# Algorithms Chapter 25 All-Pairs Shortest Paths

Associate Professor: Ching-Chi Lin

林清池 副教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

#### Outline

- Shortest paths and matrix multiplication
- ▶ The Floyd-Warshall algorithm
- Johnson's algorithm for sparse graphs

### Overview<sub>1/2</sub>

- ▶ **Input:** A weighted directed graph G = (V, E).
- **Output:** An  $n \times n$  matrix of shortest-path distances  $\delta(u,v)$ .
- ▶ Could run Bellman-Ford once from each vertex:
  - ▶  $O(n^2m)$  which is  $O(n^4)$  if the graph is **dense**  $(E = \Theta(n^2))$ .
- If no negative-weight edges, could run Dijkstra's algorithm algorithm once from each vertex:
  - ▶  $O(nm\lg n)$  with binary heap  $-O(n^3\lg n)$  if dense.
  - ▶  $O(n^2 \lg n + nm)$  with Fibonacci heap  $-O(n^3)$  if dense.
- We'll see how to do in  $O(n^3)$  in all cases, with no fancy data structure.

## Overview<sub>2/2</sub>

▶ **Input:** The adjacency matrix W of a weighted directed graph G = (V, E), where

$$w_{ij} = \begin{cases} 0 & \text{if } i = j, \\ \text{the weight of edge } (i, j) & \text{if } i \neq j \text{ and } (i, j) \in E, \\ \infty & \text{if } i \neq j \text{ and } (i, j) \notin E. \end{cases}$$

- ▶ Negative weights "allow". Negative-weight cycles "no".
- Output: A matrix  $D = (d_{ij})$ , where  $d_{ij} = \delta(i, j)$ .

### Shortest paths and matrix multiplication

- A dynamic programming approach
- Optimal substructure: subpaths of shortest paths are shortest paths.
- **Recursive solution:** Let  $l_{ij}^{(m)}$  = weight of shortest path from i to j that contains at most m edges.
  - m = 0, there is a shortest path from i to j with no edges if and only if i = j.

$$l_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j. \end{cases}$$

- ▶  $m \ge 1$ ,  $l_{ij}^{(m)} = \min\{l_{ij}^{(m-1)}, \min_{1 \le k \le n}\{l_{ik}^{(m-1)} + w_{kj}\}\}$ =  $\min_{1 \le k \le n}\{l_{ik}^{(m-1)} + w_{kj}\}$  (since  $w_{jj} = 0$ ).
- m = 1, we have  $l_{ij}^{(1)} = w_{ij}$ .

# Compute a solution bottom-up<sub>1/2</sub>

- Compute  $L^{(1)}$ ,  $L^{(2)}$ ,...,  $L^{(n-1)}$ , where  $L^{(1)} = W$ .

All simple shortest paths contain at most n - 1 edges.

```
FOR FROM L^{(m-1)} to L^{(m)}.

EXTEND-SHORTEST-PATHS(L, W)

1. n \leftarrow \text{rows}[L]

2. let L' = (l'_{ij}) be an n \times n matrix

3. for i \leftarrow 1 to n

4. for j \leftarrow 1 to n

5. l'_{ij} \leftarrow \infty

6. for k \leftarrow 1 to n

7. l'_{ij} \leftarrow \min\{l'_{ij}, l_{ik} + w_{kj}\}
```

- L for  $L^{(m-1)}$  and L' for  $L^{(m)}$ .
- Time:  $\Theta(n^3)$ .

$$\begin{array}{c|c}
3 & 4 \\
\hline
2 & 8 \\
\hline
3 & 4
\end{array}$$

$$L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

### Compute a solution bottom-up<sub>2/2</sub>

 $\blacktriangleright$   $L \rightarrow A$ ,  $W \rightarrow B$ ,  $L' \rightarrow C$ 

**Observation:** Extend is like matrix multiplication:  $C = A \cdot B$ .

- $L^{(1)} = L^{(0)} \cdot W = W, \quad L^{(2)} = L^{(1)} \cdot W = W^{(2)}, \quad L^{(3)} = L^{(2)} \cdot W = W^{(3)}$  $L^{(n-1)} = L^{(n-2)} \cdot W = W^{(n-1)}.$
- ▶ Call Extend n-1 times,  $D = W^{(n-1)}$  can be computed in  $\Theta(n^4)$  time.

#### Improving the running time

- Goal: to compute  $W^{(n-1)}$ .
  - ▶ Don't need to compute **all** the intermediate  $W^{(1)}$ ,  $W^{(2)}$ , . . . ,  $W^{(n-2)}$ .
  - Could compute  $W^2 = W \cdot W$ ,  $W^{(4)} = W^{(2)} \cdot W^{(2)}$ ,  $W^{(8)} = W^{(4)} \cdot W^{(4)}$ , ...,  $W^{2^{\lceil \lg(n-1) \rceil}} = W^{2^{\lceil \lg(n-1) \rceil 1}} \cdot W^{2^{\lceil \lg(n-1) \rceil 1}}$
  - ▶ Only  $\lceil \lg(n-1) \rceil$  matrix products is computed.
  - ▶ Since  $2^{\lceil \lg(n-1) \rceil} \ge n-1$ , the final product is equal to  $W^{(n-1)}$ .

FASTER-ALL-PAIRS-SHORTEST-PATHS (W) Time:  $\Theta(n^3 \lg n)$ 

```
1. n \leftarrow \text{rows}[W]
2. L^{(1)} \leftarrow W
3. m \leftarrow 1
4. while m < n - 1
5. \text{do } L^{(2m)} = \text{Extend-Shortest-Paths}(L^{(m)}, L^{(m)})
6. m \leftarrow 2m
7. \text{return } L^{(m)}
```

#### Outline

- Shortest paths and matrix multiplication
- ▶ The Floyd-Warshall algorithm
- Johnson's algorithm for sparse graphs

### Floyd-Warshall algorithm

- A different dynamic-programming approach
- Let  $d_{ij}^{(k)}$  be the weight of a shortest path from i to j with all intermediate vertices in  $\{1, 2, ..., k\}$ .
- Consider a shortest path p from i to j with all intermediate vertices in {1, 2, . . . , k}:
  - If k is not an intermediate vertex, then all intermediate vertices of p are in  $\{1, 2, ..., k-1\}$ .
  - ▶ If *k* is an intermediate vertex, then

all intermediate vertices in  $\{1, 2, \dots, k-1\}$  all intermediate vertices in  $\{1, 2, \dots, k-1\}$ 



p: all intermediate vertices in  $\{1, 2, \dots, k\}$ 

#### Recursive formulation

A recursive solution:

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & \text{if } k \ge 1. \end{cases}$$

- $d_{ij}^{(0)} = w_{ij}$ , because have no intermediate vertices.
  - Such a path has ≤ 1 edge.
- Goal:  $D^{(n)} = (d_{ij}^{(n)})$ 
  - ▶ Because for any path, all intermediate vertices are in the set  $\{1, 2, ..., n\}$ .

#### Compute bottom up

▶ Compute the values  $d_{ij}^{(k)}$  in order of increasing values of k.

```
FLOYD-WARSHALL(W)

1. n \leftarrow rows[W]

2. D^{(0)} \leftarrow W

3. for k \leftarrow 1 to n

4. for i \leftarrow 1 to n

5. for j \leftarrow 1 to n

6. d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})

7. return D(n)
```

 $\blacktriangleright$  Time:  $\Theta(n^3)$ .

#### Constructing a shortest path

 $\pi_{ij}^{(k)}$  is the predecessor of vertex j on a shortest path from vertex j with all intermediate vertices in the set  $\{1,2,\cdots,k\}$ .

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j, \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j, \text{ and } w_{ij} < \infty. \end{cases}$$

For  $k \ge 1$ , we have

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}. \end{cases}$$

$$\begin{array}{c}
3 \\
\hline
1 \\
2 \\
8 \\
\hline
3
\end{array}$$

$$\begin{array}{c}
4 \\
\hline
5 \\
\hline
6
\end{array}$$

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$\begin{array}{c|c}
3 & 4 \\
\hline
2 & 8 \\
\hline
3 & 4
\end{array}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

## Transitive closure<sub>1/2</sub>

The transitive closure of G is defined as the graph  $G^* = (V, E^*)$ , where

 $E^* = \{(i, j) : \text{there is a path from vertex } i \text{ to vertex } j \text{ in } G\}.$ 

We give two methods to compute the transitive closure of a graph in the following, both in  $\Theta(n^3)$  time.

#### Method 1:

- Assign a weight of 1 to each edge, then run Floyd-Warshall.
- If there is a path from vertex i to vertex j, we get  $d_{ij} < n$ .
- ▶ Otherwise, we get  $d_{ij} = \infty$ .

# Transitive closure<sub>2/2</sub>

#### Method 2:

- Save time and space in practice.
- ▶ Substitute other values and operators in Floyd-Warshall.
  - $\rightarrow$  min  $\rightarrow$   $\vee$  (OR)
  - $\rightarrow$  +  $\rightarrow$   $\wedge$  (AND)
- $t_{ij}^{(k)} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j \text{ with all intermediate} \\ & \text{vertices in } \{1, 2, ..., k\}, \\ 0 & \text{otherwise.} \end{cases}$
- $t_{ji}^{(0)} = \begin{cases} 0 & \text{if } i \neq j \text{ and } (i, j) \notin E, \\ 1 & \text{if } i = j \text{ or } (i, j) \in E. \end{cases}$
- $t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{ki}^{(k-1)}).$

#### Compute bottom up

▶ Compute the values  $t_{ij}^{(k)}$  in order of increasing values of k.

```
TRANSITIVE-CLOSURE(G)

1. n \leftarrow |V[G]| \rightarrow O(1)

2. for i \leftarrow 1 to n

3. for j \leftarrow 1 to n

4. if i = j or (i, j) \in E[G]

5. t_{ij}^{(0)} \leftarrow 1

6. else t_{ij}^{(0)} \leftarrow 0

7. for k \leftarrow 1 to n

8. for i \leftarrow 1 to n

9. for j \leftarrow 1 to n

10. t_{ij}^{(k)} \leftarrow t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})

11. return T(n)
```

- Time:  $\Theta(n^3)$ .
- Only 1 bit is required for each  $t_{ij}^{(k)}$ .
- $\triangleright$   $G^*$  can be used to determine the strongly connected components of G.

$$T^{(0)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(1)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$