

REPORT ON RESNETS By

Ahmed Usama Khalifa

Submitted to

Dr. Omar Nasr

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
March – 2020

Outline

- Classical networks (LeNet-5, AlexNet, VGG)
- ResNet

_

LeNet-5

LeNet-5 is a very simple network. It only has 7 layers, among which there are 3 convolutional layers (C1, C3 and C5), 2 subsampling (pooling) layers (S2 and S4), and 1 fully connected layer (F6), that are followed by the output layer. Convolutional layers use 5 by 5 convolutions with stride 1. Sub-sampling layers are 2 by 2 average pooling layers. Tanh sigmoid activations are used throughout the network.

AlexNet

It has 60 million parameters and 650,000 neurons. It consists of **5** Convolutional Layers and **3 Fully Connected Layers**.

VGG

The used VGG 16 is much deeper which consists of 16 weight layers including thirteen convolutional layers with filter size of 3 X 3, and fully-connected layers with filter size of 3 X 3, and fully connected layers. The configurations of fully-connected layers in VGG-16 are the same with AlexNet. The stride and padding of all convolutional layers are fixed to 1 pixel. **All convolutional layers are divided into 5 groups and each group is followed by a max-**

pooling layer.

ConvNet Configuration					
Α	A-LRN	В	С	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
input (224×224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

• The Top part is the architecture of AlexNet and the bottom part is the architecture of VGG-16.

ResNet

The core idea of ResNet is introducing a so-called "identity shortcut connection" that skips one or more layers.

