	傅里叶变换	拉普拉斯变换	Z 变换
定义	(t换为k,jω换为 <i>e^j ω</i> 得DTFT)		
正变换	$F(j\pmb{\omega}) = \int_{-\infty}^{\infty} f(t) e^{-j\pmb{\omega} t} dt$	$F(s) = \int_{-\infty}^{\infty} f(t) e^{-st} dt$	$F(z) = \sum_{k=-\infty}^\infty f(k) z^{-k}$
反变换	$f(t)=rac{1}{2\pi}\int_{-\infty}^{\infty}F(j\pmb{\omega})e^{-j\pmb{\omega}t}d\pmb{\omega}$	$f(t)=rac{1}{2\pi j}\int_{\sigma-\infty}^{\sigma+\infty}F(s)e^{-st}ds$	
 性质			
线性			
延时特性	$f(t-t_0){\leftrightarrow} F(j{m \omega})e^{-j{m \omega}t_0}$	$f(t-t_0) {\leftrightarrow} F(s) e^{-st_0}$	增序: $f(k+n) \leftrightarrow z^n [F(z) - \sum_{i=0}^{n-1} z^{-i} f(i)]$
移频特性	$f(t)e^{joldsymbol{\omega}_{c}t}{\leftrightarrow}F[j(oldsymbol{\omega}-oldsymbol{\omega}_{c})]$	$f(t)e^{s_0t}\!\!\leftrightarrow\!\! F(s-s_0)]$	减序: $f(k-n) \leftrightarrow z^{-n+1} [F(z) + \sum_{i=-1}^{-n} z^{-i} f(i)]$
尺度变换	$f(\mathit{at}) \leftrightarrow rac{1}{\ \mathit{a}\ } F(jrac{\omega}{\mathit{a}})$	$f(at) {\leftrightarrow} rac{1}{\ a\ } F(rac{s}{a})$	$a^k f(k) {\leftrightarrow} F(rac{z}{a})$
奇偶虚实性			
对称特性	$f(t) \!\!\leftrightarrow\!\! F(j oldsymbol{\omega}) \!\!\iff\!\! F(j t) \!\!\leftrightarrow\!\! 2 \pi f(-oldsymbol{\omega})$	$f(t) \leftrightarrow F(s) \Longleftrightarrow F(t) \leftrightarrow 2\pi j f(-s)$	
时域微分	$rac{d}{dt}f(t) {\leftrightarrow} j oldsymbol{\omega} F(j oldsymbol{\omega})$	$rac{d}{dt}f(t)\!\!\leftrightarrow\!\!sF(s)-f(0^-)$	
时域积分	$\int_{-\infty}^{t} f(au) d au \!\!\leftrightarrow\! \pi F(0) \mathcal{S}(\omega) + rac{1}{j\omega} F(j\omega)$	$\int_{0^{-}}^{t}f(au)d au {\leftrightarrow} rac{F(s)}{s}$	
频域微分	$-jt\!f(t)\leftrightarrow rac{d}{d\omega}F(j\omega)$	$t\!f(t) \leftrightarrow -rac{d}{ds}F(s)$	$k\!f(k) \leftrightarrow -zrac{d}{dz}F(z)$
频域积分	$\pi f(0) \delta(t) - rac{f(t)}{jt} \leftrightarrow \int_{-\infty}^{\omega} F(j\Omega) d\Omega$	$rac{f(t)}{t} \leftrightarrow \int_s^\infty F(p) dp$	
卷积定理	$egin{cases} f_1(t)*f_2(t) &\!$	$egin{cases} f_1(t)*f_2(t) &\!$	$f_1(k)*f_2(k){\leftrightarrow}F_1(z)F_2(z)$