BROJNI REDOVI

1. Ispitati konvergenciju sledećih redova:

a)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots, \quad \text{b)} \sum_{n=0}^{\infty} \left(\frac{1}{7}\right)^n = 1 + \frac{1}{7} + \frac{1}{7^2} + \cdots,$$
c)
$$\sum_{n=0}^{\infty} (-1)^n = 1 - 1 + 1 - 1 + \cdots, \quad \text{d)} \sum_{n=0}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n}).$$

Rešenje:

a) Opšti član datog reda je $a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$, a n-ta parcijalna suma

$$S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}.$$

Kako je $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right) = 1$, dati red konvergira i njegova suma je $S = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

b) Opšti član datog reda je $a_n = \left(\frac{1}{7}\right)^n$, a *n*-ta parcijalna suma

$$S_n = \sum_{k=0}^{n-1} \frac{1}{7^k} = 1 + \frac{1}{7} + \frac{1}{7^2} + \dots + \frac{1}{7^{n-1}} = \frac{1 - \left(\frac{1}{7}\right)^n}{1 - \frac{1}{7}}.$$

Kako je $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{1-\left(\frac{1}{7}\right)^n}{1-\frac{1}{7}} = \frac{1}{\frac{6}{7}} = \frac{7}{6}$, dati red konvergira i njegova suma je $S = \sum_{n=0}^{\infty} \left(\frac{1}{7}\right)^n = \frac{7}{6}$.

- c) Za dati red $\sum_{n=0}^{\infty} (-1)^n = 1 1 + 1 1 + \cdots$, parcijalne sume su redom: $S_1 = 1$, $S_2 = 0$, $S_3 = 1$, $S_4 = 0$, itd. odnosno $S_{2n} = 0$, a $S_{2n+1} = 1$. Niz parcijalnih suma ima dva konvergentna podniza sa različitim granicama, pa $\lim_{n \to \infty} S_n$ ne postoji i dati red $\sum_{n=0}^{\infty} (-1)^n$ divergira.
- d) Opšti član datog reda je

$$a_n = \sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n} = \sqrt{n+2} - \sqrt{n+1} - \sqrt{n+1} + \sqrt{n} = \sqrt{n+2} - \sqrt{n+1} - (\sqrt{n+1} - \sqrt{n}),$$
a n-ta parcijalna suma

$$S_n = \sum_{k=1}^n (\sqrt{k+2} - \sqrt{k+1}) - \sum_{k=1}^n (\sqrt{k+1} - \sqrt{k}) =$$

$$= (\sqrt{3} - \sqrt{2} + \sqrt{4} - \sqrt{3} + \dots + \sqrt{n+2} - \sqrt{n+1}) - (\sqrt{2} - \sqrt{1} + \sqrt{3} - \sqrt{2} + \dots + \sqrt{n+1} - \sqrt{n}) =$$

$$= \sqrt{n+2} - \sqrt{2} - \sqrt{n+1} + 1.$$

Kako je

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} (\sqrt{n+2} - \sqrt{n+1}) + 1 - \sqrt{2} =$$

$$= 1 - \sqrt{2} + \lim_{n \to \infty} (\sqrt{n+2} - \sqrt{n+1}) \cdot \frac{\sqrt{n+2} + \sqrt{n+1}}{\sqrt{n+2} + \sqrt{n+1}} =$$

$$= 1 - \sqrt{2} + \lim_{n \to \infty} \frac{n+2-n-1}{\sqrt{n+2} + \sqrt{n+1}} = 1 - \sqrt{2} + \lim_{n \to \infty} \frac{1}{\sqrt{n+2} + \sqrt{n+1}} = 1 - \sqrt{2},$$

dati red konvergira i njegova suma je $S = \sum_{n=1}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n}) = 1 - \sqrt{2}$.

Kriterijum divergencije

2. Ispitati konvergenciju sledećih redova:

$$\begin{aligned} & \text{a) } \sum_{n=1}^{\infty} \frac{n}{n+1}, & \text{b) } \sum_{n=1}^{\infty} \left(1 + \frac{2}{n+1}\right)^n, & \text{c) } \sum_{n=0}^{\infty} (-1)^n n^2, & \text{d) } \sum_{n=1}^{\infty} \cos\left(\frac{n\pi}{2}\right), \\ & \text{e) } \sum_{n=1}^{\infty} \frac{1}{(an+b)^p}, a, b > 0, p \in \mathbb{R}, & \text{f) } \sum_{n=1}^{\infty} \frac{n}{\sqrt[n]{n!}}. \end{aligned}$$

Rešenje:

a)
$$\lim_{n\to\infty} \frac{n}{n+1} = 1 \neq 0 \implies \sum_{n=1}^{\infty} \frac{n}{n+1}$$
 divergira;

b)
$$\lim_{n \to \infty} \left(1 + \frac{2}{n+1} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{\frac{n+1}{2}} \right)^{\frac{n+1}{2} \frac{2}{n+1} n} = \lim_{n \to \infty} e^{\frac{2n}{n+1}} = e^2 \neq 0 \implies \sum_{n=1}^{\infty} \left(1 + \frac{2}{n+1} \right)^n \text{ divergira};$$

c)
$$\lim_{n\to\infty} (-1)^n n^2$$
 ne postoji $\implies \sum_{n=0}^{\infty} (-1)^n n^2$ divergira;

d)
$$\lim_{n\to\infty}\cos\left(\frac{n\pi}{2}\right)$$
 ne postoji $\implies \sum_{n=1}^{\infty}\cos\left(\frac{n\pi}{2}\right)$ divergira;

e)
$$\lim_{n\to\infty}\frac{1}{(an+b)^p}=\begin{cases} 0, & p>0\\ 1, & p=0\\ \infty, & p<0 \end{cases}$$
 pa za $p\leq 0$ red
$$\sum_{n=1}^{\infty}\frac{1}{(an+b)^p}$$
 divergira (opšti član mu ne teži nuli), a za $p>0$ ne može se ništa reći o konvergenciji datog reda (potrebna su dalja ispitivanja).

f) Kad
$$n \to \infty$$
, $n! \sim \sqrt{2\pi n} \cdot \frac{n^n}{e^n}$ (Stirlingova formula). Odatle je $\frac{n}{\sqrt[n]{n!}} \sim \frac{n}{\sqrt[n]{\sqrt{2\pi n} \cdot \frac{n^n}{e^n}}} = \frac{n}{\sqrt[2n]{2\pi n} \cdot \frac{n}{e}} = \frac{n}{\sqrt[2n]{2\pi n} \cdot \frac{n}$

Uporedni kriterijum I vrste

3. Uporednim kriterijumom prve vrste ispitati konvergeniciju sledećih redova:

a)
$$\sum_{n=1}^{\infty} \frac{2^n}{n \cdot 5^n};$$

b)
$$\sum_{n=2}^{\infty} \frac{\ln n}{n}.$$

Rešenje:

a)
$$a_n = \frac{2^n}{n \cdot 5^n} = \frac{1}{n} \left(\frac{2}{5}\right)^n \le \left(\frac{2}{5}\right)^n$$
, $\forall n \in \mathbb{N}$, pas obzirom na to da red $\sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^n$ konvergira, i početni red $\sum_{n=1}^{\infty} \frac{2^n}{n \cdot 5^n}$ konvergira;

b)
$$a_n = \frac{\ln n}{n} > \frac{1}{n}, n \ge 3$$
, pa s obzirom na to da red $\sum_{n=2}^{\infty} \frac{1}{n}$ divergira, i početni red $\sum_{n=2}^{\infty} \frac{\ln n}{n}$ divergira.

Uporedni kriterijum II vrste

4. Uporednim kriterijumom druge vrste ispitati konvergenciju sledećih redova:

a)
$$\sum_{n=1}^{\infty} \frac{2n - \sqrt{n}}{\sqrt{n^5 + 3n^2}}$$
, b) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^5 - 2n + 3}}{n^2}$, c) $\sum_{n=0}^{\infty} \frac{2^n + n}{n^2 + 5^n}$, d) $\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}}{n}$, e) $\sum_{n=1}^{\infty} (\sqrt[3]{n + 1} - \sqrt[3]{n})$, f) $\sum_{n=1}^{\infty} \left(1 - \cos\frac{\pi}{n}\right)$, g) $\sum_{n=1}^{\infty} \ln\left(\frac{n^2 + 1}{n^2}\right)$, h) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}} \ln\left(\frac{n + 1}{n - 1}\right)$, j) $\sum_{n=1}^{\infty} \frac{n + 3}{\sqrt{1 + n^3} \cdot \sin\frac{\pi}{n}}$.

Rešenje:

a) Kad
$$n \to \infty$$
, $\frac{2n-\sqrt{n}}{\sqrt{n^5+3n^2}} \sim \frac{2n}{\sqrt{n^5}} = \frac{2}{n^{\frac{3}{2}}}$. Kako red $\sum_{n=1}^{\infty} \frac{2}{n^{\frac{3}{2}}}$ konvergira $\left(\frac{3}{2} > 1\right)$, i početni red $\sum_{n=1}^{\infty} \frac{2n-\sqrt{n}}{\sqrt{n^5+3n^2}}$ konvergira.

b) Kad
$$n \to \infty$$
, $\frac{\sqrt[3]{n^5 - 2n + 3}}{n^2} \sim \frac{\sqrt[3]{n^5}}{n^2} = \frac{1}{n^{\frac{1}{3}}}$. Kako red $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{3}}}$ divergira $\left(\frac{1}{3} < 1\right)$, i početni red $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^5 - 2n + 3}}{n^2}$ divergira.

c) Kad
$$n \to \infty$$
, $\frac{2^n + n}{n^2 + 5^n} \sim \frac{2^n}{5^n} = \left(\frac{2}{5}\right)^n$. Kako red $\sum_{n=0}^{\infty} \left(\frac{2}{5}\right)^n$ konvergira, i početni red $\sum_{n=0}^{\infty} \frac{2^n + n}{n^2 + 5^n}$ konvergira.

d) Kad $n \to \infty$,

$$\begin{split} \frac{\sqrt{n^2+n+1}-\sqrt{n^2-n+1}}{n} &= \frac{\sqrt{n^2+n+1}-\sqrt{n^2-n+1}}{n} \cdot \frac{\sqrt{n^2+n+1}+\sqrt{n^2-n+1}}{\sqrt{n^2+n+1}+\sqrt{n^2-n+1}} = \\ &= \frac{n^2+n+1-n^2+n-1}{n(\sqrt{n^2+n+1}+\sqrt{n^2-n+1})} = \frac{2}{\sqrt{n^2+n+1}+\sqrt{n^2-n+1}} \sim \\ &\sim \frac{2}{n+n} = \frac{1}{n}. \end{split}$$

Kako red $\sum_{n=1}^{\infty} \frac{1}{n}$ divergira, i početni red $\sum_{n=1}^{\infty} \frac{\sqrt{n^2+n+1}-\sqrt{n^2-n+1}}{n}$ divergira.

e) Kad $n \to \infty$,

$$\sqrt[3]{n+1} - \sqrt[3]{n} = (\sqrt[3]{n+1} - \sqrt[3]{n}) \cdot \frac{\sqrt[3]{(n+1)^2} + \sqrt[3]{n+1}\sqrt[3]{n} + \sqrt[3]{n^2}}{\sqrt[3]{(n+1)^2} + \sqrt[3]{n+1}\sqrt[3]{n} + \sqrt[3]{n^2}} = \frac{n+1-n}{\sqrt[3]{(n+1)^2} + \sqrt[3]{n+1}\sqrt[3]{n} + \sqrt[3]{n^2}} \sim \frac{1}{3n^{\frac{2}{3}}}.$$

Kako red $\sum_{n=1}^{\infty}\frac{1}{3n^{\frac{2}{3}}}$ divergira ($\frac{2}{3}\leq 1$), i početni red $\sum_{n=1}^{\infty}(\sqrt[3]{n+1}-\sqrt[3]{n})$ divergira.

f) Kad
$$n \to \infty$$
, $1 - \cos \frac{\pi}{n} = 2\sin^2 \frac{\pi}{2n} \sim 2\left(\frac{\pi}{2n}\right)^2 = \frac{\pi^2}{2n^2}$. Kako red $\sum_{n=1}^{\infty} \frac{\pi^2}{2n^2}$ konvergira $(2 > 1)$, i početni red $\sum_{n=1}^{\infty} \left(1 - \cos \frac{\pi}{n}\right)$ konvergira.

- g) Kad $n \to \infty$, $\ln\left(\frac{n^2+1}{n^2}\right) = \ln\left(1+\frac{1}{n^2}\right) \sim \frac{1}{n^2}$. Kako red $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergira(2>1), i početni red $\sum_{n=1}^{\infty} \ln\left(\frac{n^2+1}{n^2}\right)$ konvergira.
- h) Kad $n \to \infty$, $\frac{1}{\sqrt{n}} \ln \left(\frac{n+1}{n-1} \right) = \frac{1}{\sqrt{n}} \ln \left(1 + \frac{2}{n-1} \right) \sim \frac{2}{\sqrt{n}(n-1)} \sim \frac{2}{n^{\frac{3}{2}}}$. Kako red $\sum_{n=2}^{\infty} \frac{2}{n^{\frac{3}{2}}}$ konvergira $(\frac{3}{2} > 1)$, i početni red $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}} \ln \left(\frac{n+1}{n-1} \right)$ konvergira.
- j) Kad $n \to \infty$, $\frac{n+3}{\sqrt{1+n^3} \cdot \sin \frac{1}{n}} \sim \frac{n}{n^{\frac{3}{2}} \frac{1}{n}} = \frac{n}{n^{\frac{1}{2}}} = n^{\frac{1}{2}} = \sqrt{n}$. Kako red $\sum_{n=1}^{\infty} \sqrt{n}$ divergira (opšti član ne teži nuli), i početni red $\sum_{n=1}^{\infty} \frac{n+3}{\sqrt{1+n^3} \cdot \sin \frac{1}{n}}$ divergira.

Dalamberov kriterijum

5. Dalamberovim kriterijumom ispitati konvergenciju sledećih redova:

a)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$
, b) $\sum_{n=0}^{\infty} \frac{n!}{3^n}$, c) $\sum_{n=1}^{\infty} \frac{n^p}{n!}$, d) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$, e) $\sum_{n=1}^{\infty} \frac{a^n}{(1+a)(1+a^2)\cdots(1+a^n)}$, $a > 0$.

Rešenje:

a) Opšti član datog reda je
$$a_n = \frac{2^n n!}{n^n}$$
. Kako je $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}}}{\frac{2^n n!}{n^n}} = \lim_{n \to \infty} \frac{\frac{2(n+1)n!}{(n+1)\cdot(n+1)^n}}{\frac{n!}{n^n}} = \lim_{n \to \infty} \frac{1}{\binom{n}{n+1}} = \frac{2}{e} < 1$, red $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$ konvergira.

- b) Opšti član datog reda je $a_n = \frac{n!}{3^n}$. Kako je $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{(n+1)!}{3^{n+1}}}{\frac{n!}{3^n}} = \lim_{n \to \infty} \frac{n+1}{3} = \infty$, red $\sum_{n=0}^{\infty} \frac{n!}{3^n}$ divergira.
- c) Opšti član datog reda je $a_n = \frac{n^p}{n!}$. Kako je $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{(n+1)^p}{(n+1)!}}{\frac{n^p}{n!}} = \lim_{n \to \infty} \frac{1}{n+1} \left(\frac{n+1}{n}\right)^p = \lim_{n \to \infty} \frac{1}{n+1} \left(1 + \frac{1}{n}\right)^p = 0 \cdot 1 = 0 < 1$, red $\sum_{n=1}^{\infty} \frac{n^p}{n!}$ konvergira.
- d) Opšti član datog reda je $a_n = \frac{(n!)^2}{(2n)!}$. Kako je $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{((n+1)!)^2}{(2(n+1))!}}{\frac{(n!)^2}{(2n)!}} = \lim_{n \to \infty} \frac{\frac{(n+1)^2(n!)^2}{(2n+2)(2n+1)(2n)!}}{\frac{(n!)^2}{(2n)!}} = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{4n^2 + 6n + 2} = \frac{1}{4} < 1$, red $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$ konvergira.
- e) Opšti član datog reda je $a_n = \frac{a^n}{(1+a)(1+a^2)\cdots(1+a^n)}$. Kako je $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{\frac{a^{n+1}}{(1+a)(1+a^2)\cdots(1+a^n)(1+a^{n+1})}}{\frac{a^n}{(1+a)(1+a^2)\cdots(1+a^n)}} = \lim_{n\to\infty} \frac{a}{1+a^{n+1}} = \begin{cases} 0, & a>1\\ \frac{1}{2}, & a=1\\ a, & a<1 \end{cases}$, red $\sum_{n=1}^{\infty} \frac{a^n}{(1+a)(1+a^2)\cdots(1+a^n)}$ konvergira za a>0.

Košijev (korenski) kriterijum

6. Košijevim kriterijumom ispitati konvergenciju sledećih redova:

a)
$$\sum_{n=1}^{\infty} n \frac{2^n}{3^n}$$

b)
$$\sum_{n=1}^{\infty} \left(1 + \frac{3}{n}\right)^{n^2}$$

c)
$$\sum_{n=1}^{\infty} a^{\frac{n^2+2}{n+1}}$$
, $a > 0$,

a)
$$\sum_{n=1}^{\infty} n \frac{2^n}{3^n}$$
, b) $\sum_{n=1}^{\infty} \left(1 + \frac{3}{n}\right)^{n^2}$, c) $\sum_{n=1}^{\infty} a^{\frac{n^2+2}{n+1}}$, $a > 0$, d) $\sum_{n=1}^{\infty} \frac{n^3}{\left(a + \frac{1}{n}\right)^n}$, $a > 0$.

Rešenje:

- a) Opšti član datog reda je $a_n = n \frac{2^n}{3^n}$. Kako je $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{n \frac{2^n}{3^n}} = \lim_{n \to \infty} \sqrt$ $\sum_{n=1}^{\infty} n \frac{2^n}{3^n}$ konvergira.
- b) Opšti član datog reda je $a_n = \left(1 + \frac{3}{n}\right)^{n^2}$. Kako je $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\left(1 + \frac{3}{n}\right)^{n^2}} = \lim_{n \to \infty} \left(1 + \frac{3}{n}\right)^n = \lim_{n \to \infty} \left(1 + \frac{3}{n}\right)^n$ $\lim_{n\to\infty}\left(1+\frac{1}{\frac{n}{n}}\right)^{\frac{n}{3}\cdot\frac{3}{n}\cdot n}=e^3>1,\,\mathrm{red}\,\sum^{\infty}\left(1+\frac{3}{n}\right)^{n^2}\,\mathrm{divergira}.$
- c) Opšti član datog reda je $a_n = a^{\frac{n^2+2}{n+1}}, \ a > 0$. Kako je $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{a^{\frac{n^2+2}{n+1}}} = \lim_{n \to \infty} a^{\frac{n^2+2}{n^2+n}} = a$. Konvergencija datog reda zavisi od vrednosti parametra a. Za a < 1, red $\sum_{n=1}^{\infty} a^{\frac{n^2+2}{n+1}}$ konvergira. Za a > 1, red $\sum_{n=1}^{\infty} a^{\frac{n^2+2}{n+1}}$ divergira. Za a=1 dobija se red $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} 1$ koji divergira.
- d) Opšti član datog reda je $a_n = \frac{n^3}{\left(a + \frac{1}{n}\right)^n}, a > 0$. Kako je $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{n^3}{\left(a + \frac{1}{n}\right)^n}} = \lim_{n \to \infty} \frac{(\sqrt[n]{n})^3}{a + \frac{1}{n}} = \lim_{n \to \infty} \frac{(\sqrt[n]{n}$
 - $\frac{1}{a}$. Konvergencija datog reda zavisi od vrednosti parametra a. Za a>1, red $\sum_{n=1}^{\infty}\frac{n^3}{\left(a+\frac{1}{n}\right)^n}$ konvergira.
 - Za a < 1, red $\sum_{n=1}^{\infty} \frac{n^3}{\left(a + \frac{1}{n}\right)^n}$ divergira. Za a = 1, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^3}{\left(1 + \frac{1}{n}\right)^n} = \infty$ pa kako opšti član ne teži nuli, red divergira.