Quiz #3. this Thursday: Material covered: 4.1-4.4, 7.1-7.6 (7.2 & 7.3)
Linear first order systems

$$\vec{\gamma}' = \mathcal{P}(t) \vec{\lambda}$$
 where $\vec{\lambda} = \begin{pmatrix} \chi_1 \\ \vdots \\ \chi_n \end{pmatrix}$ $\mathcal{P}(t) = \begin{pmatrix} \mathcal{P}_{11}(t) & \cdots & \mathcal{P}_{2n}(t) \\ \vdots & & \vdots \\ \mathcal{P}_{nr}(t) & \cdots & -\mathcal{P}_{nn}(t) \end{pmatrix}$

$$\chi_{i}' = P_{ii}(t) \chi_{i} + \cdots + P_{in}(t) \chi_{n}$$

 $\vdots \qquad \vdots$
 $\chi_{n}' = P_{n}(t) \chi_{i} + \cdots + P_{nn}(t) \chi_{n}$

- If $\vec{\pi}^{(i)}, \dots, \vec{\pi}^{(n)}$ are solutions of $\vec{\pi}' = P(t_0)\vec{\pi}$ then $\vec{x}(t_0) = C_1 \vec{\pi}^{(i)}(t_0) + \dots + C_n \vec{\pi}^{(n)}(t_0)$ is again a solution.
- Suppose we're looking at initial value Problem \$\frac{1}{2}P(+)\$\frac{1}{3}\$, \$\frac{1}{3}\$ (to)=\$\beta\$ (know: has unique sln.)

Then (*) Satisfies
$$\vec{x}(tn) = \vec{b}$$
 iff $C_1 \vec{x}^{(1)}(t_0) + \cdots + C_n \vec{x}^{(n)}(t_0) = \vec{b}$
1.e. $\begin{cases} C_1 X_1^{(1)}(t_0) + \cdots + C_n X_1^{(n)}(t_0) = b_1 \\ \vdots \\ C_1 X_n^{(1)}(t_0) + \cdots + C_n X_n^{(n)}(t_0) = b_n \end{cases}$ is equation for n unknowns c_1, \dots, c_n

Coefficient matrix has $\vec{\pi}^{\omega}(t_0), \cdots, \vec{\pi}^{(n)}(t_0)$ as its columns.

Let $\psi(t)$ be the nxn-matrix with columns $\vec{x}^{(i)}(t), --, \vec{x}^{(i)}(t)$

Then we get condition: $\gamma(t_0) \vec{c} = \vec{b} \vec{c} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$

• By linear algebra, this has a unique sin provided det 4 (to) \$0.

Definition: The Wronskian of solutions \(\vec{\pi}^{(1)}, ..., \(\vec{\pi}^{(n)}\) is the function:

$$W[\vec{x}^{(i)},...,\vec{x}^{(n)}](t) = det(\varphi(t))$$
 where $\varphi(t) = (\vec{x}^{(i)}(t),...,\vec{x}^{(n)}(t))$.

- In this case, $\vec{x}^{(v)}, \dots, \vec{x}^{(w)}$ are a fundamental set of solutions, and 2p(t) is called fundamental matrix.
- The general solution of $\vec{x}' = P(t) \vec{x}$ is then $\vec{X} = C_1 \vec{X}''' + \cdots + C_N \vec{X}^{(N)}$
- The general solution of inhomogeneous $\vec{x}' = P\vec{x} + \vec{g}$ is the general solution of $\vec{x} = P\vec{x}$ plus

Linear systems with onstant coefficients.

X'= AX where A fixed nun-matric.

Trial Solution:
$$\vec{x}(t) = e^{rt} \vec{g}(psy) \vec{g} = \begin{pmatrix} g_1 \\ \vdots \\ g_n \end{pmatrix}$$

$$\vec{x} = A \vec{x} \Rightarrow re^{rt} \vec{\xi} = e^{rt} A \vec{\xi} \Rightarrow r \vec{\xi} = A \vec{\xi}$$

 $\Rightarrow \vec{\chi} = e^{rt} \vec{z}$ is a solution iff \vec{z} is an eigenvector of A, with eigenvalue r.

Example:
$$X' = 4x - 3y$$
.
 $y' = -X + 2y$
Sin $A - (4-3)$ $\overline{X}' = 4$

$$S_{\frac{\ln x}{2}} : A = \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix} \vec{X}' = A \vec{X} \vec{X} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$Out(A - rI) = \begin{vmatrix} 4 - r & -3 \\ -1 & 2 - r \end{vmatrix}$$

$$= (4-r)(2-r) - (-3)(-1)$$

$$= r^2 - 6r + 5 = (r - 1)(r - 5)$$
 has posts $r^{(1)} = 5$ $r^{(2)} = 1$

• Gigenvalue:
$$Y'' = 5$$
 $A - 5I = \begin{pmatrix} -1 & -3 \\ -1 & -3 \end{pmatrix}$ $\frac{3}{2}\begin{pmatrix} -1 & -3 \\ -1 & -3 \end{pmatrix}\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ solve $\begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$ Eigenvector: $\vec{3}^{(1)} = \begin{pmatrix} -3 \\ 3 \end{pmatrix}$ or $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$.

• Eigenvalue:
$$Y^{(i)}=1$$
 $A-I=\begin{pmatrix} 3 & -1 \\ -1 & 1 \end{pmatrix}$ $\Rightarrow \vec{z}^{(i)}=\begin{pmatrix} 1 \\ 1 & 1 \end{pmatrix}$ Eigenvectors are non-zero vectors. $\vec{z}^{(i)}=e^{5t}\begin{pmatrix} -3 \\ 1 \end{pmatrix}$ $\vec{z}^{(i)}=e^{t}\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Linearly indep. \Rightarrow fund. set of solution.

· Phase portrait

• General solution: $\vec{X}(t) = Ge^{5t(-3)} + Ge^{t(1)}$.