Problem 3.

· ~)	The	Whle	locb	Acates	Over	values	of	. ``	Horough	χ²,	+mr	each
	iterad	100	INTERSES	· va	٠.	i by		power	· of 2.	The	total	num of

iterations until i > n

. K		
Haration	(ì
0	2	2
. (4	4.
2	(k	(b
3	156	256
4	65356	65356

$$k=2$$
 $\geq n$ $\log_2 h = C$
 $\log_2 (\log_2 n) = k$

. 4. O(log(logn)) rontine.

once per i.

If for this invertoop, the inner loop soms the pow(i,3) for all it that is multiple of sypt(n), thus summing all the closes of the divisors of n. iterations is tar = 9 by tar = 3

$$\int_{1}^{\infty} \left(O(1) + O\left(\sum_{k=0}^{2} G(1) \right) \right)$$

$$2 \quad 6 \quad 1 = k \sqrt{n}$$

$$3 \quad 9$$

$$= \sum_{i=0}^{n} (0(1) + \sum_{i=0}^{n-1} \sum_{i=0}^{n-1} (0(1)$$

 $\int_{P} O(n) + \sum_{k=1}^{\sqrt{n}} \sum_{i=0}^{\sqrt{3}-1} O(1) = O(n) + \sum_{k=1}^{\sqrt{n}} O(n^{3}) = O(n) + O(n^{3} \cdot \sqrt{n})$ $= O(n) + O(n^{\frac{7}{2}}) \xrightarrow{p} \left[Ronting : O(n^{\frac{7}{2}}) \right]$

c)
$$\left(\sum_{i=1}^{n} O(1) \cdot \sum_{i=1}^{n} O(1)\right) \cdot \left(\sum_{i=1}^{n} O(1)\right)$$