

PLANO DE ENSINO

1. IDENTIFICAÇÃO:

CURSO: Bacharelado em Engenharia de Software	SEMESTRE/ANO: 2°/2024				
COMPONENTE CURRICULAR: Sistemas Computacionais	c/h: 80				
PROFESSOR(A): Francisco Javier De Obaldía Díaz					
E-MAIL: Francisco.diaz@p.ucb.br					

2. EMENTA

Ementa: Tecnologias da Informação e Comunicação no Ambiente Organizacional. Classificação dos Sistemas Computacionais. Tecnologias de Desenvolvimento de Sistemas. Gestão do Conhecimento. Representação de dados numéricos e base. Operações aritméticas envolvendo bases. Sistema de ponto flutuante e ponto fixo. Representação sinalizada e complemento a dois. Representação de dados não numéricos. Álgebra booleana. Noções básicas de arquitetura e organização de computadores.

3. CONTRIBUIÇÃO PARA A FORMAÇÃO DO EGRESSO

O curso capacita o egresso na busca de soluções para os problemas do mundo real, por meio da análise, projeto e desenvolvimento de sistemas. O egresso terá a capacidade de:

- 1. Compreender o impacto das Tecnologias da Informação e Comunicação (TICs) para atendimento das necessidades da sociedade e das organizações, agindo de forma criativa, critica e sistêmica.
- 2. Empreender negócios na área de TI, com ética e responsabilidade.
- 3. Desenvolverá a capacidade de autoaprendizado, a fim de atualizar seus conhecimentos, competências e habilidades, acompanhando a evolução da tecnologia, da sociedade e do mundo do trabalho.
- 4. Desenvolver capacidade de comunicação interpessoal, desenvolvendo, compreendendo e interpretando documentos, gráficos, diagramas e símbolos, dada a forte base nas áreas de formação básica em computação; projeto e engenharia de software; programação; e gestão.

4. COMPETÊNCIAS E HABILIDADES

Pautado nos referenciais da educação profissional que fundamentam as mudanças para superar os desafios contemporâneos impostos à educação superior, o Curso Superior de Engenharia de Software cria condições para o que o estudante desenvolva competências e habilidades para:

- 1. Conhecer e distinguir os conceitos e as ferramentas de engenharia de software relacionadas à análise e ao desenvolvimento de sistemas de informação.
- 2. Conhecer e exemplificar conceitos e práticas relacionadas a programação estruturada e orientada a objeto.
- 3. Observar, conhecer e conceituar características de computação elementar, envolvendo sistemas de informação, segurança de sistemas, sistemas operacionais e bancos de dados.
- 4. Compreender os diversos conceitos necessários à formação integral do ser humano, tanto nas relações interpessoais como no engrandecimento da vivência profissional.
- 5. Conhecer o que é Desenvolvimento Sustentável.
- 6. Aplicar os conceitos relacionados à Ciências da Computação para a construção do seu próprio contexto de aprendizagem e na produção das tarefas acadêmicas sugeridas.

- 7. Elaborar programas estruturados e orientados a objeto de forma consistente, eficaz e eficiente.
- 8. Aplicar os conceitos elementares de computação envolvendo: sistemas de informação, segurança de sistemas, sistemas operacionais e bancos de dados; para a definição de seu próprio conceito sobre o contexto dos sistemas computacionais atualmente.
- 9. Experimentar os diversos conceitos relacionados à formação integral do ser humano, bem como as boas relações interpessoais, na vivência acadêmica.
- 10. Examinar criticamente os conceitos relacionados a engenharia de software para a construção da sua própria ideia sobre análise e desenvolvimento de sistemas.
- 11. Examinar e experimentar programas estruturados e orientados a objeto de forma consistente, eficaz e eficiente.
- 12. Analisar os conceitos de computação elementar (envolvendo sistemas de informação, segurança de sistemas, sistemas operacionais e bancos de dados) para a formação do seu próprio conceito sobre o contexto tecnológico atual e as perspectivas para o futuro.
- 13. Analisar o desenvolvimento sustentável e a gestão baseada em valores ambientais.
- 14. Analisar o contexto histórico, social, tecnológico e evolutivo da sociedade, para desenvolver o senso crítico e a busca por oportunidades no mercado de trabalho.
- 15. Desempenhar a análise e o desenvolvimento de sistemas de forma profissional, segura, precisa e competente.
- 16. Gerir processos e pessoas de forma ética, respeitando as características intrínsecas aos subordinados e superiores.
- 17. No âmbito da capacidade de aprendizagem (aprender a aprender), as competências desenvolvidas no curso é a seguinte:
- 18. Desenvolver atitudes profissionais proativas e empreendedoras, propondo soluções inovadoras no âmbito da Engenharia de Software e análise e do desenvolvimento de sistemas computacionais.

5. CONTEÚDO

- **Conversão de Bases e Aritmética Computacional:** Notação Posicional, bases decimal, binária, octal e hexadecimal. Conversão entre bases numéricas binária, octal e hexadecimal
- Representação de Dados e Informações: Bit, Byte, Palavra. Representação de dados e instruções.
 Tipos numéricos, caracteres e lógicos tipos numéricos inteiros, sinalização por complemento, ponto fixo e ponto flutuante.
- Portas lógicas e Álgebra Booleana: Portas lógicas e operações booleanas; Teorema de De Morgan.
 Universalidade das portas NAND e NOR. Circuitos lógicos e expressões booleanas; Circuitos integrados.
- Circuitos Lógicos Combinacionais: Simplificação das expressões booleanas utilizando Teoremas booleanos e Mapa de Karnaugh. Codificadores e decodificadores. Somadores e subtratores. Multiplexadores e Demultiplexadores
- Circuitos Lógicos Sequenciais: Latch, Flip-Flops. Registradores. Contadores
- Arquitetura e organização de computadores: Noções Básicas

6. AVALIAÇÃO

Critérios:

O aproveitamento final dos estudantes nas atividades avaliativas é expresso em escala numérica de 0 (zero) a 10 (dez), com intervalos de 0,1 (um décimo). A nota mínima para aprovação é 7 (sete) e a frequência mínima é de 75%.

Instrumentos e Ponderação:

Serão computadas duas avaliações e duas listas de exercícios, como a seguir:

Primeira Avaliação (A1), com um valor máximo após correção de 2,0 pontos.

Segunda Avaliação (A2), com um valor máximo após correção de 3,0 pontos.

Terceira Avaliação (A2), com um valor máximo após correção de 3,0 pontos.

Listas de exercícios (LE), com um valor máximo após correções de 2 pontos

Será considerado aprovado o estudante que obtiver a média final igual ou superior a 7 (sete) pontos e frequência mínima de 75%

Recuperação:

- O discente poderá realizar a Avaliação Substitutiva quando:
 - o a média (M) for no mínimo 4,0 (quatro inteiros) e no máximo 6,9 (seis inteiros e nove décimos) e a frequência no mínimo de 75% das aulas ministradas ou;
 - o tiver perdido uma das avaliações da disciplina por qualquer motivo.
- A Avaliação Substitutiva (N3) valerá 10,0 (dez) pontos.
- A média final (MF) será obtida por meio da média aritmética: MF = (M+N3) / 2.

O aproveitamento final dos estudantes nas atividades avaliativas é expresso em escala numérica de 0 (zero) a 10 (dez), com intervalos de 0,1 (um décimo). A nota mínima para aprovação é 7 (sete) e a frequência mínima de 75%.

7. BIBLIOGRAFIA:

BÁSICA:

- 1. Recuero, Raquel; A conversação em rede : comunicação mediada pelo computador / RaquelRecuero. Porto Alegre, RS : Sulina, c2012.
- 2. Weber, Raul Fernando. Fundamentos de arquitetura de computadores. 4. ed. Porto Alegre, RS :Bookman, 2012.
- 3. Lima, Paulo Marco Ferreira. Crimes de computador e segurança computacional. 2. ed. São Paulo, SP: Atlas, 2011

COMPLEMENTAR:

- 1. STALLINGS, William; Arquitetura e Organização de Computadores. 8. ed. São Paulo,SP: Pearson Education do Brasil, 2013. 624 p.
- 2. TANENBAUM, Andrew S. Organização estruturada de computadores. 6. ed. São Paulo, SP: Pearson Prentice Hall, 2013, 605 p.
- 3. WEBER, Raul Fernando. Arquitetura de computadores pessoais. 2. ed. Porto Alegre, RS: Editora Sagra Luzzatto, 2003. 271 p.
- 4. WEBER, Raul Fernando. Fundamentos de Arquitetura de Computadores. 3. ed. Porto Alegre, RS: Editora Sagra Luzzatto, 2004. 306 p.
- 5. MONTEIRO, Mário A. Introdução à Organização de Computadores. 4 ed. LTC, 2002

ACERVO DIGITAL:

Livro que se encontra na Biblioteca Online UCB: MONTEIRO, Mário A. Introdução à Organização de Computadores

8. OBSERVAÇÕES

Importante:

- O plano de ensino é flexível e pode sofrer alterações ao longo do semestre, desde que acordadas antecipadamente com os estudantes.
- A descrição das atividades e metodologias está descrita no PLANO DE TRABALHO SEMESTRAL.
- Sugere-se que, para melhor aproveitamento das aulas, o uso do celular deverá ser limitado a assuntos urgentes ou para realização de atividades pedagógicas, quando solicitado pelo professor.

	Plano de Trabalho Semestral						
Aula	Data	Conteúdo e Objetivos de Aprendizagem	Pré-aula	Aula	Pós-aula	Evidência	
1.	12/08	Apresentação do Plano de Ensino.	Pesquisas em sites e acervo digital da universidade.	Exposição do plano de ensino dando destaque às habilidades e competências que serão desenvolvidas.	Memória de aula	Avaliação de aprendizagem para a prova presencial 01.	
2.	19/08	Sistemas de numeração.	Pesquisas em sites e acervo digital da universidade.	Importância da base binária para a computação. Conversão entre bases.	Resumo das aulas	Avaliação de aprendizagem para a prova presencial 01.	
3.	26/08	Bases numéricas para a computação: bases octal e hexadecimal.	Pesquisas em sites e acervo digital da universidade.	Relação entre as bases binária, octal e hexadecimal. Conversão entre bases.	Memória de aula	Avaliação de aprendizagem para a prova presencial 01.	
4.	02/09	Conversão entre bases tendo referência a base binária.	Pesquisas em sites e acervo digital da universidade.	Exemplos e exercícios de aplicação dos sistemas de bases.	Resumo das aulas	Avaliação de aprendizagem para a prova presencial 01.	
5.	09/09	Representação de dados numéricos, lógicos e caracteres. Aritmética binária com representação em complemento a dois.	Pesquisas em sites e acervo digital da universidade.	Apresentação das codificações para representação de caracteres – Tabela ASCII. Exemplos e exercícios de álgebra binária a partir da representação por complemento a dois.	Resumo das aulas	Avaliação de aprendizagem para a prova presencial 01.	
6.	16/09	Primeira Avaliação	Estudo de todo o conteúdo: anotações, slides, livros, acervo digital.	Envolve o conteúdo estudado até a aula anterior.		Prova valendo 2 pontos	

7.	23/09	Aritmética binária	Pesquisas em sites e acervo	Exemplos e exercícios de	Resumo das aulas	Avaliação de
		com representação	digital da universidade.	álgebra binária a partir da		aprendizagem
		em complemento a		representação por		para a prova
		dois		complemento a dois.		presencial 01.
8.	30/09	Aplicações das	Pesquisas em sites e acervo	Solução de problemas de	Resumo das aulas	Avaliação de
		bases na ciência da	digital da universidade.	conversão entre bases		aprendizagem
		computação.		numéricas aplicados na		para a prova
				ciência da computação.		presencial 02.
9.	07/10	Introdução à	Pesquisas em sites e acervo	Apresentação da álgebra	Resumo das aulas	Avaliação de
		álgebra booleana e	digital da universidade.	booleana e discussão, por		aprendizagem
		portas lógicas das		meio de exemplos, de		para a prova
		operações AND, OR,		circuitos lógicos		presencial 02.
		NOT e XOR.		construídos a partir das		
				portas AND, OR e NOT.		
10.	21/10	Álgebra booleana e	Pesquisas em sites e acervo	Álgebra booleana e	Resumo das aulas	Avaliação de
		portas lógicas das	digital da universidade.	discussão, por meio de		aprendizagem
		operações AND, OR,		exemplos, de circuitos		para a prova
		NOT e XOR.		lógicos construídos a partir		presencial 02.
				das portas AND, OR e NOT.		
11.	28/10	Segunda Avaliação	Estudo de todo o conteúdo:	Envolve o conteúdo		Prova valendo 3
			anotações, slides, livros,	estudado até a aula		pontos
			acervo digital.	anterior.		
12.	04/11	Postulados e	Pesquisas em sites e acervo	postulados e propriedades	Resumo das aulas	Avaliação de
		propriedades da	digital da universidade.	da lógica booleana e dos		aprendizagem
		lógica booleana,		teoremas de De Morgan.		para a prova
		teoremas de De		Exemplos e aplicação de		presencial 02.
		Morgan e		exercícios de simplificação		
		universalidade das		de circuitos lógicos pelo		
		portas NAND e		Mapa de Karnaugh.		
		NOR. implificação				
		de circuitos lógicos				
		pelo Mapa de				

		Karnaugh. Circuitos lógicos combinacionais e sequenciais.				
13.	11/11	Simplificação de circuitos lógicos pelo Mapa de Karnaugh. Circuitos lógicos combinacionais e sequenciais.	Pesquisas em sites e acervo digital da universidade.	Exemplos e aplicação de exercícios de simplificação de circuitos lógicos pelo Mapa de Karnaugh.	Resumo das aulas	Avaliação de aprendizagem para a prova presencial 02.
14.	18/11	Continuação Simplificação de circuitos lógicos pelo Mapa de Karnaugh. Circuitos lógicos combinacionais e sequenciais.	Pesquisas em sites e acervo digital da universidade.	Exemplos e aplicação de exercícios de simplificação de circuitos lógicos pelo Mapa de Karnaugh.	Resumo das aulas	Avaliação de aprendizagem para a prova presencial 02.
15.	25/11	Continuação Simplificação de circuitos lógicos pelo Mapa de Karnaugh. Circuitos lógicos combinacionais e sequenciais.	Pesquisas em sites e acervo digital da universidade.	Exemplos e aplicação de exercícios de simplificação de circuitos lógicos pelo Mapa de Karnaugh.	Resumo das aulas	Avaliação de aprendizagem para a prova presencial 02.
16.	02/12	Terceira avaliação presencial 03	Estudo de todo o conteúdo: anotações, slides, livros, acervo digital.	Envolve o conteúdo estudado até a aula anterior.	Não há	Prova valendo 3 pontos

17.	09/12	Prova de	Estudo de todo o conteúdo:	Envolve o conteúdo de	Não há	Prova valendo 10
		Recuperação	anotações, slides, livros, acervo digital.	todo o semestre.		pontos
		Aula Síntese e divulgação de resultados.		Análise crítica verbal sobre os temas.	Reflexão com os estudantes sobre o aprendizado na disciplina	Reflexão com os estudante sobre o aprendizado da disciplina