МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Статистические методы обработки экспериментальных данных»

Тема: Обработка выборочных данных. Нахождение интервальных оценок параметров распределения. Проверка статистической гипотезы о нормальном распределении.

Студент гр. 8383	Бабенко Н.С.
Студент гр. 8383	Сахаров В.М.
Преподаватель	Середа АВ.И.

Санкт-Петербург

2022

Цель работы

Получение практических навыков вычисления интервальных статистических оценок параметров распределения выборочных данных и проверки «справедливости» статистических гипотез.

Основные теоретические положения

Доверительным называют интервал, который с заданной надежностью γ покрывает заданный параметр.

Интервальной оценкой математического ожидания при неизвестном среднем квадратическом отклонении σ генеральной совокупности служит доверительный интервал:

$$\overline{x}_{\scriptscriptstyle B} - \frac{s}{\sqrt{n}} t_{\gamma} \le \alpha \le \overline{x}_{\scriptscriptstyle B} + \frac{s}{\sqrt{n}} t_{\gamma},$$

 $\overline{\chi_{_{\mathrm{B}}}}$ – статистическая оценка математического ожидания

S – исправленное СКВО

n – объём выборки

 t_{ν} – из таблицы

Доверительный интервал для оценки СКВО:

$$S(1-q) \le \sigma \le S(1+q),$$

S – исправленное СКВО

q – из таблицы

Критерий Пирсона, или критерий χ^2 (Хи-квадрат), применяют для проверки гипотезы о соответствии эмпирического распределения предполагаемому теоретическому распределению.

Метод позволяет оценить статистическую значимость различий двух или нескольких относительных показателей.

Теоретические частоты вычисляются по формуле:

$$n_i^{'}=p_i*N,$$
 $p_i=\Phi(z_{i+1})-\Phi(z_i),$ где $\Phi(z_i)$ — функция Лапласа

Если $\chi^2_{\rm наб} \le \chi^2_{\rm крит}$ - гипотеза принимается, иначе ($\chi^2_{\rm наб} > \chi^2_{\rm крит}$) — гипотезу отвергают.

Постановка задачи

Для заданной надежности определить (на основании выборочных данных и результатов выполнения лабораторной работы N2) границы доверительных интервалов для математического ожидания и среднеквадратического отклонения случайной величины. Проверить гипотезу о нормальном распределении исследуемой случайной величины с помощью критерия Пирсона χ^2 . Дать содержательную интерпретацию полученным результатам.

Выполнение работы

При выполнении лабораторной работы №2 были получены выборочные данные, представленные в табл. 1.

Таблица 1

Границы	Середины	Абсолютная	Относительная		
интервалов	интервалов	частота	частота		
[321, 365)	343	4	0.04		
[365, 409)	387	9	0.09		
[409, 453)	431	27	0.27		
[453, 497)	475	35	0.35		
[497, 541)	519	17	0.17		
[541, 585)	563	6	0.06		
[585, 623)	604	2	0.02		

Объем выборки N=100. Количество интервалов k=7. Ширина интервала h=44.

Статистическая оценка математического ожидания:

$$\bar{x_{\rm B}} = \frac{1}{N} \sum_{i=1}^{k} x_i n_i = 465.26$$

Выборочная дисперсия:

$$D_{\rm B} = \frac{1}{N} \sum_{i=1}^{k} (x_i - \bar{x})^2 n_i = 2948.352$$

Исправленная выборочная дисперсия:

$$s^2 = \frac{N}{N-1}D_{\rm B} = \frac{100}{99} * 2948.352 = 2978.133$$

Статистическая оценка СКО:

$$s = \sqrt{s^2} = \sqrt{2978.133} = 54.572$$

1. Доверительный интервал для математического ожидания при неизвестном СКО

Вычислим доверительный интервал для оценки математического ожидания по формуле ниже:

$$\overline{x_{\mathrm{B}}} - t_{\gamma} \frac{S}{\sqrt{n}} \leq \alpha \leq \overline{x_{\mathrm{B}}} + t_{\gamma} \frac{S}{\sqrt{n}},$$
где
$$\overline{x_{\mathrm{B}}} - \text{выборочное среднее}$$

$$S - \text{исправленное СКО}$$

$$t_{\gamma} = 2.627 - \text{из таблицы (при } \gamma = 0.99, N = 100)$$

$$\overline{x_{\mathrm{B}}} - t_{\gamma} \frac{S}{\sqrt{N}} = 465.26 - 2.627 * \frac{54.572}{10} = 450.92$$

$$\overline{x_{\mathrm{B}}} + t_{\gamma} \frac{S}{\sqrt{N}} = 465.26 + 2.627 * \frac{54.572}{10} = 479.6$$

Доверительный интервал (450.92; 479.6) покрывает истинное значение математического ожидания α с надежностью $\gamma=0.99$.

2. Построим доверительный интервал для среднеквадратического отклонения.

Доверительный интервал для оценки СКО:

$$s(1-q) < \sigma < s(1+q)$$
, где

$$q=0.198$$
 –из таблицы (при $\gamma=0.99,\,N=100$)
$$s(1-q)=54.572*0.802=43.767$$

$$s(1+q)=54.572*1.198=66.377$$

Доверительный интервал (43.767; 66.377) покрывает истинное значение среднеквадратического отклонения σ с надежностью $\gamma = 0.99$.

3. Проверим гипотезу о нормальности заданного распределения с помощью критерия Пирсона χ^2

Гипотеза H_0 — выборочные данные представляют значения случайной величины, распределённой по нормальному закону распределения. Согласно критерию Пирсона:

$$\chi^2_{ ext{набл}} = \sum_1^K rac{(n_i - n_i')^2}{{n_i}'}$$
 $\chi^2_{ ext{крит}} = \chi^2(lpha, k)$ — из таблицы

Гипотеза H_0 принимается при условии:

$$\chi^2_{\text{набл}} \le \chi^2_{\text{крит}}$$

Вычислим теоретические частоты. Вычисления представлены в табл. 2. Таблица 2

Xi	$\mathbf{x_{i+1}}$	n _i	$\mathbf{Z_i}$	\mathbf{z}_{i+1}	$\Phi(\mathbf{z_i})$	$\Phi(\mathbf{z_{i+1}})$	p_i	n _i '
321.0	365.0	4	-∞	-1.84	-0.5	-0.4671	0.0329	3.29
365.0	409.0	9	-1.84	-1.03	-0.4671	-0.3485	0.1186	11.86
409.0	453.0	27	-1.03	-0.22	-0.3485	-0.0871	0.2614	26.14
453.0	497.0	35	-0.22	0.58	-0.0871	0.219	0.3061	30.61
497.0	541.0	17	0.58	1.39	0.219	0.4177	0.1987	19.87

541.0	585.0	6	1.39	2.19	0.4177	0.4858	0.0681	6.81
585.0	623.0	2	2.19	+∞	0.4858	0.5	0.0142	1.42

Вычислим наблюдаемое значение критерия $\chi^2_{\text{набл}}$ с помощью полученных частот по формуле ниже. Отдельные вычисления представлены в табл. 3.

$$\chi^2_{\text{Ha6}} = \sum_{i=1}^{7} \frac{(n_i - n_i^{'})^2}{n_i^{'}}$$

Таблица 3

n _i	n _i ′	$n_i - n_i'$	$(n_i-n_i^\prime)^2$	$(n_i - n_i^\prime)^2/n_i^\prime$
4	3.29	0.71	0.5041	0.1532
9	11.86	-2.86	8.1796	0.6897
27	26.14	0.86	0.7396	0.0283
35	30.61	4.39	19.2721	0.6296
17	19.87	-2.87	8.2369	0.4145
6	6.81	-0.81	0.6561	0.0963
2	1.42	0.58	0.3364	0.2369

$$\chi^2_{\text{набл}} = 2.2485$$

Определим табличное значение $\chi^2_{\text{крит}}$ при $\alpha = 0.05$ и k = 7 - 3 = 4:

$$\chi^2_{\text{крит}} = 9.5$$

Сравним полученные значения:

$$\chi^2_{\rm набл} = 2.2485 \le \chi^2_{\rm крит} = 9.5$$

Из полученных результатов можно сделать вывод, что нулевая гипотеза принимается, то есть можно предположить, что случайная величина распределена по нормальному закону распределения.

Выводы

В ходе выполнения лабораторной работы был вычислен доверительный интервал для математического ожидания при неизвестном СКО с доверительной точностью $\gamma = 0.99$. Исходя из полученных результатов можно сделать вывод, что доверительный интервал (450.92; 479.6) покрывает истинное значение математического ожидания α с надежностью $\gamma = 0.99$. Вычислен доверительный интервал для среднеквадратического отклонения. Можно сделать вывод, что доверительный интервал (43.767; 66.377) покрывает истинное значение среднеквадратического отклонения σ с надежностью $\gamma = 0.99$.

Выполнена проверка гипотезы о нормальности заданного распределения с помощью критерия χ^2 (Пирсона). Определено, что $\chi^2_{\text{набл}} \leq \chi^2_{\text{крит}}$, следовательно, нулевая гипотеза принимается, то есть можно предположить, что случайная величина распределена по нормальному закону распределения.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД

```
import numpy as np
     import pandas as pd
     import scipy
     from IPython.core.interactiveshell import InteractiveShell
     InteractiveShell.ast node interactivity = "all"
     int row = pd.read csv('c:/Users/gandh/dev/unv/smoed/NB/data/inter-
val.csv')
     N = int row['af'].sum()
     h = 44
     Ν
     int row
     xv = (np.dot(int row['avg inter'], int row['af'])/N).round(3)
                                    (np.dot((int_row['avg_inter']-xv)**2,
     dν
int_row['af'])/N).round(3)
     s = np.sqrt(dv*(N/(N-1))).round(3)
     xv, dv, (dv*(N/(N-1))).round(3), s
     gamma = 0.99
     tg = 2.627
     di a = np.round((xv-tg*s/np.sqrt(N), xv+tg*s/np.sqrt(N)), 2)
     ΧV
     di a
     q = 0.198
     di s = np.round((s*(1-q), s*(1+q)), 3)
     S
     di s
     df = int_row.copy().drop(['avg_inter', 'inter', 'rf'], axis=1)
     df['xi'] = int_row['avg_inter']-h/2
     df['xi+1'] = int row['avg inter']+h/2
     df = df[['xi', 'xi+1', 'af']]
     df = df.rename(columns={'af': 'ni'})
     df.iloc[6, 0], df.iloc[6, 1] = 585, 623
     df['zi'] = np.round((df['xi']-xv)/s, 2)
```

```
df['zi+1'] = np.round((df['xi+1']-xv)/s, 2)
     df.loc[0, 'zi'], df.loc[6, 'zi+1'] = -np.inf, np.inf
     df['F(zi)']
                                            np.array([-5000, -4671, -3485, -
871,2190,4177,4858])/10000
     df['F(zi+1)']
                                                   np.array([-4671, -3485, -
871,2190,4177,4858,5000])/10000
     df['pi'] = np.round(df['F(zi+1)'] - df['F(zi)'], 4)
     df['ni*'] = np.round(df['pi']*N, 4)
     df.to_csv('data/data1.csv', index=False)
     df
     df nabl = pd.DataFrame()
     df_nabl['ni'], df_nabl['ni*'] = df['ni'], df['ni*']
     df nabl['-'] = np.round(df nabl['ni']-df nabl['ni*'], 4)
     df nabl['-2'] = np.round(df nabl['-']**2, 4)
     df nabl['-2/'] = np.round(df nabl['-2']/df nabl['ni*'], 4)
     df nabl.to csv('data/data2.csv', index=False)
     hi nabl = df nabl['-2/'].sum().round(4)
     df nabl
     alpha = 0.05
     k = len(df)-3
     (k, alpha)
     hi crit = 9.5
     (hi_nabl, hi_crit)
     'True' if hi nabl <= hi crit else 'False'
```