

17875

SEARCH REQUEST FORM

Requestor's Name: Irrene Marx Serial Number: 10/076383
 Date: 6/26/03 Phone: 308 - 2922 Art Unit: 1651

Search Topic:

Please write a detailed statement of search topic. Describe specifically as possible the subject matter to be searched. Define any terms that may have a special meaning. Give examples or relevant citations, authors, keywords, etc., if known. For sequences, please attach a copy of the sequence. You may include a copy of the broadest and/or most relevant claim(s).

Please search inventors
 process of making orthoaminophenols
 from nitroarenes -
 - using nitroreductase and mutase (cl.1)
 - using pseudomonas pseudocaligines (cl.6)
 - using metal catalyst and mutase (cl.8)
 - nitroarenes of cl.5

BEST AVAILABLE COPY(20)
41**STAFF USE ONLY**

7/1
 Date completed: 7/2
 Searcher: Hanley
 Terminal time: 55
 Elapsed time: 60
 CPU time:
 Total time:
 Number of Searches:
 Number of Databases:

Search Site	Vendors
<input type="checkbox"/> STIC	<input type="checkbox"/> IG
<input type="checkbox"/> CM-1	<input checked="" type="checkbox"/> \$6.35 STN
<input type="checkbox"/> Pre-S	<input type="checkbox"/> Dialog
Type of Search	APS
<input type="checkbox"/> N.A. Sequence	<input type="checkbox"/> Geninfo
<input type="checkbox"/> A.A. Sequence	<input type="checkbox"/> SDC
<input checked="" type="checkbox"/> Structure	<input type="checkbox"/> DARC/Questel
<input type="checkbox"/> Bibliographic	<input type="checkbox"/> Other

Inventor search

MARX 10/076,383

=> d his

(FILE 'HOME' ENTERED AT 16:23:52 ON 07 JUL 2003)

FILE 'HCAPLUS' ENTERED AT 16:24:26 ON 07 JUL 2003

L1 185 S SPAIN J?/AU
L2 31 S NADEAU L?/AU
L3 3012 S HE Z?/AU
L4 3208 S L1-3
L5 22 S L4 AND ?AMINOPHENOL
L6 6 S L5 AND MUTASE
L7 3 S L5 AND NITROREDUCTASE
L8 7 S L6-7
 SELECT RN L8 1-7

FILE 'REGISTRY' ENTERED AT 16:28:15 ON 07 JUL 2003

L9 23 S E1-23
 SAVE L9 MAR383INV/A TEMP

FILE 'HCAPLUS' ENTERED AT 16:28:32 ON 07 JUL 2003

L10 6 S L8 AND L9
L11 7 S L8 OR L10

=> d ibib abs hitstr ind 1-7

L11 ANSWER 1 OF 7 HCPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 2003:377636 HCPLUS
 TITLE: Bacterial conversion of hydroxylamino aromatic compounds by both lyase and **mutase** enzymes involves intramolecular transfer of hydroxyl groups
 AUTHOR(S): Nadeau, Lloyd J.; He, Zhongqi;
 Spain, Jim C.
 CORPORATE SOURCE: Air Force Research Laboratory, Tyndall Air Force Base, FL, 32403, USA
 SOURCE: Applied and Environmental Microbiology (2003), 69(5), 2786-2793
 CODEN: AEMIDF; ISSN: 0099-2240
 PUBLISHER: American Society for Microbiology
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Hydroxylamino arom. compds. are converted to either the corresponding aminophenols or protocatechuate during the bacterial degrdn. of nitroarom. compds. The origin of the hydroxyl group of the products could be the substrate itself (intramol. transfer mechanism) or the solvent water (intermol. transfer mechanism). The conversion of hydroxylaminobenzene to **2-aminophenol** catalyzed by a **mutase** from *Pseudomonas pseudoalcaligenes* JS45 proceeds by an intramol. hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-**aminophenol** by a **mutase** from *Ralstonia eutropha* JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from *Comamonas acidovorans* NBA-10 and *Pseudomonas* sp. strain 4NT were proposed, but not exptl. proved, to proceed by the intermol. transfer mechanism. GC-MS anal. of the reaction products formed in H218O did not indicate any 180-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the **mutase** from *R. eutropha* JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from *Pseudomonas* sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was 180 labeled. The other hydroxyl group in the product must have come from the substrate. The **mutase** in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in *Pseudomonas* strain 4NT converted hydroxylaminobenzene to aniline and **2-aminophenol** but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino arom. compds. proceed via intramol. transfer of hydroxyl groups.
 CC 10 (Microbial, Algal, and Fungal Biochemistry)
 REFERENCE COUNT: 36 THERE ARE 36 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 2 OF 7 HCPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 2000:476646 HCPLUS
 DOCUMENT NUMBER: 133:219407
 TITLE: Sequence analysis and initial characterization of two isozymes of hydroxylaminobenzene **mutase** from *Pseudomonas pseudoalcaligenes* JS45
 AUTHOR(S): Davis, John K.; Paoli, George C.; He, Zhongqi;
 ; Nadeau, Lloyd J.; Somerville, Charles C.;
 Spain, Jim C.
 CORPORATE SOURCE: Air Force Research Laboratory/MLQR, Tyndall Air Force Base, FL, 32403-5323, USA
 SOURCE: Applied and Environmental Microbiology (2000), 66(7), 2965-2971

CODEN: AEMIDF; ISSN: 0099-2240
 American Society for Microbiology

PUBLISHER:
 DOCUMENT TYPE:
 LANGUAGE:

Journal
 English

AB Pseudomonas pseudoalcaligenes JS45 grows on nitrobenzene by a partially reductive pathway in which the intermediate hydroxylaminobenzene is enzymically rearranged to 2-aminophenol by hydroxylaminobenzene **mutase** (HAB **mutase**). The properties of the enzyme, the reaction mechanism, and the evolutionary origin of the gene(s) encoding the enzyme are unknown. In this study, two open reading frames (habA and habB), each encoding an HAB **mutase** enzyme, were cloned from a P. pseudoalcaligenes JS45 genomic library and sequenced. The open reading frames encoding HabA and HabB are sepd. by 2.5 kb and are divergently transcribed. The deduced amino acid sequences of HabA and HabB are 44% identical. The HAB **mutase** specific activities in crude exts. of Escherichia coli clones synthesizing either HabA or HabB were similar to the specific activities of exts. of strain JS45 grown on nitrobenzene. HAB **mutase** activity in E. coli exts. contg. HabB withstood heating at 85.degree. for 10 min, but exts. contg. HabA were inactivated when they were heated at temps. above 60.degree.. HAB **mutase** activity in exts. of P. pseudoalcaligenes JS45 grown on nitrobenzene exhibited intermediate temp. stability. Although both the habA gene and the habB gene conferred HAB **mutase** activity when they were sep. cloned and expressed in E. coli, reverse transcriptase PCR anal. indicated that only habA is transcribed in P. pseudoalcaligenes JS45. A mutant strain derived from strain JS45 in which the habA gene was disrupted was unable to grow on nitrobenzene, which provided physiol. evidence that HabA is involved in the degrdn. of nitrobenzene. A strain in which habB was disrupted grew on nitrobenzene. Gene Rv3078 of Mycobacterium tuberculosis H37Rv encodes a protein whose deduced amino acid sequence is 52% identical to the HabB amino acid sequence. E. coli contg. M. tuberculosis gene Rv3078 cloned into pUC18 exhibited low levels of HAB **mutase** activity. Sequences that exhibit similarity to transposable element sequences are present between habA and habB, as well as downstream of habB, which suggests that horizontal gene transfer resulted in acquisition of one or both of the hab genes.

IT 291800-90-3 291800-92-5

RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)
 (amino acid sequence; sequence anal. and initial characterization of two isoenzymes of hydroxylaminobenzene **mutase** from Pseudomonas pseudoalcaligenes JS45)

RN 291800-90-3 HCPLUS

CN Mutase, N-hydroxybenzenamine (Pseudomonas pseudoalcaligenes strain JS45 gene habA isoenzyme) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 291800-92-5 HCPLUS

CN Mutase, N-hydroxybenzenamine (Pseudomonas pseudoalcaligenes strain JS45 gene habB isoenzyme) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

IT 291800-91-4 291800-93-6 292063-70-8

RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)

(amino acid sequence; sequence anal. of genes habA and habB and transposable element of Pseudomonas pseudoalcaligenes JS45 in relation to horizontal gene transfer)

RN 291800-91-4 HCPLUS

CN Transposase (Pseudomonas pseudoalcaligenes strain JS45) (9CI) (CA INDEX

(NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 291800-93-6 HCPLUS

CN DNA-resolving enzyme (Pseudomonas pseudoalcaligenes strain JS45 transposon Tn5501 gene tnpR) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 292063-70-8 HCPLUS

CN Transposase (Pseudomonas pseudoalcaligenes strain JS45 transposon Tn5501 gene tnpA N-terminal fragment) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

IT 201927-07-3, GenBank AF028594

RL: BSU (Biological study, unclassified); PRP (Properties); BIOL
(Biological study)
(nucleotide sequence; sequence anal. of genes habA and habB and
transposable element of Pseudomonas pseudoalcaligenes JS45 in relation
to horizontal gene transfer)

RN 201927-07-3 HCPLUS

CN DNA (Pseudomonas pseudoalcaligenes strain JS45 gene habA plus transposase
gene plus gene habB plus gene tnpR plus gene tnpA fragment plus 5'-flank)
(9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

IT 98-95-3, Nitrobenzene, biological studies

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(sequence anal. and initial characterization of two isoenzymes of
hydroxylaminobenzene mutase from Pseudomonas
pseudoalcaligenes JS45)

RN 98-95-3 HCPLUS

CN Benzene, nitro- (8CI, 9CI) (CA INDEX NAME)

IT 261765-91-7, Hydroxylaminobenzene mutase

RL: BSU (Biological study, unclassified); PRP (Properties); BIOL
(Biological study)
(sequence anal. and initial characterization of two isoenzymes of
hydroxylaminobenzene mutase from Pseudomonas
pseudoalcaligenes JS45)

RN 261765-91-7 HCPLUS

CN Mutase, N-hydroxybenzenamine (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CC 7-5 (Enzymes)

Section cross-reference(s): 3, 10

ST Pseudomonas gene habA habB hydroxylaminobenzene mutase isoenzyme
sequence; transposable element gene transfer Pseudomonas

IT Enzymes, biological studies

RL: BSU (Biological study, unclassified); PRP (Properties); BIOL
(Biological study)(DNA-resolving; sequence anal. of genes habA and habB and transposable
element of Pseudomonas pseudoalcaligenes JS45 in relation to horizontal

- gene transfer)
- IT Transposons
 RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)
 (Tn5501; sequence anal. of genes habA and habB and transposable element of *Pseudomonas pseudoalcaligenes* JS45 in relation to horizontal gene transfer)
- IT Gene, microbial
 RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)
 (habA; sequence anal. of genes habA and habB and transposable element of *Pseudomonas pseudoalcaligenes* JS45 in relation to horizontal gene transfer)
- IT Gene, microbial
 RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)
 (habB; sequence anal. of genes habA and habB and transposable element of *Pseudomonas pseudoalcaligenes* JS45 in relation to horizontal gene transfer)
- IT Evolution
 (mol.; sequence anal. of genes habA and habB and transposable element of *Pseudomonas pseudoalcaligenes* JS45 in relation to horizontal gene transfer)
- IT Genetic mapping
 (restriction; sequence anal. of genes habA and habB and transposable element of *Pseudomonas pseudoalcaligenes* JS45 in relation to horizontal gene transfer)
- IT *Pseudomonas pseudoalcaligenes*
 Thermal stability
 (sequence anal. and initial characterization of two isoenzymes of hydroxylaminobenzene **mutase** from *Pseudomonas pseudoalcaligenes* JS45)
- IT DNA sequences
 Protein sequences
 (sequence anal. of genes habA and habB and transposable element of *Pseudomonas pseudoalcaligenes* JS45 in relation to horizontal gene transfer)
- IT Gene, microbial
 RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)
 (tnpA; sequence anal. of genes habA and habB and transposable element of *Pseudomonas pseudoalcaligenes* JS45 in relation to horizontal gene transfer)
- IT Gene, microbial
 RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)
 (tnpR; sequence anal. of genes habA and habB and transposable element of *Pseudomonas pseudoalcaligenes* JS45 in relation to horizontal gene transfer)
- IT Enzymes, biological studies
 RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)
 (transposases; sequence anal. of genes habA and habB and transposable element of *Pseudomonas pseudoalcaligenes* JS45 in relation to horizontal gene transfer)
- IT 291800-90-3 291800-92-5
 RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)
 (amino acid sequence; sequence anal. and initial characterization of two isoenzymes of hydroxylaminobenzene **mutase** from

- Pseudomonas pseudoalcaligenes JS45)
 IT 291800-91-4 291800-93-6 292063-70-8
 RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)
 (amino acid sequence; sequence anal. of genes habA and habB and transposable element of Pseudomonas pseudoalcaligenes JS45 in relation to horizontal gene transfer)
- IT 201927-07-3, GenBank AF028594
 RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)
 (nucleotide sequence; sequence anal. of genes habA and habB and transposable element of Pseudomonas pseudoalcaligenes JS45 in relation to horizontal gene transfer)
- IT 98-95-3, Nitrobenzene, biological studies
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (sequence anal. and initial characterization of two isoenzymes of hydroxylaminobenzene mutase from Pseudomonas pseudoalcaligenes JS45)
- IT 261765-91-7, Hydroxylaminobenzene mutase
 RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)
 (sequence anal. and initial characterization of two isoenzymes of hydroxylaminobenzene mutase from Pseudomonas pseudoalcaligenes JS45)

REFERENCE COUNT: 42 THERE ARE 42 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

- L11 ANSWER 3 OF 7 HCAPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 2000:349018 HCAPLUS
 DOCUMENT NUMBER: 133:88272
 TITLE: Production of 2-amino-5-phenoxyphenol from 4-nitrobiphenyl ether using nitrobenzene nitroreductase and hydroxylaminobenzene mutase from Pseudomonas pseudoalcaligenes JS45
 AUTHOR(S): Nadeau, L. J.; He, Z.; Spain, J. C.
 CORPORATE SOURCE: Air Force Research Laboratory/MLQ, Tyndall Air Force Base, FL, 32403, USA
 SOURCE: Journal of Industrial Microbiology & Biotechnology (2000), 24(4), 301-305
 CODEN: JIMBFL; ISSN: 1367-5435
 PUBLISHER: Nature Publishing Group
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Microbial metab. of nitroarenes via o-aminophenols requires the participation of two key enzymes, a **nitroreductase** and an **hydroxylaminobenzene mutase**. The broad substrate ranges of the enzymes suggested that they could be used as biocatalysts for the prodn. of substituted o-aminophenols. Enzymes from Pseudomonas pseudoalcaligenes JS45 were used for the conversion of 4-nitrobiphenyl ether to the corresponding o-aminophenol. Partially purified nitrobenzene **nitroreductase** reduced 4-nitrobiphenyl ether to the corresponding 4-hydroxylaminobiphenyl ether. Partially purified hydroxylaminobenzene **mutase** stoichiometrically converted the intermediate to 2-amino-5-phenoxyphenol. The results indicate that the enzyme system can be applied for the prodn. of o-aminophenols useful as intermediates for synthesis of com. important materials.
- IT 42944-32-1P
 RL: BMF (Bioindustrial manufacture); BPN (Biosynthetic preparation); BIOL (Biological study); PREP (Preparation)

(2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using
nitrobenzene **nitroreductase** and hydroxylaminobenzene
mutase from *Pseudomonas pseudoalcaligenes*)

RN 42944-32-1 HCPLUS
CN Phenol, 2-amino-5-phenoxy- (9CI) (CA INDEX NAME)

IT 39501-62-7P

RL: BPN (Biosynthetic preparation); BPR (Biological process); BSU (Biological study, unclassified); RCT (Reactant); BIOL (Biological study); PREP (Preparation); PROC (Process); RACT (Reactant or reagent)
(2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using
nitrobenzene **nitroreductase** and hydroxylaminobenzene
mutase from *Pseudomonas pseudoalcaligenes*)

RN 39501-62-7 HCPLUS
CN Benzenamine, N-hydroxy-4-phenoxy- (9CI) (CA INDEX NAME)

IT 98-95-3, Nitrobenzene, biological studies

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using
nitrobenzene **nitroreductase** and hydroxylaminobenzene
mutase from *Pseudomonas pseudoalcaligenes*)

RN 98-95-3 HCPLUS
CN Benzene, nitro- (8CI, 9CI) (CA INDEX NAME)

IT 9037-41-6, Nitrobenzene **nitroreductase**

261765-91-7, Hydroxylaminobenzene **mutase**

RL: BPR (Biological process); BSU (Biological study, unclassified); CAT (Catalyst use); BIOL (Biological study); PROC (Process); USES (Uses)
(2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using
nitrobenzene **nitroreductase** and hydroxylaminobenzene
mutase from *Pseudomonas pseudoalcaligenes*)

RN 9037-41-6 HCPLUS
CN Reductase, nitro- (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 261765-91-7 HCPLUS
 CN Mutase, N-hydroxybenzenamine (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

IT 620-88-2, 4-Phenoxynitrobenzene
 RL: BPR (Biological process); BSU (Biological study, unclassified); RCT (Reactant); BIOL (Biological study); PROC (Process); RACT (Reactant or reagent)
 (2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene **mutase** from Pseudomonas pseudoalcaligenes)

RN 620-88-2 HCPLUS
 CN Benzene, 1-nitro-4-phenoxy- (9CI) (CA INDEX NAME)

IT 139-59-3P, 4-Phenoxy-benzenamine 52671-42-8P,
 p-Phenoxynitrosobenzene
 RL: BYP (Byproduct); PREP (Preparation)
 (2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene **mutase** from Pseudomonas pseudoalcaligenes)

RN 139-59-3 HCPLUS
 CN Benzenamine, 4-phenoxy- (9CI) (CA INDEX NAME)

RN 52671-42-8 HCPLUS
 CN Benzene, 1-nitroso-4-phenoxy- (9CI) (CA INDEX NAME)

CC 16-5 (Fermentation and Bioindustrial Chemistry)
 Section cross-reference(s): 60
 ST enzymic prodn aminophenoxyphenol nitrobiphenyl
 IT Pseudomonas pseudoalcaligenes
 (2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene **mutase** from Pseudomonas pseudoalcaligenes)
 IT Benzenoids
 RL: BMF (Bioindustrial manufacture); BPN (Biosynthetic preparation); BPR (Biological process); BSU (Biological study, unclassified); BYP (Byproduct); RCT (Reactant); BIOL (Biological study); PREP (Preparation); PROC (Process); RACT (Reactant or reagent)
 (2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using

- nitrobenzene **nitroreductase** and hydroxylaminobenzene
mutase from *Pseudomonas pseudoalcaligenes*)
- IT Amines, preparation
RL: BMF (Bioindustrial manufacture); BPN (Biosynthetic preparation); BYP (Byproduct); BIOL (Biological study); PREP (Preparation)
(arom.; 2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene
mutase from *Pseudomonas pseudoalcaligenes*)
- IT Nitro compounds
RL: BPR (Biological process); BSU (Biological study, unclassified); RCT (Reactant); BIOL (Biological study); PROC (Process); RACT (Reactant or reagent)
(arom.; 2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene
mutase from *Pseudomonas pseudoalcaligenes*)
- IT Nitro compounds
RL: BPR (Biological process); BSU (Biological study, unclassified); RCT (Reactant); BIOL (Biological study); PROC (Process); RACT (Reactant or reagent)
(arom.; 2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene
mutase from *Pseudomonas pseudoalcaligenes*)
- IT Reduction
(biol.; 2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene
mutase from *Pseudomonas pseudoalcaligenes*)
- IT Aromatic compounds
Aromatic compounds
RL: BPR (Biological process); BSU (Biological study, unclassified); RCT (Reactant); BIOL (Biological study); PROC (Process); RACT (Reactant or reagent)
(nitro; 2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene
mutase from *Pseudomonas pseudoalcaligenes*)
- IT 42944-32-1P
RL: BMF (Bioindustrial manufacture); BPN (Biosynthetic preparation); BIOL (Biological study); PREP (Preparation)
(2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene
mutase from *Pseudomonas pseudoalcaligenes*)
- IT 39501-62-7P
RL: BPN (Biosynthetic preparation); BPR (Biological process); BSU (Biological study, unclassified); RCT (Reactant); BIOL (Biological study); PREP (Preparation); PROC (Process); RACT (Reactant or reagent)
(2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene
mutase from *Pseudomonas pseudoalcaligenes*)
- IT 98-95-3, Nitrobenzene, biological studies
RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene
mutase from *Pseudomonas pseudoalcaligenes*)
- IT 9037-41-6, Nitrobenzene **nitroreductase**
261765-91-7, Hydroxylaminobenzene **mutase**
RL: BPR (Biological process); BSU (Biological study, unclassified); CAT (Catalyst use); BIOL (Biological study); PROC (Process); USES (Uses)
(2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene
mutase from *Pseudomonas pseudoalcaligenes*)

IT 620-88-2, 4-Phenoxynitrobenzene
 RL: BPR (Biological process); BSU (Biological study, unclassified); RCT (Reactant); BIOL (Biological study); PROC (Process); RACT (Reactant or reagent)

(2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene **mutase** from *Pseudomonas pseudoalcaligenes*)

IT 139-59-3P, 4-Phenoxy-benzenamine 52671-42-8P,

p-Phenoxynitrosobenzene

RL: BYP (Byproduct); PREP (Preparation)

(2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene **mutase** from *Pseudomonas pseudoalcaligenes*)

REFERENCE COUNT: 34 THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 4 OF 7 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 2000:155056 HCAPLUS

DOCUMENT NUMBER: 132:290385

TITLE: Characterization of hydroxylaminobenzene **mutase** from pNBZ139 cloned from *Pseudomonas pseudoalcaligenes* JS45: a highly associated SDS-stable enzyme catalyzing an intramolecular transfer of hydroxy groups

AUTHOR(S): He, Zhongqi; Nadeau, Lloyd J.; Spain, Jim C.

CORPORATE SOURCE: Air Force Research Laboratory, Tyndall Air Force Base, FL, 32403, USA

SOURCE: European Journal of Biochemistry (2000), 267(4), 1110-1116

CODEN: EJBCAI; ISSN: 0014-2956

PUBLISHER: Blackwell Science Ltd.

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Hydroxylaminobenzene **mutase** is the enzyme that converts intermediates formed during initial steps in the degrdn. of nitrobenzene to a novel ring-fission lower pathway in *Pseudomonas pseudoalcaligenes* JS45. The **mutase** catalyzes a rearrangement of hydroxylaminobenzene to 2-**aminophenol**. The mechanism of the reactions and the properties of the enzymes are unknown. In crude exts., the hydroxylaminobenzene **mutase** was stable at SDS concns. as high as 2%. A procedure including Hitrap-SP, Hitrap-Q and Cu(II)-chelating chromatog. was used to partially purify the enzyme from an *Escherichia coli* clone. The partially purified enzyme was eluted in the void vol. of a Superose-12 gel-filtration column even in the presence of 0.05% SDS in 25 mM Tris/HCl buffer, which indicated that it was highly assocd. When the enzymic conversion of hydroxylaminobenzene to 2-**aminophenol** was carried out in 180-labeled water, the product did not contain 180, as detd. by GC-MS. The results indicate that the reaction proceeded by intramol. transfer of the hydroxy group from the nitrogen to the C-2 position of the ring. The mechanism is clearly different from the intermol. transfer of the hydroxy group in the non-enzymic Bamberg rearrangement of hydroxylaminobenzene to 4-**aminophenol** and in the enzymic hydroxymutation of chorismate to isochorismate.

IT 261765-91-7P, Hydroxylaminobenzene **mutase**

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); PUR (Purification or recovery); BIOL (Biological study); PREP (Preparation)

(recombinant; characterization of hydroxylaminobenzene **mutase**)

from pNBZ139 cloned from *Pseudomonas pseudoalcaligenes* JS45, a highly assocd. SDS-stable enzyme catalyzing an intramol. transfer of hydroxy groups)

RN 261765-91-7 HCPLUS

CN Mutase, N-hydroxybenzenamine (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CC 7-4 (Enzymes)

ST *Pseudomonas hydroxylaminobenzene mutase* hydroxyl intramol transfer mechanism

IT Hydroxyl group

Pseudomonas pseudoalcaligenes

(characterization of hydroxylaminobenzene **mutase** from pNBZ139 cloned from *Pseudomonas pseudoalcaligenes* JS45, a highly assocd. SDS-stable enzyme catalyzing an intramol. transfer of hydroxy groups)

IT Rearrangement

(intramol., enzymic; characterization of hydroxylaminobenzene **mutase** from pNBZ139 cloned from *Pseudomonas pseudoalcaligenes* JS45, a highly assocd. SDS-stable enzyme catalyzing an intramol. transfer of hydroxy groups)

IT 261765-91-7P, Hydroxylaminobenzene **mutase**

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); PUR (Purification or recovery); BIOL (Biological study); PREP (Preparation)

(recombinant; characterization of hydroxylaminobenzene **mutase** from pNBZ139 cloned from *Pseudomonas pseudoalcaligenes* JS45, a highly assocd. SDS-stable enzyme catalyzing an intramol. transfer of hydroxy groups)

REFERENCE COUNT: 36 THERE ARE 36 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 5 OF 7 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1999:369309 HCPLUS

DOCUMENT NUMBER: 131:155650

TITLE: Chemoselective nitro group reduction and reductive dechlorination initiate degradation of 2-chloro-5-nitrophenol by *Ralstonia eutropha* JMP134

AUTHOR(S): Schenkle, Andreas; Lenke, Hiltrud; Spain, Jim

C.; Knackmuss, Hans-Joachim

CORPORATE SOURCE: Fraunhofer-Institut fur Grenzflachen- und Bioverfahrenstechnik, Stuttgart, D-70569, Germany

SOURCE: Applied and Environmental Microbiology (1999), 65(6), 2317-2323

CODEN: AEMIDF; ISSN: 0099-2240

PUBLISHER: American Society for Microbiology

DOCUMENT TYPE: Journal

LANGUAGE: English

AB *R. eutropha* JMP134 utilizes 2-chloro-5-nitrophenol (I) as a sole source of N, C, and energy. The initial steps for degrdn. of I are analogous to those of 3-nitrophenol degrdn. in *R. eutropha* JMP134. I is initially reduced to 2-chloro-5-hydroxylaminophenol, which is subject to an enzymic Bamberger rearrangement yielding 2-amino-5-chlorohydroquinone. The Cl of 2-amino-5-chlorohydroquinone is removed by a reductive mechanism, and aminohydroquinone is formed. I and 3-nitrophenol induce the expression of 3-nitrophenol **nitroreductase**, of 3-hydroxylaminophenol **mutase**, and of the dechlorinating activity. 3-Nitrophenol **nitroreductase** catalyzes chemoselective redn. of arom. nitro groups to hydroxylamino groups in the presence of NADPH. 3-Nitrophenol **nitroreductase** is active with a variety of mono-, di-, and trinitroarom. compds., demonstrating a relaxed substrate

specificity of the enzyme. Nitrosobenzene serves as a substrate for the enzyme and is converted faster than nitrobenzene.

IT 9037-41-6P, 3-Nitrophenol reductase

RL: BAC (Biological activity or effector, except adverse); BOC (Biological occurrence); BSU (Biological study, unclassified); PUR (Purification or recovery); BIOL (Biological study); OCCU (Occurrence); PREP (Preparation) (chemoselective nitro group redn. and reductive dechlorination initiate degrdn. of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134)

RN 9037-41-6 HCPLUS

CN Reductase, nitro- (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

IT 224427-05-8, 3-Hydroxylaminophenol mutase

RL: BOC (Biological occurrence); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence) (chemoselective nitro group redn. and reductive dechlorination initiate degrdn. of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134)

RN 224427-05-8 HCPLUS

CN Mutase, 3-(hydroxylamino)phenol (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

IT 619-10-3, 2-Chloro-5-nitrophenol

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process) (chemoselective nitro group redn. and reductive dechlorination initiate degrdn. of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134)

RN 619-10-3 HCPLUS

CN Phenol, 2-chloro-5-nitro- (8CI, 9CI) (CA INDEX NAME)

IT 225089-58-7, Phenol, 2-Chloro-5-hydroxyamino- 237437-82-0

RL: BPR (Biological process); BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL (Biological study); FORM (Formation, nonpreparative); PROC (Process) (chemoselective nitro group redn. and reductive dechlorination initiate degrdn. of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134)

RN 225089-58-7 HCPLUS

CN Phenol, 2-chloro-5-(hydroxyamino)- (9CI) (CA INDEX NAME)

RN 237437-82-0 HCPLUS

CN 1,4-Benzenediol, 2-amino-5-chloro- (9CI) (CA INDEX NAME)

IT 20734-68-3, 2-Aminohydroquinone
 RL: BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL (Biological study); FORM (Formation, nonpreparative)
 (chemoselective nitro group redn. and reductive dechlorination initiate degrdn. of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134)
 RN 20734-68-3 HCAPLUS
 CN 1,4-Benzenediol, 2-amino- (9CI) (CA INDEX NAME)

CC 10-2 (Microbial, Algal, and Fungal Biochemistry)
 Section cross-reference(s): 7
 ST Ralstonia chloronitrophenol nitro redn dechlorination
 IT Ralstonia eutropha
 (chemoselective nitro group redn. and reductive dechlorination initiate degrdn. of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134)
 IT Dechlorination
 (reductive; chemoselective nitro group redn. and reductive dechlorination initiate degrdn. of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134)
 IT 9037-41-6P, 3-Nitrophenol reductase
 RL: BAC (Biological activity or effector, except adverse); BOC (Biological occurrence); BSU (Biological study, unclassified); PUR (Purification or recovery); BIOL (Biological study); OCCU (Occurrence); PREP (Preparation)
 (chemoselective nitro group redn. and reductive dechlorination initiate degrdn. of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134)
 IT 224427-05-8, 3-Hydroxylaminophenol mutase
 RL: BOC (Biological occurrence); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence)
 (chemoselective nitro group redn. and reductive dechlorination initiate degrdn. of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134)
 IT 619-10-3, 2-Chloro-5-nitrophenol
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (chemoselective nitro group redn. and reductive dechlorination initiate degrdn. of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134)
 IT 225089-58-7, Phenol, 2-Chloro-5-hydroxyamino- 237437-82-0
 RL: BPR (Biological process); BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL (Biological study); FORM (Formation, nonpreparative); PROC (Process)
 (chemoselective nitro group redn. and reductive dechlorination initiate degrdn. of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134)
 IT 20734-68-3, 2-Aminohydroquinone
 RL: BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL (Biological study); FORM (Formation, nonpreparative)
 (chemoselective nitro group redn. and reductive dechlorination initiate

degrdn. of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134)
 REFERENCE COUNT: 53 THERE ARE 53 CITED REFERENCES AVAILABLE FOR THIS
 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 6 OF 7 HCPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 1999:171848 HCPLUS
 DOCUMENT NUMBER: 130:348959
 TITLE: 3-hydroxylaminophenol mutase from
 Ralstonia eutropha JMP134 catalyzes a Bamberger
 rearrangement
 AUTHOR(S): Schenzle, Andreas; Lenke, Hiltrud; Spain, Jim
 C.; Knackmuss, Hans-Joachim
 CORPORATE SOURCE: Fraunhofer Institut fur Grenzflachen- und
 Bioverfahrenstechnik, Institut fur Mikrobiologie der
 Universitat Stuttgart, Stuttgart, D-70569, Germany
 SOURCE: Journal of Bacteriology (1999), 181(5), 1444-1450
 CODEN: JOBAAY; ISSN: 0021-9193
 PUBLISHER: American Society for Microbiology
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB 3-Hydroxylaminophenol mutase from Ralstonia eutropha
 JMP134 is involved in the degradative pathway of 3-nitrophenol, in which
 it catalyzes the conversion of 3-hydroxylaminophenol to
 aminohydroquinone. To show that the reaction was really catalyzed by a
 single enzyme without the release of intermediates, the corresponding
 protein was purified to apparent homogeneity from an ext. of cells grown
 on 3-nitrophenol as the nitrogen source and succinate as the carbon and
 energy source. 3-Hydroxylaminophenol mutase appears
 to be a relatively hydrophobic but sol. and colorless protein consisting
 of a single 62-kDa polypeptide. The pI was detd. to be at pH 4.5. In a
 database search, the NH₂-terminal amino acid sequence of the undigested
 protein and of two internal sequences of 3-hydroxylaminophenol
 mutase were found to be most similar to those of glutamine
 synthetases from different species. Hydroxylaminobenzene,
 4-hydroxylaminotoluene, and 2-chloro-5-hydroxylaminophenol, but
 not 4-hydroxylaminobenzoate, can also serve as substrates for the enzyme.
 The enzyme requires no oxygen or added cofactors for its reaction, which
 suggests an enzymic mechanism analogous to the acid-catalyzed Bamberger
 rearrangement.

IT 224427-05-8P, 3-(Hydroxylamino)phenol mutase
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological
 study, unclassified); PRP (Properties); PUR (Purification or recovery);
 BIOL (Biological study); PREP (Preparation)
 (hydroxylaminophenol mutase from Ralstonia eutropha
 JMP134 catalyzes a Bamberger rearrangement)

RN 224427-05-8 HCPLUS

CN Mutase, 3-(hydroxylamino)phenol (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

IT 100-65-2 623-10-9 10603-61-9

225089-58-7

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL
 (Biological study); PROC (Process)

(hydroxylaminophenol mutase from Ralstonia eutropha
 JMP134 catalyzes a Bamberger rearrangement)

RN 100-65-2 HCPLUS

CN Benzenamine, N-hydroxy- (9CI) (CA INDEX NAME)

HO-NH-Ph

RN 623-10-9 HCPLUS
 CN Benzenamine, N-hydroxy-4-methyl- (9CI) (CA INDEX NAME)

RN 10603-61-9 HCPLUS
 CN Phenol, 3-(hydroxyamino)- (9CI) (CA INDEX NAME)

RN 225089-58-7 HCPLUS
 CN Phenol, 2-chloro-5-(hydroxyamino)- (9CI) (CA INDEX NAME)

CC 7-4 (Enzymes)
 ST **hydroxylaminophenol mutase** Bamberger rearrangement
 Ralstonia
 IT Rearrangement
 (Bamberger; **hydroxylaminophenol mutase** from
 Ralstonia eutropha JMP134 catalyzes a Bamberger rearrangement)
 IT Protein sequences
 (N-terminal; **hydroxylaminophenol mutase** from
 Ralstonia eutropha JMP134 catalyzes a Bamberger rearrangement)
 IT Michaelis constant
 Reaction mechanism
 (**hydroxylaminophenol mutase** from Ralstonia eutropha
 JMP134 catalyzes a Bamberger rearrangement)
 IT 224427-05-8P, 3-(Hydroxylamino)phenol mutase
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological
 study, unclassified); PRP (Properties); PUR (Purification or recovery);
 BIOL (Biological study); PREP (Preparation)
 (**hydroxylaminophenol mutase** from Ralstonia eutropha
 JMP134 catalyzes a Bamberger rearrangement)
 IT 100-65-2 623-10-9 10603-61-9
 225089-58-7
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL
 (Biological study); PROC (Process)
 (**hydroxylaminophenol mutase** from Ralstonia eutropha)

JMP134 catalyzes a Bamberg rearrangement)
 REFERENCE COUNT: 56 THERE ARE 56 CITED REFERENCES AVAILABLE FOR THIS
 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 7 OF 7 HCAPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 1995:658590 HCAPLUS
 DOCUMENT NUMBER: 123:105988
 TITLE: Purification and characterization of nitrobenzene
nitroreductase from *Pseudomonas*
pseudoalcaligenes JS45
 AUTHOR(S): Somerville, Charles C.; Nishino, Shirley F.;
 Spain, Jim C.
 CORPORATE SOURCE: Armstrong Lab., Tyndall Air Force Base, FL,
 32403-5323, USA
 SOURCE: Journal of Bacteriology (1995), 177(13), 3837-42
 CODEN: JOBAAY; ISSN: 0021-9193
 PUBLISHER: American Society for Microbiology
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB *P. pseudoalcaligenes JS45* grows on nitrobenzene as a sole source of C, N, and energy. The catabolic pathway involves redn. to hydroxylaminobenzene followed by rearrangement to *o-aminophenol* and ring fission. Here, a nitrobenzene-inducible, O₂-insensitive *nitroreductase* was purified from exts. of JS45 by (NH₄)₂SO₄ pptn. followed by anion-exchange and gel filtration chromatog. A single 33-kDa polypeptide was detected by denaturing gel electrophoresis. The size of the native protein was estd. to be 30 kDa by gel filtration. The enzyme was a flavoprotein with a tightly bound FMN cofactor in a ratio of 2 mol of flavin per mol of protein. The Km for nitrobenzene was 5 .mu.M at an initial NADPH concn. of 0.5 mM. The Km for NADPH at an initial nitrobenzene concn. of 0.1 mM was 183 .mu.M. Nitrosobenzene was not detected as an intermediate of nitrobenzene redn., but nitrosobenzene was a substrate for the enzyme, and the specific activity for nitrosobenzene was higher than that for nitrobenzene. These results suggest that nitrosobenzene is formed but is immediately reduced to hydroxylaminobenzene. Hydroxylaminobenzene was the only product detected after incubation of the purified enzyme with nitrobenzene and NADPH. Hydroxylaminobenzene did not serve as a substrate for further redn. by this enzyme. The products and intermediates were consistent with 2-electron redns. of the parent compd. Furthermore, the low Km and the inducible control of enzyme synthesis suggested that nitrobenzene is the physiol. substrate for this enzyme.

IT 100-65-2
 RL: BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL (Biological study); FORM (Formation, nonpreparative)
 (products of nitrobenzene *nitroreductase* from *Pseudomonas*
pseudoalcaligenes JS45)
 RN 100-65-2 HCAPLUS
 CN Benzenamine, N-hydroxy- (9CI) (CA INDEX NAME)

IT 9037-41-6P, Nitrobenzene reductase
 RL: PRP (Properties); PUR (Purification or recovery); PREP (Preparation)
 (purifn. and characterization of nitrobenzene *nitroreductase*
 from *Pseudomonas pseudoalcaligenes JS45*)
 RN 9037-41-6 HCAPLUS
 CN Reductase, nitro- (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

IT 586-96-9, Nitrosobenzene
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL
 (Biological study); PROC (Process)
 (reactions of nitrobenzene **nitroreductase** from Pseudomonas
 pseudoalcaligenes JS45)

RN 586-96-9 HCPLUS

CN Benzene, nitroso- (8CI, 9CI) (CA INDEX NAME)

CC 7-2 (Enzymes)

ST nitrobenzene reductase Pseudomonas

IT Pseudomonas pseudoalcaligenes
 (JS45; purifn. and characterization of nitrobenzene
nitroreductase from Pseudomonas pseudoalcaligenes JS45)

IT Michaelis constant
 (of nitrobenzene **nitroreductase** from Pseudomonas
 pseudoalcaligenes)

IT 100-65-2
 RL: BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL
 (Biological study); FORM (Formation, nonpreparative)
 (products of nitrobenzene **nitroreductase** from Pseudomonas
 pseudoalcaligenes JS45)

IT 9037-41-6P, Nitrobenzene reductase
 RL: PRP (Properties); PUR (Purification or recovery); PREP (Preparation)
 (purifn. and characterization of nitrobenzene **nitroreductase**
 from Pseudomonas psuedoalcaligenes JS45)

IT 586-96-9, Nitrosobenzene
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL
 (Biological study); PROC (Process)
 (reactions of nitrobenzene **nitroreductase** from Pseudomonas
 pseudoalcaligenes JS45)

Registry & HCA PLUS Search

MARX 10/076, 383

=> D QUE L37

L14

STR

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RSPEC I

NUMBER OF NODES IS 8

STEREO ATTRIBUTES: NONE

L17 SCR 1838 AND 2004 AND 1992

L18 SCR 1841 OR 2043 no polymers, max of 3 rings

L28 SCR 1568 AND 1700 -OH & NH₂ groups

L30 3347 SEA FILE=REGISTRY SSS FUL L14 AND L17 AND L28 NOT L18

L32 1891 SEA FILE=HCAPLUS ABB=ON PLU=ON L30/PREP

L34 1 SEA FILE=HCAPLUS ABB=ON PLU=ON L32 AND MUTASE/OBI

L36 1 SEA FILE=HCAPLUS ABB=ON PLU=ON L32 AND NITROREDUCTASE/OBI

L37 1 SEA FILE=HCAPLUS ABB=ON PLU=ON L34 AND L36 1 cite

at least 1 ring
oxygen
nitrogen

OBI = all
search fields
except the
abstract

=> D QUE L48

L14

STR

Same STR search as above

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RSPEC I

NUMBER OF NODES IS 8

STEREO ATTRIBUTES: NONE

L17 SCR 1838 AND 2004 AND 1992

L18 SCR 1841 OR 2043

L28 SCR 1568 AND 1700

L30 3347 SEA FILE=REGISTRY SSS FUL L14 AND L17 AND L28 NOT L18

L32 1891 SEA FILE=HCAPLUS ABB=ON PLU=ON L30/PREP

L41 391116 SEA FILE=REGISTRY ABB=ON PLU=ON 46.150.18/RID AND NR<3 AND "NITRO"

L42 122706 SEA FILE=REGISTRY ABB=ON PLU=ON L41 AND NR=1

} search for
reactant
no
6
0

L43 268410 SEA FILE=REGISTRY ABB=ON PLU=ON L41 NOT L42
 L44 310391 SEA FILE=HCAPLUS ABB=ON PLU=ON L42 > had to break up L41 to cross
 L45 142026 SEA FILE=HCAPLUS ABB=ON PLU=ON L43 over the large
 L46 122935 SEA FILE=HCAPLUS ABB=ON PLU=ON (L44 OR L45)(L)(RCT OR
 RACT)/RL
 L47 1151 SEA FILE=HCAPLUS ABB=ON PLU=ON L46 AND L32 react and answers set
 L48 1 SEA FILE=HCAPLUS ABB=ON PLU=ON L47 AND NITROREDUCTASE l cite

=> D QUE L53
 L14 STR

same search as for 448 query display

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM
 DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RSPEC I

NUMBER OF NODES IS 8

STEREO ATTRIBUTES: NONE

L17 SCR 1838 AND 2004 AND 1992
 L18 SCR 1841 OR 2043
 L28 SCR 1568 AND 1700
 L30 3347 SEA FILE=REGISTRY SSS FUL L14 AND L17 AND L28 NOT L18
 L32 1891 SEA FILE=HCAPLUS ABB=ON PLU=ON L30/PREP
 L41 391116 SEA FILE=REGISTRY ABB=ON PLU=ON 46.150.18/RID AND NR<3 AND
 "NITRO"
 L42 122706 SEA FILE=REGISTRY ABB=ON PLU=ON L41 AND NR=1
 L43 268410 SEA FILE=REGISTRY ABB=ON PLU=ON L41 NOT L42
 L44 310391 SEA FILE=HCAPLUS ABB=ON PLU=ON L42
 L45 142026 SEA FILE=HCAPLUS ABB=ON PLU=ON L43
 L46 122935 SEA FILE=HCAPLUS ABB=ON PLU=ON (L44 OR L45)(L)(RCT OR
 RACT)/RL
 L52 381 SEA FILE=HCAPLUS ABB=ON PLU=ON L46 AND (PSEUDOMONAS OR
 ?ALCALIG?) ← using bugs
 L53 3 SEA FILE=HCAPLUS ABB=ON PLU=ON L52 AND L32 3 cites instead of enzymes

=> S L37 OR L48 OR L53

L54 3 L37 OR L48 OR L53 ← combining queries

=> d ibib abs hitstr L54 1

L54 ANSWER 1 OF 3 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 2000:349018 HCAPLUS

DOCUMENT NUMBER: 133:88272

TITLE: Production of 2-amino-5-phenoxyphenol from
 4-nitrobiphenyl ether using nitrobenzene
 nitroreductase and hydroxylaminobenzene
 mutase from Pseudomonas

applicant

pseudoalcaligenes JS45

AUTHOR(S): Nadeau, L. J.; He, Z.; Spain, J. C.
 CORPORATE SOURCE: Air Force Research Laboratory/MLQ, Tyndall Air Force
 Base, FL, 32403, USA
 SOURCE: Journal of Industrial Microbiology & Biotechnology
 (2000), 24(4), 301-305
 CODEN: JIMBFL; ISSN: 1367-5435
 PUBLISHER: Nature Publishing Group
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Microbial metab. of nitroarenes via o-aminophenols requires the participation of two key enzymes, a **nitroreductase** and an hydroxylaminobenzene mutase. The broad substrate ranges of the enzymes suggested that they could be used as biocatalysts for the prodn. of substituted o-aminophenols. Enzymes from **Pseudomonas pseudoalcaligenes JS45** were used for the conversion of 4-nitrobiphenyl ether to the corresponding o-aminophenol. Partially purified nitrobenzene **nitroreductase** reduced 4-nitrobiphenyl ether to the corresponding 4-hydroxylaminobiphenyl ether. Partially purified hydroxylaminobenzene mutase stoichiometrically converted the intermediate to 2-amino-5-phenoxyphenol. The results indicate that the enzyme system can be applied for the prodn. of o-aminophenols useful as intermediates for synthesis of com. important materials.

IT 42944-32-1P
 RL: BMF (Bioindustrial manufacture); BPN (Biosynthetic preparation); BIOL (Biological study); PREP (Preparation)
 (2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene mutase from **Pseudomonas pseudoalcaligenes**)

RN 42944-32-1 HCPLUS
 CN Phenol, 2-amino-5-phenoxy- (9CI) (CA INDEX NAME)

IT 620-88-2, 4-Phenoxynitrobenzene
 RL: BPR (Biological process); BSU (Biological study, unclassified); RCT (Reactant); BIOL (Biological study); PROC (Process); RACT (Reactant or reagent)
 (2-amino-5-phenoxyphenol prodn. from 4-nitrobiphenyl ether using nitrobenzene **nitroreductase** and hydroxylaminobenzene mutase from **Pseudomonas pseudoalcaligenes**)

RN 620-88-2 HCPLUS
 CN Benzene, 1-nitro-4-phenoxy- (9CI) (CA INDEX NAME)

REFERENCE COUNT: 34 THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> d ibib abs 2

L54 ANSWER 2 OF 3 HCAPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 1990:552136 HCAPLUS
 DOCUMENT NUMBER: 113:152136
 TITLE: Pyridiniothiomethylcephems as antibacterial agents and
 their preparation
 INVENTOR(S): Azuma, Kokichi; Nakai, Hideo; Yamaguchi, Totaro
 PATENT ASSIGNEE(S): Tanabe Seiyaku Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 19 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 02028185	A2	19900130	JP 1989-60689	19890315
PRIORITY APPLN. INFO.:			JP 1988-92583	19880414
OTHER SOURCE(S):		MARPAT 113:152136		

GI

AB The title compds. I [R1 = H, (carboxy)alkyl, oxopyrrolidyl]; R2 = (substituted) Ph; A = Q1, Q2, which may have up to 2 CO2H substituents; Z = bond, CH2, (CH2)2, CH(CO2H)CH2] and pharmaceutically acceptable salts thereof were by reaction of cephem II [R3 = (protected) amino, X = reactive residue; R1 = as above] with either pyridine or thiopyridone derivs. A mixt. of 1-(3,4-dihydroxyphenyl)-4-thiopyridone and 7.beta.-[2-(2-aminothiazol-4-yl)-2-(Z)-(2-carboxyprop-2-oxyimino)acetamido]cephalosporanic acid di-Na salt in MeCN contg. NaI was stirred at 65-70.degree. for 7 h to give, after workup, (7.beta.,Z)-I [R1 = C(CO2Na)Me2, A = Q1, R2 = 3,4-dihydroxyphenyl, Z = bond] (III). III had MIC values of 0.05 .mu.g/mL or less against *Pseudomonas aeruginosa* PI-67 and *Escherichia coli* ML-1410.RGN-823. ← false drop

=> d ibib abs 3

L54 ANSWER 3 OF 3 HCAPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 1984:68081 HCAPLUS
 DOCUMENT NUMBER: 100:68081

TITLE: .beta.-Lactam derivatives
 INVENTOR(S): Burton, George; Lashford, Andrew Gerard
 PATENT ASSIGNEE(S): Beecham Group PLC, UK
 SOURCE: Eur. Pat. Appl., 46 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 91302	A1	19831012	EP 1983-301876	19830331
R: BE, CH, DE, FR, GB, IT, LI, NL, SE				
ES 521195	A1	19840601	ES 1983-521195	19830330
AU 8313088	A1	19831006	AU 1983-13088	19830331
ZA 8302360	A	19840328	ZA 1983-2360	19830331
JP 58185592	A2	19831029	JP 1983-59133	19830404
ES 527806	A1	19850801	ES 1983-527806	19831205
PRIORITY APPLN. INFO.:			GB 1982-9982	19820403
GI				

AB Penicillins I (R = substituted dihydroxyphenyl) were prep'd. Thus, 5,3,4-O2N(AcO)2C6H2CH(SO3H)COCl was prep'd. from homovanillic acid in 6 steps and was used to acylate benzyl 6.alpha.-methoxy-6.beta.-aminopenicillanate. Hydrolysis of the product in 2 steps gave the phenylacetamide II which had a min. inhibitory conc. against *Pseudomonas aeruginosa* 10662 of 5 .mu.g/mL.

↑
 false draw

=> D QUE L59

L55

RRT

STR

PRO

product

RCT

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 15

STEREO ATTRIBUTES: NONE

L57 248 SEA FILE=CASREACT SSS FUL L55 (640 REACTIONS) 248 cites
 L59 4 SEA FILE=CASREACT ABB=ON PLU=ON L57 AND (ENZYM? OR MUTASE OR NITROREDUCTASE) 4 cites

=> D QUE L60

L55

RRT

STR

PRO

Same str search as above

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 15

STEREO ATTRIBUTES: NONE

L57 248 SEA FILE=CASREACT SSS FUL L55 (640 REACTIONS)
 L60 0 SEA FILE=CASREACT ABB=ON PLU=ON L57 AND (PSEUDOMONAS OR ?ALCALIG?) no cites

using bugs

none of these are very good

MARX 10/076,383

=> D IBIB ABS FCRDREF L59 1

L59 ANSWER 1 OF 4 CASREACT COPYRIGHT 2003 ACS

ACCESSION NUMBER: 125:238288 CASREACT

TITLE: Synthesis and biological activity of
4-amino-5-chloro-2-ethoxy-3-hydroxybenzamides,
metabolites of a new gastropotokinetic agent, mosapride

AUTHOR(S): Kato, Shiro; Morie, Toshiya; Yoshida, Naoyuki
CORPORATE SOURCE: Discovery Res. Lab., Dainippon Pharmaceutical Co.,

Ltd., Suita, 564, Japan
SOURCE: Chemical & Pharmaceutical Bulletin (1996), 44(8),
1484-1492

PUBLISHER: CODEN: CPBTAL; ISSN: 0009-2363
DOCUMENT TYPE: Journal
LANGUAGE: English

AB To confirm the proposed structures of the minor metabolites of a potential
gastropotokinetic agent, mosapride, 4-amino-5-chloro-2-ethoxy-3-hydroxy-N-
(2-morpholinylmethyl)benzamide and the N-(5-oxo-2-morpholinyl)methyl
analog were prep'd. As the common intermediate, 2-ethoxy-3-hydroxy-4-
nitrobenzoic acid was prep'd. via the regioselective ethylation of
2,3-dihydroxybenzaldehyde (10) and subsequent nitration of the resultant
2-ethoxy-3-hydroxybenzaldehyde. After enzymic treatment of the
isolated metabolites, their structures were identified by comparison with
the synthetic compds. Serotonin-4 receptor binding affinity of these
metabolites was lower than that of mosapride.

RX(1) OF 21

REF: Chemical & Pharmaceutical Bulletin, 44(8), 1484-1492; 1996
NOTE: 3 STEPS

=> D IBIB ABS FCRDREF L59 2

L59 ANSWER 2 OF 4 CASREACT COPYRIGHT 2003 ACS

ACCESSION NUMBER: 111:129562 CASREACT

TITLE: Quantitative structure-activity relationships in

dihydropteroate synthase inhibition by multisubstituted sulfones. Design and synthesis of some new derivatives with improved potency

AUTHOR(S): De Benedetti, Pier G.; Iarossi, Dario; Folli, Ugo; Frassineti, Chiara; Menziani, Maria Cristina; Cennamo, Carlo

CORPORATE SOURCE: Ist. Chim. Biol., Univ. Modena, Modena, 41100, Italy

SOURCE: Journal of Medicinal Chemistry (1989), 32(10), 2396-9

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE: Journal

LANGUAGE: English

GI

AB On the basis of the linear correlation existing for a set of homomultisubstituted 4-aminodiphenyl sulfones (I, R = Me or Cl, R1 = OH, O-, OMe, or Me, R2 = H, OH, O-, or OMe) between the computed (INDO) electronic net charges of the SO₂ group and the **enzymic** inhibition data on dihydropteroate synthase from *Escherichia coli*, 7 new heteromultisubstituted derivs. were designed, synthesized, and tested for their inhibition potencies. These compds. were found to be 5-11-fold more effective than 4,4'-diaminodiphenyl sulfone. The implications of the results in the drug design and in the model for the **enzyme**-inhibitors interaction are discussed.

RX(2) OF 50

REF: Journal of Medicinal Chemistry, 32(10), 2396-9; 1989

=> D IBIB ABS FCRDREF L59 3

L59 ANSWER 3 OF 4 CASREACT COPYRIGHT 2003 ACS

ACCESSION NUMBER: 109:129502 CASREACT

TITLE: Studies on steroids. CCXXXVI. New synthesis of 2-hydroxyestrogen 2-monoglucuronides

AUTHOR(S): Okubo, Tadashi; Tsuchiko, Fumiko; Nambara, Toshio

CORPORATE SOURCE: Pharm. Inst., Tohoku Univ., Sendai, 980, Japan

SOURCE: Chemical & Pharmaceutical Bulletin (1988), 36(1), 419-23

CODEN: CPBTAL; ISSN: 0009-2363

DOCUMENT TYPE: Journal
 LANGUAGE: English

AB New synthetic routes leading to catechol estrogen 2-monoglucuronides are described. Thus, 4-bromo-2-hydroxyestriol 16,17-diacetate via Koenigs-Knorr reaction with Me .alpha.-acetobromoglucuronate in the presence of CdCO₃ proceeded preferentially toward the C-2 hydroxyl group. Subsequent reductive dehalogenation followed by alk. hydrolysis gave the desired 2-hydroxyestriol 2-glucuronide. Similarly, 2-hydroxyestradiol and 2-hydroxyestrone 2-glucuronides were prep'd.

RX(3) OF 88

REF: Chemical & Pharmaceutical Bulletin, 36(1), 419-23; 1988

=> D IBIB ABS FCRDREF L59 4

L59 ANSWER 4 OF 4 CASREACT COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 98:11108 CASREACT
 TITLE: Analogs of aminoglutethimide: selective inhibition of cholesterol side-chain cleavage
 AUTHOR(S): Foster, Allan B.; Jarman, Michael; Leung, Chui Sheung; Rowlands, Martin G.; Taylor, Grahame N.
 CORPORATE SOURCE: Drug Metab. Group, Inst. Cancer Res., Sutton/Surrey, SM2 5PX, UK
 SOURCE: Journal of Medicinal Chemistry (1983), 26(1), 50-4
 CODEN: JMCMAR; ISSN: 0022-2623
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 GI

AB aminoglutethimide (I) [125-84-8] and 13 of its analogs, some of which were synthesized, were tested for aromatase [9039-48-9]- and steroid 20-22-desmolase [37292-81-2]-inhibiting activity. N-aminoglutethimide (II) [4238-75-9] selectively inhibited desmolase and was more inhibitory than I; m-aminoglutethimide (III) [83417-11-2] also selectively inhibited desmolase, but was equal to I in inhibitory activity. Structure-activity relations are discussed.

RX(12) OF 23

REF: Journal of Medicinal Chemistry, 26(1), 50-4; 1983