# Project Synopsis: HPC Stack Cloud-Based HPC Cluster

#### Introduction

This project aims to design and implement a scalable, portable, and cost-effective High-Performance Computing (HPC) cluster using Docker containerization of Slurm on a cloud-based infrastructure. By leveraging AWS services and integrating Grafana for monitoring, the project delivers an efficient solution for real-time resource management and analytics.

# **Key Objectives**

- 1. **Simplified Deployment:** Streamline the deployment of HPC clusters using containerized Slurm components.
- 2. **Dynamic Scalability:** Facilitate on-demand addition of compute nodes for optimal resource utilization.
- 3. **Platform Independence:** Support deployment across diverse environments with Docker and AWS integration.
- 4. **Cost Optimization:** Deliver a cost-effective solution suitable for research and educational purposes.
- 5. **Enhanced Monitoring:** Provide comprehensive resource and performance analytics with Grafana.

# > Implementation Highlights

- Containerized Components: Essential Slurm components (slurmctld, slurmd, slurmdbd, MySQL) are packaged as Docker containers for simplified deployment and maintenance.
- **AWS Infrastructure:** Leverages AWS EC2 instances for compute resources, VPC for secure network configuration, and EBS for persistent storage.
- **Hybrid HPC-Cloud Workflow:** Combines traditional HPC tools with cloud technologies to support a variety of computational workloads.
- **Real-Time Monitoring:** Integrates Grafana dashboards to visualize metrics such as CPU usage, memory consumption, job queue statistics, and node performance.

#### > Tech Stack

- Orchestration & Monitoring: Docker, Docker Compose, Grafana, Prometheus
- HPC Scheduler: Slurm Workload Manager
- Cloud Services: AWS EC2, VPC, S3, EBS
- **Database:** MySQL for Slurm accounting and resource tracking
- **Networking:** AWS VPC configurations, Security Groups for access control

#### > Milestones

# 1. Achieve Slurm Cloud Environment

Containerize Slurm components and deploy them on AWS infrastructure. Establish a functional Slurm cluster capable of handling job submissions and resource allocation.

### 2. Achieve GPU Support with Docker

Integrate NVIDIA Docker runtime to enable GPU acceleration for HPC tasks. Validate GPU-enabled workloads within the containerized environment.

# 3. Achieve AI/ML-Related Tasks in DevOps Environment

Develop pipelines for deploying and managing AI/ML workflows on the HPC cluster. Utilize DevOps tools for automated job scheduling and resource provisioning.

## 4. Achieve Secure VPC Network

Configure AWS VPC with subnet isolation, routing, and security group policies. Enforce secure communication between components and implement robust access control measures.

## > Data Flow Diagram

