Chapitre 18. Probabilités discrètes (2ème partie)

 $(\Omega, \mathcal{T}, \mathbb{P})$ est un espace probabilisé.

1 Variance d'une variable aléatoire discrète

1.1 Moment d'ordre *p*

Définition 1.1. Soit *X* une v.a.d. $X : \Omega \to \mathbb{K}$

On dit que X admet un moment d'ordre p ($p \in \mathbb{N}^*$) si $\mathbb{E}\left(|X|^p\right) < +\infty$

Proposition 1.2. Soit $X : \Omega \to \mathbb{K}$ une vad et $1 \le q \le p$ dans \mathbb{N}

- 1. Si X admet un moment d'ordre p il admet un moment d'ordre q
- 2. Si $X, Y : \Omega \to \mathbb{K}$ vad admettent des moments d'ordre p, il en va de même de $\lambda X + \mu Y$ avec $\lambda, \mu \in \mathbb{K}$

1.2 Variance

Définition 1.3. On note :

$$L^1(\Omega) = L^1 = \{X : \Omega \to \mathbb{R} \mid \mathbb{E}(|X|) < +\infty\}$$

$$L^2(\Omega) = L^2 = \left\{ X : \Omega \to \mathbb{R} \mid \mathbb{E}(|X|^2) < +\infty \right\}$$

On a $L^2(\Omega) \subset L^1(\Omega)$

Proposition 1.4 (Inégalité de Cauchy-Schwarz). Soit $X, Y \in L^2(\Omega)$

Alors XY admet une espérance et

$$\mathbb{E}(XY)^2 \le \mathbb{E}(X^2)\mathbb{E}(Y^2)$$

avec égalité ssi $\exists (\lambda, \mu) \in \mathbb{R}^2 \setminus \{0\}, \lambda X + \mu Y = 0$ p.s.

Corollaire 1.5. Si $X \in L^2(\Omega)$ alors X admet une espérance et

$$\boxed{\mathbb{E}(|X|) \le \sqrt{\mathbb{E}(X^2)}}$$

Définition 1.6. Soit $X \in L^2(\Omega)$

On appelle variance de X le réel

$$Var(X) = V(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right)$$

L'écart type de X est

$$\sigma_X = \sqrt{\operatorname{Var} X} = \sqrt{\mathbb{E}\left((X - \mathbb{E}(X))^2\right)}$$

Proposition 1.7.

1. Si $X \in L^2(\Omega)$ alors

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

2. Si $a, b \in \mathbb{R}$ alors

$$Var(X - a) = Var(X)$$
$$Var(bX) = b^{2} Var(X)$$

1

Définition 1.8. Soit $X : \Omega \to \mathbb{R}$ une vard (variable aléatoire réelle discrète)

- 1. Si $X \in L^1$, on pose $\overset{\circ}{X} = X \mathbb{E}(X)$ C'est la variable contrée associée à X
- 2. Si $X \in L^2$, on pose $\tilde{X} = \frac{X \mathbb{E}(X)}{\sigma_X}$ C'est la variable centrée réduite associée à X

1.3 Covariance

Définition 1.9. Soit $X, Y \in L^2(\Omega)$

Alors $(X - \mathbb{E}(X))(Y - \mathbb{E}(Y)) = XY$ admet une espérance appelée covariance de X et Y et notée

$$Cov(X,Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))) = \mathbb{E}(\overset{\circ}{XY}) = Cov(Y,X)$$

Proposition 1.10 (Inégalité de Cauchy-Schwarz). Soit $X,Y\in L^2(\Omega)$

Alors:

$$Cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

$$Cov(X,Y)^2 \le Var(X) Var(Y)$$

Proposition 1.11.

1. Soit $X, Y \in L^2(\Omega)$ indépendants Alors

$$Cov(X,Y) = 0$$

$$Var(X + Y) = Var(X) + Var(Y)$$

2. Si $X_1,...,X_n \in L^2(\Omega)$ indépendantes, alors

$$Var(X_1 + ... + X_n) = Var(X_1) + ... + Var(X_n)$$

1.4 Variance des lois discrètes classiques

1.4.1 Loi de Bernoulli

Si
$$X \sim \mathcal{B}(p)$$
 alors

$$Var X = p(1-p) = pq$$

1.4.2 Loi binomiale

Si
$$X \sim \mathcal{B}(n, p)$$
 alors

$$Var X = npq$$

1.4.3 Loi géométrique

Si
$$X \sim \mathcal{G}_{\mathbb{N}^*}(p)$$
 avec $0 alors$

$$Var X = \frac{q}{p^2}$$

Si
$$X \sim \mathcal{G}_{\mathbb{N}}(p)$$
 alors $Y = X + 1$ et $\operatorname{Var} X = \operatorname{Var} Y = \frac{q}{p^2}$

1.4.4 Loi de Poisson

Si
$$X \sim \mathcal{P}(\lambda)$$
 alors

$$\operatorname{Var} X = \mathbb{E}(X) = \lambda$$

1.5 Inégalité de Markov et de Tchebychev

Proposition 1.12 (Inégalité de Markov). Soit X une vard sur Ω possédant une espérance.

Alors pour tout $\varepsilon > 0$

$$\boxed{\mathbb{P}(|X| \ge \varepsilon) \le \frac{\mathbb{E}(|X|)}{\varepsilon}}$$

Corollaire 1.13 (Inégalité de Bienaymé-Tchebychev). Soit X une vard à variance finie et $\varepsilon>0$ Alors

$$\boxed{\mathbb{P}\left(|X - \mathbb{E}(X)| \ge \varepsilon\right) \le \frac{\operatorname{Var}(X)}{\varepsilon^2}}$$

2 Fonctions génératrices

2.1 Généralités

Ici $X:\Omega\to\mathbb{N}$

Définition 2.1. On pose

$$G_X: egin{cases} [-1,1]
ightarrow \mathbb{R} \ s \mapsto \mathbb{E}(s^X) \end{cases}$$

C'est la fonction génératrice de X

Proposition 2.2. Soit $X : \Omega \to \mathbb{N}$ une vad, G_X sa fonction génératrice et $p_n = \mathbb{P}(X = n)$ pour $n \in \mathbb{N}$

- 1. Le domaine de définition de G_X contient [-1,1] et si $s \in [-1,1]$ alors $G_X(s) = \sum_{n=0}^{+\infty} p_n s^n$ En particulier G_X est une série entière de rayon $R \ge 1$ De plus pour $s \in [-1,1], |G_X(s)| \le 1$ et $G_X(1) = 1$
- 2. G_X est continue sur [-1,1] et \mathcal{C}^{∞} sur]-1,1[
- 3. Pour tout $n \in \mathbb{N}$

$$p_n = \mathbb{P}(X = n) = \frac{G_X^{(n)}(0)}{n!}$$

 G_X caractérise la loi de X

Proposition 2.3.

1. Soit $X, Y : \Omega \to \mathbb{N}$ vad indépendantes.

Alors pour tout $s \in [-1, 1]$

$$G_{X+Y}(s) = G_X(s)G_Y(s)$$

2. Si $X_1, ..., X_n : \Omega \to \mathbb{N}$ vad indépendantes alors pour tout $s \in [-1, 1]$

$$G_{X_1+...+X_n}(s) = G_{X_1}(s)...G_{X_n}(s)$$

3

2.2 Fonctions génératrices des lois classiques

2.2.1 Loi uniforme sur [1, n]

Si $X \sim \mathcal{U}(\llbracket 1, N \rrbracket)$ alors

$$G_X(s) = \frac{s}{N} \frac{1 - s^N}{1 - s}$$

2.2.2 Loi de Bernoulli

Si $X \sim \mathcal{B}(p)$ alors

$$G_X(s) = q + sp$$

2.2.3 Loi binomiale

Si $X \sim \mathcal{B}(n, p)$ alors

$$G_X(s) = (q + sp)^n$$

2.2.4 Loi de Poisson

Si $X \sim \mathcal{P}(\lambda)$ alors

$$G_X(s) = e^{\lambda(s-1)}$$

2.2.5 Loi géométrique

Si $X \sim \mathcal{G}_{\mathbb{N}^*}(p)$ avec 0 alors

$$G_X(s) = \frac{sp}{1 - sq}$$

Si $X \sim \mathcal{G}_{\mathbb{N}}(p)$ alors

$$G_X(s) = \frac{p}{1 - sq}$$

2.3 Obtention des moments

Proposition 2.4. Soit $X : \Omega \to \mathbb{N}$ une vad, $r \ge 1$

Alors *X* admet un moment d'ordre $r \iff G_X \text{ est } \mathcal{C}^r \text{ sur } [0,1]$

X est d'espérance finie $\iff G_X$ est C^1 sur [0,1]

X est à variance finie $\iff G_X$ est C^2 sur [0,1]

Dans ces conditions, respectivement:

$$G_X^{(r)}(1) = \mathbb{E}(X(X-1)...(X-r+1))$$

$$G_X'(1) = \mathbb{E}(X)$$

$$var X = \mathbb{E}(X(X-1)) + \mathbb{E}(X) - \mathbb{E}(X)^2 = G_X''(1) + G_X'(1) - G_X'(1)^2$$

4

3 Convergence de variables aléatoires

3.1 Convergence en probabilité

Définition 3.1. Soit $X_n : \Omega \to \mathbb{K}$ ($n \in \mathbb{N}$) vad et $X : \Omega \to \mathbb{K}$ On dit que $(X_n)_{n \geq 0}$ converge en probabilité vers X si $\forall \varepsilon > 0$, $\mathbb{P}(|X_n - X| > \varepsilon) \xrightarrow[n \to +\infty]{} 0$

3.2 Loi faible des grands nombres

Théorème 3.2 (Loi faible des grandes nombres).

Soit $X_n : \Omega \to \mathbb{R}$ vard indépendantes de même loi et à variance finie.

On note $m = \mathbb{E}(X_1)$ leur espérance commune.

Alors $\frac{S_n}{n} = \frac{X_1 + ... + X_n}{n}$ converge en probabilité vers m.

Plus précisément, pour tout $\varepsilon > 0$

$$\boxed{\mathbb{P}\left(\left|\frac{S_n}{n} - m\right| > \varepsilon\right) \le \frac{\operatorname{Var}(X_1)}{n\varepsilon^2} \xrightarrow[n \to +\infty]{} 0}$$