

FUNDAMENTOS DE OPTIMIZACIÓN II

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 15) 30.AGOSTO.2022

Definición

Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función y $c \in \mathbb{R}$. El **conjunto de nivel** c de la función f es el conjunto de puntos $S_c = \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) = c \}.$

Definición

Sea $f : \mathbb{R}^n \to \mathbb{R}$ una función y $c \in \mathbb{R}$. El **conjunto de nivel** c de la función f es el conjunto de puntos $S_c = \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) = c \}.$

Típicamente, S_c o es vacío, o S_c induce una hiperficie de codimensión 1 (esto es de dimensión n-1 dentro de \mathbb{R}^n), aunque en ocasiones, S_c se degenera en un objeto de menor dimensión.

Definición

Sea $f : \mathbb{R}^n \to \mathbb{R}$ una función y $c \in \mathbb{R}$. El **conjunto de nivel** c de la función f es el conjunto de puntos $S_c = \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) = c \}.$

Típicamente, S_c o es vacío, o S_c induce una hiperficie de codimensión 1 (esto es de dimensión n-1 dentro de \mathbb{R}^n), aunque en ocasiones, S_c se degenera en un objeto de menor dimensión.

Por ejemplo

- Si $f: \mathbb{R}^2 \to \mathbb{R}$, entonces S_c es una curva.
- Si $f: \mathbb{R}^3 \to \mathbb{R}$, entonces S_c es una superficie 2-dimensional.
- En general, Si $f: \mathbb{R}^n \to \mathbb{R}$, entonces S_c es una hiperficie (n-1)-dimensional.

Definición

Sea $f : \mathbb{R}^n \to \mathbb{R}$ una función y $c \in \mathbb{R}$. El **conjunto de nivel** c de la función f es el conjunto de puntos $S_c = \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) = c \}.$

Típicamente, S_c o es vacío, o S_c induce una hiperficie de codimensión 1 (esto es de dimensión n-1 dentro de \mathbb{R}^n), aunque en ocasiones, S_c se degenera en un objeto de menor dimensión.

Por ejemplo

- Si $f: \mathbb{R}^2 \to \mathbb{R}$, entonces S_c es una curva.
- Si $f:\mathbb{R}^3 \to \mathbb{R}$, entonces S_c es una superficie 2-dimensional.
- En general, Si $f:\mathbb{R}^n o \mathbb{R}$, entonces S_c es una hiperficie (n-1)-dimensional.

Ejemplo: $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = \frac{1}{2}(x^2 + y^2)$.

Definición

Sea $f : \mathbb{R}^n \to \mathbb{R}$ una función y $c \in \mathbb{R}$. El **conjunto de nivel** c de la función f es el conjunto de puntos $S_c = \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) = c \}.$

Típicamente, S_c o es vacío, o S_c induce una hiperficie de codimensión 1 (esto es de dimensión n-1 dentro de \mathbb{R}^n), aunque en ocasiones, S_c se degenera en un objeto de menor dimensión.

Por ejemplo

- Si $f: \mathbb{R}^2 \to \mathbb{R}$, entonces S_c es una curva.
- Si $f:\mathbb{R}^3 \to \mathbb{R}$, entonces S_c es una superficie 2-dimensional.
- En general, Si $f:\mathbb{R}^n o \mathbb{R}$, entonces S_c es una hiperficie (n-1)-dimensional.

Ejemplo: $f : \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = \frac{1}{2}(x^2 + y^2)$. El conjunto de nivel $S_1 = \{(x,y) \in \mathbb{R}^2 : f(x,y) = 1\}$ corresponde al círculo $x^2 + y^2 = 2$.

Definición

Sea $f : \mathbb{R}^n \to \mathbb{R}$ una función y $c \in \mathbb{R}$. El **conjunto de nivel** c de la función f es el conjunto de puntos $S_c = \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) = c \}.$

Típicamente, S_c o es vacío, o S_c induce una hiperficie de codimensión 1 (esto es de dimensión n-1 dentro de \mathbb{R}^n), aunque en ocasiones, S_c se degenera en un objeto de menor dimensión.

Por ejemplo

- Si $f: \mathbb{R}^2 \to \mathbb{R}$, entonces S_c es una curva.
- Si $f: \mathbb{R}^3 \to \mathbb{R}$, entonces S_c es una superficie 2-dimensional.
- En general, Si $f:\mathbb{R}^n o \mathbb{R}$, entonces S_c es una hiperficie (n-1)-dimensional.

Ejemplo: $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = \frac{1}{2}(x^2 + y^2)$. El conjunto de nivel $S_1 = \{(x,y) \in \mathbb{R}^2 : f(x,y) = 1\}$ corresponde al círculo $x^2 + y^2 = 2$. Una parametrización de S_c se obtiene al hacer $\gamma(t) = (2\cos t, 2\sin t)$, $t \in \mathbb{R}$.

Teorema

Sea $f: \mathbb{R}^n \to \mathbb{R}$ differenciable. Entonces, el vector gradiente $\nabla_{\mathbf{x}} f(\mathbf{p})$ es ortogonal al vector tangente a cualquier curva suave que pasa por \mathbf{p} , contenida en el conjunto de nivel S_c de f, donde $c = f(\mathbf{p})$.

o.2cm

Teorema

Sea $f: \mathbb{R}^n \to \mathbb{R}$ differenciable. Entonces, el vector gradiente $\nabla_{\mathbf{x}} f(\mathbf{p})$ es ortogonal al vector tangente a cualquier curva suave que pasa por \mathbf{p} , contenida en el conjunto de nivel S_c de f, donde $c = f(\mathbf{p})$.

o.2cm

<u>Prueba</u>: Sea $\gamma:(a,b)\subseteq\mathbb{R} o\mathbb{R}^n$ una parametrización diferenciable de la curva suave,

Teorema

Sea $f: \mathbb{R}^n \to \mathbb{R}$ differenciable. Entonces, el vector gradiente $\nabla_{\mathbf{x}} f(\mathbf{p})$ es ortogonal al vector tangente a cualquier curva suave que pasa por \mathbf{p} , contenida en el conjunto de nivel S_c de f, donde $c = f(\mathbf{p})$.

o.2cm

<u>Prueba</u>: Sea $\gamma:(a,b)\subseteq\mathbb{R}\to\mathbb{R}^n$ una parametrización diferenciable de la curva suave, tal que $\gamma(o)=\mathbf{p}$, y sea $\gamma'(o)=\mathbf{v}$ el vector tangen a esta curva en \mathbf{p} .

Teorema

Sea $f: \mathbb{R}^n \to \mathbb{R}$ differenciable. Entonces, el vector gradiente $\nabla_{\mathbf{x}} f(\mathbf{p})$ es ortogonal al vector tangente a cualquier curva suave que pasa por \mathbf{p} , contenida en el conjunto de nivel S_c de f, donde $c = f(\mathbf{p})$.

o.2cm

<u>Prueba</u>: Sea $\gamma:(a,b)\subseteq\mathbb{R}\to\mathbb{R}^n$ una parametrización diferenciable de la curva suave, tal que $\gamma(o)=\mathbf{p}$, y sea $\gamma'(o)=\mathbf{v}$ el vector tangen a esta curva en \mathbf{p} . Consideramos la función $h:(a,b)\subseteq\mathbb{R}\to\mathbb{R}$, dada por $h=f\circ\gamma$.

Teorema

Sea $f: \mathbb{R}^n \to \mathbb{R}$ differenciable. Entonces, el vector gradiente $\nabla_{\mathbf{x}} f(\mathbf{p})$ es ortogonal al vector tangente a cualquier curva suave que pasa por \mathbf{p} , contenida en el conjunto de nivel S_c de f, donde $c = f(\mathbf{p})$.

o.2cm

<u>Prueba</u>: Sea $\gamma:(a,b)\subseteq\mathbb{R}\to\mathbb{R}^n$ una parametrización diferenciable de la curva suave, tal que $\gamma(\mathbf{0})=\mathbf{p}$, y sea $\gamma'(\mathbf{0})=\mathbf{v}$ el vector tangen a esta curva en \mathbf{p} . Consideramos la función $h:(a,b)\subseteq\mathbb{R}\to\mathbb{R}$, dada por $h=f\circ\gamma$.

Como $\gamma(t)$ está contenida dentro del conjunto de nivel S_c , entonces $f(\gamma(t)) = c$, para todo $t \in (a,b)$.

Teorema

Sea $f: \mathbb{R}^n \to \mathbb{R}$ differenciable. Entonces, el vector gradiente $\nabla_{\mathbf{x}} f(\mathbf{p})$ es ortogonal al vector tangente a cualquier curva suave que pasa por \mathbf{p} , contenida en el conjunto de nivel S_c de f, donde $c = f(\mathbf{p})$.

o.2cm

<u>Prueba</u>: Sea $\gamma:(a,b)\subseteq\mathbb{R}\to\mathbb{R}^n$ una parametrización diferenciable de la curva suave, tal que $\gamma(o)=\mathbf{p}$, y sea $\gamma'(o)=\mathbf{v}$ el vector tangen a esta curva en \mathbf{p} . Consideramos la función $h:(a,b)\subseteq\mathbb{R}\to\mathbb{R}$, dada por $h=f\circ\gamma$.

Como $\gamma(t)$ está contenida dentro del conjunto de nivel S_c , entonces $f(\gamma(t)) = c$, para todo $t \in (a,b)$. Luego, $h = f \circ \gamma$ es constante.

Teorema

Sea $f: \mathbb{R}^n \to \mathbb{R}$ differenciable. Entonces, el vector gradiente $\nabla_{\mathbf{x}} f(\mathbf{p})$ es ortogonal al vector tangente a cualquier curva suave que pasa por \mathbf{p} , contenida en el conjunto de nivel S_c de f, donde $c = f(\mathbf{p})$.

o.2cm

<u>Prueba</u>: Sea $\gamma:(a,b)\subseteq\mathbb{R}\to\mathbb{R}^n$ una parametrización diferenciable de la curva suave, tal que $\gamma(\mathbf{0})=\mathbf{p}$, y sea $\gamma'(\mathbf{0})=\mathbf{v}$ el vector tangen a esta curva en \mathbf{p} . Consideramos la función $h:(a,b)\subseteq\mathbb{R}\to\mathbb{R}$, dada por $h=f\circ\gamma$.

Como $\gamma(t)$ está contenida dentro del conjunto de nivel S_c , entonces $f(\gamma(t)) = c$, para todo $t \in (a,b)$. Luego, $h = f \circ \gamma$ es constante.

$$O = \frac{dh}{dt}(O) =$$

Teorema

Sea $f: \mathbb{R}^n \to \mathbb{R}$ differenciable. Entonces, el vector gradiente $\nabla_{\mathbf{x}} f(\mathbf{p})$ es ortogonal al vector tangente a cualquier curva suave que pasa por \mathbf{p} , contenida en el conjunto de nivel S_c de f, donde $c = f(\mathbf{p})$.

o.2cm

<u>Prueba</u>: Sea $\gamma:(a,b)\subseteq\mathbb{R}\to\mathbb{R}^n$ una parametrización diferenciable de la curva suave, tal que $\gamma(\mathbf{0})=\mathbf{p}$, y sea $\gamma'(\mathbf{0})=\mathbf{v}$ el vector tangen a esta curva en \mathbf{p} . Consideramos la función $h:(a,b)\subseteq\mathbb{R}\to\mathbb{R}$, dada por $h=f\circ\gamma$.

Como $\gamma(t)$ está contenida dentro del conjunto de nivel S_c , entonces $f(\gamma(t)) = c$, para todo $t \in (a,b)$. Luego, $h = f \circ \gamma$ es constante.

$$O = \frac{dh}{dt}(O) = Dh(O)$$

Teorema

Sea $f: \mathbb{R}^n \to \mathbb{R}$ differenciable. Entonces, el vector gradiente $\nabla_{\mathbf{x}} f(\mathbf{p})$ es ortogonal al vector tangente a cualquier curva suave que pasa por \mathbf{p} , contenida en el conjunto de nivel S_c de f, donde $c = f(\mathbf{p})$.

o.2cm

<u>Prueba</u>: Sea $\gamma:(a,b)\subseteq\mathbb{R}\to\mathbb{R}^n$ una parametrización diferenciable de la curva suave, tal que $\gamma(\mathbf{0})=\mathbf{p}$, y sea $\gamma'(\mathbf{0})=\mathbf{v}$ el vector tangen a esta curva en \mathbf{p} . Consideramos la función $h:(a,b)\subseteq\mathbb{R}\to\mathbb{R}$, dada por $h=f\circ\gamma$.

Como $\gamma(t)$ está contenida dentro del conjunto de nivel S_c , entonces $f(\gamma(t)) = c$, para todo $t \in (a,b)$. Luego, $h = f \circ \gamma$ es constante.

$$O = \frac{dh}{dt}(O) = Dh(O) = D(f \circ \gamma)(O)$$

Teorema

Sea $f: \mathbb{R}^n \to \mathbb{R}$ differenciable. Entonces, el vector gradiente $\nabla_{\mathbf{x}} f(\mathbf{p})$ es ortogonal al vector tangente a cualquier curva suave que pasa por \mathbf{p} , contenida en el conjunto de nivel S_c de f, donde $c = f(\mathbf{p})$.

o.2cm

<u>Prueba</u>: Sea $\gamma:(a,b)\subseteq\mathbb{R}\to\mathbb{R}^n$ una parametrización diferenciable de la curva suave, tal que $\gamma(\mathbf{0})=\mathbf{p}$, y sea $\gamma'(\mathbf{0})=\mathbf{v}$ el vector tangen a esta curva en \mathbf{p} . Consideramos la función $h:(a,b)\subseteq\mathbb{R}\to\mathbb{R}$, dada por $h=f\circ\gamma$.

Como $\gamma(t)$ está contenida dentro del conjunto de nivel S_c , entonces $f(\gamma(t)) = c$, para todo $t \in (a,b)$. Luego, $h = f \circ \gamma$ es constante.

$$o = \frac{dh}{dt}(o) = Dh(o) = D(f \circ \gamma)(o) = Df(\gamma(o)) \cdot \gamma'(o)$$

Teorema

Sea $f: \mathbb{R}^n \to \mathbb{R}$ differenciable. Entonces, el vector gradiente $\nabla_{\mathbf{x}} f(\mathbf{p})$ es ortogonal al vector tangente a cualquier curva suave que pasa por \mathbf{p} , contenida en el conjunto de nivel S_c de f, donde $c = f(\mathbf{p})$.

o.2cm

<u>Prueba</u>: Sea $\gamma:(a,b)\subseteq\mathbb{R}\to\mathbb{R}^n$ una parametrización diferenciable de la curva suave, tal que $\gamma(\mathbf{0})=\mathbf{p}$, y sea $\gamma'(\mathbf{0})=\mathbf{v}$ el vector tangen a esta curva en \mathbf{p} . Consideramos la función $h:(a,b)\subseteq\mathbb{R}\to\mathbb{R}$, dada por $h=f\circ\gamma$.

Como $\gamma(t)$ está contenida dentro del conjunto de nivel S_c , entonces $f(\gamma(t)) = c$, para todo $t \in (a,b)$. Luego, $h = f \circ \gamma$ es constante.

Aplicando la regla de la cadena a la función $h(t) = (f \circ \gamma)(t)$, resulta

$$o = \frac{dh}{dt}(o) = Dh(o) = D(f \circ \gamma)(o) = Df(\gamma(o)) \cdot \gamma'(o) = \nabla_{\mathbf{x}} f(\mathbf{p}) \cdot \mathbf{v},$$

de modo que $\nabla_{\mathbf{x}}f(\mathbf{p}) \perp \mathbf{v}$, como se quería demostrar. \Box

Recordemos que la derivada direccional de $f: \mathbb{R}^n \to \mathbb{R}$, en el punto $\mathbf{p} \in \mathbb{R}^n$, en la dirección del vector unitario $\mathbf{u} \in \mathbb{R}^n$ es $D_{\mathbf{u}}f(\mathbf{p}) = Df(\mathbf{p}) \cdot \mathbf{u} = \nabla_{\mathbf{x}}f(\mathbf{p})^T\mathbf{u}$.

Recordemos que la derivada direccional de $f: \mathbb{R}^n \to \mathbb{R}$, en el punto $\mathbf{p} \in \mathbb{R}^n$, en la dirección del vector unitario $\mathbf{u} \in \mathbb{R}^n$ es

$$D_{\mathbf{u}}f(\mathbf{p}) = Df(\mathbf{p}) \cdot \mathbf{u} = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}.$$

Propiedad

Suponga que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^1 en un disco abierto que contiene al punto \mathbf{p} . Entonces, para cualquier vector unitario $\mathbf{u} \in \mathbb{R}^n$, $D_{\mathbf{u}} f(\mathbf{p})$ existe y

$$D_{\mathbf{u}}f(\mathbf{p}) = Df(\mathbf{p}) \cdot \mathbf{u} = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}.$$

Recordemos que la derivada direccional de $f: \mathbb{R}^n \to \mathbb{R}$, en el punto $\mathbf{p} \in \mathbb{R}^n$, en la dirección del vector unitario $\mathbf{u} \in \mathbb{R}^n$ es

$$D_{\mathbf{u}}f(\mathbf{p}) = Df(\mathbf{p}) \cdot \mathbf{u} = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}.$$

Propiedad

Suponga que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^1 en un disco abierto que contiene al punto \mathbf{p} . Entonces, para cualquier vector unitario $\mathbf{u} \in \mathbb{R}^n$, $D_{\mathbf{u}} f(\mathbf{p})$ existe y

$$D_{\mathbf{u}}f(\mathbf{p}) = Df(\mathbf{p}) \cdot \mathbf{u} = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}.$$

De la desigualdad de Cauchy-Schwarz, tenemos

$$||D_{\mathbf{u}}f(\mathbf{p})|| = ||\nabla_{\mathbf{x}}f(\mathbf{p})^{T}\mathbf{u}||$$

Recordemos que la derivada direccional de $f: \mathbb{R}^n \to \mathbb{R}$, en el punto $\mathbf{p} \in \mathbb{R}^n$, en la dirección del vector unitario $\mathbf{u} \in \mathbb{R}^n$ es

$$D_{\mathbf{u}}f(\mathbf{p}) = Df(\mathbf{p}) \cdot \mathbf{u} = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}.$$

Propiedad

Suponga que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^1 en un disco abierto que contiene al punto \mathbf{p} . Entonces, para cualquier vector unitario $\mathbf{u} \in \mathbb{R}^n$, $D_{\mathbf{u}} f(\mathbf{p})$ existe y

$$D_{\mathbf{u}}f(\mathbf{p}) = Df(\mathbf{p}) \cdot \mathbf{u} = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}.$$

De la desigualdad de Cauchy-Schwarz, tenemos

$$||D_{\mathbf{u}}f(\mathbf{p})|| = ||\nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}|| \leq ||\nabla_{\mathbf{x}}f(\mathbf{p})|| \cdot ||\mathbf{u}||$$

Recordemos que la derivada direccional de $f: \mathbb{R}^n \to \mathbb{R}$, en el punto $\mathbf{p} \in \mathbb{R}^n$, en la dirección del vector unitario $\mathbf{u} \in \mathbb{R}^n$ es

$$D_{\mathbf{u}}f(\mathbf{p}) = Df(\mathbf{p}) \cdot \mathbf{u} = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}.$$

Propiedad

Suponga que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^1 en un disco abierto que contiene al punto \mathbf{p} . Entonces, para cualquier vector unitario $\mathbf{u} \in \mathbb{R}^n$, $D_{\mathbf{u}} f(\mathbf{p})$ existe y

$$D_{\mathbf{u}}f(\mathbf{p}) = Df(\mathbf{p}) \cdot \mathbf{u} = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}.$$

De la desigualdad de Cauchy-Schwarz, tenemos

$$||D_{\mathbf{u}}f(\mathbf{p})|| = ||\nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}|| \leq ||\nabla_{\mathbf{x}}f(\mathbf{p})|| \cdot ||\mathbf{u}|| = ||\nabla_{\mathbf{x}}f(\mathbf{p})||.$$

Recordemos que la derivada direccional de $f: \mathbb{R}^n \to \mathbb{R}$, en el punto $\mathbf{p} \in \mathbb{R}^n$, en la dirección del vector unitario $\mathbf{u} \in \mathbb{R}^n$ es

$$D_{\mathbf{u}}f(\mathbf{p}) = Df(\mathbf{p}) \cdot \mathbf{u} = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}.$$

Propiedad

Suponga que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^1 en un disco abierto que contiene al punto \mathbf{p} . Entonces, para cualquier vector unitario $\mathbf{u} \in \mathbb{R}^n$, $D_{\mathbf{u}} f(\mathbf{p})$ existe y

$$D_{\mathbf{u}}f(\mathbf{p}) = Df(\mathbf{p}) \cdot \mathbf{u} = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}.$$

De la desigualdad de Cauchy-Schwarz, tenemos

$$||D_{\mathbf{u}}f(\mathbf{p})|| = ||\nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}|| \leq ||\nabla_{\mathbf{x}}f(\mathbf{p})|| \cdot ||\mathbf{u}|| = ||\nabla_{\mathbf{x}}f(\mathbf{p})||.$$

Si $\nabla_{\mathbf{x}} f(\mathbf{p}) \neq \mathbf{o}$, tomando $\mathbf{u} = \frac{\nabla_{\mathbf{x}} f(\mathbf{p})}{||\nabla_{\mathbf{x}} f(\mathbf{p})||}$, obtenemos

$$D_{\mathbf{u}}f(\mathbf{p}) = ||\nabla_{\mathbf{x}}f(\mathbf{p})||, \qquad D_{-\mathbf{u}}f(\mathbf{p}) = -||\nabla_{\mathbf{x}}f(\mathbf{p})||.$$

Teorema

Supongamos que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^1 en una bola abierta que contiene al punto \mathbf{p} . Entonces, $D_{\mathbf{u}} f(\mathbf{p})$ alcanza un valor máximo de $||\nabla_{\mathbf{x}} f(\mathbf{p})||$ cuando \mathbf{u} es la dirección de $\nabla_{\mathbf{x}} f(\mathbf{p})$ y alcanza un valor mínimo $-||\nabla_{\mathbf{x}} f(\mathbf{p})||$ cuando \mathbf{u} es la dirección de $-\nabla_{\mathbf{x}} f(\mathbf{p})$.

Teorema

Supongamos que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^1 en una bola abierta que contiene al punto \mathbf{p} . Entonces, $D_{\mathbf{u}} f(\mathbf{p})$ alcanza un valor máximo de $||\nabla_{\mathbf{x}} f(\mathbf{p})||$ cuando \mathbf{u} es la dirección de $\nabla_{\mathbf{x}} f(\mathbf{p})$ y alcanza un valor mínimo $-||\nabla_{\mathbf{x}} f(\mathbf{p})||$ cuando \mathbf{u} es la dirección de $-\nabla_{\mathbf{x}} f(\mathbf{p})$.

Prueba: Como

$$D_{\mathbf{u}}f(\mathbf{p}) = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}$$

Teorema

Supongamos que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^1 en una bola abierta que contiene al punto \mathbf{p} . Entonces, $D_{\mathbf{u}} f(\mathbf{p})$ alcanza un valor máximo de $||\nabla_{\mathbf{x}} f(\mathbf{p})||$ cuando \mathbf{u} es la dirección de $\nabla_{\mathbf{x}} f(\mathbf{p})$ y alcanza un valor mínimo $-||\nabla_{\mathbf{x}} f(\mathbf{p})||$ cuando \mathbf{u} es la dirección de $-\nabla_{\mathbf{x}} f(\mathbf{p})$.

Prueba: Como

$$D_{\mathbf{u}}f(\mathbf{p}) = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u} = ||\nabla_{\mathbf{x}}f(\mathbf{p})|| \cdot ||\mathbf{u}|| \cos \angle(\nabla_{\mathbf{x}}f(\mathbf{p}),\mathbf{u})$$

Teorema

Supongamos que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^1 en una bola abierta que contiene al punto \mathbf{p} . Entonces, $D_{\mathbf{u}} f(\mathbf{p})$ alcanza un valor máximo de $||\nabla_{\mathbf{x}} f(\mathbf{p})||$ cuando \mathbf{u} es la dirección de $\nabla_{\mathbf{x}} f(\mathbf{p})$ y alcanza un valor mínimo $-||\nabla_{\mathbf{x}} f(\mathbf{p})||$ cuando \mathbf{u} es la dirección de $-\nabla_{\mathbf{x}} f(\mathbf{p})$.

Prueba: Como

$$D_{\mathbf{u}}f(\mathbf{p}) = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u} = ||\nabla_{\mathbf{x}}f(\mathbf{p})|| \cdot ||\mathbf{u}|| \cos \angle(\nabla_{\mathbf{x}}f(\mathbf{p}),\mathbf{u})$$
$$= ||\nabla_{\mathbf{x}}f(\mathbf{p})|| \cos \angle(\nabla_{\mathbf{x}}f(\mathbf{p}),\mathbf{u}).$$

Teorema

Supongamos que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^1 en una bola abierta que contiene al punto \mathbf{p} . Entonces, $D_{\mathbf{u}} f(\mathbf{p})$ alcanza un valor máximo de $||\nabla_{\mathbf{x}} f(\mathbf{p})||$ cuando \mathbf{u} es la dirección de $\nabla_{\mathbf{x}} f(\mathbf{p})$ y alcanza un valor mínimo $-||\nabla_{\mathbf{x}} f(\mathbf{p})||$ cuando \mathbf{u} es la dirección de $-\nabla_{\mathbf{x}} f(\mathbf{p})$.

Prueba: Como

$$D_{\mathbf{u}}f(\mathbf{p}) = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u} = ||\nabla_{\mathbf{x}}f(\mathbf{p})|| \cdot ||\mathbf{u}|| \cos \angle(\nabla_{\mathbf{x}}f(\mathbf{p}),\mathbf{u})$$
$$= ||\nabla_{\mathbf{x}}f(\mathbf{p})|| \cos \angle(\nabla_{\mathbf{x}}f(\mathbf{p}),\mathbf{u}).$$

El máximo y el mínimo de $D_{\bf u}f({\bf p})$ se alcanzan, respectivamente, cuando $\cos\angle(\nabla_{\bf x}f({\bf p}),{\bf u})=1$ y $\cos\angle(\nabla_{\bf x}f({\bf p}),{\bf u})=-1$.

Teorema

Supongamos que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^1 en una bola abierta que contiene al punto \mathbf{p} . Entonces, $D_{\mathbf{u}} f(\mathbf{p})$ alcanza un valor máximo de $||\nabla_{\mathbf{x}} f(\mathbf{p})||$ cuando \mathbf{u} es la dirección de $\nabla_{\mathbf{x}} f(\mathbf{p})$ y alcanza un valor mínimo $-||\nabla_{\mathbf{x}} f(\mathbf{p})||$ cuando \mathbf{u} es la dirección de $-\nabla_{\mathbf{x}} f(\mathbf{p})$.

Prueba: Como

$$D_{\mathbf{u}}f(\mathbf{p}) = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u} = ||\nabla_{\mathbf{x}}f(\mathbf{p})|| \cdot ||\mathbf{u}|| \cos \angle(\nabla_{\mathbf{x}}f(\mathbf{p}),\mathbf{u})$$
$$= ||\nabla_{\mathbf{x}}f(\mathbf{p})|| \cos \angle(\nabla_{\mathbf{x}}f(\mathbf{p}),\mathbf{u}).$$

El máximo y el mínimo de $D_{\bf u}f({\bf p})$ se alcanzan, respectivamente, cuando $\cos\angle(\nabla_{\bf x}f({\bf p}),{\bf u})=1$ y $\cos\angle(\nabla_{\bf x}f({\bf p}),{\bf u})=-1$.

Pero esto ocurre precisamente cuando $\mathbf{u} = \frac{\nabla_{\mathbf{x}} f(\mathbf{p})}{||\nabla_{\mathbf{x}} f(\mathbf{p})||}$ y cuando $\mathbf{u} = -\frac{\nabla_{\mathbf{x}} f(\mathbf{p})}{||\nabla_{\mathbf{x}} f(\mathbf{p})||}$, respectivamente.

Teorema

Supongamos que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^1 en una bola abierta que contiene al punto \mathbf{p} . Entonces, $D_{\mathbf{u}} f(\mathbf{p})$ alcanza un valor máximo de $||\nabla_{\mathbf{x}} f(\mathbf{p})||$ cuando \mathbf{u} es la dirección de $\nabla_{\mathbf{x}} f(\mathbf{p})$ y alcanza un valor mínimo $-||\nabla_{\mathbf{x}} f(\mathbf{p})||$ cuando \mathbf{u} es la dirección de $-\nabla_{\mathbf{x}} f(\mathbf{p})$.

Prueba: Como

$$D_{\mathbf{u}}f(\mathbf{p}) = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u} = ||\nabla_{\mathbf{x}}f(\mathbf{p})|| \cdot ||\mathbf{u}|| \cos \angle(\nabla_{\mathbf{x}}f(\mathbf{p}),\mathbf{u})$$
$$= ||\nabla_{\mathbf{x}}f(\mathbf{p})|| \cos \angle(\nabla_{\mathbf{x}}f(\mathbf{p}),\mathbf{u}).$$

El máximo y el mínimo de $D_{\bf u}f({\bf p})$ se alcanzan, respectivamente, cuando $\cos\angle(\nabla_{\bf x}f({\bf p}),{\bf u})=1$ y $\cos\angle(\nabla_{\bf x}f({\bf p}),{\bf u})=-1$.

Pero esto ocurre precisamente cuando $\mathbf{u} = \frac{\nabla_{\mathbf{x}} f(\mathbf{p})}{||\nabla_{\mathbf{x}} f(\mathbf{p})||}$ y cuando $\mathbf{u} = -\frac{\nabla_{\mathbf{x}} f(\mathbf{p})}{||\nabla_{\mathbf{x}} f(\mathbf{p})||}$, respectivamente.

En particular, en tales casos, $D_{\bf u}f({\bf p})=||\nabla_{\bf x}f({\bf p})||$ y $D_{\bf u}f({\bf p})=-||\nabla_{\bf x}f({\bf p})||$, resp. \Box

Propiedades del gradiente:

• El gradiente, $\nabla_{\mathbf{x}} f(\mathbf{p})$, de una función diferenciable, en el punto \mathbf{p} , es ortogonal al conjunto de nivel de la función f en ese punto.

Propiedades del gradiente:

- El gradiente, $\nabla_{\mathbf{x}} f(\mathbf{p})$, de una función diferenciable, en el punto \mathbf{p} , es ortogonal al conjunto de nivel de la función f en ese punto.
- El vector de gradiente apunta en la dirección de máxima tasa de aumento de la función y el negativo del gradiente apunta en la dirección de la tasa máximo descenso de la función.

Propiedades del gradiente:

- El gradiente, $\nabla_{\mathbf{x}} f(\mathbf{p})$, de una función diferenciable, en el punto \mathbf{p} , es ortogonal al conjunto de nivel de la función f en ese punto.
- El vector de gradiente apunta en la dirección de máxima tasa de aumento de la función y el negativo del gradiente apunta en la dirección de la tasa máximo descenso de la función.
- La longitud del vector de gradiente nos dice la tasa de aumento en la dirección de aumento máximo y su negativo nos dice la tasa de disminución en la dirección de la disminución máxima.

Propiedades del gradiente:

- El gradiente, $\nabla_{\mathbf{x}} f(\mathbf{p})$, de una función diferenciable, en el punto \mathbf{p} , es ortogonal al conjunto de nivel de la función f en ese punto.
- El vector de gradiente apunta en la dirección de máxima tasa de aumento de la función y el negativo del gradiente apunta en la dirección de la tasa máximo descenso de la función.
- La longitud del vector de gradiente nos dice la tasa de aumento en la dirección de aumento máximo y su negativo nos dice la tasa de disminución en la dirección de la disminución máxima.
- Similarmente, la magnitud de la derivada direccional $|\nabla_{\mathbf{x}} f(\mathbf{p})^T \mathbf{u}|$ indica la tasa de aumento/reducción de f en la dirección de \mathbf{u} .

Definición

Decimos que $f(\mathbf{x}) = O(g(\mathbf{x}))$, f es **O-grande** respecto de g, cuando $\mathbf{x} \to \mathbf{a}$, si existe una constante C tal que

$$|f(\mathbf{x})| \leq C|g(\mathbf{x})|, \qquad para\ todo\ \mathbf{x} \in \mathbb{D}_{\delta}(\mathbf{a}).$$

Definición

Decimos que $f(\mathbf{x}) = O(g(\mathbf{x}))$, f es **O-grande** respecto de g, cuando $\mathbf{x} \to \mathbf{a}$, si existe una constante C tal que

$$|f(\mathbf{x})| \leq C|g(\mathbf{x})|, \qquad para\ todo\ \mathbf{x} \in \mathbb{D}_{\delta}(\mathbf{a}).$$

Decimos que $f(\mathbf{x}) = O(g(\mathbf{x}))$ cuando $\mathbf{x} \to \infty$ si existen constantes positivas r y C tales que $|f(\mathbf{x})| \le C|g(\mathbf{x})|$, para todo \mathbf{x} con $||\mathbf{x}|| \ge r$.

Definición

Decimos que $f(\mathbf{x}) = O(g(\mathbf{x}))$, f es **O-grande** respecto de g, cuando $\mathbf{x} \to \mathbf{a}$, si existe una constante C tal que

$$|f(\mathbf{x})| \leq C|g(\mathbf{x})|, \qquad para\ todo\ \mathbf{x} \in \mathbb{D}_{\delta}(\mathbf{a}).$$

Decimos que $f(\mathbf{x}) = O(g(\mathbf{x}))$ cuando $\mathbf{x} \to \infty$ si existen constantes positivas r y C tales que $|f(\mathbf{x})| \le C|g(\mathbf{x})|$, para todo \mathbf{x} con $||\mathbf{x}|| \ge r$.

Equivalentemente, $f(\mathbf{x}) = O(g(\mathbf{x}))$ cuando $\mathbf{x} \to \mathbf{a}$ si $\lim_{\mathbf{x} \to \mathbf{a}} \left| \frac{f(\mathbf{x})}{g(\mathbf{x})} \right| = C$, para alguna constante $C \neq 0$.

Definición

Decimos que $f(\mathbf{x}) = O(g(\mathbf{x}))$, f es **O-grande** respecto de g, cuando $\mathbf{x} \to \mathbf{a}$, si existe una constante C tal que

$$|f(\mathbf{x})| \leq C|g(\mathbf{x})|, \qquad \textit{para todo } \mathbf{x} \in \mathbb{D}_{\delta}(\mathbf{a}).$$

Decimos que $f(\mathbf{x}) = O(g(\mathbf{x}))$ cuando $\mathbf{x} \to \infty$ si existen constantes positivas r y C tales que $|f(\mathbf{x})| \le C|g(\mathbf{x})|$, para todo \mathbf{x} con $||\mathbf{x}|| \ge r$.

Equivalentemente, $f(\mathbf{x}) = O(g(\mathbf{x}))$ cuando $\mathbf{x} \to \mathbf{a}$ si $\lim_{\mathbf{x} \to \mathbf{a}} \left| \frac{f(\mathbf{x})}{g(\mathbf{x})} \right| = C$, para alguna constante $C \neq 0$.

Definición

Decimos que $f(\mathbf{x}) = o(g(\mathbf{x}))$, f es **o-pequeña** respecto de g, cuando $\mathbf{x} \to \mathbf{a}$, si

$$\lim_{\mathbf{x}\to\mathbf{a}}\left|\frac{f(\mathbf{x})}{g(\mathbf{x})}\right|=0.$$

Ejemplo: $f(x) = 5x^3 - 2x + 1$ es $O(x^3)$, cuando $x \to \infty$.

Ejemplo: $f(x) = 5x^3 - 2x + 1$ es $O(x^3)$, cuando $x \to \infty$.

Basta ver que
$$\lim_{x \to \infty} \left| \frac{5x^3 - 2x + 1}{x^3} \right|$$

Ejemplo: $f(x) = 5x^3 - 2x + 1$ es $O(x^3)$, cuando $x \to \infty$.

Basta ver que
$$\lim_{x\to\infty}\left|\frac{5x^3-2x+1}{x^3}\right|=5$$
.

Ejemplo: $f(x) = 5x^3 - 2x + 1$ es $O(x^3)$, cuando $x \to \infty$.

Basta ver que
$$\lim_{x\to\infty} \left| \frac{5x^3 - 2x + 1}{x^3} \right| = 5$$
.

Ejemplo: $f(x) = 5x^3 - 2x + 1$ es $O(x^3)$, cuando $x \to \infty$.

Basta ver que
$$\lim_{x\to\infty} \left| \frac{5x^3 - 2x + 1}{x^3} \right| = 5$$
.

Esto muestra que $f(x) = O(x^3)$.

Ejemplo: $f(x) = 5x^3 - 2x + 1$ es $o(x^4)$, cuando $x \to \infty$.

Ejemplo: $f(x) = 5x^3 - 2x + 1$ es $O(x^3)$, cuando $x \to \infty$.

Basta ver que
$$\lim_{x\to\infty} \left| \frac{5x^3 - 2x + 1}{x^3} \right| = 5$$
.

Ejemplo:
$$f(x) = 5x^3 - 2x + 1$$
 es $o(x^4)$, cuando $x \to \infty$.

Basta ver que
$$\lim_{x\to\infty} \left| \frac{5x^3 - 2x + 1}{x^4} \right| = 0$$
.

Ejemplo: $f(x) = 5x^3 - 2x + 1$ es $O(x^3)$, cuando $x \to \infty$.

Basta ver que $\lim_{x\to\infty} \left| \frac{5x^3 - 2x + 1}{x^3} \right| = 5$.

Esto muestra que $f(x) = O(x^3)$.

Ejemplo: $f(x) = 5x^3 - 2x + 1$ es $o(x^4)$, cuando $x \to \infty$.

Basta ver que $\lim_{x\to\infty}\left|\frac{5x^3-2x+1}{x^4}\right|=0$.

Ejemplo: $f(x) = 5x^3 - 2x + 1$ es $O(x^3)$, cuando $x \to \infty$.

Basta ver que $\lim_{x\to\infty} \left| \frac{5x^3 - 2x + 1}{x^3} \right| = 5$.

Esto muestra que $f(x) = O(x^3)$.

Ejemplo: $f(x) = 5x^3 - 2x + 1$ es $o(x^4)$, cuando $x \to \infty$.

Basta ver que $\lim_{x\to\infty}\left|\frac{5x^3-2x+1}{x^4}\right|=0$.

Esto muestra que $f(x) = o(x^4)$.

Ejemplo: $f(x) = x - \sin x$ es o(x), cuando $x \to o$.

Ejemplo: $f(x) = 5x^3 - 2x + 1$ es $O(x^3)$, cuando $x \to \infty$.

Basta ver que
$$\lim_{x\to\infty} \left| \frac{5x^3 - 2x + 1}{x^3} \right| = 5$$
.

Esto muestra que $f(x) = O(x^3)$.

Ejemplo:
$$f(x) = 5x^3 - 2x + 1$$
 es $o(x^4)$, cuando $x \to \infty$.

Basta ver que
$$\lim_{x\to\infty} \left| \frac{5x^3 - 2x + 1}{x^4} \right| = 0$$
.

Ejemplo:
$$f(x) = x - \sin x$$
 es $o(x)$, cuando $x \to o$.

Basta ver que
$$\lim_{x\to 0} \left| \frac{x - \sin x}{x} \right|$$

Ejemplo: $f(x) = 5x^3 - 2x + 1$ es $O(x^3)$, cuando $x \to \infty$.

Basta ver que
$$\lim_{x\to\infty} \left| \frac{5x^3 - 2x + 1}{x^3} \right| = 5$$
.

Esto muestra que $f(x) = O(x^3)$.

Ejemplo:
$$f(x) = 5x^3 - 2x + 1$$
 es $o(x^4)$, cuando $x \to \infty$.

Basta ver que
$$\lim_{x\to\infty} \left| \frac{5x^3 - 2x + 1}{x^4} \right| = 0$$
.

Ejemplo:
$$f(x) = x - \sin x$$
 es $o(x)$, cuando $x \to o$.

Basta ver que
$$\lim_{x \to 0} \left| \frac{x - \sin x}{x} \right| = \lim_{x \to 0} \left| \frac{x - \left(x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \dots\right)}{x} \right|$$

Ejemplo: $f(x) = 5x^3 - 2x + 1$ es $O(x^3)$, cuando $x \to \infty$.

Basta ver que
$$\lim_{x\to\infty} \left| \frac{5x^3 - 2x + 1}{x^3} \right| = 5$$
.

Esto muestra que $f(x) = O(x^3)$.

Ejemplo:
$$f(x) = 5x^3 - 2x + 1$$
 es $o(x^4)$, cuando $x \to \infty$.

Basta ver que
$$\lim_{x\to\infty} \left| \frac{5x^3 - 2x + 1}{x^4} \right| = 0$$
.

Ejemplo:
$$f(x) = x - \sin x$$
 es $o(x)$, cuando $x \to o$.

Basta ver que
$$\lim_{x \to 0} \left| \frac{x - \sin x}{x} \right| = \lim_{x \to 0} \left| \frac{x - \left(x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \dots\right)}{x} \right| = 0.$$

Ejemplos de Big *O*:

- x = O(x), cuando $x \to \infty$,
- $x = O(x^2)$, cuando $x \to \infty$,
- $ax^n = O(x^m)$, para $m \ge n$, cuando $x \to \infty$,
- $ax^n \neq O(x^m)$, para m < n, cuando $x \to \infty$,

Ejemplos de Big *O*:

- x = O(x), cuando $x \to \infty$,
- $x = O(x^2)$, cuando $x \to \infty$,
- $ax^n = O(x^m)$, para $m \ge n$, cuando $x \to \infty$,
- $ax^n \neq O(x^m)$, para m < n, cuando $x \to \infty$,

Ejemplos de little o:

- $x^2 = o(x)$, cuando $x \to o$,
- $x \neq o(x^2)$, cuando $x \rightarrow o$,
- $x \sin x = o(x)$, cuando $x \to o$,
- $x \sin x = o(x^2)$, cuando $x \to o$,

Ejemplos de Big *O*:

- x = O(x), cuando $x \to \infty$,
- $x = O(x^2)$, cuando $x \to \infty$,
- $ax^n = O(x^m)$, para $m \ge n$, cuando $x \to \infty$,
- $ax^n \neq O(x^m)$, para m < n, cuando $x \to \infty$,

Ejemplos de little o:

- $x^2 = o(x)$, cuando $x \to o$,
- $x \neq o(x^2)$, cuando $x \rightarrow o$,
- $x \sin x = o(x)$, cuando $x \to o$,
- $x \sin x = o(x^2)$, cuando $x \to o$,

Obs! Importante!, la notaciones O y o dependen del punto donde se toma el límite. Ejemplo: $x^2 = o(x^3)$ cuando $x \to \infty$, pero $x^2 \ne o(x^3)$ cuando $x \to o$.

Propiedades:

- f(x) = O(f(x)).
- Si f(x) = O(g(x)), entonces cf(x) = O(g(x)), para toda $c \in \mathbb{R}$, $c \neq o$.
- Si $f_1(x)$, $f_2(x)$ son O(g(x)), entonces $f_1(x) + f_2(x) = O(g(x))$.
- Si f(x) = o(g(x)), entonces f(x) = O(g(x)).
- Si f(x) = O(g(x)), entonces O(f(x)) + O(g(x)) = O(g(x)).
- Si f(x) = O(g(x)), entonces o(f(x)) + o(g(x)) = o(g(x)).
- Si $f_1(x) = O(g(x))$, pero $f_2(x) = o(g(x))$, entonces $f_1(x) + f_2(x) = O(g(x))$.
- Si f(x) = O(g(x)) y g(x) = o(h(x)), entonces f(x) = o(h(x)).
- Para $c \in \mathbb{R}$, $c \neq o$, cO(g(x)) = O(g(x)) y co(g(x)) = o(g(x)).
- O(f(x)) O(g(x)) = O(f(x)g(x)).
- o(f(x)) O(g(x)) = o(f(x)g(x)).
- o(f(x)) o(g(x)) = o(f(x)g(x)).

Teorema (Fórmula de Taylor en \mathbb{R})

Suponga que $f: \mathbb{R} \to \mathbb{R}$ es de clase C^{m+1} sobre \mathbb{R} , y sea $x_0 \in \mathbb{R}$. Denotemos, $h = x - x_0$. Entonces

$$f(x) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \ldots + \frac{h^m}{m!}f^{(m)}(x_0) + R_{m+1},$$

donde

$$R_{m+1} = \frac{h^{m+1}}{(m+1)!} f^{(m+1)}(x_0 + th), \quad para \ algún \ t \in (0,1).$$

Teorema (Fórmula de Taylor en \mathbb{R})

Suponga que $f: \mathbb{R} \to \mathbb{R}$ es de clase C^{m+1} sobre \mathbb{R} , y sea $x_0 \in \mathbb{R}$. Denotemos, $h = x - x_0$. Entonces

$$f(x) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \ldots + \frac{h^m}{m!}f^{(m)}(x_0) + R_{m+1},$$

donde

$$R_{m+1} = \frac{h^{m+1}}{(m+1)!} f^{(m+1)}(x_0 + th), \quad para \ algún \ t \in (0,1).$$

Usando la notación Big O, observe que $R_{m+1} = O(h^{m+1})$, si $h \to o$.

Teorema (Fórmula de Taylor en \mathbb{R})

Suponga que $f: \mathbb{R} \to \mathbb{R}$ es de clase C^{m+1} sobre \mathbb{R} , y sea $x_0 \in \mathbb{R}$. Denotemos, $h = x - x_0$. Entonces

$$f(x) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \ldots + \frac{h^m}{m!}f^{(m)}(x_0) + R_{m+1},$$

donde

$$R_{m+1} = \frac{h^{m+1}}{(m+1)!} f^{(m+1)}(x_0 + th), \quad para \ algún \ t \in (0,1).$$

Usando la notación Big O, observe que $R_{m+1}=O(h^{m+1})$, si $h \to o$. Así, la Fórmula de Taylor resulta

$$f(x) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \ldots + \frac{h^m}{m!}f^{(m)}(x_0) + O(h^{m+1}).$$

Teorema (Fórmula de Taylor en \mathbb{R})

Suponga que $f: \mathbb{R} \to \mathbb{R}$ es de clase C^{m+1} sobre \mathbb{R} , y sea $x_0 \in \mathbb{R}$. Denotemos, $h = x - x_0$. Entonces

$$f(x) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \ldots + \frac{h^m}{m!}f^{(m)}(x_0) + R_{m+1},$$

donde

$$R_{m+1} = \frac{h^{m+1}}{(m+1)!} f^{(m+1)}(x_0 + th), \quad para \ algún \ t \in (0,1).$$

Usando la notación Big O, observe que $R_{m+1} = O(h^{m+1})$, si $h \to o$. Así, la Fórmula de Taylor resulta

$$f(x) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \ldots + \frac{h^m}{m!}f^{(m)}(x_0) + O(h^{m+1}).$$

Usando la notación o pequeña, observe que $R_{m+1} = o(h^m)$, si $h \to o$.

Teorema (Fórmula de Taylor en \mathbb{R})

Suponga que $f: \mathbb{R} \to \mathbb{R}$ es de clase C^{m+1} sobre \mathbb{R} , y sea $x_0 \in \mathbb{R}$. Denotemos, $h = x - x_0$. Entonces

$$f(x) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \ldots + \frac{h^m}{m!}f^{(m)}(x_0) + R_{m+1},$$

donde

$$R_{m+1} = \frac{h^{m+1}}{(m+1)!} f^{(m+1)}(x_0 + th), \quad \textit{para algún } t \in (0,1).$$

Usando la notación Big O, observe que $R_{m+1}=O(h^{m+1})$, si $h \to o$. Así, la Fórmula de Taylor resulta

$$f(x) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \ldots + \frac{h^m}{m!}f^{(m)}(x_0) + O(h^{m+1}).$$

Usando la notación o pequeña, observe que $R_{m+1}=o(h^m)$, si h o o. Así, la fórmula es

$$f(x) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \ldots + \frac{h^m}{m!}f^{(m)}(x_0) + o(h^m).$$

Teorema (Fórmula de Taylor en \mathbb{R}^n)

Suponga que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^{m+1} sobre \mathbb{R}^n , y sea $\mathbf{x}_0 \in \mathbb{R}$. Denotemos, $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$. Entonces

$$f(\mathbf{x}) = f(\mathbf{x}_{o}) + \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(\mathbf{x}_{o}) h_{j} + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{x}_{o}) h_{i} h_{j} + \ldots + \frac{1}{m!} \sum_{|I|=m} \frac{\partial^{m} f}{\partial \mathbf{x}_{I}}(\mathbf{x}_{o}) \mathbf{h}_{I} + R_{m+1},$$

donde

$$R_{m+1} = \frac{1}{(m+1)!} \sum_{|I|=m+1} \frac{\partial^{m+1} f}{\partial \mathbf{x}_I} (\mathbf{x}_O + t\mathbf{h}) \, \mathbf{h}_I, \text{ para algún } t \in (0,1).$$

Teorema (Fórmula de Taylor en \mathbb{R}^n)

Suponga que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^{m+1} sobre \mathbb{R}^n , y sea $\mathbf{x}_0 \in \mathbb{R}$. Denotemos, $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$. Entonces

$$f(\mathbf{x}) = f(\mathbf{x}_{o}) + \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(\mathbf{x}_{o}) h_{j} + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{x}_{o}) h_{i} h_{j} + \ldots + \frac{1}{m!} \sum_{|I|=m} \frac{\partial^{m} f}{\partial \mathbf{x}_{I}}(\mathbf{x}_{o}) \mathbf{h}_{I} + R_{m+1},$$

donde

$$R_{m+1} = \frac{1}{(m+1)!} \sum_{|I|=m+1} \frac{\partial^{m+1} f}{\partial \mathbf{x}_I} (\mathbf{x}_O + t\mathbf{h}) \, \mathbf{h}_I, \text{ para algún } t \in (0,1).$$

Aquí,
$$\mathbf{h}=(h_1,\ldots,h_n)$$
, y si $I=(i_1,\ldots,i_n)\in\mathbb{N}^n$ es tal que $|I|=\sum_j i_j=m$, entonces denotamos $\mathbf{x}_I=(x_1^{i_1},\ldots,x_n^{i_n})$, $\mathbf{h}_I=(h_1^{i_1},\ldots,h_n^{i_n})$ y $\frac{\partial^m f}{\partial \mathbf{x}_I}=\frac{\partial^m f}{\partial x_1^{i_1}\cdots\partial x_n^{i_n}}$.

Teorema (Fórmula de Taylor en \mathbb{R}^n)

Suponga que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^{m+1} sobre \mathbb{R}^n , y sea $\mathbf{x}_0 \in \mathbb{R}$. Denotemos, $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$. Entonces

$$f(\mathbf{x}) = f(\mathbf{x}_{o}) + \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(\mathbf{x}_{o}) h_{j} + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{x}_{o}) h_{i} h_{j} + \ldots + \frac{1}{m!} \sum_{|I|=m} \frac{\partial^{m} f}{\partial \mathbf{x}_{I}}(\mathbf{x}_{o}) \mathbf{h}_{I} + R_{m+1},$$

donde

$$R_{m+1} = \frac{1}{(m+1)!} \sum_{|I|=m+1} \frac{\partial^{m+1} f}{\partial \mathbf{x}_I} (\mathbf{x}_O + t\mathbf{h}) \, \mathbf{h}_I, \text{ para algún } t \in (0,1).$$

Aquí,
$$\mathbf{h}=(h_1,\ldots,h_n)$$
, y si $I=(i_1,\ldots,i_n)\in\mathbb{N}^n$ es tal que $|I|=\sum_j i_j=m$, entonces denotamos $\mathbf{x}_I=(x_1^{i_1},\ldots,x_n^{i_n})$, $\mathbf{h}_I=(h_1^{i_1},\ldots,h_n^{i_n})$ y $\frac{\partial^m f}{\partial \mathbf{x}_I}=\frac{\partial^m f}{\partial x_1^{i_1}\cdots\partial x_n^{i_n}}$.

Al igual que en el caso unidimensional, podemos escribir $R_{m+1} = O(||\mathbf{h}||^{m+1})$ y $R_{m+1} = o(||\mathbf{h}||^m)$, cuando $\mathbf{h} \to \mathbf{o}$.

Dos casos particulares:

Teorema (Aproximación de Taylor de primer orden)

Suponga que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^2 sobre \mathbb{R}^n , y sea $\mathbf{x}_0 \in \mathbb{R}$, $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$. Entonces

$$f(\mathbf{x}) = f(\mathbf{x}_{0}) + Df(\mathbf{x}_{0}) \cdot \mathbf{h} + R_{2}$$

Dos casos particulares:

Teorema (Aproximación de Taylor de primer orden)

Suponga que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^2 sobre \mathbb{R}^n , y sea $\mathbf{x}_0 \in \mathbb{R}$, $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$. Entonces

$$f(\mathbf{x}) = f(\mathbf{x}_{\mathrm{o}}) + Df(\mathbf{x}_{\mathrm{o}}) \cdot \mathbf{h} + R_{2} = f(\mathbf{x}_{\mathrm{o}}) + Df(\mathbf{x}_{\mathrm{o}}) \cdot \mathbf{h} + O(||\mathbf{h}||^{2}),$$

donde

$$R_2 = rac{1}{2} \sum_{ij} rac{\partial^2 f}{\partial \mathbf{x}_i} (\mathbf{x}_0 + t\mathbf{h}) \, \mathbf{h}_i, \; para \; algún \; t \in (0,1).$$

Dos casos particulares:

Teorema (Aproximación de Taylor de primer orden)

Suponga que $f: \mathbb{R}^n \to \mathbb{R}$ es de clase C^2 sobre \mathbb{R}^n , y sea $\mathbf{x}_0 \in \mathbb{R}$, $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$. Entonces

$$f(\mathbf{x}) = f(\mathbf{x}_{o}) + Df(\mathbf{x}_{o}) \cdot \mathbf{h} + R_{2} = f(\mathbf{x}_{o}) + Df(\mathbf{x}_{o}) \cdot \mathbf{h} + O(||\mathbf{h}||^{2}),$$

donde

$$R_2 = rac{1}{2} \sum_{|I|=2} rac{\partial^2 f}{\partial \mathbf{x}_I} (\mathbf{x}_O + t\mathbf{h}) \, \mathbf{h}_I, \; \; para \; algún \; t \in (0,1).$$

Teorema (Aproximación de Taylor de segundo orden)

Suponga que $f:\mathbb{R}^n \to \mathbb{R}$ es de clase C³ sobre \mathbb{R}^n , y sea $\mathbf{x}_0 \in \mathbb{R}$, $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$. Entonces

$$f(\mathbf{x}) = f(\mathbf{x}_0) + Df(\mathbf{x}_0) \cdot \mathbf{h} + \frac{1}{2} \mathbf{h}^T D^2 f(\mathbf{x}_0) \mathbf{h} + R_3,$$

donde

$$R_3=rac{1}{3!}\sum_{|I|=2}rac{\partial^3 f}{\partial \mathbf{x}_I}(\mathbf{x}_O+t\mathbf{h})\,\mathbf{h}_I,\;\; para\; algún\; t\in (0,1).$$

En resumen, Si $f:\mathbb{R}^n o \mathbb{R}$ es de clase C^2 , podemos escribir

$$f(\mathbf{x}) = f(\mathbf{x}_0) + Df(\mathbf{x}_0 + t\mathbf{h}), t \in (0, 1).$$

En resumen, Si $f:\mathbb{R}^n o \mathbb{R}$ es de clase C^2 , podemos escribir

$$f(\mathbf{x}) = f(\mathbf{x}_{o}) + Df(\mathbf{x}_{o} + t\mathbf{h}), \quad t \in (0, 1).$$

$$f(\mathbf{x}) = f(\mathbf{x}_{o}) + Df(\mathbf{x}_{o}) \cdot \mathbf{h} + \frac{1}{2} \mathbf{h}^{T} D^{2} f(\mathbf{x}_{o} + t\mathbf{h}) \mathbf{h}, \quad t \in (0, 1).$$