Retrieval and analysis of Eurostat open data with the eurostat package (journal manuscript)

Leo Lahti, Janne Huovari, Markus Kainu, Przemyslaw Biecek 2017-03-14

This document reproduces the figures and tables in our manuscript (in preparation) on the eurostat R package, assuming that the required R extensions have been installed. For detailed explanation of the examples, see the manuscript text.

To reproduce the complete manuscript PDF, clone this repository, navigate to the ./vignettes/2015-RJournal subdirectory and convert the Rmarkdown source code in R by navigating to the vignettes/2015-RJournal folder, and running in R:

```
source("main.R")
```

Alternatively, you can proceed in steps as follows. Generate this markdown page with manuscript figures (PNG) with:

```
library(knitr)
knit("lahti-huovari-kainu-biecek.Rmd")
```

This will run the following workflow.

```
# Load the required R packages
library(eurostat)
library(knitr)
library(xtable)
library(tidyr)
library(dplyr)
library(plotrix)
library(ggplot2)

# Set ggplot theme
theme_set(theme_bw(20))

# Set figure folder
knitr::opts_chunk$set(fig.path = "./")
```

Installation

Installing the CRAN release version:

```
install.packages("eurostat")
```

Installing the Github development version:

```
library(devtools)
install_github("ropengov/eurostat")
```

We also recommend setting the UTF-8 encoding:

```
Sys.setlocale="UTF-8")
```

```
## [1] ""
```

Search and download

To retrieve data for 'road accidents', for instance, use:

```
library(eurostat)
query <- search_eurostat("road accidents", type = "table")</pre>
```

Investigate the first entry of our query:

```
query$code[[1]]
```

```
## NULL
```

```
query$title[[1]]
```

NULL

To retrieve the data set with this identifier, use:

```
dat <- get_eurostat(id = "tsdtr420", time_format = "num")</pre>
```

This produces a table:

```
kable(head(dat))
```

unit	sex	geo	time	values
NR	Т	AT	1999	1079
NR	\mathbf{T}	BE	1999	1397
NR	Τ	CZ	1999	1455
NR	\mathbf{T}	DE	1999	7772
NR	\mathbf{T}	DK	1999	514
NR	Τ	EL	1999	2116

Convert to human-readable labels:

```
# Convert into human readable labels
datl <- label_eurostat(dat)
kable(head(datl))</pre>
```

unit	sex	geo	$_{ m time}$	values
Number	Total	Austria	1999	1079
Number	Total	Belgium	1999	1397
Number	Total	Czech Republic	1999	1455
Number	Total	Germany (until 1990 former territory of the FRG)	1999	7772
Number	Total	Denmark	1999	514
Number	Total	Greece	1999	2116

Road accidents

The original and more detailed treatment of this example is provided in a blog post.

```
t1 <- get_eurostat("tsdtr420",
   filters = list(geo = c("UK", "SK", "FR", "PL", "ES", "PT")))

ggplot(t1, aes(x = time, y = values, color=geo, group=geo, shape=geo)) +</pre>
```

Road accidents

Body-mass index

```
xlab("Age group") +
ylab("Fraction of population (%)") +
scale_fill_brewer(type = "div")
```

Body mass index (BMI) by sex and age

Renewable energy production

```
"Wind power" = "Wind, solar, waste and Other",
          "Bio jet kerosene" = "Wind, solar, waste and Other")
energy3 <- get_eurostat("ten00081") %>%
  label_eurostat(dat) %>%
  filter(time == "2013-01-01",
         product != "Renewable energies") %>%
  mutate(nproduct = dict[as.character(product)], # just three categories
         geo = gsub(geo, pattern=" \\(.*", replacement="")) %>%
  select(nproduct, geo, values) %>%
  group_by(nproduct, geo) %>%
  summarise(svalue = sum(values)) %>%
  group_by(geo) %>%
  mutate(tvalue = sum(svalue),
         svalue = svalue/sum(svalue)) %>%
  filter(tvalue > 1000,
         !grepl(geo, pattern="^Euro")) %>% # only large countrie
  spread(nproduct, svalue)
par(cex=1.5)
plotrix::triax.plot(as.matrix(energy3[, c(3,5,4)]),
                      show.grid = TRUE,
                      label.points = TRUE, point.labels = energy3$geo,cex.ticks=0.75,col.symbols = "red
                      pch = 19)
```


Map visualization

The source code for the detailed map visualization is hidden but available. For a detailed treatment of this example, see our related blog post.

```
library(eurostat)
library(dplyr)
library(ggplot2)
# Downloading and manipulating the tabular data
get_eurostat("tgs00026", time_format = "raw") %>%
  # subsetting to year 2005 and NUTS-3 level
  dplyr::filter(time == 2005, nchar(as.character(geo)) == 4) %>%
  # classifying the values the variable
  dplyr::mutate(`Disposable income` = cut_to_classes(values)) %>%
  # merge Eurostat data with geodata from Cisco
  merge_eurostat_geodata(data=.,geocolumn="geo",resolution = "60", output_class = "df", all_regions=TRUE
  # plot map
  ggplot(data=., aes(long,lat,group=group)) +
  geom_polygon(aes(fill = `Disposable income`), colour=alpha("dim grey", 1/2),size=.2) +
  scale_fill_manual(values=RColorBrewer::brewer.pal(n = 5, name = "Oranges")) + theme(legend.position=c
  coord_map(project="orthographic", xlim=c(-22,34), ylim=c(35,70)) +
  xlab("Longitude") + ylab("Latitude")
```


Country code tables

```
# Load EFTA country listing
data(efta_countries)

# Print the table
#print(xtable(efta_countries))
kable(efta_countries)
```

code	name
IS	Iceland
LI	Liechtenstein
NO	Norway
CH	Switzerland

Contact

For contact information, see the README.

Version info

This tutorial was created with

sessionInfo()

```
## R version 3.3.1 (2016-06-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.10
##
## locale:
   [1] LC_CTYPE=en_US.UTF-8
                                   LC NUMERIC=C
##
  [3] LC_TIME=en_US.UTF-8
                                   LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8
                                   LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8
                                   LC_NAME=C
                                   LC_TELEPHONE=C
## [9] LC_ADDRESS=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                    base
##
## other attached packages:
## [1] rmarkdown 1.3.9004
                            ggplot2_2.2.1
                                                  plotrix 3.6-3
## [4] dplyr_0.5.0
                            tidyr_0.6.1
                                                  xtable_1.8-2
## [7] knitr_1.15.1
                            eurostat_2.3.20001
                                                  devtools_1.12.0.9000
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.9.4
                                                plyr_1.8.4
                            highr_0.6
## [4] RColorBrewer_1.1-2
                            class_7.3-14
                                                 tools_3.3.1
## [7] testthat_1.0.2
                            digest_0.6.12
                                                 pkgbuild_0.0.0.9000
## [10] pkgload_0.0.0.9000
                                                 memoise_1.0.0
                            jsonlite_1.3
## [13] evaluate_0.10
                                                 gtable_0.2.0
                            tibble_1.2
## [16] lattice_0.20-34
                                                 mapproj_1.2-4
                            DBI_0.5-1
                            yaml_2.1.14
## [19] commonmark_1.2
                                                 ggrepel_0.6.5
## [22] curl_2.3
                            e1071_1.6-7
                                                 withr_1.0.2
## [25] httr_1.2.1
                            stringr_1.2.0
                                                 roxygen2_6.0.1
## [28] xml2_1.1.1
                            maps_3.1.1
                                                 classInt_0.1-23
## [31] rprojroot_1.2
                                                 R6_2.2.0
                            grid_3.3.1
## [34] sp_1.2-3
                            readr_1.0.0
                                                 magrittr_1.5
## [37] htmltools 0.3.5
                            scales 0.4.1
                                                 backports 1.0.5
                                                 labeling_0.3
## [40] assertthat_0.1
                            colorspace_1.3-2
## [43] stringi 1.1.3
                            lazyeval_0.2.0
                                                 munsell 0.4.3
## [46] crayon_1.3.2
```