Алгоритм проверки и оценивания задач по СЛАУ

1. РЕШЕНИЕ СЛАУ МАТРИЧНЫМ МЕТОДОМ

Класс задач-1. $det A \neq 0$, n = 3.

Генерирование СЛАУ

- 1. Выбрать x_i , $i = \overline{1,3}$, $x_1 \neq 0$; например, $x_1 \in [1,5]$, $x_2 \in [-7,4]$, $x_3 \in [-3,8]$
- 2. Выбрать b_i , $i = \overline{1,3}$; например, $b_1 \in [0,12]$, $b_2 \in [1,8]$, $b_3 \in [-5,5]$
- 3. Выбрать $a_{12}, a_{13}, \, \, \,$ например, $a_{12} \in [-3,3], \, \, a_{13} \in [1,5]$
- 4. Вычислить $a_{11} = \frac{1}{x_1} [b_1 x_2 a_{12} x_3 a_{13}],$
- 5. Выбрать a_{22}, a_{23} , например, $a_{22} \in [1,5]$, $a_{23} \in [-4,4]$
- 6. Вычислить $a_{21} = \frac{1}{x_1} [b_2 x_2 a_{22} x_3 a_{23}],$
- 7. Выбрать a_{32}, a_{33} , например, $a_{32} \in [1,5]$, $a_{33} \in [-1,4]$
- 8. Вычислить $a_{31} = \frac{1}{x_1} [b_3 x_2 a_{32} x_3 a_{33}]$
- 9. Вычислить det A
- 10. If det A = 0,
 - 1. Если $a_{1j}=0$, $i=\overline{1,3}$, то выбрать новое значение для любого из $a_{1j}=0$, $i=\overline{2,3}$ (достаточно для одного из них) и повторить шаги 4 и 9;
 - 2. Если $a_{2j}=0$, $i=\overline{1,3}$, то выбрать новое значение для любого из $a_{2j}=0$, $i=\overline{2,3}$ (достаточно для одного из них) и повторить шаги 6 и 9;
 - 3. Если $a_{3j}=0$, $i=\overline{1,3}$, то выбрать новое значение для любого из $a_{2j}=0$, $i=\overline{2,3}$ (достаточно для одного из них) и повторить шаги 8 и 9.

Далее будем использовать следующие обозначения:

	значение, введенное студентом	корректное значение
определитель матрицы A	Δ	det A
обратная матрица	A^{-1}	invA
единичная матриц	$A^{-1}A$	E
решение	x_i , $i = \overline{1,3}$	$sol_i, i = \overline{1,3}$
подстановка решения в систему	$(AX)_i, i = \overline{1,3}$	b_i , $i = \overline{1,3}$

Постановка задачи. Решить систему линейных алгебраических уравнений (СЛАУ) матричным методом:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1,$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2,$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3.$

Вопросы

- 1. Вычислите определитель Δ матрицы A данной системы и введите: [поле ввода с меткой Δ] [кнопка со стрелкой]
- 2. Введите обратную матрицу A^{-1} [форма ввода 3х3 с меткой A^{-1} =]
- 3. Введите произведение матриц $A^{-1}A$ (либо AA^{-1} рандомно) [форма ввода 3х3 с меткой $A^{-1}A=($ либо $AA^{-1}=)$]
- 4. Введите решение системы $X=(x_1,x_2,x_3)$ [3 поля ввода, рядом с которыми метки $x_1,\ x_2,\ x_3$] [кнопка со стрелкой]
- 5. Вычислите AX и введите его значение [1 поле ввода и возможность добавить поле ввода]

Проверка решения задач (класса 1) на решение СЛАУ матричным методом

Ответ студента сравнивается с

- 1. значением detA [т.е. должно быть $\Delta = detA$]
- 2. матрицей invA [т.е. должно быть $A^{-1} = invA$] поэлементно, либо путем проверки выполнения равенства $A^{-1}A = E$, где E единичная матрица 3x3
- 3. sol_i , $i = \overline{1,3}$, где $sol_i = (A^{-1}b)_i$, $i = \overline{1,3}$, [т.е. должно быть $x_i = sol_i$, $i = \overline{1,3}$]
- 4. вектором *b* покоординатно [т.е. должно быть $(AX)_i = b_i$, $i = \overline{1,3}$]

После отправки своих ответов студент получает отчет (в конце) в виде

N	Вопрос	максимальный балл, %	баллы студента, %
1	определитель Δ	12.5	
2	invA	12.5	
3	x_1	12.5	
4	x_2	12.5	
5	x_3	12.5	

6	$(AX)_1$	12.5	
7	$(AX)_2$	12.5	
8	$(AX)_3$	12.5	
	Итого баллов в %	100	X

Ваша итоговая оценка XX баллов (Х %) из тах.

Запись результатов

- 1. Название группы
- 2. Данные студента: ФИ, номер варианта, итоговая оценка в % и баллах
- 3. Максимальный балл
- 4. Постановка задачи: SLAE, $det A \neq 0$, n = 3.
- 5. Значения параметров: a_{ij} , $i,j=\overline{1,3}$ в виде

$$[a_{11} \ a_{12} \ a_{13}],$$

$$[a_{21} \ a_{22} \ a_{23}],$$

$$[a_{31} \ a_{32} \ a_{33}]$$

- 6. Значение det A, а также Δ , введенный студентом, и балл по вопросу
- 7. Значения $det_j,\ j=\overline{1,3},$ а также $\Delta_j,$ введенные студентом, и балл по вопросу
- 8. Значения sol_i , $i = \overline{1,3}$, а также x_i , введенные студентом, и балл по вопросу
- 9. b_i , $i = \overline{1,3}$, а также $(AX)_i$, $i = \overline{1,3}$, введенные студентом, и балл по вопросу.