Korektnosť prvorádových tabiel. Explicitné definície

11. prednáška · Matematika (4): Logika pre informatikov

Ján Kľuka, Ján Mazák

Letný semester 2021/2022

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej informatiky

Obsah 11. prednášky

Korektnosť tablového kalkulu pre logiku prvého rádu

Vlastnosti ohodnotení a substitúcie

Korektnosť tabiel

Ďalšie korektné pravidlá

Definície

pre logiku prvého rádu —

Korektnosť tablového kalkulu

Korektnosť tablového kalkulu

Vlastnosti ohodnotení a substitúcie

pre logiku prvého rádu

Voľné premenné a hodnota termu, splnenie formuly, teórie

Tyrdenie 13.1

Nech \mathcal{M} je štruktúra pre \mathcal{L} , nech e_1 a e_2 sú ohodnotenia, nech t je term, A je formula a S je množina formúl jazyka \mathcal{L} .

- Ak sa ohodnotenia e_1 a e_2 zhodujú na (voľných) premenných termu t (teda $e_1(x) = e_2(x)$ pre každú $x \in \text{free}(t)$), tak $t^{\mathcal{M}}[e_1] = t^{\mathcal{M}}[e_2]$.
- Ak sa ohodnotenia e₁ a e₂ zhodujú na voľných premenných formuly X, tak M ⊨ A[e₁] vtt M ⊨ A[e₂].
- Ak sa ohodnotenia e_1 a e_2 zhodujú na voľných premenných všetkých formúl z S, tak $\mathcal{M} \models S[e_1]$ vtt $\mathcal{M} \models S[e_2]$.

Substitúcia a hodnota termu

Ako súvisí hodnota termu po substitúcii s hodnotou termu, do ktorého sa substituuie?

```
Príklad 13.2
```

Zoberme štruktúru
$$\mathcal{M} = (D, i)$$
, kde
$$D = \{1, 2, 3, 4, 5\},$$
 $i(c) = 3, \quad i(d) = 4$
$$i(f) = \{1 \mapsto 2, 2 \mapsto 5, 3 \mapsto 1, 4 \mapsto 1, 5 \mapsto 5\}$$
 Nech $e = \{x \mapsto 3, y \mapsto 4\}.$
$$((f(x))\{x \mapsto f(y)\})^{\mathcal{M}}[e] = (f(f(y)))^{\mathcal{M}}[e]$$

$$= i(f)(i(f)(4)) = i(f)(1) = 2$$

$$= (f(x))^{\mathcal{M}}[e(x/1)]$$

$$= (f(x))^{\mathcal{M}}[e(x/(f(y))^{\mathcal{M}}[e])]$$

Substitúcia vs. hodnota termu a splnenie formuly

Hodnota termu $t\sigma$ /splnenie formuly $A\sigma$ po substitúcii $\sigma = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ pri ohodnotení e sa rovná hodnote termu t/splneniu formuly A pri ohodnotení e', ktoré

- každej substituovanej premennej x_i
 priradí hodnotu za ňu substituovaného termu t_i pri ohodnotení e,
- ostatným premenným priraďuje rovnaké hodnoty ako e.

Tvrdenie 13.3

Nech \mathcal{M} je štruktúra pre jazyk \mathcal{L} e je ohodnotenie ind. premenných a nech $\sigma = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ je substitúcia.

- Nech t je term jazyka \mathcal{L} . Potom $(t\sigma)^{\mathcal{M}}[e] = t^{\mathcal{M}}[e(x_1/t_1^{\mathcal{M}}[e]) \cdots (x_n/t_n^{\mathcal{M}}[e])].$
- Nech A je formula jazyka \mathcal{L} a σ je aplikovateľná na A. Potom $\mathcal{M} \models A\sigma[e]$ vtt $\mathcal{M} \models A[e(x_1/t_1^{\mathcal{M}}[e])\cdots(x_n/t_n^{\mathcal{M}}[e])].$

pre logiku prvého rádu

Korektnosť tabiel

Korektnosť tablového kalkulu

Korektnosť tablových pravidiel

Tyrdenie 13.4

Nech S^+ je množina označených formúl v jazyku \mathcal{L} , nech x a y sú premenné, nech s, t sú termy, nech α , β , γ , δ sú ozn. formuly príslušného typu, A je ozn. formula.

- Ak $\alpha \in S^+$, tak S^+ je splniteľná vtt $S^+ \cup \{\alpha_1, \alpha_2\}$ je splniteľná.
- Ak $\beta \in S^+$, tak S^+ je splniteľná vtt $S^+ \cup \{\beta_1\}$ je splniteľná alebo $S^+ \cup \{\beta_2\}$ je splniteľná.
- Ak $\gamma(x) \in S^+$ a t je term substituovateľný za $x \vee \gamma_1(x)$, tak S^+ je splniteľná vtt $S^+ \cup \{\gamma_1(t)\}$ je splniteľná.
- Ak $\delta(x) \in S^+$, y je substituovateľná za $x \vee \delta_1(x)$ a y nemá voľný výskyt v S^+ , tak S^+ je splniteľná vtt $S^+ \cup \{\delta_1(y)\}$ je splniteľná.
- S^+ je splniteľná vtt $S^+ \cup \{\mathbf{T} \ t \doteq t\}$ je splniteľná.
- Ak $\{Ts \doteq t, A^+\{x \mapsto s\}\} \subseteq S^+$, s a t sú substituovateľné za x v A^+ , tak S^+ je splniteľná vtt $S^+ \cup \{A^+\{x \mapsto t\}\}$ je splniteľná.

Korektnosť tablových pravidiel – dôkaz

Dôkaz (čiastočný, pre pravidlo δ v smere \Rightarrow).

Zoberme ľubovoľné S^+, x, y a $\delta(x)$ spĺňajúce predpoklady tvrdenia.

Nech *S*⁺ je splniteľná, teda existuje štruktúra (

teda existuje štruktúra $\mathcal{M}=(D,i)$ a ohodnotenie e také, že $\mathcal{M} \models S^+[e]$. Preto ai $\mathcal{M} \models \delta(x)[e]$.

Podľa tvaru $\delta(x)$ môžu nastať nasledujúce dva prípady:

Ak δ(x) = T ∃x A pre nejakú formulu A, tak podľa def. splnenia ozn. formuly M ⊨ ∃x A[e] a podľa def. splnenia formuly máme nejakého svedka m ∈ D takého, že M ⊨ A[e(x/m)].
 Podľa tvr. 13.3 potom M ⊨ A{x ↦ y}[e(x/m)(y/m)].

preto podľa tvr. 13.1 $\mathcal{M} \models A\{x \mapsto y\}[e(y/m)],$

Prem. x nie je voľná v $A\{x \mapsto y\}$,

teda $\mathcal{M} \models \mathbf{T} A\{x \mapsto y\}[e(y/m)]$, teda $\mathcal{M} \models \delta_1(y)[e(y/m)]$.

Korektnosť tablových pravidiel – dôkaz

Dôkaz (čiastočný, pre pravidlo δ v smere \Rightarrow , pokračovanie).

Ak δ(x) = F ∀x A pre nejakú formulu A, tak podľa def. splnenia ozn. formuly M ⊭ ∀x A[e] a podľa def. splnenia formuly neplatí, že M ⊨ A[e(x/m)] pre každé m ∈ D.
Preto máme nejaký kontrapríklad m ∈ D taký, že M ⊭ A[e(x/m)].
Podľa tvr. 13.3 potom M ⊭ A{x ↦ y}[e(x/m)(y/m)].
Prem. x nie ie voľná v A{x ↦ y}.

preto podľa tvr. 13.1 $\mathcal{M} \not\models A\{x \mapsto y\}[e(y/m)]$, teda $\mathcal{M} \models \mathbf{F} A\{x \mapsto y\}[e(y/m)]$. čiže $\mathcal{M} \models \delta_1(y)[e(y/m)]$.

Navyše y nie je voľná v žiadnej formule z S^+ , preto $\mathcal{M} \models S^+[e(y/m)]$.

Teda $\mathcal{M} \models (S^+ \cup \{\delta_1(y)\})[e(y/m)].$

Preto je $S^+ \cup \{\delta_1(y)\}$ splniteľná.

Korektnosť – pravdivosť priameho rozšírenia tabla

Vetva sa správa ako konjunkcia svojich označených formúl – všetky musia byť naraz splnené.

Tablo sa správa ako disjunkcia vetiev — niektorá musí byť splnená.

Definícia 13.5

Nech S^+ je množina označených formúl v jazyku $\mathcal L$, nech $\mathcal T$ je tablo pre S^+ , nech π je vetva tabla $\mathcal T$. Nech $\mathcal M$ je štruktúra pre $\mathcal L$ a e je ohodnotenie indivíduových premenných. Potom:

- štruktúra \mathcal{M} spĺňa vetvu π pri e vtt \mathcal{M} spĺňa všetky označené formuly vyskytujúce sa na vetve π pri e.
- štruktúra $\mathcal M$ spĺňa tablo $\mathcal T$ pri e vtt $\mathcal M$ spĺňa niektorú vetvu v table $\mathcal T$ pri e.

Pomocné tvrdenia pre korektnosť prvorádových tabiel

Lema 13.6 (K1)

Nech S^+ je množina ozn. formúl v jazyku $\mathcal L$, nech $\mathcal T$ je tablo pre S^+ . Nech $\mathcal M$ je štruktúra pre $\mathcal L$ a e je ohodnotenie ind. premenných. Ak $\mathcal T$ a S^+ sú splnené štruktúrou $\mathcal M$ pri e, tak aj každé priame rozšírenie $\mathcal T$ a S^+ sú splnené štruktúrou $\mathcal M$ pri nejakom ohodnotení e'.

Definícia 13.7

Nech $\mathcal T$ je tablo pre nejakú množinu označených formúl.

Tablo $\mathcal T$ je *splniteľné* vtt existuje štruktúra, ktorá spĺňa $\mathcal T$ pri nejakom ohodnotení indivíduových premenných.

Lema 13.8 (K2)

Nech S^+ je množina ozn. formúl v jazyku \mathcal{L} , nech \mathcal{T} je tablo pre S^+ . Ak S^+ je splniteľná, tak aj \mathcal{T} je splniteľné.

Korektnosť prvorádových tabiel

Otvorené a uzavreté vetvy a tablá sú definované rovnako ako pri tablách pre výrokovú logiku.

Veta 13.9 (Korektnosť tablového kalkulu)

Nech S^+ je množina označených formúl.

Ak existuje uzavreté tablo \mathcal{T} pre S^+ , tak je množina S^+ nesplniteľná.

Dôkaz (sporom).

Nech S^+ je množina označených formúl.

Nech existuje uzavreté tablo $\mathcal T$ pre S^+ , ale S^+ je splniteľná. Pretože $\mathcal T$ je uzavreté, pre každú jeho vetva π existuje formula X taká, že $\mathbf T X$ a $\mathbf F X$ sa vyskytuje na π , a teda π je nesplniteľná. Preto $\mathcal T$ je nesplniteľné. To je v spore s lemou K2, podľa ktorej je $\mathcal T$ splniteľné, pretože S^+ je splniteľná.

Korektnosť tablového kalkulu

pre logiku prvého rádu

Ďalšie korektné pravidlá

Pohodlnejšie verzie pravidiel γ a δ

Tvrdenie 13.10

Nasledujúce pravidlá sú korektné:

$$\gamma^* \quad \frac{\mathbf{T} \, \forall x_1 \dots \forall x_n \, A}{\mathbf{T} \, A \{ x_1 \mapsto t_1, \dots, x_n \mapsto t_n \}} \quad \frac{\mathbf{F} \, \exists x_1 \dots \exists x_n \, A}{\mathbf{F} \, A \{ x_1 \mapsto t_1, \dots, x_n \mapsto t_n \}}$$

$$\delta^* \quad \frac{\mathbf{F} \, \forall x_1 \dots \forall x_n \, A}{\mathbf{F} \, A \{ x_1 \mapsto y_1, \dots, x_n \mapsto y_n \}} \quad \frac{\mathbf{T} \, \exists x_1 \dots \exists x_n \, A}{\mathbf{T} \, A \{ x_1 \mapsto y_1, \dots, x_n \mapsto y_n \}}$$

kde A je formula, x_1,\ldots,x_n sú premenné, t_1,\ldots,t_n sú termy, y_1,\ldots,y_n sú navzájom rôzne premenné, ktoré sa nevyskytujú voľné vo vetve, v liste ktorej je pravidlo použité, pričom pre každé $i\in\{1,\ldots,n\}$ je term t_i substituovateľný za x_i v A a premenná y_i je substituovateľná za x_i v A.

Pravidlá pre ekvivalenciu

Tvrdenie 13.11

Nasledujúce pravidlá sú korektné:

Všimnite si: 3 - 1 = 2 a 3 - 2 = 1.

Definície

Pojmy

V mnohých doménach sú zaujímavé komplikovanejšie kombinácie základných vlastností alebo vzťahov:

- x má spoločného rodiča s y, ale x je rôzne od y $\exists z (\operatorname{rodič}(z, x) \land \operatorname{rodič}(z, y)) \land \neg x \doteq y$
- x je živočích, ktorý konzumuje iba rastliny
 živočích(x) ∧ ∀y(konzumuje(x, y) → rastlina(y))

Často sa vyskytujúce kombinácie vzťahov a vlastností je výhodné:

- pomenovať
- a jasne vyjadriť význam nového mena pomocou doteraz známych vlastností a vzťahov,

teda zadefinovať pojem.

Definície pojmov

Definícia je tvrdenie, ktoré vyjadruje význam pojmu.

Explicitná definícia (najčastejší druh definície) je ekvivalencia medzi pojmom a opisom jeho významu, v ktorom sa definovaný pojem sám nevyskytuje.

Príklad 14.1

 Objekt x je súrodencom objektu y práve vtedy, keď x nie je y a x má spoločného rodiča s y.
 ∀x ∀y(súrodenec(x, y) ↔ (x ≠ y ∧ ∃z(rodič(z, x) ∧ rodič(z, y))))

 Objekt x je bylinožravec vtedy a len vtedy, keď x je živočích, ktorý konzumuje iba rastliny.
 ∀x(bylinožravec(x) ↔ (živočích(x) ∧ ∀y(konzumuje(x, y) → rastlina(y))))

Explicitná def. a nutná a postačujúca podmienka

Všimnite si:

Definícia pojmu súrodenec vyjadruje nutnú aj postačujúcu podmienku toho, aby medzi dvoma objektmi bol súrodenecký vzťah.

- \rightarrow Pre každú dvojicu objektov x a y, ktoré označíme za súrodencov, musí existovať ich spoločný rodič a musia byť navzájom rôzne.
- Každé dva navzájom rôzne objekty x a y, ktoré majú spoločného rodiča, musia byť súrodenci.

Podobne pre iné definície.

Použitie pojmov

Využitím definovaného pojmu

- skracujeme tvrdenia: Škrečky sú bylinožravce.
 ∀x(škrečok(x) → bylinožravec(x))
- jednoduchšie definujeme ďalšie pojmy:
 Objekt x je sestrou objektu y práve vtedy,
 keď x je žena, ktorá je súrodencom y.
 ∀x∀y(sestra(x, y) ↔ (žena(x) ∧ súrodenec(x, y)))

Vyskúšajte si 14.1

Zadefinujte pojem *teta* (chápaný ako vzťah dvoch ľudí) neformálne (v slovenčine) aj formálne (formulou logiky prvého rádu).

Podmienené definície

Niekedy má pojem význam iba pre niektoré druhy objektov, alebo má ten istý pojem rôzne významy pre rôzne druhy objektov.

Vtedy môžeme definície podmieniť druhmi:

• Študent absolvuje predmet vtt je z neho hodnotený inou známkou ako Fx. $\forall x \, \forall y \big(\texttt{Študent}(x) \land \texttt{predmet}(y) \rightarrow \\ \big(\texttt{absolvuje}(x,y) \leftrightarrow \\ \exists z \big(\texttt{hodnoten}(x,y) \stackrel{.}{=} z \land \texttt{známka}(z) \land z \not = \texttt{Fx} \big) \big) \big)$

Explicitná definícia presne

Definícia 14.2

Nech $\mathcal L$ a $\mathcal L_1$ sú jazyky logiky prvého rádu.

Jazyk \mathcal{L}_1 je rozšírením jazyka \mathcal{L} vtt $\mathcal{V}_{\mathcal{L}_1} = \mathcal{V}_{\mathcal{L}}, \mathcal{C}_{\mathcal{L}} \subseteq \mathcal{C}_{\mathcal{L}_1},$ $\mathcal{P}_{\mathcal{L}} \subseteq \mathcal{P}_{\mathcal{L}_2}, \mathcal{F}_{\mathcal{L}} \subseteq \mathcal{F}_{\mathcal{L}_2}.$

Definícia 14.3

Nech $\mathcal L$ je jazyk logiky prvého rádu, T je teória v jazyku $\mathcal L$, a $\mathcal L_P$ je rozšírenie jazyka o predikátový symbol P je s aritou n, ktorý sa nevyskytuje v $\mathcal L$. Teóriu v jazyku $\mathcal L_P$

$$T \cup \{ \forall x_1 \dots \forall x_n (P(x_1, \dots, x_n) \leftrightarrow A) \},$$

kde A je formula, v ktorej sa nevyskytuje P, nazývame **rozšírením teórie** T **explicitnou definíciou** $\forall x_1 \dots \forall x_n (P(x_1, \dots, x_n) \leftrightarrow A)$ predikátového symbolu P.

Jednoznačnosť interpretácie definovaného predikátu

Význam explicitne definovaného predikátu je jednoznačne určený.

Príklad 14.4

Majme nejakú teóriu T v jazyku \mathcal{L} s $\mathcal{P}_{\mathcal{L}} = \{ \text{rodič}^2 \}$.

Rozšírme T o $X = \forall x \forall y (súrodenec(x, y) \leftrightarrow$

$$(x \neq y \land \exists z (\text{rodič}(z, x) \land \text{rodič}(z, y))).$$

 $\operatorname{Nech} \mathcal{M} = (\{ \mathring{-}_{\mathsf{I}}, \overset{\bullet}{\leadsto}_{\mathsf{J}}, \mathring{-}_{\mathsf{K}}, \mathring{-}_{\mathsf{L}}, \mathring{-}_{\mathsf{M}}, \mathring{-}_{\mathsf{N}}, \mathring{-}_{\mathsf{O}} \}, i) \text{ je model } T, \text{ kde }$

$$i(\texttt{rodi}\check{c}) = \{(\mathring{\bullet}_{||},\mathring{\bullet}_{||}),(\mathring{\bullet}_{||},\mathring{\bullet}_{||}),(\mathring{\bullet}_{||},\mathring{\bullet}_{||}),(\mathring{\bullet}_{||},\mathring{\bullet}_{||}),(\mathring{\bullet}_{||},\mathring{\bullet}_{||}),(\mathring{\bullet}_{||},\mathring{\bullet}_{||}),(\mathring{\bullet}_{||},\mathring{\bullet}_{||})\}$$

Potom sa \mathcal{M} dá jednoznačne rozšíriť na model $T \cup \{X\}$:

$$\mathcal{M}_1 = (\{\mathring{\bullet}_{\mathsf{I}}, \mathring{\bullet}_{\mathsf{J}}, \mathring{\bullet}_{\mathsf{K}}, \mathring{\bullet}_{\mathsf{L}}, \mathring{\bullet}_{\mathsf{M}}, \mathring{\bullet}_{\mathsf{N}}, \mathring{\bullet}_{\mathsf{O}}\}, i_1), i_1(\mathtt{rodi\check{c}}) = i(\mathtt{rodi\check{c}}),$$

$$i(súrodenec) =$$

Jednoznačnosť interpretácie definovaného predikátu

Význam explicitne definovaného predikátu je jednoznačne určený.

Príklad 14.4

Majme nejakú teóriu T v jazyku \mathcal{L} s $\mathcal{P}_{\mathcal{L}} = \{ \text{rodič}^2 \}$.

Rozšírme T o $X = \forall x \forall y (súrodenec(x, y) \leftrightarrow$

$$(x \neq y \land \exists z (\text{rodič}(z, x) \land \text{rodič}(z, y))).$$

Nech $\mathcal{M} = (\{ \dot{\mathbf{f}}_{\mathsf{I}}, \mathbf{\ref}_{\mathsf{J}}, \dot{\mathbf{f}}_{\mathsf{K}}, \dot{\mathbf{f}}_{\mathsf{L}}, \dot{\mathbf{f}}_{\mathsf{M}}, \dot{\mathbf{f}}_{\mathsf{N}}, \dot{\mathbf{f}}_{\mathsf{O}} \}, i)$ je model T, kde

$$i(\texttt{rodič}) = \{(\mathring{\pmb{\bullet}}_I,\mathring{\pmb{\bullet}}_M), (\mathring{\pmb{\bullet}}_L,\mathring{\pmb{\bullet}}_M), (\mathring{\pmb{\bullet}}_I,\mathring{\pmb{\bullet}}_N), (\mathring{\pmb{\bullet}}_O,\mathring{\pmb{\bullet}}_N), (\mathring{\pmb{\bullet}}_M,\mathring{\pmb{\bullet}}_K), (\mathring{\pmb{\bullet}}_M, \mathring{\pmb{\bullet}}_J)\}$$

Potom sa $\mathcal M$ dá jednoznačne rozšíriť na model $T \cup \{X\}$:

$$\mathcal{M}_1 = (\{\mathring{\pmb{\bullet}}_{\mathsf{I}}, \clubsuit_{\mathsf{J}}, \mathring{\pmb{\bullet}}_{\mathsf{K}}, \mathring{\pmb{\bullet}}_{\mathsf{L}}, \mathring{\pmb{\bullet}}_{\mathsf{M}}, \mathring{\pmb{\bullet}}_{\mathsf{N}}, \mathring{\pmb{\bullet}}_{\mathsf{O}}\}, i_1), i_1(\mathtt{rodi}\check{\mathtt{c}}) = i(\mathtt{rodi}\check{\mathtt{c}}),$$

$$i(\texttt{s\'urodenec}) = \{(\mathring{\blacklozenge}_{\mathsf{M}}, \mathring{\blacklozenge}_{\mathsf{N}}), (\mathring{\blacklozenge}_{\mathsf{N}}, \mathring{+}_{\mathsf{M}}), (\mathring{\blacklozenge}_{\mathsf{K}}, \overset{*}{\Leftrightarrow}_{\mathsf{J}}), (\overset{*}{\Leftrightarrow}_{\mathsf{J}}, \mathring{+}_{\mathsf{K}})\}$$

Definícia ako dopyt

Explicitne definovaný predikát sa správa ako dopyt alebo pohľad nad ostatnými predikátmi.

ríklad 14.5			
rodič	CREATE VIEW súrodenec AS SELECT r1.d AS d1, r2.d AS d2 FROM rodič AS r1 JOIN rodič AS r2 ON r1.r = r2.r WHERE r1.d $<>$ r2.d $\forall x \forall y$ (súrodenec(x, y) \leftrightarrow	súrodenec	
r d		d1	d2
† ₁ † M † L † M		∔ _M •	i n i m
i in		• • _K	\$ J ∳K
ÅM ÅK ÅM ŠJ	$(x \neq y \land \exists z (\operatorname{rodi} \check{c}(z, x) \land \operatorname{rodi} \check{c}(z, y))))$		

Jednoznačnosť definičného rozšírenia

Definícia 14.6

Nech \mathcal{L}_2 je rozšírenie jazyka \mathcal{L}_1 . Nech $\mathcal{M}_1=(D_1,i_1)$ je štruktúra pre \mathcal{L}_1 a $\mathcal{M}_2=(D_2,i_2)$ je štruktúra pre \mathcal{L}_2 .

Potom \mathcal{M}_2 je **rozšírením** \mathcal{M}_1 vtt $D_2=D_1$ a $i_2(s)=i_1(s)$ pre každý mimologický symbol s jazyka \mathcal{L}_1 .

Tyrdenie 14.7

Nech T je teória v jazyku $\mathcal L$ a T' je rozšírenie T explicitnou definíciou nejakého predikátového symbolu.

Potom pre každý model teórie T existuje práve jedno jeho rozšírenie, ktoré je modelom teórie T^\prime

a každý model teórie T^\prime je rozšírením práve jedného modelu teórie T.

Konzervativita definičného rozšírenia

Tvrdenie 14.8

Nech T je teória v jazyku $\mathcal L$ a T' je rozšírenie T explicitnou definíciou nejakého predikátového symbolu.

Nech X je uzavretá formula jazyka \mathcal{L} .

Potom $T \vDash X \text{ vtt } T' \vDash X$.

Dokazovanie s explicitnými definíciami a rovnosťou

Využime nové pravidlá na dôkaz vyplývania z teórie s definíciou:

```
Príklad 14.9
Dokážme tablom, že T \vDash X pre
      T = \{ \forall x \, \forall y ( \text{\tt Student}(x) \land \text{\tt predmet}(y) \rightarrow \text{\tt predmet}(y) \}
                           (absolvuje(x, y) \leftrightarrow
                            \exists z (z \text{ námka}(z) \land \text{ hodnoten} \dot{y}(x, y) \doteq z \land z \neq Fx))),
               \forall x \forall y (\mathtt{Študent}(x) \land \mathtt{Št\_prog}(y) \rightarrow
                           (absolvuje(x, y) \leftrightarrow
                            \forall z (pov predmet prog(z, y) \rightarrow absolvuje(x, z)))),
                \forall x (\text{št prog}(x) \rightarrow \exists y \text{ pov predmet prog}(z, x)),
               \forall x (\exists y \, pov\_predmet\_prog(x, y) \rightarrow predmet(x))
     X = \forall x \forall y (študent(x) \land št prog(y) \land absolvuje(x, y) \rightarrow
                          \exists y \, \text{hodnoten} \, \dot{y}(x, y) \neq Fx
```