SIMULACRO DE EXAMEN. 4/A1/2020

(1) Eucucutra una oc. en diferencias del tipo Xn+1+ah., Xn+1, +-+00 Xn=0 que admita la sal. fo,-1,0,1,0,-1,...}

Towarmos k=1 y la ecuación Xn+1 = (-i) Xn = x (-i) x+1 ca garnitrica.

Tamamos k=2. La ecucación $X_{n+2}+X_n=0$ here $p(\lambda)=\lambda^2+\lambda=\frac{1}{\lambda+1}=\frac{1}{\lambda+1}$ (on lo avail :

Ec = 3 CATI + C2 M-i / CA, C2 60 5

Busanas une solución real, o $C_1 = 0$ y $C_2 = 1$. In $(\bar{N} - i)$ es une solución real que veri fro le eneción :

 $J_{m}(-i) = \int Sen \frac{-\pi}{2} k = \int -seu \frac{\pi}{2} k = \int 0, -1, 0, 1, -1$

Con la avail, la écución que buscóbamos es: [Xh+2+Xh=0]

② ¿ Es periódica la función $f(t) = 2\cos\frac{5}{8}t + 7\cos(5t) + \cos t$? En caso of 2 ma livo calcula un periodo.

 Σ' es periódica perque si tomamos $w = \frac{1}{3}$

f(+) = 2 cos Jwt + 7 cos 15wt + cos 3wt

Como todos las frecuencias son un muittiple de la principal w, esta función es periódica seguin la teoria de arminicos.

Al aumentar la francucia en $k \cdot w$, el periodo se reduce en $\frac{1}{k}$.

El primer periodo comein seró el periodo correspondiente a la menor francia.

(el mayor periodo).

 $T = \frac{2\overline{\eta}}{1/3} = 6\overline{\eta}.$

efectivament T=6TT es 7 periodo.

Computames que es período de las demés:

$$T' = \frac{611}{5} = \frac{T}{5} = 1 = 5T'$$
, $T'' = \frac{217}{5} = \frac{T}{15}$, $T''' = 217 = \frac{T}{3}$

(3) Mu producto se ajusta:
$$D(pu) = O(pu^e)$$
 $pu^e = precio estimodo por los productores

 $O(p) = 1+p$, $D(p) = 2-p$, $Pu^e = \mu Pu-1 + (1-\mu) Pu-2$ $\mu \in Jo, NE$,

i Para qui valores de μ tiende a estabilizarse el precio?

 $D(pu) = 2-pu = O(pu^e) = 1+\mu pu-1 + (1-\mu) pu-2$$

Clarament, IXn = 1 1/2 moin es solución partiarlar.

Ahora resolvemes la caracide homogènea pr+pp-1+(1-p)p-2=0 Tenemos p(x) = x + \mu x + (1-\mu).

des raices de este polinomio nos proposcionan todes les soluciones:

l'ara que todas les soluciones se estabilitem, nocesitames 12:161 con i=1,2.

A81:

$$y_n = C_n \lambda_n^n + C_2 \lambda_2^n + \frac{1}{2}$$
 estabilización

Eutorces:

$$P^{(+)} = 1 + \mu + 1 - \mu = 2 > 0$$

 $P^{(-)} = 1 - \mu + 1 - \mu = 2 - 2\mu > 0 = 1 [\mu < 1]$
 $P^{(0)} = 1 - \mu > 1 = 1 [0 < \mu]$

Todos los valous de ME JOINE don validos y el sistema se estabiliza.

Dan que las suc $X = \{1,3,9...\}$, $Y = \{0,1,6,27...\}$, $Z = \{1,2,4,8...\}$ $W = \{0,1,4,12,32...\}$ son linealment independients en el espacio de suc. reales S.

Sea la ea en diffrencias conespondient al $p(\lambda) = (\lambda-2)^2(\lambda-2)^2$. No es masaria la ea explicita.

Sabemos que la bors del especió de soluciones Ex osociado o esa ecus-

$$\sum_{1R} = \int_{1}^{1} G_{1} \prod_{2} + C_{2} D \prod_{2} + C_{3} \prod_{3} + C_{4} D \prod_{3} / Cien?$$

$$= \int_{1}^{1} G_{1} \prod_{2} + C_{2} + C_{3} \prod_{3} + C_{4} D \prod_{3} / Cien?$$

[X, Y, Z, W) sou have y por la lanta linealment independienties.

- J dea f(+) = cos(et) + cos(4et) élleanse el méximo absoluts? ¿ Es periódia? Das su periodo si procede
 - a) $J(t)=2 \in \mathbb{N}$ et = $2\pi k$ y $4e^{t}=2\pi k'$ $= e^{t}=e\pi k$ y $e^{t}=\frac{\pi}{2}k'$ $= 2\pi k'$ $= 2\pi k'$ =
 - b) livin $f(t) = 2 \implies f$ no puede see periodica total.

 Una función periodica no tiene limita en tos.