ETHERVOLTZ

Matheus Faria de Alencar

Orientador(a) Acadêmico: Marize C. Simões

TRABALHO DE CONCLUSÃO DE CURSO Curso

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

Alguns casos fraudes nas eleições no Brasil.

O Caso Diadema, SP – 2000

O Caso Marília, SP – 2004

O Caso Alagoas – 2006

O Caso Itajaí, SC - 2008

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

Ataques e Facilitadores

- Centralização das evidências
- Centralização da apuração
- Dependência de Software
- Anacronismo
- Inviável auditar o código que está sendo executado em produção

<u>INTRODUÇÃO</u>

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

Restrições em auditorias

- Burocracia
- Permissões
- Tempo
- Profundidade (depuração proibida, cod prod.)
- Quantidade (linhas de código, dados, compilador)

INTRODUÇÃO

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

Capitalização de mercado de sistemas de votação:

- Smartmatic (2014): US\$ 250 Milhões/ano.
- EveryoneCounts, Syctl, outras: US\$ 1525Milhões/ano.
- +150 países usam sistemas de votação.

Fonte: Financial Times. AHMED, Murad. 2014

OBJETIVO

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

Criar um modelo de sistema eleitoral que respeite o
Princípio da Independência de Software em Sistemas
Eleitorais e que descentralize o destino das provas geradas
em cada voto, de forma que os registros físicos ficam sob
custódia do administrador e os registros digitais ficam sob
controle de um programa autônomo que pode ser auditado
de sem a necessidade de interagir com o administrador.

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

- 1. Velocidade de Apuração;
- 2.Disponibilidade
- 3.Integridade
- 4.Decentralizado e Autônomo
- 5.Independência de Software

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

O Voto como criptomoeda: VoltToken.

Regras de emissão e transferência são definidas em um contrato inteligente programado na linguagem *Solidity*.

Este contrato é compilado para byte code que pode ser interpretado pela máquina virtual Ethereum.

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

Mas o que é Ethereum?

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

Arquitetura aplicações tradicionais vs ethervoltz

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

Arquitetura

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

De maneira similar a outras aplicações distribuídas como o *Bitcoin* (CHOHAN, 2017), a infraestutura não possui uma autoridade central com poder de emitir ou realizar transferências de VoltTokens de forma indetectável ou fora das regras de negócio definidas no contrato inteligente.

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

Para atingir o item 2 dos requisitos, atender ao Princípio de Independência de Software, a estratégia utilizada é a emissão de uma versão modificada da prova auditável pelo eleitor utilizada em urnas de 2ª geração.

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

Um sistema de votação independente de software e que grava os registros digitais de votos numa base de dados autônoma e resistente a censura. Foi escrito um contrato inteligente na linguagem *Solidity* utilizando o *framework Truffle*.

Cada função criada possui testes unitários desenvolvidos utilizando *javascript*, as suites de asserção *mocha.js* e *chai.js* e o cliente RPC *testrpc* para a execução dos testes automatizados.

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

- A transferência de VoltTokens *para candidatos* só pode ocorrer durante o período eleitoral;
- Apenas endereços de carteiras que representam candidatos podem receber VoltTokens;
- O número total de VoltTokens em circulação é finito e sua quantidade é definida em código.
- Nenhuma nova unidade da moeda pode ser emitida após a criação do sistema;

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

- Cada urna recebe precisamente o número de VoltTokens correspondente ao número de eleitores que devem votar naquela urna;
- O administrador só pode definir candidatos e urnas antes do período eleitoral;
- O administrador só pode distribuir VoltTokens às urnas antes do período eleitoral.

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

 A aplicação distribuída foi implantada na rede de testes Rinkeby sob protocolo de consenso Prova-de-Autoridade para simular uma eleição real em funcionamento no blockchain.

Tabela 2 – Chaves	públicas da	as carteiras	utilizadas.
-------------------	-------------	--------------	-------------

	Tabela 2 – Chaves públicas das carteiras utilizadas.
	Chave Públicas
(1)	0x51e6dd45486b5fafeda75595b7501891c9fc54e7
(2)	0x2ec72e4e7846e33bd0cc88cbaecdf4bb01bcd3ff
(3)	0x2330d7654399d22a750bd22b8fc8501a347b7547
(4)	0x0caa969e554a35f1176d739e384045691d21ee64
(5)	0xdc2b8ea73104807285a3fad17c35dcc80e54ba46
(6)	0x063407a72493c8058b415f50076bc990c3927958
	Fonte: Blockchain Rinkeby.

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

ELEIÇÕES CENTRALIZADAS NÃO SÃO CONFIÁVEIS.

Confira o portifólio das eleições no Brasil.

CONCLUSÃO

INTRODUÇÃO

OBJETIVO

DESENVOLVIMENTO

RESULTADOS

CONCLUSÃO

Ao transformar o voto do eleitor em uma criptomoeda, o sistema imediatamente ganha todas as propriedades de segurança do protocolo de consenso e de disponibilidade da rede peer-to-peer nativa da plataforma.

Votos são finitos e cada voto é rastreável desde a sua emissão e distribuição para as carteiras das urnas até a carteira que representa o candidato.

Obrigado

Matheus Faria de Alencar

mtsalenc@gmail.com mtsalenc.github.io/project-pages/ethervoltz