CSC 320 - Tutorial 1

- 1. Set Theory
- 2. Terminology
- 3. Proof Strategies

Set Theory

- A set is group of unique objects
- Objects in a set are called **elements** or **members**

 $x \in S$ x is an element of set S

 $x \notin S$ x is not an element of S

- The **empty set** (∅) is a set containing zero elements
- Sets can be **finite** or **infinite**
- Sets can be **countable** or **uncountable**.

 $S_1 = \{1, 13, 49\}$

finite set

countable

 $S_3 = \{x \mid x \text{ is a real number}\}$

infinite set

uncountable

- For sets A and B, we say A is a **subset** of B (A \subseteq B) if every member of A is also a member of B
- For sets A and B, we say A is a **proper subset** of B (A \subseteq B) if every member of A is also a member of B and A \neq B
- The **Power Set** (P(A)) the set containing all possible subsets of A

$$S = \{a, b, c\} \rightarrow P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$

• Union $(A \cup B)$

$$S = \{x \mid x \in A \text{ or } x \in B\}$$

• Intersection (A \cap B)

$$S = \{x \mid x \in A \text{ and } x \in B\}$$

• Complement (Ā)

$$S = \{x \mid x \in A\}$$

• Set difference (A - B)

$$S = \{x \mid x \in A \text{ and } x \notin B\}$$

• Cartesian/Cross product (A x B)

$$S = \{ (\underline{x}, \underline{y}) \mid x \in \underline{A} \text{ and } y \in \underline{B} \}$$

Terminology

• An **alphabet** (Σ) is a finite set of symbols

$$\Sigma_1 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$\Sigma_2 = \{a, b, c, ..., x, y, z\}$$

$$\Sigma_3 = \{0, 1\}$$

- A **string** is a made up of zero or more symbols
- 2 • The **empty string** denoted as ε (epsilon) contains zero symbols
- The length of a string w is denoted as |w|

$$|\varepsilon| = 0$$

• Strings can be concatenated

Given
$$w_1 = 1001 w_2 = 1100$$
 then $w = w_1 w_2 = 10011100$

A **superscript** denotes the number of occurrences of the string that precedes

$$0^4 = 0000$$
 $\#^2 = \#\#$

$$#^2 = ##$$
 $(101)^2 = 101101$

- Σ^* is the set of all possible strings over the alphabet Σ Σ^* is **infinite** and **countable** (you can try the proof using $\Sigma = \{0, 1\}$)
- The set of all languages is the set containing all subsets of Σ^* a.ka. $P(\Sigma^*)$ $P(\Sigma^*)$ is **infinite** and **uncountable**
- A language is a set of strings over some alphabet

The set of binary numbers is a language over {0, 1} Languages can be concatenated

$$L = L_1L_2 = \{ w_1w_2 \mid w_1 \in L_1 \text{ and } w_2 \in L_2 \}$$

- Given language L, L* (Kleene star) is the set of all strings obtained by concatenating zero or more strings in L
- Given language L, L⁺(closure) = LL*

Language Practice

1. What are some elements in Σ^* if $\Sigma = \{a, b\}$

- a. Is Σ^* finite or infinite?
- b. Is Σ^* countable or uncountable?
- 2. Given $L = \{0, 1, 00, 11\} \angle$
 - a. What is the Kleene star of L, L^* ?

$$W_1 = 101$$
 $W_2 = 8$ $W_1W_2 = W_1$

b. What is the Kleene plus of $\underline{L}, \underline{L}^+$? $\underline{L}^+ = \underline{L} \underline{L}^+ = \underline$

$$L = \mathcal{E}_{\xi}, 1, 0, 3$$

$$L^{+} = \mathcal{E}_{\xi}, 1, 0, 101, 1001...$$

$$L^{+} = \mathcal{E}_{\xi}, 1, 0, ...$$

$$L^{+} = \mathcal{E}_{\xi}, 1, 0, ...$$

- 3. Describe the following sets:
 - a. $S_1 = \{x \mid x = 2m \text{ where } m > 5\}$

All even numbers greater than 10

b.
$$S_2 = \{0^i 1^j \mid i = j \text{ and } i, j \in N\}$$

Sz= 801,0011,000111...3

Equal occurrences of 0 and 1 where all 0s appear herbre ANY 18.

Proof Strategies

Proof by Contradiction

- 1. Assume the the opposite of what you want to prove
- 2. Proceed with proof with your assumption from step 1
- 3. Find a contradiction

Proof by Construction

1. Create / construct the object to prove it exists

Proof by induction

- 1. Prove that some property holds for a base case
- 2. Assume the property holds for some case x
- 3. Show that if the property holds for case x then it must hold for case x+1
- 4. Show that the property holds for all cases $i \ge x$

Contrapositive proof

Given $p \rightarrow q$, instead prove $\sim q \rightarrow \sim p$ *this proof might be easier

Proof Examples

1. Prove that $\sqrt{2}$ is an irrational number by contradiction.

the exists $a,b \in \mathbb{Z}$ s.t. $\frac{a}{b} = \sqrt{2}$	
<u> </u>	
let a m where mine z and m is hely red	luco
10 = 2 either mor n or both are odd	
$\sqrt{2} \cdot \frac{M}{n} \Rightarrow M = \sqrt{2}n \Rightarrow m^2 = 2n^2 \Leftarrow$	
n m² is even	
if m² is even then m is even m is eve	N
if m is even <u>m=2k por 80m k € Z</u>	
$(2k)^2 = 2n^2 \Rightarrow 4k^2 = 2n^2 \Rightarrow 2k^2 = n^2$	
on 2 is even or is even	
we have a contradiction is our original	
assumption was incorrect	_
add and the art of the art	5

2. Prove that there exists a program that can be used to calculate the sum of two numbers (proof by construction).

```
int main() {

int num1; num2;

Std::cout << "Enter 2 numbers/n";

Std::cin >> num1 >> num2;

Std::cout << "Sum" << num1 + num2;

return 0;

3
```

- 3. Assume that numbers are coloured either red or blue. Assume that 1 is colored blue. Also assume that if x is blue then x+1 is blue.
 - a. What can we deduce about the set of natural numbers? What color are they? $\cdots \sim$

All	blue

b. What proof strategy did we employ to reach this conclusion?

Induction	Inc	luch	ion
-----------	-----	------	-----

4.	[Bonus] Prove that for all natural numbers n , $1+2+3++n = (n (n+1))/2$
	(proof by induction)

n(n+1) 1+2+...+ M BaseCase:

$$n=2$$
 $1+2=3$ $\frac{2(3)}{2}=3$

Induction Hypothesis (2)

Assume hr some int
$$l$$
 $1 < l < n$

InductionStep

what happens for (l+1)

$$\frac{1+2+3+...+l+(l+1)=l(l+1)}{2}+(l+1)\frac{2}{2}$$

$$= \frac{l(l+1) + 2(l+1)}{2}$$

Conclusion: