DVA104

Data Structures, Algorithms, and Program Development

Gabriele Capannini

gabriele.capannini@mdh.se

Mälardalen University

October 8, 2018

Example

Assume the array A is longer than 1000, how long does it take to run £1?

```
int f1(int * A) {
  int s=0;
  for(int i=0; i<1000; i=i+1)
    s = s+A[i];
  return s;
}</pre>
```

It depends...On what?

What affects the execution time in a function?

- Hardware (HW)
 - Processor,
 - Memory (bandwidth, latency, cache, ...)
 - o ...
- Software (SW)
 - Operating System
 - The compiler
 - The program itself (loops, recursion, etc.)

Example

What if we measure the execution time of f1 assuming to run it many times in the same identical HW/SW conditions?

```
int f1(int * A) {
  int s=0;
  for(int i=0; i<1000; i=i+1)
    s = s+A[i];
  return s;
}</pre>
```

Even in this case we can observe that times vary slightly!

There are some other random factors that we can't control.

Computational Models

Similarly to what we have done with ADTs, we can use an abstraction that does not consider these *unwanted* details of the problem: HW, SW, and all the other possible factors affecting the performance.

We need an abstract executor, aka computational models.

For example, the Random Access Machine (RAM) is an abstraction of a real computer with:

- an unbounded amount of memory,
- a processor which executes every type of operation (assignments, calculations, comparisons, memory accesses,...) in one unit of time.

Time Complexity

Let's calculate the time complexity of £1 by means of the RAM computational model: how many time units t are required to run it:

```
int f1(int* A) {
  int s=0; //1t
  for(int i=0; i<1000; i=i+1) //1t+1t×1001+2t×1001
    s = s+A[i]; //2t×1000
  return s;
}</pre>
```

It turns out that the execution time is 5004t. Note that this evaluation is not affected from other factors than the code.

What if, instead of 1000, we had 10000 iterations?

Time Complexity (continued)

What is the time complexity of the following function?

```
int f2(int* A, int n) {
   int s=0; //1t
   for(int i=0; i<n; i=i+1) //1t+1t×(n+1)+2t×(n+1)
      s = s+A[i]; //2t×n
   return s;
}</pre>
```

It turns out that the execution time of £2 is (5n+4)t.

In this case the time complexity depends on the variable ${\rm n}$ which is a parameter of the computation.

Time Complexity: graphically

Here we compare the time complexity of the two functions:

The time complexity of functions like ${\tt f1}$ is called constant since it doesn't vary.

The time complexity of functions like £2 is called linear in n since it grows as $a \times n + b$ where a = 5 and b = 4.

Time Complexity: quatratic

There are also function with quadratic time complexity:

```
int f3(int** A, int n) {
  int s=0; //1t
  for(int i=0; i<n; i=i+1) //3t+3t×n
  for(int j=0; j<n; j=j+1) //(3t+3t×n) ×n
    s = s+A[i][j]; //2n<sup>2</sup>t
  return s;
}
```

The time complexity equals (t can be omitted):

$$1+(3n+3)(n+1)+2n^2 = 5n^2+6n+4$$

which can be described by the formula:

$$a \times n^2 + b \times n + c$$

with a=5, b=6 and c=4.

Time Complexity: exponential

There are also functions with exponential time complexity:

```
int f4(int n) {
  if(n>0) //1t
    return f4(n-1)+f4(n-1); //???
  else
    return 1;
}
```

Let $T_f(n)$ the function which defines the time complexity of the function f computed on n: for example, $T_{f3}(n) = 5n^2 + 6n + 4$.

$$T_{f4}(n) = \begin{cases} 2T_{f4}(n-1) + 3, & \text{if } n>0\\ 1, & \text{else} \end{cases}$$

Time Complexity: exponential (continued)

For example, a sketch of running f4(2) looks like this:

so that its time complexity equals:

$$T_{\text{f4}}(2) = 2T_{\text{f4}}(1) + 3 = 2(2T_{\text{f4}}(0) + 3) + 3 = 2(2(1) + 3) + 3 = 4 + 6 + 3$$

In the general case, we have:

$$I_{f4}(n) = 2^n + 3(\underbrace{2^{n-1} + 2^{n-2} + \dots + 1}_{\sum_{i=0}^{n-1} 2^i = 2^n - 1}) = 4 \times 2^n - 3$$

Time Complexity: logarithmic

There are also functions with sublinear time complexity:

```
int f5(int n) {
   if(n>0) //1t
    return 1+f5(n/2); //???
   else
    return 0;
}
```

The time complexity equals:

$$T_{f5}(n) = \begin{cases} T_{f5}(\frac{n}{2}) + 2, & \text{if } n > 0\\ 1, & \text{else} \end{cases}$$

Time Complexity: logarithmic (continued)

For example, a sketch of running f4(5) looks like this:

so that its time complexity equals:

$$T_{f5}(5) = 2 + T_{f5}(2) = 2 + 2 + T_{f5}(1) = 2 + 2 + 2 + T_{f5}(0) = 2 + 2 + 2 + 1$$

In the general case, we have:

$$I_{\text{f5}}(n) = \underbrace{2 + 2 + ... + 2}_{\lfloor \log_2(n) \rfloor + 1 \text{ times}} + 1 = 2(\lfloor \log_2(n) \rfloor + 1) + 1$$

This kind of time complexity is called logarithmic.

Time Complexity: recap

Note: functions like £1, £2, and £3 are called polynomial time algorithms since their complexity is described by a polynomial.

A polynomial of degree d is can be expressed like: $\sum_{i=0}^{d} a_i \cdot n^i$ Examples: d=0 constant, d=1 linear, d=2 quadratic, d=3 cubic

Time Complexity: test

- 1. What's the time complexity of a function searching for a given value...
 - (a) ...in an array?
 - (b) ...in a Linked List (LL)?
 - (c) ...in a balanced Binary Search Tree (BST)?

2. Given that f4 has exponential time complexity, what is the complexity of f4bis?

```
int f4bis() {
   return f4(1000);
}
```


Time Complexity: recap & examples

Time complexity	Example
Constant	Evaluate an arithmetic expression
Logarithmic	Binary search on <i>n</i> sorted values
Linear	Sum of <i>n</i> values
Quadratic	Populate a matrix $n \times n$
Exponential	Create a BST of <i>n</i> levels

Big-O-notation

In this course we talked about 'abstraction' as a mean to simplify a problem by skipping the unnecessary details.

Can we do the same with Time Complexity?

Yes!

Big-O-notation is the answer: it allows us to classify algorithms based on their performance on large inputs.

Big-O-notation: example #1

Let's consider £3 again:

```
int f3(int** A, int n) {
  int s=0;
  for(int i=0; i<n; i=i+1)
    for(int j=0; j<n; j=j+1)
      s = s+A[i][j];
  return s;
}</pre>
```

Its complexity $I(n) = 5n^2 + 6n + 4$ is given by the sum of 3 terms:

- (a) a quadratic term: 5n²,
- (b) a linear term: 6n,
- (c) a constant term: 4.

Big-O-notation: example #1 (continued)

There is a dominant term in the formula: $5n^2$.

We can state that the time complexity of this function grows proportionally to $\rm n^2$ by discarding the coefficient a=5 and the remaining terms of the polynomial with lower degree.

Big-O-notation: example #2

Let us consider the previous functions f1 and f3 with time complexities $T_{\rm f1}()=5004$ and $T_{\rm f3}(\rm n)=5n^2+6n+4$, respectively.

n	$T_{\text{fl}}()$	$T_{f3}(n)$
1	5004	15
2	5004	36
3	5004	67
4	5004	108
5	5004	159

It seems that £3 behaves better than £1... However £3 belongs to a worse complexity class than than £1! Why?

Big-O-notation: example #2 (continued)

While T_{f1} is constant (it doesn't matter how large n is), f3 requires more and more time as n grows.

Big-O-notation: definition

Big-O-notation tells us the order of the maximum number of operations that might be performed when problem size grows.

Its formal definition is:

Let the f(n) and g(n) be two functions. We say that

$$f(n) \in O(g(n))$$

if there exist two constants n_0 and k such that

$$f(n) \le k \cdot g(n)$$
 for each $n \ge n_0$

Big-O-notation: recap & examples

f	Time complexity	Order
f1()	Constant	O(1)
f5(n)	Logarithmic	$O(\log n)$
f2(n)	Linear	O(n)
f3(n)	Quadratic	$O(n^2)$
	Cubic	$O(n^3)$
		O(n ^d)
f4(n)	Exponential	O(2 ⁿ)

increasing time complexity

Big-O-notation: sum-rule


```
	ext{ « If } f_1 \in \mathsf{O}(g_1) \text{ and } f_2 \in \mathsf{O}(g_2), \text{ then } f_1 + f_2 \in \mathsf{O}(\max\{g_1,g_2\}) 	ext{ »}
```

What is the time complexity of the following function?

```
int f6(int n) {
  int s=0;
  for(int i=0; i<n; i=i+1)
    s = s+i;
  for(int i=0; i<10000; i=i+1)
    s = s/(i+3);
  return s;
}</pre>
```


Big-O-notation: product-rule


```
	ext{ « If } f_1 \in \mathsf{O}(g_1) \text{ and } f_2 \in \mathsf{O}(g_2), \text{ then } f_1 \cdot f_2 \in \mathsf{O}(g_1 \cdot g_2) 	ext{ »}
```

What is the time complexity of the following function?

```
int f7(int n) {
  int s=0;
  for(int i=0; i<n; i=2*i)
    for(int j=0; j<n; j=j+1)
        s = s+i;
  return s;
}</pre>
```


Big-O-notation: final remarks

- Big-O-notation allow us to easily compare two algorithms:
 - \circ O(T_{f2}) < O(T_{f3}) \Rightarrow "f2() is faster than f3()"
- To calculate Big-O function of an algorithm can be easily done (in general) just by looking (carefully) at the code.
 - \circ For example, looking at £3 () it's enough to observe that the most frequent calculation is performed n^2 times to state that the complexity of the whole function.
- Big-O function gives only an asymptotic upper bound of a function. However we are interested in to find the most tight possible one.
 - For example, to state that $T_{\rm f1}$ is quadratic because $T_{\rm f2} < n^2$ is technically correct, but not terribly precise.
 - There are similar notations (e.g., Θ-notation) that force us to be more precise.

In light of the previous definition, what is the time complexity of the following function?