סיכומי הרצאות ⁻ אלגברה לינארית 2א

מיכאל פרבר ברודסקי

תוכן עניינים

2	ברים חשובים מלינארית 1	וד 1
2	1 מטריצות דומות	.1
2	בסון	2 לנ
2	2 הגדרות בסיסיות	.1
2	\ldots ערך עצמי 2.1.1	
2	2.1.2 וקטורים עצמיים	
3		.2

1 דברים חשובים מלינארית 1

1.1 מטריצות דומות

 $A=P^{-1}\cdot B\cdot P$ ע כך ש־A כך ש-קרימת מטריצה הפיכה B ו־B ו־B ו־B ו־A אמר כי $A,B\in M_n\left(\mathbb{F}\right)$ יהיו משפט: נתון $A,B\in M_n\left(\mathbb{F}\right)$ ריבועיות, הבאים שקולים:

- .דומות A, B .1
- $[T]_C=A,[T]_{C'}=B$ של כך ש־ל כך של C,C' ובסיסים וובסיסים .2
- $[T]_{C'}=B$ ע כך של V כך של C' סיים בסיס אז קיים על ע כך של V כך של C סיים בסיס T:V o V.

ואס A,B דומות אז:

- $\operatorname{Rank}(A) = \operatorname{Rank}(B), \mathcal{N}(A) = \mathcal{N}(B) . 1$
- $\operatorname{tr}(A) = \sum_{i=1}^{n} (A)_{i,i}$ כאשר $\operatorname{tr}(A) = \operatorname{tr}(B)$.2
 - $\det(A) = \det(B)$.3

2 לכסון

2.1 הגדרות בסיסיות

גדיר את $A_{i,j}=0$, $i\neq j$ שבה עבור $A\in M_n\left(\mathbb{F}\right)$ מטריצה מטריצה מטריצה מטריצה מטריצה וגדיה אלכסון. על האלכסון. $\lambda_1,\ldots,\lambda_n$ שיש לה $\lambda_1,\ldots,\lambda_n$

המטרה אלכסונית. המטרה למטריצה למטריצה שדומה למטריצה מטריצה מטריצה של מטריצה מטריצה מטריצה מטריצה מטריצה אלכסונית, קיימת P כך ש:

$$A = PDP^{-1}$$

$$A^{n} = PDP^{-1} \cdot \dots \cdot PDP^{-1} = PD^{n}P^{-1}$$

הגדרה 3.2 העתקה לכסינה: העתקה לינארית $T:V\to V$ כך שקיים בסיס B של V כך ש־ $[T]^B_B$ אלכסונית. בנוסף, אם $T:V\to V$ היא לכסינה אז כל מטריצה מייצגת שלה לפי בסיס $T:V\to V$, היא לכסינה.

ערך עצמי 2.1.1

 $T(\overline{v})=\lambda\overline{v}$ כך ש־ \overline{v} כך עצמי \overline{v} כערך עצמי של T לערך עצמי 4.2 הגדרה

 $A\overline{v}=\lambda\overline{v}$ ערך עצמי $\overline{v}:\lambda$ לערך עצמי A לערך עצמי 5.2 איז הגדרה 5.2 ערך עצמי של

 λ כך עצמי של T של $\overline{v}
eq 0$ של הגדרה 6.2 ערך עצמי של λ כך עצמי אל $\overline{v} \neq 0$ הגדרה

1.1.2 וקטורים עצמיים

כלומר $V_{\lambda}=\{\overline{v}\in V\mid T\left(\overline{v}\right)=\lambda\overline{v}\}$ נגדיר נגדיר $\lambda\in\mathbb{F}$ ה"ל, ויהי $T:V\to V$ ההא עצמיים: תהא לומר הוקטורים עם ערך עצמי λ

 $V_{\lambda} = \mathrm{Sols}\left(A - \lambda I\right)/\ker\left(T - \lambda \cdot Id\right)$ ערך עצמי של $V_{\lambda} = \mathrm{Sols}\left(A - \lambda I\right)$. בנוסף V_{λ} תמ"ו. ניתן גם להגדיר כך: $V_{\lambda} \neq \{0_V\}$

A את הפולינום אופייני של $P_{A}\left(\lambda\right)=|A-\lambda I|$, נסמן ב־, $A\in M_{m imes n}\left(\mathbb{F}
ight)$ תהא פולינום אופייני של את הפולינום אופייני של טענות:

:חוכחה. $P_A(\lambda) \in \mathbb{F}[\lambda]$.1

$$P_{A}(\lambda) = \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \cdot \prod_{i=1}^{n} \underbrace{(A - \lambda I)_{i,\sigma(i)}}_{i,\sigma(i)}$$

- $\left(-1\right)^{n}$ המקדם המוביל ב־ $P_{A}\left(\lambda\right)$ הוא -2
- $\det\left(T-\lambda Id\right)=0\iff \ker\left(T-\lambda Id\right)=V_{\lambda}\neq\left\{\overline{0}\right\}\iff A$ ערך עצמי של λ .3
 - $P_{A}\left(\lambda
 ight)$ שורש של ג $\iff A$ שורש של .4
 - ברחה: $.P_A=P_B$ אז A,B הוכחה:

$$P_{A}(\lambda) = |A - \lambda I| = |PBP^{-1} - \lambda I| = |PBP^{-1} - P\lambda IP^{-1}| = |P(B - \lambda I)P^{-1}|$$
$$= |P||B - \lambda I||P^{-1}| = |B - \lambda I| = P_{B}(\lambda)$$

- .6 נגדיר איזה B משנה איזה לא $^{\mathtt{-}}$ $P_{T}\left(\lambda\right)=P_{\left[T\right]_{B}}\left(\lambda\right)$.6
- $\mu_\lambda^A=\mu_\lambda^T=\mu_\lambda=\dim{(V_\lambda)}$ נסמן ב־ λ : נסמר איאומטרי פוי איאומטרי פוי גיאומטרי פוי הגדרה 9.2

הגדרה 10.2 ריבוי אלגברי של λ : מסומן ρ_{λ} (רו), הוא הריבוי של λ בפולינום האופייני ($P_A(\lambda)$, כלומר כמה פעמים הוא מופיע בפולינום.

:טענות

- $.
 ho_{\lambda_1}+\dots+
 ho_{\lambda_k}\leq n$ אז $ho_{\lambda_1},\dots,
 ho_{\lambda_k}$ אז אלגבריים אלגבריים עם $\lambda_1,\dots,\lambda_k$ עם עצמיים A .1
 - $.
 ho_{\lambda_1}+\cdots+
 ho_{\lambda_k}=n$ אם $P_A\left(\lambda
 ight)$ מתפרק לגורמים לינאריים אז $P_A\left(\lambda
 ight)$
 - $\mu_{\lambda} \leq P_{\lambda}$, לכל ערך עצמי 3.

משפטים 2.2

- A שמורכב מוקטורים עצמיים של $B\subseteq \mathbb{F}^n$ שמיים של A .1
- 2. אם T לכסינה (או A לכסינה) אז על האלכסון של הצורה האלכסונית מופיעים הערכים העצמיים של .2 (או A או A). זה יחיד עד כדי הסידור של האלכסון.
 - . ישר. עם ערכים ערכים ערכים אז הסכום אז הסכום אז הסכום ערכים ערכים ערכים ערכים אז הסכום אז הסכום A/T אז הסכום. בעלת ערכים אז $A\in M_n(\mathbb{F})$

 $\iff \mathbb{F}$ אזי: $A \in M_n\left(\mathbb{F}
ight)$ המשפט המרכזי: תהא

- \mathbb{F} מתפרק לגורמים לינארים מעל $P_A(\lambda)$.1
 - $.
 ho_{\lambda}=\mu_{\lambda}$,A של א ע"ע.