¿Qué representan los subconjuntos difusos? Gradualidad, incertidumbre, vaguedad y bipolaridad

Julio Waissman Vilanova

Departamento de Matemáticas Universidad de Sonora

26 de mayo de 2016

Waissman (UNISON)

Plan de la presentación

- Conocimiento gradual
- 2 Incertidumbre
- Vaguedad
- Bipolaridad

¿Que representa un conjunto?

Georg Cantor (Wikipedia)

"...entiendo en general por variedad o conjunto toda multiplicidad que puede ser pensada como unidad, esto es, toda colección de elementos determinados que pueden ser unidos en una totalidad mediante una ley."

Conjuntos Ónticos: Representan un objeto o concepto que se compone de la conjunción de sus elementos.

Conjuntos Epistémicos: Conjunto de valores, de los cuales uno es correcto, representa un constructo.

Subconjuntos difusos

- ullet Sea Ω un conjunto universo
- A la función $A: \Omega \to [0,1]$ se le conoce como conjunto difuso.
- A(x) es la pertenencia de $x \in U$ al subconjunto difuso A.
- Definir A puede ser subjetivo, pero en su definición no hay incertidumbre.
- Los subconjuntos difusos clásicos son subconjuntos difusos ónticos.

Los subconjuntos difusos representan la noción de *gradualidad* en el conocimiento, debido al uso de lenguaje natural

Waissman (UNISON)

Waissman (UNISON) 5 / 15 26 de mayo de 2016

Operaciones básicas

Si $A, B : \Omega \rightarrow [0, 1]$, en términos *muy* reducionistas:

- $A \cap B(x) = \min(A(x), B(x))$
- $A \cup B(x) = máx(A(x), B(x))$
- $A^{c}(x) = 1 A(x)$

Por lo tanto,

$$A \cap A^c(x) = \min(A(x), 1 - A(x)) \le 0.5$$

4回 > 4回 > 4 回

¿Existen subconjuntos difusos epistémicos?

Distribución de posibilidad

Sea Ω un conjunto finito, una distribución de posibilidad es una función $\Pi: 2^{\Omega} \to [0, 1]$ tal que:

- $\Pi(\emptyset) = 0$,
- $\Pi(\Omega) = 1$,
- $\Pi(U \cup V) = \max(\Pi(U), \Pi(V))$ para $U, V \subseteq \Omega$, conjuntos disjuntos.

y por lo tanto

$$\Pi(U) = \max_{x \in U} \Pi(\{x\}),$$

donde $\Pi({x})$ puede ser la pertenencia de x a un conjunto difuso.

Ejemplo: En un conjunto de imágenes aéreas, ¿Cuál es la posibilidad de encontrar "bosque"?

Waissman (UNISON) 26 de mayo de 2016 7 / 15

Vaguedad: un ejemplo en lógica de predicados

Consideremos un conjunto de 5 predicados $\{p_1, p_2, p_3, p_4, p_5\}$ tal que $t(p_i) \in \{F, V\}$.

- $A_* = \{p_5\}$ el conjunto de predicados que seguro $t(p_i) = T$,
- $A^* = \{p_2, p_3, p_4, p_5\}$ el conjunto de predicados que podrían ser que $t(p_i) = T$.
- Entonces, $t(p_1) = F$, $t(p_5) = T$, y $t(p_i) \in \{F, V\}$ para $i \in \{2, 3, 4\}$.
- $t(p_i) \in \{F, V\}$ no es otro valor de verdad.
- La lógica trivaluada de Kleen representaba vaguedad, mientras que la lógica trivaluada de Luckasiewicz representaba gradualidad.

Vaguedad en subconjuntos difusos ónticos

Dos maneras claras de representar la vaguedad:

- Subconjunto difuso tipo 2 es una función $\tilde{A}:\Omega\to\mathcal{F}$, donde $\mathcal{F}=\{f|f:[0,1]\to[0,1]\}.$
- Subconjunto difuso evaluado en intervalo, donde $\bar{A}(x) = [A_*(x), A^*(x)]$ es un intervalo cerrado de [0,1], donde A_* y A^* son subconjuntos difusos de Ω tal que $A_*(x) \leq A^*(x)$ para toda $x \in \Omega$.

Utilizando aritmética de intervalos:

- $\bar{A} \cap \bar{B}(x) = [\min(A_*(x), B_*(x)), \min(A^*(x), B^*(x))],$
- $\bar{A} \cup \bar{B}(x) = [\text{máx}(A_*(x), B_*(x)), \text{máx}(A^*(x), B^*(x))],$
- $\bar{A}^{C}(x) = [1 A^{*}(x), 1 A_{*}(x)].$

Subconjunto difuso evaluado en intervalos

Sin embargo

- $\bullet \ \bar{A} \cap \bar{A}^{\mathcal{C}}(x) = [\min(A_*(x), 1 A^*(x)), \min(A^*(x), 1 A_*(x))].$
- Si $A_*(x) < 0.5 < A^*(x)$, entonces $min(A^*(x), 1 A_*(x)) > 0.5$.
- ¡Pero sabemos que $A \cap A^{C}(x) \leq 0.5!$

El método de intervalos no es consistente con la representación de vaguedad, por lo que las operaciones deben hacerse por propagación de restricciones.

$$ar{A} \cap ar{A}^C(x) = [\min_{a \in ar{A}(x)} \min(a, 1-a), \max_{a \in ar{A}(x)} \min(1-a, a)]$$

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ = - 쒸٩안

Vaguedad en subconjuntos difusos epistémicos

- Sea $\Pi: 2^{\Omega} \to [0,1]$ una distribución de posibilidad.
- $N(U) = 1 \Pi(U^C)$, $U \subseteq \Omega$ es la medida de *necesidad*.
- Si N(U) = 1, entonces para que $\Pi(\{x\}) > 0$, $x \in U$.
- Para todo $U \subseteq \Omega$, $N(U) \le \Pi(U)$

La tupla $(N(U), \Pi(U))$ es una representación de vaguedad en conjuntos difusos epistémicos.

- Si N(U) = a > 0, entonces $\Pi(U) = 1$.
- Si N(U) = 0, entonces $\Pi(U) = b \le 1$.

Escalas bipolares

- La mente humana suele razonar y tomar desiciones basada en afectos positivos y negativos.
- Tres marcas: Absolutamente positivo, absolutamente negativo e indiferente.
- Una escala bipolar es un conjunto ordenado (L, <) con un elemento $\mathbf{0} \in L$ tal que $\lambda > \mathbf{0}$ sea una evaluación positiva.
- Existe una operación binaria \star tal que $\lambda \star \mathbf{0} = \lambda$.

Formas de bipolaridad

- Tipo 1: Simétrica univariada. Se basa en el uso de una escala bipolar y un solo valor. Se asume que los grados positivos son simétricos respecto los negativos.
- Tipo 2: Simétrica bivariada. Se basa en el uso de una escala unipolar L, donde ínf L es el elemento neutro. Un objeto es evaluado con dos valores: α^+ en favor, y α^- en contra.
- Tipo 3: Asimétrica. En este tipo de bipolaridad la evaluación negativa no es de la misma naturaleza que la evaluación positiva, a diferencia de la tipo 2, donde solo las polaridades son opuestas.

Ejemplo de bipolaridad tipo 2

Conjuntos difusos intuisionistas

Sean A^+ y A^- subconjuntos difusos de Ω , si $A^+(x) + A^-(x) \le 1$ para todo $x \in \Omega$, a la tupla $A = (A^-, A^+)$ se le conoce como conjunto difuso de Atanassov (o intuisionista).

- $A^+(x)$ es el grado de pertenencia.
- $A^-(x)$ es el grado de no pertenencia.
- $\pi(x) = 1 A^{+}(x) A^{-}(x)$ es el grado de indeterminación.
- $A^{C}(x) = (A^{+}(x), A^{-}(x)).$
- $A \cup B(x) = (\min(A^{-}(x), B^{-}(x)), \max(A^{+}(x), B^{+}(x)))$
- $A \cap B(x) = (\max(A^{-}(x), B^{-}(x)), \min(A^{+}(x), B^{+}(x)))$

$$\bar{A}(x) = [\min(A^+(x), 1 - A^-(x)), \max(A^+(x), 1 - A^-(x))]$$

Waissman (UNISON) 26 de mayo de 2016 14 / 15

Ejemplo bipolaridad tipo 3

- La escala de una distribución de posibilidad Π es unipolar negativa $(\Pi(U)=1)$ es una evaluación neutra, $\Pi(U)=0$ es una evaluación negativa.
- Los intervalos $[N(U), \Pi(U)]$ son demasiado vagos.
- Π se define a partir del conocimiento experto, utilizando razonamiento basado en reglas.

Una representación bipolar en teoría de la posibilidad ha sido propuesta, agregando una segunda distribución de posibilidad Δ , tal que:

- $\Delta(U) \leq \Pi(U)$ para todo $U \subseteq \Omega$.
- Δ esta basada en datos.
- $\Delta(U) = 0$ solo indica la falta de evidencia.
- ullet Δ se infiera a partir de razonamiento basado en casos.

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @