

Imagining an interface for

(2) Mixed Set Facet (a) Simple Mixed Facet Projection of single cell values onto a facet to give a mixed facet. Statistical modeling

1 variable 1 time point

January 19, 2015 University of Victoria Andriy V. Koval

1 variable 1 time point

1 variable

1 variable

1 time point 2 scale categories

1 time point

4 scale categories

1 time point 2 scale categories

Ray

Statistical modeller at work

- Attention span
- Levels of abstraction
- Visual processing
- Mental space architecture
- Concept management

Biology

Chemistry

Genetics

Music

Linguistics

Statistical Modeling

Interface for flying

Operations with concepts of speed, azimuth, yaw, roll, pitch

Interface for modeling

Operations with concepts of fit, significance, parsimony

Interface for flying

Operations with concepts of speed, azimuth, yaw, roll, pitch

Interface for modeling

Operations with concepts of fit, significance, parsimony

- Framework?
- Discipline?
- Software?
- Data Types?

Models are becoming more

- Complex
- Sophisticated
- Numerous

```
MODEL:
                               int by
                                      timec1@1 timec2@1 timec3@1 timec4@1 timec5@1
Proc MIXED;
                                       timec6@1 timec7@1 timec8@1 timec9@1 timec10@1 timec11@1;
                               linear by timec1@0 timec2@1 timec3@2 timec4@3 timec5@4
class id;
                                       timec6@5 timec7@6 timec8@7 timec9@8 timec10@9 timec11@10;
model attend = timec/
                                             [timec1-timec11@0]; timec1-timec11;
                  solution;
                                                        [int linear]; int linear;
random INTERCEPT timec/
                                                     int with linear;
        SUB=id TYPE=UN G;
```

$$\begin{aligned} y_{ij} &= \beta_{0j} + \beta_{1j}timec + \mathcal{E}_{ij} & \mathcal{E}_{ij} \sim N([0], [\sigma^2]) \\ \beta_{0j} &= \gamma_{00} + u_{0j} \\ \beta_{1j} &= \gamma_{10} + u_{1j} & \begin{bmatrix} u_{0j} \\ u_{1j} \end{bmatrix} \sim N([0], [\tau_{00} \\ \tau_{10} & \tau_{11} \end{bmatrix}) \end{aligned}$$

model < -lmer (attend ~ 1 +timec + (1 + timec | id)) MIXED attend WITH timec /FIXED= INTERCEPT timec /RANDOM= INTERCEPT timec | SUBJECT(id) COVTYP(UN)

Tabular

id	time	attend	model
1	0	1	2.788
1	1	6	2.732
1	2	2	2.675
1	3	1	2.618
1	4	1	2.562
1	5	1	2.505
1	6	1	2.449
1	7	1	2.392
1	8	1	2.335
1	9	1	2.279
1	10	1	2.222
1	11	1	2.166
4	0	2	2.788
4	1	1	2.732

Algebraic

$$y_{it} = \beta_0 + \beta_1 time_t + \varepsilon_{it}$$
$$\beta_0 = \gamma_{00}$$
$$\beta_1 = \gamma_{10}$$

Semantic

In 2000 respondents attended church less than once a month (2.79) and gradually declined in their attendance since (.06 per year).

Graphical

Syntactic

nlme::gls(attend ~ 1 + time, data=dsM)

Numeric

Coefficients:						
	Value	Std.Error	t-value	p-value		
(Intercept)	2.7882	0.07774	35.86	0		
time	-0.0566	0.01197	-4.73	0		

logLik -3719
deviance 7438
AIC 7444
BIC 7461
df.resid 1858
N 1860
p 2
ids 155

Schematic

Scientists make digital art by combining model manifestations to tell stories about data

Meaning

cells → tissues

How do models comprise a meaning?

cells

 \rightarrow

tissue

Model

How do variables comprise a model?

molecules

 \rightarrow

cell

Data

How do data comprise the variable?

atoms

 \rightarrow

molecule

Dynamic Reporting

Toolbox Skillset **Data Manipulation** R **RStudio Statistical Modeling Graph Production** Git GitHub **Dynamic Reporting**

$$y_{ti} = \beta_{0i} + \varepsilon_{ti}$$

$$\beta_{0i} = \gamma_{00}$$

*F

m0_* m1_* m2_*
m0a_* m1a_* m2a_*
m1b_* m2b_*
m2c_*

Prototype of a model sequencer

Interface for flying

Operations with concepts of speed, azimuth, yaw, roll, pitch

Interface for modeling

Operations with concepts of fit, significance, parsimony

Specification

Evaluation

Communication

Meaning

How do models comprise a meaning?

Model

How do variables comprise a model?

Data

How do data comprise the variable?

Algebra Code Within Among

Print Web

$$y_{ti} = \beta_{0i} + \varepsilon_{ti}$$
$$\beta_{0i} = \gamma_{00}$$

*F

timec:attendPR timec2:attendPR

