CEREI: Help File

June 27, 2023

### 1 Aim

The aim of CEREI is to calculate:

- 1. The energy bill with a given tariff structure (e.g., NSP81/NSP82/NSP83)
- 2. Price Efficiency Index (PEI)
- 3. Potential savings from comparison of business-as-usual bill with the bill calculated with a given tariff structure (e.g., NSP81/NSP82/NSP83)
- 4. Life-cycle cost assessment

## 2 Building CEREI from source code

Building CEREI from source code requires technical knowledge of developing java applications. The following describes the method used to build the version on the tool on the repository, although other methods can be used.

- 1. Download the source code from the repository.
- 2. Compile the code.
- 3. Create a .jar file.
- 4. Optional Create a java run-time environment that contains the java base and desktop modules as a minimum. The repository has a functional jre in the sub-directory smalljre.
- 5. Optional Use Launch4j (or similar) to create a Windows executable that references the small jre. The repository has a launch4j configuration file (at dist/energyCalculator3.xml) that can be edited and used with launch4j.
- 6. Optional Create a .zip archive that contains the Windows executable and two sub-directories:
  - smallire (or as configured in the launch4j configuration file) that contains the java run-time environment.
  - help that contains html help instructions. This directory must contain EnergyCalculator.htm as the initial entry point into the help instructions.

#### 3 Tool Installation

### 3.1 Installation on systems with jdk 18, openjdk 18 or later installed

Download CEREI.jar from the repository. CEREI.jar has been tested with openjdk 18, 19 and 20. The jar file can be run from a terminal/command window using the command:

```
java -jar CEREI.jar
```

It is also possible to run CEREI by clicking on CEREI.jar by changing the configuration of your device. Follow the relevant instructions provided by the manufacturer of your device and/or operating system.

Note that CEREI was developed using jdk 18 and has been tested with openjdk19 and openjdk 20.

### 3.2 Installation of jdk or openjdk

Install jdk 20 (or later) from https://www.oracle.com/au/java/technologies/downloads or openjdk 20 (or later) from https://openjdk.org/projects/jdk/, taking note and complying with the licence conditions and instructions associated with jdk or openjdk as appropriate.

You may need administrative or superuser (root) privileges to install jdk or openjdk.

Run CEREI as described in Subsection 3.1 above.

#### 3.3 Installation of standalone CEREI (Windows only)

Download the CEREI.zip file from the repository. Extract all the files and subdirectories to a known location. Double-click on CEREI.exe to run the tool. You do not need administrative privileges to install and run CEREI using this method.

# 4 Tool Interface and Operation

The interface for CEREI is presented in Figure 1. CEREI can be operated in two simple steps:

- Step 1: Click on each button, within the red highlighted box in Figure 1, and select the relevant input file.
- Step 2: Click "Calculate". This is highlighted by the blue font button in Figure 1. This will generate the output(s) in the relevant tab(s) and produce a pop-up, stating "Calculation Complete. Results in relevant tabs".

The user needs to click on the "Reset Input Files" button in Figure 1 to reset all input files.

If any individual file(s) needs to be replaced, then only the relevant button(s) (within the red highlighted box in Figure 1) needs to be clicked to select the new file.

CEREI generates four outputs, highlighted by the green box as shown in Figure 1. Each of these outputs is discussed in detail in Section 6. To generate the output(s), the tool allows for seven user inputs, which are highlighted by the red box, as illustrated in Figure 1. Each of these inputs are discussed in detail in Section 5.

The functionalities of CEREI are explained in Section 7.



Figure 1: CEREI tool interface.

## 5 Input

CEREI requires 7 structured input files, which must be in the CSV format. CEREI is developed following data resolution of 30 minutes.

To test CEREI, sample input files are provided. The user can also test CEREI with their industry-specific data. For such cases, blank templates are provided. Instructions on how to fill up each of the input file(s) with the necessary data is provided within the file(s).

For CEREI to operate as designed, it is important that the data format, provided in the template, is followed.

## 5.1 Input 1: Network Tariff

The network tariff defines the tariff structure, the network tariff parameters and the configuration of the metres. The tariff structures covered by CEREI are as follows: NSP81, NSP82, or NSP83.

The model requires data for 1 complete year. The list of network parameters, including unit and time resolution, is listed in Table 1.

Table 1: Network tariff parameters

| Category                                 | Parameter (Unit, Resolution)                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tariff structure and meter configuration | <ol> <li>Tariff Name</li> <li>Peak, Shoulder, and Off-peak Periods</li> <li>Meter Configuration</li> </ol>                                                                                                                                                                                                                                                                 |
| Energy charges                           | <ol> <li>Loss Ratio - Spot Price (c/kWh, monthly)</li> <li>Loss Ratio - Feed-in Tariff (c/kWh, monthly)</li> <li>Service and Admin Charge (\$/Day, monthly)</li> </ol>                                                                                                                                                                                                     |
| Network charges                          | <ol> <li>Standing Charge (\$/Yr, monthly)</li> <li>Peak Rate (c/kWh, monthly)</li> <li>Shoulder Rate (c/kWh, monthly)</li> <li>Off-peak Rate (c/kWh, monthly)</li> <li>Demand Critical Peak Rate (\$/kVA/Mth, monthly)</li> <li>Demand Critical Peak (kVA, monthly)</li> <li>Demand Capacity Rate (\$/kVA/Mth, monthly)</li> <li>Demand Capacity (kVA, monthly)</li> </ol> |

|                | <ol> <li>Victorian Energy Efficient Target (VEET) Charge (c/kWh, monthly)</li> <li>VEET Loss Ratio (c/kWh, monthly)</li> <li>Small-scale Renewable Energy Scheme (SRES) Charge (c/kWh, monthly)</li> <li>SRES Loss Ratio (c/kWh, monthly)</li> <li>Large-scale Renewable Energy Target (LRET) Charge (c/kWh, monthly)</li> </ol> |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Market charges | <ul> <li>6. LRET Loss Ratio (c/kWh, monthly)</li> <li>7. Australian Energy Market Operator (AEMO) Pool and Reliability and Emergency Reserve Trader (RERT) Charge (GST Exempt) (c/kWh, monthly)</li> </ul>                                                                                                                       |
|                | 8. AEMO and RERT Loss Ratio (c/kWh, monthly) 9. Ancillary Services (c/kWh, monthly) 10. Ancillary Services Loss Ratio (c/kWh, monthly)                                                                                                                                                                                           |
| Other charges  | <ol> <li>Meter Charge (\$/Yr, monthly)</li> <li>CT Compliance Testing Levey (\$/Yr, monthly)</li> </ol>                                                                                                                                                                                                                          |

The "Input 1 – Network Tariff" file is broken down into three parts.

#### 5.1.1 Part 1: Definition of the Tariff Structure and Meter Configuration

This part defines the tariff structure and meter-specific information. This is shown in Figure 2.



Figure 2: Part 1 of Input 1 - Network Tariff.

Figure 2 contains the following items:

- 1. Tariff Name Please note that CEREI only facilitates tariffs having the same structure as NSP81, NSP82, or NSP83.
- 2. Peak, shoulder and off-peak periods. If the tariff structure does not have shoulder period, then the row that shows shoulder period (Row 12 in Figure 2) should be empty.
- 3. Meter configuration based on the four scenarios highlighted in Table 2.

- To simulate <u>Scenario 1</u> (Table 2), the user need to make sure Row 19 (Figure 2) is empty and the word "Generation" is not present.
- To simulate Scenario 2 (Table 2), the user should just include the word "Generation" in Row 19 (Figure 2) and leave the rest of the row blank. Since in Scenario 2, the generated energy on site is connected to its own meter, the user should indicate the National Meter Identification (NMI) number in Input 4 (Section 5.4).
- To simulate <u>Scenario 3</u> (Table 2), the user should just include the word "Generation" in Row 19 (Figure 2) and leave the rest of the row blank. Since in Scenario 3, the generated on-site energy is connected to an existing on-site meter, the user should state the NMI number of the existing meter in Input 4 (Section 5.4).
- To simulate <u>Scenario 4</u> (Table 2), the user should include the word "Distributed" followed by "Generation" in Row 19 (Figure 2). Within Scenario 4, there are three different meter selection options:
  - The energy generated can be distributed among the existing meters based on the priority order provided by the user. In this case, following the words "Generation" and "Distributed" in Row 19 (Figure 2), the user should list the NMIs in the descending order of priority.
  - The energy generated can be distributed among existing metres according to the order in which they are listed in Input 2 (Section 5.2). In this case, the user need to leave the row blank following the words "Generation" and "Distributed" in Row 19 (Figure 2). The user must also ensure Input 6 (Section 5.6) is not provided to CEREI.
  - The energy generated can be distributed among the existing meters based on the priority list created by the highest to lowest annual cost of the meter provided in Input 6. In this case, the user need to leave the row blank following the words "Generation" and "Distributed" in Row 19 (Figure 2). The user must ensure Input 6 is provided to CEREI.

#### 5.1.2 Part 2: Definition of tariff and network charges

This part defines the tariff and network charges that are applicable for all NMIs for an entire year (12 months). This is shown in Figure 3.

|    | Α        | В          | C          | D        | E        | F         | G         | Н         | - 1       | J          | K         | L        | М         | N           | 0           | Р         | Q          | R         | S          | T           | U           |
|----|----------|------------|------------|----------|----------|-----------|-----------|-----------|-----------|------------|-----------|----------|-----------|-------------|-------------|-----------|------------|-----------|------------|-------------|-------------|
| 22 | General  |            |            |          |          |           |           |           |           |            |           |          |           |             |             |           |            |           |            |             |             |
| 23 | Month    | Service an | Standing ( | Demand C | Demand C | VEET Char | VEET Loss | SRES Char | SRES Loss | LRET Charg | LRET Loss | AEMO Poc | AEMO + RI | Ancillary S | Ancillary S | Meter Cha | CT Complia | Peak Rate | Shoulder F | Off-peak Ra | ate (c/kWh) |
| 24 | January  | 2.09       | 5962       | 0.345    | 0.57     | 0.74      | 0.07568   | 0.97535   | 0.07551   | 0.78934    | 0.07684   | 0.24563  | 0.06667   | 0.09        | 0.07778     | 1039.5    | 121        | 11.7      | 5.43       | 1.62        |             |
| 25 | February | 2.09       | 5962       | 0.345    | 0.57     | 0.66      | 0.07576   | 0.97535   | 0.07551   | 0.74477    | 0.07684   | 0.04781  | 0.06667   | 5.76835     | 0.07778     | 1039.5    | 121        | 11.7      | 5.43       | 1.62        |             |
| 26 | March    | 2.09       | 5962       | 0.345    | 0.57     | 0.65      | 0.07538   | 0.98      | 0.07551   | 0.72       | 0.075     | 0.045    | 0.06667   | 0.09        | 0.07778     | 1039.5    | 121        | 11.7      | 5.43       | 1.62        |             |
| 27 | April    | 2.09       | 5962       | 0.345    | 0.57     | 0.72      | 0.075     | 0.98      | 0.07551   | 0.7        | 0.07571   | 0.045    | 0.06667   | 0.09        | 0.07778     | 1039.5    | 121        | 11.7      | 5.43       | 1.62        |             |
| 28 | May      | 2.09       | 5962       | 0.345    | 0.57     | 0.65      | 0.07538   | 0.98      | 0.07551   | 0.69       | 0.07536   | 0.045    | 0.06667   | 0.09        | 0.07778     | 1039.5    | 121        | 11.7      | 5.43       | 1.62        |             |
| 29 | June     | 2.09       | 5962       | 0.345    | 0.57     | 0.57      | 0.07544   | 0.98      | 0.07551   | 0.74       | 0.07568   | 0.045    | 0.06667   | 0.09        | 0.07778     | 1039.5    | 121        | 11.7      | 5.43       | 1.62        |             |
| 30 | July     | 2.09       | 5962       | 0.345    | 0.57     | 0.66      | 0.07576   | 0.98      | 0.07551   | 0.88       | 0.07614   | 0.048    | 0.0625    | 0.09        | 0.07778     | 1039.5    | 121        | 11.7      | 5.43       | 1.62        |             |
| 31 | August   | 2.09       | 5962       | 0.345    | 0.57     | 0.65      | 0.07538   | 0.98      | 0.07551   | 0.9        | 0.07556   | 0.048    | 0.0625    | 0.09        | 0.07778     | 1039.5    | 121        | 11.7      | 5.43       | 1.62        |             |
| 32 | Septembe | 2.09       | 5962       | 0.345    | 0.57     | 0.65      | 0.07538   | 0.98      | 0.07551   | 1.04       | 0.07596   | 0.048    | 0.0625    | 0.09        | 0.07778     | 1039.5    | 121        | 11.7      | 5.43       | 1.62        |             |
| 33 | October  | 2.09       | 5962       | 0.345    | 0.57     | 0.66      | 0.07576   | 0.98      | 0.07551   | 0.93       | 0.07527   | 0.048    | 0.0625    | 0.09        | 0.07778     | 1039.5    | 121        | 11.7      | 5.43       | 1.62        |             |
| 34 | Novembe  | 2.09       | 5962       | 0.345    | 0.57     | 0.7       | 0.07571   | 0.98      | 0.07551   | 0.82       | 0.07561   | 0.048    | 0.0625    | 0.09        | 0.07778     | 1039.5    | 121        | 11.7      | 5.43       | 1.62        |             |
| 35 | December | 2.09       | 5962       | 0.345    | 0.57     | 0.8       | 0.07625   | 0.98      | 0.07551   | 0.81       | 0.07531   | 0.048    | 0.0625    | 0.09        | 0.07778     | 1039.5    | 121        | 11.7      | 5.43       | 1.62        |             |

Figure 3: Part 2 of Input 1 - Network Tariff.

Figure 3 contains the following items:

- 1. Service and Admin Charge (\$/Day, monthly) (Column B)
- 2. Standing Charge (\$/Yr, monthly) (Column C)
- 3. Demand Capacity Rate (\$/kVA/Mth, monthly) (Column D)
- 4. Demand Critical Peak Rate (\$/kVA/Mth, monthly) (Column E)
- 5. VEET Charge (c/kWh, monthly) (Column F)
- 6. VEET Loss Ratio (c/kWh, monthly) (Column G)
- 7. SRES Charge (c/kWh, monthly) (Column H)
- 8. SRES Loss Ratio (c/kWh, monthly) (Column I)
- 9. LRET Charge (c/kWh, monthly) (Column J)

- 10. LRET Loss Ratio (c/kWh, monthly) (Column K)
- 11. AEMO Pool and RERT Charge (GST Exempt) (c/kWh, monthly) (Column L)
- 12. AEMO and RERT Loss Ratio (c/kWh, monthly) (Column M)
- 13. Ancillary Services (c/kWh, monthly) (Column N)
- 14. Ancillary Services Loss Ratio (c/kWh, monthly) (Column O)
- 15. Meter Charge (\$/Yr, monthly) (Column P)
- 16. CT Compliance Testing Levey (\$/Yr, monthly) (Column Q)
- 17. Peak Rate (c/kWh, monthly) (Column R)
- 18. Shoulder Rate (c/kWh, monthly) (Column S) if the given tariff structure does not have any shoulder rate, then values of this column should be set to 0
- 19. Off-peak Rate (c/kWh, monthly) (Column T)

#### 5.1.3 Part 3: Definition of the Meter-Specific Parameters

This part defines the monthly meter-specific parameters for an entire year (12 months) for each meter. An extract from one single meter is shown in Figure 4.

|    | Α             | В            | С            | D           | E           | F            | G           | Н            | 1          | J           | K          | L           | М           | N          | 0             | Р         | Q         | R          | S            | Т           | U           | V     |
|----|---------------|--------------|--------------|-------------|-------------|--------------|-------------|--------------|------------|-------------|------------|-------------|-------------|------------|---------------|-----------|-----------|------------|--------------|-------------|-------------|-------|
| 37 | # Each met    | er in the Er | nergy Usage  | File must   | appear in   | this file. T | he meter na | ame must b   | e the same | as in the E | nergy Usag | ge File and | must be fol | lowed by 1 | 13 lines (1 h | eader and | 12 months | ) of param | eters that a | pply to the | specific me | eter. |
| 38 | # Columns     | must be in   | the order    | specifed    |             |              |             |              |            |             |            |             |             |            |               |           |           |            |              |             |             |       |
| 39 | # It is OK to | have met     | ers describe | ed below it | f they don' | t appear ii  | the Energy  | y Usage File |            |             |            |             |             |            |               |           |           |            |              |             |             |       |
| 40 | Meter         | NMI1         |              |             |             |              |             |              |            |             |            |             |             |            |               |           |           |            |              |             |             |       |
| 41 | Month         | Loss Ratio   | Loss Ratio   | Demand C    | Demand C    | ritical Pea  | k (\$/kVA/N | 1th)         |            |             |            |             |             |            |               |           |           |            |              |             |             |       |
| 42 | Jan           | 0.06856      | 0.06856      | 110         | 14.3326     |              |             |              |            |             |            |             |             |            |               |           |           |            |              |             |             |       |
| 43 | February      | 0.06845      | 0.06845      | 110         | 24.6356     |              |             |              |            |             |            |             |             |            |               |           |           |            |              |             |             |       |
| 44 | March         | 0.06848      | 0.06848      | 110         | 21.4164     |              |             |              |            |             |            |             |             |            |               |           |           |            |              |             |             |       |
| 45 | April         | 0.06855      | 0.06855      | 110         | 19.474      |              |             |              |            |             |            |             |             |            |               |           |           |            |              |             |             |       |
| 46 | May           | 0.06847      | 0.06847      | 110         | 20.7766     |              |             |              |            |             |            |             |             |            |               |           |           |            |              |             |             |       |
| 47 | June          | 0.06851      | 0.06851      | 110         | 20.6685     |              |             |              |            |             |            |             |             |            |               |           |           |            |              |             |             |       |
| 48 | July          | 0.07081      | 0.07081      | 110         | 22.9212     |              |             |              |            |             |            |             |             |            |               |           |           |            |              |             |             |       |
| 49 | August        | 0.07596      | 0.07596      | 110         | 19.8745     |              |             |              |            |             |            |             |             |            |               |           |           |            |              |             |             |       |
| 50 | Septembe      | 0.0709       | 0.0709       | 110         | 20.2224     |              |             |              |            |             |            |             |             |            |               |           |           |            |              |             |             |       |
| 51 | October       | 0.07089      | 0.07089      | 110         | 20.5617     |              |             |              |            |             |            |             |             |            |               |           |           |            |              |             |             |       |
| 52 | November      | 0.07088      | 0.07088      | 110         | 21.0041     |              |             |              |            |             |            |             |             |            |               |           |           |            |              |             |             |       |
| 53 | December      | 0.07088      | 0.07088      | 110         | 14.3599     |              |             |              |            |             |            |             |             |            |               |           |           |            |              |             |             |       |

Figure 4: Part 3 of Input 1 - Network Tariff.

Against each meter number, the NMI number is provided, along with the following parameter information:

- 1. Loss Ratio Spot Price (c/kWh, monthly) (Column B)
- 2. Loss Ratio Feed-in Tariff (c/kWh, monthly) (Column C)
- 3. Demand Critical Peak (kVA, monthly) (Column D)
- 4. Demand Capacity (kVA, monthly) (Column E)

An unlimited number of meters can be listed. Meter information, as shown in Figure 4, simply needs to be replicated below sequentially.

Information relation to all the meters listed in the Input 2 (Section 5.1) and Input 4 (Section 5.4) files must be provided in this Input 1 file.

#### 5.2 Input 2: Energy Usage

Input 2 provides the energy usage data, in kWh, from the grid, per meter. The data resolution is 30 minutes. For multiple meters, each meter's energy usage needs to be placed in separate column, the NMI number as the column heading. An extract from a sample energy usage file is shown in Figure 5.

Please note that the NMI number should match the NMIs listed in Input 1 (Section 5.1).

|   | Α              | В           | С           | D           | E           | F           | G           |
|---|----------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 1 | Date and Time  | NMI1 (kWh)  | NMI2 (kWh)  | NMI3 (kWh)  | NMI4 (kWh)  | NMI5 (kWh)  | NMI6 (kWh)  |
| 2 | 1/01/2020 0:30 | 0.8         | 2.6         | 4.7         | 7.2         | 0.03        | 4.6         |
| 3 | 1/01/2020 1:00 | 0.833333333 | 2.633333333 | 4.4         | 7.033333333 | 0.033333333 | 4.7         |
| 4 | 1/01/2020 1:30 | 0.92        | 2.6         | 3.8         | 6.68        | 0.038       | 4.84        |
| 5 | 1/01/2020 2:00 | 0.942857143 | 2.228571429 | 3.942857143 | 6.571428571 | 0.03        | 4.514285714 |

Figure 5: Input 2 - Energy usage.

#### 5.3 Input 3: Energy Cost

The input provides the price data for the spot market in \$/kWh. In this study, Australian Energy Market Operator (AEMO) spot market price data were used. The data resolution is 30 minutes. An extract from a sample energy cost file is shown in Figure 6.

|   | Α              | В                  |
|---|----------------|--------------------|
| 1 | Date and Time  | PriceAEMO (\$/kWh) |
| 2 | 1/01/2020 0:30 | 0.06476            |
| 3 | 1/01/2020 1:00 | 0.06336            |
| 4 | 1/01/2020 1:30 | 0.06521            |
| 5 | 1/01/2020 2:00 | 0.06445            |

Figure 6: Input 3 - Energy cost.

## 5.4 Input 4: Energy Generated

The input provides the on-site energy generation data in kWh. The data resolution is 30 minutes. Taking into account the different scenarios in Table 2,

- 1. **Scenario 2** If the energy generated on site is connected to its own separate meter different from the ones listed in Input 2 (Section 5.2), then the specific meter name should be provided as the column heading. In this example (Figure 7), it is called "Virtual NMI".
- 2. **Scenario 3** If the generated energy on site is connected to any existing meter listed in Input 2 (Section 5.2), then the same NMI should be provided as column heading.
- 3. **Scenario 4** If the generated energy on site is distributed among existing meters listed in Input 2 (Section 5.2), then the heading of the column becomes irrelevant. This should be clearly stated in Input 1 (Section 5.1.1 when defining the meter configuration.

|   | Α              | В                 |
|---|----------------|-------------------|
| 1 | Date and Time  | Virtual NMI (kWh) |
| 2 | 1/01/2020 0:30 | 225               |
| 3 | 1/01/2020 1:00 | 225               |
| 4 | 1/01/2020 1:30 | 225               |
| 5 | 1/01/2020 2:00 | 225               |

Figure 7: Input 4 - Energy generated.

#### 5.5 Input 5: Feed-in Tariff

The input provides the data on the input tariff rate in \$/kWh. The data resolution is 30 minutes. An extract of a sample energy cost file is shown in Figure 8.

|   | Α              | В                            |  |  |  |  |  |  |
|---|----------------|------------------------------|--|--|--|--|--|--|
| 1 | Date and Time  | Feed-in Tariff Rate (\$/kWh) |  |  |  |  |  |  |
| 2 | 1/01/2020 0:30 | 0.06476                      |  |  |  |  |  |  |
| 3 | 1/01/2020 1:00 | 0.06336                      |  |  |  |  |  |  |
| 4 | 1/01/2020 1:30 | 0.06521                      |  |  |  |  |  |  |
| 5 | 1/01/2020 2:00 | 0.06445                      |  |  |  |  |  |  |

Figure 8: Input 5 - Feed-in tariff.

## 5.6 Input 6: Business-as-Usual Bill

The input provides the summary of the reference energy bill (business as usual bill) for an entire year considering all meters listed in Input 2 (Section 5.2). This file is the basis of which all economic parameters would be calculated. An extract of a sample energy cost file is shown in Figure 9.

|    | Α    | В       | С         | D    | E                 | F          | G          | Н          | 1         | J         |
|----|------|---------|-----------|------|-------------------|------------|------------|------------|-----------|-----------|
| 1  | Year | Quarter | Month     | Days | Business as Usual |            |            |            |           |           |
| 2  |      |         |           |      | Total IncGST (\$) |            |            |            |           |           |
| 3  |      |         |           |      | NMI1              | NMI2       | NMI3       | NMI4       | NMI5      | NMI6      |
| 4  | 2020 | Q1      | January   | 31   | 6094.552          | 59413.1247 | 24677.4553 | 17459.0482 | 17284.79  | 2902.1289 |
| 5  |      |         | February  | 29   | 4315.0385         | 43891.679  | 23497.1064 | 18444.9688 | 18565.16  | 2175.9722 |
| 6  |      |         | March     | 31   | 4119.5548         | 32553.1905 | 22861.4848 | 17494.3893 | 17714.352 | 2137.2457 |
| 7  |      |         | Quarterly | 91   | 14529.1453        | 135857.994 | 71036.0465 | 53398.4063 | 53564.302 | 7215.3468 |
| 8  |      | Q2      | April     | 30   | 3287.5001         | 30187.6384 | 19379.4521 | 15446.7481 | 16010.019 | 1693.9137 |
| 9  |      |         | May       | 31   | 3741.3778         | 32570.8332 | 20518.9335 | 17590.6745 | 18581.777 | 1767.269  |
| 10 |      |         | June      | 30   | 3869.8055         | 36655.876  | 23033.1219 | 18914.3321 | 20650.591 | 1953.5022 |
| 11 |      |         | Quarterly | 91   | 10898.6833        | 99414.3476 | 62931.5075 | 51951.7547 | 55242.387 | 5414.6849 |
| 12 |      | Q3      | July      | 31   | 4780.0147         | 43778.017  | 28267.3586 | 23610.8791 | 24467.325 | 1881.8221 |
| 13 |      |         | August    | 31   | 3921.8679         | 38994.5183 | 24915.0379 | 21924.8362 | 20831.692 | 1582.8843 |
| 14 |      |         | September | 30   | 3470.9276         | 31055.072  | 17952.7159 | 14978.7768 | 15863.388 | 1272.8307 |
| 15 |      |         | Quarterly | 92   | 12172.8102        | 113827.607 | 71135.1124 | 60514.4921 | 61162.405 | 4737.5371 |
| 16 |      | Q4      | October   | 31   | 3835.664          | 37696.8348 | 23294.748  | 16939.4397 | 21449.327 | 2251.6011 |
| 17 |      |         | November  | 30   | 3558.8567         | 33568.797  | 20039.1296 | 11216.3968 | 17855.364 | 1835.2165 |
| 18 |      |         | December  | 31   | 2826.2105         | 24426.5361 | 13765.0258 | 8135.5023  | 13621.855 | 1937.9226 |
| 19 |      |         | Quarterly | 92   | 10220.7312        | 95692.1679 | 57098.9034 | 36291.3388 | 52926.545 | 6024.7403 |
| 20 |      | Annual  |           | 366  | 47821.37          | 444792.117 | 262201.57  | 202155.992 | 222895.64 | 23392.309 |

Figure 9: Input 6 - Business-as-Usual Bill.

#### 5.7 Input 7: Life-cycle Cost Parameters

The input provides all component details and the associated essential economic parameters necessary for life-cycle cost assessment. There are two categories of information provided in the file.

- Category 1: The default parameters that apply to all components. These parameters are listed below.
  - 1. Lifetime
  - 2. Real discount rate (%)
  - 3. General inflation rate (%)
  - 4. Degradation rate (%)

A sample extract is shown in Figure 10.

• Category 2: Component-specific parameters. These parameters are listed below.

- 1. Component name It is a mandatory parameter.
- 2. Cost code It is an optional parameter. It can be a specific string to match accounting cost codes defaults to the next number in sequence.
- 3. Number of units It is an optional parameter. The default value is 1.
- 4. Capital cost (\$) It is an optional parameter.
- 5. Installation cost (\$) It is an optional parameter.
- 6. Fixed operation and maintenance (O&M) cost (\$) It is an optional parameter.
- 7. Replacement cost (\$) It is an optional parameter and requires a supplementary parameter replacement frequency.
- 8. Future cost (\$) It is an optional parameter and requires a supplementary parameter future frequency.
- 9. Discount rate (%) It is an optional parameter. If nothing is mentioned against each parameter, CEREI defaults to the default discount rate of Category 1 (Figure 10).
- 10. Inflation rate (%) It is an optional parameter. If nothing is mentioned against each parameter, CEREI will default to the default inflation rate of Category 1 (Figure 10).

Note that unlimited number of components can be listed, one after the other. Each component must be followed by an empty row.

Although each of the listed cost is an optional parameter, however, against each of the defined component, at least one of Capital Cost, Installation Cost, Fixed O&M Cost, Replacement Cost, and / or Future Cost <u>must be</u> defined.

A sample extract is shown in Figure 11.

|   | A                                                              | В        |       |
|---|----------------------------------------------------------------|----------|-------|
| 1 | # Investment name is mandatory                                 |          |       |
| 2 | Investment Name                                                | Biopower |       |
| 3 |                                                                |          |       |
| 4 | # Lifetime, Discount Rate and Inflation Rate are all mandatory |          |       |
| 5 | Lifetime                                                       | 30       | years |
| 6 | Discount Rate                                                  | 5.5      |       |
| 7 | Inflation Rate                                                 | 1.79     |       |
| 8 | Degradation Rate                                               | 4        |       |

Figure 10: Default parameters within Input 7 - Life-cycle Cost Parameters.

|    | Α                               | В                  | C                                                                                                                        |  |  |  |  |  |  |
|----|---------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 10 | # There must be at one Componen | t that can have tl | ne following optional or mandatory parameters. Each component must be followed by an empty row.                          |  |  |  |  |  |  |
| 11 | # Component                     | Mandatory          | Component Name                                                                                                           |  |  |  |  |  |  |
| 12 | # Cost Code                     | Optional           | e a specific string to match accounting cost codes - defaults to the next number in sequence                             |  |  |  |  |  |  |
| 13 | # Number of Units               | Optional           | Defaults to 1                                                                                                            |  |  |  |  |  |  |
| 14 | # Capital Cost                  | Optional           | Note that there must be at least one of Capital Cost, Installation Cost, Fixed O&M Ccst, Replacement Cost or Future Cost |  |  |  |  |  |  |
| 15 | # Installation Cost             | Optional           |                                                                                                                          |  |  |  |  |  |  |
| 16 | # Fixed O&M Cost                | Optional           |                                                                                                                          |  |  |  |  |  |  |
| 17 | # Replacement Cost              | Optional           | Requires a thrid parameter - replacement frequency                                                                       |  |  |  |  |  |  |
| 18 | # Future Cost                   | Optional           | Requires a thrid parameter - future frequency                                                                            |  |  |  |  |  |  |
| 19 | #Discount Rate                  | Optional           | Defaults to project Discount Rate                                                                                        |  |  |  |  |  |  |
| 20 | #Inflation Rate                 | Optional           | Defaults to project Inflation Rate                                                                                       |  |  |  |  |  |  |

Figure 11: Component specific parameters within Input 7 - Life-cycle Cost Parameters.

# 6 Output

CEREI produces four outputs (See Figure 1). The outputs can be generated separately from CEREI based on the inputs provided by the user. Figure 12 illustrates the inputs required to calculate each output.

|                                       | Inputs                        |                             |                                |                                                         |                                                 |                                         |                                            |  |  |  |  |
|---------------------------------------|-------------------------------|-----------------------------|--------------------------------|---------------------------------------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------------------|--|--|--|--|
| Outputs                               | Input 1:<br>Network<br>Tariff | Input 2:<br>Energy<br>Usage | Input 3:<br>AEMO<br>Spot Price | Input 4: Input 5:<br>Energy Feed-in<br>Generated Tariff |                                                 | Input 6:<br>Business-as -<br>Usual Bill | Input 7: Life-<br>cycle Cost<br>Parameters |  |  |  |  |
| Output 1<br>Energy Bill               | Needed                        | Needed                      | Needed                         | If there is an on-site<br>generation (optional)         |                                                 |                                         |                                            |  |  |  |  |
| Output 2 Price Efficiency Index (PEI) | Needed                        | Needed                      | Needed                         |                                                         | an on-site<br>n (optional)                      |                                         |                                            |  |  |  |  |
| Output 3 Potential Saving             | Needed                        | Needed                      | Needed                         |                                                         | If there is an on-site<br>generation (optional) |                                         |                                            |  |  |  |  |
| Output 4 Life-cycle Cost Assessment   | Needed                        | Needed                      | Needed                         |                                                         | an on-site<br>n (optional)                      | Needed                                  | Needed                                     |  |  |  |  |

Figure 12: Necessary inputs needed to produce the required output(s).

Each of the four are briefly discussed below.

### 6.1 Output 1: Energy Bill

Output 1 provides the detailed and annual summary of the energy bill in the 'Energy Bill' tab in the CEREI interface (Figure 1).

The positive \$ values indicate cost, while the negative \$ values indicate credit.

Inputs required to generate Output 1 can be found in Figure 12.

A sample annual summary energy bill is shown in Figure 13. This annual summary can be exported and saved as a CSV file by clicking the 'Save Cost Summary' button in Figure 13.



Figure 13: A sample annual summary energy bill as part of Output 1 (Energy Cost).

The detailed monthly energy bill can also be exported and saved as a CSV file by clicking the "Save Energy Bill - Detail" button in Figure 13. A sample extract of the detailed January energy bill for NMI1 is presented in Figure 14.

| Details for meter NMI1                   |                     |                                                          |            |         |      |            |                |           |
|------------------------------------------|---------------------|----------------------------------------------------------|------------|---------|------|------------|----------------|-----------|
| January 2020 for meter NMI1              |                     |                                                          |            |         |      |            |                |           |
| Energy Charges                           | Rate                | Rate (Inc. Loss)                                         | Unit       | Usage   | Unit | Loss ratio | Loss ratio (%) | Price(\$) |
| Pool Pass Through Charges import to site | Spot Price          | Spot price + (Spot price x Loss ratio)                   | c/kWh      | 5276.93 | kWh  | 0.07       | 6.86           | 354.55    |
| Feed-in Charges from energy generated    | Feed-in Tariff Rate | Feed-in Tariff Rate + (Feed-in Tariff Rate x Loss ratio) | c/kWh      | 0       | kWh  | 0.07       | 6.86           | 0         |
| Service and Admin Charge                 |                     | 2.09                                                     | \$/Day     | 31      | days |            |                | 64.79     |
| Network Charges                          |                     |                                                          |            |         |      |            |                |           |
| Standing Charge                          |                     | 5962                                                     | \$/Yr      | 31      | days |            |                | 504.98    |
| Peak Energy                              |                     | 11.7                                                     | c/kWh      | 1860.64 | kWh  |            |                | 217.7     |
| Shoulder Energy                          |                     | 5.43                                                     | c/kWh      | 2111.54 | kWh  |            |                | 114.66    |
| Off Peak Energy                          |                     | 1.62                                                     | c/kWh      | 1304.74 | kWh  |            |                | 21.14     |
| Demand Critical Peak                     |                     | 0.57                                                     | \$/kVA/Mth | 14.33   | kVA  |            |                | 8.17      |
| Demand Capacity                          |                     | 0.34                                                     | \$/kVA/Mth | 110     | kVA  |            |                | 37.95     |
| Market Charges                           |                     |                                                          |            |         |      |            |                |           |
| VEET Charge                              | 0.74                | 0.8                                                      | c/kWh      | 5276.93 | kWh  | 0.08       | 7.57           | 42        |
| SRES Charge                              | 0.98                | 1.05                                                     | c/kWh      | 5276.93 | kWh  | 0.08       | 7.55           | 55.36     |
| LRET Charge                              | 0.79                | 0.85                                                     | c/kWh      | 5276.93 | kWh  | 0.08       | 7.68           | 44.85     |
| AEMO Pool Charge (GST Exempt)+AEMO RERT  | 0.25                | 0.26                                                     | c/kWh      | 5276.93 | kWh  | 0.07       | 6.67           | 13.83     |
| Ancillary Services                       | 0.09                | 0.1                                                      | c/kWh      | 5276.93 | kWh  | 0.08       | 7.78           | 5.12      |
| Other Charges                            |                     |                                                          |            |         |      |            |                |           |
| Meter Charge                             |                     | 1039.5                                                   | \$/Yr      | 31      | days |            |                | 88.05     |
| CT Compliance Testing Levy               |                     | 121                                                      | \$/Yr      | 31      | days |            |                | 10.25     |
| Total (Ex GST)                           |                     |                                                          |            |         |      |            |                | 1583.38   |
| GST                                      |                     |                                                          |            |         |      |            |                | 158.34    |
| Total (Inc GST)                          |                     |                                                          |            |         |      |            |                | 1741.72   |

Figure 14: A sample extract of the monthly detailed energy bill for NMI1 - as part of Output 1 (Energy Cost).

### 6.2 Output 2: Price Efficiency Index (PEI)

Output 2 provides the annual summary of the Price Efficiency Index (PEI) in the 'Price Efficiency Index (PEI)' tab in the CEREI interface (Figure 1).

Inputs required to generate Output 2 can be found in Figure 12.

A sample annual summary PEI is shown in Figure 15. This summary of results can be exported and saved as a CSV file by clicking the "Save Price Efficiency Index (PEI) - Summary" button in Figure 15.



Figure 15: A sample Output 2 - Price Efficiency Index (PEI).

#### 6.3 Output 3: Potential Saving

Output 3 provides annual summary of the potential savings by comparing the summary annual energy bill from Output 1 (Section 6.1) with the user-provided business-as-usual bill in Input 6 (Section 5.6). The summary is displayed under the 'Potential Saving' tab on the CEREI interface (Figure 1).

The positive \$ values indicate cost, while the negative \$ values indicate credit.

Inputs required to generate Output 3 can be found in Figure 12.

A sample annual summary of potential savings is shown in Figure 13. This result can be exported and saved as a CSV file by clicking the "Save Potential Saving - Summary" button in Figure 16.



Figure 16: A sample Output 3 - Potential Savings.

#### 6.4 Output 4: Life-cycle Cost Assessment

Output 4 provides the detailed and annual life-cycle cost assessment under the 'Lifecycle Cost Assessment' tab in the CEREI interface (Figure 1).

The negative \$ values indicate cost, while the positive \$ values indicate revenue.

Inputs required to generate Output 4 can be found in Figure 12.

A summary of the life cycle cost assessment sample is shown in Figure 17. This annual summary can be exported and saved as CSV file by clicking the "Save Life-cycle Cost Assessment - 'Summary' button in Figure 17. The detailed life-cycle assessment results (see Figure 18) can also be exported and saved by clicking on the "Save Life-Cycle Cost Assessment - Detail" button as shown in Figure 17.



Figure 17: A sample Output 4 - Life-cycle cost analysis summary.

### 7 Functionalities

The tariffs considered in for the development of CEREI are: (i) Tariff G1 (e.g., NSP81); and (ii) Tariff G2 (e.g., NSP82 and NSP83), which are structured as follows:

Tariff G1: The components within this tariff structure are:

- Standing charge (\$/year)
- Peak rate (c/kWh) is considered between 7am to 11pm, Monday to Friday
- Off-peak rate (c/kWh) is considered at all other times
- Capacity (\$/KVA/year)
- Critical peak demand (\$/KVA/year)

Tariff G2: The components within this tariff structure are:

- Standing charge (\$/year)
- Peak rate (c/kWh) is considered between 7am to 10am and 4pm to 11pm, Monday to Friday
- Shoulder rate (c/kWh) is considered between 10am to 4pm, Monday to Friday
- Off-peak rate (c/kWh) is considered at all other times
- Capacity (\$/KVA/year)
- Critical peak demand (\$/KVA/year)

The calculation of the outputs can vary widely depending on the interconnection of the meters and the existence of the renewable energy generation on site. CEREI has been developed on the basis of four scenarios considering both the presence and the absence of renewable energy generation on site. These scenarios are described in the following and are graphically presented in Table 2.

| Details fo | r Biopower and NSP83 for 20 | 20        |          |           |         |            |            |            |             |           |             |            |
|------------|-----------------------------|-----------|----------|-----------|---------|------------|------------|------------|-------------|-----------|-------------|------------|
| Cost Code  | Component                   | Unit Cost | Unit     | No of Uni | Pavment | Year of An | Total Cost | Discount I | Inflation I | Inflation | NPV (AUD)   | ATLCC (AUD |
| 1          | Component 1                 |           |          |           | ,       |            |            |            |             |           | , ,         | ,          |
| 1.1        | Captial Cost                | 185000    | AUD/Unit | 2         | 0       | 30         | 370000     | 5.5        | 1.79        | 7.39      | -370000     | -30988.8   |
| 1.2        | Installation Cost           | 40000     | AUD/Unit | 2         | 0       | 30         | 80000      | 5.5        | 1.79        | 7.39      | -80000      | -6700.2    |
| 2          | Component 2                 |           |          |           |         |            |            |            |             |           |             |            |
| 2.1        | Captial Cost                | 320000    | AUD/Unit | 4         | 0       | 30         | 1280000    | 5.5        | 1.79        | 7.39      | -1280000    | -107204.5  |
| 2.2        | Installation Cost           | 128000    | AUD/Unit | 4         | 0       | 30         | 512000     | 5.5        | 1.79        | 7.39      | -512000     | -42881.8   |
| 3          | Component 3                 |           |          |           |         |            |            |            |             |           |             |            |
| 3.1        | Captial Cost                | 32400     | AUD/Unit | 1.8       | 0       | 30         | 58320      | 5.5        | 1.79        | 7.39      | -58320      | -4884.5    |
| 3.2        | Installation Cost           | 12960     | AUD/Unit | 1.8       | 0       | 30         | 23328      | 5.5        | 1.79        | 7.39      | -23328      | -1953      |
| 4          | Component 4                 |           |          |           |         |            |            |            |             |           |             |            |
| 4.1        | Captial Cost                | 300000    | AUD/Unit | 1         | 0       | 30         | 300000     | 5.5        | 1.79        | 7.39      | -300000     | -25126.0   |
| 4.2        | Installation Cost           | 120000    | AUD/Unit | 1         | 0       | 30         | 120000     | 5.5        | 1.79        | 7.39      | -120000     | -10050.4   |
| 4.3        | Replacement Cost            | 420000    | AUD/Unit | 1         | 20      | 30         | 420000     | 5.5        | 1.79        | 7.39      | -143946.16  | -120       |
| 5          | Component 5                 |           |          |           |         |            |            |            |             |           |             |            |
| 5.1        | Captial Cost                | 120000    | AUD/Unit | 1         | 0       | 30         | 120000     | 5.5        | 1.79        | 7.39      | -120000     | -10050.    |
|            | Installation Cost           | 48000     | AUD/Unit | 1         | 0       | 30         | 48000      | 5.5        | 1.79        | 7.39      | -48000      | -4020.     |
| 5.3        | Replacement Cost            | 168000    | AUD/Unit | 1         | 20      | 30         | 168000     | 5.5        | 1.79        | 7.39      | -57578.47   | -4822      |
| 6          | Component 6                 |           |          |           |         |            |            |            |             |           |             |            |
| 6.1        | Captial Cost                | 1860890   | AUD/Unit | 1         | 0       | 30         | 1860890    | 4.9        | 1.79        | 6.78      | -1860890    | -146627.   |
| 6.2        | Installation Cost           | 744356    | AUD/Unit | 1         | 0       | 30         | 744356     | 4.9        | 1.79        | 6.78      | -744356     | -58651.    |
| 6.3        | Fixed O&M Costs             | 260081    | AUD/Unit | 1         | 1 29    | 30         | 260081     | 4.9        | 1.79        | 6.78      | -4044064.12 | -318649.   |
| 6.4        | Replacement Cost            | 2605246   | AUD/Unit | 1         | 15      | 30         | 2605246    | 4.9        | 1.79        | 6.78      | -1271207.41 | -100164    |
| 7          | Component 7                 |           |          |           |         |            |            |            |             |           |             |            |
| 7.1        | Captial Cost                | 5980000   | AUD/Unit | 1         | 0       | 30         | 5980000    | 4.9        | 1.79        | 6.78      | -5980000    | -471190.   |
| 7.2        | Installation Cost           | 2272400   | AUD/Unit | 1         | 0       | 30         | 2272400    | 4.9        | 1.79        | 6.78      | -2272400    | -179052.   |
| 7.3        | Replacement Cost            | 8252400   | AUD/Unit | 1         | 20      | 30         | 8252400    | 4.9        | 1.79        | 6.78      | -3170082.08 | -249784.   |
|            | Component 8                 |           |          |           |         |            |            |            |             |           |             |            |
| 8.1        | Captial Cost                | 5000      | AUD/Unit | 1         | 0       | 30         | 5000       | 4.9        | 1.79        | 6.78      | -5000       | -393.      |
|            | Installation Cost           | 2000      | AUD/Unit | 1         | 0       | 30         | 2000       | 4.9        | 1.79        | 6.78      | -2000       | -157.      |
| 8.3        | Replacement Cost            | 7000      | AUD/Unit | 1         | 15      | 30         | 7000       | 4.9        | 1.79        | 6.78      | -3415.59    | -269.      |
|            | Component 9                 |           |          |           |         |            |            |            |             |           |             |            |
| 9.1        | Fixed O&M Costs             | 83892     | AUD/Unit | 1         | 1 29    | 30         | 83892      | 4.9        | 1.79        | 6.78      | -1304457.56 | -102784.   |
| 10         | Component 10                |           |          |           |         |            |            |            |             |           |             |            |
|            | Fixed O&M Costs             | 7000      | AUD/Unit | 1         | 1 29    | 30         | 7000       | 5.5        | 1.79        | 7.39      | -101736.22  | -8520.     |
| 11         | Scenario Equipment Totals   |           |          |           |         |            |            |            |             |           | -23872781.6 | -1896986.0 |

Figure 18: A sample Output 4 - Life-cycle cost analysis details.

- **Scenario 1:** There is no on-site generation. In this scenario, the user can use the tool to calculate and analyse the monthly, quarterly, and annual energy costs based on the new nominated tariff structure.
- Scenario 2: There is on-site generation, but the energy produced is not consumed on-site. In this scenario, the user can consider that the distributed energy resource (DER) is connected to the grid through its own meter. In this case, all the energy generated by the DER will be exported to the grid on the basis of the feed-in tariff rate.
- **Scenario 3:** There is an on-site generation, and it is connected to one existing meter. In this scenario, the generated energy can be consumed by the loads connected to the selected meter only and the remaining energy will be exported to the grid based on the feed-in tariff rate.
- **Scenario 4:** There is on-site generation and it is distributed among the existing meters. In this scenario, the energy generated will be consumed by the selected meters and the remaining energy will be exported to the grid based on the feed-in tariff rate. The selection of the meters should be specified by the user in the Input 1 file. Accordingly, there are three different meter selection options as follows:
  - The energy generated is distributed among the existing meters based on the priority order provided by the user (user allocated on percentage).
  - If Input 6 is provided, the energy generated is automatically distributed among existing meters based on the priority created by the highest to lowest annual cost of the meter from Input 6.
  - Otherwise, the energy generated is distributed among the existing meters automatically based on the priority obtained from the order of the meters' appearance in Input 2.

Table 2: Meter connection



## 8 Case Studies

To test CEREI, 15 case studies have been designed simulating all possible real world scenarios (see Table 2) the tool can be used for. The list of the developed 15 case studies are summarised in Table 3. The sample input files for all the case studies in Table 3 and blank input file templates are available with CEREI.

Table 3: Case studies

| Case Study   | Scenario   | Outputs Generated                                                      |
|--------------|------------|------------------------------------------------------------------------|
| Case Study 1 | Scenario 1 | Output 1 (New Energy Bill) and Output 2 (Price Efficiency Index (PEI)) |
|              |            | - not considering on-site renewable energy generation.                 |

|               |            | Output 1 (New Energy Bill) and Output 2 (Price Efficiency Index (PEI))    |
|---------------|------------|---------------------------------------------------------------------------|
| Case Study 2  | Scenario 2 | - considering on-site renewable energy generation. The energy generated   |
|               | Scenario 2 | on-site is connected to a Virtual NMI. There is no load connected to the  |
|               |            | Virtual NMI.                                                              |
|               |            | Output 1 (New Energy Bill) and Output 2 (Price Efficiency Index (PEI))    |
| Case Study 3  | Scenario 3 | - considering on-site renewable energy generation. The energy generated   |
|               |            | on-site is connected to one existing meter.                               |
|               |            | Output 1 (New Energy Bill) and Output 2 (Price Efficiency Index (PEI))    |
|               |            | - considering on-site renewable energy generation. The energy generated   |
| Case Study 4  | Scenario 4 | on-site is connected to all the existing meters (energy generated is dis- |
|               |            | tributed among the existing meters by the user supplied priority ranking  |
|               |            | of the meters via Input 1 (Network Tariff)).                              |
|               |            | Output 1 (New Energy Bill) and Output 2 (Price Efficiency Index (PEI))    |
|               |            | - considering on-site renewable energy generation. The energy gener-      |
| Case Study 5  | Scenario 4 | ated on-site is connected to all the existing meters (energy generated is |
|               |            | distributed among the existing meters by the priority raking of meters    |
|               |            | obtained from the order of their listing in Input 2 (Energy Usage)).      |
|               |            | Output 1 (New Energy Bill), Output 2 (Price Efficiency Index (PEI)),      |
| Case Study 6  | Scenario 1 | and Output 3 (Savings in Energy Bill) - not considering on-site renewable |
|               |            | energy generation.                                                        |
|               |            | Output 1 (New Energy Bill), Output 2 (Price Efficiency Index (PEI)),      |
| Caga Study 7  | Scenario 2 | and Output 3 (Savings in Energy Bill) - considering on-site renewable en- |
| Case Study 7  | Scenario 2 | ergy generation. The energy generated on-site is connected to a Virtual   |
|               |            | NMI. There is no load connected to the Virtual NMI.                       |
|               |            | Output 1 (New Energy Bill), Output 2 (Price Efficiency Index (PEI)),      |
| O Ct 1 0      | C          | and Output 3 (Savings in Energy Bill) - considering on-site renewable     |
| Case Study 8  | Scenario 3 | energy generation. The energy generated on-site is connected to one       |
|               |            | existing meter.                                                           |
|               |            | Output 1 (New Energy Bill), Output 2 (Price Efficiency Index (PEI)),      |
|               |            | and Output 3 (Savings in Energy Bill) - considering on-site renewable     |
| Case Study 9  | Scenario 4 | energy generation. The energy generated on-site is connected to all       |
| Case Study 9  | Scenario 4 | the existing meters (energy generated is distributed among the existing   |
|               |            | meters by the user supplied priority ranking of the meters via Input 1    |
|               |            | (Network Tariff)).                                                        |
|               |            | Output 1 (New Energy Bill), Output 2 (Price Efficiency Index (PEI)),      |
|               |            | and Output 3 (Savings in Energy Bill) - considering on-site renewable     |
| Case Study 10 | Scenario 4 | energy generation. The energy generated on-site is connected to all       |
| case stady 10 | Section 1  | the existing meters (energy generated is distributed among the existing   |
|               |            | meters by the priority raking of meters obtained from highest to lowest   |
|               |            | annual energy cost obtained from Input 6 (Business as Usual)).            |
|               |            | Output 1 (New Energy Bill), Output 2 (Price Efficiency Index (PEI)),      |
| Case Study 11 | Scenario 1 | Output 3 (Savings in Energy Bill), and Output 4 (Life-cycle Cost Anal-    |
|               |            | ysis) - not considering on-site renewable energy generation.              |
|               |            | Output 1 (New Energy Bill), Output 2 (Price Efficiency Index (PEI)),      |
|               |            | Output 3 (Savings in Energy Bill), and Output 4 (Life-cycle Cost Anal-    |
| Case Study 12 | Scenario 2 | ysis) - considering on-site renewable energy generation. The energy gen-  |
|               |            | erated on-site is connected to a Virtual NMI. There is no load connected  |
|               |            | to the Virtual NMI.                                                       |
|               |            | Output 1 (New Energy Bill), Output 2 (Price Efficiency Index (PEI)),      |
| Case Study 13 | Scenario 3 | Output 3 (Savings in Energy Bill), and Output 4 (Life-cycle Cost Anal-    |
|               |            | ysis) - considering on-site renewable energy generation. The energy gen-  |
|               |            | erated on-site is connected to one existing meter.                        |

| Case Study 14 | Scenario 4 | Output 1 (New Energy Bill), Output 2 (Price Efficiency Index (PEI)), Output 3 (Savings in Energy Bill), and Output 4 (Life-cycle Cost Analysis) - considering on-site renewable energy generation. The energy generated on-site is connected to all the existing meters (energy generated is distributed among the existing meters by the user supplied priority ranking of the meters via Input 1 (Network Tariff)).                                              |
|---------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Case Study 15 | Scenario 4 | Output 1 (New Energy Bill), Output 2 (Price Efficiency Index (PEI)), Output 3 (Savings in Energy Bill), and Output 4 (Life-cycle Cost Analysis) - considering on-site renewable energy generation. The energy generated on-site is connected to all the existing meters (energy generated is distributed among the existing meters by the priority raking of meters obtained from highest to lowest annual energy cost obtained from Input 6 (Business as Usual)). |