

Fakulteta za elektrotehniko, računalništvo in informatiko

Uvod v ogrodje NVIDIA RAPIDS

Krajše izobraževanje (NOO)

Potek izobraževanja

- Ponedeljek, 16. 06. 2025, 10:00-14:00
 - Uvod in predstavitev predavatelja, dostop do učnih materialov
 - Ogrodje NVIDIA RAPIDS in njegove funkcionalnosti
 - Pospeševanje algoritmov na GPE (knjižnice cuDF, cuML in cuGraph)
 - 10:00-14:00 teoretični in praktični del v F-103
- Torek, 17. 06. 2025, 10:00-14:00
 - E2E cevovodi z NVIDIA RAPIDS
 - Praktični primer 1: Priporočanje filmov
 - Praktični primer 2: Vektorsko iskanje
 - 10:00-14:00 teoretični in praktični del v F-103
- Sreda, 18. 06. 2025, 10:00-14:00
 - 10:00-14:00 preverjanje znanja in anketa v F-103

Predstavitev predavatelja

Kontakt:

- mladen.borovic@um.si
- = +386 2 220 7460
- <u>in LinkedIn</u>

Raziskovalna področja:

- Aplikacije umetne inteligence
- Priporočilni sistemi in iskalniki
- Obdelava naravnega jezika
- Detekcija podobnih vsebin
- Visokozmogljivo računalništvo (HPC)

dr. Mladen Borovič Univerza v Mariboru

Fakulteta za elektrotehniko, računalništvo in informatiko
Inštitut za računalništvo
Laboratorij za heterogene računalniške sisteme

Motivacija in cilji izobraževanja

- Predmetniki študijskih programov ne zajamejo vseh aktualnih tematik
- Dodatna izobraževanja kot alternativna oblika podajanja znanja
- Krajši format, hiter in učinkovit pristop k pridobivanju novih znanj
- Cilji tega izobraževanja
 - Približati udeležencem tematike na področju visokozmogljivega računalništva
 - Naučiti udeležence dobrih praks obdelave velepodatkov na GPE
 - Uporaba ogrodja NVIDIA RAPIDS z namenom pospeševanja algoritmov
 - Demonstrirati pridobljena znanja na praktičnih primerih
- Na koncu izobraževanja se izvaja preverjanje znanja
 - Pogoj za pridobitev mikrodokazila (1 ECTS)
- Anketa
 - Povratna informacija o vaši izkušnji udeležbe na krajšem izobraževanju

Učni materiali in gradivo

- GitHub https://github.com/lhrs-workshops/noo-uonr
- Prosojnice in zvezki Jupyter
 - Prosojnice vsebujejo teoretični del in so barvno označene v zgornjem desnem kotu
 - Prvi dan (16. 06. 2025)

 Drugi dan (17. 06. 2025)
 - Zvezki Jupyter vsebujejo praktične primere z razlago
 - Za izvedbo zvezkov Jupyter lahko uporabite platformo Google Colab Colab

Procesne enote

- Pri delu z računalniškimi sistemi uporabljamo centralne procesne enote (CPE)
 - Splošno-namenska procesna enota
 - CPE z več jedri in več nitmi omogoča sočasno izvajanje operacij, kar vodi v pohitritve
- Specifične procesne enote kot koprocesorji
 - Te procesne enote so namenske
 - Primer: grafična procesna enota (GPE) je namenjena vizualizaciji
 - Različne arhitekture, ki omogočajo namensko delovanje
- Danes pogosto uporabljamo CPE in GPE
 - Računalniške igre
 - CPE izvaja logiko igre
 - GPE izvaja vizualizacijo igre
 - Umetna inteligenca
 - CPE izvaja koordinacijo učenja modela,
 - GPE izvaja zahtevne računske operacije med učenjem modela

Računanje na CPE in GPE

- Izvedba računskih operacij na CPE in GPE zahteva posebno pozornost
 - Ko se računska operacija izvaja na CPE je rezultat v RAM-u
 - Ko se računska operacija izvaja na GPE je rezultat v VRAM-u
 - Neoptimalni delovni tok računskih operacij na različnih procesnih enotah vodi v zakasnitve

Strojno pospeševanje

- Včasih lahko celotno breme obdelave prenesemo na specifično procesno enoto
 - CPE je v vlogi upravljalca, specifična procesna enota je v vlogi izvajalca
- Izkaže se, da so GPE zelo uporabne pri izvedbi vektorskih in matričnih operacij
 - To je uporabno za hitrejšo izvedbo različnih algoritmov
 - Algoritmi strojnega učenja, algoritmi nad grafi, vizualizacijski algoritmi
 - Paralelna obdelava podatkov (ang. data parallelism)
 - Paralelno računanje (ang. task parallelism)

Strojno pospeševanje

- Za strojno pospeševanje obstaja veliko orodij
- Sočasna uporaba več CPE na različnih vozliščih
 - MPI (ang. Message Passing Interface)
 - OpenMP (ang. Open Multi-Processing)

- CUDA (ang. Compute Unified Device Architecture) izključno NVIDIA GPE
- ROCm primarno za AMD GPE, deluje tudi na NVIDIA GPE
- OpenACC (ang. Open Accelerators)
- OpenCL (ang. Open Computing language)
- V programih lahko tudi kombiniramo zgornje rešitve
 - Ponavadi uporabljamo knjižnice ali ogrodja, ki jih uporabljajo
 - NVIDIA RAPIDS, PyTorch Distributed Data Parallel, Apache Spark

Strojno pospeševanje

- Strojno pospeševanje lahko skaliramo
 - Sistem z več CPE in GPE (računsko vozlišče, ang. compute node)
 - Sistem z več računskimi vozlišči (računska gruča, ang. compute cluster)
 - Sistem z več računskimi gručami (razpršeno računalništvo, ang. grid computing)
 - Visokozmogljivo računalništvo in superračunalništvo
- Skaliranje zahteva ustrezno komunikacijo med strojno opremo
 - Skaliranje na več CPE (OpenMP in MPI usklajevanje implementiramo sami v programu)
 - Skaliranje na več CPE+GPE (NVIDIA RAPIDS, PyTorch Distributed Data Parallel)
- Ogrodja kot je NVIDIA RAPIDS nam bistveno olajšajo strojno pospeševanje
 - Nabor uporabnih knjižnic
 - Enostaven programski vmesnik za implementacijo strojnega pospeševanja

Ogrodje NVIDIA RAPIDS

- Odprtokodno ogrodje za strojno pospeševanje na GPE
- Nabor uporabnih knjižnic (cuDF, cuML, cuGraph, cuxfilter, ...)
- Kompatibilnost z drugimi rešitvami (CUDA, Apache Spark in Arrow, Dask)
- Programski jezik Python

Machine Learning to Deep Learning: All on GPU

Primerjava delovnih tokov

Knjižnice NVIDIA RAPIDS

cuDF

- Delo s podatki in velepodatki na GPE, Pandas-like API, pospešeno branje in operacije I/O (cuIO)
- Podpora za datotečni format Parquet
- Integracija z Dask (dask-cudf) za skaliranje

cuML

- Izvedba algoritmov strojnega učenja na GPE, scikit-learn-like API
- Širok nabor algoritmov (logistična regresija, Random Forest, K-Means, PCA, UMAP, DBSCAN, ...)
- Integracija z Dask (dask-cuml) za skaliranje

cuGraph

- Izvedba algoritmov nad grafi na GPE, NetworkX-like API
- Širok nabor algoritmov (PageRank, MST, BFS, HITS, ...)

Knjižnice NVIDIA RAPIDS

Druge knjižnice NVIDIA RAPIDS

- RMM (Rapids Memory Manager) delo s pomnilnikom na več GPE
- RAFT (Reusable Accelerated Function Templates) optimizirane funkcije za računanje
- culO delo z operacijami I/O, branje in nalaganje v VRAM
- cuSpatial delo z geoprostorskimi podatki, podpora za GIS
- cuSignal delo s signali na GPE (FFT, filtri, konvolucija), SciPy.signal-like API
- cuStrings delo z nizi znakov (regularni izrazi, tokenizacija, iskanje podnizov), sočasna obdelava
- cuXfilter vizualizacija velikih podatkovnih zbirk (dashboard)
- NVTabular pridobivanje značilk in predobdelava podatkov za priporočilne sisteme

Knjižnica cuDF

- Pospeševanje nalaganja podatkov za nadaljnjo obdelavo na GPE
- Integracija s knjižnico Pandas (Python)
 - Tudi s knjižnico Polars (Python) [beta]
- Pospeševanje Pandas lahko vključimo z modulom cudf.pandas
 - Jupyter Notebook: %load_ext cudf.pandas
 - Python: python –m cudf.pandas program.py
- Pozorni moramo biti na podprte funkcije!
 - Spomnite se profiliranja na GPE (Napredna obdelava velepodatkov v Pythonu)

Knjižnica cuML

- Pospeševanje algoritmov strojnega učenja na GPE je smiselno, kadar imamo velike količine podatkov nad katerimi je potrebno izvesti računske operacije
- cuML je "drop-in replacement" za scikit-learn (Python)
 - Prototipiranje na CPE z manjšo količino podatkov in scikit-learn
 - Produkcijska izvedba na GPE z večjo količino podatkov in cuML
 - Programska koda pri tem ostane praktično identična
- Pospeševanje scikit-learn lahko vključimo tudi z modulom cuml.accel
 - Jupyter Notebook: %load ext cuml.accel
 - Python: python -m cuml.accel program.py

Knjižnica cuML

- Pospeševanje scikit-learn s cuml.accel poteka avtomatsko
- Samodejno preklapljanje med CPE in GPE
 - Optimiziran prenos podatkov iz RAM v VRAM in nazaj

Knjižnica cuML

- Podprti algoritmi strojnega učenja
 - Algoritmi za regresijo in klasifikacijo (linearna regresija, Random Forest, naivni Bayes)
 - Algoritmi za gručenje (K-Means, DBSCAN)
 - Postopki za redukcijo dimenzij (PCA, t-SNE, UMAP)
 - Algoritmi, ki upoštevajo sosedstvo (k-NN)
 - Algoritmi za časovne vrste (Holt-Winters, ARIMA)
 - Algoritmi razložljive umetne inteligence (SHAP)
- Postopki predobdelave podatkov, izračun metrik in druge uporabne operacije
- Vse podprte algoritme lahko preverite v dokumentaciji
- Primerjava knjižnice scikit-learn in cuML v praktičnem delu

Knjižnica cuGraph

- Pospeševanje algoritmov nad grafi je še posebej zaželjeno saj so grafi ponavadi ogromne podatkovne strukture
- cuGraph podpira integracijo z različnimi ogrodji za delo z grafi
 - NetworkX, GSQL, TigerGraph
- V tem izobraževanju bomo uporabljali integracijo z NetworkX
- Pospeševanje omogočimo s paketom nx-cugraph
 - pip install nx-cugraph-cu-12–extra-index-url https://pypi.nvidia.com
 - Jupyter Notebook: %env NX_CUGRAPH_AUTOCONFIG=True
 - Python: export NX_CUGRAPH_AUTOCONFIG=True
 && python program.py
- Podprti algoritmi in operacije
- Primerjava NetworkX in cuGraph v praktičnem delu

NVIDIA RAPIDS cevovodi

- Z NVIDIA RAPIDS lahko na GPE izvedemo vrsto zaporednih operacij z različnimi knjižnicami, kar vodi v delovni tok znotraj cevovoda
 - Optimalno naložimo podatke na GPE
 - Podatke na GPE obdelamo z različnimi knjižnicami
 - Prikažemo rezultate
- Velik del cevovoda se lahko izvaja pospešeno na GPE

THE BIG PROBLEM IN DATA SCIENCE

NVIDIA RAPIDS cevovodi

Ideja je spraviti celoten cevovod na GPE (E2E – End-to-end)

RAPIDS: Accelerating Data Science End-to-End

NVIDIA AI Enterprise

Development Tools | Cloud Native Management and Orchestration | Infrastructure Optimization

Praktični primeri

- V nadaljevanju si bomo pogledali izvedbo cevovodov z NVIDIA RAPIDS
- Cilj cevovodov je, da se čimveč zgodi na GPE preden se prikaže rezultat
- Pri tem bomo uporabljali knjižnice cuDF, cuML in cuGraph
- Primer 1: Priporočanje filmov (cuDF + cuGraph)
- Primer 2: Vektorsko iskanje (cuDF + cuML)

- Podatkovna zbirka MovieLens-25M
 - Sami lahko poskusite z večjo zbirko MovieLens-32M
- Ideja: priporočilni sistem, ki bo za posameznega uporabnika vrnil K najbolj smiselnih filmov
- Implementacija zajema:
 - 1. Nalaganje interakcij med uporabniki in filmi (ocene)
 - 2. Izvedba algoritma, ki omogoča priporočanje
 - 3. Vračanje priporočil
- Koraka 1 in 2 se lahko izvajata ločeno od koraka 3
 - Posodobitev se zgodi vsako noč
- Korak 3 mora biti izveden v časovnem obsegu največ do 3 sekunde

- Imamo ogromno količino podatkov o interakcijah med uporabniki in filmi
 - Gre za velepodatke, saj se vsak dan zelo hitro ustvarjajo novi podatki
 - Različni uporabniki dnevno podajajo nove ocene filmov
 - Koraki implementacije ne smejo trajati predolgo
 - Korak 1 (nalaganje) in 2 (algoritem) lahko zaženemo čez noč
 - Korak 3 (vračanje) mora biti izredno hiter, da zagotovimo dobro uporabniško izkušnjo
- Pri implementaciji bomo pri koraku 2 (algoritem) uporabljali algoritma PageRank in HITS
- Izvedba na CPE bo problematična => poskusimo z GPE
- Ideja: naložimo podatke na GPE (cuDF), nato jih tam obdelajmo (cuGraph)
 - Rezultate algoritma lahko pustimo v GPE in nato izvajamo korak 3 na GPE in CPE

- Izvedba algoritmov PageRank in HITS na GPE
 - cuDF + cuGraph
 - cg.pagerank(G, personalization=[poosebitveni vektor uporabnika])
 - cg.hits(G, max_iter=[št. iteracij])
- Izvedba priporočanja z algoritmom PageRank na CPE
 - rezultat algoritmov PageRank in HITS prenesemo iz GPE na CPE in tvorimo seznam K filmov
- Kaj smo naredili?
 - [GPE] Prebrali smo velepodatke (VRAM)
 - [GPE] Izvedli smo algoritem PageRank/HITS
 - [GPE+CPE] Prenesli smo rezultate algoritma PageRank/HITS v RAM
 - [CPE] Pripravili smo seznam priporočil s K filmi
 - [GPE] Seznam priporočil smo shranili v VRAM
- Zakaj smo šli iz GPE na CPE? Zakaj smo shranili seznam priporočil na GPE?

- Zakaj smo šli iz GPE na CPE?
 - itertuples() v cuDF še ni podprta funkcija in jo moramo izvesti na CPE
 - Alternativa je drugačen pristop, ki ne uporablja .itertuples()
- Zakaj smo shranili seznam K priporočil na GPE?
 - Demonstriranje NVIDIA End-to-end cevovoda (vse oz. čim več se zgodi na GPE)
 - V praksi bi lahko izvajali predpomnenje rezultatov na GPE
 - V praksi bi lahko nadaljevali delovanje cevovoda z dodatnimi funkcionalnostm
 - Naknadna obdelava priporočil, hibridni priporočilni sistemi

- Podatkovna zbirka Coronavirus (COVID-19) Tweets
 - 8 mio tvitov na temo COVID-19 (april 2020)
 - Več datotek CSV (po dnevih)
- Ideja: narediti iskalnik po tvitih, ki uporablja vektorski prostor za ugotavljanje podobnih besedil (semantično iskanje)
- Implementacija zajema:
 - Nalaganje podatkov (tvitov)
 - 2. Izvedba ustvarjanja iskalnega indeksa (vektorskega prostora)
 - 3. Implementacija iskanja s funkcijo podobnosti (kosinusna razdalja)
- Koraka 1 in 2 se lahko izvajata ločeno od koraka 3
 - Posodobitev vsako noč (če bi imeli vsak dan nove tvite)
- Korak 3 mora biti izveden v časovnem obsegu največ do 3 sekunde

- Imamo ogromno količino tvitov, ki jih je potrebno obdelati
 - Gre za velepodatke, saj lahko tviti nastajajo dnevno
 - Koraki implementacije ne smejo trajati predolgo
 - Korak 1 (nalaganje) in 2 (iskalni indeks) lahko zaženemo čez noč
 - Korak 3 (iskanje) mora biti izredno hiter, da zagotovimo dobro uporabniško izkušnjo
- Pri implementaciji bomo pri koraku 2 (iskalni indeks) uporabljali utežno shemo TF-IDF (ang. term frequency, inverse document frequency)
- Izvedba na CPE bo problematična => poskusimo z GPE
- Ideja: naložimo podatke na GPE (cuDF), nato jih tam obdelajmo (cuML)
 - Rezultate algoritma lahko pustimo v GPE in nato izvajamo korak 3 na GPE in CPE

- Izvedba ustvarjanja vektorskega indeksa na GPE
 - <u>TF-IDF</u> pretvori besede v besedilu v večdimenzionalne vektorje z utežmi
 - cuML omogoča izvedbo TfldfVectorizer, ki ga lahko nastavljamo s parametri
 - min_df (minimum document frequency) kolikokrat se mora beseda pojaviti v vseh tvitih
 - max_features (maksimalno število značilk) določa dimenzionalnost vektorja
- Ustvarjanje vektorskega indeksa je operacija, ki jo lahko bistveno pohitrimo z izvedbo na GPE
- Problem: imamo visokodimenzionalni vektorski prostor (več tisoč dimezij), kjer se lahko zgodi, da bo večina komponent vektorjev enaka 0
 - beseda se ne pojavi v besedilu
- S čim imamo opravka? Na kakšen način lahko rešimo ta problem?

- S čim imamo opravka?
 - Gre za redko matriko! (ang. sparse matrix)
 - Redke matrike lahko hranimo na bolj učinkovit in stisnjen način
 - CSR (compressed sparse row) ali CSC (compressed sparse column)
 - cuml.common.sparsefuncs

Primer CSR:

	0	1	2	3	4
0	0	7	0	0	0
1	1	0	2	0	3
2	0	0	0	0	0
3	4	0	5	6	0

S CSR shranimo samo 35% matrike

- Naš iskalni indeks lahko predstavimo kot redko matriko v obliki CSR
 - Zasedamo manj pomnilnika
 - Omogočimo hitre operacije nad vrsticami
- Imeli bomo visokodimenzionalni vektorski prostor (~30.000 dimenzij)
- Funkcija podobnosti bo kosinusna razdalja

- Ker je iskalni indeks v formatu CSR bomo morali ob izračunu podobnosti s kosinusno razdaljo izvesti pretvorbo vhodnega niza v format CSR
 - funkcija csr_row_normalize_l2 => izvaja se namenski ščepec CUDA
 - Normalizacija L2 (Evklidska norma) => vrednosti matrike CSR bodo največ 1
 - Na ta način ohranimo izračun kosinusnih razdalj v formatu CSR ob poljubnem vhodnem nizu!
- Izračun podobnosti je skalarni produkt med indeksom in vhodnim nizom
- Vektorska operacija => dobimo podobnosti vhoda z vsemi elementi matrike CSR
 - Po domače: vhod smo primerjali z vsemi indeksiranimi tviti
- Na koncu izberemo K zadetkov in jih prikažemo uporabniku

- Dodatno lahko izvedemo analizo tvitov z gručenjem (KMeans)
 - Zaradi strojnih omejitev vzemimo vzorec 100k tvitov (od 8 mio)
 - Podatki so še vedno na GPE!
- Z gručenjem lahko ugotovimo ali so tviti vezani na specifične tematike
 - Praktični primer prikazuje gručenje na 10 gruč

KMeans zahteva število gruč kot parameter; sami poskusite s kakšnim drugim algoritmom, kjer

to ni zahteva

- Vizualizacija gručenja s t-SNE
 - Preslikava iz n-D v 2D
 - Podatki so še vedno na GPE!

Kaj smo naredili?

- [GPE] Prebrali smo velepodatke (VRAM)
- [GPE] Ustvarili smo iskalni indeks (TfldfVectorizer)
- [GPE] Izvedli smo iskanje (izračun kosinusnih razdalj)
- [GPE] Pripravili smo seznam K zadetkov
- [GPE] Seznam priporočil smo shranili v VRAM

dodatno

- [GPE] Vzorec iskalnega indeksa smo obdelali z gručenjem (KMeans)
- [GPE] Gruče smo vizualizirali (t-SNE)

Zaključek

- Spoznali ste ogrodje NVIDIA RAPIDS
 - Pospeševanje algoritmov na GPE
 - Primerjava izvajanja algoritmov na CPE in GPE
 - E2E cevovodi kot celovite pospešene aplikacije
- Uporaba različne strojne opreme
 - Poznavanje prednosti in omejitev
 - Inženirska iznajdljivost
 - Različni tipi koprocesorjev s povdarkom na GPE
- Samostojno predelajte še ostale praktične primere v zvezkih Jupyter

Vabljeni še na druga izobraževanja

Uvod v obdelavo velepodatkov v Pythonu (12.-15. 05. 2025)

■ Napredna obdelava velepodatkov v Pythonu (02.-04. 06. 2025)

■ Uvod v ogrodje NVIDIA RAPIDS (16.-18. 06. 2025)

- V delu so nova izobraževanja!
 - Programiranje s CUDA v Pythonu
 - Porazdeljeno učenje modelov umetne inteligence
 - Napredna uporaba ogrodja NVIDIA RAPIDS

Hvala za udeležbo!