

Final.pdf

Anónimo

Geometría de Curvas y Superficies

2º Grado en Matemáticas

Facultad de Ciencias Universidad Autónoma de Madrid

A nuestros apuntes, los quiere todo el mundo.

Por ser los más ordenados

Por ser los más claros

Por ser los más completos

www.monteroespinosa.com

- Todos los apuntes que necesitas están aquí
- Al mejor precio del mercado, desde 2 cent.
- Recoge los apuntes en tu copistería más cercana o recíbelos en tu casa
- Todas las anteriores son correctas

Universidad Autónoma de Madrid

Facultad de Ciencias. DEPARTAMENTO DE MATEMÁTICAS. Geometría de Curvas y Superficies. Examen final. 27 de mayo de 2019.

Instrucciones:

- La pregunta correspondiente al tercer parcial es el Ejercicio 3.
- Si haces solo el tercer parcial, tienes una hora y media de tiempo. Si no, tienes tres horas.

Ejercicio 1.

1. Consideramos la curva $\alpha: \mathbb{R} \to \mathbb{R}^3$ dada por

$$\alpha(t) = \left(\frac{4}{5}\cos t, 1 - \sin t, -\frac{3}{5}\cos t\right).$$

- a) Demuestra que α es una curva regular, y calcula su triedro de Frenet.
- b) Usando el apartado anterior, determina la curvatura y la torsión de α .
- c) Demuestra que la traza de α es una circunferencia. Encuentra su centro, su radio, y la ecuación del plano en la que está contenida.
- 2. a) Da la definición de geodésica y curva asintótica en una superficie regular S.
 - b) Demuestra que una curva (parametrizada por longitud de arco) es simultáneamente una curva asintótica y una geodésica de una superficie regular S si y solo si (su traza) es un segmento de recta.

Ejercicio 2.

1. Sea $\mathbb{X}: U \to S$ una parametrización de un abierto de una superficie regular S. Supongamos que la primera forma fundamental de S, en términos de la parametrización $\mathbb{X}(u,v)$, tiene matriz

$$I(u,v) = \left(\begin{array}{cc} u+v & \sqrt{v} \\ \sqrt{v} & 1 \end{array}\right)$$

- a) Sea $\beta: \mathbb{R} \to U$ dada por $\beta(t)=(t,1)$, y sea $\alpha: \mathbb{R} \to S$ con $\alpha(t)=\mathbb{X}(\beta(t))$. Calcular la longitud de α entre t=0 y t=3.
- b) Sea $R \subset U$ dada por 0 < u < 4 y 0 < v < 4. Calcular el área de $\mathbb{X}(R)$.
- 2. Consideramos el trozo de cilindro $C=\{(x,y,z)\mid x^2+y^2=1,z>0\},$ y el paraboloide P de ecuación $z=x^2+y^2.$ Sea

$$f:C\to P$$

dada por $f(x, y, z) = (x\sqrt{z}, y\sqrt{z}, z)$.

- a) ¿Es f una isometría local?
- b) Calcular $Df_p(0,0,1)$. (Indicación: Puede ser útil considerar la curva $\alpha:(0,\infty)\to C$ dada por $\alpha(t)=(0,1,t)$.)

Ejercicio 3.

1. Sea S la superficie con parametrización

$$\mathbb{X}(u,v) = ((3+\cos u)\cos v, (3+\cos u)\sin v, \sin u),$$

con $(u, v) \in (0, 2\pi) \times (0, 2\pi)$. (Geométricamente, S es (el complemento de un meridiano en) el toro obtenido al girar la circunferencia de centro (3, 0, 0) y radio 1 contenida en el plano y = 0 alrededor del eje z.)

- a) Calcular la primera forma fundamental de S en función de la parametrización \mathbb{X} .
- b) Determinar la expresión de un vector normal unitario a S en el punto $\mathbb{X}(u,v)$.
- c) Consideremos la curva

$$\alpha:(0,2\pi)\to S$$

dada por $\alpha(v) = \mathbb{X}(\pi, v)$. Calcular las curvaturas normal y geodésica de α . ¿Es (una reparametrización por longitud de arco de) α una geodésica en S?

d) Responder a las mismas preguntas que en el apartado anterior para la curva $\beta:(0,2\pi)\to S$ dada por $\beta(v)=\mathbb{X}(\pi/2,v)$.

Contestar a uno y solo uno de los apartados 2) y 3).

- 2. Sea S regular una superficie con curvatura gaussiana negativa en todo punto. Demostrar que no existe en S un polígono de cuatro lados, todos geodésicos, y con ángulos internos iguales a $\pi/2$.
- 3. Probar que no existe una superficie $\mathbb{X}(u,v)$ tal que

$$E = v^2$$
 $F = 0$ $G = 1$
 $e = v^2$ $f = 0$ $g = 1$

