TEHNIKA VISOKOG NAPONA

3+0

http://www.fer.hr/predmet/tvn a

Nositelj:	Prof.dr.sc. Ivo Uglešić, dipl.ing.	D236
Suradnici:	Doc.dr.sc. Viktor Milardić, dipl.ing	D246
	Dr.sc. Milivoj Mandić, dipl.ing.	D206
	Božidar Filipović-Grčić, dipl.ing.	D206
	Boško Milešević, dipl.ing	D206

Karakteristične veličine:

> Srednja vrijednost napona: $u=U_-=\frac{1}{T}\int_0^T u dt$

Dozvoljeno je odstupanje od srednje vrijednosti do 5%.

Višestruki istosmjerni napon

Spoj za proizvodnju istosmjernog napona

Istosmjerne kaskade za višestruki istosmjerni napon

Elektrostatski generator

Van de Graaff-ov generator:

- 1. istosmjerni izvor
- 2. šiljci kojima se naboji dovode na izolacionu traku
- 3. izolacione trake koje se okreću na valjcima
- 4. kugle koje sakupljaju naboj
- 5. šiljci koji s trake prenose naboje na kugle

Udarni naponi

- Vrlo kratki visoki napon
 - Atmosferskog ili sklopnog podrijetla
- Višestruko prelazi vrijednost pogonskog napona
 - Može uzrokovati oštećenja na opremi
- Proizvodi se u VN laboratorijima u svrhu ispitivanja opreme
 - Standardiziranog oblika i trajanja

Udarni naponi – karakteristične veličine

- Karakteristične veličine:
 - tjemena vrijednost: \hat{u}
 - vrijeme trajanja čela: T₁
 - vrijeme pada hrbata na 50 % \hat{u} : T_2

Udarni naponi – karakteristične veličine

Atmosferski udarni napon

- Uobičajeni udarni napon 1.2/50, vrijeme trajanja čela $T_1 = 1.2 \ \mu s \ (\pm 30\%)$ i polovice hrbata $T_2 = 50 \ \mu s \ (\pm 20\%)$.

Sklopni udarni napon

- Vrijeme do maksimuma napona T_{cr} (time to crest)
- Polovica vremena trajanja hrbata T_2
- Vrijeme trajanja maksimuma T_d

Ispitni sklopni udarni napon 250/2500 ima karakteristična vremena: $T_{cr} = 250~\mu s~(\pm\,20\%)$ i $T_2 = 2500~\mu s~(\pm\,60\%)$

Udarni naponi – karakteristične veličine

Udarni naponi – 50% preskočnog udarnog napona

<u>Udarna karakteristika</u>: Funkcija preskočnog udarnog napona U_p u zavisnosti o vremenu potrebnom da dođe do preskoka t_p .

- 50% preskočni udarni napona

 C_{ij} - udarni kapacitet

 R_q - nabojni otpornik

 U_{q} - napon nabijanja

 C_t - kapacitet ispitnog objekta

 R_p - prigušni otpornik

R_i - izbojni otpornik

Za krug na slici (a) vrijedi diferencijalna jednadžba:

$$C_u C_t R_i R_p \frac{d^2 u_2}{dt^2} + (C_t R_i + C_u R_i + C_u R_p) \frac{d u_2}{dt} + u_2 = 0$$

$$u_2 = \frac{U_q T_m T_n}{R_p C_t (T_m - T_n)} \left(e^{-\frac{t}{T_m}} - e^{-\frac{t}{T_n}} \right)$$

Uz
$$T_m >> T_n$$
; $T_m, T_n = f(R_i, R_p, C_t, C_u)$:

T_m - vremenska konstanta nabijanja

 T_n - vremenska konstanta izbijanja

Napon u_2 se razlaže na vremenski razdvojeni nabojni i izbojni dio.

Kod nabijanja kapaciteta tereta na napon u_{2a} s otpornikom $R_i = \infty$ vremenska konstanta nabijanja je:

$$T_a = R_p \frac{C_u C_t}{C_u + C_t}$$

Diferencijalna jednadžba glasi:

$$T_{a} \frac{du_{2a}}{dt} + u_{2a} = U_{q} \frac{C_{u}}{C_{u} + C_{t}}$$

Rješenje za u_{2a} :

$$u_{2a} = \frac{C_u}{C_u + C_t} U_q \left(1 - e^{-\frac{t}{T_a}} \right)$$

$$za t=\infty: u_{2a} = \frac{C_u}{C_u + C_t} \cdot U_q$$

Vremenska konstanta izbijanja (uz $R_p \cong 0$):

$$T_i = R_i (C_u + C_t)$$

Stupanj iskorištenja:

$$\eta_i = \frac{\hat{u}}{U_q} \cong \frac{u_{2a\infty}}{U_q} = \frac{C_u}{C_u + C_t}$$

Za $R_i >> R_p$ i $C_u >> C_t$ može se uzeti:

$$T_1 \cong T_a$$
 $T_2 \cong T_i$

Približne formule za krug na slici (a):

$$T_1 = k_1 \frac{R_p R_i C_u C_t}{(R_p + R_i)(C_u + C_t)}$$

$$T_2 = k_2 (R_p + R_i) (C_u + C_t)$$

$$\eta_1 = \frac{R_i C_u}{(R_p + R_i)(C_u + C_t)}$$

Približne formule za krug na slici (b):

$$T_1 = k_1 R_p \frac{C_u C_t}{\left(C_u + C_t\right)}$$

$$T_2 = k_2 R_i (C_u + C_t)$$

$$\eta_1 = \frac{C_u}{\left(C_u + C_t\right)}$$

Vremenski faktori k_1 i k_2

Udarni napon	1.2/5	1.2/50	1.2/200
\mathbf{k}_1	1.49	2.96	315
k_2	1.44	0.73	0.70

Za krug na slici (a) je (iz izraza za T_1 i T_2):

$$R_{p,i} = \frac{T_2}{2k_2(C_u + C_t)} \pm \sqrt{\left(\frac{T_2}{2k_2(C_u + C_t)}\right)^2 - \frac{T_1T_2}{k_1k_2C_uC_t}}$$

Zahtjev za prigušni otpornik:

$$R_p \ge 2\sqrt{L\frac{\left(C_u + C_t\right)}{C_u C_t}}$$

L – induktivitet priključnih vodova

- Za udarne napone iznad 300 kV koriste se spojevi prema Marxu
- Najprije se nabiju svi paralelno spojeni kapaciteti C_u
- Nakon propale iskrišta oni se spajaju serijski, pri čemu se pojedini naponi kratkotrajno zbrajaju
- Naponi na ispitnom objektu dosežu vrijednosti od 300 kV do 10 MV

Primjer: Generator udarnog napona koji se sastoji od dva stupnja služi za ispitivanje koaksijalne sabirnice SF_6 , čiji su radijusi $r_1=7$ cm i $r_2=15$ cm, a duljina l=5 m. Sabirnica djeluje kao kapacitet svojim teretom. Poznati su kapaciteti $C_1=C_2=10$ nF. Treba odrediti prigušni i izbojni otpor kao i stupanj iskorištenja (odnos vršne vrijednosti udarnog napona i napona nabijanja), ako vršna vrijednost udarnog napona treba iznositi U=200 kV, za udarni napon 1.2/50.

Generator udarnog napona s ispitnim objektom

- Koristi se za proizvodnju visokih napona i visokih frekvencija
- Sačinjen od dva titrajna kruga bliskih titrajnih frekvencija

- Preko transformatora Tr i VN diode puni se kondenzator C_1 istosmjernim naponom
- Prilikom reagiranja iskrišta C_1 se prazni i predaje energiju:

$$W_{el} = \frac{C_1 \cdot U_1^2}{2}$$

primarnoj zračnoj zavojnici L_1 te pri tome nastaju prigušeni titraji čija frekvencija je:

$$f_1 = \frac{1}{2 \cdot \pi \cdot \sqrt{L_1 \cdot C_1}}$$

 \triangleright U sekundarnoj zavojnici pojavit će se jaki titraji ako je frekvencija sekundara, koja ovisi o iduktivitetu sekundarne zavojnice L_2 i o parazitskom kapacitetu između zavoja C_2

$$f_2 = \frac{1}{2 \cdot \pi \cdot \sqrt{L_2 \cdot C_2}}$$

približno jednaka frekvenciji primara

Frekvencija sekundara ovisi o faktoru magnetskog vezanja K koji ovisi o međuinduktivitetu M:

$$K = \frac{M}{\sqrt{L_1 \cdot L_2}}$$

- Ako je koeficijent sprege K velik energija se s primara prenosi na sekundar dok se luk u primaru ne ugasi
- Uslijed induktivnog djelovanja sekundara, luk se u primaru ponovno pali te se energija sa sekundara vraća na primar
- Energija oscilira između primara i sekundara dok se ne utroši na toplinu u oba kruga
- Izgled oscilacija na primaru i sekundaru:

Prijenosni omjer Teslinog transformatora:

$$\frac{U_2}{U_1} = \sqrt{\frac{L_2}{L_1}}$$

Izvedba bez VN diode

Lp – prigušnica za "peglanje" visokih strujnih harmonika

TEHNIKA VISOKOG NAPONA

3+0

http://www.fer.hr/predmet/tvn a

Nositelj:	Prof.dr.sc. Ivo Uglešić, dipl.ing.	D236
Suradnici:	Doc.dr.sc. Viktor Milardić, dipl.ing	D246
	Dr.sc. Milivoj Mandić, dipl.ing.	D206
	Božidar Filipović-Grčić, dipl.ing.	D206
	Boško Milešević, dipl.ing	D206