

 $\underline{\mathsf{Home}}\,\, \blacktriangleright \,\, \mathsf{Chemistry}\,\, \blacktriangleright \,\, \mathsf{Foundations}\,\, \blacktriangleright \,\, \mathsf{Atomic}\, \mathsf{Structure}\,\, \blacktriangleright \,\, \mathsf{No}\, \mathsf{Paired}\, p\mathsf{-electrons}$

Adapted with permission from UCLES, A Level Chemistry, June 1990, Paper 1, Question 6

No Paired p-electrons

	YELLY
Select which of the following elements has no paired p electrons in a single uncombined atom of the element:	
Oxygen	
Carbon	
Silicon	
Neon	
Magnesium	

 $\underline{\mathsf{Home}}$ > Chemistry > Foundations > Atomic Structure > Electron configurations (D1.3)

Electron configurations (D1.3)

Complete the following ground state electron configurations. Part A K What is the ground-state electron configuration of K? Items: Part B Sc What is the ground-state electron configuration of Sc ? $[{
m Ar}]\, {
m 3d}$ Items:

<u>Home</u> > Chemistry > Foundations > Atomic Structure > Electron configurations (D1.6)

Electron configurations (D1.6)

Complete the following ground state electron configurations.

 $\underline{\sf Home}$ > Chemistry > Foundations > Atomic Structure > Orbital Basics

Orbital Basics

Part A 5f subshell	^
Give the number of f-orbitals that comprise the $5\mathrm{f}$ subshell.	
Part B Number of electrons	~
Give the maximum number of electrons that can occupy a single orbital.	
Part C Electrons in the second shell	~
Give the maximum number of electrons that can occupy the second shell.	
Part D 3d subshell	~
Give the maximum number of unpaired electrons that can occupy the 3d subshell.	
Part E Unpaired electrons	~
Give the number of unpaired electrons in the ground state of an oxygen atom.	
Cive the number of unpaired electrons in the ground state of an oxygen atom.	

Part F Paired electrons

Give the number of paired electrons in the ground state of the $\mathrm{Na}^{\mathrm{+}}$ ion.

Based on questions D2.1 and D2.2 from Physical Chemistry book

 $\underline{\mathsf{Home}} \; \; \blacktriangleright \; \mathsf{Chemistry} \; \; \blacktriangleright \; \mathsf{Foundations} \; \; \blacktriangleright \; \mathsf{Atomic} \; \mathsf{Structure} \; \; \blacktriangleright \; \; \mathsf{Essential} \; \mathsf{Pre-Uni} \; \mathsf{Chemistry} \; \mathsf{D2.3}$

Essential Pre-Uni Chemistry D2.3

Identify the subshell to which each of the orbitals below belongs.

Figure 1: Unknown Orbital

What kind	d of orbit	al is dep	icted	above?

-) f
- _ s
- ____ d
- O F

Figure 2: Unknown Orbital

What kind of orbital is depicted above?

-) r

- ()

Figure 3: Unknown Orbital

What kind of orbital is depicted above?

- \bigcirc s
- ()
- () 1
- () f

Home > Chemistry > Foundations > Atomic Structure > First Configurations

First Configurations

Part A Unpaired electron

...

Specify the symbol of the element with the lowest atomic number that satisfies the following property: it has an unpaired electron in its ground-state configuration

Part B Incomplete shell, no unpaired electrons

•

Specify the symbol of the element with the lowest atomic number that satisfies the following property: it has an incomplete shell, but no unpaired electrons in its ground-state configuration

Part C Cation with unpaired electron

`

Specify the symbol of the element with the lowest atomic number that satisfies the following property: its singly-charged cation has an unpaired electron in its ground-state configuration

Part D Full shell configuration 2- anion

`

Specify the symbol of the element with the lowest atomic number that satisfies the following property: its doubly-charged anion has only full shells in its ground-state configuration

Part E Cation and anion

•

Specify the symbol of the element with the lowest atomic number that satisfies the following property: both its singly-charged cation and its singly-charged anion have two unpaired electrons in their ground-state configurations

Partially-filled p-orbital Part F Specify the symbol of the element with the lowest atomic number that satisfies the following property: it has a partially-filled p-orbital in its ground-state configuration. Part G Fully-filled p-orbital Specify the symbol of the element with the lowest atomic number that satisfies the following property: it has a fully-filled p-orbital in its ground-state configuration. Part H Six unpaired electrons Specify the symbol of the element with the lowest atomic number that satisfies the following property: it has six unpaired electrons in its ground-state configuration. Part I Fully-filled d-orbital Specify the symbol of the element with the lowest atomic number that satisfies the following property: it has a fully-filled d-orbital in its ground-state configuration. Part J Fully-filled d-subshell Specify the symbol of the element with the lowest atomic number that satisfies the following property: it has a fully-filled d-subshell in its ground-state configuration. Created for isaacphysics.org by Andrea Chlebikova

<u>Home</u> > Chemistry > Foundations > Atomic Structure > Essential Pre-Uni Chemistry D1.10

Essential Pre-Uni Chemistry D1.10

A 1^+ ion, in an excited state due to X-ray bombardment, is found to have an electron configuration $1s^2\,2s^1\,2p^6\,3s^2\,3p^6\,3d^6\,4s^2\,4p^1$ in the gas phase.

Name the element whose ion this is.

<u>Home</u> > Chemistry > Foundations > Atomic Structure > Orbitals and Subshells

Orbitals and Subshells

 $\underline{\mathsf{Home}} \; \Rightarrow \; \mathsf{Chemistry} \; \Rightarrow \; \mathsf{Foundations} \; \Rightarrow \; \mathsf{Atomic} \; \mathsf{Structure} \; \Rightarrow \; \mathsf{Second} \; \mathsf{Shell} \; \mathsf{Orbital}$

Adapted with permission from UCLES, A Level Chemistry, November 1995, Paper 4, Question 3

Second Shell Orbital

What I	kind of orbital must an electron in the second shell occupy?
	A spherically-shaped orbital
	A dumb-bell-shaped orbital
	Either an s or p orbital
	The orbital closest to the nucleus
Selection (CA	

 $\underline{\mathsf{Home}} \; \; \blacktriangleright \; \; \mathsf{Chemistry} \; \; \blacktriangleright \; \; \mathsf{Foundations} \; \; \blacktriangleright \; \; \mathsf{Atomic} \; \mathsf{Structure} \; \; \flat \; \; \mathsf{Four} \; \mathsf{Unpaired} \; \mathsf{Electrons}$

Adapted with permission from UCLES, A Level Chemistry, June 1991, Paper 1, Question 4

Four Unpaired Electrons

elect which of the following is the proton (atomic) number of an element that has four <i>unpaired</i> electrons in its ground-state:
O 6
<u> </u>
<u> </u>
<u>22</u>
<u>26</u>