

Why do we want to make predictions for molecules?

Motivation

- Molecules are the building blocks of life
 - Understanding their functions and interactions is relevant for many different natural sciences
 - Biology
 - Biochemistry
 - Medicine
 - Environmental Sciences
 - It has also many import industrial applications
 - Designing new materials with desired properties
 - Designing new pathways of chemical reactions for the synthesis of different substances
 - Drugs
 - Biofuels
 - Chemicals

acid (DHB)

Experimental validation of small moleculeprotein interaction

Step 1: Molecule Acquisition

Timeline: 1 - 4 + weeks

Step 2: Assay Selection & Optimization:

Timeline: 1 – 4 weeks

Step 3: Experiment execution:

<u>Timeline</u>: 1 – 2 weeks

Step 4: Results Analysis and Interpretation:

<u>Timeline</u>: Up to 2 weeks

Computational molecular docking analysis

- In molecular docking simulations, we try to place the small molecule into the protein in many different ways by rotating, flipping, and shifting it to see how it fits.
- For each position, the program calculates a score that tells us how good the fit is.

Methods to determine molecule properties

Experiments

- Advantage: Usually very accurate
- Disadvantages: Often time-consuming, difficult, and expensive
- Non-ML computational methods: Simulate the behavior of molecules using theoretical principles, empirical data, and statistical analysis
 - Advantages: Speed, Costs, Accessibility
 - Disadvantages: Accuracy, Complexity Limits, Data Requirement
- Machine Learning models:
 - Advantages: Handling Complexity, Detecting Patterns, Speed, Flexibility
 - Disadvantages: Accuracy, Data Dependency, Overfitting

Examples for predicting molecule properties

Protein property prediction:

Small molecule property prediction:

Examples for predicting molecule properties (2)

Protein-small molecule interaction predictions:

On what kind of molecules will we focus?

- We will mostly focus on biomolecules:
 - Micromolecules (Small Molecules):
 - Vitamins
 - Amino Acids
 - Monosaccharides
 - Nucleotides
 - Macromolecules
 - Proteins
 - Nucleic Acids (DNA and RNA)
 - Polysaccharides

8

Course content (1)

Biological / chemical background

- Transformer Networks
 - Architecture
 - Training
 - Self-Supervised
 - Supervised: Fine-tuning pre-trained models
- Transformer Networks for proteins (large molecules)

Course content (2)

- Encoding small molecules
 - Transformer networks
 - Graph neural networks (GNNs)
 - Traditional methods

Graph Neural Network

Transformer Network

Expert-designed
Fingerprint

Extracting informations with expert-designed functions

Company of the company of th

- Multimodal Transformer Networks:
 - Applying a single Transformer to multiple types of input data
 - Predicting interactions between proteins and small molecule

Universität Düsseldorf

Course content (3)

- Visualizing what Transformer Networks learn
- Gradient Boosting decision tree models

- Utilizing protein 3D structures to predict protein function
 - Protein structure prediction methods
 - Encoding protein structure with
 - Graph Neural Networks
 - 3D Convolutional Neural Networks

Course content (4)

Protein engineering methods

- Challenges and best practices
- Optimizing large language models

google-research/ tuning_playbook

G

A playbook for systematically maximizing the performance of deep learning models.

A 14 Contributors ① 10 Issues Q 9
Discussions

☆ 28

∜ 2k Forks