> TabularARGN

A Framework for High-Quality Synthetic Data Generation

Paul Tiwald paul.tiwald@mostly.ai

What is Synthetic Data

random data

self-generated data

model-generated data rule-based

Al-generated data "data-based"

NAME	AGE	GENDER	ITEM	EUR	DATE	TIME
Mary	25y	female	Book	12€	4/2/19	8:12
John	72y	male	Pizza	34€	4/2/19	18:12
Bill	18y	male	Swim	6€	4/4/19	10:02
Bill	18y	male	Shoes	123€	4/4/19	12:32
1						

NAME **AGE GENDER** ITEM **EUR** DATE TIME 29y female Amazon 236€ 4/4/19 12:32 Kim 29y female Zalando 36€ 4/4/19 18:58 Kim Brian 82y male 6€ 4/2/19 21:32 Beer 24y female Sushi 12€ 4/2/19 21:32 Sue

Real Data

Synthetic Data

Privacy-preserving Tabular Synthetic Data

NAME	AGE	GENDER	ITEM	EUR	DATE	ГІМЕ
Mary	25y	female	Book	12€	4/2/19	8:12
John	72y	male	Pizza	34€	4/2/19 1	8:12
Bill	18y	male	Swim	6€	4/4/19 10	3:02
Bill	18y	male	Shoes	123€	4/4/19 12	2:32

NAME **AGE GENDER** ITEM **EUR** DATE TIME 29y Amazon 236€ female 4/4/19 12:32 Kim Zalando 36€ 4/4/19 18:58 29y female Kim Brian 82y male Beer 6€ 4/2/19 21:32 24y female 12€ 4/2/19 21:32 Sue Sushi

Real Data

Private

Open

Synthetic Data

Tabular ARGN - Auto-Regressiv Generative Networks

[Submitted on 21 Jan 2025 (v1), last revised 6 Feb 2025 (this version, v2)]

TabularARGN: A Flexible and Efficient Auto-Regressive Framework for Generating High-Fidelity Synthetic Data

Paul Tiwald, Ivona Krchova, Andrey Sidorenko, Mariana Vargas Vieyra, Mario Scriminaci, Michael Platzer

Synthetic data generation for tabular datasets must balance fidelity, efficiency, and versatility to meet the demands of real-world applications. We introduce the Tabular Auto-Regressive Generative Network (TabularARGN), a flexible framework designed to handle mixed-type, multivariate, and sequential datasets. By training on all possible conditional probabilities, TabularARGN supports advanced features such as fairness-aware generation, imputation, and conditional generation on any subset of columns. The framework achieves state-of-the-art synthetic data quality while significantly reducing training and inference times, making it ideal for large-scale datasets with diverse structures. Evaluated across established benchmarks, including realistic datasets with complex relationships, TabularARGN demonstrates its capability to synthesize high-quality data efficiently. By unifying flexibility and performance, this framework paves the way for practical synthetic data generation across industries.

Tabular ARGN is implemented in the **Synthetic Data SDK**

- only care about generation, not p(x)
- instead of maximizing the density, compare real vs generated sample (classification problem)
- examples: GAN, GMMN
- directly learn density p(x)
- examples: autoregressive models (Transformer, RNNs), flow-based models
- learn unnormalized density E(x)
 p(x)
- examples: EBM

- learn approximation (e.g. lower bound) of density
 L(x) ≤ p(x)
- examples: VAE, diffusion models

Flat Model

Fixed (column) Order Training Phase

patients data set:

x1 - age

x2 - gender

x3 - blood type

loss function:

$$\max_{\theta} \sum_{i=1}^{D} \log p_{\theta}(x_i \mid x_{< i})$$

MOSTLY AI

Flat Model

Any (column) Order Training Phase

patients data set:

x1 - age

x2 - gender

x3 - blood type

loss function:

$$\max_{\theta} \mathbb{E}_{\sigma \in \text{Uniform}(S_D)} \left[\sum_{i=1}^{D} \log p_{\theta} (x_{\sigma(i)} \mid x_{\sigma(< i)}) \right]$$

patients data set:

x1 - age

x2 - gender

x3 - blood type

Sequential Model - doctor visits

auto-regressive along the column and the time dimensions

	date	systolic blood pressure	body weight	
← fime	15.1.2022	140	85	
	19.1.2022	138	85	
	3.4.2022	135	84	
	16.7.2022	132	?	
		history encoder		
				•
	$\hat{p}(\text{body we})$	eight date, blo	od pressure, e	encoded history

MOSTLY AI

Sequential Model with context

auto-regressive along the column, time, and table dimensions

Flexible context allows for synthesis of multi-table setups

Benchmarking TabularARGN against SOTA methods

Text-extension allows for leveraging the power of LLMs

combining TabularARGN with text models

We are hiring

Developer Advocate (Remote)

Permanent employee, Full-time · EMEA Remote

We are looking for a captivating Developer Advocate to help us spread the word, engage with the Python / Data / Al community, and create some fun content. Somewhere at the **intersection of a Data Enthusiast**, **Open Source Advocate**, **and a Content Creator**.

Tabular ARGN - Auto-Regressiv Generative Networks

Tabular ARGN is implemented in the **Synthetic Data SDK**

for more infos, check out our blog

Synthetic Behavioral Data

Synthetic Geo Data

<u>Differentially Private Synthetic Data</u>

Fair Synthetic Data

<u>Synthetic Data Benchmarks</u>

JRC Report on Synthetic Data

Al-based Re-Identification Attacks

Privacy Assessment of Synthetic Data

and many more