NLP

MOD TERM EXAM

9	No	1
---	----	---

Co-occurrence Matrix c= Yocabulary = {apple, orange, SYD borrana}

	apple	ovarge	banana
apple	0	1	1
orange	1	0	3
banana	1	3	2

$$= \begin{bmatrix} -0.58 & 0.58 & -0.58 \\ -0.58 & -0.82 & 0 \\ 0.23 & 0.78 \end{bmatrix}$$

$$= \begin{bmatrix} -0.58 & 0.58 & -0.58 \\ -0.58 & -0.82 & 0 \\ 0.58 & 0.23 & 0.78 \end{bmatrix} \begin{bmatrix} 4.24 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0.58 \end{bmatrix} \begin{bmatrix} -0.58 & -0.58 & -0.58 \\ 0.58 & -0.82 & 0 \\ -0.58 & 0.23 & 0.78 \end{bmatrix}$$

$$= \begin{bmatrix} 0.29 & -0.12 & -0.95 \\ 0.56 & 0.02 & 0.07 \\ 0.77 & -0.56 & 0.31 \end{bmatrix} \begin{bmatrix} 4.58 & 0 & 0 \\ 0 & 2.19 & 0 \\ 0 & 0 & 0.4 \end{bmatrix} \begin{bmatrix} 0.29 & 0.56 & 0.77 \\ 0.10 & -0.02 & 0.56 \\ 0.45 & -0.07 & -0.31 \end{bmatrix}$$

For
$$k=2$$
, we 0.29×0.12 $0.29 \times 0.56 \times 0.77$ 0.56×0.02 0.56×0.02 0.77×0.56 $0.77 \times$

$$W = U_{k} \leq_{k} = \begin{cases} 1.3375 & -0.26/5 \\ 2.6023 & 1.7965 \\ 3.5337 & -1.224 \end{cases}$$

Co-Occurrence Matrin

$$C = \begin{cases} 0 & 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 1 & 0 \\ 4 & 1 & 0 & 2 & 1 \\ 0 & 1 & 2 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 3 & 2 & 4 & 5 & 4 & 3 & 20 \end{cases}$$

$$\sum 4 & 4 & 5 & 4 & 3 & 20$$

a. The Goint probability table is given as. apple barons grape orange mange

$$P(wi,wi) = apple barona grape orange mange
P(wi,wi) = apple 0 $\frac{2}{20}$ $\frac{1}{20}$ $\frac{0}{120}$ $\frac{1}{20}$ $\frac{1}{20}$$$

Marginal Probaboilities

erginal Probable =
$$\frac{4}{20} = 0.2$$
, $P(banana) = \frac{4}{20} = 0.2$
 $P(grape) = \frac{5}{20} = 0.25$

C.

PMI

P(apple, banana) =
$$log(P(a, b))$$
 = $log_2(0.1)$

P(apple, banana) = $log_2(P(a, b))$ = $log_2(0.2)(0.2)$

PMI = (1.3219) = 1.3219

P(apple, grape) = $log_2(P(a, 9))$ = $log_2(0.2)(0.25)$ = 0.05

PPMI = 0.05

PMI = 0.05

P(apple, grape) = $log_2(P(b, 9))$ = $log_2(0.25)$ = 0.05

P(apple, grape) = $log_2(P(b, 9))$ = $log_2(0.25)$ = 0.05

PMI = 0.05

$$\frac{\Theta_{No3}}{a. Z_1 = W_1 \times + b_2}, \quad f_1 = \tanh(Z_1), \quad Z_2 = W_2 f_1 + b_2, \quad f_2 = \tanh(Z_2)$$

$$\hat{y} = f_2$$

$$Z_1 = 0.7$$
, $f_1 = 0.6044$, $Z_2 = 0.6209$, $f_2 = 0.5517 + \hat{y}$, $x = 2$, $y = 1$

$$L = \frac{1}{a} (y - \hat{y})^2 = 0.1005$$

$$\frac{\partial L}{\partial f_2} = -\frac{1}{2}(y - f_2) = -0.2241$$

$$\frac{\partial f_2}{\partial w_1} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\tanh(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\det(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\det(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\det(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\det(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\det(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\det(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\det(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\det(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\det(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)} = \frac{\partial}{\partial w_2} \frac{\det(w_2 f_1 + b_2)}{\det(w_2 f_1 + b_2)}$$

$$\frac{\partial f_2}{\partial b_2} = \frac{\partial}{\partial b_2} \tanh(w_x f_1 + b_2) = 8ech^2(w_x f_1 + b_2) = 0.6956$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial f_1}{\partial w_1} \frac{\partial f_2}{\partial f_1} \frac{\partial L}{\partial f_2}$$

$$\frac{\partial w_1}{\partial f_1} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_1} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_1} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_1} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_1} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_1} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_1} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_1} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_1} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_1} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_1} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_1} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_1} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_1} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_1} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_1} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_2} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_2} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_2} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_2} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_2} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_2} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_2} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_2} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_2} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_2} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_2} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_2} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_2} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_2} \frac{\int tanh(w_2 f_1 + b_2)}{\int f_2} = \frac{\partial}{\partial f_2} \frac{\partial f_2}{\partial f_2} =$$

$$\frac{\partial f_1}{\partial f_1} = \frac{\partial}{\partial f_1} \left(\frac{\partial f_1}{\partial w_1} + \frac{\partial}{\partial w_2} \left(\frac{\partial f_1}{\partial w_1} + \frac{\partial}{\partial w_2} \right) \right) = \frac{\partial}{\partial w_1} \left(\frac{\partial}{\partial w_1} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_1} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_1} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_1} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_1} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_1} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_1} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_1} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_1} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_1} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_1} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_1} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_1} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_1} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2} \left(\frac{\partial}{\partial w_2} + \frac{\partial}{\partial w_2} \right) = \frac{\partial}{\partial w_2}$$

$$\frac{\partial \mathcal{L}}{\partial b_{1}} = \frac{\partial f_{1}}{\partial b_{1}} \frac{\partial f_{2}}{\partial f_{1}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{1}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{1}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{1}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{1}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial \mathcal{L}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial f_{2}} \frac$$

$$\frac{\partial f_1}{\partial b_1} = \frac{\partial f_1}{\partial b_1} \frac{\partial f_2}{\partial b_1} = \frac{\partial f_2}{\partial b_1} \frac{\partial f_3}{\partial b_2} = \frac{\partial f_4}{\partial b_2} \frac{\partial f_4}{\partial b_2} = \frac{\partial f_4}{\partial b_2} \frac{\partial$$

$$\frac{\partial f_1}{\partial b_1} = \frac{\partial}{\partial b_1} \frac{\tan h}{(w_1 x + b_1)} = \frac{\partial}{\partial b_2} \frac{\partial}{\partial b_1} = \frac{\partial}{\partial b_2} \frac{\partial}{\partial b_2} = -0.1559$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial f_2}{\partial w_1} \frac{\partial L}{\partial f_2} = -0.0396, \frac{\partial L}{\partial b_1} = \frac{\partial f_1}{\partial b_2} \frac{\partial f_2}{\partial f_2} = -0.0198$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial}{\partial w_1} \frac{\partial}{\partial f_2} \frac{\partial}{\partial f_2} = -0.0396, \frac{\partial}{\partial b_1} = \frac{\partial}{\partial b_1} \frac{\partial}{\partial f_2} \frac{\partial}{\partial f_2} = -0.0198$$

Weights Update

$$W_1^1 = W_1^0 - \frac{1}{2} \frac{\partial L}{\partial w_1} | w_1^0$$
 $= 0.1 - 0.01 (-0.0396)$
 $= 0.5 - 0.1 (-0.0198)$
 $= 0.5 - 0.1 (-0.0198)$
 $= 0.5 - 0.1 (-0.0198)$
 $= 0.2 - 0.1 (-0.0942)$
 $= 0.2094$

$$= 0.2 - 0.1(-0.0942)$$

$$= 0.2094$$

$$b_{2}' = b_{2}^{0} - 2 \frac{\partial L}{\partial b_{2}} b_{2}^{0}$$

$$= 0.5 - 0.1(-0.1559)$$

$$= 0.5156$$

y =