Situated Planning: Searching a burning tree

Devin W. Thomas

Advisor: Dr. Wheeler Ruml devin.thomas@unh.edu

This research was supported by grant 2008594 from the United States National Science Foundation (NSF) and grant 2019730 from the United States-Israel Binational Science Foundation (BSF).

Planning Under Time Pressure

Offline planning find complete plan, then execute
Anytime planning improve complete plan until terminated
Realtime planning return partial plan by fixed deadline
Situated planning relax realtime

• time pressure from agent's objective replaces deadline

Time passes: moving, thinking or waiting

Search nodes: expire

• Must decide when to commit to action(s)

Planning without acting:costs

- Missed opportunities
- Potential danger

Metareasoning: planning how to plan

• Important to provide a net benefit

SPAM-O

Given: 2D grid with moving and static obstacles, start and goal location

Find: actions incrementally, minimizing time-to-goal

Subject to: safety

Offline problem: SIPP(Phillips and Likhachev ICRA 2011)

Safe Intervals: consecutive colocated safe states

Subintervals: Safe Interval search for SPAM-O

SIPP searches on intervals because earlier states dominate Subintervals the time-dependent cost-to-go of interval states

The piecewise linear function is defined by: subintervals corresponding to it's children.

$$h_{subinterval}(t) = \begin{cases} h - (t - start) & t < start \\ h & start \le t \le end \end{cases} \tag{1}$$
 inf
$$else$$

Situated agents using subintervals can:

- Generate successor states that front load planning
- Generalize the dynamic component of heuristic learning.

Research Questions

Q1: What makes a successful situated agent?

- Successor generation:
- Act ASAP SIPP style
 Plan ASAP Same end state, but frontload waiting
- Heuristic generalization
 No Generalization learn to states
 Overgeneralization learn to safe intervals
- Heuristic learning
 No Learning don't learn
 LSS-LRTA* learn heuristic from frontier
 Partitioned learn static map separately
- Q2: When do the metareasoning methods that have been suggested in theory pay off in practice?

Results

R1: Generalized or partitioned learning is important.

R2: Situated specific methods can help.

Opportunistic Science

Given: opportunity to exchange resources for reward

Find: whether to exploit the opportunity

Subject to: a long term plan

Resource constraint more realistic than time constraint in SPAM-O

Orienteering

Given: graph of locations, start location, set of time bounded rewards at locations

Find: actions incrementally, maximizing sum of rewards.

Subject to: return to start by deadline

Similar to opportunistic science, but all opportunities are known up front

Conclusions

- Applications demand situated planning!
- Situated planning suggests both theoretical and practical research.
- Starting with the simplest: situated pathfinding.