Zarządzanie sieciami komputerowymi

Część 2 wykładu

SKO2

Mapa wykładu

- Wprowadzenie do zarządzania sieciami
- ☐ Standardy X.500, X.700 i TMN
- □ Protokół SNMP
- Usługi katalogowe
 - O DNS, NIS/NIS+
 - LDAP

Co to jest zarządzanie sieciami?

- system autonomiczny (czyli "sieć"): 100tki lub 1000ce współpracujących składników hardware/software
- inne złożone systemy wymagają też monitorowania, sterowania:
 - samolot odrzutowy
 - fabryka
 - o inne?

"Zarządzanie sieciami obejmuje wdrażanie, integrację i koordynację sprzętu, oprogramowania, i zasobów ludzkich w celu monitorowania, testowania, odpytywania, konfiguracji, analizy, oceny, i sterowania zasobami sieci w celu realizacji wymagań czasu rzeczywistego, wydajności, oraz jakości obsługi (QoS) przy akceptowalnych kosztach."

Wczujcie się w role menedżera sieci... SKO2 Zarządzanie-4

FCAPS

Rodzaje czynności zarządzania zostały skategoryzowane w pięć ogólnych obszarów funkcjonalnych:

Zarządzanie uszkodzeniami (Fault management).

Zarządzanie konfiguracją (Configuration management).

Zarządzanie rozliczeniami (Accounting management).

Zarządzanie wydajnością (Performance management).

O Zarządzanie bezpieczeństwem (Security management).

 ...znanych również jako FCAPS od ich angielskich inicjałów.

Zarządzanie uszkodzeniami

- □ Funkcje CRM (ang. Customer Relationship Management)
 - o np. przyjmowanie zgłoszeń uszkodzeń, obieg zgłoszeń (*trouble tickets*), zawiadamianie o naprawieniu uszkodzenia
- Otrzymywanie raportów o uszkodzeniach (alarmów)
 - o nadawanie priorytetów, skracanie, filtrowanie
- □ Korelacja alarmów, testowanie diagnostyczne
- Identyfikacja i diagnoza uszkodzeń
- Czynności utrzymaniowe
 - okresowe testowanie i naprawy
- Omijanie awarii przez miękką rekonfigurację
 (nie wymagającą zmian w fizycznej strukturze sieci)
 - o związek z zarządzaniem konfiguracją

Wczujcie się w rolę menedżera sieci... Zarządzanie uszkodzeniami SKO2 Zarządzanie-7

Zarzadzanie konfiguracja

- Utrzymywanie informacji o konfiguracji sieci i jej elementów
- □ Identyfikacja statusu i lokalizacji urządzeń (inwentaryzacja)
 - zarządzanie magazynem
- Inicjalizacja, konfiguracja i wyłączanie urządzeń
 - o utrzymywanie informacji o fizycznej i logicznej topologii sieci
- Umożliwienie długotrwałych połączeń (takich jak trwałe kanały wirtualne, PVC)
- Związki z zarządzaniem uszkodzeniami i wydajnością

Wczujcie się w rolę menedżera sieci... Zarządzanie uszkodzeniami Zarządzanie konfiguracją SKO₂ Zarządzanie-9

Zarządzanie rozliczeniami

- Gromadzenie informacji o wykorzystaniu usług (ang. usage metering)
- □ Powiązanie tych informacji z taryfami usług w celu generowania informacji do fakturowania klientów
- Monitorowanie dodatkowych uprawnień użytkowników (n.p. wolne minuty, tanie numery, tanie godziny, ...)
- Analiza informacji dla marketingu: propozycje nowych taryf, promocji, ...
 - o to również są funkcje CRM

Wczujcie się w role menedżera sieci... Zarządzanie rozliczniami Zarządzanie uszkodzeniami Zarządzanie konfiguracją SKO₂ Zarządzanie-11

Zarządzanie wydajnością

- Są to funkcje Inżynierii Ruchu oraz Capacity Planning
 - Ale także znane jako ERP (ang. Extended Resource Planning)
- Gromadzenie informacji o ruchu w sieci
- Wykorzystanie informacji o ruchu do planowania
 rozbudowy zasobów sieci w oparciu o prognozy ruchu
- Monitorowanie poziomu wykorzystania zasobów i czasów reakcji (obciążenia sieci)
- Identyfikacja wąskich gardeł oraz przeciążenia, próby ich likwidacji przez miękką rekonfigurację
 - związek z zarządzaniem konfiguracją
- Monitorowanie jakości usług dla usług dla których zawarte są umowy jakości (Service Level Agreements, SLA)

Wczujcie się w role menedżera sieci... Zarządzanie rozliczniami Zarządzanie uszkodzeniami Zarządzanie wydajnością Zarządzanie konfiguracją SKO₂ Zarządzanie-13

- Uwierzytelnienie: sprawdzanie tożsamości użytkowników i aplikacji
- Kontrola dostępu do zasobów sieci, systemów, usług i systemów zarządzania siecią
 - udostępnianie różnych poziomów dostępu dla różnych użytkowników/aplikacji
- Poufność: szyfrowanie poufnych informacji
- Integralność: zabezpieczenie informacji przed modyfikacją
- Analiza użytkowania sieci w celu wykrywania włamań
- Umożliwienie audytu bezpieczeństwa sieci
- □ Gromadzenie informacji potrzebnych dla kryminalistyki cyfrowej

Wczujcie się w role menedżera sieci... Zarządzanie rozliczniami Zarządzanie Zarządzanie bezpieczeństwem uszkodzeniami Zarządzanie wydajnością Zarządzanie konfiguracją SKO₂ Zarządzanie-15

Otwarte systemy zarządzania

- Sieci są najczęściej budowane z urządzeń różnych typów, różnych producentów
- Potrzeba zarządzania urządzeniami różnych producentów wymusiła tworzenie standardów zarządzania sieciami
- Otwarte standardy umożliwiają konkurencję producentów systemów zarządzania
 - producent systemu do zarządzania nie musi być producentem urządzeń sieciowych
- □ Złożoność sieci tylko rośnie...
 - razem z nią, pojawiają się nowe problemy w zarządzaniu siecią, wymagające nowych rozwiązań

Funkcjonalność systemu zarządzania (NMS)

- Wymiana informacji potrzebnej do zarządzania
 - z zarządzanymi elementami, pomiędzy systemami zarządzania
- □ Przechowywanie informacji potrzebnej do zarządzania
 - baza danych
- Analiza informacji i odpowiednia reakcja
- Prezentacja informacji użytkownikom w przyjaznej formie, łatwy dostęp do funkcji zarządzających z interfejsu użytkownika
- Ochrona informacji potrzebnej do zarządzania

Wymagania wobec NMS

- Minimalizacja czasu reakcji na zdarzenia w sieci
- Minimalizacja obciążenia sieci przez komunikację informacji systemów zarządzania
- Umożliwienie geograficznego rozproszenia sterowania
- Udostępnienie mechanizmów wykrywania, izolowania i obsługi awarii
- Poprawa utrzymania usług i interakcji z klientami (CRM)

Mapa wykładu

- Wprowadzenie do zarządzania sieciami
- ☐ Standardy X.500, X.700 i TMN
- □ Protokół SNMP
- Usługi katalogowe
 - O DNS, NIS/NIS+
 - O LDAP

ITU - standardy X

- □ ITU (International Telecommunications Union)
- X.1 to X.199 różne standardy dot. sieci i komunikacji
- X.200 model OSI
- □ X.300 Intersieci
- □ X.400 Poczta elektroniczna LDAP
- □ X.500 Usługi katalogowe ← SNMP
- X.700 Zarządzanie OSI (TMN)

w Internecie:

Telecommunications Management Network

- TMN służy do zarządzania sieciami teleinformatycznymi (wyrósł z telekomunikacji)
- TMN umożliwia łączenie systemów zarządzających z różnymi urządzeniami teleinformatycznymi
 - o definiuje interfejsy systemów zarządzających i urządzeń
 - urządzenia są modelowane obiektowo
 - o interfejsy pozwalają na sterowanie urządzeniami
 - TMN ma architekturę warstwową

Zastosowania TMN

- Synchroniczne sieci transmisyjne (SDH/SONET)
- ☐ Sieci ATM
- □ Publiczna sieć telefoniczna (PTSN)
- □ Sieci inteligentne (IN)
- Sieci mobilne

Model informacyjny TMN

■ Model menedżer-agent

System zarządzający (menedżer)

System zarządzający (agent)

Wykonuje operacje
Odbiera powiado-mienia

Zarządzane obiekty w TMN

- TMN używa modelu obiektowego w celu uproszczenia zarządzania
- Obiekty ukrywają szczegóły reprezentowanych urządzeń (zasada abstrakcji)
- Obiekty definiują interfejs komunikacyjny z urządzeniem
- Nie wszystkie obiekty to urządzenia fizyczne
 - zasoby logiczne (n.p. adresy, porty)
 - obiekty istniejące tylko w systemie zarządzania (np. powiadomienia, uprawnienia)

Baza danych w TMN

- Management Information Base (MIB)
- Obiektowa, rozproszona baza danych
- □ Każdy agent TMN aktualizuje swoją część bazy MIB
- Zarządzane obiekty znajdują się w bazie MIB
- □ Tworzą strukturę "zawierania"
 - n.p., karty zawierają się w półkach, półki w stojakach, kable w studzienkach, ...
- Obiekty w bazie MIB mają odzwierciedlać aktualny stan urządzeń

<u>Definicje interfejsów w TMN</u>

- □ TMN ma swój IDL (Interface Definition Language)
 - o inne przykłady IDL: CORBA, WebServices
 - IDL może być przetłumaczony automatycznie na języki OO
- GDMO: Guidelines for the Definition of Managed Objects
- Operacje na obiektach:
 - GET, SET (na atrybutach obiektu)
 - ACTION, CREATE, DELETE (dotyczą obiektu)
 - NOTIFICATION (zdarzenie wysyłane przez obiekt)
- ASN.1 definiuje strukturę atrybutów, akcji, powiadomień, wartości błędnych specyficznych dla obiektu

Protokół TMN

- Common Management Information Service/Protocol CMIS/P
- Połączeniowa, niezawodna komunikacja, wykorzystuje pełen stos ISO/OSI
- ☐ Komunikaty (operacje):
 - O CONNECT, DISCONNECT, ABORT
 - GET, SET, ACTION, CREATE, DELETE, EVENT-REPORT, CANCEL-GET
- Agent umożliwia przeprowadzenie operacji na wielu obiektach
 - zakresy
 - o filtry
 - o synchronizacja

Model warstwowy TMN

Model warstwowy TMN a FCAPS

Warstwa zarządzania elementami sieci

- □ Steruje i koordynuje elementami sieci
- Pozwala warstwie zarządzania siecią na dostęp do elementów
- Udostępnia abstrakcyjny interfejs warstwie sieci
 - jeden, zgodny interfejs do wszystkich elementów sieci (urządzeń)
- W zasadzie to najbardziej podstawowa funkcjonalność TMN

Warstwa zarządzania siecią

- Odpowiedzialna za funkcje sieci, których używają usługi
 - o n.p. ruting, tworzenie wirtualnego kanału, ...
- Udostępnia, wycofuje, modyfikuje i utrzymuje funkcje sieci
- Udostępnia interfejs warstwie zarządzania usługami
- Korzysta z interfejsu udostępnianego przez warstwę zarządzania elementami sieci

Warstwa zarządzania usługami

- Wypełnia funkcje wymagane przez klientów:
 - wymiarowanie, projektowanie usług
 - utrzymywanie, QoS
 - wycofywanie usług
- □ Usługi to:
 - o rozmowa telefoniczna, przesłanie pliku, komunikatu SMS, ...
- Odpowiedzialna za interakcję pomiędzy różnymi usługami
- Odpowiedzialna za utrzymywanie danych statystycznych potrzebnych do zarządzania księgowością i wydajnością
- □ Interakcja z warstwą zarządzania siecią i warstwą zarządzania biznesowego

Warstwa zarządzania biznesowego

- Odpowiedzialność za całość przedsiębiorstwa
- Jej funkcjonalność zwykle jest własnością firmy
 - o nie musi być zautomatyzowana
 - może mieć funkcje wspomagania decyzji
 - o może wykorzystywać sztuczną inteligencję
- □ Do jej funkcji należą:
 - zarządzanie strategiczne
 - zarządzanie taktyczne
 - o zarządzanie operacyjne
- Musi również posiadać zaawansowane funkcje raportowania danych o przedsiębiorstwie
 - o może mieć funkcje datamining

<u>Podsumowanie wykładu o TMN</u>

- □ TMN to...
- architektura systemów zarządzania dla bardzo złożonych sieci
- otwarta, niezależna od producenta
- □ bardzo dobrze przemyślany system zarządzania
- □ zbyt skomplikowana ...?
- wdrażana tylko przez operatorów dużych sieci teleinformatycznych
 - o popularna głównie w telekomunikacji
- □ trochę to już historia...
 ale ciągle może być wzorem do naśladowania

Podsumowanie wykładu o TMN

- □ Internet... nie jest tak zarządzany
- trudno mówić o "zarządzaniu" Internetem
- można zarządzać sieciami IP dostawców Internetu (różnych poziomów)
- □ sieci IP mają inne modele biznesowe
 - opłaty ryczałtowe
 - o mniejsza dbałość o jakość usług
 - sieć zapewnia mniej usług usługi pojawiają się
 "spontanicznie", w wyższych warstwach
- to się może niedługo zmienić jeśli upowszechnią się usługi QoS w Internecie
- □ jako całość, Internet jest zarządzany w sposób rozproszony
 - o trochę anarchicznie

Mapa wykładu

- Wprowadzenie do zarządzania sieciami
- ☐ Standardy X.500, X.700 i TMN
- □ Protokół SNMP
 - Structure of Management Information: SMI
 - Management Information Base: MIB
 - O RMON
 - Komunikaty protokołu SNMP
 - Problem prezentacji i kodowanie ASN
 - Ochrona informacji w SNMP
 - Praktyczne wskazówki do zarządzania siecią
- Usługi katalogowe
 - O DNS, NIS/NIS+
 - LDAP

Simple Network Management Protocol

- Menedżer SNMP zbiera dane i je przetwarza, korzystając z aplikacji zarządzania siecią (ang. Network Management Application, NMA)
- Agenci są hurtowniami danych o obiektach zdefiniowanych w wielu bazach Management Information Base (MIBs)
- Protokół SNMP służy do komunikacji pomiędzy menedżerem i agentem

SKO₂

Architektury zarządzania siecią

Scentralizowana architektura zarządzania siecią

Architektury zarządzania siecią

- Hierarchiczna architektura zarządzania siecią
- Przypomnijcie sobie TMN...

Przeglad SNMP

- Protokół zarządzający sieciami IP
- □ Korzysta z UDP (bezpołączeniowy)
- 🗖 Działa w modelu menedżer-agent (jak CMIP)
 - podobny do modelu klient-serwer (agent=serwer)
 - możliwe operacje asynchroniczne wykonywane przez agenta (powiadomienia)
- □ Różni się od CMIP (więcej o tym później)
 - o mniej złożone typy danych, mniej obiektowy
 - oparty o przepytywanie (*polling*), podczas gdy CMIP bardziej bazował na zdarzeniach

Przegląd zarządzania sieciami IP: 4 główne składniki techniczne

- □ Structure of Management Information (SMI):
 - o język definicji danych dla obiektów w bazie MIB
- Management information base (MIB):
 - o rozproszona baza danych informacji dla zarządzania siecią
- □ Protokół SNMP
 - komunikuje informacje, polecenia pomiędzy zarządzającym a zarządzanymi obiektami
- Funkcje bezpieczeństwa, administracji
 - najważniejszy dodatek w SNMPv3

SMI: język definicji danych

- <u>Cel:</u> składnia i semantyka informacji dla zarządzania siecią ma być dobrze zdefiniowana
- podstawowe typy danych:
 - typowe
- □ typ OBJECT-TYPE
 - typ danych, status, semantyka zarządzanego obiektu
 - UWAGA: ten "obiekt" to jest zmienna!
- typ MODULE-IDENTITY
 - grupuje powiązane obiekty w moduł MIB

Podstawowe typy

INTEGER
Integer32
Unsigned32
OCTET STRING
OBJECT IDENTIFIED

IPaddress

Counter32

Counter64

Gauge32

Time Ticks

Opaque

SMI: Przykłady obiektów, modułów

OBJECT-TYPE: ipInDelivers

```
ipInDelivers OBJECT TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of input
datagrams successfully
delivered to IP user-
protocols (including ICMP)"
::= { ip 9}
```

MODULE-IDENTITY: ipMIB

```
ipMIB MODULE-IDENTITY
     LAST-UPDATED "941101000Z"
     ORGANZATION "IETF SNPv2
           Working Group"
     CONTACT-INFO
      " Keith McCloghrie
     DESCRIPTION
      "The MIB module for managing IP
      and ICMP implementations, but
      excluding their management of
      IP routes."
     REVISION "019331000Z"
::= {mib-2 48}
```

Mapa wykładu

- Wprowadzenie do zarządzania sieciami
- Standardy X.500, X.700 i TMN
- □ Protokół SNMP
 - Structure of Management Information: SMI
 - Management Information Base: MIB
 - O RMON
 - Komunikaty protokołu SNMP
 - Problem prezentacji i kodowanie ASN
 - Ochrona informacji w SNMP
 - Praktyczne wskazówki do zarządzania siecią
- Usługi katalogowe
 - O DNS, NIS/NIS+
 - LDAP

MIB i jego rodzaje

- MIB definiuje zmienne dostępne w zarządzanym urządzeniu
 - Definiowany zgodnie z regułami SMI
 - Każdy zarządzany obiekt ma indetyfikator
- □ MIB I
 - 114 standardowych obiektów
 - Zawarte obiekty są niezbędne albo do zarządzania konfiguracją, albo awariami
- ☐ MIB II
 - O Rozszerza MIB I
 - 185 zdefiniowanych obiektów
- inne standardowe MIBy
 - RMON, hosty, rutery, ...
- MIBy producentów
 - Rozszerzają standardowe MIBy

1000s of Manageable Objects Defined Following Rules Set Out in the SMI Standards

MIB SNMP

Moduł MIB zdefiniowany w SMI MODULE-IDENTITY (100 standardowych MIBów, bardziej specyficznych dla producenta) MODULE **OBJECT TYPE: OBJECT TY OBJECT TYPE:** obiekt zdefiniowany w SMI konstrukcja OBJECT-TYPE

MIB - definicja obiektu

- Definicja obiektu MIB zawiera...
 - OBJECT-TYPE
 - Ciąg znaków opisujący obiekt MIB (nazwa zmiennej).
 - Identyfikator Object IDentifier (OID).
 - SYNTAX
 - Określa, jakie informacje mogą być przechowywane w obiekcie MIB.
 Zwykle jest to typ wartości zmiennej.
 - ACCESS
 - · READ-ONLY, READ-WRITE.
 - STATUS
 - Stan obiektu.
 - DESCRIPTION
 - Do czego służy obiekt.

Przykład MIB: moduł UDP

Identyfikator	<u>Nazwa</u>	Тур	Komentarz
1.3.6.1.2.1.7.1	UDPInDatagrams	Counter32	total # datagrams delivered
			at this node
1.3.6.1.2.1.7.2	UDPNoPorts	Counter32	# underliverable datagrams
			no app at portl
1.3.6.1.2.1.7.3	UDInErrors	Counter32	# undeliverable datagrams
			all other reasons
1.3.6.1.2.1.7.4	UDPOutDatagrams	s Counter32	# datagrams sent
1.3.6.1.2.1.7.5	udpTable	SEQUENCE	one entry for each port
			in use by app, gives port #
			and IP address

Identyfikatory w SNMP

<u>pytanie:</u> jak nazwać każdy możliwy obiekt standardowy (protokół, dane, itd..) w każdym możliwym standardzie sieci??

odpowiedź: drzewo identyfikatorów obiektów ISO:

- hierarchiczne nazewnictwo obiektów
- każdy węzeł ma nazwę i numer

<u>Drzewo</u> <u>indentyfikatorów</u> <u>obiektów ISO</u>

Identyfikatory producentów

Zmienne w MIB

- Wartości zmiennych SNMP
- Każda zmienna w MIB może mieć wartość.
 - Baza MIB z informacjami o interfejsach rutera...

iso(1) org(3) dod(6) internet(1) mgmt(2) mib-2(1) interfaces(2) ifTable(2) ifEntry(1) ifType(3)

- Dla każdego interfejsu, potrzeba wartości if Type
- Jedna zmienna MIB może mieć wiele wartości przez użycie tablic, wpisów, oraz indeksów.

Zmienne w MIB - c.d.

- Tablice, wpisy oraz indeksy.
- tablica przypomina arkusz kalkulacyjny...
 - Trzy typy interfejsów potrzebują trzech wierszy (indeksów)
 - Każda kolumna to zmienna w bazie MIB, zdefiniowana w węźle nadrzędnym.

ENTRY + INDEX = INSTANCE

	ifType(3)	ifMtu(4)	Etc
Index #1	ifType.1[6]	ifMtu.1	
Index #2	ifType.2:[9]	ifMtu.2	
Index #3	ifType.3:[15]	ifMtu.3	

Zmienne w MIB - c.d.

- Przykładowe zapytanie MIB...
- Wynikiem zapytania w bazie MIB o zmienną if Type będzie:

```
ifType.1:6ifType.2:9ifType.3:15
```

Co oznacza...

```
ifType.1: ethernetifType.2: tokenRingifType.3: fddi
```

```
ifType OBJECT-TYPE

SYNTAX INTEGER {
    other(1),
    ethernet(6),
    tokenRing(9)
    fddi(15),
    ...}
    itd...
```

Mapa wykładu

- Wprowadzenie do zarządzania sieciami
- Standardy X.500, X.700 i TMN
- □ Protokół SNMP
 - Structure of Management Information: SMI
 - Management Information Base: MIB
 - O RMON
 - Komunikaty protokołu SNMP
 - Problem prezentacji i kodowanie ASN
 - Ochrona informacji w SNMP
 - Praktyczne wskazówki do zarządzania siecią
- Usługi katalogowe
 - O DNS, NIS/NIS+
 - LDAP