Homologia em superfícies

Marcos Agnoletto Forte, Profa. Dra. Mariana Rodrigues da Silveira

Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas da UFABC Av. dos Estados, 5001, Santo André, SP marcos.forte@aluno.ufabc.edu.br,mariana.silveira@ufabc.edu.br

INTRODUÇÃO

Este projeto faz uma introdução à topologia algébrica com abordagem introdutória e intuitiva, utilizando o apelo geométrico para demonstrar importantes resultados, como o Teorema da curva de Jordan, o Teorema da classificação de Superfícies e o Teorema das quatro cores.

DEFINIÇÕES

Definições. Uma n-célula σ é o conjunto cujo interior é homeomorfo a um disco n-dimensional. Um k-complexo K é a união de uma quantidade finita de k-células. A fronteira de uma k-célula σ , denotada por $\partial(\sigma)$, é a (k-1)-cadeia com todas as (k-1)-células de σ , com orientação herdada de σ ;

Definição. A característica de Euler de um complexo K de dimensão n é definida por $\chi(K) = \sum_{k=0}^{n} \left((-1)^k \# k \right)$, onde # k é o número de k-células em um complexo K.

Definição. Um k-simplexo simplicial em K é uma k-célula triangular orientada $\sigma_k = \langle v_1, \ldots, v_k \rangle$. Seja C_k o grupo abeliano gerado pelos k-simplexos e

$$\partial_k:C_k o C_{k-1}$$
, dada por $\partial_k(< v_1,\ldots,v_k>)=\sum_{j=0}^\kappa (-1)^j< v_1,\ldots,\overline{v_j},\ldots,v_k>$.

Definição. Seja K um complexo. O k-ésimo grupo de homologia de K é definido por $H_k(K) = ker(\partial_k(K)) / Im(\partial_{k+1}(K))$.

Definição. O número de Betti de K é definido por $\beta_k = rk(H_k(K))$.

EXEMPLOS

Exemplo. A característica de Euler, os grupos de homologia e os números de Betti do complexo K_1 abaixo:

- $ullet \chi(K_1) = -2$;
- ullet $H_0(K_1)=[x]$;
- $\bullet H_1(K_1) = [a-b, b-c, c-d];$
- ullet $eta_0(K_1)=1$;
- ullet $eta_1(K_1)=3$;

Exemplo. A característica de Euler, os grupos de homologia e os números de Betti do complexo K_2 abaixo:

- ullet $\chi(K_2)=-1$;
- ullet $H_0(K_2)=[x]$;
- ullet $H_1(K_2)=[b-c,c-d]$;
- ullet $eta_0(K_2)=1$;
- ullet $eta_1(K_2)=2$;

Exemplo. A característica de Euler, os grupos de homologia e os números de Betti de \mathbb{S}^2 , \mathbb{T}^2 e \mathbb{P}^2 :

Superfície	$\chi(S)$	H_i , $i \geq 3$	H_2	H_1	H_0	β_i , $i \geq 3$	β_2	β_1	β_0
\mathbb{S}^2	2	0	\mathbb{Z}	0	\mathbb{Z}	0	1	0	1
\mathbb{T}^2	0	0	\mathbb{Z}	$\mathbb{Z}\oplus\mathbb{Z}$	\mathbb{Z}	0	1	2	1
\mathbb{P}^2	1	0	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	1

RESULTADOS

Teorema. (*Teorema da curva de Jordan*) Seja $\mathcal{J} \subset \mathbb{R}^2$ uma curva de Jordan (qualquer caminho fechado). Então, $\mathbb{R}^2 \setminus \mathcal{J}$ não é conexo, mas consiste de duas componentes conexas disjuntas, uma das quais é limitada (chamada de interior) e a outra não é limitada (chamada de exterior). A curva de Jordan \mathcal{J} forma uma fronteira para ambos os lados.

Figura 3: Curva de Jordan (em azul)

Teorema. (*Teorema da classificação de superfícies*) Toda superfície compacta e conexa é homeomorfa ou a uma esfera, ou a soma conexa de toros ou a soma conexa de planos projetivos.

Figura 4: $\mathbb{T}^2 \# \mathbb{P}^2 = \mathbb{P}^2 \# \mathbb{P}^2 \# \mathbb{P}^2$

Teorema. (*Teorema das cores*) Sejam S uma superfície compacta e conexa, e N(S) o número mínimo de cores necessárias para colorir todos os mapas em S. Então, $N(\mathbb{T}^2) = 7$, $N(\mathbb{P}^2) = 6$ e $N(\mathbb{S}^2) = 4$.

Figura 5: Um mapa no toro com 7 cores, um mapa no plano projetivo com 6 cores e um mapa na esfera com 4 cores.

AGRADECIMENTOS

Este trabalho foi financiado pelo Programa de Iniciação Científica da UFABC.

REFERÊNCIAS

Hatcher, A., *Algebraic Topology*, Cambridge University Press, Cambridge, 2002.

Henle, M., *A combinatorial Introduction to Topology*, Dover publications, New York, 1994.

Kinsey, L. Christine, *Topology of Surfaces*, Springer, USA, 1993.

14º Congresso de Iniciação Científica da USCS