

Webinar: Wärmemanagement 2013

Würth Elektronik Circuit Board Technology

Agenda

Grundlagen Wärmemanagement

Möglichkeiten der Entwärmung

Anwendungen

Agenda

Grundlagen Wärmemanagement

Möglichkeiten der Entwärmung

Anwendungen

über 50 % der Ausfälle werden durch erhöhte Temperaturen verursacht

- Entwärmung bestimmt die System-Leistungsfähigkeit
- Kühlung ist entscheidend für die Zuverlässigkeit und Lebensdauer

Leiterplatte spielt bei der Erarbeitung eines effizienten Wärmemanagementkonzeptes eine wichtige Rolle

- Konstruktionen zur Entwärmung richten sich nach unterschiedlichen Anforderungen der Baugruppe
- Menge der abzuführenden Wärme
- verfügbarer Platz / Abmessungen der Bauelemente
- Kontaktierungsart der Bauelemente
- Komplexität der Schaltung

- Entwärmungskonzepte müssen vorgegebene Anforderungen erfüllen
- ausreichende Zuverlässigkeit der Baugruppe garantieren
- bestimmte Kostenaspekte berücksichtigen

- ➤ zur Lösung thermischer Probleme → gesamtes System aus Bauelement, Schaltungsträger, Montage, Gehäuse und Umgebung untersuchen
- ➤ Wärme kann nicht "vernichtet" werden → es gibt nur die Möglichkeit sie vom heißen Bauelement abzuleiten
- die einzelnen Wärmewiderstände sind analog einer elektrischen Reihenschaltung zu betrachten

Systemaspekte des thermischen Designs

- Reihenschaltung von thermischen Widerständen
- Betrachtung des gesamten Wärmeleitpfades
- größter Wärmewiderstand an z.B. Isolationsschichten, Kleberschichten, Lufteinschlüssen usw.

höchster Nutzen: Optimierung der schwächsten Stelle

Länge des Wärmepfades d

Querschnitt des Wärmepfades

- Ziel: thermischen Widerstand reduzieren
- Schichtdicke verkleinern
 - dünne Leiterplatte
 - dünne Isolationsschichten
- Wärmeleitwert vergrößern
 - Erhöhung Kupferanteil
 - parallele thermische Vias in z Achse
- Querschnitt Wärmepfad vergrößern
 - min. 25µm Kupfer in der Hülse! parallele thermische Vias
 - große Kupferflächen zur Wärmespreizung (x/y)
 - große Kontaktfläche Kupfer zu Umgebung/Kühlkörper

Arten der Wärmeleitung

Strahlung: Emission von Photonen

Konvektion: Wärmeübertragung durch Gase

und Flüssigkeiten

Konduktion: Weitergabe von Wärmeenergie durch in der Regel feste Körper

Vertikal: Thermovia / Microvia/Buried Via

Horizontal: Wärmespreizung Kupfer / Heatsink

Es erfolgt eine Umfrage

Durch welche Maßnahmen lässt sich der thermische Widerstand verringern?

Agenda

Grundlagen Wärmemanagement

Möglichkeiten der Entwärmung

Anwendungen

IMS = Insulated Metal Substrate

- metallischer Träger mit Isolationsschicht und Kupferkaschierung
- lieferbar als fertiges Basismaterial
- einfache Schaltungen, meist nur 1 Kupferlage ab 35 μm in Ätztechnik, Lötstopplack
- Nachteile: mehr als 1 Kupferlage wird aufwändig und schnell teuer
 - Freistellungen im Alu bzw. Isolationsschicht sehr teuer
- Alternativen: dünne DK Leiterplatte, Multilayer auf Alu-Heatsink

Thermovias

- Verwendung von Durchkontaktierungen als "Thermische Vias"
- mechanisch gebohrte Vias
- gute Wärmeleitung in z-Achse durch die Kupferhülse (Wandstärke min. 25 μm)
- bei Leiterplattendicken größer 0,7 mm wird empfohlen die Vias zu füllen (pluggen) und mit Kupfer über zu metallisieren

gefüllte Thermovias

Enddurchmesser Via: 0,3 mm / Kupfer in Hülse: 25 µm

Pitch	Anzahl Vias	LP Dicke 1,6mm / Rth in K/W	LP Dicke 0,36mm / Rth in K/W	λ in W/mK	Cu - Anteil
1,9 mm	20	6,65	1,51	2,39	0,51%
1,5 mm	50	3,12	0,71	5,13	1,28%
1,2 mm	81	2,01	0,45	7,98	2,07%
1,1 mm	100	1,64	0,37	9,74	2,55%
1,0 mm	121	1,37	0,31	11,71	3,09%
0,8 mm	176	0,95	0,21	16,89	4,49%
0,6 mm	289	0,58	0,13	27,84	7,38%

Thermovias Filling Prozess

Kombination Microvia/Buried Via

- sehr dünnner Multilayer in Verbindung mit Buried Vias und Microvias
- kurzer Wärmepfad, Microvias direkt im Lötpad
 keine Lötprobleme
- vollständige Entkopplung von CTE Mismatch

- DK-Leiterplatte oder Multilayer mit individuellen Bare Die bestücken und bonden
- individual Heatsinks verkleben
- Miniaturisierung durch Reduzierung Bauhöhe

- DK-Leiterplatte oder Multilayer mit individuellen Bare Die bestücken und bonden
- individual Heatsinks verkleben
- Miniaturisierung durch Reduzierung Bauhöhe
- Optimierung Wärmemanagement
- Einstellen des Abstrahlwinkels

Es erfolgt eine Umfrage

Aus welchen Gründen ist das Füllen und Deckeln von Thermovias zu empfehlen?

Agenda

Grundlagen Wärmemanagement

Möglichkeiten der Entwärmung

Anwendungen

Heatsink-Leiterplatte "Hybrid"-Beleuchtungen (LED-Technologie) von Flugzeugen

- optimales Wärmemanagement für sehr helle LED mit hoher Wärmeentwicklung
- anspruchsvolle Liefernutzengestaltung
- thermomechanische Entkopplung: Blasenfreies Verkleben von Leiterplatte und Aluminium durch spezielle Klebetechnologie, dadurch gute Wärmeableitung
- Gewichtsersparnis durch 1,0 mm dünnen Aluminium-Träger

Modulare Power-LED Lichtleiste

- extrem hohe Leuchtdichte, Steuerung der Leuchte ist bereits auf der Leiterplatte integriert
- Wärmespreizung bereits in 2 zusätzlichen Innenlagen
- gute Lötbarkeit durch gefüllte und gedeckelte Thermovias

Motorsteuereinheit Maxon Motor

- Kompaktantrieb mit kombinierter Steuerung, Sensorik und Motor in einem Aluminiumgehäuse
- robuste, platzsparende Antriebslösung mit hoher Leistungsdichte (max. Leistung 60W)
- hochdynamischer, wartungsfreier Antrieb

Motorsteuereinheit Maxon Motor

Temperaturmessung im Betrieb

Montage durch Gewinde im Heatsink

Quelle: maxon motor; WE

T_{Wmax}- max. zulässige Temperatur T_W- Wicklungstemperatur T_S- Statortemperatur

T_P- Platinentemperatur

T_G- Gehäusetemperatur

Getriebesteuerung

- 4 Lagen Microvia-Leiterplatte auf Aluminium Heatsink
- optimiertes thermisches Management durch thermische Microvias in Kombination mit Buried Vias
- Umgebungstemperatur –40°C bis 125°C durch Verlustleistung
- sseit mehreren Jahren in Serienproduktion

- 4-Lagen Flex mit Chip direkt geklebt auf Kupfer Heatsink 0,8mm mit ENIG-Oberfläche
- 2 Chips in Kavität
- AlSi-Draht Bonden

Quelle: UNI Heidelberg/CERN

LASERCAVITY® - Zwei Ebenen mit unterschiedlichen elektrischen Lagen und elektrischen Potentialen

Schliff durch den gesamten Lagenaufbau

Quelle: WE

LASERCAVITY® LEDs + Wärmemanagement

Der Durchmesser für die VIA's (Durchkontakti-

Quelle: WE

Vielen Dank für Ihre Aufmerksamkeit!

Bert Heinz WÜRTH ELEKTRONIK GmbH & Co. KG

Produkt Management

Wärmemanagement

Circuit Board Technology

T.: +49 7622 397 477

M.:+49 160 97211825

E. bert.heinz@we-online.de

W. www.we-online.de