Homework #2

Aleks Lyubenov MATH/CSCI 360 - Mathematical Modeling LAKE FOREST COLLEGE

April 20, 2020

Contents

1		tion 1: Set Up
	1.1	Building Matrices
		1.1.1 Constructing the matrix A:
		1.1.2 Constructing the matrix R:
	1.2	Tests
		1.2.1 Testing R:
		1.2.2 Result of Test:
		1.2.3 Testing A:
		1.2.4 Result of Test:
2	Sec	tion 2: Steady State Heat Equation
	$-u_x$	$f_{xx}(x) = f(x)$
	2.1	Variational Forms:
	2.1	2.1.1 Dual Dirichlet
		2.1.2 Dirichlet Neumann
		2.1.3 Neumann Dirichlet
	2.2	Test Case:
	2.2	2.2.1 Accuracy Metrics:
		2.2.1 Accuracy Metrics
		2.2.2 Test Case Restitts:
3		tion 3: Time Dependent Heat Equation:
	$u_t(x)$	$u_{xx}(x,t) - u_{xx}(x,t) = f(x,t)$
	3.1	Variational Forms
		3.1.1 Dual Dirichlet
		3.1.2 Dirichlet Neumann
		3.1.3 Neumann Dirichlet
		3.1.4 Neumann Neumann
	3.2	Modifying the Linear System
	3.3	Test Case:
		3.3.1 Accuracy Metrics
		3.3.2 Test Case Results:

1 Section 1: Set Up

1.1 Building Matrices

Defining the Basis Functions:

Let $\mathcal{P}^q(I)$ be the vector space defined by the set of polynomials $p(x) = \sum_{i=0}^q c_i x^i, \ x \in I$ We need to define two vector spaces of piece-wise polynomials over the interval I = (a, b)

- Discontinuous piece-wise polynomials on $I: W_h^{(q)} = \{v : v \in \mathcal{P}^q(I)\}$
- \bullet Continuous piece-wise polynomials on $I\colon V_h^{(q)}=\{v\in W_h^{(q)}:v\in\mathcal{C}(I)\}$

We would like to define a basis for $W_h^{(q)}$ in terms of the following functions:

$$\lambda_{i,0}(x) = \frac{x_i - x}{x_i - x_{i-1}} = \frac{x_i - x}{h_i}$$
$$\lambda_{i,1}(x) = \frac{x - x_{i-1}}{x_i - x_{i-1}} = \frac{x - x_{i-1}}{h_i}$$

We can now define the basis for $W_h^{(q)}$ by:

$$\phi_{(i,j)}(x) = \begin{cases} 0 & x \neq [x_{i-1}, x_i] \\ \lambda_{i,j} & x \in [x_{i-1}, x_i] \end{cases}$$

with $i = \{1, 2, ..., m + 1\}$ and j = 0, 1.

For $V_h^{(q)}$, the basis functions we define need to be continuous.

$$\phi_i(x) = \begin{cases} 0 & x \neq [x_{i-1}, x_{i+1}] \\ \lambda_{i,1} & x \in [x_{i-1}, x_i] \\ \lambda_{i+1,0} & x \in [x_i, x_{i+1}] \end{cases}$$

Note: The matrices A and R are sparse, as $A_{ij} = R_{ij} = 0 \ \forall i, j \ \text{such that} \ |i-j| > 1$

1.1.1 Constructing the matrix A:

$$A_{ii} = \langle \phi'_{i}, \phi'_{i} \rangle = \int_{a}^{b} (\phi'_{i})^{2}(x) dx = \int_{x_{i-1}}^{x_{i}} (\lambda'_{i,1})^{2}(x) dx + \int_{x_{i}}^{x_{i+1}} (\lambda'_{i+1,0})^{2}(x) dx$$

$$= \int_{x_{i-1}}^{x_{i}} \left(\frac{1}{h_{i}}\right)^{2} dx + \int_{x_{i}}^{x_{i+1}} \left(\frac{1}{h_{i+1}}\right)^{2} dx = \frac{1}{h_{i}} + \frac{1}{h_{i+1}}$$

$$A_{ii+1} = \langle \phi'_{i}, \phi'_{i+1} \rangle = \int_{a}^{b} \phi'_{i}(x) \phi'_{i+1}(x) dx = \int_{x_{i}}^{x_{i+1}} \frac{-1}{h_{i+1}} \frac{1}{h_{i+1}} dx = \frac{-1}{h_{i+1}}$$

$$A_{ii-1} = \langle \phi'_{i}, \phi'_{i-1} \rangle = \int_{a}^{b} \phi'_{i}(x) \phi'_{i-1}(x) dx = \dots = \frac{-1}{h_{i}}$$

1.1.2 Constructing the matrix R:

$$\begin{split} R_{ii} &= \langle \phi_i, \phi_i \rangle = \int_a^b \phi_i^2(x) dx = \int_{x_{i-1}}^{x_i} \lambda_{i,1}^2(x) dx + \int_{x_i}^{x_{i+1}} \lambda_{i+1,0}^2(x) dx \\ &= \int_{x_{i-1}}^{x_i} \frac{(x - x_{i-1})^2}{h_i^2} dx + \int_{x_i}^{x_{i+1}} \frac{(x_{i+1} - x)^2}{h_{i+1}^2} dx \\ &= \frac{1}{h_i^2} \left[\frac{(x - x_{i-1})^3}{3} \right]_{x_{i-1}}^{x_i} + \frac{1}{h_{i+1}^2} \left[\frac{-(x_{i+1} - x)^3}{3} \right]_{x_i}^{x_{i+1}} = \frac{h_i}{3} + \frac{h_{i+1}}{3} \\ R_{ii+1} &= \langle \phi_i, \phi_{i+1} \rangle = \int_a^b \phi_i(x) \phi_{i+1}(x) dx \\ &= \int_{x_i}^{x_{i+1}} \lambda_{i+1,0}(x) \lambda_{i+1,1}(x) dx \\ &= \int_{x_i}^{x_{i+1}} \frac{(x_{i+1} - x)}{h_{i+1}} \frac{(x - x_i)}{h_{i+1}} dx \\ &= \frac{1}{h_{i+1}^2} \int_{x_i}^{x_{i+1}} (x_{i+1}x - x_{i+1}x_i - x^2 + xx_i) dx \\ &= \frac{1}{h_{i+1}^2} \left[\frac{x_{i+1}x^2}{2} - x_{i+1}x_ix - \frac{x^3}{3} + \frac{x^2x_i}{2} \right]_{x_i}^{x_{i+1}} \\ &= \frac{1}{6h_{i+1}^2} (x_{i+1}^3 - 3x_{i+1}^2x_i + 3x_{i+1}x_i^2 - x_i^3) \\ &= \frac{1}{6h_{i+1}^2} (x_{i+1} - x_i)^3 = \frac{h_{i+1}}{6} \end{split}$$

1.2 Tests

1.2.1 Testing R:

$$(Ru)_i = \sum_{j=0}^n \langle \phi_i, \phi_j \rangle_{L^2} \cdot u_j = \langle \sum_{j=0}^n u_j \phi_j, \phi_i \rangle_{L^2}$$
$$\sum_{i=0}^n (Ru)_i = \sum_{i=0}^n \langle \sum_{j=0}^n u_j \phi_j, \phi_i \rangle_{L^2} = \langle \sum_{j=0}^n u_j \phi_j, \sum_{i=0}^n \phi_i \rangle_{L^2} = \langle u, 1 \rangle_{L^2} = \int_a^b u(x) dx$$

1.2.2 Result of Test:

The chosen function: $u(x) = (3 - 5\pi + \pi^2)x + (x^2 - 4x)sin(x) - 1$

$$\sum_{i=0}^{n} (Ru)_i = -23.845073804269454$$

$$\int_a^b u(x)dx = \int_a^b (3 - 5\pi + \pi^2)x + (x^2 - 4x)\sin(x) - 1dx$$

$$= \pi^2 - 5\pi + \frac{\pi^4 - 5\pi^3 + 3\pi^2}{2} - 4 \approx -23.84509\dots$$

1.2.3 Testing A:

$$(Au)_{i} = \sum_{j=0}^{n} \langle \phi'_{i}, \phi'_{j} \rangle_{L^{2}} \cdot u_{j} = \langle \sum_{j=0}^{n} u_{j} \phi'_{j}, \phi'_{i} \rangle_{L^{2}}$$

$$\sum_{i=0}^{n} (Au)_{i} = \sum_{i=0}^{n} \langle \sum_{j=0}^{n} u_{j} \phi'_{j}, \phi'_{i} \rangle_{L^{2}} = \langle \sum_{j=0}^{n} u_{j} \phi'_{j}, \sum_{i=0}^{n} \phi'_{i} \rangle_{L^{2}} = \langle \sum_{j=0}^{n} u_{j} \phi'_{j}, 0 \rangle_{L^{2}} = 0$$

1.2.4 Result of Test:

The chosen function: $u(x) = (3 - 5\pi + \pi^2)x + (x^2 - 4x)sin(x) - 1$

$$\sum_{i=0}^{n} (Au)_i = -1.2079226507921703e^{-12} \approx 0$$

2 Section 2: Steady State Heat Equation

$$-u_{xx}(x) = f(x)$$

2.1 Variational Forms:

2.1.1 Dual Dirichlet

Differential Equation (D): -u'' = f on (a, b) with $u(a) = c_1$, $u(b) = c_2$

Variational Form (V): Find $u \in V_A = \{v \in H^1(a,b) : v(a) = c_1, v(b) = c_2\}$ such that $a(u,v) = b(v) \forall v \in H^1_0(a,b)$ where:

$$a(u,v) = \int_a^b \!\! u'v' \, dx \ \text{ and } \ b(v) = \int_a^b \!\! fv \, dx$$

Let V_h be the space of continuous piece-wise linear functions, that satisfy the boundary conditions specified in the problem above.

$$V_h = \{ v \in V_h^{(1)} : v(a) = c_1, \ v(b) = c_2 \}$$

We can represent any function in this space over a mesh with n internal nodes as:

$$v(x) = \sum_{i=1}^{n} v_i \phi_i(x) \quad \forall v \in V_h \text{ where } v_i = v(x_i) \text{ and } \phi_i \text{ is a nodal basis } \forall i = \{1, 2, ..., n\}$$

The solution u in this space can be represented as:

$$u(x) = \sum_{j=1}^{n} u_j \phi_j(x)$$
, with $u_j = u(x_j)$

Substituting these linear combinations into our linear and bilinear functionals above, we obtain:

$$\int_{a}^{b} u'v'dx = \int_{a}^{b} fvdx \Rightarrow \sum_{j=1}^{n} u_{j} \int_{a}^{b} \phi'_{j}(x)\phi'_{i}(x)dx = \int_{a}^{b} f(x)\phi_{i}(x)dx, \quad i = \{1, 2, ..., n\}$$

This corresponds to the matrix equation Ax = b with $A_{ij} = \langle \phi'_j, \phi'_i \rangle$, $x_j = u_j$ and $b_i = \langle f, \phi_i \rangle$ To implement the boundary conditions:

5

• set
$$A_{0,0} = 1$$
, $A_{0,1} \dots A_{0,n} = 0$ and $b_0 = c_1$

• set
$$A_{n,n} = 1$$
, $A_{n,0} \dots A_{n,n-1} = 0$ and $b_n = c_2$

2.1.2 Dirichlet Neumann

Differential Equation (D): -u'' = f on (a, b) with $u(a) = c_1$, $u'(b) = c_2$

Variational Form (V): Find $u \in V_A = \{v \in H^1(a, b) : v(a) = c_1\}$ such that $a(u, v) = b(v) \ \forall v \in V_0 = \{v \in H^1(a, b) : v(a) = 0\}$ where:

$$a(u,v) = \int_{a}^{b} u'v' dx$$
 and $b(v) = \int_{a}^{b} fv dx + c_{2}v(b)$

Let V_h be the space of continuous piece-wise linear functions, that satisfy the boundary conditions specified in the problem above.

$$V_h = \{ v \in V_h^{(1)} : v(a) = c_1 \}$$

We can represent any function in this space over a mesh with n internal nodes as:

$$v(x) = \sum_{i=1}^{n} v_i \phi_i(x) \quad \forall v \in V_h \text{ where } v_i = v(x_i) \text{ and } \phi_i \text{ is a nodal basis } \forall i = \{1, 2, ..., n\}$$

The solution u in this space can be represented as:

$$u(x) = \sum_{j=1}^{n} u_j \phi_j(x)$$
, with $u_j = u(x_j)$

Substituting these linear combinations into our linear and bilinear functionals above, we obtain:

$$\int_{a}^{b} u'v'dx = \int_{a}^{b} fvdx + c_{2}v(b) \Rightarrow \sum_{j=1}^{n} u_{j} \int_{a}^{b} \phi'_{j}(x)\phi'_{i}(x)dx = \int_{a}^{b} f(x)\phi_{i}(x)dx + c_{2}v(b),$$

$$i = \{1, 2, ..., n\}$$

This corresponds to the matrix equation Ax = b with $A_{ij} = \langle \phi'_j, \phi'_i \rangle$, $x_j = u_j$ and $b_i = \langle f, \phi_i \rangle$, $b_n = \langle f, \phi_n \rangle + c_2$

To implement the boundary conditions:

- set $A_{0,0} = 1$, $A_{0,1} \dots A_{0,n} = 0$ and $b_0 = c_1$
- add c_2 to b_n

2.1.3 Neumann Dirichlet

Differential Equation (D): -u'' = f on (a, b) with $u'(a) = c_1$, $u(b) = c_2$

Variational Form (V): Find $u \in V_A = \{v \in H^1(a,b) : v(b) = c_2\}$ such that $a(u,v) = b(v) \forall v \in V_0 = \{v \in H^1(a,b) : v(b) = 0\}$ where:

$$a(u,v) = \int_{a}^{b} u'v' dx$$
 and $b(v) = \int_{a}^{b} fv dx - c_{1}v(a)$

Let V_h be the space of continuous piece-wise linear functions, that satisfy the boundary conditions specified in the problem above.

$$V_h = \{ v \in V_h^{(1)} : v(a) = c_1 \}$$

We can represent any function in this space over a mesh with n internal nodes as:

$$v(x) = \sum_{i=1}^{n} v_i \phi_i(x) \quad \forall v \in V_h \text{ where } v_i = v(x_i) \text{ and } \phi_i \text{ is a nodal basis } \forall i = \{1, 2, ..., n\}$$

The solution u in this space can be represented as:

$$u(x) = \sum_{j=1} u_j \phi_j(x)$$
, with $u_j = u(x_j)$

Substituting these linear combinations into our linear and bilinear functionals above, we obtain:

$$\int_{a}^{b} u'v'dx = \int_{a}^{b} fvdx + c_{2}v(b) \Rightarrow \sum_{j=1}^{n} u_{j} \int_{a}^{b} \phi'_{j}(x)\phi'_{i}(x)dx = \int_{a}^{b} f(x)\phi_{i}(x)dx - c_{1}v(a),$$

$$i = \{1, 2, ..., n\}$$

This corresponds to the matrix equation Ax = b with $A_{ij} = \langle \phi'_j, \phi'_i \rangle$, $x_j = u_j$ and $b_i = \langle f, \phi_i \rangle$, $b_0 = \langle f, \phi_n \rangle - c_1$

To implement the boundary conditions:

- set $A_{n,n} = 1$, $A_{n,0} \dots A_{n,n-1} = 0$ and $b_n = c_2$
- subtract c_1 from b_0

2.2 Test Case:

The exact solution
$$: u(x) = (3 - 5\pi + \pi^2)x + (x^2 - 4x)sin(x) - 1$$

The RHS function $: f(x) = (8 - 4x)cos(x) - (2 + 4x - x^2)sin(x)$
Domain $: x \in (0, \pi)$

The solution is computed for $n = \{100, 200, ..., 1500\}$ for each of the three types of boundary conditions:

• Dual Dirichlet:

$$u(0) = -1$$

$$u(\pi) = -1 + 3\pi - 5\pi^2 + \pi^3$$

• Dirichlet Neumann:

$$u(0) = -1$$

$$u'(\pi) = 3 - \pi$$

• Neumann Dirichlet:

$$u'(0) = 3 - 5\pi + \pi^{2}$$

$$u(\pi) = -1 + 3\pi - 5^{2} + \pi^{3}$$

2.2.1 Accuracy Metrics:

 L^2 Norm:

$$||u||_{L^2} = \sqrt{\sum_{i=0}^n Ru^2}$$
 where u^2 is the element-wise square of the vector u .

Relative Error:

$$\frac{\|u_{comp} - u_{exact}\|_{L^2}}{\|u_{exact}\|_{L^2}} = \frac{\sqrt{\sum_{i=0}^{n} R(u_{comp} - u_{exact})^2}}{\sqrt{\sum_{i=0}^{n} R(u_{exact})^2}}$$

2.2.2 Test Case Results:

Below is a plot showing:

- $log_{10}(error)$ for the **relative error** of each type of **boundary condition**
- $log_{10}(line)$ where line is a linear equation with a slope of -1
- n, the number of **nodes** on the x axis

Below is the log slope and the regular slope of each curve (calculated at n = 1500):

$$log slope = \frac{log_{10}(error_n) - log_{10}(error_{n-1})}{log_{10}(n) - log_{10}(n-1)}$$

$$regular\ slope = \frac{error_n - error_{n-1}}{n - (n-1)}$$

```
Log Slope: Dirichlet Dirichlet = -2.001140455288914
Log Slope: Dirichlet Neumann = -1.9969029813534258
Log Slope: Neumann Dirichlet = -2.0237282575936693

Log Slope: Line = -10.046649249713294
Reg Slope: Line = -1.0

Reg Slope: Dirichlet Dirichlet = -0.0005996061847146006
Reg Slope: Dirichlet Neumann = -0.0005983365009337493
Reg Slope: Neumann Dirichlet = -0.0006063742183752296
```

3 Section 3: Time Dependent Heat Equation:

$$u_t(x,t) - u_{xx}(x,t) = f(x,t)$$

3.1 Variational Forms

First, we approximate the time derivative:

$$u_t(x,t) = \frac{u(x,t_j) - u(x,t_{j-1})}{\Delta t}$$

Our equation now becomes:

$$\frac{u(x,t_{j}) - u(x,t_{j-1})}{\Delta t} - u_{xx}(x,t_{j}) = f(x,t_{j}) \Rightarrow u(x,t_{j}) - \Delta t u_{xx}(x,t_{j}) = u(x,t_{j-1}) + \Delta t f(x,t_{j})$$

3.1.1 Dual Dirichlet

Differential Equation (D): -u'' = f on (a, b) with $u(a) = c_1$, $u(b) = c_2$

Variational Form (V): Find $u \in V_A = \{v \in H^1(a,b) : v(a) = g_1(t), v(b) = g_2(t)\}$ such that $a(u,v) = b(v) \forall v \in H^1_0(a,b)$ where:

$$\frac{u(x,t_{j})-u(x,t_{j-1})}{\Delta t} - u_{xx}(x,t_{j}) = f(x,t_{j}) \Rightarrow u(x,t_{j}) - \Delta t u_{xx}(x,t_{j}) = u(x,t_{j-1}) + \Delta t f(x,t_{j})$$

$$\Rightarrow \int_{a}^{b} u^{j} v \, dx - \Delta t \int_{a}^{b} u_{x}^{j} v_{x} \, dx = \int_{a}^{b} u^{j-1} v \, dx + \Delta t \int_{a}^{b} f^{j} v \, dx + \left[u_{x}^{j} v \right]_{a}^{b}$$

$$a(u,v) = \int_a^b u^j v \, dx - \Delta t \int_a^b u_x^j v_x \, dx$$
 and $b(v) = \int_a^b u^{j-1} v \, dx + \Delta t \int_a^b f^j v \, dx$

3.1.2 Dirichlet Neumann

Differential Equation (D): -u'' = f on (a, b) with $u(a) = g_1(t)$, $u'(b) = g_2(t)$

Variational Form (V): Find $u \in V_A = \{v \in H^1(a,b) : v(a) = g_1(t)\}$ such that $a(u,v) = b(v) \ \forall v \in V_0 = \{v \in H^1(a,b) : v(a) = 0\}$ where:

$$\begin{split} &\frac{u(x,t_{j})-u(x,t_{j-1})}{\Delta t} - u_{xx}(x,t_{j}) = f(x,t_{j}) \Rightarrow u(x,t_{j}) - \Delta t u_{xx}(x,t_{j}) = u(x,t_{j-1}) + \Delta t f(x,t_{j}) \\ &\Rightarrow \int_{a}^{b} u^{j} v \; dx - \Delta t \int_{a}^{b} u_{x}^{j} v_{x} \; dx = \int_{a}^{b} u^{j-1} v \; dx + \Delta t \int_{a}^{b} f^{j} v \; dx + \left[u_{x}^{j} v \right]_{a}^{b} \end{split}$$

$$a(u,v) = \int_a^b u^j v \, dx - \Delta t \int_a^b u_x^j v_x \, dx \text{ and } b(v) = \int_a^b u^{j-1} v \, dx + \Delta t \int_a^b f^j v \, dx + \Delta t g_2(t) v(b)$$

3.1.3 Neumann Dirichlet

Differential Equation (D): -u'' = f on (a, b) with $u'(a) = g_1(t)$, $u(b) = g_2(t)$

Variational Form (V): Find $u \in V_A = \{v \in H^1(a, b) : v(b) = g_2(t)\}$ such that $a(u, v) = b(v) \ \forall v \in V_0 = \{v \in H^1(a, b) : v(b) = 0\}$ where:

$$\frac{u(x,t_{j})-u(x,t_{j-1})}{\Delta t} - u_{xx}(x,t_{j}) = f(x,t_{j}) \Rightarrow u(x,t_{j}) - \Delta t u_{xx}(x,t_{j}) = u(x,t_{j-1}) + \Delta t f(x,t_{j})$$

$$\Rightarrow \int_{a}^{b} u^{j} v \, dx - \Delta t \int_{a}^{b} u_{x}^{j} v_{x} \, dx = \int_{a}^{b} u^{j-1} v \, dx + \Delta t \int_{a}^{b} f^{j} v \, dx + \left[u_{x}^{j} v \right]_{a}^{b}$$

$$a(u,v) = \int_a^b u^j v \, dx - \Delta t \int_a^b u_x^j v_x \, dx \text{ and } b(v) = \int_a^b u^{j-1} v \, dx + \Delta t \int_a^b f^j v \, dx - \Delta t g_1(t) v(a)$$

3.1.4 Neumann Neumann

Differential Equation (D): -u'' = f on (a, b) with $u'(a) = g_1(t)$, $u'(b) = g_2(t)$

Variational Form (V): Find $u \in V_A = \{v \in H^1(a, b)\}$ such that $a(u, v) = b(v) \ \forall v \in V_0 = \{v \in H^1(a, b)\}$ where:

$$\frac{u(x,t_{j})-u(x,t_{j-1})}{\Delta t} - u_{xx}(x,t_{j}) = f(x,t_{j}) \Rightarrow u(x,t_{j}) - \Delta t u_{xx}(x,t_{j}) = u(x,t_{j-1}) + \Delta t f(x,t_{j})$$

$$\Rightarrow \int_{a}^{b} u^{j} v \, dx - \Delta t \int_{a}^{b} u_{x}^{j} v_{x} \, dx = \int_{a}^{b} u^{j-1} v \, dx + \Delta t \int_{a}^{b} f^{j} v \, dx + \left[u_{x}^{j} v \right]_{a}^{b}$$

$$a(u,v) = \int_a^b u^j v \, dx - \Delta t \int_a^b u_x^j v_x \, dx$$

and

$$b(v) = \int_{a}^{b} u^{j-1}v \, dx + \Delta t \int_{a}^{b} f^{j}v \, dx + \Delta t g_{2}(t)v(b) - \Delta t g_{1}(t)v(a)$$

3.2 Modifying the Linear System

We need only modify the Steady State Linear System:

 $A = (R + \Delta t D)$ and $b = Ru^{j-1} + \Delta t R f^j$ where R and D are the stiffness matrix and mass matrices used in the steady state problem.

Our system therefore becomes: $Au^j = b \Leftrightarrow (R + \Delta tD)u^j = Ru^{j-1} + \Delta tRf^j$ To implement the boundary conditions:

• Dual Dirichlet:

- set
$$A_{0,0} = 1$$
, $A_{0,1} \dots A_{0,n} = 0$ and $b_0 = g_1(t)$
- set $A_{n,n} = 1$, $A_{n,0} \dots A_{n,n-1} = 0$ and $b_n = g_2(t)$

• Dirichlet Neumann

- set
$$A_{0,0} = 1$$
, $A_{0,1} \dots A_{0,n} = 0$ and $b_0 = c_1$
- add $\Delta t g_2(t)$ to b_n

• Neumann Dirichlet

- set
$$A_{n,n} = 1$$
, $A_{n,0} \dots A_{n,n-1} = 0$ and $b_n = g_2(t)$
- subtract $\Delta t g_1(t)$ from b_0

- Neumann Neumann
 - subtract $\Delta t g_1(t)$ from b_0
 - add $\Delta t g_2(t)$ to b_n

3.3 Test Case:

```
The exact solution : u(x,t)=t^2cos(x)+sin(x^2)

The RHS function : f(x,t)=2tcos(x)+t^2cos(x)+4x^2sin(x^2)-2cos(x^2)

Domain : x\in(0,\pi)

Timestep : 1e-07

Final Time : 1e-05
```

The solution is computed for $n = \{100, 200, ..., 600\}$ for each of the four types of boundary conditions:

• Dual Dirichlet:

$$u(0,t) = t^2$$

 $u(\pi,t) = \sin(\pi^2) - (t^2)$

• Dirichlet Neumann:

$$u(0,t) = t^2$$

$$u_x(\pi,t) = 2\pi \cos(\pi^2)$$

• Neumann Dirichlet:

$$u_x(0,t) = 0$$

 $u(\pi) = \sin(\pi^2) - (t^2)$

• Dual Neumann:

$$u_x(0,t) = 0$$

$$u_x(\pi,t) = 2\pi \cos(\pi^2)$$

3.3.1 Accuracy Metrics

The accuracy metrics used for the Time Dependent Test Case are the same as those used for the Steady State Test Case.

3.3.2 Test Case Results:

Below is a plot showing:

- $log_{10}(error)$ for the **relative error** of each type of **boundary condition**
- $log_{10}(line)$ where line is a linear equation with a slope of -1
- n, the number of **nodes** on the x axis

Below is the log slope and the regular slope of each curve (calculated at n = 600):

$$log \ slope = \frac{log_{10}(error_n) - log_{10}(error_{n-1})}{log_{10}(n) - log_{10}(n-1)}$$

$$regular\ slope = \frac{error_n - error_{n-1}}{n - (n-1)}$$

```
Log Slope: Dirichlet Dirichlet = -1.9998823323188266
Log Slope: Dirichlet Neumann = -1.9998823323075534
Log Slope: Neumann Dirichlet = -1.9998823323075534
Log Slope: Neumann Neumann = -1.9998985569085836

Log Slope: Line = -3.8017840169239387
Reg Slope: Line = -1.0

Reg Slope: Dirichlet Dirichlet = -0.0015835317502163448
Reg Slope: Dirichlet Neumann = -0.0015835445970576068
Reg Slope: Neumann Dirichlet = -0.0015835317502074188
Reg Slope: Neumann Neumann = -0.0015835445970486806
```