Durret Probability Hoang Duong

0.1 Property of Integral

Theorem 0.1. Jensen's inequality. Suppose φ is convex, that is,

$$\lambda \varphi(x) + (1 - \lambda)\varphi(y) \ge \varphi(\lambda x + (1 - \lambda)y), \forall \lambda \in (0, 1), x, y \in \mathbb{R}.$$

If μ is a probability measure, and f and $\varphi(f)$ are integrable, then:

$$\varphi(\int f d\mu) \le \int \varphi(f) d\mu$$

Theorem 0.2. Holder's inequality. If $p, q \in (1, \infty)$ with 1/p + 1/q = 1. Then:

$$\int |fg| \, d\mu \le ||f||_p ||g||_q$$

The special case p = q = 2 is called **Cauchy-Schwarz** inequality

Theorem 0.3. Bounded Convergenge Theorem. Let E be a set, $\mu(E) < \infty$. Suppose f_n vanishes on E^c , $|f_n(x)| \leq M$, and $f_n \to f$ in measure. Then:

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$$

Theorem 0.4. Fatou's Lemma. If $f_n \ge 0$, then:

$$\liminf_{n \to \infty} \int f_n d\mu \ge \int \left(\liminf_{n \to \infty} f_n \right) d\mu$$

Theorem 0.5. Monotone Convergence Theorem. If $f_n \geq 0$, and $f_n \uparrow f$, then

$$\int f_n d\mu \uparrow \int f d\mu$$

Theorem 0.6. Dominated Convergence Theorem. If $f_n \to f$ a.e., $|f_n| \le g, \forall n$, and g is integrable, then:

$$\int f_n d\mu \to \int f d\mu$$

Let $(X, \mathcal{A}, \mu_1), (Y, \mathcal{B}, \mu_2)$ be two $\sigma - finite$ measure spaces. Let

$$\Omega = X \times y$$

$$S = \{ A \times B \mid A \in \mathcal{A}, B \in \mathcal{B} \}$$

$$\mathcal{F} = \mathcal{A} \times \mathcal{B} = \sigma(\mathcal{S}).$$

Theorem 0.7. There is a unique measure μ on \mathcal{F} with:

$$\mu(A \times B) = \mu_1(A)\mu_2(B)$$

Theorem 0.8. Fubini's Theorem. If $f \ge 0$ or $\int |f| d\mu < \infty$ then:

$$\int_{X} \int_{Y} f(x, y) \mu_{2}(dy) \mu_{1}(dx) = \int_{X \times Y} f d\mu = \int_{Y} \int_{X} f(x, y) \mu_{1} d(x) \mu_{2}(dx)$$

1 Laws of Large Number

1.1 Independence

Definition 1.1. $(\Omega, \mathcal{F}, \mathbb{P})$; $A, B \in \mathcal{F}$ are called independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)]\mathbb{P}(B)$

Two σ – fields \mathcal{G} , \mathcal{H} are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)[\mathbb{P}(B), \forall A \in \mathcal{G}, B \in \mathcal{H}$.

Two random variable X, Y are independent iff $\sigma(X)$, $\sigma(Y)$ are independent.

Definition 1.2. \mathcal{A} is a $\pi - system$ if it is closed under intersection. \mathcal{L} is a $\lambda - system$ if (i) $\Omega \in \mathcal{L}$, (ii) $\forall A, B \in \mathcal{L}, A \subset B$ then $B - A \in \mathcal{L}$, and (iii) If $A_n \in \mathcal{L}, A_n \uparrow A$ then $A \in \mathcal{L}$.

Theorem 1.1. $\pi - \lambda$ Theorem. If \mathcal{P} is a π -system and \mathcal{L} is a λ -system that contains \mathcal{P} then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

Theorem 1.2. Suppose $A_1, A_2, ..., A_n$ are independent and each A_i is a π -system, then $\sigma(A_1), \sigma(A_2), ..., \sigma(A_n)$ are independent.

Theorem 1.3. In order for $X_1, X_2, ..., X_n$ to be independent, it is sufficient that for all $x_1, ..., x_n \in \mathbb{R}$,

$$\mathbb{P}[X_1 \le 1, ..., X_n \le x_n] = \prod_{i=1}^{n} \mathbb{P}[X_i \le x_i]$$

Theorem 1.4. Suppose $X_1, ..., X_n$ are independent random variables and X_i has distribution μ_i , then $(X_1, ..., X_n)$ has distribution $\mu_1 \times \mu_2 ... \times \mu_n$.

Theorem 1.5. If X and Y are independent, then:

$$\mathbb{P}\left[X + Y \le z\right] = \int F(z - y)dG(y)$$

1.2 Weak Laws of Large Number

Definition 1.3. We say Y_n converges to Y in probability if $\forall \epsilon > 0$, $\lim_{n \to \infty} \mathbb{P}[|Y_n - Y| < \epsilon] = 0$.

Lemma 1.1. If p > 0 and $\mathbb{E} |Z_n|^p \to 0$ then $Z_n \to 0$ in probability.

Theorem 1.6. L^2 weak law. Let $X_1, X_2, ...$ be uncorrelated random variables with $\mathbb{E}X_i = \mu$ and $Var(X_i) \leq C < \infty$. If $S_n = X_1 + ... + X_n$ then $S_n/n \to \mu$ in L^2 and in probability.

Theorem 1.7. L¹ weak law. Let $X_1, X_2, ...$ be i.i.d with $\mathbb{E}|X_i| < \infty$. Then $S_n/n \to \mathbb{E}X_1$ in probability

1.3 Borel-Cantelli Lemmas

Definition 1.4. $A_n \subset \Omega$.

$$\limsup A_n = \lim_{m \to \infty} \bigcup_{n=m}^{\infty} A_n = \{ \omega \text{ that are in infinitely many } A_n \}$$

$$\liminf A_n = \lim_{m \to \infty} \bigcap_{n=m}^{\infty} A_n = \{ \omega \text{ that are in all but finitely many } A_n \}$$

Theorem 1.8. The First Borel-cantelli Lemma. If $\sum_{n=1}^{\infty} \mathbb{P}A_n < \infty$ then:

$$\mathbb{P}\left[A_n \ i.o.\right] = 0$$

Theorem 1.9. Relation between Convergence in Probability and Almose Surely.

 $X_n \to X$ in probability iff for every subsequence $X_{n(m)}$ there is a further subsequence $X_{n(m_k)}$ that converges almost surely to X.

Theorem 1.10. If f is continuous and $X_n \to X$ in probability then $f(X_n) \to f(X)$ in probability. If, in addition, f is bounded then $\mathbb{E}f(X_n) \to \mathbb{E}f(X)$.

Theorem 1.11. L⁴ Strong Law of Large Number 1. Let $X_1, X_2, ...$ be i.i.d with $\mathbb{E}X_i = \mu$ and $\mathbb{E}X_i^4 < \infty$. Then $S_n/n \to \mu$ a.s.

Theorem 1.12. The Second Borel-Cantelli Lemma. If A_n are independent then $\sum \mathbb{P}A_n = \infty$ implies $\mathbb{P}[A_n \ i.o.] = 1$.

Theorem 1.13. "Anti" LLN. If X_i are i.i.d with $\mathbb{E}|X_i| = \infty$, then $\mathbb{P}[|X_n| \ge n \text{ i.o.}] = 1$. So $\mathbb{P}[\lim S_n/n = a \in (-\infty, \infty)] = 0$

Theorem 1.14. If $A_1, A_2, ...$ are pairwise independent and $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$ then as $n \to \infty$

$$\sum_{m=1}^{n} \mathbb{I}[A_m] / \sum_{m=1}^{n} \mathbb{P}[A_m] \to 1 \ a.s.$$

1.4 Strong Law of Large Numbers

Theorem 1.15. SLLN. Let $X_1, X_2, ...$ be pairwise independent identically distributed random variables with $\mathbb{E}|X_i| = \mu < \infty$. Then $S_n/n \to \mu$ a.s. as $n \to \infty$.