Lecture1

Topic	备注	书上页数	PPT页数
P与NP问题的定义			5
对象的表达方式		14	26
计算任务		15	29
复杂性: 时间, 空间, 电路			30-32
搜索问题和判定问题		15	35-36
算法A作为问题的解决者			40
一致性问题(图灵机)和非一致性计算模型(电路)		16-17	41-46

Lecture 2 计算模型

Topic	备注	书上页数	PPT页数
一致性模型	图灵机	16	2
非一致性模型	电路和接受建议的机器		2

|图灵机的简单描述||17|5||图灵机的正式描述|||6||图灵机的高级描述||18|7-10||有限自动机和图灵机的区别|||11|||图灵机函数计算的例子|||12||多带图灵机|能被多带图灵机计算 iff 能被单带图灵机计算||13-14|||确定及非确定性图灵机|确定:每一步都只有一个可能的转移值。非确定:每一步可能有多个选择||15-20||合理的计算模型的三个条件|||22|||压奇-图灵论题||19||23|||不可计算的函数||例子:图灵机不可计算问题||24-26|||图灵归约(理解为函数调用)||22||27|||通用算法||23||28-29|||oracle machine (预言机)||其实也是图灵归约和函数调用||27-28||30-33|

Lecture 3 计算模型

Topic	备注	书上页数	PPT 页 数
非一致性计算模型	对于不同长度的输入 使用不 同图灵机	28	3
# 布尔电路及定义	布尔变量:輸入0-1 布尔函 数:输出0-1	29- 30	4-9
# 布尔电路与布尔函数、扇入与扇出、电路簇	一个布尔电路计算一个布尔 函数	30	10- 12
# 电路复杂性	研究布尔电路大小及深度的 界限	31	13- 18
# 布尔电路模拟图灵机	输入t时刻array,输出t+1时 刻array		20- 25
一致性类	多项式规模的电路簇可被认 为是一致的,如果	31	26
接受建议的机器	每个问题需要额外I(n)长度的 建议	32	27
受限的计算模型:布尔公式,CNF(合取)DNF(析取) 范式,常数深度电路,单调线路	布尔电路模型引出的自然子 类	33	27- 31

Lecture 4 P与NP问题

Торіс	备注	书上页数	PPT 页 数
P与NP	P代表可被有效求解的问题,NP代表解可被有效验证的问题	35	4
	NP 完全性理论的基础是归约,一个问题归约到另一个问题,如果在给定解后者的高效算法时,前者也可被高效解决,因此NP类(是否等于P)归结到每个单独的NP完全问题。	35	4
搜索版 本:求解 与检验	搜索问题的定义;多项式界关系(能否在多项式时间内求解);搜索问题的 两类问题: PF与PC:多项式时间内可寻找和多项式时间内可验证	37- 38	6-7
作为自然 搜索问题 的P类	多项式时间内P=PF	38	8-9
作为自然 搜索问题 的NP类		38	10- 11
搜索形式 的P-vs-NP 问题	若PC=PF则P=NP	39	12
判定版本: 证明与验 证	对搜索问题的研究可以简化为对判定问题的研究,PC中所有搜索问题都可以 看作是寻找证明的问题,寻找属于解的实例集的NP-witness,寻找y,证明 V(x,y)=1	39- 40	14
判定版本 的P问题		39	16
NP类及 NP-证明 系统及其 定义	NP问题时具有可高效验证证明系统的判定问题,验证程序性质:完备性 (生存能力):正确断言有有效证明,y为NP-witness(证据)。合理性(安 全性):错误断言没有有效证明。	40- 42	17- 20
两种表示 的等价性	PC IN PF 当且仅当P=NP	43	21- 24
NP问题的 传统定义	证明传统定义与上面的定义等价	43- 44	25- 28

Lecture 5 多项式时间规约

Topic	备注	书上页数	PPT 页 数
NP完 全问题 的大致 定义	NPC问题代表如果这一类问题如果存在多项式时间算法,那么所有NP问题多项 式时间内可解	46	4
规约定 义	图灵归约,神谕机,计算等价性。根据预言机,把解决一个问题通过调用函数 规约到解决另一个问题。计算等价性:两个问题可以彼此归约	46	8- 11
cook 归约	搜索判定都可用,每个PC中的搜索问题都可以cook规约到np中一个判定问题, 定义和性质	47	12- 13
Karp 归约	判定到判定问题归约,cook归约的特例	47	14
Levin 归约	搜索问题到搜索问题归约	47	15
优化问 题到搜 索问题 的归约		48	16- 18
搜索问 题自归 约性	自归约:如果搜索问题和对应判定问题计算等价。搜索:找到解,判定:解是 否存在	50	19- 23
- 可满 足性问 题	布尔电路可满足性问题(CSAT),布尔公式可满足性问题(SAT),合取范式 可满足性问题(CNF-SAT),3SAT定义	51	21- 22
NPC问 题的自 归约性	与任意一个NP-完全判定问题相关的求np-witness的搜索问题都是自归约的	52- 53	24
研究 NP完 全问题 的思路	1.给出NPC的定义并且证明其存在 2. 按照定义给出一个具体的NPC问题,实际上就是CSAT。3. 利用归约定理证明更多的NPC,如果A是NPC,B是NP,如果调用B可解A,则B是NPC。如果任何一个NPC问题可多项式时间内解决,则P=NP		27

Lecture 6 NP完全问题

Торіс	备注	书上 页数	PPT 页数
NP完全问题的定义	搜索和判定问题的NPC问题。判定:所有NP Karp归约。搜索: 所有NP levin归约。	53- 54	3
NP完全问题存在性		54	5
一些NP完全问题			
CSAT与SAT的NPC	CSAT是NPC问题以及证明	57- 58	7-11
证明一个问题是NPC 问题的方法			12
SAT	SAT也是NP完全,证明可以在多项式时间内,将CSAT归约到 SAT,则SAT NPC	59- 60	13- 18
kSAT	合取范式的每个子句刚好包含k个变量		19- 20
3SAT的NPC	3SAT是NPC问题,若扩展到每个变量恰好只出现3次,也是NPC 问题(证明:添加辅助变量)	61	21- 23

Lecture 7 NP完全问题

Topic	备注	书上 页数	PPT 页数
一些自然的NPC问题			3
集合覆盖问题	集合覆盖是NP完全的	62	4
顶点覆盖问题	顶点覆盖问题是NP完全的	63	6-7
团问题	定义和证明	63	7-13
图着色问题以及01INT问题	图着色问题也是NPC问题	64	14
NP集合中那些既不是NPC也不是 P的问题(NPI)			
承诺问题	要求放宽的问题: 只需要对特定集合的问题示例求 解,这个集合称作承诺	69- 72	19- 26
最优化搜索问题		74	27
coNP类及其与NP类的交集	co表示是复杂类的补集 https://en.wikipedia.org/wiki/Co-NP	74- 77	28- 34

Lecture 8 P与NP的变形

Topic	备注	书上页数	PPT 页 数
非一致多项 式时间 (P/poly)	多项式规模电路解决,只能处理固定输入长度的的机器的高效计算,P属于P/poly,反之不一定。判定问题属于p/poly当且仅当可以用多项式规模电路求解	86- 89	
多项式时间 层级 (PH)	一种量化布尔公式,交替使用固定数量的存在量词和全称量词	90	
非一致多项 式时间	例子:布尔电路和接受建议的机器 研究动机:其在计算上的限制蕴涵了对 多项式时间算法的限制	87	3-4
布尔电路	用电路规模作为复杂性量度:能计算n长度输入的最小电路复杂度。一致性 类。能用多项式规模电路解决的问题也能在多项式时间内解决	87- 88	5-9
接受建议的 机器	输入长度n,解决问题需要长度为l(n)的建议	88- 90	10- 12
P/poly和电 路复杂性的 关系	P/poly的两类含义。多项式规模电路可解决,以及可以被多项式长度建议 序列多项式时间内可解。二者等价	89	13- 15
多项式时间层级	https://en.wikipedia.org/wiki/Polynomial hierarchy	91- 92	17- 20
PH以及P vs NP问题	PH=P成立当且仅当P=NP	92	22- 23

Lecture 9 More resource more power?

Торіс	备注	书上页数	PPT页数
非一致性复杂度层级	P/I 多项式时间内用长为I的建议可解的判定问题类	103	4
时间层级	DTIME用于定义复杂度类	104-107	9-16
时间缝隙和加速		109	17-20

Lecture 10-11 空间复杂度

Торіс	备注	书上 页数	PPT 页数
前提	DSPACE(s)一类可在空间复杂度s内解决的判定问题(确定图灵机); NSPACE(s)可以在空间复杂度s内内被非确定图灵机解决的判定问题; 空间复杂度用对数空间复杂度-L		2
	对数空间类: L,NL;NSPACE(s) \in DSPACE(s2); NL = co-NL;		3
	空间复杂度定义	116	4
时间复杂度 类	DSPACE NSPACE	117	6-7
时间与空间	和时间不同,空间可被重用。考虑组合引理:简单组合和仿生组合	117- 118	8-9
DTIME与 SPACE关系	在SPACE(t(n))空间内解决的一定能在对应时间内解决,反之则不成立 *由空间复杂度定义了时间复杂度的上界。因此,能在L或者NL空间内 解决的问题一定是多项式时间内可解决的。	119	10
在线与离线 模型	不确定性模型需要付出额外空间代价	130	12
对数空间	L类:可以用对数空间复杂度求解的判定问题类; L=DSPACE(logn) NL=NSPACE(logn), 且NL=coNL	123	14- 15
图的联通性	CONN 两个顶点之间是否有通路,UCONN:无向图联通性(属于L); st-CONN:有向联通性,且是NLC问题;CONN是NLC	125- 126, 131	17- 20,25
对数空间归 约及NL完 全性			21- 22
Savitch's 定 理及其证明	NSPACE(s)\in DSPACE(O(s^2))	132	23- 37
NL属于P证 明	对数空间归约等价于多项式时间归约,根据P10 时空转换定理		29
PSPACE与 NPSPACE		139	49
lmmerman 定理	证明coNL = NL		50- 57
TQBF	SAT的量词版本		58- 62
PSPACE完 全性	1.归约 2.定义 3.TQBF是PSPACE完全的		

Lec 12 随机性与计数

Торіс	备注	书上 页数	PPT 页 数
通信复杂度	通信至少需要n+1 bit。提高效率:使用随机策略提高到O(logn) bit	148	3-9
离散对数问题 以及例子			10- 14
概率图灵机		149- 150	15
错误类型	双边错误:可能在两个方向都出错(对->错,错->对),单边错误:只 会在单方向出错。零边错误:不给出错误解,但会输出无解	150- 151	17
随机化归约		151	18
概率多项式时 间	PP是可以在多项式时间内用概率图灵机解决的判定问题全体,并且错 误概率小于1/2	149	19
BPP定义以及 错误归约	错误概率小于1/3	152- 153	20- 23
Adleman's 定 理	BPP是P/poly的真子集	153	24
BPP以及布尔 电路			25- 27
单边错误 RP & coRP	RP:判定对正确概率大于1/2,错的不会误判。 co-RP相反,对的不会错 判,错误正确判定概率大于1/2	157	29- 30
BPP与 coRP,RP关系	BPP可以被归约到coRP	156- 157	31
零边错误 ZPP	RP与coRP的交集(证明:书本160)	159- 160	32
不同类之间的 关系	P,RP,CORP,CONP,NP,BPP,PSPACE		36- 38
polynomial identity testing			39- 44
randomized log-space	RL & BPL		46
计数问题			47- 49

Lecture 13-14 交互式证明系统

Торіс	备注	书上 页数	PPT 页 数
单向函数	很容易evaluate (x->f(x)) 但是很难invert(f(x)->x)		2-3
交互式证明系 统 IP	合理性 完备性 效率,与NP系统的关系	289- 291	8- 23
图同构问题的 交互式证明系 统	假设图不同构,验证者每次发一个与1或者2同构的图给证明者,证明 者要告诉它发来的图和哪个同构,每次都对,则证明	292- 293	24- 27
IP与NP关系	coNP属于IP,NP属于IP,IP=PSPACE	295- 296	28- 30
零知识证明	完全零知识,零知识定义以及证明	300- 302	32- 37
零知识证明的 功能	图同构问题的零知识证明,证明思路很有用	303- 304	36- 37
图三色的零知 识证明	图三色问题有零知识证明系统,图三色是NPC问题,所有NP都有零知识证明系统	305- 306	38- 49
零知识证明协 议分析			45- 47

Lecture 15 PCP

Торіс	备注	书上 页数	PPT 页数
PCP(概率可检验证明系 统)的定义	只选取一部分位置进行验证,来评估断言正确性	310	4-5, 12
PCP定理以及和NP的关系	NP=PCP(log,O(1)) 可以根据常数个测试比特对证明进 行有意义的评估	311- 312	13-17