

中华人民共和国国家生态环境标准

HJ 1292—2023

铸造工业大气污染防治可行技术指南

Guideline on available techniques of air pollution prevention and control for foundry industry

本电子版为正式标准文本、由生态环境部环境标准研究所审校排版。

2023-03-06 发布 2023-06-01 实施

生 态 环 境 部 发布

目 次

前	言	ii
1	适用范围	1
2	规范性引用文件	1
3	术语和定义	1
4	行业生产与污染物的产生	3
5	污染预防技术	3
6	污染治理技术	5
7	无组织排放控制技术	7
8	移动源控制措施	9
9	污染防治可行技术	9
附:	录 A (资料性附录) 铸造生产工艺分类及大气污染物产生节点	13

前 言

为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治环境污染,改善生态环境质量,推动铸造工业大气污染防治技术进步,制定本标准。

本标准提出了铸造工业的大气污染防治可行技术。企业结合自身实际情况,可选择本标准提出的大 气污染防治可行技术,也可采用其他适用的大气污染防治治理技术。

本标准的附录 A 为资料性附录。

本标准为首次发布。

本标准由生态环境部大气环境司、法规与标准司组织制订。

本标准起草单位:中国环境科学研究院、中国铸造协会。

本标准生态环境部 2023 年 3 月 6 日批准。

本标准自2023年6月1日起实施。

本标准由生态环境部解释。

铸造工业大气污染防治可行技术指南

1 适用范围

本标准提出了铸造工业的大气污染防治可行技术。

本标准可作为铸造工业企业建设项目环境影响评价、国家污染物排放标准制修订、排污许可管理和污染防治技术选择的参考。

本标准不适用于铸造企业内的高炉、烧结、球团、再生有色金属熔炼等工序的大气污染防治。

2 规范性引用文件

本标准引用了下列文件或其中的条款。凡是注明日期的引用文件,仅注日期的版本适用于本标准。凡是未注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。

GB/T 4754—2017	国民经济行业分类
GB 14554	恶臭污染物排放标准
GB/T 16758	排风罩的分类及技术条件
GB 37822	挥发性有机物无组织排放控制标准
GB/T 38597	低挥发性有机化合物含量涂料产品技术要求
НЈ 1093	蓄热燃烧法工业有机废气治理工程技术规范
HJ 2020	袋式除尘工程通用技术规范
HJ 2026	吸附法工业有机废气治理工程技术规范
HJ 2027	催化燃烧法工业有机废气治理工程技术规范
WS/T 757—2016	局部排风设施控制风速检测与评估技术规范

3 术语和定义

下列术语和定义适用于本标准。

3. 1

铸造工业 foundry industry

生产各种金属铸件的制造业。GB/T 4754—2017 中归属金属制品业,分类为黑色金属铸造(C 3391)和有色金属铸造(C 3392)。黑色金属铸造指铸铁件、铸钢件等各种成品、半成品的制造;有色金属铸造指有色金属及其合金铸件等各种成品、半成品的制造。本标准中铸造工业企业包括铸造企业、铸造车间、铸造生产设施。

3. 2

铸造 foundry

熔炼金属、制造铸型,并将熔融金属浇入铸型,凝固后获得具有一定形状、尺寸和性能的金属零件 毛坯的成型方法。

3.3

污染防治可行技术 available techniques of pollution prevention and control

根据我国一定时期内环境需求和经济水平,在污染防治过程中综合采用污染预防技术、污染治理技术和环境管理措施,使污染物排放稳定达到国家污染物排放标准、规模应用的技术。

3.4

挥发性有机物 volatile organic compounds (VOCs)

参与大气光化学反应的有机化合物,或者根据有关规定确定的有机化合物。

3.5

油雾 oil mist

在铸件生产过程中,压力铸造(压铸)等铸造工艺或铸件热处理等通用工序以及湿式机械加工中所使用的矿物油挥发及其受热分解或裂解产物,其存在形态包括蒸气、液滴等。

3.6

密闭 closed/close

污染物质不与环境空气接触,或通过密封材料、密封设备与环境空气隔离的状态或作业方式。

3. 7

密闭(封闭)空间 closed space

利用完整的围护结构将污染物质、作业场所等与周边空间阻隔所形成的封闭区域或封闭式建筑物。该封闭区域或封闭式建筑物除人员、车辆、设备、物料进出时,以及依法设立的排气筒、通风口外,门窗及其他开口(孔)部位应随时保持关闭状态。

3.8

VOCs 物料 VOCs-containing materials

VOCs 质量占比大于等于 10%的原辅材料、产品和废料(渣、液),以及有机聚合物原辅材料和废料(渣、液)。

3. 9

非甲烷总烃 non-methane hydrocarbon (NMHC)

采用规定的监测方法,氢火焰离子化检测器有响应的除甲烷外的气态有机化合物的总和,以碳的质量浓度计,是一种表征 VOCs 总体排放的污染物控制项目。

3. 10

无组织排放 fugitive emission

大气污染物不经过排气筒的无规则排放,包括开放式作业场所逸散,以及通过缝隙、通风口、敞开门窗和类似开口(孔)的排放等。

3. 11

厂内运输车辆 transport vehicles in enterprise area

仅在企业厂区范围内(含码头、货场等生产作业区域和施工现场)的作业车辆。

3. 12

非道路移动机械 non-road mobile machinery

用于非道路上的各类机械,包括自驱动或具有双重功能(既能自驱动又能进行其他功能操作的)机械以及不能自驱动但被设计成能够从一个地方移动或被移动到另一个地方的机械。主要有工业钻探设备、工程机械(包括挖掘机械、铲土运输机械、起重机械、叉车、压实机械、路面施工与养护机械、混凝土机械、掘进机械、桩工机械、高空作业机械、凿岩机械等)、农业机械(包括拖拉机、联合收割机等)、林业机械、材料装卸机械、雪犁装备、机场地勤设备等。

本标准涉及的非道路移动机械主要指工程机械和材料装卸机械。

4 行业生产与污染物的产生

4.1 生产工艺

- 4.1.1 铸造生产工艺主要分为砂型铸造和特种铸造两大类,每类又可细分成多种不同铸造工艺,具体见附录 A 表 A.1。铸造生产过程一般包括金属熔炼(化)、造型、制芯、浇注、落砂、清理、砂处理、废砂再生、铸件热处理、表面涂装等生产工序和原辅材料准备等辅助生产工序,其中清理、铸件热处理、表面涂装统称为铸件后处理。铸造企业的具体生产工序根据铸造工艺、铸件材质和铸件使用要求的不同而有所区别。
- 4.1.2 铸造生产使用的原料主要包括铸造用生铁、废钢、铝合金锭、镁合金锭、铜合金锭、铅(合金)锭、钛合金锭、回炉料等;使用的辅料主要包括原砂、球化剂、蠕化剂、孕育剂、精炼剂、增碳剂、中间合金、膨润土、铸造用树脂、铸造用固化剂、水玻璃粘结剂、硅溶胶粘结剂、铸造用煤粉、耐火材料、铸型涂料、过滤网/片等;所用能源主要包括铸造焦炭、天然气、电等。

4.2 大气污染物的产生

- 4.2.1 铸造生产过程中产生的大气污染物主要包括颗粒物 (PM)、二氧化硫 (SO_2) 、氮氧化物 (NOx)、 VOCs (含苯和苯系物等)、油雾、铅及其化合物、恶臭等,产生工艺节点见附录 A 图 A.1。
- 4.2.2 颗粒物主要产生于金属熔炼(化)、造型、制芯、浇注、落砂、清理、砂处理、废砂再生、铸件热处理、表面涂装等工序,以及易散发粉尘的粉状、粒状等物料的储存、运输和转移、破碎和除尘器卸灰等环节。
- **4.2.3** SO_2 和 NOx 主要产生于使用化石燃料的工业炉窑,如冲天炉、金属熔炼(化)及热处理燃气炉、热法废砂再生等工序或生产设施。
- 4.2.4 VOCs 主要产生于含 VOCs 原辅材料的储存、调配和输送、表面涂装工序、消失模工艺浇注工序以及含有机粘结剂或辅助材料的铸造工艺的造型、制芯、浇注工序等; 苯和苯系物主要产生于表面涂装工序。
- 4.2.5 油雾主要产生于压力铸造(压铸)模具脱模剂喷涂等过程;铅及其化合物产生于铅基及铅青铜合金铸造金属熔炼(化)工序。
- 4.2.6 恶臭主要产生于造型、制芯、浇注和表面涂装等工序。

5 污染预防技术

5.1 原辅材料替代技术

5.1.1 少/无煤粉粘土砂添加剂替代技术

该技术用碳质材料、有机纤维质材料或无机材料部分或全部代替煤粉,可减少粘土砂工艺生产过程中 VOCs 和 SO₂ 的产生量 20%以上,适用于粘土砂工艺的铸造企业。

5.1.2 改性树脂粘结剂(含固化剂)替代技术

该技术采用无毒、低(无)挥发性物质为原材料复合制配改性树脂粘结剂,可降低树脂加入量,一般可减少 VOCs 产生量 20%以上,同时协同减少恶臭的产生,适用于采用树脂作为型(芯)砂粘结剂的铸造企业。

5.1.3 陶瓷砂替代技术

该技术采用熔融或烧结技术制备符合铸造用砂要求的陶瓷砂替代硅砂。用于树脂砂工艺,一般可减少树脂用量的20%~30%以上;用于消失模工艺,一般可减少造型工序的颗粒物产生量15%以上。

5.1.4 无机粘结剂替代技术

该技术以硅酸盐类等为基体材料经复合制配改性制得型砂粘结剂,具有不燃烧、VOCs 和恶臭产生量小等特点,适用于采用有机粘结剂作为型(芯)砂粘结剂的铸造企业。

5.1.5 水基铸型涂料替代技术

该技术以水作为主要载体和稀释剂,与耐火材料经复合制配制得砂型(芯)涂料,替代醇基铸型涂料等非水基铸型涂料,适用于砂型(芯)的施涂。

5.1.6 低(无) VOCs 含量涂料替代技术

该技术使用水性、高固体分、无溶剂、辐射固化等低(无)VOCs 含量的涂料替代溶剂型涂料,一般可使涂装工序 VOCs 的产生量减少 20%以上,适用于铸件表面涂装工序。低(无)VOCs 含量涂料应满足 GB/T 38597 的产品技术要求。

5.2 设备或工艺预防技术

5.2.1 炉盖与除尘一体化技术

该技术将电炉炉盖与除尘收集罩一体化设计,收集金属熔炼(化)过程产生的颗粒物,提高废气收 集率,减少排气量。

5.2.2 金属液定点处理技术

该技术使用金属液处理装置或在固定的位置进行金属液处理和特殊元素合金化等操作,通常需在密闭(封闭)空间或半密闭(封闭)空间内操作,适用于金属液处理设施。

5.2.3 低氮燃烧技术

该技术采用控制空燃比、半预混燃烧器等技术,可减少燃烧过程 NOx 的产生量,适用于铸造生产中采用天然气作为燃料的工业炉窑,一般可使烟气中 NOx 产生浓度减少 30%以上。

5.2.4 微量喷涂技术

该技术通过定量装置将脱模剂精确喷涂在模具表面,大幅减少脱模剂的使用量,一般可减少 50% 以上废气产生量,适用于压力铸造(压铸)工艺的脱模剂喷涂。该技术需配合模具设计专用的喷涂装置使用,适用于大批量单一品种的产品。

5.2.5 金属液封闭转运技术

该技术采用隔热盖、转运通廊等封闭方式进行金属液转运,可通过配置袋式除尘器减少颗粒物排放。 该技术可防止金属液氧化,减少金属液运输过程中的热量损失。

5.2.6 静电喷涂技术

该技术使涂料在高压电场的作用下荷电后均匀吸附于铸件表面,尤其是铸件外表面的喷涂,通常与

自动喷涂技术联合使用。采用该技术可使液体涂料利用率达到 50%~85%,通过涂料回收利用技术可使 粉末涂料利用率达到 98%以上。

5.2.7 阴极电泳技术

该技术依靠电场力的作用,使槽液中带正电荷的涂料颗粒涂覆在铸件表面,施工状态电泳槽液 VOCs 质量占比一般为 0.5%~2%,涂料附着率一般为 97%~99%,适用于铸件表面涂装工序的底漆施工。

5.2.8 湿式机械加工技术

该技术使用湿式机械加工代替部分铸件清理工序,可避免清理工序的颗粒物产生,一般用于铝合金、 镁合金等铸件清理工序。采用该技术有废水产生。

6 污染治理技术

6.1 颗粒物治理技术

6.1.1 旋风除尘技术

该技术可去除重质颗粒物或浓度较高的颗粒物,对轻质及微细颗粒物处理效果不佳,需与袋式除尘技术或滤筒除尘技术等配合使用,适用于金属熔炼(化)、落砂、清理、砂处理、砂再生等工序废气颗粒物的预处理。

6.1.2 袋式除尘技术

该技术应用于铸造生产时过滤风速一般在 0.7 m/min~1.5 m/min 之间,系统阻力通常低于 1500 Pa,除尘效率通常可达 99%以上,适用于铸造工业企业各工序废气颗粒物的治理,使用该技术应符合 HJ 2020 的相关要求,应用在涉爆粉尘时应符合防爆的相关规定。

6.1.3 滤筒除尘技术

该技术应用于铸造生产时过滤风速一般在 0.6 m/min~1.2 m/min 之间,系统阻力通常低于 1000 Pa,除尘效率通常可达 99%以上,适用于铸造各工序废气颗粒物的治理,应用在涉爆粉尘时应符合防爆的相关规定。

6.1.4 湿式除尘技术

该技术适合于捕集 $1 \mu m \sim 10 \mu m$ 颗粒物,适用于铝合金、镁合金铸件的清理工序、砂型(芯)烘干工序,以及扣件、刹车盘等产尘量较低的小型铸件浇注工序。该技术对细小颗粒物的去除效果不佳。

6.1.5 漆雾处理技术

适用于表面涂装工序喷涂废气的漆雾治理及 VOCs 治理的预处理。该技术包括干式介质(如迷宫式纸盒)过滤漆雾处理技术、水旋喷漆室等,漆雾去除效率一般可达到 85%以上。

6.2 二氧化硫治理技术

6.2.1 湿法脱硫技术

HJ 1292—2023

该技术采用氢氧化钠(NaOH)、碳酸钠(Na₂CO₃)和碳酸氢钠(NaHCO₃)等碱性溶液吸收 SO₂,脱硫效率一般可达到 90%以上,适用于冲天炉废气的脱硫处理。该技术包括钠碱法脱硫技术和双碱法脱硫技术,该技术需配合自动添加脱硫剂设备、自动 pH 值监测、曝气等系列配套设施使用,禁止使用低效、简易碱法脱硫技术。

6.2.2 干法脱硫技术

该技术采用钙基[Ca (OH)₂、CaO]或钠基(NaHCO₃)脱硫吸收剂,使吸收剂与烟气中酸性物质接触反应,生成固态化合物,该技术脱硫效率一般可达 85%以上,适用于冲天炉废气的脱硫处理,需配合自动添加脱硫剂设备,铸造工业用钠基吸收剂细度一般不小于 800 目,钙基吸收剂细度一般不小于 300 目。

6.3 VOCs 治理技术

6.3.1 吸附技术

利用吸附剂(活性炭、分子筛等)吸附废气中的 VOCs,使之与废气分离的方法技术,简称吸附技术,主要包括固定床吸附技术、移动床吸附技术、流化床吸附技术、旋转式吸附技术。铸造工业企业常用的吸附技术为固定床吸附技术和旋转式吸附技术。

- a) 固定床吸附技术一般使用活性炭作为吸附材料,吸附剂可更换或通过解吸后循环利用,入口废气颗粒物浓度宜低于 1 mg/m³、温度宜低于 40 ℃、相对湿度(RH)宜低于 80%。该技术适用于铸造生产中 VOCs 废气治理,使用该技术时应符合 HJ 2026 的相关要求。
- b) 旋转式吸附技术一般使用分子筛作为吸附材料,脱附废气采用燃烧技术进行治理。入口废气颗粒物浓度宜低于 1 mg/m³、温度宜低于 40 ℃、相对湿度(RH)宜低于 80%,适用于铸造行业中使用溶剂型涂料且工况相对连续稳定的涂装工序 VOCs 废气的治理,使用该技术时应符合HJ 2026 的相关要求。

6.3.2 燃烧技术

通过热力燃烧或催化燃烧的方式,使废气中的 VOCs 转化为二氧化碳和水等物质,简称燃烧技术。主要包括催化燃烧技术、蓄热燃烧技术和热力燃烧技术。

- a) 催化燃烧技术在催化剂作用下使废气中 VOCs 转化为二氧化碳、水等物质,适用于颗粒物浓度低于 10 mg/m³、温度低于 400 ℃的废气治理。该技术 VOCs 去除效率一般可达 95%以上,适用于铸造行业各工序产生的 VOCs 废气治理,一般与吸附技术联用,使用该技术时应符合HJ 2027 的相关要求。
- b) 蓄热燃烧技术采用燃烧的方法使废气中 VOCs 转化为二氧化碳、水等物质,并利用蓄热体对燃烧产生的热量蓄积和利用, VOCs 去除效率一般可达 95%以上,适用于铸造行业中使用溶剂型涂料且工况相对连续稳定的表面涂装工序 VOCs 废气的治理,一般与吸附技术联用,使用该技术时应符合 HJ 1093 的相关要求。
- c) 热力燃烧技术采用燃烧的方法使废气中的 VOCs 转化为二氧化碳、水等物质。该技术燃烧温度 应控制在 800 ℃~1000 ℃,废气应引入高温火焰区,一般滞留时间不小于 0.5 s,VOCs 去除 效率一般可达 95%以上,热力燃烧设施应连续运行且有稳定高温环境(如连续式退火炉)。

6.3.3 吸收技术

该技术通过使用液体吸收剂去除废气中某一气体组分或多种组分,一般可分为化学吸收法和物理吸收法。化学吸收法(酸碱中和)常用于处理冷芯盒法(三乙胺催化硬化)制芯过程中产生的三乙胺,去

除效率一般可达 60%以上;物理吸收法常用于处理热芯盒法制芯及部分浇注工序,去除效率一般可达 60%以上。采用该技术有废水产生。

6.4 油雾治理技术

6.4.1 机械过滤技术

该技术利用离心力或金属丝网滤芯、纤维滤芯、多层过滤毡等作为过滤材料,使油雾从废气中分离。 机械过滤装置过滤风速通常低于 0.5 m/s、系统阻力通常低于 1200 Pa,油雾去除效率一般可达 90%以上,用于压力铸造(压铸)工艺脱模剂喷涂产生的含油雾废气治理。

6.4.2 静电净化技术

该技术使油雾废气在电场力的作用下,荷电后的油雾颗粒沉积在与其极性相反的收集板上,最终依靠重力实现油雾与空气的分离。静电净化装置电场电压通常为 10 kV~15 kV、气体流速通常低于 1.2 m/s、系统阻力通常低于 400 Pa,油雾去除效率一般可达 90%以上,适用于压力铸造(压铸)工艺脱模剂喷涂产生的含油雾废气的治理。

7 无组织排放控制技术

7.1 物料储存过程控制措施

- 7.1.1 煤粉、膨润土等粉状物料和硅砂应袋装或罐装,并储存于封闭储库或半封闭料场(堆棚)中, 半封闭料场(堆棚)应至少两面有围墙(围挡)及屋顶。
- 7.1.2 生铁、废钢、铝合金锭、镁合金锭、铜合金锭、焦炭和铁合金等粒状、块状散装物料应储存于封闭储库、料仓中,或储存于半封闭料场(堆棚)中,或四周设置防风抑尘网、挡风墙,或采取覆盖措施。半封闭料场(堆棚)应至少两面有围墙(围挡)及屋顶;防风抑尘网、挡风墙高度应不低于堆存物料高度的1.1 倍。
- 7.1.3 醇基涂料、树脂、固化剂、稀释剂、清洗剂等 VOCs 物料应储存于密闭的容器、包装袋、储库中; 盛装 VOCs 物料的容器或包装袋应存放于室内,或存放于设置有雨棚、遮阳和防渗设施的专用场地。 盛装 VOCs 物料的容器或包装袋在非取用状态时应加盖、封口,保持密闭。敞开液面 VOCs 无组织排放控制要求,应符合 GB 37822 的规定。

7.2 物料运输和转移过程控制措施

- 7.2.1 铸造用砂、混配土等粉状物料应采用气力输送设备、管状或带式输送机、螺旋输送机、吨包袋密封装盛等密闭方式输送; 粒状、块状散装物料采用封闭通廊的皮带、管状或带式输送机、吨包袋密封装盛等封闭方式输送,并减少转运点和缩短输送距离。
- 7.2.2 粉状物料的运输车辆采用密闭罐车; 粒状、块状散装物料的运输车辆采用封闭车厢或苫盖严密。
- 7.2.3 除尘器卸灰口应采取密闭措施,除尘灰采取袋装、罐装等密闭方式收集、存放和运输,不得直接卸落到地面。
- 7.2.4 转移、输送过程中产尘点应采取集气除尘措施,或喷淋(雾)等抑尘措施。固定作业的产尘点宜优先采用收尘技术,在不影响生产和安全的前提下,尽量提高收尘罩的密闭性;间歇式、非固定的产尘点,宜采用喷淋(雾)等抑尘技术。
- 7.2.5 转移 VOCs 物料时,应采用密闭容器或密闭管道输送。
- 7.2.6 厂区道路宜硬化,并采取清扫、洒水等措施,保持清洁。

HJ 1292—2023

7.3 工艺生产过程控制措施

- 7.3.1 原辅材料入炉前宜经机械预处理,清除其中的杂质。
- 7.3.2 冲天炉加料口应为负压状态,防止污染物外泄。
- 7.3.3 合箱、落砂、开箱、清砂、打磨等操作宜固定作业工位或场地,便于采取防尘措施。
- 7.3.4 球化、孕育、调质、炉外精炼、除气等金属液处理官定点处理,并安装集气罩和配备除尘设施。
- 7.3.5 落砂、清理、砂处理等宜在密闭(封闭)空间内操作,废气收集至除尘设施;未在封闭空间内操作的,应采取固定式、移动式集气设备,并配备除尘设施。
- 7.3.6 造型、制芯、浇注工序宜在密闭(封闭)空间内操作,或安装集气罩,废气应排至除尘设施、VOCs废气收集处理系统;涉恶臭气体排放的,应设有恶臭气体收集处理系统,恶臭排放应符合 GB 14554的规定。
- 7.3.7 金属液转运应采用转运通廊,废气收集至除尘设施,或采用移动集气和除尘设施;无法采用上述措施的,应采用浇包包盖、覆盖、集渣覆盖层等措施减少无组织排放。
- 7.3.8 金属液倒包、分包等操作宜设置固定工位,安装集气罩,并配备除尘设施。
- 7.3.9 含有机添加剂的粘土砂、树脂砂、壳型等铸造工艺浇注时宜及时引燃。
- 7.3.10 清理(去除浇冒口、铲飞边毛刺等)和浇包、渣包的维修工序宜在封闭空间内操作,废气收集至除尘设施;未在封闭空间内操作的,应采取固定式、移动式集气设备并配备除尘设施,或采取喷淋(雾)等抑尘措施。
- 7.3.11 车间整体的无组织排放,可采用双流体干雾等抑尘技术。
- 7.3.12 表面涂装的配料、涂装和有机溶剂清洗作业宜采用密闭设备或在密闭空间内进行;无法密闭的,应安装集气罩。废气排至 VOCs 废气收集处理系统。
- 7.3.13 表面涂装工序宜集中作业,通过提高原辅材料及能源利用率、污染物收集率、污染治理设施运转率及其对污染物的去除效率,减少 VOCs 等污染物的排放量。

7.4 废气收集系统控制要求

- 7.4.1 废气收集系统排风罩(集气罩)的设置应满足 GB/T 16758 的要求,并按照 GB/T 16758 和 WS/T 757—2016 规定的方法测量控制风速,测量点应选取在距排风罩开口面最远处无组织排放位置,VOCs 的排风罩控制风速不应低于 0.3 m/s,颗粒物的排风罩控制风速不应低于 WS/T 757—2016 规定的限值。7.4.2 应尽可能利用主体生产装置(如中频感应炉、抛丸机等)自身的集气系统进行收集。排风罩的配置应与所采用的生产工艺协调一致,不影响工艺操作。在保证收集能力的前提下,应结构简单,便于安装和维护管理。
- 7.4.3 排风罩应优先考虑采用密闭罩或排气柜,并保持一定的负压。当不能或不便采用密闭罩时,可根据生产操作要求选择半密闭罩或外部排风罩,并尽可能包围或靠近污染源,必要时可增设软帘围挡,以防止污染物外逸。
- 7.4.4 排风罩的吸气方向应尽可能与污染气流运动方向一致,防止排风罩周围气流紊乱,避免或减弱 干扰气流和送风气流等对吸气气流的影响。
- 7.4.5 当废气产生点较多,彼此距离较远时,应适当分设多套收集系统。
- 7.4.6 间歇运行工序或设备的收集系统管道或其支路上应设置自动调节阀,自动调节阀应在该工序或设备开启前开启。
- 7.4.7 废气收集处理系统应先于或与生产工艺设备同步运行。当废气收集处理系统发生故障或检修时,对应的生产工艺设备应停止运行,待检修完毕后同步投入使用;生产工艺设备不能停止运行或不能及时停止运行的,应设置废气应急处理设施或采取其他替代措施。

8 移动源控制措施

- 8.1 大宗物料和产品运输优先采用铁路、水路、管道或管状带式输送机等清洁运输方式,清洁运输比例要求应符合国家相关规定。
- 8.2 按国家和地方要求建立原辅材料、产品运输车辆电子台账,保障运输车辆正常维护保养,确保重污染应急期间运输管控措施有效实施,鼓励企业建立门禁视频监控系统;鼓励通过与供车单位、原辅材料供货单位及产品购买单位签订车辆排放达标保证书、增加相应合同条款、提供运输车辆年检合格证明等方式实现车辆的达标排放管理。
- 8.3 新增厂内运输车辆应符合现行排放标准,按要求进行联网;厂内车辆应正常维护保养并保障达标排放。
- 8.4 新增非道路移动机械应符合现行排放标准,按要求进行编码登记并联网;非道路移动机械应正常维护保养并保障达标排放。

9 污染防治可行技术

9.1 金属熔炼(化)工序大气污染防治可行技术

金属熔炼(化)工序大气污染防治可行技术见表 1。

污染物排放浓度水平 (mg/m³) 可行 预防技术 治理技术 技术适用条件 铅及其 技术 颗粒物 SO_2 NOx 化合物 ①旋风除尘技术+②袋式除 可行 适用于以铸造焦炭为燃料的 尘技术+③湿法脱硫技术/① 5~30 25~200 旋风除尘技术+②干法脱硫 冲天炉。 技术1 技术+③袋式除尘技术 炉盖与除 ①旋风除尘技术(可选)+ 可行 适用于金属熔炼(化)工序的 尘一体化 ②袋式除尘技术/滤筒除尘 5~20 技术2 中频感应电炉。 技术 技术 ①旋风除尘技术(可选)+ 适用于金属熔炼(化)工序的 低氮燃烧 可行 ②袋式除尘技术/滤筒除尘 5~20 50~200 燃气炉,一般应用于铝合金的 技术3 技术 熔炼(化)。 适用于金属熔炼(化)工序的 ①旋风除尘技术(可选)+ 可行 电弧炉、精炼炉、电阻炉、保 ②袋式除尘技术/滤筒除尘 5~30 2ª 技术4 温炉、坩埚炉及采用外部集尘 技术 罩的中频感应电炉等。 适用于金属熔炼(化)的金属 金属液定 ①旋风除尘技术(可选)+ 液处理操作, 如球化、蠕化、 可行 点处理技 ②袋式除尘技术/滤筒除尘 精炼、除气等, 典型应用如球 5~30 技术5 化站、蠕化站、除气机等, 使 术 技术 用时需评估其适用性。

表 1 金属熔炼(化)工序大气污染防治可行技术

9.2 造型、制芯工序大气污染防治可行技术

注:表中"+"代表大气污染治理技术组合。 a 适用于铅基及铅青铜合金的铸造熔炼(化)炉。

造型、制芯工序大气污染防治可行技术见表 2。

表 2 造型、制芯工序大气污染防治可行技术

可行			污染物排放浓度水平(mg/m³)				
技术	预防技术	治理技术	颗粒物	NMHC	油雾	臭气浓度 (无量纲)	技术适用条件
可行 技术1	_	①旋风除尘技术(可选)+② 袋式除尘技术/ 滤筒除尘技术	5~20	_	_	_	适用于二氧化碳硬化水玻璃砂、 无有机质粘土砂、无机粘结剂砂型工艺等铸造工艺以及消失模 (真空)、V法、熔模等铸造工 艺填砂设备、制芯工序的废气治 理。消失模工艺填砂设备也可使 用陶瓷砂替代技术减少颗粒物的 产生。
可行 技术2	改性树脂粘结 剂(含固化剂)	①旋风除尘技术(可选)+② 袋式除尘技术/滤筒除尘技术+③固定床吸附技术	5~20	30~60	_	_	适用于树脂砂、热芯盒等使用有 机粘结剂的铸造工艺造型产生的 废气治理。
可行技术3	替代技术(可选)、陶瓷砂替代技术(可选)	化学吸收法技术(酸碱中和技术)	5~20	30~60	_	2000	适用于三乙胺催化硬化冷芯盒法 制芯工序,常用的中和介质为磷 酸、草酸、盐酸等。该技术需定 期或自动添加中和介质使用。
可行 技术4		①袋式除尘技术/滤筒除尘技术+②物理吸收法技术	5~20	30~60	_	_	适用于热芯盒法制芯工序。该技术需配合吸收介质再生技术使用。
可行 技术5	_	①旋风除尘技术(可选)+②袋式除尘技术/滤筒除尘技术+③固定床吸附技术	5~20	30~60	_	_	适用于熔模铸造工艺造型工序中有VOCs产生的环节和树脂砂、壳型醇基涂料涂覆,如蜡模制造、脱蜡、模壳焙烧等。经浓缩的废气也可通过催化燃烧技术进一步处理。
可行 技术6	无机粘结剂替 代技术(含固 化剂)	袋式除尘技术/ 滤筒除尘技术	5~20	_	_	_	适用于多种粘结剂砂型工艺,可 部分替代热芯盒法、冷芯盒法、 自硬砂法造型和制芯等。
可行 技术7	微量喷涂技术 (可选)	机械过滤技术/ 静电净化技术	5~10	30~60	<10	_	适用于压力铸造(压铸)脱模剂 喷涂废气处理。
可行 技术8	水基铸型涂料 替代技术	滤筒除尘技术	5~10	_	_	_	适用于树脂砂、热芯盒、冷芯盒 等工艺替代醇基铸型涂料涂覆。 治理技术适用于天然气烘干设 备。
注	注:表中"+"代表大气污染治理技术组合。						

9.3 浇注工序大气污染防治可行技术

浇注工序大气污染防治可行技术见表 3。

表 3 浇注工序大气污染防治可行技术

可行	预防技术	治理技术	污染物排放浓度水平(mg/m³)		技术适用条件		
技术	1英例1文/个	<u>但连汉小</u>	颗粒物	NMHC	1人 1		
可行 技术1	少煤粉粘土砂 添加剂替代技 术(可选)	①旋风除尘技术(可选)+②袋式除尘技术/滤筒除尘技术+③固定床吸附技术+④燃烧技术(可选)	5~20	20~60	适用于含有机质的粘土砂、树脂砂、消失模、有机粘结剂壳型等含有有机原辅材料铸造工艺的浇注工序。少煤粉粘土砂添加剂替代技术仅用于含有机质的粘土砂工艺。吸附浓缩的废气经解吸后可通过燃烧技术进一步处理。		
可行 技术2	_	①旋风除尘技术(可选)+②袋式除尘技术/滤筒除尘技术	5~20		适用于水玻璃砂、熔模、无有机质粘土 砂、使用无机粘结剂的铸造工艺及石墨 型、金属型、离心等不使用粘结剂铸造 工艺的浇注工序。		
可行 技术3		湿式除尘技术	5~30	20~60	适用于粘土砂、树脂砂等工艺生产小型 铸件的浇注工序。其中粘土砂工艺浇注 工序的废气含湿量较高,使用湿式除尘 技术可避免糊布袋现象。		
可行技术4	_	①旋风除尘技术(可选)+②袋式除尘技术/滤筒除尘技术+③物理吸收法技术	5~20	<60	适用于含有机质的粘土砂、树脂砂、消 失模、有机粘结剂壳型等含有有机原辅 材料铸造工艺的浇注工序。		
可行 技术5	金属液封闭转 运技术	袋式除尘技术(可 选)	5~20	_	适用于金属液的转运过程。		
注	注:表中"+"代表大气污染治理技术组合。						

9.4 落砂、清理、砂处理、废砂再生及铸件热处理工序大气污染防治可行技术

落砂、清理、砂处理、废砂再生及铸件热处理工序大气污染防治可行技术见表 4。

表 4 落砂、清理、砂处理、废砂再生及铸件热处理工序大气污染防治可行技术

可行	预防技术	治理技术	污染物排放浓度	水平 (mg/m³)	技术适用条件	
技术	1页例1又小	<u>但连汉小</u>	颗粒物	NOx	12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	
可行 技术1	_	①旋风除尘技术(可选)+②袋式除尘技术/滤筒除尘技术	5~30		适用于各种砂型铸造工艺(含特种砂型 铸造工艺)的落砂、清理、砂处理和废 砂再生等工序。	
可行 技术2	_	湿式除尘技术/袋式 除尘技术/滤筒除尘 技术	5~30		适用于铝合金、镁合金等铸件的清理工序。	
可行 技术3	湿式机械加工 技术	_	<5		适用于铝合金、镁合金等铸件的清理工序,适用于大批量铸件的生产。	
可行 技术4	低氮燃烧技术	袋式除尘技术/滤筒 除尘技术(可选)	5~30	50~200	适用于除电热处理炉外的其它热处理设备。	
注	注: 表中"+"代表大气污染治理技术组合。					

9.5 表面涂装工序大气污染防治可行技术

表面涂装工序大气污染防治可行技术见表 5。

表 5 表面涂装工序大气污染防治可行技术

可行	预防技术	治理技术	污染物排放浓度水平(mg/m³)		mg/m³)	技术适用条件	
技术	1	<u>石</u> 埋权不	颗粒物	苯	苯系物	NMHC	1文
可行 技术 1	_	①漆雾处理技术+②吸附技术+③燃烧技术	<5	<1	<20	10~60	适用于使用溶剂型涂料的表面涂装工序。典型路线一般为:①漆雾处理技术+②固定床吸附技术+③催化燃烧技术;大批量连续生产铸件的表面涂装工序典型治理路线为:①漆雾处理技术+②旋转式吸附技术+③蓄热燃烧技术。吸附浓缩的废气经解吸后通过燃烧技术进一步处理。
可行 技术 2	水性涂料替 代技术	漆雾处理技术	<5	<1	<10	10~60	适用于表面涂装工序,需根据其 VOCs的含量 选择合适的路线。涂料中VOCs含量较高时, 需参照可行技术1治理。
可行 技术 3	阴极电泳技 术	_	_	_	_	10~60	适用于部分铸件的底漆施工。
可行 技术 4	①粉末涂料 替代技术+② 静电喷涂技 术	袋式除尘技术/滤筒除尘技术	10~30			_	适用于表面涂装工序。静电喷涂技术通常需配合自动喷涂技术使用。
可行 技术 5	_	热力燃烧技术	<10	<1	<20	20~60	适用于具有连续运行且有稳定高温环境热力 燃烧设施(如连续式退火炉)企业的表面涂装 工序。
可行 技术 6	_	固定床吸附技术/①固定床吸附技术+②催化燃烧技术		<1	<20	20~60	适用于表面涂装的烘干工艺。其中,大批量连续生产铸件表面涂装的烘干工序典型治理路线为:①固定床吸附技术;②固定床吸附技术+催化燃烧技术,即固定床吸附浓缩的废气经解吸后通过催化燃烧技术进一步处理。

注1: 表中"+"代表大气污染治理技术组合。

注2: 喷涂和烘干合并排放时可共用一套处理系统, 当分别排放时需根据污染物产生情况分别设置处理措施。

附 录 A (资料性附录) 铸造生产工艺分类及大气污染物产生节点

铸造生产工艺的分类见表 A.1,铸造生产主要工序的大气污染物的产生节点见图 A.1。

表 A. 1 铸造工艺的分类

铸造工艺	工艺种类
砂型铸造	粘土砂铸造、树脂砂铸造、水玻璃砂铸造、壳型铸造等
特种铸造	离心铸造、熔模铸造、压力铸造(压铸)、低压铸造、金属型铸造、覆砂金属型铸造、消失模铸造、V法铸造、连续铸造、挤压铸造、差压铸造、石墨型铸造、陶瓷型铸造、石膏型铸造等

图 A. 1 铸造生产主要工序的大气污染物产生节点