Séries numériques

1. Définitions

a) Séries numériques : soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{K}^\mathbb{N}$ une suite réelle ou complexe. On appelle série de terme général u_n (ou "série des u_n ") et on note $\sum u_n$ la suite de terme général

$$S_n = \sum_{k=0}^n u_k$$

Le terme S_n est appelé somme partielle d'ordre n de la série

b) Convergence : on dit que la série $\sum u_n$ est convergente lorsque (S_n) converge. Dans ce cas, la limite S, appelée somme de la série, se note

$$S = \sum_{n=0}^{+\infty} u_n$$

Le réel $R_n = S - S_n$ est appelé **reste** d'ordre n de la série, de sorte que $S = S_n + R_n$. On a alors

$$\boxed{R_n = \sum_{k=n+1}^{+\infty} u_k} \quad \text{et} \quad \boxed{(R_n)_{n \in \mathbb{N}} \text{ converge vers } 0}$$

Exemple de référence : séries géométriques (1) . Soit $x \in \mathbb{C}$:

Si
$$|x| < 1$$
, alors $\sum x^n$ est convergente et $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$

Exemple de référence 2 : exponentielle (1). Soit $x \in \mathbb{R}$:

$$\sum \frac{x^n}{n!} \text{ est convergente et } \sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x$$

En particulier $\sum \frac{1}{n!}$ est convergente de somme e.

Remarque: on ne modifie pas la nature de la série $\sum u_n$ en modifiant ses premiers termes

2. Propriétés

- a) Limite de (u_n) : si $\sum u_n$ est une série convergente, alors $\lim u_n = 0$
 - La réciproque est fausse : $\lim \frac{1}{n} = 0$ mais $\sum_{n \ge 1} \frac{1}{n}$ diverge (série harmonique)
 - En particulier, par contraposée : $si(u_n)$ ne converge pas vers 0, alors la série $\sum u_n$ diverge. On dit qu'il y a **divergence grossière** de la série.

Exemple de référence : séries géométriques (2) . Soit $x \in \mathbb{C}$:

$$\sum x^n$$
 est convergente si et seulement si $|x| < 1$

1

Séries télescopiques : on suppose que pour tout $n \in \mathbb{N}$, $\underline{u_n = v_{n+1} - v_n}$. Alors

La série
$$\sum u_n$$
 converge si et seulement si la suite (v_n) converge

En effet, on a pour tout n

$$S_n = \sum_{k=0}^n u_k = \sum_{k=0}^n (v_{k+1} - v_k) = v_{n+1} - v_0$$
 Remarque: c'est une méthode pour la convergence des séries, mais aussi pour l'étude des suites.

- c) Propriétés algébriques :
 - (i) Toute combinaison linéaire de deux séries convergentes $\sum u_n$ et $\sum v_n$ est convergente. On a alors

$$\forall (\lambda, \mu) \in \mathbb{C}^2, \left[\sum_{n=0}^{+\infty} (\lambda u_n + \mu v_n) = \lambda \sum_{n=0}^{+\infty} u_n + \mu \sum_{n=0}^{+\infty} v_n \right]$$

- (ii) La somme d'une série convergente et d'une série divergente est divergente
- (iii) Si $u_n = x_n + iy_n$, où (x_n) et (y_n) sont des suites réelles, alors

$$\sum u_n \text{ converge si et seulement si } \sum x_n \text{ et } \sum y_n \text{ convergent et alors } \sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} x_n + i \sum_{n=0}^{+\infty} y_n$$

- 3. Séries à termes positifs
- <u>Critère de convergence</u>: soit $(u_n)_{n\in\mathbb{N}}$ une suite de **réels positifs.** Alors $S_n=\sum_{k=0}^n u_k$ est croissante. Donc

La série
$$\sum u_n$$
 converge si (S_n) est majorée

- Critères de comparaison : soient (u_n) et (v_n) deux suites réelles positives.
 - (i) On suppose qu'à partir du rang N on ait $u_n \leqslant v_n$ et que $\sum v_n$ converge. Alors $\sum u_n$ converge

On déduit de ce résultat :

1.
$$si u_n = O(v_n)$$
 et $\sum v_n$ converge, alors $\sum u_n$ converge

2.
$$si u_n = o(v_n)$$
 et $\sum v_n$ converge, alors $\sum u_n$ converge

3. si
$$u_n \sim v_n$$
 alors $\sum v_n$ converge si et seulement si $\sum u_n$ converge

(ii) On suppose qu'à partir du rang N on ait $u_n \leqslant v_n$ et que $\sum u_n$ diverge. Alors $\sum v_n$ diverge

Ainsi:

1.
$$si u_n = O(v_n)$$
 et $\sum u_n$ diverge, alors $\sum u_n$ diverge

2.
$$si u_n = o(v_n)$$
 et $\sum u_n$ diverge, alors $\sum u_n$ diverge

2

Attention : ces critères sont faux pour des séries à termes quelconques.

Toutefois, pour l'équivalence, il suffit qu'une des deux suites soit positive (l'autre l'est nécessairement à partir d'un certain rang)

c) Comparaison séries/intégrales : on suppose que $f:\mathbb{R}_+ \to \mathbb{R}$ est continue, positive et décroissante.

On pose $u_n = f(n)$. Alors pour tout $n \in \mathbb{N}$:

$$u_{n+1} \leqslant \int_{n}^{n+1} f(t) \, dt \leqslant u_{n}$$

ou pour tout $n \ge 1$:

$$\int_{n}^{n+1} f(t) dt \leqslant u_{n} \leqslant \int_{n-1}^{n} f(t) dt$$

Par sommation, on obtient

$$\boxed{\int_{1}^{n+1} f \leqslant \sum_{k=1}^{n} u_k \leqslant \int_{0}^{n} f}$$

Ce résultat extrèmement utile (et ses variantes) permet de transférer l'étude d'une série vers une étude d'intégrale et inversement.

En particulier, il permet d'établir la convergence des séries de Riemann :

d) Convergence des séries de Riemann : soit $\alpha \in \mathbb{R}$. Alors

$$\boxed{\sum_{n\geqslant 1}\frac{1}{n^{\alpha}} \text{ converge si et seulement si } \alpha>1}$$

En particulier $\sum \frac{1}{n}$ diverge, $\sum \frac{1}{n^2}$ converge, $\sum \frac{1}{\sqrt{n}}$ converge.

Application: "méthode du n^{α} ": soit $\sum \dot{u_n}$ une série à termes positifs (à partir d'un certain rang)

Si on trouve
$$\alpha > 1$$
 tel que $n^{\alpha}u_n$ converge vers un réel fini, alors la série $\sum u_n$ converge

En effet si $\lim n^{\alpha}u_n=0$, alors $u_n=o\left(\frac{1}{n^{\alpha}}\right)$, et si $\lim n^{\alpha}u_n=\ell>0$ alors $u_n\sim\frac{\ell}{n^{\alpha}}$.

On conclut avec b). De la même manière :

Si on trouve
$$\alpha \leqslant 1$$
 tel que
$$\begin{cases} n^{\alpha}u_n \text{ converge vers } \ell > 0 \\ \text{ou } n^{\alpha}u_n \text{ diverge vers } + \infty \end{cases}$$
, alors la série $\sum u_n$ diverge

Exemples : nature des séries de terme général $u_n=\frac{2n+1}{n^2+3}, v_n=\frac{n+1}{n^3+2}, \ w_n=\frac{\ln n}{n^2}, z_n=e^{-n}$

4. Séries à termes quelconques

- a) Convergence absolue : soit $\sum u_n$ une série à termes quelconques réels ou complexes.
 - (i) On dit que $\sum u_n$ est **absolument convergente** lorsque la série à termes positifs $\sum |u_n|$ est convergente.
 - (ii) Théorème : $\sin \sum u_n$ est absolument convergente, alors elle est convergente.

De plus dans ce cas on a l'inégalité triangulaire généralisée

$$\left| \left| \sum_{n=0}^{+\infty} u_n \right| \leqslant \sum_{n=0}^{+\infty} |u_n| \right|$$

3

Attention : la réciproque est fausse. par exemple on montre que $\sum \frac{(-1)^n}{n}$ est convergente (critère des séries alternées) mais elle n'est pas absolument convergente.

- b) Comparaison à une série à termes positifs : on suppose (u_n) quelconque et (v_n) à termes positifs.
 - si $u_n = O\left(v_n\right)$ et $\sum v_n$ converge, alors $\sum u_n$ converge absolument
 - 2. $si u_n = o(v_n)$ et $si v_n$ converge, alors $si v_n$ converge absolument Attention: éviter l'utilisation d'équivalents pour les séries à termes quelconques.

Exemples : $\sum \frac{\sin{(n)}}{n^2+1}$ et $\sum \frac{(-1)^n \ln{n}}{n^2}$ sont absolument convergentes.