Saudi Arabia – Online Math Camp April 2021. – Level L2

Number Theory

Instructor: Dušan Djukić

Problems - April 20

- If p is a prime and a is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$. (Fermat's theorem)
- If n is a positive integer and a coprime to n, then $a^{\varphi(n)} \equiv 1 \pmod{n}$. (Euler's theorem)
- 1. Find all n such that $5^n 4^n$ is divisible by 61.
- 2. Prove that $19 \cdot 8^n + 17$ is composite for all n.
- 3. Find the last two digits of $2^{2^{-1}}$ and $3^{3^{-1}}$ (100 twos/threes).
- 4. Find the largest positive integer n such that, for any primes p and q, n divides $p^8q^4 p^4q^8$.
- 5. Let p be a prime and $n = 2^p 1$. Prove that $2^{n-1} \equiv 1 \pmod{n}$.
- 6. Find all primes p for which $\frac{2^{p-1}-1}{p}$ is a perfect square.
- 7. Prove that there also exist composite numbers n such that $a^{n-1} \equiv 1 \pmod{n}$ whenever a is coprime to n.
- 8. Prove that $7^n 1$ is never divisible by $6^n 1$.
- 9. Can $2^n + 1$ ever be divisible by 247?
- 10. Define $a_n = 2^n + 3^n + 6^n 1$ for each positive integer n. Find all primes that do not divide any term of this sequence.
- 11. If a and b are any coprime positive integers, prove that there are infinitely many exponents n for which $a^n + b$ is composite.
- 12. Prove that there is an infinite set of pairwise coprime integers of the form $2^n 3$.
- 13. Define $a_1 = 2$ and $a_{n+1} = 2^{a_n} + 2$ for all n. Prove that a_m divides a_n whenever m < n.