Inteligência Artificial

Outras estratégias de busca e Computação Evolutiva

Prof. Fabio Augusto Faria

Material adaptado de Profa. Ana Carolina Lorena e livro "Inteligência Artificial, S. Russell e P. Norving"

2º semestre 2021

Espaço de busca

Algoritmo completo sempre encontra uma solução, caso ela exista Algoritmo ótimo sempre encontra mínimo/máximo global

• Máximos Locais:

- em contraste com máximos globais, são picos mais baixos do que o pico mais alto no espaço de estados (solução ótima)
- a função de avaliação leva a um valor máximo para o caminho sendo percorrido: essa função utiliza informação local
- porém, o nó final está em outro ponto mais alto
- isto é uma consequência das decisões irrevogáveis do método
 - e.g., xadrez: eliminar a Rainha do adversário pode levar o jogador a perde

· Platôs:

uma região do espaço de estados onde a função de avaliação dá o mesmo resultado.

Mínimo local com h = 1

Todo sucessor tem custo mais alto

Alcançada em 5 passos a partir do estado inicial

Problema das 8 rainhas

Estados iniciais aleatórios

- 86% das vezes busca fica paralisada
 - Resolve apenas 14% das instâncias do problema
- Mas é rápida
 - 4 passos em média quando tem sucesso
 - 3 passos em média quando fica paralisada
 - Em espaço que tem cerca de 17 milhões de estados

Mudar de estado em platôs

- Quando estados têm avaliações iguais
- Colocando um limite de vezes

Ex. Problema das 8 rainhas

- Com estados iniciais aleatórios, usando essa estratégia
 - Passa a resolver 94% das instâncias do problema
 - Mas demora mais
 - » 21 passos em média quando tem sucesso
 - » 64 passos em média quando falha

Sucesso depende da topologia do espaço de estados

Se houver poucos máximos locais e platôs

- Subida de encosta com reinício aleatório encontrará boa solução com rapidez
- Mesmo para mais complexos, pode encontrar máximo local razoavelmente bom
 - Com poucos reinícios

Têmpera Simulada

- Têmpera: esquentar o metal/vidro e depois esfriá-lo gradualmente
- Mudar a idéia de subida em encosta para descida de gradiente
- Uma bola rolando uma superfície acidentada e esta parará num mínimo local
- Para evitar, deve-se agitar a superfície para que a bola saia desse mínimo local

Têmpera Simulada

- A idéia desta estratégia é agitar com força no início e diminuir gradualmente a intensidade da <u>agitação</u> agitação == aleatoriedade
- Diferente da subida em encosta é que esta estratégia não escolhe o melhor estado sucessor, mas escolhe o melhor movimento aleatório ("agito")
- Caso esse movimento aleatório não seja melhor, aceita-se um movimento com alguma probabilidade < 1 (vide Fig. 4.5)
- Exemplos: layout VLSI e escalonamentos.

Busca em Feixe Local

- Manter apenas 1 estado na memória é uma abordagem extrema para resolver problema de limitação de memória
- Esta estratégia mantém o controle de K estados, por vez
 - 1- Inicia com K estados gerados aleatoriamente
 - 2- Expande os sucessor de cada um dos K
 - 3- Se objetivo, sucesso
 - 4- Se não, seleciona os K melhores dentre todos os estados e volta para 1

Busca em Feixe Local

- Esses K reinícios aleatórios paralelos, os estados se conversam e tendem a abondonar caminhos infrutíferos
- Deslocando os recursos para o processo de maior progresso
- Problema está na falta de diversidade entre os K estados, se concentrando em uma pequena região do espaço de estados (Busca de subida de encosta)
- Solução é Feixe Local Estocástico que escolhe os K estados sucessores de forma aleatória considerando uma probabilidade maior que a atual (seleção natural)

Engloba métodos e técnicas computacionais inspirados:

- na teoria da evolução das espécies, de seleção natural (Darwin)
- na Genética iniciada por Mendel

Bases da evolução:

- diversidade é gerada por cruzamento e mutações
- os seres mais adaptados ao seus ambientes sobrevivem
- as características genéticas de tais seres são herdadas pelas próximas gerações

1859 - Charles Darwin publica o livro "A Origem das Espécies"

As espécies evoluem pelo princípio da seleção natural e sobrevivência do mais apto

Charles Darwin

Gregor Mendel

 1865 - Gregor Mendel apresenta experimentos do cruzamento genético de ervilhas
 Pai da Genética

Nos anos 1960 John Holland e seus alunos propuseram a construção de um algoritmo de busca e otimização: os algoritmos genéticos

Os algoritmos genéticos usam como base, e procuram combinar:

- A teoria da evolução das espécies a sobrevivência das estruturas/soluções mais adaptadas a um ambiente/problema
- Estruturas genéticas utiliza a conceitos de hereditariedade e variabilidade genética para troca de informações entre as estruturas, visando a melhoria das mesmas

População

A população de um algoritmo genético é o conjunto de indivíduos que estão sendo cogitados como solução

Cada indivíduo é uma possível solução do problema

Indivíduo

Um indivíduo no AG é um cromossomo

Ou seja, um indivíduo é um conjunto de atributos da solução

Geralmente é uma cadeia de bits que representa uma solução possível para o problema

Outras representações são possíveis

Boa representação depende do problema

Exemplo: população de tamanho N=5 Geração de indivíduos, com seus cromossomos Cada elemento do vetor é um gene, um atributo da solução

```
Indivíduo 1 = [1 1 1 0 1]
Indivíduo 2 = [0 1 1 0 1]
Indivíduo 3 = [0 0 1 1 0]
Indivíduo 4 = [1 0 0 1 1]
```


Função de aptidão

A função de avaliação, função de *fitness*, determina uma nota a cada indivíduo

Esta nota avalia quão boa é a solução que este indivíduo representa

Por exemplo, o objetivo de um AG pode ser maximizar o número de 1s

Indivíduos	Função de aptidão (<i>fitness</i>)
[11101]	4
[01101]	3
[00110]	2
[10011]	3
Aptidão média	3

Seleção

De acordo com a teoria de Darwin, o melhor sobrevivente para criar a descendência é selecionado

Há muitos métodos para selecionar o melhor cromossomo Dentre eles:

- Seleção por roleta
- Seleção por torneio

A seleção dirige o AG para as melhores regiões do espaço de busca

Seleção por roleta

Para visualizar este método considere um círculo dividido em N regiões (tamanho da população), onde a área de cada região é proporcional à aptidão do indivíduo

Seleção por roleta

Coloca-se sobre este círculo uma "roleta"

A roleta é girada um determinado número de vezes, dependendo do tamanho da população

São escolhidos como indivíduos que participarão da próxima geração, aqueles sorteados na roleta

Operadores genéticos

Um conjunto de operações é necessário para que, dada uma população, se consiga gerar populações sucessivas que (espera-se) melhorem sua aptidão com o tempo

Estas operações são os operadores genéticos. São eles:

- Cruzamento
- Mutação

Os operadores genéticos permitem explorar áreas desconhecidas do espaço de busca

Cruzamento

- O operador *crossover* (cruzamento) cria novos indivíduos, misturando características de <u>dois indivíduos pais</u>
- O resultado desta operação é <u>um indivíduo</u> que potencialmente combine as melhores características dos indivíduos usados como base

Alguns tipos de cruzamento são:

- Cruzamento em um ponto
- Cruzamento em dois pontos

Cruzamento de um ponto

No cruzamento de um ponto divide-se cada progenitor em duas partes, em uma localidade k (escolhida aleatoriamente)

Cruzamento de um ponto

- O descendente 1 consiste em genes 1 a k-1 do progenitor 1, e genes k a n do progenitor 2
- O descendente 2 é "reverso"

Mutação

A mutação modifica aleatoriamente alguma característica do indivíduo, sobre o qual é aplicada

O operador de mutação é necessário para a introdução e manutenção da diversidade genética da população

Desta forma, a mutação assegura que a probabilidade de se chegar a qualquer ponto do espaço de busca, possivelmente, não será zero

Gerações

Algoritmo é iterado até algum critério de parada

A cada passo, um novo conjunto de indivíduos é gerado a partir da população anterior

A este novo conjunto dá-se o nome de geração

Com a criação de uma grande quantidade de gerações que é possível obter resultados dos AGs

Algoritmo

Algoritmo_genético

- p = tamanho da população
- r = taxa de cruzamento
- m = taxa de mutação

Codificação e avaliação de aptidão são pontos chave

- 1. $P \leftarrow gerar aletoriamente p indivíduos$
- 2. Para cada i em P, computar Aptidão(i)
- 3. Enquanto critério_parada não é atingido
 - 3.1 Selecionar p membros de P para reprodução
 - 3.2 Aplicar cruzamento a pares de indivíduos selecionados segundo taxa r, adicionando filhos em PS
 - 3.3 Realizar mutação em membros *PS*, segundo taxa *m*
 - $3.5 P \leftarrow PS$
 - 3.6 **Para cada** *i* em *P*, computar *Aptidão(i)*
- 7. **Retornar** o indivíduo de *P* com maior aptidão

Codificando o problema

Ex.: problema 8 rainhas

- Cada estado deve especificar posição de 8 rainhas, em coluna com 8 quadrados
 - $-8 \times \log_2 8 = 24$ bits se codificação binária

Binário = 111 101 011 001 110 100 010 000 Inteiro = 8 6 4 2 7 5 3 1

- (a) Gerando população inicial
 - 8 dígitos, com valores de 1 a 8
 - Exemplo: população com 4 cadeias de 8 dígitos
 - Representam estados de 8 rainhas

24748552

32752411

24415124

32543213

```
      24748552
      24

      32752411
      23

      24415124
      20

      32543213
      11
```

(b) Avaliação

Função de avaliação (aptidão)

- Deve retornar valores maiores para estados melhores
- Ex.: 8 rainhas: número de pares de rainhas não-atacantes
 - Valor 28 para uma solução
 - \Rightarrow (min = 0, max = 8 \times 7/2 = 28)

(c) Seleção

Proporcional à aptidão do indivíduo

- Vários métodos
- Todos tendem a privilegiar indivíduos mais aptos
 - -24/(24+23+20+11) = 31% no exemplo
 - -23/(24+23+20+11) = 29% etc

Cruzamento

(d) Cruzamento

Indivíduos selecionados formam pares Operador de cruzamento combina pares

Ponto de cruzamento gerado ao acaso

Cruzamento

(e) Mutação

Mudança aleatória do valor de um gene

- Com pequena probabilidade
- Introduz variações aleatórias
 - Permitindo soluções pularem para diferentes partes do espaço de busca

Observações

- Se o AG estiver corretamente implementado, a população evolui em gerações sucessivas
- Aptidão do melhor indivíduo e do indivíduo médio aumentam em direção a um ótimo global

Animação buscas

AG

http://math.hws.edu/xJava/GA/

http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php

http://www.obitko.com/tutorials/genetic-algorithms/example-3d-function.php

http://www.obitko.com/tutorials/genetic-algorithms/tsp-example.php

Referências

- Livros:
 - Russel e Norvig: Inteligência Artificial, cap 4

Programação Genética

- Extensão de Algoritmos Genéticos
- Indivíduos são programas

Palestra sobre PG no Mundo Visual