Reglunarfræði T 501

Æfingardæmi - kafli 8

Þorgeir Pálsson

E8.1 Increased track densities for computer disk drives necessitate careful design of the head positioning control [1]. The loop transfer function is

$$L(s) = G_c(s)G(s) = \frac{K}{(s+1)^2}$$

Plot the frequency response for this system when K=4. Calculate the phase and magnitude at $\omega=0.5, 1, 2, 4$, and ∞ .

Answer: |L(j0.5)| = 0.94 and $\angle L(j0.5) = -28.1^{\circ}$.

E8.2 A tendon-operated robotic hand can be implemented using a pneumatic actuator [8]. The actuator can be represented by

$$G(s) = \frac{5000}{(s+70)(s+500)}.$$

Plot the frequency response of $G(j\omega)$. Show that the magnitude of $G(j\omega)$ is $-17 \, \mathrm{dB}$ at $\omega = 10$ and $-27.1 \, \mathrm{dB}$ at $\omega = 200$. Show also that the phase is -138.7° at $\omega = 700$.

E8.2 The transfer function is

$$G(s) = \frac{5000}{(s+70)(s+500)} \ .$$

The frequency response plot is shown in Figure E8.2. The phase angle is computed from

$$\phi = -\tan^{-1}\frac{\omega}{70} - \tan^{-1}\frac{\omega}{500} \ .$$

The phase angles for $\omega = 10,100$ and 700 are summarized in Table E8.2.

ω	10	200	700
$ G(j\omega) $	-16.99	-27.17	-41.66
φ (deg)	-9.28	-92.51	-138.75
φ (αεβ)	5.20	52.01	100.10

TABLE E8.2 Magnitude and phase for $G(s) = \frac{5000}{(s+70)(s+500)}$.

FIGURE E8.2 Frequency response for $G(s) = \frac{5000}{(s+70)(s+500)}$.

$$G(s) = \frac{Ks}{(s+a)(s^2+20s+100)}$$

is shown in Figure E8.4. Determine K and a by examining the frequency response curves.

FIGURE E8.
Bode diag 3

E8.3 The transfer function is

$$G(s) = \frac{Ks}{(s+a)(s+10)^2}$$
.

Note that $\phi = 0^o$ at $\omega = 3$, and that

$$\phi = +90^{\circ} - \tan^{-1} \frac{\omega}{a} - 2 \tan^{-1} \frac{\omega}{10}$$
.

Substituting $\omega = 3$ and solving for a yields

$$a=2$$
.

Similarly, from the magnitude relationship we determine that

$$K = 400$$
 .

E8.4 A robotic arm has a joint-control loop transfer function

$$L(s) = G_c(s)G(s) = \frac{300(s+100)}{s(s+10)(s+40)}.$$

Show that the frequency equals 28.3 rad/s when the phase angle of $L(j\omega)$ is -180° . Find the magnitude of $L(j\omega)$ at that frequency.

Answer: |L(j28.3)| = -2.5 dB

E8.4 The loop transfer function is

$$L(s) = \frac{300(s+100)}{s(s+10)(s+40)} \ .$$

The phase angle is computed via

$$\phi(\omega) = -90^{\circ} - \tan^{-1} \frac{\omega}{10} - \tan^{-1} \frac{\omega}{40} + \tan^{-1} \frac{\omega}{100} .$$

At $\omega = 28.3$, we determine that

$$\phi = -90^{\circ} - 70.5^{\circ} - 35.3^{\circ} + 15.8^{\circ} = 180^{\circ}$$
.

Computing the magnitude yields

$$|L(j\omega)| = \frac{300(100)(1 + (\frac{\omega}{100})^2)^{\frac{1}{2}}}{\omega 10(1 + (\frac{\omega}{10})^2)^{\frac{1}{2}} 40(1 + (\frac{\omega}{40})^2)^{\frac{1}{2}}} = 0.75 ,$$

when $\omega = 28.3$. We can also rewrite L(s) as

$$L(s) = \frac{75(\frac{s}{100} + 1)}{s(\frac{s}{10} + 1)(\frac{s}{40} + 1)}.$$

Then, the magnitude in dB is

$$20 \log_{10} |L| = 20 \log_{10}(75) + 10 \log_{10}(1 + (\frac{\omega}{100})^2) - 10 \log_{10}(1 + (\frac{\omega}{10})^2) - 10 \log_{10}(1 + (\frac{\omega}{10})^2) - 10 \log_{10}(1 + (\frac{\omega}{10})^2) - 20 \log_{10}\omega = -2.5 \text{ dB},$$

at $\omega = 28.3$.

E8.5 The magnitude plot of a transfer function

$$G(s) = \frac{K(1+0.5s)(1+as)}{s(1+s/8)(1+bs)(1+s/36)}$$

is shown in Figure E8.5. Determine K, a, and b from the plot.

Answer: K = 8, a = 1/4, b = 1/24

E8.7 The lower portion for $\omega < 2$ is

$$20\log\frac{K}{\omega} = 0 \text{ dB} ,$$

at $\omega = 8$. Therefore,

$$20\log\frac{K}{8} = 0 \text{ dB}$$

which occurs when

$$K=8$$
.

We have a zero at $\omega = 2$ and another zero at $\omega = 4$. The zero at $\omega = 4$ yields

$$a = 0.25$$
.

We also have a pole at $\omega = 8$, and a second pole at $\omega = 24$. The pole at $\omega = 24$ yields

$$b = 1/24$$
.

Therefore,

$$G(s) = \frac{8(1+s/2)(1+s/4)}{s(1+s/8)(1+s/24)(1+s/36)}.$$

FIGURE E8.5 Bode diagram.

E8.7 Consider a system with a closed-loop transfer function

$$T(s) = \frac{Y(s)}{R(s)} = \frac{4}{(s^2 + s + 1)(s^2 + 0.4s + 4)}.$$

This system will have no steady-state error for a step input. (a) Plot the frequency response, noting the two peaks in the magnitude response. (b) Predict the time response to a step input, noting that the system has four poles and cannot be represented as a dominant second-order system. (c) Plot the step response.

E8.5 The transfer function is

$$T(s) = \frac{4}{(s^2 + s + 1)(s^2 + 0.4s + 4)}.$$

(a) The frequency response magnitude is shown in Figure E8.5. The frequency response has two resonant peaks at

$$\omega_{r_1} = 0.8 \text{ rad/sec}$$
 and $\omega_{r_2} = 1.9 \text{ rad/sec}$.

(b) The percent overshoot is

$$P.O. = 35\%$$
,

and the settling time is

$$T_s \approx 16 \text{ sec}$$
.

(c) The step response is shown in Figure E8.5.

FIGURE E8.5 (a) Bode Diagram for $T(s)=\frac{4}{(s^2+s+1)(s^2+0.4s+4)}.$ (b) Unit step response.

FIGURE E8.6 Bode Diagram for $L(s) = \frac{10}{s(s/6+1)(s/100+1)}.$

E8.9 The Bode diagram of a system is shown in Figure E8.9. Determine the transfer function G(s).

FIGURE E8.9 Bode diagram.

E8.9 The Bode diagram for G(s) is shown in Figure E8.9.

FIGURE E8.9 Bode Diagram for $G(s) = \frac{(s/5+1)(s/20+1)}{(s+1)(s/80+1)}$.

E8.14 Consider the nonunity feedback system in Figure E8.14, where the controller gain is K = 2. Sketch the Bode plot of the loop transfer function. Determine the

phase of the loop transfer function when the magnitude $20 \log |L(j\omega)| = 0$ dB. Recall that the loop transfer function is $L(s) = G_c(s)G(s)H(s)$.

FIGURE E8.14 Nonunity feedback system with controller gain K.

E8.14 Consider the nonunity feedback system in Figure E8.14, where the controller gain is K = 2. Sketch the Bode plot of the loop transfer function. Determine the phase of the loop transfer function when the magnitude $20 \log |L(j\omega)| = 0$ dB. Recall that the loop transfer function is $L(s) = G_c(s)G(s)H(s)$.

Lausn:

E8.14 The loop transfer function is

$$L(s) = \frac{20}{(s^2 + 1.4s + 1)(s + 10)} .$$

The Bode plot of L(s) is shown in Figure E8.14. The frequency when $20 \log_{10} |L(j\omega)| = 0$ is $\omega = 1.32$ rad/sec.

FIGURE E8.14 Bode Diagram for $L(s) = \frac{20}{(s^2+1.4s+1)(s+10)}$

E8.14 The loop transfer function is

$$L(s) = \frac{20}{(s^2 + 1.4s + 1)(s + 10)} \ .$$

The Bode plot of L(s) is shown in Figure E8.14. The frequency when $20\log_{10}|L(\jmath\omega)|=0$ is $\omega=1.32$ rad/sec.

FIGURE E8.14 Bode Diagram for $L(s) = \frac{20}{(s^2+1.4s+1)(s+10)}$