A COMPARATIVE STUDY OF BIONIC ALGORITHMS FOR TACKLING THE TRAVELING SALESMAN PROBLEM

Yujun Wang (sc223yw)

Yifei Chen (sc22yc)

Kunyu Jiang (sc22kj2)

Fengyun Wang (ml18f2w)

INTRODUCTION

P(np-hard)

The Topic we study

open-loop TSP (TSP path)

closed-loop TSP (TSP tour)

. . .

Particle Swarm Optimization (PSO)

Ant Colony Optimization (ACO) Openloop TSP Artificial Fish Swarms Algorithm (AFSA)

> Bee Colony Optimization (BCO)

OPEN-LOOP TSP

The Chinese Postman Problem

Classic TSP (closed-loop)

Open-loop TSP

Modern post station site selection problems

ANT COLONY OPTIMIZATION (ACO)

Yujun Wang (sc223yw)

ANT COLONY OPTIMIZATION (ACO)

Pierre-Paul Grassé (Wikipedia, 2023)

Marco Dorigo (Wikipedia, 2023)

ANT COLONY OPTIMIZATION (ACO) METHODOLOGY

ANT COLONY OPTIMIZATION (ACO) RESULT

Basic ACO
Best distance:
833.99

Improved ACO
Best distance:
882.90

ANT COLONY OPTIMIZATION (ACO) RESULT

Possible Improvements:

- 1) Hyperparameter fine-tuning.
- 2) Applying other extensions.

Particle Swarm Optimization Algorithm

Kunyu Jiang (sc22kj2)

Particle Swarm Optimization Algorithm

Route map

Fitness curve of PSO Algorithm

ARTIFICIAL FISH SWARM ALGORITHM

Fengyun Wang (ml18f2w)

STRUCTURE

- 1, Initialization parameters, including the population size of the fish, visible range, action step length and density;
- 2, Conduct an iteration based on the behavioral logic of fish Preying, Following, Swarming and Moving;
- 3, Check the status of the current fish-swarm, save the optimal value, average value, and the corresponding fish-swarm status of the optimal value;
- 4, Check whether the iteration termination condition is met. If it is met, output the result. Otherwise, return to step 2 and continue the iteration;

RESULTS ANALYSIS

IMPROVEMENT

implement adaptive vision methods for improve the accuracy

ARTIFICIAL BEE COLONY OPTIMIZATION

image from Pixabay under (CC0) license

QUESTIONS

REFERENCE

- [1] Wikipedia. 2023. Pierre-Paul Grassé. [Online]. [Accessed 14 May 2023]. Available from: https://en.wikipedia.org/wiki/Pierre-Paul_Grass%C3%A9
- [2] Wikipedia. 2023. Marco Dorigo. [Online]. [Accessed 14 May 2023]. Available from: https://en.wikipedia.org/wiki/Marco_Dorigo
- [3] Dorigo, M., Birattari, M. and Stutzle, T., 2006. Ant colony optimization. IEEE computational intelligence magazine, 1(4), pp.28-39.

THANK YOU