Mining Data Streams

Mining of Massive Datasets

Jure Leskovec, Anand Rajaraman, Jeff Ullman

Stanford University

http://www.mmds.org

Mining Data Stream

- Motivation
- Sampling
 - Fixed-portion sampling
 - Fixed-size (reservoir) sampling
- Filtering
 - Bloom filter
- Counting
 - Estimating # of distinct values, moments
- Sliding window
 - Counting # of 1's in the window

Data streams & applications

- Query streams
 - How many unique users at Google last month?

- URL streams while crawling
 - Which URLs have been crawled before?

- Sensor data
 - What is the maximum temperature so far?

Stream data processing

- Stream of tuples arriving at a rapid rate
 - In contrast to traditional DBMS where all tuples are stored in secondary storage

- Infeasible to use all tuples to answer queries
 - Cannot store them all in main memory
 - Too much computation
 - Query response time critical

Query types

- Standing queries
 - Executed whenever a new data tuple arrives
 - keep only one value
 - e.g., report each new maximum value ever seen in the stream
- Ad-hoc queries
 - Normal queries asked one time
 - Need entire stream to have an exact answer
 - e.g., what is the number of unique visitors in the last two months?

Stream Processing Model

Example: Running averages

- Given a window of size N
 - Report the average of values in the window whenever a value arrives
 - N is so large that we can not store all tuples in the window

How to do this?

Example: running averages

- First N inputs, accumulate sum and count
 - Avg = sum/count

- A new element i
 - Change the average by adding (i j)/N
 - *j* is the oldest element in the window
 - window size is fixed so we need to discard j

Roadmap

- Motivation
- Sampling
 - Fixed-portion & fixed-size (reservoir sampling)
- Filtering
 - Bloom filter
- Counting
 - Estimating # of distinct values, moments
- Sliding window
 - Counting # of 1's in the window

Sampling from a data stream

- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How often did a user run the same query in a single day
 - Have space to store 1/10th of query stream
- Method 1: sample a fixed portion of elements
 - e.g., 1/10
- Method 2: maintain a fixed-size sample

SAMPLING FIXED-PORTION

Sampling a fixed proportion

- Search engine query stream
 - Stream of tuples: (user, query, time)

- Example query
 - What fraction of queries by a user are duplicates?

- Assumption
 - Have space to store 1/10 of stream tuples

Naive solution

- For each tuple (store it or not?)
 - generate a random number in [0..9]
 - store it in the sample if the number is 0
 - Sample rate?
- Example stream tuples:
 - (john, data mining, 2015/12/01 9:45)
 - (mary, inf 553, 2015/12/01 10:08)
 - (john, data mining, 2015/12/01 11:30)
 - **—** ...
- Problems?
 - Your sampling may contain duplicates

The true fraction of queries with duplicates

- A user issued s queries once & d queries twice
 - E.g., data mining, inf 553, movie, movie, tom, tom (s=d=2)
- Total number of queries & duplicates = s + 2d
- True fraction of queries with duplicates = d/(s+d)
- Sampling rate = 1/10

Queries with duplicates in sample

- The sample contains:
 - s/10 "s" queries, e.g., data mining
 - 2d/10 "d" tuples, e.g., movie, tom, tom
- If sample = data mining, movie, tom, tom, question:
 - What is the expected number of d queries with duplicates in the sample?
 - movie d query without duplicates in the sample
 - tom, tom d query with duplicates in the sample
 - E.g., both tom's appear in the sample

Queries with duplicates in sample

- s₁, s₂, ..., s₈₀₀, d₁, d₁', d₂, d₂', ..., d₁₀₀, d₁₀₀'
 s = 800, d = 100
- Each d_j has probability of 1/10 being selected so prob. of two d_i 's being selected = 1/10 * 1/10
- There are d number of d_i 's
- \Rightarrow so the expected number of duplicated pairs in sample = d/100
- \Rightarrow or d/100 queries + d/100 their duplicates \Rightarrow That is 2d/100

"d" Queries without duplicates in sample

- The sample contains:
 - s/10 "s" queries, e.g., data mining
 - -2d/10 "d" tuples, e.g., movie, tom, tom

Question:

- What is the expected number of d queries without duplicates in the sample?
- E.g., only one movie appears in the sample

"d" Queries without duplicates in sample

•
$$s_1, s_2, ..., s_{800}, d_1, d_1', d_2, d_2', ..., d_{100}, d_{100}'$$

 $-s = 800, d = 100$

- Expected # of singleton d queries in sample
 - $-d_i$ selected, d_i not selected: 1/10 * 9/10
 - $-d_i$ not selected, d_i selected: 9/10 * 1/10
 - => 9d/100+9d/100 = 18d/100

Fraction of queries in sample w/ duplicates

s₁, s₂, ..., s₈₀₀, d₁, d₁', d₂, d₂', ..., d₁₀₀, d₁₀₀'
- s = 800, d = 100

• Fraction =
$$\frac{\frac{d}{100}}{\frac{s}{10} + \frac{d}{100} + \frac{18d}{100}} = \frac{d}{10s + 19d} \neq \frac{d}{s + d}$$

Note total # of d queries with and without duplicates = d/100 * 2 + 18d/100
 = 20d/100
 = 2d/10

What has been the problem?

- Mistake: sample by position
 - When search tuple arrives, we flip a 10-side dice
 - Retain it if the dice shows up as 0
- Solution: sample by user (by key)
 - When search tuple (user, query, time) arrives
 - We extract its user (key) component
 - Hash user into 10 buckets: 0, 1, ..., 9
 - Retain all tuples for the user in the bucket 0

Sample by user

 Sample = all queries for users hashed into bucket 0

All or none of queries of a user will be selected

- Thus, the fraction of unique queries in sample
 - will be the same as that in the stream as a whole

General Sampling Problem

- Stream of tuples with *n* components
 - Key = a subset of components

- Search stream: (user, query, time)
 - Sample size: a/b

- Sampling strategy:
 - Hash key (e.g., user) to b buckets
 - Accept tuple if key value < a

Example

- Tuples: (empID, dept, salary)
- Query: avg. range of salary within a dept.?
- Randomly selecting tuples
 - Might miss the min/max salary
- Key = dept.
- Sample: some departments and all tuples in these departments

SAMPLING FIXED-SIZED (RESERVOIR)

Roadmap

- Motivation
- Sampling
 - Fixed-portion sampling
 - Fixed-size (reservoir) sampling
- Filtering
 - Bloom filter
- Counting
 - Estimating # of distinct values, moments
- Sliding window
 - Counting # of 1's in the window

Problem with fixed portion sample

- Sample size may grow too big when data stream in
 - Even 10% could be too big, e.g., tuples in bucket
 1/10 exceed the memory size

Idea: throw away some queries

- Key: do this consistently
 - remove all or none of occurrences of a query

Controlling the sample size

- Put an upper bound on the sample size
 - Start out with 10%

• Solution:

- Hash queries to a large # of buckets, say 100
- Put them into sample if they hash to bucket 0 to 9
- When sample grows too big, throw away bucket 9
- So on

Maintaining a fixed-size sample

- Suppose we need to maintain a random sample, S, of size exactly s tuples (instead of %)
 - E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time n we have seen n items
 - Each item is in the sample S with equal prob. s/n
 - A challenge to achieve!

How to think about the problem: say s = 2

Stream: a x c y z k c d e g...

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.

At n= 7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the *n* tuples seen so far and out of them pick *s* at random

Solution: Fixed Size Sample

- Algorithm (a.k.a. Reservoir Sampling)
 - Store all the first s elements of the stream to S
 - Suppose we have seen n-1 elements, and now the n^{th} element arrives (n > s)
 - With probability s/n, keep the n^{th} element, else discard it
 - If we picked the n^{th} element, then it replaces one of the s elements in the sample s, picked uniformly at random
- Claim: This algorithm maintains a sample S
 with the desired property:
 - After *n* elements, the sample contains each element seen so far with probability *s/n*

Proof: By Induction

We prove this by induction:

- Assume that after *n* elements, the sample contains each element seen so far with probability *s/n*
- We need to show that after seeing element n+1 the sample maintains the property
 - Sample contains each element seen so far with probability s/(n+1)

Base case:

- After we see n=s elements the sample S has the desired property
 - Each out of n=s elements is in the sample with probability
 s/s = 1

Proof: By Induction

- Inductive hypothesis: After n elements, the sample
 S contains each element seen so far with prob. s/n
- Now element n+1 arrives
- Inductive step: For each element x already in S, probability that the algorithm keeps x in S is:

$$\left(1 - \frac{S}{n+1}\right) + \left(\frac{S}{n+1}\right) \left(\frac{S-1}{S}\right) = \frac{n}{n+1}$$
Element **n+1** discarded Element **n+1** Element in the

- So, at time *n*, tuples in *S* were there with prob. s/n
- Time $n \rightarrow n+1$, tuple stayed in **S** with prob. n/(n+1)
- So prob. tuple is in **S** at time $n+1 = \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}$

Roadmap

- Motivation
- Sampling
 - Fixed-portion & fixed-size (reservoir sampling)
- Filtering
 - Bloom filter
- Counting
 - Estimating # of distinct values, moments
- Sliding window
 - Counting # of 1's in the window

FILTERING

Stream Filtering

- Application: spam filtering
 - Check incoming emails against a large set of known email addresses (e.g., 1 billion)

- Application: URL filtering in Web crawling
 - Check if discovered URL's have already been crawled

Bloom filter

- Check if an object o is in a set S
 - w/o comparing o with all objects in S (explicitly)

- No false negatives
 - If Bloom says no, then o is definitely not in S

- But may have false positives
 - If Bloom says yes, it is possible that o is not in S

Components in a Bloom filter

An array A of n bits, initially all 0's: A[0..n-1]

- A set of hash functions, each
 - takes an object (stream element) as the input
 - returns a position in the array: 0..n-1

A set S of objects

Construct and apply the filter

- Construction: for each object o in S,
 - Apply each hash function h_i to o
 - If $h_i(o) = i$, set A[i] = 1 (if it was 0)
- Application: check if new object o' is in S
 - Hash o' using each hash function
 - If for some hash function $h_j(o') = i$ and A[i] = 0, stop and report o' not in S

Example

• 11-bit array (n=11)

Stream elements = integers

- Two hash functions
 - $-h_1(x) = (odd-position bits from the right) % 11$
 - $-h_2(x) = (even-position bits from the right) % 11$

Example: Building the filter

Stream element	h ₁	h ₂	Filter
			0 0 0 0 0 0 0 0 0 0 0
25 = 1 1 0 0 1	5	2	0 0 1 0 0 1 0 0 0 0
159 = 1 0 0 1 1 1 1 1	7	0	1 0 1 0 0 1 0 0
585 = 1 0 0 1 0 0 1 0 0 1	9	7	1 0 1 0 0 1 0 1 0 1

Example: Using the filter

- Is 118 in the set?
 - No false negative in Bloom

Example: False positive

- Is 38 in the set (25, 159, 585)?
 - It turns on the same bits as 25, but in diff. ways

Recall

False positive

x not in S, but identified as in S

- Reason:
 - For all hash functions, x hashes into an 1 position
 - That is, $h_i(x) = h_i(e)$, for some e in S
 - Note: j may be different from i

False positive rate (upper bound)

- n = # of bits in array
- **k** = # of hash functions
- m = # of elements inserted
- **f** = fraction of 1's in bit array
- False positive rate = f^k
 - The probability of saying YES to the question "Is X in the set?"
- $f \le m*k/n$ (this is an upper bound, why?)

Example (upper bound)

- n = 8 billions (bits in array)
- m = 1 billion (objects in the set)
- *k* = 1 (# of hash function)
- f is estimated to be km/n = 1/8
 - -1/8 of bits in the array are 1
- False positive rate $\leq 1/8 = .125$

Accurate Estimation of fraction of 1's

- n = # of bits in array
- k = # of hash functions
- m = # of elements inserted

- Fraction of 1's = the probability that a bit in the array is set to 1 by at least one hashing
 - Total # of hashings: k * m

Estimation model

Consider throwing d darts on t targets

- What is the probability, denoted as p, of a given target hit by at least one dart?
 - Prob. of a target not hit by $\mathbf{a} \, \mathbf{dart} = \mathbf{1} \mathbf{1}/\mathbf{t}$
 - Prob. of a target not hit by all darts = $(1-1/t)^d$ since $(1-1/t)^t = ((1+\frac{1}{-t})^{-t})^{-1}) = e^{-1} = 1/e$ for large t
 - we have $(1-1/t)^{t^*d/t} = e^{-d/t}$

$$m{p}$$
 = 1 - $m{e}^{ ext{-d/t}}$ $e = \lim_{n o \infty} \left(1 + rac{1}{n}
ight)^n$

Estimating the fraction of 1's

- n = # of bits in array
- k = # of hash functions
- m = # of elements inserted

 Fraction of 1's = the probability that a bit in the array is set to 1 by at least one hashing

$$-1-e^{-km/n}$$

False Positive Rate (Accurate)

- f = fraction of 1's in bit array
- k = # of hash functions
- m = # of elements inserted

- False positive rate = f^k
- Instead of $f \le m*k/n$, we have $f = 1 e^{-km/n}$
- so false positive rate = $(1 e^{-km/n})^k$
 - Multiple hash functions hit the same bit

Example (actual rate)

- n = 8 billions (bits in array)
- m = 1 billion (objects in the set)
- k = 1 (# of hash function)

- Recall that false positive rate $\leq 1/8 = .125$
- Actual rate = $(1 e^{-km/n})^k = 1 e^{-1/8} = .1175$

• What if k = 2?

Example (actual rate)

- n = 8 billions (bits in array)
- m = 1 billion (objects in the set)
- **k** = 2 (# of hash function)

• Actual rate = $(1 - e^{-km/n})^k = (1-e^{-2/8})^2 = .2212^2 = .0489$

Optimal k

- **n** = 8 billions
- *m* = 1 billion
- **k** = # of hash functions

- Rate = $(1 e^{-km/n})^k$ = $(1 - e^{-k/8})^k$
- Optimal $k = n/m \ln(2)$
 - E.g., $k = 8 ln (2) = 5.54 <math>\sim 6$
- Error rate at k = 6: $(1-e^{-6/8})^6 = .0216$

COUNTING (DISTINCT ELEMENTS)

Roadmap

- Motivation
- Sampling
 - Fixed-portion & fixed-size (reservoir sampling)
- Filtering
 - Bloom filter
- Counting
 - Estimating # of distinct values, moments
- Sliding window
 - Counting # of 1's in the window

Compute # of distinct elements

- Applications
 - Compute # of distinct users to Facebook
 - Compute # of distinct queries submitted to Google

- Obvious solution:
 - Hash table of distinct elements
 - Check if new element is there; if not, add it
- Problems?

Flajolet-Martin algorithm

- Estimating the counts
- 1. Hash every element a to a sufficiently long bitstring (e.g., h(element a) = 1100 4 bits)
- 2. Maintain R = length of *longest* trailing zeros among all bit-strings (e.g., R = 2)
- 3. Estimate count = 2^R , e.g., 2^2 = 4

Example (estimate by trailing 0s)

- Consider 4 distinct elements: a, b, c, d
- Hash value into bit string of length 4
- How likely do we see at least one hash value with a 0 in the last bit? Next slide
 - hash(a) = 0010
 - hash(b) = 0111
 - hash(c) = 1010
 - hash(d) = 1111

Example: at least one ends with 0

- E.g.,
 - hash(a) = 0010
 - hash(b) = 0111
 - hash(c) = 1010
 - hash(d) = 1111
- Prob. of none of hash values ending with 0:
 - $-(1-\frac{1}{2})^4$ (every string ends with 1; there are four strings)
- Prob. of at least one ending with 0:
 - $-1-(1-\frac{1}{2})^4=.9375$

Example: at least one ends with 00

- E.g.,
 - hash(a) = 0100
 - hash(b) = 0111
 - hash(c) = 1010
 - hash(d) = 1111
- Prob. of someone ending with 00:
 - $-(\frac{1}{2})(\frac{1}{2})=(\frac{1}{2})^2=2^{-2}$
- Prob. of none ending with 00:
 - $-(1-(\frac{1}{2})^2)^4=.32$
- Prob. of at least one ending with 00:
 - -1 .32 = .68

Example: at least one ends with 000

- E.g.,
 - hash(a) = 0000
 - hash(b) = 0111
 - hash(c) = 1010
 - hash(d) = 1111
- Prob. of someone ending with 000:
 - $-(\frac{1}{2})(\frac{1}{2})(\frac{1}{2}) = (\frac{1}{2})^3 = 2^{-3}$
- Prob. of none ending with 000:
 - $-(1-(\frac{1}{2})^3)^4=.59$
- Prob. of at least one ending with 000:
 - -1-.59 = .41

Why it works?

- Prob. of h(a) having at least r trailing 0's
 2^{-r}
- Suppose there are *m* distinct elements

Prob. that h(a) for some element a has at least r
 trailing 0's (as in the examples in the previous slides)

$$1 - (1 - 2^{-r})^m = 1 - (1 - 2^{-r})^{2^r \frac{m}{2^r}} = 1 - e^{-\frac{m}{2^r}}$$

Why it works?

Prob. that h(a) for some element a has at least
 r trailing 0's

$$p = 1 - (1 - 2^{-r})^m = 1 - e^{-\frac{m}{2^r}}$$

Tayler expansion of e^x

•
$$p = 1 - e^{-\frac{m}{2^r}} \sim 1 - \left(1 - \frac{m}{2^r}\right) = \frac{m}{2^r}$$
, if $2^r \gg m$

Why it works?

Prob. that h(a) for some element a has at least r trailing 0's

$$- p = 1 - (1 - 2^{-r})^m = 1 - e^{-\frac{m}{2^r}}$$

Prob. that h(a) for NO element a has at least r trailing 0's

$$- p' = (1 - 2^{-r})^m = e^{-\frac{m}{2^r}}$$

(1) If
$$2^r \gg m$$
, $p = \frac{m}{2^r} \to 0$; $p' = 1$

- the probability of finding a tail length at least r approaches 0
- R is unlikely to be too large, since otherwise it may not show up at all

(2) If
$$2^r \ll m$$
, $p = 1 - 1/e^{\frac{m}{2^r}} \rightarrow 1$; $p' = 0$

- the probability that we shall find a tail of length at least r approaches 1
- Since R is the longest 0's, it is unlikely to be too small.

2^R is around m

Problems in combining estimates

- We can hash multiple times, take avg. of 2^R values
- Problem: ExpectedValue(2^R) → ∞
 - When $2^R \ge m$, increase R by 1 => probability halves, but value 2^R doubles

•
$$p = 1 - (1 - 2^{-r})^m = 1 - e^{-\frac{m}{2^r}}$$

- Contribution from each large R to E(2^R) grows, when R grows
- Can have very large 2^R
- What about taking median instead?

Combining the estimates

- Avg only: what if one very large value?
- Median: all values are power of 2
 - 1, 2, 4, 8,...,1024, 2048,...
- Solution:
 - Partition hash functions into small groups
 - Take average for each group
 - Take the median of the averages

COUNTING (MOMENTS)

Roadmap

- Motivation
- Sampling
 - Fixed-portion & fixed-size (reservoir sampling)
- Filtering
 - Bloom filter
- Counting
 - Estimating # of distinct values, moments
- Sliding window
 - Counting # of 1's in the window

Moments

- A stream S of elements drawn from a universal set: v₁, v₂, ..., v_n
 - $-m_i$ is the number of occurrences of v_i in S
 - $-(1,4,1,3,4,1), m_1=3, m_2=2;$

- k-th moment of S:
 - $-\sum_{i=1}^{n} (m_i)^k$

K-th moments

- 0-th moment of the stream S
 - # of distinct elements in S
 - -(1, 4, 1, 3, 4, 1)
- 1st moment of S
 - Length of S

$$\sum_{i=1}^n (m_i)^k$$

- 2nd moment of **S**: sum of squared frequencies
 - Surprise number, measuring the evenness of distribution of elements in S

Surprise number

Steam of 100 elements, 11 values appear

- Unsurprising: $m_i = 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9$
 - Surprise number = $10^2 + 10 * 9^2 = 910$

$$-\sum_{i=1}^n (m_i)^k$$

- Surprising: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 - Surprise number = $90^2 + 10 * 1^2 = 8,110$

AMS (Alon-Matias-Szegedy) Algorithm

- Estimating 2nd moment of a stream of length n
- Pick k random numbers between 1 to n
- For each, construct a variable X at position t
 - Record its <u>count from position t onwards to n</u> as X.value
- Estimate = $1/k \sum_{i=1}^{k} n(2x_k.value 1)$
 - Explain next

Example

- Stream: a, b, c, b, d, a, c, d, a, b, d, c, a, a, b
 - Stream length n = 15
 - a occurs 5 times
 - b occurs 4 times
 - c and d each occurs 3 times

• 2^{nd} moment = $5^2 + 4^2 + 3^2 + 3^2 = 59$

Random variables

- Each random variable X records:
 - X.element: element in X
 - X.value: # of occurrences of X from time t to n

- X.value = 1, at time *t*
 - At time t, we have the 1st encounter of this element
- X.value++, when another X.element is seen

Random variables

- Stream: a, b, c, b, d, a, c, d, a, b, d, c, a, a, b
- Suppose we keep three variables: X₁, X₂, X₃
 - Introduced at position: 3, 8, and 13

- Position 3: X₁.element = c, X₁.value = 1
- Position 7: X_1 .value = 2

Random variables

- Stream: a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

 13
- Position 8: X₂.element = d, X₂.value = 1
- Position 11: X_2 .value = 2
- Position 12: X_1 .value = 3
- Position 13: X₃.element = a, X₃.value = 1
- Position 14: X_3 .value = 2

Random variables: final values

- X_1 .value = 3, X_2 .value = 2, X_3 .value = 2
- Estimate of 2nd moment = n(2*X.value 1)

- Estimate using X_1 : 15(6-1) = 75
- Estimate using X_2 or X_3 : 15(4-1) = 45

• Avg. = (75+45+45)/3 = 55 (recall actual is 59)

Why AMS works?

• Stream: a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

† † † † † † † 13

- e(i): element that appears in position i
 - A random variable introduced at this position will haveX.element = e(i)
- c(i): # of times e(i) appears in positions i..n
 - X.value = c(i)
- e(6) = a, c(6) = 4

Why AMS works?

Stream: a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

- $e(1) = a, c(1) = 5 = m_a$
- $e(2) = b, c(2) = 4 = m_b$
- $e(3) = c, c(3) = 3 = m_c$
- $e(4) = b, c(4) = m_b-1$
- •
- e(13) = a, c(13) = 2
- e(14) = a, c(14) = 1
- e(15) = b, c(15) = 1

If we can have a lot of random variables (e.g., 15)...

1, 2, 3, ..., m_a

Why AMS works?

- Estimate = $1/k \sum_{i=1}^{k} n(2x_k.value 1)$
- E(n(2X.value 1))
 - average over all positions i between 1 and n

$$= \frac{1}{n} \sum_{i=1}^{n} n(2c(i) - 1)$$

$$= \sum_{i=1}^{n} (2c(i) - 1)$$

$$= \sum_{x} 1 + 3 + \dots + (2m_{x} - 1)$$
 for each $x = \sum_{x} m_{x}^{2}$

• Note: $1+3+...+(2n-1)=n^2$

$$\sum_{i=1}^{m_i} (2i-1) = 2 \frac{m_i(m_i+1)}{2} - m_i = (m_i)^2$$

Expectation Analysis

• 2nd moment is $S = \sum_{x} m_{x}^{2}$

seen (*c*,=1)

seen

- c_t ... number of times item at time t appears from time t onwards $(c_1=m_a, c_2=m_a-1, c_3=m_b)$
- $E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t 1)$ m ... total count of item i in the stream (we are assuming stream has length **n**) $= \frac{1}{n} \sum_{x} n (1 + 3 + 5 + \dots + 2m_{x} - 1)$ Time **t** when Time **t** when Time t when the penultimate the first x is **Group times** the last **x** is *i* is seen (*c*,=2) seen (**c,=m**,) by the value

74

Expectation Analysis

•
$$E[f(X)] = \frac{1}{n} \sum_{x} n (1 + 3 + 5 + \dots + 2m_{x} - 1)$$

- Little side calculation: $(1+3+5+\cdots+2m_x-1) = \sum_{x=1}^{m_x} (2x-1) = 2\frac{m_x(m_x+1)}{2} m_x = (m_x)^2$
- Then $E[f(X)] = \frac{1}{n}\sum_{x} n (m_x)^2$
- So, $E[f(X)] = \sum_{x} (m_x)^2 = S$
- We have the second moment (in expectation)!

Higher-Order Moments

- For estimating kth moment we essentially use the same algorithm but change the estimate:
 - For k=2 we used $n(2\cdot c-1)$
 - For k=3 we use: $n(3\cdot c^2 3c + 1)$ (where c=X.val)
- Why?
 - For k=2: Remember we had $(1+3+5+\cdots+2m_i-1)$ and we showed terms **2c-1** (for **c=1,...,m**) sum to m^2
 - $\sum_{c=1}^{m} 2c 1 = \sum_{c=1}^{m} c^2 \sum_{c=1}^{m} (c-1)^2 = m^2$
 - So: $2c 1 = c^2 (c 1)^2$
 - For k=3: c³- (c-1)³ = 3c²- 3c + 1 $\sum_{v=1}^{m} 3v^2 3v + 1 = m^3$
- Generally: Estimate = $n(c^k (c-1)^k)$

Combining Samples

In practice:

- Compute f(X) = n(2c-1) for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages

Problem: Streams never end

- We assumed there was a number n,
 the number of positions in the stream
- But real streams go on forever, so n is
 a variable the number of inputs seen so far

Streams Never End: Fixups

- (1) The variables X have n as a factor –
 keep n separately; just hold the count in X
- (2) Suppose we can only store k counts.
 We must throw some Xs out as time goes on:

– Objective:

- Estimating 2nd moment of a stream of length n
- Each starting time t is selected with probability k/n

– Solution: (fixed-size sampling!)

- Choose the first k times for k variables
- When the n^{th} element arrives (n > k), choose it with probability k/n
- If you choose it, throw one of the previously stored variables X out, with equal probability

SLIDING WINDOWS

Roadmap

- Motivation
- Sampling
 - Fixed-portion & fixed-size (reservoir sampling)
- Filtering
 - Bloom filter
- Counting
 - Estimating # of distinct values, moments
- Sliding window
 - Counting # of 1's in the window

Sliding Windows

- A useful model of stream processing is that queries are about a window of length N
 - the N most recent elements received
- Interesting case: N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows for all cannot be stored
- Amazon example:
 - For every product X we keep 0/1 stream of whether that product was sold in the n-th transaction
 - We want answer queries, how many times have we sold \mathbf{X} in the last \mathbf{k} sales (e.g., k = 10, 20, or 200; N=100,000)

Sliding Window: 1 Stream

N = 6

Sliding window on a single stream:

Counting Bits (1)

Problem:

- Given a stream of 0s and 1s
- Be prepared to answer queries of the form How many 1s are in the last N bits?
- Obvious solution:

Store the most recent **N** bits

When new bit comes in, discard the N+1st bit

Counting Bits (2)

 You cannot get an exact answer without storing the entire window

Real Problem:

What if we cannot afford to store N bits?

But we are happy with an approximate answer

An attempt: Simple solution

- Q: How many 1s are in the last N bits?
- A simple solution that does not really solve our problem: Uniformity assumption

- Maintain 2 counters:
 - S: number of 1s from the beginning of the stream
 - Z: number of 0s from the beginning of the stream
- How many 1s are in the last N bits? $\frac{S}{S+Z}$
- But, what if stream is non-uniform?
 - What if distribution changes over time?
 - Cannot handle various k

DGIM Method

- DGIM solution that does <u>not</u> assume uniformity
- We store $O(\log N \times \log N)$ bits per stream
 - $-\mathbf{O}(\log^2 N)$
- Solution gives approximate answer, never off by more than 50%
 - Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits

Idea: Exponential Windows

- Solution that doesn't (quite) work:
 - Summarize exponentially increasing regions of the stream, looking backward
 - Drop small regions if they begin at the same point as a larger region

We can reconstruct the count of the last **N** bits, except we are not sure how many of the last **6** 1s are included in the **N**

What's Not So Good?

- As long as the 1s are fairly evenly distributed, the error due to the unknown region is small – no more than 50%
- But it could be that all the 1s are in the unknown area at the end
- In that case, the error is unbounded!

DGIM Algorithm

Storage: O(log²N) bits (N is the window size)

• Error rate for the queries \leq 50%

- Key idea:
 - Partition N into a (small) set of buckets
 - Remember count for each bucket
 - Use the counts to approximate answers to queries

DGIM: Timestamps

- Each bit in the stream has a timestamp, starting 1, 2, ...
- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in O(log2N) ts

Bucket

- Each represents a sequence of bits in window
 - It does not store the actual bits
 - Rather a timestamp and # of 1's in the sequence
- Timestamp of bucket
 - Timestamp of its end time
- Bucket size = # of 1's in the bucket
 - Always some power of 2: 1, 2, 4, ...

Example Buckets

Rules for creating buckets

- Rightmost bit of each bucket = 1
- Every 1 position in window is in some bucket
- A position can only be in a single bucket
- At most two buckets can have the same size
- Size of older buckets ≥ size of news ones

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2
 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets
- Buckets disappear when their
 end-time is > N time units in the past

Example buckets

Example: Bucketized Stream

Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

Updating Buckets (1)

 When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time

- 2 cases: Current bit is 0 or 1
- If the current bit is 0:
 no other changes are needed

Updating Buckets (2)

- If the current bit is 1:
 - (1) Create a new bucket of size 1, for just this bit
 - End timestamp = current time
 - (2) If there are now three buckets of size 1,
 combine the oldest two into a bucket of size 2
 - (3) If there are now three buckets of size 2,
 combine the oldest two into a bucket of size 4
 - (4) And so on ...

Example: Updating Buckets

Bit of value 1 arrives

001010110001011 010101010101011 010101010111 0101010111101010100 101100101

Two blue buckets get merged into a yellow bucket

Next bit 1 arrives, new blue bucket is created, then 0 comes, then 1:

Buckets get merged...

State of the buckets after merging

DGIM: Buckets

- A bucket in the DGIM method is a record consisting of:
 - (A) The timestamp of its end [O(log₂ N) bits]
 - (B) The number of 1s between its beginning and end [O(log₂ log₂ N) bits]
 - log₂ N is the maximum # of bit, X, in a bucket (of size N)
 - to store X, we need log₂ X bits
- Constraint on buckets:
 - Number of **1s** must be a power of **2**
 - That explains the $O(log_2 log_2 N)$ in (B) above

Ν

Storage for each bucket

- Timestamp: 0..N-1 (N is the window size)
 - − So *log₂N* bits
- Number of 1's: $2^j \le N$, $j \le log_2N$
 - So log₂(log₂N) for representing j
 - Can ignore; too small comparing to the timestamp requirement

Each bucket requires ≈ O(log₂N)

Storage requirements of DGIM

- At most 2*j buckets
 - of sizes: 2^{j} , 2^{j-1} , ..., 1 (at most two for each size)
- Size of the largest bucket 2^j ≤ N
 - So $j \le log_2N$ and $2j \le 2log_2N$
- Total storage: O(log₂N * log₂N) or O(log²N)
 - Recall that each bucket requires O(log₂N)

How to Query?

- To estimate the number of 1s in the most recent N bits:
 - 1. Sum the sizes of all buckets but the last (note "size" means the number of 1s in the bucket)
 - 2. Add half the size of the last bucket

 Remember: We do not know how many 1s of the last bucket are still within the wanted window

Example: Bucketized Stream

How close is the estimate?

- Suppose # of 1's in the last bucket $b = 2^{j}$
- Case 1: estimate < actual value c
 - Worst case: all 1's in bucket b are within range
 - So estimate missed "at most half of $2^{j"} > 2^{j-1}$
 - Want to show $c \ge 2^j$, so what's the minimum C?
 - C has at least one 1 from b, plus at least one of buckets of lower powers: $2^{j-1} + 2^{j-2} \dots + 1 = 2^{j} 1$; $c > = 1 + 2^{j} 1$; missed at most 2^{j-1}
 - $1 + 2 + 4 + ... + 2^{r-1} = 2^r 1$
 - So estimate missed at most 50% of c
 - That is, the estimate is at least 50% of c

How close is the estimate?

• Suppose # of 1's in the last bucket $b = 2^{j}$

Case 2: estimate > actual value c

- Worst case: only rightmost bit of b is within range
- And only one bucket for each smaller power

$$-c = 1 + 2^{j-1} + 2^{j-2} + ... + 1 = 1 + 2^{j} - 1 = 2^{j}$$

- Estimate = 2^{j-1} (last bucket) + 2^{j-1} + ... + 1
- = $2^{j} 1$ (c minus the right most bit) + 2^{j-1} (last bucket)
- $-2^{j-1}+2^{j-2}...+1=2^{j}-1$
- So estimate is no more than 50% greater than c

Extensions

- Can we use the same trick to answer queries
 How many 1's in the last k? where k < N?
 - A: Find earliest bucket B that at overlaps with k.
 Number of 1s is the sum of sizes of more recent buckets + ½ size of B

