RELACIONES BINARIAS

1. Relaciones

Las relaciones entre elementos de conjuntos se dan en muchos contextos y, en informática, aparecen con frecuencia en programación, bases de datos informáticas, etc.

1.1. Relaciones binarias.

Definición 1.1.1. Sean A y B dos conjuntos. Una relación (binaria) R de A en B es un subconjunto de $A \times B$:

$$R \subset A \times B = \{(a, b)/a \in A, b \in B\}$$

Escribiremos a R b para indicar que $(a, b) \in R$ y a R b para expresar que $(a, b) \notin R$. Si a R b diremos que a está relacionado con b.

Si R es una relación de A en sí mismo, i.e., $R \subset A \times A$, diremos que es una relación en A.

Ejemplo 1.1.2.

- Sea A el conjunto de estudiantes de la ESEI y B el conjunto de asignaturas del Grado en Ingeniería Informática. Llamamos R a la relación que consta de los pares (a, b) donde a es un estudiante matriculado en la asignatura b. Por ejemplo, si Juan y María están matriculados en FMI, los pares (Juan, FMI) y (María, FMI) están en la relación.
- Sean $A = \{0, 1, 2\}$ y $B = \{a, b\}$. Entonces $\{(0, a), (0, b), (1, a), (1, b)\}$ es una relación de A en B.
- Sea $A = \{1, 2, 3, 4\}$. En A se tiene la relación $R = \{(a, b)/a, b \in A \text{ y } a \text{ divide a } b\}$:

$$R = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$$

Ejercicio 1.1.3. Enumera los pares ordenados de la relación R de $A = \{0, 1, 2, 3, 4, 5\}$ en $B = \{0, 1, 2, 3\}$ donde $(a, b) \in R$ si, y sólo si, se verifica que:

•
$$a = b$$
 • $a + b = 4$ • $a > b$

Propiedad 1.1.4. Si $f: A \to B$ es una función, la gráfica de f, $\{(a, b)/b = f(a)\}$ es una relación de A en B.

Ejemplo 1.1.5. La gráfica de la función $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \cos x + \frac{1}{2}\cos 2x$ es:

Figura 1: gráfica de $f(x) = \cos x + \frac{1}{2}\cos 2x$

Definiciones 1.1.6. Sea R una relación en un conjunto A.

• La relación R es reflexiva si:

$$\forall a \in A, aRa$$

• La relación R es simétrica si:

$$\forall a, b \in A, aRb \Leftrightarrow bRa$$

 \bullet La relación R es antisimétrica si:

$$\forall a, b \in A/aRb \ y \ bRa \Rightarrow a = b$$

 \bullet La relación R es transitivasi:

$$\forall a, b, c \in A/a Rb \ y \ bRc \Rightarrow aRc$$

Ejemplo 1.1.7.

• Sea $A = \{1, 2, 3, 4\}$. La relación

$$R = \{(a, b)/a, b \in A \text{ y adivide a } b\}$$

= \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}

es reflexiva, antisimétrica y transitiva.

- En \mathbb{Z} , la relación $R = \{(a, b)/a, b \in \mathbb{Z}, a + b \leq 3\}$ es simétrica.
- Sea R la relación que consiste en todos los pares (x, y) de estudiantes de la ESEI tales que x ha cursado más créditos que y. Entonces R es transitiva y antisimétrica.

Ejercicio 1.1.8. Determina si la relación R en el conjunto de los números enteros es reflexiva, simétrica, antisimétrica y/o transitiva, donde $(x, y) \in R$ si, y sólo si:

•
$$x \neq y$$
 • $xy \geq 1$ • $x \equiv y \mod 7$

Definición 1.1.9 (Operaciones con relaciones). Sean R_1 y R_2 dos relaciones de un conjunto A en un conjunto B y S una relación de B en un conjunto C.

• La relación unión de R_1 y R_2 , $R_1 \cup R_2$, es una relación de A en B dada por

$$R_1 \cup R_2 = \{(a,b)/(a,b) \in R_1 \lor (a,b) \in R_2\}$$

• La relación intersección de R_1 y R_2 , $R_1 \cap R_2$, es una relación de A en B dada por

$$R_1 \cap R_2 = \{(a,b)/(a,b) \in R_1 \land (a,b) \in R_2\}$$

• La relación diferencia de R_1 y R_2 , $R_1 - R_2$, es una relación de A en B dada por

$$R_1 - R_2 = \{(a, b)/(a, b) \in R_1 \land (a, b) \notin R_2\}$$

• La relación complementaria de R_1 , $\overline{R_1}$, es una relación de A en B dada por

$$\overline{R_1} = \{(a,b)/(a,b) \in A \times B \land (a,b) \notin R_1\}$$

• La diferencia simétrica de R_1 y R_2 , $R_1 \oplus R_2$, es una relación de A en B dada por

$$R_1 \oplus R_2 = \{(a,b)/(a,b) \in R_1 \oplus (a,b) \in R_2\}$$

- La relación composición de R_1 y S, $S \circ R_1$, es la relación $S \circ R_1 = \{(a,c) \in A \times C/\exists \, b \in B \text{ tal que } (a,b) \in R_1 \text{ y } (b,c) \in S\}$
- La relación inversa de $R_1,\,R_1^{-1},$ es la relación de B en A $R_1^{-1}=\{(b,a)/(a,b)\in R_1\}$

Ejemplo 1.1.10.

• Sean $A = \{1, 2, 3\}$ y $B = \{1, 2, 3, 4\}$ dos conjuntos y $R_1 = \{(1, 1), (2, 2), (3, 3)\}, R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4)\}$ dos relaciones de A en B.

$$R_1 \cup R_2 = \{(1,1), (2,2), (3,3), (1,2), (1,3), (1,4)\}$$

$$R_1 \cap R_2 = \{(1,1)\}$$

$$R_1 - R_2 = \{(2,2), (3,3)\}$$

$$R_2 - R_1 = \{(1,2), (1,3), (1,4)\}$$

$$R_1 \oplus R_2 = \{(2,2), (3,3), (1,2), (1,3), (1,4)\}$$

$$(R_1)^{-1} = \{(1,1), (2,2), (3,3)\}$$

$$(R_2)^{-1} = \{(1,1), (2,1), (3,1), (4,1)\}$$

Observemos que R_1^{-1} y R_2^{-1} son relaciones de B en A.

• Sean $A = \{1, 2, 3\}$, $B = \{1, 2, 3, 4\}$, $C = \{0, 1, 2\}$ tres conjuntos, $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}$ una relación de A en B y $S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$ una relación de B en C. Entonces:

$$S \circ R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$$

• Consideremos R la relación en el conjunto de todas las personas tal que a R b si a es padre o madre de b. Entonces, $a R^2 c$ si y sólo si, existe una persona b tal que a R b y b R c, es decir, tal que a es padre o madre de b y b es padre o madre de c: esto es, $a R^2 c$ si y sólo si, a es abuelo o abuela de c.

Ejercicio 1.1.11. Halla $R_2 \cup R_3$, $R_2 \cap R_3$, $R_1 - R_2$, $R_2 - R_1$, $R_2 \oplus R_3$, $R_1 \circ R_3$, $R_2 \circ R_1$, $R_3 \circ R_1$ y $R_2 \circ R_2$ donde:

$$R_1 = \{(a, b) \in \mathbb{Z}^2 / a + b = 5\},$$

$$R_2 = \{(a, b) \in \mathbb{Z}^2 / a - b = 5\},$$

$$R_3 = \{(a, b) \in \mathbb{Z}^2 / a, b \ge 0\}$$

Definición 1.1.12. Si R es una relación en A y $r \in \mathbb{N}$, la relación potencia r-ésima de R, R^r , es:

$$R^r = R \circ R \circ .r. \circ R$$

Ejemplo 1.1.13. Sean $A = \{1, 2, 3, 4\}$ y $R = \{(1, 1), (2, 1), (3, 2), (4, 3)\}$ una relación en A. Entonces:

$$R^{2} = \{(1,1), (2,1), (3,1), (4,2)\},$$

$$R^{3} = \{(1,1), (2,1), (3,1), (4,1)\},$$

$$R^{4} = \{(1,1), (2,1), (3,1), (4,1)\}, \dots$$

Ejercicio 1.1.14. Dada la relación $R = \{(a, a), (a, c), (a, d), (b, a), (b, e), (c, c), (c, b), (d, d), (e, a), (e, d)\}$ en el conjunto $A = \{a, b, c, d, e\}$, halla R^2 , R^3 y R^4 .

1.2. Representación de relaciones usando grafos dirigidos.

Definición 1.2.1. Un grafo dirigido o digrafo G = (V, E), consta de un conjunto V de vértices (o nodos) junto con un conjunto E de pares ordenados de elementos de V llamados aristas (o arcos). Al vértice E se le llama vértice inicial de la arista E (E), y al vértice E se le llama vértice final de esta arista.

Los vértices se representan mediante un punto o un círculo y las aristas mediante un segmento orientado. Una arista de la forma (a, a) se representa mediante un arco que conecta el vértice a consigo mismo. Una arista de esta forma se llama bucle.

Ejemplo 1.2.2. El grafo dirigido $G = (\{a, b, c, d\}, \{(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)\})$ se representa por:

Figura 2: grafo G

Definición 1.2.3. Dado A un conjunto finito, una relación R en A se puede representar mediante un grafo dirigido G = (A, R): cada elemento del conjunto es un vértice y cada par ordenado $(a, b) \in R$ es una arista. Diremos que G es el grafo de la relación.

Ejemplo 1.2.4. El grafo del ejemplo anterior es el grafo de la relación $R = \{(a,b), (a,d), (b,b), (b,d), (c,a), (c,b), (d,b)\}$ definida en el conjunto $A = \{a,b,c,d\}$.

Ejercicio 1.2.5. Sea $A = \{1, 2, 3, 4\}$ y R una relación en A con grafo G = (A, R):

Figura 3: grafo G = (A, R)

Enumera los pares de la relación R.

Propiedades 1.2.6. Sea A un conjunto finito, R una relación en A y G el grafo de la relación.

- R es reflexiva si, y sólo si, hay un bucle en cada vértice del grafo.
- R es simétrica si, y sólo si, para cada arista entre vértices distintos de G existe una arista en sentido opuesto.
- R es antisimétrica si, y sólo si, no hay ninguna pareja de aristas con sentidos opuestos uniendo dos vértices distintos.
- R es transitiva si, y sólo si, siempre que hay una arista uniendo un vértice x con un vértice y, y una arista uniendo el vértice y con un vértice z, entonces hay una arista uniendo el vértice x con el vértice z.

Ejemplo 1.2.7. Sea $A = \{1, 2, 3, 4\}$ y R una relación en A con grafo G = (A, R):

Entonces R es reflexiva, no es simétrica, no es antisimétrica y no es transitiva.

Ejercicio 1.2.8. Estudia las propiedades de la relación del Ejercicio 1.2.5.

Figura 4: grafo G = (A, R)

2. Relaciones de equivalencia

2.1. Clases de equivalencia.

Definición 2.1.1. Una relación R en un conjunto A es de equivalencia si es reflexiva, simétrica y transitiva. Si $(a,b) \in R$ diremos que a y b son equivalentes.

Ejemplo 2.1.2.

- En el conjunto de estudiantes de la ESEI consideramos la relación xRy si, y sólo si, el primer apellido de x y el primer apellido de y comienzan por una letra que está en uno de los siguientes bloques del abecedario: A-G, H-Ñ y O-Z. La relación R es de equivalencia.
- En \mathbb{Z} la relación aRb si, y sólo si, a = b o a = -b es de equivalencia.

Definición 2.1.3. Sea R una relación de equivalencia en A y $a \in A$. La clase de equivalencia de a, $[a]_R$, es:

$$[a]_R = \{x \in A/aRx\} = \{x \in A/(a, x) \in R\}$$

Ejemplo 2.1.4. En los ejemplos anteriores:

 Si Pedro Alonso Martínez, María Martínez Santos y Mario Oubiña González son estudiantes de la ESEI, entonces:

 $[\text{Pedro Alonso Martínez}]_R = \{\text{estudiantes cuyo primer apellido} \\ \text{comienza por una letra A-G}\}$

[María Martínez Santos] $_R = \{\text{estudiantes cuyo primer apellido}$ comienza por una letra $\text{H-}\tilde{\text{N}}\}$

[Mario Oubiña González] $_R = \{\text{estudiantes cuyo primer apellido} \text{ comienza por una letra O-Z}\}$

•
$$\forall n \in \mathbb{Z}, [n]_R = \{n, -n\}$$

Propiedades 2.1.5. Si R es una relación de equivalencia en un conjunto $A \neq \emptyset$, entonces:

- 1. $a \in [a]_R, \forall a \in A$
- 2. Si $x \in [a]_R$, entonces $[a]_R = [x]_R$.

Se dice que x es un representante de la clase de equivalencia $[a]_R$. Cualquier elemento de una clase se puede usar como representante de la clase.

- 3. $\forall a, b \in A, aRb \Leftrightarrow [a]_R = [b]_R \Leftrightarrow [a]_R \cap [b]_R \neq \emptyset$
- $4. \bigcup_{a \in A} [a]_R = A$

Demostraci'on. Se deducen de las propiedades de las relaciones de equivalencia. $\hfill\Box$

Definición 2.1.6. Sea R una relación de equivalencia en $A \neq \emptyset$. Por la propiedad anterior, las clases de equivalencia forman una partición de A:

- $(1) \Rightarrow [a]_R \neq \emptyset$
- $(2) \Rightarrow ([a]_R \neq [b]_R \Rightarrow [a]_R \cap [b]_R = \varnothing)$
- $(3) \Rightarrow \bigcup_{a \in A} [a]_R = A$

Esta partición se llama conjunto cociente de A y se denota A/R.

Ejemplo 2.1.7. En los ejemplos anteriores:

- Las clases [Pedro Alonso Martínez]_R, [María Martínez Santos]_R y [Mario Oubiña González]_R forman una partición del conjunto de los estudiantes de la ESEI.
- Las clases $[n]_R = \{n, -n\}$ forman una partición de \mathbb{Z} .

Ejercicio 2.1.8. Dada la relación $R = \{(x, y) \in \mathbb{R}^2 / |x| = |y|\}$, se pide:

- Demuestra que es de equivalencia.
- Representala gráficamente.
- Halla el conjunto cociente.
- **2.2.** Relación de congruencia módulo m. Fijamos m > 1 un entero.

Definición 2.2.1. Sea m > 1 un entero. En \mathbb{Z} , la relación

$$\{(a,b)/a \equiv b \mod m\}$$

es de equivalencia. Se llama relación de congruencia módulo m.

La clase de congruencia módulo m de un número entero a se denota $[a]_m$ o, con un abuso de notación, \overline{a} y es igual a:

$$[a]_m = \overline{a} = \{x \in \mathbb{Z}/x \equiv a \mod m\}$$

= $\{\dots, a - 3m, a - 2m, a - m, a, a + m, a + 2m, a + 3m, \dots\}$

Ejemplo 2.2.2. Sea m = 3. Entonces:

$$\overline{0} = \{x \in \mathbb{Z}/x \equiv 0 \mod 3\} = \{\dots, -9, -6, -3, 0, 3, 6, 9, \dots\}$$

$$= \overset{\bullet}{3}$$

$$\overline{1} = \{x \in \mathbb{Z}/x \equiv 1 \mod 3\} = \{\dots, -8, -5, -2, 1, 4, 7, 10, \dots\}$$

$$= \overset{\bullet}{3} + 1$$

$$\overline{2} = \{x \in \mathbb{Z}/x \equiv 0 \mod 3\} = \{\dots, -7, -4, -1, 2, 5, 8, 11, \dots\}$$

$$= \overset{\bullet}{3} + 2$$

Observación 2.2.3. En \mathbb{Z} , dado m > 1, el conjunto de la clases de congruencia módulo m forman una partición. El conjunto cociente se escribe $\mathbb{Z}/m\mathbb{Z}$, o también \mathbb{Z}_m .

Ejemplo 2.2.4. En \mathbb{Z} consideremos la relación de congruencia módulo 3. Las clases $\overline{0}$, $\overline{1}$ y $\overline{2}$ forman una partición de \mathbb{Z} :

$$\mathbb{Z}/3\mathbb{Z} = \mathbb{Z}_3 = \{\overline{0}, \, \overline{1}, \, \overline{2}\}$$

Ejercicio 2.2.5. Describe \mathbb{Z}_2 y \mathbb{Z}_4 .

3. Relaciones de orden

3.1. Definiciones y propiedades.

Definición 3.1.1. Una relación R en un conjunto A es de orden (parcial) si es reflexiva, antisimétrica y transitiva. Un conjunto A con un orden parcial R se dice que es un conjunto parcialmente ordenado y se denota (A, R).

Con frecuencia, denotaremos las relaciones de orden parcial con el símbolo \leq . Y utilizaremos $a \prec b$ para indicar que $a \leq b$ pero $a \neq b$.

Ejemplo 3.1.2.

• (\mathbb{Z}, \leq) , (\mathbb{Z}, \geq) , (\mathbb{N}, \leq) , (\mathbb{N}, \geq) son conjuntos parcialmente ordenados.

- La relación de divisibilidad | en N es de orden parcial.
- Dada A un conjunto, $(\mathcal{P}(A), \subseteq)$ es un conjunto parcialmente ordenado.

Definición 3.1.3. Sea (A, \preceq) un conjunto parcialmente ordenado. Dos elementos $a, b \in A$ son *comparables* si $a \preceq b$ o $b \preceq a$. En caso contrario se dice que son *incomparables*.

Ejemplo 3.1.4.

- En (\mathbb{Z}, \leq) , (\mathbb{Z}, \geq) , (\mathbb{N}, \leq) , (\mathbb{N}, \geq) dos elementos cualesquiera son comparables.
- En $(\mathbb{N}, |)$ el 2 y el 7 no son comparables.
- En $(\mathcal{P}(\{1, 2, 3\}), \subseteq)$, $\{1, 2\}$ y $\{1, 3\}$ no son comparables.

Definición 3.1.5. Si en un conjunto parcialmente ordenado (A, \preceq) dos elementos cualesquiera son comparables se dice que la relación es de orden total y (A, \preceq) se dice que es un conjunto totalmente ordenado o una cadena.

Ejemplo 3.1.6.

- (\mathbb{Z}, \leq) , (\mathbb{Z}, \geq) , (\mathbb{N}, \leq) , (\mathbb{N}, \geq) son conjuntos totalmente ordenados.
- La relación de divisibilidad en N no es de orden total.
- Dado A un conjunto, $(\mathcal{P}(A),\subseteq)$ no es un conjunto totalmente ordenado.

Ejercicio 3.1.7. En \mathbb{N} , demuestra que la relación "ser múltiplo de" es de orden. ¿Es de orden total?

3.2. Relaciones de orden y producto cartesiano de conjuntos.

Definición 3.2.1. Sean (A_1, \preceq_1) y (A_2, \preceq_2) dos conjuntos parcialmente ordenados. En $A_1 \times A_2$ definimos el *orden parcial producto*:

$$(a_1, a_2) \preceq (b_1, b_2) :\Leftrightarrow a_1 \preceq_1 b_1 y a_2 \preceq_2 b_2$$

Ejemplo 3.2.2. A partir de la relación de orden \leq en \mathbb{Z} construimos un orden producto \leq en $\mathbb{Z} \times \mathbb{Z}$:

$$(a_1, a_2) \leq (b_1, b_2) \Leftrightarrow a_1 \leq b_1 \quad y \quad a_2 \leq b_2$$

Por ejemplo, $(3,7) \not\preceq (4,0)$, $(-3,1) \preceq (-1,2)$, $(3,1) \preceq (3,5)$.

Ejercicio 3.2.3. A partir de la relación de divisibilidad en \mathbb{N} , construye un orden producto en $\mathbb{N} \times \mathbb{N}$. Da ejemplos de elementos comparables y no comparables en dicho orden.

Definición 3.2.4. Sean (A_1, \preceq_1) y (A_2, \preceq_2) dos conjuntos parcialmente ordenados. En $A_1 \times A_2$ definimos el *orden lexicográfico*:

$$(a_1, a_2) \prec (b_1, b_2) :\Leftrightarrow a_1 \prec_1 b_1 \circ a_1 = b_1 \vee a_2 \prec_2 b_2$$

Ejemplo 3.2.5.

• A partir de la relación de orden \leq en \mathbb{Z} construimos un orden lexicográfico \leq en $\mathbb{Z} \times \mathbb{Z}$:

$$(a_1, a_2) \leq (b_1, b_2) \Leftrightarrow a_1 < b_1 \text{ o } [a_1 = b_1 \text{ y } a_2 \leq b_2]$$

Por ejemplo, $(3,7) \leq (4,0), (-3,1) \leq (-1,0), (3,-7) \leq (3,-5).$

• El orden que se usa en los diccionarios es un orden lexicográfico: $palabra_1 \leq palabra_2$ si, y sólo si, la letra de la palabra $palabra_1$ que está en la primera posición en la que difieren ambas palabras es anterior en el alfabeto a la letra de la palabra $palabra_2$ que está en la misma posición o, si ambas palabras coinciden en todas las posiciones pero la segunda contiene más letras.

Ejercicio 3.2.6. A partir de la relación de divisibilidad en \mathbb{N} , construye el orden lexicográfico en $\mathbb{N} \times \mathbb{N}$. Da ejemplos de elementos comparables y no comparables en dicho orden.

- **3.3.** Diagramas de Hasse. Sea (A, \preceq) un conjunto parcialmente ordenado. En el grafo de la relación podemos hacer las siguientes simplificaciones :
 - Como en todos los vértices hay un bucle (ya que \leq es reflexiva), suprimimos los bucles.
 - Como ≤ es transitiva, no hace falta mostrar las aristas que tienen que estar presentes debido a la transitividad.
 - Como

 des antisimétrica, no existen aristas con sentidos opuestos
 uniendo el mismo par de vértices, así que, suponemos que todas las
 aristas apuntan hacia arriba (hacia el vértice final) y eliminamos
 la flecha.

Un diagrama de este tipo se llama diagrama de Hasse y describe un conjunto ordenado.

Ejemplo 3.3.1. Los diagramas de Hasse de las siguientes relaciones de orden se representan en las figuras 5, 6 y 7.

- En el conjunto $A = \{1, 2, 3, 4\}$ consideramos la relación de orden parcial $R = \{(a, b)/a \le b\}$.
- En el conjunto $B = \{1, 2, 3, 4, 6, 8, 12\}$ consideramos la relación de orden parcial $S = \{(a, b)/a|b\}$.
- Dado el conjunto $A = \{a, b, c\}$, consideramos el conjunto ordenado $(\mathcal{P}(A), \subseteq)$.

Figura 5: Diagrama de Hasse de (A, R)

Figura 6: Diagrama de Hasse de (B, S)

Ejercicio 3.3.2. En $A = \{1, 2, 4, 5, 10, 12, 20, 25, 60, 300\}$ consideramos la relación de orden |. Dibuja el diagrama de Hasse.

Figura 7: Diagrama de Hasse de $(\mathcal{P}(A), \subseteq)$

3.4. Elementos distinguidos de un conjunto parcialmente ordenado.

Definiciones 3.4.1. Sea (A, \preceq) un conjunto parcialmente ordenado y B un subconjunto de A.

• Un elemento $a \in A$ es maximal si

$$\forall x \in A/a \leq x \Rightarrow a = x$$

• Un elemento $a \in A$ es minimal si

$$\forall x \in A/x \leq a \Rightarrow a = x$$

• Un elemento $a \in A$ es máximo, y se denota max(A), si

$$\forall x \in A, x \leq a$$

• Un elemento $a \in A$ es mínimo , y se denota $\min(A)$, si

$$\forall x \in A, a \leq x$$

• Un elemento $a \in A$ es una cota superior de B si

$$\forall b \in B, b \leq a$$

• Un elemento $a \in A$ es cota inferior de B si

$$\forall b \in B, a \prec b$$

 \bullet El supremo de B es

$$\sup(B) = \min(\{\text{cotas superiores de } B\})$$

ullet El *ínfimo de B* es

$$\inf(B) = \max(\{\text{cotas inferiores de } B\})$$

Ejemplo 3.4.2.

• En el conjunto $A = \{2, 4, 5, 10, 12, 20, 25\}$ consideramos la relación de orden | y el subconjunto $B = \{2, 5\}$.

Figura 8: Diagrama de Hasse de (A, |)

• En el conjunto $A' = \{1, 2, 4, 5, 10, 12, 20, 25\}$ consideramos la relación de orden | y el subconjunto $B = \{2, 5\}$.

Figura 9: Diagrama de Hasse de (A', |)

Propiedades 3.4.3. En un conjunto parcialmente ordenado se verifica:

- Si es finito, tiene al menos un maximal y un minimal.
- Tiene a lo sumo un máximo y un mínimo.
- Cualquier subconjunto tiene a lo sumo un supremo y un ínfimo.

Ejercicio 3.4.4. Para la relación de orden del Ejercicios 3.3.2 se pide:

- Halla los elementos maximales.
- Halla los elementos minimales.
- ¿Hay máximo?
- ¿Hay mínimo?
- Halla las cotas superiores de $\{4, 10\}$.
- Halla el supremo de $\{4, 10\}$, si es que existe.
- Halla las cotas inferiores de $\{20, 12\}$.
- Halla el ínfimo de $\{20, 12\}$, si es que existe.

Ejercicio 3.4.5. En $(\mathbb{N}, |)$, para un conjunto $\{n, m\} \subset \mathbb{N}$ se pide hallar:

• El conjunto de las cotas superiores y el supremo.

• El conjunto de las cotas inferiores y el ínfimo.

Definición 3.4.6. Un *conjunto bien ordenado* es un conjunto de orden total (A, \preceq) tal que cualquier subconjunto no vacío de A tiene mínimo.

Ejemplo 3.4.7.

- (\mathbb{N}, \leq) y $(\{n \in \mathbb{Z}/n \geq n_0\}, \leq)$ son conjuntos bien ordenados.
- (\mathbb{Q}^+, \leq) y (\mathbb{R}^+, \leq) no son conjuntos bien ordenados.

3.5. Retículos.

Definición 3.5.1. Un retículo es un conjunto $\mathcal{R} = (A, \preceq)$ parcialmente ordenado en el que el conjunto formado por cada par de elementos tiene un supremo y un ínfimo, *i.e.*:

$$\forall a, b \in A, \exists \sup(\{a, b\}), \exists \inf(\{a, b\})$$

En un retículo, el supremo y el ínfimo de dos elementos a y b se denotarán $a \lor b$ y $a \land b$, respectivamente.

Ejemplo 3.5.2.

• El conjunto parcialmente ordenado representado por el diagrama de Hasse de la Figura 10 es un retículo.

Figura 10: diagrama de Hasse

• El conjunto parcialmente ordenado representado por el diagrama de Hasse de la Figura 11 no es un retículo $(\nexists B \lor C)$.

Figura 11: diagrama de Hasse

• $(\mathbb{N}^+, |)$ es un retículo, ya que, $\forall n, m \in \mathbb{N}^+$ se verifica que:

$$n \lor m = \sup(\{n, m\}) = \text{m.c.m.}(n, m)$$

 $n \land m = \inf(\{n, m\}) = \text{m.c.d.}(n, m)$

• Dado A un conjunto, $(\mathcal{P}(A), \subseteq)$ es un retículo, ya que, $\forall B, C \in \mathcal{P}(A)$ se verifica que:

$$B \lor C = \sup(\{B, C\}) = B \cup C$$
$$B \land C = \inf(\{B, C\}) = B \cap C$$

- Sea n un entero positivo y D_n el conjunto de todos los divisores positivos de n. Entonces $(D_n, |)$ es un retículo.
- $(\{1, 2, 3, 4, 5\}, |)$ no es un retículo , ya que $\nexists 2 \lor 3$.

Definición 3.5.3. Sea $\mathcal{R} = (A, \preceq)$ un retículo. Un subconjunto no vacío B de A es un subretículo si (B, \preceq) es un retículo $(i.e. \text{ si } x, y \in B, \text{ entonces } x \vee y, x \wedge y \in B)$.

Ejemplo 3.5.4. Dado n un entero positivo, $(D_n, |)$ es un subretículo de $(\mathbb{N}^+, |)$.

Definición 3.5.5. Un retículo $\mathcal{R} = (A, \preceq)$ es complementado si tiene elemento mínimo (que denotaremos $\mathbf{0}$), elemento máximo (que denotaremos $\mathbf{1}$) y para cada elemento $x \in A$ existe un elemento \overline{x} (llamado complemento de x) tal que $x \vee \overline{x} = \mathbf{1}$ y $x \wedge \overline{x} = \mathbf{0}$.

Ejemplo 3.5.6.

- El conjunto parcialmente ordenado representado por por el diagrama de Hasse de la Figura 10 no es un retículo complementado $(\mathbf{0} = A, \mathbf{1} = F \text{ pero } \nexists \overline{C}).$
- $(\mathbb{N}^+, |)$ no es un retículo complementado $(\nexists \max)$.
- Dado A un conjunto, $(\mathcal{P}(A), \subseteq)$ es un retículo complementado:

$$\mathbf{0} = \min(A) = \varnothing, \ \mathbf{1} = \max(A) = A,$$

$$\forall X \in P(A), \ \exists \overline{X} \in P(A) \ \text{tal que:}$$

$$X \lor \overline{X} = X \cup \overline{X} = A = \mathbf{1}$$

$$X \land \overline{X} = X \cap \overline{X} = \varnothing = \mathbf{0}$$

Definición 3.5.7. Un retículo $\mathcal{R} = (A, \preceq)$ es distributivo si para $x, y, z \in A$ se verifica que:

$$x \lor (y \land z) = (x \lor y) \land (x \lor z),$$

$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

Ejemplo 3.5.8. Dado A un conjunto, $(\mathcal{P}(A), \subseteq)$ es un retículo distributivo:

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z),$$

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$

Ejercicio 3.5.9. Sea D_{60} el conjunto de todos los divisores positivos de 60. Se pide:

- Dibuja su diagrama de Hasse.
- Demuestra que es un retículo.
- ¿Es distributivo?
- Hallar, si existen, los complementarios de 2 y 10.

4. Ejercicios

4.1. Relaciones.

1. Enumera los pares ordenados de la relación R de $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ en $B = \{0, 1, 2, 3\}$ donde $(a, b) \in R$ si, y sólo si,

•
$$a|b$$
 • $mcd(a,b) = 1$ • $mcm(a,b) = 6$

2. Determina si la relación R en el conjunto de los números enteros es reflexiva, simétrica, antisimétrica y/o transitiva, donde $(x,y) \in R$ si, y sólo si,

- $x=y^2$ $x\geq y^2$ $x=y^0$ 3. Determina si la relación R en el conjunto de todos los facebook es reflexiva, simétrica, antisimétrica y/o transitiva, donde $(a,b) \in R$ si, y sólo si:
 - Todo el que ha visitado el facebook a ha visitado también el facebook b.
 - Los facebook a y b no tienen ningún amigo en común.
 - Los facebook a y b tienen al menos un amigo en común.
 - Existe un facebook que tiene a los facebook a y b en común.
- 4. Da un ejemplo de una relación en un conjunto que:
 - Sea simétrica y antisimétrica
 - No sea ni simétrica ni antisimétrica.
- 5. Sea R la relación $R = \{(a,b)/a|b\}$ en el conjunto de los enteros positivos. Halla R^{-1} y \overline{R} .
- 6. Sea R la relación en el conjunto de todos los países de la Unión Europea que consta de los pares (a, b) en el que el país a es fronterizo con el país b. Halla R^{-1} v \overline{R} .
- 7. Sea A el conjunto de los estudiantes de la ESEI y B el conjunto de los libros de la biblioteca. Sean R_1 y R_2 las relaciones que consisten en todos los pares ordenados (a, b) en los que el libro b es de lectura obligatoria para el estudiante a y en los que el estudiante a ha leído el libro b, respectivamente. Describe los pares ordenados de cada una de las siguientes relaciones: $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 \oplus R_2$, $R_1 R_2, R_2 - R_1.$
- 8. Sea R la relación $R = \{(1,2), (1,3), (2,3), (2,4), (3,1)\}$ y S = $\{(2,1), (3,1), (3,2), (4,2)\}$. Halla $S \circ R$.
- 9. Sea R la relación en el conjunto de las personas que consiste en en los pares (a, b) en los que a es padre o madre b. Sea S la relación en el conjunto de todas las personas que consiste en los pares (a, b)en los que a es hermano o hermana de b. Determina $S \circ R$ y $R \circ S$.
- 10. Halla $R_2 \cup R_3$, $R_2 \cap R_3$, $R_1 R_2$, $R_2 R_1$, $R_2 \oplus R_3$, $R_1 \circ R_3$, $R_2 \circ R_1$, $R_3 \circ R_1 \text{ y } R_2 \circ R_2 \text{ donde:}$

$$R_1 = \{(a, b) \in \mathbb{R}^2 / a > b\},\$$

$$R_2 = \{(a, b) \in \mathbb{R}^2 / a \ge b\},\$$

$$R_3 = \{(a, b) \in \mathbb{R}^2 / a \le b\}$$

- 11. En $\{1, 2, 3, 4, 5\}$, sea la relación $R = \{(1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 1), (3, 4), (3, 5), (4, 2), (4, 5), (5, 1), (5, 2), (5, 4)\}$. Halla: R^2 , R^3 , R^4 y R^5 .
- 12. Dados los grafos dirigidos de la Figura 12:
 - Enumera los pares ordenados de las relaciones que representan.
 - Estudia las propiedades de las relaciones que representan.

Figura 12: grafos $G_1, G_2 y G_3$

13. Sea R una relación en un conjunto A. Explica cómo usar el grafo dirigido que representa a R para obtener el grafo dirigido que representa a \overline{R} .

4.2. Relaciones de equivalencia.

- 1. ¿Cuáles de estas relaciones en $\{0, 1, 2, 3\}$ son relaciones de equivalencia? Determina las propiedades que les faltan a las restantes para ser relación de equivalencia.
 - $\{(0,0),(1,1),(2,2),(3,3)\}$
 - $\{(0,0),(0,2),(2,0),(2,2),(2,3),(3,2),(3,3)\}$
 - $\{(0,0),(1,1),(1,2),(2,1),(2,2),(3,3)\}$
 - $\{(0,0),(1,1),(1,3),(2,2),(2,3),(3,1),(3,2),(3,3)\}$
- 2. ¿Cuáles de estas relaciones en el conjunto de todas las personas son relaciones de equivalencia? Determina las propiedadeds que les faltan a las restantes para ser relación de equivalencia.
 - $\{(a,b)/a \text{ y } b \text{ tienen un hermano/a en común}\}$
 - $\{(a,b)/a \text{ y } b \text{ se conocen}\}$
 - $\{(a,b)/a \text{ y } b \text{ hablan un mismo idioma}\}$
- 3. Demuestra que la relación R, que consiste en todos los pares (x, y) en los que x e y son cadenas de bits de longitud al menos tres que

- coinciden en sus tres primeros bits, es una relación de equivalencia en el conjunto de todas las cadenas de bits de longitud al menos tres.
- 4. Sea R la relación en el conjunto de pares ordenados de enteros positivos tal que $((a,b),(c,d)) \in R$ si, y sólo si, ad = bc. Demuestra que R es una relación de equivalencia.
- 5. Sea R la relación en el conjunto de todas las personas que han visitado un facebook en concreto, tal que xRy si, y sólo si, la persona x y la persona y han seguido el mismo conjunto de enlaces a partir de este facebook (yendo de una página a otra hasta que se desconectan de internet). Demuestra que R es una relación de equivalencia.
- 6. Determina si las relaciones cuyos grafos dirigidos se muestran en la Figura 13 son o no de equivalencia:

Figura 13: grafos G_1 y G_2

- 7. Sean R_1 y R_2 , respectivamente, las relaciones "congruentes módulo 3" y "congruentes módulo 4" en el conjunto de los enteros. Halla: $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 \oplus R_2$, $R_1 R_2$, $R_2 R_1$.
- 8. Demuestra que la relación R en el conjunto de todas las cadenas de bits tal que sRt si, y sólo si, s y t contienen el mismo número de unos es de equivalencia. ¿Cuál es la relación de equivalencia de la cadena de bits 011?
- 9. ¿Cuáles son las clases de equivalencia de las relaciones de equivalencia de todos los ejercicios de la sección?
- 10. Describe \mathbb{Z}_5 , \mathbb{Z}_6 y \mathbb{Z}_7 .

4.3. Relaciones de orden.

- 1. ¿Cuáles de los siguientes son conjuntos parcialmente ordenados?
 - $(\mathbb{Z},=)$

• (\mathbb{Z}, \neq)

- (\mathbb{Z}, \geq) 2. Demuestra si las relaciones cuyos grafos dirigidos se muestran en la Figura 14 son o no una relación de orden:

Figura 14: grafos G_1 y G_2

- 3. ¿Cuáles de estos pares de elementos son comparables en el conjunto parcialmente ordenado(\mathbb{N}^+ , |)?
 - 3, 81
- 24, 36
- 5, 25
- 11, 11
- 4. Encuentra dos elementos no comparables en cada uno de los siguientes conjuntos:
 - $(\mathcal{P}(\{0, 1, 2\}, \subseteq))$
- $(\mathcal{P}(\{1, 2, 4, 6, 8\}, \subseteq))$
- 5. Ordena estas *n*-tuplas utilizando el orden lexicográfico:
 - (1,1,23), (1,1,1)
 - \bullet (0, 1, 6, 7), (0, 1, 7, 6)
 - \bullet (0, 1, 0, 1, 0), (1, 0, 0, 0, 0)
- 6. Ordena estas cadenas de letras utilizando el orden lexicográfico:
 - can, con, compadre, constatar, casa.
 - análoga, ángulo, anillo, ante, antes.
 - qenialidad, qenialmente, qenio, qeneroso, qénesis.
- 7. Utilizando el orden lexicográfico, ordena las cadenas de bits 0, 01, 11,001,010,011,0001 y 0101 basándose en el orden 0 < 1.
- 8. Dibuja el diagrama de Hasse de la relación \leq en el conjunto $\{0, 2, 5,$ 10, 11, 15}.
- 9. Dibuja el diagrama de Hasse de la relación divisibilidad en cada uno de los siguentes conjuntos:

- {1,2,3,4,5,6,7,8} • {1,2,3,5,7,11,13} • {1,2,4,8,16,32,64}
- 10. Dibuja el diagrama de Hasse de la relación inclusión en el conjunto $\mathcal{P}(S)$, siendo $S = \{a, b, c, d\}$.
- 11. Enumerar los pares ordenados de cada uno de los órdenes parciales que corresponden a los diagramas de Hasse de la Figura 15.

Figura 15: diagramas de Hasse

- 12. Dado el conjunto parcialmente ordenado $(\{3,5,9,15,24,45\}, |)$:
 - Halla los elementos maximales.
 - Halla los elementos minimales.
 - ¿Hay máximo?
 - ¿Hay mínimo?
 - Halla las cotas superiores de {3,5}.
 - Halla el supremo de $\{3,5\}$, si es que existe.
 - Halla las cotas inferiores de {15, 45}.
 - Halla el ínfimo de $\{15, 45\}$, si es que existe.
- 13. Dado el conjunto parcialmente ordenado ($\{\{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 4\}, \{1, 3.4\}, \{2, 3, 4\}\}, \subseteq$):
 - Halla los elementos maximales.
 - Halla los elementos minimales.
 - ¿Hay máximo?
 - ¿Hay mínimo?
 - Halla las cotas superiores de $\{\{2\}, \{4\}\}$.
 - \bullet Halla el supremo de $\{\{2\},\{4\}\},$ si es que existe.
 - Halla las cotas inferiores de $\{\{1,3,4\},\{2,3,4\}\}$.
 - Halla el ínfimo de $\{\{1,3,4\},\{2,3,4\}\}\$, si es que existe.
- 14. Dado el orden parcial representado por el diagrama de Hasse de la Figura 16:

- Halla los elementos maximales.
- Halla los elementos minimales.
- ¿Hay máximo?
- ¿Hay mínimo?
- Halla las cotas superiores de $\{a, b, c\}$.
- Halla el supremo de $\{a, b, c\}$, si es que existe.
- Halla las cotas inferiores de $\{f, g, h\}$.
- Halla el ínfimo de $\{f,g,h\}$, si es que existe.

Figura 16: diagrama de Hasse

15. Determina si los conjuntos parcialmente ordenados con los diagramas de Hasse de la Figura 17 son o no retículos. En caso afirmativo, estudia sus propiedades.

Referencias

- [1] Bujalance, E.: Elementos de matemática discreta. Sanz y Torres, 1993.
- [2] Bujalance, E.: Problemas de matemática discreta. Sanz y Torres, 1993.
- [3] Busby, R. C.; Kolman, B.;Ross, S. C.: Estructuras de matemáticas discretas para la computación. Prentice Hall, 1997.
- [4] Ferrando, J. C.; Gregori, V.: Matemática discreta. Reverté, 1995.

Figura 17: diagramas de Hasse

- [5] García Merayo, F.: Matemática discreta. Paraninfo, 2005.
- [6] García Merayo, F.; Hernández Peñalver, G.; Nevot Luna, A.: *Problemas resueltos de matemática discreta*. Thomson, 2003.
- [7] García C.; López, J. M.; Puigjaner, D.: *Matemática discreta: problemas y ejercicios resueltos*. Prentice Hall, 2002.
- [8] Garnier, R.; Taylor, J.: Discrete mathematics for new technology. Adam Hilger, 1992.
- [9] Grassmann, W. K.: Matemática discreta y lógica. Prentice Hall, 1998.
- [10] Grimaldi, R. P.: Matemáticas discreta y combinatoria: una introducción con aplicaciones. Addison-Wesley Iberoamericana, 1997.
- [11] Johnsonbaugh, R.: ${\it Matem\'aticas\ discretas}.$ Prentice Hall, 1999.
- [12] Rosen, K. H.: Matemática Discreta y sus aplicaciones. Mc Graw Hill,
- [13] Wilson, R. J.: Introducción a la teoría de los grafos. Alianza, 1983.