La seconda parte è stata palesemente copiata e incollata da chatgpt, quindi la valutazione non può che essere gravemente insufficiente

Calcolo del coefficiente di restituzione di una pallina

1 Raccolta dei dati

Per questa attività, scelgo un'altezza iniziale h_0 da cui lasciare cadere una pallina e misuro più volte l'altezza h_1 del primo rimbalzo. Dopo aver fatto diverse prove, calcolo la media delle altezze di rimbalzo e uso i dati per stimare quanto rimbalza la pallina. Qui di seguito le misure prese con cui ho fatto la media:

- $h_1 = 27,1 (27,1 27,4 26,9)$
- $h_1 = 35 (35 33,5 36,5)$
- $h_1 = 43 (42 44 43)$
- $h_1 = 52 (50 52 54)$

Inoltre, sarà utile calcolare quanto variano le misure ottenute per capire quanto sono precise (questo si chiama deviazione standard). Ripeto questo procedimento con diverse altezze iniziali h_0 .

E verrà questa tabella:

<i>h</i> ₀ (cm)	<i>h</i> ₁ (cm)	errore h1 (cm)
50	27,1	0,2
80	35	1,5
100	43	1,0
120	52	2,0

2 Le basi teoriche

Quando lascio cadere la pallina, ha un'energia legata alla sua altezza iniziale. Dopo il rimbalzo, però, l'altezza è più bassa, quindi una parte di questa energia si perde. Se non ci fossero forze come l'attrito, l'altezza dopo il rimbalzo sarebbe uguale a quella iniziale, ma nella realtà non succede. Per questo, si usa una formula che mette a confronto l'altezza del rimbalzo con quella iniziale per calcolare un valore chiamato "coefficiente di restituzione":

 $\alpha = h_1/h_0$

Se la pallina fosse perfettamente elastica, questo valore sarebbe 1, ma nella realtà è sempre meno di 1. L'obiettivo dell'esperimento è proprio calcolare questo coefficiente per la pallina utilizzata.

3 Analisi dei dati raccolti

Ho ordinato i dati della tabella di sopra in questo grafico. Ho posto sull' asse X il valore h_0 mentre sull'asse Y il valore h_1 .

Visto che il coefficiente angolare dell'equazione è il coefficiente di restituzione della pallina possiamo affermare che il coefficiente è 0,355.

grafico con equazione annessa

4 Relazione

Scriverò una relazione seguendo questa serie di punti

?????????

4.1 Introduzione

L'esperimento ha l'obiettivo di determinare il **coefficiente di restituzione** di una pallina, che descrive quanto l'altezza di un rimbalzo sia inferiore rispetto all'altezza iniziale di caduta. Il coefficiente di restituzione (α) è dato dalla formula:

 $\alpha = h_1/h_0$

dove h_1 è l'altezza del primo rimbalzo e h_0 è l'altezza iniziale da cui la pallina viene lasciata cadere. Se la pallina fosse perfettamente elastica, α sarebbe pari a 1. Tuttavia, nella realtà, α è sempre inferiore a 1 a causa delle perdite di energia dovute all'attrito e alla deformazione della pallina durante il rimbalzo.

4.2 Strumentazione utilizzata

- Riga metrica: per misurare l'altezza di caduta (h₀) e l'altezza del primo rimbalzo (h₁).
 Sensibilità: 1 cm.
- Pallina da rimbalzo: utilizzata per eseguire le prove di rimbalzo.
- Superficie rigida: per garantire un rimbalzo consistente della pallina.
- Calcolatrice: per calcolare il coefficiente di restituzione e fare le analisi dei dati.

4.3 Svolgimento dell'esperimento

- Preparazione: Si posiziona la pallina su una superficie rigida e la si lascia cadere da diverse altezze iniziali (h₀).
- Misura dell'altezza iniziale: Si misura l'altezza da cui la pallina viene lasciata cadere.
- Misura dell'altezza del primo rimbalzo: Dopo che la pallina ha rimbalzato, si misura l'altezza del primo rimbalzo (h₁).
- Ripetizione: Per ciascuna altezza iniziale, vengono eseguite più prove per determinare la media dell'altezza del primo rimbalzo.
- Calcolo del coefficiente di restituzione: Per ogni coppia di valori h₀ e h₁, si calcola il coefficiente di restituzione α tramite la formula sopra indicata.

4.4 Analisi delle misure

1) Calcolo delle medie e degli errori: Per ciascun valore di h₀, sono stati effettuati più test e si è calcolata la media di h₁. Gli errori sono stati calcolati come la deviazione standard delle misure ripetute.

Esempio di calcolo per h₀ = 50 cm:

$$ext{Media di } h_1 = rac{27, 1 + 27, 4 + 26, 9}{3} = 27, 13 ext{ cm}$$

L'errore su h₁ è la deviazione standard, calcolata come:

$$\sigma = \sqrt{\frac{(27, 1 - 27, 1)^2 + (27, 4 - 27, 1)^2 + (26, 9 - 27, 1)^2}{2}}$$

- 2) Grafico: Si è tracciato un grafico in cui sull'asse X sono riportati i valori di h₀ e sull'asse Y i valori di h₁. Il grafico ha mostrato una relazione lineare tra h₀ e h₁, con un coefficiente angolare che corrisponde al coefficiente di restituzione α della pallina.
 - Coefficienti di restituzione calcolati per ogni altezza iniziale:

• Per
$$h_0$$
 = 50 cm, $\alpha = \frac{27,1}{50} = 0,542$

• Per
$$h_0$$
 = 80 cm, $\alpha = \frac{35}{80} = 0,4375$

• Per
$$h_0$$
 = 100 cm, $\alpha = \frac{43}{100} = 0,43$

• Per
$$h_0$$
 = 120 cm, $\alpha = \frac{52}{120} \approx 0,4333$

3) Valutazione delle cifre significative: Le misure sono state riportate con un numero adeguato di cifre significative. Gli errori di misura sono stati presi in considerazione nel calcolo delle medie e dei coefficienti di restituzione.

5 Conclusione

Il valore di α = 0,355 suggerisce che la pallina perde una parte significativa di energia durante il rimbalzo. Poiché α è ben inferiore a 1, possiamo concludere che la pallina non è perfettamente elastica e una parte dell'energia cinetica viene dissipata a causa di fattori come attrito e deformazione.