General Equilibrium: Exchange

Javier Tasso June 14, 2024

University of Pennsylvania

Endowments & Preferences

Endowments

- · Two goods.
- · No production in this model.
- ω_1 represents the total endowment of good 1 there is in the economy.
- ω_2 represents the total endowment of good 2 there is in the economy.

Endowments II

- · Two consumers A and B.
- · We know their individual endowments:
 - (ω_1^A, ω_2^A) represents how many units of goods 1 and 2 are owned by A.
 - (ω_1^B, ω_2^B) represents how many units of goods 1 and 2 are owned by B.
 - Of course $\omega_1^A + \omega_1^B = \omega_1$ and $\omega_2^A + \omega_2^B = \omega_2$. They add up to the total endowment.
- · We can plot the endowments in the Edgeworth box.

Endowments III

Allocations

- An allocation is a pair of vectors x^A = (x₁^A, x₂^A) and x^B = (x₁^B, x₂^B) that specifies consumption of goods 1 and 2 for agents A and B.
- An allocation is feasible if $x_1^A + x_1^B \le \omega_1$ and $x_2^A + x_2^B \le \omega_2$. In other words, if it's inside the Edgeworth box.

Preferences

- Consumer A has preferences represented by $u^A(x_1, x_2)$.
- Consumer B has preferences represented by $u^{B}(X_{1}, X_{2})$.
- We can plot their indifference curves on the Edgeworth box.

Preferences II

Equilibrium

Equilibrium Definition

An allocation $x^{A*} = (x_1^{A*}, x_2^{A*}), x^{B*} = (x_1^{B*}, x_2^{B*})$ and prices (p_1^*, p_2^*) constitute a competitive equilibrium if:

- x^{A*} solves the utility maximization problem of consumer A taking prices (p_1^*, p_2^*) as given.
- x^{B*} solves the utility maximization problem of consumer B taking prices (p_1^*, p_2^*) as given.
- The allocation is feasible.

UMP

$$\max_{x_1, x_2} \quad u^A(x_1, x_2) \quad \text{s.t.} \quad p_1 x_1 + p_2 x_2 = p_1 \omega_1^A + p_2 \omega_2^A$$

· His ordinary demands are:

$$x_1^A(p_1, p_2)$$
 and $x_2^A(p_1, p_2)$

• Similarly for consumer *B*:

$$x_1^B(p_1, p_2)$$
 and $x_2^B(p_1, p_2)$

8

Excess Demand

• Define the excess demand of good 1:

$$z_1(p_1, p_2) = X_1^A(p_1, p_2) + X_1^B(p_1, p_2) - \omega_1^A - \omega_1^B$$

• And for good 2:

$$z_2(p_1, p_2) = x_2^A(p_1, p_2) + x_2^B(p_1, p_2) - \omega_2^A - \omega_2^B$$

Excess Demand II

$$p_1z_1(p_1, p_2) + p_2z_2(p_1, p_2) = 0$$

- · Why?
- · Walras' Law.
- Always holds. Even if (p_1, p_2) are not the equilibrium prices.
- The sum of (the value of) excess demand is always zero.

Walras' Law Corollary

$$p_1z_1(p_1, p_2) + p_2z_2(p_1, p_2) = 0$$

- If one of the markets is in equilibrium $(z_i(p_1, p_2) = 0)$, the other market is also in equilibrium.
- It suffices to analize only one market (Or n-1 if there are n markets).

Relative Prices

- $z_i(p_1, p_2)$ are homogeneous of degree 0. Why?
- They are also continuous. Why?
- This model will determine only relative prices p_1/p_2 .
- We can normalize prices such that $p_1 + p_2 = 1$. We stick with this in the theory.
- Or we can set $p_2 = 1$ (or any other value). We do this in exercises.

Characterization

- At the equilibrium allocation both consumers are maximizing their utility subject to their budget constraint.
- · Also they face the same prices.

$$MRS_A = \frac{p_1^*}{p_2^*}$$
 and $MRS_B = \frac{p_1^*}{p_2^*}$

· This implies:

$$MRS_A = MRS_B$$

Illustration

Existence

Equilibrium Prices

$$z(p) = (z_1(p_1, p_2), z_2(p_1, p_2))'$$

- Shortcut notation: stack the two excess demand functions.
- Set $p = (p_1, p_2)$ with $p_1 + p_2 = 1$.
- The equilibrium price is such that $z(p^*) = \vec{0}$.
- · Let's prove such a price exists.

Equilibrium Existence

• Let k > 0 be a small constant.

$$p' = p + kz(p)$$

- If there's excess demand for good 1 ($z_1(p) > 0$) its price goes up.
- If there's excess supply for good 1 ($z_1(p) < 0$) its price goes down.
- · Similar for good 2.
- This is Walras' tâtonnement (French for "trial and error") process.

Equilibrium Existence II

- · Brouwer's Fixed Point Theorem.
- Any continuous function must cross the 45 degree line somewhere in the unit square.
- · See graph.
- · We find:

$$p^* = p^* + kz(p^*) \implies z(p^*) = 0$$

• So $p^* = (p_1^*, p_2^*)$ are the equilibrium prices.

Efficiency

Efficiency

- An allocation $x = (x^A, x^B)$ is Pareto efficient if there is no other allocation $\hat{x} = (\hat{x}^A, \hat{x}^B)$ such that: $u_A(\hat{x}^A) \ge u_A(x^A)$ and $u_B(\hat{x}^B) \ge u_B(x^B)$ and some inequality is strict.
- In words, if there is no other allocation where both agents are at least as well off, but someone is strictly better off.
- If such allocation exists, we often call it a Pareto improvement.

Efficiency II

- Pareto improvements are desirable: they mean we can make someone better off, without harming no one else.
- Is the IE in the previous Edgeworth box efficient?
- An allocation that gives everything of both goods to consumer A and nothing to B is Pareto efficient. Why?
- Efficiency vs equality. Pareto efficiency doesn't say anything about equality.
- Efficiency just says nothing goes to waste.

Efficiency III

$$\max_{X_{1}^{A}, X_{2}^{A}, X_{1}^{B}, X_{2}^{B}} \quad \alpha u^{A}(X_{1}^{A}, X_{2}^{A}) + (1 - \alpha)u^{B}(X_{1}^{B}, X_{2}^{B})$$
s.t.
$$\begin{cases} X_{1}^{A} + X_{1}^{B} = \omega_{1} \\ X_{2}^{A} + X_{2}^{B} = \omega_{2} \end{cases}$$

- $\alpha \in [0, 1]$.
- If we solve this problem, we find all the Pareto efficient allocations.
- If we plot the answer for different α , we get the Pareto set or contract curve.

Contract Curve or Pareto Set

Efficiency

Another characterization of the Pareto set. Whenever possible.

$$MRS^A = MRS^B$$

- Why is this the case?
 - Suppose $MRS^A < MRS^B$.
 - If I take one unit of good 1 away from A, I can compensate him with little good 2.
 - If I take one unit of good 2 away from *B*, I can compensate him with little good 1.
 - Then we can improve both consumers by giving more good 2 to A and more good 1 to B.

Welfare Theorems

First Theorem of Welfare Economics

- · First Theorem of Welfare Economics.
- Statement: Every competitive equilibrium is Pareto efficient.

Second Theorem of Welfare Economics

- Statement: For any Pareto optimal allocation of resources there exists a set of initial endowments and a related price vector such that this allocation is also a competitive equilibrium.
- Any Pareto optimal allocation can be a competitive equilibrium, provided that the initial endowments are adjusted accordingly.