Thermoelastic fracture problems using Extended Finite Element Method

By Bharat Bhushan (153100048)

Under the guidance of Prof. Salil S. Kulkarni

Department of Mechanical Engineering, IIT Bombay

October 18, 2016

Outline

- Introduction
- Motivation
- Literature Survey
- Work done
- Problem definition
- Conclusion

Introduction: Thermo-elastic Fracture Problems

- Due to heat transfer, temperature field is set up in the material which induces thermal stresses in the body.
- These stresses becomes large in the vicinity of a discontinuity i.e. crack tip. If temperature variation is sufficiently large, it can lead to failure.
- Applications: Nuclear power plants, cylinder-nozzle intersection in pressure vessels, aerodynamic heating of high-speed aircraft, ultra fast pulse lasers etc.

(b) Cracked head of baffle bolt of Belgian Nuclear Reactor.(www.miningawareness.wordpress.com)

source: Tian, X., Shen. (2006). A direct finite element method study of generalized thermoelastic problems. International Journal of Solids and Structures, 43(7), 2050-2063.

Why thermal load on crack is important?

- Atkinson has solved the Dirichlet problem for Laplace's equation on a pie shaped region as $u(x,y)=r^{\frac{\pi}{\phi}}\sin\alpha\theta,\ r>0,\ 0<\theta<\phi$
 - If $0 < \phi < \pi$: The first partial derivative of u with respect to x and y remains continuous as we approach towards the origin.
 - If $\pi < \phi < 2\pi$: The first derivative u with respect to x and y are not continuous as (x,y) approaches the origin.
- When $\phi=2\pi$, the problem becomes a crack problem and displacement and derivative of displacement vary as $u \propto r^{\frac{1}{2}}$ and $u' \propto r^{-\frac{1}{2}}$ respectively.
- As thermo-elastic problems are also governed by Laplace's equation, temperature will vary as $r^{\frac{1}{2}}$ and heat fluxes will be unbounded at the crack tip.

source: Atkinson, K. E. (1997). The numerical solution of integral equations of the second kind (Vol. 4). Cambridge university press.

Pie-shaped region.

Finite Element Methods for Solving Thermoelastic Fracture Problems

- Methods for calculating stress intensity factors in FEM can be divided in two categories,
 - Substitution method
 - o Energy method
- In substitution method, we can get the SIF's as:

$$u = \frac{1+\nu}{4E} \sqrt{\frac{2r}{\pi}} \left\{ K_I \left[(2\kappa - 1) \cos \frac{\theta}{2} - \cos \frac{3\theta}{2} \right] + K_{II} \left[(2\kappa + 3) \sin \frac{\theta}{2} + \sin \frac{3\theta}{2} \right] \right\}$$

A similar equation exist for v also.

Using energy method, SIF's can be calculated as*

$$G = -rac{d\Pi}{da} \; , \qquad \Pi = -rac{1}{2}u^T[K]u + rac{1}{2}\int {arepsilon_0}^T[D]{arepsilon_0}dV$$

^{*}source:Hellen, T. K., & Cesari, F. (1979). On the solution of the centre cracked plate with a quadratic thermal gradient. *Engineering Fracture Mechanics*, 12(4), 469-478.

Extended Finite Element Method in Thermoelasticity

- We have to use very fine mesh at capture the behaviour of crack.
- In XFEM, we enrich the polynomial approximation to include the effects of singular discontinuous field.
- Advantages:
 - Mesh is prepared without considering the existence of discontinuity.
 - No need of remeshing.

Two types of enrichment functions in XFEM

 The nodes which belongs to the elements totally cut by the crack, are enriched by and Heaviside function.

$$h(x,y) = \begin{cases} 1, & \text{for } y \ge 0 \\ -1, & \text{for } y \le 0 \end{cases}$$

• The nodes of elements which contains cracktip are enriched by γ :

$$\begin{split} u^h &= \sum_i N_i(x) u_i + \sum_{j \in J} N_j(x) h(x) a_j + \sum_{k \in K} N_k(x) \left(\sum_{l=1}^4 \gamma_l(x) b_{kl} \right) \\ v^h &= \sum_i N_i(x) v_i + \sum_{j \in J} N_j(x) h(x) c_j + \sum_{k \in K} N_k(x) \left(\sum_{l=1}^4 \gamma_l(x) d_{kl} \right) \\ where, \quad \gamma &= \left[\sqrt{r} \cos \left(\frac{\theta}{2} \right), \sqrt{r} \sin \left(\frac{\theta}{2} \right), \sqrt{r} \sin \left(\frac{\theta}{2} \right) \sin(\theta), \sqrt{r} \cos \left(\frac{\theta}{2} \right) \sin(\theta) \right] \end{split}$$

Source:Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International journal for numerical methods in engineering, 45(5), 601-620.

7 of 20

Which Nodes to Enrich? - Level Set Method

- There are two level-set functions defined as follows:
 - Normal level set, $\psi(x)$ = the signed distance from the crack surface.
 - Tangent level set, $\phi(x)$ = the signed distance to the plane including the crack front and perpendicular to the crack surface.
- To decide which enrichment should be used.
 - If $\phi < 0$ and $\psi_{min}\psi_{max} \leq 0$, nodes should be enriched with h(x).
 - If $\phi_{min}\phi_{max} \leq 0$ and $\psi_{min}\psi_{max} \leq 0$, nodes should be enriched with γ .

Level Set Method

Source: Abdelaziz, Y., Bendahane, K., & Baraka, A. (2011). Extended Finite Element Modeling: Basic Review and Programming. Engineering, 3(07), 713.

Work Done

- Finite Element Formulation of coupled thermoelasticity
- Development of a MATLAB program for semi-coupled thermoelastic problems.
- Patch tests to validate the developed FEM program.
- Solution of various thermoelastic fracture problems and comparison with the analytical solutions.
- Comparison between the solutions of FEM and XFEM programs.

Finite Element Formulation of Thermo-elasticity

- We will formulate the semi-coupled in which we neglect the effect of displacements on temperature field.
- In thermoelastic case the total strain is given as:

$$\varepsilon_{ij} = \varepsilon_{ij}^{(M)} + \varepsilon_{ij}^{(T)} = \frac{1+\nu}{E} \sigma_{ij} - \frac{\nu}{E} \sigma_{kk} \delta_{ij} + \alpha (T-T_0) \delta_{ij}$$

• Which can be inverted to get following stress-strain relationship:

$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{cases} = \frac{E}{(1 - \nu^{2})} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & 1 - \nu \end{bmatrix} \begin{cases} \varepsilon_{x} - \alpha \Delta T \\ \varepsilon_{y} - \alpha \Delta T \\ \varepsilon_{xy} \end{cases}$$

Governing Equations of Thermoelasticity

• The governing equations of the thermo-elasticity is derived as:

$$\begin{split} \frac{\partial}{\partial x} \left[c_{11} \frac{\partial u}{\partial x} + c_{12} \frac{\partial v}{\partial y} \right] + \frac{\partial}{\partial y} \left[c_{66} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] - (c_{11} + c_{12}) \alpha \frac{\partial T}{\partial x} - f_x &= 0 \\ \frac{\partial}{\partial x} \left[c_{66} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[c_{12} \frac{\partial u}{\partial x} + c_{22} \frac{\partial v}{\partial y} \right] - (c_{11} + c_{12}) \alpha \frac{\partial T}{\partial y} - f_y &= 0 \\ k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) &= q \end{split}$$

• We can develop a week form of above equations by approximating u,v and T over a typical finite element Ω^e as:

$$u(x,y) = \sum_{i=1}^{n} N_i(x,y)u_i \ , v(x,y) = \sum_{i=1}^{n} N_i(x,y)v_i \ , T(x,y) = \sum_{i=1}^{n} N_i(x,y)T_i$$

Weak Form Equations of Coupled Thermoelasticity

$$\begin{split} -\int_{\Omega} \left[c_{11} \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial x} u_{j} + c_{12} \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial y} v_{j} \right] dx dy + \int_{\Omega} \left[c_{66} \frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial y} u_{j} dx dy + \frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial x} v_{j} \right] dx dy \\ -\int_{\Omega} \frac{\partial N_{i}}{\partial x} \beta N_{j} T_{j} dx dy + \int_{\Omega} N_{i} f_{x} dx dy + \int_{\Gamma} N_{i} \vec{t} dx = 0 \end{split}$$

$$\begin{split} -\int_{\Omega} \left[c_{11} \frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial y} v_{j} + c_{12} \frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial x} u_{j} \right] dx dy + \int_{\Omega} \left[c_{66} \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial x} v_{j} dx dy + \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial y} u_{j} \right] dx dy \\ - \int_{\Omega} \frac{\partial N_{i}}{\partial y} \beta N_{j} T_{j} dx dy + \int_{\Omega} N_{i} f_{y} dx dy + \int_{\Gamma_{\text{MARKET}}} N_{i} \vec{t} dy = 0 \end{split}$$

$$k \int_{\Omega} \left(\frac{\partial N_i}{\partial x} \frac{\partial N_j}{\partial x} + \frac{\partial N_i}{\partial y} \frac{\partial N_j}{\partial y} \right) T_j dx dy - \int_{\Omega} N_i N_j q dx dy = \int_{\Gamma} N_i \bar{Q} ds$$

Finite Element Model

• Neglecting the body forces, above equations can be written in matrix form as:

$$\begin{bmatrix} K_{11} & K_{12} \\ 0 & K_{22} \end{bmatrix} \begin{Bmatrix} U^e \\ T^e \end{Bmatrix} = \begin{Bmatrix} F \\ Q \end{Bmatrix}$$

Where,

$$\begin{split} [K_{11}^e] &= \int_{\Omega} [B]^T [C] [B] dx dy \quad [K_{12}^e] = \int_{\Omega} [B]^T [\beta] [N^\theta] dx dy \quad [K_{22}^e] = \int_{\Omega} [B^\theta]^T [K] [B^\theta] dx dy \\ \{F\} &= \int_{\Gamma} [N]^T \overline{t} ds \quad \{Q\} = \int_{\Gamma} [N^\theta]^T \overline{Q} ds \end{split}$$

$$[B] = \begin{bmatrix} \frac{\partial N_1}{\partial x} & 0 & \frac{\partial N_2}{\partial x} & 0 & \dots & \frac{\partial N_n}{\partial x} & 0 \\ 0 & \frac{\partial N_1}{\partial y} & 0 & \frac{\partial N_2}{\partial y} & \dots & 0 & \frac{\partial N_n}{\partial y} \\ \frac{\partial N_1}{\partial y} & \frac{\partial N_1}{\partial x} & \frac{\partial N_2}{\partial y} & \frac{\partial N_2}{\partial x} & \dots & \frac{\partial N_n}{\partial y} & \frac{\partial N_n}{\partial x} \end{bmatrix}, \ [B^{\theta}] = \begin{bmatrix} \frac{\partial N_1}{\partial y} & \frac{\partial N_2}{\partial y} & \frac{\partial N_2}{\partial y} & \dots & \frac{\partial N_n}{\partial y} \\ \frac{\partial N_1}{\partial y} & \frac{\partial N_2}{\partial x} & \frac{\partial N_2}{\partial y} & \frac{\partial N_2}{\partial y} & \dots & \frac{\partial N_n}{\partial y} \end{bmatrix}$$

$$N = \begin{bmatrix} N_1 & 0 & N_2 & 0 & \dots & N_n & 0 \\ 0 & N_1 & 0 & N_2 & \dots & 0 & N_n \end{bmatrix}, \ N^{\theta} = [N_1 \ \dots \ N_n]$$

Computer implementation

A MATLAB program is developed to solve the 2-dimensional thermoelasticity problems.

Quadrilateral (Q4) elements were used for meshing the body.

 2×2 Gauss quadrature rule is used for numerical integration.

A flow-chart showing the steps of the programming is shown in the figure.

Patch Test 1

- A square plate is taken and meshed with 4 elements as shown in figure below.
- Minimum number of essential boundary conditions is fixed to eliminate the rigid body motions
- Loads are applied such that there is constant state of stress in the body
- Numerical integration is performed using 2×2 Gauss quadrature rule.

(b) Results of Patch Test 1

	Gauss Points	$\sigma_{\times}/2F$	$\sigma_y/2F$	$\tau_{xy}/2F$
Element 1	1	-0.222×10^{-15}	1	0.1665×10^{-15}
	2	0.2498×10^{-15}	1	0.1665×10^{-15}
	3	0.3058×10^{-15}	1	0.222×10^{-15}
	4	0	1	0
Element 2	1	-0.222×10^{-15}	1	0
	2	41633×10^{-15}	1 .	0.111×10^{-15}
	3	0.02775×10^{-15}	1	0.138×10^{-15}
	4	-0.1110×10^{-15}	1	-0
Element 3	1	0.222×10^{-15}	1 2	0.1665×10^{-15}
	2	0.0555×10^{-15}	1	0.222×10^{-15}
	3	-0.0555×10^{-15}	1	0
	4	0.22204×10^{-15}	1	0
Element 4	1	-0.222×10^{-15}	1	0.1665×10^{-15}
	2	0.222×10^{-15}	1 /	0.1665×10^{-15}
	3	0.3058×10^{-15}	1	0.222×10^{-15}
	4	0.222×10^{-15}	1	0

Patch Test 2

- A square plate is taken and meshed with 4 elements as shown in figure below.
- Minimum number of essential boundary conditions is fixed to eliminate the rigid body motions
- · Loads are applied such that there is constant state of stress in the body
- Numerical integration is performed using 2×2 Gauss quadrature rule.

F Node (x,y) 1 (0,0) 2 (2,0) 3 (2,2) 4 (0,2) 5 6 (1.5,1) 7 (1.2,1.4) 8 (0.7,1.6)

(a) Mesh Configuration

(b) Results of Patch Test 2

	Gauss Point	σ_x/F	σ_y/F	τ_{xy}/F
Element 1	1	0.166×10^{-15}	1	0.1665×10^{-15}
	2	-0.033×10^{-15}	1	0.1665×10^{-15}
	3	-0.063×10^{-15}	1	0.222×10^{-15}
	4	0	1	0
Element 2	1	0.062×10^{-15}	1	0
	2	41633×10^{-15}	1	-0.222×10^{-15}
	3	0.02775×10^{-15}	1	0.138×10^{-15}
	4	-0.2220×10^{-15}	1	0
Element 3	1	0.222×10^{-15}	1	0.1665×10^{-15}
	2	0.0555×10^{-15}	1	0.222×10^{-15}
	3	-0.0555×10^{-15}	1	0
	4	0.22204×10^{-15}	1	0
Element 4	1	-0.222×10^{-15}	1	0.1665×10^{-15}
	2	0.222×10^{-15}	1	0.1665×10^{-15}
	3	-0.063×10^{-15}	1	0.222×10^{-15}
	4	0.222×10^{-15}	1	0
Element 5	1	-0.422×10^{-15}	1	0.1665×10^{-15}
	2	0.222×10^{-15}	1	0.1665×10^{-15}
	3	-0.063×10^{-15}		0.222×10^{-15}

Patch Test for thermal code

- A square plate is taken and meshed with 4 elements as shown in figure below.
- Minimum number of essential boundary conditions is fixed to eliminate the rigid body motions
- Loads are applied such that there is constant state of stress in the body
- Numerical integration is performed using 2×2 Gauss quadrature rule.

(b) Results of Patch test 3

Nodes	Temperatures	$Q_y(W)$	$Q_{\times}(W)$	
1	273	200	0.125×10^{-10}	
2	273	200	0.155×10^{-10}	
3	273	200	0.222×10^{-10}	
4	281	200	& INDIAN O'STITUS	
5	276	200	0	
6	281	200	217012	
7	281	200	0.111×10^{-10}	
8	279	200	0.138×10^{-10}	
9	278	200	0	

(a) Temperature distribution

Patch Test for Thermo-elastic code: Poisson's equation

18 of 20

Mesh Refinements

Errors obtained after mesh refinements

Number of Elements	Error in u _x	Error in u _y	Error in σ_x	Error in σ_y	Error in $ au_{xy}$
7 × 7	5.783469×10^{-10}	5.783469×10^{-10}	6.668255×10^{2}	6.668255×10^{2}	3.615391×10^{2}
12 × 12	1.764697×10^{-11}	1.764697×10^{-11}	1.000597121	1.000597121	0.031722
20 × 20	1.265804×10^{-12}	1.265804×10^{-12}	0.994299467	0.994299467	0.005781

Plate with edge crack

20 of 20