AutoInland Vehicle Insurance Claim Challenge

This is a notebook by Samson Tontoye.

Table of Contents

- 1. Problem Definition\
- 2. Read Data\
- 3. EDA\ 3.1 Custom Color Palette\ 3.2 Numeric Variables\ 3.3 Categorical Variables
- 4. Feature Engineering
- 5. Modelling\ 5.1 Logistic Regression\ 5.2 Random Forest\ 5.3 KNeighborsClassifier\ 5.4 LightGBM\ 5.5 CatBoost\ 5.6 XGBoost\
- 6. Conclusion

Introduction

This notebook looks into using various python-based machine learning and data science libraries in an attempt to develop a predictive machine learning model that determines if a customer will submit a vehicle insurance claim within next three months from their first transaction.

What we'll end up with

Since we already have a dataset, we'll approach the problem with the following machine learning modelling framework.

To work through these topics, we'll use pandas, Matplotlib and NumPy for data analysis, as well as, Scikit-Learn for machine learning and modelling tasks.

We'll work through each step and by the end of the notebook, we'll have a handful of models, all which can predict whether or not a customer will claim insurance within the first three months using precision, recall and F1 score as the evaluation metric.

1. Problem Definition

This notebook is an insurance claim classification machine learning project with an imbalanced class. In this case, the problem we will be exploring is binary classification (a sample can only be one of two things).

This is because we are going to be using a number of different features (pieces of information) to predict if a customer will submit a vehicle insurance claim within next three months from their first transaction.

2. Data

The dataset came from Zindi in a formatted way Zindi

The data describes ~12,000 policies sold by AutoInland for car insurance. Information on the car type, make, customer age and start of policy are in the data.

3. Evaluation

The evaluation metric is something to define at the start of a project.

Since machine learning is very experimental:

Since we are working with a highly imbalanced dataset, we will use the precision, recall and F1 score as an appropriate evaluation metric. If we can get a score of say 0.9 or over across this three evaluation metric at predicting whether or not a customer will submit a vehicle insurance claim within next three months from their first transaction during the proof of concept, we'll pursue this project.

4. Features

Features are different parts of the data. We're going to visualize the relationships between the different features of the data and how it can lead to a customer that will submit an insurance claim.

One of the most common ways to understand the features is to look at the **data dictionary**. For this project, the data dictionary is in the **Variable Definitions** csv file.

```
In [367...
         # Data Manipulation
         import numpy as np
         import pandas as pd
         import scipy
         # Visualizations
         import matplotlib.pyplot as plt
         import seaborn as sns
         import missingno
         import plotly.express as px
         import plotly.figure factory as ff
         # Feature Selection and Encoding
         from sklearn.preprocessing import OneHotEncoder, LabelEncoder
         # Machine Learning
         import sklearn
         from sklearn.linear model import LogisticRegression
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.ensemble import RandomForestClassifier
         from lightgbm import LGBMClassifier
         from catboost import CatBoostClassifier
         from xgboost import XGBClassifier
         import catboost as cb
         import xgboost as xgb
         import lightgbm as lgb
         # For the imbalanced dataset
         from imblearn.over sampling import SMOTE
         # Model Evaluations
         from sklearn.model selection import train test split, cross val score
         from sklearn.metrics import confusion matrix, classification report
         from sklearn.metrics import precision score, recall score, f1 score, accuracy score, roc a
         from sklearn.metrics import plot roc curve
         # Manage warnings
```

```
import warnings
warnings.filterwarnings('ignore')

#For Datetime
import datetime as dt

from tqdm.notebook import tqdm_notebook
from collections import Counter

# Plot the figure inline
%matplotlib inline
```

2. Read Data

3. Exploratory Data Analysis

Cleaning: To clean our data, we'll need to work with:

- **Missing values**: Either omit elements from a dataset that contain missing values or impute them (fill them in).
- Special values: Numeric variables are endowed with several formalized special values including ±Inf, NA
 and NaN. Calculations involving special values often result in special values, and need to be
 handled/cleaned.
- **Outliers**: They should be detected, but not necessarily removed. Their inclusion in the analysis is a statistical decision.
- **Obvious inconsistencies**: A person's age cannot be negative, an under-aged person cannot possess a drivers license. Find the inconsistencies and plan for them.

When exploring our dataset and its features, we have many options available to us. We can explore each feature individually, or compare pairs of features, finding the correlation between. Let's start with some simple Univariate (one feature) analysis.

Features can be of multiple types:

- Nominal: is for mutual exclusive, but not ordered, categories.
- Ordinal: is one where the order matters but not the difference between values.
- Interval: is a measurement where the difference between two values is meaningful.
- Ratio: has all the properties of an interval variable, and also has a clear definition of 0.0.

There are multiple ways of manipulating each feature type, but for simplicity, we'll define only two feature types:

- Numerical: any feature that contains numeric values.
- Categorical: any feature that contains categories, or text.

Since EDA has no real set methodology, the following is a short check list to to walk through:

- 1. From the dataframe features, what features are the highest indicator that the customer will claim insurance in the first 3 months?
- 2. What's missing from the data and how do you deal with it?
- 3. Does gender play a role in a customer claiming insurance in the first 3 months?
- 4. Does policy start date play a role in a customer claiming insurance in the first 3 months?
- 5. Does policy end date/First transaction date play a role in a customer claiming insurance in the first 3 months?

In [367...

Top 5 rows of the train dataframe
train.head()

Out[367...

	ID	Policy Start Date	Policy End Date	Gender	Age	First Transaction Date	No_Pol	Car_Category	Subject_Car_Colour	Subject_Car_M
0	ID_0040R73	2010- 05-14	2011- 05-13	Male	30	2010-05-14	1	Saloon	Black	TOY
1	ID_0046BNK	2010- 11-29	2011- 11-28	Female	79	2010-11-29	1	JEEP	Grey	TOY
2	ID_005QMC3	2010- 03-21	2011- 03-20	Male	43	2010-03-21	1	Saloon	Red	TOY
3	ID_0079OHW	2010- 08-21	2011- 08-20	Male	2	2010-08-21	1	NaN	NaN	١
4	ID_00BRP63	2010- 08-29	2010- 12-31	Entity	20	2010-08-29	3	NaN	NaN	٨

In [367...

Top 5 rows of the test dataframe
test.head()

Out[367...

•	ID	Policy Start Date	Policy End Date	Gender	Age	First Transaction Date	No_Pol	Car_Category	Subject_Car_Colour	Subject_Car_M
0	ID_01QM0NU	2010- 10-23	2011- 10-22	Female	46	2010-10-23	1	NaN	NaN	I
1	ID_024NJLZ	2010- 10-14	2011- 10-13	Male	32	2010-10-14	1	NaN	NaN	I
2	ID_02NOVWQ	2010- 08-29	2011- 08-28	Female	45	2010-08-29	2	Saloon	Black	Нс
3	ID_02VSP68	2010- 06-13	2011- 06-12	Female	58	2010-06-13	1	Saloon	NaN	TOY
4	ID_02YB37K	2010- 07-01	2011- 06-30	NaN	120	2010-07-01	1	Saloon	Red	Hyu

In [367...

Check the variable definition
var_def

Out[367...

ID

Unique ID for the customer

	ID	Unique ID for the customer
0	Policy Start Date	Date policy started
1	Policy End Date	Date policy ended
2	Gender	Gender of the customer
3	Age	Age of the customer
4	ProductName	Name of Insurance policy
5	First Transaction Date	First date payment was made
6	No_Pol	Number of policies the customer has
7	Car_Category	Type of car
8	Subject_Car_Colour	Car colour
9	Subject_Car_Make	Car make
10	LGA_Name	City where policy was purchased
11	State	State where policy was purchased
12	No_of_claims_3_mon_period	Wether the customer claimed within a 3 month p

In [367...

Check the state names state names

Out[367...

State	LGA	
Borno State	Abadam	0
Federal Capital Territory	Abaji	1
Akwa Ibom State	Abak	2
Ebonyi State	Abakaliki	3
Abia State	Aba-North	4
		•••
Warri-South-West	Warri	870
Warri-South	Warri-Central	871
Abuja-Municipal-Area-Council	Wuse-11	872
Lagos-Mainland	Yaba	873
Unknown	NaN	874

875 rows × 2 columns

```
In [367...
         # Let's see how many positive (1) and negative (0) samples we have in our dataframe
         print('Length of the train dataset:', len(train))
         print('Length of the test dataset:', len(test))
         print('Total no of customers that will not claim insurance in the first 3 months:', len(t)
         print('Total no of customers that will claim insurance in the first 3 months:', len(train
```

```
Length of the train dataset: 12079
Length of the test dataset: 1202
Total no of customers that will not claim insurance in the first 3 months: 10624
Total no of customers that will claim insurance in the first 3 months: 1455
```

Since these two values (Customers that will claim insurance within the first 3 months and customers that will not claim insurance in the first 3 months) are not close, our target column can be considered imbalanced. An imbalanced target column, meaning some classes have far more samples, can be harder to model than a balanced set. From our target column, if the customer will claim insurance in the first 3 months, it is denoted with 1, if the customer will not claim insurance in the first 3 months, it is denoted as 0.

```
In [367...
           # To see the value in percentages
          train['target'].value counts(normalize=True)
          0 0.879543
Out[367...
               0.120457
          Name: target, dtype: float64
         The proportion of customer that will not claim insurance in the first 3 months to those that will claim insurance
         in the first 3 months is 7.3:1. 1 in 7 customers will claim insurance in the first 3 months.
In [367...
           # Check the shape of the train and test dataset
          print(f'The shape of the train dataset is: {train.shape}\nThe shape of the test dataset is
          The shape of the train dataset is: (12079, 14)
          The shape of the test dataset is: (1202, 13)
In [368...
          # Check the information for the training dataset
          train.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 12079 entries, 0 to 12078
          Data columns (total 14 columns):
           # Column
                             Non-Null Count Dtype
          ____
                                           _____
                                           12079 non-null object
          1 Policy Start Date 12079 non-null datetime64[ns]
2 Policy End Date 12079 non-null datetime64[ns]
3 Gender 11720 non-null object
4 Age 12079 non-null int64
           5 First Transaction Date 12079 non-null datetime64[ns]
           6 No_Pol 12079 non-null int64
7 Car_Category 8341 non-null object
8 Subject_Car_Colour 5117 non-null object
9 Subject_Car_Make 9603 non-null object
           10 LGA_Name
                                         5603 non-null object
                                         5591 non-null object
           11 State
          12 ProductName 12079 non-null object
13 target 12079 non-null int64
          dtypes: datetime64[ns](3), int64(3), object(8)
          memory usage: 1.3+ MB
In [368...
           # Check for missing values in the training dataset
          train.isna().sum()
                                           0
Out[368...
          Policy Start Date
                                           0
          Policy End Date
                                          0
```

359

0

0

3738

6962 2476

6476

Gender

No Pol

LGA Name

Car Category

First Transaction Date

Subject_Car_Colour Subject_Car_Make LGA Name

```
ProductName
                                    0
                                    0
        target
        dtype: int64
In [368...
         # Check the information for the test dataset
         test.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1202 entries, 0 to 1201
        Data columns (total 13 columns):
                                   Non-Null Count Dtype
           Column
        --- ----
                                    ----
         0
            ID
                                    1202 non-null object
         1
            Policy Start Date
                                   1202 non-null datetime64[ns]
                                  1202 non-null datetime64[ns]
         2 Policy End Date
                                   1161 non-null object
         3
            Gender
         4 Age
                                   1202 non-null int64
         5 First Transaction Date 1202 non-null datetime64[ns]
                                  1202 non-null int64
         6 No Pol
         7 Car_Category 830 non-null object
8 Subject_Car_Colour 505 non-null object
```

954 non-null object 546 non-null object 546 non-null object

1202 non-null object

6488

From the pandas test dataframe above,

Subject Car Make

10 LGA_Name 11 State

12 ProductName

memory usage: 122.2+ KB

- Age and No_Pol are int datatype.
- Policy Start Date, Policy End Date and First Transaction Date are datetime datatype.
- The rest of the columns are object datatype.

dtypes: datetime64[ns](3), int64(2), object(8)

```
In [368...
```

State

The .describe() function will demonstrate the count, mean, std dev, min, max, etc values
Numerical features present in the train dataset.
train.describe()

Out[368...

	Age	No_Pol	target
count	12079.000000	12079.000000	12079.000000
mean	42.234539	1.307227	0.120457
std	97.492565	0.733085	0.325509
min	-6099.000000	1.000000	0.000000
25%	35.000000	1.000000	0.000000
50%	41.000000	1.000000	0.000000
75%	50.000000	1.000000	0.000000
max	320.000000	10.000000	1.000000

```
In [368...
```

The .describe() function will demonstrate the count, mean, std dev, min, max, etc values
Numerical features present in the test dataset
test.describe()

Out[368... Age No_Pol

	Age	No_Pol
count	1202.000000	1202.000000
mean	43.792845	1.257903
std	19.986245	0.613510
min	-26.000000	1.000000
25%	35.000000	1.000000
50%	41.000000	1.000000
75%	50.000000	1.000000
max	120.000000	7.000000

```
In [368...
```

```
# Visualizing the missing values in the training dataset
ax = train.isna().sum().sort values().plot(kind = 'barh', figsize = (10, 7),
                                            color=['indigo', 'yellow', 'brown', 'pink',
                                                  'cyan', 'gray', 'olive', 'orangered',
                                                  'blue', 'salmon', 'green', 'purple',
                                                  'orange','lightblue', 'red', 'violet'])
# Add some attributes
plt.title('Percentage of Missing Values Per Column in Training Set', fontdict={'size':15})
plt.xlabel('Total Number')
plt.ylabel('Features')
for p in ax.patches:
    percentage ='{:,.0f}%'.format((p.get width()/train.shape[0])*100)
    width, height =p.get width(),p.get height()
    x=p.get x()+width+0.02
    y=p.get y()+height/2
    ax.annotate(percentage, (x,y));
```



```
ID
                                        0
Out[368...
         Policy Start Date
                                        0
         Policy End Date
                                        0
         Gender
                                       41
         Age
                                        0
         First Transaction Date
                                        0
         No Pol
                                        0
         Car Category
                                      372
         Subject Car Colour
                                      697
         Subject Car Make
                                      248
                                      656
         LGA Name
                                      656
         State
                                        0
         ProductName
         dtype: int64
```

```
In [368...
```

```
# Visualizing the missing values in the test dataset
ax = test.isna().sum().sort values().plot(kind = 'barh', figsize = (10, 7),
                                           color=['blue', 'salmon', 'green', 'purple',
                                                                    'orange', 'lightblue', 'n
                                                                    'indigo', 'yellow', 'bro
                                                                    'cyan', 'gray', 'olive',
# Add some attributes
plt.title('Percentage of Missing Values Per Column in Test Set', fontdict={'size':15})
plt.xlabel('Total Number')
plt.ylabel('Features')
for p in ax.patches:
    percentage = '{:,.1f}%'.format((p.get width()/test.shape[0])*100)
    width, height =p.get width(),p.get height()
    x=p.get x()+width+0.02
    y=p.get y()+height/2
    ax.annotate(percentage, (x,y))
```



```
'Subject_Car_Colour', 'Subject_Car_Make', 'LGA_Name', 'State', 'ProductName', 'target'], dtype='object')
```

Investigate numeric variables- Age, No_Pol

Histograms for each, their effect on the target.

Potentially graph their effects

3.1 Create Custom Color Palette

```
In [368... # Create the different shades of colors for the color pallete
    colors = ["#fld295", "#c8c14f", "#fa8775", "#ea5f94", "#cd34b5", "#9d02d7"]
    palette = sns.color_palette(palette = colors)

    sns.palplot(palette, size = 2)
    plt.text(-0.5, -0.7, 'Color Palette For This Notebook', size = 20, weight = 'bold')

Out[368... Text(-0.5, -0.7, 'Color Palette For This Notebook')
```

Color Palette For This Notebook

3.2 Numeric Variables

Out[369...

Age Distribution of Customers.

```
In [369...
         # Plot the histogram for the age distribution of customers
         fig, ax = plt.subplots(figsize = (10,6))
         fig.patch.set facecolor('#faf9f7')
         ax.set_facecolor('#faf9f7')
         sns.histplot(
             train['Age'],
             kde = False,
             color = "#ea5f94"
         for i in ['top', 'left', 'bottom', 'right']:
             ax.spines[i].set visible(False)
         plt.text(5, 360, r'\mu\ = '+str(round(train['Age'].mean(), 2)), fontsize = 12)
         plt.text(5, 343, r'$\sigma$ = '+str(round(train['Age'].std(), 2)), fontsize = 12)
         plt.title('Age Distribution of Customers', fontsize = 18, fontweight = 'bold', pad = 10)
         plt.xlabel('Age', fontsize = 14, labelpad = 10)
         plt.ylabel('Count', fontsize = 14, labelpad = 10)
        Text(0, 0.5, 'Count')
```


Check for Outliers in Age

```
-2000
-4000
-6000
```

```
In [369... # Visualize the age distribution of the customers before removing outliers
   Age = list(train['Age'].values)
   hist_data=[Age]

   group_labels=['Age']
   colour=['Red']

   fig = ff.create_distplot(hist_data, group_labels, show_hist=True, colors=colour)
   fig.show()
   print('The shape before removing the Age outliers :', train.shape)
```

The shape before removing the Age outliers: (12079, 14)

```
In [369...
# Visualize the age distribution of the customers after removing outliers
Age=list(train['Age'].values)
hist_data=[Age]

group_lables=['Age']
colour=['Red']

fig=ff.create_distplot(hist_data,group_lables,show_hist=True,colors=colour)
fig.show()

train.drop(train[train['Age'] < 0].index, inplace = True)
train.drop(train[train['Age'] < 18].index, inplace = True)
train.drop(train[train['Age'] > 150].index, inplace = True)
print("The shape after removing the Age outliers : ",train.shape)
```

The shape after removing the Age outliers : (11511, 14)

```
In [369...
         # Visualize the spread of the age distribution of the customers after removing outliers
         train Age = train.groupby('Age', as index=False)['target'].sum()
         fig = px.histogram(train Age,
                             x = "Age",
                             y = "target",
                             barmode = "group",
                             nbins = 10,
                             opacity = 0.75,
                             range x = [0, 85],
                             color discrete sequence=px.colors.qualitative.Light24)
         fig.update layout (height = 500,
                            width = 700,
                            title text ='Age Distribution of Customers',
                            title font size= 20,
                            title y = 0.97,
                            title x = 0.48,
                            yaxis title = 'Count')
         fig.show()
```

```
In [369... # Plot a boxplot of the age of the customers showing the spread and IQR after removing out sns.boxplot(y = 'Age', data = train ,palette='Accent')

Out[369... <AxesSubplot:ylabel='Age'>
```


Observation:

After removing the outliers, the range is now between 18 and 144 which is where most of the age samples are distributed.

Frequency of Number of Policies.

```
fig, ax = plt.subplots(figsize = (10,6))
fig.patch.set_facecolor('#faf9f7')
ax.set_facecolor('#faf9f7')

sns.histplot(
    train['No_Pol'],
    kde = False,
    color = "#ea5f94"
)

for i in ['top', 'left', 'bottom', 'right']:
    ax.spines[i].set_visible(False)

plt.text(5, 360, r'$\mu$ = '+str(round(train['No_Pol'].mean(), 2)), fontsize = 12)
plt.text(5, 343, r'$\sigma$ = '+str(round(train['No_Pol'].std(), 2)), fontsize = 12)
plt.title('Distribution of Number of Policies', fontsize = 18, fontweight = 'bold', pad = plt.xlabel('No_Pol', fontsize = 14, labelpad = 10)
plt.ylabel('Count', fontsize = 14, labelpad = 10)
```

Out[369... Text(0, 0.5, 'Count')

Check Outliers in Number of Policies

```
In [369... # Plot a boxplot of the number of policies of the customers showing the spread and IQR with sns.boxplot(y = 'No_Pol', data = train ,palette='Accent')
```

Out[369... <AxesSubplot:ylabel='No_Pol'>


```
In [369... # Display the Number of Policies Outliers
No_Pol = list(train['No_Pol'].values)
hist_data=[No_Pol]

group_labels=['No_Pol']
colour=['Red']

fig = ff.create_distplot(hist_data, group_labels, show_hist=True, colors=colour)
fig.show()
print('Display the Number of Policies Outliers :', train.shape)
```

```
Display the Number of Policies Outliers: (11511, 14)

In [370... # Plot a boxplot of the number of policies of the customers showing the spread and IQR after sns.boxplot(y = 'No_Pol', data = train ,palette='Accent')

Out[370... <AxesSubplot:ylabel='No_Pol'>

10

8

6
```

Plot the density plot of the Age and Number of Policies of Insurance

fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (14, 6))

fig.patch.set facecolor('#faf9f7')

i.set facecolor('#faf9f7')

train['Age'][train['target'] == 0],

for i in (ax1, ax2):

sns.kdeplot(

ax = ax1,

color = '#c8c14f',
shade = True,

4

2

In [370...

```
alpha = 0.5,
    linewidth = 1.5,
   ec = 'black'
)
sns.kdeplot(
   train['Age'][train['target'] == 1],
   ax = ax1,
   color = '#cd34b5',
   shade = True,
   alpha = 0.5,
   linewidth = 1.5,
   ec = 'black'
)
ax1.legend(['Will not claim insurance', 'Will claim insurance'], loc = 'upper right')
ax1.set xlabel('Age', fontsize = 14, labelpad = 10)
ax1.set ylabel('Density', fontsize = 14, labelpad = 10)
sns.kdeplot(
   train['No Pol'][train['target'] == 0],
   ax = ax2,
   color = '#c8c14f',
   shade = True,
   alpha = 0.5
   linewidth = 1.5,
   ec = 'black'
)
sns.kdeplot(
   train['No Pol'][train['target'] == 1],
   ax = ax2
   color = '#cd34b5',
   shade = True,
   alpha = 0.5,
   linewidth = 1.5,
   ec = 'black'
)
ax2.legend(['Will not claim insurance', 'Will claim insurance'], loc='upper right')
ax2.set xlabel('Number of Policies', fontsize = 14, labelpad = 10)
ax2.set ylabel('')
plt.suptitle('Density of Age, Number of Insurance Policies', fontsize = 16, fontweight =
for i in (ax1, ax2):
    for j in ['top', 'left', 'bottom', 'right']:
        i.spines[j].set visible(False)
fig.tight layout()
```


Scatter plots of numerical variables colored by insurance.

```
In [370...
          # Assign the target column to a variable
         will claim insurance = train[train['target'] == 1]
         will not claim insurance = train[train['target'] == 0]
In [370...
          # Plot a scatter plot of the number of insurance policies against age
         fig, ax = plt.subplots(1, 1, figsize=(15, 6))
         fig.patch.set facecolor('#faf9f7')
         for j in range (0, 1):
             ax.set facecolor('#faf9f7')
         ## Age vs Number of Policies
         sns.scatterplot(
             data = will not claim insurance, x = 'Age', y = 'No Pol', color = '#c8c14f',
             alpha = 0.4, ax = ax
         sns.scatterplot(
             data = will claim insurance, x = 'Age', y = 'No Pol', color = "#9d02d7",
             ax = ax, edgecolor = 'black', linewidth = 1.2, alpha = 0.6
         sns.despine()
         for i in range (0, 1):
             ax.legend(['Will not claim insurance', 'Will claim insurance'], loc='center left', bbc
         fig.tight layout()
```


3.3 Categorical Variables

Let's first investigate the target variable.

```
In [370...
          # Check the proportion of classes of the target column
         train['target'].value counts(normalize = True)
              0.878464
Out[370...
             0.121536
         Name: target, dtype: float64
In [370...
          # Plot a pie chart of the target column showing the proportion
         fig, ax = plt.subplots(figsize = (10, 6))
         fig.patch.set_facecolor('#faf9f7')
         ax.set facecolor('#faf9f7')
         labels = ['Will not claim insurance', 'Will claim insurance']
         colors = ['#f1d295', '#ea5f94']
         sizes = train['target'].value counts()
         plt.pie(sizes, explode = [0, 0.15], labels = labels, colors = colors,
                     autopct = '%1.1f%%', shadow = True, startangle = 140,
                     wedgeprops = {'ec': 'black'}, textprops = {'fontweight': 'medium'}
         plt.axis('equal')
         plt.title('Percentage of Target')
         Text(0.5, 1.0, 'Percentage of Target')
Out[370...
```


Gender

In [370...

Check the number of genders

```
train.Gender.value counts()
                                 Male
                                                                                                   7322
Out[370...
                                  Female
                                                                                                 3193
                                   Joint Gender
                                                                                                    215
                                  Entity
                                                                                                  201
                                  NOT STATED
                                                                                                 146
                                  NO GENDER
                                                                                                     62
                                   SEX
                                  Name: Gender, dtype: int64
In [370...
                                     # Replace gender that is not male or female with other
                                     mapper = { 'Entity':'Other', 'Joint Gender':'Other', 'NOT STATED':'Other', 'NO GENDER': 'Other', 'NOT STATED':'Other', 'NOT STATED':
                                     train.Gender = train.Gender.replace(mapper)
                                      # Confirm mappings
                                      train.Gender.value counts()
                                 Male
                                                                          7322
Out[370...
                                                                          3193
                                  Female
                                   Other
                                                                             659
                                  Name: Gender, dtype: int64
In [371...
                                      # Replace the other with nan
                                     train['Gender'] = train['Gender'].replace({'Other': np.nan})
                                     train['Gender']
                                                                            Male
Out[371...
                                                                    Female
                                   2
                                                                             Male
                                   4
                                                                                NaN
                                                                             Male
                                  12074
                                                               Female
                                  12075
                                                              Female
                                  12076
                                                                        Male
                                   12077
                                                                                NaN
```

```
Name: Gender, Length: 11511, dtype: object

In [371... # Drop cases where either variable is missing data = train[['Gender', 'target']].dropna() pd.crosstab(data.Gender, data.target)
```

Out[371... target 0 1

12078

Gender

Female 2842 351

Female

Male 6432 890

Out[371... Text(0.5, 1.0, 'Percentage of Gender')


```
In [371... # plot a two way contingency table of insurance by gender
plt.subplots(figsize=(8,6))

insurance_matrix = np.array([[890, 6432], [351, 2842]])
labels = np.array([['Male - Will claim insurance', 'Male - Will not claim insurance'],
```

```
['Female - Will claim insurance', 'Female - Will not claim insurance']]
formatted = (np.asarray(["{0}\n{1:.0f}".format(text, data) for text, data in zip(labels.f]]

sns.heatmap(
   insurance_matrix,
   annot = formatted,
   fmt = '',
   cmap = palette,
   xticklabels = False,
   yticklabels = False,
   linecolor = 'black',
   linewidth = 1,
   annot_kws = {'fontweight': 'semibold'}
)
plt.title('Two-Way Contingency Table of Insurance by Gender', pad = 15, fontsize = 14)
plt.ylabel('Gender', fontsize = 12, labelpad = 10)
plt.xlabel('target', fontsize = 12, labelpad = 10)
```

Out[371...

Two-Way Contingency Table of Insurance by Gender

Text(0.5, 50.0, 'target')

Observation:

Since there are 3193 women, 2842 women will not claim insurance and 348 of them will claim insurance, we might infer, based on this one variable if the customer is a woman, there's a 11% chance the female customer will claim insurance.

As for males, there are 7322 males, 6432 men will not claim insurance and 890 of them will claim insurance. So we might predict, if the customer is male, there is a 12.2% chance he will claim insurance.

Averaging these two values, we can assume, based on no other parameters, if there's a person, there's a 11.6% chance they will claim insurance.

Car Category

In [371...

Check the proportion of each car in the car category
train.Car_Category.value_counts(normalize=True)

```
Saloon
                                     0.723378
Out[371...
         JEEP
                                     0.244425
         Truck
                                     0.011150
                                     0.006264
        Bus
        Mini Bus
                                    0.004260
        Pick Up
                                    0.002756
                                    0.001629
        Motorcycle
        Mini Van
                                    0.001503
                                    0.001503
        Sedan
        Wagon
                                    0.001002
        Shape Of Vehicle Chasis 0.000752
         Station 4 Wheel
                                    0.000626
                                    0.000376
        Van
        Tipper Truck
                                    0.000125
        Pick Up > 3 Tons
                                    0.000125
                                    0.000125
        CAMRY CAR HIRE
        Name: Car_Category, dtype: float64
```

```
In [371...
```

```
# Car category Distribution before Joining
ax = train.Car Category.value counts().sort values().plot(kind='barh',
                                                             figsize=(10, 7),
                                                             color=['blue', 'salmon', 'gree
                                                                    'orange','lightblue', '1
                                                                    'indigo', 'yellow', 'bro
                                                                    'cyan', 'gray', 'olive',
# Add some attributes
plt.title('Car Category Distribution', fontdict={'size': 15})
plt.xlabel('Number of Cars')
plt.ylabel('Car Category')
for p in ax.patches:
    percentage = '{:,.1f}%'.format((p.get width()/train.shape[0]) * 100)
    width, height = p.get width(), p.get height()
   x = p.get x() + width + 0.02
    y = p.get y() + height/2
    ax.annotate(percentage, (x, y));
```



```
'Mini Van':'Others', 'Wagon': 'Others', 'Shape Of Vehicle Chasis': 'Others', 'St
                    'Pick Up > 3 Tons': 'Others', 'CAMRY CAR HIRE': 'Others', 'Tipper Truck': 'Other
         train.Car Category = train.Car Category.replace(mapper)
         # Confirm mappings
         train.Car Category.value counts()
        Saloon
                   5774
Out[371...
        JEEP
                  1951
        Others
                   257
        Name: Car Category, dtype: int64
In [371...
         # Plot a pie chart of the car category column showing the proportion after joining
         fig, ax = plt.subplots(figsize = (10, 6))
         fig.patch.set facecolor('#faf9f7')
         ax.set facecolor('#faf9f7')
         labels = ['Saloon', 'JEEP', 'Others']
         colors = ['#f1d295', '#ea5f94']
         sizes = train['Car Category'].value counts()
         plt.pie(sizes, explode = [0, 0.15, 0.2], labels = labels, colors = colors,
                     autopct = '%1.1f%%', shadow = True, startangle = 200,
                     wedgeprops = {'ec': 'black'}, textprops = {'fontweight': 'medium'}
         plt.axis('equal')
         plt.title('Percentage of Car Category')
```

Text(0.5, 1.0, 'Percentage of Car Category') Out[371...

Observation:

72.3% of the vehicles insured by AutoInland insurance are saloon cars, 24.4% of vehicles insured are jeeps and 3.2% of vehicles insured have been grouped as others.

```
In [371...
          # Compare the target column to car category
         pd.crosstab(train.Car Category, train.target)
```

```
        target
        0
        1

        Car_Category
        1714
        237

        Others
        202
        55
```

Frequency of Car Category

Saloon 4978 796

```
In [371...
```

```
# let's check the car categories

plt.style.use('fivethirtyeight')
plt.rcParams['figure.figsize'] = (10, 8)

sns.countplot(train['Car_Category'], palette = 'cool')
plt.title('Different Types of Car Categories', fontsize = 20)
plt.xticks(rotation = 90)
plt.show()
```



```
In [372... # Barchart of the different car categories and check the number that claimed insurance and # claim insurance after joining.
fig, ax = plt.subplots(figsize=(10,6))
fig.patch.set_facecolor('#faf9f7')
```

```
ax.set facecolor('#faf9f7')
bar pal = ["#c8c14f", "#fa8775"]
s = sns.countplot(
    data = train, x = 'Car Category', hue = 'target', palette = bar pal,
    linewidth = 1.2, ec = 'black'
for i in ['top', 'right', 'bottom', 'left']:
    ax.spines[i].set visible(False)
plt.legend(['Will not claim insurance', 'Will claim insurance'])
plt.title("Car Category Effect on Insurance Claim", size = 16, weight = 'bold', pad = 12)
plt.xlabel('Car Category', size = 12, labelpad = 12)
plt.ylabel('Count', size = 12, labelpad = 12)
for i in s.patches:
    s.annotate(format(i.get height(), '.0f'), (i.get x() + i.get width() / 2., i.get height()
fig.tight layout()
```


Observation

Out of the 5774 saloon car owners, 4978 saloon car owners will not claim insurance within the first three months from their first transaction while 796 will claim insurance within the first three months of their first transaction. Of the 1951 jeep owners, 1714 will not claim insurance while 237 jeep owners will claim insurance within the first three months of their first transaction. Of the others vehicle category, 202 will not claim insurance while 55 will claim insurance within the first three months of their first transaction.

Subject Car Make

```
In [372...
          # Check the proportion of subject car make
         train.Subject Car Make.value counts(normalize=True)
         TOYOTA
```

Out[372...

0.520572

```
Honda
                     0.108807
                     0.063844
        Lexus
        Mercedes
                    0.054567
        Hyundai
                    0.045509
                       . . .
                    0.000109
        Tata
        CHANGAN
                   0.000109
                    0.000109
        Raston
                    0.000109
        ZOYTE
        Rols Royce 0.000109
        Name: Subject Car Make, Length: 68, dtype: float64
In [372...
         # Compare the target column to subject car make
         pd.crosstab(train.Subject Car Make, train.target)
                       0 1
Out[372...
                target
        Subject_Car_Make
                       27 13
                      1 0
                  ABG
```

ABG 1 0
ACURA 57 7
As Attached 5 5
Ashok Leyland 1 0
...
Volkswagen 112 5
Volvo 28 8
Wrangler Jeep 1 0
Yamaha 1 0
ZOYTE 1 0

68 rows × 2 columns

```
In [372...
         # Subject car make Distribution before joining
         ax = train.Subject Car Make.value counts().sort values().plot(kind='barh',
                                                                       figsize=(12, 22),
                                                                       color=['blue', 'salmon', 'gree
                                                                             'orange','lightblue', '1
                                                                             'indigo', 'yellow', 'bro
                                                                             'cyan', 'gray', 'olive',
          # Add some attributes
         plt.title('Subject Car Make', fontdict={'size': 20})
         plt.xlabel('Number of Cars')
         plt.ylabel('Car Make')
         for p in ax.patches:
             percentage = '{:,.1f}%'.format((p.get_width()/train.shape[0]) * 100)
             width, height = p.get width(), p.get height()
             x = p.get x() + width + 0.02
             y = p.get y() + height/2
             ax.annotate(percentage, (x, y));
```



```
# Replace subject car make that are less than 200 with others
In [372...
                 mapper = {'Range Rover':'Others', 'Mitsubishi':'Others', 'ACURA':'Others', 'BMW': 'Others
                                     'Peugeot':'Others', '.': 'Others', 'Volvo': 'Others', 'Mack': 'Others', 'Audi':
                                    'Pontiac': 'Others', 'Chevrolet': 'Others', 'DAF': 'Others', 'Skoda': 'Others',
                                    'Porsche': 'Others', 'As Attached': 'Others', 'Scania': 'Others', 'Suzuki': 'Other
                                    'Isuzu': 'Others', 'Dodge': "Others", 'Renault': 'Others', 'Land Rover.': 'Others'
                                     'GAC': 'Others', 'Man': "Others", 'LIBERTY': 'Others', 'MINI COOPER': 'Others',
                                     'Hummer': 'Others', 'Chrysler': 'Others', 'Fiat': 'Others', 'Grand Cherokee': 'Grand Chero
                                    'Seat': 'Others', 'Black': 'Others', 'FOTON': 'Others', 'Datsun': 'Others', 'Geel
                                     'REXTON': 'Others', 'ZOYTE': 'Others', 'CHANGAN': 'Others', 'BRILLIANCE': 'Others'
                                     'COMMANDER': 'Others', 'Jincheng': 'Others', 'Caddillac': 'Others', 'Buik': 'Others'
                                     'Howo': 'Others', 'Lincoln':'Others', 'Tata':'Others', 'Ashok Leyland':'Others',
                                     'Volkswagen':'Others', 'Iveco': 'Others'}
                 train.Subject Car Make = train.Subject Car Make.replace(mapper)
                  # Confirm mappings
                 train.Subject Car Make.value counts(normalize=True)
                TOYOTA
                                     0.520572
Out[372...
               Others
                                    0.116556
                                    0.108807
                Honda
                                    0.063844
                Lexus
               Mercedes 0.054567
                                    0.045509
                Hyundai
                Kia
                                      0.035578
                                     0.029248
                Ford
                                    0.025319
                Nissan
                Name: Subject Car Make, dtype: float64
In [372...
                 # Plot a barchart of the different car make and check the number that claimed
                 # insurance and those that did not claim insurance after joining.
                 fig, ax = plt.subplots(figsize=(10,6))
                 fig.patch.set facecolor('#faf9f7')
                 ax.set facecolor('#faf9f7')
                 bar pal = ["#c8c14f", "#fa8775"]
                 s = sns.countplot(
                         data = train, x = 'Subject Car Make', hue = 'target', palette = bar pal,
                         linewidth = 1.2, ec = 'black'
                 for i in ['top', 'right', 'bottom', 'left']:
                         ax.spines[i].set visible(False)
                 plt.legend(['Will not claim insurance', 'Will claim insurance'])
                 plt.title("Subject Car Make Effect on Insurance Claim", size = 16, weight = 'bold', pad =
                 plt.xlabel('Subject Car Make', size = 12, labelpad = 12)
                 plt.ylabel('Count', size = 12, labelpad = 12)
                 for i in s.patches:
                         s.annotate(format(i.get height(), '.0f'), (i.get x() + i.get width() / 2., i.get height()
                                              va = 'center', xytext = (0, 9), textcoords = 'offset points')
                 fig.tight layout()
```


Observation

Out of the 4770 toyota car owners, 3994 toyota car owners will not claim insurance within the first three months from their first transaction while 776 will claim insurance within the first three months of their first transaction. For the others vehicle category, there are a total of 1068 car owners of differenct car types, out of the 1068 others car make, 923 will not claim insurance while 145 will claim insurance within the first three months of their first transaction. Of the 585 lexus owners, 495 will not claim insurance while 90 lexus owners will claim insurance within the first three months of their first transaction. Out of the 417 hyundai car owners, 376 will not claim insurance while 41 hyundai car owners will claim insurance. There are a total of 997 honda car owners, out of the 997 honda owners, 892 will not claim insurance while 105 will claim insurance. Out of the 500 mercedes benz owners, 439 will not claim insurance within the first three months of their first transaction. Out of the 268 ford owners, 228 will not claim insurance within the first three months of their first transaction while 40 will claim insurance within the first three months of their first transaction while 18 will claim insurance within the first three months of their first transaction. There are a total of 326 kia car owners, 294 will not claim insurance within the first three months while 32 will claim insurance within the first three months

STATE

```
In [372...
          # Check the proportion of state
          train.State.value counts (normalize=True)
         Lagos
                              0.567426
Out[372...
         Benue
                              0.114120
         Eti-Osa
                              0.040157
                              0.035487
         Abuja-Municipal
         Ibeju-Lekki
                              0.022600
                                 . . .
         Ogba-Ndoni
                              0.000187
         Essien-Udim
                              0.000187
         Ughelli-North
                              0.000187
```

```
Name: State, Length: 111, dtype: float64
In [373...
          # Compare the target column to State
         pd.crosstab(train.State, train.target)
                target 0 1
Out[373...
                 State
           ABULE-EGBA 5 1
          AJAO-ESTATE 2 0
             Aba-North 3 0
             Aba-South 1 0
                 Abia 2 0
          Ughelli-North
         Umuahia-South 2 0
           Warri-Central 23 4
           Warri-North 3 0
           Warri-South 2 0
```

0.000187 0.000187

111 rows × 2 columns

Asari-Toru

Ovia-SouthWest

```
In [373...
         # State Distribution before joining
         ax = train.State.value counts().sort values().plot(kind='barh',
                                                                       figsize=(12, 22),
                                                                       color=['blue', 'salmon', 'gree
                                                                             'orange','lightblue', '1
                                                                             'indigo', 'yellow', 'bro
                                                                             'cyan', 'gray', 'olive',
          # Add some attributes
         plt.title('States', fontdict={'size': 20})
         plt.xlabel('Number of Cars')
         plt.ylabel('Car Make')
         for p in ax.patches:
             percentage = '{:,.1f}%'.format((p.get_width()/train.shape[0]) * 100)
             width, height = p.get width(), p.get height()
             x = p.get x() + width + 0.02
             y = p.get y() + height/2
             ax.annotate(percentage, (x, y));
```



```
mapper = {'Abuja-Municipal':'Abuja', 'Eti-Osa':'Lagos', 'Ibeju-Lekki':'Lagos', 'Obia-Akpoi
                   'Ibadan-West':'Oyo', 'Port-Harcourt': 'Rivers', 'Ifako-Ijaye': 'Lagos', 'ENUGU-F
                   'Ife-Central': 'Osun', 'Jos-North': 'Plateau', 'Owerri-Municipal': 'Imo', 'Ijeb
                   'Kaduna-South': 'Kaduna', 'Anambra-East': 'Anambra', 'Enugu-North':'Enugu', 'Laç
                   'Ibadan-East': 'Oyo', 'Nnewi-North': "Anambra", 'Ibadan-North': 'Oyo', 'Etsako-We
                   'Kano-Municipal': 'Kano', 'Awka-South': "Anambra", 'Obafemi-Owode': 'Ogun', 'Iles
                   'Aniocha-South': 'Delta', 'Onitsha-North': 'Anambra', 'Ado-Ota': 'Oqun', 'Oqun-V
                   'Warri-North': 'Delta', 'Ilorin-West': 'Kwara', 'Udi-Agwu': 'Enugu', 'AJAO-ESTATE
                   'Ondo-West': 'Ondo', 'Ilorin-East': 'Kwara', 'Idemili-North':'Anambra', 'Ekiti-F
                   'Aboh-Mbaise':'Imo', 'Ado-Ekiti':'Ekiti', 'Central-Abuja':'Abuja', 'Ibarapa-Cent
                   'Calabar-Municipality': 'Cross-River', 'Umuahia-South': 'Abia', 'QuaAn-Pan': 'Plat
                   'Ekiti-West': 'Ekiti', 'Ughelli-North': 'Delta', 'Isoko-North': 'Delta', 'Asari-
                   'Oyo-West': 'Oyo', 'Oshimili-North':"Delta", 'Ngor-Okpala': 'Imo', 'Ilesha-East
                   'Owerri-North': 'Imo', 'Ajequnle-State': "Lagos", 'Isoko-south': 'Delta', 'Akoko-
                   'Ijebu-North': 'Ogun', 'N-A': 'Kano', 'Ovia-SouthWest': 'Edo', 'Akwa Ibom': 'Akv
         train.State = train.State.replace(mapper)
         # Confirm mappings
         train.State.value counts()
Out[373... Lagos
Benue
                       3560
                       611
                        260
        Abuja
        Rivers
                        177
        Delta
                        122
                       110
        Ogun
                       102
        Oyo
                         74
        Edo
        Anambra
                        46
        Imo
                        45
                        44
        Kaduna
        Enugu
                         44
        Osun
                        39
        Plateau
                        2.3
        Akwa-Ibom
                        22
        Ondo
                         18
        Niger-State
                        14
        Abia
                         8
        Kano
                          7
                          7
        Kwara
        Cross-River
        Ekiti
                          2
        Ebonyi
        Kogi
                          2
        Gombe
        Kebbi
                          1
        Bauchi
                          1
        Nasarawa
        Bayelsa
        Name: State, dtype: int64
In [373...
         # Plot a barchart of the different states and check the number that claimed
         # insurance and those that did not claim insurance after joining.
         fig, ax = plt.subplots(figsize=(29,10))
         fig.patch.set facecolor('#faf9f7')
         ax.set facecolor('#faf9f7')
         bar pal = ["#c8c14f", "#fa8775"]
         s = sns.countplot(
             data = train, x = 'State', hue = 'target', palette = bar pal,
             linewidth = 1.2, ec = 'black'
```

Replace local governments that are in each states with the actual states

In [373...

```
for i in ['top', 'right', 'bottom', 'left']:
    ax.spines[i].set_visible(False)

plt.legend(['Will not claim insurance', 'Will claim insurance'], loc = 'upper center')
plt.title("Insurance by State", size = 30, weight = 'bold', pad = 30)
plt.xlabel('State', size = 30, labelpad = 30)
plt.ylabel('Count', size = 30, labelpad = 30)

for i in s.patches:
    s.annotate(format(i.get_height(), '.0f'), (i.get_x() + i.get_width() / 2., i.get_height(), '.0f')
```


LGA NAMES

```
In [373...
          train.LGA Name.value counts()
                                   1098
         Victoria Island
Out[373...
         Ikeja
                                    391
         Surulere
                                     279
         Lagos Mainland
                                    216
         Eti-Osa
                                    215
         Oyo West
                                       1
         Isoko south
                                      1
         Ajegunle, Lagos State
                                       1
         Isoko North
         Name: LGA_Name, Length: 256, dtype: int64
In [373...
          # Compare the target column to State
          pd.crosstab(train.LGA Name, train.target)
Out[373...
               target
                     0 1
           LGA_Name
               IFAKO
                      1 1
         ABULE EGBA
                      5 1
         AJAO ESTATE
                     2 0
              AKUTE
                     2 3
            ALAPERE
                    3 0
```

```
      target
      0
      1

      LGA_Name
      34
      4

      Yaba
      34
      4

      Yenagoa
      1
      0

      Yorro
      1
      0

      Zaria
      2
      0

      kumbotso
      1
      0
```

256 rows × 2 columns

```
In [373...
          # LGA Names Distribution
         ax = train.LGA Name.value counts().sort values().plot(kind='barh',
                                                                       figsize=(20, 35),
                                                                       color=['blue', 'salmon', 'gree
                                                                             'orange','lightblue', '1
                                                                             'indigo', 'yellow', 'bro
                                                                             'cyan', 'gray', 'olive',
          # Add some attributes
         plt.title('Local Government Area Distribution', fontdict={'size': 20})
         plt.xlabel('Count')
         plt.ylabel('Names of LGA')
         for p in ax.patches:
             percentage = '{:,.1f}%'.format((p.get width()/train.shape[0]) * 100)
             width, height = p.get_width(), p.get_height()
             x = p.get x() + width + 0.02
             y = p.get y() + height/2
             ax.annotate(percentage, (x, y));
```


Product Name

```
In [373...
         train.ProductName.value counts()
Out[373... Car Classic
                           6297
         CarSafe
                             3524
                            498
         Customized Motor
         Car Plus
                              469
         CVTP
                              412
         CarFlex
                             176
                               92
         Muuve
        Motor Cycle
                              38
         Car Vintage
                               5
         Name: ProductName, dtype: int64
In [374...
         # Compare the target column to State
         pd.crosstab(train.ProductName, train.target)
                           0
                               1
Out[374...
                  target
            ProductName
                   CVTP
                         310
                              102
               Car Classic 5250 1047
                 Car Plus
                         374
                               95
              Car Vintage
                          5
                               0
                 CarFlex
                         147
                               29
                 CarSafe 3511
                               13
         Customized Motor
                         457
                               41
                               7
              Motor Cycle
                          31
                               65
                  Muuve
                          27
In [374...
          # Plot a barchart of the different product name and check the number that claimed
          # insurance and those that did not claim insurance.
         fig, ax = plt.subplots(figsize=(18,8))
         fig.patch.set facecolor('#faf9f7')
         ax.set facecolor('#faf9f7')
         bar pal = ["#c8c14f", "#fa8775"]
         s = sns.countplot(
             data = train, x = 'ProductName', hue = 'target', palette = bar pal,
              linewidth = 1.2, ec = 'black'
         for i in ['top', 'right', 'bottom', 'left']:
              ax.spines[i].set visible(False)
         plt.legend(['Will not claim insurance', 'Will claim insurance'])
         plt.title("Product Name on Insurance Claim", size = 16, weight = 'bold', pad = 12)
         plt.xlabel('Product Name', size = 12, labelpad = 12)
         plt.ylabel('Count', size = 12, labelpad = 12)
         for i in s.patches:
              s.annotate(format(i.get height(), '.0f'), (i.get x() + i.get width() / 2., i.get height()
                         va = 'center', xytext = (0, 9), textcoords = 'offset points')
         fig.tight layout()
```


Observation

Out of the 6297 customers that regstered for Car Classic insurance policy, 5250 Car Classic Customers will not claim insurance within the first three months from their first transaction while 1047 will claim insurance within the first three months of their first transaction. For the Muuve insurance policy, there are a total of 92 customers that registered for the Muuve insurance, out of the 92 Muuve customers, 27 will not claim insurance while 65 will claim insurance within the first three months of their first transaction. Of the 412 customers that registered for CVTP insurance policy, 310 will not claim insurance while 102 customers will claim insurance within the first three months of their first transaction. Out of the 3524 customers that registered for CarSafe insurance policy, 3511 will not claim insurance while 13 CarSafe insurance policy holders will claim insurance. There are a total of 469 CarPlus insurance policy holders, out of the 469 CarPlus insurance policy holders, 374 will not claim insurance while 95 will claim insurance. Out of the 489 Customized motor insurance policy holders, 457 customized motor insurance policy holders will not claim insurance within the first three months of their first transaction while 41 will claim insurance within the first three months of their first trasaction. Out of the 28 motorcycle insurance policy holders, 31 will not claim insurance within the first three months of their first transaction while 7 will claim insurance within the first three months of their first transaction. Of the 176 CarFlex insurance policy holders, 147 will not claim insurance within the first three months of their first transaction while 29 will claim insurance within the first three months of their first transaction. There are a total of 5 Car Vintage insurance policy holders, all 5 of them will not claim insurance within the first three months.

```
In [374... # let's visualize the different product names

plt.style.use('fivethirtyeight')
plt.rcParams['figure.figsize'] = (15, 8)

sns.countplot(train['ProductName'], palette = 'rocket')
plt.title('Different Types of Insurance Product Names', fontsize = 20)
plt.xticks(rotation = 90)
plt.show()
```



```
In [374...
         Length of the training dataset: 11511
         Total no of customers that will not claim insurance in the first 3 months: 10112
         Total no of customers that will claim insurance in the first 3 months: 1399
In [374...
         # Check the shape of the training dataset
         print(f'The shape of the training dataset is: {train.shape}')
         The shape of the training dataset is: (11511, 14)
In [374...
          # Check the proportion of the classes in the target column
         train['target'].value counts(normalize=True)
             0.878464
Out[374...
              0.121536
         Name: target, dtype: float64
In [374...
          # Plot the target value counts with a bar graph
         train.target.value counts().plot(kind='bar', title = 'Target Class', color=['red', 'blue']
```

plt.xlabel('0=Will not claim insurance in 3 months, 1=Will claim insurance in 3 months')

plt.ylabel('Frequency')
plt.xticks(rotation=0);


```
In [374... # Check if there are any missing values
    train.isna().sum()
```

ID 0 Out[374... Policy Start Date 0 0 Policy End Date Gender 996 Age 0 First Transaction Date 0 No Pol 0 3529 Car Category Subject Car Colour 6568 Subject_Car Make 2348 LGA Name 6145 State 6157 ProductName 0 0 target dtype: int64

In [374... # Visualizing the missing values in the dataset missingno.matrix(train, figsize=(30, 5));


```
In [375... # Visualize the missing values in descending order
    missingno.bar(train, sort='descending', figsize=(30, 5));
```


In [375...

check dtype of "Policy_Start_Date, Policy_End_Date, First_Transaction_Date"
train.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 11511 entries, 0 to 12078
Data columns (total 14 columns):

Data	COLUMNIS (COLAI 14 COLUMN	115):	
#	Column	Non-Null Count	Dtype
0	ID	11511 non-null	object
1	Policy Start Date	11511 non-null	datetime64[ns]
2	Policy End Date	11511 non-null	datetime64[ns]
3	Gender	10515 non-null	object
4	Age	11511 non-null	int64
5	First Transaction Date	11511 non-null	datetime64[ns]
6	No_Pol	11511 non-null	int64
7	Car_Category	7982 non-null	object
8	Subject_Car_Colour	4943 non-null	object
9	Subject_Car_Make	9163 non-null	object
10	LGA_Name	5366 non-null	object
11	State	5354 non-null	object
12	ProductName	11511 non-null	object
13	target	11511 non-null	int64
dtype	es: datetime64[ns](3), i	nt64(3), object(8)
memoi	ry usage: 1.6+ MB		

We've turned the PolicyStartDate, PolicyEndDate, FirstTransactionDate column from object datatype to datetime64 datatype.

In [375...

train.head().T

Out[375		0	1	2	4	5
	ID	ID_0040R73	ID_0046BNK	ID_005QMC3	ID_00BRP63	ID_00D3EF6
	Policy Start Date	2010-05-14 00:00:00	2010-11-29 00:00:00	2010-03-21 00:00:00	2010-08-29 00:00:00	2010-10-21 00:00:00
	Policy End Date	2011-05-13 00:00:00	2011-11-28 00:00:00	2011-03-20 00:00:00	2010-12-31 00:00:00	2011-10-20 00:00:00
	Gender	Male	Female	Male	NaN	Male
	Age	30	79	43	20	37
	First Transaction Date	2010-05-14 00:00:00	2010-11-29 00:00:00	2010-03-21 00:00:00	2010-08-29 00:00:00	2010-10-21 00:00:00
	No_Pol	1	1	1	3	2
	Car_Category	Saloon	JEEP	Saloon	NaN	NaN
	Subject_Car_Colour	Black	Grey	Red	NaN	NaN
	Subject_Car_Make	TOYOTA	TOYOTA	TOYOTA	NaN	NaN

	0	1	2	4	5
LGA_Name	NaN	NaN	NaN	Lagos	NaN
State	NaN	NaN	NaN	Lagos	NaN
ProductName	Car Classic	Car Classic	Car Classic	Muuve	Car Classic
target	0	1	0	1	0

4. Feature Engineering

Engineering: There are multiple techniques for feature engineering:

 Decompose: Converting 2014-09-20T20:45:40Z into categorical attributes like hour_of_the_day, part_of_day, etc.

Imputation: We can impute missing values in a number of different ways:

- **Hot-Deck**: The technique then finds the first missing value and uses the cell value immediately prior to the data that are missing to impute the missing value.
- Cold-Deck: Selects donors from another dataset to complete missing data.
- **Mean-substitution**: Another imputation technique involves replacing any missing value with the mean of that variable for all other cases, which has the benefit of not changing the sample mean for that variable.
- **Regression**: A regression model is estimated to predict observed values of a variable based on other variables, and that model is then used to impute values in cases where that variable is missing.

```
In [375...
         train['Policy Start Date']
        0 2010-05-14
Out[375...
               2010-11-29
               2010-03-21
              2010-08-29
              2010-10-21
                   . . .
        12074 2010-05-25
        12075 2010-10-03
        12076 2010-10-10
        12077 2010-02-27
        12078 2010-07-01
        Name: Policy Start Date, Length: 11511, dtype: datetime64[ns]
In [375...
        train['Policy End Date']
             2011-05-13
Out[375...
               2011-11-28
               2011-03-20
               2010-12-31
              2011-10-20
        12074 2011-05-24
        12075 2011-10-02
        12076 2011-10-08
        12077 2011-02-26
        12078 2011-06-30
        Name: Policy End Date, Length: 11511, dtype: datetime64[ns]
In [375...
        train['First Transaction Date']
```

```
2010-05-14
               2010-11-29
               2010-03-21
               2010-08-29
               2010-10-21
        12074 2010-05-25
        12075 2010-10-03
        12076 2010-10-10
        12077 2010-02-27
        12078 2010-07-01
        Name: First Transaction Date, Length: 11511, dtype: datetime64[ns]
       Sort DataFrame by Policy Start Date, Policy End Date and First Transaction
       Date
In [375...
        # Sort DataFrame in date order
        train.sort values(by=['Policy Start Date'], inplace=True, ascending=True)
         train['Policy Start Date'].head()
        8010 2001-12-11
Out[375...
        10526 2002-03-25
        10234 2003-04-13
        12066 2003-12-21
        8124
               2005-08-05
        Name: Policy Start Date, dtype: datetime64[ns]
In [375...
        # Sort DataFrame in date order
         train.sort values(by=['Policy End Date'], inplace=True, ascending=True)
         train['Policy End Date'].head()
        11738 2010-12-31
Out[375...
        6996 2010-12-31
        6050 2010-12-31
              2010-12-31
        4778
        11110 2010-12-31
        Name: Policy End Date, dtype: datetime64[ns]
In [375...
         # Sort DataFrame in date order
         train.sort values(by=['First Transaction Date'], inplace=True, ascending=True)
         train['First Transaction Date'].head()
```

```
8010 2001-12-11
```

```
8124 2005-08-05
        Name: First Transaction Date, dtype: datetime64[ns]
In [375...
        train.head()
```

Out[375...

10526 2002-03-25 10234 2003-04-13 12066 2003-12-21

Out[375			Policy	Policy	First						
		ID	Start Date	End Date	Gender	Age	Transaction Date	No_Pol	Car_Category	Subject_Car_Colour	Subject_C
	8010	ID_O51ZQ1B	2001- 12-11	2011- 12-10	Female	37	2001-12-11	1	Saloon	Black	
	10526	ID_VJ1FAVO	2002- 03-25	2011- 03-24	Male	37	2002-03-25	1	Saloon	Black	

	ID	Policy Start Date	Policy End Date	Gender	Age	First Transaction Date	No_Pol	Car_Category	Subject_Car_Colour	Subject_C
10234	ID_ULWS8VL	2003- 04-13		Male	41	2003-04-13	2	Saloon	Black	
12066	ID_ZYKGSP7	2003- 12-21	2034- 05-20	Male	48	2003-12-21	2	Saloon	NaN	
8124	ID_OEWBKGF	2005- 08-05	2011- 09-29	Female	44	2005-08-05	1	NaN	NaN	

Add datetime parameters for PolicyStartDate, PolicyEndDate, FirstTransactionDate column

Why?

In [376...

In [376...

So we can enrich our dataset with as much information as possible.

train['PolicyStartYear'] = train['Policy Start Date'].dt.year

Add datetime for Policy Start Date

train.reset index(drop=True)

Because we imported the data using train_csv() and we asked pandas to parse the dates using parse_dates=['PolicyStartDate' , 'PolicyEndDate' , 'FirstTransactionDate']), we can now access the different datetime attributes of the date column.

```
train['PolicyStartMonth'] = train['Policy Start Date'].dt.month
         train['PolicyStartDay'] = train['Policy Start Date'].dt.day
         train['PolicyStartDayofweek'] = train['Policy Start Date'].dt.dayofweek
         train['PolicyStartDayofyear'] = train['Policy Start Date'].dt.dayofyear
         # Drop original PolicyStartDate
         train.drop("Policy Start Date", axis=1, inplace=True)
In [376...
         # Add datetime for Policy End Date
         train['PolicyEndYear'] = train['Policy End Date'].dt.year
         train['PolicyEndMonth'] = train['Policy End Date'].dt.month
         train['PolicyEndDay'] = train['Policy End Date'].dt.day
         train['PolicyEndDayofweek'] = train['Policy End Date'].dt.dayofweek
         train['PolicyEndDayofyear'] = train['Policy End Date'].dt.dayofyear
         # Drop original PolicyEndDate
         train.drop("Policy End Date", axis=1, inplace=True)
In [376...
         # Add datetime for FirstTransactionDate
         train['FirstTransactionYear'] = train['First Transaction Date'].dt.year
         train['FirstTransactionMonth'] = train['First Transaction Date'].dt.month
         train['FirstTransactionDay'] = train['First Transaction Date'].dt.day
         train['FirstTransactionDayofweek'] = train['First Transaction Date'].dt.dayofweek
         train['FirstTransactionDayofyear'] = train['First Transaction Date'].dt.dayofyear
         # Drop original FirstTransactionDate
         train.drop("First Transaction Date", axis=1, inplace=True)
```

	ID	Gender	Age	No_Pol	Car_Category	Subject_Car_Colour	Subject_Car_Make	LGA_Name	State
0	ID_O51ZQ1B	Female	37	1	Saloon	Black	Honda	NaN	NaN
1	ID_VJ1FAVO	Male	37	1	Saloon	Black	TOYOTA	Ekiti	Benue
2	ID_ULWS8VL	Male	41	2	Saloon	Black	TOYOTA	Ikeja	Lagos
3	ID_ZYKGSP7	Male	48	2	Saloon	NaN	Others	NaN	NaN
4	ID_OEWBKGF	Female	44	1	NaN	NaN	Others	Ajah	Lagos
•••									
11506	ID_SAFB882	Male	48	1	NaN	NaN	NaN	NaN	NaN
11507	ID_S6CWED4	Male	37	1	NaN	NaN	NaN	NaN	NaN
11508	ID_ZMXI8LN	Male	36	1	NaN	NaN	NaN	NaN	NaN
11509	ID_85P2ABI	Male	66	1	Saloon	NaN	TOYOTA	NaN	NaN
11510	ID_MLGO8DZ	Male	51	4	Saloon	Black	Honda	Victoria Island	Lagos

11511 rows × 26 columns

In [376... train.head().T

Out[376		8010	10526	10234	12066	8124
	ID	ID_O51ZQ1B	ID_VJ1FAVO	ID_ULWS8VL	ID_ZYKGSP7	ID_OEWBKGF
	Gender	Female	Male	Male	Male	Female
	Age	37	37	41	48	44
	No_Pol	1	1	2	2	1
	Car_Category	Saloon	Saloon	Saloon	Saloon	NaN
	Subject_Car_Colour	Black	Black	Black	NaN	NaN
	Subject_Car_Make	Honda	TOYOTA	TOYOTA	Others	Others
	LGA_Name	NaN	Ekiti	Ikeja	NaN	Ajah
	State	NaN	Benue	Lagos	NaN	Lagos
	ProductName	Car Vintage	Car Classic	Car Vintage	Car Vintage	CVTP
	target	0	0	0	0	0
	PolicyStartYear	2001	2002	2003	2003	2005
	PolicyStartMonth	12	3	4	12	8
	PolicyStartDay	11	25	13	21	5
	PolicyStartDayofweek	1	0	6	6	4
	PolicyStartDayofyear	345	84	103	355	217
	PolicyEndYear	2011	2011	2011	2034	2011
	PolicyEndMonth	12	3	4	5	9
	PolicyEndDay	10	24	12	20	29
	PolicyEndDayofweek	5	3	1	5	3

	8010	10526	10234	12066	8124
PolicyEndDayofyear	344	83	102	140	272
FirstTransactionYear	2001	2002	2003	2003	2005
FirstTransactionMonth	12	3	4	12	8
FirstTransactionDay	11	25	13	21	5
FirstTransactionDayofweek	1	0	6	6	4
FirstTransactionDayofyear	345	84	103	355	217

In [376...

Check for missing values
train.isna().sum()

Out[376...

ID 0 Gender 996 0 Age No Pol 0 Car Category 3529 Subject Car Colour 6568 Subject Car Make 2348 LGA Name 6145 6157 State ProductName 0 0 target PolicyStartYear 0 PolicyStartMonth 0 PolicyStartDay PolicyStartDayofweek 0 PolicyStartDayofyear 0 PolicyEndYear 0 PolicyEndMonth 0 PolicyEndDay 0 PolicyEndDayofweek PolicyEndDayofyear 0 FirstTransactionYear 0 FirstTransactionMonth 0 FirstTransactionDay 0 0 FirstTransactionDayofweek FirstTransactionDayofyear dtype: int64

In [376...

Visualizing the missing values in the dataset
missingno.matrix(train, figsize=(30, 5));

In [376...

 $\mbox{\# Visualize}$ the missing values in the features in descending order $\mbox{missingno.bar}\xspace(\mbox{train}$

```
, sort='descending', figsize=(30, 5));
```


In [376...

```
# Check for missing categories and different datatypes train.info()
```

```
Int64Index: 11511 entries, 8010 to 7479
Data columns (total 26 columns):
    Column
                              Non-Null Count Dtype
    -----
0
    ID
                              11511 non-null object
1
    Gender
                              10515 non-null object
                              11511 non-null int64
2
    Age
3
    No Pol
                              11511 non-null int64
4
    Car Category
                              7982 non-null object
5
    Subject Car Colour
                              4943 non-null object
    Subject Car Make
                              9163 non-null object
7
    LGA Name
                              5366 non-null object
8
    State
                              5354 non-null object
    ProductName
                              11511 non-null object
9
10 target
                              11511 non-null int64
11 PolicyStartYear
                              11511 non-null int64
12 PolicyStartMonth
                             11511 non-null int64
13 PolicyStartDay
                              11511 non-null int64
14 PolicyStartDayofweek
                              11511 non-null int64
15 PolicyStartDayofyear
                              11511 non-null int64
16 PolicyEndYear
                              11511 non-null int64
                              11511 non-null int64
17 PolicyEndMonth
18 PolicyEndDay
                              11511 non-null int64
19 PolicyEndDayofweek
                             11511 non-null int64
20 PolicyEndDayofyear
                              11511 non-null int64
21 FirstTransactionYear
                              11511 non-null int64
22 FirstTransactionMonth
                              11511 non-null int64
23 FirstTransactionDay
                              11511 non-null int64
24 FirstTransactionDayofweek 11511 non-null int64
25 FirstTransactionDayofyear 11511 non-null int64
dtypes: int64(18), object(8)
memory usage: 2.4+ MB
```

Convert the strings into categories

<class 'pandas.core.frame.DataFrame'>

```
In [376... # Find the columns which contains strings
    for label, content in train.drop(['ID', 'ProductName'], axis=1).items():
        if pd.api.types.is_string_dtype(content):
            print(label)
Gender
Gender
```

Car_Category
Subject_Car_Colour
Subject_Car_Make
LGA_Name
State

```
if pd.api.types.is string dtype(content):
                   train[label]=content.astype('category').cat.as ordered()
In [377...
          train.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 11511 entries, 8010 to 7479
         Data columns (total 26 columns):
           # Column
                                              Non-Null Count Dtype
          ---
                                              0
             ID
                                             11511 non-null category
           1
              Gender
                                             10515 non-null category
          2 Age 11511 non-null int64
3 No_Pol 11511 non-null int64
4 Car_Category 7982 non-null category
5 Subject_Car_Colour 4943 non-null category
6 Subject_Car_Make 9163 non-null category
7 LGA Name 5266
          5366 non-null category
           7
             LGA Name
           22 FirstTransactionMonth 11511 non-null int64
23 FirstTransactionDay 11511 non-null int64
           24 FirstTransactionDayofweek 11511 non-null int64
           25 FirstTransactionDayofyear 11511 non-null int64
         dtypes: category(8), int64(18)
         memory usage: 2.1 MB
         All of our data is categorical and thus we can now turn the categories into integers, however it's still missing
         values....
In [377...
           # Check the proportion of missing values
          train.isnull().sum()/len(train)
         ID
                                          0.000000
```

This will turn all strings values into categories

for label, content in train.items():

In [377...

```
Out[377...
          Gender
                                           0.086526
                                            0.000000
          No Pol
                                           0.000000
          Car Category
                                           0.306576
                                         0.570585
          Subject_Car_Colour
Subject_Car_Make
                                            0.203979
          LGA Name
                                           0.533837
          State
                                           0.534880
          ProductName
                                      0.000000
0.000000
0.000000
0.000000
          target
          PolicyStartYear
          PolicyStartMonth
PolicyStartDay
                                            0.000000
          PolicyStartDayofweek 0.000000
PolicyStartDayofyear 0.000000
```

```
PolicyEndYear
                          0.000000
PolicyEndMonth
                         0.000000
PolicyEndDay
                         0.000000
                        0.000000
PolicyEndDayofweek
PolicyEndDayofyear
                       0.000000
FirstTransactionYear
FirstTransactionMonth
                   0.000000
FirstTransactionDay
FirstTransactionDayofweek 0.000000
FirstTransactionDayofyear 0.000000
dtype: float64
```

2 Age

3 No Pol

Filling and turning categorical variables into numbers

```
In [377...
         for label, content in train.items():
             if pd.api.types.is categorical dtype(content):
                 print(label)
        ID
        Gender
        Car Category
        Subject Car Colour
        Subject Car Make
        LGA Name
        State
        ProductName
In [377...
         # Check for which categorical columns have null(missing) values
         for label, content in train.items():
             if pd.api.types.is categorical dtype(content):
                 if pd.isnull(content).sum():
                     print(label)
        Gender
        Car Category
        Subject Car Colour
        Subject Car Make
        LGA Name
        State
In [377...
         # Turn categorical variables into numbers
         for label, content in train.items():
             # Check columns which are not numeric
             if not pd.api.types.is numeric dtype(content):
                     # Add binary column to indicate whether sample had missing value
                  train[label + ' is missing'] = pd.isnull(content)
                     # Turn categories into numbers and add +1 because pandas encodes missing cated
                  train[label] = pd.Categorical(content).codes + 1
In [377...
        train.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 11511 entries, 8010 to 7479
        Data columns (total 34 columns):
         # Column
                                            Non-Null Count Dtype
         ____
                                            -----
         0
            ID
                                            11511 non-null int16
             Gender
                                            11511 non-null int8
```

11511 non-null int64

11511 non-null int64

```
4 Car_Category 11511 non-null int8
5 Subject_Car_Colour 11511 non-null int8
6 Subject_Car_Make 11511 non-null int8
7 LGA_Name 11511 non-null int16
8 State 11511 non-null int8
9 ProductName 11511 non-null int8
10 target 11511 non-null int64
11 PolicyStartYear 11511 non-null int64
12 PolicyStartMonth 11511 non-null int64
13 PolicyStartDay 11511 non-null int64
14 PolicyStartDay 11511 non-null int64
15 PolicyStartDayofweek 11511 non-null int64
16 PolicyEndYear 11511 non-null int64
17 PolicyEndMonth 11511 non-null int64
18 PolicyEndDay 11511 non-null int64
19 PolicyEndDayofweek 11511 non-null int64
10 PolicyEndDayofweek 11511 non-null int64
11 PolicyEndDayofweek 11511 non-null int64
12 FirstTransactionYear 11511 non-null int64
13 FirstTransactionDay 11511 non-null int64
14 PolicyEndDayofyear 11511 non-null int64
15 FirstTransactionDayofweek 11511 non-null int64
16 PolicyEndDayofyear 11511 non-null int64
17 PolicyEndDayofyear 11511 non-null int64
18 PolicyEndDayofyear 11511 non-null int64
19 PolicyEndDayofyear 11511 non-null int64
10 FirstTransactionDayofweek 11511 non-null int64
11 FirstTransactionDayofweek 11511 non-null int64
12 FirstTransactionDayofyear 11511 non-null bool
11 Subject_Car_Colour_is_missing 11511 non-null bool
12 Subject_Car_Make is missing 11511 non-null bool
                         29 Subject_Car_Colour_is_missing 11511 non-null bool
                         30 Subject_Car_Make_is_missing 11511 non-null bool 31 LGA_Name_is_missing 11511 non-null bool 32 State_is_missing 11511 non-null bool 33 ProductName_is_missing 11511 non-null bool
                       dtypes: bool(8), int16(2), int64(18), int8(6)
                       memory usage: 1.9 MB
In [377...
                        train.isna().sum()
                     ID
                                                                                                             0
Out[377...
                     Gender
                                                                                                              0
                                                                                                              0
                      Age
                                                                                                              0
                      No Pol
                                                                                                            0
                       Car Category
                       Subject Car Colour
                                                                                                            0
                                                                                                             0
                       Subject Car Make
                                                                                                              0
                       LGA Name
                                                                                                              0
                       State
                       ProductName
                                                                                                             0
                       target
                       PolicyStartYear
                                                                                                             0
                                                                                                             0
                       PolicyStartMonth
                       PolicyStartDay
                      PolicyStartDayofweek
PolicyStartDayofyear
                                                                                                             0
                       PolicyEndYear
                       PolicyEndMonth
                                                                                                             0
                       PolicyEndDay
                                                                                                            0
                       PolicyEndDayofweek
                       PolicyEndDayofyear
                       FirstTransactionYear
                       FirstTransactionMonth
                       FirstTransactionDay
                       FirstTransactionDayofweek
                       FirstTransactionDayofyear
                       ID is missing
                       Gender is missing
                       Car_Category_is_missing
                       Subject Car Colour is missing 0
```

Subject_Car_Make_is_missing 0
LGA_Name_is_missing 0
State_is_missing 0
ProductName_is_missing 0
dtype: int64

In [377...

train.head().T

Out[377		8010	10526	10234	12066	8124
	ID	7623	10025	9745	11499	7732
	Gender	1	2	2	2	1
	Age	37	37	41	48	44
	No_Pol	1	1	2	2	1
	Car_Category	3	3	3	3	0
	Subject_Car_Colour	5	5	5	0	0
	Subject_Car_Make	2	9	9	8	8
	LGA_Name	0	74	115	0	22
	State	0	7	21	0	21
	ProductName	4	2	4	4	1
	target	0	0	0	0	0
	PolicyStartYear	2001	2002	2003	2003	2005
	PolicyStartMonth	12	3	4	12	8
	PolicyStartDay	11	25	13	21	5
	PolicyStartDayofweek	1	0	6	6	4
	PolicyStartDayofyear	345	84	103	355	217
	PolicyEndYear	2011	2011	2011	2034	2011
	PolicyEndMonth	12	3	4	5	9
	PolicyEndDay	10	24	12	20	29
	PolicyEndDayofweek	5	3	1	5	3
	PolicyEndDayofyear	344	83	102	140	272
	FirstTransactionYear	2001	2002	2003	2003	2005
	FirstTransactionMonth	12	3	4	12	8
	FirstTransactionDay	11	25	13	21	5
	FirstTransactionDayofweek	1	0	6	6	4
	FirstTransactionDayofyear	345	84	103	355	217
	ID_is_missing	False	False	False	False	False
	Gender_is_missing	False	False	False	False	False
	Car_Category_is_missing	False	False	False	False	True
	Subject_Car_Colour_is_missing	False	False	False	True	True
	Subject_Car_Make_is_missing	False	False	False	False	False

	8010	10526	10234	12066	8124	
LGA_Name_is_missing	True	False	False	True	False	
State_is_missing	True	False	False	True	False	
ProductName_is_missing	False	False	False	False	False	

Now all of our data is numeric and there are no missing values, we should be able to build a machine learning model!

```
In [377...
          len(train)
         11511
Out[377...
In [378...
          print('Rows containing 0 =', len(train[train['target']==0]))
         print('Rows containing 1 =', len(train[train['target']==1]))
         Rows containing 0 = 10112
         Rows containing 1 = 1399
In [378...
         train['target'].value counts()
              10112
Out[378...
               1399
         Name: target, dtype: int64
In [378...
          # Visualize the target variable with a bar graph
         plt.figure(figsize=(6, 6))
         g = sns.countplot('target', data = train)
         plt.title("Imbalanced Target Class")
         g.set xticklabels(['Will not claim insurance', 'Will claim insurance'])
         plt.show();
```


In [378	# Drop the _is_missing column	Г
	<pre>train.drop(['ID_is_missing', 'Gender_is_missing', 'Car_Category_is_missing', 'Subject_Car_</pre>	
	'Subject_Car_Make_is_missing', 'LGA_Name_is_missing', 'State_is_missing', 'Product	
	train.head()	

Out[378		ID	Gender	Age	No_Pol	Car_Category	Subject_Car_Colour	Subject_Car_Make	LGA_Name	State	Produ
	8010	7623	1	37	1	3	5	2	0	0	
	10526	10025	2	37	1	3	5	9	74	7	
	10234	9745	2	41	2	3	5	9	115	21	
	12066	11499	2	48	2	3	0	8	0	0	
	8124	7732	1	44	1	0	0	8	22	21	

5 rows × 26 columns

Splitting data into train/validation/test sets

5. Modelling

What is Data Imbalance?

Data imbalance usually reflects an unequal distribution of classes within a dataset. As with the data set we're working with, The proportion of customers who will claim a car insurance in the first 3 months and customers who will not claim a car insurance in the first 3 months is about 8.13: 1. If we train our binary classification model without fixing this problem, the model will be completely biased towards the customers who will not claim a car insurance in the first 3 months. Since all of our data is numeric and there are no missing values and we have a highly imbalanced class, we'll attempt to balance the dataset by OverSampling and Undersampling the majority and minority class.

Applying Oversampling technique for the training dataset(Random Oversampling Minority class)

With my training data created, I'll upsample the minority class using the SMOTE algorithm (Synthetic Minority Oversampling Technique). At a high level, SMOTE creates synthetic observations of the minority class by:

Finding the k-nearest-neighbors for minority class observations (finding similar observations)

 Randomly choosing one of the k-nearest-neighbors and using it to create a similar, but randomly tweaked, new observation.

After upsampling to a class ratio of 1.0, I should have a balanced dataset. There's no need (and often it's not smart) to balance the classes, but it magnifies the issue caused by incorrectly timed oversampling.

```
In [378...
          # summarize class distribution
         print("Before Oversampling: ", Counter(y))
          # over = RandomOverSampler(sampling strategy='minority')
         sm = SMOTE(sampling strategy='minority', random state=42)
         X sm, y sm = sm.fit resample(X, y)
         Counter (y sm)
         print(f"After Oversampling: {Counter(y sm)}")
         Before Oversampling: Counter({0: 10112, 1: 1399})
         After Oversampling: Counter({0: 10112, 1: 10112})
In [378...
         X sm.shape, y sm.shape
         ((20224, 25), (20224,))
Out[378...
In [378...
          # split the new oversampled data
         X train, X test, y train, y test = train test split(X sm, y sm, test size = 0.2, random st
In [379...
         len(X train), len(y test)
         (16179, 4045)
Out[379...
```

We're going to be using 6 models to evaluate the sampled dataset:

- Logistic Regression
- RandomForestClassifier
- KNeighborClassifier
- LGBMClassifier
- CatBoostClassifier
- XGBClassifier

All of the algorithms in the Scikit-Learn library use the same functions, for training a model, model.fit(X_train, y_train) and for scoring a model model.score(X_test, y_test). score() returns the ratio of correct predictions (1.0 = 100% correct).

Metrics:

- Precision is the total number of customers the model correctly identified as customers that will claim insurance out of all the people PREDICTED to claim insurance
- Recall is the total number of customers the model correctly identified as customers that will claim insurance out of all the people who ACTUALLY claimed insurance.
- Accuracy is the total number of correct predictions divided by the total number of predictions.

- It is not possible to achieve both a high precision and a high recall value- we must determine which is more important for us in our model.
- F1 gives us the harmonic mean of precision and recall (Aim for a high F1 value to indicate a good precision and a good recall value).
- ROC (Receiver Operating Characteristic) Curve is a plot betwen the True Positive Rate on the y-axis and the False Positive Rate on the x-axis. A plot with the graph closer to the left and top axes is indicative of a better model.
- AUC (Area Under Curve) values range from 0 to 1 with higher scores indicating a better model. The diagonal line on ROC curves usually represents a random model with an AUC of 0.5. (Would definitely want our model's AUC to be higher than 0.5, since that would signify it is better than random chance.
- PRC (Precision-Recall Curves) plot values of precision scores on the y-axis and recall on the x-axis. A plot with the graph closer to the top and right axes is indicative of a better model. As with ROC curves, we should aim for a high AUC.

5.1 Logistic Regression

```
In [379...
          # Logistic Regression
         np.random.seed(42)
          # Instantiate the model
         log = LogisticRegression()
          # Fit the model on the train data
         log.fit(X train, y train)
          # Score the model on the test data
         log.score(X test, y test)
         0.6702101359703337
Out[379...
In [379...
         # Make predictions on the model
         log pred = log.predict(X test)
         log pred[:10]
         array([1, 1, 0, 0, 1, 0, 0, 0, 0, 1], dtype=int64)
Out[379...
In [379...
         y test[:10]
         4981
                  ()
Out[379...
         5421
                 0
         16026
                 1
         8057
                 0
         119
                 0
         18553
                 1
         9814
                 0
         9787
                  1
         2699
                 1
         19323
         Name: target, dtype: int64
In [379...
         print(classification report(y test, log pred));
```

```
0
           0.67 0.67 0.67
                                     2005
        1
              0.67
                     0.67
                            0.67
                                     2040
                             0.67
                                    4045
  accuracy
             0.67 0.67
                                     4045
  macro avg
                            0.67
weighted avg
             0.67
                     0.67
                            0.67
                                     4045
```

precision recall f1-score support

```
In [379...
    print('Precision Score: ', round(precision_score(y_test, log_pred), 2))
    print('Recall Score: ', round(recall_score(y_test, log_pred), 2))
    print('F1 Score: ', round(f1_score(y_test, log_pred), 2))
    print('Accuracy Score: ', round(accuracy_score(y_test, log_pred), 2))
    print('ROC AUC: ', round(roc_auc_score(y_test, log_pred), 2))
```

Precision Score: 0.67
Recall Score: 0.67
F1 Score: 0.67
Accuracy Score: 0.67
ROC AUC: 0.67

5.1.1 Confusion Matrix of LogisticRegression Model

1.3e+03 6.6e+02

6.7e+02 1.4e+03

You can see the model gets confused (predicts the wrong label). In essence, there are 662 occasaions where the model predicted 0 when it should've been 1 (false negative) and 672 occasions where the model predicted 1 instead of 0 (false positive).

5.1.2 ROC Curve and AUC Scores for the Logistic Regression model

5.2 Random Forest

```
In [379...
          # Random Forest
          np.random.seed(42)
          # Instantiate the model
          rf = RandomForestClassifier()
          # # Fit the model on the training data
          rf.fit(X_train, y_train)
          # Score the model on the test data
          rf.score(X test, y test)
         0.892459826946848
Out[379...
In [379...
          # Make predictions on the model
          rf pred = rf.predict(X test)
          rf pred[:10]
         array([0, 1, 1, 0, 1, 1, 0, 0, 0, 1], dtype=int64)
Out[379...
In [380...
          y test[:10]
Out[380...
         5421
                   0
         16026
         8057
         119
         18553
```

```
1
        9787
        2699
        19323
                1
        Name: target, dtype: int64
In [380...
         print(classification report(y test, rf pred))
                     precision recall f1-score
                                                     support
                   0
                         0.90 0.88
                                            0.89
                                                       2005
                          0.89
                                   0.90
                                            0.89
                                                       2040
                                              0.89
                                                       4045
            accuracy
                                            0.89
           macro avg
                         0.89
                                  0.89
                                                       4045
        weighted avg
                          0.89
                                   0.89
                                            0.89
                                                       4045
In [380...
        print('Precision Score:', round(precision score(y test, rf pred), 2))
         print('Recall Score:', round(recall score(y test, rf pred), 2))
         print('F1 Score:', round(f1 score(y test, rf pred), 2))
         print('Accuracy Score:', round(accuracy score(y test, rf pred), 2))
         print('ROC AUC: ', round(roc auc score(y test, rf pred), 2))
        Precision Score: 0.89
        Recall Score: 0.9
        F1 Score: 0.89
        Accuracy Score: 0.89
        ROC AUC: 0.89
```

5.2.1 Confusion Matrix of RandomForest Model

9814

[196 1844]]

You can see the model gets confused (predicts the wrong label). In essence, there are 239 occasaions where the model predicted 0 when it should've been 1 (false negative) and 196 occasions where the model predicted 1 instead of 0 (false positive).

5.2.2 ROC Curve and AUC Scores for the RandomForestClassifier Model

This is great, the model does far better than guessing which would be a line going from the bottom left corner to the top right corner, AUC = 0.96. But a perfect model would achieve an AUC score of 1.0.

5.3 KNeighborsClassifier

```
In [380... np.random.seed(42)

# Instantiate the model
knn = KNeighborsClassifier()

# Fit the model to the training data
knn.fit(X_train, y_train)
```

```
# Score the model on the test data
         knn.score(X test, y test)
         0.8012360939431397
Out[380...
In [380...
          # Make predictions on the model
         knn pred = knn.predict(X test)
         knn pred[:10]
         array([0, 1, 1, 0, 1, 1, 1, 1, 0, 1], dtype=int64)
Out[380...
In [380...
         y test[:10]
         4981
                  0
Out[380...
         5421
                  0
         16026
                 1
         8057
        119
                 0
        18553
        9814
         9787
                  1
         2699
        19323
        Name: target, dtype: int64
In [380...
         print(classification report(y test, knn pred))
                       precision
                                    recall f1-score
                                                         support
                    0
                            0.92
                                       0.66
                                                 0.77
                                                            2005
                    1
                            0.74
                                       0.94
                                                 0.83
                                                            2040
                                                 0.80
                                                            4045
             accuracy
            macro avg
                            0.83
                                       0.80
                                                 0.80
                                                            4045
         weighted avg
                            0.83
                                       0.80
                                                 0.80
                                                            4045
In [380...
         print('Precision Score:', round(precision score(y test, knn pred), 2))
         print('Recall Score:', round(recall score(y test, knn pred), 2))
         print('F1 Score:', round(f1 score(y test, knn pred), 2))
         print('Accuracy Score:', round(accuracy score(y test, knn pred), 2))
         print('ROC AUC: ', round(roc auc score(y test, knn pred), 2))
         Precision Score: 0.74
         Recall Score: 0.94
         F1 Score: 0.83
        Accuracy Score: 0.8
        ROC AUC: 0.8
```

5.3.1 Confusion Matrix of KNeighborsClassifier Model

```
In [381... sns.set(font_scale=1.5)

def plot_conf_mat(y_test, knn_pred):
    """
    Plots a confusion matrix using Seaborn's heatmap().
    """
    fig, ax = plt.subplots(figsize=(3, 3))
```

You can see the model gets confused (predicts the wrong label). In essence, there are 682 occasaions where the model predicted 0 when it should've been 1 (false negative) and 122 occasions where the model predicted 1 instead of 0 (false positive).

5.3.2 ROC Curve and AUC Scores for the KNeighborsClassifier Model

This is great, the model does far better than guessing which would be a line going from the bottom left corner to the top right corner, AUC = 0.89. But a perfect model would achieve an AUC score of 1.0.

5.4 LightGBM Model

```
In [381...
         np.random.seed(42)
          # Instantiate the model
         lgbm = LGBMClassifier()
          # Fit the model
         lgbm.fit(X train, y train)
          # Score the model on the test data
         lgbm.score(X test, y test)
         0.8956736711990111
Out[381...
In [381...
          # Make predictions on the model
         lgbm pred = lgbm.predict(X test)
         lgbm pred[:10]
        array([0, 0, 1, 0, 1, 1, 0, 0, 0, 1], dtype=int64)
Out[381...
In [381...
         y test[:10]
         4981
                 0
Out[381...
        5421
                  0
        16026
                 1
         8057
                0
        119
                  0
        18553
                 1
        9814
                 1
        9787
         2699
        19323
                  1
        Name: target, dtype: int64
In [381...
         print(classification report(y test, lgbm pred))
                       precision
                                    recall f1-score
                                                        support
                    0
                                      0.91
                            0.88
                                                 0.90
                                                           2005
                            0.91
                                       0.88
                                                 0.89
                                                           2040
            accuracy
                                                 0.90
                                                           4045
                            0.90
                                       0.90
                                                 0.90
                                                            4045
            macro avg
         weighted avg
                            0.90
                                       0.90
                                                 0.90
                                                            4045
In [381...
         print('Precision Score:', round(precision score(y test, lgbm pred), 2))
         print('Recall Score:', round(recall score(y test, lgbm pred), 2))
         print('F1 Score:', round(f1 score(y test, lgbm pred), 2))
         print('Accuracy Score:', round(accuracy score(y test, lgbm pred), 2))
         print('ROC AUC: ', round(roc_auc_score(y_test, lgbm_pred), 2))
         Precision Score: 0.91
         Recall Score: 0.88
         F1 Score: 0.89
         Accuracy Score: 0.9
         ROC AUC: 0.9
```

5.4.1 Confusion Matrix of LightGBMClassifier Model

```
1.8e+03

1.7e+02

1.8e+03

1.7e+02

1.8e+03
```

You can see the model gets confused (predicts the wrong label). In essence, there are 172 occasaions where the model predicted 0 when it should've been 1 (false negative) and 250 occasions where the model predicted 1 instead of 0 (false positive).

5.4.2 ROC Curve and AUC Scores for the LightGBMClassifier Model

```
In [381... # Plot ROC curve and calculate AUC metric
    plot_roc_curve(lgbm, X_test, y_test);
```


This is great, the model does far better than guessing which would be a line going from the bottom left corner to the top right corner, AUC = 0.96. But a perfect model would achieve an AUC score of 1.0.

5.5 CatBoost Model

```
In [381...
         np. random.seed(42)
          # Instantiate the model
         cat = CatBoostClassifier()
          # Fit the model to the training data
         cat.fit(X train, y train)
          # Score the model on the test data
          cat.score(X test, y test)
         Learning rate set to 0.033819
         0:
                 learn: 0.6712682
                                          total: 53.6ms
                                                           remaining: 53.6s
                 learn: 0.6572553
                                          total: 74.7ms
         1:
                                                           remaining: 37.3s
                 learn: 0.6424698
                                          total: 95.7ms
                                                           remaining: 31.8s
                 learn: 0.6251396
         3:
                                          total: 116ms
                                                           remaining: 29s
         4:
                 learn: 0.6116585
                                          total: 135ms
                                                           remaining: 26.9s
                 learn: 0.5981645
                                          total: 155ms
         5:
                                                           remaining: 25.7s
                                          total: 174ms
         6:
                 learn: 0.5883858
                                                           remaining: 24.7s
                                          total: 200ms
         7:
                 learn: 0.5801929
                                                           remaining: 24.8s
         8:
                 learn: 0.5699848
                                          total: 224ms
                                                           remaining: 24.7s
         9:
                 learn: 0.5610843
                                          total: 254ms
                                                           remaining: 25.1s
         10:
                 learn: 0.5542218
                                                           remaining: 25.7s
                                          total: 286ms
         11:
                 learn: 0.5493848
                                          total: 310ms
                                                           remaining: 25.5s
                                          total: 334ms
        12:
                 learn: 0.5421030
                                                           remaining: 25.4s
         13:
                 learn: 0.5352862
                                          total: 357ms
                                                           remaining: 25.2s
                 learn: 0.5306646
         14:
                                          total: 381ms
                                                           remaining: 25s
                 learn: 0.5264965
         15:
                                          total: 406ms
                                                           remaining: 25s
         16:
                 learn: 0.5198893
                                          total: 429ms
                                                           remaining: 24.8s
         17:
                 learn: 0.5144392
                                          total: 452ms
                                                           remaining: 24.6s
         18:
                 learn: 0.5085763
                                          total: 474ms
                                                           remaining: 24.5s
         19:
                 learn: 0.5030830
                                          total: 497ms
                                                           remaining: 24.3s
                                          total: 524ms
         20:
                 learn: 0.4976880
                                                           remaining: 24.4s
         21:
                 learn: 0.4938460
                                          total: 548ms
                                                           remaining: 24.4s
```

22:	learn•	0.4892602	total:	571ms	remaining:	24 39
23:		0.4843191	total:		remaining:	
24:		0.4806110	total:		remaining:	
25:		0.4749912	total:		remaining:	
26:		0.4719118	total:		remaining:	
27:		0.4680723	total:		remaining:	
28:		0.4650074	total:		remaining:	
29:		0.4626284	total:		remaining:	
30:		0.4600966	total:		remaining:	
31:		0.4579340	total:		remaining:	
32:		0.4558001	total:		remaining:	
33:		0.4524839	total:		remaining:	
34:		0.4494158	total:		remaining:	
35:		0.4460671	total:		remaining:	
36:		0.4430541	total:		remaining:	
37:		0.4401941	total:		remaining:	
38:		0.4382272	total:		remaining:	
39:		0.4366878	total:		remaining:	
40:		0.4345521	total:		remaining:	
41:		0.4323829	total:		remaining:	
42:		0.4304313	total:		remaining:	
43:		0.4283602	total:		remaining:	
44:	learn:	0.4262053	total:	1.11s	remaining:	
45:		0.4248846	total:	1.13s	remaining:	23.4s
46:	learn:	0.4224761	total:	1.15s	remaining:	23.3s
47:	learn:	0.4206120	total:	1.17s	remaining:	23.2s
48:	learn:	0.4195968	total:	1.19s	remaining:	23.1s
49:	learn:	0.4173155	total:	1.21s	remaining:	23.1s
50:	learn:	0.4143647	total:	1.24s	remaining:	23s
51:	learn:	0.4129885	total:	1.26s	remaining:	23s
52:	learn:	0.4117976	total:	1.28s	remaining:	22.9s
53:	learn:	0.4102620	total:	1.3s	remaining:	22.8s
54:	learn:	0.4084982	total:	1.32s	remaining:	22.7s
55:	learn:	0.4075365	total:	1.34s	remaining:	22.6s
56:	learn:	0.4061186	total:	1.36s	remaining:	22.5s
57 :	learn:	0.4042866	total:		remaining:	
58:	learn:	0.4029119	total:	1.39s	remaining:	22.2s
59:	learn:	0.4017834	total:	1.41s	remaining:	
60:	learn:	0.4009041	total:	1.42s	remaining:	
61:	learn:	0.3998416	total:	1.44s	remaining:	
62:	learn:	0.3989350	total:	1.46s	remaining:	
63:	learn:	0.3979156	total:		remaining:	
64:	learn:		total:		remaining:	
65 :	learn:		total:		remaining:	
66:	learn:		total:		remaining:	
67:	learn:		total:		remaining:	
68:		0.3915640	total:		remaining:	
69:		0.3901291	total:		remaining:	
70:		0.3894822	total:		remaining:	
71:		0.3887619	total:		remaining:	
72:		0.3878339	total:		remaining:	
73:		0.3866301	total:		remaining:	
74:		0.3854762	total:		remaining:	
75:		0.3839835	total:		remaining:	
76:		0.3831677	total:		remaining:	
77 :		0.3823591	total:		remaining:	
78:		0.3812355	total:		remaining:	
79:		0.3804802	total:		remaining:	
80:		0.3794473	total:		remaining:	
81:	learn:		total:		remaining:	
82: 83:		0.3767945	total:		remaining:	
84:		0.3761664	total:		<pre>remaining: remaining:</pre>	
84: 85:		0.3750156 0.3745030	<pre>total: total:</pre>		remaining: remaining:	19.7s 19.7s
86:		0.3736831	total:		remaining:	19.7s
87:	learn:		total:		remaining: remaining:	
0/.	Tealli:	U.J/2001J	cotal:	1.000	remarning:	17.05

88:	learn.	0.3715521	total:	1 91s	remaining:	19 5e
89:		0.3704860	total:		remaining:	
90:		0.3694714	total:		remaining:	
91:		0.3690793	total:		remaining:	
92:		0.3682972	total:		remaining:	
93:		0.3676623	total:		remaining:	
94:		0.3667227	total:		remaining:	
95:		0.3657908	total:		remaining:	
96:		0.3653725	total:		remaining:	
97:		0.3649755	total:		remaining:	
98:		0.3644728	total:		remaining:	
99:	learn:	0.3638868	total:	2.15s	remaining:	19.4s
100:	learn:	0.3626555	total:	2.17s	remaining:	19.4s
101:	learn:	0.3619257	total:	2.19s	remaining:	19.3s
102:	learn:	0.3606202	total:	2.22s	remaining:	19.3s
103:	learn:	0.3596390	total:	2.23s	remaining:	19.3s
104:	learn:	0.3589833	total:	2.25s	remaining:	
105:	learn:	0.3584979	total:	2.27s	remaining:	19.2s
106:		0.3579996	total:		remaining:	
107:		0.3565079	total:		remaining:	
108:		0.3556456	total:		remaining:	
109:		0.3548126	total:		remaining:	
110:		0.3542609	total:		remaining:	19s
111:		0.3537148	total:		remaining:	19s
112:		0.3532923	total:		remaining:	18.9s
113:		0.3526028	total:		remaining:	18.9s
114:		0.3519070	total:		remaining:	18.8s
115:		0.3510361	total:		remaining:	18.7s
116:		0.3505613	total:		remaining:	18.7s
117:		0.3499602	total:		remaining:	18.6s
118: 119:		0.3493980 0.3488312	<pre>total: total:</pre>		<pre>remaining: remaining:</pre>	18.6s
120:		0.3482120	total:		remaining:	18.6s 18.5s
121:		0.3475245	total:		remaining:	18.4s
122:		0.3469174	total:		remaining:	18.4s
123:		0.3459984	total:		remaining:	18.3s
124:	learn:	0.3453751	total:		remaining:	18.3s
125:		0.3448275	total:		remaining:	
126:		0.3445346	total:		remaining:	
127:		0.3440405	total:		remaining:	18.1s
128:	learn:	0.3435968	total:		remaining:	18s
129:	learn:	0.3428384	total:	2.69s	remaining:	18s
130:	learn:	0.3423867	total:	2.71s	remaining:	18s
131:	learn:	0.3417751	total:	2.72s	remaining:	17.9s
132:	learn:	0.3413310	total:	2.74s	remaining:	17.9s
133:	learn:	0.3407564	total:	2.76s	remaining:	17.8s
134:	learn:	0.3404133	total:		remaining:	17.8s
135:		0.3397137	total:		remaining:	17.8s
136:	learn:	0.3391678	total:		remaining:	17.7s
137:	learn:	0.3387259	total:		remaining:	17.7s
138:		0.3381940	total:		remaining:	17.7s
139:		0.3373923	total:		remaining:	17.6s
140:		0.3367444	total:		remaining:	17.6s
141:		0.3364043	total:		remaining:	17.6s
142:	learn:	0.3356413	total:		remaining:	17.6s
143: 144:		0.3350042 0.3343983	<pre>total: total:</pre>		<pre>remaining: remaining:</pre>	17.5s 17.5s
144:		0.3343983	total:		remaining: remaining:	17.5s 17.5s
146:	learn:	0.3334036	total:		remaining:	17.5s
147:	learn:	0.3329964	total:		remaining:	17.5s
148:	learn:	0.3323536	total:		remaining:	17.3s
149:		0.3317905	total:		remaining:	17.4s
150:		0.3317903	total:		remaining:	17.4s
151:		0.3301358	total:		remaining:	17.4s
152:	learn:	0.3296541	total:		remaining:	17.4s
153:	learn:		total:		remaining:	17.3s

154:	learn•	0.3285908	total:	3 17g	remaining:	17 30
155:		0.3279407	total:		remaining:	17.3s
156:		0.3274039	total:		remaining:	17.2s
157:		0.3269668	total:		remaining:	17.1s
158:		0.3264922	total:		remaining:	17.1s
159:		0.3254779	total:		remaining:	17.1s
160:		0.3251240	total:		remaining:	17s
161:		0.3247704	total:		remaining:	17s
162:		0.3240534	total:		remaining:	16.9s
163:		0.3234484	total:		remaining:	16.9s
164:		0.3224481	total:		remaining:	16.9s
165:	learn:	0.3220021	total:	3.35s	remaining:	16.9s
166:	learn:	0.3215427	total:	3.37s	remaining:	16.8s
167:	learn:	0.3210668	total:	3.39s	remaining:	16.8s
168:	learn:	0.3207147	total:	3.4s	remaining:	16.7s
169:	learn:	0.3201675	total:	3.42s	remaining:	16.7s
170:	learn:	0.3196579	total:	3.44s	remaining:	16.7s
171:	learn:	0.3190103	total:	3.45s	remaining:	16.6s
172:		0.3186680	total:		remaining:	16.6s
173:	learn:	0.3182310	total:	3.48s	remaining:	16.5s
174:		0.3179345	total:		remaining:	16.5s
175:		0.3175129	total:		remaining:	16.5s
176:		0.3170810	total:		remaining:	16.5s
177:		0.3167255	total:		remaining:	16.4s
178:		0.3164670	total:		remaining:	16.4s
179:		0.3159627	total:		remaining:	16.3s
180:		0.3154177	total:		remaining:	16.3s
181:		0.3149466	total:		remaining:	16.3s
182:		0.3141825	total:		remaining:	16.2s
183:		0.3135832	total:		remaining:	16.2s
184:		0.3129995	total:		remaining:	16.1s
185: 186:		0.3126704 0.3121896	<pre>total: total:</pre>		<pre>remaining: remaining:</pre>	16.1s 16.1s
187:		0.3117773	total:		remaining:	16.15 16s
188:		0.3113839	total:		remaining:	16s
189:		0.3113833	total:		remaining:	16s
190:	learn:	0.3105311	total:	3.76s	remaining:	15.9s
191:		0.3103311	total:		_	15.9s
192:		0.3098035	total:		remaining:	15.9s
193:		0.3094054	total:		remaining:	15.8s
194:		0.3093055	total:		remaining:	15.8s
195:	learn:	0.3091356	total:		remaining:	15.7s
196:	learn:	0.3087594	total:		remaining:	15.7s
197:	learn:	0.3078204	total:		remaining:	15.7s
198:	learn:	0.3076020	total:		remaining:	15.6s
199:	learn:	0.3072299	total:	3.9s	remaining:	15.6s
200:	learn:	0.3066929	total:	3.92s	remaining:	15.6s
201:	learn:	0.3061531	total:	3.94s	remaining:	15.6s
202:	learn:	0.3058140	total:	3.96s	remaining:	15.5s
203:	learn:	0.3056290	total:	3.98s	remaining:	15.5s
204:	learn:		total:		remaining:	15.5s
205:	learn:		total:	4.02s	remaining:	15.5s
206:	learn:		total:		remaining:	15.5s
207:	learn:	0.3041252	total:		remaining:	15.4s
208:	learn:	0.3038569	total:		remaining:	15.4s
209:	learn:	0.3036478	total:		remaining:	15.4s
210:	learn:	0.3032488	total:		remaining:	15.3s
211:	learn:	0.3027748	total:		remaining:	15.3s
212:	_		total:	4.14s	remaining:	15.3s
	learn:	0.3023895				
213:	learn:	0.3020091	total:	4.15s	remaining:	15.3s
213: 214:	learn: learn:	0.3020091 0.3012542	<pre>total: total:</pre>	4.15s 4.17s	<pre>remaining: remaining:</pre>	15.3s 15.2s
213: 214: 215:	<pre>learn: learn: learn:</pre>	0.3020091 0.3012542 0.3010046	<pre>total: total: total:</pre>	4.15s 4.17s 4.19s	<pre>remaining: remaining: remaining:</pre>	15.3s 15.2s 15.2s
213: 214: 215: 216:	<pre>learn: learn: learn: learn:</pre>	0.3020091 0.3012542 0.3010046 0.3004466	<pre>total: total: total: total:</pre>	4.15s 4.17s 4.19s 4.2s	<pre>remaining: remaining: remaining: remaining:</pre>	15.3s 15.2s 15.2s 15.2s
213: 214: 215: 216: 217:	<pre>learn: learn: learn: learn:</pre>	0.3020091 0.3012542 0.3010046 0.3004466 0.3000877	<pre>total: total: total: total: total:</pre>	4.15s 4.17s 4.19s 4.2s 4.22s	remaining: remaining: remaining: remaining: remaining:	15.3s 15.2s 15.2s 15.2s 15.1s
213: 214: 215: 216:	<pre>learn: learn: learn: learn:</pre>	0.3020091 0.3012542 0.3010046 0.3004466	<pre>total: total: total: total:</pre>	4.15s 4.17s 4.19s 4.2s 4.22s 4.22s	<pre>remaining: remaining: remaining: remaining:</pre>	15.3s 15.2s 15.2s 15.2s 15.1s 15.1s

220:	learn•	0.2990175	total:	4 27s	remaining:	15s
221:		0.2987653	total:		remaining:	15s
222:		0.2982857	total:		remaining:	15s
223:		0.2977328	total:		remaining:	15s
224:		0.2974501	total:		remaining:	14.9s
225:		0.2970175	total:		remaining:	14.9s
226:		0.2967879	total:		remaining:	
227:		0.2965931	total:		remaining:	
228:	learn:	0.2961444	total:	4.41s	remaining:	
229:	learn:	0.2958300	total:	4.42s	remaining:	
230:	learn:	0.2954847	total:	4.44s	remaining:	14.8s
231:	learn:	0.2951541	total:	4.45s	remaining:	14.7s
232:	learn:	0.2946887	total:	4.47s	remaining:	14.7s
233:	learn:	0.2944265	total:	4.49s	remaining:	14.7s
234:	learn:	0.2940002	total:	4.5s	remaining:	14.7s
235:		0.2935705	total:		remaining:	
236:		0.2932859	total:		remaining:	
237:		0.2927227	total:		remaining:	
238:		0.2925477	total:		remaining:	
239:		0.2923151	total:		remaining:	
240:		0.2918112	total:		remaining:	
241:		0.2914736	total:		remaining:	
242:		0.2912538	total:		remaining:	
243:		0.2907315	total:		remaining:	
244:		0.2903213	total:		remaining:	
245:		0.2900680	total:		remaining:	
246:		0.2897323	total:		remaining:	
247:		0.2894900	total:		remaining:	14.3s
248:		0.2889866	total:		remaining:	14.3s
249: 250:		0.2886983 0.2883234	<pre>total: total:</pre>		<pre>remaining: remaining:</pre>	14.3s 14.2s
251:		0.2879427	total:		remaining:	14.2s
252:		0.2878361	total:		remaining:	14.2s
253:		0.2873397	total:		remaining:	14.1s
254:		0.2870274	total:		remaining:	14.1s
255:		0.2867832	total:		remaining:	14.1s
256:	learn:	0.2861946	total:		remaining:	14.1s
257:		0.2858757	total:		remaining:	
258:		0.2856474	total:		remaining:	14s
259:		0.2854630	total:		remaining:	14s
260:		0.2852898	total:		remaining:	14s
261:	learn:	0.2851623	total:		remaining:	14s
262:	learn:	0.2848833	total:	4.99s	remaining:	14s
263:	learn:	0.2846202	total:	5.01s	remaining:	14s
264:	learn:	0.2844816	total:	5.03s	remaining:	14s
265:		0.2842308	total:	5.05s	remaining:	13.9s
266:	learn:	0.2836850	total:		remaining:	13.9s
267:		0.2832295	total:		remaining:	13.9s
268:		0.2830334	total:		remaining:	13.9s
269:		0.2827210	total:		remaining:	13.9s
270:		0.2825026	total:		remaining:	13.9s
271:		0.2821759	total:		remaining:	13.9s
272:		0.2819006	total:		remaining:	13.9s
273:		0.2816415	total:		remaining:	13.9s
274:		0.2813704	total:		remaining:	13.9s
275:		0.2809740	total:		remaining:	13.9s
276:		0.2807785	<pre>total: total:</pre>		<pre>remaining: remaining:</pre>	13.8s
277: 278:		0.2805628 0.2803178	total:		remaining: remaining:	13.8s 13.8s
278: 279:		0.2800480	total:		remaining: remaining:	13.8s
280:		0.2798526	total:		remaining:	13.8s
281:		0.2794822	total:		remaining:	13.8s
282:		0.2792129	total:		remaining:	13.7s
283:		0.2789232	total:		remaining:	13.7s
284:		0.2786405	total:		remaining:	13.7s
285:		0.2784351	total:		_	
	•				٠ ر	

206.	learn	0 2701026	+0+01.	5 50	romaining.	12 70
286:		0.2781036	total:		remaining:	
287: 288:		0.2779303 0.2776343	<pre>total: total:</pre>		<pre>remaining: remaining:</pre>	
289:		0.2773688	total:		remaining:	
290:		0.2770885	total:		remaining:	
290:		0.2768113	total:		remaining:	
292:		0.2764446	total:		remaining:	
293:		0.2761856	total:		remaining:	
294:		0.2755186	total:		remaining:	
295:		0.2752966	total:		remaining:	
296:		0.2749683	total:		remaining:	
297:		0.2746787	total:		remaining:	
298:		0.2743144	total:		remaining:	
299:		0.2742161	total:		remaining:	
300:		0.2739640	total:		remaining:	
301:		0.2737479	total:		remaining:	
302:		0.2733166	total:		remaining:	
303:		0.2731112	total:		remaining:	
304:		0.2728891	total:		remaining:	
305:		0.2725994	total:		remaining:	
306:		0.2723851	total:		remaining:	
307:		0.2719409	total:		remaining:	
308:		0.2717026	total:		remaining:	
309:		0.2714600	total:		remaining:	
310:		0.2712507	total:		remaining:	
311:		0.2709506	total:		remaining:	
312:		0.2704911	total:		remaining:	
313:		0.2703236	total:		remaining:	
314:		0.2700347	total:		remaining:	
315:	learn:	0.2698594	total:	6.05s	remaining:	
316:	learn:	0.2696118	total:	6.07s	remaining:	13.1s
317:	learn:	0.2690417	total:	6.09s	remaining:	13.1s
318:	learn:	0.2687016	total:	6.11s	remaining:	13s
319:	learn:	0.2684239	total:	6.12s	remaining:	13s
320:	learn:	0.2681468	total:	6.14s	remaining:	13s
321:	learn:	0.2679534	total:	6.16s	remaining:	13s
322:	learn:	0.2676510	total:	6.17s	remaining:	12.9s
323:	learn:	0.2674140	total:	6.19s	remaining:	12.9s
324:	learn:	0.2671640	total:	6.21s	remaining:	12.9s
325:	learn:	0.2667131	total:	6.23s	remaining:	12.9s
326:	learn:		total:		remaining:	
327:	learn:		total:		remaining:	
328:	learn:		total:		remaining:	
329:	learn:		total:		remaining:	
330:	learn:		total:		remaining:	
331:	learn:		total:		remaining:	
332:	learn:		total:		remaining:	
333:	learn:		total:		remaining:	
334:	learn:		total:		remaining:	
335:	learn:		total:		remaining:	
336:	learn:		total:		remaining:	
337:	learn:		total:		remaining:	
338:	learn:		total:		remaining:	
339:	learn:		total:		remaining:	
340:	learn:		total:		remaining:	
341:	learn:		total:		remaining:	
342:	learn:		total:		remaining:	
343:	learn:		total:		remaining:	
344:	learn:		total:		remaining:	
345:	learn:		total:		remaining:	
346:	learn:		total:		remaining:	
347:	learn:		total:		remaining:	
348:	learn:		<pre>total: total:</pre>		remaining:	
349:	learn:				<pre>remaining: remaining:</pre>	
350:			total:	6.65s 6.67s	remaining: remaining:	
351:	1 ~ ~ ~ ~ -	0.2602405				

352:	loamn	0.2599980	total:	6 600	romaining	10 20
353:		0.2598291	total:		<pre>remaining: remaining:</pre>	12.3s
354:		0.2595411	total:		remaining:	12.2s
355:		0.2593528	total:		remaining:	12.2s
356 :		0.2592517	total:		_	12.2s
357 :		0.2589458	total:			12.1s
358:		0.2586411	total:			12.1s
359:		0.2582643	total:			12.1s
360:		0.2579747	total:			12.1s
361:		0.2577136	total:		remaining:	12.1s
362:		0.2576067	total:		remaining:	12:13
363:		0.2573350	total:		remaining:	12s
364:		0.2570846	total:		remaining:	12s
365:		0.2569065	total:		remaining:	12s
366:		0.2565767	total:		remaining:	11.9s
367:		0.2562966	total:		remaining:	11.9s
368:		0.2562203	total:		remaining:	
369:		0.2559913	total:		remaining:	
370:		0.2556800	total:		remaining:	
371:		0.2555352	total:		remaining:	
372 :		0.2553861	total:		remaining:	
373:		0.2550712	total:		remaining:	
374:		0.2547942	total:		remaining:	
375:		0.2545758	total:	7.1s	remaining:	
376:		0.2545241	total:		remaining:	
377 :	learn:	0.2543207	total:	7.14s	remaining:	
378:	learn:	0.2540558	total:	7.16s	=	11.7s
379:	learn:	0.2538763	total:	7.18s	=	11.7s
380:	learn:	0.2536396	total:	7.2s	remaining:	11.7s
381:	learn:	0.2534406	total:	7.22s	remaining:	11.7s
382:	learn:	0.2532216	total:	7.24s	remaining:	11.7s
383:	learn:	0.2527608	total:	7.25s	remaining:	11.6s
384:	learn:	0.2524770	total:	7.27s	remaining:	11.6s
385:	learn:	0.2522338	total:	7.29s	remaining:	11.6s
386:	learn:	0.2521224	total:	7.31s	remaining:	11.6s
387:	learn:	0.2518998	total:	7.33s	remaining:	11.6s
388:	learn:	0.2516730	total:	7.35s	remaining:	11.5s
389:	learn:	0.2514511	total:		_	11.5s
390:	learn:		total:		remaining:	11.5s
391:	learn:		total:		remaining:	11.5s
392:	learn:		total:			11.4s
393:	learn:		total:		remaining:	11.4s
394:	learn:			7.45s	remaining:	11.4s
395:	learn:			7.47s	remaining:	11.4s
396:	learn:			7.48s	remaining:	11.4s
397:	learn:			7.5s	remaining:	11.3s
398:	learn:			7.51s	remaining:	11.3s
399:	learn:			7.53s	remaining:	11.3s
400:	learn:			7.55s	remaining:	11.3s
401:	learn:			7.57s	remaining:	11.3s
402:	learn:			7.59s	remaining:	11.2s
403:	learn:			7.61s	remaining:	11.2s
404:	learn:			7.63s	remaining:	11.2s
405:	learn:			7.65s	remaining:	11.2s
406:	learn:			7.67s	remaining:	11.2s
407:	learn:			7.69s	<pre>remaining: remaining:</pre>	11.2s
408: 409:	<pre>learn: learn:</pre>			7.71s 7.73s	remaining: remaining:	11.1s 11.1s
409:	learn:			7.73s 7.74s	_	11.1s 11.1s
410: 411:	learn:			7.74s 7.76s		11.1s 11.1s
411:	learn:			7.76s 7.79s	remaining:	11.1s 11.1s
412:	learn:			7.795 7.81s	remaining:	11.1s
414:	learn:			7.82s	remaining:	11.15 11s
415:	learn:			7.84s	remaining:	11s
416:	learn:			7.86s	remaining:	11s
417:		0.2458050	total:		remaining:	
- · •		. ,				

418:	loarn	0.2455402	total:	7 96	remaining:	110
419:		0.2454385	total:		remaining:	
420:		0.2454138	total:		remaining:	
421:		0.2452091	total:		remaining:	
422:		0.2450936	total:		remaining:	
423:		0.2449103	total:		remaining:	
424:		0.2447284	total:		remaining:	
425:		0.2444740	total:		remaining:	
426:		0.2442504	total:		remaining:	
427:		0.2440234	total:		remaining:	
428:		0.2438293	total:		remaining:	
429:		0.2436087	total:		remaining:	
430:		0.2433979	total:		remaining:	
431:		0.2432203	total:		remaining:	
432:	learn:	0.2430367	total:	8.15s	remaining:	
433:	learn:	0.2427694	total:	8.17s	remaining:	
434:	learn:	0.2425663	total:	8.18s	remaining:	10.6s
435:	learn:	0.2424114	total:	8.2s	remaining:	10.6s
436:	learn:	0.2421857	total:	8.22s	remaining:	10.6s
437:	learn:	0.2419853	total:	8.24s	remaining:	10.6s
438:	learn:	0.2418100	total:	8.26s	remaining:	10.6s
439:	learn:	0.2416578	total:	8.28s	remaining:	10.5s
440:		0.2414939	total:	8.3s	remaining:	10.5s
441:	learn:	0.2412960	total:	8.31s	remaining:	10.5s
442:		0.2410711	total:		remaining:	
443:		0.2407957	total:		remaining:	
444:		0.2406237	total:		remaining:	
445:		0.2404531	total:		remaining:	
446:		0.2404296	total:		remaining:	
447:		0.2402700	total:		remaining:	
448:		0.2401724	total:		remaining:	
449:		0.2399540	total:		remaining:	
450:		0.2397468	total:		remaining:	
451:		0.2395874	total:		remaining:	
452:		0.2394757	total:		_	10.3s
453:		0.2391526	total:		-	10.2s
454:	learn:	0.2389486	total:		remaining:	10.2s
455:		0.2387521	total:		_	10.2s
456: 457:	learn:		<pre>total: total:</pre>		<pre>remaining: remaining:</pre>	10.2s
457:	learn:		total:			10.2s 10.1s
459:	learn:		total:		_	10.1s
460:	learn:		total:		_	10.1s
461:	learn:		total:		remaining:	10.1s
462:	learn:		total:		remaining:	10.1s
463:	learn:		total:		remaining:	10:13
464:	learn:		total:		remaining:	10s
465:	learn:		total:		remaining:	9.99s
466:	learn:		total:		remaining:	9.97s
467:	learn:		total:		remaining:	9.95s
468:	learn:		total:		remaining:	9.93s
469:	learn:		total:		remaining:	9.91s
470:	learn:		total:		remaining:	9.89s
471:	learn:		total:		remaining:	9.87s
472:	learn:		total:		remaining:	9.85s
473:	learn:	0.2357589	total:	8.86s	remaining:	9.83s
474:	learn:		total:		remaining:	9.82s
475:	learn:	0.2353242	total:	8.9s	remaining:	9.8s
476:	learn:	0.2351715	total:	8.93s	remaining:	9.79s
477:	learn:	0.2349737	total:	8.95s	remaining:	9.77s
478:	learn:		total:	8.97s	remaining:	9.75s
479:	learn:		total:	8.99s	remaining:	9.74s
480:	learn:		total:		remaining:	9.72s
481:	learn:		total:		remaining:	9.71s
482:	learn:		total:		remaining:	9.7s
483:	learn:	0.2339665	total:	9.08s	remaining:	9.68s

484:	learn	0.2338320	total:	9 096	remaining:	9 660
485:		0.2336872	total:		remaining:	
486:		0.2335232	total:		remaining:	
487:		0.2333792	total:		remaining:	
488:		0.2332022	total:		remaining:	
489:		0.2331332	total:		remaining:	
490:		0.2329681	total:		remaining:	
491:		0.2328321	total:		remaining:	
492:		0.2326682	total:		_	
493:		0.2324758	total:		remaining:	
494:		0.2323193	total:		remaining:	
495:		0.2321425	total:		remaining:	
496:	learn:	0.2319933	total:		remaining:	
497:	learn:	0.2318277	total:	9.33s	remaining:	9.4s
498:	learn:	0.2315322	total:	9.35s	remaining:	9.38s
499:	learn:	0.2313906	total:	9.36s	remaining:	9.36s
500:	learn:	0.2312012	total:	9.39s	remaining:	9.35s
501:	learn:	0.2311733	total:	9.4s	remaining:	9.33s
502:	learn:	0.2310452	total:	9.42s	remaining:	9.31s
503:	learn:	0.2308628	total:	9.44s	remaining:	9.29s
504:		0.2306536	total:		remaining:	9.27s
505:		0.2304534	total:		remaining:	
506:		0.2302427	total:		remaining:	
507:		0.2300662	total:		remaining:	
508:		0.2298873	total:		remaining:	9.2s
509:		0.2297143	total:		remaining:	
510:		0.2295651	total:		remaining:	9.16s
511:		0.2294264	total:		remaining:	9.14s
512:		0.2292272	total:		remaining:	9.13s
513:		0.2292060	total:		remaining:	9.11s
514:		0.2290781	total:		remaining:	9.09s
515:		0.2289366	total:		remaining:	9.06s
516:		0.2288137	total:		remaining:	9.04s
517: 518:		0.2286338	<pre>total: total:</pre>		remaining:	9.03s
510:		0.2284921 0.2284662	total:		<pre>remaining: remaining:</pre>	9.01s 8.99s
520:	learn:	0.2282772	total:	9.73s 9.75s	remaining:	8.96s
521:		0.2281742	total:		remaining:	
522:		0.2279901	total:		remaining:	
523:		0.2278396	total:		remaining:	
524:		0.2276992	total:		remaining:	
525:		0.2275615	total:		remaining:	
526:	learn:	0.2273314	total:		remaining:	
527:	learn:	0.2271808	total:		remaining:	
528:	learn:		total:		remaining:	
529:	learn:	0.2268014	total:		remaining:	
530:	learn:	0.2265209	total:	9.92s	remaining:	8.76s
531:	learn:	0.2263794	total:	9.94s	remaining:	8.74s
532:	learn:	0.2262018	total:	9.96s	remaining:	8.72s
533:	learn:	0.2258534	total:	9.98s	remaining:	8.71s
534:	learn:	0.2256831	total:	9.99s	remaining:	8.69s
535:	learn:	0.2254942	total:	10s	remaining:	8.67s
536:	learn:	0.2253375	total:	10s	remaining:	
537:	learn:	0.2252043	total:	10s	remaining:	
538:		0.2250680	total:		remaining:	
539:		0.2247975	total:		remaining:	
540:		0.2246667	total:		remaining:	
541:		0.2245075	total:		remaining:	
542:	learn:		total:		remaining:	
543:	learn:		total:		remaining:	
544:	learn:	0.2238417	total:		remaining:	
545:		0.2236453	total:		remaining:	
546:		0.2236283	total:		remaining:	
547:		0.2235056	total:		<pre>remaining: remaining:</pre>	
548:		0.2233695	total:		remaining: remaining:	
549:	learn:	0.2232381	total:	TO.38	remarning:	0.45

F.F.O.	1	0 0001104	100	0.20
550:		0.2231184	total: 10.3s	remaining: 8.38s
551:		0.2229823	total: 10.3s	remaining: 8.36s
552 :		0.2227052	total: 10.3s	remaining: 8.34s
553:		0.2225477	total: 10.3s	remaining: 8.32s
554:		0.2223481	total: 10.4s	remaining: 8.3s
555:		0.2222126	total: 10.4s	remaining: 8.29s
556:		0.2220556	total: 10.4s	remaining: 8.27s
557:		0.2218929	total: 10.4s	remaining: 8.25s
558:		0.2215851	total: 10.4s	remaining: 8.23s
559:	learn:	0.2214369	total: 10.5s	remaining: 8.21s
560:	learn:	0.2212971	total: 10.5s	remaining: 8.19s
561:	learn:	0.2210794	total: 10.5s	remaining: 8.17s
562:	learn:	0.2208963	total: 10.5s	remaining: 8.15s
563:	learn:	0.2207252	total: 10.5s	remaining: 8.13s
564:	learn:	0.2207048	total: 10.5s	remaining: 8.11s
565:	learn:	0.2205761	total: 10.6s	remaining: 8.09s
566:	learn:	0.2204351	total: 10.6s	remaining: 8.07s
567:	learn:	0.2203082	total: 10.6s	remaining: 8.05s
568:	learn:	0.2201264	total: 10.6s	remaining: 8.04s
569:	learn:	0.2199468	total: 10.6s	remaining: 8.02s
570:	learn:	0.2198374	total: 10.7s	remaining: 8s
571:		0.2196894	total: 10.7s	remaining: 7.98s
572:		0.2194157	total: 10.7s	remaining: 7.97s
573:		0.2192484	total: 10.7s	remaining: 7.95s
574:		0.2190807	total: 10.7s	remaining: 7.94s
575:		0.2190469	total: 10.8s	remaining: 7.92s
576:		0.2189359	total: 10.8s	remaining: 7.9s
577 :		0.2187015	total: 10.8s	remaining: 7.88s
578:		0.2185836	total: 10.8s	remaining: 7.87s
579:		0.2184044	total: 10.8s	remaining: 7.85s
580:		0.2182398	total: 10.9s	remaining: 7.84s
581:		0.2181441	total: 10.9s	remaining: 7.82s
582:		0.2179946	total: 10.9s	remaining: 7.8s
583:		0.2179340	total: 10.9s	remaining: 7.78s
584:	learn:	0.2178000	total: 10.9s	remaining: 7.76s
585:	learn:	0.2175684	total: 11s	remaining: 7.74s
586:	learn:	0.2174174	total: 11s	remaining: 7.72s
587:	learn:	0.2173047	total: 11s	remaining: 7.7s
588:	learn:	0.2170198	total: 11s	remaining: 7.68s
589:	learn:	0.2168254	total: 11s	remaining: 7.67s
590:	learn:	0.2166062	total: 11.1s	remaining: 7.65s
591:	learn:	0.2164051	total: 11.1s	remaining: 7.63s
592:	learn:	0.2162341	total: 11.1s	remaining: 7.61s
593:	learn:	0.2160758	total: 11.1s	remaining: 7.59s
594:	learn:	0.2158660	total: 11.1s	remaining: 7.57s
595:	learn:	0.2157443	total: 11.1s	remaining: 7.55s
596:	learn:	0.2155716	total: 11.2s	remaining: 7.53s
597:	learn:	0.2154150	total: 11.2s	remaining: 7.51s
598:	learn:	0.2151640	total: 11.2s	remaining: 7.49s
599:	learn:	0.2150041	total: 11.2s	remaining: 7.47s
600:	learn:	0.2148074	total: 11.2s	remaining: 7.45s
601:	learn:	0.2145814	total: 11.2s	remaining: 7.43s
602:	learn:	0.2144455	total: 11.3s	remaining: 7.41s
603:	learn:	0.2142903	total: 11.3s	remaining: 7.4s
604:	learn:	0.2141458	total: 11.3s	remaining: 7.38s
605:	learn:	0.2140034	total: 11.3s	remaining: 7.36s
606:	learn:	0.2138105	total: 11.3s	remaining: 7.34s
607:	learn:	0.2136666	total: 11.4s	remaining: 7.32s
608:	learn:	0.2135007	total: 11.4s	remaining: 7.3s
	learn:	0.2133251	total: 11.4s	remaining: 7.28s
609:				_
609: 610:	learn:	0.2131523	total: 11.4s	remaining: 7.26s
		0.2131523 0.2130682	total: 11.4s total: 11.4s	remaining: 7.26s remaining: 7.24s
610:	learn:			_
610: 611: 612: 613:	learn: learn:	0.2130682 0.2129124 0.2127505	total: 11.4s total: 11.4s total: 11.5s	remaining: 7.24s remaining: 7.22s remaining: 7.2s
610: 611: 612:	<pre>learn: learn: learn:</pre>	0.2130682 0.2129124 0.2127505 0.2126343	total: 11.4s total: 11.4s	remaining: 7.24s remaining: 7.22s

616:	learn:	0.2123933	total:	11 50	remaining:	7.14s
617:		0.2123933	total:		remaining:	7.14s 7.13s
618:		0.2123100	total:		remaining:	7.13s
619:		0.2121636	total:		remaining:	7.113 7.09s
620:		0.2118664	total:		remaining:	7.07s
621:		0.2116975	total:		remaining:	7.05s
622:		0.2115561	total:		remaining:	7.04s
623:		0.2114153	total:		remaining:	7.02s
624:		0.2112205	total:		remaining:	7s
625:		0.2110420	total:		remaining:	
626:		0.2108773	total:		remaining:	
627:		0.2107448	total:		remaining:	
628:	learn:	0.2105610	total:		remaining:	6.93s
629:	learn:	0.2104120	total:		remaining:	
630:	learn:	0.2102504	total:	11.8s	remaining:	6.91s
631:	learn:	0.2101537	total:	11.8s	remaining:	6.89s
632:	learn:	0.2100129	total:	11.9s	remaining:	6.88s
633:	learn:	0.2098724	total:	11.9s	remaining:	6.86s
634:	learn:	0.2096583	total:	11.9s	remaining:	6.84s
635:	learn:	0.2095164	total:	11.9s	remaining:	6.83s
636:	learn:	0.2093475	total:	12s	remaining:	6.81s
637:		0.2092558	total:		remaining:	
638:		0.2090646	total:		remaining:	
639:		0.2089087	total:		remaining:	
640:		0.2086999	total:		remaining:	
641:		0.2085543	total:		remaining:	
642:		0.2083834	total:		remaining:	
643:		0.2082809	total:		remaining:	6.7s
644:		0.2080249	total:		remaining:	
645:		0.2079106	total:		remaining:	
646:		0.2078009	total:		remaining:	
647:		0.2076663	total:		remaining:	
648:		0.2075302	total:		remaining:	
649:		0.2073523	total:		remaining:	
650:		0.2072515	<pre>total: total:</pre>		remaining:	
651:		0.2071518 0.2069922			remaining:	6.56s
652 :	learn:		total:	12.3s	remaining:	6.54s
653: 654:		0.2068608 0.2067450	<pre>total: total:</pre>		<pre>remaining: remaining:</pre>	6.53s 6.51s
655:		0.2067430	total:		remaining:	6.49s
656:		0.2064567	total:		remaining:	6.47s
657:	learn:	0.2063038	total:		remaining:	6.45s
658:	learn:	0.2061555	total:		remaining:	6.43s
659:	learn:	0.2059175	total:		remaining:	6.41s
660:	learn:	0.2058012	total:		remaining:	6.39s
661:	learn:	0.2056832	total:		remaining:	6.37s
662:	learn:	0.2055634	total:		remaining:	6.35s
663:	learn:	0.2054128	total:		remaining:	6.33s
664:	learn:	0.2052362	total:		remaining:	6.31s
665:	learn:	0.2051397	total:		remaining:	6.29s
666:	learn:	0.2049839	total:		remaining:	6.27s
667:	learn:	0.2048110	total:		remaining:	6.25s
668:	learn:	0.2046835	total:		remaining:	6.23s
669:	learn:	0.2045773	total:	12.6s	remaining:	6.21s
670 :	learn:	0.2044687	total:		remaining:	6.19s
671 :	learn:	0.2043181	total:	12.6s	remaining:	6.17s
672:	learn:	0.2041802	total:		remaining:	6.15s
673:	learn:	0.2040448	total:		remaining:	6.13s
674:	learn:	0.2039226	total:		remaining:	6.11s
675 :	learn:	0.2038039	total:		remaining:	6.09s
676:	learn:	0.2037120	total:		remaining:	6.07s
677:	learn:	0.2035912	total:		remaining:	6.05s
678:	learn:	0.2034977	total:		remaining:	6.03s
679:	learn:	0.2033854	total:		remaining:	6.01s
680:	learn:	0.2032374		12.8s	remaining:	5.99s
681:	learn:	0.2030712	total:	12.8s	remaining:	5.97s

683: learn: 0.2028374 total: 12.8s remaining: 5.95s 684: learn: 0.2026134 total: 12.9s remaining: 5.91s 685: learn: 0.202464 total: 12.9s remaining: 5.87s 686: learn: 0.202141 total: 12.9s remaining: 5.87s 687: learn: 0.201984 total: 12.9s remaining: 5.87s 687: learn: 0.201984 total: 12.9s remaining: 5.83s 689: learn: 0.2018939 total: 12.9s remaining: 5.83s 689: learn: 0.2018939 total: 12.9s remaining: 5.83s 689: learn: 0.2018939 total: 12.9s remaining: 5.82s 689: learn: 0.2018930 total: 13.5s remaining: 5.78s 691: learn: 0.2018930 total: 13.s remaining: 5.78s 693: learn: 0.2012149 total: 13s remaining: 5.78s 693: learn: 0.2012149 total: 13s remaining: 5.74s 693: learn: 0.2012149 total: 13s remaining: 5.74s 695: learn: 0.2008910 total: 13s remaining: 5.74s 695: learn: 0.2008910 total: 13.1s remaining: 5.67s 697: learn: 0.2008910 total: 13.1s remaining: 5.67s 698: learn: 0.2006336 total: 13.1s remaining: 5.67s 698: learn: 0.2006336 total: 13.1s remaining: 5.67s 699: learn: 0.2006336 total: 13.1s remaining: 5.67s 699: learn: 0.2004100 total: 13.2s remaining: 5.65s 699: learn: 0.2004100 total: 13.2s remaining: 5.65s 704: learn: 0.1998987 total: 13.2s remaining: 5.58s 705: learn: 0.199903 total: 13.2s remaining: 5.58s 706: learn: 0.199903 total: 13.3s remaining: 5.58s 706: learn: 0.19994790 total: 13.3s remaining: 5.58s 706: learn: 0.1994790 total: 13.3s remaining: 5.58s 706: learn: 0.1994790 total: 13.3s remaining: 5.58s 707: learn: 0.1994790 total: 13.3s remaining: 5.58s 708: learn: 0.1994790 total: 13.3s remaining: 5.58s 708: learn: 0.1994790 total: 13.3s remaining: 5.57s 709: learn: 0.1994790 total: 13.4s remaining: 5.47s 709: learn: 0.199562 total: 13.4s remaining: 5.47s 709: learn: 0.199564 total: 13.4s remaining: 5.48s 711: learn: 0.198602 total: 13.4s remaining: 5.48s 711: learn: 0.198602 total: 13.4s remaining: 5.48s 711: learn: 0.198602 total: 13.5s remaining: 5.38s 713: learn: 0.198602 total: 13.5s remaining: 5.38s 713: learn: 0.198603 total: 13.5s remaining: 5.38s 713: learn: 0.198603 total: 13.5s remai	682:	loarn	0 2020717	+0+01.	12 00	romaining	5 950
684: learn: 0.202452 total: 12.9s remaining: 5.91s 686: learn: 0.2022764 total: 12.9s remaining: 5.87s 687: learn: 0.2021411 total: 12.9s remaining: 5.83s 689: learn: 0.2018939 total: 12.9s remaining: 5.83s 690: learn: 0.2015830 total: 13s remaining: 5.78s 691: learn: 0.2013938 total: 13s remaining: 5.78s 692: learn: 0.2011203 total: 13s remaining: 5.78s 693: learn: 0.2009910 total: 13.1s remaining: 5.72s 695: learn: 0.200690 total: 13.1s remaining: 5.69s 697: learn: 0.200636 total: 13.1s remaining: 5.69s 698: learn: 0.200636 total: 13.2s remaining: <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>						_	
685: learn: 0.202452 total: 12.9s remaining: 5.89s 687: learn: 0.2021411 total: 12.9s remaining: 5.85s 688: learn: 0.201984 total: 12.9s remaining: 5.82s 689: learn: 0.2017059 total: 13s remaining: 5.82s 691: learn: 0.201830 total: 13s remaining: 5.8s 692: learn: 0.2012149 total: 13s remaining: 5.76s 693: learn: 0.2009910 total: 13:s remaining: 5.76s 694: learn: 0.2007209 total: 13:ls remaining: 5.71s 696: learn: 0.2006336 total: 13:ls remaining: 5.63s 697: learn: 0.2006336 total: 13:ls remaining: 5.63s 698: learn: 0.2006336 total: 13:ls remaining: <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>						_	
686: learn: 0.2022764 total: 12.9s remaining: 5.87s 687: learn: 0.2019984 total: 12.9s remaining: 5.83s 689: learn: 0.2017059 total: 12.9s remaining: 5.8s 690: learn: 0.2015830 total: 12s remaining: 5.8s 691: learn: 0.2012149 total: 12s remaining: 5.76s 693: learn: 0.2012149 total: 13s remaining: 5.74s 694: learn: 0.201219 total: 13s remaining: 5.72s 695: learn: 0.2009910 total: 13.1s remaining: 5.62s 697: learn: 0.2006336 total: 13.1s remaining: 5.63s 698: learn: 0.200490 total: 13.1s remaining: 5.65s 699: learn: 0.200490 total: 13.2s remaining: 5.6s 700: learn: 0.200490 total: 13.2s remaining: 5.6s						_	
687: learn: 0.201984 total: 12.9s remaining: 5.83s 689: learn: 0.2018939 total: 12.9s remaining: 5.82s 690: learn: 0.2017059 total: 13s remaining: 5.8s 691: learn: 0.2015830 total: 13s remaining: 5.7s 692: learn: 0.2012149 total: 13s remaining: 5.76s 693: learn: 0.2012103 total: 13s remaining: 5.7s 694: learn: 0.2009910 total: 13.1s remaining: 5.72s 695: learn: 0.20009910 total: 13.1s remaining: 5.69s 697: learn: 0.2007209 total: 13.1s remaining: 5.69s 698: learn: 0.2005111 total: 13.1s remaining: 5.63s 699: learn: 0.2004100 total: 13.2s remaining: 5.62s 700: learn: 0.2004101 total: 13.2s remaining: 5.58s 702: learn: 0.19997083 total: 13.2s remaining: 5.58s 703: learn: 0.19997083 total: 13.3s remaining: 5.55s 705: learn: 0.1994780 total: 13.3s remaining: 5.55s 706: learn: 0.1994780 total: 13.4s remaining: 5.46s 707: learn: 0.199468 total: 13.4s remaining: 5						_	
688: learn: 0.2018934 total: 12.9s remaining: 5.82s 689: learn: 0.2017059 total: 12.9s remaining: 5.82s 690: learn: 0.2017059 total: 13s remaining: 5.8s 691: learn: 0.2015330 total: 13s remaining: 5.78s 692: learn: 0.2013938 total: 13s remaining: 5.76s 693: learn: 0.2012149 total: 13s remaining: 5.76s 693: learn: 0.2012149 total: 13s remaining: 5.72s 694: learn: 0.2001203 total: 13.s remaining: 5.72s 695: learn: 0.2008490 total: 13.1s remaining: 5.67s 697: learn: 0.2008490 total: 13.1s remaining: 5.67s 698: learn: 0.2006336 total: 13.1s remaining: 5.67s 698: learn: 0.2006336 total: 13.1s remaining: 5.67s 699: learn: 0.2006336 total: 13.1s remaining: 5.63s 700: learn: 0.2004100 total: 13.2s remaining: 5.63s 701: learn: 0.2004400 total: 13.2s remaining: 5.62s 702: learn: 0.2004301 total: 13.2s remaining: 5.58s 703: learn: 0.1999525 total: 13.2s remaining: 5.58s 705: learn: 0.199587 total: 13.3s remaining: 5.58s 706: learn: 0.199587 total: 13.3s remaining: 5.55s 705: learn: 0.1997083 total: 13.3s remaining: 5.55s 706: learn: 0.1997083 total: 13.3s remaining: 5.55s 707: learn: 0.1994780 total: 13.3s remaining: 5.55s 707: learn: 0.1994780 total: 13.3s remaining: 5.46s 709: learn: 0.199366 total: 13.4s remaining: 5.46s 710: learn: 0.199368 total: 13.4s remaining: 5.46s 710: learn: 0.198888 total: 13.4s remaining: 5.48s 711: learn: 0.198602 total: 13.4s remaining: 5.48s 713: learn: 0.198602 total: 13.5s remaining: 5.38s 718: learn: 0.198602 total: 13.5s remaining: 5.28s 717: learn: 0.198607 total: 13.5s remaining: 5.28s 717: learn: 0.198607 total: 13.5s remaining: 5.28s 717: learn: 0.198607 total: 13.5s remaining: 5.28s 719: learn: 0.1966004 total: 13.8s remaining: 5.						_	
699: learn: 0.2017839 total: 12.9s remaining: 5.82s 690: learn: 0.2017059 total: 13s remaining: 5.8s 691: learn: 0.2013838 total: 13s remaining: 5.76s 692: learn: 0.2012149 total: 13s remaining: 5.76s 693: learn: 0.2012149 total: 13s remaining: 5.74s 694: learn: 0.2001203 total: 13s remaining: 5.74s 695: learn: 0.2009910 total: 13.1s remaining: 5.72s 695: learn: 0.2008490 total: 13.1s remaining: 5.69s 697: learn: 0.2008490 total: 13.1s remaining: 5.69s 698: learn: 0.2006336 total: 13.1s remaining: 5.65s 699: learn: 0.2006111 total: 13.1s remaining: 5.65s 700: learn: 0.2004100 total: 13.1s remaining: 5.65s 700: learn: 0.2004100 total: 13.2s remaining: 5.65s 700: learn: 0.2004400 total: 13.2s remaining: 5.65s 701: learn: 0.2002490 total: 13.2s remaining: 5.65s 703: learn: 0.1998255 total: 13.2s remaining: 5.56s 703: learn: 0.1998387 total: 13.2s remaining: 5.56s 704: learn: 0.1998387 total: 13.2s remaining: 5.55s 705: learn: 0.1998387 total: 13.3s remaining: 5.55s 706: learn: 0.1997083 total: 13.3s remaining: 5.55s 708: learn: 0.199368 total: 13.3s remaining: 5.55s 708: learn: 0.199368 total: 13.3s remaining: 5.57s 708: learn: 0.199368 total: 13.3s remaining: 5.47s 709: learn: 0.199368 total: 13.3s remaining: 5.47s 709: learn: 0.199368 total: 13.4s remaining: 5.47s 709: learn: 0.199368 total: 13.4s remaining: 5.47s 709: learn: 0.199368 total: 13.4s remaining: 5.48s 711: learn: 0.1983888 total: 13.4s remaining: 5.48s 711: learn: 0.198355 total: 13.4s remaining: 5.38s 711: learn: 0.1987577 total: 13.5s remaining: 5.28s 717: learn: 0.1986022 total: 13.5s remaining: 5.28s 717: learn: 0.198604 total: 13.5s remaining: 5.28s 717: learn: 0.1986877 total: 13.5s remaining: 5.28s 718: learn: 0.197455 total: 13.5s remaining: 5.28s 719: learn: 0.197455 total: 13.5s remaining: 5.28s 719: learn: 0.197457 total: 13.6s remaining: 5.28s 719: learn: 0.1974680 total: 13.6s remaining: 5.28s 719: learn: 0.196604 total: 13.7s remaining: 5.08s 719: learn: 0.196604 total: 13.8s remaining: 5.08s 719: learn: 0.196604 total: 13.8s remaining						_	
690: learn: 0.2017059 total: 13s remaining: 5.78s 691: learn: 0.2013938 total: 13s remaining: 5.78s 692: learn: 0.2012149 total: 13s remaining: 5.76s 693: learn: 0.2012149 total: 13s remaining: 5.76s 694: learn: 0.2012109 total: 13.1s remaining: 5.72s 695: learn: 0.2009910 total: 13.1s remaining: 5.72s 695: learn: 0.2008490 total: 13.1s remaining: 5.67s 698: learn: 0.2006306 total: 13.1s remaining: 5.67s 698: learn: 0.2006306 total: 13.1s remaining: 5.67s 698: learn: 0.2006306 total: 13.1s remaining: 5.65s 699: learn: 0.2006101 total: 13.2s remaining: 5.63s 700: learn: 0.2004100 total: 13.2s remaining: 5.62s 701: learn: 0.2004490 total: 13.2s remaining: 5.68s 702: learn: 0.2004301 total: 13.2s remaining: 5.68s 703: learn: 0.1999525 total: 13.2s remaining: 5.58s 704: learn: 0.1999525 total: 13.2s remaining: 5.55s 705: learn: 0.1997083 total: 13.3s remaining: 5.55s 706: learn: 0.1997083 total: 13.3s remaining: 5.55s 707: learn: 0.1997083 total: 13.3s remaining: 5.57s 707: learn: 0.1997480 total: 13.3s remaining: 5.57s 709: learn: 0.1994780 total: 13.3s remaining: 5.53s 708: learn: 0.1994780 total: 13.3s remaining: 5.46s 709: learn: 0.1994368 total: 13.4s remaining: 5.46s 710: learn: 0.1994368 total: 13.4s remaining: 5.46s 711: learn: 0.1990002 total: 13.4s remaining: 5.43s 714: learn: 0.1986022 total: 13.4s remaining: 5.43s 714: learn: 0.1986022 total: 13.4s remaining: 5.43s 714: learn: 0.1987543 total: 13.5s remaining: 5.38s 719: learn: 0.1987761 total: 13.5s remaining: 5.38s 719: learn: 0.1987618 total: 13.5s remaining: 5.38s 719: learn: 0.1987618 total: 13.5s remaining: 5.28s 719: learn: 0.1976880 total: 13.5s remaining: 5.48s 719: learn: 0.1976880 total: 13.5s remaining: 5.48s 719: learn: 0.1976891 total: 13.5s remaining: 5.48s 719: learn: 0.1976891 tota						_	
691: learn: 0.2013938 total: 13s remaining: 5.76s 692: learn: 0.2012149 total: 13s remaining: 5.76s 693: learn: 0.2012149 total: 13s remaining: 5.74s 694: learn: 0.2012103 total: 13s remaining: 5.74s 695: learn: 0.2009910 total: 13.1s remaining: 5.72s 695: learn: 0.2009910 total: 13.1s remaining: 5.71s 696: learn: 0.2007209 total: 13.1s remaining: 5.69s 697: learn: 0.2006336 total: 13.1s remaining: 5.69s 698: learn: 0.2006336 total: 13.1s remaining: 5.65s 700: learn: 0.2001410 total: 13.1s remaining: 5.65s 700: learn: 0.2001410 total: 13.2s remaining: 5.62s 701: learn: 0.2002490 total: 13.2s remaining: 5.65s 702: learn: 0.2001431 total: 13.2s remaining: 5.65s 703: learn: 0.1998252 total: 13.2s remaining: 5.56s 704: learn: 0.199827 total: 13.2s remaining: 5.55s 705: learn: 0.1997083 total: 13.3s remaining: 5.55s 706: learn: 0.1997083 total: 13.3s remaining: 5.55s 706: learn: 0.1997084 total: 13.3s remaining: 5.55s 707: learn: 0.1994780 total: 13.3s remaining: 5.51s 709: learn: 0.1994780 total: 13.3s remaining: 5.47s 709: learn: 0.1992362 total: 13.4s remaining: 5.47s 709: learn: 0.199368 total: 13.4s remaining: 5.46s 710: learn: 0.1993526 total: 13.4s remaining: 5.46s 711: learn: 0.198888 total: 13.4s remaining: 5.46s 712: learn: 0.198888 total: 13.4s remaining: 5.48s 713: learn: 0.1986022 total: 13.4s remaining: 5.48s 713: learn: 0.1987543 total: 13.4s remaining: 5.36s 715: learn: 0.1986022 total: 13.4s remaining: 5.36s 715: learn: 0.1986024 total: 13.5s remaining: 5.36s 719: learn: 0.1986024 total: 13.5s remaining: 5.36s 719: learn: 0.1986024 total: 13.5s remaining: 5.26s 719: learn: 0.1986024 total: 13.5s remaining: 5.26s 719: learn: 0.197618 total: 13.5s remaining: 5.26s 719: learn: 0.197580 total: 13.6s remaining: 5.28s 719: learn: 0.197580 total: 13.6s remaining: 5.28s 719: learn: 0.197618 total: 13.5s remaining: 5.24s 719: learn: 0.197580 total: 13.6s remaining: 5.28s 719: learn: 0.197580 total: 13.6s remaining: 5.38s 719: learn: 0.197580 total: 13.6s remaining: 5.48s 719: learn: 0.1976991 total: 13.7s re						_	
692: learn: 0.2013938 total: 13s remaining: 5.76s 693: learn: 0.2011203 total: 13s remaining: 5.74s 694: learn: 0.2011203 total: 13.s remaining: 5.72s 695: learn: 0.2001901 total: 13.ls remaining: 5.72s 696: learn: 0.2008490 total: 13.ls remaining: 5.67s 697: learn: 0.2007209 total: 13.ls remaining: 5.67s 698: learn: 0.200536 total: 13.ls remaining: 5.67s 698: learn: 0.2005111 total: 13.ls remaining: 5.67s 699: learn: 0.2005111 total: 13.ls remaining: 5.63s 700: learn: 0.2004100 total: 13.2s remaining: 5.63s 701: learn: 0.2004491 total: 13.2s remaining: 5.63s 701: learn: 0.2004491 total: 13.2s remaining: 5.58s 703: learn: 0.1999525 total: 13.2s remaining: 5.58s 704: learn: 0.199525 total: 13.3s remaining: 5.55s 705: learn: 0.1997083 total: 13.3s remaining: 5.55s 706: learn: 0.1997083 total: 13.3s remaining: 5.55s 707: learn: 0.1997480 total: 13.3s remaining: 5.55s 707: learn: 0.1994780 total: 13.3s remaining: 5.58s 708: learn: 0.199366 total: 13.3s remaining: 5.46s 710: learn: 0.199366 total: 13.4s remaining: 5.46s 710: learn: 0.199362 total: 13.4s remaining: 5.46s 711: learn: 0.198022 total: 13.4s remaining: 5.43s 711: learn: 0.198022 total: 13.4s remaining: 5.43s 713: learn: 0.198602 total: 13.4s remaining: 5.43s 714: learn: 0.198602 total: 13.4s remaining: 5.36s 717: learn: 0.1984771 total: 13.5s remaining: 5.38s 717: learn: 0.1981065 total: 13.5s remaining: 5.38s 719: learn: 0.1977618 total: 13.5s remaining: 5.26s 719: learn: 0.1975680 total: 13.6s remaining: 5.28s 719: learn: 0.197680 total: 13.6s remaining: 5.28s 719: learn: 0.1964994 total: 13.8s remaining: 5.08s 719: learn: 0.1964994 total: 13.8s remain						_	
693: learn: 0.2012149 total: 13s remaining: 5.72s 695: learn: 0.2009910 total: 13.1s remaining: 5.72s 696: learn: 0.2009900 total: 13.1s remaining: 5.69s 697: learn: 0.2006396 total: 13.1s remaining: 5.69s 698: learn: 0.2006396 total: 13.1s remaining: 5.65s 699: learn: 0.2005111 total: 13.1s remaining: 5.65s 699: learn: 0.2004100 total: 13.2s remaining: 5.65s 700: learn: 0.2004100 total: 13.2s remaining: 5.62s 701: learn: 0.2004200 total: 13.2s remaining: 5.63s 702: learn: 0.2004311 total: 13.2s remaining: 5.58s 703: learn: 0.1999525 total: 13.2s remaining: 5.56s 704: learn: 0.1999837 total: 13.3s remaining: 5.56s 705: learn: 0.19998387 total: 13.3s remaining: 5.53s 706: learn: 0.199524 total: 13.3s remaining: 5.53s 707: learn: 0.1994780 total: 13.3s remaining: 5.53s 708: learn: 0.1994780 total: 13.3s remaining: 5.43s 709: learn: 0.199262 total: 13.4s remaining: 5.47s 710: learn: 0.199262 total: 13.4s remaining: 5.43s 711: learn: 0.199002 total: 13.4s remaining: 5.42s 712: learn: 0.1988888 total: 13.4s remaining: 5.48s 714: learn: 0.1986022 total: 13.4s remaining: 5.38s 715: learn: 0.198471 total: 13.5s remaining: 5.36s 716: learn: 0.1983355 total: 13.5s remaining: 5.36s 717: learn: 0.198115 total: 13.5s remaining: 5.28s 718: learn: 0.1987547 total: 13.5s remaining: 5.28s 719: learn: 0.1975680 total: 13.5s remaining: 5.28s 719: learn: 0.1975680 total: 13.5s remaining: 5.28s 720: learn: 0.1976580 total: 13.6s remaining: 5.26s 720: learn: 0.1976580 total: 13.6s remaining: 5.26s 721: learn: 0.1976580 total: 13.6s remaining: 5.26s 722: learn: 0.1976580 total: 13.6s remaining: 5.6s 723: learn: 0.1976580 total: 13.6s remaining: 5.28s 724: learn: 0.1976580 total: 13.6s remaining: 5.28s 725: learn: 0.1976580 total: 13.6s remaining: 5.28s 726: learn: 0.1976580 total: 13.6s remaining: 5.28s 727: learn: 0.1976580 total: 13.6s remaining: 5.28s 728: learn: 0.197680 total: 13.7s remaining: 5.6s 729: learn: 0.197680 total: 13.7s remaining: 5.6s 720: learn: 0.196304 total: 13.7s remaining: 5.6s 721: learn: 0.1966304 total: 13.						_	
694: learn: 0.2011203 total: 13s remaining: 5.72s 695: learn: 0.2008490 total: 13.1s remaining: 5.71s 696: learn: 0.2008490 total: 13.1s remaining: 5.67s 697: learn: 0.2006336 total: 13.1s remaining: 5.65s 698: learn: 0.2006336 total: 13.1s remaining: 5.65s 699: learn: 0.2005111 total: 13.1s remaining: 5.65s 700: learn: 0.2004100 total: 13.2s remaining: 5.62s 701: learn: 0.2001431 total: 13.2s remaining: 5.62s 702: learn: 0.2001431 total: 13.2s remaining: 5.56s 704: learn: 0.19998387 total: 13.2s remaining: 5.55s 705: learn: 0.1999592 total: 13.3s remaining: 5.55s 706: learn: 0.1997083 total: 13.3s remaining: 5.55s 707: learn: 0.1995924 total: 13.3s remaining: 5.55s 707: learn: 0.1995924 total: 13.3s remaining: 5.55s 708: learn: 0.1994780 total: 13.3s remaining: 5.55s 709: learn: 0.1994780 total: 13.3s remaining: 5.55s 709: learn: 0.1994780 total: 13.3s remaining: 5.55s 709: learn: 0.1994368 total: 13.4s remaining: 5.47s 709: learn: 0.1992362 total: 13.4s remaining: 5.46s 710: learn: 0.1991526 total: 13.4s remaining: 5.43s 711: learn: 0.1998088 total: 13.4s remaining: 5.43s 712: learn: 0.198888 total: 13.4s remaining: 5.43s 713: learn: 0.198888 total: 13.4s remaining: 5.38s 714: learn: 0.1988052 total: 13.4s remaining: 5.36s 715: learn: 0.1984771 total: 13.5s remaining: 5.36s 716: learn: 0.1984771 total: 13.5s remaining: 5.36s 717: learn: 0.197618 total: 13.5s remaining: 5.35s 718: learn: 0.1976580 total: 13.5s remaining: 5.25s 722: learn: 0.1976580 total: 13.6s remaining: 5.25s 723: learn: 0.1976580 total: 13.6s remaining: 5.24s 724: learn: 0.1966304 total: 13.7s remaining: 5.16s 735: learn: 0.1966304 total: 13.7s remaining: 5.16s 736: learn: 0.1966304 total: 13.7s remaining: 5.16s 737: learn: 0.196691 total: 13.7s remaining: 5.16s 738: learn: 0.1966304 total: 13.7s remaining: 5.16s 738: learn: 0.1955991 total: 13.8s remaining: 5.43s 739: learn: 0.1950508 total: 13.8s remaining: 4.95s 739: learn: 0.1950608 total: 13.9s remaining: 4.95s 739: learn: 0.1950954 total: 13.9s remaining: 4.73s 740: learn: 0.1950954 t						_	
695: learn: 0.2008490 total: 13.1s remaining: 5.71s 696: learn: 0.2007209 total: 13.1s remaining: 5.69s 697: learn: 0.2007209 total: 13.1s remaining: 5.69s 698: learn: 0.2005111 total: 13.1s remaining: 5.65s 699: learn: 0.2005111 total: 13.1s remaining: 5.65s 700: learn: 0.2004100 total: 13.2s remaining: 5.62s 701: learn: 0.2002490 total: 13.2s remaining: 5.68s 702: learn: 0.199525 total: 13.2s remaining: 5.56s 704: learn: 0.1999525 total: 13.2s remaining: 5.56s 704: learn: 0.1999525 total: 13.3s remaining: 5.55s 705: learn: 0.1997083 total: 13.3s remaining: 5.55s 705: learn: 0.1997083 total: 13.3s remaining: 5.55s 706: learn: 0.1994780 total: 13.3s remaining: 5.55s 708: learn: 0.1994780 total: 13.3s remaining: 5.57s 708: learn: 0.1993468 total: 13.3s remaining: 5.46s 708: learn: 0.1993468 total: 13.4s remaining: 5.46s 710: learn: 0.1993262 total: 13.4s remaining: 5.46s 711: learn: 0.1990002 total: 13.4s remaining: 5.45s 711: learn: 0.199002 total: 13.4s remaining: 5.48s 711: learn: 0.198888 total: 13.4s remaining: 5.48s 711: learn: 0.1986022 total: 13.4s remaining: 5.36s 715: learn: 0.1984771 total: 13.5s remaining: 5.36s 716: learn: 0.1984771 total: 13.5s remaining: 5.35s 717: learn: 0.1982115 total: 13.5s remaining: 5.28s 718: learn: 0.1981065 total: 13.5s remaining: 5.28s 719: learn: 0.1976580 total: 13.5s remaining: 5.28s 720: learn: 0.1976580 total: 13.5s remaining: 5.28s 720: learn: 0.1976580 total: 13.5s remaining: 5.28s 724: learn: 0.1976580 total: 13.6s remaining: 5.18s 724: learn: 0.1976580 total: 13.6s remaining: 5.18s 724: learn: 0.1976691 total: 13.7s remaining: 5.18s 729: learn: 0.1966304 total: 13.8s remaining: 5.18s 729: learn: 0.1976891 total: 13.7s remaining: 5.18s 729: learn: 0.1976891 total: 13.8s remaining: 5.18s 729: learn: 0.1966304 total: 13.7s remaining: 5.18s 729: learn: 0.1966304 total: 13.8s remaining: 4.99s 739: learn: 0.1950954						_	
696: learn: 0.2008490 total: 13.1s remaining: 5.69s 697: learn: 0.2006336 total: 13.1s remaining: 5.67s 698: learn: 0.2006311 total: 13.1s remaining: 5.65s 699: learn: 0.2004100 total: 13.2s remaining: 5.65s 700: learn: 0.2002490 total: 13.2s remaining: 5.65s 701: learn: 0.2002490 total: 13.2s remaining: 5.65s 702: learn: 0.2001431 total: 13.2s remaining: 5.58s 703: learn: 0.1999525 total: 13.2s remaining: 5.56s 704: learn: 0.1999387 total: 13.3s remaining: 5.55s 705: learn: 0.19997083 total: 13.3s remaining: 5.55s 706: learn: 0.1995794 total: 13.3s remaining: 5.53s 706: learn: 0.1994780 total: 13.3s remaining: 5.53s 707: learn: 0.1994780 total: 13.3s remaining: 5.55s 708: learn: 0.1994780 total: 13.3s remaining: 5.55s 709: learn: 0.1994368 total: 13.4s remaining: 5.47s 709: learn: 0.1992362 total: 13.4s remaining: 5.43s 710: learn: 0.1992362 total: 13.4s remaining: 5.43s 711: learn: 0.1998088 total: 13.4s remaining: 5.43s 712: learn: 0.1988088 total: 13.4s remaining: 5.43s 713: learn: 0.1986022 total: 13.4s remaining: 5.38s 714: learn: 0.1986022 total: 13.4s remaining: 5.38s 717: learn: 0.1986022 total: 13.5s remaining: 5.36s 717: learn: 0.1982115 total: 13.5s remaining: 5.32s 718: learn: 0.1982115 total: 13.5s remaining: 5.28s 719: learn: 0.1977618 total: 13.5s remaining: 5.28s 719: learn: 0.1977618 total: 13.5s remaining: 5.28s 719: learn: 0.1976580 total: 13.6s remaining: 5.28s 722: learn: 0.1974255 total: 13.6s remaining: 5.28s 724: learn: 0.1976580 total: 13.7s remaining: 5.18s 724: learn: 0.1966304 total: 13.7s remaining: 5.18s 726: learn: 0.1966304 total: 13.7s remaining: 5.18s 7272: learn: 0.1966304 total: 13.7s remaining: 5.06s 730: learn: 0.1966304 total: 13.7s remaining: 5.08s 731: learn: 0.1963686 total: 13.7s remaining: 5.04s 733: learn: 0.1963686 total: 13.7s remaining: 5.04s 733: learn: 0.1950954 total: 13.8s remaining: 4.99s 739: learn: 0.1950954 total: 13.9s remaining: 4.99s 739: learn: 0.1950954 total: 13.9s remaining: 4.73s 740: learn: 0.1950055 total: 13.9s remaining: 4.73s 741: learn: 0.19						_	
698: learn: 0.2007209						_	
699: learn: 0.2005111 total: 13.1s remaining: 5.63s 700: learn: 0.2004100 total: 13.2s remaining: 5.62s 701: learn: 0.2002490 total: 13.2s remaining: 5.62s 702: learn: 0.2001431 total: 13.2s remaining: 5.58s 703: learn: 0.1999525 total: 13.2s remaining: 5.56s 704: learn: 0.1999525 total: 13.2s remaining: 5.56s 704: learn: 0.1997083 total: 13.3s remaining: 5.55s 705: learn: 0.1997083 total: 13.3s remaining: 5.53s 706: learn: 0.1994780 total: 13.3s remaining: 5.53s 707: learn: 0.1994780 total: 13.3s remaining: 5.51s 707: learn: 0.1994780 total: 13.3s remaining: 5.47s 709: learn: 0.1993524 total: 13.3s remaining: 5.47s 709: learn: 0.1991526 total: 13.4s remaining: 5.46s 710: learn: 0.19991526 total: 13.4s remaining: 5.42s 711: learn: 0.1990002 total: 13.4s remaining: 5.48s 711: learn: 0.1996022 total: 13.4s remaining: 5.48s 713: learn: 0.1986022 total: 13.4s remaining: 5.3s 714: learn: 0.1986022 total: 13.4s remaining: 5.36s 715: learn: 0.1984771 total: 13.5s remaining: 5.3s 717: learn: 0.19843355 total: 13.5s remaining: 5.3s 718: learn: 0.1981065 total: 13.5s remaining: 5.28s 719: learn: 0.1997598 total: 13.5s remaining: 5.28s 719: learn: 0.1997598 total: 13.5s remaining: 5.28s 720: learn: 0.1977618 total: 13.6s remaining: 5.28s 722: learn: 0.1975277 total: 13.6s remaining: 5.28s 724: learn: 0.1975277 total: 13.6s remaining: 5.18s 724: learn: 0.1976800 total: 13.6s remaining: 5.18s 725: learn: 0.1966804 total: 13.7s remaining: 5.18s 728: learn: 0.1966804 total: 13.7s remaining: 5.08s 733: learn: 0.1966804 total: 13.7s remaining: 5.08s 733: learn: 0.1966804 total: 13.8s remaining: 5.08s 733: learn: 0.1966804 total: 13.8s remaining: 5.08s 733: learn: 0.1967691 total: 13.8s remaining: 4.99s 734: learn: 0.1963666 total: 13.7s remaining: 4.97s 735: learn: 0.1963680 total: 13.8s remaining: 4.97s 736: learn: 0.1963680 total: 13.8s remaining: 4.97s 736: learn: 0.1963094 total: 13.8s remaining: 4.97s 736: learn: 0.1963094 total: 13.9s remaining: 4.97s 736: learn: 0.1950934 total: 13.9s remaining: 4.85s 741: learn: 0.19509		learn:	0.2007209	total:	13.1s	_	
700: learn: 0.2004100 total: 13.2s remaining: 5.62s 701: learn: 0.2002490 total: 13.2s remaining: 5.6s 702: learn: 0.1999525 total: 13.2s remaining: 5.6s 703: learn: 0.1999525 total: 13.2s remaining: 5.56s 704: learn: 0.1999524 total: 13.3s remaining: 5.55s 705: learn: 0.1995924 total: 13.3s remaining: 5.55s 706: learn: 0.1995924 total: 13.3s remaining: 5.55s 707: learn: 0.1994780 total: 13.3s remaining: 5.5s 708: learn: 0.1993468 total: 13.3s remaining: 5.5s 709: learn: 0.1992362 total: 13.4s remaining: 5.46s 710: learn: 0.1992362 total: 13.4s remaining: 5.42s 711: learn: 0.19990002 total: 13.4s remaining: 5.42s 712: learn: 0.1986888 total: 13.4s remaining: 5.43s 713: learn: 0.1986988 total: 13.4s remaining: 5.38s 714: learn: 0.1986022 total: 13.4s remaining: 5.36s 715: learn: 0.1986021 total: 13.5s remaining: 5.38s 716: learn: 0.1986171 total: 13.5s remaining: 5.38s 717: learn: 0.1982115 total: 13.5s remaining: 5.28s 719: learn: 0.19971618 total: 13.5s remaining: 5.28s 720: learn: 0.1977618 total: 13.5s remaining: 5.26s 720: learn: 0.1977618 total: 13.5s remaining: 5.26s 722: learn: 0.197680 total: 13.6s remaining: 5.28s 723: learn: 0.197680 total: 13.6s remaining: 5.18s 724: learn: 0.197680 total: 13.6s remaining: 5.18s 725: learn: 0.1970435 total: 13.6s remaining: 5.18s 726: learn: 0.1970435 total: 13.6s remaining: 5.18s 727: learn: 0.197680 total: 13.6s remaining: 5.18s 728: learn: 0.1970680 total: 13.6s remaining: 5.18s 729: learn: 0.1966991 total: 13.7s remaining: 5.08s 733: learn: 0.1966961 total: 13.7s remaining: 5.08s 733: learn: 0.1963686 total: 13.8s remaining: 5.08s 733: learn: 0.196494 total: 13.8s remaining: 5.08s 734: learn: 0.1964042 total: 13.8s remaining: 4.97s 735: learn: 0.1964082 total: 13.8s remaining: 4.97s 744: learn: 0.1954082 total: 13.8s remaining: 4.97s 745: learn: 0.1954082 total: 13.9s remaining: 4.97s 746: learn: 0.1954082 total: 13.9s remaining: 4.75s 7475: learn: 0.1954082 total: 13.9s remaining: 4.75s 7486: learn: 0.1954081 total: 13.9s remaining: 4.75s 7486: learn: 0.1954082	698:	learn:	0.2006336	total:	13.1s	remaining:	5.65s
701: learn: 0.2002490 total: 13.2s remaining: 5.6s 702: learn: 0.2001431 total: 13.2s remaining: 5.58s 703: learn: 0.1999525 total: 13.2s remaining: 5.58s 704: learn: 0.1998387 total: 13.3s remaining: 5.55s 705: learn: 0.1997083 total: 13.3s remaining: 5.53s 706: learn: 0.1994780 total: 13.3s remaining: 5.53s 707: learn: 0.1994780 total: 13.3s remaining: 5.5s 708: learn: 0.1993468 total: 13.3s remaining: 5.5s 709: learn: 0.1992362 total: 13.4s remaining: 5.47s 709: learn: 0.1991526 total: 13.4s remaining: 5.43s 710: learn: 0.1991526 total: 13.4s remaining: 5.42s 711: learn: 0.1980808 total: 13.4s remaining: 5.42s 712: learn: 0.198888 total: 13.4s remaining: 5.3s 714: learn: 0.1986022 total: 13.4s remaining: 5.3s 715: learn: 0.1986743 total: 13.4s remaining: 5.3s 716: learn: 0.19867471 total: 13.5s remaining: 5.3s 717: learn: 0.1983355 total: 13.5s remaining: 5.3s 718: learn: 0.1984711 total: 13.5s remaining: 5.3s 719: learn: 0.1981065 total: 13.5s remaining: 5.2s 720: learn: 0.197618 total: 13.5s remaining: 5.26s 720: learn: 0.1977618 total: 13.5s remaining: 5.26s 722: learn: 0.1977618 total: 13.6s remaining: 5.24s 723: learn: 0.1975277 total: 13.6s remaining: 5.2s 724: learn: 0.1976260 total: 13.6s remaining: 5.18s 725: learn: 0.1970943 total: 13.6s remaining: 5.18s 726: learn: 0.1970943 total: 13.6s remaining: 5.18s 727: learn: 0.197699 total: 13.6s remaining: 5.18s 728: learn: 0.196691 total: 13.7s remaining: 5.0s 729: learn: 0.196690 total: 13.6s remaining: 5.18s 729: learn: 0.196686 total: 13.7s remaining: 5.0s 733: learn: 0.196686 total: 13.7s remaining: 5.0s 733: learn: 0.196686 total: 13.8s remaining: 5.9s 734: learn: 0.196680 total: 13.8s remaining: 4.97s 735: learn: 0.1963686 total: 13.7s remaining: 4.97s 736: learn: 0.1960423 total: 13.8s remaining: 4.97s 7378: learn: 0.1950944 total: 13.8s remaining: 4.97s 738: learn: 0.1950954 total: 13.9s remaining: 4.87s 740: learn: 0.1950954 total: 13.9s remaining: 4.87s 741: learn: 0.1950954 total: 13.9s remaining: 4.77s 745: learn: 0.1950954 total: 13.9s remai	699:	learn:	0.2005111	total:	13.1s	remaining:	5.63s
702: learn: 0.2001431 total: 13.2s remaining: 5.58s 703: learn: 0.1999837 total: 13.2s remaining: 5.56s 705: learn: 0.1997083 total: 13.3s remaining: 5.53s 706: learn: 0.1994780 total: 13.3s remaining: 5.5s 707: learn: 0.1993468 total: 13.3s remaining: 5.47s 708: learn: 0.1992362 total: 13.4s remaining: 5.46s 710: learn: 0.1992362 total: 13.4s remaining: 5.46s 710: learn: 0.1992002 total: 13.4s remaining: 5.46s 710: learn: 0.198888 total: 13.4s remaining: 5.48s 711: learn: 0.1986022 total: 13.4s remaining: 5.3s 714: learn: 0.1986022 total: 13.4s remain	700:	learn:	0.2004100	total:	13.2s	remaining:	5.62s
703: learn: 0.1999525 total: 13.2s remaining: 5.56s 704: learn: 0.1999387 total: 13.3s remaining: 5.55s 705: learn: 0.1997083 total: 13.3s remaining: 5.53s 706: learn: 0.1994780 total: 13.3s remaining: 5.51s 707: learn: 0.1994780 total: 13.3s remaining: 5.51s 708: learn: 0.1994780 total: 13.3s remaining: 5.55s 708: learn: 0.1994368 total: 13.4s remaining: 5.47s 709: learn: 0.1995262 total: 13.4s remaining: 5.46s 710: learn: 0.1991526 total: 13.4s remaining: 5.43s 711: learn: 0.1980002 total: 13.4s remaining: 5.43s 712: learn: 0.1987543 total: 13.4s remaining: 5.4s 713: learn: 0.1987543 total: 13.4s remaining: 5.36s 714: learn: 0.19886022 total: 13.4s remaining: 5.36s 715: learn: 0.1984711 total: 13.5s remaining: 5.36s 716: learn: 0.1983355 total: 13.5s remaining: 5.32s 717: learn: 0.1982115 total: 13.5s remaining: 5.32s 718: learn: 0.1987065 total: 13.5s remaining: 5.28s 719: learn: 0.1977618 total: 13.5s remaining: 5.28s 720: learn: 0.1977618 total: 13.5s remaining: 5.26s 721: learn: 0.1976580 total: 13.6s remaining: 5.28s 722: learn: 0.1977618 total: 13.6s remaining: 5.28s 723: learn: 0.1976580 total: 13.6s remaining: 5.28s 724: learn: 0.1972680 total: 13.6s remaining: 5.18s 725: learn: 0.1970680 total: 13.6s remaining: 5.18s 726: learn: 0.1966807 total: 13.6s remaining: 5.18s 727: learn: 0.196691 total: 13.7s remaining: 5.18s 728: learn: 0.196694 total: 13.7s remaining: 5.18s 733: learn: 0.1966864 total: 13.7s remaining: 5.08s 733: learn: 0.1966494 total: 13.7s remaining: 5.08s 733: learn: 0.1966494 total: 13.8s remaining: 5.08s 733: learn: 0.1967061 total: 13.8s remaining: 4.99s 734: learn: 0.1959171 total: 13.8s remaining: 4.99s 735: learn: 0.1950022 total: 13.8s remaining: 4.99s 736: learn: 0.1950024 total: 13.8s remaining: 4.99s 737: learn: 0.1950024 total: 13.8s remaining: 4.97s 740: learn: 0.1950034 total: 13.9s remaining: 4.79s 741: learn: 0.1950034 total: 13.9s remaining: 4.77s 742: learn: 0.1950034 total: 13.9s remaining: 4.77s 743: learn: 0.1950034 total: 13.9s remaining: 4.77s 744: learn: 0.195003	701:	learn:	0.2002490	total:	13.2s	remaining:	5.6s
704: learn: 0.1998387 total: 13.3s remaining: 5.55s 705: learn: 0.1997083 total: 13.3s remaining: 5.55s 706: learn: 0.1997083 total: 13.3s remaining: 5.51s 707: learn: 0.1994780 total: 13.3s remaining: 5.51s 707: learn: 0.1994780 total: 13.3s remaining: 5.5s 708: learn: 0.1993468 total: 13.3s remaining: 5.47s 709: learn: 0.1992362 total: 13.4s remaining: 5.46s 710: learn: 0.1990002 total: 13.4s remaining: 5.43s 711: learn: 0.1998088 total: 13.4s remaining: 5.42s 712: learn: 0.1988888 total: 13.4s remaining: 5.43s 713: learn: 0.1988082 total: 13.4s remaining: 5.36s 715: learn: 0.1984771 total: 13.5s remaining: 5.36s 715: learn: 0.1984771 total: 13.5s remaining: 5.32s 717: learn: 0.1982115 total: 13.5s remaining: 5.32s 718: learn: 0.1982115 total: 13.5s remaining: 5.26s 719: learn: 0.1982115 total: 13.5s remaining: 5.26s 720: learn: 0.197618 total: 13.5s remaining: 5.26s 720: learn: 0.1976580 total: 13.6s remaining: 5.22s 722: learn: 0.1976580 total: 13.6s remaining: 5.22s 723: learn: 0.1972680 total: 13.6s remaining: 5.16s 725: learn: 0.1972680 total: 13.6s remaining: 5.16s 725: learn: 0.197693 total: 13.6s remaining: 5.16s 725: learn: 0.196897 total: 13.6s remaining: 5.18s 724: learn: 0.196897 total: 13.6s remaining: 5.18s 724: learn: 0.196897 total: 13.6s remaining: 5.18s 724: learn: 0.1966891 total: 13.7s remaining: 5.18s 729: learn: 0.196691 total: 13.7s remaining: 5.08s 730: learn: 0.196694 total: 13.7s remaining: 5.08s 733: learn: 0.196694 total: 13.7s remaining: 5.08s 733: learn: 0.1967691 total: 13.8s remaining: 5.08s 733: learn: 0.196706 total: 13.8s remaining: 4.99s 734: learn: 0.195302 total: 13.8s remaining: 4.99s 736: learn: 0.1954082 total: 13.8s remaining: 4.99s 736: learn: 0.1955082 total: 13.8s remaining: 4.97s 736: learn: 0.1955082 total: 13.9s remaining: 4.89s 737: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1950036 total: 13.9s remaining: 4.77s 744: learn: 0.1950036 total: 13.9s remaining: 4.77s 744: learn: 0.1950036 total:	702:	learn:	0.2001431	total:	13.2s	remaining:	5.58s
705: learn: 0.1997083 total: 13.3s remaining: 5.53s 706: learn: 0.1995924 total: 13.3s remaining: 5.51s 707: learn: 0.1994780 total: 13.3s remaining: 5.55s 708: learn: 0.1993468 total: 13.3s remaining: 5.47s 709: learn: 0.1992362 total: 13.4s remaining: 5.46s 710: learn: 0.1991526 total: 13.4s remaining: 5.46s 710: learn: 0.1998002 total: 13.4s remaining: 5.46s 711: learn: 0.1998002 total: 13.4s remaining: 5.43s 711: learn: 0.1988088 total: 13.4s remaining: 5.4s 713: learn: 0.1987543 total: 13.4s remaining: 5.36s 714: learn: 0.19886022 total: 13.4s remaining: 5.36s 715: learn: 0.1984771 total: 13.5s remaining: 5.36s 715: learn: 0.1984771 total: 13.5s remaining: 5.32s 717: learn: 0.1982115 total: 13.5s remaining: 5.32s 718: learn: 0.1982115 total: 13.5s remaining: 5.28s 719: learn: 0.1979598 total: 13.5s remaining: 5.26s 720: learn: 0.1977618 total: 13.5s remaining: 5.26s 720: learn: 0.1977618 total: 13.5s remaining: 5.26s 721: learn: 0.1976580 total: 13.6s remaining: 5.22s 722: learn: 0.197680 total: 13.6s remaining: 5.22s 723: learn: 0.1972680 total: 13.6s remaining: 5.18s 724: learn: 0.1970843 total: 13.6s remaining: 5.18s 726: learn: 0.1966891 total: 13.7s remaining: 5.18s 728: learn: 0.1966891 total: 13.7s remaining: 5.08s 730: learn: 0.1966804 total: 13.7s remaining: 5.08s 730: learn: 0.1966864 total: 13.7s remaining: 5.08s 731: learn: 0.1966864 total: 13.7s remaining: 5.08s 732: learn: 0.1966864 total: 13.8s remaining: 5.08s 733: learn: 0.1966248 total: 13.8s remaining: 4.99s 734: learn: 0.196706 total: 13.8s remaining: 4.99s 736: learn: 0.1955082 total: 13.8s remaining: 4.99s 736: learn: 0.1955082 total: 13.9s remaining: 4.85s 741: learn: 0.1955082 total: 13.9s remaining: 4.85s 741: learn: 0.1955082 total: 13.9s remaining: 4.75s 746: learn: 0.1954082 total: 13.9s remaining: 4.75s 746: learn: 0.1954082 total: 13.9s remaining: 4.75s 746: learn: 0.1954082 total: 13.9s remaining: 4.75s 746: learn: 0.1954084 total: 14s remaining: 4.75s 746: learn: 0.1954084 total: 14s remaining: 4.75s 746: learn: 0.1954084 to	703:	learn:	0.1999525	total:	13.2s	remaining:	5.56s
706: learn: 0.1994780 total: 13.3s remaining: 5.51s 707: learn: 0.1994780 total: 13.3s remaining: 5.5s 708: learn: 0.1994368 total: 13.3s remaining: 5.47s 709: learn: 0.19992362 total: 13.4s remaining: 5.46s 710: learn: 0.1990002 total: 13.4s remaining: 5.42s 711: learn: 0.1980888 total: 13.4s remaining: 5.43s 712: learn: 0.1987543 total: 13.4s remaining: 5.43s 713: learn: 0.1987543 total: 13.4s remaining: 5.36s 715: learn: 0.1986022 total: 13.4s remaining: 5.36s 715: learn: 0.1984771 total: 13.5s remaining: 5.34s 716: learn: 0.1984771 total: 13.5s remaining: 5.34s 717: learn: 0.1982115 total: 13.5s remaining: 5.28s 719: learn: 0.1982115 total: 13.5s remaining: 5.28s 719: learn: 0.1977618 total: 13.5s remaining: 5.26s 720: learn: 0.1977618 total: 13.5s remaining: 5.26s 721: learn: 0.1976580 total: 13.6s remaining: 5.28s 722: learn: 0.1976580 total: 13.6s remaining: 5.28s 723: learn: 0.1972680 total: 13.6s remaining: 5.18s 724: learn: 0.1972680 total: 13.6s remaining: 5.18s 725: learn: 0.1970943 total: 13.6s remaining: 5.18s 726: learn: 0.1968877 total: 13.7s remaining: 5.18s 728: learn: 0.1966804 total: 13.7s remaining: 5.18s 729: learn: 0.1966805 total: 13.7s remaining: 5.06s 730: learn: 0.1966806 total: 13.7s remaining: 5.06s 731: learn: 0.1966806 total: 13.7s remaining: 5.06s 732: learn: 0.1966806 total: 13.7s remaining: 5.06s 733: learn: 0.1966806 total: 13.7s remaining: 5.06s 734: learn: 0.1966304 total: 13.7s remaining: 5.06s 735: learn: 0.1966304 total: 13.7s remaining: 5.04s 736: learn: 0.196648 total: 13.8s remaining: 4.99s 737: learn: 0.1950417 total: 13.8s remaining: 4.99s 738: learn: 0.1950821 total: 13.8s remaining: 4.99s 739: learn: 0.195082 total: 13.8s remaining: 4.97s 740: learn: 0.1950084 total: 13.9s remaining: 4.89s 741: learn: 0.1950084 total: 13.9s remaining: 4.87s 742: learn: 0.1950084 total: 13.9s remaining: 4.75s 743: learn: 0.1950084 total: 13.9s remaining: 4.75s 744: learn: 0.1950084 total: 13.9s remaining: 4.75s 745: learn: 0.1950084 total: 13.9s remaining: 4.75s 746: learn: 0.194010	704:	learn:	0.1998387	total:	13.3s	remaining:	5.55s
707: learn: 0.1994780 total: 13.3s remaining: 5.5s 708: learn: 0.1993468 total: 13.3s remaining: 5.47s 709: learn: 0.1992362 total: 13.4s remaining: 5.46s 710: learn: 0.1991526 total: 13.4s remaining: 5.43s 711: learn: 0.1980002 total: 13.4s remaining: 5.42s 712: learn: 0.198888 total: 13.4s remaining: 5.42s 713: learn: 0.1986022 total: 13.4s remaining: 5.38s 714: learn: 0.1986022 total: 13.4s remaining: 5.36s 715: learn: 0.1984771 total: 13.5s remaining: 5.36s 716: learn: 0.1984771 total: 13.5s remaining: 5.32s 717: learn: 0.198215 total: 13.5s remaining: 5.32s 717: learn: 0.198215 total: 13.5s remaining: 5.28s 718: learn: 0.1981065 total: 13.5s remaining: 5.28s 719: learn: 0.197588 total: 13.5s remaining: 5.28s 720: learn: 0.1976580 total: 13.5s remaining: 5.24s 721: learn: 0.1976580 total: 13.6s remaining: 5.22s 722: learn: 0.1974255 total: 13.6s remaining: 5.22s 723: learn: 0.1974255 total: 13.6s remaining: 5.28s 724: learn: 0.1974255 total: 13.6s remaining: 5.18s 725: learn: 0.1968891 total: 13.6s remaining: 5.18s 726: learn: 0.196897 total: 13.6s remaining: 5.18s 729: learn: 0.1966304 total: 13.7s remaining: 5.18s 729: learn: 0.1966304 total: 13.7s remaining: 5.08s 729: learn: 0.1966304 total: 13.7s remaining: 5.08s 730: learn: 0.1966304 total: 13.7s remaining: 5.08s 730: learn: 0.1966494 total: 13.7s remaining: 5.08s 731: learn: 0.1966494 total: 13.7s remaining: 5.08s 732: learn: 0.1966494 total: 13.8s remaining: 5.01s 733: learn: 0.196494 total: 13.8s remaining: 5.01s 733: learn: 0.196494 total: 13.8s remaining: 4.99s 734: learn: 0.1958212 total: 13.8s remaining: 4.99s 736: learn: 0.1959054 total: 13.9s remaining: 4.89s 739: learn: 0.1954082 total: 13.9s remaining: 4.89s 739: learn: 0.1954082 total: 13.9s remaining: 4.87s 740: learn: 0.1950054 total: 13.9s remaining: 4.75s 746: learn: 0.1950054 total: 13.9s remaining: 4.75s 746: learn: 0.1950054 total: 13.9s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 1		learn:	0.1997083	total:	13.3s	remaining:	5.53s
708: learn: 0.1993468 total: 13.3s remaining: 5.47s 709: learn: 0.1992362 total: 13.4s remaining: 5.46s 710: learn: 0.1991526 total: 13.4s remaining: 5.46s 711: learn: 0.1990002 total: 13.4s remaining: 5.42s 712: learn: 0.1988888 total: 13.4s remaining: 5.4s 713: learn: 0.1987543 total: 13.4s remaining: 5.38s 714: learn: 0.1986022 total: 13.4s remaining: 5.36s 715: learn: 0.1986022 total: 13.5s remaining: 5.36s 716: learn: 0.1983355 total: 13.5s remaining: 5.32s 717: learn: 0.1982115 total: 13.5s remaining: 5.32s 718: learn: 0.1982115 total: 13.5s remaining: 5.28s 719: learn: 0.197618 total: 13.5s remaining: 5.28s 719: learn: 0.1977618 total: 13.5s remaining: 5.26s 720: learn: 0.19776580 total: 13.5s remaining: 5.26s 721: learn: 0.1974255 total: 13.6s remaining: 5.28s 722: learn: 0.1974255 total: 13.6s remaining: 5.28s 723: learn: 0.1974255 total: 13.6s remaining: 5.18s 724: learn: 0.1972680 total: 13.6s remaining: 5.18s 725: learn: 0.1970943 total: 13.6s remaining: 5.18s 726: learn: 0.196897 total: 13.7s remaining: 5.18s 727: learn: 0.196897 total: 13.7s remaining: 5.18s 729: learn: 0.1967691 total: 13.7s remaining: 5.18s 730: learn: 0.1963686 total: 13.7s remaining: 5.08s 731: learn: 0.1963686 total: 13.7s remaining: 5.08s 732: learn: 0.1963686 total: 13.7s remaining: 5.08s 733: learn: 0.1964042 total: 13.7s remaining: 5.08s 734: learn: 0.1964043 total: 13.8s remaining: 5.04s 735: learn: 0.195417 total: 13.8s remaining: 4.99s 736: learn: 0.1954082 total: 13.8s remaining: 4.95s 737: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1950054 total: 13.9s remaining: 4.87s 744: learn: 0.1950054 total: 13.9s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.75s	706:	learn:	0.1995924	total:	13.3s	remaining:	5.51s
709: learn: 0.1991526 total: 13.4s remaining: 5.46s 710: learn: 0.1991526 total: 13.4s remaining: 5.43s 711: learn: 0.1990002 total: 13.4s remaining: 5.42s 712: learn: 0.198888 total: 13.4s remaining: 5.48s 713: learn: 0.1988022 total: 13.4s remaining: 5.38s 714: learn: 0.1986022 total: 13.4s remaining: 5.38s 715: learn: 0.1984771 total: 13.5s remaining: 5.36s 715: learn: 0.1983355 total: 13.5s remaining: 5.34s 716: learn: 0.1982115 total: 13.5s remaining: 5.32s 717: learn: 0.1982115 total: 13.5s remaining: 5.28s 719: learn: 0.197598 total: 13.5s remaining: 5.28s 720: learn: 0.197618 total: 13.5s remaining: 5.26s 720: learn: 0.1976580 total: 13.5s remaining: 5.22s 722: learn: 0.1976277 total: 13.6s remaining: 5.22s 723: learn: 0.1974255 total: 13.6s remaining: 5.22s 724: learn: 0.1974255 total: 13.6s remaining: 5.18s 725: learn: 0.1972680 total: 13.6s remaining: 5.18s 726: learn: 0.1968971 total: 13.6s remaining: 5.14s 726: learn: 0.1968971 total: 13.7s remaining: 5.12s 727: learn: 0.1966977 total: 13.7s remaining: 5.08s 729: learn: 0.1966994 total: 13.7s remaining: 5.08s 730: learn: 0.1966494 total: 13.7s remaining: 5.08s 731: learn: 0.196648 total: 13.7s remaining: 5.04s 733: learn: 0.196648 total: 13.7s remaining: 5.04s 734: learn: 0.196648 total: 13.7s remaining: 5.04s 735: learn: 0.1967691 total: 13.7s remaining: 5.04s 736: learn: 0.196781 total: 13.8s remaining: 4.97s 7378: learn: 0.1963686 total: 13.7s remaining: 5.04s 739: learn: 0.1965482 total: 13.8s remaining: 4.97s 740: learn: 0.1955091 total: 13.8s remaining: 4.97s 741: learn: 0.1955082 total: 13.9s remaining: 4.87s 742: learn: 0.1955082 total: 13.9s remaining: 4.87s 743: learn: 0.1950084 total: 13.9s remaining: 4.87s 744: learn: 0.1950084 total: 13.9s remaining: 4.87s 745: learn: 0.1950084 total: 13.9s remaining: 4.87s 746: learn: 0.1950084 total: 13.9s remaining: 4.77s 746: learn: 0.1950084 total: 13.9s remaining: 4.77s 746: learn: 0.1950086 total: 13.9s remaining: 4.77s						_	
710: learn: 0.1991526 total: 13.4s remaining: 5.43s 711: learn: 0.1990002 total: 13.4s remaining: 5.42s 712: learn: 0.198888 total: 13.4s remaining: 5.4s 713: learn: 0.1987543 total: 13.4s remaining: 5.38s 714: learn: 0.1986022 total: 13.4s remaining: 5.38s 714: learn: 0.1984771 total: 13.5s remaining: 5.36s 715: learn: 0.1983355 total: 13.5s remaining: 5.34s 716: learn: 0.1982115 total: 13.5s remaining: 5.32s 717: learn: 0.1982115 total: 13.5s remaining: 5.32s 718: learn: 0.1981065 total: 13.5s remaining: 5.28s 719: learn: 0.1979598 total: 13.5s remaining: 5.28s 720: learn: 0.1977618 total: 13.5s remaining: 5.26s 720: learn: 0.1977618 total: 13.6s remaining: 5.24s 721: learn: 0.1975277 total: 13.6s remaining: 5.22s 722: learn: 0.1974255 total: 13.6s remaining: 5.2s 724: learn: 0.19742680 total: 13.6s remaining: 5.16s 725: learn: 0.1970943 total: 13.6s remaining: 5.16s 726: learn: 0.1968971 total: 13.6s remaining: 5.16s 727: learn: 0.1968977 total: 13.7s remaining: 5.18s 729: learn: 0.1966304 total: 13.7s remaining: 5.08s 730: learn: 0.1964994 total: 13.7s remaining: 5.06s 730: learn: 0.1964994 total: 13.7s remaining: 5.06s 731: learn: 0.1963686 total: 13.7s remaining: 5.06s 732: learn: 0.1964994 total: 13.7s remaining: 5.06s 733: learn: 0.1964994 total: 13.7s remaining: 5.06s 734: learn: 0.1964043 total: 13.8s remaining: 4.99s 735: learn: 0.195417 total: 13.8s remaining: 4.99s 736: learn: 0.1957181 total: 13.8s remaining: 4.99s 737: learn: 0.1955082 total: 13.8s remaining: 4.99s 739: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1954082 total: 13.9s remaining: 4.87s 740: learn: 0.1954082 total: 13.9s remaining: 4.77s 745: learn: 0.1950266 total: 13.9s remaining: 4.77s 746: learn: 0.1948106 total: 14s remaining: 4.77s 746: learn: 0.1948106 total: 14s remaining: 4.77s						_	
711: learn: 0.1990002 total: 13.4s remaining: 5.42s 712: learn: 0.1988888 total: 13.4s remaining: 5.4s 713: learn: 0.1987543 total: 13.4s remaining: 5.4s 714: learn: 0.1986022 total: 13.4s remaining: 5.36s 715: learn: 0.1984771 total: 13.5s remaining: 5.36s 715: learn: 0.1983355 total: 13.5s remaining: 5.34s 716: learn: 0.1982115 total: 13.5s remaining: 5.32s 717: learn: 0.1982115 total: 13.5s remaining: 5.2s 718: learn: 0.1981065 total: 13.5s remaining: 5.28s 719: learn: 0.1977618 total: 13.5s remaining: 5.26s 720: learn: 0.1977618 total: 13.5s remaining: 5.26s 720: learn: 0.1976580 total: 13.6s remaining: 5.24s 721: learn: 0.1975277 total: 13.6s remaining: 5.22s 722: learn: 0.1975277 total: 13.6s remaining: 5.18s 724: learn: 0.1972680 total: 13.6s remaining: 5.18s 724: learn: 0.1972680 total: 13.6s remaining: 5.16s 725: learn: 0.1970943 total: 13.6s remaining: 5.12s 726: learn: 0.1969891 total: 13.6s remaining: 5.12s 727: learn: 0.1966991 total: 13.7s remaining: 5.12s 728: learn: 0.1967691 total: 13.7s remaining: 5.08s 729: learn: 0.1966304 total: 13.7s remaining: 5.08s 730: learn: 0.1966304 total: 13.7s remaining: 5.08s 731: learn: 0.1966484 total: 13.7s remaining: 5.01s 733: learn: 0.1966484 total: 13.7s remaining: 5.01s 733: learn: 0.1967661 total: 13.8s remaining: 5.01s 733: learn: 0.196706 total: 13.8s remaining: 5.01s 733: learn: 0.196706 total: 13.8s remaining: 4.99s 734: learn: 0.1959417 total: 13.8s remaining: 4.97s 735: learn: 0.1959591 total: 13.8s remaining: 4.97s 736: learn: 0.1955082 total: 13.9s remaining: 4.89s 739: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1954082 total: 13.9s remaining: 4.87s 741: learn: 0.1950366 total: 13.9s remaining: 4.87s 742: learn: 0.1950364 total: 13.9s remaining: 4.77s 744: learn: 0.1950366 total: 13.9s remaining: 4.77s 745: learn: 0.1950366 total: 13.9s remaining: 4.77s 746: learn: 0.1948106 total: 14s remaining: 4.77s						_	
712: learn: 0.1988888 total: 13.4s remaining: 5.4s 713: learn: 0.1987543 total: 13.4s remaining: 5.38s 714: learn: 0.1986022 total: 13.4s remaining: 5.36s 715: learn: 0.1984771 total: 13.5s remaining: 5.34s 716: learn: 0.1983355 total: 13.5s remaining: 5.34s 716: learn: 0.1982115 total: 13.5s remaining: 5.32s 717: learn: 0.1982115 total: 13.5s remaining: 5.28s 718: learn: 0.1981065 total: 13.5s remaining: 5.28s 719: learn: 0.1977618 total: 13.5s remaining: 5.26s 720: learn: 0.1977618 total: 13.5s remaining: 5.26s 720: learn: 0.19776580 total: 13.6s remaining: 5.22s 722: learn: 0.1975277 total: 13.6s remaining: 5.22s 723: learn: 0.1974255 total: 13.6s remaining: 5.2s 724: learn: 0.1974255 total: 13.6s remaining: 5.16s 725: learn: 0.1970943 total: 13.6s remaining: 5.16s 726: learn: 0.1968971 total: 13.6s remaining: 5.14s 726: learn: 0.1968971 total: 13.7s remaining: 5.18s 729: learn: 0.1966304 total: 13.7s remaining: 5.08s 730: learn: 0.1966304 total: 13.7s remaining: 5.08s 731: learn: 0.1966304 total: 13.7s remaining: 5.06s 732: learn: 0.1966304 total: 13.7s remaining: 5.06s 733: learn: 0.1964994 total: 13.7s remaining: 5.06s 733: learn: 0.1964094 total: 13.7s remaining: 5.03s 734: learn: 0.196648 total: 13.7s remaining: 5.03s 735: learn: 0.196706 total: 13.8s remaining: 4.99s 734: learn: 0.1950423 total: 13.8s remaining: 4.99s 735: learn: 0.1957181 total: 13.8s remaining: 4.99s 736: learn: 0.1955082 total: 13.9s remaining: 4.89s 739: learn: 0.1955082 total: 13.9s remaining: 4.89s 740: learn: 0.1950054 total: 13.9s remaining: 4.85s 741: learn: 0.1950056 total: 13.9s remaining: 4.77s 746: learn: 0.1950236 total: 13.9s remaining: 4.77s 746: learn: 0.1948106 total: 14s remaining: 4.77s 746: learn: 0.1948106 total: 14s remaining: 4.77s						_	
713: learn: 0.1987543 total: 13.4s remaining: 5.38s 714: learn: 0.1986022 total: 13.4s remaining: 5.36s 715: learn: 0.1984771 total: 13.5s remaining: 5.34s 716: learn: 0.1983355 total: 13.5s remaining: 5.32s 717: learn: 0.1982115 total: 13.5s remaining: 5.32s 718: learn: 0.1981065 total: 13.5s remaining: 5.28s 719: learn: 0.1979598 total: 13.5s remaining: 5.26s 720: learn: 0.1976680 total: 13.5s remaining: 5.26s 720: learn: 0.1976580 total: 13.6s remaining: 5.24s 721: learn: 0.1975277 total: 13.6s remaining: 5.22s 722: learn: 0.1975277 total: 13.6s remaining: 5.18s 724: learn: 0.1972680 total: 13.6s remaining: 5.16s 725: learn: 0.1972680 total: 13.6s remaining: 5.16s 726: learn: 0.1970943 total: 13.6s remaining: 5.16s 727: learn: 0.1969891 total: 13.6s remaining: 5.12s 727: learn: 0.1966981 total: 13.7s remaining: 5.08s 729: learn: 0.19667691 total: 13.7s remaining: 5.08s 729: learn: 0.1966304 total: 13.7s remaining: 5.06s 730: learn: 0.1966386 total: 13.7s remaining: 5.04s 731: learn: 0.1966386 total: 13.7s remaining: 5.04s 732: learn: 0.1964994 total: 13.7s remaining: 5.03s 732: learn: 0.1964084 total: 13.7s remaining: 5.03s 733: learn: 0.1964084 total: 13.8s remaining: 4.99s 734: learn: 0.196706 total: 13.8s remaining: 4.99s 735: learn: 0.1964042 total: 13.8s remaining: 4.97s 736: learn: 0.1959417 total: 13.8s remaining: 4.97s 737: learn: 0.1959417 total: 13.8s remaining: 4.97s 738: learn: 0.1954082 total: 13.9s remaining: 4.87s 740: learn: 0.1954082 total: 13.9s remaining: 4.87s 741: learn: 0.1954082 total: 13.9s remaining: 4.87s 742: learn: 0.1954082 total: 13.9s remaining: 4.87s 744: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1949324 total: 14s remaining: 4.77s 746: learn: 0.1948106 total: 14s remaining: 4.77s						_	
714: learn: 0.1986022 total: 13.4s remaining: 5.36s 715: learn: 0.1984771 total: 13.5s remaining: 5.34s 716: learn: 0.1983355 total: 13.5s remaining: 5.32s 717: learn: 0.1982115 total: 13.5s remaining: 5.32s 718: learn: 0.1981065 total: 13.5s remaining: 5.28s 719: learn: 0.1979598 total: 13.5s remaining: 5.26s 720: learn: 0.1977618 total: 13.5s remaining: 5.26s 720: learn: 0.1976580 total: 13.6s remaining: 5.22s 722: learn: 0.1975277 total: 13.6s remaining: 5.22s 723: learn: 0.1974255 total: 13.6s remaining: 5.28s 724: learn: 0.1974255 total: 13.6s remaining: 5.16s 725: learn: 0.1972680 total: 13.6s remaining: 5.16s 725: learn: 0.1970943 total: 13.6s remaining: 5.16s 726: learn: 0.196891 total: 13.6s remaining: 5.12s 727: learn: 0.1968977 total: 13.7s remaining: 5.18s 729: learn: 0.1966304 total: 13.7s remaining: 5.08s 730: learn: 0.1966304 total: 13.7s remaining: 5.06s 730: learn: 0.1964994 total: 13.7s remaining: 5.06s 731: learn: 0.1963866 total: 13.7s remaining: 5.04s 733: learn: 0.1966484 total: 13.7s remaining: 5.03s 732: learn: 0.1960423 total: 13.8s remaining: 5.01s 733: learn: 0.1960423 total: 13.8s remaining: 4.99s 736: learn: 0.1959417 total: 13.8s remaining: 4.99s 737: learn: 0.1955082 total: 13.8s remaining: 4.99s 739: learn: 0.1955082 total: 13.9s remaining: 4.89s 740: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1955082 total: 13.9s remaining: 4.87s 741: learn: 0.1950036 total: 13.9s remaining: 4.87s 742: learn: 0.1950036 total: 13.9s remaining: 4.77s 745: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1948106 total: 14s remaining: 4.77s						_	
715: learn: 0.1984771 total: 13.5s remaining: 5.34s 716: learn: 0.1983355 total: 13.5s remaining: 5.32s 717: learn: 0.198115 total: 13.5s remaining: 5.32s 718: learn: 0.1981065 total: 13.5s remaining: 5.28s 719: learn: 0.1979598 total: 13.5s remaining: 5.26s 720: learn: 0.1977618 total: 13.5s remaining: 5.26s 720: learn: 0.1976580 total: 13.6s remaining: 5.24s 721: learn: 0.1975277 total: 13.6s remaining: 5.22s 722: learn: 0.1974255 total: 13.6s remaining: 5.28s 724: learn: 0.1974255 total: 13.6s remaining: 5.18s 724: learn: 0.197043 total: 13.6s remaining: 5.16s 725: learn: 0.196891 total: 13.6s remaining: 5.14s 726: learn: 0.196897 total: 13.7s remaining: 5.12s 727: learn: 0.1966304 total: 13.7s remaining: 5.08s 729: learn: 0.1966304 total: 13.7s remaining: 5.08s 730: learn: 0.1966304 total: 13.7s remaining: 5.06s 730: learn: 0.1964994 total: 13.7s remaining: 5.04s 731: learn: 0.1963686 total: 13.7s remaining: 5.04s 733: learn: 0.1960423 total: 13.8s remaining: 5.01s 734: learn: 0.1960423 total: 13.8s remaining: 4.99s 735: learn: 0.1960423 total: 13.8s remaining: 4.99s 736: learn: 0.1959417 total: 13.8s remaining: 4.97s 737: learn: 0.1957181 total: 13.8s remaining: 4.97s 738: learn: 0.195702 total: 13.9s remaining: 4.87s 740: learn: 0.1954082 total: 13.9s remaining: 4.87s 741: learn: 0.1954082 total: 13.9s remaining: 4.87s 742: learn: 0.1950054 total: 13.9s remaining: 4.87s 743: learn: 0.1950054 total: 13.9s remaining: 4.77s 744: learn: 0.1950054 total: 13.9s remaining: 4.77s 745: learn: 0.1950054 total: 13.9s remaining: 4.77s 746: learn: 0.1948106 total: 14s remaining: 4.77s						_	
716: learn: 0.1983355 total: 13.5s remaining: 5.32s 717: learn: 0.1982115 total: 13.5s remaining: 5.3s 718: learn: 0.1981065 total: 13.5s remaining: 5.28s 719: learn: 0.1977598 total: 13.5s remaining: 5.26s 720: learn: 0.1977618 total: 13.5s remaining: 5.26s 720: learn: 0.1977618 total: 13.5s remaining: 5.24s 721: learn: 0.1976580 total: 13.6s remaining: 5.22s 722: learn: 0.197277 total: 13.6s remaining: 5.2s 723: learn: 0.1972680 total: 13.6s remaining: 5.18s 724: learn: 0.1972680 total: 13.6s remaining: 5.16s 725: learn: 0.196991 total: 13.6s remaining: 5.14s 726: learn: 0.1969891 total: 13.6s remaining: 5.12s 727: learn: 0.1968977 total: 13.7s remaining: 5.18 728: learn: 0.1966304 total: 13.7s remaining: 5.08s 729: learn: 0.1966304 total: 13.7s remaining: 5.06s 730: learn: 0.1966304 total: 13.7s remaining: 5.04s 731: learn: 0.1963686 total: 13.7s remaining: 5.04s 732: learn: 0.1962648 total: 13.7s remaining: 5.01s 733: learn: 0.1962648 total: 13.7s remaining: 5.01s 734: learn: 0.1962648 total: 13.8s remaining: 4.99s 734: learn: 0.19640423 total: 13.8s remaining: 4.97s 735: learn: 0.1959417 total: 13.8s remaining: 4.97s 736: learn: 0.1955991 total: 13.8s remaining: 4.97s 737: learn: 0.1955082 total: 13.9s remaining: 4.89s 739: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1955059 total: 13.9s remaining: 4.88s 741: learn: 0.1955059 total: 13.9s remaining: 4.88s 742: learn: 0.1950054 total: 13.9s remaining: 4.81s 743: learn: 0.1950054 total: 13.9s remaining: 4.81s 744: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1948106 total: 14s remaining: 4.77s						_	
717: learn: 0.1982115 total: 13.5s remaining: 5.3s 718: learn: 0.1981065 total: 13.5s remaining: 5.28s 719: learn: 0.1979598 total: 13.5s remaining: 5.26s 720: learn: 0.1977618 total: 13.5s remaining: 5.26s 721: learn: 0.1976580 total: 13.6s remaining: 5.22s 722: learn: 0.1975277 total: 13.6s remaining: 5.22s 723: learn: 0.1974255 total: 13.6s remaining: 5.18s 724: learn: 0.1972680 total: 13.6s remaining: 5.16s 725: learn: 0.1970943 total: 13.6s remaining: 5.16s 726: learn: 0.1968971 total: 13.7s remaining: 5.12s 727: learn: 0.1968977 total: 13.7s remaining: 5.18s 728: learn: 0.1967691 total: 13.7s remaining: 5.08s 729: learn: 0.1966304 total: 13.7s remaining: 5.08s 730: learn: 0.1966304 total: 13.7s remaining: 5.04s 731: learn: 0.1966308 total: 13.7s remaining: 5.04s 732: learn: 0.196648 total: 13.7s remaining: 5.03s 732: learn: 0.1962648 total: 13.7s remaining: 5.01s 733: learn: 0.1964706 total: 13.8s remaining: 4.99s 734: learn: 0.1960423 total: 13.8s remaining: 4.97s 735: learn: 0.1959417 total: 13.8s remaining: 4.97s 736: learn: 0.1959417 total: 13.8s remaining: 4.97s 737: learn: 0.1955991 total: 13.8s remaining: 4.93s 737: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1955082 total: 13.9s remaining: 4.88s 741: learn: 0.1955059 total: 13.9s remaining: 4.88s 742: learn: 0.1955059 total: 13.9s remaining: 4.88s 743: learn: 0.1955059 total: 13.9s remaining: 4.87s 744: learn: 0.195036 total: 13.9s remaining: 4.87s 745: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1948324 total: 14s remaining: 4.77s 745: learn: 0.1948106 total: 14s remaining: 4.77s						_	
718: learn: 0.1981065 total: 13.5s remaining: 5.28s 719: learn: 0.1979598 total: 13.5s remaining: 5.26s 720: learn: 0.1977618 total: 13.5s remaining: 5.24s 721: learn: 0.1976580 total: 13.6s remaining: 5.22s 722: learn: 0.1975277 total: 13.6s remaining: 5.28s 723: learn: 0.1974255 total: 13.6s remaining: 5.18s 724: learn: 0.1972680 total: 13.6s remaining: 5.16s 725: learn: 0.1970943 total: 13.6s remaining: 5.16s 726: learn: 0.1968971 total: 13.6s remaining: 5.12s 727: learn: 0.1968977 total: 13.7s remaining: 5.12s 728: learn: 0.1966304 total: 13.7s remaining: 5.08s 729: learn: 0.1966304 total: 13.7s remaining: 5.06s 730: learn: 0.1963086 total: 13.7s remaining: 5.04s 731: learn: 0.1963686 total: 13.7s remaining: 5.03s 732: learn: 0.1963686 total: 13.7s remaining: 5.03s 733: learn: 0.1963686 total: 13.7s remaining: 5.01s 733: learn: 0.1963648 total: 13.8s remaining: 4.99s 734: learn: 0.1963648 total: 13.8s remaining: 4.99s 735: learn: 0.1959417 total: 13.8s remaining: 4.97s 736: learn: 0.1959417 total: 13.8s remaining: 4.97s 737: learn: 0.1957181 total: 13.8s remaining: 4.93s 738: learn: 0.1955082 total: 13.8s remaining: 4.99s 739: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1955082 total: 13.9s remaining: 4.87s 741: learn: 0.1955070 total: 13.9s remaining: 4.87s 742: learn: 0.1950954 total: 13.9s remaining: 4.87s 743: learn: 0.1950954 total: 13.9s remaining: 4.77s 744: learn: 0.1950954 total: 13.9s remaining: 4.77s 745: learn: 0.1949324 total: 13.9s remaining: 4.77s 746: learn: 0.1948106 total: 14s remaining: 4.75s						_	
719: learn: 0.1979598 total: 13.5s remaining: 5.26s 720: learn: 0.1977618 total: 13.5s remaining: 5.24s 721: learn: 0.1976580 total: 13.6s remaining: 5.22s 722: learn: 0.1975277 total: 13.6s remaining: 5.22s 723: learn: 0.1974255 total: 13.6s remaining: 5.18s 724: learn: 0.1972680 total: 13.6s remaining: 5.16s 725: learn: 0.1970943 total: 13.6s remaining: 5.14s 726: learn: 0.1969891 total: 13.6s remaining: 5.14s 727: learn: 0.1968977 total: 13.7s remaining: 5.12s 728: learn: 0.1967691 total: 13.7s remaining: 5.08s 729: learn: 0.1966304 total: 13.7s remaining: 5.06s 730: learn: 0.1964994 total: 13.7s remaining: 5.04s 731: learn: 0.1963686 total: 13.7s remaining: 5.04s 732: learn: 0.1963686 total: 13.7s remaining: 5.01s 733: learn: 0.1962648 total: 13.7s remaining: 5.01s 734: learn: 0.1960423 total: 13.8s remaining: 4.99s 735: learn: 0.1959417 total: 13.8s remaining: 4.97s 736: learn: 0.1959417 total: 13.8s remaining: 4.97s 737: learn: 0.1957181 total: 13.8s remaining: 4.93s 737: learn: 0.1957181 total: 13.8s remaining: 4.93s 739: learn: 0.195782 total: 13.8s remaining: 4.89s 739: learn: 0.1955991 total: 13.9s remaining: 4.87s 740: learn: 0.195082 total: 13.9s remaining: 4.87s 741: learn: 0.195084 total: 13.9s remaining: 4.87s 742: learn: 0.1950954 total: 13.9s remaining: 4.77s 743: learn: 0.1950236 total: 13.9s remaining: 4.77s 744: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1948106 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.75s						_	
720: learn: 0.1977618 total: 13.5s remaining: 5.24s 721: learn: 0.1976580 total: 13.6s remaining: 5.22s 722: learn: 0.1975277 total: 13.6s remaining: 5.2s 723: learn: 0.1974255 total: 13.6s remaining: 5.18s 724: learn: 0.1972680 total: 13.6s remaining: 5.16s 725: learn: 0.1970943 total: 13.6s remaining: 5.16s 726: learn: 0.1968971 total: 13.6s remaining: 5.14s 727: learn: 0.1968977 total: 13.7s remaining: 5.12s 728: learn: 0.1967691 total: 13.7s remaining: 5.0s 729: learn: 0.1966304 total: 13.7s remaining: 5.06s 730: learn: 0.1964994 total: 13.7s remaining: 5.04s 731: learn: 0.1963686 total: 13.7s remaining: 5.03s 732: learn: 0.1962648 total: 13.7s remaining: 5.01s 733: learn: 0.1961706 total: 13.8s remaining: 4.99s 734: learn: 0.1950417 total: 13.8s remaining: 4.97s 735: learn: 0.1959417 total: 13.8s remaining: 4.97s 736: learn: 0.1957181 total: 13.8s remaining: 4.93s 737: learn: 0.1957181 total: 13.8s remaining: 4.89s 739: learn: 0.1955082 total: 13.9s remaining: 4.89s 739: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1953059 total: 13.9s remaining: 4.87s 741: learn: 0.1953059 total: 13.9s remaining: 4.87s 742: learn: 0.1950954 total: 13.9s remaining: 4.87s 743: learn: 0.1950954 total: 13.9s remaining: 4.87s 744: learn: 0.1950954 total: 13.9s remaining: 4.77s 745: learn: 0.1948106 total: 14s remaining: 4.77s 745: learn: 0.1948106 total: 14s remaining: 4.77s						_	
721: learn: 0.1976580 total: 13.6s remaining: 5.22s 722: learn: 0.1975277 total: 13.6s remaining: 5.2s 723: learn: 0.1974255 total: 13.6s remaining: 5.18s 724: learn: 0.1970943 total: 13.6s remaining: 5.16s 725: learn: 0.1969891 total: 13.6s remaining: 5.14s 726: learn: 0.1966897 total: 13.7s remaining: 5.1s 728: learn: 0.1966304 total: 13.7s remaining: 5.0s 729: learn: 0.1966304 total: 13.7s remaining: 5.0s 730: learn: 0.1963686 total: 13.7s remaining: 5.0s 731: learn: 0.1962648 total: 13.7s remaining: 5.0s 733: learn: 0.1961706 total: 13.8s remaining						_	
722: learn: 0.1975277 total: 13.6s remaining: 5.2s 723: learn: 0.1974255 total: 13.6s remaining: 5.18s 724: learn: 0.1972680 total: 13.6s remaining: 5.16s 725: learn: 0.196891 total: 13.6s remaining: 5.14s 726: learn: 0.1968977 total: 13.7s remaining: 5.12s 727: learn: 0.1966991 total: 13.7s remaining: 5.08s 729: learn: 0.1966304 total: 13.7s remaining: 5.08s 730: learn: 0.1964994 total: 13.7s remaining: 5.04s 731: learn: 0.1963686 total: 13.7s remaining: 5.03s 732: learn: 0.1962648 total: 13.7s remaining: 5.03s 733: learn: 0.1960423 total: 13.8s remai						_	
723: learn: 0.1974255 total: 13.6s remaining: 5.18s 724: learn: 0.1972680 total: 13.6s remaining: 5.16s 725: learn: 0.1970943 total: 13.6s remaining: 5.14s 726: learn: 0.1968977 total: 13.6s remaining: 5.12s 727: learn: 0.1968977 total: 13.7s remaining: 5.1s 728: learn: 0.1967691 total: 13.7s remaining: 5.08s 729: learn: 0.1966304 total: 13.7s remaining: 5.06s 730: learn: 0.1964994 total: 13.7s remaining: 5.04s 731: learn: 0.1963686 total: 13.7s remaining: 5.04s 732: learn: 0.1961706 total: 13.8s remaining: 5.01s 733: learn: 0.1959417 total: 13.8s rema						_	
724: learn: 0.1972680 total: 13.6s remaining: 5.16s 725: learn: 0.1970943 total: 13.6s remaining: 5.14s 726: learn: 0.1969891 total: 13.6s remaining: 5.12s 727: learn: 0.1968977 total: 13.7s remaining: 5.1s 728: learn: 0.1967691 total: 13.7s remaining: 5.0s 729: learn: 0.1966304 total: 13.7s remaining: 5.06s 730: learn: 0.1964994 total: 13.7s remaining: 5.04s 731: learn: 0.1963686 total: 13.7s remaining: 5.04s 731: learn: 0.1962648 total: 13.7s remaining: 5.04s 732: learn: 0.1961706 total: 13.8s remaining: 4.99s 734: learn: 0.1958212 total: 13.8s remai						_	
725: learn: 0.1970943 total: 13.6s remaining: 5.14s 726: learn: 0.1968977 total: 13.6s remaining: 5.12s 727: learn: 0.1968977 total: 13.7s remaining: 5.1s 728: learn: 0.1967691 total: 13.7s remaining: 5.08s 729: learn: 0.1966304 total: 13.7s remaining: 5.06s 730: learn: 0.1964994 total: 13.7s remaining: 5.04s 731: learn: 0.1963686 total: 13.7s remaining: 5.04s 731: learn: 0.1962648 total: 13.7s remaining: 5.01s 732: learn: 0.1961706 total: 13.8s remaining: 4.99s 734: learn: 0.1959417 total: 13.8s remaining: 4.95s 736: learn: 0.19558212 total: 13.8s rem						_	
726: learn: 0.1969891 total: 13.6s remaining: 5.12s 727: learn: 0.1968977 total: 13.7s remaining: 5.1s 728: learn: 0.1967691 total: 13.7s remaining: 5.08s 729: learn: 0.1966304 total: 13.7s remaining: 5.06s 730: learn: 0.1964994 total: 13.7s remaining: 5.04s 731: learn: 0.1963686 total: 13.7s remaining: 5.04s 731: learn: 0.1962648 total: 13.7s remaining: 5.03s 732: learn: 0.1961706 total: 13.8s remaining: 5.01s 733: learn: 0.1960423 total: 13.8s remaining: 4.97s 735: learn: 0.1959417 total: 13.8s remaining: 4.93s 737: learn: 0.1957181 total: 13.8s rema						_	
727: learn: 0.1968977 total: 13.7s remaining: 5.1s 728: learn: 0.1967691 total: 13.7s remaining: 5.08s 729: learn: 0.1966304 total: 13.7s remaining: 5.06s 730: learn: 0.1963686 total: 13.7s remaining: 5.04s 731: learn: 0.1962648 total: 13.7s remaining: 5.04s 732: learn: 0.1962648 total: 13.7s remaining: 5.01s 733: learn: 0.1961706 total: 13.8s remaining: 5.01s 734: learn: 0.1960423 total: 13.8s remaining: 4.99s 735: learn: 0.1959417 total: 13.8s remaining: 4.95s 736: learn: 0.1958212 total: 13.8s remaining: 4.91s 738: learn: 0.1955991 total: 13.9s rema						_	
728: learn: 0.1967691 total: 13.7s remaining: 5.08s 729: learn: 0.1966304 total: 13.7s remaining: 5.06s 730: learn: 0.1964994 total: 13.7s remaining: 5.04s 731: learn: 0.1963686 total: 13.7s remaining: 5.03s 732: learn: 0.1962648 total: 13.7s remaining: 5.03s 733: learn: 0.1961706 total: 13.8s remaining: 5.01s 734: learn: 0.1960423 total: 13.8s remaining: 4.99s 735: learn: 0.1959417 total: 13.8s remaining: 4.95s 736: learn: 0.1958212 total: 13.8s remaining: 4.91s 738: learn: 0.1957181 total: 13.8s remaining: 4.89s 739: learn: 0.1955082 total: 13.9s rem						_	
729:learn:0.1966304total:13.7sremaining:5.06s730:learn:0.1964994total:13.7sremaining:5.04s731:learn:0.1963686total:13.7sremaining:5.03s732:learn:0.1962648total:13.7sremaining:5.01s733:learn:0.1961706total:13.8sremaining:4.99s734:learn:0.1960423total:13.8sremaining:4.97s735:learn:0.1959417total:13.8sremaining:4.95s736:learn:0.1958212total:13.8sremaining:4.93s737:learn:0.1957181total:13.8sremaining:4.91s738:learn:0.1955991total:13.8sremaining:4.89s739:learn:0.1955082total:13.9sremaining:4.87s740:learn:0.1954082total:13.9sremaining:4.85s741:learn:0.1953059total:13.9sremaining:4.81s743:learn:0.1950954total:13.9sremaining:4.77s744:learn:0.1949324total:14sremaining:4.75s746:learn:0.1948106total:14sremaining:4.73s						_	
730: learn: 0.1964994 total: 13.7s remaining: 5.04s 731: learn: 0.1963686 total: 13.7s remaining: 5.03s 732: learn: 0.1962648 total: 13.7s remaining: 5.01s 733: learn: 0.1961706 total: 13.8s remaining: 4.99s 734: learn: 0.1960423 total: 13.8s remaining: 4.97s 735: learn: 0.1959417 total: 13.8s remaining: 4.95s 736: learn: 0.1958212 total: 13.8s remaining: 4.93s 737: learn: 0.1957181 total: 13.8s remaining: 4.91s 738: learn: 0.1955991 total: 13.8s remaining: 4.89s 739: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1954082 total: 13.9s remaining: 4.85s 741: learn: 0.1953059 total: 13.9s remaining: 4.81s 742: learn: 0.1951702 total: 13.9s remaining: 4.81s 743: learn: 0.1950954 total: 13.9s remaining: 4.79s 744: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1948106 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.73s						_	
731: learn: 0.1963686 total: 13.7s remaining: 5.03s 732: learn: 0.1962648 total: 13.7s remaining: 5.01s 733: learn: 0.1961706 total: 13.8s remaining: 4.99s 734: learn: 0.1960423 total: 13.8s remaining: 4.97s 735: learn: 0.1959417 total: 13.8s remaining: 4.95s 736: learn: 0.1958212 total: 13.8s remaining: 4.93s 737: learn: 0.1957181 total: 13.8s remaining: 4.91s 738: learn: 0.1955991 total: 13.8s remaining: 4.89s 739: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1953059 total: 13.9s remaining: 4.83s 742: learn: 0.1950954 total: 13.9s remaining: 4.79s 744: learn: 0.1950236 total:						_	
732: learn: 0.1962648 total: 13.7s remaining: 5.01s 733: learn: 0.1961706 total: 13.8s remaining: 4.99s 734: learn: 0.1960423 total: 13.8s remaining: 4.97s 735: learn: 0.1959417 total: 13.8s remaining: 4.95s 736: learn: 0.1958212 total: 13.8s remaining: 4.93s 737: learn: 0.1957181 total: 13.8s remaining: 4.91s 738: learn: 0.1955991 total: 13.8s remaining: 4.89s 739: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1954082 total: 13.9s remaining: 4.85s 741: learn: 0.1953059 total: 13.9s remaining: 4.81s 743: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1949324 total:						_	
733: learn: 0.1961706 total: 13.8s remaining: 4.99s 734: learn: 0.1960423 total: 13.8s remaining: 4.97s 735: learn: 0.1959417 total: 13.8s remaining: 4.95s 736: learn: 0.1958212 total: 13.8s remaining: 4.93s 737: learn: 0.1957181 total: 13.8s remaining: 4.91s 738: learn: 0.1955991 total: 13.8s remaining: 4.89s 739: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1954082 total: 13.9s remaining: 4.85s 741: learn: 0.1953059 total: 13.9s remaining: 4.83s 742: learn: 0.1951702 total: 13.9s remaining: 4.81s 743: learn: 0.1950954 total: 13.9s remaining: 4.79s 744: learn: 0.1950236 total: 13.9s remaining: 4.79s 745: learn: 0.1949324 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.73s						_	
734: learn: 0.1960423 total: 13.8s remaining: 4.97s 735: learn: 0.1959417 total: 13.8s remaining: 4.95s 736: learn: 0.1958212 total: 13.8s remaining: 4.93s 737: learn: 0.1957181 total: 13.8s remaining: 4.91s 738: learn: 0.1955991 total: 13.8s remaining: 4.89s 739: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1954082 total: 13.9s remaining: 4.85s 741: learn: 0.1953059 total: 13.9s remaining: 4.81s 742: learn: 0.1951702 total: 13.9s remaining: 4.79s 744: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1949324 total: 14s remaining: 4.75s 746: learn: 0.1948106 total:						_	
735: learn: 0.1959417 total: 13.8s remaining: 4.95s 736: learn: 0.1958212 total: 13.8s remaining: 4.93s 737: learn: 0.1957181 total: 13.8s remaining: 4.91s 738: learn: 0.1955991 total: 13.8s remaining: 4.89s 739: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1954082 total: 13.9s remaining: 4.85s 741: learn: 0.1953059 total: 13.9s remaining: 4.83s 742: learn: 0.1951702 total: 13.9s remaining: 4.81s 743: learn: 0.1950954 total: 13.9s remaining: 4.79s 744: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1949324 total: 14s remaining: 4.73s 746: learn: 0.1948106 total: 14s remaining: 4.73s						_	
736: learn: 0.1958212 total: 13.8s remaining: 4.93s 737: learn: 0.1957181 total: 13.8s remaining: 4.91s 738: learn: 0.1955991 total: 13.8s remaining: 4.89s 739: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1954082 total: 13.9s remaining: 4.85s 741: learn: 0.1953059 total: 13.9s remaining: 4.83s 742: learn: 0.1951702 total: 13.9s remaining: 4.81s 743: learn: 0.1950954 total: 13.9s remaining: 4.79s 744: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1949324 total: 14s remaining: 4.73s 746: learn: 0.1948106 total: 14s remaining: 4.73s						_	
737: learn: 0.1957181 total: 13.8s remaining: 4.91s 738: learn: 0.1955991 total: 13.8s remaining: 4.89s 739: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1954082 total: 13.9s remaining: 4.85s 741: learn: 0.1953059 total: 13.9s remaining: 4.83s 742: learn: 0.1951702 total: 13.9s remaining: 4.81s 743: learn: 0.1950954 total: 13.9s remaining: 4.79s 744: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1949324 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.73s						_	
738: learn: 0.1955991 total: 13.8s remaining: 4.89s 739: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1954082 total: 13.9s remaining: 4.85s 741: learn: 0.1953059 total: 13.9s remaining: 4.83s 742: learn: 0.1951702 total: 13.9s remaining: 4.81s 743: learn: 0.1950954 total: 13.9s remaining: 4.79s 744: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1949324 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.73s						_	
739: learn: 0.1955082 total: 13.9s remaining: 4.87s 740: learn: 0.1954082 total: 13.9s remaining: 4.85s 741: learn: 0.1953059 total: 13.9s remaining: 4.83s 742: learn: 0.1951702 total: 13.9s remaining: 4.81s 743: learn: 0.1950954 total: 13.9s remaining: 4.79s 744: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1949324 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.73s						_	
740: learn: 0.1954082 total: 13.9s remaining: 4.85s 741: learn: 0.1953059 total: 13.9s remaining: 4.83s 742: learn: 0.1951702 total: 13.9s remaining: 4.81s 743: learn: 0.1950954 total: 13.9s remaining: 4.79s 744: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1949324 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.73s						_	
741: learn: 0.1953059 total: 13.9s remaining: 4.83s 742: learn: 0.1951702 total: 13.9s remaining: 4.81s 743: learn: 0.1950954 total: 13.9s remaining: 4.79s 744: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1949324 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.73s						_	
742: learn: 0.1951702 total: 13.9s remaining: 4.81s 743: learn: 0.1950954 total: 13.9s remaining: 4.79s 744: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1949324 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.73s						_	
743: learn: 0.1950954 total: 13.9s remaining: 4.79s 744: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1949324 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.73s						_	
744: learn: 0.1950236 total: 13.9s remaining: 4.77s 745: learn: 0.1949324 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.73s						_	
745: learn: 0.1949324 total: 14s remaining: 4.75s 746: learn: 0.1948106 total: 14s remaining: 4.73s						_	
746: learn: 0.1948106 total: 14s remaining: 4.73s	745:	learn:	0.1949324	total:	14s	remaining:	4.75s
747: learn: 0.1947091 total: 14s remaining: 4.71s	746:	learn:	0.1948106	total:	14s	remaining:	4.73s
	747:	learn:	0.1947091	total:	14s	remaining:	4.71s

748:	learn.	0.1946039	total:	1/10	remaining:	1 690
749:		0.1944443	total:		remaining:	
750:		0.1942851	total:		remaining:	
751:		0.1941161	total:		remaining:	
752 :		0.1939942	total:		remaining:	
753 :		0.1939104	total:		remaining:	
754 :		0.1938426	total:		remaining:	
755 :		0.1937614	total:		remaining:	
756 :		0.1936363	total:		remaining:	
757 :		0.1935263	total:		remaining:	
758:		0.1934098	total:		remaining:	
759:		0.1933373	total:		remaining:	
760:		0.1931812	total:		remaining:	
761:		0.1930720	total:		remaining:	
762:		0.1929635	total:		remaining:	
763:		0.1928835	total:		remaining:	
764:		0.1928067	total:		remaining:	
765:		0.1926471	total:		remaining:	
766:		0.1925152	total:		remaining:	
767:		0.1923927	total:		remaining:	
768:	learn:	0.1922823	total:		remaining:	
769:		0.1921154	total:		remaining:	
770:	learn:	0.1919949	total:	14.4s	remaining:	4.28s
771:	learn:	0.1918926	total:	14.4s	remaining:	4.25s
772:	learn:	0.1918211	total:	14.4s	remaining:	4.24s
773:	learn:	0.1917181	total:	14.4s	remaining:	4.22s
774:	learn:	0.1916591	total:	14.5s	remaining:	4.2s
775 :	learn:	0.1915373	total:	14.5s	remaining:	4.18s
776:	learn:	0.1914393	total:	14.5s	remaining:	4.16s
777:	learn:	0.1913243	total:	14.5s	remaining:	4.14s
778:	learn:	0.1912583	total:	14.5s	remaining:	4.12s
779:	learn:	0.1912260	total:	14.5s	remaining:	4.1s
780:	learn:	0.1911181	total:	14.6s	remaining:	4.08s
781:	learn:	0.1909865	total:	14.6s	remaining:	4.06s
782:	learn:	0.1908632	total:		remaining:	4.04s
783:		0.1907360	total:		remaining:	4.02s
784:	learn:	0.1906424	total:	14.6s	remaining:	4s
785:	learn:	0.1905113	total:	14.6s	remaining:	3.98s
786:	learn:	0.1904467	total:	14.7s	remaining:	3.97s
787:	learn:	0.1903448	total:		remaining:	3.95s
788:	learn:	0.1902477	total:		remaining:	3.93s
789:	learn:	0.1901782	total:		remaining:	3.91s
790:	learn:	0.1900766	total:		remaining:	3.89s
791:	learn:	0.1899848	total:		remaining:	3.87s
792:	learn:	0.1898770	total:		remaining:	3.85s
793:	learn:	0.1897526	total:		remaining:	3.83s
794:	learn:	0.1896376	total:		remaining:	3.81s
795:	learn:	0.1894897	total:		remaining:	3.79s
796:	learn:	0.1893867	total:		remaining:	3.78s
797:	learn:	0.1892671	total:		remaining:	3.76s
798:	learn:	0.1891485	total:		remaining:	3.74s
799:	learn:	0.1890272	total:		remaining:	3.72s
800:	learn:	0.1889476	total:		remaining:	3.7s
801:	learn:	0.1888926	total:		remaining:	3.68s
802:	learn:	0.1887466	total:		remaining:	3.66s
803:	learn:	0.1886532	total:	15s	remaining:	3.64s
804: 805:	learn:	0.1885487	total:	15s	remaining:	3.63s
	learn:	0.1884400	total:	15s	remaining:	3.61s
806:	learn:	0.1883277	total:	15s	remaining:	3.59s
807: 808:	<pre>learn: learn:</pre>	0.1882113 0.1880428	<pre>total: total:</pre>	15s	<pre>remaining: remaining:</pre>	3.57s 3.55s
808:	learn:	0.1879659	total:		remaining: remaining:	3.53s 3.53s
810:	learn:		total:		remaining:	3.52s
811:	learn:		total:		remaining:	3.5s
812:	learn:	0.1876925	total:		remaining:	3.48s
813:		0.1875827	total:		remaining:	
O ± O •	_ u_11.	0.10/002/	cocar.	10.10	LUMBELLING.	O. 100

011.	loarn	0 107/015	+ 0 + 2] •	15 20	romaining.	2 // a
814:		0.1874015	total:		remaining:	
815:		0.1872823	<pre>total: total:</pre>		<pre>remaining: remaining:</pre>	
816:		0.1871389			_	
817:		0.1870282	total:		remaining:	
818:		0.1869611	total:		remaining:	
819:		0.1868554	total:		remaining:	
820:		0.1867649	total:		remaining:	
821:		0.1866653	total:		remaining:	
822:		0.1865257	total:		remaining:	
823:		0.1864398	total:		remaining:	
824:		0.1863280	total:		remaining:	
825:		0.1861762	total:		remaining:	
826:		0.1860560	total:		remaining:	
827:		0.1859555	total:		remaining:	
828:		0.1858086	total:		remaining:	
829:	learn:	0.1857233	total:	15.5s	remaining:	3.17s
830:	learn:	0.1856096	total:	15.5s	remaining:	3.15s
831:	learn:	0.1855295	total:	15.5s	remaining:	3.13s
832:	learn:	0.1854529	total:	15.5s	remaining:	3.11s
833:	learn:	0.1853420	total:	15.5s	remaining:	3.09s
834:	learn:	0.1852633	total:	15.5s	remaining:	3.07s
835:	learn:	0.1851655	total:	15.6s	remaining:	3.05s
836:		0.1850523	total:		remaining:	
837:		0.1849468	total:		remaining:	
838:		0.1847993	total:		remaining:	
839:		0.1846862	total:		remaining:	
840:		0.1845468	total:		remaining:	
841:		0.1844317	total:		remaining:	
842:		0.1843395	total:		remaining:	
843:		0.1842406	total:		remaining:	
844:		0.1841082	total:		remaining:	
845:		0.1840060	total:		remaining:	
846:		0.1839127	total:		_	
					remaining:	
847:		0.1838730	total:		remaining:	
848:		0.1837767	total:		remaining:	
849:		0.1836744	total:		remaining:	
850:	learn:	0.1835636		15.8s	remaining:	2.77s
851:		0.1834628	total:		remaining:	
852:		0.1833582	total:		remaining:	
853:		0.1832431	total:		remaining:	
854:		0.1831434	total:		remaining:	
855:		0.1829965	total:		remaining:	
856:	learn:		total:		remaining:	
857:	learn:		total:		remaining:	
858:	learn:		total:		remaining:	
859:	learn:		total:	16s	remaining:	
860:	learn:		total:	16s	remaining:	
861:	learn:	0.1823801	total:	16s	remaining:	
862:	learn:	0.1823050	total:	16s	remaining:	2.54s
863:	learn:	0.1822156	total:	16s	remaining:	2.52s
864:	learn:	0.1820914	total:	16s	remaining:	2.5s
865:	learn:	0.1819844	total:	16.1s	remaining:	2.48s
866:	learn:	0.1818595	total:	16.1s	remaining:	2.46s
867:	learn:	0.1817566	total:	16.1s	remaining:	2.45s
868:	learn:	0.1816263	total:	16.1s	remaining:	2.43s
869:	learn:	0.1815108	total:	16.1s	remaining:	
870:		0.1813803	total:		remaining:	
871:	learn:		total:		remaining:	
872:	learn:		total:		remaining:	
873:	learn:		total:		remaining:	
874:	learn:		total:		remaining:	
875:		0.1807977	total:		remaining:	
876:		0.1806914	total:		remaining:	
877:		0.1805569	total:		remaining:	
878:		0.1804521	total:		remaining:	
879:		0.1803312	total:		remaining:	

990.	10000	0 1000630	+0+01. 16 20	mamaining, 2 2a
880:		0.1802638	total: 16.3s	remaining: 2.2s
881:		0.1801537	total: 16.3s	remaining: 2.19s
882:		0.1800751	total: 16.4s	remaining: 2.17s
883:		0.1799586	total: 16.4s	remaining: 2.15s
884:		0.1798514	total: 16.4s	remaining: 2.13s
885:		0.1798187	total: 16.4s	remaining: 2.11s
886:		0.1796709	total: 16.4s	remaining: 2.09s
887:		0.1795876	total: 16.4s	remaining: 2.07s
888:		0.1795159	total: 16.5s	remaining: 2.06s
889:		0.1794336	total: 16.5s	remaining: 2.04s
890:		0.1793410	total: 16.5s	remaining: 2.02s
891:		0.1792623	total: 16.5s	remaining: 2s
892:		0.1791633	total: 16.5s	remaining: 1.98s
893:		0.1790979	total: 16.5s	remaining: 1.96s
894:		0.1789995	total: 16.6s	remaining: 1.94s
895:		0.1789065	total: 16.6s	remaining: 1.92s
896:	learn:	0.1788343	total: 16.6s	remaining: 1.91s
897:	learn:	0.1787206	total: 16.6s	remaining: 1.89s
898:	learn:	0.1785994	total: 16.6s	remaining: 1.87s
899:		0.1784772	total: 16.6s	remaining: 1.85s
900:	learn:	0.1783438	total: 16.7s	remaining: 1.83s
901:	learn:	0.1782642	total: 16.7s	remaining: 1.81s
902:	learn:	0.1781333	total: 16.7s	remaining: 1.79s
903:	learn:	0.1780521	total: 16.7s	remaining: 1.77s
904:	learn:	0.1779421	total: 16.7s	remaining: 1.75s
905:	learn:	0.1778208	total: 16.7s	remaining: 1.74s
906:	learn:	0.1776993	total: 16.8s	remaining: 1.72s
907:	learn:	0.1776187	total: 16.8s	remaining: 1.7s
908:	learn:	0.1774760	total: 16.8s	remaining: 1.68s
909:	learn:	0.1773354	total: 16.8s	remaining: 1.66s
910:	learn:	0.1772730	total: 16.8s	remaining: 1.64s
911:	learn:	0.1771922	total: 16.9s	remaining: 1.63s
912:	learn:	0.1771217	total: 16.9s	remaining: 1.61s
913:	learn:	0.1770239	total: 16.9s	remaining: 1.59s
914:	learn:	0.1769451	total: 16.9s	remaining: 1.57s
915:	learn:	0.1769022	total: 16.9s	remaining: 1.55s
916:	learn:	0.1768400	total: 16.9s	remaining: 1.53s
917:		0.1767630	total: 16.9s	remaining: 1.51s
918:	learn:	0.1766463	total: 17s	remaining: 1.5s
919:	learn:		total: 17s	remaining: 1.48s
920:	learn:		total: 17s	remaining: 1.46s
921:	learn:		total: 17s	remaining: 1.44s
922:	learn:		total: 17s	remaining: 1.42s
923:	learn:		total: 17.1s	remaining: 1.4s
924:	learn:		total: 17.1s	remaining: 1.38s
925:	learn:		total: 17.1s	remaining: 1.36s
926:	learn:	0.1758475	total: 17.1s	remaining: 1.35s
927:	learn:	0.1757882	total: 17.1s	remaining: 1.33s
928:	learn:	0.1756939	total: 17.1s	remaining: 1.31s
929:	learn:		total: 17.15	remaining: 1.29s
930:	learn:	0.1755531	total: 17.2s	remaining: 1.27s
931:	learn:		total: 17.2s	remaining: 1.25s
932:	learn:	0.1753724	total: 17.2s	remaining: 1.24s
933:	learn:	0.1752900	total: 17.2s	remaining: 1.22s
934:	learn:	0.1751712	total: 17.2s	remaining: 1.2s
934:	learn:	0.1750910	total: 17.3s	
		0.1750628		
936:	learn:		total: 17.3s	remaining: 1.16s
937:	learn:	0.1750309	total: 17.3s	remaining: 1.14s
938:	learn:	0.1749298	total: 17.3s	remaining: 1.13s
939:	learn:	0.1748403	total: 17.3s	remaining: 1.11s
940:	learn:		total: 17.4s	remaining: 1.09s
941:	learn:		total: 17.4s	remaining: 1.07s
942:	learn:		total: 17.4s	remaining: 1.05s
943:	learn:		total: 17.4s	remaining: 1.03s
944:	learn:		total: 17.4s	remaining: 1.01s
945:	learn:	0.1743043	total: 17.4s	remaining: 996ms

```
remaining: 940ms
        948:
               learn: 0.1741002
                                       total: 17.5s
               learn: 0.1740739
                                       total: 17.5s
                                                      remaining: 922ms
        949:
        950:
               learn: 0.1739405
                                       total: 17.5s remaining: 903ms
        951:
               learn: 0.1738429
                                       total: 17.5s remaining: 885ms
        952:
               learn: 0.1737440
                                       total: 17.6s remaining: 866ms
                                       total: 17.6s
        953:
               learn: 0.1736278
                                                       remaining: 848ms
        954:
               learn: 0.1734900
                                       total: 17.6s
                                                      remaining: 829ms
        955:
               learn: 0.1734046
                                       total: 17.6s remaining: 811ms
        956:
               learn: 0.1733172
                                       total: 17.6s
                                                      remaining: 792ms
                                                    remaining: 774ms
        957:
               learn: 0.1732051
                                       total: 17.6s
        958:
               learn: 0.1730937
                                       total: 17.7s remaining: 755ms
        959:
              learn: 0.1730207
                                       total: 17.7s remaining: 737ms
        960:
               learn: 0.1729372
                                       total: 17.7s
                                                      remaining: 718ms
                                       total: 17.7s remaining: 700ms
        961:
               learn: 0.1728308
        962:
               learn: 0.1727234
                                       total: 17.7s remaining: 681ms
        963:
               learn: 0.1726516
                                       total: 17.7s remaining: 663ms
               learn: 0.1725212
                                       total: 17.8s
                                                      remaining: 644ms
        964:
        965:
               learn: 0.1724377
                                       total: 17.8s remaining: 626ms
        966:
               learn: 0.1723482
                                       total: 17.8s remaining: 608ms
        967:
               learn: 0.1722480
                                       total: 17.8s remaining: 589ms
        968:
               learn: 0.1721605
                                       total: 17.8s
                                                      remaining: 571ms
               learn: 0.1720340
                                       total: 17.9s remaining: 552ms
        969:
               learn: 0.1719318
                                       total: 17.9s remaining: 534ms
        970:
                                       total: 17.9s
                                                      remaining: 515ms
        971:
               learn: 0.1718580
        972:
               learn: 0.1717541
                                       total: 17.9s
                                                      remaining: 497ms
        973:
               learn: 0.1716414
                                       total: 17.9s
                                                      remaining: 478ms
        974:
               learn: 0.1715517
                                       total: 17.9s
                                                      remaining: 460ms
                                       total: 17.9s
        975:
                                                       remaining: 441ms
               learn: 0.1714704
               learn: 0.1713987
                                       total: 18s
                                                       remaining: 423ms
        976:
        977:
               learn: 0.1712982
                                       total: 18s
                                                      remaining: 405ms
        978:
                                       total: 18s
               learn: 0.1712051
                                                       remaining: 386ms
        979:
               learn: 0.1710958
                                       total: 18s
                                                       remaining: 368ms
        980:
               learn: 0.1709796
                                       total: 18s
                                                       remaining: 349ms
              learn: 0.1709007
                                       total: 18.1s
                                                      remaining: 331ms
        981:
                                       total: 18.1s
        982:
               learn: 0.1708171
                                                       remaining: 312ms
        983:
               learn: 0.1707177
                                       total: 18.1s
                                                       remaining: 294ms
        984:
                                                      remaining: 276ms
               learn: 0.1706525
                                       total: 18.1s
        985:
               learn: 0.1705481
                                       total: 18.1s
                                                      remaining: 257ms
                                       total: 18.1s
        986:
               learn: 0.1704410
                                                       remaining: 239ms
        987:
               learn: 0.1703672
                                       total: 18.2s
                                                      remaining: 221ms
        988:
              learn: 0.1703173
                                       total: 18.2s remaining: 202ms
        989:
               learn: 0.1702322
                                       total: 18.2s
                                                      remaining: 184ms
        990:
               learn: 0.1701582
                                       total: 18.2s
                                                      remaining: 165ms
        991:
               learn: 0.1700870
                                       total: 18.2s remaining: 147ms
               learn: 0.1699972
        992:
                                       total: 18.3s remaining: 129ms
        993:
               learn: 0.1699775
                                       total: 18.3s
                                                      remaining: 110ms
        994:
               learn: 0.1699310
                                       total: 18.3s
                                                      remaining: 91.9ms
        995:
               learn: 0.1698776
                                       total: 18.3s remaining: 73.5ms
        996:
               learn: 0.1698303
                                       total: 18.3s
                                                      remaining: 55.1ms
                                       total: 18.3s
                                                       remaining: 36.7ms
        997:
                learn: 0.1697276
                                                      remaining: 18.4ms
        998:
                learn: 0.1696425
                                       total: 18.3s
        999:
                learn: 0.1695313
                                       total: 18.4s
                                                      remaining: Ous
        0.9033374536464771
Out[381...
In [382...
         # Make predictions on the model
         cat pred = cat.predict(X test)
         cat pred[:10]
        array([0, 0, 1, 0, 1, 1, 0, 0, 0, 1], dtype=int64)
Out[382...
```

total: 17.5s

total: 17.5s

remaining: 977ms

remaining: 959ms

946:

947:

In [382...

y test[:10]

learn: 0.1742363

learn: 0.1741959

```
Out[382... 5421
        4981
               0
        16026
                1
        8057 0
119 0
        18553 1
        9814
        9787
                1
        2699
        19323
                1
        Name: target, dtype: int64
In [382...
         print(classification_report(y_test, cat_pred))
                      precision recall f1-score support
                   \cap
                          0.89 0.92
                                            0.90
                                                        2005
                          0.92
                                   0.88
                                             0.90
                                                        2040
                                              0.90
                                                        4045
            accuracy
           macro avg
                          0.90
                                   0.90
                                             0.90
                                                        4045
                                    0.90
        weighted avg
                          0.90
                                             0.90
                                                        4045
In [382...
         print('Precision Score:', round(precision score(y test, cat pred), 2))
         print('Recall Score:', round(recall score(y test, cat pred), 2))
         print('F1 Score:', round(f1 score(y test, cat pred), 2))
         print('Accuracy Score:', round(accuracy score(y test, cat pred), 2))
         print('ROC AUC: ', round(roc auc score(y test, cat pred), 2))
        Precision Score: 0.92
        Recall Score: 0.88
        F1 Score: 0.9
        Accuracy Score: 0.9
        ROC AUC: 0.9
```

5.5.1 Confusion Matrix of CatBoostClassifier Model

[237 1803]]

You can see the model gets confused (predicts the wrong label). In essence, there are 154 occasaions where the model predicted 0 when it should've been 1 (false negative) and 237 occasions where the model predicted 1 instead of 0 (false positive).

5.5.2 ROC Curve and AUC Scores for the CatBoostClassifier Model

This is great, the model does far better than guessing which would be a line going from the bottom left corner to the top right corner, AUC = 0.97. But a perfect model would achieve an AUC score of 1.0.

5.6 XGBoost

```
# Score the model on the test data
         xg.score(X test, y test)
         [09:51:49] WARNING: C:/Users/Administrator/workspace/xgboost-win64 release 1.4.0/src/learn
         er.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti
         ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if
         you'd like to restore the old behavior.
         0.907292954264524
Out[382...
In [382...
          # Make predictions on the model
         xg pred = xg.predict(X test)
         xg pred[:10]
         array([0, 1, 1, 0, 1, 1, 0, 0, 0, 1], dtype=int64)
Out[382...
In [382...
         y test[:10]
         4981
                  0
Out[382...
        5421
         16026
                 1
         8057
        119
                 0
        18553
                 1
        9814
        9787
        2699
                  \cap
        19323
                 1
        Name: target, dtype: int64
In [382...
         print(classification report(y test, xg pred))
                       precision
                                 recall f1-score
                                                        support
                            0.89
                                      0.92
                                                 0.91
                                                           2005
                            0.92
                                      0.89
                                                 0.91
                                                           2040
                                                 0.91
            accuracy
                                                           4045
                            0.91
                                      0.91
                                                 0.91
                                                           4045
           macro avg
         weighted avg
                            0.91
                                       0.91
                                                 0.91
                                                           4045
In [383...
         print('Precision Score:', round(precision score(y test, xg pred), 2))
         print('Recall Score:', round(recall score(y test, xg pred), 2))
         print('F1 Score:', round(f1_score(y_test, xg_pred), 2))
         print('Accuracy Score:', round(accuracy score(y test, xg pred), 2))
         print('ROC AUC: ', round(roc auc score(y test, xg pred), 2))
         Precision Score: 0.92
         Recall Score: 0.89
         F1 Score: 0.91
        Accuracy Score: 0.91
         ROC AUC: 0.91
```

5.6.1 Confusion Matrix of XGBClassifier Model

```
In [383...
sns.set(font_scale=1.5)

def plot_conf_mat(y_test, xg_pred):
```

You can see the model gets confused (predicts the wrong label). In essence, there are 158 occasaions where the model predicted 0 when it should've been 1 (false negative) and 217 occasions where the model predicted 1 instead of 0 (false positive).

5.6.2 ROC Curve and AUC Scores for the XGBClassifier Model

This is great, the model does far better than guessing which would be a line going from the bottom left corner to the top right corner, AUC = 0.97. But a perfect model would achieve an AUC score of 1.0.

Feature Importance

```
In [383...
# Using XGBoost to gain an insight on Feature Importance
clf = XGBClassifier()
clf.fit(train.drop('target', axis=1), train['target'])

plt.style.use('seaborn-whitegrid')
importance = clf.feature_importances_
importance = pd.DataFrame(importance, index=train.drop('target', axis=1).columns, columns=importance.sort_values(by='Importance', ascending=True).plot(kind='barh', figsize=(20, ler
```

[09:53:42] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.4.0/src/learn er.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

Correlation between independent variables

Make predictions on test data

Now we've got a trained model, it's time to make predictions on the test data.

So what we're doing is trying to use the patterns our model has learned in the training data to predict whether a customer will claim insurance or not with characteristics it's never seen before but are assumed to be similar to that of those in the training data.

```
Out[383...
                             Policy
                                    Policy
                                                                  First
                         ID
                                                          Transaction No_Pol Car_Category Subject_Car_Colour Subject_Car_M
                              Start
                                       End
                                            Gender Age
                                                                 Date
                              Date
                                      Date
                             2010-
                                     2011-
                                                           2010-10-23
               ID_01QM0NU
                                             Female
                                                                                         NaN
                                                                                                             NaN
                              10-23
                                     10-22
                             2010-
                                     2011-
                ID 024NJLZ
                                               Male
                                                           2010-10-14
                                                                                         NaN
                                                                                                             NaN
                              10-14
                                     10-13
                                     2011-
                              2010-
           2 ID 02NOVWQ
                                                                             2
                                             Female
                                                           2010-08-29
                                                                                       Saloon
                                                                                                             Black
                                                                                                                              Hc
                             08-29
                                     08-28
```

	ID	Policy Start Date	Policy End Date	Gender	Age	First Transaction Date	No_Pol	Car_Category	Subject_Car_Colour	Subject_Car_M
3	ID_02VSP68	2010- 06-13	2011- 06-12	Female	58	2010-06-13	1	Saloon	NaN	TOY
4	ID_02YB37K	2010- 07-01	2011- 06-30	NaN	120	2010-07-01	1	Saloon	Red	Hyu

Preprocessing the data(getting the test data in the same format as our training data)

Our model has been trained on data formatted in the same way as the training data. This means in order to make predictions on the test data, we need to take the same steps we used to preprocess the training data to preprocess the test data. Remember: Whatever you do to the training data, you have to do to the test data. Let's create a function for doing so (by copying the preprocessing steps we used above).

```
In [383...
         def preprocess data(test):
             performs transformations on test df and returns transformed test df
             # Add datetime for Policy Start Date
             test['PolicyStartYear'] = test['Policy Start Date'].dt.year
             test['PolicyStartMonth'] = test['Policy Start Date'].dt.month
             test['PolicyStartDay'] = test['Policy Start Date'].dt.day
             test['PolicyStartDayofweek'] = test['Policy Start Date'].dt.dayofweek
             test['PolicyStartDayofyear'] = test['Policy Start Date'].dt.dayofyear
             # Drop original PolicyStartDate
             test.drop("Policy Start Date", axis=1, inplace=True)
             # Add datetime for Policy End Date
             test['PolicyEndYear'] = test['Policy End Date'].dt.year
             test['PolicyEndMonth'] = test['Policy End Date'].dt.month
             test['PolicyEndDay'] = test['Policy End Date'].dt.day
             test['PolicyEndDayofweek'] = test['Policy End Date'].dt.dayofweek
             test['PolicyEndDayofyear'] = test['Policy End Date'].dt.dayofyear
             # Drop original PolicyEndDate
             test.drop("Policy End Date", axis=1, inplace=True)
             # Add datetime for FirstTransactionDate
             test['FirstTransactionYear'] = test['First Transaction Date'].dt.year
             test['FirstTransactionMonth'] = test['First Transaction Date'].dt.month
             test['FirstTransactionDay'] = test['First Transaction Date'].dt.day
             test['FirstTransactionDayofweek'] = test['First Transaction Date'].dt.dayofweek
             test['FirstTransactionDayofyear'] = test['First Transaction Date'].dt.dayofyear
             # Drop original FirstTransactionDate
             test.drop("First Transaction Date", axis=1, inplace=True)
             test.reset index(drop=True)
             # Find the columns which contains strings
             for label, content in test.drop(['ID', 'ProductName'], axis=1).items():
                 if pd.api.types.is string dtype(content):
                     print(label)
             # This will turn all strings values into categories
             for label, content in test.drop(['ID'], axis=1).items():
                 if pd.api.types.is string dtype(content):
```

```
test[label] = content.astype('category').cat.as ordered()
    for label, content in test.items():
         if pd.api.types.is categorical dtype(content):
             print(label)
     # Check for which categorical columns have null(missing) values
     for label, content in test.items():
         if pd.api.types.is categorical dtype(content):
             if pd.isnull(content).sum():
                 print(label)
     # Turn categorical variables into numbers
    for label, content in test.drop(['ID'], axis=1).items():
         # Check columns which are not numeric
         if not pd.api.types.is numeric dtype(content):
             # Add binary column to indicate whether sample had missing value
              test[label + ' is missing'] = pd.isnull(content)
             # Turn categories into numbers and add +1 because pandas encodes missing cated
              test[label] = pd.Categorical(content).codes + 1
    return (test)
 # Process the test data
test = preprocess data(test)
test.head()
Gender
```

In [383...

Car Category Subject Car Colour Subject_Car Make LGA Name State Gender Car Category Subject Car Colour Subject Car Make LGA Name State ProductName Gender Car Category Subject Car Colour Subject Car Make LGA Name State

Out[383...

ID	Gender	Age	No_Pol	Car_Category	Subject_Car_Colour	Subject_Car_Make	LGA_Name	State	Pro
0 ID_01QM0NU	2	46	1	0	0	10	10	4	
1 ID_024NJLZ	4	32	1	0	0	0	70	8	
2 ID_02NOVWQ	. 2	45	2	7	4	12	113	3	
3 ID_02VSP68	2	58	1	7	0	35	0	0	
4 ID_02YB37K	0	120	1	7	13	13	110	30	

5 rows × 32 columns

Out[383		ID	Gender	Age	No_Pol	Car_Category	Subject_Car_Colour	Subject_Car_Make	LGA_Name	State	Pro
	0	ID_01QM0NU	2	46	1	0	0	10	10	4	
	1	ID_024NJLZ	4	32	1	0	0	0	70	8	
	2	ID_02NOVWQ	2	45	2	7	4	12	113	3	
	3	ID_02VSP68	2	58	1	7	0	35	0	0	
	4	ID_02YB37K	0	120	1	7	13	13	110	30	

5 rows × 25 columns

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1202 entries, 0 to 1201
Data columns (total 25 columns):

Data	columns (cotal 25 columns)	•	
#	Column	Non-Null Count Dtype	
0	ID	1202 non-null object	t
1	Gender	1202 non-null int8	
2	Age	1202 non-null int64	
3	No_Pol	1202 non-null int64	
4	Car_Category	1202 non-null int8	
5	Subject_Car_Colour	1202 non-null int8	
6	Subject_Car_Make	1202 non-null int8	
7	LGA_Name	1202 non-null int8	
8	State	1202 non-null int8	
9	ProductName	1202 non-null int8	
10	PolicyStartYear	1202 non-null int64	
11	PolicyStartMonth	1202 non-null int64	
12	PolicyStartDay	1202 non-null int64	
13	PolicyStartDayofweek	1202 non-null int64	
14	PolicyStartDayofyear	1202 non-null int64	
15	PolicyEndYear	1202 non-null int64	
16	PolicyEndMonth	1202 non-null int64	
17	PolicyEndDay	1202 non-null int64	
18	PolicyEndDayofweek	1202 non-null int64	
19	PolicyEndDayofyear	1202 non-null int64	
20	FirstTransactionYear	1202 non-null int64	
21	FirstTransactionMonth	1202 non-null int64	
22	FirstTransactionDay	1202 non-null int64	
23	FirstTransactionDayofweek	1202 non-null int64	
24	FirstTransactionDayofyear	1202 non-null int64	

```
memory usage: 177.4+ KB
In [384...
         # This will turn ID strings values into categories
         for label, content in test.items():
             if pd.api.types.is string dtype(content):
                 test['ID'] = content.astype('category').cat.as ordered()
In [384...
         # Turn ID categorical variables into integer
         for label, content in test.items():
             \# Turn categories into numbers and add +1 because pandas encodes missing categories as
                  test['ID'] = pd.Categorical(content).codes + 1
In [384...
         test.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1202 entries, 0 to 1201
        Data columns (total 25 columns):
             Column
                                         Non-Null Count Dtype
         --- ----
                                         _____
         \cap
                                         1202 non-null int16
             ID
         1
             Gender
                                        1202 non-null int8
                                        1202 non-null int64
         2
             Age
         3 No Pol
                                        1202 non-null int64
         4 Car Category
                                        1202 non-null int8
                                      1202 non-null int8
1202 non-null int8
            Subject_Car_Colour
Subject_Car_Make
         5
         7
             LGA Name
                                       1202 non-null int8
         8
             State
                                       1202 non-null int8
                                      1202 non-null int8
1202 non-null int64
1202 non-null int64
         9
             ProductName
         10 PolicyStartYear
         11 PolicyStartMonth
         12 PolicyStartDay
                                        1202 non-null int64
                                      1202 non-null int64
1202 non-null int64
         13 PolicyStartDayofweek
14 PolicyStartDayofyear
         15 PolicyEndYear
                                        1202 non-null int64
                                       1202 non-null int64
         16 PolicyEndMonth
                                        1202 non-null int64
         17 PolicyEndDay
                                     1202 non-null int64
         18 PolicyEndDayofweek
         19 PolicyEndDayofyear
                                        1202 non-null int64
         20 FirstTransactionYear
                                        1202 non-null int64
                                         1202 non-null int64
         21 FirstTransactionMonth
         22 FirstTransactionDay
                                        1202 non-null int64
         23 FirstTransactionDayofweek 1202 non-null int64
         24 FirstTransactionDayofyear 1202 non-null int64
        dtypes: int16(1), int64(17), int8(7)
        memory usage: 170.3 KB
In [384...
         # Make predictions on the test dataset using the best model
         test preds = xg.predict(test)
         test preds[:10]
        array([1, 0, 1, 0, 0, 0, 1, 0, 0], dtype=int64)
Out[384...
In [384...
         y test[:10]
        4981
Out[384...
        5421
                 0
        16026
                 1
        8057
```

dtypes: int64(17), int8(7), object(1)

```
18553
                   1
          9814
          9787
                    1
         2699
                    0
         19323
                   1
         Name: target, dtype: int64
In [384...
          sns.countplot(test_preds)
          <AxesSubplot:ylabel='count'>
Out[384...
            800
            700
            600
            500
         onut
400
            300
            200
            100
              0
                                       0
                                                                                       1
In [384...
          set(test.ID==ss.ID)
          {False}
Out[384...
In [384...
          test.ID
                   258
Out[384...
                  249
          2
                  211
          3
                  142
                  158
         1197
                 294
         1198
                  13
         1199
                  181
         1200
                  44
         1201
                  69
         Name: ID, Length: 1202, dtype: int16
In [385...
          ss.head()
Out[385...
                     ID target
          0 ID_01QM0NU
          1
              ID_024NJLZ
                             0
```

```
2 ID_02NOVWQ
          3
              ID_02VSP68
              ID_02YB37K
In [385...
          sub file = ss.copy()
In [385...
          sub file.target = test preds
In [385...
          sub file.head()
Out[385...
                         target
            ID_01QM0NU
                             1
              ID_024NJLZ
          2 ID_02NOVWQ
              ID_02VSP68
          3
              ID_02YB37K
                             0
In [385...
          sub_file.to_csv('base_model_pred_model.csv', index=False)
```

6. Conclusion

ID target

Given its high scores across the board, XGBoost classifier performed slightly better than all the other machine learning models. With a high precision, recall and F1 score. This XGBoost model should be quite reliable at predicting which customers will claim insurance within the first 3 months.

Thanks for viewing this Notebook.

```
In [ ]:
```