ML-MAJOR-JUNE-ML063B10

The dataset contains the following fields:

- _unit_id: a unique id for user
- **_golden**: whether the user was included in the gold standard for the model; TRUE or FALSE
- _unit_state: state of the observation; one of finalized (for contributor-judged) or golden (for gold standard observations)
- _trusted_judgments: number of trusted judgments (int);
 always 3 for non-golden, and what may be a unique id for gold standard observations
- _last_judgment_at: date and time of last contributor judgment; blank for gold standard observations
- gender: one of male, female, or brand (for non-human profiles)
- gender:confidence: a float representing confidence in the provided gender
- **profile_yn**: "no" here seems to mean that the profile was meant to be part of the
- profile_yn:confidence: confidence in the existence/nonexistence of the profile
- created: date and time when the profile was created
- description: the user's profile description
- fav_number: number of tweets the user has favorited
- gender_gold: if the profile is golden, what is the gender?
- link_color: the link color on the profile, as a hex value
- name: the user's name
- profile_yn_gold: whether the profile y/n value is golden
- profileimage: a link to the profile image
- retweet_count: number of times the user has retweeted (or possibly, been retweeted)
- sidebar_color: color of the profile sidebar, as a hex value
- text: text of a random one of the user's tweets

- tweet_coord: if the user has location turned on, the coordinates as a string with the format "[latitude, longitude]"
- tweet_count: number of tweets that the user has posted
- tweet_created: when the random tweet (in the text column) was created
- tweet_id: the tweet id of the random tweet
- tweet_location: location of the tweet; seems to not be particularly normalized
- user_timezone: the timezone of the user

We have worked on some questions and provided answers to that such as

Question 1:

What are the most common words used by males and females?

Answer 1:

Males

```
('that', 760),
('with', 534),
 ('have', 534),
 ('thi', 473),
 ('just', 465),
 ('your', 429),
 ('like', 391),
 ('they', 351),
 ('what', 303),
 ('when', 283),
 ('time', 258),
 ('from', 258),
 ('will', 257),
 ('love', 252),
('about', 251),
('make', 242),
 ('know', 202),
 ('look', 200),
 ('peopl', 197),
 ('there', 192),
 ('good', 189),
 ('think', 185),
 ('want', 179),
```

```
('need', 171),
('follow', 170)
```

Females

```
('that', 802),
 ('with', 657),
 ('just', 612),
('have', 577),
('thi', 552),
('your', 530),
('like', 484),
 ('what', 397),
('love', 394),
 ('when', 364),
 ('make', 338),
('they', 318),
('about', 297),
('time', 290),
('want', 256),
 ('peopl', 249),
 ('from', 247),
 ('know', 233),
 ('follow', 218),
 ('look', 217),
 ('there', 205),
 ('will', 203),
('best', 192),
 ('thank', 189),
 ('here', 185)
```

Question 2:

Which Gender made more typos?

Answer 2:

Males made more typos.

Males

```
No. of typos in males: 21413
Total words: 51081
Error rate: 0.41919696168829895
```

Females

```
No. of typos in females: 21777
```

Total words: 53025

Error rate: 0.41069306930693067

We have cleaned the data and extracted the features as required to get the best possible results.

Results:

Naïve Bayes

```
text, fav number, link color 61.17764471057884
```

K-Nearest Neighbors

Since k = 5 gives us the maximum accuracy

Support Vector Machine

	precision	recall	f1-score	support
0 1	0.61	0.76	0.68 0.51	1083 921
accuracy macro avg weighted avg	0.61 0.61	0.60 0.61	0.61 0.59 0.60	2004 2004 2004

accuracy: 0.6102794411177644

- Naive Bayes 61.17764471057884%
- K-Nearest Neighbors 53.89221556886228%

• Support vector machines - 61.02794411177644%

After ensembling:

Ensembling – 89.02195608782435%

