Understanding your monad

an intuitive approach to monads

Motivation

What is a monad?

In addition to it being good and useful, it is also cursed and the curse of the monad is that once you get the epiphany, once you understand - "oh that's what it is" - you lose the ability to explain it to anybody else.

Douglas Crockford, YUIConf 2012 Evening Keynote

Why?

How to solve it?

Foundations

Functional Programming

Functions

- Maps input to output
 - $f :: int \rightarrow int$
 - fx = 23 + x
- No side effects, same input => same output, no side channels

Basic Types

- $bool \equiv 2$
- $char \equiv 2^8 = 256$
- $unit(void) \equiv 1$
- $actual\ void \equiv 0$

Calculating with types

- $variant < a, b > = a \mid b \equiv a + b$
- optional $\langle a \rangle = Maybe \ a = variant \langle a, unit \rangle = a \mid unit \equiv a+1$
- $tuple < a, b > = (a, b) \equiv a * b$

•
$$list < a > = () |(a)|(a,a)| \dots \equiv 1 + a + a^2 + \dots + a^{\infty} = \sum_{n=0}^{\infty} a^n$$

Functions

- $a::b\rightarrow e$
- $a \equiv e^b$

b :: bool	e :: int
false	23
true	42

Multi Argument Functions

•
$$a :: b \rightarrow c \rightarrow e$$

•
$$a::(b,c)\rightarrow e$$

•
$$\equiv e^{(b*c)}$$

•
$$=(e^b)^c$$

•
$$\Rightarrow a(b,c) = (a b) c$$

•
$$a :: b \rightarrow (c \rightarrow e)$$

(b,c) :: (bool,bool)	e :: int
(false,false)	23
(false,true)	42
(true,false)	93
(true,true)	1337

Functional Programming

Function composition

- Composition
 - $f_3(f_2(f_1x))$
 - $f = f_3 . f_2 . f_1$
- $f_n :: t_{n-1} \to t_n$

Types

Type Mapping

- $F :: a \rightarrow ta$
- Maybe $a = Just \ a \mid Nothing \equiv a + 1$

• List
$$a = () | (a) | (a, a) | \dots \equiv \sum_{n=0}^{\infty} a^n$$

Type mapping

- *m a*
- $return :: a \rightarrow m a$

bind

- $bind :: ma \rightarrow (a \rightarrow mb) \rightarrow mb$
 - also >= operator

Kleisli operator

- $kleisli: (a \rightarrow mb) \rightarrow (b \rightarrow mc) \rightarrow (a \rightarrow mc)$
 - also
 ⇒ operator
 - $(kleisli \, x \, y) \, z = bind(x \, z) \, y$

From Bind to Kleisli in C++

```
(kleisli \ x \ y) \ z = bind (x \ z) \ y
```

Composition

- $bind (bind (xf_1)f_2)f_3$
 - $\bullet f = f_3 \implies f_2 \implies f_1$
 - $x :: m t_{n-1}$
 - $\bullet \ f_n :: t_{n-1} \to m \ t_n$

Composition compared

Example: Maybe Monad

Maybe Monad An Example

• ma = Nothing | Just a

Maybe Monad

Return function

- $return :: a \rightarrow m a$
- return a = Just a

Maybe Monad

Kleisli Operator >=>

- $kleisli:(a \rightarrow mb) \rightarrow (b \rightarrow mc) \rightarrow (a \rightarrow mc)$
- $= (a \rightarrow Nothing | Just b) \rightarrow (b \rightarrow Nothing | Just c) \rightarrow (a \rightarrow Nothing | Just c)$
- Or just (kleisli x y) z = bind(x z) y

Maybe Monad

Bind Operator >>= in C++

```
Nothing | Just a \rightarrow (a \rightarrow Nothing | Just b) \rightarrow Nothing | Just b
```

Example: Error Monad

Error Monad

An Example

- ma = Oka | Errorb
- Behaves similar to the Maybe Monad
- Remember Kleisli Categories?

Example: State Monad

An Example

- $(a, state) \rightarrow (b, state)$
- $= a \rightarrow state \rightarrow (b, state)$
- $= a \rightarrow (state \rightarrow (b, state))$
- $\Rightarrow mb = state \rightarrow (b, state)$
- $a \rightarrow mb$

Return function

• return :: $a \rightarrow m \ a = a \rightarrow (state \rightarrow (a, state))$

template<typename A>

}};

Return function in C++

```
a \rightarrow (state \rightarrow (a, state))
static MReturnResultType<StateMonadBase, A> mreturn(A& a_) {
  return MReturnResultType<StateMonadBase, A>{[a = std::forward<A>(a_)](StateDesc s) {
    return ResultStateDesc{std::move(a), std::move(s)};
```

Kleisli Operator >=>

- $kleisli: (a \rightarrow mb) \rightarrow (b \rightarrow mc) \rightarrow (a \rightarrow mc)$
- $= (a \rightarrow (state \rightarrow (b, state)) \rightarrow (b \rightarrow (state \rightarrow (c, state)) \rightarrow (a \rightarrow (state \rightarrow (c, state)))$
- $= ((a, state) \rightarrow (b, state)) \rightarrow ((b, state) \rightarrow (c, state)) \rightarrow ((a, state) \rightarrow (c, state))$
- Or just $(kleisli \ x \ y) \ z = bind (x \ z) \ y$

Bind Operator >>=

- $bind :: ma \rightarrow (a \rightarrow mb) \rightarrow mb$
- = Nothing | Just $a \rightarrow (a \rightarrow Nothing | Just b) \rightarrow Nothing | Just b$

Bind Operator >>=

- $bind :: ma \rightarrow (a \rightarrow mb) \rightarrow mb$
- $= (state \rightarrow (a, state)) \rightarrow (a \rightarrow (state \rightarrow (b, state))) \rightarrow (state \rightarrow (b, state))$
- $= (state \rightarrow (a, state)) \rightarrow ((a, state) \rightarrow (b, state)) \rightarrow (state \rightarrow (b, state))$

Bind Operator >>= in C++

```
(state \rightarrow (a, state)) \rightarrow (a \rightarrow (state \rightarrow (b, state))) \rightarrow (state \rightarrow (b, state))
```

What's the Kleisli Category of the State Monad?

Summary and outlook

Thank you for your kind attention!

Questions?