석사학위 논문

공공자전거의 추가 대여시간에 영향을 미치는 확장적 요인 탐구

Exploring Extended Factors Affecting the Extra Journey Time of Public Bike

정종우

2020. 06. 25

코멘트 정리

● 코멘트 정리

구분	내용	보완
고승영 교수님	자전거 전용도로와 같은 변수들에 대한 고려 필요	자전거전용도로 유무를 변수로 추가함
이처의 그스니	카카오 Map 기반 데이터 검증 필요	실험을 통해 데이터의 정확성 검증함
이청원 교수님	기상조건 및 고도차이가 공공자전거 이용에 미치는 영향에 대한 확인 필요	상관분석 및 기초통계량을 제시함
	추정 및 실제 대여시간의 차이가 지니는 문제점 정리 및 강조 필요	서울시설관리공단에서 제시한 문제점을 배경으로 제시함
김동규 교수님	카카오 Map 이동시간 예측 알고리즘 확인 필요	카카오 map 알고리즘에 반영되는 요소들을 확인함
	Clustering 결과를 Logistic regression으로 해석하는 것이 논리적으로 적절한지 검토 필요	선행연구를 통해 방법론의 적절성을 확인함

실적 정리

● 연구 실적

구분	개수	내용
해외 저널 (SCI/SCIE/SSCI)	-	-
국내 저널 (KSCI 등재)	총 편수: 1편 • 공저자: 1편	공저자: • 모대상, 이재현, 정종우, & 이청원. (2020). GPS 자료를 활용한 도시부 도로교통망 내 교통사고 위험인지 계수 분석 및 정지판단속도에 따른 민감도 분석. <i>대한교통학회지, 38,</i> 134-147.
해외 학회 발표	-	-
국내 학회 발표	총 편수: 6편 • 주저자: 3편 • 공저자: 3편	주저자: • 생존모형을 통한 Car-sharing 이용주기 분석, 대한교통학회(2018) • LH 카셰어링 서비스 사용자 분류 및 집단간 이용특성 비교, 한국ITS학회(2019) • 서울시 공공자전거 대여이력정보를 이용한 대여 유형별 이용특성 연구, 대한교통학회(2019)

Table of Contents

01 Introduction

- 1.1 Research background
- 1.2 Research purpose

02 Literature review

03 Analysis

- 3.1 Data collection
- 3.2 Classification: K-means clustering
- 3.3 Estimation: Multinomial logistic regression

04 Results

- 4.1 Classification results
- 4.2 Estimation results

05 Conclusions

1. Introductions

1.1 Research background

- 우리나라의 자전거 수단분담률은 2015년 기준 2%로 낮은 수준임
- 서울시는 자전거 수단분담률을 2020년까지 10%를 목표로 정책을 수립, 시행하고 있음 (서울정책아카이브, 2013)
- 이를 위해서는 공공자전거 이용에 영향을 미치는 다양한 요인들에 대한 분석이 필요함

출처: 자전거 교통 포털 (http://bicycle.koti.re.kr/)

1. Introductions

1.1 Research background(cont.)

- 공공자전거는 이용률이 지속적으로 증가하는 만큼 서울시는 이용률 확대 방안을 계획함
- 자전거는 대여시간에 따라 이용형태가 다르므로 이를 고려한 이용률 확대 방안이 필요함
- 따라서 이용형태에 영향을 미치는 다양한 요인을 파악하는 것은 확대 방안 계획에 도움을 줌

1. Introductions

1.2 Research purpose

• 공공자전거 이용형태에 따른 이용률 확대 방안을 계획하기 위한 기초 자료로 살펴보고자 함

서울시 공공자전거 대여시간에 따른 이용형태 추정

- 대여/반납 스테이션까지 OD 기반의 추정 대여시간을 산출함
- 추정 및 실제 대여시간의 비율을 통해 공공자전거 이용형태를 추정하고자 함

다양한 요인이 공공자전거 이용에 미치는 영향 분석

- 이용 요인(이용 시점, 주중/주말 여부)이 공공자전거 이용에 미치는 영향
- 입지 요인(지하철역까지 거리, 대여소 주변의 입지 시설)이 공공자전거 이용에 미치는 영향
- 날씨 요인(온도, 미세먼지 등)이 공공자전거 이용에 미치는 영향

2. Literature review

공공자전거 이용에 영향을 미치는 요인 분석

Author	Contents	Data
사경은 & 이수기	• 공공자전거 이용에 영향을 미치는 대여소 주변의 미시적 요인을	• 종속변수: 공공자전거 이용횟수
(2018)	파악하고 거리에 따른 요인의 영향력 차이를 파악함	• 독립변수: 토지이용특성, 접근성 등
Wang et al.	• 공공자전거 이용횟수(사용량)과 음식점, 공원, 지하철역까지 거리	• 종속변수: 공공자전거 이용횟수
(2016)	등의 공간적 요인과의 관계를 분석함	• 독립변수: 음식점, 대중교통 시설 접근성 등
Faghih & Eluru	• 시·공간적 특성 및 날씨가 공공자전거 이용에 미치는 영향 분석	• 종속변수: 공공자전거 이용횟수
(2016)		• 독립변수: 상대습도, 강우, 지역특성 등
Nosal & Miranda	• 날씨가 공공자전거 이용에 미치는 영향을 ARIMA를 통해 분석	• 종속변수: 공공자전거 이용횟수
(2014)		• 독립변수: 기온, 습도, 강우정도 등
Casello & Usyukov	• 공공자전거 이동경로 선택에 영향을 주는 요인들을 분석함	• 종속변수: 이동경로
(2014)	• 이를 위해, 이동경로상의 길이, 경사, 속도 등을 고려함	• 독립변수: 길이, 경사, 자전거전용도로 등
Sears et al.	• 공공자전거로 통근하는 성인에 대해 날씨가 이용 판단에 미치는	• 종속변수: 공공자전거 이용횟수
(2013)	영향 분석	• 독립변수: 기온, 풍속, 강우량, 강설량 등
김동준 외.	• 날씨가 공공자전거 이용에 미치는 영향을 선형회귀를 통해 분석	• 종속변수: 공공자전거 이용횟수
(2012)		• 독립변수: 온도, 강수량, 구름량 등

2. Literature review

McBain & Caulfield(2018)

- Extra travel time(실제 공공자전거 대여시간과 구글맵 추정 대여시간의 차이)을 종속변수로 활용함
- 다항 로지스틱 회귀분석을 통해 Extra travel time 사분위수(범주화)에 영향을 미치는 요인을 분석함
- 분석 결과, 공공자전거를 빈번하게 이용할수록 Extra travel time이 적었으며, 2년 동안 7회 이하의 이용자들은 Extra travel time이 큰 것을 확인함

2. Literature review

Contribution

- 추정 대여시간과 실제 대여시간의 차이를 확인함
 - ✓ 기존연구는 공공자전거의 이용횟수 혹은 이용률에 영향을 미치는 요인을 분석함
 - ✓ 본 연구는 추정 및 실제 대여시간의 차이에 따른 이용형태를 확인함
- 다양한 요인이 공공자전거 이용에 미치는 영향 분석
 - ✓ 기존연구는 날씨 혹은 입지 등 특정한 요소에만 집중하여 분석
 - ✓ 본 연구는 이용, 입지, 날씨에 관한 다양한 요인들을 종합적으로 고려함

Research procedure

3.1 Data collection

• 구득한 변수설명 및 출처

Variables		Description	Source	
Usage	Station size Start/End	대여/반납 스테이션 거치대 수		
factors	OD pairs station distance	대여/반납 스테이션까지 위도&경도 상의 직선거리(m)		
	Usage distance	대여/반납 스테이션까지 이용자가 실제로 이동한 거리(m)		
	Velocity	대여/반납 스테이션까지의 자전거 평균 주행속도(km/h)	서울열린데이터광장	
	Day	대여 스테이션에서 공공자전거를 대여한 시점(주중/주말 여부)	GIS 가공	
	TOD(Time of day)	AM(7-10)&PM(18-21), Inter(11-17), Off peak(22-6)		
Location factors	Bike priority road	대여 스테이션에서 100m 이내 자전거전용도로 유무		
ractors	Nearest subway dist. Start/End	대여/반납 스테이션에서 가장 가까운 지하철역까지 거리		
	Restaurants Start/End	대여/반납 스테이션에서 100m 이내 음식점 상점 수	소상공인 상권정보스시템	
	Leisure Start/End	대여/반납 스테이션에서 100m 이내 관광/여가/오락 상점 수	GIS 가공	
Weather factors	Temperature	서울시 영등포구 시간대별 온도(°c)		
Tactors	Rainfall	서울시 영등포구 시간대별 강수량(mm)	기상자료개방포털	
	Fine dust	서울시 영등포구 일평균 미세먼지 PM10(μg/m³)		

3.1 Data collection(cont.)

- 웹 크롤러는 사람이 행동하듯 웹 페이지 상의 요소를 정해진 방법에 따라 각 요소(PATH)를 실행함
- 본 연구는 이동경로 기반의 추정 대여시간 산출을 위해 Python 3.7을 기반으로 한 웹 크롤러를 만들어 약 80만 건의 데이터(최단거리/자전거도로 우선 예상 소요 시간 등)를 생성함

<웹 크롤러를 통한 데이터 구득 단계>

Link to KAKAO Map Web-page Get PATH of Estimated Time of Each OD Stations Record Data into New Excel File Data Wrangling

<웹 크롤러를 통해 구득된 데이터 샘플>

출발지 대여소명	목적지 대여소명	최단거리우선 예상 소요 시간	자전거도로우선 예상 소요 시간	이동경로 상의 최고 고도	이동경로 상의 최저 고도
양평우림 이비즈센타 앞	삼성화재 사옥 옆	9분	9분	12m	8m
문래역 4번출구 앞	제2구민체육센타 앞	9분	9분	11m	9m
영등포청과시장 사거리	이앤씨드림타워 앞	7분	7분	11m	9m
그랜드컨벤션센터 앞	양평2나들목 보행통로 입구	7분	10분	12m	8m
유진투자증권빌딩 앞	삼부아파트1동 앞	3분	6분	13m	13m
진주아파트상가 앞	여의도초교 앞	4분	4분	15m	13m
롯데캐슬엠파이어 옆	여의도역 1번출구 옆	3분	3분	13m	13m
근로자회관 사거리	문래동자이아파트 앞	5분	4분	11m	9m
초원아파트 앞	여의나루역 1번출구 앞	5분	5분	17m	14m
국민일보 앞	산업은행 앞	8분	8분	15m	12m
신길동 우리은행 옆	신길삼거리(우리은행)	8분	8분	25m	12m
국민일보 앞	신길선원가와인아파트 앞	19분	19분	29m	2m
국민일보 앞	신길선원가와인아파트 앞	19분	19분	29m	2m
삼부아파트1동 앞	신길동 우리은행 옆	20분	20분	26m	2m
보라매 두산위브 건너편	신림역 8번출구	11분	16분	25m	16m
샛강역 1번출구 앞	서울지방병무청 버스정류장	19분	20분	36m	2m
양평우림 이비즈센타 앞	보라매 두산위브 건너편	24분	32분	17m	8m
여의도역 1번출구 옆	신길역3번출구	11분	11분	17m	9m
신길동 우리은행 옆	도림4거리	7분	7분	23m	10m
양평우림 이비즈센타 앞	그랜드컨벤션센터 앞	9분	9분	12m	8m
진미파라곤 앞	중앙근린공원	31분	47분	26m	3m
그랜드컨벤션센터 앞	선유도역 3번출구 앞	4분	4분	12m	11m
미성아파트 A동 앞	서울지방병무청 버스정류장	18분	18분	36m	2m

3.1 Data collection(cont.)

- 본 연구는 이용형태의 차이를 반영하기 위하여 Extra journey time을 고려함
- Extra journey time(비율)은 실제 대여시간과 웹 크롤러를 통해 구득한 추정 대여시간의 비율임
- 선행 연구의 Extra journey time(차이)로는 장시간, 단시간 이용에 따른 특성을 반영하지 못함
- 따라서 본 연구는 실제 및 추정 대여시간의 비율을 통해 전체 대여시간에 따른 이용형태를 고려함

구분		McBain & Caulfield(2018)	This study
Ex	xtra journey time	실제 대여시간-추정 대여시간(차이)	실제 대여시간/추정 대여시간(비율)
case1	추정 대여시간: 05분 실제 대여시간: 35분	30분	7배
case2	추정 대여시간: 60분 실제 대여시간: 90분	30분	1.5배

3.2 Classification: K-means clustering

- 선행연구에서 분위수에 따른 연속형 데이터 범주화는 범주의 개수 설정의 기준이 없음
- 또한, 분위수는 전체 데이터를 균등하게 분할하기 때문에 분류된 범주의 유사성이 불분명함
- 본 연구는 K-means clustering을 통해 Extra journey time의 범주화를 진행함

<Regression analysis with clustering>

Author	Contents	Method
오다원	• 상권들을 이용 인구가 집중되는 시간대에 따라 분류하였으며,	K-means clustering
(2019)	분류된 상권의 이용에 토지이용 특성이 미치는 영향을 분석함	• 로지스틱 회귀분석
Xu et al.	• 군집분석을 통해 고속도로 교통류를 분류하였으며, 분류된	K-means clustering
(2012)	군집의 충돌 제어와 충돌 위험사이의 관계를 분석함	• 로지스틱 회귀분석
Park et al.	• 군집분석을 통해 사회 자본을 분류하였으며, 분류된	K-means clustering
(2012)	사회자본이 지역사회의 갈등에 미치는 영향을 분석함	• 로지스틱 회귀분석
Snedden & Steyer	• 해안습지 생태계에 대한 군집분석을 통해 특징을 파악하고,	K-means clustering
(2012)	이에 영향을 주는 요인들에 대한 분석을 진행함	• 로지스틱 회귀분석

3.2 Classification: K-means clustering(cont.)

- 차이와 비율 각각에 대해 삼분위수와 K-means clustering(k=3)으로 Extra journey time을 분류함 (Elbow method: 클러스터 수를 순차적으로 늘려가며 기울기가 완만해지는 곳을 Elbow point라 하고 이때의 K가 적정 값이라 판단함)
- 분류된 군집에 따른 모형의 성능을 비교하기 위해 다음의 선택 기준을 사용하여 최종 모형을 선정함
 - ✓ AIC(Akaike Information Criterion)
 - ✓ BIC(Bayesian Information Criterion)

Extra journey time		AIC	BIC
삼분위수	차이	694175	695032
	비율	539284	540141
클러스터링	차이	349719	350576
	비율	309266	309947

3.3 Estimation: Multinomial logistic regression

- K-means clustering(k=3) 결과 분류된 군집에 영향을 미치는 요소를 확인하고자 함
- Cluster1을 참조 범주로 다항 로지스틱 회귀분석(Multinomial logistic regression)을 실시함

•
$$\ln(\frac{Pr(cluster2)}{Pr(cluster1)}) = \beta_0 + \beta_{1,} X_1 + \beta_2 X_{2,} + \beta_3 X_3 + \beta_4 X_4 \dots + \beta_{13} X_{13}$$

•
$$\ln(\frac{Pr(cluster3)}{Pr(cluster1)}) = \beta_0 + \beta_{1,1} X_1 + \beta_{2,1} X_{2,1} + \beta_{3,1} X_3 + \beta_4 X_4 \dots + \beta_{13} X_{13}$$

- β_0 is the model constant
- $\beta_1,\beta_2,\beta_3...\beta_{13}$ are the unknown parameters corresponding with the explanatory variables
- $X_1, X_2, X_3... X_{13}$ are the set of explanatory variables
- The model goodness-of-fit was assessed using the AIC, BIC and R-squared

Data description

- 서울시 공공자전거 대여소는 강남 3구(서초, 송파, 강남)과 영등포구에 집중되어 있음
- 본 연구는 여의도권역(CBD)이 포함된 영등포구 공공자전거 데이터 432,795건을 분석에 활용함

서울시 전체 데이터 (2018.01-2018.12) 약, 1000만 건 → 영등포구 데이터 (2018.01-2018.12) 약, 86만 건

속도 30km/h 이상 데이터 제거

(자전거 이용시설 설치 및 관리 지침, 국토교통부)

영등포구 최종 데이터 (2018.01-2018.12) 432,795건

Data			Criteria	Reference
Dependent variable	Extra journey time	2	K-means clustering 결과 3개의 군집(Cluster1, 2, 3)	-
Explanatory variables	Usage factors	Station size Start/End	스테이션 거치대 수(10개 이하, 11-20개 이하, 21개 이상)	-
		OD pairs station distance	스테이션 상의 거리 사분위수	-
		Usage distance	자전거 이용거리 사분위수	-
		Velocity	자전거 주행속도 사분위수	-
		Day	주중/주말 여부	-
		TOD(Time of day)	AM(7-10)&PM(18-21), Inter(11-17), Off peak(22-6)	-
	Location factors	Nearest subway dist. Start/End	1차 역세권(250m) 기준 지하철역	서울시 도시계획국
		Restaurants Start/End	역세권 상권(100m) 내 상점 수	서울시 공공주택과
		Leisure Start/End	역세권 상권(100m) 내 여가시설 유무	서울시 공공주택과
		Bike priority road	대여 스테이션 100m 내 자전거전용도로 유무	-
	Weather factors	Temperature	추위(10°c 이하), 더위(33°c 이상)를 느낌	기상청, OSHA
		Rainfall	비가 많이 내림(10mm 이상)	기상청
		Fine dust	나쁨/매우 나쁨(81 이상)	기상청

4.1 Classification results: Extra Journey time

- Cluster1은 전체의 78%(339,178 건)로 Extra journey time은 2.5 이하에 분포함
- Cluster2의 Extra journey time은 2.6부터 5.4까지로 전체의 15%(65,724 건)에 해당함
- Cluster3의 Extra journey time은 5.5이상 10.0이하로 전체의 7%(27,893 건)에 해당함

4.1 Classification results: Extra Journey time(cont.)

- Cluster1은 주말 대비 주중에 공공자전거를 이용하였으며 오전, 오후 첨두시간대 이용하는 형태임
- Extra Journey time이 커지면서 Cluster2, 3는 주중 대비 주말에 이용하는 형태를 확인함

4.1 Classification results: Extra Journey time(cont.)

- Extra Journey time가 증가하면서 OD 스테이션 상의 거리와 추정 대여시간은 감소함
- 반면, OD 스테이션까지 실제 이동거리와 실제 대여시간은 증가하는 이용형태를 보임
- Extra journey time이 커지면서 여가로 추정되는 이용형태를 확인함

구분		Cluster1	Cluster2	Cluster3
OD pairs station distance(m)	mean	2728.48	2088.57	1006.62
	std.	2422.51	1561.77	651.23
Usage distance(m)	mean	4153.57	5261.67	5167.34
	std.	3940.45	4283.70	4109.02
OD pairs expected time(min)	mean	16.31	13.01	7.41
	std.	12.21	7.80	3.54
Usage time(min)	mean	24.58	45.07	53.31
	std.	19.10	25.68	23.50

※ OD pairs expected time(min): 카카오맵 추정 대여시간

4.2 Estimation results: Extra Journey Time(Dependent variables)

Extra Journey Time(Y _i)	Frequency	Percent	Cumulative Percent	
$Cluster1(Y_1)$	339178	78.4	78.4	Reference category
$Cluster2(Y_2)$	65724	14.2	92.6	
Cluster $3(Y_3)$	27893	6.4	100	
Total	432795	100		

Model specification

- $\ln(\frac{\Pr(Y_1)}{\Pr(Y_1)})$ =const.+ β_1 (Station size) + β_2 (OD pairs station distance)+ β_3 (Usage distance)+ β_4 (Velocity)+ β_5 (Day)+ β_6 (TOD)+ β_7 (Nearest subway dist.)+ β_8 (Restaurants)+ β_9 (Leisure)+ β_{10} (Bike priority road)+ β_{11} (Temperature)+ β_{12} (Rainfall)+ β_{13} (Fine dust)
- Yi means Journey time variation corresponding with cluster i
- $\beta_1, \beta_2, \beta_3.... \beta_{13}$ are the unknown parameters corresponding with the explanatory variables

			Cluster2	Cluster3
		Const.	-4.57***	-8.65
Usage factors	Station size Start	10 ~ 20	0.03**	0.01
Ü		> 21	0.02	0.10***
		(Ref.) < 10		
	Station size End	10 ~ 20	0.16***	0.24***
	Station size End	> 21	0.22***	0.30***
			0.22	0.30
	00 1 11	(Ref.) < 10	1.01***	-3.36***
	OD pairs station distance	881 ~ 1621m	-1.81***	
		1621 ~ 3152m	-3.62***	-7.11***
		> 3152m	-5.99***	-12.16***
		(Ref.) < 881m		
	Usage distance	1581 ~ 3120m	2.81***	4.26***
		3120 ~ 6140m	5.37***	8.33***
		> 6140m	8.24***	13.04***
		(Ref.) < 1581m		
	Velocity	< 5km/h	5.14***	8.00***
	velocity	5 ~ 10km/h	1.48***	2.66***
		10 ~ 20km/h	-0.28**	0.18
		(Ref.) > 20 km/h		
	Day	Weekday	-0.29***	-0.22***
TOD(Time of Day)		(Ref.) Weekend		
	TOD(Time of Day)	AM&PM peak	0.05***	0.18***
		Inter peak	0.37***	0.70***
		(Ref.) Off peak		
Location factors	Nearest subway Start	≤ 250m	0.16***	0.16***
		(Ref.) > 250m		
	Nearest subway End	≤ 250m	0.12***	0.06***
	rediest subway End	(Ref.) > 250m	0.12	0.00
	Restaurants Start	10 ~ 34 shops	-0.42***	-0.35***
	Restaurants Start	≥ 35 shops	-0.41***	-0.39***
		_	-0.41	-0.39***
		(Ref.) < 10 shops	0.25	0.44555
	Restaurants End	10 ~ 34 shops	-0.36***	-0.44***
		\geq 35 shops	-0.38***	-0.44***
		(Ref.) < 10 shops		
	Leisure Start	$\geq 1 \text{ shop}$	0.10***	0.11***
		(Ref.) 0		
	Leisure End	$\geq 1 \text{ shop}$	0.01	0.04*
		(Ref.) 0		
	Bike priority road	Yes	0.31***	0.56***
		(Ref.) No		
Weather factors	Temperature	≤ 10°c	-0.12***	-0.08***
	1	_ ≥ 33°c	-0.05*	-0.15***
		(Ref.) 11-32°c		
	Rainfall	≤ 10mm	0.02	0.03
		> 10mm	-0.59	-2.18**
		(Ref.) 0mm		2.10
	Fine dust	Poor/Very poor	-0.05***	-0.07***
		(Ref.) else		0.07
Model fit statistics	The reference category is: Clu		(Ref.) is a reference term	* This has a significance p-value < 0.10
	Pseudo R-squared	: 0.454	Degrees of Freedom : 60	** This has a significance p-value < 0.05

R-squared : 0.454 : 309261 AIC

BIC : 309942

^{***} This has a significance p-value < 0.03

4.2 Estimation results: Usage factors

- Extra journey time이 커질수록 이용거리는 증가하지만, 대여/반납 스테이션 상의 거리는 감소함
- 주중에 비해 주말에 Extra journey time이 커지는 이용이 나타남

			Cluster2	Cluster3
		Const.	-4.57***	-8.65
Usage factors	Station size Start	10 ~ 20	0.03**	0.01
		> 21	0.02	0.10***
		(Ref.) < 10		
	Station size End	10 ~ 20	0.16***	0.24***
		> 21	0.22***	0.30***
		(Ref.) < 10		
	OD pairs station distance	881 ~ 1621m	-1.81***	-3.36***
		1621 ~ 3152m	-3.62***	-7.11***
		> 3152m	-5.99***	-12.16***
		(Ref.) < 881m		
	Usage distance	1581 ~ 3120m	2.81***	4.26***
		3120 ~ 6140m	5.37***	8.33***
		> 6140m	8.24***	13.04***
		(Ref.) < 1581m		
	Velocity	< 5km/h	5.14***	8.00***
		5 ~ 10km/h	1.48***	2.66***
		10 ~ 20km/h	-0.28**	0.18
		(Ref.) > 20 km/h		
	Day	Weekday	-0.29***	-0.22***
		(Ref.) Weekend		
	TOD(Time of Day)	AM&PM peak	0.05***	0.18***
		Inter peak	0.37***	0.70***
		(Ref.) Off peak		24

4.2 Estimation results: Location factors

- Extra journey time은 주변 음식점 수에 음(-)의 영향, 문화/여가 시설 수에는 양(+)의 영향을 받음
- 자전거전용도로가 있을 경우 Extra journey time이 긴 이용이 증가함

			Cluster2	Cluster3
Location factors	Nearest subway Start	≤ 250m	0.16***	0.16***
		(Ref.) > 250m		
	Nearest subway End	≤ 250m	0.12***	0.06***
		(Ref.) > 250m		
	Restaurants Start	10 ~ 34 shops	-0.42***	-0.35***
		\geq 35 shops	-0.41***	-0.39***
		(Ref.) < 10 shops		
	Restaurants End	10 ~ 34 shops	-0.36***	-0.44***
		\geq 35 shops	-0.38***	-0.44***
		(Ref.) < 10 shops		
	Leisure Start	$\geq 1 \text{ shop}$	0.10***	0.11***
		(Ref.) 0		
	Leisure End	$\geq 1 \text{ shop}$	0.01	0.04*
		(Ref.) 0		
	Bike priority road	Yes	0.31***	0.56***
		(Ref.) No		

4.2 Estimation results: Weather factors

- 온도가 10°c 이하 혹은 33°c 이상에서 Extra journey time이 긴 이용은 감소함
- Extra journey time이 긴 이용은 미세먼지 농도가 나쁨/매우 나쁨 수준에서 감소함을 확인함

			Cluster2	Cluster3	
Weather factors	Temperature	≤ 10°c	-0.12***	-0.08***	
		≥ 33°c	-0.05*	-0.15***	
		(Ref.) 11-32°c			
	Rainfall	≤ 10mm	0.02	0.03	
		> 10mm	-0.59	-2.18**	
		(Ref.) 0mm			
	Fine dust	Poor/Very poor	-0.05***	-0.07***	
		(Ref.) else			
Model fit statistics	The reference category	is: Cluster1		(Ref.) is a reference term	
	Pseudo R-squared	: 0.454	* This has a significance p-value < 0.10		
	AIC	: 309261	** This has a significance p-value < 0.05		
	BIC	: 309942	*** This has a significance p-value < 0.01		
	Degrees of Freedom	: 60			

4.2 Estimation results: Summary

- 음식점 수(35개 이상)가 많은 반납 스테이션에서 Extra journey time이 긴 이용은 감소함
- 문화/여가 시설, 자전거전용도로가 있을 경우 Extra journey time이 긴 이용은 증가함
- 강수량, 온도, 미세먼지는 특정 수준에서 Extra journey time에 음(-)의 영향을 미침

<공공자전거 Extra journey time에 영향을 미치는 요인에 대한 오즈비(Odds ratio) 비교>

5. Conclusions

Discussion

- Extra journey time에 영향을 미치는 요인 분석을 진행함으로써 대여시간에 따라 다른 이용형태를 보이는 공공자전거 이용특성을 이해하고 이를 통해 이용률 확대 방안에 도움을 줄 수 있을 것임
- 이용 요인 측면에서 Extra journey time이 긴 이용형태는 주말에 많이 이용되며, 대여/반납 스테이션 상의 거리가 가까운 특성을 갖고 있음
- 입지 측면에서 스테이션 주변에 음식점이 많을 경우 Extra journey time이 긴 이용형태는 감소하지만, 여가/문화 시설이 있을 경우 Extra journey time은 증가하는 이용형태를 확인함
- 날씨 측면에서 강수량이 10mm 이상, 온도가 10°c 이하 혹은 33°c 이상, 미세먼지 농도가 나쁨/매우 나쁨 수준에서 Extra journey time이 긴 이용형태는 감소함

Further research

- 다른 지역구와의 Extra journey time 비교를 통해 지역구별 이용형태를 비교하는 연구가 필요함
- 이용, 입지 및 날씨 요인 이외에 이용자 특성을 포함한 연구가 필요함

Reference

- 서울특별시 (2018). 2018년도 공유도시 인지도 조사 결과 보고서
- 서울연구원 (2019). 서울형 통합교통서비스 (MaaS) 도입 방안. 정책리포트, 1-23.
- Statista (2018). MetroBike's Bike-Sharing Blog
- 심형욱, & 이영인. (2019). 네트워크 중심성 기반 서울시 공공자전거 서비스의 이용률 개선 방안 연구: 서울시 종로구 사례를 중심으로. Journal of Korean Society of Transportation, 37(2), 124-134.
- 서울시설공단 공공자전거운영처 (2018), 공공자전거 종합현황
- Si, H., Shi, J. G., Wu, G., Chen, J., & Zhao, X. (2019). Mapping the bike sharing research published from 2010 to 2018: A scientometric review. Journal of cleaner production, 213, 415-427.
- Faghih-Imani, A., & Eluru, N. (2016). Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system. Journal of Transport Geography, 54, 218-227.
- Nosal, T., & Miranda-Moreno, L. F. (2014). The effect of weather on the use of North American bicycle facilities: A multi-city analysis using automatic counts. Transportation research part A: policy and practice, 66, 213-225.
- 김동준, 신희철, 박준식, & 임형준. (2012). 날씨가 자전거 이용에 미치는 영향 분석: 고양시 공공자전거를 대상으로. 교통연구, 19(3), 77-88.
- Sears, J., Flynn, B. S., Aultman-Hall, L., & Dana, G. S. (2012). To bike or not to bike: Seasonal factors for bicycle commuting. Transportation research record, 2314(1), 105-111.
- Wang, X., Lindsey, G., Schoner, J. E., & Harrison, A. (2016). Modeling bike share station activity: Effects of nearby businesses and jobs on trips to and from stations. Journal of Urban Planning and Development, 142(1), 04015001.
- Davis, A. W., Lee, J. H., & Goulias, K. G. (2015). Analyzing bay area bikeshare usage in space and time. In Proc. 94th Annu. Meeting Transp. Res. Board (pp. 5-17).
- García-Palomares, J. C., Gutiérrez, J., & Latorre, M. (2012). Optimizing the location of stations in bike-sharing programs: A GIS approach. Applied Geography, 35(1-2), 235-246.
- Zhang, Y., Brussel, M. J., Thomas, T., & van Maarseveen, M. F. (2018). Mining bike-sharing travel behavior data: An investigation into trip chains and transition activities. Computers, environment and urban systems, 69, 39-50.
- McBain, C., & Caulfield, B. (2018). An analysis of the factors influencing journey time variation in the cork public bike system. Sustainable cities and society, 42, 641-649.
- Vogel, P., Greiser, T., & Mattfeld, D. C. (2011). Understanding bike-sharing systems using data mining: Exploring activity patterns. Procedia-Social and Behavioral Sciences, 20, 514-523.
- Midgley, P. (2009). The role of smart bike-sharing systems in urban mobility. Journeys, 2(1), 23-31.
- DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. Journal of public transportation, 12(4), 3.
- Qiu, H., Wang, M., Mi, D., Zhao, J., Tu, W., & Liu, Q. (2017). Vitamin D status and the risk of recurrent stroke and mortality in ischemic stroke patients: data from a 24-month follow-up study in China. The journal of nutrition, health & aging, 21(7), 766-771
- 오다원. (2019). 주·야간 상권의 토지이용과 이용인구 (Doctoral dissertation, 서울대학교 대학원).
- 장진영, 최성택, 이향숙, 김수재, & 추상호. (2015). 토지이용유형별 보행량 영향 요인 비교 분석-서울시 유동인구 조사자료를 바탕으로. 한국 ITS 학회 논문집, 14(2), p39-53.
- Xu, C., Liu, P., Wang, W., & Li, Z. (2012). Evaluation of the impacts of traffic states on crash risks on freeways. Accident Analysis & Prevention, 47, 162-171.
- Park, D. B., Lee, K. W., Choi, H. S., & Yoon, Y. (2012). Factors influencing social capital in rural tourism communities in South Korea. Tourism Management, 33(6), 1511-1520.
- Tang, W. Z., Wang, X. B., Li, H. T., Dong, M., & Ji, X. (2017). Serum copeptin predicts severity and recurrent stroke in ischemic stroke patients. Neurotoxicity research, 32(3), 420-425.
- Khosravipour, M., & Shah Mohammadi, M. (2020). The effects of exposure to night shift work on liver function: A cross-sectional study with emphasis of alkaline phosphatase enzyme. Chronobiology international, 37(1), 142-145.
- Koenker, R., & Basset, G. (1978). Asymptotic theory of least absolute error regression. Journal of the American Statistical Association, 73(363), 618-22.
- 최충현. (2010). 건강관련 삶의 질 (EQ-5D) 에 대한 회귀모형: 국민건강영양조사 제 4 기 2 차년도 (2008) 를 중심으로 (Doctoral dissertation, 연세대학교 보건대학원).
- 임미진, 김연표, 구보경, & 강경은. (2017). 여성 노인에서 체질량지수와 건강관련 삶의 질 간 상관관계: 제 5 기 (2010-2011 년) 국민건강영양조사 자료 이용. 가정의학, 7(2), 239-245.
- Snedden, G. A., & Steyer, G. D. (2013). Predictive occurrence models for coastal wetland plant communities: Delineating hydrologic response surfaces with multinomial logistic regression. *Estuarine, Coastal and Shelf Science, 118*, 11-23.
- Casello, J. M., & Usyukov, V. (2014). Modeling cyclists' route choice based on GPS data. Transportation Research Record, 2430(1), 155-161.

감사합니다.

Appendix

Data collection: KAKAO Map

- 예측 대여시간 데이터의 신뢰성 검증을 위해 다음의 Test를 진행함(일시: 5월 11,12일 19시~22시)
- KAKAO map 알고리즘은 평·속(20km/h) 이외에 횡단보도 대기시간, 자전거 무게 등을 고려함

0							
0	Route 1	Route 2	Route 3	Route 4	Route 5	Route 6	Route 7
kakao map	6	12	6	12	8	13	24
Test1	5	14	6	15	8	13	28
Test2	7	15	6	13	9	15	30
Test3	6	10	5	11	6	15	27
——Test4	7	12	8	12	9	12	25

Route	O/D Stations		
Route1	홍대입구역 → 합정역		
Route2	합정역 → 당산역		
Route3	당산역 → 영등포구청역		
Route4	영등포구청역 → KBS		
Route5	KBS → 여의나루역		
Route6	여의나루역 → 공덕역		
Route7	공덕역 → 합정역		

Appendix

Data collection: Nearest subway dist. Start, End

- 대여/반납 스테이션에서 가장 가까운 지하철역까지 거리(m)
- Nearest subway dist. Start: 대여 스테이션에서 가장 가까운 지하철역까지 이동거리(m)
- Nearest subway dist. End : 반납 스테이션에서 가장 가까운 지하철역까지 이동거리(m)

대여/반납 스테이션
지하철역
 지하철역까지 이동거리(m)
 가장 가까운 지하철역까지 이동거리(m)

Appendix

Data collection: Restaurants & Leisure Start, End

- Restaurants Start, End: 대여/반납 스테이션에서 반경 100m 이내 상점 수
- Leisure Start, End: 대여/반납 스테이션에서 반경 100m 이내 상점 수

대여/반납 스테이션
음식점, 여가/문화 시설
 반경 100m 밖의 음식점, 여가/문화 시설까지 거리
 반경 100m 이내 음식점, 여가/문화 시설까지 거리

