LATEX: 2D Graphs

Dr. Yihsiang Liow (April 4, 2023)

Contents

1	The xy-plane (xy-plane.tex)	2
2	The xy-plane: text	5
3	minipage	11
4	Nested tikzpicture	17
5	Circles and Dots	18
6	Rectangle	22
7	Line	26
8	The xy-plane: Polar Coordinates (xy-plane-polar-coord.tex)	28
9	Variable Points and Operations (variable.tex)	29
10	PgfPlots (pgfplots.tex)	31
11	pgfplots: Default Window (xy-plane-default-window.tex)	32
12	pgfplots: Width and Height (pgfplots-width-height.tex)	33
13	pgfplots: Label Axes (pgfplots-label-axis.tex)	34
14	pgfplots: Grid (pgfplots-2d-grid.tex)	35
15	pgfplots: Line Plots (pgfplots-line.tex)	36
16	pgfplots: Color (pgfplots-2d-color.tex)	38
17	pgfplots: Marker styles (pgfplots-marker.tex)	39
18	pgfplots: Dashed Styles (pgfplots-dashed.tex)	43

19 pgfplots:	Dotted Styles (pgfplots-dotted.tex)	45
20 pgfplots:	Functions (pgfplots-2d-function.tex)	47
21 pgfplots:	Domain for all Functions (xy-plane-domain-all.tex)	48
22 pgfplots:	Domain for each Function (xy-plane-domain-each-function.tex)	49
23 pgfplots:	Sample Size (pgfplots-sample-size.tex)	50
24 pgfplots:	Legend (xy-plane-legend.tex)	52
25 pgfplots:	Max and min for axes (xy-plane-axes-max-min.tex)	5 3
26 pgfplots:	Place Axes in Middle (xy-plane-place-axes.tex)	54
27 pgfplots:	Points (pgfplots-points.tex)	55
28 pgfplots:	<pre>Insert PGF node (pgfplots-insert-node.tex)</pre>	57
29 pgfplots:	Node with pin (pgfplots-pin.tex)	58
30 pgfplots:	Pin Direction (pgfplots-pin-direction.tex)	60
31 pgfplots:	Shade Area (xy-plane-area.tex)	61
32 pgfplots:	Steps (xy-plane-step.tex)	64

1 The xy-plane (xy-plane.tex)

Here's the xy-plane:

You can change the arrow tip:

This one only has the first quadrant:

After drawing your diagram if you find it too cramped up, you don't have to rescale by hand. You just do this:

Let me add values on the x-axis:

LATEX code

```
Here's the $xy$-plane:

\begin{center}
\begin{tikzpicture}
\draw[step=1cm,gray,very thin] (-3,-3) grid (3,3);
\draw[->] (-3,0) -- (3,0);
\draw[->] (0,-3) -- (0,3);
\end{tikzpicture}
\end{center}

You can change the arrow tip:
\begin{center}
\begin{tikzpicture}
\draw[step=1cm,gray,very thin] (-3,-3) grid (3,3);
\draw[->, >=triangle 60] (-3,0) -- (3,0);
\draw[->, >=triangle 60] (0,-3) -- (0,3);
```

```
\end{tikzpicture}
\end{center}
This one only has the first quadrant:
\begin{center}
\begin{tikzpicture}
\draw[step=1cm,gray,very thin] (0,0) grid (3,3);
draw[->] (0,0) -- (3,0);
draw[->] (0,0) -- (0,3);
\end{tikzpicture}
\end{center}
After drawing your diagram if you find it too cramped up,
you don't have to rescale by hand.
You just do this:
\begin{center}
\begin{tikzpicture}[scale=2]
\draw[step=1cm,gray,very thin] (0,0) grid (3,3);
\frac{-}{0,0} - (3,0);
draw[->] (0,0) -- (0,3);
\end{tikzpicture}
\end{center}
Let me add values on the $x$--axis:
\begin{center}
\begin{tikzpicture}
\frac{1}{1} \draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
draw[->] (-1,0) -- (3,0);
draw[->] (0,-1) -- (0,3);
draw (-0.2, -0.2) node {0};
draw (1,-0.2) node {1};
\draw (2,-0.2) node {2};
draw (3.2,0) node {$x$};
\end{tikzpicture}
\end{center}
```

2 The xy-plane: text

You can put a text box at (1,1):

```
\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) --(3,0);
\draw[->] (0,-1) -- (0,3);
```


You can give text a background color:

```
\draw (1,1) node[fill=yellow] {helloworld ... lorem ipsum};
\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) --(3,0); \draw[->] (0,-1) -- (0,3);
```


You can change the font size:

```
\draw (1,1) node[fill=yellow, font=\tiny] {helloworld ... lorem ipsum};
\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) --(3,0); \draw[->] (0,-1) -- (0,3);
```


You can vary the inner sep (the border spacing):

```
\draw(1,1) node[fill=yellow, inner sep=1cm] {helloworld ... lorem ipsum};
\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) --(3,0); \draw[->] (0,-1) -- (0,3);
```


You can have rounded corners:

You can specify the radius of the rounded corners:

You can draw the boundary:

You can specify the line width:

You can specify the line style:

If you specify the foreground color something goes wrong (see the section on minipage on how to fix this problem):

3 minipage

You can put a minipage at a node. You can specify the width and height of the minipage.

If you leave out the height:

```
\draw (1,1) node[fill=yellow] {
  \begin{minipage}[t][]{3cm}
    helloworld ... lorem ipsum
  \end{minipage}
};

\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) --(3,0); \draw[->] (0,-1) -- (0,3);
```


And use rounded corners and a minipage:

```
\draw (1,1) node[fill=yellow, rounded corners] {
  \begin{minipage}[t][2cm]{3cm}
    helloworld ... lorem ipsum
  \end{minipage}
};

\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) --(3,0); \draw[->] (0,-1) -- (0,3);
```


Rounded corners with specified radius:

```
\draw (1,1) node[fill=yellow, rounded corners=0.5cm] {
  \begin{minipage}[t][2cm]{3cm}
   helloworld ... lorem ipsum
  \end{minipage}
};

\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) --(3,0); \draw[->] (0,-1) -- (0,3);
```


It looks better in this case to increase the inner sep (say inner sep = radius):

```
\draw (1,1) node[fill=yellow, rounded corners=0.5cm, inner sep=0.5cm] {
   \begin{minipage} [t] [2cm] {3cm}
    helloworld ... lorem ipsum
   \end{minipage}
};

\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) --(3,0); \draw[->] (0,-1) -- (0,3);
```


You can draw the boundary:

```
\draw (1,1) node[draw, fill=yellow, rounded corners] {
  \begin{minipage}[t][2cm]{3cm}
    helloworld ... lorem ipsum
  \end{minipage}
};

\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) --(3,0); \draw[->] (0,-1) -- (0,3);
```


You can choose the line width for the boundary:

```
\draw (1,1) node[draw, fill=yellow, rounded corners, line width=0.1cm] {
  \begin{minipage}[t][2cm]{3cm}
    helloworld ... lorem ipsum
  \end{minipage}
};

\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) --(3,0); \draw[->] (0,-1) -- (0,3);
```


You can choose the the line style for the boundary:

You can choose foregound color:

Center-justify the contents of the node:

Bottom-justify the contents of the node:

Note that the extra border (due to the inner sep) is beyond the specified width and height.

4 Nested tikzpicture

Nested tikzpicture works:

5 Circles and Dots

Here's a circle at (1,1) of radius 0.5:

```
\begin{center}
\begin{tikzpicture}
\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) -- (3,0);
\draw[->] (0,-1) -- (0,3);

\draw (1,1) circle (0.5cm);
\end{tikzpicture}
\end{center}
```


I can fill it:

```
\begin{center}
\begin{tikzpicture}
\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) -- (3,0);
\draw[->] (0,-1) -- (0,3);

\filldraw (1,1) circle (0.5cm);
\end{tikzpicture}
\end{center}
```


I can fill with different colors:

```
\begin{center}
\begin{tikzpicture}
\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) -- (3,0);
\draw[->] (0,-1) -- (0,3);

\filldraw[fill=red] (1,1) circle (0.5cm);
\end{tikzpicture}
\end{center}
```


I can also shade it:

```
\begin{center}
\begin{tikzpicture}
\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) -- (3,0);
\draw[->] (0,-1) -- (0,3);

\shade[ball color=red] (1,1) circle (0.5cm);
\end{tikzpicture}
\end{center}
```


OK ... I don't think you need shaded balls on a *flat* 2-d plane. However you probably want to draw point which are just small circles:

```
\begin{center}
\begin{tikzpicture}
\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) -- (3,0);
\draw[->] (0,-1) -- (0,3);

\filldraw (1,1) circle (0.05cm);
\filldraw (1.5,2.7) circle (0.05cm);
\end{tikzpicture}
\end{center}
```


And you might want to label their coordinates:

```
\begin{center}
\begin{tikzpicture}
\draw[step=1cm,gray,very thin] (-1,-1) grid (3,3);
\draw[->] (-1,0) -- (3,0);
\draw[->] (0,-1) -- (0,3);

\filldraw (1,1) circle (0.05cm);
\draw (1,0.5) node {$(1,1)$};

\filldraw (1.5,2.7) circle (0.05cm);
\draw (1.5,2.2) node {$(1.5,2.2)$};

\end{tikzpicture}
\end{center}
```


6 Rectangle

```
\draw (1,1) rectangle (3, 2);
\draw[step=1cm,gray,very thin] (-1,-1) grid (4,3);
\draw[->] (-1,0) --(4,0); \draw[->] (0,-1) -- (0,3);
```


You can choose a line width:

```
\draw[line width=0.2cm] (1,1) rectangle (3, 2);
\frac{(-1,-1)}{grid} grid (4,3);
\draw[->] (-1,0) --(4,0); \draw[->] (0,-1) -- (0,3);
```


You can choose a color:

```
\draw[line width=0.2cm, color=red!60!white] (1,1) rectangle (3, 2);
\frac{(-1,-1)}{grid} grid (4,3);
\draw[->] (-1,0) --(4,0); \draw[->] (0,-1) -- (0,3);
```


Rounded corners:

```
\draw[line width=0.2cm, color=red!60!white, rounded corners=0.25cm]
(1,1) rectangle (3, 2);
\draw[step=1cm,gray,very thin,radius=0.5cm] (-1,-1) grid (4,3);
\draw[->] (-1,0) --(4,0); \draw[->] (0,-1) -- (0,3);
```


Dashed line style:

```
\draw[line width=0.2cm, color=red!60!white, rounded corners=0.25cm, dashed]
    (1,1) rectangle (3, 2);
\draw[step=1cm,gray,very thin,radius=0.5cm] (-1,-1) grid (4,3);
\draw[->] (-1,0) --(4,0); \draw[->] (0,-1) -- (0,3);
```


Double line style:

```
\draw[line width=0.2cm, color=red!60!white, rounded corners=0.25cm, double]
    (1,1) rectangle (3, 2);

\draw[step=1cm,gray,very thin,radius=0.5cm] (-1,-1) grid (4,3);
\draw[->] (-1,0) --(4,0); \draw[->] (0,-1) -- (0,3);
```


You can color the interior:

```
\filldraw[line width=0.2cm, color=red!60!white, rounded corners=0.25cm]
(1,1) rectangle (3, 2);
\draw[fill=yellow,step=1cm,gray,very thin,radius=0.5cm] (-1,-1) grid (4,3);
\draw[->] (-1,0) --(4,0); \draw[->] (0,-1) -- (0,3);
```


7 Line

Here's a line:

```
\begin{center}
\begin{tikzpicture}
\frac{(-1,-1)}{grid} grid (6,4);
draw[->] (-1,0) -- (6,0);
draw[->] (0,-1) -- (0,4);
\draw[very thick] (1,1) -- (5.5,3.5);
\end{tikzpicture}
\end{center}
```


I can change the thickness and the color:

```
\begin{center}
\begin{tikzpicture}
\frac{1}{1} \draw[step=1cm,gray,very thin] (-1,-1) grid (6,4);
draw[->] (-1,0) -- (6,0);
draw[->] (0,-1) -- (0,4);
\draw[red, line width=0.25cm] (1,1) -- (5.5,3.5);
\end{tikzpicture}
\end{center}
```


Here's Pythagorus' theorem in action (I removed the grid):

```
\begin{center}
\begin{tikzpicture}
\draw[->] (-1,0) -- (10,0);
draw[->] (0,-1) -- (0,4);
\draw[very thick] (3,1) -- (8.5,3.5);
\draw[very thick] (8.5,1) -- (8.5,3.5);
\draw[very thick] (3,1) -- (8.5,1);
\filldraw (3,1) circle (0.07);
\filldraw (8.5,3.5) circle (0.07);
\frac{(3,0.5) \text{ node } \{(x_0, y_0)\}}{;}
draw (9.5,3.5) node {\{(x_1, y_1)\}\}};
\frac{(3,2.5) \text{ node } {\frac{(x_1 - x_0)^2 + (y_1 - y_0)^2}}}{};
\end{tikzpicture}
\end{center}
```


8 The xy-plane: Polar Coordinates (xy-plane-polar-coord.tex)

You can specify points in polar coordinates in the form (angle:radius). WARNING: The angle is in degrees, not radians.

LATEX code

```
You can specify points in polar coordinates in the form
(angle:radius). WARNING: The angle is in degrees, not radians.

begin{center}
begin{tikzpicture}
draw (0:1) -- (60:1) -- (120:1)
    -- (180:1) -- (240:1) -- (300:1) -- (360:1)
;
lend{tikzpicture}
lend{center}
```

9 Variable Points and Operations (variable.tex)

You can create variables for points and do simple operations on them.

The following hardcode points:

The following is the same but uses variables and operations:

LATEX code

```
You can create variables for points and do simple operations on them.

The following hardcode points:

\begin{center}
\begin{tikzpicture}
\draw[step=1cm,gray,very thin] (-1,-1) grid (6,4);
\draw[->] (-1,0) -- (6,0);
\draw[->] (0,-1) -- (0,4);
```

```
\draw[very thick] (1,1) -- (5.5,3.5);
\end{tikzpicture}
\end{center}

The following is the same but uses variables and operations:

\begin{center}
\begin{tikzpicture}
\draw[step=1cm,gray,very thin] (-1,-1) grid (6,4);
\draw[->] (-1,0) -- (6,0);
\draw[->] (0,-1) -- (0,4);

\path (1,1) coordinate (A);
\path (A) ++(4.5, 2.5) coordinate (B);

\draw[very thick] (A) -- (B);
\end{tikzpicture}
\end{center}
```

10 PgfPlots (pgfplots.tex)

The following sections use the pgfplots library for 2D diagrams. The pgfplots library is built on top of the pgf/tikz library. It makes drawing 2D plots easier.

Pgfplots can also draw 3D plots.

LATEX code

The following sections use the pgfplots library for 2D diagrams. The pgfplots library is built on top of the pgf/tikz library. It makes drawing 2D plots easier.

Pgfplots can also draw 3D plots.

11 pgfplots: Default Window (xy-plane-default-window.tex)

\LaTeX code

\begin{center}
\begin{tikzpicture}
\begin{axis}
\end{axis}
\end{tikzpicture}
\end{center}

12 pgfplots: Width and Height (pgfplots-width-height.tex)

L^AT_EX code

\begin{center}
\begin{tikzpicture}
\begin{axis}[width=6in, height=2in]
\end{axis}
\end{tikzpicture}
\end{center}

13 pgfplots: Label Axes (pgfplots-label-axis.tex)

LATEX code

\begin{center}
\begin{tikzpicture}
\begin{axis}[
xlabel=Cost,
ylabel=Error]
\end{axis}
\end{tikzpicture}
\end{center}

14 pgfplots: Grid (pgfplots-2d-grid.tex)

\LaTeX code

\begin{center}

\begin{tikzpicture}[line width=2]

\begin{axis}[grid=major]

\end{axis}

\end{tikzpicture}

\end{center}

15 pgfplots: Line Plots (pgfplots-line.tex)


```
\begin{center}
\begin{tikzpicture}
\begin{axis}
\addplot coordinates {(0,0.5) (1,2) (2,1.5)};
\end{axis}
\end{tikzpicture}
\end{center}
\begin{center}
\begin{tikzpicture}
\begin{axis}
```

```
\addplot coordinates {(0,0.5) (1,2) (2,1.5)};
\addplot coordinates {(0,1) (1.5,0.5) (2,0)};
\end{axis}
\end{tikzpicture}
\end{center}
```

16 pgfplots: Color (pgfplots-2d-color.tex)

Note: If you specify a style [...], then the default style is removed.

$\LaTeX \ \mathbf{code}$

```
\begin{center}
\begin{tikzpicture}
\begin{axis}
\addplot [black] coordinates {(0,0.5) (1,2) (2,1.5)};
\addplot [red] coordinates {(0,1) (1.5,0.5) (2,0)};
\end{axis}
\end{tikzpicture}
\end{center}

Note: If you specify a style \verb![...]!, then the default style is removed.
```

17 pgfplots: Marker styles (pgfplots-marker.tex)

No marker:

Filled dot marker (default, color default):

x Marker:

o Marker:

Triangle Marker:

Filled Triangle Marker:

Square Marker:

Filled Square Marker:


```
No marker:
\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in]
\addplot[no markers] coordinates {(0,0) (1,2) (2,1)};
\end{axis}
\end{tikzpicture}
\end{center}
Filled dot marker (default, color default):
\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in]
\addplot+[sharp plot] coordinates \{(0,0)\ (1,2)\ (2,1)\};
\end{axis}
\end{tikzpicture}
\end{center}
x Marker:
\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in]
\addplot[mark=x] coordinates \{(0,0)\ (1,2)\ (2,1)\};
\end{axis}
\end{tikzpicture}
\end{center}
o Marker:
\begin{center}
\begin{tikzpicture}
```

```
\begin{axis}[height=2in]
\addplot[mark=o] coordinates \{(0,0)\ (1,2)\ (2,1)\};
\end{axis}
\end{tikzpicture}
\end{center}
Triangle Marker:
\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in]
\addplot[mark=triangle] coordinates {(0,0) (1,2) (2,1)};
\end{axis}
\end{tikzpicture}
\end{center}
Filled Triangle Marker:
\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in]
\addplot[mark=triangle*] coordinates {(0,0) (1,2) (2,1)};
\end{axis}
\end{tikzpicture}
\end{center}
Square Marker:
\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in]
\addplot[mark=square] coordinates \{(0,0)\ (1,2)\ (2,1)\};
\end{axis}
\end{tikzpicture}
\end{center}
Filled Square Marker:
\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in]
\addplot[mark=square*] coordinates \{(0,0)\ (1,2)\ (2,1)\};
\end{axis}
\end{tikzpicture}
\end{center}
```

18 pgfplots: Dashed Styles (pgfplots-dashed.tex)

Dashed:

Densely dashed:

Loosely dashed:

\LaTeX code

Dashed:

\begin{center}

\begin{tikzpicture}

\begin{axis} [height=2in]

```
\addplot[sharp plot, dashed] coordinates
\{(0,0.5)\ (1,2)\ (2,1.5)\};
\end{axis}
\end{tikzpicture}
\end{center}
Densely dashed:
\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in]
\addplot[sharp plot, densely dashed] coordinates
\{(0,0.5)\ (1,2)\ (2,1.5)\};
\end{axis}
\end{tikzpicture}
\end{center}
Loosely dashed:
\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in]
\addplot[sharp plot, loosely dashed] coordinates
\{(0,0.5)\ (1,2)\ (2,1.5)\};
\end{axis}
\end{tikzpicture}
\end{center}
```

19 pgfplots: Dotted Styles (pgfplots-dotted.tex)

Dotted:

Loosely dotted:

Densely dotted:

\LaTeX code

Dotted:

\begin{center}

\begin{tikzpicture}

\begin{axis} [height=2in]

```
\addplot[sharp plot, dotted] coordinates
\{(0,0.5)\ (1,2)\ (2,1.5)\};
\end{axis}
\end{tikzpicture}
\end{center}
Loosely dotted:
\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in]
\addplot[sharp plot, loosely dotted] coordinates
\{(0,0.5)\ (1,2)\ (2,1.5)\};
\end{axis}
\end{tikzpicture}
\end{center}
Densely dotted:
\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in]
\addplot[sharp plot, densely dotted] coordinates
\{(0,0.5)\ (1,2)\ (2,1.5)\};
\end{axis}
\end{tikzpicture}
\end{center}
```

20 pgfplots: Functions (pgfplots-2d-function.tex)

[WARNING: angles are in degrees, not radians.]

L^AT_EX code

```
[WARNING: angles are in degrees, not radians.]

\begin{center}
\begin{tikzpicture}[line width=2]
\begin{axis}
\addplot[draw=red, ultra thick] {sin(180*x/3.14)};
\addplot[draw=blue, line width=1] {x};
\end{axis}
\end{tikzpicture}
\end{center}
```

21 pgfplots: Domain for all Functions (xy-plane-domain-all.tex)

\LaTeX code

```
\begin{center}
\begin{tikzpicture}[line width=2]
\begin{axis}[domain=0:10]
\addplot[draw=red, ultra thick] {sin(180*x/3.14)};
\addplot[draw=blue, line width=1] {x};
\end{axis}
\end{tikzpicture}
\end{center}
```

22 pgfplots: Domain for each Function (xy-plane-domain-each-function.tex)

L^AT_EX code

```
\begin{center}
\begin{tikzpicture}[line width=2]
\begin{axis}
\addplot[draw=red, domain=0:10, ultra thick] {sin(180*x/3.14)};
\addplot[draw=blue, domain=3:5, line width=1] {x};
\end{axis}
\end{tikzpicture}
\end{center}
```

23 pgfplots: Sample Size (pgfplots-sample-size.tex)

Default sample size:

Sample size = 1000:


```
Default sample size:

\begin{center}
\begin{tikzpicture}[line width=2]
\begin{axis}[domain=0:1000]
\addplot[draw=red, line width=1] {x * sin(x)};
\end{axis}
```

```
\end{tikzpicture}
\end{center}

Sample size = 1000:

\begin{center}
\begin{tikzpicture}[line width=2]
\begin{axis}[domain=0:1000]
\addplot[draw=red, line width=1, samples=1000] {x * sin(x)};
\end{axis}
\end{tikzpicture}
\end{center}
```

24 pgfplots: Legend (xy-plane-legend.tex)


```
\begin{center}
\begin{tikzpicture}[line width=2]
\begin{axis}
\addplot[draw=red, domain=0:360, ultra thick] {sin(x)};
\addplot[draw=blue, domain=0:360, line width=1] {x/200};
\legend{$\sin(x)$,$\frac{1}{200}x$}
\end{axis}
\end{tikzpicture}
\end{center}
```

25 pgfplots: Max and min for axes (xy-plane-axes-max-min.tex)


```
\begin{center}
\begin{tikzpicture}[line width=2]
\begin{axis}[width=6in, height=2in, xmin=-100, xmax=500]
\addplot[draw=red, domain=0:360, ultra thick] {sin(x)};
\addplot[draw=blue, domain=0:360, line width=1] {x/200};
\legend{$\sin(x)$,$\frac{1}{200}x$}
\end{axis}
\end{tikzpicture}
\end{center}
```

26 pgfplots: Place Axes in Middle (xy-plane-place-axes.tex)


```
\begin{center}
\begin{tikzpicture}[line width=2]
\begin{axis}[
  width=6in, height=3in,
  xmin=-100, xmax=500,
  ymin=-1.5, ymax=3.5,
  axis x line=middle,
  axis y line=middle,
]
\addplot[draw=red, domain=0:360, ultra thick] {sin(x)};
\addplot[draw=blue, domain=-100:450, line width=1] {x/200};
\legend{$\sin(x)$,$\frac{1}{200}x$}
\end{axis}
\end{tikzpicture}
\end{center}
```

27 pgfplots: Points (pgfplots-points.tex)

Default style:

User-specified styles:

Points from functions:

\LaTeX code

Default style:

\begin{center}

\begin{tikzpicture}

```
\begin{axis} [height=2in]
\addplot+[only marks] coordinates {(0, 2) (1, 2)};
\end{axis}
\end{tikzpicture}
\end{center}
User-specified styles:
\begin{center}
\begin{tikzpicture}
\begin{axis} [height=2in]
\addplot[mark=*,draw=red,fill=red,only marks] coordinates
\{(0, 2) (1, 2)\};
\addplot[mark=square*, draw=red, fill=red, only marks] coordinates
\{(0, 1) (1, 1)\};
\addplot[mark=square, draw=blue, fill=blue, only marks] coordinates
\{(0, 0) (1, 0)\};
\end{axis}
\end{tikzpicture}
\end{center}
Points from functions:
\begin{center}
\begin{tikzpicture}
\begin{axis} [height=2in]
\addplot[mark=*,draw=red,fill=red,only marks, domain=0:360] {sin(x)};
\end{axis}
\end{tikzpicture}
\end{center}
```

28 pgfplots: Insert PGF node (pgfplots-insert-node.tex)

The coordinate space of PGF is not the same as the coordinate space of pgfplots. To insert a PGF node into the right coordinates do the following.


```
The coordinate space of PGF is not the same as the coordinate space of pgfplots.

To insert a PGF node into the right coordinates do the following.

| begin{center} |
| begin{tikzpicture}[line width=2] |
| begin{axis} |
| addplot[draw=blue, domain=-200:360, line width=1] {x/200};

| node[] at (axis cs:300,-0.5) {$(300,-0.5)$};

| begin{axis} |
| end{axis} |
| end{tikzpicture} |
| end{center} |
```

29 pgfplots: Node with pin (pgfplots-pin.tex)

\LaTeX code

```
\begin{center}
\begin{tikzpicture}[line width=2]
\begin{axis}
\addplot[draw=blue, domain=-200:360, line width=1] {x/200};
```

```
\node[pin=above left:{pin message on left}] at (axis cs:300,-0.5) \{(300,-0.5)\};
\end{axis}
\end{tikzpicture}
\end{center}
\begin{center}
\begin{tikzpicture}[line width=2]
\begin{axis}
  [width=6in, height=4in]
\addplot[draw=red, domain=-100:650, line width=1] {1000*x};
\addplot[draw=blue, domain=-100:650, line width=1] {x^2};
\addplot[draw=green, domain=-100:650, line width=1] {x^3/1000};
\node[pin=above left:{$y=1000x$}] at (axis cs:600,600000) {};
\node[pin=above left:\{y=x^2\}] at (axis cs:600,360000) {};
\node[pin=above left:{$y=\frac{1}{1000}x^3}] at (axis cs:600,216000) {};
\end{axis}
\end{tikzpicture}
\end{center}
```

30 pgfplots: Pin Direction (pgfplots-pin-direction.tex)


```
\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in, width=4in]
\addplot[draw=blue, domain=-100:100, line width=1] {x^2};
\node[pin=180:{$y=x^2$}] at (axis cs:100,10000) {};
\end{axis}
\end{tikzpicture}
\end{center}
\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in, width=4in]
\addplot[draw=blue, domain=-100:100, line width=1] {x^2};
\node[pin=225:{$y=x^2$}] at (axis cs:100,10000) {};
\end{axis}
\end{tikzpicture}
\end{center}
```

31 pgfplots: Shade Area (xy-plane-area.tex)

Same as above but with y-axis redrawn (i.e. complete cycle)

Area under curve specified with points:

LATEX code

\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in,
stack plots=y,
area style,

```
enlarge y limits=false
\addplot [domain=0:360,
          blue,fill=red!90!black,
          line width=3pt
\{\sin(x)\};
\end{axis}
\end{tikzpicture}
\end{center}
Same as above but with $y$--axis redrawn (i.e. complete cycle)
\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in,
stack plots=y,
area style,
enlarge y limits=false
\addplot [domain=0:360,
          blue,fill=red!90!black,
          line width=3pt
\{\sin(x)\}
|- (axis cs:0,0) -- cycle;
\end{axis}
\end{tikzpicture}
\end{center}
Area under curve specified with points:
\begin{center}
\begin{tikzpicture}
\begin{axis}[height=2in,
smooth,
stack plots=y,
area style,
```

```
enlarge x limits=false
\addplot coordinates \{(0,1) (1,1) (2,2) (3,2)\} \closedcycle;
\addplot coordinates {(0,1) (1,1) (2,2) (3,2)} \closedcycle;
\addplot coordinates {(0,1) (1,1) (2,2) (3,2)} \closedcycle;
\end{axis}
\end{tikzpicture}
\end{center}
```

32 pgfplots: Steps (xy-plane-step.tex)


```
\begin{center}
\begin{tikzpicture}
\begin{axis}
\addplot+[const plot]
coordinates
{
    (0,1) (1,3) (2,1) (4,6) (5,6) (6,2)
};
\end{axis}
\end{tikzpicture}
\end{center}
```

```
\begin{center}
\begin{tikzpicture}
\begin{axis}
\addplot[const plot]
coordinates
{
    (0,1) (1,3) (2,1) (4,6) (5,6) (6,2)
};
\end{axis}
\end{tikzpicture}
\end{center}
```