

#### 6.2.4CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME WLAN TRAFFIC

TX (11a Mode)

Table 1: Short Pulse Radar Test Waveforms.

| Radar Type | Pulse Width<br>(µsec) | PRI<br>(µsec)                                                                                                                                                                                                                                           | Number of Pulses                                                                                      | Pass<br>times | Fail<br>times | Percentage ofSuccessful Detection (%) |
|------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------|---------------|---------------------------------------|
| 1          | 1                     | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A | Roundup $ \left( \frac{1}{360} \right). $ $ \left( \frac{19 \cdot 10^6}{PRI_{\mu\nu\kappa}} \right) $ | 27            | 3             | 90                                    |
| 2          | 1-5                   | 150-230                                                                                                                                                                                                                                                 | 23-29                                                                                                 | 26            | 4             | 87                                    |
| 3          | 6-10                  | 200-500                                                                                                                                                                                                                                                 | 16-18                                                                                                 | 27            | 3             | 90                                    |
| 4          | 11-20                 | 200-500                                                                                                                                                                                                                                                 | 12-16                                                                                                 | 27            | 3             | 90                                    |
| Aggreg     | jate (Radar Type      | s 1-4)                                                                                                                                                                                                                                                  | -                                                                                                     | 107           | 13            | 89                                    |

Table 2: Long Pulse Radar Test Waveform

| Radar<br>Type | Pulse<br>Width<br>(µsec) | Chirp<br>Width<br>(MHz) | PRI<br>(µsec) | Numberof<br>Pulses<br>PerBurst | Numbe<br>rof<br>Bursts | Pass<br>times | Fail<br>times | Percentage of SuccessfulD etection (%) |
|---------------|--------------------------|-------------------------|---------------|--------------------------------|------------------------|---------------|---------------|----------------------------------------|
| 5             | 50-100                   | 5-20                    | 1000-2000     | 1-3                            | 8-20                   | 28            | 2             | 93                                     |

Table 3: Frequency Hopping Radar Test Waveform

| Rad<br>ar<br>Type | Pulse<br>Width<br>(µsec) | PRI<br>(µsec) | Pulses<br>per<br>Hop | Hopping<br>Rate<br>(kHz) | Hopping Sequence Length (msec) | Pass<br>times | Fail<br>times | Percentage of SuccessfulD etection (%) |
|-------------------|--------------------------|---------------|----------------------|--------------------------|--------------------------------|---------------|---------------|----------------------------------------|
| 6                 | 1                        | 333           | 9                    | 0.333                    | 300                            | 27            | 3             | 90                                     |

Report No.: BTL-FCCP-3-1411C236A Page 33 of 64



#### TX (11a Mode)

#### Radar signal 0



Note: T0 denotes the start of Channel Move Time upon the end of the last Radar burst.

T1 denotes the data transmission time of 200ms from T0.

T2 denotes the end of Channel Move Time.

T3 denotes the 10 second from T0 to observe the aggregate duration of transmissions.



Note: An expanded plot for the device vacates the channel in the required 500ms



TX (11a Mode)

|                                                    |       | Radar1 Static | al Performan | ces                  |  |  |  |  |  |
|----------------------------------------------------|-------|---------------|--------------|----------------------|--|--|--|--|--|
| Trial # Pluse per Pluse PRI(us) Detection(YES / No |       |               |              |                      |  |  |  |  |  |
| I IIIai #                                          | Burst | Width(us)     | PRI(us)      | Detection(YES/NO)    |  |  |  |  |  |
| 1                                                  | 68    | 1.0u          | 778          | YES                  |  |  |  |  |  |
| 2                                                  | 58    | 1.0u          | 918          | YES                  |  |  |  |  |  |
| 3                                                  | 76    | 1.0u          | 698          | YES                  |  |  |  |  |  |
| 4                                                  | 18    | 1.0u          | 3066         | NO                   |  |  |  |  |  |
| 5                                                  | 81    | 1.0u          | 658          | YES                  |  |  |  |  |  |
| 6                                                  | 76    | 1.0u          | 698          | YES                  |  |  |  |  |  |
| 7                                                  | 59    | 1.0u          | 898          | YES                  |  |  |  |  |  |
| 8                                                  | 65    | 1.0u          | 818          | YES                  |  |  |  |  |  |
| 9                                                  | 18    | 1.0u          | 3066         | NO                   |  |  |  |  |  |
| 10                                                 | 95    | 1.0u          | 558          | YES                  |  |  |  |  |  |
| 11                                                 | 61    | 1.0u          | 878          | YES                  |  |  |  |  |  |
| 12                                                 | 74    | 1.0u          | 718          | YES                  |  |  |  |  |  |
| 13                                                 | 76    | 1.0u          | 698          | YES                  |  |  |  |  |  |
| 14                                                 | 59    | 1.0u          | 898          | YES                  |  |  |  |  |  |
| 15                                                 | 86    | 1.0u          | 618          | YES                  |  |  |  |  |  |
| 16                                                 | 26    | 1.0u          | 2043         | YES                  |  |  |  |  |  |
| 17                                                 | 52    | 1.0u          | 1026         | YES                  |  |  |  |  |  |
| 18                                                 | 47    | 1.0u          | 1140         | YES                  |  |  |  |  |  |
| 19                                                 | 18    | 1.0u          | 2995         | YES                  |  |  |  |  |  |
| 20                                                 | 20    | 1.0u          | 2761         | YES                  |  |  |  |  |  |
| 21                                                 | 30    | 1.0u          | 1817         | YES                  |  |  |  |  |  |
| 22                                                 | 24    | 1.0u          | 2273         | YES                  |  |  |  |  |  |
| 23                                                 | 22    | 1.0u          | 2421         | YES                  |  |  |  |  |  |
| 24                                                 | 81    | 1.0u          | 656          | YES                  |  |  |  |  |  |
| 25                                                 | 55    | 1.0u          | 969          | YES                  |  |  |  |  |  |
| 26                                                 | 22    | 1.0u          | 2501         | YES                  |  |  |  |  |  |
| 27                                                 | 46    | 1.0u          | 1168         | YES                  |  |  |  |  |  |
| 28                                                 | 52    | 1.0u          | 1018         | NO                   |  |  |  |  |  |
| 29                                                 | 19    | 1.0u          | 2880         | YES                  |  |  |  |  |  |
| 30                                                 | 31    | 1.0u          | 1739         | YES                  |  |  |  |  |  |
|                                                    |       |               |              | Detection Rate: 90 % |  |  |  |  |  |

Report No.: BTL-FCCP-3-1411C236A Page 35 of 64



|         |           | Radar2 Static | al Performan | ces                  |
|---------|-----------|---------------|--------------|----------------------|
| T::-1 # | Pluse per | Pluse         | DDI(a)       | Detection (VEC / No) |
| Trial # | Burst     | Width(us)     | PRI(us)      | Detection(YES / No)  |
| 1       | 24        | 3.4           | 173          | YES                  |
| 2       | 29        | 4.8           | 182          | YES                  |
| 3       | 29        | 2.4           | 211          | YES                  |
| 4       | 26        | 1.8           | 168          | YES                  |
| 5       | 25        | 2.6           | 175          | NO                   |
| 6       | 29        | 4.1           | 185          | YES                  |
| 7       | 23        | 1.3           | 156          | YES                  |
| 8       | 24        | 2.2           | 154          | YES                  |
| 9       | 26        | 4             | 199          | NO                   |
| 10      | 23        | 4.7           | 217          | YES                  |
| 11      | 25        | 3.7           | 161          | YES                  |
| 12      | 29        | 1.3           | 170          | YES                  |
| 13      | 29        | 1.4           | 159          | YES                  |
| 14      | 25        | 3.9           | 193          | NO                   |
| 15      | 27        | 1.2           | 159          | YES                  |
| 16      | 24        | 1.4           | 174          | YES                  |
| 17      | 25        | 2.6           | 180          | YES                  |
| 18      | 29        | 2.4           | 158          | YES                  |
| 19      | 25        | 3.7           | 208          | YES                  |
| 20      | 27        | 3.2           | 177          | YES                  |
| 21      | 23        | 2.6           | 172          | YES                  |
| 22      | 25        | 1.1           | 172          | YES                  |
| 23      | 29        | 1.6           | 183          | YES                  |
| 24      | 28        | 3.1           | 188          | YES                  |
| 25      | 29        | 3.8           | 230          | YES                  |
| 26      | 29        | 4.8           | 213          | YES                  |
| 27      | 25        | 2.1           | 198          | YES                  |
| 28      | 24        | 2.9           | 211          | NO                   |
| 29      | 25        | 2.2           | 213          | YES                  |
| 30      | 24        | 2             | 221          | YES                  |
|         |           |               |              | Detection Rate 87%   |

Page 36 of 64



|         |                                                     | Radar3 Statio | al Performan | ces                 |  |  |  |  |  |  |  |  |
|---------|-----------------------------------------------------|---------------|--------------|---------------------|--|--|--|--|--|--|--|--|
| Trial # | Trial # Pluse per Pluse PRI(us) Detection(YES / No) |               |              |                     |  |  |  |  |  |  |  |  |
| I Hai # | Burst                                               | Width(s)      | PRI(us)      | Detection(YES / No) |  |  |  |  |  |  |  |  |
| 1       | 16                                                  | 9.8           | 408          | YES                 |  |  |  |  |  |  |  |  |
| 2       | 17                                                  | 9.5           | 390          | YES                 |  |  |  |  |  |  |  |  |
| 3       | 18                                                  | 8.9           | 303          | YES                 |  |  |  |  |  |  |  |  |
| 4       | 16                                                  | 6.5           | 346          | YES                 |  |  |  |  |  |  |  |  |
| 5       | 16                                                  | 8.2           | 375          | YES                 |  |  |  |  |  |  |  |  |
| 6       | 16                                                  | 9.7           | 419          | YES                 |  |  |  |  |  |  |  |  |
| 7       | 18                                                  | 8.3           | 306          | YES                 |  |  |  |  |  |  |  |  |
| 8       | 17                                                  | 6.8           | 391          | YES                 |  |  |  |  |  |  |  |  |
| 9       | 18                                                  | 6.3           | 439          | NO                  |  |  |  |  |  |  |  |  |
| 10      | 16                                                  | 9.6           | 327          | YES                 |  |  |  |  |  |  |  |  |
| 11      | 16                                                  | 10            | 262          | YES                 |  |  |  |  |  |  |  |  |
| 12      | 18                                                  | 6.5           | 343          | YES                 |  |  |  |  |  |  |  |  |
| 13      | 16                                                  | 6.9           | 496          | YES                 |  |  |  |  |  |  |  |  |
| 14      | 17                                                  | 9.4           | 412          | NO                  |  |  |  |  |  |  |  |  |
| 15      | 16                                                  | 8.6           | 416          | YES                 |  |  |  |  |  |  |  |  |
| 16      | 18                                                  | 6.1           | 336          | YES                 |  |  |  |  |  |  |  |  |
| 17      | 18                                                  | 7.9           | 315          | YES                 |  |  |  |  |  |  |  |  |
| 18      | 18                                                  | 7.4           | 320          | YES                 |  |  |  |  |  |  |  |  |
| 19      | 18                                                  | 6.7           | 334          | YES                 |  |  |  |  |  |  |  |  |
| 20      | 18                                                  | 8.2           | 500          | YES                 |  |  |  |  |  |  |  |  |
| 21      | 16                                                  | 7.9           | 499          | YES                 |  |  |  |  |  |  |  |  |
| 22      | 16                                                  | 7.7           | 268          | NO                  |  |  |  |  |  |  |  |  |
| 23      | 16                                                  | 7.7           | 496          | YES                 |  |  |  |  |  |  |  |  |
| 24      | 16                                                  | 8.7           | 287          | YES                 |  |  |  |  |  |  |  |  |
| 25      | 16                                                  | 7.1           | 434          | YES                 |  |  |  |  |  |  |  |  |
| 26      | 18                                                  | 9.4           | 250          | YES                 |  |  |  |  |  |  |  |  |
| 27      | 16                                                  | 6             | 290          | YES                 |  |  |  |  |  |  |  |  |
| 28      | 18                                                  | 7.7           | 470          | YES                 |  |  |  |  |  |  |  |  |
| 29      | 17                                                  | 8.8           | 488          | YES                 |  |  |  |  |  |  |  |  |
| 30      | 17                                                  | 6.3           | 478          | YES                 |  |  |  |  |  |  |  |  |
|         |                                                     |               |              | Detection Rate 90%  |  |  |  |  |  |  |  |  |



| Radar4 Statical Performances |                 |                 |         |                     |  |  |  |  |
|------------------------------|-----------------|-----------------|---------|---------------------|--|--|--|--|
| Trial #                      | Pluse per Burst | Pluse Width(us) | PRI(us) | Detection(YES / No) |  |  |  |  |
| 1                            | 12              | 18.2            | 474     | YES                 |  |  |  |  |
| 2                            | 12              | 19.1            | 274     | YES                 |  |  |  |  |
| 3                            | 14              | 15.7            | 288     | YES                 |  |  |  |  |
| 4                            | 16              | 16.7            | 376     | YES                 |  |  |  |  |
| 5                            | 15              | 15.3            | 392     | YES                 |  |  |  |  |
| 6                            | 15              | 17.1            | 361     | NO                  |  |  |  |  |
| 7                            | 15              | 17.8            | 303     | YES                 |  |  |  |  |
| 8                            | 12              | 17.8            | 313     | YES                 |  |  |  |  |
| 9                            | 13              | 12.7            | 252     | YES                 |  |  |  |  |
| 10                           | 13              | 11.9            | 290     | YES                 |  |  |  |  |
| 11                           | 14              | 11.5            | 472     | YES                 |  |  |  |  |
| 12                           | 16              | 19.8            | 431     | YES                 |  |  |  |  |
| 13                           | 16              | 19.8            | 431     | NO                  |  |  |  |  |
| 14                           | 13              | 19.9            | 447     | YES                 |  |  |  |  |
| 15                           | 16              | 15.5            | 439     | YES                 |  |  |  |  |
| 16                           | 14              | 14.9            | 263     | YES                 |  |  |  |  |
| 17                           | 16              | 17.7            | 297     | YES                 |  |  |  |  |
| 18                           | 15              | 14.2            | 449     | YES                 |  |  |  |  |
| 19                           | 13              | 11.7            | 253     | YES                 |  |  |  |  |
| 20                           | 13              | 16.1            | 428     | YES                 |  |  |  |  |
| 21                           | 14              | 11.7            | 427     | NO                  |  |  |  |  |
| 22                           | 15              | 18.4            | 472     | YES                 |  |  |  |  |
| 23                           | 15              | 20              | 254     | YES                 |  |  |  |  |
| 24                           | 15              | 11.3            | 474     | YES                 |  |  |  |  |
| 25                           | 14              | 17.5            | 343     | YES                 |  |  |  |  |
| 26                           | 13              | 18.8            | 291     | YES                 |  |  |  |  |
| 27                           | 14              | 19.6            | 394     | YES                 |  |  |  |  |
| 28                           | 13              | 19.1            | 367     | YES                 |  |  |  |  |
| 29                           | 114             | 18.8            | 441     | YES                 |  |  |  |  |
| 30                           | 15              | 16.5            | 326     | YES                 |  |  |  |  |
|                              |                 |                 | -       | Detection Rate 90%  |  |  |  |  |

Report No.: BTL-FCCP-3-1411C236A Page 38 of 64



|         | Radar5 Statical Pe | erformances         |
|---------|--------------------|---------------------|
| Trial # | Test Signal name   | Detection(YES / No) |
| 1       | LP_Signal_01       | YES                 |
| 2       | LP_Signal_02       | YES                 |
| 3       | LP_Signal_03       | YES                 |
| 4       | LP_Signal_04       | YES                 |
| 5       | LP_Signal_05       | YES                 |
| 6       | LP_Signal_06       | YES                 |
| 7       | LP_Signal_07       | YES                 |
| 8       | LP_Signal_08       | NO                  |
| 9       | LP_Signal_09       | YES                 |
| 10      | LP_Signal_10       | YES                 |
| 11      | LP_Signal_11       | YES                 |
| 12      | LP_Signal_12       | YES                 |
| 13      | LP_Signal_13       | YES                 |
| 14      | LP_Signal_14       | YES                 |
| 15      | LP_Signal_15       | YES                 |
| 16      | LP_Signal_16       | YES                 |
| 17      | LP_Signal_17       | YES                 |
| 18      | LP_Signal_18       | NO                  |
| 19      | LP_Signal_19       | YES                 |
| 20      | LP_Signal_20       | YES                 |
| 21      | LP_Signal_21       | YES                 |
| 22      | LP_Signal_22       | YES                 |
| 23      | LP_Signal_23       | YES                 |
| 24      | LP_Signal_24       | YES                 |
| 25      | LP_Signal_25       | YES                 |
| 26      | LP_Signal_26       | YES                 |
| 27      | LP_Signal_27       | YES                 |
| 28      | LP_Signal_28       | YES                 |
| 29      | LP_Signal_29       | YES                 |
| 30      | LP_Signal_30       | YES                 |
|         |                    | Detection Rate 93%  |

Report No.: BTL-FCCP-3-1411C236A Page 39 of 64



|         | Radar6 Statical Perform        | mances              |
|---------|--------------------------------|---------------------|
| Trial # | Hoping Frequency Sequence Name | Detection(YES / No) |
| 1       | HOP_FREQ_SEQ_01                | YES                 |
| 2       | HOP_FREQ_SEQ_02                | YES                 |
| 3       | HOP_FREQ_SEQ_03                | YES                 |
| 4       | HOP_FREQ_SEQ_04                | YES                 |
| 5       | HOP_FREQ_SEQ_05                | NO                  |
| 6       | HOP_FREQ_SEQ_06                | YES                 |
| 7       | HOP_FREQ_SEQ_07                | YES                 |
| 8       | HOP_FREQ_SEQ_08                | YES                 |
| 9       | HOP_FREQ_SEQ_09                | YES                 |
| 10      | HOP_FREQ_SEQ_10                | YES                 |
| 11      | HOP_FREQ_SEQ_11                | YES                 |
| 12      | HOP_FREQ_SEQ_12                | NO                  |
| 13      | HOP_FREQ_SEQ_13                | YES                 |
| 14      | HOP_FREQ_SEQ_14                | YES                 |
| 15      | HOP_FREQ_SEQ_15                | YES                 |
| 16      | HOP_FREQ_SEQ_16                | YES                 |
| 17      | HOP_FREQ_SEQ_17                | YES                 |
| 18      | HOP_FREQ_SEQ_18                | YES                 |
| 19      | HOP_FREQ_SEQ_19                | YES                 |
| 20      | HOP_FREQ_SEQ_20                | YES                 |
| 21      | HOP_FREQ_SEQ_21                | YES                 |
| 22      | HOP_FREQ_SEQ_22                | YES                 |
| 23      | HOP_FREQ_SEQ_23                | YES                 |
| 24      | HOP_FREQ_SEQ_24                | YES                 |
| 25      | HOP_FREQ_SEQ_25                | NO                  |
| 26      | HOP_FREQ_SEQ_26                | YES                 |
| 27      | HOP_FREQ_SEQ_27                | YES                 |
| 28      | HOP_FREQ_SEQ_28                | YES                 |
| 29      | HOP_FREQ_SEQ_29                | YES                 |
| 30      | HOP_FREQ_SEQ_30                | YES                 |
|         |                                | Detection Rate 90%  |

Report No.: BTL-FCCP-3-1411C236A Page 40 of 64



# TX (11n 40MHz Mode)

Table 1: Short Pulse Radar Test Waveforms.

| Radar Type | Pulse Width<br>(µsec) | PRI<br>(µsec)                                                                                                                                                                                                                                           | Number<br>of Pulses                                                                                                    | Pass<br>times | Fail<br>times | Percentage<br>ofSuccessful<br>Detection (%) |
|------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------------------------------------|
| 1          | 1                     | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A | Roundup $ \left[ \frac{\left(\frac{1}{360}\right)}{\left(\frac{19 \cdot 10^6}{PRI_{\mu\nu\epsilone}}\right)} \right] $ | 28            | 2             | 93                                          |
| 2          | 1-5                   | 150-230                                                                                                                                                                                                                                                 | 23-29                                                                                                                  | 27            | 3             | 90                                          |
| 3          | 6-10                  | 200-500                                                                                                                                                                                                                                                 | 16-18                                                                                                                  | 27            | 3             | 90                                          |
| 4          | 11-20                 | 200-500                                                                                                                                                                                                                                                 | 12-16                                                                                                                  | 28            | 2             | 93                                          |
| Aggreg     | ate (Radar Type       | es 1-4)                                                                                                                                                                                                                                                 | -                                                                                                                      | 110           | 10            | 92                                          |

Table 2: Long Pulse Radar Test Waveform

| Rad<br>ar<br>Type | Pulse<br>Width<br>(µsec) | PRI<br>(µsec) | Pulses<br>per<br>Hop | Hopping<br>Rate<br>(kHz) | Hopping Sequence Length (msec) | Pass<br>times | Fail<br>times | Percentage of SuccessfulD etection (%) |
|-------------------|--------------------------|---------------|----------------------|--------------------------|--------------------------------|---------------|---------------|----------------------------------------|
| 5                 | 1                        | 333           | 9                    | 0.333                    | 300                            | 28            | 2             | 93                                     |

Table 3: Frequency Hopping Radar Test Waveform

| Rad<br>ar<br>Type | Pulse<br>Width<br>(µsec) | PRI<br>(µsec) | Pulses<br>per<br>Hop | Hopping<br>Rate<br>(kHz) | Hopping Sequence Length (msec) | Pass<br>times | Fail<br>times | Percentage of SuccessfulD etection (%) |
|-------------------|--------------------------|---------------|----------------------|--------------------------|--------------------------------|---------------|---------------|----------------------------------------|
| 6                 | 1                        | 333           | 9                    | 0.333                    | 300                            | 28            | 2             | 93                                     |

Report No.: BTL-FCCP-3-1411C236A Page 41 of 64



## TX (11n 40MHz Mode)

#### Radar signal 0



**Note:** To denotes the start of Channel Move Time upon the end of the last Radar burst.

T1 denotes the data transmission time of 200ms from T0.

T2 denotes the end of Channel Move Time.

T3 denotes the 10 second from T0 to observe the aggregate duration of transmissions.



Note: An expanded plot for the device vacates the channel in the required 500ms



# TX (11n 40MHz Mode)

| Radar1 Statical Performances |                    |           |         |                     |  |  |  |
|------------------------------|--------------------|-----------|---------|---------------------|--|--|--|
|                              | Pluse              |           |         |                     |  |  |  |
| Trial #                      | per                | Pluse     | PRI(us) | Detection(YES / No) |  |  |  |
|                              | Burst              | Width(us) |         |                     |  |  |  |
| 1                            | 76                 | 1.0u      | 698     | YES                 |  |  |  |
| 2                            | 86                 | 1.0u      | 618     | YES                 |  |  |  |
| 3                            | 83                 | 1.0u      | 638     | YES                 |  |  |  |
| 4                            | 57                 | 1.0u      | 938     | YES                 |  |  |  |
| 5                            | 76                 | 1.0u      | 698     | YES                 |  |  |  |
| 6                            | 68                 | 1.0u      | 778     | YES                 |  |  |  |
| 7                            | 99                 | 1.0u      | 538     | YES                 |  |  |  |
| 8                            | 99                 | 1.0u      | 538     | YES                 |  |  |  |
| 9                            | 74                 | 1.0u      | 718     | YES                 |  |  |  |
| 10                           | 102                | 1.0u      | 518     | YES                 |  |  |  |
| 11                           | 70                 | 1.0u      | 758     | YES                 |  |  |  |
| 12                           | 76                 | 1.0u      | 698     | YES                 |  |  |  |
| 13                           | 74                 | 1.0u      | 718     | YES                 |  |  |  |
| 14                           | 89                 | 1.0u      | 598     | YES                 |  |  |  |
| 15                           | 102                | 1.0u      | 518     | NO                  |  |  |  |
| 16                           | 22                 | 1.0u      | 2457    | YES                 |  |  |  |
| 17                           | 53                 | 1.0u      | 1002    | YES                 |  |  |  |
| 18                           | 19                 | 1.0u      | 2783    | YES                 |  |  |  |
| 19                           | 24                 | 1.0u      | 2227    | YES                 |  |  |  |
| 20                           | 19                 | 1.0u      | 2848    | YES                 |  |  |  |
| 21                           | 26                 | 1.0u      | 2036    | YES                 |  |  |  |
| 22                           | 21                 | 1.0u      | 2579    | YES                 |  |  |  |
| 23                           | 44                 | 1.0u      | 1209    | NO                  |  |  |  |
| 24                           | 66                 | 1.0u      | 810     | YES                 |  |  |  |
| 25                           | 18                 | 1.0u      | 2986    | YES                 |  |  |  |
| 26                           | 28                 | 1.0u      | 1913    | YES                 |  |  |  |
| 27                           | 69                 | 1.0u      | 768     | YES                 |  |  |  |
| 28                           | 42                 | 1.0u      | 1263    | YES                 |  |  |  |
| 29                           | 27                 | 1.0u      | 1988    | YES                 |  |  |  |
| 30                           | 19                 | 1.0u      | 2853    | YES                 |  |  |  |
|                              | Detection Rate 93% |           |         |                     |  |  |  |

Report No.: BTL-FCCP-3-1411C236A Page 43 of 64



| Radar2 Statical Performances |       |           |         |                     |  |  |
|------------------------------|-------|-----------|---------|---------------------|--|--|
|                              | Pluse |           |         |                     |  |  |
| Trial #                      | per   | Pluse     | PRI(us) | Detection(YES / No) |  |  |
|                              | Burst | Width(us) |         |                     |  |  |
| 1                            | 29    | 1.3       | 162     | YES                 |  |  |
| 2                            | 28    | 2.5       | 219     | YES                 |  |  |
| 3                            | 27    | 1.3       | 203     | YES                 |  |  |
| 4                            | 23    | 2.3       | 172     | YES                 |  |  |
| 5                            | 29    | 4.1       | 184     | YES                 |  |  |
| 6                            | 25    | 4.5       | 190     | YES                 |  |  |
| 7                            | 26    | 2.1       | 220     | YES                 |  |  |
| 8                            | 24    | 1.5       | 204     | YES                 |  |  |
| 9                            | 29    | 5         | 167     | YES                 |  |  |
| 10                           | 28    | 1.5       | 174     | YES                 |  |  |
| 11                           | 29    | 1.1       | 199     | YES                 |  |  |
| 12                           | 25    | 3.8       | 185     | NO                  |  |  |
| 13                           | 28    | 2.2       | 207     | YES                 |  |  |
| 14                           | 29    | 3.6       | 229     | YES                 |  |  |
| 15                           | 24    | 4.9       | 227     | YES                 |  |  |
| 16                           | 23    | 1.6       | 197     | YES                 |  |  |
| 17                           | 25    | 4.7       | 205     | YES                 |  |  |
| 18                           | 23    | 2         | 203     | YES                 |  |  |
| 19                           | 28    | 1.6       | 222     | YES                 |  |  |
| 20                           | 27    | 1.3       | 194     | NO                  |  |  |
| 21                           | 26    | 3.8       | 183     | YES                 |  |  |
| 22                           | 29    | 3.7       | 154     | YES                 |  |  |
| 23                           | 25    | 3.9       | 221     | NO                  |  |  |
| 24                           | 28    | 3.1       | 175     | YES                 |  |  |
| 25                           | 29    | 2.7       | 222     | YES                 |  |  |
| 26                           | 23    | 3.7       | 160     | YES                 |  |  |
| 27                           | 27    | 4.8       | 175     | YES                 |  |  |
| 28                           | 23    | 2         | 218     | YES                 |  |  |
| 29                           | 24    | 1.5       | 169     | YES                 |  |  |
| 30                           | 26    | 1.4       | 192     | YES                 |  |  |
| Detection Rate 90%           |       |           |         |                     |  |  |

Report No.: BTL-FCCP-3-1411C236A Page 44 of 64



| Radar3 Statical Performances |       |          |         |                     |  |  |
|------------------------------|-------|----------|---------|---------------------|--|--|
|                              | Pluse |          |         |                     |  |  |
| Trial #                      | per   | Pluse    | PRI(us) | Detection(YES / No) |  |  |
|                              | Burst | Width(s) |         |                     |  |  |
| 1                            | 18    | 8.5u     | 445     | YES                 |  |  |
| 2                            | 17    | 8.0u     | 442     | YES                 |  |  |
| 3                            | 17    | 8.6u     | 414     | YES                 |  |  |
| 4                            | 17    | 8.4u     | 409     | YES                 |  |  |
| 5                            | 16    | 9.3u     | 398     | YES                 |  |  |
| 6                            | 16    | 8.0u     | 364     | YES                 |  |  |
| 7                            | 16    | 9.6u     | 386     | YES                 |  |  |
| 8                            | 16    | 8.0u     | 258     | YES                 |  |  |
| 9                            | 16    | 8.8u     | 445     | YES                 |  |  |
| 10                           | 17    | 7.6u     | 310     | YES                 |  |  |
| 11                           | 17    | 7.9u     | 481     | YES                 |  |  |
| 12                           | 16    | 8.0u     | 268     | YES                 |  |  |
| 13                           | 18    | 9.9u     | 463     | YES                 |  |  |
| 14                           | 17    | 8.6u     | 225     | YES                 |  |  |
| 15                           | 18    | 8.2u     | 477     | YES                 |  |  |
| 16                           | 17    | 8.7u     | 240     | YES                 |  |  |
| 17                           | 17    | 9.0u     | 213     | YES                 |  |  |
| 18                           | 16    | 9.8u     | 480     | YES                 |  |  |
| 19                           | 16    | 7.9u     | 436     | YES                 |  |  |
| 20                           | 16    | 9.3u     | 269     | YES                 |  |  |
| 21                           | 16    | 7.2u     | 431     | YES                 |  |  |
| 22                           | 17    | 7.2u     | 330     | YES                 |  |  |
| 23                           | 17    | 6.9u     | 452     | YES                 |  |  |
| 24                           | 18    | 6.0u     | 488     | YES                 |  |  |
| 25                           | 16    | 8.3u     | 388     | YES                 |  |  |
| 26                           | 17    | 8.2u     | 443     | YES                 |  |  |
| 27                           | 17    | 6.6u     | 408     | YES                 |  |  |
| 28                           | 16    | 8.8u     | 350     | YES                 |  |  |
| 29                           | 18    | 9.5u     | 480     | YES                 |  |  |
| 30                           | 16    | 9.8u     | 216     | NO                  |  |  |
| Detection Rate 90%           |       |          |         |                     |  |  |



| Radar4 Statical Performances |       |           |         |                                       |  |  |
|------------------------------|-------|-----------|---------|---------------------------------------|--|--|
|                              | Pluse |           |         |                                       |  |  |
| Trial #                      | per   | Pluse     | PRI(us) | Detection(YES / No)                   |  |  |
|                              | Burst | Width(us) | , ,     | , , , , , , , , , , , , , , , , , , , |  |  |
| 1                            | 14    | 17.5u     | 405     | YES                                   |  |  |
| 2                            | 16    | 15.0u     | 463     | YES                                   |  |  |
| 3                            | 13    | 13.6u     | 330     | YES                                   |  |  |
| 4                            | 14    | 14.4u     | 410     | YES                                   |  |  |
| 5                            | 16    | 15.3u     | 398     | YES                                   |  |  |
| 6                            | 15    | 14.0u     | 365     | YES                                   |  |  |
| 7                            | 13    | 15.3u     | 367     | NO                                    |  |  |
| 8                            | 14    | 11.7u     | 319     | YES                                   |  |  |
| 9                            | 13    | 19.8u     | 274     | YES                                   |  |  |
| 10                           | 15    | 16.0u     | 377     | YES                                   |  |  |
| 11                           | 13    | 16.6u     | 463     | YES                                   |  |  |
| 12                           | 12    | 12.5u     | 445     | YES                                   |  |  |
| 13                           | 13    | 12.0u     | 445     | YES                                   |  |  |
| 14                           | 13    | 13.8u     | 405     | YES                                   |  |  |
| 15                           | 13    | 14.9u     | 409     | YES                                   |  |  |
| 16                           | 15    | 15.8u     | 436     | YES                                   |  |  |
| 17                           | 12    | 14.8u     | 447     | YES                                   |  |  |
| 18                           | 15    | 13.9u     | 400     | YES                                   |  |  |
| 19                           | 12    | 16.0u     | 481     | YES                                   |  |  |
| 20                           | 12    | 17.0u     | 496     | YES                                   |  |  |
| 21                           | 12    | 15.8u     | 463     | YES                                   |  |  |
| 22                           | 13    | 14.6u     | 445     | YES                                   |  |  |
| 23                           | 16    | 17.0u     | 442     | NO                                    |  |  |
| 24                           | 12    | 14.0u     | 485     | YES                                   |  |  |
| 25                           | 13    | 14.0u     | 260     | YES                                   |  |  |
| 26                           | 16    | 15.6u     | 280     | YES                                   |  |  |
| 27                           | 15    | 17.0u     | 450     | YES                                   |  |  |
| 28                           | 13    | 19.3u     | 330     | YES                                   |  |  |
| 29                           | 13    | 18.5u     | 470     | YES                                   |  |  |
| 30                           | 13    | 20.0u     | 335     | YES                                   |  |  |
| Detection Rate 93%           |       |           |         |                                       |  |  |



| Radar5 Statical Performances |                      |                     |  |  |  |  |
|------------------------------|----------------------|---------------------|--|--|--|--|
| Trial                        | Data etia e (VEC / I |                     |  |  |  |  |
| #                            | Test Signal name     | Detection(YES / No) |  |  |  |  |
| 1                            | LP_Signal_01         | YES                 |  |  |  |  |
| 2                            | LP_Signal_02         | YES                 |  |  |  |  |
| 3                            | LP_Signal_03         | YES                 |  |  |  |  |
| 4                            | LP_Signal_04         | YES                 |  |  |  |  |
| 5                            | LP_Signal_05         | YES                 |  |  |  |  |
| 6                            | LP_Signal_06         | YES                 |  |  |  |  |
| 7                            | LP_Signal_07         | YES                 |  |  |  |  |
| 8                            | LP_Signal_08         | YES                 |  |  |  |  |
| 9                            | LP_Signal_09         | YES                 |  |  |  |  |
| 10                           | LP_Signal_10         | NO                  |  |  |  |  |
| 11                           | LP_Signal_11         | YES                 |  |  |  |  |
| 12                           | LP_Signal_12         | YES                 |  |  |  |  |
| 13                           | LP_Signal_13         | YES                 |  |  |  |  |
| 14                           | LP_Signal_14         | YES                 |  |  |  |  |
| 15                           | LP_Signal_15         | YES                 |  |  |  |  |
| 16                           | LP_Signal_16         | YES                 |  |  |  |  |
| 17                           | LP_Signal_17         | YES                 |  |  |  |  |
| 18                           | LP_Signal_18         | YES                 |  |  |  |  |
| 19                           | LP_Signal_19         | YES                 |  |  |  |  |
| 20                           | LP_Signal_20         | YES                 |  |  |  |  |
| 21                           | LP_Signal_21         | YES                 |  |  |  |  |
| 22                           | LP_Signal_22         | YES                 |  |  |  |  |
| 23                           | LP_Signal_23         | NO                  |  |  |  |  |
| 24                           | LP_Signal_24         | YES                 |  |  |  |  |
| 25                           | LP_Signal_25         | YES                 |  |  |  |  |
| 26                           | LP_Signal_26         | YES                 |  |  |  |  |
| 27                           | LP_Signal_27         | YES                 |  |  |  |  |
| 28                           | LP_Signal_28         | YES                 |  |  |  |  |
| 29                           | LP_Signal_29         | YES                 |  |  |  |  |
| 30                           | LP_Signal_30         | YES                 |  |  |  |  |
|                              | Detection Rate 93%   |                     |  |  |  |  |

Report No.: BTL-FCCP-3-1411C236A Page 47 of 64



|                    | Radar6 Statical Performances      |                     |  |  |  |  |
|--------------------|-----------------------------------|---------------------|--|--|--|--|
| Trial<br>#         | Hoping Frequency<br>Sequence Name | Detection(YES / No) |  |  |  |  |
| ***                | Ocquence Name                     |                     |  |  |  |  |
| 1                  | HOP_FREQ_SEQ_01                   | YES                 |  |  |  |  |
| 2                  | HOP_FREQ_SEQ_02                   | YES                 |  |  |  |  |
| 3                  | HOP_FREQ_SEQ_03                   | YES                 |  |  |  |  |
| 4                  | HOP_FREQ_SEQ_04                   | YES                 |  |  |  |  |
| 5                  | HOP_FREQ_SEQ_05                   | NO                  |  |  |  |  |
| 6                  | HOP_FREQ_SEQ_06                   | YES                 |  |  |  |  |
| 7                  | HOP_FREQ_SEQ_07                   | YES                 |  |  |  |  |
| 8                  | HOP_FREQ_SEQ_08                   | YES                 |  |  |  |  |
| 9                  | HOP_FREQ_SEQ_09                   | YES                 |  |  |  |  |
| 10                 | HOP_FREQ_SEQ_10                   | YES                 |  |  |  |  |
| 11                 | HOP_FREQ_SEQ_11                   | YES                 |  |  |  |  |
| 12                 | HOP_FREQ_SEQ_12                   | YES                 |  |  |  |  |
| 13                 | HOP_FREQ_SEQ_13                   | YES                 |  |  |  |  |
| 14                 | HOP_FREQ_SEQ_14                   | YES                 |  |  |  |  |
| 15                 | HOP_FREQ_SEQ_15                   | NO                  |  |  |  |  |
| 16                 | HOP_FREQ_SEQ_16                   | YES                 |  |  |  |  |
| 17                 | HOP_FREQ_SEQ_17                   | YES                 |  |  |  |  |
| 18                 | HOP_FREQ_SEQ_18                   | YES                 |  |  |  |  |
| 19                 | HOP_FREQ_SEQ_19                   | YES                 |  |  |  |  |
| 20                 | HOP_FREQ_SEQ_20                   | YES                 |  |  |  |  |
| 21                 | HOP_FREQ_SEQ_21                   | YES                 |  |  |  |  |
| 22                 | HOP_FREQ_SEQ_22                   | YES                 |  |  |  |  |
| 23                 | HOP_FREQ_SEQ_23                   | YES                 |  |  |  |  |
| 24                 | HOP_FREQ_SEQ_24                   | YES                 |  |  |  |  |
| 25                 | HOP_FREQ_SEQ_25                   | YES                 |  |  |  |  |
| 26                 | HOP_FREQ_SEQ_26                   | YES                 |  |  |  |  |
| 27                 | HOP_FREQ_SEQ_27                   | YES                 |  |  |  |  |
| 28                 | HOP_FREQ_SEQ_28                   | YES                 |  |  |  |  |
| 29                 | HOP_FREQ_SEQ_29                   | YES                 |  |  |  |  |
| 30                 | HOP_FREQ_SEQ_30                   | YES                 |  |  |  |  |
| Detection Rate 93% |                                   |                     |  |  |  |  |

Report No.: BTL-FCCP-3-1411C236A Page 48 of 64



# TX (11ac 80MHz Mode)

Table 1: Short Pulse Radar Test Waveforms.

| Radar Type | Pulse Width<br>(µsec) | PRI<br>(µsec)                                                                                                                                                                                                                                           | Number<br>of Pulses                                                                                                    | Pass<br>times | Fail<br>times | Percentage of Successful Detection (%) |
|------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------|---------------|----------------------------------------|
| 1          | 1                     | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A | Roundup $ \left[ \frac{\left(\frac{1}{360}\right)}{\left(\frac{19 \cdot 10^6}{PRI_{\mu\nu\epsilone}}\right)} \right] $ | 28            | 2             | 93                                     |
| 2          | 1-5                   | 150-230                                                                                                                                                                                                                                                 | 23-29                                                                                                                  | 26            | 4             | 87                                     |
| 3          | 6-10                  | 200-500                                                                                                                                                                                                                                                 | 16-18                                                                                                                  | 27            | 3             | 90                                     |
| 4          | 11-20                 | 200-500                                                                                                                                                                                                                                                 | 12-16                                                                                                                  | 27            | 3             | 90                                     |
| Aggreg     | ate (Radar Type       | es 1-4)                                                                                                                                                                                                                                                 | -                                                                                                                      | 28            | 2             | 93                                     |

Table 2: Long Pulse Radar Test Waveform

| Radar<br>Type | Pulse<br>Width<br>(µsec) | Chirp<br>Width<br>(MHz) | PRI<br>(µsec) | Numberof<br>Pulses<br>Per Burst | Numbe<br>rof<br>Bursts | Pass<br>times | Fail<br>times | Percentage of SuccessfulD etection (%) |
|---------------|--------------------------|-------------------------|---------------|---------------------------------|------------------------|---------------|---------------|----------------------------------------|
| 5             | 50-100                   | 5-20                    | 1000-2000     | 1-3                             | 8-20                   | 28            | 2             | 93                                     |

Table 3: Frequency Hopping Radar Test Waveform

| Rad<br>ar<br>Type | Pulse<br>Width<br>(µsec) | PRI<br>(µsec) | Pulses<br>per<br>Hop | Hopping<br>Rate<br>(kHz) | Hopping<br>Sequence<br>Length<br>(msec) | Pass<br>times | Fail<br>times | Percentage of SuccessfulD etection (%) |
|-------------------|--------------------------|---------------|----------------------|--------------------------|-----------------------------------------|---------------|---------------|----------------------------------------|
| 6                 | 1                        | 333           | 9                    | 0.333                    | 300                                     | 28            | 2             | 93                                     |

Report No.: BTL-FCCP-3-1411C236A Page 49 of 64





**Note:** To denotes the start of Channel Move Time upon the end of the last Radar burst.

T1 denotes the data transmission time of 200ms from T0.

T2 denotes the end of Channel Move Time.

T3 denotes the 10 second from T0 to observe the aggregate duration of transmissions.



Note: An expanded plot for the device vacates the channel in the required 500ms



TX (11n 40MHz Mode)

| Radar1 Statical Performances |       |           |         |                     |  |  |
|------------------------------|-------|-----------|---------|---------------------|--|--|
|                              | Pluse |           |         |                     |  |  |
| Trial #                      | per   | Pluse     | PRI(us) | Detection(YES / No) |  |  |
|                              | Burst | Width(us) |         |                     |  |  |
| 1                            | 89    | 1.0u      | 598     | YES                 |  |  |
| 2                            | 74    | 1.0u      | 718     | YES                 |  |  |
| 3                            | 92    | 1.0u      | 578     | YES                 |  |  |
| 4                            | 76    | 1.0u      | 698     | YES                 |  |  |
| 5                            | 18    | 1.0u      | 3066    | YES                 |  |  |
| 6                            | 62    | 1.0u      | 858     | YES                 |  |  |
| 7                            | 18    | 1.0u      | 3066    | NO                  |  |  |
| 8                            | 81    | 1.0u      | 658     | YES                 |  |  |
| 9                            | 18    | 1.0u      | 3066    | YES                 |  |  |
| 10                           | 83    | 1.0u      | 638     | YES                 |  |  |
| 11                           | 99    | 1.0u      | 538     | YES                 |  |  |
| 12                           | 76    | 1.0u      | 698     | YES                 |  |  |
| 13                           | 92    | 1.0u      | 578     | YES                 |  |  |
| 14                           | 63    | 1.0u      | 838     | YES                 |  |  |
| 15                           | 58    | 1.0u      | 918     | YES                 |  |  |
| 16                           | 27    | 1.0u      | 1988    | NO                  |  |  |
| 17                           | 18    | 1.0u      | 3043    | YES                 |  |  |
| 18                           | 38    | 1.0u      | 1393    | YES                 |  |  |
| 19                           | 34    | 1.0u      | 1589    | YES                 |  |  |
| 20                           | 23    | 1.0u      | 2308    | YES                 |  |  |
| 21                           | 25    | 1.0u      | 2133    | YES                 |  |  |
| 22                           | 34    | 1.0u      | 1582    | YES                 |  |  |
| 23                           | 48    | 1.0u      | 1112    | YES                 |  |  |
| 24                           | 53    | 1.0u      | 1005    | YES                 |  |  |
| 25                           | 30    | 1.0u      | 1772    | YES                 |  |  |
| 26                           | 21    | 1.0u      | 2598    | NO                  |  |  |
| 27                           | 23    | 1.0u      | 2377    | YES                 |  |  |
| 28                           | 41    | 1.0u      | 1292    | YES                 |  |  |
| 29                           | 70    | 1.0u      | 763     | YES                 |  |  |
| 30                           | 89    | 1.0u      | 598     | YES                 |  |  |
|                              |       |           | Dete    | ction Rate 90%      |  |  |



| Radar2 Statical Performances |                    |           |         |                     |  |  |  |
|------------------------------|--------------------|-----------|---------|---------------------|--|--|--|
|                              | Pluse              |           |         |                     |  |  |  |
| Trial #                      | per                | Pluse     | PRI(us) | Detection(YES / No) |  |  |  |
|                              | Burst              | Width(us) | ,       | ,                   |  |  |  |
| 1                            | 27                 | 1.9       | 225     | YES                 |  |  |  |
| 2                            | 29                 | 2.2       | 178     | YES                 |  |  |  |
| 3                            | 27                 | 1         | 174     | YES                 |  |  |  |
| 4                            | 25                 | 3.2       | 208     | NO                  |  |  |  |
| 5                            | 25                 | 3.2       | 185     | YES                 |  |  |  |
| 6                            | 24                 | 1.6       | 176     | YES                 |  |  |  |
| 7                            | 29                 | 1         | 181     | YES                 |  |  |  |
| 8                            | 27                 | 2.7       | 180     | NO                  |  |  |  |
| 9                            | 26                 | 2.6       | 166     | YES                 |  |  |  |
| 10                           | 26                 | 4.3       | 153     | YES                 |  |  |  |
| 11                           | 26                 | 1.8       | 229     | YES                 |  |  |  |
| 12                           | 23                 | 4.8       | 204     | YES                 |  |  |  |
| 13                           | 23                 | 1.4       | 216     | YES                 |  |  |  |
| 14                           | 27                 | 2.2       | 171     | YES                 |  |  |  |
| 15                           | 23                 | 2.5       | 173     | YES                 |  |  |  |
| 16                           | 27                 | 1.1       | 162     | NO                  |  |  |  |
| 17                           | 28                 | 2.3       | 173     | YES                 |  |  |  |
| 18                           | 28                 | 2.2       | 180     | YES                 |  |  |  |
| 19                           | 23                 | 3.6       | 164     | YES                 |  |  |  |
| 20                           | 28                 | 4.1       | 188     | YES                 |  |  |  |
| 21                           | 24                 | 4.6       | 219     | YES                 |  |  |  |
| 22                           | 24                 | 2.9       | 229     | YES                 |  |  |  |
| 23                           | 28                 | 2.4       | 201     | YES                 |  |  |  |
| 24                           | 27                 | 4.9       | 191     | YES                 |  |  |  |
| 25                           | 25                 | 3.7       | 160     | YES                 |  |  |  |
| 26                           | 24                 | 4.1       | 204     | YES                 |  |  |  |
| 27                           | 27                 | 1.9       | 200     | NO                  |  |  |  |
| 28                           | 29                 | 4.2       | 202     | YES                 |  |  |  |
| 29                           | 25                 | 1.9       | 154     | YES                 |  |  |  |
| 30                           | 28                 | 3.3       | 229     | YES                 |  |  |  |
|                              | Detection Rate 87% |           |         |                     |  |  |  |

Page 52 of 64



| Radar3 Statical Performances |                    |          |         |                     |  |  |  |
|------------------------------|--------------------|----------|---------|---------------------|--|--|--|
|                              | Pluse              |          |         |                     |  |  |  |
| Trial #                      | per                | Pluse    | PRI(us) | Detection(YES / No) |  |  |  |
|                              | Burst              | Width(s) |         |                     |  |  |  |
| 1                            | 16                 | 9.4      | 486     | YES                 |  |  |  |
| 2                            | 16                 | 6.8      | 282     | YES                 |  |  |  |
| 3                            | 18                 | 8.9      | 263     | YES                 |  |  |  |
| 4                            | 17                 | 8.2      | 433     | YES                 |  |  |  |
| 5                            | 17                 | 6.7      | 279     | YES                 |  |  |  |
| 6                            | 16                 | 7.1      | 492     | YES                 |  |  |  |
| 7                            | 16                 | 10       | 386     | NO                  |  |  |  |
| 8                            | 18                 | 6.1      | 304     | YES                 |  |  |  |
| 9                            | 18                 | 9.8      | 355     | YES                 |  |  |  |
| 10                           | 17                 | 6.7      | 388     | YES                 |  |  |  |
| 11                           | 18                 | 7.8      | 304     | YES                 |  |  |  |
| 12                           | 16                 | 6.1      | 491     | YES                 |  |  |  |
| 13                           | 16                 | 8.1      | 314     | YES                 |  |  |  |
| 14                           | 17                 | 9.5      | 293     | YES                 |  |  |  |
| 15                           | 16                 | 6.6      | 428     | YES                 |  |  |  |
| 16                           | 17                 | 7        | 330     | YES                 |  |  |  |
| 17                           | 17                 | 6.6      | 437     | NO                  |  |  |  |
| 18                           | 16                 | 9.4      | 419     | YES                 |  |  |  |
| 19                           | 18                 | 9.3      | 352     | YES                 |  |  |  |
| 20                           | 18                 | 6.4      | 412     | YES                 |  |  |  |
| 21                           | 16                 | 6.5      | 474     | YES                 |  |  |  |
| 22                           | 17                 | 7.7      | 344     | YES                 |  |  |  |
| 23                           | 17                 | 7.1      | 277     | YES                 |  |  |  |
| 24                           | 17                 | 9.4      | 438     | YES                 |  |  |  |
| 25                           | 16                 | 8.1      | 307     | YES                 |  |  |  |
| 26                           | 17                 | 9.4      | 379     | YES                 |  |  |  |
| 27                           | 16                 | 6.8      | 386     | NO                  |  |  |  |
| 28                           | 17                 | 6.6      | 276     | YES                 |  |  |  |
| 29                           | 17                 | 6.2      | 464     | YES                 |  |  |  |
| 30                           | 18                 | 7.7      | 470     | YES                 |  |  |  |
|                              | Detection Rate 90% |          |         |                     |  |  |  |



| Radar4 Statical Performances |                    |           |         |                     |  |  |  |  |  |  |  |  |
|------------------------------|--------------------|-----------|---------|---------------------|--|--|--|--|--|--|--|--|
|                              | Pluse              |           |         |                     |  |  |  |  |  |  |  |  |
| Trial #                      | per                | Pluse     | PRI(us) | Detection(YES / No) |  |  |  |  |  |  |  |  |
|                              | Burst              | Width(us) | ,       | ,                   |  |  |  |  |  |  |  |  |
| 1                            | 13                 | 15.6      | 419     | YES                 |  |  |  |  |  |  |  |  |
| 2                            | 12                 | 17.2      | 500     | YES                 |  |  |  |  |  |  |  |  |
| 3                            | 14                 | 15.1      | 388     | YES                 |  |  |  |  |  |  |  |  |
| 4                            | 15                 | 15        | 494     | YES                 |  |  |  |  |  |  |  |  |
| 5                            | 15                 | 15.2      | 411     | YES                 |  |  |  |  |  |  |  |  |
| 6                            | 14                 | 14.8      | 447     | YES                 |  |  |  |  |  |  |  |  |
| 7                            | 15                 | 14.8      | 252     | NO                  |  |  |  |  |  |  |  |  |
| 8                            | 13                 | 11.2      | 495     | YES                 |  |  |  |  |  |  |  |  |
| 9                            | 13                 | 13.8      | 264     | YES                 |  |  |  |  |  |  |  |  |
| 10                           | 13                 | 11.5      | 410     | YES                 |  |  |  |  |  |  |  |  |
| 11                           | 16                 | 17.2      | 426     | YES                 |  |  |  |  |  |  |  |  |
| 12                           | 14                 | 16.3      | 474     | YES                 |  |  |  |  |  |  |  |  |
| 13                           | 16                 | 19        | 344     | YES                 |  |  |  |  |  |  |  |  |
| 14                           | 13                 | 16.6      | 440     | YES                 |  |  |  |  |  |  |  |  |
| 15                           | 16                 | 18.2      | 457     | YES                 |  |  |  |  |  |  |  |  |
| 16                           | 12                 | 18.2      | 401     | NO                  |  |  |  |  |  |  |  |  |
| 17                           | 13                 | 12.1      | 478     | YES                 |  |  |  |  |  |  |  |  |
| 18                           | 12                 | 17.4      | 367     | YES                 |  |  |  |  |  |  |  |  |
| 19                           | 16                 | 17.6      | 432     | YES                 |  |  |  |  |  |  |  |  |
| 20                           | 12                 | 12.1      | 394     | YES                 |  |  |  |  |  |  |  |  |
| 21                           | 14                 | 19.2      | 373     | YES                 |  |  |  |  |  |  |  |  |
| 22                           | 13                 | 12.9      | 363     | YES                 |  |  |  |  |  |  |  |  |
| 23                           | 16                 | 11.3      | 263     | YES                 |  |  |  |  |  |  |  |  |
| 24                           | 15                 | 14.5      | 382     | YES                 |  |  |  |  |  |  |  |  |
| 25                           | 15                 | 12.8      | 372     | YES                 |  |  |  |  |  |  |  |  |
| 26                           | 15                 | 13.1      | 291     | YES                 |  |  |  |  |  |  |  |  |
| 27                           | 13                 | 12.5      | 432     | YES                 |  |  |  |  |  |  |  |  |
| 28                           | 12                 | 18.8      | 301     | YES                 |  |  |  |  |  |  |  |  |
| 29                           | 15                 | 12.1      | 308     | NO                  |  |  |  |  |  |  |  |  |
| 30                           | 15                 | 11.1      | 407     | YES                 |  |  |  |  |  |  |  |  |
|                              | Detection Rate 90% |           |         |                     |  |  |  |  |  |  |  |  |



| Radar5 Statical Performances |                    |                       |  |  |  |  |  |  |
|------------------------------|--------------------|-----------------------|--|--|--|--|--|--|
| Trial                        | Tast Cinnal name   | Data sting (VEO / No) |  |  |  |  |  |  |
| #                            | Test Signal name   | Detection(YES / No)   |  |  |  |  |  |  |
| 1                            | LP_Signal_01       | YES                   |  |  |  |  |  |  |
| 2                            | LP_Signal_02       | YES                   |  |  |  |  |  |  |
| 3                            | LP_Signal_03       | YES                   |  |  |  |  |  |  |
| 4                            | LP_Signal_04       | YES                   |  |  |  |  |  |  |
| 5                            | LP_Signal_05       | YES                   |  |  |  |  |  |  |
| 6                            | LP_Signal_06       | YES                   |  |  |  |  |  |  |
| 7                            | LP_Signal_07       | YES                   |  |  |  |  |  |  |
| 8                            | LP_Signal_08       | YES                   |  |  |  |  |  |  |
| 9                            | LP_Signal_09       | YES                   |  |  |  |  |  |  |
| 10                           | LP_Signal_10       | YES                   |  |  |  |  |  |  |
| 11                           | LP_Signal_11       | YES                   |  |  |  |  |  |  |
| 12                           | LP_Signal_12       | YES                   |  |  |  |  |  |  |
| 13                           | LP_Signal_13       | NO                    |  |  |  |  |  |  |
| 14                           | LP_Signal_14       | YES                   |  |  |  |  |  |  |
| 15                           | LP_Signal_15       | YES                   |  |  |  |  |  |  |
| 16                           | LP_Signal_16       | YES                   |  |  |  |  |  |  |
| 17                           | LP_Signal_17       | YES                   |  |  |  |  |  |  |
| 18                           | LP_Signal_18       | YES                   |  |  |  |  |  |  |
| 19                           | LP_Signal_19       | YES                   |  |  |  |  |  |  |
| 20                           | LP_Signal_20       | YES                   |  |  |  |  |  |  |
| 21                           | LP_Signal_21       | YES                   |  |  |  |  |  |  |
| 22                           | LP_Signal_22       | YES                   |  |  |  |  |  |  |
| 23                           | LP_Signal_23       | YES                   |  |  |  |  |  |  |
| 24                           | LP_Signal_24       | NO                    |  |  |  |  |  |  |
| 25                           | LP_Signal_25       | YES                   |  |  |  |  |  |  |
| 26                           | LP_Signal_26       | YES                   |  |  |  |  |  |  |
| 27                           | LP_Signal_27       | YES                   |  |  |  |  |  |  |
| 28                           | LP_Signal_28       | YES                   |  |  |  |  |  |  |
| 29                           | LP_Signal_29       | YES                   |  |  |  |  |  |  |
| 30                           | LP_Signal_30       | YES                   |  |  |  |  |  |  |
|                              | Detection Rate 93% |                       |  |  |  |  |  |  |

Report No.: BTL-FCCP-3-1411C236A Page 55 of 64



| Radar6 Statical Performances |                                   |                     |  |  |  |  |  |  |
|------------------------------|-----------------------------------|---------------------|--|--|--|--|--|--|
| Trial<br>#                   | Hoping Frequency<br>Sequence Name | Detection(YES / No) |  |  |  |  |  |  |
| 1                            | HOP_FREQ_SEQ_01                   | YES                 |  |  |  |  |  |  |
| 2                            | HOP_FREQ_SEQ_02                   | YES                 |  |  |  |  |  |  |
| 3                            | HOP_FREQ_SEQ_03                   | YES                 |  |  |  |  |  |  |
| 4                            | HOP_FREQ_SEQ_04                   | YES                 |  |  |  |  |  |  |
| 5                            | HOP_FREQ_SEQ_05                   | YES                 |  |  |  |  |  |  |
| 6                            | HOP_FREQ_SEQ_06                   | NO                  |  |  |  |  |  |  |
| 7                            | HOP_FREQ_SEQ_07                   | YES                 |  |  |  |  |  |  |
| 8                            | HOP_FREQ_SEQ_08                   | YES                 |  |  |  |  |  |  |
| 9                            | HOP_FREQ_SEQ_09                   | YES                 |  |  |  |  |  |  |
| 10                           | HOP_FREQ_SEQ_10                   | YES                 |  |  |  |  |  |  |
| 11                           | HOP_FREQ_SEQ_11                   | YES                 |  |  |  |  |  |  |
| 12                           | HOP_FREQ_SEQ_12                   | YES                 |  |  |  |  |  |  |
| 13                           | HOP_FREQ_SEQ_13                   | YES                 |  |  |  |  |  |  |
| 14                           | HOP_FREQ_SEQ_14                   | YES                 |  |  |  |  |  |  |
| 15                           | HOP_FREQ_SEQ_15                   | YES                 |  |  |  |  |  |  |
| 16                           | HOP_FREQ_SEQ_16                   | YES                 |  |  |  |  |  |  |
| 17                           | HOP_FREQ_SEQ_17                   | YES                 |  |  |  |  |  |  |
| 18                           | HOP_FREQ_SEQ_18                   | YES                 |  |  |  |  |  |  |
| 19                           | HOP_FREQ_SEQ_19                   | YES                 |  |  |  |  |  |  |
| 20                           | HOP_FREQ_SEQ_20                   | NO                  |  |  |  |  |  |  |
| 21                           | HOP_FREQ_SEQ_21                   | YES                 |  |  |  |  |  |  |
| 22                           | HOP_FREQ_SEQ_22                   | YES                 |  |  |  |  |  |  |
| 23                           | HOP_FREQ_SEQ_23                   | YES                 |  |  |  |  |  |  |
| 24                           | HOP_FREQ_SEQ_24                   | YES                 |  |  |  |  |  |  |
| 25                           | HOP_FREQ_SEQ_25                   | YES                 |  |  |  |  |  |  |
| 26                           | HOP_FREQ_SEQ_26                   | YES                 |  |  |  |  |  |  |
| 27                           | HOP_FREQ_SEQ_27                   | YES                 |  |  |  |  |  |  |
| 28                           | HOP_FREQ_SEQ_28                   | YES                 |  |  |  |  |  |  |
| 29                           | HOP_FREQ_SEQ_29                   | YES                 |  |  |  |  |  |  |
| 30                           | HOP_FREQ_SEQ_30                   | YES                 |  |  |  |  |  |  |
| Detection Rate 93%           |                                   |                     |  |  |  |  |  |  |

Report No.: BTL-FCCP-3-1411C236A Page 56 of 64



#### **6.2.5 NON- OCCUPANCY PERIOD**

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.



5530 Non-Occupancy perrod

Report No.: BTL-FCCP-3-1411C236A Page 57 of 64



### 5540 Non-Occupancy perrod



#### 5550 Non-Occupancy perrod





#### **6.2.6 UNIFORM SPREADING**

The intention of the uniform spreading is to provide, on aggregate, a uniform loading of the spectrum. The UUT using the bands 5250 to 5350MHz and 5470 to 5600 MHz channels so that the probability of selecting a given channel shall be the same for channels. The UUT will select channel by random mode and remember this channel when detect radar signal, so that will select unused channel by random mode.

#### 6.2.7 U-NII DETECTION BANDWIDTH



Report No.: BTL-FCCP-3-1411C236A Page 59 of 64



Page 60 of 64







### 11a Mode

|                      |                                                     |            |          | Detection  | Bandwith | test tranm | ission 20N | Л |     |    |                    |
|----------------------|-----------------------------------------------------|------------|----------|------------|----------|------------|------------|---|-----|----|--------------------|
| <b>EUT FREQUENCY</b> | 5540M                                               |            |          |            |          |            |            |   |     |    |                    |
| EUT power bandwith   |                                                     | 20.83MHz   |          |            |          |            |            |   |     |    |                    |
| Detection Bandwith   | limit(100                                           | 0%of EUT 9 | 9% Power | r bandwith | 20.83    |            |            |   |     |    |                    |
| Detection Bandwith   |                                                     |            |          | 20         |          |            |            |   |     |    |                    |
| Test Result          | PASS                                                |            | 200      |            |          |            |            |   |     |    |                    |
|                      | DFS Detection Trials (1=Detection, 0= No Detection) |            |          |            |          |            |            |   |     |    |                    |
| Radar Freq (MHz)     | 1                                                   | 2          | 3        | 4          | 5        | 6          | 7          | 8 | 9   | 10 | Detection Rate (%) |
| 5529                 | 1                                                   | 0          | 0        | 1          | 1        | 0          | 0          | 0 | 1   | 1  | 50                 |
| 5530                 | 1                                                   | 1          | 0        | 0          | 0        | 1          | 0          | 1 | 0   | 1  | 50                 |
| 5531(FL)             | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5532                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5533                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5534                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5535                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5536                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5537                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | . 1 | 1  | 100                |
| 5538                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5539                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5540                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5541                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5542                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5543                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5544                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5545                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5546                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5547                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5548                 | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5549(FH)             | 1                                                   | 1          | 1        | 1          | 1        | 1          | 1          | 1 | 1   | 1  | 100                |
| 5550                 | 0                                                   | 1          | 0        | 0          | 0        | 1          | 0          | 0 | 0   | 1  | 40                 |
| 5551                 | 1                                                   | 0          | 1        | 0          | 0        | 0          | 1          | 0 | 1   | 1  | 50                 |

Report No.: BTL-FCCP-3-1411C236A Page 61 of 64



### 11n 40MHz Mode

| Detection Bandwith | 40M        |           |           |           |             |              |            |         |   |    |                    |
|--------------------|------------|-----------|-----------|-----------|-------------|--------------|------------|---------|---|----|--------------------|
| EUT FREQUENCY      |            | 5550M     |           |           |             |              |            |         |   |    |                    |
| EUT power bandwit  |            | 39.21MH   |           |           |             |              |            |         |   |    |                    |
| Detection Bandwith | limit(100% | of EUT 99 | % Power b | andwith)  |             | 39.21        |            |         |   |    |                    |
| Detection Bandwith | (5569(FH)- | 5531(FL)) |           | 40        |             |              |            |         |   |    |                    |
| Test Result        | PASS       | 27 - 172  |           |           |             |              |            |         |   |    | 5.00               |
|                    |            |           | DFS       | Detection | Trials (1=[ | Detection, ( | 0= No Dete | ection) |   |    |                    |
| Radar Freq (MHz)   | 1          | 2         | 3         | 4         | 5           | 6            | 7          | 8       | 9 | 10 | Detection Rate (%) |
| 5529               | 1          | 0         | 1         | 0         | 0           | 1            | 1          | 0       | 1 | 0  | 50                 |
| 5530               | 1          | 1         | 1         | 0         | 1           | 0            | 1          | 0       | 1 | 0  | 60                 |
| 5531(FL)           | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5532               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5533               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5534               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5535               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5536               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5537               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5538               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5539               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5540               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5541               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5542               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5543               | 1          | 1         | 1         | 1         | 1           | 1            | 1          |         | 1 | 1  | 100                |
|                    |            | _         | 1         |           |             |              | 1          | 1       |   | _  |                    |
| 5544               | 1          | 1         |           | 1         | 1           | 1            |            | 1       | 1 | 1  | 100                |
| 5545               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5546               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5547               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5548               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5549               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5550               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5551               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5552               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5553               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5554               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5555               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5556               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5557               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5558               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5559               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5560               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5561               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5562               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5563               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5564               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5565               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5566               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5567               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5568               | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5569(FL)           | 1          | 1         | 1         | 1         | 1           | 1            | 1          | 1       | 1 | 1  | 100                |
| 5570               | 1          | 0         | 1         | 1         | 0           | 1            | 0          | 0       | 1 | 0  | 50                 |
| 5571               | 1          | 0         | 0         | 1         | 0           | 0            | 1          | 0       | 0 | 1  | 40                 |
| 3071               |            |           |           |           |             |              |            |         |   |    | 1 40               |

Report No.: BTL-FCCP-3-1411C236A Page 62 of 64



# 11ac 80MHz Mode

| Detection Bandwith t                                               | est tranmi                                         | esion | 80M |     |     |        |   |   |     |               |                    |
|--------------------------------------------------------------------|----------------------------------------------------|-------|-----|-----|-----|--------|---|---|-----|---------------|--------------------|
| EUT FREQUENCY                                                      | ESt Valilli                                        | 5530M | OUM |     |     |        |   |   |     |               |                    |
| EUT power bandwith                                                 |                                                    | 0000m |     |     |     |        |   |   |     |               |                    |
| Detection Bandwith limit 100 % of EUT 99 % Power bandwith ) 76.749 |                                                    |       |     |     |     |        |   |   |     |               |                    |
| Detection Bandwith(                                                |                                                    |       |     | 80  |     | 10.140 |   |   |     |               |                    |
| Test Result PASS                                                   |                                                    |       |     |     |     |        |   |   |     |               |                    |
|                                                                    | DES Detection Trials (1=Detection 0= No Detection) |       |     |     |     |        |   |   |     | $\overline{}$ |                    |
| Radar Freq (MHz)                                                   | 1                                                  | 2     | 3   | 4   | 5   | 6      | 7 | 8 | 9   | 10            | Detection Rate (%) |
| 5489                                                               | 1                                                  | 0     | 1   | - 7 | ŏ   | 1      | ó | ő | ŏ   | 0             | 30                 |
| 5490                                                               | Ö                                                  | 1     | ó   | 1   | Ö   | Ö      | ŏ | 1 | ŏ   | ŏ             | 30                 |
| 5490<br>5491<br>5492(FL)                                           | Ö                                                  | Ŏ     | 1   | Ö   | 1   | Ŏ      | 1 | Ó | Ö   | Ŏ             | 30<br>30<br>100    |
| 5492 (FL)                                                          | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5493<br>5494                                                       | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100<br>100         |
| 5495                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5496<br>5497                                                       | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5497                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5498                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5499                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100<br>100         |
| 5499<br>5500<br>5501                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5502                                                               | 1                                                  | i     | i   | 1   | l i | 1      | 1 | 1 | 1   | 1             | 100                |
| 5503                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5504                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5505<br>5508                                                       | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100<br>100         |
| 55 06<br>55 07<br>55 08                                            | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | +             | 100                |
| 5508                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | <u>i</u>      | 100                |
| 55 09<br>55 10<br>55 11                                            | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5510                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5512                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100<br>100         |
| 5513                                                               | 1                                                  | +     | 1   | +   | +   | 1      | 1 | 1 | +   | 1             | 100                |
| EE 4.4                                                             | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5515                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5516                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
|                                                                    |                                                    |       |     |     |     |        |   |   |     |               |                    |
| 5517<br>5518                                                       | 1                                                  | - 1   | 1   | 1   | 1   | -1     | 1 | 1 | 1   | 1             | 100<br>100         |
| 5519                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5520                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | i   | i             | 100                |
| 55 19<br>55 20<br>55 21<br>55 22                                   | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5522                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5523                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5524<br>5525<br>5526<br>5527                                       | -                                                  | 1     | 1   | 1   | 1   | 1      | 1 | + | +   | +             | 100<br>100         |
| 5528                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | i             | 100                |
| 5527                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5528                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5529                                                               | 1                                                  | 1     | 1   | -1  | 1   | -1     | 1 | 1 | 1   | 1             | 100<br>100         |
| 5529<br>5530<br>5531                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5532                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5532<br>5533<br>5534                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5534                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5535<br>5538<br>5537                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100<br>100         |
| 5537                                                               | 1                                                  | 1     | 1   | +   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5538                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5539                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 55 40<br>55 41                                                     | - 1                                                |       | 1   |     | 1   |        | 1 | 1 | 1   | 1             | 100<br>100         |
| 55.41<br>55.42                                                     | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100<br>100         |
| 5543                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 55 43<br>55 44                                                     | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5545                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 55.48<br>55.47                                                     | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5547                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 55.49                                                              | 1                                                  | 1     | 1   | -1- | 1   | -1-    | 1 | 1 | 1   | 1             | 100<br>100         |
| 55.48<br>55.49<br>55.50                                            | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 55.51<br>55.52<br>55.53                                            | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5552                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5553                                                               | 1                                                  | 1     | 1   | 1   | 1   | 1      | 1 | 1 | 1   | 1             | 100                |
| 5554<br>5555                                                       | 1                                                  | 1     | 1   | -1- | 1   | 1      | 1 | 1 | 1 1 | 1             | 100<br>100         |
| 5555                                                               |                                                    |       |     |     |     |        |   |   |     |               | 100                |

Report No.: BTL-FCCP-3-1411C236A Page 63 of 64



