RSA Algorithm with Numerical Example

- 1. Select two prime numbers, p = 17 and q = 11.
- 2. Calculate $n = pq = 17 \times 11 = 187$.
- 3. Calculate $\phi(n) = (p-1)(q-1) = 16 \times 10 = 160$.
- 4. Select e such that e is relatively prime to $\phi(n) = 160$ and less than $\phi(n)$; we choose e = 7.
- 5. Determine d such that $de \equiv 1 \pmod{160}$ and d < 160. The correct value is d = 23, because $23 \times 7 = 161 = (1 \times 160) + 1$; d can be calculated using the extended Euclid's algorithm (Chapter 2).

The resulting keys are public key $PU = \{7, 187\}$ and private key $PR = \{23, 187\}$. The example shows the use of these keys for a plaintext input of M = 88. For encryption, we need to calculate $C = 88^7 \mod 187$. Exploiting the properties of modular arithmetic, we can do this as follows.

```
88^7 \mod 187 = [(88^4 \mod 187) \times (88^2 \mod 187) \times (88^1 \mod 187)] \times (88^1 \mod 187) \mod 187
88^1 \mod 187 = 88
88^2 \mod 187 = 7744 \mod 187 = 77
88^4 \mod 187 = 59,969,536 \mod 187 = 132
88^7 \mod 187 = (88 \times 77 \times 132) \mod 187 = 894,432 \mod 187 = 11
```

For decryption, we calculate $M = 11^{23} \mod 187$:

$$11^{23} \mod 187 = [(11^1 \mod 187) \times (11^2 \mod 187) \times (11^4 \mod 187) \times (11^8 \mod 187) \times (11^8 \mod 187)] \mod 187$$
 $11^1 \mod 187 = 11$
 $11^2 \mod 187 = 121$
 $11^4 \mod 187 = 14,641 \mod 187 = 55$
 $11^8 \mod 187 = 214,358,881 \mod 187 = 33$
 $11^{23} \mod 187 = (11 \times 121 \times 55 \times 33 \times 33) \mod 187$
 $= 79,720,245 \mod 187 = 88$

Diffie Hellman Key Exchange

Here is an example. Key exchange is based on the use of the prime number q=353 and a primitive root of 353, in this case $\alpha=3$. A and B select private keys $X_A=97$ and $X_B=233$, respectively. Each computes its public key:

A computes
$$Y_A = 3^{97} \mod 353 = 40$$
.

B computes $Y_B = 3^{233} \mod 353 = 248$.

After they exchange public keys, each can compute the common secret key:

A computes
$$K = (Y_B)^{X_A} \mod 353 = 248^{97} \mod 353 = 160$$
.

B computes
$$K = (Y_A)^{X_B} \mod 353 = 40^{233} \mod 353 = 160$$
.

We assume an attacker would have available the following information:

$$q = 353$$
; $\alpha = 3$; $Y_A = 40$; $Y_B = 248$

Man in the Middle Attack

ELGAMAL CRYPTOGRAPHIC SYSTEM

The global elements of Elgamal are a prime number q and a, which is a primitive root of q. User A generates a private/public key pair as follows:

- 1. Generate a random integer X_A , such that $1 < X_A < q 1$.
- 2. Compute $Y_A = \alpha^{X_A} \mod q$.
- 3. A's private key is X_A and A's public key is $\{q, \alpha, Y_A\}$.

Any user B that has access to A's public key can encrypt a message as follows:

- 1. Represent the message as an integer M in the range $0 \le M \le q 1$. Longer messages are sent as a sequence of blocks, with each block being an integer less than q.
- 2. Choose a random integer k such that $1 \le k \le q 1$.
- 3. Compute a one-time key $K = (Y_A)^k \mod q$.
- 4. Encrypt M as the pair of integers (C_1, C_2) where

$$C_1 = \alpha^k \mod q$$
; $C_2 = KM \mod q$

User A recovers the plaintext as follows:

- 1. Recover the key by computing $K = (C_1)^{X_A} \mod q$.
- 2. Compute $M = (C_2K^{-1}) \mod q$.

Example:

- 1. Alice chooses $X_A = 5$.
- 2. Then $Y_A = \alpha^{X_A} \mod q = \alpha^5 \mod 19 = 3$ (see Table 2.7).
- 3. Alice's private key is 5 and Alice's public key is $\{q, \alpha, Y_A\} = \{19, 10, 3\}$. Suppose Bob wants to send the message with the value M = 17. Then:
- 1. Bob chooses k = 6.
- 2. Then $K = (Y_A)^k \mod q = 3^6 \mod 19 = 729 \mod 19 = 7$.
- 3. So

$$C_1 = \alpha^k \mod q = \alpha^6 \mod 19 = 11$$

 $C_2 = \text{KM mod } q = 7 \times 17 \mod 19 = 119 \mod 19 = 5$

4. Bob sends the ciphertext (11, 5).

For decryption:

- 1. Alice calculates $K = (C_1)^{X_A} \mod q = 11^5 \mod 19 = 161051 \mod 19 = 7$.
- 2. Then K^{-1} in GF(19) is 7^{-1} mod 19 = 11.
- 3. Finally, $M = (C_2K^{-1}) \mod q = 5 \times 11 \mod 19 = 55 \mod 19 = 17$.

RSA Based Digital Signature

RSA based digital Signature

Now, choose e between 1 and e should be relative prime to

Suppose,
$$e = 13$$

now choose d such that $ed = 1 \mod n$
 $13d=1 \mod 24$

d= 37 e is public while d is private Suppose message hash i.e. H(M) = 3

Now, Digital signature is computed as $= m^d \mod n = 3 \wedge 37 \mod 35 = 3$

Signature Verification
m =
= 3 ^ 13 mod 35 = 3