

2013—2014 学年第二学期 《大学物理 (2-1)》(64 学时)期末试卷

专业班级	
姓 名	
学 号	
开课系室	基础物理系
考试日期	2014年6月25日19:00-21:00

题	_				三				Ш	总分	
号		1	2	3	4	1	2	3	4	- 四	心力
得分											
阅卷人											

注意事项:

- 1. 请在试卷正面答题, 反面及附页可作草稿纸;
- 2. 答题时请注意书写清楚,保持卷面整洁;
- 3. 本试卷共四道大题,满分100分;试卷本请勿撕开,否则作废;
- 4. 本试卷正文共9页。

一、选择题(共 10 小题,每小题 3 分,共 30 分)		本大	题满分30
1、(本题 3 分)		本大	
质量为 $0.10~{ m kg}$ 的质点,由静止开始沿曲线 $^{ m to}$	$= (5/3)t^3 \stackrel{\varpi}{i} + 2 \stackrel{\varpi}{j} $ (SI)	题	
运动,则在 $t=0$ 到 $t=2$ s 时间内,作用在该质点上	的合外力所做的功为	得 分	
(A) $5/4 J$. (B) $20 J$.		_/•	
(C) 75/4J. (D) 40 J.]	-]
2、(本题 3 分)			
将细绳绕在一个具有水平光滑轴的飞轮边缘上,	现在在绳端挂一质量为 m 的	的重物	,飞轮
的角加速度为 β . 如果以拉力 $2mg$ 代替重物拉绳时,	飞轮的角加速度将		
(A) 小于β. (B) 大于β, 小于 2 β	3.		
(C) 等于 2 β. (D) 大于 2 β.	[-]
3、(本题 3 分)			
一水平圆盘可绕通过其中心的固定竖直轴转动,	,盘上站着一个人.把人和圆	盘取作	F系统,
当此人在盘上随意走动时,若忽略轴的摩擦,此系统	统		
(A) 动量守恒. (B) 机械能守恒	₫.		
(C) 对转轴的角动量守恒. (D) 动量、机板	成能和角动量都守恒.		
(E) 动量、机械能和角动量都不守恒.	[- -]
4、(本题 3 分)			
根据热力学第二定律判断下列哪种说法是正确的	钓.		
A) 热量能从高温物体传到低温物体,但不能	从低温物体传到高温物体.		
B) 功可以全部变为热,但热不能全部变为功			
C) 气体能够自由膨胀,但不能自动收缩.			
D) 有规则运动的能量能够变为无规则运动的	能量,但无规则运动的能量	不能多	变为有
规则运动的能量.		Γ]
5、(本题 3 分)			
已知一平面简谐波的表达式为 $y = A\cos(at - at)$	<i>bx</i>) (a、b 为正值常量), !	则	
(A) 波的频率为 a. (B) 波	皮的传播速度为 b/a.		
(C) 波长为 π/b. (D) 液	支的周期为 2π / a . [- -]

6、	(本题	3分)		
	一平	面简谐波在弹性媒质中传播,	在媒	质质元从最大位移处回到平衡位置的过程中
	(A)	它的势能转换成动能.	(B)	它的动能转换成势能.

- (C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加.
- (D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小. []

7、(本题 3 分)

在单缝夫琅禾费衍射实验中,波长为 λ 的单色光垂直入射到单缝上。对应于衍射角为 30^{0} 的方向上,若单缝处波面恰好可分成3个半波带,则缝宽度 α 等于

(A) λ . (B) 1.5 λ . (C) 2λ . (D) 3λ .

8、(本题 3 分)

一束平行单色光垂直入射在光栅上,当光栅常数(a+b)为下列哪种情况时(a 代表每条缝的宽度),k=3、6、9 等级次的主极大均不出现?

(A)
$$a+b = 2a$$
. (B) $a+b = 3a$.
(C) $a+b = 4a$. (D) $a+b = 6a$.

9、(本题 3 分)

在狭义相对论中,下列说法中哪些是正确的?

- (1) 一切运动物体相对于观察者的速度都不能大于真空中的光速.
- (2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的.
- (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.

(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相 对静止的相同的时钟走得慢些.

A) (1), (3), (4). B) (1), (2), (4). C) (1), (2), (3). D) (2), (3), (4).

10、(本题3分)

一宇航员要到离地球为 5 光年的星球去旅行.如果宇航员希望把这路程缩短为 3 光年,则他所乘的火箭相对于地球的速度应是:(c表示真空中光速)

(A) v = (1/2) c. (B) v = (3/5) c. (C) v = (4/5) c. (D) v = (9/10) c.

二、简单计算与问答题(共4小题,每小题5分,共20分)

1、(本题5分)

两个物体作同方向、同频率、同振幅的简谐振动. 在振动过程中,每当第一个物体经过位移为 $A/\sqrt{2}$ 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动. 试利用旋转矢量法求它们的相位差.

本大题满分20分					
本					
大					
题					
得					
分					

2、(本题 5 分)

两个偏振片叠在一起,在它们的偏振化方向成 α_1 =30°时,观测一束自然光.又在 α_2 =45°时,观测另一束自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比.

3、(本题 5 分)

设有一恒温的容器, 其内储有某种理想气体, 若容器发生缓慢漏气, 问

- (1) 气体的压强是否变化? 为什么?
- (2) 容器内气体分子的平均平动动能是否变化? 为什么?
- (3) 气体的内能是否变化? 为什么?

4、(本题 5 分)

在什么速度下粒子的动量等于非相对论动量的两倍?又在什么速度下粒子的动能等于 非相对论动能的两倍?

三. 计算题(共4小题,每小题10分,共40分)

1、(本题 10 分)

两个质量分别为 m_1 和 m_2 的木块 A 和 B,用一个质量忽略不计、劲度系数为 k 的弹簧联接起来,放置在光滑水平面上,使 A 紧靠墙壁,如图所示.用力推木块 B 使弹簧压缩 x_0 ,然后释放.已知 $m_1 = m$, $m_2 = 3m$,求:

- (1) 释放后,A、B 两木块速度相等时的瞬时速度的大小;
- (2) 释放后,弹簧的最大伸长量.

2、(本题 10 分)

1 mol 单原子分子理想气体的循环过程如 T-V 图所示,其中 c 点的温度为 T_c = 600 K. 试求:

本小题满分10分 本 小 题 得 分

- (1) ab、bc、ca 各个过程系统吸收的热量;
- (2) 经一循环系统所作的净功;
- (3) 循环的效率.

(注:循环效率 $n=W/Q_1$,W 为循环过程系统对外作的净功, Q_1 为循环过程系统从外界 吸收的热量, $\ln 2=0.693$ R=8.31 $J\cdot mol^{-1}\cdot K^{-1}$)

3、(本题 10 分)

沿x轴负方向传播的平面简谐波在t=2s时刻的波形曲线如图所示,设波 速 u = 0.5 m/s. 求: 原点 O 的振动方程.

本小题满分10分

4、(本题 10 分)

在双缝干涉实验中,单色光源 S_0 到两缝 S_1 和 S_2 的距离分别为 l_1 和 l_2 ,并且 $l_1-l_2=3\lambda$, λ 为入射光的波长,双缝之间的距离为 d,双缝到屏幕的距离为 D(D>>d),如图. 求:

本小题满分10分 本 小 题 得 分

- (1) 零级明纹到屏幕中央0点的距离.
- (2) 相邻明条纹间的距离.

四、实验设计题(共1题, 共10分)

如图所示,锥体上滚演示实验装置由 V 形双轨道、双圆锥体组成。该实验演示了在重力场中,物体总是向重心降低的方向运动的现象。根据你对该实验的操作、观察和理解,试回答和分析以下问题:

- (1) 将双圆锥体放置于轨道高端,锥体是运动还是静止?为什么?
- (2) 将双圆锥体放置于轨道低端,锥体是否向轨道高端上滚?如何正确放置双圆锥体才能观察到上滚现象?
 - (3) 若将圆柱体放置于 V 形双轨道上,能否上滚?为什么?
 - (4) 分析锥体上滚现象的成因,说明该现象所蕴含的物理原理。

