

LEARNING PROGRESS REVIEW

Week 8

Entropy Team

OUR TEAM

Entropy Team

- Adhang Muntaha Muhammad https://www.linkedin.com/in/adhangmuntaha/
- Aziz Fauzi
 https://www.linkedin.com/in/aziz-fauzi-a6904711b/
- Iwan Wahyu
 https://www.linkedin.com/in/iwan-wahyu-setyawan-506809183
- Marcellina Alvita F
 https://www.linkedin.com/in/marcellina-alvita-faustina-63a284226
- Ramadhan Luthfan
 https://www.linkedin.com/in/luthfan-mahathir-91369b18b

DAFTAR ISI

1.

Basic Statistics

Materi statistik (dasar)

2.

Intermediate Statistics

Materi statistik (menengah)

3.

Advanced Statistics

Materi statistik (lanjutan)

BASIC STATISTICS

Materi statistik (dasar)

Pentingnya Statistik

Statistik dapat digunakan untuk **membuat** summary dari data besar menjadi kecil, sehingga seolah-olah bisa **menggeneralisasi** populasi

Populasi dan Sampel

- Populasi merupakan keseluruhan elemen observasi
- Sampel merupakan bagian (subset) dari populasi
- Parameter adalah ukuran yang menggambarkan keseluruhan populasi
- Statistik adalah ukuran yang menggambarkan sampel

Tipe Data

	Nominal	Ordinal	Interval	Ratio
Deskripsi	Kategori tidak memiliki bobot	Kategori memiliki bobot	Tidak memiliki true zero, sehingga bisa memiliki nilai negatif	Memiliki <i>true zero</i> , sehingga tidak memiliki nilai negatif
Contoh	Jenis kelamin	Tingkat kepuasan	Suhu	Usia

Domain Statistik

Descriptive Statistics

- Digunakan untuk
 menggambarkan atau
 merangkum karakteristik
 kumpulan data, sehingga pola dari
 data dapat dilihat
- Erat kaitannya dengan central tendency dan persebaran data

Inferential Statistics

- Digunakan untuk membuat generalisasi pada sebuah populasi menggunakan sampel
- Erat kaitannya dengan sampling, estimasi parameter, dan uji hipotesis

Statistik Deskriptif

Measure of central tendency

- Digunakan untuk melihat seberapa memusat suatu data
- Beberapa ukuran yang digunakan:
 - Rata-rata (mean)
 - Nilai tengah (median)
 - Modus (mode)

Measure of spread

- Digunakan untuk melihat seberapa menyebar suatu data
- Beberapa ukuran yang digunakan:
 - Minimum
 - Maksimum
 - Rentang
 - Kuantil
 - Varians
 - Standar deviasi

Rata-rata

```
in print(data['age'].mean())
  print(data['score'].mean())

out 24.25
  67.5
```

- Digunakan untuk menghitung rata-rata
- Sangat sensitif terhadap outlier

	name	age	score
0	Entropy	25	80
1	Team	23	85
2	Digital	24	85
3	Skola	25	20

$$mean = \bar{x} = \frac{\sum_{i}^{n} x}{n}$$

$$\bar{x}_{age} = \frac{25 + 23 + 24 + 25}{4} = 24.25$$

$$\bar{x}_{score} = \frac{80 + 85 + 85 + 20}{4} = 67.5$$

Median

```
in print(data['age'].median())
  print(data['score'].median())

out 24.5
82.5
```

- Digunakan untuk mencari nilai tengah
- Tidak sensitif terhadap
 outlier

	name	age	score
0	Entropy	25	80
1	Team	23	85
2	Digital	24	85
3	Skola	25	20

age	23	24	25	25
score	20	80	85	85

$$median_{age} = \frac{(24+25)}{2} = 24.5$$

$$median_{score} = \frac{(80 + 85)}{2} = 82.5$$

Modus

```
in print(data['age'].median())
print(data['score'].median())

out 0 25
  dtype: int64
  0 85
  dtype: int64
```

 Digunakan untuk mencari nilai dengan frekuensi terbanyak

	name	age	score
0	Entropy	25	80
1	Team	23	85
2	Digital	24	85
3	Skola	25	20

age		score	
nilai	jumlah	nilai	jumlah
23	1	20	1
24	1	80	1
25	2	85	2

Kuantil

```
in data.quantile(0.25, interpolation='midpoint')
   data.quantile(0.50, interpolation='midpoint')
   data.quantile(0.75, interpolation='midpoint')

out 23.5
   26.5
   30.5
```


- Digunakan untuk mendefinisikan bagian tertentu dari kumpulan data
- Kuartil merupakan contoh kuantil khusus yang membagi data menjadi 4 bagian
- Interquartile range merupakan selisih antara Q3 dengan Q1

Standar Deviasi

```
in print(round(data['age'].std(),2))
print(round(data['score'].std(),2))
out 0.96
31.75
```

- Digunakan untuk mengetahui sebaran data
- Semakin besar nilai standar deviasi, maka data semakin tersebar

	name	age	score
0	Entropy	25	80
1	Team	23	85
2	Digital	24	85
3	Skola	25	20

$$varians = \sigma^2 = \frac{\sum_{i}^{n} (x_i - \bar{x})^2}{n}$$

$$standar\ deviasi = \sigma = \sqrt{\frac{\sum_{i}^{n}(x_{i} - \bar{x})^{2}}{n}}$$

INTERMEDIATE STATISTICS

Materi statistik (menengah)

Probabilitas

- Probabilitas digunakan untuk mengukur seberapa besar kemungkinan suatu peristiwa akan terjadi
- Probabilitas memiliki nilai dari 0 sampai 1
 - Probabilitas 0 : tidak mungkin terjadi
 - Probabilitas 1 : pasti terjadi

Probability Mass Function

- Digunakan untuk melihat frekuensi dari data diskrit
- Frekuensi direpresentasikan dalam bentuk persentase
- Cocok digunakan untuk data yang variasinya sedikit

Cumulative Distribution Function

- Digunakan untuk melihat perubahan dari data diskrit, kontinu, atau campuran
- Perubahan direpresentasikan dalam bentuk persentase
- Cocok digunakan untuk data yang variasinya banyak

Distribusi Normal

- Distribusi normal memiliki bentuk kurva seperti lonceng (bell-shaped) yang simetris
- Distribusi normal memiliki nilai rata-rata, median, dan modus yang hampir sama

Skewness

- Skewness merupakan kecondongan dari data
- Kecondongan tersebut membuat nilai ratarata, median, dan modusnya tidak mirip
- Left-skew : nilai melandai ke arah kiri
- **Right-skew** : nilai melandai ke arah kanan

Korelasi

- Korelasi merupakan hubungan antarvariabel
- Jenis korelasi:
 - Korelasi positif
 - Korelasi negatif
 - Korelasi netral (tidak ada korelasi)
- Korelasi tinggi yaitu ketika nilai korelasi mendekati 1 atau -1
- Korelasi bukan penanda adanya sebabakibat (correlation is not causation)

ADVANCED STATISTICS

Materi statistik (lanjutan)

Sampling

- Sampling merupakan metode pemilihan sampel (subset) untuk memperkirakan karakteristik (parameter) populasi
- Sampling dilakukan karena dapat menghemat waktu, biaya, dan lebih praktis dibanding mengumpulkan keseluruhan data

Simple Random Sampling

 Setiap elemen dari populasi memiliki probabilitas yang sama untuk dipilih

Systematic Sampling

 Sampling dilakukan dengan menggunakan pola tertentu, misal memilih setiap elemen dengan interval 3

Stratified Sampling

- Dapat dilakukan jika terdapat beberapa kategori berbeda
- Setiap elemen dikelompokkan berdasarkan kategori tertentu, kemudian dilakukan random sampling dari masing-masing kategori tersebut

Uji Hipotesis

Uji hipotesis (*hypothesis testing*) merupakan metode dalam *inferential statistics* untuk **menentukan** apakah suatu **hipotesis** akan **diterima atau ditolak**

Istilah dalam Uji Hipotesis

- Null hypothesis (H_0)
 Hipotesis awal yang dapat diterima atau ditolak berdasarkan hasil uji hipotesis
- Alternative hypothesis (H_1)
 Hipotesis yang diterima jika H_0 ditolak
- ullet Confidence interval Rentang di mana H_0 akan diterima, dihitung berdasarkan persentase confidence level
- Significance level (alpha, α)
 Probabilitas membuat keputusan yang salah ketika H_0 benar
- Critical value
 Batas wilayah penerimaan hipotesis yang ditentukan oleh alpha
- **P-value** Nilai uji hipotesis. Jika p-value < alpha, maka H_0 ditolak dan H_1 diterima

Metode Uji Hipotesis

Z-test

Digunakan jika:

Varians dari populasi diketahui

ATAU

Ukuran sampel **lebih dari 30**

T-test

Digunakan jika:

Varians dari populasi tidak diketahui

DAN

Ukuran sampel kurang dari 30

Chi-square

Digunakan untuk melihat apakah ada **dependency** (ketergantungan) **antarvariabel**

AB Testing

see variation B

- Pengujian dilakukan terhadap
 2 variasi (variasi A dan B)
- Pengujian dilakukan untuk membandingkan performa dari kedua variasi tersebut

Variation B

23%

conversion

conversion

THANKS

Entropy Team

CREDITS: This presentation template was originally created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**