Friederike Dittberner

ÜBUNGEN ZUR VORLESUNG VOLL NICHLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Blatt 3

Aufgabe 6. (16 Punkte) Setze $\lambda = -\frac{1}{n-1}$ und sei $\delta_0 > 0$.

Sei $\Omega \subset \mathbb{R}^n$ strikt konvex mit glattem Rand $\partial\Omega$, wobei $\partial\Omega$ als Niveaufläche einer Funktion $\rho:\mathbb{R}^n\to$ \mathbb{R} mit $|D\rho| \neq 0$ auf $\partial\Omega$ gegeben ist.

(i) Zeige, dass es für jedes $\delta \in (0, \delta_0)$ eine eindeutige, lokal strikt konvexe Lösung $\psi_{\delta} \in C^{\infty}(\Omega) \cap$ $L^{\infty}(\overline{\Omega})$ für das Problem

$$\begin{cases} \det(D^2\psi) = \lambda(\psi - \delta) & \text{in } \Omega \\ \psi = 0 & \text{auf } \partial\Omega \end{cases}$$

gibt.

Hinweis: Betrachte die Funktion $\psi = \rho + \kappa(e^{\rho} - 1)$, wobei $\kappa > 0$ eine Konstante ist.

(ii) Nehme ψ_{δ} an x_0 sein Minimum an. Sei $\varepsilon > 0$, sodass für

$$Q := \left\{ x \in \Omega \ : \ \frac{\operatorname{dist}(x, \partial \Omega)}{\operatorname{diam}(\Omega)} \ge \varepsilon \right\}$$

|Q|>0gilt. Sei χ_Q die charakteristische Funktion von Q.Zeige, dass

$$\psi_{\delta}(x) \le \varepsilon \chi_Q(x) \psi_{\delta}(x_0)$$

für alle $x \in \Omega$.

Hinweis: Betrachte den Kegel durch $\partial\Omega$ mit Spitze in $\psi_{\delta}(x_0)$.

(iii) Lies Paragraph 3.2 auf der Rückseite und folgere, dass es $\tilde{\psi}_{\delta} \in C(\overline{\Omega})$ mit

$$\mu\left(\tilde{\psi}_{\delta},\omega\right) = \lambda \varepsilon \psi_{\delta}(x_0) \int_{\omega} \chi_{Q}(x) dx$$

und

$$\tilde{\psi}_{\delta} \ge \psi_{\delta}$$

gibt.

(iv) Zeige, dass es eine Konstante k > 0 mit

$$\sup_{\Omega} |\psi_{\delta}| \ge k$$

für alle $\delta > 0$ gibt.

Himweis: Benutze weiterhin Paragraph 3.2 und (iii).

(v) Zeige, dass es eine Konstante C > 0 mit

$$|D\psi_{\delta}| \leq C$$

für alle $\delta > 0$ gibt.

Abgabe: Bis Montag, 03.12.2018, 15:00 Uhr, in die Mappe vor Büro F 402 oder in der Vorlesung.

3.2. Let $v \in C(\bar{\Omega})$ and be convex. At every point (y,v(y)), $y \in \Omega$, there exists at least one supporting (hyper-) plane to the graph of v. We write the equation of a supporting plane as

$$z-v(y) = \langle p(y), (x-y) \rangle, \quad p(y) = (p_1(y), \dots, p_n(y)),$$

and consider the map (generally multivalued) $\gamma: \Omega \to P^n$, $\gamma(y) = p(y)$. For any Borel set $\omega \subset \Omega$, put

$$\mu(v,\omega) = \int_{\gamma(\omega)} dp,$$
 where $\gamma(\omega) = \bigcup_{y \in \omega} \gamma(y).$

Let σ be a nonnegative completely additive measure on Borel subsets of Ω . Consider the equation for a convex $v \in C(\bar{\Omega})$ such that

(3.4)
$$\mu(v,\omega) = \sigma(\omega), \quad \omega \subset \Omega, \ u = 0 \text{ on } \partial\Omega,$$

where ω is a Borel subset of Ω . If $v \in C^2(\Omega)$, then $\gamma(y) = \operatorname{grad} v(y)$ and

$$\mu(v,\omega) = \int_{\gamma(\omega)} dp = \int_{\omega} \det[v_{ij}] dx.$$

This relation shows the connection between the measure μ and the operator M. Consequently, any smooth convex solution ψ of (3.1), (3.2) will also satisfy the equation

$$\mu(\psi,\omega) = \lambda \int_{\omega} (\psi - \delta) dx,$$
 $\omega \subset \Omega.$

Consider now the measure σ defined by

$$\sigma(\omega) = \int_{\Omega} g(x) \, dx,$$

where g is a nonnegative integrable function in $\bar{\Omega}$. Under such circumstances it is known [Ba], Section 20, that if for all $x \in \Omega$, sufficiently close to $\partial\Omega$

(3.5)
$$g(x) \le a[\operatorname{dist}(x,\partial\Omega)]^s, \qquad a = \operatorname{const} > 0, \ s \ge 0,$$

$$(3.6) \sigma(\Omega) < \infty,$$

then there exists a unique convex solution $u \in C(\Omega)$ of (3.4).

Thus, on the class of measures σ , generated as above, and satisfying (3.5)-(3.6) a solution operator A of (3.4) is defined. It can be shown [Ba] that A is monotone, that is, if $g_1(x) \leq g_2(x)$, $x \in \bar{\Omega}$, then

$$(3.7) (Ag_1)(x) \ge (Ag_2)(x), x \in \bar{\Omega}.$$

We also note the following property of the operator A:

(3.8)
$$A(Cg) = C^{1/n}Ag$$
, for any constant $C \ge 0$.