MRE Reconstruction: Inverting the wave equation

Stephan Wäldchen (Technische Universität Berlin)

BIOQIC Day 2017 Berlin (Germany) September 20, 2017

Outline of This Talk

Why we need MRE

Data Reconstruction and current Problems

Fig. 9. Comparison of $|\mathcal{G}|$ and ϕ maps using the MDEV and ESP pipelines. All values are in Pascals.

E Barnhill et al./Medical Image Analysis 35 (2017) 133-145

 diseased tissue changes mechanical

Fig. 9. Comparison of $|\mathcal{G}|$ and ϕ maps using the MDEV and ESP pipelines. All values are in Pascals.

- diseased tissue changes mechanical
- ▶ low tech: palpation

Fig. 9. Comparison of $|\mathcal{G}'|$ and ϕ maps using the MDEV and ESP pipelines. All values are in Pascals.

- diseased tissue changes mechanical
- ▶ low tech: palpation
- higher tech: ultrasound

Fig. 9. Comparison of $|\mathcal{G}'|$ and ϕ maps using the MDEV and ESP pipelines. All values are in Pascals.

- diseased tissue changes mechanical
- ▶ low tech: palpation
- higher tech: ultrasound
- highest tech: MRE

Fig. 9. Comparison of $|\mathcal{G}'|$ and ϕ maps using the MDEV and ESP pipelines. All values are in Pascals.

- diseased tissue changes mechanical
- ▶ low tech: palpation
- higher tech: ultrasound
- highest tech: MRE
- for deep tissue and brains, but non-invasive

Fig. 9. Comparison of $|\mathcal{G}'|$ and ϕ maps using the MDEV and ESP pipelines. All values are in Pascals.

How does the measuring process work

How does the measuring process work

ightharpoonup 3 spatial directions imes 8 time steps imes 3 frequencies

How does the measuring process work

- ▶ 3 spatial directions \times 8 time steps \times 3 frequencies
- ▶ 72 times longer per pixel than MRI

Data reconstruction

$$\mathbf{u} = \mathbf{u}(\mathbf{x}t)$$
 $\mu =$

$$\sum_{j} \partial_{j} \left(\mu \left(\partial_{j} u_{i} + \partial_{i} u_{j} \right) \right) + \partial_{i} \left(\lambda \partial_{j} u_{j} \right) = \rho \ddot{u}_{i}$$

- ▶ differential equation —¿ inverse problem
- Problem underdetermined, we need boundary values
- ▶ Problem: some regions are close to nodes –¿ no movement
- Solution: Multi frequency inversion
- Problem: Need to reconstruct the derivatives
- motion encoding gradient
- MRI measurement in 3 spatial directions and 8 time steps
- ► MRI measurement in 3 spatial directions and 8 time steps and 3 frequencies –į 72 times MRI overhead
- ► -i reduced resolution
- ▶ Problem: Need to reconstruct the derivatives
- ▶ slight noise can lead to totally wrong derivatives –¿ inversion is useless
- ▶ MRI measurement in 3 spatial directions and 8 time steps

Our plan of work

- Do simuations in 1d: wavelets
- Do simulations in 2d: wavelets, shearlets

- Problem: Need to reconstruct the derivatives
- ▶ slight noise can lead to totally wrong derivatives —¿ inversion is useless
- ► MRI measurement in 3 spatial directions and 8 time steps –¿

What would be nice results

- Have better resolution of the stiffness map
- Have clinically useful values, at the moment to varying
- ► Have shorter acquisition times per pixel
- Problem: Need to reconstruct the derivatives
- ▶ slight noise can lead to totally wrong derivatives –¿ inversion is useless
- ► MRI measurement in 3 spatial directions and 8 time steps –¿