Lec 21 Let's consider a steady shock (time independent) Let's tronsform quantitées to éle Upstream 1 Shack who frame

VI Vs V2 downstream shock Shock frame Upstream exers shock at U,=V,-Vs down sterom leaves shock at Uz=Vz-Vs $\frac{d(eu)}{dx} = 0 \qquad d \qquad \left\{ eu(h + \frac{1}{2}u^2) = 0 \right\}$ $\frac{d(eu^2tp)}{dx} = 0 \qquad dx \qquad \left\{ eu(h + \frac{1}{2}u^2) = 0 \right\}$ $\frac{d(eu^2tp)}{dx} = 0 \qquad \text{Speci.}$ $\frac{d(eu^2tp)}{dx} = 0 \qquad \text{Internal} \Rightarrow E + \frac{e}{e} \qquad \text{endalpg}$

Width of a shock? It we had included the visous term, the equipot momentum would be $eu^2+P-\frac{4}{3}\eta \frac{du}{dx}=const$ We expect the viscous term to be important in the shock, so eur ~ 4 n du ~ pv du ~ ev dx TU2 ~ V fae > 1x ~ V fee For a strong shock Lyource, ~ Us Since Un becomes subsonic is U, is supersonic Mus, Dx is of order the m.f.p

	Part 3: Stellar Dynamiks
AAA SAAMII AAA AAAA AAAA AAAA AAAAA AAAAA AAAAA AAAA	and now we're maxing to costone
	where the collisional m.f.p. 15
	So far, we steedied properties of gases and now we're moving to systems where the collisional m.f.p. is comparable to the size of the system
	Typical stellar systems; galaxies, gleb.
	Typical stellar systems: galaxies, glob. cluester, stellar cluesters, planetang systems
-	Consider a typical globalar claster
and the state of t	$N_{*} = 0.4 - 10^{3} $ Stars (from outsly
	$N_{x} = 0.4 - 10^{3} \text{ Stars} \qquad \text{from outsly}$ $R = 10 - 50 \text{ pc}$
	Typical stellar vorbites PX~ (0°cm (-10R
	Collision intp is Gase~ nR&
	2colo = - ~ 10 cm ~ 10 "pc >> R 46cal
	Ne 6 cal
	So, how do ne model there systems?
	Polinitaly not like gas

Binary collisions or two body relaxation which last for a relatively short time but maybe important in evolving systems ii Distant encounters, where we make the small-angle scattering approximation; these typically dominate. This approad gives rise to the Folker-Planck Equation Relevant timescales Important for identifying important
phenomena and how for from equilibrium a system is. Mixing time: Trix Essentielly the crossing time of a star with a "typical" relocity v. across the cluster diameter. It is the timesale over which a cluster can exhibit collective phenomona, such as oscillation $\frac{C_{mix} = \frac{2k}{\langle v^2 \rangle^{1/2}}}{\langle v^2 \rangle^{1/2}}$

Relaxation time: Tree The timescale at which a star loses memory of its initial conditions, by the effect of close and distant eticoventers. It also sets the approx. témoscole, as a result, at which orbits become randomized, distributéron function approaches M-B, and statistical description approaching a fileid may be employed (but NIS anall & Tage >s R still!) We will see how tree is Estémales Paler, Evaporation time: Terap A velociey distribution, especially one approaching U-B, implies that some stars have us vescape, so the chester will lose stors and may eventually be depleted. For Nosa (the number of stars in the system)

As stars oscape, the remaining stars relax to U-B, and fill in the tail of the distribution, so relaxantion waponer Continuous. Note equipartition of energy gives higher velocity to lower moss stors, so these tend to escape first (the mass distoilertion of Stors in a cliester dranges with Observaries of chesters/galaxies show Hat Tmix < Trel < Tevap. Before studying encounters, deriving timescales etc. lot's look at the case of Statistical equilib. Statistical Equilibrium There are 3 constants of motion tor A stars under deir meteral grav. attraction (assuming isolated Claster

ii linear momenteur of the center of Pon = 5 miri ii) Angular momenteem $\vec{J} = \sum_{i=1}^{N} m_i \vec{r}_i \times \vec{r}_i$ ai) Total energy E = 1 5 m; r; 2 + Cl U== = Gmmi sun over NCN-1/2 distinct poirs the In the center-of-mass frame Pcm =0 E = T+U = const $J_{cn} = \sum_{i} M_{i} r_{i,an} \times r_{i,cm} = co25f$ these we can prove the Vivial These