Computational Physics

Problem Set 6, October 7, 2025

Due: Monday, October 13, 2025 **by 11:59 PM**

Link to join GitHub classroom to submit homework solution: Click here.

Submit to the TA a link to the repository checked into your GitHub account containing a Jupyter Notebook including solutions for homework problems. The directory tree of the repository should include a directory for "homework" with subdirectories for each individual homework assignment.

You must label all axes of all plots, including the units if applicable.

1 Neutron Scattering Analysis (25%)

Table 1: Experimental values for a scattering cross section f(E).

i =	1	2	3	4	5	6	7	8	9
$E_i \text{ (MeV)}$	0	25	50	75	100	125	150	175	200
$f(E_i)$ (mb)	10.6	16.0	45.0	83.5	52.8	19.9	10.8	8.25	4.7

Use the data in Table 1 above.

- A) Write a script to perform Lagrange interpolation on the entire spectrum with one polynomial, i.e. fit all nine data points with an 8th-order polynomial. Do NOT use a pre-written code, such as scipy.interpolate.lagrange.
- B) Plot the points and the interpolating polynomial. Find the resonance energy E_r (the peak position) and Γ (the full-width at half-maximum) such that

$$\frac{df}{dE}\Big|_{E=E_r} = 0$$

$$f(E_r \pm \Gamma_\pm) = \frac{f(E_r)}{2}$$

$$\Gamma = \frac{\Gamma_+ + \Gamma_-}{2}.$$
(1)

Do not use numerical root-finding or optimization methods. Just read it from the plot with a precision of 2 significant figures. Compare this result with the theoretical prediction $(E_r, \Gamma) = (78,55)$ MeV. Does this match?

- C) Write a script to perform a Lagrange local interpolation using 3 points per interval.
- D) Make a new plot with the points and the new interpolation. Do E_r and Γ match the theory numbers better?

2 Inverse Power Distribution (25%)

In this problem you will code a random number generator for an inverse power law distribution given by

$$f(x) \propto \frac{1}{(1+x)^n} \tag{2}$$

where n > 1 and $0 < x < \infty$.

- A) Normalize f(x) for a general n > 1 over the denoted x range.
- B) Derive the transformation x(r) where x is drawn from f(x) and r is drawn from a uniform distribution U(0,1). Note: just providing r(x) is unacceptable.
- C) Write a script that draws random x from this distribution. Make a plot with a curve for the distribution and a histogram of 10,000 drawn values for n = 4. Does the histogram match the distribution f(x)?

3 Radioactive decay chain I (30%)

Exercise 10.2 in Newman (pg. 456).

4 Radioactive decay chain II (20%)

B) Exercise 10.4 in Newman (pg. 460).