Multilayer Perzeptron

Finn Bechinka

Problem

- Iris Datensatz
- Blumen Klassifizieren
- 4 Merkmale
- 3 Klassen

sepal_lengthsepal_widthpetal_lengthpetal_widthspecies5.13.51.40.2Iris-setosa

Datensatz

- In Training und Test Daten geteilt (jeder 2. Datensatz)
- Eingabedaten in 2D-Array der Form [Merkmal][n]
- Klassifizierung dargestellt als Array mit Wahrscheinlichkeiten
- Ausgabe Klassifizierung in 2D-Array der Form [Klasse][n]

[[6	/*	• • •	*/],
ГΛ	/*		*/1

[4 /* ... */]

[2 /* ... */],

[1 /* ... */]]

[[1 /* ... */],
[0 /* ... */]

[0 /* ... */],
[0 /* */]]

[0 /* ... */]]

Modell 1

- Eingabeschicht
- 4 Neuronen
- Eine versteckte Schicht
 - 2 Neuronen
- Ausgabeschicht

- Trainings-Genauigkeit
- ~69%
- Test-Genauigkeit
 - 68%
- Nicht genug Neuronen in der versteckten Schicht

Modell 2

- Eingabeschicht
 - 4 Neuronen
- Eine versteckte Schicht
 - 5 Neuronen
- Ausgabeschicht

- Trainings-Genauigkeit
 - ~97%
- Test-Genauigkeit
 - ~98%

Modell 3

- Eingabeschicht
 - 4 Neuronen
- Zwei versteckte Schicht
 - 5 Neuronen

- Trainings-Genauigkeit
 - ~98%
- Test-Genauigkeit
 - ~98%
- Durch die 2. versteckte Schicht werden 3 mal so viele Epochen benötigt

Fazit

- Man benötigt genügend Neuronen in den versteckten Schichten
- Mind. 3 für dieses Problem
- Zu viele versteckte Schichten verzögern die Lösungsfindung
- Eine reicht für die Komplexität dieses Problems aus