

Learning Bayesian Networks

Richard E. Neapolitan

Northeastern Illinois University Chicago, Illinois

Upper Saddle River, NJ 07458

Contents

Pr	eface	e		vn
I	Ba	sics		
1	Int	roduct	ion to Bayesian Networks	1
	1.1	Basics	s of Probability Theory	3
		1.1.1	Probability Functions and Spaces	
		1.1.2	Conditional Probability and Independence	6
		1.1.3	Bayes' Theorem	. 8
		1.1.4	Random Variables and Joint Probability Distributions	10
	1.2	Philos	ophical Foundations of Probability	. 17
		1.2.1	The Relative Frequency Approach to Probability.	.17
		1.2.2	The Subjective/Bayesian Approach to Probability	21
	1.3	Rando	om Variables in Statistics	
		1.3.1	Meaning of Random Variables	
		1.3.2	A Definition of Random Variables for Statistics	31
	1.4	Large	Instances / Bayesian Networks.	. 35
		1.4.1	The Difficulties Inherent in Large Instances	
		1.4.2	The Markov Condition	36
		1.4.3	Bayesian Networks	45
		1.4.4	A Large Bayesian Network	47
	1.5	Creati	ing Bayesian Networks Using Causal Edges	48
		1.5.1	Ascertaining Causal Influences Using Manipulation	49
		1.5.2	Causation and the Markov Condition	56
2	Mo	re DA	G/Probability Relationships	69
	2.1	Entail	led Conditional Independencies	. 70
		2.1.1	Examples of Entailed Conditional Independencies	70
		2.1.2	d-Separation.	. 74
		2.1.3	Finding d-Separations	. 80
	2.2	Marko	ov Equivalence	88
	2.3	Entail	ling Dependencies with a DAG	96
		2.3.1	Faithfulness	. 97

x CONTENTS

	2.4	2.3.2	Embedded Faithfulness.	
	2.4		nality.	
	2.5		v Blankets and Boundaries.	
	2.6		on Causal DAGs	
		2.6.1	The Causal Minimality Assumption	
		2.6.2	1	
		2.6.3	·	.113
II	Ir	nferen	ce	
3	Infe		Discrete Variables	125
	3.1		ples of Inference.	
	3.2	Pearl's	s Message-Passing Algorithm	128
		3.2.1		
		3.2.2	<i>U</i> ,	
		3.2.3	1 7	
		3.2.4	1 5	
	3.3		Noisy OR-Gate Model	
		3.3.1	The Model	
		3.3.2	Doing Inference with the Model	
		3.3.3	Further Models	
	3.4		Algorithms that Employ the DAG	
	3.5	The S	PI Algorithm	
		3.5.1	ι	
		3.5.2	Application to Probabilistic Inference.	
	3.6	_	lexity of Inference.	
	3.7		onship to Human Reasoning	
		3.7.1	The Causal Network Model	
		3.7.2	Studies Testing the Causal Network Model	. 174
4			rence Algorithms	183
	4.1		nuous Variable Inference.	
		4.1.1	The Normal Distribution.	
		4.1.2	An Example Concerning Continuous Variables	
		4.1.3	An Algorithm for Continuous Variables	187
	4.2		ximate Inference	206
		4.2.1	Logic Sampling	206
		4.2.2	Likelihood Weighting	212
	4.3		etive Inference.	
		4.3.1	Abductive Inference in Bayesian Networks	. 216
		4.3.2	A Best-First Search Algorithm for Abductive	
			Inference	219

CONTENTS xi

5		luence Diagrams	233
	5.1	Decision Trees.	
		5.1.1 Simple Examples	
		5.1.2 Probabilities, Time, and Risk Attitudes	237
		5.1.3 Solving Decision Trees.	239
		5.1.4 More Examples	239
	5.2	Influence Diagrams	
		5.2.1 Representing with Influence Diagrams	
		5.2.2 Solving Influence Diagrams.	
	5.3	Dynamic Networks.	
		5.3.1 Dynamic Bayesian Networks.	
		5.3.2 Dynamic Influence Diagrams.	
II	I]	Learning	
6		rameter Learning: Binary Variables	285
	6.1	Learning a Single Parameter	
		6.1.1 Probability Distributions of Relative Frequencies	
	<i>-</i>	6.1.2 Learning a Relative Frequency.	
	6.2	More on the Beta Density Function.	
		6.2.1 Nonintegral Values of a and b.	
		6.2.2 Assessing the Values of a and b.	.305
		6.2.3 Why the Beta Density Function?	
	6.3	Computing a Probability Interval	.310
	6.4	Learning Parameters in a Bayesian Network.	
		6.4.1 Urn Examples	
		6.4.2 Augmented Bayesian Networks	
		6.4.3 Learning Using an Augmented Bayesian Network	.327
		6.4.4 A Problem with Updating; Using an Equivalent Sample	
		Size	
	6.5	Learning with Missing Data Items.	
		6.5.1 Data Items Missing at Random	
		6.5.2 Data Items Missing Not at Random	.354
	6.6	Variances in Computed Relative	
		Frequencies	
		6.6.1 A Simple Variance Determination	
		6.6.2 The Variance and Equivalent Sample Size.	
		6.6.3 Computing Variances in Larger Networks	
		6.6.4 When Do Variances Become Large?	.364
7	Mo	re Parameter Learning	373
	7.1	Multinomial Variables.	.373
		7.1.1 Learning a Single Parameter	.373
		7.1.2 More on the Dirichlet Density Function	380
		7.1.3 Computing Probability Intervals and Regions	.381

xii CONTENTS

		7.1.4	Learning Parameters in a Bayesian Network	384
		7.1.5	Learning with Missing Data Items	.390
		7.1.6	Variances in Computed Relative Frequencies	390
	7.2	Conti	nuous Variables	.391
		7.2.1	Normally Distributed Variable	.391
		7.2.2	Multivariate Normally Distributed Variables	406
		7.2.3	Gaussian Bayesian Networks	418
8	Bay	esian	Structure Learning	433
	8.1	Learn	ing Structure: Discrete Variables	433
		8.1.1	Schema for Learning Structure	434
		8.1.2	Procedure for Learning Structure	437
		8.1.3	Learning From a Mixture of Observational and Experi-	
			mental Data	441
		8.1.4	Complexity of Structure Learning	443
	8.2		Averaging	443
	8.3		ing Structure with Missing Data	444
		8.3.1	Monte Carlo Methods	445
		8.3.2	Large-Sample Approximations	
	8.4		bilistic Model Selection	460
		8.4.1	Probabilistic Models.	460
		8.4.2	The Model Selection Problem.	464
		8.4.3	Using the Bayesian Scoring Criterion for Model Selection	465
	8.5	Hidde	n Variable DAG Models.	469
		8.5.1	Models Containing More Conditional Independencies than	
			DAG Models.	469
		8.5.2	Models Containing the Same Conditional Independencies as DAG Models	471
		8.5.3	Dimension of Hidden Variable DAG Models	471
		8.5.4		478
		8.5.4 8.5.5		
	0.6		Efficient Model Scoring	
	8.6	8.6.1	ing Structure: Continuous Variables	
			The Density Function of D.	
	0.7	8.6.2	The Density function of D Given a DAG pattern	487
	8.7	Learn	ing Dynamic Bayesian Networks	498
9			nate Bayesian Structure Learning	503
	9.1		oximate Model Selection	.503
		9.1.1	Algorithms That Search over DAGs.	
		9.1.2	Algorithms That Search over DAG Patterns	.510
		9.1.3	An Algorithm Assuming Missing Data or Hidden Variable	
	9.2		oximate Model Averaging.	
		9.2.1	A Model Averaging Example.	
		9.2.2	Approximate Model Averaging Using MCMC	525

CONTENTS	X111

	t-Based Learning	533
	ithms Assuming Faithfulness	
	Simple Examples	
	Algorithms for Finding Faithful DAG Patterns	537
10.1.3	Algorithm for Determining Admission	
	of Faithfulness	544
10.1.4	Application to Probability	. 552
10.2 Assum	ning Only Embedded Faithfulness	553
10.2.1	Inducing Chains	554
	A Basic Algorithm	
	An Improved Algorithm.	
10.2.4	Application to Probability	581
	Application to Learning Causal Influences	
	ning the d-separations.	
	Discrete Bayesian Networks	
	Gaussian Bayesian Networks	
	onship to Human Reasoning	
	Background Theory.	
	A Statistical Notion of Causality	
1 More Stru	icture Learning	609
11.1 Comp	aring the Methods.	609
11.1.1	A Simple Example	610
	Learning College Attendance Influences	
11.1.3	Conclusions.	615
	Compression Scoring Criteria.	
	el Learning of Bayesian Networks	
	oles.	
	Structure Learning	
	Inferring Causal Relationships	
V Applio	cations	
2 Application	ons	639
	cations Based on Bayesian Networks.	
	d Bayesian Networks.	
	a Dayonan Tierworks.	073
		647
sibliography		647 667