Correction de l'ex 21 p 72 (1èreSTG1)

D. Trémulot

Lycée Jean Pierre Timbaud

28 septembre 2013

• Je n'ai pas le même énoncé que vous...

- Je n'ai pas le même énoncé que vous...
- Dans mon livre, la question porte sur l'année 2006.

- Je n'ai pas le même énoncé que vous...
- Dans mon livre, la question porte sur l'année 2006.
- Notons (u_n) la production de bicyclettes pour la consommation intérieure à l'année 2005 + n (ce qui signifie que $u_0 = 2000000$) et (v_n) la production pour l'exportation à la même année $(v_0 = 250000)$.

- Je n'ai pas le même énoncé que vous...
- Dans mon livre, la question porte sur l'année 2006.
- Notons (u_n) la production de bicyclettes pour la consommation intérieure à l'année 2005 + n (ce qui signifie que $u_0 = 2000000$) et (v_n) la production pour l'exportation à la même année $(v_0 = 250000)$.
- Notons (w_n) la production totale de bicyclette à l'année 2005 + n.

- Je n'ai pas le même énoncé que vous...
- Dans mon livre, la question porte sur l'année 2006.
- Notons (u_n) la production de bicyclettes pour la consommation intérieure à l'année 2005 + n (ce qui signifie que $u_0 = 2000000$) et (v_n) la production pour l'exportation à la même année $(v_0 = 250000)$.
- Notons (w_n) la production totale de bicyclette à l'année 2005 + n.
- On a donc, pour tout $n \in \mathbb{N}$, $w_n = u_n + v_n$.

- Je n'ai pas le même énoncé que vous...
- Dans mon livre, la question porte sur l'année 2006.
- Notons (u_n) la production de bicyclettes pour la consommation intérieure à l'année 2005 + n (ce qui signifie que $u_0 = 2000000$) et (v_n) la production pour l'exportation à la même année $(v_0 = 250000)$.
- Notons (w_n) la production totale de bicyclette à l'année 2005 + n.
- On a donc, pour tout $n \in \mathbb{N}$, $w_n = u_n + v_n$.
- $u_1 = 2000000 \times 1, 1 = 2200000, v_1 = 250000 \times 1, 32 = 330000.$

- Je n'ai pas le même énoncé que vous...
- Dans mon livre, la question porte sur l'année 2006.
- Notons (u_n) la production de bicyclettes pour la consommation intérieure à l'année 2005 + n (ce qui signifie que $u_0 = 2000000$) et (v_n) la production pour l'exportation à la même année $(v_0 = 250000)$.
- Notons (w_n) la production totale de bicyclette à l'année 2005 + n.
- On a donc, pour tout $n \in \mathbb{N}$, $w_n = u_n + v_n$.
- $u_1 = 2000000 \times 1$, 1 = 2200000, $v_1 = 250000 \times 1$, 32 = 330000.
- Donc, la production totale pour 2006 doit être de :

- Je n'ai pas le même énoncé que vous...
- Dans mon livre, la question porte sur l'année 2006.
- Notons (u_n) la production de bicyclettes pour la consommation intérieure à l'année 2005 + n (ce qui signifie que $u_0 = 2000000$) et (v_n) la production pour l'exportation à la même année $(v_0 = 250000)$.
- Notons (w_n) la production totale de bicyclette à l'année 2005 + n.
- On a donc, pour tout $n \in \mathbb{N}$, $w_n = u_n + v_n$.
- $u_1 = 2000000 \times 1$, 1 = 2200000, $v_1 = 250000 \times 1$, 32 = 330000.
- Donc, la production totale pour 2006 doit être de :
- $w_1 = u_1 + v_1 = 2200000 + 330000 = 2530000$ bicyclettes.

Question b) I

Un bloc normal

On cherche $w_8 = u_8 + v_8$.

Un bloc ombré

On cherche $w_8 = u_8 + v_8$.

- •
- La suite (u_n) est la suite géométrique de premier terme $u_0 = 2000000$ et de raison b = 1, 1.
- La suite (v_n) est la suite géométrique de premier terme $v_0 = 250000$ et de raison b = 1,32.
- Ainsi, pour tout $n \in \mathbb{N}$, on a :

Question b) II

- $u_n = u_0 \times a^n = 2000000 \times 1, 1^n$ et $v_n = v_0 \times b^n = 250000 \times 1, 32^n$.
- Donc, $w_8 = u_8 + v_8 = 2000000 \times 1, 1^8 + 250000 \times 1, 32^8 \approx 6591438$.
- Pour satisfaire la demande, la production devra être de 6 591 438 bicyclettes en 2013.
- Si on utilise la fonction ln pour résoudre l'inéquation (*), on écrira :

• On cherche n pour que $v_n > u_n$, c'est-à-dire

- On cherche n pour que $v_n > u_n$, c'est-à-dire
- $250000 \times 1,32^n > 2000000 \times 1,1^n$.

- On cherche n pour que $v_n > u_n$, c'est-à-dire
- $250000 \times 1,32^n > 2000000 \times 1,1^n$.
- Or, $250000 \times 1, 32^n > 2000000 \times 1, 1^n$ $\Leftrightarrow \frac{1,32^n}{1,1^n} > \frac{2000000}{250000} \Leftrightarrow \left(\frac{1,32}{1,1}\right)^n > 8 \Leftrightarrow 1,2^n > 8.$ (*)

- On cherche n pour que $v_n > u_n$, c'est-à-dire
- $250000 \times 1,32^n > 2000000 \times 1,1^n$.
- Or, $250000 \times 1, 32^n > 2000000 \times 1, 1^n$ $\Leftrightarrow \frac{1,32^n}{1,1^n} > \frac{2000000}{250000} \Leftrightarrow \left(\frac{1,32}{1,1}\right)^n > 8 \Leftrightarrow 1,2^n > 8. (*)$
- Nous n'avons pas, pour l'instant, de formule permettant de trouver l'entier n qui convient.

- On cherche n pour que $v_n > u_n$, c'est-à-dire
- $250000 \times 1,32^n > 2000000 \times 1,1^n$.
- Or, $250000 \times 1, 32^n > 2000000 \times 1, 1^n$ $\Leftrightarrow \frac{1,32^n}{1,1^n} > \frac{2000000}{250000} \Leftrightarrow \left(\frac{1,32}{1,1}\right)^n > 8 \Leftrightarrow 1,2^n > 8. (*)$
- Nous n'avons pas, pour l'instant, de formule permettant de trouver l'entier n qui convient.
- En essayant quelques valeurs de n, on obtient :

- On cherche n pour que $v_n > u_n$, c'est-à-dire
- $250000 \times 1,32^n > 2000000 \times 1,1^n$.
- Or, $250000 \times 1, 32^n > 2000000 \times 1, 1^n$ $\Leftrightarrow \frac{1,32^n}{1,1^n} > \frac{2000000}{250000} \Leftrightarrow \left(\frac{1,32}{1,1}\right)^n > 8 \Leftrightarrow 1,2^n > 8.$ (*)
- Nous n'avons pas, pour l'instant, de formule permettant de trouver l'entier n qui convient.
- En essayant quelques valeurs de n, on obtient :
- $1,2^{11} \approx 7,4 \text{ et } 1,2^{12} \approx 8,9.$

- On cherche n pour que $v_n > u_n$, c'est-à-dire
- $250000 \times 1,32^n > 2000000 \times 1,1^n$.
- Or, $250000 \times 1, 32^n > 2000000 \times 1, 1^n$ $\Leftrightarrow \frac{1,32^n}{1,1^n} > \frac{2000000}{250000} \Leftrightarrow \left(\frac{1,32}{1,1}\right)^n > 8 \Leftrightarrow 1,2^n > 8. (*)$
- Nous n'avons pas, pour l'instant, de formule permettant de trouver l'entier n qui convient.
- En essayant quelques valeurs de n, on obtient :
- $1,2^{11} \approx 7,4 \text{ et } 1,2^{12} \approx 8,9.$
- C'est donc à partir de la 12^{ème} année (après 2005, c'est-à-dire en 2017) que l'exportation dépassera pour la première fois la consommation intérieure.

x	-∞	0	+∞
f'(x)			+
f	+∞		+∞

bonjour

au revoir

→ tabl

