NOM : Prénom : Note :

1. Soit $\mathcal{A} = \left\{ \frac{\mathfrak{n} + \mathfrak{p}}{\mathfrak{n}^2 + \mathfrak{p}^2}, \ (\mathfrak{n}, \mathfrak{p}) \in (\mathbb{N}^*)^2 \right\}$. \mathcal{A} possède-telle un maximum? un minimum? une borne supérieure? une borne inférieure? Les déterminer le cas échéant.

 $2. \text{ Déterminer le terme général de la suite } (u_n) \text{ telle que } u_0=1, \ u_1=-\frac{1}{2} \text{ et } u_{n+2}+u_{n+1}+u_n=0 \text{ pour tout } n \in \mathbb{N}.$

3. Soit \mathcal{R} une relation	binaire sur un	ensemble E.	Compléter les	définitions suivantes.

- ightharpoonup On dit que \mathcal{R} est *réflexive* si
- ightharpoonup On dit que \mathcal{R} est transitive si
- ightharpoonup On dit que \mathcal{R} est $sym\acute{e}trique$ si
- ightharpoonup On dit que \mathcal{R} est antisymétrique si
- ightharpoonup On dit que $\mathcal R$ est une relation d'équivalence si
- ightharpoonup On dit que \mathcal{R} est une relation d'ordre si
- 4. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.
 - $\blacktriangleright \ \ {\rm Ecrire} \ {\rm \grave{a}} \ {\rm l'aide} \ {\rm de} \ {\rm quantificateurs} \ {\rm que} \ \lim_{n \to +\infty} u_n = \ell \in \mathbb{R}.$
 - $\blacktriangleright \ \, \text{Ecrire à l'aide de quantificateurs que } \lim_{n \to +\infty} u_n = +\infty.$
 - $\blacktriangleright \ {\rm Ecrire} \ {\rm \grave{a}} \ {\rm l'aide} \ {\rm de} \ {\rm quantificateurs} \ {\rm que} \ \lim_{n \to +\infty} u_n = -\infty.$