7.1 Definition. A map $p: E \to B$ has the *homotopy lifting property* for a space X if for any commutative diagram of the form

there exists a map $\bar{h}: X \times [0,1] \to E$ such that $\bar{h}i = \bar{f}$ and $p\bar{h} = h$.

In the setting of Definition 7.1 we will say that \bar{h} is a lift of h beginning at \bar{f} .

- **7.2 Definition.** A map $p: E \rightarrow B$ is
 - \bullet a *Hurewicz fibration* if it has the homotopy lifting property for any space X.
 - a *Serre fibration* if it has the homotopy lifting property for any CW complex X.
- **7.3 Note.** Every Hurewicz fibration is a Serre fibration.
- **7.4 Example.** For any spaces B, F the projection map $\operatorname{pr}_B \colon B \times F \to B$ is a Hurewicz fibration. Indeed, assume that we have a commutative diagram

$$X \times \{0\} \xrightarrow{\bar{f}} B \times F$$

$$\downarrow pr_B$$

$$X \times [0, 1] \xrightarrow{h} B$$

Let $\operatorname{pr}_F : B \times F \to F$ be the projection onto F. We can define $\overline{h} : X \times [0,1] \to B \times F$ by

$$\overline{h}(x, t) = (h(x, t), \operatorname{pr}_{F} \overline{f}(x, 0))$$

- **7.5 Example.** Every covering map $p: E \to B$ is a Hurewicz fibration.
- **7.6 Proposition.** Let $h, h': X \times [0, 1] \to B$ be two homotopies between maps $f, g: X \to B$. Assume that these homotopies are themselves homotopic relative endpoints. That is, there exists a map

$$H: X \times [0,1] \times [0,1] \rightarrow B$$

such that $H|_{X\times[0,1]\times\{0\}}=h$, $H|_{X\times[0,1]\times\{1\}}=h'$, and for each $t\in[0,1]$ the map $H|_{X\times[0,1]\times\{t\}}$ is a homotopy between f and g. Assume also that we have commutative diagrams

If p is a Hurewicz fibration then the maps \overline{h}_1 , $\overline{h'}_1$: $X \to E$ are homotopic via homotopy $\varphi \colon X \times [0,1] \to E$ such that $p\varphi_t = q$ for all $t \in [0,1]$. The same holds if p is a Serre fibration and X is a CW complex.

Proof. Exercise.

- **7.7 Definition.** $p: E \to B$ be a Hurewicz or Serre fibration. For $b \in B$ the space $p^{-1}(b) \subseteq E$ is called the *fiber* of p over b.
- **7.8 Proposition.** Let $p: E \to B$ be a Hurewicz fibration. If b_0 , b_1 are points in the same path connected component of B, then $p^{-1}(b_0) \simeq p^{-1}(b_1)$.

Proof. Let $\tau:[0,1]\to B$ be a path such that $\tau(0)=b_0$ and $\tau(1)=b_1$. We have commutative diagrams

$$p^{-1}(b_0) \times \{0\} \xrightarrow{\overline{f}} E \qquad p^{-1}(b_1) \times \{0\} \xrightarrow{\overline{f'}} E$$

$$p^{-1}(b_0) \times [0, 1] \xrightarrow{h} B \qquad p^{-1}(b_1) \times [0, 1] \xrightarrow{h'} B$$

where $\bar{f}(x,0) = x$, and $h(x,t) = \tau(t)$, $\bar{f}'(x,0) = x$, and $h'(x,t) = \tau(1-t)$. This gives maps $\bar{h}_1: p^{-1}(b_0) \to p^{-1}(b_1)$ and $\bar{h'}_1: p^{-1}(b_1) \to p^{-1}(b_1)$. Using Proposition 7.6 one can show that these maps are inverse homotopy equivalences.

7.9 Definition. Let $A \subseteq X$. A map $p: E \to B$ has the *relative homotopy lifting property* for the pair (X,A) if for any commutative diagram of the form

$$X \times \{0\} \cup A \times [0,1] \xrightarrow{\bar{f}} E$$

$$\downarrow p$$

$$X \times [0,1] \xrightarrow{\bar{h}} B$$

there exists a map $\bar{h}: X \times [0,1] \to E$ such that $\bar{h}i = \bar{f}$ and $p\bar{h} = h$.

7.10 Theorem. Let $p: E \to B$ be a map. The following conditions are equivalent:

- 1) p is a Serre fibration;
- 2) p has the homotopy lifting property for D^n for all $n \ge 0$;
- 3) p has the relative homotopy lifting property for (D^n, S^{n-1}) for all $n \ge 0$;
- 4) p has the relative homotopy lifting property for all relative CW-complexes (X, A).

Proof. 1) \Rightarrow 2) Obvious.

 $2) \Rightarrow 3$) Assume that we have a diagram

$$D^{n} \times \{0\} \cup S^{n-1} \times [0,1] \xrightarrow{\bar{t}} E$$

$$\downarrow p$$

$$D^{n} \times [0,1] \xrightarrow{h} B$$

We want to show that the map \bar{h} exists.

We can construct a homeomorphism $\varphi \colon D^n \times [0,1] \to D^n \times [0,1]$ such that $\varphi(D^n \times \{0\}) = D^n \times \{0\} \cup S^{n-1} \times [0,1]$. This gives a commutative diagram

$$D^{n} \times \{0\} \xrightarrow{\varphi} D^{n} \times \{0\} \cup S^{n-1} \times [0,1] \xrightarrow{\bar{f}} E$$

$$\downarrow \rho$$

$$D^{n} \times [0,1] \xrightarrow{\varphi} D^{n} \times [0,1] \xrightarrow{h} B$$

The map $h' \colon D^n \times [0,1] \to E$ exists by 2). Then we can take $\overline{h} = h' \varphi^{-1}$.

3) \Rightarrow 4) Let (X, A) be a relative complex, and assume that we have a commutative diagram

$$X \times \{0\} \cup A \times [0,1] \xrightarrow{\bar{f}} E$$

$$X \times [0,1] \xrightarrow{\bar{h}} B$$

We want to show that the map \bar{h} exists.

Assume that X is obtained by attaching a single n-dimensional cell e^n to A using an attaching map $\varphi \colon S^{n-1} \to A$, i.e. $X = A \cup_{\varphi} e^n$. Let $\overline{\varphi} \colon D^n \to X$ be the characteristic map of e^n (2.2). Then the above diagram can be extended as follow:

$$D^{n} \times \{0\} \cup S^{n-1} \times [0,1] \xrightarrow{\overline{\varphi} \times \{0\} \cup \varphi \times [0,1]} X \times \{0\} \cup A \times [0,1] \xrightarrow{\overline{t}} E$$

$$\downarrow p$$

$$D^{n} \times [0,1] \xrightarrow{\overline{\varphi} \times [0,1]} X \times [0,1] \xrightarrow{h} B$$

The map h' exists by 3). Since $X \times [0,1]$ is a quotient space of $A \times [0,1] \sqcup D^n \times [0,1]$, the map

$$\bar{f} \sqcup h' \colon A \times [0,1] \sqcup D^n \times [0,1] \to E$$

defines the desired map $\bar{h}: X \times [0,1] \to E$. The general statement can be obtained from here by induction with respect to cell attachments.

4) \Rightarrow 1) Let X be a CW complex and $A = \emptyset$. Then the relative lifting property for (X, A) is the same as the lifting property for X.

7.11 Note. Property 3) in Theorem 7.10 can be equivalently stated as follows. Given a cube I^n , let K be a subset of ∂I^n consisting of all but one face of I^n . Then for any commutative diagram

$$K \xrightarrow{\bar{f}} E$$

$$\downarrow p$$

there exists a map $\bar{h}: I^n \to E$ such that this diagram commutes.

7.12 Lemma. Let $p: E \to B$ be a Serre fibration. Let $e_0 \in E$ and $b_0 \in B$ be points such that $p(e_0) = b_0$, and let $F = p^{-1}(b_0)$. For any $n \ge 1$ the map $p: (E, F, e_0) \to (B, b_0, b_0)$ induces an isomorphism of homotopy groups

$$p_*: \pi_n(E, F, e_0) \longrightarrow \pi_n(B, b_0, b_0) = \pi_n(B, b_0)$$

Proof. To check that p_* : $\pi_n(E, F, e_0) \to \pi_n(B, b_0)$ is onto, take a map ω : $(I^n, \partial I^n) \to (B, b_0)$. By the relative homotopy lifting property for $(I^{n-1}, \partial I^{n-1})$, we can find a map $\overline{\omega}$: $I^n \to E$ such that $\overline{\omega}(I^{n-1}) = e_0$ and $p\overline{\omega} = \omega$.

$$J^{n-1} = I^{n-1} \times \{1\} \cup \partial I^{n-1} \times [0,1] \xrightarrow{c_{e_0}} E$$

$$\downarrow^{p}$$

$$I^{n} = I^{n-1} \times [0,1] \xrightarrow{\omega} B$$

Then $\overline{\omega}$ represents and element of $\pi_n(E, F, e_0)$, and $p_*([\overline{\omega}]) = [\omega]$.

It remains to verify that p_* is 1-1. Assume that ω_0 , ω_1 : $(I^n, \partial I^n, J^{n-1}) \to (E, F, e_0)$ be maps such that $p_*([\omega_0]) = p_*([\omega_1])$. Then there exists a homotopy $h: I^n \times I \to B$ with $h_0 = p\omega_0$ and $h_1 = p\omega_1$, and such that $h(\partial I^n \times [0,1]) = b_0$. Take the subset $K \subseteq I^n \times I$ given by

$$K = I^n \times \{0, 1\} \cup J^{n-1} \times [0, 1]$$

Notice that K consists of all faces of the cube $I^{n+1} = I^n \times [0,1]$, except for the face $I^{n-1} \times \{0\} \times [0,1]$. Define $\bar{f}: X \to E$ by

$$\bar{f}(x) = \begin{cases} \omega_0(x) & \text{for } x \in I^n \times \{0\} \\ \omega_1(x) & \text{for } x \in I^n \times \{1\} \\ e_0 & \text{for } x \in J^{n-1} \times [0, 1] \end{cases}$$

By (7.11) we can find a map $\bar{h}: I^{n+1} \to E$ such that $\bar{h}|_K = \bar{f}$ and $p\bar{h} = h$. Such map \bar{h} gives a homotopy between ω_0 and ω_1 . Therefore $[\omega_0] = [\omega_1]$ in $\pi_n(E, F, e_0)$.

7.13 Theorem. Let $p: E \to B$ be a Serre fibration. Let $e_0 \in E$ and $b_0 \in B$ be such that $p(e_0) = b_0$, and let $F = p^{-1}(b_0)$. Let $i: F \to E$ be the inclusion map. For any $n \ge 1$ define a homomorphism $\partial: \pi_n(B, b_0) \to \pi_{n-1}(F, e_0)$ given by

$$\partial \colon \pi_n(B,b_0) \xrightarrow{p_*^{-1}} \pi_n(E,F,e_0) \xrightarrow{\partial} \pi_{n-1}(F,e_0)$$

Then the following sequence is exact:

$$\dots \longrightarrow \pi_{n+1}(B, b_0) \xrightarrow{\partial} \pi_n(F, e_0) \xrightarrow{i_*} \pi_n(E, e_0) \xrightarrow{p_*} \pi_n(B, b_0) \xrightarrow{\partial} \dots$$

$$\dots \xrightarrow{p_*} \pi_1(B, b_0) \xrightarrow{\partial} \pi_0(F, e_0) \xrightarrow{i_*} \pi_0(E, e_0) \xrightarrow{p_*} \pi_0(B, b_0)$$

Proof. Exactness in almost all places follows from the exactness of the long exact sequence of the

triple (E, F, e_0) , and the commutativity of the following diagram:

$$\dots \longrightarrow \pi_n(F, e_0) \xrightarrow{i_*} \pi_n(E, e_0) \xrightarrow{p_*} \pi_n(B, b_0) \xrightarrow{\partial} \pi_{n-1}(F, e_0) \xrightarrow{i_*} \pi_{n-1}(E, e_0) \longrightarrow \dots$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Since the long exact sequence of (E, F, x_0) ends at $\pi_0(E, e_0)$, exactness of the sequence

$$\pi_0(F, e_0) \xrightarrow{i_*} \pi_0(E, e_0) \xrightarrow{p_*} \pi_0(B, b_0)$$

needs to be checked separately (exercise).

7.14 Note. The map $\partial \colon \pi_n(B,b_0) \to \pi_{n-1}(F,e_0)$ can be described directly as follows. Take a map $\omega \colon (I^n,\partial I^n) \to (B,x_0)$. Since $p \colon E \to B$ is a Serre fibration, by (7.11) we can find $\overline{\omega} \colon I^n \to E$ such that $p\overline{\omega} = \omega$, and $\overline{\omega}(J^{n-1}) = e_0$. Then $\partial([\omega]) = [\overline{\omega}|_{J^{n-1} \times \{0\}}]$.

7.15 Example. Consider the product fibration $\operatorname{pr}_B \colon B \times F \to B$. For $b_0 \in B$ we have $\operatorname{pr}_B^{-1}(b_0) = \{b_0\} \times F \cong F$. This for $f_0 \in F$ the exact sequence looks as follows:

$$\ldots \to \pi_{n+1}(B, b_0) \xrightarrow{\partial} \pi_n(F, f_0) \xrightarrow{i_*} \pi_n(B \times F, (b_0, f_0)) \xrightarrow{p_*} \pi_n(B, b_0) \xrightarrow{\partial} \pi_{n-1}(F, f_0) \xrightarrow{i_*} \ldots$$

The projection map $\operatorname{pr}_F \colon B \times F \to F$ induces homomorphisms $\operatorname{pr}_{F*} \colon \pi_n(B \times F, (b_0, f_0)) \to \pi_n(F, f_0)$ such that $\operatorname{pr}_{F*} i_* = \operatorname{id}_{\pi_n(F, f_0)}$. This means that $\operatorname{Im} \partial = \operatorname{Ker} i_* = 0$. Therefore for each $n \geq 1$ we obtain a split short exact sequence

$$0 \longrightarrow \pi_n(F, f_0) \xrightarrow[\operatorname{pr}_{F_*}]{i_*} \pi_n(B \times F, (b_0, f_0)) \xrightarrow{p_*} \pi_n(B, b_0) \longrightarrow 0$$

This shows that $\pi_n(B \times F, (b_0, f_0)) \cong \pi_n(B, b_0) \times \pi_n(F, f_0)$, which is a special case of the product formula (5.13).

7.16 Example. Let $p: E \to B$ be a covering, let $b_0 \in B$ and let $e_0 \in p^{-1}(b_0)$. The space $F = p^{-1}(b_0)$ is discrete, so $\pi_n(F) = 0$ for all $n \ge 1$. Therefore the exact sequence of the fibration becomes

$$\dots \longrightarrow 0 \longrightarrow \pi_n(E, e_0) \xrightarrow{\rho_*} \pi_n(B, b_0) \longrightarrow 0 \longrightarrow \dots$$

$$\dots \longrightarrow 0 \longrightarrow \pi_1(E, e_0) \xrightarrow{\rho_*} \pi_1(B, b_0) \xrightarrow{\partial} \pi_0(F, e_0) \xrightarrow{i_*} \pi_0(E, e_0) \xrightarrow{\rho_*} \pi_0(B, b_0)$$

This shows that p_* : $\pi_n(E, e_0) \to \pi_n(B, b_0)$ is an isomorphism for all $n \ge 2$, and it is a monomorphism for n = 1. This recovers the statement of Proposition 5.9.

The image of p_* : $\pi_1(E,e_0) \to \pi_1(B,b_0)$ coincides with $\operatorname{Ker}(\partial\colon \pi_1(B,b_0) \to \pi_0(F,e_0))$. By the definition of the map ∂ , an element $[\omega] \in \pi_1(B,b_0)$ is in $\operatorname{Ker} \partial$ if $\omega\colon [0,1] \to B$ has a lift $\overline{\omega}\colon [0,1] \to E$ such that $\overline{\omega}(1) = e_0$ and $\omega(1)$ is in the same path connected component of F as e_0 . Since F is discrete, it means that $\overline{\omega}(1) = e_0 = \overline{\omega}(0)$. As a consequence, we obtain that $\operatorname{Im}(p_*\colon \pi_1(E,e_0) \to \pi_1(B,b_0)$ consists of elements $[\omega] \in \pi_1(B,b_0)$ such that the lift of ω ending at e_0 is a loop.

7.17 Theorem. Let $p: E \to B$ be map and let $\{U_i\}_{i \in I}$ be an open cover of B. Assume that for each $i \in I$ the map $p_i: p^{-1}(U_i) \to U_i$, which is the restriction of p is a Serre fibration. Then p is a Serre fibration.

7.18 Note. An analogous fact is true for Hurewicz fibrations, under the assumption that B is a paracompact space.

Proof of Theorem 7.17. See e.g. Hatcher *Algebraic Topology*, Proposition 4.48 p. 379. □

7.19 Definition. A map $p: E \to B$ is a *fiber bundle* with fiber F if for every point $b \in B$ there exists an open neighborhood $b \in U \subseteq B$ and a homeomorphism $h_U: p^{-1}(U) \to U \times F$ such that the following diagram commutes:

$$p^{-1}(U) \xrightarrow{h_U} U \times F$$
 $U \times F$

Here $\operatorname{pr}_1: U \times F \to U$ is the projection map $\operatorname{pr}_1(x,y) = x$.

7.20 Proposition. Every fiber bundle is a Serre fibration.

Proof. This follows from Theorem 7.17 and Example 7.4.

7.21 Example. Every covering space $p: E \to B$ is a fiber bundle whose fiber is a discrete space.

7.22 Example. Mobius band

7.23 Example. Klein bottle

7.24 Example. Consider S^{2n+1} as a subspace of the complex space \mathbb{C}^n :

$$S^{2n+1} = \{(z_0, \dots, z_n) \in \mathbb{C}^{n+1} \mid \sum_{i=0}^n ||z_i||^2 = 1\}$$

In particular, $S^1 = \{z \in \mathbb{C} \mid ||z|| = 1\}$. The *n*-dimensional complex projective space is the quotient space

$$\mathbb{CP}^n = S^{2n+1}/\sim$$

where $(z_1,\ldots,z_n)\sim \lambda(z_0,\ldots,z_n)$ for all $\lambda\in S^1$. We will denote by $[z_0,\ldots,z_n]\in\mathbb{CP}^n$ the equivalence class of (z_0,\ldots,z_n) . Let $p\colon S^{2n+1}\to\mathbb{CP}^n$ be the quotient map $p(z_0,\ldots,z_n)=[z_0,\ldots,z_n]$.

We will show that $p: S^{2n+1} \to \mathbb{CP}^n$ is a fiber bundle with fiber S^1 . Let $b = [z_0, \dots, z_n] \in \mathbb{CP}^n$. Choose $0 \le i \le n$ such that $z_i \ne 0$, and take $U_i = \{[w_0, \dots, w_n] \in \mathbb{CP}^n \mid w_i \ne 0\}$. This set is an open neighborhood of b in \mathbb{CP}^n . We have

$$p^{-1}(U_i) = \{(w_0, \dots, w_n) \in S^{2n+1} \mid w_i \neq 0\}$$

Define a map $h_i: p^{-1}(U_i) \to U_i \times S^1$ by $h_i(w_0, \ldots, w_n) = ([w_0, \ldots, w_n], w_i/||w_i||)$. This is a homeomorphism, with the inverse given by

$$h_i^{-1}([v_0,\ldots,v_n],\lambda)=\frac{||v_i||}{v_i}\cdot\lambda\cdot(v_0,\ldots,v_n)$$

Let $n \geq 1$. The long exact sequence of the bundle $p: S^{2n+1} \to \mathbb{CP}^n$ has the form

$$\dots \longrightarrow \pi_m(S^1) \xrightarrow{i_*} \pi_m(S^{2n+1}) \xrightarrow{p_*} \pi_m(\mathbb{CP}^n) \xrightarrow{\partial} \pi_{m-1}(S^1) \longrightarrow \dots$$

$$\dots \longrightarrow \pi_2(S^{2n+1}) \xrightarrow{p_*} \pi_2(\mathbb{CP}^n) \xrightarrow{\partial} \pi_1(S^1) \xrightarrow{i_*} \pi_1(S^{2n+1}) \xrightarrow{p_*} \pi_1(\mathbb{CP}^n, b_0) \xrightarrow{\partial} \pi_0(S^1) = 0$$

Since $\pi_m(S^1) = 0$ for m > 1, we obtain that $\pi_m(\mathbb{CP}^n) \cong \pi_m(S^{2n+1})$ for $m \geq 3$. Also, since $\pi_1(S^1) \cong \mathbb{Z}$ and $\pi_m(S^{2n+1}) = 0$ for m < 2n + 1, thus $\pi_2(\mathbb{CP}^n) \cong \pi_1(S^1) \cong \mathbb{Z}$ and $\pi_1(\mathbb{CP}^n) = 0$.

7.25 Example. As a special case of Example 7.24, take n=1. In this case, we have a homeomorphism $\mathbb{CP}^1 \cong S^2$. To see this, define a map $h: \mathbb{CP}^1 \smallsetminus \{[1,0]\} \to \mathbb{C}$ by $h([z_0,z_1]) = \frac{z_0}{z_1}$. This is a homeomorphism with the inverse given by $h^{-1}(z) = \frac{1}{1+||z||} \cdot [z,1]$. Since S^2 is homeomorphic to the one-point compactification of \mathbb{C} , i.e. $S^2 \cong \mathbb{C} \cup \{\infty\}$, the map h can be extended to a homeomorphism $h: \mathbb{CP}^1 \to S^2$ by setting $h([1,0]) = \infty$.

Under the identification $\mathbb{CP}^1 \cong S^2$ the bundle $S^1 \to S^3 \xrightarrow{p} \mathbb{CP}^1$ becomes $S^1 \to S^3 \xrightarrow{p} S^2$. This bundle is called the *Hopf bundle* (or the *Hopf fibration*).

Using the long exact sequence of the Hopf fibration we obtain:

7.26 Theorem. $\pi_2(S^2) \cong \mathbb{Z}$.