

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Instalações Elétricas I Engenharia Elétrica

8.2.2- Lâmpadas Incandescentes Halógenas

- Possuem bulbo tubular de quartzo com gás inerte, no qual são colocados aditivos de Iodo ou Bromo (halógenos).
- Em temperaturas próximas a 1400°C o halogênio adiciona-se ao gás contido no bulbo e, através de uma reação cíclica, reconduz o tungstênio volatilizado de volta ao filamento (processo de convecção).
- Principais características:
 - Alta potência e elevado brilho;
 - Maior durabilidade;
 - Maior rendimento luminoso;
 - IRC: 100;
 - Menores dimensões;
 - São mais caras que as incandescentes;
 - Vida média em torno de 2000 horas.

Lâmpadas Incandescentes Halógenas

- São amplamente utilizadas em retroprojetores, refletores de filmagens, faróis de carros, iluminação de interiores e etc.
- Possuem formato "lapiseira" ou "palito" e com refletor dicróico.

V	W	Im	t [h]	d [mm]	max. [mm]	
110-130	100	1200	2000	12	74,9	R7s
220-240	100	1200	2000	12	74,9	R7s
110-130	150	1800	2000	12	74,9	R7s
220-240	150	1800	2000	12	74,9	R7s
110-130	300	3900	2000	12	114,2	R7s
220-240	300	3900	2000	12	114,2	R7s
110-130	500	7000	2000	12	114,2	R7s
220-240	500	7000	2000	12	114,2	R7s
220-240	1000	22000	2000	12	185,7	R7s

8.2.3- Lâmpadas Dicróicas

- São lâmpadas halógenas montadas sobre um espelho dicróico, que tem a característica de refletir a luz mas não o calor, que é eliminado na parte de trás do conjunto.
- Alguns modelos necessitam de transformadores auxiliares.
- Possuem excelente IRC.
- Utilizadas em lojas, restaurantes, hotéis, residências e etc.

8.2.4- Lâmpadas Infravermelhas

- Não são apropriadas para a utilização como iluminação, pois possuem espectro radiante com frequências na escala do infravermelho (ondas de calor: 780 1400nm).
- Principais aplicações:
 - Produção de calor;
 - Secagem de tintas;
 - Em estufas;
 - Fisioterapias;
 - Criação de animais;
 - Etc.
- Possuem vida útil média de 5000hs.

8.2.5- Lâmpadas Fluorescentes

- São revestidas internamente por um material fluorescente (cristais de fósforo). O gás no interior é o argônio e possuem pequenas gotículas de mercúrio.
- A descarga elétrica no tubo provoca a excitação dos átomos do gás presente, o que libera energia na forma de radiação ultravioleta.
- Essa radiação ao atravessar a camada fluorescente do tubo transforma-se em radiação visível.

Fluorescente tubular

Lâmpadas Fluorescentes

Acessórios para Lâmpadas Fluorescentes

- As lâmpadas fluorescentes necessitam de acessórios adicionais para funcionar, os chamadores reatores.
- São divididos em três tipos:
 - Reator comum ou eletromagnético;
 - Reator de partida rápida;
 - Reator Eletrônico.

Reator eletromagnético

- Garante a tensão necessária para partir a lâmpada e funciona como limitador de corrente.
- Consiste essencialmente de uma bobina com núcleo de ferro (indutor).
- Necessita de starter para a ignição da lâmpada.
- Starter
 - É um pequeno tubo de vidro, dentro do qual são colocados dois eletrodos imersos em gás inerte;
 - O starter funciona segundo o principio da lâmina bimetálica, similar aos disjuntor termomagnético.

Reator eletromagnético

- Desvantagens:
 - Alto consumo de energia (de 20 a 30% da potência da lâmpada);
 - Baixo fator de potência;
 - Ocorrência de efeito estroboscópico;
 - Elevado peso e volume;
 - Piscar incomodo ao se ligar a lâmpada.
- Vantagens:
 - Baixo custo;
 - Robustez.

- 220V/ 0,4A
- lâmpada 40W
- fp=0,52 atrasado

Reator de Partida Rápida

- O reator possui dois enrolamentos separados, para aquecer continuamente o filamento da lâmpada.
- A lâmpada fluorescente acende em 1 ou 2 segundos.
- Não há necessidade de usar o starter, sendo assim de fácil manutenção.
- Elimina o piscar incômodo quando é usado o starter.

Reator Eletrônico

- Um reator eletrônico converte a tensão de entrada CA (60Hz) em um tensão CA de alta frequência (superior a 18 kHz), para o acionamento de lâmpadas fluorescentes.
- Dessa forma a lâmpada fluorescente tem um aumento do seu fluxo luminoso, em torno de 6% a 12%.
- Componentes de um reator eletrônico:

Reator Eletrônico

- Vantagens do reator eletrônico:
 - Redução do consumo de energia elétrica;
 - Aumento da eficiência luminosa;
 - Eliminação do efeito estroboscópico;
 - Elevado fator de potência;
 - Baixa distorção harmônica de corrente;
 - Partida rápida da lâmpada;
 - Tamanho e peso menor comparados ao reator eletromagnético;
 - Aumento da vida útil do conjunto lâmpada e reator.

8.2.6-Lâmpadas Fluorescentes Compactas

- Possuem características semelhantes às fluorescentes tubulares, mas com várias inovações em relação a estas:
 - Possuem reatores incorporados;
 - Possuem uma única extremidade com rosca no padrão E27, o que garante grande versatilidade na instalação, principalmente na substituição de lâmpadas incandescentes;
 - Podem substituir as lâmpadas incandescentes, com até 80% de economia;
 - Vida média em torno de 8000h.
- Possuem elevada vida útil, boa reprodução de cores, além de grande eficiência luminosa (utilizam trifósforo).

8.2.7- Lâmpadas a Vapor de Mercúrio

- Formada por um tubo de quartzo, contendo uma pequena quantidade de mercúrio e gás argônio, com 3 eletrodos (2 principais e 1 auxiliar para partida).
- Inicialmente é estabelecido um arco de ignição preliminar (eletrodo principal e auxiliar), que vaporiza o mercúrio.
- Posteriormente forma-se o arco luminoso entre os dois eletrodos principais.
- O bulbo é revestido por uma camada fluorescente de fosfato de ítrio, que transforma a radiação ultravioleta em luz visível.
- A lâmpada demora até três minutos para atingir o fluxo nominal. Depois de apagada a lâmpada só acenderá após três minutos.

Lâmpadas a Vapor de Mercúrio

- Necessitam de reatores e capacitores (para aumentar o fator de potência).
- Possuem grande fluxo luminoso e elevada vida útil (20.000 h).
- Aplicação:
 - Iluminação de vias públicas, praças e jardins, fábricas, parques e estacionamentos.

	W Potência	Im Ruxo Luminoso	d [mm]	[mm] Comp. I máx.	Bass	No.
	orner de oceaséde, bodh e elleredde					
HQL® STANDARD - Lâmpada de v			74	455	507	
HQL 80	vapor de mercurio, bulbo elipsoida 80	3800	71	155	E27	1
·			71 76	155 168	E27 E27	1
HQL 80	80	3800				1 1 2

Fonte: Osram

8.2.8-Lâmpadas Mistas

- São lâmpadas que reúnem as vantagens das lâmpadas incandescentes e das de vapor de mercúrio.
- Possuem dentro da mesma lâmpada, um filamento de tungstênio (luz incandescente) e um tubo de descarga a vapor de mercúrio.
 - A luz do filamento emite luz incandescente.
 - A luz do tubo de descarga o vapor de mercúrio emite luz azulada.
 - A radiação ultravioleta em contato com a camada fluorescente transforma-se em luz avermelhada.
- Como resultado, consegue-se uma luz semelhante à luz do dia, com maior fluxo luminoso e maior eficiência.

Lâmpadas Mistas

- Não necessitam de nenhum equipamento auxiliar para funcionamento (reator e ignitor).
- Possuem fluxo luminoso de 20% a 35% maior que as lâmpadas incandescentes.
- Possuem base de rosca, IRC médio de 60 e temperatura de cor de 3500 K.
- Vida média: 6000h.

Fonte: Osram

8.2.9- Lâmpadas a Vapor de Sódio

- São fabricadas em dois tipos, relativos a pressão no tubo de descarga:
 - Lâmpadas de Vapor de Sódio a Baixa Pressão;
 - Lâmpadas de Vapor de Sódio a Alta Pressão.
- O tubo de descarga é constituídos de sódio e uma mistura de gases inertes a determinada pressão (associada à tensão de ignição).
- A descarga ocorre num invólucro de vidro tubular a vácuo, coberto na superfície interna por uma camada de óxido de índio. Essa camada age como um refletor infravermelho.

Lâmpadas de Vapor de Sódio a Baixa Pressão

- No tubo de descarga utiliza-se gás neônio e sódio, a uma pressão de 600N/m².
- Tem como vantagens a elevada eficiência (200 lumens/watt), e a grande vida útil (18000 horas).
- Como desvantagem tem a radiação luminosa quase monocromática (luz amarela), o que resulta em um baixíssimo IRC (~20), alterando a cor dos corpos.
- Atinge 80% de seu fluxo luminoso em aproximadamente 5min.
- Há necessidade de instalação de reator e ignitor.

Lâmpadas de Vapor de Sódio a Alta Pressão

- São lâmpadas formadas por um tubo de descarga com gás xenônio e elevada quantidade de sódio.
- Há necessidade de se utilizar reator e ignitor para a partida (~3kV).
- A luz emitida é "branco-ouro", com razoável IRC.
- Tem como desvantagem a elevada luminância, de 300 a 600cd/cm². Possui elevada vida útil (18000 horas).
- A eficiência luminosa é da ordem de 130 lúmens/Watt.

Lâmpadas a Vapor de Sódio

Fonte: Osram

8.2.10- Lâmpadas a Multivapores Metálicos

- É um tipo particular de lâmpada de vapor de mercúrio, com a adição de certos compostos metálicos halogenados ao mercúrio (iodetos e brometos).
- Tal adição permite obter um maior fluxo luminoso e excelente IRC.
- As lâmpadas podem ou não possuir material fluorescente no bulbo, possuem alto rendimento e elevada vida útil.
- São especialmente recomendadas quando se requer uma boa reprodução de cor associado a um elevado fluxo luminoso, como estádios, ginásios, iluminação de fachadas, etc.
- Requer ignitor de partida e eventual capacitor para melhorar o fator de potência.

Lâmpadas a Multivapores Metálicos

	W Im	d [mm]	[mm] Camp. I máx.	LCL a [mm]	Base	No. Figura
POWERSTAR® HQI®-T - Bulbo tubular	250 20000	46	225	155	F40	3
POWERSTAR® HQI®-T - Bulbo tubular HQI-T 250W/D HQI-T 400W/D	250 20000 400 35000	46 58	225 285	155 180	E40 E40	3
HQI-T 250W/D						3 3 1

Fonte: Osram

Ignitores

- São elementos utilizados em lâmpadas a vapor de metálico e vapor de sódio.
- Atuam gerando uma série de pulsações de tensão elevada da ordem de 1 a 5 kV, a fim de iniciar a descarga.
- Uma vez que a lâmpada inicie sua operação, o ignitor para de emitir pulsos.

