Tableaux des dérivées

On rappelle les dérivées des fonctions usuelles ainsi que les formules générales de dérivation.

Fonction	Domaine de dérivabilité	Dérivée
$\ln(x)$	R ^{+,*}	$\frac{1}{x}$
e^x	\mathbb{R}	e^x
$x^{\alpha}, \alpha \in \mathbb{R}$	R+,*	$\alpha x^{\alpha-1}$
\sqrt{x}	R+,*	$\frac{1}{2\sqrt{x}}$
$\cos(x)$	\mathbb{R}	$-\sin(x)$
$\sin(x)$	\mathbb{R}	$\cos(x)$
$\tan(x)$	$\left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[, k \in \mathbb{Z}$	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$
arccos(x)] - 1;1[$\frac{-1}{\sqrt{1-x^2}}$
$\arcsin(x)$] - 1; 1[$\frac{1}{\sqrt{1-x^2}}$
$\arctan(x)$	\mathbb{R}	$\frac{1}{1+x^2}$
$\cosh(x)$	\mathbb{R}	$\sinh(x)$
$\sinh(x)$	\mathbb{R}	$\cosh(x)$
tanh(x)	\mathbb{R}	$1 - \tanh^2(x) = \frac{1}{\cosh^2(x)}$

Opération	Dérivée	
f+g	f'+g'	
$f \cdot g$	$f' \cdot g + f \cdot g'$	
$\frac{f}{g}$	$\frac{f' \cdot g - f \cdot g'}{g^2}$	
$g \circ f$	$f' \times g' \circ f$	
$(f \cdot g)^{(n)}$	$\sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$	
$(f^{-1})'$	$\frac{1}{f' \circ f^{-1}}$	
$\frac{1}{u}$	$-\frac{u'}{u^2}$	
$u^{\alpha}, \alpha \in \mathbb{R}^*$	$\alpha u'u^{\alpha-1}$	
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$ u'	
$\ln(u)$	$\frac{u'}{u}$	
$\exp(u)$	$u'\exp(u)$	
$\cos(u)$	$-u'\sin(u)$	
$\sin(u)$	$u'\cos(u)$	

Quelques formules de trigonométrie vraiment utiles. a, b et x sont des réels (quelconques) :

$$\cos^{2}(x) + \sin^{2}(x) = 1, \quad \cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b), \quad \sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b),$$
$$\cos(2x) = 2\cos^{2}(x) - 1 = 1 - 2\sin^{2}(x), \quad \cos^{2}(x) = \frac{1 + \cos(2x)}{2},$$
$$\sin(2x) = 2\sin(x)\cos(x), \quad \sin^{2}(x) = \frac{1 - \cos(2x)}{2}.$$

Pour étudier certaines courbes paramétrées faisant intervenir \sin et \cos , il est parfois utile d'effectuer le changement de variable $t = \tan(\frac{x}{2})$, d'où les formules suivantes :

$$\cos(x) = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}, \qquad \sin(x) = \frac{2\tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}.$$

Et tant qu'on y est, une factorisation utile (formules de l'arc-moitié) :

$$e^{\mathrm{i}\alpha} + e^{\mathrm{i}\beta} = 2\cos\left(\frac{\alpha-\beta}{2}\right)\exp\left(\mathrm{i}\frac{\alpha+\beta}{2}\right), \quad e^{\mathrm{i}\alpha} - e^{\mathrm{i}\beta} = 2\mathrm{i}\sin\left(\frac{\alpha-\beta}{2}\right)\exp\left(\mathrm{i}\frac{\alpha+\beta}{2}\right).$$

Développements limités usuels en 0

Les développements limités usuels suivants sont à connaître par coeur!

e^x	$= 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n)$	Taylor-Young
$\sin(x)$	$= x - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$	Taylor-Young
$\cos(x)$	$=1-\frac{x^2}{2!}+\frac{x^4}{4!}\cdots+(-1)^n\frac{x^{2n}}{(2n)!}+\circ(x^{2n+1})$	par dérivation de sin
$\frac{1}{1-x}$	$= 1 + x + x^2 + x^3 + \dots + x^n + o(x^n)$	Taylor-Young
$\frac{1}{1+x}$	$= 1 - x + x^{2} - x^{3} + \dots + (-1)^{n} x^{n} + o(x^{n})$	composition par $-x$
$\ln(1-x)$	$=-x-\frac{x^2}{2}-\frac{x^3}{3}-\cdots-\frac{x^n}{n}+\circ(x^n)$	intégration de $\frac{1}{1-x}$
$\ln(1+x)$	$= x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$	composition par $-x$
$\arctan(x)$	$= x - \frac{x^3}{3} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$	intégration de $\frac{1}{1+x^2}$
$(1+x)^{\alpha}$	$= 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!}x^2 + \dots + \frac{\alpha(\alpha - 1) \cdot (\alpha - n + 1)}{n!}x^n + o(x^n)$	Taylor-Young
$\sqrt{1+x}$	$= 1 + \frac{x}{2} - \frac{x^2}{8} + \dots + (-1)^{n-1} \frac{1 \times 3 \times \dots \times (2n-3)}{2 \times 4 \times \dots \times 2n} x^n + o(x^n)$	Taylor-Young ou $\alpha = \frac{1}{2}$
$\frac{1}{\sqrt{1+x}}$	$= 1 - \frac{x}{2} + \frac{3}{8}x^2 + \dots + (-1)^n \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n} x^n + o(x^n)$	Taylor-Young ou $\alpha = -\frac{1}{2}$
$\arcsin(x)$	$= x + \frac{x^3}{6} + \dots + \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$	intégration de $\frac{1}{\sqrt{1-x^2}}$
$\tan(x)$	$= x + \frac{x^3}{3} + \frac{2}{15}x^5 - \frac{17}{315}x^7 + o(x^8)$	par division
$\sinh(x)$	$= x + \frac{x^3}{3!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+3})$	somme de e^x et e^{-x}
$\cosh(x)$	$=1+\frac{x^2}{2!}+\frac{x^4}{4!}\cdots+\frac{x^{2n}}{(2n)!}+\circ(x^{2n+1})$	somme de e^x et e^{-x}

Tableau des primitives

Fonction	Intervalle d'intégration	Primitive
$(x-a)^n, n \in \mathbb{N}, a \in \mathbb{R}$	R	$\frac{1}{n+1}(x-a)^{n+1}$
$\frac{1}{x-a}, a \in \mathbb{R}$	$]-\infty;a[$ OU $]a;+\infty[$	$\ln(x-a)$
$\frac{1}{x-a}, a \in \mathbb{R}$ $\frac{1}{(x-a)^n}, a \in \mathbb{R}, n \ge 2$	$]-\infty;a[ext{ OU }]a;+\infty[$	$-\frac{1}{(n-1)(x-a)^{n-1}}$
$\cos(ax), a \in \mathbb{R} \backslash \{0\}$	\mathbb{R}	$\frac{1}{a}\sin(ax)$
$\sin(ax), a \in \mathbb{R} \setminus \{0\}$	\mathbb{R}	$-\frac{1}{a}\cos(ax)$
$\tan(x)$	$]k\pi - \frac{\pi}{2}; k\pi + \frac{\pi}{2}[, k \in \mathbb{Z}]$	$-\ln(\cos(x))$
$\ln(x)$	R ^{+,*}	$x\ln(x) - x$
$e^{ax}, a \in \mathbb{R} \backslash \{0\}$	\mathbb{R}	$\frac{1}{a}e^{ax}$
$(x-a)^{\alpha}, a \in \mathbb{R}, \alpha \in \mathbb{R} \setminus \{-1\}$	$]a;+\infty[$	$\frac{1}{\alpha+1}(x-a)^{\alpha+1}$
$a^x, a > 0$	\mathbb{R}	$\frac{1}{\alpha+1}(x-a)^{\alpha+1}$ $\frac{1}{\ln(a)}a^x$
$\frac{1}{x^2+1}$	\mathbb{R}	arctan(x)
$\sqrt{x-a}, a \in \mathbb{R}$	$]a;+\infty[$	$\frac{2}{3}(x-a)^{3/2}$
$\frac{1}{\sqrt{x-a}}, a \in \mathbb{R}$ 1	$]a;+\infty[$	$2\sqrt{x-a}$
$\frac{1}{\sqrt{1-x^2}}$] - 1; 1[arcsin(x)