Решение на домашно 2

Валентин Стоянов

март 2018

Задача 1.

Нека $R = \{a, b, c, d\}$ е пръстен с таблици за събиране и умножение, съответно,

+	a	b	c	d
a	a	b	С	d
b	b	a	d	С
С	С	d	a	b
d	d	С	b	a

V

*	a	b	С	d
a	a	a	a	a
b	a	•	a	b
С	a	•	•	С
d	a	d	•	•

Да се определят отбелязаните с кръгче елементи в таблицата за умножение и да се намерят идеалите на пръстена R.

Решение:

$$dd = (b+c)d = bd + cd = b + c = d$$

$$dc = d(d+b) = dd + db = d + d = a$$

$$bb = b(c+d) = bc + bd = a + b = b$$

$$cb = (b+d)b = bb + db = b + d = c$$

$$cc = c(b+d) = cb + cd = c + c = a$$

След попълване, таблицата за умножение изглежда така:

*	a	b	с	d
a	a	a	a	a
b	a	b	a	b
c	a	c	a	c
d	a	d	a	d

Идеалите в пръстена са: $\{a\}, \{a,b,c,d\}$ и $\{a,c\}.$

Задача 2.

Разглеждаме множествата

$$A = \{ rac{f}{g} \mid f,g \in \mathbb{Q}[x] \, ; \, g(45466)
eq 0 \}$$
 и $M = \{ rac{f}{g} \in A \mid f(45466) = 0 \}.$

Да се докаже, че A е пръстен (относно обичайните операции: събиране и умножение на рационални функции), M е идеал на A, който съдържа всеки собствен идеал на A и $A/M \cong \mathbb{Q}$

Решение:

Нека $\frac{f_1}{g_1}, \frac{f_2}{g_2} \in A$. Ще проверим дали $\frac{f_1}{g_1} - \frac{f_2}{g_2} \in A$ и $\frac{f_1}{g_1} \frac{f_2}{g_2} \in A$.

- $\frac{f_1}{g_1} \frac{f_2}{g_2} = \frac{f_1g_2 f_2g_1}{g_1g_2}$, тъй като $\mathbb{Q}[x]$ е пръстен и $f_1, f_2, g_1, g_2 \in \mathbb{Q}[x]$, то следва, че $g_1g_2 \in \mathbb{Q}[x]$ и $f_1g_2 f_2g_1 \in \mathbb{Q}[x]$. Следователно $\frac{f_1g_2 f_2g_1}{g_1g_2} \in A$.
- Тъй като $\mathbb{Q}[x]$ е пръстен следва, че $f_1f_2\in\mathbb{Q}[x]$ и $g_1g_2\in\mathbb{Q}[x]$. Следователно $\frac{f_1f_2}{g_1g_2}\in A$

 $\Rightarrow A$ е пръстен.

Нека $\varphi:A \to \mathbb{Q}$ такова, че $\varphi(\frac{f}{g}) = (\frac{f}{g})(x).$

Ще проверим дали φ е хомоморфизъм на пръстени. Нека $\frac{f_1}{g_1},\frac{f_2}{g_2}\in A$.

•
$$\varphi(\frac{f_1}{g_1} + \frac{f_2}{g_2}) = \varphi(\frac{f_1g_2 + f_2g_1}{g_1g_2}) = (\frac{f_1g_2 + f_2g_1}{g_1g_2})(x) = (\frac{f_1}{g_1})(x) + (\frac{f_2}{g_2})(x) = \varphi(\frac{f_1}{g_1}) + \varphi(\frac{f_2}{g_2})$$

$$\bullet \ \varphi(\tfrac{f_1}{g_1} \tfrac{f_2}{g_2}) = \varphi(\tfrac{f_1f_2}{g_1g_2}) = (\tfrac{f_1f_2}{g_1g_2})(x) = (\tfrac{f_1}{g_1})(x)(\tfrac{f_2}{g_2})(x) = \varphi(\tfrac{f_1}{g_1})\varphi(\tfrac{f_2}{g_2})$$

 $\Rightarrow \varphi$ е хомоморфизъм.

От начина, по който е зададено $\$ следва, че $Ker \varphi = M.$

Съгласно Теоремата за хомоморфизми на пръстени: $A/M\cong\mathbb{Q}$