DiffGeo

Luka Ilić, Johannnes Mader, Jakob Deutsch, Fabian Schuh $8.~\mathrm{M\ddot{a}rz}~2018$

Inhaltsverzeichnis

1	Kurven	3
	1.1 Parametrisierung und Bogenlänge	3

1 Kurven

1.1 Parametrisierung und Bogenlänge

Wiederholung: Ein Euklidischer Raum \mathcal{E} ist:

- 1. Ein affiner Raum (\mathcal{E}, V, τ)
- 2. über einem Euklid. Vektorraum (V, <, >).

Dabei: $\tau: V \times \mathcal{E} \to \mathcal{E}; (v, X) \mapsto \tau_v(X) =: X + v$ genügt

- 1. $\tau_0 = id_{\mathcal{E}} \text{ und } \forall v, w \in V \ \tau_v \circ \tau_w = \tau_{v+w}$
- 2. $\forall X, Y \in \mathcal{E} \exists ! v \in V \ \tau_v(x) = Y \ ((d.h. \ \tau \ ist \ einfach \ transitiv)).$

Definition. Eine (parametrisierte-) Kurve ist eine Abbildung

$$X:I\to\mathcal{E}$$

auf einem offenen Intervall $I \subseteq \mathbb{R}$, die regulär ist (d.h. $\forall t \in I \ X'(t) \neq 0$). Wir nennen X auch Parametrisierung der Kurve C = X(I).

Bemerkung. Alle Abbildungen in dieser VO sind beliebig oft differenzierbar (d.h. C^{∞}).

Beispiel. Eine (Kreis-) Helix mit Radius r > 0 und Ganghöhe h ist die Kurve

$$X: \mathbb{R} \to \mathcal{E}^3; t \mapsto X(t) := O + e_1 r \cos(t) + e_2 r \sin(t) + e_3 ht.$$

Definition. Umparametrisierung einer param. Kurve $X: I \to \mathcal{E}$ ist eine param. Kurve

$$\overline{X}: \overline{I} \to \mathcal{E}; s \mapsto \overline{X}(s) = X(t(s)),$$

wobei $t: \overline{I} \to I$ eine surjektive, reguläre Abbildung ist.

Motivation: Für eine Kurve $t \mapsto X(t)$

- 1. X'(t) ist Geschwindigkeit(-svektor) ("veloicity"),
- 2. |X'(t)| ist (skalare) Geschwindigkeit ("speed").

Rekonstruktion durch Integration:

$$X(t) = X(o) + \int_{o}^{t} X'(t)dt$$

und die Länge des Weges von X(0) nach X(t):

$$s(t) = \int_{0}^{t} |X'(t)| dt$$

Definition.

Die Bogenlänge einer Kurve $X:I\to\mathcal{E}$ von X(0) für $o\in I$, ist

$$s(t) := \int_0^t |X'(t)| dt$$

(wobei $\int_{0}^{s} |X'(t)| dt$ auch als $\int_{0}^{t} ds$ geschrieben wird)

Bemerkung. Dies ist tatsächlich die Länge des Kurvenbogens zwischen X(o) und X(t), wie man z.B. durch polygonale Approximation beweist (s. Ana2 VO) Also: Die Bogenlänge zwischen zwei Punkten ist *invariant* ("ändert sich nicht") unter Umparametrisierung.

Lemma und Definition. Jede Kurve $t \mapsto X(t)$ kann man nach Bogenlänge (um-) parametrisieren, d.h. so, dass sie konstante Geschwindigkeit 1 ($|X'(t)| \equiv 1$) hat. Dies ist die Bogenlängenparametrisierung und üblicherweise notiert $s \mapsto X(s)$ diesen Zusammenhang.

Beweis. Wähle $o \in I$ und bemerke

$$s'(t) = |X'(t)| > 0.$$

Also ist $t \mapsto s(t)$ streng monoton wachsend, kann also invertiert werden, um t = t(s) zu erhalten: Damit erhält man für

$$\overline{X}:=X\circ t$$

$$|\overline{X}'(s)| = |X'(t(s))| * |t'(s)| = \frac{s'(t)}{s'(t)} = 1,$$

d.h. \overline{X} ist nach Bogenlänge parametrisiert. (nämlich durch Division mit der Inversen.)

Bemerkung. Eine Bogenlängenparametrisierung ist eindeutig bis auf Wahl von o und Orientierung.

Beispiel. Eine Helix

$$t \mapsto X(t) = O + e_1 r \cos(t) + e_2 r \sin(t) + e_3 ht$$

hat Bogenlänge

$$s(t) = \int_{0}^{t} \sqrt{r^2 + h^2} dt = \sqrt{r^2 + h^2} * t$$

und somit Bogenlängenparametrisierung

$$s \mapsto \overline{X}(s) = O + e_1 r \cos \frac{s}{\sqrt{r^2 + h^2}} + e_2 r \sin \frac{s}{\sqrt{r^2 + h^2}} + e_3 \frac{hs}{\sqrt{r^2 + h^2}}.$$

Bemerkung und Beispiel.

Üblicherweise ist es nicht möglich eine Bogenlängenparam. in elem. Funktionen anzugeben: Eine Ellipse

$$t \mapsto O + e_1 a \cos(t) + e_2 b \sin(t) (a > b > 0)$$

hat Bogenlänge

$$s(t) = \int_{0}^{t} \sqrt{b^2 + (a^2 - b^2)\sin(t)} dt,$$

dies ist ein elliptisches Integral, also nicht mit elem. Funktionen invertierbar.