Unit 0. Units and Basic Maths

Y12

Table of contents

1 Standard Units and Basic Maths				
	1.1	Review of symbols	1	
	1.2	Base units	1	
	1.3	Maths Revision	3	

1 Standard Units and Basic Maths

1.1 Review of symbols

Symbol	Meaning
\approx	Approximately equal
\neq	Not equal, different
\sum_{i}	Sum of a series of numbers
$\overline{\Pi}$	Product of a series of numbers
Ĵ	Integral operation
$\overset{\circ}{\Delta}$	Augment, difference in an interval
\propto	Proportional
d or ∂	Derivative
∞	Infinity
x	Modulus of x
\vec{x}	Vector x

1.2 Base units

How many units do you think you really need in Physics? 10? 20? 100?... Guess

Base units: decided by scientific community, they are the minimum quantity needed to describe all other magnitudes.

SI units: the internationally decided units for each base unit, revised periodically to increase precision, ease of use, etc:

BASIC QUANTITY	UNIT NAME	UNIT SYMBOL
mass	kilogram	kg
time	second	S
length	metre	m
electric current	ampere	А
temperature	kelvin	K
amount of substance	mole	mol
light intensity	candela	cd

Figure 1: Basic units

- kg (prototype)

- kg (prototype) s (9 · $10^9 \Delta C_{groundlevel}$) m (distance light in $\frac{1}{3} \cdot 10^8 s$) A (current for $2 \cdot 10^{-7} \frac{N}{m}$ 1m apart) K (273.16⁻¹ $waters^{s-l-g}$) mol (atoms 0.012kg, ^{12}C) cd ($10^{-3} \frac{W}{rad^2}$, intensity of a $5 \cdot 10^{14} Hz$ light).

Derived units: the rest, p.e.:

- $\frac{m}{s}$ or $m \cdot s^{-1}$
- \tilde{N} , Newton
- J, Jules
- W, Watts
- Hz, Hertzs
- C, Coulombs
- V, Volts
- Ω , Ohms

DERIVED QUANTITY	UNIT NAME	UNIT SYMBOL	BASE UNITS EQUIVALENT
force	newton	N	kg m s⁻²
energy (work)	joule	J	kg m² s-2
power	watt	W	kg m² s ⁻³
frequency	hertz	Hz	S ⁻¹
charge	coulomb	С	As
voltage	volt	V	kg m ² s ⁻³ A ⁻¹
resistance	ohm	Ω	kg m ² s ⁻³ A ⁻²

Figure 2: Derived units

Units can be added power prefixes. You must know nano up to giga. Careful with time above seconds! (not x10)

FACTOR	NAME	SYMBOL	FACTOR	NAME	SYMBOL
10 ¹	deca-	da	10-1	deci-	d
102	hecto-	h	10-2	centi-	С
10 ³	kilo-	k	10-3	milli-	m
106	mega-	М	10-6	micro-	μ
109	giga-	G	10-9	nano-	n
1012	tera-	Т	10-12	pico-	р
1015	peta-	Р	10-15	femto-	f
1018	exa-	Е	10-18	atto-	a
1021	zetta-	Z	10-21	zepto-	Z
1024	yotta-	Y	10-24	yocto-	У

Figure 3: Decimal system

1.3 Maths Revision

You should know already...

- $360^{\circ} = 2\pi \text{ rad} \rightarrow 30^{\circ} = 2\pi \cdot \frac{30}{360} \text{ rad}$
- Vectors: (2,3) means 2 in the x direction, 3 in the y direction.
- Trigonometry: SOH CAH TOA

Figure 4: SOH CAH TOA

• Graphs:

- Gradient: slope of a graph $m = \frac{\Delta y}{\Delta x}$ Line equation: y = ax + b, b is the gradient or slope.