Attention: YÖK nun 2547 sayılı Kanunun Öğrenci Disiplin Yönetmeliğinin 9. Maddesi olan "Sınavlarda kopya yapmak ve yaptırmak veya buna teşebbüs etmek" fiili işleyenler bir veya iki yarıyıl uzaklaştırma cezası alırlar.

- 1. (D points) $A, 3 \times 3$ boyutlu bir kare matris ve det(A) = 2olsun. Adj $\left(\operatorname{Adj}\left(A\right)^{-1}\right)$ matrisinin determinant değeri aşağıdakilerden hangisidir ?
 - a) 2
- b) 3 c) $\frac{2}{3}$ d) $\frac{1}{4}$

- asağıdakilerden hangisi sıfır matrisidir?
 - a) $A^3 4A^2 + A + 6I_3$
- b) $A^3 3A^2 + 2A + 6I_3$
- c) $A^3 4A^2 + 3A + 6I_3$
- d) $A^3 3A^2 + A + 6I_3$
- e) Hiçbiri.

4. (A points)

$$x + 2y + 3z = 4$$

$$x + 3y + 2z = 8$$

lineer denklem sistemi sonsuz özüme sahip ise a+b değeri aşağıdakilerden hangisidir

- a) 4
- b) 5
- c) 6
- e) 9

5. (C points) Aşağıdakilerden

matrisinin bir özvektörüdür?

- natrisinin özdeğerleri 4 and 8 ise a + b degeri aşağ dakilerden hangisidir?
- c) 2
- d) 3
- e) 6

6. (A points)

$$2x + 3y = 4$$

$$x + y + z \neq 4$$

$$x + 2y - z = a$$

denklem sistemi lineer ozümsüz değilse a değerleri aşağıdakilerden hangisidir?

- a)
- c) 4

- e) Köyle bir a değeri yoktur.

7. (C points)

Özdeğerler Özvektörler
$$\lambda_1 = 4 \qquad v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$\lambda_2 = 8 \qquad v_2 \neq \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Özdeğerleri ve özvektörleri vukarıda verilen 2×2 boyutlu A matrisi aşağıdakilerden hangisidir?

c) Yalin III

 $C_1\left(-1/(10)\right) \qquad -1 \quad | \quad 0 \quad | \quad 0 \quad |$ $-1 \quad 0 \quad | \quad 0 \quad | \quad 0 \quad |$ $-1 \quad 0 \quad |$ $-1 \quad 0 \quad | \quad 0 \quad |$ $-1 \quad 0 \quad | \quad 0 \quad |$ $-1 \quad 0 \quad$

altkümesi için aşağıdakilerden hangileri doğrudur?

 \mathcal{U} . W, \mathbb{R}^3 'ün bir alt uzayıdır.

- $\left\{ \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}^T \right\} \text{ kümesi lineer bağımsızdır fakat W'yu germez.}$
- - d I ve III

9. (B points) $A = [a_{ij}], 1 \le i, j \le n, n \ge 3$ ve $a_{ij} = i.j$ olmak üzere A matrisinin rankı aşağıdakilerden hangisidir?

- matrisinin tersi aşağıdakilerden 10. (A points) hangisidir?
 - a) Tersi yoktur.

$$[v]_T = A [v]_{s}$$

eşitliğini sağlayan A matrisi aşağıdakilerden hangisidir?

a)
$$\begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}$$

$$\begin{array}{c|c} -1 & -2 \\ -2 & 3 \end{array}$$

c)
$$\begin{bmatrix} -1 & 2 \\ -2 & -3 \end{bmatrix}$$

$$d) \begin{bmatrix} 1 & 2 \\ -2 & -3 \end{bmatrix}$$

$$\begin{array}{c} \text{e} \end{array} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$

- 12. (D points) $S = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$ 1 / vektörünün S bazına bir bazı olmak üzere v =
 - göre koordinat vektörü aşağıdakilerden hangisidir?

 $m{Y}$ alnız $\mathcal U$

altkümelerden 13. (C points) Aşağıdaki hangileri bir altuzaydır?

- a) Yalnız \mathcal{Y}
- d) \mathcal{Y} ve \mathcal{T}

14. (E points) $M_{n\times n}$, reel bileşenli $n\times n$ boyutlu tüm matrislerin vektör uzayı olsun ve

$$W = \left\{ \begin{bmatrix} a & 0 \\ b & c \end{bmatrix} \in M_{2 \times 2} \mid a + b = c, \ a, b, c \in \mathbb{R} \right\}$$

altkümesi verilsin. Aşağıdakilerden hangileri her zaman doğrudur?

 \checkmark I. $W, M_{2\times 2}$ uzayının bir altuzayıdır.

II.
$$B = \left\{ \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & -1 \end{bmatrix} \right\}, W için bir tabandır.$$

 $\text{MI. } \operatorname{Boy}(W) = 2.$

- a) Yalnız I
- b) Yalnız II
- c) I ve II

- d) I ve III
- (e) I, II ve III

- 15. (B points) \vec{a} , \vec{b} ve \vec{c} vektörleri için $\vec{d} + \vec{b} + \vec{c} = \vec{0}$ ve $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$ ise \vec{a} ve \vec{b} vektörleri arasındaki açı aşağıdakilerden hangisidir?

- a) -1
- b) 1
- d) $|\vec{a}|$
- c) 0

17. (D points)
$$\begin{bmatrix} 0 & 3 & 1 & 1 \\ -2 & 0 & 2 & k \\ -3 & 2 & 0 & 0 \\ 7 & 1 & 0 & 0 \end{bmatrix}$$
 matrisinin tersi yok ise k değeri aşağıdakilerden hangisidir?

- a) 0
- b) -1
- d) 2
- e) -2

- 18. (C points) $A = [a_{ij}]_{m \times n}$, $B = [b_{jk}]_{n \times p}$ ve $C = [c_{kl}]$ ABC matrisinin boyutu aşağıdakilerden hangisidir. $= [c_{kl}]_{p \times q}$ ise
 - a) $n \times q$
- b) m

- d) $m \times p$
- c) $m \times q$

- ab19. (A points) Aiçin matrisiaşağıdakilerden hangisi doğrudur a) Nilpotent 2) İnvolut c) Ortogonal
 - d) İdempotent Hermityen

- $1 i \quad 2$ 20. (B points) A =rs-Hermityen matris ise x + y + z değeri aşağıdakilerden hangisidir?
 - a) 3 2i
- c) 1 i

- d) 2 3i