Rechnerkommunikation

Felix Leitl

19. September 2024

Inhaltsverzeichnis

Transportschicht
UDP vs. TCP
UDP
TCP
UDP
Multiplexen und Demultiplexen
Prüfsumme
Pseudo-header
Fehlerkontrolle
Stop-and-Wait
Go-Back-N
Selective Repeat
Sequenznummernraum
TCP
Fehlerkontrolle
Netzwerkschicht
Sicherungsschicht
Physikalische Schicht

Transportschicht

UDP vs. TCP

UDP

- verbindungslos, keine Kontrollmechanismen, bewahrt Reihenfolge nicht
- Schnittstelle für einfache Paketvermittlung mittels IP, Verantwortung für Kontrollmechanismen bei Anwendung

TCP

- verbindungsorientiert, Fehler-, Fluss, Überlastkontrolle, keine Gütegarantie
- bietet Abstraktion eines Bytestroms

UDP

• source port: 16 Bit

• dest port: 16 Bit

• length: 16 Bit (gestates Segment)

• checksum: 16 Bit (16 \times 0 \Rightarrow ungenutzt)

Multiplexen und Demultiplexen

- Multiplexen: Zusammenführen der Segemente verschiedener Anwendungsprozesse auf Quellhost
- Demultiplexen: Ausliefern der Segmente an verschiedene Prozesse des Zielhosts

Prüfsumme

- Segment wird als Folge von Dualzahlen der Länge 16 Bit aufgefasst
- diese werden in Einerkomplementarithmetik addiert
- Das Ergebnis wird invertiert und zur Prüfsumme
- Nur einzelne Fehler werden erkannt

Pseudo-header

- Pseudo-header enthält Quell- und Ziel-IP-Adresse, Protokollnummer (17 UDP) und Segmentlänge
- UDP des Senders schreibt zuerst 0 ins Checksum-Feld und berechnet dann die Prüfsumme über Segment und Pseudo-header
- Vorteil: Es werden fehlgeleitete Pakete erkannt
- Nachteil: Verletzung des Schichtenprinzips

Fehlerkontrolle

Stop-and-Wait

Bei Stop-and-Wait reichen die Sqeuenznummern 0 und 1 \rightarrow Alternating -Bit-Protokoll

Go-Back-N

Um die Ineffizienz von Stop-and-Wait zu vermeiden, senden Schiebefensterprotokolle mehrere Pakete, bevor die Bestätigung zurückkommt

- base: SQN des ältesten unbestätigten Paktes
- nextSQN: SQN des nächsten zu verschickenden Pakets
- W: Fenstergröße, Anzahl der Pakete, die der Sender vor Erhalt eines ACKs senden darf

Go-Back-N: Empfänger

Selective Repeat

Selective Repeat: Empfänger

Sequenznummernraum

Hinreichende Bedingungen: (m Werte, W Fenstergröße)

- Empfängerfenstergröße = 1: W < m
- Sendefenstergröße = Empfangsfenstergröße = W > 1 : W < (m+1)/2

TCP

- Punkt-zu-Punkt
- reihenfolgebewahrender Bytestrom
- fensterbasierte Fehlerkontrolle
- vollduplex: 2 entgegengesetzte Datenströme

- verbindungsorientiert
- Flusskontrolle
- Überlastkontrolle
- seq: Nummer des ersten Bytes des Segments im Bytestrom
- ack: Nummer des nächsten erwarteten Bytes im Bytestrom
- Flags:
 - CWR (Congestion Window Reduced)
 - ECE (ECN-Echo)
 - ACK (ACK gültig)
 - RST (reset connection)
 - SYN (synchronisiere Verbindung)
 - FIN (beende Verbindung)
- AdvertizedWindow: Fenstergröße für Flusssteuerung

• checksum: wie bei UDP

Fehlerkontrolle

Sender:

TCP: Empfänger

Netzwerkschicht

Sicherungsschicht

Physikalische Schicht