Twierdzenie. Dla każdego $n \in \mathbb{N}_1$ istnieje $N \in \mathbb{N}$ takie, że każde N punktów na płaszczyźnie zawiera n punktów w pozycji ogólnej lub n punktów leżących na jednej prostej.

Dowód. Bierzemy $N \ge R^{(3)}(n,n)$, kolory: trójka współliniowa lub nie.

Twierdzenie (Erdős-Szekeres). Niech $n \in \mathbb{N}_1$. Dowolny zbiór $N > R^{(3)}(n,n)$ punktów na płaszczyźnie w pozycji ogólnej zawiera n punktów w pozycji wypukłej.

Dowód. Ustalamy kolejność na punktach. Każda trójka w zadanej kolejności jest zorientowana clockwise lub counterclockwise. Wielokąt zawierający tylko trójki jednej orientacji jest wypukły, a odpowiednią ich ilość daje wybór N.

Twierdzenie. Dla $t \in \mathbb{N}_3$ niech L(t) będzie równaniem $x_1 + \ldots + x_{t-1} = x_t$. Dla dowolnego $k \in \mathbb{N}_1$ i $t \in \mathbb{N}_3$ istnieje $N \in \mathbb{N}$ takie, że dla dowolnego kolorowania $c : [N] \to [k]$ istnieje monochromatyczne rozwiązanie L(t).

Dowód. Bierzemy $N=R^{(2)}(k;t)$, kolorowanie $c'(\{x,y\})=c(|x-y|)$ ma monochromatyczną klikę $\{y_1,\ldots,y_t\}$. Niech $y_1 \leq y_2 \leq \ldots \leq y_t$. Kładąc $x_1=y_2-y_1,\ldots,x_{t-1}=y_t-y_{t-1},x_t=y_t-y_1$ mamy to, co chcemy

Twierdzenie. Dla dowolnego $k \in \mathbb{N}_1$ istnieje $N \in \mathbb{N}$ takie, że dla dowolnej liczby pierwszej p takiej, że p > N równanie

$$x^k + y^k = z^k \pmod{p}$$

ma nietrywialne rozwiązanie w liczbach całkowitych, czyli takie, że p nie dzieli $x \cdot y \cdot z$.

Dowód. Niech p>S(k). Podgrupa $G_k=\{x^k \mod p: x\in \mathbb{Z}_p^*\}$ ma rząd $\frac{p-1}{\gcd(k,p-1)}$ (bierzemy kolejne potęgi generatora \mathbb{Z}_p), więc ma $\gcd(k,p-1)\leq k$ warstw, kolorując elementy \mathbb{Z}_p^* po tym, to jakiej warstwy należą, mamy z twierdzenia Schura rozwiązanie $x+y\equiv z\pmod p$ w jednej warstwie, czyli $a_jx^k+a_jy^k\equiv a_jz^k\pmod p$, a to daje tezę.

Twierdzenie. Zachodzi $S(k) = \Omega(3^k)$, gdzie S(k) to liczba Schura.

Dowód. Mając kolorowanie $c:[n] \to [k]$ bez trójki Schura można zdefiniować kolorowanie $c':[3n+1] \to [k+1]$:

$$c'(i) = \begin{cases} c(i), & i \in [n] \\ k+1, & i \in \{n+1, \dots, 2n+1\} \\ c(i=2n-1), & i \in \{2n+1, \dots, 3n+1\} \end{cases},$$

które też nie ma trójki Schura $(x+y=z \text{ możliwe tylko dla } x \in [n] \text{ i } y \in \{2n+1,\ldots,3n+1\}$, ale wtedy analogiczna trójka będzie istnieć w c), zatem jeśli S(k)=n+1, to $S(k+1)\geq 3n+2=3S(k)-1$. Indukcyjnie pokazujemy $S(k)\geq \frac{3^k+1}{2}$.