Data Representation

Topics:

Representing Floating Point Numbers
Representing Text

Representing Signed Integers
Arithmetic: Addition and Subtraction

Prof. Dr. Slim Abdennadher

27.12.2007

1

Decimal Floating Points

- A floating point number is a number that can contain a fractional part, e.g. 30.875.
- In the decimal system, digits appearing in the right of the floating point represent a value between zero and nine, times an increasing negative power of ten.
- For example the value 30.875 is represented as follows:

$$3 \times 10^{1} + 0 \times 10^{0} + 8 \times 10^{-1} + 7 \times 10^{-2} + 5 \times 10^{-3}$$

• Similarly, the value 10.110011₂ is represented as follows:

$$1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 1 \times 2^{-5} + 1 \times 2^{-6}$$

Converting Decimal Floating Points to Binary

- Integer part: successive division
- Fraction Part: Multiply decimal fraction by 2 and collect resulting integers from top to bottom

Example 1: Convert 30.875

 $30 = 11110_2$ (successive division)

$$0.875 \times 2 = 1.750$$

 $0.75 \times 2 = 1.5$
 $0.5 \times 2 = 1.0$

Therefore 30.875 = 11110.111

Converting Decimal Floating Points to Binary

Example 2: Convert 43.828125

•
$$43 = 101011_2$$

$$0.828125 \times 2 = 1.65625$$
 $0.65625 \times 2 = 1.3125$
 $0.3125 \times 2 = 0.625$
 $0.625 \times 2 = 1.25$
 $0.25 \times 2 = 0.5$
 $0.5 \times 2 = 1.0$

Therefore 43.828125 = 101011.110101

Representing Floating Point Numbers

- Three steps process:
 - Convert the decimal number to a binary number
 - Write binary number in "normalized" scientific notation
 - Store the normalized binary number
- Look at an example:
 - How do we store the number 5.75

Converting Decimal Floating Points to Binary

- Integer part: with one of the presented algorithms
- Fraction Part: Multiplication decimal fraction by 2 and collect resulting integers

Example: Convert 5.75

$$5 = 101_2$$

$$0.75 = \frac{1}{2} + \frac{1}{4} = 2^{-1} + 2^{-2}$$
 which is binary 0.11

$$0.75 \times 2 = 1.5$$
$$0.5 \times 2 = 1.0$$

Therefore 5.75 = 101.11

Floating Point Numbers: Normalized Scientific Notation

- Scientific notation: $\pm M \times B^{\pm E}$
 - -B is the base, M is the mantissa, E is the exponent.
 - Example (decimal, base 10):

$$3 = 3 \times 10^0$$
$$2020 = 2.02 \times 10^3$$

- Easy to convert to scientific notation:
 - -101.11×2^{0}
- Normalize to get the "." in front of first (leftmost) "1" digit
 - Increase exponent by one for each location "." moves left (decreases if we have to move right)
 - $-101.11 \times 2^0 = 10.111 \times 2^1 = 1.0111 \times 2^2 = .10111 \times 2^3$
 - $-101011.110101 \times 2^0 = .1010111110101 \times 2^6$
 - $.01101 \times 2^0 = .1101 \times 2^{-1}$

Floating Point Numbers: Storing the Normalized Number

Storing decimal numbers using 16 bits:

Sign of mantissa	Mantissa	Sign of exponent	Exponent
1 bit	9 bits	1 bit	5 bits

Example 1: $+.10111 \times 2^3$

- Mantissa: +.10111
- Exponent: 3

0 101110000 0 00011

Example 2: $-.101 \times 2^{-1}$

- Mantissa: -.101
- Exponent: -1

1	101000000	1	00001

Representing Text

- How can we represent text in binary form?
 - Assign to each character a positive integer value (e.g. A is 65, B is 66, a is 97, ...)
 - Then we can store the numbers in their binary form
- The mapping of text to numbers: Code Mapping
- Various conventions for representing characters.
 - American Standard Code for Information Interchange (**ASCII**): each letter 8 bits (only $2^7 = 128$ different characters can be represented)
 - Unicode: each letter 16 bits

Representing Text: ASCII Code

Binary	Decimal	Character
0010 0001	33	!
0010 0010	34	"
• • •	• • •	• • •
0010 1000	40	(
0010 1001	41)
	• • •	
0100 0001	65	A
0100 0010	66	В
• • •	• • •	•••
0110 0001	97	a
• • •	• • •	

 $BAD! = 01000010 \quad 01000001 \quad 01000100 \quad 00100001$

Representing Unsigned Integers

• For a 3-bit unsigned integer, the **range** is [0,7] which has a binary representation of

$$000 = 0$$
 $001 = 1$
 $010 = 2$
 \dots
 $110 = 6$
 $111 = 7$

• For a 16-bit unsigned integer, the **range** is $[0, 2^{16} - 1] = [0, 65535]$ which has a binary representation of

$$\begin{array}{rcl}
0000000000000000 &= & 0\\
0000000000000001 &= & 1
\end{array}$$

. . .

Range of Unsigned Integers

In general, the **range** for an r-bit integer in base n

$$[0, n_{10}^r - 1]$$

Binary Arithmetic: Unsigned Addition

• The algorithm of binary addition is the same as that for decimal addition except that we use the binary addition table:

A	В	Carry Digit	Unit Digit
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

• Example:

	1	1	1	1	0	1	0	0	Carries
	0	0	1	1	1	0	1	1	
+	0	1	1	1	1	0	1	0	
	1	0	1	1	0	1	0	1	

Binary Numbers: Signed Integers

There are different representations for signed integers

- Sign/magnitude representation:
 - $-\ 1010\ 0001\ 0110\ 1111$
- One's complement representation:
 - 1101 1110 1001 0000
- Two's complement representation:
 - 1101 1110 1001 0001
- The above examples are all the same number, -8559_{10}

Signed Integers: Sign/Magnitude Representation

- The leftmost bit is used as a sign bit, where 0 indicates a positive integer and 1 indicates a negative integer (Sign/magnitude).
- A 16-bit computer represents the value -14 as

1000000000001110

- For a 16-bit signed integer, the **range** is $[-(2^{16-1}-1), (2^{16-1}-1)] = [-32767, 32767]$
- In general, the **range** for an r-bit signed integer in base n is $[-(n_{10}^{r-1}-1),(n_{10}^{r-1}-1)]$
- Problem: The value 0 has two representations
 - Most computers use a different representation (two's complement)

Signed Numbers: One's Complement

- Any pattern whose sign bit is 1 represents a negative value.
- Change every 1 to 0 and every 0 to 1.

Positive numbers	Negative numbers
$000000000 = 0_{10}$	$111111111 = -0_{10}$
$00000001 = 1_{10}$	
$00000010 = 2_{10}$	$111111101 = -2_{10}$
$00000011 = 3_{10}$	$111111100 = -3_{10}$
$00000100 = 4_{10}$	$111111011 = -4_{10}$
• • •	•••

- Advantage over sign/magnitude: easier to perform arithmetic
- Problem: Two distinct representations of zero (still!)

Signed Numbers: Two's Complement

- Any pattern whose sign bit is 1 represents the negative of the value obtained by:
 - invert each 1 to a 0 and each 0 to a 1,
 - then adding 1 to the final value.

• Example:

• Example:

0	0	0	0	1	0	0	0	=	8_{10}
1	1	1	1	0	1	1	1		invert step
						+	1		add 1 step
1	1	1	1	1	0	0	0	=	-8_{10}

Signed Numbers: Two's Complement

Positive numbers	Negative numbers
$00000000 = 0_{10}$	$00000000 = 0_{10}$
$00000001 = 1_{10}$	$111111111 = -1_{10}$
$00000010 = 2_{10}$	$111111110 = -2_{10}$
$00000011 = 3_{10}$	$111111101 = -3_{10}$
$00000100 = 4_{10}$	$111111100 = -4_{10}$
•••	•••

- Solves the problem of two representations of zero
- However the negative value (8 bit-value version) 10000000 does not have an equivalent positive representation
- Therefore, for a 16-bit signed integer, the **range** is $[-2^{16-1}, 2^{16-1} 1] = [-32768, 32767]$

Binary Addition: Two's Complement

- Assumption: Fixed number of bits available
- Addition: adding the 2's complement representations regardless their sign.
- If there is any carry from the leftmost digits it is ignored.

Discard the overflow: 1110 (-2_{10})

Binary Subtraction: Two's Complement

- Use Addition to do subtraction: A B = A + (-B)
- Convert the second number to two's complement and perform the binary addition
- Example: $17_{10} 10_{10} = 7_{10}$.

```
17 = 010001
10 = 001010
Complement: 110101
```

+1: 110110 (-10 in two's complement)

		010001			
	+	110110			
		1000111			_
cut off the 1		000111			

Binary Subtraction: Two's Complement

• Example: $11_{10} - 15_{10} = -4_{10}$.

111100

- To get the decimal value of the output, look first at the **leftmost bit**:
 - If it is a 0, convert the number to decimal directly (multiplication by weights)
 - If it is a 1, find the 2's complement of the number, then convert to decimal (multiplication by weights)
- 111100: 2's complement is $000100 = 4_{10}$, decimal value of the result is -4_{10}