Regular Expressions

Regular expressions

- A formal language for specifying text strings
- How can we search for any of these?
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks

Regular Expressions: Disjunctions

• Letters inside square brackets []

Pattern	Matches
[wW]oodchuck	Woodchuck, woodchuck
[1234567890]	Any digit

Ranges [A-Z]

Pattern	Matches	
[A-Z]	An upper case letter	<pre>Drenched Blossoms</pre>
[a-z]	A lower case letter	my beans were impatient
[0-9]	A single digit	Chapter 1: Down the Rabbit Hole

Regular Expressions: Negation in Disjunction

- Negations [^Ss]
 - Carat means negation only when first in []

Pattern	Matches	
[^A-Z]	Not an upper case letter	Oyfn pripetchik
[^Ss]	Neither 'S' nor 's'	I have no exquisite reason"
[^e^]	Neither e nor ^	Look here
a^b	The pattern a carat b	Look up <u>a^b</u> now

Regular Expressions: More Disjunction

- Woodchucks is another name for groundhog!
- The pipe | for disjunction

Pattern	Matches
groundhog woodchuck	
yours mine	yours mine
a b c	= [abc]
[gG]roundhog [Ww]oodchuck	

Regular Expressions: ? * +

Pattern	Matches	
colou?r	Optional previous char	<u>color</u> <u>colour</u>
oo*h!	0 or more of previous char	oh! ooh! oooh!
o+h!	1 or more of previous char	oh! ooh! oooh!
baa+		baa baaa baaaa
beg.n		begin begun began

Stephen C Kleene Kleene *, Kleene +

Regular Expressions: Anchors ^ \$

Pattern	Matches	
^[A-Z]	Palo Alto	
^[^A-Za-z]	<pre>1</pre>	
\.\$	The end.	
. \$	The end? The end!	

Example

• Find me all instances of the word "the" in a text.

the

Misses capitalized examples

[tT]he

Incorrectly returns other or theology

```
[^a-zA-z][tT]he[^a-zA-z]
```


Errors

- The process we just went through was based on fixing two kinds of errors
 - Matching strings that we should not have matched (there, then, other)
 - False positives (Type I)
 - Not matching things that we should have matched (The)
 - False negatives (Type II)

Errors cont.

- In NLP we are always dealing with these kinds of errors.
- Reducing the error rate for an application often involves two antagonistic efforts:
 - Increasing accuracy or precision (minimizing false positives)
 - Increasing coverage or recall (minimizing false negatives).

Summary

- Regular expressions play a surprisingly large role
 - Sophisticated sequences of regular expressions are often the first model for any text processing text
- For many hard tasks, we use machine learning classifiers
 - But regular expressions are used as features in the classifiers
 - Can be very useful in capturing generalizations

Regular Expressions

Word tokenization

Text Normalization

- Every NLP task needs to do text normalization:
 - 1. Segmenting/tokenizing words in running text
 - 2. Normalizing word formats
 - 3. Segmenting sentences in running text

How many words?

- I do uh main- mainly business data processing
 - Fragments, filled pauses
- Seuss's cat in the hat is different from other cats!
 - Lemma: same stem, part of speech, rough word sense
 - cat and cats = same lemma
 - Wordform: the full inflected surface form
 - cat and cats = different wordforms

How many words?

they lay back on the San Francisco grass and looked at the stars and their

- Type: an element of the vocabulary.
- Token: an instance of that type in running text.
- How many?
 - 15 tokens (or 14)
 - 13 types (or 12) (or 11?)

How many words?

N = number of tokens

V = vocabulary = set of types

|V| is the size of the vocabulary

Church and Gale (1990): $|V| > O(N^{\frac{1}{2}})$

	Tokens = N	Types = V
Switchboard phone conversations	2.4 million	20 thousand
Shakespeare	884,000	31 thousand
Google N-grams	1 trillion	13 million

m.p.h., PhD.

Issues in Tokenization

 \rightarrow 55

```
    Finland's capital → Finland Finlands Finland's ?
    what're, I'm, isn't → What are, I am, is not
    Hewlett-Packard → Hewlett Packard ?
    state-of-the-art → state of the art ?
    Lowercase → lower-case lowercase lower case ?
    San Francisco → one token or two?
```


Tokenization: language issues

- French
 - *L'ensemble* → one token or two?
 - L?L'?Le?
 - Want *l'ensemble* to match with *un ensemble*
- German noun compounds are not segmented
 - Lebensversicherungsgesellschaftsangestellter
 - 'life insurance company employee'
 - German information retrieval needs compound splitter

Tokenization: language issues

- Chinese and Japanese no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
 - Sharapova now lives in US southeastern Florida
- Further complicated in Japanese, with multiple alphabets intermingled
 - Dates/amounts in multiple formats

End-user can express query entirely in hiragana!

Word Tokenization in Chinese

- Also called Word Segmentation
- Chinese words are composed of characters
 - Characters are generally 1 syllable and 1 morpheme.
 - Average word is 2.4 characters long.
- Standard baseline segmentation algorithm:
 - Maximum Matching (also called Greedy)

Maximum Matching Word Segmentation Algorithm

- Given a wordlist of Chinese, and a string.
- 1) Start a pointer at the beginning of the string
- 2) Find the longest word in dictionary that matches the string starting at pointer
- 3) Move the pointer over the word in string
- 4) Go to 2

Max-match segmentation illustration

Thecatinthehat

the cat in the hat

Thetabledownthere

the table down there

theta bled own there

Doesn't generally work in English!

- But works astonishingly well in Chinese
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
- Modern probabilistic segmentation algorithms even better

Word tokenization

Word Normalization and Stemming

Normalization

- Need to "normalize" terms
 - Information Retrieval: indexed text & query terms must have same form.
 - We want to match U.S.A. and USA
- We implicitly define equivalence classes of terms
 - e.g., deleting periods in a term
- Alternative: asymmetric expansion:

Enter: window Search: window, windows

• Enter: windows Search: Windows, windows

• Enter: Windows Search: Windows

Potentially more powerful, but less efficient

Case folding

- Applications like IR: reduce all letters to lower case
 - Since users tend to use lower case
 - Possible exception: upper case in mid-sentence?
 - e.g., *General Motors*
 - Fed vs. fed
 - SAIL vs. sail
- For sentiment analysis, MT, Information extraction
 - Case is helpful (*US* versus *us* is important)

Lemmatization

- Reduce inflections or variant forms to base form
 - am, are, is \rightarrow be
 - car, cars, car's, cars' → car
- the boy's cars are different colors → the boy car be different color
- Lemmatization: have to find correct dictionary headword form
- Machine translation
 - Spanish quiero ('I want'), quieres ('you want') same lemma as querer 'want'

Morphology

• Morphemes:

- The small meaningful units that make up words
- Stems: The core meaning-bearing units
- Affixes: Bits and pieces that adhere to stems
 - Often with grammatical functions

Stemming

- Reduce terms to their stems in information retrieval
- Stemming is crude chopping of affixes
 - language dependent
 - e.g., automate(s), automatic, automation all reduced to automat.

for example compressed and compression are both accepted as equivalent to compress.

for exampl compress and compress ar both accept as equival to compress

Porter's algorithm The most common English stemmer

```
Step 1a
                                               Step 2 (for long stems)
   sses → ss caresses → caress
                                                  ational → ate relational → relate
   ies \rightarrow i ponies \rightarrow poni
                                                  izer→ ize digitizer → digitize
          → ss caress
                              → caress
                                                  ator→ ate operator → operate
          \rightarrow Ø cats \rightarrow cat
Step 1b
                                                Step 3 (for longer stems)
    (*v*)inq \rightarrow \emptyset walking \rightarrow walk
                                                          \rightarrow \emptyset revival \rightarrow reviv
                                                  al
                      sing
                                 → sinq
                                                  able \rightarrow \emptyset adjustable \rightarrow adjust
    (*v*)ed \rightarrow \emptyset plastered \rightarrow plaster
                                                  ate \rightarrow \emptyset activate \rightarrow activ
```

Viewing morphology in a corpus Why only strip –ing if there is a vowel?

```
(*v*)ing \rightarrow \emptyset walking \rightarrow walk sing \rightarrow sing
```


Dealing with complex morphology is sometimes necessary

- Some languages requires complex morpheme segmentation
 - Turkish
 - Uygarlastiramadiklarimizdanmissinizcasina
 - `(behaving) as if you are among those whom we could not civilize'
 - Uygar `civilized' + las `become'
 - + tir `cause' + ama `not able'
 - + dik `past' + lar 'plural'
 - + imiz 'p1pl' + dan 'abl'
 - + mis 'past' + siniz '2pl' + casina 'as if'

Word Normalization and Stemming

Sentence Segmentation and Decision Trees

Sentence Segmentation

- !, ? are relatively unambiguous
- Period "." is quite ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Build a binary classifier
 - Looks at a "."
 - Decides EndOfSentence/NotEndOfSentence
 - Classifiers: hand-written rules, regular expressions, or machine-learning

Determining if a word is end-of-sentence: a Decision Tree

More sophisticated decision tree features

- Case of word with ".": Upper, Lower, Cap, Number
- Case of word after ".": Upper, Lower, Cap, Number
- Numeric features
 - Length of word with "."
 - Probability(word with "." occurs at end-of-s)
 - Probability(word after "." occurs at beginning-of-s)

Implementing Decision Trees

- A decision tree is just an if-then-else statement
- The interesting research is choosing the features
- Setting up the structure is often too hard to do by hand
 - Hand-building only possible for very simple features, domains
 - For numeric features, it's too hard to pick each threshold
 - Instead, structure usually learned by machine learning from a training corpus

Sentence Segmentation and Decision Trees