Transf. of random variables

· Recap

- 1) If polf of one variable is U(0,1), what is polf of some related variable ?
- ?) If we can generate samples from U(0,7),

 Now can we use this to generate samples from
 Our focus some other pdf?

o Two methods :

- 1) Rejection sampling
 - Sample U(xmx, xmax) and U(ymx, ymax) => (x, y)
 - · Keep x samples where Y sample betisfies Y < p(x)
 - · Inpove of importance sampling ...

2) Inverse transformation sampling

Inverse transform sampling

· Recap: The comulative distr. function (cdf) is defined by

$$F(x) = Prob(X \le X) = \int_{-\infty}^{X} p(x') dx'$$

(WEND lect. NOV 12)

· Example:

rdf: F(x)

$$\frac{dF}{dx} = p(x)$$

- · Idea for inverse transform sompling:
 - Assume we know y = F(x) and ran find inverse function F^{-1}
 - Con use this to generate x samples from p(x)

Algo:

- 1) Sample y from (10,7)
 - 2) Compute X = F-1(Y)

Repeat for as many samples as needed

- · Explanation:
 - In general, if $x \sim P_x(x)$ and y is some function y = f(x)we can find $P_y(y)$ from requirement

 $p_{\gamma}(\gamma)d\gamma = p_{\chi}(x)dx$

- Now look at special case where y = F(x) = cdf for x
- Recall that $P_x(x) = \frac{dF}{dx}$

$$P_{Y}(Y)dY = P_{X}(X)dX \qquad (1)$$

$$P_{Y}(Y)dy = P_{Y}(Y)\frac{dY}{dX}dX \qquad = P_{Y}(Y)\frac{dF}{dX}dX \qquad = P_{Y}(Y)P_{X}(X)dX \qquad (2)$$

(1),(2) =>
$$p_{y}(y)p_{x}(x)dx = P_{x}(x)dx$$

=> $p_{y}(y) = 1 = U(0,1)$

- o So if we sample $y \sim U(0,1)$ and compute $X = F^{-1}(y)$ we get an $x \sim p_x(x)$, which was our goal
- o Pro: No rejection sompling needed (efficiency)
- o Con; Regumes knowledge of javerse cdf
- o Smiler structure to (vandous)
 - 1) Use a RNG to sample from U(0,1)
 2) Use a transformation to obtain sample from P(x)