Алёшин Александр ИУ5-73Б ДЗ1 БЖД

	Исходные данные								
1.	Вид прогнозирования	Заблаговременный							
2.	Район расположения XOO	Сейсмоопасный							
3.	Наименование АХОВ	Фосген							
4.	Количество емкостей на ХОО	3							
5.	Емкость №1, т	400							
6.	Емкость №2, т	400							
7.	Емкость №3, т	200							
8.	Способ хранения АХОВ	Под давлением							
9.	Наличие обваловки (да, нет, общая)	Общая							
10.	Высота обваловки, м	1,5							
11.	11 \ 1 11 11 / 1 11 / 1 / 1 / 1 / 1 / 1	Разрушение							
12.	Плотность AXOB (газ), τ/M^3	0,0035							
13.	Плотность АХОВ (жидкость), т/м ³	1,432							
14.	Количество АХОВ поступившее в ОС, т	1000							
	Температура кипения АХОВ, ⁰ С	8,2							
16.	Температура окружающей среды, ⁰ С	40							
17.	Скорость ветра, м/с	1							
18.	СВУ воздуха (инверсия, изотермия, конвекция)	Инверсия							
19.	Время с начала ЧС, ч	4							
20.	Расстояние до объекта защиты, км	15							

Результаты расчета								
21. Слой испарения, м	0,52							
22. Коэффициент К1	0,05							
23. Коэффициент К2	0,061							
24. Коэффициент К3	1							
25. Коэффициент К4	1							
26. Коэффициент К5	1							
27. Коэффициент К6	3,031433133020							
28. Коэффициент К7 ПО	2,7							
29. Коэффициент К7 ВО	1							
30. Коэффициент К8	0,081							
31. Время испарения, ч	12,21							
32. Эквивалентное количество АХОВ по ПО, т	135							
33. Эквивалентное количество АХОВ по ВО, т	235,9147374							
34. Глубина ЗХЗ по ПО, км	94,95							
35. Глубина ЗХЗ по ВО, км	130,116							
36. Полная (расчетная) глубина ЗХЗ, км	177,59							
37. Скорость переноса переднего фронта облака 3В, км/ч	5							
38. Предельная глубина ЗХЗ, км	20							
39. Окончательная глубина ЗХЗ, км	20							
40. Угловой размер зоны возможного заражения, град	180							
41. Площадь зоны возможного заражения, км ²	628,3185							
42. Площадь зоны фактического заражения, км ²	53,2576							
43. Время подхода облака к объекту защиты, ч	3							
44. Рекомендуемое средство ИЗОД	ГП-7 с							
	дополнительным							
	патроном ДПГ-1							

N_{0}/N_{0}	Наименование АХОВ	Плотность д	AXOB т/м ³	тура я °С	доза Ін/л	2 5							
		Газ	Жид- кость	Темперг	Токсод	Κ ₁	К2	K ₃	-40° C	-20° C	K 0°C	+20°C	+40°C
26	Фосген	0,0035	1,432	8,2	0,6	0,05	0,061	1,0	0/0,1	0/0,3	0/0,7	1/1	2,7/1

$$h = (H - 0.2) \frac{\max(m_{0i})}{\sum_{i} m_{0i}} = (1.5 - 0.2) \frac{400}{1000} = 0.52$$

$$h = 0.52$$

				K ₇							
K_1	K_2	K_3	-40°	-20°	0°C	+20°C	+40°C				
			C	C							
0,05	0,061	1,0	0/0,1	0/0,3	0/0,7	1/1	2,7/1				

для инверсии	$K_5 = 1$,
, , <u>1</u>	,

Скорость ветра, м\с	1
К4	1

Расчет эквивалентного количества AXOB в первичном облаке $Q_{\mathfrak{I}}$:

$$Q_{91} = K_1 \cdot K_3 \cdot K_5 \cdot K_7 \cdot Q_0$$

$$Q_{21} = 0.05 \cdot 1 \cdot 1 \cdot 2.7 \cdot 1000 = 135$$

 K_I – коэффициент условий хранения AXOB;

 K_3 – коэффициент, равный отношению ТД_{пор} хлора к ТД_{пор} аммиака;

 K_5 – коэффициент, учитывающий СВУВ;

 K_7 – коэффициент, учитывающий влияние температуры воздуха;

 Q_0 – macca AXOB, т.

Определение глубины зоны заражения первичным облаком – Г1.

Принимаем, что глубина зоны заражения увеличивается пропорционально массе разлившегося AXOB. Используя таблицу (РД52.04.253-90) производим интерполяцию для диапазона массы AXOB от 100 т до 500 т и соответствующего ему диапазона глубины зоны заражения от 81,9 км до 231 км. Составим пропорцию и выразим Γ_1 :

$$\frac{500-100}{231-81,9}=\frac{Q_{\mathfrak{I}1}-1}{\Gamma_{1}-81,9}$$

$$\Gamma_{1}=81,9+\frac{(Q_{\mathfrak{I}1}-100)(231-81,9)}{500-100}=81,9+\frac{(135-100)(231-81,9)}{500-100}=94,95\ \text{км}$$
 Γ_{I} =94,95 км для $Q_{\mathfrak{I}I}$ =135 т

Расчет эквивалентного количества AXOB во вторичном облаке $Q_{\mathfrak{I}2}$:

$$Q_{92} = (1 - K_1) \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5 \cdot K_6 \cdot K_7 \cdot \frac{Q_0}{h \cdot d}$$

 K_2 – коэффициент, учитывающий свойства AXOB;

 K_4 – коэффициент, учитывающий скорость ветра;

 K_6 – коэффициент, зависящий от времени, прошедшего после аварии (T_{ae}) - определяется после расчета времени испарения АХОВ (T_{ucn}), ч.

$$K_6 = T_{ae}^{0.8} npu T_{ae} < T_{ucn}$$

$$K_6 = T_{ucn}^{0.8} npu T_{ae} \ge T_{ucn}$$

$$T_{ucn} = \frac{h \cdot d}{K_2 \cdot K_4 \cdot K_7}$$

h – толщина слоя AXOB, м;

d – плотность AXOB, т/м3

$$T_{\text{исп}} = \frac{0.52 \cdot 1.432}{0.061 \cdot 1 \cdot 1} = 12.21$$

так как $T_{as} < T_{ucn}$, то

$$K_6 = T_{aB}^{0,8} = 3,031433133020$$

$$Q_{92} = (1 - 0.05) \cdot 0.061 \cdot 1 \cdot 1 \cdot 1 \cdot 3.031433133020 \cdot 1 \cdot \frac{1000}{0.52 \cdot 1.432} = 235.9147374 \text{ T}$$

Используя таблицу (РД52.04.253-90) производим интерполяцию для диапазона массы AXOB от 100 т до 500 т и соответствующего ему диапазона глубины зоны заражения от 81,9 км до 231 км. Составим пропорцию и выразим Γ_2 :

$$\frac{500-100}{231-81,9} = \frac{(Q_{32}-100)}{(\Gamma_2-81,9)}$$

$$\Gamma_2 = 81,9 + \frac{(\bar{Q}_{\mathfrak{I}2} - 100)(231 - 81,9)}{500 - 100} = 81,9 + \frac{(235,9147374 - 100)141,9}{400} = 130,116$$
 км

 $\Gamma_2 = 130,116$ км для $Q_{22} = 235,9147374$ т

$$\Gamma_n = \Gamma' + 0.5 \cdot \Gamma''$$

где Γ' - наибольший, Γ'' – наименьший из размеров Γ_I и Γ_2 .

 $\Gamma'=130,116$ км

$$\Gamma_{\Pi}$$
 = 130,116+ 94,95*0,5 = 177,59 км

$$\Gamma_{\text{пред}} = \text{Тав} \cdot \text{V} \Pi$$

где T_{as} - время прошедшее после аварии, ч;

 V_n - скорость переноса зараженного воздуха, км/ч. (принимаем по табл. (РД52.04.253-90)

$$\Gamma_{\text{пред}}=4.5=20 \text{ (км)}$$

Определение расчетного значения глубины зоны заражения Γ_{pacq} для сжиженных газов:

Если Гп>Гпред, то Грасч=Гпред Если Гп<Гпред, то Грасч=Гп

Грасч=20 (км)

Определение площади зоны возможного заражения.

$$S_{\rm B} = \frac{\pi \Gamma_{
m OK}^2}{360} \varphi = \frac{\pi \cdot 20^2}{360} \cdot 180 = 628,3185 \text{ km}^2$$

Определение площади зоны фактического заражения.
$$S_{\varphi} = \mathsf{K}_8 \cdot \Gamma_{\mathsf{o}_{\mathsf{K}}}^2 \cdot N^{0.2} = 0,081 \cdot 20^2 \cdot 12,21^{0,2} = 53,2576 \ \mathsf{km}^2$$

Определение времени подхода облака ЗВ к объекту.

$$t_{\text{под}} = \frac{L}{V_{\text{п}}} = \frac{15}{5} = 3 \text{ ч}$$

Скорость ветрм/с	Эквивалентное количество АХОВ, т						
ветрм/с	100	500					
≤1	81,9	231					
5	20,8	54,7					

$N_{\overline{0}}/N_{\overline{0}}$	Наименование АХОВ	Плотность АХОВ т/м ³		атура	103a		Значен	ие всі	помога	гельны	х коэф	фициент	ЮВ
		Газ	Жид- кость	Темпера	Токсод	K ₁	K ₂	К3	-40° C	-20° C	0°C	+20°C	+40°C
26	Фосген	0,0035	1,432	8,2	0,6	0,05	0,061	1,0	0/0,1	0/0,3	0/0,7	1/1	2,7/1