1.15 supplement

(the first attribute is the primary key)

• A table for *user*, like:

wechat_id	gender	name	tickle	region	•••	register- time
zju_zpq	male	[]	null	Dongguan, Guangdong		2010.1.1

• A table for circle of friends, like:

uid	post_time	visible_range	content	•••	favors_list	
127641	2020.1.1.00.00.00	all	test		null	

• A table for *relationship*, representing whether two users are friends, like:

friend_A_id	friend_B_id
zju_zpq	zju_lzy

• A table for *authorization*, representing the applications the account has authorized, like:

app_id	camera	phone_number	phone_id	•••	post
ddxyq	null	authorized	authorized		no

(I didn't mean to do it casually, but the question doesn't demand for listing the attributes... But I do agree that listing the attributes agrees to the demand 'describe' better. My bad.)

2.9

a

Appropriate primary keys are:

branch: branch_name

customer: customer_name

loan: loan_number

borrower: loan_number

account: account_number, customer_name

depositor: account_number, customer_name

In reality, for *customer*, I think it's hard to identify a unique person even with all three attributes. However, based on the question, I assume that each person's name is unique. Based on the assumption, *customer_name* could also be the primary key of *account* and *depositor*.

b

branch: null

customer: null

loan: branch_name referencing *branch*

borrower: loan_number referencing loan, customer_name referencing customer

account: branch_name referencing branch

depositor: account_number referencing account, customer_name referencing customer

2.13

a

 $\prod_{loan_number}(\sigma_{amount>10,000}(loan))$

b

 $\prod_{customer_name}(\sigma_{balance>6,000}(depositor\bowtie account))$

C

 $\prod_{customer_name} (\sigma_{balance>6,000 \land branch_name="\text{Uptown"}} (depositor \bowtie account))$

6.11

a

 $\prod_{person_name} (\sigma_{company_name} = \text{"First Bank Corporation"}(works))$

b

 $\prod_{person_name, city} (\sigma_{company_name} = \text{"First Bank Corporation"} (employee \bowtie works))$

```
C
```

```
\prod_{person\_name, street, city} (\sigma_{(company\_name="First Bank Corporation" \land salary > 10,000)} (employee \bowtie works))
```

d

$$\prod_{person_name}(employee\bowtie works\bowtie company)$$

e

$$\prod_{company_name}(company \div (\prod_{city}(\sigma_{company_name}\text{"Small Bank Corporation"}(company)))) \\ -\prod_{company_name}(\sigma_{company_name}\text{"Small Bank Corporation"}(company))$$

6.13

a

$$t \leftarrow _{company_name} \mathcal{G}_{\mathbf{count-distinct}(person_name)} \text{ as } sum_employee}(works)$$

Then
$$\prod_{company_name}(\mathcal{G}_{max(sum_employee)}(t)\bowtie t)$$

b

$$t \leftarrow _{company_name} \mathcal{G}_{\mathbf{sum}(salary)} \text{ as } _{payroll}(works)$$

Then
$$\prod_{company_name}(\mathcal{G}_{min(payroll)}(t)\bowtie t)$$

C

$$t \; \leftarrow \; _{company_name} \mathcal{G}_{\mathbf{avg}(salary)} \; \mathbf{as} \; _{avg_sal}(works)$$

$$fbc \leftarrow \sigma_{company_name}$$
"First Bank Corporation" (t)

Then
$$\prod_{company\ name} (t \bowtie_{t.avg_sal > fbc.avg_sal} fbc)$$