

eMall – e-Mobility for all

REQUIREMENT ANALYSIS AND SPECIFICATION DOCUMENT - RASD

Author(s): Fabio Lusha - 10882532

Bianca C. Savoiu Marinas - 10684465

Academic Year: 2022-2023

Contents

C	Contents						
1	Intr	Introduction					
	1.1	Purpose	1				
	1.2	Scope	2				
	1.3	Definitions, Acronyms, Abbreviations	4				
		1.3.1 Abbreviations	4				
		1.3.2 Definitions	5				
	1.4	Reference Documents	6				
	1.5	Document Structure	6				
2	Ove	Overall description					
	2.1	Product perspective	7				
	2.2	Product functions	7				
	2.3	User characteristics	7				
	2.4	Assumptions, dependencies and constraints	7				
3	Specific requirements						
	3.1	External Interface Requirements	9				
		3.1.1 User Interfaces	9				
		3.1.2 Hardware Interfaces	9				
		3.1.3 Software Interfaces	9				
		3.1.4 Communication Interfaces	9				
	3.2	Functional Requirements	9				
	3.3	Performance Requirements	9				
	3.4	Design Constraints	9				
		3.4.1 Standards compliance	9				
		3.4.2 Hardware limitations	9				

		3.4.3	Any other constraint	. 9		
3.5 Softwa			are System Attributes	. 9		
		3.5.1	Reliability	. 9		
		3.5.2	Availability	. 9		
		3.5.3	Security	. 9		
		3.5.4	Maintainability	. 10		
		3.5.5	Portability	. 10		
4	For	mal an	nalysis using Alloy	11		
5	5 Effort spent					
6	3 References					
Li	List of Figures					
${f Li}$	st of	Tables	s	19		

1 Introduction

1.1. Purpose

Widespread electrification of transport is the most efficient way to reach Europe's climate objectives for the sector and electric charging is the main asset to overcome the obstacles of the take-up of electric vehicles (EVs). EVs can reduce CO2 by an estimated annual 600,000 tons by 2030, going towards a carbon neutral Europe and the importance of this aim raises the problem of having efficient systems that manage the charging services. The e-Mall is thought as an all-encompassing application that oversees the entire process from the user interaction to the effective recharge of the EV's battery.

The main goal we want to achieve with the e-Mall software is to help the end users (electric vehicle drivers) to have a better access to recharge and to be able to book a charging point in order to avoid interference with his daily plans. Another important purpose of the system is to safeguard not only the users but also the providers of the service and this is made thought privacy agreements and the actual interaction that guarantees to supervise the both interested parts, in order to get the best possible service and pay for it accordingly, having also a technical and economic exploitation of the charging infrastructures.

In this context there is an increase in the requested electric energy, but large amounts of power in short periods would require investments in the reinforcement of the distribution networks, which have not been designed to accommodate such load. It becomes necessary to introduce new systems and solutions to optimize the operation of distribution networks and we can identify the DSOs as important actors that have to monitor the networks in order to have a safe and controlled supply of the energy and manage faults in the assets. The DSOs communicate with the e-Mall, and in particular with the CPMS modules that decide from where to acquire energy in order to satisfy as well as possible the CPOs economical interests.

2 1 Introduction

Goal	Description
G1	The end user is able to identify the charging stations nearby
G2	The end user is able to visualize the tariffs of the charging stations
G3	The end user is able to visualize any special offer available at the charging station
G4	The end user is able to book a charge in a specific charging station for a certain
	time-frame
G5	The end user is able to start the charging process at a certain station
G6	The end user is able to pay for the obtained service
G7	The CPO can decide from which DSO to acquire energy
G8	The CPO can decide the cost of charging
G9	The CPO can set special offers
G10	The CPO can decide whether to store or not energy in batteries
G11	The CPO can decide whether to use the energy available in the batteries

Table 1.1: Goals

1.2. Scope

World phenomena	Description			
WP1	The end user wants to charge the EV's battery			
WP2	The end user wants to plan where and when to charge the EV's			
	battery			
WP3	The prices for energy often vary in real world economy			
WP4	The providers of energy, as marketing strategy, have special offers			
	during certain time periods.			
WP5	The providers of the charging service make special offers during			
	certain time periods.			
WP6	All vehicles have an integrated inverter that converts AC elec-			
	tricity to DC			
WP7	Some type of chargers have an integrated inverter that converts			
	AC electricity to DC. They supply the EV directly with DC cur-			
	rent			
WP8	A charging of type X, provides electricity in mode C and is given			
	through Z connectors			

Table 1.2: World Phenomena

1 Introduction 3

World phenomena CPO	Description		
WP9	A charging station is owned and managed by one CPO		
WP10	A CPO owns and manages one or more charging stations		
WP11	A charging station may be equipped with batteries		
WP12	Charging stations equipped with batteries grant more flexibility to		
	CPOs on how to choose between the energy stored in the batteries		
	and the one offered by DSOs		
WP13	Low voltage (3.7 - 11 kW) chargers need more time to charge the		
	battery		
WP14	Medium voltage (22-90 kW) chargers need less time to recharge		
	a battery of capacity C than a low voltage charger		
WP15	High voltage (> 90 kW) chargers need less time to recharge a		
	battery of capacity C than a medium voltage charger		
WP16	Batteries can only be charged with direct current (DC) electric		
	power		
WP17	Given a continuous supply of power W, and a battery with finite		
	capacity C, than the charging time T is finite.		

Table 1.3: World Phenomena

World phenomena DSO	Description		
WP18	The DSOs provide energy to a charging station		
WP19	Most electricity is delivered from the power grid as alternating		
	current (AC)		
WP20	During the day the electric power supplied to the station can vary		
WP21	During the day a short-duration reduction in the voltage supplied		
	to the electrical power systems may occur due to high current		
	demand or faults in the system.		
WP22	During the day a momentary increase in voltage may occur. This		
	may happen when a heavy load turns off in a power system.		

Table 1.4: World Phenomena

4 1 Introduction

Shared phenomena	Description	Controller	Observer
SP1	The eMall notifies the user when the	eMall	user
	charging process is finished		
SP2	The end user creates an account	user	eMall
SP3	The end user logs in	user	eMall
SP4	The end user in order to register in-	user	eMall
	serts in the mobile app of the eMall		
	the personal data (name, surname,		
	payment details)		
SP5	The end user inserts in the mobile	user	eMall
	app of the eMall specifications about		
	its vehicles (type of vehicle, inlet		
	type)		
SP6	The end user accepts the terms of		eMall
	service in order to use the eMall		
SP7	The end user shares its location with		eMall
	the eMall		
SP8	The end user confirms the payment	user	eMall
	from the mobile application of the		
	eMall		
SP9	The end user deletes previously in-	user	eMall
	serted EVs from its account		
SP10	The end user updates the specifica-	user	eMall
	tions of the EVs on its account		
SP11	The end user adds a new EV to its	user	eMall
	account		

Table 1.5: Shared Phenomena

1.3. Definitions, Acronyms, Abbreviations

1.3.1. Abbreviations

 \bullet eMall: e-Mobility for all

• **CPMS**: Charging Point Management System

• **CPO**: Charge Point Entity

1 Introduction 5

• eMSP: Electric Mobility Service Providers

• DMS: Distribution Management System

• **DSO**: Distribution System Operator

• EV: Electric Vehicle

• EVSE: Electric Vehicle Supply Equipment

• HV: High Voltage

• LV: Low Voltage

• MV: Medium Voltage

• SCADA: Supervisory Control and Data Acquisition

• SCM: Smart Chargingn Management

• OMS: Outage Management System

1.3.2. Definitions

- **DSO**: typically the entity responsible for the operation and management of distribution networks High, Medium and Low Voltage networks. For this purpose, the DSO typically owns systems such as Supervisory and Control Data Acquisition (SCADA)/ Distribution Management System (DMS) for the monitoring and general overview of the state of the network. It also owns other systems such as the Outage Management System (OMS) and Work Force Management System (WFMS) for addressing the network operation problems related with the continuity and quality of service.
- **CPO**: entity that technically manages all the EV infrastructure assets, depending of existing country regulation this role can be assured by the DSO or other entity.
- eMSP: is the entity that can explore the economic side of the EV charging infrastructure, namely by selling energy for charging purposes.
- **CPMS**: is a software system that manages the charge point infrastructure can manage the technical and economic aspects of the charging infrastructures.
- EV Driver: person or entity who owns an EV car and can use the public or private facilities for charging purposes.
- EVSE: responsible for the charging of the EV. It is an equipment that is able to

6 1 Introduction

charge EV batteries with AC or DC loads and with different rated powers depending on the type of equipment.

- **Private parking**: can be a condominium, industry or other entity who has private owned EV
- Voltage sag: a short-duration reduction in voltage of an electric power distribution system. It can be caused by high current demand or fault current elsewhere in the system.
- Voltage swell: the opposite of voltage sag. Voltage swell, which is a momentary increase in voltage, happens when a heavy load turns off in a power system.
- Socket outlet: the port on the electric vehicle supply equipment (EVSE) that supplies charging power to the vehicle
- Plug: the end of the flexible cable that interfaces with the socket outlet on the EVSE.
- Cable: a flexible bundle of conductors that connects the EVSE with the electric vehicle
- Connector: the end of the flexible cable that interfaces with the vehicle inlet
- Vehicle inlet: the port on the electric vehicle that receives charging power

1.4. Reference Documents

1.5. Document Structure

2 Overall description

- 2.1. Product perspective
- 2.2. Product functions
- 2.3. User characteristics

2.4. Assumptions, dependencies and constraints

Assumptions	Description
A1	The end user has internet connection
A2	The end user has a mobile phone with an integrated GPS module
A3	The end user has the mobile application of the eMSP installed
	on his mobile phone
A4	The CPMS shares the location of the charging station to the
	eMSP through APIs
A5	The end user payment from the mobile app is handled by external
	APIs.

Table 2.1: Assumptions

3 | Specific requirements

3.1.	External	Interface	Re	equire	\mathbf{ments}
------	----------	-----------	----	--------	------------------

- 3.1.1. User Interfaces
- 3.1.2. Hardware Interfaces
- 3.1.3. Software Interfaces
- 3.1.4. Communication Interfaces
- 3.2. Functional Requirements
- 3.3. Performance Requirements
- 3.4. Design Constraints
- 3.4.1. Standards compliance
- 3.4.2. Hardware limitations
- 3.4.3. Any other constraint
- 3.5. Software System Attributes
- 3.5.1. Reliability
- 3.5.2. Availability
- 3.5.3. Security

- 3.5.4. Maintainability
- 3.5.5. Portability

4 Formal analysis using Alloy

5 Effort spent

6 References

List of Figures

List of Tables

1.1	Goals	2
1.2	World Phenomena	2
1.3	World Phenomena	3
1.4	World Phenomena	3
1.5	Shared Phenomena	4
2.1	Assumptions	7

