

Análisis y Diseño de Pavimentos por la Metodología de la UNAM

Guía elaborada por M. en I. Ing. Martín Olvera Corona Agosto 2025

El Modelo Teórico parte de los siguientes supuestos:

Para analizar el comportamiento del pavimento, se integra la teoría de distribución de esfuerzos verticales de Boussinesq, desarrollada para una placa circular flexible de radio "a" apoyada sobre un medio elástico, homogéneo e isotrópico.

$$\sigma z(i) = q \left[1 - \frac{Z^3}{(a^2 + Z^2)^{3/2}} \right]$$

Z = Profundidad del daño en cmq = Presión de contacto enkg/cm2a = Radio de la placa circular decarga o presión "q"

dano $unitario_Z = f\{\sigma_Z\} = f\{q, Z, P, a\}$

$$a = \sqrt{\frac{1000(P)}{2\pi q}}$$

$$a = \sqrt{\frac{1000(P)}{4\pi q}}$$

Z<30cm

$$a = \sqrt{\frac{1111(P)}{4\pi q}}$$

$$a = \sqrt{\frac{1000(P)}{6\pi q}} \qquad a = \sqrt{\frac{13}{2}}$$

$$Z < 30 \text{cm}$$

Eje sencillo

Eje doble o Tándem

Eje triple o Trídem

Cálculo del esfuerzo vertical en kg/cm2 que produce cualquier carga

$$\sigma z(i) = q \left[1 - \frac{Z^3}{(a^2 + Z^2)^{3/2}} \right]$$

Cálculo del esfuerzo vertical en kg/cm2 que produce una carga estandar

$$\sigma z(st) = 5.8 \left[1 - \frac{Z^3}{(15^2 + Z^2)^{3/2}} \right]$$

Cálculo del coe te de daño units

$$d = 10^{4} \frac{\log(\sigma z(i)) - \log(\sigma z(st))}{\log(1.5)}$$

P= f(tipo camino)

No.	Tipo	L2	No.		Tipo de	camino)	Formula para calcular la cantidad de ejes en el 1er. Año
Eje	Eje	Clave	Llantas	ET Y A	В	С	D	Formula para calcular la carridad de ejes en el Ter. Ario
0	Sencillo	1	2	1	1	1	1	2*A*(fvc+fvv)
1	Sencillo	1	2	6.5	6	5.5	5	(100-A+B4)*fvc
2	M-Dual	1	4	12.5	10.5	9	8	(B2+C2+T2S1+T2S2+T2S3+T2S2S2)* fvc
3	Dual	1	4	10	9.5	8	7	(2*C2R2+2*C3R2+C3R3+C2R3+3*T2S1R2+2*T2S1R3+
3	Duai	'	4	10	9.5	0	_ ′	2*T2S2R2+3*T3S1R2+2*T3S1R3+2*T3S2R2+T3S2R3)*fvc
4	Dual	1	4	11	9.5	8	7	(T2S1+T3S1)*fvc
5	M-Dual	1	4	11	10.5	9	8	(C2R2+C2R3+T2S1R2+T2S1R3+T2S2R2)*fvc
								(B2+B36+B38+2*B4+2*C2+C36+C38+4*C2R2+3*C3R2+
								2*C3R3+3*C2R3+3*T2S1+2*T2S2+T3S2+T3S3+2*T3S1+
6	Sencillo	1	2	4	4	4	4	5*T2S1R2+4*T2S1R3+4*T2S2R2+4*T3S1R2+3*T3S1R3+
								3*T3S2R2+T3S2R4+2*T3S2R3+T3S3S2+2*T2S2S2+T3S2S2)*fvv
7	Sencillo	1	4	7	7	7	7	(B2+B36+B38+B4)*fvv
8	M-Doble	2	6	17.5	13	11.5	11	(B36+B4+C36+T3S1R3)* <mark>fvc</mark>
9	M-Doble	2	8	21	17	14.5	13.5	(B38+C38+T3S2+T3S3+T3S1+T3S2S2)*fvc
10	Doble	2	8	17	15	13.5	12	(C3R3+C2R3+T2S1R3+T2S2R2+T3S1R3+T3S2R2+3*T3S2R4+
10	Doble	2	0	17	13	13.3	12	2*T3S2R3+2*T2S2S2+2*T3S2S2)*fvc
11	Doble	2	8	19	15	13.5	12	(T2S2+T3S2+T3S3S2)*fvc
12	M-Doble	2	8	18	17	14.5	13.5	(C3R2+C3R3+T3S1R2+T3S2R2+T3S2R4+T3S2R3+T3S3S2)*fvc
								(C36+C38+C3R2+2*C3R3+C2R3+T2S2+2*T3S2+T3S3+T3S1+
13	Doble	2	8	4.5	4.5	4.5	4.5	T2S1R3+T2S2R2+T3S1R2+2*T3S1R3+2*T3S2R2+4*T3S2R4+
								3*T3S2R3+2*T3S3S2+2*T2S2S2+3*T3S2S2)*fvv
14	Triple	3	12	23.5	22.5	20	18	T3S3S2*fvc
15	Triple	3	12	26.5	22.5	20	18	(T3S3+T2S3)* <mark>fvc</mark>
16	Triple	3	12	5	5	5	5	T3S3S2*fvv

Pvp	= Porcentaje de vehículos cargados.
fvp	= Factor de vehículos cargados
fvv	= Factor de vehículos vacíos

No de carriles por sentido de circulación	Rangos para el Coeficiente de distribución para el carril de diseño	Propuesta Factor de carril de diseño fcd		
1	0.5	0.50		
2	De 0.4 a 0.5	0.45		
3 o más	De 0.3 a 0.4	0.40		

Cuadro 8. Coeficientes de distribución para el carril de diseño. Fuente: Elaboración propia

$$TDPAcd = fcd * (TDPA)$$

$$fvp = 0.0365*Pvp*TDPAcd$$

$$fvv = 0.0365 * (100 - Pvp) * TDPAcd$$

No.	Figura	Nombre	Eje no.	No. Llantas	Eje tipo	ET y A	В	С	D	Eje no.	Vacios
1		A2	0	2	1	1	1	1	1		
	***	A2	0	2	1	1	1	1	1		
2		B2	1	2	1	6.5	6	5.5	5	6	4
	ii o ii	B2	2	4	1	12.5	10.5	9	8	7	7
3		B36	1	2	1	6.5	6	5.5	5	6	4
	00 0	B36	8	6	2	17.5	13	11.5	11	7	7
4		B38	1	2	1	6.5	6	5.5	5	6	4
	66 6	B38	9	8	2	21	17	14.5	13.5	7	7
5		B4	1	2	1	6.5	6	5.5	5	6	4
	00 00	B4	1	2	1	6.5	6	5.5	5	6	4
	00 00	B4	8	6	2	17.5	13	11.5	11	7	7
6		C2	1	2	1	6.5	6	5.5	5	6	4
	· • • • • • • • • • • • • • • • • • • •	C2	2	4	1	12.5	10.5	9	8	6	4
7		C36	1	2	1	6.5	6	5.5	5	6	4
		C36	8	6	2	17.5	13	11.5	11	13	4.5
8		C38	1	2	1	6.5	6	5.5	5	6	4
		C38	9	8	2	21	17	14.5	13.5	13	4.5
9		C2-R2	1	2	1	6.5	6	5.5	5	6	4
		C2-R2	5	4	1	11	10.5	9	8	6	4
		C2-R2	3	4	1	10	9.5	8	7	6	4
10		C2-R2	3	4	1	10	9.5	8	7	6	4
10	-	C3-R2 C3-R2	1 12	2 8	2	6.5 18	6 17	5.5 14.5	5 13.5	6 13	4 4.5
		C3-R2	3	4	1	10	9.5	8	7	6	4
		C3-R2	3	4	1	10	9.5	8	7	6	4
11		C3-R3	1	2	1	6.5	6	5.5	5	6	4
		C3-R3	12	8	2	18	17	14.5	13.5	13	4.5
		C3-R3	3	4	1	10	9.5	8	7	6	4
		C3-R3	10	8	2	17	15	13.5	12	13	4.5
12		C2-R3	1	2	1	6.5	6	5.5	5	6	4
		C2-R3	5	4	1	11	10.5	9	8	6	4
	000000	C2-R3	3	4	1	10	9.5	8	7	6	4
		C2-R3	10	8	2	17	15	13.5	12	13	4.5
13		T2-S1	1	2	1	6.5	6	5.5	5	6	4
	OVO	T2-S1	2	4	1	12.5	10.5	9	8	6	4
	9 : 9	T2-S1	4	4	1	11	9.5	8	7	6	4

No.	Figura	Nombre	Eje no.	No. Llantas	Eje tipo	ET y A	В	С	D	Eje no.	Vacios
14		T2-S2	1	2	1	6.5	6	5.5	5	6	4
		T2-S2	2	4	1	12.5	10.5	9	8	6	4
	0040	T2-S2	11	8	2	19	15	13.5	12	13	4.5
15		T3-S2	1	2	1	6.5	6	5.5	5	6	4
		T3-S2	9	8	2	21	17	14.5	13.5	13	4.5
	00 4 00	T3-S2	11	8	2	19	15	13.5	12	13	4.5
16		T3-S3	1	2	1	6.5	6	5.5	5	6	4
		T3-S3	9	8	2	21	17	14.5	13.5	13	4.5
	999 V 99	T3-S3	15	12	3	26.5	22.5	20	18	16	5
17	1.	T2-S3	1	2	1	6.5	6	5.5	5	6	4
		T2-S3	2	4	1	12.5	10.5	9	8	6	4
	999 Y 9	T2-S3	15	12	3	26.5	22.5	20	18	16	5
18	1.	T3-S1	1	2	1	6.5	6	5.5	5	6	4
		T3-S1	9	8	2	21	17	14.5	13.5	13	4.5
	0 4 00 mm	T3-S1	4	4	1	11	9.5	8	7	6	4
19		T2-S1-R2	1	2	1	6.5	6	5.5	5	6	4
		T2-S1-R2	5	4	1	11	10.5	9	8	6	4
		T2-S1-R2	3	4	1	10	9.5	8	7	6	4
	040040	T2-S1-R2	3	4	1	10	9.5	8	7	6	4
		T2-S1-R2	3	4	1	10	9.5	8	7	6	4
20		T2-S1-R3	1	2	1	6.5	6	5.5	5	6	4
		T2-S1-R3	5	4	1	11	10.5	9	8	6	4
	0040040-	T2-S1-R3	3	4	1	10	9.5	8	7	6	4
		T2-S1-R3 T2-S1-R3	3 10	8	2	10 17	9.5 15	8 13.5	12	6 13	4 4.5
21		T2-S1-R3	10	2	1	6.5	6	5.5	5	6	4.5
21		T2-S2-R2	5	4	1	11	10.5	9	8	6	4
		T2-S2-R2	10	8	2	17	15	13.5	12	13	4.5
	040 00 4 0 == 0	T2-S2-R2	3	4	1	10	9.5	8	7	6	4
		T2-S2-R2	3	4	1	10	9.5	8	7	6	4
22		T3-SI-R2	1	2	1	6.5	6	5.5	5	6	4
		T3-SI-R2	12	8	2	18	17	14.5	13.5	13	4.5
		T3-SI-R2	3	4	1	10	9.5	8	7	6	4
	0400400	T3-SI-R2	3	4	1	10	9.5	8	7	6	4
		T3-SI-R2	3	4	1	10	9.5	8	7	6	4
23		T3-S1-R3	1	2	1	6.5	6	5.5	5	6	4
		T3-S1-R3	8	6	2	17.5	13	11.5	11	13	4.5
	0040 04 00	T3-S1-R3	3	4	1	10 10	9.5 9.5	8	7	6	4
		T3-S1-R3	10	8	2	17	9.5 15	13.5	12	13	4.5
	l .	12-2T-V2	10	0		Ι/	10	13.3	14	13	٠.٦

No.	Figura	Nombre	Eje no.	No. Llantas	Eje tipo	ET y A	В	С	D	Eje no.	Vacios
24		T3-S2-R2	1	2	1	6.5	6	5.5	5	6	4
		T3-S2-R2	12	8	2	18	17	14.5	13.5	13	4.5
		T3-S2-R2	10	8	2	17	15	13.5	12	13	4.5
	04 0 00 A 00 - 0	T3-S2-R2	3	4	1	10	9.5	8	7	6	4
		T3-S2-R2	3	4	1	10	9.5	8	7	6	4
25		T3-S2-R4	1	2	1	6.5	6	5.5	5	6	4
		T3-S2-R4	12	8	2	18	17	14.5	13.5	13	4.5
	00400 00 A 00 F	T3-S2-R4	10	8	2	17	15	13.5	12	13	4.5
		T3-S2-R4	10	8	2	17	15	13.5	12	13	4.5
		T3-S2-R4	10	8	2	17	15	13.5	12	13	4.5
26		T3-S2-R3	1	2	1	6.5	6	5.5	5	6	4
		T3-S2-R3	12	8	2	18	17	14.5	13.5	13	4.5
	0040 004 00	T3-S2-R3	10	8	2	17	15	13.5	12	13	4.5
	700 4 0 00 4 00	T3-S2-R3	3	4	1	10	9.5	8	7	6	4
		T3-S2-R3	10	8	2	17	15	13.5	12	13	4.5
27		T3-S3-S2	1	2	1	6.5	6	5.5	5	6	4
		T3-S3-S2	12	8	2	18	17	14.5	13.5	13	4.5
	004 000 A 00	T3-S3-S2	14	12	3	23.5	22.5	20	18	16	5
		T3-S3-S2	11	8	2	19	15	13.5	12	13	4.5
28		T2-S2-S2	1	2	1	6.5	6	5.5	5	6	4
		T2-S2-S2	2	4	1	12.5	10.5	9	8	6	4
	00400A0 -0	T2-S2-S2	10	8	2	17	15	13.5	12	13	4.5
		T2-S2-S2	10	8	2	17	15	13.5	12	13	4.5
29		T3-S2-S2	1	2	1	6.5	6	5.5	5	6	4
		T3-S2-S2	9	8	2	21	17	14.5	13.5	13	4.5
	00400A 00 - 0	T3-S2-S2	10	8	2	17	15	13.5	12	13	4.5
		T3-S2-S2	10	8	2	17	15	13.5	12	13	4.5

Daño unitario que produce un eje sencillo

Daño unitario que produce un eje doble o Tándem

9

Daño unitario que produce un eje Triple o Trídem

Ejes equivalentes_{1er año} = \sum_{0}^{16} ejes(i) X daño unitario(i)

Eje no.	Tipo	W(Ton)	Fórmula	Radio (a)	Esf vert(i)	Daño unitario	Ejes equiv 1er año
0	1	1	2,326,875	8.92062	0.01646	0.000007	16
1	1	6.5	164,250	13.13080	0.10617	0.274299	45,054
2	1	12.5	43,800	18.20914	0.20142	10.412748	456,078
3	1	10	0	16.28675	0.16205	3.027686	0
4	1	11	0	17.08169	0.17785	5.135852	0
5	1	11	0	17.08169	0.17785	5.135852	0
6	1	4	46,538	10.30065	0.06571	0.017983	837
7	1	7	5,475	13.62647	0.11421	0.415140	2,273
8	2	17.5	0	16.0581	0.15763	2.587848	0
9	2	21	98,550	17.5908	0.18833	7.108676	700,560
10	2	17	65,700	15.8271	0.15322	2.202898	144,730
11	2	19	21,900	16.7322	0.17082	4.084367	89,448
12	2	18	21,900	16.2859	0.16203	3.026006	66,270
13	2	4.5	52,013	8.14297	0.04121	0.001270	66
14	3	23.5	0	16.6427	0.16904	3.848423	0
15	3	26.5	54,750	17.6731	0.19005	7.484960	409,802
16	3	5	0	7.67669	0.03664	0.000653	0
						Suma	1,915,133

Obtener el espesor de Grava equivalente requerido

4. Nivel de confianza(Qu)

5. Valor relativo de soporte VRSz

Función para calcular ejes equivalentes en el primer año def esal1(Zd):

Сара	VRSz mínimo (M.R. en Kg/cm2)	VRSz máximo (M.R. en Kg/cm2)		
Base granular	80 (2,793)	120 (3,710)		
Subbase	25 (1,237)	30 (1,406)		
Subrasante	15 (865)	20 (1,058)		
Terracería	3 (280)	20 (1,058)		

$$VRS_0 = 10^B$$

$$f_z = \frac{(VRS_Z)}{VRS_0[1.5]^{LOG(ESAL)}}$$

Espesor requerido en grava equivalente Z cm

$$Z = \frac{15}{\sqrt{\frac{1}{(1-f_{-})^{2/3}}-1}}$$

Descripción	Coeficiente ae
Carpeta asfáltica	2.0
Base estabilizada	Entre 1 y 2
Base hidráulica	1.0
Sub-base hidráulica	1.0

$$CT = \frac{(1+r)^n - 1}{r}$$
ESAL = CT*(esal1)

$$T = \sqrt{\ln \frac{1}{(1 - Q_u)^2}}$$

$$U = T - \frac{C_1 + C_2 T + C_3 T^2}{1 + C_4 T + C_5 T^2 + C_6 T^3}$$

B = 0.8477 +0.12*U Para base Hidráulica y capas superiores B = 0.4547 + 0.1593*U Para subbase hidrau, y capas inferiores