

GEOMETRÍA Capítulo 8

PUNTOS NOTABLES
ASOCIADOS AL
TRIANGULO

MOTIVATING | STRATEGY

Rectas y puntos notables del triángulo

Circuncentro

mediatrices.

Incentro

Punto donde se cortan las Punto donde se cortan las bisectrices.

Baricentro

Punto donde se cortan las medianas.

Punto donde se cortan las alturas.

alturas medianas mediatrices H: ortocentro G: centroide

O: circuncentro

PUNTOS NOTABLES ASOCIADAS AL TRIÁNGULO

Son aquellos puntos donde concurren líneas notables de una misma naturaleza.

1)<u>Incentro</u>.Es el punto de concurrencia de2)<u>Excentro</u>. Es el punto de concurrencia de la bisectrices interiores.

TEOREMAS

$$x = 90^{\circ} + \underline{\omega}$$

$$x = 90^{\circ} - \underline{\omega}$$

$$x = \underline{w}$$

TEOREMAS

4) <u>Baricentro</u>. Es el punto de concurrencia de las medianas.

5) <u>Circuncentro</u>. Es el punto de concurrenc<u>i</u>a de las mediatrices.

1. Se tiene un triángulo acutángulo ABC, de ortocentro H. Si la m4BHC = 9x y m4HCA = 3x, halle el valor de x.

2. En la región triangular ABC mostrada, G es baricentro. Halle el valor de x.

3. En la figura, calcule $\alpha+\beta+\theta$ si I es incentro del triángulo ABC.

4. Halle el valor de x si E es excentro del triángulo ABC.

5.En un triángulo acutángulo ABC, de circuncentro O, la m<ABC = 80°,

halle m<OAC.

$$m < AOC = 2(80^{\circ})$$

$$m < AOC = 160^{\circ}$$

$$x + x + 160^{\circ} = 180^{\circ}$$

 $2x = 20^{\circ}$

$$x = 10^{\circ}$$

6.En una región triangular ABC, de baricentro G, AC = 8, BG = 4 y m<AGB = 90° , halle m<GAC.

7. En la figura, halle el valor de x si O es circuncentro del triángulo ABC.

▲ AOC : Isósceles

$$x + x + 140^{\circ} = 180^{\circ}$$

 $2x = 40^{\circ}$

8. En la figura se muestran tres edificios ubicados en los puntos A, B y C. Se desea ubicar una estación de bomberos tal que se encuentre a igual distancia de los tres edificios. Calcule la distancia de dicha estación a

