MATLAB (MATRIX LABORATORY)

disp KOMUTU İLE EKRANA METİN YAZDIRMA

```
>> disp ('Merhaba')
Merhaba
```

disp KOMUTU İLE EKRANA SAYISAL DEĞER YAZDIRMA

```
>> a=[1 2; 3 4];
>> disp(a)
1 2
3 4
```

DISP KOMUTU İLE EKRANA METİNLERİ VE SAYISAL DEĞERLERİ BİRLİKTE YAZDIRMA

```
Command Window

>> tahmin=input('Lutfen Bir Sayi Giriniz: ');
Lutfen Bir Sayi Giriniz: 12
>> disp(['Girdiginiz Sayi: ' num2str(tahmin) ' dir.']);
Girdiginiz Sayi: 12 dir.
```

o MATLAB'in *num2str* fonksiyonu kendisine parametre olarak aldığı bir sayıyı bir karakter dizisine (string) çevirir. (22 sayısı '22' olur.)

FPRINTF KOMUTU İLE EKRANA BİLGİ YAZDIRMA

fprintf('Ekrana Basilacak Aciklama %X \n', deger);

Burada %X Kısmında Kullanabileceğimiz Seçenekler :

%c: deger in tek bir karakter olduğunu gösterir.

%s: deger in bir karakter dizisi (string) olduğunu gösterir.

%d: deger in bir tamsayı olduğunu gösterir.

%f: deger in bir ondalıklı sayı olduğunu gösterir.

(Noktadan sonra 6 basamak)

%e: deger i üstel formatta yazdırır.

%g: deger i mümkün olan en kompakt forma sokar.

(%f veya %e seçeneklerinden hangisi kısaysa onu

yazdırır)

Diğer yandan:

\n: İmleci bir alt satırın başına götürür. (n, newline)

\t : İmleci bir TAB kadar sağa kaydırır.

FPRINTF KULLANIMINA ÖRNEKLER

```
Command Window
  >> karakter='d':
  >> isim='deniz';
  >> tamsayi=25;
  >> ondalikliSayi=3.1416;
  >> fprintf('Tanimlanan Karakter = %c',karakter);
  Tanimlanan Karakter = d>>
  >> fprintf('Tanimlanan Karakter Dizisi = %s \n', isim);
  Tanimlanan Karakter Dizisi = deniz
  >> fprintf('Tanimlanan Tamsayi = %d \n',tamsayi);
  Tanimlanan Tamsayi = 25
  >> fprintf('Tanimlanan Ondalikli Sayi = %f \n',ondalikliSayi);
  Tanimlanan Ondalikli Sayi = 3.141600
  >> fprintf('Tanimlanan Ondalikli Sayi = %g \n',ondalikliSayi);
  Tanimlanan Ondalikli Sayi = 3.1416
  >> fprintf('Tamsayi = %d ve Ondalikli Sayi = %f \n',tamsayi,ondalikliSayi);
  Tamsayi = 25 ve Ondalikli Sayi = 3.141600
```

AŞAĞIDAKI 2 KOMUT AYNI İŞI YAPAR

disp(' Merhaba ');

fprintf(' Merhaba \n');

- odisp komutu ekrana çıktı verdikten sonra bir alt satıra otomatik olarak atlar. fprintf komutunu bir alt satıra götürebilmek için ise \n kullanılmalıdır.
- Ayrıca disp komutu satır veya sütun vektörleri ile matrisleri ekrana kolayca yazdırabilirken aynı işlemi fprintf ile yapabilmek daha çok işlem gerektirmektedir.

MATLAB'DE PROGRAMLAMA

MATLAB'de programlama genel olarak iki yolla yapılır:

- > Komut satırında (inline) programlama
- > m-dosyaları ile (m-files) programlama
 - Düzyazı (script) m-dosyaları ile programlama
 - Fonksiyon (function) m-dosyaları ile programlama

m-dosyaları oluşturabilmek için ise bir metin düzenleyicisine (editor) ihtiyaç vardır.

KOMUT SATIRINDAKI DEĞIŞKENLERIN KAYDEDILMESI

MATLAB komut satırında save komutu kullanılırsa o esnada bellekte bulunan değişkenleri, istenilen dosya ismiyle ve uzantısı .mat olacak şekilde kaydeder.(Örnek: sayilar.mat)

```
>> a=1
a =
>> b=2
b =
>> save sayilar
Yukarıda a ve b sayıları sayilar.mat dosyası olarak kaydedilmiştir.
load komutu: Diskte saklı bir dosya içindeki değişkenleri tekrar
belleğe yükler.
>> load sayilar
>> who
Your variables are:
```

a b

M-DOSYALARININ GEREKLILIĞI

➤ Bir hesaplamayı gerçekleştirmek için yazılacak birçok komut dizisi, komut penceresinden tek tek girmek yerine bir dosyada saklanır ve daha sonra bu dosya çalıştırılarak bu komutlar icra edilir.

M-dosyalarının Kullanılmasında Dikkat Edilecek Hususlar:

- >M-dosyası Current Folder altında bulunmalıdır.
- >M-dosyasına isim verilirken kesinlikle Türkçe karakter kullanılmamalıdır
- >M-dosyasına isim verilirken MATLAB'in hazır komutları (pi, exp, sin vs.) verilmemelidir.

- Programı yazma işlemi bittikten sonra ve programı çalıştırmadan önce muhakkak kaydediniz.
- Komut satırında, değişken ve dosya adlarının ilk birkaç karakterini yazdıktan sonra TAB tuşuna basarak MATLAB'in bu adları otomatik olarak tamamlamasını sağlayabilirsiniz.

Örnek:

Ekrandan dairenin yarıçapını isteyerek alanını ve çevresini hesaplayan programı M-dosyası kullanarak hazırlayınız

• Fonksiyon girdileri skaler veya matris olabilir.

```
Command Window
>> x=9
|x| =
>> sqrt(x)
ans =
>> x=[4, 9, 16]
     4 9 16
>> sqrt(x)
ans =
           3
```

- Remainder fonksiyonu sonuç olarak bölme işleminden kalanı verir.
- o Örneğin 10/3 işleminde kalan 1'dir.

```
command Window

>> rem(10,3)
ans =
    1
```

• Bazı fonksiyonlar çoklu sonuç verir. Örneğin size fonksiyonu satır ve sütun sayısını verir.

```
Command Window

>> d=[1,2,3; 4,5,6];

>> f=size(d)
f =
   2   3
```

• Çıktıya isim atayabilirsiniz:

```
>> d=[1,2,3; 4,5,6];
>> [rows,cols]=size(d)
rows =
2
Değişken isimleri keyfi olabilir.
cols =
3
```

İÇİÇE FONKSİYONLAR

```
Command Window
>> x=2
x =
2
>> g=sqrt(sin(x))
g =
0.9536
>> |
```

YARDIM

- Yapmak istediğiniz birçok şey için fonksiyonlar vardır.
- o help özelliğini kullanarak bu fonksiyonların ne olduğunu ve nasıl kullanıldığını öğrenebilirsiniz.
 - Komut penceresinden
 - Menü çubuğundaki Help seçimi ile

KOMUT PENCERESİNDEN

HELP MENÜSÜNDEN

lookfor komutu da adını bilmediğimiz komutları bulmamızda yardımcı olur.

>> lookfor inverse

inverter

invhilb

ipermute

acos

acosd

acosh

acot

acotd

acoth

acsc

- Inverses of Matrices

- Inverse Hilbert matrix.

- Inverse permute array dimensions.

- Inverse cosine, result in radians.

- Inverse cosine, result in degrees.

- Inverse hyperbolic cosine.

- Inverse cotangent, result in radian.

- Inverse cotangent, result in degrees.

- Inverse hyperbolic cotangent.

- Inverse cosecant, result in radian.

•

BASİT MATEMATİKSEL FONKSİYONLAR

• abs(x) mutlak değer

o sign(x) Sayı pozitifse 1 negatise -1 verir

 $\circ \exp(x)$ e^x

 $\circ \log(x)$ doğal logaritma ($\ln(x)$)

o log10(x) 10 tabanında logaritma

Yuvarlama fonksiyonları

round(x) En yakın tamsayıya fix(x) 0'a doğru yuvarlar floor(x) - ∞ 'a doğru yuvarlar ceil(x) ∞ 'a doğru yuvarlar

```
Command Window
  \gg fix(4.8)
  ans =
  >> floor(4.8)
  ans =
  >> ceil(4.8)
  ans =
  \gg fix(-4.8)
  ans =
  >> floor(-4.8)
  ans =
       -5
  >> ceil(-4.8)
  ans =
```

AYRIK MATEMATİK

• factor(x) x'in çarpanlarını verir

 $\circ \gcd(x,y)$ ortak bölenlerin en büyüğü (greatest common divisor)

 $oldsymbol{lcm}(x,y)$ ortak çarpanların en küçüğü (least common multiple)

o rats(x) Sonucu kesirli verir

• factorial(x) x faktoriyel

 \circ nchoosek(n,k) N! / K!(N-K)!

 \circ primes(x) x'e kadar olan asal sayılar

o isprime(x) x asal sayı ise 1, değilse 0 verir.

TRİGONOMETRİK FONKSİYONLAR

```
o sin(x) sinus (x radyan cinsinden)
```

o sind(x) sinus(x derece cinsinden)

 \circ cos(x), cosd(x) cosinus

o tan(x), tand(x) tanjant

 \circ cot(x), cotd(x) kotanjant

o asin(x), asind(x) sinus'ün tersi

o sinh(x) hiperbolik sinüs

o asinh(x) hyperbolic sinüs'ün tersi

ALIŞTIRMA

Aşağıdakileri hesaplayın (Matematiksel gösterimin, MATLAB gösterimiyle her zaman aynı olmayabileceğini unutmayın)

- 1. $\sin(2\theta)$ for $\theta = 3\pi$.
- 2. $\cos(\theta)$ for $0 \le \theta \le 2\pi$; let θ change in steps of 0.2π .
- 3. $\sin^{-1}(1)$.
- 4. $\cos^{-1}(x)$ for $-1 \le x \le 1$; let x change in steps of 0.2.
- 5. Find the cosine of 45° .
 - **a.** Convert the angle from degrees to radians, and then use the **cos** function.
 - **b.** Use the **cosd** function.
- **6.** Find the angle whose sine is 0.5. Is your answer in degrees or radians?
- 7. Find the cosecant of 60. You may have to use the help function to find the appropriate syntax.

CEVAPLAR

```
1. theta = 3*pi;
  sin(2*theta)
  ans =
  -7.3479e-016
2. theta = 0:0.2*pi:2*pi;
  cos(theta)
  ans =
   Columns 1 through 7
    1.0000 0.8090 0.3090 -0.3090 -0.8090 -1.0000 -0.8090
   Columns 8 through 11
    -0.3090 0.3090 0.8090 1.0000
3. asin(1)
  ans =
    1.5708 This answer is in radians.
4. x = -1:0.2:1;
  acos(x)
  ans =
   Columns 1 through 7
    3.1416 2.4981 2.2143 1.9823 1.7722 1.5708 1.3694
   Columns 8 through 11
    1.1593 0.9273 0.6435 0
```

CEVAPLAR

```
5. cos(45*pi/180)
  ans =
     0.7071
  cosd(45)
  ans =
     0.7071
6. asin(0.5)
  ans =
     0.5236 This answer is in radians. You could also find the result in degrees.
  asind(0.5)
  ans =
     30.0000
7. csc(60*pi/180)
  ans =
    1.1547
  or . . .
  cscd(60)
  ans =
    1.1547
```

VERİ ANALİZİ FONKSİYONLARI

o max(x) x vektörünün en büyük değeri

o min(x) x vektörünün en küçük değeri

o mean(x) ortalama

o median(x) medyan değer

o sum(x) x vektöründeki elemanlar toplamı

o prod(x) elemanların çarpımı

o sort(x) x vektöründeki elemanların sıralanması

o sortrows(x) ilk sütunu sıralar

o std(x) standart sapma

o var(x) varyans


```
Command Window
```

```
>> x=[1 6 3 9 4]
x =
        1 6 3 9 4
>> sort(x)
ans =
        1 3 4 6 9
>> sort(x,'descend')
ans =
        9 6 4 3 1
```

sort fonksiyonu default olarak artan sırada sıralar. Azalan sırada sıralamak için 2. girdi alanına 'descend' yazmak gerekir.

```
Command Window
  >> x=[1 3; 10 2; 3 1; 82 4; 5 5]
  x =
       1
              3
      10
       3
      82
        5
  >> sort(x)
  ans =
      10
       82
              5
```

MATLAB sütun baskındır, 2 boyutlu matriste sort kullandığımız zaman her sütun artan sırada sıralanır.

Azalan sırada sıralamak için sütun numarası önüne – işareti koymak yeterlidir.

MATRIS BOYUTUNU BELİRLEME

o size(x) satır ve sütun sayısı

o length(x) en büyük boyut

o numel(x) elemanların sayısı

Command Window

```
>> x=[1,5,3;2,4,6]
x =
>> size(x)
ans =
           3
>> length(x)
ans =
     3
>> numel(x)
ans =
```

VARYANS VE STANDART SAPMA

Standart sapma varyansın kare köküdür. Veri değerlerinin yayılımının özetlenmesi için kullanılan bir ölçüdür. Yani veri değerlerinin aritmetik ortalamadan farklarının karelerinin toplamının veri_sayısı-1'e bölümünün kare köküdür.

RASTGELE SAYILAR

- rand(n)
 - nxn boyutunda, 0-1 aralığında sayılardan oluşan matris oluşur
- o rand(n,m)
 - nxm boyutunda 0-1 aralığında sayılardan oluşan matris döndürür

```
Command Window
  >> rand(3)
  ans =
     0.8147
              0.9134
                        0.2785
     0.9058
               0.6324
                        0.5469
     0.1270
               0.0975
                        0.9575
  \gg rand(1,3)
  ans =
     0.9649 0.1576
                        0.9706
```

o M(:)

• 2 boyutlu bir matrisi tek bir sütuna dönüştürür.

>> x=rand(3)

 $\mathbf{x} =$

 0.9655
 0.7421
 0.6876

 0.1264
 0.2924
 0.1623

 0.9729
 0.5911
 0.5620

>> x(:)

ans =

0.9655

0.1264

0.9729

0.7421

0.2924

0.5911

0.6876

0.1623

0.5620

Diğer matrisi bileşen olarak kullanıp yeni bir matris tanımlamak mümkün.

ELEMAN EKLEMEK

>> D=1:4

 $\mathbf{D} =$

1 2 3 4

>> D(5:10)=10:5:35

 $\mathbf{D} =$

1 2 3 4 10 15 20 25 30 35

>> A=[3 8 1 24];

>> B=4:3:16;

>> C=[A B]

C =

3 8 1 24 4 7 10 13 16

>> E=[1 2 3 4; 5 6 7 8]

 $\mathbf{E} =$

1 2 3 4

5 6 7 8

>> E(3,:)=[10:4:22]

 $\mathbf{E} =$

1 2 3 4

5 6 7 8

10 14 18 22

default aralık 1

Aralık 0.5 olarak belirtilmiş

end kelimesi satır veya sütundaki son elemanı gösterir.

İKİ DEĞİŞKENLİ PROBLEMLER

Skaler ve vektörün çarpımı bir vektör verir.

İki vektörün çarpılabilmesi için aynı sayıda elemanı olması gerekir.

x ve y aynı boyutta olmalı meshgrid fonksiyonu iki vektörü, iki boyutlu olacak şekilde eşler.

Diziler aynı boyutta, birbiriyle çarpılabilir.

📣 Comm	and Window					_OX	
	De <u>b</u> ug <u>D</u> esktop	<u>W</u> indow <u>H</u> elp				24	
new_x =							
	1	2	3	4	5		
	1	2	3	4	5		
	1	2	3	4	5		
new_y =							
	1	1	1	1	1		
	2	2	2	2	2		
	3	3	3	3	3		
>> A=new_x.*new_y							
A =							
	1	2	3	4	5		
	2	4	6	8	10		
	3	6	9	12	15		

UFKA UZAKLIK

• Ay ve dünya üzerinde bir dağın tepesinden ufka olan uzaklığı bulun.

Input

- Ayın yarıçapı 1737 km
- Dünyanın yarıçapı 6378 km
- Dağın yüksekliği 0 to 8000m

Output

• Km olarak ufka olan uzaklık

$$R^2 + d^2 = (R+h)^2$$
 Pisagor Teoremi

$$d = \sqrt{h^2 + 2Rh}$$

Dünyanın yarıçapı ve 8000m dağ bilgilerini kullanarak:

$$d = \sqrt{(8km)^2 + 2*6378km*8km} = 319km$$

M-file çalıştırıldığında aşağıdaki sonuç elde edilir:

Command Window

d =

0	0
58.95	112.95
83.38	159.74
102.13	195.65
117.95	225.92
131.89	252.60
144.50	276.72
156.10	298.90
166.90	319.55

ÖZEL MATRÌSLER

o zeros

• 0'lardan oluşan bir matris oluşturur

ones

• 1'lerden oluşan bir matris oluşturur

o diag

 Diyagonal elemanları çıkarır ya da birim matris oluşturur

o magic

• "magic" matris oluşturur

diag fonksiyonuna girdi elemanları kare matris olduğunda, diyagonal elemanlar döner.

Girdi vektör olduğunda birim matrisin diyagonalleri olarak kullanılır.

DÜRER'İN SİHİRLİ MATRİSİ

- Satır ve sütun toplamları eşittir.
- >>A = magic(n) : nxn'lik Dürer matrisi oluşturur.
- >>sum(A) : A'nın sütun toplamlarını içeren bir satır vektörü oluşturur.
- o Matlab genellikle satır yerine sütunlarla çalışır.
- Satır toplamı nasıl hesaplanır?
- o Satır toplamlarını hesaplamanın en kolay yolu transpose alıp tekrar sütun toplamlarını hesaplamaktır. Sonra (gerekirse) sonucun transpose'u alınır.
- o Transpose işlemi üstten virgül (') ile uygulanır.
- >>A'
- >> sum(A')'

DÜRER'İN SİHİRLİ MATRİSİ

Melankoli isimli bu ağaç baskı 1514 yılında Albrect Durer tarafından oluşturulmuştur. Meleğin başı üzerinde bir sihirli matris bulunmaktadır.

Albrect Durer bu sihirli matrise tarihi de eklemiştir.

DURER'İN MATRİSİ MATLAB'İN 4x4 SİHİRLİ MATRİSİNDEN FARKLIDIR

ÖRNEK:

- 1. a=[2.3 5.8 9] matrisini oluşturun.
- 2. a matrisinin sinüsünü bulun.
- 3. a'daki her elemana 3 ekleyin.
- 4. b=[5.2 3.14 2] matrisini oluşturun.
- 5. a ve b matrisindeki her elemanı birbiriyle toplayın.
- 6. a'nın elemanlarını b'de karşılık gelen elemanla çarpın.
- 7. a'daki her elemanın karesini alın.
- 8. O'dan 10'a kadar 1'er artan elemanlardan oluşan bir c matrisi oluşturun.
- 9. O'dan 10'a kadar 2'şer artan elemanlardan oluşan bir d matrisi oluşturun.
- 10. linspace fonksiyonunu kullanarak 10'dan 20'ye kadar eşit aralıklı 6 değerden oluşan bir matris oluşturun.

CEVAP:

- a=[2.3 5.8 9]
- o sin(a)
- **o** a+3
- o b=[5.2 3.14 2]
- **o** a+b
- o a.*b
- o a.^2
- o c=0:10
- o d=0:2:10
- o linspace(10,20,6)

ÖRNEK:

- 1. -2'den 2'ye 1'er artışlı x vektörü oluşturun.
- 2. Vektörün her elemanının mutlak değerini bulun.
- 3. Vektörün her elemanının karekökünü bulun.
- 4. -3 ve +3'ün karekökünü bulun.
 - sqrt fonksiyonunu kullanarak
 - nthroot fonksiyonunu kullanarak
 - $-3^{1/2}$ ve $+3^{1/2}$ 'yi hesaplayarak.
- 5. -9'dan 12'ye 3'er artışlı x vektörünü oluşturun.
 - x'in 2'ye bölünmesinden oluşan sonucu bulun
 - x'in 2'ye bölünmesiyle elde edilen kalanı bulun
- 5'te elde edilen x vektörü için, e^x değerini bulun, ln(x) ve $log_{10}(x)$ değerlerini bulun.
- 7. x vektöründeki hangi elemanların pozitif olduğunu sign fonksiyonunu kullanarak bulun.
- 8. Formatı rat'a dönüştürün ve x vektörünü 2'ye bölün

CEVAP

- 1. x = -2:2;
- $2. \quad abs(x)$
- sqrt(x)
- 4. sqrt(-3)
 - sqrt(3)
 - nthroot(-3,2) % x negatifse n tek sayı olmalı aksi halde hata verir
 - nthroot(3,2)
 - (-3)^(1/2)
 - 3[^](1/2)
- 5. x=-9:3:12
 - x/2
 - rem(x,2)
- 6. exp(x)
 - log(x)
 - log10(x)
- $7. \quad sign(x)$
- 8. format rat
 - x/2
 - format short % default formata döner