

Microprocessor PWM & ADC

Yu Hong Sun

Goal

- 타이머/카운트를 활용하여 PWM을 만들어 보자.
- ADC를 이해하고, 활용하여 보자.

◆ PWM이란?

- Pulse Width Modulation
- 표본화 펄스의 진폭을 일정하고 그 펄스 폭을 전송하고자 하는 신호에 따라 변화 시키는 변소 방식

"디지털 출력으로 아날로그 회로를 제어하는 강력한 기법"

◆ PWM 만드는 방법

◆ ATmega128 Timer/Count0 PWM

◆ ATmega128 Timer/Count1 PWM

◆ ATmega128

- Fast PWM Mode (고속 PWM)
 - 다른 PWM 모드에 비하여 약 2배의 주파수를 갖는다.
 - 단순한 PWM 제어에 사용
- Phase Correct PWM Mode (PC PWM)
 - Fast PWM 모드에 비하여 ½로 낮은 주파수
 - 2배로 높은 분해능의 PWM 출력 신호를 발생
 - 고정된 주파수에서 아주 가끔 듀티를 가변하는 정도의 PWM 동작에 적합
- Phase and Frequency Correct PWM Mode (PFC PWM)
 - 16비트 타이머에서 사용 가증
 - 듀티비와 주파수를 모두 변경하여야 하는 응용에 적합

♦ Fast PWM Mode

Phase Correct PWM Mode

♦ Phase and Frequency Correct PWM Mode

Register

Mode	WGM01 ⁽¹⁾ (CTC0)	WGM00 ⁽¹⁾ (PWM0)	Timer/Counter Mode of Operation	ТОР	Update of OCR0 at	TOV0 Flag Set on
0	0	0	Normal	0xFF	Immediate	MAX
1	0	1	PWM, Phase Correct	0xFF	TOP	BOTTOM
2	1	0	СТС	OCR0	Immediate	MAX
3	1	1	Fast PWM	0xFF	воттом	MAX

Fast PWM Mode

PC PWM Mode

COM01	COM00	Description	COM01	COM00	Description
0	0	Normal port operation, OC0 disconnected.	0	0	Normal port operation, OC0 disconnected.
0	1	Reserved	0	1	Reserved
1	0	Clear OC0 on compare match, set OC0 at BOTTOM, (non-inverting mode)	1	0	Clear OC0 on compare match when up-counting. Set OC0 on compare match when downcounting.
1	1	Set OC0 on compare match, clear OC0 at BOTTOM, (inverting mode)	1	1	Set OC0 on compare match when up-counting. Clear OC0 on compare match when downcounting.

Mode	WGMn3	WGMn2 (CTCn)	WGMn1 (PWMn1)	WGMn0 (PWMn0)	Timer/Counter Mode of Operation ⁽¹⁾	ТОР	Update of OCRnX at	TOVn Flag Set on
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, Phase Correct, 8-bit	0x00FF	TOP	воттом
2	0	0	1	0	PWM, Phase Correct, 9-bit	0x01FF	TOP	воттом
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	TOP	воттом
4	0	1	0	0	СТС	OCRnA	Immediate	MAX
5	0	1	0	1	Fast PWM, 8-bit	0x00FF	воттом	TOP
6	0	1	1	0	Fast PWM, 9-bit	0x01FF	воттом	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	воттом	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICRn	воттом	воттом
9	1	0	0	1	PWM, Phase and Frequency Correct	OCRnA	воттом	воттом
10	1	0	1	0	PWM, Phase Correct	ICRn	TOP	воттом
11	1	0	1	1	PWM, Phase Correct	OCRnA	TOP	воттом
12	1	1	0	0	СТС	ICRn	Immediate	MAX
13	1	1	0	1	(Reserved)	_	_	_
14	1	1	1	0	Fast PWM	ICRn	воттом	TOP
15	1	1	1	1	Fast PWM	OCRnA	воттом	TOP

◆ 추가 회로

OCO Port에 해당하는 PORTB4에 LED를 연결한다.

```
#include < mega128.h >
#include <delay.h>
unsigned char duty = 0;
void main(void)
 PORTB = 0x00;
  DDRB = 0x10:
 // PWM 출력 포트는 반드시 출력으로 설정되어야 한다.
 TCCR0 = 0x6F;
 // Prescaler 1024
 // Mode : Fast PWM
 // OC0 output
  while(TRUE)
    duty++;
                        PORTB 4번 포트를 오실로스코프로 측정하면
    OCR0 = duty;
                        주파수는 약61Hz로 듀티비가 0~100%로 변하게 된다.
    delay_ms(10);
 };
```

◆ ADC란?

연속적인 아날로그 신호 각종 센서들로부터 입력된 신호 ex) 전압, 전류, 온도, 소리

◆ ATmega128 ADC

- 10-bit 분해능
- 12~260us의 변환 시간
- 초당 76,900 샘플링까지 가능(최대 분해능에서는 15ksps 가능)
- 8개의 멀티플렉스되 단극성 입력 채널
- 7개의 차동 입력 채널
- 10배와 200배의 선택적 이득을 갖는 두 개의 차동 입력 채널
- 0~VCC까지의 ADC 입력 전압 범위
- 프리 런닝 또는 단일 변환 모드
- ADC 변환 완료 시에 인터럽트 발생

Register

REFS1	REFS0	Voltage Reference Selection
0	0	AREF, Internal Vref turned off
0	1	AVCC with external capacitor at AREF pin
1	0	Reserved
1	1	Internal 2.56V Voltage Reference with external capacitor at AREF pin

ADC Control and Status Register A - ADCSRA

Bit

Read/Write	
Initial Value	

7	6	5	4	3	2	1	0
ADEN	ADSC	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

ADCSRA

ADCH ADCL

The ADC Data Register -**ADCL and ADCH**

ADLAR = 0:

Bit

15	14	13	12	11	10	9	8
-	-	-	-	_	-	ADC9	ADC8
ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0
7	6	5	4	3	2	1	0

ADLAR = 1: 8bit로 사용이 가능

Bit

	8	9	10	11	12	13	14	15
ADCH	ADC2	ADC3	ADC4	ADC5	ADC6	ADC7	ADC8	ADC9
ADCL	_	_	-	-	-	-	ADC0	ADC1
-	0	1	2	3	4	5	6	7

ADC0번에 해당하는 PORTF 0번에 다음과 같이 가변저항을 연결한다. VREF핀을 VCC(5V)에 연결한다.

```
#define ADC VREF TYPE 0x40
                                                         while(TRUE)
unsigned int ADC = 0;
                                                            ADC = read_adc(0);
unsigned int read_adc(unsigned char adc_input)
                                                            // LCD에 변수 ADC출력
  ADMUX = adc_input | (ADC_VREF_TYPE & 0xff);
  delay us(10);
  ADCSRA = 0x40;
  while (ADCSRA & 0x10) == 0);
  ADCSRA = 0x10;
  return ADCW;
void main(void)
  DDRF = 0x00;
  // ADC initialization
  // ADC Clock frequency: 1000.000 kHz
  // ADC Voltage Reference: AREF pin
  ADMUX = ADC_VREF_TYPE & 0xff;
  ADCSRA = 0x84;
```

Exercise

- ◆ PWM의 다른 2가지의 모드를 동작시켜 보고 차이점에 대해 생각해본다.
- ◆ ADC 완료되었을 때, 인터럽트가 발생하도록 하여 동작시켜 보시요.
- ◆ 가변 저항을 이용하여, LED의 밝기를 조절 하시요.
 - 가변저항을 돌렸을 때, 전압은 0~5V로 변하게 된다. 이를 ADC로 입력을 받는다.
 - 이에 따라 PWM을 발생 시켜 LED를 동작 시키면 밝기를 조절할 수 있다.

Thank You !

www.gajest.com