Machine Learning

1. Motivation + Theorie

Siegfried Gessulat

SAP Health Potsdam

Technical University of Munich Chair of Proteomics and and Bioanalytics

s.gessulat@tum.de

FH Ludwigshafen 2018-10-09

Course Outline

Block I Foundations

Oct 08: Introduction

- Overview machine learning
- Theory: Linear Algebra
- Algorithms: Knn, K-means

Oct 09: Basics

- Theory: linear regression, logistic regression
- Algorithms: gradient descent

Block II Best practices

Oct 29: Neural Networks

- Data cleaning
- Algorithm: Neural Networks

Oct 30: Best practices

- Theory: Cross validation
- Theory: Regularization

Course Outline

Block III Dark Arts

Nov 19: Tricks of the Trade

- Ensembles
- Hyperparameter Search
- Deep Learning Black Magic

Nov 20: Outlook

- Theory: Dimensionality Reduction

Outline Today

- 1. Dataset: Boston
- 2. Linear Regression
- 3. Gradient Descent
- 4. Logistic Regression

Machine Learning Overview

Do you have labeled data?

Dataset: Boston Housing Market

lib.stat.cmu.edu/datasets/boston

Harrison, D

Rubinfeld, D.L

506 samples 14 attributes of real estate properties including its price.

- crim per capita crime rate by town.
- **indus** proportion of non-retail business acres per town.
- rm average number of rooms per dwelling.
- **age** proportion of owner-occupied units built prior to 1940.

- **dis** weighted mean of distances to five Boston employment centres.
- tax full-value property-tax rate per \$10,000.
- ptratio pupil-teacher ratio by town.
- medv median value of owneroccupied homes in \$1000s.

Dataset: Boston Housing Market

lib.stat.cmu.edu/datasets/boston

Harrison, D

Rubinfeld, D.L

506 samples 14 attributes of real estate properties including its price.

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
0	1.23247	0.0	8.14	0.0	0.538	6.142	91.7	3.9769	4.0	307.0	21.0	396.90	18.72	15.2
1	0.02177	82.5	2.03	0.0	0.415	7.610	15.7	6.2700	2.0	348.0	14.7	395.38	3.11	42.3
2	4.89822	0.0	18.10	0.0	0.631	4.970	100.0	1.3325	24.0	666.0	20.2	375.52	3.26	50.0
3	0.03961	0.0	5.19	0.0	0.515	6.037	34.5	5.9853	5.0	224.0	20.2	396.90	8.01	21.1
4	3.69311	0.0	18.10	0.0	0.713	6.376	88.4	2.5671	24.0	666.0	20.2	391.43	14.65	17.7

Dataset: Boston Housing Market

lib.stat.cmu.edu/datasets/boston

Harrison, D

Rubinfeld, D.L

506 samples 14 attributes of real estate properties including its price.

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
0	1.23247	0.0	8.14	0.0	0.538	6.142	91.7	3.9769	4.0	307.0	21.0	396.90	18.72	15.2
1	0.02177	82.5	2.03	0.0	0.415	7.610	15.7	6.2700	2.0	348.0	14.7	395.38	3.11	42.3
2	4.89822	0.0	18.10	0.0	0.631	4.970	100.0	1.3325	24.0	666.0	20.2	375.52	3.26	50.0
3	0.03961	0.0	5.19	0.0	0.515	6.037	34.5	5.9853	5.0	224.0	20.2	396.90	8.01	21.1
4	3.69311	0.0	18.10	0.0	0.713	6.376	88.4	2.5671	24.0	666.0	20.2	391.43	14.65	17.7
4	3.69311	0.0	18.10	0.0	0.713	6.376	88.4	2.5671	24.0	666.0	20.2	391.43	14.65	1

Linear Regression

A machine learning model is a function mapping X to Y.
Θ is what the model "learned".

$$f_{\theta}: X \rightarrow Y$$

Hypothesis: prices follow a linear function of the number or rooms

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

 $heta_0$ base value (no rooms)

 $heta_I$ price increase per room

	rm	medv
0	6.142	15.2
1	7.610	42.3
2	4.970	50.0
3	6.037	21.1
4	6.376	17.7

Linear Regression

Cost Function

We define a loss function to evaluate different hypotheses

$$L_{f,m}(\theta) = m(f_{\theta}(x), y)$$

Choosing **mean squared error** as an error metric:

$$L(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (f_{\theta}(x_i) - y_i)^2$$

Minimize L by evaluating different Θ.

Linear Regression

Cost Function

We define a loss function to evaluate different hypotheses

$$L_{f,m}(\theta) = m(f_{\theta}(x), y)$$

Choosing **mean squared error** as an error metric:

$$L(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (f_{\theta}(x_i) - y_i)^2$$

Minimize L by evaluating different Θ.

Intuition

- 0. Start with random θ
- 1. Change θ to reduce L
- 2. Repeat till we reach minimum

Intuition

- 0. Start with random θ
- 1. Change θ to reduce L
- 2. Repeat till we reach minimum

Intuition

- 0. Start with random θ
- 1. Change θ to reduce L
- 2. Repeat till we reach minimum

Intuition

- 0. Start with random θ
- 1. Change θ to reduce L
- 2. Repeat till we reach minimum

How to change **6**?

Intuition

- 0. Start with random θ
- 1. Change θ to reduce L
- 2. Repeat till we reach minimum

How to change **6**?

$$\theta_i := \theta_i - \alpha \frac{\delta}{\delta \theta_j} J(\theta)$$

Algorithm

Input

- training dataset X,Y matrices of samples (x, y)
- loss function L
- learning rate α

Output

- θ that minimizes L on X, Y

?

Linear Regression

hypothesis

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

cost function

$$L(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (f_{\theta}(x_i) - y_i)^2$$

derivatives

$$\frac{\delta}{\delta\theta_0}L(\theta) = \frac{1}{n}\sum_{i=1}^n f_{\theta}(x_i) - y_i$$

$$\frac{\delta}{\delta\theta_1}L(\theta) = \frac{1}{n} \sum_{i=1}^n (f_{\theta}(x_i) - y_i)x_i$$

Algorithm

Input

- training dataset X,Y matrices of samples (x, y)
- loss function L
- learning rate α

Output

- θ that minimizes L on X, Y

Repeat until convergence for all *i*:

$$\theta_i := \theta_i - \alpha \frac{\delta}{\delta \theta_j} L(\theta)$$

update simultaneously!

Linear Regression

hypothesis

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

cost function

$$L(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (f_{\theta}(x_i) - y_i)^2$$

derivatives

$$\frac{\delta}{\delta\theta_0}L(\theta) = \frac{1}{n}\sum_{i=1}^n f_\theta(x_i) - y_i$$

$$\frac{\delta}{\delta\theta_1}L(\theta) = \frac{1}{n}\sum_{i=1}^n (f_{\theta}(x_i) - y_i)x_i$$

How to change $\boldsymbol{\theta}$?

$$\theta_i := \theta_i - \alpha \frac{\delta}{\delta \theta_j} J(\theta)$$

small learning rate

How to change $\boldsymbol{\theta}$?

$$\theta_i := \theta_i - \alpha \frac{\delta}{\delta \theta_j} J(\theta)$$

learning rate too big

How to change $\boldsymbol{\theta}$?

$$\theta_i := \theta_i - \alpha \frac{\delta}{\delta \theta_j} J(\theta)$$

learning rate too big

Logistic Regression

Hypothesis

A machine learning model is a function mapping X to Y.
Θ is what the model "learned".

$$f_{\theta}: X \rightarrow Y$$

Hypothesis: prices follow a linear function of the number or rooms

$$f_{\theta}(x) = sigmoid(\theta^T x)$$
 $f_{\theta}(x) = \theta^T x$

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

Recap:

Linear Regression

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

Logistic Regression

Cost Function

We define a loss function to evaluate different hypotheses

$$L_{f,m}(\theta) = m(f_{\theta}(x), y)$$

Choosing **softmax** error as an error metric:

$$softmax(z)_{i} = \frac{e^{z}_{i}}{\sum_{j=1}^{m} e^{z_{j}}}$$

$$L_f(\theta) = softmax(f_{\theta} - y)$$

Minimize L by evaluating different Θ.

