

PATENT ABSTRACTS OF JAPAN

(11)Pablication number:

2001-342065

(43) Date of publication of application: 11.12.2001

(51)Int.CI.

CO4B 35/495

H01L 41/187

(21)Application number: 2000-160880

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

30.05.2000

(72)Inventor: NISHIDA MASAMITSU

TAKAHASHI KEIICHI OKUYAMA KOJIRO SOGO HIROSHI KATO JUNICHI

(54) PIEZOELECTRIC CERAMIC COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a piezoelectric ceramic composition free of Pb, small in the diameter of crystal particle, large in a grade coefficient and a mechanical Q (a coefficient expressing the sharpness of resonance), and large in frequency constant. SOLUTION: This piezoelectric ceramic composition is represented by the general formula, (LixNa1−x−yKy)z−2wMa2wNb1−wMbwO3, wherein, 0.03≤x≤0.2, 0≤y≤0.2; 0.98≤z≤1; 0.001≤w≤0.05; Ma is at least one of bivalent metal elements; and Mb is at least one of trivalent metal elements.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-342065 (P2001-342065A)

(43)公開日 平成13年12月11日(2001.12.11)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

C 0 4 B 35/495

H01L 41/187

C 0 4 B 35/00

J 4G030

H01L 41/18

101J

審査請求 未請求 請求項の数4 OL (全 4 頁)

(21)出願番号

(22)出願日

特顧2000-160880(P2000-160880)

平成12年5月30日(2000.5.30)

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 西田 正光

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 髙橋 慶一

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 100095555

弁理士 池内 寛幸 (外5名)

最終頁に続く

(54) 【発明の名称】 圧電磁器組成物

(57)【要約】

【課題】無鉛で、結晶粒径が小さく、かつ結合係数と機 械的Qが大きく、同時に周波数定数の大きい圧電磁器組 成物を提供する。

【解決手段】一般式: $(L i_x N a_{1-x-v} K_v)_{z-2v} M a_{z-v} N b_{1-v} M b_v O_y$ で表される圧電磁器組成物(但し、0.03 \leq x \leq 0.2、0 \leq y \leq 0.2、0.98 \leq z \leq 1、0.001 \leq w \leq 0.05、Maは少なくとも1種の2価の金属元素、Mbは少なくとも1種の3価の金属元素である。)とする。

【特許請求の範囲】

【請求項1】 一般式: (Li, Na, -, -, K,), -, M a, Nb, Mb, O, で表されることを特徴とする圧電 磁器組成物。但し、0.03≦x≦0.2、0≦y≤ $0. 2, 0. 98 \le z \le 1, 0. 001 \le w \le 0. 0$ 5、Maは少なくとも1種の2価の金属元素、Mbは少 なくとも1種の3価の金属元素である。

【請求項2】 前記MaがSr、Ca及びBaからなる 群から選ばれる少なくとも1種の金属元素、前記Mbが Bi、Sb、Y、Sm、Er、Ho、Tm、Lu及びY 10 bからなる群から選ばれる少なくとも1種の金属元素で ある請求項1に記載の圧電磁器組成物。

【請求項3】 Mn、Cr及びCoからなる群から選ば れる少なくとも一種を、それぞれMnOz、CrzOz、 CoOに換算して、1 質量%以下の範囲内で添加含有せ しめた請求項1又は2のいずれかに記載の圧電磁器組成 物。

【請求項4】 W、Ni、Al及びSnからなる群から 選ばれる少なくとも一種を、それぞれWOړ、SnOړ、 Al, O, NiOに換算して、1質量%以下の範囲内で 20 xは0.07以上で、0.17以下が更に望ましい。 添加含有せしめた請求項1乃至3のいずれかに記載の圧 電磁器組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、圧電セラミックフ ィルタ、圧電セラミック発振子、アクチュエータ、圧電 トランス、各種センサ等の圧電素子の材料として有用な 圧電磁器組成物に関する。

[0002]

iO₃を主成分とする、いわゆるチタン酸鉛系セラミッ クス、Pb(Ti, Zr)O₃を主成分とする、いわゆる チタン酸ジルコン酸鉛系セラミックス、又は様々な複合 ペロブスカイト組成物、例えばPb(Mg,ノ,,Nb,ノ,)〇 ,、Pb(Ni,,,Nb,,,)O,等を何種類か固溶する多成 分系圧電磁器組成物が使われてきた。これらの組成物で は成分の組成比を選ぶことにより用途に応じた様々な特 性の圧電磁器を得ることができる。これらの圧電セラミ ックスはセラミックフィルタ、圧電ブザー、圧電点火 栓、超音波振動子等に用いられている。

[0003]

【発明が解決しようとする課題】しかし、従来のチタン 酸ジルコン酸鉛系圧電磁器は、周波数定数が2000H z·m程度と小さいため、10MHz程度以上の厚み縦 振動の共振子では、素子の厚みが0.2mm以下にな り、加工が困難であった。

【0004】また、上記の従来の材料は主成分として多 量の鉛を含んでいるため、環境保護の観点から問題があ

【0005】更に、従来の材料は結晶粒径が大きいた

め、髙周波の発振子などに使用することは困難であっ

【0006】本発明は通常の焼成方法で製造が容易で、 結合係数及び周波数定数が大きく、かつ結晶粒径が小さ く、同時に機械的Qが大きい圧電磁器組成物を提供する ことを目的とする。

【0007】なお、ここで機械的Qとは、振動における 共振の先鋭度を表す係数で、この値が大きいほど共振曲 線が鋭くなる。

[0008]

【課題を解決するための手段】前記目的を達成するため 本発明の圧電磁器組成物は、一般式: (Li, Na, , , , , , K_v) , . , . Ma, . N b, . . M b, O, で表されることを特徴 とする。但し、0.03≦x≦0.2、0≦y≦0. 2, 0. $98 \le z \le 1$, 0. $001 \le w \le 0$. 05, M aは少なくとも1種の2価の金属元素、Mbは少なくと も1種の3価の金属元素である。

【0009】CCで、xの範囲を0.03≤x≤0.2 としたのは、この範囲外では焼結性が劣るためである。 【0010】また、yの範囲を0≦y≦0.2としたの は、この範囲外では結合係数が小さくなるためである。 なお、この範囲内では、yの増加とともに誘電率を大き くすることができる。

【0011】更に、2の範囲を0.98≤2≤1とした のは、zが0.98未満では機械的Qの改善効果が少な いためである。

【0012】また、wの範囲を0.001≦w≦0.0 5としたのは、この範囲外では結晶粒径が大きく、結合 【従来の技術】従来、圧電セラミック材料としてPbT 30 係数が小さくなるためである。wは0.005以上で、 0.03以下が更に望ましい。

> 【0013】本発明の圧電磁器組成物においては、前記 MaはSr、Ca及びBaからなる群から選ばれる少な くとも1種の金属元素、前記MbはBi、Sb、Y、S m、Er、Ho、Tm、Lu及びYbからなる群から選 ばれる少なくとも1種の金属元素であることが好まし られ。

【0014】また、本発明の圧電磁器組成物において は、Mn、Cr及びCoからなる群から選ばれる少な 40 くとも一種を、それぞれMnOz、CrzOz、CoOに 換算して、1質量%以下の範囲内で添加含有せしめるこ とが好ましい。

【0015】ここで、Mn、Cr、Coの少なくとも一 種の添加含有量を、それぞれMnOz、CrzO,、Co ○に換算して1質量%以下の範囲内としたのは、この範 囲外では機械的Qの改善効果が小さいためである。ま た、これら金属の添加含有量は、上記と同様に換算し て、0.1質量%以上で、0.5質量%以下の範囲が特 に望ましい。

50 【0016】また、本発明の圧電磁器組成物において

は、W、Ni、Al及びSnからなる群から選ばれる少 なくとも一種を、それぞれWO」、SnO』、Al,O,、 NiOに換算して、1質量%以下の範囲内で添加含有せ しめることが好ましい。

【0017】 CCで、W、Ni、Al、Snの少なくと も一種の添加含有量を、それぞれWO、、SnO、Al 201、NiOに換算して1質量%以下の範囲内としたの は、この範囲外では機械的Qの改善効果が小さいためで ある。また、これら金属の添加含有量は、上記と同様に 換算して0.1質量%以上で、0.5質量%以下の範囲 10 が特に望ましい。

[0018]

【発明の実施の形態】以下に、本発明の圧電磁器組成物 の実施の形態を説明する。

【0019】本発明の一般式: (LixNa_{1-x-v}K_v) z-z-Maz-Nb,--Mb,O,で表される圧電磁器組成物 を作製するために、原料としてLi,CO,、Na,C O₃, K₂CO₃, Nb₂O₅, SrCO₃, CaCO₃, B aCO, Bi,O, Sb,O, Y,O, Sm,O, E r, O₃, Ho, O₃, Tm, O₃, Lu, O₃, Yb, O₃, M 20 [0021] n, O, Cr, O, CoO, WO, SnO, Al, O, *

*及びNiOを使用して、これらを表1で表される組成比 となるように秤量した後、これらの原料粉体をボールミ ルを用いてエタノールとともに20時間混合した。乾燥 後、750~1100℃で2時間仮焼した。これらを粗 粉砕した後、ボールミルを用いてエタノールとともに1 5時間粉砕した。乾燥後、有機バインダーを加えて造粉 した後、粉体を直径13mm、厚さ1mmの円板状の圧 粉体に70MPaで加圧成形した。これを900~12 50℃の温度で1時間焼成した。焼成後、各組成で最大 の密度の磁器を厚さ0.35mmに研磨した後、その両 面にCr-Auの蒸着を施した。この素子を100~2 00℃のシリコンオイル中で、両電極間に3~7kV/ mmの直流電界を30分間印加して分極処理を行なっ た。

【0020】以上の工程により作製した磁器組成物につ いて、平均結晶粒径、誘電率、厚み縦振動の電気機械結 合係数kt、機械的Qを測定した。測定結果を表1に示 す。なお、表1において、*印を付したものは、この発 明の範囲外の比較例の磁器組成物を示す。

【表1】

									結晶		結合	
試料	;	組成	દે .				添加物	添加物	粒径		係数	機械的
番号	Z	х	_у	Ma	Mb	W	質量%	質量%	μm	誘電率	kt	Q
1*	0.99	0.12	-	-	-	-	-	~	46	116	0.32	290
2	0.99	0.12	-	Sr	Bi	0.02	-	_	3.2	123	0.35	420
3	0.99	0.12		Ca	Y	0.01	-	-	3.0	121	0.37	380
4	0.99	0.12		Ва	Sb	0.00	5 –	-	4.1	114	0.35	360
5	0.99	0.12	-	.Ba	Sb	0.02	-	-	1.2	126	0.43	420
6	0.99	0.12	-	Ва	Sb	0.05	-	-	1.0	142	0.38	370
7	0.99	0.12	-	Ва	Sm	0.01	-	-	2.1	129	0.41	460
8	0.99	0.12	-	Ва	Ęr	0.02	-	-	3.2	125	0.41	350
9	0.99	0.12	-	Ва	Но	0.02	-	-	1.6	119	0.43	390
10	0.99	0.12	-	Ва	Tm	0.02	_	_	2.7	121	0.40	420
11	0.99	0.12	-	Ва	Lu	0.02	-	~	2.1	118	0.36	340
12	0.99	0.12	-	Ва	Yb	0.02	~	-	1.3	113	0.45	380
13	0.99	0.12	0.02	Ва	Yb	0.02	-	_	2.3	149	0.44	410
14	0.99	0.12	0.05	Ва	Yb	0.02	-	_	2.3	175	0.42	450
15	1.00	0.12	-	Ba	Sm	0.01	-	-	3.6	131	0.40	420
16	0.98	0.12	-	Ва	Sm	0.01	-	-	3.4	127	0.39	360
17	0.99	0.12	-	Вa	Sb	0.02	O.2MmO₂	-	1.0	128	0.41	640
18	0.99	0.12	-	Ва	Sb	0.02	0.5MmO₂	-	0.8	125	0.40	950
19	0.99	0.12	-	Ва	Sb	0.02	$1.0 MnO_2$	-	1.4	121	0.36	450
20	0.99	0.12	-	Sr	Bi	0.02	0.2Cr ₂ O ₃	-	2.1	119	0.37	510
21	0.99	0.12	-	Sr	Bi	0.02	0.5Cr ₂ O ₃	-	1.2	121	0.37	770
22	0.99	0.12	-	Sr	Вi	0.02	1.0Cr ₂ O ₃	-	2.5	11.3	0.35	530
23	0.99	0.12	-	Ca	Υ	0.01	0.1CoO	-	2.3	119	0.35	490
24	0.99	0.12	-	Ca	Υ	0.01	0.5CoO		1.8	121	0.34	840
25	0.99	0.12	-	Ca	Υ	0.01	1.000	-	2.6	115	0.34	520
26	0.99	0.12	-	Ва	Sb	0.02	-	0.2WO ₃	1.3	127	0.45	490

6

• 5 •

27 0.99 0.12 - Ba Sb 0.02 124 0.47 520 1.0WO 1.1 28 0.99 0.12 - Ba Yb 0.02 0.5NiO 1.6 116 0.47 440 29 0.99 0.12 -Ba Yb 0.02 1.0NiO 1.8 117 0.49 510 30 0.99 0.12 - Ba Sm 0.01 0.2A7, 0, 2.1 128 0.43 560 31 0.99 0.12 - Ba Sm 0.01 1.0A7, 0, 2.6 129 0.42 480 32 0.99 0.12 0.02 Ba Yb 0.02 0.5SnO₂ 2.7 124 0.46 460 33 0.99 0.12 0.02 Ba Yb 0.02 1.0SnQ 2.9 117 0.45 530 34 0.99 0.12 - Ba Sb 0.02 0.5MnO₂ 0.2WO₃ 117 0.39 1230 1.1 35 0.99 0.12 - Ba Sb 0.02 0.5MnO₂ 0.5NiO 1.4 113 0.42 1090 36 0.99 0.12 - Sr Bi 0.02 0.2Cr₂O₃ 0.2Al₂O₃ 2.3 127 0.40 1020 Ca Y 0.01 0.5CoO 0.5SnQ 2.6 133 0.37 1140 37 0.99 0.12 -

また、上記実施例のすべてで、厚み縦振動の周波数定数 Ntは2700~3200Hz·mの範囲内にあった。 これは、従来のチタン酸ジルコン酸鉛系圧電磁器の値の およそ1.5倍であった。

【0022】表1から明らかなように、比較例(試料 1)を除く試料 $2\sim37$ では、平均結晶粒径が4. 1μ m以下であり、かつ機械的Qが340以上である圧電磁器組成物が得られた。また、結合係数は大きな値を示した。

【0023】本発明の圧電磁器組成物は、機械的Qが大きく、結晶粒径が小さいため、低損失の高周波用共振子に特に適している。周波数定数も従来のチタン酸ジルコン酸鉛系圧電磁器組成物の約1.5倍程度にも達する程度に大きいため、同じ周波数の厚み縦振動の共振子では、その厚みが従来の約1.5倍になる。このため、高*

* 周波帯域での応用については特に有用な効果が得られる。また、本発明の圧電磁器組成物は、結合係数が大きいため、加速度センサ、各種センサー、アクチュエータ等に特に好適である。更に、本発明の圧電磁器組成物は、鉛を含まないため、環境保護の観点からも好まし

【0024】なお、本発明の圧電磁器組成物は、上記の 実施例に限定されるものではなく、特許請求の範囲内 20 で、上記と同様の有用な効果が得られる。

[0025]

【発明の効果】以上説明したように、本発明によれば、無鉛であって、製造が容易で、微小結晶粒径であり、結合係数と機械的Qが大きく、周波数定数が大きい圧電磁器組成物を提供することができ、その工業的価値は大である。

フロントページの続き

(72)発明者 奥山 浩二郎

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

(72)発明者 十河 寬

大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 加藤 純一

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

Fターム(参考) 4G030 AA02 AA03 AA04 AA08 AA09 AA10 AA11 AA12 AA22 AA24 AA25 AA28 AA29 AA36 AA39

AA42 AA43 BA10