Описание проекта: оценка рисков невозврата кредита

В вашем распоряжении данные клиентов банка «Скрудж», которые планируют взять кредит. Вам необходимо выяснить, что из имеющихся данных влияет на своевременное погашение кредита и каким именно образом.

Исследование поможет в создании модели кредитного скоринга — системы для оценки способности потенциального заёмщика погасить свой кредит.

По каждому клиенту есть информация о его семейном положении, образовании, доходе и другие данные. Вам предстоит подготовить данные к анализу и исследовать их, в процессе отвечая на вопросы.

Описание данных

- children количество детей в семье;
- days_employed сколько дней работает клиент;
- dob_years возраст клиента;
- education уровень образования клиента;
- education_id идентификатор образования клиента;
- family_status семейное положение клиента;
- family_status_id идентификатор семейного положения клиента;
- gender пол клиента;
- income_type тип дохода клиента;
- debt был ли у клиента когда-либо просрочен платёж по кредиту;
- total_income ежемесячный доход;
- purpose причина оформления кредита.

Цель работы

• В рамках проекта необходимо проанализировать данные клинетов банка Скрудж для лдальнейшего опредления характеритсик заёмщика, влияющих на своевременное погашение кредита. Это поможет в дальнейшем создать основу для модели кредитного скоринга — системы для оценки способности потенциального заёмщика погасить свой кредит.

План работы

- Первичный анализ данных
- Предобработка
- Выбросы и аномальные значения
 - загрузка и изучение структуры данных
 - проверка и устранение пропущенных значений
 - устраненние некорректных значений
 - устранение неявных дубликатов
- Создание дополнительных признаков
 - разделите клиентов по уровню дохода
 - разделение по возрастным группам
 - разделение по количеству детей
- Исследование влияющих факторов
 - Уровень дохода
 - Анализ влияния дохода на своевременное погашение кредита
 - Образование
 - Исследование связи между уровнем образования и вероятностью задолженности
 - Возраст
 - Анализ возрастных категорий и их связи с задолженностью по кредитам
 - Количество детей
 - влияние количества детей на риск задолженности
- Анализ данных
 - построение графиков и сводных таблиц для наглядной визуализации сравннеия должников и не должников
- Проверка исследовательских гипотез
 - У клиентов с детьми более высокий уровень финансовой ответственности и, следовательно, более низкий риск просрочек по кредиту.
 - Одинокие мужчины с низким доходом чаще оказываются должниками, чем семейные мужчины со средним доходом.
- Выводы
 - описание полученных результатов и итоговые выводы проведённого исследования
- Проведение дополнительного исследования

Датасет содержит данные, которые несут в себе информацию о клиентах банка Скрудж:

- демография
 - возраст, семейное положение, количество детей

- финансновые показатели
 - уровень дохода, тип занятости
- данные об образовании
- цель кредита
- ___информацию о своевременности возврата кредита___

Шаг 1. Первичный анализ данных

- 1. Загрузите датасет.
- 2. Сделайте копию датасета.
- 3. Изучите типы данных и определите, соответствуют ли они содержимому.
- 4. Напишите вывод.

```
In [2]: # Импортируйте библиотеки для работы
         # с таблицами и графиками
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [3]: # Загрузите датасет в переменную df_rтам или другую по вашему выбору.
         # Он доступен по адресу <https://code.s3.yandex.net/datasets/credit_scoring_eng.csv>
         # a при работе на платформе по адресу /datasets/credit_scoring_eng.csv
         df_raw=pd.read_csv('https://code.s3.yandex.net/datasets/credit_scoring_eng.csv')
In [4]: # При помощи метода .copy() скопируйте датасет
         # для работы с ним в переменную df или другую
         df=df_raw.copy()
In [5]: # Изучите общую информацию о датасете
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 21525 entries, 0 to 21524
        Data columns (total 12 columns):
                      Non-Null Count Dtype
           Column
                               -----
            children 21525 non-null int64
        0
        1 days_employed 19351 non-null float64
2 dob_years 21525 non-null int64
3 education 21525 non-null object
4 education_id 21525 non-null int64
            family_status 21525 non-null object
            family_status_id 21525 non-null int64
            gender 21525 non-null object income_type 21525 non-null object debt 21525 non-null int64
        7
        8
         9
        10 total_income 19351 non-null float64
11 purpose 21525 non-null object
        dtypes: float64(2), int64(5), object(5)
        memory usage: 2.0+ MB
In [6]: df.head()
            children days_employed dob_years education education_id family_status family_status_id gender income_type debt total_income
Out[6]:
                                                                                                                                                            purpose
                                                  bachelor's
                                                                                                                                                         purchase of
                         -8437.673028
                                                                                 married
                                                                                                                       emplovee
                                                                                                                                           40620.102
                                                                                                                                                           the house
```

1. Таблица представлена 12 колонками и 21525 строками

-4024.803754

-5623.422610

-4124.747207

340266.072047

2

3

4

0

3

- 2. Данные в таблице представлены 3 типами: float64, int64 и object:
- int64 для столблцов children, dob_years, education_id, family_status_id, u debt

secondary

education

Secondary

Education

secondary

education

secondary

education

1

1

1

1

married

married

married

partnership

civil

0

0

0

1

Μ

Μ

F

employee

employee

employee

retiree

0

0

0

0

17932.802

23341.752

42820.568

25378.572

car purchase

purchase of

supplementary

the house

education

to have a

wedding

36

33

32

53

- это целочисленные данные, что логично соответвует как описанию данных, так и простмору первых 5 строк таблицы
- float64 для столбцов days_employed u total_income

- это числовые данные с плавающей точкой, что логично соответвует описанию данных, так и простмору первых 5 строк таблицы
- object для столбцов education, family_status, gender, income_type, u purpose
 - это текстовые данные, что логично соответвует описанию данных, так и простмору первых 5 строк таблицы
- 3. Также стоит обратить внимани на колонки days_employed и total_income.
- В обоих колонках количество строк (19351) не соответствует общему количеству строк таблицы(21525)
 - таким образом в этих стоблцах могут быть пропцщенные значения, например NAN

```
* к содержанию
```

Шаг 2. Выполнение предобработки данных

- 1. Найдите и изучите пропущенные значения в столбцах.
- 2. Устраните пропущенные значения: удалите или замените их.
- 3. Объясните выбранную стратегию обработки пропущенных значений.

```
In [7]: # найдем пропущенные значения в общем количестве
        df.isnull().sum().sort_values(ascending=False)
Out[7]: days_employed
                            2174
        total_income
                            2174
        children
                              0
        dob_years
        education
        education_id
        family_status
        family_status_id
        gender
        income_type
        debt
        purpose
        dtype: int64
In [9]: # найдем пропущенные значения в процентном соотношении
        df.isnull().mean().sort_values(ascending=False)
Out[9]: days_employed
                            0.100999
        total_income
                           0.100999
        children
                           0.000000
        dob_years
                           0.000000
                           0.000000
        education
        education_id
                           0.000000
        family_status
                           0.000000
        family_status_id
                           0.000000
        gender
                            0.000000
                           0.000000
        income_type
        debt
                            0.000000
        purpose
                            0.000000
        dtype: float64
```

- в колонках days_employed u total_income 2174 пропусков, что составляет 10 процентов от всех данных
- слишком большой процент для удаления строк из данных
- поэтому было решено заменить пропуски в зависимости от типа данных

сначада для обоих столбцов применим describe()

```
In [10]: # Применение метода describe() к двум столбцам: 'days_employed' u 'total_income'

df[['days_employed', 'total_income']].describe()
```

days_employed total_income 19351.000000 19351.000000 count 63046.497661 26787.568355 mean 140827.311974 16475.450632 std -18388.949901 3306.762000 min 25% -2747.423625 16488.504500 **50%** -1203.369529 23202.870000 32549.611000 **75%** -291.095954 401755.400475 362496.645000 max

Out[10]:

в колонке days_employed присуствуют отрицательные значения(это приславутые аномалии)

- пропущенные же знаенчия заменим 0
 - из идеи что клиенты могли быть безработными на момент заполения данных

```
In [11]: # Замена пропущенных значений в days_employed на в df['days_employed'].fillna(0, inplace=True)

в колонке total_income обратим внимание на мин макс значения

• то есть присуствуют явные выбросы
```

• таким образом выбираем для замены медианное значение, поскольку оно менее чувститвельно кним

```
In [12]: # Замена пропущенных значений в total_income на медианное значение df['total_income'].fillna(df['total_income'].median(), inplace=True)
```

еще раз проверим данные на пропуски

```
In [14]:
         # найдем пропущенные значения в общем количестве
         df.isnull().sum().sort_values(ascending=False)
Out[14]: children
                              0
          days_employed
                              0
          dob_years
          education
          education_id
                              0
          family_status
                              0
          family_status_id
                              0
          gender
                              0
          income_type
          debt
                              0
          total_income
                              0
          purpose
          dtype: int64
           1. Изучите уникальные значения в столбцах с уровнем образования ( education ) и полом клиента ( gender ).
           2. Устраните неявные дубликаты и некорректные значения.
In [17]: # Уникальные значения \theta столбце education
         df['education'].unique()
Out[17]: array(["bachelor's degree", 'secondary education', 'Secondary Education',
                 'SECONDARY EDUCATION', "BACHELOR'S DEGREE", 'some college',
                 'primary education', "Bachelor's Degree", 'SOME COLLEGE',
                 'Some College', 'PRIMARY EDUCATION', 'Primary Education',
                 'Graduate Degree', 'GRADUATE DEGREE', 'graduate degree'],
                dtype=object)
         sorted(df['education'].unique())
In [19]:
```

```
Out[19]: ["BACHELOR'S DEGREE",

"Bachelor's Degree",

'GRADUATE DEGREE',
```

'Graduate Degree',
'PRIMARY EDUCATION',
'Primary Education',
'SECONDARY EDUCATION',
'SOME COLLEGE',

'Some College',
"bachelor's degree",

'Secondary Education',

'graduate degree',
'primary education',
'secondary education',
'some college']

• при анализе уникальных значений в колонке education видны повторяющиеся текстовые значения по смысловому содержанию, но в разных стилях написания

- например'Secondary Education'и 'SECONDARY EDUCATION'
- нужно привести все в нижний регистр

```
In [20]: # Уникальные значения в столбце education df['gender'].unique()

Out[20]: array(['F', 'M', 'XNA'], dtype=object)
```

• при анализе уникальных значений в колонке gender видны XNA

■ заменим на 'Unknown'

проведем замену и перепроверим уникальные значения в стоблцах education и gender

```
Out[23]: ["bachelor's degree",
            'graduate degree',
            'primary education',
            'secondary education',
            'some college']
In [117...
          # Устранение некорректных значений в столбце gender
           df['gender'] = df['gender'].replace({'XNA': 'Unknown'})
In [118...
          # Уникальные значения в столбце education
           df['gender'].unique()
          array(['F', 'M', 'Unknown'], dtype=object)
Out[118...
          проверем информацию по исходной таблице и таблице на данном этапе анализа
In [119...
          df_raw.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 21525 entries, 0 to 21524
         Data columns (total 12 columns):
          # Column Non-Null Count Dtype
                                -----
              children 21525 non-null int64
          0
              days_employed 19351 non-null float64
          1
             dob_years 21525 non-null int64 education 21525 non-null int64 education_id 21525 non-null int64 family_status 21525 non-null object
          2
          3
          4
          5
             family_status_id 21525 non-null int64
              gender 21525 non-null object
          7
              income_type 21525 non-null object debt 21525 non-null int64
          8
                                21525 non-null int64
          9
              debt
          10
             total_income
                                19351 non-null float64
                                21525 non-null object
          11 purpose
         dtypes: float64(2), int64(5), object(5)
         memory usage: 2.0+ MB
In [120...
          df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 21525 entries, 0 to 21524
         Data columns (total 12 columns):
                       Non-Null Count Dtype
          # Column
                                -----
             children 21525 non-null int64
              days_employed 21525 non-null float64
          1
             dob_years21525 non-null int64education21525 non-null objecteducation_id21525 non-null int64family_status21525 non-null object
          2
          3
          4
          5
              family_status_id 21525 non-null int64
          6
          7
              gender
                         21525 non-null object
              income_type
debt
                                21525 non-null object
          8
          9
                                21525 non-null int64
              debt
             total_income
                                21525 non-null float64
          10
          11 purpose
                                21525 non-null object
         dtypes: float64(2), int64(5), object(5)
         memory usage: 2.0+ MB
            1. Проверьте наличие дубликатов. Изучите дублированные данные, если они есть, и примите решение — удалять их или оставить.
In [121...
          # Проверка наличия дубликатов
           duplicates = df.duplicated()
           print(f'Количество дубликатов: {duplicates.sum()}')
         Количество дубликатов: 71
            • в данных присусвует 71 дубликат
            • выведим пример дубликатов
```

In [23]: sorted(df['education'].unique())

Изучение дублированных данных

duplicate_rows.head()

duplicate_rows = df[df.duplicated()]

In [122...

```
Out[122...
                  children days_employed dob_years education education_id family_status family_status_id gender income_type debt total_income
                                                                                                                                                               purpose
                                                                                                                                                               purchase
                                                         secondary
                                                                                                                                                                 of the
            2849
                         0
                                        0.0
                                                    41
                                                                               1
                                                                                                               0
                                                                                                                        F
                                                                                                                                            0
                                                                                                                                                    23202.87
                                                                                        married
                                                                                                                              employee
                                                         education
                                                                                                                                                              house for
                                                                                                                                                              my family
                                                         secondary
                                                                                           civil
                                                                                                                                                              to have a
                                                                                                                                                    23202.87
            3290
                         0
                                        0.0
                                                                                                               1
                                                                                                                        F
                                                                                                                                            0
                                                                               1
                                                                                                                                 retiree
                                                         education
                                                                                     partnership
                                                                                                                                                               wedding
                                                         bachelor's
                                                                                           civil
                                                                                                                                                               wedding
                         1
                                        0.0
                                                    34
                                                                               0
                                                                                                               1
                                                                                                                        F
                                                                                                                                            0
                                                                                                                                                    23202.87
            4182
                                                                                                                              employee
                                                            degree
                                                                                    partnership
                                                                                                                                                              ceremony
                                                         secondary
                                                                                           civil
                                                                                                                                                               wedding
            4851
                         0
                                        0.0
                                                    60
                                                                                                               1
                                                                                                                        F
                                                                                                                                            0
                                                                                                                                                    23202.87
                                                                                                                                 retiree
                                                         education
                                                                                     partnership
                                                                                                                                                              ceremony
                                                         secondary
                                                                                           civil
                                                                                                                                                               to have a
                         0
            5557
                                        0.0
                                                    58
                                                                                                               1
                                                                                                                        F
                                                                                                                                            0
                                                                                                                                                    23202.87
                                                                                                                                 retiree
                                                         education
                                                                                    partnership
                                                                                                                                                               wedding
             • на первый взгляд сложно оценить какие именно строки дублируются
             • для лучшей визуализации отсортируем дублированные строки
In [123...
           # Найти и отсортировать дублированные строки
           duplicate_rows = df[df.duplicated(keep=False)]
            sorted_duplicates = duplicate_rows.sort_values(by=list(df.columns))
            sorted_duplicates.head(6)
Out[123...
                   children days_employed dob_years education education_id family_status family_status_id gender income_type debt total_income
                                                                                                                                                                purpos
                                                                                                                                                                 second
                                                          secondary
                          0
            15892
                                         0.0
                                                     23
                                                                                1
                                                                                                                4
                                                                                                                                             0
                                                                                                                                                     23202.87
                                                                                       unmarried
                                                                                                                                employee
                                                                                                                                                                hand ca
                                                          education
                                                                                                                                                                purchas
                                                                                                                                                                 second
                                                          secondary
            19321
                          0
                                         0.0
                                                     23
                                                                                1
                                                                                                                4
                                                                                                                         F
                                                                                                                                             0
                                                                                                                                                     23202.87
                                                                                       unmarried
                                                                                                                               employee
                                                                                                                                                                hand ca
                                                          education
                                                                                                                                                                purchas
                                                                                                                                                                     bu
                                                                                                                                                               residentia
                                                          bachelor's
                          0
                                                                                                                                                     23202.87
             3452
                                         0.0
                                                     29
                                                                                0
                                                                                                                0
                                                                                                                                             0
                                                                                         married
                                                                                                                        Μ
                                                                                                                                employee
                                                             degree
                                                                                                                                                                   estat
                                                                                                                                                                     bu
                                                          bachelor's
                                                                                                                                                               residentia
                                                                                                                                                     23202.87
            18328
                          0
                                         0.0
                                                     29
                                                                                0
                                                                                         married
                                                                                                                0
                                                                                                                        Μ
                                                                                                                                             0
                                                                                                                                employee
                                                             degree
                                                                                                                                                                   estat
                                                                                                                                                               building
                                                          secondary
             4216
                          0
                                         0.0
                                                                                1
                                                                                                                0
                                                                                                                                             0
                                                     30
                                                                                         married
                                                                                                                        Μ
                                                                                                                                                     23202.87
                                                                                                                                employee
                                                                                                                                                                     rea
                                                          education
                                                                                                                                                                   estat
                                                                                                                                                               building
                                                          secondary
                          0
                                                                                                                                             0
             6312
                                         0.0
                                                                                1
                                                                                         married
                                                                                                                0
                                                                                                                        Μ
                                                                                                                                                     23202.87
                                                                                                                                employee
                                                                                                                                                                     rea
                                                          education
                                                                                                                                                                   estat
```

```
• удлаим дубликаты
```

```
In [124... # Удаление дубликатов
df = df.drop_duplicates()
print(f'Количество дубликатов после удаления: {df.duplicated().sum()}')
```

Количество дубликатов после удаления: 0

проверем информацию по исходной таблице и таблице на данном этапе анализа

```
In [125... df_raw.shape
Out[125... (21525, 12)

In [126... df.shape
Out[126... (21454, 12)

In [127... #строк стало на 71 меньше print(f'Количество строк стало меньше на : {round((1-df.shape[0]/df_raw.shape[0])*100,2)} процента')
```

Количество строк стало меньше на : 0.33 процента

```
* к содержанию
```

Шаг 3. Выбросы и аномальные значения

Изучите столбцы total_income, dob_age, chidlren на наличие выбросов и аномальных значений, в том числе при помощи графиков. Если выбросы или аномалии будут обнаружены — обоснованно примите решение об их судьбе. Используйте подзаголовки третьего уровня (### Подзаголовок), чтобы создать структуру действий в рамках этого шага.

Проанализмруем столбцы total_income, dob_years и children методом describe()

In [128... display(df[['total_income', 'dob_years', 'children']].describe())

count 21454.000000 21454.000000 21454.000000 mean 26436.183035 43.271231 0.539946 std 15683.361605 12.570822 1.383444 min 3306.762000 0.000000 -1.000000 25% 17219.817250 33.000000 0.000000 50% 23202.870000 42.000000 0.000000 75% 31330.237250 53.000000 1.000000 max 362496.645000 75.000000 20.000000		total_income	dob_years	children
std 15683.361605 12.570822 1.383444 min 3306.762000 0.000000 -1.000000 25% 17219.817250 33.000000 0.000000 50% 23202.870000 42.000000 0.000000 75% 31330.237250 53.000000 1.000000	count	21454.000000	21454.000000	21454.000000
min 3306.762000 0.000000 -1.000000 25% 17219.817250 33.000000 0.000000 50% 23202.870000 42.000000 0.000000 75% 31330.237250 53.000000 1.000000	mean	26436.183035	43.271231	0.539946
25% 17219.817250 33.000000 0.000000 50% 23202.870000 42.000000 0.000000 75% 31330.237250 53.000000 1.000000	std	15683.361605	12.570822	1.383444
50% 23202.870000 42.000000 0.000000 75% 31330.237250 53.000000 1.000000	min	3306.762000	0.000000	-1.000000
75% 31330.237250 53.000000 1.000000	25%	17219.817250	33.000000	0.000000
	50%	23202.870000	42.000000	0.000000
max 362496.645000 75.000000 20.000000	75 %	31330.237250	53.000000	1.000000
	max	362496.645000	75.000000	20.000000

• total_income:

- минимальное значение 3306.76 и максимальное значение 362496.65(значительно превышает 75-й процентиль (31330.24)) указывают на наличие выбросов, соответственно можно заменить экстремальные значения на медиану или удалить
- среднее значени выше медианного
- dob_years:
 - максимум 75 лет в пределах разумного, но возраст 0 явно аномалия.
 - среднее значени близко к медианнму, что о говорит о возможной симметричности в распределении
- children:
 - присуствуюя явные аномальные значения -1 и 20, соответственно можно заменить их на медиану или удалить.

Построим граифки для столбцов total_income, dob_years и children

• используем для анализа аномалий и выборосов график boxplot и распределение на основе гистограммы

```
In [129... import matplotlib.pyplot as plt
import seaborn as sns

# Построение графика для `total_income`
plt.figure(figsize=(8, 5))
sns.boxplot(x=df['total_income'])
plt.title('Boxplot для total_income')
plt.show()
```


Тистограмма для total_income 12000 10000 4000 2000 50000 100000 150000 200000 250000 350000 350000

```
In [131... Q1 = df['total_income'].quantile(0.25)
    Q3 = df['total_income'].quantile(0.75)
    IQR=Q3-Q1
    print(f'Нижняя граница : {Q1 - 1.5*IQR }')
    print(f'Верхняя граница : {Q3 + 1.5*IQR }')
```

Нижняя граница : -3945.8127499999973 Верхняя граница : 52495.867249999996

- на графике видно, что есть значительное количество выбросов справа по данным в столбце total_income.
- есть значения, выходящие за верхний предел, что может указывать на аномалии.

```
In [132... # Построение графика для `dob_years`
plt.figure(figsize=(8, 5))
sns.boxplot(x=df['dob_years'])
plt.title('Boxplot для dob_years')
plt.show()
```



```
Тистограмма для dob_years

1750 - 1500 - 1250 - 750 - 500 - 250 - 60 70
```

```
In [134... Q1 = df['dob_years'].quantile(0.25)
    Q3 = df['dob_years'].quantile(0.75)
    IQR=Q3-Q1
    print(f'Нижняя граница : {Q1 - 1.5*IQR }')
    print(f'Верхняя граница : {Q3 + 1.5*IQR }')
```

Нижняя граница : 3.0 Верхняя граница : 83.0

- на графике видны выбросы сдева
- возраст 0 явно является явной аномалией, так как клтент не может быть младше 18 лет

```
In [135... # Построение графика для `children`
plt.figure(figsize=(8, 5))
sns.boxplot(x=df['children'])
plt.title('Boxplot для children')
plt.show()
```

```
Boxplot для children
```

```
In [136... plt.figure(figsize=(8, 5))
sns.histplot(df['children'], bins=30, kde=True)
plt.title('Гистограмма для children')
plt.show()
```


- видно несколько выбросов справа (большое количество детей 20)
- на графике видно, что есть аномальные значени -1

Решение по выбросам

- для колонки total_income(ежемесячный доход)
 - лучше удалить выбросы,чтоб они не искажади данные.

```
upper_limit = df['total_income'].quantile(0.95) # определение верхнего предела выбросов
In [137...
           df = df[df['total_income'] <= upper_limit]</pre>
In [138...
          df['total_income'].describe()
Out[138...
                    20381.000000
           count
                    24007.680143
           mean
                    9821.324564
           std
           min
                     3306.762000
           25%
                   16823.508000
                   23202.870000
           50%
           75%
                    29411.892000
                    53039.263000
           Name: total_income, dtype: float64
```

- для колонки dob_years(возраст клиента)
 - посмтотрим количсетво 0

```
<class 'pandas.core.frame.DataFrame'>
         Int64Index: 20381 entries, 0 to 21524
         Data columns (total 12 columns):
              Column
                                Non-Null Count Dtype
          0
              children
                               20381 non-null int64
              days_employed
          1
                               20381 non-null float64
          2
              dob_years
                               20381 non-null int64
          3
              education
                               20381 non-null object
              education_id 20381 non-null int64
          4
          5
              family_status 20381 non-null object
              family_status_id 20381 non-null int64
          7
              gender
                                20381 non-null object
                                20381 non-null object
          8
              income_type
          9
              debt
                                20381 non-null int64
                                20381 non-null float64
          10 total_income
          11 purpose
                                20381 non-null object
         dtypes: float64(2), int64(5), object(5)
         memory usage: 2.0+ MB
In [140...
          df[df['dob_years'] == 0].shape[0]
Out[140...
          100

    удалим 0

In [141...
          # Удалить строки, где dob_years равен 0
          df = df[df['dob_years'] != 0]
In [142...
          df['dob_years'].describe()
                    20281.000000
Out[142...
           count
                       43.514274
           mean
                       12.323288
           std
           min
                       19.000000
           25%
                       33.000000
                       43.000000
          50%
           75%
                       53.000000
           max
                       75.000000
           Name: dob_years, dtype: float64
            • для колонки children(количество детей в семье)

    посмтотрим количсетво -1 и 20

          df[df['children'] == -1].shape[0]
In [143...
Out[143...
          47
In [144...
          df[df['children'] == 20].shape[0]
Out[144...
            • удалим -1 и 20
In [145...
          # Удалить строки, где children равен -1
          df = df[df['children'] != -1]
In [146...
          # Удалить строки, где children равен 20
          df = df[df['children'] != 20]
In [147...
          df['children'].describe()
Out[147...
           count
                    20161.000000
                        0.470612
           mean
                        0.749234
           std
           min
                        0.000000
           25%
                        0.000000
           50%
                        0.000000
           75%
                        1.000000
                        5.000000
           max
           Name: children, dtype: float64
          восопльзуемся еще раз describe для демонстрации статистики по столбцам и отсуствию выбросов
          display(df[['total_income', 'dob_years', 'children']].describe())
In [148...
```

	total_income	dob_years	children
count	20161.000000	20161.000000	20161.000000
mean	23997.798351	43.519865	0.470612
std	9812.385382	12.329629	0.749234
min	3306.762000	19.000000	0.000000
25%	16817.222000	33.000000	0.000000
50%	23202.870000	43.000000	0.000000
75%	29410.209000	54.000000	1.000000
max	53039.263000	75.000000	5.000000

также продулируем построение графиков для визуализации данных

```
import matplotlib.pyplot as plt
import seaborn as sns

# Πος προθημα εραφικα δης `total_income`
plt.figure(figsize=(8, 5))
sns.boxplot(x=df['total_income'])
plt.title('Boxplot μης total_income')
plt.show()
```



```
In [150... # Построение графика для `dob_years`
plt.figure(figsize=(8, 5))
sns.boxplot(x=df['dob_years'])
plt.title('Boxplot для dob_years')
plt.show()
```

```
Вохріот для dob_years

20 30 40 50 60 70 dob_years
```

```
In [151... # Построение графика для `children`
plt.figure(figsize=(8, 5))
sns.boxplot(x=df['children'])
plt.title('Boxplot для children')
plt.show()
```


проверем информацию по исходной таблице и таблице на данном этапе анализа

```
      In [152...
      df_raw.shape

      Out[152...
      (21525, 12)

      In [153...
      df.shape

      Out[153...
      (20161, 12)

      In [154...
      #cmpok cmano на 71 меньше print(f'Количество строк стало меньше на : {round((1-df.shape[0]/df_raw.shape[0])*100,2)} процента')

      Количество строк стало меньше на : 6.34 процента

      * к содержанию
```

Шаг 4. Добавление в таблицу новых столбцов

1. Разделите клиентов на 5 категорий по уровню дохода:

- Без дохода люди без работы и с нулевым доходом.
- Очень низкий доход люди, получающие ниже 14 процентиля от общего распределения дохода.
- Низкий доход люди, получающие между 14 и 34 процентилями от общего распределения дохода.
- Средний доход люди, получающие между 34 и 78 процентилями от общего распределения дохода.
- Высокий доход люди, получающие больше 78 процентиля от общего распределения дохода.

```
In [155...
          # Процентильные границы
           percentile_14 = df['total_income'].quantile(0.14)
           percentile_34 = df['total_income'].quantile(0.34)
           percentile_78 = df['total_income'].quantile(0.78)
           # Функция для присвоения категорий
           def income_category(income):
               if income == 0:
                   return 'Без дохода'
               elif income < percentile_14:</pre>
                   return 'Очень низкий доход'
               elif income < percentile_34:</pre>
                   return 'Низкий доход'
               elif income < percentile_78:</pre>
                   return 'Средний доход'
               else:
                   return 'Высокий доход'
           # Создание новой колонки согласно функции
           df['income_category'] = df['total_income'].apply(income_category)
           display(df[['total_income', 'income_category']].head())
           print(df['income_category'].value_counts())
```

040620.102Высокий доход117932.802Низкий доход223341.752Средний доход342820.568Высокий доход425378.572Средний доход

total_income income_category

Средний доход 8870 Высокий доход 4436 Низкий доход 4032 Очень низкий доход 2823 Name: income_category, dtype: int64

1. Разделите клиентов на две категории по возрасту: до 40 лет и после. Сохраните результат в колонке age_category.

```
In [156...

# Место для вашего кода

# Функция для присвоения возрастных категорий

def age_category(age):
    if age < 40:
        return 'до 40 лет'
    else:
        return 'после 40 лет'

df['age_category'] = df['dob_years'].apply(age_category)

display(df[['dob_years', 'age_category']].head())
```

dob_yearsage_category042после 40 лет136до 40 лет233до 40 лет332до 40 лет453после 40 лет

1. Разделите клиентов на несколько категорий по количеству детей: без детей, от одного до двух, от трёх и больше. Сохраните результат в колонке childrens_category .

```
In [157...

# Место для вашего кода

def childrens_category(children):
    if children == 0:
        return 'без детей'
    elif children <= 2:
        return 'от одного до двух'
    else:
        return 'от трёх и больше'

df['childrens_category'] = df['children'].apply(childrens_category)

display(df[['children', 'childrens_category']].head())
```

childrenchildrens_category01от одного до двух11от одного до двух20без детей33от трёх и больше40без детей

как итог

In [158... display(df[['children','childrens_category','dob_years', 'age_category','total_income','income_category']].head(10))

	children	childrens_category	dob_years	age_category	total_income	income_category
0	1	от одного до двух	42	после 40 лет	40620.102	Высокий доход
1	1	от одного до двух	36	до 40 лет	17932.802	Низкий доход
2	0	без детей	33	до 40 лет	23341.752	Средний доход
3	3	от трёх и больше	32	до 40 лет	42820.568	Высокий доход
4	0	без детей	53	после 40 лет	25378.572	Средний доход
5	0	без детей	27	до 40 лет	40922.170	Высокий доход
6	0	без детей	43	после 40 лет	38484.156	Высокий доход
7	0	без детей	50	после 40 лет	21731.829	Средний доход
8	2	от одного до двух	35	до 40 лет	15337.093	Низкий доход
9	0	без детей	41	после 40 лет	23108.150	Средний доход

* к содержанию

Шаг 5. Проведение исследовательского анализа данных

Задайте структуру наиболее объёмной части исследования. Исследуйте факторы: Уровень дохода, Образование, Возраст, Количество детей. Отличается ли распределение между должниками и нет? Исследуйте вопрос графически. Постройте сводную таблицу по каждому фактору и покажите, как часто встречаются должники в каждой группе клиентов. Выберите подходящую визуализацию и сравните 2 группы.

• визуализируем таблицу с колонками, данные из которых будем анализировать

In [159... display(df[['income_category', 'education', 'dob_years', 'age_category', 'children', 'childrens_category', 'debt','total_income']].head(10)

	income_category	education	dob_years	age_category	children	childrens_category	debt	total_income
C	Высокий доход	bachelor's degree	42	после 40 лет	1	от одного до двух	0	40620.102
1	Низкий доход	secondary education	36	до 40 лет	1	от одного до двух	0	17932.802
2	Средний доход	secondary education	33	до 40 лет	0	без детей	0	23341.752
3	Высокий доход	secondary education	32	до 40 лет	3	от трёх и больше	0	42820.568
4	Средний доход	secondary education	53	после 40 лет	0	без детей	0	25378.572
5	Высокий доход	bachelor's degree	27	до 40 лет	0	без детей	0	40922.170
6	Высокий доход	bachelor's degree	43	после 40 лет	0	без детей	0	38484.156
7	Средний доход	secondary education	50	после 40 лет	0	без детей	0	21731.829
8	Низкий доход	bachelor's degree	35	до 40 лет	2	от одного до двух	0	15337.093
g	Средний доход	secondary education	41	после 40 лет	0	без детей	0	23108.150

• Уровень дохода

```
In [160...
# Место для вашего кода
income_pivot = df.pivot_table(index='income_category', columns='debt', values='total_income', aggfunc='count')
display(income_pivot)
income_pivot.plot(kind='bar', figsize=(10, 6))
plt.title('Pacпределение должников и недолжников по уровню дохода')
plt.xlabel('Категория дохода')
plt.ylabel('Количество')
plt.legend(['Недолжники', 'Должники'])
```

debt01income_category...Высокий доход4115321Низкий доход3691341Очень низкий доход2608215Средний доход8098772

Out[160... <matplotlib.legend.Legend at 0x7fbabec72d30>


```
In [161...
    education_pivot = df.pivot_table(index='education', columns='debt', values='total_income', aggfunc='count')
    display(education_pivot)
    education_pivot.plot(kind='bar', figsize=(10, 6))
    plt.title('Pacnpedenehue должников и недолжников по уровню образования')
    plt.xlabel('Уровень образования')
    plt.ylabel('Количество')
    plt.legend(['Недолжники', 'Должники'])
```

```
0
                                   1
               debt
          education
                               254.0
  bachelor's degree
                      4377.0
                                NaN
   graduate degree
                          6.0
                       248.0
  primary education
                                31.0
                     13240.0
                             1303.0
secondary education
       some college
                       641.0
                                61.0
```

Out[161... <matplotlib.legend.Legend at 0x7fbabe959100>

• Возраст

```
In [162... age_pivot = df.pivot_table(index='age_category', columns='debt', values='dob_years', aggfunc='count')
display(age_pivot)
age_pivot.plot(kind='bar', figsize=(10, 6))
plt.title('Pacnpeделение должников и недолжников по возрасту')
plt.xlabel('Возрастная категория')
plt.ylabel('Количество')
plt.legend(['Недолжники', 'Должники'])

debt 0 1

age_category

до 40 лет 7493 861

после 40 лет 11019 788
```

Out[162... <matplotlib.legend.Legend at 0x7fbabeaf4550>

• Количество детей

```
children_pivot = df.pivot_table(index='childrens_category', columns='debt', values='children', aggfunc='count')
display(children_pivot)
children_pivot.plot(kind='bar', figsize=(10, 6))
plt.title('Pacпределение должников и недолжников по количеству детей')
plt.xlabel('Категория по количеству детей')
plt.ylabel('Количество')
plt.legend(['Недолжники', 'Должники'])

debt 0 1

childrens_category
```

без детей123351011от одного до двух5856608от трёх и больше32130

Out[163... <matplotlib.legend.Legend at 0x7fbabe9fb850>

Проверьте исследовательскую гипотезу: у клиентов с детьми более высокий уровень финансовой ответственности и, следовательно, более низкий риск просрочек по кредиту.

- 1. Сравним количество должников и недолжников в зависимости от количества детей.
- 2. Построим график для сравнения

In [164... # Mecmo для вашего κοда
 children_debt_pivot = df.pivot_table(index='childrens_category', columns='debt', values='children', aggfunc='count', fill_value=0)
 children_debt_pivot

```
12335 1011
                    без детей
           от одного до двух
                                5856
                                       608
            от трёх и больше
                                 321
                                        30
In [165...
           # Вычислим долю должников в каждой категории
           children_debt_pivot['debt_ratio'] = children_debt_pivot[1] / (children_debt_pivot[0] + children_debt_pivot[1])
           children_debt_pivot
Out[165...
                        debt
                                         1 debt_ratio
           childrens_category
                    без детей
                               12335
                                      1011
                                              0.075753
           от одного до двух
                                5856
                                       608
                                              0.094059
            от трёх и больше
                                 321
                                        30
                                              0.085470
           # Вычислим долю должников в каждой категории
In [166...
           children_debt_pivot['debt_ratio'] = children_debt_pivot[1] / (children_debt_pivot[0] + children_debt_pivot[1])
In [167...
           children_debt_pivot[['debt_ratio']].plot(kind='bar', figsize=(5, 3), color='skyblue')
           plt.title('Доля должников по категориям количества детей')
           plt.xlabel('Категория по количеству детей')
           plt.ylabel('Доля должников')
           Text(0, 0.5, 'Доля должников')
Out[167...
             Доля должников по категориям количества детей
                                                  debt
                                                  debt_ratio
            0.08
          Доля должников
            0.06
            0.04
            0.02
            0.00
                      без детей
                                                   от трёх и больше
```

Проверьте исследовательскую гипотезу: одинокие мужчины с низким доходом чаще оказываются должниками, чем семейные мужчины со средним доходом.

1. Нужно создать 2 группы

Out[164...

debt

childrens_category

1

• Одинокие мужчины с низким доходом.

Категория по количеству детей

- Семейные мужчины со средним доходом.
- 2. Построить сводные таблицы
- 3. Построить графики визуализрующие итог
- выведем только те столбцы, что будем анализировать

In [168... display(df[['gender','family_status', 'income_category','debt']].head(10))

	gender	family_status	income_category	debt
0	F	married	Высокий доход	0
1	F	married	Низкий доход	0
2	М	married	Средний доход	0
3	М	married	Высокий доход	0
4	F	civil partnership	Средний доход	0
5	М	civil partnership	Высокий доход	0
6	F	married	Высокий доход	0
7	М	married	Средний доход	0
8	F	civil partnership	Низкий доход	0
9	М	married	Средний доход	0

```
• проверим уникальные значения для столбцов gender и family_status
```

- видно, что есть такой вариант как 'civil partnership', но в условии не оговоренно что считать сименйм мужчиной
- поэтому будем рассматривать только вариант 'married'

In [171... # *Группы*

single_low_income_men = df[(df['gender'] == 'M') & (df['family_status'] == 'unmarried') & (df['income_category'] == 'Низкий доход')] display(single_low_income_men.head(10))

	children	days_employed	dob_years	education	education_id	family_status	family_status_id	gender	income_type	debt	total_income	purpose
479	0	-3029.321191	29	secondary education	1	unmarried	4	М	employee	0	17784.268	housing
834	0	-1523.564571	29	bachelor's degree	0	unmarried	4	М	employee	0	14129.326	purchase of the house
1085	0	-1618.549219	29	secondary education	1	unmarried	4	М	civil servant	0	16564.878	housing transactions
1277	0	-1205.259599	20	secondary education	1	unmarried	4	М	employee	0	14782.012	housing
1281	1	-318.559894	43	secondary education	1	unmarried	4	М	business	0	17122.443	housing renovation
1286	0	-5020.574409	35	secondary education	1	unmarried	4	М	employee	0	14321.866	real estate transactions
1344	0	-1418.055816	24	secondary education	1	unmarried	4	М	employee	1	17464.201	buying my own car
1430	0	-340.644655	27	secondary education	1	unmarried	4	М	employee	0	18332.241	building a property
1741	0	-405.802043	25	secondary education	1	unmarried	4	М	business	0	18242.696	buying my own car
1847	2	-679.171126	35	secondary education	1	unmarried	4	М	employee	0	16890.247	housing

In [172... married_medium_income_men = df[(df['gender'] == 'M') & (df['family_status'] == 'married') & (df['income_category'] =='Средний доход')]
display(married medium income men.head(10))

		rried_medium_in	_	, ,								
	children	days_employed	dob_years	education	education_id	family_status	family_status_id	gender	income_type	debt	total_income	purpose
2	0	-5623.422610	33	secondary education	1	married	0	М	employee	0	23341.752	purchase of the house
7	0	-152.779569	50	secondary education	1	married	0	М	employee	0	21731.829	education
9	0	-2188.756445	41	secondary education	1	married	0	М	employee	0	23108.150	purchase of the house for my family
26	0	0.000000	41	secondary education	1	married	0	М	civil servant	0	23202.870	education
60	1	-2534.462390	48	secondary education	1	married	0	М	employee	0	20784.365	to become educated
66	0	-916.428829	28	secondary education	1	married	0	М	employee	0	23234.324	to become educated
72	1	0.000000	32	bachelor's degree	0	married	0	М	civil servant	0	23202.870	transactions with commercial real estate
76	1	-2252.192722	44	bachelor's degree	0	married	0	М	employee	0	23838.725	buying a second- hand car
78	0	359722.945074	61	bachelor's degree	0	married	0	М	retiree	0	28020.423	purchase of a car
83	0	0.000000	52	secondary education	1	married	0	М	employee	0	23202.870	housing
→												

```
married_medium_income_men_debt_ratio = married_medium_income_men['debt'].mean()
          print(f'Доля должников среди одиноких мужчин с низким доходом: {single_low_income_men_debt_ratio}')
          print(f'Доля должников среди семейных мужчин со средним доходом: {married_medium_income_men_debt_ratio}')
         Доля должников среди одиноких мужчин с низким доходом: 0.16939890710382513
         Доля должников среди семейных мужчин со средним доходом: 0.09852717115286948
In [174...
          # Сводные таблицы
          single_low_income_men_pivot = single_low_income_men.pivot_table(index='family_status', columns='debt', values='total_income', aggfunc='coun'
          married_medium_income_men_pivot = married_medium_income_men.pivot_table(index='family_status', columns='debt', values='total_income', aggful
          display(single_low_income_men_pivot)
          print('')
          display(married_medium_income_men_pivot)
                debt
         family_status
           unmarried 152 31
                debt
         family_status
             married 1775 194
```

```
In [175...
import matplotlib.pyplot as plt

# Визуализация
labels = ['Одинокие мужчины с низким доходом', 'Семейные мужчины со средним доходом']
debt_ratios = [single_low_income_men_debt_ratio, married_medium_income_men_debt_ratio]

plt.figure(figsize=(10, 6))
plt.bar(labels, debt_ratios, color=['red', 'green'])
plt.title('Доля должников среди различных групп клиентов')
plt.xlabel('Группы клиентов')
plt.ylabel('Доля должников')
```

Out[175... Text(0, 0.5, 'Доля должников')

Подсчет должников в каждой группе

single_low_income_men_debt_ratio = single_low_income_men['debt'].mean()

* к содержанию

Шаг 6. Выводы

- На основе построенных графиков в шаге 5 можно сделать следующие выводы
 - Уровень дохода
 - с увеличением дохода количество должников в основном снижается
 - наибольшее количество дллжников наблюдается среди людей снизким и очень низкми доходом
 - о то есть уровень дохода один из главных рисков возникнвоения задолжности
 - Образование
 - о основные должники срели людей со средним образованием
 - чем выше уровень образования, тем меньше вероятность быть должником
 - Возраст
 - в обоих категориях с одной стороны основнвая масса людей без задоллжности, сдругой строны количество должников сопоставимо
 - однако после 40 недолжников существенно больше, что может быть связано с опытом и ростом финансовой грамотности
 - Количество детей

- среди клиентов без детей самое большое количество как должников, так и недолжников
- с деьтми от 3 и выше количество должников существенно падает
- возможно наличие детей не позволяет быть более финансово рискованным

Распределение между должниками и недолжниками действительно отличается в зависимости от уровня дохода, образования, возраста и количества детей.

- Низкий доход и среднее образование увеличиают вероятность задолженности
- Высшее образование и высокий уровень дохода плюс возраст от 40 снижают риск стать должником.

Вывод по гипотезе 1

• таблица и визуализация не подтверждают гипотезу о том, что клиенты с детьми имеют более высокий уровень финансовой ответственности.

Вывод по гипотезе 2

- Гипотеза о том, что одинокие мужчины с низким доходом чаще оказываются должниками, чем семейные мужчины со средним доходом, подтверждается
- Одинокие мужчины с низким доходом имеют более высокую вероятность просрочить кредиту по сравнению с семейными мужчинами со средним доходом.

Таким образом первая гипотеза не подтверждается, вторая гпитеза подтвреждается

* к содержанию

Шаг 7. Проведение дополнительного исследования

(Необязательное задание) Исследуйте причины оформления кредита. Правда ли, что люди, которые брали кредит на образование, реже всего оказывались должниками?

```
In [176...
          # Изучите уникальные значения в поле purpose
          unique_purposes = df['purpose'].unique()
          print('Уникальные значения в поле purpose:', unique_purposes)
         Уникальные значения в поле purpose: ['purchase of the house' 'car purchase' 'supplementary education'
          'to have a wedding' 'housing transactions' 'education' 'having a wedding'
          'purchase of the house for my family' 'buy real estate'
          'buy commercial real estate' 'buy residential real estate'
          'construction of own property' 'property' 'building a property'
          'buying a second-hand car' 'buying my own car'
          'transactions with commercial real estate' 'building a real estate'
          'housing' 'transactions with my real estate' 'cars'
          'second-hand car purchase' 'getting an education' 'to become educated'
          'car' 'wedding ceremony' 'to get a supplementary education'
          'purchase of my own house' 'real estate transactions' 'to own a car'
          'purchase of a car' 'profile education' 'university education'
          'buying property for renting out' 'to buy a car' 'housing renovation'
          'going to university' 'getting higher education']
```

делим клиентов на группы по образованию и остальным причинам

```
In [177... # Φγμκιμα δηπ ρασδεπεμα μα εργηπω πο μεπα κρεδαπα
def find_education_purpose(purpose):
    if 'education' in purpose.lower():
        return 'education'
    else:
        return 'other'

df['purpose_category'] = df['purpose'].apply(find_education_purpose)
```

```
In [178... purpose_debt_pivot = df.pivot_table(index='purpose_category', columns='debt', values='purpose', aggfunc='count', fill_value=0)

purpose_debt_pivot['debt_ratio'] = purpose_debt_pivot[1] / (purpose_debt_pivot[0] + purpose_debt_pivot[1])

display(purpose_debt_pivot)

purpose_debt_pivot[['debt_ratio']].plot(kind='bar', figsize=(10, 6), color='red')
plt.title('Доля должников по категориям целей кредита')
plt.ylabel('Цель кредита')
plt.ylabel('Доля должников')
plt.show()
```

debt	0	1	debt_ratio
purpose_category			
education	2644	275	0.094210
other	15868	1374	0.079689

таким образом должников среди людей, бравших кредит на оьразование выше, чем по остальным причинам

• гпиотеза не подтвержена

* к содержанию