# NAVMAN

## SiRF Binary Protocol Reference Manual

Navman NZ Limited Level 3 BNZ House 129 Hereford Street PO Box 4216 Christchurch, New Zealand

Tel: +64 3 379 3859 Fax: +64 3 379 3860 www.navman.com

This document contains proprietary information to SiRF Technology, Inc. and shall not be reproduced or transferred to other documents or disclosed to others or used for any purpose other than that for which it was obtained without expressed written consent of SiRF Technology, Inc.



## SiRF Binary Protocol Reference Manual

#### © 2004 Navman NZ Ltd. All Rights Reserved.

Information in this document is provided in connection with Navman NZ Ltd. ("Navman") products. These materials are provided by Navman as a service to its customers and may be used for informational purposes only. Navman assumes no responsibility for errors or omissions in these materials. Navman may make changes to specifications and product descriptions at any time, without notice. Navman makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Navman's Terms and Conditions of Sale for such products, Navman assumes no liability whatsoever.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, RELATING TO SALE AND/OR USE OF NAVMAN PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTALDAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. NAVMAN FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. NAVMAN SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULTFROM THE USE OF THESE MATERIALS.

Navman products are not intended for use in medical, lifesaving or life sustaining applications. Navman customers using or selling Navman products for use in such applications do so at their own risk and agree to fully indemnify Navman for any damages resulting from such improper use or sale. Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are property of their respective owners. Additional information, posted at www.Navman.com, is incorporated by reference. Reader Response: Navman strives to produce quality documentation and welcomes your feedback. Please send comments and suggestions to tech.pubs@Navman.com. For technical questions, contact your local Navman sales office or applications engineer.

## Contents

| Preface                                    | XV  |
|--------------------------------------------|-----|
| Ticiacc                                    | ΛV  |
| 1. Protocol Layers                         | 1-1 |
| Transport Message                          | 1-1 |
| Transport                                  | 1-1 |
| Message Validation                         | 1-1 |
| Payload Length                             | 1-2 |
| Payload Data                               | 1-2 |
| Checksum                                   | 1-2 |
| 2. Input Messages                          | 2-1 |
| Advanced Power Management– Message I.D. 53 | 2-3 |
| Transmit Serial Message - Message I.D. 85  | 2-5 |
| Initialize Data Source - Message I.D. 128  | 2-5 |
| Switch To NMEA Protocol - Message I.D. 129 | 2-6 |
| Set Almanac – Message I.D. 130.            | 2-8 |
| Poll Software Version Massage I D 132      | 2 9 |

|   | DGPS Source - Message I.D. 133                          | 2-9  |
|---|---------------------------------------------------------|------|
|   | Set Main Serial Port - Message I.D. 134                 | 2-10 |
|   | Switch Protocol - Message I.D. 135                      | 2-11 |
|   | Mode Control - Message I.D. 136                         | 2-11 |
|   | DOP Mask Control - Message I.D. 137                     | 2-12 |
|   | DGPS Control - Message I.D. 138                         | 2-13 |
|   | Elevation Mask – Message I.D. 139                       | 2-14 |
|   | Power Mask - Message I.D. 140                           | 2-15 |
|   | Editing Residual– Message I.D. 141                      | 2-15 |
|   | Steady State Detection - Message I.D. 142               | 2-15 |
|   | Static Navigation– Message I.D. 143                     | 2-15 |
|   | Poll Clock Status – Message I.D. 144                    | 2-16 |
|   | Set DGPS Serial Port - Message I.D. 145                 | 2-16 |
|   | Poll Almanac - Message I.D. 146                         | 2-17 |
|   | Poll Ephemeris - Message I.D. 147                       | 2-18 |
|   | Flash Update - Message I.D. 148                         | 2-18 |
|   | Set Ephemeris – Message I.D. 149                        | 2-19 |
|   | Switch Operating Modes - Message I.D. 150               | 2-19 |
|   | Set TricklePower Parameters - Message I.D. 151          | 2-20 |
|   | Poll Navigation Parameters - Message I.D. 152           | 2-21 |
|   | Set UART Configuration - Message I.D. 165               | 2-22 |
|   | Set Message Rate - Message I.D. 166                     | 2-23 |
|   | Set Low Power Acquisition Parameters - Message I.D. 167 | 2-24 |
|   | Poll Command Parameters – Message I.D. 168              | 2-24 |
|   | Set SBAS Parameters- Message I.D. 170                   | 2-25 |
|   | Set UART Configuration - Message I.D. 182               | 2-26 |
| 3 | Output Messages                                         | 3-1  |
|   | Reference Navigation Data - Message I.D. 1              | 3-3  |
|   | Measure Navigation Data Out - Message I.D. 2            | 3-3  |
|   | True Tracker Data - Message I.D. 3                      | 3-5  |
|   | Measured Tracker Data Out - Message I.D. 4              | 3-5  |

| Raw Tracker Data Out - Message I.D. 5                       | 3-7  |
|-------------------------------------------------------------|------|
| Software Version String (Response to Poll) - Message I.D. 6 | 3-7  |
| Response: Clock Status Data - Message I.D. 7                | 3-7  |
| 50 BPS Data – Message I.D. 8                                | 3-8  |
| CPU Throughput – Message I.D. 9                             | 3-9  |
| Error ID Data – Message I.D. 10                             | 3-9  |
| Command Acknowledgment – Message I.D. 11                    | 3-22 |
| Command NAcknowledgment – Message I.D. 12                   | 3-22 |
| Visible List – Message I.D. 13                              | 3-22 |
| Almanac Data - Message I.D. 14                              | 3-23 |
| Ephemeris Data (Response to Poll) – Message I.D. 15         | 3-24 |
| Test Mode 1 - Message I.D. 16                               | 3-26 |
| Differential Corrections - Message I.D. 17                  | 3-27 |
| OkToSend - Message I.D. 18                                  | 3-28 |
| Navigation Parameters (Response to Poll) – Message I.D. 19  | 3-28 |
| Test Mode 2/3/4 - Message I.D. 20                           | 3-30 |
| Test Mode 2                                                 | 3-30 |
| Test Mode 3                                                 | 3-31 |
| Test Mode 4                                                 | 3-33 |
| Navigation Library Measurement Data - Message I.D. 28       | 3-34 |
| Navigation Library DGPS Data - Message I.D. 29              | 3-37 |
| Navigation Library SV State Data - Message I.D. 30          | 3-38 |
| Navigation Library Initialization Data - Message I.D. 31    | 3-39 |
| Geodetic Navigation Data - Message I.D. 41.                 | 3-41 |
| Test Mode 3/4 - Message I.D. 46                             | 3-44 |
| Test Mode Raw Measurement Data - Message I.D. 48            | 3-46 |
| Test Mode Raw Tracking Loop Data - Message I.D. 49          | 3-47 |
| SBAS Parameters - Message I.D. 50                           | 3-48 |
| PPS Time – Message I.D. 52                                  | 3-49 |
| Development Data – Message I.D. 255                         | 3-50 |
| . Additional Information                                    | 4-1  |

*Contents* vii

| TricklePower Operation in DGPS Mode | 4-  |
|-------------------------------------|-----|
| GPS Week Reporting                  | 4-1 |
| NMEA Protocol in TricklePower Mode  | 4-  |

## **Tables**

| Table 2-1  | SiRF Messages - Input Message List   | 2-1  |
|------------|--------------------------------------|------|
| Table 2-2  | Supported input messages             | 2-2  |
| Table 2-3  | Advanced Power Management Parameters | 2-3  |
| Table 2-4  | Horizontal/Vertical Error            | 2-4  |
| Table 2-5  | Initialize Data Source               | 2-5  |
| Table 2-6  | Initialize Data Source               | 2-5  |
| Table 2-7  | Reset Configuration Bitmap           | 2-6  |
| Table 2-8  | Switch To NMEA Protocol              | 2-7  |
| Table 2-9  | Mode Values.                         | 2-7  |
| Table 2-10 | Set Almanac Message                  | 2-8  |
| Table 2-11 | Software Version                     | 2-9  |
| Table 2-12 | DGPS Source Selection (Example 1)    | 2-9  |
| Table 2-13 | DGPS Source Selection (Example 2)    | 2-9  |
| Table 2-14 | DGPS Source Selections               | 2-10 |
| Table 2-15 | Internal Beacon Search Settings.     | 2-10 |
| Table 2-16 | Set Main Serial Port                 | 2-11 |

| Table 2-17 | Mode Control                                                       | 2-11 |
|------------|--------------------------------------------------------------------|------|
| Table 2-18 | Degraded Mode Byte Value                                           | 2-12 |
| Table 2-19 | Altitude Hold Mode                                                 | 2-12 |
| Table 2-20 | DOP Mask Control                                                   | 2-12 |
| Table 2-21 | DOP Selection                                                      | 2-13 |
| Table 2-22 | DGPS Control.                                                      | 2-13 |
| Table 2-23 | DGPS Selection                                                     | 2-13 |
| Table 2-24 | Elevation Mask                                                     | 2-15 |
| Table 2-25 | Power Mask                                                         | 2-15 |
| Table 2-26 | Static Navigation                                                  | 2-16 |
| Table 2-27 | Message ID 143 Description                                         | 2-16 |
| Table 2-28 | Clock Status                                                       | 2-16 |
| Table 2-29 | Set DGPS Serial Port                                               | 2-17 |
| Table 2-30 | Almanac                                                            | 2-17 |
| Table 2-31 | Ephemeris                                                          | 2-18 |
| Table 2-32 | Flash Update                                                       | 2-18 |
| Table 2-33 | Ephemeris                                                          | 2-19 |
| Table 2-34 | Switch Operating Modes                                             | 2-19 |
| Table 2-35 | Set Trickle Power Parameters                                       | 2-20 |
| Table 2-36 | Example of Selections for Trickle Power Mode of Operation          | 2-20 |
| Table 2-38 | Poll Receiver for Navigation Parameters                            | 2-21 |
| Table 2-37 | TricklePower Supported Modes                                       | 2-21 |
| Table 2-39 | Set UART Configuration                                             | 2-22 |
| Table 2-40 | Set Message Rate                                                   | 2-24 |
| Table 2-41 | Set Low Power Acquisition Parameters                               | 2-24 |
| Table 2-42 | Poll Command Parameters                                            | 2-25 |
| Table 2-43 | Set SBAS Parameters                                                | 2-25 |
| Table 3-1  | SiRF Messages - Output Message List                                | 3-1  |
| Table 3-2  | Supported output messages                                          | 3-2  |
| Table 3-3  | Measured Navigation Data Out - Binary & ASCII Message Data For 3-3 | rmat |
| Table 3-4  | Mode 1                                                             | 3-4  |
| Table 3-5  | Mode 2                                                             | 3-5  |

| Table 3-6  | Measured Tracker Data Out          | 3-6  |
|------------|------------------------------------|------|
| Table 3-7  | State Values for Each Channel      | 3-7  |
| Table 3-8  | Software Version String            | 3-7  |
| Table 3-9  | Clock Status Data Message          | 3-8  |
| Table 3-10 | 50 BPS Data                        | 3-8  |
| Table 3-11 | CPU Throughput                     | 3-9  |
| Table 3-12 | Error ID 2 Message                 | 3-9  |
| Table 3-13 | Error ID 2 Message Description     | 3-10 |
| Table 3-14 | Error ID 9 Message                 | 3-10 |
| Table 3-15 | Error ID 9 Message Description     | 3-10 |
| Table 3-16 | Error ID 10 Message                | 3-11 |
| Table 3-17 | Error ID 10 Message Description.   | 3-11 |
| Table 3-18 | Error ID 11 Message                | 3-12 |
| Table 3-19 | Error ID 11 Message Description    | 3-12 |
| Table 3-20 | Error ID 12 Message                | 3-13 |
| Table 3-21 | Error ID 12 Message Description.   | 3-13 |
| Table 3-22 | Error ID 13 Message                | 3-13 |
| Table 3-23 | Error ID 13 Message Description.   | 3-14 |
| Table 3-24 | Error ID 4097 Message              | 3-14 |
| Table 3-25 | Error ID 4097 Message Description  | 3-14 |
| Table 3-26 | Error ID 4099 Message              | 3-15 |
| Table 3-27 | Error ID 4099 Message Description  | 3-15 |
| Table 3-28 | Error ID 4104 Message              | 3-16 |
| Table 3-29 | Error ID 4104 Message Description. | 3-17 |
| Table 3-30 | Error ID 4105 Message              | 3-18 |
| Table 3-31 | Error ID 4105 Message Description  | 3-18 |
| Table 3-32 | Error ID 4106 Message              | 3-18 |
| Table 3-33 | Error ID 4106 Message Description  | 3-19 |
| Table 3-34 | Error ID 4107 Message              | 3-19 |
| Table 3-35 | Error ID 4107 Message Description  | 3-19 |
| Table 3-36 | Error ID 8193 Message              | 3-20 |
| Table 3-37 | Error ID 8193 Message Description  | 3-20 |

*Tables* xi

| Table 3-38 | Error ID 8194 Message                                    | 3-21 |
|------------|----------------------------------------------------------|------|
| Table 3-39 | Error ID 8194 Message Description                        | 3-21 |
| Table 3-40 | Error ID 8195 Message                                    | 3-21 |
| Table 3-41 | Error ID 8195 Message Description                        | 3-22 |
| Table 3-42 | Command Acknowledgment                                   | 3-22 |
| Table 3-43 | Command NAcknowledgment                                  | 3-22 |
| Table 3-44 | Visible List                                             | 3-23 |
| Table 3-45 | Almanac Data                                             | 3-24 |
| Table 3-46 | Ephemeris Data                                           | 3-25 |
| Table 3-47 | Byte Positions Between Navigation Message and Data Array | 3-25 |
| Table 3-48 | Test Mode 1 Data                                         | 3-27 |
| Table 3-49 | Detailed Description of Test Mode 1 Data.                | 3-27 |
| Table 3-50 | Almanac Data                                             | 3-28 |
| Table 3-51 | Navigation Parameters                                    | 3-28 |
| Table 3-52 | Horizontal/Vertical Error                                | 3-29 |
| Table 3-53 | Test Mode 2 Message                                      | 3-30 |
| Table 3-54 | Detailed Description of Test Mode 2 Message              | 3-30 |
| Table 3-55 | Test Mode 3 Message                                      | 3-31 |
| Table 3-56 | Detailed Description of Test Mode 3 Message              | 3-32 |
| Table 3-57 | Test Mode 4 Message                                      | 3-33 |
| Table 3-58 | Detailed Description of Test Mode 4 Message              | 3-33 |
| Table 3-59 | Measurement Data                                         | 3-34 |
| Table 3-60 | Sync Flag Fields                                         | 3-36 |
| Table 3-61 | Detailed Description of the Measurement Data             | 3-36 |
| Table 3-62 | Measurement Data                                         | 3-38 |
| Table 3-63 | SV State Data                                            | 3-38 |
| Table 3-64 | Measurement Data                                         | 3-39 |
| Table 3-65 | Measurement Data                                         | 3-41 |
| Table 3-66 | Detailed Description of Geodetic Navigation Data Message | 3-43 |
| Table 3-67 | Test Mode 3 Message                                      | 3-44 |
| Table 3-68 | Detailed Description of Test Mode 3 Message              | 3-45 |
| Table 3-69 | Test Mode Raw Measurement Data Message                   | 3-46 |

| Table 3-70 | Detailed Description of Test Mode Raw Measurement Data Message        | 3-46 |
|------------|-----------------------------------------------------------------------|------|
| Table 3-71 | Test Mode Raw Tracking Loop Data Message                              | 3-47 |
| Table 3-72 | Detailed Description of Test Mode Raw Tracking Loop Data Messag<br>47 | e 3- |
| Table 3-73 | SBAS Parameters Message                                               | 3-48 |
| Table 3-74 | Detailed Description of SBAS Parameters                               | 3-48 |
| Table 3-75 | Timing Message Data.                                                  | 3-49 |
| Table 3-76 | Development Data                                                      | 3-50 |
| Table 4-1  | NMEA Data Rates Under Trickle Power Operation                         | 4-2  |

*Tables* xiii

## Preface



The SiRF Binary Reference Manual provides detailed information about the SiRF Binary protocol - the standard protocol used by all SiRF architectures.

#### Who Should Use This Guide

This manual was written assuming the user is familiar with interface protocols, their definitions and use.

## How This Guide Is Organized

Chapter 1, "Protocol Layers" information about SiRF Binary protocol layers.

**Chapter 2, "Input Messages"** definitions and examples of each available SiRF Binary input messages.

**Chapter 3, "Output Messages"** definitions and examples of each available SiRF Binary output messages.

**Chapter 4, "Additional Information"** Other useful information pertaining to the SiRF Binary protocol.



## Navman OEM Contacts

#### America (UTC – 8 hours)

#### Navman USA

27142 Burbank Foothill Ranch, CA 92610 USA

Telephone: +1 949 461 7150 Facsimile: +1 949 461 7860

Sales: oemsales.americas@navman.com
Technical Support: oemsupport.americas@navman.com

#### **EMEA** – Europe, Middle-East and Africa (UTC)

#### Navman Europe

4G Gatwick House Peeks Brook Lane Horley, Surrey RH6 9ST United Kingdom

Telephone: +44 1293 780 500 Facsimile: +44 1293 780 065

Sales: emea.oemsales@navman.com
Technical Support: emea.oemsupport@navman.com

#### APAC - Asia / Pacific (UTC + 12 hours)

#### Navman NZ

Level 3 BNZ Building 129 Hereford Street PO Box 4216 Christchurch New Zealand

Telephone: +64 3 379 3859 Facsimile: +64 3 379 3860

Sales: apac.oemsales@navman.com
Technical Support: apac.oemsupport@navman.com

#### Global

Marketing: global.oemmarketing@navman.com
Ordering and Logistics: global.oemlogistics@navman.com
Feedback: global.oemfeedback@navman.com

## **Protocol Layers**



The SiRF binary protocol is the standard interface protocol used by all Navman based products.

This serial communication protocol is designed to include:

- Reliable transport of messages
- Ease of implementation
- Efficient implementation
- Independence from payload

### Transport Message

| Start                       | Payload             | Payload                          | Message             | End           |
|-----------------------------|---------------------|----------------------------------|---------------------|---------------|
| Sequence                    | Length              |                                  | Checksum            | Sequence      |
| 0xA0 <sup>1</sup> ,<br>0xA2 | Two-bytes (15-bits) | Up to 2 <sup>10</sup> -1 (<1023) | Two-bytes (15-bits) | 0xB0,<br>0xB3 |

<sup>1. 0</sup>xYY denotes a hexadecimal byte value. 0xA0 equals 160.

### **Transport**

The transport layer of the protocol encapsulates a GPS message in two start characters and two stop characters. The values are chosen to be easily identifiable and unlikely to occur frequently in the data. In addition, the transport layer prefixes the message with a two-byte (15-bit) message length and a two-byte (15-bit) checksum. The values of the start and stop characters and the choice of a 15-bit value for length and checksum ensure message length and checksum can not alias with either the stop or start code.

## Message Validation

The validation layer is of part of the transport, but operates independently. The byte count refers to the payload byte length. The checksum is a sum on the payload.

### Payload Length

The payload length is transmitted high order byte first followed by the low byte.

| High Byte | Low Byte  |
|-----------|-----------|
| < 0x7F    | Any value |

Even though the protocol has a maximum length of (2<sup>15</sup>-1) bytes, practical considerations require the SiRF GPS module implementation to limit this value to a smaller number. The SiRF receiving programs (e.g. SiRFdemo) may limit the actual size to something less than this maximum.

## Payload Data

The payload data follows the payload length. It contains the number of bytes specified by the payload length. The payload data may contain any 8-bit value.

Where multi-byte values are in the payload data neither the alignment nor the byte order are defined as part of the transport although SiRF payloads will use the bigendian order.

#### Checksum

The checksum is transmitted high order byte first followed by the low byte. This is the so-called big-endian order.

| High Byte | Low Byte  |
|-----------|-----------|
| < 0x7F    | Any value |

The checksum is 15-bit checksum of the bytes in the payload data. The following pseudo code defines the algorithm used.

Let message to be the array of bytes to be sent by the transport.

Let msgLen be the number of bytes in the message array to be transmitted.

```
Index = first
checkSum = 0
while index < msgLen
    checkSum = checkSum + message[index]
checkSum = checkSum AND (2<sup>15</sup>-1).
```

## Input Messages



The following chapter provides full information about available SiRF Binary input messages. For each message, a full definition and example is provided.

Table 2-1 lists the message list for the SiRF input messages.

Table 2-1 SiRF Messages - Input Message List

| Hex  | ASCII | Name                              | Description                            |
|------|-------|-----------------------------------|----------------------------------------|
| 0x55 | 85    | Transmit Serial Message           | User definable message                 |
| 0x80 | 128   | Initialize Data Source            | Receiver initialization and associated |
|      |       |                                   | parameters                             |
| 0x81 | 129   | Switch to NMEA Protocol           | Enable NMEA messages, output rate      |
|      |       |                                   | and baud rate                          |
| 0x82 | 130   | Set Almanac (upload)              | Sends an existing almanac file to the  |
|      |       |                                   | receiver                               |
| 0x84 | 132   | Poll Software Version             | Polls for the loaded software version  |
| 0x85 | 133   | DGPS Source Control               | DGPS correction source and beacon      |
|      |       |                                   | receiver information                   |
| 0x86 | 134   | Set Main Serial Port              | Baud rate, data bits, stop bits, and   |
|      |       |                                   | parity                                 |
| 0x87 | 135   | Switch Protocol                   | Obsolete                               |
| 0x88 | 136   | Mode Control                      | Navigation mode configuration          |
| 0x89 | 137   | DOP Mask Control                  | DOP mask selection and parameters      |
| 0x8A | 138   | DGPS Mode                         | DGPS mode selection and timeout        |
|      |       |                                   | value                                  |
| 0x8B | 139   | Elevation Mask                    | Elevation tracking and navigation      |
|      |       |                                   | masks                                  |
| 0x8C | 140   | Power Mask                        | Power tracking and navigation masks    |
| 0x8D | 141   | Editing Residual                  | Not implemented                        |
| 0x8E | 142   | Steady-State Detection - Not Used | Not implemented                        |
| 0x8F | 143   | Static Navigation                 | Configuration for static operation     |
| 0x90 | 144   | Poll Clock Status                 | Polls the clock status                 |
| 0x91 | 145   | Set DGPS Serial Port              | DGPS port baud rate, data bits, stop   |
|      |       |                                   | bits, and parity                       |
| 0x92 | 146   | Poll Almanac                      | Polls for almanac data                 |
| 0x93 | 147   | Poll Ephemeris                    | Polls for ephemeris data               |
| 0x94 | 148   | Flash Update                      | On the fly software update             |

Table 2-1 SiRF Messages - Input Message List

| Hex  | ASCII | Name                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|-------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x95 | 149   | Set Ephemeris (upload)           | Sends an existing ephemeris to the receiver                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0x96 | 150   | Switch Operating Mode            | Test mode selection, SV ID, and period.                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0x97 | 151   | Set TricklePower Parameters      | Push to fix mode, duty cycle, and on time                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0x98 | 152   | Poll Navigation Parameters       | Polls for the current navigation parameters                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0xA5 | 165   | Set UART Configuration           | Protocol selection, baud rate, data bits, stop bits, and parity                                                                                                                                                                                                                                                                                                                                                                                |
| 0xA6 | 166   | Set Message Rate                 | SiRF Binary message output rate                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0xA7 | 167   | Low Power Acquisition Parameters | Low power configuration parameters                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0xA8 | 168   | Poll Command Parameters          | Poll for parameters:  0x80 : Receiver initialization and associated parameters.  0x85 : DGPS correction source and beacon receiver information  0x88 : Navigation mode configuration  0x89 : DOP mask selection and parameters  0x8A : DGPS mode selection and timeout values  0x8B : Elevation tracking and navigation masks  0x8C : Power tracking and navigation masks  0x8F : Static navigation configuration  0x97 : Low power parameters |
| 0xAA | 170   | Set SBAS Parameters              | SBAS configuration parameters                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0xB6 | 182   | Set UART Configuration           | Obsolete                                                                                                                                                                                                                                                                                                                                                                                                                                       |

As the SiRF Binary protocol is evolving standard along with continued development of SiRF software and GPS solutions, not all SiRF Binary messages are supported by all SiRF GPS solutions.

Table 2-2 identifies the supported input messages for each SiRF architecture.

Table 2-2 Supported input messages

|              | S    | SiRF Software Option | 18      |
|--------------|------|----------------------|---------|
| Message I.D. | GSW2 | SiRFXTrac            | SiRFLoc |
| 53           | No   | Yes                  | No      |
| 85           | Yes  | No                   | No      |
| 128          | Yes  | No                   | Yes     |
| 129          | Yes  | No                   | No      |
| 130          | Yes  | No                   | No      |
| 132          | Yes  | Yes                  | Yes     |
| 133          | Yes  | No                   | No      |
| 134          | Yes  | Yes                  | Yes     |
| 135          | No   | No                   | No      |

Table 2-2 Supported input messages

|              | SiRF Software Options |           |         |  |  |  |  |  |
|--------------|-----------------------|-----------|---------|--|--|--|--|--|
| Message I.D. | GSW2                  | SiRFXTrac | SiRFLoc |  |  |  |  |  |
| 136 Yes      |                       | Yes       | Yes     |  |  |  |  |  |
| 137          | Yes                   | Yes       | Yes     |  |  |  |  |  |
| 138          | Yes                   | Yes       | Yes     |  |  |  |  |  |
| 139          | Yes                   | Yes       | Yes     |  |  |  |  |  |
| 140          | Yes                   | Yes       | Yes     |  |  |  |  |  |
| 141          | No                    | No        | No      |  |  |  |  |  |
| 142          | No                    | No        | No      |  |  |  |  |  |
| 143          | Yes                   | Yes       | Yes     |  |  |  |  |  |
| 144          | Yes                   | Yes       | Yes     |  |  |  |  |  |
| 145          | Yes                   | No        | No      |  |  |  |  |  |
| 146          | Yes                   | Yes       | Yes     |  |  |  |  |  |
| 147          | Yes                   | Yes       | Yes     |  |  |  |  |  |
| 148          | Yes                   | No        | No      |  |  |  |  |  |
| 149          | Yes                   | No        | Yes     |  |  |  |  |  |
| 150          | Yes                   | Yes       | Yes     |  |  |  |  |  |
| 151          | Yes                   | No        | No      |  |  |  |  |  |
| 152          | Yes Yes               |           | Yes     |  |  |  |  |  |
| 165          | Yes                   | No        | No      |  |  |  |  |  |
| 166          | Yes                   | Yes       | Yes     |  |  |  |  |  |
| 167          | Yes                   | No        | No      |  |  |  |  |  |
| 168          | Yes                   | Yes       | Yes     |  |  |  |  |  |
| 170          | 2.3 or above          | No        | No      |  |  |  |  |  |
| 182          | No                    | No        | No      |  |  |  |  |  |

## Advanced Power Management-Message I.D. 53

Used to implement Advanced Power Management (APM). APM will not engage until all information is received.

#### Example:

The following example sets the receiver to operate in APM mode with 0 cycles before sleep (continuous operation), 20 seconds between fixes, 50% duty cycle, a time between fixes priority, and no preference for accuracy.

A0 A2 00 0C—Start Sequence and Payload Length

35 01 00 14 00 03 07 00 00 0A 01 00—Payload

00 5F B0 B3-Message Checksum and End Sequence

Payload Length: 12 bytes

Table 2-3 Advanced Power Management Parameters

|            |       | Binary (Hex) |         |       |             |
|------------|-------|--------------|---------|-------|-------------|
| Name       | Bytes | Scale        | Example | Units | Description |
| Message ID | 1     |              | 0x35    |       | decimal 53  |

Table 2-3 Advanced Power Management Parameters

|                             |       | Binary (Hex) |         |        |                                                                                                                                                                         |  |
|-----------------------------|-------|--------------|---------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Name                        | Bytes | Scale        | Example | Units  | Description                                                                                                                                                             |  |
| APM Enabled                 | 1     |              | 01      |        | Enable or disable flag<br>1=True, 0=False                                                                                                                               |  |
| Number Fixes                | 1     |              | 00      |        | Number of requested APM cycles. Range 0-255 <sup>1</sup>                                                                                                                |  |
| Time Between<br>Fixes       | 1     | 1            | 14      | Sec    | Requested time between fixes.<br>Range 0-255 <sup>2</sup>                                                                                                               |  |
| Spare Byte 1                | 1     |              | 00      |        | Reserved                                                                                                                                                                |  |
| Horizontal Error<br>Maximum | 1     |              | 03      | Meters | Maximum requested horizontal error.<br>See Table 2-4                                                                                                                    |  |
| Vertical Error<br>Maximum   | 1     |              | 07      | Meters | Maximum requested vertical error.<br>See Table 2-4                                                                                                                      |  |
| Response Time<br>Maximum    | 1     | 1            | 00      | Sec    | Maximum response time. Not currently used.                                                                                                                              |  |
| Time Acc Priority           | 1     |              | 00      |        | 0x00=No priority, 0x01=Response<br>Time Max has higher priority,<br>0x02=Horizontal Error Max has higher<br>priority. Not currently used.                               |  |
| Power Duty Cycle            | 1     | 5            | 0A      |        | Power Duty Cycle, defined as the time in full power to total operation time. 1->20; duty cycle (%) is this value *5.3                                                   |  |
| Time Duty Cycle             | 1     |              | 01      |        | Time/Power Duty cycle priority. $0x01 =$ Time between two consecutive fixes has priority $0x02 =$ Power Duty cycle has higher priority. Bits 27 reserved for expansion. |  |
| Spare Byte 2                | 1     |              | 00      |        | Reserved.                                                                                                                                                               |  |

<sup>1.</sup> A value of zero indicates that continuous APM cycles is requested.

Payload Length: 12bytes

Table 2-4 Horizontal/Vertical Error

| Value       | Position Error (in meters) |
|-------------|----------------------------|
| 0x00        | < 1 meter                  |
| 0x01        | < 5 meter                  |
| 0x02        | < 10 meter                 |
| 0x03        | < 20 meter                 |
| 0x04        | < 40 meter                 |
| 0x05        | < 80 meter                 |
| 0x06        | < 160 meter                |
| 0x07        | No Maximum                 |
| 0x08 - 0xFF | Reserved                   |

<sup>2.</sup> It is bound from 10s to 180s.

 $<sup>3.\</sup> If a duty-cycle\ of\ 0$  is entered, it will be rejected as out of range. If a duty-cycle value of 20 is entered, the APM module will be disabled and continuous power operation will resume.

#### Transmit Serial Message - Message I.D. 85

Message I.D. 85 is a user configurable SiRF Binary string with variable payload and variable payload length.

#### Example:

A0A2xxxx—Start Sequence and Payload Length

xxxxxxxxx.....-Payload

xxxxB0B3—Message Checksum and End Sequence

Table 2-5 Initialize Data Source

|              |          | Binary (Hex) |         |       |              |
|--------------|----------|--------------|---------|-------|--------------|
| Name         | Bytes    | Scale        | Example | Units | Description  |
| Message ID   | 1        |              | 55      |       | Decimal 85   |
| User defined | Variable |              |         |       | User defined |

Payload Length: variable length

## Initialize Data Source - Message I.D. 128

Table 2-6 contains the input values for the following example:

Warm start the receiver with the following initialization data: ECEF XYZ (-2686727 m, -4304282 m, 3851642 m), Clock Offset (75,000 Hz), Time of Week (86,400 sec), Week Number (924), and Channels (12). Raw track data enabled, Debug data enabled.

#### Example:

A0A20019—Start Sequence and Payload Length

80FFD700F9FFBE5266003AC57A000124F80083D600039C0C33—Payload

0A91B0B3-Message Checksum and End Sequence

Table 2-6 Initialize Data Source

|               |       | Bin   | ary (Hex) |         |               |
|---------------|-------|-------|-----------|---------|---------------|
| Name          | Bytes | Scale | Example   | Units   | Description   |
| Message ID    | 1     |       | 80        |         | Decimal 128   |
| ECEF X        | 4     |       | FFD700F   | meters  |               |
| ECEF Y        | 4     |       | FFBE5266  | meters  |               |
| ECEF Z        | 4     |       | 003AC57A  | meters  |               |
| Clock Offset  | 4     |       | 000124F8  | Hz      |               |
| Time of Week  | 4     | *100  | 0083D600  | seconds |               |
| Week Number   | 2     |       | 039C      |         |               |
| Channels      | 1     |       | 0C        |         | Range 1-12    |
| Reset Config. | 1     |       | 33        |         | See Table 2-7 |

Payload Length: 25 bytes

Table 2-7 Reset Configuration Bitmap

| Bit | Description                                                                                                                             |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 0   | Data valid flag 1=Use data in ECEF X, Y, Z, Clock Offset, Time of Week and Week number to initialize the receiver 0=Ignore data fields. |
| 1   | Clear ephemeris from memory blocks snap or hot start from occurring                                                                     |
| 2   | Clear all history (except clock drift) from memory blocks snap, hot and warm starts                                                     |
| 3   | Factory start clears all memory including clock drift. Also clears almanac stored in flash memory                                       |
| 4   | Enable raw track data (YES=1, NO=0)                                                                                                     |
| 5   | Enable debug data for SiRF binary protocol (YES=1, NO=0)                                                                                |
| 6   | Enable debug data for NMEA protocol (YES=1, NO=0)                                                                                       |
| 7   | Reserved (must be 0)                                                                                                                    |

**Note** – If Nav Lib data is ENABLED then the resulting messages are enabled. Clock Status (MID 7), 50 BPS (MID 8), Raw DGPS (17), NL Measurement Data (MID 28), DGPS Data (MID 29), SV State Data (MID 30), and NL Initialize Data (MID 31). All messages are sent at 1 Hz. If SiRFdemo is used to enable Nav Lib data, the baud rate will be automatically set to 57600 by SiRFdemo.

### Switch To NMEA Protocol - Message I.D. 129

Table 2-8 contains the input values for the following example:

Request the following NMEA data at 9600 baud: GGA – ON at 1 sec, GLL – OFF, GSA - ON at 1 sec, GSV – ON at 5 sec, RMC – ON at 1 sec, VTG-OFF, MSS – OFF.

#### Example:

A0 A2 00 18—Start Sequence and Payload Length

81 02 01 01 00 01 01 01 05 01 01 01 00 01 00 01 00 01 00 01 00 01 25 80—Payload

01 3A B0 B3—Message Checksum and End Sequence

Table 2-8 Switch To NMEA Protocol

|                          |       | Bina  | ry (Hex) |       |                                                   |
|--------------------------|-------|-------|----------|-------|---------------------------------------------------|
| Name                     | Bytes | Scale | Example  | Units | Description                                       |
| Message ID               | 1     |       | 81       |       | Decimal 129                                       |
| Mode                     | 1     |       | 02       |       | See                                               |
| GGA Message <sup>1</sup> | 1     |       | 01       | sec   | See NMEA Protocol Reference<br>Manual for format. |
| Checksum <sup>2</sup>    | 1     |       | 01       |       |                                                   |
| GLL Message              | 1     |       | 00       | sec   | See NMEA Protocol Reference<br>Manual for format. |
| Checksum                 | 1     |       | 01       |       |                                                   |
| GSA Message              | 1     |       | 01       | sec   | See NMEA Protocol Reference<br>Manual for format. |
| Checksum                 | 1     |       | 01       |       |                                                   |
| GSV Message              | 1     |       | 05       | sec   | See NMEA Protocol Reference Manual for format     |
| Checksum                 | 1     |       | 01       |       |                                                   |
| RMC Message              | 1     |       | 01       | sec   | See NMEA Protocol Reference<br>Manual for format. |
| Checksum:                | 1     |       | 01       |       |                                                   |
| VTG Message              | 1     |       | 00       | sec   | See NMEA Protocol Reference<br>Manual for format. |
| Checksum                 | 1     |       | 01       |       |                                                   |
| MSS Message              | 1     |       | 00       | sec   | See NMEA Protocol Reference<br>Manual for format. |
| Checksum                 | 1     |       | 01       |       |                                                   |
| Unused Field             | 1     |       | 00       |       |                                                   |
| ZDA Message              | 1     |       | 01       | sec   | See NMEA Protocol Reference<br>Manual for format. |
| Unused Field             | 1     |       | 00       |       |                                                   |
| Unused Field             | 1     |       | 01       |       |                                                   |
| Unused Field             | 1     |       | 00       |       |                                                   |
| Unused Field             | 1     |       | 01       |       |                                                   |
| Baud Rate                | 2     |       | 25 80    |       | 38400, 19200,9600,4800,2400                       |

Payload Length: 24 bytes

Table 2-9 Mode Values

| Value Meaning |                                                      |  |  |  |  |
|---------------|------------------------------------------------------|--|--|--|--|
| 0             | Enable NMEA debug messages                           |  |  |  |  |
| 1             | Disable NMEA debug messages                          |  |  |  |  |
| 2             | Do not change last-set value for NMEA debug messages |  |  |  |  |

 $<sup>1. \</sup> A \ value \ of \ 0x00 \ implies \ NOT \ to \ send \ message, otherwise \ data \ is \ sent \ at \ 1 \ message \ every \ X \ seconds \ requested \ (i.e., to \ request \ a \ message \ to \ be \ sent \ every \ 5 \ seconds, \ request \ the \ message \ using \ a \ value \ of \ 0x05.) \ Maximum \ rate \ is \ 1/255s.$ 

 $<sup>2. \</sup> A \ value \ of 0x00 \ implies the checksum \ NOT \ transmitted \ with \ the \ message \ (not \ recommended). \ A \ value \ of 0x01 \ will \ have \ a \ checksum \ calculated \ and \ transmitted \ as part of the \ message \ (recommended).$ 

In Trickle Power mode, update rate is specified by the user. When you switch to NMEA protocol, message update rate is also required. The resulting update rate is the product of the Trickle Power Update rate and the NMEA update rate (i.e. Trickle Power update rate = 2 seconds, NMEA update rate = 5 seconds, resulting update rate is every 10 seconds,  $(2 \times 5 = 10)$ ).

**Note** – To switch back to the SiRF protocol, you must send a SiRF NMEA message to revert to SiRF binary mode. (See NMEA-0183 Reference Manual for more information).

## Set Almanac – Message I.D. 130

This command enables the user to upload an almanac file to the Evaluation Receiver.

#### Example:

A0A20380 - Start Sequence and Payload Length

82xx..... – Payload

xxxxB0B3 - Message Checksum and End Sequence

Table 2-10 Set Almanac Message

|            |       | Binary (Hex) |         |       |             |
|------------|-------|--------------|---------|-------|-------------|
| Name       | Bytes | Scale        | Example | Units | Description |
| Message ID | 1     |              | 82      |       | ACSII 130   |
| Almanac    | 896   |              | 00      |       | Reserved    |

Payload Length: 897 bytes

The almanac data is stored in the code as a 448 element array of INT16 values. These 448 elements are partitioned as 32 x 14 elements where the 32 represents the satellite number minus 1 and the 14 represents the number of INT16 values associated with this satellite. The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD-GPS-2000 document. The ICD-GPS-2000 document describes the data format of each GPS navigation sub-frame and is available on the web at <a href="http://www.arinc.com/gps">http://www.arinc.com/gps</a>

## Poll Software Version – Message I.D. 132

Table 2-11 contains the input values for the following example:

Poll the software version

#### Example:

A0A20002—Start Sequence and Payload Length

8400—Payload

0084B0B3-Message Checksum and End Sequence

Table 2-11 Software Version

|            |       | Binary (Hex) |         |       |             |
|------------|-------|--------------|---------|-------|-------------|
| Name       | Bytes | Scale        | Example | Units | Description |
| Message ID | 1     |              | 84      |       | ACSII 132   |
| Control    | 1     |              | 00      |       | Not used    |

Payload Length: 2 bytes

#### DGPS Source - Message I.D. 133

This command allows the user to select the source for DGPS corrections. Options available are:

External RTCM Data (any serial port)

WAAS (subject to WAAS satellite availability)

Internal DGPS beacon receiver

Example 1: Set the DGPS source to External RTCM Data

A0A200007-Start Sequence and Payload Length

850200000000000—Payload

0087B0B3—Checksum and End Sequence

Table 2-12 DGPS Source Selection (Example 1)

| Name                         | Bytes | Scale | Hex      | Units | Decimal | Description                                        |
|------------------------------|-------|-------|----------|-------|---------|----------------------------------------------------|
| Message I.D.                 | 1     |       | 85       |       | 133     | Message Identification                             |
| DGPS Source                  | 1     |       | 00       |       | 0       | See Table 2-14. DGPS<br>Source Selections          |
| Internal Beacon<br>Frequency | 4     |       | 00000000 | Hz    | 0       | See Table 2-15. Internal<br>Beacon Search Settings |
| Internal Beacon<br>Bit Rate  | 1     |       | 0        | BPS   | 0       | See Table 2-15. Internal<br>Beacon Search Settings |

Payload Length: 7 Bytes

Example 2: Set the DGPS source to Internal DGPS Beacon Receiver

Search Frequency 310000, Bit Rate 200

A0A200007—Start Sequence and Payload Length

85030004BAF0C802—Payload

02FEB0B3—Checksum and End Sequence

Table 2-13 DGPS Source Selection (Example 2)

| Name         | Bytes | Scale | Hex | Units | Decimal | Description             |
|--------------|-------|-------|-----|-------|---------|-------------------------|
| Message I.D. | 1     |       | 85  |       | 133     | Message Identification. |

Table 2-13 DGPS Source Selection (Example 2)

| DGPS Source     | 1 | 03       |     | 3      | See Table 2-14. DGPS     |
|-----------------|---|----------|-----|--------|--------------------------|
|                 |   |          |     |        | Source Selections.       |
| Internal Beacon | 4 | 0004BAF0 | Hz  | 310000 | See Table 2-15. Internal |
| Frequency       |   |          |     |        | Beacon Search Settings.  |
| Internal Beacon | 1 | C8       | BPS | 200    | See Table 2-15. Internal |
| Bit Rate        |   |          |     |        | Beacon Search Settings.  |

Payload Length: 7 Bytes

Table 2-14 DGPS Source Selections

| DGPS Source                      | Hex | Decimal | Description                                                                         |
|----------------------------------|-----|---------|-------------------------------------------------------------------------------------|
| None                             | 00  | 0       | DGPS corrections are not used (even if available).                                  |
| WAAS                             | 01  | 1       | Uses WAAS Satellite (subject to availability).                                      |
| External RTCM<br>Data            | 02  | 2       | External RTCM input source (i.e., Coast Guard Beacon).                              |
| Internal DGPS<br>Beacon Receiver | 03  | 3       | Internal DGPS beacon receiver.                                                      |
| User Software                    | 04  | 4       | Corrections provided using a module interface routine in a custom user application. |

Table 2-15 Internal Beacon Search Settings

| Search Type           | Frequency <sup>1</sup> | Bit Rate <sup>2</sup> | Description                                                            |
|-----------------------|------------------------|-----------------------|------------------------------------------------------------------------|
| Auto Scan             | 0                      | 0                     | Auto scanning of all frequencies and bit rates are performed.          |
| Full Frequency scan   | 0                      | None zero             | Auto scanning of all frequencies and specified bit rate are performed. |
| Full Bit Rate<br>Scan | None Zero              | 0                     | Auto scanning of all bit rates and specified frequency are performed.  |
| Specific Search       | Non Zero               | Non Zero              | Only the specified frequency and bit rate search are performed.        |

<sup>1.</sup> Frequency Range is 283500 to 325000 Hz.

## Set Main Serial Port - Message I.D. 134

Table 2-16 contains the input values for the following example:

Set Main Serial port to 9600,n,8,1.

#### Example:

A0A20009—Start Sequence and Payload Length

860000258008010000—Payload

0134B0B3-Message Checksum and End Sequence

<sup>2.</sup> Bit Rate selection is 25, 50, 100 and 200 BPS.

Table 2-16 Set Main Serial Port

|            |       | Binary (Hex) |          |       |                                 |
|------------|-------|--------------|----------|-------|---------------------------------|
| Name       | Bytes | Scale        | Example  | Units | Description                     |
| Message ID | 1     |              | 86       |       | decimal 134                     |
| Baud       | 4     |              | 00002580 |       | 38400,19200,9600,4800,2400,1200 |
| Data Bits  | 1     |              | 08       |       | 8,7                             |
| Stop Bit   | 1     |              | 01       |       | 0,1                             |
| Parity     | 1     |              | 00       |       | None=0, Odd=1, Even=2           |
| Pad        | 1     |              | 00       |       | Reserved                        |

Payload Length: 9 bytes

## Switch Protocol - Message I.D. 135

This message is obsolete and is no longer used or supported.

## Mode Control - Message I.D. 136

Table 2-17 contains the input values for the following example:

3D Mode = Always, Alt Constraining = Yes, Degraded Mode = clock then direction, TBD=1, DR Mode = Yes, Altitude = 0, Alt Hold Mode = Auto, Alt Source =Last Computed, Coast Time Out = 20, Degraded Time Out=5, DR Time Out = 2, Track Smoothing = Yes

#### Example:

A0A2000E—Start Sequence and Payload Length 88010101010100000002140501—Payload

00A9B0B3-Message Checksum and End Sequence

Table 2-17 Mode Control

|                   |       | Binary (Hex) |         |         |                                                                           |
|-------------------|-------|--------------|---------|---------|---------------------------------------------------------------------------|
| Name              | Bytes | Scale        | Example | Units   | Description                                                               |
| Message ID        | 1     |              | 88      |         | Decimal 136                                                               |
| TBD               | 2     |              | 00 00   |         | Reserved                                                                  |
| Degraded Mode     | 1     |              | 01      |         | See Table 2-18                                                            |
| TBD               | 2     |              | 00      |         | Reserved                                                                  |
| Altitude          | 2     |              | 0000    | meters  | User specified altitude, range -1,000 to +10,000                          |
| Alt Hold Mode     | 1     |              | 00      |         | See Table 2-19                                                            |
| Alt Hold Source   | 1     |              | 02      |         | 0=Use last computed altitude,<br>1=Use user-input altitude                |
| TBD               | 1     |              |         |         | Reserved                                                                  |
| Degraded Time Out | 1     |              | 05      | seconds | 0=disable degraded mode, 1-<br>120 seconds degraded mode<br>time limit[1] |

Table 2-17 Mode Control

|                 |       | Binary (Hex) |         |         |                              |
|-----------------|-------|--------------|---------|---------|------------------------------|
| Name            | Bytes | Scale        | Example | Units   | Description                  |
| DR Time Out     | 1     |              | 01      | seconds | 0=disable dead reckoning, 1- |
|                 |       |              |         |         | 120 seconds dead reckoning   |
|                 |       |              |         |         | mode time limit[2]           |
| Track Smoothing | 1     |              | 01      |         | 0=disable, 1=enable          |

Payload Length:

14 bytes

Table 2-18 Degraded Mode Byte Value

| Byte Value | Description                                                                                |
|------------|--------------------------------------------------------------------------------------------|
| 0          | Allow 1 SV navigation, freeze direction for 2 SV fix, then freeze clock drift for 1 SV fix |
| 1          | Allow 1 SV navigation, freeze clock drift for 2 SV fix, then freeze direction for 1 SV fix |
| 2          | Allow 2 SV navigation, freeze direction                                                    |
| 3          | Allow 2 SV navigation, freeze clock drift                                                  |
| 4          | Do not allow Degraded Modes (2 SV and 1 SV navigation)                                     |

S

Table 2-19 Altitude Hold Mode

| Byte Value | Description                                            |
|------------|--------------------------------------------------------|
| 0          | Automatically determine best available altitude to use |
| 1          | Always use input altitude                              |
| 2          | Do not use altitude hold                               |

## DOP Mask Control - Message I.D. 137

Table 2-20 contains the input values for the following example:

Auto Pdop/Hdop, Gdop =8 (default), Pdop=8,Hdop=8

Example:

A0A20005—Start Sequence and Payload Length

8900080808—Payload

00A1B0B3—Message Checksum and End Sequence

Table 2-20 DOP Mask Control

|               |       | Binary (Hex) |         |       |                |
|---------------|-------|--------------|---------|-------|----------------|
| Name          | Bytes | Scale        | Example | Units | Description    |
| Message ID    | 1     |              | 89      |       | Decimal 137    |
| DOP Selection | 1     |              | 00      |       | See Table 2-21 |
| GDOP Value    | 1     |              | 08      |       | Range 1 to 50  |

Table 2-20 DOP Mask Control

|            |       | Binary (Hex) |         |       |               |
|------------|-------|--------------|---------|-------|---------------|
| Name       | Bytes | Scale        | Example | Units | Description   |
| PDOP Value | 1     |              | 08      |       | Range 1 to 50 |
| HDOP Value | 1     |              | 08      |       | Range 1 to 50 |

Payload Length: 5 bytes

Table 2-21 DOP Selection

| Byte Value | Description    |
|------------|----------------|
| 0          | Auto PDOP/HDOP |
| 1          | PDOP           |
| 2          | HDOP           |
| 3          | GDOP           |
| 4          | Do Not Use     |

## DGPS Control - Message I.D. 138

Table 2-22 contains the input values for the following example:

Set DGPS to exclusive with a time out of 30 seconds.

#### Example:

A0A20003—Start Sequence and Payload Length

8A011E—Payload

00A9B0B3-Message Checksum and End Sequence

Table 2-22 DGPS Control

|                |       | Binary (Hex) |         |         |                |
|----------------|-------|--------------|---------|---------|----------------|
| Name           | Bytes | Scale        | Example | Units   | Description    |
| Message ID     | 1     |              | 8A      |         | Decimal 138    |
| DGPS Selection | 1     |              | 01      |         | See Table 2-23 |
| DGPS Time Out: | 1     |              | 1E      | seconds | Range 0 to 255 |

Payload Length: 3 bytes

Table 2-23 DGPS Selection

| Byte Value | Description |
|------------|-------------|
| 0          | Auto        |
| 1          | Exclusive   |
| 2          | Never Use   |

**Note** – DGPS Timeout interpretation varies with DGPS correction source. For internal beacon receiver or RTCM SC-104 external source, a value of 0 means infinite timeout (use corrections until another one is used). A value of 1-255 means use the corrections for a maximum of this many seconds. For DGPS corrections from an SBAS source, the timeout value is ignored unless Message ID 170, Flag bit 0 is set to 1 (User Timeout). If MID 170 specifies User Timeout, a value of 1 to 255 here means that SBAS corrections may be used for the number of seconds specified. A value of 0 means to use the timeout specified by the SBAS satellite (usually 18 seconds).

### Elevation Mask – Message I.D. 139

Table 2-24 contains the input values for the following example:

Set Navigation Mask to 15.5 degrees (Tracking Mask is defaulted to 5 degrees).

#### Example:

A0A20005—Start Sequence and Payload Length

8B0032009B—Payload

0158B0B3-Message Checksum and End Sequence

Table 2-24 Elevation Mask

|                 |       | Binary (Hex) |         |         |                     |
|-----------------|-------|--------------|---------|---------|---------------------|
| Name            | Bytes | Scale        | Example | Units   | Description         |
| Message ID      | 1     |              | 8B      |         | Decimal 139         |
| Tracking Mask   | 2     | *10          | 0032    | degrees | Not implemented     |
| Navigation Mask | 2     | *10          | 009B    | degrees | Range -20.0 to 90.0 |

Payload Length:

5 bytes

## Power Mask - Message I.D. 140

Table 2-25 contains the input values for the following example:

Navigation mask to 33 dBHz (tracking default value of 28)

Example:

A0A20003—Start Sequence and Payload Length

8C1C21—Payload

00C9B0B3-Message Checksum and End Sequence

Table 2-25 Power Mask

|                 |       | Binary (Hex) |         |       |                 |
|-----------------|-------|--------------|---------|-------|-----------------|
| Name            | Bytes | Scale        | Example | Units | Description     |
| Message ID      | 1     |              | 8C      |       | Decimal 140     |
| Tracking Mask   | 1     |              | 1C      | dBHz  | Not implemented |
| Navigation Mask | 1     |              | 21      | dBHz  | Range 20 to 50  |

Payload Length:

3 bytes

## Editing Residual-Message I.D. 141

This message is defined as Editing Residual but has not been implemented.

## Steady State Detection - Message I.D. 142

This message is defined as Steady State Detection but has not been implemented.

## Static Navigation–Message I.D. 143

This command allows the user to enable or disable static navigation to the Evaluation Receiver.

Example:

A0A20002 - Start Sequence and Payload Length

8F01 - Payload

#### xxxxB0B3 - Message Checksum and End Sequence

Table 2-26 Static Navigation

|                        |       | Binary (Hex) |         |       |             |
|------------------------|-------|--------------|---------|-------|-------------|
| Name                   | Bytes | Scale        | Example | Units | Description |
| Message ID             | 1     |              | 8F      |       | ASCII 143   |
| Static Navigation Flag | 1     |              | 01      |       | Decimal 1   |

Payload Length: 2 bytes

Table 2-27 Message ID 143 Description

| Name                   | Description                   |
|------------------------|-------------------------------|
| Message ID             | Message ID number.            |
| Static Navigation Flag | Valid values:                 |
|                        | 1 – enable static navigation  |
|                        | 0 – disable static navigation |

## Poll Clock Status – Message I.D. 144

Table 2-28 contains the input values for the following example:

Poll the clock status.

Example:

A0A20002-Start Sequence and Payload Length

9000—Payload

0090B0B3-Message Checksum and End Sequence

Table 2-28 Clock Status

|            |       | Binary (Hex) |         |       |             |
|------------|-------|--------------|---------|-------|-------------|
| Name       | Bytes | Scale        | Example | Units | Description |
| Message ID | 1     |              | 90      |       | ASCII 144   |
| Control    | 1     |              | 00      |       | Not used    |

Payload Length: 2 bytes

**Note** – Returned message will be Message I.D. 7. See "Response: Clock Status Data - Message I.D. 7" on page 3-7.

## Set DGPS Serial Port - Message I.D. 145

Table 2-29 contains the input values for the following example:

Set DGPS Serial port to 9600,n,8,1.

#### Example:

A0A20009-Start Sequence and Payload Length

910000258008010000—Payload

013FB0B3—Message Checksum and End Sequence

Table 2-29 Set DGPS Serial Port

|            |       | Binary (Hex) |          |       |                                 |
|------------|-------|--------------|----------|-------|---------------------------------|
| Name       | Bytes | Scale        | Example  | Units | Description                     |
| Message ID | 1     |              | 91       |       | Decimal 145                     |
| Baud       | 4     |              | 00002580 |       | 38400,19200,9600,4800,2400,1200 |
| Data Bits  | 1     |              | 08       |       | 8,7                             |
| Stop Bit   | 1     |              | 01       |       | 0,1                             |
| Parity     | 1     |              | 00       |       | None=0, Odd=1, Even=2           |
| Pad        | 1     |              | 00       |       | Reserved                        |

Payload Length: 9 bytes

**Note** – Setting the DGPS serial port using MID 145 will effect Com B only regardless of the port being used to communicate with the Evaluation Receiver.

## Poll Almanac - Message I.D. 146

Table 2-30 contains the input values for the following example:

Poll for the Almanac.

#### Example:

A0A20002—Start Sequence and Payload Length

9200—Payload

0092B0B3-Message Checksum and End Sequence

Table 2-30 Almanac

|            |       | Binary (Hex) |         |       |             |
|------------|-------|--------------|---------|-------|-------------|
| Name       | Bytes | Scale        | Example | Units | Description |
| Message ID | 1     |              | 92      |       | Decimal 146 |
| Control    | 1     |              | 00      |       | Not used    |

Payload Length: 2 bytes

**Note** – Returned message will be Message I.D. 14. See "Almanac Data - Message I.D. 14" on page 3-23.

### Poll Ephemeris - Message I.D. 147

Table 2-31 contains the input values for the following example:

Poll for Ephemeris Data for all satellites.

#### Example:

A0A20003—Start Sequence and Payload Length

930000-Payload

0092B0B3—Message Checksum and End Sequence

Table 2-31 Ephemeris

|                      |       | Binary (Hex) |         |       |               |
|----------------------|-------|--------------|---------|-------|---------------|
| Name                 | Bytes | Scale        | Example | Units | Description   |
| Message ID           | 1     |              | 93      |       | Decimal 147   |
| Sv I.D. <sup>1</sup> | 1     |              | 00      |       | Range 0 to 32 |
| Control              | 1     |              | 00      |       | Not used      |

Payload Length:

3 bytes

**Note** – Returned message will be Message I.D. 15. See "Ephemeris Data (Response to Poll) – Message I.D. 15" on page 3-24.

## Flash Update - Message I.D. 148

This command allows the user to command the Evaluation Receiver to go into internal boot mode without setting the boot switch. Internal boot mode allows the user to reflash the embedded code in the receiver.

**Note** – It is highly recommended that all hardware designs should still provide access to the boot pin in the event of a failed flash upload.

#### Example:

A0A20001 - Start Sequence and Payload Length

94 – Payload

0094B0B3 - Message Checksum and End Sequence

Table 2-32 Flash Update

|            |       | Binary (Hex) |         |       |             |
|------------|-------|--------------|---------|-------|-------------|
| Name       | Bytes | Scale        | Example | Units | Description |
| Message ID | 1     |              | 94      |       | Decimal 148 |

Payload Length:

1 bytes

<sup>1.</sup> A value of 0 requests all available ephemeris records, otherwise the ephemeris of the Sv I.D. is requested.

### Set Ephemeris – Message I.D. 149

This command enables the user to upload an ephemeris file to the Evaluation Receiver.

#### Example:

A0A2005B - Start Sequence and Payload Length

95..... – Payload

xxxxB0B3 - Message Checksum and End Sequence

*Table 2-33* Ephemeris

|                |       | Binary (Hex) |         |       |             |
|----------------|-------|--------------|---------|-------|-------------|
| Name           | Bytes | Scale        | Example | Units | Description |
| Message ID     | 1     |              | 95      |       | Decimal 149 |
| Ephemeris Data | 90    |              | 00      |       | Reserved    |

Payload Length: 91 bytes

The ephemeris data for each satellite is stored as a two dimensional array of [3][15] UNIT16 elements. The 3 represents three separate sub-frames. The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD-GPS-2000 document. The ICD-GPS-2000 document describes the data format of each GPS navigation sub-frame and is available on the web at <a href="http://www.arinc.com/gps">http://www.arinc.com/gps</a>.

### Switch Operating Modes - Message I.D. 150

Table 2-34 contains the input values for the following example:

Sets the receiver to track a single satellite on all channels.

#### Example:

A0A20007—Start Sequence and Payload Length

961E510006001E-Payload

0129B0B3—Message Checksum and End Sequence

Table 2-34 Switch Operating Modes

|            |       | Binary (Hex) |         |         |                           |
|------------|-------|--------------|---------|---------|---------------------------|
| Name       | Bytes | Scale        | Example | Units   | Description               |
| Message ID | 1     |              | 96      |         | Decimal 150               |
| Mode       | 2     |              | 1E51    |         | 0=normal, 1E51=Testmode1, |
|            |       |              |         |         | 1E52=Testmode2,           |
|            |       |              |         |         | 1E53=Testmode3,           |
|            |       |              |         |         | 1E54=Testmode4            |
| SvID       | 2     |              | 0006    |         | Satellite to Track        |
| Period     | 2     |              | 001E    | seconds | Duration of Track         |

Payload Length: 7 bytes

#### Set TricklePower Parameters - Message I.D. 151

Table 2-35 contains the input values for the following example:

Sets the receiver into low power Modes.

Example: Set receiver into Trickle Power at 1 hz update and 200 msec On Time.

A0A20009—Start Sequence and Payload Length

9700000C8000000C8—Payload

0227B0B3—Message Checksum and End Sequence

Table 2-35 Set Trickle Power Parameters

|                       |       | Binary (Hex) |          |       |                                                                    |
|-----------------------|-------|--------------|----------|-------|--------------------------------------------------------------------|
| Name                  | Bytes | Scale        | Example  | Units | Description                                                        |
| Message ID            | 1     |              | 97       |       | Decimal 151                                                        |
| Push To Fix Mode      | 2     |              | 0000     |       | ON = 1, $OFF = 0$                                                  |
| Duty Cycle            | 2     | *10          | 00C8     | %     | % Time ON. A duty cycle of 1000 (100%) means continuous operation. |
| Milli Seconds On Time | 4     |              | 000000C8 | msec  | range 200 - 900 msec                                               |

Payload Length:

9 bytes

On-times of 700, 800, and 900 msec are invalid if an update rate of 1 second is selected.

#### Computation of Duty Cycle and On Time

The Duty Cycle is the desired time to be spent tracking. The On Time is the duration of each tracking period (range is 200 - 900 msec). To calculate the TricklePower update rate as a function of Duty Cycle and On Time, use the following formula:

Update rate = Off Time + On Time

**Note** – It is not possible to enter an on-time > 900 msec.

Following are some examples of selections:

Table 2-36 Example of Selections for Trickle Power Mode of Operation

| Mode          | On Time (msec) | Duty Cycle (%) | Update Rate(1/Hz) |
|---------------|----------------|----------------|-------------------|
| Continuous    | 1000           | 100            | 1                 |
| Trickle Power | 200            | 20             | 1                 |
| Trickle Power | 200            | 10             | 2                 |
| Trickle Power | 300            | 10             | 3                 |
| Trickle Power | 500            | 5              | 10                |

Table 2-37 TricklePower Supported Modes

|                | Update Rates (seconds) |   |   |   |   |   |   |   |          |          |
|----------------|------------------------|---|---|---|---|---|---|---|----------|----------|
| On Time (msec) | 1                      | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9        | 10       |
| 200            | ✓                      | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓        | ✓        |
| 300            | ✓                      | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓        | ✓        |
| 400            | ✓                      | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓        | ✓        |
| 500            | ✓                      | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | <b>√</b> | ✓        |
| 600            | ✓                      | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | <b>√</b> | ✓        |
| 700            |                        | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓        | ✓        |
| 800            |                        | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓        | <b>✓</b> |
| 900            |                        | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓        | <b>✓</b> |

### Push-to-Fix

In this mode the receiver will turn on every 30 minutes to perform a system update consisting of a RTC calibration and satellite ephemeris data collection if required (i.e., a new satellite has become visible) as well as all software tasks to support SnapStart in the event of an NMI. Ephemeris collection time in general takes 18 to 30 seconds. If ephemeris data is not required then the system will re-calibrate and shut down. In either case, the amount of time the receiver remains off will be in proportion to how long it stayed on:

The off period has a possible range between 10 and 7200 seconds. The default is 1800 seconds.

## Poll Navigation Parameters - Message I.D. 152

Table 2-38 contains the input values for the following example:

Example: Poll receiver for current navigation parameters.

A0A20002—Start Sequence and Payload Length

9800-Payload

0098B0B3-Message Checksum and End Sequence

Table 2-38 Poll Receiver for Navigation Parameters

|            |       | Binary (Hex) |         |       |             |
|------------|-------|--------------|---------|-------|-------------|
| Name       | Bytes | Scale        | Example | Units | Description |
| Message ID | 1     |              | 98      |       | Decimal 152 |
| Reserved   | 1     |              | 00      |       | Reserved    |

Payload Length: 2 bytes

Input Messages 2-21

**Note** – Returned message will be Message I.D. 19. See "Navigation Parameters (Response to Poll) – Message I.D. 19" on page 3-28.

## Set UART Configuration - Message I.D. 165

Table 2-39 contains the input values for the following example:

Example: Set port 0 to NMEA with 9600 baud, 8 data bits, 1 stop bit, no parity. Set port 1 to SiRF binary with 57600 baud, 8 data bits, 1 stop bit, no parity. Do not configure ports 2 and 3.

#### Example:

A0A20031—Start Sequence and Payload Length

0452B0B3—Message Checksum and End Sequence

Table 2-39 Set UART Configuration

|                          |       | Bina  | Binary (Hex) |       |                                 |
|--------------------------|-------|-------|--------------|-------|---------------------------------|
| Name                     | Bytes | Scale | Example      | Units | Description                     |
| Message ID               | 1     |       | A5           |       | Decimal 165                     |
| Port                     | 1     |       | 00           |       | For UART 0                      |
| In Protocol <sup>1</sup> | 1     |       | 01           |       | For UART 0                      |
| Out Protocol             | 1     |       | 01           |       | For UART 0 (Set to in protocol) |
| Baud Rate <sup>2</sup>   | 4     |       | 00002580     |       | For UART 0                      |
| Data Bits <sup>3</sup>   | 1     |       | 08           |       | For UART 0                      |
| Stop Bits <sup>4</sup>   | 1     |       | 01           |       | For UART 0                      |
| Parity <sup>5</sup>      | 1     |       | 00           |       | For UART 0                      |
| Reserved                 | 1     |       | 00           |       | For UART 0                      |
| Reserved                 | 1     |       | 00           |       | For UART 0                      |
| Port                     | 1     |       | 01           |       | For UART 1                      |
| In Protocol              | 1     |       | 00           |       | For UART 1                      |
| Out Protocol             | 1     |       | 00           |       | For UART 1                      |
| Baud Rate                | 4     |       | 0000E100     |       | For UART 1                      |
| Data Bits                | 1     |       | 08           |       | For UART 1                      |
| Stop Bits                | 1     |       | 01           |       | For UART 1                      |
| Parity                   | 1     |       | 00           |       | For UART 1                      |
| Reserved                 | 1     |       | 00           |       | For UART 1                      |
| Reserved                 | 1     |       | 00           |       | For UART 1                      |
| Port                     | 1     |       | FF           |       | For UART 2                      |
| In Protocol              | 1     |       | 05           |       | For UART 2                      |
| Out Protocol             | 1     |       | 05           |       | For UART 2                      |
| Baud Rate                | 4     |       | 00000000     |       | For UART 2                      |
| Data Bits                | 1     |       | 00           |       | For UART 2                      |
| Stop Bits                | 1     |       | 00           |       | For UART 2                      |
| Parity                   | 1     |       | 00           |       | For UART 2                      |

Table 2-39 Set UART Configuration (Continued)

|              |       | Binary (Hex) |          |       |             |
|--------------|-------|--------------|----------|-------|-------------|
| Name         | Bytes | Scale        | Example  | Units | Description |
| Reserved     | 1     |              | 00       |       | For UART 2  |
| Reserved     | 1     |              | 00       |       | For UART 2  |
| Port         | 1     |              | FF       |       | For UART 3  |
| In Protocol  | 1     |              | 05       |       | For UART 3  |
| Out Protocol | 1     |              | 05       |       | For UART 3  |
| Baud Rate    | 4     |              | 00000000 |       | For UART 3  |
| Data Bits    | 1     |              | 00       |       | For UART 3  |
| Stop Bits    | 1     |              | 00       |       | For UART 3  |
| Parity       | 1     |              | 00       |       | For UART 3  |
| Reserved     | 1     |              | 00       |       | For UART 3  |
| Reserved     | 1     |              | 00       |       | For UART 3  |

Payload Length:

49 bytes

## Set Message Rate - Message I.D. 166

Table 2-40 contains the input values for the following example:

Set message ID 2 to output every 5 seconds starting immediately.

### Example:

A0A20008—Start Sequence and Payload Length

A6010205000000000-Payload

00AEB0B3—Message Checksum and End Sequence

Input Messages 2-23

<sup>1. 0 =</sup> SiRF Binary, 1 = NMEA, 2 = ASCII, 3 = RTCM, 4 = User1, 5 = No Protocol.

<sup>2.</sup> Valid values are 1200, 2400, 4800, 9600, 19200, 38400, and 57600.

<sup>3.</sup> Valid values are 7 and 8.

<sup>4.</sup> Valid values are 1 and 2.

<sup>5.</sup> 0 = None, 1 = Odd, 2 = Even.

Table 2-40 Set Message Rate

|                       |       | Binary (Hex) |         |       |                |  |
|-----------------------|-------|--------------|---------|-------|----------------|--|
| Name                  | Bytes | Scale        | Example | Units | Description    |  |
| Message ID            | 1     |              | A6      |       | decimal 166    |  |
| Send Now <sup>1</sup> | 1     |              | 01      |       | Poll message   |  |
| MID to be set         | 1     |              | 02      |       |                |  |
| Update Rate           | 1     |              | 05      | sec   | Range = 1 - 30 |  |
| Reserved              | 1     |              | 00      |       | Not used       |  |
| Reserved              | 1     |              | 00      |       | No used        |  |
| Reserved              | 1     |              | 00      |       | Not used       |  |
| Reserved              | 1     |              | 00      |       | Not used       |  |

Payload Length:

8 bytes

## Set Low Power Acquisition Parameters - Message I.D. 167

Table 2-41 contains the input values for the following example:

Set maximum off and search times for re-acquisition while receiver is in low power and using Adaptive TricklePower.

#### Example:

A0A2000F-Start Sequence and Payload Length

A7000075300001D4C00000003C0001—Payload

031EB0B3—Message Checksum and End Sequence

Table 2-41 Set Low Power Acquisition Parameters

|                    |       | Bina  | ry (Hex) |       |                                 |
|--------------------|-------|-------|----------|-------|---------------------------------|
| Name               | Bytes | Scale | Example  | Units | Description                     |
| Message ID         | 1     |       | A7       |       | decimal 167                     |
| Max Off Time       | 4     |       | 00007530 | msec  | Maximum time for sleep mode.    |
|                    |       |       |          |       | Default value: 30 seconds.      |
| Max Search Time    | 4     |       | 0001D4C0 | msec  | Max. satellite search time.     |
|                    |       |       |          |       | Default value: 120 seconds.     |
| Push-to-Fix Period | 4     |       | 0000003C | sec   | Push-to-Fix cycle period        |
| Adaptive           | 2     |       | 0001     |       | To enable Adaptive TricklePower |
| TricklePower       |       |       |          |       | 0 = off; 1 = on                 |

Payload Length: 15 bytes

# Poll Command Parameters – Message I.D. 168

Table 2-42 contains the input values for the following example:

<sup>1.</sup> 0 = No, 1 = Yes, if no update rate the message will be polled.

Queries the receiver to send specific response messages for one of the following messages: 0x80, 0x85, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8F, and 0x97 (see Table 2-1).

### Example:

A0A20002-Start Sequence and Payload Length

A897-Payload

013FB0B3-Message Checksum and End Sequence

Table 2-42 Poll Command Parameters

|             |       | Binary (Hex) |         |       |                        |
|-------------|-------|--------------|---------|-------|------------------------|
| Name        | Bytes | Scale        | Example | Units | Description            |
| Message ID  | 1     |              | A8      |       | Decimal 168            |
| Poll Msg ID | 1     |              | 97      |       | Requesting Msg ID 0x97 |

Payload Length: 2 bytes

## Set SBAS Parameters-Message I.D. 170

This command allows the user to set the SBAS parameters.

Table 2-43 contains the input values for the following example:

Set automatic SBAS search and testing operating mode.

#### Example:

A0A20006—Start Sequence and Payload Length

AA0000010000-Payload

01B8B0B3—Message Checksum and End Sequence

Table 2-43 Set SBAS Parameters

|            |       | Bina  | ry (Hex) |       |                                                                                                                                                                                                                                           |
|------------|-------|-------|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name       | Bytes | Scale | Example  | Units | Description                                                                                                                                                                                                                               |
| Message ID | 1     |       | AA       |       | decimal 170                                                                                                                                                                                                                               |
| SBAS PRN   | 1     |       | 00       |       | 0=Auto mode<br>PRN 120-138= Exclusive                                                                                                                                                                                                     |
| SBAS Mode  | 1     |       | 00       |       | 0=Testing, 1=Integrity Integrity mode will not accept SBAS corrections if the SBAS satellite is transmitting in a test mode. Testing mode will accept and use SBAS corrections even if the SBAS satellite is transmitting in a test mode. |

Input Messages 2-25

Table 2-43 Set SBAS Parameters

|          |       | Binary (Hex) |         |       |                                                                                            |  |
|----------|-------|--------------|---------|-------|--------------------------------------------------------------------------------------------|--|
| Name     | Bytes | Scale        | Example | Units | Description                                                                                |  |
| Flag Bit | 1     |              | 01      |       | Bit 0: Timeout; 0=Default 1=User<br>Bit 1: Health; Reserved<br>Bit 2: Correction; Reserved |  |
|          |       |              |         |       | Bit 3: SBAS PRN; 0=Default<br>1=User                                                       |  |
| Spare    | 2     |              | 0000    |       |                                                                                            |  |

Payload Length: 6 bytes

# Set UART Configuration - Message I.D. 182

This message is obsolete and is no longer used or supported.

# Output Messages

The following chapter provides full information about available SiRF Binary output messages. For each message, a full definition and example is provided.

Table 3-1 lists the message list for the SiRF output messages.

Table 3-1 SiRF Messages - Output Message List

| Hex    | ASCII | Name                          | Description                         |  |  |
|--------|-------|-------------------------------|-------------------------------------|--|--|
| 0 x 01 | 1     | Reference Navigation Data     | Not Implemented                     |  |  |
| 0 x 02 | 2     | Measured Navigation Data      | Position, velocity, and time        |  |  |
| 0 x 03 | 3     | True Tracker Data             | Not Implemented                     |  |  |
| 0 x 04 | 4     | Measured Tracking Data        | Satellite and C/No information      |  |  |
| 0 x 05 | 5     | Raw Track Data                | Not supported by SiRFstarII         |  |  |
| 0 x 06 | 6     | SW Version                    | Receiver software                   |  |  |
| 0 x 07 | 7     | Clock Status                  | Current clock status                |  |  |
| 0 x 08 | 8     | 50 BPS Subframe Data          | Standard ICD format                 |  |  |
| 0 x 09 | 9     | Throughput                    | Navigation complete data            |  |  |
| 0 x 0A | 10    | Error ID                      | Error coding for message failure    |  |  |
| 0 x 0B | 11    | Command Acknowledgment        | Successful request                  |  |  |
| 0 x 0C | 12    | Command NAcknowledgment       | Unsuccessful request                |  |  |
| 0 x 0D | 13    | Visible List                  | Auto Output                         |  |  |
| 0 x 0E | 14    | Almanac Data                  | Response to Poll                    |  |  |
| 0 x 0F | 15    | Ephemeris Data                | Response to Poll                    |  |  |
| 0 x 10 | 16    | Test Mode 1                   | For use with SiRFtest (Test Mode 1) |  |  |
| 0 x 11 | 17    | Differential Corrections      | Received from DGPS broadcast        |  |  |
| 0 x 12 | 18    | OkToSend                      | CPU ON / OFF (Trickle Power)        |  |  |
| 0 x 13 | 19    | Navigation Parameters         | Response to Poll                    |  |  |
| 0 x 14 | 20    | Test Mode 2/3/4               | Test Mode 2, 3, or 4 test data      |  |  |
| 0 x 1C | 28    | Nav. Lib. Measurement Data    | Measurement Data                    |  |  |
| 0 x 1D | 29    | Nav. Lib. DGPS Data           | Differential GPS Data               |  |  |
| 0 x 1E | 30    | Nav. Lib. SV State Data       | Satellite State Data                |  |  |
| 0 x 1F | 31    | Nav. Lib. Initialization Data | Initialization Data                 |  |  |
| 0 x 29 | 41    | Geodetic Navigation Data      | Geodetic navigation information     |  |  |
|        |       |                               | including error estimates           |  |  |
| 0 x 2E | 46    | Test Mode 3                   | Additional test data (Test Mode 3)  |  |  |
| 0 x 30 | 48    | Test Mode Raw Measurement     | Raw GPS measurement data            |  |  |
|        |       | Data                          |                                     |  |  |

Table 3-1 SiRF Messages - Output Message List

| Hex    | ASCII | Name                        | Description               |  |
|--------|-------|-----------------------------|---------------------------|--|
| 0 x 31 | 49    | Test Mode Raw Tracking Loop | Raw tracking loop data    |  |
|        |       | Data                        |                           |  |
| 0 x 32 | 50    | SBAS Parameters             | SBAS operating parameters |  |
| 0 x 34 | 52    | PPS Time Message            | Time Message for PPS      |  |
| 0 x FF | 255   | Development Data            | Various status messages   |  |

As the SiRF Binary protocol is evolving along with continued development of SiRF software and GPS solutions, not all SiRF Binary messages are supported by all SiRF GPS solutions.

Table 3-2 identifies the supported output messages for each SiRF architecture.

Table 3-2 Supported output messages

|              | SiRF Software Options |                 |                 |  |  |  |  |  |  |
|--------------|-----------------------|-----------------|-----------------|--|--|--|--|--|--|
| Message I.D. | GSW2                  | SiRFXTrac       | SiRFLoc         |  |  |  |  |  |  |
| 1            | Yes                   | No              | No              |  |  |  |  |  |  |
| 2            | Yes                   | Yes             | Yes             |  |  |  |  |  |  |
| 3            | No                    | No              | No              |  |  |  |  |  |  |
| 4            | Yes                   | Yes             | Yes             |  |  |  |  |  |  |
| 5            | No                    | No              | No              |  |  |  |  |  |  |
| 6            | Yes                   | Yes             | Yes             |  |  |  |  |  |  |
| 7            | Yes                   | Yes             | Yes             |  |  |  |  |  |  |
| 8            | Yes                   | Yes             | Yes             |  |  |  |  |  |  |
| 9            | Yes                   | Yes             | Yes             |  |  |  |  |  |  |
| 10           | Yes                   | Yes             | Yes             |  |  |  |  |  |  |
| 11           | Yes                   | Yes             | Yes             |  |  |  |  |  |  |
| 12           | Yes                   | Yes             | Yes             |  |  |  |  |  |  |
| 13           | Yes                   | Yes             | Yes             |  |  |  |  |  |  |
| 14           | Yes                   | Yes             | Yes             |  |  |  |  |  |  |
| 15           | Yes                   | Yes             | Yes             |  |  |  |  |  |  |
| 16           | Yes                   | No              | No              |  |  |  |  |  |  |
| 17           | Yes                   | No              | No              |  |  |  |  |  |  |
| 18           | Yes                   | Yes             | Yes             |  |  |  |  |  |  |
| 19           | Yes                   | Yes             | Yes             |  |  |  |  |  |  |
| 20           | Test Mode 2 only      | Test Mode 2/3/4 | Test Mode 2/3/4 |  |  |  |  |  |  |
| 28           | Yes                   | No              | No              |  |  |  |  |  |  |
| 29           | Yes                   | No              | No              |  |  |  |  |  |  |
| 30           | Yes                   | No              | No              |  |  |  |  |  |  |
| 31           | Yes                   | No              | No              |  |  |  |  |  |  |
| 41           | 2.3 or above          | No              | No              |  |  |  |  |  |  |
| 46           | Yes                   | No              | No              |  |  |  |  |  |  |
| 48           | No                    | Yes             | Yes             |  |  |  |  |  |  |
| 49           | No                    | Yes             | Yes             |  |  |  |  |  |  |
| 50           | 2.3 or above          | No              | No              |  |  |  |  |  |  |
| 52           | 2.3.2 or above        | No              | No              |  |  |  |  |  |  |
| 255          | Yes                   | Yes             | Yes             |  |  |  |  |  |  |

## Reference Navigation Data - Message I.D. 1

This message is defined as Reference Navigation data but has not been implemented.

## Measure Navigation Data Out - Message I.D. 2

Output Rate: 1 Hz

Table 3-3 lists the binary and ASCII message data format for the measured navigation data.

### Example:

A0A20029—Start Sequence and Payload Length

09BBB0B3—Message Checksum and End Sequence

Table 3-3 Measured Navigation Data Out - Binary & ASCII Message Data Format

|                  | Binary ( |       | ary (Hex) |                     | ASCI  | I (Decimal) |
|------------------|----------|-------|-----------|---------------------|-------|-------------|
| Name             | Bytes    | Scale | Example   | Units               | Scale | Example     |
| Message ID       | 1        |       | 02        |                     |       | 2           |
| X-position       | 4        |       | FFD6F78C  | m                   |       | -2689140    |
| Y-position       | 4        |       | FFBE536E  | m                   |       | -4304018    |
| Z-position       | 4        |       | 003AC004  | m                   |       | 3850244     |
| X-velocity       | 2        | *8    | 0000      | m/sec               | Vx÷8  | 0           |
| Y-velocity       | 2        | *8    | 0003      | m/sec               | Vy÷8  | 0.375       |
| Z-velocity       | 2        | *8    | 0001      | m/sec               | Vz÷8  | 0.125       |
| Mode 1           | 1        |       | 04        | Bitmap <sup>1</sup> |       | 4           |
| DOP <sup>2</sup> | 1        | *5    | A         |                     | ÷5    | 2.0         |
| Mode 2           | 1        |       | 00        | Bitmap <sup>3</sup> |       | 0           |
| GPS Week         | 2        |       | 036B      |                     |       | 875         |
| GPS TOW          | 4        | *100  | 039780E3  | seconds             | ÷100  | 602605.79   |
| SVs in Fix       | 1        |       | 06        |                     |       | 6           |
| CH 1 PRN         | 1        |       | 12        |                     |       | 18          |
| CH 2 PRN         | 1        |       | 19        |                     |       | 25          |
| CH 3 PRN         | 1        |       | 0E        |                     |       | 14          |
| CH 4 PRN         | 1        |       | 16        |                     |       | 22          |
| CH 5 PRN         | 1        |       | 0F        |                     |       | 15          |
| CH 6 PRN         | 1        |       | 04        |                     |       | 4           |
| CH 7 PRN         | 1        |       | 00        |                     |       | 0           |
| CH 8 PRN         | 1        |       | 00        |                     |       | 0           |
| CH 9 PRN         | 1        |       | 00        |                     |       | 0           |
| CH 10 PRN        | 1        |       | 00        |                     |       | 0           |
| CH 11 PRN        | 1        |       | 00        |                     |       | 0           |
| CH 12 PRN        | 1        |       | 00        |                     |       | 0           |

Payload Length: 41 bytes

<sup>1.</sup> For further information, go to Table 3-4.

- 2. Dilution of precision (DOP) field contains the HDOP value only.
- 3. For further information, go to Table 3-5.

**Note** – Binary units scaled to integer values need to be divided by the scale value to receive true decimal value (i.e., decimal  $X_{vel}$  = binary  $X_{vel} \div 8$ ).

**Note** – The PRNs listed with the 12 channel fields will only contain PRNs of satellites actually used in the solution.

Table 3-4 Mode 1

| Bit    | 7    | 6    | 5    | 4    | 3      | 2 | 1     | 0 |
|--------|------|------|------|------|--------|---|-------|---|
| Bit(s) | DGPS | DOP- | ALTM | MODE | TPMODE |   | PMODE |   |
| Name   |      | Mask |      |      |        |   |       |   |

| Bit(s) Name | Name               | Value | Description                      |
|-------------|--------------------|-------|----------------------------------|
| PMODE       | Position mode      | 0     | No navigation solution           |
|             |                    | 1     | 1 satellite solution             |
|             |                    | 2     | 2 satellite solution             |
|             |                    | 3     | 3 satellite solution             |
|             |                    | 4     | >3 satellite solution            |
|             |                    | 5     | 2D point solution (Least square) |
|             |                    | 6     | 3D point solution (Least square) |
|             |                    | 7     | Dead reckoning                   |
| TPMODE      | Trickle power mode | 0     | Full power position              |
|             |                    | 1     | Trickle power position           |
| ALTMODE     | Altitude mode      | 0     | No altitude hold                 |
|             |                    | 1     | Altitude used from filter        |
|             |                    | 2     | Altitude used from user          |
|             |                    | 3     | Forced altitude (from user)      |
| DOPMASK     | DOP mask status    | 0     | DOP mask not exceeded            |
|             |                    | 1     | DOP mask exceeded                |
| DGPS        | DGPS status        | 0     | No DGPS position                 |
|             |                    | 1     | DGPS position                    |

**Note** – Mode 1 of Message I.D. 2 is used to define the Mode field of the Measure Navigation Message View. Mode 1 is used to define any TTFF values.

Table 3-5 Mode 2

| Mode 2 |       |                                                                                                                                                               |
|--------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hex    | ASCII | Description                                                                                                                                                   |
| 0 x 00 | 0     | Solution not validated                                                                                                                                        |
| 0 x 01 | 1     | DR Sensor Data (DR software versions only) 1=DR Valid, 0=Invalid, see bits 0x40 and 0x80                                                                      |
| 0 x 02 | 2     | Validated (1) <sup>1</sup> , Unvalidated (0)                                                                                                                  |
| 0 x 04 | 4     | If set, Dead Reckoning (Time Out)                                                                                                                             |
| 0 x 08 | 8     | If set, output edited by UI (i.e., DOP Mask exceeded)                                                                                                         |
| 0 x 10 | 16    | Velocity is unvalidated                                                                                                                                       |
| 0 x 20 | 32    | Altitude hold is disabled                                                                                                                                     |
| 0 x 40 | 64    | Reason Sensor DR is invalid (bit 0x01 = 0) (DR software versions only) 00=GPS navigation only, 01=Calibrating DR sensors, 10=DR sensor error, 11=DR test mode |
| 0 x 80 | 128   | Reason Sensor DR is invalid (bit 0x01 = 0) (DR software versions only) 00=GPS navigation only, 01=Calibrating DR sensors, 10=DR sensor error, 11=DR test mode |

From an unvalidated state, a 5 SV position solution must be achieved to become a validated
position. If the receiver continues to navigate in a degraded mode (3D, 2D, 1SV, or DR), then the
validated status will remain. If navigation is lost completely, an unvalidated status will result.

**Note** – Mode 2 of Message I.D. 2 is used to define the Fix field of the Measure Navigation Message View.It should be used only as an indication of the current fix status of the navigation solution and not as a measurement of TTFF.

## True Tracker Data - Message I.D. 3

This message is defined as True Tracker data but has not been implemented.

## Measured Tracker Data Out - Message I.D. 4

Output Rate: 1 Hz

Table 3-6 lists the binary and ASCII message data format for the measured tracker data.

#### Example:

A0A200BC-Start Sequence and Payload Length

 $04036C0000937F0C0EAB46003F1A1E1D1D191D1A1A1D1F1D59423F1A1A... \\ -Payload \\$ 

....B0B3—Message Checksum and End Sequence

Table 3-6 Measured Tracker Data Out

|            |       | Bin      | ary (Hex) |                     | ASCII (Decimal) |         |  |
|------------|-------|----------|-----------|---------------------|-----------------|---------|--|
| Name       | Bytes | Scale    | Example   | Units               | Scale           | Example |  |
| Message ID | 1     |          | 04        | None                |                 | 4       |  |
| GPS Week   | 2     |          | 036C      |                     |                 | 876     |  |
| GPS TOW    | 4     | s*100    | 0000937F  | sec                 | s÷100           | 37759   |  |
| Chans      | 1     |          | 0C        |                     |                 | 12      |  |
| 1st SVid   | 1     |          | 0E        |                     |                 | 14      |  |
| Azimuth    | 1     | Az*[2/3] | AB        | deg                 | ÷[2/3]          | 256.5   |  |
| Elev       | 1     | E1*2     | 46        | deg                 | ÷2              | 35      |  |
| State      | 2     |          | 003F      | Bitmap <sup>1</sup> |                 | 0 x 3F  |  |
| C/No 1     | 1     |          | 1A        |                     |                 | 26      |  |
| C/No 2     | 1     |          | 1E        |                     |                 | 30      |  |
| C/No 3     | 1     |          | 1D        |                     |                 | 29      |  |
| C/No 4     | 1     |          | 1D        |                     |                 | 29      |  |
| C/No 5     | 1     |          | 19        |                     |                 | 25      |  |
| C/No 6     | 1     |          | 1D        |                     |                 | 29      |  |
| C/No 7     | 1     |          | 1A        |                     |                 | 26      |  |
| C/No 8     | 1     |          | 1A        |                     |                 | 26      |  |
| C/No 9     | 1     |          | 1D        |                     |                 | 29      |  |
| C/No 10    | 1     |          | 1F        |                     |                 | 31      |  |
| 2nd SVid   | 1     |          | 1D        |                     |                 | 29      |  |
| Azimuth    | 1     | Az*[2/3] | 59        | deg                 | ÷[2/3]          | 89      |  |
| Elev       | 1     | E1*2     | 42        | deg                 | ÷2              | 66      |  |
| State      | 2     |          | 3F        | Bitmap <sup>1</sup> |                 | 63      |  |
| C/No 1     | 1     |          | 1A        |                     |                 | 26      |  |
| C/No 2     | 1     |          | 1A        |                     |                 | 63      |  |

SVid, Azimuth, Elevation, State, and C/No 1-10 values are repeated for each of the 12 channels

Payload Length: 188 bytes

**Note** – Message length is fixed to 188 bytes with nontracking channels reporting zero values.

<sup>1.</sup> For further information, see Table 3-7 for state values for each channel.

Table 3-7 State Values for Each Channel

| Bit    | Description when bit is set to 1                               |
|--------|----------------------------------------------------------------|
| 0x0001 | Acquisition and re-acquisition has been completed successfully |
| 0x0002 | The integrated carrier phase is valid                          |
| 0x0004 | Bit synchronization has been completed                         |
| 0x0008 | Subframe synchronization has been completed                    |
| 0x0010 | Carrier pullin has been completed                              |
| 0x0020 | Code has been locked                                           |
| 0x0040 | Satellite acquisition has failed                               |
| 0x0080 | Ephemeris data is available                                    |

## Raw Tracker Data Out - Message I.D. 5

This message is not supported by the SiRFstarII architecture.

## Software Version String (Response to Poll) - Message I.D. 6

Output Rate: Response to polling message

Example:

A0A20015—Start Sequence and Payload Length

0606312E322E30444B495431313920534D00000000000—Payload

0382B0B3—Message Checksum and End Sequence

Table 3-8 Software Version String

|            |       | Binary (Hex) |         |       | ASCII | (Decimal) |
|------------|-------|--------------|---------|-------|-------|-----------|
| Name       | Bytes | Scale        | Example | Units | Scale | Example   |
| Message ID | 1     |              | 06      |       |       | 6         |
| Character  | 20    |              | 1       |       |       | 2         |

Payload Length: 21 bytes

1. 06312E322E30444B495431313920534D0000000000

2. 1.2.0DKit119 SM

**Note** – Convert to symbol to assemble message (i.e., 0 x 4E is 'N'). These are low priority task and are not necessarily output at constant intervals.

## Response: Clock Status Data - Message I.D. 7

Output Rate: 1 Hz or response to polling message

Example:

A0A20014—Start Sequence and Payload Length

0703BD021549240800012231000472814D4DAEF—Payload

#### 0598B0B3-Message Checksum and End Sequence

Table 3-9 Clock Status Data Message

|                    |       | Bin   | Binary (Hex) |       | ASCII (Decimal) |           |
|--------------------|-------|-------|--------------|-------|-----------------|-----------|
| Name               | Bytes | Scale | Example      | Units | Scale           | Example   |
| Message ID         | 1     |       | 07           |       |                 | 7         |
| GPS Week           | 2     |       | 03BD         |       |                 | 957       |
| GPS TOW            | 4     | *100  | 02154924     | sec   | ÷100            | 349494.12 |
| Svs                | 1     |       | 08           |       |                 | 8         |
| Clock Drift        | 4     |       | 00012231     | Hz    |                 | 74289     |
| Clock Bias         | 4     |       | 0004728      | nano  |                 | 128743715 |
|                    |       |       |              | sec   |                 |           |
| Estimated GPS Time | 4     |       | 14D4DAEF     | milli |                 | 349493999 |
|                    |       |       |              | sec   |                 |           |

Payload Length: 20 bytes

## 50 BPS Data – Message I.D. 8

Output Rate: As available (12.5 minute download time)

Example:

A0A2002B—Start Sequence and Payload Length

08001900C0342A9B688AB0113FDE2D714FA0A7FFFACC5540157EFFEEDFFF A80365A867FC67708BEB5860F4—Payload

15AAB0B3—Message Checksum and End Sequence

Table 3-10 50 BPS Data

|            |       | Binary (Hex) |         |       | ASCII (Decimal) |         |
|------------|-------|--------------|---------|-------|-----------------|---------|
| Name       | Bytes | Scale        | Example | Units | Scale           | Example |
| Message ID | 1     |              | 08      |       |                 | 8       |
| Channel    | 1     |              | 00      |       |                 | 0       |
| Sv I.D     | 1     |              | 19      |       |                 | 25      |
| Word[10]   | 40    |              |         |       |                 |         |

Payload Length: 43 bytes per subframe (5 subframes per page)

**Note** – Data is logged in ICD-GPS-200C format (available from <a href="https://www.navcen.uscg.mil">www.navcen.uscg.mil</a>). The 10 words together comprise a complete subframe of navigation message data. Within the word, the 30 bits of the navigation message word are right justified, complete with 24 data bits and 6 parity bits. Any inversion of the data has been removed. The 2 MSBs of the word contain parity bits 29 and 30 in bits 31 and 30, respectively, from the previous navigation message word.

## CPU Throughput – Message I.D. 9

Output Rate:1 Hz

Example:

A0A20009-Start Sequence and Payload Length

09003B0011001601E5—Payload

0151B0B3-Message Checksum and End Sequence

Table 3-11 CPU Throughput

|            |       | Binary (Hex) |         |       | ASCII | (Decimal) |
|------------|-------|--------------|---------|-------|-------|-----------|
| Name       | Bytes | Scale        | Example | Units | Scale | Example   |
| Message ID | 1     |              | 09      |       |       | 9         |
| SegStatMax | 2     | *186         | 003B    | milli | ÷186  | .3172     |
|            |       |              |         | sec   |       |           |
| SegStatLat | 2     | *186         | 0011    | milli | ÷186  | .0914     |
|            |       |              |         | sec   |       |           |
| AveTrkTime | 2     | *186         | 0016    | milli | ÷186  | .1183     |
|            |       |              |         | sec   |       |           |
| Last MS    | 2     |              | 01E5    | milli |       | 485       |
|            |       |              |         | sec   |       |           |

Payload Length: 9 bytes

## Error ID Data – Message I.D. 10

Output Rate: Every measurement cycle (Full Power / Continuous: 1Hz)

Error ID: 2

Code Define Name: ErrId\_CS\_SVParity

Error ID Description: Satellite subframe # failed parity check.

Example:

A0A2000D - Start Sequence and Payload Length

0A000200020000000100000002-Payload

0011B0B3 - Message Checksum and End Sequence

Table 3-12 Error ID 2 Message

|            |       | Binary (Hex) |         |       | ASCII | (Decimal) |
|------------|-------|--------------|---------|-------|-------|-----------|
| Name       | Bytes | Scale        | Example | Units | Scale | Example   |
| Message ID | 1     |              | 0A      |       |       | 10        |
| Error ID   | 2     |              | 0002    |       |       | 2         |
| Count      | 2     |              | 0002    |       |       | 2         |

Table 3-12 Error ID 2 Message

|              |       | Binary (Hex) |          |       | ASCII | (Decimal) |
|--------------|-------|--------------|----------|-------|-------|-----------|
| Name         | Bytes | Scale        | Example  | Units | Scale | Example   |
| Satellite ID | 4     |              | 00000001 |       |       | 1         |
| Subframe No  | 4     |              | 00000002 |       |       | 2         |

Payload Length: 13 bytes

Table 3-13 Error ID 2 Message Description

| Name         | Description                                                                                        |
|--------------|----------------------------------------------------------------------------------------------------|
| Message ID   | Message ID number.                                                                                 |
| Error ID     | Error ID (see Error ID description above).                                                         |
| Count        | Number of 32 bit data in message.                                                                  |
| Satellite ID | Satellite or Space Vehicle (SV) I.D. number or Pseudo-random Noise (PRN) number.                   |
| Subframe No  | The associated subframe number that failed the parity check. Valid subframe number is 1 through 5. |

### Error ID: 9

Code Define Name: ErrId\_RMC\_GettingPosition

Error ID Description: Failed to obtain a position for acquired satellite ID.

Example:

A0A20009 - Start Sequence and Payload Length

0 A 0 0 0 9 0 0 0 1 0 0 0 0 0 0 0 1 - Payload

0015B0B3 - Message Checksum and End Sequence

Table 3-14 Error ID 9 Message

|              |       | Binary (Hex) |          |       | ASCII (Decimal) |         |
|--------------|-------|--------------|----------|-------|-----------------|---------|
| Name         | Bytes | Scale        | Example  | Units | Scale           | Example |
| Message ID   | 1     |              | 0A       |       |                 | 10      |
| Error ID     | 2     |              | 0009     |       |                 | 9       |
| Count        | 2     |              | 0002     |       |                 | 2       |
| Satellite ID | 4     |              | 00000001 |       |                 | 1       |

Payload Length: 9 bytes

Table 3-15 Error ID 9 Message Description

| Name       | Description                                |
|------------|--------------------------------------------|
| Message ID | Message ID number.                         |
| Error ID   | Error ID (see Error ID description above). |

Table 3-15 Error ID 9 Message Description

| Name         | Description                                                                      |  |  |  |  |  |
|--------------|----------------------------------------------------------------------------------|--|--|--|--|--|
| Count        | Number of 32 bit data in message.                                                |  |  |  |  |  |
| Satellite ID | Satellite or Space Vehicle (SV) I.D. number or Pseudo-random Noise (PRN) number. |  |  |  |  |  |

### Error ID: 10

Code Define Name: ErrId\_RXM\_TimeExceeded

Error ID Description: Conversion of Nav Pseudo Range to Time of Week (TOW)

for tracker exceeds limits: Nav Pseudo Range > 6.912e5 (1 week in seconds) || Nav Pseudo Range < -8.64e4.

### Example:

A0A20009 - Start Sequence and Payload Length

0A000A000100001234 - Payload

005BB0B3 - Message Checksum and End Sequence

Table 3-16 Error ID 10 Message

|              |       | Binary (Hex) |          |       | ASCII (Decimal) |         |
|--------------|-------|--------------|----------|-------|-----------------|---------|
| Name         | Bytes | Scale        | Example  | Units | Scale           | Example |
| Message ID   | 1     |              | 0A       |       |                 | 10      |
| Error ID     | 2     |              | 000A     |       |                 | 10      |
| Count        | 2     |              | 0001     |       |                 | 1       |
| Pseudo Range | 4     |              | 00001234 |       |                 | 4660    |

Payload Length: 9 bytes

Table 3-17 Error ID 10 Message Description

| Name         | Description                                |
|--------------|--------------------------------------------|
| Message ID   | Message ID number.                         |
| Error ID     | Error ID (see Error ID description above). |
| Count        | Number of 32 bit data in message.          |
| Pseudo Range | Pseudo Range                               |

### Error ID: 11

Code Define Name: ErrId\_RXM\_TDOPOverflow

Error ID Description: Convert pseudo range rate to doppler frequency exceeds limit.

Example:

A0A20009 - Start Sequence and Payload Length

0A000B0001xxxxxxxx - Payload

xxxxB0B3 - Message Checksum and End Sequence

Table 3-18 Error ID 11 Message

|                   |       | Binary (Hex) |         |       | ASCII (Decimal) |         |
|-------------------|-------|--------------|---------|-------|-----------------|---------|
| Name              | Bytes | Scale        | Example | Units | Scale           | Example |
| Message ID        | 1     |              | 0A      |       |                 | 10      |
| Error ID          | 2     |              | 000B    |       |                 | 11      |
| Count             | 2     |              | 0001    |       |                 | 1       |
| Doppler Frequency | 4     |              | xxxxxxx |       |                 | xxxxxxx |

Payload Length: 9 bytes

Table 3-19 Error ID 11 Message Description

| Name              | Description                                |
|-------------------|--------------------------------------------|
| Message ID        | Message ID number.                         |
| Error ID          | Error ID (see Error ID description above). |
| Count             | Number of 32 bit data in message.          |
| Doppler Frequency | Doppler Frequency                          |

### Error ID: 12

Code Define Name: ErrId\_RXM\_ValidDurationExceeded

Error ID Description: Satellite's ephemeris age has exceeded 2 hours (7200 s).

### Example:

A0A2000D - Start Sequence and Payload Length

0A000C0002xxxxxxxxaaaaaaaa - Payload

xxxxB0B3 - Message Checksum and End Sequence

Table 3-20 Error ID 12 Message

|                  |       | Binary (Hex) |          |         | ASCII | (Decimal) |
|------------------|-------|--------------|----------|---------|-------|-----------|
| Name             | Bytes | Scale        | Example  | Units   | Scale | Example   |
| Message ID       | 1     |              | 0A       |         |       | 10        |
| Error ID         | 2     |              | 000C     |         |       | 12        |
| Count            | 2     |              | 0002     |         |       | 2         |
| Satellite ID     | 4     |              | xxxxxxx  |         |       | xxxxxxx   |
| Age Of Ephemeris | 4     |              | aaaaaaaa | seconds |       | aaaaaaaa  |

Payload Length: 13 bytes

Table 3-21 Error ID 12 Message Description

| Name             | Description                                                                     |
|------------------|---------------------------------------------------------------------------------|
| Message ID       | Message ID number.                                                              |
| Error ID         | Error ID (see Error ID description above).                                      |
| Count            | Number of 32 bit data in message.                                               |
| Satellite ID     | Satellite or Space Vehicle (SV) I.D. number or Pseudo-random Noise (PRN) number |
| Age Of Ephemeris | The Satellite's Ephemeris Age in seconds.                                       |

### Error ID: 13

Code Define Name: ErrId\_STRTP\_BadPostion

Error ID Description: SRAM position is bad during a cold start.

Example:

A0A20011 - Start Sequence and Payload Length

0 A 0 0 0 D 0 0 0 3 x x x x x x x x aaaaaaaabbbbbbbb - Payload

xxxxB0B3 - Message Checksum and End Sequence

Table 3-22 Error ID 13 Message

|            |       | Binary (Hex) |          |       | ASCII | (Decimal) |
|------------|-------|--------------|----------|-------|-------|-----------|
| Name       | Bytes | Scale        | Example  | Units | Scale | Example   |
| Message ID | 1     |              | 0A       |       |       | 10        |
| Error ID   | 2     |              | 000D     |       |       | 13        |
| Count      | 2     |              | 0003     |       |       | 3         |
| X          | 4     |              | xxxxxxx  |       |       | xxxxxxx   |
| Y          | 4     |              | aaaaaaaa |       |       | aaaaaaaa  |
| Z          | 4     |              | bbbbbbbb |       |       | bbbbbbbb  |

Payload Length: 17 bytes

Table 3-23 Error ID 13 Message Description

| Name       | Description                                |  |
|------------|--------------------------------------------|--|
| Message ID | Message ID number.                         |  |
| Error ID   | Error ID (see Error ID description above). |  |
| Count      | Number of 32 bit data in message.          |  |
| X          | X position in ECEF.                        |  |
| Y          | Y position in ECEF.                        |  |
| Z          | Z position in ECEF.                        |  |

Error ID: 4097 or 0x1001

Code Define Name: ErrId\_MI\_VCOClockLost

Error ID Description: VCO lost lock indicator.

Example:

A0A20009 - Start Sequence and Payload Length

0A1001000100000001 - Payload

001DB0B3 - Message Checksum and End Sequence

Table 3-24 Error ID 4097 Message

|            |       | Binary (Hex) |          |       | ASCII (Decimal) |         |
|------------|-------|--------------|----------|-------|-----------------|---------|
| Name       | Bytes | Scale        | Example  | Units | Scale           | Example |
| Message ID | 1     |              | 0A       |       |                 | 10      |
| Error ID   | 2     |              | 1001     |       |                 | 4097    |
| Count      | 2     |              | 0001     |       |                 | 1       |
| VCOLost    | 4     |              | 00000001 |       |                 | 1       |

Payload Length: 9 bytes

Table 3-25 Error ID 4097 Message Description

| Name       | Description                                                          |
|------------|----------------------------------------------------------------------|
| Message ID | Message ID number.                                                   |
| Error ID   | Error ID (see Error ID description above).                           |
| Count      | Number of 32 bit data in message.                                    |
| VCOLost    | VCO lock lost indicator. If VCOLost != 0, then send failure message. |

### Error ID: 4099 or 0x1003

Code Define Name: ErrId\_MI\_FalseAcqReceiverReset

Error ID Description: Nav detect false acquisition, reset receiver by calling

NavForceReset routine.

### Example:

A0A20009 - Start Sequence and Payload Length

0A1003000100000001 - Payload

001FB0B3 - Message Checksum and End Sequence

Table 3-26 Error ID 4099 Message

|            |       | Binary (Hex) |          |       | ASCII | (Decimal) |
|------------|-------|--------------|----------|-------|-------|-----------|
| Name       | Bytes | Scale        | Example  | Units | Scale | Example   |
| Message ID | 1     |              | 0A       |       |       | 10        |
| Error ID   | 2     |              | 1003     |       |       | 4099      |
| Count      | 2     |              | 0001     |       |       | 1         |
| InTrkCount | 4     |              | 00000001 |       |       | 1         |

Payload Length: 9 bytes

Table 3-27 Error ID 4099 Message Description

| Name       | Description                                                        |
|------------|--------------------------------------------------------------------|
| Message ID | Message ID number.                                                 |
| Error ID   | Error ID (see Error ID description above).                         |
| Count      | Number of 32 bit data in message.                                  |
| InTrkCount | False acquisition indicator. If InTrkCount <= 1, then send failure |
|            | message and reset receiver.                                        |

### Error ID: 4104 or 0x1008

Code Define Name: ErrId\_STRTP\_SRAMCksum

Error ID Description: Failed SRAM checksum during startup.

- Four field message indicates receiver control flags had checksum failures.
- Three field message indicates clock offset's checksum failure or clock offset value is out of range.
- Two field message indicates position and time checksum failure forces a cold start.

## Example:

A0A2xxxx - Start Sequence and Payload Length
0A10080004xxxxxxxaaaaaaaa00000000ccccccc - Payload
xxxxB0B3 - Message Checksum and End Sequence

Table 3-28 Error ID 4104 Message

|                                                  |       | Bina  | ary (Hex)                  |       | ASCII | (Decimal)         |
|--------------------------------------------------|-------|-------|----------------------------|-------|-------|-------------------|
| Name                                             | Bytes | Scale | Example                    | Units | Scale | Example           |
| Message ID                                       | 1     |       | 0A                         |       |       | 10                |
| Error ID                                         | 2     |       | 1008                       |       |       | 4104              |
| Count                                            | 2     |       | 0004 or<br>0003 or<br>0002 |       |       | 4 or<br>3 or<br>2 |
| Computed Receiver<br>Control Checksum            | 4     |       | xxxxxxx                    |       |       | xxxx              |
| Battery-Backed Receiver<br>Control Checksum      | 4     |       | aaaaaaaa                   |       |       | aaaa              |
| Battery-Backed Receiver<br>Control OpMode        | 4     |       | 00000000                   |       |       | 0                 |
| Battery-Backed Receiver<br>Control Channel Count | 4     |       | cccccc                     |       |       | cccc              |
| Compute Clock Offset<br>Checksum                 | 4     |       | xxxxxxx                    |       |       | xxxx              |
| Battery-Backed Clock<br>Offset Checksum          | 4     |       | aaaaaaaa                   |       |       | aaaa              |
| Battery-Backed Clock<br>Offset                   | 4     |       | bbbbbbbb                   |       |       | bbbb              |
| Computed Position Time<br>Checksum               | 4     |       | xxxxxxx                    |       |       | xxxx              |
| Battery-Backed<br>Position Time Checksum         | 4     |       | aaaaaaaa                   |       |       | aaaa              |

Payload Length: 21, 17, or 11 bytes

Table 3-29 Error ID 4104 Message Description

| Name                                             | Description                                                                                                                                                                                                          |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Message ID                                       | Message ID number.                                                                                                                                                                                                   |
| Error ID                                         | Error ID (see Error ID description above).                                                                                                                                                                           |
| Count                                            | Number of 32 bit data in message.                                                                                                                                                                                    |
| Computed Receiver<br>Control Checksum            | Computed receiver control checksum of SRAM.Data.Control structure.                                                                                                                                                   |
| Battery-Backed Receiver<br>Control Checksum      | Battery-backed receiver control checksum stored in SRAM.Data.DataBuffer. CntrlChkSum.                                                                                                                                |
| Battery-Backed Receiver<br>Control OpMode        | Battery-backed receiver control checksum stored in SRAM.Data.Control.OpMode. Valid OpMode values are as follows: OP_MODE_NORMAL = 0, OP_MODE_TESTING = 0x1E51, OP_MODE_TESTING2 = 0x1E52, OP_MODE_TESTING3 = 0x1E53. |
| Battery-Backed Receiver<br>Control Channel Count | Battery-backed receiver control channel count in SRAM.Data.Control.ChannelCnt. Valid channel count values are 0-12.                                                                                                  |
| Compute Clock Offset<br>Checksum                 | Computed clock offset checksum of SRAM.Data.DataBuffer.clkOffset.                                                                                                                                                    |
| Battery-Backed Clock<br>Offset Checksum          | Battery-backed clock offset checksum of SRAM.Data.DataBuffer.clkChkSum.                                                                                                                                              |
| Battery-Backed Clock<br>Offset                   | Battery-backed clock offset value stored in SRAM.Data.DataBuffer,clkOffset.                                                                                                                                          |
| Computed Position Time<br>Checksum               | Computed position time checksum of SRAM.Data.DataBuffer.postime[1].                                                                                                                                                  |
| Battery-Backed<br>Position Time Checksum         | Battery-backed position time checksum of SRAM.Data.DataBuffer.postimeChkSum[1].                                                                                                                                      |

## Error ID: 4105 or 0x1009

Code Define Name: ErrId\_STRTP\_RTCTimeInvalid

Error ID Description: Failed RTC SRAM checksum during startup. If one of the

double buffered SRAM.Data.LastRTC elements is valid and RTC days is not 255 days, then GPS time and week number computed from the RTC is valid. If not, this RTC time is

invalid.

### Example:

A0A2000D - Start Sequence and Payload Length

0A10090002xxxxxxxaaaaaaaa - Payload

xxxxB0B3 - Message Checksum and End Sequence

Table 3-30 Error ID 4105 Message

|             |       | Binary (Hex) |          |         | ASCII | (Decimal) |
|-------------|-------|--------------|----------|---------|-------|-----------|
| Name        | Bytes | Scale        | Example  | Units   | Scale | Example   |
| Message ID  | 1     |              | 0A       |         |       | 10        |
| Error ID    | 2     |              | 1009     |         |       | 4105      |
| Count       | 2     |              | 0002     |         |       | 2         |
| TOW         | 4     |              | xxxxxxx  | seconds |       | xxxx      |
| Week Number | 4     |              | aaaaaaaa |         |       | aaaa      |

Payload Length: 13 bytes

Table 3-31 Error ID 4105 Message Description

| Name        | Description                                             |
|-------------|---------------------------------------------------------|
| Message ID  | Message ID number.                                      |
| Error ID    | Error ID (see Error ID description above).              |
| Count       | Number of 32 bit data in message.                       |
| TOW         | GPS time of week in seconds. Range 0 to 604800 seconds. |
| Week Number | GPS week number.                                        |

### Error ID: 4106 or 0x100A

Code Define Name: ErrId\_KFC\_BackupFailed\_Velocity

Error ID Description: Failed battery-backing position because of ECEF velocity sum

was greater than equal to 3600.

### Example:

A0A20005 - Start Sequence and Payload Length

0A100A0000 - Payload

0024B0B3 - Message Checksum and End Sequence

Table 3-32 Error ID 4106 Message

|            |       | Binary (Hex) |         |       | ASCII | (Decimal) |
|------------|-------|--------------|---------|-------|-------|-----------|
| Name       | Bytes | Scale        | Example | Units | Scale | Example   |
| Message ID | 1     |              | 0A      |       |       | 10        |
| Error ID   | 2     |              | 100A    |       |       | 4106      |
| Count      | 2     |              | 0000    |       |       | 0         |

Payload Length: 5 bytes

Table 3-33 Error ID 4106 Message Description

| Name       | Description                                |
|------------|--------------------------------------------|
| Message ID | Message ID number.                         |
| Error ID   | Error ID (see Error ID description above). |
| Count      | Number of 32 bit data in message.          |

Error ID: 4107 or 0x100B

Code Define Name: ErrId KFC BackupFailed NumSV

Error ID Description: Failed battery-backing position because current navigation

mode is not KFNav and not LSQFix.

Example:

A0A20005 - Start Sequence and Payload Length

0A100B0000 - Payload

0025B0B3 - Message Checksum and End Sequence

Table 3-34 Error ID 4107 Message

|            |       | Binary (Hex) |         |       | ASCII | (Decimal) |
|------------|-------|--------------|---------|-------|-------|-----------|
| Name       | Bytes | Scale        | Example | Units | Scale | Example   |
| Message ID | 1     |              | 0A      |       |       | 10        |
| Error ID   | 2     |              | 100B    |       |       | 4107      |
| Count      | 2     |              | 0000    |       |       | 0         |

Payload Length: 5 bytes

Table 3-35 Error ID 4107 Message Description

| Name       | Description                                |
|------------|--------------------------------------------|
| Message ID | Message ID number.                         |
| Error ID   | Error ID (see Error ID description above). |
| Count      | Number of 32 bit data in message.          |

Error ID: 8193 or 0x2001

Code Define Name: ErrId\_MI\_BufferAllocFailure

Error ID Description: Buffer allocation error occurred. Does not appear to be active

because uartAllocError variable never gets set to a non-zero

value in the code.

Example:

A0A20009 - Start Sequence and Payload Length

0A2001000100000001 - Payload

002DB0B3 - Message Checksum and End Sequence

Table 3-36 Error ID 8193 Message

|                |       | Binary (Hex) |          |       | ASCII (Decimal) |         |
|----------------|-------|--------------|----------|-------|-----------------|---------|
| Name           | Bytes | Scale        | Example  | Units | Scale           | Example |
| Message ID     | 1     |              | 0A       |       |                 | 10      |
| Error ID       | 2     |              | 2001     |       |                 | 8193    |
| Count          | 2     |              | 0001     |       |                 | 1       |
| uartAllocError | 4     |              | 00000001 |       |                 | 1       |

Payload Length: 9 bytes

Table 3-37 Error ID 8193 Message Description

| Name           | Description                                                       |
|----------------|-------------------------------------------------------------------|
| Message ID     | Message ID number.                                                |
| Error ID       | Error ID (see Error ID description above).                        |
| Count          | Number of 32 bit data in message.                                 |
| uartAllocError | Contents of variable used to signal UART buffer allocation error. |

Error ID: 8194 or 0x2002

Code Define Name: ErrId\_MI\_UpdateTimeFailure

Error ID Description: PROCESS\_1SEC task was unable to complete upon entry.

Overruns are occurring.

Example:

A0A2000D - Start Sequence and Payload Length

0A20020002000000100000064 - Payload

0093B0B3 - Message Checksum and End Sequence

Table 3-38 Error ID 8194 Message

|                              |       | Binary (Hex) |          |       | ASCII | (Decimal) |
|------------------------------|-------|--------------|----------|-------|-------|-----------|
| Name                         | Bytes | Scale        | Example  | Units | Scale | Example   |
| Message ID                   | 1     |              | 0A       |       |       | 10        |
| Error ID                     | 2     |              | 2002     |       |       | 8194      |
| Count                        | 2     |              | 0002     |       |       | 2         |
| Number of in process errors. | 4     |              | 00000001 |       |       | 1         |
| Millisecond errors           | 4     |              | 00000064 |       |       | 100       |

Payload Length: 13 bytes

Table 3-39 Error ID 8194 Message Description

| Name                 | Description                                         |
|----------------------|-----------------------------------------------------|
| Message ID           | Message ID number.                                  |
| Error ID             | Error ID (see Error ID description above).          |
| Count                | Number of 32 bit data in message.                   |
| Number of in process | Number of one second updates not complete on entry. |
| errors               |                                                     |
| Millisecond errors   | Millisecond errors caused by overruns.              |

## Error ID: 8195 or 0x2003

Code Define Name: ErrId\_MI\_MemoryTestFailed

Error ID Description: Failure of hardware memory test. Does not appear to be active

because MemStatus variable never gets set to a non-zero value

in the code.

### Example:

A0A20005 - Start Sequence and Payload Length

0A20030000-Payload

002DB0B3 - Message Checksum and End Sequence

Table 3-40 Error ID 8195 Message

|            |       | Binary (Hex) |         |       | ASCII (Decimal) |         |
|------------|-------|--------------|---------|-------|-----------------|---------|
| Name       | Bytes | Scale        | Example | Units | Scale           | Example |
| Message ID | 1     |              | 0A      |       |                 | 10      |
| Error ID   | 2     |              | 2003    |       |                 | 8195    |
| Count      | 2     |              | 0000    |       |                 | 0       |

Payload Length: 5 bytes

Table 3-41 Error ID 8195 Message Description

| Name       | Description                                |
|------------|--------------------------------------------|
| Message ID | Message ID number.                         |
| Error ID   | Error ID (see Error ID description above). |
| Count      | Number of 32 bit data in message.          |

## Command Acknowledgment – Message I.D. 11

Output Rate: Response to successful input message

This is successful almanac (message ID 0x92) request example:

A0A20002—Start Sequence and Payload Length

0B92—Payload

009DB0B3-Message Checksum and End Sequence

Table 3-42 Command Acknowledgment

|            |       | Binary (Hex) |         |       | ASCII | (Decimal) |
|------------|-------|--------------|---------|-------|-------|-----------|
| Name       | Bytes | Scale        | Example | Units | Scale | Example   |
| Message ID | 1     |              | 0B      |       |       | 11        |
| Ack. I.D.  | 1     |              | 92      |       |       | 146       |

Payload Length: 2 bytes

## Command NAcknowledgment – Message I.D. 12

Output Rate: Response to rejected input message

This is an unsuccessful almanac (message ID 0x92) request example:

A0A20002—Start Sequence and Payload Length

0C92—Payload

009EB0B3-Message Checksum and End Sequence

Table 3-43 Command NAcknowledgment

|            |       | Binary (Hex) |         |       | ASCII | (Decimal) |
|------------|-------|--------------|---------|-------|-------|-----------|
| Name       | Bytes | Scale        | Example | Units | Scale | Example   |
| Message ID | 1     |              | 0C      |       |       | 12        |
| NAck. I.D. | 1     |              | 92      |       |       | 146       |

Payload Length: 2 bytes

## Visible List – Message I.D. 13

Output Rate: Updated approximately every 2 minutes

**Note** – This is a variable length message. Only the number of visible satellites are reported (as defined by Visible Svs in Table 3-44).

#### Example:

A0A2002A—Start Sequence and Payload Length 0D081D002A00320F009C0032....—Payload ....B0B3—Message Checksum and End Sequence

Table 3-44 Visible List

|                     |       | Binary (Hex) |         |         | ASCII | (Decimal) |
|---------------------|-------|--------------|---------|---------|-------|-----------|
| Name                | Bytes | Scale        | Example | Units   | Scale | Example   |
| Message ID          | 1     |              | 0D      |         |       | 13        |
| Visible Svs         | 1     |              | 08      |         |       | 8         |
| CH 1 - Sv I.D.      | 1     |              | 10      |         |       | 16        |
| CH 1 - Sv Azimuth   | 2     |              | 002A    | degrees |       | 42        |
| CH 1 - Sv Elevation | 2     |              | 0032    | degrees |       | 50        |
| CH 2 - Sv I.D.      | 1     |              | 0F      |         |       | 15        |
| CH 2 - Sv Azimuth   | 2     |              | 009C    | degrees |       | 156       |
| CH 2 - Sv Elevation | 2     |              | 0032    | degrees |       | 50        |
|                     |       |              |         |         |       |           |

Payload Length: Variable

## Almanac Data - Message I.D. 14

Output Rate: Response to poll

Example:

A0A2001E—Start Sequence and Payload Length

0E0111014128FF630D51FD5900A10CC111B454B909098C6CE7

14.....Payload

09E5B0B3-Message Checksum and End Sequence

Table 3-45 Almanac Data

|                       |       | Binary (Hex) |         |                                                                                                                                                                                            |
|-----------------------|-------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                  | Bytes | Scale        | Example | Notes                                                                                                                                                                                      |
| Message I.D.          | 1     |              | 0E      |                                                                                                                                                                                            |
| SV I.D.               | 1     |              | 01      | Satellite PRN Number <sup>1</sup>                                                                                                                                                          |
| Almanac Week & Status | 2     |              | 1101    | First 10 bits is the Almanac week.<br>Next 5 bits have a zero value. Last bit is 1.                                                                                                        |
| Almanac Data          | 24    |              |         | This information is taken from the 50BPS navigation message broadcast by the satellite. This information is the last 8 words in the 5th subframe but with the parity removed. <sup>2</sup> |
| Package Checksum      | 2     |              | 4CA1    | This is the checksum of the preceding data in the payload. It is calculated by arranging the previous 26 bytes as 13 half-words and then summing them. <sup>3</sup>                        |

<sup>1.</sup> Each satellite almanac entry is output in a single message.

Payload Length: 30 bytes

The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD-GPS-2000 document. The ICD-GPS-2000 document describes the data format of each GPS navigation sub-frame and is available on the web at <a href="http://www.arinc.com/gps">http://www.arinc.com/gps</a>.

## Ephemeris Data (Response to Poll) – Message I.D. 15

The ephemeris data that is polled from the receiver is in a special SiRF format based on the ICD- GPS -200 format for ephemeris data.

Output Rate: Response to poll

Example:

A0 A2 00 5C —Start Sequence and Payload Length

0F 1A 00 1A 00 8B D3 A5 3A 11 01 3B 15 B8 8A 99 FC 88 D4 40 31 3B F2 DD 69 78 00 FF 9E 38 F6 B6 00 1A 00 8B D4 29 DD FB 5C 31 0E F1 79 A6 4D FC 1F 07 AB F1 29 00 F7 A1 0D 12 7F 69 78 7D 00 1A 00 8B D2 2E 00 37 CB F8 C1 D1 00 7F 27 ED E1 D9 2F 2D 16 5A DB D8 FF A2 0C DD F6 F9 —Payload

2A 55 B0 B3—Message Checksum and End Sequence

<sup>2.</sup> There are 25 possible pages in subframe 5. Pages 1 through 24 contain satellite specific almanac information which is output as part of the almanac data. Page 25 contains health status flags and the almanac week number.

<sup>3.</sup> This checksum is not used for serial I/O data integrity. It is used internally for ensuring that almanac information is valid.

Table 3-46 Ephemeris Data

|       | Binary (Hex) |                 |                                                                                   |
|-------|--------------|-----------------|-----------------------------------------------------------------------------------|
| Bytes | Scale        | Example         | Notes                                                                             |
| 1     |              | 0F              | Message I.D.                                                                      |
| 1     |              | 1A              | Satellite PRN Number <sup>1</sup>                                                 |
| 90    |              |                 | UINT16 [3] [15] array with subframes 1 to 3 data. See description below.          |
|       | 1 1          | Bytes Scale 1 1 | Bytes         Scale         Example           1         0F           1         1A |

<sup>1.</sup> Each satellite almanac entry is output in a single message.

#### Payload Length: 92 bytes

The data area consists of a 3x15 array of unsigned integers, 16 bits long. The first word of each row in the array ([0][0], [1][0] and [2][0]) will contain the satellite ID. The remaining words in the row will contain the data from the navigation message subframe, with row [0] containing subframe 1, row [1] containing subframe 2, and row [2] containing subframe 3. Data from the subframe is stored in a packed format, meaning that the 6 parity bits of each 30-bit navigation message word have been removed, and the remaining 3 bytes are stored in 1.5 16-bit words. Since the first word of the subframe, the TLM or telemetry word, does not contain any data needed by the receiver, it is not saved. Thus, there are 9 remaining words, with 3 bytes each, in each subframe. This total of 27 bytes is stored in 14 16-bit words. The second word of the subframe, the HOW or Handoff Word, has its most significant byte (MSB) stored as the least significant byte (LSB) of the first of the 16-bit words. Each following byte is stored in the next available byte of the array. Table 3-47 shows where each byte of the subframe is stored in the row of 16-bit words.

Table 3-47 Byte Positions Between Navigation Message and Data Array

| Navigat | ion Message | Da      | nta Array |
|---------|-------------|---------|-----------|
| Word    | Byte        | Word    | Byte      |
| 2 (HOW) | MSB         | [] [1]  | LSB       |
| 2       | Middle      | [] [2]  | MSB       |
| 2       | LSB         | [] [2]  | LSB       |
| 3       | MSB         | [] [3]  | MSB       |
| 3       | Middle      | [] [3]  | LSB       |
| 3       | LSB         | [] [4]  | MSB       |
| 4       | MSB         | [] [4]  | LSB       |
| 4       | Middle      | [] [5]  | MSB       |
| 4       | LSB         | [] [5]  | LSB       |
| 5       | MSB         | [] [6]  | MSB       |
| 5       | Middle      | [] [6]  | LSB       |
| 5       | LSB         | [] [7]  | MSB       |
| 6       | MSB         | [] [7]  | LSB       |
| 6       | Middle      | [] [8]  | MSB       |
| 6       | LSB         | [] [8]  | LSB       |
| 7       | MSB         | [] [9]  | MSB       |
| 7       | Middle      | [] [9]  | LSB       |
| 7       | LSB         | [] [10] | MSB       |
| 8       | MSB         | [] [10] | LSB       |
| 8       | Middle      | [] [11] | MSB       |

Table 3-47 Byte Positions Between Navigation Message and Data Array

| Navigation Message |        | Da      | Data Array |  |  |  |
|--------------------|--------|---------|------------|--|--|--|
| Word               | Byte   | Word    | Byte       |  |  |  |
| 8                  | LSB    | [] [11] | LSB        |  |  |  |
| 9                  | MSB    | [] [12] | MSB        |  |  |  |
| 9                  | Middle | [] [12] | LSB        |  |  |  |
| 9                  | LSB    | [] [13] | MSB        |  |  |  |
| 10                 | MSB    | [] [13] | LSB        |  |  |  |
| 10                 | Middle | [] [14] | MSB        |  |  |  |
| 10                 | LSB    | [] [14] | LSB        |  |  |  |

**Note** – Message ID 149 uses the same format, except the Satellite ID (the second byte in Message ID 15) is omitted. Message ID 149 is thus a 91-byte message. The satellite ID is still embedded in elements [0][0], [1][0] and [2][0] of the data array.

# Test Mode 1 - Message I.D. 16

Output Rate: Variable - set by the period as defined in message ID 150

Example:

A0A20011—Start Sequence and Payload Length

100015001E000588B800C81B5800040001—Payload

02D8B0B3—Message Checksum and End Sequence

Table 3-48 Test Mode 1 Data

|                    |       | Binary (Hex) |         |       | ASCII (Decimal) |         |
|--------------------|-------|--------------|---------|-------|-----------------|---------|
| Name               | Bytes | Scale        | Example | Units | Scale           | Example |
| Message ID         | 1     |              | 10      |       |                 | 16      |
| SV ID              | 2     |              | 0015    |       |                 | 21      |
| Period             | 2     |              | 001E    | sec   |                 | 30      |
| Bit Sync Time      | 2     |              | 0005    | sec   |                 | 5       |
| Bit Count          | 2     |              | 88B8    |       |                 | 35000   |
| Poor Status        | 2     |              | 00C8    |       |                 | 200     |
| Good Status        | 2     |              | 1B58    |       |                 | 7000    |
| Parity Error Count | 2     |              | 0004    |       |                 | 4       |
| Lost VCO Count     | 2     |              | 0001    |       |                 | 1       |

Payload Length: 17 bytes

Table 3-49 Detailed Description of Test Mode 1 Data

| Name               | Description                                                                                                                                                                                                                                                                                                        |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Message I.D.       | Message I.D. number.                                                                                                                                                                                                                                                                                               |
| SV ID              | The number of the satellite being tracked.                                                                                                                                                                                                                                                                         |
| Period             | The total duration of time (in seconds) that the satellite is tracked.                                                                                                                                                                                                                                             |
| Bit Sync Time      | The time it takes for channel 0 to achieve the status of 37.                                                                                                                                                                                                                                                       |
| Bit Count          | The total number of data bits that the receiver is able to demodulate during the test period. As an example, for a 20 second test period, the total number of bits that can be demodulated by the receiver is 12000 (50BPS x 20sec x 12 channels).                                                                 |
| Poor Status        | This value is derived from phase accumulation time. Phase accumulation is the amount of time a receiver maintains phase lock. Every 100msec of loss of phase lock equates to 1 poor status count. As an example, the total number of status counts for a 60 second period is 7200 (12 channels x 60 sec x 10 sec). |
| Good Status        | This value is derived from phase accumulation time. Phase accumulation is the amount of time a receiver maintains phase lock. Every 100msec of phase lock equates to 1 good status count.                                                                                                                          |
| Parity Error Count | The number of word parity errors. This occurs when the transmitted parity word does not match the receivers parity check.                                                                                                                                                                                          |
| Lost VCO Count     | The number of 1 msec VCO lost lock was detected. This occurs when the PLL in the RFIC loses lock. A significant jump in crystal frequency and / or phase causes a VCO lost lock.                                                                                                                                   |

# Differential Corrections - Message I.D. 17

Message I.D. 17 provides the RTCM data received from a DGPS source. The data is sent as a SiRF Binary message and is based on the RTCM SC-104 format. For more information see *RTCM Recommended Standards for Differential GNSS* by the Radio *Technical Commission for Maritime Services*.

## OkToSend - Message I.D. 18

Output Rate: Trickle Power CPU on/off indicator

Example:

A0A20002—Start Sequence and Payload Length

1200—Payload

0012B0B3-Message Checksum and End Sequence

Table 3-50 Almanac Data

|                             |       | Binary (Hex) |         |       | ASCII | (Decimal) |
|-----------------------------|-------|--------------|---------|-------|-------|-----------|
| Name                        | Bytes | Scale        | Example | Units | Scale | Example   |
| Message I.D.                | 1     |              | 12      |       |       | 12        |
| Send Indicator <sup>1</sup> | 1     |              | 00      |       |       | 00        |

Payload Length: 2 bytes

## Navigation Parameters (Response to Poll) – Message I.D. 19

Output Rate: 1 Response to Poll

Example:

A0 A2 00 41 —Start Sequence and Payload Length

02 A4 B0 B3—Message Checksum and End Sequence

Table 3-51 Navigation Parameters

|                            |       | Bina  | ry (Hex) |         | ASCII (Decimal) |         |
|----------------------------|-------|-------|----------|---------|-----------------|---------|
| Name                       | Bytes | Scale | Example  | Units   | Scale           | Example |
| Message ID                 | 1     |       | 13       |         |                 | 19      |
| Sub ID <sup>1</sup>        | 1     |       | 00       |         |                 |         |
| Reserved                   | 3     |       | 00       |         |                 |         |
| Altitude Hold Mode         | 1     |       | 00       |         |                 |         |
| Altitude Hold Source       | 1     |       | 00       |         |                 |         |
| Altitude Source Input      | 2     |       | 0000     | meters  |                 |         |
| Degraded Mode <sup>2</sup> | 1     |       | 00       |         |                 |         |
| Degraded Timeout           | 1     |       | 00       | seconds |                 |         |
| DR Timeout                 | 1     |       | 01       | seconds |                 |         |
| Track Smooth Mode          | 1     |       | 1E       |         |                 |         |
| Static Navigation          | 1     |       | 0F       |         |                 |         |
| 3SV Least Squares          | 1     |       | 01       |         |                 |         |
| Reserved                   | 4     |       | 00000000 |         |                 |         |
| DOP Mask Mode <sup>3</sup> | 1     |       | 04       |         |                 |         |
| Navigation Elevation Mask  | 2     |       | 004B     |         |                 |         |

<sup>1. 0</sup> implies that CPU is about to go OFF, OkToSend=NO, 1 implies CPU has just come ON, OkToSend=YES

Table 3-51 Navigation Parameters (Continued)

|                                                          |       | Bina  | ry (Hex) |         | ASCII | (Decimal) |
|----------------------------------------------------------|-------|-------|----------|---------|-------|-----------|
| Name                                                     | Bytes | Scale | Example  | Units   | Scale | Example   |
| Navigation Power Mask                                    | 1     |       | 1C       |         |       |           |
| Reserved                                                 | 4     |       | 00000000 |         |       |           |
| DGPS Source                                              | 1     |       | 02       |         |       |           |
| DGPS Mode <sup>4</sup>                                   | 1     |       | 00       |         |       |           |
| DGPS Timeout                                             | 1     |       | 1E       | seconds |       |           |
| Reserved                                                 | 4     |       | 00000000 |         |       |           |
| LP Push-to-Fix                                           | 1     |       | 00       |         |       |           |
| LP On-time                                               | 4     |       | 000003E8 |         |       |           |
| LP Interval                                              | 4     |       | 000003E8 |         |       |           |
| User Tasks Enabled <sup>5</sup>                          | 1     |       | 00       |         |       |           |
| User Task Interval                                       | 4     |       | 00000000 |         |       |           |
| LP Power Cycling Enabled                                 | 1     |       | 00       |         |       |           |
| LP Max. Acq. Search Time                                 | 4     |       | 00000000 | seconds |       |           |
| LP Max. Off Time                                         | 4     |       | 00000000 | seconds |       |           |
| APM Enabled/Power Duty<br>Cycle <sup>6</sup>             | 1     |       | 00       |         |       |           |
| Number of Fixes                                          | 2     |       | 0000     |         |       |           |
| Time Between Fixes                                       | 2     |       | 0000     | seconds |       |           |
| Horizontal/Vertical Error<br>Max <sup>7</sup>            | 1     |       | 00       | meters  |       |           |
| Response Time Max                                        | 1     |       | 00       | seconds |       |           |
| Time/Accuracy & Time/Duty<br>Cycle Priority <sup>8</sup> | 1     |       | 00       |         |       |           |

Payload Length: 65 bytes

- 1. 00=GSW2 Definition, 01=SiRF Binary APM Definition, >02=Reserved
- 2. See Table 2-17.
- 3. See Table 2-20.
- 4. See Table 2-22.
- $5.\ User task\ enabled\ \text{-}\ scheduled\ from\ 100ms\ interrupt\ and\ the\ idle\ loop.}$
- 6. Bit 7: APM Enabled, 1: Enabled, 0: Disabled, Bit 4-0: power duty cycle, Range: 1-20 scaled to 5%, 1: 5%, 2:  $10\%\dots$  20:100%
- 7. See Table 3-52
- 8. Bit 3-2: Time accuracy, 0x00 = No priority imposed, 0x01 = RESP\_TIME\_MAX has higher priority, 0x02 = HORI\_ERR\_MAX has higher priority, Bit 1-0: time duty cycle, 0x01 = Time between two consecutive fixes has priority, 0x02 = Power Duty cycle has higher priority

Table 3-52 Horizontal/Vertical Error

| Value       | Position Error (in meters) |
|-------------|----------------------------|
| 0x00        | < 1 meter                  |
| 0x01        | < 5 meter                  |
| 0x02        | < 10 meter                 |
| 0x03        | < 20 meter                 |
| 0x04        | < 40 meter                 |
| 0x05        | < 80 meter                 |
| 0x06        | < 160 meter                |
| 0x07        | No Maximum                 |
| 0x08 - 0xFF | Reserved                   |

## Test Mode 2/3/4 - Message I.D. 20

The definition of MID 20 is different depending on the version and type of software being used. For GSW2, MID 20 is defined as Test Mode 2 only. For SiRFLoc or SiRFXTrac, MID can be either Test Mode 2, Test Mode 3, or Test Mode 4. For GSW2 software, refer to MID 46 for test mode 3 and test mode 4 results.

Output Rate: Variable - set by the period as defined in message ID 150

### Test Mode 2

This is supported by either GSW2, SiRFLoc, or SiRFXTrac. Test Mode 2 requires approximately 1.5 minutes of data collection before sufficient data is available.

#### Example:

A0A20033—Start Sequence and Payload Length

0316B0B3—Message Checksum and End Sequence

Table 3-53 Test Mode 2 Message

|                    |       | Binary (Hex) |          |       | ASCII (Decimal) |         |
|--------------------|-------|--------------|----------|-------|-----------------|---------|
| Name               | Bytes | Scale        | Example  | Units | Scale           | Example |
| Message ID         | 1     |              | 14       |       |                 | 20      |
| SV ID              | 2     |              | 0001     |       |                 | 1       |
| Period             | 2     |              | 001E     | sec   |                 | 30      |
| Bit Sync Time      | 2     |              | 0002     | sec   |                 | 2       |
| Bit Count          | 2     |              | 3F70     |       |                 | 13680   |
| Poor Status        | 2     |              | 001F     |       |                 | 31      |
| Good Status        | 2     |              | 0D29     |       |                 | 3369    |
| Parity Error Count | 2     |              | 0000     |       |                 | 0       |
| Lost VCO Count     | 2     |              | 0000     |       |                 | 0       |
| Frame Sync Time    | 2     |              | 0006     | sec   |                 | 6       |
| C/No Mean          | 2     | *10          | 01C6     |       | ÷10             | 45.4    |
| C/No Sigma         | 2     | *10          | 0005     |       | ÷10             | 0.5     |
| Clock Drift        | 2     | *10          | 1B0E     | Hz    | ÷10             | 692.6   |
| Clock Offset       | 4     | *10          | 000EB41A | Hz    | ÷10             | 96361.0 |
| Reserved           | 2     |              | 0000     |       |                 |         |
| Reserved           | 4     |              | 00000000 |       |                 |         |
| Reserved           | 4     |              | 00000000 |       |                 |         |
| Reserved           | 4     |              | 00000000 |       |                 |         |
| Reserved           | 4     |              | 00000000 |       |                 |         |
| Reserved           | 4     |              | 00000000 |       |                 |         |

Payload Length: 51 bytes

Table 3-54 Detailed Description of Test Mode 2 Message

| Name         | Description                                |
|--------------|--------------------------------------------|
| Message I.D. | Message I.D. number.                       |
| SV ID        | The number of the satellite being tracked. |

Table 3-54 Detailed Description of Test Mode 2 Message

| Name               | Description                                                                                                                                                                                                                                                                                                       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Period             | The total duration of time (in seconds) that the satellite is tracked.                                                                                                                                                                                                                                            |
| Bit Sync Time      | The time it takes for channel 0 to achieve the status of 37.                                                                                                                                                                                                                                                      |
| Bit Count          | The total number of data bits that the receiver is able to demodulate during the test period. As an example, for a 20 second test period, the total number of bits that can be demodulated by the receiver is 12000 (50BPS x 20sec x 12 channels).                                                                |
| Poor Status        | This value is derived from phase accumulation time. Phase accumulation is the amount of time a receiver maintains phase lock. Every 100msec of loss of phase lock equates to 1 poor status count. As an example, the total number of status counts for a 60 second period is 7200 (12 channels x 60 sec x 10 sec) |
| Good Status        | This value is derived from phase accumulation time. Phase accumulation is the amount of time a receiver maintains phase lock. Every 100msec of phase lock equates to 1 good status count.                                                                                                                         |
| Parity Error Count | The number of word parity errors. This occurs when the transmitted parity word does not match the receivers parity check.                                                                                                                                                                                         |
| Lost VCO Count     | The number of 1 msec VCO lost lock was detected. This occurs when the PLL in the RFIC loses lock. A significant jump in crystal frequency and / or phase will cause a VCO lost lock.                                                                                                                              |
| Frame Sync         | The time it takes for channel 0 to reach a 3F status.                                                                                                                                                                                                                                                             |
| C/No Mean          | Calculated average of reported C/No by all 12 channels during the test period.                                                                                                                                                                                                                                    |
| C/No Sigma         | Calculated sigma of reported C/No by all 12 channels during the test period.                                                                                                                                                                                                                                      |
| Clock Drift        | Difference in clock frequency from start and end of the test period.                                                                                                                                                                                                                                              |
| Clock Offset       | The internal clock offset.                                                                                                                                                                                                                                                                                        |

#### Test Mode 3

This is supported by SiRFLoc and SiRFXTrac only as MID 20. Test Mode 3 requires approximately 10 seconds of data collection before sufficient data is available.

#### Example:

A0A20033—Start Sequence and Payload Length

0316B0B3—Message Checksum and End Sequence

Table 3-55 Test Mode 3 Message

|               |       | Binary (Hex) |         |       | ASCII (Decimal) |         |
|---------------|-------|--------------|---------|-------|-----------------|---------|
| Name          | Bytes | Scale        | Example | Units | Scale           | Example |
| Message ID    | 1     |              | 14      |       |                 | 20      |
| SV ID         | 2     |              | 0001    |       |                 | 1       |
| Period        | 2     |              | 001E    | sec   |                 | 30      |
| Bit Sync Time | 2     |              | 0002    | sec   |                 | 2       |
| Bit Count     | 2     |              | 3F70    |       |                 | 13680   |
| Poor Status   | 2     |              | 001F    |       |                 | 31      |
| Good Status   | 2     |              | 0D29    |       |                 | 3369    |

Table 3-55 Test Mode 3 Message (Continued)

|                    |       | Bin   | Binary (Hex) |       | ASCI  | I (Decimal) |
|--------------------|-------|-------|--------------|-------|-------|-------------|
| Name               | Bytes | Scale | Example      | Units | Scale | Example     |
| Parity Error Count | 2     |       | 0000         |       |       | 0           |
| Lost VCO Count     | 2     |       | 0000         |       |       | 0           |
| Frame Sync Time    | 2     |       | 0006         | sec   |       | 6           |
| C/No Mean          | 2     | *10   | 01C6         |       | ÷10   | 45.4        |
| C/No Sigma         | 2     | *10   | 0005         |       | ÷10   | 0.5         |
| Clock Drift        | 2     | *10   | 1B0E         | Hz    | ÷10   | 692.6       |
| Clock Offset       | 4     | *10   | 000EB41A     | Hz    | ÷10   | 96361.0     |
| Bad 1Khz Bit Count | 2     |       | 0000         |       |       |             |
| Abs I20ms          | 4     |       | 00000000     |       |       |             |
| Abs Q1ms           | 4     |       | 00000000     |       |       |             |
| Reserved           | 4     |       | 00000000     |       |       |             |
| Reserved           | 4     |       | 00000000     |       |       |             |
| Reserved           | 4     |       | 00000000     |       |       |             |

Payload Length: 51 bytes

Table 3-56 Detailed Description of Test Mode 3 Message

| Name               | Description                                                                                                                                                                                                                                                                                                       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Message I.D.       | Message I.D. number.                                                                                                                                                                                                                                                                                              |
| SV ID              | The number of the satellite being tracked.                                                                                                                                                                                                                                                                        |
| Period             | The total duration of time (in seconds) that the satellite is tracked.                                                                                                                                                                                                                                            |
| Bit Sync Time      | The time it takes for channel 0 to achieve the status of 37.                                                                                                                                                                                                                                                      |
| Bit Count          | The total number of data bits that the receiver is able to demodulate during the test period. As an example, for a 20 second test period, the total number of bits that can be demodulated by the receiver is 12000 (50BPS x 20sec x 12 channels).                                                                |
| Poor Status        | This value is derived from phase accumulation time. Phase accumulation is the amount of time a receiver maintains phase lock. Every 100msec of loss of phase lock equates to 1 poor status count. As an example, the total number of status counts for a 60 second period is 7200 (12 channels x 60 sec x 10 sec) |
| Good Status        | This value is derived from phase accumulation time. Phase accumulation is the amount of time a receiver maintains phase lock. Every 100msec of phase lock equates to 1 good status count.                                                                                                                         |
| Parity Error Count | The number of word parity errors. This occurs when the transmitted parity word does not match the receivers parity check.                                                                                                                                                                                         |
| Lost VCO Count     | The number of 1 msec VCO lost lock was detected. This occurs when the PLL in the RFIC loses lock. A significant jump in crystal frequency and / or phase will cause a VCO lost lock.                                                                                                                              |
| Frame Sync         | The time it takes for channel 0 to reach a 3F status.                                                                                                                                                                                                                                                             |
| C/No Mean          | Calculated average of reported C/No by all 12 channels during the test period.                                                                                                                                                                                                                                    |
| C/No Sigma         | Calculated sigma of reported C/No by all 12 channels during the test period.                                                                                                                                                                                                                                      |
| Clock Drift        | Difference in clock frequency from start and end of the test period.                                                                                                                                                                                                                                              |
| Clock Offset       | The internal clock offset.                                                                                                                                                                                                                                                                                        |
| Bad 1Khz Bit Count | Errors in 1ms post correlation I count values.                                                                                                                                                                                                                                                                    |
| Abs I20ms          | Absolute value of the 20ms coherent sums of the I count over the duration of the test period.                                                                                                                                                                                                                     |

Table 3-56 Detailed Description of Test Mode 3 Message

| Name     | Description                                                             |  |  |  |  |  |
|----------|-------------------------------------------------------------------------|--|--|--|--|--|
| Abs Q1ms | Absolute value of the 1ms Q count over the duration of the test period. |  |  |  |  |  |

### Test Mode 4

This is supported by SiRFLoc and SiRFXTrac only.

Table 3-57 Test Mode 4 Message

|                 |       | Bin   | Binary (Hex) |       | ASCI  | I (Decimal) |
|-----------------|-------|-------|--------------|-------|-------|-------------|
| Name            | Bytes | Scale | Example      | Units | Scale | Example     |
| Message ID      | 1     |       | 14           |       |       | 20          |
| Test Mode       | 1     |       | 04           |       |       | 4           |
| Message Variant | 1     |       | 01           |       |       | 1           |
| SV ID           | 2     |       | 0001         |       |       | 1           |
| Period          | 2     |       | 001E         | sec   |       | 30          |
| Bit Sync Time   | 2     |       | 0002         | sec   |       | 2           |
| C/No Mean       | 2     | *10   | 01C6         |       | ÷10   | 45.4        |
| C/No Sigma      | 2     | *10   | 0005         |       | ÷10   | 0.5         |
| Clock Drift     | 2     | *10   | 1B0E         | Hz    | ÷10   | 692.6       |
| Clock Offset    | 4     | *10   | 000EB41A     | Hz    | ÷10   | 96361.0     |
| I Count Errors  | 2     |       | 0003         |       |       | 3           |
| Abs I20ms       | 4     |       | 0003AB88     |       |       | 240520      |
| Abs Q1ms        | 4     |       | 0000AFF0     |       |       | 45040       |

Payload Length: 29 bytes

Table 3-58 Detailed Description of Test Mode 4 Message

| Name            | Description                                                                                                       |
|-----------------|-------------------------------------------------------------------------------------------------------------------|
| Message I.D.    | Message I.D. number.                                                                                              |
| Test Mode       | 3=Testmode 3, 4=Testmode 4                                                                                        |
| Message Variant | The variant # of the message (variant change indicates possible change in number of fields or field description). |
| SV ID           | The number of the satellite being tracked.                                                                        |
| Period          | The total duration of time (in seconds) that the satellite is tracked.                                            |
| Bit Sync Time   | The time it takes for channel 0 to achieve the status of 37.                                                      |
| C/No Mean       | Calculated average of reported C/No by all 12 channels during the test period.                                    |
| C/No Sigma      | Calculated sigma of reported C/No by all 12 channels during the test period.                                      |
| Clock Drift     | Difference in clock frequency from start and end of the test period.                                              |
| Clock Offset    | The internal clock offset.                                                                                        |
| I Count Errors  | Errors in 1ms post correlation I count values.                                                                    |
| Abs I20ms       | Absolute value of the 20ms coherent sums of the I count over the duration of the test period.                     |
| Q 1ms           | Absolute value of the 1ms Q count over the duration of the test period.                                           |

### Navigation Library Measurement Data - Message I.D. 28

Output Rate: Every measurement cycle (full power / continuous: 1Hz)

Example:

A0A20038—Start Sequence and Payload Length

 $1C00000660D015F143F62C4113F42F417B235CF3FBE95E468C6964B8FBC582415\\ CF1C375301734.....03E801F400000000\\ -Payload$ 

1533B0B3—Message Checksum and End Sequence

Table 3-59 Measurement Data

|                       |       | Bina  | ry (Hex) |           | ASCII | (Decimal) |
|-----------------------|-------|-------|----------|-----------|-------|-----------|
| Name                  | Bytes | Scale | Example  | Units     | Scale | Example   |
| Message I.D.          | 1     |       | 1C       |           |       | 28        |
| Channel               | 1     |       | 00       |           |       | 0         |
| Time Tag              | 4     |       | 000660D0 | milli-sec |       | 135000    |
| Satellite ID          | 1     |       | 15       |           |       | 20        |
| GPS Software Time     | 8     |       | F143F62C | milli-sec |       | 2.4921113 |
|                       |       |       | 4113F42F |           |       | 696e+005  |
| Pseudorange           | 8     |       | 417B235C | m         |       | 2.1016756 |
|                       |       |       | F3FBE95E |           |       | 638e+007  |
| Carrier Frequency     | 4     |       | 468C6964 | m/sec     |       | 1.6756767 |
|                       |       |       |          |           |       | 578e+004  |
| Carrier Phase         | 8     |       | B8FBC582 | m         |       | 4.4345542 |
|                       |       |       | 415CF1C3 |           |       | 262e+004  |
| Time in Track         | 2     |       | 7530     | milli-sec |       | 10600     |
| Sync Flags            | 1     |       | 17       |           |       | 23        |
| C/No 1                | 1     |       | 34       | dB-Hz     |       | 43        |
| C/No 2                | 1     |       |          | dB-Hz     |       | 43        |
| C/No 3                | 1     |       |          | dB-Hz     |       | 43        |
| C/No 4                | 1     |       |          | dB-Hz     |       | 43        |
| C/No 5                | 1     |       |          | dB-Hz     |       | 43        |
| C/No 6                | 1     |       |          | dB-Hz     |       | 43        |
| C/No 7                | 1     |       |          | dB-Hz     |       | 43        |
| C/No 8                | 1     |       |          | dB-Hz     |       | 43        |
| C/No 9                | 1     |       |          | dB-Hz     |       | 43        |
| C/No 10               | 1     |       |          | dB-Hz     |       | 43        |
| Delta Range Interval  | 2     |       | 03E801F4 | m         |       | 1000      |
| Mean Delta Range Time | 2     |       | 01F4     | milli-sec |       | 500       |
| Extrapolation Time    | 2     |       | 0000     | milli-sec |       |           |
| Phase Error Count     | 1     |       | 00       |           |       | 0         |
| Low Power Count       | 1     |       | 00       |           |       | 0         |

Payload Length: 56 bytes

For GPS Software Time, Psuedorange, Carrier Frequency, and Carrier Phase, the fields are either floating point (4-byte fields) or double-precision floating point (8-byte fields), per IEEE-754 format. The byte order may have to be changed to be interpreted properly on some computers. Also, the byte order differs between GPS software versions 2.2.0 and earlier, and versions 2.3.0 and later.

To convert the data to be properly interpreted on a PC-compatible computer, do the following:

For double-precision (8-byte) values: Assume the bytes are transmitted in the order of B0, B1, ..., B7. For version 2.2.0 and earlier software, rearrange them to B3, B2, B1, B0, B7, B6, B5. B4 For version 2.3.0 and later software, rearrange them to B7, B6, B5, ..., B0

For single-precision (4-byte) values: Assume bytes are transmitted in the order of B0, B1, B2, B3 Rearrange them to B3, B2, B1, B0 (that is, byte B3 goes into the lowest memory address, B0 into the highest)

With these remappings, the values should be correct. To verify, compare the same field from several satellites tracked at the same time. The reported exponent should be similar (within 1 power of 10) among all satellites. The reported Carrier Frequency contains a bias of the clock drift reported in MID 7. To adjust the reported carrier frequency do the following:

Corrected Carrier Frequency (m/s) = Reported Carrier Frequency (m/s) - Clock Drift (Hz) / 1575420000 Hz For a nominal clock drift value of 96.25 kHz (equal to a GPS Clock frequency of 24.5535 MHz), the correction value is 18315.766 m/s.

Table 3-60 Sync Flag Fields

| Bit Fields | Description                                           |
|------------|-------------------------------------------------------|
| [0]        | Coherent Integration Time                             |
|            | 0 = 2ms                                               |
|            | 1 = 10 ms                                             |
| [2:1]      | Synch State                                           |
|            | 00 = Not aligned                                      |
|            | 01 = Consistent code epoch alignment                  |
|            | 10 = Consistent data bit alignment                    |
|            | 11 = No millisecond errors                            |
| [4:3]      | Autocorrelation Detection State                       |
|            | 00 = Verified not an autocorrelation                  |
|            | 01 = Testing in progress                              |
|            | 10 = Strong signal, autocorrelation detection not run |
|            | 11 = Not used                                         |

Table 3-61 Detailed Description of the Measurement Data

| Name              | Description                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Message I.D.      | Message I.D. number.                                                                                                                                                                                                                                                                                                                                                                                                       |
| Channel           | Receiver channel number for a given satellite being searched or tracked.                                                                                                                                                                                                                                                                                                                                                   |
| Time Tag          | This is the Time Tag in milliseconds of the measurement block in the receiver software time.                                                                                                                                                                                                                                                                                                                               |
| Satellite ID      | Satellite or Space Vehicle (SV) I.D. number or Pseudo-random Noise (PRN) number.                                                                                                                                                                                                                                                                                                                                           |
| GPS Software Time | This is GPS Time or Time of Week (TOW) estimated by the software in milliseconds.                                                                                                                                                                                                                                                                                                                                          |
| Pseudo-range      | This is the generated pseudo range measurement for a particular SV.                                                                                                                                                                                                                                                                                                                                                        |
| Carrier Frequency | This is can be interpreted in two ways:  1) The delta-pseudo range normalized by the reciprocal of the delta pseudo range measurement interval.  2) The frequency from the AFC loop. If, for example, the delta pseudo range interval computation for a particular channel is zero, then it can be the AFC measurement, otherwise it is a delta-pseudo range computation.                                                  |
| Carrier Phase     | This is the integrated carrier phase given in meters.                                                                                                                                                                                                                                                                                                                                                                      |
| Time in Track     | The Time in Track counts how long a particular SV has been in track. For any count greater than zero (0), a generated pseudo range is present for a particular channel. The length of time in track is a measure of how large the pull-in error may be.                                                                                                                                                                    |
| Sync Flags        | This byte contains two a two bit fields that report the integration interval and sync value achieved for a particular channel.  1) Bit 0: Coherent Integration Interval (0 = 2 milliseconds, 1 = 10 milliseconds)  2) Bits: (1 2) = Synchronization  3) Bit: (2 1)  Value: {0 0} Not Aligned  Value: {0 1} Consistent Code Epoch Alignment  Value: {1 0} Consistent Data Bit Alignment  Value: {1 1} No Millisecond Errors |

Table 3-61 Detailed Description of the Measurement Data (Continued)

| Name                  | Description                                                                                                                                                                                             |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C/No 1                | This array of Carrier To Noise Ratios is the average signal power in dB-                                                                                                                                |
|                       | Hz for each of the 100-millisecond intervals in the previous second or                                                                                                                                  |
|                       | last epoch for each particular SV being track in a channel.                                                                                                                                             |
|                       | First 100 millisecond measurement                                                                                                                                                                       |
| C/No 2                | Second 100 millisecond measurement                                                                                                                                                                      |
| C/No 3                | Third 100 millisecond measurement                                                                                                                                                                       |
| C/No 4                | Fourth 100 millisecond measurement                                                                                                                                                                      |
| C/No 5                | Fifth 100 millisecond measurement                                                                                                                                                                       |
| C/No 6                | Sixth 100 millisecond measurement                                                                                                                                                                       |
| C/No 7                | Seventh 100 millisecond measurement                                                                                                                                                                     |
| C/No 8                | Eighth 100 millisecond measurement                                                                                                                                                                      |
| C/No 9                | Ninth 100 millisecond measurement                                                                                                                                                                       |
| C/No 10               | Tenth 100 millisecond measurement                                                                                                                                                                       |
| Delta Range Interval  | This is the delta-pseudo range measurement interval for the preceding second. A value of zero indicated that the receiver has an AFC measurement or no measurement in the Carrier Frequency field for a |
|                       | particular channel.                                                                                                                                                                                     |
| Mean Delta Range Time | This is the mean calculated time of the delta-pseudo range interval in milliseconds measured from the end of the interval backwards                                                                     |
| Extrapolation Time    | This is the pseudo range extrapolation time in milliseconds, to reach the common Time tag value.                                                                                                        |
| Phase Error Count     | This is the count of the phase errors greater than 60 Degrees measured in the preceding second as defined for a particular channel.                                                                     |
| Low Power Count       | This is the low power measurements for signals less than 28 dB-Hz in the preceding second as defined for a particular channel                                                                           |

# Navigation Library DGPS Data - Message I.D. 29

Output Rate: Every measurement cycle (full power / continuous : 1Hz)

Example:

A0A2001A—Start Sequence and Payload Length

 $1D000F00B501BFC97C673CAAAAAB3FBFFE1240A0000040A00000\\ -Payload$ 

0956B0B3-Message Checksum and End Sequence

Table 3-62 Measurement Data

|                                 |       | Bina  | ry (Hex)     |       | ASCII (Decimal) |           |
|---------------------------------|-------|-------|--------------|-------|-----------------|-----------|
| Name                            | Bytes | Scale | Example      | Units | Scale           | Example   |
| Message I.D.                    | 1     |       | 1D           |       |                 | 29        |
| Satellite ID                    | 2     |       | 000F         |       |                 | 15        |
| IOD                             | 2     |       | 00B5         |       |                 | 181       |
| Source <sup>1</sup>             | 1     |       | 01           |       |                 | 1         |
| Pseudo-range Correction         | 4     |       | BFC97C67     | m     |                 | -1.574109 |
| Pseudo-range rate<br>Correction | 4     |       | 3CAAAA<br>AB | m/sec |                 | 0.020833  |
| Correction Age                  | 4     |       | 3FBFFE12     | sec   |                 | 1.499941  |
| Reserved                        | 4     |       |              |       |                 |           |
| Reserved                        | 4     |       |              |       |                 |           |

Payload Length: 26 bytes

**Note** – The fields Pseudorange Correction, Pseudorange Rate Correction and Correction Age, are floating point values per IEEE-754. To properly interpret these in a PC, the bytes need to be rearranged into reverse order

## Navigation Library SV State Data - Message I.D. 30

The data in Message I.D. 30 reports the computed satellite position and velocity at the specified GPS time.

Output Rate: Every measurement cycle (full power / continuous : 1Hz)

Example:

A0A20053—Start Sequence and Payload Length

1E15....2C64E99D01....408906C8—Payload

2360B0B3—Message Checksum and End Sequence

Table 3-63 SV State Data

|              |       | Bina  | Binary (Hex) |       | ASCII | (Decimal) |
|--------------|-------|-------|--------------|-------|-------|-----------|
| Name         | Bytes | Scale | Example      | Units | Scale | Example   |
| Message I.D. | 1     |       | 1E           |       |       | 30        |
| Satellite ID | 1     |       | 15           |       |       | 21        |
| GPS Time     | 8     |       |              | sec   |       |           |
| Position X   | 8     |       |              | m     |       |           |
| Position Y   | 8     |       |              | m     |       |           |
| Position Z   | 8     |       |              | m     |       |           |
| Velocity X   | 8     |       |              | m/sec |       |           |
| Velocity Y   | 8     |       |              | m/sec |       |           |
| Velocity Z   | 8     |       |              | m/sec |       |           |
| Clock Bias   | 8     |       |              | sec   |       |           |

<sup>1.0 =</sup> Use no corrections, 1 = Use WAAS channel, 2 = Use external source, 3 = Use Internal Beacon,

<sup>4 =</sup> Set DGPS Corrections

Table 3-63 SV State Data

|                             |       | Bina  | ry (Hex) | lex)  |       | (Decimal)  |
|-----------------------------|-------|-------|----------|-------|-------|------------|
| Name                        | Bytes | Scale | Example  | Units | Scale | Example    |
| Clock Drift                 | 4     |       | 2C64E99D | s/s   |       | 744810909  |
| Ephemeris Flag <sup>1</sup> | 1     |       | 01       |       |       | 1          |
| Reserved                    | 4     |       |          |       |       |            |
| Reserved                    | 4     |       |          |       |       |            |
| Ionospheric Delay           | 4     |       | 408906C8 | m     |       | 1082721992 |

Payload Length: 83 bytes

**Note** – Each of the 8 byte fields as well as Clock Drift and Ionospheric Delay fields are floating point values per IEEE-754. To properly interpret these in a PC, the bytes need to be rearranged into reverse order

## Navigation Library Initialization Data - Message I.D. 31

Output Rate: Every measurement cycle (full power / continuous : 1Hz)

Example:

A0A20054—Start Sequence and Payload Length

1F....0000000000001001E000F....00....000000000F....00....02....043402....

....02—Payload

0E27B0B3—Message Checksum and End Sequence

Table 3-64 Measurement Data

|                                   |       | Binary (Hex) |          |       | ASCII (Decimal) |         |
|-----------------------------------|-------|--------------|----------|-------|-----------------|---------|
| Name                              | Bytes | Scale        | Example  | Units | Scale           | Example |
| Message I.D.                      | 1     |              | 1F       |       |                 | 31      |
| Reserved                          | 1     |              |          |       |                 |         |
| Altitude Mode <sup>1</sup>        | 1     |              | 00       |       |                 | 0       |
| Altitude Source                   | 1     |              | 00       |       |                 | 0       |
| Altitude                          | 4     |              | 00000000 | m     |                 | 0       |
| Degraded Mode <sup>2</sup>        | 1     |              | 01       |       |                 | 1       |
| Degraded Timeout                  | 2     |              | 001E     | sec   |                 | 30      |
| Dead-reckoning Timeout            | 2     |              | 000F     | sec   |                 | 15      |
| Reserved                          | 2     |              |          |       |                 |         |
| Track Smoothing Mode <sup>3</sup> | 1     |              | 00       |       |                 | 0       |
| Reserved                          | 1     |              |          |       |                 |         |
| Reserved                          | 2     |              |          |       |                 |         |
| Reserved                          | 2     |              |          |       |                 |         |
| Reserved                          | 2     |              |          |       |                 |         |
| DGPS Selection <sup>4</sup>       | 1     |              | 00       |       |                 | 0       |
| DGPS Timeout                      | 2     |              | 0000     | sec   |                 | 0       |

<sup>1. 0 =</sup> no valid SV state, 1 = SV state calculated from ephemeris, 2 = Satellite state calculated from almanac

Table 3-64 Measurement Data (Continued)

|                                    |       | Bina  | Binary (Hex) |       | ASCII (Decimal) |         |
|------------------------------------|-------|-------|--------------|-------|-----------------|---------|
| Name                               | Bytes | Scale | Example      | Units | Scale           | Example |
| Elevation Nav. Mask                | 2     |       | 000F         |       |                 | 15      |
| Reserved                           | 2     |       |              |       |                 |         |
| Reserved                           | 1     |       |              |       |                 |         |
| Reserved                           | 2     |       |              |       |                 |         |
| Reserved                           | 1     |       |              |       |                 |         |
| Reserved                           | 2     |       |              |       |                 |         |
| Static Nav. Mode <sup>5</sup>      | 1     |       | 00           |       |                 | 0       |
| Reserved                           | 2     |       |              |       |                 |         |
| Position X                         | 8     |       |              | m     |                 |         |
| Position Y                         | 8     |       |              | m     |                 |         |
| Position Z                         | 8     |       |              | m     |                 |         |
| Position Init. Source <sup>6</sup> | 1     |       | 02           |       |                 | 2       |
| GPS Time                           | 8     |       |              |       |                 |         |

Table 3-64 Measurement Data (Continued)

|                                 |       | Binary (Hex) |         |       | ASCII (Decimal) |         |
|---------------------------------|-------|--------------|---------|-------|-----------------|---------|
| Name                            | Bytes | Scale        | Example | Units | Scale           | Example |
| GPS Week                        | 2     |              | 0434    |       |                 | 1076    |
| Time Init. Source <sup>7</sup>  | 1     |              | 02      |       |                 | 2       |
| Drift                           | 8     |              |         |       |                 |         |
| Drift Init. Source <sup>8</sup> | 1     |              | 02      |       |                 | 2       |

Payload Length: 84 bytes

- 1. 0 = Use last know altitude 1 = Use user input altitude 2 = Use dynamic input from external source
- 2. 0 = Use direction hold and then time hold 1 = Use time hold and then direction hold 2 = Only use direction hold 3 = Only use time hold 4 = Degraded mode is disabled
- 3.0 = True 1 = False
- 4. 0 = Use DGPS if available 1 = Only navigate if DGPS corrections are available 2 = Never use DGPS corrections
- 5. 0 = True 1 = False
- 6. 0 = ROM position 1 = User position 2 = SRAM position 3 = Network assisted position
- 7. 0 = ROM time 1 = User time 2 = SRAM time 3 = RTC time 4 = Network assisted time
- 8. 0 = ROM clock 1 = User clock 2 = SRAM clock 3 = Calibration clock 4 = Network assisted clock

## Geodetic Navigation Data - Message I.D. 41

Output Rate: Every measurement cycle (full power / continuous : 1Hz)

#### Example:

A0 A2 00 5B-Start Sequence and Payload Length

11 03 B0 B3—Message Checksum and End Sequence

Table 3-65 Measurement Data

|                    |       | Binary (Hex) |         |       | ASCII (Decimal) |         |
|--------------------|-------|--------------|---------|-------|-----------------|---------|
| Name               | Bytes | Scale        | Example | Units | Scale           | Example |
| Message ID         | 1     |              |         |       |                 | 41      |
| Nav Valid          | 2     |              |         |       |                 |         |
| NAV Type           | 2     |              |         |       |                 |         |
| Extended Week Num- | 2     |              |         | week  |                 |         |
| ber                |       |              |         |       |                 |         |
| TOW                | 4     |              |         | sec   |                 |         |
| UTC Year           | 2     |              |         | year  |                 |         |
| UTC Month          | 1     |              |         | month |                 |         |
| UTC Day            | 2     |              |         | day   |                 |         |
| UTC Hour           | 2     |              |         | hr    |                 |         |
| UTC Minute         | 2     |              |         | min   |                 |         |
| UTC Second         | 2     | ·            |         | sec   |                 |         |

Table 3-65 Measurement Data (Continued)

|                                               |       | Bina  | ry (Hex) |             | ASCII | (Decimal) |
|-----------------------------------------------|-------|-------|----------|-------------|-------|-----------|
| Name                                          | Bytes | Scale | Example  | Units       | Scale | Example   |
| Satellite ID List                             | 4     |       |          |             |       |           |
| Latitude                                      | 4     |       |          | deg         |       |           |
| Longitude                                     | 4     |       |          | deg         |       |           |
| Altitude from Ellipsoid                       | 4     |       |          | meters      |       |           |
| Altitude from MSL                             | 4     |       |          | meters      |       |           |
| Map Datum <sup>1</sup>                        | 1     |       |          |             |       |           |
| Speed Over Ground (SOG)                       | 2     |       |          | m/sec       |       |           |
| Course Over Ground (COG, True)                | 2     |       |          | deg         |       |           |
| Magnetic Variation                            | 2     |       |          | deg         |       |           |
| Climb Rate                                    | 2     |       |          | m/sec       |       |           |
| Heading Rate                                  | 2     |       |          | deg<br>/sec |       |           |
| Estimated Horizontal<br>Position Error (EHPE) | 4     |       |          | meters      |       |           |
| Estimated Vertical<br>Position Error (EVPE)   | 4     |       |          | meters      |       |           |
| Estimated Time Error (ETE)                    | 4     |       |          | meters      |       |           |
| Estimated Horizontal<br>Velocity Error (EHVE) | 2     |       |          | m/sec       |       |           |
| Clock Bias                                    | 4     |       |          | meters      |       |           |
| Clock Bias Error                              | 4     |       |          | meters      |       |           |
| Clock Drift                                   | 4     |       |          | m/sec       |       |           |
| Clock Drift Error                             | 4     |       |          | meters      |       |           |
| Distance Traveled since RESET                 | 4     |       |          | meters      |       |           |
| Distance Traveled error                       | 2     |       |          | meters      |       |           |
| Heading Error                                 | 2     |       |          | deg         |       |           |
| Number of SVs in Fix                          | 1     |       |          |             |       |           |
| HDOP                                          | 1     |       |          |             |       |           |
| Reserved                                      | 1     |       |          |             |       |           |

Payload Length: 91 bytes

**Note** – Values are transmitted as integer values. When scaling is indicated in the Description, the decimal value has been multiplied by the indicated amount and then converted to an integer. Example: Value transmitted: 2345; indicated scaling: 10<sup>2</sup>; actual value: 23.45.

<sup>1.</sup> Map Datum indicates the datum to which latitude, longitude and altitude relate. 0 = WGS-84, by default. Other values will be defined as other datums are implemented.

Table 3-66 Detailed Description of Geodetic Navigation Data Message

| Name                    | Description                                                                                                                                                                                                                                                                                                                                          |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Message ID              | Message I.D. number.                                                                                                                                                                                                                                                                                                                                 |
| Nav Valid               | Any bits not 0: Nav is Invalid                                                                                                                                                                                                                                                                                                                       |
|                         | Bit 0=1: Position fix not validated Bit 1=1: Reserved (EHPE limits exceeded) Bit 2=1: Reserved (EVPE limits exceeded) Bit 3=1: DR data Invalid                                                                                                                                                                                                       |
|                         | Bit 4=1: DR Cal Invalid Bit 5=1: GPS-based Cal not                                                                                                                                                                                                                                                                                                   |
|                         | Available Bit 6=1: DR Pos Invalid Bit 7=1: DR Heading Invalid                                                                                                                                                                                                                                                                                        |
| NAV Type                | NAV Mode Bits definition:                                                                                                                                                                                                                                                                                                                            |
|                         | GPS Fix Type: bits 2-0: SVs Used 000 No Nav 001 1 SV solution 010 2 SV solution 011 3 SV solution (2D) 100 4 or More SV (3D) 101 Least Sq 2D fix 110 Least Sq 3D fix 111 DR solution (0 SV)  bit 3 =1: Trickle Power On  bits 5-4 Altitude hold 00 No Altitude Hold 01 Filter Altitude used 10 Use Altitude used 11 User Forced Altitude             |
| Forest ded Week Noveker | bit 6 = 1: SIRFDRIVE On bit 7 = 1: DGPS corrections bit 8 = 1: Sensor Based DR bit 9 = 1: Sol Validated bit 10 = 1: VEL DR Timeout bit 11 = 1: Edited by UI bit 12 = 1: Velocity Valid bit 13 = 1: Altitude hold is disabled bit 14-15 = 1: Sensor DR status, 00=GPS only solution, 01=DR Calibration from GPS, 10=DR Sensor Error, 11=DR is in test |
| Extended Week Number    | Range: 800 to 500                                                                                                                                                                                                                                                                                                                                    |
| TOW                     | Range: 0 to 604800.00                                                                                                                                                                                                                                                                                                                                |
| UTC Year                | Range: 1980 to 3000                                                                                                                                                                                                                                                                                                                                  |
| UTC Month               | Range: 1 to 12                                                                                                                                                                                                                                                                                                                                       |
| UTC Day                 | Range: 1 to 31                                                                                                                                                                                                                                                                                                                                       |
| UTC Hour                | Range: 0 to 23                                                                                                                                                                                                                                                                                                                                       |

Table 3-66 Detailed Description of Geodetic Navigation Data Message

| Name                                       | Description                                |
|--------------------------------------------|--------------------------------------------|
| UTC Minute                                 | Range: 0 to 60                             |
| UTC Second                                 | Range: 0 to 60                             |
| Number of Satellites in Solution           | Range: 0 -12                               |
| Latitude                                   | Range: -90 to 90                           |
| Longitude                                  | Range: -180 to 180                         |
| Altitude from Ellipsoid                    | Range: -2000 to 100000.0                   |
| Altitude from MSL                          | Range: -2000 to 100000.0                   |
| Map Datum                                  | Range: 0-255                               |
| Speed Over Ground (SOG)                    | Range: 0-655                               |
| Course Over Ground (COG, True)             | Range: 0 to 360                            |
| Magnetic Variation                         | Range: -90 to 90                           |
| Climb Rate                                 | Range: -300 to 300                         |
| Heading Rate                               | Range: -300 to 300                         |
| Estimated Horizontal Position Error (EHPE) | Range: 0 to 6000000                        |
| Estimated Vertical Position Error (EVPE)   | Range: 0 to 24000                          |
| Estimated Time Error (ETE)                 | Range: 0 to 6000000                        |
| Estimated Horizontal Velocity Error (EHVE) | Range: 0 to 655                            |
| Clock Bias                                 | Range: -90000 to 90000                     |
| Clock Bias Error                           | Range: 0 to 6000000                        |
| Clock Drift                                | Range: -1000 to 1000                       |
| Clock Drift Error                          | Range: 0 to 1000                           |
| Distance Traveled since RESET              | Range: 0 to 4294967295                     |
| Distance Traveled error                    | Range: 65535                               |
| Heading Error                              | Range: 0 to 180                            |
| Number of SVs in Fix                       | Count of satellites indicated by SVID list |
| HDOP                                       | Horizontal Dilution of Precision           |
| Reserved                                   | Reserved                                   |

## Test Mode 3/4 - Message I.D. 46

**Note** – This message is used in GSW2 software only. For SiRFLoc and SiRFXTrac software, refer to MID 20.

Output Rate: Variable - set by the period as defined in message ID 150

Example:

A0A20033—Start Sequence and Payload Length

0316B0B3-Message Checksum and End Sequence

Table 3-67 Test Mode 3 Message

|            |       | Binary (Hex) |         |       | ASCII (Decimal) |         |
|------------|-------|--------------|---------|-------|-----------------|---------|
| Name       | Bytes | Scale        | Example | Units | Scale           | Example |
| Message ID | 1     |              | 2E      |       |                 | 46      |
| SV ID      | 2     |              | 0001    |       |                 | 1       |

Table 3-67 Test Mode 3 Message (Continued)

|                    |       | Bin   | Binary (Hex) |       | ASCI  | I (Decimal) |
|--------------------|-------|-------|--------------|-------|-------|-------------|
| Name               | Bytes | Scale | Example      | Units | Scale | Example     |
| Period             | 2     |       | 001E         | sec   |       | 30          |
| Bit Sync Time      | 2     |       | 0002         | sec   |       | 2           |
| Bit Count          | 2     |       | 3F70         |       |       | 13680       |
| Poor Status        | 2     |       | 001F         |       |       | 31          |
| Good Status        | 2     |       | 0D29         |       |       | 3369        |
| Parity Error Count | 2     |       | 0000         |       |       | 0           |
| Lost VCO Count     | 2     |       | 0000         |       |       | 0           |
| Frame Sync Time    | 2     |       | 0006         | sec   |       | 6           |
| C/No Mean          | 2     | *10   | 01C6         |       | ÷10   | 45.4        |
| C/No Sigma         | 2     | *10   | 0005         |       | ÷10   | 0.5         |
| Clock Drift        | 2     | *10   | 1B0E         | Hz    | ÷10   | 692.6       |
| Clock Offset       | 4     | *10   | 000EB41A     | Hz    | ÷10   | 96361.0     |
| Bad 1Khz Bit Count | 2     |       | 0000         |       |       |             |
| Abs I20ms          | 4     |       | 00000000     |       |       |             |
| Abs Q1ms           | 4     |       | 00000000     |       |       |             |
| Reserved           | 4     |       | 00000000     |       |       |             |
| Reserved           | 4     |       | 00000000     |       |       |             |
| Reserved           | 4     |       | 00000000     |       |       |             |

Payload Length: 51 bytes

Table 3-68 Detailed Description of Test Mode 3 Message

| Name               | Description                                                                                                                                                                                                                                                                                                       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Message I.D.       | Message I.D. number.                                                                                                                                                                                                                                                                                              |
| SV ID              | The number of the satellite being tracked.                                                                                                                                                                                                                                                                        |
| Period             | The total duration of time (in seconds) that the satellite is tracked.                                                                                                                                                                                                                                            |
| Bit Sync Time      | The time it takes for channel 0 to achieve the status of 37.                                                                                                                                                                                                                                                      |
| Bit Count          | The total number of data bits that the receiver is able to demodulate during the test period. As an example, for a 20 second test period, the total number of bits that can be demodulated by the receiver is 12000 (50BPS x 20sec x 12 channels).                                                                |
| Poor Status        | This value is derived from phase accumulation time. Phase accumulation is the amount of time a receiver maintains phase lock. Every 100msec of loss of phase lock equates to 1 poor status count. As an example, the total number of status counts for a 60 second period is 7200 (12 channels x 60 sec x 10 sec) |
| Good Status        | This value is derived from phase accumulation time. Phase accumulation is the amount of time a receiver maintains phase lock. Every 100msec of phase lock equates to 1 good status count.                                                                                                                         |
| Parity Error Count | The number of word parity errors. This occurs when the transmitted parity word does not match the receivers parity check.                                                                                                                                                                                         |
| Lost VCO Count     | The number of 1 msec VCO lost lock was detected. This occurs when the PLL in the RFIC loses lock. A significant jump in crystal frequency and / or phase will cause a VCO lost lock.                                                                                                                              |
| Frame Sync         | The time it takes for channel 0 to reach a 3F status.                                                                                                                                                                                                                                                             |
| C/No Mean          | Calculated average of reported C/No by all 12 channels during the test period.                                                                                                                                                                                                                                    |
| C/No Sigma         | Calculated sigma of reported C/No by all 12 channels during the test period.                                                                                                                                                                                                                                      |

Table 3-68 Detailed Description of Test Mode 3 Message

| Name               | Description                                                                                   |
|--------------------|-----------------------------------------------------------------------------------------------|
| Clock Drift        | Difference in clock frequency from start and end of the test period.                          |
| Clock Offset       | The internal clock offset.                                                                    |
| Bad 1Khz Bit Count | Errors in 1ms post correlation I count values.                                                |
| Abs I20ms          | Absolute value of the 20ms coherent sums of the I count over the duration of the test period. |
| Abs Q1ms           | Absolute value of the 1ms Q count over the duration of the test period.                       |

## Test Mode Raw Measurement Data - Message I.D. 48

Output Rate: Every measurement cycle (full power / continuous: 1Hz)

Example:

?—Start Sequence and Payload Length

300100000000015000660D0F3FBE95E417B235C468C6964 -- Payload

?—Message Checksum and End Sequence

Table 3-69 Test Mode Raw Measurement Data Message

|                   |       | Bin   | Binary (Hex) |        | ASCII (Decimal) |            |
|-------------------|-------|-------|--------------|--------|-----------------|------------|
| Name              | Bytes | Scale | Example      | Units  | Scale           | Example    |
| Message ID        | 1     |       | 30           |        |                 | 48         |
| nChannel          | 1     |       | 01           |        |                 | 1          |
| Reserved          | 4     |       | 00000000     |        |                 | 0          |
| Channel           | 1     |       | 00           |        |                 | 0          |
| Satellite ID      | 1     |       | 15           |        |                 | 20         |
| Receiver Time Tag | 4     |       | 000660D0     | milli- |                 | 135000     |
|                   |       |       |              | sec    |                 |            |
| Pseudo-range      | 4     | *10   | F3FBE95E4    | m      |                 | 2.10167566 |
|                   |       |       | 17B235C      |        |                 | 38e+007    |
| Carrier Frequency | 4     | *100  | 468C6964     | m/sec  |                 | 1.67567675 |
|                   |       |       |              |        |                 | 78e+004    |

Payload Length: Variable

Table 3-70 Detailed Description of Test Mode Raw Measurement Data Message

| Name              | Description                                                                                                                                                                 |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Message ID        | Message I.D. number.                                                                                                                                                        |
| nChannel          | Number of channels reported                                                                                                                                                 |
| Reserved          | Reserved                                                                                                                                                                    |
| Channel           | Receiver channel number for a given satellite being searched or tracked.                                                                                                    |
| Satellite ID      | Satellite or Space Vehicle (SV) I.D. number or Pseudo-random noise (PRN) number.                                                                                            |
| Receiver Time Tag | This is the count of ms interrupts from the start of the receiver (power on) until measurement sample is taken. Millisecond interrupts are generated by the receiver clock. |
| Pseudo-range      | This is the generated pseudo range measurement for a particular SV.                                                                                                         |

Table 3-70 Detailed Description of Test Mode Raw Measurement Data Message

| Name              | Description                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carrier Frequency | This can be interpreted in two ways:  1. The delta-pseudo range normalized by the reciprocal of the delta pseudo range measurement interval.  2. The frequency from the AFC loop. If, for example, the delta pseudorange interval computation for a particular channel is zero, then it can be the AFC measurement, otherwise it is a delta-pseudorange computation. |

## Test Mode Raw Tracking Loop Data - Message I.D. 49

Output Rate: Every measurement cycle (full power / continuous: 8.33Hz)

Example:

?—Start Sequence and Payload Length

310100000000015000660D0F3FBE95E417B235C—Payload

?—Message Checksum and End Sequence

Table 3-71 Test Mode Raw Tracking Loop Data Message

|                      |       | Binary (Hex) |           |         | ASCII (Decimal) |            |
|----------------------|-------|--------------|-----------|---------|-----------------|------------|
| Name                 | Bytes | Scale        | Example   | Units   | Scale           | Example    |
| Message ID           | 1     |              | 31        |         |                 | 49         |
| nChannel             | 1     |              | 01        |         |                 | 1          |
| Reserved             | 4     |              | 00000000  |         |                 | 0          |
| Channel              | 1     |              | 00        |         |                 | 0          |
| Satellite ID         | 1     |              | 15        |         |                 | 20         |
| Receiver Time Tag    | 4     |              | 000660D0  | milli-  |                 | 135000     |
|                      |       |              |           | sec     |                 |            |
| Carrier Doppler Rate | 4     | 100000       | F3FBE95E4 | Carrier | 104857          | 2.10167566 |
|                      |       |              | 17B235C   | Cycles/ | 6               | 38e+007    |
|                      |       |              |           | 2ms/10  |                 |            |
|                      |       |              |           | ms      |                 |            |
| Carrier Doppler      | 4     | 100000       | F3FBE95E4 | Carrier | 104857          | 2.10167566 |
|                      |       |              | 17B235C   | Cycles/ | 6               | 38e+007    |
|                      |       |              |           | 2ms     |                 |            |
| Carrier Phase        | 4     | 400          | 468C6964  | Carrier | 1024            | 1.67567675 |
|                      |       |              |           | Cycles  |                 | 78e+004    |
| Code Offset          | 4     | 181000       | 00009783  | Chip    | 157696          | 38787      |
|                      |       |              |           |         | 0               |            |

Payload Length: Variable

Table 3-72 Detailed Description of Test Mode Raw Tracking Loop Data Message

| Name       | Description                                                              |  |  |  |  |
|------------|--------------------------------------------------------------------------|--|--|--|--|
| Message ID | Message I.D. number.                                                     |  |  |  |  |
| nChannel   | Number of channels reported                                              |  |  |  |  |
| Reserved   | Reserved                                                                 |  |  |  |  |
| Channel    | Receiver channel number for a given satellite being searched or tracked. |  |  |  |  |

Table 3-72 Detailed Description of Test Mode Raw Tracking Loop Data Message

| Name                 | Description                                                                                                                                                                 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Satellite ID         | Satellite or Space Vehicle (SV) I.D. number or Pseudo-random noise (PRN) number.                                                                                            |
| Receiver Time Tag    | This is the count of ms interrupts from the start of the receiver (power on) until measurement sample is taken. Millisecond interrupts are generated by the receiver clock. |
| Carrier Doppler Rate | The carrier doppler rate value from the Costas tracking loop for the satellite ID on channel 0.                                                                             |
| Carrier Doppler      | The frequency from the Costas loop for the satellite ID on channel 0.                                                                                                       |
| Carrier Phase        | The carrier phase value from the Costas tracking loop for the satellite ID on channel 0.                                                                                    |
| Code Offset          | The code offset from the Code loop for the satellite ID on channel 0.                                                                                                       |

## SBAS Parameters - Message I.D. 50

Outputs SBAS operating parameter information including SBAS PRN, mode, timeout, timeout source, and SBAS health status.

Output Rate: Every measurement cycle (full power / continuous: 1Hz)

Example:

A0A2000D-Start Sequence and Payload Length

BEBEB0B3—Message Checksum and End Sequence

Table 3-73 SBAS Parameters Message

|              |       | Binary (Hex) |            |       | ASCII (Decimal) |          |
|--------------|-------|--------------|------------|-------|-----------------|----------|
| Name         | Bytes | Scale        | Example    | Units | Scale           | Example  |
| Message ID   | 1     |              | 32         |       |                 | 50       |
| SBAS PRN     | 1     |              | 7A         |       |                 | 122      |
| SBAS Mode    | 1     |              | 00         |       |                 | 0        |
| DGPS Timeout | 1     |              | 12         |       |                 | 18       |
| Flag bits    | 1     |              | 00         |       |                 | 0        |
| Spare        | 8     |              | 0000000000 |       |                 | 00000000 |

Payload Length: 13 bytes

Table 3-74 Detailed Description of SBAS Parameters

| Name       | Description                                                   |
|------------|---------------------------------------------------------------|
| Message ID | Message I.D. number.                                          |
| SBAS PRN   | 0=Auto mode                                                   |
|            | SBAS PRN 120-138= Exclusive                                   |
| SBAS Mode  | 0=Testing, 1=Integrity                                        |
|            | Integrity mode will not accept SBAS corrections if the SBAS   |
|            | satellite is transmitting in a test mode.                     |
|            | Testing mode will accept and use SBAS corrections even if the |
|            | SBAS satellite is transmitting in a test mode.                |

Table 3-74 Detailed Description of SBAS Parameters

| Name         | Description                                                          |
|--------------|----------------------------------------------------------------------|
| DGPS Timeout | Range 1-250 seconds. 0 returns to default timeout.                   |
|              | The last received corrections will continue to be applied to the     |
|              | navigation solution for the timeout period. If the timeout period is |
|              | exceeded before a new correction is received, no corrections will be |
|              | applied.                                                             |
| Flag bits    | Bit 0: Timeout; 0=Default 1=User                                     |
|              | Bit 1: Health; Reserved                                              |
|              | Bit 2: Correction; Reserved                                          |
|              | Bit 3: SBAS PRN; 0=Default 1=User                                    |
| Spare        | Spare                                                                |

### PPS Time – Message I.D. 52

Outputs the time associated with the current 1 PPS pulse. Each message will be output within a few hundred ms after the 1 PPS pulse is output, and will tell the time of the pulse that just occurred. The SiRF binary message ID 52 will report the time of the 1 PPS pulse in UTC any time it has a current status message from the satellites. If it does not have a valid status message, it will report time in GPS time, and will so indicate by means of the status field.

Output Rate: 1Hz (Synchronized to PPS)

Example:

A0A2000034.—Start Sequence and Payload Length

15122A0E0A07D3000D0000000507000000000—Payload

0190B0B3-Message Checksum and End Sequence

Payload Length: 19 bytes

Table 3-75 Timing Message Data

|               |       |                 | Binary (Hex) |       | ASCII (Decimal) |          |
|---------------|-------|-----------------|--------------|-------|-----------------|----------|
| Name          | Bytes | Scale           | Example      | Units | Scale           | Example  |
| Message ID    | 1     |                 | 34           |       |                 | 52       |
| Hour          | 1     |                 | 15           |       |                 | 21       |
| Minute        | 1     |                 | 12           |       |                 | 18       |
| Second        | 1     |                 | 2A           |       |                 | 42       |
| Day           | 1     |                 | 0E           |       |                 | 15       |
| Month         | 8     |                 | 0A           |       |                 | 10       |
| Year          | 2     |                 | 07D3         |       |                 | 2003     |
| UTCOffsetInt  | 2     |                 | 000D         |       |                 | 13       |
| UTCOffsetFrac | 4     | 10 <sup>9</sup> | 00000005     | ns    | 10 <sup>9</sup> | 5        |
| Status        | 1     |                 | 7            |       |                 | 7        |
| Reserved      | 4     |                 | 00000000     |       |                 | 00000000 |

**Note** – The status byte is bit-mapped with the following meaning:

| Bit Fields | Meaning                                                                                                           |
|------------|-------------------------------------------------------------------------------------------------------------------|
| [0]        | When set, bit indicates that time is valid                                                                        |
| [1]        | When set, bit indicates that UTC time is reported in this message. Otherwise it is GPS time.                      |
| [2]        | When set, bit indicates that UTC to GPS time information is current, i.e. IONO/UTC time is less than 2 weeks old. |
| [3-7]      | Reserved                                                                                                          |

## Development Data – Message I.D. 255

Output Rate: Receiver generated

Example:

A0A2....—Start Sequence and Payload Length

FF....-Payload

....B0B3—Message Checksum and End Sequence

Table 3-76 Development Data

|            |       | Binary (Hex) |         |       | ASCII (Decimal) |         |
|------------|-------|--------------|---------|-------|-----------------|---------|
| Name       | Bytes | Scale        | Example | Units | Scale           | Example |
| Message ID | 1     |              | FF      |       |                 | 255     |

Payload Length: Variable

**Note** – MID 255 is output when SiRF binary is selected and development data is enabled. The data output using MID 255 is essential for SiRF assisted troubleshooting support.

# Additional Information



### TricklePower Operation in DGPS Mode

When in TricklePower mode, serial port DGPS corrections are supported. The CPU goes into sleep mode but will wake up in response to any interrupt. This includes UARTs. Messages received during the TricklePower 'off' period are buffered and processed when the receiver awakens for the next TricklePower cycle.

### GPS Week Reporting

Since August, 22, 1999, the GPS week roll from 1023 weeks to 0 weeks is in accordance with the ICD-GPS-200 specifications. To maintain roll over compliance, SiRF reports the ICD GPS week between 0 and 1023. If the user needs to have access to the Extended GPS week (ICD GPS week + 1024) this information is available through the Clock Status Message (007) under the Poll menu.

#### NMEA Protocol in TricklePower Mode

The NMEA standard is generally used in continuous update mode at some predefined rate. This mode is perfectly compatible with all SiRF TricklePower and Push-to-Fix modes of operations. There is *no* mechanism in NMEA that indicates to a host application when the receiver is on or in standby mode. If the receiver is in standby mode (chip set OFF, CPU in standby), then no serial communication is possible for output of NMEA data or receiving SiRF proprietary NMEA input commands. To establish reliable communication, the user must repower the receiver and send commands while the receiver is in full-power mode (during start-up) and prior to reverting to TricklePower operation. Alternatively, the host application could send commands (i.e., poll for position) repeatedly until the request has been completed. The capability to create communication synchronization messages in NMEA mode is available through the System Development Kit (SDK).

In Trickle-Power mode, the user is required to select an update rate (seconds between data output) and On Time (milli-seconds the chipset is on). When the user changes to NMEA mode, the option to set the output rate for each of the selected NMEA messages is also required. These values are multiplied by the TricklePower update rate value as shown in Table 4-1.

Table 4-1 NMEA Data Rates Under Trickle Power Operation

| Power Mode          | Continuous     | Trickle Power     | Trickle Power      | Trickle Power      |
|---------------------|----------------|-------------------|--------------------|--------------------|
| Update Rate         | 1 every second | 1 every second    | 1 every 5 seconds  | 1 every 8 seconds  |
| On Time             | 1000           | 200               | 400                | 600                |
| NMEA Update Rate    | 1 every second | 1 every 5 seconds | 1 every 2 seconds  | 1 every 5 seconds  |
| Message Output Rate | 1 every second | 1 every 5 seconds | 1 every 10 seconds | 1 every 40 seconds |

 $\boldsymbol{Note}-The\ On\ Time\ of\ the\ chip\ set\ has\ no\ effect\ on\ the\ output\ data\ rates.$