Proba E. d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TEMBOLINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.

Timpul de lucru éfectiv este de trei ore.

A. MECANICA Model

Se consideră accelerația gravitațională $g = 10 \text{ m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Asupra unui corp acționează o forță rezultantă \vec{F} , orientată perpendicular pe vectorul viteză momentană \vec{v} . Vectorul accelerație momentană \vec{a} are direcția și sensul vectorului:
- a. deplasare
- b. fortă rezultantă
- c. viteză medie
- d. viteză momentană
- (3p)
- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I a mărimii fizice exprimate prin $\sqrt{2mE_c}$ este:
- **a.** $N \cdot m \cdot s^{-1}$
- **b.** $N \cdot kg \cdot s^{-1}$
- **c.** kg⋅m⋅s⁻¹
- **d.** $N \cdot s \cdot kg^{-1}$ (3p)
- 3. Un corp lăsat liber pe un plan înclinat coboară rectiliniu uniform. Dacă același corp este ridicat cu viteză constantă pe același plan înclinat, randamentul planului înclinat este:
- a.100%
- **b.** 75%
- **d.** 25%
- (3p)
- 4. Viteza unui mobil variază în funcție de timp conform graficului din figura alăturată. Distanța parcursă de mobil până la oprire este:
- **a.** 25 m
- **b.** 50 m
- d. 1,5 km

- 5. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, expresia constantei elastice a unui fir este:
- **a.** $k = E \cdot S_0 \cdot \ell_0$
- **b.** $k = \frac{E \cdot S_0}{\ell_0}$
- $\mathbf{c.} \ \ k = \frac{E \cdot \ell_0}{S_0}$
- **d.** $k = \frac{S_0 \cdot \ell_0}{F}$
- (15 puncte)

(3p)

II. Rezolvați următoarea problemă:

Un corp de masă $m_1 = 4,0\,\mathrm{kg}$, aflat pe suprafața unui plan înclinat cu unghiul $lpha=30^{\circ}$ față de orizontală, este legat de o găleată cu masa $m_2=500\,\mathrm{g}$ prin intermediul unui fir inextensibil și de masă neglijabilă. Firul este trecut peste un scripete fără frecări și lipsit de inerție, ca în figura alăturată. Dacă în găleată se toarnă o masă $m_3 = 500 \,\mathrm{g}$ de nisip, corpul de masă m_1 coboară uniform de-a lungul planului.

- a. Reprezentați forțele care acționează asupra corpului de masă m_1 în timpul coborârii.
- b. Calculati valoarea coeficientului de frecare la alunecare dintre corp si suprafata planului înclinat.
- c. În găleată se toarnă suplimentar o masă $m_a = 5,0$ kg de nisip. Determinați accelerația sistemului,

considerând că valoarea coeficientului de frecare la alunecare este $\mu = 0.29 \cong \left(\frac{1}{2\sqrt{3}}\right)$.

d. Calculati valoarea forței de apăsare în axul scripetelui, în cazul punctului c.

III. Rezolvaţi următoarea problemă:

Un corp punctiform de masă $m_1 = 0,20 \, \mathrm{kg}$ este lăsat să alunece liber, din punctul A, situat la înălțimea $h = 1,25 \,\mathrm{m}$, ca în figura alăturată. În punctul C corpul lovește un alt corp punctiform, de masă $m_2 = 0.40 \,\mathrm{kg}$, aflat în repaus. Imediat după impact, corpurile se cuplează si îsi continuă miscarea împreună. Ulterior, corpul rezultat în urma impactului lovește capătul liber

- al unui resort de masă neglijabilă și de constantă elastică $k = 1500 \,\mathrm{N} \cdot \mathrm{m}^{-1}$, fixat la celălalt capăt în punctul D. Pe portiunile AB si CD frecările sunt neglijabile, iar coeficientul de frecare la alunecare dintre corpul de masă m_1 și suprafața BC este $\mu=0.4$. Se cunoaște lungimea porțiunii BC, $d=2\,\mathrm{m}$. Determinați:
- **a.** energia cinetică a corpului de masă m_1 când acesta ajunge în punctul B;
- **b.** viteza corpului de masă m_1 în momentul în care acesta ajunge în punctul C;
- c. viteza corpului format prin impact, înainte ca acesta să atingă capătul liber al resortului;
- d. valoarea maximă a comprimării resortului.

(15 puncte)

Proba E. d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu. Timpul de lucru éfectiv este de trei ore.

B. ELEMENTE DE TERMODINAMICA

Model

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \, \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect.

- 1. Ciclul Carnot este format din:
- a. două transformări adiabatice și două transformări izocore;
- b. două transformări adiabatice și două transformări izoterme;
- c. două transformări adiabatice și două transformări izobare;
- d. două transformări adiabatice, o transformare izobară și o transformare izocoră.

(3p)

- 2. Simbolurile mărimilor fizice fiind cele utilizate în manuale de fizică, expresia lucrului mecanic schimbat de o cantitate de gaz ideal cu mediul exterior în cursul unei transformări adiabatice este:
- **a.** $L = vR\Delta T$
- **b.** $L = -\nu R\Delta T$
- **c.** $L = \nu C_P \Delta T$
- (3p)
- 3. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a mărimii fizice exprimate prin produsul $m \cdot c \cdot \Delta T$ este:
- **a.** J·mol⁻¹·K⁻¹
- **b.** J·K⁻¹

d. K

(3p)

- **4.** O cantitate de gaz ideal biatomic $(C_V = 2.5R)$ este supusă unei transformări izobare, în cursul căreia energia internă a gazului scade de la valoarea $U_1 = 1300 \,\mathrm{J}$ la valoarea $U_2 = 800 \,\mathrm{J}$. Căldura schimbată de gaz cu exteriorul în cursul transformării este:
- **a.** -700 J
- **b.** -500 J
- **c.** -300J
- **d.** -100 J

- (3p)
- 5. O cantitate dată de gaz, considerat ideal, este supusă procesului termodinamic ciclic 1-2-3-4-1 reprezentat în coordonate p-V în figura alăturată. Energia internă a gazului este maximă în starea:

- a. 1
- **b.** 2 **c.** 3

II. Rezolvati următoarea problemă:

(3p) (15 puncte)

Un vas cilindric orizontal, închis la ambele capete, este împărțit cu ajutorul unui piston termoizolant, care se poate mişca fără frecare, în două compartimente M și N, de volume $V_{\rm M}=1.0~{\rm dm^3}$ respectiv $V_{\rm N}=2.0~{\rm dm^3}$. Gazul din compartimentul M se află la presiunea $p_{M} = 1,0 \cdot 10^{5} \, \text{Pa}$, iar gazul din compartimentul N la presiunea $p_N = 2.0 \cdot 10^5 \, \text{Pa}$. Inițial gazele se află la aceeași temperatură T, iar pistonul este blocat. Considerând cele două gaze ideale, determinați:

- a. raportul dintre numărul de molecule aflate în compartimentul M și numărul de molecule aflate în compartimentul N;
- **b.** cantitatea de gaz aflată în compartimentul M, dacă temperatura este $T = 250 \,\mathrm{K}$;
- c. volumul ocupat de gazul din compartimentul M, după deblocarea pistonului si stabilirea echilibrului mecanic, știind că în timpul procesului temperatura rămâne constantă în ambele compertimente;
- d. valoarea temperaturii până la care trebuie încălzit gazul din compartimentul M pentru ca pistonul să revină în pozitia initială.

III. Rezolvați următoarea problemă:

(15 puncte)

O cantitate $v = 0.24 \ \left(\cong \frac{2}{8.31} \right)$ mol de gaz ideal monoatomic $\left(C_V = 1.5R \right)$ parcurge transformarea ciclică 1231 reprezentată în coordonate p-T în figura alăturată. În starea 1 temperatura gazului este, $t_1 = 127$ °C, iar presiunea

a. Reprezentați ciclul 1231 în coordonate p-V.

gazului în starea 2 este $p_2 = 2p_1$. Se cunoaște $\ln 2 \approx 0.7$.

- b. Determinați randamentul ciclului Carnot care ar funcționa între temperaturile extreme ale ciclului 1231
- c. Calculați lucrul mecanic total schimbat de gaz cu mediul exterior în ciclul 1231
- d. Determinati randamentul unui motor termic care ar functiona după transformarea 1231.

Proba E. d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu. Timpul de lucru éfectiv este de trei ore.

<u>C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU</u>

Model

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Tensiunea la bornele porțiunii de circuit AB reprezentată în figura alăturată are valoarea $U = 18 \,\mathrm{V}$, iar intensitatea are sensul din figură. Se cunosc: $E_1 = 15\,\mathrm{V}$, $E_2 = 6\,\mathrm{V}$, $r_1 = r_2 = 1\Omega$ \mathbf{A} $\mathbf{E_1}$, $\mathbf{r_1}$

și I = 1A. Valoarea rezistenței electrice a rezistorului R este egală cu:

- a. 3Ω
- 2. Mărimea fizică a cărei unitate de măsură poate fi scrisă în forma W·m·A⁻² este:
- b. tensiunea electrică c. rezistenta electrică d. rezistivitatea electrică a. energia electrică (3p)
- 3. Dependenta de temperatură a rezistentei electrice a unui conductor cilindric este redată în figura alăturată. Se neglijează variația cu temperatura a dimensiunilor conductorului. Coeficientul termic al rezistivitătii materialului din care este confecționat conductorul are valoarea:

- **a.** 0,005 K⁻¹
- **b.** 0,002 K⁻¹
- **c.** 0,0015 K⁻¹
- d. 0.0005 K⁻¹ (3p)
- 4. Un generator cu rezistența internă r alimentează un consumator cu rezistența electrică R, conectat la generator prin două fire conductoare identice. Rezistența electrică a unui fir conductor este R_f . Randamentul transferului de energie de la generator la consumator este egal cu:

a.
$$\frac{R}{R_1 + r + 2R}$$

b.
$$\frac{R}{2R_f + r}$$

$$\mathbf{c.} \ \frac{2R_{f}}{2R_{f}+r+R}$$

$$\mathbf{d.} \; \frac{R}{2R_t + r + R} \tag{3p}$$

- 5. Sensul convențional al curentului electric într-un circuit simplu este:
- a. de la borna "-" la borna "+" în circuitul exterior sursei
 b. de la borna "-" la borna "+" în circuitul interior sursei
 c. de la borna "+" la borna "-" în circuitul interior sursei

- d. acelasi cu sensul deplasării electronilor în circuit.

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

În figura alăturată este reprezentată schema unui circuit electric. Bateria are tensiunea electromotoare E = 9.0 V și rezistență interioară $r = 1.0 \Omega$. La bornele bateriei se conectează un circuit format din: două

rezistoare identice cu rezistența electrică $R_1 = 3.0 \,\Omega$, un rezistor având rezistența electrică R_2 necunoscută și un ampermetru considerat ideal $(R_A \cong 0 \Omega)$. Ampermetrul indică I = 1,5 A. Determinați:

- a. tensiunea la bornele bateriei;
- **b.** valoarea rezistenței electrice R_2 ;
- c. randamentul circuitului electric;
- d. indicația ampermetrului dacă între bornele A și B se conectează un fir cu rezistență electrică neglijabilă.

III. Rezolvaţi următoarea problemă:

În figura alăturată este reprezentată schema unui circuit electric. Bateria este formată prin legarea în serie a patru generatoare identice, fiecare având t.e.m $E_0 = 1.0 \,\mathrm{V}$ și rezistența interioară r_0 . Se cunosc: $R_1 = 3.0 \,\Omega$, $R_2 = 5.0\Omega$, iar firul conductor, notat NM, al reostatului cu cursor, are lungimea $L_{NM} = 90$ cm și rezistența

electrică totală $R_{NM} = 48\Omega$. Întrerupătorul K este deschis, iar ampermetrul ideal montat în circuit $(R_{\Delta} \cong 0 \Omega)$ indică intensitatea I = 400 mA.

b. Calculați rezistența interioară r_0 a unui generator.

c. Se închide întrerupătorul K și se poziționează cursorul reostatului (C) la jumătatea firului NM. Calculați energia electrică consumată de circuitul exterior bateriei în timpul $\Delta t = 100 \, \text{s}$.

d. Întrerupătorul K rămâne închis și cursorul reostatului (C) se poziționează astfel încât puterea absorbită de circuitul exterior generatoarelor să fie maximă. Determinați distanța la care se află cursorul față de punctul M.

Proba E. d) **FIZICA**

Filiera teoretică – profilul real, Filiera vocațională – profilul militar

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă zece puncte din oficiu.

Timpul de lucru éfectiv este de trei ore.

D. OPTICA Model

Se consideră: viteza luminii în vid $c = 3.10^8 \text{ m/s}$, constanta Planck $h = 6.6.10^{-34} \text{ J} \cdot \text{s}$.

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

1. Un obiect real este plasat între o lentilă convergentă și focarul obiect al acesteia. Imaginea obiectului este: a. răsturnată **b.** virtuală c. reală d. micsorată

2. Energia cinetică maximă a electronilor extrași prin efect fotoelectric extern depinde de frecventa radiatiei incidente conform graficului din figura alăturată. Energia unui foton de frecvență v_1 , din radiația incidentă, este de aproximativ:

a. $0.6 \cdot 10^{-19}$ J

- **b.** 4,3·10⁻¹⁹ J
- **c.** 4.9·10⁻¹⁹ J

d. 9,2·10⁻¹⁹ J (3p)

3. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, frecventa unei radiatii electromagnetice având lungimea de undă λ are expresia:

a. $c \cdot \lambda^{-1}$

- **b.** $c^{-1} \cdot \lambda$
- **c.** $h \cdot c \cdot \lambda^{-1}$
- **d.** $c \cdot \lambda$

(3p)

4. Unitatea de măsură în S.I. a raportului dintre viteza luminii în vid și indicele de refracție al mediului prin care se propagă lumina este:

- **b.** m⁻¹
- **c.** m
- d. m/s

5. Un sistem optic centrat e format din două lentile convergente L_1 și L_2 . Distanța dintre cele două lentile este d = 60 cm. Un fascicul de lumină paralel, care intră în sistemul optic întâlnind mai întâi lentila L_1 , este transformat, la ieșirea sa din sistem, tot într-un fascicul paralel, dar cu diametrul de 3 ori mai mic. Distanța focală a lentilei L_1 este:

a. 45 cm

- **b.** 40 cm
- **c.** 20 cm
- d. 15 cm

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Un obiect luminos liniar este situat la $0.80 \,\mathrm{m}$ în fața unei lentile subțiri cu distanța focală $f = 16.0 \,\mathrm{cm}$, perpendicular pe axa optică principală a lentilei. Imaginea se formează pe un ecran aflat de cealaltă parte a lentilei.

- a. Realizați un desen în care să evidențiați construcția imaginii prin lentilă.
- b. Calculati convergenta lentilei.
- c. Calculați distanța dintre obiectul luminos și imaginea acestuia prin lentilă.
- d. Calculați mărirea liniară transversală și precizați dacă imaginea este reală sau virtuală, dreaptă sau răsturnată, mărită sau micsorată.

III. Rezolvați următoarea problemă:

(15 puncte)

Într-un experiment se utilizează un dispozitiv Young, plasat în aer, având distanța dintre fante $2\ell=1$ mm și distanta de la planul fantelor la ecran D = 4 m. Sursa este plasată pe axa de simetrie a sistemului si emite lumină monocromatică și coerentă. Se obține o figură de interferență cu interfranja i = 2 mm.

- a. Calculați valoarea lungimii de undă a luminii monocromatice utilizate.
- b. Calculați distanța de la franja centrală la maximul de ordinul al treilea.
- **c.** Una dintre fante se acoperă cu o lamă de sticlă având grosimea $e = 0.02 \,\mathrm{mm}$ si indicele de refractie n = 1.5. Calculati diferenta de drum optic introdusă de lamă.
- d. Determinați deplasarea maximului central al figurii de interferență datorată introducerii lamei.