R for Empirical Economics Research Homework 2 $\,$

Yichuan Zhang (47-216786)

Contents

Calculation of the state graduation rate	1
dplyr:select	2
dplyr:group_by	3
dplyr:filter; dplyr:summarise; dplyr:mutate	3
used :factor	4
Draw the figure	6
used :fct_reorder	6
Calculation of the state graduation rate	
Set up library	
Sys.setenv(LANG = "en") library(dplyr)	
## ## Attaching package: 'dplyr'	
<pre>## The following objects are masked from 'package:stats': ##</pre>	
## filter, lag	
<pre>## The following objects are masked from 'package:base': ##</pre>	
## intersect, setdiff, setequal, union	
library(tidyverse)	
## Attaching packages tidyverse 1.3.1	
## v ggplot2 3.3.5 v purrr 0.3.4	
## v tibble 3.1.5 v stringr 1.4.0 ## v tidyr 1.1.4 v forcats 0.5.1	
## w roads 2.0.2	

```
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
library(ggplot2)
library(griffen)
## Loading required package: magrittr
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
##
      set_names
## The following object is masked from 'package:tidyr':
##
##
      extract
## Loading required package: lubridate
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
      date, intersect, setdiff, union
To see what variables we have
options(width = 100)
# show what variables we have
names(cps)
## [1] "age"
                            "year"
                                                 "wage"
                                                                      "hours_lastweek"
## [5] "employed"
                            "education_category" "educ_years"
                                                                      "black"
## [9] "white"
                            "female"
                                                 "married"
                                                                      "single"
## [13] "divorced"
                            "state"
                                                 "region"
                                                                      "sampling_weight"
dplyr:select
Select the variables we need
options(width = 100)
# we need to select the variables we need
new_df <- cps %>% select(state, education_category)
new_df
```

```
## # A tibble: 691,069 x 2
##
     state education_category
     <chr>
##
                  <chr>
## 1 Ohio
                  highschool
## 2 Mississippi highschool
## 3 Alaska
                  somecollege
## 4 North Dakota somecollege
## 5 Ohio
                  highschool
                  highschool
## 6 Kentucky
## 7 New Jersey
                  highschool
## 8 Michigan
                  somecollege
## 9 Delaware
                  highschool
## 10 Idaho
                  highschool
## # ... with 691,059 more rows
```

dplyr:group_by

Calculate the frequency of each categorical class for each state

```
options(width = 100)
# group by the state and educatio_category and count all the categories
#count_df <- new_df %>% group_by(state, education_category) %>% summarise(n = n()).count()
count_df <- count(new_df %>% group_by(state, education_category))
count_df
```

```
## # A tibble: 153 x 3
              state, education_category [153]
## # Groups:
##
     state
              education_category
                                    n
##
     <chr>
              <chr>
                                 <int>
## 1 Alabama college
                                 1355
## 2 Alabama highschool
                                 5117
## 3 Alabama somecollege
                                 2182
## 4 Alaska college
                                 2006
## 5 Alaska highschool
                                 4234
## 6 Alaska somecollege
                                 3431
## 7 Arizona college
                                 1768
## 8 Arizona highschool
                                 4414
                                 2886
## 9 Arizona somecollege
## 10 Arkansas college
                                 1148
## # ... with 143 more rows
```

dplyr:filter; dplyr:summarise; dplyr:mutate

loop to get graduation rate for each state

```
options(width = 100)
# get the unique states
unique_state <- unique(new_df["state"])[[1]]</pre>
```

```
# create an empty list
desired_length <- 1</pre>
graduation rate <- rep(NA, desired length)
for (i in unique state) {
    # group by the dataframe
   group_df <- count_df %>% filter(state == i)
    # get the summation of all frequency of (college, others)
   total number df <- group df %>% summarise(total num = sum(n))
    # get the total population in this state
   total_number <- as.integer(total_number_df["total_num"] %>%
                    summarise(total_student = sum(total_num)))
    # get the precentage for each class
    graduation_rate_df <- count_df %>% filter(state == i) %>%
                    mutate(graduation_rate = n / total_number)
    # insert the graduation rate within in a list
    state_graduation_rate <- graduation_rate_df["graduation_rate"][[1]][1]</pre>
    graduation_rate <- c(graduation_rate, state_graduation_rate)</pre>
}
# remove the first na value in the list
graduation_rate <- graduation_rate[-1]</pre>
graduation_rate
## [1] 0.1806519 0.1464154 0.2074243 0.2089841 0.1814624 0.2450819 0.1874676 0.2410952 0.1809235
## [10] 0.1947045 0.2203958 0.1825258 0.2241121 0.2103692 0.2706426 0.1565750 0.2456805 0.2159098
## [19] 0.2048812 0.2916188 0.3048440 0.1940942 0.2448820 0.2661879 0.1796601 0.1827148 0.4054960
## [28] 0.2118800 0.1809694 0.2202383 0.3026216 0.1734301 0.1405062 0.1742669 0.1997349 0.1949713
```

[37] 0.2722555 0.1464659 0.2659961 0.2248695 0.2754799 0.3145783 0.1940869 0.1673764 0.1839734

[46] 0.2495575 0.2138614 0.2235216 0.1615628 0.1829787 0.2144050

Make a dataframe for drawing the figure

used:factor

```
options(width = 100)
# make a new dataframe
final_df <- data.frame(unique_state, graduation_rate)</pre>
# order the dataframe
final_df <- final_df[order(graduation_rate,</pre>
decreasing = FALSE),]
# rename the index
rownames(final_df) <- 1 : length(rownames(final_df))</pre>
# avoid the ggplot sort the geom_point automaticlly
final_df$unique_state <- factor(final_df$unique_state,</pre>
    levels = final_df$unique_state)
final df
##
              unique state graduation rate
## 1
             West Virginia
                                   0.1405062
```

## 2	Mississippi	0.1464154
## 3	Arkansas	0.1464659
## 4	Alabama	0.1565750
## 5	Louisiana	0.1615628
## 6	Indiana	0.1673764
## 7	Tennessee	0.1734301
## 8	Nevada	0.1742669
## 9	Wyoming	0.1796601
## 10	Ohio	0.1806519
## 11	Idaho	0.1809235
## 12	Texas	0.1809694
## 13	Kentucky	0.1814624
## 14	New Mexico	0.1825258
## 15	North Carolina	0.1827148
## 16	South Carolina	0.1829787
## 17	Oklahoma	0.1839734
## 18	Michigan	0.1874676
## 19	Montana	0.1940869
## 20	South Dakota	0.1940942
## 21	Pennsylvania	0.1947045
## 22	Arizona	0.1949713
## 23	Missouri	0.1997349
## 24	Florida	0.2048812
## 25	Alaska	0.2074243
## 26	North Dakota	0.2089841
## 27	Iowa	0.2103692
## 28	Utah	0.2118800
## 29	Wisconsin	0.2138614
## 30	Maine	0.2144050
## 31	California	0.2159098
## 32	Illinois	0.2202383
## 33	New York	0.2203958
## 34	Nebraska	0.2235216
## 35	Georgia	0.2241121
## 36	Oregon	0.2248695
## 37	Delaware	0.2410952
## 38	Kansas	0.2448820
## 39	New Jersey	0.2450819
## 40	Hawaii	0.2456805
## 41	Washington	0.2495575
## 42	Rhode Island	0.2659961
## 43	Massachusetts	0.2661879
## 44	Minnesota	0.2706426
## 45	Vermont	0.2722555
## 46	Virginia	0.2754799
## 47	Colorado	0.2734799
## 48	New Hampshire	0.3026216
## 49	Maryland	0.3020210
## 49	Connecticut	0.3145783
## 50		0.4054960
## 51	District of Columbia	0.4054960

Draw the figure

$used:fct_reorder$

