THE SPARKS FOUNDATION

DATA SCIENCE AND BUSINESS ANALYTICS INTERNSHIP

AUTHOR: MEGHA

TASK 5: Exploratory Data Analysis - Terrorism

```
#importing required libraries
In [1]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         %matplotlib inline
         t = pd.read csv('Global Terrorism.csv', encoding= 'latin1', low memory=False)
In [6]:
         t.head()
                eventid iyear imonth iday approxdate extended resolution country country_txt region ... addnotes scite1 scite2 scite3 dbsource
Out[6]:
                                                                               Dominican
         0 1.970000e+11 1970
                                       2
                                               NaN
                                                          0
                                                                 NaN
                                                                                                       NaN
                                                                                                             NaN
                                                                                                                   NaN
                                                                                                                          NaN
                                                                                                                                  PGIS
                                                                                Republic
         1 1.970000e+11 1970
                                       0
                                               NaN
                                                                 NaN
                                                                          130
                                                                                 Mexico
                                                                                             1 ...
                                                                                                       NaN
                                                                                                             NaN
                                                                                                                   NaN
                                                                                                                          NaN
                                                                                                                                  PGIS
         2 1.970010e+11 1970
                                       0
                                               NaN
                                                          0
                                                                         160 Philippines
                                                                                             5 ...
                                                                                                                          NaN
                                                                                                                                  PGIS
                                                                 NaN
                                                                                                       NaN
                                                                                                             NaN
                                                                                                                   NaN
         3 1.970010e+11 1970
                                               NaN
                                                                 NaN
                                                                           78
                                                                                  Greece
                                                                                                             NaN
                                                                                                                   NaN
                                                                                                                          NaN
                                                                                                                                  PGIS
                                                                                                       NaN
         4 1.970010e+11 1970
                                       0
                                               NaN
                                                          0
                                                                 NaN
                                                                          101
                                                                                  Japan
                                                                                             4 ...
                                                                                                       NaN
                                                                                                             NaN
                                                                                                                   NaN
                                                                                                                          NaN
                                                                                                                                  PGIS
        5 rows × 135 columns
In [7]: t.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 181691 entries, 0 to 181690
         Columns: 135 entries, eventid to related
```

```
memory usage: 187.1+ MB
           t.nunique()
 In [9]:
          eventid
                              576
 Out[9]:
           iyear
                               47
           imonth
                               13
           iday
                               32
           approxdate
                            2244
           INT LOG
                                3
           INT IDEO
                                3
                                3
           INT MISC
           INT ANY
                                3
           related
                           14306
           Length: 135, dtype: int64
           t.describe()
In [10]:
                       eventid
                                                                     iday
                                                                                extended
                                                                                                                             latitude
                                                                                                                                         longitude
                                        iyear
                                                     imonth
                                                                                                country
                                                                                                               region
Out[10]:
           count 1.816910e+05
                               181691.000000
                                              181691.000000 181691.000000
                                                                           181691.000000
                                                                                         181691.000000
                                                                                                        181691.000000 177135.000000
                                                                                                                                      1.771340e+05
                 2.002704e+11
                                  2002.638997
                                                   6.467277
                                                                15.505644
                                                                                0.045346
                                                                                             131.968501
                                                                                                             7.160938
                                                                                                                           23.498343
                                                                                                                                     -4.586957e+02
           mean
                 1.325955e+09
                                   13.259430
                                                   3.388303
                                                                 8.814045
                                                                                0.208063
                                                                                             112.414535
                                                                                                             2.933408
                                                                                                                           18.569242
                                                                                                                                      2.047790e+05
            min 1.970000e+11
                                                                                               4.000000
                                                                                                                                     -8.618590e+07
                                  1970.000000
                                                   0.000000
                                                                 0.000000
                                                                                0.000000
                                                                                                             1.000000
                                                                                                                          -53.154613
            25%
                  1.991020e+11
                                 1991.000000
                                                   4.000000
                                                                 8.000000
                                                                                0.000000
                                                                                             78.000000
                                                                                                             5.000000
                                                                                                                           11.510046
                                                                                                                                      4.545640e+00
                  2.009020e+11
                                                                                                                           31.467463
                                                                                                                                      4.324651e+01
                                  2009.000000
                                                   6.000000
                                                                15.000000
                                                                                0.000000
                                                                                             98.000000
                                                                                                             6.000000
                                                                                0.000000
                                                                                                                                      6.871033e+01
            75%
                  2.014080e+11
                                 2014.000000
                                                   9.000000
                                                                23.000000
                                                                                             160.000000
                                                                                                            10.000000
                                                                                                                           34.685087
            max 2.017120e+11
                                 2017.000000
                                                  12.000000
                                                                31.000000
                                                                                1.000000
                                                                                            1004.000000
                                                                                                            12.000000
                                                                                                                           74.633553
                                                                                                                                      1.793667e+02
          8 rows × 77 columns
           t.rename(columns={'iyear':'Year','imonth':'Month','iday':'Day','country txt':'Country','provstate':'state',
In [11]:
                                       'region txt':'Region','attacktype1 txt':'AttackType','target1':'Target','nkill':'Killed',
```

dtypes: float64(56), int64(21), object(58)

```
'nwound':'Wounded','summary':'Summary','gname':'Group','targtype1_txt':'Target_type',
                                     'weaptype1 txt':'Weapon type','motive':'Motive'},inplace=True)
           t.head()
In [12]:
                  eventid Year Month Day approxdate extended resolution country
                                                                                    Country region ... addnotes scite1 scite2 scite3 dbsource
Out[12]:
                                                                                  Dominican
          0 1.970000e+11 1970
                                   7
                                        2
                                                 NaN
                                                            0
                                                                                                2 ...
                                                                                                                 NaN
                                                                                                                        NaN
                                                                                                                              NaN
                                                                                                                                       PGIS
                                                                    NaN
                                                                                                          NaN
                                                                                   Republic
          1 1.970000e+11 1970
                                                 NaN
                                                            0
                                                                    NaN
                                                                             130
                                                                                     Mexico
                                                                                                1 ...
                                                                                                          NaN
                                                                                                                 NaN
                                                                                                                        NaN
                                                                                                                              NaN
                                                                                                                                       PGIS
                                                                            160 Philippines
                                                                                                5 ...
                                                                                                                                       PGIS
          2 1.970010e+11 1970
                                                 NaN
                                                            0
                                                                    NaN
                                                                                                          NaN
                                                                                                                 NaN
                                                                                                                        NaN
                                                                                                                              NaN
          3 1.970010e+11 1970
                                                 NaN
                                                            0
                                                                    NaN
                                                                             78
                                                                                     Greece
                                                                                                8 ...
                                                                                                          NaN
                                                                                                                 NaN
                                                                                                                        NaN
                                                                                                                              NaN
                                                                                                                                       PGIS
          4 1.970010e+11 1970
                                                            0
                                                                             101
                                                                                                                                       PGIS
                                                 NaN
                                                                    NaN
                                                                                     Japan
                                                                                                4 ...
                                                                                                          NaN
                                                                                                                 NaN
                                                                                                                        NaN
                                                                                                                              NaN
         5 rows × 135 columns
                                                                                                                                           •
```

- · We can see that we have around 135 coulumns.
- · We aim at finding the hot zones so we can drop outher columns.
- dropping other columns will be a tedious task, so it is better to create a new variable wherein we will take only important coumns.

In [13]:	<pre>trr=t[['Year','Month','Day','Country','state','Region','city','latitude','longitude','AttackType','Killed',</pre>														
Out[13]:		Year	Month	Day	Country	state	Region	city	latitude	longitude	AttackType	Killed	Wounded	Target	Summ
	0	1970	7	2	Dominican Republic	NaN	Central America & Caribbean	Santo Domingo	18.456792	-69.951164	Assassination	1.0	0.0	Julio Guzman	N
	1	1970	0	0	Mexico	Federal	North America	Mexico city	19.371887	-99.086624	Hostage Taking (Kidnapping)	0.0	0.0	Nadine Chaval, daughter	N

		Year	Month	Day	Country	state	Region	city	latitude	longitude	AttackType	Killed	Wounded	Target	Summ
	2	1970	1	0	Philippines	Tarlac	Southeast Asia	Unknown	15.478598	120.599741	Assassination	1.0	0.0	Employee	N
	3	1970	1	0	Greece	Attica	Western Europe	Athens	37.997490	23.762728	Bombing/Explosion	NaN	NaN	U.S. Embassy	N
	4	1970	1	0	Japan	Fukouka	East Asia	Fukouka	33.580412	130.396361	Facility/Infrastructure Attack	NaN	NaN	U.S. Consulate	N
	4)
In [14]:	t	rr.sh	ape												
Out[14]:	(1	81691	., 18)												
In [15]:	t	rr.is	null()	.sum	()										
Out[15]:	Mo Da Ste Ci Re Ci la Ki Wo Ta We Mo	ountry cate egion ty atitud ongitu tackT lled ounded arget ummary coup arget_eapon_ otive	le ide ype I	1 1 6	0 0 0 421 0 434 4556 4557 0 0313 6311 636 6129 0 0										
In [16]:	t	rr.in	fo()												
	Ra	ngeIn	idex: 1	8169	re.frame.D 1 entries, al 18 colu	0 to 18									

```
Column
                 Non-Null Count
                                 Dtype
                181691 non-null int64
    Year
    Month
                181691 non-null int64
2
    Day
                181691 non-null int64
3
    Country
                181691 non-null object
                181270 non-null object
    state
5
    Region
                181691 non-null object
                181257 non-null object
    citv
                177135 non-null float64
7
    latitude
    longitude
                177134 non-null float64
    AttackTvpe
                181691 non-null object
10 Killed
                171378 non-null float64
11 Wounded
                165380 non-null float64
12 Target
                181055 non-null object
             181000 non-nucl object
13 Summary
                181691 non-null object
14 Group
15 Target type 181691 non-null object
16 Weapon type 181691 non-null object
17 Motive
                50561 non-null
                                 object
dtypes: float64(4), int64(3), object(11)
memory usage: 25.0+ MB
```

- We need to make sure if there is any value in day or month as 0.
- · We have too many missing values in some columns, before handling them we need to know their percentage

```
count=0
In [17]:
          for i in trr['Day']:
              if i ==0:
                  count=count+1
              else:
                  count=count
          print('Number of Days entered as 0: ',count)
         Number of Days entered as 0: 891
In [18]:
          cnt=0
          for i in trr['Month']:
              if i ==0:
                  cnt=cnt+1
              else:
                  cnt=cnt
          print('Number of Months entered as 0: ',cnt)
```

Number of Months entered as 0: 20

We are assigning random dates and months who have their values as 0, so that we don't loose the information of other columns associated with that row.¶

```
In [20]: trr['Day'] = trr['Day'].apply(lambda x: np.random.randint(1,32) if x == 0 else x)
          trr['Month'] = trr['Month'].apply(lambda x: np.random.randint(1.13) if x == 0 else x)
         <ipvthon-input-20-eebef340eeel>:1: SettingWithCopvWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning
         -a-view-versus-a-copy
           trr['Day'] = trr['Day'].apply(lambda x: np.random.randint(1,32) if x == 0 else x)
         <ipython-input-20-eebef340eee1>:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning
         -a-view-versus-a-copv
           trr['Month'] = trr['Month'].apply(lambda x: np.random.randint(1,13) if x == 0 else x)
In [21]: #checking for days
          count=0
          for i in trr['Day']:
              if i ==0:
                  count=count+1
              else:
                  count=count
          print('Number of Days entered as 0: ',count)
         Number of Days entered as 0: 0
          #checking for months
In [22]:
          cnt=0
          for i in trr['Month']:
              if i ==0:
                  cnt=cnt+1
              else:
                  cnt=cnt
          print('Number of Months entered as 0: ',cnt)
```

Number of Months entered as 0: 0 Finding missing value percentage

```
def null_val_(trr):
In [23]:
               null val = trr.isnull().sum()
               null val p = 100 * trr.isnull().sum()/len(trr)
               null_val_ = pd.concat([null_val, null_val_p], axis=1)
                null val last = null val .rename(
                columns = {0 : 'Null Values', 1 : 'Percentage '})
                return null val last
           null_val_(trr)
Out[23]:
                       Null Values Percentage
                  Year
                                    0.000000
                                    0.000000
                Month
                  Day
                                    0.000000
               Country
                                    0.000000
                 state
                              421
                                    0.231712
                               0
                                    0.000000
                Region
                   city
                              434
                                    0.238867
               latitude
                             4556
                                    2.507554
              longitude
                             4557
                                    2.508104
            AttackType
                               0
                                    0.000000
                 Killed
                            10313
                                     5.676120
              Wounded
                            16311
                                    8.977330
                Target
                              636
                                    0.350045
              Summary
                            66129
                                    36.396409
                Group
                                    0.000000
            Target_type
                                    0.000000
          Weapon_type
                                    0.000000
                                0
```

```
In [24]: trr['Motive'].fillna(value='NA', inplace=True)
    trr['Summary'].fillna(value='NA', inplace=True)
    trr['city'].fillna(value='NA', inplace=True)
    trr['Taget'].fillna(value='NA', inplace=True)
    trr["Wounded"].fillna(trr["Wounded"].mean(), inplace=True)
    trr["Wounded"].fillna(trr["Wounded"].mean(), inplace=True)
    trr["latitude"].fillna(trr["latitude"].mean(), inplace=True)
    trr["tongitude"].fillna(trr["longitude"].mean(), inplace=True)

C:\Users\ASUS\anaconda3\anaconda\lib\site-packages\pandas\core\series.py:4517: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
    return super().fillna(
```

- We saw that some Coloumns had High missing values, we needed to handle them.
- All the coloumns with 'object' datatype have been replace by NA for the missing values so that we don't loose information associated with them.
- Similarly we have replaced all columns with float datatype with their respective mean.

```
trr.isnull().sum()
In [25]:
Out[25]: Year
                         0
         Month
         Day
         Country
         state
         Region
         city
         latitude
         longitude
         AttackType
         Killed
         Wounded
                         0
```

```
Target Group Group Group Grarget_type Weapon_type Motive Gtype: int64
```

We have successfully handeled our missing values!

Plotting Boxplots

```
In [26]: title_style = {'family': 'Times New Roman', 'color': 'Tomato', 'size': 20 }
dict = {'AttackType':1,'Target_type':2, 'Region':3, 'Weapon_type':4 }
plt.figure(figsize=(10,40))

for value, i in dict.items():
    plt.subplot(4,1,i)
    sns.boxplot(x="Year", y=value, data=trr, whis=[0, 100], palette="magma")
    plt.title(value , fontdict = title_style)
plt.show()
```



```
In [27]: plt.figure(figsize = (10,7))
    sns.heatmap(trr.corr(), cmap="YlGnBu", annot=True, xticklabels='auto', yticklabels='auto', linewidth=1)
```

Out[27]: <AxesSubplot:>

Terrorist Activities each year

```
In [28]: plt.subplots(figsize=(15,6))
    sns.countplot('Year',data=trr,palette="viridis")
    plt.xticks(rotation=45)
    plt.title('Number Of Terrorist Activities Each Year')
    plt.show()
```

C:\Users\ASUS\anaconda3\anaconda\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following varia
ble as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other argu
ments without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

- There has been a gradual increase in Terror Activities since 2004.
- Highest number of terror activities occurred in the year 2014.
- After 2014 the terror activities started to decrease.

Terrorist Activities in each Year w.r.t region

```
In [29]: pd.crosstab(trr.Year, trr.Region).plot(kind='area',figsize=(15,6))
    plt.ylabel('Number of Attacks')
    plt.show()
```


- Maximum Attacks have been in Central America, followed by Australasia in the year 2010.
- There have been very less terror casualties in: East Asia, North America.
- In East Asia the number of attack gradually reduced to 0 after the year 1990.
- The Worst Attack took place in the US in the year 2001 with a total casualty of 9574.
- After the 9/11 attacks the security measures in the US were escalated in such a way that no attacks took place until the year 2017.
- Kenya had the 2nd worst attack in the 1998 with 4224 Casualties, after that proper security measures were taken to avoid any such incident.
- Russia had its worst attack in the year 2004 with 1071 casualties, since then there has been no major attack.

Top 10 countries to be affected with Terror Attacks

```
In [31]: plt.subplots(figsize=(15,6))
    style1 = {'family': 'Times New Roman', 'color': 'Tomato', 'size': 25}
    style2 = {'family': 'Times New Roman', 'color': 'DodgerBlue', 'size': 20}
    sns.barplot(trr['Country'].value_counts()[:10].index, trr['Country'].value_counts()[:10].values,palette='rocket')
    plt.title('Top Countries Affected', fontdict=style1)
    plt.xlabel('Countries', fontdict=style2)
    plt.ylabel('Count', fontdict=style2)
    #plt.xticks(rotation=90)
    plt.show()
```

C:\Users\ASUS\anaconda3\anaconda\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following varia bles as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other a rguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
In [32]: weapon_cross = pd.crosstab(trr["Weapon_type"], trr["Region"])
    weapon_cross
```

Out[32]:	Region	Australasia & Oceania	Central America & Caribbean	Central Asia		Eastern Europe	Middle East & North Africa	North America	South America	South Asia	Southeast Asia	Sub- Saharan Africa	Western Europe
	Weapon_type												
	Biological	0	0	0	2	0	1	24	1	2	0	3	2
	Chemical	11	2	2	17	12	73	26	26	83	11	12	46
	Explosives	80	3149	254	333	3089	32283	1557	9098	22568	5039	6319	8657
	Fake Weapons	0	0	1	4	4	6	5	3	3	0	1	6
	Firearms	74	5679	232	41	1461	11877	682	6525	15169	5634	7499	3651
	Incendiary	74	435	15	252	186	1181	897	1077	2285	837	840	3056
	Melee	10	65	14	82	90	1227	74	131	998	147	478	339
	Other	1	0	0	3	4	23	18	6	16	4	19	20
	Radiological	0	0	0	10	0	0	1	0	1	0	0	2
	Sabotage Equipment	0	5	0	3	4	10	19	15	46	21	7	11
	Unknown	31	1005	45	47	293	3724	138	2093	3788	792	2371	830
	Vehicle (not to include vehicle-borne explosives, i.e., car or truck bombs)	1	4	0	8	1	69	15	3	15	0	1	19

```
In [33]: plt.figure(figsize=(20,10))
    sns.countplot(x="Weapon_type", hue="Region", data=trr)
    style1 = {'family': 'Times New Roman', 'color': 'Tomato', 'size': 25}
    style2 = {'family': 'Times New Roman', 'color': 'DodgerBlue', 'size': 20}
    plt.title("Weapon Types by Regions", fontdict = style1)
    plt.ylabel("Weapon Types", fontdict = style2)
    plt.xlabel("Count", fontdict = style2)
    plt.xticks(rotation=90)
    plt.show()
```

Weapon Types by Regions


```
In [34]: plt.figure(figsize=(20,10))
    sns.countplot(x="Target_type", hue="Region", data=trr)
    style1 = {'family': 'Times New Roman', 'color': 'Tomato', 'size': 25}
    style2 = {'family': 'Times New Roman', 'color': 'DodgerBlue', 'size': 20}
    plt.title("Weapon Types by Regions", fontdict = style1)
    plt.ylabel("Target Types", fontdict = style2)
    plt.xlabel("Count", fontdict = style2)
    plt.xticks(rotation=90)
    plt.show()
```


- In middle East region most attacks have been carried out on Private citizens followed by military.
- Most of the transportation and violent political party attacks have been witnessed by the South Asian Countries.

• The South Asian countries need to tighten up security measures in the police, military, Government, Business, Educational, and religious sectors.

Evaluating

```
print("Country with the most attacks:",trr['Country'].value counts().idxmax())
In [35]:
          print("City with the most attacks:",trr['city'].value counts().index[1])
          print("Region with the most attacks:",trr['Region'].value counts().idxmax())
          print("Year with the most attacks:",trr['Year'].value counts().idxmax())
          print("Month with the most attacks:",trr['Month'].value counts().idxmax())
          print("Group with the most attacks:",trr['Group'].value counts().index[1])
          print("Most Attack Types:",trr['AttackType'].value counts().idxmax())
          print("Most Target Types:",trr['Target type'].value counts().idxmax())
         Country with the most attacks: Iraq
         City with the most attacks: Baghdad
         Region with the most attacks: Middle East & North Africa
         Year with the most attacks: 2014
         Month with the most attacks: 5
         Group with the most attacks: Taliban
         Most Attack Types: Bombing/Explosion
         Most Target Types: Private Citizens & Property
```

CONCLUSION

- There has been a gradual increase in Terror Activities since 2004.
- Highest number of terror activities occurred in the year 2014.
- After 2014 the terror activities started to decrease.
- Maximum Attacks have been in Central America, followed by Australasia in the year 2010.
- There have been very less terror casualties in: East Asia, North America.
- In East Asia the number of attacks gradually reduced to 0 after the year 1990.
- The Worst Attack took place in the US in the year 2001 with a total casualty of 9574.
- After the 9/11 attack the security measures in the US were escalated in such a way that no attacks took place until the year 2017.
- Kenya had the 2nd worst attack in the 1998 with 4224 Casualties, after that proper security measures were taken to avoid any such incident.
- Russia had its worst attack in the year 2004 with 1071 casualties, since then there has been no major attack.

- Mostly there is usage of Explosives and Firearms as Weapons.
- In middle East region most attacks have been carried out on Private citizens followed by military.
- Most of the transportation and violent political party attacks have been witnessed by the South Asian Countries.
- The South Asian countries need to tighten up security measures in the police, military, Government, Business, Educational, and religious sectors.