School of Computing and Information Systems The University of Melbourne COMP30027 MACHINE LEARNING (Semester 1, 2019)

Tutorial exercises: Week 3

Given the following dataset:

ID	Outl	Тетр	Ниті	Wind	PLAY		
Training Instances							
A	S	h	n	F	N		
В	S	h	h	T	N		
С	0	h	h	F	Y		
D	r	m	h	F	Y		
Ε	r	С	n	F	Y		
F	r	С	n	Т	N		
TEST INSTANCES							
G	0	m	n	Т	?		
Н	?	h	?	F	?		

- 1. Build a probabilistic **model** based around the given training instances:
 - (a) Calculate the **prior** probability P(Outl = s). Calculate the prior probabilities of the other attribute values in this data.
 - (b) Find the **entropy** of (the distribution of the attribute values) for each of the six attributes, given this probabilistic model.
 - (c) Calculate the **joint** probability $P(Outl = s \cap Temp = h)$. Calculate some other joint probabilities, for pairs of attribute values from different attributes.
 - (d) Calculate the **conditional** probability P(Outl = s|Temp = h). Calculate some other conditional probabilities.
- 2. Ensure that you can derive the **Naive Bayes** formulation.
- 3. Using the probabilistic model that you developed above, classify the test instances according to the method of **Naive Bayes**.
 - (a) Using the "epsilon" smoothing method.
 - (b) Using "Laplace" smoothing.

ID	Outl	Тетр	Ниті	Wind	PLAY		
Training Instances							
A	S	h	n	F	N		
В	S	h	h	T	N		
С	0	h	h	F	Y		
D	r	m	h	F	Y		
E	r	С	n	F	Y		
F	r	С	n	T	N		
TEST INSTANCES							
G	0	m	n	T	?		
Н	?	h	?	F	?		

- 1. Build a probabilistic model based around the given training instances:
 - (a) Calculate the **prior** probability P(Outl = s). Calculate the prior probabilities of the other attribute values in this data.
 - (b) Find the **entropy** of (the distribution of the attribute values) for each of the six attributes, given this probabilistic model.
 - (c) Calculate the **joint** probability $P(Outl = s \cap Temp = h)$. Calculate some other joint probabilities, for pairs of attribute values from different attributes.
 - (d) Calculate the **conditional** probability P(Outl = s|Temp = h). Calculate some other conditional probabilities.

1. (a)
$$P(outl = 3) = \frac{2}{6}$$

Entropy (bits) =

$$H(x) = -\sum_{x \in X} P(x) \log_2 P(x)$$

Et 21 AT

Otherwise column

What is entropy? 信息所含的不确定性大小的度量 信息を信息を付め HW = o e.g. 太阳升起: {宋市,西方{ P(东方) = 0,79999 , P(西方) = 0.00001

HIN ZO. 即包含事件的不确定性趣大》信息越

(c) Joint Probability: P(AOB) 多件事同时发生的标序

 $P(Outl = s \cap Temp = h) = \frac{2}{h}$

(d) Conditional Probability: $P(A(B) = \frac{P(A \cap B)}{D(B)}$

P (Out = 5 | Temp = h) =

2. Ensure that you can derive the Naive Bayes formulation.

Naire Bayes formula:

$$\hat{C} = \operatorname{argmax} P(C_j) \prod_i P(X_i | C_j)$$

 $C_i \in C$

- 3. Using the probabilistic model that you developed above, classify the test instances according to the method of **Naive Bayes**.
 - (a) Using the "epsilon" smoothing method.
 - (b) Using "Laplace" smoothing.

$$P(x|c_j) = \frac{1}{a} \times 0 \times 0 \times \frac{1}{b} \times \frac{1}{c} = 0$$

ID	Outl	Тетр	Ниті	Wind	PLAY			
TRAINING INSTANCES								
А	S	h	n	F	N			
В	S	h	h	T	N			
С	0	h	h	F	Y			
D	r	m	h	F	Y			
E	r	С	n	F	Y			
F	r	С	n	Т	N			
Test Instances								
G	0	m	n	T	?			
Н	?	h	?	F	?			

$$P(x|C_j) = \frac{1}{a} \times e \times e \times \frac{1}{b} \times \frac{1}{c} = \frac{1}{abc} \times \frac{1}{e^2}$$

$$Y = P(Q_{x}|Y) = P(Y)P(O|Y)P(M|Y)P(M|Y)P(M|Y)$$

$$= \frac{3}{6} \sqrt{\frac{9}{3}} \times \frac{3}{3} \times \frac{3}{3} = 0$$

$$= \frac{3}{6} \times \frac{9}{6} \times \frac{9}{6}$$

test H: Y:
$$P(1x|Y) = \frac{3}{6} \times \frac{3}{3} \times \frac{1}{3} = \frac{1}{9}$$

$$N: P(H_{\kappa}|N) = \frac{3}{6} \times \frac{1}{3} \times \frac{3}{3} = \frac{1}{6}$$

Using " Laplace" smoothing.

Proposition of the stribute value.

(b) test G:

Y:
$$P(G_X|Y) = P(Y) \hat{P}_{\mathcal{L}}(0|Y) \hat{P}_{\mathcal{L}}(m|Y) \hat{P}_{\mathcal{L}}(n|Y) \hat{P}_{\mathcal{L}}(n|Y) \hat{P}_{\mathcal{L}}(r|Y)$$

$$= \frac{3}{6} \times \frac{0+1}{3+3} \times \frac{0+1}{3+3} \times \frac{1+2}{2+3} \times \frac{1+2}{2+3} = 0.005 \text{ N}$$

W: P(Gx N) = 0.0044

test 4:

N; P(HX/N) =
$$\frac{3}{6} \times \frac{1+1}{3+3} \times \frac{1+7}{3+3} = 0.013$$

Different smoothing method Different Result.