

Concours Nationaux d'Entrée aux Cycles de Formations d'Ingénieurs Session: 2013

Concours en Mathématiques Physique

Correction de l'Épreuve de Mathématiques I

Exercice: (21points)

5

1. Soit $x \in \mathbb{R}_+$. Montrer que la série $\sum_{n \geq 0} (-1)^n \frac{e^{-nx}}{n+1}$ converge et que la suite $(R_n(x))_{n \geq 0}$ de ses restes vérifie

$$\forall n \in \mathbb{N}, \quad |R_n(x)| < \frac{1}{n+2}.$$

Pour tout $x \ge 0$. Is suite $\left(\frac{e^{-nx}}{n+1}\right)_{n\ge 0}$ est décroissante et converge vers 0, douc d'après le critère des séries alternées, la série converge et son reste d'indice n vérifie l'inégalité demandée. On pose $f(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{e^{-nx}}{n+1}$.

2. Montrer que f est continue sur R4.

On pose $f_n(x) = (-1)^n \frac{e^{-nx}}{n+1}$. Pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur \mathbb{R}_+ et la série $\sum_{n \geq 0} f_n$ converge uniformément sur \mathbb{R}_+ puisque la suite $(R_n)_n$ converge uniformément vers la fonction nulle f est continue sur \mathbb{R}_+ .

3. Montrer que $\lim_{x \to +\infty} f(x) = 1$.

On a $\lim_{x \to +\infty} f_0(x) = 1$ et $\lim_{x \to +\infty} f_n(x) = 0$, $\forall n \in \mathbb{N}^*$, et la série $\sum_{n \geq 0} f_n$ converge uniformément sur \mathbb{R}_+ . Donc, en utilisant le théorème de la double limite pour les séries des fonctions, on obtient $\lim_{x \to +\infty} f(x) = 1$.

4. (a) Montrer que f est de classe C^1 sur $[0, +\infty]$.

On a

- Pour tout $n \in \mathbb{N}$, la fonction f_n est de classe C^1 sur \mathbb{R}_+^* .

- Pour tout $n \in \mathbb{N}$, $f'_n(x) = (-1)^{n+1} \frac{ne^{-nx}}{n+1}$. Solt [a,b] un segment de \mathbb{R}_+^* et $x \in [a,b]$,

$$|f_n'(x)| = \left| \frac{ne^{-nx}}{n+1} \right| \le \frac{ne^{-nc}}{n+1} \le e^{-na}.$$

Comme $\sum_{n\geq 1}e^{-na}$ est convergente, donc la série $\sum_{n\geq 1}f'_n$ converge normalement, donc uni-

formément, sur tout segment de R.

D'après le théorème de dérivation de la somme d'une série des fonctions, la fonction f est de classe C^1 et $\forall x > 0$, $f'(x) = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{ne^{-nx}}{n+1}$.

$$f'(x) - f(x) = -\frac{1}{1 + e^{-x}}$$

Pour tout x > 0, on a $-f'(\overline{x}) - f(\overline{x}) = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{ne^{-nx}}{n+1} - \sum_{n=0}^{\infty} (-1)^n \frac{e^{-nx}}{n+1} = -\sum_{n=0}^{\infty} (-1)^n e^{-nx}$

(c) Déduire alors que, pour tout
$$x \ge 0$$
,

$$f(x) = e^x \ln(1 + e^{-x}).$$

Les solutions de l'équation différentielle homogène y'-y=0 sur \mathbb{R}_+^* sont de la forme $y_H: x \longmapsto \lambda e^x$, $\lambda \in \mathbb{R}$ et la fonction $x \longmapsto e^x \ln(1+e^{-x})$ est une solution particulière de l'équation différentielle

$$y' - y = -\frac{1}{1 + e^{-x}},\tag{E}$$

donc les solutions de (E) sur \mathbb{R}_+^* sont de la forme $y(x) = \lambda e^x + e^x \ln(1 + e^{-x})$, $\lambda \in \mathbb{R}$. Comme f est une solution de (E) sur \mathbb{R}_+^* et $\lim_{x \mapsto +\infty} f(x) = 0$, donc f correspond à la constante $\lambda = 0$. Par continuité en 0, on obtient pour tout $x \geq 0$. $f(x) = e^x \ln(1 + e^{-x})$.

Problème:

Partie I: (43 points)

1. (a) Montrer que, pour tout x > 0, $n \in \mathbb{N}^*$,

$$\ln(f_{n+1}(x)) - \ln(f_n(x)) = x \ln\left(1 + \frac{1}{n}\right) - \ln\left(1 + \frac{x}{n+1}\right)$$

Ona

$$\ln (f_{n+1}(x)) - \ln (f_n(x)) = \ln \left(\frac{f_{n+1}(x)}{f_n(x)}\right)$$

$$= \ln \left(\frac{(n+1)!(n+1)^x}{n!n^x} \frac{x(x+1)\cdots(x+n)}{x(x+1)\cdots(x+n+1)}\right)$$

$$= \ln \left(1 + \frac{1}{n}\right)^x + \ln \left(\frac{n+1}{x+n+1}\right)$$

$$= x \ln \left(1 + \frac{1}{n}\right) - \ln \left(1 + \frac{x}{n+1}\right)$$

(b) Montrer que la série $\sum_{n\geq 1} (\ln (f_{n+1}(x)) - \ln (f_n(x)))$ est convergente.

(3)

On a $\forall x > 0$, $x \ln\left(1 + \frac{x}{n}\right) - \ln\left(1 + \frac{x}{n+1}\right) = \frac{x}{n} + O\left(\frac{1}{n^2}\right) - \frac{x}{n+1} + O\left(\frac{1}{(n+1)^2}\right) = \frac{x}{n(n+1)} + O\left(\frac{1}{n^2}\right) = O\left(\frac{1}{n^2}\right)$. Comme la série $\sum_{n\geq 1} \frac{x}{n^2}$ est convergente, donc la série $\sum_{n\geq 1} (\ln\left(f_{n+1}(x)\right) - \ln\left(f_{n}(x)\right))$ est convergente.

(c) En déduire que la suite $(f_n(x))_{n\geq 1}$ converge vers une limite $f(x)\in]0,+\infty[$.

La série $\sum_{n\geq 1} (\ln(f_{n+1}(x)) - \ln(f_n(x)))$ est convergente, donc la suite

2. (a) Montrer que pour tout x > 0, f(x + 1) = xf(x).

(b) En déduire que, pour tout p∈N, f(p+1) = p

$$\binom{2}{2}$$

- On a $f_n(x+1) = \frac{n!n^{x+1}}{(x+1)(x+2)\cdots(x+1+n)} = \frac{nx}{n+1+x} f_n(x)$.

 Par passage à la limite, on obtient f(x+1) = xf(x).
 - On a $f_n(1) = \frac{n!n}{(n+1)!} = \frac{n}{n+1}$, done par passage à la limite, on obtient f(1) = 1. D'autre part, en utilisant f(x+1) = xf(x), on aura f(p+1) = p!.
- 3. Montrer que l'application $t \mapsto t^{x-1}(1-t)^{y-1}$ est intégrable sur]0,1[st. et seulement si, x,y>0.

 L'application $t \mapsto t^{x-1}(1-t)^{y-1}$ est continue sur]0,1[et $t^{x-1}(1-t)^{y-1} \underset{t\mapsto 0^+}{\sim} t^{x-1}$ et $t^{x-1}(1-t)^{y-1} \underset{t\mapsto 1^-}{\sim} (1-t)^{y-1}$, donc $t \mapsto t^{x-1}(1-t)^{y-1}$ est intégrable sur]0,1[si, et seulement si, 1-x<1 et 1-y<1 donc si, et seulement si, x>0 et y>0.
- 4. (a) Soient x.y > 0 Montrer que

$$\beta(x.y) = \frac{x+y}{y}\beta(x.y+1).$$

Par intégration par parties, on a
$$\beta(x,y+1) = \int_0^1 t^x (1-t)^{y-1} dt = \underbrace{\frac{1}{x} \left[t^x (1-t)^{y-1} \right]_{t \mapsto 0t}^{t+1} + \frac{y}{x} \int_0^1 t^x (1-t)^{y-1} dt}_{=0} = \underbrace{\frac{y}{x} \beta(x+1,y)}_{x}.$$

D'autre part,

$$\beta(x,y+1) = \int_0^1 t^{x-1} (1-t)^y dt = \int_0^1 t^{x-1} (1-t)(1-t)^{y-1} dt$$

$$= \int_0^1 t^{x-1} (1-t)^{y-1} dt - \int_0^1 t^x (1-t)^{y-1} dt = \beta(x,y) - \beta(x-1,y).$$

D'où
$$\beta(x,y+1) = \beta(x,y) - \frac{y}{x}\beta(x+1,y)$$
, donc $\beta(x,y) = \frac{x+y}{y}\beta(x,y+1)$.

(b) Montrer que, pour tout n∈N,

$$\beta(x,y) = \frac{(x+y)(x+y+1)\cdots(x+y+n)}{y(y+1)\cdots(y+n)}\beta(x,y+n+1).$$

Par récurrence sur n.

La relation demandée est vraie pour n=0. Supposons que pour un certain n on a

$$\beta(x,y) = \frac{(x+y)(x+y+1)\cdots(x+y+n)}{y(y+1)\cdots(y+n)}\beta(x,y+n+1).$$

D'après la question précédente, on a

$$\beta(x,y+n+1) = \frac{x+y+n+1}{y+n+1}\beta(x,y+n+2)$$

Ceci prouve que

$$\beta(x,y) = \frac{(x+y)(x+y+1)\cdots(x+y+n)(x+y+n+1)}{y(y+1)\cdots(y+n)(y+n+1)}\beta(x,y+n+2).$$

Ainsi, la relation est vérifiée pour n+1

(c) En déduire que, pour tout n∈ N°.

$$\beta(x,y) = \frac{f_n(y)}{f_n(x+y)} \int_0^n u^{x-1} (1-\frac{u}{n})^{y+n}.$$

D'après la question précédente, on a,

$$\beta(x,y) = \frac{f_n(y)}{f_n(x+y)} \frac{n! n^{x+y}}{n! n^y} \beta(x,y+n+1) = \frac{f_n(y)}{f_n(x+y)} n^x \beta(x,y+n+1)$$

$$= \frac{f_n(y)}{f_n(x+y)} n^x \int_0^1 t^{x-1} (1-t)^{y+n} dt = \frac{f_n(y)}{f_n(x+y)} \int_0^n u^{x-1} \left(1-\frac{u}{n}\right)^{y+n} du.$$

5. En utilisant le théorème de la convergence dominée, montrer que pour tout x,y>0,

$$\lim_{n \to +\infty} \int_0^n u^{x-1} \left(1 - \frac{u}{n}\right)^{y+n} du = \Gamma(x) \text{ où } \Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

Pour
$$n \in \mathbb{N}^*$$
, on pose $f_n(u) = \begin{cases} u^{x-1} \left(1 - \frac{u}{n}\right)^{y+n} & \text{si } u \in]0, n[, \\ 0 & \text{si } u \in [n, +\infty[.]] \end{cases}$

(3

(3)

- L'application f_n est continue sur $[0, +\infty]$.

 Pour tout u > 0, il existe $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0$, $u \le n$, donc $\forall n \ge n_0$, $f_n(u) = u^{x-1} \left(1 \frac{u}{n}\right)^{u+n}$. Comme $\lim_{n \mapsto +\infty} u^{x-1} \left(1 \frac{u}{n}\right)^{u+n} = u^{x-1} e^{-u}$, donc la suite $(f_n)_{n \ge 1}$ converge simplement vers la fonction $u \mapsto u^{x-1} e^{-u}$.
- On a $\forall t \in]0,1[$, $\ln(1-t) \le -t$, donc $\forall u \in]0,n[$, $\left(\frac{1-\frac{u}{n}}{n}\right)^{y+n} = e^{(y+n)\ln(1-\frac{u}{n})} \le e^{n\ln(1-\frac{u}{n})} \le e^{-u}$. Donc, pour tout u > 0, $0 \le f_n(u) \le \varphi(u) = u^{x-1}e^{-u}$. L'application φ est continue sur $]0, +\infty[$, de plus on a, $\varphi(u) \underset{u \to 0^+}{\sim} u^{x-1}$ et $\lim_{u \to +\infty} u^2 \varphi(u) = 0$. donc elle est intégrable sur $]0, +\infty[$. Ainsi, la suite $(f_n)_{n\geq 1}$ vérifie l'hypothèse de domination et donc l'application du T.C.D aboutit au résultat
- 6. Montrer alors que

 $\dot{\beta}(x,y) = \frac{f(y)}{f(x+y)} \Gamma(x).$

(7'x

En faisant tendre n vers l'infini dans la question 4.(c) et en utilisant la question précédente, on obtient la relation demandée.

existi

e n()

7. (a) Calculer $\beta(x,L)$

Pour tout x > 0, $\beta(x,1) = \int_{a}^{1} t^{x-1} dt = \frac{1}{x}$.

orlmer

(b) Montrer que

(i) $\Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1) \cdots (x+n)}$, (ii) $\beta(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$

4

- (i) En appliquant la question 6, pour y=1, et en utilisant les relations f(1)=1, f(x+1)=xf(x) et $\beta(x,1) = \frac{1}{x}$, on obtient $f(x) = \Gamma(x)$.
- (ii) La relation demandée découle directement de la question 6, en remplaçant f par U

(a) En utilisant le changement de variable $t = \sin^2 \theta$, calculer $\beta(\frac{1}{2}, \frac{1}{2})$.

On a $\beta(\frac{1}{2},\frac{1}{2}) = \int_0^1 \frac{1}{\sqrt{t}} \frac{1}{\sqrt{(1-t)}} dt = \int_0^{\frac{\pi}{2}} \frac{2\sin\theta\cos\theta}{\sin\theta\cos\theta} d\theta = \pi$

[2]

(b) En déduire que $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

On a $\beta(\frac{1}{2},\frac{1}{2}) = \frac{\left(\Gamma(\frac{1}{2})\right)^2}{\Gamma(1)} = \left(\Gamma(\frac{1}{2})\right)^2 = \pi$. Comme $\Gamma(\frac{1}{2}) > 0$, alors $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

(c) Montrer que pour tout $p \in \mathbb{N}$, $\Gamma(p + \frac{1}{2}) = \frac{(2p)!}{4^p p!} \sqrt{\pi}$.

1111-Par récurrence sur p. Pour p=0, la relation demandée est vérifiée d'après la question précè-

Supposons que $\Gamma(p+\frac{1}{2}) = \frac{(2p)!}{4^p n!} \sqrt{\pi}$ pour un certain p dans M.

 $\Gamma(p+1+\frac{1}{2})=(p+\frac{1}{2})\Gamma(p+\frac{1}{2})=(p+\frac{1}{2})\frac{(2p)!}{4^pv!}\sqrt{\pi}=\frac{(2(p+1))!}{4^{p+1}(p+1)!}\sqrt{\pi}.$

Done la relation est vraie pour l'ordre p+1

-1) = (7

10 1 > 1 ne sm

Partie II: (23 points)

Question préliminaire

Montrer que φ est une solution de (E_{α}) sur $]0,+\infty[$ si, et seulement si, ψ est une solution de (E'_{α}) .

On a ψ est de classe C^2 sur $]0, +\infty[$ et on a

(2)

1

$$\psi'(x) = \frac{x\varphi'(x) - \alpha\varphi(x)}{x^{\alpha+1}} \quad \text{et} \quad \psi''(x) = \frac{x^2\varphi''(x) - 2\alpha x\varphi'(x) + \alpha(\alpha+1)\varphi(x)}{x^{\alpha+2}}$$

On a

$$x\psi''(x) + (2\alpha + 1)\psi'(x) - x\psi(x) = x^{-\alpha - 1}\left(x^2\varphi''(x) + x\varphi'(x) - (x^2 + \alpha^2)\varphi(x)\right).$$

Donc φ est une solution de (E_{α}) si, et seulement si, ψ est une solution de (E'_{α}) sur $]0, +\infty[$.

Partie A

1. Montrer que S est solution de (E'_n) sur [-R,R] si, et seulement si, $a_1=0$, et pour tout m

$$a_{n+2} = \frac{a_n}{(n+2)(n+2+2\alpha)}$$
.

L'application S est de classe C^2 sur]-R,R[et on a.

$$S'(x) = \sum_{n=1}^{\infty} a_n x^{n-1} \quad \text{et} \quad S''(x) = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}.$$

D'autre part,

$$xS''(x) + (2\alpha + 1)S'(x) - xS(x) = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-1} + (2\alpha + 1)\sum_{n=1}^{\infty} na_n x^{n-1} - \sum_{n=0}^{\infty} a_n x^{n+1}$$

$$= \sum_{n=0}^{\infty} n(n+1)a_{n+1}x^n + (2\alpha + 1)\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n - \sum_{n=1}^{\infty} a_{n-1}x^n$$

$$= (2\alpha + 1)a_1 + \sum_{n=1}^{\infty} \left[(n+1)(n+1+2\alpha)a_{n+1} - a_{n-1} \right] x^n.$$

Donc S est solution de (E'_{α}) sur]-R,R[si, et seulement si, $a_1=0$, et pour tout $n\in\mathbb{N}^*$, $a_{n+1}=\frac{a_{n+1}}{(n+1)(n+1+2\alpha)}$ si, et seulement si, $a_1=0$, et pour tout $n\in\mathbb{N}$, $a_{n+2}=\frac{a_n}{(n+2)(n+2+2\alpha)}$

2. (a) Montrer que la série entière $\sum_{n\geq 0}\frac{x^{2n}}{4^n n! \Gamma(\alpha+n+1)}$ a un rayon de convergence égal à $+\infty$.

Soit
$$U_n(x) = \frac{x^{2n}}{4^n n! \Gamma(\alpha + n + 1)}$$
.
Pour $x \neq 0$. $\left| \frac{U_{n+1}(x)}{U_n(x)} \right| = \frac{x^2 \Gamma(\alpha + n + 1)}{4(n+1) \Gamma(\alpha + n + 2)} = \frac{x^2}{4(n+1)(\alpha + n + 1)} \xrightarrow{n \to +\infty} 0 < 1$
Done $\sum U_n(x)$ converge absolument pour tout $x \in \mathbb{R}$ done, $R = +\infty$.

(b) Möntrer que

$$I_{\alpha}:]0, +\infty[\longrightarrow \mathbb{R}, x \longmapsto \left(\frac{x}{2}\right)^{\alpha} \sum_{n=0}^{+\infty} \frac{x^{2n}}{4^n n! \Gamma(\alpha+n+1)}.$$

est une solution de (E_{α}) sur $]0, +\infty[$.

On pose
$$B(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{4^n n! \Gamma(\alpha+n+1)} = \sum_{n=0}^{+\infty} b_n x^n \text{ avec } b_n = \begin{cases} \frac{1}{4^n p! \Gamma(\alpha+p+1)} & \text{si} \quad n=2p \\ 0 & \text{si} \quad n=2p+1. \end{cases}$$

On a $b_1 = 0$ et

$$b_{n+2} = \begin{cases} \frac{1}{4^{p+1}(p+1)!\Gamma(\alpha+p+2)} & \text{si} \quad n=2p \\ 0 & \text{si} \quad n=2p+1 \end{cases}$$

$$= \begin{cases} \frac{1}{(2p+2)(2\alpha+2p+2)} \frac{1}{4^p p!\Gamma(\alpha+p+1)} & \text{si} \quad n=2p \\ 0 & \text{si} \quad n=2p+1 \end{cases}$$

$$= \frac{1}{(n+2)(n+2+2\alpha)} b_n$$

Donc, d'après la question (1) de cette partie, la fonction B est solution de (E'_{α}) sur $\mathbb R$ et par suite la fonction $x \longmapsto x^{\alpha}B(x)$ est solution de (E_{α}) sur $]0, +\infty[$ donc $x \longmapsto \left(\frac{x}{2}\right)^{\alpha}B(x)$ est solution de (E_{α}) sur $]0, +\infty[$.

3. Montrer que

(a)
$$I_{\alpha}(x) \underset{x \to 0^{\pm}}{\sim} \frac{1}{\Gamma(\alpha + 1)} \left(\frac{x}{2}\right)^{\alpha}$$
 et (b) $\lim_{x \to +\infty} I_{\alpha}(x) = +\infty$.

(2)

(1)

(a) Pour $B(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{4^n n! \Gamma(\alpha+n+1)}$, on a $B(0) = \frac{1}{\Gamma(\alpha+1)}$ donc, $I_{\alpha}(x) \underset{x \mapsto 0^{\pm}}{\sim} \frac{1}{\Gamma(\alpha+1)} \left(\frac{x}{2}\right)^{\alpha}$.

(b) Puisque $\forall n \geq 0, \frac{1}{4^n n! \Gamma(\alpha + n + 1)} > 0$, donc

$$I_{\alpha}(x) > \left(\frac{1}{\Gamma(\alpha+1)} + \frac{x^2}{4\Gamma(\alpha+2)}\right) \left(\frac{x}{2}\right)^{\alpha} \xrightarrow[x \to +\infty]{} + \infty. \text{ D'où } \lim_{x \to +\infty} I_{\alpha}(x) = +\infty.$$

(a) Montrer que pour tout t ∈ |-1.1[,

$$(1-t^2)^{\alpha-\frac{1}{2}}\operatorname{ch}(xt) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} t^{2n} (1-t^2)^{\alpha-\frac{1}{2}}.$$

 $(1-t^2)^{\alpha-\frac{1}{2}} \operatorname{ch}(xt) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} t^{2n} (1-t^2)^{\alpha-\frac{1}{2}}.$ On sait que $\forall u \in \mathbb{R}$, $\operatorname{ch}(u) = \sum_{n=0}^{+\infty} \frac{u^{2n}}{(2n)!}.$ Donc $\forall t \in]-1,1[,x \in \mathbb{R}_+^*.$

$$(1-t^2)^{\alpha-\frac{1}{2}}\operatorname{ch}(xt) = (1-t^2)^{\alpha-\frac{1}{2}} \sum_{n=0}^{+\infty} \frac{(xt)^{2n}}{(2n)!} = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} t^{2n} (1-t^2)^{\sigma-\frac{1}{2}}.$$

(b) Montrer que, pour tout t ∈! -1,1[,

$$\int_{-1}^{1} t^{2n} (1-t^2)^{n-\frac{1}{2}} dt = \beta(\alpha+\frac{1}{2},n+\frac{1}{2}).$$

(c) En déduire que

$$I_{\alpha}(x) = \frac{1}{\sqrt{\pi}\Gamma(\alpha + \frac{1}{2})} \left(\frac{x}{2}\right)^{\alpha} \int_{-1}^{1} (1 - t^2)^{\alpha - \frac{1}{2}} \operatorname{ch}(xt) dt.$$

1

(2)

Pour tout
$$x > 0$$
, $\int_{-1}^{1} (1-t^2)^{\alpha-\frac{1}{2}} \operatorname{ch}(xt) dt = \int_{-1}^{1} \frac{t^2}{(1-t^2)^{\alpha-\frac{1}{2}}} \sum_{n=0}^{+\infty} \frac{(xt)^{2n}}{(2n)!} dt = \int_{-1}^{1} \sum_{n=0}^{+\infty} f_n(t) dt$

$$\operatorname{avec} f_n(t) = \frac{(1-t^2)^{\alpha-\frac{1}{2}} (xt)^{2n}}{(2n)!}, \ t \in]-1,1[.$$

- La série $\sum_{n\geq 0} f_n$ converge simplement sur |-1,1| et de somme $f(t)=(1-t^2)^{\alpha-\frac{1}{2}} \operatorname{ch}(xt)$
- Pour tout $n \in \mathbb{N}, \forall t \in]-1,1[, f_n(t) \geq 0.$
- Pour tout $n \in \mathbb{N}$, f_n est intégrable sur]-1,1[car elle est continue sur]-1,1[.

$$f_n(t) \underset{t \to 1^-}{\sim} \frac{x^{2n}2^{\alpha - \frac{1}{2}}}{(2n)!(1-t)^{\frac{1}{2}-\alpha}} : \text{integrable sur }] - 1,0[\text{ puisque } \frac{1}{2} - \alpha < 1 \text{ et de même,}$$

- $f_n(t) \sim \frac{x^{2n}2^{\alpha-\frac{1}{2}}}{(2n)!(1+t)^{\frac{1}{2}-\alpha}}$
- La fonction f est intégrable sur] 1,1[car elle est continue sur] 1,1[et

$$f(t) \underset{t \mapsto 1^{-}}{\sim} \frac{2^{\alpha - \frac{1}{2}} \operatorname{ch}(x)}{(1 - t)^{\frac{1}{2} - \alpha}} \text{ et } f(t) \underset{t \mapsto -1^{-}}{\sim} \frac{2^{\alpha - \frac{1}{2}} \operatorname{ch}(-x)}{(1 + t)^{\frac{1}{2} - \alpha}}$$

Donc, en permutant somme et intégrale, on obtient la relation demandée.

5. Montrer que

$$I_{\alpha}(x) = \frac{1}{\sqrt{\pi}\Gamma(\alpha + \frac{1}{2})} \left(\frac{x}{2}\right)^{\alpha} \int_{-1}^{1} (1 - t^2)^{\alpha - \frac{1}{2}} e^{-xt} dt.$$

On a,

$$\begin{split} I_{\alpha}(x) &= \frac{1}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})} \left(\frac{x}{2}\right)^{\alpha} \int_{-1}^{1} (1-t^{2})^{\alpha-\frac{1}{2}} \operatorname{ch}(xt) dt \\ &= \frac{1}{2\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})} \left(\frac{x}{2}\right)^{\alpha} \left(\int_{-1}^{1} (1-t^{2})^{\alpha-\frac{1}{2}} e^{-xt} dt + \int_{-1}^{1} (1-t^{2})^{\alpha-\frac{1}{2}} e^{xt} dt\right) \\ &= \frac{1}{2\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})} \left(\frac{x}{2}\right)^{\alpha} \left(\int_{-1}^{1} (1-t^{2})^{\alpha-\frac{1}{2}} e^{-xt} dt + \int_{-1}^{1} (1-u^{2})^{\alpha-\frac{1}{2}} e^{-xu} du\right) \\ &= \frac{1}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})} \left(\frac{x}{2}\right)^{\alpha} \int_{-1}^{1} (1-t^{2})^{\alpha-\frac{1}{2}} e^{-xt} dt. \end{split}$$

Partie B

1. (a) Montrer que F_{α} définit une application de classe C^2 sur $]0, +\infty[$ et exprimer $F'_{\alpha}(x)$ et $F''_{\alpha}(x)$ à l'aide des intégrales.

On pose $G_{\alpha}: A =]0, +\infty[\times]1, +\infty[\longrightarrow \mathbb{R}, (x,t)\longmapsto e^{-xt}(t^2-1)^{\alpha-\frac{1}{2}}$. On a

- L'application G_{α} est continue sur A et les fonctions $\frac{\partial G_{\alpha}}{\partial x}$ et $\frac{\partial^2 G_{\alpha}}{\partial x^2}$ existent et sont continues sur A et on a

$$\frac{\partial G_{\alpha}}{\partial x}(x,t) = -tG_{\alpha}(x,t) \quad \text{et} \quad \frac{\partial^2 G_{\alpha}}{\partial x^2}(x,t) = t^2G_{\alpha}(x,t).$$

- Soit [a,b] un segment inclus dans $]0,+\infty[,x\in[a,b]$ et $t\geq 1$, on a $|G_{\alpha}(x,t)|\leq \varphi_{0}(t)=e^{-at}(t^{2}-1)^{\alpha-\frac{1}{2}}, \ \left|\frac{\partial G_{\alpha}}{\partial x}(x,t)\right|\leq \varphi_{1}(t)=t\varphi_{0}(t)$ et $\left|\frac{\partial^{2}G_{\alpha}}{\partial x^{2}}(x,t)\right|\leq \varphi_{2}(t)=t^{2}\varphi_{0}(t)$.

 $\varphi_k(t) = \lim_{t \to +\infty} \frac{e^{-a}2^{\alpha - \frac{1}{2}}}{(t - 1)^{\frac{1}{2} - \alpha}} \quad \text{et} \quad \lim_{t \to +\infty} t^2 \varphi_k(t) = \lim_{t \to +\infty} t^{2\alpha + 1 + k} e^{-at} = 0, \quad k = 0, 1, 2.$

Donc la fonction F_{α} est de classe C^2 sur $]1, -\infty[$ et on a

$$F_{\alpha}'(x) = -\int_{1}^{+\infty} te^{-xt} (t^{2} - 1)^{\alpha - \frac{1}{2}} dt \text{ et } F_{\alpha}''(x) = \int_{1}^{+\infty} t^{2} e^{-xt} (t^{2} - 1)^{\alpha - \frac{1}{2}} dt.$$

(b) En déduire que F_{α} est solution de l'équation (E'_{α}) sur $[0, +\infty[$.

On a $\forall x > 0$.

$$F'_{\alpha}(x) = -\int_{1}^{+\infty} e^{-xt} t(t^{2} - 1)^{\alpha + \frac{1}{2}} dt$$

$$= \frac{-1}{2\alpha + 1} \left[(t^{2} - 1)^{\alpha + \frac{1}{2}} e^{-xt} \right]_{t \to 1^{-}}^{+\infty} - \frac{x}{2\alpha + 1} \int_{1}^{+\infty} e^{-xt} t(t^{2} - 1)^{\alpha + \frac{1}{2}} dt.$$

$$= \frac{-x}{2\alpha + 1} \int_{1}^{+\infty} (t^{2} - 1) e^{-xt} t(t^{2} - 1)^{\alpha - \frac{1}{2}} dt - \int_{1}^{+\infty} -t e^{-xt} t(t^{2} - 1)^{\alpha - \frac{1}{2}} dt \right]$$

$$= \frac{x}{2\alpha + 1} \left(\int_{1}^{+\infty} t^{2} e^{-xt} t(t^{2} - 1)^{\alpha - \frac{1}{2}} dt - \int_{1}^{+\infty} -t e^{-xt} t(t^{2} - 1)^{\alpha - \frac{1}{2}} dt \right)$$

Donc F_{α} est solution de l'équation (E'_{α}) sur $]0, +\infty[$.

2. (a) En remarquant que F_{α} est décroissante sur $]0, +\infty[$, montrer que $\lim_{x\to 0^{+}} F_{\alpha}(x) = +\infty.$

On a $\forall x > 0$, $F'_{\alpha}(x) = -\int_{1}^{+\infty} te^{-xt}(t^2-1)^{\alpha-\frac{1}{2}}dt < 0$, donc F_{α} est décroissante, donc elle admet une limite ℓ (finie ou infinie) en $+\infty$. Soit X > 2. Pour tout x > 0,

$$F_{\alpha}(x) = \int_{1}^{+\infty} e^{-xt} (t^2 - 1)^{\alpha - \frac{1}{2}} dt \ge \int_{2}^{X} e^{-xt} (t^2 - 1)^{\alpha - \frac{1}{2}} dt.$$

L'application $x \longmapsto \int_{-\infty}^{\infty} e^{-xt}(t^2-1)^{\alpha-\frac{1}{2}}dt$ est continue sur $[0,+\infty]$ puisque l'application $(x,t)\longmapsto e^{-xt}(t^2-1)^{\alpha-\frac{1}{2}}$ l'est sur $[0,+\infty[\times[2,X]]$. En passant à la limite quand $x\mapsto 0^+$ dans l'inégalité précédente, on obtient

$$\ell \ge \lim_{x \to 0^+} \int_2^X e^{-xt} (t^2 - 1)^{\alpha - \frac{1}{2}} dt = \int_2^X (t^2 - 1)^{\alpha - \frac{1}{2}} dt \xrightarrow[X \to +\infty]{} +\infty.$$

puisque l'application $t \longmapsto (t^2 - 1)^{\alpha - \frac{1}{2}}$ est non intégrable sur $[2, +\infty]$. D'où $\ell = +\infty$

(b) En déduire que $\lim_{x \to 0^+} \frac{K_{\alpha}(x)}{(\frac{\pi}{2})^{\alpha}} = +\infty$.

On a $\lim_{x\to 0^{\pm}} F_{\alpha}(x) = +\infty$ donc $\lim_{x\to 0^{\pm}} \frac{K_{\alpha}(x)}{\left(\frac{x}{x}\right)^{\alpha}} = \lim_{x\to 0^{\pm}} \frac{\sqrt{\pi}}{\Gamma(\alpha+\frac{1}{x})} F_{\alpha}(x) = +\infty.$

3. Montrer que (I_0, K_0) est un système fondamental des solutions de (E_0) sur $]0, +\infty[$. (On pourre utiliser le comportement de I_0 et de K_0 en 0).

- Puisque F_{α} est solution de l'équation (E'_{α}) sur $]0, +\infty[$, alors K_{α} est une solution (E_{α}) sur $]0, +\infty[$.
- Soient $\lambda.\mu \in \mathbb{R}$ telles que $\lambda I_{\alpha} + \mu K_{\alpha} = 0$, alors $\forall x > 0$, $\lambda \frac{I_{\alpha}(x)}{\left(\frac{x}{2}\right)^{\alpha}} = -\mu \frac{K_{\alpha}(x)}{\left(\frac{x}{2}\right)^{\alpha}}$.

En faisant tendre x vers 0 par valeurs supérieures et en utilisant les questions 3 (a) de la partie A et 2.(b) de la partie B, on obtient μ , et donc λ , égale à 0.

- Sur l'intervalle $]0, +\infty[$, l'équation (E_{α}) est équivalente à l'équation $y'' + \frac{1}{x}y' - (1 + \frac{\alpha^2}{x^2}) = 0$ dont l'ensemble des solutions sur $]0, +\infty[$ est un espace vectoriel de dimension 2.

On conclut que (I_{α}, K_{α}) est un système fondamental des solutions de (E_{α}) sur $]0, +\infty[$.

Partie III:

1. Montrer H_p définit une application de classe C^∞ sur $\mathbb R$ et exprimer ses dérivées successives à l'alde d'une intégrale.

Soit $L_p: \mathbb{R} \times [0,\pi] \longrightarrow \mathbb{R}$, $(x,t) \longmapsto e^{\frac{i}{\hbar}\cos(t)}\cos(pt)$. L'application L_p est continue sur $\mathbb{R} \times [0,\pi]$ et admet des dérivées partielles à tout ordre par rapport à x, continues sur $\mathbb{R} \times [0,\pi]$ et on a, $\forall (x,t) \in \mathbb{R} \times [0,\pi]$, $\forall k \in \mathbb{N}$,

$$-\frac{\partial^k L_p}{\partial x^k}(x,t) = (\cos(t))^k L_p(x,t).$$

Donc H_p est de classe C^∞ sur $\mathbb R$ et on $\mathbf a, \, \forall \, k \in \mathbb N$ et $x \in \mathbb R$

$$H_p^{(k)}(x) = \int_0^{\pi} (\cos t)^k e^{x \cos t} \cos(pt) dt.$$

2. Soit $t \in \mathbb{R}$. Montrer que, pour tout $k \in \mathbb{N}^*$, $(\cos t)^k = \sum_{j=0}^k a_j \cos(jt)$, où $a_0, \dots, a_k \in \mathbb{R}$ avec $a_k = \frac{1}{2^{k-1}}$.

Par récurrence sur k.

Pour
$$k = 1$$
, on prend $a_0 = 0$ et $a_1 = 1 = \frac{1}{2^{1-1}}$.

Four
$$k = 2$$
, $\cos^2(t) = \frac{1}{2} + \frac{\cos(2t)}{2}$, on prend $a_0 = \frac{1}{2}$, $a_1 = 0$ et $a_2 = \frac{1}{2}$. Supposons que la relation est vraie pour un certain ordre $k \ge 2$,

$$(\cos t)^k = \sum_{j=0}^k a_j \cos(jt)$$
, avec $a_k = \frac{1}{2^{k-1}}$.

$$(\cos t)^{k+1} = \sum_{j=0}^{k} a_j \cos(jt) \cos t$$

$$= a_0 + \frac{1}{2} \sum_{j=1}^{k} a_j \left(\cos((j+1)t) + \cos((j-1)t)\right)$$

$$= a_0 + \frac{1}{2} \sum_{j=2}^{k+1} a_{j-1} \cos(jt) + \frac{1}{2} \sum_{j=0}^{k-1} a_{j+1} \cos(jt)$$

$$= a_0 + \frac{1}{2} a_1 + \frac{1}{2} a_2 \cos(t) + \frac{1}{2} \sum_{j=2}^{k-1} (a_{j-1} + a_{j+1}) \cos(jt) + \frac{1}{2} a_{k-1} \cos(kt) + \frac{1}{2} a_k \cos((k+1)t)$$

$$= \sum_{j=0}^{k+1} b_j \cos(jt),$$

avec
$$b_0 = a_0 + \frac{1}{2}a_1$$
, $b_1 = \frac{1}{2}a_2$, $b_j = \frac{1}{2}(a_{j-1} + a_{j+1})$ pour $2 \le j \le k-1$, $b_k = \frac{1}{2}a_{k-1}$ et $-b_{k+1} = \frac{1}{2}a_k = \frac{1}{2^k}$

Donc la relation est vérifiée pour k+1.

Pour p=0, on a $H_0(0)=\pi$. On suppose que $p\neq 0$. Soit $k\in\{0,\ldots p\}$. D'après le deux questions précédentes,

$$H_p^{(k)}(0) = \int_0^{\pi} (\cos t)^k \cos(pt) dt = \int_0^{\pi} \sum_{j=0}^k a_j \cos(jt) \cos(pt) dt = \sum_{j=0}^k a_j \int_0^{\pi} \cos(jt) \cos(pt) dt.$$

Or
$$\int_0^{\pi} \cos(jt)\cos(pt)dt = \int_0^{\pi} (\cos(j+p)t) + \cos((p-j)t))dt = 0$$
 si $j \neq p$ et $\int_0^{\pi} \cos^2(pt)dt = \frac{\pi}{2}$.

Donc,
$$H_p^{(k)}(0) = 0$$
 si $p < k$ et $H_p^{(p)}(0) = a_p \int_0^{\pi} \cos^2(pt) dt - \frac{1}{2^{p-1}} \frac{\pi}{2} = \frac{\pi}{2^p}$.

(b) En déduire que
$$H_p(x) \underset{x\to 0}{\sim} \frac{\pi}{p!} \left(\frac{x}{2}\right)^p$$
.

L'application est de classe C^{∞} sur \mathbb{R} . On écrit la formule de Taylor-Young à H_p à l'ordre p au point 0.

$$H_p(x) = \sum_{k=0}^p \frac{H_p^{(k)}(0)}{k!} x^k + o(x^p) = \frac{H_p^{(p)}(0)}{p!} x^p + o(x^p) = \frac{\pi}{p! 2^p} x^p + o(x^p) \underset{x \to 0}{\sim} \frac{\pi}{p!} \left(\frac{x}{2}\right)^p.$$

4. Montrer que H_p est solution de l'équation (E_p) sur $]0, +\infty[$

Donc, H_p est une solution de (E_p) sur $]0, +\infty[$

L'application H_p est une solution de (E_p) sur $]0, +\infty[$, donc, d'après la question 3-Partie II-B, il existe $(a,b) \in \mathbb{R}^2$ tel que pour tout $x \in]0, +\infty[$, $H_p(x) = aI_p(x) + bK_p(x)$.

Donc, en divisant par $\left(\frac{x}{2}\right)^p$ et en utilisant les questions 2.(b)-Partie I, 3.(a)-Partie II-A,2.(b)-Partie II-B et 3.(b)-Partie III. on obtient $a = \frac{1}{\pi}$ et b = 0. D'où $I_p = \frac{1}{\pi}H_p$ sur $]0, +\infty[$.

1)

1)

(1)

6. Montrer que pour tout x > 0 et tout $t \in \mathbb{R}$,

$$e^{x \cos t} = I_0(x) + 2 \sum_{n=1}^{+\infty} I_n(x) \cos(nt) dt$$

Soit x > 0, on pose $g(t) = e^{x \cos t}$, l'application g est continue 2π -périodique et paire sur \mathbb{R} , donc les coefficients de Fourier trigonométriques de g sont donnés par

$$\forall n \in \mathbb{N}$$
. $b_n(g) = 0$ et $a_n(g) = \frac{2}{\pi} \int_0^n e^{\pi \cos t} \cos(nt) dt = 2I_n(x)$

Comme g est de classe C^1 sur $\mathbb R$ donc sa série de Fourier converge vers g sur $\mathbb R$, donc

$$\forall t \in \mathbb{R}, \quad g(t) = e^{x \cos t} = \frac{a_0(g)}{2} + \sum_{n=1}^{+\infty} a_n(g) \cos nt = I_0(x) + 2 \sum_{n=1}^{+\infty} I_n(x) \cos nt.$$

7. Montrer que, pour tout x > 0,

$$I_0(2x) = (I_0(x))^2 + 2\sum_{n=1}^{+\infty} (I_n(x))^2$$

Soit x>0. On applique la formule de Parseval à l'application $g:t\mapsto e^{x\cos t}$, on obtient,

$$\frac{1}{2\pi} \int_0^{2\pi} g^2(t)dt = \frac{(a_0(g))^2}{4} + \frac{1}{2} \sum_{n=1}^{+\infty} (a_n(g))^2$$
$$= (I_0(x))^2 + 2 \sum_{n=1}^{+\infty} (I_n(x))^2.$$

D'autre part,
$$\frac{1}{2\pi} \int_0^{2\pi} g^2(t) dt = \frac{1}{\pi} \int_0^{\pi} g^2(t) dt = \frac{1}{\pi} \int_0^{\pi} e^{2\pi \cos t} dt = I_0(2\pi).$$
Donc, on obtient,
$$\forall x > 0, \quad I_0(2\pi) = (I_0(\pi))^2 + 2 \sum_{n=1}^{+\infty} (I_n(\pi))^2.$$