Modélisation et résolutions numérique et symbolique de problèmes via les logiciels Maple et MATLAB (MODEL)

Cours n°4 : Polynômes univariés, isolation de solutions réelles et algorithme d'Euclide

Stef Graillat & Mohab Safey El Din

Université Pierre et Marie Curie (Paris 6)

6. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours nr4)

1 / 20

Résumé des notions précédemment vues

- Codes correcteurs d'erreurs linéaires
- Espaces vectoriels et matrices
- Dimension, Rang
- Calculs élémentaires en algèbre linéaire
- Corps fini de cardinalité un nombre premier
- Application à des codes spécifiques

Et maintenant on passe à un monde moins discret...

Résumé des notions précédemment vues

- Codes correcteurs d'erreurs linéaires
- Espaces vectoriels et matrices
- Dimension, Rang
- Calculs élémentaires en algèbre linéaire
- Corps fini de cardinalité un nombre premier
- Application à des codes spécifiques

Et maintenant on passe à un monde moins discret...

S. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours nr4)

2 / 20

Solutions réelles de polynômes : Contexte applicatif

- En algèbre linéaire : apparaissent naturellement (valeurs propres de matrices)
- Valeurs propres en image :
 - Technique d'analyse en composantes principales (télédétection et image multi-spectrale)
 - Courbes algébriques apparaissent naturellement (Bézier patches)
- En IA:
 - Valeurs propres aussi!
- En Calcul scientifique :
 - Sciences de l'ingénieur : Robotique, vision 3d, stabilisation de systèmes dynamiques
 - Gros progrès algorithmiques récents

5. Graillat & M. Safey (Univ. Paris 6) MODEL (cours nr4) 2 / 20 S. Graillat & M. Safey (Univ. Paris 6) MODEL (cours nr4) 3 / 20

Un exemple : le tracé de courbes certifié

- Algorithme naif de balayage perpendiculairement à un axe;
- Identifier les points où une « catastrophe » (points critiques, asymptotes) se produit par rapport à notre axe;
- On peut commencer par identifier leurs projections sur notre axe.

On a besoin de savoir isoler les racines d'un polynômes en une variable.

S. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours nr4)

4 / 20

Un exemple : le tracé de courbes certifié

- Algorithme naif de balayage perpendiculairement à un axe;
- Identifier les points où une « catastrophe » (points critiques, asymptotes) se produit par rapport à notre axe;
- On peut commencer par identifier leurs projections sur notre axe.

On a besoin de savoir isoler les racines d'un polynômes en une variable.

Un exemple : le tracé de courbes certifié

- Algorithme naif de balayage perpendiculairement à un axe;
- Identifier les points où une « catastrophe » (points critiques, asymptotes) se produit par rapport à notre axe;
- On peut commencer par identifier leurs projections sur notre axe.

On a besoin de savoir isoler les racines d'un polynômes en une variable

S. Graillat & M. Safey (Univ. Paris 6)

10DEL (cours nr4)

4 / 20

Objectif 1 : Résoudre f(X, Y) = g(X, Y) = 0

Soit $\mathscr C$ une courbe définie par f(X,Y)=0 et $\mathbf z=(\mathbf x,\mathbf y)\in\mathscr C$ telle que $\frac{\partial f}{\partial X}(\mathbf z)\neq 0$ ou $\frac{\partial f}{\partial Y}(\mathbf z)\neq 0$.

- ① Une droite de vecteur directeur $\mathbf{v} = (\mathbf{a}, \mathbf{b})$ est tangente à \mathscr{C} en (\mathbf{x}, \mathbf{y}) ssi elle contient \mathbf{x} et $\mathbf{a} \frac{\partial f}{\partial X}(\mathbf{z}) + \mathbf{b} \frac{\partial f}{\partial Y}(\mathbf{z}) = \mathbf{v}.\mathrm{grad}_{\mathbf{z}}(f)$ 0. Elle est normale au vecteur gradient de f en \mathbf{z} .
 - On peut aussi dire que $v = \lim_{z' \to z} \frac{zz'}{||zz'|}$
- ② Si on projette sur l'axe des absisses (celui des X), les « points critiques » sont précisément ceux pour lesquels $f(X,Y) = \frac{\partial f}{\partial Y} = 0$
- → Pour résoudre, on va se ramener au cas d'une variable

Objectif 1 : Résoudre f(X, Y) = g(X, Y) = 0

Soit $\mathscr C$ une courbe définie par f(X,Y)=0 et $\mathbf z=(\mathbf x,\mathbf y)\in\mathscr C$ telle que $\frac{\partial f}{\partial X}(\mathbf z)\neq 0$ ou $\frac{\partial f}{\partial Y}(\mathbf z)\neq 0$.

① Une droite de vecteur directeur $\mathbf{v} = (\mathbf{a}, \mathbf{b})$ est tangente à \mathscr{C} en (\mathbf{x}, \mathbf{y}) ssi elle contient \mathbf{x} et $\mathbf{a} \frac{\partial f}{\partial X}(\mathbf{z}) + \mathbf{b} \frac{\partial f}{\partial Y}(\mathbf{z}) = \mathbf{v}.\mathrm{grad}_{\mathbf{z}}(f)$ 0. Elle est normale au vecteur gradient de f en \mathbf{z} .

On peut aussi dire que $\mathbf{v} = \lim_{\mathbf{z}' \to \mathbf{z}} \frac{\mathbf{z}\mathbf{z}'}{||\mathbf{z}\mathbf{z}'|}$.

- ② Si on projette sur l'axe des absisses (celui des X), les « points critiques » sont précisément ceux pour lesquels $f(X,Y) = \frac{\partial f}{\partial Y} = 0$
- → Pour résoudre, on va se ramener au cas d'une variable

S. Graillat & M. Safev (Univ. Paris 6

MODEL (cours nr4)

E / 20

Objectif 1 : Résoudre f(X, Y) = g(X, Y) = 0

Soit $\mathscr C$ une courbe définie par f(X,Y)=0 et $\mathbf z=(\mathbf x,\mathbf y)\in\mathscr C$ telle que $\frac{\partial f}{\partial X}(\mathbf z)\neq 0$ ou $\frac{\partial f}{\partial Y}(\mathbf z)\neq 0$.

① Une droite de vecteur directeur $\mathbf{v} = (\mathbf{a}, \mathbf{b})$ est tangente à \mathscr{C} en (\mathbf{x}, \mathbf{y}) ssi elle contient \mathbf{x} et $\mathbf{a} \frac{\partial f}{\partial X}(\mathbf{z}) + \mathbf{b} \frac{\partial f}{\partial Y}(\mathbf{z}) = \mathbf{v}.\mathrm{grad}_{\mathbf{z}}(f)$ 0. Elle est normale au vecteur gradient de f en \mathbf{z} .

On peut aussi dire que $\mathbf{v} = \lim_{\mathbf{z}' \to \mathbf{z}} \frac{\mathbf{z}\mathbf{z}'}{||\mathbf{z}\mathbf{z}'|}$.

- ② Si on projette sur l'axe des absisses (celui des X), les « points critiques » sont précisément ceux pour lesquels $f(X, Y) = \frac{\partial f}{\partial Y} = 0$
- → Pour résoudre, on va se ramener au cas d'une variable.

Objectif 1 : Résoudre f(X, Y) = g(X, Y) = 0

Soit $\mathscr C$ une courbe définie par f(X,Y)=0 et $\mathbf z=(\mathbf x,\mathbf y)\in\mathscr C$ telle que $\frac{\partial f}{\partial X}(\mathbf z)\neq 0$ ou $\frac{\partial f}{\partial Y}(\mathbf z)\neq 0$.

• Une droite de vecteur directeur $\mathbf{v}=(\mathbf{a},\mathbf{b})$ est tangente à $\mathscr C$ en (\mathbf{x},\mathbf{y}) ssi elle contient \mathbf{x} et $\mathbf{a}\frac{\partial f}{\partial X}(\mathbf{z})+\mathbf{b}\frac{\partial f}{\partial Y}(\mathbf{z})=\mathbf{v}.\mathrm{grad}_{\mathbf{z}}(f)0$. Elle est normale au vecteur gradient de f en \mathbf{z} .

On peut aussi dire que $\mathbf{v} = \lim_{\mathbf{z}' \to \mathbf{z}} \frac{\mathbf{z}\mathbf{z}'}{||\mathbf{z}\mathbf{z}'|}$

② Si on projette sur l'axe des absisses (celui des X), les « points critiques » sont précisément ceux pour lesquels $f(X, Y) = \frac{\partial f}{\partial Y} = 0$

→ Pour résoudre, on va se ramener au cas d'une variable

S. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours nr4)

5 / 20

Objectif 2 : Isoler les solutions réelles de f(X) = 0

MODEL (cours nr4)

illat & M. Safey (Univ. Paris 6) MODEL (cours nr4) 5 / 20 S. Graillat & M. Safey (Univ. Pa

Polynômes univariés : codage et propriétés élémentaires

① Soit \mathbb{K} un corps et X une indéterminée.

$$\mathbb{K}[X] = \{ \sum_{i=0}^{D} c_i X^i \mid c_i \in \mathbb{K}, \ D \in \mathbb{N} \}$$

- 2 Le degré de f est le plus petit entier D tel que $c_i \neq 0$
- 3 Codage dense : tableau des coefficients.
- Codage creux : tableau des coefficients non-nuls et des exposants.
- ⑤ L'ensemble des polynômes est un K-espace vectoriel (de dimension infinie).
- **6** L'ensemble des polynômes de degré $\leq D$ est un \mathbb{K} -espace vectoriel de dimension finie D+1.

5. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours nr4)

7 / 20

Stratégie d'isolation

Soit $f \in \mathbb{Q}[X]$.

Isolation dans un intervalle I = [a, b]

- Compter le nombre de racines de f dans [a, b]
- S'il n'y a pas de racines retourner une liste vide
- 3 S'il y a une et une seule racine retourner l
- ① Procéder par dichotomie (appels récursifs avec $l_1 = [a, \frac{a+b}{2}]$ et $l_2 = [\frac{a+b}{2}, b]$

Pour généraliser sur les réels, on a besoin d'une borne sur le max des valeurs absolues des racines.

Polynômes univariés : propriétés (suite)

- Les fonctions polynomiales sont continues et dérivables.
- ② Un polynôme univarié de degré *D* a *D* racines complexes (comptées avec multiplicité).
- **3** Le Théorème des valeurs intermédiaires s'applique : pour tout $c \in [f(a), f(b)]$, il existe $u \in [a, b]$ tel que f(u) = c.
- **1** Le Théorème de Rolle s'applique : soit a < b tel que f(a)f(b) < 0, alors il exists $c \in [a, b]$ tel que f'(c) = 0.

S. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours nr4

0 / 00

Stratégie d'isolation

Soit $f \in \mathbb{Q}[X]$.

Isolation dans un intervalle I = [a, b]

- ① Compter le nombre de racines de f dans [a, b]
- 2 S'il n'y a pas de racines retourner une liste vide
- 3 S'il y a une et une seule racine retourner l
- ① Procéder par dichotomie (appels récursifs avec $I_1 = [a, \frac{a+b}{2}]$ et $I_2 = [\frac{a+b}{2}, b]$

Pour généraliser sur les réels, on a besoin d'une borne sur le max des valeurs absolues des racines.

5. Graillat & M. Safey (Univ. Paris 6) MODEL (cours nr4) 9 / 20 S. Graillat & M. Safey (Univ. Paris 6) MODEL (cours nr4) 9 / 20

Stratégie d'isolation

Soit $f \in \mathbb{Q}[X]$.

Isolation dans un intervalle I = [a, b]

- Compter le nombre de racines de f dans [a, b]
- S'il n'y a pas de racines retourner une liste vide
- 3 S'il y a une et une seule racine retourner I
- ① Procéder par dichotomie (appels récursifs avec $I_1 = [a, \frac{a+b}{2}]$ et $I_2 = [\frac{a+b}{2}, b]$

Pour généraliser sur les réels, on a besoin d'une borne sur le max des valeurs absolues des racines.

S. Graillat & M. Safey (Univ. Paris 6

MODEL (cours nr4)

0 / 20

Stratégie d'isolation

Soit $f \in \mathbb{Q}[X]$.

Isolation dans un intervalle I = [a, b]

- Compter le nombre de racines de f dans [a, b]
- 2 S'il n'y a pas de racines retourner une liste vide
- 3 S'il y a une et une seule racine retourner /
- Procéder par dichotomie (appels récursifs avec $I_1 = [a, \frac{a+b}{2}]$ et $I_2 = [\frac{a+b}{2}, b]$

Pour généraliser sur les réels, on a besoin d'une borne sur le max des valeurs absolues des racines.

Stratégie d'isolation

Soit $f \in \mathbb{Q}[X]$

Isolation dans un intervalle I = [a, b]

- Compter le nombre de racines de f dans [a, b]
- S'il n'y a pas de racines retourner une liste vide
- 3 S'il y a une et une seule racine retourner I
- Procéder par dichotomie (appels récursifs avec $I_1 = [a, \frac{a+b}{2}]$ et $I_2 = [\frac{a+b}{2}, b]$

Pour généraliser sur les réels, on a besoin d'une borne sur le max des valeurs absolues des racines.

S. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours nr4)

0 / 00

Premières bornes

Soit
$$f = \sum_{i=0}^{D} X^i \in \mathbb{Q}[X]$$
.

Proposition 1

Si α est une racine complexe de f et que $a_D=1$, alors $|\alpha|<1+\max(|a_i|,0\leq i\leq D-1)$.

Proposition 2 (Borne de Lagrange-MacLaurin)

Posons $m = \max(\{i \mid 0 \le i \le D-1, a_i < 0\})$ et $B = \max(\{-a_i \mid 0 \le i \le D-1, a_i < 0\})$ (B = 0 par convention si tous les a_i sont positifs ou nuls). Si α est une racine réelle positive de f alors, en supposant que $a_D = 1$ et que $a_0 \ne 0$, on a

$$\alpha < 1 + \sqrt[n-m]{B}$$
.

Majoration du nombre de racines

Définition 1

On définit le signe, $\operatorname{sign}(a)$, d'un élément $a \in \mathbb{R}$ par un entier valant 0 si $a=0,\ 1$ si a>0 et -1 si a<0. Le nombre de changements de signes V(a) dans une suite, $\underline{a}=a_1,\cdots,a_k,$ d'éléments de $\mathbb{R}\setminus\{0\}$ est défini par induction sur k par :

$$V(a_1) = 0$$
 $V(a_1, \dots, a_k) = \begin{cases} V(a_1, \dots, a_{k-1}) + 1 & si & sign(a_{k-1}a_k) = -1 \\ V(a_1, \dots, a_{k-1}) & sinon \end{cases}$

Si $f = \sum_{i=0}^{D} a_i X^i \in \mathbb{R}[X]$, on note V(f) le nombre $V(a_0, \dots, a_D)$.

S. Graillat & M. Safev (Univ. Paris 6)

MODEL (cours nr4)

11 / 20

Majoration du nombre de racines (suite)

Proposition 3 (Lemme de Descartes)

Soit $f \in \mathbb{R}[X]$ non identiquement nul. Le nombre de racines réelles strictement positives (comptées avec multiplicités) de f

- est égal à V(f) modulo 2.
- est borné par V(f).

Conséquence : Soit $f = \sum_{i=0}^{D} a_i X^i \in \mathbb{R}[X]$.

- Si V(f) = 0, alors f n'a pas de racines réelles strictement positives;
- ② Si V(f) = 1, alors f a une et une seule racine réelle strictement positive.

Majoration du nombre de racines (suite)

Proposition 3 (Lemme de Descartes)

Soit $f \in \mathbb{R}[X]$ non identiquement nul. Le nombre de racines réelles strictement positives (comptées avec multiplicités) de f

- est égal à V(f) modulo 2.
- est borné par V(f).

Conséquence: Soit $f = \sum_{i=0}^{D} a_i X^i \in \mathbb{R}[X]$

- ① Si V(f) = 0, alors f n'a pas de racines réelles strictement positives :
- ② Si V(f) = 1, alors f a une et une seule racine réelle strictement positive.

S. Graillat & M. Safey (Univ. Paris 6

MODEL (cours nr4

12 / 20

Calcul du nombre de racines : Suite de Sturm

Définition 2

Soit $f \in \mathbb{R}[X]$. Une suite de Sturm associée à f pour un intervalle donné $[a,b] \in \mathbb{R}$ est une suite de polynômes de $\mathbb{R}[X]$ $[f_0(X), \dots f_s(X)]$ tels que :

- 2 f_s n'a aucune racine réelle dans [a, b];
- **3** pour 0 < i < s, si $\alpha \in [a, b]$ est tel que $f_i(\alpha) = 0$, alors $f_{i-1}(\alpha)f_{i+1}(\alpha) < 0$:
- **9** si $\alpha \in [a, b]$ est tel que $f_0(\alpha) = 0$, alors

$$\begin{cases} f_0 f_1(\alpha - \epsilon) < 0 \\ f_0 f_1(\alpha + \epsilon) > 0 \end{cases}$$

pour toute valeur de ϵ suffisamment petite (f_0f_1 est une fonction croissante en α).

Calcul du nombre de racines : Vers le Théorème de Sturm

Soit $f \in \mathbb{R}[X]$ et $S(X) = [f_0(X), \dots f_s(X)]$ une suite de Sturm associée à f sur I. On note $V_{stu}(f(c)) = V(f_0(c), \dots f_s(c))$ pour tout $c \in \mathbb{R}$. Si $I = \mathbb{R}$, on définit $V_{stu}(f(+\infty))$ (resp. $V_{stu}(f(-\infty))$) comme étant le nombre de variations de signes dans la suite des coefficients de plus haut degré des polynômes de S(X) (resp. S(-X)).

Proposition 4

Si I = [a, b] alors $V_{stu}(f(b)) - V_{stu}(f(a))$ est égal au nombre de racines réelles de f dans [a, b].

Corollaire

 $V_{stu}(f(+\infty)) - V_{stu}(f(-\infty))$ est égal au nombre de racines réelles de f dans \mathbb{R}

S. Graillat & M. Safey (Univ. Paris 6

MODEL (cours nr4)

14 / 20

Calcul du nombre de racines : Vers le Théorème de Sturm

Soit $f \in \mathbb{R}[X]$ et $S(X) = [f_0(X), \dots f_s(X)]$ une suite de Sturm associée à f sur I. On note $V_{stu}(f(c)) = V(f_0(c), \dots f_s(c))$ pour tout $c \in \mathbb{R}$. Si $I = \mathbb{R}$, on définit $V_{stu}(f(+\infty))$ (resp. $V_{stu}(f(-\infty))$) comme étant le nombre de variations de signes dans la suite des coefficients de plus haut degré des polynômes de S(X) (resp. S(-X)).

Proposition 4

Si I = [a, b] alors $V_{stu}(f(b)) - V_{stu}(f(a))$ est égal au nombre de racines réelles de f dans [a, b].

Corollaire 1

 $V_{stu}(f(+\infty)) - V_{stu}(f(-\infty))$ est égal au nombre de racines réelles de f dans \mathbb{R} .

Calcul du nombre de racines : Vers le Théorème de Sturm

Soit $f \in \mathbb{R}[X]$ et $S(X) = [f_0(X), \dots f_s(X)]$ une suite de Sturm associée à f sur I. On note $V_{stu}(f(c)) = V(f_0(c), \dots f_s(c))$ pour tout $c \in \mathbb{R}$. Si $I = \mathbb{R}$, on définit $V_{stu}(f(+\infty))$ (resp. $V_{stu}(f(-\infty))$) comme étant le nombre de variations de signes dans la suite des coefficients de plus haut degré des polynômes de S(X) (resp. S(-X)).

Proposition 4

Si I = [a, b] alors $V_{stu}(f(b)) - V_{stu}(f(a))$ est égal au nombre de racines réelles de f dans [a, b].

Corollaire

 $V_{stu}(f(+\infty)) - V_{stu}(f(-\infty))$ est égal au nombre de racines réelles de t dans \mathbb{R} .

S. Graillat & M. Safey (Univ. Paris 6

MODEL (cours nr4)

14 / 20

15 / 20

Calcul du nombre de racines : Vers le Théorème de Sturm

Soit $f \in \mathbb{R}[X]$ sans racince réelle multiple dans [a, b].

Proposition 5

On pose $f_0 = f$, $f_1 = f'$. et on construit par induction les polynômes f_i $i = 2 \dots s$ en posant $f_{i-2} = f_{i-1}g_i - f_i$ et en stoppant la construction à l'indice s tel que f_s n'admet aucune racine réelle dans [a,b]. La suite ainsi construite est une suite de Sturm associée à f pour [a,b].

Théorème de Sturm: On pose $f_0=f$, $f_1=-f'$. et on construit par induction les polynômes f_i $i=2\dots s$ en posant $f_{i-2}=f_{i-1}g_i-f_i$, $deg(f_i)< deg(f_{i-1})$, et en stoppant la construction à l'indice s tel que $f_{s-2}=f_{s-1}g_s$, g_s étant le PGCD de f et f'. La suite ainsi construite est une suite de Sturm associée à f pour [a,b] avec a,b tels que $f(a)f(b)\neq 0$.

Algorithme d'isolation

- Borner le max. des valeurs absolues des racines réelles de f (voir les bornes précédemment données).
 → on obtient un intervalle I = [a, b].
- Construire une suite de Sturm S
- 3 Si $V_{stu}(f(b)) V_{stu}(f(a)) = 0$ retourner []
- Si $V_{stu}(f(b)) V_{stu}(f(a)) = 1$ retourner I
- Sinon procéder par dichotomie.

S. Graillat & M. Safey (Univ. Paris 6

MODEL (cours nr4)

16 / 20

Algorithme d'isolation

- O Borner le max. des valeurs absolues des racines réelles de f (voir les bornes précédemment données).
 - \rightsquigarrow on obtient un intervalle I = [a, b].
- 2 Construire une suite de Sturm S
- Si $V_{stu}(f(b)) V_{stu}(f(a)) = 1$ retourner I
- Sinon procéder par dichotomie.

 \sim L'algorithme est récursif et pour analyser sa complexité, on doit borner la profondeur de la récursion \sim Pour cela, il faut connaître la distance minimale entre deux racines de f (voir TD).

Algorithme d'isolation

- Borner le max. des valeurs absolues des racines réelles de f (voir les bornes précédemment données).
 → on obtient un intervalle I = [a, b].
- Construire une suite de Sturm S
- 3 Si $V_{stu}(f(b)) V_{stu}(f(a)) = 0$ retourner []
- Si $V_{stu}(f(b)) V_{stu}(f(a)) = 1$ retourner I
- Sinon procéder par dichotomie.

S. Graillat & M. Safey (Univ. Paris 6

MODEL (cours nr4)

16 / 20

Construction d'une suite de Sturm

Rappel: On pose $f_0 = f$, $f_1 = f'$. et on construit par induction les polynômes f_i $i = 2 \dots s$ en posant $f_{i-2} = f_{i-1}g_i - f_i$, $deg(f_i) < deg(f_{i-1})$, et en stoppant la construction à l'indice s tel que $f_{s-2} = f_{s-1}g_s$, g_s étant le PGCD de f et f'. La suite ainsi construite est une suite de Sturm associée à f pour [a,b] avec a,b tels que $f(a)f(b) \neq 0$.

- ① Étant donné f_0 et f_1 , on peut définir f_2 comme le reste de la division euclidienne de f_0 par f_1 .
- 2 ... et ainsi de suite.
- ② Complexité de la division euclidienne de A par B (avec deg(A) ≥ deg(B) : O(deg(B)(deg(A) deg(B)) (voir les fonctions rem et quo en Maple).

Construction d'une suite de Sturm

Rappel: On pose $f_0 = f$, $f_1 = f'$. et on construit par induction les polynômes f_i $i = 2 \dots s$ en posant $f_{i-2} = f_{i-1}g_i - f_i$, $deg(f_i) < deg(f_{i-1})$, et en stoppant la construction à l'indice s tel que $f_{s-2} = f_{s-1}g_s$, g_s étant le PGCD de f et f'. La suite ainsi construite est une suite de Sturm associée à f pour [a,b] avec a,b tels que $f(a)f(b) \neq 0$.

- Étant donné f_0 et f_1 , on peut définir f_2 comme le reste de la division euclidienne de f_0 par f_1 .
- 2 ... et ainsi de suite.
- **③** Complexité de la division euclidienne de A par B (avec $deg(A) \ge deg(B)$: O(deg(B)(deg(A) deg(B)) (voir les fonctions rem et quo en Maple).

S. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours nr4)

17 / 20

Propriétés

- Le dernier élément non nul de la suite renvoyée par Euclide(A, B) est le PGCD de A et B.
- Implantation : Prendre garde à ne pas calculer 0 dans les divisions euclidiennes.
- Forte croissance des coefficients (à tester en TME).
- Idée : Faire du calcul modulaire et utiliser le Théorème des restes chinois (chrem)

Construction d'une suite de Sturm

ightharpoonup il suffit d'appliquer l'algorithme d'Euclide au couple (f,f')

Entrée : Deux polynômes A et B dans $\mathbb{K}[X]$ (où \mathbb{K} est un corps) avec $\deg(A) \geq \deg(B)$.

Sortie : La suite des restes euclidiens.

Euclide

- **1** $A_0 = A$ et $A_1 = B$
- 2 Tant que $A_i \neq 0$
 - $\bullet \ A_{i+1} = A_{i-1} \ \mathtt{rem} \ A_i$
 - \bullet i++
- \odot Retourner les A_i .

Complexité : $O(D^2)$ où D est le degré de f.

S. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours nr4)

18 / 20

Relation de <u>Bézout</u>

EuclideEtendu

- **1** $A_0 = A$ et $A_1 = B$ et $U_0 = 1$ et $V_0 = 0$
- 2 Tant que $A_i \neq 0$
 - $Q_i = A_{i-1} \operatorname{div} A_i$
 - $\bullet \ A_{i+1} = A_{i-1} A_i Q_i$
 - $U_{i+1} = U_{i-1} Q_i U_i$ et $U_{i+1} = U_{i-1} Q_i U_i$
 - *i* + +
- **3** Retourner les A_i .

Proposition 6

On a
$$A_0U_i + A_1V_i = A_i$$
.