

## Problem of the Week Problem E and Solution Powerful Factors

## Problem

The product of the integers 1 to 64 can be written in an abbreviated form as 64! and we say 64 factorial. So  $64! = 64 \times 63 \times 62 \times \cdots \times 3 \times 2 \times 1$ . In general, the product of the positive integers 1 to m is

$$m! = m \times (m-1) \times (m-2) \times \cdots \times 3 \times 2 \times 1.$$

Determine the largest positive integer value of n so that 64! is divisible by  $2016^n$ .

## Solution

Let P = 64!.

The prime factorization of 2016 is  $2^5 \times 3^2 \times 7$ . We must determine how many times the factors  $2^5 \times 3^2 \times 7$  are repeated in the factorization of P.

First we will count the number of factors of 2 in P by looking at the 32 even numbers. Each of the numbers  $\{2, 4, 6, \dots, 60, 62, 64\}$  contains a factor of 2. That is a total of 32 factors of 2.

Dividing the even numbers in  $\{2, 4, 6, \dots, 60, 62, 64\}$  by 2, we obtain the numbers  $\{1, 2, 3, \dots, 30, 31, 32\}$ . This list contains 16 even numbers so we gain another 16 factors of 2 bringing the total to 32 + 16 = 48.

Dividing the even numbers in  $\{1, 2, 3, \dots, 30, 31, 32\}$  by 2, we obtain the numbers  $\{1, 2, 3, \dots, 14, 15, 16\}$ . This list contains 8 even numbers so we gain another 8 factors of 2 bringing the total to 48 + 8 = 56.

Dividing the even numbers in  $\{1, 2, 3, \dots, 14, 15, 16\}$  by 2, we obtain the numbers  $\{1, 2, 3, \dots, 6, 7, 8\}$ . This list contains 4 even numbers so we gain another 4 factors of 2 bringing the total to 56 + 4 = 60.

Dividing the even numbers in  $\{1, 2, 3, \dots, 6, 7, 8\}$  by 2, we obtain the numbers  $\{1, 2, 3, 4\}$ . This list contains 2 even numbers so we gain another 2 factors of 2 bringing the total to 60 + 2 = 62.

Finally, dividing the even numbers in  $\{1, 2, 3, 4\}$  by 2, we obtain the numbers  $\{1, 2\}$ . This list contains 1 even number so we gain another factor of 2 bringing the total to 62 + 1 = 63. So when P is factored there are 63 factors of 2. In fact, the largest power of 2 that P is divisible by is  $2^{63}$ .



Next we will count the number of factors of 3 in P by looking at the 21 multiples of 3, namely  $\{3, 6, 9, \dots, 57, 60, 63\}$ . Each of these 21 numbers contains a factor of 3.

Dividing the multiples of 3 in  $\{3, 6, 9, \dots, 57, 60, 63\}$  by 3, we obtain the numbers  $\{1, 2, 3, \dots, 19, 20, 21\}$ . This list contains 7 multiples of 3 so we gain another 7 factors of 3 bringing the total to 21 + 7 = 28.

Dividing the multiples of 3 in  $\{1, 2, 3, \dots, 19, 20, 21\}$  by 3, we obtain the numbers  $\{1, 2, 3, 4, 5, 6, 7\}$ . This list contains 2 multiples of 3 so we gain another 2 factors of 3 bringing the total to 28 + 2 = 30.

Dividing the multiples of 3 in  $\{1, 2, 3, 4, 5, 6, 7\}$  by 3, we obtain the numbers  $\{1, 2\}$ . This list contains no additional multiples of 3 so when P is factored there is a total of 30 factors of 3. In fact, the largest power of 3 that P is divisible by is  $3^{30}$ .

Finally we will count the number of factors of 7 in P by looking at the 9 multiples of 7, namely  $\{7, 14, 21, \dots, 49, 56, 63\}$ . Each of these 9 numbers contains a factor of 7.

Dividing the multiples of 7 in  $\{7, 14, 21, \dots, 49, 56, 63\}$  by 7, we obtain the numbers  $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ . This list contains 1 multiple of 7 so we gain another factor of 7 bringing the total to 9 + 1 = 10.

Dividing the multiples of 7 in  $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$  by 7, we obtain the number  $\{1\}$ . The number  $\{1\}$  is not a multiple of 7 so we gain no additional factors of 7. When P is factored there is a total of 10 factors of 7. In fact, the largest power of 7 that P is divisible by is  $7^{10}$ .

From the 63 factors of 2, 30 factors of 3 and 10 factors of 7, we want to create as many powers of  $2^5 \times 3^2 \times 7$  as possible.

So, 
$$P$$
 is divisible by  $2^{63} \times 3^{30} \times 7^{10} = 2^{13} \times 2^{50} \times 3^{10} \times 3^{20} \times 7^{10}$   
 $= 2^{13} \times 3^{10} \times (2^5)^{10} \times (3^2)^{10} \times 7^{10}$   
 $= 2^{13} \times 3^{10} \times (2^5 \times 3^2 \times 7)^{10}$   
 $= 2^{13} \times 3^{10} \times (2016)^{10}$ 

 $\therefore$  P is divisble by  $2016^{10}$  and the largest value of n is 10. (Since all of the powers of 7 have been used, none remain to combine with any of the remaining 2's and 3's to form any additional factors of 2016.)

