Nonlinear effects and generalized additive models

Roger Levy

30 April 2025

Inferring the trend

Inferring the trend

Linear smoother (=linear regression)

Inferring the trend

Generalized Additive Model smoother (=GAM regression)

Taking on nonlinearity: major ideas

- Use a **basis expansion**: a set of functions $\{h_i\}$ each of which differently transforms your original predictor X
- Learn the $Y \sim X$ as a linear comb. of the basis functions

$$f(x) = \sum_{i} \beta_{i} h_{i}(x) \qquad y \sim \mathsf{Exp}(f(x))$$

Some exponential-family function (one that you could use in a generalized linear model)

 Use regularization and held-out accuracy evaluation to guard against overfitting

Piecewise Linear

Continuous Piecewise Linear

Piecewise-linear Basis Function

(From Hastie et al., 2009)

 $h_1 = I(X < \xi_1)$

Piecewise Linear

 $h_{1} = I(X < \xi_{1})$ $h_{2} = I(\xi_{1} < X \le \xi_{2})$ $h_{3} = I(\xi_{2} < X \le \xi_{3})$ $h_{4} = h_{1}(X)X$ $h_{5} = h_{2}(X)X$ $h_{6} = h_{3}(X)X$

Piecewise-linear Basis Function

 $h_1 = 1$

 $h_2 = X$

 $h_3 = (X - \xi_1)_+$

 $h_4 = (X - \xi_2)_+$

Piecewise Linear

Piecewise Cubic Polynomials

(From Hastie et al., 2009)

Piecewise Cubic Polynomials

(From Hastie et al., 2009)

Natural, or restricted, cubic splines

- Intuitively: a piecewise cubic function whose 0th, 1st, and second derivatives are continuous at all the knots
- Technically, for n knots:

$$h_1(X) = 1$$

 $h_2(X) = X$
 $h_3(X) = X^2$
 $h_4(X) = X^3$
 $h_i(X) = (x - \xi_i)_+^3$, for $i = 5,...,n + 4$

- Powerful framework, but leaves open:
 - How many knots to use
 - Where to put the knots

Natural cubic splines, visualized

Example of fitted natural splines (5 d.f.)

(From James et al., 2013)

From smooths to GAMs

• A generalized additive model (GAM) involving 2 predictors X and V for response Y looks like this:

$$y_i = \mathbf{A}_i \theta + f_1(x_i) + f_2(v_i) + f_3(x_i, v_i) + \epsilon_i$$

where each $f_i()$ is a **smooth function** of its arguments

- This is a highly general and expressive formalism, and cannot be fitted via maximum likelihood (why?)
- So in practice, GAMs are fitted by:
 - choosing a penalization or regularization component for the objective function;
 - choosing a set of basis functions by which to represent each smooth function;
 - Searching for a fit that optimizes the objective function,

9

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda_1 \boldsymbol{\beta}^\mathsf{T} \mathbf{S}_1 \boldsymbol{\beta} + \lambda_2 \boldsymbol{\beta}^\mathsf{T} \mathbf{S}_2 \boldsymbol{\beta}$$
Terms penalizing wiggliness for f_1 and f_2

How well data are predicted

Penalized objective:

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda_1 \boldsymbol{\beta}^\mathsf{T} \mathbf{S}_1 \boldsymbol{\beta} + \lambda_2 \boldsymbol{\beta}^\mathsf{T} \mathbf{S}_2 \boldsymbol{\beta}$$
Terms penalizing wiggliness for f_1 and f_2

How well data are predicted

Penalized objective:

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda_1 \boldsymbol{\beta}^\mathsf{T} \mathbf{S}_1 \boldsymbol{\beta} + \lambda_2 \boldsymbol{\beta}^\mathsf{T} \mathbf{S}_2 \boldsymbol{\beta}$$
Terms penalizing wiggliness for f_1 and f_2

How well data are predicted

• How to choose $\{\lambda_i\}$?

Penalized objective:

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda_1 \boldsymbol{\beta}^\mathsf{T} \mathbf{S}_1 \boldsymbol{\beta} + \lambda_2 \boldsymbol{\beta}^\mathsf{T} \mathbf{S}_2 \boldsymbol{\beta}$$
Terms penalizing wiggliness for f_1 and f_2

How well data are predicted

• How to choose $\{\lambda_i\}$?

Here: cross-validation

Strategy for getting proficient in GAMs

- Read Jones et al. 2013 Chapter 7, and do the exercises
- Read Wood 2017, starting with Chapter 4 and Chapter 7, and do the exercises
- To build expertise read Wood 2017 Chapter 6 and also Chapter 5
- Both these books are available online via MIT Libraries
- For the rest of this class, we will build a bit of expertise via worked examples
 - Data from Boyce & Levy, 2023
 - Material from the "GAMs in R" interactive course (https://noamross.github.io/gams-in-r-course/)