2 Parcial II SEM 2018

TEC | Tecnológico de Costa Rica

www.tec.ac.cr

Escogencia multiple

Escriba F o V, según corresponda a Falso o Verdadero en todas las opciones. Cada pregunta vale 5 puntos. Si necesita corregir, escriba una X sobre la letra incorrecta y escriba F o V a la izquierda de la línea. La ponderación será: cinco opciones buenas equivale a 5 puntos; cuatro opciones buenas a 4 puntos; 3 opciones buenas a 3 puntos; 2 opciones buenas a 2 puntos y 1 buena a 1 punto. No es necesario que justifique su respuesta.

1. Con respecto a la estructura del BJT se afirma correctamente que:		5 Pts
V El	2	
El emisor y el colector tienen dimensiones distintas y no son intercam	abiables.	
Al aumentar el área del emisor se disminuye I_S .		**
BI BJT se puede sustituir por 2 diodos en serie.		
La capa semiconductora más angosta de todas corresponde a la Base.		
2 Con-	5	
2. Con respecto al funcionamiento del BJT se afirma correctamente que:	2	5 Pts
a conducción eléctrica ocurre debido al flujo de un único portador de	e carga.	BY AG
Para la conducción en un NPN se requiere que ambas uniones PN se p	polaricen en	inversa.
Cuando el transistor está operando en la región de corte se comporto como un interruptor abierto.	ta aproxima	damente
En un NPN la corriente de base existe debido a un flujo de huecos.		
V Durante la conducción se forma una región de agotamiento entre la ba	se y el emisc	or.
3. Del modelo de gran señal Ebers-Moll se afirma correctamente que:	3	5 Pts
Para el transistor en conducción la mayor corriente es en la terminal de	al amisor	
La relación de amplificación de corriente entre la base y el colectar está		0
V		
El transistor se puede modelar como una fuente de tensión controlada		
Existe una corriente considerable entre emisor y colector sin pasar por	la base.	
La corriente que fluye por el transistor no depende de la temperatura.	aunque si	le deper
. Para an BJT se afirma correctamente que:		5 Pts de
En el modelo de pequeña señal al incluir el efecto Early existe una resiste cero en condiciones normales.	encia ro que e	s igual
El modelo de pequeña señal se utiliza para analizar el comportamiento cambios eléctricos pequeños alrededor del punto de operación.	del transisto	r ante

www.tec.ac.cr

TEC | Tecnológico de Costa Rica

Para un PNP, para la operación en modo activo se requiere VEB > 0, VCB < 0.

En la región de saturación β no es constante.

La operación en la región de saturación de un NPN se da con VBE < 0, VBC > 0.

Problemas

Problema 1 Modelo de gran señal de BJT

12 Pts

Suponga, para el siguiente circuito (ver figura 1.1), que $I_S=2\times 10^{-17} \text{A}$, $V_A=\infty$ y $\beta=100$. Determine:

- $\sqrt{1.1}$. La tensión V_{BE1} y la corriente de colector I_{C1} definidas por R_B .
- $\sqrt{1.2}$. El máximo valor de R_C si la unión base colector debe experimentar una polarización directa menor o igual a 200mV.

Figura 1.1: Circuito para problema 1

Problema 2 Pequeña señal

11 Pts

Considere el circuito de la figura 2.1, en el que $V_{BE} \geq 0.7$ y $V_{CC} \geq V_B$. Además suponga $V_A < \infty$ (hay Efecto Early). Determine:

2.1. El circuito de pequeña señal resultante.

2.2. La resistencia equivalente de Thevenin vista hacia el emisor del transistor con respecto a tierra.

Figura 2.1: Circuito para problema 2

Problema 3 Aplicaciones con BJT

16 Pts

Considere el circuito de la figura 3.1. Asuma que $I_S=6x10^{-16}A,\,V_A=5V$ e $I_1=2mA.$ Determine:

Figura 3.1: Circuito para problema 3

 $\sqrt{3.1}$. El valor que debe tener V_B para que $V_X = 1V$.

6 Pts

- 3.2. El valor de I_S en el borde del modo activo, considerando que:
 - $V_B = 1.7V$
 - \blacksquare La fuente de corriente I_1 se sustituye por una resistencia de $3k\Omega$

Proporcione el circuito resultante.

8 Pts

 $\sqrt{3.3.}$ V_X si se apaga la fuente V_B en el circuito resultante de 3.2 e indique la zona de operación de Q_1 .

Cotambién resuelto en el cuaderno de examen.

problema 3.

$$V_{C} = V_{X} = 1_{V}$$

VEB = 0174V

