

Business Analytics using Data Mining

BU7143

Dr. Nicholas P. Danks Business Analytics nicholas.danks@tcd.ie

Tools we will use

Coding language

Install R:

http://www.r-project.org/

Integrated Development Environment

Install RStudio:

http://www.rstudio.com/

Version control

Join GitHub:

https://github.com/

Textbook

Data Mining for Business Analytics in R

Shmueli, Bruce, Yahav, Patel & Lichtendahl

© Galit Shmueli and Peter Bruce 2017 (rev. Sep 10 2019) (any version is OK – but for **R** is better)

Overview of Today's Session

- 1. Translating Business Problems to Statistical Problems
- Core tasks/goals of Data Mining
- 3. The process of Data Mining
- 4. Sampling
- 5. Variable types
- 6. Outliers, missing data, normal data
- 7. Dimension Reduction
- 8. Performance

Business Problem -> Statistical Problem

- 1. Understand & Define the problem
- Frame the business problem
- Prepare for a decision
- 2. Set analytic goals and scope your solution
- Set objectives and define milestones
- Design minimum viable product
- Identify target metrics
- 3. Plan the analysis
- Plan your datasets
- Plan your methods

Pandemic Example

What data do we have?
How can it be converted?
What can be predicted?
What is the business value?

https://youtu.be/TGahNuPH9LY

Vendor serial number	User phone number	Timestamp
111-111-111	0851991999	10:45:22-21:05:2021

Supervised: Classification

- Goal: Predict categorical target (outcome) variable
- Examples: Purchase/no purchase, fraud/no fraud, creditworthy/not creditworthy...
- Each row is a case (customer, tax return, applicant)
- Each column is a variable
- Target variable is often binary (yes/no)

Unsupervised Learning

- **Task:** Segment data into meaningful segments; detect patterns
- Data: There is <u>no target</u> (outcome) variable to predict or classify
- Goal: Identify which group an obs belongs to
- **Methods:** Association rules, collaborative filters, data reduction & exploration, visualization

Unsupervised: Collaborative Filtering

- Task: Recommend products to purchase
- Data: Based on products that customer rates, selects, views, or purchases
- Goal: Recommend products that "customers like you" purchase (user-based); or
- Goal: recommend products that share a "product purchaser profile" with your purchases (item-based)

Cross-sectional (Stationary)

	Α	В	С	D	Е	F	G	Н	1	J	K
1	RushHour	WRK_ZONE	WKDY	INT_HWY	LGTCON_day	LEVEL	SPD_LIM	SUR_COND_	TRAF_two_v	WEATHER_a	MAX_SEV
2	1	0	1	1	0	1	70	0	0	1	no-injury
3	1	0	1	0	0	0	55	0	1	0	non-fatal
4	1	0	0	0	0	0	35	0	0	1	no-injury
5	1	0	1	0	0	1	35	0	0	1	no-injury
6	1	0	1	0	0	0	25	0	0	1	non-fatal
7	1	0	1	0	0	0	35	0	0	1	non-fatal
8	1	0	1	0	0	0	60	0	0	0	no-injury
9	1	0	1	0	0	1	45	1	1	0	non-fatal
LO	0	0	1	1	0	0	55	1	0	0	no-injury
11	1	0	1	1	0	0	70	1	0	0	non-fatal
12	0	0	1	1	0	0	65	1	0	0	no-injury
13	1	0	1	0	0	0	40	1	0	0	non-fatal
L4	1	0	1	0	0	0	45	1	0	0	non-fatal
15	1	0	0	0	0	0	45	1	1	0	non-fatal
16	1	0	1	0	0	0	45	1	1	0	no-injury
17	1	0	1	0	0	0	30	1	1	0	non-fatal
18	1	0	1	0	0	0	55	1	1	0	non-fatal
19	1	0	1	0	0	0	55	1	1	0	no-injury
20	1	0	1	0	0	0	25	1	1	0	no-injury
21	0	0	1	0	0	1	35	0	0	1	no-injury
22	0	0	1	0	0	1	35	0	1	1	no-injury
23	0	0	1	0	0	0	25	0	1	1	no-injury
24	0	0	1	0	0	1	45	0	0	1	no-injury
25	1	0	1	0	0	0	35	0	1	1	no-injury
26	0	0	1	0	0	1	55	0	0	1	non-fatal
27	1	0	1	0	0	1	40	0	0	1	no-injury
28	1	0	0	0	0	1	35	0	1	1	non-fatal
29	0	0	0	0	0	1	25	0	1	0	non-fatal
30	0	0	1	0	0	1	25	0	1	1	no-injury
	_	^	^	_	_	^		^	_		

Does driving cause traffic fatalities? *Miles driven and fatality rate: U.S. states, 2012*

Quantitative Measurement Scales

Ordinal

Ratio

Nominal source: ESPN.com; the tips bank.com

Interval

Nominal Scale

- grouping / categorization

Ordinal Scale

- greater-than / less-than comparisons

Interval Scale

- greater-than / less-than comparisons
- meaningful units
- meaningful distance within scale

Ratio Scale

- greater-than / less-than comparisons
- meaningful units
- meaningful distance within scale
- absolute zero
- meaningful multiples

	source: ESPN.com; the tipsbank.com									
	Men	's Singles Rankings								
	RK	PLAYER	COUNTRY	MOVEM	IENT	POINTS				
	1	Roger Federer	+	\Leftrightarrow	0	10105				
*	2	Rafael Nadal	<u>.6.</u>	\Leftrightarrow	0	9760				
	3	Marin Cilic		\Leftrightarrow	0	4960				
	4	Grigor Dimitrov	_	\Leftrightarrow	0	4635				
	5	Alexander Zverev		\Leftrightarrow	0	4450				
	6	Dominic Thiem		\Leftrightarrow	0	3810				
	7	David Goffin		\Leftrightarrow	0	3280				
	8	Kevin Anderson		Û	1	2825				
	9	Juan Martin del Potro	•	Û	1	2745				
	10	Jack Sock		1	2	2650				

\$	The four levels of measurement						
Scribbr	Nominal	Ordinal	Interval	Ratio			
Categories	•	②	Ø	0			
Rank order		②	②	0			
Equal spacing			②	0			
True zero				0			

Creating Binary Dummies

>	head(cbind(housing	.df\$REMODEL,	xtotal))	
	housing.df\$REMODEL	${\sf REMODELNone}$	REMODELOld	REMODELRecent
1	None	1	0	0
2	Recent	0	0	1
3	None	1	0	0
4	None	1	0	0
5	None	1	0	0
6	Old	0	1	0

- Most algos require data to be ordered
- The REMODEL variable is categorical
- Is it ordered?
- Unordered?
- Unordered variables usually have to be coded as dummies

Note: R's lm() function automatically creates dummies, so you can skip dummy creation when using lm()

Handling Missing Data

WE can use statistical tests for missing evaluation:
e.g. Little's test of MCAR

- Most algorithms will not process records with missing values.
 - Default is to drop those records.
- Solution 1: Omission
 - If a small number of records have missing values, can omit them
 - If many records are missing values on a small set of variables, can drop those variables (or use proxies)
 - If many records have missing values, omission is not practical
- Solution 2: Imputation
 - Replace missing values with reasonable substitutes
 - Let's you keep the record and use the rest of its (non-missing) information

The Problem of Overfitting

- Statistical models can produce highly complex explanations of relationships between variables
- Causes:
 - Too many predictors (too many p, or too few n)
 - A model with too many parameters
 - Trying many different models
- (When p = n, we have perfect fit)
- Consequence: Deployed model will not work as well as expected with completely new data.

100% fit – Excellent!!

Or not!

Test Partition

- When a model is developed on training data, it can overfit the training data (hence need to assess on validation)
- Assessing multiple models on same
 validation data can overfit validation data
- Some methods use the validation data to choose a parameter. This too can lead to overfitting the validation data
- Solution: final selected model is applied to a <u>test</u> partition to give unbiased estimate of its performance on new data

Part 2 Dimension Reduction

Rotation: Change in Perspective

Dimension Reduction: Decathlon

One use of PCA is to reduce the dimensionality of data

Correlates:

```
round(cor(decathlon),2)
```

```
Terminal ×
                    Jobs ×
Console
~/Google Drive/Teaching/Trinity/BU7143 BADM/Classes/Session 1-2/Session 1-2 RProj/
> round(cor(decathlon),2)
      X100m
               lj
                           hj X400m X110h
                                           dis
                                                       jav X1500m
      1.00 -0.54 -0.21 -0.15 0.61 0.64 -0.05 -0.39
                                                     -0.06
X100m
                                                             0.26
lj
                         0.27 -0.52 -0.48 0.04 0.35
                                                            -0.40
            0.14 1.00
                        0.12 0.09 -0.30 0.81 0.48
                                                             0.27
            0.27 0.12 1.00 -0.09 -0.31 0.15
                                                            -0.11
       0.61 -0.52 0.09 -0.09 1.00
                                    0.55 0.14 -0.32
                                                             0.59
X400m
X110h
       0.64 -0.48 -0.30 -0.31 0.55 1.00 -0.11 -0.52 -0.06
                                                             0.14
            0.04 0.81 0.15 0.14 -0.11 1.00 0.34
                                                             0.40
dis
      -0.39 0.35 0.48 0.21 -0.32 -0.52 0.34 1.00
pν
                                                            -0.03
       -0.06 0.18 0.60 0.12 0.12 -0.06 0.44 0.27
                                                             0.10
X1500m 0.26 -0.40 0.27 -0.11 0.59 0.14 0.40 -0.03 0.10
                                                             1.00
```

Eigenvalues:

decathlon_eigen <- eigen(cor(correlates))</pre>

```
decathlon_eigen$values
[1] 2.43 0.96 0.35 0.26

sum(decathlon_eigen$values)
[1] 4

decathlon_eigen$values / sum(decathlon_eigen$values)
[1] 0.61 0.24 0.09 0.07

Ratio of eigenvalue/dimensions
is variance captured!
```


These correlates capture WHAT?

Interpreting Principal Components: Decathlon Example

Examining the results of PCA

```
dec_pca <- prcomp(dec, scale. = TRUE)</pre>
dec_pca$rotation
                                      PC6
             0.15 - 0.27
                                     0.03
lj
                              0.37 - 0.09
             0.48 0.10 0.11 -0.01 0.23 -0.11 -0.07 -0.42
hj
             0.03 -0.85 -0.39
                               0.00
             0.35 -0.19 -0.08
                               0.15 - 0.33
X110h
             0.07 -0.13 0.38 -0.09
                  0.05 -0.03
dis
             0.15 0.14 -0.14 -0.72 -0.35
             0.37 -0.19 0.60
                               0.10 -0.44 -0.34 -0.06
X1500m -0.17 0.42 0.22 -0.49 0.34 -0.30
                                          0.19 -0.01 0.46 -0.24
```

w: "weights" are like regression coefficients between PC score and items (but they are still hard to interpret)

Confirming orthogonality of components

rour	ıd(cor	'(sc	ore	s),	2)				
	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
PC1	1	0	0	0	0	0	0	0	0	0
PC2	0	1	0	0	0	0	0	0	0	0
PC3	0	0	1	0	0	0	0	0	0	0
PC4	0	0	0	1	0	0	0	0	0	0
PC5	0	0	0	0	1	0	0	0	0	0
PC6	0	0	0	0	0	1	0	0	0	0
PC7	0	0	0	0	0	0	1	0	0	0
PC8	0	0	0	0	0	0	0	1	0	0
PC9	0	0	0	0	0	0	0	0	1	0
PC10	0	0	0	0	0	0	0	0	0	1

 $PC_{i} = w_{i1} \cdot X100m + w_{i2} \cdot lj + w_{i3} \cdot sp + w_{i4} \cdot hj + w_{i5} \cdot X400m + w_{i6} \cdot X110h + w_{i7} \cdot dis + w_{i8} \cdot pv + w_{i9} \cdot jav + w_{i10} \cdot X1500m$

The scores of each principal component is a weighted sum of our original dimensions

Summary

- Data summarization is an important for data exploration
- Data summaries include numerical metrics (average, median, etc.) and graphical summaries
- Data reduction is useful for compressing the information in the data into a smaller subset
 - Categorical variables can be reduced by combining similar categories
 - Principal components analysis transforms an original set of numerical data into a smaller set of weighted averages of the original data that contain most of the original information in less variables.

Why Evaluate?

- Multiple methods are available to classify or predict
- For each method, multiple choices are available for settings
- To choose best model, need to assess each model's performance

HW Suggestions

CREATE well formatted reports

Briefly summarize the question

Format it to distinguish:

question | description | code | output | answers

Show code and relevant text output

use text, not screenshots

Show relevant visualizations

export graphics from Rstudio; not screenshots

CREDIT peers who helped!!

Mention their ID at the top of your assignment!

Peers who help will get extra-credit at end-of-semester

No screen shots of code, results, or visualizations!