Homework 10 - STAT 231

Due in class, Thursday, Nov 21

The following problems are from the Devore textbook. You may use JMP whenever possible, but please print/include any relevant JMP output.

1. Chapter 12: Problem 7

Note: the true signal is 1800 + 1.3x or, in other words, the expected value of Y (28-day strength in psi) for a given x (accelerated strength in psi) is given by the signal $\mu_{y|x} = \beta_0 + \beta_1 x$ for $\beta_0 = 1800$ and $\beta_1 = 1.3$

2. Chapter 12: Problem 8(a)-(b) only.

Note: If $\epsilon \sim N(0,350^2)$ (mean 0 & standard deviation 350), then in the population regression model we have $Y = \mu_{y|x} + \epsilon \sim N(\mu_{y|x}, 350^2)$ for a given value of x; that is, Y is normal with mean $\mu_{y|x} = \beta_0 + \beta_1 x$ and standard deviation 350, where $\beta_0 = 1800$ and $\beta_1 = 1.3$. Part(a) is finding the normal probability P(Y > 5000) when given x = 2000, and Part(b) is finding the normal probability P(Y > 5000) when given x = 2500.

3. Chapter 12: Problem 14

You can use the output below found from JMP. Part(b) is an estimate \hat{y} of the signal for y when x = 182 using the estimated regression line; use (b) to find residuals in (c).

- 4. Chapter 12: Problem 19 Use JMP
- 5. Chapter 12: Problem 52(b)-(f) (i.e, skip (a))
 Use the JMP out put on the next page for this problem.

Problem 5 in HW 10 (problem 52 in text book)

Distributions

Quantiles		
100.0%	maximum	4
99.5%		4
97.5%		4
90.0%		4
75.0%	quartile	3.5
50.0%	median	2.5
25.0%	quartile	1.75
10.0%		1.5
2.5%		1.5
0.5%		1.5
0.0%	minimum	1.5

Summary Statistics

Mean	2.6666667
Std Dev	0.9013878
Std Err Mean	0.3004626
Upper 95% Mean	3.3595347
Lower 95% Mean	1.9737987
N	9