1. Show that the *positive* quadrant

$$Q = \{(x,y) : x,y > 0\}$$

forms a vector space over \mathbb{R} if we define addition by $(x_1, y_1) + (x_2, y_2) = (x_1x_2, y_1y_2)$ and scalar multiplication by $c(x, y) = (x^c, y^c)$.

Is it closed under addition? Given any two points $(x_1, y_1), (x_2, y_2)$ we have $(x_1, y_1) + (x_2, y_2) = (x_1x_2, y_1y_2)$ is clearly in Q (the only way that it could be in another quadrant would be if one of the elements x_1, x_2, y_1, y_2 is less than zero which isn't possible). Yes, it is closed under addition.

Is it closed under scalar multiplication? Given any $(x,y) \in Q$ and $c \in \mathbb{R}$ we can see $c(x,y) = (x^c, y^c)$. We know that $f(x) = c^x$ is positive definite for all c > 0, therefore it is closed under scalar multiplication.

2. Let E be a field and F be a subfield of E (this means that F is a field on its own right where the addition and multiplication operations of F are inherited from those of E). Explain the following: E is a vector space over F. Also, give an example with concrete fields E and F.

Looking closely at the Definition 1.19 on page 12 of the text, please note that the field F only applies to the scalars in scalar multiplication. Thus, when we say "a set V is vector space over a field W", the scalars come from W. Thus, "E is a vector space over F" means to use any elements of E as vectors and limit the scalar values to F.

An example is $\mathbb{Q} \subset \mathbb{R}$. That is, the set of real numbers is a subspace over the set of rational numbers. Given any $x, y \in \mathbb{R}$ and $q, r \in \mathbb{Q}$ we know that $qx + ry \in \mathbb{R}$.

=====

=====

3. Let V and W be two vector spaces over the same field F. Explain how you can make the cartesian product $V \times W = \{(v, w) : v \in V, w \in W\}$ a vector space over F.

Define addition of $V \times W$ as follows. Let (v_1, w_1) and (v_2, w_2) members of $V \times W$ with $v_1, v_2 \in V$ and $w_1, w_2 \in W$. Then $(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$. Clearly, $v_1 + v_2 \in V$ and $w_1 + w_2 \in W$ as they are both vector spaces over F. Therefore $V \times W$ is closed under addition.

Define scalar multiplication as c(v, w) = (cv, cw) where $c \in F$. Clearly $cv \in V$ and $cw \in W$ because both of these are closed under scalar multiplication. Hence, $V \times W$ is closed under scalar multiplication.

Defined in this way, $V \times W$ is a vector space over F.

=====

4. Let $\mathbb{H}^n(\mathbb{C}) \subset M_{n \times n}(\mathbb{C})$ be the subset of *Hermitian* matrices: a square matrix A with complex coefficients is Hermitian if $A_{ij} = \overline{A_{ji}}$ for all $1 \leq i, j \leq n$ where \overline{z} is the complex conjugate of z. Is $\mathbb{H}^n(\mathbb{C})$ a \mathbb{C} -subspace of $M_{n \times n}(\mathbb{C})$. Give a proof or a counterexample. Is it an \mathbb{R} -subspace of $M_{n \times n}(\mathbb{C})$?

First, No, not a C-subspace. Quite simply.

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{H}^n(\mathbb{C})$$

then $(1+i)A = (1+i)\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1+i & 0 \\ 0 & 1+i \end{pmatrix} \not\in \mathbb{H}^n(\mathbb{C})$

However, as an \mathbb{R} -subspace we can see that complex conjugation is closed under addition. That is

$$\overline{(a+ib) + (c+id)} = \overline{(a+c) + i(b+d)}$$

$$= (a+c) - i(b+d)$$

$$= (a-ib) + (c-id)$$

$$= \overline{a+ib} + \overline{c+id}$$

hence closed under addition for complex conjugation. Therefore, given any $A, B \in \mathbb{H}^n(\mathbb{C})$ then $\overline{(A+B)_{ij}} = \overline{A_{ij} + B_{ij}} = \overline{A_{ij}} + \overline{B_{ij}} = A_{ji} + B_{ji} = (A+B)_{ji}$ hence $A+B \in \mathbb{H}^n(\mathbb{C})$

When we limit $c \in \mathbb{R}$, we can see that complex conjugation is closed under scalar multiplication by real values. That is $\overline{c(a+ib)} = \overline{ca+icb} = ca-icb = \overline{c(a-ib)}$. Consequently, given any $A \in \mathbb{H}^n(\mathbb{C})$, $\overline{cA_{ij}} = \overline{cA_{ij}} = cA_{ji}$ hence $cA \in \mathbb{H}^n(\mathbb{C})$ and therefore closed.

5. Let F be a field. Show that in F^2 there are only three types of subspaces: $\{0\}$, line generated by a nonzero vector $v \in F^2$, and F^2 .

Let V be a set of vectors in \mathbb{R}^2 that forms a vector space and such that $V \neq \{0\}$ and $V \neq \mathbb{R}^2$. WLOC, let $x, y \in V$ and that they are linearly independent, i.e., not colinear. Thus, when $\theta x + \phi y = 0$ then $\theta = \phi = 0$ for scalars θ and ϕ . However, given any $r \in \mathbb{R}^2$ we can find scalars θ , ϕ such that $\theta x + \phi y = r$. That is, any $r \in \mathbb{R}^2$ can be represented by a linear combination of x and y. Hence, $\operatorname{span}\{x,y\} = \mathbb{R}^2$ and since $V \subseteq \mathbb{R}^2$ then $V = \mathbb{R}^2$ which is a contradiction. Therefore, x, y must be linearly dependent implying that all points in V are linearly dependent and hence a line through the origin.

=====

=====

- **6.** Let V be a vector space, and let W be a subspace of V. For a fixed vector $v \in V$, the set $v + W := \{v + w : w \in W\}$ is known as an affine subspace of V.
- a) Under what condition(s) is an affine subspace of V a subspace of V?

When the zero vector is a member of v + W namely when $-v \in W$.

b) Draw the affine subspace of \mathbb{R}^2 when W is the x-axis and v=(2,1).

This is quite easily the horizontal line that goes through (2,1) or y=1

c) Argue that the plane x - 2y + 3z = 1 is an affine subspace of \mathbb{R}^3 .

We know that when y=z=0 then x=1 which is a point in the plane. Thus, given any point in this plane if we subtract the point (1,0,0), i.e., let w be a solution to x-2y+3z=1 subtracting (1,0,0) from this solution will bring a point in the plane -2y+3z=0 passing through the origin which is a subspace of \mathbb{R}^3 . Hence, x-2y+3z=1 is an affine subspace of \mathbb{R}^3 .

d) Show that any two affine subspaces of the form v + W and u + W are either equal or disjoint.

If $a \in u + W$ then there exists $x \in W$ such that a = u + x. Similarly, if $a \in v + W$ then there exists $y \in W$ such that a = v + y. Thus if $a \in (v + W) \cap (u + W)$ then u + x = v + y and hence $u = v + y - x \in v + W$. Thus $u + W \subseteq v + W$ and visa versa. This also shows that if $(v + W) \cap (u + W) \neq \emptyset$ then they must be equal hence if $(v + W) \cap (u + W) = \emptyset$ they are by definition disjoint.

e) Let v_1, \ldots, v_m be vectors in V. An affine linear combination of these vectors is a linear combination of them where the coefficients of the linear combination add up to 1: $c_1v_1 + \ldots + c_mv_m$ where $c_1 + \ldots + c_m = 1$. Let affine $\{v_1, \ldots, v_m\}$ be the set of all affine linear combinations of v_1, \ldots, v_m . Show that affine $\{v_1, \ldots, v_m\}$ is an affine subspace of V.

Contains the Zero Vector: trivial.

Scalar Multiplication: 1Let c_1, \ldots, c_m be scalars such that the vector $u = c_1v_1 + \cdots + c_mv_m \in \text{affine}\{v_1, \ldots, v_m\}$. Let x be a scalar. Then $y = xu = xc_1v_1 + \cdots + xc_mv_m$ and notice that $xc_1 + \cdots + xc_m = x$

Addition: Let c_1, \ldots, c_m and d_1, \ldots, d_m be scalars such that the vectors $u = c_1v_1 + \cdots + c_mv_m$ and $v = d_1v_1 + \cdots + d_mv_m \in \operatorname{affine}\{v_1, \ldots, v_m\}$. Then $z = u + v = (c_1v_1 + \cdots + c_mv_m) + (d_1v_1 + \cdots + d_mv_m) = (c_1 + d_1)v_1 + \cdots + (c_m + d_m)v_m$. Notice that, $(c_1 + d_1) + \cdots + (c_m + d_m) = 2$. So, let $e_i = \frac{c_i + d_i}{2}$, then we can see that $z = 2e_1v_1 + \cdots + 2e_mv_m = 2(e_1v_1 + \cdots + e_mv_m)$ and $e_1v_1 + \cdots + e_mv_m \in \operatorname{affine}\{v_1, \ldots, v_m\}$. Since we have already shown that it is closed under scalar multiplication this shows that it is also closed under addition.

Let n be the highest number of linearly dependent vectors from $\{v_1,\ldots,v_m\}$ and reorder this list so that these vectors are listed first. We know that $c_1+\cdots+c_m=1$. We can make a new list d_1,\ldots,d_{m-1} with one less element such that $d_i=c_i+\frac{c_m}{m-1}$ whose sum is still 1. Now we have a linear combination of m-1 elements. We repeat this process, generating a new set of elements with each iteration with one less element until we have n elements. Let's call these elements e_1,\ldots,e_n . Let $W=\text{span}\{v_{n+1},\ldots,v_m\}$ which we know is a vector space as they are linearly independent. Let $u=e_1v_1+\cdots+e_nv_n$, thus affine $\{v_1,\ldots,v_m\}=u+W$.