ফ্লিপ–ফ্লপ, রেজিস্টার ও কাউন্টার

লেকচার-১০

ফ্লিপ–ফ্লপ, রেজিস্টার ও কাউন্টার

লেকচার-১০

ফ্লিপ-ফ্লপ কি?

ফ্লিপ-ফ্লপ হলো সিকুয়েন্সিয়াল লজিক সার্কিট দ্বারা গঠিত একটি বিশেষ ধরনের বাইস্ট্যাবল মাল্টিভাইব্রেটর সার্কিট। এর দুটি কন্ট্রোল ইনপুট এবং দুটি আউটপুট আছে। যার একটি High State হলে অপরটি খড় ঝিঃধঃব হবে। এক্ষেত্রে উচ্চ অবস্থা বলতে বাইনারি (১) এবং নিম্ম অবস্থা বলতে বাইনারি (০) কে বুঝায়। একটি ল্যাচ ফ্লিপ ফ্লপ এক বিট (Single Bit) তথ্য ধারণ করতে পারে। অর্থাৎ এটি মেমারের ডিভাইস হিসেবেও কাজ করে।

ফ্লিপ-ফ্লপের প্রকারভেদ

ফ্লিপ-ফ্লপ সাধারণত চার প্রকার।

যথা_

- 1. SR ফ্লিপ-ফ্লপ
- 2. D ফ্লিপ-ফ্লপ
- 3. JK ফ্লিপ-ফ্লপ
- 8. T ফ্লিপ-ফ্লপ।

SR ফ্লিপ-ফ্লপঃ সবচেয়ে সরল ফ্লিপ-ফ্লপ হলো SR (SET-RESET) ফ্লিপ-ফ্লপ। দুটি ন্যান্ড (NAND) গেইট অথবা দুটি নর (NOR) গেইট এমনভাবে যুক্ত থাকে যে একটির আউটপুট (Output) অন্যটির ইনপুটের সাথে (Feedback) সংযুক্ত থাকে অর্থাৎ ক্রস কাপলড্ (Cross Coupled) ভাবে যুক্ত থাকে, একে ঝজ ল্যাচ (Lach) ও বলা হয়। SR ফ্লিপ-ফ্লপ আউটপুট

অবস্থাকে '1' বা HIGH করাকে সেট (SET) এবং '0' বা Low করাকে রিসেট (RESET) বলা হয়।

ফ্রিপ-ফ্রুপের ব্যবহার

ফ্লিপ-ফ্লপের ব্যবহার বা প্রয়াগে ক্ষেত্র সিকোয়েন্সিয়াল লজিক সার্কিট গঠনে ফ্লিপ-ফ্লপের ব্যবহার সর্বাধিক। নিচে ফ্লিপ-ফ্লপের কিছু সংখ্যক ব্যবহার তুলে ধরা হলো-

- ১. Bounce elimination সুইচ তৈরিতে।
- ২. তথ্যে সংরক্ষণের জন্য রেজিস্টার তৈরিতে।
- ৩. Frequency divider হিসেবে।
- 8. ইলেকট্রনিক কাউন্টার সার্কিট তৈরিতে।
- ৫. ক্লক ফ্রিকুয়েন্সি সিরিয়াল এবং প্যারালাল
 স্থানান্তরকরণে।

- ৬. ক্লক ফ্রিকুয়েন্সি সংরক্ষণ এবং পুন ব্যবহারকরণে।
- ৭. ডিজিটাল কম্পিউটার তৈরিতে।
- ৮. বিভিন্ন লজিক গেইট তৈরিতে।
- ৯. মেমারের উপাদান হিসেবে এবং
- ১০. বিভিন্ন গাণিতিক লজিক প্রক্রিয়া সম্পন্ন করতে। এবং
- ১১. ডেটা ট্রান্সফার করতে ব্যবহৃত হয়।

রেজিস্টারের প্রকারভেদ-

গঠন অনুসারে রেজিস্টার বিভিন্ন প্রকার হতে পারে। যথা:

- ১. প্যারালাল লোড রেজিস্টার
- ২. শিফ্ট রেজিস্টার

কাজের প্রকৃতি অনুসারে রেজিস্টার বিভিন্ন প্রকার হতে পারে। যথাঃ

- ১. অ্যাকিউমুলেটর রেজিস্টার
- ২. সাধারণ রেজিস্টার
- ৩. বিশেষ রেজিস্টার

রেজিস্টার কী?

রেজিস্টার হলো একগু'ছ ফ্লিপ-ফ্লপ এবং গেইটের সমন্বয়ে গঠিত সার্কিট যা অস্থায়ী মেমরি হিসেবে কাজ করে। এর প্রত্যেকটি ফ্লিপ-ফ্লপ একটি করে বাইনারি বিট সংরক্ষণ করতে পারে। কেন্দ্রীয় প্রক্রিয়াকরণ অংশে প্রোগ্রাম নির্বাহের সময় উপাত্ত অস্থায়ীভাবে জমা রাখার জন্য রেজিস্টার ব্যবহৃত হয়। n বিটের একটি বাইনারি তথ্য ধারণের জন্য n সংখ্যক ফ্লিপ-ফ্লপ বিশিষ্ট একটি রেজিস্টার প্রয়োজন। ৮-বিট রেজিস্টার, ১৬- বিট রেজিস্টার, ৩২-বিট রেজিস্টার ইত্যাদি- যারা যথাক্রমে ৮,১৬, ৩২ বিট তথ্য ধারণ করতে পারবে।

প্যারালাল লোড রেজিস্টার কী?

একটি সাধারণ প্যারালাল লোড রেজিস্টার বা বাফার রেজিস্টারের ব্লক ডায়াগ্রাম দেখানো হলো। এটি 8 বিটের বাইনারি তথ্য সংরক্ষণ করতে পারে। প্যারালাল লোড রেজিস্টার হলো এমন এক ধরনের রেজিস্টার যেখানে একটি কমন পালস্ সিস্টেম থাকে। কমন পালসের যেকোনো একটি টার্মিনাল পাল্স পাবার সাথে সবগুলো রেজিস্টার সক্রিয় হয় এবং তথ্য ধারণ করে।

চিত্র: একটি 4-বিট প্যারালাল লোড রেজিস্টার

শিফট রেজিস্টার কী?

যে রেজিস্টার বাইনারি বিট ধারণের পাশাপাশি ধারনকৃত বিটকে ডানদিকে বা বামদিকে বা উভয় দিকে সরাতে পারে তাকে শিফ্ট রেজিস্টার বলে। শিফট রেজিস্টারে ফ্রিফ-ফ্লপগুলো চেইন আকারে একটির আউটপুট আরেকটির ইনপুটের সাথে সংযুক্ত থাকে। একটি কমন পাল্সের মাধ্যমে সব ফ্লিপ-ফ্লপ ইনপুট গ্রহণ করে এক স্টেট হতে অপর স্টেটে ডেটা শিফটিং এর কাজ করে।

রেজিস্টারের ব্যবহার

রেজিস্টার হলো CPU এর অন্তর্গত সঞ্চয় ব্যবস্থা। এতে তথ্য বা নির্দেশ সাময়িকভাবে সঞ্চিত রাখা যায়। রেজিস্টারে প্রোগ্রামার কোনো কিছু জমা রাখতে পারে না, একমাত্র CPU-ই গণনার প্রয়োজনে রেজিস্টারে কোনো কিছু সঞ্চিত রাখতে পারে। রেজিস্টারের গঠন প্রধান মেমরির অনুরূপ। বিভিন্ন ধরনের প্রিন্টারে রেজিস্টার ব্যবহৃত হয়, কী-বোর্ড বাফারে ব্যবহৃত হয়।

কাউন্টার কী?

কাউন্টার হলো এমন একটি সিকুয়েন্সিয়াল ডিজিটাল ইলেকট্রনিক্স সার্কিট যা ফ্লিপ-ফ্লপ এবং লজিক গেইট দিয়ে গঠিত এবং তাতে দেয়া ইনপুট পালসের সংখ্যা গুণতে পারে। যে কাউন্টার বাইনারি সিকুয়েন্স অনুসরণ করে তাকে বাইনারি কাউন্টার বলে। একটি কাউন্টার কত থেকে

কত গণনা করবে তা কাউন্টার এর ডিজাইনের উপর নির্ভর করে। সুতরাং, একটি n বিট বাইনারি কাউন্টার 0 থেকে 2n -1 পর্যন্ত পর্যায়ক্রমিক গুণতে পারে।

মোড নাম্বার / মডিউলাস কী?

কাউন্টারের মোড নাম্বার বা মডিউলাস হলো কাউন্টারটি সর্বো'চ কত সংখ্যা গুণতে পারে। যদি কোনোএকটি কাউন্টারের বিট সংখ্যা n হয় তবে এটি হ টি ফ্লিপ-ফ্লপ নিয়ে তৈরি হবে এবং তা সিকুয়েন্সিয়াল বা ধারাবাহিকভাবে 0 থেকে 2^n - 1 সংখ্যক সংখ্যা গণনা করতে পারবে। অর্থাৎ n বিট কাউন্টারের মডিউলাস সংখ্যা 2^n । তবে কাউন্টারের ফ্লিপ-ফ্লপের সংখ্যা ব্রাস-বৃদ্ধি করে মডিউলাসের সংখ্যা ব্রাস-বৃদ্ধি করা যায়।

কাউন্টারের প্রকারভেদ:

কাউন্টারের ব্যবহার:

- ১. ক্লুক পালসের সংখ্যা গণনার জন্য
- ২. টাইমিং সিগন্যাল প্রদানের জন্য
- ৩. ডিজিটাল কম্পিউটারে
- 8. ডিজিটাল ঘড়িতে
- ৫. বৈদ্যতিক স্পন্দন গণনার ক্ষেত্রে
- ৬. প্যারালাল ডেটাকে সিরিয়াল ডেটায় রূপান্তর করতে।

উত্তরঃ কাউন্টার হলো একগুচ্ছ ফ্লিপ-ফ্লপ এবং লজিক গেইটের সমন্বয়ে গঠিত সার্কিট যা ইনপুট পালসের সংখ্যা গুণতে পারে।

৪) মোড নাম্বার কী?

উত্তরঃ কোন কাউন্টার সর্বোচ্চ যতগুলো সংখ্যা গুণতে পারে তাকে তার মোড নম্বর বা মডিউলাস বলে। n বিট কাউন্টারের মডিউলাস হল 2^n । অর্থাৎ একটি n-বিট কাউন্টার ধারাবাহিকভাবে 0 থেকে 2^n -1 সংখ্যাগুলো গণনা করতে পারে।

পাঠ মূল্যায়ন-

জ্ঞানমূলক প্রশ্নসমূহঃ

১) ফ্লিপ-ফ্লপ কী?

উত্তরঃ ফ্লিপ-ফ্লপ হলো লজিক গেইট দিয়ে তৈরি এক ধরণের ডিজিটাল বর্তনী যা এক বিট তথ্য ধারণ করতে পারে। প্রতিটি ফিপ-ফ্লপে এক বা একাদিক ইনপুটের জন্য দুটি আউটপুট পাওয়া যায়।

২) রেজিস্টার কী?

উত্তরঃ রেজিস্টার হলো একগুচ্ছ ফ্লিপ-ফ্লপ এর সমন্বয়ে গঠিত সার্কিট যা অস্থায়ী মেমোরি হিসেবে কাজ করে। এর প্রত্যেকটি ফ্লিপ-ফ্লপ একটি বিট সংরক্ষণ করতে পারে।

৩) কাউন্টার কী?