CARACTERIZAÇÃO E ANÁLISE DE SÉRIES TEMPORAIS A PARTIR DE WAVELETS PARA PREDIÇÃO DE PRECIPITAÇÃO

Orientador

Prof. (Dr.) Thiago Henrique Pereira Silva

Coorientador

Prof. (Dr.) Márcio Paulo de Oliveira

Áreas

- Matemática Transformada Wavelet.
- 2. Computação Tratamento, Análise e Visualização de Dados.

Introdução

- Previsão de precipitação Modelos climáticos.
- Séries temporais não estacionárias Dados climáticos.
- Wavelet:
 - Estatística, processamento de imagens, hidrologia e geofísica (MORLET, 1982; BOLZAN, 2006; NORDEMANN, 1998; VETTERLI; HERLEY, 1992).
 - Usada para séries temporais não estacionárias(sem linearidade).
- Dados georreferenciados Oeste do Paraná.

Introdução

- Importância nas decisões socioeconômicas.
- Base de dados:
 - European Centre for Medium-Range Weather Forecasts ECMWF
 - The Interactive Grand Global Ensemble TIGGE
- Visualização de dados Mapas temáticos e gráficos.
- Análise das Ferramentas Python e R.

Objetivos

- Coletar dados meteorológicos ECMWF Python.
- Tratamento e limpeza dos dados Python e R.
- Representar séries temporais Wavelets.
- Visualizar e analisar os dados Tabelas, gráficos e mapas temáticos.

Justificativa

- Mudanças climáticas ONU, padrões de temperatura e clima:
 - Mudança na agricultura.
 - o Transporte.
 - o Viagens.
- Ferramentas clássicas menos eficientes:
 - o (MALHI; KAUR; KAUSHIK, 2021).
- Agronegócio Grandes cooperativas e poder econômico.
- Rio Paraná Produção de energia.

Justificativa

 Interdisciplinaridade - Aspectos socioeconômicos, desastres naturais, análises matemáticas resolvidas por métodos avançados de programação dinâmica (transformada de wavelet), engenharia hídrica, pesquisa geofísica, pesquisa ambiental, agronomia, entre outros.

Referencial teórico

- Santos e Morais (2013):
 - Aplicação da Transformada Wavelet de Morlet.
 - Cenário Previsão de precipitação.
 - Objeto Pluviometria com espectro global de potências wavelets para análise hídrica da bacia do São Francisco.
 - Conclusão:
 - Wavelet é uma ferramenta eficaz para a regionalização hidrológica.
 - Eficiente para identificação de padrões espaciais e temporais.

Referencial teórico

- Meteorologia:
 - Séries temporais não estacionárias Não seguem uma linearidade.
 - Uso extensivo de wavelets:
 - Pode-se decompor o sinal em componentes de diferentes escalas.
 - Detalhes em diferentes níveis de resolução.
 - Localização no tempo e frequência.
 - detecta mudanças abruptas.
 - Compactas:
 - Representa sinais de forma eficiente, com poucos coeficientes significativos.

Aluno: André Luis Quiosi

Materiais

- Acessar o modelo TIGGE Arquivos padrão GRIB (Grided Binary):
 - Forma de grades regulares com estrutura hierárquica.
 - 0 Seção de Cabeçalho Informações gerais;
 - 1 Seção de Identificação Tipo de dados e grade espacial;
 - 3 Seção de Grade Detalhes da grade: Latitude e Longitude;
 - 7 Seção de Registros de Dados Contém os dados meteorológicos;
 - 8 Seção de Fim de Arquivo Código de validação dos dados;

SECTION 0 - Indicator Section

SECTION 1 - Identification Section

SECTION 2 - [Local Use Section]

SECTION 3 - Grid Definition Section

SECTION 4 - Product Definition Section

SECTION 5 - Data Representation Section

SECTION 6 - Bitmap Section

SECTION 7 - Binary Data Section

SECTION 8 - End Section

Materiais

- Estratificação espacial:
 - Coordenadas geográficas do Paraná (55°W, 48°W, 27°S, 22°S).
 - Resolução de 0,5° x 0,5° com total de 165 pixel.
- Estratificação temporal:
 - o 240 horas (decendio 10 dias).
 - De início o ano de 2022.
 - UTC 00:00 igual a 03:00 horário de Brasilia.

Aluno: André Luis Quiosi

Métodos

- Transformadas Wavelet Importantes para análise de sinais e dados.
 - Principais transformadas:
 - Wavelet Haar(LEPIK; HEIN, 2014);
 - Wavelet Daubechies(LINA; MAYRAND, 1995);
 - Wavelet Coiflet(WEI, 1998):
 - Wavelet de Morlet(MORLET et al., 1982);

Aluno: André Luis Quiosi Orientador: Prof. (Dr.) Thiago H. P. Silva

Métodos

- Ferramentas para processamento, tratamento, extração e visualização de dados:
 - Linguagem Python:
 - Extração com "ecmwfapi";
 - Tratamento com "PyWavelet";
 - Visualização com "Mathplot";
 - Outros pacotes;
 - Linguagem R:
 - Geoespacial "rgdal", "maptools", "rworldmap", "rgeos";
 - Análise "raster";
 - Outros pacotes;


```
from ecmwfapi import ECMWFDataServer
server = ECMWFDataServer()
server.retrieve({
    "class": "ti",
    "dataset": "tigge",
    "date": "2018-01-01/to/2018-01-31",
    "stream": "ENFO",
    "repres": "SH",
    "padding": "0",
    "expver": "prod",
    "grid": "0.5/0.5",
    "levtype": "sfc",
    'number' : "0",
    "origin": "ecmf",
    "param": "228228",
    "step": "240",
    "time": "00:00:00",
    "type": "cf",
   "area": "-22/305/-27/312",
    "target": "ECMWF_Step_240_201810.grib",
```


Resultados Esperados

Aluno: André Luis Quiosi

	2023						
Atividades	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.
Revisão dos apontamentos da banca	X	X					
OE1 - Coleta de dados		X	X				
OE2 - Tratamento de dados			X				
OE3 - Representações das Séries Temporais			Х	X			
OE4 - Visualizações de Dados				X	X		
Revisão bibliográfica	X	X	X	X	X	X	
Redação do TCC2			X	X	X	X	
Apresentação do TCC2							X

Aluno: André Luis Quiosi

Resultados Esperados

- Compreensão dos dados meteorológicos:
 - Pluviometria.
- Características geoespaciais e temporais.
- Determinação da linguagem:
 - Python ou R.
- Compreensão do formato GRIB.

Considerações finais

- Boa compreensão dos dados e suas características.
- Compreensão dos padrões e variabilidade em diferentes escalas de tempo e localização.
- Compreensão do formato utilizado pelo ECMWF (European Centre for Medium-Range Weather Forecasts).
- Determinar a linguagem mais adequada para o tratamento desses dados.
 - Escolha de ferramentas e bibliotecas que facilitem a manipulação, análise e visualização dos dados, visando uma maior eficiência e precisão nas operações realizadas.

Aluno: André Luis Quiosi

Obrigado!

