Problem & Solution: Trigonometry – Bài Tập Lượng Giác & Lời Giải

Nguyễn Quản Bá Hồng*

Ngày 22 tháng 5 năm 2023

Tóm tắt nôi dung

Muc luc

1	Hệ Thức về Cạnh & Đường Cao Trong Tam Giác Vuông]
2	Tỷ Số Lượng Giác của Góc Nhọn	6
3	Hệ Thức về Cạnh & Góc Trong Tam Giác Vuông	7
4	Miscellaneous	7
Tà	i liệu	7

1 Hệ Thức về Cạnh & Đường Cao Trong Tam Giác Vuông

Trong 1 tam giác vuông, nếu biết 2 cạnh, hoặc 1 cạnh & 1 góc nhọn thì có thể tính được các góc & các cạnh còn lại của tam giác đó.

Bài toán 1. Xét $\triangle ABC$ vuông tại A, cạnh huyền BC = a, 2 cạnh góc vuông AC = b, AB = c. Gọi AH = h là đường cao ứng với cạnh huyền BC^1 & CH = b', BH = c' lần lượt là hình chiếu của AC, AB trên cạnh huyền BC. Chứng minh: (a) $b^2 = ab'$, $c^2 = ac'$. (b) Dịnh lý Pythagore $a^2 = b^2 + c^2$. (c) $h^2 = b'c'$. (d) bc = ah. (e) $\frac{1}{h^2} = \frac{1}{h^2} + \frac{1}{c^2}$.

Chứng minh. (a) $\triangle AHC \hookrightarrow \triangle BAC$ (g.g) vì 2 tam giác vuông này có chung \widehat{C} nhọn, nên $\frac{CH}{AC} = \frac{AC}{BC} \Rightarrow AC^2 = BC \cdot CH \Leftrightarrow b^2 = ab'$. Tương tự, $\triangle BHA \hookrightarrow \triangle BAC$ (g.g) vì 2 tam giác vuông này có chung \widehat{B} nhọn, nên $\frac{BH}{AB} = \frac{AB}{BC} \Leftrightarrow AB^2 = BC \cdot BH \Leftrightarrow c^2 = ac'$. (b) Theo (a), $b^2 + c^2 = ab' + ac' = a(b' + c') = a \cdot a = a^2$. (c) Vì $\triangle AHC \hookrightarrow \triangle BAC$ & $\triangle BHA \hookrightarrow \triangle BAC$ nên $\triangle AHC \hookrightarrow \triangle BHA$, suy ra $\frac{AH}{CH} = \frac{BH}{AH} \Rightarrow AH^2 = BH \cdot CH \Leftrightarrow h^2 = b'c'$. (d) Tính diện tích $\triangle ABC$ theo 2 cách: $S_{\triangle ABC} = \frac{1}{2}AH \cdot BC = \frac{1}{2}AB \cdot AC \Leftrightarrow AH \cdot BC = AB \cdot AC \Leftrightarrow ah = bc$. (e) $ah = bc \Leftrightarrow a^2h^2 = b^2c^2 \Leftrightarrow (b^2 + c^2)h^2 = b^2c^2 \Leftrightarrow \frac{1}{h^2} = \frac{b^2+c^2}{b^2c^2} = \frac{1}{b^2} + \frac{1}{c^2}$.

Lưu ý 1. Các hệ thức trên có thể được suy ra trực tiếp từ các tỷ số đồng dạng của bộ 3 tam giác đồng dạng: $\Delta BHA \backsim \Delta AHC \backsim \Delta BAC$. Thật vậy, $\Delta AHC \backsim \Delta BAC \Leftrightarrow \frac{AH}{AB} = \frac{HC}{AC} = \frac{AC}{BC} \Leftrightarrow \frac{h}{c} = \frac{b'}{b} = \frac{b}{a} \Rightarrow bh = b'c$, $b^2 = ab'$, & ah = bc. $\Delta BHA \backsim \Delta BAC \Leftrightarrow \frac{HB}{AB} = \frac{AH}{AC} = \frac{AB}{BC} \Leftrightarrow \frac{c'}{c} = \frac{h}{b} = \frac{c}{a} \Rightarrow hc = bc'$, ah = bc, & $c^2 = ac'$. $\Delta AHC \backsim \Delta BHA \Leftrightarrow \frac{AH}{BH} = \frac{CH}{AH} = \frac{AC}{AB} \Leftrightarrow \frac{h}{c'} = \frac{b'}{h} = \frac{b}{c} \Rightarrow h^2 = b'c'$, bh = b'c, & ch = bc'. Hơn nữa, $\widehat{BAH} = \widehat{C}$ & $\widehat{CAH} = \widehat{B}$.

Định lý 1 (Hệ thức giữa cạnh góc vuông & hình chiếu của nó trên cạnh huyền). Trong 1 tam giác vuông, bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền \mathcal{E} hình chiếu của cạnh góc vuông đó trên cạnh huyền. Nói cách khác, mỗi cạnh góc vuông là trung bình nhân của cạnh huyền \mathcal{E} hình chiếu của cạnh góc vuông đó trên cạnh huyền. $b^2 = ab'$, $c^2 = ac'$

3 hệ thức về đường cao trong tam giác vuông:

Định lý 2. Trong 1 tam giác vuông, bình phương đường cao ứng với cạnh huyền bằng tích 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền. Nói cách khác, đường cao ứng với cạnh huyền là trung bình nhân của 2 đoạn thẳng mà nó định ra trên cạnh huyền. $h^2 = b'c'$.

Định lý 3. Trong 1 tam giác vuông, tích 2 cạnh góc vuông bằng tích của cạnh huyền \mathcal{E} đường cao tương ứng. bc = ah.

Định lý 4. Trong 1 tam giác vuông, nghịch đảo của bình phương đường cao ứng với cạnh huyền bằng tổng nghịch đảo của bình phương 2 cạnh góc vuông. $\frac{1}{h^2} = \frac{1}{b^2} + \frac{1}{c^2}$.

^{*}Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

 $^{^{1}}AB, AC$ là đường cao ứng với nhau.

Bài toán 2. Cho $\triangle ABC$ có độ dài 2 cạnh góc vuông là b \mathcal{E} c. Tính độ dài đường cao h xuất phát từ đỉnh góc vuông theo b, c.

Giải. Có
$$\frac{1}{h^2} = \frac{1}{b^2} + \frac{1}{c^2} \Rightarrow h^2 = \frac{b^2 c^2}{b^2 + c^2}$$
.

Bài toán 3 ([Chi+23], 1., p. 68). *Tính* x, y:

Giải. (a) Áp dụng định lý Pythagore, cạnh huyền dài $x+y=\sqrt{6^2+8^2}=10$. Áp dụng định lý 1, ta có: $6^2=(x+y)x=10x\Rightarrow x=\frac{6^2}{10}=3.6,\ y=10-x=10-3.6=6.4$ (hoặc $8^2=(x+y)y=10y\Rightarrow y=\frac{8^2}{10}=6.4$). (b) Áp dụng định lý 1, ta có: $12^2=20x\Rightarrow x=\frac{12^2}{20}=7.2,\ y=20-x=20-7.2=12.8$.

Bài toán 4 ([Chí+23], 2., p. 68). Tính x, y:

1st giải. Áp dụng định lý 1, ta có: $x^2 = (1+4) \cdot 1 = 5 \Rightarrow x = \sqrt{5}, y = (1+4)4 = 20 \Rightarrow y = \sqrt{20} = 2\sqrt{5}$.

2nd giải. Áp dụng định lý 1, ta có: $x^2 = (1+4) \cdot 1 = 5 \Rightarrow x = \sqrt{5}$. Áp dụng định lý Pythagore: $y = \sqrt{(1+4)^2 - x^2} = \sqrt{5^2 - 5} = \sqrt{20} = 2\sqrt{5}$.

Bài toán 5 ([Chí+23], 3., p. 69). Tinh x, y:

1st giải. Áp dụng định lý Pythagore: $y = \sqrt{5^2 + 7^2} = \sqrt{74}$. Áp dụng định lý 3, ta có $5 \cdot 7 = xy \Rightarrow x = \frac{5 \cdot 7}{y} = \frac{35}{\sqrt{74}} = \frac{35\sqrt{74}}{74}$.

2nd giải. Áp dụng định lý Pythagore: $y = \sqrt{5^2 + 7^2} = \sqrt{74}$. Áp dụng định lý 4, ta có: $\frac{1}{x^2} = \frac{1}{5^2} + \frac{1}{7^2} \Rightarrow x = \sqrt{\frac{5^2 + 7^2}{5^2 \cdot 7^2}} = \frac{35\sqrt{74}}{74}$. \Box

3rd giải. Áp dụng định lý 4, ta có: $\frac{1}{x^2} = \frac{1}{5^2} + \frac{1}{7^2} \Rightarrow x = \sqrt{\frac{5^2 + 7^2}{5^2 \cdot 7^2}} = \frac{35\sqrt{74}}{74}$. Áp dụng định lý 3, ta có: $5 \cdot 7 = xy \Rightarrow y = \frac{5 \cdot 7}{x} = \frac{5 \cdot 7\sqrt{74}}{35} = \sqrt{74}$.

Bài toán 6 ([Chí+23], 4., p. 69). Tính x, y:

1st giải. Áp dụng định lý 2, ta có: $2^2=1\cdot x \Leftrightarrow x=4$. Áp dụng định lý Pythagore: $y=\sqrt{x^2+2^2}=\sqrt{4^2+2^2}=\sqrt{20}=2\sqrt{5}$. \square

1st giải. Áp dụng định lý 2, ta có: $2^2=1\cdot x \Leftrightarrow x=4$. Áp dụng định lý 1, ta có: $y^2=(1+x)x=(1+4)\cdot 4=20 \Rightarrow y=2\sqrt{5}$. \square

Bài toán 7 ([Chí+23], 5., p. 69). Trong tam giác vuông với các cạnh góc vuông có độ dài là 3 & 4, kẻ đường cao ứng với cạnh huyền. Tính đường cao này & độ dài các đoạn thẳng mà nó định ra trên cạnh huyền.

Giải. b=3, c=4. Áp dụng định lý Pythagore: $a=\sqrt{b^2+c^2}=\sqrt{3^2+4^2}=5$. Áp dụng định lý 3, ta có: $h=\frac{bc}{a}=\frac{3\cdot 4}{5}=2.4$. Áp dụng định lý 1, ta có: $b^2=ab'\Rightarrow b'=\frac{b^2}{a}=\frac{3^2}{5}=1.8, \ c'=a-b'=5-1.8=3.2$.

Bài toán 8 ([Chí+23], 6., p. 69). Đường cao của 1 tam giác vuông chia cạnh huyền thành 2 đoạn thẳng có độ dài là 1 & 2. Tính các cạnh góc vuông của tam giác này.

Bài toán 9 ([Chí+23], 7., p. 69–70). Người ta đưa ra 2 cách vẽ đoạn trung bình nhân x của 2 đoạn thẳng a,b (i.e., $x^2=ab$ hay $x=\sqrt{ab}$) như trong 2 hình:

Chứng minh các cách vẽ trên là đúng.

Hint. Nếu 1 tam giác có đường trung tuyến ứng với 1 cạnh bằng nửa cạnh đó thì tam giác đó là tam giác vuông.

Bài toán 10 ([Chí+23], 8., p. 70). Tính x, y:

Bài toán 11 ([Chí+23], 9., p. 70). Cho hình vuông ABCD. Gọi I là 1 điểm nằm giữa A \mathcal{E} B. Tia DI \mathcal{E} tia CB cắt nhau ở K. Kể đường thẳng qua D, vuông góc với DI. Dường thẳng này cắt đường thẳng BC tại L. Chứng minh: (a) ΔDIL là 1 tam giác cân. (b) Tổng $\frac{1}{DI^2} + \frac{1}{DK^2}$ không đổi khi I thay đổi trên cạnh AB.

Bài toán 12 ([Thâ+23], 1., p. 102). Tính x, y:

Bài toán 13 ([Thâ+23], 2., p. 102). Tính x, y:

Bài toán 14 ([Thâ+23], 3., p. 103). Tính x, y:

Bài toán 15 ([Thâ+23], 4., p. 103). Tính x, y:

Bài toán 16 ([Thâ+23], 5., p. 103). Cho $\triangle ABC$ vuông tại A, đường cao AH:

Giải bài toán trong mỗi trường hợp sau: (a) Cho AH = 16, BH = 25. Tính AB, AC, BC, CH. (b) Cho AB = 12, BH = 6. Tính AH, AC, BC, CH.

Bài toán 17 ([Thâ+23], 6., p. 103). Cho tam giác vuông với các cạnh góc vuông có độ dài là 5 & 7, kẻ đường cao ứng với cạnh huyền. Tính đường cao này & các đoạn thẳng mà nó chia ra trên cạnh huyền.

Bài toán 18 ([Thâ+23], 7., p. 103). Đường cao của 1 tam giác vuông chia cạnh huyền thành 2 đoạn thẳng có độ dài là 3 & 4. Tính các cạnh góc vuông của tam giác này.

Bài toán 19 ([Thâ+23], 8., p. 103). Cạnh huyền của 1 tam giác vuông lớn hơn 1 cạnh góc vuông là 1 cm & tổng của 2 cạnh góc vuông lớn hơn cạnh huyền 4 cm. Tính các cạnh của tam giác vuông này.

Bài toán 20 ([Thâ+23], 9., p. 104). 1 tam giác vuông có cạnh huyền là 5 & đường cao ứng với cạnh huyền là 2. Tính cạnh nhỏ nhất của tam giác vuông này.

Bài toán 21 ([Thâ+23], 10., p. 104). Cho 1 tam giác vuông. Biết tỷ số 2 cạnh góc vuông là 3:4 & cạnh huyền là 125 cm. Tính độ dài các cạnh góc vuông & hình chiếu của các cạnh góc vuông trên cạnh huyền.

Bài toán 22 ([Thâ+23], 11., p. 104). Cho $\triangle ABC$ vuông tại A. $Biết \frac{AB}{AC} = \frac{5}{6}$, đường cao AH = 30 cm. Tính HB, HC.

Bài toán 23 ([Thâ+23], 12., p. 104). 2 vệ tinh đang bay ở vị trí A & B cùng cách mặt đất 230 km có nhìn thấy nhau hay không nếu khoảng cách giữa chúng theo đường thẳng là 2200 km? Biết bán kính R của Trái Đất gần bằng 6370 km & 2 vệ tinh nhìn thấy nhau nếu OH > R.

Bài toán 24 ([Thâ+23], 13., p. 104). Cho 2 đoạn thẳng có độ dài là a,b. Dựng các đoạn thẳng có độ dài tương ứng bằng: (a) $\sqrt{a^2+b^2}$. (b) $\sqrt{a^2-b^2}$ (a>b).

Bài toán 25 ([Thâ+23], 14., p. 104). Cho 2 đoạn thẳng có độ dài là a, b. Dựng đoạn thẳng \sqrt{ab} như thế nào?

Bài toán 26 ([Thâ+23], 15., p. 104). Giữa 2 tòa nhà (kho & phân xưởng) của 1 nhà máy người ta xây dựng 1 băng chuyền AB để chuyển vật liệu. Khoảng cách giữa 2 tòa nhà là 10 m, còn 2 vòng quay của băng chuyền được đặt ở độ cao 8 m & 4 m so với mặt đất. Tìm độ dài AB của băng chuyền.

Bài toán 27 ([Thâ+23], 16., p. 104). Cho tam giác có độ dài các cạnh là 5,12,13. Tìm góc của tam giác đối diện với cạnh có độ dài 13.

Bài toán 28 ([Thâ+23], 17., p. 104). Cho hình chữ nhật ABCD. Đường phân giác của góc B cắt đường chéo AC thành 2 đoạn $4\frac{2}{7}$ m & $5\frac{5}{7}$ m. Tính các kích thước của hình chữ nhật.

Bài toán 29 ([Thâ+23], 18., p. 105). Cho $\triangle ABC$ vuông tại A, vẽ đường cao AH. Chu vi của $\triangle ABH$ là 30 cm & chu vi $\triangle ACH$ là 40 cm. Tính chu vi của $\triangle ABC$.

Bài toán 30 ([Thâ+23], 19., p. 105). Cho $\triangle ABC$ vuông tại A có cạnh AB=6 cm & AC=8 cm. Các đường phân giác trong & ngoài của góc B cắt đường thẳng ABC lần lượt tại M,N. Tính độ dài các đoạn thẳng AM,AN.

Bài toán 31 ([Thâ+23], 20., p. 105). Cho $\triangle ABC$. Từ 1 điểm M bất kỳ trong tam giác kể MD, ME, MF lần lượt vuông góc với các cạnh BC, CA, AB. Chứng minh: $BD^2 + CE^2 + AF^2 = CD^2 + AE^2 + BF^2$.

Bài toán 32 ([Thâ+23], 1.1., p. 105). Cho $\triangle ABC$ vuông tại A có AB:AC=3:4 & đường cao AH bằng 9 cm. Tính độ dài đoạn thẳng CH.

Bài toán 33 ([Thâ+23], 1.2., p. 105). Cho $\triangle ABC$ vuông tại A có AB:AC=4:5 & đường cao AH bằng 12 cm. Tính độ dài đoạn thẳng BH.

Bài toán 34 ([Thâ+23], 1.3., p. 105). (a) Tính h, b, c nếu biết b' = 36, c' = 64. (b) Tính h, b, b', c' nếu biết a = 9, c = 6.

Bài toán 35 ([Thâ+23], 1.4., p. 105). $Bi\hat{e}u \ thi \ b', c' \ qua \ a, b, c.$

Bài toán 36 ([Thâ+23], 1.5., p. 105). Chứng minh: (a) $h = \frac{bc}{a}$. (b) $\frac{b^2}{c^2} = \frac{b'}{c'}$.

Bài toán 37 ([Thâ+23], 1.6., p. 106). Đường cao của 1 tam giác vuông kể từ đỉnh góc vuông chia cạnh huyền thành 2 đoạn, trong đó đoạn lớn hơn bằng 9 cm. Tính cạnh huyền của tam giác vuông đó nếu 2 cạnh góc vuông có tỷ lệ 6:5.

Bài toán 38 ([Thâ+23], 1.7., p. 106). Trong tam giác có các cạnh là 5 cm, 12 cm, 13 cm, kẻ đường cao đến cạnh lớn nhất. Tính các đoạn thẳng mà đường cao này chia ra trên cạnh lớn nhất đó.

Bài toán 39 ([Thâ+23], 1.8., p. 106). $\triangle ABC$ vuông tại A có đường cao AH bằng 12 cm. Tính cạnh huyền BC nếu biết HB:HC=1:3.

Bài toán 40 ([Thâ+23], 1.9., p. 106). Cho $\triangle ABC$ vuông cân tại A, đường trung tuyến BM. Gọi D là chân đường vuông góc kẻ từ C đến BM & H là chân đường vuông góc kẻ từ D đến AC. D/S? (a) $\triangle HCD \hookrightarrow \triangle ABM$. (b) AH = 2HD.

Bài toán 41 ([Thâ+23], 1.10., p. 106). Cho hình thang ABCD vuông tại A có cạnh đáy AB bằng 6 cm, cạnh bên AD bằng 4 cm & 2 đường chéo vuông góc với nhau. Tính độ dài các cạnh CD, BC, & đường chéo BD.

Bài toán 42 ([Tuy23], Thí dụ 1, p. 103). Cho hình thang ABCD có $\widehat{B} = \widehat{C} = 90^{\circ}$, 2 đường chéo vuông góc với nhau tại H. $Bi\acute{e}t$ $AB = 3\sqrt{5}$ cm, HA = 3 cm. Chứng minh: (a) HA : HB : HC : HD = 1 : 2 : 4 : 8. (b) $\frac{1}{AB^2} - \frac{1}{CD^2} = \frac{1}{HB^2} - \frac{1}{HC^2}$.

Bài toán 43 ([Tuy23], 1., p. 105). Cho hình thang ABCD, $AB \parallel CD$, 2 đường chéo vuông góc với nhau. Biết AC = 16 cm, BD = 12 cm. Tính chiều cao của hình thang.

Bài toán 44 ([Tuy23], 2., p. 105). Cho $\triangle ABC$ vuông tại A, đường cao AH, đường phân giác AD. Biết BH=63 cm, CH=112 cm, tính HD.

Bài toán 45 ([Tuy23], 3., p. 105). Cho $\triangle ABC$ vuông tại A. 2 đường trung tuyến AD, BE vuông góc với nhau tại G. Biết $AB = \sqrt{6}$ cm. Tính cạnh huyền BC.

Bài toán 46 ([Tuy23], 4., p. 105). Gọi a,b,c là các cạnh của 1 tam giác vuông, h là đường cao ứng với cạnh huyền a. Chứng minh tam giác có các cạnh a + h, b + c, & h cũng là 1 tam giác vuông.

Bài toán 47 ([Tuy23], 5., p. 105). Cho $\triangle ABC$ vuông tại A, đường cao AH. Gọi I, K thứ tự là hình chiếu của H trên AB, AC. Dặt c = AB, b = AC. (a) Tính AI, AK theo b, c. (b) Chứng minh $\frac{BI}{CK} = \frac{c^3}{b^3}$.

Bài toán 48 ([Tuy23], 6., p. 105). Cho $\triangle ABC$, AB=1, $\widehat{A}=105^\circ$, $\widehat{B}=60^\circ$. Trên cạnh BC lấy điểm E sao cho BE=1. Vẽ $ED\parallel AB$, $D\in AC$. Chứng minh: $\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{4}{3}$.

Bài toán 49 ([Tuy23], 7., p. 105). Cho hình chữ nhật ABCD, AB = 2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Chứng minh: $\frac{1}{AB^2} = \frac{1}{AE^2} + \frac{1}{4AF^2}$.

Bài toán 50 ([Tuy23], 8., p. 105). Cho 3 đoạn thẳng có độ dài a, b, c. Dựng đoạn thẳng x sao cho $\frac{1}{x^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$.

Bài toán 51 ([Tuy23], 9., p. 105). Cho hình thơi ABCD có $\widehat{A}=120^{\circ}$. 1 đường thẳng d không cắt các cạnh của hình thơi. Chứng minh: tổng các bình phương hình chiếu của 4 cạnh với 2 lần bình phương hình chiếu của đường chéo AC trên đường thẳng d không phụ thuộc vào vị trí của đường thẳng d.

Bài toán 52 ([Tuy23], 10., p. 106). Cho $\triangle ABC$ vuông tại A. Từ 1 điểm O ở trong tam giác ta vẽ $OD \perp BC$, $OE \perp CA$, $OF \perp AB$. Xác định vị trí của O để $OD^2 + OE^2 + OF^2$ nhỏ nhất.

Bài toán 53 ([Bìn+23], Ví dụ 1, p. 5). Cho $\triangle ABC$ vuông tại A, đường cao AH. Biết AB:AC=3:4 & AB+AC=21 cm. (a) Tính các cạnh của $\triangle ABC$. (b) Tính độ dài các đoạn AH,BH,CH.

Bài toán 54 (Mở rộng [Bìn+23], Ví dụ 1, p. 5). Cho $\triangle ABC$ vuông tại A, đường cao AH. Biết AB:AC=m:n & AB+AC=p cm. (a) Tính các cạnh của $\triangle ABC$. (b) Tính độ dài các đoạn AH, BH, CH.

Bài toán 55 ([Bìn+23], Ví dụ 2, p. 6). Cho hình thang ABCD có $\widehat{A}=\widehat{D}=90^\circ$, $\widehat{B}=60^\circ$, CD=30 cm, $CA\bot CB$. Tính diện tích của hình thang.

Bài toán 56 ([Bìn+23], Ví dụ 3, p. 7). Cho $\triangle ABC$ nhọn, đường cao CK, H là trực tâm. Gọi M là 1 điểm trên CK sao cho $\widehat{AMB} = 90^{\circ}$. S, S_1 , S_2 theo thứ tự là diện tích các $\triangle AMB$, $\triangle ABC$, $\triangle ABH$. Chứng minh $S = \sqrt{S_1S_2}$.

Bài toán 57 ([Bìn+23], 1.1., p. 7). Cho $\triangle ABC$ vuông cân tại $A \ \mathcal{E}$ điểm M nằm giữa $B \ \mathcal{E} \ C$ Gọi D, E lần lượt là hình chiếu của điểm M lên AB, AC. Chứng minh $MB^2 + MC^2 = 2MA^2$.

Bài toán 58 ([Bìn+23], 1.2., p. 7). Cho hình chữ nhật ABCD & điểm O nằm trong hình chữ nhật đó. Chứng minh $OA^2 + OC^2 = OB^2 + CD^2$.

Bài toán 59 ([Bìn+23], 1.3., p. 8). Cho hình chữ nhật ABCD có AD = 6 cm, CD = 8 cm. Đường thẳng kẻ từ D vuông góc với AC tại E, cắt cạnh AB tại F. Tính độ dài các đoạn thẳng DE, DF, AE, CE, AF, BF.

Bài toán 60 ([Bìn+23], 1.4., p. 8). Cho $\triangle ABC$ có AB=3 cm, BC=4 cm, AC=5 cm. Dường cao, đường phân giác, đường trung tuyến của tam giác kẻ từ đỉnh B chia tam giác thành A gam giác không có điểm trong chung. Tính diện tích của mỗi tam giác đó.

Bài toán 61 ([Bin+23], 1.5., p. 8). Trong 1 tam giác vuông tỷ số giữa đường cao & đường trung tuyến kẻ từ đỉnh góc vuông bằng 40 : 41. Tính độ dài các cạnh góc vuông của tam giác đó, biết cạnh huyền bằng $\sqrt{41}$ cm.

Bài toán 62 ([Bìn+23], 1.6., p. 8). Cho $\triangle ABC$ vuông tại A, đường cao AH. Kể $HE \perp AB$, $HF \perp AC$. Gọi O là giao điểm của AH & EF. Chứng minh $HB \cdot HC = 4OE \cdot OF$.

Bài toán 63 ([Bìn+23], 1.7., p. 8).

Bài toán 64 ([Bìn+23], 1.8., p. 8).

Bài toán 65 ([Bìn+23], 1.9., p. 8).

Bài toán 66 ([Bìn+23], 1.10., p. 8).

Bài toán 67 ([Bìn+23], 1.11., p. 8).

Bài toán 68 ([Bìn+23], 1.12., p. 8).

Bài toán 69 ([Bìn+23], 1.13., p. 9).

Bài toán 70 ([Bìn+23], 1.14., p. 9).

Bài toán 71 ([Bìn+23], 1.15., p. 9).

Bài toán 72 ([Bìn+23], 1.16., p. 9).

2 Tỷ Số Lượng Giác của Góc Nhọn

Bài toán 73 ([Tuy23], Thí dụ 2, p. 107). Cho $\cot \alpha = \frac{a^2 - b^2}{2ab}$ trong đó α là góc nhọn, a > b > 0. Tính $\cos \alpha$.

Bài toán 74 ([Tuy23], 11., p. 108, định lý sin). Cho $\triangle ABC$ nhọn, BC = a, CA = b, AB = c. Chứng minh: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$. Đẳng thức này còn đúng với tam giác vuông & tam giác tù hay không?

Bài toán 75 ([Tuy23], 12., p. 108). Chứng minh: (a) $1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$. (b) $1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha}$. (c) $\cot^2 \alpha - \cos^2 \alpha = \cot^2 \alpha \cdot \cos^2 \alpha$. (d) $\frac{1 + \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 - \cos \alpha}$.

Bài toán 76 ([Tuy23], 13., p. 108). Rút gọn biểu thức: (a) $A = \frac{1 + 2\sin\alpha \cdot \cos\alpha}{\cos^2\alpha - \sin^2\alpha}$. (b) $B = (1 + \tan^2\alpha)(1 - \sin^2\alpha) - (1 + \cot^2\alpha)(1 - \cos^2\alpha)$. (c) $C = \sin^6\alpha + \cos^6\alpha + 3\sin^2\alpha\cos^2\alpha$.

Bài toán 77 ([Tuy23], 14., p. 108). Tính giá trị của biểu thức $A=5\cos^2\alpha+2\sin^2\alpha$ biết $\sin\alpha=\frac{2}{3}$.

Bài toán 78 ([Tuy23], 15., p. 108). Không dùng máy tính hoặc bảng số, tính: (a) $A = \cos^2 20^\circ + \cos^2 30^\circ + \cos^2 40^\circ + \cos^2 50^\circ + \cos^2 60^\circ + \cos^2 70^\circ$. (b) $B = \sin^2 5^\circ + \sin^2 45^\circ + \sin^2 45^\circ + \sin^2 65^\circ + \sin^2 85^\circ$.

Bài toán 79 ([Tuy23], 16., p. 108). Cho $0^{\circ} < \alpha < 90^{\circ}$. Chứng minh: $\sin \alpha < \tan \alpha$, $\cos \alpha < \cot \alpha$. Áp dụng: (a) Sắp xếp các số sau theo thứ tự tăng dần: $\sin 65^{\circ}$, $\cos 65^{\circ}$, $\tan 65^{\circ}$. (b) Xác định α thỏa mãn điều kiện: $\tan \alpha > \sin \alpha > \cos \alpha$.

Bài toán 80 ([Tuy23], 17., p. 108). Cho $\triangle ABC$ vuông tại A. Biết $\sin B = \frac{1}{4}$, tính $\tan C$.

Bài toán 81 ([Tuy23], 18., p. 108). Cho biết $\sin \alpha + \cos \alpha = \frac{7}{5}$, $0^{\circ} < \alpha < 90^{\circ}$, tính $\tan \alpha$.

Bài toán 82 ([Tuy23], 19., p. 109). $\triangle ABC$, đường trung tuyến AM. Chứng minh nếu cot B=3 cot C thì AM=AC.

Bài toán 83 ([Tuy23], 20., p. 109). Cho $\triangle ABC$, trực tâm H là trung điểm của đường cao AD. Chứng minh tan $B \tan C = 2$.

Bài toán 84 ([Tuy23], 21., p. 109). Cho $\triangle ABC$ nhọn, 2 đường cao BD,CE. Chứng minh: (a) $S_{\triangle ADE} = S_{\triangle ABC}\cos^2 A$. (b) $S_{BCDE} = S_{\triangle ABC}\sin^2 A$.

Bài toán 85 ([Tuy23], 22., p. 109). Cho $\triangle ABC$ nhọn. Từ 1 điểm M nằm trong tam giác vẽ $MD \bot BC$, $ME \bot AC$, $MF \bot AB$. Chứng minh $\max\{MA, MB, MC\} \ge 2\min\{MD, ME, MF\}$, trong đó $\max\{MA, MB, MC\}$ là đoạn thẳng lớn nhất trong các đoạn thẳng MA, MB, MC & $\min\{MD, ME, MF\}$ là đoạn thẳng nhỏ nhất trong các đoạn thẳng MD, ME, MF.

3 Hê Thức về Canh & Góc Trong Tam Giác Vuông

Bài toán 86 ([Tuy23], Thí dụ 3, p. 109). Tứ giác ABCD có 2 đường chéo cắt nhau tại O. Cho biết $\widehat{AOD} = 70^{\circ}$, AC = 5.3 cm, BD = 4 cm. Tính diện tích tứ giác ABCD.

Bài toán 87 ([Tuy23], 23., p. 110). Chứng minh: (a) Diện tích của 1 tam giác bằng nửa tích của 2 cạnh nhân với sin của góc nhọn tạo bởi các đường thẳng chứa 2 cạnh ấy. (b) Diện tích hình bình hành bằng tích của 2 cạnh kề nhân với sin của góc nhọn tạo bởi các đường thẳng chứa 2 cạnh ấy.

Bài toán 88 ([Tuy23], 24., p. 110). Cho hình bình hành ABCD, $BD \perp BC$. $Bi\acute{e}t$ AB = a, $\widehat{A} = \alpha$, tính diện tích hình bình hành đó.

Bài toán 89 ([Tuy23], 25., p. 110). Cho $\triangle ABC$, $\widehat{A} = 120^{\circ}$, $\widehat{B} = 35^{\circ}$, AB = 12.25 dm. Giải $\triangle ABC$.

Bài toán 90 ([Tuy23], 26., p. 110). Cho $\triangle ABC$ nhọn, $\widehat{A} = 75^{\circ}$, AB = 30 mm, BC = 35 mm. Giải $\triangle ABC$.

Bài toán 91 ([Tuy23], 27., p. 110). Cho $\triangle ABC$ cân tại A, đường cao BH. Biết BH=h, $\widehat{C}=\alpha$. Giải $\triangle ABC$.

Bài toán 92 ([Tuy23], 28., p. 110). Hình bình hành ABCD có $\widehat{A}=120^{\circ}$, AB=a, BC=b. Các đường phân giác của 4 góc cắt nhau tạo thành tứ giác MNPQ. Tính diện tích tứ giác MNPQ.

Bài toán 93 ([Tuy23], 29., p. 110). Cho $\triangle ABC$, các đường phân giác AD, đường cao BH, đường trung tuyến CE đồng quy tại điểm O. Chứng minh $AC \cos A = BC \cos C$.

4 Miscellaneous

Bài toán 94 ([Tuy23], Thí dụ 4, p. 111). Cho $\triangle ABC$ vuông tại A. Gọi M,N lần lượt là 2 điểm trên cạnh AB, AC sao cho $AM = \frac{1}{2}AB$, $AN = \frac{1}{2}AC$. Biết độ dài $BN = \sin \alpha$, $CM = \cos \alpha$ với $0^{\circ} < \alpha < 90^{\circ}$. Tính cạnh huyền BC.

Bài toán 95 ([Tuy23], 30., p. 112). Cho $\triangle ABC$ nhọn, BC = a, AC = b, CA = b trong đó $b - c = \frac{a}{k}$, k > 1. Gọi h_a , h_b , h_c lần lượt là các đường cao hạ từ A, B, C. Chứng minh: (a) $\sin A = k(\sin B - \sin C)$. (b) $\frac{1}{h_a} = k\left(\frac{1}{h_b} - \frac{1}{h_c}\right)$.

Bài toán 96 ([Tuy23], 31., p. 112). Giải $\triangle ABC$ biết AB = 14, BC = 15, CA = 13.

Bài toán 97 ([Tuy23], 32., p. 112). Cho hình hộp chữ nhật ABCD.A'B'C'D'. $Biết \ \widehat{DC'D'} = 45^{\circ}$, $\widehat{BC'B'} = 60^{\circ}$. $Tính \ \widehat{BC'D}$.

Bài toán 98 ([Tuy23], 33., p. 112). Cho $\triangle ABC$, AB = AC = 1, $\widehat{A} = 2\alpha$, $0^{\circ} < \alpha < 45^{\circ}$. Vẽ các đường cao AD, BE. (a) Các tỷ số lượng giác $\sin \alpha$, $\cos \alpha$, $\sin 2\alpha$, $\cos 2\alpha$ được biểu diễn bởi các đoạn thẳng nào? (b) Chứng minh $\triangle ADC \backsim \triangle BEC$, từ đó suy ra các hệ thức sau: $\sin 2\alpha = 2 \sin \alpha \cos \alpha$, $\cos 2\alpha = 1 - 2 \sin^2 \alpha = 2 \cos^2 \alpha - 1 = \cos^2 \alpha - \sin^2 \alpha$. (c) Chứng minh: $\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$,

$$\cot 2\alpha = \frac{\cot^2 \alpha - 1}{2\cot \alpha}.$$

Bài toán 99 ([Tuy23], 34., p. 112). Cho $\alpha = 22^{\circ}30'$, tính $\sin \alpha, \cos \alpha, \tan \alpha, \cot \alpha$.

Bài toán 100 ([Tuy23], 35., p. 112). Cho $\triangle ABC$, đường phân giác AD. Biết AB=c, AC=b, $\widehat{A}=2\alpha$, $\alpha<45^{\circ}$. Chứng minh $AD=\frac{2bc\cos\alpha}{b+c}$.

Tài liệu

- [Bìn+23] Vũ Hữu Bình, Nguyễn Ngọc Đạm, Nguyễn Bá Đang, Lê Quốc Hán, and Hồ Quang Vinh. *Tài Liệu Chuyên Toán Trung Học Cơ Sở Toán 9. Tập 2: Hình Học.* Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 240.
- [Chí+23] Phan Đức Chính, Tôn Thân, Vũ Hữu Bình, Trần Phương Dung, Ngô Hữu Dũng, Lê Văn Hồng, and Nguyễn Hữu Thảo. *Toán 9 Tập 1*. Tái bản lần thứ 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 128.
- [Thâ+23] Tôn Thân, Vũ Hữu Bình, Trần Phương Dung, Lê Văn Hồng, and Nguyễn Hữu Thảo. *Bài Tập Toán 9 Tập 1*. Tái bản lần thứ 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 216.
- [Tuy23] Bùi Văn Tuyên. *Bài Tập Nâng Cao & Một Số Chuyên Đề Toán 9*. Tái bản lần thứ 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 340.