

Artificial Intelligence: Human Intelligence exhibited by machine.

Narrow AI: Computers can do a specific/one thing very well.

General AI: Computers can do multiple things like humans. We are very far away from this. Machine Learning: Approach to try and achieve AI through systems that can find patterns in data. Stanford Univ - Science of getting computers to act without being explicitly programmed.

Deep Learning: One of the techniques to implement machine learning.

Data Science: Analysing Data

Play Ground

https://teachablemachine.withgoogle.com/

https://ml-playground.com/#

How did we get here?

YouTube Recommendation Engine

https://ml-playground.com/#

- X Axis Duration of Video
- Y Axis Likes to the Video

Framework

Steps in a full machine learning project

1. Problem Definition

Types of machine learning

When not to use machine learning?

 Will simple hand coded instructions based system work? If yes, then use it.

Main types of machine learning

Supervised Learning

Unsupervised Learning

Transfer Learning

Reinforcement Learning

Supervised learning

Classification

- "Is this example one thing or another?"
- · Binary classification = two options
- Multi-class classification = more than two options

Regression

- · "How much will this house sell for?"
- "How many people will buy this app?"

Unsupervised learning

customer	Purchase 2	Purchage 2	
1	Sunglasses	Singlet	
2	Jacket	Snow boots	
3	Sunscreen	Beach towel	

Transfer Learning

Reinforcement Learning

Problem Definition

Matching your problem

"I know my inputs and outputs."

Supervised Learning

"I'm not sure of the outputs but I have inputs."

Unsupervised Learning

"I think my problem may be similar to something else."

Transfer Learning

2.Data

"What kind of data do we have?"

Types of Data

Rows

	ID	weight	Sex	Blood Presture	Chest	Heart disease?
s	4326	IIOKg	Μ	120/00	4	Yes
lumns	5681	64159	F	130	,	No
ပိ	7911	BIKg	M	130	0	NO

Table 1.0: Patient records

Structured

From: <u>daniel@mrdbourke.com</u> Hey Daniel,

First of all, thank you for being so amazing. This machine learning course is incredible. Thank you for keeping it simple!

Unstructured

Types of Data

Static

Streaming

A data science workflow

Machine learning model

Heart disease?

3. Evaluation

"What defines success for us?"

"For this project to be worth pursuing further, we need a machine learning model with over 99% accuracy."

Machine learning model

Types of metrics

Classification	Regression	Recommendation
Accuracy	Mean absolute error (MAE)	Precision at K
Precision	Mean squared error (MSE)	
Recall	Root mean squared error (RMSE)	

Classifying Car insurance claims

4. Features

"What do we already know about the data?"

Feature variables can be

- Numerical
- Categorical

Feature engineering

- Deriving new features from existing one.

Feature Coverage

- Checking if values are correctly populated for a feature or not? Do not use it if it is not well covered.

Feature variables Target variable				Target variable	Derived feature			
T	ID	weight	Sex	Heav4 Rotte	Chest	Heart disease?	visit in a	most eaten food
1	4326	110kg	M	81	4	Yes	Yes	Friks
	5681	6449	F	61	١	No	Yes	7
	7911	81Kg	M	57	0	NO	NO	?
Table 1.0: Patient records								

5. Modelling Part 1 — 3 sets

"Based on our problem and data, what model should we use?"

3 parts to modelling

1. Choosing and training a model

2. Tuning a model

3. Model comparison

Training, validation and test sets

3 sets

Generalization – The ability for a machine learning model to perform well on data it hasn't seen before.

When things go wrong?

Machine really did not learn anything, it just memorized what it solved in training part.

5. Modelling Part 2 — Choosing

"Based on our problem and data, what model should we use?"

Choosing a model

Training a model

X (data) y (lab						
ID	weight	Sex	Heave Rote	Chest	Heav't disease?	
4326	llokg	M	81	4	Yes	
5681	64Kg	F	61	١	No	
7911	BIKg	M	57	0	NO	

Table 1.0: Patient records

Training Data

Goal - Minimize time between experiments

Sometimes for smaller %age extra of Accuracy, we end up spending lot of time. We should avoid that.

Remember

- Some models work better than others on different problems
- Don't be afraid to try things
- Start small and build up (add complexity) as you need

5. Modelling Part 3 — Tuning

"Based on our problem and data, what model should we use?"

Tuning

Cooking time: 1 hour Temperature: 200°C

Tuning...

Random Forest

Neural Networks

3 layers

Remember

- Machine learning models have hyperparameters you can adjust
- A models first results aren't its last
- Tuning can take place on training or validation data sets

5. Modelling Part 4 — Comparison

"How will our model perform in the real world?"

Model performance

Data Set	Performance
Training	98%
Test	96%

Overfitting and Underfitting

Overfitting and Underfitting

Overfitting and Underfitting

Fixes for Overfitting and Underfitting

- Try a more advanced model
- Increase model hyperparameters
- Reduce amount of features
- Train longer

- Collect more data
- Try a less advanced model

Comparison

Remember

- Want to avoid overfitting and underfitting (head towards generality)
- Keep the test set separate at all costs
- Compare apples to apples
- One best performance metric does not equal best model

6. Experimentation

"How could we improve/what can we try next?"

Experimentation

Try out a different approach for improving the machine learning model

Tools

Tools mapping

