Deep Learning & Engineering Applications

10. Attention Mechanism & Transformer

JIDONG J. YANG
COLLEGE OF ENGINEERING
UNIVERSITY OF GEORGIA

Pay attention in class.

Human attention is a limited, valuable, and scarce resource.

A two-component framework:

- subjects selectively direct the spotlight of attention using both the **nonvolitional cue** and **volitional cue**.
- The nonvolitional cue is based on the saliency and conspicuity of objects in the environment.
- The volitional cue is task-dependent and under cognitive and volitional control.

Attention Cues

Using the nonvolitional cue based on saliency (red cup, non-paper), attention is involuntarily directed to the coffee.

Using the volitional cue (want to read a book) that is task-dependent, attention is directed to the book under volitional control.

Multiplicative Modules

Quadratic layer, product units

$$y_i = f_w(x) = \sum_j w_{ij} x_j$$

$$w_{ij} = g_{\theta}(z) = \sum_{k} \theta_{ijk} z_{k}$$

$$w_{ij} = f \circ g = \sum_{jk} \theta_{ijk} z_k x_j$$

Attention module

$$y_i = f_w(x) = \sum_j w_{ij} x_j$$
 $w_{ij} = g(z) = \frac{e^{z_j}}{\sum_k e^{z_k}}$

$$w_{ij} = g(z) = \frac{e^{z_j}}{\sum_k e^{z_k}}$$

Queries, Keys, and Values

Attention mechanisms bias selection over values (sensory inputs) via attention pooling, which incorporates queries (volitional cues) and keys (nonvolitional cues).

Design of attention mechanisms

- Nondifferentiable
- Differentiable

Attention Pooling

$$y_i = 2\sin(x_i) + x_i^{0.8} + \epsilon$$

$$\{(x_1,y_1),\ldots,(x_n,y_n)\}$$

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$f(x) = \sum_{i=1}^{n} \frac{K(x - x_i)}{\sum_{j=1}^{n} K(x - x_j)} y_i = \sum_{i=1}^{n} \alpha(x, x_i) y_i$$

$$f(x) = \sum_{i=1}^{n} \alpha(x, x_i) y_i$$

$$= \sum_{i=1}^{n} \frac{\exp\left(-\frac{1}{2}(x - x_i)^2\right)}{\sum_{j=1}^{n} \exp\left(-\frac{1}{2}(x - x_j)^2\right)} y_i$$

$$= \sum_{i=1}^{n} \operatorname{softmax}\left(-\frac{1}{2}(x - x_i)^2\right) (y_i)$$
query keys values

Attention Pooling

Nonparametric Attention Pooling

$$f(x) = \sum_{i=1}^{n} \alpha(x, x_i) y_i$$

$$= \sum_{i=1}^{n} \frac{\exp\left(-\frac{1}{2}(x - x_i)^2\right)}{\sum_{j=1}^{n} \exp\left(-\frac{1}{2}(x - x_j)^2\right)} y_i$$

$$= \sum_{i=1}^{n} \operatorname{softmax}\left(-\frac{1}{2}(x - x_i)^2\right) y_i$$

Parametric Attention Pooling (parameter: w)

$$f(x) = \sum_{i=1}^{n} \alpha(x, x_i) y_i$$

$$= \sum_{i=1}^{n} \frac{\exp\left(-\frac{1}{2}((x - x_i)w)^2\right)}{\sum_{j=1}^{n} \exp\left(-\frac{1}{2}((x - x_j)w)^2\right)} y_i$$

$$= \sum_{i=1}^{n} \operatorname{softmax}\left(-\frac{1}{2}((x - x_i)w)^2\right) y_i$$

"w" can be learned with gradient descent.

Attention Scoring Functions

Compute the output of attention pooling as a weighted average of values:

$$f(\mathbf{q}, (\mathbf{k}_1, \mathbf{v}_1), \dots, (\mathbf{k}_m, \mathbf{v}_m)) = \sum_{i=1}^m \alpha(\mathbf{q}, \mathbf{k}_i) \mathbf{v}_i \in \mathbb{R}^v$$

The attention scoring function a(q, k) that maps two vectors to a scalar:

$$\alpha(\mathbf{q}, \mathbf{k}_i) = \operatorname{softmax}(a(\mathbf{q}, \mathbf{k}_i)) = \frac{\exp(a(\mathbf{q}, \mathbf{k}_i))}{\sum_{j=1}^{m} \exp(a(\mathbf{q}, \mathbf{k}_j))} \in \mathbb{R}$$

Different choices of a(q, k) lead to different behaviors of attention pooling.

Two popular choices of attention scoring functions

Additive Attention

$$a(\mathbf{q}, \mathbf{k}) = \mathbf{w}_v^{\top} \mathrm{tanh}(\mathbf{W}_q \mathbf{q} + \mathbf{W}_k \mathbf{k}) \in \mathbb{R}$$

$$\mathbf{W}_q \in \mathbb{R}^{h imes q}, \mathbf{W}_k \in \mathbb{R}^{h imes k}, \ \mathbf{w}_v \in \mathbb{R}^h$$

Scaled Dot-Product Attention

$$a(\mathbf{q}, \mathbf{k}) = \mathbf{q}^{\top} \mathbf{k} / \sqrt{d}$$

$$\operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d}}\right)\mathbf{V} \in \mathbb{R}^{n \times v}$$

$$\mathbf{Q} \in \mathbb{R}^{n imes d}$$
, $\mathbf{K} \in \mathbb{R}^{m imes d}$, $\mathbf{V} \in \mathbb{R}^{m imes v}$

```
class AdditiveAttention(nn.Module):
    """Additive attention."""
   def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):
       super(AdditiveAttention, self).__init__(**kwargs)
       self.W_k = nn.Linear(key_size, num_hiddens, bias=False)
       self.W_q = nn.Linear(query_size, num_hiddens, bias=False)
       self.w_v = nn.Linear(num_hiddens, 1, bias=False)
       self.dropout = nn.Dropout(dropout)
   def forward(self, queries, keys, values, valid_lens):
       queries, keys = self.W_q(queries), self.W_k(keys)
       # After dimension expansion, shape of 'queries': ('batch_size', no. of
       # queries, 1, 'num_hiddens') and shape of 'keys': ('batch_size', 1,
       # no. of key-value pairs, 'num_hiddens'). Sum them up with
       # broadcasting
       features = queries.unsqueeze(2) + keys.unsqueeze(1)
       features = torch.tanh(features)
       # There is only one output of 'self.w_v', so we remove the last
       # one-dimensional entry from the shape. Shape of 'scores':
       # ('batch_size', no. of queries, no. of key-value pairs)
       scores = self.w_v(features).squeeze(-1)
       self.attention_weights = masked_softmax(scores, valid_lens)
       # Shape of 'values': ('batch_size', no. of key-value pairs, value
       return torch.bmm(self.dropout(self.attention_weights), values)
class DotProductAttention(nn.Module):
    """Scaled dot product attention."""
    def __init__(self, dropout, **kwargs):
         super(DotProductAttention, self).__init__(**kwargs)
         self.dropout = nn.Dropout(dropout)
    # Shape of 'queries': ('batch_size', no. of queries, 'd')
    # Shape of `keys`: (`batch_size`, no. of key-value pairs, `d`)
    # Shape of 'values': ('batch_size', no. of key-value pairs, value
    # dimension)
    # Shape of 'valid_lens': ('batch_size',) or ('batch_size', no. of queries)
    def forward(self, queries, keys, values, valid_lens=None):
         d = queries.shape[-1]
         # Set 'transpose_b=True' to swap the last two dimensions of 'keys'
         scores = torch.bmm(queries, keys.transpose(1, 2)) / math.sqrt(d)
         self.attention_weights = masked_softmax(scores, valid_lens)
         return torch.bmm(self.dropout(self.attention_weights), values)
```

Masked Softmax

We can specify a valid sequence length (in number of tokens) to filter out those beyond this specified range when computing softmax.

```
def masked_softmax(X, valid_lens):
    """Perform softmax operation by masking elements on the last axis."""
    # 'X': 3D tensor, 'valid_lens': 1D or 2D tensor
    if valid lens is None:
        return nn.functional.softmax(X, dim=-1)
    else:
        shape = X.shape
        if valid_lens.dim() == 1:
            valid_lens = torch.repeat_interleave(valid_lens, shape[1])
        else:
            valid_lens = valid_lens.reshape(-1)
        # On the last axis, replace masked elements with a very large negative
        # value, whose exponentiation outputs 0
        X = d21.sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
                              value=-1e6)
        return nn.functional.softmax(X.reshape(shape), dim=-1)
```

Recall RNN encoder-decoder

The encoder transforms (encodes) an input sequence of variable length into a fixed-shape context variable c.

Concatenate the context variable with the decoder input at all the time steps.

Bahdanau attention

 Treats the decoder hidden state at the previous time step $(s_{t'-1})$ as the query, and the encoder hidden states at all the time steps as both the keys and values.

$$\alpha(\mathbf{q}, \mathbf{k}_i) = \frac{\exp(a(\mathbf{q}, \mathbf{k}_i))}{\sum_{j=1}^{m} \exp(a(\mathbf{q}, \mathbf{k}_j))}$$

$$a(\mathbf{q}, \mathbf{k}) = \mathbf{w}_v^{\top} \operatorname{tanh}(\mathbf{W}_q \mathbf{q} + \mathbf{W}_k \mathbf{k})$$

$$\mathbf{s}_{t'} = g(y_{t'-1}, \mathbf{c}_{t'}, \mathbf{s}_{t'-1})$$

Self-Attention

Given a sequence of input tokens $\mathbf{x}_1, \dots, \mathbf{x}_n$ where any $\mathbf{x}_i \in \mathbb{R}^d$ ($1 \leq i \leq n$) self-attention outputs a sequence of the same length $\mathbf{y}_1, \dots, \mathbf{y}_n$, where

$$\mathbf{y}_i = f(\mathbf{x}_i, (\mathbf{x}_1, \mathbf{x}_1), \dots, (\mathbf{x}_n, \mathbf{x}_n)) \in \mathbb{R}^d$$

$$f(x) = \sum_{i=1}^{n} \alpha(x, x_i) x_i$$

In self-attention, the queries, keys, and values all come from the same place.

Recall attention pooling:

$$f(x) = \sum_{i=1}^{n} \alpha(x, x_i) y_i$$

Recall attention:

$$f(\mathbf{q}, (\mathbf{k}_1, \mathbf{v}_1), \dots, (\mathbf{k}_m, \mathbf{v}_m)) = \sum_{i=1}^m \alpha(\mathbf{q}, \mathbf{k}_i) \mathbf{v}_i \in \mathbb{R}^v$$

Comparison of Self-attention, CNN and RNN

	Self-attention	CNN	RNN
Computational complexity	$O(n^2d)$	$O(knd^2)$	$O(nd^2)$
Sequential Operations	0(1)	0(1)	O(n)
Max path length	0(1)	$O(log_k n)$	O(n)

$$f(x) = \sum_{i=1}^{n} \alpha(x, x_i) x_i$$

Issues with RNN

We need the output of the previous step to complete the next step. This prevents us from parallelizing the computation using modern GPUs.

Gradient vanishing/explosion over a long sequence of steps.

Difficulty with modeling long-term dependency.

Position Encoding

RNNs recurrently process tokens of a sequence one by one.

Self-attention ditches sequential operations in favor of parallel computation. Therefore, the sequence order information is lost.

We can inject positional information by adding positional encoding to the input representations.

Position Encoding

input representation $\mathbf{X} \in \mathbb{R}^{n \times d}$

d dimensional embeddings

n tokens of a sequence

positional embedding matrix $\mathbf{P} \in \mathbb{R}^{n \times d}$

$$p_{i,2j} = \sin\left(rac{i}{10000^{2j/d}}
ight)$$
 $p_{i,2j+1} = \cos\left(rac{i}{10000^{2j/d}}
ight)$

Multihead Attention

Instead of performing a single attention pooling, queries, keys, and values can be transformed with multiple (h) independently learned linear projections.

Then these h projected queries, keys, and values are fed into attention pooling in parallel.

Finally, the outputs are concatenated and transformed with another learned linear projection to produce the final output.

Attention Is All You Need (Transformer - NLP)

[Vaswani et al., 2017] https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Output **Probabilities**

Softmax

Linear

Attention Is **Not** All You Need

In March 2021, Google researchers published a paper titled "Attention Is Not All You Need: Pure Attention Loses Rank Doubly Exponentially with Depth".

- self-attention alone converges to a rank 1 matrix.
- skip connections and MLP help to address this issue.
- Layer normalization plays no role.

[Dong et al., 2021] https://arxiv.org/pdf/2103.03404.pdf

Vision Transformer

In order to calculate the attention of each word with respect to all the others, we have to perform N² calculations that, which are expensive even parallelizable.

Analogy

Vision Transformer (ViT)

Dosovitskiy et al. (2020) "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." https://arxiv.org/pdf/2010.11929
Phil Wang (2020). Vision Transformer — Pytorch. https://github.com/lucidrains/vit-pytorch