Data-Driven Models for Discrete Hedging Problem

Ke Nian Supervisors: Prof. Yuying Li and Prof. Thomas. F. Coleman

 $\begin{tabular}{ll} {\sf David} & {\sf R.} & {\sf Cheriton} & {\sf School} & {\sf of} & {\sf Computer} & {\sf Science}, \\ & & {\sf University} & {\sf of} & {\sf Waterloo}, \\ \end{tabular}$

Waterloo, Canada

May 1, 2019

Agenda

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introductio

Delta Hedging

Variants

Minimum Variance

Local Volatility Model

Data Driven Appro-

Indirect Data-driven

Approach Direct Data-Driven

Approach

Sequential Learning Framework

Motivation

Recurrent Neural Network

Encoder-Decoder Model

Results and Discussion

.....

Summary

nnendiy

ppendix

Introduction

Delta Hedging Variants

Stochastic Volatility Model Minimum Variance Approach Local Volatility Model

Data Driven Approach

Indirect Data-driven Approach
Direct Data-Driven Approach

Sequential Learning Framework

Motivation

Recurrent Neural Network Encoder-Decoder Model

Results and Discussion

Summary

Appendix

Practitioner Black-Scholes (BS) Delta Hedging

▶ BS model:

$$\frac{dS}{S} = \mu dt + \sigma dZ$$

 σ : Constant

► Implied Volatility

$$\sigma_{imp} = V_{BS}^{-1}(V_{mkt},.)$$

 $V_{mkt} \colon \text{market option price} \\ V_{BS}^{-1} \colon \text{inverse of BS pricing function}$

▶ BS Delta:

$$\delta_{BS} = \frac{\partial V_{BS}}{\partial S}$$

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mode

Approach Local Volatility Model

Local volacility Model

Indirect Data-driven

Approach
Direct Data-Driven
Approach

Sequential Learning Framework

Motivatio

Recurrent Neural Network

Encoder-Decoder Model

Summary

.

Problem with Black-Scholes Delta

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Variants

Minimum Variance

Local Volatility Mode

Data Driven Approac

Indirect Data-driven Approach

Approach Direct Data-Driven

Approach

Sequential Learnii Framework

-ramework

violivation

Recurrent Neural Network Encoder-Decoder Model

Results and Discussion

ummary

ppendix

Problem with the traditional Black-Scholes delta:

- ► Market violates Black-Scholes assumption
- ▶ Dependence of implied volatility on underlying asset price

Variants of delta hedging strategy:

- ► Stochastic Volatility Model
- ► Local Volatility Model
- ► Minimum Variance Approach
- ► Indirect Data-Driven Approach
- - -

Direct Data-Driven Approach

Stochastic Volatility Model

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Model

Minimum Variance Approach

Local Volatility Model

Data Driven Appro

Approach
Direct Data-Driven

Approach

Mativation

Recurrent Neural Network

Encoder-Decoder Model

.....

.

David R. Cheriton School of Computer Science, University of Waterloo

Stochastic volatility models:

► Example: Heston Model

$$dS_t = rS_t dt + \sqrt{\upsilon_t} S_t dW_t$$
$$d\upsilon_t = \kappa(\overline{\upsilon} - \upsilon_t) dt + \eta \sqrt{\upsilon_t} dZ_t$$
$$dZ_t dW_t = \rho dt$$

Minimum Variance Approach

▶ The Minimum Variance (MV) delta:

price:

Data-Driven Models for Discrete Hedging Problem

Minimum Variance Approach

Approach

Recurrent Neural Network

Results and Discussion

Journal of Banking and Finance 82 (2017): 180-190.

▶ A parametric model ¹learned from market data:

¹Hull, J. and White, A., "Optimal delta hedging for options."

The correction for the dependence of implied volatility on asset

 $\delta_{MV} = \frac{\partial V_{BS}}{\partial S} + \frac{\partial V_{BS}}{\partial \sigma_{imp}} \frac{\partial \sigma_{imp}}{\partial S}$

 $\frac{\partial \sigma_{imp}}{\partial S} = \frac{a + b\delta_{BS} + c\delta_{BS}^2}{S\sqrt{T}}$

a, b and c are the parameters to be fitted using market data.

Ke Nian

Encoder-Decoder Model

Local Volatility Model

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introducti

Delta Hedging

Stochastic Volatility Mod

Local Volatility Model

Indirect Data-driven

Direct Data-Driven

Sequential Learning

Framework

Motivation

Recurrent Neural Network

Encoder-Decoder Model Results and Discussion

Summary

,

David R. Cheriton School of Computer Science, University of Waterloo

The local volatility function (LVF) 2 : the volatility is a deterministic function of S and t.

$$\delta_{MV} = \frac{\partial V_{BS}}{\partial S} + \frac{\partial V_{BS}}{\partial \sigma_{imp}} \frac{\partial \sigma_{imp}}{\partial S}$$

Local volatility model can also be used to calculate the $rac{\partial \sigma_{imp}}{\partial S}$.

²Coleman, T.F., Kim, Y., Li, Y. and Verma, A.,

^{&#}x27;Dynamic hedging with a deterministic local volatility function model,' Journal of risk, 4,1 (2001):63-89

Problem with Parametric Approach

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mod

Minimum Variance Approach

Local Volatility Model

Data Driven Approac

Indirect Data-driven Approach

Direct Data-Driven Approach

Sequential Learning

Sequential Learnin Framework

Motivation

Recurrent Neural Network

Encoder-Decoder Model Results and Discussion

Summary

Appendix

Parametric approaches:

- ► Model mis-specification.
- ► Sub-optimal for discrete hedging problems.

Data-driven approaches:

- \blacktriangleright Minimum assumptions on S.
- Model is determined by market data.

Indirect Data-driven Approach

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Minimum Variance

Indirect Data-driven Annroach

Approach

Recurrent Neural Network

Encoder-Decoder Model Results and Discussion

Computer Science

University of Waterloo

The indirect data-driven approach ³can be summarized as following:

- ▶ Let X be the features from market.
 - ▶ Asset price S.
 - Strike Price K.
 - ▶ Time to expiration T t.
- \triangleright Determine the data-driven pricing function V(X) using regression model.
- Compute

$$\delta_{ID} = \frac{\partial V(X)}{\partial S}$$

³Hutchinson, J.M., Lo, A.W. and Poggio, T., "A nonparametric approach to pricing and hedging derivative securities via learning networks." The Journal of Finance 49.3 (1994): 851-889.

Problem with Indirect Data-driven Approach

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Minimum Variance

Direct Data-Driven Approach

Recurrent Neural Network Encoder-Decoder Model Results and Discussion

Problems with the indirect data-driven approach:

- Unnecessary intermediate procedure.
- Sub-optimal for discrete hedging.
- ▶ Model parameters depend on the asset price.

Direct data-driven approach can be more useful in practice.

- Customized hedging position function.
- Directly learn the hedging position.

Direct Data-driven Approach

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging Variants

Stochastic Volatility Mode

Approach

Data Driven Approac

Approach

Direct Data-Driven Approach

Sequential Learning

Framework

Motivation Recurrent Neural Network

Encoder-Decoder Model Results and Discussion

ımmən/

Summary

David R. Cheriton School of Computer Science, University of Waterloo

The direct data-driven approach is

$$\min_{f} \left[\frac{1}{N} \sum_{i=1}^{N} (\Delta V_i - \Delta S_i f(X_i))^2 \right]$$

- $ightharpoonup \Delta V_i$: the change of option value in data instance i.
- $ightharpoonup \Delta S_i$: the change of asset price in data instance i.
- ▶ $f(X_i)$: option hedging position function.
- ▶ Data-Driven models outperform other delta hedging strategies ⁴.

⁴Nian, Ke, Thomas F. Coleman, and Yuying Li. "Learning minimum variance discrete hedging directly from the market." Quantitative Finance (2018): 1-14. (

Data-driven Kernel Learning Approach

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Model

Approach

Data Director Account

Approach
Direct Data-Driven

2 Direct Data-Driven Approach

Sequential Learning Framework

Motivation

Encoder-Decoder Model

Results and Discussion

upa pa a pa

Appondix

Kernel Learning Framework:

$$\min_{f \in RKHS} \left[\frac{1}{N} \sum_{i=1}^{N} (\Delta V_i - \Delta S_i f(x_i))^2 + \lambda ||f||_K^2 \right]$$

Matrix Form:

 $\min_{\alpha} (DK\alpha - \Delta V)^{T} (DK\alpha - \Delta V) + \lambda \alpha^{T} K\alpha$

Where D is the diagonal matrix with ΔS on its diagonal and K is the kernel matrix

Data-Driven Kernel Learning Framework

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging Variants

Stochastic Volatility Model

Minimum Variance Approach

Local volatility (viole)

Data Driven Approa

Approach
Direct Data-Driven

Approach

Sequential Learning Framework

Motivation

Recurrent Neural Network

Encoder-Decoder Model Results and Discussion

Summary

Annendiv

David R. Cheriton School of Computer Science, University of Waterloo

The data-driven kernel learning framework suffers from several drawbacks:

Ignoring the auto-correlation in market data.

- ► Computationally expensive.
- Limited number of variables.
- No feature selection.
- Two reature selection.

Volatility Clustering and Financial Time Series

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Minimum Variance

Approach

Motivation

Recurrent Neural Network

Encoder-Decoder Model

Results and Discussion

David R. Cheriton School of Computer Science, University of Waterloo

Sequential learning framework may further improve the performance:

- Volatility clustering observed in the financial market.
- Autocorrelation between data instances near in time.
- ▶ Dependence of option pricing function on the past history of the underlying has been shown in GARCH models ⁵.

⁵Heston, Steven L., and Saikat Nandi "A closed-form GARCH option valuation model." The review of financial studies 13.3 (2000): 585-625.

Recurrent Neural Network

 \mathbf{x}_t

In each RNN cell:

$$\mathbf{h}_t = f_{act}(\boldsymbol{W}_{hx}\mathbf{x}_t + \boldsymbol{W}_{hh}\mathbf{h}_{t-1} + b_h)$$

 $\hat{y}_t = f_{out}(\boldsymbol{W}_{yh}\mathbf{h}_t + b_y)$

- Vanishing gradients problem.
- ► Gated Recurrent Unit (GRU) ⁶ model is introduced to combat the problem of vanishing gradients.

Ke Nian

Introduction

Delta Hedging

Variants

Minimum Variance

Local Volatility Model

Indirect Data-driven

Approach
Direct Data-Driven
Approach

Sequential Learning

Motivation

Recurrent Neural Network

Encoder-Decoder Model
Results and Discussion

Summary

.

⁶Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014).

Data-Driven Models for Discrete Hedging Problem

Features

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Minimum Variance

Approach

Encoder-Decoder Model

Results and Discussion

$$\mathbf{X} = [\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_N}] = \begin{bmatrix} (\mathbf{x^1})^{\top} \\ (\mathbf{x^2})^{\top} \\ \vdots \\ (\mathbf{x^D})^{\top} \end{bmatrix} = \begin{bmatrix} x_1^1 & \dots & x_N^1 \\ \vdots & \dots & \vdots \\ x_1^D & \dots & x_N^D \end{bmatrix}$$

When generating the hedging position, we use local features

 $\mathbf{x}_L \in \mathbb{R}^d$ and sequential features $\mathbf{X} \in \mathbb{R}^{D \times N}$:

Recurrent Neural Network

Local Features

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Variants

Minimum Variance

Approach

Data Driven Approa

Indirect Data-driven Approach

Approach Direct Data-Driven

Direct Data-Driven Approach

Sequential Learning Framework

Motivation

Recurrent Neural Network

Encoder-Decoder Model

-....

. .

David R. Cheriton School of Computer Science, University of Waterloo

Local features x_L for the current day contains:

- 1. Moneyness S/K.
- 2. BS delta δ_{BS} .
- 3. Time to expiry τ .
- 4. Index close price S .
- 5. Option bid price V_{hid} .
- 6. Option offer price V_{offer} .
- 7. Implied volatility σ_{imp} .
- 8. BS gamma γ_{BS} .
- 9. BS vega $vega_{BS}$.
- 10. Minimum variance delta δ_{MV}

Sequential Features

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Minimum Variance

Approach

Recurrent Neural Network

Encoder-Decoder Model

Sequential features $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N]$ recording the past history contains:

- 1. Option middle price V_{mid} .
- 2. Implied volatility σ_{imp} .
- 3. BS delta δ_{BS} .
- 4. BS gamma γ .
- 5. BS vega $vega_{BS}$.
- **6**. Moneyness S/K.

Weighting Local Features

 $LW \in \mathbb{R}^d$: The unnormalized feature weighting vector for the local features $\mathbf{x}_L \in \mathbb{R}^d$.

$$\omega_i = \frac{exp(LW_i)}{\sum_{j=1}^d exp(LW_j)}, \ \sum_{i=1}^d \omega_i = 1$$
$$\hat{\mathbf{x}}_L = [\omega_1 \mathbf{x}_L^1, \dots, \omega_d \mathbf{x}_L^d]$$

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Approach

Recurrent Neural Network

Encoder-Decoder Model

Weighting Sequential Features

 \triangleright $SW \in \mathbb{R}^D$: The unnormalized feature weighting vector for the sequential features

$$\mathbf{X} = [\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_N}].$$

 $\mathbf{x}_t \in \mathbb{R}^D$: The feature vector in \mathbf{X} at time step t

$$\alpha_i = \frac{exp(SW_i)}{\sum_{j=1}^{D} exp(SW_j)}, \ \sum_{i=1}^{D} \alpha_i = 1$$
$$\hat{\mathbf{x}}_t = [\alpha_1 \mathbf{x}_t^1, \dots, \alpha_D \mathbf{x}_t^D]$$

$$\hat{\mathbf{x}}_t = [\alpha_1 \mathbf{x}_t^1, \dots, \alpha_D \mathbf{x}_t^D]$$

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Minimum Variance

Approach

Approach

Recurrent Neural Network

Encoder-Decoder Model

Encoder Model

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility N

Minimum Variance Approach

___ur volucincy model

Indirect Data-driven Approach

Direct Data-Driven Approach

Sequential Learning Framework

Motivation
Recurrent Neural Network

Encoder-Decoder Model

Results and Discussion

Summary

nnendiv

Decoder Model

$$\begin{split} \widehat{\delta_M} &= sigmoid(\mathbf{v}_{out}^T \ tanh(\mathbf{U}^{out} \hat{\mathbf{h}}_E + \mathbf{W}^{out} \hat{\mathbf{x}}_L + \mathbf{b}^{out})) \\ o &= sigmoid(\mathbf{v}_{Gate}^T \ tanh(\mathbf{U}^{Gate} \hat{\mathbf{h}}_E + \mathbf{W}^{Gate} \hat{\mathbf{x}}_L + \mathbf{b}^{Gate})) \end{split}$$

The final output is

- ▶ Call: $\delta_M = \widehat{\delta_M} \times o + \delta_{BS} \times (1 o)$.
- Put: $\delta_M = -\widehat{\delta_M} \times o + \delta_{BS} \times (1 o)$.

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mode

Local Volatility Model

Data Driven Approach

Indirect Data-driven Approach

Direct Data-Driven Approach

> Sequential Learning Framework

Recurrent Neural Network

Encoder-Decoder Model

Summary

, ,

Encoder-Decoder Model

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mode

Approach

Indirect Data-driven Approach

Direct Data-Driven Approach

Sequential Learning Framework

Motivation

Recurrent Neural Network

Encoder-Decoder Model
Results and Discussion

Summary

Annendi

David R. Cheriton School of Computer Science, University of Waterloo

Encoder

Objective Functions

► Hedging error for BS delta:

$$\eta_i = \Delta V_i - \Delta S_i \delta_{BS}^i$$

▶ Hedging error for the proposed model:

$$l_i = \Delta V_i - \Delta S_i \delta_M^i$$

- $lackbox{Mean squared loss:} L_S = rac{1}{2m} \sum_{i=1}^m l_i^2$
- Huber loss:

$$L(l_i, \eta_i) = \begin{cases} \frac{1}{2}l_i^2, & \text{if } |l_i| \leq |\eta_i| \\ |\eta_i|(|l_i| - \frac{1}{2}|\eta_i|), & \text{otherwise} \end{cases}$$

$$L_H = \frac{1}{m} \sum_{i=1}^m L(l_i, \eta_i)$$

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mode

Approach

Local Volumity Model

Indirect Data-driven

Approach
Direct Data-Driven
Approach

Sequential Learning

Motivation

Recurrent Neural Network

Decoder Decoder Model

Summary

. . . .

Training and Regularization

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

variants

Minimum Variance

Local Volatility Model

D. D. A

Indirect Data-driven

Approach

Direct Data-Driven Approach

Sequential Learning Framework

A ...

Recurrent Neural Network

Encoder-Decoder Model

Results and Discussion

Summary

Annendiy

David R. Cheriton School of Computer Science, University of Waterloo

► Optimization technique: trust region method

► Regularization technique: early stopping

► Usage of validation set

Daily update

Evaluation Criteria: Local Risk

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introductio

Delta Hedging

Variants

Minimum Variance

Local Volatility Model

Data Driven Approach

Indirect Data-driven Approach

Direct Data-Driven Approach

Sequential Learning Framework

Motivation

Recurrent Neural Network

Encoder-Decoder Model Results and Discussion

Summary

Appendix

David R. Cheriton School of Computer Science, University of Waterloo

The percentage increase in the effectiveness over the BS hedging:

$$Gain = 1 - \frac{SSE[\Delta V_i - \Delta S_i \delta^i]}{SSE[\Delta V_i - \Delta S_i \delta^i_{BS}]}$$

- ► SSE: sum of squared errors
- \triangleright δ : hedging position computed from different models
- δ_{BS} : BS delta

Experimental Setting

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mod

Minimum Variance Approach

Local Volatility Model

Judius at Date deises

Indirect Data-driven Approach

Direct Data-Driven Approach

Sequential Learning

Framework

Recurrent Neural Network

Encoder-Decoder Model

Results and Discussion

.....

- ▶ Data: S&P 500 index option from Jan 2007 to Aug 2015
- ► The models to be compared:
 - ▶ DKL_{SPL}: Direct data-driven kernel learning model.
 - ▶ MV: Minimum variance hedging formula.
 - ▶ LVF: Local volatility function model.
 - SABR: SABR stochastic volatility model.
 - ► DRNN: The proposed encoder-decoder model

Call Option Daily Hedging

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging Variants

Stochastic Volatility M

Approach

Local volatility Model

Indirect Data-driven

Direct Data-Driven Approach

equential Learni Framework

Motivation

Recurrent Neural Network

Encoder-Decoder Mode Results and Discussion

results and Discus

ummary

David R. Cheriton School of Computer Science, University of Waterloo

				Da	ata-Driv	ven Mode	l
Delta	MV (%)	SABR(%)	LVF(%)	DKL_{SP}	L (%)	DRNN	(%)
				Traded	All	Traded	All
0.1	42.1	39.4	42.6	47.1	48.6	32.3	33.8
0.2	35.8	33.4	36.2	37.8	40.0	33.7	36.4
0.3	31.1	29.4	30.3	34.1	35.1	34.1	35.5
0.4	28.5	26.3	26.7	32.3	32.0	33.7	34.2
0.5	27.1	24.9	25.5	29.3	29.4	35.1	33.0
0.6	25.7	25.2	25.2	29.9	28.4	35.6	32.1
0.7	25.4	24.7	25.8	29.0	26.8	31.8	29.7
0.8	24.1	23.5	25.4	25.9	24.7	28.6	26.5
0.9	16.6	17.0	16.9	17.7	13.9	19.3	18.9
Overall	25.7	24.6	25.5	31.3	26.0	32.9	28.7

 \blacktriangleright Performance will be slighted better than DKL_{SPL}.

Put Option Daily Hedging

Data-Driven Models for Discrete Hedging Problem

Ke Nian

ntroduction

Delta Hedging Variants

Variants
Stochastic Volatility

Minimum Variance Approach

Local Volatility Model

Indirect Data-driven Approach

Direct Data-Driven Approach

Sequential Learnin Framework

Motivation

Recurrent Neural Network

Results and Discussion

ima ma a mi

ummary

Appondix

David R. Cheriton School of Computer Science, University of Waterloo

				Da	ata-Driv	ven Mode	1
Delta	MV (%)	SABR(%)	LVF(%)	DKL_{SP}	L (%)	DRNN	(%)
				Traded	All	Traded	All
-0.9	15.1	11.2	-7.4	8.6	13.6	15.1	17.2
-0.8	18.7	19.6	6.8	6.5	16.7	23.2	28.5
-0.7	20.3	17.7	9.1	10.6	19.8	28.5	32.8
-0.6	20.4	16.7	9.2	14.9	21.0	28.3	33.9
-0.5	22.1	16.7	10.8	22.5	23.1	29.2	34.5
-0.4	23.8	17.7	12.0	24.2	25.2	29.9	34.7
-0.4	27.1	21.7	16.8	27.7	28.3	30.6	33.6
-0.2	29.6	25.8	20.6	30.1	30.8	25.4	29.9
-0.1	27.5	26.9	17.7	29.1	31.2	18.7	21.4
Overall	22.5	19.0	10.2	23.4	23.2	26.2	29.7

▶ Performance will be slighted better than DKL_{SPL}.

Call Option Weekly Hedging and Monthly Hedging

Data-Driven Models
for Discrete Hedging
Problem
Problem

Ke Nian

Delta Hedging Variants

Stochastic Volatility M Minimum Variance

Local Volatility Model

Data Driven Appro

Approach Direct Data-Drive

Approach
Sequential Learni

Framework

Recurrent Neural Network

Encoder-Decoder Model
Results and Discussion

ummary

David R. Cheriton School of Computer Science, University of Waterloo

	Data-Driven Model				
Delta	$DKL_{SPL}(\%)$		DRNN(%)		
Delta	Traded	All	Traded	All	
0.1	38.9	38.3	47.8	45.6	
0.2	29.0	26.9	48.5	46.0	
0.3	23.5	25.3	48.5	46.6	
0.4	20.8	24.3	45.9	45.4	
0.5	19.9	22.8	46.6	45.0	
0.6	17.3	19.5	44.8	43.1	
0.7	16.8	17.7	43.9	42.4	
0.8	12.5	12.3	37.7	39.0	
0.9	6.2	5.1	16.4	29.1	
Overall	20.2	17.1	43.7	40.5	

	Da	ata-Driv	en Mode	l
Delta	DKL _{SPL} (%)		DRNN (%)	
Deita	Traded	All	Traded	All
0.1	22.7	24.8	53.9	39.4
0.2	23.5	25.5	51.7	48.3
0.3	24.0	24.6	50.2	49.1
0.4	21.0	20.7	47.8	48.3
0.5	13.5	12.7	44.5	47.6
0.6	14.3	13.5	44.6	47.4
0.7	6.1	7.0	35.3	42.9
0.8	5.3	4.1	24.8	34.1
0.9	4.1	2.3	10.5	19.9
Overall	16.3	12.5	44.5	42.3

Table: Weekly(Left) and Monthly(Right)

 \blacktriangleright Performance will be significantly better than $\mathrm{DKL}_{\mathsf{SPL}}.$

Put Option Weekly Hedging and Monthly Hedging

	Data-Driven Model				
Delta	DKL _{SPL} (%)		DRNN(%)		
Deita	Traded	All	Traded	All	
-0.9	10.1	7.3	34.7	35.7	
-0.8	18.3	11.5	44.2	45.1	
-0.7	20.2	16.3	49.6	47.3	
-0.6	20.8	18.4	51.3	49.6	
-0.5	22.4	21.2	53.5	51.0	
-0.4	21.0	23.9	53.2	51.2	
-0.3	22.2	26.1	51.1	51.7	
-0.2	20.8	29.7	46.3	51.8	
-0.1	19.2	29.1	37.2	47.6	
Overall	20.4	20.3	49.1	49.4	

	Data-Driven Model				
Delta	DKL _{SPL} (%)		DRNN (%)		
Deita	Traded	All	Traded	All	
-0.9	6.5	5.8	32.6	33.1	
-0.8	6.1	7.8	49.5	45.3	
-0.7	7.3	11.9	52.4	46.3	
-0.6	10.3	9.5	51.6	47.0	
-0.5	13.9	12.8	51.4	46.7	
-0.4	15.6	16.7	53.4	45.1	
-0.3	19.5	13.4	48.4	40.7	
-0.2	20.6	18.4	44.7	35.1	
-0.1	13.0	19.9	26.8	25.3	
Overall	13.5	12.7	49.5	41.2	

Table: Weekly(Left) and Monthly(Right)

 \blacktriangleright Performance will be significantly better than $DKL_{\text{SPL}}.$

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mo

Approach

Local Volatility Model

Data Driven Appr

Approach
Direct Data-Driven
Approach

Sequential Learni

Motivation

Recurrent Neural Network

Results and Discussion

Summary

Appendix

Importance of Sequential Learning

► The RNN part is removed.

Figure: DNN

	Da	ata-Drive	n Model(%)	
Delta	Weekly		Monthly	
Deita	DNN	DRNN	DNN	DRNN
0.1	35.6	47.8	29.7	53.9
0.2	36.4	48.5	38.4	51.7
0.3	38.6	48.5	40.2	50.2
0.4	38.7	45.9	38.6	47.8
0.5	42.3	46.6	36.3	44.5
0.6	43.4	44.8	36.0	44.6
0.7	45.6	43.9	30.2	35.3
0.8	39.6	37.7	22.3	24.8
0.9	26.3	16.4	21.1	10.5
Overall	39.9	43.7	35.4	44.5

▶ Performance will be decreased if we remove the RNN part.

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Variants

Minimum Variance Approach

Local Volatility Model

Data Driven Approac

Indirect Data-driven Approach Direct Data-Driven

Approach

Sequential Learn Framework

Motivation
Recurrent Neural Network

Encoder-Decoder Model

Results and Discussion

ummary

Appendix

A Simplified Model for Comparison

▶ Directly outputting δ_M without combining with δ_{BS} :

$$\delta_{M} = sigmoid(\mathbf{v}_{out}^{T} \ tanh(\mathbf{U}^{out}\hat{\mathbf{h}}_{E} + \mathbf{W}^{out}\hat{\mathbf{x}}_{L} + \mathbf{b}^{out}))$$

- ► The model is trained without early stopping.
- ▶ The objective function is fixed to be the mean squared loss.

Figure: $DRNN_C$

Data-Driven Models for Discrete Hedging Problem

Ke Nian

ntroduction

Delta Hedging

Stochastic Volatility Mode Minimum Variance

Approach Local Volatility Model

Data Driven Approac

Indirect Data-driven Approach Direct Data-Driven

Approach

Framework

Recurrent Neural Network

Encoder-Decoder Model

Results and Discussion

Summary

Appendix

Importance of Robust Model Design and Regularization

	Data-Driven Model (%)					
Delta	$DRNN_C$		DF	RNN		
Deita	Weekly	Monthly	Weekly	Monthly		
0.1	36.6	34.8	47.8	53.9		
0.2	39.6	38.9	48.5	51.7		
0.3	39.7	41.7	48.5	50.2		
0.4	38.9	42.6	45.9	47.8		
0.5	37.5	42.3	46.6	44.5		
0.6	33.5	40.7	44.8	44.6		
0.7	31.1	33.0	43.9	35.3		
0.8	31.7	26.3	37.7	24.8		
0.9	28.7	17.3	16.4	10.5		
Overall	33.5	38.0	43.7	44.5		

ightharpoonup Performance will be decreased if we use the simplified model $DRNN_C$.

Data-Driven Models for Discrete Hedging Problem

Ke Nian

ntroduction

elta Hedging ariants

Stochastic Volatility Mode Minimum Variance

Local Volatility Model

Data Driven Appro

Approach
Direct Data-Driven
Approach
Approach

Sequential Learning

Motivation

Encoder-Decoder Model
Results and Discussion

.....

Summary

Appendix

Importance of Output Gate

Ke Nian

Introduction

Delta Hedging

Minimum Variance

Local Volatility Model

Data Driven Approach

Indirect Data-driver Approach Direct Data-Driven

Direct Data-Driven Approach

Sequential Learning Framework

Motivation

Recurrent Neural Network Encoder-Decoder Model

Results and Discussion

Summary

Annendix

David R. Cheriton School of Computer Science, University of Waterloo

Figure: Call Option Monthly Hedging

▶ When o is close to 0, what the model output is close to δ_{BS} .

Local Feature Score (ω) for Monthly Hedging

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mode Minimum Variance

Local Volatility Model

Data Driven Approach

Approach

Direct Data-Driven
Approach

Sequential Learning Framework

Motivation Recurrent Neural Network

Encoder-Decoder Model

Results and Discussion

ummary

Appendix

David R. Cheriton School of Computer Science, University of Waterloo

(a) Local Features

Sequential Feature Score (α) for Monthly Hedging

Ke Nian

Introduction

Delta Hedging Variants

Minimum Variance

Local Volatility Model

Data Driven Approx

Approach
Direct Data-Driven

Approach

Sequential Learning Framework

Recurrent Neural Network

Encoder-Decoder Model
Results and Discussion

Summary

Appendix

(a) Sequential Features

Summary

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Variants

Minimum Variance Approach

Local Volatility Model

Data Driven Appro

Indirect Data-driven

Approach
Direct Data-Driven

Direct Data-Drive Approach

Sequential Learning Framework

Motivation

Recurrent Neural Network

Encoder-Decoder Model

Results and Discussion

38 Summary

Summary

Appendix

David R. Cheriton School of Computer Science, University of Waterloo

▶ Loosing assumption on the market dynamic is a good practise

▶ Data-driven approach can lead to better performance.

Incorporating the information about the past history can further improve the hedging performance.

Robust model design is also beneficiary.

What to do next?

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Variants

Minimum Variance

Approach

Indirect Data-driven

Direct Data-Driven Approach

Sequential Learnin

Sequential Learning Framework

Motivation

Recurrent Neural Network

Encoder-Decoder Model Results and Discussion

39 Summary

Appendix

David R. Cheriton School of Computer Science, University of Waterloo

Extend the learning framework to multi-step total hedging problems.

Use convolution neural network to extract features from volatility surface.

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mod

Minimum Variance Approach

Indirect Data-driven Approach

Approach
Direct Data-Driven

Approach

Sequential Learning Framework

Motivation

Recurrent Neural Network

Encoder-Decoder Model

40 Summary

Appendix

David R. Cheriton School of Computer Science, University of Waterloo

Thank you very much!

Any Questions?

Local Feature Score (ω) for Daily Hedging

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mode Minimum Variance

Local Volatility Model

Data Driven Approach

Approach
Direct Data-Driven

Direct Data-Driven Approach

Sequential Learning Framework

Motivation

Recurrent Neural Network

Encoder-Decoder Model

Summary

Sequential Feature Score (α) for Daily Hedging

Date
(a) Sequential Features

Figure: Feature Score of S&P500 Call Option

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Model Minimum Variance

Local Volatility Model

Data Driven Appro

Approach
Direct Data-Driven
Approach

Sequential Learning

Motivation

Recurrent Neural Network

Encoder-Decoder Model

Summary

42) Appendix

Local Feature Score (ω) for Weekly Hedging

Ke Nian

Introduction

Delta Hedging Variants

Minimum Variance

Local Volatility Model

Data Driven Approac

Approach

Direct Data-Driven Approach

Sequential Learning Framework

Motivation

Recurrent Neural Network

Encoder-Decoder Model

Summary

(a) Local Features

Sequential Feature Score (α) for Weekly Hedging

Ke Nian

Introduction

Delta Hedging

Minimum Variance

Local Volatility Model

Data Driven Appro

Approach Direct Data-Driven

Approach

Sequential Learning Framework

Motivation

Recurrent Neural Network Encoder-Decoder Model

Results and Discussion

ummary

(a) Sequential Features

Local Feature Score (ω) for Monthly Hedging

Ke Nian

Introduction

Delta Hedging

Stochastic Volatility Mode Minimum Variance

Local Volatility Model

Data Driven Approach

Approach

Direct Data-Driven
Approach

Sequential Learning Framework

Motivation

Recurrent Neural Network Encoder-Decoder Model

Results and Disc

Summary

(a) Local Features

Sequential Feature Score (α) for Monthly Hedging

Ke Nian

Introduction

Delta Hedging

Minimum Variance Approach

Local Volatility Model

Data Driven Appro

Approach
Direct Data-Driven
Approach

Sequential Learning

Motivatio

Recurrent Neural Network

Encoder-Decoder Model

.....

Summary

