Architettura degli Elaboratori

Corso di Laurea in Informatica 16 Giugno 2008

1. (2 p	unti)	Codificare	i numeri interi	(a)) -69 e ((b)	87 in	com.	plemento	a 2	2 a	8	bit
---------	-------	------------	-----------------	-----	-----------	-----	--------	------	----------	-----	----------	---	-----

(a)				
(b)				

2.	(2 punti) D	Oeterminare i	numeri	interi	rappresentati	dalle	sequenze	di	bit	(a)	1110111001	e	(b)
	1001101101	nella notazio	ne in mo										

(a)	
(1 \	

3.	(2 1)	ounti)	Convertire	da	base	16	a	base	8	i	seguenti	numeri	natura	li
ο.	\ - -	our or	COHVOIGHO	acc		TO	C		\circ		SOSGERIO	Hamon	iia ai ai	77

(a) 8BF3	 (b) C5A9	

4. (6 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	-
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	-
1	1	0	0	-
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

SOP ____

5. (4 punti) Disegnare il circuito combinatorio che realizza la funzione $f(x_1, x_2, x_3, x_4) = \overline{x_2} \cdot (\overline{x_4} \cdot x_1) + x_2 \cdot (\overline{x_3} \cdot \overline{x_4} \cdot \overline{x_1})$) facendo uso solo di multiplexer con 2 linee di controllo (selezione).

6.	(7 punti) Disegnare il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola
	uscita (z) che restituisca in un determinato istante $i \geq 0$ uscita uguale a 1 se e solo la sequenza di
	bit finora letta coincide con un'alternanza completa dei bit 110

7. (7 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo SR. In particolare determinare tutte le funzioni booleane minimizzate e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	s_1	r_1	s_2	r_2	z
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

<i>s</i> ₁ :	r_1 :	
s_2 :	r_2 :	
7.		

Disegno della rete :

<u>ATTENZIONE</u>: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.