國立中與大學

資訊工程學系

CAD Homework #1

The Column Covering Problem

(due Oct. 25, 2023)

Problem Formulation

Column Cover

Let X and Y be two sets, and R be a relation defined on $X \times Y$. We say that y covers x when xRy. The matrix associated with the column covering problem $\langle X, Y, R \rangle$ has rows labeled with elements of X and columns labeled with elements of Y, such that the element [x, y] of the matrix is equal to 1 iff xRy. A subset C of Y is a **column cover** of X iff for each element x in X, there exists some element y in C such that xRy.

Cost

The cost of a column cover is

cost(C) = (|C|, weight(C)),

where |C| is the cardinality of the column cover C, weight $(C) = \sum_{y \in C} \text{weight}(y)$, and weight (y) is the weight of an element y.

Given two column covers C_1 and C_2 , $cost(C_1) < cost(C_2)$ either if $|C_1| < |C_2|$ or if $|C_1| = |C_2|$ and weight(C_1)
< weight(C_2).

Problem

Given X, Y, R, and the weight associated with each element of Y, write a program to find the column cover of X with the minimum cost.

Benchmarks

Your program should allow input from a user-specified file and report the results. The following shows an example.

Input Format

4	4			// the cardinalities of X and Y					
1	2	4	3	// the weights of elements of Y		1	2	4	3
1	1			// R is described from this line, $[x_1, y_1]=1$		y_1	y_2	y_3	$y_{\scriptscriptstyle A}$
1	4			$//[x_1, y_4]=1$	\ \r	1		- 3	1
2	1			$//[x_2, y_1]=1$	x_1	1			1
2	3			$//[x_2, y_3] = 1$	x_2	1		1	
3	2			$//[x_3, y_2]=1$	x_3		1	1	
3	3			$//[x_3, y_3]=1$	x_4				1
4	4			$//[x_4, v_4]=1$					

Output Format

```
3 4 // the minimum column cover C, \{y_3, y_4\} (2, 7) // cost(C)
```

Requirements

Your program must be able to be executed at **UNIX** or **Window** operation system in the following format.

```
% executable file input file
```

The document detailing the features of your approach and complexity reduction strategy is a must. Please send the compressed file of the source code, the executable file and the document to your teaching assistant. (Please specify your **student ID** in the subject line.) Performance will be evaluated by five instances (bench2.txt, bench3.txt, bench4.txt, bench5.txt, and bench6.txt). The benchmark circuits are posted along with this assignment.

Grading

Written in C (or C++)	20%
Unique source code	20%
Show one minimum column cover	20%
Documentation	10%
Performance	15%
Complexity reduction strategy	15%
(bonus) Show all minimum column covers	15%