```
from google.colab import drive
drive.mount('/gdrive')
```

Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947

Enter your authorization code:

.

Mounted at /gdrive

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
%matplotlib inline

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarnir
import pandas.util.testing as tm

df=pd.read_csv('/gdrive/My Drive/Colab Notebooks/train.csv')

df.head()

□→		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	
	0	LP001002	Male	No	0	Graduate	No	5849	
	1	LP001003	Male	Yes	1	Graduate	No	4583	
	2	LP001005	Male	Yes	0	Graduate	Yes	3000	
	3	LP001006	Male	Yes	0	Not Graduate	No	2583	
	4	LP001008	Male	No	0	Graduate	No	6000	

df.info()

 \Box

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):

Column Non-Null Count Dtype
--- ---- 0 Loan_ID 614 non-null object
1 Gender 601 non-null object

Describing the training Data

df.describe()

>		ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_Hist
	count	614.000000	614.000000	592.000000	600.00000	564.000
	mean	5403.459283	1621.245798	146.412162	342.00000	0.842
	std	6109.041673	2926.248369	85.587325	65.12041	0.364
	min	150.000000	0.000000	9.000000	12.00000	0.000
	25%	2877.500000	0.000000	100.000000	360.00000	1.000
	50%	3812.500000	1188.500000	128.000000	360.00000	1.000
	75%	5795.000000	2297.250000	168.000000	360.00000	1.000
	max	81000.000000	41667.000000	700.000000	480.00000	1.000

BoxPlot for Applicant Income Vs Education

sns.boxplot(x=df.Education,y=df.ApplicantIncome)

Total Income of Applicant and Co-Applicant

calculatedIncome=df.ApplicantIncome+df.CoapplicantIncome

calculatedIncome

```
0
       5849.0
       6091.0
       3000.0
3
       4941.0
       6000.0
609
       2900.0
610
       4106.0
611
       8312.0
612
       7583.0
       4583.0
613
Length: 614, dtype: float64
```

Histogram for the Calculated Income

```
plt.hist(x=calculatedIncome,bins=20)
```


Frequency Table for Credit History Vs Loan Status

```
freq=df.groupby(df.Credit History).count()
```

https://colab.research.google.com/drive/1YyjLqzUCPyaLyfS hpgtX7DRerzInMI3#scrollTo=I1HbpfgdIyMI&printMode=true

```
print( Frequency Table for Credit History and Loan_status )
freq.Loan_Status
```

Frequency Table for Credit History and Loan_status Credit_History

0.0 89 1.0 475

Name: Loan_Status, dtype: int64

Missing Values

```
df.isnull().sum()
```

```
□ Loan_ID
   Gender
                        13
   Married
                         3
   Dependents
                        15
   Education
                         0
   Self_Employed
                        32
   ApplicantIncome
   CoapplicantIncome
   LoanAmount
                        22
   Loan_Amount_Term
                       14
   Credit_History
                        50
   Property_Area
   Loan_Status
   dtype: int64
```

missing=(df.isnull().sum()/len(df))*100

print(round(missing,2))

\Box	Loan_ID	0.00
	Gender	2.12
	Married	0.49
	Dependents	2.44
	Education	0.00
	Self_Employed	5.21
	ApplicantIncome	0.00
	CoapplicantIncome	0.00
	LoanAmount	3.58
	Loan_Amount_Term	2.28
	Credit_History	8.14
	Property_Area	0.00
	Loan_Status	0.00
	dtype: float64	

df.shape

(614, 13)

df.info()

C < class 'pandas.core.frame.DataFrame'>
 RangeIndex: 614 entries, 0 to 613
 Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Loan_ID	614 non-null	object
1	Gender	601 non-null	object
2	Married	611 non-null	object
3	Dependents	599 non-null	object
4	Education	614 non-null	object
5	Self_Employed	582 non-null	object
6	ApplicantIncome	614 non-null	int64
7	CoapplicantIncome	614 non-null	float64
8	LoanAmount	592 non-null	float64
9	Loan_Amount_Term	600 non-null	float64
10	Credit_History	564 non-null	float64
11	Property_Area	614 non-null	object
12	Loan_Status	614 non-null	object
d+vn	os: $float64(4)$ int	61(1) object(0)	

dtypes: float64(4), int64(1), object(8)

memory usage: 62.5+ KB

Splitting columns as categorical and continuous

continuous=df.select_dtypes(exclude=['object'])

continuous

		ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_Histor
	0	5849	0.0	NaN	360.0	1.
	1	4583	1508.0	128.0	360.0	1.
	2	3000	0.0	66.0	360.0	1.
	3	2583	2358.0	120.0	360.0	1.
	4	6000	0.0	141.0	360.0	1.
6	09	2900	0.0	71.0	360.0	1.
6	10	4106	0.0	40.0	180.0	1.
6	11	8072	240.0	253.0	360.0	1.
6	12	7583	0.0	187.0	360.0	1.
6	13	4583	0.0	133.0	360.0	0.

614 rows × 5 columns

categorical=df.select_dtypes(include=['object'])

categorical

\rightarrow		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	Property_Area
	0	LP001002	Male	No	0	Graduate	No	Urban
	1	LP001003	Male	Yes	1	Graduate	No	Rural
	2	LP001005	Male	Yes	0	Graduate	Yes	Urban
	3	LP001006	Male	Yes	0	Not Graduate	No	Urban
	4	LP001008	Male	No	0	Graduate	No	Urban
	609	LP002978	Female	No	0	Graduate	No	Rural
	610	LP002979	Male	Yes	3+	Graduate	No	Rural
	611	LP002983	Male	Yes	1	Graduate	No	Urban
	612	LP002984	Male	Yes	2	Graduate	No	Urban
	613	LP002990	Female	No	0	Graduate	Yes	Semiurban

614 rows × 8 columns

Filling the missing values

```
for x in continuous:
    mean=df[x].mean()
    df[x]=df[x].fillna(mean)

for x in categorical:
    mode=df[x].mode
    df[x]=df[x].fillna(mode)

missingAfterPreprocessing=(df.isnull().sum()/len(df))*100

print(round(missingAfterPreprocessing,2))
```

Loan_ID	0.0
Gender	0.0
Married	0.0
Dependents	0.0

Not Required to apply Standard Scalar for this Data

LOGITATIONTE	U. U
i i opci cy_ni ca	U.U
Loan_Status	0.0
dtype: float64	