

Trigonométrie

Spécialité Maths

Cercle trigonométrique

Propriétés et définitions

- *cercle trigonométrique* : cercle de centre O et de rayon 1 orienté dans le sens direct. Le sens direct, positif, ou trigonométrique est le sens contraire des aiguilles d'une montre.
- ullet À tout réel x, on associe un unique point M sur le cercle trigonométrique par enroulement de l'axe réel autour de ce cercle. On dit alors que
 - 1. M est le point du cercle associé à x
 - 2. x est une mesure en radian de l'angle orienté $(\overrightarrow{i}; \overrightarrow{OM})$

La mesure principale d'un angle est la mesure comprise dans l'intervalle $]-\pi,\pi]$

- Soit $(x; y) \in \mathbb{R}^2$. Alors, x et y sont associés à un même point du cercle trigonométrique $\iff \exists k \in \mathbb{Z} \text{ tq } y x = 2k\pi$. Alors, x et y sont égaux modulo 2π et on note $x = y[2\pi]$.
- Soit $x \in \mathbb{R}$ et M le point du cercle trigonométrique associé à x. Le nombre $\cos x$ est l'abscisse de M et $\sin x$ est l'ordonnée de M: les coordonnées de M sont $(\cos x; \sin x)$.

Valeurs remarquables

x degrés	0	30°	45^{o}	60°	90°	180°	360°
x radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	2π
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	

Équations et inéquations (Soit $k \in \mathbb{Z}$)

- \Rightarrow Dans \mathbb{R} , l'ensemble des solutions de $\cos x = \cos a$ est l'ensemble des réels de la forme $a+2k\pi$ ou $-a+2k\pi$
- \Rightarrow Dans \mathbb{R} , l'ensemble des solutions de $\sin x = \sin a$ est l'ensemble des réels de la forme $a+2k\pi$ ou $\pi-a+2k\pi$
- ♦ On utilise le cercle trigo pour résoudre les inéquations

Cercle trigonométrique

Propriétés sinus et cosinus

$$\forall x \in \mathbb{R}$$
, on a :

$$\Rightarrow -1 \leqslant \sin x \leqslant 1$$
 et $-1 \geqslant \sin x \geqslant 1$

- $\Leftrightarrow \cos^2 x + \sin^2 x = 1$
- $\Rightarrow \forall k \in \mathbb{Z}, \cos(x + 2k\pi) = \cos x \text{ et } \sin(x + 2k\pi) = \sin x$

Fonctions trigonométriques

- $\Rightarrow \forall x \in \mathbb{R}, \sin : x \mapsto \sin(x) \text{ et } \cos : x \mapsto \cos(x)$
- \Rightarrow Les fonctions sin et cos sont 2π -périodiques. $\forall x \in \mathbb{R}, \sin(x + 2\pi) = \sin x \text{ et } \cos(x + 2\pi) = \cos x$
- $\Rightarrow f^o \text{ cosinus paire} : \cos(-x) = \cos(x)$
- $\Rightarrow f^o \text{ sinus impaire} : \sin(-x) = -\sin(x)$

Dérivation et Limites particulières

- $\bullet \sin'(u) = u' \cos u$
- $\bullet \cos'(u) = -u' \sin u$
- $\bullet \lim_{x \to 0} \frac{\sin x}{x} = 1$
- $\bullet \lim_{x \to 0} \frac{\cos x 1}{x} = 0$

Angles associés

$$\Rightarrow \cos(x+\pi) = -\cos(x)$$
 si

$$\sin\left(x+\pi\right) = -\sin\left(x\right)$$

$$\Rightarrow \cos(\pi - x) = -\cos(x)$$

$$\sin\left(\pi - x\right) = \sin\left(x\right)$$

$$\Rightarrow \cos\left(\frac{\pi}{2} + x\right) = -\sin\left(x\right)$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos\left(x\right)$$

$$\Leftrightarrow \cos\left(\frac{\pi}{2} - x\right) = \sin\left(x\right)$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos\left(x\right)$$