ANALISIS NUMERICO

SOLUCION DE ECUACIÓN NO LINEAL

Condiciones de Convergencia de los Metodos Iterativos

Definición 2.6 Supongamos que $\{p_n\}_{n=0}^m$ es una sucesión que converge a p, con $p_n \neq p$ para toda n. Si existen constantes positivas λ y α con

$$\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^n}=\lambda,$$

entonces $\{p_n\}_{n=0}^{\infty}$ converge a p con orden α y una constante de error asintótica λ .

Se dice que un método iterativo de la forma $p_n = g(p_{n-1})$ es de orden α , si la sucesión $(p_n)_{n=0}^{\infty}$ converge a la solución p = g(p) con orden α .

n	Sucesión lineal convergente $\{p_n\}_{n=0}^{\infty}$ (0.5)*	Sucesión cuadrática convergente $\{\tilde{p}_n\}_{n=0}^{\infty}$
1	5.0000 × 10 ⁻¹	5.0000×10^{-1}
2	2.5000×10^{-1}	1.2500×10^{-1}
3	1.2500×10^{-1}	7.8125×10^{-3}
4	6.2500×10^{-2}	3.0518 × 10-5
5	3.1250×10^{-2}	4.6566 × 10-10
6	1.5625×10^{-2}	1.0842×10^{-19}
7	7.8125×10^{-3}	5.8775 × 10-39

Teorema 2.7 Sea $g \in C[a, b]$ tal que $g(x) \in [a, b]$ para toda $x \in C[a, b]$. Supongamos, además, que g' es continua en (a, b) y que existe una constante positiva k < 1 con

$$|g'(x)| \le k$$
, para todo $x \in (a, b)$.

Si $g'(p) \neq 0$, entonces para cualquier número p_0 en [a, b] la sucesión

$$p_n = g(p_{n-1})$$
, para $n \ge 1$,

converge sólo linealmente en el único punto fijo p en [a, b].

Lo anterior indica que si la primera derivada es cero entonces la convergencia no es lineal sino de orden superior

Teorema 2.8 Sea p una solución de la ecuación x = g(x). Supongamos que g'(p) = 0 y g" es continua y está estrictamente acotada por M en un intervalo abierto I que contiene a p. Entonces existe una δ > 0 tal que, para p₀∈ [p - δ, p + δ] la sucesión definida por pₙ = g(pₙ-1), cuando n ≥ 1, converge al menos cuadráticamente a p. Además, para valores suficientemente grandes de n,

$$|p_{n+1}-p|<\frac{M}{2}|p_n-p|^2.$$

Definición 2.9 Una solución p de f(x) = 0 es un cero de multiplicidad m de f si para $x \neq p$, podemos escribir $f(x) = (x - p)^m q(x)$, donde $\lim_{x \to p} q(x) \neq 0$.

Teoremo 2.11 La función $f \in C^m[a, b]$ tiene un cero de multiplicidad m en p en (a, b) si y sólo si

$$0 = f(p) = f''(p) = f'''(p) = \cdots = f^{(m-1)}(p), \text{ pero } f^{(m)}(p) \neq 0.$$

Material protegido por derechos

Tansa 2.8

<u>.</u>	- 14		^
9	1.0		2,7750 × 90 ⁻¹
1	0.58198	96	5.5865 × 30 ⁻⁵
2	6.31906	11	6.5411 × 10**
3	6.36800	12	3.4703 × 10 ⁻⁴
	0.08623	83	5.7486 × 10 ⁻⁴
9	0.04390	94	\$3048 × 10 ⁻⁵
	0.00206	15	4.2610 × 10 ⁻⁵
9	MILITAGE	96	8.9542 × 50 ⁻⁴
	0.005545		

Figure 2.11

Modificación del Método de Newton Raphson

Un método para resolver el problema de las raíces múltiples consiste en definir una función ja por medio de

$$\mu(x) = \frac{f(x)}{f'(x)}.$$

Si p es un cero de f de multiplicidad m y si $f(x) = (x - p)^m q(x)$, entonces

$$\mu(x) = \frac{(x - p)^m q(x)}{m(x - p)^{m-1} q(x) + (x - p)^m q'(x)}$$

$$= (x - p) \frac{q(x)}{mq(x) + (x - p)q'(x)}$$

también tiene un coro en p. Pero como $q(p) \neq 0$,

$$\frac{q(p)}{mq(p)+(p-p)q'(p)}=\frac{1}{m}\neq 0,$$

por tanto, p es un cero simple de μ . Así, podemos aplicar el método de Newton a la función μ para obtener

$$g(x) = x - \frac{\mu(x)}{\mu'(x)} = x - \frac{f(x)f''(x)}{\{[f'(x)]^2 - [f(x)][f''(x)]\}/[f'(x)]^2}$$

o bien

$$g(x) = x - \frac{f(x)f'(x)}{|f''(x)|^2 - f(x)f''(x)}.$$
 (2.11)

- L. Use el método de Newton para encontrar las soluciones de los siguientes problemas con una Use of freedom to be received pairs constant to some size x = 1. **a.** $x^2 - 2xe^{-x} + e^{-2x} = 0$, para $0 \le x \le 1$. **b.** $\cos(x + \sqrt{2}) + x(x/2 + \sqrt{2}) = 0$, para $-2 \le x \le -1$. **c.** $x^3 - 3x^2(2^{-x}) + 3x(4^{-x}) - 8^{-x} = 0$, para $0 \le x \le 1$. **d.** $e^{4x} + 3(\ln 2)^2e^{2x} - (\ln 8)e^{4x} - (\ln 2)^2 = 0$, para $-1 \le x \le 0$.
- 2. Repita el ejercicio 1 aplicando el método modificado de Newton-Raphson descrito en la ecuación (2.11). ¿Mejora la rapidez o la exactitud en comparación con el ejercicio 1?
- 3. Aplique el método de Newton y el método modificado de Newton-Raphson descrito en la ocuación (2.11) para encontrar una solución del siguiente problema con una exactitud de 10°5;

$$e^{4x} + 1.441e^{2x} - 2.079e^{4x} - 0.3330 = 0$$
 para $-1 \le x \le 0$.

Euze es el mismo problema que 1(d), sólo que el coeficiente ha sido reemplazado por sus aproximaciones de cuatro dígitos. Compare las soluciones con los resultados de 1(d) y de 2(d).

4. Demuestre que las sucesiones siguientes convergen linealmente a p=0. ¿Qué tan grande debe set a annes que $|p_a - p| \le 5 \times 10^{-27}$

$$a, \ p_n = \frac{1}{n}, \quad n \ge 1$$

$$h_{n} p_{n} = \frac{1}{n^{2}}, \quad n \ge 1$$

- 5. a. Demuestre que, para cualquier entero positivo 4, la sucesión definida por $p_a=1/n^4$ converge linealmente a p=0.
 - b. Para cada par de enteros k y m, determine un número N para el cual $1/N^6 < 10^{-m}$.
- 6. a. Demuestre que la suceside $p_a=10^{-27}$ converge cuadráticamente en cero.

 b. Demuestre que la suceside $p_a=10^{-27}$ no converge cuadráticamente a cero, sin importar el tamalo del exponente k > 1.
- 7. a. Construya una sucrairin que converja a cero de orden 3.
 - h. Suponga que $\alpha > 1$. Construya una sucesión que converja a cero de orden α .
- 8. Soponga que p es una raíz de multiplicidad m de f donde f^{**} es continua en un intervalo abierto que contiene p. Democstre que el siguiente método de punto fijo tiene g'(p)=0:

$$g(x) = x - \frac{m f(x)}{f'(x)}$$

- Democstre que el algunitmo de bisección 2.1 da una sucesión con una cota de error que enever-ge linealmente a ceru.
- 18. Suponga que f tiene se derivadas continuas. Modifique la demostración del tessema 2.10 para probur que f tiene una raiz de multiplicidad m en p si y silio si

$$0 = f(p) = f'(p) = \cdots = f^{(n-1)}(p), \quad \text{pero} \quad f^{(n)}(p) \neq 0.$$

11. El método iterativo para revolver f(x) = 0, dado por el método de punto fijo g(x) = x, donde

$$p_{n} = g(p_{n-1}) = p_{n-1} - \frac{f(p_{n-1})}{f(p_{n-1})} - \frac{f^{n}(p_{n-1})}{2f^{n}(p_{n-1})} \left[\frac{f(p_{n-1})}{f^{n}(p_{n-1})} \right]^{2}, \qquad \text{gats} \, n = 1, 2, 3, \ldots,$$

tiene g'(p) = g''(p) = 0. Esto generalmente producirá una convergencia cúbica ($\alpha = 3$). Use el análisis del ejemplo I para comparar la convergencia cuadrática y la convergencia cúbica.