EBU4202 Digital Circuit Design 2018-19 Week 3 Tutorial

- 1) Consider the circuit shown in Figure 1. Answer the following questions:
 - a. What is the name for this type of flip-flop?
 - b. Imagine that S_L now goes low. R_L remains high. Use your knowledge of the operation of gates to determine the new values of Q and QN

Figure 1: Circuit diagram of a flip-flop

- 2) Consider the circuit shown in Figure 2. Answer the following questions:
 - a. What is the name for this type of flip-flop?
 - b. Imagine that S now goes low. R = 0 and C = 1. Use your knowledge of the operation of gates to determine the new values of Q and QN
 - c. Imagine that C now goes low. S = 0 and R = 0. Use your knowledge of the operation of gates to determine the new values of Q and QN
 - d. Imagine that C now goes high. S = 1 and R = 0. Use your knowledge of the operation of gates to determine the new values of Q and QN

Figure 2: Circuit diagram of a flip-flop

- 3) Consider the circuit shown in Figure 3. Answer the following questions:
 - a. What is the name for this type of flip-flop?
 - b. Imagine that C now goes high. D = 1. Use your knowledge of the operation of gates to determine the new values of Q and QN
 - c. Imagine that D now goes low. C = 1. Use your knowledge of the operation of gates to determine the new values of Q and QN
 - d. Imagine that C now goes low. D = 0. Use your knowledge of the operation of gates to determine the new values of Q and QN

Figure 3: Circuit diagram of a flip-flop

- 4) What is a synchronous state machine?
- 5) In the context of bistable elements and state machines, what is meant by the term "metastability"?
- 6) Explain the difference between a Moore and Mealy machine.
- 7) What is the minimum number of flip-flops required to store 35 states?
- 8) Consider an SR latch. What is the maximum clock frequency for a circuit having a maximum delay T_D? How can the circuit become unstable?

9) Consider the circuit shown in Figure 4. Answer the following questions.

Figure 4: Circuit diagram for the first section of a FSM

- a. What type of FSM is depicted in Figure 1?
- b. Draw-up: input, next state, and output equations for the FSM depicted in Figure 1.
- c. Based on your answers to question 6)b) prepare the: transition table, state table, and state/output table.
- d. Finally draw the state diagram for the FSM shown in Figure 1.
- 10) Design an autonomous sequential circuit, based on JK-type bistables, which generates the following sequence of states: 000, 010, 111, 101, 100 110. The transition table of JK Flip-Flop is given in Figure 5 below. Note: You must draw the circuit diagram, but there is no need to draw the state diagram.

J	K	CLK	Q	QN
х	х	0	last Q	last QN
Х	Х	1	last Q	last QN
0	0		last Q	last QN
0	1		0	1
1	0		1	0
1	1		last QN	last Q

Figure 5: Transition Table for Edge Triggered JK Flip-Flop