Stochastik Formelsammlung

Prof. Dr. Barbara Staehle

WS 2019/2020

Teil I

Beschreibende Statistik

1 Charakterisierung einer Stichprobe

1.1 Häufigkeitsverteilung einer Stichprobe

- 1. Seien n Messwerte in einer Urliste (unsortierte Stichprobe) gegeben: x_1, x_2, \ldots, x_2 .
- 2. Ermittle die **verschiedenen auftretenden** Werte als a_1, a_2, \ldots, a_k (eliminiere mehrfach vorkommende).
- 3. Ermittle für jeden Wert a_i dessen absolute Häufigkeit h_i durch Zählen dessen Vorkommens in der Urliste.
- 4. Ermittle die **relative Häufigkeit** als $f_i = \frac{h_i}{n}$.
- 5. Plausibilitätscheck:

$$\sum_{i=1}^k h_i = n \quad \text{ und } \quad \sum_{i=1}^k f_i = 1.$$

Darstellung: Balken- oder Stabdiagramm

- auch: Histogramm
- x-Achse: a_i (Werte der ZV)
- y-Achte: h_i/f_i (absolute oder relative Häufigkeiten) als Säule / Stab / Balken

Darstellung: empirische Verteilungsfunktion

berechne

$$\bar{F}(x) = \sum_{i: a_i \le x} f_i$$

• \bar{F} ist Stufenfunktion mit min>0, max=1, Sprünge bei a_i

1.2 Kennwerte einer Stichprobe

Definition 1. Sei x_1, \ldots, x_n eine Stichprobe mit den verschiedenen Werte a_1, \ldots, a_k und den absoluten Häufigkeiten h_1, \ldots, h_k bzw. relativen Häufigkeiten f_1, \ldots, f_k . Das (arithmetische) Mittel (oder Mittelwert) der Stichprobe ist

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{k} h_i a_i = \sum_{i=1}^{k} f_i a_i.$$

Definition 2. Der Median (auch Zentralwert) einer geordneten Stichprobe x_1, \ldots, x_n ist

$$\tilde{x} = \left\{ \begin{array}{ll} x_{m+1} & \text{falls } n = 2m+1, \\ \frac{1}{2}(x_m + x_{m+1}) & \text{falls } n = 2m. \end{array} \right.$$

Der Modalwert

Der Modalwert gibt den am häufigsten auftretenden Stichprobenwert an. Vorteil: auch für nicht-numerische

Bemerkung: Kommen mehrere Werte am häufigsten vor, heißt die Stichprobe multimodal (bimodal, falls es zwei Modi gibt)

Definition 3. Für die **geordneten** Stichprobenwerte x_1, \ldots, x_n und 0 heißt

$$\tilde{x}_p = \left\{ \begin{array}{ll} x_{\lceil np \rceil} & \text{falls } np \notin \mathbb{N}, \\ \frac{1}{2}(x_{np} + x_{np+1}) & \text{falls } np \in \mathbb{N} \end{array} \right.$$

das p-Quantil.

- Das 0.5-Quantil ist genau der Median: $\tilde{x}_{0.5} = \tilde{x}$.
- $\tilde{x}_{0.25}, \tilde{x}, \tilde{x}_{0.75}$ werden als **Quartile** bezeichnet.
- $\tilde{x}_{0.1}, \tilde{x}_{0.2}, \ldots, \tilde{x}_{0.9}$ heißen **Dezile** .
- $\tilde{x}_{0.01}, \tilde{x}_{0.02}, \ldots, \tilde{x}_{0.99}$ heißen Perzentile .

Definition 4. Für die Stichprobe x_1, \ldots, x_n gibt die (Stichproben-)Varianz oder empirische Varianz an, wie sehr die Stichprobenwerte x_i um ihren Mittelwert \bar{x} streuen:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}.$$

Als Maß für die Streuung wird auch die Wurzel der Varianz verwendet

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2},$$

die so genannte (Stichproben-)Standardabweichung oder empirische Standardabweichung .

Alternative Varianz-Berechnung: Für die k verschiedenen Werte der Stichprobe a_i mit Häufigkeiten h_i gilt

$$s^{2} = \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right) - n \cdot \bar{x}^{2}}{n-1} = \frac{\left(\sum_{i=1}^{k} h_{i} a_{i}^{2}\right) - n \cdot \bar{x}^{2}}{n-1}.$$

Weitere Streuungsmaße

Spannweite $R = x_{max} - x_{min}$ (Differenz von größtem und kleinstem Stichprobenwert); Vorteil: einfach zu berechnen, Nachteil: starke Beeinflussung durch Ausreißer.

Interquartilabstand $I = \tilde{x}_{0.75} - \tilde{x}_{0.25}$ (Differenz zwischen 75% und 25% Quantil); Vorteil: resistent gegen Ausreißer, Nachteil: aufwändiger zu berechnen. Abkürzung: IQR.

2 Multivariate Statistik (v3 only)

Lineare Korrelation (v3 only)

Definition 5. Gegeben seien die Wertepaare $(x_1, y_1), \ldots, (x_n, y_n)$ wobei nicht alle x_i gleich sind bzw. nicht alle y_i gleich sind. Die Zahl $r_{x,y} = \frac{s_{x,y}}{s_x s_y}$

heißt (empirischer) Korrelationskoeffizient . Dabei ist

$$s_{x,y} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

die (empirische) Kovarianz , \bar{x}, \bar{y} sind die arithmetischen Mittelwerte und

$$s_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 $s_y = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$

sind die (empirischen) Standardabweichungen der x_i bzw. der y_i -Werte.

Eigenschaften des Korrelationskoeffizienten

- $-1 \le r_{x,y} \le 1$
- Falls $r_{x,y} > 0$, sind die Stichproben (linear) positiv korreliert
- Falls $r_{x,y} < 0$, sind die Stichproben (linear) negativ korreliert
- Falls $r_{x,y} = 0$, sind die Stichproben (linear) unkorreliert
- Falls $|r_{x,y}|=1$, besteht perfekte lineare Abhängigkeit.

Lineare Regression (v3 only) 2.2

Korrelationsanalyse Untersuchung des Ausmaßes des (linearen) Zusammenhangs zwischen zwei Merkmalen x und y; beide Merkmale sind gleichrangig, d.h., sowohl gemessene x-Werte als auch gemessene y-Werte können streuen.

Regressionsanalyse Untersuchung der Art des (linearen) Zusammenhangs zwischen zwei Merkmalen x und y; beide Merkmale sind **nicht gleichrangig**, man betrachtet y als abhängig von x. Man geht davon aus, dass x festgehalten und exakt messbar ist und nur die y-Werte streuen.

Lineare Regression

Lineare Regression ist das einfachstes Regressionsmodell: Ermittlung einer Regressionsgerade, die den mittleren quadratischen Fehler (die mittlere quadratische Abweichung der Messwerte von den Funktionswerten) minimiert (Gauß'sche Methode der kleinsten Quadrate).

Berechnung einer Regressionsgerade

Gegeben Wertepaare $(x_1, y_1), \ldots, (x_n, y_n)$

Gesucht Gerade f(x) = kx + d

Bedingung minimiere den quadratischen Fehler $\sum_{i=1}^{n} (y_i - f(x_i))^2$

Lösung Berechne k und d als

$$k = r_{x,y} \frac{s_y}{s_x} = \frac{s_{x,y}}{s_z^2}$$
 und $d = \bar{y} - k\bar{x}$

Losung Berechne k und d als $k=r_{x,y}\frac{s_y}{s_x}=\frac{s_{x,y}}{s_x^2}\quad\text{und}\quad d=\bar{y}-k\bar{x}$ Legende $r_{x,y}$: empirischer Korrelationskoeffizient, s_x,s_y : Standardabweichungen, \bar{x},\bar{y} : arithmetische Mittelwerte, $s_{x,y}$: empirische Kovarianz

Die Qualität der Regressionsgeraden

Bestimmtheitsmaß $R^2=r_{x,y}^2$ (Quadrat des Korrelationskoeffizienten) sagt aus, welcher Anteil der Variation in der abhängigen Variablen durch die Regressionsgerade erklärt werden kann. Je größer \mathbb{R}^2 , desto besser beschreibt die Gerade den Zusammenhang zwischen x und y.

Winkel zwischen den Regressionsgeraden für x und y f(x) = kx + d bzw. g(y) = k'y + d'; kleiner Winkel visualisiert hohe Korrelation zwischen x und y, großer Winkel eine kleine Korrelation; Schnittpunkt im Daten-Schwerpunkt.

iii

Teil II

Diskrete Wahrscheinlichkeitstheorie

3 Wahrscheinlichkeitsrechnung

3.1 Zufallsexperimente, Ereignisse und Wahrscheinlichkeit

Definition 6. Ein Zufallsexperiment ist ein Vorgang, der

- beliebig oft unter gleichartigen Bedingungen wiederholt werden kann
- und dessen Ergebnis nicht mit Sicherheit vorhergesagt werden kann.

Die Menge aller möglichen (sich gegenseitig ausschließenden) Ergebnisse des Zufallsexperiments wird **Ergebnis**menge, **Ereignismenge** oder **Ergebnisraum** genannt und mit Ω bezeichnet.

Definition 7. • Ein Ereignis A ist eine Teilmenge von Ω und heißt eingetreten , wenn das Ergebnis des Experiments ein Element von A ist.

- Die einelementigen Teilmengen von Ω enthalten genau die möglichen Ergebnisse des Experiments und heißen Elementarereignisse .
- Ω selbst heißt das sichere Ereignis, da es auf jeden Fall eintritt.
- Die leere Menge Ø steht für ein Ereignis, das nie eintritt und heißt das unmögliche Ereignis.

Definition 8. Gegeben sind die Ereignisse $A, B \subseteq \Omega$

- Das Ereignis A und B entspricht dem Durchschnitt $A \cap B$.
- Das Ereignis A oder B entspricht der Vereinigung $A \cup B$.
- Das Gegenereignis von A ist jenes Ereignis, das eintritt, wenn A nicht eintritt. Schreibweise: \bar{A} . Es entspricht dem Komplement $\bar{A} = \Omega \setminus A$.
- A,B heißen **unvereinbar** , wenn $A\cap B=\emptyset$, sie nicht gleichzeitig eintreten können, andernfalls heißen A,B vereinbar

Definition 9. Ein Laplace-Experiment ist ein Zufallsexperiment mit folgenden Eigenschaften:

- Das Zufallsexperiment hat nur endlich viele mögliche Ergebnisse.
- Jedes dieser Ergebnisse ist gleich wahrscheinlich .

Satz 10. Bei einem Laplace-Experiment mit n möglichen Ergebnissen hat jedes dieser Ergebnisse die Wahrscheinlichkeit $\frac{1}{n}$. Wenn ein Ereignis A in k dieser Fälle eintritt, dann ist die Wahrscheinlichkeit von A gleich

$$P(A) = \frac{\textit{Anzahl der für A günstigen Fälle}}{\textit{Anzahl der möglichen Fälle}} = \frac{k}{n}.$$

Definition 11 (Axiome von Kolmogorov). Ein **Wahrscheinlichkeitsmaß** $P:\Omega\to[0,1]$ muss folgendes erfüllen:

1. Die Wahrscheinlichkeit jedes Ereignisses ist eine reelle Zahl zwischen 0 und 1:

$$\forall_{A \subset \Omega} \ 0 \le P(A) \le 1$$

2. Das sichere Ereignis hat die Wahrscheinlichkeit 1:

$$P(\Omega) = 1$$

3. Additionsregel : Für abzählbar viele unvereinbare Ereignisse $A_i \subseteq \Omega$, $i \in I \subseteq \mathbb{N}$ ist die Wahrscheinlichkeit der Vereinigung dieser Ereignisse gleich der Summe der Einzel-Wahrscheinlichkeiten:

$$P(A_1 \cup A_2 \cup \ldots) = \sum_{i \in I} P(A_i) \ \text{ falls } \forall_{i,j \in I, i \neq j} \ A_i \cap A_j = \emptyset$$

Satz 12 (Eigenschaften von Wahrscheinlichkeiten). 1. Die Wahrscheinlichkeit des Gegenereignisses von A ist

$$P(\overline{A}) = 1 - P(A)$$

2. Additionsregel für beliebige Ereignisse A und B:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

3. Die Wahrscheinlichkeit ist monoton:

$$P(A) \leq P(B)$$
 für $A \subseteq B$,

wenn A eine Teilmenge von B ist, ist P(A) kleiner oder gleich P(B).

3.2 Kombinatorik

Satz 13 (Summenregel). Für zwei endliche, **disjunkte** Mengen A und B (deren Elemente jeweils unterschiedliche Eigenschaften haben) ist die Anzahl der Elemente ihrer Vereinigungsmenge gleich

$$|A \cup B| = |A| + |B|.$$

Verallgemeinerung für disjunkte Mengen A_1, A_2, \ldots, A_k :

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \ldots + |A_k|.$$

Satz 14 (Produktregel). Wenn A_1 und A_2 beliebige endliche Mengen sind, welche die Möglichkeiten für den ersten und zweiten Schritt eines Prozesses beschreiben, dann ist die Anzahl der Möglichkeiten den gesamten Prozess durchzuführen, beschrieben durch:

$$|A_1 \times A_2| = |A_1| \cdot |A_2|.$$

Verallgemeinerung für k Schritte A_1, A_2, \ldots, A_k :

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \cdot |A_2| \cdot \ldots \cdot |A_k|$$

3.3 Bedingte Wahrscheinlichkeit

Definition 15. Seien A, B Ereignisse über dem selben Ereignisraum Ω . Die Wahrscheinlichkeit des Ereignisses B unter der Bedingung , dass Ereignis A eingetreten ist, heißt bedingte Wahrscheinlichkeit P(B|A) und ist definiert als

 $P(B|A) = \frac{P(A \cap B)}{P(A)}.$

Satz 16 (Multiplikationssatz). Gegeben sind Ereignisse A und B über dem selben Ereignisraum Ω mit Wahrscheinlichkeiten ungleich null. Dann gilt:

$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B).$$

Satz 17 (von der totalen Wahrscheinlichkeit). Für eine Partition E_1, \ldots, E_n von Ω und ein beliebiges Ereignis $A \subseteq \Omega$ gilt n

 $P(A) = \sum_{k=1}^{n} P(A \cap E_k) = \sum_{k=1}^{n} P(E_k) P(A|E_k)$

Satz 18 (Formel von Bayes). Gegeben ist eine beliebige Partition E_1, \ldots, E_n von Ω und ein beliebiges Ereignis $A \subseteq \Omega$. Die Wahrscheinlichkeit, dass eines der Ereignisse E_j unter der Bedingung von A eintritt, ist

$$P(E_j|A) = \frac{P(E_j)P(A|E_j)}{P(A)} = \frac{P(E_j)P(A|E_j)}{\sum_{k=1}^{n} P(E_k)P(A|E_k)}$$

Bemerkung: Meistens ist n=2 und $E_1=E, E_2=\bar{E}$, und damit

$$P(E|A) = \frac{P(E)P(A|E)}{P(E)P(A|E) + P(\bar{E})P(A|\bar{E})}.$$

Definition 19. Zwei Ereignisse A und B über dem selben Ereignisraum Ω heißen **unabhängig**, wenn eine (und damit alle drei) der folgenden Eigenschaften erfüllt ist:

- P(B|A) = P(B) (falls P(A) > 0)
- P(A|B) = P(A) (falls P(B) > 0)
- $P(A \cap B) = P(A) \cdot P(B)$ Multiplikationssatz für unabhängige Ereignisse

4 Zufallsvariablen

4.1 Diskrete Zufallsvariablen

Definition 20. Eine **Zufallsvariable** X ist eine Funktion, die zu einem Zufallsexperiment mit Ereignisraum Ω gehört und die jedem Elementarereignis dieses Zufallsexperimentes eine reelle Zahl zuordnet: $X:\Omega\to\mathbb{R},\omega\mapsto X(\omega)$.

Eine **diskrete** Zufallsvariable X

- kann nur endlich oder abzählbar unendlich viele Werte $T = \{x_1, x_2, x_3, \ldots\}$ annehmen; T heißt **Träger** von X (oder Wertemenge von X).
- hat Realisierungen x_i ; das Ereignis $X=x_i$ tritt mit der Wahrscheinlichkeit $p_i=P(X=x_i)$ eintritt. Die Realisierungen x_i gemeinsam mit den zugehörigen Wahrscheinlichkeiten p_i heißen (Wahrscheinlichkeits-)Verteilung der Zufallsvariablen.

Definition 21. Für eine (diskrete oder stetige) Zufallsvariable X heißt die Funktion

$$F(x) = P(X \le x), \quad \text{für } x \in \mathbb{R},$$

Verteilungsfunktion (CDF) (E: cumulative distribution function) von X.

Eigenschaften der Verteilungsfunktion

Ist F(x) die Verteilungsfunktion einer (diskreten oder stetigen) Zufallsvariablen X, so gilt:

• F(x) wächst monoton von 0 bis 1 :

$$\lim_{x \to -\infty} F(x) = 0, \quad F(x) \leq F(y) \text{ für } x < y, \quad \lim_{x \to \infty} F(x) = 1$$

• Wenn F(x) an einer Stelle x_0 springt, so ist die Sprunghöhe genau $P(X=x_0)$.

4.2 Erwartungswert und Varianz

Definition 22. Für eine **diskrete** Zufallsvariable X ist der **Erwartungswert**, $\mathbf{E}(X)$ oder μ_X die mit den Wahrscheinlichkeiten gewichtete Summe über alle Realisierungen x_i (aus dem Träger T) von X:

$$E(X) = \sum_{x_i \in T} x_i p_i$$

Eigenschaften des Erwartungswertes

Für zwei beliebige Zufallsvariablen $X,Y,a,b\in\mathbb{R}$, sowie eine Funktion $g:\mathbb{R}\to\mathbb{R}$ gilt:

• Der Erwartungswert ist linear, daher

$$- E(X + Y) = E(X) + E(Y)$$

$$- E(aX) = aE(X)$$

$$- E(aX + b) = aE(X) + b$$

• Auch g(X) ist eine Zufallsvariable, daher

$$E(g(X)) = \sum_{x_i \in T} g(x_i) p_i$$

Achtung: Meist gilt $E(g(X)) \neq g(E(X))$.

• Sind X und Y unabhängig, dann gilt

$$E(X \cdot Y) = E(X) \cdot E(Y)$$

Definition 23. Für eine diskrete Zufallsvariable X mit Erwartungswert μ_X ist die **Varianz**, $\operatorname{Var}(X)$ oder σ_X^2 die mit den Wahrscheinlichkeiten gewichtete Summe über die quadratische Abweichung aller Realisierungen x_i (aus dem Träger T) von X vom Erwartungswert:

$$Var(X) = \sum_{x_i \in T} (x_i - \mu)^2 p_i$$

Die **Standardabweichung** von X ist $\sigma_{\mathbf{X}} = \sqrt{\operatorname{Var}(X)}$.

Satz 24 (Vereinfachte Varianz-Berechnung). Für eine Zufallsvariable X mit Erwartungswert μ_X und Varianz σ_X^2 gilt $\sigma_X^2 = \mathrm{E}(X^2) - \mathrm{E}(X)^2 = \mathrm{E}(X^2) - \mu_Y^2$

Eigenschaften der Varianz

Für zwei beliebige Zufallsvariablen X,Y, $a,b\in\mathbb{R}$ gilt:

- $Var(aX) = a^2 Var(X)$
- $Var(aX + b) = a^2Var(X)$
- Für Y = aX + b gilt: $\sigma_Y = |a|\sigma_X$
- Nur wenn X und Y unabhängig sind, gilt Var(X+Y) = Var(X) + Var(Y)

5 Wichtige diskrete Verteilungen

Verteilungen in Bernoulli-Ketten

Definition 25. Ein Zufallsexperiment bei dem ein Ereignis A mit Wahrscheinlichkeit p eintritt oder nicht heißt Bernoulli-Experiment.

- Falls Ereignis A eintritt heißt dies **Erfolg**, falls A nicht eintritt, ist dies ein **Misserfolg**.
- p = P(A) heißt auch **Erfolgswahrscheinlichkeit**, q = 1 p die Wahrscheinlichkeit eines Misserfolgs.

Definition 26. Eine Zufallsvariable X, welche mit Wahrscheinlichkeit p den Wert 1 (Erfolg), mit Wahrscheinlichkeit q = 1 - p den Wert 0 (Misserfolg) annimmt, heißt Bernoulli-verteilt : $X \sim Ber(p)$.

Definition 27. Wird ein Bernoulli-Experiment n-mal hintereinander unter denselben Bedingungen ausgeführt, und sind die Experimente unabhängig voneinander, so spricht man von einer Bernoulli-Kette der Länge n.

Definition 28. Gegeben sei eine Bernoulli-Kette mit Erfolgswahrscheinlichkeit p und Misserfolgswahrscheinlichkeit q=1-p. Die Anzahl X der Versuche, die bis zum 1. Erfolg unternommen werden müssen, ist eine geometrisch **verteilte** Zufallsvariable mit Parameter $p: X \sim geom(p)$. Es gilt

$$P(X = x) = p \cdot q^{x-1}$$

Definition 29. Gegeben sei eine Bernoulli-Kette der Länge n mit Erfolgs- wahrscheinlichkeit p und Misserfolgswahrscheinlichkeit q = 1 - p. Die Anzahl X der erfolgreichen Versuche, ist eine **binomialverteilte** Zufallsvariable mit Parametern n und p: $X \sim Bin(n, p)$. Es gilt

$$P(X = x) = \binom{n}{x} \cdot p^x \cdot q^{n-x}$$

Die hypergeometrische Verteilung (v3 only)

Definition 30. Gegeben ist eine Grundgesamtheit aus N Elementen, von denen M eine bestimmte Eigenschaft haben Man entnimmt eine Stichprobe vom Umfang n (ohne Zurücklegen). Die Anzahl X der Elemente in der Stichprobe mit der bestimmten Eigenschaft ist eine hypergeometrisch verteilte Zufallsvariable mit den Parametern $n, M, N: X \sim H(n, M, N)$. Es gilt

$$P(X = x) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}}$$

Die Poisson-Verteilung

Definition 31. Eine Zufallsvariable X, die jede Zahl $x\in\mathbb{N}_0$ mit der Wahrscheinlichkeit $P(X=x)=\frac{\lambda^x}{x!}e^{-\lambda} \qquad (\lambda>0)$

$$P(X=x) = \frac{\lambda^{-1}}{x!}e^{-\lambda}$$
 $(\lambda > 0)$

annehmen kann, heißt poissonverteilt mit dem Parameter λ . Kurzschreibweise: $X \sim Po(\lambda)$.

Spezialfall Poisson-Verteilung

Für unabhängige Zufallsvariablen $A \sim Po(\lambda_A)$ und $B \sim Po(\lambda_B)$ gilt $A + B \sim Po(\lambda_A + \lambda_B)$

5.4 Näherungsweise (v3 only)

Faustregel

Wenn $n \gtrapprox 50$ und $p \lessapprox 0.1$ ist, dann kann eine Binomialverteilung mit den Parametern n und p durch die Poisson-Verteilung mit dem Parameter $\lambda = n \cdot p$ angenähert werden.

Wenn aus sehr vielen Elementen nur wenige ausgewählt werden (wenn der Auswahlsatz $\frac{n}{N} \lessapprox 0.005$ ist), dann kann eine hypergeometrische Verteilung mit den Parametern n,M,N durch die Binomialverteilung mit den Parametern n und $p = \frac{M}{N}$ angenähert werden.

Teil III

Kontinuierliche Wahrscheinlichkeitstheorie

6 Zufallsvariablen

6.1 Kontinuierliche Zufallsvariablen

Für eine **stetige** Zufallsvariable gilt:

- die Verteilungsfunktion (CDF) $F(x) = P(X \le x)$ ist eine **stetige** und (mindestens stückweise) **differenzierbare** Funktion mit
 - $-\lim_{x\to-\infty}F(x)=0$
 - $-\lim_{x\to\infty}F(x)=1$
- f(x) = F'(x) heißt (Wahrscheinlichkeits-) Dichtefunktion (PDF), (E: probability density function)
- die Verteilungsfunktion erhält man als Integral der Dichtefunktion:

$$F(x) = \int_{-\infty}^{x} f(t) \, \mathbf{d}t.$$

Für eine stetige Zufallsvariable X mit Dichte f(x) und Verteilungsfunktion F(x) gilt:

- f ist auf ganz \mathbb{R} definiert und immer ≥ 0 ,
- f ist so normiert, dass die Gesamtfläche unter dem Graphen von f gleich 1 ist:

$$\int_{-\infty}^{\infty} f(t) \, \, \mathbf{d}t = 1,$$

• die Wahrscheinlichkeit, dass X einen Wert im Intervall [a;b] (oder (a;b] oder [a;b) oder (a;b)) annimmt, ist

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b) = F(b) - F(a) = \int_a^b f(t) \, dt.$$

6.2 Quantile, Erwartungswert und Varianz

Definition 32. Gegeben sei eine (diskrete oder stetige) Zufallsvariable X und $p \in (0;1)$. $x_p \in \mathbb{R}$, für das

$$\mathbf{F}(\mathbf{x_p}) = \mathbf{p}$$

gilt, heißt p-Quantil von X. Ein Quantil zu p=0.5 heißt Median .

Bemerkungen:

- p% aller Werte die X annimmt sind kleiner als das p%-Quantil.
- Für stetige ZV existiert für jedes $p \in (0,1)$ ein eindeutiges p-Quantil $x_p = F^{-1}(p)$.
- Für diskrete ZV muss ein Quantil nicht für jedes $p \in (0;1)$ existieren (Sprungstellen)!

Definition 33. Für eine **stetige** Zufallsvariable X definiert man

ullet den **Erwartungswert** , $\mathrm{E}(X)$ oder μ_X als

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx$$

• die Varianz ,
$${\rm Var}(X)$$
 oder σ_X^2 als
$${\rm Var}(X)=\int_{-\infty}^\infty (x-\mu_X)^2 f(x) \; {\rm d}x$$

lacksquare die **Standardabweichung** von X als $\sigma_{\mathbf{X}} = \sqrt{\operatorname{Var}(X)}$

	diskrete ZV	stetige ZV
X	$X:\Omega\to\mathbb{R},$	$\omega \mapsto X(\omega)$
Ω	endlich oder	überabzählbar
	abzählbar unendlich	unendlich
Verteilung	$p_i = P(X = x_i)$	-
Verteilungsdichte	-	f(x) = F'(x) $P(X = x) = 0$
		P(X=x)=0
Verteilungsfunktion	$F(x) = P(X \le x)$	
	$F(x) = \sum_{i: x_i \le x} p_i$	$F(x) = \int_{-\infty}^{x} f(t) dt$

Tabelle 1: Diskrete und stetige Zufallsvariablen: Allgemeines

	diskrete ZV	stetige ZV	
X	$X:\Omega\to\mathbb{R},\ \omega\mapsto X(\omega)$		
p-Quantil	$x_p = F^{-1}(p)$, existiert für		
$p \in (0;1)$	manche p -Werte	alle p -Werte	
Erwartungswert	$E(X) = \mu_X = \sum_{x_i \in T} x_i p_i$	$E(X) = \mu_X = \int_{-\infty}^{\infty} x f(x) dx$	
Varianz	Var(X) =	Var(X) =	
	$\sum_{x_i \in T} (x_i - \mu_X)^2 p_i$	$\int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) \mathrm{d}x$	
Standardabweichung	$\sigma_X = \sqrt{\operatorname{Var}(X)}$		

Tabelle 2: Diskrete und stetige Zufallsvariablen: Kennwerte

	allgemein	diskrete Zufallsvariable	stetige Zufallsvariable
$P(a < X \le b)$	F(b) - F(a)	$\sum_{i:a < x_i \le b} p_i$	$\int\limits_a^b f(t) \mathrm{d}t$
$P(X \le b)$	F(b)	$\sum_{i:x_i \le b} p_i$	$\int\limits_{-\infty}^{b}f(t)dt$
P(X > a)	1-F(a)	$\sum_{i:x_i>a} p_i$	$\int_{a}^{\infty} f(t) dt$

Tabelle 3: Diskrete und stetige Zufallsvariablen: Intervallwahrscheinlichkeiten

7 Wichtige stetige Verteilungen

7.1 Die Gleichverteilung

Definition 34. Eine Zufallsvariable X, die alle Werte des rellen Intervalls [a;b] mit der gleichen Wahrscheinlichkeit annehmen kann, heißt gleichverteilt (manchmal auch rechteckverteilt :) $X \sim U(a,b)$. Es gilt:

$$f(x) = \left\{ \begin{array}{ll} \frac{1}{b-a} & \text{ für } a \leq x \leq b \\ 0 & \text{ sonst} \end{array} \right. \qquad F(x) = \left\{ \begin{array}{ll} 0 & \text{ für } x < a \\ \frac{x-a}{b-a} & \text{ für } a \leq x \leq b \\ 1 & \text{ für } x > b \end{array} \right.$$

7.2 Die Exponentialverteilung

Definition 35. Eine Zufallsvariable X, welche nur Werte > 0 mit Erwartungswert $\frac{1}{\lambda}$ annehmen kann und die Zeit zwischen zwei Ereignissen beschreibt, heißt **exponentialverteilt:** $X \sim exp(\lambda)$, falls gilt:

$$f(x) = \left\{ \begin{array}{ll} \lambda e^{-\lambda x} & \text{ für } x \geq 0 \\ 0 & \text{ sonst} \end{array} \right. \quad F(x) = \left\{ \begin{array}{ll} 1 - e^{-\lambda x} & \text{ für } x \geq 0 \\ 0 & \text{ sonst} \end{array} \right.$$

7.3 Die Normalverteilung

Definition 36. Eine Zufallsvariable X heißt normalverteilt mit den Parametern μ und σ , $\mathbf{X} \sim \mathbf{N}(\mu, \sigma)$, wenn sie die Dichtefunktion $f(x) = \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$

besitzt. Die zugehörige Wahrscheinlichkeitsverteilung heißt Normalverteilung oder auch Gauß-Verteilung. Der Graph der Dichtefunktion wird Gauß'sche Glockenkurve genannt. Die Parameter μ und σ sind Erwartungswert bzw. Standardabweichung von X.

Weitere Bemerkungen:

- ullet μ beschreibt die Verschiebung der Glocke auf der x-Achse relativ zum Ursprung.
- Die Fläche unter der Glockenkurve ist immer gleich 1 (unabhängig von μ und σ). Daher:
 - Je größer σ , desto breiter und niedriger ist die Glocke,
 - Je kleiner σ , desto schmaler und höher ist die Glocke.

Achtung: Die Verteilungsfunktion der Normalverteilung

$$F(x) = P(X \le x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}(\frac{t-\mu}{\sigma})^{2}} dt$$

kann nur numerisch berechnet werden, da f keine Stammfunktion besitzt.

Definition 37. Eine Zufallsvariable Z heißt **standardnormalverteilt**, wenn sie normalverteilt mit den Parametern $\mu = 0$ und $\sigma = 1$, $\mathbb{Z} \sim \mathbb{N}(0, 1)$, ist. Ihr Dichte- und Verteilungsfunktion sind gegeben durch

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{z^2}{2}}$$

und

$$\Phi(z) = P(Z \le z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{t^2}{2}} dt.$$

68–95–99.7-Regel / 3σ -Grenzen

Bei **jeder** normalverteilten Zufallsvariable X (mit beliebigem Mittelwert μ und Standardabweichung σ) ist die Wahrscheinlichkeit, dass X

• einen Wert zwischen $\mu - \sigma$ und $\mu + \sigma$ annimmt, etwa 68.3%,

- einen Wert zwischen $\mu 2\sigma$ und $\mu + 2\sigma$ annimmt, etwa 95.5%,
- einen Wert zwischen $\mu 3\sigma$ und $\mu + 3\sigma$ annimmt, etwa 99.7%.

Satz 38 (Additionssatz der Normalverteilung). Für X und Y unabhängig und normalverteilte ZV mit $X \sim N(\mu_X, \sigma_X)$ bzw. $Y \sim N(\mu_Y, \sigma_Y)$ gilt: X + Y ist ebenfalls normalverteilt mit Erwartungswert $\mu_X + \mu_Y$ und Standardabweichung $\sqrt{\sigma_X^2 + \sigma_Y^2}$:

$$X + Y \sim N(\mu_X + \mu_Y, \sqrt{\sigma_X^2 + \sigma_Y^2})$$
:

7.4 Die Normalverteilung als Näherung (v3 only)

Original X_B sei eine binomialverteilte ZV mit $X_B \sim Bin(n,p)$, mit $\mu = np$ und $\sigma^2 = np(1-p)$ und Verteilung $F_B(x)$.

Näherung durch eine normalverteilte ZV X_N mit Parametern $\mu=np$ und $\sigma=\sqrt{np(1-p)}$ und Verteilung $F_N(x)$.

Es gilt

$$F_B(x) \approx F_N(x+0.5)$$

Bedingung np und n(1-p) müssen "groß genug" sein, $n \cdot p \cdot (1-p) \gtrapprox 9$.

Original X_P sei eine poissonverteilte ZV mit $X_P \sim Po(\lambda)$, mit $\mu = \lambda$ und $\sigma^2 = \lambda$ und Verteilung $F_P(x)$.

Näherung durch eine normalverteilte ZV X_N mit Parametern $\mu=\lambda$ und $\sigma=\sqrt{\lambda}$ und Verteilung $F_N(x)$. Es gilt

$$F_P(x) \approx F_N(x+0.5)$$

Bedingung λ muss "groß genug" sein, $\lambda \gtrsim 9$.

Teil IV

Schließende Statistik

8 Grundbegriffe

Definition 39. Eine (Zufalls)stichprobe vom Umfang n ist eine Folge X_1, \ldots, X_n von unabhängigen, identisch verteilten Zufallsvariablen. X_i ist die Merkmalsausprägung des i-ten Elements der Stichprobe. Die X_i heißen Stichprobenvariablen . Wird eine Stichprobe gezogen, dann nehmen die ZV X_1, \ldots, X_n die konkreten Werte oder Realisierung x_1, \ldots, x_n an.

9 Große und zentrale Gesetze

9.1 Das Gesetz der großen Zahlen

Satz 40 (Das (starke) Gesetz der großen Zahlen). Seien X_1, X_2, \ldots, X_n unabhängige und identisch verteilte Zufallsvariablen mit Erwartungswert μ und sei $\bar{X} = \frac{1}{n}(X_1 + \ldots + X_n)$ ihr arithmetisches Mittel. Dann gilt für jede noch so kleine Zahl $\varepsilon > 0$: $\lim_{n \to \infty} P(|\bar{X} - \mu| < \varepsilon) = 1$

Satz 41 (Theorem von Bernoulli). Ein Zufallsexperiment, bei dem das Ereignis A mit der Wahrscheinlichkeit p eintritt, werde n-mal unabhängig wiederholt, f_n sei die relative Häufigkeit des Eintretens von A. Dann gilt für jede noch so kleine Zahl $\varepsilon>0$ $\lim_{n\to\infty} P(|f_n-p|\leq\varepsilon)=1.$

Satz 42 (Hauptsatz der Statistik). Seien X_1, X_2, \ldots, X_n unabhängige und identisch verteilte Zufallsvariablen mit Verteilungsfunktion F(x) und empirischer Verteilungsfunktion $\bar{F}(x)$. Dann gilt für jede noch so kleine Zahl $\varepsilon>0$ und jedes $x\in\mathbb{R}$: $\lim_{n\to\infty}P(|\bar{F}(x)-F(x)|<\varepsilon)=1$

9.2 Der zentraler Grenzwertsatz

Satz 43. Seien X_1, \ldots, X_n unabhängige und identisch verteilte Zufallsvariablen mit Erwartungswert jeweils μ und Standardabweichung σ . Dann hat das arithmetische Mittel $\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$ den Erwartungswert μ und die Varianz $\frac{\sigma^2}{n}$ und ist (ungefähr) approximativ normalverteilt :

$$\bar{X} \stackrel{a}{\sim} N(\mu, \sigma/\sqrt{n}), \qquad \lim_{n \to \infty} P(\bar{X} \le x) = \Phi\left(\frac{x - \mu}{\sigma/\sqrt{n}}\right).$$

Die zugehörige standardisierte Zufallsvariable Z ist approximativ standardnormalverteilt:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \stackrel{a}{\sim} N(0, 1), \quad \lim_{n \to \infty} P(Z \le z) = \Phi(z).$$

Vokabular: σ/\sqrt{n} wird auch als **Standardfehler** des arithmetischen Mittels bezeichnet. Verwendung: Konfidenzintervalle.

10 Schätzer (v3 only)

10.1 Punktschätzungen (v3 only)

Definition 44. Eine Funktion $T(X_1,\ldots,X_n)$ der Stichprobenvariablen, die zur Schätzung eines Parameters θ der Grundgesamtheit verwendet wird, heißt **Schätzfunktion** (oder **Schätzstatistik** oder **(Punkt)Schätzer**) für θ . $T(X_1,\ldots,X_n)$ ist ebenfalls eine Zufallsvariable. Eine konkrete Realisierung $T(x_1,\ldots x_n)$ heißt **Schätzwert** und wird mit $\hat{\theta}$ bezeichnet.

θ	Schätzfunktion	Schätzwert (für konkrete Realisierung)
μ	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
σ^2	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$	$\hat{\sigma^2} = s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$
π_m	i=1	$\hat{\pi_m} = p_m^- = rac{1}{n} \{x_i \mid x_i ext{ hat Merkmal } m\} $

Tabelle 4: Schätzung verschiedener Parameters θ der Grundgesamtheit

Definition 45. Eine Schätzfunktion T für eine Stichprobe der Größe n heißt

- erwartungstreu (oder unverzerrt , engl. unbiased), wenn ihr Erwartungswert gleich dem zu schätzenden Parameter ist: $E(T) = \theta$
- **konsistent**, wenn sie stochastisch gegen θ konvergiert:

$$\forall_{\varepsilon>0} \quad \lim_{n\to\infty} P(|T-\theta|<\varepsilon) = 1$$

• konsistent im quadratischen Mittel , oder effizient wenn die erwartete quadratische Abweichung im Grenzwert verschwindet: $\lim_{n\to\infty} \mathrm{E}((T-\theta)^2) = 0$

Eigenschaften bekannter Schätzer

erwartungstreu und konsistent im quadratischen Mittel (effizient) sind

 $ar{X}$ das arithmetische Mittel als Schätzer für den wahren Mittelwert μ

 $ar{P}_m$ die empirische Häufigkeit von Merkmal m als Schätzer für die wahre Wahrscheinlichkeit des Merkmals π_m

 $ar{F}$ die empirische Verteilungsfunktion als Schätzer für die wahre Verteilungsfunktion F

erwartungstreu und konsistent ist

 S^2 die empirische Varianz als Schätzer für die tatsächliche Varianz σ^2

10.2 Intervallschätzungen (v3 only)

Vokabular: α und $1-\alpha$

Irrtumswahrscheinlichkeit Mit einer Wahrscheinlichkeit von α überdeckt das Konfidenzintervall den wahren Wert von θ **nicht**; typische Werte: 5%, 1%, ...

Vertrauenswahrscheinlichkeit Konfidenzniveau, Sicherheit: Mit einer einer Wahrscheinlichkeit von $1-\alpha$ überdeckt das Konfidenzintervall den wahren Wert von θ ; typische Werte: 95%, 99%, ...

Definition 46. Ein Intervall

$$[g_u(X_1,\ldots,X_n),g_o(X_1,\ldots,X_n)]$$

dessen Grenzen g_u und g_o aus den Stichprobenwerten berechnet werden, und das mit einer vorgegebenen Wahrscheinlichkeit $1-\alpha$ den gesuchten Parameter θ der Grundgesamtheit überdeckt, d.h.

$$P(\theta \in [g_u(X_1, \dots, X_n), g_o(X_1, \dots, X_n)]) = 1 - \alpha$$

heißt Konfidenzintervall (oder Vertrauensintervall oder Vertrauensbereich) zum Niveau $1-\alpha$. Man nennt $1-\alpha$ Konfidenzniveau (oder Vertrauenswahrscheinlichkeit , auch Sicherheit).

Konfidenzintervall für den Erwartungswert μ einer normalverteilten ZV X bei bekannter Standardabweichung σ

- 1. Wähle ein Konfidenzniveau $1-\alpha$ (z.B. 0.90, 0.95, 0.99).
- 2. Ziehe eine Stichprobe vom Umfang n und berechne \bar{x} .
- 3. Bestimme das Quantil $z_{1-\frac{\alpha}{2}}$ der Standardnormalverteilung.
- 4. Das Konfidenzintervall

$$\left[\bar{x} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right]$$

überdeckt den gesuchten Erwartungswert μ mit der Wahrscheinlichkeit $1-\alpha$.

Konfidenzintervall für den Erwartungswert μ einer normalverteilten ZV X bei unbekannter Standardabweichung σ

- 1. Wähle ein Konfidenzniveau 1α (z.B. 0.90, 0.95, 0.99).
- 2. Ziehe eine Stichprobe vom Umfang n und berechne \bar{x} sowie s^2 .
- 3. Bestimme das Quantil $t_{n-1;1-\frac{\alpha}{2}}$ der t-Verteilung.
- 4. Das Konfidenzintervall

$$\left[\bar{x} - t_{n-1;1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \bar{x} + t_{n-1;1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right]$$

überdeckt den gesuchten Erwartungswert μ mit der Wahrscheinlichkeit $1-\alpha$.

Faustregel: Ab 30 Freiheitsgraden ($m \ge 30$) kann die t-Verteilung durch die Standardnormalverteilung approximiert werden.

Konfidenzintervall für den Erwartungswert μ einer beliebig verteilten ZV X bei großem Stichprobenumfang ($n \ge 30$)

- 1. Wähle ein Konfidenzniveau 1α (z.B. 0.90, 0.95, 0.99).
- 2. Ziehe eine Stichprobe vom Umfang $n \geq 30$ und berechne \bar{x} sowie die empirische Standardabweichung s2 (falls σ unbekannt).
- 3. Bestimme das Quantil $z_{1-\frac{\alpha}{2}}$ der Standardnormalverteilung.
- 4. Das Konfidenzintervall

$$\left[\bar{x}-z_{1-\frac{\alpha}{2}}\tfrac{\sigma}{\sqrt{n}},\bar{x}+z_{1-\frac{\alpha}{2}}\tfrac{\sigma}{\sqrt{n}}\right]\quad\text{(falls σ bekannt)}$$

$$\left[ar{x} - z_{1-rac{lpha}{2}} rac{s}{\sqrt{n}}, ar{x} + z_{1-rac{lpha}{2}} rac{s}{\sqrt{n}}
ight]$$
 (falls σ unbekannt)

überdeckt den gesuchten Erwartungswert μ annähernd mit der Wahrscheinlichkeit $1-\alpha$.

Teil V **Anhang**

Bild 1: Übersicht über die verschiedenen Zählverfahren

Fakten zur Bernoulli-Verteilung

Für eine Bernoulli-verteilte Zufallsvariable X, $X \sim Ber(p)$ gilt

Wertebereich
$$X \in \{0, 1\}$$

$$q = 1 - p$$

$$\sigma P(X = x) =$$

Verteilung
$$P(X = x) =$$

$$\begin{cases} q & \text{falls } x = 0, \\ p & \text{falls } x = 1, \\ 0 & \text{sonst.} \end{cases}$$

$$\begin{array}{ll} \text{Verteilungsfunktion} & P(X \leq x) = F(x) = \\ \left\{ \begin{array}{ll} 0 & \text{falls } x < 0, \\ q & \text{falls } 0 \leq x < 1, \\ 1 & \text{falls } x \geq 1. \end{array} \right. \\ \end{array}$$

Erwartungswert
$$E[X] = p$$

Varianz $Var[X] = pq$

Prof. Dr. Barbara Staehle | WS 2019/2020

tochastik | II Diskrete Wahrscheinlichkeitstheori

148

H T · Hochschaft Konzens

Wahrscheinlichkeitsrechnung Zufallsvariablen Wichtige diskrete Verteilungen Verteilungen in Bernoulli-Ketten Die hypergeometrische Verteilung (v3 only) Die Poisson-Verteilung Näherungsweise (v3 only)

Fakten zur geometrischen Verteilung

Für eine geometrisch verteilte Zufallsvariable $X \sim geom(p)$ gilt

Wertebereich
$$X \in \mathbb{N}$$

$$q = 1 - p$$

Verteilung
$$P(X = x) = \begin{cases} pq^{x-1} & \text{falls } x \in \mathbb{N}, \\ 0 & \text{sonst} \end{cases}$$

Verteilungsfunktion
$$P(X \le x) = F(x) = \begin{cases} 1 - q^{\lfloor x \rfloor} & \text{falls } x \ge 1, \\ 0 & \text{sonst.} \end{cases}$$

Erwartungswert
$$\mathrm{E}[X] = \frac{1}{p}$$

Varianz $\mathrm{Var}[X] = \frac{q}{p^2}$

Bild: Verteilungsfunktion

Prof. Dr. Barbara Staehle | WS 2019/2020

Stochastik | | Diskrete Wahrscheinlichkeitstheor

15

Fakten zur Binomialverteilung

Für eine binomialverteilte Zufallsvariable $X \sim Bin(n, p)$ gilt

Wertebereich
$$X \in \mathbb{N}_0, X \leq n$$

Parameter p: Erfolgswahrscheinlichkeit, n: Anzahl der durchgeführten

Verteilung
$$P(X = x) = \begin{cases} \binom{n}{x} p^x q^{n-x} & \text{falls } x \in \mathbb{N}_0, \\ 0 & \text{sonst.} \end{cases}$$

Verteilungsfunktion $P(X \le x) = F(x) =$ $\begin{cases} 0 & \text{falls } x < 0 \\ \sum_{k=0}^{\lfloor x \rfloor} \binom{n}{k} p^k q^{n-k} & \text{falls } 0 \le x \le n, \\ 1 & \text{falls } x > n. \end{cases}$

Erwartungswert E[X] = npVarianz Var[X] = npq 0.2 Bild: Verteilung

Bild: Verteilungsfunktion

Prof. Dr. Barbara Staehle | WS 2019/2020

Zufallsvariable

Fakten zur Poisson-Verteilung

Für eine poissonverteilte Zufallsvariable $X \sim Po(\lambda)$ gilt

Wertebereich $X \in \mathbb{N}_0$

Parameter $\lambda > 0$: Auftrittsrate

Verteilung
$$P(X = x) = \begin{cases} \frac{\lambda^x}{x!}e^{-\lambda} & \text{falls } x \in \mathbb{N}_0, \\ 0 & \text{sonst.} \end{cases}$$

Verteilungsfunktion $P(X \le x) = F(x) =$ $\begin{cases}
0 & \text{falls } x < 0 \\
e^{-\lambda} \sum_{k=0}^{\lfloor x \rfloor} \frac{\lambda^k}{k!} & \text{falls } 0 \le x.
\end{cases}$

Erwartungswert
$$E[X] = \lambda$$

Varianz $Var[X] = \lambda$

Bild: Verteilungsfunktion

Prof. Dr. Barbara Staehle | WS 2019/2020 Stochastik | II Diskrete Wah

Fakten zur hypergeometrischen Verteilung

Für eine hypergeometrisch verteilte Zufallsvariable $X \sim H(n, M, N)$ gilt

Wertebereich
$$X \in \mathbb{N}_0, X \leq M$$

Parameter n: Größe der Stichprobe

M: Anzahl der Elemente mit der gewünschten Eigenschaft

N: Anzahl aller Elemente

Verteilung
$$P(X = x) = \begin{cases} \frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}} & \text{falls } x \in \mathbb{N}_0, \\ 0 & \text{sonst.} \end{cases}$$

Verteilungsfunktion $P(X \le x) = F(x) =$

$$\begin{cases} 0 & \text{falls } x < 0 \\ \sum\limits_{k=0}^{\lfloor x \rfloor} \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}} & \text{falls } 0 \le x \le M, \\ 1 & \text{falls } x > M. \end{cases}$$

Erwartungswert $E[X] = n \frac{M}{N}$

Varianz
$$\operatorname{Var}[X] = n \frac{M}{N} (1 - \frac{M}{N}) \frac{N-n}{N-1}$$

Prof. Dr. Barbara Staehle | WS 2019/2020 Stocha

Bild: Verteilung

Bild: Verteilungsfunktion

Fakten zur Gleichverteilung

Für eine gleichverteilte Zufallsvariable X, $X \sim U(a, b)$ gilt

Wertebereich
$$X \in [a, b]$$

Parameter $a, b \in \mathbb{R}$: minimaler und maximaler Wert, den X

annehmen kann

Verteilungsdichte
$$f(x) = \begin{cases} \frac{1}{b-a} & \text{für } a \leq x \leq b \\ 0 & \text{sonst} \end{cases}$$

Verteilungsfunktion
$$F(x) = P(X \le x) =$$

$$\begin{cases}
0 & \text{für } x < a \\
\frac{x-a}{b-a} & \text{für } a \le x \le b \\
1 & \text{für } x > b
\end{cases}$$

Erwartungswert
$$E[X] = \frac{a+b}{2}$$

Varianz $Var[X] = \frac{(b-a)^2}{12}$

Bild: Verteilungsdichtefunktion

Bild: Verteilungsfunktion

Prof. Dr. Barbara Staehle | WS 2019/2020

Fakten zur Exponentialverteilung

Für eine exponentialverteilte Zufallsvariable X, $X \sim exp(\lambda)$ gilt

$$\begin{array}{l} \text{Wertebereich} \ \ X \in \mathbb{R}^+_0 \\ \text{Parameter} \ \ \lambda \in \mathbb{R}^+ \text{: Ankunftsrate der} \\ \text{Ereignisse} \\ \text{Verteilungsdichte} \ \ f(x) = \\ \left\{ \begin{array}{ll} \lambda e^{-\lambda x} & \text{für } x \geq 0 \\ 0 & \text{sonst} \end{array} \right. \end{array}$$

Verteilungsfunktion
$$P(X \le x) = F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{für } x \ge 0 \\ 0 & \text{sonst} \end{cases}$$

Erwartungswert
$$\mathrm{E}[X] = \frac{1}{\lambda}$$

Varianz $\mathrm{Var}[X] = \frac{1}{\lambda^2}$

Bild: Verteilungsdichtefunktion

Prof. Dr. Barbara Staehle | WS 2019/2020

Zufallsvariablen

Fakten zur Normalverteilung

Für eine normalverteilte Zufallsvariable X, $X \sim N(\mu, \sigma)$ gilt

Wertebereich $X \in \mathbb{R}$

Parameter $\mu \in \mathbb{R}$: Erwartungswert (Ortsparameter),

 $\sigma \in \mathbb{R}_0^+$: Standardabweichung (Skalierungsparameter)

Verteilungsdichte $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$

Verteilungsfunktion $F(x) = P(X \le x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}(\frac{t-\mu}{\sigma})^2} dt$

Erwartungswert $E[X] = \mu$

Varianz $Var[X] = \sigma^2$

 $X \sim N(0,1)$ heißt standardnormalverteilt mit den Parametern $\mu = 0$ und $\sigma = 1$, (siehe Bilder)

Bild: Verteilungsdichtefunktion

Bild: Verteilungsfunktion

Prof. Dr. Barbara Staehle | WS 2019/2020

Bedingung np und n(1-p) müssen "groß genug" sein, $n \cdot p \cdot (1-p) \gtrapprox 9$.