

ЛОКАЛНО ПОДРАВНЯВАНЕ НА БИОЛОГИЧНИ СЕКВЕНЦИИ

ПРОФ. ПЛАМЕНКА БОРОВСКА

ЛОКАЛНО ПОДРАВНЯВАНЕ НА БИОЛОГИЧНИ СЕКВЕНЦИИ

- ▶ЦЕЛ локалното подравняване на две секвенции от нуклеотиди или аминокиселини се прави с цел да се установи структурно и функционално сходство
- ▶Най-често задаваният въпрос в молекулярната биология е дали две дадени секвенции са свързани или не, за да се идентифицира тяхната структура или функция. Най-простият начин да се отговори на този въпрос е да се сравнят техните секвенции.
- Подравняването на секвенции или сравняването на секвенции е една от фундаменталните области в биоинформатиката, която изследва начините за подреждане на генетичните (ДНК/РНК) секвенции или секвенциите от протеини, с цел определяне на сходните участъци.
- Прилага се за да се установи съществува ли структурна, функционална и еволюционна връзка между секвенциите.
- Когато се открие нова секвенция, структурата и функцията могат лесно да се предвидят, като се направи подравняване с избрани секвенции от биологичните бази данни.
- Когато подравняваните секвенции споделят общ прародител се приема, че новата секвенция би проявила подобна структура или функция.
- Колкото по-голямо е сходството между секвенциите, толкова по-голям е шансът те да споделят подобна структура или функция.

АЛГОРИТЪМ НА SMITH - WATERMAN

- Цел да се открие нивото на сходство между две секвенции
- ▶Изследваната секвенция се подава като заявка (query sequence) и тя се сравнява с различни секвенции от биологичните бази данни.
- ▶ Локално подравняване (Local Alignment): прилага се за да се открият сходствата или разликите между две секвенции идентифицират се локални участъци с висока степен на сходство.
- ➤ Алгоритъмът на Smith Waterman за локално подравняване на две секвенции е предложен от Temple F. Smith и Michael S. Waterman през 1981 г.
- ▶Представлява вариант на алгоритъма на Needleman—Wunsch, и аналогично се основава на алгоритъма на динамичното програмиране като гарантира откриването на оптималното локално подравняване по отношение на използваната оценъчна функция - матрица на заместване (substitution matrix) и схемата за оценка на празнините (gap-scoring scheme)

АЛГОРИТЪМ НА SMITH - WATERMAN

- ▶ Основната разлика с алгоритъма на Needleman—Wunsch е, че елементите на оценъчната матрица с отрицателни стойности се приравняват на 0, което откроява и прави видими локалните подравнявания с положителна оценка
- ➤ Процедурата за обратното проследяване (Traceback) стартира от елемента на оценъчната матрица с най-високата стойност и напредва следвайки указателите до достигането на елемент с нулева стойност, при което се получава оптималното локално подравняване.
- Поради своята квадратична сложност по отношение на времето и пространството, алгоритъмът често не може да бъде практически приложен към мащабни проблеми
- >Предимства на алгоритъмът на Smith-Watermen:
- 1. дава възможност да се открият консервативни (запазени, непроменени) участъци в двете секвенции (conserved regions)
- 2. Може да се подравняват две частично припокриващи се секвенции, както и да се подравнява подсеквенция с цяла секвенция (да се провери дали даден участък от едната секвенция присъства и в другата секвенция)

CPABHEHUE HA АЛГОРИТМИТЕ NEEDLEMAN—WUNSCH И SMITH WATERMAN

- > Алгоритъмът на Smith-Waterman намира сходните сегменти в две секвенции, докато алгоритъмът на Needleman Wunsch подравнява две цялостни секвенции.
- И двата алгоритъма използват концепциите за матрица на заместване, функция за наказание за празнина, оценъчна матрица и процес за обратно проследяване.

	Алгоритъм на Smith–Waterman	Алгоритъм на Needleman–Wunsch
Инициализация на оценъчната матрица	Първият ред и първата колона на оценъчната матрица се запълват с нулеви елементи	Първият ред и първата колона на оценъчната матрица се запълват със съответните стойности на наказанията за празнини (gap penalty)
Схема за оценка	Елементите на оценъчната матрица с отрицателни стойности се нулират	Допускат се отрицателни стойности на елементите на оценъчната матрица
Процедура за обратно проследяване	Стартира от елемента на оценъчната матрица с максимална стойност и терминира при достигане на елемент с нулева стойност	Стартира от елемента в най-долния десен ъгъл на оценъчната матрица и терминира при достигане на елемента в най-горния ляв ъгъл на оценъчната матрица

CPABHEHUE НА АЛГОРИТМИТЕ NEEDLEMAN—WUNSCH И SMITH WATERMAN

- ► Едно от най-важните разлики е, че в системата за оценяване на алгоритъма на Smith— Waterman не се допуска отрицателна стойност на елемент на оценъчната матрица, което дава възможност за локално подравняване.
- Когато някой елемент на оценъчната матрица има отрицателна стойност, това означава, че секвенциите до тази позиция нямат сходства.
- С цел елиминиране на влиянието на предходното подравняване, при алгоритъма на Smith-Waterman елементите с отрицателни стойности се нулират и така се дава възможност да се откриват възможни подреждания във всички посоки
- ▶Спецификата на инициализацията на оценъчната матрица при алгоритъма на Smith— Waterman дава възможност за подравняване на всеки сегмент от една секвенция към произволна позиция в другата секвенция.
- ➤ В алгоритъма на Needleman Wunsch, обаче, трябва да се взема предвид и наказанието за празнина в последната позиция на секвенцията при подравняването на целите секвенции

СИСТЕМИ ЗА ОЦЕНКА

- В оптимизиращите процедури за подравняване алгоритмите на Needleman-Wunsch и Smith-Waterman използват система за оценка.
- ➤За подравняване на нуклеотидни (ДНК/РНК) секвенции използваните матрици за оценка са сравнително по-прости, тъй като честотата на мутацията за всички нуклеотиди е еднаква.
- ▶Положителна или по-висока стойност се задава за съвпадение, а отрицателна или по-ниска стойност се присвоява за несъответствие. Тези резултати, базирани на предположения, могат да се използват за оценка на матриците.
- Има и други матрици за оценка, които са предефинирани, и се използват в случай на подравняване на секвенции от аминокиселини.
- \triangleright PAM Matrices: Margaret Dayhoff е първата, разработила PAM матрицата, като PAM означава "приети точкови мутации" (Point Accepted Mutations).
- ▶РАМ матриците се изчисляват, като се отчитатат разликите в тясно свързани протеини. Една РАМ единица (РАМ1) указва една приета точкова мутация на 100 аминокиселинни остатъка, т.е. 1% промяна и 99% остава като такава.

СИСТЕМИ ЗА ОЦЕНКА

- BLOSUM: <u>BLO</u>cks <u>SU</u>bstitution <u>Matrix</u>, предложена от Henikoff и Henikoff през 1992 г., базирана на консервативни (запазени) участъци (conserved regions). Тези матрици представят действителни стойности на идентичност в проценти или казано просто, представят сходствата в %. Blosum 62 означава, че сходството между двете секвенции е 62 %.
- ➤ Наказание за празнини (gap penalty): алгоритмите на динамичното програмиране прилагат наказания за празнини с цел да се максимизира биологичният смисъл. Наказанието за всяка празнина се изважда от оценката, която е възприета.
- ▶Оценката за празнините определя наказание за подравняване, в което има вмъкване на нуклеотид (insertion) или изтриване на нуклеотид (deletion).
- ▶В хода на еволюцията, има случаи, в които се наблюдават дълги поредици от празнини в рамките на секвенцията, и следователно, в случая линейното наказание за празнини не е подходящо. В тези случаи се прилага наказание за начална празнина (gap open) на поредица от празнини и наказание за разтегляне на секвенцията (gap extension) за последващите празнини при 5 празнини или повече.

НАКАЗАНИЯ ЗА ПРАЗНИНИ

- Наказанието gap open винаги се прилага за първата празнина от поредицата празнини, като последващите празнини се наказват за разтегляне на секвенцията (gap extension).
- Наказанието за разтегляне е винаги по-малко от наказанието за първата празнина от поредицата.
- ➤Типични стойности —12 за gap opening, и —4 за gap extension.
- > Целта е да се подпомогне избягването на разпръснати малки празнини
- ➤ В биологичен аспект резултатът от подравняването трябва да се анализира по различен начин от практически съображения. От една страна, частичното сходство между две секвенции е често срещано явление; от друга страна, възникването на мутацията в един ген може да доведе до дълга поредица от празнини.
- Следователно, свързаните празнини, образуващи дълга поредица от празнини, обикновено са по-благоприятни от наличието на множеството разпръснати празнини.
- ightharpoonup GAPpenalty = v + ku, където v е наказанието ореп дар, а u е наказанието за разтегляне (удължаване) на секвенцията

EMBOSS: THE EUROPEAN MOLECULAR BIOLOGY OPEN SOFTWARE SUITE http://emboss.open-bio.org/

TACGGGCCCGCTAC

Оценъчна матрица за нуклеотиди DNAfull

TAGCCCTATCGGTCA

EMBOSS Matcher

Линейно наказание за празнини

Gap opening
Gap extension
End gap penalty
End Gap Open penalty
End gap extend penalty

Помага за избягването на разпръснати малки празнини

АЛГОРИТЪМ НА SMITH - WATERMAN

$$M_{i,j} = MAX \begin{cases} M_{i-1,j-1} + S_{i,j} \\ M_{i,j-1} + W \\ M_{i-1,j} + W \\ 0 \end{cases}$$

Където: i,j определят реда и колоната $M_{i,j}$ - елемент на оценъчната матрица $S_{i,j}$ е оценката W – подравняване с празнина (gap alignment)

АЛГОРИТЪМ НА SMITH WATERMAN

- 1. Инициализация на оценъчната матрица
- 2. Запълване на оценъчната матрица с оценките

$$M_{i,j} = Maximum \left[M_{i-1,j-1} + S_{i,j}, M_{i,j-1} + W, M_{i-1,j} + W, 0 \right]$$

Където: і, і определят реда и колоната

М_{і,і} - елемент на оценъчната матрица

 $S_{i,j}$ е оценката

W – подравняване с празнина (gap alignment)

3. Обратно проследяване в оценъчната матрица за откриване на оптималното подравняване

GACTTAC (sequence #2 - B)

Match score +5

Mismatch score -3

Gap penalty W=-4

- 1. Инициализация на оценъчната матрица
- 2. Запълване на оценъчната матрица с оценките и маркиране на указателите за връщане (1 или повече) сочещ/и клетката/клетките, от коята/които е получена МАХ стойност

$$M_{0,0} = 0$$
; $M_{1,0} = 0$; $M_{0,1} = 0$;

$$S_{1,1}$$
 (mismatch) = -3

$$W = -4$$

$$M_{1,1} = MAX [(M_{0,0} + S_{1,1}), (M_{1,0} + W), (M_{0,1} + W), O]$$

$$M_{1,1} = MAX [(0-3), (0-4), (0-4), 0]$$

$$M_{1,1} = MAX [-3, -4, -4, 0] = 0$$

10		-	С	G	T	G	A	A	Т	Т	С	A	T
	-	0	0	0	0	0	0	0	0	0	0	0	0
	G	0_	→										
	A	0											
	С	0											
	T	0											
	Т	0											
	A	0											
	С	0											

ОЦЕНЪЧНАТА МАТРИЦА Е ЗАПЪЛНЕНА С ОЦЕНКИТЕ И УКАЗАТЕЛИТЕ ЗА ОБРАТНО ПРОСЛЕДЯВАНЕ (TRACEBACK POINTERS)

	-	С	G	T	G	A	A	Т	T	С	A	T
-	0	0	0	0	0	0	0	0	0	0	0	0
G	0	0	5	1	5	_1_	0	0	0	0	0	0
A	0	0	1	2	1	10	6	2	0	0	5	1
С	0	5	1	0	0	6	7	3	0	5	1	2
T	0	1	2	6	2	2	3	12	8	4	2	6
T	0	0	0	7	3	0	0	8	17	13	9	7
A	0	0	0	3	4	8	5	14	13	14	18	14
С	0	5 ←	1	0	0	4	5	2	9	18	14	15

	-	С	G	Т	G	Α	Α	Т	T	С	A	T
-	0	0	0	0	0	0	0	0	0	0	0	0
G	0	0	5	1	5	_1_	0	0	0	0	0	0
A	0	0	1	2	1 ×	10	6	2	0	0	5	1
С	0	5	1	0	0	6	7	3	0	5		2
Т	0	1	2	6	2	2	3	12	8	4	2	6
T	0	0	0	7-	3	0	0	8	17	13	9	7
A	0	0	0	13	4	8	5	4	13	14	18	14
С	0	5	1	0	0	4	5	2	9	18	14	15

	-	С	G	Т	G	A	A	T	Т	С	A	Т
-	0	0	0	0	0	0	0	0	0	0	0	0
G	0	0	5	1	5	_1_	0	0	0	0	0	0
A	0	0	1	2	1	10	6	2	0	0	5	1
С	0	5	1	0	0	6	7	3	0	5	1	2
T	0	1	2	6	2	2	3	12	8	4	2	6
T GAP	0	0	0	7	3	0	0	8	17	13	9	7
A	0	0	0	3	4	8	5	4	13	14	18_	14
С	0	5	1	0	0	4	5	2	9	18	14	15

A A T T C A A C T T - A + - + + - + 5 3 5 5 4 5 Обратното проследяване стартира от елемента с най-висока оценка, следвайки указателите до достигането на елемент с оценка 0

G A A T T C A G A C T T - A + + - + + - + 5 5 3 5 5 4 5 Обща оценка 18 ВЪЗМОЖНО Е ОТ ДАДЕН ЕЛЕМЕНТ ДА ИМА 2 УКАЗАТЕЛЯ. В ТОЗИ СЛУЧАЙ МОГАТ ДА СЕ РАЗГЛЕДАТ ДВЕТЕ ПОДРАВНЯВАНИЯ

G A A T T - C G A C T T A C + + - + + - + 5 5 3 5 5 4 5 Обща оценка 18

ПРАКТИЧЕСКИ АСПЕКТИ

- Търсене в биологични бази данни
- ➤ Заявка (Query) Открита нова генетична секвенция (ДНК/РНК) или избрана от биологичните бази данни такава
- ▶Глобално подравняване със секвенции в биологичните бази алгоритъм на Needlemen Wunch по две секвенции
- ▶ Локално подравняване със секвенции в биологичните бази – алгоритъм на Smith – Waterman

ЛОКАЛНО ПОДРАВНЯВАНЕ СЪС СЕКВЕНЦИИ В БИОЛОГИЧНИТЕ БАЗИ — АЛГОРИТЪМ НА SMITH — WATERMAN

ПАРАЛЕЛИЗАЦИЯ ПРИ ПОДРАВНЯВАНЕТО НА ДВЕ СЕКВЕНЦИИ: ПО РЕДОВЕ С НИШКИ КОНВЕЙЕРИЗАЦИЯ (PIPELINE)

ОБРАБОТКАТА НА АНТИДИАГОНАЛНИТЕ ЕЛЕМЕНТИ НА МАТРИЦАТА Е НЕЗАВИСИМО

ПАРАЛЕЛИЗАЦИЯ ПРИ ПОДРАВНЯВАНЕТО НА ДВЕ СЕКВЕНЦИИ: ПО КОЛОНИ С НИШКИ КОНВЕЙЕРИЗАЦИЯ (PIPELINE)

ОБРАБОТКАТА НА АНТИДИАГОНАЛНИТЕ ЕЛЕМЕНТИ НА МАТРИЦАТА Е НЕЗАВИСИМО

ИМПЛЕМЕНТАЦИЯ С FPGA ЗА ОБЛАЧНИ УСЛУГИ — SYSTOLIC ARRAY

ПРАКТИЧЕСКИ АСПЕКТИ

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the name given to the 2019 novel coronavirus.

COVID-19 is the name given to the disease associated with the virus.

SARS-CoV-2 is a new strain of coronavirus that has not been previously identified in humans.

29,882 bp linear RNA

https://www.ncbi.nlm.nih.gov/nuccore/?term=txid2697049%5bOrganism:noexp%5d

https://www.ncbi.nlm.nih.gov/nuccore/MT276326.1?report=fasta