Relation:-

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$

R C AxB

- · Reflexive : A l R YaeA aRa
- · Symmetric : aRb ⇒ bRa ∀a, b ∈ A
- · Transitive : a Rb & bRc = a Rc Va, b, c & A

· Equivalence: - symmetric, transitive and reflexive.

$$a = b$$
, $a = b \pmod{n}$

$$n \mid a - b$$

Partition :-

A partition of a set is a collection of non-empty disjoint subsets of S whose union is S.

Statement: The equivalence classes of an equivalence rel on a set S constitute a partition of S.

Conversely, if there is a partition P of S, there is an equivalence relⁿ on S whose equivalence classes are elements of P.

Proof: - Define an equivalence relation R on S.
for a \(\mathcal{E} \)

$$aRa \Rightarrow a \in [a]$$

(laim: - [a], [b] distinct equivalence classes then [a] n[b] = \$\phi\$

let $C \in [a] \cap [b]$

cRa, cRb

[b] = [b]

$$\rightarrow \leftarrow$$

Converse Proof:
$$\{A_i\}$$
 of set S

$$A_i \cap A_j = \emptyset , i \neq j$$

$$\bigcup A_i = S$$

$$\phi: A \longrightarrow B$$

a function is a mapping from set A to B such that every element of A maps to exactly one element of set B.

$$\phi: A \longrightarrow B$$
 is one one if $\phi(a_1) = \phi(a_2) = a_1 = a_2$

contrapositive: $-a_1 \neq a_2 = \phi(a_1) \neq \phi(a_2)$

Onto function;

 $\phi: A \longrightarrow B$ is onto, if each element of B has atleas+ one pre-image in A.

Ex:- Domain Codomain

1) Z one-one

 $\chi \mapsto \chi^3$

R IR bijective (both)

Composition of Function:

 $\Phi: A \longrightarrow B$ $\Psi: B \longrightarrow C$ $\gamma: C \longrightarrow D$

 $\Psi \times \varphi : A \longrightarrow C$

 $\Psi. \Phi(a) = \Psi(\Phi(a))$

 $\gamma \cdot (\Psi, \phi) = (\gamma, \Psi). \phi$

Inverse :-

if $p:A \rightarrow B$ is 1-1 onto

then $\exists \ \Psi \mathcal{B} \to A$

 $\phi. \Psi = I_{\mathcal{B}}$

 $\Psi. \phi = I_A$

 $\Phi^{-1} = \Psi$

Theorem: If $f: A \rightarrow B$ and $g: B \rightarrow A$ $g \circ f : A \to A$

> if gof = In, then fix one-one & g is onto if fog = IB, then g is one-one & f is onto

Theorems :-

```
(1) f(AUB) = f(A) U f(B)
```

②
$$f(A \cap B) \subseteq f(A) \cap f(B)$$
 equality holds if f is one-one

(3)
$$f^{-1}(PUQ) = f^{-1}(P)Uf^{-1}(Q)$$

$$(9) f^{-1}(P \cap Q) = f^{-1}(P) \cap f^{-1}(Q)$$

Proof:- ① let
$$y \in f(A \cup B)$$

 $\exists x \in A \cup B$
 $f(x) = y$
 $x \in A$ or $x \in B$
 $f(x) \in f(A)$ or $f(x) \in f(B)$
 $\therefore y \in f(A) \cup f(B)$
 $\therefore f(A \cup B) \subset f(A) \cup f(B)$

Similarily others can be proved

Principle of Mathematical Induction:

S be a set of integers containing a, Suppose S has a property that whenever some integer $n \ge a$ belongs to S then integer n+1 also belongs to S.

Then S contains every Integer greater than or equal to a.

De Morgan's Law:

(AUB)' = A' NB'

(ANB)' = A'UB'

An(Buc) = (AnB) v (Anc)

AU(BNC) = (AUB) N (AUC)

A'U(BUC)' = (ADB)'D(ADC)'