Mastering Machine Learning for spatial prediction II

GEOSTAT 2017 Friday 9-10:30

Madlene Nussbaum

Today: Overview

Selection with covariate importance

Model interpretation

- partial residual plots
- partial dependence plot
- partial dependence maps

Uncertainty

- bootstrapping
- evaluation

Exercises

Covariate selection for random forest (or boosted trees)

What again was this out-of-bag (OOB) error?

For each observation $z_i = (x_i, y_i)$, construct its random forest predictor by averaging only those trees corresponding to bootstrap samples in which z_i did not appear.

Hastie et al. 2009, p. 593

2 types of covariate importance:

- Mean decrease in accuracy (type=1 in importance()): oriented on fitting the data. How much do we reduce error by using this covariate at this split?
 - → this importance is used for boosted trees.
- Mean decrease in node impurity (type=2 in importance()), permutation based, oriented on predictions: How much worse do OOB predictions get if we randomly permutate a covariate?
 - → removing a covariate is not the same, other correlated covariate could replace its "predictive capacity"

Selection, very simple:

Recursive backward elimination

- 1) Remove covariate(s) with lowest importance
- 2) Refit random forest with remaining

Find optimum number of covariates by minimizing OOB error.

Problem:

Correlated covariates remain, because of randomisation at each split (m_{try}). Interpretation needs to account for that.

Covariate selection for random forest (or boosted trees)

Covariate interpretation for any model

Partial residual plots (see e.g. Wikipedia)

Regression based methods, plot *Residuals* of full model plus the covariate effect $\hat{\beta}_i X_i$ against the values of covariate X_i

Residuals +
$$\hat{\beta}_i X_i$$
 versus X_i

Partial dependence plots Hastie et al. 2009, chapt. 10.13.2

Any "black box" learning model, dependence of covariate on response after *accounting* (not *ignoring*) for the effects of all other covariates. Approximation of function by:

$$\bar{f}_{\mathcal{S}}(X_{\mathcal{S}}) = \frac{1}{N} \sum_{i=1}^{N} f(X_{\mathcal{S}}, x_{i\mathcal{C}}),$$

Take care with interpretation: If many covariates it is difficult to choose which to interpret. If collinearity in data set, covariates might replace each other ...

Covariate interpretation for any model

Nussbaum et al. 2017b

Spatial covariate interpretation

Create maps from relationship:

Original covariate

Partial dependence

Local importance

Behrens et al. 2014

Confidence intervals vs. prediction intervals

Confidence intervals

Intervals of confidence for the estimate of a population \underline{mean} . Considers uncertainty in our $\underline{estimation}$ of β (based on standard error of coefficient).

$$y = X \hat{\beta} + \epsilon$$

Prediction intervals

Intervals of confidence for the estimate of a <u>new observation</u>. Considers uncertainty estimated β <u>and</u> the variation the model does not account for (based on standard error of coefficient and residual error).

$$y = X \hat{\beta} + \epsilon$$

Simulate predictive distribution by model-based bootstrapping

1. simulate response under the final model

$$Y(s) = \sum f(X, s) + \epsilon$$

2. fit model to simulated response, compute predictions for new observations

1000 x

95 % prediction interval

Simulate predictive distribution by model-based bootstrapping

For 1000 repetitions, do:

1. Simulate new response $Y^*(s)$ with the fitted value f(x(s)) plus a randomly chosen residual sampled from ε (or from normal distribution with same σ , μ as residual distribution):

$$Y(\mathbf{s})^* = \hat{f}(\mathbf{x}(\mathbf{s})) + \epsilon$$

- 2. Fit model to new response $Y^*(s)$
- 3. Compute prediction error for new location s+ with again randomly sampled ϵ

$$\delta_+^* = \hat{f}(\mathbf{x}(\mathbf{s}_+))^* - (\hat{f}(\mathbf{x}(\mathbf{s}_+)) + \epsilon)$$

Two-sided prediction intervals: $[\hat{f}(\mathbf{x}(\mathbf{s}_+)) - \delta^*_{+(1-\alpha)}; \hat{f}(\mathbf{x}(\mathbf{s}_+)) - \delta^*_{+(\alpha)}].$

Performance plots for e.g. 95% prediction intervals

Performance plots for complete predictive distribution

one-sided prediction intervals of bootstrapped distribution against the nominal probabilities

Evaluation of prediction intervals

coverage 90 %-intervals

geoGAM bootstrap

coverage one-sided intervals

quantile regression forest

Summary

Spatial modelling

- define requirements
- get overview

Get to know ...

- Lasso
- Gradient boosting
- Model averaging

Selection with covariate importance

Model interpretation

- partial residual plots
- partial dependence plot & maps

Uncertainty

- bootstrapping
- evaluation

Be able to judge if computing model averaging on 78 methods found in Package caret is a sensible thing to do ...