Variant calling in Exome-seq data using Varscan

Elodie Girard

U900 INSERM - Mines ParisTech - Institut Curie

ITMO Roscoff – 11/19/2013

Dataset

- Public data: exome sequenced by the International HapMap Project
- Single-end reads of 100bp, Illumina Genome Analyzer IIx
- RNA-seq data of this exome available (Pickrell et al., Nature, 2010)

Objectives of the workshop:

- Variant calling, filtering and annotation in exome-seq data
- Observing the potential impact of these variants by looking at the corresponding RNA-seq data

Objectif of this session:

Variant detection using Varscan

Workflow

Galaxy: summary of the previous steps

Tools

All the tools are in the left panel: Mardi 19 Détection de variants VarScan

Mardi 19 Detection de variants VarScan

VarScan analysis.

POSTPROCESS TOOLS

Tag and merge multiple VarScan analysis

VarScan compare Compare two varscan results files (intersect / merge / unique).

VarScan Filter To filter a varscan input file.

Filter SNPs on same ref position

SAM TOOLS

MPileup SNP and indel caller

Pileup

• Pileup format: describes the base-pair information at each position

Reference base

Base qualities

Number of reads covering the site (total depth)

Read bases:

t,,T,T,tttt^F.^F.

. / , = match on forward/reverse strand

ACGTN / acgtn = mismatch on forward/reverse strand

`-\+[0-9]+[ACGTNacgtn]+' indicates an indel

Mpileup

MPileup (version 0.0.1)

Choose the source for the reference list:

History 1: History

BAM files

BAM file: 2 : Select the bam

14: pickrell.rmdup.RG.real.recab.bam

Add new BAM file

Using reference file:

5: chr12.fa : chr12.fa

Genotype Likelihood Computation:

Do not perform genotype likelihood computation

Set advanced options: 4 : Set Advanced

Advanced • options

Minimum mapping quality for an alignment to be used:

4 - 5: MapQ = 20

Minimum base quality for a base to be considered:

13

Only generate pileup in region:

chr12:1128! ← 6 : Region

chr12:112850000-113395000

Output per-sample Phred-scaled strand bias P-value:

Execute 7: Execute

VarScan

- Mutation caller written in Java (no installation required) working with
 Pileup files of Targeted, Exome, and Whole-Genome sequencing data
- Multi-platforms: Illumina, SOLiD, Life/PGM, Roche/454
- Detection of different kinds of variants (SNVs/Indels) :
 - Germline variants in individual samples
 - Multi-sample variants shared or private in multi-sample datasets
- VarScan specificity is to be able to work with Tumor/Normal pairs:
 - Somatic and germline mutation, LOH events in tumor-normal pairs
 - Somatic copy number alterations (CNAs) in tumor-normal exome data

VarScan

- Most published variant callers use Bayesian statistics (a probabilistic framework) to detect variants and assess confidence in them (e.g.: GATK)
- VarScan uses a robust heuristic/statistic approach to call variants that meet desired thresholds for read depth, base quality, variant allele frequency, and statistical significance
- In Stead et al. (2013), they compared 3 different somatic callers: MuTect,
 Strelka, VarScan2
 - VarScan2 performed best overall with sequencing depths of 100x, 250x, 500x and 1000x required to accurately identify variants present at 10%, 5%, 2.5% and 1% respectively

VarScan

- 2 types: VCF and Tabulated Formats VarScan Specific
 - VCF output might not work with some filtering or annotating tools
- VarScan VCF format: classic VCF header (#) but specific variant lines

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	GENO
chr12	250239		А	G	20		ADP=104;WT=0; HET=1 ;HOM=0; NC=0	FREO:	0/1:153:111:104:61:43: 41,35%: 4,5644E-16:38:32: 48:13:36:7

ADP = Average per-sample depth of bases with Phred score = 20 WT = Number of samples called reference (wild-type)

HET = Number of samples called heterozygous-variant

HOM = Number of samples called homozygous-variant

NC = Number of samples not called

- 2 types: VCF and Tabulated Formats VarScan Specific
 - VCF output might not work with some filtering or annotating tools
- VarScan VCF format: classic VCF header (#) but specific variant lines

l i	1	1 1	1 1		l	1 1			
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	GENO
chr12	250239		Α	G	20	1	ADP=104;WT=0; HET=1;HOM=0;	FRFO.	0/1 :153:111: 104 : 61:43 : 41,35 %:
CHITZ	230239	•	Α .	G	20	FASS	NC=0	PVAL:RBQ:ABQ: RDF:RDR:ADF:ADR	4,5644E-16:38:32: 48:13:36:7

GT=Genotype (1/1: Homozygous ; 0/1 : Heterozygous) / GQ= Genotype Quality

SDP= Raw Read Depth as reported by SAMtools

DP= Quality Read Depth of bases with Phred score >= 20

RD= Depth of reference-supporting bases

AD= Depth of variant-supporting bases

FREQ= Variant allele frequency

- 2 types: VCF and Tabulated Formats VarScan Specific
 - VCF output might not work with some filtering or annotating tools
- VarScan VCF format: classic VCF header (#) but specific variant lines

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	GENO
			_				ADP=104;WT=0;	FRFO:	0/1:153:111:104:61:43: 41.35%:
chr12	250239		A	G	20	PASS	HET=1;HOM=0; NC=0	PVAL:RBQ:ABQ: RDF:RDR:ADF:ADR	4,5644E-16:38:32: 48:13:36:7

PVAL= P-value from Fisher's Exact Test (not computed here : default value)

RBQ= Average quality of reference-supporting bases

ABQ= Average quality of variant-supporting bases

RDF / RDR= Depth of reference-supporting bases on forward/reverse strand

ADF / ADR = Depth of variant-supporting bases on forward/reverse strand

- 2 types: VCF and Tabulated Formats VarScan Specific
 - VCF output might not work with some filtering or annotating tools
- VarScan VCF format: classic VCF header (#) but specific variant lines

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	GENO
			_				ADP=104;WT=0;	FRFO:	0/1:153:111:104:61:43: 41.35%:
chr12	250239		A	G	20	PASS	HET=1;HOM=0; NC=0	PVAL:RBQ:ABQ: RDF:RDR:ADF:ADR	4,5644E-16:38:32: 48:13:36:7

PVAL= P-value from Fisher's Exact Test (not computed here : default value)

RBQ= Average quality of reference-supporting bases

ABQ= Average quality of variant-supporting bases

RDF / RDR= Depth of reference-supporting bases on forward/reverse strand

ADF / ADR = Depth of variant-supporting bases on forward/reverse strand

VarScan Tabulated Format

- 2 types: VCF and Tabulated Formats VarScan Specific
 - Tabulated output works with other VarScan Tools
 - > By default on Galaxy, VarScan outputs a line for each base covered by the selected minimum coverage even if there is no alternative variant
 - → Pre-process: use « VarScan Filter » to keep only variants

VarScan Tabulated Format

Chrom	Position	Re	Cons	Reads1	Reads2	VarFreq	Strands 1	Strands 2	Qual1	Qual2	Pvalue	Map Qual1	Map Qual2	R1 +	R1 -	R2 +	Rs2 -	Alt
chr12	113348849	С	Υ	31	30	49.18%	2	2	27	27	0.98	1	1	19	12	25	5	Т
chr12	113354329	G	R	72	2	2.70%	2	2	31	26	0.98	1	1	48	24	1	1	Α
chr12	113357193	G	Α	2	72	97.30%	1	2	28	24	0.98	1	1	2	0	45	27	Α
chr12	113357209	G	Α	0	77	100%	0	2	0	29	0.98	0	1	0	0	51	26	Α

Cons: Consensus Genotype of Variant Called (IUPAC code):

M -> A or C	Y -> C or T	D -> A or G or T	W -> A or T	V -> A or C or G
R -> A or G	K -> G or T	B -> C or G or T	S -> C or G	H -> A or C or T

Variants visualization with IGV

Look at those two variants:

				Reads	Reads		Strands	Strands	Qual			Мар	Мар	R1	R1	R2	Rs2	
Chrom	Position	Ref	Cons	1	2	VarFreq	1	2	1	Qual2	Pval	Qual1	Qual2	+	_	+		Alt
chr12	113357193	G	Α	2	72	97.30%	1	2	28	24	0.98	1	1	2	0	45	27	Α
chr12	112888239	С	Υ	52	56	51.85%	2	2	24	28	0.98	1	1	20	32	24	32	T

Variants visualization with IGV

				Reads	Reads		Strands	Strands	Qual			Мар	Мар	R1	R1	R2	Rs2	
Chrom	Position	Ref	Cons	1	2	VarFreq	1	2	1	Qual2	Pval	Qual1	Qual2	+	-	+	-	Alt
chr12	113357193	G	Α	2	72	97.30%	1	2	28	24	0.98	1	1	2	0	45	27	Α

Variants visualization with IGV

											_	_		_				
				Reads	Reads		Strands	Strands	Qual			Мар	Мар	R1	R1	R2	Rs2	ı
Chrom	Position	Ref	Cons	1	2	VarFreq	1	2	1	Qual2	Pval	Qual1	Qual2	+	_	+	-	Alt
chr12	112888239	C	Υ	52	56	51.85%	2	2	24	28	0.98	1	1	20	32	24	32	Т

Next Step

