EECS E6690: SL for Bio & Info Lecture 11: Dimensionality Reduction, Information Ranking, Association Analysis, and Social Networks

Prof. Predrag R. Jelenković Time: Tuesday 4:10-6:40pm 1127 Seeley W. Mudd Building

Dept. of Electrical Engineering Columbia University , NY 10027, USA Office: 812 Schapiro Research Bldg. Phone: (212) 854-8174

Email: predrag@ee.columbia.edu
URL: http://www.ee.columbia.edu/~predrag

Unsupervised Learning

There is no input-output relationship, y=f(x), i.e. there is no ${\bf y}$.

- We only have a bunch of points (x_1, x_2, \ldots, x_n)
- The problem has less structure
- We are trying to discover a structure maybe more interesting

Typical questions and approaches

- Clustering grouping data points
- Principal Component Analysis (PCA): used of preprocessing and visualization
- Ranking: e.g., Google's PageRank algorithm
- Association Rules Market Basket Analysis discovering relationships between data points
- Community Detection or Graph Clustering: e.g., discovering communities on Facebook

Last lecture: Principal Components Analysis (PCA)

Principal Components Analysis - unsupervised approach (no use of Y)

- Finding directions along which data is located highly variable
- These directions define lines/subspaces that are close to the "data cloud"
- ► Can be used for visualization/understanding data
- ► Can be used as preprocessing for supervised learning

PCA: Example

Two PC-s: Solid line: First PC; Dashed line: Second PC

PCA: Good for High Dimensional Data - Large p

- Dimensionality reduction e.g. gene expression data
- ightharpoonup Assume we compute M principal components
- lacktriangle The best M-dimensional approximation to x_{ij}

$$x_{ij} = \sum_{m=1}^{M} z_{im} \phi_{jm}$$

How good is PC approximation?

- Proportion of Variance Explained (PVE)
- ▶ For each component, m, PVE is equal to

$$\frac{\sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{jm} x_{ij}\right)^{2}}{\sum_{ij} x_{ij}^{2}}$$

PCA is an Eigen-Decomposition Problem

- In general finding k-principal components is equivalent to finding a k imes p matrix such that $m{z}_i = W m{x}_i$
- lacktriangle We also want linear recovery, i.e., to find a matrix U, such that $\hat{m{x}}_i = Um{z}_i = UWm{x}_i pprox m{x}_i$
- ▶ Hence, this reduces to an optimization problem

$$\arg\min_{W,U} \sum_{i=1}^{\infty} \|\boldsymbol{x}_i - UW\boldsymbol{x}_i\|^2 \tag{1}$$

Theorem Let $A = \sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i^{\top}$ and let $\boldsymbol{u}_1, \dots, \boldsymbol{u}_k$ be the k leading eigenvectors of A. Then, the solution to the PCA problem is to set the columns of U to be $\boldsymbol{u}_1, \dots, \boldsymbol{u}_k$ and to set $W = U^{\top}$.

Efficient Solution for High-Dimensional Data: $p \gg n$

The complexity of the previously described PCA solution is $\mathcal{O}(p^3)$:

- $lackbox{ }O(np^2)$ is the complexity of computing the matrix $A=\sum_{i=1}^n x_ix_i^{ op}$.
- ▶ $O(p^3)$ is the complexity of eigendecomposition of A.

Now, consider an alternative calculation:

- ▶ Rewrite $A = X^{\top}X$, where X is $n \times p$ matrix with ith row \boldsymbol{x}_i^{\top}
- ▶ Consider $K = XX^{\top}$, $n \times n$, dot-product matrix (linear kernel), whose (i,j) element is $\langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle$
- ► Suppose *u* is an eigenvector of *K*:

$$K\mathbf{u} = \lambda \mathbf{u}$$

- ▶ Multiplying the preceding equality by X^{\top} : $X^{\top}XX^{\top}u = \lambda X^{\top}u$
- ▶ Implying: $A(X^{\top} \boldsymbol{u}) = \lambda(X^{\top} \boldsymbol{u})$
- ▶ Hence, $\frac{X^{\top}u}{\|X^{\top}u\|}$ is the eigenvector of A
- ▶ We can thus calculate the PCA solution from eigendecomposition of K with complexity $O(n^3 + n^2p)$

Kernel PCA

- **E**xpand basis $x o \phi(x)$, where $\phi(x)$ is in some Hilbert space
- Now, PCA is based on orthogonal projections

$$\langle oldsymbol{\phi}(oldsymbol{x}_i), oldsymbol{\phi}(oldsymbol{x})
angle$$

- ▶ Which, based on the preceding slide, can be done by performing eigen decomposition of the kernel matrix $K = \{\langle \phi(x_i), \phi(x_j) \rangle\}$
- Moreover, recall that our approximation functions are of the form

$$g_1(x) = \sum_{i=1}^n \phi_{i1} k(x, x_i)$$

 Hence, we can think of finding the first principle component of Kernel PCA as the variance maximization

$$\max_{g_1 \in \mathcal{H}_k} \mathsf{Sample} \; \mathsf{Var}(g_1(X)) \quad \text{ subject to } \quad \|g_1\|_{\mathcal{H}_k} = 1$$

Now the approximation "directions" are not lines anymore

Example: Dimensionality Reduction of Images

- ▶ Top left: 50×50 pixel image: p = 2,500 dimensions
- ▶ Top right: Reconstruction with k = 10 principal components: $10 \ll 2,500(!)$

PCA on the NCI60 Data

First scale the data > pr.out=prcomp(nci.data, scale=TRUE) Then, assign a color to each of the 64 cancer cell lines Cols=function(vec){ + cols=rainbow(length(unique(vec))) + return(cols[as.numeric(as.factor(vec))]) } ▶ We now can plot the principal component score vectors > par(mfrow=c(1,2))> plot(pr.out\$x[,1:2], col=Cols(nci.labs), pch=19, xlab="Z1",ylab="Z2") > plot(pr.out\$x[,c(1,3)], col=Cols(nci.labs), pch=19,xlab="Z1",ylab="Z3")

PCA on the NCI60 Data

- Observations belonging to a single cancer type tend to lie near each other in this low-dimensional space.
- ▶ Not possible to visualize data without PCA, $\binom{6832}{2}$ scatter plots (!)

Principal Value Explained (PVE) on NCI60 Data

- ► First 7 PC-s explain 40% of data
- ▶ 70 PC-s explain 100% of data
- Compare 70 to p = 6832(!)

Other Dim-Reduction Techniques: Random Projections

Let W be a random $m \times p, m < p$ matrix, then the transformation ${m x} o W {m x}$

is a random projection.

- ▶ Simple compression technique that works remarkably well.
- ▶ It is based on Johnson-Lindenstrauss lemma, which shows that random projections do not distort Euclidian distance a lot, i.e.,

$$\|x_1 - x_2\| \approx \|Wx_1 - Wx_2\|,$$

which is equivalent to showing that $\|Wx\|/\|x\| \approx 1$.

Lemma Fix $x \in \mathbb{R}^p$. Let W be $m \times p$ random matrix with independent standard normal components. Then, for every $\epsilon \in (0,3)$,

$$\mathbb{P}\left[\left|\frac{\|W\boldsymbol{x}/\sqrt{m}\|^2}{\|\boldsymbol{x}\|^2}-1\right|>\epsilon\right]\leq 2e^{-\epsilon^2m/6}.$$

Other Dim-Reduction Techniques: Random Projections

Proof: Without loss of generality assume $\|x\|=1$. Hence, it remains to prove $\mathbb{P}[(1-\epsilon)m<\|Wx\|^2<(1+\epsilon)m]>1-2e^{-\epsilon^2m/6}$

To this end, if w_i is the ith row of W, then $\langle w_i, x \rangle$ is normal with mean zero and

$$\sigma^2 = \sum_{j=1}^p x_j^2 = \|\boldsymbol{x}\|^2 = 1$$

Hence, $\|Wx\|^2$ has χ_m^2 distribution since

$$||W\boldsymbol{x}||^2 = \sum_{i=1}^m \langle \boldsymbol{w}_i, \boldsymbol{x} \rangle^2,$$

and $\langle w_i, x \rangle$ are independent standard normal variables. Thus, the claim of the lemma is equivalent to

$$\mathbb{P}[(1-\epsilon)m \le \chi_m^2 \le (1+\epsilon)m] \ge 1 - 2e^{-\epsilon^2 m/6},$$

which can be derived using Chernoff's bound, e.g., see Lemma B.12 in Shai Shalev-Shwartz and Shai Ben-David book.

Other Dim-Reduction Techniques: Compressed Sensing

Compressed Sensing:

► Also a linear technique

$$\boldsymbol{x} \to W \boldsymbol{x}$$

Matrix W has a special property: Reconstructed Isoperimetric Property (RIP): A matrix W is (ϵ,s) RIP if for all $\|\boldsymbol{x}\| \neq 0$, such that $\|\boldsymbol{x}\|_0 \leq s$,

$$\left| \frac{\|W\boldsymbol{x}\|^2}{\|\boldsymbol{x}\|^2} - 1 \right| \le \epsilon$$

- A random (!) $m \times p$ matrix is likely to satisfy the RIP condition provided that $m > s \log(p)$.
- Reconstruction solves a linear program, and it can be computed in polynomial time.

See Section 23.3 of Shai Shalev-Shwartz and Shai Ben-David book for more details.

Information Retrieval from Large Related Data: the Web

- ▶ Suppose we have a large amount of related data e.g. the Web
- ► Relationship between data items, e.g. Web pages, can be expressed as a graph
- ► Information retrieval Search: suppose we are looking for all data items (Web pages) that contain some information/keywords
- Typically the search will return a large number of results
- ▶ Hence, we need to rank them
- ► How?
- ► Example: The Google PageRank Algorithm

The Google PageRank Algorithm

- ▶ Idea: A page should be important if
 - It is pointed to by highly ranked pages
 - It is pointed/connected to by a lot of pages

Definition

- lacktriangleright N total number of pages
- Graph connectivity incidence matrix $L_{ij}=1$ if page j points to page i
- $c_j = \sum_{i=1}^N L_{ij}$ number of pages that point to by page j out-degree of j
- ▶ Than, PageRank assigns a rank, R_i , to page i according to

$$R_i = (1 - d) + d \sum_{j=1}^{\infty} \frac{L_{ij}}{c_j} R_j,$$

where 0 < d < 1 is a constant set to d = 0.85

PageRank Algorithm: Explanation

Let us look back at the equation

$$R_i = (1 - d) + d \sum_{j=1}^{N} \frac{L_{ij}}{c_j} R_j,$$

where 0 < d < 1 is a constant set to d = 0.85

- lacktriangledown d ensures that each page gets at least rank 1-d
- d also ensures that the preceding system of linear equations has a unique solution
- If some of the j-s that point to i have high rank, R_j , then R_i will be high, i.e.
 - Page i is important if some of the j-s are important
- ▶ $1/c_j$ is designed to prevent spamming, i.e., if j liberally points to a lot of pages, than its contribution to i's ranking should count less
- ▶ If i has a lot of neighbors, i.e., large $\sum_{i=1}^{N} L_{ij}$, than it's rank is large

PageRank: Solution

Let us introduce matrix notation

- ightharpoonup e vector of N ones
- $m D_c$ diagonal matrix with elements c_j
- ▶ R column vector of page ranks $(R_1, R_2, ..., R_N)$.
- Then, PageRank equations can be written as

$$\mathbf{R} = (1 - d)\mathbf{e} + d\mathbf{L}\mathbf{D}_c^{-1}\mathbf{R}$$

▶ Introducing the normalization that the average page rank is one

$$\boldsymbol{e}^{\top}\boldsymbol{R} = N$$

we can write the preceding linear system as

$$\mathbf{R} = \left[(1 - d) \frac{\mathbf{e} \mathbf{e}^{\top}}{N} + d\mathbf{L} \mathbf{D}_{c}^{-1} \right] \mathbf{R} = \mathbf{A} \mathbf{R}$$

where matrix A is the expression in square brackets

PageRank: Solution

Connection to Markov chains

- A is a stochastic matrix
 - ▶ Largest eigenvalue of A is 1
- m R can be computed iteratively by power method, starting with $m R = m R_0$, and performing

$$R_k \leftarrow AR_{k-1}; \quad R_k \leftarrow N \frac{R_k}{e^{\top} R_k}$$

Random surfer interpretation

- The surfer performs a random walk on the Web choosing among the outgoing links at random
- lacktriangle The surfer can also jump with probability (1-d) to a random page on the Web
- ▶ Then, R_i represents the probability that a surfer is found at page i.

PageRank: Example

$$\boldsymbol{L} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \boldsymbol{c} = \begin{bmatrix} 2 & 1 & 1 & 1 \end{bmatrix} \quad \boldsymbol{R} = \begin{bmatrix} 1.49 & 0.78 & 1.58 & 0.15 \end{bmatrix}$$

PageRank: Stochastic Analysis

- lacktriangle Numerical solution for R doesn't reveal qualitative behavior
- lacktriangle Measurements showed that $m{R}$ follows power law behavior $\sim 1/i^{lpha}$
- ► Why?

In Jelenković & Olvera-Cravioto (2010), we introduced a stochastic formulation

$$R = Q + \sum_{i \in \mathcal{N}} C_i R_i$$

where

- ightharpoonup R is a typical, random, page on the Web
- $ightharpoonup \mathcal{N}$ typical, random, number of neighbors that are pointing to this page
- $ightharpoonup R_i$ typical rank of these neighbors
- $ightharpoonup C_i$ random variables taking into account d/c_i
- ightharpoonup Q random variable taking into account d

PageRank: Stochastic Solution

Main implications of Jelenković & Olvera-Cravioto (2010) and later work

- lacktriangle Explain why $m{R}$ follows power law behavior $\sim 1/i^{lpha}$
- ▶ Known fact Web graph is a power law graph, i.e. $|\mathcal{N}|$ has a power law distribution
- ightharpoonup R can either be large because
 - ▶ it is pointed to by a large number of lower-ranked pages
 - or, it is pointed to by a small number of lower-ranked pages
- \triangleright Reveals a weakness: the factor $1/c_j$ doesn't prevent spamming

Improvements

- Prevent spamming
- Design other ranking schemes, e.g. personalized Web search

Association Rules: Market Basket Analysis

- Popular technique for mining commercial data bases
 - Amazon or Walmart customer data bases
- $X = (X_1, \dots, X_p)$
- ightharpoonup p total number of items in the store very large
- ▶ Often $X_i \in \{0,1\}$ so $X = (X_1, \dots, X_p)$ represents the times that a customer bought
 - $x_i = (x_{i1}, \dots, x_{ip})$ represents items that customer i bought "market basket"
- ► Those variables that frequently have joint values of one represent items that are frequently purchased together.
- lacktriangle General problem find vectors v_i , such that $\mathbb{P}[X=v_i]$ is large
- This problem is impossibly difficult
- Can we compute the histogram of X?
 p large never enough data

Association Rules: Simplification

- ▶ Instead of finding values of v for which $\mathbb{P}[X = v]$ is large
 - ► Find regions of the *X*-space with high probability relative to its size or support
 - Let s_j be a subset of values that X_j can take, then we try to find these subsets s_j for which

$$\mathbb{P}[\cap_{j=1}^p \{X_j \in s_j\}]$$

- \blacktriangleright Even this is not feasible for $p\approx 10^4$ and $N\approx 10^8$
- Note that if s_j =entire set of values for X_j , then feature j is excluded
- ▶ Hence, we can only focus on a subset of items $\mathcal{J} \subset \{1,\dots,p\}$ and try to maximize

$$\mathbb{P}[\cap_{j\in\mathcal{J}}\{X_j\in s_j\}]$$

or even simpler take each s_j to be a single item

$$\mathbb{P}[\cap_{j\in\mathcal{J}}1_{\{X_i=v_i\}}]$$

Association Rules: Example

- ▶ The red squares indicate areas of high density.
- ➤ To simplify, we assume that the derived subset corresponds to either a single value of an input or all values.
- With this assumption we could find either the middle or right pattern, but not the left one.

Turn Everything to Binary Variables

- lacktriangleright Introducing dummy variables can turn X into binary vectors Z
- lacktriangle Recall $\mathcal{S}_{|}$ all values that X_j can take
- ▶ Let $K = \sum_{j=1}^{p} |\mathcal{S}_j|$
- ▶ Then $Z_k = 1$ is item $k, 1 \le k \le K$ is present in the basket
- $\mathcal{K} \subset \{1, \dots, K\}$ item set, then we maximize

$$\mathbb{P}[\prod_{k \in \mathcal{K}} Z_k = 1]$$

The preceding probability can be estimated as

$$\mathbb{P}[\prod_{k \in \mathcal{K}} Z_k = 1] \approx \frac{1}{N} \sum_{i=1}^{N} \prod_{k \in \mathcal{K}} z_{ik}$$

this is called the "support" or "prevalence", $T(\mathcal{K})$, of the item set \mathcal{K} z_{ik} is the value of Z_k for the i-th case/customer

▶ For a threshold t, find all item sets \mathcal{K}_l , for which $T(\mathcal{K}_l) > t$

The Apriori Algorithm

- Agrawal et al. (1995) exploits
 - ▶ Choose a threshold t such that sets \mathcal{K}_l , for which $T(\mathcal{K}_l) > t$, have small number of items
 - ▶ If $\mathcal{L} \in \mathcal{K}$, then $T(\mathcal{L}) \geq T(\mathcal{K})$
- First pass: Find all single items whose support is bigger than the threshold (other items are discarded)
- Second pass: computes the support of all item sets of size two that can be formed from pairs of the single items surviving the first pass.
- ▶ Continue this procedure for sets of $|\mathcal{K}| = m, m = 3, 4, \ldots$ items, by only considering only those from the previous, m-1, pass with those retained from the first pass.
- Passes over the data continue until all candidate rules from the previous pass have support less than the specified threshold.
- \blacktriangleright The Apriori algorithm requires only one pass over the data for each value of $|\mathcal{K}|$
- ▶ If the data are sufficiently sparse (or t is high enough), then the process will terminate in reasonable time even for huge data sets.

The Apriori Algorithm

- Each high support item set K returned by the Apriori algorithm is cast into a set of association rules.
- ▶ The items $Z_k, k \in \mathcal{K}$ are partitioned into two disjoint subsets, $\mathcal{A} \cup \mathcal{B} = \mathcal{K}$, and written

$$A \Rightarrow B$$

- ▶ The first item subset A is called the antecedent
- ► The second B the consequent
- ▶ The support of the rule $T(\mathcal{A} \Rightarrow \mathcal{B}) = \text{fraction of observations in the union of the antecedent and consequent, which is just the support of the item set <math>\mathcal{K}$
- ▶ $T(\mathcal{A} \Rightarrow \mathcal{B}) = T(\mathcal{K})$ is an estimate of the probability of simultaneously observing both item sets $\mathbb{P}(\mathcal{A} \cap \mathcal{B})$ in a randomly selected market basket.

The Apriori Algorithm

► The confidence or predictability

$$C(A \Rightarrow B) = \frac{T(A \Rightarrow B)}{T(A)}$$

is an estimate of the conditional probability $\mathbb{P}(\mathcal{B}|\mathcal{A})$

► The "lift"

$$L(\mathcal{A} \Rightarrow \mathcal{B}) = \frac{C(\mathcal{A} \Rightarrow \mathcal{B})}{T(\mathcal{B})}$$

is an estimate of

$$\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B})}$$

The Apriori Algorithm: Example

- $ightharpoonup \mathcal{K} = \{\text{peanut butter, jelly, bread}\}$
- ▶ consider the rule {peanut butter, jelly} ⇒ {bread}.
- support value of 0.03 for this rule means that peanut butter, jelly, and bread appeared together in 3% of the market baskets.
- ▶ confidence of 0.82 for this rule implies that when peanut butter and jelly were purchased, 82% of the time bread was also purchased.
- If bread appeared in 43% of all market baskets then the rule {peanut butter, jelly} ⇒ {bread} would have a lift of 1.95.

Goal: to find rules with high support and confidence

Social Networks

This part of the lecture is based on the book: Community Detection and Mining in Social Media, L. Tang & H. Liu, 2010

World Wide Web, Facebook, Twiter, Youtube, etc.

Characteristics of Social Media

- Consumers become Producers
- Rich User Interaction
- User-Generated Contents
- Collaborative environment
- Collective Wisdom
- Long Tail

Social Media: Graph Representation

- Social Network: made of nodes (individuals or organizations) and edges that connect nodes in various relationships like friendship, kinship etc.
- Graph Representation

· Matrix Representation

Node	1	2	3	4	5	6	7	8	9
1	-	1	1	1	0	0	0	0	0
2	1	-	1	0	0	0	0	0	0
3	1	1	-	1	0	0	0	0	0
4	1	0	1	-	1	1	0	0	0
5	0	0	0	1	-	1	1	1	0
6	0	0	0	1	1	-	1	1	0
7	0	0	0	0	1	1	-	1	1
8	0	0	0	0	1	1	1	-	0
9	0	0	0	0	0	0	1	0	-

Graphs: Basic Concepts

- A: the adjacency matrix
- V: the set of nodes
- E: the set of edges
- $ightharpoonup v_i$: a node v_i
- $lackbox{ } e(v_i,v_j)$: an edge between node v_i and v_j
- $lackbox{N}_i$: the neighborhood of node v_i
- ▶ d_i : the degree of node v_i
- Geodesic distance: a shortest path between two nodes

Properties of Large-Scale Social Networks

- Networks in social media are typically huge, involving millions of actors and connections.
- Large-scale networks in real world demonstrate similar patterns
 - Strong Community Structure
 - Small-world effect
 - Scale-free distributions: power laws $1/i^{\alpha}$

Log-Log Plot of Power Law Distributions: $\log(1/i^{\alpha}) = -\alpha \log(i)$

Friendship Network in Flickr

Friendship Network in YouTube 13

Measuring Community Structure

Clustering coefficient:

$$C_i = \frac{\# \text{ of closed triplets}}{\# \text{ of connected closed triplets}}$$

Example:

- $d_6 = 4, N_6 = \{4, 5, 7, 8\}$
- $k_6 = 4 : e(4,5), e(5,7), e(5,8), e(7,8)$
- $C_6 = 4/(4*3/2) = 2/3$
- ▶ Average clustering coefficient $C = (C_1 + C_2 + ... + C_n)/n$
- C = 0.61 for the example network In a random graph: C = 14/(9*8/2) = 0.19

Some Social Network Challenges

Network Modeling

- ► Small-world effect (e.g., 6 degrees of separation)
- Power-law distribution (a.k.a. scale-free distribution)
- Community structure (high clustering coefficient)
- Common model: Preferential attachment
- Take a look at:
 Directed random graphs with given degree distributions, N. Chen & M. Olvera-Cravioto, Stochastic Systems, 3 (1), 147-186, 2013.

Community Detection - Graph Clustering

Community Detection - Graph Clustering

A community is a set of nodes between which the interactions are (relatively) frequent

A.k.a., group, cluster, cohesive subgroups, modules

Applications: Recommendation based communities, Network Compression, Visualization of a huge network

Clustering Based on Vertex Similarity

This is familiar(!)

Define node similarity/distance:

 \blacktriangleright Jaccard Similarity $d(v_i,v_j) = \mathsf{Jaccard}(v_i,v_j) = \frac{|N_i \cap N_j|}{|N_i \cup N_j|}$

Cosine similarity $d(v_i,v_j) = \mathsf{Cosine}(v_i,v_j) = \frac{\sum_k A_{ik} A_{kj}}{\sqrt{\sum_k A_{ik}^2 \sum_k A_{ik}^2}}$

Jaccard
$$(4,6) = 1/7$$
, Cosine $(4,6) = 1/4$

Then, we can run any known clustering algorithm, e.g. K-means

Recall K-Means

What are centroids on a graph? - define properly

ightharpoonup Centroid of a graph: A vertex (or set vertices) u where the greatest distance d(u,v) to other vertices v is minimal.

K-Means Algorithm

- 1. Initialization: Randomly assign a number, from 1 to K, to each of the nodes. (Or, select K nodes randomly to be centroids.)
- 2. Iterate until the cluster assignments stop changing:
 - (a) For each of the K clusters, compute the cluster centroid.
 - (b) Assign each observation to the cluster whose centroid is closest.

Divisive Hierarchical Clustering: Bottom up

Divisive clustering

- Partition nodes into several sets
- ▶ Each set is further divided into smaller ones

Example: recursively remove the weakest tie

- ► Find the edge with the least strength
- Remove the edge and update the corresponding strength of each edge

Recursively apply the above two steps until a network is discomposed into desired number of connected components.

Each component forms a community.

Strength of a Tie: Edge Betweenness

Edge betweenness: the # of shortest paths that pass along with the edge

The edge betweenness of e(1,2) is 4, as: all the shortest paths from 2 to $\{4, 5, 6, 7, 8, 9\}$ have to either pass e(1,2) or e(2,3), and e(1,2) is the shortest path between 1 and 2

Example

{5, 6, 7, 8, 9}

remove e(7,9)

Remove e(4,5), e(4,6)-

{1, 2, 3, 4}

Initial betweenness value

Table 3.3: Edge Betweenness									
	1	2	3	4	5	6	7	8	9
1	0	4	1	9	0	0	0	0	0
2	4	0	4	0	0	0	0	0	0
3	1	4	0	9	0	0	0	0	0
4	9	0	9	0	10	10	0	0	0
5	0	0	0	10	0	1	6	3	0
6	0	0	0	10	1	0	6	3	0
7	0	0	0	0	6	6	0	2	8
8	0	0	0	0	3	3	2	0	0
	0	0	0	0	0	0	8	0	0

After remove e(4,5), the betweenness of e(4, 6) becomes 20, which is the highest;

After remove e(4,6), the edge e(7,9) has the highest betweenness value 4, and should be removed.

Agglomerative Hierarchical Clustering

- Initialize each node as a community
- Merge communities successively into larger communities following a certain criterion

Other Ideas: Using Cliques

Clique: a maximum complete subgraph in which all nodes are adjacent

- ▶ NP-hard to find the maximum clique in a network
- Straightforward implementation to find cliques is very expensive in time complexity
- ▶ There are heuristics: Find a clique of size k, and prune all nodes with < k-1 neighbors
- ▶ Idea for clustering: Use cliques as seeds to form larger communities

Approximating Cliques: Density Based Groups

- The group-centric criterion requires the whole group to satisfy a certain condition
 - ightharpoonup E.g., the group density \geq a given threshold
- ▶ A subgraph $G_s(V_s, E_s)$ is a γ -dense quasi-clique if

$$\frac{|E_s|}{|V_s|(|V_s|-1)/2} \ge \gamma$$

- ► A similar strategy to that of cliques can be used
 - Find a maximal quasi-clique, say, of size k
 - $\qquad \qquad \mathbf{Remove\ nodes\ with\ degree} < \gamma k$

Dimensionality Reduction on Graphs

- ▶ Map nodes into a low-dimensional space such that:
 - ► The proximity between nodes is preserved in the new space
 - ► Solutions usually involve eigen-decomposition
 - ► Then perform clustering, e.g. k-means

Reading on Community Detection and Social Networks

- Book: Community Detection and Mining in Social Media, Lei Tang & Huan Liu, 2010
- Free download: https://www.morganclaypool.com/doi/abs/ 10.2200/S00298ED1V01Y201009DMK003
- Other book resources: http://dmml.asu.edu/cdm/

Comprehensive R-Package for Graph Analysis

- ▶ iGraph http://igraph.org/r/#docs
- R manual: http://igraph.org/r/doc/igraph.pdf
- Various tutorials for iGraph in R available online

Reading on PageRank

ESL: Section 14.10

Paper P.R. Jelenković and M. Olvera-Cravioto, Information ranking and power laws on trees, *Advances in Applied Probability*, 42 (4), pp. 1057-1093, 2010.

Reading on Association Rules

ESL: Section 14.2

Paper Agrawal et al., Fast discovery of association rules, Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press, Cambridge, MA, 1995.

Dimensionality Reduction: Chapter 23 in:

► Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning: From Theory to Algorithms, 2014. https://www.cs.huji.ac.il/
~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf

Final Project

- Groups of 4 students
- Deliverables:
 - Paper 15 20 pages
 - ▶ 10min Presentation with about 10 slides
- Due: likely Dec 20, 11:59pm
- One slot for presentations on Tue, Dec 13, 4:10-6:40pm
 Other slots to be scheduled on Friday, Dec 16
- Suggested Data Repositories:
 - ► UC Irvine Machine Learning Repository
 https://archive.ics.uci.edu/ml/datasets.html
 - Datasets supported by Bioconductor: http://www.bioconductor.org/packages/release/data/ experiment/
 - ► GEO (Gene Expression Omnibus) Data Repository https://www.ncbi.nlm.nih.gov/geo/

Final Project

Final Paper Outline:

- 1. Introduction: e.g., describe the application area, problems considered, etc
- 2. Data set(s) and paper(s): e.g., describe data in detail, what was done in the paper(s), common stat/machine learning tools, etc
- 3. Reproduce the results from the paper(s)
- 4. Try different techniques learned in class, or propose new ones
- 5. Discussion and conclusion: e.g., compare different techniques, pros and cons, future work, etc

General

- Document software well
- Use R, unless there is a compelling reason to use Python, e.g., you implemented a new algorithm
- Academic Honesty do not plagiarize, as the papers will be submitted via Turnitin, which automatically checks for plagiarization.