组会报告

徐益

2018年7月30日

1 工作内容

- 1. 完成 LDPC-mex-sim
- 2. 阅读 Intel® 64 and IA-32 Architectures Software Developer's Manual Volume 1
- 3. 学习 Intrinsics Guide 并测试

2 SIMD(single instruction, multiple data)

2.1 SIMD Execution Model

图 1: SIMD Execution Model

图 2: Asymmetric Processing in ADDSUBPD

图 3: Horizontal Data Movement in HADDPD

2.2 SIMD Execution Environment

图 4: SSE Execution Environment

图 5: Data Types Introduced with the SSE2 Extensions

图 6: AVX-512 ZMM

图 7: MXCSR

General-Purpose Registers							
31	161	15	B 7	0	16-bit	32-bit	
		AH	Al	.	AX	EAX	
		BH	Bl		BX	EBX	
		CH	CL		CX	ECX	
		DH	DI		DX	EDX	
		BP				EBP	
		SI				ESI	
		DI				EDI	
		SP				ESP	

图 8: General-Purpose Register

图 9: EFLAG

3 Intrinsics Guide 测试

3.1 测试函数

```
1 #include <immintrin.h>
2 /* 32个int8_t并行相加 */
3 void simd_add_int8_32(int8_t* a, int8_t* b, int8_t* r)
4
           __m256i mma, mmb, mmr;
5
           /* load */
6
           mma = _mm256_load_si256((__m256i*)a);
7
                                                  // vmovdqa ymm, m256
8
           mmb = _mm256_load_si256((__m256i*)b);
           /* add */
9
           mmr = _mm256_add_epi8(mma, mmb);
10
                                                  // vpaddb ymm, ymm, ymm
           /* store */
11
12
           _mm256_store_si256((__m256i*)r, mmr); // vmovdqa m256, ymm
13 }
14 /* 8个float并行相加 */
15 void simd_add_float_8(float* a, float* b, float* r)
16 {
17
           __m256 mma, mmb, mmr;
18
           /* load */
           mma = _mm256_load_ps(a);
19
                                                  // vmovaps ymm, m256
```

3.2 耗时测试

表 1: 3.2E7 次加法运算耗时 (VS compiler)

数据类型	SIMD	非 SIMD
int8_t	3.367s	8.496s
float	12.341s	7.676s

表 2: 3.2E7 次加法运算耗时 (Intel C++ compiler)

数据类型	SIMD	非 SIMD
int8_t	3.045s	8.081s
float	12.272s	7.409s

4 下阶段计划

学习 High-Throughput Multi-Core LDPC Decoders Based on x86 Processor