```
In [ ]: import datetime
        import pandas as pd
        import pandas datareader.data as web
In [ ]: start = datetime.datetime(2004, 8, 19) # or start = '1/1/2016'
        end = datetime.date.today()
        df = web.DataReader('GOOG', 'yahoo', start, end)
        print (df.head()) # print first rows of the prices data
In [1]: import time
        import math
        from keras.models import Sequential
        from keras.layers.core import Dense, Dropout, Activation
        from keras.layers.recurrent import LSTM
        import numpy as np
        import pandas as pd
        import tensorflow as tf
        import sklearn.preprocessing as prep
        from keras import backend
        Using TensorFlow backend.
```

```
In [2]: import os
s=os.getcwd()
s
```

Out[2]: '/Users/Yuffie/USA/SCU/COEN281DataMining/TermProject'

```
In [3]: df = pd.read_csv('/Users/Yuffie/USA/SCU/COEN281DataMining/TermProject/data/GOOG.csv')
    df.head()
```

Out[3]:

	Date	Open	High	Low	Close	Adj Close	Volume
0	2004-08-19	49.676899	51.693783	47.669952	49.845802	49.845802	44994500
1	2004-08-20	50.178635	54.187561	49.925285	53.805050	53.805050	23005800
2	2004-08-23	55.017166	56.373344	54.172661	54.346527	54.346527	18393200
3	2004-08-24	55.260582	55.439419	51.450363	52.096165	52.096165	15361800
4	2004-08-25	52.140873	53.651051	51.604362	52.657513	52.657513	9257400

```
In [4]: # Data preparation
    col_list = df.columns.tolist()
    col_list

Out[4]: ['Date', 'Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']

In [5]: col_list.remove('Close')
    col_list.append('Close')
    col_list.remove('Date')
    col_list.remove('Volume')
    col_list.remove('Volume')
Out[5]: ['Open', 'High', 'Low', 'Adj Close', 'Close']
```

```
In [6]: df = df[col_list]
df.head()
```

Out[6]:

	Open	High	Low	Adj Close	Close
0	49.676899	51.693783	47.669952	49.845802	49.845802
1	50.178635	54.187561	49.925285	53.805050	53.805050
2	55.017166	56.373344	54.172661	54.346527	54.346527
3	55.260582	55.439419	51.450363	52.096165	52.096165
4	52.140873	53.651051	51.604362	52.657513	52.657513

```
In [7]: # Save data
    df.to_csv('GOOG-adjust.csv', index=False)
    validate_df = pd.read_csv('GOOG-adjust.csv')
    validate_df.head()
```

Out[7]:

	Open	High	Low	Adj Close	Close
0	49.676899	51.693783	47.669952	49.845802	49.845802
1	50.178635	54.187561	49.925285	53.805050	53.805050
2	55.017166	56.373344	54.172661	54.346527	54.346527
3	55.260582	55.439419	51.450363	52.096165	52.096165
4	52.140873	53.651051	51.604362	52.657513	52.657513

```
In [8]: # Standardization the dataset
def standard_scaler(X_train, X_test):
    train_samples, train_nx, train_ny = X_train.shape
    test_samples, test_nx, test_ny = X_test.shape

    X_train = X_train.reshape((train_samples, train_nx * train_ny))
    X_test = X_test.reshape((test_samples, test_nx * test_ny))

preprocessor = prep.StandardScaler().fit(X_train)
    X_train = preprocessor.transform(X_train)
    X_test = preprocessor.transform(X_test)

X_train = X_train.reshape((train_samples, train_nx, train_ny))
    X_test = X_test.reshape((test_samples, test_nx, test_ny))

return X_train, X_test
```

```
In [9]: # Split the data to X train, y train, X test, y test
        def preprocess data(stock, seq len):
            amount of features = len(stock.columns)
            data = stock.as matrix()
            sequence length = seq len + 1
            result = []
            for index in range(len(data) - sequence length):
                result.append(data[index : index + sequence length])
            result = np.array(result)
            row = round(0.9 * result.shape[0])
            train = result[: int(row), :]
            y test org = result[int(row) :, -1][ : ,-1]
            train, result = standard scaler(train, result)
            X train = train[:, : -1]
            y train = train[:, -1][: ,-1]
            X test = result[int(row) :, : -1]
            y test = result[int(row) :, -1][ : ,-1]
            X train = np.reshape(X train, (X train.shape[0], X train.shape[1], amount of features))
            X test = np.reshape(X test, (X test.shape[0], X test.shape[1], amount of features))
            return [X train, y train, X test, y test, y test org]
```

```
In [10]: # Build LSTM Neural Network
         # LSTM --> Dropout --> LSTM --> Dropout --> Fully-Conneted(Dense)
         def build model(layers):
             model = Sequential()
             # By setting return sequences to True we are able to stack another LSTM layer
             model.add(LSTM(
                 return sequences=True,
                 input shape=(None, 5), units=20))
             model.add(Dropout(0.4))
             model.add(LSTM(
                 layers[2],
                 return sequences=False))
             model.add(Dropout(0.3))
             model.add(Dense(
                 units=1))
             model.add(Activation("linear"))
             start = time.time()
             model.compile(loss="mse", optimizer="rmsprop", metrics=['accuracy'])
             print("Compilation Time : ", time.time() - start)
             return model
In [11]: | window = 20
         X train, y train, X test, y test, y test org = preprocess data(df[:: -1], window)
         print("X train", X train.shape)
         print("y_train", y_train.shape)
         print("X test", X test.shape)
         print("y test", y test.shape)
         X train (2993, 20, 5)
         y train (2993,)
         X test (333, 20, 5)
         y test (333,)
In [12]: | model = build model([X train.shape[2], window, 100, 1])
         Compilation Time : 0.027528762817382812
```

```
In [13]: # Training the model
         model.fit(
             X train,
             y train,
             batch size=768,
             epochs=300,
             validation split=0.1,
             verbose=0)
Out[13]: <keras.callbacks.History at 0x11a338f60>
In [14]: trainScore = model.evaluate(X train, y train, verbose=0)
         print('Train Score: %.2f MSE (%.2f RMSE)' % (trainScore[0], math.sqrt(trainScore[0])))
         print(model.metrics names)
         testScore = model.evaluate(X test, y test, verbose=0)
         print('Test Score: %.2f MSE (%.2f RMSE)' % (testScore[0], math.sqrt(testScore[0])))
         Train Score: 0.01 MSE (0.10 RMSE)
         ['loss', 'acc']
         Test Score: 0.03 MSE (0.18 RMSE)
         Test Accuracy: 0.0
```

```
In [15]: #Visualize the Prediction
    diff = []
    ratio = []
    pred = model.predict(X_test)
    for u in range(len(y_test)):
        pr = pred[u][0]
        ratio.append((y_test[u] / pr) - 1)
        diff.append(abs(y_test[u] - pr))
    print('error_ratio', ratio)
    #print('error_abs', diff)
    #print(pred)
```

error ratio [0.1133188270722516, 0.12113117333001178, 0.12434312271378367, 0.11442692494278739, 0.1257696360 1427349, 0.11864027114397868, 0.11005930226036575, 0.075574684509538859, 0.084678743835904458, 0.10894661668 503991, 0.11055392153412047, 0.056963478914290544, 0.046109114754503411, 0.066633294650770392, 0.08816201648 1074135, 0.10856129348853449, 0.13054266722684593, 0.1165475983346318, 0.12465535042704268, 0.13225768293636 753, 0.11455260024952674, 0.12563889971341391, 0.11823949618952434, 0.14284994499788484, 0.1083994796314171 6, 0.090535262817867723, 0.10001035004008019, 0.10948303129434866, 0.12223594338050647, 0.11856326514441684, 0.13144598700601251, 0.15916624908582722, 0.16153487170182634, 0.14432027095464384, 0.154317538902430723962986656818854, 0.15097689495951205, 0.22747057581207875, 0.19826187375467286, 0.19251029015459498, 0.1719 0272651737093, 0.17728446177315971, 0.16145640026881947, 0.14286161875122194, 0.12372685151387786, 0.10903699823435731, 0.10164919702920261, 0.10143304131299202, 0.1055631708226239, 0.10462790667290789, 0.08828725015 6050101, 0.093981031494910106, 0.10969986917575847, 0.11725084849272149, 0.099319146574329054, 0.098507933092572886, 0.097184536193824833, 0.10694249089782559, 0.1066054627436015, 0.1151942934140171, 0.12312947177092 926, 0.1287291464428193, 0.12064625873545287, 0.1172149522739927, 0.097158244113885628, 0.10130804463347087, 0.12438471434538401, 0.13071988780762633, 0.1288259142970849, 0.14146556753485195, 0.13388021286078433, 0.1388021286078433387965311358263, 0.13014609254819542, 0.12385212671328905, 0.11858105687081233, 0.126531175852856, 0.1262155 4365289134, 0.12371377577806708, 0.12744016752832832, 0.13612256441420767, 0.12081260997149834, 0.1184098808 7697202, 0.10636171346598444, 0.10482117402303426, 0.10867015963991822, 0.097927441786243907, 0.110706718453 77178, 0.10802162770624291, 0.096621968191945573, 0.098556446825680988, 0.098097506002420287, 0.089152445514 823375, 0.092570489372345577, 0.091348510223351553, 0.10949157557155154, 0.1184579889829962, 0.1062985084952 8277, 0.099257386819508797, 0.10191468584838681, 0.10358741077375044, 0.091388412273360586, 0.06975320710360 8217, 0.078062620506814895, 0.087004426286523051, 0.11220802164313737, 0.10970732199041655, 0.11011249805921 408, 0.11409108820037295, 0.12804106128304471, 0.12257395826464101, 0.11426562179350586, 0.1141431068668330 4, 0.12135005578782243, 0.11133121797146228, 0.11962064619428925, 0.11247368569271643, 0.11463196310673252, 0.095071312878590719, 0.091852112004521702, 0.10795228595498685, 0.12432894897040248, 0.12398650268416311, 0.12482022328461828, 0.12473578024807841, 0.13534651091571992, 0.13761103342262726, 0.13891392289899041, 0.13891392289899041, 0.13891392289899041, 0.13891392289899041, 0.13891392289899041, 0.13891392289899041, 0.13891392289899041, 0.13891392289899041, 0.13891392289899041, 0.1389139289899041, 0.1389139289899041, 0.1389139289899041, 0.1389139289899041, 0.1389139289899041, 0.1389139289899041, 0.1389139289899041, 0.1389139289899041, 0.1389139289899041, 0.1389139289899041, 0.1389139289899041, 0.1389139289899041, 0.13891392898990412743072852657811, 0.11518325438874988, 0.11399447046671352, 0.10560213336956137, 0.11955340204955145, 0.0921 51173878707748, 0.09811329271296243, 0.12176631295892615, 0.10636598298099842, 0.10608306096046705, 0.128386 46091786154, 0.14998534141424091, 0.1595527465994302, 0.15022396079456324, 0.15380239796763018, 0.1493588705 2008456, 0.17173765892932913, 0.16969945467220682, 0.16233634799055063, 0.16728157159875789, 0.1645164263405 2344, 0.161463390679355, 0.15651297800891562, 0.14646766677179324, 0.14908917616968642, 0.14882124062175772, 0.141604917211132, 0.14077514002591407, 0.13561375527111785, 0.13824921264963907, 0.14406473072979975, 0.1460491721113240907691791183, 0.14518105075958698, 0.14231959175079867, 0.14227388107361882, 0.13169303117352071, 0.145273 1696212155, 0.16599939161852517, 0.17452655768404246, 0.18236316815038522, 0.1848642917025547, 0.18234112076 835918, 0.16485125740452622, 0.15796079851647171, 0.15336914900261567, 0.15287701395254527, 0.15359318192063 554, 0.14922872971983403, 0.15632133667237569, 0.15600327851635876, 0.16024132651421974, 0.1677236578895455 7, 0.16436860687232357, 0.16191575602820474, 0.16124537200350941, 0.15620285434710746, 0.1588638294607494, 0.15831727588603961, 0.15802949814080347, 0.15313531258879554, 0.15407437499206034, 0.154916603509336116093121865139937, 0.15474449856398031, 0.16040381127494996, 0.15462214651782724, 0.1501577400742875, 0.14760607895037192, 0.1411505961216899, 0.13574809334534166, 0.14239398541615511, 0.14176706864155109, 0.14606396249793785, 0.14520575721869511, 0.14236899618070153, 0.14677429990448676, 0.14194860400972775, 0.133564468269 46389, 0.13928053404385432, 0.12900244737249889, 0.13082495268985239, 0.13189082549965403, 0.139432220535972 15, 0.14477815653848025, 0.15529025705344135, 0.15364931322913544, 0.14624821931120158, 0.13338507992084425,

4950994063135004, 0.15825699766686152, 0.16092780466168932, 0.15678487186743872, 0.17672980410378036, 0.1674 8271585781493, 0.15128635951276159, 0.13992194601888985, 0.13402770535358854, 0.12359198496382739, 0.1328665 5763769328, 0.14314819279481417, 0.14385677537929409, 0.1472155624118261, 0.14412771746223063, 0.14600565836 431945, 0.15515498161762675, 0.14552306353655498, 0.14323712477653516, 0.1287130238205938, 0.147757014717187 16, 0.13993042992392168, 0.14884767789061204, 0.14896264473076792, 0.14997815331664865, 0.15654611497504956, 0.15826037608391497, 0.16129701959532228, 0.15731200483823082, 0.16468057962750615, 0.16932265570901994, 0.16826037608391497, 0.16932265570901994, 0.16932665570901994, 0.169326655709019946121146093794803, 0.16118715056978838, 0.17426556488530776, 0.16988807834810271, 0.16437299734156263, 0.1685456555345477, 0.16420629049699786, 0.15415255493304492, 0.14625562883581655, 0.14824412991573288, 0.14783147 407647657, 0.14487152841661688, 0.14720189798935057, 0.15077684008444869, 0.15922301510983949, 0.17163535703 985344, 0.17448969680822612, 0.16481663483320075, 0.16620699535604455, 0.15631215185561831, 0.15579418302141 956, 0.13425194250306927, 0.14070871267349783, 0.14097375400492251, 0.1694651206793869, 0.16774144292360349, 0.15962631227039359, 0.16405879742671026, 0.13633217644446538, 0.12478173982516316, 0.12187389479433608, 0.1218738947943942337844400843889, 0.13647372502196609, 0.13451072261689601, 0.14951437865673878, 0.15769677022123463, 0.1474 9711406343735, 0.17411876538044169, 0.21378779971440998, 0.2245964789007675, 0.20409076825660999, 0.19522722 592484176, 0.19897990728575565, 0.19832901769227562, 0.19633026924419261, 0.19885816535971834, 0.19911727333 859308, 0.19143277624491772, 0.18650214048406299, 0.18718944083107969, 0.18296792730318256, 0.18697594490492 264, 0.18956682048592599, 0.1929037796635511, 0.18842957203659116, 0.19392617715564708, 0.20673912009707363, 0.2016336967655632, 0.19749690021781729, 0.19965503247535432, 0.19879625021665781, 0.19465105537454064, 0.19879625021665781661673568056282, 0.20144793500142799, 0.20349226538433562, 0.20285479695905617, 0.20798332458387869, 0.20984 301497551594, 0.21301765046941279, 0.21094281539512894, 0.21018546408171712, 0.21108186815549135, 0.20709266 282994254, 0.20797705657082366, 0.20349848680961746, 0.20338556181727641, 0.19615581794240855, 0.19322983427 300011, 0.19674655598703406, 0.19898090268026247, 0.19174611833834221, 0.19391141030298531

```
In [16]: # Scale the representation back
    y_test = y_test_org
    pred_org = []
    for u in range(len(y_test)):
        pred_org.append(y_test[u]/(ratio[u] + 1))
        print(ratio[u])
    #print(pred_org)
    #print(y_test)
```

- 0.113318827072
- 0.12113117333
- 0.124343122714
- 0.114426924943
- 0.125769636014
- 0.118640271144
- 0.11005930226
- 0.0755746845095
- 0.0846787438359
- 0.108946616685
- 0.110553921534
- 0.0569634789143
- 0.0461091147545
- 0.0666332946508
- 0.0881620164811
- 0.108561293489
- 0.130542667227
- 0.116547598335
- 0.124655350427
- 0.132257682936
- 0.11455260025
- 0.11455260025
- 0.125638899713
- 0.11823949619
- 0.142849944998
- 0.108399479631
- 0.0905352628179
- 0.10001035004
- 0.109483031294
- 0.122235943381
- 0.118563265144
- 0.131445987006
- 0.159166249086
- 0.161534871702
- 0.144320270955
- 0.154317538902
- 0.139629866568
- 0.15097689496
- 0.227470575812
- 0.198261873755
- 0.192510290155
- 0.171902726517
- 0.177284461773

- 0.161456400269
- 0.142861618751
- 0.123726851514
- 0.109036998234
- 0.101649197029
- 0.101433041313
- 0.105563170823
- 0.104627906673
- 0.0882872501561
- 0.0939810314949
- 0.109699869176
- 0.117250848493
- 0.0993191465743
- 0.0985079330926
- 0.0971845361938
- 0.106942490898
- 0.106605462744
- 0.115194293414
- 0.123129471771
- 0.128729146443
- 0.120646258735
- 0.117214952274
- 0.0971582441139
- 0.101308044633
- 0.124384714345
- 0.130719887808
- 0.128825914297
- 0.141465567535
- 0.133880212861
- 0.133879653114
- 0.130146092548
- 00100110071010
- 0.123852126713
- 0.118581056871
- 0.126531175853
- 0.126215543653
- 0.123713775778
- 0.127440167528
- 0.136122564414
- 0.120812609971
- 0.118409880877
- 0.106361713466
- 0.104821174023

- 0.10867015964
- 0.0979274417862
- 0.110706718454
- 0.108021627706
- 0.0966219681919
- 0.0985564468257
- 0.0980975060024
- 0.0891524455148
- 0.0925704893723
- 0.0913485102234
- 0.109491575572
- 0.118457988983
- 0.106298508495
- 0.0992573868195
- 0.101914685848
- 0.103587410774
- 0.0913884122734
- 0.0697532071036
- 0.0780626205068
- 0.0870044262865
- 0.112208021643
- 0.10970732199
- 0.110112498059
- 0.1140910882
- 0.128041061283
- 0.122573958265
- 0.114265621794
- 0.114143106867
- 0.121350055788
- 0.111331217971
- 0.119620646194
- 0.112473685693
- 0.114631963107
- 0.0950713128786
- 0.0918521120045
- 0.107952285955
- 0.12432894897
- 0.123986502684
- 0.124820223285
- 0.124735780248
- 0.135346510916
- 0.137611033423

- 0.138913922899
- 0.127430728527
- 0.115183254389
- 0.113994470467
- 0.10560213337
- 0.11955340205
- 0.0921511738787
- 0.098113292713
- 0.121766312959
- 0.106365982981
- 0.10608306096
- 0.128386460918
- 0.149985341414
- 0.159552746599
- 0.150223960795
- 0.153802397968
- 0.14935887052
- 0.171737658929
- 0.169699454672
- 0.162336347991
- 0.102330347331
- 0.167281571599
- 0.164516426341
- 0.161463390679
- 0.156512978009
- 0.146467666772
- 0.14908917617
- 0.148821240622
- 0.141604917211
- 0.140775140026
- 0.135613755271
- 0.13824921265
- 0.1302492120
- 0.14406473073
- 0.146409076918
- 0.14518105076
- 0.142319591751
- 0.142273881074
- 0.131693031174
- 0.145273169621
- 0.165999391619
- 0.174526557684
- 0.18236316815
- 0.184864291703

- 0.182341120768
- 0.164851257405
- 0.157960798516
- 0.153369149003
- 0.152877013953
- 0.153593181921
- 0.14922872972
- 0.156321336672
- 0.156003278516
- 0.160241326514
- 0.16772365789
- 0.164368606872
- 0.161915756028
- 0.161245372004
- 0.156202854347
- 0.158863829461
- 0.158317275886
- 0.158029498141
- 0.153135312589
- 0.154074374992
- 0.154916603509
- 0.160931218651
- 0.154744498564
- 0.160403811275
- 0.154622146518
- 0.150157740074
- 0.14760607895
- 0.141150596122
- 0.135748093345
- 0.142393985416
- 0.141767068642
- 0.141/0/000042
- 0.146063962498
- 0.145205757219
- 0.142368996181
- 0.146774299904
- 0.14194860401
- 0.133564468269
- 0.139280534044
- 0.129002447372
- 0.13082495269
- 0.1318908255
- 0.139432220536

- 0.144778156538
- 0.155290257053
- 0.153649313229
- 0.146248219311
- 0.133385079921
- 0.138806526279
- 0.125198876753
- 0.11542357613
- 0.127171261345
- 0.155603667325
- 0.149509940631
- 0.158256997667
- 0.160927804662
- 0.156784871867
- 0.176729804104
- 0.1/0/2/004104
- 0.167482715858
- 0.151286359513
- 0.139921946019
- 0.134027705354
- 0.123591984964
- 0.132866557638
- 0.143148192795
- 0.143856775379
- 0.110030773073
- 0.147215562412
- 0.144127717462
- 0.146005658364
- 0.155154981618
- 0.145523063537
- 0.143237124777
- 0.128713023821
- 0.147757014717
- 0.139930429924
- 0.148847677891
- 0.148962644731
- 0.149978153317
- 0.156546114975
- 0.158260376084
- 0.161297019595
- 0.157312004838
- 0.164680579628
- 0.169322655709
- 0.161211460938

- 0.16118715057
- 0.174265564885
- 0.169888078348
- 0.164372997342
- 0.168545655535
- 0.164206290497
- 0.154152554933
- 0.146255628836
- 0.148244129916
- 0.147831474076 0.144871528417
- 0.147201897989
- 0.150776840084
- 0.15922301511
- 0.17163535704
- 0.174489696808
- 0.164816634833
- 0.166206995356
- 0.156312151856
- 0.155794183021
-
- 0.134251942503 0.140708712673
- 0.140973754005
- 0.169465120679
- 0.167741442924
- 0.15962631227
- 0.164058797427
- 0.136332176444
- 0.124781739825
- 0.121873894794
- 0.123378444008
- 0.1233/0444000
- 0.136473725022
- 0.134510722617
- 0.149514378657
- 0.157696770221
- 0.147497114063
- 0.17411876538
- 0.213787799714
- 0.224596478901
- 0.204090768257
- 0.195227225925
- 0.198979907286
- http://localhost:8888/nbconvert/html/USA/SCU/COEN281DataMining/TermProject/GOOG/Keras-Stock%20Prediction_version2.ipynb?download=false

- 0.198329017692
- 0.196330269244
- 0.19885816536
- 0.199117273339
- 0.191432776245
- 0.186502140484
- 0.187189440831
- 0.182967927303
- 0.186975944905
- 0.189566820486
- 0.192903779664
- 0.188429572037
- 0.100429372037
- 0.193926177156
- 0.206739120097
- 0.201633696766
- 0.197496900218
- 0.199655032475
- 0.198796250217
- 0.194651055375
- 0.196616735681
- 0.201447935001
- 0.203492265384
- 0.202854796959
- 0.207983324584
- 0.209843014976
- 0.213017650469
- 0.210942815395
- 0.210185464082
- 0.211081868155
- 0.20709266283
- 0.207977056571
- 0.20349848681
- 0.203385561817
- 0.196155817942
- 0.193229834273
- 0.196746555987
- 0.19898090268
- 0.191746118338
- 0.193911410303

```
In [17]: import matplotlib.pyplot as plt2

plt2.plot(pred_org, color='red', label='Prediction')
plt2.plot(y_test, color='blue', label='Ground Truth')
plt2.legend(loc='upper left')
plt2.show()
```



```
In [ ]:
```