

Realistic Hairstyle try-on:

Face and Hair Image Mapping Using Semantic Maps for SDEdit Conditional Hair Changing Image

หัวข้อที่จะนำเสนอ

- 1. ที่มาและความสำคัญ
- 2. งานวิจัยในอดีต
- 3. วิธีการวิจัย
- 4. ผลการทดลอง
- **5.** สรุป
- 6. Future work

1. ที่มาและความสำคัญ

iPhone Screenshots

2. งานวิจัยในอดีต

Real-time deep hair matting on mobile devices

CoRR, vol. abs/1712.07168, 2017

2. งานวิจัยในอดีต (2)

MaskGAN: Towards Diverse and Interactive Facial Image Manipulation

CoRR, vol. abs/1907.11922, 2019

3. วิธีดำเนินโครงงาน

Overview

3. วิธีดำเนินโครงงาน (2)

Image Segmentation

- แบ่งรูปภาพออกเป็น ร ส่วน ได้แก่ ผม, ใบหน้า, หู,
 คอกับเลื้อ และพื้นหลัง
- ਪਿੱ U-NET

3. วิธีดำเนินโครงงาน (3)

Overview

3. วิธีดำเนินโครงงาน (4)

Face and Hair Mapping (Overview)

& cropping

landmark

ประกอบไปด้วย 4 ขั้นตอน

- Image face landmark
- Image transform
- Image cropping
- Image replacing

3. วิธีดำเนินโครงงาน (5)

Face and Hair Mapping (Image face landmark)

ใช้ MediaPipe Face Mesh จำนวน 4 ตำแหน่ง ได้แก่ หน้าผาก, ตาซ้าย, ตาขวา และ คาง

3. วิธีดำเนินโครงงาน (6)

Face and Hair Mapping (Image transform)

Image transform คือ วิธีการ Transform Source image โดยใช้ Perspective transformation อ้างอิงจากจุด 4 จุดใน Face landmark

3. วิธีดำเนินโครงงาน (7)

Face and Hair Mapping (cropping)

3. วิธีดำเนินโครงงาน (8)

Face and Hair Mapping (Image replacing)

Cropped image (source)

3. วิธีดำเนินโครงงาน (9)

Overview

3. วิธีดำเนินโครงงาน (10)

Image Inpainting (Fast Marching method)

เติม Artifacts ด้วย Fast Marching method แบ่งเป็น 3 ขั้นตอน

- นำภาพที่ใด้จากการทำ Face and Hair Mapping ใป ทำ Image segmentation
- 2. นำภาพผลลัพธ์ที่ได้จากขั้นตอนที่ 1 และภาพ Mapping mask มาแปลงเป็นภาพใบนารีจากนั้นนำมาหาผลต่าง ระหว่างภาพทั้งสอง
- 3. ภาพผลลัพธ์ที่ใด้จากขั้นตอนที่ 2 และ ภาพ Mapping image with artifact เข้าสู่ Fast Marching method

3. วิธีดำเนินโครงงาน (11)

Image Inpainting (SDEdit)

4. ผลการทดลอง

สำหรับการทดลองนี้ชุดข้อมูลที่ใช้ คือ CelebAMask-HQ มีจำนวน 30,000 รูป โดยใช้ขนากของรูปเป็น **256x256**

4. ผลการทดลอง (2)

4. ผลการทดลอง **(3)**

ตารางที่ 1 เวลาในการทำงานในแต่ละ Noise level ทดสอบโดย gpu Nvidia gtx1050 และทำการทดสอบ 1 รูป

Noise	100	200	300	400	500	600	700	800	900	1000
level	100	200	300	400	500	600	700	800	900	1000
Time	0:37	1:12	1:49	2:25	2:53	3:31	4:00	4:36	5:13	5:56
(mins)										

4. สรุป

- งานนี้นำเสนอ วิธีการสร้างรูปภาพที่เป็นการตัดต่อรูปทรงผมโดยอัตโนมัติมี 4 ขั้นตอน คือ
 - 1. Image segmentation
 - 2. Face and Hair mapping
 - 3. Inpaint
 - 4. SDEdit
- ซึ่งข้อดีของวิธีการนี้คือ
 - 1. เราสามารถควบคุมได้ทั้งรูปร่างของทรงผม และสีผม
 - 2. การทำงานทั้งระบบเป็นระบบอัตโนมัติ ไม่ต้องอาศัยการช่วยงานของมนุษย์
 - 3. ใช้รูปภาพขาเข้าแค่ 2 รูปเท่านั้น คือ Target image กับ Source image
 - 4. สามารถจัดการกับรูปที่เปลี่ยนจากผมยาวบดบังใบหน้า ใปผมสั้นใด้
- ข้อจำกัด ใม่สามารถควบคุมโครงสร้างของทรงผมได้ เช่น การคดงอของทรงผม การปัดไปทางซ้ายหรือขวาของทรงผม

5. Future work

- สามารถเปลี่ยนส่วนอื่นของรูปภาพใบหน้าใด้ เช่น ตา, ปาก เป็นต้น
- SDEdit ใช้เวลาและทรัพยากรที่ใช้ในการทำงาน จากการทดลองที่ noise level 500 ใช้ gpu Nvidia 1050 สำหรับ รูปภาพขนาด 256x256 จำนวน 1 รูป ใช้เวลาในการทำงานทั้งระบบประมาณ 2–3 นาที อาจจะเปลี่ยนเป็น model อื่น
- รูปภาพผลลัพธ์ที่ได้จากงานวิจัยจะทำการลบภาพพื้นหลังเดิม เนื่องจากถ้าสีผมกับภาพพื้นหลังเดิมใกล้เคียงกันจะทำให้ **SDEdit** ได้ ผลลัพธ์ที่ผิดไปจากที่ต้องการ ซึ่งถ้าออกแบบวิธีการการทำงานเพิ่มเติม อาจจะแก้ไขได้
- งานวิจัยนี้ใช้ U-NET เป็นเครื่องมือในการทำ Image segmentation ซึ่งในปัจจุบัน มีเครื่องมือที่ดีกว่า

#