Category	ML Category	Prediction Outcome	Citation	Attribute Category	ML Method	PM	Improve Method
Engagement	Classification	Withdraw/ Not withdraw	Al- Shabandar et al. (2019)	Demographic , Behavioural	RF, FFNN, MLP, GBM, GLM	Accuracy, F1-SCORE, Sensitivity, Specificity, AUC	FS – chi- square RS – SMOTE HT – Random Search, Grid
Engagement	Classification	Level of Engagement	Flanagan et al. (2020)	Behaviour	SVM	Accuracy, Precision, Recall, F1- SCORE- score, AUC	Search -
			Ayouni et al. (2021)	Behavioural, Cognitive, Social	ANN, DT, SVM	Accuracy, Precision, Recall, F1-	-
			Gorgun et al. (2022)	engagement Discussion post	DT, RF, SVM	SCORE Accuracy, Precision, Recall, F1- SCORE	HT – Not specified
			Kurian (2023)	Behaviour	DT, CART, ANN	Accuracy, Precision, Recall, F1- SCORE, ROC	FS - Spearman correlation
			Qin et al. (2024)	Behaviour	SVM, CNN, RNN, LSTM	F1-SCORE	-
Engagement	Classification	Type of engagement	JY. Wu (2021)	Demographic , engagement	RF, SVM, ANN	Accuracy, Precision, Recall, F1- SCORE, specificity	-
			Altamimi et al. (2022)	Behaviour	NN, SVM, DT, RF, kNN	MAE, MedianAE, RMSE; Accuracy, Precision, Recall, F1- SCORE	-
Engagement	Regression	Difference between deadline	Imhof et al. (2022)	Behaviour	NB, kNN, RBFN, FFNN, RT, GBM, RF, SVM	F1-SCORE, MAE, G- score, positive Precisiondi cted value, TPR, Accuracy, Matthews correlation coefficient	HT - Grid search
Engagement	Clustering	Level of Engagement	Gledson et al. (2021)	Behavioural	K-Means, hierarchical clustering	Silhouette coefficient	-
			Binali et al. (2021)	Behavioural, cognitive, social, emotional engagement, metacognitive, self-regulation	K-Means	-	-
Engagement	Clustering	Level of Engagement	Quesada et al. (2022)	Behaviour, demographic	K-means, Spectral Clustering, Bisecting Kmeans, Agglomerati ve Clustering	Silhouette coefficient	-

Category	ML Category	Prediction Outcome	Citation	Attribute Category	ML Method	PM	Improve Method
Engagement	Clustering	Level of	Tamba et al.	Behaviour	KMeans	Silhouette coefficient	HT - Grid
Engagement	Clustering	Engagement Level of	(2023) Kim et al.	Behaviour	K-Means	Silhouette	search -
Engagement	Clustering	Engagement Engagement Consistency	(2023) Sher et al. (2020)	Engagement	Agglomerati ve	coefficient Silhouette coefficient	-
Engagement	Clustering& Classification	Cognitive Domain	Y. Yamasari et al. (2020)	Achievement	K-Means	Silhouette coefficient	FS – Correlation + OneR
Engagement	Clustering	Level of Engagement	Kim et al. (2023)	Behaviour	K-means, EM, farthest first	Accuracy, Precision, Recall, F- measure	-
Engagement	Clustering	Engagement Consistency	Sher et al. (2020)	Engagement	Agglomerati ve	Silhouette coefficient	-
Engagement	Clustering& Classification	Cognitive Domain	Y. Yamasari et al. (2020)	Achievement	K-Means K-means, EM, farthest	Silhouette coefficient Accuracy, Precision,	FS – Correlation + OneR
					first	Recall, F- measure	
Engagement	Clustering&	Procrastinat	Hooshyar et	Behavioural,	K-Means	-	-
	Classification	or/ Not procrastinat or	al. (2020)	cognitive engagement	SVM, Gaussian processes, DT, RF, NN, AdaBoost, NB	Accuracy, Precision, Recall, F1- SCORE	
Engagement	Clustering& Classification	Procrastinat or/ Not procrastinat	H. M. Xu et al. (2021)	Time Management (cognitive	K-Means Jrip, PART, ZeroR, NB,	- Accuracy, Precision,	-
		or		engagement)	J48	Recall, F1- SCORE, kappa	
Engagement	Clustering& Classification	Procrastinat or/ Not procrastinat or	Y. Yang et al. (2020b)	Behavioural engagement	K-Means, Spectral, Agglomerati ve	Fowlkes mallow index (FM), F- measure, element- centric	-
Engagement	Clustering& Classification	Engagement level	T. Yang et al. (2021)	Behavioural	Gaussian Mixed Model Clustering SPBi-LSTM,	Accuracy	
Engagement	Clustering& Classification	Engagement level	Benabbes et al. (2023)	Behavioural	SVM, RF, LR K-Means, agglomerativ e, birch, DBSCAN DT, LR, RF, MLP, KNN, SVM	Silhouette, Calinski- Harabasz index TNR, TPR, AUC	HT – Not specified FS - PCA
Engagement	Clustering& Classification	Engagement level	Feng and Fan (2024)	Demographic , behaviour	K-Means J48, kNN, Bayes Net, RF, SVM, Logit Boost	F-measure Kappa, Accuracy, Precision, Recall, F1- SCORE, AUC, Youden index	FS - PCA

Category	ML Category	Prediction Outcome	Citation	Attribute Category	ML Method	PM	Improve Method
Engagement	Regression/ Classification	Student attitude	Guo et al. (2020)	Demographic , scores, discussion - engagement	Linear regression, polynomial regression, LASSO, SVR	RMSE	
Engagement	Regression/ Classification	Engagement Score, Engagement Level	Alshammari (2024)	Behaviour	NB, LR, SVM, RF DT	Precision, Recall, F1- SCORE Accuracy, Sensitivity, Specificity, balance Accuracy, Kappa	VIF feature selection
Engagement and Performance	Clustering	Engagement and study performance	Bucos and Dragulescu (2020)	Behaviour, Performance	K-Means	Silhouette coefficient	-
Engagement and Performance	Clustering	Engagement and study performance	H. Chen and Ward (2022)	Behaviour, Performance	K-Means, Affinity Propagation, Spectral, Hierarchical, Density- based Spatial	Adjusted rand index	-
Engagement and Performance	Classification	Engagement and Pass/Fail	López- Zambrano et al. (2022)	Behaviour	J48	ROC, AUC	-
Engagement and Performance	Classification	Engagement and performance	Wei et al. (2023)	Score	LR, SVM, MLP, RNNs, LSTM, GRU, bi-LSTM	F1-SCORE	-
Engagement and Performance	Classification	Engagement and performance	Preethi et al. (2024)	Behaviour	kNN, NBC, SVM, LOA	Accuracy, Precision, Recall, F1- SCORE, Kappa	-
Engagement and Performance	Classification	Engagement and performance	Mary.T and Rose.P. J (2023)	Demographic , Behaviour	RF, XGBoost	Accuracy, Precision, Recall, F1- SCORE	-
Engagement and Performance	Clustering & Classification	Type of engagement and grade	Xie et al. (2021)	Behaviour, Assessment Score, Final Grade	K-Means ECOC, RF	- Accuracy	FS – Geneti Algorithm
Engagement and Performance	Clustering & Classification	Procrastinati on, grade	Y. Yang et al. (2020a)	Behaviour	K-Means SVM, Gaussian Process, DT, RF, NN, AdaBoost, NB	- Accuracy, Precision, F1-SCORE, Kappa	-
Engagement and Performance	Clustering & Regression	Engagement level and assessment mark	Orji and Vassileva (2020)	Engagement, overall score	expectation- maximizatio n RF	- Accuracy, RMSE	-

Category	ML Category	Prediction Outcome	Citation	Attribute Category	ML Method	PM	Improve Method
Engagement and Performance	Clustering & Regression	Engagement level and assessment mark	Subirats et al. (2023)	Behaviour, marks	K-Means, Hierarchical	-	
		mark			MLP Regressor	MAE	
Engagement and Performance	Clustering & Regression	Engagement level and grade	R. Nand et al. (2020)	Engagement	Self- organizing map (SOM)	-	-
					NN	MSE, R	
Engagement and Performance	Clustering & Regression	Engagement level and grade	Rodriguez et al. (2021)	Engagement	regression K-Means	-	-
		3			Simple Regression	R-squared, Residual Std Error, f-statistic	
Performance	Classification	Grade	L. Q. Chen et al. (2021)	Behaviour, demographic , academic	SVM, LR, Bayes, TBCGA- ECOC, RF,	Accuracy	FS – Geneti Algorithm
Performance	Classification	Grade	Hooshyar and Yang (2021)	Behavioural, social engagement	XGB NN, L-SVM, R-SVM, GP, DT, RF, AB, NB	Accuracy, Precision, Recall, F1- SCORE, JAccuracya	-
Performance	Classification	Grade	Altaf et al. (2019)	Behaviour, Grade	Multilayer FFNN	rd, Fbeta Accuracy, Recall, MSE	-
Performance	Classification	Grade	Predić et al. (2018)	Social engagement, score	NB, hidden NB, J48, RF	Accuracy, Precision	-
Performance	Classification	Grade	Sathe and Adamuthe (2021)	Demographic , score, behaviour	C5.0, J48, NB, RF, kNN, SVM, CART	Accuracy, Precision, Recall, TPR, FPR	FS - Pearso correlation
Performance	Classification	Grade	Ravneil Nand et al. (2021)	Demographic , Behaviour	ANN, DT, Decision Table, NB	Accuracy, TPR	RS - RUS FS - Pearso Correlation
Performance	Classification	Grade	Chandra et al. (2021)	Academic Background, score,	ANN, DT, SVM, NB, LR	Accuracy, Precision, Recall, F1- SCORE-	FS - Correlation
Performance	Classification	Grade	Nayak et al. (2023)	behaviour Demographic , Grade	J48, NB, RF, MLP	Accuracy, Precision, Recall, RMSE, ROC	FS - IG, GR, Pearson correlation
Performance	Classification	CGPA	Nachouki and Abou Naaj (2022)	Grade	RF	RMSE	-
Performance	Classification	Risk	Pongpaichet et al. (2020)	Behaviour, Grade	DT, RF, NB, stochastic Gradient Descent, LR, SVM, NN	Accuracy, Precision, Recall	RS – ROS
Performance	Classification	Risk	H. Wan et al. (2019)	Behaviour	gradient boosting, DT, TrAdaBoost	AUROC	-
Performance	Classification	Risk	Ramaswami et al. (2020)	Behaviour	RF, NB, LR, KNN	Precision, Recall, F1- SCORE	FS - Embedded
Performance	Classification	Risk	Macarini et al. (2019)	Behaviour	NB, RF, AdaBoost, MLP, KNN, DT	AUC	RS - SMOT

Category	ML Category	Prediction Outcome	Citation	Attribute Category	ML Method	PM	Improve Method
Performance	Classification	Risk	Kumar Veerasamy	Assessment performance	RF	Accuracy, AUC	-
Performance	Classification	Risk	et al. (2020) Albreiki et al. (2023)	Demographic , Score	XGB, lightGBM, SVM, ExtraTree,	AUC, Sensitivity, Specificity, Accuracy	-
Performance	Classification	Risk	HC. Chen et al. (2022)	Demographic , Interaction	RF, MLP CNN, LSTM, CNN+LSTM	Accuracy, Pr, Recall, F1-SCORE	RS - SMOTE+RUS
Performance	Classification	Risk	Shoukath (2023)	Score	SVM	Accuracy, Precision, Recall, F1- SCORE	RS - SMOTE
Performance	Classification	Risk	Bañeres et al. (2023)	Demographic , Behaviour	DT	TNR, ACCURACY , TPR, F1- SCORE.5	-
Performance	Classification	Risk	Kurniadi et al. (2023b)	Behaviour	LR	Accuracy, Precision, Recall, F1- SCORE	Lasso and ridge regularizatio
Performance	Classification	Risk	Kurniadi et al. (2023a)	Behaviour	DT, RF	Accuracy, Precision, Recall, F1- SCORE-	-
Performance	Classification	Risk	Osborne and Lang (2023)	Behaviour	LR, RF, kNN, NN, Generalized Linear Model (GLM)	Accuracy, Sensitivity, Specificity, Precisionc allision, AUC	-
Performance	Classification	Risk	Altaf et al. (2023)	Behaviour, Demographic	CNN, LSTM, CNN+LSTM	Accuracy, Precision, Recall, F1- SCORE	RS- SMOTE FS - CNN
Performance	Classification	Risk	Saidani et al. (2024)	Behaviour	RF, LR, GNB, ETC, SGD, SVM, kNN, DT, GBM	Accuracy, Precision, Recall, F1- score	FS - CNN;
Performance	Classification	Performance	Hassan et al. (2021)	Academic background, demographic , economic, behaviour	DT, GBM DT, KNN, NN, NB, SVM, AB, Bagging, RF, GR, XGB	Precision, Recall, F1- SCORE	RS - SMOTE, ROS, ADS, RUS, NM, CN ENN, TL, SMOTEENN, SMOTETL FS- 3 filter, 3 wrappers HT - grid search
Performance	Classification	Performance	Hassan et al. (2019)	Academic background, demographic , economic, behaviour	DT, ANN, SVM	Accuracy, Precision, Recall, F1- SCORE, AUC	FS – RF Regressor HT – Grid Search
Performance	Classification	Performance	Hassan et al. (2020)	Academic background, demographic , economic, behaviour	DT, RF, Bagging, Boosting, AdaBoost, Gradient Boosting, XGBoost	Accuracy, Precision, Recall, F1- SCORE	RS – SMOTE, ROS, ADASYI RUS, ENN, TI SMOTE-ENN SMOTE-TL, SMOTEBoos RUSBoost
Performance	Classification	Performance	Saleem et al. (2021)	Academic background, demographic , behaviour	DT, RF, Gradient Boosting Trees, NB, KNN	Precision, Recall, F1- SCORE	-

Category	ML Category	Prediction Outcome	Citation	Attribute Category	ML Method	PM	Improve Method
Performance	Classification	Performance	Lee and Kurniawan (2019)	Behaviour, performance, score	Linear Regression	Precision, Recall	FS – Recallursive Feature Elimination
Performance	Classification	Performance	Evangelista (2021)	Behaviour, Score	NB, DT, RF, kNN, OneRule, J48, SVM, NN, Jrip	Accuracy, Precisionn, Recall, F1- SCORE	FS - Correlation RS - SMOTE
Performance	Classification	Performance	Prasertisirik ul et al. (2022)	Demographic , behaviour, score	LR, NB, kNN, SVM, DT, RF, XGBoost	Accuracy, Precision, Recall	FS - XGBoos Importance RS - SMOTE
Performance	Classification	Performance	Gaftandzhiev a et al. (2022)	Behaviour	RF, XGB, kNN, SVM	Accuracy, Precision, Recall, F1- SCORE	RS- Single- point crossover FS - Chi- square
Performance	Classification	Performance	Smirani et al. (2022)	Behaviour	Light Gradient Boosting Machine, XGB, RF	Accuracy, Precision, Recall, F1- SCORE	-
Performance	Classification	Performance	H. Ma et al. (2023)	Behaviour	LSTM, ISVM, rbfSVM, LR, DT, RF	Kappa coefficient, Precision, Recall, F1- SCORE	FS - CNN
Performance	Classification	Performance	Sabri et al. (2023)	Demographic , Behaviour, Grade	SVM	Accuracy, Precision, Recall, F1- SCORE	-
Performance	Classification	Dropout or Not Dropout	J. Chen et al. (2019)	Behaviour	Logistic Regression, SVM, DT, back propagation NN, entropy net, LSTM, GA-ELM, DT- ELM	Accuracy, Precision, Recall, F1- SCORE-, AUC, training time	FS – IG
Performance	Classification	Dropout or Not Dropout	Zheng et al. (2020)	Behaviour	FWTS-CNN, LR, NB, RF, SVM, DT	Accuracy, Precision, Recall, F1- SCORE-	-
Performance	Classification	Dropout or Not Dropout	Yu et al. (2021)	Demographic , score, grade	LR, GBT	Accuracy, Recall, TNR	HT - Grid search
Performance	Classification	Dropout or Not Dropout	Niyogisubizo et al. (2022)	Grade	RF, XGB, GB, Feed- forward NN	Accuracy, Precision, Recall, F1- SCORE, AUC	FS - Correlation HT – Not specified
Performance	Classification	Dropout or Not Dropout	Pecuchova and Drlik (2023)	Behaviour, Score	LR, RF, DT, kNN, SVM, AdaBoost, XGBoost	Accuracy, Precision, Recall, F1- SCORE	RS - SMOTE HT - Grid Search
Performance	Classification	Dropout or Not Dropout	Park and Yoo (2021)	Demographic , behaviour	DT, RF, SVM, DNN	Accuracy, Precision, Recall, F1- score, ROC	RS - ROS
Performance	Classification	Dropout or Not Dropout	Anh et al. (2023)	Progress, Demographic	CNN, graph CNN-based model, tabular learning model, LR, SVM, light gradient boosting	Accuracy, Precision- macro, Recallall- macro, F1- SCORE- macro	-

Category	ML Category	Prediction Outcome	Citation	Attribute Category	ML Method	PM	Improve Method
Performance	Classification	Dropout or Not Dropout	Kaensar and Wongnin (2023b)	Academic Background, academic	DT, LR, MLP, NB, RF, SVM	Accuracy, Precision, Recall, F1-	SMOTE
Performance	Classification	Dropout or Not Dropout	Vaarma and Li (2024)	Demographic , academic background, Behaviour	LR, RF, SVM, LDA, kNN, NB, NN, XGB, CatBoost, lightgbm	SCORE Precision, Recall, F1- SCORE	Permutation importance feature selection
Performance	Classification	Pass or Fail	Sukhbaatar et al. (2019)	Behaviour, academic	NN	Accuracy, Precision, Sensitivity, F1-SCORE	-
Performance	Classification	Pass or Fail	Almeda et al. (2018)	Behaviour	J48	Kappa, AUC ROC	-
Performance	Classification	Pass or Fail	Leite et al. (2021)	Behaviour	LR, DT, SVM, NB, RBFSVM, GPC, MLP, Ridge, RF, AdaBoost, GBC, ET, LightGBM, CatBoost	Accuracy, F1- SCORE-, AUC	-
Performance	Classification	Pass or Fail	Raga and Raga (2019)	Engagement	NN	Accuracy, AUC-ROC	-
Performance	Classification	Pass or Fail	Y. Chen et al. (2020)	Demographic , behaviour	RF, J48, LR, Bagging	Precision, Recall, F1- SCORE	RS – SMOTI
Performance	Classification	Pass or Fail	Tomasevic et al. (2020)	Precisionvio us performance, demographic , engagement	KNN, SVM, ANN, DT, LR, NB, Bayesian Linear regression	Accuracy, RMSE	-
Performance	Classification	Pass or Fail	Helal et al. (2018)	Demographic , behaviour, academic	NB, SMO, J48, Jrip	Precision, Recall, F1- score, kappa, AUC	-
Performance	Classification	Pass or Fail	Chango et al. (2019)	Behaviour, academic	J48, RepTree, RandomTree , JRip, Nnge, PART	Accuracy, F1-SCORE, ROC	-
Performance	Classification	Pass or Fail	Bernacki et al. (2020)	Behavioural	LRn, J48, Jrip, NB	Accuracy, Precision, Recall, kappa	FS – forwar selection
Performance	Classification	Pass or Fail	Cagliero et al. (2021)	Demographic , engagement, academic	Association rules; C4.5 (DT), MLP, SVM, NB, KNN, RF	balanced Accuracy, Precision, Recall, F1- score	-
Performance	Classification	Pass or Fail	Qu et al. (2019)	Behavioural	MLP, LSTM, M-F-LSTM, NOSEP	Accuracyu racy, Recallall	-
Performance	Classification	Pass or Fail	Hasan et al. (2020)	Academic behaviour	Classification Tree, RF, KNN, SVM, LR, NB, NN, CN2 Rule Induction.	Accuracy, sensitivity, specificity, F1-score	FS – IG, GR, Gini, Geneti Algorithm, PCA
Performance	Classification	Pass or Fail	Martínez et al. (2019)	Academic, behaviour	NB, NN, DT (GBT, RF), SVM	Classificati on error, sensitivity, specificity, AUC	
Performance	Classification	Pass or Fail	Bretana et al. (2020)	Demographic , academic	SVM	Accuracy, Precision, sensitivity, specificity	FS – Varian inflation factor

Category	ML Category	Prediction Outcome	Citation	Attribute Category	ML Method	PM	Improve Method
Performance	Classification	Pass or Fail	Karalar et al. (2021)	Demographic , behaviour	gradient boosting, quadratic DA (QDA), DT, RF, ET, LR, ANN	Accuracy, Precision, sensitivity (Recallall), specificity, balanced Accuracy, F1-SCORE	FS – SelectKBest HT – Grid Search
Performance	Classification	Pass or Fail	Damuluri et al. (2019)	Behaviour	SVM, NB, KNN, LDA	Accuracy, specificity, AUC	-
Performance	Classification	Pass or Fail	Qi et al. (2018)	Behaviour	LSTM, RNN, LR, SVM	AUC	HT – grid search
Performance	Classification	Pass or Fail	Kabathova and Drlik (2021)	Interaction	LR, DT, NB, SVM, RF, NN	Accuracy, Recall, Precision, F1-score, classificati on error	HT – grid search
Performance	Classification	Pass or Fail	X. Ma et al. (2018)	Demographic , behaviour	DT, SVM, DNN	Precision, Recall, F1- SCORE	GS –UG HT – Grid Search
Performance	Classification	Pass or Fail	Hidalgo et al. (2021)	Behaviour, Performance	greedy NN, bayesian NN	Accuracy	FS – ANOVA, RFECV HT – tree- structured
Performance	Classification	Pass or Fail	Huang et al. (2021)	Behaviour	LSTM	AUC	-
Performance	Classification	Pass or Fail	Zou et al. (2020)	Behaviour	LG, NB, SVM, K-Mean, ANN	Accuracy	-
Performance	Classification	Pass or Fail	Chytas et al. (2020)	Behaviour	NN, SV, DT, kNN	Accuracy, Precision, Recall, F1- SCORE	-
Performance	Classification	Pass or Fail	Galici et al. (2023)	Behaviour	BiLSTM	Accuracyu racy	-
Performance	Classification	Pass or Fail	Deeva et al. (2022)	Behaviour	SVM, LR, RF, NB	Accuracy, AUC, top decile lift	RS - ROS
Performance	Classification	Pass or Fail	Parkavi and Karthikeyan (2023)	Behaviour	Adaptive Neuro Fuzzy Inference System, NB, kNN, SVM, DT, DA	Accuracy, Precision, Recall, F1- SCORE	FS - Factor Analysis
Performance	Classification	Pass or Fail	Hu (2022)	Behaviour	CNN	Accuracy, Sensitivity, Specificity, Precision, F1-SCORE	-
Performance	Classification	Pass or Fail	Domladovac (2021)	Behaviour	NN, gradient boosted tree, RF, LR, SVM	FNR, Recall, Accuracy	FS - Pearson Correlation HT - Grid Search
Performance	Classification	Pass or Fail	Uliyan et al. (2021)	Grade	BiLSTM, CRF	Precision, Recall, F- score	-
Performance	Classification	Pass or Fail	Alalawi et al. (2021)	Scores	RF, SVM, DT, kNN, NB	Accuracy, Precision, Recall, F1- SCORE	FS - Correlation HT - Grid Search
Performance	Classification	Pass or Fail	Cazarez (2022)	Scores	Probabilistic NN, SVM, DA	Accuracy, Re, Sensitivity, Specificity, F1-SCORE	-

Category	ML Category	Prediction Outcome	Citation	Attribute Category	ML Method	PM	Improve Method
Performance	Classification	Pass or Fail	Kustitskaya et al. (2022)	Behaviour, Score	kNN, Linear DA, Bayesian Network.	weighted F1-SCORE	-
Performance	Classification	Pass or Fail	Bertolini et al. (2021)	Demographic , behaviour, academic background	LR, elastic net regression, RF, XGBoost	AUC	FS - Correlation Attribute Evaluation, Fisher Score, IG, Relief RS - SMOTE
Performance	Classification	Pass or Fail	Karalar et al. (2021)	Demographic , Behaviour, quiz score	Gradient Boosting, Quadratic DA, DT, RF, ET, LR, ANN	Accuracy, Precision, Recall, Specificity, Balanced Accuracy, F1-SCORE	FS - Univariate statistical HT – Not specified
Performance	Classification	Pass or Fail	Bertolini et al. (2022)	Demographic , Behaviour	LR, elastic net regression, RF, XGBoost, NN	AUC	
Performance	Classification	Pass or Fail	Bertović et al. (2022)	Score	SVM, LinearSVM, MLP, RF, LR, kNN, NB, DT	AUC, Cohen Kappa, Accuracy	-
Performance	Classification	Pass or Fail	Kaensar and Wongnin (2023a)	Behaviour	NN, RF, DT, LR, Linear Regression, SVM	Accuracy, Precision, Recall, F1- SCORE	-
Performance	Classification	Pass or Fail	Han Wan et al. (2023)	Behaviour	BiLSTM	ROC-AUC, F2- measure	HT - Hill- climbing
Performance	Classification	Pass or Fail	Liz- Domínguez et al. (2023)	Academic Background, Behaviour, Academic	RF, NB, kNN	Accuracy, Precision, Recall, F1- SCORE, AUC	-
Performance	Classification	Pass or Fail	Fahd and Miah (2023)	Behaviour	DL(MLP, SM, LSTM)	Accuracy, Precision, Recall, F1- SCORE	RS - Distribution- based algorithm, SMOTE FS - Pearson coefficient
Performance	Classification	Pass or Fail	Michira et al. (2023)	Grade, Score, Behaviour	MLP, NN	Accuracy, Precision, Recall, F1- SCORE	HT - Grasshopper Optimization Algorithm
Performance	Classification	Pass or Fail	Holicza and Kiss (2023)	Demographic , Behaviour	SVM, kNN, DT, RF	Accuracy, Precision, Recall, CM, F1-SCORE, ROC_AUC	-
Performance	Classification	Pass or Fail	Al-Sulami et al. (2023)	Behaviour	RNN, LSTM, GRU, MLP	Accuracy, Recall, Precision, F1-SCORE	RS - SMOTE
Performance	Classification	Pass or Fail	Venkatachala m and Sivanraju (2023)	Academic, Demographic , Psychologica l	LSTM, DCNN, MLP, LightGBM, GBRT, RF, SVM, DNN	Accuracy, Precision, Recall, F1- SCORE, RMSE	FS - LDA
Performance	Classification	Pass or Fail	Abuzinadah et al. (2023)	Academic Background, Behaviour	Stochastic gradient descent, gradient boosting machine, RF, LR, extra tree, NB	Accuracy, Precision, Recall, F1- SCORE	FS - CNN RS - SMOTE

Category	ML Category	Prediction Outcome	Citation	Attribute Category	ML Method	PM	Improve Method
Performance	Classification	Pass or Fail	Liu et al. (2023)	Behaviour	NB, libSVM, MLP, SMO, J48, J48graft, optimized forest, RF, multi objective evolutionary fuzzy classifier, AdaBoostM1, Bagging, Voting	Accuracy, Precision, Recall, F1- SCORE, MCC, AUC	FS – pearson correlation, IG, GR, ReliefF BestFirst and greedy stepwise
Performance	Classification	Pass or Fail	Rahman et al. (2024)	Demographic , Academic	DT, kNN, NB	Accuracy, Precision, Recall, F1- SCORE, AUC	-
Performance	Classification	Pass or Fail	Vanitha S (2024)	Demographic , Behaviour	MLP-LSTM, MLP-GRU, MLP-BiGRU, LR, SVM, DT, RF, kNN, NB	Accuracy, Precision, Recall, F1- score	RS - SMOTE
Performance	Classification	Pass or Fail	Parkavi and Karthikeyan (2023)	Demographic , Behaviour	kNN, DT, NB, LDA, LDA, QDA, SVM	Accuracy, Precision, Recall, F1- SCORE	
Performance	Regression	Assignment Grade	Gkontzis et al. (2018)	Interaction	RF, Linear Regression, NN, AdaBoost, SVM, KNN	MAE	-
Performance	Regression	Final Scores	Mi (2019)	Demographic , assessment score, participation	RBF Neural Network	RMSE	-
Performance	Regression	Final Scores	Le et al. (2020)	Behaviour	Linear regression, SVR, KNN- Regression, Bayesian Ridge	MSE, MAE, R2_loss	-
Performance	Regression	Final Scores	Maraza- Quispe et al. (2021)	Behaviour, Demographic , questionnair	Simple Regression Tree	R squared, MAE, percentage of absolute	-
Performance	Regression	Final Scores	Suresh et al. (2021)	e Demographic	SVM	error MSE, RMSE, MAE, R2	-
Performance	Regression	Final Scores	Yuni Yamasari et al. (2021)	Scores	Linear Regression	MSE, RMSE, MAE, R2	FS - Lasso, Ridge, Elastic net regularization
Performance	Regression	Final Scores	Alboaneen et al. (2022)	Score, Demographic	SVM, RF, kNN, ANN, LR	MAPE	-
Performance	Regression	Final Scores	Pacheco- Mendoza et al. (2023)	Demographic , Behaviour	Multiple Linear Regression;	RMSE, MAE, Mean percentage error, MAPE	-
Performance	Regression	Final Scores	Abdullah et al. (2023)	Behaviour	RF, BR, AdaBoost, XGBoost	RMSE, MAE, R squared	-
Performance	Regression	Final Scores	Jin and Jin (2023)	Academic background, Behaviour	BR, NN	error, RMSE	FS - Pearson correlation

Category	ML Category	Prediction Outcome	Citation	Attribute Category	ML Method	PM	Improve Method
Performance	Regression	Grade	Nachouki et al. (2023)	Academic background, demographic , grade	RF	RMSE	-
Performance	Regression	Grade	Z. Xu et al. (2020)	Behaviour, grade	Variance Inflation Factor, Multiple Linear Regression	R squared, Adjusted R squared	FS - Pearson correlation
Performance	Regression	CGPA	Arifin et al. (2023)	Behaviour	Gradient Boosting Regression Tree, DL, SVM, RF, generalizec linear model, DT	RMSE, MSE, MAE	HT - Grid search
Performance	Clustering	Performance	Luo and Wang (2020)	Behaviour, scores	K-Means	Sum of squared error, Silhouette coefficient	-
Performance	Clustering and	Performance	Sheik Abdullah et	Demographic , behaviour,	K-Means	-	FS – Genetic Algorithm
	Classification		al. (2021)	psychologica l	FFNN	Accuracy, Precision, Recall, RMS error, correlation	
Performance	Clustering and Classification	Performance	Riestra- González et al. (2021)	Behaviour	K-Means CART-DT, NB, LR, MLP, SVM	- Accuracy, F1-SCORE, AUC	FS – Recallursive feature elimination HT – Randomized earchCV
Performance	Clustering and Classification	Performance	Hussain et al. (2018)	Behaviour, grades	K-Means fuzzy unordered rule induction algo (FURIA), Artificial Immune Recallognitio n System (AIRS), RF	- Accuracy	-
Performance	Clustering and Classification	At-risk	Li et al. (2020)	Behaviour, Internet Access	Ward's hierarchical SPDN, BLSTM_MA, LR, NB, RF, DT	Accuracy, Precision, Recall, F1- SCORE, AUC, training time	
Performance	Clustering and Classification	Grade	M. Wu et al. (2020)	Demographic , Score	K-Means RF, ADB, GB, XGB	- Accuracy, Precision, Recall, F1- score	FS – Random Forest
Performance	Clustering and Classification	Grade	Nuankaew and Nuankaew (2023)	Scores	K-Means NB, DT, kNN	- Accuracy, Precision, Recall, F1- SCORE	-
Performance	Clustering and Classification	Pass or Fail	Cock et al. (2023)	Demographic , Behaviour	Multi-step clustering BiLSTM	- Accuracy, FNR	SMOTE

Category	ML Category	Prediction Outcome	Citation	Attribute Category	ML Method	PM	Improve Method
Performance	Clustering and Classification	Pass or Fail	Alshabandar et al. (2020)	Demographic , academic background	K-Means CNN	- Accuracy Precision, Recall, Cohen Kappa	HT - Grid Search
Performance	Clustering and Regression	Grade	Nguyen et al. (2018)	Behaviour	k-mean, birch, agglomerativ e clustering Logistic	Silhouette Coefficient RSquare,	-
Performance	Classification and Regression	Fail/ Pass Dropout/ Not Grade	Tsiakmaki et al. (2020)	Behaviour Grade	Regression NB, RF, Bagging, PART, SMO, Ibk-5NN, Auto WEKA	MSE, MAE Accuracy, ROC area	FS – ExtraTreesCla ssifier, ExtraTreeRegr essor
Performance	Classification and Regression	Good/Bad Final Grade	Elrahman et al. (2022)	Behaviour	LR, DT, RF, kNN, SVM	Accuracy, Recall, Precision, F1-SCORE- score	FS - RF

References

- Abdullah, M., Al-Ayyoub, M., Shatnawi, F., Rawashdeh, S., & Abbott, R. (2023). Predicting students' academic performance using e-learning logs. *IAES International Journal of Artificial Intelligence*, 12(2), 831.
- Abuzinadah, N., Umer, M., Ishaq, A., Al Hejaili, A., Alsubai, S., Eshmawi, A. A., . . . Ashraf, I. (2023). Role of convolutional features and machine learning for predicting student academic performance from MOODLE data. *PLOS ONE, 18*(11), e0293061.
- Al-Shabandar, R., Hussain, A. J., Liatsis, P., & Keight, R. (2019). Detecting at-risk students with early interventions using machine learning techniques. *IEEE Access*, 7, 149464-149478. doi:10.1109/ACCESS.2019.2943351
- Al-Sulami, A., Al-Masre, M., & Al-Malki, N. (2023). Predicting At-Risk Students'
 Performance Based on LMS Activity using Deep Learning. *International Journal of Advanced Computer Science and Applications*, 14(6).
- Alalawi, K., Chiong, R., & Athauda, R. (2021). *Early Detection of Under-Performing Students Using Machine Learning Algorithms*. Paper presented at the 2021 6th International Conference on Innovative Technology in Intelligent System and Industrial Applications (CITISIA).
- Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a web-based prediction system for students' academic performance. *Data*, 7(2), 21.
- Albreiki, B., Habuza, T., & Zaki, N. (2023). Extracting topological features to identify atrisk students using machine learning and graph convolutional network models. *International Journal of Educational Technology in Higher Education*, 20(1), 23.
- Almeda, M. V., Zuech, J., Utz, C., Higgins, G., Reynolds, R., & Baker, R. S. (2018). Comparing the Factors That Predict Completion and Grades Among For-Credit and Open/MOOC Students in Online Learning. *Online Learning*, 22(1), 1-18. doi:10.24059/olj.v22i1.1060
- Alshabandar, R., Hussain, A., Keight, R., & Khan, W. (2020). *Students Performance Prediction in Online Courses Using Machine Learning Algorithms*.
- Alshammari, A. (2024). Using analytics to predict students' interactions with learning management systems in online courses. *Education and Information Technologies*, 1-26.
- Altaf, S., Asad, R., Ahmad, S., Ahmed, I., Abdollahian, M., & Zaindin, M. (2023). A Hybrid Framework of Deep Learning Techniques to Predict Online Performance of Learners during COVID-19 Pandemic. *Sustainability*, *15*(15), 11731.
- Altaf, S., Soomro, W., & Rawi, M. I. M. (2019). Student Performance Prediction using Multi-Layers Artificial Neural Networks: A Case Study on Educational Data Mining. Paper presented at the Proceedings of the 2019 3rd International Conference on Information System and Data Mining, Houston, TX, USA. https://doiorg.ezproxy.utm.my/10.1145/3325917.3325919
- Altamimi, A. M., Azzeh, M., & Albashayreh, M. (2022). Predicting students' learning styles using regression techniques. *arXiv preprint arXiv:2209.12691*.
- Anh, B. N., Giang, N. H., Hai, N. Q., Minh, T. N., Son, N. T., & Chien, B. D. (2023). *An University Student Dropout Detector Based on Academic Data.* Paper presented at the 2023 IEEE Symposium on Industrial Electronics & Applications (ISIEA).

- Arifin, M., Widowati, W., & Farikhin, F. (2023). Optimization of Hyperparameters in Machine Learning for Enhancing Predictions of Student Academic Performance. *Ingénierie des Systèmes d'Information, 28*(3).
- Ayouni, S., Hajjej, F., Maddeh, M., & Al-Otaibi, S. (2021). A new ML-based approach to enhance student engagement in online environment. *PLOS ONE, 16*(11), e0258788. doi:10.1371/journal.pone.0258788
- Bañeres, D., Rodríguez-González, M. E., Guerrero-Roldán, A.-E., & Cortadas, P. (2023). An early warning system to identify and intervene online dropout learners. *International Journal of Educational Technology in Higher Education, 20*(1), 3.
- Benabbes, K., Housni, K., Hmedna, B., Zellou, A., & El Mezouary, A. (2023). A new hybrid approach to detect and track learner's engagement in e-learning. *IEEE Access*.
- Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. *Computers and Education*, 158. doi:10.1016/j.compedu.2020.103999
- Bertolini, R., Finch, S. J., & Nehm, R. H. (2021). Enhancing data pipelines for forecasting student performance: integrating feature selection with cross-validation. *International Journal of Educational Technology in Higher Education, 18*, 1-23.
- Bertolini, R., Finch, S. J., & Nehm, R. H. (2022). Quantifying variability in predictions of student performance: Examining the impact of bootstrap resampling in data pipelines. *Computers and Education: Artificial Intelligence, 3,* 100067.
- Bertović, D., Mravak, M., Nikolov, K., & Vidović, N. (2022). *Using Moodle Test Scores to Predict Success in an Online Course.* Paper presented at the 2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM).
- Binali, T., Tsai, C.-C., & Chang, H.-Y. (2021). University students' profiles of online learning and their relation to online metacognitive regulation and internet-specific epistemic justification. *Computers & Education, 175*, 104315. doi:https://doi.org/10.1016/j.compedu.2021.104315
- Bretana, N. A., Robati, M., Rawat, A., Pandey, A., Khatri, S., Kaushal, K., . . . Abadia, R. (2020). *Predicting student success for programming courses in a fully online learning environment.*
- Bucos, M., & Dragulescu, B. (2020). *Student cluster analysis based on Moodle data and academic performance indicators.*
- Cagliero, L., Canale, L., Farinetti, L., Baralis, E., & Venuto, E. (2021). Predicting student academic performance by means of associative classification. *Applied Sciences (Switzerland)*, 11(4), 1-22. doi:10.3390/app11041420
- Cazarez, R. L. U. (2022). Accuracy comparison between statistical and computational classifiers applied for predicting student performance in online higher education. *Education and Information Technologies*, *27*(8), 11565-11590.
- Chandra, L. F., Alvaro, J., Leander, A. V., & Suhartono, D. (2021). *Predicting Online Learning Student Results Using Machine Learning*. Paper presented at the 2021 8th International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE).
- Chango, W., Cerezo, R., & Romero, C. (2019). *Predicting academic performance of university students from multi-sources data in blended learning*. Paper presented at the Proceedings of the Second International Conference on Data Science, E-Learning and Information Systems, Dubai, United Arab Emirates. https://doiorg.ezproxy.utm.my/10.1145/3368691.3368694

- Chen, H.-C., Prasetyo, E., Tseng, S.-S., Putra, K. T., Kusumawardani, S. S., & Weng, C.-E. (2022). Week-wise student performance early prediction in virtual learning environment using a deep explainable artificial intelligence. *Applied Sciences*, 12(4), 1885.
- Chen, H., & Ward, P. (2022). *Clustering Students Using Pre-Midterm Behaviour Data and Predict Their Exam Performance.* Paper presented at the Proceedings of the 15th International Conference on Educational Data Mining.
- Chen, J., Feng, J., Sun, X., Wu, N., Yang, Z., & Chen, S. (2019). MOOC Dropout Prediction Using a Hybrid Algorithm Based on Decision Tree and Extreme Learning Machine. *Mathematical Problems in Engineering, 2019*. doi:10.1155/2019/8404653
- Chen, L. Q., Wu, M. T., Pan, L. F., & Zheng, R. B. (2021). Grade Prediction in Blended Learning Using Multisource Data. *Scientific Programming*, 2021. doi:10.1155/2021/4513610
- Chen, Y., Zheng, Q., Ji, S., Tian, F., Zhu, H., & Liu, M. (2020). Identifying at-risk students based on the phased prediction model. *Knowledge and Information Systems*, 62(3), 987-1003. doi:10.1007/s10115-019-01374-x
- Chytas, K., Tsolakidis, A., N. Karanikolas, N., & Skourlas, C. (2020). *An integrated system for predicting students' academic performance in smart universities.* Paper presented at the Proceedings of the 24th Pan-Hellenic Conference on Informatics.
- Cock, J. M., Bilal, M., Davis, R., Marras, M., & Kaser, T. (2023). *Protected Attributes Tell Us Who, Behavior Tells Us How: A Comparison of Demographic and Behavioral Oversampling for Fair Student Success Modeling.* Paper presented at the LAK23: 13th International Learning Analytics and Knowledge Conference.
- Damuluri, S., Ahmadi, P., & Islam, K. (2019). *A study of several classification algorithms to predict students' learning performance*.
- Deeva, G., De Smedt, J., Saint-Pierre, C., Weber, R., & De Weerdt, J. (2022). Predicting student performance using sequence classification with time-based windows. *Expert Systems with Applications, 209*, 118182.
- Domladovac, M. (2021). Comparison of neural network with gradient boosted trees, random forest, logistic regression and SVM in predicting student achievement. Paper presented at the 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO).
- Elrahman, A. A., Soliman, T. H. A., Taloba, A. I., & Farghally, M. F. (2022). A Predictive Model for Student Performance in Classrooms Using Student Interactions With an eTextbook. *arXiv preprint arXiv:2203.03713*.
- Evangelista, E. (2021). A hybrid machine learning framework for predicting students' performance in virtual learning environment. *International Journal of Emerging Technologies in Learning (iJET)*, 16(24), 255-272.
- Fahd, K., & Miah, S. J. (2023). Effectiveness of data augmentation to predict students at risk using deep learning algorithms. *Social Network Analysis and Mining, 13*(1), 113.
- Feng, G., & Fan, M. (2024). Research on learning behavior patterns from the perspective of educational data mining: Evaluation, prediction and visualization. *Expert Systems with Applications*, 237, 121555.
- Flanagan, B., Majumdar, R., Takii, K., Ocheja, P., Chen, M. R. A., & Ogata, H. (2020). Identifying student engagement and performance from reading behaviors in open eBook assessment.

- Gaftandzhieva, S., Talukder, A., Gohain, N., Hussain, S., Theodorou, P., Salal, Y. K., & Doneva, R. (2022). Exploring online activities to predict the final grade of student. *Mathematics*, *10*(20), 3758.
- Galici, R., Käser, T., Fenu, G., & Marras, M. (2023). *How close are predictive models to teachers in detecting learners at risk?* Paper presented at the Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization.
- Gkontzis, A. F., Kotsiantis, S., Tsoni, R., & Verykios, V. S. (2018). *An effective LA approach to predict student achievement*. Paper presented at the Proceedings of the 22nd Pan-Hellenic Conference on Informatics, Athens, Greece. https://doiorg.ezproxy.utm.my/10.1145/3291533.3291551
- Gledson, A., Apaolaza, A., Barthold, S., Günther, F., Yu, H., & Vigo, M. (2021).

 Characterising Student Engagement Modes through Low-Level Activity Patterns.

 In *Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization* (pp. 88–97): Association for Computing Machinery.
- Gorgun, G., Yildirim-Erbasli, S. N., & Epp, C. D. (2022). Predicting Cognitive Engagement in Online Course Discussion Forums. *International Educational Data Mining Society*.
- Guo, C., Yan, X., & Li, Y. (2020). Prediction of Student Attitude towards Blended Learning Based on Sentiment Analysis. Paper presented at the Proceedings of the 2020 9th International Conference on Educational and Information Technology, Oxford, United Kingdom. https://doi-org.ezproxy.utm.my/10.1145/3383923.3383930
- Hasan, R., Palaniappan, S., Mahmood, S., Abbas, A., Sarker, K. U., & Sattar, M. U. (2020). Predicting student performance in higher educational institutions using video learning analytics and data mining techniques. *Applied Sciences (Switzerland)*, 10(11). doi:10.3390/app10113894
- Hassan, H., Ahmad, N. B., & Anuar, S. (2020). *Improved students' performance prediction* for multi-class imbalanced problems using hybrid and ensemble approach in educational data mining.
- Hassan, H., Ahmad, N. B., & Sallehuddin, R. (2021) An Empirical Study to Improve Multiclass Classification Using Hybrid Ensemble Approach for Students' Performance Prediction. In: *Vol. 724* (pp. 551-561).
- Hassan, H., Anuar, S., Ahmad, N. B., & Selamat, A. (2019) Improve student performance prediction using ensemble model for higher education. In: *Vol. 318* (pp. 217-230).
- Helal, S., Li, J. Y., Liu, L., Ebrahimie, E., Dawson, S., Murray, D. J., & Long, Q. (2018). Predicting academic performance by considering student heterogeneity. *Knowledge-Based Systems*, 161, 134-146. doi:10.1016/j.knosys.2018.07.042
- Hidalgo, Á. C., Ger, P. M., & Valentín, L. D. L. F. (2021). Using Meta-Learning to predict student performance in virtual learning environments. *Applied Intelligence*. doi:10.1007/s10489-021-02613-x
- Holicza, B., & Kiss, A. (2023). Predicting and comparing students' online and offline academic performance using machine learning algorithms. *Behavioral Sciences*, 13(4), 289.
- Hooshyar, D., Pedaste, M., & Yang, Y. (2020). Mining educational data to predict students' performance through procrastination behavior. *Entropy, 22*(1), 12. doi:10.3390/e22010012
- Hooshyar, D., & Yang, Y. (2021). Predicting Course Grade through Comprehensive Modelling of Students' Learning Behavioral Pattern. *Complexity*, 2021. doi:10.1155/2021/7463631

- Hu, Y.-H. (2022). Using few-shot learning materials of multiple SPOCs to develop early warning systems to detect students at risk. *International Review of Research in Open and Distributed Learning*, 23(1), 1-20.
- Huang, H., Yuan, S., He, T., & Hou, R. (2021). Use of Behavior Dynamics to Improve Early Detection of At-risk Students in Online Courses. *Mobile Networks and Applications*. doi:10.1007/s11036-021-01844-z
- Hussain, M., Hussain, S., Zhang, W., Zhu, W., Theodorou, P., & Abidi, S. M. R. (2018). Mining Moodle Data to Detect the Inactive and Low-performance Students during the Moodle Course. Paper presented at the Proceedings of the 2nd International Conference on Big Data Research, Weihai, China. https://doiorg.ezproxy.utm.my/10.1145/3291801.3291828
- Imhof, C., Comsa, I.-S., Hlosta, M., Parsaeifard, B., Moser, I., & Bergamin, P. (2022).

 Prediction of Dilatory Behavior in eLearning: A Comparison of Multiple Machine Learning Models. *IEEE Transactions on Learning Technologies*.
- Jin, J., & Jin, S. (2023). Predictions about Academic Performance and Relevant Practice Based on Multidimensional Learning and Behavioral Data. Paper presented at the 2023 5th International Workshop on Artificial Intelligence and Education (WAIE).
- Kabathova, J., & Drlik, M. (2021). Towards predicting student's dropout in university courses using different machine learning techniques. *Applied Sciences* (Switzerland), 11(7). doi:10.3390/app11073130
- Kaensar, C., & Wongnin, W. (2023a). Analysis and Prediction of Student Performance Based on Moodle Log Data using Machine Learning Techniques. *International Journal of Emerging Technologies in Learning*, 18(10), 184-203.
- Kaensar, C., & Wongnin, W. (2023b). Predicting new student performances and identifying important attributes of admission data using machine learning techniques with hyperparameter tuning. *Eurasia Journal of Mathematics, Science and Technology Education*, 19(12), em2369.
- Karalar, H., Kapucu, C., & Guruler, H. (2021). Predicting students at risk of academic failure using ensemble model during pandemic in a distance learning system. International Journal of Educational Technology in Higher Education, 18(1). doi:10.1186/s41239-021-00300-y
- Kim, S., Cho, S., Kim, J. Y., & Kim, D.-J. (2023). Statistical assessment on student engagement in asynchronous online learning using the k-means clustering algorithm. *Sustainability*, *15*(3), 2049.
- Kumar Veerasamy, A., D'Souza, D., Apiola, M. V., Laakso, M. J., & Salakoski, T. (2020). *Using* early assessment performance as early warning signs to identify at-risk students in programming courses.
- Kurian, C. (2023). Student performance prediction in e-learning system and evaluating effectiveness of online courses. Paper presented at the 2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS).
- Kurniadi, F. I., Dewi, M. A., Murad, D. F., Rabiha, S. G., & Romli, A. (2023a). *Exploring Student Performance Patterns Using Tree-Based Techniques.* Paper presented at the 2023 3rd International Conference on Smart Cities, Automation & Intelligent Computing Systems (ICON-SONICS).
- Kurniadi, F. I., Dewi, M. A., Murad, D. F., Rabiha, S. G., & Romli, A. (2023b). *An Investigation into Student Performance Prediction using Regularized Logistic Regression*. Paper presented at the 2023 IEEE 9th International Conference on Computing, Engineering and Design (ICCED).

- Kustitskaya, T. A., Kytmanov, A. A., & Noskov, M. V. (2022). Early student-at-risk detection by current learning performance and learning behavior indicators. *Cybernetics and information technologies*, *22*(1), 117-133.
- Le, M.-D., Nguyen, H.-H., Nguyen, D.-L., & Nguyen, V. A. (2020). How to Forecast the Students' Learning Outcomes Based on Factors of Interactive Activities in a Blended Learning Course. Paper presented at the Proceedings of the 2020 The 6th International Conference on Frontiers of Educational Technologies, Tokyo, Japan. https://doi-org.ezproxy.utm.my/10.1145/3404709.3404711
- Lee, N. T. S., & Kurniawan, O. (2019). *Predicting at-risk students for an introductory programming course: A pilot study*.
- Leite, D., Filho, E., De Oliveira, J. F. L., Carneiro, R. E., & Maciel, A. (2021). *Early detection of students at risk of failure from a small dataset*.
- Li, X., Zhu, X., Ji, Y., & Tang, X. (2020) Student Academic Performance Prediction Using Deep Multi-source Behavior Sequential Network. In: *Vol. 12084 LNAI* (pp. 567-579).
- Liu, Y., Huang, Z., & Wang, G. (2023). Student learning performance prediction based on online behavior: an empirical study during the COVID-19 pandemic. *PeerJ Computer Science*, *9*, e1699.
- Liz-Domínguez, M., Llamas-Nistal, M., Caeiro-Rodríguez, M., & Mikic-Fonte, F. (2023). *Early Predictions of Course Outcomes in a Flipped Classroom Context.* Paper presented at the 2023 IEEE Global Engineering Education Conference (EDUCON).
- López-Zambrano, J., Lara, J. A., & Romero, C. (2022). Improving the portability of predicting students' performance models by using ontologies. *Journal of computing in higher education*, 1-19.
- Luo, J., & Wang, T. (2020). *Analyzing Students' Behavior in Blended Learning Environment for Programming Education*. Paper presented at the Proceedings of the 2020 The 2nd World Symposium on Software Engineering, Chengdu, China. https://doiorg.ezproxy.utm.my/10.1145/3425329.3425346
- Ma, H., Zhao, W., Jiang, Z., Huang, P., Tang, W., & Zhang, H. (2023). *A Multi-level Approach to Learning Early Warning based on Cognitive Diagnosis and Learning Behaviors Analysis.* Paper presented at the 2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD).
- Ma, X., Yang, Y., & Zhou, Z. (2018). *Using Machine Learning Algorithm to Predict Student Pass Rates In Online Education*. Paper presented at the Proceedings of the 3rd International Conference on Multimedia Systems and Signal Processing, Shenzhen, China. https://doi-org.ezproxy.utm.my/10.1145/3220162.3220188
- Macarini, L. A. B., Cechinel, C., Machado, M. F. B., Ramos, V. F. C., & Munoz, R. (2019). Predicting students success in blended learning-Evaluating different interactions inside learning management systems. *Applied Sciences (Switzerland)*, 9(24). doi:10.3390/app9245523
- Maraza-Quispe, B., Damian Valderrama-Chauca, E., Henry Cari-Mogrovejo, L., & Milton Apaza-Huanca, J. (2021). *Predictive model of student academic performance from lms data based on learning analytics.* Paper presented at the Proceedings of the 13th International Conference on Education Technology and Computers.
- Martínez, J. A., Campuzano, J., Sancho-Vinuesa, T., & Valderrama, E. (2019). *Predicting student performance over time. A case study for a blended-learning engineering course.*

- Mary.T, A. C., & Rose.P. J, A. L. (2023). Ensemble Machine Learning Model for University Students' Risk Prediction and Assessment of Cognitive Learning Outcomes. *International Journal of Information and Education Technology*.
- Mi, C. (2019). Data-Driven Student Learning Performance Prediction based on RBF Neural Network. *International Journal of Performability Engineering*, 15(6), 1560-1569. doi:10.23940/jjpe.19.06.p7.15601569
- Michira, M. K., Rimiru, R. M., & Mwangi, W. R. (2023). *Improved multilayer perceptron neural networks weights and biases based on the grasshopper optimization algorithm to predict student performance on ambient learning.* Paper presented at the Proceedings of the 2023 7th international conference on machine learning and soft computing.
- Nachouki, M., & Abou Naaj, M. (2022). Predicting student performance to improve academic advising using the random forest algorithm. *International Journal of Distance Education Technologies (IJDET)*, 20(1), 1-17.
- Nachouki, M., Mohamed, E. A., Mehdi, R., & Abou Naaj, M. (2023). Student Course Grade Prediction Using the Random Forest Algorithm: Analysis of Predictors' Importance. *Trends in Neuroscience and Education*, 100214.
- Nand, R., Chand, A., & Naseem, M. (2020). *Analyzing students' online presence in undergraduate courses using Clustering*.
- Nand, R., Chand, A., & Reddy, E. (2021). *Data Mining Students' performance in a Higher Learning Environment*. Paper presented at the 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES).
- Nayak, P., Vaheed, S., Gupta, S., & Mohan, N. (2023). Predicting students' academic performance by mining the educational data through machine learning-based classification model. *Education and Information Technologies, 28*(11), 14611-14637.
- Nguyen, V. A., Nguyen, Q. B., & Nguyen, V. T. (2018). A Model to Forecast Learning Outcomes for Students in Blended Learning Courses Based On Learning Analytics. Paper presented at the Proceedings of the 2nd International Conference on E-Society, E-Education and E-Technology, Taipei, Taiwan. https://doiorg.ezproxy.utm.my/10.1145/3268808.3268827
- Niyogisubizo, J., Liao, L., Nziyumva, E., Murwanashyaka, E., & Nshimyumukiza, P. C. (2022). Predicting student's dropout in university classes using two-layer ensemble machine learning approach: A novel stacked generalization. *Computers and Education: Artificial Intelligence*, *3*, 100066.
- Nuankaew, W. S., & Nuankaew, P. (2023). Predictive Model for Clustering Learning Outcomes Affected by COVID-19 Using Ensemble Learning Techniques. *International Journal of Educational Methodology*, 9(2), 297-307.
- Orji, F., & Vassileva, J. (2020, 7-11 Sept. 2020). *Using Machine Learning to Explore the Relation Between Student Engagement and Student Performance.* Paper presented at the 2020 24th International Conference Information Visualisation (IV).
- Osborne, J. B., & Lang, A. S. (2023). Predictive Identification of At-Risk Students: Using Learning Management System Data. *Journal of Postsecondary Student Success*, 2(4), 108-126.
- Pacheco-Mendoza, S., Guevara, C., Mayorga-Albán, A., & Fernández-Escobar, J. (2023). Artificial Intelligence in Higher Education: A Predictive Model for Academic Performance. *Education Sciences*, 13(10), 990.

- Park, H. S., & Yoo, S. J. (2021). Early dropout prediction in online learning of university using machine learning. *JOIV: International Journal on Informatics Visualization*, 5(4), 347-353.
- Parkavi, R., & Karthikeyan, P. (2023). Predicting academic performance of learners with the three domains of learning data using neuro-fuzzy model and machine learning algorithms. *Journal of Engineering Research*.
- Pecuchova, J., & Drlik, M. (2023). Predicting Students at Risk of Early Dropping Out from Course Using Ensemble Classification Methods. *Procedia computer science, 225*, 3223-3232.
- Pongpaichet, S., Jankapor, S., Janchai, S., & Tongsanit, T. (2020). *Early Detection At-Risk Students using Machine Learning*.
- Prasertisirikul, P., Laohakiat, S., Trakunphutthirak, R., & Sukaphat, S. (2022). A Predictive Model for Student Academic Performance in Online Learning System. Paper presented at the 2022 International Conference on Digital Government Technology and Innovation (DGTi-CON).
- Predić, B., Dimić, G., Rančić, D., Štrbac, P., Maček, N., & Spalević, P. (2018). Improving final grade prediction accuracy in blended learning environment using voting ensembles. *Computer Applications in Engineering Education*, 26(6), 2294-2306. doi:10.1002/cae.22042
- Preethi, D., Reshma, V., Vigneash, L., Divya, P., & Sivakumar, S. (2024). Artificial Intelligence based Student Proctoring in Online Examination and Grade Prediction. *International Journal of Intelligent Systems and Applications in Engineering*, 12(5s), 469-476.
- Qi, Q., Liu, Y., Wu, F., Yan, X., & Wu, N. (2018). *Temporal models for personalized grade prediction in massive open online courses*. Paper presented at the Proceedings of ACM Turing Celebration Conference China, Shanghai, China. https://doiorg.ezproxy.utm.my/10.1145/3210713.3210730
- Qin, X., Wang, C., Yuan, Y., & Qi, R. (2024). Prediction of In-Class Performance Based on MFO-ATTENTION-LSTM. *International Journal of Computational Intelligence Systems*, *17*(1), 13.
- Qu, S., Li, K., Wu, B., Zhang, S., & Wang, Y. (2019). Predicting student achievement based on temporal learning behavior in MOOCs. *Applied Sciences (Switzerland)*, 9(24). doi:10.3390/app9245539
- Quesada, A. M., Valverde, F. L., & Rojas, S. G. (2022). Clustering students' online behavior and relation with academic performance. Paper presented at the 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET).
- Raga, R., & Raga, J. (2019). Early prediction of student performance in blended learning courses using deep neural networks.
- Rahman, N. H. A., Sulaiman, S. A., & Ramli, N. A. (2024). *Development of predictive model for students' final grades using machine learning techniques.* Paper presented at the AIP Conference Proceedings.
- Ramaswami, G. S., Susnjak, T., Mathrani, A., & Umer, R. (2020). *Predicting Students Final Academic Performance using Feature Selection Approaches*.
- Riestra-González, M., Paule-Ruíz, M. d. P., & Ortin, F. (2021). Massive LMS log data analysis for the early prediction of course-agnostic student performance. *Computers & Education*, 163, 104108.
 - doi:https://doi.org/10.1016/j.compedu.2020.104108

- Rodriguez, F., Lee, H. R., Rutherford, T., Fischer, C., Potma, E., & Warschauer, M. (2021). *Using clickstream data mining techniques to understand and support first-generation college students in an online chemistry course.* Paper presented at the LAK21: 11th International Learning Analytics and Knowledge Conference.
- Sabri, M., Zahid, M., Abd Majid, N. A., Hanawi, S. A., Talib, N. I. M., & Yatim, A. I. A. (2023). Prediction Model based on Continuous Data for Student Performance using Principal Component Analysis and Support Vector Machine. *TEM Journal*, 12(2).
- Saidani, O., Umer, M., Alshardan, A., Alturki, N., Nappi, M., & Ashraf, I. (2024). Student academic success prediction in multimedia-supported virtual learning system using ensemble learning approach. *Multimedia Tools and Applications*, 1-26.
- Saleem, F., Ullah, Z., Fakieh, B., & Kateb, F. (2021). Intelligent decision support system for predicting student's e-learning performance using ensemble machine learning. *Mathematics*, 9(17). doi:10.3390/math9172078
- Sathe, M. T., & Adamuthe, A. C. (2021). Comparative Study of Supervised Algorithms for Prediction of Students' Performance. *International Journal of Modern Education & Computer Science*, *13*(1).
- Sheik Abdullah, A., Abirami, R. M., Gitwina, A., & Varthana, C. (2021). Assessment of academic performance with the e-mental health interventions in virtual learning environment using machine learning techniques: A hybrid approach. *Journal of Engineering Education Transformations*, 34(Special Issue), 79-85. doi:10.16920/jeet/2021/v34i0/157109
- Sher, V., Hatala, M., & Gašević, D. (2020). Analyzing the consistency in within-activity learning patterns in blended learning. In *Proceedings of the Tenth International Conference on Learning Analytics & Empty Knowledge* (pp. 1–10): Association for Computing Machinery.
- Shoukath, T. (2023). Academic Performance Prediction of At-Risk Students using Machine Learning Techniques. Paper presented at the 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE).
- Smirani, L. K., Yamani, H. A., Menzli, L. J., Boulahia, J. A., & Huang, C. (2022). Using Ensemble Learning Algorithms to Predict Student Failure and Enabling Customized Educational Paths. *Sci. Program., 2022*, 15. doi:10.1155/2022/3805235
- Subirats, L., Palacios Corral, A., Pérez-Ruiz, S. 1., Fort, S., & Sacha, G. m.-M. i. (2023). Temporal analysis of academic performance in higher education before, during and after COVID-19 confinement using artificial intelligence. *PLOS ONE, 18*(2), e0282306.
- Sukhbaatar, O., Usagawa, T., & Choimaa, L. (2019). An artificial neural network based early prediction of failure-prone students in blended learning course. *International Journal of Emerging Technologies in Learning*, 14(19), 77-92. doi:10.3991/ijet.v14i19.10366
- Suresh, K., Meghana, J., & Pooja, M. (2021). *Predicting the e-learners learning style by using support vector regression technique.* Paper presented at the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS).
- Tamba, A. R., Lumbantoruan, K., Pakpahan, A., & Situmeang, S. (2023). A cluster and association analysis visualization using Moodle activity log data. *Int J Inf & Commun Technol ISSN*, 2252(8776), 8776.
- Tomasevic, N., Gvozdenovic, N., & Vranes, S. (2020). An overview and comparison of supervised data mining techniques for student exam performance prediction. *Computers and Education, 143.* doi:10.1016/j.compedu.2019.103676

- Tsiakmaki, M., Kostopoulos, G., Kotsiantis, S., & Ragos, O. (2020). Implementing AutoML in Educational Data Mining for Prediction Tasks. *Applied Sciences-Basel, 10*(1). doi:10.3390/app10010090
- Uliyan, D., Aljaloud, A. S., Alkhalil, A., Al Amer, H. S., Mohamed, M. A. E. A., & Alogali, A. F. M. (2021). Deep learning model to predict students retention using BLSTM and CRF. *IEEE Access*, *9*, 135550-135558.
- Vaarma, M., & Li, H. (2024). Predicting student dropouts with machine learning: An empirical study in Finnish higher education. *Technology in Society*, 102474.
- Vanitha S, J. (2024). Ed-Net: Multivariate Time Series Approach for Uncovering Student Learning Outcome in Higher Education Using Blended Deep Learning Technique. *International Journal of Intelligent Engineering and Systems*.
- Venkatachalam, B., & Sivanraju, K. (2023). Predicting Student Performance Using Mental Health and Linguistic Attributes with Deep Learning. *Revue d'Intelligence Artificielle*, 37(4).
- Wan, H., Li, M., Zhong, Z., & Luo, X. (2023). *Early Prediction of Student Performance with LSTM-Based Deep Neural Network*. Paper presented at the 2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC).
- Wan, H., Liu, K., Yu, Q., & Gao, X. (2019). Pedagogical Intervention Practices: Improving Learning Engagement Based on Early Prediction. *IEEE Transactions on Learning Technologies*, 12(2), 278-289. doi:10.1109/TLT.2019.2911284
- Wei, H., Li, Z., Xie, H., Hung, K., & Wang, M. (2023). Beyond Scores: A Novel Method for Predicting Student Performance Based on Rank and Positional Embedding. Paper presented at the 2023 10th International Conference on Behavioural and Social Computing (BESC).
- Wu, J.-Y. (2021). Learning analytics on structured and unstructured heterogeneous data sources: Perspectives from procrastination, help-seeking, and machine-learning defined cognitive engagement. *Computers & Education, 163,* 104066. doi:https://doi.org/10.1016/j.compedu.2020.104066
- Wu, M., Zhao, H., Yan, X., Guo, Y., & Wang, K. (2020). Student achievement analysis and prediction based on the whole learning process.
- Xie, S. T., Chen, Q., Liu, K. H., Kong, Q. Z., & Cao, X. J. (2021). Learning Behavior Analysis Using Clustering and Evolutionary Error Correcting Output Code Algorithms in Small Private Online Courses. *Scientific Programming*, 2021. doi:10.1155/2021/9977977
- Xu, H. M., Qu, J. H., Ma, X., & Ling, Y. T. (2021). *Prediction and visualization of academic procrastination in online learning.*
- Xu, Z., Yuan, H., & Liu, Q. (2020). Student performance prediction based on blended learning. *IEEE Transactions on Education*, 64(1), 66-73.
- Yamasari, Y., Nugroho, S. M. S., Yoshimoto, K., Takahashi, H., & Purnomo, M. H. (2020). Identifying dominant characteristics of students' cognitive domain on clustering-based classification. *International Journal of Intelligent Engineering and Systems*, 13(1), 167-180. doi:10.22266/ijies2020.0229.16
- Yamasari, Y., Rochmawati, N., Putra, R. E., Qoiriah, A., & Yustanti, W. (2021). *Predicting the students performance using regularization-based linear regression.* Paper presented at the 2021 Fourth International Conference on Vocational Education and Electrical Engineering (ICVEE).
- Yang, T., Zhu, X., & Ji, Y. (2021). Learning Behavior Analysis Based on Instant Message and Online Learning Platform. Paper presented at the Proceedings of the 13th International Conference on Education Technology and Computers.

- Yang, Y., Hooshyar, D., Pedaste, M., Wang, M., Huang, Y. M., & Lim, H. (2020a). Predicting course achievement of university students based on their procrastination behaviour on Moodle. *Soft Computing*, *24*(24), 18777-18793. doi:10.1007/s00500-020-05110-4
- Yang, Y., Hooshyar, D., Pedaste, M., Wang, M., Huang, Y. M., & Lim, H. (2020b). Prediction of students' procrastination behaviour through their submission behavioural pattern in online learning. *Journal of Ambient Intelligence and Humanized Computing*. doi:10.1007/s12652-020-02041-8
- Yu, R., Lee, H., & Kizilcec, R. F. (2021). *Should college dropout prediction models include protected attributes?* Paper presented at the Proceedings of the eighth ACM conference on learning@ scale.
- Zheng, Y., Gao, Z., Wang, Y., & Fu, Q. (2020). MOOC Dropout Prediction Using FWTS-CNN Model Based on Fused Feature Weighting and Time Series. *IEEE Access*, 8, 225324-225335. doi:10.1109/ACCESS.2020.3045157
- Zou, M. Y., Wang, T., Xu, H., Li, X. J., & Wu, X. (2020) Using Process Visualization and Early Warning Based on Learning Analytics to Enhance Teaching and Learning. In: Vol. 1252 CCIS (pp. 175-183).