

M22 : Mathématiques fondamentales 2 L1 SESI 2019–2020

Corrigé du devoir surveillé n° 2 – Partie Algèbre

Exercice 1.

1. (a) On a

$$a\left(\frac{p}{q}\right)^2 + b\left(\frac{p}{q}\right) + c = 0$$
, soit encore $ap^2 + bpq + cq^2 = 0$.

On en déduit que $cq^2 = -p(ap + bq)$, donc p divise cq^2 , et comme p et q sont premiers entre eux, on obtient que p divise c par le lemme de Gauss.

De même, on a $ap^2 = -q(bp+cq)$, donc q divise ap^2 , et comme p et q sont premiers entre eux, on obtient que q divise a par le lemme de Gauss.

- (b) Supposons par l'absurde que a, b et c sont impairs. En particulier, d'après la question précédente, on en déduit que p et q sont aussi impairs. Mais alors ap^2 , bpq et cq^2 sont impairs, et la somme de trois nombres impairs est un nombre impair, ce qui contredit l'égalité $ap^2 + bpq + cq^2 = 0$ puisque 0 est pair.
- 2. (a) Comme les trois coefficients de l'équation sont impairs alors, d'après la question précédente, on en déduit que l'équation n'admet aucune solution rationnelle.
 - (b) On raisonne par analyse–synthèse. Tout d'abord, d'après le (a) de la question 1, si $x=\frac{p}{q}$ avec $(p,q)\in\mathbb{Z}\times\mathbb{N}^*$ et $\mathrm{PGCD}(p,q)=1$ est solution de $x^2+bx+1=0$, alors p et q divisent 1, et donc q=1 car $q\in\mathbb{N}^*$ et $p=\pm 1$. Ainsi, on a $x\in\{-1,1\}$. Si x=1 alors on obtient b=-2, et si x=-1 alors on obtient b=2.

Réciproquement, l'équation $x^2 + bx + 1 = 0$ admet des solutions rationnelles dans les deux cas suivants :

- si b=-2, alors $x^2-2x+1=(x-1)^2=0$ admet pour unique solution x=1,
- si b=2, alors $x^2+2x+1=(x+1)^2=0$ admet pour unique solution x=-1.
- (c) S'il existe $m \in \mathbb{N}$ tel que $n = m^2$, alors $\sqrt{n} = \sqrt{m^2} = m \in \mathbb{N} \subset \mathbb{Q}$.
 - Réciproquement, si on suppose que $\sqrt{n} \in \mathbb{Q}$, alors l'équation $x^2 n = 0$ admet une solution rationnelle $x = \frac{p}{q}$ avec $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ et $\mathrm{PGCD}(p,q) = 1$. Mais alors, d'après le (a) de la question 1, q divise 1 et donc q = 1 puisque $q \in \mathbb{N}^*$. Ainsi, on a $n = x^2 = p^2 = m^2$ avec $m = |p| \in \mathbb{N}$ puisque $p \in \mathbb{Z}$.
- (d) Supposons par l'absurde qu'il existe un nombre premier p tel que $\sqrt{p} \in \mathbb{Q}$. Alors, d'après la question précédente, il existe $m \in \mathbb{N}$ tel que $p = m^2$. Comme $p \geq 2$, alors cela impose $m \geq 2$, ce qui contredit la primalité de p.

Exercice 2.

- 1. Montrons que (G,\star) est un groupe :
 - Pour tous $x, y \in G$, on a $x \star y = x \cdot a \cdot y \in G$, car $a \in G$ et l'opération \cdot est interne à G puisque (G, \cdot) est un groupe. Ainsi, l'opération \star est bien interne à G.
 - Pour tous $x, y, z \in G$, par associativité de la loi · sur G, on a

$$(x \star y) \star z = (x \cdot a \cdot y) \star z = (x \cdot a \cdot y) \cdot a \cdot z = x \cdot a \cdot y \cdot a \cdot z,$$
$$x \star (y \star z) = x \star (y \cdot a \cdot z) = x \cdot a \cdot (y \cdot a \cdot z) = x \cdot a \cdot y \cdot a \cdot z.$$

On a ainsi $(x \star y) \star z = x \star (y \star z)$, et donc l'opération \star est bien associative.

— Déterminons l'élément neutre e' pour l'opération \star . Pour tout $x \in G$, on a

$$x \star e' = x \iff x \cdot a \cdot e' = x \iff a \cdot e' = e \iff e' = a^{-1} \in G.$$

On a bien également $e' \star x = a^{-1} \star x = a^{-1} \cdot a \cdot x = x$.

— Pour $x \in G$, déterminons l'inverse x' de x pour l'opération \star . On a

$$x\star x'=e'\iff x\cdot a\cdot x'=a^{-1}\iff x'=a^{-1}\cdot x^{-1}\cdot a^{-1}\in G.$$

On a bien également $x' \star x = (a^{-1} \cdot x^{-1} \cdot a^{-1}) \star x = (a^{-1} \cdot x^{-1} \cdot a^{-1}) \cdot a \cdot x = a^{-1} = e'$. Par conséquent, l'ensemble G muni de cette nouvelle opération \star est bien un groupe. Son élément neutre est l'élément $e' = a^{-1}$, et tout $x \in G$ admet un symétrique x' défini par $x' = a^{-1} \cdot x^{-1} \cdot a^{-1}$.

2. (a) Pour tous $x, y \in G$, on a d'une part $f(x \cdot y) = x \cdot y \cdot a^{-1}$, et d'autre part

$$f(x)\star f(y)=(x\cdot a^{-1})\star (y\cdot a^{-1})=x\cdot a^{-1}\cdot a\cdot y\cdot a^{-1}=x\cdot y\cdot a^{-1}.$$

On a donc $f(x \cdot y) = f(x) \star f(y)$ pour tous $x, y \in G$, ce qui prouve que f est bien un morphisme du groupe (G, \cdot) dans le groupe (G, \star) .

- (b) Ces deux propriétés sont des propriétés générales des morphismes de groupes. Vérifions-les dans ce cas particulier :
 - on a bien $f(e) = e \cdot a^{-1} = a^{-1} = e'$,
 - si $x \in G$, alors $f(x^{-1}) = x^{-1} \cdot a^{-1}$ et $(f(x))^{-1} = (x \cdot a^{-1})^{-1} = a \cdot x^{-1}$, et donc $(f(x))' = a^{-1} \cdot (f(x))^{-1} \cdot a^{-1} = a^{-1} \cdot (a \cdot x^{-1}) \cdot a^{-1} = x^{-1} \cdot a^{-1} = f(x^{-1})$.
- (c) Soient $x, y \in G$. On a

$$y = f(x) \iff y = x \cdot a^{-1} \iff x = y \cdot a \iff x = g(y)$$

en ayant défini l'application

$$g: G \longrightarrow G$$
$$y \longmapsto y \cdot a.$$

Ainsi, g est l'application réciproque de l'application f, ce qui prouve en particulier que f est bijective.

(d) C'est à nouveau une propriété générale des isomorphismes de groupes. Vérifions-la dans ce cas particulier : pour $x, y \in G$, on a

$$g(x \star y) = g(x \cdot a \cdot y) = (x \cdot a \cdot y) \cdot a = (x \cdot a) \cdot (y \cdot a) = g(x) \cdot g(y).$$

Ainsi, l'application g est bien un morphisme du groupe (G,\star) dans le groupe (G,\cdot) .