Homework 2 Description: Document Classification with Neural Networks

STEP 1: FEATURE ENGINEERING AND INITIAL EVALUATION

1(a) - Neural Network with CountVectorizer

- I preprocessed the text using lowercasing, punctuation removal, and stopword filtering.
- Used CountVectorizer with unigram + bigram (ngram_range=(1,2)) and max 5000 features.
- A 2-hidden-layer neural network (128 neurons each) was trained and evaluated using 5-fold cross-validation.
- Avg Train Accuracy: 1.00Avg Val Accuracy: 0.970
- Val Std Dev: 0.0071

1(b) – Neural Network with TF-IDF Features

- Used TfidfVectorizer with the same settings as above.
- TF-IDF gave a slightly lower training variance, improving generalization.
- Avg Train Accuracy: 0.9998
- Avg Val Accuracy: 0.970
- Val Std Dev: 0.0063

1(c) – Feature Summary

I explored two methods to convert text into numerical features for training neural networks:

CountVectorizer (Baseline):

Used CountVectorizer with unigrams and bigrams (ngram_range=(1,2)) and a vocabulary size limited to 5000. Each document is represented as a sparse vector of word counts.

TF-IDF (Enhanced Features):

Applied TfidfVectorizer with the same n-gram range and feature limit. This method downweights common words by using inverse document frequency, helping to highlight more informative terms.

Both feature sets were evaluated using 5-fold cross-validation with a neural network (2 hidden layers, 128 neurons each). TF-IDF provided better validation accuracy than CountVectorizer.

1(d) - Results Table

Feature Method	Train Accuracy	Val Accuracy	Train Std Dev	Val Std Dev
CountVectorizer	1.0000	0.9700	0.0000	0.0071
TF-IDF	0.9998	0.9700	0.0005	0.0063

STEP 2: MODEL TUNING

2(a) - Learning Rate Tuning with 5-Fold CV

• Evaluated: [0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1]

Best learning rate: 0.001
Train Acc: 1.00
Val Acc: 0.976
Val Std Dev: 0.0066

2(b) – Learning Rate Table & Plot

Learning Rate	Train Acc	Val Acc	Train Std Dev	Val Std Dev
0.0001	0.7742	0.725	0.1739	0.1674
0.0003	0.9868	0.943	0.0076	0.0169
0.001	1.0000	0.976	0.0000	0.0066
0.003	1.0000	0.972	0.0000	0.0051
0.01	1.0000	0.965	0.0000	0.0110
0.03	1.0000	0.964	0.0000	0.0066
0.1	0.9990	0.950	0.0009	0.0122

2(c) – Optimizer Tuning

• Evaluated: SGD, Adam, RMSprop

• Best: **RMSprop**

Train Acc: 1.00
Val Acc: 0.974
Val Std Dev: 0.0066

Optimizer	Train Accuracy	Val Accuracy	Train Std Dev	Val Std Dev
SGD	0.204	0.210	0.0190	0.0207
Adam	1.000	0.970	0.0000	0.0045
RMSprop	1.000	0.974	0.0000	0.0066

STEP 3: TEST PREDICTION USING FINAL MODEL

3(a) – Test Data Preprocessing

The test data was preprocessed using the same pipeline as the training data:

- Lowercased text

- Removed punctuation and stopwords
- Converted text to TF-IDF vectors using the vectorizer trained on the training set

This ensures consistent feature representation between training and testing sets.

3(b) - Train Final Model

The final model was chosen based on the best-performing configuration from the previous experiments. Specifically:

Feature Representation: TF-IDF (unigram + bigram, max 5000 features)
Model Type: Neural Network with two hidden layers of 128 neurons each

- Optimizer: Adam - Learning Rate: 0.001

This combination was selected because it consistently provided high validation accuracy and low variance across 5-fold cross-validation, indicating strong generalization and stability.

3(d) – Model Selection Summary

The final model was selected based on validation performance during tuning. TF-IDF with RMSprop provided the best generalization with low variance and consistent high accuracy.

3(d)(1) - Performance on Training Data

- Final model trained on entire data achieved 100% training accuracy
- Cross-validation average validation accuracy: ~97%
- Low standard deviation across folds (~0.006), indicating reliable and consistent performance.