Instituto Superior de Engenharia de Lisboa LEIM - CPS - Exame 2ª Época do 1º Semestre Lectivo $2019/2020\,$ - $04/02/2020\,$

Número		Nome									
1. Considere o sinal periódico $x(t)$ representado na figura.											
	1	0.75 m	1.5 <u>ms</u>						t		
 a) (2.0 val.) A potência do sinal x(t) é: b) (2.0 val.) Admita que a codificação PCM é realizada com uma frequência de amostragem de 8kHz e por um quantificador MIDRISE com 8 níveis de quantificação. Represente os códigos respeitantes às duas primeiras amostras. 											
	(2.0 val.) Adicionou concluir que se dete 0 bits errados	ectou:	nissor um co l bits errado		lico H(7,4) 2 bits err	· 「			sequência na das an		.], pode
d)	(2.0 val.) Para mell Código de Ha				o código igo de Re					hor solução e Repetição	
2. Considere um sistema de transmissão Manchester diferencial, com um factor de <i>roll-off</i> de 0.50 e um débito binário de 24 kbps. A amplitude máxima do sinal a ser transmitido é de 5V. Sabe-se que o canal de comunicação (AWGN), cujo ruído tem uma densidade espectral de potência de $\frac{N_0}{2} = 10^{-6}$ W/Hz, tem uma atenuação de 5 dB e a frequência máxima de utilização é de 1 MHz.											
a) (2.0 val.) A potência do sinal recebida no receptor é:											
	$(2.0 \text{ val.}) \text{ Considera}$ 1×10^{-11}	5	$\times 10^{-11}$		7×10^{-11}		11	1×10^{-1}	.1		
c)	(2.0 val.) Se quiser UNRZ		o sistema, c chester		r código li NRZ	nha para	a se u	ısar nest	tas condiç	çoes e:	

3. Considere o seguinte código:

```
def My_function(code_array, Eb=1, P=20):
       sinal_total= []
       for x in range(int(len(code_array))):
           bits = code_array[x]
           sinal= []
           if(bits==1):
                for t in range(P):
                    \label{eq:sinal-np.sqrt((2*Eb)/P)*np.sin(2*np.pi /P * t ) )} sinal= np.append(sinal, np.sqrt((2*Eb)/P)*np.sin(2*np.pi /P * t ) )
           else:
                for t in range(P):
                    sinal= np.append(sinal, np.sqrt((2*Eb)/P)*np.sin(2* np.pi /P * t +np.pi) )
           sinal_total = np.append(sinal_total, sinal)
       return sinal_total
    a) (2.0 val.) Descreva o que faz o código.
    b) (2.0 val.) Optimize o código.
4. (2.0 val.) Descreva a funcionalidade do código seguinte:
  def fun_question(code, Eb = 1, P = 800):
       A= np.sqrt(2*Eb/P)
       c= np.transpose(np.asmatrix(2.*np.asarray(code)-1))
       t= np.asmatrix(np.arange(0,P))
       fc=10/P
       fi = 10/2/P
       signal = A*np.cos(2*np.pi*(fc+c*fi) * t)
       return np.array(signal.flatten())[0]
```

Soluções

1a)
$$P = \frac{1}{T_0} \int_0^{T_0} x^2(t) dt = A^2 T_0 / 3 = 1/3 \times 10^{-3} \text{ W}$$

1b)
$$L = 8$$

 $R = log_2 8 = 3$

Intervalo de quantificação	Valores	Código
1.00		
	0.875	100
0.75		
	0.625	101
0.50		
	0.375	111
0.25		
	0.125	110
0.00		
	-0.125	010
-0.25		
	-0.375	011
-0.50		
	-0.625	001
-0.75		
	-0.875	000
-1.00		

$$\begin{array}{l} x(0) = -1 \rightarrow x_q(0) = -0.875 \rightarrow 000 \\ x(1/8000) = -0.66 \rightarrow x_q(1/8000) = -0.625 \rightarrow 001 \end{array}$$

1c) Deteta-se um bit errado

1d) R(5) melhora o BER

$$\begin{array}{ll} \text{2a)} & E_b = A^2 T_b \\ & S_T = E_b R_b = A^2 = 25 \text{ W} \\ & S_R = \frac{S_T}{10^{atn/10}} = 25/\sqrt{(10)} = 7.9W \end{array}$$

2b)
$$E_b=S_R/R_b=\frac{1}{24\times 10^3}=41.66\times 10-6$$

 $BER=erfc\sqrt{\frac{E_b}{N_o}}=erfc(4.56)=1.08\times 10-10<11\times 10-11$

- 2c) PNRZ. PNRZ e Manchester ambos melhoram o BER comparativamente com o Manchester diferencial, mas o PNRZ ocupa menos Largura de banda. O UNRZ tem pior BER.
- 3a) Realiza uma modulação BPSK
- 3b) -
 - 4. Realiza uma modulação BFSK