CBFT Mecánica clásica

Mecánica lagrangiana

6 de noviembre de 2015

Contenidos

§1. Principio de los trabajos virtuales	-
§2. Construcción del lagrangiano	3
§3. Invariancia del lagrangiano ante adición de una derivada total	ŧ
§4. Momentos conjugados y coordenadas cíclicas	7
§5. Energía cinética de un sistema	7
§6. Energía cinética de un sistema de partículas	8
§7. Trabajo en un sistema de partículas	9
§8. Lagrangiano cíclico en el tiempo	1(
§9. Energía cinética y el hamiltoniano	11
§10Principio de acción mínima	11
§11Aplicaciones del principio de acción mínima	13
§12Multiplicadores de Lagrange	13

§1. Principio de los trabajos virtuales

Escribimos las ecuaciones de Newton para un sistema de partículas,

$$m_i \mathbf{a}_i = \mathbf{F}_i = \mathbf{F}_i^a + \mathbf{F}_i^v$$

Esto es sumamente sketchi, debemos leer la carpeta de la cursada y luego la teoría. pero sabiendo que el momento viene de las fuerzas aplicadas,

$$m_i \mathbf{a}_i = \dot{\mathbf{P}}_i$$

de manera que

$$\dot{\mathbf{F}}_i - \mathbf{F}_i^a - \mathbf{F}_i^v = 0,$$

y entonces, sumando en las N partículas del sistema

$$\sum_{i}^{N}\left(\dot{\mathbf{P}}_{i}-\mathbf{F}_{i}^{a}-\mathbf{F}_{i}^{v}\right)\cdot\delta\mathbf{r}_{i}=0$$

donde $\delta {f r}_i$ son desplazamientos virtuales. Si hacemos estos desplazamientos compatibles con los vínculos

$$\sum_{i}^{N}\left(\dot{\mathbf{P}}_{i}-\mathbf{F}_{i}^{a}\right)\cdot\delta\mathbf{r}_{i}-\sum_{i}^{N}\mathbf{F}_{i}^{v}\cdot\delta\mathbf{r}_{i}=0$$

donde el último término es nulo debido a que la fuerza de vínculos son perpendiculares a los desplazamientos virtuales, es decir

$$\mathbf{F}_i^v \perp \delta \mathbf{r}_i$$

si es que, por supuesto, los $\delta {\bf r}_i$ son compatibles con los vínculos.

Esto nos deja entonces, el Principio de los Trabajos Virtuales,

$$\sum_{i}^{N} \left(\dot{\mathbf{P}}_{i} - \mathbf{F}_{i}^{a} \right) \cdot \delta \mathbf{r}_{i} = 0$$

donde como son independientes entonces se sigue que

$$\dot{\mathbf{P}}_i - \mathbf{F}_i^a = 0 \quad \forall i$$

Relación vínculos y desplazamientos: El hecho de que la fuerza de vínculo sea perpendicular a los desplazamientos puede verse a partir de que la ecuación de vínculo en un sistema toma la forma

¿Y esta magia? Hay que aclarar realmente que sea así como se dice que es.

$$f(\mathbf{r}_i) - K = 0$$

luego, derivando implícitamante cada ecuación y sumando (si se nos permite un pequeño abuso de notación)

$$\sum_{i}^{N} \frac{\partial f}{\partial \mathbf{r}_{i}} d\mathbf{r}_{i} = 0$$

pero esto no es otra cosa que

$$\nabla f \cdot \delta \mathbf{r} = 0$$

donde debemos entender al gradiente y al vector $\delta \mathbf{r}$ como N dimensionales.

§2. Construcción del lagrangiano

Consideremos un sistema de N partículas, k ecuaciones de vínculo y por ende 3N-k grados de libertad (estamos en 3 dimensiones).

Tenemos N relaciones

$$\mathbf{r}_i = \mathbf{r}_i(q_1, q_2, ..., q_{3N-k}, t)$$

entonces una variación serán

$$\delta \mathbf{r}_i = \sum_{j=1}^{3N-k} \left(\frac{\partial \mathbf{r}_i}{\partial q_j} \right) \delta q_j + \frac{\partial \mathbf{r}_i}{\partial t} \delta t$$

donde el último δt es nulo por ser un desplazamiento virtual de manera que

$$\delta \mathbf{r}_i = \sum_{j=1}^{3N-k} \left(\frac{\partial \mathbf{r}_i}{\partial q_j} \right) \delta q_j.$$

Por otro lado

$$\sum_{i}^{N}\dot{\mathbf{P}}_{i}\cdot\delta\mathbf{r}_{i}-\sum_{i}^{N}\mathbf{F}_{i}^{a}\cdot\delta\mathbf{r}_{i}=0$$

y se puede reescribir el primer término como

$$\dot{\mathbf{P}}_i \cdot \delta \mathbf{r}_i = m_i \frac{d\mathbf{v}_i}{dt} \sum_{j=1}^{3N-k} \left(\frac{\partial \mathbf{r}_i}{\partial q_j} \right) \delta q_j$$

resultando

$$\sum_{i}^{N}m_{i}\frac{d\mathbf{v}_{i}}{dt}\cdot\sum_{j=1}^{3N-k}\left(\frac{\partial\mathbf{r}_{i}}{\partial q_{j}}\right)\delta q_{j}-\sum_{i}^{N}\mathbf{F}_{i}^{a}\cdot\delta\mathbf{r}_{i}=0$$

La idea ahora es reescribir todo en términos más convenientes, para que aparezca un término multiplicado a una variación arbitraria. De esta manera quedará una sumatoria de un sumando multiplicado por una variación igualada a cero. No cabe otra posibilidad que el sumando sea nulo para cada índice de la suma.

Escrito muy mal este texto. La idea es clara, no obstante: hay que purificarla

Consideremos la derivada total de

$$\frac{d}{dt}\left(m_i\mathbf{v}_i\frac{\partial\mathbf{r}_i}{\partial q_i}\right) = m_i\frac{d\mathbf{v}_i}{dt}\frac{\partial\mathbf{r}_i}{\partial q_i} + m_i\mathbf{v}_i\frac{d}{dt}\left(\frac{\partial\mathbf{r}_i}{\partial q_i}\right).$$

Pero la diferencial del vector \mathbf{r}_i es (notemos que no es una variación)

$$d\mathbf{r}_i = \sum_{j=1}^{3N-k} \left(\frac{\partial \mathbf{r}_i}{\partial q_j}\right) dq_j + \frac{\partial \mathbf{r}_i}{\partial t} dt$$

y entonces

$$\dot{\mathbf{r}}_i = \mathbf{v}_i = \sum_{j=1}^{3N-k} \left(\frac{\partial \mathbf{r}_i}{\partial q_j} \right) \dot{q}_j + \frac{\partial \mathbf{r}_i}{\partial t}.$$

La derivada de la velocidad de la partícula i-ésima respecto a la coordenada l-ésima es

$$\frac{\partial \mathbf{v}_i}{\partial \dot{q}_i} = \frac{\partial \mathbf{r}_i}{\partial q_i} = \frac{\partial \mathbf{r}_i/\partial t}{\partial q_i/\partial t}.$$

Si derivamos nuevamente

$$\frac{\partial}{\partial q_l} \left(\frac{d\mathbf{r}_i}{dt} \right) = \frac{\partial \mathbf{v}_i}{\partial q_l} = \sum_{i=1}^{3N-k} \frac{\partial^2 \mathbf{r}_i}{\partial q_l \partial q_j} \dot{q}_j + \frac{\partial^2 \mathbf{r}_i}{\partial q_l \partial t}.$$

$$\frac{d}{dt}\left(\frac{\partial \mathbf{r}_i}{\partial q_l}\right) = \frac{d}{dt}\left(\sum_{i=1}^{3N-k} \frac{\partial^2 \mathbf{r}_i}{\partial q_l \partial q_j} dq_j + \frac{\partial^2 \mathbf{r}_i}{\partial q_l \partial t} dt\right)$$

de tal manera que

$$\frac{d}{dt} \left(\frac{\partial \mathbf{r}_i}{\partial q_l} \right) = \frac{\partial \mathbf{v}_i}{\partial q_l}$$

Volvemos ahora a la eq III y

$$\sum_{i}^{N}\sum_{i=1}^{3N-k}\left[\frac{d}{dt}\left(m_{i}\mathbf{v}_{i}\frac{\partial\mathbf{r}_{i}}{\partial\boldsymbol{q}_{i}}\right)-m_{i}\mathbf{v}_{i}\frac{d}{dt}\left(\frac{\partial\mathbf{v}_{i}}{\partial\boldsymbol{q}_{i}}\right)\right]\delta\boldsymbol{q}_{j}$$

y este corchete lo reescribimos como

$$\sum_{i}^{N}\sum_{j=1}^{3N-k}\left[\frac{d}{dt}\left(m_{i}\mathbf{v}_{i}\frac{\partial\mathbf{v}_{i}}{\partial\dot{q}_{j}}\right)-m_{i}\mathbf{v}_{i}\frac{\partial\mathbf{v}_{i}}{\partial q_{j}}\right]\delta q_{j}$$

$$\sum_{i}^{N}\sum_{i=1}^{3N-k}\left\{\frac{d}{dt}\left[\frac{\partial}{\partial \dot{q}_{i}}\left(\frac{m_{i}}{2}\mathbf{v}_{i}^{2}\right)\right]-\frac{\partial}{\partial q_{i}}\left(\frac{m_{i}}{2}\mathbf{v}_{i}^{2}\right)\right\}\delta q_{j}$$

Ahora introducimos la sumatoria en i hacia adentro de ambos términos,

$$\sum_{j=1}^{3N-k} \left\{ \frac{d}{dt} \left[\frac{\partial}{\partial \dot{q}_j} \left(\sum_i^N \frac{m_i}{2} \mathbf{v}_i^2 \right) \right] - \frac{\partial}{\partial q_j} \left(\sum_i^N \frac{m_i}{2} \mathbf{v}_i^2 \right) \right\} \delta q_j$$

de modo que dentro de los paréntesis resulta T, luego

$$\sum_{i}^{N}\dot{\mathbf{P}}_{i}\cdot\delta\mathbf{r}_{i}=\sum_{i=1}^{3N-k}\left\{ \frac{d}{dt}\left[\frac{\partial}{\partial\dot{q}_{j}}\left(T\right)\right]-\frac{\partial}{\partial q_{j}}\left(T\right)\right\}\delta q_{j}$$

$$\sum_{i}^{N}\dot{\mathbf{P}}_{i}\cdot\delta\mathbf{r}_{i}=\sum_{j=1}^{3N-k}\sum_{i}^{N}\mathbf{F}_{i}^{a}\cdot\frac{\partial\mathbf{r}_{i}}{\partial q_{j}}\delta q_{j}=\sum_{j=1}^{3N-k}\sum_{i}^{N}Q_{j}\delta q_{j}$$

siendo Q_j la fuerza generalizada. Entonces

$$\sum_{j=1}^{3N-k} \left\{ \frac{d}{dt} \left[\frac{\partial}{\partial \dot{q}_j} \left(T \right) \right] - \frac{\partial}{\partial q_j} \left(T \right) - Q_j \right\} \delta q_j = 0.$$

Si suponemos que las fuerzas son conservativas entonces

$$Q_j \delta q_j = -\frac{\partial V}{\partial q_j} \delta q_j$$

y como $V=V(\mathbf{r}_1,...,\mathbf{r}_n)$ se tiene

$$V = \sum_{i}^{N} \frac{\partial V}{\partial r_{i}} \delta \mathbf{r}_{i} = \frac{\partial V}{\partial \mathbf{r}_{i}} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j} =$$

pero

$$Q_j = -\frac{\partial V}{\partial q_j}$$

y entonces

$$\sum_{j=1}^{3N-k} \left\{ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial}{\partial q_j} \left(T - V \right) \right\} \delta q_j = 0.$$

Definimos como

$$\mathcal{L} \equiv T - V$$

y entonces podemos escribir

$$\sum_{j=1}^{3N-k} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} \right] \delta q_j = 0.$$

Si existieran fuerzas que no provienen de un potencial entonces

$$Q_j + Q_j^{NC} = -\frac{\partial V}{\partial q_i} + Q_j^{NC}$$

y finalmente

$$\sum_{j=1}^{3N-k} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} \right] \delta q_j = \sum_{j=1}^{3N-k} Q_j^{NC} \delta q_j$$

Como esto vale para todo grado de libertad l llegamos a

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} = Q_j^{NC}$$

que son las ecuaciones de Euler-Lagrange. Este es el resultado más importante del capítulo.

§3. Invariancia del lagrangiano ante adición de una derivada total

Sea una función de las coordenadas y del tiempo $F=F(q_i,t)$ que sumamos al lagrangiano $\mathcal{L},$ de modo que

$$\mathcal{L}' = \mathcal{L} + \frac{dF}{dt}$$

y las ecuaciones de Euler-Lagrange para este nuevo lagrangiano son

$$\begin{split} \frac{d}{dt} \left(\frac{\partial \mathcal{L}'}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}'}{\partial q_j} &= 0 \\ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} + \frac{\partial}{\partial \dot{q}_j} \left(\frac{dF}{dt} \right) \right) - \frac{\partial \mathcal{L}}{\partial q_j} - \frac{\partial}{\partial q_j} \left(\frac{dF}{dt} \right) &= 0 \\ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} + \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}_j} \left(\frac{dF}{dt} \right) \right) - \frac{\partial}{\partial q_j} \left(\frac{dF}{dt} \right) &= 0 \end{split}$$

Ahora es necesario escribir la derivada total de F,

$$\frac{dF}{dt} = \sum_{i}^{3N-k} \frac{\partial F}{\partial q_{i}} \frac{dq_{j}}{dt} + \frac{\partial F}{\partial t} = \sum_{i}^{3N-k} \frac{\partial F}{\partial q_{j}} \dot{q}_{j} + \frac{\partial F}{\partial t}$$

y ver que

$$\frac{\partial}{\partial \dot{q}_j} \left(\frac{dF}{dt} \right) = \frac{\partial F}{\partial q_j} \qquad \qquad \frac{\partial}{\partial q_j} \left(\frac{dF}{dt} \right) = \frac{\partial^2 F}{\partial {q_j}^2} \dot{q}_j + \frac{\partial^2 F}{\partial {q_j} \partial t}$$

Luego, usando esta información, resulta que los términos que surgen de la adición de la derivada total de F resultan ser

$$\frac{d}{dt}\left(\frac{\partial}{\partial \dot{q}_j}\left(\frac{dF}{dt}\right)\right) - \frac{\partial}{\partial q_j}\left(\frac{dF}{dt}\right) = \frac{d}{dt}\left(\frac{\partial F}{\partial q_j}\right) - \frac{\partial}{\partial q_j}\left(\frac{dF}{dt}\right)$$

$$\frac{d}{dt}\left(\frac{\partial F}{\partial q_{j}}\right) - \frac{\partial}{\partial q_{j}}\left(\frac{dF}{dt}\right) = \frac{\partial^{2} F}{\partial q_{j}^{2}}\dot{q}_{j} + \frac{\partial^{2} F}{\partial t \partial q_{j}} - \frac{\partial}{\partial q_{j}}\left(\frac{dF}{dt}\right)$$

y si aceptamos que F es de clase C^2 se tiene

$$\frac{\partial^2 F}{\partial q_i{}^2}\dot{q}_j + \frac{\partial^2 F}{\partial t \partial q_i} - \frac{\partial}{\partial q_i} \left(\frac{dF}{dt}\right) = 0$$

de modo que las ecuaciones de Euler Lagrange no se modifican si añadimos una derivada total respecto del tiempo de una función de $q_i,t.$

§4. Momentos conjugados y coordenadas cíclicas

El momento canónicamente conjugado a q_i se define como

$$\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \equiv p_j$$

y entonces

$$\dot{p}_j = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) \equiv Q_j$$

que es la fuerza generalizada en el grado de libertad j. Sea un lagrangiano $\mathcal{L}=\mathcal{L}(q_i,\dot{q}_i,t)$ entonces si no depende explícitamente de la coordenada k será

$$\frac{\partial \mathcal{L}}{\partial q_k} = 0 \qquad \rightarrow \quad \mathcal{L} = \mathcal{L}(q_1,...,q_{k-1},q_{k+1},...,q_n,\dot{q}_i,t)$$

Las ecuaciones de Euler-Lagrange resultan

$$Q_k - \frac{\partial \mathcal{L}}{\partial q_k} = Q_k = 0 \quad \to \dot{p}_k = 0 \quad \to p_k = cte.$$

no existe fuerza generalizada en el grado de libertad k, de forma que se conserva el momento p_k canónicamente conjugado a q_k .

§5. Energía cinética de un sistema

A continuación expresaremos la energía cinética de un sistema en función de coordenadas generalizadas,

$$T = \frac{1}{2} \sum_{i}^{N} m_{i} \mathbf{v}_{i}^{2} = \frac{1}{2} \sum_{i}^{N} m_{i} \left(\sum_{j}^{3n-k} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \dot{q}_{j} + \frac{\partial \mathbf{r}_{i}}{\partial t} \right) \left(\sum_{s}^{3n-k} \frac{\partial \mathbf{r}_{i}}{\partial q_{s}} \dot{q}_{s} + \frac{\partial \mathbf{r}_{i}}{\partial t} \right)$$
(5.1)

Este chapter es básicamente un desarrollo formal, habría que bajar con alguna aplicación práctica. Usando $\mathbf{r}_i = \mathbf{r}_i(q_1,...,q_n,t)$ desarrollamos un desplazamiento real como

$$d\mathbf{r}_{i} = \sum_{j=1}^{3N-k} \left(\frac{\partial \mathbf{r}_{i}}{\partial q_{j}}\right) dq_{j} + \frac{\partial \mathbf{r}_{i}}{\partial t} dt$$

y podemos incorporar esta información en (5.1) para obtener

$$\begin{split} T &= \frac{1}{2} \sum_{i}^{N} m_{i} \left(\sum_{j}^{3n-k} \sum_{s}^{3n-k} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \frac{\partial \mathbf{r}_{i}}{\partial q_{s}} \dot{q}_{s} \dot{q}_{j} + \left(\frac{\partial \mathbf{r}_{i}}{\partial t} \right) \right)^{2} + 2 \left(\sum_{j}^{3n-k} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \dot{q}_{j} \frac{\partial \mathbf{r}_{i}}{\partial t} \right) \\ T &= \frac{1}{2} \sum_{i}^{N} m_{i} \left(\sum_{j}^{3n-k} \sum_{s}^{3n-k} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \frac{\partial \mathbf{r}_{i}}{\partial q_{s}} \dot{q}_{s} \dot{q}_{j} \right) + \frac{1}{2} \sum_{i}^{N} m_{i} \left(\frac{\partial \mathbf{r}_{i}}{\partial t} \right)^{2} + \sum_{i}^{N} m_{i} \left(\sum_{j}^{3n-k} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \dot{q}_{j} \frac{\partial \mathbf{r}_{i}}{\partial t} \right) \end{split}$$

Esto se puede reescribir más cómodamente definiendo

$$\begin{split} T_0 &\equiv \frac{1}{2} \sum_i^N m_i \left(\frac{\partial \mathbf{r}_i}{\partial t} \right)^2 \\ a_{js}(q_1,...,q_{3N-k},t) &\equiv \sum_i^N m_i \frac{\partial \mathbf{r}_i}{\partial q_j} \frac{\partial \mathbf{r}_i}{\partial q_s} \\ b_j(q_1,...,q_{3N-k},t) &\equiv \sum_i^N m_i \frac{\partial \mathbf{r}_i}{\partial q_j} \frac{\partial \mathbf{r}_i}{\partial t} \end{split}$$

Hay un factor de 1/2 de diferencia. Revisar la carpeta.

y entonces, juntando todo,

$$T = T_0 + \frac{1}{2} \sum_{j}^{3n-k} \sum_{s}^{3n-k} a_{js}(q_1, ..., q_{3N-k}, t) \dot{q}_s \dot{q}_j + \sum_{j}^{3n-k} b_j(q_1, ..., q_{3N-k}, t) \dot{q}_j$$

Para una particula libre será

$$T = T_2$$

y para una partícula con vínculos en general tendrá las tres clases de cinética.

§6. Energía cinética de un sistema de partículas

La energía de un sistema de partículas es

$$\begin{split} T &= \frac{1}{2} \sum_{i}^{N} m_{i} \mathbf{v}_{i}^{2} = \frac{1}{2} \sum_{i}^{N} m_{i} \left(\dot{\mathbf{R}} + \dot{\mathbf{r}}_{i}^{\prime}\right)^{2} = \\ &\frac{1}{2} \sum_{i}^{N} m_{i} \mathbf{V}_{cm}^{2} + \frac{1}{2} \sum_{i}^{N} m_{i} \mathbf{V}_{i}^{\prime 2} + \frac{1}{2} \sum_{i}^{N} 2 m_{i} \mathbf{V}_{cm} \cdot \mathbf{r}_{i}^{\prime} \end{split}$$

Figura 6.1 Sistema de partículas

y veremos ahora que el último término es nulo ya que son vectores perpendiculares. Para ello notemos que

$$\begin{split} M\mathbf{R}_{cm} &= \sum_{i}^{N} m_{i} \mathbf{r}_{i} = \sum_{i}^{N} m_{i} (\mathbf{R}_{i} + \mathbf{r}_{i}') \\ 0 &= \sum_{i}^{N} m_{i} \mathbf{r}_{i}' \end{split}$$

y también

$$0 = \sum_{i}^{N} m_i \mathbf{v}_i'$$

de modo que

$$0 = \sum_{i}^{N} m_{i} \mathbf{V}_{cm} \cdot \mathbf{r}_{i}'.$$

Finalmente

$$T^{tot} = T^{cm} + T^{tot}_{cm}$$

Esto hay que revisarlo, derivo ambos miembros? Vincular con la figura.

Quiero un ℓ en bold, no me

gusta el s.

§7. Trabajo en un sistema de partículas

Empezamos desde

$$W = W^{ext} + W^{int}$$

donde el trabajo externo puede escribirse

$$W^{ext} = \sum_{i}^{N} \int_{1}^{2} \mathbf{F}_{i}^{e} \cdot d\mathbf{s}$$
 (7.1)

La no dependencia del camino para la integral que da (7.1) requiere que

$$\mathbf{F}_i^e = \mathbf{F}_i^e(\mathbf{r}_i) \qquad \nabla_{r_i} \times \mathbf{F}_i^e = 0$$

y entonces puedo inducir la existencia de una función potencial para las fuerzas barra resizeable ya. externas,

$$W^{ext} = -\sum_{i}^{N} \Delta V_{i} \big]_{1}^{2}$$

Por otro lado,

$$W_c^{int} = \int_1^2 \sum_{\substack{j\\i \neq i}}^N \mathbf{F}_{ij}^e \cdot d\mathbf{s}_i$$

$$\sum_{i}^{N}W_{i}^{int} = W^{int} = \sum_{\substack{j\\i\neq j}}^{N}\int_{1}^{2}\sum_{\substack{j\\j\neq i}}^{N}\mathbf{F}_{ij}^{e}\cdot d\mathbf{s}_{i}$$

§8. Lagrangiano cíclico en el tiempo

Empecemos desde la derivada total con respecto al tiempo del lagrangiano,

$$\frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) = \frac{\partial\mathcal{L}}{\partial q}\dot{q} + \frac{\partial\mathcal{L}}{\partial \dot{q}}\ddot{q} + \frac{\partial\mathcal{L}}{\partial t}$$

y usando la derivada total del término

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \dot{q} \right) = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) \dot{q} + \frac{\partial \mathcal{L}}{\partial \dot{q}} \ddot{q}.$$

Reemplazando una en otra resulta que

$$\frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) = \frac{\partial\mathcal{L}}{\partial a}\dot{q} + \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial \dot{a}}\dot{q}\right) - \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial \dot{a}}\right)\dot{q} + \frac{\partial\mathcal{L}}{\partial t}$$

y acomodando un poco

$$\begin{split} \frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) &= \left[\frac{\partial \mathcal{L}}{\partial q} - \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}}\right)\right]\dot{q} + \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}}\dot{q}\right) + \frac{\partial \mathcal{L}}{\partial t} \\ \frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) &= \frac{d}{dt}\left(p\dot{q}\right) + \frac{\partial \mathcal{L}}{\partial t} \end{split}$$

y entonces previo pase mágico de términos,

$$\frac{d}{dt}\left(p\dot{q}-\mathcal{L}\right)=-\frac{\partial\mathcal{L}}{\partial t}$$

y si definimos

$$\mathcal{H} \equiv p\dot{q} - \mathcal{L}$$

resulta que

$$\frac{d\mathcal{H}}{dt} = -\frac{\partial \mathcal{L}}{\partial t}.$$

Entonces si el lagrangiano no depende explícitamente del tiempo se tiene que $\mathcal{H}=cte.$. Además, si se cumplen

$$T = T_2$$
 $V \neq V(\dot{q})$

y además los vínculos no dependen del tiempo se tiene que $\mathcal{H}=E$, es decir, el Hamiltoniano es la energía. La condicion de que los vínculos no dependan del tiempo genera en realidad que $T=T_2$.

Por otro lado E = cte. si $W^{nc} = 0$.

§9. Energía cinética y el hamiltoniano

Dado que la energía cinética tiene la forma general

$$T = \underbrace{\frac{1}{2} \sum_{i}^{N} m_i \left(\frac{\partial \mathbf{r}_i}{\partial t}\right)^2}_{T_0} + \underbrace{\sum_{j}^{3n-k} b_j(q_1,...,q_{3N-k},t) \dot{q}_j}_{T_1} + \underbrace{\frac{1}{2} \sum_{j}^{3n-k} \sum_{s}^{3n-k} a_{js}(q_1,...,q_{3N-k},t) \dot{q}_s \dot{q}_j}_{T_2}$$

entonces se sigue que

$$E = T_0 + T_1 + T_2 + V (9.1)$$

y como

$$p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = T_1 + 2T_2$$

es

$$\mathcal{H} = \sum_{i}^{N} p_{i} \dot{q}_{i} - (T_{0} + T_{1} + T_{2} - V) = 2T_{2} + T_{1} - T_{0} - T_{1} - T_{2} + V = T_{2} - T_{0} + V$$

pero como E es (9.1) se tendrá

$$E = H \iff 2T_0 + T1 = 0$$

y un solución de este sistema es, por supuesto, $T_0=T_1=0\,$

§10. Principio de acción mínima

También Principio variacional de Hamilton. Partimos de una acción,

$$S = \int_{t_i}^{t_f} \mathcal{L}(q_i, \dot{q}_i, t) dt \qquad \mathcal{L} = T - V$$

Figura 10.2 El principio de acción mínima

La trayectoria real de un sistema con lagrangiano $\mathcal L$ es tal que S es mínimo para cualquier trayectoria posible entre $q(t=t_i)$ y $q(t=t_f)$. Consideramos una variación con extremos fijos, es decir

$$\delta q(t=t_i)=0$$
 $\delta q(t=t_f)=0$

y a tiempo fijo $\delta t=0$. Esto último signfica que todas las trayectorias emplearán el mismo tiempo (no se variará).

Consideramos una variación de la integral,

$$\delta I = \int_{t_i}^{t_f} \sum_{i}^{N} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta \dot{q}_i + \frac{\partial \mathcal{L}}{\partial q_i} \delta q_i \right) dt,$$

y notamos que será beneficioso utilizar integración por partes para expresar todo en función de las variaciones de las coordenadas (las δq_i), de manera que como

$$\frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{q}_{i}}\delta q_{i}\right) = \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{q}_{i}}\right)\delta q_{i} + \frac{\partial\mathcal{L}}{\partial\dot{q}_{i}}\delta\dot{q}_{i},$$

resulta

$$\delta I = \int_{t_i}^{t_f} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i \right) - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) \delta q_i + \frac{\partial \mathcal{L}}{\partial q_i} \delta q_i \right] dt,$$

separamos los dos términos,

$$\delta I = \int_{t_i}^{t_f} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i \right) \right] dt - \int_{t_i}^{t_f} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) - \frac{\partial \mathcal{L}}{\partial q_i} \right] \delta q_i dt,$$

y resulta que el primero por el teorema fundamental del cálculo es

$$\int_{t_i}^{t_f} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i \right) \right] dt = \left. \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i \right|_{t_i}^{t_f}$$
(10.1)

Cuán sketchi es todo esto!! Mucho para aclarar. Tal vez se justifique un minicurso de variacional como apéndice. y es nulo porque $\delta q_i=0$ en los extremos (recordemos que las variaciones son nulas en los extremos de integración). Decimos que este es un término de superficie. Entonces

$$\delta I = -\int_{t_i}^{t_f} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) - \frac{\partial \mathcal{L}}{\partial q_i} \right] \delta q_i dt = 0$$

se verificará por el cumplimiento de las ecuaciones de Euler-Lagrange

$$\sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) - \frac{\partial \mathcal{L}}{\partial q_{i}} \right] = 0.$$

Luego, si se hace $\mathcal{L}'=\mathcal{L}+df/dt$ (ambos lagrangianos difieren en una derivada total con respecto al tiempo) la trayectoria que minimiza \mathcal{L}' es la que misma que minimiza \mathcal{L} por la condición dada por (10.1). Entonces

$$\delta S = 0 \iff \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) - \frac{\partial \mathcal{L}}{\partial q_{i}} \right] = 0.$$

La moraleja es que si los lagrangianos difieren en una derivada total del tiempo obtenemos la misma física.

§11. Aplicaciones del principio de acción mínima

§12. Multiplicadores de Lagrange

Referencias