

NGUYỄN CÔNG PHƯƠNG

LÝ THUYẾT MẠCH I

KHUẾCH ĐẠI THUẬT TOÁN

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản
- 5. Phân tích mạch có khuếch đại thuật toán

Nguồn phụ thuộc

Nguồn áp phụ thuộc

Nguồn dòng phụ thuộc

- Nguồn áp phụ thuộc áp:
- Nguồn áp phụ thuộc dòng:
- Nguồn dòng phụ thuộc áp:
- Nguồn dòng phụ thuộc dòng:

$$e = f_{eu}(u_x) = \mu u_x$$

$$e = f_{ei}(i_x) = r_m i_x$$

$$j = f_{ju}(u_x) = g_m u_x$$

$$j = f_{ji}(i_x) = \beta i_x$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
 - a) Dòng nhánh
 - b) Thế nút
 - c) Dòng vòng
 - d) Xếp chồng
 - e) Mạng một cửa
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản
- 5. Phân tích mạch có khuếch đại thuật toán

Phân tích mạch điện có nguồn phụ thuộc

$$4i_x + 8i_x = 30 - 3i_x$$

$$\rightarrow 15i_x = 30$$

$$\rightarrow i_x = 2 \text{ A}$$

Dòng nhánh (1)

$$\begin{cases}
i_x + i - i_{ng} + 4 = 0 \\
4i_x - 6i = 12
\end{cases}$$

$$i_{ng} = 0, 5u_x = 0, 5.4i_x = 2i_x$$

$$\rightarrow \begin{cases} i_x + i - 2i_x + 4 = 0 \\ 4i_x - 6i = 12 \end{cases} \rightarrow \begin{cases} -i_x + i = -4 \\ 4i_x - 6i = 12 \end{cases} \rightarrow \begin{cases} i_x = 6 \text{ A} \\ i = 2 \text{ A} \end{cases}$$

Dòng nhánh (2)

VD₂

$$\begin{cases} b: i_{ng} - i_2 - i_3 = 0 \\ c: i_1 + i_3 - J = 0 \\ A: R_1 i_1 - R_3 i_3 + R_2 i_2 - E = 0 \end{cases}$$

$$i_{ng} = \beta i_1$$

$$\Rightarrow \begin{cases}
\beta i_1 - i_2 - i_3 = 0 \\
i_1 + i_3 - J = 0 \\
R_1 i_1 - R_3 i_3 + R_2 i_2 - E = 0
\end{cases}$$

7

Dòng nhánh (3)

$$\begin{cases} a: i_{1} + i_{2} + i_{3} = J \\ b: i_{2} + i_{3} - i_{4} - i_{5} = 0 \end{cases}$$

$$\begin{cases} R_{2}i_{2} - R_{3}i_{3} = u_{ng} \\ R_{1}i_{1} - R_{2}i_{2} - R_{4}i_{4} = -u_{ng} \end{cases}$$

$$\begin{cases} R_{4}i_{4} - R_{5}i_{5} = E \\ u_{ng} = R_{m}i_{5} \end{cases}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
 - a) Dòng nhánh
 - b) Thế nút
 - c) Dòng vòng
 - d) Xếp chồng
 - e) Mạng một cửa
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản
- 5. Phân tích mạch có khuếch đại thuật toán

Thế nút (1)

$$\left(\frac{1}{4} + \frac{1}{6}\right)\varphi_a = 4 + \frac{12}{4} - i_{ng}$$

$$i_{ng} = 0, 5u_x = 0, 5(12 - \varphi_a)$$

$$\rightarrow \left(\frac{1}{4} + \frac{1}{6}\right) \varphi_a = 4 + \frac{12}{4} - 0,5(12 - \varphi_a)$$

$$\Rightarrow \varphi_{a} = -12 \text{ V} \Rightarrow \begin{cases} i_{x} = \frac{12 - \varphi_{a}}{4} = \frac{12 - (-12)}{4} = \boxed{6 \text{ A}} \\ i_{z} = -\frac{\varphi_{a}}{6} = -\frac{-12}{6} = \boxed{2 \text{ A}} \end{cases}$$

Thế nút (2)

$$\begin{cases}
\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right) \varphi_{a} & -\frac{1}{R_{2}} \varphi_{b} = J - i_{ng} + \frac{E}{R_{2}} \\
-\frac{1}{R_{2}} \varphi_{a} + \left(\frac{1}{R_{2}} + \frac{1}{R_{3}}\right) \varphi_{b} = i_{ng} - \frac{E}{R_{2}}
\end{cases}$$

$$i_{ng} = \beta i_{1} = \beta \frac{\varphi_{a}}{R_{1}}$$

$$\Rightarrow \begin{cases}
\left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \beta \frac{1}{R_{1}}\right) \varphi_{a} & -\frac{1}{R_{2}} \varphi_{b} = J + \frac{E}{R_{2}} \\
-\left(\frac{1}{R_{2}} + \beta \frac{1}{R_{1}}\right) \varphi_{a} + \left(\frac{1}{R_{2}} + \frac{1}{R_{3}}\right) \varphi_{b} = -\frac{E}{R_{2}}
\end{cases}$$

Thế nút (3)

$$\begin{cases} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}\right) \varphi_{a} & -\left(\frac{1}{R_{2}} + \frac{1}{R_{3}}\right) \varphi_{b} = J - \frac{u_{ng}}{R_{2}} \\ -\left(\frac{1}{R_{2}} + \frac{1}{R_{3}}\right) \varphi_{a} + \left(\frac{1}{R_{2}} + \frac{1}{R_{3}} + \frac{1}{R_{4}} + \frac{1}{R_{5}}\right) \varphi_{b} = \frac{E}{R_{5}} + \frac{u_{ng}}{R_{2}} \end{cases}$$

$$u_{ng} = R_{m} i_{5} = R_{m} \frac{\varphi_{b} - E}{R_{5}}$$

$$\rightarrow \begin{cases} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}\right) \varphi_{a} & -\left(\frac{1}{R_{2}} + \frac{1}{R_{3}} - \frac{R_{m}}{R_{2}R_{5}}\right) \varphi_{b} = J + \frac{R_{m}E}{R_{2}R_{5}} \\ -\left(\frac{1}{R_{2}} + \frac{1}{R_{3}}\right) \varphi_{a} + \left(\frac{1}{R_{2}} + \frac{1}{R_{3}} + \frac{1}{R_{4}} + \frac{1}{R_{5}} - \frac{R_{m}}{R_{2}R_{5}}\right) \varphi_{b} = \frac{E}{R_{5}} - \frac{R_{m}E}{R_{2}R_{5}} \end{cases}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
 - a) Dòng nhánh
 - b) Thế nút
 - c) Dòng vòng
 - d) Xếp chồng
 - e) Mạng một cửa
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản
- 5. Phân tích mạch có khuếch đại thuật toán

Dòng vòng (1)

$$4(i_{m}-4)+6(i_{m}-i_{ng})=12$$

$$i_{ng}=0,5u_{x}=0,5.4i_{x}=2i_{x}$$

$$=2(i_{m}-4)$$

$$\rightarrow 4(i_m - 4) + 6[i_m - 2(i_m - 4)] = 12$$

$$\rightarrow i_{m} = 10 \quad \Rightarrow \begin{cases} i_{x} = i_{m} - 4 = 10 - 4 = \boxed{6A} \\ i = -i_{m} + i_{ng} = -10 + 2(10 - 4) = \boxed{2A} \end{cases}$$

Dòng vòng (2)

$$R_{1}i_{A} + R_{2}i_{D} + R_{3}i_{B} + E = 0$$

$$i_{B} - i_{A} = J$$

$$i_{B} - i_{D} = i_{ng}$$

$$i_{ng} = \beta i_{1}$$

$$\rightarrow (R_1 + R_2 + R_3)i_A = -E - (R_2 + R_3)J + R_2\beta i_1$$

$$i_A = -i_1$$

$$\rightarrow (R_1 + R_2 + R_3 + \beta R_2)i_1 = E + (R_2 + R_3)J$$

Dòng vòng (3)

$$\begin{cases} A: R_{1}(i_{A}-J) + R_{2}(i_{A}+i_{D}) + R_{4}(i_{A}+i_{B}) = u_{ng} \\ B: R_{4}(i_{B}+i_{A}) + R_{5}i_{B} = E \\ D: R_{2}(i_{D}+i_{A}) + R_{3}i_{D} = u_{ng} \\ u_{ng} = R_{m}i_{5} = R_{m}(-i_{B}) \end{cases}$$

$$\Rightarrow \begin{cases}
(R_1 + R_2 + R_4)i_A + (R_4 + R_m)i_B + R_2i_D = R_1J \\
R_4i_A + (R_4 + R_5)i_B = E \\
R_2i_A + R_mi_B + (R_2 + R_3)i_D = 0
\end{cases}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
 - a) Dòng nhánh
 - b) Thế nút
 - c) Dòng vòng
 - d) Xếp chồng
 - e) Mạng một cửa
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản
- 5. Phân tích mạch có khuếch đại thuật toán

Xếp chồng (1)

Xếp chồng (2)

$$\left(\frac{1}{4} + \frac{1}{6}\right)\varphi_a = \frac{12}{4} - i_{ng}$$

$$i_{ng} = 0,5u_x = 0,5(12 - \varphi_a)$$

$$\rightarrow \left(\frac{1}{4} + \frac{1}{6}\right) \varphi_a = \frac{12}{4} - 0,5(12 - \varphi_a)$$

$$\rightarrow \varphi_a = 36 \text{ V} \rightarrow i \Big|_{12\text{ V}} = -\frac{\varphi_a}{6} = -\frac{36}{6} = -6\text{A}$$

Xếp chồng (3)

$$\left(\frac{1}{4} + \frac{1}{6}\right) \varphi_{a} = 4 - i_{ng}$$

$$i_{ng} = 0,5u_{x} = 0,5(-\varphi_{a})$$

$$\rightarrow \left(\frac{1}{4} + \frac{1}{6}\right) \varphi_a = 4 - 0, 5(-\varphi_a)$$

$$\rightarrow \varphi_a = -48 \text{ V} \rightarrow i|_{4A} = -\frac{\varphi_a}{6} = -\frac{-48}{6} = 8 \text{ A}$$

Xếp chồng (4)

$$i = -6 + 8 = 2A$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
 - a) Dòng nhánh
 - b) Thế nút
 - c) Dòng vòng
 - d) Xếp chồng
 - e) Mạng một cửa
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản
- 5. Phân tích mạch có khuếch đại thuật toán

Mạng một cửa (1)

$$E_{td} = u_{h\vec{o}'mach}$$

$$\begin{vmatrix} \frac{1}{4}\varphi_{a} = 4 + \frac{12}{4} - i_{ng} \\ i_{ng} = 0, 5u_{x} = 0, 5(12 - \varphi_{a}) \end{vmatrix}$$

$$R_{td} = \frac{u_{h\vec{o} \, mach}}{i_{ng\acute{a}n \, mach}}$$

$$\rightarrow \frac{1}{4} \varphi_a = 4 + \frac{12}{4} - 0,5(12 - \varphi_a) \rightarrow \varphi_a = -4 \text{ V} \rightarrow u_{h \mathring{o} mach} = \varphi_a = -4 \text{ V}$$

Mạng một cửa (2)

$$R_{td} = \frac{u_{h \mathring{o} mach}}{i_{n g \acute{a} n mach}}$$

$$4 + i_x - i_{ng/m} - i_{ng} = 0 \rightarrow i_{ng/m} = i_x - i_{ng} + 4$$

$$i_{ng} = 0.5u_{x}$$

$$\varphi_{a} = \varphi_{b} \rightarrow \begin{cases} u_{x} = 12 \text{ V} \\ i_{x} = 12/4 = 3 \text{ A} \end{cases}$$

$$\rightarrow i_{ng/m} = 3 - 6 + 4 = \boxed{1A}$$

Mạng một cửa (3)

$$E_{td} = u_{h \mathring{\sigma} m \mathring{q} ch} = -4 \text{ V}$$

$$i_{ng\acute{a}n\ mach} = 1\,\mathrm{A}$$

$$R_{td} = \frac{u_{h\vec{o} \, mach}}{i_{ng\acute{a}n \, mach}} = \frac{-4}{1} = -4\Omega$$

$$i = \frac{-E_{td}}{R_{td} + 6} = \frac{-(-4)}{-4 + 6} = \boxed{2 \text{ A}}$$

Mạng một cửa (4)

VD₂

$$E = 16 \text{ V}; J = 2 \text{ A}; R_1 = 4 \Omega; R_2 = 6 \Omega; \beta = 2;$$

tìm R_{td} ?

$$R_{td} = \frac{u_{h \circ mach}}{i_{ng \circ n mach}}$$

$$(\varphi_c - \varphi_b) - E + R_2 i_2 + R_1 i_1 = 0$$

$$u_{h\dot{o}} = \varphi_b - \varphi_c$$

Mạng một cửa (5)

VD₂

$$E = 16 \text{ V}; J = 2 \text{ A}; R_1 = 4 \Omega; R_2 = 6 \Omega; \beta = 2;$$

tìm R_{td} ?

$$R_{td} = rac{u_{h \mathring{o} mach}}{i_{n g d} mach}$$

$$i_1 - J + i_{ng/m} = 0 \longrightarrow i_{ng/m} = J - i_1$$

$$\left(\frac{1}{R_1} + \frac{1}{R_2}\right) \varphi_a = J - i_{ng} + \frac{E}{R_2}$$

$$i_{ng} = \beta i_1 = \beta \frac{\varphi_a}{R_1}$$

$$\rightarrow \varphi_a = 5,09 \text{ V} \rightarrow i_1 = \frac{\varphi_a}{R_1} = \frac{5,09}{4} = 1,27 \text{ A}$$

$$\rightarrow i_{ng/m} = 2 - 1,27 = 0,73 \,\text{A}$$

Mạng một cửa (6)

VD2

$$E = 16 \text{ V}; J = 2 \text{ A}; R_1 = 4 \Omega; R_2 = 6 \Omega; \beta = 2;$$

tìm R_{td} ?

$$R_{td} = \frac{u_{h \mathring{o} mach}}{i_{ng \acute{a} n mach}}$$

 $u_{h\vec{o}mach} = 16 \text{ V}$

$$i_{ng\acute{a}n\ mach} = 0,73\,\mathrm{A}$$

Cách 1

$$\rightarrow R_{td} = \frac{16}{0.73} = \boxed{22\Omega}$$

Mạng một cửa (7)

VD₂

$$E = 16 \text{ V}; J = 2 \text{ A}; R_1 = 4 \Omega; R_2 = 6 \Omega; \beta = 2;$$

tìm R_{td} ?

$$b: i_{v \grave{a} o} + \beta i_1 - i_2 = 0 \to i_{v \grave{a} o} = i_2 - \beta i_1$$

$$\begin{cases} R_2 i_2 + R_1 i_1 = 10 \\ a: i_2 - i_1 - \beta i_1 = 0 \end{cases}$$

$$\to \begin{cases} i_1 = 0, 45 \text{ A} \\ i_2 = 1, 36 \text{ A} \end{cases}$$

$$\to i_{v \grave{a} o} = 1, 36 - 2.0, 45 = 0, 45 \text{ A}$$

$$\to R_{t d} = \frac{u_{v \grave{a} o}}{i_{v \grave{a} o}} = \frac{10}{0, 45} = \boxed{22\Omega}$$

Mạng một cửa (8)

VD2

$$E = 16 \text{ V}; J = 2 \text{ A}; R_1 = 4 \Omega; R_2 = 6 \Omega; \beta = 2;$$

tìm R_{td} ?

Cách 3

$$u_{v\grave{a}o} - R_{1}i_{1} - R_{2}i_{2} = 0 \rightarrow u_{v\grave{a}o} = R_{1}i_{1} + R_{2}i_{2}$$

$$\begin{cases} c: i_{1} = 1 \\ b: \beta i_{1} + 1 - i_{2} = 0 \end{cases}$$

$$\rightarrow i_{2} = 3A$$

$$\rightarrow u_{v\grave{a}o} = 4.1 + 6.3 = 22 \text{ V}$$

$$\rightarrow R_{td} = \frac{u_{v\grave{a}o}}{i_{v\grave{a}o}} = \frac{22}{1} = \boxed{22\Omega}$$

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản
- 5. Phân tích mạch có khuếch đại thuật toán

Khuếch đại thuật toán (1)

- 1947, operational amplifier, opamp,
- Linh động, rẻ, dễ dùng,
- Thực hiện các phép tính cộng, trừ, nhân, chia, vi phân, & tích phân,
- Xây dựng từ điện trở, transistor, tụ điện, điốt.

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Khuếch đại thuật toán (2)

Khuếch đại thuật toán (3)

Khuếch đại thuật toán (4)

$$u_{ra} = Au_{v \grave{a}o} = A(\varphi_2 - \varphi_1)$$

	Giá trị thực	Giá trị lý tưởng
A	$10^5 - 10^8$	∞
$R_{ m v\`{a}o}$	$10^6 - 10^{13} \ \Omega$	$\infty~\Omega$
$R_{\rm ra}$	$10-100 \Omega$	0 Ω
V_{cc}	5 – 24 V	

Khuếch đại thuật toán lý tưởng

1.
$$A \approx \infty$$

1.
$$R \sim \infty$$
2. $R_{v \grave{a} o} \approx \infty$
3. $R_{ra} \approx 0$

1.
$$i_1 = 0$$
, $i_2 = 0$

1.
$$i_1 = 0$$
, $i_2 = 0$
2. $u_{v a o} = u_1 - u_2 \approx 0$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản
 - a) Đảo
 - b) Không đảo
 - c) Cộng
 - d) Trừ
 - e) Nối tầng
 - f) Khác
- 5. Phân tích mạch có khuếch đại thuật toán

Mạch khuếch đại đảo (1)

$$a: i_{1} - i_{f} - i^{-} = 0$$

$$i^{-} = 0$$

$$\rightarrow i_{1} = i_{f}$$

$$i_{1} = \frac{u_{v} - \varphi_{a}}{R_{1}}, i_{f} = \frac{\varphi_{a} - u_{r}}{R_{f}}$$

$$\rightarrow \frac{u_{v} - \varphi_{a}}{R_{1}} = \frac{\varphi_{a} - u_{r}}{R_{f}}$$

$$\varphi_{a} = \varphi_{b} = 0$$

$$\rightarrow \boxed{u_{r} = -\frac{R_{f}}{R_{1}} u_{v}}$$

1.
$$i^+ = 0$$
, $i^- = 0$

2.
$$\varphi_a = \varphi_b$$

BÁCH KHOA HÀ NỘI

Mạch khuếch đại đảo (2)

$$u_v = 10 \text{ mV}$$
; $R_1 = 4 \text{ k}\Omega$; tìm R_f để $u_r = 0.2 \text{V}$?

$$u_r = -\frac{R_f}{R_1} u_v$$

$$\rightarrow R_f = R_1 \frac{u_r}{u_v} = 4 \frac{0.2}{10.10^{-3}} = 80 \text{ k} \Omega$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản
 - a) Đảo
 - b) Không đảo
 - c) Cộng
 - d) Trừ
 - e) Nối tầng
 - f) Khác
- 5. Phân tích mạch có khuếch đại thuật toán

Mạch khuếch đại không đảo (1)

$$a: i_{1} - i_{f} - i^{-} = 0$$

$$i^{-} = 0$$

$$\rightarrow i_{1} = i_{f}$$

$$i_{1} = \frac{-\varphi_{a}}{R_{1}}, i_{f} = \frac{\varphi_{a} - u_{r}}{R_{f}}$$

$$\rightarrow \frac{-\varphi_{a}}{R_{1}} = \frac{\varphi_{a} - u_{r}}{R_{f}}$$

$$\varphi_{a} = \varphi_{b} = u_{v}$$

$$\rightarrow u_{r} = \left(1 + \frac{R_{f}}{R_{1}}\right)u_{v}$$

1.
$$i^+ = 0$$
, $i^- = 0$
2. $\varphi_a = \varphi_b$

2.
$$\varphi_a = \varphi_b$$

BÁCH KHOA HÀ NỘI

Mạch khuếch đại không đảo (2)

$$u_v = 10 \text{ mV}; R_1 = R_f = 4 \text{ k}\Omega; u_r = ?$$

$$u_r = \left(1 + \frac{R_f}{R_1}\right) u_v = \left(1 + \frac{4}{4}\right) 10 = \boxed{20 \text{ mV}}$$

Mạch khuếch đại không đảo (3)

$$u_r = \left(1 + \frac{R_f}{R_1}\right) u_v$$

$$u_{r} = \left(1 + \frac{R_{f}}{R_{1}}\right) u_{v}$$

$$R_{1} \to \infty, R_{f} = 0$$

$$\to u_{r} = u_{v}$$

$$u_r = \varphi_a$$

$$\varphi_a = \varphi_b$$

$$\varphi_b = u_v$$

$$\rightarrow u_r = u_v$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản
 - a) Đảo
 - b) Không đảo
 - c) Cộng
 - d) Trừ
 - e) Nối tầng
 - f) Khác
- 5. Phân tích mạch có khuếch đại thuật toán

Mạch cộng (1)

$$i_{1} + i_{2} + i_{3} - i^{-} - i_{f} = 0$$

$$i_{1} = \frac{u_{1} - \varphi_{a}}{R_{1}}$$

$$i_{2} = \frac{u_{2} - \varphi_{a}}{R_{2}}$$

$$i_{3} = \frac{u_{3} - \varphi_{a}}{R_{3}}$$

$$i_{f} = \frac{\varphi_{a} - u_{r}}{R_{f}}$$

$$\varphi_{a} = \varphi_{b} = 0$$

$$i^{-} = 0$$

BÁCH KHOA HÀ NỘI

Mạch cộng (2)

$$R_1 = 24 \text{ k}\Omega$$
; $R_2 = 12 \text{ k}\Omega$; $R_3 = 8 \text{ k}\Omega$; $R_f = 24 \text{ k}\Omega$; $u_r = ?$

$$u_r = -\left(\frac{R_f}{R_1}u_1 + \frac{R_f}{R_2}u_2 + \frac{R_f}{R_3}u_3\right)$$

$$= -\left(\frac{24}{24}u_1 + \frac{24}{12}u_2 + \frac{24}{8}u_3\right)$$

$$= -(u_1 + 2u_2 + 3u_3)$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản
 - a) Đảo
 - b) Không đảo
 - c) Cộng
 - d) Trừ
 - e) Nối tầng
 - f) Khác
- 5. Phân tích mạch có khuếch đại thuật toán

Mạch trừ (1)

$$a: i_1 = i_2 \rightarrow \frac{u_1 - \varphi_a}{R_1} = \frac{\varphi_a - u_r}{R_2}$$

$$b: i_3 = i_4 \rightarrow \frac{u_2 - \varphi_b}{R_3} = \frac{\varphi_b - 0}{R_4}$$

$$\varphi_a = \varphi_b$$

$$\to u_r = \left(\frac{R_2}{R_1} + 1\right) \frac{R_4}{R_3 + R_4} u_2 - \frac{R_2}{R_1} u_1$$

Nếu
$$\frac{R_1}{R_2} = \frac{R_3}{R_4} \rightarrow u_r = \frac{R_2}{R_1} (u_2 - u_1)$$

Nếu
$$R_2 = R_1 \& R_3 = R_4 \longrightarrow u_r = u_2 - u_1$$

TRƯƠNG BẠI HỌC BÁCH KHOA HÀ NỘI

Mạch trừ (2)

$$R_1 = R_2 = R_3 = R_4 = 47 \text{ k}\Omega;$$

$$u_1 = 30 \text{ mV}; u_2 = 10 \text{ mV}; u_r = ?$$

$$u_r = \left(\frac{R_2}{R_1} + 1\right) \frac{R_4}{R_3 + R_4} u_2 - \frac{R_2}{R_1} u_1$$

$$= \left(\frac{47}{47} + 1\right) \frac{47}{47 + 47} 30 - \frac{47}{47} 10 = \boxed{20 \text{ mV}}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản
 - a) Đảo
 - b) Không đảo
 - c) Cộng
 - d) Trừ
 - e) Nối tầng
 - f) Khác
- 5. Phân tích mạch có khuếch đại thuật toán

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Nối tầng (1)

$$u_r = A_1 A_2 A_3 u_1$$

Nối tầng (2)

$$u_b = \left(\frac{1 + \frac{1}{R_1}}{R_1}\right) u_v \qquad u_b = -\frac{R_f}{R_2} u_a$$

$$u_r = -\frac{R_f}{R_3} u_b$$

$$u_r = \left(1 + \frac{R_f}{R_1}\right) \left(-\frac{R_f}{R_2}\right) \left(-\frac{R_f}{R_3}\right) u_v = R_f^2 \frac{R_1 + R_f}{R_1 R_2 R_3} u_v$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản
 - a) Đảo
 - b) Không đảo
 - c) Cộng
 - d) Trừ
 - e) Nối tầng
 - f) Khác
- 5. Phân tích mạch có khuếch đại thuật toán

Mạch tích phân

$$\rightarrow \left| u_r = \frac{-1}{RC} \int u_v dt \right|$$

Mạch vi phân

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản

5. Phân tích mạch có khuếch đại thuật toán

- a) Dòng nhánh
- b) Thế nút
- c) Dòng vòng
- d) Mạch xoay chiều
- e) Mạng hai cửa

TRUÖNG BAI HOC BÁCH KHOA HÀ NỘI

Phân tích mạch điện có khuếch đại thuật toán

1.
$$i_1 = 0$$
, $i_2 = 0$

1.
$$i_1 = 0$$
, $i_2 = 0$
2. $u_{v a o} = u_1 - u_2 \approx 0$

Dòng nhánh (1)

$$E_1 = 7 \text{ V}; E_2 = 4 \text{ V}; E_3 = 2 \text{ V};$$

 $R_1 = R_2 = R_3 = 2 \text{ k}\Omega; R_4 = 6 \text{ k}\Omega;$
 $R_5 = 3 \text{ k}\Omega;$ tính các dòng điện?

Dòng nhánh (2)

VD

$$E_1 = 7 \text{ V}; E_2 = 4 \text{ V}; E_3 = 2 \text{ V};$$

 $R_1 = R_2 = R_3 = 2 \text{ k}\Omega; R_4 = 6 \text{ k}\Omega;$
 $R_5 = 3 \text{ k}\Omega;$ tính các dòng điện?

Cách 1

$$i_1 + i_2 - i_3 = 0$$

$$R_1 i_1 - R_2 i_2 = E_1 - E_2$$

$$R_2 i_2 + u_x + R_4 i_4 = E_2$$

$$R_3 i_3 + R_5 i_4 - u_x = E_3$$

$$(R_4 + R_5)i_4 = \mu u_x$$

$$\rightarrow i_1 = \frac{\mu + 12}{2\mu + 6}$$

$$\mu \rightarrow \infty$$

$$\rightarrow [i_1 = 0.5 \,\text{mA}]$$

Dòng nhánh (3)

VD

$$E_1 = 7 \text{ V}; E_2 = 4 \text{ V}; E_3 = 2 \text{ V};$$

 $R_1 = R_2 = R_3 = 2 \text{ k}\Omega; R_4 = 6 \text{ k}\Omega;$
 $R_5 = 3 \text{ k}\Omega;$ tính các dòng điện?

Cách 2

$$\begin{aligned}
i_1 + i_2 - i_3 &= 0 \\
R_1 i_1 - R_2 i_2 &= E_1 - E_2 \\
R_2 i_2 - R_4 i_4 &= E_2 \\
R_3 i_3 - R_5 i_5 &= E_3 \\
i_4 - i_5 &= 0
\end{aligned}$$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản

5. Phân tích mạch có khuếch đại thuật toán

- a) Dòng nhánh
- b) Thế nút
- c) Dòng vòng
- d) Mạch xoay chiều
- e) Mạng hai cửa

Thế nút (1)

VD

$$E_1 = 7 \text{ V}; E_2 = 4 \text{ V}; E_3 = 2 \text{ V};$$

 $R_1 = R_2 = R_3 = 2 \text{ k}\Omega; R_4 = 6 \text{ k}\Omega;$
 $R_5 = 3 \text{ k}\Omega;$ tính các dòng điện?

62

Thế nút (2)

VD

$$E_1 = 7 \text{ V}; E_2 = 4 \text{ V}; E_3 = 2 \text{ V};$$

 $R_1 = R_2 = R_3 = 2 \text{ k}\Omega; R_4 = 6 \text{ k}\Omega;$
 $R_5 = 3 \text{ k}\Omega;$ tính các dòng điện?

$$\begin{aligned}
i_{1} + i_{2} - i_{3} &= 0 \\
i_{4} + i_{5} &= 0 \\
i_{1} &= \frac{E_{1} - \varphi_{1}}{R_{1}}; i_{2} &= \frac{E_{2} - \varphi_{1}}{R_{2}} \\
i_{3} &= \frac{E_{3} - u_{r} + \varphi_{1}}{R_{3}} \\
i_{4} &= \frac{\varphi_{2}}{R_{4}}; \quad i_{5} &= \frac{\varphi_{2} - u_{r}}{R_{5}}
\end{aligned}$$

$$\begin{cases} \frac{E_{1} - \varphi_{1}}{R_{1}} + \frac{E_{2} - \varphi_{1}}{R_{2}} - \frac{E_{3} - u_{r} + \varphi_{1}}{R_{3}} = 0\\ \frac{\varphi_{2}}{R_{4}} + \frac{\varphi_{2} - u_{r}}{R_{5}} = 0 \end{cases}$$

63

Thế nút (3)

VD

$$E_1 = 7 \text{ V}; E_2 = 4 \text{ V}; E_3 = 2 \text{ V};$$

 $R_1 = R_2 = R_3 = 2 \text{ k}\Omega; R_4 = 6 \text{ k}\Omega;$
 $R_5 = 3 \text{ k}\Omega;$ tính các dòng điện?

Cách 1

$$\begin{cases} \frac{E_{1} - \varphi_{1}}{R_{1}} + \frac{E_{2} - \varphi_{1}}{R_{2}} - \frac{E_{3} - u_{r} + \varphi_{1}}{R_{3}} = 0\\ \frac{\varphi_{2}}{R_{4}} + \frac{\varphi_{2} - u_{r}}{R_{5}} = 0\\ u_{r} = \mu u_{x} = \mu(\varphi_{1} - \varphi_{2}) \end{cases}$$

$$\rightarrow \varphi_1 = 3 \frac{2\mu + 3}{\mu + 3}$$

$$\rightarrow \varphi_1 = 6 \text{ V} \rightarrow i_1 = \frac{7 - 6}{2} = \boxed{0,5 \text{ mA}}$$

Cách 2

Thể nút (4)

$$E_1 = 7 \text{ V}; E_2 = 4 \text{ V}; E_3 = 2 \text{ V};$$

 $R_1 = R_2 = R_3 = 2 \text{ k}\Omega; R_4 = 6 \text{ k}\Omega;$
 $R_5 = 3 \text{ k}\Omega;$ tính các dòng điện?

$$\begin{cases}
i_{1} + i_{2} - i_{3} = 0 \\
i_{4} - i_{5} = 0 \\
i_{1} = \frac{E_{1} - \varphi_{a}}{R_{1}}, i_{2} = \frac{E_{2} - \varphi_{a}}{R_{2}} \\
R_{3}i_{3} + (u_{r} - \varphi_{a}) = E_{3}
\end{cases}$$

$$\Rightarrow i_{3} = \frac{E_{3} + \varphi_{a} - u_{r}}{R_{3}} \\
i_{4} = \frac{-\varphi_{b}}{R_{4}}, i_{5} = \frac{\varphi_{b} - u_{r}}{R_{5}} \\
\varphi_{a} = \varphi_{b}$$

Thế nút (5)

$$E_1 = 7 \text{ V}; E_2 = 4 \text{ V}; E_3 = 2 \text{ V};$$

 $R_1 = R_2 = R_3 = 2 \text{ k}\Omega; R_4 = 6 \text{ k}\Omega;$
 $R_5 = 3 \text{ k}\Omega;$ tính các dòng điện?

Cách 2
$$\begin{bmatrix}
\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}
\end{bmatrix} \varphi_a - \frac{1}{R_3} u_r = \frac{E_1}{R_1} + \frac{E_2}{R_2} - \frac{E_3}{R_3}$$

$$\begin{cases} \left(\frac{1}{R_4} + \frac{1}{R_5}\right) \varphi_a - \frac{1}{R_5} u_r = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \varphi_a = 6 \text{ V} \\ u_r = 9 \text{ V} \end{cases} \Rightarrow i_1 = \frac{E_1 - \varphi_a}{R_1} = \frac{7 - 6}{2} = \boxed{0,5 \text{ mA}}, i_4 = i_5 = \frac{-u_r}{R_4 + R_5} = \boxed{-1 \text{ mA}}$$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản

5. Phân tích mạch có khuếch đại thuật toán

- a) Dòng nhánh
- b) Thế nút
- c) Dòng vòng
- d) Mạch xoay chiều
- e) Mạng hai cửa

Dòng vòng (1)

$$E_1 = 7 \text{ V}; E_2 = 4 \text{ V}; E_3 = 2 \text{ V};$$

 $R_1 = R_2 = R_3 = 2 \text{ k}\Omega; R_4 = 6 \text{ k}\Omega;$
 $R_5 = 3 \text{ k}\Omega;$ tính các dòng điện?

Dòng vòng (2)

VD

$$E_1 = 7 \text{ V}; E_2 = 4 \text{ V}; E_3 = 2 \text{ V};$$

 $R_1 = R_2 = R_3 = 2 \text{ k}\Omega; R_4 = 6 \text{ k}\Omega;$
 $R_5 = 3 \text{ k}\Omega;$ tính các dòng điện?

$$A: R_{1}i_{A} + R_{2}(i_{A} - i_{B}) = E_{1} - E_{2}$$

$$B: R_{2}(i_{B} - i_{A}) + R_{4}(i_{B} - i_{ng}) = E_{2}$$

$$C: R_{3}i_{D} + R_{5}(i_{D} - i_{ng}) = E_{3}$$

$$i_{ng} = \beta i_{x} = \beta (i_{B} - i_{D})$$

$$\Rightarrow i_{A} = \frac{9\beta - 80}{18\beta - 70}$$

$$\Rightarrow i_{A} = 0.5 \text{ mA}$$

$$\beta \rightarrow \infty$$

$$\Rightarrow i_{A} = 0.5 \text{ mA}$$

69

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản

5. Phân tích mạch có khuếch đại thuật toán

- a) Dòng nhánh
- b) Thế nút
- c) Dòng vòng
- d) Mạch xoay chiều
- e) Mạng hai cửa

Mạch xoay chiều (1)

Tính
$$\dot{U}_r$$
?

$$a: \dot{I}_1 + \dot{I}_C = 0$$

$$\dot{I}_1 = \frac{5/0^{\circ} - \dot{\varphi}_a}{2000}; \quad \dot{I}_C = \frac{\dot{U}_r - \dot{\varphi}_a}{-j1000}$$

$$\dot{\varphi}_a = \dot{\varphi}_b = 0$$

$$\rightarrow \frac{5/0^{\circ}}{2000} + \frac{\dot{U}_r}{-j1000} = 0$$

$$\rightarrow \dot{U}_r = j1000 \frac{5/0^{\circ}}{2000} = j2, 5/0^{\circ} = 2,5/90^{\circ} \text{ V}$$

Mạch xoay chiều (2)

VD2

Tính \dot{U}_r ?

$$\vec{i}_{C1} - \vec{I}_{C2} - \vec{I}_{R2} = 0$$

$$b: \dot{I}_{C2} - \dot{I}_{R1} = 0$$

$$c: \dot{I}_{R4} - \dot{I}_{R3} = 0$$

$$\dot{I}_{C1} = \frac{\dot{E} - \dot{\varphi}_a}{Z_{C1}}; \ \dot{I}_{C2} = \frac{\dot{\varphi}_a - \dot{\varphi}_b}{Z_{C2}}$$

$$\dot{I}_{R2} = \frac{\dot{\varphi}_a - \dot{U}_r}{R_2}; \ \dot{I}_{R1} = \frac{\dot{\varphi}_b}{R_1}; \ \dot{I}_{R3} = \frac{\dot{\varphi}_c}{R_3}; \ \dot{I}_{R4} = \frac{\dot{U}_r - \dot{\varphi}_c}{R_4}$$

$$\dot{\varphi}_b = \dot{\varphi}_c$$

$$\rightarrow$$
 hệ 3 phương trình 3 ẩn số $\dot{\varphi}_a$, $\dot{\varphi}_b$, $\dot{U}_r \rightarrow \dot{U}_r$

Mạch xoay chiều (3)

$$\dot{U}_1 = 200 \,\text{mV}; \dot{I}_2 = 0; Z_1 = -j10 \,\Omega; Z_2 = 5 \,\Omega;$$

$$Z_3 = 20 \ \Omega; Z_4 = -j15 \ \Omega; Z_5 = 8 \ \Omega; \dot{U}_2 = ?$$

$$\dot{I}a: \dot{I}_3 + \dot{I}_4 = 0$$

$$b: \dot{I}_1 - \dot{I}_5 = 0$$

$$\dot{U}_1 - Z_1 \dot{I}_1 - Z_5 \dot{I}_5 = 0$$

$$Z_3 \dot{I}_3 + Z_5 \dot{I}_5 = 0$$

$$\Rightarrow \begin{cases}
\dot{I}_1 = 9,76 + j12,20 \text{ mA} \\
\dot{I}_3 = -3,90 - j4,88 \text{ mA} \\
\dot{I}_4 = 3,90 + j4,88 \text{ mA} \\
\dot{I}_5 = 9,76 + j12,20 \text{ mA}
\end{cases}$$

$$\dot{U}_2 - Z_4 \dot{I}_4 + Z_3 \dot{I}_3 = 0$$

$$\rightarrow \dot{U}_2 = Z_4 \dot{I}_4 - Z_3 \dot{I}_3 = 151,22 + j39,02 \text{ mV}$$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha

VII. Khuếch đại thuật toán

- 1. Nguồn phụ thuộc
- 2. Phân tích mạch điện có nguồn phụ thuộc
- 3. Khuếch đại thuật toán
- 4. Các mạch cơ bản

5. Phân tích mạch có khuếch đại thuật toán

- a) Dòng nhánh
- b) Thế nút
- c) Dòng vòng
- d) Mạch xoay chiều
- e) Mạng hai cửa

Mạng hai cửa (1)

VD1

Tìm bộ số **Z**?

$$\begin{cases} \dot{U}_{1} = Z_{11}\dot{I}_{1} + Z_{12}\dot{I}_{2} \\ \dot{U}_{2} = Z_{21}\dot{I}_{1} + Z_{22}\dot{I}_{2} \\ \dot{U}_{1} = Z_{1}\dot{I}_{1} \end{cases} \rightarrow \mathbf{Z} = \begin{bmatrix} Z_{1} & 0 \\ -Z_{2} & 0 \end{bmatrix}$$

$$\dot{U}_2 = -Z_2 \dot{I}_1$$

$$\rightarrow \mathbf{Z} = \begin{bmatrix} Z_1 & 0 \\ -Z_2 & 0 \end{bmatrix}$$

VD2

Cho $U_1 = 5\sin\omega t \text{ V}, Z_1 = 2 \text{ k}\Omega, Z_2 = -j \text{ k}\Omega, \text{ tim } u_2$?

$$\begin{cases} \dot{U}_1 = 2000\dot{I}_1 \\ \dot{U}_2 = j1000\dot{I}_1 \end{cases} \rightarrow \dot{U}_2 = j1000\frac{\dot{U}_1}{2000} = j2,5 \text{ V} \qquad \rightarrow u_2 = 2,5\sin(\omega t + 90^\circ) \text{ V}$$

Mạng hai cửa (2)

VD3

Tìm bộ số **Y**?

$$\begin{cases} \dot{I}_{1} = Y_{11}\dot{U}_{1} + Y_{12}\dot{U}_{2} \\ \dot{I}_{2} = Y_{21}\dot{U}_{1} + Y_{22}\dot{U}_{2} \\ \dot{U}_{1} = Z_{1}\dot{I}_{1} \\ \dot{U}_{2} = -Z_{2}\dot{I}_{1} \end{cases} \rightarrow X$$

VD4

Tìm bộ số **A**?

$$\begin{cases} \dot{U}_1 = Z_1 \dot{I}_1 \\ \dot{U}_2 = -Z_2 \dot{I}_1 \end{cases}$$

Tim bộ số A?
$$\begin{cases} \dot{U}_1 = A_{11}\dot{U}_2 + A_{12}\dot{I}_2 \\ \dot{I}_1 = A_{21}\dot{U}_2 + A_{22}\dot{I}_2 \end{cases}$$

$$\begin{cases} \dot{U}_1 = Z_1\dot{I}_1 \\ \dot{U}_2 = -Z_2\dot{I}_1 \end{cases} \rightarrow \begin{cases} \dot{U}_1 = -\frac{Z_1}{Z_2}\dot{U}_2 \\ \dot{I}_1 = -\frac{1}{Z_2}\dot{U}_2 \end{cases}$$
 where \dot{U} is the good a semiciral distance of \dot{U} in the \dot{U} is the good a semiciral distance \dot{U} in \dot{U} is \dot{U} and \dot{U} in \dot{U} is \dot{U} and \dot{U} in \dot{U} and \dot{U} is \dot{U} and \dot{U} in \dot{U} and \dot{U} is \dot{U} and \dot{U} is \dot{U} and \dot{U} in \dot{U} and \dot{U} is \dot{U} and \dot{U} in \dot{U} is \dot{U} and \dot{U} in \dot{U} and \dot{U} is \dot{U} and \dot{U} in \dot{U} in \dot{U} in \dot{U} is \dot{U} and \dot{U} in \dot

$$\Rightarrow \mathbf{A} = \begin{bmatrix} -\frac{Z_1}{Z_2} & 0\\ -\frac{1}{Z_2} & 0 \end{bmatrix}$$

Mạng hai cửa (3)

VD5

Tìm bộ số **Z**, **Y**, **A**?

$$\begin{cases} \dot{U}_1 = Z_{11}\dot{I}_1 + Z_{12}\dot{I}_2 \\ \dot{U}_2 = Z_{21}\dot{I}_1 + Z_{22}\dot{I}_2 \end{cases}$$

$$\dot{U}_1 - Z_1 \dot{I}_1 - Z_5 \dot{I}_5 = 0$$

$$\dot{U}_2 - Z_2 \dot{I}_2 - Z_4 \dot{I}_4 + Z_3 \dot{I}_3 = 0$$

$$Z_3 \dot{I}_3 + Z_5 \dot{I}_5 = 0$$

$$a: \dot{I}_3 + \dot{I}_4 = 0$$

$$b: \dot{I}_1 - \dot{I}_5 = 0$$

$$\Rightarrow \begin{cases}
\dot{U}_1 = (Z_1 + Z_5)\dot{I}_1 \\
\dot{U}_2 = Z_2\dot{I}_2 + \frac{Z_5(Z_3 + Z_4)}{Z_3}\dot{I}_1
\end{cases}$$

Mạng hai cửa (4)

$$\dot{U}_1 = 200 \,\text{mV}; \dot{I}_2 = 0; Z_1 = -j10 \,\Omega; Z_2 = 5 \,\Omega;$$

 $Z_3 = 20 \,\Omega; Z_4 = -j15 \,\Omega; Z_5 = 8 \,\Omega; \dot{U}_2 = ?$

$$\mathbf{Z} = \begin{bmatrix} Z_1 + Z_5 & 0 \\ \frac{Z_5(Z_3 + Z_4)}{Z_3} & Z_2 \end{bmatrix}$$

$$= \begin{bmatrix} 8 - j10 & 0 \\ 8 - j6 & 5 \end{bmatrix} \Omega$$

$$\begin{cases} \dot{U}_1 = Z_{11}\dot{I}_1 + Z_{12}\dot{I}_2 \\ \dot{U}_2 = Z_{21}\dot{I}_1 + Z_{22}\dot{I}_2 \end{cases}$$

$$\dot{I}_2 = 0 \rightarrow \dot{U}_2 = Z_{21} \frac{\dot{U}_1}{Z_{11}} = (8 - j6) \frac{200}{8 - j10} = \boxed{151,22 + j39,02 \text{ mV}}$$

