Question Number	Scheme	Marks
1. (a)	$x = \int 6t - 2t^2 dx$	M1
	$x = \int 6t - 2t^2 dx$ $= 3t^2 - \frac{2}{3}t^3$	A1
	$v = 0 \Rightarrow 6t - 2t^2 = 0 \Rightarrow t = 3 \text{ (or 0)}$	M1
	$t = 3$: $x = (3 \times 9) - (\frac{2}{3} \times 27) = 9$ m	M1 A1
		(5 marks)
2. (a)	I = 0.2[(15i + 15j) - (-10i)]	M1
	$=5\mathbf{i}+3\mathbf{j}$	M1
	$ \mathbf{I} = \sqrt{(5^2 + 3^2)} = \sqrt{34} = 5.8 \text{ Ns}$	M1 A1 (4)
(b)		
	$3 \tan \theta = \frac{3}{5} \Rightarrow \theta = 31^{\circ} (nearest degree)$	M1 A1 (2)
	$\frac{\theta}{5}$	
(c)	K E Gain = $\frac{1}{2} \times 0.2[(15^2 + 15^2) - 10^2)] = 35 \text{ J}$	M1 A1 (2)
		(8 marks)
3. (a)		
	Area: $6a^2$ a^2 $5a^2$ (ratio)	B1
	CM from AD: $\frac{3a}{2} \qquad \left(2a + \frac{2a}{3}\right) = \frac{8a}{3} \qquad \overline{x}$	B1 B1
	$6 \times \frac{3a}{2} - 1 \times \frac{8a}{3} = 5\overline{x}$	M1
	$\overline{x} = \frac{19a}{15}$	A1 (5)
(b)	M(X),	
	$Mg\left(\frac{3a}{2} - \frac{19a}{15}\right) = mg \times \frac{3a}{2}$	M1 A1 ft A1
	$\Rightarrow m = \frac{7M}{45}$	A1 (4)
	mg	(9 marks)
		(7 mai ks)

(ft = follow through mark)

Question Number	Scheme	Marks
4. (a)	M(A), $40g \times \frac{3}{2} + 60g \times 2 = T \sin \alpha \times 3$ use of $\sin \alpha = \frac{3}{5}$ $60g + 120g = \frac{9T}{5}$ $\Rightarrow T = 100g = 980 \text{ N (*)}$	M1 A2, 1, 0 B1 A1 (5)
(b)	(\rightarrow): $X = T \cos \alpha$ (\uparrow) $Y + T \sin \alpha = 100g$ $R = \sqrt{(X^2 + Y^2)} = \sqrt{(784^2 + 392^2)}$ = 877 N (3 sf)	B1 M1 A1 M1 A1 A1 (6)
(c)	Cable light \Rightarrow tension same throughout \Rightarrow force on rod at D is $60g$	B1 (1) (12 marks)
5. (a) (b)	$(\rightarrow): u \cos \alpha \times T = 8$ $u \times \frac{4}{5} \times T = 8$ $uT = 10 (*)$ $(\uparrow): -4 = u \sin \alpha T - \frac{1}{2}gT^{2}$ $-4 = u \times \frac{3}{5} \left(\frac{10}{u}\right) - \frac{1}{2} \times 9.8 \left(\frac{10}{u}\right)^{2}$ $u = 7$ $v_{H} \qquad v_{H} = u \cos \alpha = \frac{28}{5}$ $v_{V}^{2} = (-u \sin \alpha) + 2g \times 4$ $\Rightarrow v_{V} = 9.8 (= \frac{49}{5})$ $\tan \phi = \frac{49/5}{28/5} = \frac{7}{4}$	M1 A1 (2) M1 A1 M1 M1 M1 A1 (7) B1 ft M1 A1 ft M1 A1 cao (5)
		(12 marks)

(ft = follow through mark; cao = correct answer only; (*) indicates final line is given on the paper)

Question Number	Scheme	Marks	
6. (a)	$F \qquad (\nearrow): F = 20 + 64g \sin \alpha$	M1	
	= 64.8 N	A1	
	$P = Fv = 64.8 \times 5 = 324 \text{ W}$	M1 A1	(4)
	64g		
(<i>b</i>)	$(\checkmark): 64g \sin \alpha - 20 = 64a$	M1 A1	
	$a = 0.3875 \text{ m s}^{-2}$	A1	
	$v^2 = 5^2 + 2 \times 0.3875 \times 80$	M1	
	64g $v = \sqrt{87} = 9.3 \text{ m s}^{-1} (2 \text{ sf})$	A1 ((5)
(c)	$\frac{8}{5} \times 20 = 32 \text{ N}$	B1 ((1)
(<i>d</i>)	$F = \frac{200}{8}$	B1	
	$\frac{200}{8} + 64g \sin \alpha - 32 = 64a$	M1 A1	
	$a = 0.59 \text{ m s}^{-2} \text{ (2 sf)}$	A1 ((4)
	64g		
		(14 marl	ks)

Question Number	Scheme	Marks
7. (a)	$u \rightarrow 0 \qquad mu = mv_1 + 2mv_2$	M1 A1
	$A \stackrel{\frown}{m} e \stackrel{\frown}{(2m)} B \qquad eu = -v_1 + v_2$	M1 A1
	$ \begin{array}{ccc} & \longrightarrow & \longrightarrow & v_1 = \frac{u}{3}(1-2e); & v_2 = \frac{u}{3}(1+e) \\ v_1 & v_2 & & \end{array} $	M1 A1 A1 (7)
(b)	$v_1 > 0 \implies \frac{u}{3}(1 - 2e) > 0 \implies e < \frac{1}{2}$	M1 A1 (2)
(c)	$v_2 \rightarrow 0 \qquad 2mv_2 = 2mv_3 + 4mv_4$ $A(2m) \qquad (4m)_B \qquad ev_2 = -v_3 + v_4$	M1
	$ \begin{array}{ccc} A & 2m & B \\ & \rightarrow & \rightarrow \\ & v_3 & v_4 \end{array} \qquad v_3 = \frac{v_2}{3}(1 - 2e) = \frac{u}{9}(1 - 2e)(1 + e) $	M1 A1
	Further collision if $v_1 > v_3$	
	i.e. if $\frac{u}{3}(1-2e) > \frac{u}{9}(1-2e)(1+e)$	M1
	i.e. if $3 > 1 + e$ (as $(1 - 2e) > 0$)	
	i.e. if $2 > e$	M1
	which is always true, so further collision occurs	A1 cso (6)
		(15 marks)

(cso = correct solution only)