MDI0001 MATEMÁTICA DISCRETA

UDESC - Centro de Ciências Tecnológicas Bacharelado em Ciência da Computação

Exercícios Relações e Funções

- 1. Liste os pares ordenados na relação R de $A=\{0,1,2,3,4\}$ para $B=\{0,1,2,3\}$ onde $(a,b)\in R$ se e somente se:
 - (a) a = b
 - (b) a + b = 4
 - (c) a > b
 - (d) a é divisível por b
- 2. Determine se as relações seguintes sobre $\mathbb R$ são reflexivas, simétricas, transitivas e/ou antisimétricas
 - (a) xSy sse x + y = 0
 - (b) xQy sse x = |y|
 - (c) xZy sse $xy \ge 0$
 - (d) xHy sse $x = 1 \lor y = 1$
- 3. Mostre que a relação $R=\varnothing$ sobre um conjunto não vazio A é simétrica e transitiva, porém não é reflexiva.

As relações a seguir, sobre \mathbb{R} , serão usadas nos próximos dois exercícios:

$$R_1 = \{(a, b) \in \mathbb{R}^2 \mid a > b\}$$

$$R_2 = \{(a, b) \in \mathbb{R}^2 \mid a \ge b\}$$

$$R_3 = \{(a, b) \in \mathbb{R}^2 \mid a < b\}$$

$$R_4 = \{(a, b) \in \mathbb{R}^2 \mid a \le b\}$$

$$R_5 = \{(a,b) \in \mathbb{R}^2 \mid a = b\}$$

$$R_6 = \{(a, b) \in \mathbb{R}^2 \mid a \neq b\}$$

- 4. Encontre:
 - (a) $R_1 \cup R_3$
 - (b) $R_3 \cap R_5$
 - (c) $R_1 R_2$
 - (d) $R_2 \cup R_4$
 - (e) $R_6 R_3$
- 5. Encontre:
 - (a) $R_1 \circ R_1$
 - (b) $R_1 \circ R_6$

- (c) $R_2 \circ R_1$
- (d) $R_5 \circ R_3$
- 6. Liste as 16 diferentes relações sobre o conjunto {0,1}
- 7. Mostre que a relação R sobre A é simétrica se e somente se $R=R^{-1}$, onde R^{-1} é a relação inversa de R.
- 8. Sejam $A = \{a\}, B = \{a, b\}$ e $C = \{0, 1, 2\}$. Para cada item:
 - justifique por que são ou não são funções parciais
 - determine o tipo da relação (injetora, sobrejetora, total, bijetora, ...)
 - (a) $\varnothing: A \to B$
 - (b) $\langle C \rangle \subset C$
 - (c) $\{\langle 0, a \rangle, \langle 1, b \rangle\} : C \to B$
 - (d) $=: A \rightarrow B$
 - (e) $A \times B : A \to B$
 - (f) $x^2: \mathbb{Z} \to \mathbb{Z}$ tal que $x^2 = \{\langle x, y \rangle \in \mathbb{Z}^2 \mid y = x^2 \}$
 - (g) $ad: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ tal que $ad\langle a, b \rangle = a + b$
 - (h) $div : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ tal que $div\langle x, y \rangle = x/y$
- 9. Sejam $A = \{a\}$, $B = \{a, b\}$ e $C = \{0, 1, 2\}$. Usando diagramas de Venn e setas, determine todas as composições possíveis entre as seguintes funções parciais:
 - $\bullet \ \varnothing : A \to C$
 - $\{\langle 0, a \rangle, \langle 1, b \rangle\} : C \to B$
 - $\bullet =: B \to A$
- 10. Em que condições o conjunto vazio é:
 - (a) Uma função parcial?
 - (b) Uma função total?
- 11. Sejam $A=\{a\}, B=\{a,b\}$ e $C=\{0,1,2\}.$ Para cada item:
 - justifique por que são ou não são funções totais
 - determine o tipo da função (injetora, sobrejetora, bijetora)
 - (a) $=: A \rightarrow B$
 - (b) $id_B: B \to B$ tal que $id_B(x) = x$
 - (c) $\varnothing: A \to B$
 - (d) $\varnothing : \varnothing \to \varnothing$
 - (e) $A \times B : A \to B$
- 12. Dê um exemplo de função total de N para N que seja
 - (a) injetora, porém não sobrejetora;
 - (b) sobrejetora, porém não injetora;
 - (c) tanto injetora quanto sobrejetora, porém não a função identidade (f(n) = n);

- (d) nem injetora, nem sobrejetora.
- 13. Suponha $g: A \to B$ e $f: B \to C$ funções totais.
 - (a) Mostre que se tanto f e g forem injetoras, então $f \circ g$ também o é.
 - (b) Mostre que se tanto f e g forem sobrejetoras, então $f \circ g$ também o é.
- 14. Seja $f:A\to B$ uma função total e $S,T\subseteq A$. Mostre que
 - (a) $f(S \cup T) = f(S) \cup f(T)$
 - (b) $f(S \cap T) \subseteq f(S) \cap f(T)$
- 15. Seja $f:A\to B$ uma função total e $S,T\subseteq B$. Mostre que
 - (a) $f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T)$
 - (b) $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$
- 16. Suponha que f é uma função total de A para B sendo que A e B são conjuntos finitos com mesma cardinalidade. Mostre que f é injetora se e somente se f for sobrejetora.
- 17. Indique as duas afirmações abaixo que são INCORRETAS com relação a uma função total f ser sobrejetora.
 - (a) f é sobrejetora SSE todo elemento do seu co-domínio é a imagem de algum elemento do domínio.
 - (b) f é sobrejetora SSE todo elemento do seu domínio tem uma imagem correspondente no co-domínio
 - (c) fé sobrejetora SSE $\forall y \in Y \exists x \in X (f(x) = y)$
 - (d) f é sobrejetora SSE $\forall x \in X \exists y \in Y (f(x) = y)$
 - (e) f é sobrejetora SSE a imagem de f for igual ao co-domínio de f