5. Models based on distances

Distance is the amount of space between two samples. Formally, a distance is a function with the following characteristics:

- It is not negative. $D(x,y) \ge 0$, $\forall x,y$
- It is symmetric. $D(x,y) = D(y,x), \forall x,y$
- It satisfies the triangle inequality $D(x,y) \le D(x,z) + D(z,y), \ \forall x,y,z$
- The distance between a sample and itself is 0. D(x,x) = 0, $\forall x$

Some distances are:

Vectors	
Euclidean distance	$ A - B _2 = \sqrt{\sum_i (A_i - B_i)^2}$
Manhattan distance	$\left \left \left A - B \right \right _1 = \sum_i \left A_i - B_i \right $
Maximum distance	$\left A - B \right _{\infty} = \max_{i} A_i - B_i $
Mahalanobis distance	$D_{Mahalanobis}(A,B) = \sqrt{(A-B)^T \Sigma^{-1} (A-B)}$ Σ is the covariance matrix
Cosine similarity	Cos_sim (A,B) = $\frac{A.B}{ A B } = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i} \sqrt{\sum_{i=1}^{n} B_i}}$
Words	
Hamming distance	Levenshtein distance
Probability distributions	
Kullback – Leibler divergence	$D_{KL}(P,Q) = \sum_{i} P(i) \ln \left(\frac{P(i)}{Q(i)} \right)$

Cosine similarity

It measures the cosine of the angle between two vectors A and B. In other words, it measures the similarity between vector directions.

$$\cos(\theta) = \frac{A.B}{||A||||B||} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i} \sqrt{\sum_{i=1}^{n} B_i}}$$

The value can be between -1 and 1:

- -1, it means the vectors are opposite
- 0, it means the vectors are orthogonal
- 1, it means the vectors have the same direction

Mahalanobis distance

Explanation with an example:

Imagine that a fisher wants to measure the similarity among salmons because he wants to classify them into two groups for selling the bigger ones at a higher price. For each salmon, he measures the width and the length. Formally, each salmon can be represented as a vector whose entries are these measures $\vec{x_i} = [x_{1i}, x_{2i}]^T$.

The length is a random variable with values between 50 and 100cm, whereas the width values are between 10 and 20cm. If the fisher uses a Euclidean distance, the length will have more importance than the width. For that reason, he decides to use the next equation:

$$\begin{aligned} \textit{Mahalanobis_distance}\left(x_1, x_2\right) &= \sqrt{\left(\frac{x_{11} - x_{12}}{\sigma_1}\right)^2 + \left(\frac{x_{21} - x_{22}}{\sigma_2}\right)^2} = \sqrt{(\overrightarrow{x_i} - \overrightarrow{x_2})^T S^{-1}(\overrightarrow{x_i} - \overrightarrow{x_2})} \\ & \text{where } S = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix} \end{aligned}$$

In general, the equation of Mahalanobis distance is:

Mahalanobis_distance(
$$x_1, x_2$$
) = $\sqrt{(\overrightarrow{x_l} - \overrightarrow{x_2})^T \Sigma^{-1} (\overrightarrow{x_l} - \overrightarrow{x_2})}$ where Σ is the covariance matrix

(b) Clusters' boundaries by Mahalanobis distance

5.1 Hierarchical clustering

Unsupervised learning: Clustering

Variable type: all

Remembering, clustering consists into group samples based on the features.

Hierarchical clustering works in an iterative way. The algorithm is:

Input: samples

Begin

Each sample is a cluster

Repeat until there is only one cluster

Join the nearest two clusters

End

Example:

In the end, we can represent the clustering process with a dendrogram that is a binary tree where the length of the branch represents the distance where the samples were joined.

The dendrogram can be used to analyze the number of clusters. In addition, by pruning the tree, the clusters can be found.

5.2 k - Means

Unsupervised learning: Clustering

Variable type: continuous

An importan parameter of k-means is the number of clusters that we expect to find, it is called k. The algorithm is:

Input: samples and k (the number of clusters)

Begin

Randomly select k prototypes

Repeat until the prototypes don't move

Assign the samples to the nearest prototype

Update the prototypes as the centroid of the samples

End

Example using k-means in the image colors

