CV II - Assignment 2

Dennis Penzel - 1906242 Group 40

Problem 1

1.1

A graphical model can display complex structures or problems in a compact, visual way. They are a very efficient way to handle complex problems.

1.2

Markov blanket of x_3 : $\{x_1, x_2\}$

1.3

a): $p(x_1|x_3, x_4, x_5) p(x_2) p(x_3|x_7) p(x_4|x_7, x_8) p(x_5|x_4, x_8) p(x_6|x_5, x_9) p(x_7|x_8) p(x_8) p(x_9)$

b): $\frac{1}{Z}\phi_1(x_1, x_4, x_5) \phi_2(x_1, x_3) \phi_3(x_4, x_5, x_7, x_8) \phi_4(x_3, x_7) \phi_5(x_5, x_6) \phi_6(x_6, x_9) \phi_7(x_2)$

1.4

1.5

x_1	x_2	x_3	$\phi_1(x_1)$	$\phi_2(x_2,x_3)$	$\Pi\phi(\ldots)$	$p(x_1, x_2, x_3)$
0	0	0	0,5	0+0+1=1	0,5	0,024
0	0	1	0,5	0+3+1=4	2	0,095
0	1	0	0,5	2+0+1=3	1,5	0,071
0	1	1	0,5	2+3+1=6	3	0,143
1	0	0	1	0+0+1=1	1	0,048
1	0	1	1	0+3+1=4	4	0,190
1	1	0	1	2+0+1=3	3	0,143
1	1	1	1	2+3+1=6	6	0,286

$$\Rightarrow Z = 21$$

1.6

a): Fig.2 left:

 $x_2 \perp x_1 | x_3$

 $\Rightarrow x_3$ blocks all routes from x_2 to x_1

b): Fig.2 right:

 $x_2 \perp x_1$

 \rightarrow Markov blanket of $x_2 = \{x_3\}$

 \Rightarrow independent of x_1

1.7

1.: $\frac{1}{Z}\phi_1(x_1, x_2) \phi_2(x_2, x_4) \phi_3(x_1, x_3) \phi_4(x_3, x_4)$

2.: $\frac{1}{Z}\phi_1(x_1, x_2, x_3) \phi_2(x_2, x_3, x_4)$

3.:
$$\frac{1}{Z}\phi_1(x_1, x_2) \phi_2(x_1, x_3) \phi_3(x_2, x_3, x_4)$$

$$\{w_2, w_4, w_6, w_6, x_5\}$$

1.9

$$\{w_2, w_3, w_5, x_4\}$$

Problem2

$$p(L=0|S=0)$$

$$= \frac{p(L=1,S=0)}{p(S=0)} = \frac{\sum_{R} p(L=1,S=0,R)}{\sum_{R,L} p(S=0,R,L)} = \frac{p(L=1,S=0,R=0) + p(L=1,S=0,R=1)}{p(L=1,S=0,R=0) + p(L=1,S=0,R=1) + p(L=0,S=0,R=1) + p(L=0,S=0,R=1)}$$

$$= \frac{0.7 \cdot 0.7 \cdot 0.1 + 0.9 \cdot 0.3 \cdot 0.1}{0.7 \cdot 0.7 \cdot 0.1 + 0.9 \cdot 0.3 \cdot 0.1 + 0.3 \cdot 0.7 \cdot 0.9 + 0.8 \cdot 0.3 \cdot 0.9} = \frac{0.049 + 0.027}{0.049 + 0.027 + 0.189 + 0.216} = \frac{0.076}{0.481}$$

2.2

$$p(L=1|S=0,R=0)$$

$$= \frac{p(L=1,S=0,R=1)}{\sum_{L} p(L,S=0,R=1)} = \frac{p(L=1,S=0,R=1)}{p(L=1,S=0,R=1) + p(L=0,S=0,R=1)}$$

$$= \frac{p(S=0|R=1,L=1) \cdot p(R=1) \cdot p(L=1)}{p(S=0|R=1,L=1) \cdot p(R=1) \cdot p(L=1) + p(S=0|R=1,L=0) \cdot p(R=1) \cdot p(L=0)}$$

$$= \frac{0,9 \cdot 0,3 \cdot 0,1}{0,9 \cdot 0,3 \cdot 0,1 + 0,8 \cdot 0,3 \cdot 0,9} = \frac{0,027}{0,027 + 0,216} = \frac{0,027}{0,243}$$

$$=0,\overline{1}$$

2.3

The observation that there are no free seats left creates an dependency between the two events L and R. Now, with the addition that we observe the raid outside, the probability that L=1 decreases. This event (R=1) provides an additional explanation for our S=0 and intuitively lowers our believing that L=1. So we can say that the observation of R=1 'explains away' the observation of S=0.