

SISTEM PERIODIK UNSUR

KIMIA X – SMAK IMMANUEL PONTIANAK, JAN 2016

KOMPETENSI DASAR

 3.4 Menganalisis hubungan konfigurasi elektron dan diagram orbital untuk menentukan letak unsur dalam tabel periodik dan sifat-sifat periodik unsur.

- KI 1. Menghayati & mengamalkan ajaran agama yang dianutnya
 - KD 1.1 Menyadari adanya keteraturan struktur partikel materi sebagai wujud kebesaran Tuhan YME dan pengetahuan tentang struktur partikel materi sebagai hasil pemikiran kreatif manusia yang kebenarannya bersifat tentatif

- KI 2. Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan pro-aktif dan menunjukkan sikap sebagai bagian dari solusi atas permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia
 - KD 2.1 menunjukkan perilaku ilmiah (memiliki rasa ingin tahu, disiplin, jujur, objektif, terbuka, mampu membedakan fakta dan opini, ulet, teliti, bertanggungjawab, kritis, kreatif, inovatif, demokratis, komunikatif) dalam merancang dan melakukan percobaan serta berdiskusi yang diwujudkan dalam sikap sehari-hari
 - KD 2.2 menunjukkan perilaku kerjasama, santun, toleran, cinta damai dan peduli lingkungan serta hemat dalam memanfaatkan sumber daya alam
 - KD 2.3 menunjukkan perilaku responsif dan pro-aktif serta bijaksana sebagai wujud kemampuan memecahkan masalah dan membuat keputusan

- KI 3.Memahami, menerapkan, menganalisis pengetahuan faktual, konseptual, prosedural berdasarkan rasa ingintahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian,serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
 - KD 3.4 Menganalisis hubungan konfigurasi elektron dan diagram orbital untuk menentukan letak unsur dalam tabel periodik dan sifat-sifat periodik unsur
 - IHB 1. Siswa dapat menganalisis hubungan konfigurasi elektron dan diagram orbital untuk menentukan letak unsur dalam tabel periodik
 - IHB 2. Siswa dapat menganalisis hubungan konfigurasi elektron dan diagram orbital untuk menentukan sifat-sifat keperiodikan unsur
 - IHB 3. Siswa dapat menganalisis perkembangan sistem periodik unsur dan mendeskripsikan prinsip dasar penyusunan setiap sistem periodik unsur
 - IHB 3. Siswa dapat menganalisis sifat-sifat keperiodikan unsur dalam satu golongan maupun dalam satu periode

- 4. Mengolah, menalar, dan menyaji dalam ranah onkret dan ranah babatrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, dan mampu menggunakan metoda sesuai kaidah keilmuan.
 - KD 4.4 Menyajikan hasil analisis hubungan konfigurasi elektron dan diagram orbital untuk menentukan letak unsur dalam tabel periodik dan sifat-sifat periodik unsur
 - IHB 1.Siswa dapat menyajikan/mempresentasikan hasil analisis hubungan konfigurasi elektron dan diagram orbital untuk menentukan letak unsur dalam tabel periodik
 - IHB 2. Siswa dapat menyajikan/mempresentasikan hasil analisis hubungan konfigurasi elektron dan diagram orbital untuk menentukan sifat-sifat periodik unsur
 - IHB 3. Sisa dapat menyajikan hasil analisis perkembangan sistem periodik unsur dan deskripsi prinsip dasar penyusunan setiap sistem periodik unsur dalam bentuk tabel atau mind-mapp, serta menyajikan kelemahan maupun kelebihan dari masing-masing sistem
 - IHB 4. Siswa dapat menyajikan hasil analisis data sifat keperiodikan dalam bentuk grafik serta menyajikan interpretasi data sifat keperiodikan

Apa yang menjadi dasar penyusunan unsurunsur dalam tabel tersebut?

SISTEM PERIODIK UNSUR

- MENGAPA ADA SISTEM PERIODIK UNSUR ?
- APA TUJUAN PENGELOMPOKAN UNSUR-UNSUR ?
- APA DASAR PENGELOMPOKAN UNSUR-UNSUR ?
- SIAPA SAJA YANG BERPERAN DALAM PERKEMBANGAN SISTEM PERIODIK UNSUR?

TIMELINE

<u>Ahli kimia Arab</u>

Ahli kimia Arab & Persia

- Dasar pengelompokan :
 - Sifat fisis: logam & non logam

Sifat logam

- Mengkilap
- Umumnya padat pada suhu kamar
- Mudah ditempa/dibentuk
- Konduktor panas

Sifat Non-Iogam

- Tidak mengkilap
- Dapat berupa padatan, cairan, dan gas pada suhu kamar
- Sulit dibentuk/ rapuh
- Bukan konduktor panas

- Dasar pengelompokan :
 - Sifat kimia: gas, non-logam, logam, tanah
 - Cahaya & kalor dianggap sebagai zat/unsur
 - ada beberapa senyawa yang dianggap sebagai unsur

Jhon Dalton, 1808

- Dasar pengelompokan :
 - Kenaikan massa atom
- Sudah ada 36 unsur
- Massa atom merupakan perbandingan massa atom unsur terhadap massa atom unsur hidrogen

Jons Jacob Berzelius, 1828

- Dasar pengelompokan :
 - Kenaikan massa atom
 - Memperbaiki
 perhitungan beberapa
 massa atom yang
 diukur oleh Dalton
 - Contoh: massa atom unsur Oksigen = 16 kali massa atom hidrogen

Berdasarkan kenaikan massa atom unsur

Dalton

Berzelius

Triade Döbereiner Hk. Oktaf Newlands Sistem periodik Mendeleev

Triade Döbereiner, 1829

- Dasar pengelompokan
 Johann Döbereiner :
 - Kemiripan sifat
 - Tiap kelompok beranggota 3 unsur (Triad) yg mirip sifat-sifatnya, maka unsur kedua mempunyai sifat di antara sifat unsur ke-1 dan ke-3, demikian pula massa atom unsur ke-2 merupakan rata-rata massa atom unsur ke-1 dan ke-3

- Contoh : Li-Na-K ,
- massa atom Na = (7 + 39)/2 = 23
- Sifat Li, Na, K

Sifat Li, Na, K	Keterangan
Penampakan	Logam mengkilap, lunak
Titik leleh	Rendah untuk logam
Titik didih	Rendah untuk logam
Kerapatan	Rendah sehingga terapung di air
Kereaktifan	Bereaksi hebat dg air Bereaksi dg oksigen

Hk. Oktaf Newlands, 1865

- Dasar pengelompokan:
 - Kenaikan massa atom
 - Pengulangan sifat unsur
 - Unsur ke-8 (F) mirip dengan unsur ke-1 (H)
 - Disebut oktaf
- Kelemahan :
 - Pengulangan tidak selalu terjadi pada unsur ke-8
 - Dibuktikan oleh Lothar Meyer

Hk. Oktaf Newlands

Do 1	Re 2	Mi 3	Fa 4	Sol 5	La 6	Ti 7
Н	Li	Ве	В	С	N	0
F	Na	Mg	Al	Si	Р	S
CI	K	Ca	Cr	Ti	Mn	Fe
Co, Ni	Cu	Zn	Υ	In	As	Se
Br	Rb	Sr	Ce, La	Zr	Di, Mo	Ro, Ru
Pd	Ag	Cd	U	Sn	Sb	L
Те	Cs	Ва	Та	W	Nb	Au
Pt, Ir	Os	V	TI	Pb	Bi	Th

Source: Publisher's Document

FIGURE 3.3 Newlands' Law of Octaves. A repeating trend of properties occurs every eighth element. For example, the eighth element (F) is similar in properties to the first element (H).

Sistem periodik Meyer

- Dasar pengelompokan :
 - Kenaikan massa atom
 - Kemiripan sifat
 - Dibuat dalam grafik massa atom vs volum atom

- Dasar pengelompokan :
 - Kenaikan massa atom
 - Kemiripan sifat
- Periode / baris / horizontal : kenaikan massa atom
- Pengulangan sifat / kemiripan sifat dalam kolom / golongan

Reihen	Gruppe I. — R ² O	Gruppe II. — RO	Gгщре Ш. — R ² O ³	Gruppe IV. RH ⁴ RO ²	Grфре V. RH ³ R ² 0 ⁵	Gruppe VI. RH ² RO ³	Gruppe VII. RH R ² H ⁷	Grwp - RO ⁴
1 2			B = 11		100	2.70	F = 19	
3 4			14000000000000000000000000000000000000	Si = 28 Ti = 48	THE PROPERTY AND A	ASSET - AUGUST - SOURCE	C1 = 35, 5 Mn = 55	Fe = 56, Co = 59, Ni = 59, Cu = 63.
5	(Cu = 53)	Zn = 65	-= 68	-= 72	A men agran a Ship and a market and a second	Se = 78	Br = 80	157
6	Rb = 85	S = 87	?Yt = 88	Zr = 90	Nb = 94	Mo = 96	—= 100	Ru = 104, Rh = 104, Pd = 106, Ag = 108
7	(Ag = 108)	Cd = 112	In=113	Sn = 118	Sb = 122	Te = 125	J = 127	#6.000 +0000 +000 ₩ 10 00+000
8	\$500 SECTION 9	Ba = 137	?Di = 138	?Ce = 140		200	-	
9	(-)	<u>151</u>	- 170	- 400	— —	-	X 	0 405 7 402
10		= -000V (Activity)	10000 No. 2000 No.	.00000 000000	. Which where	W = 184		Os = 195, Ir = 197, Pt = 198, Au = 199.
11	(Au = 198)	Hg=200	T1=204			a crocompanions		
12	97 7 8	= 3	2 7	Th = 231	75 (A.) A. (A.)	U = 240	= 8.	

powered by married

SMA KRISTEN

Ueber die Beziehungen der Eigenschaften zu den Atomgewichte der Elemente. Von D. Mendelejeff. — Ordnet man Elemente nach zunehmenden Atomgewichten in verticale Reihen so, dass die Horizontalreihen analoge Elemente enthalten, wieder nach zunehmendem Atomgewicht geordnet, so erhält man folgende Zusammenstellung, aus der sich einige allgemeinere Folgerungen ableiten lassen.

		Ti 50	Zr - 90	? 180
		V = 51	Nb - 94	Ta 182
		Cr 52	Mo - 96	W = 186
		Mn == 55	Rh = 104,4	Pt = 197.4
	199901	Fe == 56	Ru == 104.4	Ir == 198
	Ni -	Co = 59	Pd = 106.6	Os 199
H = 1		Cn - 63.4	Ag = 108	Hg - 200
Be == 9.	4 Mg - 24	7 2	Cd - 112	
B 11	Al = 27.44	? = 68	Ur 116	An - 197?
C - 12	Si 28	? = 70	Sn == 118	
N 14	P = 31	-	Sb == 122	Bi == 210?
0 = 16	S = 32	Se = 79.4	Te = 128?	
F 19	C1 = 35.5	Br == 80	J - 127	
Li = 7 Na = 23	K 39	Rb - 85,4	Cs = 133	Tl = 204
	Service 1	Sr = 87.6	Ba == 137	Pb == 207
	7 45	Ce = 92		
	.13	La == 94		
	?Yt == 60	Di - 95		
	2 In = 75.6	Th == 118?		

THE PERIODICITY OF THE ELEMENTS

The Elements	Their Properties in the Face	The Composition of the Egitropes and Organic metallic Compounts	Riversia- and Atomic Weights	The Composition of the Sullier Online	The Properties of the Sultan Culden	Notable Periods or Serios
Hydrogwa	f s d A/d d d d d d d d d d d d d d d d d d	RH _m or R(CH _d) _m [3] m = 1 4	H (4) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H,O. 11 - 8 (7) - 2 - 3 - 4 - 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i (11)
Floorium Sodians Magnorium Aleminium Nilcom	90° 071 0700 TE 500° 071 174 14 000° 072 25 15 (1200°) 000 25 75 44° 120 272 14	4 3	F 19 No 13 Mg 24 Al 27 Ri 28 P 31	1: - 2: - 3 4 5: - 1 4 5: - 1 - 4:5:6:	X4 ₀ O 26 24 -22 26 22 -3 Al ₀ O ₁ 69 26 + 18, 240 49 29 62	3
Sulphur Chineton	114° oct 201 14 -25° 04 057 45 (800°) — 14 25 — (25) (14) (2500°) — (51) (14) (2500°) — 55 92	2 1	HERRICA CO	1 - 3 - 5 - 1	190 H3 P7 	•
Chronium Manganess Iron Coluds Nickel Copper	(1500°) — 25 90 (1500°) — 75 76 1400° 012 79 72 (1200° 017 97 69 1250° 017 97 69 1014° 020 98 72		Cr 52 Mm 53 Fn 55 Co 38 Ni 59 Cu 63	- 1 3 4 5 - 1 3 4 - 6 - 21 3 4 - 6 - 21 3 4 - 6 - 21 3 1 - 6 11 21	274 FB 99 	5
Acadiman Germanium Acacole Bedestines Brondines Boholium Stanatium Yibrines	27 - 1 31 207 - 5 90 23 200 - 5 47 15 500 004 27 13 517 - 49 15 -7 - 91 04 100 - 15 57 [800 - 25 53 - (26 (36)	1 3 2 1	GA 70 Ga 72 A4 73 50 79 10 80 10 87 T 80	- 2 3 4 5 3 4 5 4 5 6 11 2	Gu ₂ O ₂ (21) (20) (70) 67 44 45 81 26 60 	-
Zircontum Nichina Nichina Molyhdenum Hathenium Hodina Palladium	(2000) 600 153 64		Zr 90 Nb 84 Mo 90 (I) Ru 100 Rb 101 IV 100		67 47 -69 47 57 469 64 60 68	
Silver	850° 039 503 18 280° 031 86 18 126° 888 74 14 380° 028 79 16 430° 028 79 16 430° 077 01 20 131° — 49 36	1 3 = = = = = = = = = = = = = = = = = =	Ag 108 CA 119 In 113 Sh 118 To 125 I 167	11 - 21 - 3 - 4 - 6 - 1 - 1 - 5 - 1	Ag ₀ 0 75 81 11 813 81 92 In ₀ 0 ₁ 728 28 97 690 48 28 60 69 24 21 68 67	7
Earthon	(100°) — 01 11 (100°) — 01 12 (100°) — 01 12 (100°) — 01 12		Cs 130 Bs 197 La 188 Cs 140 Di 143	11 21 31 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	91 60 60 65 30 115 614 30 20	
Ytterbiers	(1000) — 191 94 (1000) — 191 94		Th 178 (1) Ta 148 W 184		978 48 (-9) 73 89 64 69 67 8	10
Oomium Iridiam Platiaman Gold Metvury Thollium Lend	(\$500°) 007 223 %5 \$500° 807 224 %5 \$772° 800 210 92 \$642° 804 220 92 \$642° 814 220 10 -20° - 100 15 37 806° 000 110 15 806° 814 90 21	12-	(I) On 101 Ir 100 Ft 106 An 100 Hg 200 Ti 204 IV 200 Ili 200	3 1 - 6 - 6 3 1 - 6 - 6 1 - 3 1 1 - 3 1 - 3 1 - 3 2 - 3 - 1	Am ₂ O (223) (30) (30) 111 30 45 T3 ₂ O ₂ (27) (47) 45 29 50 42	
Thorism	111 11	-	73s 101	4	PH 14 20	19

Kelebihan sistem periodik Mendeleev

- Menyediakan tempat kosong untuk unsur-unsur yang belum ditemukan tapi sudah diprediksi ada berdasarkan ramalan kemiripan sifat-sifat unsurnya.
 - Contoh: Ge, ditemukan 1886, sebelumnya diramalkan dengan nama eka-silikon yg berada di antara Si dan Sn pada gol 4
 - contoh lain : Ga, Sc pada gol 3

Perbandingan eka-silikon dg Germanium

	Si	Eka-silikon	Sn	Germanium
Massa atom	28	72	118	72,59
Titik leleh (oC)	1410	tinggi	232	947
Kerapatan (g/cm³)	2,33	5,5	7,28	5,35

Kelebihan sistem periodik Mendeleev

- Menyajikan data massa atom yg lebih akurat, cth : Be, U
- 3. Periode 4 & 5 tidak berbeda jauh dg sistem periodik Modern
- 4. Penempatan unsur –unsur gas mulia yg ditemukan antara 1890 -1900 tidak mempengaruhi sistem periodik Mendeleev

Kelemahan sistem periodik Mendeleev

- Masih ada 2 unsur yg terletak dalam setiap tempat pada periode 4 dan 5. contoh unsur K dan Cu sama-sama menempati golongan I di periode 4. kedua unsur ini dlam sistem periodik modern dipisahkan menjadi gol IA dan IB
- Penempatan beberapa unsur tidak sesuai dengan kenaikan massa atom, contoh: I-127 dengan Te-128, namun dari sifatnya unsur Te harus diletakkan lebih dahulu daripada I-127. Hal ini dibuktikan benar pada SPU modern

SISTEM PERIODIK MODERN

Sistem periodik modern

- Dasar pengelompokan :
 - Kenaikan nomor atom (Z)
 - Kemiripan sifat
- Menghasilkan keteraturan pengulangan sifat berupa periode (baris) dan kemiripan sifat berupa golongan (kolom)
- Kemiripan sifat unsur-unsur dlm gol sama terkait dg konfigurasi elektronnya, mempunyai elektron valensi sama.

Nomor periode

- Bil kuantum, n
- Jumlah kulit

Nomor gol

Jumlah elektron valensi

- Nomor gol ditulis dg huruf Romawi, golongan A dan B
- Gol A disebut unsur utama, gol B disebut unsur transisi
- Unsur-unsur dalam 2
 baris panjang di bawah
 tabel utama disebut
 unsur transisi dalam,
 baris ke-1 disebut deret
 lantanida dan baris ke-2
 disebut deret aktinida
- Sistem periodik ini juga mengelompokkan unsurunsur ke dalam gol metal dan nonmetal yang dipisahkan secara diagonal dengan metaloid
- Sifat metalik menurun dalam satu periode, naik dalam satu golongan

T _i																															. 1	2 He
3		4																								- 1		- 15	7.7	- 8	9	30
1.		Bie																									B		N	-0	- E	Non
- 10		12																									13	14	1.5	16	17	28
24	1	Mar																									AL	.503	- 12	55	<1.	307
15	2	26															21	22	23	24	25	- 26	27	28	29	30	- 31	32	72	3.4	35	36
K	5	CIL									_						Sc	TI	V	CT	Mix	- Be	Co	NI.	Cu	Zn	670	Ge	22	Sec	Br	ET
.31	7.	380			-		_					-				_	3/9	40	44	42	47	44	45	46	47	48	49	-50	24	52	53	54
121	9	Sir	-														Y	251	Nb	340	Te	1811	Rh	37.2	Age	Ca	In	Sn	825	Te	1	Xic
-55	5		27	58	39	60	őL	62	63	54	65	662	67	6K	- 639	70		72	7.8	74	75	76	.77	78	79	89	S1.	82	83	84	85	86
(0)	8	152	La	Ce.	Pt	No	Post	Sm.	Eu	Cod	Tb	DAT :	He	Er	Tim	· Yb	1.0	HIL	Ta	W	Re	Os	1r	E4:	Ast	Hig	TJ	PD:	330	Po	At	Ron
- 81	7	100	85	90 -	0.1	92	93	-94	95	.546	97	586	00	100	304	102	1.03	1.04	10.5	1.06	30.7	108	1.00	110	171	212	112	114	315	1.10	117	218
- 19			ALC	Th	Pa	12	No	Po	Aim	Cm	Hitc	CT	Eds	Fig.	Md	No	1.5	Linq	Chip	Unh.	CHK	Una	Unc	2.0			***					

Periodic Table of the Elements

1 H 1.008					\												2 He 4.00
3	4	1										5	6	7	8	9_	10
Li 6.94	Be 9.01	10.										10.81	12.01	N 14.01	16.00	F 19.00	Ne 20.18
11	12				•							13	14	15	16	17	18
Na 22.99	Mg 24.31				1							Al 26.90	Si 28.09	P 30.97	S 32.07	C1 35.45	Ar 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.20	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Min.	Fe 55.85	Co 50.93	Ni 58,69	63.55	2n 6539	Ga 69.72	72.61	As 74.93	Se 78.96	Br 29.90	Kr 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.47	Sr 87.62	Y 88.91	Zr 91.32	Nb 92.91	Mio 95.94	Tc	Ru 101.0	Rh 103.9	Pd 105 +	Ag 107.8	Cd 113.4	In	Sn 118.7	Sb 131.7	Te	I 126.9	Xe 131.3
55	56	57	72	73	74	7	76	77	78	79	80	81	82	83	84	85	86
Cs 132.9	Ba 1373	La 138.9	Hf 178.5	Ta 180.1	W 183.9	F	Os 190.2	Ir 192.2	Pt 195.1	Au 197.0	Hg 200.6	TI 204.4	Pb 207.2	Bi 209.0	Po (209)	At (210)	Rn (222)
87	88	89	104	105	106	10	108	109	110	111	112	113	114	115	116		
Fr 223.0	Ra 226.0	Ac 227.0	Rf (261)	Db (262)	Sg	Bh	Hs	Mt	Ds	Rg	Uub	(284)	(289)	(388) Omb	(292)		

58 Ce 140.1			Pm		Eu	Gd	Ть	66 Dy 162.5	Ho	Er			
90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf (251)	99 Es	100 Fm	101 Md	102 No	103 Lr

penamaan

- Gol IA, kecuali H, dikenal sebagai logam yang sangat reaktif, disebut logam Alkali
- Gol IIA, dikenal sebagai logam yg sangatreaktif namun kereaktifannya kurang bila dibandingkan gol IA, disebut logam Alkali tanah
- Gol VIIA, dikenal sebagai halogen
- Gol VIIIA, dikenal sebagai gas mulia (Noble gases), nonlogam yang tidak reaktif
- Tidak ada istilah khusus untuk unsur-unsur gol IIIA VIA
- Gol antara IIA dan IIIA terdiri dari unsur-unsur logam kurang reaktif, disebut juga logam transisi
- Penomoran gol A dan B menurut aturan yg ditetapkan oleh IUPAC (International Union of Pure and Applied Chemistry) adalah dari 1 to 18

Terima kasih Sudah belajar dengan bersungguh-sungguh

