Universitatea Tehnică din Cluj-Napoca Facultatea de Automatică și Calculatoare Specializarea Automatică și Informatică Aplicată

Identificarea Sistemelor
Anul universitar 2019-2020, Semestrul I

MODELAREA UNEI FUNCȚII NECUNOSCUTE RAPORT

Studenți: Isărescu Mihai

Marteniuc Giorgiana Simona

Vlassa Alexandra Anamaria

Îndrumător:

Prof. dr. ing. Buşoniu Lucian

Grupa: 30135

CUPRINS

Introducere	3
Elemente de teorie	3
Analiză și implementare	3
Rezultate obtinute	5

Introducere

În cadrul proiectului, am creat un model matematic folosind metoda regresiei liniare cu funcții radiale de bază (RBF-uri) pentru aproximarea unei funcții necunoscute.

Alegerea funcțiilor RBF s-a făcut pe baza propagării erorii în sistem; față de un sistem cu regresori polinomiali, eroare se propagă local în jurul regresorului gaussian și nu global precum parabola unui polinom.

Elemente de teorie

Pornind de la formula generală a regresiei liniare $Y = \Phi\theta$, unde Y reprezintă intrarea sistemului, φ regresorii și θ coeficienții regresorilor, iar ecuația în formă matriceală este:

$$\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(N) \end{bmatrix} = \begin{bmatrix} \varphi_1(1) & \varphi_2(1) & \dots & \varphi_n(1) \\ \varphi_1(2) & \varphi_2(2) & \dots & \varphi_n(2) \\ \dots & \dots & \dots & \dots \\ \varphi_1(N) & \varphi_2(N) & \dots & \varphi_n(N) \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \dots \\ \theta_n \end{bmatrix}$$

$$e^{-\sum_{j=1}^2 \left(\frac{x_j - c_{ij}}{b_{ij}}\right)^2}, \text{ am creat}$$

Am ales $\varphi_i = e^{2j-1 \cdot b_{ij}}$, am cres o grilă C care conține R^2 centre, iar parametrii b_{ij} aleși au valoare egală cu distanța dintre două centre din C.

Pentru calculul valorii coeficienților θ am folosit formula $\theta = (\phi^T \phi)^{-1} \phi^T Y$.

Odată aflat θ , putem aproxima alte ieșiri folosind formula $g(x) = \sum_{i=1}^{R^2} \phi_i(x)\theta_i$.

Având modelul aproximat, am calculat eroarea medie pătratică $MSE = \frac{1}{N}\sum (y-g)^2$, iar în funcție de valorile obținute reglăm parametrii R și b pentru a obține MSE cât mai mic.

Analiză și implementare

Pentru simularea comportamentului sistemului am avut ca punct de plecare o colecție de date de intrare-ieșire separate în două seturi, de identificare și respectiv validare.

Am început prin a ne genera grila necesară, după care am trasformat intrarea X (de forma a doi vectori x_1, x_2) într-un format de un singur vector coloană care are toate combinațiile x_1, x_2 . Matricea ϕ a fost generată folosind formula menționată anterior. Ieșirea Y a fost redimensiontă dintr-o matrice pătratică, într-un vector coloană. Coeficienții regresorilor φ_i i-am memorat în vectorul θ , care a fost calculat folosind formula $\theta = (\phi^T \phi)^{-1} \phi^T Y$. Având coeficienții am reușit să prezicem ieșirea folosind modelul matematic obținut.

Pentru a ajusta performanțele modelului am testat mai multe valori pentru dimensiunea grilei și am ales valoarea (R=11) cu cea mai mică eroare obținută pe datele de validare.

id.Y id.Y ×														
10	1.1	2	3	4	5	6	7	8	9	10	11	12	13	14
Н	-768,2626	-787.1456	-720.8403	-721,9998	-682,1208	-591.0762	-608.4042	-602,4038	-520.9050	-517.7271	-492,6568	-443,9128	-407,4030	-401.653
H	-693.1778	-635,9334	-645.1102	-564,6904	-506.7376	-503.1682	-485.0917	-453,3384	-437.6524	-412,3322	-385,4434	-368,2605	-344.6227	-250.135
	-541.6704	-515,2504	-494,5702	-450.1221	-479,4382	-449.9773	-380.6768	-365,3438	-342.5446	-326.0677	-288.3413	-251.5070	-278.0803	-239.88
H	-435.4395	-395.8840	-412.8448	-375.1239	-366,5797	-348.4245	-316.7337	-293,9372	-291.5480	-264.1457	-215,2719	-163.8042	-177.1856	-187.566
H	-350.0979	-347,5866	-350,4242	-275,8892	-284,7605	-256.1643	-224.8749	-246.1532	-190.3588	-148,4428	-150,4498	-158,4969	-109.1472	-154,119
	-292.1378	-281,8169	-247,7730	-246.6506	-199.8243	-226.3917	-174.7487	-158.8367	-149.6293	-122,6311	-156,4199	-124,1954	-124,5747	-87,316
	-201.8730	-186.2816	-201.0018	-167.3491	-193.0120	-117.6006	-121.1644	-124.3508	-146.1439	-105.3331	-116.5452	-80.4985	-43.4970	-93.757
	-138.7196	-180.1334	-151.6583	-156.2929	-75.5620	-104.4501	-92.8808	-90.3934	-72.5915	-61.3941	-73.8873	-59.5927	-30.3433	-18.803
	-168.1609	-141.6906	-82.5788	-86.3301	-118.0980	-66.2324	-101.4252	-75.2695	-32.4068	-16.6385	-12.4798	-15.3864	-32.3592	-44.425
	-110.2287	-74.9613	-60.8792	-78.8512	-93.2843	-61.5647	-78.2887	-37.7359	-4.8079	-4.7284	-22.6015	-12.5217	-23.0597	9.903
	-81.0519	-66.9213	-41.3299	-68.2062	-58.9467	-55.4187	-34.1354	-33.8441	16.7719	4.6413	12.9815	-0.7826	-15.3952	9.451
	-23.6302	-100.5316	-43.8939	-33.6603	-5.7232	-32.7707	-46.5888	-41.3438	-9.0448	10.1433	-40.3224	-7.1003	7.1903	-20.518
	-22.2770	-41.1710	1.2750	-37.4865	-34.8898	-50.2896	-24.4802	-2.6870	-1.0929	20.8745	3.2305	-27.9672	-12.3168	-0.496
	-46.6827	-5.8140	-22.6326	-33.6104	4.2099	0.2879	20.8988	-14.1373	7.3231	-3.7146	32.2532	40.1215	41.9163	12.266
	-37.4797	-38.9340	-2.7667	27.8642	-10.0066	-9.1384	-18.1789	23.1840	38.5545	-15.7307	7.6075	33.6628	-15.4369	-28.667
	-24.9601	7.1549	5.3261	24.5360	2.7843	20.2074	-7.7525	20.2554	3.2165	0.6796	36.3352	13.1747	-21.6910	-29.760
	-7.1533	-14.3585	-6.0453	-3.7262	3.6368	7.0696	10.3810	-10.6742	-29.9809	2.5917	-4.4966	3.9740	5.7657	-42.108
	15.7852	18.2377	24.8064	6.3420	7.7307	2.5069	1.0747	-11.5086	10.4503	28.0388	17.3015	-26.1358	-14.6455	-34.656
	-16.2789	14.5828	0.1352	-9.6627	38.5324	-13.1315	-22.7295	10.8464	-2.8509	18.1792	10.3661	-33.3701	-1.4633	-17.951
	18.9424	-14.1856	3,7650	5,7613	-20.9063	-25,2642	-8.1801	-2,8072	6,7846	-6,3998	-30,4704	-18.3319	-30,9719	-12.901

Fig. 1. Y în formă de matrice

Fig. 2. Y în formă de vector coloană

Fig. 3. Teste pentru determinarea celui mai bun R (dimensiunea grilei)

Rezultate obținute

Se poate observa după erorile medii pătratice și după formele graficelor că modelul aproximează funcția necunoscută foarte bine.

Anexă

În cele ce urmează este atașat codul principal din MATLAB versiunea 2019a.

```
clear
load('proj fit 13.mat')
R = 11;
x1 \min = id.X\{1,1\}(1);
x1 max = id.X\{1,1\} (end);
x2 min = id.X\{2,1\}(1);
x2_{max} = id.X\{2,1\} (end);
grid x1 = linspace(x1 min, x1 max, R);
grid x2 = linspace(x2 min, x2 max, R);
b1 = abs(x1 max - x1 min) / (R-1);
b2 = abs(x2 max - x2 min) / (R-1);
X = [];
for i = id.X\{1,1\}
   for j = id.X\{2,1\}
       elem.x1 = i;
       elem.x2 = j;
       X = [X, elem];
   end
end
C = [];
for i = grid x1
   for j = \overline{grid} \times 2
      elem.x1 = i;
      elem.x2 = j;
      C = [C, elem];
   end
end
PHI = [];
for i = 1:length(C)
    PHI = [PHI, phi(X,C,i,b1,b2)'];
Y = Make Y(id);
theta = inv(PHI' * PHI) * PHI' * Y;
YhatMat = g(X, theta, C, b1, b2);
close all
colormap autumn
ax1 = subplot(2,1,1);
surf(id.X{1,1},id.X{2,1},id.Y', 'FaceColor', 'interp', 'EdgeAlpha', 0.7)
title('Sistemul cunoscut bazat pe datele de identificare');
colorbar
```

```
ax2 = subplot(2,1,2);
surf(id.X{1,1},id.X{2,1},YhatMat', 'FaceColor', 'interp', 'EdgeAlpha',
0.7);
colorbar
title(['Sistemul identificat pe datele de identificare', newline, 'MSE:
', num2str(mse(id.Y', YhatMat'))]);
xlabel('x1');
ylabel('x2');
zlabel('Y');
hlink = linkprop([ax1,ax2],{'CameraPosition','CameraUpVector'});
rotate3d on
addprop(hlink,'PlotBoxAspectRatio')
figure
colormap autumn
ax3 = subplot(2,1,1);
surf(val.X{1,1},val.X{2,1},val.Y', 'FaceColor', 'interp', 'EdgeAlpha', 0.5)
colorbar
Xval = [];
for i = val.X{1,1}
   for j = val.X\{2,1\}
       elem.x1 = i;
       elem.x2 = j;
       Xval = [Xval, elem];
   end
end
YhatMatVal = g(Xval, theta, C, b1, b2);
title('Sistemul necunoscut bazat pe datele de validare');
ax4 = subplot(2,1,2);
surf(val.X{1,1},val.X{2,1},YhatMatVal', 'FaceColor', 'interp', 'EdgeAlpha',
0.5)
colorbar
title(['Sistemul identificat pe datele de validare', newline, 'MSE:
', num2str(mse(val.Y', YhatMatVal'))]);
xlabel('x1');
ylabel('x2');
zlabel('Y');
hlink2 = linkprop([ax3,ax4],{'CameraPosition','CameraUpVector'});
rotate3d on
addprop(hlink2,'PlotBoxAspectRatio')
```