SPECIFICATION:

Paragraph 4, page 9 bridging page 10, please insert the following replacement paragraph:

Tβ4 isoforms have been identified and have about 70%, or about 75%, or about 80% or more homology to the amino acid sequence of TB4 set forth in Fig. 10. Such isoforms include, for example, Tβ4^{ala}, Tβ9, Tβ10, Tβ11, Tβ12, Tβ13, Tβ14 and Tβ15 (Fig. 11; see also, Mihelic Mihelić et al., (1994) Amino Acids, 6:1-13, which describes the amino acid sequence of other Tβ4 isoforms, and is incorporated herein by reference). These sequences are reproduced in Table I, below. Similar to Tβ4, the Tβ10 and T15 isoforms have been shown to sequester actin. Tβ4, Tβ10 and Tβ15, as well as these other isoforms share an amino acid sequence, LKKTET, that appears to be involved in mediating actin sequestration or binding. Although not wishing to be bound to any particular theory, the wound healing activity of T\u03b34 and T\u03b34 isoforms may be due, in part, to the ability to polymerize acting. For example, Tβ4 can modulate actin polymerization in wounds to promote healing (e.g., β-thymosins appear to depolymerize F-actin by sequestering free G-actin). Tβ4's ability to modulate actin polymerization may therefore be due to all, or in part, its ability to bind to or sequester actin via the LKKTET sequence. Thus, as with Tβ4, other proteins which bind or sequester actin, or modulate actin polymerization, including Tβ4 isoforms having the amino acid sequence LKKTET, are likely to promote wound healing alone, or in a combination with Τβ4, as set forth herein.

Table I. Thymosin Beta 4 Isoforms.

		5	10	5		
$\begin{array}{c} T\beta_4 \\ T\beta_4 \\ Ala \\ T\beta_4 \\ T\beta_9 \\ T\beta_9 \\ T\beta_{10} \\ T\beta_{11} \\ T\beta_{12} \\ T\beta_{12} \\ T\beta_{12} \\ T\beta_{13} \\ T\beta_{14} \end{array}$	Ac- <u>Ala</u> -Asp-Lys-Pi Ac-Ser-Asp-Lys-Pi Ac- <u>Ala</u> -Asp-Lys-Pi Ac- <u>Ala</u> -Asp-Lys-Pi Ac-Ser-Asp-Lys-Pi Ac-Ser-Asp-Lys-Pi Ac-Ser-Asp-Lys-Pi Ac-Ala-Asp-Lys-Pi	ro-Asp-Met-Ala-Glu-II ro-Asp-Met-Ala-Glu-II ro-Asp-Met-Ala-Glu-II ro-Asp-Met- <u>Gly</u> -Glu-II ro-Asp-Met- <u>Gly</u> -Glu-II ro-Asp- <u>Leu-Glu</u> -Glu- <u>I</u> ro-Asp- <u>Ile-Ser</u> -Glu- <u>Va</u> ro-Asp- <u>Ile</u> - <u>Ser</u> -Glu- <u>Va</u> ro-Asp- <u>Ile</u> - <u>Ser</u> -Glu-II ro-Asp- <u>Ile</u> - <u>Ser</u> -Glu-II	e-Glu-Lys-Phe-Asp le-Glu-Lys-Phe-Asp le- <u>Asn-Ser</u> -Phe-Asp e- <u>Asn-Ser</u> -Phe-Asp e- <u>Ala-Ser</u> -Phe-Asp <u>/al-Ser</u> -Phe-As <u>al-Thr-Ser</u> -Phe-Asp e- <u>Ala</u> -Ser-Phe-Asp	-Lys-Ser- o-Lys- <u>Ala</u> - o-Lys- <u>Ala</u> - o-Lys- <u>Ala</u> - -Lys- <u>Thr</u> - op-Lys- <u>Thr</u> - -Lys- <u>Thr</u> -		
		20 2	25	30		
$T\beta_4$ $T\beta_4^{Ala}$ $T\beta_4^{Ala}$ $T\beta_9$ $T\beta_9$ $T\beta_{10}$ $T\beta_{11}$ $T\beta_{12}$ $T\beta_{12}$ $T\beta_{12}$ $T\beta_{13}$ $T\beta_{14}$	Lys-Leu-Lys-Lys-T Lys-Leu-Lys-Lys-T Lys-Leu-Lys-Lys-T Lys-Leu-Lys-Lys-T Lys-Leu-Lys-Lys-T Lys-Leu-Lys-Lys-T Lys-Leu-Lys-Lys-T Lys-Leu-Lys-Lys-T	Thr-Glu-Thr-Gln-Glu-L Thr-Glu-Thr-Gln-Glu-L Thr-Glu-Thr-Gln-Glu-L Thr-Glu-Thr-Gln-Glu-L Thr-Glu-Thr-Gln-Glu-L Thr-Glu-Thr-Gln-Glu-L Thr-Glu-Thr-Gln-Glu-L Thr-Glu-Thr-Gln-Glu-L Thr-Glu-Thr-Gln-Glu-L Thr-Glu-Thr-A <u>la</u> -Glu-L	ys-Asn-Pro-Leu-Pr ys-Asn-Pro-Leu-Pr ys-Asn- <u>Thr</u> -Leu-Pr ys-Asn- <u>Thr</u> -Leu-Pr ys-Asn-Pro-Leu-Pr ys-Asn-Pro-Leu-Pr ys-Asn-Pro-Leu-Pr ys-Asn- <u>Thr</u> -Leu-Pr	o-Ser- o-Ser- o- <i>Thr</i> - o- <i>Thr</i> - o- <i>Thr</i> - o- <i>Thr</i> - o-Ser- o- <i>Thr</i> -		
	35	5 40	0			
$T\beta_4$ $T\beta_4$ Ala $T\beta_4$ Ala A	Lys-Glu-Thr-Ile-Glu Lys-Glu-Thr-Ile-Glu Lys-Glu-Thr-Ile-Glu Lys-Glu-Thr-Ile-Glu Lys-Glu-Thr-Ile-Glu Lys-Glu-Thr-Ile-Glu Lys-Glu-Thr-Ile-Glu Lys-Glu-Thr-Ile-Glu Lys-Glu-Thr-Ile-Glu	u-Gin-Giu-Lys-Gin-Ala u-Gin-Giu-Lys-Gin-Ala u-Gin-Giu-Lys-Gin-Ala u-Gin-Giu-Lys-Gin-Ala u-Gin-Giu-Lys-Gin-Ala u-Gin-Giu-Lys-Gin-Ala u-Gin-Giu-Lys-Gin-Ala u-Gin-Giu-Lys- <u>Thr</u> -Ala	a-Gly-Glu-Ser-OH a- <u>Lys</u> -OH a- <u>Lys</u> -OH a- <u>Lys</u> -OH a- <u>Lys</u> -OH a- <u>Ser</u> -OH a- <u>Ser</u> -OH a- <u>Ala</u> -OH a- <u>Ala</u> -Thr-Ser-OH a- <u>Lys</u> -OH		2% 7% 22% 20% 26% 22% 19% 21% 20%	SEQ ID NO: 16 SEQ ID NO: 17 SEQ ID NO: 18 SEQ ID NO: 5 SEQ ID NO: 6 SEQ ID NO: 7 SEQ ID NO: 8 SEQ ID NO: 9 SEQ ID NO: 10 SEQ ID NO: 11 SEQ ID NO: 19