YSU ASDS, Statistics, Fall 2019 Lecture 26

Michael Poghosyan

25 Nov 2019

Contents

- ► Tests for the Normal Model Variance
- ► Large Sample Hypothesis Testing

▶ What are we testing when using a (one-sample) *Z*- or *t*-Test?

- ▶ What are we testing when using a (one-sample) Z- or t-Test?
- ▶ Describe the *Z*-test.

- ▶ What are we testing when using a (one-sample) Z- or t-Test?
- ▶ Describe the *Z*-test.
- Describe the T-test.

- ▶ What are we testing when using a (one-sample) Z- or t-Test?
- ▶ Describe the *Z*-test.
- Describe the T-test.
- Describe the relation between Testing and Cls.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2=\sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $\chi^2 =$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2=\sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: $\mathcal{H}_0: \ \sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

\mathcal{H}_1 is	RR is
$\sigma^2 \neq \sigma_0^2$	

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

$$\begin{array}{c|c} \mathcal{H}_1 \text{ is} & \mathsf{RR} \text{ is} \\ \hline \sigma^2 \neq \sigma_0^2 & \chi^2 \not\in \left[\chi_{n,\frac{\alpha}{2}}^2,\chi_{n,1-\frac{\alpha}{2}}^2\right] \end{array}$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: $\mathcal{H}_0: \ \sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

$$\begin{array}{c|c} \mathcal{H}_1 \text{ is} & \mathsf{RR} \text{ is} \\ \hline \sigma^2 \neq \sigma_0^2 & \chi^2 \not\in \left[\chi_{n,\frac{\alpha}{2}}^2,\chi_{n,1-\frac{\alpha}{2}}^2\right] \\ \sigma^2 > \sigma_0^2 & \chi^2 > \chi_{n,1-\alpha}^2 \\ \end{array}$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: $\mathcal{H}_0: \ \sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

$$\begin{array}{c|c} \mathcal{H}_1 \text{ is} & \mathsf{RR} \text{ is} \\ \hline \sigma^2 \neq \sigma_0^2 & \chi^2 \not\in \left[\chi_{n,\frac{\alpha}{2}}^2,\chi_{n,1-\frac{\alpha}{2}}^2\right] \\ \sigma^2 > \sigma_0^2 & \chi^2 > \chi_{n,1-\alpha}^2 \\ \sigma^2 < \sigma_0^2 & \sigma^2 < \sigma_0^2 \end{array}$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

$$\begin{array}{|c|c|c|} \mathcal{H}_1 \text{ is} & \mathsf{RR} \text{ is} \\ \hline \sigma^2 \neq \sigma_0^2 & \chi^2 \not\in \left[\chi_{n,\frac{\alpha}{2}}^2,\chi_{n,1-\frac{\alpha}{2}}^2\right] \\ \sigma^2 > \sigma_0^2 & \chi^2 > \chi_{n,1-\alpha}^2 \\ \sigma^2 < \sigma_0^2 & \chi^2 < \chi_{n,\alpha}^2 \\ \end{array}$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $\chi^2 =$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

\mathcal{H}_1 is	RR is
$\sigma^2 \neq \sigma_0^2$	

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

$$\mathcal{H}_1$$
 is RR is
$$\sigma^2 \neq \sigma_0^2 \quad \chi^2 \not\in \left[\chi_{n-1,\frac{\alpha}{2}}^2,\chi_{n-1,1-\frac{\alpha}{2}}^2\right]$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

	\mathcal{H}_1 is	RR is
-	$\sigma^2 \neq \sigma_0^2$ $\sigma^2 > \sigma_0^2$	$\chi^2 \not\in \left[\chi^2_{n-1,\frac{\alpha}{2}},\chi^2_{n-1,1-\frac{\alpha}{2}}\right]$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

\mathcal{H}_1 is	RR is
$\sigma^2 \neq \sigma_0^2$ $\sigma^2 > \sigma_0^2$	$\chi^2 \notin \left[\chi_{n-1,\frac{\alpha}{2}}^2, \chi_{n-1,1-\frac{\alpha}{2}}^2\right]$ $\chi^2 > \chi_{n-1,1-\alpha}^2$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

\mathcal{H}_1 is	RR is
$ \frac{\sigma^2 \neq \sigma_0^2}{\sigma^2 > \sigma_0^2} $ $ \sigma^2 < \sigma_0^2 $	$\chi^{2} \notin \left[\chi_{n-1,\frac{\alpha}{2}}^{2}, \chi_{n-1,1-\frac{\alpha}{2}}^{2}\right]$ $\chi^{2} > \chi_{n-1,1-\alpha}^{2}$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

\mathcal{H}_1 is	RR is
$\sigma^2 \neq \sigma_0^2$	$\chi^2 \notin \left[\chi^2_{n-1,\frac{\alpha}{2}}, \chi^2_{n-1,1-\frac{\alpha}{2}}\right]$
$\sigma^2 > \sigma_0^2$	$\chi^2 > \chi^2_{n-1,1-\alpha}$
$\sigma^2 < \sigma_0^2$	$\chi^2 < \chi^2_{n-1,\alpha}$

Large Sample Hypothesis Testing

aka

Asymptotic Testing

Asymptotic Test for the Mean of General Distribution

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type} \mid \mathsf{Error}) = \mathbb{P}(\mathsf{Reject} \ \mathcal{H}_0 \mid \mathcal{H}_0 \ \mathsf{is} \ \mathsf{True}) \to \alpha, \quad \mathit{as} \quad n \to +\infty$$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 =$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}$.

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

Asymptotic Distrib of the TS Under \mathcal{H}_0 : $t \stackrel{D}{\longrightarrow}$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

Asymptotic Distrib of the TS Under \mathcal{H}_0 : $t \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$;

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

$$\mathcal{H}_1$$
 is RR is $\mu \neq \mu_0$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

$$\mathcal{H}_1$$
 is RR is $\mu
eq \mu_0 \quad |t| > z_{1-rac{lpha}{2}}$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}$.

$$egin{array}{|c|c|c|c|} \mathcal{H}_1 & \text{is} & \text{RR is} \\ \hline \mu
eq \mu_0 & |t| > z_{1-rac{lpha}{2}} \\ \mu > \mu_0 & \end{array}$$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}$.

$$\mathcal{H}_1$$
 is RR is
$$\mu \neq \mu_0 \quad |t| > z_{1-\frac{\alpha}{2}}$$

$$\mu > \mu_0 \quad t > z_{1-\alpha}$$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}$.

$$egin{array}{|c|c|c|c|} \mathcal{H}_1 & \text{is} & \text{RR is} \\ \hline \mu
eq \mu_0 & |t| > z_{1-rac{lpha}{2}} \\ \mu > \mu_0 & t > z_{1-lpha} \\ \mu < \mu_0 & \end{array}$$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}$.

$$egin{array}{|c|c|c|c|c|} \mathcal{H}_1 & \text{is} & \text{RR is} \\ \hline \mu
eq \mu_0 & |t| > z_{1-rac{lpha}{2}} \\ \mu > \mu_0 & t > z_{1-lpha} \\ \mu < \mu_0 & t < z_lpha \end{array}$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}$;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}$;

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}$;

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}$;

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\hat{\theta}^{MLE} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}(\theta_0)}}$$
 or $W = \frac{\hat{\theta}^{MLE} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}\left(\hat{\theta}^{MLE}\right)}}$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}$;

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\hat{\theta}^{MLE} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}(\theta_0)}}$$
 or $W = \frac{\hat{\theta}^{MLE} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}\left(\hat{\theta}^{MLE}\right)}}$

Asymptotic Distrib of the TS Under $\mathcal{H}_0: W \stackrel{D}{\longrightarrow}$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{F}_{\theta}$;

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

$$\textbf{Test Statistics: } W = \frac{\hat{\theta}^{\textit{MLE}} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}(\theta_0)}} \quad \text{or} \quad W = \frac{\hat{\theta}^{\textit{MLE}} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}\left(\hat{\theta}^{\textit{MLE}}\right)}}$$

Asymptotic Distrib of the TS Under $\mathcal{H}_0: W \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}$;

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

$$\textbf{Test Statistics: } W = \frac{\hat{\theta}^{\textit{MLE}} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}(\theta_0)}} \quad \text{or} \quad W = \frac{\hat{\theta}^{\textit{MLE}} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}\left(\hat{\theta}^{\textit{MLE}}\right)}}$$

Asymptotic Distrib of the TS Under $\mathcal{H}_0: W \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$;

\mathcal{H}_1 is	RR is
$\theta \neq \theta_0$	$ W >z_{1-\frac{\alpha}{2}}$
$\theta > \theta_0$	$W>z_{1-\alpha}$
$ heta < heta_0$	$W < z_{\alpha}$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$; In this case, $\hat{p}^{MLE} =$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$; In this case, $\hat{p}^{MLE} = \overline{X}$ and

$$\mathcal{I}(p) =$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$; In this case, $\hat{p}^{MLE} = \overline{X}$ and $\mathcal{I}(p) = \frac{1}{p(1-p)}$;

$$\mathcal{I}(p) = \frac{1}{p(1-p)}$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$; In this case, $\hat{p}^{MLE} = \overline{X}$ and $\mathcal{I}(p) = \frac{1}{p(1-p)}$;

Null Hypothesis: \mathcal{H}_0 : $p = p_0$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$; In this case, $\hat{p}^{MLE} = \overline{X}$ and $\mathcal{I}(p) = \frac{1}{p(1-p)}$;

Null Hypothesis: \mathcal{H}_0 : $p = p_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$; In this case, $\hat{p}^{MLE} = \overline{X}$ and $\mathcal{I}(p) = \frac{1}{p(1-p)}$;

Null Hypothesis:
$$\mathcal{H}_0$$
: $p = p_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{X - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$
 or $W = \frac{X - p_0}{\sqrt{\frac{\overline{X}(1 - \overline{X})}{n}}}$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$; In this case, $\hat{p}^{MLE} = \overline{X}$ and $\mathcal{I}(p) = \frac{1}{p(1-p)};$

$$\mathcal{I}(p) = \frac{1}{p(1-p)}$$

Null Hypothesis: \mathcal{H}_0 : $p = p_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\overline{X} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$
 or $W = \frac{\overline{X} - p_0}{\sqrt{\frac{\overline{X}(1 - \overline{X})}{n}}}$

Asymptotic Distrib of the TS Under \mathcal{H}_0 : $W \stackrel{D}{\longrightarrow}$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \textit{Bernoulli}(p)$; In this case, $\hat{p}^{\textit{MLE}} = \overline{X}$ and

$$\mathcal{I}(p) = \frac{1}{p(1-p)};$$

Null Hypothesis: \mathcal{H}_0 : $p = p_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\overline{X} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$
 or $W = \frac{\overline{X} - p_0}{\sqrt{\frac{\overline{X}(1 - \overline{X})}{n}}}$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \textit{Bernoulli}(p)$; In this case, $\hat{p}^{\textit{MLE}} = \overline{X}$ and

$$\mathcal{I}(p) = \frac{1}{p(1-p)};$$

Null Hypothesis: \mathcal{H}_0 : $p = p_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\overline{X} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$
 or $W = \frac{\overline{X} - p_0}{\sqrt{\frac{\overline{X}(1-\overline{X})}{n}}}$

Asymptotic Distrib of the TS Under $\mathcal{H}_0: W \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$;

\mathcal{H}_1 is	RR is
$p \neq p_0$	$ W >z_{1-\frac{\alpha}{2}}$
$p > p_0$	$W > z_{1-\alpha}$
$p < p_0$	$W < z_{\alpha}$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \textit{Bernoulli}(p)$; In this case, $\hat{p}^{\textit{MLE}} = \overline{X}$ and

$$\mathcal{I}(p) = \frac{1}{p(1-p)};$$

Null Hypothesis: \mathcal{H}_0 : $p = p_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\overline{X} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$
 or $W = \frac{\overline{X} - p_0}{\sqrt{\frac{\overline{X}(1 - \overline{X})}{n}}}$

Asymptotic Distrib of the TS Under $\mathcal{H}_0: W \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$;

\mathcal{H}_1 is	RR is
$p \neq p_0$	$ W >z_{1-\frac{\alpha}{2}}$
$p > p_0$	$W > z_{1-\alpha}$
$p < p_0$	$W < z_{\alpha}$

Note: People use this Test only if $n \cdot p_0 > 5$ and $n \cdot (1 - p_0) > 5$.

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{F}_{\theta}$; We take any Estimator $\hat{\theta}$ which is Asymptotically Normal:

$$W = \frac{\widehat{ heta} - heta_0}{\widehat{SE}(\widehat{ heta})} \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{F}_{\theta}$; We take any Estimator $\hat{\theta}$ which is Asymptotically Normal:

$$W = rac{\widehat{ heta} - heta_0}{\widehat{SE}(\widehat{ heta})} \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{F}_{\theta}$; We take any Estimator $\hat{\theta}$ which is Asymptotically Normal:

$$W = \frac{\widehat{ heta} - heta_0}{\widehat{SE}(\widehat{ heta})} \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}$; We take any Estimator $\hat{\theta}$ which is Asymptotically Normal:

$$W = \frac{\widehat{ heta} - heta_0}{\widehat{SE}(\widehat{ heta})} \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\hat{\theta} - \theta_0}{\widehat{SE}(\hat{\theta})}$$
 or $W = \frac{\hat{\theta} - \theta_0}{SE(\theta_0)}$

Wald Test

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{F}_{\theta}$; We take any Estimator $\hat{\theta}$ which is Asymptotically Normal:

$$W = \frac{\widehat{ heta} - heta_0}{\widehat{SE}(\widehat{ heta})} \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\hat{\theta} - \theta_0}{\widehat{SE}(\hat{\theta})}$$
 or $W = \frac{\hat{\theta} - \theta_0}{SE(\theta_0)}$

Asymptotic Distrib of the TS Under \mathcal{H}_0 : $W \stackrel{D}{\longrightarrow}$

Wald Test

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}$; We take any Estimator $\hat{\theta}$ which is Asymptotically Normal:

$$W = \frac{\widehat{\theta} - \theta_0}{\widehat{SF}(\widehat{\theta})} \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\hat{\theta} - \theta_0}{\widehat{SE}(\hat{\theta})}$$
 or $W = \frac{\hat{\theta} - \theta_0}{SE(\theta_0)}$

Asymptotic Distrib of the TS Under $\mathcal{H}_0: W \stackrel{D}{\longrightarrow} \mathcal{N}(0,1);$

Wald Test

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{F}_{\theta}$; We take any Estimator $\hat{\theta}$ which is Asymptotically Normal:

$$W = \frac{\widehat{\theta} - \theta_0}{\widehat{SF}(\widehat{\theta})} \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\hat{\theta} - \theta_0}{\widehat{SE}(\hat{\theta})}$$
 or $W = \frac{\hat{\theta} - \theta_0}{SE(\theta_0)}$

Asymptotic Distrib of the TS Under $\mathcal{H}_0: W \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$;

\mathcal{H}_1 is	RR is
$\theta eq \theta_0$	$ W >z_{1-\frac{\alpha}{2}}$
$\theta > \theta_0$	$W > z_{1-\alpha}$
$\theta < \theta_0$	$W < z_{\alpha}$

Note: In all above Asymptotic Tests, one can replace the quantiles z_p of the Standard Normal by the quantiles $t_{n-1,p}$ of t(n-1), since, for large n,

$$t_{n-1,p}\approx z_p$$
.

Note: In all above Asymptotic Tests, one can replace the quantiles z_p of the Standard Normal by the quantiles $t_{n-1,p}$ of t(n-1), since, for large n,

$$t_{n-1,p}\approx z_p$$
.

```
a <- 0.05
qnorm(1-a/2)
## [1] 1.959964
n <- seq(50,250,50)
qt(1-a/2, df = n)
```

```
## [1] 2.008559 1.983972 1.975905 1.971896 1.969498
```

Note: In all above Asymptotic Tests, one can replace the quantiles z_p of the Standard Normal by the quantiles $t_{n-1,p}$ of t(n-1), since, for large n,

$$t_{n-1,p}\approx z_p$$
.

```
## [1] 1.959964
```

```
n \leftarrow seq(50,250,50)

qt(1-a/2, df = n)
```

```
## [1] 2.008559 1.983972 1.975905 1.971896 1.969498
```

Another point is that, since $|t_{n-1,p}| > |z_p|$, $p \neq 0.5$, it is safer to have a little bit smaller Rejection Region:

Note: In all above Asymptotic Tests, one can replace the quantiles z_p of the Standard Normal by the quantiles $t_{n-1,p}$ of t(n-1), since, for large n,

$$t_{n-1,p} \approx z_p$$
.

```
n \leftarrow seq(50,250,50)

qt(1-a/2, df = n)
```

```
## [1] 2.008559 1.983972 1.975905 1.971896 1.969498
```

Another point is that, since $|t_{n-1,p}| > |z_p|$, $p \neq 0.5$, it is safer to have a little bit smaller Rejection Region: say, for the Two-Sided Tests, if $|W| > t_{n-1,1-\alpha/2}$, then, for sure, also $|W| > z_{1-\alpha/2}$.

Two Sample Tests

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$,

 $\textbf{Model:} \ X_1, X_2, ..., X_n \overset{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2), \ Y_1, Y_2, ..., Y_m \overset{\textit{IID}}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2),$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are known,

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are known, and X_k -s and Y_j -s are all Independent.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are known, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are known, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are known, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are known, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: Z =

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are known, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $Z = \frac{(\overline{X} - \overline{Y}) - \mu_0}{}$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are known, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$Z = \frac{(X - Y) - \mu_0}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are known, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$Z = \frac{(\overline{X} - \overline{Y}) - \mu_0}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$$

Distrib of the Test-Statistics Under \mathcal{H}_0 : $Z \sim$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are known, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$Z = \frac{(\overline{X} - \overline{Y}) - \mu_0}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$$

Distrib of the Test-Statistics Under $\mathcal{H}_0\text{: }Z\sim\mathcal{N}(0,1)\text{;}$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are known, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$Z = \frac{(\overline{X} - \overline{Y}) - \mu_0}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$$

Distrib of the Test-Statistics Under \mathcal{H}_0 : $Z \sim \mathcal{N}(0,1)$;

\mathcal{H}_1 is	RR is
$\mu_X - \mu_Y \neq \mu_0$	$ Z >z_{1-\frac{\alpha}{2}}$
$\mu_X - \mu_Y > \mu_0$	$Z>z_{1-\alpha}$
$\mu_{X} - \mu_{Y} < \mu_{0}$	$Z < z_{\alpha}$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$,

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$,

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown,

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown, and X_k -s and Y_i -s are all Independent.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Additional Assumption: $\sigma_X = \sigma_Y$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Additional Assumption: $\sigma_X = \sigma_Y$ (can be Tested separately, by *F*-Test)

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Additional Assumption: $\sigma_X = \sigma_Y$ (can be Tested separately, by *F*-Test)

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Additional Assumption: $\sigma_X = \sigma_Y$ (can be Tested separately, by *F*-Test)

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Additional Assumption: $\sigma_X = \sigma_Y$ (can be Tested separately, by *F*-Test)

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $t = \frac{(X - Y) - \mu_0}{S_p \cdot \sqrt{\frac{1}{n} + \frac{1}{m}}}$, where S_p is the **Pooled**

Sample Deviation:

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Additional Assumption: $\sigma_X = \sigma_Y$ (can be Tested separately, by *F*-Test)

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $t = \frac{(X - Y) - \mu_0}{S_p \cdot \sqrt{\frac{1}{p} + \frac{1}{m}}}$, where S_p is the **Pooled**

Sample Deviation:

$$S_P^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2} = \frac{\sum_{k=1}^n (X_k - \overline{X})^2 + \sum_{k=1}^m (Y_k - \overline{Y})^2}{n+m-2}.$$

Distrib of the Test-Statistics Under \mathcal{H}_0 : $t \sim$

Distrib of the Test-Statistics Under \mathcal{H}_0 : $t \sim t(n+m-2)$;

Distrib of the Test-Statistics Under \mathcal{H}_0 : $t \sim t(n+m-2)$; Rejection Region:

\mathcal{H}_1 is	RR is
$\mu_X - \mu_Y \neq \mu_0$	$ t >t_{n+m-2,1-\frac{\alpha}{2}}$
$\mu_X - \mu_Y > \mu_0$	$t > t_{n+m-2,1-\alpha}$
$\mu_X - \mu_Y < \mu_0$	$t < t_{n+m-2,\alpha}$

Distrib of the Test-Statistics Under \mathcal{H}_0 : $t \sim t(n+m-2)$; Rejection Region:

\mathcal{H}_1 is	RR is
$\mu_X - \mu_Y \neq \mu_0$	$ t >t_{n+m-2,1-\frac{\alpha}{2}}$
$\mu_X - \mu_Y > \mu_0$	$t > t_{n+m-2,1-\alpha}$
$\mu_{X} - \mu_{Y} < \mu_{0}$	$t < t_{n+m-2,\alpha}$

Note: This Test is called the **Pooled** *t*-**Test**

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$,

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2), Y_1, Y_2, ..., Y_m \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2),$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown,

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown, and X_k -s and Y_i -s are all Independent.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Additional Assumption: $\sigma_X \neq \sigma_Y$ (can be Tested separately, by *F*-Test)

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Additional Assumption: $\sigma_X \neq \sigma_Y$ (can be Tested separately, by *F*-Test)

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Additional Assumption: $\sigma_X \neq \sigma_Y$ (can be Tested separately, by *F*-Test)

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Additional Assumption: $\sigma_X \neq \sigma_Y$ (can be Tested separately, by *F*-Test)

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:

$$t = \frac{(\overline{X} - \overline{Y}) - \mu_0}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}},$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_m \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $\mu_X - \mu_Y$;

Additional Assumption: $\sigma_X \neq \sigma_Y$ (can be Tested separately, by *F*-Test)

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:

$$t = \frac{\left(\overline{X} - \overline{Y}\right) - \mu_0}{\sqrt{\frac{S_X^2}{R} + \frac{S_Y^2}{M}}},$$

where S_X and S_Y are the Sample SDs for X and Y, respectively.

Distrib of the Test-Statistics Under \mathcal{H}_0 : Approximately,

 $t \approx$

Distrib of the Test-Statistics Under \mathcal{H}_0 : Approximately,

 $t \approx t(\nu)$, where ν is

Distrib of the Test-Statistics Under \mathcal{H}_0 : Approximately,

t pprox t(
u), where u is some scary thing. . .

Distrib of the Test-Statistics Under \mathcal{H}_0 : Approximately,

tpprox t(
u), where u is some scary thing... given by

$$\nu = \left[\frac{\left(\frac{S_X^2}{n} + \frac{S_Y^2}{m}\right)^2}{\frac{\left(S_X^2/n\right)^2}{n-1} + \frac{\left(S_Y^2/m\right)^2}{m-1}} \right]$$

Distrib of the Test-Statistics Under \mathcal{H}_0 **:** Approximately, $t \approx t(\nu)$, where ν is some scary thing. . . given by

$$\nu = \left\lfloor \frac{\left(\frac{S_X^2}{n} + \frac{S_Y^2}{m}\right)^2}{\frac{\left(S_X^2/n\right)^2}{n-1} + \frac{\left(S_Y^2/m\right)^2}{m-1}} \right\rfloor$$

Rejection Region:

\mathcal{H}_1 is	RR is
$\mu_X - \mu_Y \neq \mu_0$	$ t >t_{ u,1-rac{lpha}{2}}$
$\mu_X - \mu_Y \neq \mu_0$ $\mu_X - \mu_Y > \mu_0$	$t>t_{ u,1-lpha}$
$\mu_X - \mu_Y < \mu_0$	$t < t_{ u,lpha}$

Distrib of the Test-Statistics Under \mathcal{H}_0 **:** Approximately, $t \approx t(\nu)$, where ν is some scary thing. . . given by

$$\nu = \left\lfloor \frac{\left(\frac{S_X^2}{n} + \frac{S_Y^2}{m}\right)^2}{\frac{\left(S_X^2/n\right)^2}{n-1} + \frac{\left(S_Y^2/m\right)^2}{m-1}} \right\rfloor$$

Rejection Region:

\mathcal{H}_1 is	RR is
$\mu_X - \mu_Y \neq \mu_0$	$ t >t_{ u,1-rac{lpha}{2}}$
$\mu_{X} - \mu_{Y} > \mu_{0}$	$t>t_{ u,1-lpha}$
$\mu_X - \mu_Y < \mu_0$	$t < t_{\nu,\alpha}$

Note: The formula above for the DF ν is called **Welch** – **Satterthwaite Equation**, and the Tests is called the **Welch Test**.

Paired *t*-Test for the Difference of two Normals Means Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$,

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2), Y_1, Y_2, ..., Y_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2),$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2), Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2), \sigma_X, \sigma_Y$ are unknown.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown. The Parameter of interest is $\mu_X - \mu_Y$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ; also, importantly, X_k and Y_k can be dependent!

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2), Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2), \sigma_X, \sigma_Y$ **are unknown**. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ; also, importantly, X_k and Y_k can be dependent!

Notation: $D_k = X_k - Y_k$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ; also, importantly, X_k and Y_k can be dependent!

Notation:
$$D_k = X_k - Y_k$$
; clearly,

$$\mathbb{E}(D_k) = \mu_X - \mu_Y.$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2), Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2), \sigma_X, \sigma_Y$ are unknown. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ; also, importantly, X_k and Y_k can be dependent!

Notation: $D_k = X_k - Y_k$; clearly,

$$\mathbb{E}(D_k) = \mu_X - \mu_Y.$$

The Variance of D_k , although the same, $\sigma_D^2 = Var(X_k - Y_k)$, cannot be calculated, since X_k and Y_k can be dependent. But that's OK, we do not need it.

 $^{^{1}}$ The Test will work also in the case when the Differences are nor Normally Distributed, but the Sample Size n is large. We jut need to use the CLT.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ; also, importantly, X_k and Y_k can be dependent!

Notation: $D_k = X_k - Y_k$; clearly,

$$\mathbb{E}(D_k) = \mu_X - \mu_Y.$$

The Variance of D_k , although the same, $\sigma_D^2 = Var(X_k - Y_k)$, cannot be calculated, since X_k and Y_k can be dependent. But that's OK, we do not need it.

Additional Assumption: We will assume that the Differences D_k are Normally Distributed¹.

 $^{^{1}}$ The Test will work also in the case when the Differences are nor Normally Distributed, but the Sample Size n is large. We jut need to use the CLT.

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ; also, importantly, X_k and Y_k can be dependent!

Notation: $D_k = X_k - Y_k$; clearly,

$$\mathbb{E}(D_k) = \mu_X - \mu_Y.$$

The Variance of D_k , although the same, $\sigma_D^2 = Var(X_k - Y_k)$, cannot be calculated, since X_k and Y_k can be dependent. But that's OK, we do not need it.

Additional Assumption: We will assume that the Differences D_k are Normally Distributed¹.

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

 $^{^{1}}$ The Test will work also in the case when the Differences are nor Normally Distributed, but the Sample Size n is large. We jut need to use the CLT.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2), Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2), \sigma_X, \sigma_Y$ **are unknown**. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ; also, importantly, X_k and Y_k can be dependent!

Notation: $D_k = X_k - Y_k$; clearly,

$$\mathbb{E}(D_k) = \mu_X - \mu_Y.$$

The Variance of D_k , although the same, $\sigma_D^2 = Var(X_k - Y_k)$, cannot be calculated, since X_k and Y_k can be dependent. But that's OK, we do not need it.

Additional Assumption: We will assume that the Differences D_k are Normally Distributed¹.

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

 1 The Test will work also in the case when the Differences are nor Normally Distributed, but the Sample Size n is large. We jut need to use the CLT.

Test Statistics: $t = \frac{\overline{D} - \mu_0}{S_D/\sqrt{n}}$, where S_D is the Sample Deviation of D.

 $^{^2}$ Or, Asymptotically, $t \approx t(n-1)$ or $t \approx \mathcal{N}(0,1)$, if D_k -s are not Normal, but n is large.

Test Statistics: $t = \frac{\overline{D} - \mu_0}{S_D/\sqrt{n}}$, where S_D is the Sample Deviation of D.

Distrib of the Test-Statistics Under \mathcal{H}_0 :² $t \sim t(n-1)$;

 $^{^2}$ Or, Asymptotically, $t \approx t(n-1)$ or $t \approx \mathcal{N}(0,1)$, if D_k -s are not Normal, but n is large.

Test Statistics: $t = \frac{\overline{D} - \mu_0}{S_D/\sqrt{n}}$, where S_D is the Sample Deviation of D.

Distrib of the Test-Statistics Under \mathcal{H}_0 : 2 $t \sim t(n-1)$;

Rejection Region:

$$\mathcal{H}_1$$
 is RR is
$$\mu_X - \mu_Y \neq \mu_0 \quad |t| > t_{n-1,1-\frac{\alpha}{2}}$$
 $\mu_X - \mu_Y > \mu_0 \quad t > t_{n-1,1-\alpha}$ $\mu_X - \mu_Y < \mu_0 \quad t < t_{n-1,\alpha}$

 $^{^2}$ Or, Asymptotically, $t \approx t(n-1)$ or $t \approx \mathcal{N}(0,1)$, if D_k -s are not Normal, but n is large.

Test Statistics: $t=\frac{\overline{D}-\mu_0}{S_D/\sqrt{n}}$, where S_D is the Sample Deviation of D.

Distrib of the Test-Statistics Under \mathcal{H}_0 : 2 $t \sim t(n-1)$;

Rejection Region:

$$\mathcal{H}_1$$
 is RR is
$$\mu_X - \mu_Y \neq \mu_0 \quad |t| > t_{n-1,1-\frac{\alpha}{2}}$$

$$\mu_X - \mu_Y > \mu_0 \quad t > t_{n-1,1-\alpha}$$

$$\mu_X - \mu_Y < \mu_0 \quad t < t_{n-1,\alpha}$$

Note: This Test is called the **Paired** *t*-**Test**

 $^{^2}$ Or, Asymptotically, $t \approx t(n-1)$ or $t \approx \mathcal{N}(0,1)$, if D_k -s are not Normal, but n is large.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p_X)$,

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p_X),$ $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} Bernoulli(p_Y),$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p_X),$

 $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} Bernoulli(p_Y)$, and X_k -s and Y_j -s are all Independent.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p_X)$,

 $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} Bernoulli(p_Y)$, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $p_X - p_Y$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p_X),$

 $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} Bernoulli(p_Y)$, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $p_X - p_Y$;

Null Hypothesis: \mathcal{H}_0 : $p_X - p_Y = p_0$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p_X),$

 $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} Bernoulli(p_Y)$, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $p_X - p_Y$;

Null Hypothesis: \mathcal{H}_0 : $p_X - p_Y = p_0$

Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p_X),$

 $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} Bernoulli(p_Y)$, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $p_X - p_Y$;

Null Hypothesis: \mathcal{H}_0 : $p_X - p_Y = p_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:

$$Z = \frac{(\overline{X} - \overline{Y}) - p_0}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n} + \frac{1}{m}\right)}} \quad or \quad Z = \frac{(\overline{X} - \overline{Y}) - p_0}{\sqrt{\frac{\overline{X}(1 - \overline{X})}{n} + \frac{\overline{Y}(1 - \overline{Y})}{m}}}$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p_X),$

 $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} Bernoulli(p_Y)$, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $p_X - p_Y$;

Null Hypothesis: \mathcal{H}_0 : $p_X - p_Y = p_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:

$$Z = \frac{(\overline{X} - \overline{Y}) - p_0}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n} + \frac{1}{m}\right)}} \quad or \quad Z = \frac{(\overline{X} - \overline{Y}) - p_0}{\sqrt{\frac{\overline{X}(1 - \overline{X})}{n} + \frac{\overline{Y}(1 - \overline{Y})}{m}}}$$

where \hat{p} is the **Pooled Sample Proportion**:

$$\hat{p} = \frac{n}{n+m} \cdot \overline{X} + \frac{m}{n+m} \cdot \overline{Y}$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p_X),$

 $Y_1, Y_2, ..., Y_m \stackrel{IID}{\sim} Bernoulli(p_Y)$, and X_k -s and Y_j -s are all Independent. The Parameter of interest is $p_X - p_Y$;

Null Hypothesis: \mathcal{H}_0 : $p_X - p_Y = p_0$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:

$$Z = \frac{(\overline{X} - \overline{Y}) - p_0}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n} + \frac{1}{m}\right)}} \qquad or \qquad Z = \frac{(\overline{X} - \overline{Y}) - p_0}{\sqrt{\frac{\overline{X}(1 - \overline{X})}{n} + \frac{\overline{Y}(1 - \overline{Y})}{m}}}$$

where \hat{p} is the **Pooled Sample Proportion**:

$$\hat{p} = \frac{n}{n+m} \cdot \overline{X} + \frac{m}{n+m} \cdot \overline{Y} = \frac{X_1 + \dots + X_n + Y_1 + \dots + Y_m}{n+m}.$$

Two Sample test for Proportions, Cont'd

Distrib of the Test-Statistics Under \mathcal{H}_0 : Approximately, $Z \approx$

Two Sample test for Proportions, Cont'd

Distrib of the Test-Statistics Under \mathcal{H}_0 : Approximately, $Z \approx \mathcal{N}(0,1)$

Two Sample test for Proportions, Cont'd

Distrib of the Test-Statistics Under \mathcal{H}_0 : Approximately, $Z \approx \mathcal{N}(0,1)$

Rejection Region:

\mathcal{H}_1 is	RR is
$p_X - p_Y \neq p_0$	$ Z >z_{1-\frac{\alpha}{2}}$
$p_X - p_Y > p_0$	$Z>z_{1-\alpha}$
$p_X - p_Y < p_0$	$Z < z_{\alpha}$

Note: An important note is that you can perform 2 Sample t-Test even the DataSets are not Normally Distributed, but n and m are large (say, $n, m \ge 30$).

Note: An important note is that you can perform 2 Sample t-Test even the DataSets are not Normally Distributed, but n and m are large (say, $n, m \geq 30$). This is because the t-Statistics will have, approximately (in the limit), a Standard Normal Distribution, so we can use Asymptotic Tests, and replace the quantiles of Standard Normal by t-quantiles (as we have talked in the previous lecture).

Note: To perform a two-Sample t-Test in \mathbf{R} , we can use the same t.test.

Note: To perform a two-Sample t-Test in \mathbf{R} , we can use the same $\mathtt{t.test}$. When the input of $\mathtt{t.test}$ consists of two Datasets, it performs a two-Sample Test.

Note: To perform a two-Sample t-Test in \mathbf{R} , we can use the same t.test. When the input of t.test consists of two Datasets, it performs a two-Sample Test. Some appropriate parameters are:

paired: if TRUE, then it is doing a Paired t-Test. The default value is FALSE;

Note: To perform a two-Sample t-Test in \mathbf{R} , we can use the same t.test. When the input of t.test consists of two Datasets, it performs a two-Sample Test. Some appropriate parameters are:

- paired: if TRUE, then it is doing a Paired t-Test. The default value is FALSE;
- ▶ mu : our μ_0 , in two-Sample Test, the value of $\mu_X \mu_Y$ from the Null.

Note: To perform a two-Sample t-Test in \mathbf{R} , we can use the same t.test. When the input of t.test consists of two Datasets, it performs a two-Sample Test. Some appropriate parameters are:

- paired: if TRUE, then it is doing a Paired t-Test. The default value is FALSE;
- ▶ mu : our μ_0 , in two-Sample Test, the value of $\mu_X \mu_Y$ from the Null. The default value is 0, so by default,

$$\mathcal{H}_0: \ \mu_X = \mu_Y$$

Note: To perform a two-Sample t-Test in \mathbf{R} , we can use the same t.test. When the input of t.test consists of two Datasets, it performs a two-Sample Test. Some appropriate parameters are:

- paired: if TRUE, then it is doing a Paired t-Test. The default value is FALSE;
- ▶ mu : our μ_0 , in two-Sample Test, the value of $\mu_X \mu_Y$ from the Null. The default value is 0, so by default,

$$\mathcal{H}_0: \ \mu_X = \mu_Y$$

var.equal: if TRUE, then we are dealing with Equal Variances case, so Pooled Standard Deviation is calculated. Otherwise, R is doing non-equal Variance Test.

Note: To perform a two-Sample t-Test in \mathbf{R} , we can use the same t.test. When the input of t.test consists of two Datasets, it performs a two-Sample Test. Some appropriate parameters are:

- paired: if TRUE, then it is doing a Paired t-Test. The default value is FALSE;
- ▶ mu : our μ_0 , in two-Sample Test, the value of $\mu_X \mu_Y$ from the Null. The default value is 0, so by default,

$$\mathcal{H}_0: \ \mu_X = \mu_Y$$

var.equal: if TRUE, then we are dealing with Equal Variances case, so Pooled Standard Deviation is calculated. Otherwise, R is doing non-equal Variance Test. By default, the value is FALSE.

Note: To perform a two-Sample Proportion Test in \mathbf{R} , we can use propertiest command.