Sampling non-isotropic Gaussian random fields

RandField_Matern.m script uses the following stationary non-isotropic Matern model

$$C_{\Phi}(\mathbf{x_1}, \mathbf{x_2}) = \sigma_c^2 \frac{2^{1-\nu_c}}{\Gamma(\nu_c)} \left(2\sqrt{\nu_c}\tilde{r}\right)^{\nu_c} K_{\nu_c} \left(2\sqrt{\nu_c}\tilde{r}\right)$$

$$\tag{1}$$

$$\tilde{r} = \sqrt{\frac{(x_1 - x_2)^2}{\lambda_{cx}^2} + \frac{(y_1 - y_2)^2}{\lambda_{cy}^2}} \quad \text{with} \quad \mathbf{x_1} = (x_1, y_1), \mathbf{x_2} = (x_2, y_2).$$
 (2)

where λ_{cx} and λ_{cy} are correlation lengths along x- and y-coordinates, respectively, ν_c is the smoothness of the random field and σ_c^2 is the marginal variance. Some examples of usage:

»[F]= RandField_Matern(0.1,0.1,1,1,7,1)% isotropic

[F] = RandField_Matern(2,0.02,0.5,1,7,1)% layering along x

 $[F] = RandField_Matern(0.01, 1, 0.5, 0.5, 7, 1) % layering along y$

