

🖾 컴퓨터의 개념

- 컴퓨터란?
 - 계산을 수행하는 장치
 - 데이터 입력 → 처리 → 출력 또는 저장
 - 데이터(data)를 입력 받아 처리(process)하면 의미있는 자료가 되는데 이를 정보(information)라 부름.

🔤 컴퓨터의 동작 원리

- 컴퓨터의 구성
 - 하드웨어: CPU, 메인메모리, 입력 장치, 출력 장치, 저장 장치
 - 소프트웨어: 각종 프로그램

☑ 컴퓨터의 동작 원리

- ◈ 컴퓨터의 동작을 요리에 비유
 - 주방장은 CPU, 요리를 하는 작업대는 메인메모리,
 - 재료를 보관하는 창고는 저장 장치,(주방장을 돕는) 보조 요리사는 GPU,(재료를 가져오는) 주방 보조는 입출력 관리자

☑ 컴퓨터의 동작 원리

- 🦈 레시피와 소프트웨어 비교
 - 레시피 : 특정 요리에 사용할 재료, 조리 방법과 절차를 작성해놓은 것
 - 소프트웨어 : 하드웨어를 조작하여 원하는 정보를 만들어 내는 것

☑ 컴퓨터의 동작 원리

표 2-1 요리로 비유할 수 있는 컴퓨터의 구성 요소

요리	컴퓨터	설명
주방장	CPU	컴퓨터 내의 작업을 관장
작업대	메인메모리	모든 작업이 이루어지는 공간
재료 보관소	저장 장치	데이터들이 보관되는 공간
주방기기	입출력 장치	데이터의 입력과 출력
레시피	소프트웨어	데이터를 처리하여 정보를 만듦

🔤 임베디드 시스템

◈ 임베디드 시스템

- 전기밥솥+컴퓨터 : 요리(재료)에 따라 온도와 시간 조절
- 시계+컴퓨터 : 메시지 보내기, 혈압 측정, 길 찾기 기능 등
- 자동차+컴퓨터 : 원격 시동, 차선 이탈 방지, 장애물 감지 등

☑ 컴퓨터의 구성

- 주어진 명령에 따라 데이터를 계산하고 각종 주변 장치에 데이터의 입출력 명령을 내리는 장치
- 인텔 제품과 AMD 제품이 있음
- 컴퓨터 중심부에서 데이터를 처리(processing)하기 때문에 프로세서(processor)라고도 함
- 그래픽 작업만 전문으로 하는 그래픽 전용 프로세서를 'GPU'라고 함

그림 2-5 일반 CPU와 GPU를 내장한 그래픽 카드

☑ 컴퓨터의 구성

- CPU, GPU, 무선 통신 시스템을 하나의 칩(chip)에 구현한 제품(System On Chip, SOC)
- 부피를 줄이고 전력 소모를 최소화할 수 있도록 구현
- 스마트폰이나 임베디드 시스템에 사용

그림 2-6 스마트폰용 AP인 퀄컴의 스냅드래곤과 삼성의 엑시노스

☑ 컴퓨터의 구성

- 🦈 기본 입력 장치
 - 키보드와 마우스, 스캐너, 마이크, 조이스틱, 카메라 등

☑ 컴퓨터의 구성

센서 입력 장치

- 빛 센서 : 주변 밝기를 측정하는 센서로 주변 밝기에 따라 화면 밝기를 조정
- 이미지 센서 : 디지털 카메라에 사용하던 센서로 사진과 동영상을 촬영, 노트북, 스마트폰 탑재됨
- 지문 인식 센서 : 생체 인식 센서의 한 종류, 사용자 인증과 보안에 사용(스마트폰 잠금 해제, 사용자 인증, 신용 카드 거래 등)

그림 2-9 스마트폰에 탑재된 이미지 센서

그림 2-10 지문 인식 센서

🚾 컴퓨터의 구성

- ◉ 기본 출력 장치
 - 모니터(화면 출력), 프린터(문서 출력), 스피커와 헤드폰(소리 출력)

☑ 컴퓨터의 구성

♥모니터

- 색을 내는 방식에 따른 분류
 - ✓ PDP, LCD(컴퓨터용), OLED(고가 TV, 스마트폰에 사용) 등
- 화면 비율에 따른 분류
 - (4:3), (16:9), (21:9) 등

☑ 컴퓨터의 구성

●프린터

- 레이저 프린터 : 보통 흑백 출력에 사용(인쇄 품질 ↑, 유지 비용 ↑)
- 잉크젯 프린터 : 보통 컬러 출력에 사용(유지 비용 ↓, 색상별 잉크 구매)
- 잉크젯 프린터의 경우 잉크값을 절약할 수 있는 무한 잉크제품도 있음

🔤 컴퓨터 하드웨어의 구성

蕶 하드웨어의 5대 장치

• 필수 장치: CPU, 메인메모리

• 주변 장치 : 입력 장치, 출력 장치, 저장 장치

🔤 컴퓨터 하드웨어의 구성

- CPU(중앙 처리 장치)
 - ✓ 명령어를 해석하여 실행하는 장치
 - ✓ 인간의 두뇌에 해당
- 메인 메모리
 - ✓ 작업에 필요한 프로그램과 데이터를 저장하는 장소
 - ✓ CPU에 데이터를 넘겨주고 처리한 데이터를 다시 저장
- 입력 장치
 - ✓ 컴퓨터에 데이터를 전달하는 장치
 - ✓ 천공 카드 → 키보드 → 마우스 순으로 개발
 - ✓ 스마트폰 보급으로 터치스크린과 카메라가 중요한 입력 장치가 됨

☑ 컴퓨터 하드웨어의 구성

- 🌑 하드웨어의 5대 장치
 - 출력 장치
 - ✓ 작업 결과를 나타내는 장치
 - ✓ 진공관 → 라인 프린터 → 모니터, 그래픽 카드, 사운드 카드 순으로 개발
 - ✓ 최근에는 3D 프린터 개발됨
 - 저장 장치
 - ✓ 전원이 꺼진 이후에도 데이터를 보관할 수 있는 장치
 - ✓ 보조 저장 장치, 제 2 저장 장치, 저장 장치 등 다양하게 불림
 - ✓ 카세트테이프 → 플로피 디스크, 하드디스크 → SSD, USB 디스크, SD 카드 순으로 개발

🔤 컴퓨터 하드웨어의 구성

- 메인보드(main board)
 - ✓ CPU와 메모리 등 다양한 컴퓨터 부품을 연결시켜 주는 커다란 판
- 버스
 - ✓ 메인보드 내 고정된 부품들 사이를 연결하는 선의 집합
 - ✓ 전기와 데이터의 통로
 - ✓ 메인보드에 있는 버스를 시스템 버스(system bus) 혹은 전면 버스(Front-Side Bus; FSB)라고 함
- 포트
 - ✓ 메인보드에는 각종 부품을 꽂을 수 있는 단자

- 모든 하드웨어가 버스로 연결된 구조
- 하드웨어는 그대로 둔 채 작업용 프로그램만 교체하여 메인메모리에 올리는 방식 → 메인메모리로 프로그램이 가능한 컴퓨터 구조
- 하드와이어링 형태의 컴퓨터의 문제를 해결하기 위해 미국 수학자 존 폰 노이만(John von Neumann)이 고안
- 현대 모든 컴퓨터가 이 방식을 따름

🚾 폰 노이만 구조

- 🤝 폰 노이만 구조의 특징
 - 모든 프로그램은 메인 메모리에 올라와야 실행이 가능함

🚾 폰 노이만 구조

- 🦈 폰 노이만 구조의 도마 비유
 - 도마(메인메모리)는 주방장(CPU)이 요리를 하는 핵심적인 작업 공간이고,
 보관 창고(저장 장치)는 보조적인 공간
 - 주방장(CPU)이 요리를 하려면 보관 창고(저장 장치)에 있는 재료를 도마 (메인메모리)로 가져와야 함
 - 마찬가지로 저장장치에 있는 프로그램은 메모리 올라와야만 실행 가능

그림 4-6 도마에서 요리하듯이 모든 프로그램은 메인메모리로 올라와야 실행

🚾 폰 노이만 구조

요리사 모형 예 : 메인메모리(도마) 크기와 작업 속도

- 도마가 충분히 크다면 여러 재료를 한꺼번에 가져다 놓고 조리할 수 있음, 그러나 도마가 작으면 요리 재료를 한꺼번에 가져올 수 없음
- 컴퓨터도 메인메모리가 1GB인 컴퓨터는 메인메모리가 4GB인 컴퓨터 보다 느림
- ** 결론 : 메인 메모리 크기는 컴퓨터 속도에 영향을 미침
- ** 메인메모리가 필요없이 커진다고 해도 컴퓨터가 빨라지지는 않음

☑ CPU 구성과 동작

- CPU(Central Processing Unit, 중앙 처리 장치)는 명령어를 해석하여 실행하는 장치, 인간의 두뇌에 해당
- 산술 논리 연산 장치(ALU), 제어 장치, 레지스터(register)로 구성

☑ CPU 구성과 동작

- 산술 논리 연산 장치(Arithmetic logic unit, ALU)
 - ✓ 주어진 데이터를 사용하여 덧셈, 뺄셈, 곱셈, 나눗셈의 산술 연산과 AND, OR, XOR 등의 논리 연산 수행
- 제어 장치
 - ✓ CPU에서 작업을 지시하는 장치
 - ✓ 저장 장치에서 메인메모리로 데이터를 가져오는 명령, 저장 장치로 데이터를 내보내는 명령, 입력 장치에서 데이터를 가져오는 명령, 출력 장치에 데이터를 내보내는 명령 등을 내림
- 레지스터(Register)
 - ✓ CPU 내 데이터를 임시로 보관하는 장치
 - ✓ 계산하는 데 필요한 데이터를 잠시 저장하거나 계산의 중간 값을 저장

🚾 CPU 구성과 동작

- ① 2를 레지스터로 가져옴
- ② 3을 레지스터로 가져옴
- ③ 2와 3을 ALU에서 덧셈
- ④ 결과 5를 레지스터에 저장
- ⑤ 5를 메모리에 저장

☑ CPU 구성과 동작

- CPU는 한 번에 처리할 수 있는 데이터에 따라 32비트 CPU와 64비트 CPU로 나뉨
- 32비트 CPU
 - ✓ 버스의 대역폭(bandwidth) 32비트
 - ✓ 레지스터 크기 32비트
- 64비트 CPU
 - ✓ 버스의 대역폭(bandwidth) 64비트
 - ✓ 레지스터 크기 64비트

** 64비트 CPU는 32비트 CPU보다 2배 많은 크기의 데이터를 한꺼번에 처리할 수 있어 컴퓨터 성능이 향상됨

☑ CPU 구성과 동작

- 🥏 CPU 코어 (core)
 - CPU에서 작업을 하는 주요 장치
 - 코어 개수에 따라 듀얼코어(dual-core), 쿼드코아(quad-core), 헥사코아(hexa-core), 옥타코아(octa-core)로 나뉨

🚾 CPU 구성과 동작

- 🦈 CPU 코어 (core)
 - CPU core 종류에 따라 각기 다른 명령어 체계를 가지기 때문에 호환이 안됨.
 - 이 명령어 체계를 어셈블리어 또는 instruction set 이라고 함.

☑ CPU가 이해하는 언어인 어셈블리어

어셈블리어

- 어셈블리어(assembly language) 또는 어셈블러 언어(assembler language)
- 어셈블리어를 instruction set 이라고 함
- CPU 코어가 이해하는 기계어와 일대일 대응이 되는 컴퓨터 프로그래밍의 저급 언어
- 컴퓨터 구조에 따라 사용하는 기계어가 달라지며, 따라서 기계어에 대응되어 만들어지는 어셈블리어도 각각 다르게 됨
- 컴퓨터 CPU마다 지원하는 오퍼레이션의 타입과 개수는 제각각이며, 레지스터의 크기와 개수, 저장된 데이터 형의 표현도 각기 다름.
- 모든 범용 컴퓨터는 기본적으로 동일한 기능을 수행하지만, 기능을 어떤 과정을 거쳐 수행할지는 다를 수 있으며, 이런 차이는 어셈블리어에 반영되게 됨.

☑ CPU가 이해하는 언어인 어셈블리어

어셈블리어의 예

왼쪽과 같이 C언어로 구현된 소스 코드를 컴파일하면 오른쪽 화면과 같은 어셈블리어로

재구성되어 코어가 해석할 수 있음.

```
#include <stdio.h>
int main()
    int num1, num2, result;
    num1 = 5;
    num2 = 6;
    result = num1 + num2;
    printf("%d + %d = %d\n", num1, num2, result);
    return 0;
```

00FB182C mov printf("%d + %d = %d\n", num1, num2, result)

00FB1813 call

00FB1818 mov

OOFB181F mov

00FB1829 add

디스어셈블리 ㅋ × ShowASM.cpp

□ 코드 바이트 표시 🗸 주소 표시 ✔ 소스 코드 표시 ✔ 기호 이름 표시

int num1, num2, result;

result = num1 + num2;

esp.OE4h

edi,[ebp-0E4h] eax.OCCCCCCCCh dword ptr es:[edi]

dword ptr [num1],5

dword ptr [num2],6

eax.dword ptr [num1]

eax, dword ptr [num2]

ecx.dword ptr [num2]

dword ptr [result],eax

ecx, offset _1FF9FB06_showasm.cpp (OFBC003h)

@__CheckForDebuggerJustMyCode@4 (OFB120Dh)

주소(A): main(...) 보기 옵션

어셈블리어

C어어

CPU가 이해하는 언어인 어셈블리어

 C언어와 같은 high level 언어로 구현된 소스 코드를 Core가 해석하는 어셈블리어로 바꾸어 주는 소프트웨어를 컴파일러 라고 함

Q & A

Thank You