Prova scritta di Logica Matematica 1 21 settembre 2010

Cognome Nome Matricola

Scrivete subito il vostro nome, cognome e numero di matricola, e tenete il tesserino universitario sul banco. Svolgete gli esercizi direttamente sul testo a penna. Dovete consegnare solo il foglio del testo: nessun foglio di brutta.

Per ogni esercizio è indicato il relativo punteggio. Nella prima parte se la riposta è corretta, il punteggio viene aggiunto al totale, mentre se la risposta è errata il punteggio viene sottratto (l'assenza di risposta non influisce sul punteggio totale). Per superare l'esame bisogna raggiungere 18 punti, di cui almeno 5 relativi alla prima parte.

PRIMA PARTE

THIMATARLE	
Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.	
1. Se $F \models G \in H \models K$ allora $F \lor H \models G \lor K$.	1pt
2. Se $\Gamma \triangleright F$ la deduzione naturale $\frac{\nabla}{F}$ è sempre corretta. $\boxed{\mathbf{V} \mid \mathbf{F}}$ 3. Una β formula à logicamente equivalente.	1pt
3. Una β -formula è logicamente equivalente	
alla congiunzione dei suoi ridotti.	1pt
4. Se un tableau per F è chiuso allora F è valida. $\boxed{\mathbf{V} \mid \mathbf{F}}$	1pt
5. Sia $\mathcal{L} = \{a, f, g, p\}$ un linguaggio in cui a è un simbolo di costante,	тро
f è un simbolo di funzione unario, g è un simbolo di funzione binario	
e $p \in \mathbb{R}$ un simbolo di relazione unario.	
Quante delle seguente stringhe sono termini di \mathcal{L} ? $f(g(a, f(x)), p(a))$,	
g(f(a), g(x, y)), g(f(a), g(a)), p(f(g(x, a))).	1pt
6. Se x è l'unica variabile libera in F e $I, \sigma \models \forall x F$ allora	
per ogni stato τ di I si ha $I, \tau \models F$.	1pt
7. Siano $I \in J$ interpretazioni per un linguaggio \mathcal{L} .	
Se esiste un omomorfismo forte e suriettivo di J in I ,	
allora esiste un omomorfismo forte e suriettivo di I in J . $\boxed{\mathbf{V} \mid \mathbf{F}}$	1pt
8. Se F è una formula aperta allora $\forall x \exists y \forall z \neg F$ è in forma prenessa. $\boxed{\mathbf{V} \mid \mathbf{F}}$	1pt
9. Esiste un insieme di Hintikka cui appartengono	
$p \vee \neg r \to q, \ \neg (q \vee s) \ e \ \neg r.$	1pt
SECONDA PARTE	
10. Sul retro del foglio dimostrate che	4pt
$\forall x \exists y \big(r(x, f(y)) \vee r(f(x), f(x)) \big), \forall y \neg r(a, y) \models \exists z r(z, z).$	
11. Sul retro del foglio dimostrate che	4pt
$\exists x \exists y r(x,y) \land \forall x \forall y \big(r(x,y) \to \exists z (x \neq z \land y \neq z \land \neg r(z,x) \land r(y,z)) \big)$	

è soddisfacibile nella logica con uguaglianza.

- 12. Sia $\mathcal{L} = \{b, s, sr, r, c\}$ un linguaggio dove b è un simbolo di costante, s e sr sono simboli relazionali unari e r e c sono simboli di relazione binari. Interpretando b come "Bruno", s(x) come "x è uno scienziato", sr(x) come "x è uno scrittore", r(x, y) come "x è più rigoroso di y", c(x, y) come "x conosce y" traducete le seguenti frasi:
 - (i) Bruno è uno scienziato che conosce qualche scrittore;

3pt

(ii) ogni scienziato conosce scrittori più rigorosi di lui.

3pt

13. Usando il metodo dei tableaux stabilire se

3pt

$$(p \lor q) \land (s \to \neg p \lor r) \to (s \to q \lor r)$$

è valida. Se la formula non è valida definite un'interpretazione che non la soddisfa. (Utilizzate il retro del foglio)

14. Dimostrate che

5pt

$$\forall x (\exists y \ p(x,y) \rightarrow \forall y \ \neg p(y,x)) \rhd \forall x \ \neg p(x,x).$$

Usate solo le regole della deduzione naturale predicativa, comprese le sei regole derivate. (Utilizzate il retro del foglio)

15. Usando l'algoritmo di Fitting e utilizzando lo spazio qui sotto, mettete in forma normale congiuntiva la formula

$$(p \land \neg q) \lor r \to \neg(\neg s \to t \land \neg u).$$

Soluzioni

- **1.** V se un'interpretazione soddisfa $F \vee H$ allora soddisfa una tra F e H. Nel primo caso deve soddisfare G, mentre nel secondo soddisferà K. In ogni caso soddisfa $G \vee K$.
- **2.** F perché la deduzione naturale sia corretta è necessario che x non sia libera in Γ .
- 3. F una β -formula è logicamente equivalente alla disgiunzione dei suoi ridotti.
- **4.** F se un tableau per F è chiuso allora F è **insoddisfacibile** (e $\neg F$ è valida).
- 5. 1 solo la seconda stringa è un termine, mentre la quarta è una formula atomica e le rimanenti non sono né termini né formule.
- **6.** V dato che $I, \sigma \models \forall x F$ allora $I, \sigma[x/d] \models F$ per ogni $d \in D^I$. Se τ è uno stato arbitrario, $\sigma[x/\tau(x)]$ e τ coincidono su tutte le variabili libere di F. Per il Lemma 7.10 delle dispense si ha $I, \tau \models F$.
- 7. F si trovano controesempi ogniqualvolta esiste un omomorfismo forte e suriettivo di J in I e la cardinalità di D^J e più grande di quella di D^I .
- 8. V immediato dalla Definizione 7.59 delle dispense.
- 9. F se Γ è insieme di Hintikka, da $\neg (q \lor s) \in \Gamma$ segue che $\neg q \in \Gamma$ e $\neg s \in \Gamma$. Da $p \lor \neg r \to q \in \Gamma$ segue invece che $\neg (p \lor \neg r) \in \Gamma$ oppure $q \in \Gamma$. La seconda possibilità è impossibile (perché $\neg q \in \Gamma$), quindi deve valere la prima. Perciò $\neg p \in \Gamma$ e $\neg \neg r \in \Gamma$, che a sua volta implica $r \in \Gamma$ contraddicendo $\neg r \in \Gamma$.
- 10. Dobbiamo mostrare che se un'interpretazione soddisfa le prime due formule, che indichiamo con $F \in G$, allora soddisfa anche la terza, indicata da H. Sia dunque I un'interpretazione che soddisfa $F \in G$.

Dato che $I \models F$ e $a^I \in D^I$ esiste $d_0 \in D^I$ tali che $(a^I, f^I(d_0)) \in r^I$ oppure $(f^I(a^I), f^I(a^I)) \in r^I$. Dato che $I \models G$ (e quindi $I, \sigma[y/f^I(d_0)] \models \neg r(a, y)$) la prima possibilità non può valere. Perciò $(f^I(a^I), f^I(a^I)) \in r^I$, che significa che $I, \sigma[z/f^I(a^I)] \models r(z, z)$. Quindi $I \models H$.

11. Dobbiamo definire un'interpretazione normale che soddisfi l'enunciato. L'interpretazione normale I definita da

$$D^I = \{0,1,2,3\}, \quad r^I = \{(0,1),(1,2),(2,3),(3,0)\}$$

ha queste caratteristiche. Anche l'interpretazione ${\cal J}$ definita da

$$D^J = \mathbb{N}, \quad r^J = \left\{ (x, y) \in \mathbb{N}^2 : x < y \right\}$$

andrebbe bene.

- **12.** (i) $s(b) \wedge \exists x (sr(x) \wedge c(b, y));$
 - (ii) $\forall x(s(x) \to \exists y(sr(y) \land c(x,y) \land r(y,x))).$

13. Per stabilire se la formula è valida costruiamo un tableau per la sua negazione. In ogni passaggio sottolineiamo la formula su cui agiamo. Utilizziamo ripetutamente la Convenzione 4.34 delle dispense e ci fermiamo non appena un nodo contiene una coppia complementare.

Il tableau è chiuso e quindi la formula di partenza è valida.

14. Ecco una deduzione naturale che mostra quanto richiesto:

$$\frac{[p(x,x)]^{1}}{\exists y \, p(x,y)} \qquad \frac{\forall x (\exists y \, p(x,y) \to \forall y \, \neg p(y,x))}{\exists y \, p(x,y) \to \forall y \, \neg p(y,x)} \\
 \qquad \qquad \frac{\forall y \, \neg p(y,x)}{\neg p(x,x)} \qquad [p(x,x)]^{1} \\
 \qquad \qquad \frac{\bot}{\neg p(x,x)} \qquad 1 \\
 \qquad \qquad \qquad \forall x \, \neg p(x,x)$$

$$\langle [(p \land \neg q) \lor r \rightarrow \neg (\neg s \rightarrow t \land \neg u)] \rangle$$

$$\langle [\neg ((p \land \neg q) \lor r), \neg (\neg s \rightarrow t \land \neg u)] \rangle$$

$$\langle [\neg (p \land \neg q), \neg (\neg s \rightarrow t \land \neg u)], [\neg r, \neg (\neg s \rightarrow t \land \neg u)] \rangle$$

$$\langle [\neg p, q, \neg (\neg s \rightarrow t \land \neg u)], [\neg r, \neg s], [\neg r, \neg (t \land \neg u)] \rangle$$

$$\langle [\neg p, q, \neg s], [\neg p, q, \neg (t \land \neg u)], [\neg r, \neg s], [\neg r, \neg t, u)] \rangle$$

$$\langle [\neg p, q, \neg s], [\neg p, q, \neg t, u], [\neg r, \neg s], [\neg r, \neg t, u] \rangle$$

La formula in forma normale congiuntiva ottenuta è

$$(\neg p \lor q \lor \neg s) \land (\neg p \lor q \lor \neg t \lor u) \land (\neg r \lor \neg s) \land (\neg r \lor \neg t \lor u).$$