Devoir maison n°11 : Équation de Pell-Fermat

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Partie A - Premières propriétés

$$(E): x^2 - 5y^2 = 1$$

1) Symétries: Les variables x et y sont mises au carré dans (E) et donc toujours positives. Donner un nombre négatif présent dans $\mathbb Z$ est équivalent à donner son opposé qui est dans $\mathbb N$. Il suffit donc de chercher toutes les solutions (x,y) positives qui sont dans $\mathbb N^2$ pour obtenir toutes les solutions dans $\mathbb Z^2$ de (E).

2) Nombre de solutions

а) Soient $a,b\in\mathbb{N}$. L'identité de Вканмадирта est équivalente à :

$$(a^2 + 5b^2)^2 - (a^2 - 5b^2)^2 = 5(2ab)^2$$

En factorisant le côté gauche de l'équation, on trouve :

$$\begin{aligned} \left(a^2 + 5b^2\right)^2 - \left(a^2 - 5b^2\right)^2 &= \left(a^2 + a^2 + 5b^2 - 5b^2\right) \left(a^2 - a^2 + 5b^2 + 5b^2\right) \\ &= \left(2a^2\right) \left(2 \cdot 5b^2\right) \\ &= 5(2ab)^2 \end{aligned}$$

Ce qu'il fallait démontrer.

b) Soient $(x,y) \in \mathbb{N}^2$, tel que $(x,y) \neq (1,0)$ et (x,y) solution de $(E): x^2 - 5y^2 = 1$.

l'identité de Brahmagupta assure que :

$$1 = \left(a^2 + 5b^2\right) - 5(2ab)^2$$

Autrement dit, $(a^2 + 5b^2, 2ab)$ est également une solution de (E). Comme $a^2 + 5b^2 > a$ et 2ab > b, cette solution est également différente de (a,b) et de tout autre solution (x,y) où x < a, y < b. Il existe donc, en itérant ce procédé, une infinité de solutions de (E) dans \mathbb{N}^2 .

c) $(a,b) \in \mathbb{N}^2$ est solution de (E) si et seulement si $a^2 = 1 + 5b^2$. Comme $b^2 \ge 0$ et $a \ge 0$, on trouve que (a,b) est solution si et seulement si $a = \sqrt{1+5b^2}$. On pose donc $f(b) = \sqrt{1+5b^2}$.

TODO: script

d) Supposons que (a,b) et (a',b) soient solutions. Alors a=f(b)=a' et a=a'. On peut donc bien choisir un « couple minimal » comme le couple avec le b minimal.

1

Partie B - L'ensemble $\mathbb{Z}\left[\sqrt{5}\right] = \left\{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\right\}$

1) L'existence de cette écriture est assurée par la définition de $\mathbb{Z}\left[\sqrt{5}\right]$. Supposons que $x=a+b\sqrt{5}=c+d\sqrt{5}$ pour $(a,b),(c,d)\in\mathbb{Z}^2$. Si $b\neq d$, alors :

$$a + b\sqrt{5} = c + d\sqrt{5}$$

$$\iff \sqrt{5} = \frac{c - a}{b - d}$$

Ce qui contredit l'irrationalité de $\sqrt{5}$. Donc b=d, et $a+b\sqrt{5}=c+b\sqrt{5}$, d'où a=c. Donc l'écriture $x=a+b\sqrt{5}$ de chaque $x\in\mathbb{Z}\left[\sqrt{5}\right]$ est unique.

2) Posons $x = a + b\sqrt{5}, y = c + d\sqrt{5}$. Alors :

$$\overline{x+y} = \overline{(a+c) + (b+d)\sqrt{5}}$$

$$= (a+c) - (b+d)\sqrt{5}$$

$$= (a-b\sqrt{5}) + (c-d\sqrt{5})$$

$$= \overline{x} + \overline{y}$$

Et similairement :

$$\overline{xy} = \overline{(ac + 5bd) + (ad + bc)\sqrt{5}}$$

$$= ac + 5bd - (ad + bc)\sqrt{5}$$

$$\overline{x} \cdot \overline{y} = (a - b\sqrt{5}) \cdot (c - d\sqrt{5})$$

$$= (ac + 5bd) - (ad + bc)\sqrt{5}$$

D'où $\overline{xy} = \overline{x} \cdot \overline{y}$.

- **3)** Soient $x, y \in \mathbb{Z}\left[\sqrt{5}\right]$
 - a) On a les égalités suivantes : $N(xy) = xy\overline{xy} = x\overline{x}y\overline{y} = N(x)N(y)$
 - **b)** En développant pour $x = a + b\sqrt{5}$:

$$N(x) = \left(a + b\sqrt{5}\right)\left(a - b\sqrt{5}\right)$$
$$= a^2 - 5b^2$$

Ainsi x a pour norme N(x)=1 si et seulement si $(a,b)\in\mathbb{Z}^2$ est solution de l'équation (E).

- 4) Groupe des unités $\mathbb{U}=\left\{x\in\mathbb{Z}\!\left[\sqrt{5}\right],N(x)=1\right\}$
- a) Soient $x,y\in\mathbb{U}$. Alors $N(xy)=1\cdot 1=1,$ et \mathbb{U} est clos sous la multiplication héritée de $\mathbb{Z}\left[\sqrt{5}\right]$.

b) Soit $x=a+b\sqrt{5}\in\mathbb{U}.$ Comme $N(0)=N\Big(0+0\sqrt{5}\Big)=0,$ $x\neq0.$ En passant au conjugué :

$$\frac{1}{x} = \frac{N(a + b\sqrt{5})}{a + b\sqrt{5}}$$
$$= \frac{a^2 - 5b^2}{a + b\sqrt{5}}$$
$$= a - b\sqrt{5} = \overline{x}$$

Comme $N(\overline{x})=N(x)=1$, \overline{x} et donc $\frac{1}{x}\in\mathbb{U}$. Donc \mathbb{U} est un groupe sous la multiplication héritée de $\mathbb{Z}\left[\sqrt{5}\right]$ (l'associativité est héritée).

Partie C - Détermination d'un élément générateur de U.

- **1)** Posons $\mathbb{E} = \mathbb{U} \cap]1; +\infty[$. Soit $x = a + b\sqrt{5} \in \mathbb{E}$.
- a) D'une part, $x+\frac{1}{x}>0$ car x>1. D'autre part, $x+\frac{1}{x}=x+\overline{x}=2a$. Donc 2a>0 et a>0.
 - **b)** Comme x > 1, $x \frac{1}{x} > 0$. De plus $x + \frac{1}{x} = x + \overline{x} = 2b$. Donc 2b > 0 et b > 0.
- **2)** Soit $(a_0,b_0)\in\mathbb{N}^2$ la solution fondamentale de (E). Comme $b_0\neq 0, b_0>0$ et $a_0=f(b_0)>0$. De plus, comme b_0 est minimal et que f est croissante sur \mathbb{R}^+ , a_0 doit aussi être minimal. Donc $x_0=a_0+b_0\sqrt{5}$ est bien le plus petit élément de \mathbb{E} .
- **3)** a) La suite $(x_0^n)_{n \in \mathbb{N}^*}$ est strictement croissante et diverge vers $+\infty$ car $x_0 > 1$. Ainsi, pour chaque $y \in \mathbb{R}^+$, il existe un unique $n \in \mathbb{N}^*$ tel que $x_0^n \leq y < x_0^{n+1}$: en particulier, pour tout $x \in \mathbb{E}$, il existe $n \in \mathbb{N}^*$ tel que $x_0^n \leq x < x_0^{n+1}$.
 - **b)** Soit $n \in \mathbb{N}^*$ l'unique entier tel que $x_0^n \le x < x_0^{n+1}$. Supposons que $x \ne x_0$, soit

$$x_0^n < x < x_0^{n+1}$$

En divisant par $x_0^n > 0$, on trouve l'inégalité :

$$1 < \frac{x}{x_0^n} < x_0$$

Comme $\mathbb U$ est un groupe et $x,x_0\in\mathbb U,\,\frac{x}{x_0^n}\in\mathbb U.$ De plus, le côté gauche assure que $\frac{x}{x_0^n}\in\mathbb E.$ Mais le côté droit contredit la minimalité de x_0 : on doit donc avoir $x=x_0$.

4) Par la question C.1, \mathbb{E} est l'ensemble des $x=a+b\sqrt{5}\in \mathbb{U}$ pour $a,b\in \mathbb{N}^*$. Ainsi, comme on peut passer a et b au négatif en restant dans \mathbb{U} , déterminer les éléments de \mathbb{E} suffit à déterminer les éléments de \mathbb{U} , et donc ensuite les solutions dans \mathbb{Z}^2 de (E). Or tous les éléments de \mathbb{E} sont générés par les puissances de x_0 .

On peut donc prendre $x_0=TODO$, et calculer les « coordonnées » de ses puissances successives, ce qui permet de trouver toutes les solutions de (E).