RSA-OAEP IND-CCA2 증명

김동현(wlswudpdlf31@kookmin.ac.kr)

March 11, 2025

1 기호

- λ 보안 매개변수
- pk 공개키
- sk 비밀키
- ullet (pk,sk) $\leftarrow \mathcal{K}(1^{\lambda})$ 키 생성 알고리즘, 확률론적
- m 메시지
- c 암호문
- ullet $c \leftarrow \mathcal{E}(m, \mathsf{pk})$ 암호화 함수, 확률론적
- $m \leftarrow \mathcal{D}(c, \mathsf{sk})$ 복호화 함수, 결정론적
- A 공격자
- r 랜덤 코인
- \mathcal{M} 메시지 공간
- ullet Ω 랜덤 코인 공간
- b 0 또는 1
- ullet H,G 암호학적 해시 함수
- n 메시지 길이

2 보안 개념

2.1 OW-CPA

$\underline{\text{Challenger }\mathcal{C}}$	$\overset{Exp^{OW-CPA}_{\Pi,\lambda}}{\longleftrightarrow}$	$\underline{\text{Adversary }\mathcal{A}}$
$(pk,sk) \leftarrow \mathcal{K}(1^\lambda)$	$\xrightarrow{1^{\lambda},pk}$	
$m^* \stackrel{\$}{\leftarrow} \mathcal{M}$ $c^* \leftarrow \mathcal{E}_{pk}(m^*)$	$\xrightarrow{c^*}$	
Return $[m' \stackrel{?}{=} m^*]$	$\stackrel{m'}{\longleftarrow}$	\mathcal{A} chooses $m' \in \mathcal{M}$

2.2 **OWF**

 $f:\{0,1\}^{\lambda} \rightarrow \{0,1\}^{\lambda}$ is a trapdoor one-way permutation.

$\underline{\text{Challenger }\mathcal{C}}$	$\xleftarrow{Exp^{OWF}_{f,\lambda}}$	Adversary \mathcal{A}
	\xrightarrow{f}	
$m^* \stackrel{\$}{\leftarrow} \mathcal{M}$ $c^* \leftarrow f(m^*)$	$\xrightarrow{c^*}$	
Return $[m' \stackrel{?}{=} m^*]$	$\stackrel{\displaystyle \longleftarrow}{\longleftarrow}$	\mathcal{A} chooses $m' \in \mathcal{M}$

2.3 **OWF-PD**

 $f:\{0,1\}^{\lambda-\lambda_0}\times\{0,1\}^{\lambda_0}\to\{0,1\}^{\lambda-\lambda_0}\times\{0,1\}^{\lambda_0}$ is a trapdoor one-way permutation.

$\underline{\text{Challenger }\mathcal{C}}$	$\xleftarrow{\operatorname{Exp}_{f,\lambda}^{\operatorname{OWF-PD}}}$	Adversary \mathcal{B}
	\xrightarrow{f}	
$(s^*, t^*) \stackrel{\$}{\leftarrow} \{0, 1\}^{\lambda - \lambda_0} \times \{0, 1\}^{\lambda_0}$ $c^* \leftarrow f(s^*, t^*)$	$\xrightarrow{c^*}$	
Return $[s' \stackrel{?}{=} s^*]$	$\stackrel{s'}{\leftarrow}$	\mathcal{A} chooses $s' \in \{0,1\}^{\lambda - \lambda_0}$

2.4 OWF-PD-S

??

2 보안 개념 2.5 IND-CCA2

2.5 IND-CCA2

2.6 IND-CCA2-ROM

FDL 3 / 6

3 RSA-OAEP

치환(permutation) $f: \{0,1\}^{\lambda} \longrightarrow \{0,1\}^{\lambda}$ 를 다음과 같이 표현한다.

$$f: \{0,1\}^{n+\lambda_1} \times \{0,1\}^{\lambda_0} \longrightarrow \{0,1\}^{n+\lambda_1} \times \{0,1\}^{\lambda_0}.$$

이 때, $\lambda = n + \lambda_0 + \lambda_1$ 이다.

함수 f와 그 역함수 g로부터 얻은 OAEP 암호 $(\mathcal{K},\mathcal{E},\mathcal{D})$ 를 나타내기 위해, 다음과 같은 두 해시 함수 H,G가 필요하다.

$$H: \{0,1\}^{\lambda_0} \to \{0,1\}^{\lambda-\lambda_0} \quad G: \{0,1\}^{\lambda-\lambda_0} \to \{0,1\}^{\lambda_0}.$$

OAEP 암호 $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ 는 다음과 같다.

- $\mathcal{K}(1^{\lambda})$: 함수 f의 인스턴스 pk, 함수 g의 인스턴스 sk를 생성한다.
- $\mathcal{E}_{\mathsf{pk}}(m,r)$: $m \in \{0,1\}^n$ 과 $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda_0}$ 가 주어졌을 때, 다음을 계산한다.

$$s = (m \parallel 0^{\lambda_1}) \oplus G(r) \quad t = r \oplus H(s).$$

이후 암호문 c = f(s,t)를 출력한다.

- $\mathcal{D}_{\mathsf{sk}}(c)$: sk 를 사용하여 다음을 순서대로 계산할 수 있다.
 - -(s,t) = g(c)
 - $r = t \oplus H(s), M = s \oplus G(r)$

만약 $[M]_{\lambda_1}=0^{\lambda_1}$ 이면 $[M]_n$ 을 출력하고, 아니라면 "Reject"를 출력한다. 이 표현에서, $[M]_{k_1}$ 은 M의 하위 λ_1 비트를, $[M]_n$ 은 M의 상위 n 비트를 의미한다.

4 OAEP IND-CCA2 증명

정리 1. A를 OAEP 변환 $(K, \mathcal{E}, \mathcal{D})$ 에 대해 능력치(advantage) ε 과 시간 $(running\ time)$ t를 가지고, 복호화 오라클, 해시 함수 H 및 G에 각각 $q_{\mathcal{D}}, q_{H}, q_{G}$ 회 질의하는 IND-CCA2 공격자라 하자. 다음을 만족한다.

$$S \geq \frac{1}{q_H} \left(\frac{\varepsilon}{2} - \frac{2q_{\mathcal{D}}q_G + q_{\mathcal{D}} + q_G}{2^{\lambda_0}} - \frac{2q_{\mathcal{D}}}{2^{\lambda_1}} \right).$$

이 Π , $t' \leq t \cdot q_H \cdot q_G \cdot (T_f + O(1))$ 이고, T_f 는 함수 f의 시간 복잡도를 의미한다.

우리는 보조정리 2를 세 단계로 증명한다. 첫 번째 단계에서는 IND-CCA2 적대자 A를 부분 도메인 일방성(partial-domain one-wayness) f를 깨뜨리는 알고리즘 B로 환원하는 과정을 제시한다. 현재의 증명에서는 원본 논문 [3]에서와 같은 전체 도메인 일방성(full-domain one-wayness)이 아니라, 부분

4/6

도메인 일방성 하에서의 보안성에만 관심을 둔다. 두 번째 단계에서는 이 환원에서 사용된 복호화오라클 시뮬레이션이 부분 도메인 일방성 하에서 압도적인 확률로 올바르게 동작함을 보인다. 이 부분은 원본 증명 [3]과 다르며, 최근 발견된 오류 [15]를 수정한다. 마지막으로, 우리는 복호화 오라클시뮬레이션에 대한 위에서 언급한 분석을 포함하여 전체적인 환원의 성공 확률을 분석한다.

이 첫 번째 부분에서는 환원이 어떻게 작동하는지를 다시 살펴본다. \mathcal{A} 를 $(\mathcal{K},\mathcal{E},\mathcal{D})$ 의 IND-CCA2 공격자로 가정하자. 시간 제한 t 내에서, \mathcal{A} 는 복호화 오라클에 대해 $q_{\mathcal{D}}$ 개의 질의를 하고, 무작위 오라클 H,G에 대해 각각 q_H,q_G 개의 질의를 수행하며, 특정 확률 ε 보다 높은 능력치로 올바른 평문을 구별해낸다. 이제 환원 \mathcal{B} 을 설명한다.

$$\begin{array}{c} \underline{\text{Challenger }\mathcal{C}} & \stackrel{\mathsf{Exp}^{\mathsf{DMF-PD}}}{\longleftrightarrow} & \underline{\text{Adversary }\mathcal{B}} & \stackrel{\mathsf{Exp}^{\mathsf{DND-CCA2-ROM}}}{\longleftrightarrow} & \underline{\text{Adversary }\mathcal{A}} \\ \\ (s^*,t^*) \stackrel{\$}{\leftarrow} \\ \{0,1\}^{\lambda-\lambda_0} \times \\ \{0,1\}^{\lambda} & \\ c^* \leftarrow f(s^*,t^*) & \stackrel{c^*}{\hookrightarrow} \\ \\ & \mathcal{L}_H,\mathcal{L}_G \leftarrow \{\}, \{\} & \frac{1^{\lambda},\mathsf{pk}}{\bullet} \\ \\ & \mathcal{D}^{\mathcal{D}_{\mathsf{sk}}}, \mathcal{O}^H, \mathcal{O}^G \text{ Query Phase 1} \\ \\ & \stackrel{\mathsf{m}_0^*,m_1^*}{\longleftrightarrow} & \mathcal{A} \text{ chooses} \\ m_0^*,m_1^* \in \mathcal{M} \\ \text{ such that } \\ |m_0^*| = |m_1^*| \text{ and } \\ m_0^* \neq m_1^* \\ \\ & \stackrel{c^*}{\hookrightarrow} \\ \\ & \mathcal{O}^{\mathcal{D}_{\mathsf{sk}}}, \mathcal{O}^H, \mathcal{O}^G \text{ Query Phase 2} \\ \\ & \mathcal{D}^{\mathcal{D}_{\mathsf{sk}}}, \mathcal{O}^H, \mathcal{O}^G \text{ Query Phase 2} \\ \\ & \mathcal{D}^{\mathsf{chooses}} \times [\{0,1\}^{\lambda-\lambda_0}] & \stackrel{b'}{\longleftrightarrow} & \mathcal{A} \text{ chooses} \\ s' \in \{0,1\}^{\lambda-\lambda_0} & \stackrel{b'}{\longleftrightarrow} & \mathcal{A} \text{ chooses} \\ s' \in \{0,1\}^{\lambda-\lambda_0} & \stackrel{b'}{\longleftrightarrow} & \mathcal{A} \text{ chooses} \\ s' \in \{0,1\}^{\lambda-\lambda_0} & \stackrel{b'}{\longleftrightarrow} & \mathcal{A} \text{ chooses} \\ s' \in \{0,1\}^{\lambda-\lambda_0} & \stackrel{b'}{\longleftrightarrow} & \mathcal{A} \text{ chooses} \\ \end{array}$$

How \mathcal{B} simulate \mathcal{O}^G ?

- If $\gamma \in \mathcal{L}_G$, then response G_{γ} and $\mathcal{L}_G \leftarrow \mathcal{L}_G \cap (\gamma, G_{\gamma})$.
- Otherwise, do following:
 - For some $\delta \in \mathcal{L}_H$, if $c^* = f(\delta, \gamma \oplus H_\delta)$, then $G_{\gamma} \leftarrow \delta \oplus (m_b \parallel 0^{\lambda_1})$.
 - For all $\delta \in \mathcal{L}_H$, if $c^* \neq f(\delta, \gamma \oplus H_\delta)$, then $G_\gamma \stackrel{\$}{\leftarrow} \{0, 1\}^{\lambda}$.
 - response G_{γ} and $\mathcal{L}_G \leftarrow \mathcal{L}_G \cap (\gamma, G_{\gamma})$.

How \mathcal{B} simulate \mathcal{O}^H ?

- If $\delta \in \mathcal{L}_H$, then response H_{δ} .
- Otherwise, response $H_{\delta} \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ and $\mathcal{L}_H \leftarrow \mathcal{L}_H \cap (\delta, H_{\delta})$.

How \mathcal{B} simulate $\mathcal{O}^{\mathcal{D}_{sk}}$?

5/6

- If $c=f(\delta,H_\delta\oplus\gamma)$ and $[G_\gamma\oplus\delta]_{\lambda_1}=0^{\lambda_1},$ then response $[G_\gamma\oplus\delta]^n.$
- Otherwise, response reject.

6 / 6