1. Computação Evolutiva

Prof. Renato Tinós

Programa de Pós-Graduação Em Computação Aplicada Depto. de Computação e Matemática (FFCLRP/USP)

1.2. Algoritmos Genéticos

- 1.2.1. Introdução
- 1.2.2. Elementos de Algoritmos Genéticos (AGs)
- 1.2.3. Projeto de AGs
- 1.2.4. Exemplos
- 1.2.5. Implementação Computacional

1.2.1. Introdução

Início

- Desenvolvido inicialmente por John Holland
- Uso em problemas de otimização: Keneth DeJong
- Popularizado por David Goldberg
- Aplicado tipicamente em problemas discretos
 - Foi originalmente desenvolvido para lidar com cromossomos binários

1.2.1. Introdução

1.2.1. Introdução

Algoritmo Genético Básico

Início

inicialize a população avalie a população inicial

repita

se critério de convergência for satisfeito interrompa

fim se

selecione indivíduos para a nova população aplique mutação e cruzamento nos indivíduos

selecionados

avalie os indivíduos da nova população

fim repita

Fim

Elementos

- População
- Codificação
- Função de avaliação
- Reprodução

- População
 - Formada por indivíduos
 - Possíveis soluções para um dado problema
 - Codificados em cromossomos
 - strings (vetores)
 - Apesar de algumas implementações considerarem indivíduos com mais de um cromossomo, o AG padrão considera que um indivíduo é formado por apenas um cromossomo
 - Cada elemento do cromossomo do AG é chamado de gene
 - Os genes podem assumir valores ou símbolos (alelos)

- População
 - Existe geralmente um número fixo de indivíduos em uma população
 - Em cada geração, a população velha é substituída por uma população nova (com novos indivíduos)

- População
 - AG Padrão usa o modelo geracional
 - Cada indivíduo sobrevive por exatamente uma geração
 - Toda a população de pais é substituída pelos filhos
 - No outro extremo, está o modelo estacionário (Steadystate) no qual um filho é gerado por geração para substituir um pai

```
Algoritmo Evolutivo Geracional
Início
         t ← 1
         inicializePopulacao( P, )
         avaliePopulacao(P, )
         enquanto (criterioConvergencia == 0)
                   \mathbf{P}_{t+1} \leftarrow \text{selecao}(\mathbf{P}_t)
                   \mathbf{P}_{t+1} \leftarrow \text{transformePopulacao}(\mathbf{P}_{t+1})
                  avaliePopulacao(\mathbf{P}_{t+1})
                  t \leftarrow t + 1
         fim enquanto
```

```
Algoritmo Evolutivo Estacionário
Início
         t ← 1
         inicializePopulacao(P, )
         avaliePopulacao( P, )
         enquanto (criterioConvergencia == 0)
                  \mathbf{Q}_t \leftarrow \text{transformePopulacao}(\mathbf{P}_t)
                  avaliePopulacao(Q,)
                  \mathbf{P}_{t+1} \leftarrow \text{selecao}(\mathbf{P}_t \cup \mathbf{Q}_t)
                  t \leftarrow t + 1
         fim enquanto
```

- Codificação
 - Cada indivíduo é codificado por um conjunto de genes que definem as características do indivíduo
 - Genótipo
 - Conjunto de parâmetros (genes) que define um indivíduo
 - Fenótipo
 - Produto da interação de todos os genes

- Codificação
 - Genes são combinados para formar strings ou vetores
 - Exemplo:

$$x_i = [21803]^T$$

- Codificação
 - Genes podem ser representados por:
 - Números Binários (0;1)
 - São tradicionalmente usados
 - Exemplo: $x_i = [010111]^T$
 - Podem ser utilizados para codificar outras representações
 - Inteiros. Exemplo: x_i = [0 1 0] ^T pode codificar o número inteiro 2
 - Reais
 - Caracteres: BCD, ASCII, ...
 - Etc...

- Codificação
 - Genes podem ser representados por:
 - Números Inteiros (...; -1; 0; 1; 2; ...)
 - Exemplo: $x_i = [-1 \ 10 \ 2 \ -3 \ -98 \ 1]^T$
 - Números Reais
 - Exemplo: $x_i = [-1,23 \ 10,65 \ 2,99]^T$
 - Caracteres (A; B; ...)
 - Exemplo: $x_i = [teste]^T$
 - Outros
 - combinação de outras representações
 - números complexos
 - etc...

Codificação

- Permutação
 - Tarefas no qual uma sequência de objetos aparece em uma certa ordem
 - Se existe n variáveis, então a representação é uma lista de n inteiros, cada qual aparecendo apenas uma vez

- Codificação
 - Permutação
 - Exemplo: Problema do Caixeiro Viajante
 - Nomeie as cidades como1, 2, ..., n
 - Um tour é uma permutação
 - Ex.: para *n*=4 [1,2,3,4], [3,4,2,1]
 - Espaço de busca é muito grande
 - Ex.: para 30 cidades existe 30!
 ≈ 10³² possíveis tours

- Função de Avaliação
 - Também conhecida como Função de Avaliação,
 Função de Aptidão ou Função de Fitness
 - Mede o grau de aptidão (fitness) da solução (indivíduo)
 - É aplicada ao fenótipo do indivíduo
 - O genótipo deve ser decodificado para que a aptidão do indivíduo seja calculada. Exemplo
 - genótipo: $\mathbf{x}_i = [0 \ 1 \ 0 \ 1]^T$
 - fenótipo: $z_i = 0x2^3 + 1x2^2 + 0x2^1 + 1x2^0 = 5$
 - aptidão: $f(z_i) = 1/(1 + z_i^2) = 0.0385$

- Função de Avaliação
 - Cada problema tem sua própria função de avaliação
 - Dada de acordo com os requisitos para a solução do problema
 - Exemplo: projeto de ponte
 - Menor custo
 - Menor tempo de construção
 - Maior capacidade de carga

- Função de Avaliação
 - Muitas vezes, a função de avaliação não é conhecida (ou é difícil de ser computada com precisão)
 - Deve ser possível, no entanto, obter a aptidão do indivíduo através do seu genótipo
 - A aptidão de um indivíduo é importantíssima no processo de otimização
 - Define quais indivíduos serão selecionados para se reproduzirem, gerando a nova população

- Seleção
 - Existem diversos métodos para a seleção de indivíduos para a fase de reprodução
 - Exemplos:
 - Elitismo
 - Método da Roleta
 - Rank Selection
 - Seleção porTorneio

Seleção

Elitismo

- Indivíduos com maior aptidão são automaticamente selecionados
- Utilizado para que os melhores indivíduos não desapareçam do processo de otimização
- Geralmente, além de selecionar os melhores indivíduos, evita que estes sofram modificações pelos operadores genéticos

- Seleção
 - Método da Roleta
 - A seleção natural
 - Trabalha com probabilidades
 - As vezes, um indivíduo muito bom não sobrevive porque algum processo externo o afetou
 - Escolhe preferencialmente, embora não exclusivamente, indivíduos com maior aptidão
 - Indivíduos mais aptos têm mais chances de serem reproduzidos
 - As vezes, um indivíduo muito bom pode ser filho do cruzamento de um indivíduo bom com um ruim

Seleção

- Método da Roleta
 - Indivíduos com maior aptidão tem mais chances de serem reproduzidos
 - A probabilidade de um indivíduo ser escolhido para se reproduzir é dada por sua aptidão relativa
 - Aptidão do indivíduo normalizada pela soma das aptidões de todos os indivíduos da população

$$f_r(z_i) = \frac{f(z_i)}{\sum_{i=1}^{N} f(z_i)}$$

Método da Roleta baseado em Aptidão Relativa

\mathbf{x}_{i}	f (z _i)	$f_r(z_i)$	X_5 X_1
x ₁ 10110	2,23	0,14	X ₄
x ₂ 11000	7,27	0,47	
x ₃ 11110	1,05	0,07	X ₃ X ₂
x ₄ 01001	3,35	0,21	
x ₅ 00110	1,69	0,11	

Seleção

- Método da Roleta
 - Indivíduos são escolhidos pelo método da roleta até que o número máximo de indivíduos permitido em uma população seja alcançado
 - O nível de diversidade da população é maior quando o método da roleta é empregado (em relação ao elitismo)
 - No entanto, mesmo no método da roleta, o nível de diversidade da população decresce no decorrer do processo de otimização

Seleção

Rank Selection

- Indivíduos são primeiramente ordenados de acordo com o fitness
- São então ranqueados, sendo que o pior indivíduo tem rank 0 e o melhor tem rank μ-1, sendo μ o número de indivíduos na população
- Probabilidade de seleção do i-ésimo indivíduo é dada por

$$P_{lin-rank}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

na qual o parâmero s: 1,0 < s ≤ 2,0 controla a pressão seletiva

- Seleção
 - Rank Selection
 - Exemplo com três indivíduos

	Fitness	Rank	P_{selFP}	P_{selLR} $(s=2)$	P_{selLR} $(s = 1.5)$
A	1	0	0.1	0	0.167
В	5	2	0.5	0.67	0.5
\mathbf{C}	4	1	0.4	0.33	0.33
Sum	10		1.0	1.0	1.0

Seleção

- Torneio
 - No modelo mais simples, k indivíduos são escolhidos aleatoriamente na população
 - O indivíduo de maior aptidão entre eles é escolhido
 - O parâmetro k controla a pressão seletiva
 - É mais simples (computacionalmente) do que os métodos de seleção proporcionais à aptidão, como o método da roleta

- Reprodução
 - Aplicado após a seleção de indivíduos
 - Permite a obtenção de novos indivíduos
 - O operadores genéticos de reprodução mais comuns são
 - Crossover (cruzamento ou recombinação)
 - Mutação

Reprodução

- Crossover
 - Recombinação de características dos pais durante a reprodução
 - Permite que as próximas gerações herdem essas características
 - Troca trechos dos cromossomos de dois indivíduos escolhidos durante a seleção
 - ullet Ocorre com uma probabilidade definida pela taxa de *crossover* p_c
 - Para cada par de indivíduos selecionados, gera-se um número aleatório com distribuição uniforme
 - Ocorre crossover no par dado se o valor deste número for menor que p_c
 - Tipicamente entre 0,6 e 0,9

- Reprodução
 - Crossover
 - Permite a exploração rápida do espaço de busca
 - Tipos
 - Um ponto
 - Troca trechos (entre os dois cromossomos) delimitados por um ponto escolhido aleatoriamente
 - Dois pontos
 - Troca trechos (entre os dois cromossomos) delimitados por dois pontos escolhidos aleatoriamente
 - Uniforme
 - Troca trechos (entre os dois cromossomos) gerados por uma máscara, geralmente gerada aleatoriamente

Crossover de 1 ponto

Crossover de 2 pontos

Crossover uniforme

- Reprodução
 - Crossover
 - Problemas de Permutação
 - Crossover comum n\u00e3o pode ser aplicado

 Operadores especializados têm assim sido propostos para combinar a informação de dois pais

- Reprodução
 - Crossover
 - Problemas de Permutação
 - Exemplo: Order 1 Crossover
 - 1. Copie parte arbitrária do primeiro pai para o primeiro filho
 - Copie elementos (ex.: números) que não estão nesta primeira parte para o primeiro filho:
 - Começando a direita do corte da parte copiada
 - Usando a ordem do segundo pai
 - Voltando para o começo, caso chegue no fim do cromossomo
 - 3. Faça o mesmo para o segundo filho

- Reprodução
 - Crossover
 - Problemas de Permutação
 - Order 1 Crossover (exemplo)
 - Copie parte aleatória do pai 1

1 2 3 4 5 6 7 8 9

9 3 7 8 2 6 5 1 4

Copie os números restantes na ordem do pai 2 (1,9,3,8,2)

1 2 3 4 5 6 7 8 9

9 3 7 8 2 6 5 1 4

- Reprodução
 - Mutação
 - Gera diversidade genética
 - Altera aleatoriamente um ou mais genes no cromossomo
 - Assegura que a probabilidade de atingir qualquer ponto do espaço de busca nunca será zero

Reprodução

- Mutação
 - Aplicada a cada gene de cada indivíduo após o crossover com uma taxa de mutação p_m
 - Para cada gene de cada indivíduo selecionado, gera-se um número aleatório com distribuição uniforme
 - Ocorre mutação no gene dado se o valor deste número for menor que p_m
 - Taxa de mutação é geralmente pequena
 - Tipicamente entre 1/tamanho_populacao e 1/tamanho_cromossomo
 - Ex.: $p_m = 0.01$
 - Gene tem probabilidade de 1% de sofrer mutação

- Reprodução
 - Mutação
 - A alteração depende da representação do gene
 - Binária (Bit Flip Mutation)
 - O gene mutado recebe a negação de seu antigo valor (ou seja, se era igual a 0 fica igual a 1 e se era igual a 1 fica igual a zero)

Mutação Binária

Antes da mutação

 $\begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{0} \begin{bmatrix} \mathbf{0} & \mathbf{1} \end{bmatrix} \mathbf{1}$

Após a mutação

Reprodução

- Mutação
 - Inteiro ou Real
 - O gene pode ser mutado para receber qualquer valor entre os seus limites máximos e mínimos (distribuição uniforme)
 - O gene pode ser mutado adicionando um valor aleatório com distribuição normal com média zero e desvio padrão σ
 - O gene pode ser mutado para receber um acréscimo ou decréscimo no ser valor corrente

- Reprodução
 - Mutação
 - Problemas de Permutação
 - Mutação inteira comum não pode ser aplicada
 [4231] -> [3231]
 - Algumas soluções
 - Trocar dois valores aleatoriamente

Inversão

Rearranjo

1 2 3 4 5 6 7 8 9

1 3 5 4 2 6 7 8 9

Convergência

- Se o AG estiver corretamente implementado, a população deve evoluir em gerações sucessivas
- Aptidão do melhor indivíduo e da média da população devem aumentar em direção a um ótimo global

Genótipo:

 $x \mid y$

Critérios de Parada

- Tempo de execução
- Número de gerações
- Valor de aptidão mínimo e/ou médio
- Convergência
 - Nas últimas k iterações não houve melhora nas aptidões

- Escolha dos parâmetros
 - Quantos indivíduos em uma população?
 - Poucos: diminuição rápida da diversidade
 - Muitos: aumento do tempo de computação
 - Qual a taxa de mutação?
 - Baixa ⇒ mudanças lentas
 - Alta

 instabilidade, pois os traços não são mantidos por um período suficiente
 - Qual a taxa de crossover?

- Quais tipos de operadores genéticos devem ser utilizados?
 - Depende do problema
 - Em geral crossover e mutação
 - Mutação sozinha pode ser utilizada, mas crossover sozinho não deve ser utilizado
- Crossover x Mutação
 - Exploration: descoberta de áreas promissoras no espaço de busca
 - ganho de informação sobre o problema
 - Crossover
 - Em geral, produz grandes saltos em uma área entre as regiões ocupadas pelos dois pais
 - Exploitation: otimização dentro de uma área promissora
 - uso da informação sobre o problema
 - Mutação
 - Em geral, cria pequenos desvios aleatórios na solução dada pelo pai (vasculha as soluções vizinhas à solução pai)
 - Em geral, deve haver um compromisso entre exploration e exproitation
 - Mas qual?

- Qual codificação deve ser utilizada?
 - Inteira, real ou binária?
 - Binária ou Código Gray?
 - Exemplo: 3 bits

Decimal	Gray	Binária
0	000	000
1	001	001
2	011	010
3	010	011
4	110	100
5	111	101
6	101	110
7	100	111

- População Inicial
 - Geralmente a população inicial é aleatória
 - Necessidade de executar o algoritmo várias vezes (com diferentes sementes aleatórias)
 - Conhecimento pode ser inserido

- Quando AGs geralmente não devem ser utilizados
 - Em problemas que podem ser solucionados por algoritmos deterministas em tempo razoável (e geralmente menor do que para os AGs)
 - Ou seja em que o ótimo global com certeza será encontrado
 - Exemplos
 - Grande parte dos problemas da Classe Polinomial $(O(n^k))$
 - Grande parte dos problemas unimodais

Dificuldades

- Custo computacional geralmente alto quando comparado com algoritmos tradicionais
- Convergência prematura
 - AGs comportam-se como algoritmos de busca local

Comentários

- Referências
 - Mitchell, M. *An introduction to genetic algorithms.* MIT Press, 1996.
 - Capítulos 1 e 5
 - Goldberg, D. E. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Pub. Co., 1989
 - Capítulo 1
- Agradecimentos
 - Parte do material desta apresentação foi obtida através de
 - Material de apoio do livro Eiben, A. E. & Smith, J. E. Introduction to Evolutionary Computation. Springer, 2003.