Custom Models

LATEST SUBMISSION GRADE

100%

1

Question 1

Following is an example of a deep and wide network structure.

 \mathbf{C}

True

①

False

Correct

Correct! This model structure does not have an input path that go through a shallow, or a wide layer.

2.

Question 2

Consider the following code and check all that are true:

```
class MyModel(Model):
    def __init__(self, units=30, activation='relu', **kwargs):
        super().__init__(**kwargs)
        self.hidden1 = Dense(units, activation=activation)
        self.hidden2 = Dense(units, activation=activation)
        self.main_output = Dense(1)

    def call(self, inputs):
        input_A, input_B = inputs
        hidden1 = self.hidden1(input_B)
        hidden2 = self.hidden2(hidden1)
        concat = concatenate([input_A, hidden2])
        main_output = self.main_output(concat)
        aux_output = self.aux_output(hidden2)
        return main_output, aux_output
```

1 / 1 point

✓

The *init* function initializes the *MyModel* Class objects, as well as the attributes that are inherited from the *Model* Class.

Correct

Correct!

~

The output layers cannot give more than 1 result each.

Correct

Correct! They each hold only 1 unit.

The <i>concat</i> should be defined within the <i>init</i> function instead of the <i>call</i> function as it is also a hidden layer.
The code is incomplete in the sense that you can only initialize and construct your model, you cannot perform training or inference.
3. Question 3
You have learned that Sequential and Functional APIs have their limitations.
How can you build dynamic networks where the architecture changes on the fly, or networks where recursion is used? Check all that are true:
1 / 1 point ✓
Using model subclassing
Correct
Correct! With model subclassing it is relatively easier to build these complex networks.
Using Sequential API
▽
Using Functional API
Correct
Correct! With Functional APIs it is possible to build these networks, but it would require a lot of coding.
4. Question 4
Which one of the following is a false statement regarding model subclassing?
1 / 1 point
Instead of tweaking the entire architecture, you can have different modules and make changes in

them as required, as opposed to entirely rewriting the structure.

•

You cannot introduce a branch structure in the architecture when doing model subclassing.

O

You can have modular architectures

0

You can make use of Functional and Sequential APIs when writing code for model subclassing.

Correct

Correct! You can have branches within your network

5.

Question 5

Consider the following two images:

Check all that are true:

You make a loop of *Residual Type 2* blocks because you want to reduce the depth of the network (making it less complex of an architecture)

Correct

Correct!
When you make a loop of Residual Type 2 blocks, each block could have the same weights.
Correct
Correct!
Each Residual block has two hidden layers and one add layer in it.
Correct
Correct!
You loop Residual Type 2 (Dense layers) because you cannot make a loop of Conv2D layers

(Residual Type 1)