

PRAYAS 2.0 (Ly

FOR IIT - JEE 2023

-02

TABLE OF CONTENT

- 01 GRAPHICAL VIEW
- 02 Instantaneous Speed and Velocity
- 03 Acceleration.
 - 04

	Hey	ghl				
120-						
100_	_		:/			
Bu_		. /				
60 - 40 -	-					
20-						
	-	+				70
		L	3	4	5	(Hge)

Age	Height
(1 yr)	(50cm)
2 1/	Goch
342	90cm
44	1200
54r	130cm

Linear Graph:

t	×
+=0	X = 0
t = 1	X=1
t = 2	X=2
t = 3	X = 3
t= 4	X=Y

Kota-Patna

$$\langle V \rangle = \frac{550}{9} = 61 \text{ km/hz}$$

$$\langle V \rangle$$
 Kahpur-Vencrai = $\frac{300}{6}$ = $\frac{50 \text{km/hr}}{}$

$$\frac{250}{5} = \frac{250}{5} = \frac{50 \text{ km/hz}}{5}$$

$$\frac{\text{konb-Patna}}{11} = \frac{550}{11} = 50 \text{ km/hz}$$

Instantaneous

Palak Thapacano

Distance and Ausplacement

in a instant is very very very

small. thus almost a straight

Nopolod of [Distance = Displacement] in a (Instant)

1m+ant = Bahwtchoota 8amay = 0.0000000000 000000000000

6000000000

Inst Velocity and Speed

$$V = \frac{d\vec{x}}{dt} = \frac{\text{(chota displacement)}}{\text{(chota time)}}$$

Speed = 171 of If only wood "Speed or Velocity"

(Magnitude of its written it means Instantan.

Velocity)

Velocity y

Slope

velocity is the slope of x-t

$$\frac{df}{dx} = uf_{u-1}$$

$$X = f_u$$

 $X = \frac{1}{4} + \frac{1}{4} + \frac{1}{3} +$

The position x of a particle varies with time (t) as $x = at^2 - bt^3$. The velocity at time t of the particle will be equal to zero, where t is equal to:

$$\frac{2a}{3b}$$

$$(2) \frac{a}{b}$$

(3)
$$\frac{a}{3b}$$

(4)
$$\frac{a}{2b}$$

A body is moving according to the equation $x = at^2 + bt - c$. Then its instantaneous speed is given by :-

$$(1) a + 2b + 3ct$$

(2)
$$a + 2bt - 3ct^2$$

$$(3) 2b - 6ct$$

$$(4)$$
 2at + b

$$\lambda = \frac{qf}{dx} = \frac{qf}{dqf_s} + \frac{qf}{q(pf)} - \frac{qf}{qcf_p} \Rightarrow 3af + pff_{1-1} - close_{1}$$

$$\chi = af_s + pf - c$$

Acceleration

- Change in velocity wrt time

Qinst =
$$\frac{dV}{dt}$$
 = Rate of charge of velocity
Vinst = $\frac{dX}{dt}$ = Rate of charged disp with time

= constant Sunjorm motion > Arrecton Mopritude Dir and Man Both munt

- Of If Particle in moving with constant
 Velocity #0
 - (A) Path may be str line or curve
 - Is Path munt be 8+ line
 - @ Path must be curve
 - D Any path in pomible

~ - - -

- Particle in thrown upward under gravity -
 - Motor in (1) Annilorm
 - (B) Now Anilum

(23) Christu in moving with constant speed longs along a circular path of Radius

loom - Mohon in

A) Velocity comfort a=0

(8) Velocity Variable a \$ 0

(c) $\sqrt{\frac{1}{2}} = (ant a + b)$

(b) $\overline{V} = Vanable 0 = 0$

$$\overrightarrow{Q} = \cancel{Q} \quad \frac{\overrightarrow{dV}}{\overrightarrow{dt}}$$

B) d IVI = Rute of charge of (VI) Wr t time

If
$$\overline{\alpha} = 0$$
 $\overline{V} = constant$ $\overline{Om/s}$
 A $\overline{V} = 0$ munt be $\overline{V} = 0$ may be

Retardation

Motion in J-P I-Director Motion of Motion along a straight line?

tive —> (+1/k

Physical feeling of acceleration : $Q = \frac{dv}{dt} = \frac{m_1s}{s} = m_1s_{ell}$

When acc and velocity in in oppo dir Motonia Retardation

Question !-

a= (antal A)

0 = 18++14

Mariable (B)

Equation of displacement for a particle is

$$s = 3t^3 + 7t^2 + 14t + 8$$
 m. Its acceleration at time

$$t = 2 \text{ sec is } :$$

(1)
$$10 \text{ m/s}^2$$

$$(3) 25 \text{ m/s}^2$$

(1) 10 m/s²
$$Q_{t=2} = 36 + 14$$
 (2) 16 m/s²
$$= 56 \text{m/s}^2$$
 (4) 50 m/s²

$$(4)$$
 50 m/s²

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t + 18$$

$$S = 3t^{3} + 7t^{2} + 14t^{2} + 14$$

$$y = a + bt + ct^3$$
. The initial velocity and acceleration

are respectively:

$$(2)$$
 -b, 2c

$$(3)$$
 b, 2c

$$(4) 2c, -4d$$

$$0 = \frac{qf}{dt} = 0 + p + c \cdot 3f_{5}$$

$$1 = a + pf + cf_{3}$$

$$1 = a + pf + cf_{3}$$

The relation $t = \sqrt{x} + 3$ describes the position of a particle where x is in meters and t is in seconds. The acceleration of particle is :-

(1) 2
$$m/s^2$$

$$(2) 4 \text{ m/s}^2$$

$$(3) 5 \text{ m/s}^2$$

$$\frac{1}{3x} = \frac{1}{4} - 3$$

$$x = (1 - 3)^{2}$$

$$x = 4^{2} + 9 + - 6 + 6$$

$$y = \frac{1}{4} + 9 + 6 + 6 + 6$$

$$0 = \frac{af}{af} = 3(1) - 0$$

Uniform Moton (Moton in along 3+ line)

Find Aintlacement in t=10xxc

$$d = v t$$

$$= 10 \times 10$$

$$d = 100m$$

1 a = considut

- Equation of Motion &-

If a car at rest accelerates uniformly to a speed of 144 km/h in 40 seconds, it covers a distance of :

(1) 200 m

(2) 400 m

(3) 1440 m

(4) 2980 m

$$V = \frac{144 \text{ km/hr}}{8} = \frac{144 \text{ km/hr}}{18} = \frac{144 \text{ km/hr}}{$$

FEEL THE MOTION

Q=2m/sz

32 m/s

$$\frac{7}{x=0} = 1 + 1 = 2 \times 10 + 1 = 2 \times 10 \times 10^{2}$$
=1 120m

Which of the following relations representing velocity of a particle describes motion with constant acceleration?

(1)
$$v = 6 - 7 t$$

(2)
$$v = 3t^2 + 5t^3 + 7$$

(3)
$$v = 9t^2 + 8$$

$$(4) v = 4t^{-2} + 3t^{-1}$$

If a train travelling at 72 km/h is to be brought to rest in a distance of 100 m, then its retardation should be:

(1) 20 m/s^2 (2) 2 m/s^2 (3) 10 m/s^2 (4) 1 m/s^2

(HW)

The velocity acquired by a body moving with uniform acceleration is 30 m/s in 2 seconds and 50 m/s in 4 seconds. The initial velocity is:

(1) zero

 $(2) 2 \,\mathrm{m/s}$

 $(3) 4 \,\mathrm{m/s}$

 $(4) 10 \,\mathrm{m/s}$

A car moving with a speed of 40 km/h can be stopped by applying brakes after at least 2m. If the same car is moving with a speed of 120 km/h., what is the minimum stopping distance?

(1) 2 m

 $(2) 4 m \qquad (3) 6 m$

A particle moves in a straight line with a constant acceleration. It changes its velocity from 10 ms^{-1} to 20 ms^{-1} while passing through a distance 135 m in t second. The value of t is

(1) 12

(2) 9

(3) 10

(4) 14

(M. w.

मुखड़े पर धूल लगी माना , माथा फूटा माना लेकिन , गालों पर थप्पड़ खाये है , जबड़ा टूटा माना लेकिन , माना के आंते अकड़ गई , पसलियों से लहू निकलता है , गिस गया है कंकर में घुटना , मिर्च सलिखे जलता है , माना के साँसे उखड़ रही, और धक्का लगता धड़कन से , लो मान लिया की काँप गया है , पूर्ण बदन अंतर्मन से , पर आँखों से अंगारे , नथनों से तूफ़ा लाऊंगा , में गिर गिर कर भी धरती पर , हर रोज़ खड़ा हो जाऊंगा , मुट्ठी में बींच लिया तारा , तुम नगर में ढोल पिटादो जी , अँधेरे हो लाख़ घने पर अँधेरे अनन्त नहीं,

