

AD-A104 611

CONSOER TOWNSEND AND ASSOCIATES LTD ST LOUIS MO
NATIONAL DAM SAFETY PROGRAM. SPRING LAKE DAM (MO 10136), GRAND —ETC(U)
DEC 79 W G SHIFRIN

F/6 13/13

DACW43-79-C-0075

NL

UNCLASSIFIED

1 of 1
5246

END
DATE FILMED
10-81
DTIC

ADA104611

GRAND-CHARITON RIVER BASIN

SPRING LAKE DAM
ADAIR COUNTY, MISSOURI
MO. 10136

1
DTIC
ELECTED
S E P 28 1981
D
E

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

United States Army
Corps of Engineers

Serving the Army
Serving the Nation

St. Louis District

THIS DOCUMENT IS NOT QUALITY PRACTICABLE.
THE COPY IS UNFIT TO BE CONTAINED A
SIGNIFICANT NUMBER OF PAGES WHICH DO NOT
REFLECT THE ACTUALITY.

PREPARED BY: U. S. ARMY ENGINEER DISTRICT, ST. LOUIS

FOR: STATE OF MISSOURI

This document has been approved
for public release and sale; its
distribution is unlimited.

DECEMBER 1979

81 9 28 122

FILE COPY
DTIC

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
AD-A104611		
4. TITLE (and Subtitle) Phase I Dam Inspection Report National Dam Safety Program Spring Lake Dam (MO 10136) Adair County, Missouri	5. TYPE OF REPORT & PERIOD COVERED 9 Final Report	
7. AUTHOR(s) Consoer, Townsend and Associates, Ltd.	6. PERFORMING ORG. REPORT NUMBER 15 DACW43-79-C-0075	
9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer District, St. Louis Dam Inventory and Inspection Section, LMSED-PD 210 Tucker Blvd., North, St. Louis, Mo. 63101	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 11	
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Engineer District, St. Louis Dam Inventory and Inspection Section, LMSED-PD 210 Tucker Blvd., North, St. Louis, Mo. 63101	12. REPORT DATE December 1979	
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 16. DISTRIBUTION STATEMENT (of this Report) Approved for release; distribution unlimited.	13. NUMBER OF PAGES Approximately 70	
	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 6 National Dam Safety Program. Spring Lake Dam (MO 10136), Grand-Chariton River Basin, Adair County, Missouri.	18. SUPPLEMENT Phase I Inspection Report.	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dam Safety, Lake, Dam Inspection, Private Dams		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to safety, based on available data and on visual inspection, to determine if the dam poses hazards to human life or property.		

DEPARTMENT OF THE ARMY
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
210 NORTH 12TH STREET
ST. LOUIS, MISSOURI 63101

IN REPLY REFER TO

SUBJECT: Spring Lake Dam Phase I Inspection Report

This report presents the results of field inspection and evaluation of the Spring Lake Dam.

It was prepared under the National Program of Inspection of Non-Federal Dams.

This dam has been classified as unsafe, non-emergency by the St. Louis District as a result of the application of the following criteria:

- 1) Spillway will not pass 50 percent of the Probable Maximum Flood
- 2) Overtopping could result in dam failure
- 3) Dam failure significantly increases the hazard to loss of life downstream

SIGNED

31 MAR 1980

SUBMITTED BY:

Chief, Engineering Division

Date

APPROVED BY:

SIGNED
Colonel, CB, District Engineer

1 APR 1980

Date

Accession For	
NTIS GRA&I	
DTIC TAB	
Unannounced	
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	23 cp

SPRING LAKE DAM
ADAIR COUNTY, MISSOURI

MISSOURI INVENTORY NO. 10136

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

PREPARED BY
CONSOER, TOWNSEND AND ASSOCIATES, LTD.
ST. LOUIS, MISSOURI
AND
ENGINEERING CONSULTANTS, INC.
ENGLEWOOD, COLORADO
A JOINT VENTURE

UNDER DIRECTION OF
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
FOR
GOVERNOR OF MISSOURI

DECEMBER 1979

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Spring Lake Dam, Missouri Inv. No. 10136
State Located: Missouri
County Located: Adair
Stream: Elm Creek
Date of Inspection: August 22, 1979

Assessment of General Condition

Spring Lake Dam was inspected by the engineering firms of Consoer, Townsend and Associates, Ltd. and Engineering Consultants, Inc. (A Joint Venture) of St. Louis, Missouri according to the "Recommended Guidelines for Safety Inspection of Dams". These guidelines were developed by the Chief of Engineers, U.S. Army, Washington, D.C., with the help of Federal and State agencies, professional engineering organizations, and private engineers. The resulting guidelines are considered to represent a consensus of the engineering profession.

Based upon the criteria in the guidelines, the dam is in the high hazard potential classification, which means that loss of life and appreciable property loss could occur in the event of failure of the dam. The estimated damage zone extends approximately five miles downstream of the dam. Within the damage zone are the communities of Yarrow and Gifford and a dwelling and building along Chariton River between the two communities which may

be subjected to flooding, with possible damage and/or destruction and possible loss of life. Spring Lake Dam is in the intermediate size classification since it is less than 40 feet high but impounds more than 1,000 acre-feet of water.

Our inspection and evaluation indicates that the spillway of Spring Lake Dam does not meet the criteria set forth in the guidelines for a dam having the above size and hazard potential. Spring Lake Dam being an intermediate size dam with a high hazard potential is required by the guidelines to pass the Probable Maximum Flood without overtopping. It was determined that the reservoir/spillway system can accommodate 24 percent of the Probable Maximum Flood without overtopping the dam. Our evaluation also indicates that the reservoir/spillway system can accommodate the 100-year flood without overtopping.

The Probable Maximum Flood is defined as the flood discharge that may be expected from the most severe combination of critical meteorological and hydrologic conditions that are reasonably possible in the region. The 100-year flood is defined as a flood having a one percent chance of being equalled or exceeded during any given year.

Other deficiencies noted by the inspection were: the trees and cattails in the spillway; the small trees on the downstream slope; the erosion due to wave action on the upstream slope; the depression at the toe of the dam created by the discharge through the outlet works; the erosion on the left side of the downstream channel; a need for periodic inspection by a qualified engineer and a lack of maintenance schedule. The lack of seepage and stability analyses on record is also a deficiency that should be corrected.

It is recommended that the owner take action to correct
or control the deficiencies described above.

Walter G. Shifrin, P.E.

Overview of Spring Lake Dam

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

SPRING LAKE DAM, I.D. No. 10136

TABLE OF CONTENTS

<u>Sect. No.</u>	<u>Title</u>	<u>Page</u>
SECTION 1	PROJECT INFORMATION	1
1.1 General	1	
1.2 Description of Project	3	
1.3 Pertinent Data	7	
SECTION 2	ENGINEERING DATA	9
2.1 Design	9	
2.2 Construction	9	
2.3 Operation	9	
2.4 Evaluation	9	
SECTION 3	VISUAL INSPECTION	11
3.1 Findings	11	
3.2 Evaluation	16	

TABLE OF CONTENTS

(Continued)

<u>Sect. No.</u>	<u>Title</u>	<u>Page</u>
SECTION 4	OPERATION PROCEDURES	18
4.1	Procedures	18
4.2	Maintenance of Dam	18
4.3	Maintenance of Operating Facilities	18
4.4	Description of Any Warning System in Effect	19
4.5	Evaluation	19
SECTION 5	HYDRAULIC/HYDROLOGIC	20
5.1	Evaluation of Features	20
SECTION 6	STRUCTURAL STABILITY.	24
6.1	Evaluation of Structural Stability.	24
SECTION 7	ASSESSMENT/REMEDIAL MEASURES. . . .	26
7.1	Dam Assessment	26
7.2	Remedial Measures.	28

TABLE OF CONTENTS

(Continued)

LIST OF PLATES

	<u>Plate No.</u>
LOCATION MAP	1
PLAN, ELEVATION AND SECTION OF DAM	2
GEOLOGIC MAP	3
SEISMIC ZONE MAP	4

APPENDICES

APPENDIX A - PHOTOGRAPHS

APPENDIX B - HYDROLOGIC COMPUTATIONS

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

SPRING LAKE DAM, Missouri Inv. No. 10136

SECTION 1: PROJECT INFORMATION

1.1 General

a. Authority

The Dam Inspection Act, Public Law 92-367 of August, 1972, authorizes the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspections. Inspection for Spring Lake Dam was carried out under Contract DACW 43-79-C-0075 between the Department of the Army, St. Louis District, Corps of Engineers, and the engineering firms of Consoer, Townsend & Associates, Ltd., and Engineering Consultants, Inc. (A Joint Venture), of St. Louis, Missouri.

b. Purpose of Inspection

The visual inspection of Spring Lake Dam was made on August 22, 1979. The purpose of the inspection was to make a general assessment as to the structural integrity and operational adequacy of the dam embankment and its appurtenant structures.

c. Scope of Report

This report summarizes available pertinent data relating to the project, presents a summary of visual observations made during the field inspection, presents an assessment of hydrologic and hydraulic conditions at the site, presents an assessment as to the structural adequacy of the various project features and assesses the general condition of the dam with respect to safety.

Subsurface investigations, laboratory testing and detailed analyses were not within the scope of this study. No warranty as to the absolute safety of the project features is implied by the conclusions presented in this report.

It should be noted that in this report reference to left or right abutments is as viewed looking downstream. Where left abutment or left side of the dam is used in this report, this also refers to the south abutment or side, and right to the north abutment or side.

d. Evaluation Criteria

Criteria used to evaluate the dam were furnished by the Department of the Army, Office of the Chief of Engineers, in the publication "Recommended Guidelines for Safety Inspection of Dams," Appendix D. These guidelines were developed with the help of several federal agencies and many state agencies, professional engineering organizations and private engineers.

a. Description of Dam and Appurtenances

It should be noted that a trustee of the dam, Mr. Ralph Shane of Kirksville, Missouri, has indicated he has a set of plans pertaining to Spring Lake Dam. However, Mr. Shane has not been able to locate the plans for use in this report. The following description of the dam and appurtenant structures is based exclusively upon observations and measurements made during the visual inspection.

The dam is an earthfill structure. The crest of the embankment has a width of 27 feet and length of approximately 863 feet. The crest elevation is approximately 772 feet above MSL, and the maximum height of the embankment is 25 feet.

The upstream slope of the embankment is protected by riprap and is nearly vertical from the crest to the water surface. The downstream slope was measured as 1V to 2.5H from the crest to the toe of the dam.

The spillway for Spring Lake Dam is a cut into the right abutment. The spillway is a trapezoidal shaped, uncontrolled open channel. The control section has a bottom width of 87 feet and is 4.5 feet high to the top of the dam. The sides of the channel are sloped at 1V to 1H. The spillway channel is approximately 100 feet in length. A concrete slab is provided on the control section of the spillway.

A low-level drain was provided for Spring Lake Dam. The drain consists of two 12-inch diameter cast iron pipes. Each pipe is controlled by a separate gate valve. Both of the valves are located in a valve house at the toe of the dam approximately 20 feet upstream from the downstream end of the pipes. The drain pipes are located approximately 150 feet to the right of the left abutment. The ends of the pipes are approximately 6 feet apart.

b. Location

Spring Lake Dam is located on Elm Creek approximately 0.4 miles upstream from the confluence of Elm Creek and the Chariton River. The community of Yarrow is approximately 0.5 miles to the south of the damsite. The dam is located in the Section 10, Township 61 North, Range 16 West on the Kirksville, Missouri, Quadrangle Sheet (15 minute series).

c. Size Classification

According to the "Recommended Guidelines for Safety Inspection of Dams" by the U.S. Department of the Army, Office of the Chief Engineer, the dam is classified in the dam-size category as being "Intermediate" since its storage is more than 1,000 acre-feet but less than 50,000 acre-feet. The dam is classified as "Small" in the dam-size category because its height is less than 40 feet. The overall size classification is "Intermediate" in size.

d. Hazard Classification

The dam has been classified as having a "High" hazard potential in the National Inventory of Dams, on the basis that in the event of failure of the dam or its appurtenances, excessive damage could occur to downstream property, together with the possibility of the loss of life. Our findings concur with the classification. Within the estimated damage zone, which extends approximately five miles downstream of the dam, are the two small communities of Yarrow and Gifford, and a dwelling and building along the Chariton River between the two communities.

e. Ownership

The Spring Lake Dam is owned privately by Spring Lake, Inc. The mailing address is Spring Lake, Inc., c/o James M. Rolston, Box 190, Kirksville, Missouri 63501.

f. Purpose of Dam

The main purpose of the dam is to impound water for recreational use.

g. Design and Construction History

Spring Lake Dam was designed by J.W. Shikles and Company, Kansas City, Missouri, in 1947-48.

Originally, and up until three years ago, according to Mr. James Rolston, a trustee of Spring Lake, the primary purpose of the dam was for domestic water storage. Since 1976, the lake has been used primarily for recreational purposes.

h. Normal Operational Procedures

Normal procedure is to allow the lake to remain as full as possible. The water level below the spillway crest is controlled by rainfall, runoff and evaporation. The reservoir is equipped with a low-level outlet, but according to Mr. James Rolston, a trustee of Spring Lake, the valves to the drain system have not been operated in the last six or seven years.

1.3

Pertinent Data

a. Drainage Area (square miles): 2.88

b. Discharge at Damsite

Estimated experienced maximum flood (cfs): NA

Estimated ungated spillway capacity with reservoir at top of dam elevation (cfs) 2,650

c. Elevation (feet above MSL)

Top of dam: 772

Spillway crest: 767.5

Normal Pool: 767.5

Maximum Pool (PMF): 775.43

d. Reservoir

Length of pool with water surface at top of dam elevation (feet): 4,170

e. Storage (Acre-Feet)

Top of dam: 1,078

Spillway crest: 740

Normal Pool: 740

Maximum Pool (PMF): 1,429

f. Reservoir Surfaces (Acres)

Top of dam: 84

Spillway crest: 70.5

Normal Pool: 70.5

Maximum Pool (PMF): 118

g. Dam

Type: Earthfill

Length:	863 feet
Structural Height:	25 feet
Hydraulic Height:	25 feet
Top width:	27 feet
Side slopes:	
Downstream	1V to 2.5H
Upstream	Near Vertical (crest to water surface)
Zoning:	Unknown
Impervious core:	Unknown
Cutoff:	Unknown
Grout curtain:	Unknown

h. Diversion and Regulating Tunnel None

i. Spillway

Type:	Trapezoidal open channel, uncontrolled
Length of crest:	87 feet
Crest Elevation (feet above MSL):	767.5

j. Regulating Outlets

Type:	Two, 12-inch diameter low-level drains
Length:	Unknown
Closure:	Two gate valves
Maximum Capacity:	Unknown

SECTION 2: ENGINEERING DATA

2.1 Design

A trustee of the dam, Mr. Ralph Shane of Kirksville, Missouri, has indicated that he has a complete set of plans pertaining to Spring Lake Dam; however, he has not been able to locate the plans for use in this report.

2.2 Construction

No construction data are available for the dam and appurtenant structures. In addition, no data were available regarding the reconstruction to control seepage near the left abutment.

2.3 Operation

No operation records are available for Spring Lake Dam.

2.4 Evaluation

a. Availability

The availability of engineering data is poor and consists only of state geological maps and U.S.G.S. quadrangle sheets. No information on design hydrology or hydraulic design was available.

b. Adequacy

The lack of engineering data did not allow for a definitive review and evaluation. Therefore, the adequacy of this dam could not be assessed from the standpoint of reviewing and evaluating design, operation and construction data, but is based primarily upon visual inspection, past performance history and sound engineering judgment.

Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions including Earthquake Loads and made a matter of record.

c. Validity

No valid engineering data are available.

SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General

A visual inspection of the Spring Lake Dam was made on August 22, 1979. The dam generally is in satisfactory condition. The following persons were present during the inspection:

Name	Affiliation	Disciplines
Dr. M.A. Samad	Engineering Consultants, Inc.	Project Engineer, Hydraulics and Hydrology
Mark R. Haynes	Engineering Consultants, Inc.	Civil, Structural and Mechanical
Dawn L. Jacoby	Engineering Consultants, Inc.	Soils
Peter L. Strauss	Engineering Consultants, Inc.	Geology
Kevin Blume	Consoer, Townsend & Assoc., Ltd.	Civil and Structural
Jim Rolston	Spring Lake, Inc.	Board Member

Specific observations are discussed below.

b. Dam

The crest of the dam supports a well-maintained gravel road with cut grass on each side. No deviations in horizontal or vertical alignment were apparent. No settlements or bulges were observed. To the best of Mr. Rolston's knowledge, the dam has never been overtopped and there was no evidence indicating the contrary.

The upstream slope was protected partially from erosion by riprap with a maximum size of 36 inches. The upper section of the slope was covered by grass and bushes. Some erosion due to wave action is occurring above the riprap, which has steepened the slope above the riprap to near vertical. No bulges or depressions were observed. There was no evidence of rodent activity.

The downstream slope is covered by grass and weeds. Several small trees are growing along the slope. No bulges or depressions were observed. No cracks or signs of instability were apparent. No seepage was observed on the slope or downstream of the toe.

No data are available indicating the type of material used for construction of the embankment. Material taken from below the topsoil on the embankment was a silty clay.

According to the "Missouri General Soil Map and Soil Association Description" published by the Soil Conservation Service, the materials in the general area of the dam belong to the soil series of Weller-Keswick-Lindley-Mandeville in the Central Mississippi Valley Wooded Slopes forest. These soils are formed basically from loess, glacial till and

weathered shale. The permeability of these soils range from slow to moderate and erodability is quite high.

c. Project Geology

The damsite physiographically is located in the Dissected Till Plains Section of the central lowlands Physiographic Province, according to Nevin Fenneman's "Physiography of the Eastern United States." This section is distinguished from the Till Plains on the east and from the Young Drift section on the north by the stage it has reached in the post-glacial erosion cycle. Broadly generalized, this section is a nearly flat till plain, submature in its erosion cycle.

No faults have been identified in the project vicinity.

Approximately 12 miles to the southwest of the damsite lies the trace of the Macon-Sullivan Trough that had its last movement in post-Ordovician time. This minor structure has no effect on the dam.

The site bedrock geology, beneath the drift, as shown on the Geologic Map of Missouri (1979), is interbedded Pennsylvanian age shales, limestones and sandstones. These strata generally strike north-south and dip gently to the west.

The left abutment of the dam is in contact with thin tightly bedded, gray fossiliferous limestone. This rock was hard, dense and stable.

A small drainage creek runs behind the left abutment and below the toe of the dam. This small creek is well channelized in rock behind the left abutment.

The downstream channel contains interbedded sandstones, limestones and calcareous shales. The bedding is nearly horizontal but somewhat undulatory. A sandstone cap about 2.5 feet thick overlies about 6 feet of argillaceous limestone/sandstone. The upper four feet of the limestone is fissile and soft. The lower two feet contain somewhat more sand and are micaceous. These lower two feet could be classified as an argillaceous sandstone.

The downstream channel appeared to be man made. A number of large sandstone pieces from the cap are lying in the channel as a result of being undermined by the eroding fissile limestone. The channel appears to be relatively stable.

From the surrounding evidence, it is assumed the dam is founded on bedrock.

d. Appurtenant Structures

(1) Spillway

The spillway is an excavated channel on the right abutment. The channel is excavated to bedrock. The spillway is obstructed by cattails and a few trees. The right side slope of the spillway channel appears to be stable and is adequately protected from surface erosion by a heavy grass cover. The left side slope is a constructed berm that channelizes discharges through the spillway away from the downstream slope of the embankment. The slope is protected by rock masonry and appears to be stable.

The road along the dam crest passes across the spillway channel. The road comes down the crest near the right abutment, passes through the spillway and then goes up the right abutment. A portion of the road is a concrete slab, 18 feet wide and 122 feet long, placed in the spillway channel. The slab appeared to be stable, however, a few temperature cracks were observed.

(2) Outlet Works

The outlet works for Spring Lake Dam consists of two 12-inch cast iron low-level drain pipes. The discharge through the pipes is controlled by individual gate valves located in a valve house at the toe of the dam. It is unknown whether the valves are operable. The valves were inaccessible for manual operation on the day of the inspection due to a locked door. The intake of the drain was inaccessible due to the reservoir level. No seepage was observed in or around the pipes.

Discharges through the pipes have created a depression just downstream of the outlets that has started to undercut the pipes. The last 12 feet of the drain pipes appeared to have been originally 12-inch corrugated metal pipes. It appears that discharges through the pipes must have undercut the two C.M. pipes eventually causing them to collapse. The two C.M. pipes are still lying below the two cast iron pipes.

e. Reservoir Area

The water surface elevation was 767.2 feet above MSL on the day of the inspection.

The reservoir rim is sloped gently and no indication of instability or severe erosion was readily apparent. The slopes above the reservoir are wooded and grass covered. Several homes are built around the reservoir rim.

f. Downstream Channel

The downstream channel of the spillway is a rock cut channel having a bottom width of approximately 15 feet and side slopes of 1V to 0.5H. The channel widens out into a grass-lined channel. The channel is unobstructed. The channel has been eroded on the left side.

3.2 Evaluation

The visual inspection did not reveal any items that are sufficiently significant to indicate a need for immediate remedial action.

The following conditions were observed that could affect the safety of the dam or that will require maintenance within a reasonable period of time.

1. The wave erosion on the upstream slope, if allowed to continue, could affect the structural stability of the dam.

2. The small trees observed on the downstream slope do not jeopardize the safety of the embankment at their present stage of growth. Nevertheless, the trees should be removed from the embankment and not allowed to grow back. As the trees grow larger, the root systems also grow larger thus endangering the safety of the dam. The roots of the trees present possible paths for piping through the embankment. The root system could also damage the dam if a tree is uprooted by a storm.

3. The obstruction created by cattails and trees in the spillway poses a danger to the safety of the embankment. The obstruction decreases the capacity of the spillway, thus increases the potential of overtopping the dam. The cattails and trees should be removed and prevented from growing back.

4. The depression created by discharges through the low-level drain does not appear to affect the safety of the drain or the embankment of the dam in its present condition. Nevertheless, this condition should be monitored and if the erosion continues, steps should be taken to correct the situation.

5. The erosion on the left side in the downstream channel, if allowed to continue, would affect the stability of the side slope of the channel.

SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures

Spring Lake Dam is used to impound water for recreational use. The lake is kept as full as possible at all times. According to Mr. Rolston, a trustee of Spring Lake, the water level does not fluctuate very much throughout the year.

4.2 Maintenance of Dam

The dam is maintained by several local residents and the trustees of Spring Lake Development. The dam crest is kept in exceptionally good condition due to the well-maintained 24-foot wide gravel road. The upstream and downstream slopes are kept fairly cleared of trees and dense vegetation. Mr. Rolston informed the inspection team that the vegetation in the spillway channel usually is cleaned out yearly but was overlooked this year.

4.3 Maintenance of Operating Facilities

The only operable facilities at the damsite consist of the two gate valves located in the valve house at the toe of the dam near the left abutment. Although the valves have not been operated in six or seven years, Mr. Rolston, a trustee, believes that the valves could be operated if needed.

4.4 Description of Any Warning System in Effect

The inspection team is not aware of any existing warning system in effect for this dam.

4.5 Evaluation

Generally speaking, the operation and maintenance for Spring Lake Dam is adequate. To improve the operational adequacy of the dam, the corrective measures outlined in this report should be initiated within a reasonable period of time.

SECTION 5: HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. Design

The watershed area of the Spring Lake Dam upstream from the dam axis consists of approximately 1,846 acres. Most of the watershed area is wooded and covered with grass. Land gradients in the higher regions of the watershed average roughly 12 percent, and in the lower areas surrounding the reservoir average about 20 percent. Spring Lake Dam Reservoir is located on Elm Creek and the Chariton River. At its longest arm, the watershed is approximately 1.5 miles long. A drainage map showing the watershed area is presented as Plate 1 in Appendix B.

Evaluation of the hydraulic and hydrologic features of Spring Lake Dam was based upon criteria set forth in the Corps of Engineers' "Recommended Guidelines for Safety Inspection of Dams," and additional guidance provided by the St. Louis District of the Corps of Engineers. The Probable Maximum Flood (PMF) was calculated from the Probable Maximum Precipitation (PMP) using the methods outlined in the U.S. Weather Bureau Publication, Hydrometeorological Report No. 33. The probable maximum storm duration was set at 24 hours, and storm rainfall distribution was based upon criteria given in the Corps of Engineers' EM 1110-2-1411 (Standard Project Storm). The Soil Conservation Service (SCS) method was used for deriving the unit hydrograph, utilizing the Corps of Engineers' computer program HEC-1 (Dam Safety Version). The unit hydrograph parameters are presented in Appendix B. The

SCS method also was used for determining the loss rate. The hydrologic soil group of the watershed was determined by use of published soil maps. The hydrologic soil group of the watershed and the SCS curve number are presented in Appendix B. The curve number, unit hydrograph parameters, the PMP index rainfall and the percentages for various durations were directly input to the HEC-1 (Dam Safety Version) computer program to obtain the PMF hydrograph. The computed peak inflow of the PMF and one-half of the PMF are 19,737 cfs and 9,868 cfs, respectively.

Both the PMF and one-half of the PMF inflow hydrographs were routed through the reservoir by the Modified Puls Method also utilizing the HEC-1 (Dam Safety Version) computer program. The reservoir was assumed at the spillway crest level at the start of the routing computation. The peak outflow discharges for the PMF and one-half of the PMF are 17,866 and 8,169 cfs, respectively. Both the PMF and one-half of the PMF when routed through the reservoir resulted in overtopping of the dam.

The size of physical features utilized to develop the stage-outflow relation for the spillway and overtopping of the dam were prepared from field notes and sketches prepared during the field inspection. The reservoir stage-capacity data were based upon the U.S.G.S. Kirksville Quadrangle topographic map (15 minute series). The spillway and dam overtop-rating curve and the reservoir-capacity curve are presented as Plates 2 & 3, respectively, as Appendix B.

From the standpoint of dam safety, the hydrologic design of a dam must aim at avoiding overtopping. Overtopping is especially dangerous for an earth dam because of its erodable characteristics. The safe hydrologic design of an

embankment dam requires a spillway discharge capability, in combination with an embankment crest height that can handle a very large and exceedingly rare flood without overtopping.

The Corps of Engineers design dams to safely pass the Probable Maximum Flood that could be generated from the dam's watershed. This generally is the accepted criterion for major dams throughout the world and is the standard for dam safety where overtopping would pose any threat to human life. Accordingly, the hydrologic requirement for safety for this dam is the capability to pass the Probable Maximum Flood without overtopping.

b. Experience Data

It is believed that records of reservoir stage or spillway discharge are not maintained for this site.

c. Visual Observations

Observations made of the spillway during the visual inspection are discussed in Section 3.1c(1) and evaluated in Section 3.2.

d. Overtopping Potential

As indicated in Section 5.1.a, both the Probable Maximum Flood, when routed through the reservoir, resulted in overtopping of the dam. The peak outflow discharges for the PMF and one-half of the PMF are 17,866 and 8,169 cfs, respectively. The maximum capacity of the spillway just before overtopping the dam is 2,650 cfs. The PMF overtopped the dam crest by 3.04 feet and one-half of the PMF overtopped by 1.48 feet. The total duration of embankment overflow is 5.58 hours

during the PMF and 2.83 hours during one-half of the PMF. The spillway/reservoir system of Spring Lake Dam is capable of accommodating a flood equal to approximately 24 percent of the PMF just before overtopping the dam. The reservoir/spillway system of Spring Lake Dam will accommodate the 100-year flood without overtopping.

The failure of the dam could cause extensive damage to the property downstream of the dam and possible loss of life. The estimated damage zone extends approximately five miles downstream of the dam. Within the damage zone are two small communities, Yarrow and Gifford, and a dwelling and building along Chariton River between the two communities.

SECTION 6: STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations

There were no major signs of settlement or distress observed on the embankment or foundation during the visual inspection. The crest is well protected by a gravel road. The downstream slope is protected by vegetation. The upstream slope has some riprap protection. The upstream slope is experiencing erosion due to wave action, which has steepened the slope above the water surface to near vertical. This condition is not serious at this time, but it should be monitored and the slope stabilized as required.

Overall, the spillway channel, the downstream channel and the low-level drain appear to be structurally stable. The exception is the erosion observed on the left side of the downstream channel. This erosion should be monitored and remedial measures undertaken as required.

b. Design and Construction Data

No design computations were uncovered during the report preparation phase. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available. No embankment or foundation soil parameters were available for carrying out a conventional stability analysis on the embankment. No construction data or specifications relating to the degree of

embankment compaction were available for use in a stability analysis.

c. Operating Records

No operating records were available relating to the stability of the dam or appurtenant structures. The water level on the day of the inspection was 4 inches below the crest of the spillway, and it is assumed that the reservoir remains close to full at all times.

d. Post Construction Changes

According to Mr. Rolston, prior to 1967, seepage was passing through cracks in the rock of the left abutment and exiting downstream of the dam to the left of the valve house. The reservoir was lowered and a trench was excavated into the abutment. The trench was then backfilled with impervious material, which stopped the seepage. No seepage has occurred since.

No other post construction changes exist that will affect the structural stability of the dam.

e. Seismic Stability

The dam is located in Seismic Zone 1, as defined in "Recommended Guidelines For Safety Inspection of Dams" prepared by the Corps of Engineers, and therefore, does not require a seismic stability analysis.

SECTION 7: ASSESSMENT/REMEDIAL MEASURES

7.1 Dam Assessment

The assessment of the general condition of the dam is based upon available data and visual inspection. Detailed investigations, testing and detailed computational evaluations are beyond the scope of a Phase I investigation, however, the investigation is intended to identify any need for such studies.

It should be realized that the reported condition of the dam is based upon observations of field conditions at the time of inspection along with data available to the inspection team.

It is also important to note that the condition of a dam depends upon numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be assurance that an unsafe condition could be detected.

a. Safety

The spillway capacity of Spring Lake Dam was found to be "Seriously Inadequate". The spillway/reservoir system will accommodate only 24 percent of the PMF without overtopping the dam. The PMF overtopped the dam by over three feet and the duration of embankment overflow is over 5-1/2 hours. If the body of the dam is made up of silty soils, the dam would be susceptible to erosion and failure during overtopping.

No quantitative evaluation of the safety of the embankment can be made in view of the absence of seepage and stability analyses. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions and made a matter of record. The present embankment and appurtenant structures, however, reportedly have performed satisfactorily since their construction without failure or evidence of instability. Reportedly, the dam has never been overtopped and no evidence indicating the contrary was observed.

b. Adequacy of Information

Pertinent information relating to the design of the dam is lacking. The conclusions presented in this report are based upon field measurement, past performance and the present condition of the dam. Information on the design hydrology, hydraulic design, and the operation and maintenance of the dam were not available for review. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency.

c. Urgency

The remedial measures recommended in Paragraph 7.2 should be accomplished within a reasonable period of time. The items recommended in Paragraph 7.2a should be pursued on a high priority basis.

d. Necessity for Phase II Inspection

Based upon results of the Phase I inspection, and if the remedial measures recommended in Paragraph 7.2 are undertaken, a Phase II inspection is not felt to be necessary.

7.2 Remedial Measures

a. Alternatives

Spillway capacity and/or height of the dam should be increased to accommodate the PMF without overtopping the dam.

b. O & M Procedures

1. The trees and cattails in the spillway should be removed and prevented from growing back.
2. The small trees on the downstream slope should be removed and prevented from growing back.
3. Monitor the erosion due to wave action observed on the upstream slope.

4. Monitor the depression created by the discharge at the downstream end of the low-level drain.
5. Monitor the erosion on the left side of the downstream channel.
6. Seepage and stability analyses should be performed by a professional engineer experienced in the design and construction of earth dams.
7. The owner should initiate the following programs:
 - (a) Periodic inspection of the dam by a professional engineer experienced in the design and construction of earthen dams.
 - (b) Set up a maintenance schedule and log all visits to the dam for operation, repairs and maintenance.

PLATES

PLATE I

KEY MAP
SHOWING LOCATION OF COUNTY

ADAIR COUNTY

SCALE

LOCATION MAP -

SPRING LAKE DAM

SPRING LAKE DAM (MO. 10136)
PLAN, ELEVATION & SECTION

PLATE-3

PENNSYLVANIAN {
 Ppw } PLEASANTON GROUP
 Pp
 Pm - MARMATON GROUP
 Pcc - CHEROKEE GROUP,
 CABANISS SUBGROUP

X - LOCATION OF DAM, MO. 10136

REFERENCE:

GEOLOGIC MAP OF MISSOURI
 MISSOURI GEOLOGIC SURVEY
 1979

**GEOLOGIC MAP
 OF
 ADAIR COUNTY
 AND
 ADJACENT AREA**

PLATE - 4

From TM 5-809-10 NAVFAC P-355 AFM 88-3, Chapter 13; April 11 1973

APPENDIX A

PHOTOGRAPHS TAKEN DURING INSPECTION

1000 0 1000
FEET

PHOTO INDEX
FOR
SPRING LAKE DAM

Spring Lake Dam

- Photo 1. - View of the upstream slope of the embankment.
- Photo 2. - View of the crest.
- Photo 3. - View of the downstream slope of the embankment.
- Photo 4. - Closeup view of the riprap on the upstream slope.
- Photo 5. - View of the spillway from upstream.
- Photo 6. - View of the road through the spillway just upstream of the control section.
- Photo 7. - View of the downstream channel.
- Photo 8. - View of the stratification of the bedrock in the downstream channel.
- Photo 9. - View of the outlet of the low level drain.
Note the valve house in the background.
- Photo 10. - View of the reservoir rim.

Spring Lake Dam

Photo 1

Photo 2

Spring Lake Dam

Photo 3

Photo 4

Spring Lake Dam

Photo 5

Photo 6

Spring Lake Dam

Photo 7

Photo 8

Spring Lake Dam

Photo 9

Photo 10

APPENDIX B
HYDROLOGIC COMPUTATIONS

PLATE I, APPENDIX B

DRAINAGE BOUNDARY -----

SPRING LAKE DAM
(MO 10136)

B-2

DRAINAGE BASIN

PRO ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI

SHEET NO. 1 OF

SPRING LAKE SLAM (MO. 10136)

JOB NO. 1240-001

SPILLWAY & OVERTOP RATING CURVE

BY PPW DATE

BY SFW DATE
JHLB

y_{f_i}	T_1	A_1	$\frac{Q_1}{V_1} = 567 \frac{B}{L}$	$\frac{Q_1}{V_1} V_1 A_1$	V/S	$W/S = \frac{y_{f_2}^2 - y_{f_1}^2}{(W/S) + 7.5}$	T_{L2}	A_{L2}	V_{L2}	Q_{L2}	H_1	L_1	C_1	$Q_1 = L_1 C_1 H_1$	$Q_f = Q_1 + Q_2$ $+ Q_3$
0	-	-	-	-	767.5	-	-	-	-	-	-	-	-	-	496
1	89	88	5.64	496	768.99	-	-	-	-	-	-	-	-	-	1411
2	91	128	7.93	1411	770.48	-	-	-	-	-	-	-	-	-	2608
3	93	270	9.46	2608	771.95	-	-	-	-	-	-	-	-	-	
4	95	364	11.10	4040	773.4	0.9	118	.8142	4.71	3.83	1.4	747	2.63	3254	7677
5	97	460	12.35	5681	774.9	1.9	118	19470	2.28	1418	2.9	747	2.63	9702	16809
6	97	557	13.59	7568	776.4	2.9	118	312.20	9.23	2086	4.4	747	2.63	18132	20587

SPRING LAKE DAM (MO. 10136)
SPILLWAY & OVERTOP RATING CURVE
B-4

DAM SAFETY INSPECTION - MISSOURI

SHEET NO. 1 OF

SPRING LAKE DAM (10136)

JOB NO. 1240-1

RESERVOIR AREA CAPACITY - DATA

BY PRW DATE 7-13-77
KLG

SPRING LAKE DAM 10136
RESERVOIR AREA CAPACITY

ELEVATION M.S.L. (FT.)	RESERVOIR SURFACE AREA (ACRES)	INCREMENTAL VOLUME (A.C.FT.)	TOTAL VOLUME (FT.-FT.)	REMARKS
740	0	-	0	ESTIMATED SPREADING PARABOLA
750	14	9	9	
760	45.8	284	293	
767.5	70.5	433	726	SPILLWAY CREST
770	80	188	914	
772	84	164	1078	TOP OF Dam (assumed)
780	121.8	819	1897	
800	213.4	3309	5206	

SPRING LAKE DAM (MO. 10136)
RESERVOIR CAPACITY CURVE

ECC-6 ENGINEERING CONSULTANTS, INC.

DRAINAGE AREA: 1846 AC

SHEET NO. 1 OF

MISSOURI DRAIN # 10136

JOB NO. 1245-001-1

PEAKDAY MAXIMUM PRECIPITATION

BY PWD ALB

DATE 8-17-72

Long & Mo. 10136

DETERMINATION OF PMP

1) DETERMINE DRAINAGE AREA OF BASIN

$$D.A. = 1846 \text{ Ac}$$

2) DETERMINE PMP INDEX RAINFALL

(200 SQ MI, 24 HR DURATION)

LOCATION OF CENTRE OF BASIN

LONG $92^{\circ}39'29''$
 LAT. $40^{\circ}06'47''$

PMP INDEX
 RAINFALL = $24.1''$

3) DETERMINING BASIN RAINFALL IN TERMS OF

PERCENTAGE OF PMP INDEX RAINFALL

FOR VARIOUS DURATIONS:

LOCATION LONG $92^{\circ}39'29''$ LAT $40^{\circ}06'47''$

⇒ ZONE 7

DURATION (HR)	PERCENT OF INDEX RAINFALL	TOTAL RAINFALL (IN)	RAINFALL INCREMENTS	DURATION OF INCREMENTS
6	100	24.1	24.1	6
12	120	28.9	4.8	6
24	135	31.3	2.4	12

20

B-8

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI SHEET NO. 1 OF _____
 SPRING LAKE DAM (10136) JOB NO. 1290-001
 UNIT HYDROGRAPH PARAMETERS BY RHK DATE 4-6-75
 ✓ RPK

- 1) DRAINAGE AREA = 1846 AC = 2.88 SQ. MI
- 2) LENGTH OF STREAM = $L = (2.2 \times \frac{62500}{12}) = 11458 \text{ FT} = 2.17 \text{ mi}$
- 3) ELEVATION OF DRAINAGE DIVIDE ALONG THE LONGEST STREAM $H_1 = 970 \text{ FT}$
- 4) RESERVOIR ELEVATION AT SPILLWAY CREST, $H_2 = 767.5 \text{ FT}$
- 5) DIFFERENCE IN ELEVATION = $\Delta H = H_1 - H_2 = 970 - 767.5 = 202.5 \text{ FT}$
- 6) SLOPE OF STREAM = $\frac{H_{85} - H_{15}}{0.75L} = \frac{960 - 770}{0.75 \times 11458} = 0.0221 = 2.21\%$

7) TIME OF CONCENTRATION :

a) By KIRPICH FORMULA

$$T_c = \left(\frac{11.9 \times L^3}{\Delta H} \right)^{0.385} = \left(\frac{11.9 \times (2.17)^3}{202.5} \right)^{0.385} = 0.82 \text{ hr.}$$

b) BY VELOCITY ESTIMATE:

$$\text{Slope of Stream} = 2.21\% \Rightarrow V = 3 \text{ FPS}$$

$$T_c = \frac{L}{V} = \frac{11458}{3 \times 3600} = 1.06 \text{ HR, USE } T_c = 0.82 \text{ HR}$$

$$8) \text{LAG TIME} = 0.6 \times T_c = 0.6 \times 0.82 = 0.49 \text{ HR}$$

$$9) \text{UNIT DURATION } D \leq \frac{L}{V} = \frac{0.49}{3} = 0.123$$

$$\text{USE } D = 0.083 \text{ HR} = 5 \text{ MIN}$$

$$10) \text{TIME TO PEAK}, T_p = \frac{D}{2} + L_t = 0.53$$

$$11) \text{PEAK DISCHARGE } q_p = \frac{q_{85} \times A}{T_p} = \frac{484 \times 2.88}{0.53}$$

$$q_p = 2630 \text{ cfs}$$

PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION - MISSOURI

SHEET NO. 1 OF

SPRING LAKE DAM (10136)

JOB NO. 1240-001-1

SOIL GROUP AND CURVE NUMBER DETERMINATION BY KLB

DATE 8-31-⁸⁸SPRING LAKE DAM (10136)HYDROLOGIC SOIL GROUP AND CURVE NUMBER

1. WATERSHED SOILS IN THIS BASIN CONSIST OF GROUP B, C, AND D SOILS. ASSUME GROUP C FOR HYDROLOGIC PURPOSES FOR THE ENTIRE WATERSHED.
2. THIS WATERSHED IS PRIMARILY FORESTED WITH ABOUT 20% IN RANGE AND PASTURE LAND. ASSUME THE HYDROLOGIC CONDITION OF THIS WATERSHED IS "FAIR".

THUS. $CN = 73$ (WOODS) 80% $CN = 79$ (PASTURE & RANGE) 20%

FOR A WEIGHTED AVERAGE

 $CN = 74$ WITH AMC II $\Rightarrow \underline{CN = 88 \text{ WITH } AMC III}$

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION - MISSOURI SHEET NO. 1 OF _____
 MISSOURI DAM 10136 JOB NO. 1240-001-1
 100 YEAR FLOOD BY REGRESSION EQUATION BY R.H.K. DATE HLBV

MISSOURI DAM 10136

100 YEAR FLOOD BY REGRESSION EQUATION

REGRESSION EQUATION FOR THE 100 YEAR FLOOD
FOR MISSOURI

$$Q_{100} = 85.1 A^{0.939} S^{-0.576}$$

WHERE :

A = DRAINAGE AREA Sq. MI.

S = MAIN CHANNEL SLOPE ft./mi.
(AVG. SLOPE BETWEEN 0.1L AND 0.8SL)

FOR MISSOURI DAM 10136

A = 2.88 Sq. Mi.

S = 117 ft./mi.

$$Q_{100} = 85.1 (2.88)^{0.939} (117.0)^{-0.576}$$

$$= \underline{\underline{3478}} \text{ CFS}$$

HEC1DB INPUT DATA

B-13

INFLOW PMF AND ONE-HALF PMF HYDROGRAPHS

PREVIEWS OF SEQUENCE OF STREAM NETWORK CALCULATIONS

RUNOFF HYDROGRAPH AT 15136
ROUTE HYDROGRAPH TO 15136
END OF APT. 04A

FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAM SAFETY VERSION
LAST MODIFICATION 26 JULY 79

RUN DATE: 07/01/86
TIME: 07:23:37

DA-4 SAFETY INSPECTION - MISSOURI
SPRING LAKE DAM (DOJ 114-4)
PDP AND 50 PERCENT FVE

NO	NMF	NAME	1DAY	1HR	MTRC	TRLT	IPRT	NSIAN
300	300	C	0	0	0	0	0	0
301	301	JNPER	0	0	0	0	0	0
302	302	302	0	0	0	0	0	0
303	303	303	0	0	0	0	0	0
304	304	304	0	0	0	0	0	0
305	305	305	0	0	0	0	0	0
306	306	306	0	0	0	0	0	0
307	307	307	0	0	0	0	0	0
308	308	308	0	0	0	0	0	0
309	309	309	0	0	0	0	0	0
310	310	310	0	0	0	0	0	0
311	311	311	0	0	0	0	0	0
312	312	312	0	0	0	0	0	0
313	313	313	0	0	0	0	0	0
314	314	314	0	0	0	0	0	0
315	315	315	0	0	0	0	0	0
316	316	316	0	0	0	0	0	0
317	317	317	0	0	0	0	0	0
318	318	318	0	0	0	0	0	0
319	319	319	0	0	0	0	0	0
320	320	320	0	0	0	0	0	0
321	321	321	0	0	0	0	0	0
322	322	322	0	0	0	0	0	0
323	323	323	0	0	0	0	0	0
324	324	324	0	0	0	0	0	0
325	325	325	0	0	0	0	0	0
326	326	326	0	0	0	0	0	0
327	327	327	0	0	0	0	0	0
328	328	328	0	0	0	0	0	0
329	329	329	0	0	0	0	0	0
330	330	330	0	0	0	0	0	0
331	331	331	0	0	0	0	0	0
332	332	332	0	0	0	0	0	0
333	333	333	0	0	0	0	0	0
334	334	334	0	0	0	0	0	0
335	335	335	0	0	0	0	0	0
336	336	336	0	0	0	0	0	0
337	337	337	0	0	0	0	0	0
338	338	338	0	0	0	0	0	0
339	339	339	0	0	0	0	0	0
340	340	340	0	0	0	0	0	0
341	341	341	0	0	0	0	0	0
342	342	342	0	0	0	0	0	0
343	343	343	0	0	0	0	0	0
344	344	344	0	0	0	0	0	0
345	345	345	0	0	0	0	0	0
346	346	346	0	0	0	0	0	0
347	347	347	0	0	0	0	0	0
348	348	348	0	0	0	0	0	0
349	349	349	0	0	0	0	0	0
350	350	350	0	0	0	0	0	0
351	351	351	0	0	0	0	0	0
352	352	352	0	0	0	0	0	0
353	353	353	0	0	0	0	0	0
354	354	354	0	0	0	0	0	0
355	355	355	0	0	0	0	0	0
356	356	356	0	0	0	0	0	0
357	357	357	0	0	0	0	0	0
358	358	358	0	0	0	0	0	0
359	359	359	0	0	0	0	0	0
360	360	360	0	0	0	0	0	0
361	361	361	0	0	0	0	0	0
362	362	362	0	0	0	0	0	0
363	363	363	0	0	0	0	0	0
364	364	364	0	0	0	0	0	0
365	365	365	0	0	0	0	0	0
366	366	366	0	0	0	0	0	0
367	367	367	0	0	0	0	0	0
368	368	368	0	0	0	0	0	0
369	369	369	0	0	0	0	0	0
370	370	370	0	0	0	0	0	0
371	371	371	0	0	0	0	0	0
372	372	372	0	0	0	0	0	0
373	373	373	0	0	0	0	0	0
374	374	374	0	0	0	0	0	0
375	375	375	0	0	0	0	0	0
376	376	376	0	0	0	0	0	0
377	377	377	0	0	0	0	0	0
378	378	378	0	0	0	0	0	0
379	379	379	0	0	0	0	0	0
380	380	380	0	0	0	0	0	0
381	381	381	0	0	0	0	0	0
382	382	382	0	0	0	0	0	0
383	383	383	0	0	0	0	0	0
384	384	384	0	0	0	0	0	0
385	385	385	0	0	0	0	0	0
386	386	386	0	0	0	0	0	0
387	387	387	0	0	0	0	0	0
388	388	388	0	0	0	0	0	0
389	389	389	0	0	0	0	0	0
390	390	390	0	0	0	0	0	0
391	391	391	0	0	0	0	0	0
392	392	392	0	0	0	0	0	0
393	393	393	0	0	0	0	0	0
394	394	394	0	0	0	0	0	0
395	395	395	0	0	0	0	0	0
396	396	396	0	0	0	0	0	0
397	397	397	0	0	0	0	0	0
398	398	398	0	0	0	0	0	0
399	399	399	0	0	0	0	0	0
400	400	400	0	0	0	0	0	0
401	401	401	0	0	0	0	0	0
402	402	402	0	0	0	0	0	0
403	403	403	0	0	0	0	0	0
404	404	404	0	0	0	0	0	0
405	405	405	0	0	0	0	0	0
406	406	406	0	0	0	0	0	0
407	407	407	0	0	0	0	0	0
408	408	408	0	0	0	0	0	0
409	409	409	0	0	0	0	0	0
410	410	410	0	0	0	0	0	0
411	411	411	0	0	0	0	0	0
412	412	412	0	0	0	0	0	0
413	413	413	0	0	0	0	0	0
414	414	414	0	0	0	0	0	0
415	415	415	0	0	0	0	0	0
416	416	416	0	0	0	0	0	0
417	417	417	0	0	0	0	0	0
418	418	418	0	0	0	0	0	0
419	419	419	0	0	0	0	0	0
420	420	420	0	0	0	0	0	0
421	421	421	0	0	0	0	0	0
422	422	422	0	0	0	0	0	0
423	423	423	0	0	0	0	0	0
424	424	424	0	0	0	0	0	0
425	425	425	0	0	0	0	0	0
426	426	426	0	0	0	0	0	0
427	427	427	0	0	0	0	0	0
428	428	428	0	0	0	0	0	0
429	429	429	0	0	0	0	0	0
430	430	430	0	0	0	0	0	0
431	431	431	0	0	0	0	0	0
432	432	432	0	0	0	0	0	0
433	433	433	0	0	0	0	0	0
434	434	434	0	0	0	0	0	0
435	435	435	0	0	0	0	0	0
436	436	436	0	0	0	0	0	0
437	437	437	0	0	0	0	0	0
438	438	438	0	0	0	0	0	0
439	439	439	0	0	0	0	0	0
440	440	440	0	0	0	0	0	0
441	441	441	0	0	0	0	0	0
442	442	442	0	0	0	0	0	0
443	443	443	0	0	0	0	0	0
444	444	444	0	0	0	0	0	0
445	445	445	0	0	0	0	0	0
446	446	446	0	0	0	0	0	0
447	447	447	0	0	0	0	0	0
448	448	448	0	0	0	0	0	0
449	449	449	0	0	0	0	0	0
450	450	450	0	0	0	0	0	0
451	451	451	0	0	0	0	0	0
452	452	452	0	0	0	0	0	0
453	453	453	0	0	0	0	0	0
454	454	454	0	0	0	0	0	0
455	455	455	0	0	0	0	0	0
456	456	456	0	0	0	0	0	0
457	457	457	0	0	0	0	0	0
458	458	458	0	0	0	0	0	0
459	459	459	0	0	0	0	0	0
460	460	460	0	0	0	0	0	0
461	461	461	0	0	0	0	0	0
462	462	462	0	0	0	0	0	0
463	463	463	0	0	0	0	0	0
464	464	464	0	0	0	0	0	0
465	465	465	0	0	0	0	0	0
466	466	466	0	0	0	0	0	0
467	467	467	0	0	0	0	0	0
468	468	468	0	0	0	0	0	0
469	469	469	0	0	0	0	0	0
470	470	470	0	0	0	0	0	0
471	471	471	0	0	0	0	0	0
472	472							

W.D.A.	W.R.A.N.	PERIOD	RAINF.	ELOS	LOSS	END-OF-PERIOD PLOW			RAIN.	FVCS	LOSS	COMP. A
						CONC. O	WD.CA	HR.MN				
1.00	7.05	1	.03	.005	.01	1.01	12.45	151	.20	.01	214.5	
1.01	.04	2	.01	.00	.01	1.01	12.40	152	.20	.01	319.0	
1.01	.10	3	.01	.00	.01	1.01	12.45	153	.20	.01	345.7	
1.01	.15	4	.01	.00	.01	1.01	12.55	154	.20	.01	366.0	
1.01	.20	5	.01	.00	.01	1.01	12.55	155	.20	.01	381.0	
1.01	.25	6	.01	.00	.01	1.01	13.00	156	.20	.01	394.0	
1.01	.30	7	.01	.00	.01	1.01	13.05	157	.20	.01	404.5	
1.01	.35	8	.01	.00	.01	1.01	13.10	158	.20	.01	414.0	
1.01	.40	9	.01	.00	.01	1.01	13.15	159	.20	.01	424.0	
1.01	.45	10	.01	.00	.01	1.01	13.20	160	.20	.01	434.0	
1.01	.50	11	.01	.00	.01	1.01	13.25	161	.20	.01	438.0	
1.01	.55	12	.01	.00	.01	1.01	13.30	162	.20	.01	452.0	
1.00	1.05	13	.01	.00	.01	1.01	13.35	163	.20	.01	462.0	
1.01	1.10	14	.01	.00	.01	1.01	13.40	164	.20	.01	475.0	
1.01	1.15	15	.01	.00	.01	1.01	13.45	165	.20	.01	486.0	
1.01	1.20	16	.01	.00	.01	1.01	13.50	166	.20	.01	494.0	
1.01	1.25	17	.01	.00	.01	1.01	13.55	167	.20	.01	503.0	
1.01	1.30	18	.01	.00	.01	1.01	13.60	168	.20	.01	509.0	
1.01	1.35	19	.01	.00	.01	1.01	13.65	169	.20	.01	513.0	
1.01	1.40	20	.01	.00	.01	1.01	13.70	170	.20	.01	518.0	
1.01	1.45	21	.01	.00	.01	1.01	13.75	171	.20	.01	524.0	
1.01	1.50	22	.01	.00	.01	1.01	13.80	172	.20	.01	533.0	
1.01	1.55	23	.01	.00	.01	1.01	13.85	173	.20	.01	546.0	
1.01	1.60	24	.01	.00	.01	1.01	13.90	174	.20	.01	550.0	
1.01	1.65	25	.01	.00	.01	1.01	13.95	175	.20	.01	570.0	
1.01	1.70	26	.01	.00	.01	1.01	14.00	176	.20	.01	595.0	
1.01	1.75	27	.01	.00	.01	1.01	14.05	177	.20	.01	605.0	
1.01	1.80	28	.01	.00	.01	1.01	14.10	178	.20	.01	622.0	
1.01	1.85	29	.01	.00	.01	1.01	14.15	179	.20	.01	632.0	
1.01	1.90	30	.01	.00	.01	1.01	14.20	180	.20	.01	645.0	
1.01	1.95	31	.01	.00	.01	1.01	14.25	181	.20	.01	648.0	
1.01	2.00	32	.01	.00	.01	1.01	14.30	182	.20	.01	656.0	
1.01	2.05	33	.01	.00	.01	1.01	14.35	183	.20	.01	664.0	
1.01	2.10	34	.01	.00	.01	1.01	14.40	184	.20	.01	671.0	
1.01	2.15	35	.01	.00	.01	1.01	14.45	185	.20	.01	677.0	
1.01	2.20	36	.01	.00	.01	1.01	14.50	186	.20	.01	682.0	
1.01	2.25	37	.01	.00	.01	1.01	14.55	187	.20	.01	722.0	
1.01	2.30	38	.01	.00	.01	1.01	14.60	188	.20	.01	766.0	
1.01	2.35	39	.01	.00	.01	1.01	14.65	189	.20	.01	793.0	
1.01	2.40	40	.01	.00	.01	1.01	14.70	190	.20	.01	800.0	
1.01	2.45	41	.01	.00	.01	1.01	14.75	191	.20	.01	807.0	
1.01	2.50	42	.01	.00	.01	1.01	14.80	192	.20	.01	814.0	
1.01	2.55	43	.01	.00	.01	1.01	14.85	193	.20	.01	819.0	
1.01	2.60	44	.01	.00	.01	1.01	14.90	194	.20	.01	824.0	
1.01	2.65	45	.01	.00	.01	1.01	14.95	195	.20	.01	827.0	
1.01	2.70	46	.01	.00	.01	1.01	15.00	196	.20	.01	831.0	
1.01	2.75	47	.01	.00	.01	1.01	15.05	197	.20	.01	837.0	
1.01	2.80	48	.01	.00	.01	1.01	15.10	198	.20	.01	846.0	
1.01	2.85	49	.01	.00	.01	1.01	15.15	199	.20	.01	853.0	
1.01	2.90	50	.01	.00	.01	1.01	15.20	200	.20	.01	867.0	
1.01	2.95	51	.01	.00	.01	1.01	15.25	201	.20	.01	874.0	
1.01	3.00	52	.01	.00	.01	1.01	15.30	202	.20	.01	880.0	
1.01	3.05	53	.01	.00	.01	1.01	15.35	203	.20	.01	886.0	
1.01	3.10	54	.01	.00	.01	1.01	15.40	204	.20	.01	893.0	
1.01	3.15	55	.01	.00	.01	1.01	15.45	205	.20	.01	900.0	
1.01	3.20	56	.01	.00	.01	1.01	15.50	206	.20	.01	907.0	
1.01	3.25	57	.01	.00	.01	1.01	15.55	207	.20	.01	914.0	
1.01	3.30	58	.01	.00	.01	1.01	15.60	208	.20	.01	921.0	
1.01	3.35	59	.01	.00	.01	1.01	15.65	209	.20	.01	928.0	
1.01	3.40	60	.01	.00	.01	1.01	15.70	210	.20	.01	935.0	
1.01	3.45	61	.01	.00	.01	1.01	15.75	211	.20	.01	942.0	
1.01	3.50	62	.01	.00	.01	1.01	15.80	212	.20	.01	949.0	
1.01	3.55	63	.01	.00	.01	1.01	15.85	213	.20	.01	956.0	
1.01	3.60	64	.01	.00	.01	1.01	15.90	214	.20	.01	963.0	
1.01	3.65	65	.01	.00	.01	1.01	15.95	215	.20	.01	970.0	
1.01	3.70	66	.01	.00	.01	1.01	16.00	216	.20	.01	977.0	
1.01	3.75	67	.01	.00	.01	1.01	16.05	217	.20	.01	984.0	
1.01	3.80	68	.01	.00	.01	1.01	16.10	218	.20	.01	991.0	
1.01	3.85	69	.01	.00	.01	1.01	16.15	219	.20	.01	998.0	
1.01	3.90	70	.01	.00	.01	1.01	16.20	220	.20	.01	1005.0	
1.01	3.95	71	.01	.00	.01	1.01	16.25	221	.20	.01	1012.0	
1.01	4.00	72	.01	.00	.01	1.01	16.30	222	.20	.01	1019.0	
1.01	4.05	73	.01	.00	.01	1.01	16.35	223	.20	.01	1026.0	
1.01	4.10	74	.01	.00	.01	1.01	16.40	224	.20	.01	1033.0	
1.01	4.15	75	.01	.00	.01	1.01	16.45	225	.20	.01	1040.0	
1.01	4.20	76	.01	.00	.01	1.01	16.50	226	.20	.01	1047.0	
1.01	4.25	77	.01	.00	.01	1.01	16.55	227	.20	.01	1054.0	
1.01	4.30	78	.01	.00	.01	1.01	16.60	228	.20	.01	1061.0	
1.01	4.35	79	.01	.00	.01	1.01	16.65	229	.20	.01	1068.0	
1.01	4.40	80	.01	.00	.01	1.01	16.70	230	.20	.01	1075.0	
1.01	4.45	81	.01	.00	.01	1.01	16.75	231	.20	.01	1082.0	
1.01	4.50	82	.01	.00	.01	1.01	16.80	232	.20	.01	1089.0	
1.01	4.55	83	.01	.00	.01	1.01	16.85	233	.20	.01	1096.0	
1.01	4.60	84	.01	.00	.01	1.01	16.90	234	.20	.01	1103.0	
1.01	4.65	85	.01	.00	.01	1.01	16.95	235	.20	.01	1110.0	
1.01	4.70	86	.01	.00	.01	1.01	17.00	236	.20	.01	1117.0	
1.01	4.75	87	.01	.00	.01	1.01	17.05	237	.20	.01	1124.0	
1.01	4.80	88	.01	.00	.01	1.01	17.10	238	.20	.01	1131.0	
1.01	4.85	89	.01	.00	.01	1.01	17.15	239	.20	.01	1138.0	
1.01	4.90	90	.01	.00	.01	1.01	17.20	240	.20	.01	1145.0	
1.01	4.95	91	.01	.00	.01	1.01	17.25	241	.20	.01	1152.0	
1.01	5.00	92	.01	.00	.01	1.01	17.30	242	.20	.01	1159.0	
1.01	5.05	93	.01	.00	.01	1.01	17.35	243	.20	.01	1166.0	
1.01	5.10	94	.01	.00	.01	1.01	17.40	244	.20	.01	1173.0	
1.01	5.15	95	.01	.00	.01	1.01	17.45	245	.20	.01	1180.0	
1.01	5.20	96	.01	.00	.01	1.01	17.50	246	.20	.01	1187.0	
1.01	5.25	97	.01	.00	.01	1.01	17.55	247	.20	.01	1194.0	
1.01	5.30	98	.01	.00	.01	1.01	17.60	248	.20	.01	1201.0	
1.01	5.35	99	.01	.00	.01	1.01	17.65	249	.20	.01	1208.0	
1.01	5.40	100	.01	.00	.01	1.01	17.70	250	.20	.01	1215.0	
1.01	5.45	101	.01	.00	.01	1.01	17.75	251	.20	.01	1222.0	

B-19

B-20

B-21

	PEAK	WAVEUP	WAVEUP	72-HOUR	TOTAL VOLUME
CR%	96.8	101%	115%	116%	31468
CUR%	71.9	103%	3%	31%	9486
INCHES					
MM	11.65	16.87	16.87	16.87	16.87
AC-FI	296.64	577.70	577.70	577.70	577.70
THOUS CU M	175.9	285.3	285.3	285.3	285.3
	2113.	2016.	2016.	2016.	2016.
					31468

• 420 •

ROUTE HYDROGRAPHIC SURVEY SPRING LAKE 74M

PRO-COF-PERIODIC HYDROGRAPHIC OBSERVATIONS

SUMMARY OF PMF AND ONE-HALF PMF FLOOD ROUTING

B-23

NEAR FLOW AND STORAGE (CUBIC FEET PER SECOND) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
 FLOW IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
 AREA IN SQUARE MILES (SQUARE KILOMETERS)

MANUFACTURER	STATION	AREA	PLAN RATIO 1		RATIO 2 1.00
			PLAN	RATIO	
HYDROGRAPH AT	1.136 (2.050 7.06)	1 15737. (550.881(9868. 279.441(
ROUTED TO	1.213(2.099 7.46)	1 17345. (565.031(8174. 231.351(

B-24

SAFETY IN THE WORKPLACE

PLAN 1		INITIAL VALUE		CHILLIWACK CREST		TCP OF 0.0%	
ELEVATION	STORAGE	MAXIMUM DEPTH	STAGGERED AC-FT	MAXIMUM SURFACE CFS	AC-FT	TIME OF FAILURE	HOURS
1000	757.50	7.26	67.50	77.06	19.40	16.25	0.00
1000	756.00	7.26	67.50	77.06	19.40	16.25	0.00
1000	755.00	7.26	67.50	77.06	19.40	16.25	0.00
1000	754.00	7.26	67.50	77.06	19.40	16.25	0.00
1000	753.00	7.26	67.50	77.06	19.40	16.25	0.00
1000	752.00	7.26	67.50	77.06	19.40	16.25	0.00
1000	751.00	7.26	67.50	77.06	19.40	16.25	0.00
1000	750.00	7.26	67.50	77.06	19.40	16.25	0.00

B-25

PERCENT OF PMF FLOOD ROUTING
EQUAL TO SPILLWAY CAPACITY

PRIORITIES OF STREAM NETWORK CALCULATIONS

RUNOFF HYDROGRAPH AT
101%
ROUTE HYDROGRAPH TO
END OF NETWORK.

FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAM SAFETY VERSION
JULY 1977
LAST MODIFICATION 26 FEB. 79

RUN DATE: 08/01/00
TIME: 07:29:02.

DAM SAFETY INSPECTION - ASSUMPTIONS
SPRING LAKE DAM (MO.1013)

PERCENT PMF

NO	NAME	MIN	MAX	UNIT	DATA	NO SPECIFICATION	IPRI	INSTAN
1	JONES	0	0	FT	1.00	WEIR	4	3
2	JONES	0	0	FT	0	0	0	0
3	JONES	0	0	FT	0	LEOPT	0	0
4	JONES	0	0	FT	0	TR-C	0	0
5	JONES	0	0	FT	0	TR-C	0	0
6	JONES	0	0	FT	0	TR-C	0	0
7	JONES	0	0	FT	0	TR-C	0	0
8	JONES	0	0	FT	0	TR-C	0	0
9	JONES	0	0	FT	0	TR-C	0	0
10	JONES	0	0	FT	0	TR-C	0	0
11	JONES	0	0	FT	0	TR-C	0	0
12	JONES	0	0	FT	0	TR-C	0	0
13	JONES	0	0	FT	0	TR-C	0	0
14	JONES	0	0	FT	0	TR-C	0	0
15	JONES	0	0	FT	0	TR-C	0	0
16	JONES	0	0	FT	0	TR-C	0	0
17	JONES	0	0	FT	0	TR-C	0	0
18	JONES	0	0	FT	0	TR-C	0	0
19	JONES	0	0	FT	0	TR-C	0	0
20	JONES	0	0	FT	0	TR-C	0	0
21	JONES	0	0	FT	0	TR-C	0	0
22	JONES	0	0	FT	0	TR-C	0	0
23	JONES	0	0	FT	0	TR-C	0	0
24	JONES	0	0	FT	0	TR-C	0	0
25	JONES	0	0	FT	0	TR-C	0	0
26	JONES	0	0	FT	0	TR-C	0	0
27	JONES	0	0	FT	0	TR-C	0	0
28	JONES	0	0	FT	0	TR-C	0	0
29	JONES	0	0	FT	0	TR-C	0	0
30	JONES	0	0	FT	0	TR-C	0	0
31	JONES	0	0	FT	0	TR-C	0	0
32	JONES	0	0	FT	0	TR-C	0	0
33	JONES	0	0	FT	0	TR-C	0	0
34	JONES	0	0	FT	0	TR-C	0	0
35	JONES	0	0	FT	0	TR-C	0	0
36	JONES	0	0	FT	0	TR-C	0	0
37	JONES	0	0	FT	0	TR-C	0	0
38	JONES	0	0	FT	0	TR-C	0	0
39	JONES	0	0	FT	0	TR-C	0	0
40	JONES	0	0	FT	0	TR-C	0	0
41	JONES	0	0	FT	0	TR-C	0	0
42	JONES	0	0	FT	0	TR-C	0	0
43	JONES	0	0	FT	0	TR-C	0	0
44	JONES	0	0	FT	0	TR-C	0	0
45	JONES	0	0	FT	0	TR-C	0	0
46	JONES	0	0	FT	0	TR-C	0	0
47	JONES	0	0	FT	0	TR-C	0	0
48	JONES	0	0	FT	0	TR-C	0	0
49	JONES	0	0	FT	0	TR-C	0	0
50	JONES	0	0	FT	0	TR-C	0	0
51	JONES	0	0	FT	0	TR-C	0	0
52	JONES	0	0	FT	0	TR-C	0	0
53	JONES	0	0	FT	0	TR-C	0	0
54	JONES	0	0	FT	0	TR-C	0	0
55	JONES	0	0	FT	0	TR-C	0	0
56	JONES	0	0	FT	0	TR-C	0	0
57	JONES	0	0	FT	0	TR-C	0	0
58	JONES	0	0	FT	0	TR-C	0	0
59	JONES	0	0	FT	0	TR-C	0	0
60	JONES	0	0	FT	0	TR-C	0	0
61	JONES	0	0	FT	0	TR-C	0	0
62	JONES	0	0	FT	0	TR-C	0	0
63	JONES	0	0	FT	0	TR-C	0	0
64	JONES	0	0	FT	0	TR-C	0	0
65	JONES	0	0	FT	0	TR-C	0	0
66	JONES	0	0	FT	0	TR-C	0	0
67	JONES	0	0	FT	0	TR-C	0	0
68	JONES	0	0	FT	0	TR-C	0	0
69	JONES	0	0	FT	0	TR-C	0	0
70	JONES	0	0	FT	0	TR-C	0	0
71	JONES	0	0	FT	0	TR-C	0	0
72	JONES	0	0	FT	0	TR-C	0	0
73	JONES	0	0	FT	0	TR-C	0	0
74	JONES	0	0	FT	0	TR-C	0	0
75	JONES	0	0	FT	0	TR-C	0	0
76	JONES	0	0	FT	0	TR-C	0	0
77	JONES	0	0	FT	0	TR-C	0	0
78	JONES	0	0	FT	0	TR-C	0	0
79	JONES	0	0	FT	0	TR-C	0	0
80	JONES	0	0	FT	0	TR-C	0	0
81	JONES	0	0	FT	0	TR-C	0	0
82	JONES	0	0	FT	0	TR-C	0	0
83	JONES	0	0	FT	0	TR-C	0	0
84	JONES	0	0	FT	0	TR-C	0	0
85	JONES	0	0	FT	0	TR-C	0	0
86	JONES	0	0	FT	0	TR-C	0	0
87	JONES	0	0	FT	0	TR-C	0	0
88	JONES	0	0	FT	0	TR-C	0	0
89	JONES	0	0	FT	0	TR-C	0	0
90	JONES	0	0	FT	0	TR-C	0	0
91	JONES	0	0	FT	0	TR-C	0	0
92	JONES	0	0	FT	0	TR-C	0	0
93	JONES	0	0	FT	0	TR-C	0	0
94	JONES	0	0	FT	0	TR-C	0	0
95	JONES	0	0	FT	0	TR-C	0	0
96	JONES	0	0	FT	0	TR-C	0	0
97	JONES	0	0	FT	0	TR-C	0	0
98	JONES	0	0	FT	0	TR-C	0	0
99	JONES	0	0	FT	0	TR-C	0	0
100	JONES	0	0	FT	0	TR-C	0	0
101	JONES	0	0	FT	0	TR-C	0	0
102	JONES	0	0	FT	0	TR-C	0	0
103	JONES	0	0	FT	0	TR-C	0	0
104	JONES	0	0	FT	0	TR-C	0	0
105	JONES	0	0	FT	0	TR-C	0	0
106	JONES	0	0	FT	0	TR-C	0	0
107	JONES	0	0	FT	0	TR-C	0	0
108	JONES	0	0	FT	0	TR-C	0	0
109	JONES	0	0	FT	0	TR-C	0	0
110	JONES	0	0	FT	0	TR-C	0	0
111	JONES	0	0	FT	0	TR-C	0	0
112	JONES	0	0	FT	0	TR-C	0	0
113	JONES	0	0	FT	0	TR-C	0	0
114	JONES	0	0	FT	0	TR-C	0	0
115	JONES	0	0	FT	0	TR-C	0	0
116	JONES	0	0	FT	0	TR-C	0	0
117	JONES	0	0	FT	0	TR-C	0	0
118	JONES	0	0	FT	0	TR-C	0	0
119	JONES	0	0	FT	0	TR-C	0	0
120	JONES	0	0	FT	0	TR-C	0	0
121	JONES	0	0	FT	0	TR-C	0	0
122	JONES	0	0	FT	0	TR-C	0	0
123	JONES	0	0	FT	0	TR-C	0	0
124	JONES	0	0	FT	0	TR-C	0	0
125	JONES	0	0	FT	0	TR-C	0	0
126	JONES	0	0	FT	0	TR-C	0	0
127	JONES	0	0	FT	0	TR-C	0	0
128	JONES	0	0	FT	0	TR-C	0	0
129	JONES	0	0	FT	0	TR-C	0	0
130	JONES	0	0	FT	0	TR-C	0	0
131	JONES	0	0	FT	0	TR-C	0	0
132	JONES	0	0	FT	0	TR-C	0	0
133	JONES	0	0	FT	0	TR-C	0	0
134	JONES	0	0	FT	0	TR-C	0	0
135	JONES	0	0	FT	0	TR-C	0	0
136	JONES	0	0	FT	0	TR-C	0	0
137	JONES	0	0	FT	0	TR-C	0	0
138	JONES	0	0	FT	0	TR-C	0	0
139	JONES	0	0	FT	0	TR-C	0	0
140	JONES	0	0	FT	0	TR-C	0	0
141	JONES	0	0	FT	0	TR-C	0	0
142	JONES	0	0	FT	0	TR-C	0	0
143	JONES	0	0	FT	0	TR-C	0	0
144	JONES	0	0	FT	0	TR-C	0	0
145	JONES	0	0	FT	0	TR-C	0	0
146	JONES	0	0	FT	0	TR-C	0	0
147	JONES	0	0	FT	0	TR-C	0	0
148	JONES	0	0	FT	0	TR-C	0	0
149	JONES	0	0	FT	0	TR-C	0	0
150	JONES	0	0	FT	0	TR-C	0	0
151	JONES	0	0	FT	0	TR-C	0	0
152	JONES	0	0	FT	0	TR-C	0	0
153	JONES	0	0	FT	0	TR-C	0	0
154	JONES	0	0	FT	0	TR-C	0	0
155	JONES	0	0	FT	0	TR-C	0	0
156	JONES	0	0	FT	0	TR-C	0	0
157	JONES	0	0	FT	0	TR-C	0	0
158	JONES	0	0	FT	0	TR-C	0	0
159	JONES	0	0	FT	0	TR-C	0	0
160	JONES	0	0	FT	0	TR-C	0	0
161	JONES	0	0	FT	0	TR-C	0	0
162	JONES	0	0	FT	0	TR-C	0	0
163	JONES	0	0	FT	0	TR-C	0	0
164	JONES	0	0	FT	0	TR-C	0	0
165	JONES	0	0	FT	0	TR-C	0	0
166	JONES	0	0	FT	0	TR-C	0	0
167	JONES	0	0	FT	0	TR-C	0	0
168	JONES	0	0	FT	0	TR-C	0	0
169	JONES	0	0	FT	0	TR-C	0	0
170	JONES	0	0	FT	0	TR-C	0	0
171	JONES	0	0	FT	0	TR-C	0	0
172	JONES	0	0	FT	0	TR-C	0	0
173	JONES	0	0	FT	0	TR-C	0	0
174	JONES	0	0	FT	0	TR-C	0	0
175	JONES	0	0	FT	0	TR-C	0	0
176	JONES	0	0	FT	0	TR-C	0	0
177	JONES	0	0	FT	0	TR-C	0	0
178	JONES	0	0	FT	0	TR-C	0	0
179	JONES	0	0	FT	0	TR-C	0	0
180	JONES	0	0	FT	0	TR-C	0	0
181	JONES	0	0	FT	0	TR-C	0	0
182	JONES	0	0	FT	0	TR-C	0</td	

HYDROGRAPH ROUTING

ROUTE HYDROGRAPH THROUGH SPRING LAKE D1

	INSTAID	ROUTING	LEGON	INSTAID	ROUTING DATA	JF1	FR1	FR2	ROUTING	LAUTER
10126	100MP	1	0	0	ROUTING DATA	0	100P	100P	ROUTING	0
-	-	-	-	-	IRFS	100P	100P	100P	IRFS	0
-	-	-	-	-	LAG	LAG	LAG	LAG	LAG	LAG
-	-	-	-	-	LAG	LAG	LAG	LAG	LAG	LAG
-	-	-	-	-	LAG	LAG	LAG	LAG	LAG	LAG
STAGE	767.50	-	768.00	770.00	771.00	772.0	773.0	774.0	775.0	776.0
CAPACITY	0.00	-	453.00	1411.01	2680.00	2681.00	2682.01	2683.01	2684.01	2685.01
ELF. AT 100% =	748.00	-	750.00	752.00	754.00	756.0	758.0	760.0	762.0	764.0
CREL. AT 100% =	767.50	-	769.00	770.50	772.00	773.5	775.0	776.5	778.0	780.0
TOPFL. DATA	0.000	-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TOPFL. TIME	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PEAK OUTFLOW IS 21986 AT TIME 15.58 HOURS

PEAK CAPACITY IS 2217 AT TIME 16.58 HOURS

PEAK OUTFLOW IS 2196 AT TIME 16.59 HOURS

PEAK CAPACITY IS 2217 AT TIME 16.59 HOURS

PEAK OUTFLOW IS 2196 AT TIME 16.59 HOURS

PEAK CAPACITY IS 2217 AT TIME 16.59 HOURS

PEAK OUTFLOW IS 2196 AT TIME 16.59 HOURS

PEAK CAPACITY IS 2217 AT TIME 16.59 HOURS

PEAK OUTFLOW IS 2196 AT TIME 16.59 HOURS

PEAK CAPACITY IS 2217 AT TIME 16.59 HOURS

PEAK OUTFLOW IS 2196 AT TIME 16.59 HOURS

PEAK CAPACITY IS 2217 AT TIME 16.59 HOURS

PEAK OUTFLOW IS 2196 AT TIME 16.59 HOURS

PEAK CAPACITY IS 2217 AT TIME 16.59 HOURS

PEAK OUTFLOW IS 2196 AT TIME 16.59 HOURS

PEAK CAPACITY IS 2217 AT TIME 16.59 HOURS

B-29

PEAK FLOW AND DURATION (CENTIMETERS) SUMMARY FOR MULTIPLE PLANE-RATIO HYDROGRAPH COMPUTATIONS
 FLOWS IN CUBIC FEET PER SECOND (CFS) METERS PER SECOND
 AREA IN SQUARE MILES (Kilometers²)

OPERATION	STATION	AREA	PLAN	RATIO			RATIO	RATIO	RATIO
				.20	.22	.24			
HYDROGRAPH AT									
1.13	2454	7.461	3467	1.110.7614	1.174.5914	1.220.5514	1.261.5514	1.315.5514	1.373.5514
REPORTED TO									
1.011	1.011	1.011	1.011	1.011	1.011	1.011	1.011	1.011	1.011

B-30

SUMMARY OF DAM SAFETY ANALYSIS

ELEVATION STATION FT.LL.	INITIAL VALUE ft. in.	THREE DAY REPORT ft. in.	TOP OF LAM ft. in.	TIME OF WATER LEVEL ft. in.				
				MAXIMUM SUSTAIN- ABLE AC-FT OVER 24 HRS.	DURATION OVER TOP IN HRS.	TIME OF WATER LEVEL ft. in.	TIME OF RAILURE IN HRS.	
128	101.0	101.0	102.0	102.0	26.9	0.10	10.50	0.00
129	101.0	101.0	102.0	103.0	201.7	1.00	15.50	0.00
130	101.0	101.0	102.0	104.7	33.6	1.10	16.50	0.00
131	101.0	101.0	102.0	105.8	2.54	1.30	16.50	0.00
132	101.0	101.0	102.0	107.0	2.72	0.20	16.50	0.00
133	101.0	101.0	102.0	107.0	27.69	0.25	17.50	0.00

B-31

**DAT
FILM**