Planejamento e Pesquisa (ME 623A) Segundo semestre de 2012 Prova II

Data: 23/10/2012

Nome:	RA:
	=

Leia atentamente as instruções abaixo:

- Coloque seu nome completo e RA em todas as folhas que você recebeu, inclusive nesta.
- Utilize somente um dos lados de cada folha.
- Leia atentamente cada uma das questões.
- Enuncie, claramente, todos os resultados que você utilizar.
- Justifique, adequadamente, seus desenvolvimentos, sem, no entanto, escrever excessivamente.
- O(a) aluno(a) só poderá sair da sala após as 16h30, mesmo que já tenha finalizado a prova. Após a saída do(a) primeiro(a) aluno(a) não será permitido a entrada de nenhum(a) outro(a) aluno(a).
- Não é permitido empréstimo de material.
- Não serão dirimidas dúvidas de quaisquer natureza, após os 20 minutos iniciais.
- Resolva a prova, preferencialmente, à caneta, e procure ser organizado(a). Se fizer à lápis, destaque, à caneta, sua resposta.
- O(a) aluno(a) deverá portar sua carteira de estudante e apresentá-la, quando for solicitada sua assinatura.
- Contestações a respeito da nota, só serão consideradas se estiverem por escrito.
- A nota do aluno(a) será $\frac{NP}{NT} \times 10$, em que NP é o número de pontos obtidos na prova e NT é o numero total de pontos da prova.
- Os resultados numéricos finais devem ser apresentados com duas casas decimais, apenas.
- A prova terá duração de 120 minutos, das 16h às 18h, improrrogáveis.

Faça uma excelente Prova!!

- 1. Responda os itens abaixo:
 - a) Considere o modelo usual sob a parametrização CR (casela de referência) para um PCA balanceado com um único fator com k níveis (tratamentos). Considere a SQF = $n\sum_{i=1}^k \left(\overline{Y}_i \overline{Y}_.\right)^2$, em que $\overline{Y}_{i.} = \frac{1}{n}\sum_{j=1}^n Y_{ij}$, $\overline{Y}_{..} = \frac{1}{nk}\sum_{i=1}^k \sum_{j=1}^n Y_{ij}$ e n é o número de unidades experimentais por tratamento. Prove que $\mathcal{E}(SQF/\sigma^2) = (k-1) + \frac{n}{\sigma^2}\sum_{i=1}^k \left(\alpha_i \overline{\alpha}\right)^2$, $\overline{\alpha} = \frac{1}{k}\sum_{i=1}^k \alpha_i$ (300 pontos).
 - b) Considerando o item anterior, prove que $Cov(\overline{Y}_{i.} \overline{Y}_{..}, Y_{ij} \overline{Y}_{i.}) = 0$ (300 pontos).
 - c) Considere o modelo usual sob a parametrização CR para um PCA com dois fatores, com 2 níveis cada. Prove, segundo o conceito de interação entre dois fatores visto em sala, que a hipótese de ausência de interação equivale à testar se $H_0: (\alpha\beta)_{22} = 0$ vs $H_1: (\alpha\beta)_{22} \neq 0$ (150 pontos).
- 2. A CPUE (captura por unidade de esforço, kg/dias de pesca) é uma variável que mede desempenho de frotas pesqueiras. Quanto maior, melhor o desempenho. Realizou-se um experimento a fim de comparar as frotas pesqueiras de Santos e Ubatuba (fator A) ao longo de 4 trimestres (1,2,3,4) (fator B), em relação à CPUE. Para cada frota, em cada trimestre, foi medida a CPUE para um certo número de barcos que compunham cada frota. Portanto, tem-se um experimento completamente casualizado com dois fatores. Considere, para todos os testes em questão, α = 0,01.

Abaixo encontram-se diversos resultados, incluindo: análises descritivas, testes de homogeneidade de variâncias, ajuste de um modelo normal linear completo (considerando os 2 fatores e interação), sob parametrização casela de referência (a casela de referência é o tratamento: Santos - trimestre 1, os néiveis 1,2,3,4, do fator B, correspondem, respectivamente, aos trimestres 1,2,3,4), e análise de resíduos.

Tabela 1: Análise descritiva dos dados da Questão 2

	Tabela 1. Alianse descritiva dos dados da Questão 2								
Frota	Trimestre	n_{ij}	Média	DP	Var.	CV(%)	Mínimo	Máximo	
Santos	1	23	247,28	126,11	15903,34	51,00	50,00	450,00	
Santos	2	22	219,96	$151,\!37$	$22912,\!21$	68,81	53,00	$562,\!50$	
Santos	3	34	$185,\!30$	102,73	$10552,\!98$	$55,\!44$	50,00	500,00	
Santos	4	38	$221,\!50$	$126,\!48$	$15995,\!97$	$57,\!10$	$63,\!64$	600,00	
Ubatuba	1	4	$46,\!42$	4,08	$16,\!67$	8,80	43,75	$52,\!50$	
Ubatuba	2	18	148,49	87,11	7588,00	58,66	47,08	350,00	
Ubatuba	3	11	$165,\!58$	80,58	6492,97	48,66	$62,\!50$	$291,\!67$	
Ubatuba	4	6	$96,\!83$	$33,\!50$	$1122,\!57$	34,60	48,00	130,00	

Teste de Bartlett = 33,412 (pvalor = <0,0001).

Tabela 2: Análise de variância dos dados da Questão 2

FV	$_{ m SQ}$	gl	QM	Estatística F	pvalor
Frota	191270,03	1	191270,03	14,36	0,0002
Trimestre	18817,24	3	$6272,\!41$	0,47	0,7029
Interação	90901,68	3	$30300,\!56$	2,28	0,0822
Resíduo	$1970717,\!52$	148	$13315,\!66$		

Figura 1: Gráficos de perfis médios para os dados da Questão 2

Figura 2: Análise de resíduos para o modelo completo para os dados da Questão $2\,$

Tabela 3: Estimativas dos parâmetros do modelo dos dados da Questão 2

Table of Delimetras des parametres de modele des dades de Questas 2								
Parâmetro	Estimativa	Erro-padrão	IC (95%)	Estatística t	p-valor			
${\mu}$	247,28	24,06	[200,12; 294,44]	10,28	< 0,0001			
$lpha_2$	-200,86	$62,\!51$	[-323,38;-78,33]	-3,21	0,0016			
eta_2	-27,32	$34,\!41$	[-94,76;40,13]	-0.79	$0,\!4286$			
eta_3	-61,98	$31,\!15$	[-123,04;-0,91]	-1,99	0,0485			
eta_4	-25,78	30,49	[-85,53;33,97]	-0,85	0,3991			
$(\alpha\beta)_{22}$	129,39	$72,\!48$	[-12,67 ; 271,44]	1,79	0,0763			
$(\alpha\beta)_{23}$	181,13	$74,\!23$	[35,64 ; 326,62]	$2,\!44$	0,0159			
$(\alpha\beta)_{24}$	$76,\!19$	80,48	[-81,56 ; 233,93]	0,95	0,3454			

- a) Defina quem são: fatores de interesse (quantos e quem são seus níveis) e a variável resposta (50 pontos).
- b) Escreva o modelo que foi ajustado ao conjunto de dados (com todas as suposições pertinentes), de acordo com o que foi dito acima, para comparar os tratamentos sob a parametrização casela de referência (CR). O que você deduz, através somente do gráfico de perfis, sobre a existência de interação e dos efeitos principais? Justifique, adequadamente, sua resposta. (100 pontos)
- c) Em relação à hipótese de homocedasticidade, usando o teste de Bartlett, qual sua conclusão? Unindo sua conclusão à análise descritiva, você acha razoável a validade da hipótese de homocedasticidade? Justifique, adequadamente, sua resposta (100 pontos).
- d) O que você pode afirmar sobre a verificação das suposições do modelo para o conjunto de dados em questão, utilizando os resultados da análise residual e do teste de homocedasticidade? Justifique, adequadamente, sua resposta (200 pontos).
- e) Qual seria sua conclusão à respeito da existência de interação e dos efeitos principais de frota e trimestre, através da tabela ANOVA? Justifique, adequadamente, sua resposta (100 pontos).
- f) Considerando as concluões obtidas através da ANOVA e os resultados relativos às estimativas dos parâmetros, qual sua conclusão com relação as médias dos tratamentos? Justifique, adequadamente, sua resposta (200 pontos)
- g) Com base em todos os resultados apresentados e obtidos, proponha, se for o caso, um modelo reduzido (com todas as suposições pertinentes). Até o momento, ou seja, antes de ajustar um modelo reduzido, quais suas conclusões com respeito à variável CPUE, em função dos fatores frota e trimestre? Justifique, adequadamente, seus comentários (150 pontos).

3. Um pesquisador deseja testar o efeito de quatro agentes químicos na resistência à tração de um particular tipo de roupa (quanto maior a tração, melhor o desempenho do agente químico). Devido à possibilidade de haver variabilidade entre pedaços desse tecido, o pesquisador usou um experimento em blocos aleatorizados, com os pedaços do tecido sendo blocos. O pesquisador selecionou cinco pedaços e aplicou os quatro processos químicos em ordem aleatória, em cada pedaço. Os resultados do experimento (resistência à tração) estão na tabela abaixo:

Agente químico	Pedaço de tecido					
	1	2	3	4	5	
1	73	68	74	71	67	
2	73	67	75	72	70	
3	75	68	78	73	68	
4	73	71	75	75	69	

Considere, para todos os testes em questão, $\alpha = 0.01$.

Abaixo encontram-se diversos resultados, incluindo: análises descritivas, ajuste de um modelo normal linear completo (considerando o fator principal os blocos mas sem interação entre fator e bloco), sob parametrização casela de referência (a casela de referência é o tratamento 1 - bloco 1).

Tabela 4: Análise descritiva dos dados da Questão 3

2000	Tabella II IIIalibe descritiva des dades da Gaestas d								
Tratamento	Média	DP	Var.	CV(%)	Mínimo	Máximo			
1	70,60	3,05	9,30	4,32	67,00	74,00			
2	71,40	3,05	9,30	$4,\!27$	67,00	75,00			
3	$72,\!40$	4,39	19,30	6,07	68,00	78,00			
4	72,60	2,61	6,80	$3,\!59$	69,00	75,00			

Tabela 5: Análise de variância dos dados da Questão 3

FV	SQ		QM	Estatística F	p-valor
Tratamento	12,95	3	4,32	2,38	0,1211
Bloco	157,00	4	$39,\!25$	21,61	< 0.0001
Resíduo	21,80	12	1,82		

$$\tilde{\sigma}^{2} \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} = \begin{bmatrix} 0,73 & -0,36 & -0,36 & -0,36 & -0,45 & -0,45 & -0,45 \\ -0,36 & 0,73 & 0,36 & 0,36 & -0,00 & -0,00 & -0,00 & -0,00 \\ -0,36 & 0,36 & 0,73 & 0,36 & -0,00 & -0,00 & -0,00 & 0,00 \\ -0,36 & 0,36 & 0,36 & 0,73 & 0,00 & 0,00 & 0,00 & 0,00 \\ -0,45 & -0,00 & -0,00 & 0,00 & 0,91 & 0,45 & 0,45 & 0,45 \\ -0,45 & -0,00 & -0,00 & 0,00 & 0,45 & 0,45 & 0,91 & 0,45 \\ -0,45 & -0,00 & -0,00 & 0,00 & 0,45 & 0,45 & 0,91 & 0,45 \\ -0,45 & -0,00 & 0,00 & 0,00 & 0,45 & 0,45 & 0,91 \end{bmatrix}$$

Figura 3: Gráficos de perfis médios para os dados da Questão 3

Parâmetro	Estimativa	Erro-padrão	IC(95%)	Estatística t	p-valor
μ	$72,\!35$	0,85	[70,68;74,02]	84,87	< 0,0001
α_2	0,80	0,85	[-0.87 ; 2.47]	0,94	$0,\!3665$
α_3	1,80	0,85	[0,13;3,47]	2,11	0,0564
α_4	2,00	0,85	[0,33;3,67]	$2,\!35$	0,0370
eta_2	-5,00	0,95	[-6,87;-3,13]	-5,25	0,0002
eta_3	2,00	0,95	[0,13;3,87]	2,10	0,0577
eta_4	-0,75	0,95	[-2,62 ; 1,12]	-0,79	$0,\!4466$
$_{-}$	-5,00	0,95	[-6,87;-3,13]	-5,25	0,0002

- a) Escreva o modelo que foi ajustado ao conjunto de dados (com todas as suposições pertinentes), de acordo com o que foi dito acima, para comparar os tratamentos sob a parametrização casela de referência (CR). O que você deduz, através somente do gráfico de perfis, sobre a existência de efeito do fator principal? Justifique, adequadamente, sua resposta. (100 pontos)
- b) Qual seria sua conclusão à respeito da existência de efeito de bloco e do fator principal? Neste caso, você acredita que o experimento em blocos foi apropriado? Justifique, adequadamente, suas respostas (100 pontos).
- c) Escreva e teste, em termos das hipóteses $C\beta = 0$, a igualdade entre as médias relacionadas aos tratamentos (agentes químicos) 2 e 3. Qual sua conclusão? Este resultado era esperado? Justifique, adequadamente, suas respostas (200 pontos).
- d) Com base em todos os resultados apresentados e obtidos, proponha, se for o caso, um modelo reduzido (com todas as suposições pertinentes). Até o momento, ou seja, antes de ajustar um modelo reduzido, quais suas conclusões com respeito à variável resposta, em função dos tratamentos? Justifique, adequadamente, seus comentários (150 pontos).

Formulário

• Estatística $C\beta = \mathbf{0}$. Hipóteses $H_0: C_{(r \times p)}\beta_{(p \times 1)} = \mathbf{0}_{(r \times 1)}$ vs $H_1: C\beta \neq \mathbf{0}$. Estatística do teste:

$$Q = \frac{1}{r\widehat{\sigma}^2} \left(C \widehat{\boldsymbol{\beta}} \right)' \left(C \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} C' \right)^{-1} \left(C \widehat{\boldsymbol{\beta}} \right)$$

então, sob H_0 , $Q \sim F_{(r,n-p)}$, em que $\hat{\sigma}^2 = \text{QMR}$, QMR: quadrado médio residual.