

Diverse Human Motion Prediction via Gumbel-Softmax Sampling from an Auxiliary Space

ACM Multimedia 2022 Lisbon, Portugal | 10-14 October

Lingwei Dang ¹, Yongwei Nie ^{1*}, Chengjiang Long ², Qing Zhang ³, Guiqing Li ¹

South China University of Technology, ² Meta Reality Lab, ³ Sun Yat-sen University

csdanglw@mail.scut.edu.cn, {nieyongwei, ligq}@scut.edu.cn, clong1@fb.com, zhangqing.whu.cs@gmail.com

Background & Motivation

- Diverse human motion prediction aims at predicting multiple possible future sequences from the observed one.
- Poses obtained by previous simple deep generative networks are not diverse enough.
- Recent work attempted to model the conditional distribution of data but it can only cover a fixed number of modes.
- We propose a novel sampling strategy for sampling very diverse results from an imbalanced multimodal distribution.

Contributions

- A novel sampling method converts the sampling of the distribution into randomly sampling of points from an auxiliary space for diverse and accurate sampling.
- A Gumbel-Softmax sampling method and a hinge-diversity loss both improve the performance of our method.
- Extensive experimental results demonstrate the effectiveness of our approach.

Datasets & Metric & Project

- Datasets: Human3.6M, HumanEva-I Dataset
- Metrics: APD, ADE, FDE, MMADE, MMFDE
- Link: https://github.com/Droliven/diverse_sampling

Proposed Approach

Architecture of the pretrained CVAE

Pseudocode for the overall approach and the Gumbel-Softmax sampling strategy

Algorithm 1 Diverse sampling from a complex distribution by random Gumbel-Softmax sampling from an auxiliary space

Input: Observed pose sequence x, number of samples K, auxiliary space generation network \mathcal{N}_{β} , Gaussian distribution generation network \mathcal{N}_{γ} , CVAE decoder network \mathcal{G}_{θ} that models the target complex distribution

- **Output:** A set of samples $\{\tilde{\mathbf{y}}_k\}_{k=1}^K$
- B = N_β(x) // generate an auxiliary space given input poses
 W ← Gumbel-Softmax sampling // generate a coefficient matrix by Algorithm 2
- 3: P = WB // Multiply W and B to obtain a point matrix P
- 4: $\{\mathbf{A}_k, \mathbf{b}_k\}_{k=1}^K = \mathcal{N}_{\gamma}(\mathbf{P})$ // convert points into means and variances
- 5: $\epsilon \sim \mathcal{N}(0,1)$ // sampling an ϵ from the normal distribution 6: **for** k = 1 to K **do**
- 7: $\mathbf{z}_k = \mathbf{A}_k \boldsymbol{\epsilon} + \mathbf{b}_k$ // sample \mathbf{z}_k from Gaussian distribution of variance \mathbf{A}_k and mean \mathbf{b}_k by reparameterization trick
- 8: $\tilde{\mathbf{y}}_k = \mathcal{G}_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z}_k)$ // decode \mathbf{z}_k and \mathbf{x} into a result $\tilde{\mathbf{y}}_k$ 9: **end for**

Algorithm 2 Gumbel-Softmax coefficient matrix generation

Input: Number of coefficient vectors K, dimension size M of a coefficient vector, Gumbel distribution parameters π and τ

Output: A coefficient matrix $\mathbf{W} \in \mathbb{R}^{K \times M}$

- 1: Declare a matrix $\mathbf{W} \in \mathbb{R}^{K \times M}$
- 2: **for** i = 1 to K **do**
- 3: **for** j = 1 to M **do**
- 4: $u \sim U(0,1)$ // sample a value from uniform distribution
- $g = -\log(-\log(u))$
- $\mathbf{W}_{ij} = \frac{\pi + g}{\tau}$
- 7: end for
- 8: $\mathbf{W}_i = \text{Softmax}(\mathbf{W}_i) // \text{normalize the } i^{th} \text{ row of } \mathbf{W}$
- 9: end for

Loss functions

$$\mathcal{L}_{hdiv} = rac{1}{K(K-1)} \sum_{i=1}^K \sum_{j
eq i}^K \max \left(0, \eta - \left\| ilde{\mathbf{y}}_i - ilde{\mathbf{y}}_j
ight\|_2
ight) \;\; \mathcal{L}_{acc} = \min_{m{k}} \left\| \mathbf{y} - ilde{\mathbf{y}}_k
ight\|_2, m{k} \in [1, K] \;\;\; \mathcal{L}_{KL}' = \mathcal{KL}(m{r}_{eta, \gamma}(\mathbf{z}_k \mid \mathbf{x}) \| m{p}(\mathbf{z})), m{k} \in [1, K]$$

Quantitative Results

Comparisons with baselines

	Method		J	Human3.	6M [18]		HumanEva-I [36]					
	Wethou	APD↑	ADE↓	FDE ↓	MMADE ↓	MMFDE ↓	APD↑	ADE ↓	FDE ↓	MMADE ↓	MMFDE ↓	
deterministic	LTD [31]	0.000	0.516	0.756	0.627	0.795	0.000	0.415	0.555	0.509	0.613	
deterministic	MSR [13]	0.000	0.508	0.742	0.621	0.791	0.000	0.371	0.493	0.472	0.548	
	Pose-Knows [41]	6.723	0.461	0.560	0.522	0.569	2.308	0.269	0.296	0.384	0.375	
	MT-VAE [42]	0.403	0.457	0.595	0.716	0.883	0.021	0.345	0.403	0.518	0.577	
	HP-GAN [6]	7.214	0.858	0.867	0.847	0.858	1.139	0.772	0.749	0.776	0.769	
	BoM [7]	6.265	0.448	0.533	0.514	0.544	2.846	0.271	0.279	0.373	0.351	
	GMVAE [14]	6.769	0.461	0.555	0.524	0.566	2.443	0.305	0.345	0.408	0.410	
stochastic	DeLiGAN [17]	6.509	0.483	0.534	0.520	0.545	2.177	0.306	0.322	0.385	0.371	
Stochastic	DSF [43]	9.330	0.493	0.592	0.550	0.599	4.538	0.273	0.290	0.364	0.340	
	DLow [44]	11.741	0.425	0.518	0.495	0.531	4.855	0.251	0.268	0.362	0.339	
	GSPS [30]	14.757	0.389	0.496	0.476	0.525	5.825	0.233	0.244	0.343	0.331	
	Ours	15.310	0.370	0.485	0.475	0.516	6.109	0.220	0.234	0.342	0.316	

Ablation study results

	① Number of basis vectors			② Dimension of auxiliary space				③ Sampling method			$\textcircled{4} N_{\gamma}$		\mathfrak{S} \mathcal{L}_{hdiv} v.s. \mathcal{L}_{div}					
	20	30	40*	50	60	32	64	128*	256	512	Gumbel*	Gaussian	Uniform	w/N_{γ}^*	$w/o N_{\gamma}$	\mathcal{L}_{hdiv} (25)*	\mathcal{L}_{div} (25)	\mathcal{L}_{div} (1300)
APD↑	5.929	5.946	5.993	5.969	5.951	5.885	5.931	5.993	5.963	5.957	5.993	5.847	5.730	5.993	5.182	5.993	3.843	5.993
$ADE \downarrow$	0.234	0.234	0.231	0.229	0.233	0.236	0.233	0.231	0.233	0.236	0.231	0.240	0.233	0.231	0.229	0.231	0.211	0.235
$ ext{FDE}\downarrow$	0.240	0.243	0.240	0.239	0.241	0.245	0.243	0.240	0.241	0.243	0.240	0.246	0.241	0.240	0.236	0.240	0.218	0.242
MMADE ↓	0.345	0.345	0.340	0.339	0.338	0.337	0.342	0.340	0.336	0.342	0.340	0.343	0.344	0.340	0.322	0.340	0.309	0.343
MMFDE ↓	0.321	0.319	0.313	0.315	0.312	0.312	0.318	0.313	0.310	0.316	0.313	0.320	0.323	0.313	0.298	0.313	0.287	0.321

Qualitative Results

Comparisons with baselines

Holistic views of results after the dimension reduction by PCA

