

Lecture 6

SOFT AND HARD CONSTRAINED TRAJECTORY OPTIMIZATION

主讲人 Fei Gao

Ph.D. in Robotics Hong Kong University of Science and Technology Assistant Professor, Zhejiang University

- 1. Introduction
- 2. Soft-constrained Optimization
- 3. Hard-constrained Optimization
- 4. Case Study
- 5. Homework

Introduction

Minimum snap trajectory optimization

- We only constrain intermediate waypoints of the trajectory should pass.
- Computational cheap and easy to implement.
- No constraints on the trajectory itself.
- The "overshoot" of the trajectory unavoidable.

The basic minimum snap framework is good for smooth curve generation, not for collision avoidance.

Minimum snap with safety constraints

Adding forces

Adding bounds

Hard/ Soft constraints

s.t.
$$g_i(x) = c_i, \quad i = 1, \cdots, n$$
 Equality constraints $h_j(x) \ge d_j, \quad j = 1, \cdots, n$ Inequality constraints

Required to be strictly satisfied.

$$\min \qquad f(x) + \lambda_1 \cdot g(x) + \lambda_2 \cdot h(x)$$

- Penalty terms / loss functions.
- Constraints which are preferred but not strictly required.
- Various kinds of loss functions.

Hard-constrained Optimization

Corridor-based Trajectory Optimization

Corridor-based Smooth Trajectory Generation

Differential flatness property

$$\{x, y, z, \dot{x}, \dot{y}, \dot{z}, \emptyset, \theta, \varphi, p, q, r\} \rightarrow \{x, y, z, \varphi\}$$

Piecewise polynomial trajectory

$$f_{\mu}(t) = \begin{cases} \sum_{j=0}^{N} p_{1j} (t - T_0)^j & T_0 \le t \le T_1 \\ \sum_{j=0}^{N} p_{2j} (t - T_1)^j & T_0 \le t \le T_1 \\ \vdots & \vdots \\ \sum_{j=0}^{N} p_{Mj} (t - T_{M-1})^j & T_0 \le t \le T_1 \end{cases}$$

• Cost function (minimum jerk)

$$J = \sum_{\mu \in \{x,y,z\}} \int_0^T \left(\frac{d^k f_{\mu}(t)}{dt^k} \right)^2 dt$$

Boundary constrains

- Continuity constrains
- Safety constrains无路标点约束

min
$$\mathbf{p}^T \mathbf{H} \mathbf{p}$$

s.t. $\mathbf{A}_{eq} \mathbf{p} = \mathbf{b}_{eq}$
 $\mathbf{A}_{lq} \mathbf{p} \leq \mathbf{b}_{lq}$

Quadratic Program

Problem formulation

- Instant linear constraints:
 - Start, goal state constraint $(\mathbf{Ap} = \mathbf{b})$
 - Transition point constraint $(Ap = b, Ap \le b)$
 - $\frac{\text{Continuity constraint}}{\text{Continuity constraint}} (Ap_i = Ap_{i+1})$
- Interval linear constraints:
 - Boundary constraint $(\mathbf{A}(t)\mathbf{p} \leq \mathbf{b}, \forall t \in [t_l, t_r])$
 - Dynamic constraint $(\mathbf{A}(t)\mathbf{p} \leq \mathbf{b}, \forall t \in [t_l, t_r])$
 - Velocity constraints
 - Acceleration constraints

Many advantages:

- Efficiency: path search in the reduced graph, convex optimization in the corridor are efficient.
- High quality: corridor provides large optimization freedom.

min
$$\mathbf{p}^T \mathbf{H} \mathbf{p}$$

s.t. $\mathbf{A}_{eq} \mathbf{p} = \mathbf{b}_{eq}$
 $\mathbf{A}_{lq} \mathbf{p} \leq \mathbf{b}_{lq}$

Quadratic Program

Problem:

All constraints are enforced on piecewise joint points only, how to guarantee they are active along all the trajectory?

Iteratively check extremum and add extra constraints.

- Iterative solving is time consuming.
- If strictly no feasible solution meets all constraints. We have to run 10 iterations to determine the status of the solution?

- Checking extremum is yet another polynomial root finding problem.
 - Up to quartic function, it's easy.
 - Higher order polynomials need numerical solutions.

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

Polynomial roots finding

Matlab function "roots"

For a general polynomial function: $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$, It has the **companion matrix**:

$$A = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix}$$

The characteristic polynomial det(xI - A) of A is the polynomial p(x).

roots

Polynomial roots

Syntax

```
r = roots(p)
```

Description

r = roots(p) returns the roots of the polynomial represented by p as a column vector. Input p is a vector containing n+1 polynomial coefficients, starting with the coefficient of x^n . A coefficient of 0 indicates an intermediate power that is not present in the equation. For example, $p = \begin{bmatrix} 3 & 2 & -2 \end{bmatrix}$ represents the polynomial $3x^2 + 2x - 2$.

The roots function solves polynomial equations of the form $p_1x^n + ... + p_nx + p_{n+1} = 0$. Polynomial equations contain a single variable with nonnegative exponents.

Algorithms

The roots function considers p to be a vector with n+1 elements representing the nth degree characteristic polynomial of an n-by-n matrix, A. The roots of the polynomial are calculated by computing the eigenvalues of the companion matrix, A.

The results produced are the exact eigenvalues of a matrix within roundoff error of the companion matrix, A. However, this does not mean that they are the exact roots of a polynomial whose coefficients are within roundoff error of those in p.

Bezier Curve Optimization

Trajectory basis changing

Use Bernstein polynomial basis.

- Bézier curve
- Change to basis of the trajectory from monomial polynomial to Bernstein polynomial

$$B_{j}(t) = c_{j}^{0}b_{n}^{0}(t) + c_{j}^{1}b_{n}^{1}(t) + \dots + c_{j}^{n}b_{n}^{n}(t) = \sum_{i=0}^{n}c_{j}^{i}b_{n}^{i}(t)$$

$$b_{n}^{i}(t) = {n \choose i} \cdot t^{i} \cdot (1-t)^{n-i}$$

• Bézier curve is just a special polynomial, it can be mapped to monomial polynomial by: $p = M \cdot c$. And all previous derivations still hold.

贝塞尔曲线可以线性映射到普通多项式曲线

For 6 order:
$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -6 & 6 & 0 & 0 & 0 & 0 & 0 \\ 15 & -30 & 15 & 0 & 0 & 0 & 0 \\ -20 & 60 & -60 & 20 & 0 & 0 & 0 \\ 15 & -60 & 90 & -60 & 15 & 0 & 0 \\ -6 & 30 & -60 & 60 & -30 & 6 & 0 \\ 1 & -6 & 15 & -20 & 15 & -6 & 1 \end{bmatrix}$$

\$

Trajectory basis changing

Properties:

- Endpoint interpolation. The Bezier curve always starts at the first control point, ends at the last control point, and never pass any other control points.

 贝塞尔曲线—定经过始末控制点,且不经过其他控制点
- Convex hull. The Bezier curve B(t) consists of a set of control points ci are entirely confined within the convex hull defined by all these control points. 贝塞尔曲线一定在控制点组成的凸包内
- **Hodograph.** The derivative curve B'(t) of a Bezier curve B(t) is called as hodograph, and it is also a Bezier curve with control points defined by $n \cdot (c_{i+1} c_i)$, where n is the degree. 贝塞尔曲线的n阶导数仍是贝塞尔曲线,且控制点是原控制点的线性组合
- Fixed time interval. A Bezier curve is always defined on [0,1]

Convex hull property

- The flight corridor consists of convex polygons.
- Each cube corresponds to a piece of Bezier curve.
- Control points of this curve are enforced inside the polygon.
- The trajectory is entirely inside the convex hull of all points.

限制控制点在安全走廊内,则轨迹 一定在安全走廊内

The trajectory is entirely inside the flight corridor.

Trajectory Generation Formulation

Define higher order (l^{th}) control points:

$$a_{\mu j}^{0,i} = c_{\mu j}^{i}, a_{\mu j}^{l,i} = \frac{n!}{(n-l)!} \cdot (a_{\mu j}^{l-1,i+1} - a_{\mu j}^{l-1,i}), \quad l \geq 1$$

Boundary Constraints:

$$a_{\mu j}^{l,0} \cdot s_j^{(1-l)} = d_{\mu j}^{(l)}$$

• Continuity Constraints:

$$a_{\mu j}^{\phi,n} \cdot s_j^{(1-\phi)} = a_{\mu,j+1}^{\phi,0} \cdot s_{j+1}^{(1-\phi)}, \quad a_{\mu j}^{0,i} = c_{\mu j}^i.$$

Safety Constraints:

$$\beta_{\mu j}^{-} \le c_{\mu j}^{i} \le \beta_{\mu j}^{+}, \ \mu \in \{x, y, z\}, \ i = 0, 1, 2, ..., n,$$

• Dynamical Feasibility Constraints:

$$v_m^- \le n \cdot (c_{\mu j}^i - c_{\mu j}^{i-1}) \le v_m^+, a_m^- \le n \cdot (n-1) \cdot (c_{\mu j}^i - 2c_{\mu j}^{i-1} + c_{\mu j}^{i-2})/s_j \le a_m^+$$

Stack all of these min

s.t. $\mathbf{A}_{eq}\mathbf{c} = \mathbf{b}_{eq},$

 $\mathbf{c}^T \mathbf{Q}_o \mathbf{c}$

 $\mathbf{A}_{ie}\mathbf{c} \leq \mathbf{b}_{ie},$

仿射变换等式约束 凸不等式约束 =>QP问题

> We only solve this program once to determine whether there is a qualified trajectory exists.

$$\mathbf{c}_j \in \Omega_j / / j = 1, 2, ..., m,$$

A typicz convex QP formulation.

避免迭代求解,一次解出最优值

Simulation results

Blue curve : trajectory in execution horizon

Red curve:

current trajectory

White cube:

flight corridor

Colorful voxels:

mapped obstacles

Grey voxels:

un-mapped obstacles

Greed arrow: velocity

Yellow arrow: acceleration

Flight corridor is projected to x-y plane for visualization

Experimental results

Other Options

- Adding numerous constraints at discrete time ticks.
- Piecewise-constant accelerations at each tick.
- QP program solution.

- Always generates over-conservative trajectories.
- Too many constraints, the computational burden is high.

A hybrid method for online trajectory planning of mobile robots in cluttered environments, L Campos-Macías et. al

\$

Mixed integer optimization

$$\forall t_k : x_1(t_k) - x_2(t_k) \le d_x$$
or $x_2(t_k) - x_1(t_k) \le d_x$
or $y_1(t_k) - y_2(t_k) \le d_y$
or $y_2(t_k) - y_1(t_k) \le d_y$

$$or \quad z_1(t_k) - z_2(t_k) \le d_z$$

$$or z_2(t_k) - z_1(t_k) \le d_z$$

整数规划 大M法,整数规划求解速度慢

- Mixed-integer QP.
- 'Big M' method.
- Super slow.

$$\forall t_{k}: x_{1}(t_{k}) - x_{2}(t_{k}) - c_{0} \cdot M \leq d_{x}$$

$$x_{2}(t_{k}) - x_{1}(t_{k}) - c_{1} \cdot M \leq d_{x}$$

$$y_{1}(t_{k}) - y_{2}(t_{k}) - c_{2} \cdot M \leq d_{y}$$

$$y_{2}(t_{k}) - y_{1}(t_{k}) - c_{3} \cdot M \leq d_{y}$$

$$z_{1}(t_{k}) - z_{2}(t_{k}) - c_{4} \cdot M \leq d_{z}$$

$$z_{2}(t_{k}) - z_{1}(t_{k}) - c_{5} \cdot M \leq d_{z}$$

$$\sum_{i=0}^{5} c_{i} = 5, M = 100000$$

$$c_{i} \in \{0,1\}$$

Dense constraints

Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams, **D. Mellinger** et al.

Soft-constrained Optimization

Distance-based Trajectory Optimization

Hard-constrained methods

Vison-based drone:

- Limited sensing range and quality
- Noisy depth estimation

Hard-constrained method:

- Treat all free space equally
- Solution space is sensitive to noise

Soft-constrained methods

Problem formulation

Differential flatness property

$$\{x, y, z, \dot{x}, \dot{y}, \dot{z}, \emptyset, \theta, \varphi, p, q, r\} \rightarrow \{x, y, z, \varphi\}$$

Piecewise polynomial trajectory

$$f_{\mu}(t) = \begin{cases} \sum_{j=0}^{N} p_{1j} (t - T_0)^j & T_0 \le t \le T_1 \\ \sum_{j=0}^{N} p_{2j} (t - T_1)^j & T_0 \le t \le T_1 \\ \vdots & \vdots \\ \sum_{j=0}^{N} p_{Mj} (t - T_{M-1})^j & T_0 \le t \le T_1 \end{cases}$$

Objective function

$$J=J_S+J_C+J_d$$

$$=\lambda_1J_1 + \lambda_2J_2 + \lambda_3J_3$$
Smoothness cost Collision cost Dynamical cost

Smoothness cost: minimum snap formulation

$$J_{S} = \sum_{\mu \in \{x, y, z\}} \int_{0}^{T} \left(\frac{d^{k} f_{\mu}(t)}{dt^{k}}\right)^{2} dt$$

$$= \begin{bmatrix} \mathbf{d}_{F} \\ \mathbf{d}_{P} \end{bmatrix}^{T} \mathbf{C}^{T} \mathbf{M}^{-T} \mathbf{Q} \mathbf{M}^{-1} \mathbf{C} \begin{bmatrix} \mathbf{d}_{F} \\ \mathbf{d}_{P} \end{bmatrix} = \begin{bmatrix} \mathbf{d}_{F} \\ \mathbf{d}_{P} \end{bmatrix}^{T} \begin{bmatrix} \mathbf{R}_{FF} & \mathbf{R}_{FP} \\ \mathbf{R}_{PF} & \mathbf{R}_{PP} \end{bmatrix} \begin{bmatrix} \mathbf{d}_{F} \\ \mathbf{d}_{P} \end{bmatrix}$$

Collision cost: penalize on the distance to nearest obstacle

$$J_c = \int_{T_0}^{T_M} c(p(t))ds$$

= $\sum_{k=0}^{T/\delta t} c(p(T_k)) ||v(t)|| \delta t$, $T_k = T_0 + k\delta t$

• Dynamical Cost: penalize on the velocity and acceleration where exceeds limits (similar to collision term).

Objective/Jacobian evaluation

• Smoothness cost: minimum snap formulation

$$J_{S} = \sum_{\mu \in \{x, y, z\}} \int_{0}^{T} \left(\frac{d^{k} f_{\mu}(t)}{dt^{k}}\right)^{2} dt$$

$$= \begin{bmatrix} \boldsymbol{d}_{F} \\ \boldsymbol{d}_{P} \end{bmatrix}^{T} \boldsymbol{C}^{T} \boldsymbol{M}^{-T} \boldsymbol{Q} \boldsymbol{M}^{-1} \boldsymbol{C} \begin{bmatrix} \boldsymbol{d}_{F} \\ \boldsymbol{d}_{P} \end{bmatrix} = \begin{bmatrix} \boldsymbol{d}_{F} \\ \boldsymbol{d}_{P} \end{bmatrix}^{T} \begin{bmatrix} \boldsymbol{R}_{FF} & \boldsymbol{R}_{FP} \\ \boldsymbol{R}_{PF} & \boldsymbol{R}_{PP} \end{bmatrix} \begin{bmatrix} \boldsymbol{d}_{F} \\ \boldsymbol{d}_{P} \end{bmatrix}$$

• The Jacobian with respect to free derivatives $m{d}_{p\mu}$ is:

$$\frac{\alpha J_S}{\alpha \boldsymbol{d}_{p\mu}} = 2\boldsymbol{d}_F^T \boldsymbol{R}_{FP} + 2\boldsymbol{d}_P^T \boldsymbol{R}_{PP}$$

• Collision cost: penalize on the distance to nearest obstacle

$$J_c = \int_{T_0}^{T_M} c[\underline{p}(\underline{t})] ds$$

Distance penalty at a point along the trajectory

$$= \sum_{k=0}^{T/\delta t} c(p(T_k)) ||v(t)|| \delta t, T_k = T_0 + k \delta t$$

• The Jacobian with respect to free derivatives $d_{p\mu}$ is:

$$\frac{\alpha J_c}{\alpha \boldsymbol{d}_{p\mu}} = \sum_{k=0}^{T/\delta t} \left\{ \forall_{\mu} c(p(T_k)) ||v|| \boldsymbol{F} + c(p(T_k)) \frac{v_{\mu}}{||v||} \boldsymbol{G} \right\} \delta t, \mu \in \{x, y, z\}$$

 L_{dp} is the right block of matrix $M^{-1}C$ which corresponds to the free derivatives on the μ axis $d_{p\mu}$.

$$F = TL_{dp}, \qquad G = TV_mL_{dp}.$$

 $\forall_{\mu} c(\cdot)$ is the gradient in μ axis of the collision cost.

 V_m maps the coefficients of the position to the coefficients of the velocity. $T = [T_k^0, T_k^1, \dots, T_k^n]$

$$\mathbf{H}_{o} = \left[\frac{\partial^{2} f_{o}}{\partial \mathbf{d}_{P_{x}}^{2}}, \frac{\partial^{2} f_{o}}{\partial \mathbf{d}_{P_{y}}^{2}}, \frac{\partial^{2} f_{o}}{\partial \mathbf{d}_{P_{z}}^{2}} \right],$$

$$\frac{\partial^{2} f_{o}}{\partial \mathbf{d}_{P\mu}^{2}} = \sum_{k=0}^{\tau/\delta t} \left\{ \mathbf{F}^{T} \nabla_{\mu} c(p(\mathcal{T}_{k}) \frac{v_{\mu}}{\|v\|} \mathbf{G} + \mathbf{F}^{T} \nabla_{\mu}^{2} c(p(\mathcal{T}_{k})) \|v\| \mathbf{F} + \mathbf{G}^{T} \nabla_{\mu} c(p(\mathcal{T}_{k})) \frac{v_{\mu}}{\|v\|} \mathbf{F} + \mathbf{G}^{T} c(p(\mathcal{T}_{k})) \frac{v_{\mu}^{2}}{\|v\|^{3}} \mathbf{G} \right\} \delta t, \quad (10)$$

Euclidean signed distance field (ESDF)

Use **exponential** function as cost function c, to prevent trajectory from be near to obstacle

Dynamical Cost

Numerical optimization

minimize
$$f(x)$$

• Produce sequence of points $x^{(k)} \in dom f, k = 0,1, ...$ with

$$f(x^{(k)}) \to p^*$$

Can be interpreted as iterative methods for solving optimality condition

$$\nabla f(x^*) = 0$$

$$x^{k+1} = x^k + t^k \Delta x^k \text{ with } f(x^{k+1}) < f(x^k)$$

- Other notations: $x^+ = x + t\Delta x$, $x \coloneqq x + t\Delta x$
- \bullet Δx is the step, or search direction; t is the step size, or step length

General descent method given a starting point $x \in dom f$. repeat

- 1. Determine a descent direction Δx .
- 2. Line search. Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

Line search types

exact line search: $t = argmin_{t>0} f(x + t\Delta x)$

backtracking line search (with parameters $\alpha \in (0, 1/2), \beta \in (0,1)$)

• starting at t = 1, repeat $t := \beta t$ until

$$f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x$$

• graphical interpretation: backtrack until $t \le t_0$

Gradient descent method

General descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in dom f$.

Repeat

- 1. $\Delta x := -\nabla f(x)$.
- 2. Line search. Choose step size t via exact or backtracking line search.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

• Stopping criterion usually of the form $||\nabla f(x)||_2 \le \epsilon$

Second-order method

Newton method

Taylor expansion at $x^{(k)}$, and second – order similarity $\Delta x = -\nabla^2 f(x)^{-1} \nabla f(x)$

given a starting point $x \in dom f$.

Repeat

- 1. $\Delta x := -\nabla^2 f(x)^{-1} \nabla f(x)$.
- 2. Line search. $t = argmin_{t>0} f(x^{(k)} t\nabla^2 f(x)^{-1}\nabla f(x))$.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

- Stopping criterion usually of the form $||\nabla f(x)||_2 \le \epsilon$
- $\nabla^2 f(x)$ is the Hessian matrix of the f(x) at x
- For Gauss-newton: $\nabla^2 f(x) \approx J_f^T J_f$, J_f is Jacobi matrix, $\Delta x = -(J_f^T J_f)^{-1} J_f^T$

Second-order method

Levenberg-Marquardt method

Improvement of Gauss-newton method: $\Delta x = -(J_f^T J_f + \lambda I)^{-1} J_f^T$

given a starting point $x \in dom f$, $start \lambda_0 > 0$.

Repeat

1.
$$\Delta x = -(J_f^T J_f + \lambda I)^{-1} J_f^T$$
.

- 2. Update. λ , the updating is controlled by the gain ratio
- 3. Update. $x := x + \Delta x$.

until stopping criterion is satisfied.

- Stopping criterion usually of the form $||\nabla f(x)||_2 \le \epsilon$
- When λ ->0, LM method -> Gauss-newton method
- When λ -> ∞ , LM method -> Gradient descent method

• Receding horizon re-planning $\psi_p: planning\ horizon\ \psi_e: execution\ horizon$

- Get a global plan, search at the beginning of the navigation, or initialize as a straight line.
- Find a local path a local target by using the front-end.
- Generate a local trajectory by using the back-end.
- Track the trajectory within the execution horizon

Exploration strategy

- Activated when outlier in mapping module blocks the way.
- Generate safe but short trajectories in nearby regions.
- Hover and observe.

Planning strategy

- Initialize as minimum snap trajectory
 - Good smoothness.
 - Collision may cost by overshoot. Unsafe initial value.

- Poor smoothness.
- Collision free. Safe initial value.

 Given collision-free initial trajectory, safety is achieved by using a exponential penalty function on collision cost.

Optimization strategy

two-step optimization

- Optimize the trajectory with collision cost only.
- Re-allocate time and re-parametrize the trajectory.
- Optimize the objective with a smoothness term and dynamical penalty term added.

Source code released at:

https://github.com/HKUST-Aerial-Robotics/grad_traj_optimization

A tool for local UAV trajectory optimization

Case Study

Fast Planner

Kinodynamic path searching

- + B-Spline trajectory optimization
- + time adjustment

- Limitations of initial path
 - a) Suboptimality

b) Low clearance / high collision risk

- Gradient-based trajectory optimization
 - Improve smoothness
 - Use Euclidean distance field (EDF) to improve clearance

- Drawbacks of previous gradient-based methods:
 - Expensive computation of collision cost

$$f_{collision} = \int_{T_1}^{T_2} c(p(t)) ds = \int_{T_1}^{T_2} c(p(t)) ||v(t)|| dt = \sum_{k=0}^{(T_2 - T_1)/\delta t} c(p(T_k)) ||v(t)|| \delta t$$
small δt for accuracy \longrightarrow large $(T_2 - T_1)/\delta t \longrightarrow$ high complexity

Also so for dynamic feasibility costs

$$f_{vel} = \sum_{\mu \in \{x, y, z\}} \int_{T_1}^{T_2} c_v \left(v_{\mu}(t) \right) ds = \sum_{\mu \in \{x, y, z\}} c_v \left(v_{\mu}(t) \right) \left\| a_{\mu}(t) \right\| dt$$

$$f_{acc} = \sum_{\mu \in \{x, y, z\}} \int_{T_1}^{T_2} c_a \left(a_{\mu}(t) \right) ds = \sum_{\mu \in \{x, y, z\}} c_a \left(a_{\mu}(t) \right) \|j_{\mu}(t)\| dt$$

- Solution: B-Spline trajectory representation
 - Uniform B-Spline

Determined by its degree p_b , time interval Δt , and a set of $\{Q_0, Q_1, ..., Q_N\}$.

$$t \in [t_i, t_{i+1}) \xrightarrow{\text{normalize}} s(t) = (t - t_i)/\Delta t$$

- Advantages
 - a) Convex hull property: simplify safety & dynamic constraints
 - b) Continuity: no need of constraints at segments joints

Convex hull property

Each segment of a B-spline is **bounded** by the corresponding convex hull of control points (left), and so is the derivative (right).

Simplify safety & dynamic constraints

Convex hulls are within feasible space

convex hull property

The whole trajectory is feasible!

Ensure safety by convex hull

Problem formulation

$$f_{total} = \lambda_1 f_s + \lambda_2 f_c + \lambda_3 (f_v + f_a)$$

Smoothness - elastic band cost function

$$f_{s} = \sum_{i=p_{b}-1}^{N-p_{b}+1} \left\| \underbrace{(\mathbf{Q}_{i+1} - \mathbf{Q}_{i})}_{F_{i+1,i}} - \underbrace{(\mathbf{Q}_{i-1} - \mathbf{Q}_{i})}_{F_{i-1,i}} \right\|^{2}$$

• Safety - potential function in EDF

$$f_c = \sum_{i=p_b}^{N-p_b} F_c(d(\mathbf{Q}_i))$$

$$F_c(d(\mathbf{Q}_i)) = \begin{cases} (d(\mathbf{Q}_i) - d_{thr})^2 & d(\mathbf{Q}_i) \le d_{thr} \\ 0 & d(\mathbf{Q}_i) > d_{thr} \end{cases}$$

Dynamic feasibility

$$f_{v} = \sum_{\mu \in \{x, y, z\}} \sum_{i=p_{b}}^{N-p_{b}} F_{v}(V_{i\mu}), \quad f_{a} = \sum_{\mu \in \{x, y, z\}} \sum_{i=p_{b}-2}^{N-p_{b}} F_{a}(A_{i\mu})$$

$$F_{v}(v_{\mu}) = \begin{cases} (v_{\mu}^{2} - v_{\max}^{2})^{2} & v_{\mu}^{2} > v_{\max}^{2} \\ 0 & v_{\mu}^{2} \leq v_{\max}^{2} \end{cases}$$

Solve this non-linear optimization by the L-BFGS algorithm

Comparisons

a) Faster convergence

b) Higher trajectory quality

	Integral of Jerk ² (m^2/s^5)			Comp.
	Mean	Max	Std	Time(s)
Previous [1]	43.913	181.495	18.394	0.010
Proposed	35.932	131.913	13.118	0.001

Trajectories generated by the proposed (red) and previous [1] (blue) method. Computation time for proposed method is 10 times shorter!

Homework

S Homework

- In matlab, write a corridor-constrained piecewise Bezier curve generation.
- The conversion between Bezier to monomial polynomial is given.
- The corridor is pre-defined.
- Only position needs to be constrained.
- TA provides a video tutorial.

Thanks for Listening