

Spring 2021 SKKU Biostats and Big data

Lecture 23 Analysis of Variance (ANOVA)

Review: Key Points

Chapter 27: Inferences for Regression

- $\mu_{\nu} = \beta_0 + \beta_1 x$, $y = \beta_0 + \beta_1 x + \varepsilon$
- Assumption and conditions:
 - Linearity Assumption, Equal Variance Assumption, Normal Population Assumption, Independence Assumption

•
$$SE(b_1) = \frac{s_e}{\sqrt{n-1}s_x}$$
, where $s_e = \sqrt{\frac{\sum(y-\hat{y})^2}{n-2}}$, $s_x = \sqrt{\frac{\sum(x-\bar{x})^2}{n-1}}$

- Hypothesis test: H_0 : $\beta_1 = 0$, $t_{n-2} = \frac{b_1 0}{SE(b_1)}$
- 95% confidence interval for β : $b_1 \pm t_{n-2}^* \times SE(b_1)$
- Standard errors for predicted values: $\hat{y}_{\nu} \pm t_{n-2}^* \times SE$

• Mean:
$$SE(\hat{\mu}_{\nu}) = \sqrt{SE^2(b_1) \times (x_{\nu} - \bar{x})^2 + \frac{s_e^2}{n}}$$
, Individual: $SE(\hat{y}_{\nu}) = \sqrt{SE^2(b_1) \times (x_{\nu} - \bar{x})^2 + \frac{s_e^2}{n} + s_e^2}$

Example: Washing hands, bacteria colonies

- How effective is washing hands with soap in eliminating bacteria?
- Comparing four different methods: with water only (Water), regular soap (Soap), antibacterial soap (ABS), spraying hands with antibacterial spray (AS)
- Question: are there differences?

Bacteria colonies

	Alcohol	AB Soap	Soap	Water
	51	70	84	74
	5	164	51	135
	19	88	110	102
	18	111	67	124
	58	73	119	105
	50	119	108	139
	82	20	207	170
	17	95	102	87
Treatment				
Means	37.5	92.5	106	117

Intuitions in testing whether the means of several groups are equal

- Which one does seem to have same vs. different means?
- The mean values in both figures are actually the same. Why do they look different?
- In the second figure, the variation *within* each group is so small that the differences *between* the means stand out.
 - Comparing the differences between groups with the variation within the groups: F-test!

Differences between and within groups

- Our goal is to compare two variances, one for between groups, and one for within group.
- We use the fact we learned in a previous lecture:
 - lacktriangle For quantitative data, sample mean, \bar{y}
 - $Mean(\bar{y}) = \mu, SD(\bar{y}) = \frac{\sigma}{\sqrt{n}}$
- We will calculate σ in two different methods and compare: one using \bar{y} (between), and the other using all

the data (within).

		y	
Level	n	Mean	$Var(\bar{y})$
Alcohol spray Antibacterial soap Soap Water	8 8 8 8	37.5 92.5 106.0 117.0	$\frac{\sigma^2}{n}$

	Alcohol	AB Soap	Soap	Water
	51	70	84	74
all data	5	164	51	135
	19	88	110	102
	18	111	67	124
	58	73	119	105
	50	119	108	139
	82	20	207	170
	17	95	102	87
Treatment				
Means	37.5	92.5	106	117

 S_{pooled}^2

 σ^2

Differences between and within groups

- $n \times Var(\bar{y})$: Between Mean Square (MS_T), Treatment Mean Square
- s_{pooled}^2 : Within Mean Square (MS_E), Error Mean Square
- We will use the ratio of these two (MS_T/MS_E) as a test!

		\overline{y}	
Level	n	Mean	$Var(\bar{y})$
Alcohol spray Antibacterial soap Soap Water	8 8 8 8	37.5 92.5 106.0 117.0	$\frac{\sigma^2}{n}$

	Alcohol	AB Soap	Soap	Water
	51	70	84	74
all data	5	164	51	135
	19	88	110	102
	18	111	67	124
	58	73	119	105
	50	119	108	139
	82	20	207	170
	17	95	102	87
Treatment				
Means	37.5	92.5	106	117

 s_{pooled}^2 σ^2

Hypothesis testing

- Null hypothesis:
 - H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu$
- $MS_T/MS_E = 1$, if the null hypothesis is true
- MS_T/MS_F follows F-distribution
 - depends on *two* degrees of freedom
 - numerator df from MS_T: k-1
 - denominator df from MS_E : k(n-1) = N-k
 - Example data:
 - $df_1 = k-1 = 3$, $df_2 = N-k = 32-4 = 28$
- F-test: one-tailed test for the MS_T/MS_F ratio
 - also Analysis of Variance (ANOVA)

https://en.wikipedia.org/wiki/F-distribution

Cumulative distribution function

Quiz 23-1

https://forms.gle/bQoNGhr9UppVCtJx7

ANOVA table

has a long history (nearly a century)

0.05

Analysis of Variance Table

69366

1410.14

One-way ANOVA model

- H_0 : $\mu_1 = \mu_2 = \cdots = \mu_k$
- $\mu_i = \mu + \tau_i$, where τ_i : the deviation from the grand mean (μ = mean of mean)
- We can rewrite our null hypothesis, H_0 : $\tau_1 = \tau_2 = \cdots = \tau_k$
- $\hat{\tau}_i = \bar{y}_i \bar{y}$, where, \bar{y}_i is the observed group mean, \bar{y} is the observed grand mean.

•
$$\varepsilon_{ij} = y_{ij} - \bar{y}_j$$

•
$$y_{ij} = \overline{\overline{y}} + (\overline{y}_j - \overline{\overline{y}}) + (y_{ij} - \overline{y}_j)$$

$$\mu \qquad \tau_j \qquad \varepsilon_{ij}$$

• Observations = Grand mean + Treatment effect + Residual

0.0011

F-ratio P-value

7.0636

Let's look at the data

•
$$y_{ij} = \overline{\overline{y}} + (\overline{y}_j - \overline{\overline{y}}) + (y_{ij} - \overline{y}_j)$$
 $\mu \qquad \tau_j \qquad \varepsilon_{ij}$

 y_{ii} : Observations

	Alcohol	AB Soap	Soap	Water	
	51	70	84	74	
	5	164	51	135	
	19	88	110	102	
	18	111	67	124	
	58	73	119	105	
	50	119	108	139	
	82	20	207	170	
	17	95	102	87	
Treatment					
Means	37.5	92.5	106	117	
$ar{\mathcal{y}}_j$					

 \bar{y} : Grand mean

	Alcohol	AB Soap	Soap	Water
	88.25	88.25	88.25	88.25
	88.25	88.25	88.25	88.25
	88.25	88.25	88.25	88.25
=	88.25	88.25	88.25	88.25
	88.25	88.25	88.25	88.25
	88.25	88.25	88.25	88.25
	88.25	88.25	88.25	88.25
	88.25	88.25	88.25	88.25

 $ar{y}_j - ar{ar{y}}$: Treatment effect

	Alcohol	AB Soap	Soap	Water
	-50.75	4.25	17.75	28.75
	-50.75	4.25	17.75	28.75
	-50.75	4.25	17.75	28 75
+	-50.75	4.25	17.75	28.75
	-50.75	4.25	17.75	28.75
	-50.75	4.25	17.75	28.75
	-50.75	4.25	17.75	28.75
	-50.75	4.25	17.75	48.75

Sum of Squares of all these values

$$SS_T = \sum \sum (\bar{y}_j - \bar{\bar{y}})^2$$

Treatment Sum of Squares

$y_{ij} - j$	$ar{y}_j$: Res	dual
--------------	-----------------	------

Analysis of Variance Table

9960.64

1410.14

Sum of Squares

39484

69366

	Alcohol	AB Soap	Soap	Wate
	13.5	-22.5	-22	-43
	-32.5	71.5	\ -55	18
	-18.5	-4.5	4	-15
+	-19.5	18.5	+39	7
	20.5	-19.5	\13	-12
	12.5	26.5	2	22
	44.5	-72.5	101	53
	-20.5	2.5	-\4	-30
			1	

Sum of Squares of all these values

$$SS_E = \sum \sum (y_{ij} - \bar{y}_j)^2$$

Error Sum of Squares

Quiz 23-2

https://forms.gle/cdzfzo2eGbq1DvYm7

Quiz 23-3

https://forms.gle/gwrmqwzfrU9cLiqd6

Assumptions and Conditions

- Independence Assumption
 - 1. Groups must be independent of each other.
 - 2. Data within each treatment group must be independent.
 - Randomization Condition
- Equal Variance Assumption
 - Similar Spread Condition
- Normal Population Assumption
 - Nearly Normal Condition
 - Normal probability plot (using all the residuals)

Lecture 17 | 111417

Comparing means

- Pooled *t*-test
- But a little tweaks:
 - s_p : calculated based on the whole group.
 - *df:* N-k
- Otherwise, the same.
- $H_0: \mu_W \mu_{ABS} = 0$
- $SE(\mu_W \mu_{ABS}) = s_p \sqrt{\frac{1}{n_W} + \frac{1}{n_{ABS}}}$
- df = N k

Pooled *t*-test

- This is simpler than two-sample t-test, but has a big assumption
 - "The variances of the two groups are the same."
 - Advantages:
 - This has a large degrees of freedom than two-sample t-test.
 - Simpler formula for degrees of freedom
 - Disadvantages:
 - The assumption of equal variances is a strong one, and is often not true, and difficult to check.

•
$$s_{\text{pooled}}^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}$$

•
$$s_{\text{pooled}}^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}$$

• $SE_{\text{pooled}}(\bar{y}_1 - \bar{y}_2) = \sqrt{\frac{s_{\text{pooled}}^2}{n_1} + \frac{s_{\text{pooled}}^2}{n_2}} = s_{\text{pooled}}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$

• $df = n_1 + n_2 - 2$

CHOONG-WAN WOO | COCOAN lab | http://cocoanlab.github.io

Correction for multiple comparisons

- If you do multiple tests, the error rate adds up!
- When, $\alpha = 0.05$, if you have 10 tests, the error rate will be $1 (1 0.05)^{10} = 0.4013$
- That's not ideal. We still want to control the total error rate under α !
- Family-wise error rate (FWER)
 - There are many methods to control the FWER $\leq \alpha$.
 - The most popular one: Bonferroni
 - $\alpha_{FWER} = 1 (1 \alpha_{each\ test})^m \le m \cdot \alpha_{each\ test}$ (Boole's inequality), m: # tests
 - Therefore, $\alpha_{each\ test} = \frac{\alpha_{FWER}}{m}$

Key Points

Chapter 28: Analysis of Variance

- Based on the comparison between variances between vs. within groups: $n \cdot Var(\bar{y})$ vs. s_{pooled}^2
- MS_T/MS_E follows the F-distribution with k-1 and N-k as two degrees of freedom
- Another way of presenting ANOVA
 - Observations = Grand mean + Treatment effect + Residual

•
$$y_{ij} = \overline{\overline{y}} + (\overline{y}_j - \overline{\overline{y}}) + (y_{ij} - \overline{y}_j)$$
 $\mu \qquad \tau_j \qquad \varepsilon_{ij}$

- Treatment Sum of Squares: $SS_T = \sum \sum (\bar{y}_i \bar{y})^2$
- Error Sum of Squares: $SS_E = \sum \sum (y_{ij} \bar{y}_i)^2$

•
$$MS_T = \frac{SS_T}{k-1}$$
, $MS_E = \frac{SS_E}{N-k}$, $F_{k-1,N-k} = \frac{MS_T}{MS_E}$

• Comparing means between two groups using Pooled t-test with s_p (based on the whole group) and df = N - k

