Sestavljene Bezierove krivulje

- 1. Odvod Bezierove krivulje. Bezierova krivulja je podana s kontrolnimi točkami $b_0, b_1, ..., b_n$. Sestavite funkcijo bezier_der, ki s pomočjo de Casteljauovega algoritma izračuna tangentni vektor dane Bezierjeve krivulje pri parametru t.
- 2. *Interpolacija točk s kubičnim* C^1 *zlepkom.* Dane so delilne točke u_i intervala $[u_0, u_N]$ in zaporedji interpolacijskih točk p_j in pripadajočih tangentnih vektorjev v_j , $j=0,1,\ldots,N$. Iščemo C^1 zvezni kubični zlepek $s\colon [u_0,u_N]\to \mathbb{R}^2$, ki interpolira točke in tangentne vektorje v danih delilnih točkah, natančneje

$$s(u_j) = p_j,$$

$$s'(u_i) = v_i,$$

$$za j = 0, 1, ..., N.$$

Naj bo s_i Bezierova krivulja stopnje 3, ki predstavlja i-ti kos sestavljene krivulje. Parametrizirana je na intervalu $[u_i, u_{i+1}]$ in določena s kontrolnimi točkami b_{3i+k} , k=0,1,2,3. Interpolacijski pogoji za točke so izpolnjeni, če velja

$$b_{3i} = p_i$$
 in $b_{3i+3} = p_{i+1}$.

Da krivulja interpolira tangentne vektorje, mora veljati

$$b_{3i+1} = b_{3i} + \frac{\Delta_i}{3}v_i, \quad i = 0, 1, \dots, N-1,$$

 $b_{3i+2} = b_{3i+3} - \frac{\Delta_i}{3}v_{i+1}, \quad i = 0, 1, \dots, N-1.$

NALOGA

Sestavite program C1CubicSpline, ki izračuna kontrolne točke iskanega kubičnega zlepka. Skupaj s kontrolnim poligonom narišite dobljeno sestavljeno Bezierovo krivuljo.

3. *Parametrizacija sestavljene krivulje*. Na obliko krivulje, ki poteka skozi interpolacijske točke p_0, p_1, \ldots, p_m in je sestavljena iz m kosov, parametriziranih nad delitvijo

$$u_0 < u_1 < \ldots < u_m$$

vpliva izbira parametrov delitve. Če za interpolacijske točke p_j , izberemo delilne točke kot

$$u_j = u_{j-1} + ||p_j - p_{j-1}||^{\alpha},$$

potem pravimo, da smo izbrali α -parametrizacijo. Začetno delilno točko u_0 ponavadi postavimo na 0. Če izberemo $\alpha=0$, dobimo enakomerno parametrizacijo, ki je neodvisna od podatkov. Pri izbiri $\alpha=1$ dobimo tetivno in pri $\alpha=1/2$ centripetalno parametrizacijo.

NALOGA

Sestavite testno skripto, ki preveri obnašanje sestavljene Bezierjeve krivulje pri različnih parametrizacijah. Pri izračunu parametrizacij uporabite interpolacijske točke

$$P_0(1,1)$$
, $P_1(2,-2)$, $P_2(3,4)$, $P_3(4,6)$, $P_4(2,-5)$

in pripadajoče tangentne vektorje

$$v_0(1,1), v_1(1,-1), v_2(1,-3), v_3(1,-1), v_4(-1,1).$$

4. C^1 kvadratičen zlepek. Bezierjeva krivulja stopnje 2, ki je sestavljena iz m kosov in je v stikih zvezno odvedljiva, je določena z m+2 kontrolnimi točkami $d_0, d_1, \ldots, d_{m+1}$. Naj bo $b^{(i)}(t)$ Bezierova krivulja, ki predstavlja i-ti kos sestavljene krivulje. Določena je s kontrolnimi točkami $b_0^{(i)}$, $b_1^{(i)}$ in $b_2^{(i)}$. Kontrolna točka $b_1^{(i)}$ se ujemaja s kontrolno točko d_i . Na robu krivulje velja še $b_0^{(1)} = d_0$ in $b_2^{(m)} = d_m$. Preostale kontrolne točke

$$b_0^{(i+1)} = b_2^{(i)} = \frac{\Delta_i}{\Delta_{i-1} + \Delta_i} d_i + \frac{\Delta_{i-1}}{\Delta_{i-1} + \Delta_i} d_{i+1}, \quad i = 1, 2, \dots, m-1,$$

določimo na podlagi pogojev zvezne odvedljivosti in so odvisne od tipa parametrizacije.

NALOGA

Sestavite program bezier_quad_spline, ki uporabniku omogoči vpis števila odsekov m (funkcija input) in interaktivni vnos kontrolnih točk (funkcija ginput), nato pa nariše sestavljeno Bezierovo krivuljo pri tipu parametrizacije, ki je določen z vhodnim parametrom funkcije. Pri izračunu parametrizacij uporabite točke d_0, d_1, \ldots, d_m .