Τεχνητή Νοημοσύνη ΙΙ

Παύλος Πέππας

Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Μη-Μονοτονικός Συμπερασμός¹

• Πολλές φορές η πληροφορία που θέλουμε να καταγράψουμε σε μια βάση γνώσης αφορά γενικές παρατηρήσεις που ωστόσο δεν αποδίδονται σωστά με την χρήση καθολικού ποσοδείκτη. Για παράδειγμα η πληροφορία «κατά κανόνα τα πουλιά πετούν» δεν αναπαρίσταται σωστά από τον τύπο \forall x[bird(x) \Rightarrow flies(x)] (για παράδειγμα, οι νεοσσοί δεν πετούν, οι πιγκουίνοι δεν πετούν, κλπ).

¹ Πολλές από τις διαφάνειες για Μη-Μονοτονικό Συμπερασμό βασίζονται σε υλικό του Jim Delgrande καθώς και των Ronald Brachman – Hector Levesque.

Μη-Μονοτονικός Συμπερασμός¹

- Πολλές φορές η πληροφορία που θέλουμε να καταγράψουμε σε μια βάση γνώσης αφορά γενικές παρατηρήσεις που ωστόσο δεν αποδίδονται σωστά με την χρήση καθολικού ποσοδείκτη. Για παράδειγμα η πληροφορία «κατά κανόνα τα πουλιά πετούν» δεν αναπαρίσταται σωστά από τον τύπο \forall x[bird(x) \Rightarrow flies(x)] (για παράδειγμα, οι νεοσσοί δεν πετούν, οι πιγκουίνοι δεν πετούν, κλπ).
- Για τις περισσότερες γενικές πληροφορίες στον πραγματικό κόσμο υπάρχουν εξαιρέσεις. δοκιμάσουμε να απαριθμήσουμε αυτές τις εξαιρέσεις E_1, E_2, \ldots, E_n όπως παρακάτω $\forall x [bird(x) \land \neg E_1(x) \land \neg E_2(x) \land \cdots \land \neg E_n(x) \Rightarrow flies(x)]$

θα διαπιστώσουμε πως αυτό δεν είναι μια καλή λύση επειδή:

- a) υπάρχουν πολλές και απρόβλεπτες εξαιρέσεις.
- b) απαιτείται η απόδειξη της άρνησης όλων των εξαιρέσεων.

¹ Πολλές από τις διαφάνειες για Μη-Μονοτονικό Συμπερασμό βασίζονται σε υλικό του Jim Delgrande καθώς και των Ronald Brachman – Hector Levesque.

Μη-Μονοτονικός Συμπερασμός¹

- Πολλές φορές η πληροφορία που θέλουμε να καταγράψουμε σε μια βάση γνώσης αφορά γενικές παρατηρήσεις που ωστόσο δεν αποδίδονται σωστά με την χρήση καθολικού ποσοδείκτη. Για παράδειγμα η πληροφορία «κατά κανόνα τα πουλιά πετούν» δεν αναπαρίσταται σωστά από τον τύπο \forall x[bird(x) \Rightarrow flies(x)] (για παράδειγμα, οι νεοσσοί δεν πετούν, οι πιγκουίνοι δεν πετούν, κλπ).
- Για τις περισσότερες γενικές πληροφορίες στον πραγματικό κόσμο υπάρχουν εξαιρέσεις. δοκιμάσουμε να απαριθμήσουμε αυτές τις εξαιρέσεις E_1, E_2, \ldots, E_n όπως παρακάτω $\forall x [bird(x) \land \neg E_1(x) \land \neg E_2(x) \land \cdots \land \neg E_n(x) \Rightarrow flies(x)]$

θα διαπιστώσουμε πως αυτό δεν είναι μια καλή λύση επειδή:

- a) υπάρχουν πολλές και απρόβλεπτες εξαιρέσεις.
- b) απαιτείται η απόδειξη της άρνησης όλων των εξαιρέσεων.
- Επομένως χρειάζεται μια επέκταση της κατηγορηματικής λογικής που θα επιτρέπει την παραγωγή συμπερασμού από τέτοιου είδους γενικές (μη-καθολικές) πληροφορίες.

¹ Πολλές από τις διαφάνειες για Μη-Μονοτονικό Συμπερασμό βασίζονται σε υλικό του Jim Delgrande καθώς και των Ronald Brachman – Hector Levesque.

Τα πουλιά πετούν (κατά κανόνα).

Οι πιγκουίνοι είναι πουλιά αλλά δεν πετούν.

Ο Tweety είναι πουλί

Ο Tweety πετάει.

Τα πουλιά πετούν (κατά κανόνα).

Οι πιγκουίνοι είναι πουλιά αλλά δεν πετούν.

Ο Tweety είναι πουλί

Ο Tweety πετάει.

Στην δουλειά ο Γιάννης συνήθως πάει για καφέ στις 10.00πμ. Ο Γιάννης δουλεύει τις καθημερινές. Την Δευτέρα ο Γιάννης θα πάει για καφέ στις 10.00πμ

Τα πουλιά πετούν (κατά κανόνα).

Οι πιγκουίνοι είναι πουλιά αλλά δεν πετούν.

Ο Tweety είναι πουλί

Ο Tweety πετάει.

Στην δουλειά ο Γιάννης συνήθως πάει για καφέ στις 10.00πμ. Ο Γιάννης δουλεύει τις καθημερινές.

Την Δευτέρα ο Γιάννης θα πάει για καφέ στις 10.00πμ

Αρχικά ο κύβος a είναι πάνω στον b.

Εκτελείται η ενέργεια move(c,d).

Αν κάποιος κύβος δεν επηρεάζεται από την ενέργεια που εκτελείται, τότε παραμένει εκεί που βρίσκεται. Ο κύβος a παραμένει πάνω στον b μετά την move(c,d).

Τα πουλιά πετούν (κατά κανόνα).

Οι πιγκουίνοι είναι πουλιά αλλά δεν πετούν.

Ο Tweety είναι πουλί

Ο Tweety είναι πιγκουίνος.

Ο Tweety πετάει.

Ο Tweety δεν πετάει.

Στην δουλειά ο Γιάννης συνήθως πάει για καφέ στις 10.00πμ. Ο Γιάννης δουλεύει τις καθημερινές.

Την Δευτέρα ο Γιάννης θα πάει για καφέ στις 10.00πμ

Αρχικά ο κύβος a είναι πάνω στον b.

Εκτελείται η ενέργεια move(c,d).

Αν κάποιος κύβος δεν επηρεάζεται από την ενέργεια που εκτελείται, τότε παραμένει εκεί που βρίσκεται. Ο κύβος a παραμένει πάνω στον b μετά την move(c,d).

• Στον κλασικό συμπερασμό η προσθήκη νέας πληροφορίας δεν ακυρώνει προηγούμενα συμπεράσματα (μονοτονικότητα).

```
\forall x ( Greek(x) \Rightarrow European(x) )
Greek(Socrates)

\models European(Socrates)
```

• Στον κλασικό συμπερασμό η προσθήκη νέας πληροφορίας δεν ακυρώνει προηγούμενα συμπεράσματα (μονοτονικότητα).

```
∀x( Greek(x) ⇒ European(x) )
Greek(Socrates)

⊨ European(Socrates), European(Alexander)

Greek(Alexander)
```

• Στον κλασικό συμπερασμό η προσθήκη νέας πληροφορίας δεν ακυρώνει προηγούμενα συμπεράσματα (μονοτονικότητα).

```
∀x( Greek(x) ⇒ European(x) )
Greek(Socrates)

⊨ European(Socrates), European(Alexander)

Greek(Alexander)
```

• Στον μη-μονοτονικό συμπερασμό η προσθήκη νέας πληροφορίας είναι πιθανό να ακυρώσει προηγούμενα συμπεράσματα.

• Στον κλασικό συμπερασμό η προσθήκη νέας πληροφορίας δεν ακυρώνει προηγούμενα συμπεράσματα (μονοτονικότητα).

```
∀x( Greek(x) ⇒ European(x) )
Greek(Socrates)

⊨ European(Socrates), European(Alexander)

Greek(Alexander)
```

• Στον μη-μονοτονικό συμπερασμό η προσθήκη νέας πληροφορίας είναι πιθανό να ακυρώσει προηγούμενα συμπεράσματα.

```
\forall x ( bird(x) \land \neg Ab(x) \Rightarrow flies(x) )
\forall x ( penguin(x) \Rightarrow bird(x) )
\forall x ( penguin(x) \Rightarrow \neg flies(x) )
\models flies(Tweety)
bird(Tweety)
```

• Στον κλασικό συμπερασμό η προσθήκη νέας πληροφορίας δεν ακυρώνει προηγούμενα συμπεράσματα (μονοτονικότητα).

```
∀x( Greek(x) ⇒ European(x) )
Greek(Socrates)

⊨ European(Socrates), European(Alexander)

Greek(Alexander)
```

• Στον μη-μονοτονικό συμπερασμό η προσθήκη νέας πληροφορίας είναι πιθανό να ακυρώσει προηγούμενα συμπεράσματα.

```
\forall x ( bird(x) \land \neg Ab(x) \Rightarrow flies(x) )
\forall x ( penguin(x) \Rightarrow bird(x) )
\forall x ( penguin(x) \Rightarrow \neg flies(x) )
\models flies(Tweety) \rightarrow flies(Tweety)
\vdash flies(Tweety) \rightarrow flies(Tweety)
```

Υπόθεση Κλειστού Κόσμου (Closed World Assumption)

Flight(Athens, Rome)

Flight(Athens, London)

Flight(Paris, Munich)

⊨_{CWA} ¬Flight(Athens, Munich)

ΚB

Υπόθεση Κλειστού Κόσμου (Closed World Assumption)

Flight(Athens, Rome)
Flight(Athens, London)
Flight(Paris, Munich)

⊨_{CWA} ¬Flight(Athens, Munich)

KΒ

```
Neg(KB) = \{\neg x : x είναι \text{ ground atom } και KB \nvDash x \}
KB \models_{CWA} φ \quad ανν \quad KB \cup Neg(KB) \models φ
```

Ιδιότητες Υπόθεσης Κλειστού Κόσμου Προτασιακή Λογική

Neg(KB) =
$$\{\neg x : x είναι \text{ ground atom } και \text{ KB} \nvDash_{CWA} φ \text{ ανν KB} U \text{ Neg(KB)} \vDash φ$$

Παρατήρηση: Για κάθε προτασιακή μεταβλητή p, KB \vDash_{CWA} p ή KB \vDash_{CWA} ¬p.

Ιδιότητες Υπόθεσης Κλειστού Κόσμου Προτασιακή Λογική

Neg(KB) =
$$\{-x : x είναι \text{ ground atom } και \text{ KB} \nvDash x \}$$

KB $\models_{CWA} φ$ ανν KB $\bigcup Neg(KB) \models φ$

Παρατήρηση: Για κάθε προτασιακή μεταβλητή p, KB \vDash_{CWA} p ή KB \vDash_{CWA} ¬p.

Επομένως, για οποιαδήποτε πρόταση φ, ο υπολογισμός του $KB \models_{CWA} φ$ μπορεί να αναχθεί σε υπολογισμούς του τύπου $KB \models p$, για τις μεταβλητές p που εμφανίζονται στην φ.

Ιδιότητες Υπόθεσης Κλειστού Κόσμου Προτασιακή Λογική

Neg(KB) =
$$\{\neg x : x είναι ground atom και KB $\not\vdash x \}$$$

$$KB \models_{CWA} \varphi \quad \alpha \nu \nu \quad KB \cup Neg(KB) \models \varphi$$

Παρατήρηση: Για κάθε προτασιακή μεταβλητή p, KB \vDash_{CWA} p ή KB \vDash_{CWA} ¬p.

Επομένως, για οποιαδήποτε πρόταση φ, ο υπολογισμός του $KB \models_{CWA} φ$ μπορεί να αναχθεί σε υπολογισμούς του τύπου $KB \models p$, για τις μεταβλητές p που εμφανίζονται στην φ.

Παρατήρηση:

Η εφαρμογή της CWA μπορεί να οδηγήσει σε αντιφάσεις, ακόμα και όταν η αρχική βάση γνώσης είναι μη-αντιφατική. Π,χ. αν KB = { $p \lor q$ }, τότε KB $\models_{CWA} \neg p$, $\neg q$ (αντίφαση με το $p \lor q$).

Ιδιότητες Υπόθεσης Κλειστού Κόσμου Κατηγορηματική Λογική

Neg(KB) =
$$\{ \neg x : x είναι \text{ ground atom } και \text{ KB} \not\models x \}$$

KB $\models_{CWA} φ$ ανν KB \cup Neg(KB) $\models φ$

Παρατήρηση:

Στην Κατηγορηματική Λογική, η CWA δεν οδηγεί απαραίτητα σε πλήρης θεωρίες.

Ιδιότητες Υπόθεσης Κλειστού Κόσμου Κατηγορηματική Λογική

Neg(KB) =
$$\{-x : x είναι \text{ ground atom } και \text{ KB} \nvDash x \}$$

KB $\models_{CWA} φ$ ανν KB $\bigcup Neg(KB) \models φ$

Παρατήρηση:

Στην Κατηγορηματική Λογική, η CWA δεν οδηγεί απαραίτητα σε πλήρης θεωρίες.

Παράδειγμα:

Έστω, KB = { Flight(Athens, Rome), Flight(Athens, London), Flight(Paris, Munich) }.

```
Τότε, KB ⊨<sub>CWA</sub> ¬Flight(Rome, Athens), ¬Flight(London, Athens), ¬Flight(Paris, Athens), ¬Flight(Munich, Athens), ¬Flight(Athens, Athens)
```

Ιδιότητες Υπόθεσης Κλειστού Κόσμου Κατηγορηματική Λογική

Neg(KB) = {¬x : x είναι ground atom και KB
$$\nvDash$$
 x }

KB \vDash_{CWA} φ ανν KB U Neg(KB) \vDash φ

Παρατήρηση:

Στην Κατηγορηματική Λογική, η CWA δεν οδηγεί απαραίτητα σε πλήρης θεωρίες.

Παράδειγμα:

```
Έστω, KB = { Flight(Athens, Rome), Flight(Athens, London), Flight(Paris, Munich) }.

Τότε, KB ⊨<sub>CWA</sub> ¬Flight(Rome, Athens), ¬Flight(London, Athens), ¬Flight(Paris, Athens), ¬Flight(Munich, Athens), ¬Flight(Athens, Athens)
```

Ωστόσο, KB \nvDash_{CWA} ∃x[Flight(x,Athens)] και KB \nvDash_{CWA} ¬∃x[Flight(x,Athens)]

CWA + Domain Closure

$$KB \models_{CWA+DC} \varphi \quad \alpha vv \quad KB \cup Neg(KB) \cup DC(KB) \models \varphi$$

Παρατήρηση:

Η CWA+DC οδηγεί πάντα σε πλήρης θεωρίες.

CWA + Domain Closure

Neg(KB) = {¬x : x είναι ground atom και KB
$$\not\models$$
 x }
DC(KB) = { \forall x[x=a₁ \forall x=a₂ \forall ··· \forall x=a_n] }

$$KB \models_{CWA+DC} \varphi \quad \alpha vv \quad KB \cup Neg(KB) \cup DC(KB) \models \varphi$$

Παρατήρηση:

Η CWA+DC οδηγεί πάντα σε πλήρης θεωρίες.

Παρατήρηση:

Η DC μπορεί να οδηγήσει σε αντιφάσεις, ακόμα και όταν η αρχική βάση γνώσεις είναι μη-αντιφατική.

CWA + Domain Closure

$$KB \models_{CWA+DC} \varphi \quad \alpha vv \quad KB \cup Neg(KB) \cup DC(KB) \models \varphi$$

Παρατήρηση:

Η CWA+DC οδηγεί πάντα σε πλήρης θεωρίες.

Παρατήρηση:

Η DC μπορεί να οδηγήσει σε αντιφάσεις, ακόμα και όταν η αρχική βάση γνώσεις είναι μη-αντιφατική.

Παράδειγμα:

Έστω KB = { P(c),
$$\forall$$
 x[¬R(x,x)], \forall y[P(y) \Rightarrow \exists z[R(y,z) \land P(z)]] }

Tότε DC(KB) = $\{ \forall x[x=c] \}$

Ωστόσο το ΚΒ U DC(ΚΒ) είναι αντιφατικό.

CWA + Domain Closure + Unique Names

 $KB \models_{CWA+DC+UN} \varphi \quad \alpha vv \quad KB \cup Neg(KB) \cup DC(KB) \cup UN(KB) \models \varphi$

Μοντέλα νε Πληροφορία

Όσα περισσότερα είναι τα μοντέλα μιας βάσης γνώσεις, τόσο λιγότερα συμπεράσματα μπορούμε να εξάγουμε.

$$S = \begin{cases} \{a, b, c\} \\ \{a, b, \neg c\} \\ \{a, \neg b, c\} \\ \{a, \neg b, \neg c\} \end{cases} \models a$$

Μοντέλα νε Πληροφορία

Όσα περισσότερα είναι τα μοντέλα μιας βάσης γνώσεις, τόσο λιγότερα συμπεράσματα μπορούμε να εξάγουμε.

$$S = \begin{cases} \{a, b, c\} \\ \{a, b, \neg c\} \\ \{a, -b, c\} \end{cases} \models a, b$$

Μοντέλα νε Πληροφορία

Όσα περισσότερα είναι τα μοντέλα μιας βάσης γνώσεις, τόσο λιγότερα συμπεράσματα μπορούμε να εξάγουμε.

$$S = \begin{cases} \{a, b, c\} \\ \{a, b, c\} \\ \{a, -b, c\} \\ \{a, -b, -c\} \end{cases} \models a, b, c$$

```
\forall x ( bird(x) \land \neg Ab(x) \Rightarrow flies(x) )
bird(Tweety)
```

```
S = { bird(Tweety), Ab(Tweety), ¬flies(Tweety) } { bird(Tweety), Ab(Tweety), flies(Tweety) } 
 { bird(Tweety), ¬Ab(Tweety), flies(Tweety) }
```

```
\forall x ( bird(x) \land \neg Ab(x) \Rightarrow flies(x) )
bird(Tweety)
S = \begin{cases} \{ bird(Tweety), Ab(Tweety) \} \\ \{ bird(Tweety), Ab(Tweety), flies(Tweety) \} \end{cases} \Rightarrow bird(Tweety)
\{ bird(Tweety), flies(Tweety) \}
```

```
\forall x ( bird(x) \land \neg Ab(x) \Rightarrow flies(x) )
bird(Tweety)
```

```
S = { bird(Tweety), Ab(Tweety) } 

{ bird(Tweety), Ab(Tweety), flies(Tweety) } 

{ bird(Tweety), flies(Tweety) }
```

```
\forall x ( bird(x) \land \neg Ab(x) \Rightarrow flies(x) )
bird(Tweety)
```

```
S = \bird(\text{Tweety}), \text{Ab(Tweety}) \\
\{ \text{bird(Tweety}), \text{Ab(Tweety}), \text{flies(Tweety)} \} \\
\{ \text{bird(Tweety), flies(Tweety)} \} \\
\{ \text{bird(Tweety), flies(Tweety)} \}
```

Έστω M1, M2 δύο μοντέλα μιας βάσης γνώσης K, που έχουν το ίδιο universe και την ίδια αποτίμηση για τις σταθερές και συνάρτησης. Θα λέμε πως M1 ≤ M2 ως προς ένα σύνολο κατηγορημάτων R, ανν για κάθε Z ∈ R, $Z^{M1} \subseteq Z^{M2}$.

Έστω M1, M2 δύο μοντέλα μιας βάσης γνώσης K, που έχουν το ίδιο universe και την ίδια αποτίμηση για τις σταθερές και συνάρτησης. Θα λέμε πως M1 \leq M2 ως προς ένα σύνολο κατηγορημάτων R, ανν για κάθε Z \in R, $Z^{M1} \subseteq Z^{M2}$.

Παράδειγμα

$$K = \begin{cases} \forall x[P(x) \Rightarrow Q(x,x)] \\ P(a) \\ Q(b,c) \end{cases}$$

Έστω M1, M2 δύο μοντέλα μιας βάσης γνώσης K, που έχουν το ίδιο universe και την ίδια αποτίμηση για τις σταθερές και συνάρτησης. Θα λέμε πως M1 \leq M2 ως προς ένα σύνολο κατηγορημάτων R, ανν για κάθε Z \in R, $Z^{M1} \subseteq Z^{M2}$.

Παράδειγμα

$$K = \begin{cases} \forall x[P(x) \Rightarrow Q(x,x)] \\ P(a) \\ Q(b,c) \end{cases}$$

- |M1| = |M2| = { a, b, c }
- $P^{M1} = \{ a, b \}, P^{M2} = \{ a, c \}$
- $Q^{M1} = \{ (a,a), (b,b), (b,c) \}, Q^{M2} = \{ (a,a), (b,b), (c,c), (b,c) \}$

M1 < M2 (ως προς { Q })

Έστω M1, M2 δύο μοντέλα μιας βάσης γνώσης Κ, που έχουν το ίδιο universe και την ίδια αποτίμηση για τις σταθερές και συνάρτησης. Θα λέμε πως $M1 \le M2$ ως προς ένα σύνολο κατηγορημάτων R, ανν για κάθε $Z \in R$, $Z^{M1} \subseteq Z^{M2}$.

Παράδειγμα

$$K = \begin{cases} \forall x[P(x) \Rightarrow Q(x,x)] \\ P(a) \\ Q(b,c) \end{cases}$$

- $|M1| = |M2| = \{a, b, c\}$
- $P^{M1} = \{ a, b \}, P^{M2} = \{ a, c \}$ $Q^{M1} = \{ (a,a), (b,b), (b,c) \}, Q^{M2} = \{ (a,a), (b,b), (c,c), (b,c) \}$

M1 < M2 (ως προς { Q })

Ορίζω $\mathbf{K} \models_{\mathbf{C}[\mathbf{R}]} \mathbf{\Phi}$ ανν $\mathbf{M} \models \mathbf{\Phi}$ για όλα τα *ελάχιστα* μοντέλα του \mathbf{K} ως προς τα κατηγορήματα στο \mathbf{R} .

Έστω M1, M2 δύο μοντέλα μιας βάσης γνώσης K, που έχουν το ίδιο universe και την ίδια αποτίμηση για τις σταθερές και συνάρτησης. Θα λέμε πως M1 ≤ M2 ως προς ένα σύνολο κατηγορημάτων R, ανν για κάθε Z \in R, $Z^{M1} \subseteq Z^{M2}$.

Ορίζω $\mathbf{K} \models_{\mathbf{C}[\mathbf{R}]} \mathbf{\Phi}$ ανν $\mathbf{M} \models \mathbf{\Phi}$ για όλα τα *ελάχιστα* μοντέλα της \mathbf{K} ως προς τα κατηγορήματα στο \mathbf{R} .

Έστω M1, M2 δύο μοντέλα μιας βάσης γνώσης K, που έχουν το ίδιο universe και την ίδια αποτίμηση για τις σταθερές και συνάρτησης. Θα λέμε πως M1 \leq M2 ως προς ένα σύνολο κατηγορημάτων R, ανν για κάθε Z \in R, $Z^{M1} \subseteq Z^{M2}$.

Παράδειγμα

```
\forall x[ bird(x) \land \neg Ab(x) \Rightarrow flies(x) ]
\forall x[ penguin(x) \Rightarrow bird(x) ]
\forall x[ penguin(x) \Rightarrow \neg flies(x) ]
bird(Tweety),
penguin(Chip)
```

Έστω M1, M2 δύο μοντέλα μιας βάσης γνώσης K, που έχουν το ίδιο universe και την ίδια αποτίμηση για τις σταθερές και συνάρτησης. Θα λέμε πως M1 \leq M2 ως προς ένα σύνολο κατηγορημάτων R, ανν για κάθε Z \in R, $Z^{M1} \subseteq Z^{M2}$.

Παράδειγμα

```
\forall x[ bird(x) \land \neg Ab(x) \Rightarrow flies(x) ]
\forall x[ penguin(x) \Rightarrow bird(x) ]
\forall x[ penguin(x) \Rightarrow \neg flies(x) ]
bird(Tweety),
penguin(Chip)
```

- |M1| = |M2| = { Tweety, Chip }
- bird^{M1} = bird^{M2} = { Tweety, Chip }
- penguin^{M1} = penguin^{M2} = { Chip }
- $Ab^{M1} = \{ Chip \}, Ab^{M2} = \{ Tweety, Chip \}$
- flies^{M1} = { Tweety }, flies^{M2} = { }

Έστω M1, M2 δύο μοντέλα μιας βάσης γνώσης K, που έχουν το ίδιο universe και την ίδια αποτίμηση για τις σταθερές και συνάρτησης. Θα λέμε πως M1 ≤ M2 ως προς ένα σύνολο κατηγορημάτων R, ανν για κάθε Z ∈ R, $Z^{M1} \subseteq Z^{M2}$.

Παράδειγμα

```
\forall x[ bird(x) \land \neg Ab(x) \Rightarrow flies(x) ]
\forall x[ penguin(x) \Rightarrow bird(x) ]
\forall x[ penguin(x) \Rightarrow \neg flies(x) ]
bird(Tweety),
penguin(Chip)
```

- |M1| = |M2| = { Tweety, Chip }
- bird^{M1} = bird^{M2} = { Tweety, Chip }
- penguin^{M1} = penguin^{M2} = { Chip }
- $Ab^{M1} = \{ Chip \}, Ab^{M2} = \{ Tweety, Chip \}$
- flies^{M1} = { Tweety }, flies^{M2} = { }

M1 < M2 (ως προς { Ab })

Έστω M1, M2 δύο μοντέλα μιας βάσης γνώσης K, που έχουν το ίδιο universe και την ίδια αποτίμηση για τις σταθερές και συνάρτησης. Θα λέμε πως M1 ≤ M2 ως προς ένα σύνολο κατηγορημάτων R, ανν για κάθε Z ∈ R, $Z^{M1} \subseteq Z^{M2}$.

Παράδειγμα

$$\forall x[\ bird(x) \land \neg Ab(x) \Rightarrow flies(x) \]$$

$$\forall x[\ penguin(x) \Rightarrow bird(x) \]$$

$$\forall x[\ penguin(x) \Rightarrow \neg flies(x) \]$$

$$bird(Tweety),$$

$$penguin(Chip)$$

$$K \models_{C[\{Ab\}]} flies(Tweety)$$

- |M1| = |M2| = { Tweety, Chip }
- bird^{M1} = bird^{M2} = { Tweety, Chip }
- penguin^{M1} = penguin^{M2} = { Chip }
- $Ab^{M1} = \{ Chip \}, Ab^{M2} = \{ Tweety, Chip \}$
- flies^{M1} = { Tweety }, flies^{M2} = { }

M1 < M2 (ως προς { Ab })

Έστω M1, M2 δύο μοντέλα μιας βάσης γνώσης K, που έχουν το ίδιο universe και την ίδια αποτίμηση για τις σταθερές και συνάρτησης. Θα λέμε πως M1 ≤ M2 ως προς ένα σύνολο κατηγορημάτων R, ανν για κάθε Z ∈ R, $Z^{M1} \subseteq Z^{M2}$.

Παράδειγμα

```
 \forall x[ \, bird(x) \, \land \, \neg Ab(x) \Rightarrow flies(x) \, ] \\ \forall x[ \, penguin(x) \Rightarrow bird(x) \, ] \\ \forall x[ \, penguin(x) \Rightarrow \neg flies(x) \, ] \\ bird(Tweety), \\ penguin(Chip) 
 K \models_{C[\{Ab\}]} flies(Tweety) \\ K \cup \{ \, penguin(Tweet) \} \nvDash_{C[\{Ab\}]} flies(Tweety)
```

- |M1| = |M2| = { Tweety, Chip }
- bird^{M1} = bird^{M2} = { Tweety, Chip }
- penguin^{M1} = penguin^{M2} = { Chip }
- $Ab^{M1} = \{ Chip \}, Ab^{M2} = \{ Tweety, Chip \}$
- flies^{M1} = { Tweety }, flies^{M2} = { }

M1 < M2 (ως προς { Ab })

Circumscription και το Frame Problem

- Αρχική Κατάσταση.
- Περιορισμοί Ακεραιότητας.

```
\forall x \forall y \forall s \text{ (holds(clear(x),s) } \land \text{ (holds(clear(y),s) } \lor \text{ y=table )} \Rightarrow \text{holds(on(x,y), do(move(x,y),s)) )} \Rightarrow \textit{Effect Axiom}

Προϋποθέσεις Αποτέλεσμα

\forall x \forall y \forall z \forall w \forall s \text{ (holds(on(x,y), s) } \land x \neq z) \Rightarrow \text{holds(on(x,y), do(move(z,w),s)) )}
\forall x \forall y \forall z \forall w \forall s \text{ (holds(color(x,y), s) } \Rightarrow \text{holds(color(x,y), do(move(z,w),s)) )} \Rightarrow \textit{Frame Axioms}
```

Circumscription και το Frame Problem

- Αρχική Κατάσταση.
- Περιορισμοί Ακεραιότητας.

 $\forall f \forall a \forall s [holds(f, s) \land \neg Ab(f,a,s) \Rightarrow holds(f, do(a,s))]$

```
\forall s [ holds(loaded(), s) \Rightarrow \negholds(alive(), do(shoot(),s)) ]

\forall s [\negholds(loaded(), do(shoot(),s)) ]

holds(alive(), s0)

\forall f \forall a \forall s [ holds(f, s) \land \negAb(f,a,s) \Rightarrow holds(f, do(a,s)) ]
```



```
\forall s \text{ [holds(loaded(), s)} \Rightarrow \neg \text{holds(alive(), do(shoot(),s))]} 
\forall s \text{ [-holds(loaded(), do(shoot(),s))]} 
\text{holds(alive(), s0)} 
\forall f \forall a \forall s \text{ [holds(f, s) } \land \neg \text{Ab(f,a,s)} \Rightarrow \text{holds(f, do(a,s))]} 
?
C[\{Ab\}] \neg \text{holds(alive(), do(shoot(), do(wait(),s0))}
```



```
\forall s \text{ [holds(loaded(), s)} \Rightarrow \neg \text{holds(alive(), do(shoot(),s))]} 
\forall s \text{ [-holds(loaded(), do(shoot(),s))]} 
\text{holds(alive(), s0)} 
\forall f \forall a \forall s \text{ [holds(f, s) } \land \neg \text{Ab(f,a,s)} \Rightarrow \text{holds(f, do(a,s))]} 
?
C[\{Ab\}] \neg \text{holds(alive(), do(shoot(), do(wait(),s0))}
```



```
\forall s \text{ [holds(loaded(), s)} \Rightarrow \neg \text{holds(alive(), do(shoot(),s))]} 
\forall s \text{ [-holds(loaded(), do(shoot(),s))]} 
\text{holds(alive(), s0)} 
\forall f \forall a \forall s \text{ [holds(f, s) } \land \neg \text{Ab(f,a,s)} \Rightarrow \text{holds(f, do(a,s))]} 
?
C[\{Ab\}] \neg \text{holds(alive(), do(shoot(), do(wait(),s0))}
```

```
\forall s \text{ [holds(loaded(), s)} \Rightarrow \neg \text{holds(alive(), do(shoot(),s))]}
\forall s \text{ [-holds(loaded(), do(shoot(),s))]}
\text{holds(alive(), s0)}
\forall f \forall a \forall s \text{ [holds(f, s) } \land \neg \text{Ab(f,a,s)} \Rightarrow \text{holds(f, do(a,s))]}
```

