	CH ₃	снэ	снэ	снэ	CH ₃	C2HS	C2H5	C2H5	C2H5
25	Ì	ı	ဟ	0	ທ	ហ	ဟ	S	S	ဟ	ဟ	ယ	v
30] = 4 2 K	Z _n	€-сн3	6-CH ₃	6-CH ₃	€-сн3	€-сн3	е-сн ₃	6-CH3	6-CH3	€-сн ³	£н2-9	6-CH ₃
35	٠ ٠ ٠	-	CH3	CH ₃	CH ₃	CH3	CH ₃	CH3	CH ₃	СНЭ	снэ	снэ	CH3
40		×	CH3	снэ	СНЭ	снз	СНЭ	снз	CH ₃	снз	СНЭ	CH ₃	СНЗ

5		A B	-(CH ₂) ₅ -	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ₂)5-	-(CH ²) ² -							
10					81									
15		R ²	nC ₃ H ₇ S	N(CH ₃) ₂	SCH2-CH(CH3)	оснз	0C2H5	0C3H7-i	0C4H9-88C	0C4H9-iso	_Е ноо	0C3H7-i	0C4H9-88c	0C4H9-i
20				2										
25	(18)	R1	9H ² 20	N(CH3)2	снз	СНЭ	СНЭ	СНЭ	CH3	CH3	c_2H_5	$c_2 H_5$	C2H5	c_2H_5
	>-	L	တ	0	ဟ	ဟ	ဟ	w	w	ဟ	ဟ	S	ဟ	တ
30	28 × 28 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2	2 _n	6-сн3	€+⊃-9	€-сн³	€+⊃-9	€-сн³	€-сн³	€н⊃-9	€-сн³	6-CH ₃	€-сн3	6-CH ₃	€-сн3
35		>	СНЗ	снэ	снэ	снэ	снэ	CH ₃	снз	снз	CH ₃	снз	снэ	снз
40		×	снз	снз	снэ	снз	снз	снэ	СНЗ	снз	снз	снз	снз	снз
45														

		8	I	I	×	æ	π	x	×
5		<	CH ₃	СНЗ	снэ	снз	снз	снз	CH3
10								ş ^H s	3H5
15		R ²	OC2H5	0C2H5	OC2H5	SC3H7-1	N(CH ₃) ₂	SCH(CH ³)C ⁵	SCH(CH3)C5H2
20			ហ		r.	ທ			0
25	(Ia)	T.	OC2H5	C2H5	OC ₂ H ₅	OC2H5	OCH ₃	CH3	C2H5
	Ĩ	اد	ဟ	ស	ဟ	0	ß	w	0
30 35	Z X X	Zn	е-сн ³	6-CH ₃	€н⊃-9	€ −СН3	6-CH ₃	€-сн3	6-СН3
	THE STATE OF THE S	*	снз	снз	снэ	снэ	снэ	снэ	CH ₃
40		×	СНЗ	снз	снз	снз	снз	снэ	снз
45									

		ED	снз	СНЭ	СНЗ	СНЭ	СНЭ	CH3	СНЗ
5		4	снэ	снз	снз	снз	снэ	снэ	СНЗ
10						sc ₃ H ₇ -i	8	13)C2H5	SCH(CH ₃)C ₂ H ₅
15		R ²	0C2H5	OC2H5	OC2H5	SC3H7-	N(CH ₃)	SCH(CH	SCH(CH
20	(Ів)	R1	0C2H5	C2H5	oc ₂ H ₅	oc ₂ H ₅	енэо	снз	C2H5O
25		٠	ဟ	w	ທ	0	ဟ	w	0
30	, R ¹ x x x x x x x x x x x x x x x x x x x	Zn	6-CH ₃	6-сн3	6-CH3	6-сн3	6-CH ₃	6-сн3	6-CH ₃
35		٨	CH3				снз		снэ
40		×	снз	снз	снз	снз	снз	СНЗ	СНЗ
45		×I	J	J	5	J	J	J	J

5		60	-(CH ₂) ₅ -	(CH ₂) ₅ -	(CH ₂) ₅ -	-(CH ₂) ₅ -	(CH ₂) ₅ -	(CH ²) ² -	-(CH ₂) ₅ -
10		4	1						
15		R ²	0C2H5	0C2H5	OC2H5	SC3H7-i	N(CH ₃) ₂	scн(сн ³)с ⁵ н	sch(ch ₃)c ₂ h ₅
20			45	vo	НS	НS	6		50
25	(Ia)	R1	OC2H5	CZHS	OC2HS	OC2HS	6но0	снз	C2H50
30	22	1	v	Ø	ဟ	0	ဟ	Ø	0
35		Zn	€но-9	6-CH ₃	6-CH3	€-СН3	6-CH ₃	6-CH ₃	€-сн3
40		>	CH ₃	снз	СН3	СНЭ	СНЭ	СНЭ	СНЭ
•		×	CH ₃	СН _З	снз	снэ	CH ₃	снз	снэ
45									

		æ	×	æ	æ	×	снз	СНЭ	СНЗ	снэ
5		<	СНЗ	CH ₃	снз	CH ₃	снз	CH ₃	CH3	CH3
					v	u.			v	v
15		R ²	sc₃H7-i	sc ₃ H ₇ -i	SC4H9-88)	SC4H9-88)	SC3H7-i	SC3H7-i	SC4H9-Bek	SC4H9-8ek
20	(IB)	R1	снзо	n-C4H90	оғнэ	n-C4H9	снзо	n-C4H90	снзо	n-C4H9
25		اد	0	0	0	0	0	0	0	0
30	X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	2 _n	6-CH ₃	€-сн3	6-CH ₃	€н2-9	6-CH ₃	6-сн3	6-СН3	6-сн ₃
40			CH ₃	снз	снз	снз	CH ₃	CH ₃	CH ₃	CH ₃
		×	снэ	снз	снз	снз	снз	снз	СНЗ	CH ₃
45										

		1				
		a l	-5(-8(-5(-5(2
5			-(CH ₂) ₅ -	- (CH ₂	-(CH ²) ² -	-(CH ₂) ₅ -
10		Y				
15		R ²	SC3H7-i	SC3H7-i	SC4H9-80K	SC4H9-88K
20				Q		•
	(Ia)	R1	оғнэ	n-C4H90	оғнэ	n-C4H9
25						
		1	0	0	0	0
35	×	2 _n	6-CH ₃	6-CH ₃	6-CH ₃	€-СН3
	J=d d Z E	٨	снз	CH3	CH3	снз
40					m	е.
45		×	СНЗ	СНЗ	СНЗ	снэ

EP 0 521 334 A1

5			æ	×	×	I	æ	x	r	I	×
10			<	CH3	CH3	cH ₃	снз	снз	СНЗ	СНЗ	снэ
15											
20		(Ib)	R ³	снз	C4F9	С4Н9		${\displaystyle \bigodot_{3^{c}}}$	CI	CH2-	c1—CH2-
25								x			
30		× × × × × × × × × × × × × × × × × × ×	Zn	6-сн3	6-CH ₃	€+2-9	6-сн ₃	6-CH ₃	6-сн ₃	€-сн³	6-сн3
35		0-S02-R ³				m		m	m	m	
40	2	⋖ ∰_₹ _≖	>-	CH3	СНЭ	CH ₃	снз	снз	СНЗ	СНЭ	CH3
40	Tabelle 2:		×	снз	СНЗ	снэ	CH ₃	CH ₃	СНЭ	снэ	снз
45											

5		æ	СНЗ	CH ₃	CH ₃	снэ	СНЗ	CH ₃	снэ	CH ₃
10		4	СНЭ	СН3	снз	снз	снэ	СНЗ	снз	СН3
15										,
20	(Ib)	R ³	снэ	C4F9	С4Н9	\Diamond	H ₃ C	cı Cı	CH2-	C1 CH2-
25							x			
30	0-502-R ³ X	Zn	6-сн ₃	6-CH ₃	6-сн3	6-сн3	€-сн3-9	€-сн³	6-сн3	6-CH ₃
35	05-0 -0	>	CH ₃	CH ₃	снз	снз	CH ₃	снэ	CH ₃	СН ₃
40		×	снз	СНЗ	CH ₃	снз	СН3	снз	снз	CH ₃

5		88	-9(.)s-) ₅ -	-\$(;	.)5-	-\$(;	.9-	-5(
10		<	-(CH ₂) ₅ -	- (CH ₂	-(CH ₂) ₅ -	-(CH ₂)2-				
15							1	í	CH2-	-CH2-
25	(Ib)	ж3	CH ₃	C_4F_9	C4H9		$A_3^{\rm C}$	C1		
30	-R3 ×	Zn	6-сн ₃	6-CH ₃	6-сн ₃	^Е нэ- 9	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃
35	B O - SO ₂ - R ³	*	СН3	CH ₃	снз	снз	снз	снэ	снз	снз
40 45		×	снэ	CH ₃	CH ₃	СН3	снз	снэ	СН3	CH ₃

EP 0 521 334 A1

		æ	x	π	Ξ	×	I	I	×	I	Ŧ	Ħ
5		4	CH ₃	CH ₃	CH3	CH ₃	CH3	снз	снз	CH ₃	снэ	снз
10								4 ²				
15		RS	снз	CH ₃	C2HS	C2H5	C3H2(n)	-CH2-CH*CH2		C3H2(n)	•	-(CH ₂) ₂ -0-(CH ₂) ₂ -
20	(1c)		e	6	c ₂ H ₅	C2HS	C ₃ H ₇ (n)	-сн2-сн=сн2	e	C ₃ H ₇ (n)	-(CH2)2-	-(CH ₂) ₂
25		4x	СНЗ	CH ₃	ວິ	CZ	ິນ	ပ္	CH3	ບື		
	Ļ	1 ² -	ຜ	o	ω	0	w	0	0	0	0	ဟ
30	* " " " " " " " " " " " " " " " " " " "	Z,	е-сн ³	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-сн3	€-CH³	6-СН3	6-CH ₃
35	J=0	Y°	.		m	m	.	е е	m	e	e	e
40	B >	[₹] ± ►	CH3	СНЭ	5	СНЗ	Đ	снз	СНЗ	£	СНЗ	CH3
	Tabelle 3:	×	СНЗ	снз	снз	снз	снз	снз	CH ₃	CH ₃	снэ	снз
45												
50												

		æ	CH3	cH3	CH ₃	CH ₃	снэ	сн3	CH3	снэ	снэ	cH ₃
5		~	CH ₃	снз	СНЭ	CH3	СНЭ	CH3	снз	снэ	CH3	снз
10								ري				
15		RS	снэ	снз	C2H5	C2H5	C3H2(n)	-CH2-CHªCH2	\Diamond	C3H2(n)	•	-(CH ₂) ₂ -0-(CH ₂) ₂ -
20	(Ic)	R4	снз	снэ	C2H5	C2H5	C ₃ H ₇ (n)	-CH2-CH=CH2	снз	C3H2(n)	-(CH ₂) ₅ -	-(CH ²) ⁵ .
25	}	נ	ဖ	0	တ	0	S	0	0	0	0	ທ
30	× SR × d d d d d d d d d d d d d d d d d d	Z _n	6-сн3	€-сн ³	6-CH ₃	6-CH ₃	6-СН ₃	€-сн³	6-CH ₃	6-сн ₃	6-сн ₃	6-СН3
35	J=U	-	снэ	снэ	CH ₃	CH ₃	снз	снз	снз	СНЗ	снэ	снэ
40		×	снэ	снз	снз	снз	снэ	снз	снз	снз	снз	снз
45												

5		A B	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-{(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -
10												
15		RS	CH ₃	снэ	C2H5	C ₂ H ₅	C3H2(n)	-CH2-CH*CH2	\bigcirc	C ₃ H ₇ (n)	•	-(CH ²) ² -0-(CH ²) ² -
20	(Ic)	R4	СН3	снз	C ₂ H ₅	C2H5	C ₃ H ₇ (n)	-CH2-CHªCH2	снз	C ₃ H ₇ (n)	-(CH ₂) ₅ -	-(CH ²) ²
2.0	> -	1	ဟ	0	v	0	v	0	0	0	0	တ
30	* 28 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Zn	9-сн3	6-cH ₃	6-сн3	6-сн3	6-сн3	€-сн3	6-сн3	6-СН3	6-сн3	6-сн3
35	기=습 ^독	7	•	•	v	•	Ĭ	Ĭ				
40	o c	*	CH ₃	СНЭ	CH ₃	СНЭ	CH ₃	CH ₃				
		×	CH ₃	снз	снз	снэ	СНЭ	снэ	снэ	снз	снз	СНЭ
45												
50												

				Ø	I	I	I	I	r	I	Ξ	I	×	I	I	x
5				~	CH ₃	снэ	CH ₃	снз	снз	снз	снз	снз	снз	снэ	снз	снэ
10													3)3			
15				R ⁶	снз	C ₂ H ₅	C3H2	i-C ₃ H ₇	i-C4H9	8-C4H9	t-C4H9	-сн ₂ -с(сн ₃₎₃	-(CH ₂) ₂ -C(CH ₃) ₃	-CH2-CH=CH2	-сн ² -сесн	-CH2
20		(14)		Σ	ហ	w	ω	ဟ	S	S	ဟ	ဟ	ဟ	ဟ	w	S
25		ڔؙ	₹ ² -	L	0	0	0	0	0	0	0	0	0	0	0	0
30		1-R6 ×	J ^r	Zn	æ	×	I	I	×	x	x	×	×	×	I	×
35	l -1-	B 0-C-H-R6	Y°	*	ច	ເລ	ເລ	G1	ເນ	ເວ	ເວ	CJ	C1	C1	CJ	ច
40	Tabelle 4:			×	ប	ជ	c ₁	C1	CJ	បី	ប	CI	CI	ប	ប	ប

			В	CH ₃	СНЗ	CH ₃	СНЭ	СНЗ	СНЭ	СНЗ	СНЭ	снз	СНЗ	СНЗ	CH ₃
5			4	снз	CH ₃	CH ₃	СНЗ	СНЗ	CH ₃	CH ₃	СН ₃	СНЭ	CH3	снэ	СНЗ
10			R6	СНЗ	C ₂ H ₅	C ₃ H ₇	i-C ₃ H ₇	i-C ₄ H9	в-С4Н9	t-C4H9	-сн ₂ -с(сн ₃) ₃	-(CH ₂) ₂ -C(CH ₃) ₃	-CH2-CH=CH2	-сн2-сесн	-cH ₂
20		_				_									
25		(PI)	Σ	w	ဟ	w	တ	ທ	w	v	ω	v	ທ	ဟ	ហ
30		7,5	٦	0	0	0	0	0	0	0	0	0	0	0	0
35	O-C-M-R ⁶)	·	2 ⁿ	×	æ	I	Ξ	x	x	æ	x	x	x	x	π
40	4	-	*	5	ប	ប	CI	CI	ប	ប	ບ	បី	បី	ວ	ជ
45			×	CJ	G	ច	ប៊	CI	CJ	ច	ប	ច	G	CJ	ច
50															

5			A B	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ²) ² -								
15			R6	сн _э	C2H5	C ₃ H ₇	i-c ₃ H ₇	i-C4H9	8-C4H9	t-C4H9	-CH2-C(CH3)3	-(cH ₂) ₂ -c(cH ₃) ₃	-cH2-CH=CH2	-сн2-с≘сн	-cH ₂
20 25		(14)	Σ	ဟ	v	ω	ဟ	တ	ဟ	ဟ	w	ຜ	ဟ	ស	v
30	;	Z _n	נ	0	0	0	0	0	0	O	0	0	O	O	0
35	: : : :	N. C.	Zn	Ħ	x	I	x	æ	×	x	×	×	×	I	r
40	•	≺ †──₹ ₌	×	C1 C1	cı cı	C1 C1	ຕາ ຕາ	C1 C1							
45			×I	υ	ט	S	υ	U	U	J	J	U	J	J	J

		a	I	H	×	×	I	I	x	I	I	I	r	x
5		*	снз	снз	снз	снз	снз	снз	снз	снэ	снз	CH3	снз	снз
10											3)3			
15		R6	снз	C2H5	C3H2	i-c ₃ H ₇	i-C4H9	s-C4H9	t-C4H9	-сн ² -с(сн ³) ³	-(сн ²) ² -с(сн	-сн ² -сн=сн ²	-сн2-с≡сн	СH2-
20	(14)	Σ	Ŋ	s	ဟ	ហ	ស	S	S	ស	s	ဟ	S	v
25	Ì	נו	0	0	0	0	0	0	٥	0	0	0	٥	0
30	×	_												
35	O-C-H-R6	2 _n	I	I	I	Ξ	I	I	x	I	I	I	Ħ	I
40	▼	>	CH ₃	СНЗ	CH ₃	CH3	CH3	CH3	снэ	СНЗ	CH ₃	СНЗ	снз	СНЗ
45		×	CH3	снз	CH3	CH3	снз	CH ₃	CH3	CH ₃	снз	CH ₃	снз	CH ₃
70														

		æ	CH ₃	снз	снз	снз	снз	снз	снз	снз	снз	снз	снз	CH ₃
5		V V	CH ₃	снз	снз	снэ	снз	снз	снз	снз	снз	CH3	снз	CH ₃
10										၉	:H3)3	_		
15		R6	снз	C2H2	C ₃ H ₂	i-C3H7	i-C4H9	в-С4Н9	t-C4H9	-сн ² -с(сн ³)	-(сн ²) ² -с(с	-CH2-CH=CH2	-сн2-с≡сн	-CH ₂
20	(Id)													
25	5	Σ	w	တ	ဟ	Ŋ	ဟ	ဟ	ဟ	ဟ	w	ស	ស	S
30	Z ^z	٦	0	0	0	O	0	0	0	o	0	O	0	0
35	0-C-M-R6	Zn	x	×	I	x	x	I	×	Ħ	×	I	×	×
	o z	>	снз	снз	снз	снз	снз	снз	СН3	снз	СНЗ	снз	снз	снз
40		×	снз	снз	снз	снз	СНЗ	снз	снз	снз	снз	снз	снз	снэ
45														

5			A B	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂) ₅ -							
10	·		R6	снэ	C ₂ H ₅	C ₃ H ₇	i-C ₃ H ₇	i-C4H9	в-С4Н9	t-C4H9	-сн ₂ -с(сн ₃) ₃	-(CH ₂) ₂ -C(CH ₃) ₃	-CH2-CH=CH2	-сн2-с≡сн	-cH ₂
20		(14)	Σ	v	ທ	ស	v	ស	ဟ	w	ω.	, ω	v	S	s
30	-R6 ×	r r r	Z _n L	0	0	0	О	0 #	0	O	0	О	0	0	О
35 40	L 		۲	снз	снз	СН3	CH3	CH ₃							
45			×	CH3	CH3	СНЗ	СНЭ	CH ₃	CH ₃	CH3	снз	снэ	CH ₃	CH3	СНЗ

10 15 20 25 20 640 <th></th> <th></th> <th>1</th> <th></th>			1										
x			æ	I	I	I	×	Ξ	x	×	X	I	x
25 26 27 28 29 20 20 21 21 21 22 24 25 26 27 28 29 20 20 20 21 21 21 21 21 21 21			۲	CH ₃	CH ₃	CH3	снз	CH3	CH3	CH ₃	СНЭ	CH ₃	СНЗ
25 26 27 28 29 20 20 21 21 21 22 24 25 26 27 28 29 20 20 20 21 21 21 21 21 21 21			Ré	снз	C2H5	C ₃ H ₇	i-C ₃ H ₇	i-C4H9	s-C4H9	t-C4H9	-CH2-CH=CH2	-сн2-с≡сн	-cH ₂
20 EH2-9 EH2-9 EH3-9 EH3-	25	(14)	Σ	v	ω	ω	w						ø
35 X X X X X X X X X X X X X	30	×			_								
× × × × × × × × × × × × × × × × × × ×	35	L = -C - M - M - M - M - M - M - M - M - M		€-сн3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	€ −СН³
	40			CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH3	CH3	снэ
	45		*	CH3	СНЭ	СНЭ	CH ₃	СНЭ	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃

		В	снз	CH ₃	CH3	снэ	СНЗ	снз	CH3	СН3	снз	СН3	снз	СНЭ
5		A	снэ	CH3	снз	снз	снз	снз	снз	СНЗ	снз	CH ₃	CH ₃	снз
10										6	Н3)3			
15		R6	снэ	C2HS	C ₃ H ₇	i-c ₃ H ₇	i-C4H9	8-C4H9	t-C4H9	$-cH_2-c(cH_3)_3$	-(сн ₂) ₂ -с(с	-сн ² -сн=сн ²	-сн ² -сесн	-CH ₂
20	Î													
25	(PI)	Σ	v	ဟ	တ	ဟ	ဟ	S	ဟ	ဟ	ហ	ဟ	w	ဟ
	, , , , , , , , , , , , , , , , , , ,	J	o	О	0	0	0	0	0	0	0	0	0	0
30	7=C-4-86	2 _n	е-сн ³	€-сн3	6-CH ₃	€-сн3	6-CH ₃	6-сн3	6-CH ₃	6-CH ₃	6-сн3	6-СН3	6-CH ₃	е-сн ₃
35		>-	СНЗ	снз	снз	снз	снз	снз	снз	снз	снз	снз	снз	снз
40		×	СНЗ	снз				CH ₃	снз	снз	снз	снз	CH ₃	снз
45														

5		8	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -					
10		R6	CH ₃	C ₂ H ₅	C ₃ H ₇	i-c ₃ H ₇	i-C4H9	1-C4H9	t-C4H9	с,сн2-с(сн3)3-2н2∙	-(сH ₂) ₂ -с(сH ₃) ₃	-сн ₂ -сн=сн ₂	-сн2-с≅сн	-CH ₂
20	(14)	Σ	ນ	S	s	. s	S	ς B	,	ທ	S	ທ	ຑ	ω
30	-R ⁶ x	2 ⁿ L	0 EH3-9	6-сн ₃ 0	6-CH ₃ 0	0 Енр-9	9-сн3	6-сн ₃ 0	6-сн ₃ 0	0 6-сн3 0	0 Ено-9	6-CH ₃ 0	0 EHD-9	6-CH ₃ 0
35	H A O - C - M - R ⁶	٨	CH ₃	CH ₃	снз	снз	СНЗ	CH ₃	CH3	CH ₃	снз	CH3	CH ₃	СНЗ
45		×	CH3	СНЗ	снз	CH3	CH ₃	снз	снз	СНЗ	CH3	CH3	СНЗ	CH3

		В	x	x	×	×	I	x	x	I	×	×	I
5		4	CH ₃	CH3	снз	CH3	снз	CH ₃	CH ₃	СНЗ	снэ	снз	снз
10									3)3	Е(EH3)	₁ 2		
20		R6	снз	C2H5	C3H2	i-C ₃ H ₇	1-C4H9	s-C4H9	-сн ² -с(сн	-(CH ₂) ₂ -C	-сн ² -сн=с	-сн2-с≡сн	-CH ₂
25	(14)	Σ	ဟ	ဟ	ω	ω	ω	ω	w	ß	ທ	ß	ဟ
30	×	נו	တ	v	တ	ဟ	S	ဟ	w	တ	တ	w	ທ
35	0-0-C	2 ⁿ	x	I	I	x	Ħ	x	Ξ	I	x	I	Ħ
40	₹	*	ដ	ü	CJ	CJ	ü	CI	CJ	G	CI	CI	CJ
45		×	ប៊	C1	CI	C1	C	CJ	C	CJ	CI	ເນ	5

		æ	CH ₃	снз	СНЗ	снз	снз	снз	снз	CH ₃	снз	снэ	CH ₃
5		A	снэ	CH ₃	сн3	СНЭ	CH ₃	CH3	снз	CH ₃	снэ	снз	CH ₃
10										E C			
15		R6	CH ₃	C2H5	3H ₇	1-C ₃ H ₂	1-C4H9	3-C4H9	-сн ² -с(сн ³)3	. (сн ₂) ₂ -с(сн ₃)	-CH2-CH=CH2	но≡о-2но-	-cH ₂
20		E	b	O	O	-4	•=	w	•	•	•	•	·
	(Id)	Σ	Ŋ	S	v	ဟ	ဟ	S	ဟ	w	v	တ	w
25	, ", ", ", ", ", ", ", ", ", ", ", ", ",	נ	w	S	w	v	ω	ហ	S	w	v	v	Ŋ
30	×	ļ											
35		2 _n	x	x	I	I	I	I	I	I	I	x	x
	* * * * * * * * * * * * * * * * * * *	٠	ច	ប	ប៊	C	ເວ	C	C1	ប	CI	CJ	ü
40		×	ເວ	CJ	CJ	C1	C 1	C1	C1	C1	ប	C1	5
45													

5		A B	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ²) ² -						
10		Rb	снз	C ₂ H ₅	C ₃ H ₇	i-C ₃ H ₇	i-C4H9	в-С4Н9	-сн ₂ -с(сн ₃) ₃	-(CH ₂) ₂ -C(CH ₃) ₃	-сн2-сн=сн2	-сн2-с≘сн	-cH ₂
25	(14)	Σ	v	S	S	ហ	v	v	v	S	v	v	v
30	×	נ	ဟ	S	ທ	ស	Ŋ	v	v	v	S	ω	v
35		Y Z _n	С1	С1 Н	С1 Н	С1 Н	С1 Н	C1 #	T	С1 Н	С1 Н	C1 H	С1 Н
40	₽ ,≖	×	r r	C1	ប៊	ជ	ច	5	C1	1 0	CI	CI	ü

		В	I	x	x	x	×	I	I	I	I	×	I
5		Y	CH ₃	CH3	снз	CH3	снз	CH ₃	CH ₃	СНЗ	CH ₃	снэ	СНЭ
10									-сн ₂ -с(сн ₃) ₃	2-C(CH ₃)3	:н=сн ₂	HDE	
20	•	Re	CH ₃	C2H5	C3H2	i-C ₃ H ₇	i-C4H9	8-C4H9	-CH2-C	-(CH ²)	-CH2-C	-cH ₂ -c≆CH	-CH ₂
25	(FI)	Σ	S	ß	w	S	Ø	S	v	v	Ŋ	v	v
30	Z z z	٦	ဟ	ທ	ဟ	ဟ	w	S	v	S	တ	ဟ	ဟ
35	C-C-M-R6	Zn	I	I	×	Ħ	Ħ	x	x	Ŧ	Ŧ	x	I
40		*	снз	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	€H2	СНЭ	СНЗ	снз	CH ₃
-v		×	CH3	СНЗ	СНЗ	СНЭ	снз	СНЭ	снз	CH ₃	CH ₃	снз	СНЭ
45													

		B	СНЗ	CH3	CH ₃	СНЗ	СНЗ	СНЗ	снз	СНЭ	CH3	СНЗ	CH ₃
5		۷ ا	СНЭ	снэ	снз	CH ₃	снз	CH ₃	снэ	снэ	снэ	снз	CH ₃
10									13,3	;(CH ³) ³	3H ₂	-	
20		R6	СН3	C2H5	C3H2	i-C ₃ H ₇	i-C4H9	s-C4H9	-сн ² -с(с	-(сн ₂)-(-сн ² -сн=(-CH2-C≣C!	-CH2
25	(PI)	Σ	Ŋ	ဟ	ω	ນ	ហ	S	ဟ	v	v	ဟ	ν
30	* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	ဟ	တ	w	ဟ	Ŋ	ဟ	S	ဟ	v	ທ	v
35	J= 0-0-X-86	2 _n	æ	Ħ	I	I	x	I	I	x	I	×	Ξ
40	₹	+	CH ₃	CH3	CH3	СНЭ	CH3	CH3	CH3	CH3	CH3	CH3	CH ₃
		×	CH ₃	CH ₃	CH ₃	СНЗ	СНЭ	СНЗ	CH3	CH3	CH3	снэ	CH ₃
45													

5		A B	-(CH ₂) ₅ -	-(CH ²) ² -									
10						4	6	61	-сн2-с(сн3)3	,)2-C(CH ₃)3	-сн=сн ²	-сн2-с≡сн	\bigcirc
20	(14)	R6	CH ₃	C2H2	C3H2	i-C ₃ H	i-C4H9	s-C4H	-СH2-	- (CH ₂	-CH2-	-CH2-	-СН2-
25	5	Σ	v	v	w	S	တ	v	ဟ	w	Ŋ	w	ω
30	* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	נ	v	Ŋ	ဟ	S	S	v	w	ស	ဟ	Ø	w
35	C-G-H-R6	Zn	I	I	I	I	I	x	x	I	I	x	π
40	T T	>	СН3	снэ	снз	снз	снз	СНЗ	снз	CH3	СНЗ	снэ	CH ₃
40		×	снз	снз	CH ₃	CH ₃	снз	снэ	снз	СНЗ	снз	СНЗ	снз
. 45													

		æ	I	I	Ξ	x	I	I	x	x	I	I	I
5		4	CH ₃	снз	снз	снз	снз	снз	снз	снз	CH ₃	снз	CH ₃
10										3)3			
15		R6	CH ₃	c ₂ H ₅	C ₃ H ₇	i-C ₃ H ₇	i-C4H9	8-C4H9	-сн ₂ -с(сн ₃) ₃	-(сн ⁵) ⁵ -с(сн ³	-CH2-CH=CH2	-сн2-с≅сн	-сн2
20	(PI)												
25	Č	Σ	Ŋ	ဟ	တ	S	S	ဟ	တ	ស	ഗ	v	ω
	z ⁿ	ر	ဟ	v	ω	w	ß	w	ω	w	တ	ß	ß
35	C × × × 0 0 × × × 0	Zn	6-CH ₃	6-СН3	€ -СН3	6-сн3	6-сн3	6-CH3	6-CH ₃	6-CH3	€-сн3	6-CH3	6-CH ₃
40		۲	снз	CH3	снз	CH3	снз	CH3	CH ₃	снз	CH3	снз	снэ
		×	CH ₃	CH ₃	CH ₃	снз	снэ	снз	снэ	снэ	снз	снз	снз
4 5													

		В	CH ₃	снз	снз	снэ	снз	снэ	снз	снз	снз	СНЗ	СНЗ
5		A	снэ	снз	снэ	снэ	снз	снз	снз	снз	снз	снэ	снз
10										3)3			
15		R6	снз	C2H5	C ₃ H ₇	i-C ₃ H ₇	i-C4H9	s-C4H9	-сн ₂ -с(сн ₃) ₃	-(сн ²) ² -с(сн	-CH2-CH=CH2	-CH2-C≡CH	-CH ₂
20	(PI)	Σ	ហ	ဟ	v	S	ហ	S	v	v	S	S	ω
25	ì	اد	ស	Ŋ	ω	S	S	v	s	v	ဟ	v	v
30	x x y	Zn	6-CH ₃	6-CH ₃	€-сн3	6-СН3	€-сн3	€-сн3-9	€-сн3	6-сн3	€-сн3	6-CH ₃	€-сн3
35	J= 0 0 0 W - M 0	> -	СН3	снз	снз			снз				снз	
40	φ <u>,</u> ≖												
4 5		×	CH ₃	CH3	CH ₃	СНЗ	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	СНЗ

5		A B	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -				
10													
15		R6	снз	c ₂ H ₅	C ₃ H ₇	i-C ₃ H ₇	i-C4H9	s-C4H9	-сн ² -с(сн ³) ³	-(CH ₂) ₂ -C(CH ₃) ₃	-cH ₂ -cH=cH ₂	-сн2-с≡сн	-CH2
20	(Id)												
25	5	Σ	ဟ	ဟ	ဟ	w	ທ	w	w	ဟ	ທ	v	ß
	<u></u>	ر	S	S	ß	ဟ	v	ဟ	w	ဟ	ω	w	ທ
30	г. г	2 _n	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	€ + СН ³	6-CH ₃	6-CH ₃	6-CH ₃	€-CH3	€+2-9	6-сн ₃
35		*	СНЗ	CH3	снз	СНЗ	снз	CH3	CH ₃	снз	СН3	CH ₃	снз
		×	снз	снз	CH3	снз	снз	CH ₃	CH ₃	снз	снз	снэ	CH ₃

Verwendet man gemäß Verfahren (A) 3-(2,4-Dimethylphenyl)-5-isopropyl-2,4-pyrrolidin-dion und Methanthiophosphonsäurechlorid-(2,2,2-trifluorethylester) als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (B) 3-(2,4-Dichlorphenyl)-5-methyl-2,4-pyrrolidin-dion und Methansulfonsäurechlorid als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (C_α) 3-(2,4,6-Trimethylphenyl)-5,5-pentamethylen-2,4-pyrrolidin-dion und Ethylisocyanat als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Schema wiedergegeben werden:

35

OH
$$H_3C$$

C2 $H_5-N=C=0$

H

O= $C-N-C_2H_5$

O H_3C

C1

OH H_3C

C2 $H_5-N=C=0$

C1

C2 $H_5-N=C=0$

C3

C45

50

55

Verwendet man gemäß Verfahren (C_B) 3-(2,4,6-Trimethylphenyl)-5-isopropyl-2,4-pyrrolidin-dion und Dimethylcarbamidsäurechlorid als Ausgangsprodukte, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

Verwendet man gemäß Verfahren (D_a) 3-(2,4,6-Trimethylphenyl)-5,5-dimethyl-2,4-pyrrolidin-dion und Chlormonothioameisensäuremethylester als Ausgangsprodukte, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

25

$$H_{3}C$$
 $H_{3}C$
 $H_{3}C$

Verwendet man gemäß Verfahren (D_g) 3-(2,4,6-Trimethylphenyl)-5,5-tetramethylen-2,4-pyrrolidin-dion, Schwefelkohlenstoff und Methyliodid als Ausgangskomponenten, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

10

5

Die bei dem obigen Verfahren (A)-(D) als Ausgangsstoffe benötigten Verbindungen der Formel (II)

15

20

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben, sind neu, aber Gegenstand früherer eigener Anmeldungen. So erhält man Verbindungen der Formel (II), wenn man N-Acylaminosäureester der Formel (IX)

25

$$\begin{array}{c|c}
A & CO_2R^7 & X \\
H-N-C-CH_2 & Z_n
\end{array}$$

30

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben und

R7 für Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert. Die bei dem obigen Verfahren als Ausgangsstoffe benötigten Verbindungen der Formel (IX)

40

45

in welcher

- A, B, X, Y, Z, n und R⁷ die oben angegebene Bedeutung haben sind teilweise bekannt oder lassen sich nach im Prinzip bekannten Methoden in einfacher Weise herstellen. So erhält man z.B. Acyl-aminosäureester der Formel (IX), wenn man
 - a) Aminosäureester der Formel (X),

$$\begin{array}{c|c}
A & & \\
B & CO_2R^4 & \\
NH_2 & & (X)
\end{array}$$

in welcher R^4 für Wasserstoff (Xa) und Alkyl (Xb) steht

A und B die oben angegebene Bedeutung haben,

mit Phenylessigsäurehalogeniden der Formel (XI)

$$Y \xrightarrow{Z_n} CH_2 - COHal$$
 (XI)

in welcher

X, Y, Z und n die oben angegebene Bedeutung haben und Hal für Chlor oder Brom steht, acyliert (Chem. Reviews 52 237-416 (1953)); oder wenn man Acylaminosäuren der Formel (IIa),

20

5

10

15

25

30

35

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

R8 für Wasserstoff steht,

verestert (Chem. Ind. (London) 1568 (1968).

Beim Herstellungsverfahren (A) setzt man zum Erhalt von Verbindungen der Struktur (Ia) auf 1 Mol der Verbindung (II), 1 bis 2, vorzugsweise 1 bis 1,3 Mol der Phosphorverbindung der Formel (III) bei Temperaturen zwischen -40 und 150°C, vorzugsweise zwischen -10 und 110°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten, polaren organischen Lösungsmittel infrage wie halogenierte Kohlenwasserstoffe, Ether, Amide, Nitrile, Alkohole, Sulfide, Sulfone, Sulfoxide etc.

Vorzugsweise werden Acetonitril, Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt.

Als gegebenenfalls zugesetzte Säurebindemittel kommen übliche anorganische oder organische Basen infrage wie Hydroxide, Carbonate. Beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin aufgeführt..

Die Umsetzung kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden der organischen Chemie. Die Reinigung der anfallenden Endprodukte geschieht vorzugsweise durch Kristallisation, chromatographische Reinigung oder durch sogenanntes "Andestillieren", d.h. Entfernung der flüchtigen Bestandteile im Vakuum.

Beim Herstellungsverfahren (B) setzt man pro Mol Ausgangsverbindung der Formel (II) ca. 1 Mol Sulfonsäurechlorid (IV) bei 0 bis 150 °C, vorzugsweise bei 20 bis 70 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten, polaren organischen Lösungsmittel infrage wie halogenierte Kohlenwasserstoffe, Ether, Amide, Nitrile, Alkohole, Sulfone, Sulfoxide.

Vorzugsweise werden Methylenchlorid, Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung II dar, kann auf den weiteren

Zusatz von Säurebindemitteln verzichtet werden.

15

25

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen infrage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren (B) kann gegebenenfalls unter Phasen-Transfer-Bedingungen gearbeitet werden (W.J. Spillane et al., J. Chem. Soc. Perkin Trans I, (3) 677-9 (1982)). In diesem Fall setzt man pro Mol Ausgangsverbindung der Formel (II) 0,3 bis 1,5 Mol Sulfonsäurechlorid (IV), bevorzugt 0,5 Mol bei 0 bis 150 °C, vorzugsweise bei 20 bis 70 °C um. Als Phasen-Transfer-Katalysatoren können z.B. alle quartären Ammoniumsalze verwendet werden, vorzugsweise Tetraoctylammoniumbromid und Benzyltriethylammoniumchlorid. Als organische Lösungsmittel können in diesem Fall alle unpolaren inerten Lösungsmittel dienen, bevorzugt werden Benzol und Toluol eingesetzt.

Beim Herstellungsverfahren (C_{α}) setzt man pro Mol Ausgangsverbindung der Formel (II) ca. 1 Mol Isocyanat der Formel (V) bei 0 bis 100 °C, vorzugsweise bei 20 bis 50 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten organischen Lösungsmittel infrage, wie Ether, Amide, Nitrile, Sulfone, Sulfoxide.

Gegebenenfalls können Katalysatoren zur Beschleunigung der Reaktion zugesetzt werden. Als Katalysatoren können sehr vorteilhaft zinnorganische Verbindungen, wie z.B. Dibutylzinndilaurat eingesetzt werden. Es wird vorzugsweise bei Normaldruck gearbeitet.

Beim Herstellungsverfahren (C_8) setzt man pro Mol Ausgangsverbindung der Formel (II) ca. 1 Mol Carbamidsäurechlorid bzw. Thiocarbamidsäurechlorid der Formel (VI) bei 0 bis 150 °C, vorzugsweise bei 20 bis 70 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel infrage wie Ether, Amide, Alkohole, Sulfone, Sulfoxide.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung II dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen infrage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren (D_a) setzt man pro Mol Ausgangsverbindung der Formel (II) ca. 1 Mol Chlormonothioameisensäureester bzw. Chlordithioameisensäureester der Formel (VII) bei 0 bis 120°C, vorzugsweise bei 20 bis 60°C um`

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten organischen Lösungsmittel infrage, wie halogenierte Kohlenwasserstoffe, Ether, Amide, Alkohole, Sulfone, Sulfoxide.

Vorzugsweise werden Methylenchlorid, Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung II dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen infrage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren (D_β) setzt man pro Mol Ausgangsverbindung der Formel (II) die äquimolare Menge bzw. einen Überschuß Schwefelkohlenstoff zu. Man arbeitet hierbei vorzugsweise bei Temperaturen von 0 bis 50°C und insbesondere bei 20 bis 30°C.

Oft ist es zweckmäßig zunächst aus der Verbindung der Formel (II) durch Zusatz eines Deprotonierungsmittels (wie z.B. Kaliumtertiärbutylat oder Natriumhydrid) das entsprechende Salz herzustellen. Man setzt die Verbindung (II) solange mit Schwefelkohlenstoff um bis die Bildung der Zwischenverbindung abgeschlossen ist, z.B. mehrstündiges Rühren bei Raumtemperatur.

Die weitere Umsetzung mit dem Alkylhalogenid der Formel (VIII) erfolgt vorzugsweise bei 0 bis 70°C und insbesondere bei 20 bis 50°C. Hierbei wird mindestens die äquimolare Menge Alkylhalogenid eingesetzt.

Man arbeitet bei Normaldruck oder unter erhöhtem Druck, vorzugsweise bei Normaldruck.

Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.

Die Wirkstoffe eignen sich zur Bekämpfung von tierischen Schädlingen, vorzugsweise Arthropoden und Nematoden, insbesondere Insekten und Spinnentieren, die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.

Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spec.

Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.

10 Aus der Ordnung der Thysanura z.B. Lepisma saccharina.

Aus der Ordnung der Collembola z.B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria.

15 Aus der Ordnung der Dermaptera z.B. Forficula auricularia.

Aus der Ordnung der Isoptera z.B. Reticulitermes spp..

Aus der Ordnung der Anoplura z.B. Phylloxera vastatrix, Pemphigus spp., Pediculus humanus corporis, Haematopinus spp., Linognathus spp.

Aus der Ordnung der Mallophaga z.B. Trichodectes spp., Damalinea spp.

Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci.

Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp. Psylla spp.

Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp. Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Spodoptera exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Acanthoscelides obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varive stis, Atomaria spp., Oryzaephilus surinamensis, Antho nomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Cono derus spp., Melolontha melolontha, Amphimallon solsti tialis, Costelytra zealandica.

Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.

Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hyppoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa.

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp..

Aus der Ordnung der Arachnida z.B. Scorpio maurus, Latrodectus mactans.

50

Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp..

Die erfindungsgemäßen Wirkstoffe zeichnen sich durch eine hohe insektizide und akarizide Wirksamkeit aus.

Sie lassen sich mit besonders gutem Erfolg zur Bekämpfung von pflanzenschädigenden Insekten, wie beispielsweise gegen die Larven des Meerrettichblattkäfers (Phaedon cochleariae) oder gegen die Larven der grünen Reiszikade (Nephotettix cincticeps) oder gegen pflanzenschädigende Milben, wie beispielsweise gegen die gemeine Spinnmilbe oder die Bohnenspinnmilbe (Tetranychus urticae) einsetzen.

Die erfindungsgemäßen Wirkstoffe wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten und Endoparasiten) wie Schildzecken, Lederzecken, Räudemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge, Flöhe und endparasitisch lebende Würmer.

Sie sind gegen normalsensible und resistente Arten und Stämme sowie gegen alle parasitierenden und nicht parasitierenden Entwicklungsstadien der Ekto- und Endoparasiten wirksam.

Die erfindungsgemäßen Wirkstoffe können weiterhin als Defoliants, Desiccants, Krautabtötungsmittel und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbizide wirken, hängt im wesentlichen von der angewendeten Menge ab.

Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden: Dikotyle Unkräuter der Gattungen: Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.

Dikotyle Kulturen der Gattungen: Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.

Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus, Allium.

Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.

Die Verbindungen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z.B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, z.B. Forst, Ziergehölz-, Obst-, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölpalm-, Kakao-, Beerenfrucht- und Hopfenanlagen, auf Zier- und Sportrasen und Weideflächen und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.

Die Wirkstoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.

Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.

Als feste Trägerstoffe kommen in Frage:

z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester,

Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Einweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Herbiziden zur Unkrautbekämpfung Verwendung finden, wobei Fertigformulierungen oder Tankmischungen möglich sind.

Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Fungiziden, Insektiziden, Akariziden, Nematiziden, Schutzstoffen gegen Vogelfraß, Pflanzennährstoffen und Bodenstrukturverbesserungsmitteln ist möglich.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus durch weiteres Verdünnen bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Emulsionen, Pulver, Pasten und Granulate angewandt werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Spritzen, Sprühen, Streuen.

Die erfindungsgemäßen Wirkstoffe können sowohl vor als auch nach dem Auflaufen der Pflanzen appliziert werden. Sie können auch vor der Saat in den Boden eingearbeitet werden.

Die angewandte Wirkstoffmenge kann in einem größeren Bereich schwanken. Sie hängt im wesentlichen von der Art des gewünschten Effektes ab. Im allgemeinen liegen die Aufwandmengen zwischen 0,01 und 10 kg Wirkstoff pro Hektar Bodenfläche, vorzugsweise zwischen 0,05 und 5 kg pro ha.

Die Herstellung und Verwendung der erfindungsgemäßen Wirkstoffe geht aus den nachfolgenden Beispielen hervor.

Herstellungsbeispiele:

Beispiel 1

35

40

45

25

30

4 g (16,3 mmol) 3-(2,4,6-Trimethylphenyl)-5,5-dimethylpyrrolidin-2,4-dionwerden in 10 ml Tetrahydrofuran gelöst. Dazu werden 2,5 ml (18 mmol) Triethylamin und danach bei Raumtemperatur 3,6 g (17,8 mmol) Methan-dithiophosphonsäure-s-(n-butylester)-chlorid gegeben. Der Ansatz wird ca. zwei Stunden bei 50 °C gerührt und das Reaktionsende chromatographisch überprüft. Nach dem Abdestillieren des Lösungsmittels wird der verbleibende Rückstand über eine Kieselgelfritte (Laufmittel Toluol: Essigester 8:2) gereinigt.

Man erhält 1,6 g (29,2% der Theorie) Methan-dithiophosphonsäure-0-[3-(2,4,6-trimethylphenyl)-5,5-dimethylpyrrolidin-2-on-]-S-(n-butylester) vom Schmelzpunkt 98°C.

Beispiel 2

3,68 g (15 mmol) 3-(2,4,6-Trimethylphenyl)-5,5-dimethylpyrrolidin-2,4-dion werden in 60 ml absolutem

Methylenchlorid vorgelegt. Dazu werden 2,3 ml (16,5 mmol) Triethylamin und danach bei 0 bis 10 ° C 2,75 g
(16,5 mmol) Chlorthiokohlensäure-S-(2,2-dimethylpropyl)-ester gelöst in 15 ml absolutem Methylenchlorid
zugetropft. Der Ansatz wird ca. 2 Stunden bei Raumtemperatur gerührt und das Reaktionsende chromatographisch überprüft. Das Reaktionsgemisch wird nacheinander mit 10 %iger Citronensäure,
Natriumhydrogencarbonat- und Kochsalzlösung gewaschen, die organische Phase getrocknet und das

Lösungsmittel abdestilliert. Nach dem Umkristallisieren aus Essigester/Hexan 1:4 erhält man 2,74 g (49 %
der Theorie)Thiolkohlensäure-S-(2,2-dimethylpropyl)-ester-O-[3-(2,4,6-trimethylphenyl)-5,5dimethylpyrrolidin-2-on] vom Schmelzpunkt 197-200 ° C.

Beispiel 3

5

10

25

30

35

4,91 g (20 mmol) 3-(2,4,6-Trimethylphenyl)-5,5-dimethylpyrrolidin-2,4-dion werden in 40 ml wasserfreiem Dimethylformamid gelöst. Dazu werden 1,08 g Natriummethanolat gegeben und der Ansatz ca. 10
Minuten nachgerührt. Nach der Zugabe von 1,17 ml Schwefelkohlenstoff wird 3 Stunden bei Raumtemperatur gerührt und anschließend 1,24 ml Methyljodid zugetropft. Der Reaktionsansatz wird weitere 3 Stunden
bei Raumtemperatur gerührt und das Reaktionsende chromatographisch überprüft. Das Reaktionsgemisch
wird in 120 ml Wasser eingerührt, der Niederschlag abgesaugt, das Filtrat in Dichlormethan aufgenommen
und mit 200 ml 0,5 N Natronlauge gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet
und eingeengt. Das erhaltene Rohprodukt wird in 10 ml Essigester heiß aufgeschlämmt und abgesaugt.
Man erhält 2,1 g (31,3 % der Theorie) Thiolthionkohlensäure-S-methyl-O-[3-(2,4,6-trimethylphenyl)-5,5dimethylpyrrolidin-2-on] vom Schmelzpunkt 214-215 °C.

In analoger Weise zu den Beispielen 1, 2 und 3 und unter Berücksichtigung der Angaben in der Beschreibung zu den erfindungsgemäßen Verfahren, werden die nachfolgend in Tabelle 5 aufgeführten Endprodukte der Formel (I) erhalten.

Tabelle 5

5	Bsp. Nr.	A	В	x	Y	z _n		physikal. Konst.
o	4	сн3	снз	снз	снз	6-СН _З	0 -c-s-(cH ₂) ₂ -c(cH ₃) ₃	Fp.: 211°C
5	5	снз	снз	сн ₃	снз	6-сн ₃	S -P-S-C ₄ H ₉ iso CH ₃	Fp.: 104°C
0	6 7	_	-				-so ₂ -сн ₃	Fp.: 194-195°C Fp.: 217-218 °C
	8	сн3	CH ₃	сн ₃	сн3	6-сн ₃	-50 ₂ -C ₃ H ₇ iso	Fp.: 187-193 °C
5	9	сн3	сн ₃	сн3	CH ₃	6-сн ₃	-c-N -so ₂ -cH ₃	Fp.: 96-105 °C Fp.: 201-206 °C

Tabelle 5 (Fortsetzung)

5	Bsp. Nr.	Α	В	x	Y	z _n	R .	phy Kon	sikal. st.	
v	11	CH ³	CH ₃	сн3	CH ₃	6-сн ₃	-Csc ₃ H ₇ iso	Fp.:	180-186	°C
	12	сн ₃	СН3	CH ³	CH ₃	6-сн ³	-c-sc ₄ H ₉ tert.	-	184-188	°C
10	13	CH3	CH ₃	СН3	CH3	6-сн ₃	ор -сsан ₂ ан ₂ -ан (ан ₃) ₂	Fp.:	132-135	°C
	14	-(CH	₂) ₅ —	- CH ₃	сн3	6-CH ₃	o -C-SC ₃ H ₇ iso		193-196	°C
15	15	~ (CB	2 ⁾ 5 ⁻	сн3	сн ₃	6-CH ₃	-c-scH ₂ -c(CH ₃) ₃	Fp.:	252-260	°C
	16	CH ³	сн3	сн3	сн3	6-сн3	-c-sai-ai ₂ -ai-ai ₃	Fp.:	126-128	°c
20							0			
	17 C	H ₇ iso					-C-s-CH ₂ -C(CH ₃) ₃	Fp.:	138-139	,°C
25	18 C	3 ^H 7 ^{iso}	Н	сн3	CH ₃	6-CH ₃	-C-s-CH ₂ -CH ₂ -C(CH ₃) ₃	Fp.:	64 – 66 °	С
	19 C	3 ^H 7 ^{iso}	Н	сн3	CH ³	6-CH ₃	-C-SC3H7iso	Fp.:	160-161	. °C
30	20 C	3 ^H 7 ^{is(}		сн3	CH3	6-CH ₃	-C-s-qq-qq-qq-qq-qq-qq-	Fp.:	127-128	°C
35	21	сн3	сн3	сн3	сн3	6-Œ13	S	Fp.:	138 °C	

Taballe	5 (Fortsetzung)
TABLETIE	<i>-</i> '	101000

5	Bsp. Nr.	A	В	x	Y	z _n	R .	physikal. Konst.
	22	сн3	CH3	CEL3	сн3	6-CE ₃	S -P-003H ^J iso	Fp.::150 °C
10							S -P-0C ₂ H ₅ CH ₃	Fp.:160 °C
15	24	CH ₃	CH3	Œ3	Œ3	6-CH ₃	S -1 ∞ ₂ H ₅ ∞ ₂ H ₅	Fp.: 143 °C
20							S -P-OCH ₂ -C(CH ₃) ₃ CH ₃	Fp.: 107 °C

Anwendungsbeispiele:

25

30

35

40

In den folgenden Anwendungsbeispielen wurden die nachstehend aufgeführten Verbindungen als Vorgleichssubstanzen eingesetzt:

3-(Acetyloxy)-2-phenyl-1H-inden-1-on (bekannt aus US 4 104 043)

2-(2,6-Dichlorphenyl)-1H-inden-1,3(2H)-dion (bekannt aus US 3 954 998)

2,2-Dimethyl-2,3,5,7a-tetrahydro-5-oxo-6-(2,4,6-trimethylphenyl)-1H-pyrrolizin-7-yl-propionsäureester (bekannt aus EP-A 355 599).

Beispiel A

5

Tetranychus-Test (OP-resistent)

Lösungsmittel:

7 Gewichtsteile Dimethylformamid

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit wasser auf die gewünschte Konzentration.

Bohnenpflanzen (Phaseolus vulgaris), die stark von allen Entwicklungsstadien der gemeinen Spinnmilbe oder Bohnenspinnmilbe (Tetranychus urticae) befallen sind, werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Spinnmilben abgetötet wurden; 0 % bedeutet, daß keine Spinnmilben abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: 1, 2 und 5.

Beispiel B

Nephotettix-Test

35

20

Lösungsmittel: 7 Gewichtsteile Dimethylformamid Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichstteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Reiskeimlinge (Oryza sativa) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit der Grünen Reiszikade (Nephotettix cincticeps) besetzt, solange die Keimlinge noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Zikaden abgetötet wurden; 0 % bedeutet, daß keine Zikaden abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: 1, 2 und 5.

Beispiel C

50

Phaedon-Larven-Test

Lösungsmittel: 3 Gewichtsteile Dimethylformamid Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten

Konzentration behandelt und mit Meerrettichblattkäfer-Larven (Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Käferlarven abgetötet wurden; 0 % bedeutet, daß keine Käfer-Larven abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: 1, 2, 4 und 5.

Beispiel D

10 Pre-emergence-Test

Lösungsmittel:

5 Gewichtsteile Aceton

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Samen der Testpflanzen werden in normalen Boden ausgesät und nach 24 Stunden mit der Wirkstoffzubereitung begossen. Dabei hält man die Wassermenge pro Flächeneinheit zweckmäßigerweise konstant. Die Wirkstoffkonzentration in der Zubereitung spielt keine Rolle, entscheidend ist nur die Aufwandmenge des Wirkstoffs pro Flächeneinheit. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle. Es bedeuten:

0 % = keine Wirkung (wie unbehandelte Kontrolle)

100 % = totale Vernichtung

In diesem Test zeigt beispielsweise die Verbindung gemäß Herstellungsbeispiel (2) starke Wirkung gegen Unkräuter.

30

35

40

45

50

EP 0 521 334 A1

5		Sorghum		0	85	
10		Setaria		70	100	
		Echino- chica		50	95	
15	haus	Digitaria Echino- chlos		40	. 6	
20	PRE-EMERGENCE-TEST / Gewächshaus	Alopecurus		20	80	
25	ENCE-TEST	Baum- P		09	0	
30	PRE-EMERG	Wirkstoff- aufwand	g/ha	1 000	3 7 G ₁ 500	
35				(=)-0 g	C-S-CH ₂ -C(CH ₃) ₃	•
40		Wirkstoff		Wirkstoff aus	H3C CH30	(2)

Patentansprüche

1. Substituierte 3-Aryl-pyrrolidin-2,4-dion-Derivate der allgemeinen Formel (I) 50

55

$$Z_{n} \xrightarrow{B} A$$

$$Z_{n} \xrightarrow{Y} X$$

$$(1)$$

in welcher

5

10

15

20

25

30

35

45

50

X für Alkyl, Halogen, Alkoxy steht,

Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht,

A für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,

B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gegebenenfalls substituierten gesättigten oder ungesättigten Cyclus bilden, der durch Sauerstoff und/oder Schwefel unterbrochen sein kann.

R für die Gruppen

-P (a) -so₂-R³ (b)
|| R²
|| L

(c)

steht,

40 in welchen

R

L und M für Sauerstoff oder Schwefel stehen und wobei L und M nicht gleichzeitig für

Sauerstoff stehen,

R¹, R² und R³ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes Alkyl,

Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Alkinylthio, Cycloalkylthio und für gegebenenfalls substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio

(d)

stehen,

R⁴ und R⁵ unabhängig voneinander für Wasserstoff, gegebenenfalls durch Halogen substitu-

iertes Alkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls substituiertes Phenyl, für gegebenenfalls substituiertes Benzyl stehen oder wobei R^4 und R^5 zusammen

für einen gegebenenfalls durch Sauerstoff unterbrochenen Alkenylrest stehen,

für gegebenenfalls durch Halogen substituiertes Alkyl, das durch Sauerstoff unterbrochen sein kann, für gegebenenfalls durch Halogen, Halogenalkyl oder Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, Halogenalkyl, Alkyl und

Alkoxy substituiertes Benzyl, für Alkenyl oder Alkinyl steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

2. Substituierte 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formeln (Ia) bis (Id)

$$\begin{array}{c|c}
 & L \\
 & R^1 \\
 & R^2 \\
 & R^2 \\
 & R^2
\end{array}$$
(Ia)

10

5

20

15

25

30

35

40

45

50

55

worin

A, B, L, M, X, Y, Z_n, R¹, R², R³, R⁴, R⁵ und R⁶ die im Anspruch 1 angegebene Bedeutung haben.

- 3. Substituierte 3-Aryl-pyrrolidin-2,4-dion-Derivate der allgemeinen Formel (I) gemäß Anspruch 1, in welcher
 - X für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,
 - Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₅-Alkoxy, C₁-C₃-Halogenalkyl steht,
 - Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,
 - n für eine Zahl von 0-3 steht,

A für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₁-C₁₀-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl, C₁-C₁₀-Alkylthio-C₂-C₈-alkyl, Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder gegebenenfalls durch Halogen, C₁-C₆-Alkyl-, C₁-C₆-Haloalkyl-, C₁-C₆-Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₆-alkyl steht,

B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₁-C₈-Alkoxyalkyl steht, oder worin

A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 8-gliedrigen gesättigten oder ungesättigten Ring bilden, der durch Sauerstoff und/oder Schwefel unterbrochen und durch gegebenenfalls halogeniertes Alkyl, Alkoxy, Phenyl und Halogen substituiert sein kann,

R für die Gruppen

$$-\mathbb{P}^{\mathbb{R}^1}$$
 (a) $-\mathbb{SO}_2 - \mathbb{R}^3$ (b)

5

10

15

25

30

35

45

50

55

steht,

in welchen

L und M

jeweils für Sauerstoff oder Schwefel steht und wobei L und M nicht gleichzeitig für

20 R¹, R² und R³

unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C_1 - C_8 -Alkyl, C_1 - C_8 -Alkylamino, C_1 - C_8 -Alkylamino, C_1 - C_8 -Alkylamino, C_2 - C_5 -Alkinylthio, C_2 - C_5 -Alkinylthio, C_3 - C_7 -Cycloalkylthio, für gegebenenfalls durch Halogen, Nitro, Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkylthio, C_1 - C_4 -Halogenalkylthio, C_1 - C_4 -Halogenalkyl substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio stehen,

R4 und R5

unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C_1 - C_{20} -Alkyl, C_1 - C_{20} -Alkoxy, C_2 - C_8 -Alkenyl, C_1 - C_{20} -Alkoxy- C_1 - C_{20} -Alkoxy, für gegebenenfalls durch Halogen, C_1 - C_{20} -Halogenalkyl, C_1 - C_{20} -Alkyl oder C_1 - C_{20} -Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl oder C_1 - C_{20} -Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen C_2 - C_6 -Alkylenring stehen,

R⁶

für gegebenenfalls durch Halogen substituiertes C_1 - C_{20} -Alkyl, das durch Sauerstoff unterbrochen sein kann für gegebenenfalls durch Halogen, C_1 - C_{20} -Halogenalkyl, C_1 - C_{20} -Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C_1 - C_{20} -Halogenalkyl oder C_1 - C_{20} -Alkoxy substituiertes Benzyl, für C_2 - C_8 -Alkenyl oder für C_2 - C_5 -Alkinyl steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

- 40 4. Substituierte 3-Aryl-pyrrolidin-2,4-dion-Derivate der allgemeinen Formel (I) gemäß Anspruch 1, in welcher
 - X für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,
 - Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl steht,
 - Z für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,
 - n für eine Zahl von 0-3 steht,
 - A für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₈-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl, C₁-C₈-Alkylthio-C₂-C₆-alkyl, Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatomen unterbrochen sein kann oder gegebenenfalls durch Halogen, C₁-C₄-Alkyl-, C₁-C₄-Haloalkyl-, C₁-C₄-Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₄-alkyl steht,
 - B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₁-C₆-Alkoxyalkyl steht, oder worin

A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 7-gliedrigen gesättigten oder ungesättigten Ring bilden, der durch C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Haloalkoxy, Fluor, Chlor und substituiertes Phenyl substituiert und der durch Sauerstoff und/oder Schwefel unterbrochen sein kann,

R für die Gruppen

10

20

25

5

in	we	lct	1e	n	

L und M

jeweils für Sauerstoff oder Schwefel stehen und worin L und M nicht gleichzeitig für Sauerstoff stehen.

R1, R2 und R3 15

unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C1-C6-Alkyl, C_1-C_6 -Alkoxy, C_1-C_6 -Alkylamino, Di- (C_1-C_6) -Alkylamino, C_1-C_6 -Alkylthio, C₃-C₄-Alkenylthio, C₂-C₄-Alkinylthio, C₃-C₆-Cycloalkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C1-C3-Alkoxy, C1-C3-Halogenalkoxy, C1-C₃-Alkylthio, C₁-C₃-Halogenalkylthio, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio stehen.

R4 und R5

unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C1-C20-Alkyl, C₁-C₂₀-Alkoxy, C₂-C₈-Alkenyl, C₁-C₂₀-Alkoxy-C₁-C₂₀-alkyl, für gegebenenfalls durch Halogen, C₁-C₅-Halogenalkyl, C₁-C₅-Alkyl oder C₁-C₅-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C₁-C₅-Alkyl, C₁-C₅-Halogenalkyl

oder C1-C5-Alkoxy substituiertes Benzyl steht,

R6

für gegebenenfalls durch Halogen substituiertes C1-C20-Alkyl, das durch Sauerstoff unterbrochen sein kann für gegebenenfalls durch Halogen, C1-C5-Halogenalkyl, C1-C5-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C1-C5-Halogenalkyl oder C₁-C₅-Alkoxy substituiertes Benzyl steht,

30

35

40

45

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

- Substituierte 3-Aryl-pyrrolidin-2,4-dion-Derivate der allgemeinen Formel (I) gemäß Anspruch 1, in welcher
 - Х für Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,
 - Υ für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht,
 - Ζ für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,
 - n für eine Zahl von 0-3 steht,
 - für Wasserstoff, gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes $C_1-C_8-Alkyl,\ C_3-C_4-Alkenyl,\ C_3-C_4-Alkinyl,\ C_1-C_6-Alkoxy-C_2-C_4-alkyl,\ C_1-C_4-Polyalkoxy-C_2-C_4-Alkinyl,\ C_1-C_6-Alkoxy-C_2-C_4-Alkyl,\ C_1-C_6-Alkoxy-C_2-C_4-Alkyl,\ C_1-C_6-Alkoxy-C_2-C_4-Alkyl,\ C_1-C_6-Alkyl,\ C_1-C_6$ alkyl, C1-C6-Alkylthio-C2-C4-alkyl, Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoffund/oder Schwefelatomen unterbrochen sein kann oder gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-, Ethoxy-, Trifluormethyl-, Nitro substituiertes Aryl, Pyridin, Imidazol, Pyrazol, Triazol, Indol, Thiazol oder Aryl-C1-C3-alkyl steht,
 - für Wasserstoff, geradkettiges oder verzweigtes C1-C8-Alkyl, C1-C4-Alkoxyalkyl steht, oder worin

A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 6gliedrigen gesättigten oder ungesättigten Ring bilden, der durch C1-C4-Alkyl, C1-C4-Alkoxy, Trifluormethyl, Trifluormethoxy, Fluor, Chlor und substituiertes Phenyl substituiert und der durch Sauerstoff und/oder Schwefel unterbrochen sein kann,

R für die Gruppen

55

steht,

in welchen

R6

5

10

15

20

25

30

L und M jeweils für Sauerstoff oder Schwefel stehen und worin L und M nicht gleichzeitig für Sauerstoff stehen,

R¹, R² und R³ unabhängig voneinander für gegebenenfalls durch Fluor oder Chlor substituiertes

 $\begin{array}{lll} C_1-C_4-Alkyl, & C_1-C_4-Alkoxy, & C_1-C_4-Alkylamino, & Di-(C_1-C_4-Alkyl)amino, & C_1-C_4-Alkylthio, & G_1-C_4-Alkylthio, & G_1-C_2-Alkoxy, & G_1-C_4-Fluoralkoxy, & G_1-C_2-Chloralkoxy, & G_1-C_2-Alkylthio, & G_1-C_2-Fluoralkylthio, & G_1-C_2-Chloralkylthio, & G_1-C_3-Alkyl substituiertes Phenyl, & Benzyl, & Phenoxy & Oder Phenoxy & G_1-C_3-Alkyl & G_1-$

nylthio stehen,

R⁴ und R⁵ unabhängig voneinander für gegebenenfalls durch Fluor, Chlor, Brom substituier-

tes C_1 - C_{10} -Alkyl, C_1 - C_{10} -Alkoxy, C_1 - C_{10} -Alkoxy- $(C_1$ - C_{10})alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, C_1 - C_{20} -Halogenalkyl, C_1 - C_{20} -Alkyl oder C_1 - C_4 -Alkoxy substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, C_1 - C_4 -Alkyl,

C1-C4-Halogenalkyl oder C1-C4-Alkoxy substituiertes Benzyl steht,

für gegebenenfalls durch Fluor, Chlor, Brom substituiertes C₁-C₁₀-Alkyl, das durch Sauerstoff unterbrochen sein kann für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy substituiertes Phenyl, für gegebenenfalls durch

Fluor, Chlor, Brom, C_1 - C_4 -Halogenalkyl oder C_1 - C_4 -Alkoxy substituiertes Benzyl steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Verfahren zur Herstellung von substituierten 3-Aryl-pyrrolidin-2,4-dion-Derivaten der allgemeinen Formel

40 $H-N \longrightarrow A$ $Z_{n} \longrightarrow X$ (1)

50 in welcher

- X für Alkyl, Halogen, Alkoxy steht,
- Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,
- Z für Alkyl, Halogen, Alkoxy steht,
- n für eine Zahl von 0-3 steht,
- A für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,
- B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

oder worin

A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gegebenenfalls substituierten gesättigten oder ungesättigten Cyclus bilden, der durch Sauerstoff und/oder Schwefel unterbrochen sein kann.

R

für die Gruppen

15

20

5

10

steht,

in welchen

L und M

für Sauerstoff oder Schwefel stehen und wobei L und M nicht gleichzeitig für Sauerstoff stehen,

R1, R2 und R3

unabhängig voneinander für gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Alkinylthio, Cycloalkylthio und für gegebenenfalls substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio stehen,

25

30

35

40

R4 und R5

unabhängig voneinander für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls substituiertes Phenyl, für gegebenenfalls substituiertes Benzyl stehen oder wobei R⁴ und R⁵ zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen Alkenylrest stehen,

R⁶

für gegebenenfalls durch Halogen substituiertes Alkyl, das durch Sauerstoff unterbrochen sein kann, für gegebenenfalls durch Halogen, Halogenalkyl oder Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, Halogenalkyl, Alkyl und Alkoxy substituiertes Benzyl, für Alkenyl oder Alkinyl steht,

dadurch gekennzeichnet, daß man zum Erhalt von substituierten 3-Aryl-pyrrolidin-2,4-dionen der Formel (Ia)

 $\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$

45

in welcher

A, B, L, X, Y, Z, R¹, R² und n die oben angegebene Bedeutung haben, A) 3-Aryl-pyrrolidin-2,4-dione der Formel (II) bzw. deren Enole

50

55

$$\begin{array}{c|c}
A & OH X \\
\hline
H-N & Z_n
\end{array}$$
(11)

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben

mit Phosphorverbindungen der allgemeinen Formel (III)

5

10

15

in welcher

L, R1 und R2 die oben angegebene Bedeutung haben

und

Hal für Halogen, insbesondere Chlor und Brom steht,

20

gegebenenfalls in Gegenwart eines Verdünnungsmittels, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Phasentransferkatalysators umsetzt, B) oder daß man zum Erhalt von Verbindungen der Formel (Ib)

25

30

in welcher

A, B, X, Y, Z, R³ und n die oben angegebene Bedeutung haben,

35 Verbindungen der Formel (II)

40

$$\begin{array}{c|c}
A & OH X \\
H-N & O & Z_n
\end{array}$$

in welcher

45

50

A, B, X, Y, Z und n die oben angegebene Bedeutung haben

mit Sulfonsäurechloriden der allgemeinen Formel (IV)

R3-SO2-CI (IV)

in welcher

R3 die oben angegebene Bedeutung hat

55

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

C) oder daß man zum Erhalt von Verbindungen der Formel (Ic)

$$\begin{array}{c|c}
 & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow &$$

10 in welcher

A, B, L, X, Y, Z, R4, R5 und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (II),

15

20

30

35

45

55

$$\begin{array}{c|c}
A & OH & X \\
H-N & O & Z_n
\end{array}$$

in welcher

25 A, B, X, Y, Z und n die oben angegebene Bedeutung haben

entweder

α) mit Isocyanaten der allgemeinen Formel (V)

 $R^4 - N = C = O \qquad (V)$

in welcher

R4 die oben angegebene Bedeutung hat

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators

oder

40 oder

β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der allgemeinen Formel (VI)

50 in welcher

L, R4 und R5 die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt,

D) oder daß man zum Erhalt von Verbindungen der Formel (Id)

10 in welcher

A, B, L, M, R⁶, X, Y, Z und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (II)

15

20

25

5

$$\begin{array}{c|c}
A & OH X \\
H-N & O \\
\end{array}$$

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

entweder

α) mit Chlormonothioameisensäureestern, Chlorameisensäurethioestern oder Chlordithioameisensäureestern der allgemeinen Formel VII

30

35

in welcher

L, M, R⁶ die oben angegebene Bedeutung haben

40

45

55

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

oder

β) mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der allgemeinen Formel VIII

R6-Hal (VIII)

in welcher

50 R⁶ die oben angegebene Bedeutung hat

und

Hal für Chlor, Brom, Jod

steht,

umsetzt.

- Insektizide, akarizide und herbizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einem 3-Aryl-pyrrolidin-2,4-dion-Derivat der Formel (I).
- 8. Verfahren zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern, dadurch gekennzeichnet, daß man 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) auf Insekten und/oder Spinnentieren und/oder Unkräutern und/oder deren Lebensraum einwirken läßt.
- 9. Verwendung von 3-Aryl-pyrrolidin-2,4-dion-Derivaten der Formel (I) zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern.
- 10. Verfahren zur Herstellung von insektiziden und/oder akariziden und/oder herbiziden Mitteln, dadurch gekennzeichnet, daß man 3-Aryl-pyrrolidin-2,4-dion-Derivate dar Formel (I) mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.

15 Patentansprüche für folgenden Vertragsstaat : ES

Verfahren zur Herstellung von substituierten 3-Aryl-pyrrolidin-2,4-dion-Derivaten der allgemeinen Formel
 (I)

$$Z_{n} \xrightarrow{B} A$$

$$Z_{n} \xrightarrow{B} X$$

$$(I)$$

in welcher

5

20

25

30

35

40

45

X für Alkyl, Halogen, Alkoxy steht,

Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht,

A für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,

B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gegebenenfalls substituierten gesättigten oder ungesättigten Cyclus bilden, der durch Sauerstoff und/oder Schwefel unterbrochen sein kann.

R für die Gruppen

50
$$= \frac{R^1}{R^2}$$
 (a) $-50_2 - R^3$ (b) $= \frac{L}{R^4}$ (c) $= \frac{L}{M-R^6}$ (d)

steht.

in welchen

R6

L und M für Sauerstoff oder Schwefel stehen und wobei L und M nicht gleichzeitig für

Sauerstoff stehen,

R¹, R² und R³ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes Alkyl,

Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Alkinylthio, Cycloalkylthio und für gegebenenfalls substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio

stehen,

R⁴ und R⁵ unabhängig voneinander für Wasserstoff, gegebenenfalls durch Halogen substitu-

iertes Alkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls substituiertes Phenyl, für gegebenenfalls substituiertes Benzyl stehen oder wobei R⁴ und R⁵ zusammen für einen gegebenenfalls durch Senerateff unterhandenen Allegandent stehen.

für einen gegebenenfalls durch Sauerstoff unterbrochenen Alkenylrest stehen,

für gegebenenfalls durch Halogen substituiertes Alkyl, das durch Sauerstoff unterbrochen sein kann, für gegebenenfalls durch Halogen, Halogenalkyl oder Alkoxy

substituiertes Phenyl, für gegebenenfalls durch Halogen, Halogenalkyl, Alkyl und

Alkoxy substituiertes Benzyl, für Alkenyl oder Alkinyl steht,

dadurch gekennzeichnet, daß man zum Erhalt von substituierten 3-Aryl-pyrrolidin-2,4-dionen der Formel (la)

20

25

5

10

15

$$\begin{array}{c|c}
 & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow &$$

in welcher

30

A, B, L, X, Y, Z, R¹, R² und n die oben angegebene Bedeutung haben, A) 3-Aryl-pyrrolidin-2,4-dione der Formel (II) bzw. deren Enole

35

40

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben

mit Phosphorverbindungen der allgemeinen Formel (III)

50

in welcher

L, R¹ und R² die oben angegebene Bedeutung haben

und

Hal für Halogen, insbesondere Chlor und Brom steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Phasentransferkatalysators umsetzt,

B) oder daß man zum Erhalt von Verbindungen der Formel (Ib)

15 in welcher

5

10

20

25

30

35

40

45

50

55

A, B, X, Y, Z, R³ und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (II)

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben

mit Sulfonsäurechloriden der allgemeinen Formel (IV)

in welcher

R³ die oben angegebene Bedeutung hat

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

C) oder daß man zum Erhalt von Verbindungen der Formel (Ic)

$$\begin{array}{c|c}
L & R^4 \\
R^5 & X \\
R^5 & X
\end{array}$$
(Ic)

in welcher

A, B, L, X, Y, Z, R4, R5 und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (II),

in welcher

5

10

15

20

30

40

45

50

A, B, X, Y, Z und n die oben angegebene Bedeutung haben

entweder

α) mit Isocyanaten der allgemeinen Formel (V)

$$R^4 - N = C = O \qquad (V)$$

in welcher

R4 die oben angegebene Bedeutung hat

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators oder

25 oder

β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der allgemeinen Formel (VI)

35 in welcher

L, R4 und R5 die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt,

D) oder daß man zum Erhalt von Verbindungen der Formel (Id)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

in welcher

55 A, B, L, M, R⁵, X, Y, Z und n die oben angegebene Bedeutung haben, Verbindungen der Formel (II)

$$\begin{array}{c|c}
A & OH X \\
\hline
H-N & O \\
\hline
O & Z_n
\end{array}$$
(11)

in welcher

5

10

15

20

25

30

35

40

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

entweder

α) mit Chlormonothioameisensäureestern, Chlorameisensäurethioestern oder Chlordithioameisensäureestern der allgemeinen Formel VII

L (VII

in welcher

L, M, R⁶ die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

oder

 β) mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der allgemeinen Formel VIII

R6-Hal (VIII)

in welcher

R⁶ die oben angegebene Bedeutung hat

und

Hal für Chlor, Brom, Jod

steht,

umsetzt.

 Verfahren zur Herstellung von substituierten 3-Aryl-pyrrolidin-2,4-dion-Derivaten gemäß Anspruch 1 zum Erhalt von Verbindungen der Formeln (la) bis (ld)

--

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$$\begin{array}{c|c}
L \\
\parallel \\
0-C-M-R^6 \\
X
\end{array}$$

$$\begin{array}{c}
Y \\
Z_n
\end{array}$$
(Id)

worin

5

10

15

20

25

30

35

40

45

A, B, L, M, X, Y, Z_n, R¹, R², R³, R⁴, R⁵ und R⁶ die im Anspruch 1 angegebene Bedeutung haben.

- 3. Verfahren zur Herstellung von substituierten 3-Aryl-pyrrolidin-2,4-dion-Derivaten gemäß Anspruch 1 zum Erhalt von Verbindungen (I) gemäß Anspruch 1, wobei
 - X für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,
 - Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₅-Alkoxy, C₁-C₃-Halogenalkyl steht,
 - Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,
 - n für eine Zahl von 0-3 steht,
 - A für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₁-C₁₀-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl, C₁-C₁₀-Alkylthio-C₂-C₈-alkyl, Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder gegebenenfalls durch Halogen, C₁-C₆-Alkyl-, C₁-C₆-Haloalkyl-, C₁-C₆-Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₆-alkyl steht,
- B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₁-C₈-Alkoxyalkyl steht, oder worin
- A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 8gliedrigen gesättigten oder ungesättigten Ring bilden, der durch Sauerstoff und/oder
 Schwefel unterbrochen und durch gegebenenfalls halogeniertes Alkyl, Alkoxy, Phenyl
 und Halogen substituiert sein kann,
 - R für die Gruppen

$$-P$$
 (a) $-SO_2-R^3$ (b)

steht.

in welchen

R⁶

5

10

15

20

25

30

40

45

50

55

L und M jeweils für Sauerstoff oder Schwefel steht und wobei L und M nicht gleichzeitig für

Sauerstoff stehen,

R¹, R² und R³ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C₁-C₈-

Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylamino, Di-(C₁-C₈)-Alkylamino, C₁-C₈-Alkylthio, C₂-C₅-Alkenylthio, C₂-C₅-Alkinyithio, C₃-C₇-Cycloalkylthio, für gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl substituiertes Phenyl, Ben-

zyl, Phenoxy oder Phenylthio stehen,

R⁴ und R⁵ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C₁-C₂₀-

Alkyl, C_1 - C_{20} -Alkoxy, C_2 - C_8 -Alkenyl, C_1 - C_{20} -Alkoxy- C_1 - C_{20} -alkyl, für gegebenenfalls durch Halogen, C_1 - C_{20} -Halogenalkyl, C_1 - C_{20} -Alkyl oder C_1 - C_{20} -Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl oder C_1 - C_{20} -Alkoxy substituiertes Benzyl steht oder zusammen für einen

gegebenenfalls durch Sauerstoff unterbrochenen C2-C6-Alkylenring stehen,

für gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, das durch Sauerstoff unterbrochen sein kann für gegebenenfalls durch Halogen, C₁-C₂₀-Halogenal-

kyl, C_1 - C_{20} -Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C_1 - C_{20} -Halogenalkyl oder C_1 - C_{20} -Alkoxy substituiertes Benzyl, für C_2 - C_8 -Alkenyl oder

für C2-C5-Alkinyl steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

4. Insektizide, akarizide und herbizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einem 3-Aryl-pyrrolidin-2,4-dion-Derivat der Formel (I).

5. Verfahren zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern, dadurch gekennzeichnet, daß man 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) auf Insekten und/oder Spinnentieren und/oder Unkräutern und/oder deren Lebensraum einwirken läßt.

 Verwendung von 3-Aryl-pyrrolidin-2,4-dion-Derivaten der Formel (I) zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern.

7. Verfahren zur Herstellung von insektiziden und/oder akariziden und/oder herbiziden Mitteln, dadurch gekennzeichnet, daß man 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit der maßgeblichen Teil	Angabe, soweit erforderlich, Betrifft Anspruch	ELASSIFIKATION DER ANMELDUNG (Int. Cl.5)
P,Y	EP-A-0 456 063 (BAYER) 13. November 1991 * das ganze Dokument *	1-10	C07D207/38 C07D209/54 C07F9/572 A01N43/36
P , Y	EP-A-0 442 077 (BAYER) 21. August 1991 * das ganze Dokument *	1-10	A01N57/08 A01N57/24
Y	EP-A-0 415 185 (BAYER) 6. März 1991 * das ganze Dokument *	1-10	
	DE-A-4 032 090 (BAYER) 14. August 1991 * das ganze Dokument *	1-10	
		-	
			RECHERCHIERTE SACHGEBIETE (Int. Cl.5
			C07D
			C07F
Der vor	rliegende Recherchenbericht wurde für alle Bacherchenet	•	
D		Abstraction for Endurche 06 OKTOBER 1992	Bernd Kissler

KPO FORM 1503 03.82 (POSE)

- K: von besonderw Bedeutung allein betrachtet Y: von besonderw Bedeutung in Verbindung zuit einer anderen Veröffentlichung derseiben Entegorie A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur

- anch den Anneldelatum veröffestlicht word D ; in der Anneldung angeführtes Dokument L ; aus andern Gründen angeführtes Dokument
- å : Mitgiled der gleichen Patentfamilie, übereinstimmendes Dokument

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.