ECON 703 - PS 3

Alex von Hafften*

8/28/2020

(1) Let (X,d) be a nonempty complete metric space. Suppose an operator $T:X\to X$ satisfies d(T(x),T(y))< d(x,y) for all $x\neq y,x,y\in X$. Prove or disprove that T has a fixed point. Compare with the Contraction Mapping Theorem.

I prove that T has a fixed point.

Proof: Define $\beta_{xy} := \frac{d(T(x), T(y))}{d(x,y)}$ and $\beta := \max \beta_{xy}$ for all $x \neq y, x, y \in X$. Notice that $d(T(x), T(y)) < d(x,y) \implies \beta_{xy} < 1$. Thus, $d(T(x), T(y)) = \beta_{xy} d(x,y) \le \beta d(x,y)$. By the convergence mapping theorem, T has a fixed point.

(3) Prove that the function $f(x) = \cos^2(x)e^{5-x-x^2}$ has a maximum on \mathbb{R} .

Proof: Define $g(x)=\cos^2(x)$ and $h(x)=e^{5-x-x^2}$. Notice that, since $-1 \le \cos(x) \le 1$, $0 \le g(x) \le 1$. Thus, $f(x) \le h(x)$. h(x) < 1 on $(-\infty, -\sqrt{21}/2 - 1/2) \cup (\sqrt{21}/2 - 1/2, \infty)$, so $\max h(x)$ is at $x \in A = [\sqrt{21}/2 - 1/2, \sqrt{21}/2 - 1/2]$. Similarly, $\max f(x)$ is at an $y \in A$. A is a closed subset of $\mathbb R$. Since g and h are continuous, f is continuous. Since A is closed and f is continuous, f(x) is bounded on A. Thus, A is compact. By the extreme value theorem, f reaches its maximum on f(x) and therefore on f(x). f(x)

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, Tyler Welch, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.