CS 310-0

Homework Assignment No. 3

Due Tue 1/30/2001

- 1. Find (if they exist) the greatest element, the least element, the least upper bound and the greatest lower bound for each of the following subsets of $(\mathbb{R}, <)$:
 - (a) $A = \{(-1)^n + 1/n \mid n \in \mathbb{Z}^+\}.$
 - (b) $B = \{x \in \mathbb{R} \mid x^2 \le 5\}.$
 - (c) $C = \{x \in \mathbb{Q} \mid x^2 \le 5\}.$ (d) $D = \{x \in \mathbb{Z} \mid x^2 \le 5\}.$
- 2. Let $P = \{a\omega + b \mid a, b \in \mathbb{N}\}$ be the set of expressions of the form $a\omega + b$, where a and b are natural numbers and ω is a symbol. On P we define the relation

$$a\omega + b \le a'\omega + b'$$
 iff $a < a'$, or $a = a'$ and $b \le b'$.

For instance, $5\omega + 7 \le 6\omega + 3$ because 5 < 6. On the other hand, $6\omega + 3 \le 6\omega + 7$ because 6 = 6 and 3 < 7.

- 1. Prove that "<" is a total order on P. Is it a well order?
- 2. For each of the following elements of P find a successor an immediate successor, a predecessor and an immediate predecessor, or show that there is none:

$$3\omega + 1, 2\omega, 7, 0.$$

- 3. Show that every element of P has an *immediate successor*, but some have no *im*mediate predecessor. Characterize the elements with no immediate predecessor.
- 4. An element in P is said to be *infinite* if it is greater than any natural number, otherwise it is called *finite*. Prove that ω is the least infinite element in P.
- 3. Let X be the set $X = \{a, b, c\}$. Draw the Hasse diagram for the poset $(\mathfrak{P}(X), \subseteq)$, where " $\mathcal{P}(X)$ " is the set of subsets of X, and " \subseteq " is the containment relation. Find the minimal and maximal elements in $S = \mathcal{P}(X) - \{\emptyset, X\}$.
- 4. Let $P = \{ax + b \mid a, b \in \mathbb{N}\}$ be the set of polynomials of degree at most 1 with natural coefficients. On P we define the relation

$$ax + b \mathcal{R} a'x + b'$$
 iff $a = a'$.

Prove that \Re is an equivalence relation. Describe the equivalence classes.⁴

5. Prove that the following is an equivalence relation on $\mathbb{R}^2 - \{(0,0)\}$:

$$(x, y) \Re(x', y')$$
 iff $\exists \lambda \in \mathbb{R}^*, (x', y') = (\lambda x, \lambda y)$.

Let F be the set $F = \{(x,y) \mid (x^2 + y^2 = 1) \land (-1 < x \le 1) \land (0 \le y)\}$. Prove that F contains exactly one representative from each equivalence class.

¹When a or b are zero we write $0\omega + b = b$, $a\omega + 0 = a\omega$, $0\omega + 0 = 0$

²You have to prove two things: that it is an order and it is total.

³Remember that (\mathbb{N}, \leq) is well ordered, i.e., every non-empty subset of \mathbb{N} has a least element.

⁴I.e., each class is of the form $\{ax + b \in P \mid \dots\}$ (replace the dots with an appropriate statement.)