(1) Let μ_i, ν_i be σ -finite positive measures on X, i = 1, 2. Suppose $\nu_1 \ll \mu_1$ and $\nu_2 \ll \mu_2$. Prove that

$$\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$$

and

$$\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_1)}(x, y) = \frac{d\nu_1}{d\mu_1}(x)\frac{d\nu_2}{d\mu_2}(y) \qquad a.e.$$

- (2) Prove that if $f \in BV[a, b]$, then $|f| \in BV[a, b]$, and $V_a^b(|f|) \le V_a^b(f)$.
- (3) Suppose $f:[a,b]\to\mathbb{R}$ is differentiable at every point in [a,b]. Prove that f is absolutely continuous on [a,b] if and only if $f\in BV[a,b]$.
- (4) Let $f \in BV[a,b]$. Define

$$V(x) = V_a^x(f) \qquad (x \in [a, b]).$$

Prove that:

- (i) $|f'(x)| \le V'(x)$ a.e. $x \in [a, b]$.
- (ii) $\int_{a}^{b} |f'| \le V_a^b(f)$.
- (iii) $\int_a^b |f'| = V_a^b(f)$ if and only if f is absolutely continuous.
- (5) Let (X, \mathcal{A}, μ) be a measure space, and let $1 \leq p < \infty$. Suppose $\{f_n\}_n \subseteq L^p$. (i) If

$$\sum_{n} \|f_n\|_p < \infty,$$

then prove that there exists $f \in L^p$ such that

$$f(x) = \sum_{n} f_n(x)$$
 $(x \in X \text{ a.e.})$

and

$$f = \sum_{n} f_n.$$

- (ii) Prove that if $f_n \to f$ in L^p , then $\{f_n\}_n$ has a subsequence which converges pointwise a.e. to f.
- (6) Let (X, \mathcal{A}, μ) be a measure space, and let $\{f_n\}_n \subseteq L^p$, $1 \leq p \leq \infty$. Suppose $f_n \to f$ in L^p and $f_n \to \tilde{f}$ pointwise a.e. for some $f, \tilde{f} \in L^p$. Does that mean $f = \tilde{f}$ a.e?
- (7) Suppose $f \in L^1(\mathbb{R})$ satisfies

$$\limsup_{h \to 0} \int_{\mathbb{R}} \left| \frac{f(x+h) - f(x)}{h} \right| dm(x) = 0.$$

Prove that f = 0 a.e.

- (8) Let (X, \mathcal{A}, μ) be a measure space. Prove that every L^{∞} Cauchy sequence of measurable functions converges uniformly almost everywhere.
- (9) Let (X, \mathcal{A}, μ) be a measure space. Prove that L^{∞} norm convergence implies pointwise convergence. What about L^p , $1 \leq p < \infty$?
- (10) Let (X, \mathcal{A}, μ) be a measure space, and let $1 \leq p_1 < p_2 < \infty$. Prove the following assertions:
 - (i) If $\mu(X) < \infty$, then $L^{p_2} \subset L^{p_1}$.
 - (ii) If $\mu(X) = 1$, then $||f||_{p_1} \le ||f||_{p_2}$ for all $f \in L^{p_2}$.

- (iii) Give an example to show that if $\mu(X) = \infty$, then the conclusion in (i) need not be true.
- (11) Define $f:[0,\infty)\to\mathbb{R}$ by

$$f(x) = e^{-x}$$
 $(x \in \mathbb{R}).$

For what values of p is f an L^p function?

(12) For what values of p is

$$\left\{\frac{1}{\sqrt{n}\log n}\right\} \in l^p?$$

(13) Prove that $L^{\infty}(\mathbb{R})$ is not separable. Here, \mathbb{R} is equipped with the Lebesgue measure.