C: Exercício 17

Piscar os LEDs vermelho e verde da placa MSP-EXP430G2 alternadamente à cada 250 ms (freq. DCO = 1MHZ).

Iniciar o programa com os leds apagados. Sempre que a interrupção da porta 1 (Botão S2 - Pino P1.3) for ativada, alternar entre leds apagados e piscantes.

A temporização deverá ser feita através do *TimerO_A*.

Vetores de Interrupções do MSP430G2553

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range ⁽¹⁾	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	OFFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG ⁽²⁾⁽³⁾	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
Timer1_A3	TA1CCR0 CCIFG ⁽⁴⁾	maskable	0FFFAh	29
Timer1_A3	TA1CCR2 TA1CCR1 CCIFG, TAIFG ⁽²⁾⁽⁴⁾	maskable	0FFF8h	28
Comparator_A+	CAIFG ⁽⁴⁾	maskable	0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer0_A3	TA0CCR0 CCIFG ⁽⁴⁾	maskable	0FFF2h	25
Timer0_A3	TA0CCR2 TA0CCR1 CCIFG, TAIFG	maskable	0FFF0h	24
USCI_A0/USCI_B0 receive USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG ⁽²⁾⁽⁵⁾	maskable	0FFEEh	23
USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG ⁽²⁾⁽⁶⁾	maskable	0FFECh	22
ADC10 (MSP430G2x53 only)	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18

P1 and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the PxIFG, PxIE, and PxIES registers. All P1 pins source a single interrupt vector, and all P2 pins source a different single interrupt vector. The PxIFG register can be tested to determine the source of a P1 or P2 interrupt.

Port	Register	Short Form	Address	Register Type	Initial State
P1	Input	P1IN	020h	Read only	_
	Output	P1OUT	021h	Read/write	Unchanged
	Direction	P1DIR	022h	Read/write	Reset with PUC
	Interrupt Flag	P1IFG	023h	Read/write	Reset with PUC
	Interrupt Edge Select	P1IES	024h	Read/write	Unchanged
	Interrupt Enable	P1IE	025h	Read/write	Reset with PUC
	Port Select	P1SEL	026h	Read/write	Reset with PUC
	Port Select 2	P1SEL2	041h	Read/write	Reset with PUC
	Resistor Enable	P1REN	027h	Read/write	Reset with PUC
	Resistor Enable	P1REN	027h	Read/write	Reset with PUC

Interrupt Enable P1IE, P2IE

Each PxIE bit enables the associated PxIFG interrupt flag.

Bit = 0: The interrupt is disabled.

Bit = 1: The interrupt is enabled.

Interrupt Edge Select Registers P1IES, P2IES

Each PxIES bit selects the interrupt edge for the corresponding I/O pin.

Bit = 0: The PxIFGx flag is set with a low-to-high transition

Bit = 1: The PxIFGx flag is set with a high-to-low transition

Interrupção do pino P1.3 ativada na borda de descida

Interrupt Flag Registers P1IFG, P2IFG

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set when the selected input signal edge occurs at the pin. All PxIFGx interrupt flags request an interrupt when their corresponding PxIE bit and the GIE bit are set. Each PxIFG flag must be reset with software. Software can also set each PxIFG flag, providing a way to generate a software initiated interrupt.

Bit = 0: No interrupt is pending

Bit = 1: An interrupt is pending

Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes set during a Px interrupt service routine, or is set after the RETI instruction of a Px interrupt service routine is executed, the set PxIFGx flag generates another interrupt. This ensures that each transition is acknowledged.

Table 12–3. Timer_A Registers

Register	Short Form	Register Type	Address	Initial State
Timer_A control	TACTL	Read/write	0160h	Reset with POR
Timer_A counter	TAR	Read/write	0170h	Reset with POR
Timer_A capture/compare control 0	TACCTL0	Read/write	0162h	Reset with POR
Timer_A capture/compare 0	TACCR0	Read/write	0172h	Reset with POR
Timer_A capture/compare control 1	TACCTL1	Read/write	0164h	Reset with POR
Timer_A capture/compare 1	TACCR1	Read/write	0174h	Reset with POR
Timer_A capture/compare control 2	TACCTL2 [†]	Read/write	0166h	Reset with POR
Timer_A capture/compare 2	TACCR2†	Read/write	0176h	Reset with POR
Timer_A interrupt vector	TAIV	Read only	012Eh	Reset with POR

† Not present on MSP430x20xx Devices

Timer0_A: TA0xxxxx

Timer1_A: TA1xxxxx

Timer_A: Contador de 16 bits

O Contador é incrementado à cada pulso de Clock

Se o pulso de Clock for periódico, tem-se um temporizador

Se o pulso de Clock for aleatório, tem-se um contador

Fontes de Clock para o Timer_A

Pre-Scaler (Divisor)

Modo de Contagem

MCx

Bits 5-4 Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.

- 00 Stop mode: the timer is halted.
- 01 Up mode: the timer counts up to TACCR0.
- 10 Continuous mode: the timer counts up to 0FFFFh.
- 11 Up/down mode: the timer counts up to TACCR0 then down to 0000h.

12.3.1 TACTL, Timer_A Control Register

	15	14		13	12	11	10	9	8
				Un	used			TASS	SELX
	rw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
	7	6		5	4	3	2	1	0
		IDx		N	ИCx	Unused	TACLR	TAIE	TAIFG
	rw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
Ur	nused	Bits 15-10	Unused						
TA	ASSELx	Bits 9-8	Timer_A	clock sour	ce select				
			00	TACLK					
		_	01	ACLK					
			10 8	SMCLK					
					CLK is device-spec cific data sheet)	ific and is often as	signed to the inver	ted TBCLK) (see	the
ID:	x	Bits 7-6	Input divi	der. These	bits select the divi	der for the input cl	lock.		
			00 /	1					
			01 /	2					
			10 /	4					
			> 11 /	8					
M	Сх	Bits 5-4	Mode cor	ntrol. Settir	ng MCx = 00h wher	n Timer_A is not in	n use conserves po	ower.	
			00	Stop mode:	the timer is halted:	l.			
			0 1 l	Jp mode: t	he timer counts up	to TACCR0.			
					mode: the timer c	•			
			11 l	Jp/down m	ode: the timer cou	nts up to TACCR0	then down to 000	0h.	
	nused	Bit 3	Unused						
TA	ACLR	Bit 2			ing this bit resets T and is always read		der, and the count	direction. The TA	CLR bit is
TA	AIE .	Bit 1	Timer_A	interrupt ei	nable. This bit enal	oles the TAIFG inte	errupt request.		
			0 I	nterrupt dis	sabled				
			1 I	nterrupt en	nabled				
TA	AIFG	Bit 0	Timer_A	interrupt fla	ag				
			0 0	No interrup	t pending				
			1 I	nterrupt pe	ending				

Modos de Contagem

O modo *Up* é utilizado quando o período do *Timer* for diferente de 0xFFFF.

O Timer conta repetidamente até o valor armazenado no Registrador TACCRO.

Quando o *Timer* atinge o valor de comparação armazenado no Registrador *TACCR0*, a contagem é reiniciada a partir de zero.

A flag de interrupção CCIFG (registrador TACCTLO) é setada quando o Timer atinge o valor de comparação armazenado no Registrador TACCRO.

A flag de interrupção TAIFG (registrador TACTL) é setada quando o Timer passa do valor de comparação armazenado no Registrado TACCRO para zero.

Modos de Contagem

O *Timer* conta repetidamente até 0xFFFF. Quando o *Timer* atinge 0xFFFF, a contagem é reiniciada a partir de zero.

A flag de interrupção TAIFG (registrador TACTL) é setada quando o Timer passa de 0xFFFF para zero.

Modos de Contagem

O *Timer* conta repetidamente de modo ascendente até o valor de comparação armazenado no Registrador *TACCR0* zero.

Quando atinge o valor de comparação (TACCRO) o Timer passa a contar de modo descendente até zero.

A flag de interrupção CCIFG é setada quando o Timer atinge o valor armazenado no Registrador de comparação TACCRO.

A flag de interrupção CCIFG é setada quando o Timer atinge o valor zero.

Configuração do *clock* para o *TIMERO_A*

$$CLK_{T0} = CLK / div$$

Tempo para incrementar o *Timer0* (Período):

$$T_{T0} = 1 / CLK_{T0}$$
 = $1 / (CLK / div)$ = div / CLK

Considerando CLK = SMCLK e DCO = 1 MHz:

$$T_{T0} = div / 1.10^6 = div \times 10^{-6} = div \mu s$$

$$div = 1 \rightarrow T_{T0} = 1 \mu s$$

$$div = 2 \rightarrow T_{T0} = 2 \mu s$$

$$div = 4 \rightarrow T_{T0} = 4 \mu s$$

$$div = 8 \rightarrow T_{T0} = 8 \mu s$$

Número de incrementos do *Timer* necessários para temporizar 250ms

Considerando div = 4 \rightarrow $T_{T0} = 4 \mu s$

Para temporizar $t \mu s \rightarrow 4 \times N \mu s$:

N: número de incrementos do *Timer*

$$250000 = 4 \times N$$
 $\longrightarrow N = 62500$

12.3.2 TAR, Timer_A Register

15	14	13	12	11	10	9	8				
TARx											
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)				
7	6	5	4	3	2	1	0				
	TARx										
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)				
TARx	TARx Bits 15-0 Timer_A register. The TAR register is the count of Timer_A.										

12.3.3 TACCRx, Timer_A Capture/Compare Register x TA0CCR0

15	14	13	12	11	10	9	8				
TACCRX											
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)				
7	6	5	4	3	2	1	0				
	TACCRX										
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)				
TACCRx Bits 15-0 Timer_A capture/compare register.											

Compare mode: TACCRx holds the data for the comparison to the timer value in the Timer_A Register, TAR.

Capture mode: The Timer_A Register, TAR, is copied into the TACCRx register when a capture is performed.

12.3.4 TACCTLx, Capture/Compare Control Register TA0CCTL0

15	14		13	12	11	10	9	8
	CMx		CCISx		scs	SCCI	Unused	CAP
rw-(0)	rw-(0)	rw-(0) rw-		rw-(0)	rw-(0)	r	r0	rw-(0)
7	6		5	4	3	2	1	0
	OUTMO	Dx		CCIE	CCI	OUT	cov	CCIFG
СМх	Bit 15-14	Captu	ıre mode					
		00	No capture					
		01	Capture on	rising edge				
		10	Capture on	falling edge				
		11	Capture on	both rising and fal	ling edges			
CCISx	Bit 13-12			out select. These by	CCRx input signal	. See the device-sp	ecific data	
		00	CCIxA					
		01	CCIxB					
		10	GND					
		11	V_{CC}					
scs	Bit 11	Synch	hronize capture	source. This bit is	used to synchror	nize the capture ir	nput signal with the	timer clock.
		0	Asynchrono	us capture				
		1	Synchronou	is capture				
SCCI	Bit 10		Synchronized capture/compare input. The selected CCI input signal is latched with the EQUx signal and can be read via this bit					
Unused	Bit 9	Unus	ed. Read only.	Always read as 0.				
CAP	Bit 8	Captu	ure mode					
		0	Compare m	ode				
		1	Capture mo	de				

12.3.4 TACCTLx, Capture/Compare Control Register TA0CCTL0

15	14	13	12	11	10	9	8
CN	1x		CCISx	scs	SCCI	Unused CAI	
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	r	r0	rw-(0)
7	6	5	_4	3	2	1	0
	OUTMODx		CCIE	CCI	OUT	cov	CCIFG
OUTMODx	Bits 7-5	Output mode	Modes 2, 3, 6, and 7 a	re not useful for T	ACCR0, because I	EQUx = EQU0.	
		000 OUT	bit value				
		001 Set					
		010 Togg	le/reset				
		011 Set/r	eset				
		100 Togg	le				
		101 Rese	et				
		110 Togg	le/set				
		111 Rese	t/set				
CCIE	Bit 4	Capture/com	oare interrupt enable. Th	nis bit enables the	interrupt request of	f the corresponding	g CCIFG flag.
		0 Inter	rupt disabled				
		1 Inter	rupt enabled				
CCI	Bit 3	Capture/com	pare input. The selected	input signal can b	e read by this bit.		
OUT	Bit 2	Output. For o	utput mode 0, this bit di	rectly controls the	state of the output		
		0 Outp	ut low				
		1 Outp	ut high				
cov	Bit 1	Capture over	flow. This bit indicates a	capture overflow	occurred. COV mu	st be reset with so	ftware.
		0 No c	apture overflow occurre	d			
		1 Capt	ure overflow occurred				
CCIFG	Bit 0	Capture/com	pare interrupt flag				
		0 No ir	terrupt pending				
		1 Inter	rupt pending				

Status Register (SR)

Ν

The status register (SR/R2), used as a source or destination register, can be used in the register mode only addressed with word instructions. The remaining combinations of addressing modes are used to support the constant generator. Figure 3–6 shows the SR bits.

GIE General interrupt enable. This bit, when set, enables maskable interrupts are disabled.

Negative bit. This bit is set when the result of a byte or word operation is negative and cleared when the result is not negative.

Word operation: N is set to the value of bit 15 of the

result

Byte operation: N is set to the value of bit 7 of the

result

Z Zero bit. This bit is set when the result of a byte or word operation is 0 and cleared when the result is not 0.

C Carry bit. This bit is set when the result of a byte or word operation produced a carry and cleared when no carry occurred.

Habilitação das interrupções:

```
_BIS_SR(GIE)
__bis_SR_register(GIE)
__enable_interrupt()
```

Rotina de Interrupção da porta 1:

Rotina de Interrupção do Timer0_A: