Convex optimization problems (Chap. 21)

• Consider the general problem

minimize
$$f(\mathbf{x})$$

subject to $\mathbf{x} \in \Omega$.

- We have seen several types of FONC.
- When is a FONC sufficient for global optimality?
- Answer: In a *convex* optimization problem.

Summary of FONCs

- Set constraint: $d^T \nabla f(x^*) \ge 0$ for all feasible directions d;
- Interior: $\nabla f(\mathbf{x}^*) = \mathbf{0}$;
- $\Omega = \{x : h(x) = 0\}$: Lagrange conditions;
- $\Omega = \{x : h(x) = 0, g(x) \le 0\}$: KKT conditions.

Set convexity (§4.3)

- Given: $\Omega \subset \mathbb{R}^n$.
- Definition: Ω is a convex set if, for any distinct $\boldsymbol{y}, \boldsymbol{z} \in \Omega$ and $\alpha \in (0, 1)$, we have $\alpha \boldsymbol{y} + (1 \alpha)\boldsymbol{z} \in \Omega$.
- Convex set: the line segment joining any two points in the set lies completely inside the set.

Convex sets:

Version: Initial distribution

Nonconvex sets:

Examples of convex sets

- The empty set
- A set consisting of a single point
- A line or a line segment
- A subspace
- A hyperplane
- A linear variety
- A half-space
- \bullet \mathbb{R}^n

Example: Prove that $\Omega = \{x : x \ge 0\}$ is convex.

- Let $\boldsymbol{y}, \boldsymbol{z} \in \Omega$, and $\alpha \in (0, 1)$.
- Want to show that $\alpha y + (1 \alpha)z \in \Omega$.
- Consider $x = \alpha y + (1 \alpha)z$. What does $x \in \Omega$ mean?
- To qualify as a member of Ω , each of its component must be ≥ 0 .
- Hence, we must show that each component of x is ≥ 0 .
- Each component of $\boldsymbol{x} = [x_1, \dots, x_n]^T$ satisfies $x_i = \alpha y_i + (1 \alpha)z_i$.
- Note that we have $y_i, z_i, \alpha, 1 \alpha \ge 0$.
- Hence, $x_i \geq 0$; i.e., $x \geq 0$, which means that $x \in \Omega$.

• Therefore, Ω is convex.

Exercise: Prove that $\Omega = \{x : Ax = b\}$ is convex.

Exercise: How do we prove that a set is not convex?

Function convexity

• Given: a function $f: \Omega \to \mathbb{R}$, where Ω is convex.

• Definition: f is a convex function on Ω if, for any distinct $\boldsymbol{y}, \boldsymbol{z} \in \Omega$ and $\alpha \in (0, 1)$, $f(\alpha \boldsymbol{y} + (1 - \alpha)\boldsymbol{z}) \leq \alpha f(\boldsymbol{y}) + (1 - \alpha)f(\boldsymbol{z})$.

• f is strictly convex if \leq is replaced by <.

• Convex function: line segment joining two points on the graph lies above the graph.

• f is said to be (strictly) concave if -f is (strictly) convex.

Example: (21.4)

• Consider the function $f(\mathbf{x}) = x_1 x_2$. Is f convex over $\Omega = \{\mathbf{x} : x_1 \ge 0, x_2 \ge 0\}$?

• Answer: No.

• Consider $\boldsymbol{y} = [2, 1]^T \in \Omega$, $\boldsymbol{z} = [1, 2]^T \in \Omega$, and $\alpha = 1/2$.

• We have $x = \alpha y + (1 - \alpha)z = [3/2, 3/2]^T$. Hence, f(x) = 9/4.

• On the other hand,

$$\alpha f(\boldsymbol{y}) + (1 - \alpha)f(\boldsymbol{z}) = 2 < f(\alpha \boldsymbol{y} + (1 - \alpha)\boldsymbol{z}).$$

Alternative way of interpreting function convexity

- Suppose $f: \Omega \to \mathbb{R}$, Ω convex and open, and $f \in \mathcal{C}^1$.
- Theorem (21.3): f is convex iff for all distinct $x, y \in \Omega$,

$$f(\mathbf{y}) \ge f(\mathbf{x}) + Df(\mathbf{x})(\mathbf{y} - \mathbf{x}).$$

- Interpretation: f convex means that it lies above any linear approximation of it.
- For strict convexity, replace \geq by >.

- Suppose $f: \Omega \to \mathbb{R}$, Ω convex and open, and $f \in \mathcal{C}^2$. Let F(x) be the Hessian of f at x.
- Theorem (21.4): f is convex if and only if $F(x) \ge 0$ for all $x \in \Omega$.
- For strict convexity, F(x) > 0 is sufficient, but not necessary (e.g., $f(x) = x^4$ is strictly convex but f''(0) = 0).
- If Ω is not open, but $F(x) \geq 0$ for all x in an open set that contains Ω , then we conclude that f is convex.

Examples

Version: Initial distribution

- $f(x) = x^3$, $\Omega = (0, 1)$. We have $f''(x) = 6x \ge 0$ on Ω . Hence, f is convex on Ω .
- $f(x) = -x^2$, $\Omega = \mathbb{R}$. We have f''(x) = -2 < 0. Hence, f is strictly concave on Ω .
- For a quadratic with Hessian Q, convexity on \mathbb{R}^n is equivalent to $Q \geq 0$. Strict convexity is equivalent to Q > 0.

Checking convexity for quadratics

• Proposition (21.1): Consider the quadratic function $f(x) = x^T Q x$, where $Q = Q^T$. Suppose Ω is a convex set. Then, the f is a convex function on Ω iff

$$(\boldsymbol{x} - \boldsymbol{y})^T \boldsymbol{Q} (\boldsymbol{x} - \boldsymbol{y}) \ge 0$$

for all $\boldsymbol{x}, \boldsymbol{y} \in \Omega$.

• See Example 21.5.

Convex optimization problems

Consider

minimize
$$f(\mathbf{x})$$

subject to $\mathbf{x} \in \Omega$,

where Ω is a convex set, and f is a convex function on Ω .

- Name: Convex programming problem, or convex optimization problem.
- Examples: LP, QP.

Theorem (21.5): In a convex programming problem, a point is a global minimizer if and only if it is a local minimizer.

Proof: The direction \Rightarrow is obvious. Hence, it remains to prove \Leftarrow :

- Suppose $x^* \in \Omega$ is not a global minimizer. Hence, there is a $y \in \Omega$, $y \neq x^*$, such that $f(y) < f(x^*)$.
- Draw a line between f(y) and $f(x^*)$. Every point on that line is $< f(x^*)$.
- By convexity of f, the actual graph of f lies below the line above.
- By convexity of Ω , all points on the line segment joining y and x^* are in Ω .

- Moreover, all points on the line segment above (apart from the endpoint) have objective function value $< f(x^*)$.
- Hence, x^* cannot be a local minimizer.

Lemma (21.1): Let $g: \Omega \to \mathbb{R}$ be a convex function defined on a convex set $\Omega \subset \mathbb{R}^n$. Then, for each $c \in \mathbb{R}$, the set

$$\Gamma_c = \{ \boldsymbol{x} \in \Omega : g(\boldsymbol{x}) \le c \}$$

is a convex set.

Proof:

- Let $\boldsymbol{x}, \boldsymbol{y} \in \Gamma_c$; i.e., $g(\boldsymbol{x}), g(\boldsymbol{y}) \leq c$.
- Since q is convex, for all $\alpha \in (0, 1)$,

$$g(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) \le \alpha g(\boldsymbol{x}) + (1 - \alpha)g(\boldsymbol{y}) \le c$$

• Hence, $\alpha x + (1 - \alpha)y \in \Gamma_c$, which implies that Γ_c is convex.

Corollary (21.1): In a convex programming problem, the set of all global minimizers is convex.

Proof:

- If a global minimizer does not exist, the result is trivial.
- If a global minimizer exists, the result follows immediately from the previous lemma by setting

$$c = \min_{\boldsymbol{x} \in \Omega} f(\boldsymbol{x}).$$

• We are now ready to prove that the FONC type conditions we have seen before are sufficient for global optimality.

Summary of FONCs

- Set constraint: $d^T \nabla f(x^*) \ge 0$ for all feasible directions d;
- Interior: $\nabla f(x^*) = 0$;
- $\Omega = \{x : h(x) = 0\}$: Lagrange conditions;
- $\Omega = \{ \boldsymbol{x} : \boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{0}, \boldsymbol{g}(\boldsymbol{x}) \leq \boldsymbol{0} \}$: KKT conditions.

Set constraints

• Theorem (21.6): Consider the convex programming problem

minimize
$$f(\mathbf{x})$$

subject to $\mathbf{x} \in \Omega$,

where $f \in \mathcal{C}^1$ on an open covex set that contains Ω . Suppose the point $\boldsymbol{x}^* \in \Omega$ satisfies

$$\boldsymbol{d}^T \nabla f(\boldsymbol{x}^*) \ge 0$$

for any feasible direction d at x^* . Then, x^* is a global minimizer.

• Corollary (21.2): If the point x^* above satisfies $\nabla f(x^*) = 0$, then x^* is a global minimizer.

Proof of Theorem:

- Consider any $x \in \Omega$. We want to show that $f(x) \ge f(x^*)$.
- By convexity and previous theorem,

$$f(\boldsymbol{x}) \ge f(\boldsymbol{x}^*) + Df(\boldsymbol{x}^*)(\boldsymbol{x} - \boldsymbol{x}^*).$$

• Note that $d = x - x^*$ is a feasible direction (because Ω is convex). Hence, by assumption,

$$Df(\boldsymbol{x}^*)(\boldsymbol{x} - \boldsymbol{x}^*) = \boldsymbol{d}^T \nabla f(\boldsymbol{x}^*) \ge 0.$$

• Combining the above two inequalities, we have

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}^*).$$

Equality constraints

- Let us now consider problems with equality constraint h(x) = 0.
- Assume that the constraint set $\Omega = \{x : h(x) = 0\}$ is convex.
- Example: h(x) = b Ax.
- \bullet Further assume that f is a convex function, so that the problem is a convex programming problem.
- Theorem (21.7): Consider the convex programming problem

minimize
$$f(x)$$

subject to $h(x) = 0$.

Suppose there exists a feasible point x^* and a vector λ^* such that

$$Df(\boldsymbol{x}^*) + \boldsymbol{\lambda}^{*T} D\boldsymbol{h}(\boldsymbol{x}^*) = \boldsymbol{0}^T.$$

Then, x^* is a global minimizer.

Equality and inequality constraints

• Now consider problems with both equality and inequality constraints:

$$h(x) = 0,$$
 $g(x) \leq 0.$

• The constraint set is

$$egin{array}{lcl} \Omega &=& \{ m{x} : m{h}(m{x}) = m{0}, m{g}(m{x}) \leq m{0} \} \ &=& \{ m{x} : m{h}(m{x}) = m{0} \} igcape \{ m{x} : m{g}(m{x}) \leq m{0} \}. \end{array}$$

- Note that the intersection of convex sets is convex (exercise: prove).
- Hence, Ω is convex if both the above sets are convex.
- ullet We have already seen an example where the set $\{oldsymbol{x}:oldsymbol{h}(oldsymbol{x})=oldsymbol{0}\}$ is convex.
- When is $\{x: g(x) \leq 0\}$ convex?
- Note that

$$\{ \boldsymbol{x} : \boldsymbol{g}(\boldsymbol{x}) \leq \boldsymbol{0} \} = \bigcap_{i=1}^{p} \{ \boldsymbol{x} : g_i(\boldsymbol{x}) \leq 0 \}.$$

- Therefore, if each g_i is convex, then by Lemma 21.1 we conclude that each $\{x : g_i(x) \le 0\}$ is convex, and hence $\{x : g(x) \le 0\}$ is convex.
- Theorem (21.8): Consider the convex programming problem

minimize
$$f(x)$$

subject to $h(x) = 0$
 $g(x) \le 0$.

Suppose there exists a feasible point x^* and vectors λ^* and μ^* such that

1.
$$\mu^* \geq 0$$
;

2.
$$Df(x^*) + \lambda^{*T} Dh(x^*) + \mu^{*T} Dg(x^*) = 0^T$$
; and

3.
$$\mu^{*T} g(x^*) = 0$$
.

Then, x^* is a global minimizer.