Devoir à la maison n° 01

À rendre le 14 septembre

Première partie – Étude d'une fonction auxiliaire g –

Soit g la fonction définie sur \mathbb{R}_+ par :

$$g(x) = 2x^2 - (x^2 + 1)\ln(x^2 + 1).$$

- 1) Montrer que g est dérivable sur \mathbb{R}_+ et, en détaillant les calculs, donner l'expression de la dérivée de g sur \mathbb{R}_+ .
- 2) Faire l'étude du sens de variation de g sur \mathbb{R}_+ .
- 3) Montrer qu'il existe dans l'intervalle $\left[\sqrt{e-1},\sqrt{e^2-1}\right]$ un unique réel, que l'on notera α , vérifiant $g(\alpha)=0$.
- 4) En déduire le signe de g(x), pour x appartenant à \mathbb{R}_+ .

Deuxième partie – Étude de la fonction f –

La fonction f est définie sur $[0, +\infty[$ par :

$$f(0) = 0$$
 et $f(x) = \frac{\ln(1+x^2)}{x}$ lorsque $x \neq 0$.

Sa courbe représentative (\mathscr{C}) , dans le plan rapporté à un repère orthonormé d'origine O, est donnée dans la figure 1. Elle sera recopiée sur votre copie, et complétée.

- 5) a) Montrer que la fonction $x \mapsto \frac{f(x)}{x}$ a une limite en 0, et donner cette limite. En déduire que f est dérivable en 0, et donner la valeur de f'(0).
 - b) Pour $x \in \mathbb{R}_+^*$, exprimer f'(x) sous forme d'une fraction dont le numérateur est g(x).
 - c) Faire l'étude du sens de variation de f sur \mathbb{R}_+ .
- **6)** a) Montrer que, pour tout $x \in [1, +\infty[, f(x) \le \frac{\ln(2x^2)}{x}]$.
 - b) En déduire la limite de f en $+\infty$.

Troisième partie – Étude d'une primitive de f –

On note F la primitive de f sur \mathbb{R}_+ qui s'annule en 1.

On rappelle que pour $x \in \mathbb{R}_+$, nous avons alors $F(x) = \int_1^x f(t) dt$, et on ne cherchera pas à calculer cette intégrale.

7) a) Montrer que pour tout $x \in \mathbb{R}_+^*$, $f(x) \geqslant \frac{2 \ln x}{x}$.

- **b)** Calculer $\int_1^x \frac{2 \ln t}{t} dt$ pour $x \ge 1$, et en déduire la limite de F en $+\infty$.
- 8) Dresser le tableau des variations de F.
- 9) Montrer que $f(1) < F(2) < f(\alpha)$ (dans la suite, on prendra $f(\alpha) \simeq 0.8$).
- 10) On note I le point de coordonnées (1,0), A le point de (\mathscr{C}) de coordonnées $(1,\ln 2)$ et B le point de coordonnées $(\ln 2, \ln 2)$.
 - a) Vérifier que B appartient à la tangente à (\mathscr{C}) en O.
 - b) Placer les points I, A et B sur la figure, et tracer les segments [OA], [OB], [BA] et [AI].
 - c) On admet que, pour les abscisses appartenant à l'intervalle [0,1], la courbe (\mathscr{C}) est située au-dessus de [OA] et en-dessous de [OB] et [BA]. Déterminer un encadrement de F(0).
- 11) Tracer la représentation graphique (Γ) de F en exploitant au maximum les résultats précédents on précisera notamment la tangente à (Γ) au point d'abscisse 1 en la traçant et en donnant son coefficient directeur. On prendra également 2 cm comme unité graphique.

FIGURE 1 – Graphe de la fonction f.

— FIN —