

Interpretable Machine Learning Model to Predict and Influence Mortality of Patients with Heart Failure Warded in Intensive Care Unit

WONG CHI KEONG JOHN 3 JAN 2022

GENERAL ASSEMBLY
DATA SCIENCE IMMERSIVE FLEX 2
CAPSTONE PROJECT

- Objective
- Collect
- Explore
- Engineer feature
- Build model
- Conclude on objective
- Deployment workflow

- Develop interpretable machine learning model to predict and influence mortality of patients with heart failure warded in intensive care unit
- Interpretable
 - "Interpretability is the degree to which a human can understand the cause of a decision."
 - "Interpretability is the degree to which a human can consistently predict the model's result"

Interpretable Machine Learning

A Guide for Making
Black Box Models Explainable

- Objective
- Collect
- Explore
- Engineer feature
- Build model
- Conclude on objective
- Deployment workflow

- Data from Kaggle
 - https://www.kaggle.com/saurabhshahane/in-hospital-mortality-prediction
- Paper from journal
 - https://bmjopen.bmj.com/content/11/7/e044779

BMJ Open Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learningbased, retrospective analysis of the **MIMIC-III** database

> Fuhai Li,^{1,2} Hui Xin,¹ Jidong Zhang,¹ Minggiang Fu,² Jingmin Zhou ⁽¹⁾, ² Zhexun Lian o 1

- Objective
- Collect
- Explore
- Engineer feature
- Build model
- Conclude on objective
- Deployment workflow

- Data frame size
 - 51 variables × 1,177 cases
- Variable type, category count, encoding
- Missing
- Duplicate
- Imbalance
- Multicollinearity

- Objective
- Collect
- Explore
- Engineer feature
- Build model
- Conclude on objective
- Deployment workflow

- Data frame size
- Variable type, category count, encoding
 - 11 features ⇒ Categorical, binary, encoded in numeric
 - 38 features ⇒ Continuous
 - Target ⇒ Categorical, binary, encoded in numeric
 - ID feature ⇒ Drop
- Missing
- Duplicate
- Imbalance
- Multicollinearity

No need one hot encoding

- Objective
- Collect
- Explore
- Engineer feature
- Build model
- Conclude on objective
- Deployment workflow

- Data frame size
- Variable type, category count, encoding
- Missing
 - 8 features have missing values from 12.2% to 25.0%
 - 11 features have missing values from 0.1% to 3.1%
 - Target ("outcome") has 1 missing value
- Duplicate
- Imbalance
- Multicollinearity

Drop because too much to impute without affecting original probability distribution

- Objective
- Collect
- Explore
- Engineer feature
- Build model
- Conclude on objective
- Deployment workflow

- Data frame size
- Variable type, category count, encoding
- Missing
 - 8 features have missing values from 12.2% to 25.0%
 - 11 features have missing values from 0.1% to 3.1%
 - Target ("outcome") has 1 missing value
- Duplicate
- Imbalance
- Multicollinearity

Impute using KNNImputer with neighbouring samples = 5

Check original probability distribution not significantly affected (change in outliers, percentile and whiskers values)

- Objective
- Collect
- Explore
- Engineer feature
- Build model
- Conclude on objective
- Deployment workflow

- Data frame size
- Variable type, category count, encoding
- Missing
 - 8 features have missing values from 12.2% to 25.0%
 - 11 features have missing values from 0.1% to 3.1%
 - Target ("outcome") has 1 missing value
- Duplicate
- Imbalance
- Multicollinearity

Drop missing case before train test split

- Objective
- Collect
- Explore
- Engineer feature
- Build model
- Conclude on objective
- Deployment workflow

- Data frame size
- Variable type, category count, encoding
- Missing
- Duplicate
 - No duplicate cases
- Imbalance
- Multicollinearity

- Objective
- Collect
- Explore
- Engineer feature
- Build model
- Conclude on objective
- Deployment workflow

- Data frame size
- Variable type, category count, encoding
- Missing
- Duplicate
- Imbalance
 - Die ("1") at 13.5%
 - Live ("0") at 86.5%
- Multicollinearity

Need to oversample minority category using SMOTE

- Objective
- Collect
- Explore
- Engineer feature
- Build model
- Conclude on objective
- Deployment workflow

- Data frame size
- Variable type, category count, encoding
- Missing
- Duplicate
- Imbalance

urine_outpu hematocri

nt-probnp creatinine urea nitrogen

anion_gap

Multicollinearity

Need to regularise with L1 (LASSO) as many features are strongly correlated with each other

Pearson (continuous, more than $R^2 \ge 0.80$)

Chi Square (categorical, less than p < 0.01)

- Objective
- Collect
- Explore
- Engineer feature
- Build model
- Conclude on objective
- Deployment workflow

- Model requirement
 - Want high recall ⇒ TP ÷ (TP + FN)
 - FN ⇒ Cannot save patient who will actually die
 - Balance with precision ⇒ TP ÷ (TP + FP)
 - FP ⇒ Unnecessary extra resources spent on patient who will actually live
 - Few important features to facilitate interventions to change mortality
 - Smallest overfit

- Objective
- Collect
- Explore
- Engineer feature
- Build model
- Conclude on objective
- Deployment workflow

- Model workflow
 - Mechanics of Pipeline and GridSearchCV to do manually for model in statsmodels.api

- Objective
- Collect
- Explore
- Engineer feature
- Build model
- Conclude on objective
- Deployment workflow

Model performance

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

Logistic Regression with Regularisation (statsmodels.api)

Highest recall

-12%

-14%

0

10 20 30 40 40 50 60 70 80

Regularisation strength alpha

Regularisation strength alpha

ss = 0.85

ss = 0.70

0.5

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

Logistic Regression with Regularisation (statsmodels.api)

Model Oversample Scale Impute KNNImputer SMOTE StandardScaler Regularisation strength Neighbouring

samples = 5

Decision

Boundary

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

Logistic Regression with Regularisation (statsmodels.api)

Regularisation strength alpha

Regularisation strength alpha

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

Logistic Regression with Regularisation (statsmodels.api) Model Oversample Scale Impute KNNImputer SMOTE StandardScaler

100

Decision

Boundary

strategy = 0.70,

0.85, 1.00

Neighbouring

samples = 5

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

Logistic Regression with Regularisation (statsmodels.api)

Oversample Scale Impute KNNImputer SMOTE StandardScaler Regularisation

- Neighbouring Sampling samples = 5(smallest
- strategy = 0.85overfit)
- strength
 - L1 Alpha = 50 simpler model but not too simple

Model

Decision Boundary

Probability > $0.35 \Rightarrow$ Category = 1 (Die) (balance overfit, recall. precision)

AUC = 0.435

1.0

baseline

0.8

Recall (overfit) CV Train = 0.920CV Validate = 0.875 (-4.85%) Recall (overfit) Train = 0.915Test = 0.800 (-12.7%) Precision (overfit) Train = 0.226Test = 0.212 (-6.09%)

0.6

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

- Pipeline (train=fit_transform, validate=transform)
 - KNNImpute
 - SMOTE
 - StandardScaler
 - Model
 - Decision Tree
 - Random Forest
 - Multinomial Naïve Bayes
 - K Nearest Neighbours
 - Support Vector Machine
- Hyperparameter search settings
- GridSearchCV (return train score, scoring = recall, 15-fold)
- Fit
- CV results
 - Train recall
 - Validate recall

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

- Model
 - Decision Tree
 - Random Forest
 - Multinomial Naïve Bayes
 - K Nearest Neighbours (best balanced performance in recall and overfit)
 - Support Vector Machine

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

K Nearest Neighbours

Impute	
KNNImputer	• SN
• Neighbouring samples = 5	• Sa 0.7

Oversample
• SMOTE
• Sampling strategy = 0.70, 0.85, 1.00

Godie
StandardScaler

Model

- Nearest neighbours = 100, 150, 200
- Weight = Uniform, Distance
- Algorithm = Auto, Brute
- P = 1, 2

Dogicion	Boundary
Decision	Doulldary

 Default in K Nearest Neighbours

Over	Train	Valid	Over
0.70	0.863	0.698	-19.14%
0.85	0.915	0.792	-13.42%
1.00	0.941	0.848	-9.98%

NN	Train	Valid	Over
100	0.908	0.774	-14.76%
150	0.907	0.780	-13.99%
200	0.905	0.784	-13.37%

р	Train	Valid	Over
p=1	0.865	0.688	-20.49%
p=2	0.948	0.871	-8.17%

Weight	Train	Valid	Over
Dist	1.000	0.781	-21.87%
Unif	0.813	0.777	-4.42%

Algo	Train	Valid	Over
auto	0.907	0.779	-14.04%
brute	0.907	0.779	-14.04%

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

K Nearest Neighbours

y =

StandardScaler Nearest neighbours = 200 to 1200 (to refine further)

 Weight = Uniform (smallest overfit)

• Algorithm = Brute

• P = 2 (smallest overfit)

Decision Boundary

 Default in K Nearest Neighbours

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

K Nearest Neighbours

AUC = 0.343

1.0

baseline

0.8

24

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

Neural Network with Regularisation, Dropout Rate, Early Stopping

0.01, 0.001, 0.001,

0.0001

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

Neural Network with Regularisation, Dropout Rate, Early Stopping

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

- Develop interpretable machine learning model to predict and influence mortality of patients with heart failure warded in intensive care unit
- Logistic Regression using statistical significance

feature	std_coef	Z	р
renal_failure	-0.3382	-4.851	0
bicarbonate	-0.2817	-3.114	0.002
blood_calcium	-0.2525	-3.602	0.000
urine_output	-0.2168	-3.133	0.002
deficiencyanemias	-0.1804	-2.871	0.004
sp_o2	-0.1459	-2.245	0.025
heart_rate	0.1387	2.031	0.042
leucocyte	0.1719	2.298	0.022
atrialfibrillation	0.1725	2.785	0.005
urea_nitrogen	0.3728	4.485	0.000

renal_failure:

- Categorical, Negative
- Presence will reduce odds of dying compared to absence

bicarbonate:

- Numeric, Negative
- Higher value will reduce odds of dying

heart_rate:

- Numeric, Positive
- · Higher value will increase odds of dying

atrialfibrillation:

- Categorical, Positive
- Presence will increase odds of dying compared to absence

- Interpretable
 - Causes of death are understood

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

- Develop interpretable machine learning model to predict and influence mortality of patients with heart failure warded in intensive care unit
- K Nearest Neighbours using Shapley values from SHAP

- Interpretable
 - Causes of death are understood

bicarbonate (in agreement to before)

- Numeric
- Higher value (red) will reduce odds of dying (negative SHAP values)

heart_rate (in agreement to before)

- Numeric
- Higher value (red) will increase odds of dying (positive SHAP values)

renal_failure (in agreement to before)

- Categorical
- Higher value (presence) will reduce odds of dying (negative SHAP values)

atrialfibrillation (in agreement to before):

- Categorical
- Higher value (presence) will increase odds of dying (positive SHAP values)

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

- Develop interpretable machine learning model to predict and influence mortality of patients with heart failure warded in intensive care unit
- Neural Network using Shapley values from SHAP

- Interpretable
 - Causes of death are understood

bicarbonate (in agreement to before)

- Numeric
- Higher value (red) will reduce odds of dying (negative SHAP values)

heart_rate (in agreement to before)

- Numeric
- Higher value (red) will increase odds of dying (positive SHAP values)

renal_failure (in agreement to before)

- Categorical
- Higher value (presence) will reduce odds of dying (negative SHAP values)

atrialfibrillation (in agreement to before)

- Categorical
- Higher value (presence) will increase odds of dying (positive SHAP values)

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

Comparison of top important features in 3 machine learning models

Logistic Regression	K Nearest Neighbours	Neural Network
Renal_failure	Bicarbonate	Deficiencyanemias
Bicarbonate	Systolic_blood_pressure	Respiratory_rate
Blood_calcium	Blood_calcium	Atrialfibrillation
Urine_output	Urine_output	Heart_rate
Deficiencyanemias	Heart_rate	Hyperlipemia
Sp_o2	Renal_failure	Diastolic_blood_pressure
Heart_rate	Diastolic_blood_pressure	Renal_failure
Leucocyte	Anion_gap	Glucose
Atrialfibrillation	Deficiencyanemias	Blood_calcium
Urea_nitrogen	Platelets	Gendera

BLUE: Presence in 3 models

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

Workflow to execute data science solution:

- Objective
- Collect
- Explore
- Engineer feature
- Build model
 - Logistic Regression
 - K Nearest Neighbours
 - Neural Network
- Conclude on objective
- Deployment workflow

