In the specification

Please amend paragraph 1, on page 1, as follows:

This application is a continuation of U.S. Application No. 09/796,988, filed February 28, 2001, allowed, which claims the benefit of Provisional Application Ser. No. 60/186,046, filed March 1, 2000; and is a continuation-in-part of U.S. Application No. 09/724,959, filed November 28, 2000; and is a continuation-in-part of U.S. Application No. 09/640,953, filed August 16, 2000; which is a continuation of U.S. Application Ser. No. 09/054,832, filed April 3, 1998; and is a continuation-in-part of U.S. Application Ser. No. 09/431,[[4]]385, filed November 1, 1999; which is a continuation of U.S. Application Ser. No. 09/054,830, filed April 3, 1998, now U.S. Patent No. 6,127,121; the disclosures of each being incorporated herein by reference.

Please rewrite lines 22-29, on page 3 as follows:

Figure 3 A-B is a chart which illustrates one advantage achieved through the use of PPPA and PPG in MGB-modified oligonucleotide probes. As seen in the figure, the modified bases allow shortening of the probe that shows increased mismatch discrimination in real-time PCR. Ã is PPPA and Ğ is PPG. Panel A shows a first design of a 18-mer fluorescein-ODN-Red 13 quencher-MGB real-time PCR probe, with poor discrimination of an A/T mismatch. Panel B shows a re-design probe against the opposite strand, putting the mismatch under the MGB and substituting PPPA for A and PPG for G as indicated, which allows shortening of the probe to a 15-mer. MGB-modified FAM probe = SEQ ID NO:1; MGB-modified FAM probe complement = SEQ ID NO:2; PPPA and PPG containing MGB-modified FAM probe = SEQ ID NO:4.

Figure 4 A-B illustrates an InvaderTM assay in which the modified oligonucleotides of the invention can be used. Panel A shows the enzyme cleaves the overhanging "flap", which serves as an invader probe in the detection cassette probe where cleavage releases a fluorescence signal. The first cleavage takes places only when the single base mismatch in the invader is a perfect match. Panel B shows that no reaction takes place with a mismatch target.

Figure 5 A-C illustrates a comparison of InvaderTM probe performance with different numbers of PPGs. (SEQ ID NOS: 5-7). Panel A shows six Gs substituted with PPG; Panel B shows one G substituted with PPG and Panel C shows no G substituted with PPG.

Please replace the paragraph (Table 1) on page 40, line 6, with the following:

Table 1
Sequences of Oligonucleotide Probes and Complementary Targets

	SEQ ID		base
Complementary Targets	<u>NO:</u>	Py/Pu-rich probes	<u>pairs</u>
1* TCGGCGGCGT	<u>8</u>	1*.MGB-Q-CGCCGCCG	8 G/C
2* ACAGCGGCGT	9	2* MGB-Q-CGCCGCTG	7 G/C, 1 A/T
3* ACAGCGACGT	<u>10</u>	3*.MGB-Q-CGTCGCTG	6 G/C, 2 A/T
4* TCAGTGACGA	<u>11</u>	4*.MGB-Q-CGTCACTG	5 G/C, 3 A/T
5* TCAGTGACAA	<u>12</u>	5*.MGB-Q-TGTCACTG	4 G/C, 4 A/T
6* TCAATGACAG	<u>13</u>	6*.MGB-Q-TGTCATTG	3 G/C, 5 A/T
7* ACAATGATAA	<u>14</u>	7*.MGB-Q-TATCATTG	2 G/C, 6 A/T
8* CCAATAATAA	<u>15</u>	8*.MGB-Q-TATTATTG	1 G/C, 7 A/T
9* GTAATAATAA	<u>16</u>	9*.MGB-Q-TATTATTA	8 A/T

Please replace the paragraph (Table 3a and 3b) on page 83, line 14, with the following:

Table 3a and 3b Probe and target sequences

A. Probe Sequences – Mismatch Underlined					
			SEQ ID		
Number	Mismatch	Probe Sequence	NO:		
1	Complement	AAAGTTATGTCTACTTACAGAAA	<u>17</u>		
2	A/C	AAAGCTATGTCTACTTACAGAAA	<u>18</u>		
3	A/C	AAAGT <u>C</u> ATGTCTACTTACAGAAA	<u>19</u>		
4	T/G	AAAGTT <u>G</u> TGTCTACTTACAGAAA	<u>20</u>		
5	A/C	AAAGTTA <u>C</u> GTCTACTTACAGAAA	<u>21</u>		
6	C/A	AAAGTTAT <u>A</u> TCTACTTACAGAAA	<u>22</u>		
7	A/C	AAAGTTATG <u>C</u> CTACTTACAGAAA	<u>23</u>		
8	G/T	AAAGTTATGT <u>T</u> TACTTACAGAAA	24		

A/C	AAAGTTATGTC <u>C</u> ACTTACAGAAA	<u>25</u>				
T/G	AAAGTTATGTCT <u>G</u> CTTACAGAAA	<u>26</u>				
G/T	AAAGTTATGTCTA <u>T</u> TTACAGAAA	<u>27</u>				
A/C		<u>28</u>				
A/C		<u>29</u>				
T/G	AAAGTTATGTCTACTTGCAGAAA	<u>30</u>				
B. Target Sequences – A'=PPPA						
1 GTAAGTAGACATAAC <u>31</u>						
GTA'A'GTA'GA'CA'TA'A'C						
GTAAGTAGACATAAC-MGB 3						
4 GTA'A'GTA'GA'CA'TA'A'C-MGB						
	T/G G/T A/C A/C T/G	T/G AAAGTTATGTCTGCTTACAGAAA G/T AAAGTTATGTCTATTTACAGAAA A/C AAAGTTATGTCTACCTACAGAAA A/C AAAGTTATGTCTACTCACAGAAA T/G AAAGTTATGTCTACTTGCAGAAA B. Target Sequences - A'=PPPA GTAAGTAGACATAAC GTA'A'GTA'GA'CA'TA'A'C GTAAGTAGACATAAC-MGB				

Please replace paragraph (Table 4) on page 85, line 1, with the following:

Table 4

Comparison of thermodynamic discrimination of mismatched base pairs formed by HOPPPA or HOPU vs PPPA and PU in the 8-mer duplexes (+MGB).

	Sequence of Duplex	SEQ	PPPA/	HOPPPA/		Sequence of Duplex	SEQ	PPPA/	HOPPPA/
ĺ		ID	PU	HOPU	i		ID	PU	HOPU
<u> </u>		NO:]				NO:	1	
			ΔΔG	ΔΔG		Ţ		ΔΔG	ΔΔG
			cal/mol	cal/mol	<u> </u>		}	cal/mol	cai/mol
Match	CGUCACUG-MGB				Match	UAUUAUUG-MGB			
	AGCTGTGACT	<u>35</u>	<u>. </u>	1	1	AATAATAACC	45	Ì	(
1	CGUCACUG-MGB	j	4250	4350	10	UAUUAUUG-MGB		4400	5000
	AGCTGTGACT	<u>36</u>	l	1	l	AAT <u>T</u> ATAACC	46	ł	
2	CGUCACUG-MGB		3450	3540	11	UAUUAUUG-MGB		3740	3760
	AGC <u>G</u> GTGACT	<u>37</u>	<u> </u>	İ		AAT <u>G</u> ATAACC	47	1	1
3	CGUCACUG-MGB	,	4860	4530	12	UAUUAUUG-MGB		6630	6840
	AGC <u>C</u> GTGACT	<u>38</u>		ļ		AATCATAACC	48	}	
4	CGUCACUG-MGB		4870	4850	13	UAUUAUUG-MGB		5090	5730
L	AGCAG <u>A</u> GACT	<u>39</u>	1	1	i	AATAAAAACC	49	Ì	
5	CGUCACUG-MGB		4190	4360	14	UAUUAUUG-MGB		5920	6520
	AGCAGGGACT	<u>40</u>	,]		AATAAGAACC	50)
6	CGUCACUG-MGB	-	3930	3940	15	UAUUAUUG-MGB		4120	4530
	AGCAG <u>C</u> GACT	41		1	ł	AATAACAACC	51		{
7	CGUCACUG-MGB		2600	2300					
	AGCA <u>A</u> TGACT	<u>42</u>)		ļ)	,
8	CGUCACUG-MGB		4360	4210					
	AGCA <u>T</u> TGACT	<u>43</u>		ì	ì	(1	}	{
9	CGUCACUG-MGB		4420	4610					
	AGCACTGACT	44		<u> </u>	[{		{	[

ΔΔG was calculated at 37°C.

Please replace the paragraph (Table 5, heading) on page 87, at line 6 as follows:

Table 5

Comparison of ³²P-incorporation in primer extension product by polyacrylamide gel electrophoresis using AAC CAC TCT GTC CTA (SEQ ID NO:52) template

Please replace the paragraph (Table 6) beginning on page 88, line 1, as follows:

 $\begin{table} {\bf Table~6}\\ {\bf Comparison~of~experimental~T_ms~with~that~of~predicted~T_ms~using~the~nearest-neighbor~thermodynamic~parameters~for~PPG~containing~oligonucleotides~and~PPG~containing~oligonucleotides~attached~to~a~MGB\\ \end{table}$

		ODN Duplex Stability °C MGB-ODN Duplex Stabil					Stability
	SEQ			IIITY C			Err
0 -1 10D0 00qu	ID NO:	Tm _{exp}	Tm _{calc}	Err	Tm _{exp}	Tm _{calc}	0.81
CTGTAAGTAGATATAAC	<u>53</u>	51.84	53.23	1.39	65.88	66.69	
GGCAAGATATATAG	<u>54</u>	50.21	49.81	-0.40	66.37	65.56	-0.81
GTGACGCAGATTCC	<u>55</u>	61.27	61.06	-0.21	76.97	75.19	<u>-1.78</u>
GTAAGTAGACATAAC	<u>56</u>	52.12	51.78	-0.34_	64.64	63.31	-1.33
CAGGGAGCTTTGGA	<u>57</u>	59.9	60.22	0.32	74.39	71.47	-2.92
CACTCGTGAAGCTG	<u>58</u>	60.85	59.49	<u>-1.36</u>	74.04	72.26	-1.78
GTAAGTAGGCATAAC	<u>59</u>	55.74	55.47	-0.27	66.91	66.00	-0.91
CCGGATGTAGGATC	60	57.52	59.05	1.53	69.3	70.03	0.73
GATTACCTGGATTT	<u>61</u>	50.64	50.32	-0.32	62.29	62.33	0.04
CCGTCAATGGTCAC	<u>62</u>	58.66	60.01	1.35	70.13	69.91	-0.22
CAGCACGTAGCC	<u>63</u>	57.31	58.07	0.76	69.29	67.60	-1.69
CGGCTACGTGCTGG	64	65.19	66.01	0.82	76.12	74.79	-1.33
CGGCTACATGCTGG	<u>65</u>	61.14	61.95	0.81	71.56	72.99	1.43
CTAAATCTGCCG	<u>66</u>	50.4	48.09	-2.31	62.08	60.19	-1.89
TCTGGATGATGGGCA	67	61.74	61.95	0.21	71.65	72.13	0.48
GTTCATGGGTGTAAT	<u>68</u>	57.51	57.77	0.26	66.94	68.79	1.85
CGGAGGTAGGATCA	69	59.24	59.46	0.22	69.46	70.93	1.47
CCACCCGCCTCAG	70	60.73	61.14	0.41	71.43	70.74	-0.69
CACAGGAGTGGTTGG	71	63.07	64.40	1.33	72.28	72.92	0.64
CGGACCAGTGCGTG	72	68.1	67.58	-0.52	77.92	76.80	-1.12
TCGGACCAGTGCGT	73	65.04	66.00	0.96	74.94	75.62	0.68
AACGGGGTACGATA	74	57.93	57.11	-0.82	67.79	67.08	-0.71
CAGTTGAGATTCTAAGAC	75	60.06	60.15	0.09	67.15	67.43	0.28
AGGGGCGTCTTG	76	60.78	58.57	-2.21	71.62	72.76	1.14
GTAAGTAGGCATAGC	77	58.34	58.95	0.61	65.95	66.99	1.04

TGCCCAGCCCCAG	78	63.13	63.40	0.27	71.28	71.32	0.04
CCAACACTCGTGAA	79	54.87	56.14	1.27	62.07	63.54	1.47
GTAAGTAGACACAGC	80	59.48	58.41	-1.07	65.79	66.27	0.48
TCGGACCAGTGC	81	58.02	58.55	0.53	65.99	66.35	0.36
CGATCACGCTGGC	82	62.12	62.75	0.63	69.18	71.81	2.63
GTCCTGGGGGTGG	83	65.19	64.54	-0.65	72.78	72.53	-0.25
GTAAGTAGGTGTGAC	84	60.7	59.70	-1.00	66.92	67.00	0.08
GGTTGTACGGGTTCACG	85	68.38	68.81	0.43	74.16	75.38	1.22
GGACCAGTGCGTGA	86	66.84	65.46	-1.38	73.38	71.53	-1.85
GTAAGTAGACGCAGC	87	62.91	62.44	-0.47	68	67.82	-0.18
GTAAGTAGGCGCAGC	88	65.52	65.91	0.39	69.8	70.34	0.54
GTAAGTAGGCGCGGC	89	68.71	68.96	0.25	72.26	72.76	0.50
GGTTCCCGAGCG	90	62.15	61.14	-1.01	65.75	64.22	-1.53