# Machine Learning of Dynamic Processes with Applications to Time Series Forecasting

#### Lyudmila Grigoryeva

University of St. Gallen, Switzerland

Emergent Algorithmic Intelligence Winter School 2023 JGU Research Center for Algorithmic Emergent Intelligence Mainz (Nierstein), 2023

#### Outline

- What is a time series
- 2 Forecasting time series
- Classical time series models
- 4 References

#### Outline for section 1

- What is a time series
- Porecasting time series
- Classical time series models
- 4 References

#### Outline for section 2

- 1 What is a time series
- 2 Forecasting time series
- Classical time series models
- 4 References

## Forecasting time series

- data from past may contain information on the future development of a variable
- forecasting future developments requires certain regularities or structures in the data
- time series analysis helps to detect such characteristics and helps to understand the 'data generating mechanism'



# Forecasting time series: simple

- Mean:  $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$ .
- Naïve:  $\hat{y}_{T+h|T} = y_T$ .
- Seasonal naïve:  $\hat{y}_{T+h|T} = y_{T+h-m(k+1)}$ , where m = the seasonal period, and k is the integer part of (h-1)/m (i.e., the number of complete years in the forecast period prior to time T+h).
- Drift:  $\hat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t y_{t-1}) = y_T + h(\frac{y_T y_1}{T-1}).$



# Forecasting time series: linear regression (revisited)

In the simplest case, the regression model allows for a linear relationship between the forecast variable y and k predictor variable series x:

$$y_t = \beta_0 + \beta_1 x_{1,t} + \beta_2 x_{2,t} + \cdots + \beta_k x_{k,t} + \varepsilon_t.$$

- ullet Estimate coefficients using the data up to T
- To form a forecast h steps into the future we use as predictors their lagged values.:

$$y_{t+h} = \hat{\beta}_0 + \hat{\beta}_1 x_{1,t} + \dots + \hat{\beta}_k x_{k,t}$$

for h=1,2... The predictor set is formed by values of the x s that are observed h time periods prior to observing y. Therefore when the estimated model is projected into the future, i.e., beyond the end of the sample  $\mathcal{T}$ , all predictor values are available.

# Forecasting time series: linear regression (revisited)



# Forecasting time series: linear regression (revisited)



#### Outline for section 3

- What is a time series
- 2 Forecasting time series
- Classical time series models
- 4 References

## Autoregressive model

An autoregressive model of order p or (AR(p)) can be written as

$$X_{t} = \sum_{i=1}^{p} \varphi_{i} X_{t-i} + \varepsilon_{t} = \sum_{i=1}^{p} \varphi_{i} L^{i} X_{t} + \varepsilon_{t}, \quad \text{or}$$

$$\varepsilon_t = \left(1 - \sum_{i=1}^p \varphi_i L^i\right) X_t = \Phi(L) X_t,$$

where  $\varphi_1, \ldots, \varphi_p$  are the parameters of the model,  $\varepsilon_t$  is white noise, L is the lag operator, and  $\Phi(L)$  is the lag polynomial of order p.

For an AR(p) model to be weak-sense stationary, the roots of the polynomial  $1 - \sum_{i=1}^{p} \varphi_i z^i$  must lie outside the unit circle, that is  $|z_i| > 1$  should hold for all  $i = 1, \ldots, p$ .

# Moving average model

An moving average model of order q or (MA(q)) can be written as

$$X_t = \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \varepsilon_t = \left(1 + \sum_{i=1}^q \theta_i L^i\right) \varepsilon_t = \Theta(L) \varepsilon_t,$$

where  $\theta_1, \ldots, \theta_q$  are the parameters of the model,  $\varepsilon_t$  is white noise, L is the lag operator, and  $\Theta(L)$  is the lag polynomial of order q.

For a MA(q) model to be invertible, the roots of the polynomial  $\Theta(z) := 1 - \sum_{i=1}^q \theta_i z^i$  must lie outside the unit circle, that is  $|z_i| > 1$  should hold for all  $i = 1, \ldots, q$ .

For invertible MA(q) one has

$$\varepsilon_t = \left(1 + \sum_{i=1}^q \theta_i L^i\right)^{-1} X_t = \theta(L)^{-1} X_t,$$

# Autoregressive moving average model

An autoregressive moving average model ARMA(p, q)) can be written as

$$\left(1 - \sum_{i=1}^{p} \varphi_i L^i\right) X_t = \left(1 + \sum_{i=1}^{q} \theta_i L^i\right) \varepsilon_t,$$

or

$$\Phi(L)X_t = \Theta(L)\varepsilon_t.$$

For invertible  $\Theta(L)$  part one has

$$\frac{\Phi(L)}{\Theta(L)}X_t = \varepsilon_t$$

or for stationary autoregressive component

$$X_t = \frac{\Theta(L)}{\Phi(L)} \varepsilon_t = \Psi(L) \varepsilon_t$$

## Autoregressive integrated moving average model

Consider autoregressive moving average model ARMA( $\tilde{p}, q$ ))

$$\left(1 - \sum_{i=1}^{\tilde{p}} \tilde{\varphi}_i L^i\right) X_t = \left(1 + \sum_{i=1}^{q} \theta_i L^i\right) \varepsilon_t$$

or

$$\tilde{\Phi}(L)X_t = \Theta(L)\varepsilon_t.$$

Let  $\tilde{\Phi}(L)$  have a unit root of multiplicity d. Then:

$$\left(1-\sum_{i=1}^{\tilde{p}}\alpha_iL^i\right)=\left(1-\sum_{i=1}^{\tilde{p}-d}\varphi_iL^i\right)(1-L)^d.$$

An ARIMA (p, d, q) process expresses this polynomial factorisation property with  $p = \tilde{p} - d$ , and is given by:

$$\left(1 - \sum_{i=1}^{p} \varphi_i L^i\right) (1 - L)^d X_t = \left(1 + \sum_{i=1}^{q} \theta_i L^i\right) \varepsilon_t$$

### Stationarity of time series



#### Remedies

Differencing:

$$\Delta y_t = y_t' = y_t - y_{t-1}.$$

Second-order differencing:

$$\Delta(\Delta y_t) = y_t'' = y_t' - y_{t-1}'$$

$$= (y_t - y_{t-1}) - (y_{t-1} - y_{t-2})$$

$$= y_t - 2y_{t-1} + y_{t-2}$$

• Seasonal differencing:  $y'_t = y_t - y_{t-m}$ .

#### Remedies



### How to detect whether differencing is needed?

We plot autocorrelations and study their decay!



# Wold decomposition theorem (1936)

Any zero-mean covariance-stationary process  $\{z_t, t \in \mathbb{Z}\}$  can be represented in the form  $z_t = u_t + d_t$ , where  $\{u_t\}$  and  $\{d_t\}$  are the decorrelated MA( $\infty$ ) and a deterministic process, respectively. Let  $\mathcal{M}_t = \overline{\operatorname{span}}\{z_s, s \in \mathbb{Z}, s \leq t\}$ , the one-step mean squared error  $\sigma^2 := \mathrm{E}[|z_{t+1} - P_{\mathcal{M}_t} z_{t+1}|^2]$  and the closed linear subspace  $\mathcal{M}_{-\infty}$ 

$$\mathcal{M}_{-\infty} = \cap_{t=-\infty}^{\infty} \mathcal{M}_t$$

of the Hilbert space  $\mathcal{M} = \overline{\operatorname{span}}\{z_t, t \in \mathbb{Z}\}$ . All subspaces and orthogonal complements should be interpreted as relative to  $\mathcal{M}$ .

#### Remark

The process  $\{d_t\}_{t\in\mathbb{Z}}$  is said to be deterministic if and only if  $\sigma^2=0$ , or equivalently if and only if  $d_t\in\mathcal{M}_{-\infty}$ , for each t.

# Wold decomposition theorem (1936)

#### Theorem

Any zero-mean covariance-stationary process  $\{z_t\}_{t\in\mathbb{Z}}$  with  $\sigma^2>0$  can be represented as

$$z_t = \sum_{j=0}^{\infty} \psi_j \epsilon_{t-j} + d_t,$$

where

- (i)  $\psi_0=1$ ,  $\sum_{j=0}^\infty \psi_j^2<\infty$ ,
- (ii)  $\epsilon_t \sim WN(0, \sigma^2)$
- (iii)  $z_t \in \mathcal{M}_t$ , for each  $t \in \mathbb{Z}$
- (iv)  $E[\epsilon_t d_s] = 0$ , for all  $t, s \in \mathbb{Z}$
- (v)  $d_t \in \mathcal{M}_{-\infty}$ , for each  $t \in \mathbb{Z}$
- (vi)  $\{d_t\}$  is deterministic.

# Wold decomposition theorem (1936)

In this theorem the sequences defined as

(i) 
$$\epsilon_t = z_t - P_{\mathcal{M}_{t-1}} z_t$$

(ii) 
$$\psi_i = \langle z_t, \epsilon_{t-i} \rangle / \sigma^2$$

(iii) 
$$d_t = z_t - \sum_{j=0}^{\infty} \psi_j \epsilon_{t-j}$$

satisfy conditions (i)-(vi) above and can be shown to be unique.

#### Outline for section 4

- 1 What is a time series
- 2 Forecasting time series
- Classical time series models
- 4 References

#### References I