Class 5 Data Visualization with ggplot2

A16329021

Using GGPLOT

The ggplot2 package needs to be installed as it does not come with R "out of the box".

We use the install.packages() function to do this

```
head(cars)
```

speed dist

- 1 4 2
- 2 4 10
- 3 7 4
- 4 7 22
- 5 8 16
- 6 9 10

To use ggplot I need to load it up before I can call any of the functions in the package. I do this with the library() function.

```
library(ggplot2)
```

All ggplot figures have at least 3 things: - data (the stuff we want to plot) - aesthetic mapping (aes values) - geoms

```
ggplot(cars)+ aes(x=speed, y=dist) + geom_point()
```


ggplot is not the only graphing system in R there are lots of others. There is even "base R" graphics.

plot(cars)


```
ggplot(cars) + aes(x=speed, y=dist) + geom_point() +geom_smooth(method="lm")
```

[`]geom_smooth()` using formula = 'y ~ x'

url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>

```
Gene Condition1 Condition2 State
1 A4GNT -3.6808610 -3.4401355 unchanging
2 AAAS 4.5479580 4.3864126 unchanging
3 AASDH 3.7190695 3.4787276 unchanging
4 AATF 5.0784720 5.0151916 unchanging
5 AATK 0.4711421 0.5598642 unchanging
6 AB015752.4 -3.6808610 -3.5921390 unchanging
```

nrow(genes)

[1] 5196

colnames(genes)

[1] "Gene" "Condition1" "Condition2" "State"

```
ncol(genes)
```

[1] 4

```
table(genes$State)
```

down unchanging up 72 4997 127

round(table(genes\$State) / nrow(genes) *100,2)

down unchanging up 1.39 96.17 2.44

ggplot(genes) + aes(x=Condition1, y=Condition2) + geom_point()


```
p <- ggplot(genes) + aes(x=Condition1, y=Condition2, col=State) + geom_point()
p</pre>
```



```
p + scale_colour_manual(values = c("blue", "gray", "red"))
```



```
q<- genes
```

```
p <- ggplot(genes) + aes(x=Condition1, y=Condition2, col=State) + geom_point()
p + scale_colour_manual(values = c("blue", "gray", "red")) + labs(title="Gene Expression Colour_manual")</pre>
```

Gene Expression Changes Upon Drug Treatment


```
# File location online
url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.

gapminder <- read.delim(url)

# install.packages("dplyr") ## un-comment to install if needed
library(dplyr)</pre>
```

```
Attaching package: 'dplyr'
```

```
The following objects are masked from 'package:stats':
filter, lag
```

The following objects are masked from 'package:base': intersect, setdiff, setequal, union

```
gapminder_2007 <- gapminder %>% filter(year==2007)

ggplot(gapminder_2007) + aes(x=gdpPercap, y=lifeExp) + geom_point()
```



```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp) +
  geom_point(alpha=0.5)
```



```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.5)
```



```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, color = pop) +
  geom_point(alpha=0.8)
```



```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, size = pop) +
  geom_point(alpha=0.5)
```



```
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5
```

```
pop gdpPercap
        country continent year lifeExp
1
          China
                     Asia 2007 72.961 1318683096
                                                  4959.115
2
          India
                     Asia 2007 64.698 1110396331
                                                   2452.210
3 United States Americas 2007 78.242
                                        301139947 42951.653
4
      Indonesia
                     Asia 2007
                               70.650
                                        223547000
                                                   3540.652
                                       190010647
5
                Americas 2007 72.390
                                                   9065.801
         Brazil
```

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = pop))
```



```
ggplot(gapminder_top5) +
geom_col(aes(x = country, y = pop, fill = lifeExp))
```



```
ggplot(gapminder_top5) +
  aes(x=country, y=pop, fill=gdpPercap) +
  geom_col()
```



```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=gdpPercap) +
  geom_col()
```



```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=country) +
  geom_col(col="gray30") +
  guides(fill="none")
```


head(USArrests)

	Murder	${\tt Assault}$	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

```
USArrests$State <- rownames(USArrests)
ggplot(USArrests) +
  aes(x=reorder(State,Murder), y=Murder) +
  geom_col() +
  coord_flip()</pre>
```


