

Eco-Taxi Taksi Online Ramah Lingkungan

MENGOPERASIKAN MOBIL RENDAH EMISI UNTUK PERUBAHAN IKLIM YANG LEBIH BAIK

Tim GreatData - Mentoring 4

Fairuz Dwi Najla Team Leader Universitas Diponegoro

Tim GreatData - Mentoring 4 Mentor : Anugrah Muzakki Puar

Linaili Himmatus Suroyya AnalystUniversitas Diponegoro

Azhar Ahzany Gustian VisualizationUniversitas Diponegoro

Dian Rachel Pasaribu Analyst Universitas Mulawarman

Putri Permata Sari Visualization Universitas Singaperbangsa Karawang

Project Overview

01

Business Understanding

04

Modelling

02

Data Understanding

05

Evaluation

03

Data

Preparation

06

Deployment

0

Business Understanding

Eco-Taxi adalah perusahaan yang bergerak di bidang jasa layanan taksi online. Eco-Taxi akan membuat ketentuan agar pengemudi hanya mengoperasikan beberapa merk mobil tertentu yang ramah lingkungan.

Tim kami akan memberikan rekomendasi merk mobil terbaik yang dapat dipakai.

Kami akan memberikan rekomendasi merk mobil terbaik yang memiliki gas emisi rendah dengan melakukan clustering data gas emisi CO2 dari 42 merk mobil ternama. Manfaat dari penelitian ini adalah dengan hanya dioperasikannya mobil beremisi rendah dapat meminimalisir kemungkinan kualitas udara yang semakin memburuk.

Data Understanding

Kami menggunakan **dataset** *CO2 Emissions_Canada* yang berisi catatan resmi data emisi CO2 dari berbagai mobil dengan fitur berbeda. Dataset terdiri dari 7.385 baris dan 12 kolom.

No	Fitur	Deskripsi			
1	Make	Perusahaan/merk mobil			
2	Model	Model mobil 4WD/4X4: Four-wheel drive AWD: All-wheel drive FFV: Flexible-fuel vehicle SWB: Short wheelbase LWB: Long wheelbase EWB: Extended wheelbase			
3	Vehicle_Class	Kelas kendaraan berdasarkan kegunaan, kapasitas, dan beratnya			
4	Engine_Size	Ukuran mesin yang digunakan dalam liter			
5	Cylinders	Jumlah silinder			
6	Transmission	Tipe transmisi dengan jumlah gigi A: automatic AS: automatic with select shift M: manual AM: automated manual AV: continuously variable 3-10: jumlah gigi			

No	Fitur	Deskripsi				
7	Fuel_Type	Jenis bahan bakar yang digunakan X: regular gasoline (Normal Bezin) D: diesel (Mazot) Z: premium gasoline (Super Benzin) E: ethanol (E85) N: natural gas				
8	Fuel_Consumption_City	Konsumsi bahan bakar di kota dalam liter/100 km				
9	Fuel_Consumption_Hwy	Konsumsi bahan bakar di jalan raya dalam liter/100 km				
10	Fuel_Consumption_Comb	Konsumsi bahan bakar gabungan (55% kota, 45% jalan raya) dalam L/100 km				
11	Fuel_Consumption_Comb1	Konsumsi bahan bakar gabungan di kota dan jalan raya terlihat dalam 1 miles per gallon (mpg)				
12	CO2_Emissions	Emisi karbon dioksida dari knalpot (dalam gram/km) untuk gabungan mengemudi di kota dan di jalan raya				

250 g/km

Rata-rata CO2 Emissions mobil

3 liter

Rata-rata Engine Size mobil

10 liter

Rata-rata Fuel Consumption

42 Merk

Merk terbanyak : FORD

2.053 Model

Model terbanyak : F-150 FFV 4x4 16 Class

Vehicle Class terbanyak : SUV-SMALL

Gasoline

Jenis bahan bakar yang paling banyak digunakan AS6

Jenis transmisi yang paling banyak digunakan

O3Data Preparation

- 1. Terdapat 1.103 baris teridentifkasi **duplikasi** dan harus dihapus sehingga dataset menjadi 6.282 baris dan 12 kolom.
- 2. Hanya akan digunakan variabel Make dan CO2_Emission sehingga variabel lain dihapus.
 - 3. Variabel Make diubah dari kategorikal menjadi numerikal.
 - 4. Merata-ratakan nilai CO2_Emission berdasarkan Make sehingga hanya akan didapatkan 42 baris (42 merk berbeda).

Modelling

Algoritma yang digunakan untuk clustering adalah **K-Means dan Hierarchical Clustering**. Dari kedua metode tersebut, kami akan mencari irisan cluster terbaik.

X Desain Pengujian

K-Means Clustering

Cluster

Rendah: 2
> 17 merk
Sedang: 1
> 19 merk
Tinggi: 0
> 6 merk

Hierarchical Clustering

Cluster

Rendah: 2
> 13 merk
Sedang: 1
> 23 merk
Tinggi: 0
> 6 merk

Evaluation

Scoring Model

Scoring model menggunakan Silhoutte dan didapatkan skor Silhoutte sebesar 0,5 untuk jumlah modelling 3 cluster.

Irisan Cluster Kedua Metode

Dari 42 merk mobil, didapatkan hasil irisan kedua metode:

13 merk cluster emisi rendah || 19 merk cluster emisi sedang || 6 merk cluster emisi tinggi

serta terdapat **4 merk yang tidak saling beririsan** antar kedua metode sehingga harus dikeluarkan dari kesimpulan akhir

No	Merk Mobil (Make)	Emisi CO2	Cluster K-Means	Cluster Hierarki	Hasil Cluster
1	ACURA	222	Rendah	Sedang	Berbeda sedikit
2	ALFA ROMEO	231	Rendah	Sedang	Berbeda sedikit
3	BUICK	233.75	Rendah	Sedang	Berbeda sedikit
4	NISSAN	237.38	Rendah	Sedang	Berbeda sedikit

Cluster Terbaik

Cluster 2 yang beranggotakan 13 merk mobil dengan gas emisi CO2 rendah

No	Merk Mobil	Emisi CO2	No	Merk Mobil	Emisi CO2
1	SMART	151.43	8	HYUNDAI	207.1
2	HONDA	191.26	9	VOLKSWAGEN	209.84
3	FIAT	192.29	10	KIA	213.8
4	MAZDA	192.76	11	SUBARU	218.12
5	MINI	196.57	12	TOYOTA	223.93
6	MITSUBISHI	200.1	13	VOLVO	229.95
7	SCION	200.81			

Kaitan Analisis dan SDG's

Dengan hanya mengoperasikan mobil-mobil beremisi rendah, Eco-Taxi dapat meminimalisir pencemaran udara dan mendukung keberlangsunggan SDG's poin ke 13 "Penanganan Perubahan Iklim"

Deployment

Dari hasil analisis, rekomendasi merk mobil terbaik dengan gas emisi CO2 paling rendah, yaitu

Merk SMART

Emisi CO2 = 151.43 g/km

Dengan rekomendasi tersebut perusahaan dapat membuat ketentuan pengoperasian merk mobil ramah lingkungan oleh para pengemudi.

Pemantauan Hasil Analisis

Regulasi Pemerintah Mengenai Ambang Batas Emisi CO2 Berdasarkan buletin who (2005), ambang batas CO2 di Indonesia untuk udara bersih adalah 310- 330 ppm selain itu udara tercemar adalah 350 - 700 ppm. (sumber: buletin who (2005))

Berdasarkan regulasi eropa yang berlaku mengenai target gas emisi di tahun 2020-2024, **ditargetkan kendaraan mobil mempunyai gas emisi tidak lebih dari 95 g CO2/km**. (sumber: European Commision (2020))

Appendix

Dashboard Visualisasi dan Pemantauan

http://bit.ly/DashboardEcoTaxi_GreatData

Google Collab Analisis dan Modelling

http://bit.ly/GoogleCollabEcoTaxi_GreatData

Terima Kasih

Contact Us:

GreatData4@yahoo.com (021)113 813 871 GreatData4.com

