1. Trigonometric Identities

$$e^{\pm jx} = \cos x \pm j \sin x \qquad \sin x \sin y = \frac{1}{2}(\cos(x - y) - \cos(x + y))$$

$$\cos x = \frac{1}{2}(e^{jx} + e^{-jx}) \qquad \cos x \cos y = \frac{1}{2}(\cos(x - y) + \cos(x + y))$$

$$\sin x = \frac{1}{2j}(e^{jx} - e^{-jx}) \qquad \sin x \cos y = \frac{1}{2}(\sin(x - y) + \sin(x + y))$$

$$\sin(x + \pi/2) = \cos(x) \qquad \sin(x + y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\cos(x - \pi/2) = \sin(x) \qquad \cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

2. Summations:

$$\sum_{n=n_1}^{n_2} a^n = \frac{a^{n_1} - a^{(n_2+1)}}{1-a} \qquad \qquad \sum_{n=n_1}^{n_2} n = \frac{(n_2 - n_1 + 1)(n_1 + n_2)}{2}$$

3. Special Functions (continuous-domain):

rectangle function

$$rect(x) \equiv \begin{cases} 1, & |x| < \frac{1}{2} \\ 0, & |x| > \frac{1}{2} \end{cases} \qquad sinc(x) \equiv \frac{\sin(\pi x)}{\pi x}$$

sinc function

$$\operatorname{sinc}(x) \equiv \frac{\sin(\pi x)}{\pi x}$$

triangle function

$$\Lambda(x) \equiv \begin{cases} 1 - |x|, & |x| < 1 \\ 0, & |x| > 1 \end{cases}$$

Dirac Delta function

$$\delta(x) = \lim_{\tau \to 0} \frac{1}{\tau} \operatorname{rect}\left(\frac{x}{\tau}\right)$$

Dirac comb function

$$comb(x) \equiv \sum_{n=-\infty}^{\infty} \delta(x-n)$$

4. Special Functions (discrete-domain)

unit step function

$$u[n] \equiv \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

Kronecker Delta

$$\delta[n] \equiv \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

Kronecker comb

$$u[n] \equiv \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases} \qquad \middle[\begin{array}{c} \delta[n] \equiv \begin{cases} 1, & n = 0 \\ 0, & n \ne 0 \end{cases} \middle] \quad comb_{N}[n] = \sum_{k = -\infty}^{\infty} \delta[n - kN]$$

5. Convolution Sum and Convolution integral:

$$x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] \qquad x(t) * h(t) = \int_{-\infty}^{\infty} x(a)h(t-a)da$$

6. Cross-correlation and Autocorrelation

The *cross-correlation*, $r_{xy}[\ell]$, of two energy sequences, x[n] and y[n], is defined as:

$$r_{xy}[\ell] = \sum_{n=-\infty}^{\infty} x[n] y * [n - \ell] = x[\ell] * y * [-\ell]$$

where y * [n] denotes the complex conjugate of y[n].

The cross-correlation, $r_{xy}[\ell]$, of two power sequences, x[n] and y[n], is defined as:

$$r_{xy}[\ell] = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x[n] y * [n-\ell]$$

If x[n] and y[n] are both periodic with period N, their cross correlation, $r_{xy}[\ell]$, can be computed as:

 $r_{xy}[\ell] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] y * [n - \ell]$

The *autocorrelation* function, $r_{xx}[\ell]$, of a sequence x[n] is the cross-correlation of the sequence with itself.

7. Partial Fraction Expansion:

If
$$Y(z) = \frac{\sum\limits_{k=0}^{m} c_k z^k}{(z - p_1)^{\ell} (z - p_{\ell+1})^{\frac{1}{2} - 1} (z - p_N)}$$
 where $m < N$ and $p_{\ell+1}, \dots, p_N$ are distinct, then

the partial fraction expansion of Y(z) can be expressed as:

$$Y(z) = \frac{A_1}{z - p_1} + \frac{A_2}{(z - p_1)^2} + \dots + \frac{A_{\ell}}{(z - p_1)^{\ell}} + \frac{A_{\ell+1}}{z - p_{\ell+1}} + \dots + \frac{A_N}{z - p_N}$$

where the coefficients, $A_1, ..., A_N$ can be found as:

$$\begin{split} A_{\ell} &= \left((z - p_1)^{\ell} Y(z) \right) \Big|_{z = p_1} \\ A_{\ell - m} &= \frac{1}{m!} \left(\frac{d^m}{dz^m} \left[(z - p_1)^{\ell} Y(z) \right] \right) \Big|_{z = p_1}, \, m = 1, \dots, \ell - 1 \\ A_k &= \left((z - p_k) Y(z) \right) \Big|_{z = p_k}, \, k = \ell + 1, \dots, N \end{split}$$

8. Z-Transform: Let X(z) denote the Z Transform of the signal x[n]. Then:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$
 and $x[n] = \oint_C X(z)z^{n-1}dz$

Selected Z Transform Pairs

x[n]	X(z)	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
$a^nu[n]$	$\frac{1}{1-az^{-1}}$	z > a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\cos(2\pi F_0 n)u[n]$	$\frac{1 - z^{-1}\cos(2\pi F_0)}{1 - 2z^{-1}\cos(2\pi F_0) + z^{-2}}$	z > 1
$\sin(2\pi F_0 n)u[n]$	$\frac{z^{-1}\sin(2\pi F_0)}{1 - 2z^{-1}\cos(2\pi F_0) + z^{-2}}$	z > 1
$\cos(2\pi F_0 n + \theta)u[n]$	$\frac{\cos(\theta) - z^{-1}\cos(2\pi F_0 - \theta)}{1 - 2z^{-1}\cos(2\pi F_0) + z^{-2}}$	z > 1
$a^n \cos(2\pi F_0 n) u[n]$	$\frac{1 - az^{-1}\cos(2\pi F_0)}{1 - 2az^{-1}\cos(2\pi F_0) + a^2z^{-2}}$	z > a

Selected Z Transform Properties

In stating the following Z-Transform properties, we assume that: x[n] has Z Transform X(z) with $ROC_X = \{z : r_1 < |z| < r_2\}$; $x_1[n]$ has Z Transform $X_1(z)$ with ROC_1 ; and $x_2[n]$ has Z Transform $X_2(z)$ with ROC_2 .

Property	Time Domain	Z Domain	ROC
Linearity	$g[n] = ax_1[n] + bx_2[n]$	$G(z) = aX_1(z) + bX_2(z)$	$\mathrm{ROC}_G\supseteq \left(\mathrm{ROC}_1\cap \mathrm{ROC}_2\right)$
Time-reversal	g[n] = x[-n]	$G(z) = X(z^{-1})$	$ROC_G = \left\{ z : \frac{1}{r_2} < z < \frac{1}{r_1} \right\}$
Time-shifting	$g[n] = x[n - n_0]$	$G(z) = z^{-n_0} X(z)$	$ROC_G = ROC_X$ with possible exceptions at $z = 0$ and $z = \infty$
TD: multiplication by a^n ZD: z-scaling by a	$g[n] = a^n x[n]$	$G(z) = X\left(\frac{z}{a}\right)$	$ROC_G = \{z : a r_1 < z < a r_2\}$
TD: multiplication by <i>n</i> ZD: differentiation	g[n] = nx[n]	$G(z) = -z \frac{dX(z)}{dz}$	$ROC_G = ROC_X$
TD: convolution ZD: mutiplication	$g[n] = x_1[n] * x_2[n]$	$G(z) = X_1(z)X_2(z)$	$\mathrm{ROC}_G\supseteq \left(\mathrm{ROC}_1\cap\mathrm{ROC}_2\right)$

Note:

 $\mathrm{ROC}_X = \{z: r_1 < |z| < r_2\}$ is read as "the ROC of X(z) is the set of all z such that the magnitude of z is greater than r_1 but less than r_2 " $\mathrm{ROC}_G \supseteq (\mathrm{ROC}_1 \cap \mathrm{ROC}_2)$ is read as "the ROC of G(z) includes at least the intersection of the ROC's of $X_1(z)$ and $X_2(z)$ "

9. Discrete-time Fourier Transform: Let $G_{\text{DIFT}}(F)$ denote the Discrete-Time Fourier Transform of the signal g[n]. Then:

$$G_{\mathrm{DIFT}}(F) = \sum_{n=-\infty}^{\infty} g[n]e^{-j2\pi Fn}$$
 and $g[n] = \int_{1} G_{\mathrm{DIFT}}(F)e^{j2\pi Fn}dF$

Selected Discrete-Time Fourier Transform Properties

Property	Mathematical Description		
Sum of $g[n]$	$\sum_{n=-\infty}^{\infty} g[n] = G_{\text{DTFT}}(0)$		
Area under $G_{DTFT}(F)$	$g[0] = \int_{1} G_{\text{DTFI}}(F) dF$		
Time Shifting	$g[n-n_0] \iff G_{\text{DIFT}}(F)e^{-j2\pi Fn_0}$		
Frequency Shifting	$g[n]e^{j2\pi F_0 n} \qquad \Leftrightarrow \qquad G_{\text{DIFI}}(F - F_0)$		
Linearity	$ag_1[n] + bg_2[n] \Leftrightarrow aG_{1,\text{DIFI}}(F) + bG_{2,\text{DIFI}}(F)$		
Conjugate Functions	$g^*[n] \qquad \leftrightarrows \qquad G^*_{\text{DIFI}}(-F)$		
Multiplication in time	$g[n]h[n] \qquad \Leftrightarrow \qquad \left(G_{\text{DIFI}}(F)\text{rect}(F)\right) * H_{\text{DIFI}}(F)$ $= G_{\text{DIFI}}(F) * \left(H_{\text{DIFI}}(F)\text{rect}(F)\right)$		
Convolution in time note: at least one of the two	$g[n] * h[n] \leq G_{\text{DIFI}}(F)H_{\text{DIFI}}(F)$ signals $(g[n] \text{ or } h[n])$ must be an energy signal		

Selected Discrete-Time Fourier Transform Pairs

$$\delta[n] \iff 1$$

$$\sum_{k=-\infty}^{\infty} N\delta[n-kN] = N\text{comb}_{N}[n] \iff N\text{comb}(FN) = \sum_{k=-\infty}^{\infty} \delta\left(F - \frac{k}{N}\right)$$

$$\exp(j2\pi an) \iff \delta(F-a) * \text{comb}(F)$$

10. Discrete Fourier Transform: Let $G_{DFI,N}[k]$ denote the N-point DFT of the signal g[n]. Then:

$$G_{\text{DFT }N}[k] = \sum_{n=0}^{N-1} g[n]e^{-j2\pi \frac{k}{N}n}$$
 and $g[n] = \frac{1}{N} \sum_{k=0}^{N-1} G_{\text{DFT }N}[k]e^{j2\pi \frac{k}{N}n}$ $n = 0, ..., N-1$

11. Discrete Fourier Series

If g[n] periodic with period N, then g[n] can be expressed in terms of its DFS representation as follows:

$$g[n] = \sum_{k=0}^{N-1} c_k e^{j2\pi \frac{k}{N}n} \qquad \text{where} \qquad c_k = \frac{1}{N} \sum_{n=0}^{N-1} g[n] e^{-j2\pi \frac{k}{N}n}$$
 (1)