Thesis structure

Wednesday, March 21, 2018 4:18 PM

Introduction

- 1. Back ground, use case examples, importants
- 2. Existing anomaly detection methods
- 3. Lack of model for time series and streaming data anomaly detection
- 4. Autoencoder based data streaming AD model

Related works

- 1. Common batch models
 - a. Distance based
 - b. Density based
 - c. Neighborhood based
 - d. Waveform based
 - e. One-class SVM
 - f. HMM based

But those models do not consider the temporal dependency

- 2. Autoencoder based models
 - a. EncDecAD
 - b. TimeNet

But those model always needs have all data in advance, could not deal with data changes

- 3. Neural network based online learning architecture
 - a. Add & merge
 - b. Threaded ensembles of autoencoders for streaming learning

But not exactly take time series as input (didn't apply any window, namely temporal combination)

Model

- 1. Model architecture
 - a. EncdecAD based architecture (input, output, hidden layer)
 - b. LSTM Input format
 - c. Reconstruction error, anomaly score, parameters
- 2. Online learning
 - a. Updating stratergy
 - i. Model
 - 1) Start from scratch -- if reconstruction error continuously being high
 - 2) Continue training with last-seen data -- if reconstruction error shortly high
 - Todo: Add & merge LSTM neurons

- ii. Parameters(mu, sigma, threshold)
 - 1) Update, if prediction performance bad (e.g. F-beta low, miss alarm etc.)
 - 2) To avoid overfitting, previous parameter still as a part of the new parameter
- b. Maintainance of dataset retraining
 - i. Keep storing N batches streaming data in the buffer
 - ii. Store summarization of all seen batches
 - iii. Label data that the model mistakenly predicted, to pay more attention on them by retraining

Experimental setup

- 1. Datasets description
 - a. Amount of anomaly
 - b. Normal, anomaly proportion
 - c. Periodicity
 - d. dimensionality
- 2. Initialization with first n batches streaming data
 - a. Wait until accumulated enough data for initializing the model
 - b. Split into normal sets
 - i. Sn: Training normal set
 - ii. Vn1: Validation normal set1 for early stopping
 - iii. Vn2: Validation normal set2 for parameter learning
 - iv. Tn: for testing of training

And anomaly sets

- i. Va: Validation anomaly set for parameter learning
- ii. Ta: for testing of training
- c. Dropout rate of autoencoder
- d. Save to disk
- 3. Streaming data generation
 - a. Apache Kafka introdution
 - b. Kafka setup and configuration
 - c. Deal with latency problem
- 4. Evaluation metric
 - a. #False alarm, # miss alarm
 - b. F-beta for performance
 - c. Reconstruction error of normal data for model fitness of data
 - d. *Area under the curve based on anomaly score

Experiment results

- 1. Hyperparameter grid search
- 2. Generally performance
- 3. When updating is triggered
- 4. Reaction of concept drift, non-significant anomalies
- 5. Comparasion of performance before/after updating, with/without updating
- 6. Runtime comparasion

Conclusion

- 1. How online learning helps the model to adjust the stream trend
- 2. Is the general performance comparable to troditional batch approaches
- 3. Possiable reasons of suboptimal performance during experiment
- 4. Future works