$\sin x$ と $\cos x$ を多項式関数で近似する

問. x>0 のとき,次の不等式が成り立つことを示せ.

(1)
$$\sin x < x$$

$$(2) \, \cos x > 1 - \frac{x^2}{2!}$$

(3)
$$\sin x > x - \frac{x^3}{3!}$$

(2)
$$\cos x > 1 - \frac{x^2}{2!}$$

(4) $\cos x < 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

解答 (1)
$$y = \sin x$$
 の $x = 0$ における微分係数は 1 なので、右のグラフより、 $\sin x < x$.

(2)
$$f(x) = \cos x - 1 + \frac{x^2}{2!}$$
 とおくと,

$$f'(x) = -\sin x + x > 0 \quad \therefore \quad (1)$$

よって,f(x) は単調増加するので,f(x)>f(0)=0. ゆえに, $\cos x>1-\frac{x^2}{2!}$

(3)
$$g(x) = \sin x - x + \frac{x^3}{3!}$$
 とおくと,

$$g'(x) = \cos x - 1 + \frac{x^2}{2!} > 0$$
 : (2)

よって、g(x) は単調増加するので、g(x) > g(0) = 0. ゆえに、 $\sin x > x - \frac{x^3}{3!}$.

(4)
$$h(x) = \cos x - 1 + \frac{x^2}{2!} - \frac{x^4}{4!}$$
 とおくと,

$$h'(x) = -\sin x + x - \frac{x^3}{3!} < 0$$
 : (3)

よって,h(x) は単調減少するので,h(x) < h(0) = 0. ゆえに, $\cos x < 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$.

この問題から得られたのは、 $\sin x$ と $\cos x$ の多項式関数による評価である;

 $x - \frac{x^3}{3!} < \sin x < x$

 $1 - \frac{x^2}{2!} < \cos x < 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ $\overline{\mathbf{o}}$

これを繰り返していくと、 $\sin x$ 、 $\cos x$ の多項式近似が見えてくる;

 $\sin x$, $\cos x$ のテイラー展開

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^{n-1} \frac{x^{2n-2}}{(2n-2)!} + \dots$$

第 4 回 e^x を多項式関数で近似する

x>0 のとき,次の各不等式を証明せよ.ただし,n は自然数とする.

(1)
$$e^x > 1 + x$$

(2)
$$e^x > 1 + x + \frac{x^2}{2!}$$

(3)
$$e^x > 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

解答 (1) $f(x) = e^x - 1 - x$ とおくと, $f'(x) = e^x - 1 > 0$.

よって、
$$f(x)$$
 は単調増加ので、 $f(x) > f(0) = 0$. ゆえに、 $e^x > 1 + x$.

(2) $g(x) = e^x - 1 - x - \frac{x^2}{2}$ とおくと、 $f'(x) = e^x - 1 - x > 0$: (i).

よって、
$$g(x)$$
 は単調増加するので、 $g(x) > g(0) = 0$. ゆえに、 $e^x > 1 + x + \frac{x^2}{2}$.

(3) $f_n(x) = e^x - 1 - x - \frac{x^2}{2!} - \dots - \frac{x^n}{n!}$ とおく. k を自然数とし $f_k(x) > 0$ と仮定すると,

$$f'_{k+1}(x) = \left(e^x - 1 - x - \frac{x^2}{2!} - \dots - \frac{x^{k+1}}{(k+1)!}\right)'$$
$$= e^x - 1 - x - \frac{x^2}{2!} - \dots - \frac{x^k}{k!} = f_k(x) > 0.$$

よって、 $f_{k+1}(x)$ は単調増加するので、 $f_{k+1}(x) > f_{k+1}(0) = 0$.

これと (i) より $f_1(x) > 0$ から、全ての自然数 n に対して、 $f_n(x) > 0$ が成立する.

ゆえに,
$$e^x > 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$
 が成立する.

(3) の不等式において、右辺の級数は増加数列であり、かつ、 e^x を超えないので、収束することがわかる. 実は、その極限は左辺に一致することが知られている;

 e^x のテイラー展開

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

この等式の証明は大学以降に譲る.ここにx=1を代入すると

自然対数の底 e の値の近似式

$$e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$$

が得られる. これはなかなか収束の速い近似式で、実用性が高い.