Feuille d'exercice n° 18 : Espaces vectoriels

Exercice 1 () Dire si les objets suivants sont des espaces vectoriels :

- 1. L'ensemble des fonctions réelles sur \mathbb{R} vérifiant $\lim_{x\to+\infty} f(x)=0$.
- 2. L'ensemble des fonctions impaires sur \mathbb{R} .
- 3. L'ensemble des fonctions sur [a,b] continues, vérifiant $f(a) = 7f(b) + \int_a^b t^3 f(t) dt$.
- 4. L'ensemble des fonctions de classe \mathscr{C}^2 vérifiant $f'' + \omega^2 f = 0$.
- 5. L'ensemble des primitives de la fonction $x \mapsto xe^x$ sur \mathbb{R} .
- 6. L'ensemble des nombres complexes d'argument $\pi/4 + k\pi$, $(k \in \mathbb{Z})$.
- 7. L'ensemble des points (x,y) de \mathbb{R}^2 , vérifiant $\sin(x+y)=0$.
- 8. L'ensemble des vecteurs (x, y, z) de \mathbb{R}^3 orthogonaux au vecteur (-1, 3, -2).

Exercice 2 () Soit E un \mathbb{R} -espace vectoriel. On pose $F = E^2$. Pour tout couple $((x_1, y_1), (x_2, y_2))$ d'éléments de F, on pose $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$.

Pour tout $\lambda \in \mathbb{C}$, et tout $(x,y) \in F$, on note $\lambda.(x,y) = (ax - by, bx + ay)$, où $a = \operatorname{Re} \lambda$ et $b = \operatorname{Im} \lambda$. Montrer que (F, +, .) est un \mathbb{C} -espace vectoriel (appelé le complexifié du \mathbb{R} -espace vectoriel E).

Exercice 3 (%)

- 1. Soient les vecteurs $v_1 = (1 i, i)$, $v_2 = (2, -1 + i)$ et $v_3 = (i + 1, i)$ dans \mathbb{C}^2 . v_1 est-il combinaison linéaire de v_2 et v_3 dans \mathbb{C} considéré comme \mathbb{C} -espace vectoriel ? comme \mathbb{R} -espace vectoriel ?
- 2. Dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$, la fonction $x \mapsto \sin x$ est-elle combinaison linéaire des deux fonctions $x \mapsto \sin 2x$ et $x \mapsto \sin 3x$? Généraliser.

Exercice 4

Soient F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. Montrer que $F \cup G = F + G \Leftrightarrow F \subset G$ ou $G \subset F$.

Exercice 5 () Soient $F = \left\{ f \in \mathcal{C}([-1,1],\mathbb{C}) \mid \int_{-1}^{1} f(t) dt = 0 \right\}$ et $G = \{ f \in \mathcal{C}([-1,1],\mathbb{C}) \mid f \text{ constante} \}$. Montrer que F et G sont des sous-espaces vectoriels supplémentaires de $\mathcal{C}([-1,1],\mathbb{C})$.

Exercice 6 ((\mathfrak{F}) Soit $F = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) / f(0) + f(1) = 0 \}.$

- 1. Montrer que F est un espace vectoriel.
- 2. Déterminer un supplémentaire de F dans $\mathscr{F}(\mathbb{R}, \mathbb{R})$.

Exercice 7 Soient F, G, F', G' des sous-espaces vectoriels de E tels que $F \cap G = F' \cap G'$. Montrer que $(F + (G \cap F')) \cap (F + (G \cap G')) = F$.

Exercice 8 Soient A et B deux parties d'un ev E. Comparer $\operatorname{Vect}(A \cap B)$ et $\operatorname{Vect} A \cap \operatorname{Vect} B$.

Exercice 9

Soient $\mathscr V$ et $\mathscr W$ deux sous-espaces affines **disjoints** d'un $\mathbb R$ -espace vectoriel E. On note V et W leurs directions respectives. Soient $a\in\mathscr V$ et $b\in\mathscr W$. On pose U=V+W, $\mathscr V'=a+U$ et $\mathscr W'=b+U$. Montrer que $\mathscr V'$ et $\mathscr W'$ sont deux sous-espaces affines disjoints, de même direction et contenant respectivement $\mathscr V$ et $\mathscr W$

Exercice 10 (\infty) Dire si les applications suivantes sont des applications linéaires :

1.
$$\mathbb{R} \to \mathbb{R} : x \mapsto 2x^2$$

2.
$$\mathbb{R} \to \mathbb{R} : x \mapsto 4x - 3$$

3.
$$\mathbb{R} \to \mathbb{R} : x \mapsto \sqrt{x^2}$$

4.
$$\mathscr{C}^1([0,1],\mathbb{R}) \to \mathbb{R} : f \mapsto f(3/4)$$

5.
$$\mathscr{C}^1([0,1],\mathbb{R}) \to \mathbb{R} : f \mapsto -\int_{1/2}^1 f(t) \, dt$$

6.
$$\mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto \sin(3x + 5y)$$

7.
$$\mathbb{R}^2 \to \mathbb{R} : (x, y) \mapsto xy$$

8.
$$\mathscr{C}^1([0,1],\mathbb{R}) \to \mathscr{C}^1([0,1],\mathbb{R}) : f \mapsto \left\{ x \mapsto e^{-x} \int_0^1 f(t) dt \right\}$$

Exercice 11 ()

Calculer le noyau et l'image de l'application $f: \mathbb{R}^3 \to \mathbb{R}^3$. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+2y \\ -x-4y+2z \\ 2x+5y-z \end{pmatrix}$

Exercice 12 Donner des exemples d'applications linéaires de \mathbb{R}^2 dans \mathbb{R}^2 vérifiant :

- 1. Ker(f) inclus strictement dans Im(f).
- 2. Im(f) inclus strictement dans Ker(f).
- 3. Ker(f) = Im(f).
- 4. Ker f et Im f sont supplémentaires.

Exercice 13 ()

Soient E un espace vectoriel et $f \in \mathcal{L}(E)$.

- 1. Montrer que Ker $f \subset \text{Ker } f^2$ et $\text{Im } f^2 \subset \text{Im } f$.
- 2. Montrer que $\operatorname{Im} f \cap \operatorname{Ker} f = \{0\} \Longleftrightarrow \operatorname{Ker} f^2 = \operatorname{Ker} f.$
- 3. Montrer que $E = \operatorname{Ker} f + \operatorname{Im} f \iff \operatorname{Im} f^2 = \operatorname{Im} f$.

1. Pour des applications linéaires $f:E\to F,\,g:F\to G,$ établir l'équivalence

$$g \circ f = 0 \iff \operatorname{Im} f \subset \operatorname{Ker} g.$$

2

2. Soit f un endomorphisme d'un e.v. E, vérifiant l'identité $f^2 + f - 2i_E = 0$.

- (a) Montrer que $(f i_E) \circ (f + 2i_E) = (f + 2i_E) \circ (f i_E) = f^2 + f 2i_E = 0$.
- (b) En déduire que $\operatorname{Im}(f i_E) \subset \operatorname{Ker}(f + 2i_E)$ et $\operatorname{Im}(f + 2i_E) \subset \operatorname{Ker}(f i_E)$.
- (c) Montrer que $E = \text{Ker}(f i_E) \oplus \text{Ker}(f + 2i_E)$.

Exercice 15 (\circlearrowleft) Soit $f \in \mathcal{L}(E)$ où E est un K-espace vectoriel. On suppose:

$$\forall x \in E, \exists \lambda \in K, f(x) = \lambda x.$$

Montrer:

$$\exists \lambda \in K, \forall x \in E, f(x) = \lambda x.$$

Exercice 16 ($^{\circ}$) Dans \mathbb{R}^4 , comparer (*i.e.* dire s'ils sont égaux ou si l'un est inclus dans l'autre) les sous-espaces F et G suivants :

$$F = \text{Vect}\{(1,0,1,1), (-1,-2,3,-1), (-5,-3,1,-5)\}$$

$$G = \text{Vect}\{(-1,-1,1,-1), (4,1,2,4)\}$$

Exercice 17 ($^{\circ}$) Dans \mathbb{R}^4 on considère l'ensemble E des vecteurs (x_1, x_2, x_3, x_4) vérifiant $x_1 + x_2 + x_3 + x_4 = 0$. L'ensemble E est-il un sous espace vectoriel de \mathbb{R}^4 ? Si oui, en donner une famille génératrice.

Exercice 18 (\bigcirc \bigcirc \bigcirc Soient dans \mathbb{R}^3 les vecteurs $\overrightarrow{v_1}(1,1,0)$, $\overrightarrow{v_2}(4,1,4)$ et $\overrightarrow{v_3}(2,-1,4)$.

- 1. Montrer que $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ ne sont pas colinéaires. Faire de même avec $\overrightarrow{v_1}$ et $\overrightarrow{v_3}$, puis avec $\overrightarrow{v_2}$ et $\overrightarrow{v_3}$.
- 2. La famille $(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3})$ est-elle libre ?

Exercice 19 Pour tout entier $0 \le k \le n$, on pose $f_k : \mathbb{R} \to \mathbb{R}$ définie par $\forall x \in \mathbb{R}$ $f_k(x) = x^k$. Montrer que la famille $(f_k)_{0 \le k \le n}$ est une famille libre de $\mathbb{R}^{\mathbb{R}}$.

Exercice 20

Quelle est la nature de l'application $f: \mathbb{R}^3 \to \mathbb{R}^3$? Déterminer ses éléments $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} -5x + 2y \\ -12x + 5y \\ -4x + 2y - z \end{pmatrix}$

caractéristiques.

Exercice 21 Soient $p, q \in \mathcal{L}(E)$. Montrer qu'on a équivalence entre les deux assertions suivantes :

- (i) $p \circ q = p$ et $q \circ p = q$.
- (ii) p et q sont deux projecteurs de même noyau.

Exercice 22 (On pose $F = \{(x, y, z) \in \mathbb{R}^3 \mid x = z\}$ et G = Vect(1, 1, 0). On admet que F est un sous-espace vectoriel de \mathbb{R}^3 .

- 1. Montrer que F et G sont supplémentaires dans \mathbb{R}^3 .
- 2. Déterminer une expression explicite de la projection de \mathbb{R}^3 sur F parallèlement à G.

Exercice 23 Soient p et q deux projecteurs d'un \mathbb{K} -ev E. Montrer que :

p-q est un projecteur si et seulement si $p\circ q=q\circ p=q.$

