

GPL95101UA

High-end 16-bit Interactive LCD Toy & Game Controller

Jan. 16, 2019

Version 1.0

Table of Contents

		PAGE
1.	GENERAL DESCRIPTION	3
2.	BLOCK DIAGRAM	3
3.	FEATURES	3
4.	SIGNAL DESCRIPTION	5
	4.1. PIN MAP	7
5.	FUNCTIONAL DESCRIPTIONS	8
	5.1. CPU	8
	5.2. MEMORY	8
	5.3. PLL, CLOCK, POWER MODE	8
	5.4. Power Savings Mode	8
	5.5. PICTURE PROCESS UNIT	8
	5.6. SOUND PROCESS UNIT	8
	5.7. VIDEO OUTPUT INTERFACE	9
	5.8. Interrupt	9
	5.9. GPIO	9
	5.10.Timer / Counter	9
	5.11. WATCHDOG	9
	5.12.Serial Interface	9
	5.13.IDE Tools Function	10
	5.14.REAL TIME CLOCK (RTC)	10
	5.15.Analog Control	10
6.	ELECTRICAL SPECIFICATIONS	11
	6.1. ABSOLUTE MAXIMUM RATING	11
	6.2. DC CHARACTERISTICS	11
	6.3. AUDIO DAC CHARACTERISTICS	12
	6.4. SAR ADC CHARACTERISTICS	12
	6.5. LDO18 CHARACTERISTICS	12
	6.6. LDO33 CHARACTERISTICS	13
7.	RECOMMENDED BOARD LAYOUT	14
	7.1. POWER AND GROUND	14
	7.2. ANALOG SECTION	14
8.	ORDERING INFORMATION	15
	8.1. Ordering Information	15
	8.2. PACKAGE INFORMATION	15
9.	DISCLAIMER	17
10). REVISION HISTORY	18

High-end 16-bit Interactive LCD Toy & Game Controller with μ 'nSP \otimes 2.0

1. GENERAL DESCRIPTION

GPL95101UA, a highly integrated System-on-a-Chip (SoC), is a cost-effective and high performance micro-controller solution for game, education and interactive learning applications. It equips a μ 'nSP® 2.0 CPU with 8KB I-cache, picture process unit (PPU), 16-channel sound process unit (SPU), SPI Flash controller, two channels of DMA controller, USB device, mono STN-LCD and TFT-LCD interface, interrupt controller, and many other advanced features. Providing a complete set of common system peripherals, GPL95101UA minimizes overall system costs and eliminates many additional components that other microcontrollers may require. Its development system integrates several powerful tools such as system with C language capability, assembly compiler, linker, source debugger, and project management tools to manage a project from start to the end.

2. BLOCK DIAGRAM

3. FEATURES

- Built-in 16-bit μ'nSP® 2.0 microprocessor
 - Running up to 96MHz
 - Operating from 2.9V to 5.5V

■ Memory

- 4K*16-bit I-cache
- 10K*16-bit RAM, stack area included
- Linear mapping and executing program on the external SPI FLASH. Both 2-IO mode and 4-IO mode are supported.

■ I/O

- Max. 37 General Programmable I/O ports (GPIO).

- Each incorporates with pull-up resistor, pull-down resistor or floating input based on programmer's settings via the corresponding registers
- 13 high driving I/O ports with LED driving capability and 40mA current sink

Clock Management

- Internal oscillator: 8MHz ±1.5%(typ), @ 2.7V~3.6V
- 32768Hz Crystal input @ 1.62V~1.98V
- PLL (Phase-Lock Loop): 8MHz~96MHz, step=4MHz
 @ 2.7V~3.6V

Flexible Power Management (Operating/ Power down/ Wait/ Halt Mode)

- Operating mode: High performance@96MHz high speed
- Deep Halt mode: 3.3V/1.8V off with only RTC on and approximately 5uA current
- Wait mode: CPU clock off and system clocks are all on
- Halt mode: CPU and system clocks are all off. Only RTC, 32768Hz-XTAL, and LDOs modules are active

■ Picture Process Unit (PPU)

- 3 Text layers + 256 Sprites
- QVGA output
- Line-base operation
- Up to 1024 x 1024 Text Size

■ TFT-LCD controller

- UPS051 (serial RGB)
- UPS052 (serial RGB dummy),
- Parallel RGB
- I80 (8-bit/16-bit system bus) I/F type
- CCIR601/CCIR656
- Supports various LCD resolutions: 160x128, 220x176, and 320x240

■ Mono and 16-gray STN-LCD controller interface

Sound Process Unit (SPU)

- 16 hardware PCM/ADPCM channels
- Cache supporting for directly accessing 16-channel wave table on external SPI Flash, 2-channel A1800 playback
- 16-channel capacitive touch detection
- Two-channel DMA controller
- 29 interrupt sources.
- Universal Serial Bus (USB) 2.0 full speed compliant device with built-in transceiver
- Watchdog timer
- Independent power real-time clock

- 11-output x 8-input matrix key scan controller
- Eight 16-bit timers
- Six re-loadable timers/counters support comparison, PWM, capture and BAM (4-bit angle modulation)
- SPI master/slave controller.
- Power controller with on power-on key and one system power enable output pad.
- Built-in 5.5V to 3.3V regulator, 3.3V to 1.8V regulator, Regulator for touch pad macro and regulator for ADC

- Low voltage reset(LVR)(2.4V trigger/2.6V release for 3.3V)
- IOSC, 96MHz PLL
- DAC/Amplifier: 16-bit stereo L and R DAC output that can be added external amplifier. Or mix L_R internally then through a push pull amplifier output, which can driver external speaker directly.
- ADC: Two 12-bit ADCs
 - One for MIC in with PGA and digital AGC
 - One for 1-channel line-in

4. SIGNAL DESCRIPTION

Left Side

Package No	Name	Group	Туре	Normal Function Description
1	IOE5	ADC	I/O	IOE5 or ADC line in 5
2	IOE6	ADC	I/O	IOE6 or MIC input or UART_RX
3	IOE7	ADC	I/O	IOE7 or ADC voltage reference output or UART_TX
4	VSS_ADC	ADC	G	ADC ground
5	V33_ADC	ADC	Р	3.3V ADC power. This power can be provided by internal
				regulator out and then connect capacitor to ADC ground only.
6	RESETB	SYS	I	Reset pin, low active.
7	ICECK	ICE	I	ICE clock input. Default is input pull low.
8	ICEDA	ICE	I/O	ICE data. Default is input pull low.
9	IOD0	SPI FLASH I/F	I/O	Default is SPI FLASH DATA0
10	IOD1	SPI FLASH I/F	I/O	Default is SPI FLASH CLOCK
11	DVSS	Digital Ground	G	Digital ground
12	IOD2	SPI FLASH I/F	I/O	Default is SPI FLASH DATA3
13	IOD3	SPI FLASH I/F	I/O	Default is SPI FLASH CSB
14	IOD4	SPI FLASH I/F	I/O	Default is SPI FLASH DATA1
15	IOD5	SPI FLASH I/F	I/O	Default is SPI FLASH DATA2
16	V33_DVCC	Digital 3.3V	Р	3.3V I/O power input for PortD

Bottom Side

Package No	Name	Group	Туре	Normal Function Description		
17	V18_DVCC	Digital 1.8V	Р	1.8V digital power		
18	IOA0	High driving IO	I/O	IOA0 or TFT TE input(i-80) or external input interrupt(EXT0_INT)		
19	IOA1	High driving IO	I/O	IOA1 or TFT OEB(i-80) or TFT DE or SPI1 DO		
20	IOA2	High driving IO	I/O	IOA2 or TFT R/S(i-80) or TFT HSYNC or SPI1 CSB		
21	IOA3	High driving IO	I/O	IOA3 or TFT CSB(i-80) or TFT VSYNC or SPI1 CLK		
22	IOA4	High driving IO	I/O	IOA4 or TFT WEB(i-80) or TFT clock or SPI1 DI		
23	IOB0	High driving IO	I/O	IOB0 or TimerA CCP or TFT D0(CCIR)		
24	IOB1	High driving IO	I/O	IOB1 or TimerB CCP or TFT D1(CCIR)		
25	V50_IOAB	IO power	Р	PortA /B power input		
26	IOB2	High driving IO	I/O	IOB2 or TimerC CCP or TFT D2(CCIR)		
27	IOB3	High driving IO	I/O	IOB3 or TimerD CCP or TFT D3(CCIR)		
28	IOB4	High driving IO	I/O	IOB4 or Timer PWM0 or TFT D4(CCIR) or SPI1 DO		
29	IOB5	High driving IO	I/O	IOB5 or Timer PWM1 or TFT D5(CCIR) or SPI1 CSB		
30	IOB6	High driving IO	I/O	IOB6 or Timer PWM2 or TFT D6(CCIR) or SPI1 CLK		
31	IOB7	High driving IO	I/O	IOB7 or Timer PWM3 or TFT D7(CCIR) or SPI1 DI		
32	IOF0	Touch	Ю	IOF0 or Touch pad 0 or TFT B3(CCIR) or TFTD0(CCIR) or SPI1 DO		

Right Side

Right Side				
Package No	Name	Group	Normal Function Description	
33	IOF1	Touch	Ю	IOF1 or Touch pad 1 or TFT B4(CCIR) or TFTD1(CCIR) or SPI1 CSB
34	IOF2	Touch	Ю	IOF2 or Touch pad 2 or TFT B5(CCIR) or TFTD2(CCIR) or SPI1 CLK
35	IOF3	Touch	Ю	IOF3 or Touch pad 3 or TFT B6(CCIR) or TFTD3(CCIR) or SPI1 DO
36	IOF4	Touch	Ю	IOF4 or Touch pad 4 or TFT B7(CCIR) or TFTD4(CCIR) or SPI0 DO
37	IOF5	Touch	Ю	IOF5 or Touch pad 5 or TFT G2(CCIR) or TFTD5(CCIR) or SPI0 CSB

Package No	Name	Group	Туре	Normal Function Description		
38	IOF6	Touch	Ю	IOF6 or Touch pad 6 or TFT G3(CCIR) or TFTD6(CCIR) or SPI0 CLK		
39	IOF7	Touch	Ю	IOF7 or Touch pad 7 or TFT G4(CCIR) or TFTD7(CCIR) or SPI0 DI		
40	V33_IOF	Touch	Р	3.3V power input for PortF.		
41	IOF8	Touch	Ю	IOF8 or Touch pad 8 or TFT G5(CCIR) or TFT TE input(i-80)		
42	IOF9	Touch	Ю	IOF9 or Touch pad 9 or TFT G6(CCIR) or TFT OEB(i-80) or TFT DE(CCIR)		
43	IOF10	Touch	Ю	IOF10 or Touch pad 10 or TFT G7(CCIR) or TFT R/S(i-80) or TFT		
				HSYNC(CCIR)		
44	IOF11	Touch	Ю	IOF11 or Touch pad 11 or TFT R3(CCIR) or TFT CSB(i-80) or TFT		
				VSHYNC(CCIR) or UART TX		
45	IOF12	Touch	Ю	IOF12 or Touch pad 12 or TFT R4(CCIR) or TFT WEB(i-80) or TFT CLK(CCIR)		
				or UART RX		
46	IOF13	Touch	Ю	IOF13 or Touch pad 13 or TFT R5(CCIR) or I2C CLK		
47	IOF14	Touch	Ю	IOF14 or Touch pad 14 or TFT R6(CCIR) or I2C SDA		
48	IOF15	Touch	Ю	IOF15 or Touch pad 15 or TFT R7(CCIR) or external input interrupt(EXT1_INT)		

Top Side

Package No	Name	Group	Туре	Normal Function Description
49	V50_DAC	DAC_AMP	Р	DAC power (up to 5.5V) input
50	VSS_DAC	DAC_AMP	G	DAC ground
51	VSS_AMP	DAC_AMP	G	Audio AMP ground
52	AUDN	DAC_AMP	AO	Audio AMP output N/DAC output channel L
53	AUDP	DAC_AMP	AO	Audio AMP output P/DAC output channel R
54	V50_LDO	LDO	Р	DC 5V power input
55	VSS_LDO	LDO	G	LDO ground
56	PWR_ON	LDO	Al	Power-on key, high active. Default is input pull low
57	V18_REG	LDO	Р	Internal V1.8 LDO regulator output
58	V33_REG	LDO	Р	Internal V3.3 regulator output
59	DP	USB	I/O	DP pin of USB PHY
60	DN	USB	I/O	DN pin of USB PHY
61	X32KO	RTC	AO	32768Hz X'TAL output
62	X32KI	RTC	Al	32768Hz X'TAL input
63	V18_RTC	RTC	Р	RTC power output if V50_LDO is provided.
				RTC power input if V50_LDO is not provided.
64	V33_PLL	PLL	Р	3.3V PLL power input

4.1. Pin Map

Package Pin Sequence - LQFP64 Package Top View

5. FUNCTIONAL DESCRIPTIONS

5.1. CPU

GPL95101UA equips a 16-bit μ 'nSPTM 2.0 CPU with sixteen registers: R1 - R4 (General-purpose registers), PC (Program Counter), SP (Stack Pointer), Base Pointer (BP), SR (Segment Register) and R8 - R15 (General-purpose registers). The interrupt includes three FIQs (Fast Interrupt Request) and eight IRQs (Interrupt Request), plus one software-interrupt, BREAK. GPL95101UA is also built-in an 8K bytes I-cache which can increase the performance significantly.

5.2. Memory

5.2.1. Internal SRAM

The amount of SRAM is 10K-word (including stack), ranged from 0x0000 through 0x27FF with access speed of one CPU clock. Since this SRAM is located in CPU's local bus, the system bus will not be occupied when the SRAM is accessed by CPU. It can be accessed by CPU/PPU/DMA/LCD.

5.2.2. SPI FLASH memory

The memory space of SPI FLASH is from 0x9000 and it is linear mapping, the range is dependent on the density of the external SPI FLASH. Other bus masters such as PPU, SPU and DMA can access SPI FLASH directly. Both 2-IO and 4-IO mode are supported to enhance system performance. The controller is configurable for various SPI FLASH providers with different timing formats. The maximum SPI FLASH clock is up to 96MHz (PCB dependent).

5.3. PLL, Clock, Power Mode

5.3.1. PLL (Phase Lock Loop)

An internal 8MHz oscillator and a 96MHz PLL are embedded in GPL95101UA.

5.3.2. System clock

Several system clock options are available via registers settings: 32768Hz, 8MHz, or 96MHz. (determined by fast PLL's output frequency). Furthermore, a clock divider which can divide clock up to 1/128 is provided to reduce the power consumption.

5.4. Power Savings Mode

The GPL95101UA has four power management modes: Operating, Deep Halt, Wait, and Halt.

Mode	CPU	System	RTC	POWEREN	After wakeup
Operating	ON	ON	ON	ON	-
Deep	OFF*	OFF*	ON	OFF*	Reset System
Halt					-
Wait	OFF	ON	ON	ON	Next Instruction
Halt	OFF	OFF	ON	ON	Next Instruction

*OFF: In Deep Halt mode, OFF is power off; in other modes, OFF means clock off.

Entering Deep Halt/Wait/Halt mode is implemented by writing a specific value to a designated port. The wakeup source can be a key-change or RTC wakeup.

5.5. Picture Process Unit

GPL95101UA also outfits a powerful processing engine, PPU, which has the following features.

Item	Features							
Text	Maximum of three text layers at the same time							
Layer	Supports text size up to 1024x1024.							
	Supports Text scale effect.							
	4. Text1 and text2 support horizontal/ vertical							
	compression effect.							
	5. Supports horizontal movement effect.							
	6. Supports 64-level alpha blending.							
Sprite	Maximum 256 sprites at the same time							
	Each sprite supports 64-level rotate function.							
	3. Each sprite supports 64-level zoom in/ zoom out							
	function from 1/32 to 8.75 times.							
	4. Each sprite supports 64-level alpha blending							
	effect.							
	5. Each sprite supports three types of mosaic effect.							
	6. All above functions can involve at the same time.							
Color	1. Text layer and sprites support 4/16/64/256-color							
	palette and RGB1555/ RGB565/ YUYV/ RGBG							
	bitmap mode.							
 1024 palette entrances for text layers and s Supports 16-bit level of palette index color. 								
						Other	Supports sprite DMA function	
Features	Supports sprite DMA function.							

5.6. Sound Process Unit

GPL95101UA equips a 16-channel SPU. Each channel of SPU supports PCM8/ PCM16/ ADPCM36. For software application, GPL95101UA also supports wide-band (sample rate >= 16KHz) low bit rate algorithm.

Jan. 16, 2019

Version: 1.0

5.7. Video Output Interface

5.7.1. STN-LCD Interface

The STN-LCD driver interface supports LCD resolution up to 320 x 240 and 1/4-bit data bus for monochrome/gray-scale STN. Memory interface type CSTN is also supported.

5.7.2. TFT-LCD Interface

GPL95101UA supports TFT-LCD controller. The LCM interface includes parallel RGB (5-6-5), serial delta RGB, serial stripe RGB, CPU (MPU) type, and CCIR601/CCIR656. The horizontal resolution of TFT controller can reach 320 pixels, and the vertical resolution of TFT controller is up to 240 pixels. The TFT controller mainly provides four timing control pins and 8 or 16 data pins to control external TFT panel. Those are VSYNC, HSYNC, DE, DCLK, and DATA.

5.8. Interrupt

GPL95101UA has 29 interrupt sources, grouped into two types, FIQ (Fast Interrupt Request) and IRQ (Interrupt request). The priority of FIQ is higher than IRQ. FIQ is the high-priority interrupt and IRQ is the low-priority one. An IRQ can be interrupted by a FIQ, but not by another IRQ. A FIQ cannot be interrupted by any other interrupt sources. Some of the interrupt source can be programmed as FIQ or IRQ by register settings.

5.9. GPIO

Five I/O ports are available in GPL95101UA: IOA, IOB, IOD, IOE, and IOF. IOA and IOB provide high current sink capability for LED applications. IOE shares with ADC, and IOF shares with touch pads. Each I/O pin has its normal function and is described in the signal description section. When an I/O's normal function is disabled, it will switch to GPIO function automatically. The following diagram is a GPIO schematic.

5.10. Timer / Counter

GPL95101UA provides eight 16-bit timers/counters, TimerA to TimerH. The clock source of each timer can be set individually. For TimerA to TimerH, an INT will be sent to CPU when timer

overflows. Besides, BAM, Capture, Comparison and PWM functions are also provided by TimerA ~ TimerF.

Clock Source A	Clock Source B		
Fosc/2	2048Hz		
Fosc/256	1024Hz		
32768Hz	256Hz		
8192Hz	Time Base B		
4096Hz	Time Base A		
1	0		
Another Timer	1		
INT1	INT2		

The GPL95101UA features a time base controller which is used to generate a slow and precise interrupt from 32768Hz crystal. The following table shows available timebases.

and ming table one available times acce.						
TimeBase A	TimeBase B	TimeBase C				
	8Hz	128Hz				
1Hz	16Hz	256Hz				
2Hz	32Hz	512Hz				
4Hz	64Hz	1024Hz				

5.11. Watchdog

The purpose of watchdog is to monitor whether the system operates normally. Within a specific period, watchdog must be cleared. If not, CPU assumes program has been running into an abnormal condition. As a result, CPU will reset the system to the initial state and start running the program all over again. In GPL95101UA, the clearance period is software programmable. If watchdog is cleared before expiration, the system will not be reset.

5.12. Serial Interface

5.12.1. Serial Peripheral Interface (SPI)

The SPI interface is a master interface that enables synchronous serial communication with slave/master peripherals. Two 8-byte FIFOs are used for transmitting and receiving data. Four types of timing waveforms are supported and shown in the following diagram.

SPO = 0, SPH = 0

SPO = 0, SPH = 1

SPO = 1, SPH = 0

SPO = 1, SPH = 1

5.12.2. USB Device Function

GPL95101UA also features USB function which is compatible with USB 1.1 and USB 2.0 full speed standard. A FIFO with size of 128x8 is used for bulk-in and bulk-out transmission and an 8-byte FIFO is used for pipe transmission control. Interrupt IN/OUT pipes are also supported. The DMA transferring is enabled for bulk-in/out to maximize the transmission performance.

5.13. IDE Tools Function

The IDE includes the following functions:

- 1) C compiler, Assembler, and Linker
- 2) Single step trace
- 3) Break point (break point for debug)
- 4) Run (execution)

5.14. Real Time Clock (RTC)

The RTC block provides the alarm function, schedule function, and hour/minute/second/half-second interrupt function.

5.15. Analog Control

5.15.1. DAC/AMP control

A 16-bit stereo DAC (2ch) is embedded in GPL95101UA. For both left and right channels, a 16x16 FIFO is used to avoid sound glitch when CPU is busy. The left and right channels do not need to have the same sample rate. A single DMA channel can use the stereo playback and a push-pull AMP is built in for speaker applications.

6. ELECTRICAL SPECIFICATIONS

6.1. Absolute Maximum Rating

Rating	Symbol	Value	Unit
Supply Voltage 1	V33_DVCC	-0.3 to 4.0	V
	V33_IOF		
	V33_PLL		
	V33_ADC		
	V33_USB		
Supply Voltage 2	V18_DVCC	-0.3 to 2.16	V
	V18_RTC		
Supply Voltage 3	V50_IOAB	-0.3 to 5.5	V
	V50_DAC		
	V50_AMP		
	V50_LDO		
Input Voltage	V_{IN}	-0.3 to 4.0	V
Operating Temperature	T _A	0 to 70	$^{\circ}$
Storage Temperature	T _{STG}	-40 to +150	$^{\circ}$ C

6.2. DC Characteristics

9 1			Limits			
Characteristic	Symbol	Min.	Тур.	Max.	Unit	Condition
Operating Voltage 1	V33_DVCC V33_IOF V33_PLL V33_ADC V33_USB	2.7 3.0 ¹	3.3	3.6	٧	-
Operating Voltage 2	V18_DVCC V18_RTC	1.62	1.8	1.98	V	-
Operating Voltage 3	V50_IOAB V50_DAC V50_AMP V50_LDO	2.9 3.3	3.6	5.5	٧	-
Operating Current	I _{OP}	-	55 ²	-	mA	@96MHz, 3.3V, all clocks on
Deep Halt mode Current	I _{PD}	-	5	25	μА	All power off except RTC
Halt mode Current	I _{HALT}	-	40	85	μΑ	3.3V, system clock off, Internal Power on, RTC ON
High Input Voltage	V_{IH}	0.7*Vsource ³	-	Vsource ³	V	-
Low Input Voltage	V_{IL}	VSS	-	0.8	V	-
Output High/Low Current (I/O)	l _{он}	-	44	-	mA	IO is 3.3V, VOH=0.7*VDDIO and IO driving set as 4mA.
	I _{OL}	-	7 ⁴	-	mA	IO is 3.3V, VOL=0.3*VDDIO and IO driving set as 4mA.
IO Input Pull-Low Resistor	R_{PL}	-	95K	-	ОНМ	IO 3.3V on PA/PB/PD/PE/PF IO 4.5V on PD/PE/PF
	R_{PL}	-	70K	-	ОНМ	IO 4.5V on PA/PB
IO Input Pull-High	R_{PH}	-	95K	-	ОНМ	IO 3.3V on PA/PB/PD/PE/PF

11

Characteristic		Limits				
	Symbol	Min.	Тур.	Max.	Unit	Condition
Resistor						IO 4.5V on PD/PE/PF
	R _{PH}	-	70K	-	-	IO 4.5V on PA/PB
Crystal Frequency	-	-	32768	-	Hz	-
System Clock	F _{SYS}	256Hz	48	96	MHz	-

Note1: When USB function is enabled, the minimum voltage of operation voltage 1 is 3.0V, and 3.3V for operating voltage 3.

Note2: Operating current depends on software code. In this test case, all clocks are on and system is in idle mode.

Note3: Vsource may be V33_DVCC, V33_IOF, V33_ADC or V50_IOAB.

Note4: IO driving can be setup by program. There are 4mA/8mA/12mA/16mA can be setup and default driving is 4mA.

6.3. Audio DAC Characteristics

		Limits			
Characteristic	Min.	Тур.	Max.	Unit	Condition
Resolution	-	16	-	Bit	-
Full Scale Output Voltage	-	0.6*VDDDA	-	Vp-p	-
THD+N ($f = 1kHz$)	-	0.1	-	%	-
Noise at No Signal	-	90	-	dBrA	-
Frequency Response	20	-	19200	Hz	-

6.4. SAR ADC Characteristics

9					
Characteristics	Symbol	Min.	Тур.	Max.	Unit
SAR ADC Input Voltage Range	VIN_RANGE	2.7	=	3.6	V
Resolution of ADC	RESO	12	12	12	bit
Signal-to-Noise Plus Distortion of ADC from Line in	SINAD (Note 1)	58	60	62	dB
Effective Number of Bit	ENOB (Note 2)	9.0	9.66	10	bit
Integral Non-Linearity of ADC	INL	-	+/-3	-	LSB (Note 3)
Differential Non-Linearity of ADC	DNL	-	+/-2	-	LSB
No Missing Code		10	11	12	bit
AD Conversion Rate=ADCCLK/16	F _{CONV}	-	=	125K	Hz

Note1: The SINAD testing condition at VINLp-p = 0.8 * V33_AD, FCONV = 62.5KHz, Fin = 1.0KHz Sine waves at V33_AD = 3.0V from ADC input.

Note2: ENOB = (SINAD - 1.76) / 6.02.

Note3: LSB means Least Significant Bit (at 12-bit resolution).

6.5. LDO18 Characteristics

		Unit			
Characteristics	Symbol	Min.	Тур.	Max.	Unit
Input Voltage	VREGI	2.7	3.3	3.6	V
Maximum Current Output	IREGO	=	140	280	mA
Output Voltage	VREGO	1.33 ¹	1.8	1.995	V
Standby Current	IREGS	-	3	-	uA

Note1: To save more power, it is recommended switching to 1.4V before entering the halt mode and switching to 1.8V in normal operation mode.

6.6. LDO33 Characteristics

		Unit			
Characteristics	Symbol	Min.	Тур.	Max.	Unit
Input Voltage	VREGI	2.9	3.6	5.5	V
Maximum Current Output	IREGO	-	350	700	mA
Output Voltage	VREGO	2.85	3.3	3.465	V
Standby Current	IREGS	-	3	-	uA

7. RECOMMENDED BOARD LAYOUT

7.1. Power and Ground

All digital power and ground should be connected. The decoupling capacitor of $0.1\mu F$ and $10\mu F$ should be connected to each power pin as the following diagram. The power of analog parts should be connected from power source with high quality.

7.2. Analog Section

A specific AGND ground plane, connected by a single trace to the GND ground, should be provided. No digital signal should cross the AGND plane. AVREF_ADC should be connected to a $1\mu F$ capacitor.

8. ORDERING INFORMATION

8.1. Ordering Information

Product Number	Package Type
GPL95101UA - NnnV – QL24x	Halogen Free Package

Note1: Code number is assigned for customer.

Note2: Code number (N = A - Z or 0 - 9, nn = 00 - 99); version (V = A - Z).

Note3: Package form number (x = 1 - 9, serial number).

8.2. Package Information

LQFP 64

Symbols	Min.	Nom.	Max.
А	-	-	1.60
A1	0.05	-	0.15

Symbols	Min.	Nom.	Max.			
A2	1.35	1.40	1.45			
b	0.13	0.18	0.23			
С	0.09	-	0.20			
D		9.00 BSC				
D1		7.00 BSC				
e	0.40 BSC					
Е	9.00 BSC					
E1	7.00 BSC					
L	0.45	0.60	0.75			
L1	1.00 REF					
θ	0°	3.5°	7°			

Notes:

- 1. JEDEC Outline: MS-026 BCD
- 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Dimension b does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08mm.

9. DISCLAIMER

The information appearing in this publication is believed to be accurate.

Integrated circuits sold by Generalplus Technology are covered by the warranty and patent indemnification provisions stipulated in the terms of sale only. GENERALPLUS makes no warranty, express, statutory implied or by description regarding the information in this publication or regarding the freedom of the described chip(s) from patent infringement. FURTHERMORE, GENERALPLUS MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. GENERALPLUS reserves the right to halt production or alter the specifications and prices at any time without notice. Accordingly, the reader is cautioned to verify that the data sheets and other information in this publication are current before placing orders. Products described herein are intended for use in normal commercial applications. Applications involving unusual environmental or reliability requirements, e.g. military equipment or medical life support equipment, are specifically not recommended without additional processing by GENERALPLUS for such applications. Please note that application circuits illustrated in this document are for reference purposes only.

10. REVISION HISTORY

Date	Revision #	Description	Page
Jan. 16, 2019	1.0	Modify DAC descriptions	4
		2. Modify 8 timers for PWM to 6 timers for PWM	4
		Modify PWR_ON descriptions in "SIGNAL DESCRIPTION"	5
		4. Modify Audio DAC Characteristics	13
		5. Add SAR ADC Characteristics	13
Oct. 05, 2016	0.1	Preliminary version.	18