# Chapter 1

# Bhargav Annem

May 2023

# 1 Derivations

Let's derive Newton's Second Law for rotational kinematics.

$$F = ma$$

$$F = F_r \hat{r} + F_\phi \hat{\phi}$$
(1)

First, the conversions for rectangular to angular coordinates are as follows:

$$x = r\cos(\phi)$$

$$y = r\sin(\phi)$$

$$\phi = \tan(\frac{y}{x})$$

$$r = \sqrt{x^2 + y^2}$$
(2)

Also,

$$\Delta r = \Delta \phi \hat{\phi}$$

$$\Delta r = \dot{\phi} \Delta t \hat{\phi}$$

$$\frac{\Delta r}{\Delta t} = \dot{\phi} \hat{\phi}$$

$$\frac{d\hat{r}}{dt} = \dot{\phi} \hat{\phi}$$
(3)

To prove this last statement more rigorously, let's decompose  $\vec{r}$  into Cartesian components.

$$\vec{r} = r\cos(\phi)\hat{x} + r\sin(\phi)\hat{y}$$

Then,

$$\frac{d\vec{r}}{dr} = \cos(\phi)\hat{x} + \sin(\phi)\hat{y}$$

$$\frac{d\vec{r}}{dr} = \cos(\phi)\hat{x} + \sin(\phi)\hat{y}$$

and

$$\left|\frac{d\vec{r}}{dr}\right| = \sqrt{\cos(\phi)^2 + \sin(\phi)^2} = 1$$
$$\hat{r} = \cos(\phi)\hat{x} + \sin(\phi)\hat{y}$$

Similarly, solving for  $\frac{d\vec{r}}{d\phi}$  gives us the following:

$$\frac{d\vec{r}}{d\phi} = r(-\sin(\phi)\hat{x} + \cos(\phi)\hat{y})$$

and

$$|\frac{d\vec{r}}{d\phi}| = r\sqrt{(-\sin(\phi)^2) + \cos(\phi)^2} = 1$$

so

$$\hat{\phi} = -\sin(\phi)\hat{x} + \cos(\phi)\hat{y}$$

Initially, we established that

$$\vec{r} = r\hat{r}$$

Then,

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt}(r\hat{r})$$

$$= r\frac{d\hat{r}}{dt} + \hat{r}\dot{r} + \dot{r}\hat{r}$$

$$= r(\frac{-d\phi}{dt}\sin(\phi) + \frac{d\phi}{dt}\cos(\phi)) + \dot{r}\hat{r}$$

$$= r(\frac{d\phi}{dt}(-\sin(\phi) + \cos(\phi))) + \dot{r}\hat{r}$$

$$= r(\dot{\phi}(-\sin(\phi) + \cos(\phi))) + \dot{r}\hat{r}$$

$$= r\dot{\phi}\hat{\phi} + \dot{r}\hat{r}$$
(4)

Then,

$$\frac{d^2\vec{r}}{dt^2} = r(\frac{d\dot{\phi}\hat{\phi}}{dt}) + \dot{\phi}\hat{\phi}\dot{r} + \dot{r}\frac{d\hat{r}}{dt} + \hat{r}\ddot{r}$$

$$\frac{d^2\vec{r}}{dt^2} = r(\ddot{\phi}\hat{\phi} + \dot{\phi}\frac{d\hat{\phi}}{dt}) + \dot{\phi}\hat{\phi}\dot{r} + \dot{r}\frac{d\hat{r}}{dt} + \hat{r}\ddot{r}$$
(5)

And since,

$$\frac{d\hat{\phi}}{dt} = -\dot{\phi}\cos(\phi)\hat{x} - \dot{\phi}\sin(\phi)\hat{y}$$

$$\frac{d\hat{\phi}}{dt} = -\dot{\phi}(\cos(\phi)\hat{x} + \sin(\phi)\hat{y})$$

$$\frac{d\hat{\phi}}{dt} = -\dot{\phi}\hat{r}$$

$$\frac{d\hat{r}}{dt} = -\dot{\phi}(\sin(\phi)\hat{x} - \dot{\phi}\cos(\phi)\hat{y})$$

$$\frac{d\hat{r}}{dt} = \dot{\phi}\hat{\phi}$$
(6)

We end with,

$$\begin{split} \frac{d^2\vec{r}}{dt^2} &= r(\ddot{\phi}\hat{\phi} - \dot{\phi}\dot{\phi}\hat{r}) + \dot{\phi}\hat{\phi}\dot{r} + \dot{r}\dot{\phi}\hat{\phi} + \ddot{r}\hat{r} \\ \vec{a} &= \frac{d^2\vec{r}}{dt^2} = (\ddot{r} - r\dot{\phi}^2\hat{r})\hat{r} + (2r\dot{\phi} + \ddot{\phi})\hat{\phi} \end{split} \tag{7}$$

From here, we conclude with:

$$\vec{F} = m\vec{a} = m(\ddot{r} - r\dot{\phi}^2\hat{r})\hat{r} + m(2r\dot{\phi} + \ddot{\phi})\hat{\phi}$$
(8)

# 2 Problem Solutions

**1.** 1.1 Given the two vectors  $b = \hat{x} + \hat{y}$  and  $c = \hat{x} + \hat{z}$  find b + c, 5b + 2c,  $b \cdot c$ , and  $b \times c$ 

Solution:

$$b + c = 2\hat{x} + \hat{y} + \hat{z}$$

$$5b + 2c = 7\hat{x} + 5\hat{y} + 2\hat{z}$$

$$b \cdot c = 1$$

$$b \times c = \begin{cases} 1, 1, 0 \\ 1, 0, 1 \end{cases}$$

$$= \langle 1, 1, -1 \rangle$$

$$= \hat{x} - \hat{y} - \hat{z}$$

$$(9)$$

2. 1.3 By applying Pythagoras's theorem (the usual two-dimensional version) twice over, prove that the length r of a three-dimensional vector r=(x,y,z) statisfies  $r^2=x^2+y^2+z^2$ 

**Solution:** 

$$h^{2} = x^{2} + y^{2}$$

$$r^{2} = h^{2} + z^{2}$$

$$r^{2} = x^{2} + y^{2} + z^{2}$$
(10)

**3.** Find the angle between a body diagonal of a cube and any of its face diagonals. [Hint: Choose a cube with side 1 adn with one corner at O and the opposite corner at the point (1, 1, 1). Write down ten vector that represents a body diagonal and another that represents a face diagonal, and tenn find ten angle between them as in Problem 1.4].

#### Solution:

$$f_{body} = \langle 1, 1, 1 \rangle$$

$$f_{face} = \langle 1, 1, 0 \rangle$$

$$f_{body} \cdot f_{face} = 2 = |f_{body}||f_{face}|\cos(\phi)$$

$$\sqrt{3}\sqrt{2}\cos(\phi) = 2$$

$$\phi = \arccos(\frac{2}{\sqrt{3}\sqrt{2}})$$

$$\boxed{35.26 \deg}$$

**4.** Prove that the two definitions of the scalar product  $r \cdot s$  as  $rs \cos(\phi)$  and  $\sum r_i s_i$  are equal. One way to do this is to choose your x-axis along the direction of r

# **Solution:**

If r lays along x, then  $\cos(\phi) = 1$  since  $\phi = 0$ . Since  $\sum r_i s_i = \sum r_i \cdot \sum s_i = rs$ , the two statements are equivalent. The longer way is to use the law of cosines to expand  $\cos(\phi)$  in terms of r and s, which will give you an expression that evaluates to a summation.

**5.** In elementary trigonometry, you probably learned the law of cosines for a triangle of sides a, b, c that  $c^2 = a^2 + b^2 - 2ab\cos(\phi)$  where  $\phi$  is the angle between teh sides a and b. Show that the law of cosines is an immediate consequence of the identity  $(a+b)^2 = a^2 + b^2 + 2a \cdot b$ .

### **Solution:**

$$2a \cdot b = 2ab\cos(\phi) \tag{12}$$

Since  $\phi$  represents the angle between a and b (which is the external angle of the triangle  $\pi - \phi$ ), then  $\cos(\phi) \to -\cos(\phi)$ . Let c = a + b, then we get  $c^2 = a^2 + b^2 - 2ab\cos(\phi)$ .

6. The position of a moving particle is given as a function fo time t to be

$$r(t) = \hat{x}b\cos(\omega t) + \hat{y}c\sin(\omega t) + \hat{z}v_o t$$

where b, c, and  $\omega$  are constants. Describe the particle's orbit.

### **Solution:**

The  $\hat{z}v_o t$  part will cause the particle to move upwards continuously, but the two trigonometric functions of different amplitudes will create an elliptical orbit.

7. Let u be an arbitrary fixed unit vector and show that any vector b satisfies

$$b^2 = (u \cdot b)^2 + (u \times b)^2$$

Solution:

$$b^{2} = (ub\cos(\phi))^{2} + (ub\sin(\phi))^{2}$$

$$b^{2} = (ub)^{2}(\cos(\phi)^{2} + \sin(\phi))^{2}$$

$$b^{2} = u^{2}b^{2}$$
(13)

Since |u| = 1 because it is a unit vector, we get  $b^2 = b^2$ .

**8.** Show that the definition of the cross product is equivalent to the elementary definition that  $r \times s$  is perpendicular to both r and s with magnitude  $rs\sin(\phi)$  and direction given by the right-hand rule.

# Solution:

Let  $\vec{v} = (v_1, v_2, v_3)$  and  $\vec{s} = (s_1, s_2, s_3)$ , then:

(14)