TAB. A1 PARAMETERS OF EQUIPMENT

$P_{dg}^{min}/P_{dg}^{max}(\mathrm{kW})$	$P_{\scriptscriptstyle CHP}^{\scriptscriptstyle min}$ / $P_{\scriptscriptstyle CHP}^{\scriptscriptstyle max}({ m kW})$	$P_{p,e}^{min}/P_{p,e}^{max}(\mathrm{kW})$	$P_{s,e}^{min}/P_{s,e}^{max}(\mathrm{kW})$	$G_{\scriptscriptstyle p,g}^{\scriptscriptstyle min}/G_{\scriptscriptstyle p,g}^{\scriptscriptstyle max}({ m m}^3)$	$H_{EB}^{min}/H_{EB}^{max}(kW)$	$H_{\it GF}^{\it min}/H_{\it GF}^{\it max}({ m kW})$
0/3500	0/3000	-3000/3000	-3000/3000	0/5000	0/1000	0/2000
$P_{\text{CH}}^{\text{max}}/P_{\text{DC}}^{\text{max}}(kW)$	SOC _e ^{min} / SOC _e ^{max}	$\eta_{_e}^{_{CH}}$ / $\eta_{_e}^{_{DC}}$	$H_{\text{CH}}^{\text{max}}/H_{\text{DC}}^{\text{max}}(kW)$	SOC _h / SOC _h max	$\eta_{_h}^{_{CH}}$ / $\eta_{_h}^{_{DC}}$	$SOC_e(0)/SOC_h(0)(kW)$
1200/1200	200/2000	0.96/0.96	750/750	150/1500	0.9/0.9	800/600
$r_{\rm dg}^{ m down}/r_{ m dg}^{ m up}(kW)$	$r_{\scriptscriptstyle ext{CHP}}^{\scriptscriptstyle ext{down}}/r_{\scriptscriptstyle ext{CHP}}^{\scriptscriptstyle ext{up}}(kW)$	$GHV\eta_{\it CHP-E}$	$\mathit{GHV}\eta_{\mathit{GF}}$	$\eta_{{\scriptscriptstyle EB}}$	r	q(kW)
2100/2100	1800/1800	2.5	8	0.95	0.8	100

TAB. A2 PRICE PARAMETERS

$b_{dg}(Y)$	$c_{dg}(Y)$	$b_{\textit{EES}}(\mathtt{Y})$	$c_{\textit{EES}}(Y)$	$b_{\mathit{TES}}(\mathtt{Y})$	$c_{TES}(Y)$	$\gamma_{\text{int}}(Y)$
1.0	0	0.1	2	0.1	0	1.5
$C^{up}_{\kappa dg}(\mathtt{Y})$	$C_{\scriptscriptstyle m kdg}^{\scriptscriptstyle m down}({ m Y})$	$C_{\scriptscriptstyle m \tiny \it KCHP}^{\scriptscriptstyle \it up}({ m Y})$	$C^{\scriptscriptstyle lown}_{\scriptscriptstyle m \tiny \it CCHP}({ m Y})$	$C^{up}_{ ext{ int}}({ ext{Y}})$	$C_{\scriptscriptstyle t\!E\!E\!S}^{\scriptscriptstyle up}({ m Y})$	$C_{\scriptscriptstyle \it EES}^{\scriptscriptstyle \it down}({ m Y})$
0.2	0.2	0.2	0.2	0.2	0.2	0.2

TAB. A3 PARAMETERS OF RENEWABLE GENERATION

$P_{WT}^{max}(\mathrm{kW})$	$P_{\scriptscriptstyle PV}^{\scriptscriptstyle max}$ (kW)	$v_{in}(m/s)$	$v_{out}(m/s)$	$v_{rate}(m/s)$	$\sigma_{\scriptscriptstyle L}$
3000	3000	4	12	20	0.05

Fig. A1 The scale and shape factor of wind speed

Fig. A2 The shape factors of photovoltaic

Fig. A3 The electric and thermal load demand

Fig. A4 The maximum interruptible load

Fig. A5 Daily energy purchase and sell price

- [1] Y. Wang, Y. Huang, Y. Wang, et al., "Optimal Scheduling of the Regional Integrated Energy System based on energy price Demand Response," *IEEE Trans. Sustain. Energy*, to be published.
- [2] M. Lu, S. Lou, J. Liu, Y. Wu and Z. Wang, "Coordinated Optimization of Multi-type Reserve in Virtual Power Plant Accommodated High Shares of Wind Power," *Proceeding of CSEE*, vol. 38, no. 10, pp. 2874-2882, May. 2018.
- [3] M. Zhou, S. Xia, Y. Li and G. Li, ", A Joint Optimization Approach on Monthly Unit commitment and Maintenance Scheduling for Wind Power Integrated Power Systems" *Proceeding of CSEE*, vol. 35, no. 7, pp. 1586-1594, Apr. 2015.