08 RelationsCS201 Discrete Mathematics

Instructor: Shan Chen

Relations and Their Properties

Binary Relations

- **Definition:** Let A, B be two sets. A binary relation R from A to B is a subset of the Cartesian product $A \times B$.
 - By definition, a binary relation $R \subseteq A \times B$ is a set of ordered pairs of the form (a, b) with $a \in A$ and $b \in B$.
 - We use a R b to denote $(a, b) \in R$, and a R b to denote $(a, b) \notin R$.
- Example: Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$
 - Is R = {(a, 1), (b, 2), (c, 2)} a relation from A to B?
 Yes
 - Is Q = {(1, a), (2, b)} a relation from A to B?
 No, it's a relation from B to A
 - Is P = {(a, a), (b, c), (b, a)} a relation from A to A?
 Yes

Visualizing Binary Relations

- We can visually represent a binary relation R:
 - as a graph: if a R b, then draw an arrow from a to b: $a \rightarrow b$
 - as a table: if a R b, then mark the table cell at (a, b)
- Example: $A = \{0, 1, 2\}, B = \{a, b\}, R = \{(0, a), (0, b), (1, a), (2, b)\}.$

R	а	b
0	×	×
1	×	
2		×

Relations vs Functions

- Functions can also be visualized as graphs, but they map each element in the domain to exactly one element in the codomain.
- Relations are able to represent one-to-many relationships between elements in A and B.
- Relations are a generalization of graphs of functions.

Relations between Finite Sets

Theorem: There are 2^{nm} binary relations from an n-element set A to an m-element set B.

Proof:

- The cardinality of the Cartesian product $|A \times B| = nm$.
- R is a binary relation from A to B if and only if $R \subseteq A \times B$.
- The number of subsets of a set with nm elements is 2nm.
- Matrix representation: A relation R between finite sets can be represented using a zero—one matrix M_R.

$$\mathbf{M}_R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Relations on a Set

- Definition: A relation on a set A is a relation from A to A.
- o Example: Let $A = \{1, 2, 3, 4\}$ and $R_{div} = \{(a, b) : a \mid b\}$
 - What does R_{div} consist of?

$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

R	1	2	3	4
1	×	×	×	×
2		×		×
3			×	
4				×

- Reflexive relation: A relation R on a set A is called reflexive if
 (a, a) ∈ R for every element a ∈ A.
- \circ Example: consider relations on $A = \{1, 2, 3, 4\}$
 - Is R_{div} = {(a, b) : a | b} reflexive?
 Yes, because (1, 1), (2, 2), (3, 3), (4, 4) ∈ R_{div}
 - Is R = {(1, 2), (2, 2), (3, 3)} reflexive?
 No, because (1, 1), (4, 4) ∉ R
- A relation R is reflexive if and only if M_R has 1 in every position on its main diagonal.

- Irreflexive relation: A relation R on a set A is called irreflexive if
 (a, a) ∉ R for every element a ∈ A.
- \circ Example: consider relations on $A = \{1, 2, 3, 4\}$
 - Is R_≠ = {(a, b) : a ≠ b} irreflexive?
 Yes, because (1, 1), (2, 2), (3, 3), (4, 4) ∉ R_≠
 - Is R = {(1, 2), (2, 2), (3, 3)} irreflexive?
 No, because (2, 2), (3, 3) ∈ R * actually R is not reflexive either
- A relation R is irreflexive if and only if M_R has 0 in every position on its main diagonal.

- Symmetric Relation: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.
- \circ Example: consider relations on $A = \{1, 2, 3, 4\}$
 - Is R_{div} = {(a, b) : a | b} symmetric?
 No, because (1, 2) ∈ R_{div} but (2, 1) ∉ R_{div}
 - Is R_≠ = {(a, b) : a ≠ b} symmetric?
 Yes, because if (a, b) ∈ R_≠ then (b, a) ∈ R_≠
- \circ A relation R is symmetric if and only if M_R is symmetric.

- Antisymmetric Relation: A relation R on a set A is called antisymmetric if $(b, a) \in R$, $(a, b) \in R$ implies a = b for all $a, b \in A$.
- \circ Example: consider relations on $A = \{1, 2, 3, 4\}$
 - Is R = {(1, 2), (2, 2), (2, 1), (3, 3)} antisymmetric?
 No, because both (1, 2) ∈ R and (2, 1) ∈ R but 1 ≠ 2
 - Is R = {(2, 2), (3, 3)} antisymmetric?
 Yes * actually R is also symmetric
- A relation R is antisymmetric if and only if $m_{ij} = 1$ implies $m_{ji} = 0$ for $i \neq j$, where m_{ij} is the (i, j)-th element of M_R .

- Transitive Relation: A relation R on a set A is called transitive if $(a, b) \in R$, $(b, c) \in R$ implies $(a, c) \in R$ for all $a, b, c \in A$.
- \circ Example: consider relations on $A = \{1, 2, 3, 4\}$
 - Is R_{div} = {(a, b) : a | b} transitive?
 Yes, because if a | b and b | c then a | c
 - Is R_≠ = {(a, b) : a ≠ b} transitive?
 No, because (1, 2), (2, 1) ∈ R_≠ but (1, 1) ∉ R_≠
 - Is R = {(1, 2), (2, 2), (3, 3)} transitive?
 Yes

Representing Relations

Recall that a relation can be represented as a directed graph:

Exercise (5 mins)

- Consider binary relations on a finite set A with |A| = n: Hint: think of a binary relation as a zero-one matrix
 - How many reflexive relations?
 - How many irreflexive relations?
 - How many symmetric relations?
 - How many antisymmetric relations?
 - O **Theorem:** There are 2^{nm} binary relations from an n-element set A to an m-element set B.
 - Proof:
 - The cardinality of the Cartesian product $|A \times B| = nm$.
 - R is a binary relation from A to B if and only if $R \subseteq A \times B$.
 - The number of subsets of a set with nm elements is 2^{nm}.

Combining Relations

- Since relations are sets, we can combine relations via set operations: union, intersection, complement, difference, etc.
- \circ Example: consider relations from $A = \{1, 2, 3\}$ to $B = \{u, v\}$
 - $R_1 = \{(1,u), (2,u), (2,v), (3,u)\}, R_2 = \{(1,v), (3,u), (3,v)\}$
 - What is $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 R_2$, $R_2 R_1$?
- We may also combine relations by matrix operations.
 - One can get R₁ ∩ R₂ from element-wise and: M_{R1} ∧ M_{R2}
 - What about other set operations?

Composite of Relations

○ **Definition:** Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and $c \in C$ and for which there exists a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Composite of Relations

- **Definition:** Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and $c \in C$ and for which there exists a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.
- Example: let $A = \{1, 2\}, B = \{1, 2, 3\}, C = \{a, b\}$
 - $R = \{(1, 2), (1, 3), (2, 1)\}, S = \{(1, a), (3, a), (3, b)\}$ $S \circ R = \{(1, a), (1, b), (2, a)\}$

$$M_R = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & M_S & = \begin{pmatrix} 0 & 0 & 0 & M_R \odot M_S = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Composite of Relations

- O **Definition:** Let R be a relation on the set A. The powers R^n for n = 1, 2, 3, ... is defined inductively by $R^1 = R$ and $R^{n+1} = R^n \circ R$.
- Example: Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$
 - $R^1 = R$
 - $R^2 = R \circ R = \{(1, 3), (1, 4), (2, 3), (3, 3)\}$
 - $R^3 = R^2 \circ R = \{(1, 3), (2, 3), (3, 3)\}$
 - $R^4 = R^3 \circ R = \{(1, 3), (2, 3), (3, 3)\}$
 - $R^{k} = ? \text{ for } k > 4$

Transitive Relation and Rⁿ

○ **Theorem:** The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

Proof:

- "if" part: In particular, $R^2 \subseteq R$. If $(a, b) \in R$ and $(b, c) \in R$, then by the definition of composition, we have $(a, c) \in R^2 \subseteq R$.
- "only if" part: by induction.

n-ary Relations

n-ary Relations

- **Definition:** An *n*-ary relation R on sets $A_1, A_2, ..., A_n$, written as $R: A_1, ..., A_n$, is a subset $R \subseteq A_1 \times \cdots \times A_n$.
 - The sets A_i s are called the domains of R.
 - The degree of *R* is *n*.
 - R is functional in domain A_i if for any a_i ∈ A_i the relation R contains at most one n-tuple of the form (···, a_i, ···).
- Some ways to represent *n*-ary relations:
 - as an explicit list or table of its tuples
 - as a function from the domain to {T, F}

Relational Databases

- A relational database is essentially an n-ary relation R.
- A domain A_i is a primary key for the database if the relation R is functional in A_i.
- o A composite key for the database is a set of domains $\{A_i, A_j, \dots\}$ such that R contains at most one n-tuple $(\dots, a_i, \dots, a_j, \dots)$ for each composite value $(a_i, a_j, \dots) \in A_i \times A_j \times \dots$.

Entity-Relationship (ER) Diagrams

Selection Operators

- o Let *A* be an *n*-ary domain $A = A_1 \times \cdots \times A_n$, and let *C* : $A \rightarrow \{T, F\}$ be any condition (predicate) on elements (*n*-tuples) of *A*.
- The selection operator s_C is the operator that maps any (n-ary) relation R on A to the n-ary relation of all n-tuples from R that satisfy C.
 - $\forall R \subseteq A, s_C(R) = R \cap \{a \in A \mid C(a) = T\} = \{a \in R \mid C(a) = T\}$
- Example: consider A = StudentName × Standing × SocSecNos
 - Condition UpperLevel(name, standing, ssn) is defined as (standing = junior) \(\text{(standing = senior)} \)
 - Then, sUpperLevel is the selection operator that takes any relation R on A (database of students) and produces a relation consisting of just the upper-level classes (juniors and seniors).

Projection Operators

- Let A be an n-ary domain $A = A_1 \times \cdots \times A_n$ and $\{i_k\} = (i_1, \ldots, i_m)$ be a sequence of indices all falling in the range 1 to n.
- o The projection operator $P_{\{i_k\}}: A \to A_{i_1} \times \cdots \times A_{i_m}$ is defined by $P_{\{i_k\}}(a_1, \dots, a_n) = (a_{i_1}, \dots, a_{i_m})$
- Example: consider a ternary domain Cars = Model × Year × Color
 - Index sequence $\{i_k\} = \{1, 3\}$
 - Then the projection $P_{\{i_k\}}$ simply maps each tuple, e.g., $(a_1, a_2, a_3) = (Tesla, 2020, black)$ to its image: $(a_{i_1}, a_{i_2}) = (a_1, a_3) = (Tesla, black)$
 - This operator can be applied to any relation *R* ⊆ *Cars* to obtain a list of model-color combinations available.

Join Operators

- A joint operator puts two relations together to form a sort of combined relation.
- o If the tuple (a, b) appears in R_1 , and the tuple (b, c) appears in R_2 , then the tuple (a, b, c) appears in the join $J(R_1, R_2)$.
- Note that a, b, c each can also be a sequence of elements rather than a single element.
- Example:
 - Let R₁ be a teaching assignment table, relating Professors to Courses.
 - Let R₂ be a room assignment table, relating Courses to Rooms and Times.
 - Then, *J*(*R*₁, *R*₂) is like your class schedule, listing tuples of the form (professor, course, room, time).

Closures of Relations

Closures of Relations

- Properties of Relations:
 - reflexive
 - symmetric
 - transitive
- Closures of Relations:
 - reflexive closures
 - symmetric closures
 - transitive closures

Example: Reflexive Closures

- \circ Let $R = \{(1,1), (1,2), (2,1), (3,2)\}$ on $A = \{1, 2, 3\}$.
- Is this relation R reflexive?
 - No. (2, 2) and (3, 3) are not in R.
- \circ What is the minimal relation $S \supseteq R$ that is reflexive?
 - How to make R reflexive by adding minimum number of pairs?
 Add (2, 2) and (3, 3)
 Then S = {(1,1), (1,2), (2,1), (3,2), (2,2), (3,3)} ⊇ R is reflexive.
- \circ The minimal set $S \supseteq R$ is called the reflexive closure of R.
- What about an irreflexive closure? Does this make sense?

Definition of Closures

• Definition: Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is the minimal set containing R satisfying the property P, i.e., S ⊆ Q for every relation Q that contains R and satisfies P.

• Examples:

- reflexive closure * see the example we just showed
- symmetric closure: R = {(1,2), (1,3), (2,2)} on A = {1, 2, 3}
 How to make it symmetric?
 R = {(1,2), (1,3), (2,2)} ∪ {(2,1), (3,1)}
- transitive closure: R = {(1,2), (2,2), (2,3)} on A = {1, 2, 3}
 How to make it transitive?
 S = {(1,2), (2,2), (2,3)} ∪ {(1,3)}

Transitive Closures and Paths

- **Definition:** A (directed) path from a to b in a directed graph G is a sequence of edges (x_0, x_1) , (x_1, x_2) , ..., (x_{n-1}, x_n) in graph G, where $n \ge 0$, $x_0 = a$ and $x_n = b$.
- Recall that we can represent a relation using a directed graph.
 Then, finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path.
- Example: $R = \{(1,2), (2,2), (2,3)\}$ on $A = \{1, 2, 3\}$
 - transitive closure: $S = \{(1,2), (2,2), (2,3), (1,3)\}$

Relations and Paths

- **Theorem:** Let R be relation on a set A. There is a path of length n from a to b if and only if $(a, b) \in R^n$.
- Proof by induction:

Exercise (5 mins)

O Show that "If R is transitive, then R" is also transitive."

Theorem: Let R be relation on a set A. There is a path of length n from a to b if and only if (a, b) ∈ Rⁿ.

Proof by induction:

The Connectivity Relation

O **Definition:** *R* is a relation on a set *A*. The connectivity relation *R** consists of all pairs (*a*, *b*) such that there is a path (of any length) from *a* to *b* in *R*.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

- \circ Example: consider a relation R on $A = \{1, 2, 3, 4\}$
 - $R = \{(1, 2), (1, 4), (2, 3), (3, 4)\}$
 - $R^2 = \{(1, 3), (2, 4)\}$
 - $R^3 = \{(1, 4)\}$
 - $R^4 = \emptyset$

Transitive Closures

- Theorem: The transitive closure of a relation R equals the connectivity relation R*.
- Proof:
 - R^* is transitive * view (a, b) $\in R^*$ as pairs connected a path in R
 - R* ⊆ S whenever S is a transitive relation containing R
 Since S is a transitive relation, we have Sⁿ ⊆ S. * already proved
 Therefore, S* ⊆ S and hence R* ⊆ S* ⊆ S.

Finding Transitive Closures

- Recall that finding a transitive closure corresponds to finding the connectivity relation, which consists of all pairs of elements that are connected with a directed path.
- The following lemma shows that it is sufficient to examine paths containing no more than n edges, where n is the number of elements in the set.
- Lemma: Let A be a set with n elements and R be a relation on A.
 If there is a path from a to b with a ≠ b, then there exists a path of length ≤ n 1. Therefore,

$$R^* = \bigcup_{k=1}^n R^k$$

• **Lemma:** Let A be a set with n elements and R be a relation on A. If there is a path from a to b with a ≠ b, then there exists a path of length $\le n - 1$. Therefore,

$$R^* = \bigcup_{k=1}^n R^k$$

- Proof intuition:
 - The longest path is of length n 1 if it does not have loops.

 Loops may increase the path length but the same node will be visited more than once, so we can remove all loops.

• **Lemma:** Let A be a set with n elements and R be a relation on A. If there is a path from a to b with a ≠ b, then there exists a path of length $\le n - 1$. Therefore,

$$R^* = \bigcup_{k=1}^n R^k$$

 Theorem: Let M_R be the zero—one matrix of the relation R on a set with n elements. Then the zero—one matrix of the transitive closure R is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \mathbf{M}_R^{[n]}$$

- the superscript denotes the power of relation R, i.e., $M_R^{[n]} = M_{R^n}$
- the proof is easy by applying the above lemma

 Theorem: Let M_R be the zero—one matrix of the relation R on a set with n elements. Then the zero—one matrix of the transitive closure R is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \mathbf{M}_R^{[n]}$$

 \circ Example: what is the transitive closure for M_R ?

$$\mathbf{M}_R = \left[egin{array}{cccc} 1 & 0 & 1 \ 0 & 1 & 0 \ 1 & 1 & 0 \end{array}
ight]$$

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]}$$

 Theorem: Let M_R be the zero—one matrix of the relation R on a set with n elements. Then the zero—one matrix of the transitive closure R is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \mathbf{M}_R^{[n]}$$

Finding transitive closures: a simple algorithm

```
procedure transClosure (\mathbf{M}_R: zero-one n \times n matrix)

// computes R^* with zero-one matrices

A := B := \mathbf{M}_R;

for i := 2 to n

A := A \odot \mathbf{M}_R

B := B \vee A

return B

// B is the zero-one matrix for R^*

This algorithm takes \Theta(n^4) time.
```


 Theorem: Let M_R be the zero—one matrix of the relation R on a set with n elements. Then the zero—one matrix of the transitive closure R is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \mathbf{M}_R^{[n]}$$

Finding transitive closures: the Floyd-Warshall algorithm

```
procedure Warshall (\mathbf{M}_R: zero-one n \times n matrix)

// computes R^* with zero-one matrices

W := \mathbf{M}_R;

for k := 1 to n

for j := 1 to n

for j := 1 to n

w_{ij} := w_{ij} \lor (w_{ik} \land w_{kj})

return W

// W is the zero-one matrix for R^*

matrix)

m_{ij} := m_{ij} \lor (m_{ik} \land m_{kj})

This algorithm takes \Theta(n^3) time.
```


Exercise (3 mins)

- \circ For the relation R shown in the figure, find the Floyd-Warshall matrices W_1 , W_2 , W_3 , W_4 . (W_4 is the transitive closure of R.)
- o Let $v_1 = a$, $v_2 = b$, $v_3 = c$, $v_4 = d$.

$$W_0 = \left[egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ \end{array}
ight]$$


```
procedure Warshall (M_R: zero-one n \times n matrix)

// computes R^* with zero-one matrices

W := M_R;

for k := 1 to n

for i := 1 to n

for j := 1 to n

w_{ij} := w_{ij} \vee (w_{ik} \wedge w_{kj})

return W

// W is the zero-one matrix for R^*
```


Equivalence Relations

Equivalence Relations

- Definition: A relation R on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Example: $R = \{(a, b) : a \equiv b \mod 3\}$ on $A = \{0, 1, 2, 3, 4, 5, 6\}$
 - *R* has the following pairs:

• Is R reflexive?

Yes

• Is R symmetric?

Yes

Is R transitive?Yes

Therefore, R is an equivalence relation.

Equivalence Relations

- Definition: A relation R on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Are the following relations equivalence relations?
 - "Strings a and b have the same length."
 Yes
 - "Integers a and b have the same absolute value."
 Yes
 - "The relation ≥ between real numbers."
 No
 - "Real numbers a and b have the same fractional part $(a b \in \mathbb{Z})$."

 Yes
 - "Natural numbers have a common factor greater than 1."
 No

Equivalence Classes

• Definition: Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a, denoted by [a]_R. When only one relation is considered, we use the notation [a].

$$[a]_R = \{b: (a, b) \in R\}$$

- Example: $R = \{(a, b) : a \equiv b \mod 3\}$ on $A = \{0, 1, 2, 3, 4, 5, 6\}$
 - $[0] = [3] = [6] = \{0, 3, 6\}$
 - [1] = [4] = {1, 4}
 - [2] = [5] = {2, 5}

Equivalence Classes

• Definition: Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a, denoted by [a]_R. When only one relation is considered, we use the notation [a].

$$[a]_R = \{b: (a, b) \in R\}$$

- Find [a] for the following relations:
 - "Strings a and b have the same length."
 [a] = the set of all strings of the same length as string a
 - "Integers a and b have the same absolute value."
 [a] = the set {a, -a}
 - "Real numbers a and b have the same fractional part $(a b \in \mathbb{Z})$."

$$[a] = \{..., a - 2, a - 1, a, a + 1, a + 2, ...\}$$

Equivalence Classes

- Theorem: Let R be an equivalence relation on a set A. The following statements are equivalent:
 - (i) a R b
 - (ii) [a] = [b]
 - (iii) [a] ∩ [b] ≠ Ø

Proof:

- (i) → (ii): prove [a] ⊆ [b] and [b] ⊆ [a]
- (ii) → (iii): [a] is not empty (R is reflexive)
- (iii) \rightarrow (i): there exists a c such that $c \in [a]$ and $c \in [b]$

Partition of a Set S

• **Definition:** Let S be a set. A collection of nonempty subsets of S $A_1, A_2, ..., A_k$ is called a partition of S if:

$$A_i \cap A_j = \emptyset, \ i \neq j \text{ and } S = \bigcup_{i=1}^k A_i$$

Equivalence Classes and Partitions

 Theorem: Let R be an equivalence relation on a set A. Then the union of all the equivalence classes of R is A:

$$A = \bigcup_{a \in A} [a]_R$$

- Theorem: The equivalence classes form a partition of A.
- **Theorem:** Let $\{A_1, A_2, ..., A_i, ...\}$ be a partition of S. Then there is an equivalence relation R on S, that has the sets A_i as its equivalence classes.
- The proofs are left as exercises.

Partial Orderings

Partial Ordering

- Definition: A relation R on a set S is called a partial ordering, or partial order, if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, denoted by (S, R). Members of S are called elements of the poset.
- Example: $S = \{1, 2, 3, 4, 5\}$, R denotes the " \geq " relation
 - Is R reflexive?

Yes

• Is R antisymmetric?

Yes

• Is R transitive?

Yes

• Therefore, *R* is a partial ordering.

Partial Ordering

- Definition: A relation R on a set S is called a partial ordering, or partial order, if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, denoted by (S, R). Members of S are called elements of the poset.
- \circ Example: $S = \{1, 2, 3, 4, 5\}, R$ denotes the "" relation
 - Is R reflexive?

Yes

• Is R antisymmetric?

Yes

• Is R transitive?

Yes

• Therefore, *R* is a partial ordering.

Comparability

- Definition: The elements a, b of a poset (S, ≤) are comparable if a ≤ b or b ≤ a. Otherwise, a and b are called incomparable.
- \circ Example: $S = \{1, 2, 3, 4, 5\}, R$ denotes the "" relation
 - Is 2, 4 comparable?Yes
 - Is 5, 5 comparable?

 Yes
 - Is 3, 5 comparable?No

Total Ordering

- Definition: If (S, ≤) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and ≤ is called a total order or a linear order. A totally ordered set is also called a chain.
- Example: $S = \{1, 2, 3, 4, 5\}, R$ denotes the " \geq " relation
 - Is S a totally (linearly) ordered set?
 Yes, S is a chain.

Lexicographic Ordering

• **Definition:** Given two posets (A_1, \le_1) and (A_2, \le_2) , the lexicographic ordering \le on $A_1 \times A_2$ is defined by specifying that (a_1, a_2) is less than (b_1, b_2) , i.e.,

 $(a_1, a_2) < (b_1, b_2),$

either if $a_1 < 1$ b_1 or if both $a_1 = b_1$ and $a_2 < 2$ b_2 .

Then, we obtain a partial ordering \leq by adding equality to the above ordering < on $A_1 \times A_2$.

- Example: Consider strings of lowercase English letters. A lexicographic ordering can be defined via the ordering of letters in the alphabet. This is the same ordering as used in dictionaries.
 - e.g., discreet < discrete, discreet < discrete, etc.

Hasse Diagram

- A Hasse diagram is a visual representation of a partial ordering that leaves out edges that must be present because of the reflexive and transitive properties.
- Example: Construct the Hasse diagram of ({1, 2, 3, 4}, ≤).
 - (a) The directed graph for the partial ordering.
 - (b) Remove the loops due to the reflexive property.
 - (c) Remove the edges due to the transitive property; remove all arrows and ensure that all edges point upwards toward their terminal vertex.

Exercise (3 mins)

- Construct the Hasse diagram of ({1, 2, 3, 4, 6, 8, 12}, |).
 - A Hasse diagram is a visual representation of a partial ordering that leaves out edges that must be present because of the reflexive and transitive properties.
 - Example: Construct the Hasse diagram of ({1, 2, 3, 4}, ≤).
 - (a) The directed graph for the partial ordering.
 - (b) Remove the loops due to the reflexive property.
 - (c) Remove the edges due to the transitive property; remove all arrows and ensure that all edges point upwards toward their terminal vertex.

Maximal and Minimal Elements

- **Definition:** a is a maximal (resp. minimal) element in poset (S, \leq) if there is no $b \in S$ such that a < b (resp. b < a).
- Example: consider the poset ({2, 4, 5, 10, 12, 20, 25},)
 - What are the maximal elements?
 12, 20, 25
 - What are the minimal elements?
 2, 5

Greatest and Least Elements

- Definition: a is the greatest (resp. least) element of poset (S, ≤) if $b \le a \text{ (resp. } a \le b) \text{ for all } b \in S.$
- Example: Find the greatest and least elements, if any.
 - (a) least: a

- (b) none (c) greatest: d (d) least: a greatest: d

Well-Ordered Induction

- Definition: (S, ≤) is a well-ordered set if ≤ is a total order and every nonempty subset of S has a least element.
- The Principle of Well-Ordered Induction: Suppose that S is a well-ordered set. To prove that P(x) is true for all $x \in S$, we complete two steps:
 - Basis Step: prove $P(x_0)$ is true for the least element x_0 of S
 - Inductive Step: prove, for every $y \in S$, if P(x) is true for all $x \in S$ with x < y, then P(y) is true.
- \circ Proof by contradiction: consider the set $\{x \in S : P(x) \text{ is false}\}$.

Upper and Lower Bounds

- **Definition:** Let A be a subset of a poset (S, \leq) .
 - u ∈ S is called an upper bound (resp. lower bound) of A if a ≤ u (resp. u ≤ a) for all a ∈ A.
 - x ∈ S is called the least upper bound (resp. greatest lower bound) of A if x is an upper bound (resp. lower bound) that is less than any other upper bound (resp. lower bound) of A.
- Example: Find the greatest lower bound and the least upper bound of set {1, 2, 4, 5, 10}, if they exist, in the poset (Z⁺, |).
 - greatest lower bound: 1 least upper bound: 20

Lattices

- Definition: A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice.
- Example: Are the following lattices?
 - (a) Yes (b) No, e.g., (d, e) has no greatest lower bound (c) Yes

Topological Sorting

- Motivation: A project is made up of 20 different tasks. Some tasks can be completed only after others have been finished. How can an order be found for these tasks?
- Given a partial ordering R, a total ordering ≤ is said to be compatible with R if a ≤ b whenever a R b. Constructing a compatible total ordering from a partial ordering is called topological sorting.

Topological Sorting for Finite Posets

Algorithm for topological sorting for finite posets:

```
procedure topological_sort (S: finite poset) k := 1; while S \neq \emptyset a_k := a minimal element of S S := S \setminus \{a_k\} k := k+1 end while \binom{a_1, a_2, \ldots, a_n}{} is a compatible total ordering of S
```

- Theorem: Every finite nonempty poset (S, ≤) has at least one minimal element.
 - see the textbook for its proof

09 Graphs and Trees

To be continued...