

Soutenance Projet

Classification des ordures

Présenté par :

Bintou Tenning NGOM
Fatou MBOUP
Fatou Kiné NDIAYE

Sommaire

Ol Problématique O4 Modèles et métriques utilisés
O2 Présentation du jeu de données O5 Résultats de l'étude
O3 Prétraitement des données O6 Présentation du dashboard

Problématique

Problématique

ENJEU ENVIRONNEMENTAL

- Protection de l'Environnement,
- Conservation des Ressources,
- Réduction des Émissions de Gaz à Effet de Serre.

BESOINS DE WASTENET

WasteNet souhaite proposer un objet de tri intelligent afin de recycler certains objets et de diminuer les impacts néfastes sur l'environnement.

COMPLEXITÉ

Mettre en place un modèle prédictif performant pour assurer un tri précis et fiable.

Objectifs

Objectif principal

• Mettre en place un outil de tri intelligent des ordures

Objectifs spécifiques

- Mettre en place un modèle puissant pour classer les images d'ordures suivant leurs catégories respectives.
- Amélioration du taux de recyclage
- L'intégration de bonnes pratiques MLOps pour assurer la robustesse et la maintenabilité du système.

Présentation du jeu de données

Données

Le dataset contient **2527** images réparties en **6** classes :

- Carboard
- Paper
- Glass
- Metal
- Plastic
- Trash

Données

Distribution des classes

Prétraitement des données

Redimentionnement des images

```
    img_dimensions(base_dir)

Analyse des images en: Garbage_classification/trash
    Dimensions les plus courantes:
    Dimension (hauteur x largeur): (384, 512), Fréquence: 137
```

```
processed_dir = "/content/drive/MyDrive/MLFlow_Class_Project/processed_images"
    data, labels = process_dataset(base_dir, processed_dir)
→ Classe cardboard: 403 processed
   Classe glass: 501 processed
   Classe metal: 410 processed
   Classe paper: 594 processed
   Classe plastic: 482 processed
   Classe trash: 137 processed
   img_dimensions(processed_dir)
→ Analyse des images en: /content/drive/MyDrive/MLFlow_Class_Project/processed_images/cardbo
   Dimensions les plus courantes:
   Dimension (hauteur x largeur): (128, 128), Fréquence: 403
```

Normalisation, encodage, augmentation des données

```
# Convertit la liste data en un tableau NumPy.
# Spécifie le type de données comme "float32" pour la précision et l'efficacité
# Divise toutes les valeurs par 255.0, normalisant ainsi les pixels dans la plage [0, 1]
data = np.array(data, dtype="float32") / 255.0
#Convertit la liste labels en un tableau NumPy pour un traitement ultérieur efficace.
labels = np.array(labels)
# Crée une instance de LabelBinarizer de scikit-learn qui va encoder les étiquettes textuell
mlb = LabelBinarizer()
labels = mlb.fit_transform(labels)
#Affiche la première étiquette encodée pour vérification.
print(labels[0])
[1 0 0 0 0 0]
```

```
[21] final_imgs_data, final_labels_data = increase_dataset(data, labels)
[22] print("Size before augmentation : ",data.shape[0])
    print("Size After augmentation : ",final_imgs_data.shape[0])

Size before augmentation : 2527
    Size After augmentation : 5054
```

Séparation des données

```
[23] x_train, x_val, x_test, y_train, y_val, y_test = split_data(final_imgs_data, final_labels_data)
[24] # Utilisation de la fonction
    classes = np.arange(labels.shape[1])
    # Vérifiez les distributions des classes dans chaque ensemble
    train_class_distribution = check_class_distribution(y_train, classes)
    val_class_distribution = check_class_distribution(y_val, classes)
    test_class_distribution = check_class_distribution(y_test, classes)
    print("Distribution des classes dans l'ensemble d'entraînement :", train_class_distribution)
    print("Distribution des classes dans l'ensemble de validation :", val_class_distribution)
    print("Distribution des classes dans l'ensemble de test :", test_class_distribution)
Tribution des classes dans l'ensemble d'entraînement : {0: 468, 1: 589, 2: 491, 3: 716, 4: 606, 5: 162}
    Distribution des classes dans l'ensemble de validation : {0: 162, 1: 197, 2: 165, 3: 252, 4: 179, 5: 56}
    Distribution des classes dans l'ensemble de test : {0: 176, 1: 216, 2: 164, 3: 220, 4: 179, 5: 56}
```

Modèles et métriques utilisés

Modèles utilisés

DenseNet 121

- Ajout de nouvelles couches:
 - GlobalAveragePooling2D pour réduire la dimensionnalité.
 - BatchNormalization pour la normalisation des activations.
 - Dropout pour la régularisation afin de réduire le surapprentissage.
 - Couches Dense pour la classification.
- augmentation de données lors de l'entrainement

MobileNetV2

- base pré-entraînée
- Ajout de couches personnalisées, une couche de GlobalAveragePooling2D et des couches Dense pour la classification finale
- Callback: Utilisation de early_stopping pour arrêter l'entraînement si la performance se dégrade, afin d'éviter le surapprentissage.

VGG16

- Utilisation de VGG16 avec des poids pré-entraînés sur ImageNet
- Transformation des tableaux numpy en tensors PyTorch et permutation des dimensions pour correspondre au format attendu par VGG16
- Remplacement de la dernière couche de classification (model.classifier[6]) par une couche linéaire adaptée au nombre de classes

Métriques utilisées

- **Accuracy** : mesure la proportion de prédictions correctes parmi toutes les prédictions effectuées.
- **Précision**: mesure la proportion de prédictions positives correctes parmi toutes les prédictions positives faites.
- Recall : mesure la proportion de vrais positifs correctement identifiés parmi tous les vrais positifs.
- Log loss : mesure la qualité des probabilités prédites. Plus le log loss est bas, meilleure est la performance du modèle.
- ROC AUC : mesure la capacité du modèle à distinguer entre les classes positives et négatives. Plus l'AUC est élevée, meilleure est la capacité du modèle à classer les échantillons correctement.

Résultats obtenus

Tracking avec MLFLOW

			Metrics	Metrics		
Run Name	Created ₹↓	Models	test_accuracy	test_log_loss	test_mean_roc_a	test_precision
garbage_classification_20	23 minutes ago	S DenseNet121 v4	0.88142292	0.46290358	0.98406102	0.88431073
garbage_classification_20	26 minutes ago	% MobileNetV2 v6	0.52917903	1.18221701	0.82343706	0.62511714
garbage_classification_20		% ∨GG16 v 4	0.53214638	1.43545602	0.83290728	0.65356716

Tracking avec MLFLOW

Présentation du dashboard

Sources

- https://www.kaggle.com/datasets/asdasdasdasdas/garbage-classification? datasetId=81794&sortBy=voteCount
- https://keras.io/api/applications/vgg/
- https://keras.io/api/applications/mobilenet/
- https://pytorch.org/hub/pytorch_vision_densenet/
- https://mlflow.org/docs/latest/getting-started/index.html
- https://streamlit.io/

Merci de votre aimable attention!

Toute question ou suggestion est la bienvenue!

