Tema 4: Cálculo de Probabilidades

Sucesos aleatorios. Probabilidad

Departamento Matemática Aplicada

Universidad de Málaga

Curso 2015-2016

Experimento aleatorio

Un experimento científico siempre debe dar un resultado que puede ser:

- Determinista: Si se repite en las mismas circunstancias, siempre da el mismo resultado.
- Aleatorio: Si se repite en las mismas circunstancias puede dar resultados diferentes. El conjunto de resultados posibles se encuentra predeterminado.

Definición

Llamamos **espacio muestral (E)** de un experimento aleatorio al conjunto de los resultados posibles.

Llamamos suceso aleatorio a un subconjunto A del espacio muestral. $(A \subset E)$ $(A \in \mathcal{P}(E) = \{Espacio \ de \ sucesos\})$

ma

Ejemplos de espacio muestral

Una vez realizado el experimento debemos poder conocer si el suceso ha ocurrido o no.

• Extraer una carta al azar de una baraja española (40 cartas). Será un espacio muestral finito con 40 elementos. $E_1 = \{(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (5, 0), (6, 0), (R, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (5, 0), (6, 0), (R, 0), (6, 0), (7, 0), (8, 0), (6, 0), (7, 0), (8, 0), (6, 0), (7, 0), (8, 0), (6, 0), (7, 0), (8, 0), (6, 0), (7, 0), (8, 0), (6, 0), (7, 0), (8, 0), (6, 0), (7, 0), (8, 0), (6, 0), (7, 0), (8, 0), (6, 0), (7, 0), (8, 0), (6, 0), (7, 0), (8,$

```
\begin{split} E_1 &= \{(1,O),(2,O),(3,O),(4,O),(5,O),(6,O),(7,O),(S,O),(C,O),(R,O),\\ &(1,C),(2,C),(3,C),(4,C),(5,C),(6,C),(7,C),(S,C),(C,C),(R,C),\\ &(1,E),(2,E),(3,E),(4,E),(5,E),(6,E),(7,E),(S,E),(C,E),(R,E),\\ &(1,B),(2,B),(3,B),(4,B),(5,B),(6,B),(7,B),(S,B),(C,B),(R,C)\} \end{split}
```

- Lanzar una moneda hasta la primera aparición de 'cara'. El espacio muestral será tamaño infinito numerable $E_2 = \{C, FC, FFC, FFFC, \ldots\}$, donde F='cruz' y C='cara'.
- Tiempo transcurrido hasta la llegada de una llamada de teléfono. El espacio muestral será infinito no numerable: $E_3 = [0, \infty)$

Ejemplos de sucesos

Para el primer experimento serán sucesos:

'Sacar menos de
$$3' = \{(1,0),(2,0),(1,C),(2,C),(1,E),(2,E),(1,B),(2,B)\}$$

B='sacar oros', C='sacar un 7'=\{(7,0), (7,C), (7,E), (7,B)\}

Para el segundo experimento:

A='Lanzar 5 veces'= $\{FFFC\}$, B='Lanzar más de 5 veces', C='Haber obtenido al menos 3 cruces'= $\{FFFC, FFFFC, ..., \}$.

Para el tercer experimento:

'Recibir la llamada antes de 3 min.', 'Tardar más de 5 horas', 'Tardar entre 1 y 5 min.'

Tipos de sucesos

Llamamos suceso elemental si corresponde a un resultado simple del experimento, no pudiendo dividirse en otros. P.:, 'Sacar el as de oros' en una extracción de la baraja.

Llamamos **suceso compuesto** cuando está formado por varios simples. P. ej.: 'Sacar as' pues se compone de 'as de oros', 'as de copas', 'as de espadas' y 'as de bastos'.

Llamamos **suceso seguro (E)** al suceso que sabemos que ocurrirá siempre al realizar el experimento. P. ej.: 'Salir menos de 7' al lanzar un dado. $E=\{1, 2, 3, 4, 5, 6\}$

Llamamos **suceso imposible** (\emptyset) al suceso que sabemos que nunca ocurrirá al realizar el experimento. P.ej.: 'Salir par e impar' al lanzar un dado.

Operaciones con sucesos

Definición

Llamamos unión de los sucesos A y B (A \cup B) al suceso que sucede cuando ocurre A, o cuando lo hace B (alguno de los dos). Llamamos intersección de los sucesos A y B (A \cap B) al suceso que se produce cuando ocurre A, y conjuntamente sucede B (ambos).

Llamamos suceso contrario (\bar{A}) (o complementario) del suceso A, al suceso que ocurre cuando no sucede A.

P. ej.: Dados los sucesos A={Par}={2,4,6} y B={Menos de 3}={1,2}, entonces: $A \cup B={1,2,4,6}$. $A \cap B={2}$, $\bar{A}={Impar}={1,3,5} y \bar{B}={Mayor o igual a 3}={3,4,5,6}.$

Álgebra de Boole de sucesos

El espacio de sucesos E con las operaciones unión, intersección y complementario es un álgebra de Boole. Pero existen subconjuntos \mathcal{A} de E que también lo son.

Definición

Decimos que una familia de sucesos $A = \{A_i\}$, es un **álgebra de Boole** si y solo si verifica:

- ① $E \in \mathcal{A}$
- ② Si $A \in \mathcal{A}$ entonces $\bar{A} \in \mathcal{A}$
- ③ Si A, B ∈ A entonces A ∪ B ∈ A

σ -álgebra de Boole de sucesos

Si \mathcal{A} es un álgebra de Boole, el axioma 3 indica que la unión finita de sucesos del álgebra es un suceso del álgebra, pero no podemos pasar al caso infinito numerable. Cuando sí se puede, tenemos el concepto de σ -álgebra de Boole.

Definición

Decimos que una familia de sucesos $A = \{A_i\}$, es un σ -álgebra de Boole si y solo si verifica:

- $\bullet \quad E \in \mathcal{A}$
- ② Si $A \in \mathcal{A}$ entonces $\bar{A} \in \mathcal{A}$
- ③ Si $A_i \in \mathcal{A}$ $(i \in \mathcal{I})$, entonces $\bigcup_{i \in \mathcal{I}} A_i \in \mathcal{A}$. Siendo \mathcal{I} un conjunto finito o infinito numerable.

Ejemplo

Ejemplo

Si sacamos un número aleatorio en [0,1], podemos considerar la familia \mathcal{A} de sucesos formada por el suceso imposible \emptyset y los sucesos "obtener un valor en el conjunto A_i donde A_i es unión finita de intervalos con extremos racionales e incluidos en [0,1]. ¿Son un σ -álgebra de Boole? ¿Son un álgebra?.

Ax. 1: Es evidente que $E = [0, 1] \in A$.

Ax. 2: El complemento de una unión finita de intervalos, también lo es y sus extremos son racionales.

Ej. $A = [0.1, 0.2) \cup (0.3, 0.5)$ tiene por complemento

 $A = [0, 0.1) \cup [0.2, 0.3] \cup [0.5, 1]$

Ax.3: La unión de 2 elementos de la familia es unión de intervalos.

Ej. $B = [0, 0.2) \cup [0.35, 0.7]$ y $A \cup B = [0, 0.2) \cup (0.3, 0.7]$ que es unión de intervalos de extremos racionales.

Por tanto es un álgebra de Boole.

Ejemplo-cont.

Pero si considero $C_i = \left[\frac{1}{c_i}, 1\right]$ donde c_i es la representación, con $i \in \mathbb{N}$ decimales, de $\sqrt{2}$, tenemos:

Los $C_i \in \mathcal{A}$. Están formados por un intervalo de extremos racionales e incluido en [0,1].

Sin embargo $\bigcup_i C_i = \left(\frac{1}{\sqrt{2}}, 1\right] \notin \mathcal{A}$ (tiene extremo no racional).

No es un σ -álgebra.

4 D > 4 A > 4 B > 4 B >

Si A es un álgebra o un σ -álgebra de sucesos diremos que se trata de un **espacio probabilizable** y tiene las propiedades:

- $\emptyset \in \mathcal{A}$. El suceso imposible pertenece al álgebra.
- $\mathbf{A} \cap \mathbf{B} = \overline{\overline{\mathbf{A}} \cup \overline{\mathbf{B}}}$. Podemos definir la intersección de sucesos.
- Asociativas: $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$
- Commutativas: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- Idempotentes: $A \cup A = A$, $A \cap A = A$
- Simplificativas: $(A \cup B) \cap A = A$, $(A \cap B) \cup A = A$
- Existencia de infimo: $\exists \emptyset, \forall A : \mathbf{A} \cup \emptyset = \mathbf{A}, \quad \mathbf{A} \cap \emptyset = \emptyset$
- Existencia de supremo: $\exists E, \forall A : A \cup E = E, A \cap E = A$
- Existencia de complementario: $\forall A, \exists \bar{A} : A \cup \bar{A} = E, \quad A \cap \bar{A} = \emptyset$
- Distributivas: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

Propiedades-2

- Leyes de Morgan: $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- Doble complementario: $\bar{\bar{\bf A}}={\bf A}$
- Definición de diferencia: $A B = A \cap \overline{B}$
- Diferencia simétrica: $A\Delta B = (A B) \cup (B A)$

Definición axiomática de Probabilidad

Sea E un espacio muestral y $\mathcal A$ un álgebra o σ -álgebra de sucesos, diremos que $(E,\mathcal A)$ es un espacio probabilizable.

Definición

Sea (E, A) un espacio probabilizable, diremos que una función $P: A \rightarrow [0,1]$ es una **función de probabilidad** si y solo si verifica:

- P(E) = 1
- Para todo conjunto $\{A_i\}_{i\in\mathcal{I}}$ verificando $A_i\cap A_j=\emptyset$ para $i\neq j$, se verifica: $\mathbf{P}(\bigcup_{\mathbf{i}\in\mathcal{I}}\mathbf{A_i})=\sum_{\mathbf{i}\in\mathcal{I}}\mathbf{P}(\mathbf{A_i})$

A la terna (E, A, P) se le denomina espacio de probabilidad.

ma

Consecuencias

Observación

Como consecuencia si E es un conjunto finito (o infinito numerable) y conocemos la probabilidad para cada suceso elemental, conocemos la de cualquier suceso.

Propiedades

•
$$P(\bar{A}) = 1 - P(A)$$

$$P(\emptyset) = 0$$

• Si
$$A \subset B \Rightarrow P(A) \leq P(B)$$

$$\bullet \ \mathsf{P}(\mathsf{A} \cup \mathsf{B}) = \mathsf{P}(\mathsf{A}) + \mathsf{P}(\mathsf{B}) - \mathsf{P}(\mathsf{A} \cap \mathsf{B})$$

•
$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

$$P(A - B) = P(A) - P(A \cap B)$$

Ejemplo

Ejemplo: Podemos asignar diferentes funciones de probabilidad a un mismo espacio muestral.

Consideremos como resultados simples $E = \{1, X, 2\}$.

•
$$P(\{1\}) = P(\{X\}) = P(\{2\}) = \frac{1}{3}$$

•
$$P(\{1\}) = 0.5$$
, $P(\{X\}) = P(\{2\}) = 0.25$

•
$$P({1}) = 0.5$$
, $P({X}) = 0.3$, $P({2}) = 0.2$

La probabilidad del suceso $A = \{1, X\}$ queda determinada $P(A) = \frac{2}{3}$, P(A) = 0.75 y P(A) = 0.8, en cada caso.

No cualquier función de $\mathcal{P}(\mathsf{E})$ en [0,1] es una probabilidad.

Si $A = \{1, X\}$ y $B\{X, 2\}$, una función tal que P(A) = 0.4 y P(B) = 0.5 no puede ser una probabilidad, ya que: $P(\bar{A}) = P(\{2\}) = 0.6$ y $P(B) = P(\{X\}) + P(\{2\}) = 0.5$ resultaría $P(\{X\}) = -0.1$

Definición clásica de probabilidad

Definición

Dado un suceso A del espacio muestral E de un experimento aleatorio. Si realizamos N veces el experimento y contabilizamos el número de veces que ha ocurrido A (que denotamos como n_A), la frecuencia relativa de A será: $f_A = \frac{n_A}{N}$.

Llamamos **probabilidad del suceso A** al límite de la frecuencia relativa de A cuando N tiende a infinito:

$$P(A) = \lim_{N \to \infty} f_A = \lim_{N \to \infty} \frac{n_A}{N}$$

Propiedad

Si tenemos un álgebra con sucesos elementales equiprobables, podremos obtener la probabilidad de un suceso A como:

$$\mathbf{P}(\mathbf{A}) = \frac{N \acute{u}mero\ sucesos\ favorables}{N \acute{u}mero\ sucesos\ posibles}$$

Ejemplo: ¿Cuál es la probabilidad de sacar una carta y sea inferior a 4? Hay 12 cartas de las 40 con numeración inferior a 4: P(A) = 12/40 = 0.3

ıma

Probabilidad condicionada

Definición

Sea espacio de probabilidad (E, A, P) y se A un suceso cualquiera, tal que $P(A) \neq 0$. Para cualquier suceso $B \in \mathcal{A}$ definimos la **probabilidad de B condicionada a A** como:

$$P(B/A) = P_A(B) = \frac{P(A \cap B)}{P(A)}$$

Se trata de una probabilidad pues:

1: A cada suceso B le asigna un valor en [0,1].

Es cociente números no negativos y $(A \cap B) \subset A \Rightarrow P(A \cap B) \leq P(A)$.

2:
$$P(E/A) = \frac{P(A \cap E)}{P(A)} = 1$$
, ya que $A \cap E = A$.

3: Si
$$B \cap C = \emptyset$$
, $\Rightarrow P(B \cup C/A) = \frac{P((B \cup C) \cap A)}{P(A)} = \frac{P((B \cap A) \cup (C \cap A))}{P(A)} = \frac{P(B \cap A)}{P(A)} + \frac{P(C \cap A)}{P(A)} = P(B/A) + P(C/A)$

Independencia de sucesos

Definición

Decimos que un suceso B es independiente de otro A si y solo si: P(B/A) = P(B)

Propiedades

- Si B es independiente de A, entonces A es independiente de B. Decimos que A y B son sucesos independientes. $P(B) = P(B/A) = \frac{P(A \cap B)}{P(A)} \Rightarrow P(A \cap B) = P(A)P(B) \Rightarrow P(A/B) = P(A)$
- Siempre se verifica: $P(A \cap B) = P(A)P(B/A)$
- Si A y B son independientes: $P(A \cap B) = P(A)P(B)$

ma

Ejemplos:

Ejemplo

Hallar la probabilidad de sacar 3 cartas sin reemplazamiento y obtener:

- As, Rey y Caballo en este orden.
- ② Un as, un rey y un caballo.
- Obtener 3 ases.
- Obtener 2 oros y 1 copa.

1:
$$P(\{ARC\}) = P(A) * P(R/A) * P(C/AR) = \frac{4}{40} \frac{4}{39} \frac{4}{38}$$

2: $P(\{ARC \cup ACR \cup RAC \cup RCA \cup CAR \cup CRA\}) = 6\frac{4}{40} \frac{4}{39} \frac{4}{38}$

2:
$$P(\{ARC \cup ACR \cup RAC \cup RCA \cup CAR \cup CRA\}) = 6\frac{4}{40}\frac{4}{39}\frac{4}{38}$$

3:
$$P(\{AAA\}) = \frac{4}{40} \frac{3}{39} \frac{2}{38}$$

4:
$$P(\{OOC \cup OCO \cup COO\}) = 3\frac{10}{40}\frac{9}{39}\frac{10}{38}$$

Teorema de la probabilidad total

Definición

Sea (E, A, P) un espacio de probabilidad y sea $C = \{C_i\}_{i \in \mathcal{I}}$ un conjunto de sucesos. Decimos que C es un conjunto completo de sucesos si y solo si se verifican:

- **① Son disjuntos:** Para todo $i \neq j$, se verifica $C_i \cap C_j = \emptyset$
- **2** Cubren E: $\bigcup_{i \in \mathcal{I}} C_i = E$

Teorema

Sea (E, A, P) un espacio de probabilidad y sea $C = \{C_i\}_{i \in \mathcal{I}}$ un sistema completo de sucesos, tal que para todo $i \in \mathcal{I}, P(C_i) > 0$. Si $B \in \mathcal{A}$ entonces:

$$P(B) = \sum_{i \in \mathcal{I}} P(C_i) P(B/C_i)$$

Ejemplos

Ejemplo

Tres máquinas A, B y C producen condensadores. La máquina A produce el 30 %, la B el 50 % y la C el 20 % restante. Se estima que la A produce un 0.003 % de defectuosos, la B el 0.002 % y la C el 0.006 %. Hallar la probabilidad de:

- Producir un condensador defectuoso.
- 2 Los condensadores son empaquetados en lotes de 4, todos ellos producidos por la misma máquina. Hallar la probabilidad de que de un lote al azar obtengamos alguno defectuoso.
- ① $P(D) = P(A)P(D/A) + P(B)P(D/B) + P(C)P(D/C) = (0.3)3(10)^{-5} + (0.5)2(10)^{-5} + (0.2)6(10)^{-5} = 0.000031$
- ② $P(0/A) = 0.99997^4$, $P(0/B) = 0.99998^4$, $P(0/C) = 0.99994^4$, $\Rightarrow P(0) = P(A)P(0/A) + P(B)P(0/B) + P(B)P(0/B) = 0.3(0.99997)^4 + 0.5(0.99998)^4 + 0.2(0.99994)^4 = 0.999876 \Rightarrow P(algunoDef.) = <math>1 P(0) = 0.000124$

Teorema de Bayes

Teorema

Sea (E, A, P) un espacio de probabilidad y sea $C = \{C_i\}_{i \in \mathcal{I}}$ un sistema completo de sucesos, tal que para todo $i \in \mathcal{I}, P(C_i) > 0$. Si $B \in \mathcal{A}$ entonces:

$$P(C_j/B) = \frac{P(C_j)P(B/C_j)}{\sum_{i \in \mathcal{I}} P(C_i)P(B/C_i)}$$

La idea tras este teorema es que la probabilidad 'a priori' de un suceso C_j , resulta modificada si tenemos una información adicional B. Esta nueva probabilidad 'a posteriori' es $P(C_j/B)$.

Ejemplos del teorema de Bayes

Ejemplo

Si en el problema anterior sabemos que no hay ningún condensador defectuoso en el lote

- ¿Cuál es la probabilidad de que el lote sea de B?
- ② ¿Cuál si todos son defectuosos?

1:
$$P(B/\bar{D}) = \frac{P(B)P(\bar{D}/B)}{P(A)P(\bar{D}/A) + P(B)P(\bar{D}/B) + P(C)P(\bar{D}/C)} = \frac{0.5(0.99998)^4}{0.3(0.99997)^4 + 0.5(0.99998)^4 + 0.2(0.99994)^4} = 0.500022$$

2:
$$P(B/4D) = \frac{P(B)P(4D/B)}{P(A)P(4D/A) + P(B)P(4D/B) + P(C)P(4D/C)} = \frac{0.5(0.00002)^4}{0.3(0.00003)^4 + 0.5(0.00002)^4 + 0.2(0.00006)^4} = 0.027444$$

