Typing the higher-order µ-calculus

CAMILLE BONNIN ENCADRÉE PAR M. MME. CINZIA DI GIUSTO ET M. ETIENNE LOZES

CONTEXTE

Le µ-calcul

- Logique introduite par Scott et de Bakker en 1969.
- ▶ Etendue par Kozen en 1983 (forme actuelle).
- Sert à faire de la vérification de programmes.
- Permet d'exprimer d'autres logiques temporelles comme LTL ou CTL.

Opérateur de point fixe µ

- Le nom de μ-calcul vient de l'opérateur de point fixe μ.
- ▶ Point fixe de g : x tel que x = g(x)
- Théorème de point fixe de Knaster-Tarski : « Soit f une fonction croissante d'un treillis complet dans un treillis complet, alors f a un plus petit point fixe »
 - Ne fonctionne qu'avec les fonctions croissantes, toutes les formules du μ-calcul n'ont pas forcement de sens.
 - ▶ Il faut trier ces formules.

Ordre supérieur

- Variables et formules peuvent être :
 - prédicat (•)
 - → (fonction)
 - $\blacktriangleright \ (\bullet \to \bullet) \to \bullet$
 - $\blacktriangleright \quad \bullet \rightarrow (\bullet \rightarrow \bullet)$
 - $\blacktriangleright \ (\bullet \to \bullet) \to (\bullet \to \bullet)$
 - **>** . . .
- ➤ ⇒ Toutes les variables et formules n'ont pas le même type.
 - ► Trier les formules en fonctions des compatibilités entre les types de leurs variables via un système de typage.

Objectif du TER

- Trier les formules via le typage.
- $ightharpoonup \Gamma$ = ensemble des triplets (variable libre, type, variance)
- \blacktriangleright On cherche Γ et le type de la formule (inférence de types).
- lci on a déjà Δ = ensemble des couples (variable libre, type).
 - \blacktriangleright Pour trouver Γ , on va compléter Δ avec les variances (inférence de variances).

Le µ-calcul d'ordre supérieur - opérateurs -

 $ightharpoonup \lambda X^v : \tau \cdot \Phi$ ("lambda abstraction") : représente les fonctions ;

 $ightharpoonup \Phi\Psi$ ("application"): application de fonction.

Syntaxe du μ-calcul d'ordre supérieur :
Φ,Ψ ::= T | Φ ∧ Ψ | ¬Φ | ⟨a⟩Φ | X | μX : τ . Φ | λX^v : τ . Φ | ΦΨ avec :
T ('top') : constante, n'importe quel état ;
Φ ∧ Ψ ('conjonction') : représente le « et » logique ;
¬Φ ("négation') : négation logique ;
⟨a⟩Φ ('diamant') : « possible », vraie si après une action a, Φ devient vraie ;
μX : τ . Φ ('plus petit point fixe') : plus petit point fixe (el tel que el = Φ(el)) ;

Le µ-calcul d'ordre supérieur - exemples de formules -

$$\langle a \rangle (Y \wedge \neg X)$$

« Le prédicat qui indique qu'après l'action a, la conjonction des prédicats Y et de la négation de X est vraie. »

```
\mu X : \bullet . X \wedge Y
```

- ▶ « Le plus petit point fixe de $f: X \to X \land Y$, le plus petit X tel que X = f(X). »
 - ▶ Théorème du point fixe : μX : . $X \wedge Y$ n'est défini que si λX : . $X \wedge Y$ est croissante
 - => variances

Variances

- variance d'une fonction / variable -

- Etend la notion de monotonie
- **Définition 5** (\sqcap -additivité et \sqcup -additivité). Soient (A, \sqcap, \sqcup) et (B, \sqcap, \sqcup) deux treillis. Une fonction $f : A \to B$ est \sqcap -additive (resp \sqcup -additive) si $\forall x, y \in A^2$, $f(x \sqcap y) = f(x) \sqcap f(y)$ (resp $f(x \sqcup y) = f(x) \sqcup f(y)$).
- Variance d'une variable :
 - formule = fonction de plusieurs variables
 - variance d'une variable = variance de la fonction où on a fixé les autres variables

Variances - exemple -

- ▶ Dans $\langle a \rangle (Y \land \neg X)$, Y est croissante et X est décroissante.
 - \blacktriangleright $\mu Y: \bullet$. $\langle a \rangle (Y \land \neg X)$ est bien défini mais $\mu X: \bullet$. $\langle a \rangle (Y \land \neg X)$ n'est pas défini.
- ► La variance de X est {⊔}:

$$f(Y_1 \sqcup Y_2) = \langle a \rangle (Y_1 \sqcup Y_2) \wedge \neg X)$$

$$= \langle a \rangle ((Y_1 \wedge \neg X) \sqcup (Y_2 \wedge \neg X))$$

$$= (\langle a \rangle (Y_1 \wedge \neg X)) \sqcup (\langle a \rangle (Y_2 \wedge \neg X))$$

$$= f(Y_1) \sqcup f(Y_2)$$

$$\langle a \rangle (A \sqcup B) = (\langle a \rangle A) \sqcup (\langle a \rangle B)$$

CONTRIBUTION

Inférence de variances - problème -

- On utilise les notation suivantes :
 - \triangleright Δ : ensemble de couples (variable libre, type) (environnement de typage sans variances)
 - \triangleright Γ : ensemble de triplets (variable libre, variance, type) (environnement de typage)
 - τ: type
 - \blacktriangleright Φ : formule

▶ Problème :

- ▶ On connaît Δ et on a une formule Φ , on cherche à compléter Δ avec les variances pour obtenir Γ .
- \blacktriangleright On cherche aussi le type de Φ .

Inférence de variances - solution proposée -

- ▶ Solution : on définit une fonction récursive type $(\Phi, \Delta) = (\Gamma, \tau)$ où τ est le type de Φ .
 - ► On définit type(.) à l'aide de règles d'inférence.
- Avec la formule Φ suivante : $\langle a \rangle (Y \wedge \neg X)$, on aura :

 - u $\tau = \underline{\bullet}$.

Inférence de variances - règles d'inférence de variances -

Définition 18 (Règles de typage). Les règles d'inférence de variances du μ -calcul d'ordre supérieur sont les suivantes :

$$\frac{type(\Delta, \top) = (\emptyset, \bullet)}{type(\Delta, \top) = (\emptyset, \bullet)} (\text{T-TOP}) \qquad \frac{type(\Delta, \Phi) = (\Gamma_1, \bullet)}{type(\Delta, \Phi \land \Psi) = (\Gamma_1 \land \Gamma_2, \bullet)} (\text{T-ET})$$

$$\frac{type(\Delta, \Phi) = (\Gamma, \tau)}{type(\Delta, \neg \Phi) = (\overline{\{ \sqcap, \sqcup \}} \circ \Gamma, \tau)} (\text{T-NEG}) \qquad \frac{type(\Delta, \Phi) = (\Gamma, \bullet)}{type(\Delta, \langle a \rangle \Phi) = (\{ \sqcup \} \circ \Gamma, \bullet)} (\text{T-DIAMANT})$$

$$\frac{(X : \tau) \in \Delta}{type(\Delta, X) = (X^{\{\sqcap, \sqcup \}} : \tau, \tau)} (\text{T-VAR})$$

$$\frac{type(\Delta \cup \{X : \tau\}, \Phi) = (\Gamma, \sigma) \qquad \sigma = \tau \qquad \Gamma = \Gamma' \cup \{X^v : \sigma\} \qquad v \geq \varnothing}{type(\Delta, \mu X : \tau \cdot \Phi) = (\Gamma', \tau)} (\text{T-MU})$$

$$\frac{type(\Delta \cup \{X : \sigma\}, \Phi) = (\Gamma, \tau) \qquad \Gamma = \Gamma' \cup \{X^{v'} : \sigma'\} \qquad v \leqslant v'}{type(\Delta, \lambda X^v : \sigma \cdot \Phi) = (\Gamma', \sigma'^v \to \tau)} (\text{T-LAMBDA})$$

$$\frac{type(\Delta, \Phi) = (\Gamma_1, \sigma^v \to \tau) \qquad type(\Delta, \Psi) = (\Gamma_2, \sigma)}{type(\Delta, \Phi\Psi) = (\Gamma_1 \land v \circ \Gamma_2, \tau)} (\text{T-APP})$$

Inférence de variances - règle du µ -

$$\frac{type(\triangle \cup \{X:\tau\}, \Phi) = (\Gamma, \sigma) \quad \sigma = \tau \quad \Gamma = \Gamma' \cup \{X^v:\sigma\} \quad v \geq \emptyset}{type(\triangle, \mu X:\tau \cdot \Phi) = (\Gamma', \tau)}$$
(T-MU)

- ▶ Type du résultat = type de X = type de Φ .
- ➤ On rajoute X dans les environnements de typage pour typer X et Φ mais on l'enlève du résultat car X est liée.
- La variance de X (= variance de f : X $\rightarrow \Phi$ (X)) doit être croissante pour respecter le théorème du point fixe.

Inférence de variances - implémentation -

- On a réalisé une implémentation de la fonction type(.) en OCaml (langage appris pour l'occasion).
 - utilisation des listes associatives ;
 - utilisation de la récurrence ;
 - code structuré en plusieurs modules (variance, variance_syntaxe, mu-calcul, mu-calcul_syntaxe);
 - détection et localisation des échecs de typage ;
 - résultats de tous les tests obtenus immédiatement.

Inférence de variances - résultats de l'implémentation -

- Extrait des résultats des tests (28 formules testées) :
 - ▶ cas de bases ;
 - quelques formules plus compliquées.
- ▶ Tests de cas positifs et négatifs.

f	Δ	Γ	au
$(\mu F: (\bullet^{\overline{\varnothing}} \to \bullet) . \lambda X^{\overline{\varnothing}}: \bullet .$	$\{\{Y:ullet\}\}$	$\{\{Y^{any}:ullet\}\}$	•
$\langle a \rangle (Y \wedge (F \neg (FX)))) [b]Y$			
$(\lambda X^{\varnothing}: \bullet . X) \wedge X$	$\{\{X:ullet\}\}$	Erreur dans $\wedge:\lambda X^\varnothing:ullet$. X n'a pas le type $\bullet!$	
$\mu X : \bullet . ((\lambda Y^{\overline{\varnothing}} : \bullet . \neg Y)X))$	Ø	Erreur dans $\mu:X$ a la variance $\overline{\varnothing}$ qui n'est pas $\geqslant \varnothing!$	
$(\mu F: (\bullet^{\overline{\varnothing}} \to \bullet) \ .$	Ø	Ø	$(ullet^{\overline{\varnothing}} o ullet)$
$\lambda X^{\overline{\varnothing}} : \bullet . F(\neg(FX))$			
$\mu X : \bullet . [a]X$	Ø	Ø	•

Conclusion - résumé -

- ► TER basé un article de Lange, Lozes et Guzmán de 2014, « Modelchecking process equivalences ».
- But : résoudre un sous problème de l'inférence de types, l'inférence de variances.
- Solution : une fonction récursive, type(.) définie par des règles d'inférence.
- Inconvénient de la solution : la présence d'indications de variances dans les types des variables présentes dans Δ.

Conclusion - améliorations possibles -

- Améliorations possibles de la solution proposée:
 - supprimer ces d'indications de variances ;
 - supprimer Δ et résoudre le problème d'inférence de types ;
 - rajouter l'aspect polyadique (permet la manipulations de tupples d'états).