Assignment 1

Qn0.1 Complexity: Time Complexity is ra concept in computer science that deals with the quantification of the amount of time taken by a set of code or algorithm to Process or run as a function of the mount of input. 11) Time complexity for depth-first-searchi If the entire graph is traversed the temporal complexity of DFS is

of, where vis the number of

vertices.

(ii) Time complexity for breadth-forest-search.
O(V+E).
- The time Complexity of BFS is
O(V+E) when Adjacency List is used
and O(V12) when adjacenty matrix
is used, where v stands: for vertices
- Estands for edges.
(iii) Time - complexity for best-first-search
O(n*10gn)
where is the number of nodes.
- The worst case is we have outo
rizit all nodes before preach to
goal me
_ liv) Time - complexity for greedy search 1
20(pm) (m)
where m is the maximum depth
of search
space complexity.
il space complexity for depth first search.
O(h)
The space complexity for acc
o(h) where h is the maximum
height of the tree

(ii) Space - complexity breadth-first-search.		
0(1V1) = 0(b^d).		
(iii) space complexity for best-first-search.		
O(pq)		
iv) space (mapping)		
Jime and space complexity of		
Jime and space complexity of		
greedy search is same.		
$Q_{\underline{\Delta 0.2}}$.		
Difference Between		
BFS	DFS :/	
BFS. Stands for	ii) DFS, stands for depth	
BFS, Stands for breadth-First Search	DFS : In DFS, Stands for depth First search.	
BFS. BFS. Stands for breadth-First Search BFS. U.S.C.S. Queye	ii) DFS, stands for depth First search. iii) DFS uses stack to	
(ii) BFS uses Queue to Find the	Find the shortest path.	
(ii) BFS uses Queue to Find the	Find the shortest path.	
(ii) BFS uses Queue to Find the	Find the shortest path.	
(ii) BFS uses queue to Find the shortest Path. iii) BFS is slower than DFS	(ii) OFS uses stack to Find the shortest path. (iii) OFS is Faster than BFS.	
(ii) BFS uses queue to Find the shortest Path. iii) BFS is slower than DFS	(ii) OFS uses stack to Find the shortest path. (iii) OFS is Faster than BFS.	
(ii) BFS uses Queye to Find the shortest Path. iii) BFS is slower than DFS When target is	(ii) OFS uses stack to Find the shortest path. (iii) OFS is Faster than BFS. (iv) DFS is better when target is far	
(ii) BFS uses Queye to Find the shortest Path. iii) BFS is slower than DFS When target is	(ii) OFS uses stack to Find the shortest path. (iii) OFS is Faster than BFS. (iv) DFS is better when target is far	
(ii) BFS uses Queye to Find the shortest Path. iii) BFS is slower than DFS When target is	(ii) OFS uses stack to Find the shortest path. (iii) OFS is Faster than BFS.	

Similarties between
-> The time complexity of / both
these algorithm is same.
Both algorithm is try to find
the destination.
Qno-3.
Heuristic.
heuristic method
of learning involves discovery: and
Problem solving using reasoning and
Past enperience
Use(ul: 270 278
Heuristic Ware mental
shortcuts that allow people to
solve problem and make judgments
quickly and efficiently.
uses of Heuristic:
we use heurstiel in all sorts of
Situations.
It is used toil solve little
mental shortcuts Problem and make
quick, efficient judgment calls.
Heuristic help cut down on your decision making time and help
to move one task to other.