Linear Algebra Finals Questions Bank

Mostafa Hassanein 16 January 2024

Definitions

Definition 1 (Cyclic Group).

A group G is called a cyclic group if: $\exists a \in G \ni \forall x \in G \exists k \in \mathbb{Z} \ni x = a^k$.

Definition 2 (Index of a subgroup H in a group G).

Is the number of left (or right) cosets of the subgroup H in the group G, and is denotes by [G:H].

Definition 3 (Cyclic Permutation).

A permutation where the elements of the first line are written in such a way that the image of any element is the next element and the image of the last element is the first element.

Definition 4 (Conjugate Element).

Let G be a group and $a \in G$, then the element $x^{-1}ax$, where $x \in G$, is called a conjugate element of a.

Definition 5 (Euler's Function).

 $\phi(n)$, where n > 0, is the cardinal number of the set $X = \{x : (x,n) = 1, x < n\}$.

Definition 6 (Integral Domain).

Is a ring R that has no zero divisors.

OR

Is a ring $(R, +, \cdot)$ s.t. $a \cdot b = e \implies a = e \lor b = e \forall a, b \in R$, where e is the identity of the first operation.

Definition 7 (Commutative Ring).

Is a ring where the second operation is commutative.

Definition 8 (Right Ideal).

Let $(R,+,\cdot)$ be a ring. A subgroup I of R is called a right ideal if: $x\cdot r\in I\ \forall x\in I\ and\ \forall r\in R.$

Definition 9 (Zero Divisor).

Let $(R, +, \cdot)$ be a ring with additive identity e. Then, $a \in R^*$ is called a zero divisor if: $\exists b \in R^* \ni a \cdot b = e \land \exists c \in R^* \ni c \cdot a = e$.

Definition 10 (Field).

The system $(F, +, \cdot)$ is called a field if:

i. $(F, +, \cdot)$ is a commutative ring.

ii. (F^*,\cdot) is a commutative group, where $F^*=F-e$, e is the identity of the group (F,\cdot) .

Definition 11 (Kernel of a Homomorphism).

Let the map $\alpha: G \to G'$ be a homomorphism, and e' be the identity of G'. Then, the kernel of α is defined as: $Ker(\alpha) = \{g \in G : \alpha(g) = e' \in G'\}$.

Definition 12 (Abstract Algebra).

Is a set S together with one or more binary operations on S.

Definition 13 (Binary Operation).

Given a set A, a binary operation defined as: $A \times A \rightarrow A$.

Definition 14 (Division Ring).

A ring $(R, +, \cdot)$ is called a division ring if: i. $(R, +, \cdot)$ is a ring. ii. (R^*, \cdot) is a group.

Definition 15 (Isomorphism).

 ${\it Is \ a \ bijective \ homomorphism.}$

Definition 16 (Center of a Group).

Is the set of self conjugate elements in a group G.

Proofs

Theorem 1 (2023.S(1.A.i)).

Proof.

Problems

- 1. Let $S = \{A, B, C, D\}, A = \emptyset, B = \{a, b\}, C = \{a, c\}, D = \{a, b, c\}.$
 - i. Is union a binary relation over S?
 - ii. Is intersection a binary relation over S?
 - iii. Is (S, \cup) a group?

$\underline{\text{Ans.}}$

i. Let's construct the Cayley table:

\cup	A	В	$^{\rm C}$	D
A	A	В	С	D
В	В	В	D	D
\mathbf{C}	С	D	\mathbf{C}	D
D	D	D	D	D

From the Cayley table, the set S is closed under the union operation. Therefore, it is a binary operation.

ii. Let's construct the Cayley table:

\cap	A	В	\mathbf{C}	D
A	A	A	A	Α
В	Α	В	$\{a\}$	В
\mathbf{C}	Α	$\{a\}$	\mathbf{C}	\mathbf{C}
D	Α	В	\mathbf{C}	D

From the Cayley table, the set S is not closed under the intersection operation because $\{a\} \notin S$. Therefore, it is not a binary operation.

iii. No. From the Cayley table, it is clear that A is the identity element. It is also clear that elements B, C, D do not have inverses.

- 2. Let G=(a) be a cyclic group of order 20. Let $H=(a^4)$ be a subgroup of G.
 - i. Determine the cosets of of H in G.
 - ii. Find the quotient group G/H.
 - iii. Find the index of H in G.

Ans.

i. Cosets:

H =
$$\{a^4, a^8, a^{12}, a^{16}, a^{20}\} = a^4H = a^8H = a^{12}H = a^{16}H = a^{20}H$$

 $aH = \{a^1, a^5, a^9, a^{13}, a^{17}\} = a^5H = a^9H = a^{13}H = a^{17}H.$
 $a^2H = \{a^2, a^6, a^{10}, a^{14}, a^{18}\} = a^6H = a^{10}H = a^{14}H = a^{18}H.$
 $a^3H = \{a^3, a^7, a^{11}, a^{15}, a^{19}\} = a^7H = a^{11}H = a^{15}H = a^{19}H.$

ii.
$$G/H=\{H,aH,a^2H,a^3H\}.$$

iii. $[G:H]=|G/H|=4.$

- 3. Let G=(I,+), $I=\{\ldots,-2,-1,0,1,2,\ldots\},$ and let $H=\{px:x\in I\},$ p is a prime number.
 - i. Find the quotient group G/H.
 - ii. Is G/H a cyclic group?
 - iii. What is the generating element(s) of G/H if exists?
 - iv. What is the index of H in G.

 $\frac{\text{Ans.}}{\text{i.}}$

True or False

1. The identity permutation is an even permutation.

Since the identity permutation on n symbols can be factored as a product of n disjoint cycles of length 1, then the invariant number N(p=i)=n-k=n - n = 0, which is even.

2. The composition of two even permutation is an odd permutation.

Let p_1 and p_2 be two even permutations with $N(p_1) = 2k_1$ and $N(p_2)2k_2$. Then, $p_1 \circ p_2 = p_2 p_1$ can be represented as a product of $2(k_1 + k_2)$ transpositions, which is even.

3. Equivalence of matrices on the set of matrices with appropriate dimensions is an equivalence relation.

True.

Let A, B, C be 3 matrices of the same dimension, then:

i. Reflexivity: $A = IA \implies (A, A) \in R$.

ii. Symmetry:
$$(A, B) \in R \implies A = E_k \dots E_1 B \implies B = C_1^{-1} \dots E_k^{-1} A \implies (B, A) \in R$$
.

$$E_1^{-1} \dots E_k^{-1} A \Longrightarrow (B,A) \in R$$

$$\text{iii. Transitivity: } (A,B) \in R \wedge (B,C) \in R \Longrightarrow A = E_k \dots E_1 B \wedge B = H_r \dots H_1 C \Longrightarrow A = E_k \dots E_1 H_r \dots H_1 C \Longrightarrow (A,C) \in R.$$

4. Each transposition is its own inverse.

True.

Let $\tau = (a, b)$ be a transposition. Applying τ twice we get $\tau^2 = (a)(b) = id$.

5. The "Square of" on the set $N = \{1, 2, ...\}$ is an equivalence relation. False.

Because it fails reflexivity, i.e. $\exists x \in N \ni (x, x) \notin R$.

For example, 2 is not the square of itself.

6. "Perpendicular to" on the set of straight lines in a plane is an equivalence relation.

False.

It fails reflexivity, since no line is perpendicular to itself.

- 7. The order of any subgroup H of a group G is a divisor of the order of G. True. By Lagrange's theorem.
- 8. "Conjugate to" in the set of complexes of a group G is an equivalence relation.

True.

Let $K, L, M \in P(G)$.

i. Reflexivity: $eK = Ke \implies (K, K) \in R$.