

Iby and Aladar Fleischman Faculty of Engineering Tel Aviv University

הפקולטה להנדסה ע"ש איבי ואלדר פליישמן אוניברסיטת תל-אביב

The School of Electrical Engineering

בי"ס להנדסת חשמל

Project Work Plan

Project Number: 3097

Project Name: Digital High Frequency Chip –

Linear Low Dropout Regulator

Students:

Name: Arsen Arutyunov I.D.

Name: Or Fahima I.D.

Project carried out at: University

For the project instructor:

I approve the submission of the following report

Signature: ___*Tal Elazar*_____

Name: _Tal Elazar_

1 - Abstract

This project focuses on designing a linear low dropout (LDO) voltage regulator which provides a stable voltage supply, in a wide temperature range and immune to a range of line and load fluctuations, for a digital phase-locked-loop (PLL), which digital parts will be designed by several other project groups.

¹The first building block of the LDO consists of an operational amplifier in an error amplifier configuration, a pass transistor (PMOS or NMOS), and two resistors forming a feedback loop .The error amplifier's purpose is to compare the feedback voltage set by the two resistors voltage divider with a stable reference voltage (set by the second building block – the bandgap reference circuit), and adjust accordingly the MOSFET gate voltage, so the transistor can drive the required current to match the feedback voltage with the reference voltage precisely.

As previously mentioned, the stable reference voltage is provided by a bandgap reference circuit, which works by summing the base-emitter voltage of the BJT transistor in FA mode, which is negatively proportional to absolute temperature in the desired temperature range (CTAT), with a component that is positively proportional to absolute temperature in the same temperature range (PTAT).

Combined, the output voltage remains constant across this temperature range and is insensitive to a range of line and load fluctuations. There are multiple possible V_{g00} topologies to implement a bandgap reference, we will focus on a topology based on an op-amp.

V_{DD} V_{out} R_1 V_{ref} R_2

 $V_{ref} = V_{BE} + V_{R_{PTAT}} = 1.2V$

¹ Pictures are taken from W. Sansen, Analog Design Essentials, 2006.

The op-amp is a vital component in both circuits and will be fully designed as well to match the requirements of both blocks.

LDO regulators are widely used in electronic systems and integrated circuits (ICs) to supply consistent, noise-immune voltage to sensitive analog, digital and mixed-signal circuits, such as PLLs, data converters and radio frequency circuits. The highly precise, low power and stable behavior of the LDO regulators are crucial in such circuits to prevent possible glitches caused by voltage fluctuations or noise. In the case of the PLL, it requires stable input voltage to ensure accurate frequency synthesis and high signal integrity in timing-critical applications like digital communication systems and microprocessors.

The project involves the schematic and layout design of a bandgap reference circuit, an op-amp in error amplifier configuration, and the LDO regulator circuit. After receiving the output voltage, load current, PSSR specifications and the line and load requirements, we will begin the design of the bandgap reference circuit, which will utilize at first an ideal built in Virtuoso op-amp block. Following successful simulations testing its performance and ensuring it meets the desired specifications, we will implement its layout and then run layout-vs-schematic and design rule checks and extract layout parasitics and perform post-layout simulations to verify that the performance still meets the requirements.

Then we will design the schematic and implement the layout of the op-amp configuration needed in both the bandgap reference circuit and the LDO regulator and run post-layout simulations to test its performance.

Finally, the LDO regulator block schematic, including the working bandgap reference circuit and the op-amp blocks, will be designed, and then its layout will be built. Final simulation tests, including the LVS, DRC checks and the extraction of parasitics, will be utilized to verify the entire circuit's performance meets the requirements and specifications.

Upon completion, the circuit will be sent to tape out and a project book, including design details and its challenges, analysis and simulation results, will be compiled.

The entire project will be implemented in Cadence Virtuoso under the TSMC 28nm technology node.

The block diagram:

2 – Motivation

The fundamental motivation for this project stems from the critical requirements of modern Digital Phase-Locked Loop (PLL) circuits. In high-frequency digital PLLs, maintaining precise timing and phase alignment is crucial, which demands an extremely stable power supply. Any fluctuation in the supply voltage can directly impact the PLL's performance, causing jitter and phase noise that degrade the overall system performance.

The Linear Low Dropout (LDO) regulator serves as a vital component in this context, providing a constant output voltage that remains stable regardless of power supply variations and temperature changes. This stability is essential for the PLL's voltage-controlled oscillator (VCO) and other sensitive components, where even minor voltage variations can significantly affect the output frequency accuracy.

While alternatives like switching regulators exist, they introduce switching noise that can severely impact the PLL's performance. Traditional linear regulators suffer from poor temperature compensation and limited power supply rejection. Our LDO implementation addresses these challenges by providing precise regulation with high PSRR (Power Supply Rejection Ratio), enabling optimal PLL performance in high-frequency applications.

The successful implementation of this project will enhance the reliability and accuracy of digital PLL systems by ensuring stable, noise-free power delivery to critical components.

3 - Statement of Work

This project consists of the planning, schematic design, simulation, and layout implementation of a linear low dropout voltage regulator, which includes a bandgap reference circuit. The purpose of this circuit is to supply a stable temperature-independent voltage to a digital phase-locked-loop (PLL). Hence, this project requires a solid foundational theoretical knowledge in analog circuit design, as well as practical knowledge in Cadence Virtuoso with the TSMC 28nm technology node for the design, simulation and layout implementation of the circuit.

The theoretical background knowledge required for this project is the following:

- **1)** Fundamentals of analog circuit design, including MOSFET operation, BJT operation, basic amplifier topologies, differential amplifiers, current mirrors, operational amplifiers, feedback and stability.
- 2) Basic principles and different topologies of LDO voltage regulators understanding its function and necessity, its different possible topologies, understanding the purpose of each component pass transistors, error amplifiers, feedback resistors network. Understanding the concepts of temperature independent voltage reference, line regulation, load regulation.
- 3) Bandgap reference circuits understanding their function and necessity, exploring different possible topologies and the pros and cons of each (current mirror vs. op amps configurations etc.), learning the concepts of proportional to absolute temperature (PTAT) and complementary to absolute temperature (CTAT) voltages and how components with such voltages are used to produce a stable reference circuit.
- **4)** Operational amplifier design and stability analysis learning how to design an op-amp with the required gain that meets the power limitations in this project and ensuring it's stable by implementing a resistors network feedback loop.

Key resources include:

- **1)** For basic review of analog circuits analysis the analog electronics circuit course materials, including the course book SEDRA/SMITH Microelectronic Circuits 7th Edition.
- 2) For more advanced material, focusing on synthesis of circuits the integrated analog circuits course materials, including the course books Analog Design Essentials by W. Sansen, and Design of Analog CMOS Integrated Circuits by B. Razavi.
- **3)** Additional online resources for the TSMC 28nm technology node and Virtuoso.

The project consists of several key phases – theoretical study, schematic planning and design, circuit simulation, layout implementation, and finally validation. In detail:

- 1) After reviewing fundamentals of analog circuit design, and learning the principles of LDOs, bandgap reference circuits, op-amps, digital PLL, we will begin to gather the specifications and requirements for the LDO. These include required output voltage, supplied voltage to the LDO and its fluctuations (PSSR and line regulation requirements), load (PLL) current and its fluctuations (load regulation requirement), allowed max current to feedback resistors in LDO, temperature range and voltage temperature coefficients in $\frac{ppm}{^{\circ}C}$.
- **2)** Design, simulation, and layout implementation of the bandgap reference circuit:
- Topology selection and design exploring different possible topologies and picking one to design. Implementing the PTAT and CTAT to obtain a stable reference voltage. At this stage using a built-in op-amp in Virtuoso to complete the design.
- Simulation simulating the circuit in Virtuoso to verify it provides a stable output across the required temperature range.
- After successful simulations, implementing the layout of the circuit in Virtuoso, while ensuring parasitic effects and layout size are minimized. Then, conducting layout-vs-schematic (LVS) and design rule (DRC) checks to

confirm the layout matches the schematic and complies with the technology design rules. Finally, performing post layout simulations that include parasitics to verify circuit still meets performance requirements.

- 3) Design, simulation, and layout implementation of the op-amp:
- Picking a suitable op-amp topology to meet required gain and stability requirements for both bandgap reference circuit and the LDO circuit. Testing its performance with simulations in Virtuoso. Then implementing its layout, verifying through post layout simulations.
- 4) Design and simulation of the LDO circuit selecting the MOSFET transistor and size based on the dropout voltage requirements and output current. Designing the feedback network so it meets the desired output voltage and current requirements. Integration of all components together and implementation of the layout, with LVS and DRC checks, performing parasitics extraction and performing final post-layout simulations under various load and temperature conditions to verify design. After successful completion, compiling a project book to document the design, challenges, analysis and results.

The project will solely use Cadence Virtuoso for the schematic design of the circuits, their simulations and their layout implementation and verification.

4 - Project Deliverables

1. System Requirements*

- 1. Reference voltage value 1.1-1.2V.
- 2. Output voltage value 0.8-0.9V.
- 3. Load current drawn 4-5mA.
- 4. Feedback network resistance current drawn < 40-50uA.
- 5. Power Supply Rejection Ratio (PSRR) ≥ 40dB at frequencies up to 1kHz.
- 6. Output voltage temperature coefficient variation \leq 1% across temperature range of -40°C to 125°C ($60\frac{ppm}{^{\circ}C}$).
- 7. Load regulation \leq 0.1% for load current changes from 0 to 10mA.
- 8. Dropout voltage ≤ 20mV at maximum load current.

*Note: Specifications may be adjusted based on final PLL system requirements, additional requirements (e.g. power dissipation) will be known later.

2. Design and Simulation Deliverables

First Semester:

- Bandgap Reference Circuit: schematic design, temperature stability simulations in virtuoso, OP simulations, initial layout*, LVS and DRC checks*, post-layout performance simulations with parasitics extracted*.
- Operational Amplifier: schematic design, operating point simulation, performance (gain) measurements, initial layout*.

*Note – the full completion of layout design for both parts before the end of the first semester isn't guaranteed.

Second Semester:

- Complete LDO Circuit: final schematic, final layout with all components integrated, post-layout simulations that verify requirements are met.

3. Testing Methods (All in Cadence Virtuoso)

- DC OP Analysis: load/line regulation, dropout voltage
- AC Analysis: PSRR, loop stability, phase margin
- Load/Line Analysis: performance across varying load and supply voltages
- Temperature Analysis: performance across temperature range

5 - Project Schedule

1. Literature review and background study Review material about LDO circuits, bandgap reference study Submitting project Including defining project quantitative requirements, e.g. voltages, currents, PSSR 24/11/24 Workplan Compiling short reports on LDO circuit, bandgap reference circuit and basic digital PLL to build a solid theoretical foundation. November 2024		Milestone	Description (2-3 lines)	Planned Date
Study Circuits. 2024	1.	Literature review	Review analog circuit design fundamentals, review material about	Early
2. Submitting project workplan currents, PSSR 3. Summary of a digital PLL and the LDO, BGR circuits 4. Schematic design of the bandgap reference circuit with an ideal built-in op-amp block in Virtuoso and testing it with simulations. Personance circuit the design rules 5. Layout design of the op-amp and integrating in the bandgap reference circuit. The same or very similar design of the op-amp reference circuit, running LVS and DRC checks to ensure layout matches schematic and meets the design rules 8. Progress Presentation Submission 9. Schematic design of the LDO circuit 9. Schematic design of the op-amp integration of the LDO circuit 10. Layout design of the LDO circuit 11. Enaltesting (post Layout parasitic parameters, performing post layout simulations, and ensuring quantitative objectives regarding PSSR, load		and background	digital PLL, review material about LDO circuits, bandgap reference	November
workplan currents, PSSR 3. Summary of a digital PLL and the LDO, BGR circuits basic digital PLL to build a solid theoretical foundation. November 2024 4. Schematic design of the bandgap reference circuit with an ideal built-in op-amp block in Virtuoso and testing it with simulations. Perspective or circuit bandgap reference circuit with an ideal built-in op-amp block in Virtuoso and testing it with simulations. Perspective or circuit bandgap reference circuit, running bandgap reference circuit bandgap reference circuit. The same or very similar design will also be used in the LDO circuit. 7. Layout design of the op-amp bandgap reference circuit. The same or very similar design will also be used in the LDO circuit. 7. Layout design of the op-amp and integrating in the bandgap reference circuit, running LVS and DRC checks to ensure layout matches schematic and meets the design rules. 8. Progress Presentation Submission 9. Schematic design of the the LDO circuit bandgap reference circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. 10. Layout design of the LDO circuit bandgap reference circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. 11. Erinal testing (post Extracting layout parasitic parameters, performing post layout Late April 2025 simulations, and ensuring quantitative objectives regarding PSSR, load		study	circuits.	2024
3. Summary of a digital PLL and the LDO, BGR circuits Designing short reports on LDO circuit, bandgap reference circuit and basic digital PLL to build a solid theoretical foundation. November 2024	2.	Submitting project	Including defining project quantitative requirements, e.g. voltages,	24/11/24
PLL and the LDO, BGR circuits 4. Schematic design of the bandgap reference circuit with an ideal built-in op-amp block in Virtuoso and testing it with simulations. 5. Layout design of bandgap reference circuit bandgap reference circuit. The same or very similar design will also be used in the LDO circuit. 7. Layout design of the op-amp reference circuit, running LVS and DRC checks to ensure layout matches schematic and meets the design rules 8. Progress Presentation Submission 9. Schematic design of the LDO circuit bandgap reference circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. 10. Layout design of the LDO circuit ensure layout matches schematic and meets the design rules 11. Final testing (post Extracting layout parasitic parameters, performing post layout Late April layout) and simulations, and ensuring quantitative objectives regarding PSSR, load		workplan	currents, PSSR	
BGR circuits Chematic design of the bandgap reference circuit with an ideal built-in op-amp block in Virtuoso and testing it with simulations. Layout design of the bandgap reference circuit with an bandgap reference circuit with an ideal built-in op-amp block in Virtuoso and testing it with simulations. Layout design of the bandgap reference circuit, running bandgap reference circuit with an ideal built-in op-amp block in Virtuoso and testing it with simulations. Early December 2024 Layout design of the bandgap reference circuit, running bandgap reference circuit, running bandgap reference circuit. Chematic design of the op-amp bandgap reference circuit. The same or very similar design will also be used in the LDO circuit. Layout design of the op-amp and integrating in the bandgap reference circuit, running LVS and DRC checks to ensure layout matches schematic and meets the design rules Progress Presentation Submission Schematic design of the LDO circuit bandgap reference circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. Designing the schematic block of the linear dropout circuit including the V _{ref} from the bandgap reference circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. Designing the schematic block of the LDO, running LVS and DRC checks to ensure layout matches schematic and meets the design rules Layout design of the LDO circuit ensure layout matches schematic and meets the design rules Early April 2025	3.	Summary of a digital	Compiling short reports on LDO circuit, bandgap reference circuit and	Late
4. Schematic design of the bandgap reference circuit with an ideal built-in op-amp block in Virtuoso and testing it with simulations. 5. Layout design of the bandgap reference circuit bandgap reference circuit. 6. Schematic design of the op-amp block in Virtuoso and testing it with simulations. 7. Layout design of the op-amp block in Virtuoso and testing it with simulations. 8. Progress Presentation Submission 9. Schematic design of the LDO circuit 9. Schematic design of the LDO circuit 10. Layout design of the LDO circuit 11. Layout design of the LDO circuit 12. Layout design of the LDO circuit 13. Layout design of the LDO circuit 14. Layout design of the LDO circuit 15. Layout design of the op-amp and integrating in the bandgap reference circuit, running LVS and DRC checks to ensure layout matches schematic and meets the design rules 15. Layout design of the op-amp and integrating in the bandgap reference circuit, running LVS and DRC checks to ensure layout matches schematic block of the linear dropout circuit including the layout of the LDO circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. 16. Layout design of the LDO circuit ensure layout of the LDO, running LVS and DRC checks to ensure layout matches schematic and meets the design rules 17. Layout design of the layout design of the layout of the LDO, running LVS and DRC checks to ensure layout matches schematic and meets the design rules 18. Progress Presentation simulations and fine tuning in Virtuoso. 19. Layout design of the layout design of the layout of the LDO, running LVS and DRC checks to ensure layout matches schematic and meets the design rules 18. Progress Presentation simulations and ensuring quantitative objectives regarding PSSR, load		PLL and the LDO,	basic digital PLL to build a solid theoretical foundation.	November
the bandgap reference circuit Layout design of the bandgap reference circuit Layout design of the bandgap reference circuit bandgap reference circuit LVS and DRC checks to ensure layout matches schematic and meets the design rules Corcuit Corcuit Designing and simulating op-amp to meet desired gain and specifications for bandgap reference circuit. The same or very similar design will also be used in the LDO circuit. Layout design of the op-amp reference circuit, running LVS and DRC checks to ensure layout matches schematic and meets op-amp and integrating in the bandgap reference circuit, running LVS and DRC checks to ensure layout matches schematic and meets the design rules Presentation Submission Schematic design of the the LDO circuit ensure layout matches schematic and meets the design rules 10. Layout design of the LDO circuit ensure layout matches schematic and meets the design rules the design rules carry April layout design of the LDO circuit ensure layout matches schematic and meets the design rules schematic and meets the design rules simulations, and ensuring quantitative objectives regarding PSSR, load 2025		BGR circuits		2024
reference circuit Layout design of the bandgap reference circuit, running bandgap reference circuit Early LVS and DRC checks to ensure layout matches schematic and meets circuit the design rules Circuit Designing and simulating op-amp to meet desired gain and the op-amp specifications for bandgap reference circuit. The same or very similar design will also be used in the LDO circuit. Layout design of the op-amp reference circuit, running LVS and DRC checks to ensure layout patches schematic and meets the design rules Presentation Submission Schematic design of the LDO circuit the LDO circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. Implementing the layout of the LDO, running LVS and DRC checks to Early April ensure layout matches schematic and meets the design rules Early April 2025 Early April 2025 Early April 2025 Final testing (post layout parasitic parameters, performing post layout simulations, and ensuring quantitative objectives regarding PSSR, load 2025	4.	Schematic design of	Designing the schematic block of the bandgap reference circuit with an	Early
5. Layout design of the bandgap reference circuit, running bandgap reference circuit the design rules 6. Schematic design of the op-amp specifications for bandgap reference circuit. The same or very similar design will also be used in the LDO circuit. 7. Layout design of the op-amp reference circuit, running LVS and DRC checks to ensure layout preference circuit. The same or very similar design will also be used in the LDO circuit. 8. Progress Presentation Submission 9. Schematic design of the LDO circuit the LDO circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. 10. Layout design of the LDO circuit ensure layout of the LDO, running LVS and DRC checks to ensure layout preference circuit, running LVS and DRC checks to ensure layout preference circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. 10. Layout design of the LDO circuit ensure layout matches schematic and meets the design rules and DRC checks to ensure layout preference circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. 11. Final testing (post layout matches schematic and meets the design rules simulations, and ensuring quantitative objectives regarding PSSR, load 2025		the bandgap	ideal built-in op-amp block in Virtuoso and testing it with simulations.	December
bandgap reference circuit the design rules 6. Schematic design of the op-amp specifications for bandgap reference circuit. The same or very similar design will also be used in the LDO circuit. 7. Layout design of the op-amp reference circuit, running LVS and DRC checks to ensure layout matches schematic and meets the design rules 8. Progress Presentation Submission 9. Schematic design of the LDO circuit the LDO, running LVS and DRC checks to Early April the LDO circuit the LDO circuit the LDO, running LVS and DRC checks to Early April the LDO circuit the layout matches schematic and meets the design rules the design rules the layout matches schematic and meets the design rules the LDO circuit the layout matches schematic and meets the design rules the layout the layout parasitic parameters, performing post layout Late April simulations, and ensuring quantitative objectives regarding PSSR, load 2025		reference circuit		2024
circuit the design rules 6. Schematic design of the op-amp specifications for bandgap reference circuit. The same or very similar design will also be used in the LDO circuit. 7. Layout design of the op-amp reference circuit, running LVS and DRC checks to ensure layout matches schematic and meets the design rules 8. Progress Presentation Submission 9. Schematic design of the LDO circuit the LDO circuit vesting through simulations and fine tuning in Virtuoso. 10. Layout design of the LDO circuit ensure layout of the LDO, running LVS and DRC checks to ensure layout parasitic parameters, performing post layout Late April alyout) and simulations, and ensuring quantitative objectives regarding PSSR, load	5.	Layout design of the	Designing the initial layout of the bandgap reference circuit, running	Early
6. Schematic design of the op-amp specifications for bandgap reference circuit. The same or very similar design will also be used in the LDO circuit. 7. Layout design of the op-amp reference circuit, running LVS and DRC checks to ensure layout matches schematic and meets the design rules 8. Progress Presentation Submission 9. Schematic design of the LDO circuit the LDO circuit the LDO circuit the LDO circuit vesting through simulations and fine tuning in Virtuoso. 10. Layout design of the LDO circuit ensure layout matches schematic and meets the design rules 11. Final testing (post layout) and simulations, and ensuring quantitative objectives regarding PSSR, load 2025		bandgap reference	LVS and DRC checks to ensure layout matches schematic and meets	January 2025
the op-amp specifications for bandgap reference circuit. The same or very similar design will also be used in the LDO circuit. 7. Layout design of the op-amp and integrating in the bandgap reference circuit, running LVS and DRC checks to ensure layout matches schematic and meets the design rules 8. Progress Presentation Submission 9. Schematic design of the LDO circuit Vref from the bandgap reference circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. 10. Layout design of the LDO circuit ensure layout of the LDO, running LVS and DRC checks to ensure layout matches schematic and meets the design rules 2025 11. Final testing (post layout parasitic parameters, performing post layout simulations, and ensuring quantitative objectives regarding PSSR, load		circuit	the design rules	
design will also be used in the LDO circuit. 7. Layout design of the op-amp and integrating in the bandgap reference circuit, running LVS and DRC checks to ensure layout matches schematic and meets the design rules 8. Progress Presentation Submission 9. Schematic design of the LDO circuit Vref from the bandgap reference circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. 10. Layout design of the LDO circuit ensure layout matches schematic and meets the design rules 11. Final testing (post Extracting layout parasitic parameters, performing post layout late April simulations, and ensuring quantitative objectives regarding PSSR, load 2025	6.	Schematic design of	Designing and simulating op-amp to meet desired gain and	Late January
7. Layout design of the op-amp and integrating in the bandgap reference circuit, running LVS and DRC checks to ensure layout matches schematic and meets the design rules 8. Progress Presentation Submission 9. Schematic design of the LDO circuit 10. Layout design of the LDO circuit 10. Layout design of the LDO circuit 11. Final testing (post layout) and simulations, and ensuring quantitative objectives regarding PSSR, load 12. Late February 2025 Early March 2025 Early March 2025 March 2025 Early March 2025 Early March 2025 Early March 2025 Early March 2025 Designing the schematic block of the linear dropout circuit including the testing through simulations and fine tuning in Virtuoso. Early April 2025 Early April 2025 Early April 2025		the op-amp	specifications for bandgap reference circuit. The same or very similar	2025
op-amp reference circuit, running LVS and DRC checks to ensure layout matches schematic and meets the design rules 8. Progress Presentation Submission 9. Schematic design of the LDO circuit 10. Layout design of the LDO circuit 11. Final testing (post layout) and 12. Progress Presentation Submission 13. Progress Presentation Submission 14. Presentation Submission 15. Designing the schematic block of the linear dropout circuit including the layout parasitions and fine tuning in Virtuoso. 16. Layout design of the layout of the LDO, running LVS and DRC checks to ensure layout matches schematic and meets the design rules layout layout layout simulations, and ensuring quantitative objectives regarding PSSR, load layout 2025			design will also be used in the LDO circuit.	
8. Progress Presentation Submission 9. Schematic design of the LDO circuit LDO circuit LDO circuit LDO circuit Final testing (post layout) and matches schematic and meets the design rules 2025 Early March 2025 March 2025 March 2025 Learly March 2025 March 2025 March 2025 March 2025 Learly March 2025 Learly March 2025 March 2025 March 2025 March 2025 Learly March 2025 March 2025 March 2025 Learly March 2025 Early March 2025 Early April 2025 Early April 2025 Late April 2025 Late April 2025	7.	Layout design of the	Designing the layout of the op-amp and integrating in the bandgap	Late
8. Progress Presentation Submission 9. Schematic design of the LDO circuit 10. Layout design of the LDO circuit 11. Final testing (post layout) and 12. Progress Presentation Submission 13. Designing the schematic block of the linear dropout circuit including the layout of the linear dropout circuit including the layout circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. 14. Early April layout design of the layout of the LDO, running LVS and DRC checks to ensure layout matches schematic and meets the design rules 15. Early April layout parasitic parameters, performing post layout late April simulations, and ensuring quantitative objectives regarding PSSR, load		op-amp	reference circuit, running LVS and DRC checks to ensure layout	February
Presentation Submission 9. Schematic design of the LDO circuit 10. Layout design of LDO circuit 11. Final testing (post layout) and Presentation Submission Designing the schematic block of the linear dropout circuit including the layout of the linear dropout circuit including the layout of the linear dropout circuit including the layout of the LDO circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. Early April 2025 Extracting layout matches schematic and meets the design rules 2025 Extracting layout parasitic parameters, performing post layout late April 2025			matches schematic and meets the design rules	2025
9. Schematic design of the LDO circuit 10. Layout design of the LDO circuit 11. Final testing (post layout) and 12. Schematic design of the LDO circuit 13. Extracting layout parasitic parameters, performing post layout 14. Submission 15. Designing the schematic block of the linear dropout circuit including the layout of the linear dropout circuit including the layout parable linear dropout circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. 14. Early April 2025	8.	Progress		Early March
9. Schematic design of the LDO circuit 10. Layout design of LDO circuit 11. Final testing (post layout) and 12. Schematic design of the LDO, running LVS and DRC checks to layout parasitic parameters, performing post layout 13. Schematic design of the logical properties and the op-amp designed, testing through simulations and fine tuning in Virtuoso. 14. Final testing (post layout parasitic parameters, performing post layout layout layout simulations, and ensuring quantitative objectives regarding PSSR, load layout la		Presentation		2025
the LDO circuit the LDO circuit Vref from the bandgap reference circuit and the op-amp designed, testing through simulations and fine tuning in Virtuoso. Implementing the layout of the LDO, running LVS and DRC checks to LDO circuit ensure layout matches schematic and meets the design rules 2025 The Lodd circuit ensure layout matches schematic and meets the design rules and the op-amp designed, testing in Virtuoso. Early April ensure layout matches schematic and meets the design rules and the op-amp designed, testing in Virtuoso. Late April layout) and ensuring quantitative objectives regarding PSSR, load and analysis and ensuring quantitative objectives regarding PSSR, load		Submission		
testing through simulations and fine tuning in Virtuoso. 10. Layout design of the LDO circuit ensure layout matches schematic and meets the design rules 2025 11. Final testing (post layout parasitic parameters, performing post layout layout) and simulations, and ensuring quantitative objectives regarding PSSR, load 2025	9.	Schematic design of	Designing the schematic block of the linear dropout circuit including the	March 2025
10. Layout design of the LDO implementing the layout of the LDO, running LVS and DRC checks to LDO circuit ensure layout matches schematic and meets the design rules 2025 11. Final testing (post layout parasitic parameters, performing post layout layout simulations, and ensuring quantitative objectives regarding PSSR, load 2025		the LDO circuit	V_{ref} from the bandgap reference circuit and the op-amp designed,	
LDO circuit ensure layout matches schematic and meets the design rules 2025 11. Final testing (post layout parasitic parameters, performing post layout layout simulations, and ensuring quantitative objectives regarding PSSR, load 2025			testing through simulations and fine tuning in Virtuoso.	
11. Final testing (post Extracting layout parasitic parameters, performing post layout Late April layout) and simulations, and ensuring quantitative objectives regarding PSSR, load 2025	10.	Layout design of the	Implementing the layout of the LDO, running LVS and DRC checks to	Early April
layout) and simulations, and ensuring quantitative objectives regarding PSSR, load 2025		LDO circuit	ensure layout matches schematic and meets the design rules	2025
	11.	Final testing (post	Extracting layout parasitic parameters, performing post layout	Late April
validation regulation line regulation temperature stability are met		layout) and	simulations, and ensuring quantitative objectives regarding PSSR, load	2025
validation regulation, line regulation, temperature stability are met.		validation	regulation, line regulation, temperature stability are met.	

12.	Poster Submission		Late May
	and finishing the		2025
	work		
13.	Writing project book	Summarizing the project steps, discussing challenges, presenting	June 2025
	and final	simulation results.	
	presentation		
	preparation		
14.	Final deliverables		July 2025
	submission		