HKSYCIA WONG TAI SHAN MEMORIAL COLLEGE SECOND TERM EXAMINATION (2019 – 2020) FORM 4

MATHEMATICS Compulsory Part Paper I TIME ALLOWED: 2 HOURS 15 MINS. SETTER: KSY

Name:	()	Class: F4	Mark

- 1. This paper totally consists of 20 pages.
- 2. After the announcement of the start of the examination, you should first write your Name, Class and Class Number in the space provided on ALL ODD pages.
- 3. This paper consists of **THREE** sections, A(1), A(2) and B.
- 4. Answer **ALL** questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 5. Unless otherwise specified, all working must be clearly shown.
- 6. Unless otherwise specified, numerical answers should be exact or correct to 3 significant figures.
- 7. The diagrams in this paper are not necessarily drawn to scale.
- 8. No extra time will be given to candidates for writing Name, Class and Class Number after the "Time is up" announcement.

l	Section A(1)	(35)	mar	ks)
ı				

Simplify $\frac{(ab^{-1})^{64}}{a^{-25}}$ and express your answer with positive indices. 1.

(3 marks)

- Factorize
 - (a) $a^4 + 2a^2b^2 + b^4$
 - (b) $a^4 + a^2b^2 + b^4$

(4 marks)

Answers written in the margins will not be marked.

No.:_

3.	The lengths of the sides of a right-angled triangle are $(6-x)$, $(13-x)$ and $(14-x)$	<i>x</i>)
	respectively.	
	(a) Find the value of x .	
	(b) Find the area of the triangle.	
		(4 marks)
4.	In the first term, the ratio of the numbers of boys to girls in S4 is 3:2. If the number of	of boys is
	increased by 14% and that of the girls is decreased by 18% in second term, what is the	e percentage
	change in the total number of students in S4.	
		(4 marks)

nswers written in the margins will not be marked.
not be
Will
margins
the
Ξ.
written
nswers

In a	a pc	0141 00014		,	_	•		-	•
anc	d (3, 112.5°)	respecti	vely. C is	a point su	ch that O is	s the mid-po	oint of AC.	
(a)	Ι	Describe t	he geome	tric relati	onship bet	tween <i>OB</i> a	nd AC. Exp	lain your a	nswer.
(b)	F	Find the a	rea of ΔA	BC.					
(-)									(4 marks)
The	e su	ım and the	: difference	ce of two	numbers	are 18 and 1	2 respectiv	ely. Withou	nt finding the numb
						are 18 and 1	2 respectiv	ely. Withou	nt finding the numb
		um and the				are 18 and 1	12 respectiv	ely. Withou	nt finding the numb
						are 18 and 1	2 respectiv	ely. Withou	
						are 18 and 1	2 respectiv	ely. Withou	
						are 18 and 1	12 respectiv	ely. Withou	
						are 18 and 1	2 respectiv	ely. Withou	
						are 18 and 1	2 respectiv	ely. Withou	
						are 18 and 1	12 respectiv	ely. Withou	

7.

Given that $h(x) = x^2 + kx + 1$. If h(-2) = h(5).

- (a) Find the value of k.
- (b) Define g(x) = h(x-1) 5. By considering the sum of roots of g(x) = 0, Shing Wai claims that the axis of symmetry of the graph of g(x) is x = 5. Do you agree? Explain your answer.

(6 marks)

8. There are 180 students in S5. The following pie charts show the distribution of the numbers of extra curricular activities that the boys and girls participated respectively this year.
It is given that half of the girls in S5 participated in 1 extra curricular activity only and the boys participated in 1.5 extra curricular activities on average.

Number of extra curricular activities participated this year

(a) Find x.

Answers written in the margins will not be marked.

(b) A S5 student is selected randomly. The probability of choosing a boy participating in 3 extra curricular activities is the same as that of choosing a girl participating in 3 extra curricular activities. Find the number of girls in S5.

(6 marks)

-	

No.:_

	Secti	ion A	(2) (35 marks)
	9.	The	base radius and the height of a right circular cone are $3r$ and $3r + 15$ respectively.
		(a)	Find the volume of the cone in terms of r .
		(b)	If the volume of the cone is 54π , find the value(s) of r .
			(5 marks)
d.			
e marke			
ill not b			
argins w			
Answers written in the margins will not be marked.			
written i			
nswers			
A			

	he marke	
	hot	
-	-	
	_	
•	11/1	
	margine	
•	the	
	1	
	Written	
	Ancinero	

10.	It is given that $h(x)$ is partly constant and partly varies as x. Suppose that $h(721) = 1443$ and						
	h(831) = 1663.						
	(a)	Find $h(x)$.					
	(b)	Solve the equation $h(x) = x^2$. Leave your answer in surd form.					
	(c)	If $g(x) = x^2 - h(x)$, using the result of (b), find the minimum value of $g(x)$.					
			(6 marks)				

11. α and β are the roots of the equation $x^2 - 2kx - (3 - k) = 0$. If $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{1}{2}$, find the value of

(a) k,

(h)	R^2 –	-2α

(6 marks)

,	_	4
	۶	۲
	ď	٠
,	Jacus or	4
	'n	
	2	ú
	۶	
	٠	-
	đ	ì
	ř	ς
•	_	
	+	÷
	C	3
	2	
_		2
:	=	
٠	-	
	P	5
	-	
	C	Ċ
	c	=
	Ξ	
	C	ij
	٤	
	C	J
	2	
	٠	-
	a	
	ž	_
,	+	
	_	
	2	
•	-	
	-	
	ä	3
	2	2
	1	
•	Ε	
	5	Š
	F	۶
	1	
	ž	0
	7	5
	2	
	C	Ś

marked.
will not be
margins
the
.⊟
written in
Answers

12.	The	coordinates of the point A are $(2,3)$. A is rotated anticlockwise about the origin through 270°
	to p	oint B. Meanwhile, A is reflected with respect to the y-axis first, and then translated vertically
	dow	Inward by 1 unit and then horizontally to the right by 1 unit to point C .
	(a)	Write down the coordinates of B and C .
	(b)	Find the equation of the line passing through B and C .
	(c)	Let L be the line passing through A and perpendicular to BC . Find the equation of L .
		Hence, or otherwise, find the area of ΔABC .
		(8 marks)
marked.		
l not be		
gins wil		
the ma		
Answers written in the margins will not be marked.		
nswers v		
Ā		

SUBJECT: MATHEMATICS Compulsory Part PAPER I

FORM: 4_

No.:__

	13.	Let	$f(x) = 2x^3 - 5x^2 - x + 4k$, where k is a constant. When $f(x)$ is divided by $x - k$, the
		quo	tient is $g(x)$ and the remainder is k .
		(a)	Find the value(s) of k .
		(b)	Suppose k is a positive integer. Solve the equation $f(x) = k$.
		(c)	Suppose $0 < k < 1$. Billy Claims that the graph of $y = g(x)$ intersects the line $y = 4$ at
			two distinct points. Do you agree? Explain your answer.
			(10 marks)
arked.			
Answers written in the margins will not be marked.			
ins will r			
he margi			
tten in t			
wers wri			
Ans			

,	
,	
•	
	·
,	
•	
•	
•	
•	
,	
	-
,	
•	
•	·
•	
•	

SUBJECT: MATHEMATICS Compulsory Part PAPER I

FORM: 4_

No.:_

- 14. (a) Express $\frac{5}{\sqrt{2}+\sqrt{3}i}$ in form a+bi where a and b are real numbers.
 - (b) Suppose p and q are real numbers such that $\frac{5}{\sqrt{2}+\sqrt{3}i}$ is one of the roots of the equation

 $x^2 - px - q = 0$. Find p and q.

(5 marks)

15.	(a)	A straight line $y = ax + b$ passes through the point $(-1,3)$ and the slope of the line is 3.
		Find the values of a and b .
	(b)	Let $\log_{\sqrt{2}} y = a \log_2 x + b$ where a and b are the values in (a), express the relation between
		x and y in the form of $y = Ax^k$, where A and k are constants.
		(5 marks)
		·
ed.		
be mark		
Answers written in the margins will not be marked.		
argins v		
in the m		
written		
nswers		
Ā		·
		·

vill not be marked.
be
not
margins v
the
in
written
Answers

16.	Let $f(x) = 2x^2 - 4x + 11$.	
	(a) Solve $f(x) = 0$, and express your answer in the form of $a + bi$ if necessary.	
	(b) Using the method of completing square, write down the coordinates of vertex and	d the axis of
	symmetry.	
		(7 marks)
		_

- - (b) Using (a), solve the following equations,
 - (i) $2(x-1)^2 x = 0$

17. (a) Solve the equation $2u^2 - u - 1 = 0$.

- (ii) $2^{2x+1} 2^x = 1$
- (iii) $4(\log x)^2 \log x^2 \log 100 = 0$

(10 *marks*)

	đ	
	5	4
	÷	
	q	Ų
	3	
	-	
	q)
,	9	_
	C	2
	2	
_	-	
÷	_	
•	Z	
	۲	S
	ì.	,
	ř	4
	=	
	5	a
	۶	
	9	Ų
	3	
	-	
	q)
	C	2
	+	-
	2	
•	÷	
	c	
	ā	ì
	٠	-
	Ξ	
	t	
	C	ζ
	ĺ	
	ž	9
	á	5
	Ž	Š
	۶	2
	ž	9
	٠	
•	◁	ι

	-
ĺ	
ĺ	
ĺ	
1	
1	
ĺ	
1	
ĺ	
1	
ĺ	
ĺ	
5	
2	
3	
5	
9	
2	
3	
=	
-	
3	
d	
3	
3	
2	
3	
=	
7	
3	
1	
-	
3	
[
2	
i	
1	
Ì	
Ì	
Ì	
1	
Ì	
Ì	
Ì	
Ì	
1	
1	
Ì	
Ì	
Ì	
1	
Ì	
Ì	
Ì	
1	
1	
ĺ	
Ì	
ĺ	
1	
ĺ	
Ì	
Ì	
1	
Ì	
Ì	
Ì	
1	
1	
Ì	
Ì	
ĺ	
1	
1	

$$\begin{cases} x^2 - 4x \sin \theta - 2 = 0 \\ x^2 - 4x \cos \theta + 2 = 0 \end{cases}$$

- (a) Show that $\alpha = \frac{1}{\cos \theta \sin \theta}$
- (b) Hence, show that $\sin^2 \theta = \frac{1}{4}$.
- (c) If $\sin \theta > 0$, find the minimum value of $y = x^2 4x \sin \theta 2$ and the corresponding value of *x*.

(8 marks)

	2	2
	0	
•	2	3
÷	_	_
٠		>
	5	2
	4	
7	2	
•	=	
	117	3
	V 10 11 10 11 1	