Chương VI:

AUTOMATA ĐẦY XUỐNG

(Push Down Automata)

Giảng viên:

Pham Xuân Hiền

Nội dung

- Khái niệm về Automata đẩy xuống (PDA)
- PDA đơn định và không đơn định
- PDA chấp nhận chuỗi bằng Stack rỗng và PDA chấp nhận chuỗi bằng trạng thái kết thúc
- Sự tương đương giữa PDA và CFL

,

PDA (1)

- Ngôn ngữ chính quy:
 - Được sinh từ văn phạm chính quy
 - Được đoán nhận bởi Automata hữu hạn (đơn định hoặc không đơn định)
- Ngôn ngữ phi ngữ cảnh:
 - Được sinh từ văn phạm phi ngữ cảnh
 - Được đoán nhận bởi Automata đẩy xuống (PDA).
 - Tuy nhiên, chỉ automata đẩy xuống không đơn định (NPDA) mới có thể đủ mạnh để đoán nhận lớp ngôn ngữ phi ngữ cảnh (DPDA chỉ cho phép đoán nhận một tập con thực sự của lớp ngôn ngữ này)

PDA (2)

<u>Mô tả</u>: gồm các thành phần của một automata hữu hạn với sự bổ sung thêm một ngăn xếp làm việc (Stack)

PDA (3)

Ta xây dựng PDA như sau:

- Bộ điều khiển có 2 trạng thái q_1 và q_2
- Stack có 3 ký hiệu: xanh (B), vàng (Y) và đỏ (R)
- Quy tắc thao tác trên automata:

INFUI					
Đỉnh Stack	Trạng thái	0	1	c	
	qı	Thêm đĩa xanh,	Thêm đĩa vàng,	Chuyển sang q₂	
Xanh		giữ nguyên q ₁	giữ nguyên qı		
	q ₂	Xoá đỉnh Stack,			
		giữ nguyên q2			
	qı.	Thêm đĩa xanh,	Thêm đĩa vàng,	Chuyến sang q	
Vàng		giữ nguyên q ₁	giữ nguyên q ₁		
	q 2		Xoá đỉnh Stack		
			giữ nguyên q₂		
	qı	Thêm đĩa xanh,	Thêm đĩa vàng,	Chuyển sang q₂	
Ðô		giữ nguyên q ₁	giữ nguyên qı		
	\mathbf{q}_2	Xoá đỉnh Stack không cần đọc input			

PDA (4)

Các khái niệm:

- Phân loại PDA: đơn định (DPDA) và không đơn định (NPDA)
- Phép chuyển: có 2 kiểu
 - Phụ thuộc ký hiệu nhập: với một trạng thái, một ký hiệu tại đỉnh Stack và một ký hiệu nhập, PDA lựa chọn trạng thái kế tiếp, thay thế ký hiệu trên Stack và di chuyển đầu đọc sang phải một ký hiệu.
 - <u>κhông phụ thuộc ký hiệu nhập (ε dịch chuyển)</u>: ký hiệu nhập không được dùng, đầu đọc không di chuyển.
- Ngôn ngữ được chấp nhận bởi PDA
 - Bởi Stack rỗng
 - Bởi trạng thái kết thúc

Một ngôn ngữ được chấp nhận bởi PDA khi và chỉ khi nó là một ngôn ngữ phi ngữ cành.

6

8

PDA (5)

Định nghĩa: một PDA M là một hệ thống 7 thành phần

M (Q, Σ , Γ , δ , q_0 , Z_0 , F)

- Q : tập hữu hạn các trạng thái
- Σ : bộ chữ cái nhập
- Γ : bô chữ cái Stack
- δ : hàm chuyển Q x ($\Sigma \cup \{\epsilon\})$ x $\Gamma \to t$ ệp con của Q x Γ^*
- q₀ : trạng thái khởi đầu
- Z₀: ký hiệu bắt đầu trên Stack
- F \subseteq Q : tập các trạng thái kết thúc (nếu PDA chấp nhận chuỗi bằng Stack rỗng thì F = Ø)

PDA	(6)
-----	-----

		INPUT		
Đỉnh Stack	Trang thái	0	1	c
	q1	Thêm đĩa xanh,	Thêm đĩa vàng,	Chuyển sang q
Xanh		giữ nguyên q ₁	giữ nguyên qı	
	92	Xoá định Stack,		
		giữ nguyên q ₂		
	q1	Thêm đĩa xanh,	Thêm đĩa vàng,	Chuyển sang 🔈
Vàng		giữ nguyên qı	giữ nguyên q ₁	
	q ₂		Koá định Stack	
			giữ nguyên q ₂	
	gı .	Thêm đĩa xanh,	Thêm đĩa vàng,	Chuyển sang q
Đô		giữ nguyên q ₁	giữ nguyên qı	
		Xoá đỉnh Stack không cần đọc input		
		Xanh qu qu qu Vàng qu qu	Dinh Stack Trang thát O	Dinh Stack Trang thái O

<u>Hàm chuyển δ</u>:

• Hàm chuyển phụ thuộc ký hiệu nhập

$$\delta({\sf q},\,{\sf a},\,{\sf Z}) = \{\,({\sf p}_1,\,\gamma_1),\,({\sf p}_2,\,\gamma_2),\,...,\,({\sf p}_{\sf m},\,\gamma_{\sf m})\,\,\}$$

• Hàm chuyển không phụ thuộc ký hiệu nhập

 $\delta(\mathsf{q},\, \epsilon,\, \mathsf{Z}) = \{\, (\mathsf{p}_1,\, \gamma_1),\, (\mathsf{p}_2,\, \gamma_2),\, ...,\, (\mathsf{p}_\mathsf{m},\, \gamma_\mathsf{m})\, \}$

Ví dụ: PDA chấp nhận wcwR bằng Stack rỗng

1) $\delta(q_1, 0, R) = \{(q_1, BR)\}$	7) $\delta(q_1, c, R) = \{(q_2, R)\}$
2) $\delta(q_1, 1, R) = \{(q_1, YR)\}$	8) $\delta(q_1, c, B) = \{(q_2, B)\}$
3) $\delta(q_1, 0, B) = \{(q_1, BB)\}$	9) $\delta(q_1, c, Y) = \{(q_2, Y)\}$
4) $\delta(q_1, 1, B) = \{(q_1, YB)\}$	10) $\delta(q_2, 0, B) = \{(q_2, \epsilon)\}$
5) $\delta(q_1, 0, Y) = \{(q_1, BY)\}$	11) $\delta(q_2, 1, Y) = \{(q_2, \epsilon)\}$
6) $\delta(q_1, 1, Y) = \{(q_1, YY)\}$	12) $\delta(q_2, \epsilon, R) = \{(q_2, \epsilon)\}$

7

PDA (7)

```
Hình thái (Instantaneous Descriptions): là một bộ ba (q, w, \gamma) dùng đề ghi nhớ trạng thái và nội dung của Stack với q là trạng thái, w chuỗi nhập, γ chuỗi các ký hiệu trên stack Nếu M (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) là một PDA, thì (q, aw, Z\alpha) \vdash_{\mathbf{M}} (\mathbf{p}, \mathbf{w}, \beta\alpha) nếu \delta(q, a, Z) chứa (p, \beta) Ngôn ngữ chấp nhân bởi PDA: Với PDA M (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)
• Ngôn ngữ được chấp nhận bởi trạng thái kết thúc L (\mathbf{M}) = \{\mathbf{w} \mid (q_0, \mathbf{w}, Z_0) \vdash^* (\mathbf{p}, \epsilon, \gamma) với \mathbf{p} \in \mathbf{F} \ và \gamma \in \Gamma^*\}
• Ngôn ngữ được chấp nhận bởi Stack rỗng N (\mathbf{M}) = \{\mathbf{w} \mid (q_0, \mathbf{w}, Z_0) \vdash^* (\mathbf{p}, \epsilon, \epsilon) với \mathbf{p} \in \mathbf{Q}\}
```

PDA (8)

Ví dụ với:

g

```
 \begin{array}{lll} 1) & \overleftarrow{\delta}(q_1,0,R) = \{(q_1,BR)\} & 7) & \overleftarrow{\delta}(q_1,c,R) = \{(q_2,R)\} \\ 2) \overleftarrow{\delta}(q_1,1,R) = \{(q_1,YR)\} & 8) & \overleftarrow{\delta}(q_1,c,B) = \{(q_2,B)\} \\ 3) \overleftarrow{\delta}(q_1,0,B) = \{(q_1,BB)\} & 9) & \overleftarrow{\delta}(q_1,c,Y) = \{(q_2,Y)\} \\ 4) \overleftarrow{\delta}(q_1,1,B) = \{(q_1,YB)\} & 10) \overleftarrow{\delta}(q_2,0,B) = \{(q_2,\epsilon)\} \\ 5) \overleftarrow{\delta}(q_1,0,Y) = \{(q_1,BY)\} & 11) \overleftarrow{\delta}(q_2,1,Y) = \{(q_2,\epsilon)\} \\ 6) \overleftarrow{\delta}(q_1,1,Y) = \{(q_1,YY)\} & 12) \overleftarrow{\delta}(q_2,\epsilon,R) = \{(q_2,\epsilon)\} \\ \end{array}
```

PDA chấp nhận wcw^R bằng Stack rỗng với chuỗi nhập 001c100

```
\begin{split} (q_1,\, 001c100,\, R) &\vdash (q_1,\, 01c100,\, BR) \vdash (q_1,\, 1c100,\, BBR) \vdash \\ (q_1,\, c100,\, YBBR) &\vdash (q_2,\, 100,\, YBBR) \vdash (q_2,\, 00,\, BBR) \vdash \\ (q_2,\, 0,\, BR) &\vdash (q_2,\, \epsilon,\, R) \vdash (q_2,\, \epsilon,\, \epsilon) : \textbf{Cháp nhận} \end{split}
```

chuỗi nhập 001c100 thuộc ngôn ngữ được chấp nhận bởi Stack rỗng

10

PDA không đơn định (NPDA) (1)

<u>Ví dụ</u>: thiết kế PDA chấp nhận $\{ww^R \mid w \in (0 + 1)^*\}$ bằng Stack rỗng

- \bullet Không có ký hiệu c để biết thời điểm chuyển từ trạng thái ${\bf q_1}$ sang ${\bf q_2}$
- Bắt buộc phải đoán thử (khi thấy 2 ký hiệu liên tiếp giống nhau)
 - $_{\mbox{\scriptsize o}}$ Nếu ký hiệu thuộc chuỗi xuôi: giữ nguyên trạng thái $\mbox{\scriptsize q}_{\mbox{\scriptsize 1}}$ và push vào Stack
 - $_{\rm o}$ Nếu ký hiệu thuộc chuỗi ngược: chuyển sang trạng thái ${\rm q_2}$ và pop khỏi Stack
- $M(\{q_1, q_2\}, \{0, 1\}, \{R, B, Y\}, \delta, q_1, R, \emptyset)$:

```
 \begin{array}{lll} 1) & \delta(q_1,\,0,\,R) = \{(q_1,\,BR)\} & \textbf{6}) & \delta(\textbf{q}_1,\,\textbf{1},\,Y) = \{(\textbf{q}_1,\,YY),(\textbf{q}_2,\,\epsilon)\} \\ 2) & \delta(q_1,\,1,\,R) = \{(q_1,\,YR)\} & \textbf{7}) & \delta(q_2,\,0,\,B) = \{(q_2,\,\epsilon)\} \\ \textbf{3}) & \delta(\textbf{q}_1,\,0,\,B) = \{(\textbf{q}_1,\,BB),\,(\textbf{q}_2,\,\epsilon)\} & \textbf{8}) & \delta(q_2,\,1,\,Y) = \{(q_2,\,\epsilon)\} \\ \textbf{4} & \delta(q_1,\,0,\,Y) = \{(q_1,\,BY)\} & \textbf{9}) & \delta(q_2,\,\epsilon,\,R) = \{(q_2,\,\epsilon)\} \\ \textbf{5}) & \delta(\textbf{q}_1,\,1,\,B) = \{(\textbf{q}_1,\,YB)\} & \textbf{10}) & \delta(q_2,\,\epsilon,\,R) = \{(q_2,\,\epsilon)\} \end{array}
```

PDA không đơn định (NPDA) (2)

 $\frac{\textbf{Vi du:}}{\text{ngūr {ww^R | w \in (0 + 1)^*}}} \text{ bằng Stack rỗng} \cdot \text{hí(q, q,}, (0, 1), (R, B, Y), \delta, q, R, Ø)}$

PDA đơn định (DPDA)

<u>Đinh nghĩa</u>: một PDA M(Q, Σ , Γ , δ , q_0 , Z_0 , F) được gọi là đơn định nếu:

- $\forall q \in Q \text{ và } Z \in \Gamma$: nếu $\delta(q, \epsilon, Z) \neq \emptyset$ thì $\delta(q, a, Z) = \emptyset$ với $\forall a \in \Sigma$
- Không có q \in Q, Z \in Γ và a \in ($\Sigma \cup \{\epsilon\}$) mà δ (q, a, Z) chứa nhiều hơn một phần tử

Chú ý: đối với PDA thì dạng đơn định và không đơn định là không tương đương nhau.

Ví dụ: ww^R được chấp nhận bởi PDA không đơn định, nhưng không được chấp nhận bởi bất kỳ một PDA đơn định nào.

Tương đương giữa PDA với Stack rỗng và PDA với trạng thái kết thúc (1)

<u>Đinh lý 6.1</u>: Nếu một ngôn ngữ phi ngữ cảnh L được chấp nhận bởi một PDA chấp nhận chuỗi bởi trạng thái kết thúc $\mathrm{M_2}$ thì L cũng được chấp nhận bởi một PDA chấp nhận chuỗi bởi Stack rỗng $\mathrm{M_1}$

Cách xây dựng:

Đặt $M_2(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ và $M_1(Q \cup \{q_e, q_0'\}, \Sigma, \Gamma, \delta', q_0', X_0, \emptyset)$

- $\delta'(q_0', \epsilon, X_0) = \{(q_0, Z_0X_0)\}$
- $\delta'(q,\,a,\,Z)$ chứa mọi phần tử của $\delta(q,\,a,\,Z)$ với a $\,\boldsymbol{\epsilon}\,\,(\Sigma \cup \{\epsilon\})$
- $\delta'(q, \epsilon, Z)$ chứa (q_e, ϵ) với $\forall q \in F \text{ và } Z \in (\Gamma \cup \{X_0\})$
- $\delta'(q_a, \epsilon, Z)$ chứa (q_a, ϵ) với $\forall Z \in (\Gamma \cup \{X_0\})$

13

14

Tương đương giữa PDA với Stack rỗng và PDA với trạng thái kết thúc (2)

Đinh lý 6.2: Nếu một ngôn ngữ phi ngữ cảnh L được chấp nhận bởi một PDA chấp nhận chuỗi bởi Stack rỗng M₁ thì L cũng được chấp nhận bởi một PDA chấp nhận chuỗi bởi trạng thái kết thúc M₂

Cách xây dưng:

Đặt $M^{}_1(Q,\,\Sigma,\,\Gamma,\,\delta,\,q^{}_0,\,Z^{}_0,\,F)$ và $M^{}_2(Q\cup\{q^{}_0',\,q^{}_i\},\,\Sigma,\,\Gamma\cup\{X^{}_0\},\,\delta',\,q^{}_0',\,X^{}_0,\,\{q^{}_i\})$

- $\delta'(q_0', \, \epsilon, \, X_0) = \{(q_0, \, Z_0 X_0)\}$
- $\delta'(q, a, Z) = \delta(q, a, Z) \text{ v\'oi } a \in (\Sigma \cup \{\epsilon\})$
- $\delta'(q, \, \epsilon, \, X_0)$ chứa $(q_f, \, \epsilon)$ với $\, \forall q \in Q$

Tương đương giữa PDA và CFL (1)

<u>Đinh lý 6.3</u>: Nếu L là một ngôn ngữ phi ngữ cảnh thì tồn tại PDA chấp nhận chuỗi với Stack rỗng M sao cho L = N(M)

Cách xây dựng:

Đặt G(V, T, P, S) thỏa dạng chuẩn Greibach và L(G) không chứa ϵ Đặt M({q}, T, V, $\delta,$ q, S, Ø) là PDA chấp nhận L với Stack rỗng

• $\delta(q, a, A) = (q, \gamma)$ khi và chỉ khi $A \rightarrow a\gamma$

/i du: $S \rightarrow aAA ; A \rightarrow aS | bS | a$

NPDA tương đương M({q}, {a, b}, {S, A}, δ , q, S, Ø) với δ như sau:

- 1. $\delta(q, a, S) = \{(q, AA)\}$
- 2. $\delta(q, a, A) = \{(q, S), (q, \epsilon)\}$
- 3. $\delta(q, b, A) = \{(q, S)\}$

16

1 CFG ở dạng chuẩn Greibach nếu các luật sinh có dạng sau:

```
A \rightarrow aA_1A_2...A_n
       A \rightarrow a
       S \rightarrow \epsilon (trường hợp đặc biệt)
Trong đó a \in \Sigma and A_i \in V - \{S\} với i = 1, 2, ..., n
```

1 CFG ở dạng chuẩn Chomsky nếu các luật sinh có dạng:

- $A \rightarrow BC$
- $A \rightarrow a$
- $S \rightarrow \epsilon$ (trường hợp đặc biệt)

với $B, C \in V - \{S\}$

Tương đương giữa PDA và CFL (2)

Định lý 6.4: Nếu L được chấp nhận bởi một PDA chấp nhận chuỗi bởi Stack rỗng thì L là ngôn ngữ phi ngữ cảnh

Cách xây dựng:

```
Đặt PDA M(Q, \Sigma, \Gamma, \delta, q_0, Z_0, \varnothing) chấp nhận L với Stack rỗng
Đặt G(V, T, P, S) là CFG, trong đó:
```

- V là tập các đối tượng dạng [q, A, p]
- · S là ký hiệu bắt đầu mới được thêm vào
- · P là tập các luật sinh dạng
 - 1. $S \rightarrow [q_0, Z_0, \mathbf{q}] \text{ v\'oi } \forall q \in Q$
 - 2. $[q, A, q_{m+1}] \rightarrow a [q_1, B_1, q_2][q_2, B_2, q_3]...[q_m, B_m, q_{m+1}]$ sao cho δ(q, a, A) có chứa (q₁, B₁B₂...B_m) Nếu m = 0 thì luật sinh có dạng $[q, A, q_1] \rightarrow a$

18

Tương đương giữa PDA và CFL (3)

Ví dụ: xây dựng CFG tương đương sinh ra ngôn ngữ được chấp nhận bởi PDA M($\{q_0, q_1\}, \{0, 1\}, \{Z_0, X\}, \delta, q_0, Z_0, \emptyset$) với δ như sau:

```
1. \delta(q_0, 0, Z_0) = \{(q_0, XZ_0)\}
                                                                       4. \delta(q_1, 1, X) = \{(q_1, \epsilon)\}
         2. \delta(q_0, 0, X) = \{(q_0, XX)\}\
3. \delta(q_0, 1, X) = \{(q_1, \epsilon)\}\
                                                                      5. \delta(q_1, \epsilon, X) = \{(q_1, \epsilon)\}
                                                                      6. \delta(q_1, \epsilon, Z_0) = \{(q_1, \epsilon)\}
Xây dựng: CFG G(V, {0, 1}, P, S)
1. Tập các biến V = [q, A, p] ∪ S
```

 $= \{ \; \mathsf{S}, \;\; [\mathsf{q}_0, \; \mathsf{X}, \; \mathsf{q}_0], \; [\mathsf{q}_0, \; \mathsf{X}, \; \mathsf{q}_1], \; [\mathsf{q}_1, \; \mathsf{X}, \; \mathsf{q}_0], \; [\mathsf{q}_1, \; \mathsf{X}, \; \mathsf{q}_1], \;$ $[q_0,\,Z_0,\,q_0],\,[q_0,\,Z_0,\,q_1],\,[q_1,\,Z_0,\,q_0],\,[q_1,\,Z_0,\,q_1]\,\}$ 2. Tập các luật sinh P

 $S \rightarrow [\boldsymbol{q}_0,\,\boldsymbol{Z}_0,\,\boldsymbol{q}_0] \mid [\boldsymbol{q}_0,\,\boldsymbol{Z}_0,\,\boldsymbol{q}_1]$

 $\boldsymbol{\delta}_{1})\: [\boldsymbol{q}_{0},\: \boldsymbol{Z}_{0},\: \boldsymbol{q}_{0}] \to 0\: [\boldsymbol{q}_{0},\: \boldsymbol{X},\: \boldsymbol{q}_{0}]\: [\boldsymbol{q}_{0},\: \boldsymbol{Z}_{0},\: \boldsymbol{q}_{0}] \mid 0\: [\boldsymbol{q}_{0},\: \boldsymbol{X},\: \boldsymbol{q}_{1}]\: [\boldsymbol{q}_{1},\: \boldsymbol{Z}_{0},\: \boldsymbol{q}_{0}]$ $[q_0, Z_0, \textcolor{red}{q_1}] \rightarrow 0 \; [q_0, \, X, \textcolor{red}{q_0}] \; [q_0, \, Z_0, \, \textcolor{red}{q_1}] \; | \; 0 \; [q_0, \, X, \, \textcolor{red}{q_1}] \; [q_1, \, Z_0, \, \textcolor{red}{q_1}]$

19

Tương đương giữa PDA và CFL (4)

```
\boldsymbol{\delta}_{2})\:[\boldsymbol{q}_{0},\:\boldsymbol{X},\:\boldsymbol{q}_{0}]\to 0\:[\boldsymbol{q}_{0},\:\boldsymbol{X},\:\boldsymbol{q}_{0}]\:[\boldsymbol{q}_{0},\:\boldsymbol{X},\:\boldsymbol{q}_{0}]\:|\:0\:[\boldsymbol{q}_{0},\:\boldsymbol{X},\:\boldsymbol{q}_{1}]\:[\boldsymbol{q}_{1},\:\boldsymbol{X},\:\boldsymbol{q}_{0}]
             [q_0, X, q_1] \rightarrow 0 [q_0, X, q_0] [q_0, X, q_1] | 0 [q_0, X, q_1] [q_1, X, q_1]
     \delta_3) [q_0, X, q_1] \rightarrow 1
                                                                \delta_5) \; [q_1, \, X, \, q_1] \to \epsilon
     \delta_4) [q_1, X, q_1] \rightarrow 1
                                                                 \delta_6) \; [q_1,\, Z_0,\, q_1] \to \epsilon
\text{D}  \exists t: \quad [q_0, \, X, \, q_0] = A, \, [q_0, \, X, \, q_1] = B, \, ..., \, [q_0, \, Z_0, \, q_0] = E, \, ..., \, [q_1, \, Z_0, \, q_1] = H
Ta có luật sinh:
                                                                             Giản lược văn phạm:
             S \rightarrow E \mid F
                                                                              S \rightarrow F
             E → 0ÅE | 0BG
                                                                              F \rightarrow 0BH
             F → 0AF | 0BH
                                                                                                                                      S \rightarrow 0B
                                                                              B \rightarrow 0BD \mid 1
                                                                                                                                     B \to 0B \mid 0B1 \mid 1
             A → 0AA | 0BC
                                                                              D \to \epsilon \mid 1
             B \rightarrow 0AB \mid 0BD \mid 1
                                                                              H \to \epsilon
             D \to \epsilon \mid 1
             H \to \epsilon
```