Exercise 2-1:

a. Answer:

For an array of size k, sorting it using insertion sort will cost $\Theta(k^2)$ time.

Thus for n / k such sublists, the total running time is $\Theta(n/k \cdot k^2) = \Theta(nk)$

b. Answer:

During the merging process, we pick the smallest element and put it in the merged list.

That's the "n" in $\Theta(n \lg(n/k))$

By using a minimal heap, we can find the smallest element in $\mathcal{O}(1)$ time.

But adjusting the heap requires $O(\lg(n/k))$ time. Thus the total running time will be $\Theta(n \lg(n/k))$ in the worst case.

c. Answer:

Let $n \lg n = nk + n \lg(n/k)$

 $\therefore n \lg n = nk + n \lg n - n \lg k$

 $\therefore n \lg k = nk$

 $\therefore k = \lg k$, no solution.

 \therefore But there is actually a constant $c \neq 1$, s.t. $cn \lg n = nk + n \lg(n/k)$

:. There could be a k that make them equal, but it will be fairly small.

d. Answer:

When k=1, T(n)= $\Theta(n \lg n)$, it's degenerated to heap sort, which is good enough.

When k=n, $T(n)=\Theta(n^2)$, it's degenerated to insertion sort, which is good enough for small data sets.

So, make it small. How about 5?