Integrate Meta-analysis into Specific Study (InMASS) for Estimating Conditional Average Treatment Effect

Keisuke Hanada^{1,2}, Masahiro Kojima^{3,4}

¹Wakayama Medical University, ² Osaka University, ³Chuo University, ⁴ The Institute of Statistical Mathematics

Motivation: Data Borrowing

Average Treatment Effect (ATE) for the overall population \mathcal{P} :

$$\delta_{\mathcal{P}} = E_{\mathcal{P}}[Y_1 - Y_0] = E_{\mathcal{P}}[Y \mid Z = 1] - E_{\mathcal{P}}[Y \mid Z = 0],$$

where Y_a (a = 0, 1) represents the potential outcomes, $E_{\mathcal{P}}[\cdot] = \int_{\mathcal{P}} \cdot dP_{\mathcal{P}}(x, y, z)$ denotes the expectation over the population \mathcal{P} , and $Y = ZY_1 + (1 - Z)Y_0$.

Aim: To efficiently estimate δ_T by combining individual patient data (IPD) from study T with aggregate data (AD) from external studies $\mathcal{M} = (S_1, \ldots, S_K)$.

Accessible information:

- **IPD** for $T: \{y_{Ti}, \boldsymbol{x}_{Ti}\}_{i=1,...,n_T}$ i.i.d. for each subjects.
- **AD for** \mathcal{M} : $\{n_{kj}, \bar{y}_{kj}, \bar{x}_{kj}, \sigma^2_{\bar{y}_{kj}}, \sigma^2_{\bar{x}_{kj}}\}_{j=0,1, k=1,...,K}$ i.i.d. for each studies.

Our procedure (InMASS): information borrowing via meta-analysis, domain adaptation by transfer learning, and covariate adjustment using weighted regression

Assumptions & Conditions

InMASS relies on two primary assumptions and three technical conditions:

- (A1) Conditional independence: There exists at least one study $S \in \mathcal{S}$ such that $0 < P(Z = 1 \mid S) < 1$ and $\{Y_1, Y_0\} \perp \!\!\! \perp Z \mid S$.
- (A2) Covariate shift: Suppose that $(\boldsymbol{X}_{T,i}, Y_{T,i}, Z_{T,i}) \sim P_T(\boldsymbol{X}, Y, Z)$ and $(\boldsymbol{X}_{\mathcal{M},i}, Y_{\mathcal{M},i}, Z_{\mathcal{M},i}) \sim P_{\mathcal{M}}(\boldsymbol{X}, Y, Z)$. Then,

$$P_T(Y \mid \boldsymbol{X}, Z) = P_{\mathcal{M}}(Y \mid \boldsymbol{X}, Z).$$

- (C1) For any trial $S_k \in \mathcal{M}$, $\bar{\boldsymbol{x}}_k \to \boldsymbol{\mu}_k$ and $\hat{\boldsymbol{\sigma}}_{\bar{\boldsymbol{x}}_k}^2 \to \boldsymbol{\sigma}_{\boldsymbol{\mu}_k}^2$ in probability as $n_k \to \infty$.
- (C2) Boundedness of Density Ratio: For any subject set $S \in \mathcal{S}$,

$$\sup_{i \in S} \left| \frac{dP_T(\boldsymbol{x}_{Si}, z_{Si})}{dP_S(\boldsymbol{x}_{Si}, z_{Si})} \right| < \infty.$$

(C3) $\frac{1}{N}(X_S^T W X_S)^{-1} \to Q$ in probability as $N \to \infty$, where Q is a $(p+2) \times (p+2)$ positive-definite matrix.

Main Results: Our estimator and properties

Univariate case:

The proposed estimator and its variance are given by

$$\hat{\delta}_R = \bar{Y}_1 - \bar{Y}_0, \quad \sigma_R^2 = \tilde{N}_1^{-1} \, \sigma_{R1}^2 + \tilde{N}_0^{-1} \, \sigma_{R0}^2$$

- Weighted mean of group j: $\bar{Y}_j = \tilde{N}_j^{-1} \sum_{S \in \mathcal{S}} \sum_{i=1}^{n_S} w_{Si} \mathbb{1}(z_{Si} = j) \hat{Y}_{Si}$.
- ullet Outcome for subject i in set S:

$$\hat{Y}_{Si} = \begin{cases} y_{Ti}, & \text{if } S = T, \\ \hat{Y}_{ki}^*, & \text{if } S = S_k \end{cases}$$

- Weighted sample size: $\tilde{N}_j = \sum_{S \in \mathcal{S}} \tilde{n}_{Sj}$, with $\tilde{n}_{Sj} = \sum_{i=1}^{n_S} w_{Si} \mathbb{1}(z_{Si} = j)$.
- the variance for each group j:

$$\sigma_{Rj}^{2} = \frac{\sum_{S \in \mathcal{S}} \sum_{i=1}^{n_{S}} w_{Si}^{2} \mathbb{1}(z_{Si} = j) \left(\hat{Y}_{Si} - E_{T}[Y \mid Z = j]\right)^{2}}{\tilde{N}_{i}}.$$

Theorem 1 (Consistency of $\hat{\delta}_R$ and $\hat{\sigma}_R^2$) Under (A1), (A2), (C1), (C2), the estimator $\hat{\delta}_R$ is a consistent estimator of δ_T . Moreover, the variance estimator $\hat{\sigma}_R^2$ converges to σ_R^2 . Furthermore, if $\delta_T < \infty$ and $\sigma_T^2 < \infty$, then $\hat{\delta}_R$ converges in distribution to a standard normal distribution as $N_j \to \infty$ for j = 0, 1.

Theorem 2 Under assumptions (A1) and (A2) and conditions (C1) and (C2),

$$\frac{V[\hat{\delta}_R]}{V[\hat{\delta}_T]} = O\left(\frac{n_T}{\tilde{N}}\right) \quad and \quad \frac{V[\hat{\delta}_R]}{V[\hat{\delta}_T]} = O\left(K^{-1}\right). \tag{1}$$

Moreover, if $w_{S_ki} = 0$ for all k = 1, ..., K and $w_{Ti} = 1$, then $V[\hat{\delta}_R]/V[\hat{\delta}_T] = 1$.

Regression case:

We extend the univariate model to the following linear regression form:

$$\hat{\boldsymbol{Y}}_{\mathcal{S}} = \boldsymbol{X}_{\mathcal{S}} \boldsymbol{\beta}_{T} + \boldsymbol{\epsilon}_{\mathcal{S}}, \tag{2}$$

where $\boldsymbol{X}_{\mathcal{S}} = (\boldsymbol{1}, \boldsymbol{z}, \boldsymbol{x}), \ \boldsymbol{1} = (1, \dots, 1)^T$. $\boldsymbol{\beta}_T$ is estimated via weighted least squares as

$$\hat{\boldsymbol{\beta}}_T = (\boldsymbol{X}_{\mathcal{S}}^T \boldsymbol{W} \boldsymbol{X}_{\mathcal{S}})^{-1} \boldsymbol{X}_{\mathcal{S}}^T \boldsymbol{W} \hat{\boldsymbol{Y}}_{\mathcal{S}},$$

where $\mathbf{W} = \text{diag}(w_{T1}, \dots, w_{Tn_T}, w_{S_11}, \dots, w_{S_K n_{S_K}})$ is an $N \times N$ diagonal matrix of density ratios. The variance-covariance matrix of $\hat{\boldsymbol{\beta}}_T$ is estimated by

$$\mathbf{\Sigma}_{\hat{\boldsymbol{\beta}}_T} = (\mathbf{X}_{\mathcal{S}}^T \mathbf{W} \mathbf{X}_{\mathcal{S}})^{-1} (\mathbf{X}_{\mathcal{S}}^T \mathbf{W} \mathbf{\Sigma}_{\varepsilon} \mathbf{W} \mathbf{X}_{\mathcal{S}}) (\mathbf{X}_{\mathcal{S}}^T \mathbf{W} \mathbf{X}_{\mathcal{S}})^{-1}.$$

As Σ_{ε} is unknown, we use a heteroskedasticity-consistent estimator under (A2):

$$\hat{\boldsymbol{\Sigma}}_{\varepsilon} = \operatorname{diag}\left(\boldsymbol{W}^{2}(\hat{\boldsymbol{Y}}_{\mathcal{S}} - \boldsymbol{X}_{\mathcal{S}}\hat{\boldsymbol{\beta}}_{T})^{2}\right).$$

Theorem 3 Under assumptions (A1) and (A2) and conditions (C1) and (C2), if the model (2) is correctly specified, then

$$\mathrm{E}_{\mathcal{S}}[\hat{oldsymbol{eta}}_T] = oldsymbol{eta}_T.$$

Furthermore, if condition (C3) holds, then the variance estimator satisfies $\hat{\Sigma}_{\hat{\beta}_T} \to \Sigma_{\hat{\beta}_T}$ in probability, and $\sqrt{N}(\hat{\beta}_T - \beta_T)$ converges in distribution to $N(\mathbf{0}, \Sigma_{\hat{\beta}_T})$ as $N \to \infty$.

Experiment: InMASS outperforms IPD-only analysis

Comparison methods: linear regression and InMASS Allocation in T:

- 1:1: InMASS is applied to both treatment and control groups
- 3:1 and treatment-only: InMASS is applied to the control group only

Simulation of MSE (top) and Power (bottom):

Rows are model specific or misspecified for P(Y|X,Z), columns are normal or chi-square distributed for covariate X Simulate model 1: normally distributed

Rows are model specific or misspecified for P(Y|X,Z), columns correspond to the sample size of target study T.

Results:

- Improves both MSE and power by incorporating AD from meta-analysis.
- Leverages both IPD and AD; provides a consistent estimator.