EE230: Labwork-8 Logarithmic Amplifier

Kalpit Borkar, 200070029 March 20, 2022

1 Overview of the experiment

1.1 Aim of the experiment

To understand the structure and workings of logarithmic amplifier by:

- 1. Observing the $ln(I_D)$ vs V_D plot.
- 2. Constructing the model in NGSpice
- 3. Theoretical analysis

1.2 Methods

Firstly, we plotted the $\ln(I_D)$ vs V_D data, which was provided to us. Next, we identified the linear region and thus parameters like I_s and n. Next we determined the values of V_{offset} , R_1 , R_2 and R_3 followed by simulating the model in NGSpice and fine-tuning.

2 Design

The 4-stage logarithmic amplifier consists of 4 blocks as shown in figure 1 below:

Complete Logarithmic Amplifier Circuitll

Figure 1: 4-stage logarithmic amplifier

Voltage is converted into current, which is forced through a diode in block 2.

$$I_D = \frac{V_{in}}{R} \tag{1}$$

By theoretical analysis:

$$V_{out1} = a_1 ln(V_{in}) + a_2 \tag{2}$$

$$a_1 = -nV_T \tag{3}$$

$$a_2 = nV_T ln(I_S R) \tag{4}$$

Block 3 is used to remove the offset voltage with value a_2 from output voltage V_{out1} .

$$V_{out2} = -a_1 ln(V_{in}) - a_2 + 2V_{offset}$$

$$\tag{5}$$

Block 4 is used to scale the output voltage V_{out2} by a factor of a_2 , thus giving us the true natural logarithm of V_{in} .

$$V_{out} = -a_1(1 + \frac{R_3}{R_2})ln(V_{in})$$
(6)

Then choose:

$$\frac{1}{1 + R_3/R_2} = -a_1 \tag{7}$$

$$\therefore V_{out} = ln(V_{in}) \tag{8}$$

3 Experimental results

3.1 Part-1

 $ln(I_D)$ vs V_D plot:

Figure 2: $ln(I_D)$ vs V_D

3.2 Part-2

Observe that the graph is linear in the region between $V_D=0.315$ and $V_D=0.7$

Equation of the line passing through these two points is:

$$ln(I_D) = 20.1V_D - 19 (9)$$

$$\therefore n = 1.91 \tag{10}$$

$$\therefore I_S = 5.6 * 10^{-9} \tag{11}$$

3.3 Part-3

From figure 2 given above, $ln(I_{D2}) = -4.11$.

$$\therefore R = \frac{10}{I_{D2}} = 612ohms \tag{12}$$

3.4 Part-4

$$V_{out1} = -0.0497 ln(V_{in}) - 0.626 (13)$$

3.5 Part-5

$$V_{offset} = -0.313V \tag{14}$$

 $R_1 = 1$ k ohm

$$\frac{1}{1 + R_3/R_2} = -a_1 \tag{15}$$

$$\therefore \frac{R_3}{R_2} = 19.1 \tag{16}$$

Choose: $R_1 = 19.1$ k ohm

 $R_1 = 1$ k ohm

3.6 Part-67

Netlist code:

lab8

.include 1N4148.txt .include TL084.txt

vin 1 0 1

r0 1 2 612

r11 5 6 1k

r12 6 10 1k

r21 11 0 1000

r31 11 14 18k

v3 3 0 12

v4 4 0 -12

v8 8 0 12

v9 9 0 -12

v12 12 0 12

v13 13 0 -12

* v7 7 0 -0.391

v7 7 0 -0.3047

x1 0 2 3 4 5 TL084

x2 7 6 8 9 10 TL084

x3 10 11 12 13 14 TL084

D1 2 5 1N4148

.dc vin $0.1\ 10\ 0.1$

.control
run
plot v(14) vs ln(v(1))
* print v(14) vs v(1)

3.7 Part-8

 V_{out} vs V_{in} :

Figure 3: V_{out} vs V_{in}

V_{out} vs $ln(V_{in})$:

Figure 4: V_{out} vs $ln(V_{in})$