Question: Show $\log(n!) = \Theta(n \log n)$

- (a) Upper bound: find a constant c1, such that for large enough n, $\log(n!) \le c1n \log n$, or $n! \le c1n^n$ Because $n! = 1 \times 2 \times 3... \times n \le (n \times n \times n... \times n) = n^n$. By letting c1 = 1, we have $n! \le c1n^n$ thus $\log(n!) = O(n \log n)$
- (b) Lower bound: $n!=1 \times 2 \times 3... \times n$. By ignoring the first half of the series and keeping only the larger [n/2] items, we have

$$n! \ge \lceil n/2 \rceil \times \lceil n/2 \rceil + 1 \times \lceil n/2 \rceil + 2... \times n \ge \lceil n/2 \rceil \times \lceil n/2 \rceil... \times \lceil n/2 \rceil \ge \lceil n/2 \rceil^{\lfloor n/2 \rfloor}$$

Therefore $\log(n!) \ge \log((n/2)^{n/2}) = n/2\log n/2$ We can ignore the floor and ceiling function in asymptotic notations, so $\log(n!) = \Omega(n \log n)$

Question: Show $\sum_{i=1}^{n} (1/i) = \Theta(\log n)$

(a) Upper bound:

$$\sum_{i=1}^{n} (1/i) \le \sum_{i=1}^{n} (1/i_{02})$$

where i_{p2} is the largest power of 2 that's less than or equal to i. So:

$$\sum_{i=1}^{n} (1/i) \le (1/1 + 1/2 + 1/2 + 1/4 + 1/4 + 1/4 + 1/4 + 1/8 + \dots)$$

$$=1+\sum_{i=1}^{2}(1/2)+\sum_{i=1}^{4}(1/4)+\sum_{i=1}^{8}(1/8)+\ldots+\sum_{i=1}^{2^{k}}(1/2^{k})=k.$$

Because there are only n items in the original series, the constraint on k would be $1+2+4+8+...+2k-1 \le (n-1)$. Using geometric series lemma, $2k \le n$, so $k = O(\log n)$, meaning

$$\sum_{i=1}^{n} (1/i) = O(k) = O(\log n).$$

(b)Similarly for lower bound:

$$\sum_{i=1}^{n} (1/i) \le \sum_{i=1}^{n} (1/i_{p2})$$

where i_{p2} is the smallest power of 2 that's greater than i. So:

$$\sum_{i=1}^{n} (1/i) \ge (1/1 + 1/2 + 1/4 + 1/4 + 1/8 + 1/8 + 1/8 + 1/8 + 1/8 + \dots)$$

$$=1+\sum_{i=1}^{1}(1/2)+\sum_{i=1}^{2}(1/4)+\sum_{i=1}^{4}(1/8)+\ldots+\sum_{i=1}^{2^{k}}(1/2^{k+1})=1+k/2.$$

Again, we have $1+1+2+4+\ldots+2^k \geq n$, therefore $k \geq \log n - 1$, and $\sum_{i=1}^n (1/i) = \Omega(k) = \Omega(\log n)$.

Question 0.1 from DPV

- (a) $f(n) = \Theta(g(n))$
- (b) f(n) = O(g(n))
- (c) $f(n) = \Theta(g(n))$
- (d) $f(n) = \Theta(g(n))$
- (e) $f(n) = \Theta(g(n))$
- (f) $f(n) = \Theta(g(n))$
- (g) $f(n) = \Omega(g(n))$
- (h) $f(n) = \Omega(g(n))$
- (i) $f(n) = \Omega(g(n))$
- (j) $f(n) = \Omega(g(n))$
- (k) $f(n) = \Omega(g(n))$