XVIII – Dérivabilité des fonctions vectorielles

I. Un déterminant

Notons $A(x) = (a_{i,j}(x)) \in \mathscr{M}_n(\mathbb{K})$ la matrice dont $D_n(x)$ est le déterminant. La fonction $x \mapsto A(x)$ est dérivable car ses fonctions coordonnées le sont et par multilinéarité du déterminant, la fonction D_n est dérivable avec

$$D'_n = \det(C'_1, C_2, \dots, C_n) + \det(C_1, C'_2, \dots, C_n) + \dots + \det(C_1, C_2, \dots, C'_n)$$

= 0 + \det(C_1, C_2, \dots, C'_n).

En développant par rapport à la dernière colonne ce dernier déterminant, on obtient : $D'_n(x) = D_{n-1}(x)$. Sachant $D_n(0) = 0$ et $D_1(x) = x$ on peut conclure, par récurrence, $D_n(x) = \frac{x^n}{n!}$.

II. Dérivée et matrice orthogonale

Pour simplifier, on notera M = M(t).

On a $M^TM=I_n$ donc en dérivant, $M'^TM+M^TM'=0$, ou encore $M'^TM=-M^TM'$. Or $M^T=M^{-1}$ donc $M'^TM=-M^{-1}M'$, et enfin $MM'^TM=-M'$. En prenant le déterminant : à gauche, $(\det M)^2 \det(M') = \det(M')$, et à droite, $\det(-M') = -\det(M')$ car n est impair. Donc $\det(M') = -\det(M')$. M' n'est donc pas inversible.

Si n est pair, le résultat est faux. Considérer par exemple $M(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$.