- (1) (a) Să se defineasca urmatoarele noțiuni: funcție inversabilă, grup ciclic, corp, sumă directă de subspații, nucleu al unei aplicații liniare.
 - (b) Să se dea câte un exemplu de funcție bijectivă de la N la N, element minimal in mulţimea ordonată $(\mathcal{P}^*(\{1,2,3\}),\subseteq)$, (aici $\mathcal{P}^*(\{1,2,3\})=$ $\{X \subseteq \{1,2,3\} \mid \emptyset \neq X\}$), partiție a mulțimii $\{1,2,3,4,5\}$, spațiu vectorial de dimensiune 7, vector cu coordonatele (1,1) in baza $[(1,0),(1,1)]^t$ a spaţiului vectorial real \mathbb{R}^2 .
 - (c) Fie V un \mathbb{R} -spațiu vectorial și $v_1,v_2\in V$. Să se arate că există o aplicație liniară unică $f: \mathbb{R}^2 \to V$ cu proprietatea că $f(1,1) = v_1$ și $f(0,1) = v_2.$
- (2) Se consideră funcțiile: $f: \mathbb{N} \to \mathbb{Z}$ și $g: \mathbb{Z} \to \mathbb{Z}$

$$f(x) = \begin{cases} x/2, & x \in 2\mathbb{N} \\ -(x+1)/2, & x \in 2\mathbb{N} + 1 \end{cases} \quad \text{si } g(x) = x^2 - 3x + 2.$$

- (a) Să se studieze injectivitatea și surjectivitatea acestor funcții.
- (b) Dacă există să se determine inversele acestor funcții.
- (c) Dacă sunt definite să se calculeze compunerile $f \circ g$ și $g \circ f$.
- (d) Să se determine numărul funcțiilor $h: \{x \in \mathbb{N} \mid 0 \le x \le 9\} \to \{a, b, c\}$ cu proprietatea că $h(0) \in \{a, b\}$.
- (3) Fie $G = \{ z \in \mathbb{C} \mid z^6 = 1 \}.$

 - (a) Să se arate că G este un subgrup al grupului C*.
 (b) Să se arată că f: Z → G, f(k) = cos 2kπ/6 + i sin 2kπ/6 este un morfism surjectiv de grupuri (arătați și că f(k) ∈ G pentru orice k ∈ Z) și că relația $(\mathbb{Z}, \mathbb{Z}, \sim)$ dată prin $x \sim y \Leftrightarrow f(x) = f(y)$ este o relație de echivalență.
 - (c) Să se găsească o perație $\perp: G \times G \to G$ astfel încât (G, \cdot, \perp) este un inel cu unitate.
- (4) Se consideră $S = \langle u_1, u_2, u_3 \rangle$ și $T = \langle v_1, v_2 \rangle$, unde $u_1 = (1, 2, -1, -2), u_2 = (1, 2, -1, -2)$ $(3,1,1,1), u_3 = (-1,0,1,-1), v_1 = (-1,2,-7,-3), v_2 = (2,5,-6,-5).$
 - (a) Să se arate că S este subspațiu în \mathbb{R}^3 .
 - (b) Să se determine câte o bază și dimensiunea pentru S, T, S+T și $S\cap T$.
 - (c) Fie V un K-spațiu vectorial de dimensiune $n \in \mathbb{N}^*$ și $V_1, V_2 \leq_K V$ astfel încât $\dim_K V_1 = n-1$ și $V_2 \nsubseteq V_1$. Să se arate că $\dim_K (V_1 \cap V_2) =$ $\dim V_2 - 1$ și că $V_1 + V_2 = V$.
- (5) Fie $f \in \operatorname{End}_R(\mathbb{R}^3)$ cu matricea în baza canonică $e = [e_1, e_2, e_3]^t$:

$$[f]_e = \left[\begin{array}{rrr} 1 & 0 & -1 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right]$$

Să se determine:

- (a) f(x) pentru orice $x \in \mathbb{R}^3$.
- (b) Câte o bază şi dimensiunea pentru Im(f) şi Ker(f).
- (c) Matricea $[f]_b$ unde $b = [e_1, e_1 + e_2, e_1 + e_2 + e_3]^t$ (se va arăta şi că beste o bază a lui \mathbb{R}^3).

NOTĂ: Fiecare subiect este notat de la 1 la 10. Toate afirmațiile făcute trebuie sa fie justificate.