> Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Formal

Eromo

Examples

Concluding remarks

Software quality and formal methods: Hoare/Dijkstra approach

Dr. Ivan S. Zapreev

Neat Software Designs

2020-01-20

Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Methods

Frama -

Verification Examples

Concluding remarks

Outline:

- Software Quality
 - Motivating Examples
 - Software Development
 - Software Verification
- Programming Languages
 - Language generations
 - Declarative vs. Imperative
 - ANSI-C
- Formal Methods
 - Formal Verification
 - Hoare Approach
 - Edsger Dijkstra
- Frama C
 - Platform description
 - Plugins overview
 - Introduction to ACSL
- Verification Examples
- Concluding remarks

> Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Formal Methods

Frama - (

Verification Examples

Concluding remarks

Software Quality

Dr. Ivan S. Zapreev

Software Quality

Programmin, Languages

Formal Methods

Frama -

Verificatio Examples

Concluding remarks

Motivating Examples: Major

- 1985–1987 Therac-25:
 - Radiation therapy overdose
 - Control software flaw:
 - Race conditions
 - Death of 6 (six) cancer patients
- 1996 Ariane-5 missile:
 - Missile crash
 - Control software flaw:
 - 64-bit float to 16-bit int
 - \$7 billion development program
 - \$500 million cargo
- 2005 Toyota Camry:
 - Sudden unintended acceleration:
 - Control software flaw:
 - · Recursion causing stack overflow
 - 89 deaths and 57 injuries
 - \$1.2 billion compensations

Software

Dr. Ivan S. Zapreev

Software Quality

Programmin Languages

Formal Methods

Frama -

Verification Examples

Concluding remarks

Motivating Examples: More

The 12 Software Bugs That Caused Epic Failures: <a href="mailto:slin

BUGS EVERYWHERE

Dr. Ivan S. Zapreev

Software Quality

Programmin Languages

Formal Method

Frama -

Verification Examples

Concluding remarks

Software Development: V-model

Figure 1: Software development process

Dr. Ivan S. Zapreev

Software Quality

Programmin Languages

Formal Methods

Frama -

Verification Examples

Concluding remarks

Software Development: V & V

Is formally defined in, e.g.: ISO-9000:2015:

- Verification "Confirmation, through the provision of objective evidence, that specified requirements have been fulfilled."
- Validation "Confirmation, through the provision of objective evidence, that the requirements for a specific intended use or application have been fulfilled."

Dr. Ivan S. Zapreev

Software Quality

Programmin Languages

Formal Methods

Erama

Verification

Concluding

Software Development: Testing

Verification:

- Are we building the product right?
- Does the system comply with its specification?

Validation:

- Are we building the right product?
- Does the system meet the needs of the customer?

Figure 2: Devision of testing types

Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Methods

-rama -

Verificatio Examples

Concluding remarks

Formal Verification

Facts:

- No globally recognized definition of Formal Methods¹.
- Local attempts to have one², e.g.:

Formal methods are techniques used to model complex systems as mathematical entities.

By building a rigorous model of a complex system, it is possible to verify the system's properties in a more thorough fashion than empirical testing.

Conclusion:

Formal methods are techniques suitable for Verification.

¹"Formal Methods for Industrial Critical Systems", S. Gnesi, T. Margaria

² "Formal Methods", Michael Collins, CMU

> Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Formal

_

i i diliid

Verification Examples

Concluding

Software Verification

Goal:

A program shall satisfy a formal specification of its behavior.

Figure 3: Verification methods

Dr. Ivan S. Zapreev

Programming

Languages

Formal Methods

Frama - C

Verification Examples

Concluding remarks

Programming Languages

Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Formal Methods

Frama -

Verification Examples

Concluding

Language generations

Figure 4: Generations of Programming languages

Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Formal

Frama -

Verificatio Examples

Concluding

Declarative vs. Imperative: Main

 Declarative – Expresses what to accomplish without specifying concrete steps.

```
//Declarative `JavaScript`
var arr_dbl = arr.map((x) => x * 2)
```

 Imperative – Describes computation in terms of statements that change a program state.

```
//Imperative `JavaScript`
var arr_dbl = []
for (let i = 0; i < arr.length; i++) {
   arr_dbl.push(arr[i] * 2)
}</pre>
```

Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Formal

Frama -

Verificati Examples

Concludin remarks

Declarative vs. Imperative: Test

Figure 5: If you laugh, it means you've passed

Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Methods

-rama -

Verification Examples

Concludin remarks

ANSI-C: Just an old C

Procedural language:

Is an imperative language in which the program is built from one or more subroutines commonly known as functions.

C language:

C is an *imperative procedural* language.

ANSI-C:

ANSI-C is a common name for two equivalent language specs:

- C89 by American National Standards Institute (ANSI)
- C90 by International Organization for Standardization (ISO)

> Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Formal Methods

Frama (

Verification

Concluding remarks

Formal Methods

> Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Formal Methods

Frama -

Verificatio Examples

Concluding

Formal verification

Question: Does formal validation exist?

Figure 6: Verification methods

Prove conformance to specifications for imperative programs.

> Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Formal Methods

Frama - (

Verification Examples

Concluding remarks

Hoare Approach³

Hoare triples: $\{P\} C \{Q\}$

 ${\cal C}$ - code; ${\cal P}$ - pre-condition; ${\cal Q}$ - post-condition;

Axioms, e.g. Skip and Assign:

$$\frac{-}{\{P\}skip\{P\}}$$
 and $\frac{-}{\{P[E/V]\}V:=E\{P\}}$

Where E is any expression and V is any variable.

Inference rules, e.g. Composition and Conditional:

$$\frac{\{P\}S_1\{R\},\{R\}S_2\{Q\}}{\{P\}S_1;\,S_2\{Q\}} \text{ and } \frac{\{B\land P\}S\{Q\},\{\neg B\land P\}T\{Q\}}{\{P\}\text{ if }B\text{ then }S\text{ else }T\text{ elseif }\{Q\}}$$

Partial correctness: If P holds before executing C then Q holds afterwards, if C terminates.

³ "An Axiomatic Basis for Computer Programming", Tony Hoare, 1969.

Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Formal Methods

Frama -

Verification Examples

Examples

Edsger Dijkstra⁴

The weakest precondition calculus for * A predicate transform semantics to mechanize the proofs. * Explains how C transforms P into Q.

Backward reasoning:

- Based on Q and C calculate the weakest pre-condition \widehat{P}
- If $P \implies \widehat{P}$, then the proof is complete

Forward reasoning:

- Based on P and C calculate the strongest post-condition \widehat{Q}
- If $\widehat{Q} \implies Q$, then the proof is complete

⁴"Guarded commands, non-determinacy and formal derivation of programs", Edsger Dijkstra, 1975

> Dr. Ivan S. Zapreev

Quality

Programmin Languages

Formal Methods

Frama - C

Verification Examples

Concluding

Frama - C

Dr. Ivan S. Zapreev

Quality

Programmin Languages

Methods

Frama - C

Examples

Concludin remarks

Platform description

A plug-in-based open-source cross-platform framework for C source-code analysis:

- Browsing unfamiliar code
- Static code analysis
- Dynamic code analysis
- Code transformations
- Certification of critical software

You can easily build upon the existing plug-ins to implement your own analysis.

Dr. Ivan S. Zapreev

Softwar Quality

Programmin, Languages

Formal

Frama - C

Modern

Examples

Concluding remarks

Plugins overview: Main

Figure 7: Frama-C plugins

Dr. Ivan S. Zapreev

Softwar Quality

Programmin Languages

Formal

Frama - C

Verification

Concludin

Plugins overview: WP

Figure 8: Frama-C WP plugin

> Dr. Ivan S. Zapreev

Frama - C

Introduction to ACSL

> Dr. Ivan S. Zapreev

Softwar Quality

Programming Languages

Formal Methods

Frama _ (

Verification Examples

Concluding

Verification Examples

Dr. Ivan S. Zapreev

Quality

Programmin Languages

Formal Methods

Frama _ (

Verification Examples

Concluding remarks

Concluding remarks