Теорема о неявной функции

Множество уровня гладких функций

Рассмотрим функцию $F: \mathbb{R}^2 \to \mathbb{R}, F(x,y)$. В прошлый раз мы задались вопросом: любое ли множество может являться множеством уровня:

$$\{(x,y)\colon F(x,y)=\mathrm{const}\}$$

Мы успели понять следующие моменты:

1) Если F - произвольная, то любое множество может быть множеством уровня. Например:

$$F(x,y) = I_A = \begin{cases} 1, & (x,y) \in A \\ 0, & \text{иначе} \end{cases} \Rightarrow A = \{(x,y) \colon F(x,y) = 1\}$$

- 2) Если F непрерывна, тогда множество уровня замкнутое множество. Этот факт верен в любом метрическом пространстве.
 - \square Пусть (X, ρ) метрическое пространство, $F \colon X \to \mathbb{R}$ непрерывна. Рассмотрим множество:

$$A = \{x \mid F(x) = c\}$$

и возьмем последовательность точек x_n которая сходится к x_0 . По непрерывности будет верно:

$$x_n \to x_0 \Rightarrow f(x_n) \to f(x_0), \forall n, f(x_n) = c \Rightarrow f(x_0) = \lim_{n \to \infty} f(x_n) = c$$

Тем самым, вместе с любой сходящейся последовательностью это множество содержит и её предел, следовательно множество замкнуто. ■

Здесь сразу же возникает вопрос, а всякое ли замкнутое множество является множеством уровня?

Утв. 1. В метрическом пространстве (X, ρ) для всякого замкнутого множества A существует непрерывная функция $F: X \to \mathbb{R}$ такая, что:

$$\{x \mid F(x) = 0\} = A$$

□ Рассмотрим следующую функцию:

$$F(x) = \operatorname{dist}(x, A) = \inf_{y \in A} \rho(x, y)$$

Пусть F(x) = 0 тогда:

$$\inf_{y \in A} \rho(x, y) = 0 \Rightarrow \forall B(x, r), \ \exists \ y \in B(x, r) \cap A$$

Если $x \notin A$, то x - граничная точка (поскольку тогда в шаре лежат как точки $\in A$, так и точки $\notin A$), но граничные точки принадлежат A, поскольку A замкнуто $\Rightarrow x \in A$.

Почему функция непрерывная? Рассмотрим разность значений функции в точках x_1 и x_2 :

$$F(x_1) - F(x_2) = \inf_{y \in A} \rho(x_1, y) - \inf_{y \in A} \rho(x_2, y)$$

Возьмем y такой, что:

$$\forall \varepsilon > 0, \ \exists \ y_{\varepsilon} \colon \inf_{y \in A} \rho(x_2, y) > \rho(x_2, y_{\varepsilon}) - \varepsilon$$

Тогда оценим разность значений функции в точках x_1 и x_2 сверху:

$$\inf_{y \in A} \rho(x_1, y) - \inf_{y \in A} \rho(x_2, y) \le \rho(x_1, y_{\varepsilon}) - \rho(x_2, y_{\varepsilon}) + \varepsilon \le \rho(x_1, x_2) + \varepsilon$$

Устремляя ε к нулю, мы получим, что:

$$F(x_1) - F(x_2) \le \rho(x_1, x_2) \Rightarrow |F(x_1) - F(x_2)| \le \rho(x_1, x_2)$$

где последнее неравенство верно в силу произвольности x_1, x_2 .

Утв. 2. Пусть A - замкнутое подмножество \mathbb{R}^n . Тогда существует непрерывно дифференцируемая функция $f: \mathbb{R}^n \to \mathbb{R}$ такая, что:

$$A = \{x \mid f(x) = 0\}$$

Данное утверждение достаточно трудоемко, поэтому приведем только идею для доказательства.

Идея доказательства: Пусть n=2 для наглядности. Поскольку A замкнуто, то его дополнение открыто. Мы знаем, что открытое множество состоит из открытых шаров, а поскольку мы можем выбирать шары B_j рационального радиуса с центром в рациональной точке, то их будет счетное множество и тогда дополнение к замкнутому множеству будет следующим:

$$\mathbb{R}^2 \setminus A = \bigcup_j B_j$$

Далее, построим такие функции, что их значения будут зануляться на границах этих шаров (в плоскости на границах круга), а внутри это будет строго положительная функция.

Например, такую функцию можно построить на основе $e^{-\frac{1}{1-x^2}}$ на отрезке [-1,1]. Тогда на единичном круге аналогичная функция будет иметь вид: $e^{-\frac{1}{1-r^2}}$. Теперь сдвигая и масштабируя её, можем построить такую функцию на любом шаре $\Rightarrow \forall B_j$, $\exists \psi_j$. Пусть $|\psi_j| < \frac{1}{2^j}$ и $|\psi_j'| < \frac{1}{2^j}$.

Искомая функция:

$$F(x) = \sum_{j=1}^{\infty} \psi_j(x)$$

Тогда если взять любую точку не из A, то хотя бы одна из функций в ряду окажется строго положительной $\Rightarrow F(x) = 0 \Leftrightarrow x \in A$. Функция непрерывная, поскольку ряд сходится равномерно по признаку Вейрштрасса и равномерный предел непрерывных функций это непрерывная функция.

Если мы продифференцируем этот ряд по одной переменной, то получим следующий ряд:

$$\frac{\partial F(x)}{\partial x_k} = \sum_{j=1}^{\infty} \frac{\partial}{\partial x_k} \psi_j(x)$$

Этот ряд будет равномерно сходится по построению (производные ограничены сверху), исходный ряд также сходится равномерно, тогда предельная функция дифференцируема и её производная это предел производных.

Теорема о неявной функции в \mathbb{R}^2

Пусть есть функция $F: \mathbb{R}^2 \to \mathbb{R}$. Хотим узнать как устроено множество уровня у функции F:

$$\{(x,y) \colon F(x,y) = 0\}$$

Как обсудили ранее, это может быть почти любое множество, но в большинстве примеров это какие-то линии. Теорема о неявной функции говорит в каком случае мы будем видеть в качестве таких (x,y) просто набор линий (графиков функций) на плоскости.

Теорема 1. (О неявной функции для \mathbb{R}^2) Пусть F непрерывно дифференцируема в окрестности точки (x_0, y_0) . Если выполнены следующие условия:

- 1) $F(x_0, y_0) = 0$;
- 2) $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$;

то $\exists \mathcal{U}(x_0), \, \mathcal{V}(y_0)$ - открытые множества и $f: \mathcal{U}(x_0) \to \mathcal{V}(y_0)$ - непрерывно дифференцируемая функция такие, что:

$$\forall (x,y) \in \mathcal{U} \times \mathcal{V}, F(x,y) = 0 \Leftrightarrow y = f(x)$$

Геометрический смысл: Мы хотим узнать, как устроено множество точек $\{(x,y): F(x,y)=0\}$ локально в окрестности точки (x_0,y_0) . Утверждается что найдется прямоугольник $\mathcal{U}\times\mathcal{V}$ такой, что в нём будет просто график функции y=f(x).

Рис. 1: Смысл теоремы о неявной функции.

Само множество при этом может быть достаточно сложно устроено, но взяв некоторую точку и рассмотрев окрестность вокруг неё, мы увидим график функции. Следовательно, картинка целиком будет составлена из таких локальных функций.

Рис. 2: Локальное увеличение множества уровня.

Rm: 1. В теореме ситуация будет симметричной, если потребовать $\frac{\partial F}{\partial x}(x_0, y_0) \neq 0$. И тогда x = g(y). В любом случае, если $\nabla F \neq 0$, то локально мы будем наблюдать график функции.

Алгебраический смысл: Есть уравнение $F(x,y) = 0 \Rightarrow$ хотим найти чему будет равен y (то есть решить уравнение). Теорема говорит о том, что должно быть выполнено, чтобы мы могли это сделать:

- 1) Бессмысленно искать решения там, где их нет \Rightarrow хотя бы в одной точке должно выполнятся это равенство: $F(x_0, y_0) = 0$;
- 2) Должна быть зависимость функции F от y или если по-другому: $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$;

По теореме, если эти два условия выполнены, то существует теоретическая возможность решить уравнение и найти y = f(x).

□ Сделаем замену координат:

$$\Psi \colon \left\{ \begin{array}{lcl} u & = & x \\ v & = & F(x, y) \end{array} \right.$$

Тогда точка (x_0, y_0) перейдет в точку $(x_0, F(x_0, y_0)) = (x_0, 0)$.

Рис. 3: Замена координат в теореме о неявной функции.

Чтобы быть уверенным, что это есть замена координат (т.е. можно было перевести одни в другие и вернуться обратно) по теореме об обратной функции необходимо рассмотреть матрицу Якоби:

$$J_{\Psi} = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \end{pmatrix} \Rightarrow \det \left(J_{\Psi}(x_0, y_0) \right) = \frac{\partial F}{\partial y}(x_0, y_0) \neq 0$$

Определитель этой матрицы в точке (x_0, y_0) не ноль \Rightarrow она обратима \Rightarrow выполняются условия теоремы об обратной функции. Тогда найдутся окрестность W точки (x_0, y_0) и окрестность Q точки $(x_0, 0)$ такие, что функция $\Psi \colon W \to Q$ - диффеоморфизм между ними. В том числе, есть обратное отображение:

$$\Psi^{-1} \colon \left\{ \begin{array}{lcl} x & = & u \\ y & = & g(u, v) \end{array} \right.$$

По той же теореме Ψ^{-1} и в частности g - непрерывно дифференцируемы. Поскольку окрестность W произвольная и точка (x_0,y_0) - внутренняя, то выберем интервалы $B(x_0)\subset W$ и $B(y_0)\subset W$ такими, что получим прямоугольник внутри W:

$$B(x_0), B(y_0) \subset W \colon B(x_0) \times B(y_0) \subset W$$

Рис. 4: Выделение прямоугольника $B(x_0) \times B(y_0)$ внутри множества W.

Рассмотрим образ этого прямоугольника: $\Psi(B(x_0) \times B(y_0)) \subset Q$. Очевидно, что это будет множество содержащее точку $(x_0,0)$, а поскольку неизвестно лежит ли точка из множества F(x,y)=0 над каждой точкой из $B(x_0)$, то рассмотрим образ прямоугольника в пересечении с осью Ou:

$$\Psi(B(x_0) \times B(y_0)) \cap \{(u, v) : v = 0\} = \mathcal{U}(x_0)$$

Полученное множество обозначим как $\mathcal{U}(x_0)$. Мы берем пересечение, поскольку нам необходимо, чтобы над каждой точкой $x \in \mathcal{U}(x_0)$ был график функции. Само по себе $B(x_0)$ не подходит, поскольку возможно отсутствие графика над частью этого множества. Заметим также, что $\mathcal{U}(x_0)$ - открытое множество, поскольку пересечение открытого множества с осью - открыто.

Rm: 2. Конечно можно взять множество $B(x_0)$ но придется брать его малым интервалом, чтобы над ним был график функции.

Pис. 5: Построение множества $\mathcal{U}(x_0)$.

В качестве $\mathcal{V}(y_0)$ возьмем интервал $B(y_0) \Rightarrow \mathcal{V}(y_0) = B(y_0)$. Рассмотрим образ Ψ следующего множества:

$$\Psi(\{(x,y) \mid x \in \mathcal{U}(x_0), y \in \mathcal{V}(y_0), F(x,y) = 0\}) = \{(u,v) \mid u \in \mathcal{U}(x_0), v = 0\}$$

Проверим, что это действительно так:

 (\Rightarrow) Под действием отображения Ψ верно $u=x, v=F(x,y)\Rightarrow x\in\mathcal{U}(x_0)\Rightarrow u\in\mathcal{U}(x_0), v=F(x,y)=0.$

(\Leftarrow) По определению множества $\mathcal{U}(x_0)$, мы взяли пересечение образа прямоугольника с прямой v=0. Тогда каждая точка из $\mathcal{U}(x_0)$, в частности, есть образ какой-то точки из прямоугольника $B(x_0) \times B(y_0)$. Получается, что $\forall (u,v), \exists (x,y) \colon u=x, v=F(x,y)$, но v=0 и $u \in \mathcal{U}(x_0) \Rightarrow x \in \mathcal{U}(x_0), F(x,y)=0$.

Рис. 6: Отображение $\{(x,y) \mid x \in \mathcal{U}(x_0), y \in \mathcal{V}(y_0)\}$ в $\Psi(\{(x,y) \mid x \in \mathcal{U}(x_0), y \in \mathcal{V}(y_0)\})$ и обратно.

Тогда будет верно следующее:

$$(x,y) \in \mathcal{U}(x_0) \times \mathcal{V}(y_0) \colon F(x,y) = 0 \stackrel{\Psi}{\Leftrightarrow} \left\{ \begin{array}{l} x = u \in \mathcal{U}(x_0) \\ v = F(x,y) = 0 \end{array} \right. \stackrel{\Psi^{-1}}{\Leftrightarrow} \left\{ \begin{array}{l} x = u \in \mathcal{U}(x_0) \\ y = g(u,v), \ v = 0 \end{array} \right.$$

где последнее выражение означает следующее:

$$\begin{cases} x = u \in \mathcal{U}(x_0) \\ y = g(u, v), v = 0 \end{cases} \Leftrightarrow y = g(x, 0), x \in \mathcal{U}(x_0)$$

То есть в качестве функции f(x) возьмем функцию g(x,0) и получаем, что в квадрате $B(x_0) \times B(y_0)$ множество уровня F(x,y) = 0 это в точности график функции f(x) над $\mathcal{U}(x_0)$. Итого:

$$(x,y) \in \mathcal{U} \times \mathcal{V}$$
: $F(x,y) = 0 \Leftrightarrow y = g(x,0) = f(x), x \in \mathcal{U}(x_0)$

Более того, полученная функция f(x) непрерывно дифференцируема по теореме об обратной функции.

Rm: 3. Функция F из теоремы в новых координатах u и v имеет вид:

$$\begin{cases} x(u,v) = u \\ y(u,v) = g(u,v) \end{cases} \Rightarrow \widetilde{F}(u,v) = F(x(u,v),y(u,v)) = F(u,g(u,v)) = v$$

где последнее равенство справедливо в силу замены v = F(x, y). Рассмотрим это подробнее.

Пусть \exists плоскость и над ней \exists какая-то функция $F \colon \forall$ точки A в этой плоскости мы знаем F(A). Затем, мы захотели увидеть какую-то формулу и ввели систему координат Oxy.

Рис. 7: Введение систем координат на плоскости для функции F.

Тогда A стала точкой с координатами (x,y) и вместо F(A) теперь пишем F(x,y). Затем по теореме о неявной функции, если верно что $\frac{\partial F}{\partial y} \neq 0$, то можно ввести другую систему координат $\widetilde{O}uv$, таким образом, что:

$$F(x,y) = F(A) = v$$

то есть точке A будет сопоставляться вторая координата.

<u>Итог</u>: По крайней мере локально, в удобной системе координат, функция из теоремы о неявной функции это просто координата.

Rm: 4. Заметим также, что в теореме есть условие $F(x_0, y_0) = 0$. Возьмем любую функцию двух переменных F(x, y), но такую, что $\frac{\partial F}{\partial y} \neq 0$ и рассмотрим функцию:

$$G(x,y) = F(x,y) - F(x_0, y_0)$$

У неё $\frac{\partial G}{\partial y} \neq 0$ и в точке (x_0, y_0) она очевидно равна нулю: $G(x_0, y_0) = 0$. Тогда можно ввести систему координат так, что в новых координатах это v:

$$G(x,y) = F(x,y) - F(x_0, y_0) = v$$

Поскольку для x и y ситуация симметричная, то всегда изначально их можно поменять местами в системе координат и тогда вместо $\frac{\partial F}{\partial y} \neq 0$ будет $\frac{\partial F}{\partial x} \neq 0$. Таким образом, если:

$$\nabla F = (\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}) \neq 0$$

то локально можно ввести такую систему координат, что эта функция в новых координатах $\widetilde{O}uv$ будет иметь следующий вид:

$$\widetilde{F}(u,v) = c + v, c \in \mathbb{R}$$

<u>Итог</u>: Если у функции градиент невырожденный, то она локально является линейной (координатно линейная) плюс константа. Если не видим линейных функций, то это проблема с системой координат ⇒ выберете правильную систему координат и работайте с обычной линейной функцией.

 \mathbf{Rm} : 5. Одновременно с этим, нужно заметить, что переход из системы координат Oxy в Ouv может быть очень сложным и обычно на практике это редко работает. Поэтому если нужно узнать что-то в старых координатах, то данное утверждение помогает только теоретически.

Rm: 6. Линии уровня у функции $\widetilde{F}(u,v) = c + v$ это $c + v = \mathrm{const}$ (или по-другому $v = \mathrm{const}$), то есть это просто горизонтальные прямые.

Таким образом, линии уровня у функций с невырожденным градиентом локально в правильной системе координат это просто прямые, а обратное отображение эти прямые превращает в графики функций. Ровно про это и говорит теорема о неявной функции.

Теорема о неявных функциях

Теорема 2. (О неявной функции в общем виде) Пусть $F: \mathbb{R}^n_x \times \mathbb{R}^m_y \to \mathbb{R}^m$ непрерывно дифференцируема в окрестности точки (x_0, y_0) . Если выполнены следующие условия:

- 1) $F(x_0, y_0) = 0$;
- 2) $\det\left(\frac{\partial F_i}{\partial y_i}(x_0, y_0)\right) \neq 0;$

то $\exists \mathcal{U}(x_0), \, \mathcal{V}(y_0)$ - открытые множества и $f: \mathcal{U}(x_0) \to \mathcal{V}(y_0)$ - непрерывно дифференцируемая функция такие, что:

$$\forall (x,y) \in \mathcal{U} \times \mathcal{V}, F(x,y) = 0 \Leftrightarrow y = f(x)$$

Алгебраический смысл: Также, как и раньше мы хотим решить систему уравнений. Распишем каждый из элементов покомпонентно:

$$F = \begin{pmatrix} F_1 \\ \vdots \\ F_m \end{pmatrix}, x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}, (x, y) \rightarrow \begin{pmatrix} F_1(x, y) \\ \vdots \\ F_m(x, y) \end{pmatrix}, \begin{cases} F_1(x_1, \dots, x_n, y_1, \dots, y_m) &= 0 \\ \vdots \\ F_m(x_1, \dots, x_n, y_1, \dots, y_m) &= 0 \end{cases}$$

Решить данную систему это тоже самое, что и y_i выразить как функции от x_1, \ldots, x_n :

$$y_j = y_j(x_1, \dots, x_n), \forall j = \overline{1, m}$$

Как мы знаем, системы линейных уравнений из m уравнений решаются, когда есть m неизвестных. В данном случае переменные x выступают как параметры или свободные неизвестные, а y как главные неизвестные. Этим можно объяснить размерность: у нас m неизвестных $y \Rightarrow m$ уравнений.

Линейные системы однозначно решаются, когда их матрицы невырождены. В данном случае, матрица Якоби это линейная часть этой системы из функций. Мы знаем что дифференцируемые отображения локально похожи на аффинные (или линейные) \Rightarrow по теореме, если матрица линейной части невырождена, то система должна решаться.

Аналогично двумерному случаю, теорема о неявных функциях это теорема о том, когда можно решить систему уравнений:

- 1) Когда есть хотя бы одно решение: $F(x_0, y_0) = 0$;
- 2) Матрица Якоби должна быть невырожденной в нём: $\det\left(\frac{\partial F_i}{\partial y_j}(x_0,y_0)\right) \neq 0;$

Пример: Рассмотрим следующую систему:

$$\begin{cases} F_1(x_1, y_1, y_2) = 0 \\ F_2(x_1, y_1, y_2) = 0 \end{cases}$$

Нужно найти y_1, y_2 , переменную x_1 воспринимаем как параметр. Пусть мы не знаем теорему о неявных функциях. Каким образом будем искать решение? Например так:

$$\begin{cases} F_1(x_1, y_1, y_2) \approx F_1(x_1, y_1^0, y_2^0) + \frac{\partial F_1}{\partial y_1} \cdot (y_1 - y_1^0) + \frac{\partial F_1}{\partial y_2} \cdot (y_2 - y_2^0) \\ F_2(x_1, y_1, y_2) \approx F_2(x_1, y_1^0, y_2^0) + \frac{\partial F_2}{\partial y_1} \cdot (y_1 - y_1^0) + \frac{\partial F_2}{\partial y_2} \cdot (y_2 - y_2^0) \end{cases}$$

и тогда исходная система уравнений превратится в линейную:

$$\begin{cases} \frac{\partial F_1}{\partial y_1} \cdot y_1 + \frac{\partial F_1}{\partial y_2} \cdot y_2 &= C_1\\ \frac{\partial F_2}{\partial y_1} \cdot y_1 + \frac{\partial F_2}{\partial y_2} \cdot y_2 &= C_2 \end{cases}$$

Линейную систему уравнений можно решить, когда определитель её матрицы не равен нулю.

<u>Итог</u>: нелинейные отбражения приближаются линейными ⇒ для них решение системы уравнений находится исходя из теории алгебры, а теорема о неявных функциях говорит, что ровно такой же ответ будет верен для нелинейных отображений.

Геометрический смысл: Теорема утверждает, что если рассматривать множество:

$$\{(x,y) \in \mathbb{R}_x^n \times \mathbb{R}_y^m \mid F(x,y) = 0\}$$

то локально, оно будет равносильно следующему:

$$\{(x,y) \in \mathcal{U}(x_0) \times \mathcal{V}(y_0) \mid y = f(x)\}$$

что еще можно записать таким образом:

$$\{(x,y) \mid (x,y) = (x_1,\ldots,x_n,f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)), x = (x_1,\ldots,x_n) \in \mathcal{U}(x_0)\}$$

То есть, множество $\{(x,y) \mid F(x,y) = 0\}$ локально параметризуется переменными (x_1,\ldots,x_n) . Следовательно, когда меняем n параметров, то в $\mathbb{R}^n_x \times \mathbb{R}^m_y$ рисуется некая картинка.

Пример: Рассмотрим частный случай: $F: \mathbb{R}^2_x \times \mathbb{R}^1_y \to \mathbb{R}$, это обычная функция трех переменных. Мы хотим понять что из себя представляет множество уровня $F(x_1, x_2, y) = 0$. Поскольку это функция трех переменных, то это множество в \mathbb{R}^3 и по утверждению теоремы это $y = f(x_1, x_2)$.

Рис. 8: Введение систем координат на плоскости для функции F.

Следовательно, мы получили двумерную поверхность $(x_1, x_2, f(x_1, x_2))$, поскольку задаются x_1, x_2 и из них получается $f(x_1, x_2) \Rightarrow$ меняются два параметра и рисуется какое-то множество в \mathbb{R}^3 .

Аналогично $(x_1, \ldots, x_n, f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))$ задает <u>л-мерную поверхность</u>, то есть что нарисуем если будем менять n параметров.

Итог: множество решений системы:

$$\begin{cases} F_1(x_1, \dots, x_n, y_1, \dots, y_m) &= 0 \\ \vdots & \ddots & \vdots \\ F_m(x_1, \dots, x_n, y_1, \dots, y_m) &= 0 \end{cases}$$

в координатах x, y задает поверхность размерности n, то есть всё это множество можно запараметризовать первыми n координатами: (x_1, \ldots, x_n) . По аналогии с двумерным случаем, теорема утверждает что решение заданной системы это локально поверхность размерности n (график функции). Рассмотрим следующий пример системы уравнений:

$$\begin{cases} A_1(x-x_0) + B_1(y-y_0) + C_1(z-z_0) = 0 \\ A_2(x-x_0) + B_2(y-y_0) + C_2(z-z_0) = 0 \end{cases}$$

В общем случае, одно уравнение задает плоскость (то есть двумерную поверхность), а два уравнения задают пересечение плоскостей \Rightarrow задают кривую (то есть одномерную поверхность).

Например, была система из одного уравнения $F_1(x, y, z) = 0 \Rightarrow$ можно выразить z = f(x, y) и получим двумерную поверхность. Если добавить еще одно уравнение $F_2(x, y, z) = 0$, то поверхности пересекутся и получится кривая в пространстве: y = f(x), z = g(x).

В многомерном случае, всего n+m переменных, пересекли m штук \Rightarrow остался n-мерный объект (заменили все главные переменные через свободные).

 \square Практически полностью повторяет доказательство для \mathbb{R}^2 . Рассмотрим замену координат:

$$\Psi : \begin{cases}
 u_1 &= x_1 \\
 \vdots & \ddots & \vdots \\
 u_n &= x_n \\
 v_1 &= F_1(x,y) \\
 \vdots & \ddots & \vdots \\
 v_m &= F_m(x,y)
\end{cases}
\Leftrightarrow \begin{cases}
 u &= x \\
 v &= F(x,y)
\end{cases}$$

Рассмотрим матрицу Якоби данного отображения:

$$J_{\Psi} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ \hline * & * & \dots & * & \frac{\partial F_1}{\partial y_1} & \dots & \frac{\partial F_1}{\partial y_m} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ * & * & \dots & * & \frac{\partial F_m}{\partial y_1} & \dots & \frac{\partial F_m}{\partial y_m} \end{pmatrix}$$

Определитель этой матрицы Якоби в точке (x_0, y_0) будет равен $\det\left(\frac{\partial F_i}{\partial y_j}(x_0, y_0)\right) \neq 0$, как определитель блочно-диагональной матрицы \Rightarrow эта матрица обратима и перед нами локальный диффеоморфизм. Тогда найдется окрестность W точки (x_0, y_0) и окрестность Q точки $(x_0, 0)$ такие, что $\Psi \colon W \to Q$ это диффеоморфизм между ними. Более того, существует обратное отображение:

$$\Psi^{-1} \colon \left\{ \begin{array}{lcl} x & = & u \\ y & = & g(u, v) \end{array} \right.$$

По той же теореме Ψ^{-1} и в частности g - непрерывно дифференцируемы. Поскольку окрестность W произвольная и точка (x_0, y_0) - внутренняя, то выберем открытые шары $B(x_0) \subset W$ и $B(y_0) \subset W$ такими, что получим прямоугольник внутри W:

$$B(x_0), B(y_0) \subset W : B(x_0) \times B(y_0) \subset W$$

Рассмотрим образ этого прямоугольника: $\Psi(B(x_0) \times B(y_0)) \subset Q$. Очевидно, что это будет множество содержащее точку $(x_0,0)$, а поскольку неизвестно лежит ли точка из множества F(x,y)=0 над каждой точкой из $B(x_0)$, то рассмотрим образ прямоугольника в пересечении с осью Ou:

$$\Psi(B(x_0) \times B(y_0)) \cap \{(u, v) : v = 0\} = \mathcal{U}(x_0)$$

Полученное множество обозначим как $\mathcal{U}(x_0)$. Мы берем пересечение, поскольку нам необходимо, чтобы над каждой точкой $x \in \mathcal{U}(x_0)$ была поверхность. Само по себе $B(x_0)$ не подходит, поскольку возможно отсутствие поверхности над частью этого множества. Заметим также, что $\mathcal{U}(x_0)$ - открытый шар, поскольку пересечение открытого множества с осями - открыто.

В качестве $\mathcal{V}(y_0)$ возьмем открытый шар $B(y_0) \Rightarrow \mathcal{V}(y_0) = B(y_0)$. Рассмотрим образ Ψ следующего множества:

$$\Psi(\{(x,y) \mid x \in \mathcal{U}(x_0), y \in \mathcal{V}(y_0), F(x,y) = 0\}) = \{(u,v) \mid u \in \mathcal{U}(x_0), v = 0\}$$

Проверим, что это действительно так:

 (\Rightarrow) Под действием отображения Ψ верно $u=x, v=F(x,y)\Rightarrow x\in\mathcal{U}(x_0)\Rightarrow u\in\mathcal{U}(x_0), v=F(x,y)=0.$

(\Leftarrow) По определению $\mathcal{U}(x_0)$, мы взяли пересечение образа прямоугольника с гиперплоскостью v=0. Тогда каждая точка из $\mathcal{U}(x_0)$, в частности, есть образ какой-то точки из прямоугольника $B(x_0) \times B(y_0)$. Получается, что $\forall (u,v), \exists (x,y) \colon u=x, \ v=F(x,y)$, но v=0 и $u \in \mathcal{U}(x_0) \Rightarrow x \in \mathcal{U}(x_0), \ F(x,y)=0$.

Тогда будет верно следующее:

$$(x,y) \in \mathcal{U}(x_0) \times \mathcal{V}(y_0) \colon F(x,y) = 0 \stackrel{\Psi}{\Leftrightarrow} \left\{ \begin{array}{l} x = u \in \mathcal{U}(x_0) \\ v = F(x,y) = 0 \end{array} \right. \stackrel{\Psi^{-1}}{\Leftrightarrow} \left\{ \begin{array}{l} x = u \in \mathcal{U}(x_0) \\ y = g(u,v), \ v = 0 \end{array} \right.$$

где последнее выражение означает следующее:

$$\begin{cases} x = u \in \mathcal{U}(x_0) \\ y = g(u, v), \ v = 0 \end{cases} \Leftrightarrow y = g(x, 0), \ x \in \mathcal{U}(x_0)$$

То есть в качестве функции f(x) возьмем функцию g(x,0) и получаем, что в квадрате $B(x_0) \times B(y_0)$ множество уровня F(x,y) = 0 это в точности поверхность f(x) над $\mathcal{U}(x_0)$. Итого:

$$(x,y) \in \mathcal{U} \times \mathcal{V} \colon F(x,y) = 0 \Leftrightarrow y = g(x,0) = f(x), x \in \mathcal{U}(x_0)$$

и поверхность f(x) непрерывно дифференцируема по теореме об обратной функции.

Rm: 7. Пусть есть функция $f(x_1,\ldots,x_n)$ и пусть $\frac{\partial f}{\partial x_n}\neq 0$, тогда \exists система координат u_1,\ldots,u_n :

$$f = \widetilde{f}(u_1, \dots, u_n) = \operatorname{const} + u_n$$

То есть и в многомерном случае, если градиент функции f не ноль, то локально её можно представить как константу плюс горизонтальную линию. Следовательно, множество уровня такой функции локально это $u_n = c$ (то есть это (n-1)-мерные гиперплоскости).