Lagrangian density $-\frac{1}{3}a_0 \Gamma^{\alpha\beta X} \Gamma_{\beta X\alpha} + \frac{1}{2}a_0 \Gamma^{\alpha}{}_{\alpha}^{\beta} \Gamma_{\beta X}^{X} - \frac{1}{2}a_0 \Gamma^{\alpha\beta X} \partial_{\beta}h_{\alpha X},$ $\frac{1}{4}a_0 \Gamma^{\alpha}{}_{\alpha}^{\beta} \partial_{\beta}h^{X}_{X} + \frac{1}{4}a_0 \Gamma^{\alpha}{}_{\alpha}^{\beta} \partial_{\beta}h^{X}_{X},$ $\frac{1}{4}a_0 \Gamma^{\alpha}{}_{\alpha}^{\beta} \partial_{\beta}h^{X}_{A} + \frac{1}{4}a_0 \Gamma^{\alpha}{}_{\alpha}^{\beta} \partial_{\beta}h^{X}_{A},$ $\frac{1}{4}a_0 \Gamma^{\alpha}{}_{\alpha}^{\beta} \partial_{\beta}h^{X}_{A} + 1$	
$\begin{split} &\frac{1}{4}a_0 & \Gamma^{\alpha}_{\ \alpha}^{\ \beta} \delta_{\beta}h^{\lambda}_{\ \lambda} + \frac{1}{4}a_0 & \Gamma^{\alpha}_{\ \alpha}^{\ \beta} \delta_{\beta}h^{\lambda}_{\ \lambda} - \frac{1}{4}a_0 h^{\lambda}_{\ \lambda} \delta_{\beta}\Gamma^{\alpha}_{\ \alpha}^{\ \beta} + \frac{1}{4}a_0 h^{\lambda}_{\ \lambda} \delta_{\beta}\Gamma^{\alpha\beta}_{\ \alpha} - \frac{1}{4}a_0 h^{\lambda}_{\ \lambda} \delta_{\beta}\Gamma^{\alpha\beta}_{\ \alpha} + \frac{1}{2}c_1 \delta^{\alpha}\Gamma_{\lambda}^{\ \alpha} \delta_{\beta}\Gamma^{\lambda}_{\ \alpha}^{\ \beta} - \frac{1}{2}a_0 h^{\lambda}_{\alpha} \lambda_{\beta}\Gamma^{\alpha\beta}_{\ \alpha}^{\ \beta} + \frac{1}{2}c_1 \delta^{\alpha}\Gamma_{\lambda}^{\ \alpha} \delta_{\beta}\Gamma^{\lambda}_{\alpha}^{\ \beta} - \frac{1}{2}a_0 h^{\lambda}_{\alpha} \lambda_{\beta}^{\ \beta}h^{\lambda}_{\ \alpha}^{\ \beta} - \frac{1}{4}a_0 h^{\alpha}_{\ \beta} \delta_{\beta}h^{\lambda}_{\alpha}^{\ \lambda} + \frac{1}{2}a_0 h^{\lambda}_{\alpha} \lambda_{\beta}^{\ \beta}h^{\alpha}_{\ \alpha}^{\ \alpha} + \frac{1}{2}a_0 h^{\alpha}_{\alpha}^{\ \beta} \lambda_{\beta}^{\ \beta}h^{\lambda}_{\ \alpha}^{\ \beta} + \frac{1}{4}a_0 h^{\alpha}_{\ \beta} \delta_{\beta}h^{\lambda}_{\alpha}^{\ \lambda} + \frac{1}{4}a_0 h^{\alpha}_{\ \alpha}^{\ \beta} \delta_{\beta}h^{\lambda}_{\alpha}^{\ \lambda} + \frac{1}{4}a_0 h^{\alpha}_{\ \alpha}^{\ \beta} \delta_{\alpha}h^{\lambda}_{\alpha}^{\ \lambda} + \frac{1}{4}a_0 h^{\alpha}_{\ \alpha}^{\ \beta} \lambda_{\beta}h^{\lambda}_{\alpha}^{\ \lambda} + \frac{1}{4}a_0 h^{\alpha}_{\ \alpha}^{\ \beta} \lambda_{\beta}h^{\lambda}_{\alpha}^{\ \lambda} + \frac{1}{4}a_0 h^{\alpha}_{\alpha}^{\ \beta} \lambda_{\beta}h^{\lambda}_{\alpha}^{\ \lambda} + \frac{1}{4}a_0 h^{\alpha}_{\alpha}^{\ \beta} \lambda_{\beta}h^{\lambda}_{\alpha}^{\ \lambda} + \frac{1}{4}a_0 h^{\alpha}_{\alpha}^{\ \beta} \lambda_{\alpha}h^{\beta}_{\alpha}^{\ \beta}_{\alpha}^{\ \lambda}_{\alpha}^{\ \alpha}_{\alpha}^{\ \beta}_{\alpha}^{\ \beta}_{\alpha}^{\ \alpha}_{\alpha}^{\ \beta}_{\alpha}^{\ \beta}_{\alpha}^{\ \alpha}_{\alpha}^{\ \beta}_{\alpha}^{\ \beta}_{\alpha}^{\ \alpha}_{\alpha}^{\ \beta}_{\alpha}^{\ \beta}_{\alpha}^{\$	Lagrangian density
$\begin{split} &\frac{1}{2} a_0 h_{\alpha \chi} \partial_{\beta} \Gamma^{\alpha \beta \chi} + \frac{1}{2} c_1 \partial^{\alpha} \Gamma^{\chi \delta} \delta_{\beta} \Gamma_{\chi \alpha}^{\ \beta} + \frac{1}{2} c_1 \partial^{\alpha} \Gamma_{\chi \alpha}^{\ \beta} \partial_{\beta} \Gamma^{\chi \delta} \delta_{-} \\ &- 19 c_1 \partial^{\alpha} \Gamma^{\lambda} \delta_{\chi} \partial_{\beta} \Gamma_{\delta \alpha}^{\ \beta} + \frac{1}{4} a_0 \partial^{\beta} \partial_{\alpha} \partial_{\beta} \partial_{\alpha} h_{\chi}^{\ \chi} - \frac{1}{8} a_0 \partial_{\beta} h_{\chi}^{\ \chi} \partial^{\beta} h_{\alpha}^{\ \alpha} + \\ &\frac{1}{2} a_0 \Gamma^{\alpha} \partial^{\beta} \partial_{\chi} h_{\beta}^{\ \chi} + \frac{1}{4} a_0 \partial^{\beta} h_{\alpha}^{\ \alpha} \partial_{\chi} h_{\beta}^{\ \chi} + \frac{37}{4} c_1 \partial_{\beta} \partial_{\alpha} h_{\delta}^{\ \delta} \delta_{\chi} \Gamma^{\alpha \beta \chi} + \\ &\frac{1}{4} a_0 h^{\alpha \beta} \partial_{\chi} h_{\alpha \beta}^{\ \beta} - \frac{1}{4} a_0 h^{\alpha \beta} \partial_{\chi} \partial_{\beta} h_{\alpha}^{\ \chi} + \frac{1}{4} a_0 \partial^{\alpha} h_{\alpha}^{\ \chi} \partial_{\chi} h_{\alpha}^{\ \beta} + \\ &\frac{1}{4} a_0 h^{\alpha \beta} \partial_{\chi} h_{\alpha \beta}^{\ \beta} - \frac{1}{4} a_0 h_{\alpha \alpha}^{\ \alpha} \partial_{\chi} h^{\beta} \kappa + \\ &\frac{1}{4} a_0 h^{\alpha \beta} \partial_{\chi} h_{\alpha \beta}^{\ \alpha} - \frac{1}{2} a_0 h_{\beta \chi}^{\ \alpha} \partial_{\chi}^{\ \gamma} \Gamma^{\alpha} h^{\beta} + \\ &\frac{1}{8} a_0 \partial_{\chi} h_{\alpha \beta}^{\ \beta} + \frac{1}{2} a_0 h_{\beta \chi}^{\ \alpha} \partial_{\chi}^{\ \gamma} \Gamma^{\alpha} h^{\beta} + \\ &\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\delta} \partial_{\chi}^{\ \gamma} \Gamma^{\alpha} h^{\beta} + \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta} \partial_{\chi}^{\ \gamma} \Gamma^{\alpha} h^{\beta} + \\ &\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\delta} \partial_{\chi}^{\ \gamma} \Gamma^{\alpha} h^{\beta} + \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta} \partial_{\chi}^{\ \gamma} \Gamma^{\alpha} h^{\beta} + \\ &\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\delta} \partial_{\chi}^{\ \gamma} \Gamma^{\alpha} h^{\beta} + \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta} \partial_{\chi}^{\ \gamma} \Gamma^{\alpha} h^{\beta} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta} \partial_{\chi}^{\ \gamma} \Gamma^{\alpha} h^{\beta} + \\ &\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\delta} \partial_{\chi}^{\ \gamma} \Gamma^{\alpha} h^{\beta} + \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta} \partial_{\chi}^{\ \gamma} \Gamma^{\alpha} h^{\beta} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta} \partial_{\chi}^{\ \gamma} \Gamma^{\alpha} h^{\beta} + \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta} \partial_{\chi}^{\ \gamma} \Gamma^{\alpha} h^{\gamma} h^{$	$-\frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2} a_0 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\chi}_{\beta\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \partial_{\beta}h_{\alpha\chi} -$
$\begin{array}{l} 19c_{1}\partial^{\alpha}\Gamma^{\lambda}{\chi}\partial_{\beta}\Gamma_{\delta\alpha}^{\beta} + \frac{1}{4}a_{0}h^{\alpha\beta}\partial_{\beta}\partial_{\alpha}h^{\chi}_{\chi} - \frac{1}{8}a_{0}\partial_{\beta}h^{\chi}_{\chi}\partial_{\beta}h^{\alpha}_{\alpha} + \\ \frac{1}{2}a_{0}\Gamma^{\alpha}_{\beta}\partial_{\chi}h^{\beta}_{\chi} + \frac{1}{4}a_{0}\partial^{\beta}h^{\alpha}_{\alpha}\partial_{\chi}h^{\beta}_{\chi} + \frac{37}{4}c_{1}\partial_{\beta}\partial_{\alpha}h^{\delta}_{\delta}\partial_{\chi}\Gamma^{\alpha\beta}\chi + \\ \frac{1}{4}a_{0}h^{\alpha\beta}\partial_{\chi}h^{\beta}_{\chi} + \frac{1}{4}a_{0}h^{\alpha\beta}\partial_{\chi}\partial_{\beta}h^{\chi}_{\chi} + \frac{1}{4}a_{0}h^{\alpha}_{\alpha}\partial_{\chi}\partial_{\beta}h^{\chi}_{\chi} + \\ \frac{1}{4}a_{0}h^{\alpha\beta}\partial_{\chi}\partial_{\chi}h^{\beta}_{\alpha} - \frac{1}{4}a_{0}h^{\alpha}_{\alpha}\partial_{\chi}\partial_{\gamma}h^{\alpha}_{\beta} - \frac{1}{4}a_{0}\partial_{\beta}h_{\alpha\chi}\chi^{\chi}h^{\alpha\beta} + \\ \frac{1}{8}a_{0}\partial_{\chi}h_{\alpha\beta}\partial_{\chi}h^{\alpha\beta}_{\alpha} + \frac{1}{2}a_{0}h_{\beta\chi}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\delta}_{\delta\chi}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta + \frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\delta}_{\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\delta}_{\delta\chi}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta + \frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\delta}_{\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{4}c_{1}\partial_{\chi}\partial_{\beta}h^{\delta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\delta}_{\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\delta}_{\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\alpha}_{\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\delta}_{\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta$	$\frac{1}{4} a_0 \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\beta} h^{\chi}_{\chi} + \frac{1}{4} a_0 \Gamma^{\alpha\beta}_{\alpha} \partial_{\beta} h^{\chi}_{\chi} - \frac{1}{4} a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} + \frac{1}{4} a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} -$
$\begin{array}{l} 19c_{1}\partial^{\alpha}\Gamma^{\lambda}{\chi}\partial_{\beta}\Gamma_{\delta\alpha}^{\beta} + \frac{1}{4}a_{0}h^{\alpha\beta}\partial_{\beta}\partial_{\alpha}h^{\chi}_{\chi} - \frac{1}{8}a_{0}\partial_{\beta}h^{\chi}_{\chi}\partial_{\beta}h^{\alpha}_{\alpha} + \\ \frac{1}{2}a_{0}\Gamma^{\alpha}_{\beta}\partial_{\chi}h^{\beta}_{\chi} + \frac{1}{4}a_{0}\partial^{\beta}h^{\alpha}_{\alpha}\partial_{\chi}h^{\beta}_{\chi} + \frac{37}{4}c_{1}\partial_{\beta}\partial_{\alpha}h^{\delta}_{\delta}\partial_{\chi}\Gamma^{\alpha\beta}\chi + \\ \frac{1}{4}a_{0}h^{\alpha\beta}\partial_{\chi}h^{\beta}_{\chi} + \frac{1}{4}a_{0}h^{\alpha\beta}\partial_{\chi}\partial_{\beta}h^{\chi}_{\chi} + \frac{1}{4}a_{0}h^{\alpha}_{\alpha}\partial_{\chi}\partial_{\beta}h^{\chi}_{\chi} + \\ \frac{1}{4}a_{0}h^{\alpha\beta}\partial_{\chi}\partial_{\chi}h^{\beta}_{\alpha} - \frac{1}{4}a_{0}h^{\alpha}_{\alpha}\partial_{\chi}\partial_{\gamma}h^{\alpha}_{\beta} - \frac{1}{4}a_{0}\partial_{\beta}h_{\alpha\chi}\chi^{\chi}h^{\alpha\beta} + \\ \frac{1}{8}a_{0}\partial_{\chi}h_{\alpha\beta}\partial_{\chi}h^{\alpha\beta}_{\alpha} + \frac{1}{2}a_{0}h_{\beta\chi}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\delta}_{\delta\chi}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta + \frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\delta}_{\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\delta}_{\delta\chi}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta + \frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\delta}_{\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{4}c_{1}\partial_{\chi}\partial_{\beta}h^{\delta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\delta}_{\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\delta}_{\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\alpha}_{\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\delta}_{\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta - \\ \frac{1}{2}c_{1}\partial_{\gamma}\Gamma^{\delta}_{\delta\beta}\partial_{\chi}\Gamma^{\alpha}_{\alpha}\beta$	$\frac{1}{2} a_0 h_{\alpha \chi} \partial_{\beta} \Gamma^{\alpha \beta \chi} + \frac{11}{2} c_1 \partial^{\alpha} \Gamma^{\chi \delta}{}_{\delta} \partial_{\beta} \Gamma_{\chi \alpha}{}^{\beta} + \frac{1}{2} c_1 \partial^{\alpha} \Gamma_{\chi \alpha}{}^{\beta} \partial_{\beta} \Gamma^{\chi \delta}{}_{\delta} -$
$\begin{split} &\frac{1}{2}a_0 & \Gamma^{\alpha}_{\ \alpha}^{\ \beta} \partial_{\lambda}h_{\beta}^{\ X} + \frac{1}{4}a_0 \partial^{\beta}h^{\alpha}_{\ \alpha}\partial_{\lambda}h_{\beta}^{\ X} + \frac{37}{4}c_1 \partial_{\beta}\partial_{\alpha}h^{\delta}_{\ \delta} \partial_{\lambda}\Gamma^{\alpha\beta\lambda} + \\ &\frac{1}{4}c_1 \partial_{\beta}\Gamma^{\alpha\beta\lambda}}\partial_{\lambda}\partial_{\alpha}h^{\delta}_{\ \delta} - \frac{1}{2}c_0 h^{\alpha\beta}_{\ \beta}\partial_{\lambda}h_{\alpha}^{\ X} + \frac{1}{4}a_0 h^{\alpha}_{\ \alpha}\partial_{\lambda}\partial_{\beta}h^{\beta X} + \\ &\frac{1}{4}a_0 h^{\alpha\beta}_{\ \beta}\partial_{\lambda}\partial_{\lambda}h^{\delta}_{\ \beta} - \frac{1}{4}a_0 h^{\alpha}_{\ \alpha}\partial_{\lambda}\partial_{\beta}h^{\beta X} + \\ &\frac{1}{4}a_0 h^{\alpha\beta}_{\ \beta}\partial_{\lambda}\partial_{\lambda}h_{\alpha\beta}^{\ \beta} - \frac{1}{4}a_0 h^{\alpha}_{\ \alpha}\partial_{\lambda}\partial_{\lambda}h^{\beta}_{\ \beta} + \frac{1}{4}a_0 \partial_{\beta}h_{\alpha\lambda}\partial^{\lambda}h^{\alpha\beta}_{\ \beta} + \\ &\frac{1}{8}a_0 \partial_{\lambda}h_{\alpha\beta}\partial^{\lambda}h^{\alpha\beta} + \frac{1}{2}a_0 h_{\beta\lambda}\partial^{\lambda}\Gamma^{\alpha}_{\ \alpha}^{\ \beta} - \frac{1}{2}c_1 \partial_{\beta}\Gamma_{\delta}^{\ \delta}\partial_{\lambda}^{\ \alpha}\Gamma^{\alpha}_{\ \beta} - \\ &\frac{1}{2}c_1 \partial_{\beta}\Gamma^{\delta}_{\ \delta}\partial^{\lambda}\Gamma^{\alpha}_{\ \alpha}^{\ \beta} + \frac{1}{2}c_1 \partial_{\lambda}\Gamma_{\delta}^{\ \beta}\partial^{\lambda}\Gamma^{\alpha}_{\ \alpha}^{\ \beta} - \frac{1}{2}c_1 \partial_{\lambda}\Gamma_{\delta}^{\ \beta}\partial^{\lambda}\Gamma^{\alpha}_{\ \alpha}^{\ \beta} - \\ &\frac{1}{2}c_1 \partial_{\lambda}\Gamma^{\delta}_{\ \delta}\partial^{\lambda}\Gamma^{\alpha}_{\ \alpha}^{\ \beta} + \frac{1}{2}c_1 \partial_{\lambda}\Gamma_{\delta}^{\ \beta}\partial^{\lambda}\Gamma^{\alpha}_{\ \alpha}^{\ \beta} - \frac{1}{2}c_1 \partial_{\lambda}\Gamma_{\delta}^{\ \beta}\partial^{\lambda}\Gamma^{\alpha}_{\ \alpha}^{\ \beta} - \\ &\frac{1}{2}c_1 \partial_{\lambda}\Gamma^{\delta}_{\ \delta}\partial^{\lambda}\Gamma^{\alpha}_{\ \alpha}^{\ \beta} + \frac{1}{2}c_1 \partial_{\lambda}\Gamma_{\delta}^{\ \beta}\partial^{\lambda}\Gamma^{\alpha}_{\ \alpha}^{\ \beta} - \frac{1}{2}c_1 \partial_{\lambda}\Gamma^{\delta}_{\ \beta}\partial^{\lambda}\Gamma^{\alpha}_{\ \alpha}^{\ \beta} - \\ &\frac{1}{2}c_1 \partial_{\lambda}\Gamma^{\delta}_{\ \delta}\partial^{\lambda}\Gamma^{\alpha}_{\ \alpha}^{\ \beta} + \frac{1}{2}c_1 \partial_{\lambda}\Gamma_{\delta}^{\ \beta}\partial^{\lambda}\Gamma^{\alpha}_{\ \alpha}^{\ \beta} - \frac{1}{2}c_1 \partial_{\lambda}\Gamma^{\delta}_{\ \beta}\partial^{\lambda}\Gamma^{\alpha}_{\ \alpha}^{\ \beta} - \\ &\frac{1}{2}c_1 \partial_{\lambda}\Gamma^{\delta}_{\ \delta}\partial^{\lambda}\Gamma^{\alpha}_{\ \beta}^{\ \beta} + \frac{1}{2}c_1 \partial_{\lambda}\Gamma^{\beta}_{\ \delta}\partial^{\lambda}\Gamma^{\alpha}_{\ \beta}^{\ \beta} - \frac{1}{2}c_1 \partial_{\lambda}\Gamma^{\alpha}_{\ \beta}\partial^{\lambda}\Gamma^{\alpha}_{\ \beta}^{\ \beta} - \\ &\frac{1}{2}c_1 \partial_{\beta}\Gamma^{\alpha}_{\ \delta}\partial^{\lambda}\Gamma^{\alpha}_{\ \beta}^{\ \beta} + \frac{1}{2}c_1 \partial_{\lambda}\Gamma^{\beta}_{\ \beta}\partial^{\lambda}\Gamma^{\alpha}_{\ \beta}^{\ \beta} + \frac{1}{2}c_1 \partial_{\lambda}\Gamma^{\alpha}_{\ \beta}\partial^{\lambda}\Gamma^{\alpha}_{\ \beta}^{\ \beta} - \\ &\frac{1}{2}c_1 \partial_{\beta}\Gamma^{\alpha}_{\ \delta}\partial^{\lambda}\Gamma^{\alpha}_{\ \beta}^{\ \beta} + \frac{1}{2}c_1 \partial_{\alpha}\Gamma^{\alpha}_{\ \beta}\partial^{\lambda}\Gamma^{\alpha}_{\ \beta}^{\ \beta} + \frac{1}{2}c_1 \partial_{\alpha}\Gamma^{\alpha}_{\ \beta}\partial^{\beta}\Gamma^{\alpha}_{\ \beta}^{\ \beta} - \\ &\frac{1}{2}c_1 \partial_{\beta}\Gamma^{\alpha}_{\ \beta}\partial^{\beta}\Gamma^{\alpha}_{\ \delta} + \frac{1}{2}c_1 \partial_{\alpha}\Gamma^{\alpha}_{\ \beta}\partial^{\beta}\Gamma^{\alpha}_{\ \beta}^{\ \beta} + \frac{1}{2}c_1 \partial_{\alpha}\Gamma^{\alpha}_{\ \beta}\partial^{\beta}\Gamma^{\alpha}_{\ \beta}^{\ \beta} - \\ &\frac{1}{2}c_1 \partial_{\beta}\Gamma^{\alpha}_{\ \beta}\partial^{\beta}\Gamma^{\alpha}_{\ \beta}^{\ \beta} + \frac{1}{2}c_1 \partial_{\alpha}\Gamma^{\alpha}_{\ \beta}\partial^{\beta}\Gamma^{\alpha}_{\ \beta}^{\ \beta} - \\ &\frac{1}{2}c_1 \partial_{\beta}\Gamma^{\alpha}$	
$\begin{array}{l} \frac{3}{4} c_1 \partial_{\beta} \Gamma^{\alpha \beta \lambda} \partial_{\lambda} \partial_{\alpha} h^{\delta} \delta_{-\frac{1}{2}} a_0 h^{\alpha \beta} \partial_{\lambda} \partial_{\beta} h^{\lambda}_{\alpha} X + \frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\lambda} \partial_{\beta} h^{\beta \lambda} + \\ \frac{1}{4} a_0 h^{\alpha \beta} \partial_{\lambda} \partial_{\lambda}^{\lambda} h_{\alpha \beta} - \frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\lambda} \partial_{\lambda}^{\lambda} h^{\beta}_{\beta} - \frac{1}{4} a_0 \partial_{\beta} h_{\alpha \lambda} \partial^{\lambda} h^{\beta \beta} + \\ \frac{1}{8} a_0 \partial_{\lambda} h_{\alpha \beta} \partial^{\lambda} h^{\alpha \beta} + \frac{1}{2} a_0 h_{\beta \lambda} \partial^{\lambda} \Gamma^{\alpha}_{\alpha} \beta^{-\frac{1}{2}} c_1 \partial_{\beta} \Gamma^{\lambda}_{\delta} \delta^{\lambda} \Gamma^{\alpha}_{\alpha} \beta^{-\frac{1}{2}} \\ \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\delta}_{\delta} \partial^{\lambda} \Gamma^{\alpha}_{\alpha} h^{\frac{1}{2}} + \frac{1}{2} c_1 \partial_{\lambda} \Gamma^{\delta}_{\delta} \delta^{\lambda} \Gamma^{\alpha}_{\alpha} h^{-\frac{1}{2}} c_1 \partial_{\beta} \Gamma^{\delta}_{\delta} \delta^{\lambda} \Gamma^{\alpha}_{\alpha} h^{-\frac{1}{2}} \\ \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\delta}_{\delta} \partial^{\lambda} \Gamma^{\alpha}_{\alpha} h^{\frac{1}{2}} + \frac{1}{2} c_1 \partial_{\lambda} \Gamma^{\delta}_{\delta} \delta^{\lambda} \Gamma^{\alpha}_{\alpha} h^{-\frac{1}{2}} c_1 \partial_{\beta} \Gamma^{\delta}_{\delta} \delta^{\lambda} \Gamma^{\alpha}_{\alpha} h^{-\frac{1}{2}} \\ \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\delta}_{\delta} \partial^{\lambda} \Gamma^{\alpha}_{\alpha} h^{\frac{1}{2}} + \frac{11}{2} c_1 \partial_{\alpha} \Gamma^{\delta}_{\delta} \delta^{\lambda} \Gamma^{\alpha}_{\alpha} h^{-\frac{1}{2}} c_1 \partial_{\beta} \Gamma^{\delta}_{\delta} \delta^{\lambda} \Gamma^{\alpha}_{\alpha} h^{-\frac{1}{2}} \\ \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\delta}_{\delta} \partial^{\lambda} \Gamma^{\alpha}_{\alpha} h^{\frac{1}{2}} + \frac{11}{2} c_1 \partial_{\alpha} \Gamma^{\delta}_{\delta} \delta^{\lambda} \Gamma^{\alpha}_{\alpha} h^{-\frac{1}{2}} c_1 \partial_{\alpha} \Gamma^{\delta}_{\delta} \delta^{\lambda} \Gamma^{\alpha}_{\alpha} h^{-\frac{1}{2}} \\ \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\delta}_{\delta} \partial^{\lambda} \Gamma^{\alpha}_{\alpha} h^{\frac{1}{2}} + \frac{11}{2} c_1 \partial_{\alpha} \Gamma^{\delta}_{\delta} \delta^{\lambda} \Gamma^{\alpha}_{\alpha} h^{\frac{1}{2}} - \frac{1}{2} c_1 \partial_{\alpha} \Gamma^{\alpha}_{\delta} \partial^{\lambda} \Gamma^{\alpha}_{\alpha} h^{-\frac{1}{2}} \\ \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\delta}_{\delta} \partial^{\lambda} \Gamma^{\alpha}_{\alpha} h^{\frac{1}{2}} + \frac{1}{2} c_1 \partial_{\alpha} \Gamma^{\alpha}_{\beta} \partial^{\lambda} \Gamma^{\alpha}_{\beta} h^{-\frac{1}{2}} c_1 \partial_{\alpha} \Gamma^{\alpha}_{\beta} \partial^{\lambda} \Gamma^{\alpha}_{\alpha} h^{-\frac{1}{2}} \\ \frac{1}{2} c_1 \partial_{\beta} \rho^{\delta}_{\delta} \partial^{\lambda}_{\delta} \partial^{\lambda}_{\alpha} h^{\beta}_{\beta} + \frac{1}{2} c_1 \partial_{\alpha} \Gamma^{\alpha}_{\beta} \partial^{\lambda}_{\delta} \partial^{\lambda}_{\alpha} h^{\alpha}_{\beta} - \frac{1}{2} c_1 \partial_{\alpha} \Gamma^{\alpha}_{\beta} \partial^{\lambda}_{\delta} \Gamma^{\alpha}_{\beta} - \frac{1}{2} c_1 \partial_{\alpha} \Gamma^{\alpha}_{\beta} \partial^{\lambda}_{\delta$	
$\begin{array}{l} \frac{1}{4} a_0 h^{\alpha\beta} \partial_x \partial^x h_{\alpha\beta}^{-1} - \frac{1}{4} a_0 h^{\alpha} \partial_x \partial^x h^{\beta} \beta_{-1}^{-1} a_0 \partial_\theta h_{\alpha\chi} \partial^x h^{\alpha\theta} + \\ \frac{1}{8} a_0 \partial_x h_{\alpha\beta} \partial^x h^{\alpha\beta} + \frac{1}{2} a_0 h_{\beta\chi} \partial^x \Gamma^{\alpha} \beta_{-1}^{-1} \frac{1}{2} c_1 \partial_\theta \Gamma_{x}^{-\delta} \delta_\theta \partial^x \Gamma^{\alpha} \beta_{-1}^{-\delta} \\ \frac{1}{2} c_1 \partial_\theta \Gamma_{\delta}^{-\delta} \partial^x \Gamma^{\alpha} \beta_{-1}^{-\delta} \frac{1}{2} c_1 \partial_x \Gamma_{\delta}^{-\delta} \delta_\theta \partial^x \Gamma^{\alpha} \beta_{-1}^{-\delta} \\ \frac{1}{2} c_1 \partial_\theta \Gamma_{\delta}^{-\delta} \partial^x \Gamma^{\alpha} \beta_{-1}^{-\delta} \frac{1}{2} c_1 \partial_x \Gamma_{\delta}^{-\delta} \delta_\theta \partial^x \Gamma^{\alpha} \beta_{-1}^{-\delta} \\ \frac{1}{2} c_1 \partial_\theta \Gamma_{\delta}^{-\delta} \partial^x \Gamma^{\alpha\beta} \beta_{-1}^{-\delta} \frac{1}{4} c_1 \partial_x \Gamma_{\delta}^{-\delta} \delta_\theta \partial^x \Gamma^{\alpha\beta} - \frac{1}{2} c_1 \partial_\theta \Gamma_{\delta}^{-\delta} \delta_\theta \partial^x \Gamma^{\alpha\beta} \alpha_{-1}^{-\delta} \\ \frac{1}{2} c_1 \partial_\theta \Gamma_{\delta}^{-\delta} \partial^x \Gamma^{\alpha\beta} \alpha_{-1}^{-\delta} \frac{1}{4} c_1 \partial_x \Gamma_{\delta}^{-\delta} \delta_\theta \partial^x \Gamma^{\alpha\beta} \alpha_{-1}^{-\delta} \frac{1}{2} c_1 \partial_\theta \Gamma_{\delta}^{-\delta} \delta_\theta \partial^x \Gamma^{\alpha\beta} \alpha_{-1}^{-\delta} \\ \frac{1}{2} c_1 \partial_\theta \rho^{\delta} \delta_\theta \partial^x \Gamma^{\alpha\beta} \alpha_{-1}^{-\delta} c_1 \partial_\alpha \Gamma_{\delta}^{-\delta} \delta_\theta \partial^x \Gamma^{\alpha\beta} \alpha_{-1}^{-\delta} c_1 \partial_\alpha \Gamma_{\delta}^{-\delta} \delta_\theta \partial^x \Gamma^{\alpha\beta} \alpha_{-1}^{-\delta} \\ \frac{1}{2} c_1 \partial_\theta \rho^{\delta} \delta_\theta \partial^x \partial_\alpha h^{\alpha\beta} \alpha_{-1}^{-\delta} c_1 \partial_\alpha \Gamma_{\delta}^{-\delta} \delta_\theta \partial^x \Gamma^{\alpha\beta} \alpha_{-1}^{-\delta} c_1 \partial_\alpha \Gamma_{\delta}^{-\delta} \delta_\theta \partial^x \Gamma^{\alpha\beta} \alpha_{-1}^{-\delta} \alpha_{-1}^{-\delta} \partial_\alpha \Gamma_{\alpha\beta}^{-\delta} \alpha_{-1}^{-\delta} \partial_\alpha \Gamma_{\alpha\beta}^{-\delta} \partial_\alpha $	
$\begin{array}{l} \frac{1}{8} a_0 \partial_x h_{\alpha\beta} \partial^x h^{\alpha\beta} + \frac{1}{2} a_0 h_{\beta X} \partial^x \Gamma^{\alpha}_{\alpha} \beta^{-\frac{1}{2}} c_1 \partial_\beta \Gamma_{X}^{\delta} \delta^x \Gamma^{\alpha}_{\beta} \beta^{-\frac{1}{2}} \\ \frac{1}{2} c_1 \partial_\beta \Gamma^{\delta}_{\delta X} \partial^x \Gamma^{\alpha}_{\alpha} \beta^{-\frac{1}{2}} c_1 \partial_x \Gamma^{\delta}_{\delta} \delta^x \Gamma^{\alpha}_{\alpha} \beta^{-\frac{1}{2}} c_1 \partial_x \Gamma^{\delta}_{\beta\beta} \partial^x \Gamma^{\alpha}_{\alpha} \beta^{-\frac{1}{2}} \\ \frac{1}{2} c_1 \partial_x \Gamma^{\delta}_{\delta\beta} \partial^x \Gamma^{\alpha}_{\alpha} \beta^{-\frac{1}{4}} c_1 \partial_x \Gamma^{\delta}_{\beta} \delta^x \nabla^{\alpha}_{\alpha} \beta^{-\frac{1}{2}} c_1 \partial_\beta \Gamma^{\delta}_{\delta} \delta^x \nabla^{\alpha}_{\alpha} \alpha^{-\frac{1}{4}} \\ \frac{19}{2} c_1 \partial_\beta \Gamma^{\delta}_{\delta X} \partial^x \Gamma^{\alpha}_{\alpha} \alpha^{-\frac{1}{4}} \frac{1}{2} c_1 \partial_x \Gamma^{\delta}_{\beta} \delta^x \nabla^{\alpha}_{\alpha} \alpha^{-\frac{1}{2}} c_1 \partial_x \Gamma^{\delta}_{\beta\beta} \partial^x \Gamma^{\alpha}_{\alpha} \alpha^{-\frac{1}{4}} \\ \frac{19}{4} c_1 \partial_x \partial_\beta h^{\delta}_{\delta} \partial^x \Gamma^{\alpha}_{\alpha} \alpha^{-\frac{1}{4}} \frac{1}{2} c_1 \partial_x \Gamma^{\delta}_{\beta} \delta^x \nabla^{\alpha}_{\alpha} \alpha^{-\frac{1}{4}} c_1 \partial_x \Gamma^{\alpha}_{\beta} \delta^x \nabla^{\alpha}_{\beta} \alpha^{-\frac{1}{4}} \\ \frac{19}{4} c_1 \partial_x \partial_\beta h^{\delta}_{\delta} \partial^x \nabla^{\alpha}_{\alpha} \alpha^{-\frac{1}{4}} + \frac{1}{2} c_1 \partial_x \Gamma^{\alpha}_{\beta} \delta^x \nabla^{\alpha}_{\beta} \alpha^{-\frac{1}{4}} c_1 \partial_x \Gamma^{\alpha}_{\beta} \delta^x \nabla^{\alpha}_{\beta} \alpha^{-\frac{1}{4}} \\ \frac{1}{2} c_1 \partial_x \rho_{\beta} h^{\delta}_{\delta} \partial^x \partial_\alpha h^{\beta} + \frac{17}{8} c_1 \partial_x \rho_{\beta} h^{\delta}_{\delta} \partial^x \Gamma^{\alpha}_{\beta} \alpha^{-\frac{1}{4}} c_1 \partial_x \Gamma^{\alpha}_{\alpha} \partial^x \partial_{\delta} \Gamma^{\alpha}_{\alpha} \alpha^{-\frac{1}{4}} \\ \frac{1}{2} c_1 \partial_\beta \Gamma^{\alpha}_{\beta} \partial^x \partial_\delta \Gamma^{\alpha}_{\alpha} \alpha^{-\frac{1}{4}} c_1 \partial^x \Gamma^{\alpha}_{\alpha} \partial^x \partial_\delta \Gamma^{\alpha}_{\beta} \alpha^{-\frac{1}{4}} c_1 \partial^x \Gamma^{\alpha}_{\alpha} \partial^x \partial^x \Gamma^{\alpha}_{\beta} \partial^x \nabla^{\alpha}_{\beta} \partial^x \nabla^{\alpha}_{$	
$\begin{split} &\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\delta}{}_{\delta \chi} \partial^{\chi} \Gamma^{\alpha}{}_{\alpha}{}^{\beta} + \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}{}_{\delta} \partial^{\chi} \Gamma^{\alpha}{}_{\alpha}{}^{\beta} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}{}_{\delta} \partial^{\chi} \Gamma^{\alpha}{}_{\alpha}{}^{\beta} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}{}_{\delta} \partial^{\chi} \Gamma^{\alpha}{}_{\alpha}{}^{\beta} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}{}_{\delta} \partial^{\chi} \Gamma^{\alpha}{}_{\alpha}{}^{\beta} + \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}{}_{\delta} \partial^{\chi} \Gamma^{\alpha}{}_{\alpha}{}^{\beta} + \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}{}_{\delta} \partial^{\chi} \Gamma^{\alpha}{}_{\alpha}{}^{\beta} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}{}_{\delta} \partial^{\chi} \Gamma^{\alpha}{}_{\alpha}{}^{\beta} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}{}_{\delta} \partial^{\chi} \Gamma^{\alpha}{}_{\alpha}{}^{\alpha} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\alpha}{}_{\delta} \partial^{\chi} \Gamma^{\alpha}{}_{\alpha}{}^{\alpha} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\alpha}{}_{\delta} \partial^{\chi} \Gamma^{\alpha}{}_{\delta}{}^{\alpha} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\alpha}{}_{\delta} \partial^{\chi} \partial^{\chi} \Gamma^{\alpha}{}_{\delta}{}^{\beta} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\alpha}{}_{\delta} \partial^{\chi} \partial^{\chi} \Gamma^{\alpha}{}_{\delta}{}^{\beta} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\alpha}{}_{\delta} \partial^{\chi} \partial^{$	
$\begin{split} &\frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\delta}{}_{\delta\beta}\partial^{\lambda}\Gamma^{\alpha}{}_{\beta}-\frac{3}{4}c_{1}\partial_{\lambda}\partial_{\beta}h^{\delta}{}_{\delta}\partial^{\lambda}\Gamma^{\alpha}{}_{\beta}-\frac{1}{2}c_{1}\partial_{\beta}\Gamma_{\chi}^{\delta}\delta\partial^{\lambda}\Gamma^{\alpha\beta}{}_{\alpha}+\\ &\frac{19}{2}c_{1}\partial_{\beta}\Gamma^{\delta}{}_{\delta}\delta^{\lambda}\Gamma^{\alpha\beta}{}_{\alpha}+\frac{11}{2}c_{1}\partial_{\lambda}\Gamma_{\beta}^{\delta}\delta^{\lambda}\Gamma^{\alpha\beta}{}_{\alpha}-\frac{1}{2}c_{1}\partial_{\lambda}\Gamma_{\beta}^{\delta}\delta^{\lambda}\Gamma^{\alpha\beta}{}_{\alpha}-\\ &\frac{37}{4}c_{1}\partial_{\lambda}\partial_{\beta}h^{\delta}\delta^{\lambda}\Gamma^{\alpha\beta}{}_{\alpha}+\frac{11}{2}c_{1}\partial_{\lambda}\Gamma_{\beta}^{\delta}\delta^{\lambda}\Gamma^{\alpha\beta}{}_{\beta}-c_{1}\partial_{\lambda}\Gamma_{\alpha}^{\delta}\delta^{\lambda}\Gamma^{\alpha\beta}{}_{\beta}-\\ &\frac{9}{2}c_{1}\partial_{\lambda}\partial_{\beta}h^{\delta}\delta^{\lambda}\nabla^{\alpha}A^{\alpha\beta}{}_{\alpha}+\frac{17}{8}c_{1}\partial_{\lambda}\Gamma_{\beta}h^{\delta}\delta^{\lambda}\nabla^{\beta}h^{\alpha}{}_{\alpha}-\frac{1}{2}c_{1}\partial_{\lambda}\Gamma^{\alpha\beta}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha\beta}{}_{\beta}-\\ &\frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}-\frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha\beta}{}_{\alpha}-\frac{1}{2}c_{1}\partial_{\lambda}\Gamma^{\alpha\beta}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha\beta}{}_{\alpha}-\\ &\frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}-\frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}-\frac{1}{2}c_{1}\partial_{\lambda}\Gamma^{\alpha\beta}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha\beta}{}_{\alpha}-\\ &\frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}-\frac{1}{2}c_{1}\partial^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}-\frac{1}{2}c_{1}\partial_{\lambda}\Gamma^{\alpha\beta}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha\beta}{}_{\alpha}-\\ &\frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}+\frac{1}{2}c_{1}\partial^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}-\frac{1}{2}c_{1}\partial_{\lambda}\Gamma^{\alpha\beta}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha\beta}{}_{\alpha}-\\ &\frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}+\frac{1}{2}c_{1}\partial^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}-\frac{1}{2}c_{1}\partial_{\lambda}\Gamma^{\alpha\beta}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha\beta}{}_{\alpha}-\\ &\frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}+\frac{1}{2}c_{1}\partial^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}-\frac{1}{2}c_{1}\partial_{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}-\\ &\frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}+\frac{1}{2}c_{1}\partial^{\lambda}\Gamma^{\alpha}\Lambda^{\alpha}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}+\frac{1}{2}c_{1}\partial^{\lambda}\Gamma^{\alpha}\Lambda^{\alpha}\lambda^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\delta^{\lambda}\Gamma^{\alpha}{}_{\alpha}A^{\delta}\Lambda^{\lambda$	
$ \begin{array}{l} \frac{19}{2} \; c_1 \; \partial_{\beta} \Gamma^{\delta}_{\ \ X\delta} \; \partial^{\chi} \Gamma^{\alpha\beta}_{\ \ \alpha} \; + \; \frac{11}{2} \; c_1 \; \partial_{\chi} \Gamma^{\delta}_{\ \ \delta} \; \delta^{\chi} \Gamma^{\alpha\beta}_{\ \ \alpha} \; - \; \frac{1}{2} \; c_1 \; \partial_{\chi} \Gamma^{\delta}_{\ \ \delta\delta} \; \delta^{\chi} \Gamma^{\alpha\beta}_{\ \ \alpha} \; - \; \\ \frac{37}{4} \; c_1 \; \partial_{\chi} \partial_{\beta} h^{\delta}_{\ \ \delta} \; \partial^{\chi} \Gamma^{\alpha\beta}_{\ \ \alpha} \; + \; c_1 \; \partial_{\alpha} \Gamma^{\kappa}_{\ \ \delta} \; \delta^{\chi} \Gamma^{\alpha\beta}_{\ \ \beta} \; - \; c_1 \; \partial_{\chi} \Gamma^{\kappa}_{\ \ \delta} \; \delta^{\chi} \Gamma^{\alpha\beta}_{\ \ \beta} \; - \; \\ \frac{9}{2} \; c_1 \; \partial_{\chi} \partial_{\beta} h^{\delta}_{\ \ \delta} \; \delta^{\chi} \partial^{\alpha}_{\ \ \alpha} \; + \; c_1 \; \partial_{\alpha} \Gamma^{\kappa}_{\ \ \delta} \; \delta^{\chi} \Gamma^{\alpha\beta}_{\ \ \beta} \; - \; c_1 \; \partial_{\chi} \Gamma^{\kappa}_{\ \ \alpha} \; \delta^{\lambda} \partial^{\chi}_{\ \ \alpha} \; \beta^{\delta}_{\ \ \ \beta} \; - \; \\ \frac{1}{2} \; c_1 \; \partial_{\beta} \Gamma^{\alpha\beta\chi}_{\ \ \delta} \partial_{\delta} \Gamma^{\kappa}_{\ \ \alpha} \; \delta^{-\frac{1}{2}}_{\ \ c_1} \partial_{\beta} \Gamma^{\alpha\beta\chi}_{\ \ \alpha} \; \partial_{\delta} \Gamma^{\kappa}_{\ \ \alpha} \; \delta^{\lambda}_{\ \ \alpha}$	
$ \begin{array}{l} \frac{37}{4} c_1 \partial_{\chi} \partial_{\beta} h^{\delta} \delta^{\lambda} \Gamma^{\alpha \beta} \alpha + c_1 \partial_{\alpha} \Gamma_{\chi}^{\ \delta} \delta^{\lambda} \Gamma^{\alpha \beta} \beta - c_1 \partial_{\chi} \Gamma_{\alpha}^{\ \delta} \delta^{\lambda} \Gamma^{\alpha \beta} \beta \\ \frac{9}{2} c_1 \partial_{\chi} \partial_{\beta} h^{\delta} \delta^{\lambda} \partial_{\alpha} h^{\alpha \beta} + \frac{17}{8} c_1 \partial_{\chi} \partial_{\beta} h^{\delta} \delta^{\lambda} \partial^{\lambda} \partial^{\beta} h^{\alpha} \alpha - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \beta}^{\ \delta} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \beta}^{\ \delta} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \Gamma_{\alpha \beta}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\alpha \beta}^{\ \delta} + \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} + \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \frac{1}{2} c_1 \partial_{\gamma} $	
$\begin{array}{l} \frac{9}{2}c_{1}\partial_{\chi}\partial_{\beta}h^{\delta}{}_{\delta}\partial^{\lambda}\partial_{\alpha}h^{\alpha\beta} + \frac{17}{8}c_{1}\partial_{\chi}\partial_{\beta}h^{\delta}{}_{\delta}\partial^{\lambda}\partial^{\beta}h^{\alpha}{}_{\alpha} - \frac{1}{2}c_{1}\partial_{\chi}\Gamma^{\alpha\beta\chi}\partial_{\delta}\Gamma_{\alpha\beta}^{\ \ \delta} - \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta\chi}\partial_{\delta}\Gamma_{\alpha\lambda}^{\ \ \delta} + \frac{19}{2}c_{1}\partial_{\chi}\Gamma^{\alpha\beta\chi}\partial_{\delta}\Gamma_{\beta\alpha}^{\ \ \delta} + \frac{1}{2}c_{1}\partial_{\mu}\Gamma^{\alpha\beta\chi}\partial_{\delta}\Gamma_{\alpha\lambda}^{\ \ \delta} + \frac{1}{2}c_{1}\partial_{\mu}\Gamma^{\alpha\beta\chi}\partial_{\delta}\Gamma_{\alpha\lambda}^{\ \ \delta} + \frac{1}{2}c_{1}\partial_{\mu}\Gamma^{\alpha\beta\chi}\partial_{\delta}\Gamma_{\alpha\lambda}^{\ \ \delta} + \frac{1}{2}c_{1}\partial_{\mu}\Gamma^{\alpha\beta\chi}\partial_{\delta}\Gamma_{\lambda\lambda}^{\ \ \delta} - \frac{1}{2}c_{1}\partial_{\mu}\Gamma^{\alpha\beta\chi}\partial_{\delta}\Gamma_{\lambda\lambda}^{\ \ \delta} - \frac{1}{2}c_{1}\partial_{\mu}\Gamma^{\alpha\beta\chi}\partial_{\delta}\Gamma_{\lambda\lambda}^{\ \ \delta} + \frac{1}{2}c_{1}\partial^{\chi}\Gamma_{\beta\alpha}^{\ \ \alpha}\partial_{\delta}\Gamma_{\lambda\lambda}^{\ \ \delta} + \frac{1}{2}c_{1}\partial^{\chi}\Gamma_{\beta\alpha}^{\ \ \alpha}\partial_{\delta}\Gamma_{\lambda\lambda}^{\ \ \delta} + c_{1}\partial^{\chi}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma_{\lambda\lambda}^{\ \ \delta} - \frac{1}{2}c_{1}\partial_{\mu}\Gamma^{\alpha\beta\chi}\partial_{\delta}\Gamma_{\lambda\lambda}^{\ \ \delta} + c_{1}\partial_{\mu}\Gamma^{\alpha}_{\alpha}^{\ \ \beta}\partial_{\delta}\Gamma_{\lambda\lambda}^{\ \ \delta} - \frac{1}{2}c_{1}\partial_{\mu}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma_{\lambda\lambda}^{\ \ \delta} - c_{1}\partial_{\mu}\Gamma^{\alpha}_{\alpha}^{\ \ \beta}\partial_{\delta}\Gamma_{\lambda\lambda}^{\ \ \delta} - c_{1}\partial_{\mu}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma_{\lambda\lambda}^{\ \ \delta} - \frac{1}{2}c_{1}\partial_{\mu}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma_{\lambda\lambda}^{\ \ \delta} - c_{1}\partial_{\mu}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\rho_{\lambda\lambda}^{\ \ \ \ \delta} - c_{1}\partial_{\mu}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\rho_{\lambda\lambda}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\begin{split} &\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\chi\chi}^{\ \delta} + \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\chi}^{\ \delta} + \frac{19}{2} c_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\beta\alpha}^{\ \delta} + \\ &c_1 \partial^{\chi} \Gamma^{\alpha}_{\ \alpha}^{\ \beta} \partial_{\delta} \Gamma_{\beta}^{\ \delta}_{\ \lambda} + \frac{1}{2} c_1 \partial^{\chi} \Gamma^{\alpha}_{\ \alpha}^{\ \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta} + \frac{1}{2} c_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\ \alpha} \partial_{\delta} \Gamma_{\chi}^{\ \delta} - \\ &\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\chi}^{\ \delta}_{\ \alpha} + \frac{1}{2} c_1 \partial^{\chi} \Gamma_{\beta\alpha}^{\ \alpha} \partial_{\delta} \Gamma_{\chi}^{\ \delta}_{\ \alpha} + c_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}^{\ \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta}_{\ \beta} - \\ &\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\chi}^{\ \delta}_{\ \alpha} + \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha}^{\ \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta}_{\ \gamma} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha}^{\ \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta}_{\ \gamma} - \\ &\frac{37}{2} c_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\alpha} h_{\beta}^{\ \delta}_{\ \alpha}^{\ \delta} - \frac{3}{2} c_1 \partial_{\alpha} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\alpha} h_{\chi}^{\ \delta}_{\ \gamma} - \frac{37}{2} c_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\beta} h_{\alpha}^{\ \delta}_{\ \gamma}^{\ \delta}_{\ \gamma} - \\ &\frac{37}{2} c_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\alpha} h_{\beta}^{\ \delta}_{\ \alpha}^{\ \delta}_{\ \beta}^{\ \delta}_{\ \gamma}^{\ \delta}_{\ \gamma} - \frac{37}{8} c_1 \partial_{\alpha} \partial_{\alpha} h_{\alpha}^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\ \delta}_{\ \gamma}^{\ \delta}_{\ \gamma}^{$	
$c_{1}\partial^{X}\Gamma^{\alpha}_{\alpha}{}^{\beta}\partial_{\delta}\Gamma^{\delta}_{\beta}{}^{X}_{\chi} + \frac{1}{2}c_{1}\partial^{X}\Gamma^{\alpha}_{\alpha}{}^{\beta}\partial_{\delta}\Gamma_{\chi\beta}{}^{\delta} + \frac{1}{2}c_{1}\partial^{X}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma_{\chi\delta}{}^{\delta} - \frac{1}{2}c_{1}\partial^{X}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma_{\chi\delta}{}^{\delta} - \frac{1}{2}c_{1}\partial^{X}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma_{\chi\delta}{}^{\delta} - \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma_{\chi}{}^{\delta} + \frac{1}{2}c_{1}\partial^{X}\Gamma_{\alpha\beta}{}^{\beta}\partial_{\delta}\Gamma_{\chi}{}^{\delta} - \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma_{\chi}{}^{\delta}_{\gamma} - \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma^{\alpha\beta}_{\gamma} - \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma^{\alpha\beta}_{\gamma} - \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma^{\alpha\beta}_{\gamma} - \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma^{\alpha\beta}_{\gamma} - \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma^{\alpha\beta}_{\gamma} - \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\alpha}\partial_{$	
$\begin{array}{l} \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta\lambda}\partial_{\delta}\Gamma_{\chi}^{\delta}+\frac{1}{2}c_{1}\partial^{\chi}\Gamma_{\beta\alpha}^{\beta}\partial_{\delta}\Gamma_{\chi}^{\delta\alpha}+c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\Gamma_{\chi}^{\delta},\\ \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\Gamma_{\chi}^{\delta}+c_{1}\partial_{\beta}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\Gamma_{\chi}^{\delta}_{}-\frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\Gamma_{\chi}^{\delta},\\ \frac{37}{4}c_{1}\partial_{\chi}\Gamma^{\alpha\beta\lambda}\partial_{\delta}\partial_{\alpha}h_{\beta}^{\delta}-\frac{3}{4}c_{1}\partial_{\beta}\Gamma^{\alpha\beta\lambda}\partial_{\delta}\partial_{\alpha}h_{\chi}^{\delta}-\frac{37}{4}c_{1}\partial_{\chi}\Gamma^{\alpha\beta\lambda}\partial_{\delta}\partial_{\beta}h_{\alpha}^{\delta}+\\ \frac{3}{8}c_{1}\partial_{\chi}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\alpha}^{\delta}-\frac{3}{8}c_{1}\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\delta}+\frac{1}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\delta}-\\ \frac{37}{4}c_{1}\partial^{\chi}\Gamma^{\alpha\beta\lambda}\partial_{\delta}\partial_{\lambda}h_{\alpha}^{\delta}-\frac{3}{8}c_{1}\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\delta}+\frac{1}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\delta}-\\ \frac{37}{4}c_{1}\partial^{\chi}\Gamma^{\alpha\beta\lambda}\partial_{\delta}\partial_{\lambda}h_{\alpha}^{\delta}-\frac{3}{8}c_{1}\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\delta}+\frac{1}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\delta}-\\ \frac{37}{4}c_{1}\partial^{\chi}\Gamma^{\alpha\beta\lambda}\partial_{\delta}\partial_{\lambda}h_{\alpha}^{\delta}-\frac{33}{8}c_{1}\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}+\frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}-\\ \frac{37}{4}c_{1}\partial^{\chi}\Gamma^{\alpha\beta\lambda}\partial_{\delta}\partial_{\lambda}h_{\alpha}^{\delta}-\frac{33}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}+\frac{34}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}-\\ \frac{37}{4}c_{1}\partial^{\chi}\Gamma^{\alpha\beta\lambda}\partial_{\delta}\partial_{\lambda}h_{\alpha}^{\delta}-\frac{33}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\lambda}h_{\alpha}^{\delta}-\frac{34}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\beta}\partial_{\delta}\partial_{\lambda}h_{\alpha}^{\delta}-\\ \frac{37}{4}c_{1}\partial^{\chi}\Gamma^{\alpha\beta\lambda}\partial_{\delta}\partial_{\lambda}h_{\alpha}^{\delta}+\frac{77}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}-\frac{34}{4}c_{1}\partial^{\chi}\Gamma^{\alpha\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}+\\ \frac{37}{8}c_{1}\partial^{\chi}\Lambda^{\alpha}\Lambda^{\alpha}\partial_{\delta}\partial_{\lambda}h_{\alpha}^{\delta}-\frac{37}{8}c_{1}\partial^{\chi}\Lambda^{\alpha}\partial_{\alpha}\partial_{\lambda}h_{\alpha}^{\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}-\frac{34}{4}c_{1}\partial^{\chi}\Gamma^{\alpha\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}+\\ \frac{37}{8}c_{1}\partial^{\chi}\Lambda^{\alpha}\Lambda^{\alpha}\partial_{\delta}\partial_{\lambda}h_{\alpha}^{\beta}-\frac{37}{8}c_{1}\partial^{\chi}\Lambda^{\alpha}\Lambda^{\alpha}\partial_{\delta}\partial_{\lambda}h_{\alpha}^{\beta}\partial_{\delta}\lambda^{\alpha}\Lambda^{\alpha}^{\beta}\partial_{\delta}\lambda^{\alpha}\Lambda^{\alpha}\beta}\partial_{\delta}\partial_{\lambda}\lambda^{\alpha}\Lambda^{\alpha}^{$	
$\begin{array}{l} \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\Gamma^{\chi}_{\lambda}^{\delta}+c_{1}\partial_{\beta}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\Gamma^{\chi\delta}_{\chi}^{-\frac{1}{2}}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma^{\chi\delta}_{\chi}^{-\frac{1}{2}}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\Gamma^{\chi\delta}_{\chi}^{-\frac{3}{2}}c_{1}\partial_{\chi}\Gamma^{\alpha\beta\chi}\partial_{\delta}\partial_{\alpha}h_{\alpha}^{\ \ \delta}^{+}\\ \frac{37}{8}c_{1}\partial_{\chi}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\alpha}^{\ \ \delta}^{+}\frac{37}{8}c_{1}\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\ \ \delta}^{+}\frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\ \ \beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\ \ \delta}^{+}\\ \frac{37}{8}c_{1}\partial_{\chi}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\ \ \delta}^{-}\frac{37}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\ \ \delta}^{+}\frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\ \ \beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\ \ \delta}^{+}\\ \frac{37}{4}c_{1}\partial_{\kappa}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\partial_{\beta}h_{\chi}^{\ \ \delta}^{-}\frac{3}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\ \ \delta}^{+}\frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\ \ \beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\ \ \delta}^{+}\\ \frac{37}{4}c_{1}\partial_{\kappa}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\partial_{\kappa}h_{\alpha}^{\ \ \delta}^{-}\frac{43}{8}c_{1}\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\kappa}h_{\beta}^{\ \ \delta}^{+}\frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\ \ \beta}\partial_{\delta}\partial_{\kappa}h_{\chi}^{\ \ \delta}^{+}\\ \frac{37}{4}c_{1}\partial_{\kappa}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\partial_{\kappa}h_{\alpha}^{\ \ \delta}^{-}\frac{43}{8}c_{1}\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\kappa}h_{\beta}^{\ \ \delta}^{+}\frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\ \ \beta}\partial_{\delta}\partial_{\kappa}h_{\chi}^{\ \ \delta}^{+}\\ \frac{37}{4}c_{1}\partial_{\kappa}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\partial_{\kappa}h_{\alpha}^{\ \ \delta}^{+}\frac{37}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\kappa}h_{\beta}^{\ \ \delta}^{+}\frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\ \ \beta}\partial_{\delta}\partial_{\kappa}h_{\beta}^{\ \ \delta}^{+}\\ c_{1}\partial_{\beta}\Gamma^{\alpha}_{\alpha}\partial_{\delta}\partial_{\kappa}h^{\chi^{\delta}}^{+}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\partial_{\kappa}h^{\chi^{\delta}}^{+}\frac{1}{2}c_{1}\partial_{\kappa}\partial^{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\kappa}h^{\chi^{\delta}}^{+}\\ c_{1}\partial_{\beta}\Gamma^{\alpha}_{\alpha}\partial_{\delta}\partial_{\kappa}h^{\chi^{\delta}}^{+}\frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}\partial_{\delta}\partial^{\delta}h_{\alpha}^{\ \ \alpha}^{+}\frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}\partial_{\delta}\partial^{\delta}h_{\alpha}^{\ \ \beta}^{+}\\ c_{1}\partial_{\beta}\Gamma^{\alpha}_{\alpha}\partial_{\delta}\partial^{\delta}h_{\alpha\chi}^{+}^{+}\frac{1}{4}c_{1}\partial_{\alpha}\partial^{\lambda}h^{\alpha}^{\ \ \beta}\partial_{\delta}\partial^{\delta}h_{\alpha}^{\ \ \beta}^{+}\frac{3}{8}c_{1}\partial^{\alpha}h^{\alpha}^{\lambda}\partial_{\delta}\partial^{\delta}h_{\alpha}^{\ \ \beta}^{+}\frac{3}{8}c_{1}\partial^{\alpha}h^{\alpha}^{\lambda}\partial_{\delta}\partial^{\delta}h_{\alpha}^{\ \ \alpha}^{\lambda}^{\lambda}^{\lambda}^{\lambda}^{\lambda}^{\lambda}^{\lambda}^{\lambda$	
$ \frac{37}{4} c_1 \partial_\chi \Gamma^{\alpha\beta\chi} \partial_\delta \partial_\alpha h_\beta^{\ \delta} - \frac{3}{4} c_1 \partial_\beta \Gamma^{\alpha\beta\chi} \partial_\delta \partial_\alpha h_\chi^{\ \delta} - \frac{37}{4} c_1 \partial_\chi \Gamma^{\alpha\beta\chi} \partial_\delta \partial_\beta h_\alpha^{\ \delta} + \frac{3}{8} c_1 \partial_\alpha \partial^\chi h^{\alpha\beta} \partial_\delta \partial_\beta h_\chi^{\ \delta} + \frac{3}{8} c_1 \partial_\alpha \partial^\chi h^{\alpha\beta} \partial_\delta \partial_\beta h_\chi^{\ \delta} + \frac{3}{4} c_1 \partial^\chi \Gamma^{\alpha\beta\chi} \partial_\delta \partial_\beta h_\chi^{\ \delta} + \frac{37}{8} c_1 \partial_\alpha \partial^\chi h^{\alpha\beta} \partial_\delta \partial_\beta h_\chi^{\ \delta} + \frac{3}{4} c_1 \partial^\chi \Gamma^{\alpha\beta}_{\ \alpha} \partial_\delta \partial_\beta h_\chi^{\ \delta} + \frac{37}{4} c_1 \partial^\chi \Gamma^{\alpha\beta}_{\ \alpha} \partial_\delta \partial_\beta h_\chi^{\ \delta} - \frac{3}{8} c_1 \partial^\chi \partial_\alpha h^{\alpha\beta} \partial_\delta \partial_\beta h_\chi^{\ \delta} + \frac{13}{4} c_1 \partial^\chi \partial^\beta h^{\alpha}_{\ \alpha} \partial_\delta \partial_\beta h_\chi^{\ \delta} - \frac{3}{4} c_1 \partial_\beta \Gamma^{\alpha\beta\chi} \partial_\delta \partial_\chi h_\alpha^{\ \delta} - \frac{43}{8} c_1 \partial_\alpha \partial^\chi h^{\alpha\beta} \partial_\delta \partial_\lambda h_\beta^{\ \delta} + \frac{3}{4} c_1 \partial^\chi \Gamma^{\alpha}_{\ \alpha}^{\ \beta} \partial_\delta \partial_\chi h_\beta^{\ \delta} + \frac{3}{4} c_1 \partial^\chi \Gamma^{\alpha\beta}_{\ \alpha} \partial_\delta \partial_\chi h_\beta^{\ \delta} + \frac{37}{8} c_1 \partial^\chi \partial_\alpha h^{\alpha\beta} \partial_\delta \partial_\chi h_\beta^{\ \delta} - \frac{3}{4} c_1 \partial^\chi \Gamma^{\alpha}_{\ \alpha}^{\ \beta} \partial_\delta \partial_\chi h_\beta^{\ \delta} + \frac{3}{4} c_1 \partial^\chi \nabla^{\alpha}_{\ \alpha}^{\ \beta} \partial_\delta \partial_\chi h_\beta^{\ \delta} + \frac{3}{4} c_1 \partial^\chi \nabla^{\alpha}_{\ \alpha}^{\ \beta} \partial_\delta \partial_\chi h_\beta^{\ \delta} + \frac{3}{4} c_1 \partial^\chi \nabla^{\alpha}_{\ \alpha}^{\ \beta} \partial_\delta \partial_\chi h_\beta^{\ \delta} + \frac{37}{4} c_1 \partial^\chi \nabla^{\alpha}_{\ \alpha}^{\ \beta} \partial_\delta \partial_\chi h_\beta^{\ \delta} - \frac{29}{4} c_1 \partial^\chi \partial^\beta h^{\alpha}_{\ \alpha} \partial_\delta \partial_\chi h_\beta^{\ \delta} + \frac{37}{4} c_1 \partial_\chi \nabla^{\alpha}_{\ \alpha}^{\ \beta} \partial_\delta \partial_\chi h_\beta^{\ \delta} - \frac{29}{4} c_1 \partial^\chi \partial^\beta h^{\alpha}_\alpha \partial_\delta \partial_\chi h_\beta^{\ \delta} + \frac{37}{4} c_1 \partial_\chi \nabla^{\alpha}_{\ \alpha}^{\ \beta} \partial_\delta \partial_\chi h_\beta^{\ \delta} - \frac{29}{4} c_1 \partial^\chi \partial^\beta h^{\alpha}_\alpha \partial_\delta \partial_\chi h_\beta^{\ \delta} + \frac{37}{4} c_1 \partial^\chi \nabla^{\alpha}_{\ \alpha}^{\ \beta} \partial_\delta \partial_\chi h_\beta^{\ \delta} - \frac{29}{4} c_1 \partial^\chi \partial^\beta h^{\alpha}_\alpha \partial_\delta \partial_\chi h_\beta^{\ \delta} + \frac{37}{4} c_1 \partial_\chi \nabla^{\alpha}_{\ \alpha}^{\ \beta} \partial_\delta \partial_\chi h_\beta^{\ \delta} + \frac{27}{4} c_1 \partial_\chi \partial^\lambda h^{\alpha\beta} \partial_\delta \partial_\lambda h_\beta^{\ \delta} + \frac{27}{4} c_1 \partial_\chi \partial^\lambda h^{\alpha\beta} \partial_\delta \partial_\lambda h_\beta^{\ \delta} + \frac{27}{4} c_1 \partial_\chi \partial^\lambda h^{\alpha\beta} \partial_\delta \partial_\lambda h_\beta^{\ \delta} + \frac{27}{4} c_1 \partial_\chi \partial^\lambda h^{\alpha\beta} \partial_\delta \partial_\lambda h_\beta^{\ \delta} + \frac{27}{4} c_1 \partial_\chi \partial^\lambda h^{\alpha\beta} \partial_\delta \partial_\lambda h_\beta^{\ \delta} + \frac{27}{4} c_1 \partial_\lambda \partial^\lambda h^{\alpha\beta} \partial_\delta \partial_\lambda h_\beta^{\ \delta} + \frac{27}{4} c_1 \partial_\lambda \partial^\lambda h^{\alpha\beta} \partial_\delta \partial^\lambda h_\beta^{\ \delta} + \frac{27}{4} c_1 \partial_\lambda \partial^\lambda h^{\alpha\beta} \partial_\lambda \partial^\lambda h^{\alpha} \partial^\lambda \partial^\lambda h^{\alpha\beta} \partial_\lambda \partial^\lambda h^{\alpha\beta} \partial_\lambda \partial^\lambda h^{\alpha\beta} \partial_\lambda \partial^\lambda h^{\alpha\beta} \partial_$	
$\begin{array}{l} \frac{3}{8}c_{1}\partial_{\chi}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\alpha}^{\delta}+\frac{37}{8}c_{1}\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\delta}+\frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\delta}+\frac{37}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\delta}-\frac{3}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\delta}+\frac{13}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\delta}-\frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\delta}-\frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\delta}-\frac{33}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}+\frac{37}{8}c_{1}\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}-\frac{33}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}+\frac{37}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}-\frac{29}{4}c_{1}\partial^{\chi}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}+\frac{37}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}+\frac{37}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}-\frac{29}{4}c_{1}\partial^{\chi}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}+\frac{37}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}-\frac{29}{4}c_{1}\partial^{\chi}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}+\frac{37}{4}c_{1}\partial_{\lambda}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}+\frac{37}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}-\frac{29}{4}c_{1}\partial^{\chi}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}+\frac{37}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}+\frac{37}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\beta}-\frac{29}{4}c_{1}\partial^{\chi}\nabla^{\alpha}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\delta}+\frac{37}{4}c_{1}\partial^{\chi}\nabla^{\alpha}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\beta}+\frac{37}{4}c_{1}\partial^{\chi}\nabla^{\alpha}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\beta}+\frac{37}{4}c_{1}\partial^{\chi}\nabla^{\alpha}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\beta}+\frac{37}{4}c_{1}\partial^{\chi}\nabla^{\alpha}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial_{\lambda}h_{\beta}^{\beta}+\frac{37}{4}c_{1}\partial^{\chi}\nabla^{\alpha}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial^{\alpha}h_{\beta}^{\alpha}+\frac{37}{4}c_{1}\partial^{\chi}\nabla^{\alpha}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial^{\beta}h_{\alpha}^{\alpha}+\frac{37}{4}c_{1}\partial^{\chi}\nabla^{\alpha}\partial^{\alpha}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\delta}\partial^{\beta}h_{\alpha}^{\alpha}+\frac{37}{4$	
$ \frac{37}{4} c_1 \partial^X \Gamma^{\alpha\beta}{}_{\alpha} \partial_{\delta} \partial_{\beta} h_{\chi}^{\ \delta} - \frac{3}{8} c_1 \partial^X \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\ \delta} + \frac{13}{4} c_1 \partial^X \partial^{\beta} h^{\alpha}{}_{\alpha} \partial_{\delta} \partial_{\beta} h_{\chi}^{\ \delta} - \frac{3}{8} c_1 \partial_{\alpha} \partial^X h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\ \delta} + \frac{3}{4} c_1 \partial^X \Gamma^{\alpha}{}_{\alpha} \partial_{\delta} \partial_{\chi} h_{\beta}^{\ \delta} + \frac{37}{4} c_1 \partial^X \Gamma^{\alpha\beta}{}_{\alpha} \partial_{\delta} \partial_{\chi} h_{\beta}^{\ \delta} + \frac{37}{8} c_1 \partial_{\alpha} \partial^X h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\ \delta} + \frac{3}{4} c_1 \partial^X \Gamma^{\alpha}{}_{\alpha} \partial_{\delta} \partial_{\chi} h_{\beta}^{\ \delta} + \frac{37}{8} c_1 \partial^X \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\ \delta} + \frac{3}{4} c_1 \partial^X \Gamma^{\alpha}{}_{\alpha} \partial_{\delta} \partial_{\chi} h_{\beta}^{\ \delta} + \frac{37}{8} c_1 \partial^X \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\ \delta} - \frac{29}{4} c_1 \partial^X \partial^{\beta} h_{\alpha}^{\ \alpha} \partial_{\delta} \partial_{\chi} h_{\beta}^{\ \delta} + \frac{37}{4} c_1 \partial_{\chi} \Gamma^{\alpha\beta} \partial_{\alpha} \partial_{\lambda} h_{\beta}^{\ \delta} - \frac{1}{2} c_1 \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h_{\gamma}^{\ \delta} + \frac{17}{8} c_1 \partial_{\chi} \partial^X h_{\beta}^{\ \delta} \partial_{\gamma} h_{\gamma}^{\ \delta} + \frac{17}{8} c_1 \partial_{\chi} \partial^X h_{\beta}^{\ \delta} \partial_{\gamma} h_{\gamma}^{\ \delta} + \frac{17}{8} c_1 \partial_{\chi} \partial^X h_{\gamma}^{\ \delta} \partial_{\gamma} \partial_{\gamma} h_{\gamma}^{\ \delta} \partial_{\gamma} h_{\gamma}^{\ \delta} \partial_{\gamma} \partial_{\gamma}$	
$\begin{array}{l} \frac{3}{4}c_{1}\partial_{\beta}\Gamma^{\alpha\beta\chi}\partial_{\delta}\partial_{\chi}h_{\alpha}^{\ \delta}-\frac{43}{8}c_{1}\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\chi}h_{\beta}^{\ \delta}+\frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\ \alpha}^{\ \beta}\partial_{\delta}\partial_{\chi}h_{\beta}^{\ \delta}+\\ \frac{37}{4}c_{1}\partial^{\chi}\Gamma^{\alpha\beta}_{\ \alpha}\partial_{\delta}\partial_{\chi}h_{\beta}^{\ \delta}+\frac{77}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\chi}h_{\beta}^{\ \delta}-\frac{29}{4}c_{1}\partial^{\chi}\partial^{\beta}h^{\alpha}_{\ \alpha}\partial_{\delta}\partial_{\chi}h_{\beta}^{\ \delta}+\\ c_{1}\partial_{\beta}\Gamma^{\alpha}_{\ \alpha}^{\ \beta}\partial_{\delta}\partial_{\chi}h^{\chi\delta}-c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\ \alpha}_{\ \alpha}\partial_{\delta}\partial_{\chi}h^{\chi\delta}-\frac{1}{2}c_{1}\partial_{\beta}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\chi}h^{\chi\delta}+\\ c_{1}\partial_{\beta}\partial^{\beta}h^{\alpha}_{\ \alpha}\partial_{\delta}\partial_{\chi}h^{\chi\delta}+\frac{37}{4}c_{1}\partial_{\chi}\Gamma^{\alpha\beta\chi}\partial_{\delta}\partial^{\delta}h_{\alpha\beta}+\frac{17}{8}c_{1}\partial_{\chi}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial^{\delta}h_{\alpha\beta}+\\ \frac{3}{4}c_{1}\partial_{\beta}\Gamma^{\alpha\beta\chi}\partial_{\delta}\partial^{\delta}h_{\alpha\chi}+\frac{1}{4}c_{1}\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial^{\delta}h_{\beta\chi}-\frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\ \alpha}^{\ \beta}\partial_{\delta}\partial^{\delta}h_{\beta\chi}-\\ \frac{37}{4}c_{1}\partial^{\chi}\Gamma^{\alpha\beta}_{\ \alpha}\partial_{\delta}\partial^{\delta}h_{\beta\chi}-\frac{73}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial^{\delta}h_{\beta\chi}+\frac{17}{4}c_{1}\partial^{\chi}\partial^{\beta}h^{\alpha}_{\ \alpha}\partial_{\delta}\partial^{\delta}h_{\beta\chi}-\\ \frac{37}{4}c_{1}\partial^{\chi}\Gamma^{\alpha\beta}_{\ \alpha}\partial_{\delta}\partial^{\delta}h_{\beta\chi}-\frac{73}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial^{\delta}h_{\beta\chi}+\frac{17}{4}c_{1}\partial^{\chi}\partial^{\beta}h^{\alpha}_{\ \alpha}\partial_{\delta}\partial^{\delta}h_{\beta\chi}-\\ \frac{37}{4}c_{1}\partial^{\chi}\Gamma^{\alpha\beta}_{\ \alpha}\partial_{\delta}\partial^{\delta}h_{\beta\chi}-\frac{73}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial^{\delta}h_{\beta\chi}+\frac{17}{4}c_{1}\partial^{\chi}\partial^{\beta}h^{\alpha}_{\ \alpha}\partial_{\delta}\partial^{\delta}h_{\beta\chi}-\\ \frac{37}{4}c_{1}\partial^{\chi}\Gamma^{\alpha\beta}_{\ \alpha}\partial_{\delta}\partial^{\delta}h_{\beta\chi}-\frac{73}{8}c_{1}\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial^{\delta}h_{\beta\chi}+\frac{17}{4}c_{1}\partial^{\chi}\partial^{\beta}h^{\alpha}_{\ \alpha}\partial_{\delta}\partial^{\delta}h_{\beta\chi}-\\ \frac{1}{2}c_{1}\partial_{\alpha}\Gamma^{\alpha\beta}_{\ \alpha}\partial_{\delta}\partial^{\delta}h^{\alpha}_{\ \alpha}\partial_{\delta}\partial^{\delta}h^{\alpha}_{\ \alpha}\partial_{\delta}\partial^{\delta}h^{\alpha}_{\ \alpha}\partial_{\delta}\partial^{\delta}h_{\beta\chi}-\\ \frac{1}{2}c_{1}\partial_{\alpha}\Gamma^{\alpha\beta}_{\ \alpha}\partial^{\delta}\sigma^{\alpha\beta}+c_{1}\partial_{\alpha}\Gamma^{\alpha\beta}_{\ \alpha}\partial^{\delta}\sigma^{\alpha\beta}+c_{1}\partial_{\alpha}\Gamma^{\alpha\beta}_{\ \alpha}\partial^{\delta}\sigma^{\alpha\beta}+\\ \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\ \alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi}-\frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\ \alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi}-\frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\ \alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi}-\\ \frac{1}{2}c_{1}\partial_{\beta}\partial_{\alpha}h_{\chi\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi}-\frac{1}{2}c_{1}\partial_{\delta}\Gamma^{\alpha\beta}_{\ \alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi}-\frac{1}{2}c_{1}\partial_{\delta}\Gamma^{\alpha\beta}_{\ \alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi}-\\ \frac{1}{2}c_{1}\partial_{\beta}\Gamma^{\alpha\beta}_{\ \alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi}+\frac{1}{2}c_{1}\partial_{\delta}\partial_{\beta}h_{\alpha\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi}-\frac{1}{2}c_{1}\partial_{\delta}\partial_{\gamma}h_{\alpha\beta}\partial^{\delta}\Gamma^{\alpha\beta\chi}-\\ \frac{1}{2}c_{1$	
$ \frac{37}{4} c_1 \partial^X \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial_X h_{\beta}^{\ \ \delta} + \frac{77}{8} c_1 \partial^X \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_X h_{\beta}^{\ \ \delta} - \frac{29}{4} c_1 \partial^X \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial_X h_{\beta}^{\ \ \delta} + \\ c_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha} {}^{\beta} \partial_{\delta} \partial_X h^{X^{\delta}} - c_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial_X h^{X^{\delta}} - \frac{1}{2} c_1 \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_X h^{X^{\delta}} + \\ c_1 \partial_{\beta} \partial^{\beta}_{\alpha} h^{\alpha}_{\alpha} \partial_{\delta} \partial_X h^{X^{\delta}} + \frac{37}{4} c_1 \partial_X \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\alpha\beta} + \frac{17}{8} c_1 \partial_X \partial^X h^{\alpha\beta} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\alpha\beta} + \\ \frac{3}{4} c_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\alpha\chi} + \frac{1}{4} c_1 \partial_{\alpha} \partial^X h^{\alpha\beta} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\beta\chi} - \frac{3}{4} c_1 \partial^X \Gamma^{\alpha}_{\alpha} \partial^{\beta}_{\alpha} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\beta\chi} - \\ \frac{37}{4} c_1 \partial^X \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\beta\chi} - \frac{73}{8} c_1 \partial^X \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\beta\chi} + \frac{17}{4} c_1 \partial^X \partial^{\beta}_{\alpha} h^{\alpha}_{\alpha} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\beta\chi} - \\ c_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha} \partial^{\beta}_{\alpha} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\chi}^{\chi} + c_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\chi}^{\chi} - \frac{1}{2} c_1 \partial_{\beta} \partial^{\beta}_{\alpha} h^{\alpha}_{\alpha} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\chi}^{\chi} + \\ \frac{1}{2} c_1 \partial_{\alpha} \Gamma_{\beta\chi\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} + c_1 \partial_{\alpha} \Gamma_{\beta\delta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} + c_1 \partial_{\alpha} \Gamma_{\chi\beta\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \\ \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha\chi\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha\delta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha\delta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \\ \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha\chi\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma_{\alpha\beta\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma_{\beta\alpha\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \\ \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha\lambda\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\gamma} \Gamma_{\alpha\beta\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - c_1 \partial_{\delta} \Gamma_{\alpha\beta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \\ c_1 \partial_{\delta} \Gamma_{\alpha\lambda\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta\alpha\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - c_1 \partial_{\delta} \Gamma_{\alpha\beta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \\ \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi\beta\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta\alpha\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\alpha\lambda\lambda} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \\ \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi\beta\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta\alpha\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\alpha\beta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \\ \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\alpha\beta\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\delta} \partial_{\beta} h_{\alpha\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\delta} \partial_{\gamma} h_{\alpha\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \\ \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 $	
$c_{1} \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial_{\chi} h^{\chi \delta} - c_{1} \partial_{\beta} \Gamma^{\alpha \beta}_{\alpha} \partial_{\delta} \partial_{\chi} h^{\chi \delta} - \frac{1}{2} c_{1} \partial_{\beta} \partial_{\alpha} h^{\alpha \beta} \partial_{\delta} \partial_{\chi} h^{\chi \delta} +$ $c_{1} \partial_{\beta} \partial^{\beta}_{\alpha} h^{\alpha}_{\alpha} \partial_{\delta} \partial_{\chi} h^{\chi \delta} + \frac{37}{4} c_{1} \partial_{\chi} \Gamma^{\alpha \beta \chi} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\alpha \beta} + \frac{17}{8} c_{1} \partial_{\chi} \partial^{\chi}_{\alpha} h^{\alpha \beta} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\alpha \beta} +$ $\frac{3}{4} c_{1} \partial_{\beta} \Gamma^{\alpha \beta \chi} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\alpha \chi} + \frac{1}{4} c_{1} \partial_{\alpha} \partial^{\chi}_{\alpha} h^{\alpha \beta} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\beta \chi} - \frac{3}{4} c_{1} \partial^{\chi}_{\alpha} \Gamma^{\alpha \beta}_{\alpha} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\beta \chi} -$ $\frac{37}{4} c_{1} \partial^{\chi}_{\alpha} \Gamma^{\alpha \beta}_{\alpha} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\beta \chi} - \frac{73}{8} c_{1} \partial^{\chi}_{\alpha} \partial_{\alpha} h^{\alpha \beta} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\beta \chi} + \frac{17}{4} c_{1} \partial^{\chi}_{\alpha} \partial^{\beta}_{\alpha} h^{\alpha}_{\alpha} \partial_{\delta} \partial^{\delta}_{\alpha} h_{\beta \chi} -$ $c_{1} \partial_{\beta} \Gamma^{\alpha}_{\alpha} \partial^{\delta}_{\alpha} \partial^{\delta}_{\alpha} h^{\chi}_{\chi} + c_{1} \partial_{\beta} \Gamma^{\alpha \beta}_{\alpha} \partial_{\delta} \partial^{\delta}_{\alpha} h^{\chi}_{\chi} - \frac{1}{2} c_{1} \partial_{\beta} \partial^{\beta}_{\alpha} h^{\alpha}_{\alpha} \partial_{\delta} \partial^{\delta}_{\alpha} h^{\chi}_{\chi} +$ $\frac{1}{2} c_{1} \partial_{\alpha} \Gamma_{\beta \chi \delta} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} + c_{1} \partial_{\alpha} \Gamma_{\beta \delta \chi} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} + c_{1} \partial_{\alpha} \Gamma_{\beta \delta \lambda} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} + c_{1} \partial_{\alpha} \Gamma_{\beta \delta \lambda} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} +$ $\frac{1}{2} c_{1} \partial_{\alpha} \Gamma_{\beta \chi \delta} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} + c_{1} \partial_{\alpha} \Gamma_{\beta \delta \chi} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} + c_{1} \partial_{\alpha} \Gamma_{\delta \lambda \beta} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} +$ $\frac{1}{2} c_{1} \partial_{\alpha} \Gamma_{\lambda \delta \beta} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_{1} \partial_{\beta} \Gamma_{\alpha \delta \chi} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} + c_{1} \partial_{\alpha} \Gamma_{\delta \lambda \beta} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} -$ $\frac{1}{2} c_{1} \partial_{\beta} \Gamma_{\alpha \chi \delta} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_{1} \partial_{\beta} \Gamma_{\alpha \delta \chi} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_{1} \partial_{\beta} \Gamma_{\alpha \delta \lambda} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} -$ $\frac{3}{2} c_{1} \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} + \frac{3}{2} c_{1} \partial_{\delta} \partial_{\beta} h_{\alpha \chi} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_{1} \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} -$ $\frac{1}{2} c_{1} \partial_{\delta} \Gamma_{\alpha \beta \alpha} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} + \frac{3}{2} c_{1} \partial_{\delta} \partial_{\beta} h_{\alpha \chi} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} - \frac{3}{2} c_{1} \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} -$ $\frac{1}{2} c_{1} \partial_{\delta} \Gamma_{\alpha \beta \alpha} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} + \frac{3}{2} c_{1} \partial_{\delta} \partial_{\beta} h_{\alpha \lambda} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} - \frac{3}{2} c_{1} \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta}_{\alpha} \Gamma^{\alpha \beta \chi} -$ $\frac{1}{2} c_{1} \partial_{$	
$c_{1} \partial_{\beta}\partial^{\beta}h^{\alpha}_{\alpha} \partial_{\delta}\partial_{\chi}h^{\chi\delta} + \frac{37}{4} c_{1} \partial_{\chi}\Gamma^{\alpha\beta\chi} \partial_{\delta}\partial^{\delta}h_{\alpha\beta} + \frac{17}{8} c_{1} \partial_{\chi}\partial^{\chi}h^{\alpha\beta} \partial_{\delta}\partial^{\delta}h_{\alpha\beta} + \frac{3}{4} c_{1} \partial_{\alpha}\Gamma^{\alpha\beta\chi} \partial_{\delta}\partial^{\delta}h_{\alpha\beta} + \frac{17}{8} c_{1} \partial_{\chi}\partial^{\chi}h^{\alpha\beta} \partial_{\delta}\partial^{\delta}h_{\alpha\beta} + \frac{3}{4} c_{1} \partial_{\alpha}\partial^{\chi}h^{\alpha\beta} \partial_{\delta}\partial^{\delta}h_{\beta\chi} - \frac{3}{4} c_{1} \partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\beta} \partial_{\delta}\partial^{\delta}h_{\beta\chi} - \frac{37}{8} c_{1} \partial^{\chi}\partial_{\alpha}h^{\alpha\beta} \partial_{\delta}\partial^{\delta}h_{\beta\chi} + \frac{17}{4} c_{1} \partial^{\chi}\partial^{\beta}h^{\alpha}_{\alpha} \partial_{\delta}\partial^{\delta}h_{\beta\chi} - \frac{37}{8} c_{1} \partial^{\chi}\partial_{\alpha}h^{\alpha\beta} \partial_{\delta}\partial^{\delta}h_{\beta\chi} + \frac{17}{4} c_{1} \partial^{\chi}\partial^{\beta}h^{\alpha}_{\alpha} \partial_{\delta}\partial^{\delta}h_{\beta\chi} - \frac{37}{4} c_{1} \partial_{\beta}\Gamma^{\alpha}_{\alpha}^{\beta} \partial_{\delta}\partial^{\delta}h_{\beta\chi} + c_{1} \partial_{\beta}\Gamma^{\alpha}_{\alpha}^{\beta} \partial_{\delta}\partial^{\delta}h_{\beta\chi} + \frac{17}{4} c_{1} \partial^{\chi}\partial^{\beta}h^{\alpha}_{\alpha} \partial_{\delta}\partial^{\delta}h_{\beta\chi} - \frac{1}{2} c_{1} \partial_{\beta}\Gamma^{\alpha}_{\alpha}^{\beta} \partial_{\delta}\partial^{\delta}h_{\alpha\chi} + c_{1} \partial_{\alpha}\Gamma^{\alpha}_{\beta}\partial^{\delta}h^{\alpha}_{\alpha} \partial_{\delta}\partial^{\delta}h_{\alpha\chi} + \frac{1}{2} c_{1} \partial_{\beta}\partial^{\beta}h^{\alpha}_{\alpha}^{\alpha} \partial_{\delta}\partial^{\delta}h_{\alpha\chi} + \frac{1}{2} c_{1} \partial_{\alpha}\Gamma^{\alpha}_{\beta}\partial^{\delta}h^{\alpha}_{\alpha}^{\alpha} \partial_{\delta}\partial^{\delta}h_{\alpha\chi} + \frac{1}{2} c_{1} \partial_{\alpha}\Gamma^{\alpha}_{\beta}\partial^{\delta}h^{\alpha}_{\alpha}^{\alpha} \partial_{\delta}\partial^{\delta}h^{\alpha}_{\alpha}^{\alpha} \partial_{\delta}\partial^{\delta}h_{\beta\chi} + \frac{1}{2} c_{1} \partial_{\alpha}\Gamma^{\alpha}_{\beta}\partial^{\delta}h^{\alpha}_{\alpha}^{\alpha} \partial_{\delta}\partial^{\delta}h^{\alpha}_{\alpha}^{\alpha} \partial_{\delta}\partial^{\delta}h^{\alpha}_{\lambda} + \frac{1}{2} c_{1} \partial_{\alpha}\Gamma^{\alpha}_{\beta}\partial^{\delta}h^{\alpha}_{\alpha}^{\alpha} \partial_{\delta}\partial^{\delta}h^{\alpha}_{\alpha}^{\alpha} \partial_{\delta}\partial^{\delta}h^{\alpha}_{\lambda}^{\alpha} + \frac{1}{2} c_{1} \partial_{\alpha}\Gamma^{\alpha}_{\beta}\partial^{\delta}h^{\alpha}_{\alpha}^{\alpha} \partial_{\delta}\partial^{\delta}h^{\alpha}_{\alpha}^{\alpha} \partial_{\delta}\partial^{\delta}h^{\alpha}_{\lambda}^{\alpha} + \frac{1}{2} c_{1} \partial_{\alpha}\Gamma^{\alpha}_{\beta}\partial^{\delta}h^{\alpha}_{\alpha}^{\alpha} \partial_{\delta}\partial^{\delta}h^{\alpha}_{\lambda}^{\alpha} + \frac{1}{2} c_{1} \partial_{\beta}\Gamma^{\alpha}_{\alpha}\partial^{\delta}h^{\alpha}_{\lambda}^{\alpha} \partial^{\delta}h^{\alpha}_{\lambda}^{\alpha} + \frac{1}{2} c_{1} \partial_{\beta}\Gamma^{\alpha}_{\alpha}\partial^{\delta}h^{\alpha}_{\lambda}^{\alpha} \partial^{\delta}h^{\alpha}_{\lambda}^{\alpha} \partial^{\delta}h^{\alpha}_{\lambda}^$	
$\begin{split} &\frac{3}{4}c_1\partial_{\beta}\Gamma^{\alpha\beta\chi}\partial_{\delta}\partial^{\delta}h_{\alpha\chi} + \frac{1}{4}c_1\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial^{\delta}h_{\beta\chi} - \frac{3}{4}c_1\partial^{\chi}\Gamma^{\alpha}_{\alpha}{}^{\beta}\partial_{\delta}\partial^{\delta}h_{\beta\chi} - \frac{3}{4}c_1\partial^{\chi}\Gamma^{\alpha}_{\alpha}{}^{\beta}\partial_{\delta}\partial^{\delta}h_{\beta\chi} - \frac{3}{8}c_1\partial^{\chi}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial^{\delta}h_{\beta\chi} + \frac{17}{4}c_1\partial^{\chi}\partial^{\beta}h^{\alpha}_{\alpha}\partial_{\delta}\partial^{\delta}h_{\beta\chi} - \frac{37}{4}c_1\partial^{\chi}\Gamma^{\alpha\beta}_{\alpha}{}^{\beta}\partial_{\delta}\partial^{\delta}h_{\chi} + c_1\partial_{\beta}\Gamma^{\alpha\beta}_{\alpha}\partial_{\delta}\partial^{\delta}h_{\chi}^{\chi} - \frac{1}{2}c_1\partial_{\beta}\partial^{\beta}h^{\alpha}_{\alpha}\partial_{\delta}\partial^{\delta}h_{\chi}^{\chi} + \frac{1}{4}c_1\partial^{\chi}\partial^{\beta}h^{\alpha}_{\alpha}\partial_{\delta}\partial^{\delta}h_{\chi}^{\chi} + \frac{1}{2}c_1\partial_{\alpha}\Gamma_{\beta\chi\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} + c_1\partial_{\alpha}\Gamma_{\beta\lambda\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} + c_1\partial_{\alpha}\Gamma_{\chi\beta\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} + c_1\partial_{\alpha}\Gamma_{\chi\beta\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} + \frac{1}{2}c_1\partial_{\alpha}\Gamma_{\chi\delta\beta}\partial^{\delta}\Gamma^{\alpha\beta\chi} + c_1\partial_{\alpha}\Gamma_{\delta\beta\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_1\partial_{\beta}\Gamma_{\chi\delta\alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_1\partial_{\beta}\Gamma_{\alpha\chi\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_1\partial_{\beta}\Gamma_{\alpha\lambda\lambda}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_1\partial_{\beta}\Gamma_{\alpha\lambda\lambda}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_1\partial_{\chi}\Gamma_{\beta\alpha\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_1\partial_{\chi}\Gamma_{\beta\alpha\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - c_1\partial_{\delta}\Gamma_{\alpha\beta\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} - c_1\partial_{\delta}\Gamma_{\alpha\beta\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_1\partial_{\delta}\Gamma_{\alpha\lambda\lambda}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_1\partial_{\delta}\Gamma_{\lambda\lambda\lambda}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_1\partial_{\delta}\Gamma_{\lambda\lambda\lambda}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_1\partial_{\delta}\Gamma_{\lambda\lambda\lambda}\partial^{\delta}\Gamma^{\alpha\beta\lambda} - $	
$ \begin{array}{l} \frac{37}{4} c_1 \partial^X \Gamma^{\alpha\beta}{}_{\alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{73}{8} c_1 \partial^X \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} + \frac{17}{4} c_1 \partial^X \partial^{\beta} h^{\alpha}{}_{\alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \\ c_1 \partial_{\beta} \Gamma^{\alpha}{}_{\alpha}{}^{\beta} \partial_{\delta} \partial^{\delta} h^{\chi}{}_{\chi} + c_1 \partial_{\beta} \Gamma^{\alpha\beta}{}_{\alpha} \partial_{\delta} \partial^{\delta} h^{\chi}{}_{\chi} - \frac{1}{2} c_1 \partial_{\beta} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial_{\delta} \partial^{\delta} h^{\chi}{}_{\chi} + \\ \frac{1}{2} c_1 \partial_{\alpha} \Gamma_{\beta\chi\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} + c_1 \partial_{\alpha} \Gamma_{\beta\delta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} + c_1 \partial_{\alpha} \Gamma_{\chi\delta\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} + \\ \frac{1}{2} c_1 \partial_{\alpha} \Gamma_{\chi\delta\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} + c_1 \partial_{\alpha} \Gamma_{\delta\beta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} + c_1 \partial_{\alpha} \Gamma_{\delta\chi\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \\ \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha\chi\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha\delta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi\delta\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \\ \frac{3}{2} c_1 \partial_{\beta} \partial_{\alpha} h_{\chi\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\chi} \Gamma_{\alpha\beta\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\chi} \Gamma_{\beta\alpha\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \\ c_1 \partial_{\chi} \Gamma_{\beta\delta\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} + \frac{3}{2} c_1 \partial_{\chi} \partial_{\alpha} h_{\beta\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - c_1 \partial_{\delta} \Gamma_{\alpha\beta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \\ c_1 \partial_{\delta} \Gamma_{\alpha\chi\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta\alpha\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta\chi\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \\ \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi\beta\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} + \frac{3}{2} c_1 \partial_{\delta} \partial_{\beta} h_{\alpha\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{3}{2} c_1 \partial_{\delta} \partial_{\chi} h_{\alpha\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \\ \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi\beta\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} + \frac{3}{2} c_1 \partial_{\delta} \partial_{\beta} h_{\alpha\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{3}{2} c_1 \partial_{\delta} \partial_{\chi} h_{\alpha\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \\ \frac{11}{2} c_1 \partial_{\beta} \Gamma_{\delta\alpha} \partial^{\delta} \Gamma^{\alpha\chi} - \frac{1}{2} c_1 \partial^{\alpha} \Gamma_{\delta\alpha} \partial^{\delta} \partial^{\delta} \Gamma^{\lambda\chi} + \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\delta\alpha} \partial^{\delta} \Gamma^{\lambda\chi} - \\ \frac{3}{4} c_1 \partial_{\beta} \partial_{\alpha} h_{\chi\delta} \partial^{\delta} \partial^{\lambda} h^{\alpha\beta} + \frac{3}{2} c_1 \partial_{\chi} \partial_{\beta} h_{\alpha\delta} \partial^{\delta} \partial^{\lambda} h^{\alpha\beta} - \frac{3}{4} c_1 \partial_{\delta} \partial_{\chi} h_{\alpha\beta} \partial^{\delta} \partial^{\lambda} h^{\alpha\beta} \end{array}$	
$c_{1} \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial^{\delta} h^{X}_{\chi} + c_{1} \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial^{\delta} h^{X}_{\chi} - \frac{1}{2} c_{1} \partial_{\beta} \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial^{\delta} h^{X}_{\chi} +$ $\frac{1}{2} c_{1} \partial_{\alpha} \Gamma_{\beta \chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_{1} \partial_{\alpha} \Gamma_{\beta \delta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_{1} \partial_{\alpha} \Gamma_{\chi \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} +$ $\frac{1}{2} c_{1} \partial_{\alpha} \Gamma_{\chi \delta \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_{1} \partial_{\alpha} \Gamma_{\delta \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_{1} \partial_{\alpha} \Gamma_{\delta \chi \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$ $\frac{1}{2} c_{1} \partial_{\beta} \Gamma_{\alpha \chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_{1} \partial_{\beta} \Gamma_{\alpha \delta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_{1} \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$ $\frac{3}{2} c_{1} \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_{1} \partial_{\chi} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_{1} \partial_{\chi} \Gamma_{\beta \alpha \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} +$ $c_{1} \partial_{\chi} \Gamma_{\beta \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \frac{3}{2} c_{1} \partial_{\chi} \partial_{\alpha} h_{\beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_{1} \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$ $c_{1} \partial_{\delta} \Gamma_{\alpha \chi \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_{1} \partial_{\delta} \Gamma_{\beta \alpha \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_{1} \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$ $\frac{1}{2} c_{1} \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \frac{3}{2} c_{1} \partial_{\delta} \partial_{\beta} h_{\alpha \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{3}{2} c_{1} \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$ $\frac{1}{2} c_{1} \partial_{\beta} \Gamma_{\alpha \beta} \partial^{\delta} \Gamma^{\alpha \chi} + \frac{3}{2} c_{1} \partial_{\delta} \partial_{\beta} h_{\alpha \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{3}{2} c_{1} \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \Gamma^{\alpha \chi} -$ $\frac{11}{2} c_{1} \partial_{\beta} \Gamma_{\delta \alpha} \partial^{\delta} \Gamma^{\alpha \chi} - \frac{1}{2} c_{1} \partial^{\alpha} \Gamma_{\delta \alpha} \partial^{\delta} \Gamma_{\beta} \chi + \frac{1}{2} c_{1} \partial_{\beta} \Gamma_{\delta \alpha} \partial^{\delta} \Gamma^{\alpha \chi} -$ $\frac{11}{2} c_{1} \partial_{\beta} \Gamma_{\delta \alpha} \partial^{\delta} \partial^{\delta} \Gamma^{\alpha \chi} - \frac{1}{2} c_{1} \partial^{\alpha} \Gamma_{\delta \alpha} \partial^{\delta} \Gamma_{\beta} \chi + \frac{1}{2} c_{1} \partial_{\beta} \Gamma_{\delta \alpha} \partial^{\delta} \Gamma^{\alpha \chi} -$ $\frac{11}{2} c_{1} \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \partial^{\lambda} h^{\alpha \beta} + \frac{3}{2} c_{1} \partial_{\chi} \partial_{\beta} h_{\alpha \delta} \partial^{\delta} \partial^{\lambda} h^{\alpha \beta} - \frac{3}{4} c_{1} \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \partial^{\lambda} h^{\alpha \beta}$	
$\begin{split} &\frac{1}{2} c_1 \partial_{\alpha} \Gamma_{\beta \chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_1 \partial_{\alpha} \Gamma_{\beta \delta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_1 \partial_{\alpha} \Gamma_{\chi \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \\ &\frac{1}{2} c_1 \partial_{\alpha} \Gamma_{\chi \delta \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_1 \partial_{\alpha} \Gamma_{\delta \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_1 \partial_{\alpha} \Gamma_{\delta \chi \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \\ &\frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha \chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha \delta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \\ &\frac{3}{2} c_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\chi} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\chi} \Gamma_{\beta \alpha \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \\ &c_1 \partial_{\chi} \Gamma_{\beta \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \frac{3}{2} c_1 \partial_{\chi} \partial_{\alpha} h_{\beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \\ &c_1 \partial_{\delta} \Gamma_{\alpha \chi \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \alpha \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \\ &\frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \frac{3}{2} c_1 \partial_{\delta} \partial_{\beta} h_{\alpha \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{3}{2} c_1 \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \\ &\frac{11}{2} c_1 \partial_{\beta} \Gamma_{\delta \alpha} \partial^{\delta} \Gamma^{\alpha \chi} \chi - \frac{1}{2} c_1 \partial^{\alpha} \Gamma_{\delta \alpha} \partial^{\delta} \Gamma_{\beta} \chi + \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\delta \alpha} \partial^{\delta} \Gamma^{\chi \alpha} \chi - \\ &\frac{3}{4} c_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} + \frac{3}{2} c_1 \partial_{\chi} \partial_{\beta} h_{\alpha \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} - \frac{3}{4} c_1 \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} \end{split}$	
$\begin{split} &\frac{1}{2}c_{1}\partial_{\alpha}\Gamma_{\chi\delta\beta}\partial^{\delta}\Gamma^{\alpha\beta\chi} + c_{1}\partial_{\alpha}\Gamma_{\delta\beta\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} + c_{1}\partial_{\alpha}\Gamma_{\delta\chi\beta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \\ &\frac{1}{2}c_{1}\partial_{\beta}\Gamma_{\alpha\chi\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_{1}\partial_{\beta}\Gamma_{\alpha\delta\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_{1}\partial_{\beta}\Gamma_{\chi\delta\alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \\ &\frac{3}{2}c_{1}\partial_{\beta}\partial_{\alpha}h_{\chi\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_{1}\partial_{\chi}\Gamma_{\alpha\beta\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_{1}\partial_{\chi}\Gamma_{\beta\alpha\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} + \\ &c_{1}\partial_{\chi}\Gamma_{\beta\delta\alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi} + \frac{3}{2}c_{1}\partial_{\chi}\partial_{\alpha}h_{\beta\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - c_{1}\partial_{\delta}\Gamma_{\alpha\beta\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \\ &c_{1}\partial_{\delta}\Gamma_{\alpha\chi\beta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_{1}\partial_{\delta}\Gamma_{\beta\alpha\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_{1}\partial_{\delta}\Gamma_{\beta\chi\alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \\ &\frac{1}{2}c_{1}\partial_{\delta}\Gamma_{\chi\beta\alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi} + \frac{3}{2}c_{1}\partial_{\delta}\partial_{\beta}h_{\alpha\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{3}{2}c_{1}\partial_{\delta}\partial_{\chi}h_{\alpha\beta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \\ &\frac{11}{2}c_{1}\partial_{\beta}\Gamma_{\delta\alpha}^{\beta}\partial^{\delta}\Gamma^{\alpha\chi}_{} - \frac{1}{2}c_{1}\partial^{\alpha}\Gamma_{\delta\alpha}^{\beta}\partial^{\delta}\Gamma^{\chi}_{} + \frac{1}{2}c_{1}\partial_{\beta}\Gamma_{\delta\alpha}^{\beta}\partial^{\delta}\Gamma^{\chi\alpha}_{} - \\ &\frac{3}{4}c_{1}\partial_{\beta}\partial_{\alpha}h_{\chi\delta}\partial^{\delta}\partial^{\chi}h^{\alpha\beta} + \frac{3}{2}c_{1}\partial_{\chi}\partial_{\beta}h_{\alpha\delta}\partial^{\delta}\partial^{\chi}h^{\alpha\beta} - \frac{3}{4}c_{1}\partial_{\delta}\partial_{\chi}h_{\alpha\beta}\partial^{\delta}\partial^{\chi}h^{\alpha\beta} \end{split}$	
$\begin{split} &\frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha \chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha \delta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\chi} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\chi} \Gamma_{\beta \alpha \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \\ &\frac{3}{2} c_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\chi} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\chi} \Gamma_{\beta \alpha \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \\ &c_1 \partial_{\chi} \Gamma_{\beta \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \frac{3}{2} c_1 \partial_{\chi} \partial_{\alpha} h_{\beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - c_1 \partial_{\delta} \Gamma_{\alpha \beta \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \\ &c_1 \partial_{\delta} \Gamma_{\alpha \chi \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \alpha \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \\ &\frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \frac{3}{2} c_1 \partial_{\delta} \partial_{\beta} h_{\alpha \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{3}{2} c_1 \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \Gamma^{\lambda \alpha \chi} - \\ &\frac{11}{2} c_1 \partial_{\beta} \Gamma_{\delta \alpha} \partial^{\delta} \Gamma^{\alpha \chi} \chi - \frac{1}{2} c_1 \partial^{\alpha} \Gamma_{\delta \alpha} \partial^{\delta} \Gamma_{\beta} \chi + \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\delta \alpha} \partial^{\delta} \Gamma^{\chi \alpha} \chi - \\ &\frac{3}{4} c_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} + \frac{3}{2} c_1 \partial_{\chi} \partial_{\beta} h_{\alpha \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} - \frac{3}{4} c_1 \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} \end{split}$	
$\begin{split} &\frac{3}{2}c_{1}\partial_{\beta}\partial_{\alpha}h_{\chi\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_{1}\partial_{\chi}\Gamma_{\alpha\beta\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_{1}\partial_{\chi}\Gamma_{\beta\alpha\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} + \\ &c_{1}\partial_{\chi}\Gamma_{\beta\delta\alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi} + \frac{3}{2}c_{1}\partial_{\chi}\partial_{\alpha}h_{\beta\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - c_{1}\partial_{\delta}\Gamma_{\alpha\beta\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \\ &c_{1}\partial_{\delta}\Gamma_{\alpha\chi\beta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_{1}\partial_{\delta}\Gamma_{\beta\alpha\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_{1}\partial_{\delta}\Gamma_{\beta\chi\alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \\ &\frac{1}{2}c_{1}\partial_{\delta}\Gamma_{\chi\beta\alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi} + \frac{3}{2}c_{1}\partial_{\delta}\partial_{\beta}h_{\alpha\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{3}{2}c_{1}\partial_{\delta}\partial_{\chi}h_{\alpha\beta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \\ &\frac{11}{2}c_{1}\partial_{\beta}\Gamma_{\delta\alpha}^{\beta}\partial^{\delta}\Gamma^{\alpha\chi}_{} - \frac{1}{2}c_{1}\partial^{\alpha}\Gamma_{\delta\alpha}^{\beta}\partial^{\delta}\Gamma_{}^{} + \frac{1}{2}c_{1}\partial_{\beta}\Gamma_{\delta\alpha}^{\beta}\partial^{\delta}\Gamma^{\chi\alpha}_{} - \\ &\frac{3}{4}c_{1}\partial_{\beta}\partial_{\alpha}h_{\chi\delta}\partial^{\delta}\partial^{\chi}h^{\alpha\beta} + \frac{3}{2}c_{1}\partial_{\chi}\partial_{\beta}h_{\alpha\delta}\partial^{\delta}\partial^{\chi}h^{\alpha\beta} - \frac{3}{4}c_{1}\partial_{\delta}\partial_{\chi}h_{\alpha\beta}\partial^{\delta}\partial^{\chi}h^{\alpha\beta} \end{split}$	
$c_{1} \partial_{\chi} \Gamma_{\beta\delta\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} + \frac{3}{2} c_{1} \partial_{\chi} \partial_{\alpha} h_{\beta\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - c_{1} \partial_{\delta} \Gamma_{\alpha\beta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - c_{1} \partial_{\delta} \Gamma_{\alpha\lambda\beta} \partial^{\delta} \Gamma^{\alpha\lambda} - c_{1} \partial_{\delta} \Gamma_{\alpha\lambda} \partial^{\delta} \Gamma^{\alpha\lambda} - c_{1} \partial_{\delta} \Gamma_{\alpha\lambda} \partial^{\delta} \Gamma^{\alpha\lambda} - c_{1} \partial_{\delta} \Gamma_{\alpha\lambda} \partial^{\delta} \Gamma^$	
$c_{1} \partial_{\delta} \Gamma_{\alpha \chi \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_{1} \partial_{\delta} \Gamma_{\beta \alpha \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_{1} \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_{1} \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_{1} \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \frac{3}{2} c_{1} \partial_{\delta} \partial_{\beta} h_{\alpha \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{3}{2} c_{1} \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{11}{2} c_{1} \partial_{\beta} \Gamma_{\delta \alpha}^{\ \beta} \partial^{\delta} \Gamma^{\alpha \chi}_{\chi} - \frac{1}{2} c_{1} \partial^{\alpha} \Gamma_{\delta \alpha}^{\ \beta} \partial^{\delta} \Gamma_{\beta}^{\chi}_{\chi} + \frac{1}{2} c_{1} \partial_{\beta} \Gamma_{\delta \alpha}^{\ \beta} \partial^{\delta} \Gamma^{\chi \alpha}_{\chi} - \frac{3}{4} c_{1} \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} + \frac{3}{2} c_{1} \partial_{\chi} \partial_{\beta} h_{\alpha \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} - \frac{3}{4} c_{1} \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta}$	
$\frac{1}{2}c_{1}\partial_{\delta}\Gamma_{\chi\beta\alpha}\partial^{\delta}\Gamma^{\alpha\beta\chi} + \frac{3}{2}c_{1}\partial_{\delta}\partial_{\beta}h_{\alpha\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{3}{2}c_{1}\partial_{\delta}\partial_{\chi}h_{\alpha\beta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_{1}\partial_{\beta}\Gamma_{\delta\alpha}^{\beta}\partial^{\delta}\Gamma^{\alpha\chi}_{\chi} - \frac{1}{2}c_{1}\partial^{\alpha}\Gamma_{\delta\alpha}^{\beta}\partial^{\delta}\Gamma_{\chi}^{\chi} + \frac{1}{2}c_{1}\partial_{\beta}\Gamma_{\delta\alpha}^{\beta}\partial^{\delta}\Gamma^{\chi\alpha}_{\chi} - \frac{3}{4}c_{1}\partial_{\beta}\partial_{\alpha}h_{\chi\delta}\partial^{\delta}\partial^{\chi}h^{\alpha\beta} + \frac{3}{2}c_{1}\partial_{\chi}\partial_{\beta}h_{\alpha\delta}\partial^{\delta}\partial^{\chi}h^{\alpha\beta} - \frac{3}{4}c_{1}\partial_{\delta}\partial_{\chi}h_{\alpha\beta}\partial^{\delta}\partial^{\chi}h^{\alpha\beta}$	
$\frac{11}{2} c_1 \partial_{\beta} \Gamma_{\delta \alpha}{}^{\beta} \partial^{\delta} \Gamma^{\alpha \chi}{}_{\chi} - \frac{1}{2} c_1 \partial^{\alpha} \Gamma_{\delta \alpha}{}^{\beta} \partial^{\delta} \Gamma_{\beta}{}^{\chi}{}_{\chi} + \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\delta \alpha}{}^{\beta} \partial^{\delta} \Gamma^{\chi \alpha}{}_{\chi} - \frac{3}{4} c_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} + \frac{3}{2} c_1 \partial_{\chi} \partial_{\beta} h_{\alpha \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} - \frac{3}{4} c_1 \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta}$	
$\frac{3}{4}c_1\partial_{\beta}\partial_{\alpha}h_{\chi\delta}\partial^{\delta}\partial^{\chi}h^{\alpha\beta} + \frac{3}{2}c_1\partial_{\chi}\partial_{\beta}h_{\alpha\delta}\partial^{\delta}\partial^{\chi}h^{\alpha\beta} - \frac{3}{4}c_1\partial_{\delta}\partial_{\chi}h_{\alpha\beta}\partial^{\delta}\partial^{\chi}h^{\alpha\beta}$	
Added source term: $h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi}$	
Added Source term: $h^{-1} \mathcal{I}_{\alpha\beta} + 1^{-1} \Delta_{\alpha\beta\chi}$	$\frac{1}{4}c_1 o_{\beta} o_{\alpha} n_{\chi\delta} o_{\beta} o_{\gamma} n_{\gamma} + \frac{1}{2}c_1 o_{\chi} o_{\beta} n_{\alpha\delta} o_{\gamma} o_{\gamma} n_{\gamma} - \frac{1}{4}c_1 o_{\delta} o_{\chi} n_{\alpha\beta} o_{\gamma} o_{\gamma} n_{\gamma}$
	Added Source term: $ n ^{-\gamma} \gamma_{\alpha\beta} + 1^{-\gamma} \Delta_{\alpha\beta\chi}$

$\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha\chi}^{ \delta} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha \chi}^{ \delta} + \frac{19}{2} c_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\beta\alpha}^{ \delta} +$												
$c_1 \partial^\chi \Gamma^\alpha_{\alpha}{}^\beta \partial_\delta \Gamma_\beta^{\ \delta}{}_\chi + \tfrac{1}{2} c_1 \partial^\chi \Gamma^\alpha_{\ \alpha}{}^\beta \partial_\delta \Gamma_{\chi\beta}^{\ \delta} + \tfrac{1}{2} c_1 \partial^\chi \Gamma^{\alpha\beta}_{\ \alpha} \partial_\delta \Gamma_{\chi\beta}^{\ \delta} -$												
$\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\chi \alpha}^{\ \ \ \alpha} + \frac{1}{2} c_1 \partial^{\chi} \Gamma_{\beta\alpha}^{\ \ \beta} \partial_{\delta} \Gamma_{\chi}^{\ \ \delta\alpha} + c_1 \partial^{\chi} \Gamma^{\alpha}_{\ \ \alpha}^{\ \ \beta} \partial_{\delta} \Gamma_{\chi \beta}^{\ \ \delta} -$												
$\frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \Gamma^{\chi}_{\chi}{}^{\delta} + c_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \Gamma^{\chi\delta}_{\chi} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \Gamma^{\chi\delta}_{\chi} -$												
$\frac{37}{4} c_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\alpha} h_{\beta}^{\ \delta} - \frac{3}{4} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\alpha} h_{\chi}^{\ \delta} - \frac{37}{4} c_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\beta} h_{\alpha}^{\ \delta} +$												
$\frac{3}{8}c_{1}\partial_{\chi}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\alpha}^{\ \delta} + \frac{37}{8}c_{1}\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\ \delta} + \frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\ \alpha}{}^{\beta}\partial_{\delta}\partial_{\beta}h_{\chi}^{\ \delta} +$												
	$_{1} \partial^{X} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} + \frac{13}{4} c_{1} \partial^{X} \partial^{\beta}$											
	$_{1}\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial_{\chi}h_{\beta}^{\delta} + \frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{c}$											
	$c_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\delta} - \frac{29}{4} c_1 \partial^{\chi} \partial_{\delta} \partial_{\alpha} h_{\beta}^{\delta}$											
$c_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial_{\chi} h^{\chi \delta} - c_1 \partial_{\beta} \Gamma^{\alpha}$	$^{\alpha\beta}_{\alpha}\partial_{\delta}\partial_{\chi}h^{\chi\delta} - \frac{1}{2}c_{1}\partial_{\beta}\partial_{\alpha}h^{\alpha\beta}\partial_{\delta}\partial_{\chi}$	$h^{\chi\delta}$ +										
	$_{1} \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial^{\delta} h_{\alpha\beta} + \frac{17}{8} c_{1} \partial_{\chi} \partial^{\chi} h_{\alpha\beta}$											
	$_{1}\partial_{\alpha}\partial^{\chi}h^{\alpha\beta}\partial_{\delta}\partial^{\delta}h_{\beta\chi}-\frac{3}{4}c_{1}\partial^{\chi}\Gamma^{\alpha}_{\alpha}^{\beta}$											
	$c_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} + \frac{17}{4} c_1 \partial^{\chi} \partial^{\delta} h_{\beta\chi}$											
	$-\alpha\beta_{\alpha}\partial_{\delta}\partial^{\delta}h^{\chi}_{\chi} - \frac{1}{2}c_{1}\partial_{\beta}\partial^{\beta}h^{\alpha}_{\alpha}\partial_{\delta}\partial^{\beta}h^{\alpha}_{\alpha}\partial^{\beta$											
	$\Gamma_{\beta\delta\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} + c_1 \partial_{\alpha}\Gamma_{\chi\beta\delta}\partial^{\delta}\Gamma^{\alpha\beta}$											
$\frac{1}{2} c_1 \partial_{\alpha} \Gamma_{\chi \delta \beta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + c_1 \partial_{\alpha}$	$\Gamma_{\delta\beta\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} + c_1 \partial_{\alpha}\Gamma_{\delta\chi\beta}\partial^{\delta}\Gamma^{\alpha\beta}$	<i>x</i> _										
$\frac{1}{2} c_1 \partial_{\beta} \Gamma_{\alpha \chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial$	$_{eta}\Gamma_{lpha\delta\chi}\partial^{\delta}\Gamma^{lphaeta\chi}$ - $\frac{1}{2}$ c_{1} $\partial_{eta}\Gamma_{\chi\deltalpha}\partial^{\delta}\Gamma^{\prime}$	$\alpha \beta \chi$ _										
$\frac{3}{2} c_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1$	$\partial_{\chi}\Gamma_{\alpha\beta\delta}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}c_{1}\partial_{\chi}\Gamma_{\beta\alpha\delta}\partial^{\delta}\Gamma$	$-\alpha\beta\chi$ +										
$c_1 \partial_{\chi} \Gamma_{\beta\delta\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} + \frac{3}{2} c_1 \partial_{\chi}$	$\partial_{\alpha}h_{eta\delta}\partial^{\delta}\Gamma^{lphaeta\chi}$ - $c_{1}\partial_{\delta}\Gamma_{lphaeta\chi}\partial^{\delta}\Gamma^{lphaeta}$	<i>x</i> _										
$c_1 \partial_\delta \Gamma_{lpha \chi eta} \partial^\delta \Gamma^{lpha eta \chi} - rac{1}{2} c_1 \partial_\delta \Gamma_{lpha \chi eta}$	$\Gamma_{etalpha\chi}\partial^{\delta}\Gamma^{lphaeta\chi}$ - $rac{1}{2}$ c_1 $\partial_{\delta}\Gamma_{eta\chilpha}\partial^{\delta}\Gamma^{lphaeta\chi}$	<i>X</i> _										
	$\partial_{\delta}\partial_{\beta}h_{\alpha\chi}\partial^{\delta}\Gamma^{\alpha\beta\chi} - \frac{3}{2}c_{1}\partial_{\delta}\partial_{\chi}h_{\alpha\beta}\partial_{\zeta}$											
	$\partial^{\alpha}\Gamma_{\delta\alpha}^{\ \beta}\partial^{\delta}\Gamma_{\beta}^{\ X}_{X} + \frac{1}{2}c_{1}\partial_{\beta}\Gamma_{\delta\alpha}^{\ \beta}\partial^{\delta}$											
$\frac{3}{4} c_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} + \frac{3}{2} \alpha^{\delta} \partial^{\alpha} h^{\alpha \beta} + \frac{3}{2} \alpha^$	$c_1 \partial_{\chi} \partial_{\beta} h_{\alpha\delta} \partial^{\delta} \partial^{\chi} h^{\alpha\beta} - \frac{3}{4} c_1 \partial_{\delta} \partial_{\chi} h^{\alpha\beta}$	$h_{lphaeta}\partial^\delta\partial^\chi h^{lphaeta}$										
Added source term: h^{α}	$\mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi}$											
.~	.~	.~ .~										
J^P	J^{P}	J^{P}										
	$\mathcal{C}_{\mu} \downarrow \searrow \qquad \qquad$											
\sim la la \sim	אום ומוא ואומ רְ.	צות ותוא ואומ יְי										
Massive Pole resid Polarisati Polarisati Square m Spin: Parity:	Massive I Pole resid Polarisati Square m Spin: Parity:	Massive pole reside Polarisati Square magnity:										
ve esid sati	ve pesic	esic esic sati										

۷ 0

1 Even

> 0

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
Massive particle Pole residue: 7 Polarisations: 7 Square mass: - Spin: 3	Massive particle Pole residue: Polarisations: Square mass: Spin: Parity:	Pole residue: Polarisations: Square mass: Spin: Parity:			
$\begin{vmatrix} e & & & \\ \frac{2}{7c_1} > 0 & \\ \frac{2}{7c_1} > 0 & \\ \frac{a_0}{7c_1} > 0 & \\ \frac{7}{7c_1} > 0 & \\ \frac{3}{7c_1} > 0 &$	$\begin{vmatrix} e & & & \\ \frac{4}{5c_1} & > 0 \\ \frac{a_0}{5c_1} & > 0 \\ 0 & & \end{vmatrix}$	$ \begin{array}{c c} -\frac{2}{c_1} > 0 \\ \hline 1 \\ \frac{a_0}{c_1} > 0 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $			

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 $\Delta_{1}^{\#5}$

0

 $-\frac{a_0^{2} - 118 a_0 c_1 k^2 + 2560 c_1^2 k^4}{6 \sqrt{2} a_0^2 (a_0 - 33 c_1 k^2)}$

 $\frac{-19a_0^2 + 472a_0c_1k^2 + 5120c_1^2k^4}{12a_0^2(a_0 - 33c_1k^2)}$

 $\frac{2 (a_0^2 - 30 a_0 c_1 k^2 + 401 c_1^2 k^4)}{a_0^2 (a_0 - 33 c_1 k^2)}$ $5 \sqrt{\frac{2}{3}} c_1 k^2 (7 a_0 - 236 c_1 k^2)$ $a_0^2 (a_0 - 33 c_1 k^2)$ $5 \sqrt{\frac{10}{3}} c_1 k^2$

0

0

0

0

 $\Delta_1^{\#3} \dagger^{\alpha}$

 $\frac{2\sqrt{2}}{a_0}$

0

0

0

 $\Delta_{1}^{\#2} \, \dagger^{\alpha}$

0

0

0

0

 $\Delta_{1}^{\#1} +^{\alpha}$

0

 $\Delta_1^{\#3} \dagger^{lpha \prime}$

 $\frac{10c_1\,k^2\,(-111a_0+1118\,c_1\,k^2)}{\sqrt{3}\,a_0^2\,(a_0-33\,c_1\,k^2)}$

 $0 \\ \frac{5\sqrt{\frac{10}{3}}c_1k^2}{a_0^2-33a_0c_1k^2}$

0

0

0

0

0

0

0

 $50 \sqrt{\frac{2}{3}} c_1 k^2$ $a_0^2 - 33 a_0 c_1 k^2$ $a_0^{-28c_1 k^2}$ $6a_0^{2-198} a_0 c_1 k^2$

0

0

· ?	? J^P ?
Massive partic	?

	Massive particle				
$J^P = 2^{-1}$	Pole residue:	$\frac{4}{c_1}$ >			
?	Polarisations:	5			
\vec{k}^{μ}	Square mass:	$\frac{a_0}{c_1}$ >			
?	Spin:	2			
·	Parity:	Odd			

?		
? k^{μ} /	Quadratic pole	<u> </u>
	Pole residue:	$\left -\frac{1}{a_0}>0\right $
7	Polarisations:	2
?		

Unitarity conditions

(Unitarity is demonstrably impossible)

$\frac{\sqrt{5}}{6(a_0-33c_1k)}$	$\frac{7(a_0 + 2c_1 k^2)}{3\sqrt{2} a_0 (a_0 - 33)}$	3 (a ₀ -33 c ₁ k ²	0										
- 9	3 1/2	lω		$h_{1^{\bar{-}}}^{\#1}\alpha$	0	0	0	0	0	0	0	0	0
$-\frac{\sqrt{\frac{5}{2}} (a_0-82c_1 k^2)}{6 a_0 (a_0-33c_1 k^2)}$	$\frac{17a_0^2 - 236a_0c_1 k^2 + 1280c_1^2 k^4}{6a_0^2 (a_0 - 33c_1 k^2)}$	$\frac{7(a_0+2c_1k^2)}{3\sqrt{2}a_0(a_0-33c_1k^2)}$	0	$\Gamma_{1^{-}\alpha}^{\#6}$	0	0	0	$-\frac{5c_1k^2}{\sqrt{3}}$	0	$\frac{1}{6} (-a_0 + 20 c_1 k^2)$	$\left(-\frac{1}{6}\sqrt{5}(a_0-5c_1k^2)\right)$	$\frac{a_0 + 40c_1 k^2}{6 \sqrt{2}}$	$\frac{5}{12}(a_0-17c_1k^2)$
$\frac{1}{12 a_0 - 396 c_1 k^2}$	$-\frac{\sqrt{\frac{5}{2}} (a_0-82c_1 k^2)}{6a_0 (a_0-33c_1 k^2)} \frac{17a_0^2}{}$	1	0	$\Gamma_{1}^{\#5}{}_{\alpha}$	0	0	0	$5\sqrt{\frac{3}{2}}c_1k^2$	0	$-\frac{a_0}{6\sqrt{2}}$	$\left -\frac{1}{6} \sqrt{\frac{5}{2}} \left(a_0 + 16 c_1 k^2 \right) \right -\frac{1}{6} \sqrt{5} \left(a_0 - 5 c_1 k^2 \right)$	<u>8</u>	$\frac{a_0 + 40c_1 k^2}{6\sqrt{2}}$
$\sqrt{5} (5 a_0 - 164 c_1 k^2)$ 12 $a_0 (a_0 - 33 c_1 k^2)$	$-\frac{a_0^2 - 118 a_0 c_1 k^2 + 2560 c_1^2 k^4}{6 \sqrt{2} a_0^2 (a_0 - 33 c_1 k^2)}$	$-\frac{a_0-28c_1k^2}{6a_0^2-198a_0c_1k^2}$	0	$\Gamma_1^{\#4}$	0	0	0	$-\frac{5}{2}\sqrt{\frac{5}{3}}c_1k^2$	0	$\frac{1}{6} \sqrt{5} (a_0 - 8c_1 k^2)$	$\frac{1}{3} (a_0 + 7 c_1 k^2)$	$-\frac{1}{6}\sqrt{\frac{5}{2}}(a_0+16c_1k^2)$	$-\frac{1}{6}\sqrt{5}(a_0-5c_1k^2)$
$\frac{5\sqrt{\frac{10}{3}}c_1k^2}{a_0^2-33a_0c_1k^2}$	$\frac{10c_1 k^2 (-11a_0 + 118c_1 k^2)}{\sqrt{3} a_0^2 (a_0 - 33c_1 k^2)} - \frac{a_0}{4}$	$50 \sqrt{\frac{2}{3}} c_1 k^2$ $a_0^2 - 33 a_0 c_1 k^2$	0	$\Gamma_{1}^{\#3}$	0	0	0	$\frac{5}{2}\sqrt{3}c_1k^2$	0	- <u>a0</u>	$\frac{1}{6}\sqrt{5}(a_0-8c_1k^2)$	$-\frac{a_0}{6\sqrt{2}}$	$\frac{1}{6} (-a_0 + 20 c_1 k^2)$
$-\frac{5}{a_0^2}$	$\frac{c_1 k^2 (-)}{\sqrt{3} a_0^2}$	50 a ₀ ² -		$\Gamma_{1^{^-}\alpha}^{\#2}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0
0	0 10	0	0	$\Gamma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{4} \left(-a_0 - 3 c_1 k^2 \right)$	$\frac{a_0}{2\sqrt{2}}$	$\frac{5}{2} \sqrt{3} c_1 k^2$	$-\frac{5}{2}\sqrt{\frac{5}{3}}c_1k^2$	$5\sqrt{\frac{3}{2}}c_1k^2$	$-\frac{5c_1 k^2}{\sqrt{3}}$
0	0	0	0	$\Gamma_{1}^{\#3}$	5 c ₁ k ²	0	$\frac{1}{4} (a_0 - 29 c_1 k^2)$	0	0	0	0	0	0
0	0	0	0	$\Gamma_{1}^{\#2}_{+}$	$-\frac{a_0}{2\sqrt{2}}$	0	0 1/4	0	0	0	0	0	0
0	0	0	0	$\Gamma_{1}^{\#1}{}_{\alphaeta}$	$\Gamma_1^{\#1} + \alpha \beta \left[\frac{1}{4} \left(-a_0 - 15 c_1 k^2 \right) \right] $	$-\frac{a_0}{2\sqrt{2}}$	5 c ₁ k ²	0	0	0	0	0	0
$\Delta_{1}^{\#4} +^{\alpha}$	$\Delta_{1}^{\#5} +^{\alpha}$	$\Delta_{1}^{\#6} + ^{lpha}$	$\mathcal{T}_{1}^{\#1} +^{\alpha}$		$\Gamma_1^{\#1} + \alpha \beta \frac{1}{4}$	$\Gamma_1^{\#2} + \alpha \beta$	$\Gamma_{1}^{#3} + \alpha \beta$	$\Gamma_1^{\#1} + ^{\alpha}$	$\Gamma_{1}^{#2} + \alpha$	$\Gamma_1^{\#3} + \alpha$	$\Gamma_1^{\#4} + ^{\alpha}$	$\Gamma_1^{\#5} +^{\alpha}$	$\Gamma_{1}^{\#6} + \alpha$

 $\Gamma_{3^{-} \alpha\beta\chi}^{\#1} \uparrow^{\alpha\beta\chi} \frac{1}{2} (-a_0 - 7c_1 k^2)$

0 0

$h_{1}^{\#1}$	0	0	0	0	0	0	0	0	0	0
$\Gamma_{1}^{\#6}$	0	0	0	$-\frac{5c_1k^2}{\sqrt{3}}$	0	$\frac{1}{6} (-a_0 + 20 c_1 k^2)$	$-\frac{1}{6}\sqrt{5}(a_0-5c_1k^2)$	$\frac{a_0 + 40c_1 k^2}{6 \sqrt{2}}$	$\frac{5}{12} (a_0 - 17 c_1 k^2)$	0
$\Gamma_{1}^{\#5}$	0	0	0	$5 \sqrt{\frac{3}{2}} c_1 k^2$	0	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6}\sqrt{\frac{5}{2}}(a_0+16c_1k^2)\Big _{-\frac{1}{6}}^{-\frac{1}{4}}\sqrt{5}(a_0-5c_1k^2)$	3 S	$\frac{a_0 + 40c_1 k^2}{6 \sqrt{2}}$	0
$\Gamma_{1}^{\#4}$	0	0	0	$-\frac{5}{2}\sqrt{\frac{5}{3}}c_1k^2$	0	$\frac{1}{6}\sqrt{5}(a_0-8c_1k^2)$	$\frac{1}{3}(a_0 + 7c_1k^2)$	$-\frac{1}{6}\sqrt{\frac{5}{2}}(a_0+16c_1k^2)$	$-\frac{1}{6}\sqrt{5}(a_0-5c_1k^2)$	0
$\Gamma_{1}^{\#3}$	0	0	0	$\frac{5}{2}\sqrt{3}c_1k^2$	0	- 4 0	$\frac{1}{6}\sqrt{5}(a_0-8c_1k^2)$	$-\frac{a_0}{6\sqrt{2}}$	$\frac{1}{6} \left(-a_0 + 20 c_1 k^2 \right)$	0
$\Gamma_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0
$\Gamma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{4} \left(-a_0 - 3 c_1 k^2 \right)$	$\frac{a_0}{2\sqrt{2}}$	$\frac{5}{2}\sqrt{3}c_1k^2$	$-\frac{5}{2}\sqrt{\frac{5}{3}}c_1k^2$	$5\sqrt{\frac{3}{2}}c_1k^2$	$-\frac{5c_1 k^2}{\sqrt{3}}$	0
$\Gamma_{1}^{\#3}{}_{\alpha\beta}$	5c ₁ k ²	0	$\frac{1}{4} (a_0 - 29 c_1 k^2)$	0	0	0	0	0	0	0
$\Gamma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
αβ	15 c ₁ k ²)	<u>0</u>	, k ²							

$\Delta_{2^{-}}^{#1} \alpha_{eta\chi} \Delta_{2^{-}}^{#2} \alpha_{eta\chi}$	0	0	0	0	0	$\frac{4}{a_0-5c_1k^2}$	
$\Delta_{2^{-}}^{\#1}{}_{\alpha\beta\chi}$	0	0	0	0	$\frac{4}{a_0 \cdot c_1 k^2}$	0	
${\cal T}_{2}^{\#1}_{\alpha\beta}$	- 44 i √2 c1 k a0 ²	$-\frac{80ic_1k}{\sqrt{3}a_0^2}$	$-\frac{80i\sqrt{\frac{2}{3}}c_1k}{a_0^2}$	$-\frac{8(a_0+11c_1k^2)}{a_0^2k^2}$	0	0	
$\Delta_{2}^{\#3}{}_{\alpha\beta}$	$-\frac{80c_1k^2}{\sqrt{3}a_0^2}$	$-\frac{2\sqrt{2}c_1k^2}{3a_0^2}$	$\frac{4(3a_0-c_1k^2)}{3a_0^2}$	$\frac{80 i \sqrt{\frac{2}{3}} c_1 k}{a_0^2}$	0	0	
$\Delta_{2}^{\#2}{}_{\alpha\beta}$	$-\frac{40 \sqrt{\frac{2}{3}} c_1 k^2}{a_0^2}$	$-\frac{\frac{2(3a_0+c_1k^2)}{3a_0^2}}{3a_0^2}$	$-\frac{2\sqrt{2}c_1k^2}{3a_0^2}$	$\frac{80ic_1k}{\sqrt{3}a_0^2}$	0	0	
$\Delta_{2}^{\#1}{}_{\alpha\beta}$		$-\frac{40\sqrt{\frac{2}{3}}c_1k^2}{a_0^2}$	$-\frac{80c_1k^2}{\sqrt{3}a_0^2}$	$\frac{44 i \sqrt{2} c_1 k}{a_0^2}$	0	0	
	$\Delta_{2}^{#1} + \alpha \beta$	$\Delta_2^{#2} + \alpha^{\beta}$	$\Delta_{2}^{#3} + ^{\alpha eta}$	$\mathcal{T}_{2}^{\#1} +^{\alpha\beta}$	$\Delta_{2^{\text{-}}}^{\#1} +^{\alpha\beta\chi}$	$\Delta_2^{#2} + ^{\alpha \beta \chi}$	

 $\Delta_0^{\#2}$

 $\frac{5a_0 + 23c_1k^2}{4a_0^2}$

 $-\frac{a_0-23\,c_1\,k^2}{2\,\sqrt{2}\,{a_0}^2}$

0

0

 $-\frac{a_0}{2\sqrt{2}}$

0

0

0

0 $10 \sqrt{\frac{2}{3}} c_1 k^2$

<u>a₀</u> 2

 $-\frac{3a_0+46c_1k^2}{6\sqrt{2}}$

 $\Delta_0^{\#3}$

 $\frac{9a_0 + 23c_1k^2}{12a_0^2}$

 $\frac{3a_0 + 23c_1 k^2}{6\sqrt{2}a_0^2}$

 $\frac{20\,i\,c_1\,k}{\sqrt{3}\,{a_0}^2}$

0

 $\Delta_0^{\#4}$

 $-\frac{a_0-23c_1k^2}{2\sqrt{2}a_0^2}$

 $-\frac{3a_0+23c_1k^2}{6\sqrt{2}a_0^2}$

 $\frac{3a_0-23c_1k^2}{6a_0^2}$

0

 $\Gamma_0^{\#4}$

 $-\frac{10\,c_1\,k^2}{\sqrt{3}}$

 $-\frac{a_0}{2\sqrt{2}}$

 $-\frac{3 a_0 + 46 c_1 k^2}{6 \sqrt{2}}$

 $(3a_0 + 23c_1k^2)$

 $-5\,i\,\sqrt{\tfrac{2}{3}}\,c_1\,k^3$

0

0

 $-\frac{20\,c_1\,k^2}{\sqrt{3}\,{a_0}^2}$

 $\Gamma_{0+}^{\#1} + \frac{1}{2} \left(-a_0 + 25 c_1 k^2 \right)$

 $10 \sqrt{\frac{2}{3}} c_1 k^2$

 $\frac{25 i c_1 k^3}{2 \sqrt{2}}$

Γ₀^{#4} †

 $h_{0}^{#1}$

 $h_0^{\#2}$

0

Source constraints SO(3) irreps $\mathcal{T}_{0+}^{\#2} == 0$	# 1
$\Delta_0^{#3} + 2 \Delta_0^{#4} + 3 \Delta_0^{#2} == 0$	1
$\mathcal{T}_{1}^{\#1}{}^{\alpha} == 0$	Υ
$2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0 $	Υ
	L

 $-\frac{50\,i\,\sqrt{2}\,c_1\,k}{a_0^2}$

 $\frac{20\,i\,\sqrt{3}\,c_1\,k}{{a_0}^2}$

 $-\frac{20\,i\,c_1\,k}{\sqrt{3}\,a_0^2}$

 $\frac{20 i \sqrt{\frac{2}{3}} c_1 k}{2}$

 $\frac{4(a_0-25c_1k^2)}{a_0^2k^2}$

0

 $\Delta_0^{\#1}$

0

0

0

0

0

0

 $-\frac{2}{a_0-c_1k^2}$

 $h_{0}^{\#2}$

 $\Gamma_0^{\#1}$

0

0

0

0

0

0

 $0 \frac{1}{2} (-a_0 + c_1 k^2)$

0

0

 $h_{0}^{\#1}$

 $-\frac{25\,i\,c_1\,k^3}{2\,\sqrt{2}}$

 $-\frac{10\,i\,c_1\,k^3}{\sqrt{3}}$

 $5 i \sqrt{\frac{2}{3}} c_1 k^3$

 $\frac{1}{4}k^2(a_0+25c_1k^2)$

$\Gamma_{2}^{#2} \alpha \beta \chi$	0	0	0	0	0	$\frac{1}{4} (a_0 - 5 c_1 k^2)$
$\Gamma_{2}^{\#1}_{\alpha\beta\chi}$	0	0	0	0	$\frac{1}{4} (a_0 - c_1 k^2)$	0
$h_{2}^{\#1}_{\alpha\beta}$	$-\frac{11ic_1k^3}{4\sqrt{2}}$	$\frac{5ic_1k^3}{\sqrt{3}}$	- 5 ic1 k³	$-\frac{1}{8}k^{2}(a_{0}-11c_{1}k^{2})$	0	0
$\Gamma_{2}^{\#3}$	$\frac{5c_1k^2}{\sqrt{3}}$	$-\frac{c_1 k^2}{6 \sqrt{2}}$	$\frac{1}{12} (3 a_0 + c_1 k^2)$	$\frac{5ic_1 k^3}{\sqrt{6}}$	0	0
$\Gamma_{2}^{\#2}$	$-5\sqrt{\frac{2}{3}}c_1k^2$	$\frac{1}{6} \left(-3 a_0 + c_1 k^2 \right)$	$-\frac{c_1 k^2}{6 \sqrt{2}}$	$-\frac{5ic_1k^3}{\sqrt{3}}$	0	0
$\Gamma_{2}^{\#1}_{\alpha\beta}$	$\Gamma_{2}^{#1} + ^{\alpha\beta} \frac{1}{4} (a_0 + 11c_1 k^2)$	$-5\sqrt{\frac{2}{3}}c_1k^2$	$\frac{5c_1 k^2}{\sqrt{3}}$	$\frac{11 i c_1 k^3}{4 \sqrt{2}}$	0	0
	$\Gamma_{2}^{#1} + \alpha \beta$	$\Gamma_{2}^{#2} + \alpha \beta$	$\Gamma_{2}^{#3} + \alpha \beta$	$h_{2}^{#1} + \alpha \beta$	$\Gamma_{2}^{#1} + ^{\alpha\beta\chi}$	$\Gamma_2^{#2} + \alpha \beta \chi$