CLUSTERING

Lecture 10

MALI, 2024

CLUSTERING

- What is clustering?
- k-means clustering
- Agglomerative clustering
- DBSCAN
- Application

WHAT IS CLUSTERING?

grouping data: unlabeled version of classification

Most data in the world is

I want to know what this bird in my garden is

The corresponding websites tell me it's a common linnet

DIFFERENCE FROM CLASSIFICATION?

At no point did we labell

the images - we only earl

about the fact that some are similar

measure of similarity??

CLUSTERING

- What is clustering?
- k-means clustering
- Agglomerative clustering
- DBSCAN
- Application

- I. Assign k(=3) random points as **centroids**
- 2. Group the data by their distance to the centroids

- I. Assign k(=3) random points as **centroids**
- 2. Group the data by their distance to the centroids
- 3. Move the centroids to the cluster centers

- I. Assign k(=3) random points as **centroids**
- 2. Group the data by their distance to the centroids
- 3. Move the centroids to the cluster centers
- 4. Regroup the data

- I. Assign k(=3) random points as **centroids**
- 2. Group the data by their distance to the centroids
- 3. Move the centroids to the cluster centers
- 4. Regroup the data
- 5. Repeat 3-4 until nothing changes

- I. Assign k(=3) random points as **centroids**
- 2. Group the data by their distance to the centroids
- 3. Move the centroids to the cluster centers
- 4. Regroup the data
- 5. Repeat 3-4 until nothing changes

- 1. Assign k(=3) random points as **centroids**
- 2. Group the data by their distance to the centroids
- 3. Move the centroids to the cluster centers
- 4. Regroup the data
- 5. Repeat 3-4 until nothing changes

A FEW THINGS WE HAVE TO DEAL WITH

The value of k

The initial centraids

Solution 1: Try different, randomized initializations and compare the **costs** of the final clusterings

Solution 2: Choose the initial centroids based on the distance to the previous ones

Start randomly then choose point furthest away and do the same again

may choose outlies.

Solution 3: Choose "far away but random" points ("k-means++")

probability of next point high when for away

THE NUMBER OF CLUSTERS (k)

THE NUMBER OF CLUSTERS (k)

The easy way: We already know it (domain knowledge)

The hard way:

WHERE k-MEANS FAILS

CODE EXAMPLE

Jupyter Notebook Clustering methods

CLUSTERING

- What is clustering?
- *k*-means clustering
- Agglomerative clustering
- DBSCAN
- Application

AGGLOMERATIVE CLUSTERING

let each point be its own cluster while there is more than I cluster: merge the two closest clusters

AGGLOMERATIVE CLUSTERING

THE DISTANCE BETWEEN CLUSTERS

"single link"
(min distance)

- sensitive to
outliers/noise

"complete link"
(max distance)

-> may break large clustos

(chance in cost function upon versing) — difficulty with odd shapes (different

many more: different choos = different results

33

CODE EXAMPLE

Jupyter Notebook Clustering methods

CLUSTERING

- What is clustering?
- k-means clustering
- Agglomerative clustering
- DBSCAN
- Application

DBSCAN

'density-based sportial clustering of applications with noise"

Partition points into deux regions separated by not-so-deux regions

• How do we measure density? = number of paints in a circle of radius &

• What is a dense region?

= density of at least n points

I. Draw a circle of radius ϵ around every point. This region is the ϵ -neighbourhood.

- I. Draw a circle of radius ϵ around every point. This region is the ϵ -neighbourhood.
- 2. If the ε-neighbourhood contains at least n (=4) points, we consider the point a **core** point •.

- Draw a circle of radius ε around every point.
 This region is the ε-neighbourhood.
- 2. If the ε-neighbourhood contains at least n (=4) points, we consider the point a **core** point •.
- 3. If the point is not a core point, but is in the ε-neighbourhood of one, it is a **border** point ...

- Draw a circle of radius ε around every point.
 This region is the ε-neighbourhood.
- 2. If the ε-neighbourhood contains at least n (=4) points, we consider the point a **core** point •.
- 3. If the point is not a core point, but is in the ε-neighbourhood of one, it is a **border** point ...
- 4. Otherwise, it is a **noise** point **.**

- Draw a circle of radius ε around every point.
 This region is the ε-neighbourhood.
- 2. If the ε-neighbourhood contains at least n (=4) points, we consider the point a **core** point •.
- 3. If the point is not a core point, but is in the ε-neighbourhood of one, it is a **border** point ...
- 4. Otherwise, it is a **noise** point **.**
- 5. Get rid of **noise** points.

- Draw a circle of radius ε around every point.
 This region is the ε-neighbourhood.
- 2. If the ε-neighbourhood contains at least n (=4) points, we consider the point a **core** point •.
- 3. If the point is not a core point, but is in the ε-neighbourhood of one, it is a **border** point ...
- 4. Otherwise, it is a **noise** point **.**
- 5. Get rid of **noise** points.
- 6. All **core** points reachable through each other's ε-neighbourhoods belong to the same cluster.

- Draw a circle of radius ε around every point.
 This region is the ε-neighbourhood.
- 2. If the ε-neighbourhood contains at least n (=4) points, we consider the point a **core** point •.
- 3. If the point is not a core point, but is in the ε-neighbourhood of one, it is a **border** point ...
- 4. Otherwise, it is a **noise** point **.**
- 5. Get rid of **noise** points.
- 6. All **core** points reachable through each other's ε-neighbourhoods belong to the same cluster.
- 7. All **border** points are assigned to the cluster of closest core point.

DETERMINING ε AND n (recommendation)

n (minPts) = 2 × D-dimensionality
20 data => n=4
30 data => n=6

exped this is voice exped these are dustors

points sorted by distance to nth nearest neighbour 45

CODE EXAMPLE

Jupyter Notebook Clustering methods

COMPARING THE MODELS

L			
		Pros	Cons
k-means cli	ustering	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cannot handle outliers Cannot handle veird shapes User must provide k (could be ok) Initialization
Agglomerative cl	ustering	No a prior knowledge about #dusters	Derdrograms can be ambiguos
D	BSCAN	Arbotrary shapes Deals with outliers No a priori knowledge about #dusters	Trouble w1 diff. densities

CLUSTERING

- What is clustering?
- k-means clustering
- Agglomerative clustering
- DBSCAN
- Application

APPLICATION: IMAGE SEGMENTATION

Jupyter Notebook Image segmentation

OUR ANALYSIS SHOWS THAT THERE ARE THREE KINDS OF PEOPLE IN THE WORLD: THOSE WHO USE K-MEANS CLUSTERING WITH K=3, AND TWO OTHER TYPES WHOSE QUALITATIVE INTERPRETATION 15 UNCLEAR.