

Training Neural Networks, Part 1

최예은, 최지우

Index

```
#01 reviews
#02 Activation Functions
#03 Data preprocessing, Weight Initialization
#04 Batch Normalization
#05 Babysitting the Learning process
#06 Hyperparameter Optimization
```


review

#01 CNN

Convolutional Neural Networks

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map

#01 CNN

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = 760

#01 CNN

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - \circ their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - \circ $H_2=(H_1-F+2P)/S+1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 imes H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

신경망의 학습 절차

활성화 함수:

노드의 입력값이 임계치를 넘어가면 활성화가 되고 넘지 않으면 비활성화하게끔 되어있다.

(스위치 같은 개념!)

0. 활성화 함수를 왜 사용하는가?

퍼셉트론의 한계

0. 활성화 함수를 왜 사용하는가?

다층 퍼셉트론

즉, 다층 퍼셉트론에서 모델의 표현력을 증가시키기 위해 활성화 함수가 필요하다.

0. 활성화 함수를 왜 사용하는가?

활성화 함수는 선형 함수를 비선형 함수로 출력하고 신호를 전달하는 역할을 함.

예를 들어, 활성화 함수를 h(x) = cx 선형 함수 라고 하자.

3층으로 구성된 신경망을 만들고 싶을 때, h(h(h(x))) = c · c · c · x 이다.

C3 · x 인데 초기의 h(x) 에 a = c3 넣은 것과 같고 선형 함수 이다.

→ 선형 함수의 퍼셉트론 즉, 1층 구조로 Layers 쌓은 것과 같다.

Q. 활성화 함수를 왜 사용하는가?

활성화 함수는 선형 함수를 비선형 함수로 출력하고 신호를 전달하는 역할을 함.

예를 들어, 활성화 함수를 h(x) = cx 선형 함수 라고 하자.

3층으로 구성된 신경망을 만들고 싶을 때, h(h(h(x))) = c ⋅ c ⋅ c ⋅ x 이다.

C3 • x 인데 초기의 h(x) 에 a = c3 넣은 것과 같고 선형 함수 이다.

→ 선형 함수의 퍼셉트론 즉, 1층 구조로 Layers 쌓은 것과 같다.

LAYER

LAYER

LAYER

다층 퍼셉트론

단층 퍼셉트론

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

- Saturated neurons "kill" the gradients
- Sigmoid outputs are not zero-centered
- 3. exp() is a bit compute expensive

시그모이드 함수의 문제점. (Vanishing gradient)

Vanishing gradient (NN winter2: 1986-2006)

→ 시그모이드의 미분값의 최대치가 0.3 이다<mark>. 1보다</mark> 작으므로 역전파를 진행할 때 값이 0에 가까워지고 가중치를 수정하기가 어려워짐.

(Vanishing gradient 발생)

시그모이드 함수의 문제점. (Not zero-centered)

Sigmoid 는 [0,1] 범위의 output 을 출력한다.

시그모이드 함수의 문제점. (Not zero-centered)

Sigmoid 는 [0,1] 범위의 output 을 출력한다. 역전파를 진행할 때, W의 gradient 는 모두 양수 또는 음수의 값을 갖게 된다.

시그모이드 함수의 문제점. (Not zero-centered)

모두 양수 또는 음수이므로 zig zag 방향으로 가기 때문에 수렴이 매우 느려진다.

Not zero centered 는 수렴이 느릴 수 밖에 없다.

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

ReLU (Rectified Linear Unit)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible than sigmoid

ReLU 함수의 문제점.

- 1. Not zero-centered
- 2. Dead ReLU

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Exponential Linear Units (ELU)

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime compared with Leaky ReLU adds some robustness to noise

TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don't expect much
- Don't use sigmoid

Data preprocessing, Weight Initialization

#02 Data preprocessing

#02 Data preprocessing

Step 1: Preprocess the data

In practice, you may also see PCA and Whitening of the data

#02 Data preprocessing

TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet) (mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet)
 (mean along each channel = 3 numbers)

Not common to normalize variance, to do PCA or whitening

#03 Weight Initialization

- Q: what happens when W=0 init is used?

가중치가 0이라서 모든 뉴런은 모두 다 같은 연산을 할 것이고, gradient 가 동일하게 될 것이다.

#03 Weight Initialization

```
W = np.random.randn(fan_in, fan_out) / np.sqrt(fan_in) # layer initialization
```

"Xavier initialization" [Glorot et al., 2010]

- Batch 별로 평균과 분산을 각각 구해 정규화
- 레이어의 입력이 unit gaussiam이 되도록 강제하는 것 -> saturation방지
- Gradient Vanishing 이 일어나지 않도록 하는 방법 중 하나
- Activation function의 변화, Careful Initialization, Small learning rate 등으로 해결했지만, 이런 간접적인 방법보다 training하는 과정 자체를 안정화해서 학습 속도를 가속시킬 근본적인 방법임

- 1) N: Batch 당 N개의 학습 데이터 D: 데이터의 차원
- 2) 각 차원별(feature element 별로) 평균을 각각 구함
- 3) Batch 내에 이걸 전부 계산해 normalize

- 연산은 FC나 Conv layer 직후에 넣어줌
- 깊은 네트워크에서 각 레이어의 w가 지속적으로 곱해져 발생한 bad scaling effect를 normalization은 상쇄시킴

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{Var[x^{(k)}]}}$$

Normalize:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{Var[x^{(k)}]}}$$

And then allow the network to squash the range if it wants to:

$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

Note, the network can learn:

$$\gamma^{(k)} = \sqrt{\operatorname{Var}[x^{(k)}]}$$

$$\beta^{(k)} = \mathbf{E}[x^{(k)}]$$

to recover the identity mapping.

- BN은 입력값을 not saturated 한 영역에 있게 만든다.
- 하지만, 무조건 saturation을 막기 보단, saturation의 조절을 학습할 수 있다면 더 효율적인 결과를 얻음
 - ✓ 감마는 scaling, 베타는 shift의 효과
 - ✓ 감마값과 베타값을 학습을 통해 찾음
- 감마값에 분산값을, 베타값에 평균값을 넣으면 unit gaussian 이전의 원래 상태에 비슷하게 복구 가능


```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}
```

- BN 사용시, initialization에 대한 의존도가 낮아진다.
 - ✓ 다양한 초기화 시도 가능
 - ✓ 학습률 더 높일 수 있음
- Regularization의 역할도 수행한다.
 - ✓ 배치마다 평균, 분산 구하고 normalize
 - ✓ 각 레이어는 배치 안의 데이터에 영향을 받는다.
- Batch마다 입력값이 다르기에 랜덤한 값을 꺼내주는 dropout 필요성 감소됨

Babysitting the Learning process

#Babysitting the Learning process

〈트레이닝을 모니터링 하는 방법〉

- 1. 데이터 전처리
- 2. 히든 레이어나 개수나 뉴런의 개수 등 기본 구조에 관한 아키텍쳐 정하기
- 3. Loss가 잘 나오는지 확인

Double check that the loss is reasonable:

- Softmax 함수, 규제값을 0으로 설정 => -log1/c 값으로 2.3
- · 규제값 올렸을 때, loss가 어떻게 변하는지 sanity check

#Babysitting the Learning process

4. 실제로 훈련

Lets try to train now...

- 매우 적은 데이터셋을 넣었을 때, 과적합 되면 모델이 정상적으로 작동중임 5. 규제값과 학습률 찾기 => 결과 확인 반복

model = init two Layer model(32=32=3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
hest_model, stats = trainer.train|X train, y train, X wal, y vel,
model, two layer met,
man epochs=30, rep=0.000001,
update=100, rep=0.000001,
update=100, learning rate decay=1,
nample batches = Train,
learning_rate=100, verbose=True)

/home/karpathy/cs23in/code/cs23in/classifiers/neural_met.py:00 Muntimewarming divide by zero en
countered in log
dota loss = mp.sum/np.logiprobs(rampe(N), y|)) / 8
/home/karpathy/cs23in/code/cs23in/classifiers/neural_met.py:00 Muntimewarming invalid value esc
countered in subtract
probs = Np.exp(scares - mp.maxiscores, axis=1, Reepdims=True))
Finished epoch 1 / 20: cost nam, train: 0.090000, vol 0.007000, Ir 1.0000000=00
Finished epoch 2 / 20: cost nam, train: 0.090000, vol 0.007000, Ir 1.0000000=00
Finished epoch 3 / 30: cost nam, train: 0.090000, vol 0.007000, Ir 1.0000000=00
Finished epoch 3 / 30: cost nam, train: 0.090000, vol 0.007000, Ir 1.0000000=00

cost: NaN almost always means high learning rate...

- 작은 regularization값을 넣고, 학습률을 낮게/높게 설정해보고 결과 확인 반복
- => 반복으로 적절한 학습률을 찾아감

< 하이퍼 파라미터 최적화 >

- 1. Hyperparameter 값을 우선 설정
- 2. 범위 내에서 파라미터 값을 무작위로 추출(Random search)
- 3. Validation set을 이용하여 평가하는 Cross-validation 진행
- 4. 여러 번 반복 중 정확도를 체크하면 hyperparameter값의 범위를 좁힘

Now run finer search...

```
adjust range
for count in xrange(max count):
                                                                              for count in xrange(max count):
      reg = 10**uniform(-5, 5)
                                                                                    reg = 10**uniform(-4, 0)
      lr = 10**uniform(-3, -6)
                                                                                    lr = 10**uniform(-3, -4)
                    val acc: 0.492000, lr: 2.279484e-04, reg: 9.991345e-04, (1 / 100)
                    val_acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
                    val_acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
                    val_acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100)
                                                                                              53% - relatively good
                    val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100)
                    val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100)
                                                                                              for a 2-layer neural net
                    val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100)
                                                                                              with 50 hidden neurons.
                    val acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100)
                    val acc: 0.489000, lr: 1.979168e-04, reg: 1.010889e-04, (9 / 100)
                    val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
                    val_acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
                                                                                              But this best
                    val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
                                                                                              cross-validation result is
                    val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
                   val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100)
                                                                                              worrying. Why?
                    val_acc: 0.509000, lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
                    val_acc: 0.514000, lr: 6.438349e-04, reg: 3.033781e-01, (16 / 100)
                    val_acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
                    val acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03, (18 / 100)
                    val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
                    val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
                    val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)
```

- Hyperparameter값을 일일이 반복을 통해 찾는 과정 보단 search 방법들을 사용하는 것이 더욱 효과적이다.

Hyper-Parameter Optimization Bergstra and Bengio, 2012

Illustration of Bergstra et al., 2012 by Shayne Longpre, copyright CS231n 2017

Grid Search

하이퍼파라미터 값의 범위를 지정해 일정한 간격을 두고하이퍼파라미터 값을 지정, 각 값들에 대해 측정한 성능을 비교하여 가장 높은 성능을 보인 값 채택

Random Search

하이퍼파라미터 값의 범위를 지정해 범위내의 하이퍼파라미터 값들을 랜덤 샘플링하여 값을 지정, 불필요한 연산 수행 줄여 더 빠르게 찾을 수 있음. 더 많이 사용됨.

Monitor and visualize the loss curve

Loss Curve

모니터링시 하이퍼 파라미터가 적합한지 아닌지 평가학습률의 경우, 빨간색 선이 가장 좋은 형태

초기에 평평한 모양의 로스 커브가 나올 시, 초기화가 잘못되었을 가능성이 크다.

Monitor and visualize the accuracy:

- 트레이닝 accuracy와 검증 accuracy의 갭이 클 경우 과적합 상태이니 규제값 강도를 올려봐야 한다.
- ▶ 반대로 갭이 없을 땐, model capacity를 늘려야 한다.

Summary

#Summary

Summary

TLDRs

We looked in detail at:

- Activation Functions (use ReLU)
- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier init)
- Batch Normalization (use)
- Babysitting the Learning process
- Hyperparameter Optimization

 (random sample hyperparams, in log space when appropriate)

THANK YOU

