Training Neural Networks

Learning Objectives

After completing this lecture, you will be able to:-

- Apply appropriate batching when using gradient descent for training neural networks
- Implement neural networks with Keras
- Use neural networks in multiclass problems using onehot-encoding or similar techniques
- Describe various techniques for regularization of neural network training

Decisions for Training

- Given a group of examples, we know how to compute the derivative for each weight
- How exactly do we update the weights?
- How often do we update the weights?
 - After each data point?
 - After all training data points?
- Choices made here could make training faster / better / etc. (or the reverse)

Batch Gradient Descent

 Classical approach – get derivative for entire data set, then take a step in that direction

$$W_{new} = W_{old} - \alpha \frac{\delta J}{\delta W}$$

- Pros: Each step is informed by all the data
- Cons: Very slow, especially as data gets big

Stochastic Gradient Descent

- Get derivative for just one point, take a step in that direction
- Steps are "less informed" but you take more of them (per computation time)
- Should "balance out"
- Probably want a smaller step size
- Also helps to regularize

Compromise: Mini-batch

- Get derivative for a 'small' set of points, then take a step in that direction
- Typical mini batch sizes are 16, 32
- Strikes a balance between two extremes

Batching Approaches Comparison

1

Faster, less accurate step

Batch size

Slower, more accurate step

Batching Terminology

- Full-batch
 - Use entire data set to compute gradient before updating
- Mini-batch
 - Use a smaller portion of data (more than one) to computer gradient before upgrading
- Stochastic Gradient Descent (SGD)
 - Use a single example to compute gradient before updating (sometimes just refers to mini-batch)

Batching Terminology

- An epoch refers to a single pass through all the training data
- In full batch gradient descent, there would be one step taken per epoch
- In SGD / Online learning, there would be n steps taken per epoch (n is the size of the training set)
- In Mini-batch there would be (n/batch size) steps taken per epoch
- When training, it is common to refer to the number of epochs needed for the model to be "trained"

Batching Terminology

- It is common to implement data shuffling
 - Cyclical movement is possible if the same data is used for mini-batch/SGD in the same order
 - Shuffling the data after each epoch can avoid this, and aid convergence
 - This way, the data is not 'seen' by the network in the same order every time
 - Also, each set of batches is different from any of the sets used in the previous epoch

Shuffle the Data!

The Keras Package

- Keras allows easy construction, training, and execution of Deep Neural Networks
- Written in Python, and allows users to configure complicated models directly in Python
- Uses either Tensorflow or Theano "under the hood"
- Uses either CPU or GPU for computation
- Uses numpy data structures, and a similar command structure to scikit-learn (model.fit, model.predict, etc.)

Typical Command Structure in Keras

- Build the structure of your network
- Compile the model, specifying your loss function, metrics, and optimizer (which includes the learning rate)
- Fit the model on your training data (specifying batch size, number of epochs)
- Predict on new data
- Evaluate your results

Building the Model

- Keras provides two approaches to building the structure of your model:
- Sequential Model: allows a linear stack of layers simpler and more convenient if model has this form
- Functional API: more detailed and complex, but allows more complicated architectures
- We will focus on the Sequential Model

Keras Sequential Model Example

Let's build this Neural Network structure in Keras

Keras Sequential Model Example

First, import the Sequential function and initialize your model object

```
from keras.models import Sequential
Model = Sequential()
```


Keras Sequential Model Example

Then we add the layers to the model one by one

```
from keras.layers import Dense, Activation
# For the first layer, specify the input dimension
model.add(Dense(units=4, input_dim=3))
# Specify an activation function
model.add(Activation('sigmoid'))
# For subsequent layers, the input dimension is
# presumed from the previous layer
model.add(Dense(units=4))
model.add(Activation('sigmoid'))
model.add(Dense(units=3))
model.add(Activation('softmax'))
```


- For binary classification problems, we have a final layer with a single node and a sigmoid activation function
- This has many desirable properties
 - Output is strictly between 0 and 1
 - Can be interpreted as a probability
 - Derivative is 'nice'
 - Analogous to logistic regression
- Is there a natural way to extend this to a multiclass setting?

- Reminder: one hot encoding for categories
- Take a vector with length equal to the number of categories
- Represent each category with one at a particular position (and zero everywhere else)

- For multiclass classification problems, let the final layer be a vector with length equal to the number of possible classes
- Extension of sigmoid to multiclass is the 'softmax' function

$$softmax(z_i) = \frac{e^{Z_i}}{\sum_{k=1}^{K} e^{Z_k}}$$

 Yields a vector with entries that are between 0 and 1, and sum to 1

- For loss function use "categorical cross entropy"
- This is just the log-loss function in disguise

$$C.E = -\sum_{i=1}^{n} y_i \log(\hat{y}_i)$$

Derivative has a nice property when used with softmax

$$\frac{\delta(C.E.)}{\delta(softmax)} \cdot \frac{\delta(softmax)}{\delta z_i} = \hat{y}_i - y_i$$

Reminder: Scaling

Linear scaling to the interval [0, 1]

$$x_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$

Linear scaling to the interval [-1, 1]

$$x_i = 2\left(\frac{x_i - \bar{x}}{x_{max} - x_{min}}\right) - 1$$

Standardization (making variable approximately standard normal)

$$x_i = \frac{x_i - \hat{x}}{\sigma}$$
 $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \hat{x})^2}$

We have several means by which to help "regularize" neural networks – that is, to prevent overfitting

- Regularization penalty in cost function
- Dropout
- Early stopping
- Stochastic / Mini-batch Gradient descent (to some degree)

Penalized Cost Function

- One option is to explicitly add a penalty to the loss function for having high weights.
- This is a similar approach to Ridge Regression

$$J = \frac{1}{2n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 + \lambda \sum_{j=1}^{m} W_j^2$$

 Can have an analogous expression for Categorical Cross Entropy

Dropout

- Dropout is a mechanism where at each training iteration (batch) we randomly remove a subset of neurons
- This prevents the neural network from relying too much on individual pathways, making it more "robust"
- At test time we "rescale" the weight of the neuron to reflect the percentage of the time it was active

Dropout Visualization

(a) Standard Neural Net

(b) After applying dropout.

Dropout Visualization

 If the neuron was present with probability p, at test time we scale the outbound weights by a factor of p.

Early Stopping

- Another more heuristical approach to regularization is early stopping
- This refers to choosing some rules after which to stop training
- E.g.
 - Check the validation log-loss every 10 epochs
 - If it is higher than it was last time, stop and use the previous model (i.e. from 10 epochs ago)

- We have considered approaches to gradient descent which vary the number of data points involved in a step.
- However, they have all used the standard update formula:

$$W := W - \alpha \cdot \nabla J$$

- There are several variants to updating the weights which give better performance in practice.
- These successive "tweaks" each attempt to improve on the previous idea.
- The resulting (often complicated) methods are referred to as "optimizers".

Momentum

- Idea: only change direction by a little bit each time.
- Keeps a "running average" of the step directions, smoothing out the variation of the individual points

$$v_t := \eta \cdot v_{t-1} - \alpha \cdot \nabla J$$

$$W := W - v_t$$

 Here, is referred to as the "momentum". It is generally given a value < 1

Gradient Descent vs Momentum

Gradient Descent vs Momentum

Nesterov Momentum

- Idea: control "overshooting" by looking ahead
- Apply gradient only to the "non-momentum" component

$$v_t := \eta \cdot v_{t-1} - \alpha \cdot \nabla (J - \eta \cdot v_{t-1})$$

$$W := W - v_t$$

Nesterov Momentum Visualized

AdaGrad

- Idea: scale the update for each weight separately
- Update frequently-updated weights less
- Keep running sum of previous updates
- Divide new updates by factor of previous sum

$$W := W - \frac{\eta}{\sqrt{G_t + \varepsilon}} \circ \nabla J$$

RMSProp

- Quite similar to AdaGrad
- Rather than using the sum of previous gradients, decay older gradients more than more recent ones
- More adaptive to recent updates

Adam

 Idea: use both first-order and second-order change information and decay both over time

$$v_{t} = \beta_{2}v_{t-1} + (1 - \beta_{2})\nabla J \qquad m_{t} = \beta_{1}m_{t-1} + (1 - \beta_{1})\nabla J$$

$$\hat{v}_{t} = \frac{v_{t}}{1 - \beta_{1}^{t}} \qquad \hat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}}$$

$$W := W - \frac{\eta}{\sqrt{\hat{v}_t} + \varepsilon} \circ \hat{m}_t$$

- RMSProp and Adam seem to be quite popular now.
- Difficult to predict in advance which will be best for a particular problem.
- Still an active area of inquiry.

End of Lecture

Many thanks to Intel
Software for providing a
variety of resources for
this lecture series

