Programski prevodioci (vežbe)

Formalne gramatike Konačni automati

Formalne gramatike

Formalna gramatika je uređena četvorka:

$$G=(V_N,V_T,S,P)$$

gde je:

V_N - skup neterminalnih simbola,

V_T - skup terminalnih simbola

S - startni simbol gramatike

P - skup smena.

 $V = V_N \cup V_T$ - azbuka jezika,

$$V_N \cap V_T = \emptyset$$
.

P: $X \rightarrow Y$, $X \in V^* V_N V^*$, $Y \in V^*$

Pravila za definisanje formalnih gramatika

- Gramatika mora da bude redukovana.
 - Redukovana gramatika je gramatika koja ne sadrži beskorisne smene.
 - Beskorisne smene su one koje sadrže simbole koji ne mogu da budu izvedeni iz startnog simbola gramatike, ili smene koje sadrže "beskonačne" simbole.
- Gramatika ne sme da bude nejednoznačna.
 - Kod nejednoznačnih gramatika za jedan ulazni niz je moguće kreirati veci broj sintaksnih stabala.

Primer neredukovane gramatike

$$G=(\{W,X,Y,Z\},\{a\},W,P\}$$

P:
$$W \rightarrow aW$$
 (1)

$$W \rightarrow Z$$
 (2) Neupotrebljiva jer je Z beskonačan simbol.

$$W \rightarrow X$$
 (3)

$$Z \rightarrow aZ$$
 (4) Neupotrebljiva iz istog razloga.

$$X \rightarrow a$$
 (5)

Y
$$\rightarrow$$
 aa (6) Neupotrebljiva jer ne postoji izvođenje $W\Rightarrow \alpha Y\beta$.

Primer nejednoznačne gramatike

```
G=( {Izraz}, {const,+,*}, Izraz, P)
```

```
P: Izraz → Izraz + Izraz

Izraz → Izraz * Izraz

Izraz → const
```

Kreirati moguća sintaksna stabla izraza const * const + const

Ekvivalentna jednoznačna gramatika

```
G=({Izraz,Proizvod,Faktor}, {const,+,*}, Izraz, P)
```

```
P: Izraz → Izraz + Proizvod
Izraz → Proizvod
Proizvod → Proizvod * Faktor
Proizvod → Faktor
Faktor → const
```

Kreirati sintaksno stablo izraza koji je naveden u prethodnom primeru.

Tipovi gramatika

- Gramatike tipa 0
 - Bez ograničenja
- Gramatike tipa 1
 - Dužina reči koja se nalazi na levoj strani smene ≤ od dužine reči koja se nalazi na desnoj strani smene
- Gramatike tipa 2
 - Na levoj strani smene nalazi se samo jedan neterminalni simbol (beskonteksne gramatike)
- Gramatike tipa 3
 - Smene su oblika: A→a, A→aB ili A→ε (gde A∈ V_N, a ∈ V_T, a ε je prazan simbol)

Zadatak

Kom tipu pripadaju i koji jezik definišu gramatike zadate sledećim skupom smena:

G1: (1)
$$I \rightarrow a C a$$

$$(4) \qquad a B \rightarrow B a$$

(2)
$$C \rightarrow a C B a$$

(5)
$$b B \rightarrow b b$$

$$(3) \qquad C \to b$$

G2: (1)
$$S \rightarrow S a$$

(3)
$$A \rightarrow a A b$$

(2)
$$S \rightarrow a A$$

(4)
$$A \rightarrow ab$$

G3: (1)
$$S \rightarrow a S$$

(4)
$$C \rightarrow a C$$

(2)
$$S \rightarrow a B$$

(5)
$$C \rightarrow a$$

$$(3) \qquad \mathsf{B} \to \mathsf{b} \; \mathsf{C}$$

Mašine za prepoznavanje jezika

- Tjuringova mašina
 - Prepoznaje reči jezika definisanih gramatikama tipa 0
- Linearno-ograničeni automati
 - Prepoznaju reči jezika definisanih gramatikama tipa 1
- Magacinski automati
 - Prepoznaju reči jezika definisanih gramatikama tipa 2
- Konačni automati
 - Prepoznaju reči jezika definisanih gramatikama tipa 3

Načini definisanja konačnih automata

Formalni opis uređenom petorkom:

```
M=(V,Q,q<sub>0</sub>,F,g)
gde je:
V – ulazna azbuka,
Q – skup stanja,
q<sub>0</sub> – početno stanje,
F – skup završnih stanja,
g – skup preslikavanja (g: QxV→Q)
```

Primer konačnog automata

Primer1:

 $M=(\{0,1\},\{A,B,C,D,F,G\},A,\{C,F,G\},g)$

Gde je g:

$$g(A,0)=B$$

$$g(A,1)=D$$

$$g(B,0) = C$$

$$g(B,1)=F$$

$$g(C,0)=C$$

$$g(C,1)=F$$

$$g(D,0)=F$$

g(G,0)=G

g(G,1)=G

$$g(D,1)=E$$

$$g(E,0)=F$$

$$g(E,1)=E$$

$$g(F,0)=G$$

$$g(F,1)=G$$

Načini definisanja konačnih automata

Grafom prelaza:

- Ulazna azbuka V skup simbola kojima su označeni potezi u grafu.
- Skup stanja Q čvorovi u grafu.
- Početno stanje ulazni čvor (obeležen ulaznom granom)
- Skup završnih stanja završni čvorovi obeleženi sa
- Skup preslikavanja konačnog automata definiše se potezima u grafu. Preslikavanju g(A,x)=B odgovara poteg

Konačni automat iz primera 1 predstavljen grafom prelaza

 $M=(\{0,1\},\{A,B,C,D,E,F,G\},A,\{C,F,G\},g)$

$$g(A,0)=B$$
 $g(E,0)=F$
 $g(A,1)=D$ $g(E,1)=E$
 $g(B,0)=C$ $g(F,0)=G$
 $g(B,1)=F$ $g(F,1)=G$
 $g(C,0)=C$ $g(G,0)=G$
 $g(C,1)=F$ $g(G,1)=G$
 $g(D,0)=F$
 $g(D,1)=E$

Načini definisanja konačnih automata

Tablicom prelaza:

- Ulazna azbuka V oznake kolona u tabeli prelza.
- Skup stanja Q oznake vrsta u tabeli prelaza.
- □ Početno stanje oznaka vrste koja je obeležena strelicom (→) ili oznaka prve vrste ukoliko vrsta koja odgovara startnom simbolu nije posebno obeležena.
- Skup završnih stanja U tabeli prelaza se dodaje posebna kolona u koju se upisuje identifikator prihvatanja-odbijanja. U toj koloni upisane su jedinice u vrstama koje odgovaraju završnim stanjima, a nule u vrstama koje odgovaraju stanjima koja nisu završna.
- Elementi tabele definišu preslikavanja automata.

Konačni automat iz primera 1 predstavljen tablicom prelaza

 $M=(\{0,1\},\{A,B,C,D,E,F,G\},A,\{C,F,G\},g)$

g(A,0)=B	g(E,0)=F	_		0	1	prih/odb
g(A,1)=D	g(E,1)=E		Α	В	D	0
g(B,0)=C	g(F,0)=G		В	С	F	0
g(B,1)=F	g(G,1)=G		С	С	F	1
g(C,0)=C			D	F	Е	0
g(C,1)=F				F	E	0
g(D,0)=F						4
g(D,1)=E		_	F	G	G	I
			G	G	G	1

Deterministički i nedeterministički konačni automati

- Prethodna definicija konačnog automata je, u stvari definicija determinističkog konačnog automata.
- Nedeterministički konačni automati definisani su istom uređenom petorkom kao i deterministički konačni automati, jedina razlika je u tome što su preslikavanja koja vrše nedeterministiški konačni automati oblika:

g: $Q \times V \rightarrow S$, gde je $S \subset Q$.

Dakle, nedeterministički konačni automat pod dejstvom istog ulaznog simbola može da pređe u više različitih stanja.

Algoritam za prepoznavanje reči korišćenjem deterministiških automata

```
DKA ( t_0 t_1 ... t_{n-1} )
  tekuce_stanje = q_0; // q_0 - pocetno stanje
  tekuci_ulaz = to;
  while ( !(kraj_ulazne_reci) )
      tekuce stanje = q(tekuce stanje, tekuci ulaz );
      tekuci_ulaz = sledeci_znak_ulazne_sekvence;
  if (tekuce_stanje ∈ F) // F - skup zavrsnih stanja
      ulazna_rec_je_prepoznata;
  else
      ulazna rec nije prepoznata;
```

Algoritam za prepoznavanje reči korišćenjem nedeterministiških automata

```
NDKA ( t_0 t_1 \dots t_{n-1} )
  tekuci_skup_stanja = \{q_0\};
  tekuci_ulaz = to;
  while ( !(kraj_ulazne_reci) )
    novi_skup_stanja = Ø;
    foreach( q in tekuci_skup_stanja )
      novi_skup_stanja = novi_skup_stanja υ g(q,tekuci_ulaz);
    tekuci skup stanja = novi skup stanja;
    tekuci ulaz = sledeci znak ulazne sekvence;
  if (tekuci_skup_stanje \cap F \neq Ø)
    ulazna rec je prepoznata;
  else
    ulazna_rec_nije_prepoznata;
```

Konačni automati i regularni izrazi

Zadatak:

Odrediti regularni izraz jezika koji se prepoznaje konačnim automatom iz primera 1.

Korak1: Definisanje jednačina stanja

Za svako stanje u konačnom automatu piše se jednačina stanja koja definiše načine na koje se može doći do posmatranog stanja.

Jednačine stanja konačnog automata iz primera 1.

1)
$$A = A\lambda$$

2)
$$B = A0$$

3)
$$C = B0 + C0$$

4)
$$D = A1$$

5)
$$E = D1 + E1$$

6)
$$F = B1 + C1 + D0 + E0$$

7)
$$G = F0 + F1 + G0 + G1$$

Izvođenje regularnog izraza jezika na osnovu jednačina stanja

Korak2: Izvođenje regularnog izraza

Regularni izraz jezika definiše opšti oblik skupa reči koje konačni automat prevode iz početnog u neko od završnih stanja. Definisati regularni izraz znači odrediti funkcionalnu zavisnost izlaznih stanja i ulazne grane u automat. Tj. izraziti svako završno stanje q_i u obliku $q_i = f(q_0\lambda)$.

Pravila za izvođenje regularnih izraza:

- □ Jednačina oblika $q_i = q_j a + q_j b$ se tranformiše u $q_i = q_j (a + b)$
- ullet Jednačina oblika $q_i = q_i a + q_j b$ se transformiše u $q_i = q_j b a$

Izvođenje regularnog jezika koji se prepoznaje konačnim automatom iz primera 1.

1)
$$A = A\lambda$$

2)
$$B = A0$$

3)
$$C = B0 + C0$$

5)
$$E = D1 + E1$$

6)
$$F = B1 + C1 + D0 + E0$$

7)
$$G = F0 + F1 + G0 + G1$$

Iz jednačina 1) i 2) sledi:

8)
$$B = A\lambda 0$$

Iz 3) i 8):
$$C = A\lambda 00 + C0$$

tj.

9)
$$C = A\lambda 000^*$$

Iz 1) i 4) dobijamo:
10)
$$D = A\lambda 1$$

Iz 5) i 10):

$$E = A\lambda 11 + E1$$

tj. 11)
$$E = A\lambda 111^*$$

Zamenom 8), 9), 10) i 11) u 6) dobijamo: $F = A\lambda 01 + A\lambda 000*1 + A\lambda 10 + A\lambda 111*0$ tj. 12) $F = A\lambda (01 + 000*1 + 10 + 111*0)$

Izvođenje regularnog jezika koji se prepoznaje konačnim automatom iz primera 1.

Iz 7) sledi:

13)
$$G = F(0+1) + G(0+1) = F(0+1)(0+1) *$$

Zamenom 12) u 13) dobijamo:

14)
$$G = A\lambda(01 + 000^*1 + 10 + 111^*0)(0+1)(0+1)^*$$

Konačno, jezik koji je definisan gramatikom je unija jezika koje prepoznaju stanja C, F i G:

$$L = 000^* + (01 + 000^*1 + 10 + 111^*0) + (01 + 000^*1 + 10 + 111^*0)(0+1)(0+1)^*$$

Veza konačnih automata i gramatika tipa 3

- Ulazna azbuka odgovara skupu terminalnih simbola gramatike.
- Skup stanja odgovara skupu neterminalnih simbola gramatike.
- Početno stanje je startni simbol gramatike.
- □ Preslikavanje oblika g(q_i,a)=q_j odgovara smeni gramatike q_i→aq_i.
- Završna stanja su oni neterminalni simboli za koje postoji smena oblika q_i→ε.

Definisanje konačniog automata za prepoznavanje reči jezika definisanog gramatikom tipa 3.

Zadatak:

Definisati konačni automat za prepoznavanje označenih celih brojeva. Označeni ceo broj definisan je sledećom gramatikom:

```
<OznaceniCeoBroj> ::= + <NeoznaceniCeoBroj>
<OznaceniCeoBroj> ::= - <NeoznaceniCeoBroj>
<NeoznaceniCeoBroj> ::= cifra <NizCifara>
<NizCifara> ::= cifra <NizCifara>
<NizCifara> ::= ε
```

Definisanje konačniog automata za prepoznavanje reči jezika definisanog gramatikom tipa 3.

Definisanje konačnog automata za prepoznavanje reči jezika definisanog regularnim izrazom

Zadatak:

Definisati konačni automat za prepoznavanje označenih realnih brojeva u eksponencijalnom zapisu. Eksponencijalni zapis realnog broja definisan je sledećim regularnim izrazom:

