CS & IT

By- SATISH YADAV SIR

GRAPH THEORY
Lecture No. 2
Degree Sequence In Graphs

Degree Sequence in Graphs

Thm]:
$$\geq d(vi) = 2e$$

Thm2: no of odd degree vertices will be even.

Thm5: $\frac{n(n-1)}{2}$

Thm5: $\frac{2}{2}$

W

writing degrees of all ventices either in increasing or decreasing order

what will be totalnoof edges 5 2 2 2 2 1 Thm 1: Zd(vi)= 2e. 5+2+2+2+1=2e

Total vertices = 6

What will be edge in 3,3,3,1%

DS (3331 → Simple Graph Somple Graph Graphical Sequence: D. 5 → Simple graph

52221.
Graphical sequence

13331.

It is not applical sequence

avaphical sequence

$$2) + 4 - 3 - 2 | (x)$$

$$4)$$
 $33332 (V)$

44321.
it is not
Simple avaph
Reason:
n-1, n-1...1

n-5 4444

no simple avaph.

- * man degree < n-1.
- x no of odd vertices should be even
- × n-1, n-1 - - 1 (


```
3333221
     Havell-Hakimi
                  2223221.
Check (D.S -> G.S)
                 Z2221
                     1122
-> cut
- mark
  D1t(1)
- ordenni
                          ovdening
```


(ut mark. dlt ordering

5432

```
Graphical sequence (follow steps)
```

- 1. man degree < n-1.
- 2 no of odd vertices should be even.

Thm7: In Simple Graph atleast 2 vertres will have some degree

let's take oul vertices as distinct degree.

Total vertices = n

Distinc degrees: { 1, 2, 3. ___ n-1}

Total distinct
degrees
= n-1.


```
repeat -) Dequees
  9 -) Assump
     Degrees Distinct
```


