Package 'SumcaVer1'

July 21, 2024

Type Package

2 mspe_FH_Boot

Index 15

mspe_FH_Boot	MSPE estimation in FH model using double-phase bootstrap method. Calculate the mspe of Fay-Herriot model in SAE using double-phase bootstrap method.

Description

MSPE estimation in FH model using double-phase bootstrap method. Calculate the mspe of Fay-Herriot model in SAE using double-phase bootstrap method.

Usage

```
mspe_FH_Boot(m, p, X, beta, A, D, B1, B2, R)
```

Arguments

m	number of small areas
р	number of fixed model parameters
Χ	covariates
beta	regression coefficients
A	variance of area-specific random effects
D	sampling variance
B1	number of first-phase bootstrap method
B2	number of second-phase bootstrap method
R	number of simulation runs

Value

Par: return estimation of model parameters

MSPE.TRUE.Final: return empirical MSPE of small area predictor

mspe.Boot1.Final: return mspe of small area predictor using the bootstrap method 1

mspe.Boot2.Final: return mspe of small area predictor using the bootstrap method 2

RB.Boot1: return relative bias (RB) of mspe of small area predictor using the bootstrap method 1 RB.Boot2: return relative bias (RB) of mspe of small area predictor using the bootstrap method 2

```
mspe_FH_Boot(20,3,matrix(runif(60,0,1),nrow=20,byrow=TRUE),c(1,1,1),10,2.5,20,20,10)
```

mspe_FH_PR 3

mspe_FH_PR	MSPE estimation in FH model using Prasad-Rao method. Calculate the mspe of Fay-Herriot model in SAE using Prasad-Rao method.

Description

 $MSPE\ estimation\ in\ FH\ model\ using\ Prasad-Rao\ method.\ Calculate\ the\ mspe\ of\ Fay-Herriot\ model\ in\ SAE\ using\ Prasad-Rao\ method.$

Usage

```
mspe_FH_PR(m, p, X, beta, A, D, R)
```

Arguments

m	number of small areas
р	number of fixed model parameters
X	Covariates
beta	regression coefficients
A	variance of area-specific random effects
D	sampling variance
R	number of simulation runs

Value

Par: return estimation of model parameters

MSPE.TRUE.Final: return empirical MSPE of small area predictor

mspe.PR.Final: return mspe of small area predictor using the Prasad-Rao method

RB.PR: return relative bias (RB) of mspe of small area predictor using the Prasad-Rao method

```
{\tt mspe\_FH\_PR(20,3,matrix(runif(60,0,1),nrow=20,byrow=TRUE),c(1,1,1),10,2.5,10)}
```

4 mspe_FH_Sumca

mspe_FH_Sumca	MSPE estimation in FH model using SUMCA method. Calculate the mspe of Fay-Herriot model in SAE using Sumca method.

Description

MSPE estimation in FH model using SUMCA method. Calculate the mspe of Fay-Herriot model in SAE using Sumca method.

Usage

```
mspe_FH_Sumca(m, p, X, beta, A, D, K, R)
```

Arguments

m	number of small areas
p	number of fixed model parameters
Χ	covariates
beta	regression coefficients
A	variance of area-specific random effects
D	sampling variance
K	number of Monte Carlo for the SUMCA method
R	number of simulation runs

Value

Par: return estimation of model parameters

MSPE.TRUE.Final: return empirical MSPE of small area predictor

mspe.Sumca.Final: return mspe of small area predictor using the SUMCA method

RB.SUMCA: return relative bias (RB) of mspe of small area predictor using the SUMCA method

```
{\tt mspe\_FH\_Sumca(20,3,matrix(runif(60,0,1),nrow=20,byrow=TRUE),c(1,1,1),10,2.5,10,10)}
```

```
mspe_LOGISTIC_HealthData_BOOT
```

MSPE estimation in mixed logistic model (Health Insurance data) using bootstrap method. Calculate the mspe of mixed logistic model (Health Insurance data) using bootstrap method.

Description

MSPE estimation in mixed logistic model (Health Insurance data) using bootstrap method. Calculate the mspe of mixed logistic model (Health Insurance data) using bootstrap method.

Usage

```
mspe_LOGISTIC_HealthData_BOOT(
    m,
    p,
    n.new,
    y.new,
    cum.n.new,
    Xi,
    yi.tem,
    X.tem,
    county.tem,
    B
)
```

Arguments

m	number of domains
p	number of complete model parameters
n.new	sample size of each domain
y.new	response variable
cum.n.new	Cummulaticve sum of n
Xi	covariates
yi.tem	response variable for each individual
X.tem	Individual level covariates
county.tem	county
В	number of bootstrap iterations

Value

Par: return estimation of model parameters

Mu.hat: return prediction of domain parameters

mspe.boot: return mspe of small area (domain) predictor using the bootstrap method

sq.mspe.boot: return square root of mspe of small area predictor for non-zero domains using the bootstrap method

Examples

```
\label{eq:mspe_logistic_HealthData_Boot(20,3,c(2,1,2,2,1,2,3,1,1,3,1,3,2,3,3,1,2,1,3,3),c(3,4,2,2,3,3,4,3,4,1,4,1,3,5,4,7,1,3,1,2),c(2,3,5,7,8,10,13,14,15,18,19,22,24,27,30,31,33,34,37,40),\\ matrix(runif(60,0,1),nrow=20,byrow=TRUE),sample(c(0,1),replace=TRUE,40),\\ matrix(c(runif(40,7,10),runif(40,14,22),runif(40,2,4)),nrow=40,byrow=FALSE),\\ rep(1:20,each=2),10)
```

```
mspe_LOGISTIC_HealthData_JLW
```

MSPE estimation in mixed logistic model (Health Insurance data) using jackknife method. Calculate the mspe of mixed logistic model (Health Insurance data) using jackknife method.

Description

MSPE estimation in mixed logistic model (Health Insurance data) using jackknife method. Calculate the mspe of mixed logistic model (Health Insurance data) using jackknife method.

Usage

```
mspe_LOGISTIC_HealthData_JLW(
   m,
   p,
   n.new,
   y.new,
   Xi,
   yi.tem,
   cum.n.new,
   county.tem,
   X.tem
)
```

Arguments

```
m number of domains
p number of complete model parameters
n.new sample size of each domain
y.new response variable
Xi covariates for each domain
```

```
yi.tem response variable for each individual
```

cum.n.new Cummulative sum of n

county.tem county

X. tem Individual level covariates

Value

Par: return estimation of model parameters

Mu.hat: return prediction of domain parameters

mspe.JLW: return mspe of small area (domain) predictor using the jackknife method

sq.mspe.JLW: return square root of mspe of small area predictor for non-zero domains using the jackknife method

Examples

```
mspe_LOGISTIC_HealthData_SUMCA
```

MSPE estimation in mixed logistic model (Health Insurance data) using SUMCA method. Calculate the mspe of mixed logistic model (Health Insurance data) using SUMCA method.

Description

MSPE estimation in mixed logistic model (Health Insurance data) using SUMCA method. Calculate the mspe of mixed logistic model (Health Insurance data) using SUMCA method.

```
mspe_LOGISTIC_HealthData_SUMCA(
    m,
    p,
    n.new,
    y.new,
    Xi,
    cum.n.new,
    yi.tem,
    X.tem,
    county.tem,
    K
)
```

p number of complete model parameters

n.new sample size of each domain

y.new response variable

Xi covariates

cum.n.new Cummulative sum of n

yi.tem response variable for each individual

X. tem Individual level covariates

county.tem county

K number of Monte Carlo for the SUMCA method

Value

Par: return estimation of model parameters

Mu.hat: return prediction of domain parameters

mspe.Sumca: return mspe of small area (domain) predictor using the SUMCA method

sq.mspe.Sumca: return square root of mspe of small area predictor for non-zero domains using the SUMCA method

Examples

```
\label{eq:mspe_logistic_HealthData_SUMCA} $(20,3,c(2,1,2,2,1,2,3,1,1,3,1,3,2,3,3,1,2,1,3,3),c(3,4,2,2,3,3,4,3,4,1,4,1,3,5,4,7,1,3,1,2), \\ matrix(runif(60,0,1),nrow=20,byrow=TRUE),c(2,3,5,7,8,10,13,14,15,18,19,22,24,27,30,31,33,34,37,40),sample(c(0,1),replace=TRUE,40), \\ matrix(c(runif(40,7,10),runif(40,14,22),runif(40,2,4)),nrow=40,byrow=FALSE),rep(1:20,each=2),10)
```

mspe_MS_LOGISTIC_JLW

Model selection MSPE estimation in mixed logistic model using jackknife method. Calculate the model selection mspe of mixed logistic model using jackknife method.

Description

Model selection MSPE estimation in mixed logistic model using jackknife method. Calculate the model selection mspe of mixed logistic model using jackknife method.

```
mspe_MS_LOGISTIC_JLW(m, p, ni, X, beta, A, R)
```

m	number of small areas
р	number of complete model parameters
ni	sample size of each small area
Χ	covariates for the complete model
beta	regression coefficients of the complete model
Α	variance of area-specific random effects
R	number of simulation runs

Value

Par1: return estimation of model parameters of the complete model

Par2: return estimation of model parameters of the reduced model

MSPE: return empirical MSPE of small area predictor

mspe.JLW: return mspe of small area predictor using the jackknife method

RB.JLW: return relative bias (RB) of mspe of small area predictor using the jackknife method

BIC: return BIC of the complete and reduced models

Examples

```
\label{eq:mspe_MS_LOGISTIC_JLW} $$  \mbox{mspe_MS_LOGISTIC_JLW}(20,3,2,$$  \mbox{matrix}(runif(60,0,1),nrow=20,byrow=TRUE),c(1,1,1),10,2) $$
```

```
mspe_MS_LOGISTIC_SUMCA
```

Model selection MSPE estimation in mixed logistic model using SUMCA method. Calculate the model selection mspe of mixed logistic model using SUMCA method.

Description

Model selection MSPE estimation in mixed logistic model using SUMCA method. Calculate the model selection mspe of mixed logistic model using SUMCA method.

```
mspe_MS_LOGISTIC_SUMCA(m, p, ni, X, beta, A, K, R)
```

m	number of small areas
р	number of complete model parameters
ni	sample size of each small area
Χ	covariates for the complete model
beta	regression coefficients of the complete model
Α	variance of area-specific random effects
K	number of Monte Carlo for the SUMCA method
R	number of simulation runs

Value

Par1: return estimation of model parameters of the complete model

Par2: return estimation of model parameters of the reduced model

MSPE: return empirical MSPE of small area predictor

mspe.Sumca: return mspe of small area predictor using the SUMCA method

RB.SUMCA: return relative bias (RB) of mspe of small area predictor using the SUMCA method

BIC: return BIC of the complete and reduced models

Examples

```
\label{eq:mspe_MS_LOGISTIC_SUMCA(20,3,2,matrix(runif(60,0,1),nrow=20,byrow=TRUE),c(1,1,1),10,5,5)} \\
```

mspe_PMS_FH_DHM	Post model selection MSPE estimation in FH model using Datta-Hall-
	Mandal method. Calculate the post-model selection mspe of Fay-
	Herriot model using Datta-Hall-Mandal method.
	Trender model using Dania Transact memora.

Description

Post model selection MSPE estimation in FH model using Datta-Hall-Mandal method. Calculate the post-model selection mspe of Fay-Herriot model using Datta-Hall-Mandal method.

```
mspe_PMS_FH_DHM(m, p, X, beta, A, D, R)
```

m		number of small areas
р		number of fixed model parameters
Χ		covariates
bet	a	regression coefficients
Α		variance of area-specific random effects
D		sampling variance
R		number of simulation runs

Value

Par: return estimation of model parameters

MSPE.TRUE.Final: return empirical MSPE of small area predictor

mspe.DHM.Final: return mspe of small area predictor using the Datta-Hall-Mandal method

RB.DHM: return relative bias (RB) of mspe of small area predictor using the Datta-Hall-Mandal method

Rate: return the probability of rejection (nominal level= 0.2)

Examples

```
mspe_PMS_FH_DHM(20,3,matrix(runif(60,0,1),nrow=20,byrow=TRUE),
c(1,1,1),10,2.5,10)
```

mspe_PMS_FH_SUMCA

Post model selection MSPE estimation in FH model using SUMCA method. Calculate the post-model selection mspe of Fay-Herriot model using SUMCA method.

Description

Post model selection MSPE estimation in FH model using SUMCA method. Calculate the postmodel selection mspe of Fay-Herriot model using SUMCA method.

```
mspe_PMS_FH_SUMCA(m, p, X, beta, A, D, K, R)
```

m	number of small areas
p	number of fixed model parameters
X	covariates
beta	regression coefficients
A	variance of area-specific random effects
D	sampling variance
K	number of Monte Carlo for the SUMCA method
R	number of simulation runs

Value

Par: return estimation of model parameters

MSPE.TRUE.Final: return empirical MSPE of small area predictor

mspe.Sumca.Final: return mspe of small area predictor using the SUMCA method

RB.SUMCA: return relative bias (RB) of mspe of small area predictor using the SUMCA method

Examples

```
mspe_PMS_FH_SUMCA(20,3,matrix(runif(60,0,1),nrow=20,byrow=TRUE),c(1,1,1),10,2.5,10,10)
```

mspe_PMS_Mis_FH_DHM

Post model selection MSPE estimation in FH model with mean mis-specification using Datta-Hall-Mandal method. Calculate the post-model selection mspe of Fay-Herriot model with mean misspecification using Datta-Hall-Mandal method.

Description

Post model selection MSPE estimation in FH model with mean mis-specification using Datta-Hall-Mandal method. Calculate the post-model selection mspe of Fay-Herriot model with mean mis-specification using Datta-Hall-Mandal method.

```
mspe_PMS_Mis_FH_DHM(m, p, X, beta1, beta2, A, D, R)
```

m	number of small areas
р	number of fixed model parameters
X	covariates
beta1	regression coefficients
beta2	regression coefficients
Α	variance of area-specific random effects
D	sampling variance
R	number of simulation runs

Value

Par: return estimation of model parameters

MSPE.TRUE.Final: return empirical MSPE of small area predictor

mspe.DHM.Final: return mspe of small area predictor using the Datta-Hall-Mandal method

RB.DHM: return relative bias (RB) of mspe of small area predictor using the Datta-Hall-Mandal

method

Rate: return the probability of rejection (nominal level= 0.2)

Examples

```
mspe_PMS_Mis_FH_DHM(20,3,matrix(runif(60,0,1),nrow=20,byrow=TRUE),c(1,1,1),c(1,1,1),10,2.5,10)
```

mspe_PMS_Mis_FH_SUMCA Post model selection MSPE estimation in FH model with mean misspecification using SUMCA method. Calculate the post-model selection mspe of Fay-Herriot model with mean mis-specification using SUMCA method.

Description

Post model selection MSPE estimation in FH model with mean mis-specification using SUMCA method. Calculate the post-model selection mspe of Fay-Herriot model with mean mis-specification using SUMCA method.

```
mspe_PMS_Mis_FH_SUMCA(m, p, X, beta1, beta2, A, D, K, R)
```

m	number of small	areas
111	number of sinan	arcas

p number of fixed model parameters

X covariates

beta1 regression coefficient beta2 regression coefficient

A variance of area-specific random effects

D sampling variance

K number of Monte Carlo for the SUMCA method

R number of simulation runs

Value

Par: return estimation of model parameters

MSPE.TRUE.Final: return empirical MSPE of small area predictor

mspe.Sumca.Final: return mspe of small area predictor using the SUMCA method

RB.SUMCA: return relative bias (RB) of mspe of small area predictor using the SUMCA method

```
\label{eq:mspe_PMS_Mis_FH_SUMCA} $$ mspe_PMS_Mis_FH_SUMCA(20,3,matrix(runif(60,0,1),nrow=20,byrow=TRUE), c(1,1,1),c(1,1,1),10,2.5,10,10) $$
```

Index

```
mspe_FH_Boot, 2
mspe_FH_PR, 3
mspe_FH_Sumca, 4
mspe_LOGISTIC_HealthData_BOOT, 5
mspe_LOGISTIC_HealthData_JLW, 6
mspe_LOGISTIC_HealthData_SUMCA, 7
mspe_MS_LOGISTIC_JLW, 8
mspe_MS_LOGISTIC_SUMCA, 9
mspe_PMS_FH_DHM, 10
mspe_PMS_FH_SUMCA, 11
mspe_PMS_Mis_FH_DHM, 12
mspe_PMS_Mis_FH_SUMCA, 13
```