

Imarticus Learning Private Limited

A Capstone Project on **Employee Attrition Prediction**

By Prasad Vasant Verulkar (PGA11, Pune Batch)

Problem Statement

Dataset Description

Attrition (Y Variable) Distribution: Rows: 1470 Yes: 237 Columns: 35 No: 1233 Numerical: 5 Columns Nominal: 9 Categorical: 29 Ordinal: 20

#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64

Steps in Building ML Model

Reading Data

Setting up Validation Strategy Selection of a validation set based

Model Building

on the distribution of train and test

9 To make model robust and reduce over fitting

Cross Validation

Data Preprocessing Handling Missing values

Handling Outliers

Exploratory Data Analysis ata to reveal hidden insights.

> Feature Engineering Categorical Encoding • Binning

Feature **Selection** mensionality of dataset.

set

6

Hyperparameter Optimization 8

To reduce over fitting

Check for Missing Values

• No missing Values in Dataset

```
1 at.isnull().sum().sum()
```

Class Imbalance

Highly imbalanced
at.Attrition.value_counts()

No 1233
Yes 237
Name: Attrition, dtype: int64

- Oversampling
- SMOTE

Handling Outliers

- Monthly Income column contains outliers.
- 7.8% of Monthly Income values are greater than upper whisker.
- Can't remove them hence transform feature.

Before applying log

After applying log

Dashboard Created using Tableau Public

Binning Ordinal Variables

- Binning ordinal variables with higher class levels.
- Bins are decided based on quartiles.
- To avoid over fitting and generalizing the model
- Might improve model performance.

Age_bins	Young, Adults, Middle_Aged, Old	
DistanceFromHome	VeryClose, Medium, Far, VeryFar	
Experiance_bins	Freshers, Associate, SnAssociate, Lead	
Promotion_bins (Based on quantiles)	0_1, 2_3, 3_15	

Feature Encoding

•One Hot Encoding

```
# One hot encoding
at_x = pd.get_dummies(at_x , columns = at_x.select_dtypes(include = 'object').columns)
at_x.head()
```

Total Features after One Hot Encoding: 44

Features Eliminated using above methods: 21

Some of the removed Features removed

Education Field

Performance Rating

Education

PercentSalaryHike

Gender

Business Trave

Zero Variance Predicators

• Features which contain only one class or only one unique number.

1 at.EmployeeCount.value_counts()
1 1470
Name: EmployeeCount, dtype: int64

at.StandardHours.value_counts()

80 1470
Name: StandardHours, dtype: int64

at.Over18.value_counts()
Y 1470
Name: Over18, dtype: int64

Unique Identifier

EmployeeNumber

Feature Selection Setting up Validation Strategy

Model Building & Comparison

- Splitting data in 70:30 ratio keeping distribution of Y variable same.
- Building models and tuning hyper parameters on train set and evaluating on test.
- Stratified KFold cross validation on complete data for final model evaluation.

Logistic Regression **Decision** Tree

Random **Forest**

AdaBoost

XgBoost

NaiveBayes

VotingClassifier **SVM**

- -Being the highest F1-score of 0.61, Precision 0.52 and recall 0.73 for class 1, AdaBoost Classifier model is selected among all other
- These scores are for the test set and thus final scores are evaluated using Cross Validation.

Best Performing model is AdaBoost Classifier

*****	For te	st data****	***		
[[356	341				
	37]]				
15 1010		precision	recall	f1-score	support
	0	0.96	0.91	0.94	390
	1	0.52	0.73	0.61	51
acc	uracy			0.89	441
macr	o avg	0.74	0.82	0.77	441
weighte	d avg	0.91	0.89	0.90	441
*****F	or tra	in Training*	*****		
		precision		f1-score	support
	0	0.98	0.91	0.94	924
	1	0.51	0.80	0.62	105
acc	uracy			0.90	1029
macr	o avg	0.74	0.86	0.78	1029
weighte	d	0.93	0.90	0.91	1029

Hyper Parameter Tuning

Grid Search CV

```
## HyperParameter Optimization

## Grid Search CV

grid = {'n_estimators':[50,100,150,200,300],'learning_rate':[0.1, 1, 1.1, 1.2, 1.3, 1.4]}

ada = AdaBoostClassifier()

cv = StratifiedKFold(n_splits=5,shuffle = True,random_state = 100)

scorer = make_scorer(f1_score)

from sklearn.model_selection import GridSearchCV

clf=GridSearchCV(estimator = ada, param_grid = grid, cv=cv, n_jobs=-1,scoring = scorer)

grid_result = clf.fit(at_train_x, at_train_y)
```

• Best Parameters: {'learning_rate': 1.4, 'n_estimators': 50}

Cross Validation

- •Performed Stratified Kfold on complete data with K = 5.
- Mean Accuracy: 0.86
- Mean F1_score: 0.514
- Mean Test Set Accuracy: 0.90
- Mean Test F1score: 0.6677
- Top Features: MonthlyRate, DailyRate, TotalWorkingYears, YearsAtCompany, YearsInCurrentRole, YearsWithCurrManager