Мета

Дослідити вплив різних характеристик на рівень гемоглобіну людей не молодше 20 років.

Початкові моделі

Побудуємо лінійні моделі:

Дані: всі спостереження для яких age \in [20; 60], weight \in [60, 75].

Залежна змінна: hemoglobin

Модель 1:

Незалежна змінна: age

Модель 2:

Незалежна змінна: weight

Обмеження на змінні age та weight накладено з метою полегшення виявлення кореляції.

Візуалізуємо моделі:

Модель hemoglobin ~ age

Модель hemoglobin ~ weight

Має місце деяка кореляція.

Побудуємо лінійну модель:

Дані: весь очищений датасет (991284 спостережень)

Залежна змінна: hemoglobin

Незалежні змінні: age, weight

	hemoglobin
age	-0.009***
	(0.0001)
weight	0.061***
	(0.0001)
Constant	10.767***
	(0.009)
Observations	991,284
Adjusted R ²	0.255
Note:	*p<0.1; **p<0.05; ***p<0.01

All data; hemoglobin \sim age, weight

Спостерігаємо велике значення Constant, що свідчить про необхідність подальшого дослідження впливу інших змінних на гемоглобін.

Покращення моделей

Замість побудови та дослідження однієї великої моделі, було вирішено досліджувати 12 окремих моделей.

Дерево варіантів датасетів (1 датасет = 1 модель)

Моделі відрізняються даними, на яких відбувається побудова.

Перелік наборів даних:

- 1. sex: male, DRK: Y, SMK: 1
- 2. sex: male, DRK: Y, SMK: 2
- 3. sex: male, DRK: Y, SMK: 3
- 4. sex: male, DRK: N, SMK: 1
- 5. sex: male, DRK: N, SMK: 2
- 6. sex: male, DRK: N, SMK: 3
- 7. sex: female, DRK: Y, SMK: 1
- 8. sex: female, DRK: Y, SMK: 2
- 9. sex: female, DRK: Y, SMK: 3
- 10.sex: female, DRK: N, SMK: 1
- 11.sex: female, DRK: N, SMK: 2
- 12.sex: female, DRK: N, SMK: 3

Розбиття початкового датасету:

```
data <- data %>% filter(age >= 20)
data_male_y_1 <- data %>%
    filter(sex == "Male", DRK_YN == "Y", SMK_stat_type_cd == 1) %>%
    select(-sex, -DRK_YN, -SMK_stat_type_cd)
data_male_y_2 <- data %>%
    filter(sex == "Male", DRK_YN == "Y", SMK_stat_type_cd == 2) %>%
    select(-sex, -DRK_YN, -SMK_stat_type_cd)
data_male_y_3 <- data %>%
    filter(sex == "Male", DRK_YN == "Y", SMK_stat_type_cd == 3) %>%
    select(-sex, -DRK_YN, -SMK_Stat_type_cd)
data_male_n_1 <- data %>%
    filter(sex == "Male", DRK_YN == "N", SMK_stat_type_cd == 1) %>%
    select(-sex, -DRK_YN, -SMK_Stat_type_cd)
data_male_n_2 <- data %>%
    filter(sex == "Male", DRK_YN == "N", SMK_stat_type_cd == 2) %>%
    select(-sex, -DRK_YN, -SMK_Stat_type_cd)
data_male_n_3 <- data %>%
    filter(sex == "Male", DRK_YN == "N", SMK_stat_type_cd == 3) %>%
    select(-sex, -DRK_YN, -SMK_Stat_type_cd)
data_female_y_1 <- data %>%
    filter(sex == "Female", DRK_YN == "Y", SMK_stat_type_cd == 1) %>%
    select(-sex, -DRK_YN, -SMK_stat_type_cd)
data_female_y_2 <- data %>%
    filter(sex == "Female", DRK_YN == "Y", SMK_stat_type_cd == 2) %>%
    select(-sex, -DRK_YN, -SMK_stat_type_cd)
data_female_y_3 <- data %>%
    filter(sex == "Female", DRK_YN == "Y", SMK_stat_type_cd == 2) %>%
    select(-sex, -DRK_YN, -SMK_Stat_type_cd)
data_female_n_1 <- data %>%
    filter(sex == "Female", DRK_YN == "Y", SMK_stat_type_cd == 3) %>%
    select(-sex, -DRK_YN, -SMK_Stat_type_cd)
data_female_n_1 <- data %>%
    filter(sex == "Female", DRK_YN == "N", SMK_stat_type_cd == 1) %>%
    select(-sex, -DRK_YN, -SMK_Stat_type_cd)
data_female_n_1 <- data %>%
    filter(sex == "Female", DRK_YN == "N", SMK_stat_type_cd == 2) %>%
    select(-sex, -DRK_YN, -SMK_Stat_type_cd)
data_female_n_1 <- data %>%
    filter(sex == "Female", DRK_YN == "N", SMK_stat_type_cd == 2) %>%
    select(-sex, -DRK_YN, -SMK_Stat_type_cd)
data_female_n_1 <- data %>%
    filter(sex == "Female", DRK_YN == "N", SMK_stat_type_cd == 2) %>%
    select(-sex, -DRK_YN, -SMK_Stat_type_cd)
data_female_n_1 <- data %>%
```

Для кожного піддатасету побудуємо модель із незалежними змінними: age, weight, height, waistline:

```
models12 <- list()
for (i in 1:length(data_12models)) {
   model <- lm(hemoglobin ~ age + weight + height + waistline, data = data_12models[[i]])
   model_hc0 <- coeftest(model, vcov. = vcovHC(model, type = "HCO"))
   models12[[i]] = model
   print(sprintf("coeftest for model %d", i))
   print(model hc0)</pre>
   print(model_hc0)
dep.var.caption =
             se = list(model_hc0[, 2]),
             no.space = TRUE,
             omit.stat = c("rsq", "f", "ser"))
                                                                          hemoglobin
                   (1)
                                                   (4)
                                                                                               (8)
                                                                                                          (9)
                                                                                                                    (10)
                                                                                                                               (11)
                                                                                                                                          (12)
                                                              (5)
                          -0.021*** -0.019*** -0.028*** -0.031***
                                                                      -0.025*** -0.001***
                                                                                             -0.001
                                                                                                        0.002^*
                                                                                                                  0.0004**
                                                                                                                            0.0004**
                                                                                                                                         -0.002
 age
                           (0.0003) (0.0003) (0.0003)
                                                            (0.001)
                                                                      (0.0005) (0.0003)
                                                                                             (0.001)
                                                                                                        (0.001)
                                                                                                                  (0.0002) (0.0002)
                                                                                                                                        (0.001)
                0.009***
                           0.010***
                                                                                            0.009***
                                                                                                       0.007***
                                     0.012***
                                                                                                                  0.016*** 0.016***
 weight
                                                0.018***
                                                           0.018***
                                                                      0.016***
                                                                                 0.004^{***}
                                                                                                                                       0.016***
                            (0.001)
                                                                                                                  (0.0003) (0.0003)
                                                 (0.001)
                                                            (0.001)
                                                                                             (0.003)
                                                                                                        (0.002)
                -0.007**
                          -0.007*** -0.009*** -0.011*** -0.010*** -0.009*** -0.008***
                                                                                             -0.006**
                                                                                                        -0.004
                                                                                                                  -0.006*** -0.006*** -0.008***
 height
                                       (0.001)
                                                                       (0.001)
                                                                                  (0.001)
                 (0.003)
                            (0.001)
                                                 (0.001)
                                                            (0.001)
                                                                                             (0.003)
                                                                                                        (0.002)
                                                                                                                  (0.0004) (0.0004)
                                                                                                                                        (0.003)
 waistline
                0.011***
                           0.011***
                                      0.012***
                                                 0.007***
                                                           0.010^{***}
                                                                      0.011***
                                                                                 0.007***
                                                                                              0.004
                                                                                                        0.004^{*}
                                                                                                                   -0.0002
                                                                                                                             -0.0002
                                                                                                                                        0.002^*
```

Note: *p<0.1; **p<0.05; ***p<0.01

(0.001)

(0.190)

46,224

0.135

(0.001)

13.775***

(0.112)

124,573

0.007

(0.003)

13.355***

(0.477)

6,493

0.010

(0.002)

13.242***

(0.388)

10,098

0.009

(0.0002) (0.0002)

(0.068)

313,170

0.013

13.114*** 13.114*** 13.739***

(0.068)

313,170

0.013

(0.001)

(0.490)

6,149

0.020

- 1. Для деяких наборів даних (8, 9, 10, 11, 12) не всі змінні ϵ попередньо значимими.
- 2. Наявні великі значення Constant.

(0.001)

(0.118)

113,979

0.082

(0.001)

(0.100)

151,455

0.082

(0.001)

15.764*** 15.879*** 16.340*** 16.331*** 15.928***

(0.151)

75,829

0.166

(0.001)

(0.201)

50,040

0.144

(0.001)

(0.499)

88,845

0.091

Constant

Observations

Adjusted R²

Спробуємо зменшити значення Constant шляхом перебору наборів незалежних змінних.

Для кожного піддатасету побудуємо матрицю кореляцій:

На основі матриць кореляцій для кожного піддатасету було обрано незалежні змінні, таким чином, щоб кожна змінна була «попередньо значимою». «Попередня значущість» змінної оцінювалась згідно числової міри кореляції змінної із hemoglobin.

Отримані набори:

- male_y_1: age + height + weight + waistline + DBP + tot_chole + LDL_chole + triglyceride + SGOT ALT
- 2. male_y_2: age + height + weight + waistline + DBP + tot_chole + LDL_chole + triglyceride + SGOT_ALT
- 3. male_y_3: age + height + weight + waistline + DBP + tot_chole + LDL_chole + triglyceride + SGOT_ALT
- 4. male_n_1: age + height + weight + waistline + hear_left + hear_right + DBP + tot_chole + LDL chole + triglyceride + SGOT AST
- 5. male_n_2: age + height + weight + waistline + hear_left + hear_right + DBP + tot_chole + LDL chole + triglyceride + urine protein + serum creatinine + SGOT ALT
- 6. male_n_3: age + height + weight + waistline + DBP + tot_chole + LDL_chole + triglyceride + SGOT_ALT
- 7. female_y_1: DBP + SBP + BLDS + tot_chole + LDL_chole + triglyceride + SGOT_ALT
- 8. female_y_2: weight + waistline + SBP + DBP + BLDS + tot_chole + LDL_chole + triglyceride + SGOT_ALT
- 9. female_y_3: weight + waistline + SBP + DBP + BLDS + tot_chole + LDL_chole + triglyceride + SGOT_ALT
- 10. female_n_1: weight + SBP + DBP + BLDS + tot_chole + LDL_chole + triglyceride + SGOT_AST + SGOT_ALT + gamma_GTP
- 11. female_n_2: weight + SBP + DBP + BLDS + tot_chole + LDL_chole + triglyceride + SGOT_AST + SGOT_ALT + gamma_GTP
- 12. female_n_3: weight + waistline + SBP + DBP + BLDS + tot_chole + LDL_chole + triglyceride + SGOT AST + SGOT ALT

```
models12 <- list()
models12[[1]] <- lm(hemoglobin ~ age + height + weight + waistline +
                                  DBP + tot_chole + LDL_chole + triglyceride + SGOT_ALT,
                                  data = data 12models[[1]]
models 12 [[2]] \leftarrow lm(hemoglobin \sim age + height + weight + waistline +
                                  DBP + tot chole + LDL chole + triglyceride + SGOT ALT,
                                  data = data_12models[[2]])
models12[[3]] <- lm(hemoglobin ~ age + height + weight + waistline +
                                  DBP + tot_chole + LDL_chole + triglyceride + SGOT_ALT,
                                  data = data 12 models[[3]]
models12[[4]] <- lm(hemoglobin ~ age + height + weight + waistline +
                                  hear_left + hear_right +
                                  DBP + tot chole + LDL chole + triglyceride + SGOT AST,
                                  data = data_12models[[4]])
models12[[5]] <- lm(hemoglobin ~ age + height + weight + waistline +
                                  hear left + hear right + DBP + tot chole + LDL chole + triglyceride +
                                  urine_protein + serum_creatinine + SGOT_ALT,
                                  data = data_12models[[5]])
models12[[6]] <- lm(hemoglobin ~ age + height + weight + waistline + DBP + tot_chole + LDL_chole + triglyceride + SGOT_ALT,
                                  data = data_12models[[6]]
models12[[7]] <- lm(hemoglobin ~ DBP + SBP + BLDS + tot_chole + LDL_chole + triglyceride + SGOT_ALT,
                                  data = data_12models[[7]]
models 12 [[8]] \leftarrow lm(hemoglobin \sim weight + waistline + SBP + DBP + BLDS + Part + Par
                                  tot chole + LDL chole + triglyceride + SGOT ALT,
                                  data = data_12models[[8]])
models12[[9]] <- lm(hemoglobin ~ weight + waistline + SBP + DBP + BLDS +
                                  tot_chole + LDL_chole + triglyceride + SGOT_ALT,
                                  data = data 12 models [[9]]
models 12[[10]] \leftarrow lm(hemoglobin \sim weight + SBP + DBP + BLDS + PROP + P
                                    tot chole + LDL chole + triglyceride + SGOT AST + SGOT ALT + gamma GTP,
                                    data = data 12 models[[10]]
models12[[11]] <- lm(hemoglobin ~ weight + SBP + DBP + BLDS +
                                    tot_chole + LDL_chole + triglyceride + SGOT_AST + SGOT_ALT + gamma_GTP,
                                    data = data 12 models[[11]]
models12[[12]] <- lm(hemoglobin ~ weight + waistline + SBP + DBP + BLDS +
                                    tot chole + LDL chole + triglyceride + SGOT AST + SGOT ALT,
                                    data = data_12models[[12]]
stargazer(models12, out = "./output/Lab3_Regression/model12_manual.html", type = "html",
                 label = "table:evals-reg",
                 dep.var.labels = c("hemoglobin"),
                 dep.var.caption = ""
                 se = list(model hc0[, 2]),
                 no.space = TRUE,
                 omit.stat = c("rsq", "f", "ser"))
```

						hemog	globin					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
age	-0.020***	-0.018***	-0.019***	-0.028***	-0.025***	-0.026***						
	(0.002)	(0.0003)	(0.0003)	(0.0004)	(0.001)	(0.001)						
height	-0.001	-0.002***	-0.004***	-0.007***	-0.004***	-0.003***						
		(0.001)	(0.001)	(0.001)	(0.001)	(0.001)						
weight	0.003***	0.006***	0.008***	0.014***	0.011***	0.009***		0.005*	0.005**	0.008***	0.008***	0.006***
_	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)		(0.003)	(0.002)		(0.0003)	(0.002)
waistline	0.007***	0.007***	0.008***	0.005***	0.006***	0.007***		-0.001	-0.003	` ′		0.001
		(0.001)	(0.001)	(0.001)	(0.001)	(0.001)		(0.003)	(0.002)			(0.001)
hear_left		(/	(/	-0.045*	-0.028	(/		(/	()			(,
				(0.025)	(0.027)							
hear_right					-0.106***							
g				(0.025)	(0.028)							
DBP	0.014***	0.013***	0.012***	0.016***	0.016***	0.013***	0.016***	0.017***	0.015***	0.018***	0.018***	0.020***
DDI	(0.003)		(0.0003)		(0.001)	(0.001)	(0.001)	(0.002)	(0.002)		(0.0003)	(0.002)
SBP	(0.003)	(0.0003)	(0.0003)	(0.0003)	(0.001)	(0.001)	-0.003***			-0.004***		
SDI							(0.0004)	(0.002)		(0.0002)	(0.0002)	(0.002)
BLDS							0.0004)	0.002)	(0.001) 0.003***		0.0002)	0.002)
BLDS											(0.002)	
4-4 -1-1-	0.000***	0.000***	0.000***	0 00 4***	0.000***	0.000***	(0.0002)	(0.001)	(0.001)	(0.0001)	(/	(0.001)
tot_chole	0.002***		0.002***				0.005***	0.002**	0.004***		0.006***	0.005***
	(0.0004)		(0.0002)	(0.0003)				(0.001)	(0.001)	(0.0001)		(0.001)
LDL_chole	0.002	0.003***		0.001			-0.001***	0.003**	0.0003	-0.002***		-0.001
			(0.0002)	(0.0003)		(0.0004)		(0.001)	(0.001)	(0.0002)		(0.001)
triglyceride	0.001					0.001***		0.0003*		0.0004***		
	(0.0002)	(0.00004)	(0.00003)	(0.0001)		(0.0001)	(0.0001)	(0.0002)	(0.0001)	(0.00004)	(0.00004)	(0.0002)
urine_protein					-0.102***							
					(0.010)							
serum_creatinine	:				-0.404***							
					(0.011)							
SGOT_ALT	0.005	0.003***	0.002***		0.006***	0.003***	0.002***	0.003***	0.005***	0.009***	0.009***	0.008***
	(0.001)	(0.0001)	(0.0001)		(0.0003)	(0.0002)	(0.0001)	(0.001)	(0.001)	(0.0002)	(0.0002)	(0.001)
gamma_GTP										0.001***	0.001***	
										(0.0001)	(0.0001)	
SGOT_AST				0.001***						-0.004***	-0.004***	-0.003*
				(0.0001)						(0.0002)	(0.0002)	(0.002)
Constant	13.520***	13.479***	14.004***	14.192***	14.010***	13.848***	10.962***	11.016***	11.426***	10.419***	10.419***	10.816***
	(0.197)	(0.124)	(0.110)	(0.169)	(0.206)	(0.207)	(0.040)	(0.186)	(0.153)	(0.026)	(0.026)	(0.181)
Observations	76,205	110,054	136,216	68,320	49,124	42,391	102,375	5,366	7,906	297,385	297,385	5,534
Adjusted R ²	0.138	0.129	0.125	0.204	0.223	0.183	0.052	0.059	0.058	0.072	0.072	0.085
Note:											**p<0.05;	*** .0.04

- 1. Спостерігаємо зменшення значень Constant
- 2. Для моделей (1, 4, 5, 8, 9, 12) деякі незалежні змінні не ϵ значимими

Загалом зменшення Constant не ϵ задовільним, ма ϵ мо провести подальші дослідження.

Застосуємо АІС для автоматичного підбору незалежних параметрів моделі:

						hemog	globin					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
age	-0.019***	-0.018***	-0.020***	-0.025***	-0.023***	-0.023***	-0.007***	-0.007***	-0.005***	-0.002***	-0.002***	-0.007**
	(0.001)	(0.0003)	(0.0003)	(0.0003)	(0.001)	(0.0005)	(0.0003)	(0.001)	(0.001)	(0.0002)	(0.0002)	(0.001)
DBP	0.017***	0.018***	0.016***	0.021***	0.022***	0.020***	0.014***	0.012***	0.012***	0.017***	0.017***	0.017***
	(0.002)	(0.0005)	(0.0004)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)		(0.0003)	(0.002)
tot_chole	0.004***	0.005***	0.005***	0.006***	0.006***		0.005***		0.004***	0.005***		0.004***
	(0.0004)	(0.0002)	(0.0002)	(0.0005)	(0.001)		(0.0002)		(0.0003)		(0.0003)	
SGOT_ALT	0.006***	0.004***	0.002***	0.004***	0.009***			0.006***	0.007***	0.008***	0.008***	0.006***
	(0.001)	(0.0002)	(0.0001)	(0.0002)	•	(0.0003)		(0.001)	(0.001)		(0.0002)	(0.001)
waistline	0.006***	0.006***	0.007***			0.007***					-0.001***	
	***	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	**			(0.0002)	
HDL_chole	-0.002		-0.005***					-0.002**		0.001**		
	0.000	(0.0003)		(0.001)		(0.0005)	*	(0.001)	***		(0.0003)	
SGOT_AST	-0.003		-0.0003***					-0.003***			-0.004***	
	_	(0.0002)		(0.0002)		(0.001) -0.074***	(0.0003)	(0.001)	(0.001)		(0.0002)	0.105
serum_creatinine		-0.092***		-0.110 (0.006)			0.014**	0.282***	0.183***	(0.005)	-0.076***	-0.125 (0.082)
SBP	-0.003**	(0.011) -0.005***	(0.008) -0.004***		(0.011)	(0.007)	(0.005)	(0.085)	(0.058) -0.002*		(0.005) -0.003***	` '
SDF	(0.002)	(0.0003)				(0.001)	(0.0004)		(0.002)		(0.0002)	(0.002)
triglyceride	0.002)	(0.0003)		0.0004			0.0004)		0.0003**	0.0002)		0.002)
uigiyeende	(0.0002)			(0.0004					(0.0003		(0.0001)	
weight	0.002***	0.005***	0.006***		0.010***		-0.001**	0.002	0.002*		0.008***	0.005***
	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)	(0.001)		(0.0003)	(0.002)
LDL_chole	(0.002)		-0.001***		-0.001*	(0.001)	-0.001***	(0.002)	(0.001)		-0.001***	(0.002)
		(0.0002)	(0.0002)	(0.0005)	(0.001)		(0.0002)				(0.0003)	
BLDS	0.0005	0.001***	0.001***			0.001***		0.003***	0.003***		0.002***	0 004***
	(0.001)	(0.0001)			(0.0002)		(0.0002)		(0.001)		(0.0001)	(0.001)
hear_left	-0.069			-0.042*		-0.060*			-0.189*	-0.049***	-0.049***	
_				(0.024)		(0.036)			(0.099)	(0.013)	(0.013)	
sight_right		0.014**										0.048**
		(0.005)										(0.021)
gamma_GTP		-0.0001**			-0.001***	-0.001***	0.001***		-0.0005***	0.001***	0.001***	-0.001
		(0.0001)				(0.0001)	(0.0001)		(0.0002)	(0.0001)	(0.0001)	(0.0005)
urine_protein	0.022	0.015**	0.041***	-0.103***	-0.092***	-0.074***	0.019**		0.047*	-0.053***	-0.053***	
		(0.007)	(0.006)	(0.009)	(0.010)	(0.011)	(0.008)		(0.026)	(0.005)	(0.005)	
sight_left	0.013		0.009*							-0.006*	-0.006*	
			(0.005)							(0.003)	(0.003)	
height		-0.001**	-0.004***	-0.005***	-0.004***	-0.003***	-0.003***			-0.001*	-0.001*	
		(0.001)	(0.001)	(0.001)						(0.0004)		
hear_right		-0.037**	-0.062***	-0.067***	-0.116***	-0.064*	0.126***			-0.026**	-0.026**	
		(0.018)	(0.020)								(0.013)	
Constant	13.837***	13.862***	14.276***	14.450***				11.116***	11.587***	10.915***	10.915***	11.259***
	(0.181)	(0.123)	(0.105)	(0.156)	(0.203)	(0.198)	(0.120)	(0.158)	(0.156)	(0.071)	(0.071)	(0.161)
Observations	88,845	113,979	151,455	75,829	50,040	46,224	124,573	6,493	10,098	313,170	313,170	6,149
Adjusted R ²	0.139	0.135	0.128	0.220	0.228	0.192	0.045	0.056	0.057	0.069	0.069	0.084

*p<0.1; **p<0.05; ***p<0.05

Constant, R^2 майже не відрізняються від значень моделей, параметри яких було обрано вручну.

Очікувалось, що завдяки розбиттю датасету на піддатасети значення Constant буде достатньо малим – адже розбиття гарантує урахування категоріальних змінних (sex, DRK YN, SMK stat type cd) у моделі.

Побудуємо 3 моделі без розбиття:

- AIC, scope = age + height + weight + waistline + sight_left + sight_right + hear_left + hear_right + SBP + DBP + BLDS + tot_chole + HDL_chole + LDL_chole + triglyceride + urine protein + serum creatinine + SGOT AST + SGOT ALT + gamma GTP
- 2. AIC, scope = sex + age + height + weight + waistline + sight_left + sight_right + hear_left + hear_right + SBP + DBP + BLDS + tot_chole + HDL_chole + LDL_chole + triglyceride + urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT + gamma GTP
- 3. AIC, scope = SMK_Y + SMK_N + DRK_YN + sex + age + height + weight + waistline + sight_left + sight_right + hear_left + hear_right + SBP + DBP + BLDS + tot_chole + HDL_chole + LDL_chole + triglyceride + urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT + gamma_GTP (категоріальна змінна SMK_stat_type_cd (1, 2, 3) замінена двома бінарними змінними SMK_Y, SMK_N).

```
data <- data %>%
   mutate(
     state(
sex = as.numeric(as.factor(sex)), # male = 2, female = 1
DRK_YN = as.numeric(as.factor(DRK_YN)), # 1 = no, 2 = yrs
SMK_Y = (SMK_stat_type_cd == 3),
SMK_N = (SMK_stat_type_cd == 1)
   ) %>%
  select(
     -SMK_stat_type_cd
scope = (~ age + height + weight + waistline +
sight_left + sight_right + hear_left + hear_right +
                                            SBP + DBP + BLDS +
tot_chole + HDL_chole + LDL_chole + triglyceride +
                                            urine_protein + serum_creatinine +
                                            SGOT_AST + SGOT_ALT + gamma_GTP +
                                           sex))
model_all_allcat <- step(min_model, direction = "forward"</pre>
                                            age + height + weight + waistline +
sight_left + sight_right + hear_left + hear_right +
                                            SBP + DBP + BLDS +
tot_chole + HDL_chole + LDL_chole + triglyceride +
urine_protein + serum_creatinine +
no.space = TRUE,
omit.stat = c("rsq", "f", "ser"))
```

		hemoglobi	n
	(1)	(2)	(3)
sex		1.882***	1.807***
		(0.004)	(0.004)
height	0.067***	-0.004***	-0.005***
_		(0.0002)	(0.0002)
weight	0.012***	0.010***	0.011***
		(0.0002)	(0.0002)
DBP		0.017***	0.017***
		(0.0002)	(0.0002)
triglyceride	0.0005		
	(0.0002)		(0.00002)
SGOT_ALT	0.005***	0.004***	0.004***
_	(0.001)	(0.0001)	
SMK_Y			0.241***
_			(0.004)
LDL_chole	-0.001***	-0.002***	-0.001***
_		(0.0001)	(0.0001)
gamma_GTP	0.002		-0.0002***
-	(0.001)		(0.00003)
HDL_chole	-0.009***		
_		(0.0001)	(0.0001)
tot chole	0.005		0.006***
_	(0.0004)	(0.0001)	
serum_creatinine		-0.074***	
_	(0.131)	(0.002)	(0.002)
BLDS	0.002	0.001***	0.001***
	(0.001)	(0.00005)	(0.00005)
age	-0.003	-0.014***	-0.013***
_	(0.001)	(0.0001)	(0.0001)
waistline	0.004	0.001***	
		(0.0001)	
SMK_N			0.015***
_			(0.004)
urine_protein	-0.068	-0.042***	
_			(0.003)
DRK_YN		` '	0.040***
_			(0.003)
SGOT_AST	-0.002	-0.001***	-0.001***
			(0.0001)
sight_right	0.032		-
	(0.018)		
sight_left	0.029		
SBP	-0.001	-0.003***	-0.003***
		(0.0001)	
hear_left	0.026	-0.049***	-0.047***
			(0.008)
hear_right	0.024	-0.032***	
			(0.008)
Constant	0.076	10.164***	10.176***
		(0.037)	
Observations			991,284
Adjusted R ²		0.508	
Note:	*~0.1	· ** ~ 0 05	;***p<0.01
11016.	p<0.1	, p<0.03	, p<0.01

Наявна закономірність: включення категоріальних змінних значно підвищує Constant. Неочікувано, модель (3) включає всі змінні датасету крім власне hemoglobin. При цьому значення Constant моделі (3) все ще є меншим за значення всіх моделей, побудованих «на розбитті».

Також враховуючи найбільше значення R^2 серед всіх побудованих моделей, в якості остаточної моделі оберемо модель (3), побудовану на всьому датасеті.

Перевірка на мультиколінеарність

> vif(model_all_allcat) tot_chole weight DBP sex SGOT_ALT age 3.268163 18.277348 3.508122 1.718001 2.324996 1.941503 SMK_Y triglyceride serum_creatinine height SBP BLDS 1.806842 3.793047 1.075557 2.483305 1.134132 3.564094 urine_protein SGOT_AST HDL_chole DRK_YN LDL_chole hear_left 1.770981 3.590555 1.023614 1.354583 15.493765 1.425806 gamma_GTP waistline SMK_N hear_right 1.369308 1.980847 2.536186 1.422976

Наявні суттєві ризики мультиколінеарних змінних. Приберемо змінну tot chole:

```
model_all_allcat_no_tot_chole <- lm(hemoglobin ~ age + height + weight + waistline +</pre>
                                   hear_left + hear_right +
                                   SBP + DBP + BLDS +
                                   HDL_chole + LDL_chole + triglyceride +
                                   urine_protein + serum_creatinine +
                                   SGOT_AST + SGOT_ALT + gamma_GTP +
                                    sex + DRK_YN + SMK_Y + SMK_N,
                                   data = data
stargazer(model_all_allcat, model_all_allcat_no_tot_chole,
          out = "./output/Lab3_Regression/alldata_no_tot_chole.html", type = "html",
          label = "table:evals-reg",
          dep.var.labels = c("hemoglobin"),
          dep.var.caption = "",
          se = list(model_hc0[, 2]),
          no.space = TRUE,
          omit.stat = c("rsq", "f", "ser"))
vif(model_all_allcat_no_tot_chole)
> vif(model_all_allcat_no_tot_chole)
              age
                             height
                                                weight
                                                               waistline
                                                                                 hear_left
                                                                                                   hear_right
         1.716793
                           3.562698
                                                                1.980416
                                                                                  1.425775
                                              3.506462
                                                                                                     1.422926
                                                               HDL_chole
                                                                                 LDL_chole
                                                                                                 triglyceride
              SBP
                                 DBP
                                                  BLDS
         2.483276
                           2.322921
                                              1.134073
                                                                1.342993
                                                                                  1.024560
                                                                                                     1.334250
    urine_protein serum_creatinine
                                                                                 gamma_GTP
                                              SGOT_AST
                                                                SGOT_ALT
                                                                                                          sex
         1.023583
                           1.075507
                                              1.770458
                                                                1.940449
                                                                                  1.367957
                                                                                                     3.267008
           DRK_YN
                               SMK_Y
                                                 SMK_N
                           1.806644
                                              2.536008
         1.354324
```

	hemoglobin					
	(1)	(2)				
sex	1.807***	1.803***				
		(0.004)				
tot_chole	0.006**					
	(0.0004)					
weight	0.011***	0.011***				
	(0.002)	(0.0002)				
age	-0.013***	-0.013***				
	(0.001)	(0.0001)				
DBP	0.017***	0.017***				
	(0.002)	(0.0002)				
SGOT_ALT	0.004***	0.005***				
	(0.001)	(0.0001)				
SMK_Y	0.241***	0.243***				
		(0.004)				
triglyceride	0.0002	0.001***				
	(0.0002)	(0.00001)				
serum_creatinine	-0.070***	-0.070***				
	(0.131)	(0.002)				
SBP	-0.003***	-0.003***				
-	(0.002)	(0.0001)				
BLDS	0.001	0.001***				
DLD3	(0.001)					
1	-0.005	(0.00005) -0.005***				
height	-0.003					
COT ACT	0.001	(0.0002)				
SGOT_AST	-0.001	-0.001***				
IIDI -tt-	0.002	(0.0001)				
HDL_chole	-0.003	0.002***				
	0.040	(0.0001)				
urine_protein	-0.042	-0.042***				
		(0.003)				
DRK_YN	0.040	0.042***				
		(0.003)				
LDL_chole	-0.001	0.004***				
		(0.00003)				
hear_left	-0.047	-0.049***				
		(0.008)				
gamma_GTP	-0.0002	-0.0001***				
	(0.001)	(0.00003)				
waistline	0.001	0.001***				
		(0.0001)				
SMK_N	0.015	0.014***				
		(0.004)				
hear_right	-0.032	-0.034***				
		(0.008)				
Constant	10.176***	10.279***				
	(0.181)	(0.038)				
Observations	991,284	991,284				
_	0.511	0.510				
Adjusted R ²	0.511	0.510				

Видалення tot_chole майже не вплинуло на загальний характер моделі. Ризик мультиколінеарності зменшено.

Тестування гіпотез

Для кожної незалежної змінної було протестовано гіпотези:

H0: вплив змінної не ϵ статично значущим

На: вплив змінної є статично значущим

Результати тестування:

```
'sex=0', 'DRK_YN=0', 'SMK_YTRUE=0', 'SMK_NTR
for (hypo in hypos) {
  current_hypos <- hypos[!hypos %in% c(hypo)]
  print(linearHypothesis(model_all_allcat_no_tot_chole,
                                  current_hypos,
                                  vcov. = hccm(model_all_allcat_no_tot_chole, type='hc1')))
Linear hypothesis test
Hypothesis:
height = 0
weight = 0
waistline = 0
hear_left = 0
hear_right = 0
SBP = 0
DBP = 0
BLDS = 0

HDL_chole = 0

LDL_chole = 0

triglyceride = 0
urine_protein = 0
serum_creatinine = 0
SGOT\_\overline{AST} = 0
SGOT\_ALT = 0
gamma_GTP = 0
sex = 0
DRK_YN = 0
SMK\_YTRUE = 0
SMK\_NTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight + waistline + hear_left +
    hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride +
    urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
    gamma_GTP + sex + DRK_YN + SMK_Y + SMK_N
Note: Coefficient covariance matrix supplied.
   Res.Df Df
                          F
                                 Pr(>F)
1 991282
2 991262 20 47365 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Linear hypothesis test
Hypothesis:
age = 0
weight = 0
waistline = 0
hear_left = 0
hear\_right = 0
SBP = 0
DBP = 0
BLDS = 0
HDL_chole = 0
LDL_chole = 0
triglyceride = 0
urine_protein = 0
serum_creatinine = 0
SGOT\_AST = 0
SGOT\_ALT = 0
qamma_GTP = 0
sex = 0
DRK_YN = 0
```

```
SMK_YTRUE = 0
SMK\_NTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight + waistline + hear_left +
    hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride +
    urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
    gamma_GTP + sex + DRK_YN + SMK_Y + SMK_N
Note: Coefficient covariance matrix supplied.
    Res.Df Df
                           F
                                    Pr(>F)
    991282
2 991262 20 21188 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Linear hypothesis test
Hypothesis:
age = 0
height = 0
waistline = 0
hear_left = 0
hear_right = 0
SBP = 0
DBP = 0
BLDS = 0
HDL\_chole = 0
LDL\_chole = 0
triglyceride = 0
urine_protein = 0
serum_creatinine = 0
SGOT_AST = 0
SGOT_ALT = 0
gamma\_GTP = 0
sex = 0
DRK_YN = 0
SMK_YTRUE = 0
SMK NTRUE = 0
Model 1: restricted model

Model 2: hemoglobin ~ age + height + weight + waistline + hear_left + hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride + urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT + gamma_GTP + sex + DRK_YN + SMK_Y + SMK_N
Note: Coefficient covariance matrix supplied.
   Res.Df Df
                           F
                                    Pr(>F)
   991282
2 991262 20 24676 < 2.2e-16 ***
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
hear_left = 0
hear\_right = 0
SBP = 0
DBP = 0
BLDS = 0
HDL\_chole = 0
LDL_chole = 0
triglyceride = 0
urine_protein = 0
serum_creatinine = 0
SGOT_AST = 0
SGOT_ALT = 0
gamma_GTP = 0
sex = 0
DRK_YN = 0
SMK_YTRUE = 0
SMK_NTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight + waistline + hear_left +
   hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride +
   urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
   gamma_GTP + sex + DRK_YN + SMK_Y + SMK_N
Note: Coefficient covariance matrix supplied.
   Res.Df Df
                                    Pr(>F)
   991282
2 991262 20 39270 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
waistline = 0
hear_right = 0
SBP = 0
DBP = 0
BLDS = 0
HDL_chole = 0
LDL_chole = 0
triglyceride = 0
urine_protein = 0
serum_creatinine = 0
SGOT\_AST = 0
SGOT\_ALT = 0
gamma_GTP = 0
sex = 0
DRK_YN = 0
SMK_YTRUE = 0
SMK_NTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight + waistline + hear_left +
     hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride +
     urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT + gamma_GTP + sex + DRK_YN + SMK_Y + SMK_N
Note: Coefficient covariance matrix supplied.
  Res.Df Df
                   F
                         Pr(>F)
1 991282
2 991262 20 53115 < 2.2e-16 ***
  991282
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1 Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
waistline = 0
hear_left = 0
SBP = 0
DBP = 0
BLDS = 0
HDL_chole = 0
LDL_chole = 0
triglyceride = 0
urine_protein = 0
serum_creatinine = 0
SGOT\_AST = 0
SGOT\_ALT = 0
gamma\_GTP = 0
sex = 0
DRK_YN = 0
SMK_YTRUE = 0
SMK_NTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight + waistline + hear_left +
     hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride + urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
     gamma_GTP + sex + DRK_YN + SMK_Y + SMK_N
Note: Coefficient covariance matrix supplied.
  Res.Df Df
                   F
                         Pr(>F)
1 991282
2 991262 20 53098 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
waistline = 0
hear_left = 0
hear_right = 0
DBP = 0
BLDS = 0
HDL\_chole = 0
LDL\_chole = 0
triglyceride = 0
urine_protein = 0
serum_creatinine = 0
```

```
SGOT\_AST = 0
SGOT\_ALT = 0
gamma_GTP = 0
sex = 0
DRK_YN = 0
SMK_YTRUE = 0
SMK\_NTRUE = 0
Model 1: restricted model

Model 2: hemoglobin ~ age + height + weight + waistline + hear_left + hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride + urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
       gamma\_GTP + sex + DRK\_YN + SMK\_Y + SMK\_N
Note: Coefficient covariance matrix supplied.
   Res.Df Df
                          F
                                  Pr(>F)
1 991282
2 991262 20 50575 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1 Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
waistline = 0
hear_left = 0
hear_right = 0
SBP = 0
BLDS = 0
HDL\_chole = 0
LDL\_chole = 0
triglyceride = 0
urine_protein = 0
serum_creatinine = 0
SGOT_AST = 0
SGOT_ALT = 0
gamma_GTP = 0
sex = 0
DRK_YN = 0
SMK_YTRUE = 0
SMK_NTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight + waistline + hear_left +
    hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride +
    urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
    gamma_GTP + sex + DRK_YN + SMK_Y + SMK_N
Note: Coefficient covariance matrix supplied.
   Res.Df Df
                          F
                                  Pr(>F)
   991282
2 991262 20 47480 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1 Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
waistline = 0
hear_left = 0
hear_right = 0
SBP = 0
DBP = 0
HDL\_chole = 0
LDL\_chole = 0
triglyceride = 0
urine_protein = 0
serum_creatinine = 0
SGOT_AST = 0
SGOT_ALT = 0
gamma_GTP = 0
sex = 0
DRK_YN = 0
SMK_YTRUE = 0
SMK_NTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight + waistline + hear_left + hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride + urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
       gamma\_GTP + sex + DRK\_YN + SMK\_Y + SMK\_N
Note: Coefficient covariance matrix supplied.
```

```
Res.Df Df
                     Pr(>F)
1 991282
2 991262 20 52426 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
waistline = 0
hear_left = 0
hear_right = 0
SBP = 0
DBP = 0
BLDS = 0
LDL\_chole = 0
triglyceride = 0
urine_protein = 0
serum_creatinine = 0
SGOT_AST = 0
SGOT_ALT = 0
gamma_GTP = 0
sex = 0
DRK_YN = 0
SMK_YTRUE = 0
SMK_NTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight_+ waistline_+ hear_left +
    hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride +
    urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
    gamma\_GTP + sex + DRK\_YN + SMK\_Y + SMK\_N
Note: Coefficient covariance matrix supplied.
  Res.Df Df
                        Pr(>F)
1 991282
2 991262 20 46834 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Linear hypothesis test
Hypothesis: age = 0
height = 0
weight = 0
waistline = 0
hear_left = 0
hear\_right = 0
SBP = 0
DBP = 0
BLDS = 0
HDL\_chole = 0
triglyceride = 0
urine_protein = 0
serum_creatinine = 0
SGOT\_AST = 0

SGOT\_ALT = 0
gamma_GTP = 0
sex = 0
DRK_YN = 0
SMK_YTRUE = 0
SMK\_NTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight + waistline + hear_left +
    hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride + urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT + gamma_GTP + sex + DRK_YN + SMK_Y + SMK_N
Note: Coefficient covariance matrix supplied.
  Res.Df Df
                  F
                        Pr(>F)
  991282
2 991262 20 52828 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1 Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
waistline = 0
hear_left = 0
hear\_right = 0
SBP = 0
DBP = 0
```

```
BLDS = 0
HDL\_chole = 0
LDL\_chole = 0
urine_protein = 0
serum_creatinine = 0
SGOT_AST = 0
SGOT_ALT = 0
gamma_GTP = 0
sex = 0
DRK_YN = 0
SMK\_YTRUE = 0
SMK_NTRUE = 0
Model 1: restricted model

Model 2: hemoglobin ~ age + height + weight + waistline + hear_left +
hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride +
urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
      gamma\_GTP + sex + DRK\_YN + SMK\_Y + SMK\_N
Note: Coefficient covariance matrix supplied.
   Res.Df Df
                       F
                               Pr(>F)
1 991282
2 991262 20 47363 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
waistline = 0
hear_left = 0
hear_right = 0
SBP = 0
DBP = 0
BLDS = 0
HDL_chole = 0
LDL_chole = 0
triglyceride = 0
serum_creatinine = 0
SGOT_AST = 0
SGOT_ALT = 0
gamma\_GTP = 0
sex = 0
DRK_YN = 0
SMK\_YTRUE = 0
SMK_NTRUE = 0
Model 1: restricted model

Model 2: hemoglobin ~ age + height + weight + waistline + hear_left +
hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride +
urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
      gamma\_GTP + sex + DRK\_YN + SMK\_Y + SMK\_N
Note: Coefficient covariance matrix supplied.
   Res.Df Df
                       F
                               Pr(>F)
1 991282
2 991262 20 53340 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Linear hypothesis test
Hypothesis:
age = 0
h\tilde{e}ight = 0
weight = 0
waistline = 0
hear_left = 0
hear_right = 0
SBP = 0
DBP = 0
BLDS = 0
HDL_chole = 0
LDL_chole = 0
triglyceride = 0
urine_protein = 0
SGOT_AST = 0
SGOT_ALT = 0
gamma\_GTP = 0
sex = 0
DRK_YN = 0
SMK_YTRUE = 0
SMK_NTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight_+ waistline_+ hear_left +
      hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride +
```

```
urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
gamma_GTP + sex + DRK_YN + SMK_Y + SMK_N
Note: Coefficient covariance matrix supplied.
   Res.Df Df
                         F
                                Pr(>F)
1 991282
2 991262 20 28129 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
waistline = 0
hear_left = 0
hear_right = 0
SBP = 0
DBP = 0
BLDS = 0
HDL\_chole = 0
LDL\_chole = 0
triglyceride = 0
urine_protein = 0
serum_creatinine = 0
SGOT\_ALT = 0
gamma_GTP = 0
sex = 0
DRK_YN = 0
SMK\_YTRUE = 0
SMK\_NTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight + waistline + hear_left +
    hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride +
    urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
    gamma_GTP + sex + DRK_YN + SMK_Y + SMK_N
Note: Coefficient covariance matrix supplied.
   Res.Df Df
                         F
                                Pr(>F)
1 991282
2 991262 20 48290 < 2.2e-16 ***
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
waistline = 0
hear_left = 0
hear_right = 0
SBP = 0
DBP = 0
BLDS = 0
HDL\_chole = 0
LDL\_chole = 0
triglyceride = 0
urine_protein = 0
serum_creatinine = 0
SGOT\_AST = 0
gamma_GTP = 0
sex = 0
DRK_YN = 0
SMK_YTRUE = 0
SMK\_NTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight + waistline + hear_left +
    hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride +
    urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
    gamma_GTP + sex + DRK_YN + SMK_Y + SMK_N
Note: Coefficient covariance matrix supplied.
   Res.Df Df
                         F
                                Pr(>F)
1 991282
2 991262 20 33187 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
```

```
waistline = 0
hear_left = 0
hear_right = 0
SBP = 0
DBP = 0
BLDS = 0
HDL_chole = 0
LDL_chole = 0
triglyceride = 0
triglyceride = 0
urine_protein = 0
serum_creatinine = 0
SGOT_AST = 0
SGOT_ALT = 0
sex = 0
DRK_YN = 0
SMK_YTRUE = 0
SMK_NTRUE = 0
Model 1: restricted model

Model 2: hemoglobin ~ age + height + weight + waistline + hear_left +
hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride +
urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
gamma_GTP + sex + DRK_YN + SMK_Y + SMK_N
Note: Coefficient covariance matrix supplied.
    Res.Df Df
                            F
                                    Pr(>F)
    991282
 2 991262 20 46674 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
waistline = 0
hear_left = 0
hear_right = 0
SBP = 0
DBP = 0
BLDS = 0
HDL\_chole = 0
LDL_chole = 0
triglyceride = 0
urine\_protein = 0
 serum_creatinine = 0
SGOT\_AST = 0

SGOT\_ALT = 0
 gamma\_GTP = 0
DRK_YN = 0
SMK_YTRUE = 0
 SMK_NTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight + waistline + hear_left + hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride + urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
       gamma\_GTP + sex + DRK\_YN + SMK\_Y + SMK\_N
Note: Coefficient covariance matrix supplied.
    Res.Df Df
                          F
                                   Pr(>F)
 1 991282
 2 991262 20 4624 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
waistline = 0
hear_left = 0
hear_right = 0
 SBP = 0
DBP = 0
BLDS = 0
HDL\_chole = 0
LDL_chole = 0
 triglyceride = 0
urine_protein = 0
 serum_creatinine = 0
SGOT_AST = 0
SGOT_ALT = 0
 gamma\_GTP = 0
 \overline{sex} = 0
 SMK_YTRUE = 0
```

```
SMK_NTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight + waistline + hear_left +
    hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride +
    urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
    gamma_GTP + sex + DRK_YN + SMK_Y + SMK_N
Note: Coefficient covariance matrix supplied.
   Res.Df Df
                           F
                                   Pr(>F)
1 991282
2 991262 20 42779 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
waistline = 0
hear_left = 0
hear_right = 0
SBP = 0
DBP = 0
BLDS = 0
HDL\_chole = 0
LDL\_chole = 0
triglyceride = 0
urine_protein = 0
serum_creatinine = 0
SGOT_AST = 0
SGOT_ALT = 0
gamma\_GTP = 0
sex = 0
DRK_YN = 0
SMK_NTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight + waistline + hear_left +
    hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride +
    urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT +
    gamma_GTP + sex + DRK_YN + SMK_Y + SMK_N
Note: Coefficient covariance matrix supplied.
   Res.Df Df
                           F
                                   Pr(>F)
1 991282
2 991262 20 40471 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Linear hypothesis test
Hypothesis:
age = 0
height = 0
weight = 0
waistline = 0
hear_left = 0
hear\_right = 0
SBP = 0
DBP = 0
BLDS = 0
HDL\_chole = 0
LDL_chole = 0
triglyceride = 0
urine_protein = 0
serum_creatinine = 0
SGOT_AST = 0
SGOT_ALT = 0
gamma_GTP = 0
sex = 0
DRK_YN = 0
SMK\_YTRUE = 0
Model 1: restricted model
Model 2: hemoglobin ~ age + height + weight + waistline + hear_left + hear_right + SBP + DBP + BLDS + HDL_chole + LDL_chole + triglyceride + urine_protein + serum_creatinine + SGOT_AST + SGOT_ALT + gamma_GTP + sex + DRK_YN + SMK_Y + SMK_N
Note: Coefficient covariance matrix supplied.
   Res.Df Df
                           F
                                   Pr(>F)
1 991282
2 991262 20 30434 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Для кожної змінної було відкинуто нульову гіпотезу. Тобто вплив кожного параметру ϵ статично значущим, що ϵ очікуваним.

Результати тестування моделі:

```
coeftest(model_all_allcat_no_tot_chole, vcoc. = hccm(model_all_allcat_no_tot_chole, type = 'hc0'))
t test of coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.0279e+01 3.7522e-02 273.9331 < 2.2e-16 ***
age -1.2680e-02 1.0296e-04 -123.1612 < 2.2e-16 ***
height -4.9152e-03 2.2658e-04 -21.6930 < 2.2e-16 ***
waistline 8.7672e-04 1.3233e-04 6.6252 3.469e-11 ***
hear_left -4.8816e-02 7.6183e-03 -6.4077 1.478e-10 ***
hear_right -3.3866e-02 7.7331e-03 -4.3793 1.190e-05 ***
SBP -3.2424e-03 1.2075e-04 -26.8525 < 2.2e-16 ***
BLDS 1.3162e-03 4.9097e-05 26.8086 < 2.2e-16 ***
HDL_chole 2.4024e-03 8.4843e-05 28.3157 < 2.2e-16 ***
LDL_chole 4.3241e-03 3.2273e-05 133.9853 < 2.2e-16 ***
triglyceride 1.0678e-03 1.2818e-05 83.3061 < 2.2e-16 ***
serum_creatinine -6.9573e-02 2.4049e-03 -28.9299 < 2.2e-16 ***
SGOT_AST -1.2005e-03 6.3139e-05 -19.0137 < 2.2e-16 ***
SGOT_ALT 4.5152e-03 5.9008e-05 76.5180 < 2.2e-16 ***
SGMK_YN 4.2028e-02 2.5936e-03 16.2043 < 2.2e-16 ***
DRK_YN 4.2028e-02 2.5936e-03 16.2043 < 2.2e-16 ***
SMK_NTRUE 1.3525e-02 3.6345e-03 3.7212 0.0001983 ***

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```