Reinforcement Learning

Outline

- Model-based RL
- Exploration vs exploitation in RL
- Model-free RL
 - Monte-Carlo methods
 - Temporal difference learning
- Issues with terminology

Outline

- Model-based RL
- Exploration vs exploitation in RL
- Model-free RL
 - Monte-Carlo methods
 - Temporal difference learning
- Issues with terminology

- Previous lecture: given full knowledge of an MDP, how to find its optimal policies
- What if the agent does not have such full knowledge?

- Previous lecture: given full knowledge of an MDP, how to find its optimal policies
- What if the agent does not have such full knowledge?

Usually not available in RL!

• Idea: if we do not know MDP M, why not estimate one from the information collected during interaction?

• Idea: if we do not know MDP M, why not estimate one from the information collected during interaction?

- Model-based reinforcement learning: maintain an estimated MDP \widehat{M} ("model") and use it as the input of the planning algorithms
- $\widehat{M} := \langle \widehat{\mathcal{S}}, \widehat{\mathcal{A}}, \widehat{\mathcal{P}}, \widehat{\mathcal{R}} \rangle$
 - $\hat{\mathcal{S}}$ and $\hat{\mathcal{A}}$: set of all <u>visited</u> states and actions
 - $\hat{\mathcal{P}}$: estimated transition probabilities
 - $\hat{\mathcal{R}}$: estimated immediate rewards
 - Can simply assume $\hat{S} = S$, $\hat{A} = A$ and let all unvisited states/actions have 0 estimated probability of transition

- Estimating $\widehat{\mathcal{P}}$
 - Let $N_{s,a}$ be the number of 'taking action a at state s' in the whole interaction history
 - Let $N_{s,a,s'}$ be the number of transition (s,a,s') occurred
 - $\widehat{\mathcal{P}}(s, a, s') = \frac{N_{s,a,s'}}{N_{s,a}}$
 - By the law of large numbers, $\widehat{\mathcal{P}}(s, a, s') \to \mathcal{P}(s, a, s')$ as $N_{s,a} \to \infty$

- Estimating $\widehat{\mathcal{R}}$
 - Let $R_{s,a,s'}$ be the sum of rewards received at transition (s,a,s') in the whole interaction history
 - Let $N_{s,a,s'}$ be the number of transition (s,a,s') occurred
 - $\widehat{\mathcal{R}}(s,a,s') = \frac{R_{s,a,s'}}{N_{s,a,s'}}$
 - By the law of large numbers, $\widehat{\mathcal{R}}(s,a,s') \to \mathcal{R}(s,a,s')$ as $N_{s,a,s'} \to \infty$
 - Trivial case: if reward is deterministic, then no need to estimate at all

- (Vanilla) model-based RL algorithm
 - (0) Start with an arbitrary policy π and an estimated MDP \widehat{M}
 - (1) Interact with the environment using π , record transitions and rewards
 - (2) Update estimated MDP \widehat{M}
 - (3) Compute the optimal policy $\hat{\pi}^*$ of \widehat{M} using PI/VI, update $\pi \leftarrow \hat{\pi}^*$
 - (4) Goto (1) until π converges

- Real-world analogy to model-based RL: learning to play a game
 - (0) Start with an arbitrary strategy and an imaginary model of the game (including rules, stage designs, control, etc.)
 - (1) Play the game, see how the game works
 - (2) Update your imaginary model of the game
 - (3) Brainstorm some better strategy based on your imaginary model
 - (4) Goto (1) until you get bored

- No strict restriction to #interaction between each update of π
 - Since PI/VI is computation-intensive, one may choose to call PI/VI every 10,000 steps of interaction
 - However, if interaction is more expensive, then updating π more frequently can be a good idea
 - Example of expensive interaction: controlling a robot by RL. During interaction it may crash and you have to spend much money & time to repair it

• Convergence issue: will the vanilla model-based RL algorithm converge to optimal policies?

 Convergence issue: will the vanilla model-based algorithm converge to optimal policies?

Not necessarily!

- If the agent has never tried action a at state s, then it has no information about the consequence of taking a at s (i.e. $\hat{\mathcal{P}}(s,a,*)=0$), thus $\hat{q}^*(s,a)=0$
- If there exists a' such that $\hat{q}^*(s, a') > 0$, then the agent will **never** try a in the future!

Outline

- Model-based RL
- Exploration vs Exploitation in RL
- Model-free RL
 - Monte-Carlo methods
 - Temporal difference learning
- Issues with terminology

Exploration vs Exploitation

- Exploration: deliberately take actions that are not (seemingly) "optimal" according to the <u>current</u> knowledge
- Purpose of exploration: gain more information in the hope of discovering better policies
- Exploration vs exploitation dilemma

ε-greedy

- Simple exploration strategy: ε-greedy
 - Choose a random action with probability arepsilon
 - Choose the "optimal" action $\pi(s)$ with probability 1ε .
 - ε is often set to small values like 0.03, 0.01, 0.003 or even smaller
- Pros of ε -greedy
 - Easy to implement
 - Stick to "optimal" actions most of the time → less likely to take disastrous actions (given that the initial policy is sufficiently good)

ε-greedy

- Cons of ε -greedy
 - Behaviour of the agent never actually converges (i.e. the agent never stops exploration)
 - Can be exponentially inefficient in some cases

Suppose the agent starts RL from s_0 . It will soon discover that taking dotted actions will send it to s_0 and at s_0 it yields reward +1. Thus π will very likely be taking dotted actions at any states, unless it happens to discover s_n and reward +1000. This seldom happens because with ε -greedy exploration, the probability it reaches s_n by taking solid actions without going back to s_0 is only $(0.5\varepsilon)^n$.

R-MAX algorithm

- Systematic exploration: R-MAX algorithm
 - Assume $q(s, a) = R_{\text{max}}$ (maximum immediate reward of that MDP), unless a has been taken at least m times at s
 - This forces the agent to try every possible actions many times before making any conclusion
- Pros of R-MAX
 - If m is set sufficiently large, then R-MAX algorithm has a high probability to be optimal in all but some polynomial steps in an infinitely long learning process (sample complexity theory)

R-MAX algorithm

Cons of R-MAX

- Will explore very aggressively (it tries every possible actions many times),
 which might not be appropriate in some real-world applications (robotics,
 automated driving, power station control, etc.)
- If the state/action space is very large, the agent may spend too much time exploring without making any sensible plans (since most values are $R_{\rm max}$)

Other Exploration Strategies

- Other exploration strategies lie between ε -greedy (almost always greedy) and R-MAX (almost always explore)
 - e.g. UCB/UCRL, MoR-MAX, V-MAX, ICR/ICV, ...
 - Basic idea: try to explore sufficiently in the long run, but also make use of collected information earlier than R-MAX (thus behave more "greedily")

How to choose a strategy

- Choose exploration strategy based on the need of your application!
 - Real-world loss is negligible (e.g. game playing) → systematic exploration can be helpful
 - Experiments are expensive (robotics etc.) → more conservative (greedy) exploration

Outline

- Model-based RL
- Exploration vs exploitation in RL
- Model-free RL
 - Monte-Carlo methods
 - Temporal difference learning
- Issues with terminology

Model-free RL

- Maintaining a model of the environment can be expensive
 - Need to keep record of all interactions
 - Need to save $|\mathcal{S}|^2 |\mathcal{A}|$ transition probabilities and rewards
 - If MDP is continuous, estimating transition probabilities can be difficult
- Can we update policies without keeping a model?
 - → Model-free RL!

- Recall that in the policy iteration (PI) algorithm:
 - (0) start from arbitrary π
 - (1) solve q^{π}
 - (2) improve π by $\pi(s) \leftarrow \operatorname{argmax}_{a \in \mathcal{A}} q^{\pi}(s, a)$
 - (3) goto (1) until π converges
- If v^{π} / q^{π} can be estimated by other means, then we do not need a model of MDP
- Since v^{π} / q^{π} are expected cumulative rewards, why not simply average the actual returns?

- Monte-Carlo (MC) value estimation
 - Initialization: $\forall s \in \mathcal{S}, N(s) = \hat{G}(s) = 0$
 - Whenever visit state $S_t = s$:
 - $N(s) \leftarrow N(s) + 1$
 - $\hat{G}(s) \leftarrow \hat{G}(s) + G_t$
 - $\hat{v}^{\pi}(s) \leftarrow \hat{G}(s)/N(s)$.
 - G_t is the actual cumulative reward $G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^k R_{t+k+1} + \cdots$ received during interaction starting from t until it ends or γ^k is sufficiently small
 - Can be done similarly for \hat{q}^{π}

- Convergence of Monte-Carlo value estimation algorithm
 - If $k \to \infty$, then \hat{v}^{π} is an unbiased estimate of v^{π}
 - Thus, by the law of large numbers, $\hat{v}^{\pi}(s) \to v^{\pi}(s)$ as $N(s) \to \infty$

- Monte-Carlo reinforcement learning
 - (0) Start with arbitrary policy π
 - (1) Interact with the environment, record all cumulative rewards
 - (2) Update \hat{v}^{π} or \hat{q}^{π} with the MC value estimation algorithm
 - (3) Improve π by argmaxing \hat{v}^{π} or \hat{q}^{π}
 - (4) Goto (1) until π converges
- As in model-based algorithms, exploration is necessary

- Pros of MC method
 - Does not need a model
 - Easy to implement
 - It even works if the decision process is not Markov
 - Does not care about transition probabilities at all
- Cons of MC method
 - Delayed update: need to wait until time t+k before updating information on s_t
 - Does not rely on Markov property ← Cannot utilize information more efficiently if the environment is Markov

Incremental version of MC estimation:

$$\hat{v}^{\pi}(S_t) \leftarrow \hat{v}^{\pi}(S_t) + \frac{1}{N(S_t)} (G_t - \hat{v}^{\pi}(S_t))$$

- Mathematically equivalent to $\hat{v}^{\pi}(S_t) \leftarrow \hat{G}(S_t)/N(S_t)$
- (Exponential) moving average version:

$$\hat{v}^{\pi}(S_t) \leftarrow \hat{v}^{\pi}(S_t) + \alpha(G_t - \hat{v}^{\pi}(S_t))$$

• $0 < \alpha < 1$: update rate

• $\hat{v}^{\pi}(S_t) \leftarrow \hat{v}^{\pi}(S_t) + \alpha(G_t - \hat{v}^{\pi}(S_t))$ has cumulative reward $G_t = R_{t+1} + \gamma R_{t+2} + \cdots$, thus need to wait many steps before updating S_t

Any way to update instantly?

- $G_t = R_{t+1} + \gamma R_{t+2} + \dots = R_{t+1} + \gamma G_{t+1}$
- $v^{\pi}(S_t) \coloneqq \mathbb{E}[G_t|S_t] = \mathbb{E}[R_{t+1} + \gamma G_{t+1}|S_t]$ = $\mathbb{E}[R_{t+1} + \gamma v^{\pi}(S_{t+1})|S_t].$
- Since we are interested in estimating $v^{\pi}(S_t)$, we can use $R_{t+1} + \gamma \hat{v}^{\pi}(S_{t+1})$ instead of G_t !

Temporal difference estimation (TD)

$$\hat{v}^{\pi}(S_t) \leftarrow \hat{v}^{\pi}(S_t) + \alpha \left(R_{t+1} + \gamma \hat{v}^{\pi}(S_{t+1}) - \hat{v}^{\pi}(S_t)\right)$$

Compare to MC:

$$\hat{v}^{\pi}(S_t) \leftarrow \hat{v}^{\pi}(S_t) + \alpha(G_t - \hat{v}^{\pi}(S_t))$$

• $R_{t+1} + \gamma \hat{v}^{\pi}(S_{t+1})$ is sometimes called "TD target" $R_{t+1} + \gamma \hat{v}^{\pi}(S_{t+1}) - \hat{v}^{\pi}(S_t)$ is called "TD error"

- (Vanilla) temporal difference RL
 - (0) Start with an arbitrary policy π
 - (1) Execute $A_t \leftarrow \pi(S_t)$, get R_{t+1} and S_{t+1}
 - (2) Update $\hat{v}^{\pi}(S_t)$ or $\hat{q}^{\pi}(S_t, A_t)$ with TD estimation
 - (3) Improve $\pi(S_{t+1})$ by argmaxing $\hat{v}^{\pi}(S_{t+1})$ or $\hat{q}^{\pi}(S_{t+1}, a)$
 - (4) Goto (1) until π converges
- Also needs exploration (e.g. using ε -greedy at (1))

- Pros of TD (vs MC)
 - Instant update: whenever visit a state s, TD can update $\hat{v}(s)$ immediately
- Cons of TD
 - $R_{t+1} + \gamma v^{\pi}(S_{t+1})$ is unbiased estimate of G_t . However this is unavailable and $R_{t+1} + \gamma \hat{v}^{\pi}(S_{t+1})$ is used instead, which is a *biased* estimate of G_t .

MC vs TD

- MC: unbiased, but usually has a higher variance
- TD: biased, but usually has a lower variance
- TD also utilizes Markov property but MC does not
 - Using $\hat{v}^{\pi}(S_{t+1})$ to estimate $\hat{v}^{\pi}(S_t)$ in TD requires that transition between S_t and S_{t+1} is Markov
 - This is called "bootstrapping"
 - PI/VI also bootstraps
 - $\hat{v}^{\pi}(S_{t+1})$ is NOT used to estimate $\hat{v}^{\pi}(S_t)$ in MC

Other versions of TD algorithms

Sarsa algorithm

$$\hat{q}^{\pi}(S_t, A_t) \leftarrow \hat{q}^{\pi}(S_t, A_t) + \alpha (R_{t+1} + \gamma \hat{q}^{\pi}(S_{t+1}, A_{t+1}) - \hat{q}^{\pi}(S_t, A_t))$$

- q version of TD
- Use S_t , A_t , R_{t+1} , S_{t+1} , A_{t+1} , hence the name

Other versions of TD algorithms

Q-learning algorithm

$$\hat{q}^{\pi}(S_{t}, A_{t}) \leftarrow \hat{q}^{\pi}(S_{t}, A_{t}) + \alpha \left(R_{t+1} + \gamma \max_{a} \hat{q}^{\pi}(S_{t+1}, a) - \hat{q}^{\pi}(S_{t}, A_{t}) \right)$$

- Use $\max_{a} \hat{q}^{\pi}(S_{t+1}, a)$ instead of $\hat{q}^{\pi}(S_{t+1}, A_{t+1})$
- Integrate value evaluation and policy improvement into one step
- Analogy:
 - Policy Iteration (on v) \rightarrow TD
 - Policy Iteration (on q) \rightarrow Sarsa
 - Value Iteration (on q) \rightarrow Q-learning

On-policy vs off-policy

- On-policy: estimated values \hat{q}^{π} is about π
 - TD, Sarsa, MC
- Off-policy: estimated values \hat{q}^{π} is NOT about π , but about some other (possibly better) policy
 - Q-learning
- In finite MDPs, their performance is similar
- In infinite MDPs, when function approximation is applied, off-policy algorithms can suffer from the stability issue (never converges)

Outline

- Model-based RL
- Exploration vs exploitation in RL
- Model-free RL
 - Monte-Carlo methods
 - Temporal difference learning
- Issues with terminology

Issues with terminology

- The use of "model-based" & "model-free" is sometimes confusing
 - Some researchers use "model" to refer to estimated MDPs, as in previous pages
 - "model-based" → plan with estimated MDPs
 - "model-free" → plan without estimated MDPs
 - both need interaction for collecting information
 - Some use "model" to refer to full prior (ground truth) knowledge of MDPs
 - "model-based" → plan with full knowledge of MDPs, does not need interaction
 - "model-free" → plan without full knowledge, need interaction

Issues with terminology

- In the second sense, "model-based RL" in previous pages is actually "model-free"
 - Thus making three categories:
 - "model-based RL"
 - "model-free model-based RL"
 - "model-free model-free RL" or simply "model-free RL"
- Since "model-based RL" in this sense is just solving MDPs without the need of interaction at all, some argue that it does not count as RL

Issues with terminology

 Suggestion: stick to the 1st interpretation, but call the case with full knowledge of MDP as "model-given RL"

	1 st sense	2 nd sense	Suggestion
Full knowledge available	Not really RL	Model-based RL	Model-given RL
Planning with estimated MDPs	Model-based RL	Model-free model-based RL	Model-based RL
Planning without estimated MDPs	Model-free RL	Model-free RL	Model-free RL

Issue with terminology (2)

- "Online RL" vs "offline RL"
 - Common sense:
 - "Online RL" = loop {interactions; update policy;}
 - "Offline RL" = interactions; learn a policy; utilize the policy in the application
 - After obtaining a policy, the learning process stops
 - Some researchers use "online RL" to refer to "model-free RL" and "offline RL" to "model-based RL" (1st sense)
 - This is now often treated as a mistake since model-based algorithms can be used online and model-free algorithms can be used offline