Guaranteed Automatic Algorithms with Relative Error

Fred J. Hickernell

Room E1-208, Department of Applied Mathematics, Illinois Institute of Technology, 10 W. 32nd St., Chicago, IL 60616

Abstract

Keywords: adaptive, cones, function recovery, integration, quadrature 2010 MSC: 65D05, 65D30, 65G20

Let A be an $M \times N$ matrix, let K be a small number, and let

$$\mathcal{X} = \{ A\mathbf{c} : \|\mathbf{c}\| \le K \}$$

be a set of elements that we want to estimate based on incomplete data. Here $\|\cdot\|$ be a measure of size, e.g.,

$$\|m{c}\| = \|m{c}\|_0 = \sum_{i=1}^N |c_j|^0$$
 or $\|m{c}\| = \|m{c}\|_1 = \sum_{i=1}^N |c_j|$

Given integers $\widetilde{M} \leq M$ and $\widetilde{N} \leq N$, let $\widetilde{\mathsf{A}}$ denote the upper left $\widetilde{M} \times \widetilde{N}$ block of A . For any $\boldsymbol{x} \in \mathcal{X}$, let $\widetilde{\boldsymbol{x}}$ denote the upper \widetilde{M} rows of \boldsymbol{x} . Let $\widetilde{\boldsymbol{c}}$ denote the solution of

$$\tilde{\boldsymbol{c}} = \underset{\boldsymbol{b}, \|\boldsymbol{b}\| \leq K}{\operatorname{argmin}} \|\tilde{\boldsymbol{x}} - \widetilde{\mathsf{A}}\boldsymbol{b}\|.$$

Our estimate of x based on only \widetilde{M} data is $A\widetilde{c}$.

Acknowledgements