P3 Exercise Solution updated: November 30, 2021

- 1. 3 or -2
- 2. $\frac{2}{3}$ or -5
- 3. $\frac{3}{2}$
- 4. 2 or $-\frac{4}{3}$
- 5. 2
- 6. $-\frac{8}{7}$ or $\frac{12}{5}$
- 7. $-2, \frac{7}{3}, 1, -\frac{4}{3}$
- 8. -3, -1, 3, 1
- 9. 1 or -1
- 10. 2 or -2

- 1. $\left(-\infty, -\frac{1}{2}\right) \cup \left(1, \infty\right)$
- 2. [-3, 1]

3.
$$\left(-\frac{3}{2},4\right)$$

4.
$$[1,\infty]$$

5.
$$(-\infty, -2) \cup (\frac{1-\sqrt{17}}{2}, 1) \cup (\frac{1+\sqrt{17}}{2}, \infty)$$

6.
$$(-\infty, \frac{5}{3}) \cup (5, \infty)$$

7.
$$(-3, -1)$$

8.
$$(-\infty, -\frac{3}{4}] \cup [\frac{7}{4}, \infty)$$

9.
$$(-\infty, \frac{5-\sqrt{17}}{2}) \cup (2,3) \cup (\frac{5+\sqrt{17}}{2}, \infty)$$

10.
$$(-\infty, -\frac{7}{2}) \cup (-2, 0) \cup (0, 2) \cup (\frac{7}{2}, \infty)$$

1. Polynomial: $\frac{(x+1)(x+2)\cdot(x+n)}{n!}$, degree: n, leading term: $\frac{1}{n!}$, constant term 1.

2.
$$6x^4 + 3x^3 - 18x^2 - 9x - 2$$

3.
$$A = 2$$
, $B = 3$, $C = -5$.

4. (a)
$$m$$
 or n

(b)
$$m$$
 or n

(c)
$$m + n$$
.

Exercise 5

1. quotient: $2x^2 - 3x + 4$, remainder: -13

2. quotient: $3x^2 + 4x + 1$, remainder: 9x - 7

3. quotient: $x^4 - x^3 + x - 1$, remainder: 2

4. quotient: $x^{n-1} + kx^{n-2} + k^2x^{n-3} + \cdots + k^{n-1}x + k^n$, remainder: k^{n+1}

Exercise 6

1. (a) 302

(b)
$$-\frac{1}{3}$$

(c)
$$2\frac{3}{4}$$

2.
$$a = -\frac{5}{3}$$
, $b = \frac{1}{3}$

3.
$$k = -9, (x - 2)(2x + 1)(3x + 1)$$

4.
$$x > 1$$

5. (a) $f(1) \neq 0$, and $f(-1) \neq 0$,

(b) quotient: $x^3 + 3x^2 + 3x + 5$, remainder: 6x + 4

(c) omit

(d)
$$-1, -1 + \sqrt{2}, -1 - \sqrt{2}$$
.

1. (a)
$$1 + 6x + 27x^2 + 108x^3$$

(b)
$$1 + \frac{2}{3}x - \frac{4}{9}x^2 + \frac{40}{81}x^3$$

(c)
$$2 - \frac{1}{4}x - \frac{1}{64} - \frac{1}{512}x^3$$

(d)
$$\frac{1}{27} - \frac{2}{27}x + \frac{8}{81}x^2 - \frac{80}{729}x^3$$
.

2. (a)
$$4+x-\frac{1}{16}x^2$$

(b)
$$2 - \frac{1}{32}x - \frac{131}{4096}x^2$$

(c)
$$\frac{1}{2} + \frac{1}{4}x^2$$

(d)
$$\frac{1}{2} - \frac{1}{16}x - \frac{117}{256}x^2$$
.

3.
$$a = 4$$
, $b = 12$, $c = -192$

4. (a)
$$(-1)^n 2^n$$

(b)
$$\frac{(2n-1)!!}{2^n n!}$$

(b)
$$\frac{(2n-1)!!}{2^n n!}$$
(c)
$$\binom{|k|+n-1}{n}$$

5. By part
$$4(c)$$
, $x^r : \frac{1}{2}(r+1)(r+2)$; $x^{r-1} : -\frac{1}{2}r(r+1)$; $x^{r-2} : r(r-1)$.

Add them together to get $r^2 + 1$.

Exercise 8

1.
$$-\frac{1}{x} - \frac{\frac{1}{2}}{x+1} + \frac{\frac{3}{2}}{x-1}$$
.

2.
$$x^2 - x + 3 - \frac{\frac{16}{3}}{x+2} + \frac{\frac{1}{3}}{x-1}$$
.

3.
$$\frac{\frac{1}{2}}{x+1} - \frac{4}{x+2} + \frac{\frac{9}{2}}{x+3}$$
.

Exercise 9

1.
$$\frac{1}{x} - \frac{1}{x-1} + \frac{2}{(x-1)^2}$$
.

2.
$$\frac{-\frac{7}{4}}{x} + \frac{\frac{11}{4}}{x-1} + \frac{\frac{3}{2}}{(x-1)^2}$$
.

3.
$$x + \frac{\frac{16}{9}}{x-2} + \frac{\frac{11}{9}}{x+2} + \frac{-\frac{1}{3}}{(x+1)^2}$$
.

4.
$$\frac{\frac{3}{4}}{(x-1)^2} + \frac{\frac{1}{4}}{(x+1)^2}$$
.

1.
$$\frac{1}{x} + \frac{-x+1}{x^2+1}$$

2.
$$\frac{-1}{x+1} + \frac{1}{(x+1)^2} + \frac{x}{x^2+x+1}$$

3.
$$x+1+\frac{2}{x-2}+\frac{-3x+1}{2x^2+2x+1}$$
.

4.
$$\frac{1}{x-1} + \frac{2}{x+2} + \frac{-2x-3}{x^2-2x+4}$$
.

$$5. \ \frac{2x-3}{x^2-2x+2} + \frac{2x+3}{x^2+2x+2}.$$

1. (a)
$$\frac{1}{x+1} - \frac{6}{x+2} + \frac{8}{x+4}$$

(b)
$$-\frac{1}{x+1} + \frac{1}{x+2} + \frac{2}{(x+2)^2}$$
.

(c)
$$2 - \frac{2}{x} - \frac{3}{x^2} + \frac{4}{x-1}$$

(d)
$$\frac{1}{x} - \frac{2}{x-1} + \frac{3x-1}{x^2+1}$$

(e)
$$1 + \frac{\frac{1}{3}}{x-3} - \frac{\frac{1}{3}}{x+3} - \frac{2}{(x+3)^2}$$
.

2. (a)
$$\frac{1}{2} - \frac{3}{4}x + \frac{13}{24}x^2 - \frac{47}{144}x^3$$
.

(b)
$$-1 - \frac{4}{3}x - x^2 - \frac{7}{9}x^3$$

(c)
$$\frac{5}{2} - \frac{3}{2}x + \frac{5}{4}x^2 - \frac{11}{4}x^3$$
.

3.
$$\frac{1}{x-5} - \frac{3}{x+5}$$
, $f'(x) = -(x-5)^{-2} + 3(x+5)^{-2}$.

4.
$$1 - \frac{1}{x-1} - \frac{2}{(x-1)^2} + \frac{2}{x-4}$$
, $f'(x) = (x-1)^{-2} + 4(x-1)^{-3} - 2(x-4)^{-2}$.

Exercise 12

1.
$$x \in (-\infty, 0) \cup (0, \infty), y \in (0, \infty)$$

2. The graphs are as following:

4.
$$m < n$$

5.
$$a > 1$$
, then $x < -6$

$$a < 1$$
, then $x > -6$

- 6. (a) $\sqrt{5}$
 - (b) 7
 - (c) $8\sqrt{5}$ or $-8\sqrt{5}$
- 7. no
- 8. 3 or $-\frac{1}{3}$
- 9. f(0) = 1, $f(\frac{1}{p} + \dots + \frac{1}{p}) = \left[f(\frac{1}{p}) \right]^p = f(1) = a$, then $f(\frac{1}{p}) = a^{\frac{1}{p}}$, which is $f(x) = a^x$.

- 1. $3, -3, -\frac{7}{4}, \frac{37}{2}, \frac{5}{4}$
- $2. \frac{121}{3}$
- 3. $\frac{5 \ln 2 \ln 3}{2 \ln 3 3 \ln 2}$.
- $4. \ \frac{\ln 2}{\ln 3 + 2\ln 2} = 0.279$
- 5. $x = \frac{\ln 5}{\ln 15}, y = \frac{\ln 3}{\ln 15}.$
- 6. $\frac{5}{6} + \log_{10} \frac{3}{2}$
- 7. (a) $a^{\ln b} = e^{\ln a \ln b} = b^{\ln a}$, then $(a^{\ln b})^{\frac{1}{\ln c}} = (b^{\ln a})^{\frac{1}{\ln c}}$
 - (b) omit
 - (c) omit
- 8. 2
- 9. 25

- 1. <,>,>,>
- 2. The graph are as following:

- 3. m > n
- 4. (a) (-1,1)
 - (b) even.

$$5. \ y = a^x - 1$$

6.
$$0 < a < 1, \, 0 < x < \log_a(\sqrt{3} - 1), \, a > 1, \, \log_a(\sqrt{3} - 1) < x < 0$$

7.
$$k=1, \mathbb{R}$$

8.
$$m = n = 5$$

2.
$$a = \frac{3}{5 \lg 2}, b = \frac{5}{2} - \frac{3}{5 \lg 2}$$

3.
$$A = 0.4$$
, $c = 1.01$, $x = 504$

5. Consider
$$f(1) = 0$$

Exercise 16

1. The graph of $y = \sin x$ and $y = \cos x$:

2. The graph of $y = \tan x$ and $y = \cot x$:

3. The graph of $y = \sec x$ and $y = \csc x$:

Exercise 17

- 1. (a) 0.5
 - (b) $\frac{131}{65}$ (c) $\frac{457}{289}$

 - (d) $\frac{3}{5}$
- 2. omit
- 3. (a) $73.9^{\circ}, 286.1^{\circ}$
 - (b) $37.2^{\circ}, 217.2^{\circ}, 327.8^{\circ}, 142.8^{\circ}$
 - (c) $30^{\circ}, 210^{\circ}, 150^{\circ}, 330^{\circ}$
 - (d) $60^{\circ}, 240^{\circ}, 120^{\circ}, 300^{\circ}$

Exercise 18

- 1. $\frac{\sqrt{2}}{4}(\sqrt{3}-1)$
- $2. \ \frac{\sqrt{3}\tan x + 1}{\tan x \sqrt{3}}$
- 3. $-\frac{56}{65}, \frac{63}{65}, -\frac{16}{63}$
- 4. $\pm \frac{\pi}{4}, \pm \frac{3\pi}{4}, \pm \frac{5\pi}{4}, \pm \frac{7\pi}{4}$
- $5. \ 0.12, 3.26, -3.02, -6.16$
- 6. $-\frac{59}{72}$
- 7. $-\frac{4}{3}, -\frac{3}{4}$
- 9. Use $\sin 2\xi = 2\sin \xi \cos \xi$, $\cos \xi = 1 2\sin^2 \xi$.

- 1. $\pm \frac{11}{6}$, $\pm \frac{5}{6}$
- 2. $-1 \pm \sqrt{2}$, $-1 + \sqrt{2}$
- 3. $\frac{\pi}{2}$, 5.44, 2.29.
- 4. $x = k\pi$, $0.869 + k\pi$, $-0.869 + k\pi$.
- 5. $\sin^2 \frac{1}{2}A = \pm \frac{\sqrt{2}}{2}\sqrt{1 \cos A}$, $\cos^2 \frac{1}{2}A = \pm \frac{\sqrt{2}}{2}\sqrt{1 + \cos A}$.
- 6. $\sin 3A = 3\sin A 4\sin^3 a$, $\cos 3A = 4\cos^3 A 3\cos A$, $\tan 3A = \frac{3\tan A \tan^3 A}{1 3\tan^2 A}$.
- 7. Omit.
- 8. Omit.
- 9. (a) $\tan \theta$
 - (b) $\frac{1}{2}$
 - (c) 1
- 10. $1, -1 + \sqrt{2}$
- 11. $\frac{7\sqrt{65}}{65}$.

- 1. (a) $\sqrt{53}$, 15.9°, 74.1°
 - (b) $\sqrt{41}, 51.3^{\circ}$
 - (c) $\sqrt{34}, 59.0^{\circ}$
- 2. 5.57
- 3. $-2\sin\alpha$
- 4. $\left[\frac{2}{37}, \frac{2}{3}\right]$
- 5. 9, -17, 0.588, 0.983
- 6. the graph is as follows: period $\frac{2\pi}{3}$

7. π

- 1. (a) 1
 - (b) $-\frac{3}{4}$
- 2. k = -1, m = -1
- 3. $a_n = \cos \frac{1}{2}x \cos \frac{1}{4}x \cdots \cos^2 \frac{1}{2^{n-1}}x$, $b_n = \cos \frac{1}{2}x \cos \frac{1}{4}x \cdots \cos \frac{1}{2^{n-1}}x$
- 4. omit
- 5. prove $\tan \frac{q+p}{2} = \tan \frac{r+s}{2}$

- 1. (a) $3e^{3x+1}$
 - (b) $\frac{1}{2} \cdot 2^{\sqrt{x}} (\ln 2) \cdot (x^{-\frac{1}{2}})$
 - (c) $3(2+e^{1-x})^{-2}e^{1-x}$
 - (d) $\frac{1}{3}e^{3x-x^2}(3-2x) \frac{2}{3}e^{1-x-x^2}(-1-2x)$.
 - (e) omit
- 2. Maximum, $(\frac{\ln 2}{2}, 4\sqrt{2})$
- 3. Minimum, $(-1, e^{-3})$
- 4. x = 0.
- 5. Omit.

Exercise 23

- 1. (a) $\frac{2x}{x^2+1}$
 - (b) $\frac{2}{(2x-5)\ln 3}$
 - (c) $\frac{3}{x} + \frac{8x}{x^2 1}$
 - (d) $\frac{4}{4x+3} \frac{3x^2}{x^3-1}$
 - (e) $-\frac{1}{(x+1)(\ln(x+1))^2}$
 - (f) $-\frac{2}{x(\ln x)^2}$.
- $2. (1, \ln 2)$
- 3. y = -x + 4
- 4. y 2e = -2x
- 5. x = -3. x < -3, then $\frac{dy}{dx} < 0$, x > -3, then $\frac{dy}{dx} > 0$.
- 6. (a) $(-\infty, \infty)$
 - (b) $f^{-1}(x) = \frac{x + \sqrt{x^2 + 4}}{2}$.
 - (c) $y-1=\frac{1}{2}(x-0)$.

- 1. (a) $2x\cos(x^2)$.
 - (b) $-\frac{1}{2}\sin x(1+\cos x)^{-\frac{1}{2}}$.
 - (c) $6\cos 2xe^{3\sin 2x}$.
 - (d) $\tan x$.
 - (e) $2e^{2x}\cos(e^{2x})$.
 - (f) $-\sin 2x$.
 - (g) $\sin 2x$.
- 2. $y \ln \sqrt{2} = x \frac{\pi}{4}$
- 3. $y + \frac{1}{3} = -\frac{2}{3\sqrt{3}}(x \frac{\pi}{6})$
- 4. $x = \frac{\pi}{6}$, max; $x = \frac{5}{6}\pi$, min.
- 5. $\cos 2x(1 \sin 2x)$.
- 6. omit, $-(\csc x \sin x)^{-2}(-\csc x \cot x \cos x)$.
- 7. Omit.
- 8. (a) $\frac{1}{2}\cos\frac{1}{2}x + \frac{1}{3}\sin\frac{1}{3}x$.
 - (b) $-1 \text{ and } \frac{1}{2}$
 - (c) 12π
 - (d) 12π
- 9. $\frac{1}{\sqrt{1-x^2}}$, $-\frac{1}{\sqrt{1-x^2}}$
- 10. (a) $-\frac{1}{2}x^{-\frac{1}{2}}\sin\sqrt{x}$
 - (b) $-\frac{1}{2}\sin x(\cos x)^{-\frac{1}{2}}$
 - (c) $2x\cos x^2$
 - (d) $(-x^2)\cos\frac{1}{x}$.

- 1. (a) $\sec^2(x)$.
 - (b) $-\csc^2 x$
 - (c) $x + 2x \ln x$.
 - (d) $2x \sec^2(x^2 + 1)$
 - (e) $\frac{2xe^{2x} (e^{2x} + 1)}{x^2}.$
 - (f) $(2x)\sin x^2 + (x^2 2)(\cos x^2)(2x)$
- 2. Max $(-3, 6e^{-3})$, Min (1, -2e)
- 3. omit
- 4. $(e, \frac{1}{3})$
- 5. $(1,\frac{1}{2})$
- 6. (a) $x = \frac{\pi}{4}$
 - (b) max

7. $u_1'u_2u_3\cdots u_k + u_1u_2'\cdots u_k + \cdots + u_1u_2\cdots u_k'$

8.
$$\sum_{k=0}^{n} {n \choose k} u^{(n-k)} v^{(k)}$$

Exercise 26

 Omit

Exercise 27

- 1. y-4=3(x+8)
- 2. $x = a \cos t$, $y = a \sin t$. AB = a.
- 3. $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{e^{-t}}{1 e^{-t}}$. $t = \ln 3 \ln 2$.
- 4. $t=3, (\frac{4}{3}, \frac{27}{6^3}).$
- 5. Omit.
- 6. (a) $\frac{5}{3}$
 - (b) $-\frac{32}{27}$.
- 7. Omit.

Exercise 28

- 1. $-\frac{1}{\pi+2}$
- 2. $y-2=\frac{1}{3}(x-1)$
- 3. Horizontal: $y = \pm 3\sqrt{3}$, vertical: $x = \pm 3$
- 4. (-1, -2), max; (0, 0), min.
- 5. $(\frac{8}{3}, -4)$
- 6. -1, 4.
- 7. Omit
- 8. $(2e, e^{\frac{1}{2}})$. $\ln y \neq 0$.
- 9. (1, -4),min; (-1, 4),max.
- 10. Omit.

- 1. (a) $\frac{2}{3} \ln |3x 1| + C$ (b) $\frac{1}{2}e^{2x+3} + C$

 - (c) $\frac{\sqrt{3}}{3} \tan^{-1}(\frac{2}{\sqrt{3}}x) + C$

(d)
$$-\frac{1}{2}\cos 2x + C$$

(e)
$$\frac{1}{2}x + \frac{1}{4}\sin 2x + C$$

2.
$$x^4 - 3x^2 + x + 7$$

Omit

Exercise 31

- 1. $8\frac{5}{8} + 3\ln 2$
- 2. $\frac{1}{2} \frac{1}{2e}$
- 3. 2
- 4. $\frac{\pi}{8} \frac{1}{12}$
- 5. $\frac{\pi}{8}$
- 6. 0

Exercise 32

- 1. $1 \frac{\pi}{4}$
- 2. $2\frac{11}{12} \ln 6$
- 3. Omit
- 4. (a) $4e^{\frac{x}{2}} 2x 1$
 - (b) min.
- 5. Omit
- 6. Omit
- 7. Omit
- 8. Omit
- 9. Omit

Exercise 33

1. If p = 1, infinite;

$$\begin{split} &\text{if } p>1,\, \int_0^1 \frac{1}{x^p} \mathrm{d}x \text{ infinite, } \int_1^\infty \frac{1}{x^p} \mathrm{d}x = \frac{1}{1-p};\\ &\text{if } p<1,\, \int_0^1 \frac{1}{x^p} \mathrm{d}x = \frac{1}{1-p},\, \int_1^\infty \frac{1}{x^p} \mathrm{d}x \text{ infinite.} \end{split}$$

2.
$$\frac{1}{2}e$$

- 3. Infinite
- 4. Omit

- 1. (a) $\frac{287}{192}\pi + \pi \ln 4$
 - (b) $\frac{\pi}{4}(e^2 e^{-2})$
 - (c) $\frac{\pi^2}{2}$
 - (d) $\pi(\sqrt{3}-1-\frac{\pi}{12})$.
- $2. \frac{1}{2}$
- $3. \ 2\pi^2 ra^2$
- 4. (a) $\pi(\sqrt{3} \frac{\pi}{3})$
 - (b) Omit.

Exercise 35

- 1. (a) $\int 1 + \frac{-2}{x-2} + \frac{-3}{x+3} dx = x 2 \ln|x-2| 3 \ln|x+3| + C.$
 - (b) $\int \frac{\frac{5}{3}}{x+4} + \frac{-\frac{3}{4}}{x+2} + \frac{\frac{1}{12}}{x-2} dx = \frac{5}{3} \ln|x+4| \frac{3}{4} \ln|x+2| + \frac{1}{12} \ln|x-2| + C.$
 - (c) $\int \frac{1}{4} \frac{1}{1-x} + \frac{1}{4} \frac{1}{1+x} + \frac{1}{2} \frac{1}{1+x^2} dx = -\frac{1}{4} \ln|1-x| + \frac{1}{4} \ln|1+x| + \frac{1}{2} \tan^{-1} x + C.$
 - (d) $\int_{-\frac{1}{3}}^{1} \frac{1}{2} \frac{1}{x+1} \frac{1}{x+2} + \frac{1}{2} \frac{1}{x+3} dx = \frac{1}{2} (\ln 8 \ln 5).$
 - (e) $\frac{3}{2} \ln 3 \ln 4$.
- 2. $10\frac{5}{12}\pi$; 20.8333π

- 1. dt = 2x dx
- 2. dx = t dt
- 3. $dt = \cos x dx$
- $4. \, \mathrm{d}x = e^t \, \mathrm{d}t$
- $5. \, \mathrm{d}x = \frac{1}{t+1} \, \mathrm{d}t$
- $6. dt = \frac{1}{2} \sec^2 \frac{x}{2} dx$
- $7. dt = \frac{2x}{1+x^4} dx$
- 8. $dt = -\tan x dx$

- 1. $e^{\sin x} + C$
- 2. $-\frac{1}{6}(3-2x^2)^{\frac{3}{2}}+C$
- 3. $\frac{1}{3} \ln |x^3 1| + C$
- 4. $\frac{\pi}{8}$
- 5. $\frac{7}{24}$
- 6. $\frac{3}{14}(x^2-1)^7 + \frac{1}{4}(x^2-1)^6 + C$
- 7. $x + 4\sqrt{x} + 4\ln|\sqrt{x} 1| + C$
- 8. $\frac{27}{140}$
- 9. $\frac{1696}{2835}$
- 10. $\frac{3}{8}$
- 11. $\frac{2}{3}\pi$
- 12. π
- 13. $2x^{\frac{1}{2}} 3x^{\frac{1}{3}} + 6x^{\frac{1}{6}} 6\ln|1 + x^{\frac{1}{6}}| + C$
- 14. $\ln(\sec x + \tan x) + C$
- 15. $\frac{1}{3} \ln|1+x| \frac{1}{3} \left(\frac{1}{2} \ln|x^2 x + 1| \sqrt{3} \tan^{-1} \left(\frac{2}{\sqrt{3}} (x \frac{1}{2}) \right) \right) + C$