Exercices de Calcul numérique matriciel

NB: chaque question est notée sur 2 points.

Exercice 1 Soit le système linéaire, de matrice notée A, suivant :

$$\begin{cases} 3x - 7y - 2z &= -7 \\ -3x + 5y + z &= 5 \\ 6x - 4y &= 2 \end{cases}$$
 (1)

QCM 1 (Choisir la bonne réponse)

la matrice A est factorisable par LU ? Pourquoi?

- 1. \square Oui, car toutes les sous-matrices principales d'ordre 1 à n-1 sont diagonales,
- 2. \square Oui, car toutes les sous-matrices principales d'ordre 1 à n-1 sont inversibles,
- 3. \square Non, car la sous-matrices principale d'ordre 3 est inversibles,
- 4. \square Non, car les valeurs propres de A sont non nuls,
- 5. □ Pas de bonne réponse.

QCM 2 (Choisir la bonne réponse)

Déterminer la factorisation de LU de A.

1.
$$\Box L = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -5 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 3 & -7 & -2 \\ 0 & -2 & -2 \\ 2 & -5 & 1 \end{pmatrix}$$

2.
$$\Box L = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -5 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 3 & -7 & -2 \\ 0 & -2 & -2 \\ 0 & 0 & -6 \end{pmatrix}$$

3.
$$\Box L = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -5 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} -1 & -7 & -2 \\ 0 & -2 & -2 \\ 2 & -5 & 1 \end{pmatrix}$$

4.
$$\Box L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 5 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 3 & -7 & -2 \\ 0 & -2 & -2 \\ 2 & -5 & 1 \end{pmatrix}$$

5. □ Pas de bonne réponse.

Exercice 2 Soit le système linéaire, de matrice notée A, suivant :

$$\begin{cases} 9x - 2y + z &= 13\\ -1x + 5y - z &= 9\\ x - 2y + 9z_1 &= -11 \end{cases}$$
 (2)

GCM 3 (Choisir la bonne réponse)

Calculer la matrice d'itération T_{GC} de la méthode de Gauss-Seidel.

1. $\Box T_{GC} = \begin{pmatrix} 0 & \frac{2}{9} & -\frac{1}{9} \\ \frac{1}{5} & 0 & \frac{1}{5} \\ -\frac{1}{9} & \frac{2}{9} & 0 \end{pmatrix}$

2. $\Box T_{GC} = \begin{pmatrix} 0 & \frac{2}{9} & -\frac{1}{9} \\ \frac{3}{5} & 0 & \frac{1}{5} \\ -\frac{1}{9} & \frac{2}{9} & 0 \end{pmatrix}$

- 3. $\Box T_{GC} = \begin{pmatrix} 0 & \frac{2}{9} & -\frac{1}{9} \\ \frac{1}{5} & 0 & \frac{1}{5} \\ -\frac{5}{9} & \frac{2}{9} & 0 \end{pmatrix}$
- 4. $\Box T_{GC} = \begin{pmatrix} 0 & \frac{2}{7} & -\frac{1}{9} \\ \frac{3}{5} & 0 & \frac{1}{5} \\ -\frac{1}{9} & \frac{2}{9} & 0 \end{pmatrix}$
- 5. □ Pas de bonne réponse.

QCM 4 (Choisir la bonne réponse)

La méthode de Gauss-Seidel converge

- 1. □ Vrai,
- 2. □ faux.

QCM 5 (Choisir la bonne réponse)

La méthode de Jacobi, lorsqu'elle converge, converge de manière plus rapide que celle de Gauss-Seidel.

- 1. □ Vrai,
- 2. □ faux.

QCM 6 (Choisir la bonne réponse)

Considérons la matrice suivante.

$$A = \left(\begin{array}{rrr} 3 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 3 \end{array}\right)$$

est convergente car

- 1. \square A est symétrique définie positive,
- 2. $\it A$ n'est oas à diagonale dominante
- 3. \square A est une matrice inversible,
- 4. \square Pas de bonne réponse.

Exercices: Jacobi et Gauss-Seidel 1

Analyser la convergence des méthodes de Jacobi et Gauss-Seidel pour la résolution d'un système linéaire associé à la matrice

$$A = \left(\begin{array}{ccc} \alpha & 0 & 1\\ 0 & \alpha & 0\\ 1 & 0 & \alpha \end{array}\right)$$

QCM 7 (Choisir la bonne réponse)

Déterminer la matrice d'itération de la méthode de Jacobi pour résoudre le système Ax = b.

1.
$$\Box$$

$$B_J = \begin{pmatrix} \alpha & 1 & \alpha \\ 0 & \alpha & 0 \\ 1 & 0 & \alpha \end{pmatrix}$$

$$\Box
B_{J} = \begin{pmatrix}
\alpha & 1 & \alpha \\
0 & \alpha & 0 \\
1 & 0 & \alpha
\end{pmatrix}$$
2.
$$\Box
B_{J} = \begin{pmatrix}
0 & 0 & -\alpha^{-1} \\
0 & 2\alpha & 0 \\
0 & 0 & \alpha^{-1}
\end{pmatrix}$$
3.
$$\Box
B_{J} = \begin{pmatrix}
0 & 0 & 2\alpha^{-1} \\
\alpha & 0 & 0 \\
0 & 0 & \alpha^{-1}
\end{pmatrix}$$

3.
$$\Box$$

$$B_J = \begin{pmatrix} 0 & 0 & 2\alpha^{-1} \\ \alpha & 0 & 0 \\ 0 & 0 & \alpha^{-1} \end{pmatrix}$$

4.
$$\Box$$

$$B_{J} = \begin{pmatrix} 0 & 0 & -\alpha^{-1} \\ 0 & 0 & 0 \\ -\alpha^{-1} & 0 & 0 \end{pmatrix}$$
5. \Box Pas de bonne réponse.

QCM 8 (Choisir la bonne réponse)

Déterminer la matrice d'itération de la méthode de Gauss-Seidel pour résoudre le système Ax = b.

1.
$$B_{GS} = \begin{pmatrix} 0 & 0 & -\alpha^{-1} \\ 0 & 2\alpha & 0 \\ 0 & 0 & \alpha \end{pmatrix}$$

2.
$$\Box B_{GS} = \begin{pmatrix} 0 & 0 & -\alpha^{-1} \\ 0 & 0 & 0 \\ 0 & 0 & \alpha^{-1} \end{pmatrix}$$

$$B_{GS} = \begin{pmatrix} 0 & 0 & -\alpha^{-1} \\ 0 & 2\alpha & 0 \\ 0 & 0 & \alpha \end{pmatrix} \qquad B_{GS} = \begin{pmatrix} 0 & 0 & -\alpha^{-1} \\ 0 & 0 & 0 \\ 0 & 0 & \alpha^{-1} \end{pmatrix} \qquad B_{GS} = \begin{pmatrix} 0 & 0 & -\alpha^{2} \\ 0 & 0 & 0 \\ \alpha & 0 & \alpha^{-1} \end{pmatrix}$$

4.
$$\Box$$

$$B_{GS} = \begin{pmatrix} 0 & 0 & -\alpha^{-1} \\ 0 & 0 & 0 \\ 0 & 0 & -\alpha^{-2} \end{pmatrix}$$
5. \Box Pas de bonne réponse.

QCM 9 (Choisir la bonne réponse)

Donner une relation entre $\rho(B_J)$ et $\rho(B_{GS})$

1.
$$\Box \rho(B_{GS}) = \rho(B_J)^2$$

$$2. \ \Box \rho(B_{GS}) = 2\rho(B_J),$$

1.
$$\Box \rho(B_{GS}) = \rho(B_J)^2$$
, 2. $\Box \rho(B_{GS}) = 2\rho(B_J)$, 3. $\Box \rho(B_{GS}) = \sqrt{\rho(B_J)^3}$,

4.
$$\Box \rho(B_{GS}) = \frac{3}{2}\rho(B_J)$$

4. $\Box \rho(B_{GS}) = \frac{3}{2}\rho(B_J)$, 5. \Box Pas de bonne réponse.

QCM 10 (Choisir la bonne réponse)

La méthode de Jacobi et de Gauss-Seidel convergent si

1.
$$\Box |\alpha| < 1$$
,

2.
$$\Box |\alpha| > 1$$
,

3.
$$\square |\alpha| < \frac{1}{2}$$

4.
$$\square |\alpha| < \sqrt{2}$$
,

3