1 Topology

Given a set X, a collection τ is all subset of X is called topology on X if the collection is closed under **union** and **finite insection**

 $\mathbf{X} = \{1, 2, 3\}$ $\tau = \{\emptyset, \{1, 2, 3\}\}$

 τ is called topology

 (\mathbf{X}, τ) is called **topological space**

(points, relation between points) is called topological space

(points, "nice" relation between points) is called manifold - homemorphic

(points, smooth relation between points) is called smooth manifold - diffeomorphic

2 WTF Manifold

A $\mathcal X$ is defined as topological space which is Hausdorff

Hansdorff - any two different point must be in two disjoined open subsets

2.1 Chart

A chart is defined as pair $A=(U,\phi)$ U is open set in X where $\phi:U\to\mathbb{R}^n$ where ϕ is homemorphic - it is continuous and invertible

the component of $\phi = (x_1, x_2, ...)$ are called coordinates

$$\phi(t)t \in U$$
= $(x_1(t), x_2(t))$
= $(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})$

2.2 Atlas

The union of all charts is called Atlas $\mathcal{A} = \cup (\phi_{\alpha}, U_{\alpha})$

2.3 Compatiable

Two charts are called compatiable if the overlapped maps are smooth.

2.4 Manifold

A n dimension manifold is a topological space X with at las $\mathcal A$