

Scope 1:

 Schrittmotoransteuerung mit kontinuierlicher Frequenz in eine Richtung

Scope 2:

- Aufzeichnen eines Bewegungsablaufs
- · Mittels zwei Tastern wird eine Drehrichtung vorgegeben
- Mit einem Taster kann die Bewegung gestoppt werden
- Mit einem Taster wird die Sequenz abgespielt

Scope 3:

- lineare Veränderung der Schrittfrequenz
- Mit zwei Tastern wird die Frequenz erh\u00f6ht bzw. verringert
- 0% 100% und umgekehrt in ca. 2 Sekunden
- Wird 0% erreicht ändert sich die Drehrichtung und die Frequenz erhöht sich
- Position und Frequenz wird aufs Display ausgegeben

Schrittmotoransteuerung mit dem TMC2209-Treiber

Dokumentation zum HWE-Softwareprojekt "Schrittmotoransteuerung".

Verwendete Hardware:

Megacard
+
TMC2209-StepperDriver
+
17HS19-2004S1
2-Phase-Stepper
+
2-Line-LCD mit
HD44780-Controller &

PCF8574 - 12C

I/O-Expander

Inhalt

Hardware:	3
TMC2209:	3
	3
Schrittmotor:	
Anschlussdiagram:	
	Fehler! Textmarke nicht definiert
Stufe 1	Fehler! Textmarke nicht definiert
Stufe 2	Fehler! Textmarke nicht definiert
Stufe 3	Fehler! Textmarke nicht definiert
Peferenzen	C.

Hardware:

TMC2209:

Der TMC2009 I ist ein Treiber-Board für 2-Phasen-Schrittmotoren, basierend auf dem TMC2209 IC.

Features und Leistungen:

- Die Steuerung kann über eine UART-Schnittstelle oder über den Richtungs- und Schritt-Pin erfolgen.
- Bei jeder steigenden Flanke am Schritt-Pin wird ein Schritt durchgeführt (diese Methode wird verwendet).
- Die Drehrichtung des Motors kann über den Direktions-Pin bestimmt werden.
- Das Board benötigt zwei Spannungsversorgungen:
- 5 Volt für den Chip
- 4,78 bis 28 Volt für den Motor

Leistung:

- Kontinuierliche I-Phase = 1,4 ARMS möglich
- I-Phase bis zu 2,5 A Spitzenleistung für kurze Zeit möglich

Ansteuerung:

Normalmodus:

In dieser Anwendung wird der Normalmodus verwendet. Dabei wird der Motor über den Step-Pin betrieben, wobei jede steigende Flanke am Step-Pin einen Mikroschritt des Motors bedeutet. Die Größe dieser Mikroschritte kann mithilfe der MS-Pins wie folgt definiert werden:

CFG2/MS2	CFG1/MS1	Steps	Interpolation
GND	GND	1/8	1/256
GND	VIO	1/32	1/256
VIO	GND	1/64	1/256
VIO	VIO	1/16	1/256

UART:

Für die UART-Ansteuerung wird ein Ansteuerungsprogramm, wie zum Beispiel "ScriptCommunicators", benötigt. Wird in einem solchen Programm der TMC2209 ausgewählt, können diverse Einstellungen, wie Frequenzanpassung oder Stromlimitierung, vorgenommen werden.

Für die unidirektionale UART-Kommunikation muss der Treiber wie folgt angeschlossen werden:

Pin-Out:

Left	Signal	Right	Signal
1	GND	9	Dir
2	VIO	10	Step
3	M1B (Motor Phase B)	11	PDN
4	M1A (Motor Phase A)	12	UART
5	M2A (Motor Phase A)	13	SPRD
6	M2B (Motor Phase B)	14	MS2
7	GND	15	MS1
8	VM	16	EN
17	INDEX	18	DIAG

Schrittmotor:

Für die folgenden Aufgaben wir der 17HS19-2004S1 Schrittmotor verwendet. Folgend eine kleine Übersicht wichtiger Eckdaten des Motors:

B i POLAR
2.00
1.40±10%
3.00±20%
0.59[5.22]
1.80
±5.00%
82.00

Anschlussdiagram:

Scope 1

Aufgabenstellung:

Im ersten Scope ist das zu erreichende Ziel ein sich mit konstanter Frequenz in eine Richtung drehender Schrittmotor.

Softwareansatz:

Scope 2

Erweiterung von Stufe 1

- Mittels zwei Taster wird die Drehrichtung vorgegeben
- Die Bewegung wird dabei "aufgezeichnet"
- Nach dem Drücken einer dritten Taste wird die aufgezeichnete Bewegung wieder abgespielt

Scope 3

Erweiterung von Stufe 2

- Die Frequenz des Schrittmotor wird nicht konstant ausgegeben, sondern über eine lineare Rampe erhöht bzw. verringert
- 0% 100% und umgekehrt in 2 Sekunden
- Die aktuelle Position und Frequenz wird auf einem Display ausgegeben

FREQUENZ-SOLLWERT (IN HZ)	FREQUENZ-ISTWERT (IN HZ)
0	0
5	4,99
10	9,98
15	14,97
20	19,92
25	24,87
30	29,94
35	34,96
40	39,68
45	44,64
50	49,5
55	54,94
60	59,52
65	64,93
70	69,43
75	74,62
80	79,35
85	84,73
90	89,27

95	94,33
100	98,02

Referenzen