НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 3.4.5 «Закон Кюри-Вейсса»

Овсянников Михаил Александрович студент группы Б01-001 2 курс ФРКТ

г. Долгопрудный 2021 г.

Цель работы: изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

Оборудование: катушка самоиндукции с образцом из гадолиния, термостат, частотометр, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

Теоретические сведения

При повышении температуры возрастает дезориентирующее действие теплового движения частиц, и магнитная восприимчивость парамагнетиков убывает, в простейшем случае (в постоянном магнитном поле) - по закону Кюри.

Рис. 1. Теоретический график зависимости обратной магнитной воспри-имчивости от температуры

При $T \to 0$ тепловое движение всё меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках (под влиянием обменных сил) это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри Θ , в которой добавка к температуре Θ_p — некая температура, называемая парамагнитной точкой Кюри. Она близка к Θ , но немного больше ее (см. рис.1).

В данной работе изучается температурная зависимость $\chi(T)$ гадолиния при температурах выше точки Кюри. Выбор материала определяется тем, что его точка Кюри лежит в интервале комнатных температур.

Экспериментальная установка

Рис. 2. Схема экспериментальной установки

Схема установки для проверки закона Кюри-Вейсса показана на рис. 2. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC-автогенератора.

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика (\sim 50 кГц), поэтому для уменьшения вихревых токов образец из готовлен из мелких кусочков размером 0,5 мм. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближенной оценки температуры.

При изменении температуры меняется магнитная восприимчивость образца χ , а следовательно, самоиндукция катушки и период колебаний τ автогенератора. Для измерения периода используется частотомер.

Закон Кюри- Вейсса справедлив, если выполнено соотношение

$$\frac{1}{\chi} \sim T - \Theta_p \sim \frac{1}{\tau^2 - \tau_0^2} \tag{1}$$

где au_0 — период колебаний без образца.

Для нагрева используется термостат. Температура исследуемого образца всегда несколько отличается от температуры дистиллированной воды в сосуде. После того как вода достигла заданной температуры, идет медленный процесс выравнивания температур образца и воды. Разность их температур контролируется с помощью медно-константановой термопары 6 и цифрового вольтметра. Один из спаев термопары находится в тепловом контакте с образцом, а другой погружен в воду. Концы термопары подключены к цифровому вольтметру. Рекомендуется измерять период колебаний автогенератора в тот момент, когда указанная разность температур становится $\leq 0,5~^{\circ}C$. Чувствительность термопары $\kappa=24~{\rm град/мB}$.

Ход работы

Запишем период колебаний au_0 без образца: $au_0 = 9,045$ мкс.

Индуктивность цепи будет вычисляться по формуле: $L = \frac{\mu_0 \mu N^2 S}{2\pi R}$

Запишем индуктивность катушки без образа: $L_0 = 1602$ мк Γ н.

Знаем соотношение:
$$\frac{\tau^2 - \tau_0^2}{\tau_0^2} = \mu - 1 = \chi$$
.

Снимем зависимость периода колебаний с образцом от температуры. Точность ее измерения составляет $\Delta t=0,072~^{\circ}C$. Результаты запишем в таблицу.

$t, {}^{\circ}C$	T, K	τ , MKC	χ	$1/\chi$	μ	L , мк Γ н
10,77	283,92	10,86	0,442	2,263	1,442	2309,9
12,12	285,27	10,84	0,435	2,298	1,435	2299,2
14,14	287,29	10,77	0,418	2,395	1,418	2271,0
16,13	289,28	10,66	0,389	2,568	1,389	2226,0
18,12	291,27	10,48	0,342	2,923	1,342	2150,1
20,11	293,26	10,17	0,265	3,768	1,265	2027,2
22,10	295,25	9,80	0,174	5,759	1,174	1880,2
24,10	297,25	9,52	0,108	9,271	1,108	1774,8
26,10	299,25	9,40	0,079	12,628	1,079	1728,9
30,09	303,24	9,28	0,052	19,065	1,052	1686,0

Таблица 1. Данные

Теперь построим графики $\chi(T),\, \frac{1}{\chi}(T),\, \mu(T)$ и L(T).

Сначала $\frac{1}{\chi}(T)$:

Рис. 3. Зависимость $\frac{1}{\chi}(T)$

Из графика сразу получаем парамагнитную точку Кюри для гадолиния: $\Theta_p=291,7~\mathrm{K}=18,55~^{\circ}C$

Теперь $\chi(T)$:

Рис. 4. Зависимость $\chi(T)$

И $\mu(T)$ и L(T):

Рис. 5. Зависимость $\mu(T)$ и L(T) соответственно

Вывод: в работе была изучена температурная зависимость магнитной восприимчивости гадолиния выше точки Кюри. Была также найдена сама точка Кюри $\Theta_p=291,7$ К. Все ошибки связаны с неточностью измерений.