EE1390

Matrix Project

EE18BTECH11027 and EE18BTECH11011

Question

Find the equation of the tangent to the circle, at the point $\binom{1}{-1}$ whose centre is the point of intersection of the straight lines $(2\ 1)\mathbf{x}-3=0$

Solution

Given the equations of two lines:

$$(2 \ 1)\mathbf{x} - 3 = 0$$

 $(1 \ -1)\mathbf{x} - 1 = 0$

Solving these two equations , we get the point of intersection as I, which is the centre of the circle.

$$\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
$$\mathbf{x} = \begin{pmatrix} 1/3 & 1/3 \\ 1/3 & -2/3 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
$$\mathbf{x} = \begin{pmatrix} 4/3 \\ 1/3 \end{pmatrix}$$

So coordinates of P in matrix form are $\binom{4/3}{1/3}$

The radius of the circle is given by norm of $\binom{1}{-1}$ - $\binom{4/3}{1/3}$ which gives radius equal to $\sqrt{17/9}$.

now we find the tangent to the circle.

The directon vector of tangent is given by- $\binom{1/3}{1/3} \cdot \binom{1}{-2/3} \cdot \binom{4/3}{1/3}$ which simplifies to $\binom{-4/3}{1/3}$

Equation of tangent is given by- $\binom{1}{4}$ $\mathbf{x} = -3$

