FUNCTION

LEVEL-I

1. Let
$$f(x) = \ln(2x - x^2) + \sin\frac{\pi x}{2}$$
, then

- (A) Graph of f is symmetrical about the line x = 1
- (B) Graph of f is symmetrical about the line x = 2
- (C) maximum value of f is 1
- (D) minimum value of f does not exist.
- 2. The domain of definition of $f(x) = \sec^{-1}(\cos^2 x)$ is
 - (A) $m\pi$, $m \in I$

(B) $\pi/2$

(C) $\pi/4$

- (D) none of these.
- 3. The period of $f(x) = \frac{1}{2} [\cos(\sin x) + \cos(\cos x)]$ is
 - (A) π

(B) π/2

(C) $\pi/4$

- $(D) 2\pi$
- 4. Domain of f (x) = $\log_{\left[x+\frac{1}{2}\right]} (x^2 x 2)$ is , where [.] denotes the greatest integer function.
 - (A) $\left[\frac{3}{2}, \infty\right]$

(B) (2, ∞)

(C) $\left[\frac{3}{2}, 2\right]$

- (D) none of these
- 5. $f(x) = \begin{cases} |x|, & x \neq 0 \\ |\lceil K \rceil \rceil, & x = 0 \end{cases}$ if f(x) is having minimum value -10 then k = 1
 - (A) 2

(B) -10

(C) 9

- (D) not possible
- Domain of $\cos^{-1} [2x^2 3]$ where [.] denotes greatest integer function, is
 - (A) $\left[1, \sqrt{\frac{5}{2}}\right]$

- (B) $\left[-\sqrt{\frac{5}{2}},-1\right]$
- (C) $\left[-\sqrt{\frac{5}{2}},-1\right] \cup \left[1,\sqrt{\frac{5}{2}}\right]$
- (D) None of these.
- 7. Which of the following function(s) from $f: A \rightarrow A$ are invertible, where A = [-1,1]:
 - (A) f(x) = x/2

(B) $g(x) = \sin(\pi x/2)$

(C) h(x) = |x|

- (D) $k(x) = x^2$
- 8 Solution of $0 < |x-3| \le 5$ is
 - (A) [-2,8]
- (B) [-2,3) U (3,8]
- (C) [-2,3)
- (D) none of these

- 9. Solution of $\frac{(x-3)(x+5)(x-7)}{|x-4|(x+6)} \le 0$ is
 - (A) (-6,-5] U [3, 7) U (4, 7)

(B) [3,7]

(C) (-6,-5]

(D) [3,4) (4,7]

10.	f f(x) is a func (A) 1	tion that is odd and eventury (B) -1	en simultaneou (C) 0	usly, then $f(3) - f(2)$ is equal to (D) none of these
11	h(x) = (f(x) + f(x)) (A) always and (B) an odd fur	f(-x)) (g(x) – g(-x)). is odd function action when both the f action when f is even a	and g are odd	umbers as their domain, then
12		$\}$, f: R \rightarrow R , then f is	(D) an	
	(A) periodic (C) many-one)	(B) on (D)none of the	
13	If $f(x) = \sin^{-1} \left(\frac{1}{x^2} \right)$	$\left(\frac{x^2}{1+x^2}\right)$ then the range	e of f(x) is	
	(A) $[-\pi/2, \pi/2]$ (C) $[0, \pi/2)$		(B) [0, (D) [-π	
14.	If the period o	of $\frac{\sin(nx)}{\tan(x/n)}$, where $n \in$	I, is 6π , then	
	(A) n = 4 (C) n = 3		(B) n = (D) no	= -3 ne of these
15.		ional multiple of π	(B) 'a'	Il part function) is periodic, then is a natural number is any positive real number
16.	•		s the greatest	integer function), has π as it's
	fundamental p (A) a = 1 (C) a = 9	benoa, then	(B) a ∈ (D) a ∈	= -
17.	Range of the	e function $f(x) = \frac{1}{\sqrt{ x }}$	<u> </u>	
18	The function f	$F(x) = \begin{cases} \{x\}, & x \ge 0 \\ \{-x\}, & x < 0 \end{cases}$ is	({.} : fractional	part}
	(A) even (C) neither	· · · ·	(B) od	
19	Period of $ \sin (A) \pi/2 (C) \pi/16$	2x + cos 8x is:	(Β) π/8 (D) Νο	3 one of these.
20	The domain o	of $f(x) = \sqrt{\log_{\frac{1}{4}} \left(\frac{5x - x^2}{4}\right)}$	$+ {}^{10}C_x$ is	
	(A) (0, 1]U [4, (C) {1, 4}	•	(B) (0,	5) one of these

(C) a periodic function

34.

35.

(A) 1

(C) 1 + x

If $f(x) = \begin{cases} x \text{ when } x \text{ is rational} \\ 1 - x \text{ when } x \text{ is irrational} \end{cases}$, then fof (x) is given as

The expression $\left| a + \frac{1}{a} \right|$ is equal or than for 21values of a. 22 The absolute value of an expression is always 23 |x + y| = |x| + |y| holds good if and only if x and y are The solution of |x-3| = x is 24 log_ha is meaningful only if a is and b is or 25 If $log_{a^k} N = y log_a N$ then $y = \dots$ 26 The expression $ax^2 + bx + c > 0$ $\forall x \in R$ implies that a is and 27 The domain of $f(x) = \sqrt{\frac{2-x}{x+1}}$ is 28 (B) R - (-1, 2](A) (-1, 2) (C) R - [-1, 2)(D) (-1, 2] The range of $y = \sqrt{\log_3(\cos(\sin x))}$ contain(s) 29 (A) one element (B) infinitely many elements (C) the function is undefined (D) none of these The domain and range of $f(x) = \frac{1}{2 - \cos 3x}$ are respectively 30 (A) R - $(2n+1)\frac{\pi}{3}$, R (B) R, R - [1/3, 1](C) R, [1/3, 1] (D) none of these 31 The equation x > [x] holds true for, where [-] denotes GIF (A) all integral values of x (B) all $x \in R$ (C) all positive integers (D) R - I32 The function and its inverse (A) are symmetric about y = x line (B) meet each other along the line y = x(C) are symmetric about y + x = 0 line (D) never intersect each other. 33 Let f(-x) = f(x). Then f'(x) must be (A) an even function (B) an odd function

(D) neither odd nor even

(D) None of these

(B) x

If $x - \{x\} = 2$ then x belongs to.....

36.	Domain of the function f ($(x) = \sqrt{x}$	og ₃ (cos(sin x)	∭ is

- 37. If f (x) = $\cos [\pi]x + \cos [\pi x]$, where[.] stands for greatest integer function, then f (π /2) equals to......
- 38 Solution set of inequation $\cos x \ge -1/2$ is

(A)
$$\left[2n\pi - \frac{2\pi}{3}, \ 2n\pi + \frac{2\pi}{3}\right]$$

(B)
$$\left(2n\pi - \frac{2\pi}{3}, \ 2n\pi + \frac{2\pi}{3}\right)$$

(C)
$$\left[n\pi - \frac{2\pi}{3}, \ n\pi + \frac{2\pi}{3} \right]$$

(D) none of these

39 Solution set of inequation $\tan x > -\sqrt{3}$ is

(A)
$$n\pi - \frac{2\pi}{3} < x < \frac{\pi}{2}$$

(B)
$$n\pi - \frac{\pi}{3} < x < n\pi + \frac{\pi}{2}$$

(C)
$$2n\pi - \frac{\pi}{3} < x < 2n\pi + \frac{\pi}{3}$$

(D) none of these

40 Range of $f(x) = \sin^{-1} \sqrt{x^2 + x + 1}$ is

(A)
$$\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$$

(B)
$$\left[\frac{\pi}{3}, \frac{\pi}{4}\right]$$

(C)
$$\left(\frac{\pi}{3}, \frac{\pi}{2}\right]$$

(D) none of these

Let $f(x) = \sin x + \cos \left(\sqrt{4 - a^2} \right) x$. Then the integral values of 'a' for which f(x) is a periodic

function are given by

(A)
$$\{2, -2\}$$

(B) [-2, 2)

(C) (-2, 2)

(D) none of these

- 42. The function $f(x) = (1 x)^{1/3}$ is
 - (A) one-one & onto

(B) many-one & onto

(C) one-one & into

- (D) many- one & into
- Let $f: R \to R$ be any function. Define $g: R \to R$ by g(x) = |f(x)| for all x, then g is
 - (A) onto if f is onto

(B) one- one if f is one- one

(C) continuous if f is continuous

- (D) differentiable if f is differentiable
- 44. The domain of definition of $f(x) = \sec^{-1}(\cos^2 x)$ is
 - (A) $m\pi$, $m \in I$

(B) $\pi/2$

(C) $\pi/4$

- (D) none of these.
- 45. Which of the following functions is /are periodic
 - (A) Sgn (e^{-x})

(B) sinx + |sinx|

(C) min (sinx, |x|)

(D)
$$\left[x+\frac{1}{2}\right]+\left[x-\frac{1}{2}\right]+2[-x]$$

Where [x] denotes the greatest integer function

- The function defined as $f : [0, \pi] \rightarrow [-1, 1]$, $f(x) = \cos x$ is
 - (A) one-one onto

(B) many-one onto

(C) one-one into

- (D) many-one into
- Find the period of the function f (x) = $\cos [\pi^2]x + \cos [-\pi^2]x$

59.

(A) one-one onto

	(A) π (C) $\frac{\pi}{2}$	(B) 2π (D) $\frac{3\pi}{4}$
48	$y = log_{ x } x $, then find the domain (A) R (C) R - {0}	(B) R - {-1, 1} (D) R - {0, -1, 1}
49.	The range of the function f (x) = $\frac{x^2}{x^4 + 1}$ is	
	(A) $\left(0, \frac{1}{2}\right)$ (C) $(0, \infty)$	(B) $\left(0, \frac{1}{2}\right]$ (D) $(0, 2]$
F0	For all κ κ	_
50.	[sin x] = [cos x] for all $x \neq \frac{k\pi}{2}$, k is an integer (A) true	(B) false
51.	If f (x) is an invertible function then (f o f^{-1}) (A) true	$x) = x$ for all $x \in R$ (B) false
52.	The range of the function In (x²-2x+6) is (A) (ℓ n6, ∞) (C) (0, ∞)	(B) [ln 5, ∞) (D) R (set of real numbers)
53.	Domain of $\log_{1/2}\log_4\log_3[(x-4)^2]$ is, [.] der (A) $(-\infty, 2] \cup [6, \infty)$ (C) $(2, 6)$	notes the integer function . (B) (- ∞ , 2] \cup [6, 8) (D) [2, 6]
54.	The graph of $y = x + \frac{1}{x}$ is symmetrical	
	(A) about x – axis (C) in opposite quadrants	(B) about y - axis (D) None of these
55.	Period of the function $ \cos 2x $ is (A) 2π	(B) π
	(C) $\frac{\pi}{2}$	(B) $\frac{\pi}{4}$
56.	The domain of f (x) = $\sin^{-1} (x-1 -2)$ is (A) [-2, 0] \cup [2, 4] (C) [-2, 0] \cup [1, 3]	(B) (−2, 0) ∪ (2, 4) (D) (−2, 0) ∪ (1, 3)
57.	If f (x) = x^2 , g (x) = \sqrt{x} , then what is g o f (x (A) x (C) $-x$	(x) is (B) x (D) - x
58.	Minimum of $2^{[(x^2-3)^3+27]}$ is (A) 2^{27} (C) 2	(B) 1 (D) 2 ⁻²⁷
59.	The function defined as f : $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow [-1, \frac{\pi}{2}]$	1], $f(x) = \sin x$ is
	L 2 2]	

(B) many-one onto

(C) one-one into

(D) many-one into

60. The range of the function $f(x) = \frac{x-3}{|x-3|}$ is

(A) $\{-1, 1\}$ (C) R - $\{3\}$ (B) R (D) R – {–1}

61. The solution set of $log \{x\} = 0$ is

 $(A) \{\phi\}$

(B)[1,-1]

(C)(0,-1)

(D) [0, 1]

62. The domain of the function $f(x) = \frac{1}{\sqrt{|x|-|x|}}$ is

(A) $[0, \infty)$

(B) R

(C) $(-\infty, 0]$

(D) $\{\Phi\}$

63. If $f(x) = \frac{1}{1-x}$, then f[f(x)] is

(A) x - 1

(B) 1 - x

(C) x

(D) -x

64. The value of x for $\log_{1/3} \left(x + \frac{2}{x} \right) < -1$ lies in

(A) $(0, 1) \cup (1, \infty)$

(B) $(0, 1) \cup (2, \infty)$

(C) $(0, 1) \cup [2, \infty)$

(D) $(0, 1] \cup [2, \infty)$

65. The range of the function $f(x) = 11 - 3 \sin x$ is

(A) [6, 14]

(B) [8, 14]

(C) [8, 12]

(D) [8, 11]

66. The period of the function $f(x) = \{x\} + \sin \frac{\pi}{3}x + \tan 2x$

(A) 1

(B) 2

(C) 3

(D) not periodic

67. The domain of the function $f(x) = \frac{\sin^{-1} x}{[x]}$ is

(A) $[-1, 0) \cup \{1\}$

(B) $(-\infty, 0) \cup \{1\}$

(C) $(-1, 0) \cup \{1\}$

(D) not defined

68. If f (x) = [x] and g (x) = |x|, then g o f $\left(\frac{5}{3}\right)$ - f o g $\left(\frac{5}{3}\right)$ is

(A) 0

(B) -1

(C) 1

(D) none of these

69. Which of the following is not periodic?

(A) $f(x) = \cos x$

(B) $f(x) = |\cos x|$

(C) f (x) = $\cos x^2$

(D) $f(x) = \cos^2 x$

70. The solution set of log[x] = 0 is

(A)[1,2)

(B) [1, 2]

(C)(1,2]

(D) (1, 2)

71. The domain of the function
$$f(x) = \frac{[x]+2}{[x]-2}$$
 is

(B) $R - \{2\}$

(C) R - [2, 3)

(D) not defined

72. Domain of function
$$f(x) = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2}$$
.

- (A) $(-3, -2) \left\{-\frac{5}{2}\right\}$
- (B) $[0, 1] \left\{ \frac{1}{2} \right\}$

 $(C) [-2, 1) - \{0\}$

(D) none of these

73. If
$$f(x) = \frac{2x+1}{2x^3+3x^2+x}$$
, interval when $f(x) \ge 0$

(B) R − [−1, 0]

(C) R

(D) none of these

74. Domain of function
$$f(x) = \sqrt{1-2x} + 3\sin^{-1}\left(\frac{3x-1}{2}\right)$$

(A) $\left| -1, \frac{1}{2} \right|$

(B) $\left| -\frac{1}{3}, \frac{1}{2} \right|$

(C) $\left[-\frac{1}{3},1\right]$

(D) $\left[\frac{1}{2}, 1\right]$

(A) $f(x) = \{x\}$

- (B) $f(x) = \cot(x + 7)$
- (C) $f(x) = 1 \frac{\sin^2 x}{1 + \cot x} \frac{\cos^2 x}{1 + \tan x}$
- (D) $f(x) = x + \sin x$

76. Let
$$f(x) = x^2$$
 and $g(x) = \sqrt{x}$ then

(A) gof(-2) = -2

(B) gof(4) = 4

(C) gof(3) = 6

(D) gof(2) = 4

77. The domain of
$$f(x) = \sqrt{\log(2x - x^2)}$$
 is, $x =$

- (A) 1

- (B) 3
- (D) none of these

78. The range of
$$f(x) = \frac{x-3}{3-x}$$
, $x \ne 3$ is

- (B) $R \{-1\}$
- (C) $R \{1\}$ (D) none of these

79. The range of
$$f(x) = \frac{x}{1+|x|}$$
 is

- (A) $R \{-1, 1\}$ (B) R
- (C) $R \{1\}$ (D) none of these

80. Let
$$f(x) = \frac{x-1}{x+1}$$
, $x \ne -1$ then $f^{-1}(x)$ is

- (A) $\frac{1+x}{1-x}$ (B) $\frac{1-x}{1+x}$

- (C) $\frac{1}{1}$ (D) none of these

81. If
$$f(x) = 1 + \alpha x$$
, $\alpha \neq 0$ is the inverse of itself then the value of α is

- (A) -1
- (D) 2
- (D) none of these

82. The value of $n \in I$ for which the function $f(x) = \frac{sinnx}{sin\left(\frac{x}{n}\right)}$ has 4π as its period is equal to

 $(A) \pm 2$

(B) 2

(C) ± 1

(D) none of these

Which of the following is correct?

1.

LEVEL-II

2. The range of the function $\sin^2 x - 5 \sin x - 6$ is $(A) [-10, 0]$ $(C) [0, \pi]$ $(D) [-49/4, 0]$ 3. If $f(x) = (1 - x^n)^{1/n}$, $0 < x < 1$, n being an odd positive integer and $h(x) = f(f(x))$, then $h'(\frac{1}{2} + 6) = 0$ $(D) = 1$		(A) sin1 > sin2 (C) sin2 > sin3	(B) sin1 < sin2 (D) sin2 < sin3.
equal to (A) 2^n (B) 2 (C) n. 2^{n-1} (D) none of these 4. If $f: I \rightarrow I$ be defined by $f(x) = [x+1]$, where [.] denotes the greatest integer function, the $f^1(x)$ is equal to (A) $x-1$ (B) $[x+1]$ (C) $\frac{1}{[x-1]}$ (D) $\frac{1}{x+1}$ 5. Which pair of functions is identical? (A) $\sin^{-1}(\sin x)$, $\sin(\sin^{-1}x)$ (B) $\ln e^x$, $e^{\ln x}$ (C) $\ln x^2$, $2 \ln x$ (D) none of these. 6. If g is the inverse function of f and $f'(x) = \sin x$, then $g'(x)$ is equal to (A) $\sin(g(x))$ (C) $\tan(g(x))$ (D) none of these. 7. Value(s) of x for which tangent drawn to the curve $f(x) = 1-2e^{- x } $ would be lying entiple below the curve, is given by (A) $x \in (\ln 2, \infty)$ (B) $x \in (-\ln 2, 0)$ (C) $x \in (-\infty, -\ln 2)$ (D) $x \in (0, \ln 2)$ 8. Solution set of $[\sin^{-1}x] > [\cos^{-1}x]$, where [.] denotes greatest integer function (A) $[\sin 1, 1]$ (B) $\left[\frac{1}{\sqrt{2}}, 1\right]$ (C) $(\cos 1, \sin 1)$ (D) None of these 9. If $P(x)$ be a polynomial satisfying the identity $P(x^2) + 2x^2 + 10x = 2x P(x+1) + 3$, the $P(x)$ is (A) $2x + 3$ (B) $3x - 4$ (D) $2x - 3$ 10. Let $f(x) = \begin{cases} x^3 - 1, & x < 2 \\ x^2 + 3, & x \ge 2 \end{cases}$ (B) $f^1(x) = \begin{cases} (x+1)^{1/3}, & x < 7 \\ (x-3)^{1/2}, & x \ge 7 \end{cases}$	2.	(A) [– 10, 0]	(B) [- 1, 1]
$ \begin{array}{lll} \text{(A)} & 2^n & \text{(B)} & 2 \\ \text{(C)} & n. & 2^{n-1} & \text{(D)} & \text{none of these} \\ \end{array} $ 4. If $f: I \rightarrow I$ be defined by $f(x) = [x+1]$, where [.] denotes the greatest integer function, the foliation of the equal to the eq	3.	If $f(x) = (1 - x^n)^{1/n}$, $0 < x < 1$, n being an od	d positive integer and $h(x) = f(f(x))$, then $h'\left(\frac{1}{2}\right)$ is
$f^{1}(x) \text{ is equal to } (A) \ x-1 \qquad (B) \ [x+1] $ $(C) \ \frac{1}{[x-1]} \qquad (D) \ \frac{1}{x+1}$ $(C) \ \frac{1}{[x-1]} \qquad (D) \ \frac{1}{x+1}$ $(C) \ \frac{1}{[x-1]} \qquad (D) \ \frac{1}{x+1}$ $(D) \$		(A) 2 ⁿ	
$ (A) \ x-1 \\ (C) \ \frac{1}{[x-1]} $ $ (B) \ [x+1] \\ (D) \ \frac{1}{x+1} $ $ (D) \ \frac{1}{x+1}$	4.	If $f: I \rightarrow I$ be defined by $f(x) = [x + 1]$, who $f^{1}(x)$ is equal to	ere [.] denotes the greatest integer function, then
5. Which pair of functions is identical? (A) $\sin^{-1}(\sin x)$, $\sin(\sin^{-1}x)$ (B) $\ln e^{x}$, $e^{\ln x}$ (C) $\ln x^{2}$, $2 \ln x$ (D) none of these. 6. If g is the inverse function of f and $f'(x) = \sin x$, then $g'(x)$ is equal to (A) $\sin(g(x))$ (B) $\cos(g(x))$ (D) none of these. 7. Value(s) of x for which tangent drawn to the curve $f(x) = 1-2e^{- x } $ would be lying entibelow the curve, is given by (A) $x \in (\ln 2, \infty)$ (B) $x \in (-\ln 2, 0)$ (C) $x \in (-\infty, -\ln 2)$ (D) $x \in (0, \ln 2)$ 8. Solution set of $[\sin^{-1}x] > [\cos^{-1}x]$, where [.] denotes greatest integer function (A) $[\sin 1, 1]$ (B) $\left[\frac{1}{\sqrt{2}}, 1\right]$ (C) $(\cos 1, \sin 1)$ (D) None of these 9. If $P(x)$ be a polynomial satisfying the identity $P(x^{2}) + 2x^{2} + 10x = 2x P(x+1) + 3$, the $P(x)$ is (A) $2x + 3$ (B) $3x - 4$ (D) $2x - 3$ 10. Let $f(x) = \begin{cases} x^{3} - 1, & x < 2 \\ x^{2} + 3, & x \ge 2 \end{cases}$ (B) $f^{-1}(x) = \begin{cases} (x + 1)^{1/3}, & x < 7 \\ (x - 3)^{1/2}, & x \ge 7 \end{cases}$		(A) $x - 1$	
$ (A) \sin^{-1}_{1}(\sin x), \sin(\sin^{-1}x) \qquad (B) \ln e^{x}, e^{\ln x} \\ (C) \ln x^{2}, 2 \ln x \qquad (D) \text{ none of these.} $ $ (B) \ln e^{x}, e^{\ln x} \\ (D) \text{ none of these.} $ $ (D) \text{ none of these.} $ $ (E) \cos \cos(g(x)) \\ (E) \cos \cos(g(x)) \\ (E) \tan(g(x)) \qquad (D) \text{ none of these.} $ $ (D) \text{ none of these.} $ $ (E) \cos \cos(g(x)) \\ (E) \cos \cos(g(x)) \\ (E) \tan(g(x)) \qquad (D) \text{ none of these.} $ $ (E) \cos^{-1}(x) = 1-2e^{- x } would be lying entiple of the entip$		(C) $\frac{1}{[x-1]}$	(D) $\frac{1}{x+1}$
(C) $\ln x^2$, $2 \ln x$ (D) none of these. 6. If g is the inverse function of f and f'(x) = $\sin x$, then g'(x) is equal to (A) $\sin(g(x))$ (D) none of these. 7. Value(s) of x for which tangent drawn to the curve $f(x) = 1-2e^{- x } $ would be lying entipled below the curve, is given by (A) $x \in (\ln 2, \infty)$ (B) $x \in (-\ln 2, 0)$ (C) $x \in (-\infty, -\ln 2)$ (D) $x \in (0, \ln 2)$ 8. Solution set of $[\sin^{-1}x] > [\cos^{-1}x]$, where [.] denotes greatest integer function (A) $[\sin 1, 1]$ (B) $\left[\frac{1}{\sqrt{2}}, 1\right]$ (C) $(\cos 1, \sin 1)$ (D) None of these 9. If $P(x)$ be a polynomial satisfying the identity $P(x^2) + 2x^2 + 10x = 2x P(x+1) + 3$, the second of the second o	5.		(Table valley
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		(A) sin ⁻¹ (sinx), sin(sin ⁻¹ x) (C) lnx ² , 2 lnx	
(C) $tan(g(x))$ (D) none of these. 7. Value(s) of x for which tangent drawn to the curve $f(x) = 1-2e^{- x } $ would be lying entible below the curve, is given by (A) $x \in (\ln 2, \infty)$ (B) $x \in (-\ln 2, 0)$ (C) $x \in (-\infty, -\ln 2)$ (D) $x \in (0, \ln 2)$ 8. Solution set of $[\sin^{-1}x] > [\cos^{-1}x]$, where [.] denotes greatest integer function (A) $[\sin 1, 1]$ (B) $\left[\frac{1}{\sqrt{2}}, 1\right]$ (C) $(\cos 1, \sin 1)$ (D) None of these 9. If $P(x)$ be a polynomial satisfying the identity $P(x^2) + 2x^2 + 10x = 2x P(x+1) + 3$, to $P(x)$ is (A) $2x + 3$ (B) $3x - 4$ (C) $3x + 2$ (D) $2x - 3$ 10. Let $f(x) = \begin{cases} x^3 - 1, & x < 2 \\ x^2 + 3, & x \ge 2 \end{cases}$. Then (A) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 2 \\ (x-3)^{1/2}, & x \ge 2 \end{cases}$ (B) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 7 \\ (x-3)^{1/2}, & x \ge 7 \end{cases}$	6.		
below the curve, is given by $ (A) \ x \in (\ln 2, \ \infty) \qquad \qquad (B) \ x \in (-\ln 2, 0) $ $ (C) \ x \in (-\infty, -\ln 2) \qquad \qquad (D) \ x \in (0, \ln 2) $ 8. Solution set of $[\sin^{-1}x] > [\cos^{-1}x]$, where $[.]$ denotes greatest integer function $ (A) \ [\sin 1, \ 1] \qquad \qquad (B) \left[\frac{1}{\sqrt{2}}, \ 1\right] $ $ (C) \ (\cos 1, \sin 1) \qquad \qquad (D) \ None \ of \ these $ 9. If $P(x)$ be a polynomial satisfying the identity $P(x^2) + 2x^2 + 10x = 2x \ P(x+1) + 3$, the second of $P(x) = (D) = ($			
$ (A) \ x \in (\ln 2, \ \infty) \\ (C) \ x \in (-\infty, -\ln 2) \\ (D) \ x \in (0, \ln 2) \\ 8. \qquad \text{Solution set of } [\sin^{-1}x] > [\cos^{-1}x], \text{ where } [.] \text{ denotes greatest integer function} \\ (A) \ [\sin 1, \ 1] \\ (C) \ (\cos 1, \sin 1) \\ (D) \ \text{None of these} \\ 9. \qquad \text{If } P(x) \text{ be a polynomial satisfying the identity } P(x^2) + 2x^2 + 10x = 2x \ P(x+1) + 3 \ , t \\ P(x) \ \text{is} \\ (A) \ 2x + 3 \\ (C) \ 3x + 2 \\ (D) \ 2x - 3 \\ \end{cases} $ $ (B) \ 3x - 4 \\ (D) \ 2x - 3 \\ $ $ 10. \qquad \text{Let } f(x) = \begin{cases} x^3 - 1, & x < 2 \\ x^2 + 3, & x \ge 2 \end{cases} $ $ (B) \ f^1(x) = \begin{cases} (x+1)^{1/3}, & x < 7 \\ (x-3)^{1/2}, & x \ge 7 \end{cases} $	7.		the curve $f(x) = 1 - 2e^{- x } $ would be lying entirely
8. Solution set of $[\sin^{-1}x] > [\cos^{-1}x]$, where $[.]$ denotes greatest integer function (A) $[\sin 1, 1]$ (B) $\left[\frac{1}{\sqrt{2}}, 1\right]$ (C) $(\cos 1, \sin 1)$ (D) None of these 9. If $P(x)$ be a polynomial satisfying the identity $P(x^2) + 2x^2 + 10x = 2x P(x+1) + 3$, to $P(x)$ is (A) $2x + 3$ (B) $3x - 4$ (C) $3x + 2$ (D) $2x - 3$ 10. Let $f(x) = \begin{cases} x^3 - 1, & x < 2 \\ x^2 + 3, & x \ge 2 \end{cases}$. Then (A) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 7 \\ (x-3)^{1/2}, & x \ge 2 \end{cases}$ (B) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 7 \\ (x-3)^{1/2}, & x \ge 7 \end{cases}$		(A) $x \in (ln2, \infty)$	
(A) $[\sin 1, 1]$ (B) $\left[\frac{1}{\sqrt{2}}, 1\right]$ (C) $(\cos 1, \sin 1)$ (D) None of these 9. If $P(x)$ be a polynomial satisfying the identity $P(x^2) + 2x^2 + 10x = 2x \ P(x+1) + 3$, to $P(x)$ is (B) $3x - 4$ (C) $3x + 2$ (B) $3x - 4$ (D) $2x - 3$ 10. Let $f(x) = \begin{cases} x^3 - 1, & x < 2 \\ x^2 + 3, & x \ge 2 \end{cases}$. Then (A) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 7 \\ (x-3)^{1/2}, & x \ge 2 \end{cases}$ (B) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 7 \\ (x-3)^{1/2}, & x \ge 7 \end{cases}$			
(C) (cos1, sin1) (D) None of these 9. If P(x) be a polynomial satisfying the identity $P(x^2) + 2x^2 + 10x = 2x P(x+1) + 3$, to $P(x)$ is (A) $2x + 3$ (B) $3x - 4$ (C) $3x + 2$ (D) $2x - 3$ 10. Let $f(x) = \begin{cases} x^3 - 1, & x < 2 \\ x^2 + 3, & x \ge 2 \end{cases}$. Then (A) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 2 \\ (x-3)^{1/2}, & x \ge 2 \end{cases}$ (B) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 7 \\ (x-3)^{1/2}, & x \ge 7 \end{cases}$	8.	Solution set of $[\sin^{-1}x] > [\cos^{-1}x]$, where [.] d	
9. If P(x) be a polynomial satisfying the identity P(x²) +2x² +10x = 2x P(x+1) +3, the P(x) is (A) 2x +3 (B) 3x-4 (D) 2x-3 (D) 2		(A) [sin1, 1]	(B) $\left \frac{1}{\sqrt{2}}, 1 \right $
P(x) is (A) $2x + 3$ (C) $3x + 2$ (B) $3x - 4$ (D) $2x - 3$ 10. Let $f(x) = \begin{cases} x^3 - 1, & x < 2 \\ x^2 + 3, & x \ge 2 \end{cases}$. Then (A) $f^{-1}(x) = \begin{cases} (x + 1)^{1/3}, & x < 2 \\ (x - 3)^{1/2}, & x \ge 2 \end{cases}$ (B) $f^{-1}(x) = \begin{cases} (x + 1)^{1/3}, & x < 7 \\ (x - 3)^{1/2}, & x \ge 7 \end{cases}$		(C) (cos1, sin1)	(D) None of these
(A) $2x + 3$ (B) $3x - 4$ (D) $2x - 3$ 10. Let $f(x) = \begin{cases} x^3 - 1, & x < 2 \\ x^2 + 3, & x \ge 2 \end{cases}$. Then (A) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 2 \\ (x-3)^{1/2}, & x \ge 2 \end{cases}$ (B) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 7 \\ (x-3)^{1/2}, & x \ge 7 \end{cases}$	9.		dentity $P(x^2) +2x^2 +10x = 2x P(x+1) +3$, then
10. Let $f(x) = \begin{cases} x^3 - 1, & x < 2 \\ x^2 + 3, & x \ge 2 \end{cases}$. Then $(A) f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 2 \\ (x-3)^{1/2}, & x \ge 2 \end{cases}$ $(B) f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 7 \\ (x-3)^{1/2}, & x \ge 7 \end{cases}$		(A) 2x +3	
(A) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 2 \\ (x-3)^{1/2}, & x \ge 2 \end{cases}$ (B) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 7 \\ (x-3)^{1/2}, & x \ge 7 \end{cases}$		(C) $3x + 2$	(D) 2 x –3
	10.	Let $f(x) = \begin{cases} x^3 - 1, & x < 2 \\ x^2 + 3, & x \ge 2 \end{cases}$. Then	
(C) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 1 \\ (x-3)^{1/2}, & x \ge 7 \end{cases}$ (D) $f^{-1}(x)$ does not exist		(A) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 2\\ (x-3)^{1/2}, & x \ge 2 \end{cases}$	(B) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 7 \\ (x-3)^{1/2}, & x \ge 7 \end{cases}$
		(C) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 1 \\ (x-3)^{1/2}, & x \ge 7 \end{cases}$	(D) $f^{-1}(x)$ does not exist

		In(In x)
11.	Which of the following is/are true, (you may	use $f(x) = \frac{\ln(1-x)}{\ln x}$)
	(A) $(\ln 2.1)^{\ln 2.2} > (\ln 2.2)^{\ln 2.1}$ (C) $(\ln 30)^{\ln 31} > (\ln 31)^{\ln 30}$	(B) $(\ln 4)^{\ln 5} < (\ln 5)^{\ln 4}$ (D) $(\ln 28)^{\ln 30} < (\ln 30)^{\ln 28}$
12.	sin ax + cosax and sinx + cosx are perequals	riodic functions of same fundamental period if a
	(A) 0	(B) 1
	(C) 2	(D) 4
13.	If $\{x\}$ denotes the fractional part of x, then	4^{2n} neN is
10.		
	(A) $\frac{1}{15}$	(B) $\frac{14}{15}$
	(C) $\frac{7}{8}$	(D) None of these
	$(G)^{\prime} \frac{8}{8}$	(D) Notice of these
14.	If f (x) = minimum $\{\sin x, \cos x\} \ \forall \ x \in R$. then range of g $(x) = [f(x)]$ is, [] denotes the
	greatest integer function (A) {-1, 0, 1}	(B) {0, 1}
	(C) {-1, 0}	(D) none of these
15.	If $f(x-1/x) = x^2 + 1/x^2$, $x \ne 0$, then $f(x)$ is	
10.	(A) is an even function	(B) always greater or equal to2 ∀ x ∈R
	(C) onto if $f: R \rightarrow [3, \infty)$	(D) none of these
16	.If $f(x) = \begin{cases} x^2 & \text{for } x \ge 0 \\ x & \text{for } x < 0 \end{cases}$, then $fof(x)$ is given	ven by
	(A) x^2 for $x \ge 0$, x for $x < 0$	(B) x^4 for $x \ge 0$, x^2 for $x < 0$
	(C) x^4 for $x \ge 0$, $-x^2$ for $x < 0$ (D) x^4	for $x \ge 0$, x for $x < 0$
	, F 1	7 . 1
17.	The range of the function $f(x) = \sin^{-1} \left[x^2 + \frac{1}{2} \right]$	$\left[\frac{1}{2}\right] + \cos^{-1}\left[x^2 - \frac{1}{2}\right]$, where [.] is the greatest
	integer function, is	
	(A) $\left\{\frac{\pi}{2}, \pi\right\}$	(B) $\left\{ o, \frac{\pi}{2} \right\}$
	(D) (D)	
	(C) $\{\pi\}$	· <u>2</u>)
18.	· · · · · · · · · · · · · · · · · · ·	est integer function), then number of solutions of
	the equation in [-1,1) is/are (A) one only	(B) infinitely many
	(C) two only	(D) none of these
19.	If $f(x) = \cos x + \left[\frac{ \sin x }{2} \right]$, (where [.] denotes	s the greatest integer function), then
	(A) f(x) is periodic	(B) f(x) is odd
	(C) f(x) is even	(D) f(x) is non-periodic

20.	Let $f:(2,4) \rightarrow (1,3)$ where $f(x) = x - [x/2]$ (where [.] denotes the greatest integer function),			
	then f ⁻¹ (x) is (A) not defined	(B) x − 1		
	(C) x + 1	(D) none of these		
	(O) X 1 1	(b) Holle of these		
21.	The fundamental period of cos (cos 2x) + c	os (sin3x) is		
	(A) π	(B) 2π		
	(C) π/4	(D) π/2		
22.	Let f: R \rightarrow R, where f(x) = $2^{ x } - 2^{-x}$, then			
		(B) f(x) is many-one		
	(C) f(x) is into	(D) f(x) is non-periodic8		
23.	If $f(x) = \sqrt{4 - x^2} + \frac{1}{\sqrt{ \sin x - \sin x}}$, then the	domain of f(x) is		
	(A) [-2,0]	(B) (0,2]		
	(C) [-2,2}	(D) [-2,0)		
24.	Number of real roots of $3^x + 4^x + 5^x - 6^x = 0$) is/are		
	(A) two	(B) more then two		
	(C) one	(D) equation will not have any real root		
25.	Range of function [sinx + cosx], who	ere [.] denotes the greatest integer function is		
26.	f: $\{x, y, z\} \rightarrow \{a, b, c\}$ be a one one fulfollowing statements is true	·		
	(i) $f(x) \neq b$ (ii) $f(y) = b$	(iii) $f(z) \neq a$ then $f^{-1}(a) =$		
	(A) x	(B) y		
	(C) z	(D) none of these		
27.	The function $f(x) = \frac{x}{e^x - 1} + \frac{x}{2} + 1$ is			
	(A) even	(B) odd		
	(C) neither even nor odd	(D) none of these		
28.	Let f : [-10,10] \rightarrow R, where f(x) = sin x + [x ² parameter 'a' is/are:	/a] be an odd function. Then set of values of		
	(A) (-10,10) ~ {0}	(B) (0,10)		
	(C) [100,∞)	(D) (100,∞)		
29.	If $fog = \sin x $ and $gof = \sin^2 \sqrt{x}$ then $f(x)$ a	nd g(x) are:		
	(A) $f(x) = \sqrt{\sin x}$, $g(x) = x^2$	(B) $f(x) = x , g(x) = \sin x$		
		(D) $f(x) = \sin \sqrt{x}$, $g(x) = x^2$		
30.	If $f(x) + 2f(1-x) = x^2 + 2 \forall x \in \mathbb{R}$, then $f(x)$ is	given as		
	(A) $\frac{(x-2)^2}{3}$	(B) $x^2 - 2$		
	(C) 1	(D) None of these		
31.	Let f (x) be a function whose domain is [-5,	71 Let $a(y) = 12y + 51$ then the demain		
JI.	of fog (x) is	7]. Let y (A) - ZA 7 3 , then the domain		

32. Let $f:[-\pi/3, 2\pi/3] \rightarrow [0,4]$ be a function defined as $f(x) = \sqrt{3} \sin x - \cos x + 2$. Then $f^{-1}(x)$ is given by

(A)
$$\sin^{-1}\left(\frac{x-2}{2}\right) - \frac{\pi}{6}$$

(B)
$$\sin^{-1}\left(\frac{x-2}{2}\right) + \frac{\pi}{6}$$

(C)
$$\frac{2\pi}{3} - \cos^{-1}\left(\frac{x-2}{2}\right)$$

- (D) None of these.
- 33. The function $f: R \to R$, $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$ is
 - (A) one-one and onto

(B) one-one and into

(C) many-one and onto

- (D) many-one and into
- 34. The function $f(x) = \begin{cases} x \mid x \mid, & x \le -1 \\ [1+x] + [1-x], & -1 < x < 1 \text{ is (where [] denotes GIF)} \\ -x \mid x \mid, & x \ge 1 \end{cases}$
 - (A) even

(B) odd

(C) neither even nor odd

- (D) symmetric with y-axis
- 35. Let $f(x) = \begin{cases} \sin x + \cos x \text{ for } 0 \le x < \frac{\pi}{2} \\ b \text{ for } x = \frac{\pi}{2} \end{cases}$, Then its odd extension is $\tan^2 x + \csc x \text{ for } \frac{\pi}{2} < x < \pi$
 - (A) $-\tan^2 x \csc x, -\pi < x < -\frac{\pi}{2}$ (B) $-\tan^2 x + \csc x, -\pi < x < -\frac{\pi}{2}$ $-b \text{ for } x = -\frac{\pi}{2}$ $-b \text{ for } x = -\frac{\pi}{2}$ $-\sin x + \cos x \text{ for } -\frac{\pi}{2} < x < 0$ $\sin x - \cos x \text{ for } -\frac{\pi}{2} < x < 0$
 - (C) $-\tan^2 x + \csc x$, $-\pi < x < -\frac{\pi}{2}$ (D) None of these b for $x = -\frac{\pi}{2}$ $\sin x \cos x$, $-\frac{\pi}{2} < x < 0$
- 36. Period of the function $f(x) = \cos(\cos x) + \cos(\sin x)$ is.....
- 37. Let $f: (-\infty, 1] \to (-\infty, 1]$ such that f(x) = x (2-x). then $f^{-1}(x)$ is
 - (A) 1 + $\sqrt{1-x}$

(B) 1- $\sqrt{1-x}$

(C) $\sqrt{1-x}$

- (D) none of these
- 38. Number of solutions of the equation $\cos x = |x|, x \in [-\pi/2, \pi/2]$ is
 - (A) 1

(B) 2

(C) 3

- (D) 4
- 39. The number solutions of equation $\tan x = x$ in interval $\left[0, \frac{3\pi}{2}\right]$
 - (A) 1

(B) 2

(C) 3

(D) 4

40.	Let f be a function satisfying $f(x + y) = f(x).f(y)$	for all $x,y \in R$. If $f(1) = 3$ then $\sum_{r=1}^{n} f(r)$ is equal to
	(A) $\frac{3}{2}(3^n - 1)$ (C) $3^{n+1} - 3$	(B) $\frac{3}{2}$ n(n+1) (D) None of these
41.	Let f: R \rightarrow R be a function such that $f(x) = x^3$ (A) f is one— one and into (C) f is many— one and into	3 +x ² + 3x + sinx. Then (B) f is one— one and onto (D) f is many— one and onto
42.	Let $f(x) = \sec^{-1}[1 + \cos^2 x]$ where [.] denotes (A) the domain of f is R (C) The range of f is [1,2]	the greatest integer function. Then (B) the domain of f is [1,2] (D) the range of f is [sec ⁻¹ 1, sec ⁻¹ 2]
43.	Range of the function $f(x) = \sqrt{a-x} + \sqrt{x-b}$ (A) $(-\infty, \sqrt{a-b}]$ (C) $[\sqrt{a-b}, \infty)$, where a > b > 0 (B) $[\sqrt{a-b}, \sqrt{2(a-b)}]$ (D) none of these
44.	If $ f(x) + 6 - x^2 = f(x) + 4 - x^2 + 2$, then $f(x) = [-2, 2]$ (C) $[-\sqrt{6}, \sqrt{6}]$	(a) is necessarily non– negative in (B) $(-\infty, -2) \cup (2, \infty)$ (D) none of these
45.	The period of $f(x) = \frac{1}{2} [\cos(\sin x) + \cos(\cos x)]$)] is
	(A) π (C) π/4	(B) π/2 (D) 2π
46.	Total number of roots of the equation 3 ^{cosx} = (A) 6 (C) 10	= sinx , belonging to [- 2π, 2π], are; (B) 8 (D) 12
47.	If $f(x) = [x^2] - [x]^2$, where[.] denotes the gre of values of $f(x)$ is	eatest integer function, and $x \in [0,2]$, then the set
	(A) {-1, 0} (C) {0}	(B) {-1,0,1} (D) {0,1,2}
48.	Range of f (x) = 2 cos $\sqrt{\frac{\pi^2}{9} - x^2}$ is	
	(A) [-1, 2] (C) (0, 1)	(B) [1, 0] (D) [1, 2]
49.	If $[x]^2 - 5[x] + 6 = 0$, then x belongs to (A) [2, 4) (C) {3}	(B) [2, 4) – {3} (D) {2}
50.	Range of $y = \cos^{-1} \frac{2}{2 + \sin x}$ is	
	(A) $\left[0, \frac{\pi}{2}\right]$	(B) $\left[0, \cos^{-1}\frac{2}{3}\right]$
	(C) [0, cos ⁻¹ 2]	(D) $\left[\cos^{-1}\frac{2}{3}, \pi\right]$

51.	Number of solution of $\sin x + \cos x = 2$ are (A) 1 (C) 0	(B) 2 (D) infinite
52.	The period of the function $f(x) = 2 + (-1)^{[x]} i$ (A) 1 (C) 2	s (B) 0 (D) 0.5
53.	The number of solutions of $ \ln x = \sqrt{5 - x^2}$ (A) 1 (C) 3	is (B) 2 (D) 4
54.	The function f (x) = $\frac{x^2 + 4x + 7}{x^2 + x + 1}$, where f : R	\rightarrow R is
	(A) one-one into (C) one-one onto	(B) many-one into (D) many-one onto
55.	Total number of solutions of $2^{ \cos x } = 3 \sin x$ (A) 20 (B) 40	, belonging to the interval [-10π , 10π] are; (C) 80 (D) none of these
56.	If f: $[1,\infty) \to [2,\infty)$ is given by $f(x) = x + \frac{1}{x}$ th	en f ⁻¹ (x) equals
	(A) $\frac{x + \sqrt{x^2 - 4}}{2}$ (B) $\frac{x - \sqrt{x^2 - 4}}{2}$	(C) $\frac{x + \sqrt{x^2 + 4}}{2}$ (D) none of these
57.	The solution of the inequality $log_{1/2}sin^{-1}x > l$	
	$(A) x \in \left[0, \frac{1}{\sqrt{2}}\right)$	(B) $x \in \left(\frac{1}{\sqrt{2}}, 1\right]$
	(C) $x \in \left(0, \frac{1}{\sqrt{2}}\right)$	(D) None of these
58.	Total number of roots of the equation $7^{ x }$ (5 (A) 6 (C) 4	- x) = 1, are; (B) 8 (D) 12
59.	The range of the function $f(x) = 4^x + 2^x + 4^{-x}$ (A) [3/4, ∞) (C) (7, ∞)	+ 2^{-x} + 3 is (B) (3/4, ∞) (D) [7, ∞)
60.	Let reflection of function $f(x) = (4 - (x - 7)^3)^{1/5}$ (A) $g(x) = 7 - (4 - x^3)^{1/5}$ (C) $g(x) = -x^2 + 1$	(a) $g(x) = x$ about a line $y = x$ is $g(x)$ then (b) $g(x) = x$ (c) $g(x) = 7 + (4 - x^5)^{1/3}$
61.	The period of the function $f(x) = \sin^4 x + \cos^4 x$ (C) π	s ⁴ x (B) π/4 (D) 2π
62.	The function f: R \rightarrow R given by f(x) = $x^3 + a$ (A) a < b (C) $a^2 > 3b^2$	$a^{2} + bx + c$ is one-one if (B) $a^{2} < 3b$ (D) $a^{2} = c^{2}$
63.	Let $f(x) = \frac{x-2}{x-3}$ is an invertible function the	en domain f ⁻¹ (x) is (B) R - {3}

(C) R - {1}

(D) none of these

64. Let
$$g(x) = 1 + x - [x]$$
 and $f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \end{cases}$. Then for all x , fog(x) is equal to $\begin{cases} 1, & x > 0 \end{cases}$. (C) $f(x)$ (D) $g(x)$

LEVEL-III

	$\frac{1}{-\sin^2 x}$	
1.	$\frac{2}{f(x)}$, then f(x) is a periodic function with periodic	od

(A) π

(B) 2π

(C) $\pi/2$

(D) none of these.

2. If
$$tan^{-1}(x + h) = tan^{-1}(x) + (h siny) (siny) - (h siny)^2 \cdot \frac{\sin 2y}{2} + (h siny)^3 \cdot \frac{\sin 3y}{3} + \dots$$

where $x \in (0, 1)$, $y \in (\pi/4, \pi/2)$, then

(A) $y = tan^{-1}x$

(C) $y = \cot^{-1} x$

(B) $y = \sin^{-1}x$ (D) $y = \cos^{-1}x$

3. The domain of the function
$$f(x) = \frac{x^{1/2}}{\sqrt{\sin(\ln x) - \cos(\ln x)}}$$
 is

(A) $\bigcup_{n \in I} \left(e^{2n\pi}, e^{\left(3n + \frac{1}{2}\right)\pi} \right)$

- (B) $\bigcup_{n \in I} \left(e^{\left(2n + \frac{1}{4}\right)\pi}, e^{\left(2n + \frac{5}{4}\right)\pi} \right)$
- (C) $\bigcup_{n \in I} \left(e^{\left(2n + \frac{1}{4}\right)\pi}, e^{\left(3n \frac{3}{4}\right)\pi} \right)$
- (D) $\bigcup_{n \in I} \left(e^{\left(2n \frac{3}{4}\right)\pi}, e^{\left(3n + \frac{3}{4}\right)\pi} \right)$

4. If
$$f(x) = \log_{[x-1]} \frac{|x|}{x}$$
, where [.] denotes greatest integer function, then

(A) domain of $f = (2, \infty)$

(B) range of $f = \{0, 1\}$

(C) domain of $f = [3, \infty)$

(D) range of $f = \{0\}$

5. Let
$$f(x) = \sin x + ax + b$$
. Then $f(x) = 0$ has

- (A) only one real root which is positive if a > 1, b < 0
- (B) only one real root which is negative if a > 1, b > 0
- (C) only one real root which is negative if a < -1, b < 0
- (D) none of these.

6. If
$$f(x) = [x^2] - [x]^2$$
, where [.] denotes the greatest integer function, and $x \in [0, n]$, $n \in N$, then the number of elements in the range of $f(x)$ is

(A) 2n + 1

(B) 4n - 3

(C) 3n - 3

(D) 2n - 1

7. Total number of solutions of
$$x^2 - 2x - [x] = 0$$
 is equal to

(A) 2

(C)6

(D) none of these

8. If
$$f(x) = \frac{1}{[|\sin x| + |\cos x|]}$$
 (where [.] denotes the greatest integer function), then

(A) f(x) is an even function

- (B) f(x) is an odd function
- (C) range of f(x) contains only one element (D) none of these

9. Let f and g be functions from the interval
$$[0, \infty)$$
 to the interval $[0, \infty)$, f being an increasing function and g being a non-increasing function. If $f\{g(0)\}=0$ then

(A) $f\{g(x)\} \ge f\{g(0)\}$

(B) $g\{f(x)\} \le g\{f(0)\}$

(C) $f{g(2)} = 0$

(D) None of these

10.

	is (A) 2x +3 (C) 3x + 2		(B) 3 x- 4 (D) 2 x -3	
11.	If $k\sin^2 x + \frac{1}{k} \csc^2 x$	= 2, $x \in (0, \pi/2)$, then	cos²x +5 sinx c	osx + 6 sin ² x is equal to
	(A) $\frac{k^2 + 5k + 6}{k^2}$ (C) 6		(B) $\frac{k^2 - 5k + 6}{k^2}$ (D) none of th	
12.	The number of distinct (A) 4 (C) 7	ct values of $f(x) = [x^3]$	$-[x]^3 \text{ for } \forall x \in (B) 5 (D) 8$	[0, 2]
13.	If f(x) is an odd funct (A) 1	ion also periodic functi (B) 2	ion with period (C) 0	2 then f(4) equal to (D) none of these
14.	Domain of $f(x)$ satisfy (A) $(\infty, -1)$	ring $2^x + 2^{f(x)} = 2$ is (B) [0, 1]	(C) (-1, 1)	(D) (−∞, 1)
15.	If f: R \rightarrow R, where f(x (A) a \in (-2, -1] \cup [1, (C) a \in (- ∞ , -1] \cup [1,		vertible function (B) $a \in [-2, 2]$ (D) $a \in [-1, 1]$	
16.	Total number of solut (A) 0	sions of $x^2 - 4 - [x] = 0$ (B) 1	(where [·] der (C) 2	
17.		iod of $f(x) = [x] + [2x] + [2x]$	+ [3x] + +[nx	x ; where $x \in \mathbb{N}$ and $[\cdot] \to \mathbb{G}$. I. F.:
	is (A) 1	(B) n	(C) 1/n	(D) Non-periodic
18.	If $f(x) = \begin{cases} 2+x; & x \ge \\ 2-x; & x < \end{cases}$	$0 \atop 0$; then f(f(x)) is given	by	
	(A) $\begin{cases} 2+x, & x \ge 0 \\ 2-x, & x < 0 \end{cases}$		(B) $\begin{cases} 4+x, & x \\ 4-x, & x \end{cases}$:≥0 :<0
			$(D) \begin{cases} 2-x, & x \\ 2+x, & x \end{cases}$	
	(C) $\begin{cases} 4-x, & x \ge 0 \\ 4+x, & x < 0 \end{cases}$		(D) $\begin{cases} 2+x, \end{cases}$	<i>x</i> < 0
19.	Period of $f(x) = x - [x (A) \pi]$	+ a] + b + a $\sin(2\pi x)$; (B) 1		and [·] denotes G. I. F.; os (D) Don't exist
20.	$f: \mathbb{R} \to (0, \pi/2]$ when onto is:	re $f(x) = \cot^{-1}(x^2 + x + x)$	-a) complete s	set of values of 'a' such that $f(x)$ is
	(A) [3/4, ∞)	(B) [1/2, ∞)	(C) [1, ∞)	(D) [1/4, ∞)

If P(x) be a polynomial satisfying the identity $P(x^2) + 2x^2 + 10x = 2x P(x+1) + 3$, then P(x)

ANSWERS

15/51			/ 1110	•••	. •		
1. 5. 9. 13. 17. 21.	A, C, D D A C [2, ∞) Greater, 2, al		A D C C A	3. 7. 11. 15. 19. 22.	B A, B A A π/2 positive	4. 8. 12. 16. 20.	B A A D C
23.	both positive	& both	negative	24.	$X = \frac{3}{2}$		
25. 27. 29. 33. 37. 41. 45. 49. 53. 57. 61. 65. 69. 73. 77. 81.	positive, posi positive, D < A B cos4 A C B A A A A A A A A A A A A A A A A A		≠1 CBAABBCBDDABDA	26. 28. 31. 35. 39. 43. 47. 51. 55. 59. 63. 67. 71. 75.	1 k C D [2, 3] B C B B C A C D D	32. 36. 40. 44. 48. 52. 56. 60. 64. 68. 72. 76. 80.	$\begin{array}{l} A \\ x \in n\pi \\ A \\ D \\ B \\ A \\ A \\ B \\ A \\ C \\ D \\ A \end{array}$
1. 5. 9. 13. 17. 21. 25. 29. 33. 37. 41. 45. 49. 52. 56. 60. 64.	C D A A A A A 1 C B B B B A C A D B	2. 6. 10. 14. 18. 22. 26. 30. 34. 38. 42. 46. 50. 53. 57. 61.	A B B A C A, B A B B D C C	3. 7. 11. 15. 19. 23. 27. 31. 35. 39. 43. 47. 51. 54. 58. 62.	D D D C A C D B C B B B D C B C B	4. 8. 12. 16. 20. 24. 28. 32. 36. 40. 44. 48. 55. 59. 63.	A A D C C D B π 2 A A D B D C
1. 5. 9. 13. 17.	A A, B, C B C A	2. 6. 10. 14. 18.	C D A D B	3. 7. 11. 15. 19.	B A D C B	4. 8. 12. 16. 20.	C A, C C C D.