Transistorized Integrator

Boris Murmann bmurmann@hawaii.edu

Clock Generation Example

[A. Abo, "Design for Reliability of Low-voltage, Switched-capacitor Circuits," PhD Thesis, UC Berkeley, 1999]

My Design

 Will need to re-visit sizing once we have a good estimate of the load capacitances (including wire parasitics)

Testbench

Integrator Prototype

- Sizing based on considerations from lectures 10-13
 - Kept inverter a bit larger to improve settling

Splitting Transistors into Multiple Fingers

Starting Point With Ideal Switches ($R_{on} = 5 k\Omega$)

Testbench

Voltage Across Sampling Capacitor

Voltage Across Integration Capacitor & Integrator Output

Longer Simulation

Next Step With 3 Ideal Switches

2024-02-25 21:42:03

Boris Murmann
x1. /foss/designs/integ_three_ideal_sw.sch

Voltage Across Sampling & Integration Capacitor

Next Step With Real Switches

Voltage Across Sampling Capacitor & Output Voltage

Goes negative due to charge injection

Integration increment larger due to charge injection

Determining the Input Offset

Output for Vin = -39 mV

Output for Vin = -39+10 mV

Output for Vin = -39+10 mV

