- (21) Application No 8112453
- (22) Date of filing 22 Apr 1981
- (30) Priority data
- (31) 8009412
- (32) 25 Apr 1980
- (33) France (FR)
- (43) Application published 11 Nov 1981
- (51) INT CL²
 G01S 3/46 13/34 13/84
- (52) Domestic classification H4D 343 34X 377 382 389 38X 39X 512
- (56) Documents cited GB 2040637 A GB 2007933 A GB 1535675 GB 978742 FR 2343258 A FR 1557670 A
- (58) Field of search H4D
- (71) Applicants
 N. V. Philips'
 Gloeilampenfabrieken
 Pieter Zeemanstraat 6,
 NL-5621 CT, Eindhoven,
 The Netherlands

- (72) Inventor

 Jean-Pierre Tomasi
- (74) Agent
 R. J. Boxall,
 Mullard House,
 Torrington Place, London
 WC1E 7HD
- (54) Method of and apparatus for accurately determining the azimuth by measuring a piurality of phase shifts
- (57) A method of determining the azimuth α of a transponder 5 relative to a radar system 1 which transmits a frequency F, which frequency is a linear function of time, which system comprises two receiving antennas 3, 4, disposed at a distance d from each other and supplies two beat signals Fb₁ and Fb₂, which form the difference

between the transmitted wave and each of the two echo waves received from the transponder. In accordance with the invention the phase shift yo between Fb, and Fb2 for a first point (Fb1, t1) and the phase shift γ'_0 for a second point (F_2, t_2) of the curve F(t) is measured, an approximate value of the overall phase shift y between Fb1 and Fb2 is calculated, which is $\gamma = \gamma_a + 2k\pi$, from F_1 , F_2 and $\gamma'_0 - \gamma_0$, the integral value of k is derived from γ , γ_0 the sign of γ and of $\gamma'_{\circ} - \gamma_{\circ}$ is determined, the exact value of γ is calculated from k and γ_c , and the value of α is calculated from the value of its sine derived from the values F., d and the exact value of y.

The invention is used for accurately determining the angular position of a transponder or a passive reflector.

FIG.2

SPECIFICATION

5

Method of an apparatus for accurately det rmining the azimuth by measuring a plurality of phase shifts

The invention relates to a method of determining the azimuth α of a radiowave transponder relative to a radar system, which system transmits a wave whose frequency F is a linear function of time, said 10 radar system comprising a transmitting antenna and two receiving antennas, which are located at a distance d from each other, and supplying two beat signals Fb₁ and Fb₂ having a frequency fb₁ and fb₂ respectively, which are obtained by mixing the 15 transmitted wave and the echo wave received from said transponder on each of the two receiving antennas.

The invention also relates to an apparatus for measuring the azimuth α using the said method, 20 which apparatus forms part of a radar system which transmits a high frequency continuous wave, which is frequency modulated with a sawtooth having a constant frequency sweep Δ F and a duration T, and which simultaneously receives the previously 25 transmitted wave which is reflected by a transponder, said radar system supplying a signal Fb, of a first beat frequency fb, obtained by mixing the transmitted signal of the instantaneous frequency F and the signal received on a first receiving antenna, 30 and a signal Fb2 of a second beat frequency fb2, obtained by mixing said transmitted signal of the frequency F and a signal received on a second receiving antenna, the reference direction for measuring the azimuth α of said transponder being 35 the mid-perpendicular to the line section of the length t at whose ends said receiving antennas are located.

The azimuth angle α to be determined is the angle between a predetermined direction, for example a 40 reference axis associated with the apparatus for measuring α , and an axis which extends from the measuring apparatus to a target whose angular location is to be determined. Suitably, the measuring station is located on the ground, the measuring 45 apparatus comprising a radar interrogator, and the target is an aircraft equipped with a transponder. The measuring station may alternatively be an aircraft. In practice, the angle α to be determined is suitably the angle between the mid-perpendicular 50 plane to the receiving antennas of said radar system and the axis between the radar system and the target. On the other hand, the transponder associated with the target may be a simple passive reflector, in so far that it is isolated in the space surround-55 ing it.

The apparatus used for carrying out the invention may, as far as the radar interrogator is concerned, for example be of the type known from French Patent Specification no. 1,557,670. The radar system moreover comprises a second receiving antenna by means of which a second beat signal Fb2 of the frequency fb2 is obtained by mixing the transmitted wave and the wave received by said second receiving antenna in a second mixer. Such a radar system serves as a distance measuring apparatus and to this

end it comprises a control loop which maintains the first beat signal Fb₁ at a substantially constant frequency fb₁ as said distance varies. This results in a variation of the duration of the transmitted sawtooth as a linear function of the distance for a constant frequency sweep Δ f of the sawtooth.

It is to be noted that the invention is not limited to this type of apparatus. It equally applies to a radar system which transmits a sawtooth of constant frequency, duration and frequency sweep and which supplies two beat signals Fb₁ and Fb₂ obtained by mixing of the transmitted wave and the echo wave received from the transponder on the receiving antenna.

The transponder used is for example of the type described in French Patent Specification 2,343,258, in particular with reference to Figures 9 and 10 of said Specification, by means of which the azimuth of the target can be calculated up to distances greater than 100 km.

By means of the two distance measuring apparatus of the type described in the said French Patent 'Specification 1,557,670, having a common transmitting antenna and each having on receiving antenna, the azimuth can be determined in known manner from two distance measured by triangulation using the formula:

$$\sin \alpha = (R_1 - R_2)/d$$

in which:

95

120

d is the (fixed) distance between the receiving antennas

R₁ is the distance between the transponder and one receiving antenna

R₂ is the distance between the transponder and the other receiving antenna.

The principle of determining α is described in more detail in the previously mentioned French Patent 105 Specification 2.343.258.

When α is thus determined this has the drawback that at least one distance measuring apparatus is necessary (by alternately switching the control loop from one receiving antenna to the other – in which 110 case the frequencies fb₁ and fb₂ are equal) and that the measurement of α is not very accurate because of the length of the signal-processing chain necessary to enable the distances R₁ and R₂ and their difference to be determined, which leads to an accumulation of the absolute errors produced by the various signal-processing elements, the cumulative error increasing as the distance R increases.

It is also possible to determine the angle α by means of the formula:

$$\sin \alpha = cT (fb_1 - fb_2)/\Delta Fd$$

c being the velocity of propagation of an electromagnetic wave.

Such a method of determining α by measurements of T, fb₁ and fb₂ has the same drawbacks as described in the foregoing.

It is an object of the invention to obtain a comparatively high accuracy for α , for example of some hun-130 dredths of a degree, using simple radar equipment, 20

30

35

said accuracy being of the same order of magnitude as that obtained by means of an aircraft landing radar system (ILS sytem). More specifically, it is the object of the invention to obtain this high accuracy by means of two antennas only, whilst in conventional angle measuring systems this is achieved by means of a large number of antennas (interferometers with a plurality of antennas).

This object is achieved in that, according to the 10 invention, the method defined in the opening paragraph at least comprises the following steps:

- The algebraic measurement of the phase shift φ₀ between the signals Fb₁ and Fb₂ and the measurement of the frequency F₁ at a predetermined, arbitrarily chosen first instant t₁,
- The algebraic measurement of the phase shift φ_o' between the signals Fb₁ and Fb₂ and the measurement of the frequency F₂ at a second arbitrarily chosen instant t₂, $\varphi_o' \varphi_o$ being such that the number of sinewave periods of fb₁ and fb₂ between the two instants t₁ and t₂ is substantially the same,
- The calculation of a relative overall phase variation $\Delta \varphi$ which may be greater than 2 π between the instants t_1 and t_2 , by determining the difference between φ'_0 and φ_0 ,
- The approximated calculation of φ , which is the overall phase shift between the signals Fb₁ and Fb₂ at said first instant t₁, to be reckoned from the frequency F at which said overall phase shift is zero, as a function of F₁, F₂ and the value of $\Delta \varphi$ found in the preceding step, that is $\varphi \Delta \varphi$,
- The determination of the maximum angle $2k \pi$, k being a positive integer which is actually contained in the angle φ , from φ_0 , $\varphi \Delta \varphi$ found in the preceding step and of the respective signs of φ_0 and of Δ
- Making φ identical to the sum: $\varphi_0 + 2k \pi \text{ or } \varphi_0 2k \pi \text{ depending on the respective signs of } \varphi_0$ and of Δ
- 40 The calculation of $\sin \alpha$ from the values of F_1 , k and the exact value of φ found in the preceding step,
 - The calculation of α from the value of $\sin \alpha$ obtained in the preceding step,
- The display of the value of α found in the preceding step.

Similarly, in order to obtain a high accuracy for α , the apparatus defined in the introduction is characterized in that it comprises:

- First means for shaping said signals Fb₁, Fb₂ of the
 frequency fb₁ and fb₂ so to obtain squarewave
 signals of the same phase and the same frequency,
 - Second means for measuring the phase shift φ_0 between the squarewave signals of frequency fb_1 and fb_2 , as well as the frequency F for at least one point of said sawtooth,
 - Third means for determining at least two trains of squarewave signals having the same number of periods and whose starting points differ by at least one period,
- 60 Fourth means for measuring the overall relative phase variation Δ φ between the beginning, at the instant t₁ for a frequency F₁, and the end, at the instant t₂ for a frequency F₂, of said trains of squarewave signals,
- 65 Fifth means for calculating the angle α from the

values of F₁, F₂, d, $\varphi_{\rm o}$ and Δ φ and for displaying said angle.

By means of a simple formula, mentioned in the detailed description, it is possible to calculate the value of $\sin\alpha$ for a given point of the sawtooth from the value φ of the overall phase shift between Fb₁ and Fb₂ with the required accuracy. The value φ ₀ measured for this point of the sawtooth only represents the portion of φ which is smaller than 2 π .

75

The basic concept of the invention is to determine the angle 2k π which, when added to φ_0 , yields the 'angle φ . This is possible by measuring the phase shift φ'_0 for at least a second point of sawtooth. Thus, if the phase shifts φ_0 , φ'_0 are measured with an accuracy of the order of, for example, 1°, that is a relative error of the order of 0.5%, it is possible to obtain the angle φ with a much higher relative accuracy. Indeed, the overall phase shift between Fb₁ and Fb₂ is obtained with a relative accuracy of the order of 1° in several thousands of degrees. This high accuracy is then also obtained for α .

The following description with reference to the accompanying drawings, given by way of example, enables the invention to be more fully understood. Corresponding elements bear the same reference numerals.

Figure 1 is the simplified block diagram of a radar system which simultaneously transmits and receives a high frequency continuous wave, which is frequency-modulated as a sawtooth and which provides the signals necessary for carrying out the invention.

Figure 2 represents the frequency variation of the transmitted and received signals as a function of 100 time.

Figure 3 is the block diagram of an embodiment of the invention.

Figure 4 is a time diagram illustrating the operation of the circuits shown in Figures 1 and 3.

- 105 Figure 1 represents a radar system 1, which may be a radio altimeter or a distance measuring apparatus using high-frequency continuous waves which are frequency-modulated in accordance with a sawtooth, and which system comprises a transmit-
- 110 ting antenna 2 as well as two receiving antennas? and 4 situated at a distance d from each other. The radar system 1 forms part of a system which moreover comprises a transponder 5, represented at the left in Figure 1, whose distance 6 from the radar
- 115 system may exceed 140 km. The transponder 5 suitably comprises a single transmitting/receiving antenna 7 at o'. In order to ensure that the wave received from the antenna 2 is returned to the antennas 3 and 4 of the radar system 1 with suffi-
- 120 cient power, especially in the case of longer distances, the transponder 5 is suitably of the type described in French Patent Specification 2,343,258, in particular with reference to Figures 9 and 10 of said Specification, or a transponder of comparable
- 125 design and performance. This ty, e of transponder comprises a delay line which provides a delay τ₀ of microsecond order between the received signal and the retransmitted signal, an amplifier, and means, in the form of at least one radio-frequency switch for

130 sampling the received signal at a frequency of the

order of some hundreds of kilohertz. The radar system 1 is adapted to analyze the signals returned to its receiving antennas 3 and 4 by the transponder 5 in order to obtain output signals which, in accordance 5 with the invention, enable the value of the angle α , which is the azimuth angle of the transponder relative to the radar system, to be determined with an accuracy of the order of some hundredths of a degree. In Figure 1 α is the angle between the mid-10 perpendicular oz to the line (i.e. perpendicular to the mid-point of the line) of length d and with a centre o, which line interconnects the centres of the antennas 3 and 4, and the direction oo.

The transmitting section of the radar system 1 15 comprises a voltage-controlled oscillator 8 connected to the transmitting antenna 2, the input of said oscillator receiving the output signal of a sawtooth generator 9.

The receiving section is constituted by two identical 20 signal processing chains. The first chain comprises a mixing circuit 10, of which the first one of the two inputs is connected to the output of the antenna 3 and whose second input is connected to the output of the oscillator 8 via a coupler 11. An output of the 25 mixing circuit 10 is connected to a cascade of a band-pass filter 12, an amplifier 13 and an amplitude limiter 14. The mixer 10 forms the difference frequency of the transmitted wave and the received wave, yielding a signal Fb, of the frequency fb, on an 30 output terminal 15, which frequency is the instantaneous difference frequency of the wave transmitted at 2 and the wave received at 3.

Like the first chain, the second chain is constituted by the cascade of the receiving antenna 4, the mixer 35 16, the band-pass filter 17, the amplifier 18 and the amplitude limiter 19, the second input of the mixer 16 also being connected to the coupler 11. The output of the amplitude limiter 19 produces a signal Fb2 of the frequency fb2 on its output terminal 20, which 40 frequency is the instantaneous difference of the frequencies of the wave transmitted at 2 and the wave received at 4. Moreover, the radar system 1 comprises two elements 21 and 22 which, suitably vià a conductor 28, receive the output voltage of the saw-45 tooth generator 9. The element 21 is a logic signal generator which produces the signals DE and S on the outputs 23 and 24 and the element 22 produces a signal F (or λ) on a terminal 25, the signals DE and S being also supplied to the element 22. The function 50 of these elements 21 and 22 will be described hereinafter with reference to Figures 3 and 4. Figure 1 also shows a frequency discriminator 26, operating at the central frequency fo, and an integrator 27, arranged in cascade between the output of the amp-55 litude limiter 4 and a control input of the sawtooth generator 9. Their presence is optional, which is indicated by the broken lines, and their function will be described hereinafter.

Figure 2 represents frequency curves as a function 60 of time, that is the curve EM for the signals transmitted at 2 and 11 and the curves RE, and RE, for the envelope of the signals received at 3 and 4.

The curve EM has the form of a symmetrical or asymmetrical sawtooth with a fixed or variable dura-65 tion T and a frequency sweep Δ F, which is prefer-

ably constant. The frequency Fo is the frequency at the beginning of the sawtooth. In practice Fa is of the order of magnitude of GHz and Δ F is of the order of magnitude of ten or some tens of MHz. When the Doppler effect is ignored and the waves received at 3 and 4 are continuous, the curves RE, and RE, can be derived from the curve EM by a translation parallel to the time axis through an interval τ_1 and τ_2 respectively. Referring now to Figure 1, 7, is the time which the wave needs to cover the distance R between the antennas 2 and 7, to pass through the transponder 5 (time τ_0) and to cover the distance R, between the antennas 7 and 3 in the other direction, namely: -

80
$$\tau_1 = [(R + R_1)/c] + \tau_0$$
 (1)

Similarly:

$$\tau_2 = \left[(R + R_2)/c \right] + \tau_0 \tag{2}$$

The respective beat frequencies fb, resulting from RE, and EM and fb2 resulting from RE2 and EM may be represented by the formulas:

$$90 fb_1 = [(R + R_1)/c + r_0] \Delta F/T (3)$$

It is to be noted that RE, and RE, are only the

$$fb_2 = [(R + R_2)/c + \tau_0] \Delta F/T$$
(4)

envelopes of the waves received by the radar system. Indeed, for the given type of transponder which is preferably used, the wave returned by the latter is chopped at the sampling frequency, that is for each sampling cycle of a duration which is typically 2 μ s, it 100 is only present on the output of the transponder 7 for approximately 1 µs. It follows that the beat signal of the frequency fb, (or fb2) on the output of the mixer 10 or 16 itself is sampled at the sampling frequency of the transponder, which is of the order of 500 kHz. 105 The function of the band-pass filter 12 or 17 is to recover the beat signal in the form of a sinewave of the frequency fb, or fb2 by eliminating the components of the sampling frequency and multiples thereof from the spectrum of the signal which is received. This is possible if the frequencies fb, and fb₂ are smaller than half the sampling frequency, that is, for example 250 kHz (Shannon theorem).

stant), the criterion given in the preceding paragraph 115 imposes a limitation on the distance between the radar system and the transponder in view of formulas (3) and (4). In order to remove this limitation, the sampling frequency may be increased (by reducing the duration τ_o of the transponder) and/or the 120 ratio Δ F/T may be reduced by influencing the values of Δ F and T in the radar system, in such a way that said distance limit imposed by the sampling frequency becomes greater than the distance limit imposed by the maximum gain of the transponder 7.

When the sawtooth is constant (T and ΔF con-

In a preferred embodiment of the invention one of the beat frequencies fb, or fb2 is maintained substantially equal to the constant frequency fo by means of a control loop of the transmitting section of the radar system. In Figure 1 said control loop is constituted

130 by the cascade, arranged between the coupler 11

and a control input of the sawtooth generator 9, of the mixer 10, the filter 12, the amplifier 13, the amplitude limiter 14, the frequency discriminator 26 and the integrator 27. The output signal of the dis-5 criminator 26 influences the generator 9 via the integrator 27 in such a way that the slope of the sawtooth varies as a function of the distance to the transponder, whilst the frequency fb, is maintained constant. In this type of distance measuring apparatus, which is for example known from the said French Patent Specification 1,557,670, the duration T of the sawtooth is a linear function of the distance between the transponder and the radar system, thereby enabling said distance to be measured. The significance of the control loop described in the foregoing for the invention is to ensure that substantially constant values are obtained for fb, and fb, (the value of fb2 being very close to that of fb1) independently of the distance between the radar system and 20 th transponder, which ensures that the sampling theorem is complied with. In practice, the frequency fo is of the order of some tens of kilohertz, that is, an

quency.

Referring now to the left-hand part of Figure 1, the lines R, R₁ and R₂ which connect the antenna 7 to the antennas 2, 3 and 4 respectively have such a length that they may be considered to be parallel in good approximation. As a result of this, the line perpendicular to the line 00′ (and to the line sections R₁ and R₂) from the centre of the antenna 3 makes an angle α with the line of length d. It follows that:

order of magnitude smaller than the sampling fre-

$$\sin \alpha = (R_z - R_1)/d \tag{5}$$

On the other hand, subtracting formulas (3) and (4) from each other yields:

$$fb_z - fb_1 = \Delta F (R_z - R_1)/cT$$
 (6)

40

35

The (algebraic) difference $fb_1 - fb_2$ may be expressed as a number of periods which linearly increase with time or rather an "overall phase shift" φ , whose absolute value is greater than 2 π , which may be expressed by:

$$\varphi = 2 \pi (fb_1 - fb_2) t \tag{7}$$

when taking a suitable origin for t, that is for each sawtooth the points o" where the line corresponding to the curve EM in Figure 2 intersects the vertical axis.

Formula (7) may be written as follows using formula (6):

$$\varphi = 2 \pi \Delta \operatorname{Ft} (R_1 - R_2)/cT \tag{8}$$

The expression for the curve F as a function of time for each sawtooth is then:

$$F = \frac{\Delta F}{T}$$

60

when taking the same origin o' as above for t. For-65 mula (8) may then be written as follows:

$$\varphi = 2 \pi F(R_1 - R_2)/c \tag{9}$$

Combining equations (5) and (9) yields:

70
$$\varphi = 2 \pi F d \sin \alpha / c$$
 (10)

or:

75

$$\sin \alpha = c \varphi/2 \pi Fd \tag{11}$$

In equation (11) the values of F (or of $\lambda=c/F$) and d¹ are known with excellent accuracy, but the angle φ cannot be measured directly: it is only possible to measure its algebraic value φ_0 (smaller than 2π) with a suitable accuracy of the order of one degree, and whose sign is either that for φ (and thus for α) or the opposite sign. Measuring φ_0 , which is actually a phase measurement, therefore gives rise to an indeterminate factor and does not suffice for a correct evaluation of φ with an accuracy of one degree, because the absolute value of the angle φ is of the order of some hundreds to some thousands of degrees.

The angle φ may therefore be expressed as a func-90 tion of φ_0 by means of one of the following two formulas:

$$\varphi = \varphi_0 + 2k \pi$$
 if φ is positive (12)
 $\varphi = \varphi_0 - 2k \pi$ if φ is negative

95

where k is a positive integer.

In order to remove the ambiguity associated with the measurement of φ_0 , it is to be noted that because F varies during the sawtooth modulation φ will also 100 vary, so that for example between the beginning (φ_1, F_1) and the end (φ_2, F_2) of the sawtooth:

 $\Delta \varphi = \varphi_2 - \varphi_1$, so that because of formula (10):

$$\Delta \varphi = 2 \pi d \sin \alpha (F_2 - F_1)/c$$

105 or:

$$\Delta \varphi = 2 \pi \, d \, \Delta \, F \sin \alpha / c \tag{13}$$

110

or:

$$\sin \alpha = c \Delta \varphi / 2 \pi d \Delta F \tag{14}$$

115

 $\Delta \varphi$ is an electrical angle which has the sign of α and which for the envisaged use of the invention rarely exceeds 2π . It is to be noted that when $\Delta \varphi$ is greater than 2π , its value can be measured because it concerns the variation of the relative phase shifts of the two signals during a given interval of time which only comprises a fairly limited number of periods for the signals Fb₁ and Fb₂.

For an accuracy of the measurer .ent of $\Delta \varphi$ com-125 parable to the accuracy obtained $\operatorname{ior} \varphi_0$, that is approximately one degree, formula (13) yields an accuracy for $\sin \alpha$ which is less good than formula (11), as will be seen hereinafter, but on the other hand this enables $\sin \alpha$ to be determined without 130 ambiguity. In accordance with the invention the amplitude and sign of the angle $\Delta \varphi$ are now determined, said sign being also that of α and thus of φ because of formula (14) and (11), the value of $\sin \alpha$ is calculated from formula (14), which value is designated $\sin \alpha \Delta \varphi$, said value of $\sin \alpha \Delta \varphi$ is inserted in formula (10) and a first approximated value of the angle φ is calculated therefrom, which is designated $\varphi \Delta \varphi$. On the other hand φ_0 is also measured and is preferably

10 made identical to φ_1 . Comparison of the signs of $\Delta \varphi$ and φ_0 makes it possible to decide which of the formulas (12) is valid for the determination of k (φ and Δ φ have the same signs). For example, if the second of these formulas is valid, the value of k is defined as

15 the integer nearest the calculated value, which is equal to $(\varphi_{o} - \varphi \Delta \varphi)/2 \pi$. Now φ is calculated in an inverse manner by means of the same formula (12) with which k has been determined, using the integer found for k and, finally, this last-mentioned correct

20 value found for φ is inserted into formula (11), which then enables the value of $\sin \alpha$ and thus the value of α to be calculated with the desired accuracy. Differentiation of formula (10) yields:

25
$$d\varphi/d\alpha = 2\pi Fd\cos\alpha/c$$
 (15)

which, when assuming for example that: d=4m and $F=F_1=1.22$ GHz, yields:

30 for
$$\alpha = 0$$
 d $\alpha = 0.0097$ d φ for $\alpha = 30^{\circ}$ d $\alpha = 0.0112$ d φ

that is, an error of $\pm 1^{\circ}$ for φ corresponds approximately to 0.01° for α .

35 Conversely, if α is to be determined from the value of $\Delta \varphi$ only, differentiation of formula (13) yields:

$$d(\Delta \varphi)/d\alpha = 2 \pi \Delta Fd \cos \alpha/c$$

40 or when it is for example assumed that : d = 4m and $\Delta F = 10$ MHz ($F_1 = 1.22$ GHz, $F_2 = 1.23$ GHz):

$$d\alpha = 1.2 d(\Delta \varphi)/\cos \alpha$$
 (16).

In this case the accuracy obtained for α varies from $\pm 1.2^{\circ}$ for $\alpha = 0$ to $\pm 1.4^{\circ}$ for $\alpha = 30^{\circ}$, with an accuracy of $\pm 1^{\circ}$ for $\Delta \varphi$. Thus, this is clearly insufficient in comparison with the desired accuracy.

It is to be noted that for d = 4m and $F_1 = 1.22$ GHz, 50 the angle φ varies by 2 π when α varies by 3.4 degrees at 0° or by 4 degrees at 30 degrees. The accuracy obtained for α by means of formula (16) is therefore sufficient to ensure that the correct value of k can be determined by means of one of the for-

55 mulas (12). If said accuracy is no longer sufficient, this may be solved by increasing the value of d and/or that of Δ F.

An embodiment of the invention, which employs the measuring and calculation method explained in the foregoing, is now described with reference to Figures 3 and 4. In this embodiment the phase shifts are preferably measured by the comparison of counter numbers of clock pulses, the number of pulses being counted between the zero passages of the beat signals Fb₁ and Fb₂.

The instants between the beginning and end of the phase measurement during a sawtooth may be selected arbitrarily, provided that the wavelength or frequency emitted at these two instants is known.

The first instant is for example selected to correspond to the beginning of the sawtooth and the second instant to correspond to 90% of the excursion of

the sawtooth or: Δ F' = 0.9 Δ F.

The device of Figure 3 comprises two identical signal-processing chains, whose inputs respectively receive the signal Fb₁ on terminal 15 and the signal Fb₂ on terminal 20. The chain receiving a signal Fb₁ (Fb₂) comprises a cascade of: a shaping circuit 30 (40), which shapes the sinewave signal which it receives into square-wave signals, a synchronizing circuit 31 (41), an AND-gate circuit 32 (42), a period counter 33 (43), and a comparator 34. The outputs of the elements 30, 31 and 32 supply the signals A₁, B₁, C₁, respectively. The signal A₁ (A₂) is supplied directly to a second input of the AND-gate circuit 32 (42). Furthermore, a first (second) output of the

comparator 34 is connected to an AND-gate circuit 35 (45), which at a second input receives the signal S from terminal 24 and whose output is connected to a second input of the synchronizing circuit 31 (41). On a third input the circuit 31 (41) receives the signal DE from the terminal 23. The signals B₁ and B₂ are applied to an exclusive-OR gate 50 and to a first switching detector circuit 51. The output of the gate circuit 50, on which the signal E appears, is followed by a cascade of: an AND-gate 52, which receives the output signal of a fast clock generator 53 on the second input and whose output supplies a signal H, a

pulse counter 54, a memory 55, a computing ele100 ment 56 for calculating $\Delta \varphi$, $\sin \alpha \Delta \varphi$, $\varphi \Delta \varphi$, k, φ , $\sin \alpha$ and α and a display element 57 for displaying th
value of α . The circuit 51, whose function it is to
determine the signs of the measured phase shifts,
transfers said sign, for example in the form of logic
105 levels, to the memory 55 via two conductors.

105 levels, to the memory 55 via two conductors. Moreover, the computing element 56 receives in digital form, the value of the distance d, which is displayed by an element 58, and the value of the transmitted frequency F (or the wavelength λ) which

110 is transferred to terminal 25 at the instants (t₁, t₂) which respectively correspond to the transition to the high level of the logic signals DE and S, which in Figure 1 is indicated by the conductors which connect each of the terminals 23 and 24 to a control
115 input of the analog-to-digital converter 22.

The operation of the apparatus of Figure 3 is described hereinafter with reference to Figure 4, which is a time diagram of the signals EM, DE, S, Fb₁, A₁, B₁, C₁, Fb₂, A₂, B₂, C₂, E, H. In Figure 4 the signal G is a fixed frequency threshold, determined by the element 21 of Figure 1, for example equal to 90% of the peak value of the sawtooth (Δ F' = 0.9 Δ F) and S is a logic signal which changes from 0 to 1 when the threshold G is reached and which returns to 0 at the end of the sawtooth.

The phase shift between the echo signals received by the antennas 3 and 4 is imparted to the beat signals of the frequencies fb, and fb2 by means of mixers 10 and 16 (Figure 1), said signals being available in 130 the form of a continuous sinewave on the terminals

15 and 20 (Figure 1), in which form they are shown in Figure 4. By means of the circuits 30, 40 (Figure 3) the signals Fb1 and Fb2 are shaped into squarewave signals A1, A2 whose amplitude is adapted to suit the 5 following logic circuits (logic levels "0" and "1"). The synchronizing circuit 31, 41 has an output B₁, B₂, which is 0 between the sawtooth waves and which becomes 1 upon the first change from 0 to 1 of the signal A, or A2 following the instant t, that is for 10 example the beginning of the sawtooth. For this purpose, said synchronizing circuit 31, 41 receives the signal DE on its third "start" input. When, at the instant t2, it receives a signal on its second "stop" input, either B₁ or B₂ will return to 0 upon the first 15 transition from 0 to 1 of the signal A, or A, following said instant. Such logic circuits 31, 41 are known to those skilled in the art. The AND gate 32 or 42, which receive the signals A₁ and B₁ or A₂ and B₂, produces an integral number of periods C₁ or C₂ on its output 20 (an increasing number N₁ or N₂). The counter 33 or 43 therefore supplies a number equal to the number of sinewave periods of Fb1 or Fb2 during the interval under consideration. When the signal S passes to the 1 level in order to allow the signal B, (or the 25 signal B₂) to be reset to zero via the AND-circuit 35 or 45, one of the two following modes of operation of the apparatus is possible.

N₂ ≥ N₁ (case considered in Figure 4), in which case the comparator 34 transfers a logic "1" via the
 AND-gate 45, which resets the output B₂ of the gate circuit 41 to zero during the following passage from 0 to 1 of the period A₂. The AND-gate circuit 35 remains closed (inhibited) until N₁ = N₂. At this instant the first output of the comparator 34 also
 goes to 1, which pulls the synchronizing circuit 31 to 0 via the gate circuit 35. The AND-gate circuits 42 and 32 thus have supplied the same number of periods and the durations of the "1" levels of the signals B₁ and B₂ represent the respective durations of the
 same number of sinewave periods in the two respectives

N₂ < N₁, in which case the operations in the two chains described in the foregoing are interchanged, and by means of the same reasoning the same result is obtained as in the preceding paragraph.
 The signals B₁ and B₂ are, for example, as shown in

tive signal processing chains Fb, and Fb2.

The signals B₁ and B₂ are, for example, as shown in Figure 4, but other configurations are also possible because first either B₁ or B₂ switches from the low level to the high level (first and second switching operation) and subsequently either B₁ or B₂ changes from the high level to the low level (third and fourth switching operation).

The sign of φ_0 depends on the chronological sequence of the first and the second switching operation. By covention, it is for example decided to count φ_0 positively when the first switching operation takes place in the first signal processing chain and negatively if this takes place in the second chain. This convention, as will be seen hereinafter, allows the value of α to be determined in a trigonometric sense. In accordance with this convention the angle φ_0 is negative in Figure 4.

On the other hand, the difference between the durations of the high levels of the signals B₁ and B₂ 65 represents the absolute value of the relative overall

phase shift $\Delta \varphi$. The absolute value and the sign of $\Delta \varphi$ can be obtained by algebraically measuring φ'_o , that is, the algebraic difference between the falling edges of the signals B_1 and B_2 (third and fourth switching operations) with the same sign convention as in the foregoing and by subtracting the algebraic value obtained for φ_o from said algebraic value (first and second switching operations), which rule is valid regardless of the configuration of the signals B_1 and B_2 . The sign obtained for $\Delta \varphi$ is also the sign of α owing to formula (14).

In Figure 4 the two measured phase shifts are negative, their difference (the second one minus the first one) is negative, which means that the angle α is negative when the axis oz is taken as the reference (which case is represented in Figures 1 and 2). It is to be noted that Figures 1, 2 and 4 represent the same case, for which the following inequality is valid: $Fb_{z} > Fb_{t}$. If the beat frequency Fb_{t} is maintained constant and equal to a predetermined value, for example 25 kHz (period of 40 μ s), if B_{t} has a delay of 10 μ s at the beginning and of 20 μ s at the end, then:

- The initial phase shift φ_0 is: $2\pi(-10/40) = -\pi/2 = -90^{\circ}$
- The final phase shift φ_o' is: $2\pi(-20/40) = -\pi = -180^\circ$
- The variation of the phase shift $\Delta \varphi$ is consequently: $(-\pi) (-\pi/2) = -\pi/2 = -90^\circ$.

95

When the variation of the transmitted frequency, on terminal 25, between the beginning and the end of counting is known, that is, $F_2 - F_1$, the value of $\sin \alpha$ can be calculated from said variation in a first 100 approximation (accuracy of the order of one degree for arc $\sin \alpha$).

The actual circuit for measuring and calculating α from time measurements representing the phase shifts φ_0 and $\Delta \varphi$ is shown in the right-hand part of 105 Figure 3 (the elements 50 to 58).

The exclusive-OR gate circuit 50 receives the two signals B₁ and B₂ and supplies the signal E (Figure 4), which for a given sawtooth comprises two pulses representing the initial and final phase shifts φ₀ and 110 φ'₀. Via the AND-gate circuit 52, which also receive the output signal of the fast clock generator 53, the signal E is converted into a counting pulse signal H with a frequency of, for example, 20 MHz. At the end of each train of pulses supplied by the AND-gate 52 the counter 54, which has been reset to zero before the beginning of each pulse train, by means not shown, provides the phase-shift value expressed by a number which is a measure of the time which has elapsed between similar changes of the signals B₁ and B₂.

The circuit 51 detects which circuit each time effects the first switching operation and, in accordance with the convention adopted derives therefrom a + or - sign, which is subsequently transfered in the form of logic signals.

At the end of the counting operation at 54 the number and sign are stored at 55, which is suitably a temporary-storage memory, for example a buffer memory. Said digital values are subsequently transferred to the computing element 56, which is

suitably a microprocessor. As indicated in the foregoing, the element 56 also receives, in digital form, the value of the frequency F or the wavelength of the transmitted signal as well as the value of the dis-

5 tance d from the element 58. In a chronological sequence the operations or calculations effected for each sawtooth by 56 are the following:

– making the first algebraic value from the memory 55 equal to φ_0 and the second algebraic value to φ'_0 ;

10 – calculating $\Delta \varphi$ by forming the difference between φ'_{o} and φ_{o} ;

- calculation of $\sin \alpha$ from formula (14) ($\sin \alpha \Delta \varphi$);

- calculation of $\varphi \Delta \varphi$ from formula (10);

- selection of the formula (12) to be used as a function of the respective signs of φ_0 and $\Delta \varphi$;

- the approximated calculation of k from the appropriate formula (12) and determining k;

– calculation of φ from the same formula (12) using the integral value of k;

20 – calculation of $\sin \alpha$ from formula (11);

– calculation of α as a function of sin α . The value of α thus determined is transferred to the element 57, which suitably displays said value in digital form, for example in degrees and minutes or

25 hundredths of degrees, with the aid of light emitting diodes or liquid crystals.

It is to be noted that the foregoing calculation of φ $\Delta \varphi$ may be simplified because, except for clarity of the explanation it is not necessary to include the 30 approximated value of $\sin \alpha$, that is $\sin \alpha \Delta \varphi$. Combining formulas (14) and (10) namely yields:

$$\varphi = F \Delta \varphi / \Delta F$$

35 or:

$$\varphi \Delta \varphi = F_1 \Delta \varphi / (F_2 - F_1) = F_1 (\varphi_0' - \varphi_0) / (F_2 - F_1)$$

in which formula now only the values of F_1 , F_2 , φ_0 and φ'_0 occur, i.e. the actual measuring values. As regards the accuracy which is obtained, it is to be noted if the absolute error is the same for $\Delta \varphi$ and φ after accurate calculation of the latter, the ratio

enables the relative error for $\Delta \varphi$ to be maintained for φ using the last-mentioned formulas, so that the high 50 accuracy obtained for φ can is maintained in the accuracy obtained for α .

In another embodiment of the invention, not shown, the accuracy obtained for the value of α may be further improved from a few hundredths of a degree to approximately one hundredth of a degree in the example where an accuracy of one degree for the phase shift measurements is obtained. In this embodiment the phase shifts of a plurality of pairs of sinewave periods of the signals Fb₁ and Fb₂ are measured by each time taking the corresponding value of the frequency (or wavelength) of the transmitted wave and assigning, to each value of φ₀ thus obtained, the same angular value φ′₀, which is determined by the falling edges of the signals B₁ and

65 B₂. Thus, by means of the computing element it is

possible to determine for each sawtooth as many values of sin α as the number of different values measured for the angle φ_0 and of the frequency F_1 corresponding thereto, each time taking the same value for φ'_0 and for F_2 . In this case the computing element should perform an additional operation of a different nature, which for determining α consists in previously determining the mean of the different values found for $\sin \alpha$.

Suitably, the antennas 2, 3 and 4 shown in Figure 1 are of the directional type and cover an angular sector of the order of 60 degrees. However, they may cover a larger angle, for example of approximately 120 degrees, but when determining the angle α this may result in a smaller accuracy than in the case of a coverage of 60 degrees. The arrangement of six devices as described in the foregoing at 60 degrees from each other or of three devices at 120 degrees from each other, depending on whether the angle of coverage of the antennas is for example 60 or 120 degrees, makes it possible to cover the entire plane. CLAIMS

A method of determining the azimuth α of a radiowave transponder relative to a radar system,
 which system transmits a wave whose frequency F is a linear function of time, said radar system comprising a transmitting antenna and two receiving antennas, which are located at a distance d from each other, and supplying two beat signals Fb₁ and Fb₂ having a frequency fb₁ and fb₂ respectively, which are obtained by mixing the transmitted wave and the echo wave received from said transponder on each of the two receiving antennas, characterized in that the said method comprises at least the following
 steps:

- The algebraic measurement of the phase shift $\varphi_{\rm o}$ between the signals Fb₁ and Fb₂ and the measurement of the frequency F₁ at a predetermined, arbitrarily chosen first instant t₁,
- 105 The algebraic measurement of the phase shift φ'_0 between the signals Fb₁ and Fb₂ and the measurement of the frequency F₂ at a second arbitrarily chosen instant t₂, $\varphi'_0 \varphi_0$ being such that the number of sinewave periods of fb₁ and fb₂ b tween the two instants t₁ and t₂ is substantially the same,
 - The calculation of a relative overall phase variation $\Delta \varphi$ which may be greater than 2π between the instants t_1 and t_2 , by determining the difference between φ_0' and φ_0 ,
- 115 The approximated calculation of φ, which is the overall phase shift between the signals Fb₁ and Fb₂ at said first instant t₁, to be reckoned from the frequency F at which said overall phase shift is zero, as a function of F₁, F₂ and the value of Δ φ found in
 120 the preceding step, that is φ Δ φ,
 - The determination of the maximum angle $2k \pi$, k being a positive integer which is actually contained in the angle φ , from φ_0 , $\varphi \Delta \varphi$ found in the preceding step and of the respective signs of φ_0 and of Δ
- 125 φ ,

 Making φ identical to the sum: $\varphi_0 + 2k \pi \text{ or } \varphi_0 2k \pi$ depending on the respective signs of φ_0 and of Δ
- The calculation of $\sin \alpha$ from the values of F_1 , d and the exact value of φ found in the preceding step.

i

10

55

- The calculation of α from the value of $\sin \alpha$ obtained in the preceding step,
- The display of the value of α found in the preceding step.
- A method of determining α, as claimed in Claim 1, characterized in that said method in addition comprises the following steps:
 - the algebraic measurement of the phase shift $(\varphi_0)_i$ between the signals Fb_1 and Fb_2 and the measurement of the corresponding frequency F_i at a plurality of instants t_i which precede said instant t_2 .
 - determining each angle α_i from the values F_1 , F_2 , $(\Delta \varphi)_i = \varphi'_0 (\varphi_0)_i$, k_i , $(\varphi_0)_i$, d,
- determining the angle α which is equal to the mean values of the angles α_i determined in the preceding step.
 - 3. An apparatus for measuring the azimuth α using the method as claimed in Claim 1 or 2, which apparatus forms part of a radar system which
- 20 transmits a high frequency continuous wave, which is frequency modulated with a sawtooth having a constant frequency sweep Δ F and a duration T, and which simultaneously receives the previously transmitted wave which is reflected by a transpon-
- 25 der, said radar system supplying a signal Fb₁ of a first beat frequency fb₁, obtained by mixing the transmitted signal of the instantaneous frequency F and the signal received on a first receiving antenna, and a signal Fb₂ of a second beat frequency fb₂,
- 30 obtained by mixing said transmitted signal of the frequency F and a signal received on a second receiving antenna, the reference direction for measuring the azimuth α of said transponder being the mid-perpendicular to the line of length t at whose ends said receiving antennas are located, character-
- ized in that it comprises:

 First means for shaping said signals Fb₁, Fb₂ of the frequency fb₁ and fb₂ so to obtain squarewave
- signals of the same phase and the same frequency, 40 — Second means for measuring the phase shift φ₀ between the squarewave signals of frequency fb₁ and fb₂, as well as the frequency F for at least one point of said sawtooth,
- Third means for determining at least two trains of squarewave signals having the same number of periods and whose starting points differ by at least one period,
- Fourth means for measuring the overall relative phase variation $\Delta \varphi$ between the beginning, at the instant t_1 for a frequency F_1 , and the end, at the instant t_2 for a frequency F_2 , of said trains of squarewave signals,
- Fifth means for calculating the angle α from the values of F_1 , F_2 , d, φ_0 and $\Delta \varphi$ and for displaying said angle.
- 4. An apparatus for measuring the azimuth as claimed in Claim 3, characterized in that the duration T of the sawtooth is fixed.
- 5. An azimuth measuring apparatus as claimed in Claim 3, characterized in that the duration T of the sawtooth is variable as a linear function of the distance between said radar system and said transponder owing to a control loop for the transmitted wave, which maintains one of the frequencies fb₁ or fb₂ substantially constant and equal to a fixed fre-

quency.

- An azimuth measuring apparatus as claimed in any of the Claims 3, 4 or 5, characterized in that said point of the sawtooth has the time t₁ and the
 frequency F₀ = F₁ as coordinates.
 - 7. An azimuth measuring apparatus as claimed in any of the Claims 3, 4 or 5, characterized in that it comprises means for measuring the phase shift $(\varphi_o)_{,i}$ and the frequency F_i for a plurality of points of the sawtooth, at instants t_i later than or equal to t_1 and prior to t_2 .
 - 8. An azimuth measuring apparatus as claimed in any one of the Claims 4 to 7, characterized in that said second means for measuring the phase shift \$\phi_0\$ comprise, for each of the signals Fb, and Fb2, a synchronizing circuit, which receives the output signal A1 (or A2) from said first shaping means, which on a third input receives a first control signal DE derived from the sawtooth and which supplies a logic signal B₁ (or B₂), and an exclusive -OR-gate circuit and a circuit for detecting the first switching operation, which last-mentioned circuits each receive the signals B₁ and B₂, the output of said exclusive OR-gate circuit being connected to the cascade of an AND-gate circuit, receiving the output of a fast clock generator on its second input, a pulse counter and temporarystorage memory, which also receives the output signal of said circuit for detecting the first switching
- 95 9. An azimuth measuring apparatus as claimed in Claim 8, characterized in that said third means for determining at least two trains of squarewave signals having the same number of periods for each of the signals Fb₁ or Fb₂ comprise a first AND-gate circuit, which receives the signals A₁, B₁ (or A₂, B₂), which gate circuit is connected to a period counter, which in its turn is connected to a comparator whose respective output is connected to a second AND-gate circuit, which on a second input receives a second
 105 control signal S derived from the sawtooth, and which supplies a second control signal to a second input of said synchronizing circuit.
- An azimuth measuring apparatus as claimed in Claims 8 and 9 in combination, characterized in
 that said fourth means are constituted by the combination of said second means and third means.
- 11. An azimuth measuring apparatus as claimed in any one of the Claims 3 to 10, in which said second means for calculating and displaying the angle α are 115 constituted by a microprocessor.
 - 12. A method of determining azimuth substantially as herein described with reference to equations (1) to (15).
- An azimuth measuring apparatus substan tially as herein described with reference to the accompanying drawings.

Printed for Her Majesty's Stationery Office by The Tweeddale Press Ltd., Berwick-upon-Tweed, 1981. Published at the Patent Office, 25 Southampton Builings, London, WC2A 1AY, from which cogies may be obtained.