Системы линейных алгебраических уравнений и матрицы

конспект от TheLostDesu

8 сентября 2021 г.

1 Определение

Матрицей размера mxn называется упорядоченная прямоугольная таблица содержащяя m строк u n столбцов.

$$\mathbf{A} = egin{pmatrix} a_11 & a_12 & ...a_1n \\ ... & ... & ... & ... \\ (am1 & am2 & ... & amn) \end{pmatrix}$$
 a_{ij} - элемент матрицы

i - номер строки

j - номер столбца

m и n называют размерами матрицы [A]ij=aij

2 Частные случаи матриц

Квадратная матрица (m=n) m-мерный столбец n=1 n-мерная строка m=1 Нулевая матрица m=1

Нулевая матрица все $a_ij=0$ Еденичная матрица квадратная матрица, $\forall i=\overline{1,m}, j=\overline{1,n}$ $a_{ij}=\delta^{i-1}_j$ В единичной матрице на диагонали стоят единицы, на остальных местах - нули.

 $^{^{1}}$ Символ кронекера - δ_{i}^{i} . Равен 1, когда i=j, иначе равен 0

3 Операции с матрицами

Две матрицы A и B называются равными, если они одинакового размера и соответствующие элементы матриц равны.

$$\forall i = \overline{1, m}, j = \overline{1, n} \ a_{ij} = b_{ij}$$

Матрица C называется суммой матриц A и B, если матрицы A, B и одинаковых размеров, и $c_{ij}=a_{ij}+b_{ij} \forall i=\overline{i,m}, j=\overline{1,n}.$ C=A+B. Сложение матриц - коммуникативно, так как сложение элементов коммуникативно. Сложение матриц ассоциативно, так как сложение элементов ассоциативно. Сложение матрицы с нулевой матрицой = самой матрице.

Матрица C называется произведением числа λ на матрицу A, если матрицы C и A одинаковых размеров, и $c_{ij} = \lambda \cdot a_{ij}$. $C = \lambda \cdot A$.

Транспонированием матрицы называется операция, переводящяя все строки все строки в столбцы с сохранением порядка следования. A^t . Матрица типа $m \times n$ переходит в матрицу $n \times m$. Матрица называется симметрической, если $A = A^t$

Произведением матриц $A_{n\times p}$ и $B_{p\times k}$ называется матрица C размера $n\times k$, где $\forall i=\overline{1,m}, j=\overline{1,n}$ $C_{ij}=\sum\limits_{q=1}^p a_{iq}\cdot b_{qj}$