

Church-Turing Thesis

The Church-Turing Thesis

Alonzo Church (1903 – 1995) was an American mathematician and logician who made major contributions to mathematical logic and the foundations of theoretical computer science. Turing was his student at Princeton.

• How powerful are TMs?

• What problems can you solve with a computer?

- What does it mean to solve a problem?
 - Rethinking what "solving" a problem means, and two possible answers to that question

Real and "Ideal" Computers

- A real computer has memory limitations: you have a finite amount of RAM, a finite amount of disk space, etc
- However, as computers get more and more powerful, the amount of memory available keeps increasing
- An idealized computer is like a regular computer, but with unlimited RAM and disk space
- It functions just like a regular computer, but never runs out of memory.

Theorem

Turing machines are equal in power to idealized computers. That is, any computation that can be done on a TM can be done on an idealized computer and viceversa.

Key Idea: Two models of computation are equally powerful if they can simulate each other.

Simulating a TM

• The individual commands in a TM are simple and perform only basic operations:

```
Move
Write
Goto
Return
If
```

- The memory for a TM can be thought of as a string with some number keeping track of the current index
- To simulate a TM, we need to
 - see which line of the program we're on
 - determine what command it is
 - simulate that single command
- Claim: This is reasonably straightforward to do on an idealized computer

Simulating a TM

 Because a computer can simulate each individual TM instruction, a computer can do anything a TM can do

 Key Idea: Even the most complicated TM is made out of individual instructions, and if we can simulate those instructions, we can simulate an arbitrarily complicated TM

Simulating Computer

Simulating a Computer

- Programming languages provide a set of simple constructs
 - Think things like variables, arrays, loops, functions, classes, etc.
- You, the programmer, then combine these basic constructs together to assemble larger programs

 Key Idea: If a TM is powerful enough to simulate each of these individual pieces, it's powerful enough to simulate anything a real computer can do

Can TMs Do: Loops?

- We've seen TMs use loops to solve problems
 - The TM for $L = \{a^nb^n \mid n \in \mathbb{N}\}$ repeatedly pulls off the first and last character from the string
 - Our sorting TM repeatedly finds ba and replaces it with ab
- In some sense, the existence of Goto and labels means that TMs have loops

• Hopefully, it's not too much of a stretch to think that TMs can do while loops, for loops, etc.

Can TMs Do: Arithmetic?

- TMs can perform basic arithmetic
 - Addition of two numbers
 - We can check if two numbers are equal

 We could also do addition and subtraction, compute powers of numbers, do ceilings and floors, etc

Can TMs Do: Variables?

• TMs can maintain variables

- You can think of the TM for $L = \{a^nb^n \mid n \in \mathbb{N}\}$ as storing two variables one that counts a number of a's, and one that counts a number of b's
- The TM for Fibonacci numbers tracks the last two Fibonacci numbers, plus the length of the input string

2022-04-18

Can TMs Do: Helper Functions?

- We've seen TMs with helper functions
 - We saw how to check for equal numbers of a's and b's by first sorting the string, then checking of the string has the form a^nb^n
 - We can check if a decimal number is a Fibonacci number by converting it to unary, then running our unary Fibonacci checker

• A TM could have multiple "helper functions" that work together to solve some larger problem.

What Else Can TMs Do?

Maintain strings and arrays

Store their elements separated with some special separator character

Support pointers

 Maintain an array of what's in memory, where each item is tagged with its "memory address."

Support function call and return

It's hard, but you can do this if you can do helper functions and variables

2022-04-18 13

A TM Can Do What Computers Do

- Internally, computers execute by using basic operations like
 - Simple arithmetic
 - Memory reads and writes
 - Branches and jumps
 - Register operations
 - Etc.

• Each of these are simple enough that they could be simulated by a Turing machine.

2022-04-18

TM ≡ Computer

$TM \equiv Computer$

 Claim: A TM is powerful enough to simulate any computer program that gets an input, processes that input, then returns some result

• The resulting TM might be colossal, or really slow, or both, but it would still faithfully simulate the computer

• We're going to take this as an article of faith

TM Can Work with

• Images

 A picture is just a 2D array of colors, and a color can be represented as a series of numbers

Video

Just a series of pictures

Music

Easy

o Al

Symbol manipulation

Deep Learning

That's just applying a bunch of matrices and nonlinear functions to some input

Effective Computation

- An *effective method of computation* is a form of computation with the following properties:
 - The computation consists of a set of steps
 - There are fixed rules governing how one step leads to the next
 - Any computation that yields an answer does so in finitely many steps
 - Any computation that yields an answer always yields the correct answer

• This is not a formal definition. Rather, it's a set of properties we expect out of a computational system

Church-Turing Thesis

• Every effective method of computation is either equivalent to or weaker than a Turing machine.

 "This is not a theorem – it is a falsifiable scientific hypothesis. And it has been thoroughly tested!"

TMs and Computation

 Because Turing machines have the same computational powers as regular computers, we can (essentially) reason about Turing machines by reasoning about actual computer programs

• Going forward, we're going to switch back and forth between TMs and computer programs based on whatever is most appropriate

• In fact, our eventual proofs about the existence of impossible problems will involve a good amount of pseudocode

Finite/Infinite Loops

We'll Learn

What problems can we **solve** with a **computer**?

What does it mean to "solve" a problem?

What kind of computer?

The Hailstone Sequence

- Consider the following procedure, starting with some $n \in \mathbb{N}$, where n > 0:
 - If n = 1, you are done
 - If n is even, set n = n / 2
 - Otherwise, set n = 3n + 1
 - Repeat
- Question: Given a natural number n > 0, does this process terminate?

The Hailstone Sequence

• Example: n= 11

- n = 5? Yes, after 5 steps
- n = 20? Yes, after 7 steps
- n = 7? Yes, after 16 steps
- n = 27? (after 111 steps)

16

10

5

8

4

The Hailstone Turing Machine

• Let $\Sigma = \{a\}$ and consider the language $L = \{a^n \mid n > 0 \text{ and the hailstone sequence terminates for n }$

Could we build a TM for L?

- We can build a TM that works as follows:
 - If the input is ε, reject
 - While the string is not a:
 - If the input has even length, halve the length of the string
 - If the input has odd length, triple the length of the string and append one a
 - Accept

The Collatz Conjecture

- It is unknown whether this process will terminate for all natural numbers
- In other words, no one knows whether the TM described before will always stop running!
- The conjecture (unproven claim) that the hailstone sequence always terminates is called the *Collatz Conjecture*
- This problem has eluded a solution for a long time
- Paul Erdős said "Mathematics may not be ready for such problems."

Paul Erdős (1913 – 1996) was a renowned Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century.

Terence Tao FAA FRS (1975) is an Australian-American mathematician. He received the Fields Medal (2006) and Breakthrough Prize at Math. (2014). In 2019, Tao proved that almost all Collatz orbits have finite stopping time.

An Important Observation

- Unlike finite automata, which automatically halt after all the input is read, TMs keep running until they explicitly return true or return false
- As a result, it's possible for a TM to run forever without accepting or rejecting

- This leads to several important questions:
 - How do we formally define what it means to build a TM for a language?
 - What implications does this have about problem solving?

gy 2022-04-18 27

Terminology

- Let M be a Turing machine
- M accepts a string w if it returns true on w
- M rejects a string w if it returns false on w
- M loops infinitely (or loops) on a string w if when run on w it neither returns true nor returns false
- M does not accept w if it either rejects w or loops on w
- M does not reject w if it either accepts w or loops on w
- M halts on w if it accepts w or rejects w

• A TM M is called a recognizer for a language L over Σ if the following statement is true:

$$\forall w \in \Sigma^*$$
. ($w \in L \leftrightarrow M$ accepts w)

- If you are absolutely certain that $w \in L$, then running a recognizer for L on w will (eventually) confirm this
 - Eventually, M will accept w
- If you don't know whether $w \in L$, running M on w may never tell you anything
 - M might loop on w
 - but you can't differentiate between "it'll never give an answer" and "just wait a bit more."
- Does that feel like "solving a problem" to you?

• The hailstone TM M we saw earlier is a recognizer for the language

 $L = \{ a^n \mid n > 0 \text{ and the hailstone sequence terminates for n } \}$

- ullet If the sequence does terminate starting at n, then M accepts a^n
- If the sequence doesn't terminate, then M loops forever on a^n and never gives an answer
- If you somehow knew the hailstone sequence terminated for n, this machine would (eventually) confirm this
- If you didn't know, this machine might not tell you anything.

Recognizer: Examples


```
bool negatives (string input) {
  return false;
}
```

```
bool positives (string input) {
  return true;
}
```

```
bool infinites (string input) {
    while (true) {
        // do nothing
    }
    return false;
}
```

```
bool repeaters (string input) {
  if (input.size() % 2 != 0) return false;
  for (int i = 0; i < input.size() / 2; i++) {
    if (input[2 * i] != input[2 * i + 1]) {
      return false;
    }
  }
  return true;
}</pre>
```

• Each of these code is a recognizer for some language. What language does each recognizer recognize?

- Sums of three cubes
- Are there integers x, y, and z where...

$$x^{3} + y^{3} + z^{3} = 10$$
? Yes! $x = 2$, $y = 1$, $z = 1$
 $x^{3} + y^{3} + z^{3} = 11$? Yes! $x = 3$, $y = -2$, $z = -2$
 $x^{3} + y^{3} + z^{3} = 12$? Yes! $x = 7$, $y = 10$, $z = -11$
 $x^{3} + y^{3} + z^{3} = 13$?

- Surprising fact: until 2019, no one knew whether there were integers x, y, and z where $x^3 + y^3 + z^3 = 33$
- A heavily optimized computer search found this answer:

• As of November 2021, no one knows whether there are integers x, y, and z where $x^3 + y^3 + z^3 = 114$.

- Consider the language L = { a^n | $\exists x \in \mathbb{Z}$. $\exists y \in \mathbb{Z}$. $\exists z \in \mathbb{Z}$. $x^3 + y^3 + z^3 = n$ }
- Here's pseudocode for a recognizer to see whether such a triple exists:

```
for max = 0, 1, 2, ...

for x from -max to +max:

for y from -max to +max:

for z from -max to +max:

if x^3 + y^3 + z^3 = n: return true
```

- If you somehow knew there was a triple x, y, and z where x3 + y3 + z3 = n, running this program will (eventually) convince you of this
- If you weren't sure whether a triple exists, this recognizer might not be useful to you

- The class RE consists of all recognizable languages
- Formally speaking:

RE = { L | L is a language and there's a recognizer for L }

- You can think of RE as "all problems with yes/no answers where "yes" answers can be confirmed by a computer."
 - Given a recognizable language L and a string $w \in L$, running a recognizer for L on w will eventually confirm $w \in L$
 - The recognizer will never have a "false positive" of saying that a string is in L when it isn't
- This is a "weak" notion of solving a problem
- What is a "stronger" one?

2022-04-18

• Some, but not all, TMs have the following property: the TM halts on all inputs

• If you are given a TM M that always halts, then for the TM M, the statement "M does not accept w" means "M rejects w."

• A TM M is called a *decider* for a language L over Σ if the following statements are true:

$$\forall w \in \Sigma^*$$
. M halts on w $\forall w \in \Sigma^*$. ($w \in L \leftrightarrow M$ accepts w)

- In other words, M accepts all strings in L and rejects all strings not in L
- In other words, M is a recognizer for L, and M halts on all inputs
- If you aren't sure whether $w \in L$, running M on w will (eventually) give you an answer to that question.

2022-04-18

• The hailstone TM M we saw earlier is a recognizer for the language

$$L = \{ a^n \mid n > 0 \text{ and the hailstone sequence}$$

terminates for n \}

- If the hailstone sequence terminates for n, then M accepts a^n . If it doesn't, then M does not accept a^n
- We honestly don't know if M is a decider for this language
 - If the hailstone sequence always terminates, then M always halts and is a decider for L
 - If the hailstone sequence doesn't always terminate, then M will loop on some inputs and isn't a decider for L

Recognizer: Examples


```
bool negatives (string input) {
  return false;
}
```

```
bool positives (string input) {
   return true;
}
```

```
bool infinites (string input) {
    while (true) {
        // do nothing
    }
    return false;
}
```

```
bool repeaters (string input) {
   if (input.size() % 2 != 0) return false;
   for (int i = 0; i < input.size() / 2; i++) {
      if (input[2 * i] != input[2 * i + 1]) {
        return false;
      }
   }
   return true;
}</pre>
```

• Each of these code is a recognizer for some language. Which are deciders?

• While no one knows whether there are integers x, y, and z where $x^3 + y^3 + z^3 = 114$, it is very easy to figure out whether there are integers x, y, and z where $x^2 + y^2 + z^2 = 114$

• Why?

- Consider the language L = $\{a^n \mid \exists x \in \mathbb{Z}. \exists y \in \mathbb{Z}. \exists z \in \mathbb{Z}. x^2 + y^2 + z^2 = n \}$
- Here's pseudocode for a decider to see whether such a triple exists:

```
for x from 0 to n:

for y from 0 to n:

for z from 0 to n:

if x^2 + y^2 + z^2 = n: return true

return false
```

 After trying all possible options, this program will either find a triple that works or report that none exists

- The class R consists of all decidable languages
- Formally speaking:

```
R = \{ L \mid L \text{ is a language and there's a decider for } L \}
```

- You can think of R as "all problems with yes/no answers that can be fully solved by computers."
 - Given a decidable language, run a decider for L and see what happens
 - Think of this as "knowledge creation" if you don't know whether a string is in L, running the decider will, given enough time, tell you
- The class R contains all the regular languages, all the context-free languages, most of algorithms, etc.
- This is a "strong" notion of solving a problem.

2022-04-18

R and RE Languages

- Every decider for L is also a recognizer for L
- \bullet This means that R \subseteq RE
- Hugely important theoretical question:

$$R \stackrel{?}{=} RE$$

• That is, if you can just confirm "yes" answers to a problem, can you necessarily solve that problem?

Relations

By Definition, $R \subseteq RE$

Questions

• Why exactly is RE an interesting class of problems?

• What does the $R \stackrel{?}{=} RE$ question mean?

 \bullet Is R = RE?

• What lies beyond R and RE?