## Corrigé de la feuille d'exercices 11

**Exercice 1.** Supposons que  $(u_n)_{n\in\mathbb{N}}$  est monotone. Soit  $n\in\mathbb{N}$ ,

$$\begin{split} v_{n+1} - v_n &= \frac{1}{n+1} \sum_{k=1}^{n+1} u_k - \frac{1}{n} \sum_{k=1}^n u_k \\ &= \frac{1}{n(n+1)} \left[ n \sum_{k=1}^{n+1} u_k - (n+1) \sum_{k=1}^n u_k \right] \\ &= \frac{1}{n(n+1)} \left[ n u_{n+1} - \sum_{k=1}^n u_k \right] \\ &= \frac{1}{n(n+1)} \sum_{k=1}^n (u_{n+1} - u_k) \end{split}$$

Si  $(u_n)$  est décroissante, alors, pour tout  $k \in [1, n]$ ,  $u_{n+1} - u_k \ge 0$  (ceci se prouve par récurrence). Donc  $v_{n+1} - v_n \ge 0$ . Ainsi,  $(v_n)$  est croissante.

De même, si  $(u_n)$  est décroissante, alors, pour tout  $k \in [1, n]$ ,  $u_{n+1} - u_k \le 0$  donc  $v_{n+1} - v_n \le 0$ . Ainsi,  $(v_n)$  est décroissante.

Exercice 2. On reconnait une suite arithmético-géométrique.

- Soit  $\alpha \in \mathbb{R}$ , on a :  $\alpha = 3\alpha + 2 \iff \alpha = -1$ .
- Posons  $(v_n)_{n\in\mathbb{N}}=(u_n+1)_{n\in\mathbb{N}}$ .
- Soit  $n \in \mathbb{N}$ ,  $v_{n+1} = u_{n+1} + 1 = 3u_n + 2 + 1 = 3(u_n + 1) = 3v_n$ . Ainsi,  $(v_n)_{n \in \mathbb{N}}$  est géométrique de raison 3.

Par suite :  $\forall n \in \mathbb{N}, v_n = 3^n(u_0 + 1) = 2 \times 3^n$ .

• On obtient finalement que :  $\forall n \in \mathbb{N}, u_n = 2 \times 3^n - 1.$ 

**Exercice 3.** 1. Soit  $\alpha \in \mathbb{R}$ , on a :

$$\alpha = \frac{1}{3}\alpha + 2 \iff 3\alpha = \alpha + 2$$

Pour tout  $n \in \mathbb{N}$ , on pose  $v_n = u_n - 3$ .

Soit  $n \in \mathbb{N}$ , on a:  $v_{n+1} = u_{n+1} - 3 = \frac{1}{3}u_n - 1 = \frac{1}{3}(u_n - 3) = \frac{1}{3}v_n$ .

Ainsi,  $(v_n)_{n\in\mathbb{N}}$  est géométrique de raison  $\frac{1}{3}$ .

De plus,  $v_0 = u_0 - 3 = -3$ .

Donc on a :

$$\forall n \in \mathbb{N}, \ v_n = v_0 \left(\frac{1}{3}\right)^n = -3\left(\frac{1}{3}\right)^n = -\left(\frac{1}{3}\right)^{n-1}.$$

Et:

$$\forall n \in \mathbb{N}, \ u_n = -\left(\frac{1}{3}\right)^{n-1} + 3.$$

2. Soit  $\alpha \in \mathbb{R}$ , on a :

$$\alpha = -\alpha + 4 \iff \alpha = 2$$

Pour tout  $n \in \mathbb{N}$ , on pose  $v_n = u_n - 2$ .

Soit  $n \in \mathbb{N}$ , on a:  $v_{n+1} = u_{n+1} - 2 = -u_n + 2 = -(u_n 2) = -v_n$ .

Ainsi,  $(v_n)_{n\in\mathbb{N}}$  est géométrique de raison -1.

De plus,  $v_0 = u_0 - 2 = -1$ .

Donc on a:

$$\forall n \in \mathbb{N}, \ v_n = v_0(-1)^n = -(-1)^n = (-1)^{n+1}$$

Et:

$$\forall n \in \mathbb{N}, \ u_n = (-1)^{n+1} + 2.$$

Exercice 4. Soit  $n \in \mathbb{N}$ .

 $v_{n+1} = u_{n+1} - (n+1) = 2u_n - n + 2 - (n+1) = 2(u_n - n) + 1 = 2v_n + 1.$ 

Ainsi,  $(v_n)$  est une suite arithmético-géométrique.

Soit  $\alpha \in \mathbb{R}$ , on a :

$$\alpha = 2\alpha + 1 \iff \alpha = -1$$

Pour tout  $n \in \mathbb{N}$ , on pose  $w_n = v_n + 1$ .

Soit  $n \in \mathbb{N}$ ,  $w_{n+1} = v_{n+1} + 1 = 2v_n + 2 = 2w_n$ .

Ainsi,  $(w_n)_{n\in\mathbb{N}}$  est géométrique de raison 2.

De plus,  $w_0 = v_0 + 1 = u_0 + 1 = 3$ .

Donc on a:

$$\forall n \in \mathbb{N}, \ w_n = w_0(2)^n = 3 \times 2^n$$

D'où:

$$\forall n \in \mathbb{N}, \ v_n = 3 \times 2^n - 1$$

Et enfin:

$$\forall n \in \mathbb{N}, \ u_n = 3 \times 2^n - 1 + n.$$

Exercice 5.

cice 5. 1. On a une suite récurrente linéaire d'ordre 2. Son équation caractéristique est  $r^2 - \frac{1}{2}r - \frac{1}{2} = 0$ . Son discriminant vaut  $\frac{1}{4} + 2 = \frac{9}{4}$ . Ainsi, les racines de l'équation caractéristique sont  $-\frac{1}{2}$  et 1. Ainsi, il existe un unique  $(\lambda, \mu) \in \mathbb{R}^2$  tels que :

$$\forall n \in \mathbb{N}, \ u_n = \lambda \left(-\frac{1}{2}\right)^n + \mu.$$

Or,

$$\begin{cases} \lambda + \mu = 0 \\ -\frac{1}{2}\lambda + \mu = -\frac{3}{2} \end{cases} \iff \begin{cases} \lambda = -\mu \\ \frac{3}{2}\mu = -\frac{3}{2} \end{cases}$$
$$\iff \begin{cases} \lambda = -\mu \\ \mu = -1 \end{cases}$$
$$\iff \begin{cases} \lambda = 1 \\ \mu = -1 \end{cases}$$

Ainsi:

$$\forall n \in \mathbb{N}, \ u_n = \left(-\frac{1}{2}\right)^n - 1.$$

2. On a une suite récurrente linéaire d'ordre 2. Son équation caractéristique est  $r^2 - r + \frac{1}{4} = 0$ . Son discriminant vaut 0. Ainsi, l'unique racine de l'équation caractéristique est  $\frac{1}{2}$ . Ainsi, il existe un unique  $(\lambda, \mu) \in \mathbb{R}^2$  tels que :

$$\forall n \in \mathbb{N}, \ u_n = (\lambda + \mu n) \left(\frac{1}{2}\right)^n$$

Or,

$$\begin{cases} \lambda = u_0 = 1 \\ \frac{1}{2}(\lambda + \mu) = u_1 = 9 \end{cases} \iff \begin{cases} \lambda = 1 \\ \mu = 17 \end{cases}$$

Ainsi:

$$\forall n \in \mathbb{N}, \ u_n = (1 + 17n) \times \left(\frac{1}{2}\right)^n.$$

3. On a une suite récurrente linéaire d'ordre 2. Son équation caractéristique est  $r^2 - r + \frac{1}{2} = 0$ . Son discriminant vaut  $-1 = (\pm i)^2$ . Ainsi, les racines de l'équation caractéristique sont  $\frac{1-i}{2}$  et  $\frac{1+i}{2}$ . Ainsi, il existe un unique  $(\lambda, \mu) \in \mathbb{C}^2$  tel que :

$$\forall n \in \mathbb{N}, \ u_n = \lambda \left(\frac{1+i}{2}\right)^n + \mu \left(\frac{1-i}{2}\right)^n$$

Or,

$$\begin{cases} \lambda + \mu = u_0 = 0 \\ \lambda \left(\frac{1+i}{2}\right) + \mu \left(\frac{1-i}{2}\right) = u_1 = 1 \end{cases} \iff \begin{cases} \mu = -\lambda \\ \lambda \left(\frac{1+i}{2} - \frac{1-i}{2}\right) = 1 \end{cases}$$

$$\iff \begin{cases} \mu = -\lambda \\ i\lambda = 1 \end{cases}$$

$$\iff \begin{cases} \mu = -\lambda \\ i\lambda = 1 \end{cases}$$

$$\iff \begin{cases} \mu = -\lambda \\ \lambda = \frac{1}{i} = -i \end{cases}$$

$$\iff \begin{cases} \mu = i \\ \lambda = -i \end{cases}$$

Ainsi, on a:

$$\forall n \in \mathbb{N}, \ u_n = -i\left(\frac{1+i}{2}\right)^n + i\left(\frac{1-i}{2}\right)^n$$

Soit  $n \in \mathbb{N}$ ,

$$u_n = -i\left(\frac{1+i}{2}\right)^n + i\left(\frac{1-i}{2}\right)^n$$

$$= 2\operatorname{Re}\left[-i\left(\frac{1+i}{2}\right)^n\right]$$

$$= -2\operatorname{Re}\left[i\left(\frac{1+i}{2}\right)^n\right]$$

$$= 2\operatorname{Im}\left[\left(\frac{1+i}{2}\right)^n\right]$$

$$= 2\operatorname{Im}\left[\left(\frac{1}{\sqrt{2}}e^{i\frac{\pi}{4}}\right)^n\right]$$

$$= \frac{2}{2^{n/2}}\operatorname{Im}\left(e^{\frac{in\pi}{4}}\right)$$

$$= \frac{2}{2^{n/2}}\sin\left(\frac{n\pi}{4}\right)$$

Donc finalement:

$$\forall n \in \mathbb{N}, \ u_n = 2\left(\frac{1}{\sqrt{2}}\right)^n \sin\left(n\frac{\pi}{4}\right).$$

Exercise 6. Soit  $k \in \mathbb{N}$ ,  $c_{k+1} - c_k = \frac{u_{k+1}}{(k+1)!} - \frac{u_k}{k!} = \frac{1}{(k+1)!} (u_{k+1} - (k+1)u_k) = \frac{2^k (k+1)!}{(k+1)!} = 2^k$ . Soit  $n \in \mathbb{N}$ .

En sommant l'égalité précédente pour k allant de 0 à n-1, on obtient :

$$\sum_{k=0}^{n-1} (c_{k+1} - c_k) = \sum_{k=0}^{n-1} 2^k$$

Par résultat sur les sommes télescopiques, on obtient :

$$c_n - c_0 = \sum_{k=0}^{n-1} 2^k = 2^n - 1$$

Donc:

$$\forall n \in \mathbb{N}, \ c_n = (2^n - 1) + u_0 = 2^n - 1 + u_0$$

Finalement:

$$\forall n \in \mathbb{N}, \ u_n = n!(u_0 + 2^n - 1).$$

Exercice 7. Posons  $f: [0,+\infty[ \to \mathbb{R} \\ x \mapsto \ln(1+2x)]$ .

f est strictement croissante en tant que composée de fonctions strictement croissantes. Ainsi,  $(u_n)$  est monotone.

Déterminons les points fixes de f:

Posons 
$$g: [0, +\infty[ \rightarrow \mathbb{R} \\ x \mapsto f(x) - x].$$

g est dérivable sur  $[0, +\infty[$  et pour tout  $x \in [0, +\infty[$ ,  $g'(x) = \frac{2}{1+2x} - 1 = \frac{1-2x}{1+2x}$ Le tableau de variations de g est donc :



Ainsi, g est continue et strictement croissante sur  $\left|\frac{1}{2}, +\infty\right|$ .

Ainsi, 
$$g$$
 est bijective de  $\left]\frac{1}{2}, +\infty\right[ \text{ sur } \right] -\infty, \ln(2)\frac{1}{2}\left[.\right]$ 

De plus,  $0 \in \left[-\infty, \ln(2)\frac{1}{2}\right]$ . Donc l'équation g(x) = 0 admet donc une unique solution sur  $\left[\frac{1}{2}, +\infty\right]$ . On la note  $\alpha$ .

De plus, g(0) = 0 et g est strictement croissante sur  $\left[0, \frac{1}{2}\right]$ . Ainsi, 0 est l'unique solution de g(x) = 0 sur  $\left[0, \frac{1}{2}\right]$ . On a donc:



Distinguons différents cas:

- Si  $u_0 = 0$ , alors  $(u_n)$  sera constante égale à 0 :
  - Pour n = 0, on a  $u_0 = 0$ .
  - Soit  $n \in \mathbb{N}$ , supposons que  $u_n = 0$ . On a  $u_{n+1} = f(u_n) = f(0) = 0$ .
  - Ainsi :  $\forall n \in \mathbb{N}, \ u_n = 0.$
- Si  $u_0 = \alpha$  alors,  $(u_n)$  sera constante égale à  $\alpha$ . On le prouve par récurrence.
- Si  $u_0 \in ]0, \alpha[$ , comme  $]0, \alpha[$  est stable par  $f, (u_n)_{n \in \mathbb{N}}$  est bien définie et pour tout  $n \in \mathbb{N}$ , on a  $u_n \in ]u_0, \alpha[$ . De plus,  $u_1 - u_0 = f(u_0) - u_0 = g(u_0) > 0$  donc  $(u_n)$  est strictement croissante.
- Si  $u_0 \in ]\alpha, +\infty[$ , comme  $]0, \alpha[$  est stable par  $f, (u_n)_{n \in \mathbb{N}}$  est bien définie et pour tout  $n \in \mathbb{N}$ , on a  $u_n \in ]u_0, \alpha[$ . De plus,  $u_1 - u_0 = f(u_0) - u_0 = g(u_0) < 0$  donc  $(u_n)$  est strictement décroissante.

### Limites

Exercice 8. On raisonne par double implication.

- Si la suite  $(u_n)$  est stationnaire alors, il existe  $\alpha \in \mathbb{R}$  et  $N \in \mathbb{N}$  tels que :  $\forall n \geq N, u_n = \alpha$ . Soit  $\epsilon > 0$ . On a:  $\forall n \geq N$ ,  $|u_n - \alpha| = 0 \leq \epsilon$ . Ainsi, la suite  $(u_n)$  est convergente de limite  $\alpha$ .
- Soit  $(u_n)$  une suite d'éléments de  $\mathbb{Z}$  convergente de limite  $l \in \mathbb{R}$ .

Posons 
$$\epsilon = \frac{1}{3}$$
.

Posons 
$$\epsilon = \frac{1}{3}$$
.  
Il existe  $N \in \mathbb{N}$  tel que :  $\forall n \in \mathbb{N}, ngeqN \implies |u_n - l| \le \epsilon$ .

Ainsi, on a : 
$$\forall n \geq N, u_n \in \left[l - \frac{1}{3}, l + \frac{1}{3}\right]$$
. Or, deux entiers distincts sont distants d'au moins 1.

Ainsi, 
$$\left[l-\frac{1}{3},l+\frac{1}{3}\right]\cap\mathbb{Z}$$
 contient au plus un élément. De plus,  $u_N\in\left[l-\frac{\epsilon}{3},l-\frac{\epsilon}{3}\right]\cap\mathbb{Z}$ . Ainsi,  $\left[l-\frac{1}{3},l+\frac{1}{3}\right]\cap\mathbb{Z}$  est le singleton  $\{u_N\}$ .

Soit 
$$n \geq N$$
,  $u_n \in \left[l - \frac{1}{3}, l + \frac{1}{3}\right] \cap \mathbb{Z} = \{u_N\}$  donc  $u_n = u_N$ .

Ainsi, on a :  $\forall n \geq N$ ,  $u_n = u_N$ . La suite est donc constante égale à  $u_N$  à partir du rang N.

• Supposons que  $s = \sup(A)$ . On sait déjà que s majore A.

Soit  $n \in \mathbb{N}$ , par caractérisation de la borne supérieure, il existe  $a_n \in A$  tel que  $s - 10^{-n} < a_n$ . Comme s majore  $A, a_n \leq s$ . Ainsi,  $|a_n - s| \leq 10^{-n}$ . Or,  $(10^{-n})_{n \in \mathbb{N}}$  converge vers 0. Donc  $(a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$  et  $(a_n)_{n \in \mathbb{N}}$  converge vers

• Supposons que s majore A et qu'il existe  $(a_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$  qui converge vers s. Soit  $\epsilon>0$ . Par définition de la limite, il existe  $N\in\mathbb{N}$  tel que :  $\forall n\in\mathbb{N},\ n\geq N \implies |s-a_n|\leq \frac{\epsilon}{2}$ . Ainsi  $|s-a_N| \le \frac{\epsilon}{2} < \epsilon$ , donc  $a_N > s - \epsilon$ , avec  $a_N \in A$ . Par caractérisation de la borne supérieure, on a donc  $s = \sup(A)$ .

Exercice 10. a. On a 
$$\frac{n-(-1)^n}{n+(-1)^n} = \frac{1-\frac{(-1)^n}{n}}{1+\frac{(-1)^n}{n}}$$
.

Or,  $((-1)^n)_{n\in\mathbb{N}}$  est bornée et  $\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$  converge vers 0. Ainsi,  $\lim_{n\to+\infty}\frac{n-(-1)^n}{n+(-1)^n}=1$  comme quotient de deux

suites qui convergent vers 1. b. On a :  $\frac{n^3 + 5n}{5n^3 + \cos n + \frac{1}{n^2}} = \frac{1 + \frac{5}{n^2}}{5 + \frac{\cos n}{n^3} + \frac{1}{n^5}}.$  Or, pour tout  $n \in \mathbb{N}$ ,  $\left|\frac{\cos n}{n^3}\right| \le \frac{1}{n^3}$  et  $\lim_{n \to +\infty} \frac{1}{n^3} = 0$  donc

 $\lim_{n \to +\infty} \frac{\cos n}{n^3} = 0. \text{ Ainsi, par opérations sur les limites, on obtient : } \lim_{n \to +\infty} \frac{n^3 + 5n}{5n^3 + \cos n + \frac{1}{2}} = \frac{1}{5}.$ 

- c. Soit  $a, b \in \mathbb{R}_+^*$ .
  - Si a = b, alors pour tout  $n \in \mathbb{N}$ ,  $\frac{a^n b^n}{a^n + b^n} = 0$  donc  $\lim_{n \to +\infty} \frac{a^n b^n}{a^n + b^n} = 0$ .
  - Si a > b alors pour tout  $n \in \mathbb{N}$ ,  $\frac{a^n b^n}{a^n + b^n} = \frac{1 \left(\frac{b}{a}\right)^n}{1 + \left(\frac{b}{a}\right)^n}$ . Or,  $\lim_{n \to +\infty} \left(\frac{b}{a}\right)^n = 0$  car  $0 \le \frac{b}{a} < 1$ . Donc,  $\lim_{n \to +\infty} \frac{a^n - b^n}{a^n + b^n} = 1.$
  - Si a < b alors, pour tout  $n \in \mathbb{N}$ ,  $\frac{a^n b^n}{a^n + b^n} = \frac{\left(\frac{a}{b}\right)^n 1}{\left(\frac{a}{b}\right)^n + 1}$ . Or,  $\lim_{n \to +\infty} \left(\frac{a}{b}\right)^n = 0$  car  $0 \le \frac{a}{b} < 1$ . Donc,  $\lim_{n \to +\infty} \frac{a^n - b^n}{a^n + b^n} = -1.$
- d. La suite  $(\sin n^4)_{n\in\mathbb{N}}$  est bornée et la suite  $(\frac{1}{n})_{n\in\mathbb{N}^*}$  converge vers 0, donc  $(\frac{\sin n^4}{n})_{n\in\mathbb{N}^*}$  converge vers 0.
- e. Soit  $n \in \mathbb{N}$ , on a :

$$\sqrt{(n+a)(n+b)} - n = \frac{(n+a)(n+b) - n^2}{\sqrt{(n+a)(n+b)} + n}$$

$$= \frac{(a+b)n + ab}{\sqrt{(n+a)(n+b)} + n}$$

$$= \frac{(a+b) + \frac{ab}{n}}{\sqrt{(1+\frac{a}{n})(1+\frac{b}{n})} + 1}$$

Ainsi, par quotient, on obtient  $\lim_{n \to +\infty} \sqrt{(n+a)(n+b)} - n = \frac{a+b}{2}$ .

- f. Soit  $n \in \mathbb{N}^*$ , on a  $n^{1/\ln n} = e^{\frac{\ln n}{\ln n}} = e$ . Ainsi,  $\lim_{n \to +\infty} n^{1/\ln n} = e$ .
- g. Soit  $n \geq 2$ ,  $(\ln n)^{1/n} = e^{\frac{\ln(\ln n)}{n}}$ . Or,  $\frac{\ln(\ln n)}{n} = \frac{\ln(\ln n)}{\ln n} \times \frac{\ln n}{n}$ . Or,  $\lim_{n \to +\infty} \ln n = +\infty$  et  $\lim_{X \to +\infty} \frac{\ln(X)}{X} = 0$  par

a:  $\lim_{n \to +\infty} (\ln n)^{1/n} = e^0 = 1$ 

h. Soit  $n \in \mathbb{N}^*$ , on a  $n^{\sin n/n} = e^{\frac{\sin n}{n} \ln n}$ . Or,  $\left| \frac{\sin n}{n} \ln n \right| \leq \frac{\ln n}{n}$ . De plus, par croissance comparée, on a  $\lim_{n \to +\infty} \frac{\ln n}{n} = 0$ donc  $\lim_{n \to +\infty} \frac{\sin n}{n} \ln n = 0$ . Par composition, on a donc :  $\lim_{n \to +\infty} n^{\sin n/n} = e^0 = 1$ .

**Exercice 11** (Théorème de Césaro). Soit  $\epsilon > 0$ . Il existe  $N \in \mathbb{N}^*$  tel que :  $\forall n \geq N, |u_n - l| \leq \frac{\epsilon}{2}$ .

Soit  $n \geq N$ ,

$$\begin{aligned} |v_n - l| &= \left| \left( \frac{1}{n} \sum_{k=1}^n u_k \right) - l \right| \\ &= \left| \left( \frac{1}{n} \sum_{k=1}^n u_k \right) - \left( \frac{1}{n} \sum_{k=1}^n l \right) \right| \\ &= \left| \frac{1}{n} \sum_{k=1}^n (u_k - l) \right| \\ &= \frac{1}{n} \sum_{k=1}^n |u_k - l| \qquad \text{d'après l'inégalité triangulaire} \\ &\leq \frac{1}{n} \sum_{k=1}^{N-1} |u_k - l| + \frac{1}{n} \sum_{k=N}^n |u_k - l| \\ &\leq \frac{1}{n} \sum_{k=1}^{N-1} |u_k - l| + \frac{1}{n} \sum_{k=N}^n \frac{\epsilon}{2} \\ &\leq \frac{1}{n} \sum_{k=1}^{N-1} |u_k - l| + \frac{\epsilon}{2} \frac{n - N + 1}{n} \\ &\leq \frac{1}{n} \sum_{k=1}^{N-1} |u_k - l| + \frac{\epsilon}{2} \qquad \text{car } \frac{n - (N - 1)}{n} \leq 1 \end{aligned}$$

Or  $\sum_{k=1}^{N-1} u_k$  est constant (car N est fixé), donc  $\lim_{n\to+\infty} \frac{1}{n} \sum_{k=1}^{N-1} u_k = 0$ . Ainsi, il existe un rang  $N' \in \mathbb{N}$  tel que :

$$\forall n \in \mathbb{N}, \ n \ge N' \implies \frac{1}{n} \sum_{k=1}^{N-1} |u_k| \le \frac{\epsilon}{2}.$$

Soit  $n \ge \max(N, N')$ , on a alors  $|v_n - l| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} \le \epsilon$ . Ainsi,  $(v_n)_{n \in \mathbb{N}}$  converge vers l.

**Exercice 12.** a. Soit  $n \in \mathbb{N}^*$ , soit  $k \in [1, n]$ , on a  $\lfloor kx \rfloor \leq kx < \lfloor kx \rfloor + 1$ . Ainsi,  $kx - 1 < \lfloor kx \rfloor \leq kx$  (par définition de la partie entière). En sommant, il vient :

$$\frac{1}{n^2} \sum_{k=1}^{n} (kx - 1) < \frac{1}{n^2} \sum_{k=1}^{n} \lfloor kx \rfloor \le \frac{1}{n^2} \sum_{k=1}^{n} kx$$

Ainsi:

$$\frac{x}{n^2} \left( \sum_{k=1}^n k \right) - \frac{n}{n^2} < \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor \le \frac{x}{n^2} \left( \sum_{k=1}^n k \right).$$

D'où:

$$\frac{n(n+1)x}{2n^2} - \frac{1}{n} < \frac{1}{n^2} \sum_{k=1}^{n} \lfloor kx \rfloor \le \frac{n(n+1)x}{2n^2}$$

Or, 
$$\lim_{n \to +\infty} \left( \frac{n(n+1)x}{2n^2} - \frac{1}{n} \right) = \lim_{n \to +\infty} \left( \frac{(1+\frac{1}{n})x}{2} - \frac{1}{n} \right) = \frac{x}{2} \text{ et } \lim_{n \to +\infty} \frac{n(n+1)x}{2n^2} = \lim_{n \to +\infty} \frac{(1+\frac{1}{n})x}{2} = \frac{x}{2}.$$

Ainsi, par le théorème de convergence par encadrement,  $(u_n)_{n\in\mathbb{N}}$  converge vers  $\frac{x}{2}$ .

b. Soit  $n \in \mathbb{N}^*$ , on a :  $\forall k \in \llbracket 1, n \rrbracket$ ,  $\frac{1}{n^2 + n} \leq \frac{1}{n^2 + k} \leq \frac{1}{n^2 + 1}$  (car  $1 \leq k \leq n$ ). En multipliant par n et en sommant on obtient :

$$\sum_{k=1}^{n} \frac{n}{n^2 + n} \le \sum_{k=1}^{n} \frac{n}{n^2 + k} \le \sum_{k=1}^{n} \frac{n}{n^2 + 1}$$

D'où

$$\frac{n^2}{n^2+n} \le u_n \le \frac{n^2}{n^2+1}$$

Or,  $\lim_{n\to+\infty}\frac{n^2}{n^2+n}=\lim_{n\to+\infty}\frac{1}{1+\frac{1}{n}}=1$ . Et  $\lim_{n\to+\infty}\frac{n^2}{n^2+1}=\lim_{n\to+\infty}\frac{1}{1+\frac{1}{n^2}}=1$ . Par théorème de convergence par encadrement, on obtient que  $(u_n)_{n\in\mathbb{N}}$  converge vers 1.

c. Soit  $n \geq 2$ . On a:

$$\left\lfloor \left(n + \frac{1}{2}\right)^2 \right\rfloor \le \left(n + \frac{1}{2}\right)^2 < \left\lfloor \left(n + \frac{1}{2}\right)^2 \right\rfloor + 1$$
$$\left\lfloor \left(n - \frac{1}{2}\right)^2 \right\rfloor \le \left(n - \frac{1}{2}\right)^2 < \left\lfloor \left(n - \frac{1}{2}\right)^2 \right\rfloor + 1$$

Ainsi,

$$0 < \left(n + \frac{1}{2}\right)^2 - 1 < \left\lfloor \left(n + \frac{1}{2}\right)^2 \right\rfloor \le \left(n + \frac{1}{2}\right)^2$$
$$0 < \left(n - \frac{1}{2}\right)^2 - 1 < \left\lfloor \left(n - \frac{1}{2}\right)^2 \right\rfloor \le \left(n - \frac{1}{2}\right)^2$$

 $\operatorname{Donc}:$ 

$$0<\frac{1}{\left(n-\frac{1}{2}\right)^2}\leq \frac{1}{\left|\left(n-\frac{1}{2}\right)^2\right|}<\frac{1}{\left(n-\frac{1}{2}\right)^2-1}$$

Ainsi:

$$\frac{\left(n + \frac{1}{2}\right)^2 - 1}{\left(n - \frac{1}{2}\right)^2} \le \frac{\left[\left(n + \frac{1}{2}\right)^2\right]}{\left[\left(n - \frac{1}{2}\right)^2\right]} \le \frac{\left(n + \frac{1}{2}\right)^2}{\left(n - \frac{1}{2}\right)^2 - 1}$$

D'où:

$$\frac{\left(1 + \frac{1}{2n}\right)^2 - \frac{1}{n^2}}{\left(1 - \frac{1}{2n}\right)^2} \le \frac{\left[\left(n + \frac{1}{2}\right)^2\right]}{\left[\left(n - \frac{1}{2}\right)^2\right]} \le \frac{\left(1 + \frac{1}{2n}\right)^2}{\left(1 - \frac{1}{2n}\right)^2 - \frac{1}{n^2}}$$

Or, par opérations sur les limites, on a  $\lim_{n \to +\infty} \frac{\left(1+\frac{1}{2n}\right)^2-\frac{1}{n^2}}{\left(1-\frac{1}{2n}\right)^2} = \frac{1-0}{1} = 1$ . De même,  $\lim_{n \to +\infty} \frac{\left(1+\frac{1}{2n}\right)^2}{\left(1-\frac{1}{2n}\right)^2-\frac{1}{n^2}} = \frac{1-0}{1}$ 

1. Donc par théorème de convergence par encadrement, on obtient :  $\lim_{n \to +\infty} \frac{\left\lfloor \left(n + \frac{1}{2}\right)^2 \right\rfloor}{\left\lfloor \left(n - \frac{1}{2}\right)^2 \right\rfloor} = 1.$ 

**Exercice 13.** a. Soit  $n \in \mathbb{N}$ . On a :

$$\sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1} = \frac{(n^2 + n + 1 - (n^2 - n + 1))}{\sqrt{n^2 + n + 1} + \sqrt{n^2 - n + 1}}$$

$$= \frac{2n}{\sqrt{n^2 + n + 1} + \sqrt{n^2 - n + 1}}$$

$$= \frac{2}{\sqrt{1 + \frac{1}{n} + \frac{1}{n^2}} + \sqrt{1 - \frac{1}{n} + \frac{1}{n^2}}}$$

On a alors par quotient  $\lim_{n\to+\infty} \sqrt{n^2+n+1} - \sqrt{n^2-n+1} = \frac{2}{2} = 1$ .

b. Soit  $n \in \mathbb{N}^*$ , on a:

$$\frac{n - \sqrt{n^2 + 1}}{n - \sqrt{n^2 - 1}} = \frac{n + \sqrt{n^2 + 1}}{n^2 - (n^2 - 1)} \times \frac{n - (n^2 - 1)}{n + \sqrt{n^2 + 1}}$$
$$= -\frac{n + \sqrt{n^2 - 1}}{n + \sqrt{n^2 + 1}}$$
$$= -\frac{\left(1 + \sqrt{1 - \frac{1}{n^2}}\right)}{1 + \sqrt{1 + \frac{1}{n^2}}}$$

Ainsi, par quotient, on obtient  $\lim_{n \to +\infty} \frac{n - \sqrt{n^2 + 1}}{n - \sqrt{n^2 - 1}} = -1$ .

c. On a:

$$\begin{split} \sqrt{n+\sqrt{n^2+1}} - \sqrt{n+\sqrt{n^2-1}} &= \frac{(n+\sqrt{n^2+1}) - (n+\sqrt{n^2-1})}{\sqrt{n+\sqrt{n^2+1}} + \sqrt{n+\sqrt{n^2-1}}} \\ &= \frac{\sqrt{n^2+1} - \sqrt{n^2-1}}{\sqrt{n+\sqrt{n^2+1}} + \sqrt{n+\sqrt{n^2-1}}} \\ &= \frac{(n^2+1) - (n^2-1)}{(\sqrt{n+\sqrt{n^2+1}} + \sqrt{n+\sqrt{n^2-1}})(\sqrt{n^2+1} + \sqrt{n^2-1})} \\ &= \frac{2}{(\sqrt{n+\sqrt{n^2+1}} + \sqrt{n+\sqrt{n^2-1}})(\sqrt{n^2+1} + \sqrt{n^2-1})} \end{split}$$

Ainsi,  $\lim_{n \to +\infty} \sqrt{n + \sqrt{n^2 + 1}} - \sqrt{n + \sqrt{n^2 - 1}} = 0$ 

d. Soit  $n \in \mathbb{N}^*$ . On a :  $\forall k \in [\![1,n]\!], \frac{1}{\sqrt{n^2+n}} \le \frac{1}{\sqrt{n^2+k}} \le \frac{1}{\sqrt{n^2+1}}$ 

En sommant on obtient:

$$\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + n}} \le u_n \le \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + 1}}$$

Donc:

$$\frac{n}{\sqrt{n^2 + n}} \le u_n \le \frac{n}{\sqrt{n^2 + 1}}$$

Or,  $\frac{n}{\sqrt{n^2+n}} = \frac{1}{\sqrt{1+\frac{1}{n}}} \operatorname{donc} \lim_{n \to +\infty} \frac{n}{\sqrt{n^2+n}} = 1.$ 

De même,  $\frac{n}{\sqrt{n^2+1}} = \frac{1}{\sqrt{1+\frac{1}{n^2}}}$  donc  $\lim_{n \to +\infty} \frac{n}{\sqrt{n^2+1}} = 1$ .

Ainsi, par théorème de convergence par encadrement, on obtient que  $(u_n)_{n\in\mathbb{N}}$  converge vers 1. e. Soit  $n\in\mathbb{N}^*$ . On a :  $\forall k\in[1,n^2]$ ,  $\frac{1}{\sqrt{n^2+n^2}}\leq \frac{1}{\sqrt{n^2+k}}$ .

En sommant on obtient  $\sum_{k=1}^{n^2} \frac{1}{\sqrt{n^2 + n^2}} \le u_n$ .

Or,  $\sum_{k=1}^{n^2} \frac{1}{\sqrt{n^2+n^2}} = \frac{n^2}{\sqrt{2n^2}} = \frac{n^2}{n\sqrt{2}} = \frac{n}{n\sqrt{2}}$ . Ainsi,  $\lim_{n \to +\infty} \sum_{k=1}^{n^2} \frac{1}{\sqrt{2}n} = +\infty$  donc par théorème de minoration, on obtient que  $\lim_{n \to +\infty} u_n = +\infty$ .

f. Soit  $n \in \mathbb{N}^*$ , on a :  $0 \le u_n = \frac{\prod_{k=1}^n k}{n^n} = \prod_{k=1}^n \frac{k}{n} = \frac{1}{n} \times \prod_{k=2}^n \frac{k}{n} \le \frac{1}{n}$  (tous les termes sont positifs et plus petits que 1), donc  $(u_n)_{n\in\mathbb{N}}$  converge vers 0.

g. Soit  $n \in \mathbb{N}^*$ , on a  $u_n = e^{n \ln(1 + \frac{x}{n})}$ . Or  $n \ln(1 + \frac{x}{n}) = x \frac{\ln(1 + x/n)}{x/n}$ . De plus,  $\lim_{n \to +\infty} \frac{x}{n} = 0$  et  $\lim_{X \to 0} \frac{\ln(1 + X)}{X} = 1$ donc par produit et composition, on a  $\lim_{n\to+\infty} n \ln(1+\frac{x}{n}) = x$ . D'où par continuité de l'exponentielle en x, on  $a: \lim_{n \to +\infty} u_n = e^x.$ 

h. Soit 
$$n \in \mathbb{N}^*$$
,  $u_n = e^{n^2 \ln(1 - \frac{1}{n})}$ . Or  $n^2 \ln(1 - \frac{1}{n}) = -n \frac{\ln(1 - 1/n)}{-1/n}$ . Or,  $\lim_{n \to +\infty} \frac{-1}{n} = 0$  et  $\lim_{X \to 0} \frac{\ln(1 + X)}{X} = 1$  donc par produit et composition, on a  $\lim_{n \to +\infty} n^2 \ln(1 - \frac{1}{n}) = -\infty$ . Finalement,  $\lim_{n \to +\infty} u_n = 0$ .

i. Soit 
$$n \ge 2$$
, on a :  $\left(\sin \frac{1}{n}\right)^{1/\ln n} = e^{\frac{1}{\ln n}\ln\left(\sin \frac{1}{n}\right)}$ . Or.

$$\frac{\ln\left(\sin\frac{1}{n}\right)}{\ln n} = \frac{\ln\left(\frac{1}{n} \times \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}\right)}{\ln n}$$

$$= \frac{\ln\left(\frac{1}{n}\right) + \ln\left(\frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}\right)}{\ln n}$$

$$= \frac{-\ln(n) + \ln\left(\frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}\right)}{\ln n}$$

$$= \frac{\ln\left(\frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}\right)}{\ln n}$$

$$= -1 + \frac{\ln n}{\ln n}$$

Or, 
$$\lim_{n \to +\infty} \frac{1}{n} = 0$$
 et  $\lim_{X \to 0} \frac{\sin X}{X} = \cos(0) = 1$ . Donc par composition, on a  $\lim_{n \to +\infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} = 1$ . Par continuité

de la fonction logarithme en 1, on obtient : 
$$\lim_{n \to +\infty} \ln \left( \frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}} \right) = \ln(1) = 0.$$

De plus, 
$$\lim_{n \to +\infty} \frac{1}{\ln n} = 0$$
. D'où par opérations sur les limites, on obtient :  $\lim_{n \to +\infty} \frac{\ln \left(\sin \frac{1}{n}\right)}{\ln n} = -1$ . Enfin,  $\lim_{n \to +\infty} \left(\sin \frac{1}{n}\right)^{1/\ln n} = e^{-1}$ .

1. Posons  $\epsilon = \frac{1-l}{2}$ . On a  $\epsilon > 0$  et  $l < l + \epsilon < 1$ . Par définition de la Exercice 14 (Règle de D'Alembert). convergence, il existe  $N \in \mathbb{N}$  tel que :

$$\forall n \in \mathbb{N}, \ n \ge N \quad \Longrightarrow \quad \frac{u_{n+1}}{u_n} < l + \epsilon.$$

Puis par récurrence , on prouve que :  $\forall n \geq N, \ 0 < u_n \leq (l+\epsilon)^{n-N}u_N$ . Or,  $\lim_{n \to +\infty} (l+\epsilon)^{n-N} = 0$  car  $0 < l+\epsilon < 1$ . Ainsi, par théorème de convergence par encadrement, on obtient :  $\lim_{n \to +\infty} u_n = 0$ .

2. Posons  $\epsilon = \frac{l-1}{2}$ . On a  $\epsilon > 0$  et  $1 < l - \epsilon < l$ . Il existe un rang  $N \in \mathbb{N}$  tel que :

$$\forall n \in \mathbb{N}, \ n \ge N \implies \frac{u_{n+1}}{u_n} > l - \epsilon.$$

Soit  $n \ge N$ , comme  $u_n > 0$ , on en déduit  $u_{n+1} > (l - \epsilon)u_n$ . On prouve alors par récurrence que :  $\forall n \geq N, \ u_n \geq (l-\epsilon)^{n-N}u_N$ . Or,  $\lim_{n \to +\infty} (l-\epsilon)^{n-N} = +\infty$  car  $l-\epsilon > 1$ . Ainsi, par théorème de divergence par minoration, on obtient :  $\lim_{n \to +\infty} u_n = +\infty$ .

3. Quand l=1, on ne peut rien dire. La suite peut très bien diverger vers  $+\infty$  (exemple  $(n)_{n\in\mathbb{N}}$ ) ou converger vers 0 (exemple  $(\frac{1}{n})_{n\in\mathbb{N}^*}$ ).

**Exercice 15.** Notons l la limite de  $(u_n)_{n\in\mathbb{N}}$  et l' la limite de  $(v_n)_{n\in\mathbb{N}}$ . Méthode 1 :

• Si l = l'. Soit  $\epsilon > 0$ . Il existe  $N, N' \in \mathbb{N}$  tels que :

$$\forall n \ge N, |u_n - l| \le \epsilon$$
  
 $\forall n > N', |v_n - l'| \le \epsilon$ 

Posons  $N'' = \max(N, N')$ .

Soit  $n \ge N''$ , on a : De plus,  $\sup(u_n, v_n) = u_n$  ou  $\sup(u_n, v_n) = v_n$ . Ainsi:

$$|\sup(u_n, v_n) - l| \le \epsilon$$

De même,  $\inf(u_n, v_n) = u_n$  ou  $\inf(u_n, v_n) = v_n$ .

Ainsi:

$$|\inf(u_n, v_n) - l| \le \epsilon$$

On a donc que  $(\sup(u_n, v_n))_{n \in \mathbb{N}}$  converge vers  $l = \max(l, l')$  et  $(\inf(u_n, v_n))_{n \in \mathbb{N}}$  converge vers  $l = \min(l, l')$ 

• Si l > l'. Posons  $\epsilon = \frac{l - l'}{3}$ .

Il existe  $N, N' \in \mathbb{N}$  tels que :

$$\forall n \in \mathbb{N}, \ n \ge N \implies |u_n - l| \le \epsilon$$

$$\forall nin \mathbb{N}, \ n \ge N' \implies |v_n - l'| \le \epsilon$$

Posons  $N'' = \max(N, N')$ .

Soit  $n \geq N''$ , on a:

$$v_n \le l' + \epsilon$$
 et  $l - \epsilon \le u_n$ 

$$\begin{aligned} & \text{Or, } l' + \epsilon = \frac{2l' + l}{3} \text{ et } l - \epsilon = \frac{l' + 2l}{3} \text{ donc } l' + \epsilon < l - \epsilon. \\ & \text{Ainsi: } \forall n \geq N'', \ v_n < u_n. \\ & \text{Donc: } \forall n \geq N'', \ \inf(u_n, v_n) = v_n \quad \text{et} \quad \sup(u_n, v_n) = u_n. \end{aligned}$$

Comme la limite d'une suite ne dépend que du comportement de cette suite à partir d'un certain rang, on a  $\lim_{n \to +\infty} \inf(u_n, v_n) = \lim_{n \to +\infty} v_n = l' = \min(l, l') \text{ et } \lim_{n \to +\infty} \sup(u_n, v_n) = \lim_{n \to +\infty} u_n = l = \max(l, l').$ 

• Si l' > l, on procède comme précédemment par symétrie entre  $(u_n)_{n \in \mathbb{N}}$  et  $(v_n)_{n \in \mathbb{N}}$ .

Finalement, dans tous les cas  $(\sup(u_n, v_n))_{n \in \mathbb{N}}$  converge vers  $\max(l, l')$  et  $(\inf(u_n, v_n))_{n \in \mathbb{N}}$  converge vers  $\min(l, l')$ .

On remarque :  $\forall x, y \in \mathbb{R}$ ,  $\sup(x, y) = \frac{x + y + |x - y|}{2}$  et  $\inf(x, y) = \frac{x + y - |x - y|}{2}$ . En effet : Soient  $x, y \in \mathbb{R}$ :

- Si  $x \le y$ , on a  $\frac{x+y+|x-y|}{2} = \frac{x+y+y-x}{2} = y = \max(x,y)$  et  $\frac{x+y-|x-y|}{2} = \frac{x+y-(y-x)}{2} = x = \min(x,y)$
- Si x > y, on a  $\frac{x+y+|x-y|}{2} = \frac{x+y+x-y}{2} = x = \max(x,y)$  et  $\frac{x+y-|x-y|}{2} = \frac{x+y-(x-y)}{2} = y = \min(x,y)$

Ainsi, pour tout  $n \in \mathbb{N}$ , on a :

$$\sup(u_n, v_n) = \frac{u_n + v_n + |v_n - u_n|}{2} \quad \text{ et } \quad \inf(u_n, v_n) = \frac{u_n + v_n - |v_n - u_n|}{2}$$

Par opérations sur les limites, on a donc :  $\lim_{n\to+\infty}\sup(u_n,v_n)=\frac{l+l'+|l'-l|}{2}=\sup(l,l').$ 

De même,  $\lim_{n\to+\infty}\inf(u_n,v_n)=\frac{l+l'-|l'-l|}{2}=\inf(l,l').$ 

Exercice 16.

Exercice 17.

#### 2 Suites récurrentes

 $f: \mathbb{R} \to \mathbb{R}$   $x \mapsto \frac{x^2}{3} + \frac{2}{3}$ Exercice 18. a. Posons

Déterminons les points fixes de f: Soit  $x \in \mathbb{R}$ ,

$$f(x) = x \iff \frac{x^2}{3} + \frac{2}{3} = x$$

$$\iff x^2 - 3x + 2 = 0$$

$$\iff x = 1 \text{ ou } x = 2$$

f est dérivable sur  $\mathbb{R}$ . Soit  $x \in \mathbb{R}$ , on a  $f'(x) = \frac{2}{3}x$ .



 $u_0 \in [1,2]$  et [1,2] est stable. Ainsi, pour tout  $n \in \mathbb{N}$ , on a  $u_n \in [1,2]$ .

De plus, f est croissante sur [1,2], ainsi,  $(u_n)_{n\in\mathbb{N}}$  est monotone.  $u_1=f(u_0)=f(\frac{3}{2})=\frac{9}{12}+\frac{2}{3}=\frac{17}{12}< u_0$ . Ainsi,  $(u_n)_{n\in\mathbb{N}}$  est décroissante. De plus,  $(u_n)_{n\in\mathbb{N}}$  est minorée donc  $(u_n)_{n\in\mathbb{N}}$  converge vers  $l\in\mathbb{R}$  par théorème de la limite monotone. De plus, f est continue sur  $\mathbb{R}$ . Ainsi, f(l)=l donc l=1 ou l=2. De plus,  $(u_n)_{n\in\mathbb{N}}$  est décroissante.

Ainsi, on a :  $\forall n \in \mathbb{N}, u_n \leq u_0$  donc par passage à la limite, on a :  $l \leq u_0$ . D'où  $l \leq \frac{3}{2}$ . Ainsi, l = 1.

b. Posons  $f: \left[ -\frac{1}{2}, +\infty \right[ \rightarrow \mathbb{R}$ 

Posons  $g: \left[ \begin{array}{c} \frac{1}{2}, +\infty \right[ \rightarrow \mathbb{R} \\ x \mapsto f(x) - x \end{array} \right].$ 

g est dérivable sur  $\left] -\frac{1}{2}, +\infty \right[$  et pour tout  $x \in \left] -\frac{1}{2}, +\infty \right[, g'(x) = \frac{2}{1+2x} - 1 = \frac{1-2x}{1+2x}$ 

Le tableau de variations de g est donc :



Ainsi, g est continue et strictement croissante sur  $\left[-\frac{1}{2}, \frac{1}{2}\right[$ .

Ainsi, g est bijective de  $\left]-\frac{1}{2},\frac{1}{2}\right[$  sur  $\left]-\infty,\ln(2)-\frac{1}{2}\right[$ .

De plus,  $0 \in \left] -\infty, \ln(2) - \frac{1}{2} \right[$ . Donc l'équation g(x) = 0 admet donc une unique solution sur  $\left] -\frac{1}{2}, \frac{1}{2} \right[$ .

De même, l'équation g(x) = 0 admet donc une unique solution sur  $\left| \frac{1}{2}, +\infty \right|$ .

Or, g(0)=0. Ainsi, il s'agit de l'unique solution de g(x)=0 sur  $\left]-\frac{1}{2},\frac{1}{2}\right[$ . Par ailleurs, on note  $\alpha$  l'unique solution non nulle de g(x)=0 (  $\alpha\in\left]\frac{1}{2},+\infty\right[$ ). On a donc :



f est strictement croissante en tant que composée de fonctions strictement croissantes. Ainsi,  $(u_n)$  est monotone.

Distinguons 5 cas:

- Si  $u_0 = 0$ , alors  $(u_n)$  sera constante égale à 0. On le prouve par récurrence.
- Si  $u_0 = \alpha$  alors,  $(u_n)$  sera constante égale à  $\alpha$ . On le prouve par récurrence.
- Si  $u_0 \in ]0, \alpha[$ , comme  $]0, \alpha[$  est stable par  $f, (u_n)_{n \in \mathbb{N}}$  est bien définie et pour tout  $n \in \mathbb{N}$ , on a  $u_n \in ]u_0, \alpha[$ . De plus,  $u_1 u_0 = f(u_0) u_0 = g(u_0) > 0$  donc  $(u_n)$  est strictement croissante. De plus,  $(u_n)$  est majorée donc converge vers  $l \in \mathbb{R}$  par théorème de la limite monotone. De plus,  $l \in [0, \alpha]$  par passage à la limite dans les inégalités larges.

Enfin, f est continue sur  $[0, \alpha]$  donc l est un point fixe de f, donc l = 0 ou  $l = \alpha$ . Or, pour tout  $n \in \mathbb{N}$ ,  $u_0 \le u_n$  car  $(u_n)_{n \in \mathbb{N}}$  est croissante. Ainsi, par passage à la limite dans les inégalités, on obtient :  $0 < u_0 \le l$ . Ainsi,  $l = \alpha$ .

- Si  $u_0 \in ]\alpha, +\infty[$ , comme  $]0, \alpha[$  est stable par  $f, (u_n)_{n \in \mathbb{N}}$  est bien définie et pour tout  $n \in \mathbb{N}$ , on a  $u_n \in ]u_0, \alpha[$ . De plus,  $u_1 u_0 = f(u_0) u_0 = g(u_0) < 0$  donc  $(u_n)$  est strictement décroissante. De plus,  $(u_n)$  est minorée donc converge vers vers  $l' \in \mathbb{R}$  par théorème de la limite monotone. De plus,  $l' \in [\alpha, +\infty[$  par passage à la limite dans les inégalités larges. Comme f est continue, l' est un point fixe de f, donc l' = 0 ou  $l' = \alpha$ . Or,  $l' \in [\alpha, +\infty[$ . Ainsi,  $l' = \alpha$ .
- Si  $u_0 < 0$ , alors  $(u_n)$  ne sera pas défini à partir d'un certain rang. Prouvons le par l'absurde. Supposons que  $(u_n)_{n \in \mathbb{N}}$  est bien définie i.e que :  $\forall n \in \mathbb{N}, 1 + 2u_n > 0$ .

On prouve par récurrence que :  $\forall n \in \mathbb{N}, u_n \in ]-\frac{1}{2},0[$ .

- $u_0 < 0$ .
- Soit  $n \in \mathbb{N}$ , supposons que  $u_n < 0$ . Comme f est strictement croissante, on a  $f(u_n) < f(0)$ . Ainsi :  $u_{n+1} < 0$ .
- Ainsi :  $\forall n \in \mathbb{N}, \ u_n < 0.$

Or, f est croissante sur  $\left] -\frac{1}{2}, 0 \right[$ . Ainsi,  $(u_n)$  est monotone. Enfin,  $u_1 - u_0 = g(u_0) < 0$  donc  $(u_n)$  est décroissante. De plus, par hypothèse,  $(u_n)_{n \in \mathbb{N}}$  est minorée par  $-\frac{1}{2}$  donc  $(u_n)$  converge vers  $l \in \mathbb{R}$ . De plus, par passage à la limite dans les inégalités larges, on a  $l \in \left[ -\frac{1}{2}, 0 \right]$ . Ainsi,

- 1er cas :  $(u_n)$  converge vers  $l \in ]-\frac{1}{2},0]$ . Comme f est continue sur  $]-\frac{1}{2},0]$ , on en déduit que f(l)=l. Ainsi, l=0. Absurde car  $(u_n)$  est décroissante donc :  $\forall n \in \mathbb{N}, \ u_n \leq u_0$ . Ainsi, par passage à la limite dans les inégalités larges, on a :  $l \leq u_0 < 0$  donc l < 0.
- 2ème cas :  $(u_n)$  converge vers  $-\frac{1}{2}$ . Alors,  $\lim_{n \to +\infty} \ln(1+2u_n) = -\infty$  et  $\lim_{n \to +\infty} u_{n+1} = -\infty$ . Or, pour tout  $n \in \mathbb{N}$ ,  $u_{n+1} = \ln(1+2u_n)$ . Absurde (unicité de la limite).

Ainsi, il existe  $N \in \mathbb{N}$  tel que  $1 + 2u_n \leq 0$  donc il existe un rang à partir duquel la suite n'est plus définie.

Exercice 19. a. Posons  $f: \mathbb{R} \to \mathbb{R}$  $x \mapsto xe^{-x}$ 

Déterminons les points fixes de f: Soit  $x \in \mathbb{R}$ ,

$$f(x) = x \iff x(e^{-x} - 1) = 0$$
  
 $\iff x = 0 \text{ ou } e^{-x} = 1$   
 $\iff x = 0$ 

f est dérivable sur  $\mathbb{R}$ .

Soit  $x \in \mathbb{R}$ , on a  $f'(x) = e^{-x}(1-x)$ .

| x     | $-\infty$ |   | 0 | 1 |   | $+\infty$ |  |
|-------|-----------|---|---|---|---|-----------|--|
| f'(x) |           | + | 4 | - | _ |           |  |
| f     | $e^{-1}$  |   |   |   |   |           |  |
|       |           |   | 0 |   |   |           |  |
|       | $-\infty$ |   |   |   | ` | 0         |  |

 $u_0 \in [0,1]$  et [0,1] est stable car  $e^{-1} \le 1$ . Ainsi :  $\forall n \in \mathbb{N}, u_n \in [0,1]$ .

De plus, f est croissante sur [0,1], ainsi,  $(u_n)_{n\in\mathbb{N}}$  est monotone.

 $u_1 = f(u_0) = f(1) = e^{-1} < u_0$ . Ainsi,  $(u_n)_{n \in \mathbb{N}}$  est décroissante. De plus,  $(u_n)_{n \in \mathbb{N}}$  est minorée par 0 donc  $(u_n)_{n \in \mathbb{N}}$ converge vers  $l \in \mathbb{R}$  par théorème de la limite monotone.

De plus, f est continue sur  $\mathbb{R}$ . Ainsi, f(l) = l donc l = 0.

b. Posons  $f: \mathbb{R} \to \mathbb{R}$  $x \mapsto 1 + x^2$ .

Déterminons les points fixes de f.

Soit  $x \in \mathbb{R}$ .

$$f(x) = x \iff x^2 - x + 1 = 0$$

Or, l'équation  $x^2 - x + 1 = 0$  n'admet aucune solution réelle.

Ainsi, la fonction f n'a pas de point fixe.

De plus, on a:  $\forall x \in \mathbb{R}$ ,  $f(x) - x \ge 0$ . Ainsi:  $\forall n \in \mathbb{N}$ ,  $u_{n+1} - u_n = f(u_n) - u_n \ge 0$ . Ainsi,  $(u_n)_{n \in \mathbb{N}}$  est croissante.

Par théorème de la limite monotone,  $(u_n)$  converge ou diverge vers  $+\infty$ .

Montrons par l'absurde que  $(u_n)$  diverge vers  $+\infty$ .

Supposons que  $(u_n)$  converge vers  $l \in \mathbb{R}$ . Comme f est continue sur  $\mathbb{R}$ , on a f(l) = l. Or, f n'admet aucun point

c. Posons

Ainsi, 
$$(u_n)_{n\in\mathbb{N}}$$
 diverge vers  $+\infty$ .  
 $f: \mathbb{R} \to \mathbb{R}$   
Posons  $x \mapsto x^2 + \frac{3}{16}$ .  
Déterminons les points fixes de  $f:$ 

Soit  $x \in \mathbb{R}$ ,

$$f(x) = x \iff x^2 + \frac{3}{16} = x$$
$$\iff 16x^2 - 16x + 3 = 0$$

Le discriminant de  $16x^2 - 16x + 3$  vaut  $16^2 - 4 \times 3 \times 16 = 16(16 - 12) = 16 \times 4 = 8^2$ . Ainsi, on a:

$$f(x) = x \iff x = \frac{1}{4} \text{ ou } x = \frac{3}{4}$$

f est dérivable sur  $\mathbb{R}$ .

Soit  $x \in \mathbb{R}$ , on a f'(x) = 2x.

| x     | $-\infty$ |   | 0             |   | $+\infty$   |
|-------|-----------|---|---------------|---|-------------|
| f'(x) |           | _ |               | + |             |
| f     | $+\infty$ |   | $\frac{2}{3}$ |   | <u>,</u> +∞ |

 $u_0 \in \left[\frac{1}{4}, \frac{3}{4}\right]$  et  $\left[\frac{1}{4}, \frac{3}{4}\right]$  est stable. Ainsi, pour tout  $n \in \mathbb{N}$ , on a  $u_n \in \left[\frac{1}{4}, \frac{3}{4}\right]$ .

De plus, f est croissante sur  $\left[\frac{1}{4}, \frac{3}{4}\right]$ , ainsi,  $(u_n)_{n \in \mathbb{N}}$  est monotone.  $u_1 = f(u_0) = f(\frac{1}{2}) = \frac{3}{16} + \frac{1}{4} = \frac{7}{16} < u_0$ . Ainsi,  $(u_n)_{n \in \mathbb{N}}$  est décroissante. De plus,  $(u_n)_{n \in \mathbb{N}}$  est minorée par  $\frac{1}{4}$  donc  $(u_n)_{n \in \mathbb{N}}$  converge vers  $l \in \mathbb{R}$  par théorème de la limite monotone.

De plus, f est continue sur  $\mathbb{R}$ . Ainsi, f(l) = l donc  $l = \frac{1}{4}$  ou  $l = \frac{3}{4}$ . De plus,  $(u_n)_{n \in \mathbb{N}}$  est décroissante. Ainsi, on

a :  $\forall n \in \mathbb{N}, u_n \leq u_0$  donc par passage à la limite, on a :  $l \leq u_0$ . D'où  $l \leq \frac{1}{2}$ . Ainsi,  $l = \frac{1}{4}$ .

Exercice 20. Commençons par visualiser graphiquement ce qu'il se passe :



Posons  $f: [-1, +\infty[ \rightarrow \mathbb{R} \\ x \mapsto \sqrt{1+x}]$ 

f est strictement croissante sur  $[-1, +\infty[$  en tant que composée de fonctions strictement croissantes. Ainsi,  $(u_n)$  est monotone et sa monotonie ne dépend que du signe de  $u_1 - u_0 = f(u_0) - u_0$ . Déterminons les points fixes de f:

Soit  $x \in \mathbb{R}$ .

$$f(x) = x \iff x = \sqrt{1+x}$$

$$\iff \begin{cases} x^2 = 1+x \\ x \ge 0 \end{cases}$$

$$\iff \begin{cases} x^2 - x - 1 = 0 \\ x \ge 0 \end{cases}$$

$$\iff \begin{cases} x = \frac{1-\sqrt{5}}{2} \text{ ou } x = \frac{1+\sqrt{5}}{2} \end{cases}$$

$$\iff x = \frac{1+\sqrt{5}}{2}$$

Posons  $x_1 = \frac{1+\sqrt{5}}{2}$ . On a ainsi :



Enfin, pour tout  $x \in [-1, 0]$ , on a :  $x \le 0 \le f(x)$ . Soit  $x \in \mathbb{R}_+^*$ ,

$$x \le f(x) \iff x \le \sqrt{1+x}$$

$$\iff x^2 \le 1+x \quad \text{car } x > 0$$

$$\iff x^2 - x - 1 \le 0 \quad \text{car } x > 0$$

$$\iff x \in ]0, x_1]$$

Finalement, on a:

$$\forall x \in ]-1, x_1], \ x \le f(x)$$
$$\forall x \in ]x_1, +\infty[, \ f(x) \le x$$

On distingue finalement trois cas:

- Si  $u_0 = x_1$ , la suite  $(u_n)$  est constante égale à  $x_1$  ( on le prouve par récurrence).
- Si  $u_0 \in [-1, x_1[$  comme  $[-1, x_1[$  est stable par f, la suite  $(u_n)_{n \in \mathbb{N}}$  est bien définie et on a :  $\forall n \in \mathbb{N}, u_n \in [-1, x_1[$ . De plus, f est croissante sur  $[-1, x_1[$  donc  $(u_n)$  est monotone. Et  $u_1 u_0 = f(u_0) u_0 \ge 0$ . La suite  $(u_n)$  est donc croissante. De plus,  $(u_n)$  est majorée par  $x_1$ . Ainsi, la suite  $(u_n)$  converge vers  $l \in \mathbb{R}$  par théorème de la limite monotone

Par passage à la limite dans les inégalités, on a :  $l \in [-1, x_1]$ . Enfin, f continue sur  $[-1, x_1]$ . Ainsi, f(l) = l donc  $l = x_1$ . • Si  $u_0 \in ]x_1, +\infty[$  comme  $[x_1, +\infty[$  est stable par f, la suite  $(u_n)_{n \in \mathbb{N}}$  est bien définie et on a :  $\forall n \in \mathbb{N}, \ u_n \in [x_1, +\infty[$ . De plus, f est croissante sur  $[x_1, +\infty[$  donc  $(u_n)$  est monotone. Et  $u_1 - u_0 = f(u_0) - u_0 \le 0$ . La suite  $(u_n)$  est donc décroissante. De plus,  $(u_n)$  est minorée par  $x_1$ . Ainsi, la suite  $(u_n)$  converge vers  $l \in \mathbb{R}$  par théorème de la limite monotone.

Par passage à la limite dans les inégalités, on a :  $l \in [x_1, +\infty[$ . Enfin, f continue sur  $[x_1, +\infty[$ . Ainsi, f(l) = l donc  $l = x_1$ .

# 3 Suites adjacentes

**Exercice 21.** • Soit  $n \in \mathbb{N}$ . On a :

$$v_{2n+2} - v_{2n} = \sum_{k=0}^{2n+2} (-1)^k u_k - \sum_{k=0}^{2n} (-1)^k u_k = (-1)^{2n+2} u_{2n+2} + (-1)^{2n+1} u_{2n+1} = u_{2n+2} - u_{2n+1} \le 0$$

car  $(u_n)_{n\in\mathbb{N}}$  est décroissante.

Ainsi  $(v_{2n})_{n\in\mathbb{N}}$  est décroissante.

• Soit  $n \in \mathbb{N}$ , on a:

$$v_{2n+3} - v_{2n+1} = \sum_{k=0}^{2n+3} (-1)^k u_k - \sum_{k=0}^{2n+1} (-1)^k u_k = -u_{2n+3} + u_{2n+2} \ge 0$$

car  $(u_n)_{n\in\mathbb{N}}$  est décroissante.

Ainsi  $(v_{2n+1})_{n\in\mathbb{N}}$  est croissante.

• Soit  $n \in \mathbb{N}$ ,  $v_{2n+1} - v_{2n} = \sum_{k=0}^{2n+1} (-1)^k u_k - \sum_{k=0}^{2n} (-1)^k u_k = -u_{2n+1}$  et  $(u_n)_{n \in \mathbb{N}}$  converge vers 0.

Les suites  $(v_{2n})_{n\in\mathbb{N}}$  et  $(v_{2n+1})_{n\in\mathbb{N}}$  sont donc adjacentes. Elles convergent donc vers la même limite. En utilisant l'exercice 26, on peut donc conclure que  $(v_n)_{n\in\mathbb{N}}$  converge.

**Exercice 22.** 1. Pour tout  $n \in \mathbb{N}$ , on pose :

$$\mathcal{P}(n): \ 0 < u_n < v_n.$$

- Pour n = 0 : 0 < a < b,  $u_0 = a$  et  $v_0 = b$ . Ainsi,  $\mathcal{P}(0)$  est vraie.
- Soit  $n \in \mathbb{N}$ . Supposons  $\mathcal{P}(n)$  vraie.

On a alors : 
$$u_{n+1} = \sqrt{u_n v_n} > 0$$
 et  $v_{n+1} = \frac{u_n + v_n}{2} > 0$  car  $u_n > 0$  et  $v_n > 0$ .  
De plus,  $v_{n+1} - u_{n+1} = \frac{u_n + v_n}{2} - \sqrt{u_n v_n} = \frac{1}{2} \left( u_n + v_n - 2\sqrt{u_n v_n} \right) = \frac{1}{2} \left( \sqrt{v_n} - \sqrt{u_n} \right)^2$ .  
On a  $v_n > 0$  et  $u_n > 0$  donc  $\sqrt{u_n}$  et  $\sqrt{v_n}$  existent. De plus, par hypothèse de récurrence,  $v_n > u_n$  donc  $\sqrt{v_n} > \sqrt{u_n}$  Ainsi,  $\left( \sqrt{v_n} - \sqrt{u_n} \right)^2 > 0$  donc  $v_{n+1} > u_{n+1}$ .  
Ainsi,  $\mathcal{P}(n+1)$  est vraie.

- Ainsi, on a :  $\forall n \in \mathbb{N}, 0 < u_n < v_n$ .
- 2. Pour tout  $n \in \mathbb{N}$ , on pose :

$$Q(n) : v_n - u_n \le \frac{1}{2^n} (v_0 - u_0).$$

• Pour n = 0:  $v_0 - u_0 = \frac{1}{20}(v_0 - u_0)$ . Ainsi,  $\mathcal{Q}(0)$  est vraie.

• Soit 
$$n \in \mathbb{N}$$
. Supposons  $\mathcal{Q}(n)$  vraie.  

$$v_{n+1} - u_{n+1} = \frac{1}{2}(u_n + v_n) - \sqrt{u_n v_n} = \frac{1}{2}\left(u_n + v_n - 2\sqrt{u_n v_n}\right) = \frac{1}{2}\left(\sqrt{v_n} - \sqrt{u_n}\right)^2.$$
Or,  $\sqrt{v_n} - \sqrt{u_n} \le \sqrt{v_n - u_n}$ 

$$\iff \sqrt{v_n} \le \sqrt{v_n - u_n} + \sqrt{u_n}$$

 $\iff v_n \leq v_n - u_n + u_n + 2\sqrt{u_n(v_n - u_n)}$ Cette dernière inéquation est toujours vraie.

On a donc: 
$$v_{n+1} - u_{n+1} \le \frac{1}{2} \left( \sqrt{v_n - u_n} \right)^2 = \frac{1}{2} (v_n - u_n) \le \frac{1}{2} \times \frac{1}{2^n} (v_0 - u_0) = \frac{1}{2^{n+1}} (v_0 - u_0)$$
. Ainsi,  $Q(n+1)$  est vraie.

• Ainsi : 
$$\forall n \in \mathbb{N}, v_n - u_n \le \frac{1}{2^n}(v_0 - u_0).$$

- 3. Soit  $n \in \mathbb{N}$ .  $u_{n+1} = \sqrt{u_n v_n} > \sqrt{u_n u_n} = |u_n| = u_n \text{ car } v_n > u_n > 0$ . Ainsi,  $(u_n)$  est strictement croissante.
  - Soit  $n \in \mathbb{N}$ ,  $v_{n+1} = \frac{v_n + u_n}{2} < \frac{v_n + v_n}{2} = v_n$  car  $v_n > u_n$ . Ainsi,  $(v_n)$  est strictement décroissante.
  - Soit  $n \in \mathbb{N}$ , on a :  $0 < v_n u_n < \frac{1}{2^n}(v_0 u_0)$ . Or,  $\lim_{n \to +\infty} \frac{1}{2^n} = 0$ . Ainsi, par le théorème d'encadrement,  $(v_n u_n)_{n \in \mathbb{N}}$  converge vers 0.

Donc  $(v_n)$  et  $(u_n)$  sont adjacentes.

Exercice 23. 1. • Soit  $n \in \mathbb{N}^*$ ,  $u_{n+1} - u_n = \frac{1}{(n+1)!} > 0$ .

Donc  $(u_n)_{n\in\mathbb{N}^*}$  est strictement croissante.

• Soit 
$$n \in \mathbb{N}^*$$
,  $v_{n+1} - v_n = \frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{nn!} = \frac{n(n+1) + n - (n+1)^2}{n(n+1)(n+1)!} = \frac{-1}{n(n+1)(n+1)!} < 0$ .

Donc  $(v_n)_{n\in\mathbb{N}^*}$  est strictement décroissante.

• Enfin, soit 
$$n \in \mathbb{N}^*$$
,  $v_n - u_n = \frac{1}{nn!} \underset{n \to +\infty}{\longrightarrow} 0$ .

Ainsi, les suites  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  sont adjacentes.

2. Raisonnons par l'absurde.

On suppose que l est rationnel. Alors, il existe  $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$  tel que  $l = \frac{p}{s}$ .

Soit  $n \in \mathbb{N}^*$ . On en déduit par stricte monotonie des suites :  $u_n < u_{n+1} \le e \le v_{n+1} < v_n$ . Ainsi :

$$\forall n \in \mathbb{N}^*, \ u_n < \frac{p}{q} < u_n + \frac{1}{nn!}.$$

En particulier pour n = q, on a :

$$u_q < \frac{p}{q} < u_q + \frac{1}{qq!}$$

puis

$$qq!u_q < pq! < qq!u_q + 1$$

Or, 
$$qq!u_q=q\sum_{k=0}^q\frac{q!}{k!}$$
 et pour tout  $k\in \llbracket 0,q\rrbracket,\ \frac{q!}{k!}=\prod_{j=1}^qi=\prod_{p=k+1}^qp\in\mathbb{N}.$  Ainsi,  $qq!u_q\in\mathbb{N}$  et  $qq!u_q+1$  est l'entier

relatif consécutif. Ainsi, pq! est un entier strictement compris entre  $qq!u_q$  et  $qq!u_q+1$ . Absurde. Ainsi, l n'est pas rationnel.

Exercice 24. Posons

$$\forall x \in \mathbb{R}_+, \ f'(x) = \frac{x+2-(x+1)}{(x+2)^2} = \frac{1}{(x+2)^2}$$

Déterminons les points fixes de f:

Soit  $x \in \mathbb{R}$ 

$$f(x) = x \iff \frac{x+1}{x+2} = x$$

$$\iff x+1 = x^2 + 2x$$

$$\iff 0 = x^2 + x - 1$$

Le discriminant vaut 5. Ainsi:

$$f(x) = x \iff x = \frac{-1 + \sqrt{5}}{2}$$

 $\operatorname{car} x \in \mathbb{R}_+.$ 

Notons 
$$x_1 = \frac{-1 + \sqrt{5}}{2}$$
.

On a donc :



- $u_0 \in [0, x_1[$  et  $[0, x_1]$  est stable par f. Ainsi, la suite  $(u_n)_{n \in \mathbb{N}}$  est bien définie et pour tout  $n \in \mathbb{N}$ ,  $u_n \in [0, x_1]$ . De plus, f est croissante sur  $[0, x_1]$  donc  $(u_n)_{n \in \mathbb{N}}$  est monotone. Et  $u_1 = f(u_0) = f(0) = \frac{1}{2} > u_0$  donc  $(u_n)_{n \in \mathbb{N}}$ est croissante.
- $v_0 \in [x_1, +\infty[$  et  $[x_1, +\infty[$  est stable par f donc la suite  $(v_n)_{n \in \mathbb{N}}$  est bien définie et pour tout  $n \in \mathbb{N}, v_n \in [x_1, +\infty[$ . De plus, f est croissante sur  $[x_1, +\infty[$  donc  $(u_n)_{n\in\mathbb{N}}$  est monotone. De plus,  $v_1 = f(v_0) = f(2) = \frac{3}{4} < v_0$  donc  $(v_n)_{n\in\mathbb{N}}$  est décroissante.
- $(u_n)_{n\in\mathbb{N}}$  est croissante et majorée par  $x_1$  donc converge vers  $l\in\mathbb{R}$ . De plus, comme pour tout  $n\in\mathbb{N},\,u_n\in[0,x_1]$ et par passage à la limite dans les inégalités larges,  $l \in [0, x_1]$ . Enfin, f est continue sur  $[0, x_1]$  donc f(l) = l. Ainsi,  $l = x_1$ .

De même,  $(v_n)_{n\in\mathbb{N}}$  est décroissante et minorée par  $x_1$  donc converge vers  $l'\in\mathbb{R}$ . De plus, comme pour tout  $n \in \mathbb{N}, u_n \in [x_1, +\infty[$  et par passage à la limite dans les inégalités larges,  $l' \in [x_1, +\infty[$ . Enfin, f est continue sur  $[x_1, +\infty[$  donc f(l') = l'. Ainsi,  $l' = x_1$ .

Ainsi,  $(u_n - v_n)_{n \in \mathbb{N}}$  converge vers  $x_1 - x_1 = 0$ 

Finalement, on a bien prouvé que  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  son adjacentes.

#### 4 Suites extraites

**Exercice 25.** On considère les sous-suites :  $(u_{10n})_{n\in\mathbb{N}}$  et  $(u_{10n+5})_{n\in\mathbb{N}}$ . Soit  $n \in \mathbb{N}$ ,

$$u_{10n} = \frac{5 \times 10^2 n^2 + \sin(10n)}{3(10n+2)^2} = \frac{5 \times 10^2 n^2 + \sin(10n)}{3 \times 10^2 n^2 + 3 \times 40n + 4 \times 3} = \frac{5}{3} \times \frac{1 + \frac{\sin(10n)}{500n^2}}{1 + \frac{2}{5n} + \frac{1}{25n^2}}.$$

En revanche, 
$$u_{10n+5} = -\frac{(10n+5)^2 + \sin(10n+5)}{3(10n+7)^2} = -\frac{5 \times 10^2 n^2 + 2 \times 5^2 \times 10n + \sin(10n+5)}{3 \times 10^2 n^2 + 3 \times 10 \times 2 \times 7n + 7^2 \times 3} = -\frac{5}{3} \times \frac{1 + \frac{1}{n} + \frac{\sin(10n+5)}{500n^2}}{1 + \frac{7}{5n} + \frac{49}{100n^2}}$$

Or,  $\lim_{n \to +\infty} \frac{\sin(10n)}{500n^2} = 0$  car  $((\sin(10n))$  est bornée). Ainsi,  $\lim_{n \to +\infty} u_{10n} = \frac{5}{3}$ . En revanche,  $u_{10n+5} = -\frac{(10n+5)^2 + \sin(10n+5)}{3(10n+7)^2} = -\frac{5 \times 10^2 n^2 + 2 \times 5^2 \times 10n + \sin(10n+5)}{3 \times 10^2 n^2 + 3 \times 10 \times 2 \times 7n + 7^2 \times 3} = -\frac{5}{3} \times \frac{1 + \frac{1}{n} + \frac{\sin(10n+5)}{500n^2}}{1 + \frac{7}{5n} + \frac{49}{100n^2}}$ Or,  $\lim_{n \to +\infty} \frac{\sin(10n)}{500n^2} = 0$  car  $((\sin(10n+5))$  est bornée). Ainsi,  $\lim_{n \to +\infty} u_{10n+5} = -\frac{5}{3}$ . Ainsi, les suites extraites convergent mais ont des limites distinctes done (v.) readment and 1.11 if mais ont des limites distinctes donc  $(u_n)$  n'admet pas de limite.

**Exercice 26.** Soit  $\epsilon > 0$ . Comme, la suite  $(u_{2p})_{p \in \mathbb{N}}$  converge vers l alors il existe  $N_1 \in \mathbb{N}$  tel que :

$$\forall p \geq N_1, |u_{2p} - l| \leq \epsilon.$$

Et de même, pour la suite  $(u_{2p+1})_{p\in\mathbb{N}}$  il existe  $N_2\in\mathbb{N}$  tel que :

$$\forall p \ge N_2, \ |u_{2p+1} - l| \le \epsilon.$$

Posons  $N = \max(2N_1, 2N_2 + 1)$  et soit  $n \ge N$ :

- Si n est pair, il existe  $p \in \mathbb{N}$  tel que n=2p donc  $2p \geq N \geq 2N_1$ . Ainsi,  $p \geq N_1$  d'où :  $|u_{2p}-l| \leq \epsilon$ . Donc  $|u_n - l| \le \epsilon$ .
- Si n est impair, il existe  $p \in \mathbb{N}$  tel que n = 2p + 1 donc  $2p + 1 \ge N \ge 2N_2 + 1$ . Ainsi,  $p \ge N_2$  d'où :  $|u_{2p+1} l| \le \epsilon$ . Donc  $|u_n - l| \le \epsilon$ .

Dans tous les cas, on a :  $|u_n - l| \le \epsilon$ .

Ce qui prouve la convergence de  $(u_n)_{n\in\mathbb{N}}$  vers l.

**Exercice 27.** Notons  $l_1$ ,  $l_2$  et  $l_3$  les limites respectives de  $(u_{2n})_{n\in\mathbb{N}}$ ,  $(u_{2n+1})_{n\in\mathbb{N}}$  et  $(u_{3n})_{n\in\mathbb{N}}$ .

 $(u_{6n})_{n\in\mathbb{N}}$  est une suite extraite de  $(u_{3n})_{n\in\mathbb{N}}$  et  $(u_{2n})_{n\in\mathbb{N}}$ . En effet,  $(u_{6n})_{n\in\mathbb{N}}=(u_{2(3n)})_{n\in\mathbb{N}}=(u_{3(2n)})_{n\in\mathbb{N}}$ . Donc  $(u_{6n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{3n})_{n\in\mathbb{N}}=(u_{$ converge vers  $l_1$  et  $l_3$ . Donc par unicité de la limite,  $l_1 = l_3$ .

 $(u_{6n+3})_{n\in\mathbb{N}}$  est une suite extraite de  $(u_{2n+1})_{n\in\mathbb{N}}$  et  $(u_{3n})_{n\in\mathbb{N}}$ . En effet,  $(u_{6n+3})_{n\in\mathbb{N}}=(u_{3(2n+1)})_{n\in\mathbb{N}}=(u_{2(3n+1)+1})_{n\in\mathbb{N}}$ . Ainsi,  $(u_{6n+3})_{n\in\mathbb{N}}$  converge vers  $l_2$  et  $l_3$  donc par unicité de la limite,  $l_2=l_3$ .

Ainsi  $l_1 = l_2$  et les suites extraites paires et impaires de  $(u_n)_{n \in \mathbb{N}}$  convergent vers la même limite, donc  $(u_n)_{n \in \mathbb{N}}$  converge (à l'aide du résultat de l'exercice 26).

Exercice 28. 1. Soit  $n \in \mathbb{N}^*$ ,

$$H_{2n} - H_n = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= \sum_{k=n+1}^{2n} \frac{1}{k}$$

Or:  $\forall k \in [n+1, 2n], n+1 \le k \le 2n$ . Donc:  $\forall k \in [n+1, 2n], \frac{1}{n+1} \ge \frac{1}{k} \ge \frac{1}{2n}$ .

Ainsi:

$$H_{2n} - H_n \ge \sum_{k=n+1}^{2n} \frac{1}{2n}$$
$$\ge \frac{n}{2n}$$
$$\ge \frac{1}{2}$$

2.  $(H_n)_{n\in\mathbb{N}}$  est croissante car pour tout  $n\in\mathbb{N}$ ,  $H_{n+1}-H_n=\frac{1}{n+1}\geq 0$ .

Ainsi, d'après le théorème de la limite monotone,  $(u_n)$  converge ou diverge vers  $+\infty$ .

Supposons que  $(H_n)_{n\in\mathbb{N}}$  converge vers  $l\in\mathbb{R}$  alors  $\lim_{n\to+\infty}(H_{2n}-H_n)=l-l=0$ . Ceci est impossible puisque :

$$\forall n \in \mathbb{N}, \ H_{2n} - H_n \ge \frac{1}{2}.$$

Ainsi,  $(H_n)_{n\in\mathbb{N}}$  diverge vers  $+\infty$ .

**Exercice 29.** Soit  $(u_n)_{n\in\mathbb{N}}$  une suite périodique et convergente vers  $l\in\mathbb{R}$ .

Ainsi, il existe  $p \in \mathbb{N}^*$  tel que :  $\forall n \in \mathbb{N}, \ u_{n+p} = u_n$ .

Soit  $k \in \mathbb{N}$ , la suite extraite  $(u_{np+k})_{n \in \mathbb{N}}$  est constante de valeur commune  $u_k$  (par p-périodicité). De plus,  $(u_{np+k})_{n \in \mathbb{N}}$ converge vers l en tant que sous-suite de  $(u_n)_{n\in\mathbb{N}}$ .

Ainsi, par unicité de la limite  $u_k = l$ .

Ceci étant vrai pour tout  $k \in \mathbb{N}$ , on obtient que  $(u_n)_{n \in \mathbb{N}}$  est constante égale à l.

### 5 Suites complexes

1. Soit  $n \in \mathbb{N}$ ,  $z_{n+1} = x_{n+1} + iy_{n+1} = \frac{1}{2}(x_n - y_n) + \frac{i}{2}(x_n + y_n) = \frac{1}{2}((1+i)x_n + i(1+i)y_n) = \frac{1}{2}(x_n + y_n) = \frac{1}{2}($ Exercice 30.  $\frac{(1+i)}{2}z_n$ .

Ainsi,  $(z_n)$  est géométrique de raison  $\frac{(1+i)}{2}$  et de premier terme  $z_0 = x_0 + iy_0$ .

Ainsi, on a:

$$\forall n \in \mathbb{N}, \ z_n = z_0 \left(\frac{1+i}{2}\right)^n.$$

Or, 
$$\left|\frac{1+i}{2}\right| = \frac{1}{\sqrt{2}} \in ]-1,1[$$
. Ainsi,  $\lim_{n\to+\infty} \left(\frac{1+i}{2}\right)^n = 0$  et donc  $\lim_{n\to+\infty} z_n = 0$ .

2.  $(z_n)$  est une suite arithmético-géométrique

$$\alpha = \frac{i}{2}\alpha + 1 \iff \frac{2-i}{2}\alpha = 1$$

$$\iff \alpha = \frac{2}{2-i}$$

$$\iff \alpha = \frac{2}{5}(2+i)$$

Pour tout  $n \in \mathbb{N}$ , on pose  $v_n = z_n - \frac{2}{5}(2+i)$ .

Soit  $n \in \mathbb{N}$ ,

$$v_{n+1} = z_{n+1} - \frac{2}{5}(2+i)$$

$$= \frac{i}{2}z_n + 1 - \frac{2}{5}(2+i)$$

$$= \frac{i}{2}z_n - \frac{2i}{5} + \frac{1}{5}$$

$$= \frac{i}{2}\left(z_n - \frac{4}{5} + \frac{2}{5i}\right)$$

$$= \frac{i}{2}\left(z_n - \frac{4}{5} - \frac{2i}{5}\right)$$

$$= \frac{i}{2}\left(z_n - \frac{2}{5}(2+i)\right)$$

$$= \frac{i}{2}v_n$$

Ainsi,  $(v_n)_{n\in\mathbb{N}}$  est géométrique de raison  $\frac{i}{2}$ .

De plus, 
$$v_0 = z_0 - \frac{2}{5}(2+i)$$
.

Ainsi, on a:

$$\forall n \in \mathbb{N}, \ v_n = \left(\frac{i}{2}\right)^n v_0 = \left(\frac{i}{2}\right)^n \left(z_0 - \frac{2}{5}(2+i)\right).$$

Finalement, on obtient que:

$$\forall n \in \mathbb{N}, \ z_n = \left(\frac{i}{2}\right)^n \left(z_0 - \frac{2}{5}(2+i)\right) + \frac{2}{5}(2+i).$$

Or, 
$$\left| \frac{i}{2} \right| = \frac{1}{2} \in ]-1, 1[$$
. Ainsi,  $\lim_{n \to +\infty} \left( \frac{i}{2} \right)^n = 0$ . Donc  $\lim_{n \to +\infty} z_n = \frac{2}{5}(2+i)$ .