

FIG. 4. The z-magnetization autocorrelators Z_i averaged over 500 random initial bit-string states for three different sites in a chain of L=14 spins with open boundary conditions. (a) The autocorrelator for the metronome spin at the left boundary of the chain at site index i=1. (b) The autocorrelator for a spin in the middle of the chain at site index i=8. (c) The autocorrelator for the right boundary site with i=14. We observe a long-lived edge mode with clear lifetime enhancement through the introduction of a metronome spin.

autocorrelator oscillates with full amplitude, $-1 \leqslant Z_1 \leqslant 1$, even at late times. Second, for sites in the bulk, we observe a rapid decline in the autocorrelator to zero, regardless of the value of ϵ' . Third, we see a plateau of the autocorrelator of the opposite boundary site analogous to the dynamics of the metronome site itself, as presented in Fig. 4(c). These characteristics are consistent with those of a strong π mode (SPM) [48]. This phase encompasses rapid bulk heating, but also robust period-doubled edge modes, and is closely related

FIG. 5. A visual summary of the different spin-flipping processes and their associated energy differences. The spins in the bulk are colored blue, whereas the metronome is colored orange, and the right edge spin is colored green. Flipped spins are highlighted with a red background. (a) The creation or annihilation of two domain walls in the bulk of the chain. If the two adjacent spins are aligned, flipping the central spin results in an energy difference of $|\delta E| = 4J$. (b) The free propagation of a domain wall. If the two adjacent spins of a central spin are antialigned, flipping the central spin is energetically degenerate, i.e., $|\delta E| = 0$. Therefore, domain walls can propagate freely along the chain, utilizing this mechanism to iteratively flip the next spin at the domain wall. (c) The flipping of the edge spin. Flipping an edge spin always results in an energy difference of $|\delta E| = 2J$, half of the bulk value, since it is coupled to only one neighboring spin. Consequently, the edge spins cannot participate in the domain-wall dynamics shown in (b). The resulting coupling for the first three processes is $\propto \epsilon$. (d) The flipping of the entire chain. Flipping all spins together preserves the domain-wall structure of the chain and thus does not have an associated energy difference. This resonant process flips the edge spins at an effective rate $\propto \epsilon' \epsilon^{L-1}$.

to a symmetry-protected topological (SPT) phase [48–51]. This phase has recently been observed in the system under investigation [52]. Our data show a clear enhancement of the lifetime of the autocorrelator at the boundary sites, Z_L , through the introduction of the metronome spin, even though the two boundaries are separated by L-2=12 spins coupled only through nearest-neighbor interactions. In particular, it is not necessary to apply the stabilized drive directly to one of the two edge modes. Additional simulations of a chain with a central metronome spin reveal a similar behavior with edgemode lifetime enhancement. More details on this additional investigation can be found in the Appendix B.

This behavior can be understood by considering the spectral structure of the average Hamiltonian $H_F^{(0)}$, which we motivate in the following by a dynamical perspective. In the regime of small transverse field, the spectrum of the TFIM approximately decomposes into blocks of states with equal number of domain walls, i.e., adjacent spins pointing in opposite direction. The interaction term yields an energy difference of 2J per domain wall between these blocks. The action of the field term is twofold in this view: it causes spin flips, which, in the bulk of the chain, can either create or annihilate two adjacent domain walls [see Fig. 5(a)] or move an existing