On Related Theorems About Global Hyperbolicity

Alexander Dirmeier

Technische Universität Berlin

2009-07-10

Outline

- Preliminaries
- Global Hyperbolicity of Regularly Sliced Spacetimes
- Subclasses of Sliced Spacetimes
- Global Hyperbolicity of the Subclasses and Relatedness
- Global Hyperbolicity of Hubble-Isotropic Spacetimes
- References

Sliced Spacetimes

Metric

$$g = -N^2(t,x)dt^2 + 2\beta(t,x)dt + h(t,x)$$

Lapse

$$N:M \to \mathbb{R}, \ (t,x) \mapsto N(t,x) > 0$$

Shift

$$\beta = \beta_i dx^i \in \Lambda^1 S_t$$

• Time Function $t: I \times S \rightarrow \mathbb{R}, \ (t, x) \mapsto t \in I$

$$(t,x)\in M=I imes \mathcal{S},\,I\subset\mathbb{R}$$
 and $\dim(\mathcal{S})=3$

Kinematical Invariants

Let
$$V \parallel \partial_t$$
 and $g(V,V) = -1$, $u := g(V,\cdot) \Rightarrow$ Acceleration $\dot{u} = \nabla_V u$
$$\nabla u = \frac{\Theta}{3} p + \sigma + \omega - \dot{u} \otimes u$$

• Projection on V^{\perp} : $p = g + u \otimes u$

- Expansion $\Theta = \operatorname{div}(V)$
- Shear $\sigma = \operatorname{sym}(\nabla u) + \dot{u} \vee u \frac{\Theta}{3}p$

- Rotation $\omega = du + \dot{u} \wedge u$
- Red-shift one-form $\rho = \dot{u} \frac{\Theta}{3}u$

Finsler Geometry

Following [Bao2000], let $F: TS \to [0, \infty)$ be a Finslerian metric on S.

- Forward (Backward) completeness: Cauchy sequence $\{x_i\} \subset S$ with $d(x_i, x_i)$ ($d(x_i, x_i)$) $< \epsilon$ for a $\nu(\epsilon) < i \le j$ converges
- Randers metric: Riemannian metric \tilde{g} and one-form b on S imply $R: TS \to [0, \infty)$ with $R = \sqrt{\tilde{g}} + b$ being Finslerian if $||b||_x^{\tilde{g}} < 1$
- [Caponio, Javaloyes, Masiello 2007]:

$$ilde{g}$$
 complete and $\|b\|^{ ilde{g}}:=sup_{x\in S}\|b\|^{ ilde{g}}_X<1$

 $R=\sqrt{ ilde{g}}+b$ forward and backward complete

Regularly Sliced Spacetimes

- A sliced spacetime $(M, -N^2dt^2 + 2\beta dt + h)$ is regularly sliced if
 - (i) bounded lapse: $0 < N_m \le N \le N_M$ with $0 < N_m \le N_M$ constant
 - (ii) h(t) is a complete Riemannian metric on every S_t
 - (iii) h(t) is bounded from below by a $\gamma := h(t_0)$, such that $A\gamma_{ij}v^iv^j \le h_{ij}v^iv^j$ with 0 < A = const
 - (iv) shift is *h*-norm bounded: $\sqrt{h^{ij}\beta_i\beta_j} = \|\beta\|_{(t,x)}^h < B$
- [Choquet-Bruhat, Cotsakis 2002]:
 - (M,g) regularly sliced \Rightarrow (M,g)

(M, g) globally hyperbolic with Cauchy surfaces S_t

Subclasses of Sliced Spacetimes / General Remarks

- Goal: metric and kinematic characterisation of subclasses
- Kinematic characterisation allows for non-trivial generalisations of known subclasses
- Self-contained theorems on global hyperbolicity for subclasses exist
- → Identify interdependence and special cases of theorems on global hyperbolicity for subclasses
- (→ Relations of causality and kinematical invariants)

Subclasses

Globally Hyperbolic Standard Stationary Spacetimes

• Let $(M = I \times S, g = -N^2(x)dt^2 + \beta(x)dt + h(x))$ be standard stationary and the Randers metric on S (Fermat metric) be

$$R = \sqrt{\frac{1}{N^2}h + \frac{1}{N^4}\beta^2} + \frac{1}{N^2}\beta.$$

[Caponio, Javaloyes, Masiello 2007]

R is forward and backward complete

 \Leftrightarrow

S is Cauchy surface for (M, q)

• Global hyperbolicity of standard conformastationary $g' = \Omega^2 g$ by conformal transformations

Globally Hyperbolic Standard Static Spacetimes

- Standard stationary: $\beta \to 0$ implies standard static with $R = \frac{1}{N} \sqrt{h}$ as special case
- Standard static global hyperbolicity follows as special case (e.g. [Sanchez2004]):

$$\frac{1}{N^2}h$$
 complete \Leftrightarrow $(M, -N^2(x)dt^2 + h(x))$ globally hyperbolic

• Then also (e.g. [Beem1996]) warped product $(I \times S, -dt^2 + f^2(t)h)$ is globally hyperbolic iff h is complete

Relatedness of the Subclasses I

•
$$R = \sqrt{\tilde{g}} + \frac{1}{N^2} \beta$$
 with $\tilde{g} = \frac{1}{N^2} h + \frac{1}{N^4} \beta^2$

- Let h be a Riemannian metric, N > 0 bounded lapse function and β h-bounded shift: h complete $\Leftrightarrow \tilde{g}$ complete complete
- (M, g) regularly sliced standard stationary
 - $\Rightarrow \tilde{g}$ complete and $\|\frac{1}{N^2}\beta\|^{\tilde{g}}$ uniformly bounded by 1
 - ⇒ R forward and backward complete
- [Caponio, Javaloyes, Sanchez 2009]

R forward and backward complete

 \tilde{g} complete

Relatedness of the Subclasses II

• shift-bounded standard stationary (M, g) with metric $g = -dt^2 + 2\beta(x)dt + h(x)$ and $\|\beta\|_x^h < B$

stationary:

static:

Hubble-Isotropic Spacetimes

• A sliced spacetime $(I \times S, g)$ is called Hubble-isotropic (H-isotropic) if in comoving coordinates

$$g = -dt^2 + 2b(x)dt + s^2(t,x)\gamma(x) - b(x) \otimes b(x)$$

or $\sigma = 0$ and $\dot{u} = 0$ for $V = \partial_t$.

- Thereby s is a function on M, γ is a Riemannian metric and b is a one-form on S and $h(t,x) = s^2 \gamma b^2$ on S_t with $s^2(t,x) > (\|b\|_x^{\gamma})^2$
- Hubble function (e.g. [HassePerlick1999])

$$H: \mathcal{C}M \to \mathbb{R}; \quad H = g(\nabla_{K_x}V, K_x) = \tilde{H}(x) \circ \pi$$

with $CM = \{K \in TM \mid g(K, K) = 0\}$ is isotropic.

Global Hyperbolicity of H-isotropic Spacetimes

• [Dirmeier2009] Let $s^2\gamma$ be complete and

$$\inf_{(t,x)\in M} s^2(t,x) > \sup_{x\in S} (\|b\|_x^{\gamma})^2,$$

then the H-isotropic spacetime is globally hyperbolic.

• The h-boundedness of the shift b is matched if

$$\sup_{(x,t)\in S} \sup_{v\in T_x S\setminus 0} \sqrt{\frac{(b(x)[v])^2}{s^2(t,x)\gamma(x)[v,v]-(b(x)[v])^2}} < B.$$

- This is fulfilled if $\inf s^2 > \sup(\|b\|^{\gamma})^2$.
- Then also h is complete and bounded from below
 ⇒ the spacetime is regularly sliced.

Example for a Globally Hyperbolic H-isotropic Spacetime

• [Gürses,Plaue,Scherfner,Schönfeld,Sousa2009]: $M = \mathbb{R} \times S$ and

$$g = -dt^2 + 2e^x dydt + s^2(t)dx^2 + \frac{1}{2}e^{2x}(s^2(t) - 2)dy^2 + s^2(t)dz^2,$$

with $S = \mathbb{R} \times \mathbb{H}^2$ homogeneous Bianchi III surface.

- Globally hyperbolic for $s^2 > C > 2 = (\|e^x dy\|^{\gamma})^2$.
- But g stays Lorentzian for $s^2 \in (0,2] \Rightarrow$ horizon and CTCs.

References «Thank you for your attention!»

- [Hasse1988] Geometrische Auswertungsmethoden fuer kosmologische Beobachtungen, Ph.D. thesis, TU Berlin (in German)
- [Beem1996] Global Lorentzian Geometry, Marcel Dekker, Inc., New-York
- [HassePerlick1999] On spacetime models with an isotropic Hubble law, Class. Quant. Grav. 16, 2559-2576
- [Bao2000] An Introduction to Riemann-Finsler Geometry, Springer, New-York
- [Choquet-Bruhat, Cotsakis 2002] Global Hyperbolicity and Completeness, J. Geom. Phys. 43(4), 345-50
- [Sanchez2004] On the Geometry of Static Spacetimes, arXiv: math/0406332
- [Caponio, Javaloyes, Masiello 2007] On the Energy Functional on Finsler Manifolds and Application to Stationary Spacetimes, arXiv: math/0702323v3
- [Caponio, Javaloyes, Sanchez 2009] On the Interplay Between Lorentzian Causality and Finsler Metrics of Randers Type, arXiv: 0909.3501v1
- [Gürses,Plaue,Scherfner,Schönfeld,Sousa2009] On spacetimes with given kinematical invariants: Construction and examples, to appear in Gödel-type Spacetimes: History and New Developments
- [Dirmeier2009] On Classes of Globally Hyperbolic Spacetimes with Rotation and Expansion. (preprint)

