

SmartFusion Evaluation Kit User's Guide

Actel Corporation, Mountain View, CA 94043

© 2010 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200209-4

Release: May 2011

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of merchantability or fitness for a particular purpose. Information in this document is subject to change without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any unauthorized person without prior written consent of Actel Corporation.

Trademarks

Actel, IGLOO, Actel Fusion, ProASIC, Libero, Pigeon Point and the associated logos are trademarks or registered trademarks of Actel Corporation. All other trademarks and service marks are the property of their respective owners.

Table of Contents

	Introduction	
	Board Description	6
1	Installation and Settings	7
	Software Installation	7
	Jumpers, Switches, and LED Settings	7
	Testing the Hardware	
2	Hardware Components	. 11
	FPGA Description and Connections	11
	I/O Pin Connections	13
	SmartFusion FPGA Hard ARM Cortex-M3	14
	Power Sources	14
^	Occupant Descriptions and Occupations	4.
3	Component Descriptions and Connections	
	Current Sensing Circuit	
	Push-Button System Reset	
	•	
	Push-Button Switches and User LEDs	
	User I/Os	
	OLED Display	
	SPI Flash	
	20 MHz Oscillator	
	32.768 KHz (low power) Oscillator	
	USB-to-UART Interface	
	Ethernet Interface	
	RealView Header	
	Integrated Low-Cost Programmer (LCP)	
	Temperature Diode	
	Mixed-Signal Header	. 27
4	Pin List	. 31
5	Board Stackup	43
•	Board Stack-Up	
	Board Glack-op	. 40
6	Demo Design	. 45
	Jumper Settings for Demo Design	45
	Running the Demo Design	45
	Multimeter Mode	47
	Webserver Mode	47
	Real Time Data Display	. 48
	LED Test	

Table of Contents

Manufacturing Test	. 49
Running the A2F-EVAL-KIT Board Test	. 57
A2F-EVAL-KIT Board Failures	. 66
List of Changes	. 67
Product Support	. 69
Actel Customer Technical Support Center	. 69
Actel Technical Support	. 69
Website	. 69
Contacting the Customer Technical Support Center	. 69
Index	. 71
	A2F-EVAL-KIT Board Testing Procedures Running the A2F-EVAL-KIT Board Test A2F-EVAL-KIT Board Failures List of Changes

Introduction

The RoHS-compliant SmartFusion™ Evaluation Kit (A2F-EVAL-KIT) enables designers to develop applications that involve one or more of the following:

- · Microcontroller applications
- Embedded ARM[®] Cortex[™]-M3–based systems

Figure 1 • A2F-EVAL-KIT

Kit Contents

Table 1 lists the contents of the SmartFusion Evaluation Kit..

Table 1 • A2F-EVAL-KIT Contents

Quantity	Description		
1	SmartFusion Evaluation Board with SmartFusion A2F200M3F-FGG484ES device		
2 USB 2.0 A to mini-B cable			
1	Quickstart card		

Board Description

The SmartFusion Evaluation Kit board is designed to provide a development platform for users to evaluate all the features of the world's only FPGA with a hard ARM Cortex-M3 powered microcontroller subsystem (MSS) along with programmable analog.

The board supports a SmartFusion device in an FG484 package. To enable the MSS, analog, and features for evaluation, the board includes the following:

- Ethernet and USB-to-UART interface for communication with the Ethernet and UART peripherals of the SmartFusion MSS
- · SPI flash that interfaces with the SPI peripherals of the SmartFusion MSS
- Organic light-emitting diode (OLED) that interfaces with the I²C peripheral of the SmartFusion MSS
- I²C Interface
- · Current monitoring and temperature monitoring circuits
- RVI header for application programming and debug from either Keil[®] U-LINK[®] Or IAR J-Link, integrated integrated low-cost programmer to enable programming and debugging from Actel design tools, FlashPoint and Soft Console

Table 2 describes the SmartFusion Development Kit board components.

Table 2 • SmartFusion Evaluation Kit Board Components

Name	Description		
A2F200M3F- Actel SmartFusion FPGA with hard ARM Cortex-M3 FGG484ES			
OLED DISPLAY	Organic 96×16 pixel blue OLED PMO13701 with option to interface either interfacing with I2C0 port of SmartFusion MSS		
SPI FLASH	8 MByte SPI flash Atmel AT25DF641-MWH-T connected to SPI port 0 of the SmartFusion MSS		
OSC-20	20 MHz / 20 PPM clock oscillator		
OSC-32	32.768 KHz low-power oscillator		
USB/UART	USB-to-UART adapter chip CP2102 and connector interfacing with UART port 0 of the SmartFusion MSS		
ETHERNET	RJ45 connector (Ethernet jack with magnetics) interfacing with National Semiconductor 10/100 PHY chip DP83848C in RMII mode interfacing with Ethernet port of SmartFusion MSS (on-chip MAC and external PHY)		
CURRENT	Current monitoring using thumbwheel POT (RV1)		
TEMP	Temperature monitoring with temperature diode		
RVI HEADER	RVI header for application programming and debug from Keil U-LINK or IAR J-Link		
FP3_PROG	Integrated low-cost programmer		
PUSH-BUTTON SWITCHES	Two push-button switches connected to GPIOs, which can be used as test and navigation switches		
LEDS Eight active low LEDs that can be connected to user I/O for debug to board			
USER I/Os	Five general purpose user I/Os that can be used for Direct-C signaling, interfacing and debugging purposes		
PUSH-BUTTON RESET	Push-button system reset for SmartFusion FPGA System6		
MIXED_CONN100	Mixed-signal header		

1 - Installation and Settings

Software Installation

Download and install the latest release of Actel Libero[®] Integrated Design Environment (IDE) (v9.0 or later) from the Actel website and register for your free Gold license. For instructions on how to install Libero IDE and SoftConsole, refer to the Libero IDE Installation and Licensing Guide, available on the Actel website: www.actel.com/documents/install_ug.pdf.

Refer to the Installing IP Cores and Drivers User's Guide for downloading and installing Actel DirectCores, SGCores, and Driver firmware cores that must be localized on the personal computer where Libero IDE is installed when designing with Actel FPGAs.

Actel has partnered with key industry leaders in the microcontroller space to provide a robust SmartFusion ecosystem. Actel SmartFusion is supported by IAR Systems latest release, IAR Embedded Workbench for ARM. Refer to Designing SmartFusion with IAR Systems for more information.

Actel SmartFusion is also supported by Keil's latest release, MDK-ARM Microcontroller Development Kit. Refer to Designing SmartFusion with Keil for more information.

Jumpers, Switches, and LED Settings

The recommended default jumpers, switches, LEDs, and DIP switch settings are defined in Table 1 through Table 4 on page 8. Connect the jumpers with the default settings to enable the pre-programmed demonstration design to function correctly.

The available headers and their usage are detailed in Table 5 and Table 6 on page 9.

Table 1 • SmartFusion Evaluation Kit Jumper Settings

Jumper	Function	Default Setting	Notes
J6	Jumper to select second 3.3 V (V3P3_F2) power supply for board	Closed	
JP6	Jumper to select either 1.5 V external regulator or SmartFusion 1.5 V internal regulator		
	Pin 1–2 = 1.5 V internal	Closed	
	Pin 2–3 = 1.5 V external	Open	
JP7	Jumper to select between RVI header or LCP header for application debug		
	Pin 1–2 = USB programming and SoftConsole	Closed	
	Pin 2–3 = RVI for Keil U-LINK/IAR J-ink	Open	
JP10	Jumper to select JTAGSEL		Allows selection of A2F2 programming or Cortex-M3 debug with integrated low-cost programmer
	Pin 1–2 = FPGA, allows A2F2 programming	Closed	
	Pin 2–3 = M3, allows Cortex-M3 debug	Open	

Table 2 • SmartFusion Evaluation Kit Push-Button Switches

Push-Button Switch	SmartFusion FPGA Pin	Comment
SW1	G19	Test and navigation switch
SW2	G20	Test and navigation switch
SW3	W7(PU_N)	Push-button switch for PUB. This negative active switch is connected to the PUB pin, which is a digital input to the FPGA. PUB is the connection for the external momentary switch used to turn on the 1. 5 V voltage regulator.
SW4	R1 (MSS_SYSRESET)	System Reset for DUT

Table 3 • SmartFusion Evaluation Kit LEDs

LED	SmartFusion FPGA Pin	Comment
D1	B19	Test LED for user application
D2	B20	Test LED for user application
D3	C19	Test LED for user application
D4	H17	Test LED for user application
D5	H20	Test LED for user application
D6	C21	Test LED for user application
D7	D21	Test LED for user application
D8	G21	Test LED for user application
D11	N/A	UART over USB link indicator LED
D14	N/A	Programmer activitiy indicator LED
D15	N/A	Programmer ON indicator LED
D16	N/A	SPEED LED. The LED is ON when device is in 100 Mbps mode and OFF when in 10 Mbps mode.
LED1	N/A	USB power supply indicator LED. This GREEN LED is ON when the board is powered on.

Table 4 • Test Points

Test Point Comment		
TP7, TP8 Digital ground (GND)		
TP11 3.3 V supply for SmartFusion		
TP12 1.5 V supply for SmartFusion		
TP13	Analog ground (AGND)	

Table 5 • J22 Header Strip – User I/Os

Pin	SmartFusion FPGA I/O
1	J19
2	J20
3	J21
4	J22
5	K19

Table 6 • Header for VAREF Monitoring

Jumper	Description	
J5 Used to monitor VAREF0 driven from VAREFOUT output of A2F		
J8 Used to monitor VAREF1 driven from VAREFOUT output of A2F		

Note: Never put a jumper on these headers. These are provided to measure and monitor VAREF0 and VAREF1

Testing the Hardware

If the board is shipped directly from Actel, it contains a test program that determines whether the board works properly. If while using the board you suspect that the board is damaged, you can rerun the "Manufacturing Test" to verify functionality of the key components of the board.

2 - Hardware Components

FPGA Description and Connections

The SmartFusion Development Kit Board is populated with a SmartFusion A2F200-FG484, the world's only FPGA with hard ARM Cortex-M3. The key features of SmartFusion are listed below.

The microcontroller subsystem (MSS) consists of the following:

- 100 MHz 32-bit ARM Cortex-M3
 - 1.25 DMIPS/MHz throughput from zero wait state memory
- · Internal memories
 - Embedded flash memory (eNVM), 64 Kbytes to 512 Kbytes
 - Embedded high-speed SRAM (eSRAM), 16 Kbytes to 64 Kbytes, implemented in two physical blocks to enable simultaneous access from two different masters
- Multi-layer AHB communications matrix
 - Provides up to 16 Gbps of on-chip memory bandwidth
- 10/100 Ethernet MAC with RMII interface
- Programmable external memory controller, which supports the following:
 - Asynchronous memories
 - NOR flash, SRAM, PSRAM
 - Synchronous SRAMs
- Two I²C peripherals
- Two 16550 compatible UARTs
- Two SPI peripherals
- Two 32-bit timers
- 32-bit watchdog timer
- 8-channel DMA controller
- Clock sources
 - 1.5 MHz to 20 MHz main oscillator
 - Battery-backed 32 KHz low-power oscillator with real-time counter (RTC)
 - 100 MHz embedded RC oscillator 1% accuracy
 - Embedded PLL with 4 output phases
- · High-performance FPGA
- Based on Actel's proven ProASIC[®] FPGA fabric
- Analog front-end (AFE)
- Up to three 12-bit SAR analog-to-digital converters (ADCs)
- One first-order ΣΔ (sigma delta) digital-to-analog converter (DAC) per ADC
- Up to 5 new high-performance analog signal conditioning blocks (SCB) per device
- · Two high-speed comparators
- Analog compute engine (ACE)
 - Offloads CPU from analog initialization and processing of ADC, DAC, and SCBs
 - Sample sequencing engine for ADC and DAC parameter setup
 - Post-processing engine (PPE) for functions such as low-pass filtering and linear transformation

Table 1 • A2F200 Key Features

Feature	Specification		
System gates	200,000		
Tiles (D-flip-flops)	4,608		
RAM blocks (4,608 bits)	8		
Flash (Kbytes)	256		
SRAM (Kbytes)	64		
Cortex-M3 with MPU	1		
10/100 Ethernet MAC	Yes		
External memory controller (EMC)	26-bit address, 16-bit data		
DMA	8 Ch		
I ² C	2		
SPI	2		
16550 UART	2		
32-bit timer	2		
PLL	1		
32 KHz low-power oscillator	1		
100 MHz on-chip RC oscillator	1		
Main oscillator	1		
ADCs (12-bit SAR)	2		
DACs (1-bit sigma-delta)	2		
Signal conditioning blocks (SCBs)	4		
Comparators*	8		
Current monitors*	4		
Temperature monitors*	4		
HV bipolar voltage monitors*	8		
Direct analog inputs to ADC*	18		

Note: *The maximum available resources have dependencies. For additional information on SmartFusion, refer to the SmartFusion datasheet..

Table 2 • A2F200 I/Os

I/Os	FG484
Direct analog input	8
Total analog input	24
Total analog output	2
MSS I/Os ^{1,2}	41
FPGA I/Os	94
Total I/Os	161

Notes:

- 16 MSS I/Os are multiplexed and can be used as FPGA I/Os, if not needed for MSS. These I/Os support Schmitt triggers and support only LVTTL and LVCMOS (1.5/1.8/2.5, and 3.3 V) standards.
- 2. 9 MSS I/Os are primarily for 10/100 Ethernet MAC and are also multiplexed and can be used as FPGA I/Os if Ethernet MAC is not used in a design. These I/Os support Schmitt triggers and support only LVTTL and LVCMOS (1.5/1.8/2.5, and 3.3 V standards.

Figure 1 • SmartFusion MSS Block Diagram

I/O Pin Connections

The A2F200M3F-FGG484ES pin list is provided in the chapter "Pin List".

SmartFusion FPGA Hard ARM Cortex-M3

The SmartFusion FPGA comes with a hard Cortex-M3 advanced processor-based MSS. The ARM Cortex-M3 microcontroller is a low-power processor that features low gate count, low predictable interrupt latency, and low-cost debug. It is intended for deeply embedded applications that require fast interrupt response features. SmartFusion devices use the R1P1 version of the Cortex-M3 core. Some of the important subsystems are listed below:

- Memory protection unit (MPU)
- · Single cycle multiplication, hardware divide
- JTAG debug (4 wire), Serial Wire Debug (SWD 2 wire) and Serial Wire Viewer (SWV) interfaces

The evaluation board is populated with components to enable development using the MSS. These components include SPI flash, OLED, and communication interfaces such as Ethernet and USB-to-UART.

Power Sources

SmartFusion FPGA Power Sources

The evaluation kit board is powered through USB. The USB power will supply power to three voltage rails: 3.3 V, 1.5 V, and 10 V.

- Linear LT1963AES8 (1.5 A), supplies 3.3 V rails
- Linear LT3080 (1.1 A), supplies 1.5 V rails
- Linear LT1615 step-up converter supplies 10 V, 100 mA typical, for driving the OLED

Note: The USB can provide a maximum current of 500 mA. If the application requires a daughter board, the user must use an independent power supply source.

3 — Component Descriptions and Connections

VAREF Connections

The SmartFusion device has one external VAREF input pin for each of the ADCs in the device. These are VAREF0 for ADC0 and VAREF1 for ADC1 (Figure 1). The internal VAREF is brought out as an output. This is available as the VAREFOUT output pin.

On the A2F-EVAL-KIT board, the VAREF0 and VAREF1 inputs are hardwired to the VAREFOUT output of the SmartFusion device (Figure 2). This means the user should not drive these inputs from any external source. Two headers, J5 and J8, are provided to monitor the VAREF0 and VAREF1 for any debug purposes.

Figure 1 • VAREFOUT to VAREF0 and VAREF1

Figure 2 • VAREF0 and VAREF1 Inputs of FPGA

Current Sensing Circuit

A current sensing circuit is provided on the SmartFusion Evaluation Kit board for applications using the embedded current monitor. Current monitoring is performed across the AC0 and AT0 pins. The current sensing circuit is for the 3.3 V voltage rail, as shown in Figure 3.

Figure 3 • Current Sensing

PWM Circuit

The PWM RC circuit depicted in Figure 4 and Figure 5 can be used with Actel CorePWM instantiated in the FPGA fabric to generate various voltage waveforms. These voltage waveforms can be displayed on the OLED or used via the mixed-signal header. In addition, one PWM RC circuit source is routed to the AV input pin of an analog quad. This AV pin can be used to monitor the generated voltage with high accuracy, depending on the ADC resolution configured in the FPGA.

Figure 5 shows the A2F200 pins driving PWM and the PWM circuit.

Figure 4 • PWM Pins

Figure 5 • PWM Circuit

Push-Button System Reset

A push-button system reset switch with a Schmitt trigger is provided on the board (Figure 6). The Schmitt trigger reduces noise on the system reset push-button. SmartFusion MSS reset is synchronized with this reset.

Figure 6 • Push-Button System Reset

Push-Button Switches and User LEDs

Push-button switches and user LEDs (Figure 7) can also be used for debug and for various applications, such as gaming.

Figure 7 • Test LEDs

The board provides users access to eight active Low LEDs (Figure 8), which are connected to SmartFusion pins B19, B20, C19, H17, H20, C21, D21, and G21. In addition, the board includes two push-button switches (Figure 9 on page 18) that are connected to pins G19 and G20 of the SmartFusion FPGA.

Figure 8 • LEDs

Figure 9 • Push-Button Switches

User I/Os

The board comes with the provision of five user I/Os brought out to jumper J22 (Figure 10). These can be used as general purpose user I/Os. One of the potential applications is DirectC signaling where these five pins can be used for JTAG signals (TDI, TDO, TMS, TCK, and TRSTN). Other possible uses are for interfacing with other boards and debugging.

Figure 10 • User I/Os

OLED Display

A 9616-pixel low-power OLED is made available on the board for display (EQ 11 on page 19). This low-power device, BLUE OLED, requires 3.3 V and 10 V power supplies. The OLED is interfaced with the SmartFusion MSS I2C0 port (Figure 12 on page 19). The OLED displays sharp gaming images or text. For example, the SmartFusion RTC current time or time between two events can be displayed on the OLED. The OLED inputs OLED_BS1, OLED_BS2, and OLED_CSN are tied off and OLED_D/C# is pulled down as required to work with I^2C mode.

Figure 11 • OLED Connections

Figure 12 • SmartFusion MSS I2C0 Interface

SPI Flash

One 8 MByte SPI flash Atmel AT25DF641-MWH-T is also offered on the board (Figure 13). This is interfaced with the SmartFusion MSS SPI0 port (Figure 14). The WP# and HOLD# inputs are pulled High on the board.

Figure 13 • SPI Flash

Figure 14 • SmartFusion MSS SPI0 Port

20 MHz Oscillator

A 20 MHz resonator of 20 PPM is placed across the MAINXIN and MAINXOUT pins of the SmartFusion FPGA with the appropriate 18 PF capacitors (Figure 15 on page 21). This is used to generate a high precision clock for Ethernet MAC and is also used in real-time counter (RTC) based applications.

32.768 KHz (low power) Oscillator

A 32.768 KHz Resonator CM519 is placed across the LPXIN and LPXOUT pins of the SmartFusion FPGA with the appropriate 30 PF capacitors (Figure 15). This low power resonator is useful in real-time counter (RTC) based applications.

Figure 15 • 20 MHz and 32.768 KHz Oscillators

USB-to-UART Interface

Included on the evaluation board is a USB-to-UART interface with ESD protection (Figure 16 on page 22). This interface includes an integrated USB-to-UART bridge controller (U16) to provide a standard UART connection with the SmartFusion MSS UART0 port.

One application of the USB-to-UART interface is to allow HyperTerminal on a PC to communicate with the SmartFusion FPGA. HyperTerminal is a serial communications application program that can be installed in the Windows[®] operating system. A basic HyperTerminal program is usually distributed with Windows. With a USB driver properly installed, and the correct COM port and communication settings selected, you can use the HyperTerminal program to communicate with a design running on the SmartFusion FPGA device.

Table 1 lists the supported UART parameters for HyperTerminal applications.

Table 1 • UART HyperTerminal Settings

Supported Hy	Supported HyperTerminal Parameters					
Baud Rates	Data Bits	Parity Types	STOP BIT			
110	5,6,7,8	NO/ODD/EVEN/MARK(1)/SPACE(0)	ONE/ONE-HALF/TWO			
300						
1200						
2400						
4800						
9600						
19200						
38400						
57600						
115200						
230400						
460800						
921600						

Figure 16 shows the USB-to-UART connections and Figure 17 shows the UART0 port.

Figure 16 • USB to UART

Figure 17 • UART Port 0

Ethernet Interface

One Ethernet interface, configured for RMII Full Duplex mode, and a low-power 10/100 Mbps single-port Ethernet physical layer transceiver (U19) are provided on-board (Figure 19 on page 24). The Ethernet physical layer features integrated sub-layers to support both 10BASE-T and 100BASE-TX Ethernet protocols. These sub-layers ensure compatibility and interoperability with many other standards-based Ethernet solutions.

The Ethernet RJ45 interface and physical layer interface with the SmartFusion MSS Ethernet media access controller (MAC), which supports RMII, serve many purposes. For example, these interfaces can be used to access the SmartFusion FPGA to monitor the ADC data over a network. The embedded system memory and control registers can be accessed and processed remotely to support system management.

Clocking Scheme for RMII CLK

The 10/100 MAC RMII interface requires a 50 MHz clock. The PHY device also requires a 50 MHz 20 PPM clock for proper operation. While there are several possible ways of providing the clock, the following clocking scheme has been tested on the board.

- The 20 MHz oscillator feeds the CCC input. The CCC, GLC output is configured as 50 MHz.
- The GLC feeds the MAC_CLK (pin T6) input of the 10/100 MAC peripheral of the SmartFusion MSS.
- The same GLC is routed through the fabric and feeds the X1 input of the Ethernet PHY device on the board.

Figure 18 • Ethernet Clocking Scheme

Figure 19 • Ethernet Interface

RealView Header

One 10x2 RealView[®] Header is provided on the board for debugging (Figure 20). This header allows plugging with the Keil U-LINK debugger or IAR J-Link debugger to easily debug or configure the hard ARM Cortex-M3 processor during board power-up.

Figure 20 • RealView Header

The jumper settings shown in Table 2 are needed for debug with Keil U-LINK or IAR J-Link.

Table 2 • RVI Header Jumper Settings

To Debug with Keil U-link or IAR J-link					
Jumper Pin Connection Details					
JP7	2	3 To select RealView [®] JTAG header			
JP10	2	3	To select Cortex-M3 debug		

Integrated Low-Cost Programmer (LCP)

The board comes with a built-in programmer to program the SmartFusion device and debug software with SoftConsole.

Figure 21 • Integrated Low-Cost Programmer

Table 3 • Jumper Settings to Debug with SoftConsole

To Debug with SoftConsole				
Jumper Pin Connection Details				
JP7	1	2	To select the the integrated low-cost programmer (LCP)	
JP10	JP10 2 3 To select the Cortex-M3 debug			

Table 4 • Jumper Settings for A2F200 Programming

To Program with Built-In LCP				
Jumper Pin Pin Connection Details				
JP7	1	2	To select the integrated LCP	
JP10	1	2	To select the SmartFusion device	

Figure 22 • A2F200 JTAG Connections

Temperature Diode

A temperature diode is provided on the board to measure ambient temperature (Figure 23). This is used in battery charging and MPM applications. This diode is connected to the AT1 input of SmartFusion FPGA.

Figure 23 • Temperature Diode

Mixed-Signal Header

The mixed-signal header can be obtained from Samtec, using the following part numbers:

Mother Board Header 2X50 50 mil pitch: Samtec FTSH-150-04-L-D-RA (populated in the evaluation board)

Daughter Board Header 2X50 50 mil pitch: Samtec CLP-150-02-L-DH

The detailed instructions given below must be followed to ensure the correct orientation and insertion into the mother board.

Figure 24 (top view) indicates the orientation of the mixed-signal headers on the mother board and daughter board.

Figure 24 • Top View of Mixed-Signal Headers Correct Orientation

Ensure that the header is placed such that a full insertion is possible between the two headers (Figure 25).

Note: XX is the critical length. Ensure that the connector is placed close enough so there is a good connection with the mating connector. This is applicable when designing the daughter board or the mother board.

Figure 25 • Correct Insertion of Daughter Board

When designing a daughter board to plug into an A2F-EVAL-KIT:

- Ensure the CLP header edge is lined up against the edge of the board.
- This will provide maximum insertion into the SmartFusion evaluation board.

When designing a mother board for an existing daughter board (MPM DB, for example):

- Ensure that the length, denoted by XX, is kept less than 150 mils.
- Use the SmartFusion Evaluation Kit PCB files (www.actel.com/download/rsc/?f=A2F_EVAL_KIT_BF).

Pinout Definition

Table 5 provides the pinout definition for the mixed-signal header.

Table 5 • Pinout Definition

J21-Pin	Net Name	Pin Number	Description	J21-Pin	Net Name	Pin Number	Description
1	5V	Power	Power	2	5V	Power	Power
3	5V	Power	Power	4	5V	Power	Power
5	DGND	DGND	Digital ground	6	DGND	DGND	Digital ground
7	MSS_GP_IO_0	V1	MSS I/Os ¹	8	MSS_GP_IO_1	R3	MSS I/Os ¹
9	MSS_GP_IO_2	W1	MSS I/Os ¹	10	MSS_GP_IO_3	Y1	MSS I/Os ¹
11	MSS_GP_IO_4	AA1	MSS I/Os ¹	12	DGND	DGND	Digital ground
13	MSS_GP_IO_5	U2	MSS I/Os ¹	14	MSS_GP_IO_6	V2	MSS I/Os ¹
15	DGND	DGND	Digital ground	16	MSS_GP_IO_7	W2	MSS I/Os ¹
17	MSS_GP_IO_8	Т3	MSS I/Os ¹	18	MSS_GP_IO_9	V3	MSS I/Os ¹
19	MSS_GP_IO_10	U3	MSS I/Os ¹	20	DGND	DGND	Digital ground
21	MSS_GP_IO_11	T4	MSS I/Os ¹	22	MSS_GP_IO_12	AA2	MSS I/Os ¹
23	DGND	DGND	Digital ground	24	MSS_GP_IO_13	AB2	MSS I/Os ¹
25	MSS_GP_IO_14	AB3	MSS I/Os ¹	26	MSS_GP_IO_15	Y3	MSS I/Os ¹
27	F2-200-IO_0	E3	FPGA I/Os ¹	28	DGND	DGND	Digital ground
29	F2-200-IO_1	F3	FPGA I/Os ¹	30	F2-200-IO_2	G4	FPGA I/Os ¹
31	DGND	DGND	Digital ground	32	F2-200-IO_3	H5	FPGA I/Os ¹
33	F2-200-IO_4	H6	FPGA I/Os ¹	34	F2-200-IO_5	J6	FPGA I/Os ¹
35	F2-200-IO_6	B22	FPGA I/Os ¹	36	DGND		Digital ground
37	F2-200-IO_7	C22	FPGA I/Os ¹	38	F2-200-IO_8	F1	FPGA I/Os ¹
39	PWM0	E22	Has External RC* ¹	40	PWM1	F22	Has External RC*1
41	DGND	DGND	Digital ground	42	DGND	DGND	Digital ground
43	AGND	AGND	Analog ground	44	AGND	AGND	Analog ground
45	DACOUT0	V7	SDD0 ²	46	DACOUT1	Y17	SDD1 ²

Notes:

- 1. Digital signal.
- 2. Analog signal.

Table 5 • Pinout Definition

J21-Pin	Net Name	Pin Number	Description	J21-Pin	Net Name	Pin Number	Description
47	AGND	AGND	Analog ground	48	AGND	AGND	Analog ground
49	AC2	AB13	CM2 ²	50	AT2	AB12	TM2 ²
51	AGND	AGND	Analog ground	52	ATGND1		GNDTM1 ²
53	AC3	AA11	CM3 ²	54	AT3	Y12	TM3 ²
55	AGND	AGND	Analog ground	56	AGND		Analog ground
57	NC	NC	NC	58	NC	NC	NC
59	AGND	AGND	Analog ground	60	ATGND2		GNDTM2 ²
61	AV1_1	W9	ABPS2 ²	62	AV2_1	AB7	ABPS3 ²
63	AGND	AGND	Analog ground	64	AGND	AGND	Analog ground
65	AV1_3	W12	ABPS6 ²	66	AV2_3	Y11	ABPS7 ²
67	AGND	AGND	Analog ground	68	AGND	AGND	Analog ground
69	NC	NC	NC	70	NC	NC	NC
71	AGND	AGND	Analog ground	72	AGND	AGND	Analog ground
73	ADC2	V9	ADC2	74	ADC3	AB8	ADC3
75	AGND	AGND	Analog ground	76	AGND	AGND	Analog ground
77	ADC4	U12	ADC4	78	ADC5	V12	ADC5
79	AGND	AGND	Analog ground	80	AGND	AGND	Analog ground
81	ADC6	V11	ADC6 ²	82	ADC7	T12	ADC7 ²
83	AGND	AGND	Analog ground	84	AGND	AGND	Analog ground
85	ADC8	V14	ADC8 ²	86	ADC9	AA14	ADC9 ²
87	AGND	AGND	Analog ground	88	AGND	AGND	Analog ground
89	ADC10	AA13	ADC10 ²	90	ADC11	U14	ADC11 ²
91	AC1	U9	CM1 ²	92	AGND	AGND	Analog ground
93	AGND	AGND	Analog ground	94	AGND	AGND	Analog ground
95	DGND	DGND	Digital ground	96	DGND	DGND	Digital ground
97	3.3V	Power	Power	98	3.3V	Power	Power
99	3.3V	Power	Power	100	3.3V	Power	Power

Notes:

^{1.} Digital signal.

^{2.} Analog signal.

4 - Pin List

Below is the pin list applicable to the SmartFusion A2F200M3F-FGG484ES device.

A2F200 Pin Number	A2F200 Pin Name	Board Signal Name		
A1	GND1	GND		
A2	NC2	NC		
A3	NC5	NC		
A4	GND7	GND		
A5	EMC_CS0_N/GAB0/IO01NDB0V0	NC		
A6	EMC_CS1_N/GAB1/IO01PDB0V0	NC		
A7	GND8	GND		
A8	EMC_AB[0]/IO04NDB0V0	NC		
A9	EMC_AB[1]/IO04PDB0V0	NC		
A10	GND2	GND		
A11	NC1	NC		
A12	EMC_AB[7]/IO07PDB0V0	NC		
A13	GND3	GND		
A14	EMC_AB[12]/IO10NDB0V0	NC		
A15	EMC_AB[13]/IO10PDB0V0	NC		
A16	GND4	GND		
A19	GND5	GND		
A20	NC3	NC		
A21	NC4	NC		
A22	GND6	GND		
AA1	GPIO_4/IO43RSB4V0	MSS_GP_IO_4		
AA2	GPIO_12/IO37RSB4V0	MSS_GP_IO_12		
AA3	MAC_MDC/IO48RSB4V0	FPGA_ENA_MDC		
AA4	MAC_RXER/IO50RSB4V0	FPGA_ENA_RXER		
AA5	MAC_TXD[0]/IO56RSB4V0	FPGA_ENA_TXD0		
AA6	ABPS0	V10P		
AA7	TM1	AT1		
AA8	ADC1	NC		
AA9	GND15ADC1	AGND		
AA10	GND33ADC10 AGND			
AA11	CM3	AC3		

A2F200 Pin Number	A2F200 Pin Name	Board Signal Name
AA12	GNDTM1	ATGND1
AA13	ADC10	NC
AA14	ADC9	NC
AA16	MAINXIN	AGND (Y1,C48)
AA17	MAINXOUT	AGND (Y1,C50)
AA18	LPXIN	AGND (Y2,C51)
AA19	LPXOUT	AGND (Y2,C52)
AA20	NC6	NC
AA21	NC7	NC
AA22	SPI_1_CLK/GPIO_26	GND
AB1	GND9	GND
AB2	GPIO_13/IO36RSB4V0	MSS_GP_IO_13
AB3	GPIO_14/IO35RSB4V0	MSS_GP_IO_14
AB4	GND11	GND
AB5	PCAP	C49
AB6	NCAP	C49
AB7	ABPS3	AV2_1
AB8	ADC3	ADC3
AB9	GND15ADC0	AGND
AB10	VCC33ADC1	V3P3A
AB11	VAREF1	VAREF_OUT
AB12	TM2	AT2
AB13	CM2	AC2
AB14	ABPS4	V3P3
AB15	GNDAQ1	AGND
AB16	GNDMAINXTAL	AGND
AB17	GNDLPXTAL	AGND
AB18	VCCLPXTAL	V3P3A
AB19	VDDBAT	GND
AB20	PTBASE	PTBASE
AB21	NC8	NC
AB22	GND10	GND
B1	EMC_DB[15]/GAA2/IO71PDB5V0	NC
B2	GND12	GND
B5	VCCFPGAIOB0_3	V3P3_F2
B6	EMC_RW_N/GAA1/IO00PDB0V0	NC

A2F200 Pin Number	A2F200 Pin Name	Board Signal Name
B8	VCCFPGAIOB0_4	V3P3_F2
B9	EMC_BYTEN[0]/GAC0/IO02NDB0V0	NC
B10	EMC_AB[2]/IO05NDB0V0	NC
B11	EMC_AB[3]/IO05PDB0V0	NC
B12	EMC_AB[6]/IO07NDB0V0	NC
B13	EMC_AB[14]/IO11NDB0V0	NC
B14	EMC_AB[15]/IO11PDB0V0	NC
B15	VCCFPGAIOB0_1	V3P3_F2
B16	EMC_AB[18]/IO13NDB0V0	NC
B17	EMC_AB[19]/IO13PDB0V0	NC
B18	VCCFPGAIOB0_2	V3P3_F2
B19	GBB0/IO18NDB0V0	LED1_N
B20	GBB1/IO18PDB0V0	LED2_N
B21	GND13	GND
B22	GBA2/IO20PDB1V0	F2-200-IO_6
C1	EMC_DB[14]/GAB2/IO71NDB5V0	NC
C2	NC9	NC
C3	NC11	NC
C6	EMC_CLK/GAA0/IO00NDB0V0	NC
C9	EMC_BYTEN[1]/GAC1/IO02PDB0V0	NC
C10	EMC_OEN1_N/IO03PDB0V0	NC
C11	GND14	GND
C12	VCCFPGAIOB0_5	V3P3_F2
C13	EMC_AB[8]/IO08NDB0V0	NC
C14	EMC_AB[16]/IO12NDB0V0	NC
C15	EMC_AB[17]/IO12PDB0V0	NC
C16	EMC_AB[24]/IO16NDB0V0	NC
C17	EMC_AB[22]/IO15NDB0V0	NC
C18	EMC_AB[23]/IO15PDB0V0	NC
C19	GBA0/IO19NPB0V0	LED3_N
C20	NC10	NC
C21	GBC2/IO21PDB1V0	LED6_N
C22	GBB2/IO20NDB1V0	F2-200-IO_7
D1	GND15	GND
D2	EMC_DB[12]/IO70NDB5V0	NC
D3	EMC_DB[13]/GAC2/IO70PDB5V0	NC

A2F200 Pin Number	A2F200 Pin Name	Board Signal Name
D4	NC14	NC
D5	NC15	NC
D6	GND19	GND
D9	GND20	GND
D10	EMC_OEN0_N/IO03NDB0V0	NC
D11	EMC_AB[10]/IO09NDB0V0	NC
D12	EMC_AB[11]/IO09PDB0V0	NC
D13	EMC_AB[9]/IO08PDB0V0	NC
D14	GND16	GND
D15	GBC1/IO17PPB0V0	OLED_D/C#
D16	EMC_AB[25]/IO16PDB0V0	NC
D17	GND17	GND
D18	GBA1/IO19PPB0V0	NC
D19	NC12	NC
D20	NC13	NC
D21	IO21NDB1V0	LED7_N
D22	GND18	GND
E1	GFC2/IO67PPB5V0	NC
E2	VCCFPGAIOB5_1	V3P3_F2
E3	GFA2/IO68PDB5V0	F2-200-IO_0
E4	GND22	GND
E5	NC18	NC
E6	GNDQ1	GND
E7	VCCFPGAIOB0_12	V3P3_F2
E9	NC19	NC
E10	VCCFPGAIOB0_6	V3P3_F2
E11	EMC_AB[4]/IO06NDB0V0	NC
E12	EMC_AB[5]/IO06PDB0V0	NC
E13	VCCFPGAIOB0_13	V3P3_F2
E14	GBC0/IO17NPB0V0	NC
E15	NC16	NC
E16	VCCFPGAIOB0_7	V3P3_F2
E17	VCOMPLA1	NC
E19	GND21	GND
E20	NC17	NC
E21	VCCFPGAIOB1_1	V3P3_F2

A2F200 Pin Number	A2F200 Pin Name	Board Signal Name
E22	IO22NDB1V0	F2-200-PWM0
F1	GFB1/IO65PPB5V0	F2-200-IO_8
F2	IO67NPB5V0	RMII_50MHZ_CLK
F3	GFB2/IO68NDB5V0	F2-200-IO_1
F4	EMC_DB[10]/IO69NPB5V0	NC
F5	VCCFPGAIOB5_2	V3P3_F2
F6	VCCPLLA	V1P5_DUT (VCCPLA)
F7	VCOMPLA	GND
F8	NC23	NC
F9	NC24	NC
F10	NC20	NC
F11	NC21	NC
F12	NC22	NC
F13	EMC_AB[20]/IO14NDB0V0	NC
F14	EMC_AB[21]/IO14PDB0V0	NC
F15	GNDQ2	GND
F16	VCCPLA	NC
F18	VCCFPGAIOB1_2	V3P3_F2
F19	IO23NDB1V0	NC
F22	IO22PDB1V0	F2-200-PWM1
G1	GND23	GND
G2	GFB0/IO65NPB5V0	NC
G3	EMC_DB[9]/GEC1/IO63PDB5V0	NC
G4	GFC1/IO66PPB5V0	F2-200-IO_2
G5	EMC_DB[11]/IO69PPB5V0	NC
G6	GNDQ4	GND
G7	NC25	NC
G8	GND28	GND
G9	VCCFPGAIOB0_11	V3P3_F2
G10	GND24	GND
G11	VCCFPGAIOB0_8	V3P3_F2
G12	GND25	GND
G13	VCCFPGAIOB0_9	V3P3_F2
G14	GND26	GND
G15	VCCFPGAIOB0_10	V3P3_F2
G16	GNDQ3	GND

A2F200 Pin Number	A2F200 Pin Name	Board Signal Name
G19	GCA2/IO23PDB1V0	SWITCH1
G20	IO24NDB1V0	SWITCH2
G21	GCB2/IO24PDB1V0	LED8_N
G22	GND27	GND
H1	EMC_DB[7]/GEB1/IO62PDB5V0	NC
H2	VCCFPGAIOB5_3	V3P3_F2
H3	EMC_DB[8]/GEC0/IO63NDB5V0	NC
H4	GND33	GND
H5	GFC0/IO66NPB5V0	F2-200-IO_3
H6	GFA1/IO64PDB5V0	F2-200-IO_4
H7	GND34	GND
H8	VCC4	V1P5_DUT
H9	GND35	GND
H10	VCC1	V1P5_DUT
H11	GND29	GND
H12	VCC2	V1P5_DUT
H13	GND30	GND
H14	VCC3	V1P5_DUT
H15	GND31	GND
H16	VCCFPGAIOB1_3	V3P3_F2
H17	IO25NDB1V0	LED4_N
H18	GCC2/IO25PDB1V0	NC
H19	GND32	GND
H20	GCC0/IO26NPB1V0	LED5_N
H21	VCCFPGAIOB1_4	V3P3_F2
H22	GCB0/IO27NDB1V0	NC
J1	EMC_DB[6]/GEB0/IO62NDB5V0	NC
J2	EMC_DB[5]/GEA1/IO61PDB5V0	NC
J3	EMC_DB[4]/GEA0/IO61NDB5V0	NC
J4	EMC_DB[3]/GEC2/IO60PPB5V0	NC
J5	VCCFPGAIOB5_4	V3P3_F2
J6	GFA0/IO64NDB5V0	F2-200-IO_5
J7	VCCFPGAIOB5_5	V3P3_F2
J8	GND40	GND
J9	VCC8	V1P5_DUT
J10	GND36	GND

A2F200 Pin Number	A2F200 Pin Name	Board Signal Name V1P5_DUT	
J11	VCC5		
J12	GND37	GND	
J13	VCC6	V1P5_DUT	
J14	GND38	GND	
J15	VCC7	V1P5_DUT	
J16	GND39	GND	
J18	VCCFPGAIOB1_5	V3P3_F2	
J19	GCA0/IO28NDB1V0	J22.1	
J20	GCA1/IO28PDB1V0	J22.2	
J21	GCC1/IO26PPB1V0	J22.3	
J22	GCB1/IO27PDB1V0	J22.4	
K1	GND41	GND	
K2	EMC_DB[0]/GEA2/IO59NDB5V0	NC	
K3	EMC_DB[1]/GEB2/IO59PDB5V0	NC	
K5	EMC_DB[2]/IO60NPB5V0	NC	
K7	GND46	GND	
K8	VCC12	V1P5_DUT	
K9	GND47	GND	
K10	VCC9	V1P5_DUT	
K11	GND42	GND	
K12	VCC10	V1P5_DUT	
K13	GND43	GND	
K14	VCC11	V1P5_DUT	
K15	GND44	GND	
K16	VCCFPGAIOB1_6	V3P3_F2	
K18	GDA1/IO31PDB1V0	NC	
K19	GDA0/IO31NDB1V0	J22.5	
K20	GDC1/IO29PDB1V0	NC	
K21	GDC0/IO29NDB1V0	NC	
K22	GND45	GND	
L4	GND52	GND	
L7	VCCFPGAIOB5_10	V3P3_F2	
L8	GND53	GND	
L9	VCC16	V1P5_DUT	
L10	GND48	GND	
L11	VCC13	V1P5_DUT	

A2F200 Pin Number	A2F200 Pin Name	Board Signal Name
L12	GND49	GND
L13	VCC14	V1P5_DUT
L14	GND50	GND
L15	VCC15	V1P5_DUT
L16	GND51	GND
L17	GNDQ5	GND
L18	GDA2/IO33NDB1V0	NC
L19	VCCFPGAIOB1_7	V3P3_F2
L20	GDB1/IO30PDB1V0	NC
L21	GDB0/IO30NDB1V0	NC
L22	GDC2/IO32PDB1V0	NC
M3	VCCFPGAIOB5_6	V3P3_F2
M5	GNDQ6	GND
M7	GND58	GND
M8	VCC20	V1P5_DUT
M9	GND59	GND
M10	VCC17	V1P5_DUT
M11	GND54	GND
M12	VCC18	V1P5_DUT
M13	GND55	GND
M14	VCC19	V1P5_DUT
M15	GND56	GND
M16	VCCFPGAIOB1_8	V3P3_F2
M17	NC26	NC
M18	GDB2/IO33PDB1V0	NC
M19	VJTAG	VJTAG
M20	GND57	GND
M21	VPP	VPUMP
M22	IO32NDB1V0	NC
N1	GND60	GND
N5	VCCFPGAIOB5_7	V3P3_F2
N7	VCCFPGAIOB5_8	V3P3_F2
N8	GND65	GND
N9	VCC24	V1P5_DUT
N10	GND61	GND
N11	VCC21	V1P5_DUT

A2F200 Pin Number	A2F200 Pin Name	Board Signal Name
N12	GND62	GND
N13	VCC22	V1P5_DUT
N14	GND63	GND
N15	VCC23 V1P5_I	
N17	NC27	NC
N18	VCCFPGAIOB1_9	V3P3_F2
N20	GNDENVM	GND
N21	NC28	NC
N22	GND64	GND
P3	GNDRCOSC	GND
P4	GND70	GND
P5	NC29	NC
P6	NC30	NC
P7	GND71	GND
P8	VCC28	V1P5_DUT
P9	GND72	GND
P10	VCC25	V1P5_DUT
P11	GND66	GND
P12	VCC26	V1P5_DUT
P13	GND67	GND
P14	VCC27	V1P5_DUT
P15	GND68	GND
P16	VCCFPGAIOB1_10	V3P3_F2
P17	TDI	TDI
P18	TCK	F2_TCK
P19	GND69	GND
P20	TMS	F2_TMS
P21	TDO	F2_TDO
P22	TRSTB	TRST
R1	MSS_RESET_N	MSS_RESET_N
R2	VCCFPGAIOB5_9	V3P3_F2
R3	GPIO_1/IO46RSB4V0	MSS_GP_IO_1
R4	NC35	NC
R5	NC36	NC
R6	NC37	NC
R7	NC38	NC

A2F200 Pin Number	A2F200 Pin Name	Board Signal Name	
R8	GND76	GND	
R9	VCC32	V1P5_DUT	
R10	GND73	GND	
R11	VCC29	V1P5_DUT	
R12	GND74	GND	
R13	VCC30	V1P5_DUT	
R14	GND75	GND	
R15	VCC31	V1P5_DUT	
R16	JTAGSEL	JTAG_SEL	
R17	NC31	NC	
R18	NC32	NC	
R19	NC33	NC	
R21	VCCFPGAIOB1_11	V3P3_F2	
R22	NC34	NC	
T1	GND77	GND	
Т3	GPIO_8/IO39RSB4V0	MSS_GP_IO_8	
T4	GPIO_11/IO57RSB4V0	MSS_GP_IO_11	
T5	GND80	GND	
Т6	MAC_CLK	GND	
Т8	VCC33SDD0	V3P3A	
Т9	VCC15A	V1P5A	
T10	GNDAQ0	AGND	
T11	GND33ADC01	AGND	
T12	ADC7	ADC7	
T13	AT4	NC	
T14	VAREF2	NC	
T15	VAREFOUT	VAREF_OUT	
T17	SPI_1_DO/GPIO_24	NC	
T18	GND78	GND	
T22	GND79	GND	
U1	GND81	GND	
U2	GPIO_5/IO42RSB4V0	MSS_GP_IO_5	
U3	GPIO_10/IO58RSB4V0	MSS_GP_IO_10	
U5	MAC_RXD[1]/IO53RSB4V0	FPGA_ENA_RXD1	
U6	NC39 NC		
U7	VCC33AP	V3P3A	

A2F200 Pin Number	A2F200 Pin Name	Board Signal Name	
U8	VCC33N	AGND	
U9	CM1	AC1	
U10	VAREF0	VAREF_OUT	
U11	GND33ADC11 AGN		
U12	ADC4	ADC4	
U13	ATGND_02	NC	
U14	ADC11	NC	
U15	GNDVAREF	AGND	
U16	VCC33SDD1	V3P3A	
U17	SPI_0_DO/GPIO_16	SPI_SI	
U18	UART_0_RXD/GPIO_21	RXD_0_IN	
U20	I2C_1_SCL/GPIO_31	NC	
U21	I2C_0_SCL/GPIO_23	OLED_SCL	
U22	GND82	GND	
V1	GPIO_0/IO47RSB4V0	MSS_GP_IO_0	
V2	GPIO_6/IO41RSB4V0	MSS_GP_IO_6	
V3	GPIO_9/IO38RSB4V0/ADC3	MSS_GP_IO_9	
V4	MAC_MDIO/IO49RSB4V0	FPGA_ENA_MDIO	
V5	MAC_RXD[0]/IO54RSB4V0	FPGA_ENA_RXD0	
V6	GND84	GND	
V7	SDD0	DACOUT0	
V8	ABPS1	V1P5	
V9	ADC2	ADC2	
V10	VCC33ADC0	V3P3A	
V11	ADC6	ADC6	
V12	ADC5	ADC5	
V13	ABPS5	AV2_2	
V14	ADC8	NC	
V16	NC40	NC	
V17	GND83 GN		
V18	SPI_0_DI/GPIO_17 SPI_SO		
V19	SPI_1_DI/GPIO_25 NC		
V20	UART_1_TXD/GPIO_28 NC		
V21	I2C_0_SDA/GPIO_22 OLED_SDA		
V22	I2C_1_SDA/GPIO_30	NC	
W1	GPIO_2/IO45RSB4V0	MSS_GP_IO_2	

A2F200 Pin Number	A2F200 Pin Name	Board Signal Name	
W2	GPIO_7/IO40RSB4V0	MSS_GP_IO_7	
W3	GND86	GND	
W4	MAC_CRSDV/IO51RSB4V0	FPGA_ENA_CRS	
W5	MAC_TXD[1]/IO55RSB4V0	FPGA_ENA_TXD1	
W6	NC41	NC	
W7	GNDA0	AGND	
W8	TM0	AT0	
W9	ABPS2	AV1_1	
W10	GND33ADC02	AGND	
W11	VCC15ADC1	V1P5A	
W12	ABPS6	AV1_3	
W13	AC4	NC	
W14	AV2_4	NC	
W16	GNDA1	AGND	
W17	PU_N	RTC_SW	
W18	GNDSDD1	AGND	
W19	SPI_0_CLK/GPIO_18	SPI_SCK	
W20	GND85	GND	
W21	SPI_1_SS/GPIO_27	NC	
W22	UART_1_RXD/GPIO_29	NC	
Y1	GPIO_3/IO44RSB4V0	MSS_GP_IO_3	
Y3	GPIO_15/IO34RSB4V0	MSS_GP_IO_15	
Y4	MAC_TXEN/IO52RSB4V0	FPGA_ENA_TXEN	
Y7	CM0	AC0	
Y8	GNDTM0	ATGND0	
Y9	ADC0	ADC0	
Y10	VCC15ADC0	V1P5A	
Y11	ABPS7	AV2_3	
Y12	TM3	AT3	
Y13	AV1_4	NC	
Y16	VCCMAINXTAL	V3P3A	
Y17	SDD1	DACOUT1	
Y18	PTEM	V1P5_INT	
Y19	VCC33A V3P3A		
Y20	SPI_0_SS/GPIO_19 SPI_0		
Y22	UART 0 TXD/GPIO 20	TXD_0_OUT	

5 – Board Stackup

Board Stack-Up

The SmartFusion Evaluation Kit board is built on a 6-layer printed circuit board (PCB). The silkscreen is provided in Figure 2 on page 44. The full PCB design layout is provided on the SmartFusion Evaulation Kit page of the Actel website:

www.actel.com/products/hardware/devkits boards/smartfusion eval.aspx.

To view the PCB design layout files, you can use Allegro Free Physical Viewer, which can be downloaded from the Cadence website Allegro Download page:

www.cadence.com/products/pcb/Pages/Downloads.aspx.

The layers are arranged in the following order:

Layer1: Top Signal Layer2: GND1 Layer3: PWR1 Layer4: PWR2 Layer5: GND2

Layer6: Bottom Signal Figure 1 shows the stack-up:

Figure 1 • A2F-EVAL-KIT PCB Layer Stack up

Figure 2 shows the silkscreen top view.

Figure 2 • A2F-EVAL-KIT Top Silk-Screen

6 – Demo Design

This chapter describes how to run the Webserver demo design on the SmartFusion Evaluation Kit. The SmartFusion Evaluation Kit comes with a preloaded Webserver demo design. If the board is not preprogrammed, the programming file and the source files for the demo are provided on the SmartFusion Evaluation Kit page:

www.actel.com/products/hardware/devkits boards/smartfusion eval.aspx.

The programming file for the demo is provided as a standalone zip file under the SmartFusion Evaluation Kit Quickstart Card. The source files are provided with the SmartFusion Webserver Demo Using uIP and FreeRTOS User's Guide.

Jumper Settings for Demo Design

Prior to powering up the A2F-EVAL-KIT for the first time, make sure the jumpers are set as shown in the Table 1.

Table 1 • Manufacturing Test Jumper Settings

Jumper	Location Settings	
J6	2 pins next to the Ethernet jack	1–2
JP6	Next to the PUB switch	2-3
JP7	Below the POT	1–2
JP10	Below JP7	1–2

Running the Demo Design

Connect one end of the USB mini B cable to the USB connection, J14 (labeled as USB2) on the A2F-EVAL-KIT board. Connect the other end of the USB cable to the PC you will use for testing. The board receives power from USB. LED1 lights up, indicating the board is powered up. The D11 LED also lights up, indicating UART link establishment. Connect an Ethernet cable from the local area network to J10, the A2F-EVAL-KIT Ethernet jack.

This demo provides you the flexibility to select demo options using switches or serial terminal emulation programs like HyperTermianl or PuTTy. With a USB driver properly installed, and correct COM port and communication settings selected, you can use the serial terminal emulation program to communicate with a design running on SmartFusion FPGA device.

Configure the serial terminal emulation program which is available on your PC with the following settings:

· Bits per second: 57600

Data bits: 8Parity: NoneStop bits: 1

· Flow control: None

Refer to the Configuring Serial Terminal Emulation Programs Tutorial for configuring the HyperTerminal, Tera Term, or PuTTY.

Press switch SW3 (RESET) to start the demo. If the board is programmed correctly, a welcome message is displayed on the OLED as shown in Figure 1 on page 46.

Figure 1 • SmartFusion Welcome display on OLED

The OLED then displays the SmartFusion Menu as shown in Figure 2.

Figure 2 • SmartFusion Menu Display on OLED

If you cannot see the display on OLED, recheck the jumper settings, and if required, program the SmartFusion device with the provided programming file.

The message on OLED (see Figure 2) indicates that you can either press switch SW1 on the kit to select Multimeter mode, or press switch SW2 to scroll the menu on OLED.

The serial terminal emulation program displays a welcome message and the SmartFusion Play Menu for user selection as shown in Figure 3. Use the keyboard to press '0' to select the Multimeter mode, '1' to select Webserver mode, or '2' to select LED Test. .

Figure 3 • Serial Terminal Emulation Program (HyperTerminal) Window

Multimeter Mode

Press switch SW1 to select the Multimeter mode. OLED displays the values of the POT voltage, POT current, and external temperature read by the analog computing engine (ACE) of SmartFusion. Rotate the POT provided on the SmartFusion Evaluation board to observe the change in the POT values displayed on the OLED. Press SW1 to go back to the main menu.

The same Multimeter mode can be selected by pressing '0' in serial terminal emulation program. This displays the values of the POT voltage, POT current, and external temperature on the serial terminal emulation program like HyperTerminal.

Webserver Mode

Press switch SW2 to scroll the menu and then press switch SW1 to select the Webserver mode. This displays the IP address captured by DHCP from the network on OLED and the serial terminal emulation program.

The Webserver mode can also be selected by pressing '1' in the serial terminal emulation program.

Note: To capture the dynamic IP from network, the local area network must be running a DHCP server that assigns an IP address to the Webserver on the board. The network firewalls must not block the board webserver.

Enter the captured IP address in the Internet Explorer address bar and press **Enter** to browse the Webserver utility. Figure 4 shows the SmartFusion Webserver home page.

Figure 4 • SmartFusion Webserver Home page

Note: Internet Explorer version 6.0 should be used to run the Webserver utility with proper web page visibility. Also the PC Ethernet card link speed should be in Auto Detect mode or fixed to 100 Mbps speed.

Real Time Data Display

Select **Real Time Data Display** on the Webserver home page. It displays the voltage, current, and temperature values in real time. The web page refreshes periodically, and displays the updated values of voltage, current, and temperature. Vary the potentiometer on the board and observe the change in the voltage and current values. Click the **Home** button to go back to Home page. Figure 5 shows the SmartFusion Webserver Real Time Display web page.

Figure 5 • SmartFusion Webserver Real Time Display Web Page

LED Test

Press switch SW2 to scroll the menu and then press SW1 to select LED test. Observe the blinking of LEDs available on the SmartFusion Evaluation Kit.

Refer to the SmartFusion Webserver Demo Using uIP and FreeRTOS User's Guide for step by step procedure to run the demo and for complete features of webserver demo.

7 – Manufacturing Test

A2F-EVAL-KIT Board Testing Procedures

This chapter defines and describes the specific A2F-EVAL-KIT board testing procedures. Instructions for running the ACTEL A2F-EVAL-KIT board tests and the steps needed to set up the test environment are outlined in the following sections.

Associated files for this procedure can be downloaded from the Actel website: www.actel.com/download/rsc/?f=A2F_EVAL_KIT_Mfg_PF.

Jumper Settings for the Board Test

Table 1 lists all the jumpers that need to be set on the board for performing the tests. In case any of the tests in the following section do not work as expected, double-check Table 1.

Table 1 • Manufacturing Test Jumper Settings

Jumper	Pin (From)	Pin (To)
JP6	2	3
JP7	1	2
JP10	1	2

Installing the A2F-EVAL-KIT Board USB Serial Driver

- 1. Download and extract all the files stored in the CP210x_driver.zip archive from the Actel website.
- 2. Double-click on the file named CP210x_VCP_Win2K_XP_S2K3.exe.
- 3. Choose the Install option in the Install Wizard and select Yes for the licensing agreement.
- 4. Restart the computer on which the driver was installed. After restart, the driver can be used to communicate with A2F-EVAL-KIT board.

Hooking up the Board and UART Cable

Connect one end of USB mini B cable to the USB connection, J14 (labeled as USB2 in Figure 1 on page 50) on the A2F-EVAL-KIT board. Connect the other end of the USB cable to the PC you will use for testing.

The board receives power from USB. LED1 lights up, indicating the board is powered up. The D11 LED also lights up, indicating UART link establishment.

Hooking Up the Board and Ethernet Cable

Connect an Ethernet cable from the local area network to J10, the A2F-EVAL-KIT Ethernet jack.

Note: For the board Ethernet test to pass, the local network must be running a DHCP server that assigns an IP address to the web server on the board. Network firewalls must not block the web server.

Figure 1 • Board Manufacturing Test Setup

Hooking up the A2F-EVAL-KIT Board Built-in Programmer to PC

Connect the second mini USB cable to connection J13 on the board (labeled USB1 in Figure 1). Plug in the second side of the cable to the PC USB port. This establishes connection to the built-in programming circuit (FlashPro3) on the board, programming the A2F-EVAL-KIT board (SmartFusion device).

1. Open the FlashPro programming software (Figure 2).

Figure 2 • FlashPro New Project Setup

2. Create a new programming project (Figure 3).

Figure 3 • New Project Creation

- 3. Select the option Single Device when choosing the programming mode
- 4. Click the **Configure Programmer** button. This makes the **Load Existing Programming File** button available.
- 5. Browse the PC file system to find the A2F-EVAL-KIT.stp programming file. Click **Open** to select the A2F-EVAL-KIT.stp file (Figure 4).

Figure 4 • Selecting Manufacturing Test STAPL File

6. Click the **Program** button to program the A2F-EVAL-KIT board.

Setting Up the Test Terminal

1. Open the Windows start menu. Select **All > Programs > Accessories > Communications** and select the HyperTerminal program (Figure 5). This opens HyperTerminal.

Figure 5 • HyperTerminal Program Setup

The Connection Description window is displayed (Figure 6). Type in **A2F-EVAL-KIT** as the name of the new HyperTerminal session and click the **OK**.

Figure 6 • HyperTerminal Setup

2. The Connect To window is displayed. Select the COM4 serial connection (Figure 7).

Figure 7 • HyperTerminal Port Selection

3. The COM4 Properties window is displayed. Select the following settings (Figure 8):

Bits per second = 19200

Data bits = 8

Parity = None

Stop bits = 1

Flow Control = None.

Figure 8 • HyperTerminal Port Settings

4. Select File > Properties in the HyperTerminal window. Choose the Settings tab (Figure 9).

Figure 9 • HyperTerminal Properties

5. Click the **ASCII Setup** button. Select the check box labeled **Append line feeds to incoming line ends** (Figure 10).

Figure 10 • ASCII Character Settings

Running the A2F-EVAL-KIT Board Test

Press the button labeled **RESET** (SW3) on the A2F-EVAL-KIT board to start the test program.

1. The menu shown in Figure 11 is displayed on the terminal.

Figure 11 • Manufacturing Test Menu

Note: If this message does not appear, try pressing button SW8 again. If the above message still does not appear, refer to the "Setting Up the Test Terminal" section on page 53 and check to see that the terminal has been set up correctly.

RESET Test

1. Enter **0** into the terminal to begin the reset test. The resulting display should be similar to Figure 12.

Figure 12 • Reset Test

2. If the menu appears correct, enter the character Y into the terminal (Figure 13).

Figure 13 • Reset Test Result

UART Test

1. Enter 1 into the terminal to begin the UART test (Figure 14).

Figure 14 • UART Test

2. Type the character Y into the terminal. The screen shown in Figure 15 should appear.

Figure 15 • UART Test Result

Ethernet Test

1. Enter **2** into the terminal to begin the Ethernet test. The screens shown in Figure 16 and Figure 17 should appear.

Figure 16 • Ethernet Test

Figure 17 • Ethernet Test Result

Note: The IP address may vary in the network setup.

Analog Test

1. Enter 3 into the terminal to begin the Analog test. The screen shown in Figure 18 should appear.

Figure 18 • Analog Test

2. Locate POT RV on the bottom, left hand corner of the board. Turn POT RV1 counter-clockwise all the way to the left, as shown in Figure 19.

Figure 19 • POT RV1

Figure 20 • Analog Test Starting Results

3. Turn POT RV clockwise all the way clockwise to the right. The display on the terminal should be similar to Figure 21.

Figure 21 • Analog Test Ending Results

OLED Test

1. Enter 4 into the terminal to begin the OLED test. The screen shown in Figure 22 is displayed.

Figure 22 • OLED Test Setup

 Check the board OLED display. If the characters ACTEL MAN TEST are displayed in the OLED, enter Y in the terminal; otherwise, enter N. If Y was entered, the screen shown in Figure 23 is displayed.

Figure 23 • OLED Test Results

RTC Test

1. Enter 5 into the terminal to begin the RTC test (Figure 24).

Figure 24 • RTC Test

2. After a few seconds, the screen shown in Figure 25 should appear.

Figure 25 • RTC Test Passed

SPI Test

Enter 6 into the terminal to begin the SPI test. After several seconds, the screen shown in Figure 26 should appear.

```
🤏 A2F-EVAL-KIT - HyperTerminal
                                                        <u>File Edit View Call Transfer Help</u>
Ethernet Test ********
                                                           ▲
            Analog Test ********
            OLED Test ********
           Switches/LEDs Test *****
 You pressed "6"
 SPI Id0 = 1F
SPI Id1 = 48
TEST PASSED
            ** MENU ******
           Ethernet Test *******
            Switches/LEDs Test *****
Connected 0:07:42
           Auto detect
                  19200 8-N-1
```

Figure 26 • SPI Test

Switch/LED Test

1. Enter 7 into the terminal to begin the LEDs test. The screen shown in Figure 27 is displayed.

Figure 27 • LED Test

2. Press **SW2** and LEDs D1, D2, D3, D4, D5, D6, D7, and D8 must light up. When this has occurred, press **Y** (Figure 28).

Figure 28 • Switch Test

A2F-EVAL-KIT Board Failures

All Tests outlined in "Running the A2F-EVAL-KIT Board Test" on page 57 should result in the words TEST PASSED being printed on the terminal. If this does not happen, or the words TEST FAILED are printed, the test has failed.

If the A2F-EVAL-KIT board fails any of the tests outlined in "Running the A2F-EVAL-KIT Board Test" on page 57, the board being tested is not functional.

A – List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version* (50200209-4/05.11)	Page
50200209-3/10.10	The "Pinout Definition" table in the "Component Descriptions and Connections" chapter was updated. This fixes SAR# 31533.	29
50200209-2/5.10	The "Demo Design" chapter was added that fixes SAR# 27577.	45
	Reference added in the "Software Installation" section for IAR and Keil Software support to SmartFusion that fixes SAR# 27579.	7
50200209-0/2.10	The "Mixed-Signal Header" section was added.	27

Note: *The part number is located on the last page of the document. The digits following the slash indicate the month and year of publication.

B – Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about contacting Actel and using these support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480

From Southeast and Southwest U.S.A., call 650. 318.4480

From South Central U.S.A., call 650.318.4434

From Northwest U.S.A., call 650.318.4434

From Canada, call 650.318.4480

From Europe, call 650.318.4252 or +44 (0) 1276 401 500

From Japan, call 650.318.4743

From the rest of the world, call 650.318.4743

Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center

Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions. The Customer Technical Support Center spends a great deal of time creating application notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

Actel Technical Support

Visit the Actel Customer Support website (www.actel.com/support/search/default.aspx) for more information and support. Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on the Actel web site.

Website

You can browse a variety of technical and non-technical information on Actel's home page, at www.actel.com.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center from 7:00 a.m. to 6:00 p.m., Pacific Time, Monday through Friday. Several ways of contacting the Center follow:

Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.

Phone

Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name, phone number and your question, and then issues a case number. The Center then forwards the information to a queue where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 a.m. to 6:00 p.m., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460 800.262.1060

Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com) or contact a local sales office. Sales office listings can be found at www.actel.com/company/contact/default.aspx.

manufacturing test 49

Index

\boldsymbol{A}	mixed-signal header 27
A2F200	
features 12	0
I/Os 13	OLED 18
A2F-DEV-KIT	oscillators 20
board diagram 5	
A2F-EVAL-KIT board	P
components 6	
description 6	pin list 31
Actel	pinout definition 29
electronic mail 69	power sources 14
telephone 70	product support 70
web-based technical support 69	customer service 69
website 69	electronic mail 69
	technical support 69
В	telephone 70
	website 69
block diagram SmartFusion MSS 13	push-button reset 16
	push-button switches 8, 17
board stackup 43, 67	PWM circuit 16
C	R
contacting Actel	RealView header 25
customer service 69	RMII clk 23
electronic mail 69	
telephone 70	S
web-based technical support 69	software installation 7
Cortex-M3 14	SPI flash 20
current sensing 15	SPI liasii 20
customer service 69	-
	\mathcal{T}
E	technical support 69
Ethernet interface 23	temperature diode 27
	test
F	manufacturing 49
	test points 8
FPGA description 11	
	U
J	USB-to-UART 21
J22 header strip 8	user I/O settings 8
jumper settings 7	user I/Os 18
	usei 1/Os 10
K	V
kit contents 5	•
Kit Contents 5	VAREF connections 15
I	VAREF monitoring 9
L	
LEDs 8, 17	W
low-cost programmer 26	web-based technical support 69
	22.232 (3533. 34pport 00
Λ/	

Actel is the leader in low power FPGAs and mixed signal FPGAs and offers the most comprehensive portfolio of system and power management solutions. Power Matters. Learn more at www.actel.com.

Actel Corporation

2061 Stierlin Court Mountain View, CA 94043-4655 USA **Phone** 650.318.4200 **Fax** 650.318.4600

Actel Europe Ltd.

River Court, Meadows Business Park Station Approach, Blackwater Camberley Surrey GU17 9AB United Kingdom

Phone +44 (0) 1276 609 300 **Fax** +44 (0) 1276 607 540

Actel Japan

EXOS Ebisu Buillding 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan **Phone** +81.03.3445.7671

Fax +81.03.3445.7668 http://jp.actel.com

Actel Hong Kong

Room 2107, China Resources Building 26 Harbour Road Wanchai, Hong Kong Phone +852 2185 6460 Fax +852 2185 6488 www.actel.com.cn

© 2010 Actel Corporation. All rights reserved. Actel, Actel Fusion, IGLOO, Libero, Pigeon Point, ProASIC, SmartFusion and the associated logos are trademarks or registered trademarks of Actel Corporation. All other trademarks and service marks are the property of their respective owners.