HA1

Al-driven Recommendation system

Pitch Presentation

Group ID: HA1

Group Members: Manhong Chen a1904387

Zihan Luo a1916700

Ziyan Zhao a1883303

Jianing Dang a1882117

Jianghao Jin a1880849

Al-based Recommendation System **Outline** Project objective • Goals 02 Introduction **Progress** 01 03 Background Steps Motivation

Introduction

What is recommendation system?

Introduction

Why is recommendation system important?

Solve the Problem of Information Overload

Improve User Experience and Satisfaction

Increase Sales and Business Value

Introduction

What is Al?

Definition:

The technology of simulating human intelligent behavior by computer systems

Core Capabilities:

- learning
- reasoning
- self-correction

Practical Application:

- Medical industry: Analyze medical images to assist diagnosis
- Transportation industry: Autonomous driving
- Financial industry: Smart investment consulting; Fraud detection
- Website: Personalized recommendations

Introduction

Example 1

Netflix: As a film and television recommendation system

Example of RS

Example 2

Trip is a travel recommendation system

Example 3

Amazon, as a global ecommerce platform

Motivation

Al Recommend

User prefer User Information

Personalized service

Motivation

Key.1

Misalignment in agent expertise

The application failed because the user prepared wrong materials in vain

Key.3

Inexperienced agents are matched

Risk of misleading the applicant

Key.2

Poor communication or language barrier

Low communication efficiency and high risk of misunderstanding

Key.4

Remote unreachable proxies are recommended (time zone issues)

Unable to communicate smoothly, poor user experience

Motivation: Problem 1 - Information Overload

Problem Description:

- 7,000+ migration agents in Australia
- Different specializations, success rates, and fee structures
- Migrants face decision paralysis due to overwhelming choices

What will happen if not addressed:

- Weeks wasted researching
- X Higher visa rejection rates
- Wasted application fees
- iii Missed critical deadlines

Problem Description:

- No reliable verification of agent performance
- Success rates and expertise claims unverified
- Reliance on word-of-mouth without metrics

What will happen if not addressed:

- Selections based on marketing
- Premium fees to poor performers
- Unnecessary rejections
- 😞 Abandoned migration plans

Motivation: Problem 2 - Lack of Transparency

Case Presentation

Meet Andrew

Andrew's Challenge:

"With over 300 potential migration agents claiming expertise in skilled migration, how do I find the one best suited for my specific case?"

Andrew

8 years of experience

AU Seeking Skilled Migration visa

? Needs to find the right agent

Without a reliable system, Andrew risks:

- Choosing an agent with limited IT migration experience
- Wasting time researching without clear metrics
- Paying premium fees without guaranteed results

How Andrew Uses Our System

Details about occupation, experience, visa

Al Processing

4,000+ agents analyzed

Match Results

Top 3 specialized agents

Book consultation & apply

Results

Before vs After

BEFORE

- X Uncertain process
- X High rejection risk
- X Extra costs
- X Long delays

AFTER

- √ Streamlined process
- √ First-time approval
- √ Cost savings
- √ Clear timeline

Progress – Top 3 popular models

Neural Collaborative Filtering

- A deep learning-based approach
- Use neural networks to model user-item interactions
- complex, non-linear patterns

Light Graph Convolutional Network

- lightweight graph neural network model (GCN)
- Inheriting the neighbor information aggregation idea of GCN
- Improved computing efficiency

Deep Neural Networks

- Two-Tower Neural Network
- Multilayer nonlinear transformation
- The accuracy of the model

Data collection and generation

Progress

Comparison and Progress Literature Review Training and Testing Evaluation Recall@K Data preprocessing Existing models and algorithm Normalized Discounted **Focus** Training set: 80% data Cumulative Gain(NDCG)@K Their limitations and evaluations Testing set: 20% data Computing time 03 Milestones Model selection Top K recommendations for each Comparison of 3 models'

model

evaluations

Reference

Borràs, J., Moreno, A. and Valls, A. (2014). Intelligent tourism recommender systems: A survey. *Expert Systems with Applications*, [online] 41(16), pp.7370–7389. doi:https://doi.org/10.1016/j.eswa.2014.06.007.

Ferrari Dacrema, M., Cremonesi, P. and Jannach, D. (2019) "Are we really making much progress? A worrying analysis of recent neural recommendation approaches: A worrying analysis of recent neural recommendation approaches," in *Proceedings of the 13th ACM Conference on Recommender Systems*. New York, NY, USA: ACM.

Gomez-Uribe, C.A. and Hunt, N. (2015). The Netflix recommender system: Algorithms, business value, and innovation. *ACM Transactions on Management Information Systems*, [online] 6(4), pp.1–19. doi:https://doi.org/10.1145/2843948.

He, X, Deng, K, Wang, X, Li, Y, Zhang, Y & Wang, M 2020, 'LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation', arXiv (Cornell University), Cornell University.

He, X. et al. (2017) "Neural Collaborative Filtering," in *Proceedings of the 26th International Conference on World Wide Web*. Republic and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee.

Ko, H. *et al.* (2022) "A survey of recommendation systems: Recommendation models, techniques, and application fields," *Electronics*, 11(1), p. 141. Available at: https://doi.org/10.3390/electronics11010141.

Liang, D. et al. (2018) "Variational Autoencoders for Collaborative Filtering," arXiv [stat.ML]. Available at: http://arxiv.org/abs/1802.05814.

Linden, G., Smith, B. and York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. *IEEE Internet Computing*, 7(1), pp.76–80. doi:https://doi.org/10.1109/mic.2003.1167344.

Reference

Ong, K., Haw, S.-C. and Ng, K.-W. (2019) "Deep learning based-recommendation system: An overview on models, datasets, evaluation metrics, and future trends," in *Proceedings of the 2019 2nd International Conference on Computational Intelligence and Intelligent Systems*. New York, NY, USA: ACM.

Rendle, S. et al. (2020) "Neural collaborative filtering vs. Matrix factorization revisited," in Fourteenth ACM Conference on Recommender Systems. New York, NY, USA: ACM.

Resnick, P. and Varian, H.R. (1997) "Recommender systems," *Communications of the ACM*, 40(3), pp. 56–58. Available at: https://doi.org/10.1145/245108.245121.

Wang, X. et al. (2019) "Neural graph collaborative filtering," in *Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval*. New York, NY, USA: ACM.

Wu, S, Sun, F, Zhang, W, Xie, X & Cui, B 2022, 'Graph Neural Networks in Recommender Systems: A Survey', ACM Computing Surveys.

Yu, J, Yin, H, Xia, X, Chen, T, Cui, L & Hung 2021, 'Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for Recommendation', arXiv (Cornell University), Cornell University.

Zhang, L., Luo, T., Zhang, F. and Wu, Y. (2018). A Recommendation Model Based on Deep Neural Network. *IEEE Access*, 6, pp.9454–9463. doi:https://doi.org/10.1109/access.2018.2789866.