Proof

Ethan

August 1, 2024

Let $\Omega \subseteq \mathbb{C}^n$ be an open bounded connected set, and let $L^2(\Omega, \lambda)$ denote the space of square integrable functions (with weight λ). Let $A^2(\Omega, \lambda)$ denote the space of holomorphic functions in $L^2(\Omega, \lambda)$. Since $A^2(\Omega, \lambda)$ is closed in $L^2(\Omega, \lambda)$, there exists an orthogonal projection operator $P: L^2(\Omega, \lambda) \to A^2(\Omega, \lambda)$. We claim that $\|P\| = 1$. First, we recall that

$$||P|| = \sup\{||Pf|| : f \in L^2(\Omega, \lambda), ||f|| \le 1\}$$

We first show that $||P|| \leq 1$. Let $f \in L^2(\Omega, \lambda)$. Since P is orthogonal, we find that

$$||f||^2 = ||Pf + (I - P)f||^2 = \langle Pf + (I - P)f, Pf + (I - P)f \rangle =$$
(1)

$$\langle Pf, Pf \rangle + \langle Pf, (I-P)f \rangle + \langle (I-P)f, Pf \rangle + \langle (I-P)f, (I-P)f \rangle =$$
 (2)

$$\langle Pf, Pf \rangle + \langle (I - P)f, (I - P)f \rangle = ||Pf||^2 + ||(I - P)||^2$$
 (3)

so that

$$||Pf||^2 = ||f||^2 - ||(I - P)f||^2 \le ||f||^2$$
(4)

and

$$||Pf|| \le ||f|| \le 1 \tag{5}$$

From this, we deduce that $||P|| \le 1$. Next, we want to show that $||P|| \ge 1$. Let $f \in A^2(\Omega, \lambda)$ be such that $f \not\equiv 0$. Then ||f|| > 0 so that $f/||f|| \in A^2(\Omega, \lambda)$. Then, we find that

$$||P(f/||f||)|| = ||f/||f||| = 1$$

so that $||P|| \ge 1$. My only concern is if $A^2(\Omega, \lambda) = \{0\}$.