MAC239

Lógica de Predicados semântica

Semântica da LPO

Como calcular o valor verdade das fórmulas?

Semântica da LPO

Como interpretar uma fórmula da Lógica de Predicados ?

- Atribuimos T ou F às fórmulas atômicas P(t₁, t₂, ..., t_n) ?
 - $P(t_1, t_2, ..., t_n)$ é T ou F, dependendo dos termos $t_1, t_2, ..., t_n$
- E os quantificadores ∀ e ∃ ?
 - Exemplo: $\forall x \exists y R(x,y)$

Semântica da LPO

- Modelos (interpretações) na Lógica Proposicional:
 2ⁿ possíveis interpretações para n símbolos proposicionais
- ∃x P(x):
 - ☐ Qual é esse x?
 - Precisamos definir o universo de discurso
 - \Box O que é P(x)?
 - Precisamos atribuir um significado para esse predicado

Por exemplo:

- universo = Naturais; P(x) = "x é par"
- universo = Naturais; P(x) = "x é negativo"
- universo = frutas; P(x) = "x nasce em árvore"
- universo = frutas; P(x) = "x é azul"

Lógica de Predicados como uma linguagem formal (recordação)

O vocabulário define o repertório de símbolos da linguagem da lógica de predicados:

- $\mathcal{P} = \{p, q, r, ...\}$ é um conjunto de <u>símbolos de predicados</u> (cada um com uma aridade fixa);
- $\mathcal{F} = \{a, a1, b, ..., f, f', g, ...\}$ é um conjunto de <u>símbolos de funções</u> (cada um com sua aridade);
- $C = \{c_1, c_2, ...\}$ é um conjunto de <u>símbolos de constantes</u> (também vistos como uma função de aridade 0); e
- $-X = \{x, x_1, ..., x', ..., z, ...\}$ é um conjunto de <u>símbolos de variáveis</u>.

Semantica da LPO: Definição de Modelo

Definição [Modelo]: Sejam \mathcal{F} o conjunto de símbolos de funções e \mathcal{P} os símbolos de predicados. Um *modelo* \mathcal{M} para $(\mathcal{F}, \mathcal{P})$ consiste de:

- 1. um conjunto não-vazio *A*, chamado de *universo de discurso*;
- 2. para cada símbolo funcional $f \in \mathcal{F}$ de aridade n=0 (constante), associamos um elemento concreto $f^M \in \mathcal{A}$;
- 3. para cada símbolo funcional $f \in \mathcal{F}$ de aridade n>0, associamos uma função concreta $f^M: A^n \to A$;
- 4. para cada símbolo de predicado $p \in \mathcal{P}$ de aridade n>0, associamos uma função concreta $p^M: \mathcal{A}^n \to \{F, T\}$; e
- 5. para cada símbolo de predicado $p \in P$ de aridade n=0, associamos um valor de $\{F, T\}$.

Vocabulário (símbolos):

Considere o par $(\mathcal{F},\mathcal{P})$ em que $\mathcal{F} = \{e, .\}$ e $\mathcal{P} = \{\le\}$, sendo e um símbolo de função constante; um símbolo de função de aridade 2; e \le um predicado binário.

Modelo:

Um modelo M para (\mathcal{F} , \mathcal{P}) contém um conjunto de elementos concretos de \mathcal{A} .

Vocabulário (símbolos):

Considere o par $(\mathcal{F},\mathcal{P})$ em que $\mathcal{F} = \{e, .\}$ e $\mathcal{P} = \{\le\}$, sendo e um símbolo de função constante; . um símbolo de função de aridade 2; e \le um predicado binário.

Modelo M₁

A: conjunto de cadeias de caracteres

e^M: cadeia vazia (ε)

M: concatenação (M (a.b) = ab)

 $\leq M$: $\{(a,b) \in A^2 \mid a \text{ \'e prefixo de b}\}$

Vocabulário (símbolos):

Considere o par $(\mathcal{F},\mathcal{P})$ em que $\mathcal{F} = \{e, .\}$ e $\mathcal{P} = \{\le\}$, sendo e um símbolo de função constante; . um símbolo de função de aridade 2; e \le um predicado binário.

Modelo M₂

A: conjunto dos naturais №

e^M: 1

.^M: multiplicação

≤ M: menor ou igual

Qual é o valor verdade das sentenças?

$$\forall x ((x \le x.e) \land (x.e \le x))$$

Qual é o valor verdade das sentenças?

$$\forall x ((x \leq x.e) \land (x.e \leq x))$$

Modelo M₁

A : conjunto de cadeias de caracteres

e^M: cadeia vazia (ε)

M: concatenação (M (a.b) = ab)

 $\leq M$: $\{(a,b) \in A^2 \mid a \text{ \'e prefixo de b}\}$

Qual é o valor verdade das sentenças?

$$\forall x ((x \leq x.e) \land (x.e \leq x))$$

Modelo M₂

A : N (conjunto dos naturais)

e^M : 1

.M: multiplicação

≤ M: menor ou igual

Qual é o valor verdade das sentenças?

$$\exists y \ \forall x \ (y \leq x)$$

$$\forall x \exists y (y \leq x \land y \neq x)$$

Qual é o valor verdade das sentenças?

$$\exists y \ \forall x \ (y \leq x)$$

$$\forall x \exists y (y \leq x \land y \neq x)$$

Modelo M₁

A : conjunto de cadeias de caracteres

e^M: cadeia vazia (ε)

M: concatenação (M (a.b) = ab)

 $\leq M$: {(a,b) $\in A^2$ | a é prefixo de b}

Qual é o valor verdade das sentenças?

$$\exists y \ \forall x \ (y \leq x)$$

$$\forall x \exists y (y \leq x \land y \neq x)$$

Modelo M₂

A : N (conjunto dos naturais)

e^M : 1

.M: multiplicação

≤ M: menor ou igual

Vocabulário (símbolos):

Considere o par $(\mathcal{F},\mathcal{P})$ em que $\mathcal{F} = \{i\}$ e $\mathcal{P} = \{G, R\}$, sendo i um símbolo constante, G um predicado unário e R um predicado binário.

Vocabulário (símbolos):

Considere o par $(\mathcal{F},\mathcal{P})$ em que $\mathcal{F} = \{i\}$ e $\mathcal{P} = \{G, R\}$, sendo i um símbolo constante, G um predicado unário e R um predicado binário.

Um modelo M para (\mathcal{F} , \mathcal{P}) contém um conjunto de elementos concretos de \mathcal{A} , por exemplo, um conjunto de estados de um programa de computador, em que:

```
i<sup>M</sup>: estado inicialG<sup>M</sup>: estado finalR<sup>M</sup>: transição de estados
```

Por exemplo, sejam

```
A = \{a, b, c\}

i^M = a

G^M = \{c\}

R^M = \{(a,a), (a,b), (a,c), (b,c), (c,c)\}
```

Vocabulário (símbolos):

Considere o par $(\mathcal{F},\mathcal{P})$ em que $\mathcal{F} = \{i\}$ e $\mathcal{P} = \{G, R\}$, sendo i um símbolo constante, G um predicado unário e R um predicado binário.

Um modelo M para (\mathcal{F} , \mathcal{P}) contém um conjunto de elementos concretos de \mathcal{A} , por exemplo, um conjunto de estados de um programa de computador, em que:

i^M: estado inicial

GM: estado final

R^M: transição de estados

Por exemplo, sejam

$$A = \{a, b, c\}$$

 $i^M = a$
 $G^M = \{c\}$
 $R^M = \{(a,a), (a,b), (a,c), (b,c), (c,c)\}$

Dado M para $(\mathcal{F}, \mathcal{P})$, qual é o valor verdade das fórmulas?

$$\forall x \forall y \forall z (R(x,y) \land R(x,z) \rightarrow y = z)$$

$$\forall x \exists y R(x,y)$$

$$A = \{a, b, c\},\$$
 $i^M = a,$
 $G^M = \{c\}$
 $R^M = \{(a,a), (a,b), (a,c), (b,c), (c,c)\}$

Dado M para (F, P), qual é o valor verdade das fórmulas?

$$A = \{a, b, c\},\$$
 $i^{M} = a,$
 $G^{M} = \{c\}$
 $R^{M} = \{(a,a), (a,b), (a,c), (b,c), (c,c)\}$

∃y R(i,y)

Verdade, uma vez que existem as relações {(a,a), (a,b), (a,c)} em R^M

$$\forall x \forall y \forall z (R(x,y) \land R(x,z) \rightarrow y = z)$$

$$\forall x \exists y R(x,y)$$

Dado M para (F, P), qual é o valor verdade das fórmulas?

$$A = \{a, b, c\},\$$
 $i^{M} = a,$
 $G^{M} = \{c\}$
 $R^{M} = \{(a,a), (a,b), (a,c), (b,c), (c,c)\}$

Verdade, uma vez que existem as relações {(a,a), (a,b), (a,c)} em R^M

¬ G(i)

Verdade, uma vez que o estado inicial i não é um dos estados finais.

$$\forall x \forall y \forall z (R(x,y) \land R(x,z) \rightarrow y = z)$$

$$\forall x \exists y R(x,y)$$

Dado M para (F, P), qual é o valor verdade das fórmulas?

$$A = \{a, b, c\},\$$
 $i^{M} = a,$
 $G^{M} = \{c\}$
 $R^{M} = \{(a,a), (a,b), (a,c), (b,c), (c,c)\}$

∃y R(i,y)

Verdade, uma vez que existem as relações {(a,a), (a,b), (a,c)} em R^M

¬ G(i)

Verdade, uma vez que o estado inicial i não é um dos estados finais.

$$\forall x \forall y \forall z \ (R(x,y) \land R(x,z) \rightarrow y = z)$$

Falso, uma vez que {(a,a), (a,b), (a,c)}

$$\forall x \exists y R(x,y)$$

Dado M para (F, P), qual é o valor verdade das fórmulas?

$$A = \{a, b, c\},\$$
 $i^{M} = a,$
 $G^{M} = \{c\}$
 $R^{M} = \{(a,a), (a,b), (a,c), (b,c), (c,c)\}$

∃y R(i,y)

Verdade, uma vez que existem as relações {(a,a), (a,b), (a,c)} em R^M

¬ G(i)

Verdade, uma vez que o estado inicial i não é um dos estados finais.

$$\forall x \forall y \forall z \ (R(x,y) \land R(x,z) \rightarrow y = z)$$

Falso, uma vez que {(a,a), (a,b), (a,c)}

$$\forall x \exists y R(x,y)$$

Verdade, uma vez existe pelo menos uma transição de todo estado para outro (ou ele mesmo).

Igualdade

Interpretação de igualdade

a = M b é verdade sse a e b são os mesmos elementos no universo
 A do modelo M.

Valor-verdade para fórmulas da LPO

Dada uma fórmula $\forall x \Phi$ (ou $\exists x \Phi$) queremos verificar se ela é válida para todo (ou para algum) valor $\mathbf{a} \in A$ em nosso modelo M. Sabemos como interpretar funções e predicados, mas *como interpretamos os valores das variáveis em nosso modelo?*

- Ideia: uso de uma tabela que associa cada variável x, a um valor no modelo
- Podemos interpretar variáveis fornecendo uma tabela que atribui a cada variável um valor concreto do universo de discurso

$$l: var \rightarrow A$$

Chamamos a tabela l de tabela de contexto.

Definição (Tabela de Contexto). Seja a tabela $l: var \to A$, e seja $a \in A$. Denotamos por $l[x \mapsto a]$ a nova tabela que mapeia x para a e qualquer outra variável y para l(y). Ou seja, a única diferença entre as tabelas $l[x \mapsto a]$ e l é a atribuição de a para a variável x:

$$l[x \mapsto a](x) = a$$

 $l[x \mapsto a](y) = l(y)$

Satisfação de fórmulas da LPO

Definição: Dado um modelo M o par $(\mathcal{F}, \mathcal{P})$, e dado uma tabela de contexto l, definimos a relação de satisfação:

$$M = _{1} \Phi$$

(modelo M satisfaz Φ com relação ao contexto l), para cada fórmula Φ sobre o par $(\mathcal{F}, \mathcal{P})$ por indução estrutural sobre Φ :

- Se Φ é da forma $P(t_1, t_2, ..., t_n)$, dizemos que $M \models_{l} \Phi$ sse $a_1, a_2, ..., a_n$ são resultados da *interpretação* de $t_1, t_2, ..., t_n$ com relação a l e $(a_1, a_2, ..., a_n) \in P^M(a_1, a_2, ..., a_n)$;
- Se Φ é da forma P, dizemos que $M \models_{\iota} \Phi$ sse $P \in P^{M}$;
- Se Φ é da forma $\Psi_1 \vee \Psi_2$, dizemos que $M \models_{\iota} \Psi_1 \vee \Psi_2$ sse $M \models_{\iota} \Psi_1$ ou $M \models_{\iota} \Psi_2$
- Se Φ é da forma $\Psi_1 \wedge \Psi_2$, dizemos que $M \models_{\iota} \Psi_1 \wedge \Psi_2$ sse $M \models_{\iota} \Psi_1 e M \models_{\iota} \Psi_2$
- Se Φ é da forma $\Psi_1 \to \Psi_2$, dizemos que $M \models_{l} \Psi_2$ sse $M \not\models_{l} \Psi_1$ ou $M \models_{l} \Psi_2$

Satisfação de fórmulas da LPO

- Se Φ é da forma $\forall x \Psi$, dizemos que $M \models_{l} \forall x \Psi$ sse $M \models_{l} \Psi$ para **qualquer** $a \in A$, $M \models_{l[x \mapsto a]} \Psi$
- Se Φ é da forma $\exists x \Psi$, dizemos que $M \models_{\iota} \exists x \Psi$ sse $M \models_{\iota} \Psi$ para **algum** $a \in A$, $M \models_{\iota[x \mapsto a]} \Psi$
- Se Φ é da forma $\neg \Psi$, dizemos que $M \models_{\iota} \neg \Psi$ sse $M \not\models_{\iota} \Psi$

Exemplo 2.19

- Seja F={lucia} e P={ama}, sendo que lucia é uma constante e ama é um predicado com aridade 2. O modelo M que escolhemos é A^M={a, b, c}, a constante lucia^M=a e o predicado ama^M={(a,a), (b,a), (c,a)}.
- Queremos verificar se o modelo M satisfaz

"Nenhum dos amantes dos amantes de Lucia a ama"

que em lógica de predicados fica:

 $\forall x \forall y \text{ (ama(x,lucia)} \land \text{ama(y,x)} \rightarrow \neg \text{ ama(y,lucia))}$

O modelo M não satisfaz a fórmula. No entanto se trocarmos a interpretação de ama para ama^M={(b,a), (c,b)}, esse modelo novo satisfaz a sentença.

Exemplo de satisfação de fórmula LPO

Modelo M

```
• A: {1,2,3}
• R<sup>M</sup>: {(1,2). (2,2), (3,2)}
• 1: var \rightarrow A
                                         M \models_{I} \exists y \ \forall x \ R(x; y) ?
M \models_{I} \exists y \ \forall x \ R(x; y)
     \Leftrightarrow existe um d_1 \in A tal que: M \mid =_{l[y] \rightarrow d_{11}} \forall x \ R(x, y)
      \Leftrightarrow existe um d_1 \in A tal que para todo d_2 \in A:
                                  M \mid =_{l[y \mid \to d1], l[x \mid \to d2]} R(x; y)
      \Leftrightarrow existe um d1 \in A tal que para todo d<sub>2</sub> \in A : (d<sub>1</sub>, d<sub>2</sub>) \in R<sup>M</sup>
Seja d_1 = 2. Para todo d_2 \in A vale que (d_2, 2) \in \mathbb{R}^M
De fato: (1,2) \in \mathbb{R}^{M}, (2,2) \in \mathbb{R}^{M} e (2,2) \in \mathbb{R}^{M}
Assim, podemos dizer que M satisfaz a fórmula \exists y \forall x R(x; y)
```

Consequência Lógica na LPO

Definição (Consequência lógica). Seja $Φ_1$, $Φ_2$, ..., $Φ_n$, Ψ, fórmulas da LPO. A consequência lógica entre fórmulas: $Φ_1$, $Φ_2$, ..., $Φ_n$ |= Ψ, requer que para qualquer modelo M e qualquer tabela de contexto l que satisfazem $Φ_1$, $Φ_2$, ..., $Φ_n$, a fórmula Ψ também seja satisfeita.

$$\Phi_1$$
, Φ_2 , ..., $\Phi_n \models \Psi$

Se $M \models_I \Phi_i$ então $M \models_I \Psi$

Consequência Lógica na LPO

Definição (Consequência lógica). Seja Φ_1 , Φ_2 , ..., Φ_n , Ψ, fórmulas da LPO. A consequência lógica entre fórmulas: Φ_1 , Φ_2 , ..., Φ_n |= Ψ, requer que para qualquer modelo M e qualquer tabela de contexto l que satisfazem Φ_1 , Φ_2 , ..., Φ_n , a fórmula Ψ também seja satisfeita.

Em geral o número de modelos é infinito e por isso, é muito difícil fazer provas em termos da semântica na LPO.

- Note que o símbolo |= tem 2 usos diferentes (*overloaded*):
 - $-\Phi_1$, Φ_2 , ..., $\Phi_n \models \Psi$ que denota **consequência lógica**
 - $-M = \Phi$ que denota **satisfatibilidade** (M satisfaz Φ)

Dois usos de |=

- 1. Para verificar $\mathcal{M} \models \varphi$, se \mathcal{A} for infinito, podemos ter de testar infinitos elementos.
- 2. Para verificar $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$, temos de verificar **todos** os modelos.

Consequência Lógica na LPO: Exemplo (prova por contra-exemplo)

Considere o argumento:

$$\forall x P(x) \rightarrow \forall x Q(x) \models \forall x (P(x) \rightarrow Q(x))$$

Seja M um modelo que satisfaz $\forall x P(x) \rightarrow \forall x Q(x)$. Se A é o universo de M, um \mathcal{P}^M e \mathcal{Q}^M são as interpretações de P e Q, então

$$M \models \forall x P(x) \rightarrow \forall x Q(x)$$

Duas possibilidades:

- se
 P
 M é igual a A, então
 Q M deve também ser igual a A.
- 2. se P M não é igual a A então essa implicação não é verdadeira.

Assim, é fácil construir um contra-exemplo.

Seja A= $\{a,b\}$, $\mathcal{P}^M = \{a\}$, $\mathcal{Q}^M = \{b\}$. Verificamos portanto que

$$M \models \forall x P(x) \rightarrow \forall x Q(x)$$

é verdadeiro e

$$M = \forall x(P(x) \rightarrow Q(x))$$
 não é.