# Tarefa 12/06/2023 – 5% da nota da segunda avaliação

Enviar as respostas pelo Moodle em um arquivo em formato PDF.

O trabalho pode ser feito em grupo de até 4 alunos ou individualmente. Caso seja feito em grupo, cada aluno do grupo deve enviar pelo Moodle o arquivo com as respostas e o arquivo deve conter os nomes de todos os membros do grupo.

Considere o banco de dados distribuído da empresa ACME, que foi usado em aula para explanar parte do conteúdo de Banco de Dados Distribuído.

#### Neste banco de dados:

- Existe um banco de dados distribuído formado por 3 bancos de dados que rodam em servidores diferentes, um em cada estado (RS,SP e MG) atendendo a cada filial da empresa;
- A tabela produto é replicada (tem o mesmo conteúdo em cada uma das bases de dados que faz parte do Banco de Dados Distribuído);
- A tabela funcionário é fragmentada horizontalmente. Assim, na base do RS, por exemplo, estão apenas funcionários que atuam no RS estão armazenados;
- A tabela estoque é fragmentada horizontalmente. Assim, na base do RS apenas os dados dos estoques da filial RS estão armazenados.

A seguir é apresentada uma figura com o modelo lógico simplificado das tabelas presentes na base de cada filial.



**Lembrando**: A ideia é no banco de dados distribuído é que a maioria das transações fique limitada a uma única base de dados e não envolva outras bases. Desta forma, ao ser realizada uma venda é acessada a tabela com os dados dos produtos (tabela replicada) e atualizada a tabela de estoque da filial (tabela fragmentada). Isto ocorre pelo fato de que uma venda feita em uma filial envolve apenas o estoque da filial. Obs. Evidentemente outras tabelas usadas para o registro de vendas devem estar presentes em cada base, mas foram omitidas no exemplo.

Exemplificando o conteúdo das tabelas produto e estoque

### Produto (o mesmo conteúdo nas 3 bases de dados)

| codprod | nomprod   | unidade | valor    |
|---------|-----------|---------|----------|
| 1       | Produto 1 | peça    | 1.300,00 |
| 2       | Produto 2 | peça    | 1.400,00 |
| 3       | Produto 3 | peça    | 2.200,00 |
| 4       | Produto 4 | peça    | 2.300,00 |

Tabela Estoque é fragmentada horizontalmente.

### Estoque\_RS

| codprod | <u>codfilial</u> | quantidade |
|---------|------------------|------------|
| 1       | RS               | 200        |
| 2       | RS               | 300        |
| 3       | RS               | 150        |
| 4       | RS               | 10         |

### **Estoque SP**

| codprod | <u>codfilial</u> | quantidade |
|---------|------------------|------------|
| 1       | SP               | 6          |
| 2       | SP               | 60         |
| 3       | SP               | 78         |
| 4       | SP               | 40         |

### Estoque\_MG

| codprod | codfilial | quantidade |
|---------|-----------|------------|
| 1       | MG        | 70         |
| 2       | MG        | 44         |
| 3       | MG        | 17         |
| 4       | MG        | 23         |

A partir disto faça os exercícios a seguir.

#### Exercício 1

Usando SQL, crie uma visão chamada **Estoque\_Geral** que reúna os fragmentos da tabela estoque em uma única tabela.

ATENÇÃO: Como não temos um banco de dados distribuído, crie todas as tabelas de estoque (Estoque\_RS, Estoque\_SP e Estoque\_MG) na mesma base usando instruções SQL e depois a visão .

A visão **Estoque\_Geral** deve apresentar o seguinte conteúdo quando for executada uma consulta que recupere os dados de todas linhas e colunas:

## Estoque\_Geral

| codprod | <u>codfilial</u> | quantidade |
|---------|------------------|------------|
| 1       | RS               | 200        |
| 2       | RS               | 300        |
| 3       | RS               | 150        |
| 4       | RS               | 10         |
| 1       | SP               | 6          |
| 2       | SP               | 60         |
| 3       | SP               | 78         |
| 4       | SP               | 40         |
| 1       | MG               | 70         |
| 2       | MG               | 44         |
| 3       | MG               | 17         |
| 4       | MG               | 23         |

#### Exercício 2

Para manter a atomicidade os SGBDs utilizam recuperação baseada em LOG.

Considere uma transação que faça venda de 4 unidades do produto 2 na base do RS executando a seguinte instrução:

UPDATE Estoque\_RS SET quantidade = quantidade - 4 where codprod = 2;

O arquivo de log da base de dados do RS com o registro das atualizações na tabela Estoque RS ficaria com os seguintes registros no log:

```
<T1, start>
<T1,quantidade_produto_2_RS, 300, 296>
<T1, commit>
```

Neste arquivo de log, no registro <T1,quantidade\_produto\_2\_RS, 300, 296>, quantidade\_produto\_2\_RS é uma referência a linha alterada na tabela, 300 o valor existente antes da alteração e 296 o valor existente após a alteração.

Agora considere que se deseja fazer a transferência de 50 unidades do produto 3 da base do RS para a base de MG.

Isto implica na execução de duas instruções uma em cada base de dados:

#### begin,

```
UPDATE Estoque_RS SET quantidade = quantidade - 50 where codprod = 3;
UPDATE Estoque_MG SET quantidade = quantidade + 50 where codprod = 3;
commit;
```

Esta é uma transação distribuída, pois envolve não apenas uma base de dados local.

Uma transação distribuída faz uso de protocolos como o 2PC (Two Phase Commit).

No protocolo 2PC, uma das bases (isto é, um dos nós) assume a coordenação da transação. Neste exemplo a coordenação será feita por SP que foi o nó/base onde a transação foi iniciada.

### A partir disto:

Escreva os registros de log desta transação distribuída que seriam gerados em cada uma das bases (são três arquivos de log distintos um para RS, outro para SP e outro para MG). (Obs. Use o mesmo "modelo" do arquivo de log mostrado anteriormente para a transação: UPDATE Estoque RS SET quantidade = quantidade - 4 where codprod = 2;)

<u>Atenção:</u> no protocolo 2PC novos tipos de registro de log devem ser criados <T1, ready>, <T1, abort>, <T1, prepare>, etc. Neste sentido, para fazer este exercício, ver os slides de aula sobre BDs Distribuídos e especialmente as seções 23.2.1 e 23.2.1.1. do seguinte livro disponível em Minha Bilioteca na UFSM:

SILBERSCHATZ, Abraham. **Sistema de Banco de Dados**.: Grupo GEN, 2020. *E-book*. ISBN 9788595157552. Disponível em:

https://integrada.minhabiblioteca.com.br/#/books/9788595157552/

Seguem instruções sobre como acessar Minha Biblioteca.

Para acessar os ebooks em minha biblioteca, acessar o link

https://portal.ufsm.br/biblioteca/pesquisa/index.html

Após, fazer o login com matrícula e senha.



No portal da Minha Biblioteca, você pode acessar o link do livro, "copiando" o link a seguir no navegador onde fez a autenticação ou fazendo pesquisa pelo título do livro ou nome do autor:

https://integrada.minhabiblioteca.com.br/#/books/9788595157552/