

1 Ejercicios gráficos ggplot2

1.1 Base de datos

Ejemplo Gran Chaco deforestación Esta base de datos se encuentra en:http://data.globalforestwatch.org (http://data.globalforestwatch.org) La base de datos describe la perdida de cobertura de los bosques secos tropicales de la región del Gran Chaco en Paraguay, Argentina y Bolivia.

El monitoreo de la deforestación en el Gran Chaco se ha llevado a cabo por la organización [Guyra Paraguay] desde el año 2011 (http://www.guyra.org.py/index.php?lang=en (http://www.guyra.org.py/index.php?lang=en)). Se utilizaron imágenes satelitales Landsat de 30 metros de resolución espacial. La interpretación de las zonas forestales bajo cambios de tipo de cobertura, se realiza a través de un análisis multitemporal. Este compara una imagen base de los últimos dos años y una imagen actual del mes en estudio. Los analistas utilizan técnicas de interpretación visual de tono, forma, tamaño, textura, patrón, sombra, y el contexto.

1.1.1 Ejercicio 1

Lea y describa los datos chaco.xlsx, identifique que variables tiene y de que tipo, describa la variables superficie usando una tabla de frecuencias.(ayuda: busca en la library(agricolae) como realizar una tabla de frecuencia) Manual agricolae (https://coesincelejo.files.wordpress.com/2011/01/manualpracticoagricolae.pdf)

1.1.2 Ejercicio 2

Obtenga la siguiente tabla

pais	anio	Media	Desvio	Suma	Maximo
Argentina	2,011	40.74	44.88	32,506.77	427.96
Argentina	2,012	42.45	62.21	224,461.61	1,588.42
Argentina	2,013	66.66	228.92	221,126.86	5,048.50
Argentina	2,014	55.53	142.23	137,486.52	2,828.62
Argentina	2,015	57.61	208.11	124,043.66	3,999.78
Argentina	2,016	315.45	601.37	116,714.93	4,551.72
Argentina	2,017	283.92	510.12	130,036.53	4,200.26
Argentina	2,018	167.41	264.71	7,366.20	1,429.75
Bolivia	2,011	13.44	22.92	2,782.44	249.52
Bolivia	2,012	11.21	24.14	33,977.32	603.50
Bolivia	2,013	20.84	123.93	42,653.08	3,491.97
Bolivia	2,014	11.55	56.75	41,605.60	2,342.89
Bolivia	2,015	25.54	216.95	55,883.05	4,843.18
Bolivia	2,016	504.38	754.96	35,306.80	3,772.14
Bolivia	2,017	714.62	1,402.62	72,891.48	7,966.35
Bolivia	2,018	188.71	206.25	1,887.09	640.73
Paraguay	2,011	63.11	53.82	148,178.98	927.71
Paraguay	2,012	54.27	54.94	262,432.15	863.59
Paraguay	2,013	95.43	598.22	236,766.53	20,816.25
Paraguay	2,014	59.16	235.71	287,435.28	11,638.19
Paraguay	2,015	143.17	941.01	285,619.87	20,628.23
Paraguay	2,016	1,587.83	2,695.78	203,242.10	14,960.93
Paraguay	2,017	1,710.13	2,901.82	225,736.86	16,443.09
Paraguay	2,018	652.35	1,171.46	5,871.19	3,687.01

1.1.3 Ejercicio 3

Obtenga un gráfico de lineas (geom_line()) de los valores promedios de los países en los distintos años, modifique el nombre le eje x (xlab()) y agréguele un titulo (ggtitle())

1.1.4 Ejercicio 4

Dibuje un gráfico con un boxplot por cada país con los valores medios y elimine el grillado gris del fondo y escriba el titulo en azul tamaño de letra 9, en negrita y justificado.

theme(plot.title = element_text(color = 'blue', face = 'bold', size = 9, hjust = 0.5))

1.1.5 Ejercicio 5

Dibuje un gráfico con un boxplot por cada país de color rojo con los coeficientes de variación y elimine el grillado gris del fondo

1.1.6 Ejercicio 6

Utilizando la tabla generadas por:

tabla2<-group_by(chaco,pais,anio,meses)%>% summarise(Media=round(mean(sup, na.rm = T),2)) Obtenga Histogramas y gráficos de densidad por países

1.1.7 Ejercicio 7

Para las tablas

valores.pais<-group_by(chaco,pais)%>% summarise(Media=round(mean(sup, na.rm = T),2), Desvio = round(sd(sup, na.rm = T),2), Sun
valores.anio<-group_by(chaco,anio)%>% summarise(Media=round(mean(sup, na.rm = T),2), Desvio = round(sd(sup, na.rm = T),2), Sun
valores.anio.pais<-group_by(chaco,anio, pais)%>% summarise(Media=round(mean(sup, na.rm = T),2), Desvio = round(sd(sup, na.rm
Obtenga los siguientes gráficos

`summarise()` has grouped output by 'anio'. You can override using the
`.groups` argument.

