Types in

Programming Languages

Daniil Berezun

danya.berezun@gmail.com

Outline for section 1

- **1** Simply Typed Lambda Calculus (STLC; λ_{\rightarrow})
 - Syntax; à la Curry; à la Church
 - Properties
- Curry-Howard Isomorphism
 - Intuitionistic Proposition Logic Int.,
 - Curry-Howard Isomorphism
 - Hilbert's Propositional Calculus
 - KS-calculi
- STLC
 - Strong Normalization
 - Type Inference
 - Robinson's Unification Algorithm
 - Set-Theoretic Semantics
- Polymorphism
 - System F
 - Hindley-Milner Type System
 - Barendregt's Lambda Cube

Daniil Berezun Types 2

Simple types

Base types
$$\tau := \iota \mid \tau \to \tau$$
 Function type

Simple types

Base types
$$\tau := \iota \mid \tau \to \tau$$
 Function type

Typing

à la Church (intrinsic, ontological)

- $> \lambda X^{\alpha}.X : \alpha \to \alpha$
- > syntax → typing → semantics

$$> \lambda^{Ch}_{\rightarrow} ::= \lambda X^{\alpha}. \lambda^{Ch}_{\rightarrow} | \lambda^{Ch}_{\rightarrow} \lambda^{Ch}_{\rightarrow} | X$$

$$\frac{\overline{x_{j}^{\alpha}: alpha} \ Var}{u: \beta} \ \frac{\overline{c_{j}^{\alpha}: alpha} \ Const}{u: \alpha \rightarrow \beta} \ Abstr \frac{u: \alpha \rightarrow \beta \quad v: \alpha}{uv: \beta} \ App$$

$$\dfrac{u:eta}{\partial \mathsf{X}^{lpha}.u:lpha
ightarroweta}$$
 Abstr $\dfrac{u:lpha
ightarroweta}{uv:eta}$ Ap

à la Curry (extrinsic, semantical)

- $> + \lambda X.X : \alpha \rightarrow \alpha$
- > syntax → semantics → typing

$$> \lambda^{Cu}_{\rightarrow} ::= \Lambda = \lambda \times \Lambda |\Lambda \Lambda |X$$

Simple types

Base types
$$\tau := \iota \mid \tau \to \tau$$
 Function type

Typing

à la Church (intrinsic, ontological)

$$> \lambda X^{\alpha}.X : \alpha \to \alpha$$

$$> \lambda^{Ch}_{\rightarrow} ::= \lambda X^{\alpha}. \lambda^{Ch}_{\rightarrow} | \lambda^{Ch}_{\rightarrow} \lambda^{Ch}_{\rightarrow} | X$$

$$\frac{1}{x_i^{\alpha}: alpha} Var = \frac{1}{c_i^{\alpha}: alpha} Cons$$

$$\frac{\overline{x_{j}^{\alpha}: alpha}}{u: \beta} \begin{array}{c} \textit{Var} & \overline{c_{j}^{\alpha}: alpha} \\ \hline \frac{u: \beta}{\lambda x^{\alpha}.u: \alpha \rightarrow \beta} \text{ Abstr} \\ \hline \frac{u: \alpha \rightarrow \beta \quad v: \alpha}{uv: \beta} \text{ App} \end{array}$$

à la Curry (extrinsic, semantical)

$$\Rightarrow + \lambda X.X : \alpha \rightarrow \alpha$$

$$> \lambda^{Cu}_{\rightarrow} := \Lambda = \lambda \times \Lambda \wedge \Lambda \wedge X$$

Term in context

$$\underbrace{X_1:\alpha_1,\ldots,X_n:\alpha_n}_{\Gamma}\vdash U\ :\ \beta$$

Typing rules

$$\frac{\Gamma, X: \alpha \vdash X: \alpha}{\Gamma, X: \alpha \vdash X: \alpha} A X \qquad \frac{\Gamma \vdash U \alpha \to \beta \quad \Gamma \vdash V: \alpha}{\Gamma \vdash UV: \beta} \to E \qquad \frac{\Gamma, X: \alpha \vdash U: \beta}{\Gamma \vdash \lambda X^{\alpha}. U: \alpha \to \beta} \to I$$

Examples

à la Curry	à la Church
$\lambda X.X : \alpha \to \alpha \qquad \lambda X.X : (\alpha \to \beta) \to \alpha \to \beta$	$\lambda X^{\alpha}.X : \alpha \to \alpha \qquad \lambda X^{\alpha \to \beta}.X : (\alpha \to \beta) \to \alpha \to \beta$
$\lambda X y. X : \alpha \to \beta \to \alpha$	$\lambda X^{\alpha} Y^{\beta}.X : \alpha \to \beta \to \alpha$

à la Curry	à la Church
$\lambda X.X : \alpha \to \alpha \qquad \lambda X.X : (\alpha \to \beta) \to \alpha \to \beta$	$\lambda X^{\alpha}.X : \alpha \to \alpha \qquad \lambda X^{\alpha \to \beta}.X : (\alpha \to \beta) \to \alpha \to \beta$
$\lambda XY.X : \alpha \to \beta \to \alpha$	$\lambda X^{\alpha} Y^{\beta}.X : \alpha \to \beta \to \alpha$

$$\frac{1}{\vdash \lambda \ f^{(\beta \to \gamma)} g^{(\alpha \to \beta)} x^{\alpha}. \ f(g \ x) \ : \ (\beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma} \to I$$

Examples

$$\frac{f:\beta\to\gamma\vdash\lambda\;g^{(\alpha\to\beta)}x^\alpha.\;f\;(g\;x)\;:\;(\alpha\to\beta)\to\alpha\to\gamma}{\vdash\lambda\;f^{(\beta\to\gamma)}g^{(\alpha\to\beta)}x^\alpha.\;f\;(g\;x)\;:\;(\beta\to\gamma)\to(\alpha\to\beta)\to\alpha\to\gamma}\to I$$

Examples

à la Curry	à la Church
$\lambda X.X : \alpha \to \alpha \qquad \lambda X.X : (\alpha \to \beta) \to \alpha \to \beta$	$\lambda X^{\alpha}.X : \alpha \to \alpha \qquad \lambda X^{\alpha \to \beta}.X : (\alpha \to \beta) \to \alpha \to \beta$
$\lambda xy.x : \alpha \to \beta \to \alpha$	$\lambda X^{\alpha} Y^{\beta}.X : \alpha \to \beta \to \alpha$

$$\frac{\overline{f:\beta\to\gamma,\ g:\alpha\to\beta\vdash\lambda\ x^\alpha.\ f(g\ x)\ :\ \alpha\to\gamma}\to I}{\overline{f:\beta\to\gamma\vdash\lambda\ g^{(\alpha\to\beta)}x^\alpha.\ f(g\ x)\ :\ (\alpha\to\beta)\to\alpha\to\gamma}}\to I$$
$$\xrightarrow{\vdash\lambda\ f^{(\beta\to\gamma)}g^{(\alpha\to\beta)}x^\alpha.\ f(g\ x)\ :\ (\beta\to\gamma)\to(\alpha\to\beta)\to\alpha\to\gamma}\to I$$

Examples

•	à la Church
$\lambda X.X : \alpha \to \alpha \qquad \lambda X.X : (\alpha \to \beta) \to \alpha \to \beta$	$\lambda X^{\alpha}.X : \alpha \to \alpha \qquad \lambda X^{\alpha \to \beta}.X : (\alpha \to \beta) \to \alpha \to \beta$
$\lambda xy.x : \alpha \to \beta \to \alpha$	$\lambda X^{\alpha} Y^{\beta}.X : \alpha \to \beta \to \alpha$

$$\frac{f:\beta \to \gamma, \ g:\alpha \to \beta, \ x:\alpha \vdash f(g\ x) \ : \ \gamma}{f:\beta \to \gamma, \ g:\alpha \to \beta \vdash \lambda \ x^{\alpha}. \ f(g\ x) \ : \ \alpha \to \gamma} \to I$$

$$\frac{f:\beta \to \gamma \vdash \lambda \ g^{(\alpha \to \beta)}x^{\alpha}. \ f(g\ x) \ : \ (\alpha \to \beta) \to \alpha \to \gamma}{\vdash \lambda \ f^{(\beta \to \gamma)}g^{(\alpha \to \beta)}x^{\alpha}. \ f(g\ x) \ : \ (\beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma} \to I$$

Examples

à la Curry	à la Church
$\lambda X.X : \alpha \to \alpha \qquad \lambda X.X : (\alpha \to \beta) \to \alpha \to \beta$	$\lambda X^{\alpha}.X : \alpha \to \alpha \qquad \lambda X^{\alpha \to \beta}.X : (\alpha \to \beta) \to \alpha \to \beta$
$\lambda xy.x : \alpha \to \beta \to \alpha$	$\lambda X^{\alpha} Y^{\beta} . X : \alpha \to \beta \to \alpha$

$$\frac{f : \beta \to \gamma, \ g : \alpha \to \beta, \ x : \alpha \vdash f : \ \beta \to \gamma}{f : \beta \to \gamma, \ g : \alpha \to \beta, \ x : \alpha \vdash g \ x : \beta} \to E$$

$$\frac{f : \beta \to \gamma, \ g : \alpha \to \beta, \ x : \alpha \vdash f \ (g \ x) : \gamma}{f : \beta \to \gamma, \ g : \alpha \to \beta \vdash \lambda \ x^{\alpha}. \ f \ (g \ x) : \alpha \to \gamma} \to I$$

$$\frac{f : \beta \to \gamma \vdash \lambda \ g^{(\alpha \to \beta)} x^{\alpha}. \ f \ (g \ x) : (\alpha \to \beta) \to \alpha \to \gamma}{\vdash \lambda \ f^{(\beta \to \gamma)} g^{(\alpha \to \beta)} x^{\alpha}. \ f \ (g \ x) : (\beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma} \to I$$

Examples

à la Curry	à la Church
$\lambda X.X : \alpha \to \alpha \qquad \lambda X.X : (\alpha \to \beta) \to \alpha \to \beta$	$\lambda X^{\alpha}.X : \alpha \to \alpha \qquad \lambda X^{\alpha \to \beta}.X : (\alpha \to \beta) \to \alpha \to \beta$
$\lambda xy.x : \alpha \to \beta \to \alpha$	$\lambda X^{\alpha} Y^{\beta} . X : \alpha \to \beta \to \alpha$

$$\frac{f : \beta \to \gamma, \ g : \alpha \to \beta, \ X : \alpha \vdash f : \beta \to \gamma}{f : \beta \to \gamma, \ g : \alpha \to \beta, \ X : \alpha \vdash f : \beta \to \gamma} \ Ax \xrightarrow{f : \beta \to \gamma, \ g : \alpha \to \beta, \ X : \alpha \vdash g \ X : \beta} \to E$$

$$\frac{f : \beta \to \gamma, \ g : \alpha \to \beta, \ X : \alpha \vdash f (g \ X) : \gamma}{f : \beta \to \gamma, \ g : \alpha \to \beta \vdash \lambda \ X^{\alpha}. \ f (g \ X) : \alpha \to \gamma} \to I$$

$$\frac{f : \beta \to \gamma, \ g : \alpha \to \beta \vdash \lambda \ X^{\alpha}. \ f (g \ X) : \alpha \to \gamma}{f : \beta \to \gamma \vdash \lambda \ g^{(\alpha \to \beta)} X^{\alpha}. \ f (g \ X) : (\alpha \to \beta) \to \alpha \to \gamma} \to I$$

Lemmas

Let $|\cdot|: \lambda^{Ch}_{\to} \to \Lambda \equiv \lambda^{Cu}_{\to}$, i.e. type annotation erasing map

Lemmas

Let $|\cdot|: \lambda^{Ch}_{\to} \to \Lambda \equiv \lambda^{Cu}_{\to}$, i.e. type annotation erasing map

Theorem

type is inhabited à la Curry ⇔ type is inhabited à la Church

Lemmas

Let $|\cdot|: \lambda^{Ch} \to \Lambda \equiv \lambda^{Cu}_{\to}$, i.e. type annotation erasing map

Theorem

type is inhabited à la Curry ⇔ type is inhabited à la Church

Standard Problems

Type Checking $\vdash U : \tau$? Type Inference (assignment, synthesis) + U: ?Type Inhabitation $+?:\tau$

Lemmas

Let $|\cdot|: \lambda^{Ch}_{\rightarrow} \rightarrow \Lambda \equiv \lambda^{Cu}_{\rightarrow}$, i.e. type annotation erasing map

Theorem

type is inhabited à la Curry ⇔ type is inhabited à la Church

Standard Problems

Type Checking $\vdash U : \tau$? Type Inference (assignment, synthesis) $\vdash U : \tau$? Type Inhabitation $\vdash U : \tau$?

- > All effectively solvable for STLC (both versions)
- > In à-la Curry typechecking is equivalent to type inference:

checking $UV : \tau$? requires syntheses of V :?

Properties

Lemma [inversion, generation]

$$> \Gamma \vdash \mathbf{X} : \tau \Rightarrow \mathbf{X}^{\tau} \in \Gamma$$

$$> \Gamma \vdash UV : \tau \Rightarrow \exists \sigma : \Gamma \vdash U : \sigma \rightarrow \tau \land \Gamma \vdash V : \sigma$$

$$> \Gamma + \lambda x \cdot U : \tau \Rightarrow \exists \sigma, \rho : \Gamma, x : \sigma + U : \rho \land \tau \equiv \sigma \rightarrow \rho$$

$$> \Gamma \vdash \lambda X^{\sigma}.U : \tau \Rightarrow \exists \quad \rho : \quad \Gamma, X : \sigma \vdash U : \rho \quad \land \quad \tau \equiv \sigma \rightarrow \rho$$

[Curry]

[Church]

Lemma [Subterms are typable]

$$V$$
 — subterm U then $\Gamma \vdash U : \tau \Rightarrow \exists \Gamma', \tau' : \Gamma' \vdash V : \tau'$

Context Lemmas

[Thinning]

$$\left. \begin{array}{l} \Delta \subseteq \Gamma \\ \Delta \vdash U : \tau \end{array} \right\} \Rightarrow \Gamma \vdash U : \tau$$

[FV]

$$\Gamma \vdash U : \tau \Rightarrow FV(U) \subseteq \mathfrak{Dom}(\Gamma)$$

[Restriction]

$$\Gamma \vdash U : \tau \Rightarrow \Gamma|_{FV(U)} \vdash U : \tau$$

Properties

Lemma [inversion, generation]

$$> \Gamma \vdash \mathbf{X} : \tau \Rightarrow \mathbf{X}^{\tau} \in \Gamma$$

$$> \Gamma \vdash UV : \tau \Rightarrow \exists \sigma : \Gamma \vdash U : \sigma \rightarrow \tau \land \Gamma \vdash V : \sigma$$

$$> \Gamma \vdash \lambda x : U : \tau \Rightarrow \exists \sigma, \rho : \Gamma, x : \sigma \vdash U : \rho \land \tau \equiv \sigma \rightarrow \rho$$

$$> \Gamma \vdash \lambda \mathbf{X}^{\sigma}.\mathbf{U} : \tau \Rightarrow \exists \quad \rho : \quad \Gamma, \mathbf{X} : \sigma \vdash \mathbf{U} : \rho \quad \land \quad \tau \equiv \sigma \rightarrow \rho$$

[Curry] [Church]

Lemma [Subterms are typable]

$$V$$
 — subterm U then $\Gamma \vdash U : \tau \Rightarrow \exists \Gamma', \tau' : \Gamma' \vdash V : \tau'$

Context Lemmas

[Thinning]

$$\left. \begin{array}{l} \Delta \subseteq \Gamma \\ \Delta \vdash U : \tau \end{array} \right\} \Rightarrow \Gamma \vdash U : \tau$$

[FV]

$$\Gamma \vdash U : \tau \Rightarrow FV(U) \subseteq \mathfrak{Dom}(\Gamma)$$

[Restriction]

$$\Gamma \vdash U : \tau \Rightarrow \Gamma|_{FV(U)} \vdash U : \tau$$

Example: we can prove that some (pre-)terms has no type

$$\Gamma \not\vdash XX : \tau \quad \not\vdash \omega : \tau \quad \not\vdash \Omega : \tau \quad \not\vdash \Upsilon : \tau$$

(5

$$\frac{\Gamma, \mathsf{X}: \sigma \vdash \mathsf{U}: \tau \quad \Gamma \vdash \mathsf{V}: \sigma}{\Gamma \vdash \mathsf{U}[\mathsf{x}/\mathsf{V}]: \tau}$$

Theorem [type preserving]

$$U \twoheadrightarrow_{\beta} V \wedge \Gamma \vdash U : \tau \Rightarrow \Gamma \vdash V : \tau$$

$$\frac{\Gamma, \mathsf{X}: \sigma \vdash \mathsf{U}: \tau \quad \Gamma \vdash \mathsf{V}: \sigma}{\Gamma \vdash \mathsf{U}[\mathsf{x}/\mathsf{V}]: \tau}$$

Theorem [type preserving]

$$U \twoheadrightarrow_{\beta} V \wedge \Gamma \vdash U : \tau \Rightarrow \Gamma \vdash V : \tau$$

Conclusion |

 λ_{\rightarrow} is closed under β -reduction

NB: reverse is not true [β -reduction may lose some information]

 $> \beta$ -reduction can turn untypable term into typable one:

$$\frac{\Gamma, \mathbf{X} : \sigma \vdash \mathbf{U} : \tau \quad \Gamma \vdash \mathbf{V} : \sigma}{\Gamma \vdash \mathbf{U}[\mathbf{X}/\mathbf{V}] : \tau}$$

Theorem [type preserving]

$$U \twoheadrightarrow_{\beta} V \wedge \Gamma \vdash U : \tau \Rightarrow \Gamma \vdash V : \tau$$

Conclusion

 λ_{\rightarrow} is closed under β -reduction

NB: reverse is not true [β -reduction may lose some information]

 $> \beta$ -reduction can turn untypable term into typable one:

$$\mathbf{F} \ \omega \qquad (\lambda \mathbf{X}.\mathbf{y})\omega \rightarrow_{\beta} \mathbf{y} \qquad \Gamma = \mathbf{y} : \tau_{1} \vdash \mathbf{y} : \tau_{1} \qquad \mathbf{F} \ (\lambda \mathbf{X}.\mathbf{y})\omega : \tau_{1}$$

 $> \beta$ -reduction can make type more general:

$$\frac{\Gamma, \mathsf{X} : \sigma \vdash \mathsf{U} : \tau \quad \Gamma \vdash \mathsf{V} : \sigma}{\Gamma \vdash \mathsf{U}[\mathsf{X}/\mathsf{V}] : \tau}$$

Theorem [type preserving]

$$U \twoheadrightarrow_{\beta} V \wedge \Gamma \vdash U : \tau \Rightarrow \Gamma \vdash V : \tau$$

Conclusion

 λ_{\rightarrow} is closed under β -reduction

NB: reverse is not true [β -reduction may lose some information]

 $> \beta$ -reduction can turn untypable term into typable one:

$$\mathcal{F} \omega \qquad (\lambda \mathbf{X}.\mathbf{y})\omega \rightarrow_{\beta} \mathbf{y} \qquad \Gamma = \mathbf{y} : \tau_1 \vdash \mathbf{y} : \tau_1 \qquad \mathcal{F} (\lambda \mathbf{X}.\mathbf{y})\omega : \tau_1$$

$$\Gamma = \mathbf{y} : \tau_1 \vdash \mathbf{y} : \tau_1$$

$$\not\vdash (\lambda \mathbf{X}.\mathbf{y})\omega : \tau_1$$

 $> \beta$ -reduction can make type more general:

$$\lambda X.\lambda Z.((\lambda y.Z)(ZX)): \alpha \to (\alpha \to \beta) \to (\alpha \to \beta) \to_{\beta} \lambda X.\lambda Z.Z: \alpha \to (\tau \to \tau)$$

$$\frac{\Gamma, x : \sigma \vdash U : \tau \quad \Gamma \vdash V : \sigma}{\Gamma \vdash U[x/V] : \tau}$$

Theorem [type preserving]

$$U \twoheadrightarrow_{\beta} V \wedge \Gamma \vdash U : \tau \Rightarrow \Gamma \vdash V : \tau$$

Conclusion

 λ_{\rightarrow} is closed under β -reduction

NB: reverse is not true [β -reduction may lose some information]

 $> \beta$ -reduction can turn untypable term into typable one:

$$\mathbf{F} \ \omega \qquad (\lambda \mathbf{X}.\mathbf{y})\omega \rightarrow_{\beta} \mathbf{y} \qquad \Gamma = \mathbf{y} : \tau_{1} \vdash \mathbf{y} : \tau_{1} \qquad \mathbf{F} \ (\lambda \mathbf{X}.\mathbf{y})\omega : \tau_{1}$$

 $> \beta$ -reduction can make type more general:

$$\lambda X.\lambda Z.((\lambda y.Z)(ZX)): \alpha \to (\alpha \to \beta) \to (\alpha \to \beta) \to_{\beta} \lambda X.\lambda Z.Z: \alpha \to (\tau \to \tau)$$

Lemma [Type substitution]

$$\Gamma \vdash U : \sigma \Rightarrow \Gamma[\alpha/\tau] \vdash U : \sigma[\alpha/\tau]$$
 [Curry] $\Gamma \vdash U : \sigma \Rightarrow \Gamma[\alpha/\tau] \vdash U[\alpha/\tau] : \sigma[\alpha/\tau]$ [Church]

(6

Outline for section 2

- Simply Typed Lambda Calculus (STLC; λ_{\rightarrow})
 - Syntax; à la Curry; à la Church
 - Properties
- Curry-Howard Isomorphism
 - Intuitionistic Proposition Logic Int→
 - Curry-Howard Isomorphism
 - Hilbert's Propositional Calculus
 - KS-calculi
- STLC
 - Strong Normalization
 - Type Inference
 - Robinson's Unification Algorithm
 - Set-Theoretic Semantics
- Polymorphism
 - System F
 - Hindley-Milner Type System
 - Barendregt's Lambda Cube

Daniil Berezun Types 202

Remind:Typing rules

$$\frac{}{\Gamma, \mathsf{X} : \alpha \vdash \mathsf{X} \ : \ \alpha} \ \mathsf{A} \mathsf{X} \quad \frac{\Gamma \vdash \mathsf{U} \ \alpha \to \beta \quad \Gamma \vdash \mathsf{V} \ : \ \alpha}{\Gamma \vdash \mathsf{U} \mathsf{V} \ : \ \beta} \to \mathsf{E} \quad \frac{\Gamma, \mathsf{X} : \alpha \vdash \mathsf{U} \ : \beta}{\Gamma \vdash \lambda \mathsf{X}^{\alpha}.\mathsf{U} \ : \ \alpha \to \beta} \to \mathsf{I}$$

Let's erase terms!

Remind:Typing rules

$$\frac{\Gamma, X: \alpha \vdash X: \alpha}{\Gamma, X: \alpha \vdash X: \alpha} \ AX \quad \frac{\Gamma \vdash u \ \alpha \to \beta \quad \Gamma \vdash V: \alpha}{\Gamma \vdash uV: \beta} \to E \quad \frac{\Gamma, X: \alpha \vdash u: \beta}{\Gamma \vdash \lambda X^{\alpha}. u: \alpha \to \beta} \to I$$

Let's erase terms!

$$\frac{\Gamma, \alpha \vdash \alpha}{\Gamma, \alpha \vdash \alpha} Ax \qquad \frac{\Gamma \vdash \alpha \to \beta \quad \Gamma \vdash \alpha}{\Gamma \vdash \beta} \rightarrow E \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \rightarrow I$$

Remind:Typing rules

$$\frac{\Gamma \vdash u \; \alpha \to \beta \quad \Gamma \vdash v \; : \; \alpha}{\Gamma \vdash u \; v \; : \; \beta} \to E \qquad \frac{\Gamma, x \; : \; \alpha \vdash u \; : \; \beta}{\Gamma \vdash \lambda x^{\alpha}.u \; : \; \alpha \to \beta} \to I$$

$$\frac{\Gamma \vdash \alpha \to \beta \quad \Gamma \vdash \alpha}{\Gamma \vdash \beta} \xrightarrow{F} \text{Modus ponens} \quad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{F} \text{Hilbert's Deduction}$$
Theorem

Remind:Typing rules

$$\frac{\Gamma, X: \alpha \vdash X: \alpha}{\Gamma, X: \alpha \vdash X: \alpha} \ AX \quad \frac{\Gamma \vdash u \ \alpha \to \beta \quad \Gamma \vdash V: \alpha}{\Gamma \vdash uV: \beta} \to E \quad \frac{\Gamma, X: \alpha \vdash u: \beta}{\Gamma \vdash \lambda X^{\alpha}. u: \alpha \to \beta} \to I$$

$$\frac{\Gamma \vdash \alpha \to \beta \quad \Gamma \vdash \alpha}{\Gamma \vdash \beta} \xrightarrow{\Gamma \vdash \alpha} \underbrace{\longleftarrow}_{F} \text{ Modus ponens} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{F} \underbrace{\text{Hilbert's Deduction}}_{Theorem}$$

- > No excluded middle: $\models \alpha \lor \neg \alpha$
- > No Price law: $\models ((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha$
- > No double negation: $\models \alpha \leftrightarrow \neg \neg \alpha$

Remind:Typing rules

$$\frac{\Gamma \vdash u \; \alpha \to \beta \quad \Gamma \vdash v \; : \; \alpha}{\Gamma \vdash u \; v \; : \; \beta} \; \to E \quad \frac{\Gamma, x \; : \; \alpha \vdash u \; : \; \beta}{\Gamma \vdash \lambda x^{\alpha}.u \; : \; \alpha \to \beta} \; \to I$$

$$\frac{\Gamma, \alpha \vdash \alpha}{\Gamma, \alpha \vdash \alpha} Ax \qquad \frac{\Gamma \vdash \alpha \to \beta \quad \Gamma \vdash \alpha}{\Gamma \vdash \beta} \xrightarrow{F} \frac{\text{Modus ponens}}{F} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{F} \frac{\text{Hilbert's Deduction}}{\text{Theorem}}$$

- > No excluded middle: $\models \alpha \lor \neg \alpha$
- > No Price law: $\models ((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha$
- > No double negation: $\models \alpha \leftrightarrow \neg \neg \alpha$
- > Is $\sqrt{2}^{\sqrt{2}}$ irrational?

$$\frac{\frac{\Gamma \vdash f : \beta \to \gamma}{\Gamma \vdash \beta \to \gamma} Ax \quad \frac{\overline{\Gamma \vdash g : \alpha \to \beta} Ax \quad \overline{\Gamma \vdash x : \beta}}{\Gamma \vdash g x : \beta} \xrightarrow{Ax} \xrightarrow{\Gamma} E}{\frac{\Gamma \equiv f : \beta \to \gamma, \ g : \alpha \to \beta, \ x : \alpha \vdash f (g x) : \gamma}{f : \beta \to \gamma, \ g : \alpha \to \beta \vdash \lambda \ x. \ f (g x) : \alpha \to \gamma} \xrightarrow{A} \xrightarrow{I} \xrightarrow{f : \beta \to \gamma \vdash \lambda \ gx. \ f (g x) : (\alpha \to \beta) \to \alpha \to \gamma} \xrightarrow{I}$$

Remind:Typing rules

$$\frac{\Gamma \vdash u \; \alpha \to \beta \quad \Gamma \vdash v \; : \; \alpha}{\Gamma \vdash u \; v \; : \; \beta} \; \to E \quad \frac{\Gamma, x \; : \; \alpha \vdash u \; : \; \beta}{\Gamma \vdash \lambda x^{\alpha}.u \; : \; \alpha \to \beta} \; \to I$$

$$\frac{\Gamma, \alpha \vdash \alpha}{\Gamma, \alpha \vdash \alpha} Ax \qquad \frac{\Gamma \vdash \alpha \to \beta \quad \Gamma \vdash \alpha}{\Gamma \vdash \beta} \xrightarrow{F} \frac{\text{Modus ponens}}{F} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{F} \frac{\text{Hilbert's Deduction}}{\text{Theorem}}$$

- > No excluded middle: $\models \alpha \lor \neg \alpha$
- > No Price law: $\models ((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha$
- > No double negation: $\models \alpha \leftrightarrow \neg \neg \alpha$
- > Is $\sqrt{2}^{\sqrt{2}}$ irrational?

$$\frac{\frac{\Gamma \vdash f : \beta \to \gamma}{\Gamma \vdash \beta \to \gamma} Ax \quad \frac{\overline{\Gamma \vdash g : \alpha \to \beta} Ax \quad \overline{\Gamma \vdash x : \beta}}{\Gamma \vdash g x : \beta} \xrightarrow{Ax} \xrightarrow{\Gamma} E}{\frac{\Gamma \equiv f : \beta \to \gamma, \ g : \alpha \to \beta, \ x : \alpha \vdash f (g x) : \gamma}{f : \beta \to \gamma, \ g : \alpha \to \beta \vdash \lambda \ x. \ f (g x) : \alpha \to \gamma} \xrightarrow{A} \xrightarrow{I} \xrightarrow{f : \beta \to \gamma \vdash \lambda \ gx. \ f (g x) : (\alpha \to \beta) \to \alpha \to \gamma} \xrightarrow{I}$$

Remind:Typing rules

$$\frac{\Gamma, X: \alpha \vdash X: \alpha}{\Gamma, X: \alpha \vdash X: \alpha} A X \qquad \frac{\Gamma \vdash u \ \alpha \to \beta \quad \Gamma \vdash V: \alpha}{\Gamma \vdash u V: \beta} \to E \qquad \frac{\Gamma, X: \alpha \vdash u : \beta}{\Gamma \vdash \lambda X^{\alpha}. u: \alpha \to \beta} \to I$$

$$\frac{\Gamma, \alpha \vdash \alpha}{\Gamma \vdash \beta} Ax \qquad \frac{\Gamma \vdash \alpha \to \beta \quad \Gamma \vdash \alpha}{\Gamma \vdash \beta} \xrightarrow{\mathsf{Modus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus ponens}} \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \xrightarrow{\mathsf{Nodus po$$

- > No excluded middle: $\models \alpha \lor \neg \alpha$
- > No Price law: $\models ((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha$
- > No double negation: $\models \alpha \leftrightarrow \neg \neg \alpha$
- > Is $\sqrt{2}^{\sqrt{2}}$ irrational?

$$\frac{\Gamma \vdash \beta \to \gamma}{\Gamma \vdash \beta \to \gamma} Ax \xrightarrow{\Gamma \vdash \alpha \to \beta} Ax \xrightarrow{\Gamma \vdash \beta} Ax$$

$$\frac{\Gamma \vdash \beta \to \gamma, \alpha \to \beta, \alpha \vdash \gamma}{\Gamma = \beta \to \gamma, \alpha \to \beta \vdash \alpha \to \gamma} \to E$$

$$\frac{\beta \to \gamma, \alpha \to \beta \vdash \alpha \to \gamma}{\beta \to \gamma \vdash (\alpha \to \beta) \to \alpha \to \gamma} \to I$$

$$\vdash (\beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma}$$

Programming	Logic
Туре	Proposition
Term	Prove
Type inhabitance	Provability
Function type	Implication
Pair	Conjunction
Sum type	Disjunction
Unit type	True
Void	False
П-type	A
∑-type	Э.

Programming	Logic
Type	Proposition
Term	Prove
Type inhabitance	Provability
Function type	Implication
Pair	Conjunction
Sum type	Disjunction
Unit type	True
Void	False
П-type	A
∑-type	3
•••	

Lemma 1 $[Int_{\rightarrow} \Rightarrow \lambda_{\rightarrow}]$ $\underline{\text{If }} X_1 : \alpha_1, \dots, X_n : \alpha_n \vdash_{\lambda_{\leftarrow}^{Curry}} U : \beta$ then $\alpha_1, \dots, \alpha_n \vdash_{Int_{\rightarrow}} \beta$

Lemma 2 $[\lambda_{\rightarrow} \Rightarrow Int_{\rightarrow}]$ $\underline{\text{If }} \alpha_1, \dots, \alpha_n \vdash_{Int_{\rightarrow}} \beta$ $\underline{\text{then }} \exists u, x_1, \dots, x_n : x_1 : \alpha_1, \dots, x_n : \alpha_n \vdash_{\lambda_{\rightarrow}^{Curry}} u : \beta$

Programming	Logic
Туре	Proposition
Term	Prove
Type inhabitance	Provability
Function type	Implication
Pair	Conjunction
Sum type	Disjunction
Unit type	True
Void	False
П-type	A
∑-type	Э.
•••	

Lemma 1 [$Int_{\rightarrow} \Rightarrow \lambda_{\rightarrow}$]

 $\underline{\mathsf{lf}}\, X_1 : \alpha_1, \dots, X_n : \alpha_n \vdash_{\lambda}^{\mathsf{Curry}} U : \beta \\ \underline{\mathsf{then}}\, \alpha_1, \dots, \alpha_n \vdash_{\mathsf{Int}_{\rightarrow}} \beta$

Lemma 2 $[\lambda_{\rightarrow} \Rightarrow Int_{\rightarrow}]$

$$\frac{\text{If }\alpha_1,\ldots,\alpha_n\vdash_{\text{Int}},\beta}{\text{then }\exists u,x_1,\ldots,x_n: \quad x_1:\alpha_1,\ldots,x_n:\alpha_n\vdash_{\jmath}\mathsf{curry}\ u:\beta}$$

Note: *u* is not unique here:

$$\frac{\alpha, \alpha \vdash \alpha}{\alpha \vdash \alpha \to \alpha}$$

$$\frac{\lambda x. \lambda y. x: \alpha \to \alpha \to \alpha}{\lambda x. \lambda y. y: \alpha \to \alpha \to \alpha}$$

$$\lambda x. \lambda y. y: \alpha \to \alpha \to \alpha$$

Intuitionistic Propositional Calculus

Hilbert's propositional calculus

Axioms The Inference Rule
$$A \rightarrow (B \rightarrow A)[A_1]$$
 $A \rightarrow (B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))[A_2]$ $A \rightarrow B \rightarrow B$ $A \rightarrow B \rightarrow C$

> Classical logic: just add the Pierce law: $((A \rightarrow B) \rightarrow A) \rightarrow A$

Intuitionistic Propositional Calculus

Hilbert's propositional calculus

Axioms The Inference Rule
$$A \rightarrow (B \rightarrow A)[A_1]$$
 $A \rightarrow (B \rightarrow C)$ $A \rightarrow (B \rightarrow C)$ $A \rightarrow (B \rightarrow C)$ $A \rightarrow (B \rightarrow C)$

> Classical logic: just add the Pierce law: $((A \rightarrow B) \rightarrow A) \rightarrow A$

Example: $\vdash_{pc} A \rightarrow A$

Hilbert's propositional calculus

Axioms The Inference Rule
$$A \rightarrow (B \rightarrow A)[A_1]$$
 $A \rightarrow (B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))[A_2]$ $A \rightarrow (B \rightarrow A)[A_1]$ $A \rightarrow (B \rightarrow C) \rightarrow (A \rightarrow C)$

 \Rightarrow Classical logic: just add the Pierce law: $((A \rightarrow B) \rightarrow A) \rightarrow A$

Example: $\vdash_{pc} A \rightarrow A$

Hilbert's propositional calculus

The Inference Rule
$$A \rightarrow (B \rightarrow A)[A_1]$$
 $A \rightarrow (B \rightarrow C)$ $A \rightarrow (B \rightarrow C)$

> Classical logic: just add the Pierce law: $((A \rightarrow B) \rightarrow A) \rightarrow A$

Example: $\vdash_{pc} A \rightarrow A$

1.
$$A \to (\overbrace{(A \to A)}^B \to A)$$
 A1

$$\frac{}{A \to ((A \to A) \to A)} A1$$

Hilbert's propositional calculus

The Inference Rule
$$A \rightarrow (B \rightarrow A)[A_1]$$
 $A \rightarrow (B \rightarrow C)$ $A \rightarrow (B \rightarrow C)$

> Classical logic: just add the Pierce law: $((A \rightarrow B) \rightarrow A) \rightarrow A$

Example: $\vdash_{pc} A \rightarrow A$

1.
$$A \to ((A \to A) \to A)$$
 A1

2.
$$(A \rightarrow (\overbrace{(A \rightarrow A)}^{B} \rightarrow \overbrace{A}^{C})) \rightarrow ((A \rightarrow \overbrace{(A \rightarrow A)}^{B}) \rightarrow (A \rightarrow \overbrace{A}^{C}))$$
 A2

$$\overline{A \to ((A \to A) \to A)} \quad A1 \qquad \overline{(A \to ((A \to A) \to A)) \to ((A \to (A \to A)) \to (A \to A))} \quad A2$$

Hilbert's propositional calculus

Axioms The Inference Rule
$$A \rightarrow (B \rightarrow A)[A_1]$$
 $A \rightarrow (B \rightarrow C)$ $A \rightarrow (B \rightarrow C)$ $A \rightarrow (B \rightarrow C)$ $A \rightarrow (B \rightarrow C)$

 \Rightarrow Classical logic: just add the Pierce law: $((A \rightarrow B) \rightarrow A) \rightarrow A$

Example: $\vdash_{pc} A \rightarrow A$

1.
$$A \rightarrow (\overbrace{(A \rightarrow A)}^{B} \rightarrow A)$$
 A1

2.
$$(A \rightarrow (\overbrace{(A \rightarrow A)}^{B} \rightarrow \overbrace{A}^{C})) \rightarrow ((A \rightarrow \overbrace{(A \rightarrow A)}^{B}) \rightarrow (A \rightarrow \overbrace{A}^{C}))$$
 A2

3.
$$A \rightarrow (A \rightarrow A) \rightarrow (A \rightarrow A)$$
 MP 1. 2.

$$\frac{\overline{A \rightarrow ((A \rightarrow A) \rightarrow A)} \quad A1 \quad \overline{(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))}}{A \rightarrow (A \rightarrow A) \rightarrow (A \rightarrow A)} \quad \frac{A2}{MP}$$

Hilbert's propositional calculus

Axioms The Inference Rule
$$A \rightarrow (B \rightarrow A)[A_1]$$
 $A \rightarrow (B \rightarrow C)$ $A \rightarrow (B \rightarrow C)$ $A \rightarrow (B \rightarrow C)$ $A \rightarrow (B \rightarrow C)$

> Classical logic: just add the Pierce law: $((A \rightarrow B) \rightarrow A) \rightarrow A$

Example: $\vdash_{pc} A \rightarrow A$

1.
$$A \rightarrow (\overbrace{(A \rightarrow A)}^{B} \rightarrow A)$$
 A1

2. $(A \rightarrow (\overbrace{(A \rightarrow A)}^{C} \rightarrow A)) \rightarrow ((A \rightarrow \overbrace{(A \rightarrow A)}^{B})) \rightarrow (A \rightarrow A))$ A2

3. $A \rightarrow (A \rightarrow A) \rightarrow (A \rightarrow A)$ MP 1. 2.

4. $A \rightarrow (A \rightarrow A)$

$$\frac{A \rightarrow (A \rightarrow A)}{A \rightarrow (A \rightarrow A)} A 1 \qquad \frac{A \rightarrow ((A \rightarrow A) \rightarrow A)}{A \rightarrow (A \rightarrow A) \rightarrow (A \rightarrow A)} A 1 \qquad \frac{A \rightarrow ((A \rightarrow A) \rightarrow A)}{A \rightarrow (A \rightarrow A) \rightarrow (A \rightarrow A)} A 1 \qquad A \rightarrow (A \rightarrow A) \rightarrow (A \rightarrow A)$$

Hilbert's propositional calculus

The Inference Rule
$$A \rightarrow (B \rightarrow A)[A_1]$$
 $A \rightarrow (B \rightarrow C)$ $A \rightarrow (B \rightarrow C)$

> Classical logic: just add the Pierce law: $((A \rightarrow B) \rightarrow A) \rightarrow A$

Example: $\vdash_{pc} A \rightarrow A$

1.
$$A \rightarrow (\overbrace{(A \rightarrow A)}^{B} \rightarrow A)$$
 A1

2. $(A \rightarrow (\overbrace{(A \rightarrow A)}^{C} \rightarrow \overbrace{A}^{C})) \rightarrow ((A \rightarrow \overbrace{(A \rightarrow A)}^{C}) \rightarrow (A \rightarrow \overbrace{A}^{C}))$ A2

4. $A \rightarrow (A \rightarrow A)$

5. $A \rightarrow A$ MP 3. 4

Alternative syntax (derivation):

3. $A \rightarrow (A \rightarrow A) \rightarrow (A \rightarrow A)$

$$\frac{A \rightarrow (A \rightarrow A)}{A \rightarrow (A \rightarrow A)} A 1 \frac{A \rightarrow ((A \rightarrow A) \rightarrow A)}{A \rightarrow (A \rightarrow A) \rightarrow (A \rightarrow A)} A 1 \frac{A \rightarrow (A \rightarrow A) \rightarrow (A \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))}{A \rightarrow (A \rightarrow A)} MP$$

MP 1. 2.

Theorem [Hilbert's Deduction Theorem]

$$\Gamma, A \vdash_{pc} B \Leftrightarrow \Gamma \vdash_{pc} A \to B$$

Theorem [Hilbert's Deduction Theorem]

$$\Gamma, A \vdash_{pc} B \Leftrightarrow \Gamma \vdash_{pc} A \to B$$

Hence, PC $\sim Int_{\rightarrow}$

Theorem [Hilbert's Deduction Theorem]

$$\Gamma, A \vdash_{pc} B \Leftrightarrow \Gamma \vdash_{pc} A \to B$$

Hence, PC ~ *Int*_→

KS-calculus

> IPC ~ CL→ (aka KS-calculus)

$$\begin{array}{c|c} A \to (B \to A) & (A \to (B \to C)) \to ((A \to B) \to (A \to C)) & \frac{A \quad A \to B}{A} \\ \hline K : \alpha \to (\beta \to \alpha) & S : (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)) & \text{application} \\ \end{array}$$

Theorem [Hilbert's Deduction Theorem]

$$\Gamma, A \vdash_{pc} B \Leftrightarrow \Gamma \vdash_{pc} A \to B$$

Hence, PC ~ Int_→

KS-calculus

> IPC ~ CL→ (aka KS-calculus)

$$\begin{array}{c|c} A \to (B \to A) & (A \to (B \to C)) \to ((A \to B) \to (A \to C)) & \frac{A - A \to B}{A} \\ \hline K : \alpha \to (\beta \to \alpha) & S : (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)) & \text{application} \\ \end{array}$$

> Terms:

$$T^{\tau} ::= V_i \mid K_{\alpha,\beta} \mid S_{\alpha,\beta,\gamma} \mid T^{\alpha \to \beta} T^{\alpha}$$

 $> \text{ Reductions: } \quad \textit{K}_{\alpha,\beta}\textit{x}^{\alpha}\textit{y}^{\beta} \rightarrow \textit{x}^{\alpha} \qquad \textit{S}_{\alpha,\beta,\gamma}\textit{x}^{\alpha \rightarrow (\beta \rightarrow \gamma)}\textit{y}^{\alpha \rightarrow \beta}\textit{z}^{\gamma} \rightarrow \textit{xz}(\textit{yz})$

where $x, y, z \in T$

Theorem [Hilbert's Deduction Theorem]

$$\Gamma, A \vdash_{pc} B \Leftrightarrow \Gamma \vdash_{pc} A \to B$$

Hence. PC ~ Int_

KS-calculus

> IPC ~ CL_→ (aka KS-calculus)

$$\begin{array}{c|c} A \to (B \to A) & (A \to (B \to C)) \to ((A \to B) \to (A \to C)) & \frac{A - A \to B}{A} \\ \hline K : \alpha \to (\beta \to \alpha) & S : (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)) & \text{application} \\ \end{array}$$

> Terms:

$$T^{\tau} ::= \mathsf{v}_i \mid \mathsf{K}_{\alpha,\beta} \mid \mathsf{S}_{\alpha,\beta,\gamma} \mid T^{\alpha o \beta} T^{\alpha}$$

$$> \text{ Reductions:} \quad \textit{K}_{\alpha,\beta}\textit{x}^{\alpha}\textit{y}^{\beta} \rightarrow \textit{x}^{\alpha} \qquad \textit{S}_{\alpha,\beta,\gamma}\textit{x}^{\alpha \rightarrow (\beta \rightarrow \gamma)}\textit{y}^{\alpha \rightarrow \beta}\textit{z}^{\gamma} \rightarrow \textit{xz}(\textit{yz})$$

where $x, y, z \in T$

> Interpretation of CL_{\rightarrow} in λ_{\rightarrow} : $K_{\alpha\beta}^{\lambda_{\rightarrow}} \leftrightharpoons \lambda X^{\alpha} Y^{\beta}.X$ $S_{\alpha\beta\gamma}^{\lambda_{\rightarrow}} \leftrightharpoons \lambda X \ y \ z. \ X \ z \ (y \ z)$

$$K_{\alpha,\beta}^{\lambda_{\rightarrow}} \leftrightharpoons \lambda X^{\alpha} Y^{\beta}.X$$

$$S_{\alpha,\beta,\gamma}^{\lambda_{\rightarrow}} \leftrightharpoons \lambda x \ y \ z. \ x \ z \ (y)$$

Theorem [Hilbert's Deduction Theorem]

$$\Gamma, A \vdash_{pc} B \Leftrightarrow \Gamma \vdash_{pc} A \to B$$

Hence. PC ~ Int_

KS-calculus

> IPC ~ CL_→ (aka KS-calculus)

$$\begin{array}{c|c} A \to (B \to A) & (A \to (B \to C)) \to ((A \to B) \to (A \to C)) & \frac{A - A \to B}{A} \\ \hline K : \alpha \to (\beta \to \alpha) & S : (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)) & \text{application} \\ \end{array}$$

> Terms:

$$T^{\tau} ::= \mathsf{v}_i \mid \mathsf{K}_{\alpha,\beta} \mid \mathsf{S}_{\alpha,\beta,\gamma} \mid T^{\alpha o \beta} T^{\alpha}$$

- > Reductions: $K_{\alpha\beta}x^{\alpha}y^{\beta} \to x^{\alpha}$ $S_{\alpha\beta,\gamma}x^{\alpha\to(\beta\to\gamma)}y^{\alpha\to\beta}z^{\gamma} \to xz(yz)$
- where $x, y, z \in T$
- > Interpretation of CL_{\rightarrow} in λ_{\rightarrow} : $K_{\alpha\beta}^{\lambda_{\rightarrow}} \leftrightharpoons \lambda X^{\alpha} Y^{\beta}.X$ $S_{\alpha\beta\gamma}^{\lambda_{\rightarrow}} \leftrightharpoons \lambda X \ y \ z. \ X \ z \ (y \ z)$

Theorem

$$M \rightarrow_{CL \rightarrow} N \Rightarrow M^{\lambda \rightarrow} \twoheadrightarrow_{\beta} N^{\lambda \rightarrow}$$

Theorem [Abstraction in CL_{\rightarrow}]

 $\forall M \in \mathit{CL}_{\rightarrow}. \ \forall \ \mathsf{var} \ x : \alpha. \ \exists \ \mathsf{term} \ \lambda^* x^{\alpha}.M \ \mathsf{s.t.} \ x \notin \mathit{FV}(\lambda^* x^{\alpha}.M) \ \mathsf{and} \ (\lambda^* x^{\alpha}.M) N^{\alpha} \twoheadrightarrow_{\mathit{CL}_{\rightarrow}} M[x^{\alpha}/N^{\alpha}]$

Theorem [Abstraction in CL_{\rightarrow}]

 $\forall M \in \mathit{CL}_{\rightarrow}. \ \forall \ \mathsf{var} \ x : \alpha. \ \exists \ \mathsf{term} \ \lambda^* x^{\alpha}.M \ \mathsf{s.t.} \ x \notin \mathit{FV}(\lambda^* x^{\alpha}.M) \ \mathsf{and} \ (\lambda^* x^{\alpha}.M) N^{\alpha} \twoheadrightarrow_{\mathit{CL}_{\rightarrow}} M[x^{\alpha}/N^{\alpha}]$

Proof: $\lambda^* X^{\alpha} : X^{\alpha} \hookrightarrow S_{\alpha,\alpha \to \alpha,\alpha} K_{\alpha,\alpha \to \alpha} K_{\alpha,\alpha}$ (i.e. $I \equiv SKK$)

Theorem [Abstraction in CL_{\rightarrow}]

 $\forall M \in \mathit{CL}_{\rightarrow}. \ \forall \ \mathsf{var} \ x : \alpha. \ \exists \ \mathsf{term} \ \lambda^* x^{\alpha}.M \ \mathsf{s.t.} \ x \notin \mathit{FV}(\lambda^* x^{\alpha}.M) \ \mathsf{and} \ (\lambda^* x^{\alpha}.M) N^{\alpha} \twoheadrightarrow_{\mathit{CL}_{\rightarrow}} M[x^{\alpha}/N^{\alpha}]$

Proof: $\lambda^* x^{\alpha}.x^{\alpha} \leftrightharpoons S_{\alpha,\alpha \to \alpha,\alpha} K_{\alpha,\alpha \to \alpha} K_{\alpha,\alpha}$ (i.e. $I \equiv SKK$)

 $\lambda^* \mathbf{X}^{\alpha} . \mathbf{y}^{\beta} \leftrightharpoons \mathbf{K}_{\beta,\alpha} \mathbf{y}^{\beta}$

Theorem [Abstraction in CL_{\rightarrow}]

 $\forall M \in \mathit{CL}_{\rightarrow}. \ \forall \ \mathsf{var} \ x : \alpha. \ \exists \ \mathsf{term} \ \lambda^* x^\alpha. M \ \mathsf{s.t.} \ x \notin \mathit{FV}(\lambda^* x^\alpha. M) \ \mathsf{and} \ (\lambda^* x^\alpha. M) N^\alpha \twoheadrightarrow_{\mathit{CL}_{\rightarrow}} M[x^\alpha/N^\alpha]$

Proof:
$$\lambda^* x^{\alpha}. x^{\alpha} \leftrightharpoons S_{\alpha,\alpha \to \alpha,\alpha} K_{\alpha,\alpha \to \alpha} K_{\alpha,\alpha}$$
 (i.e. $I \equiv SKK$) $\lambda^* x^{\alpha}. y^{\beta} \leftrightharpoons K_{\beta,\alpha} y^{\beta}$ $\lambda^* x^{\alpha}. (M^{\beta \to \gamma} N^{\gamma}) \leftrightharpoons S_{\alpha\beta,\gamma} (\lambda^* x^{\alpha}. M) (\lambda^* x^{\alpha}. N)$

Theorem [Abstraction in CL_{\rightarrow}]

$$\forall M \in CL_{\rightarrow}$$
. $\forall \text{ var } x : \alpha$. $\exists \text{ term } \lambda^* x^{\alpha}.M \text{ s.t. } x \notin FV(\lambda^* x^{\alpha}.M) \text{ and } (\lambda^* x^{\alpha}.M)N^{\alpha} \twoheadrightarrow_{CL_{\rightarrow}} M[x^{\alpha}/N^{\alpha}]$

Proof:
$$\lambda^* x^{\alpha}. x^{\alpha} \leftrightharpoons S_{\alpha,\alpha \to \alpha,\alpha} K_{\alpha,\alpha \to \alpha} K_{\alpha,\alpha}$$
 (i.e. $I \equiv SKK$) $\lambda^* x^{\alpha}. y^{\beta} \leftrightharpoons K_{\beta,\alpha} y^{\beta}$ $\lambda^* x^{\alpha}. (M^{\beta \to \gamma} N^{\gamma}) \leftrightharpoons S_{\alpha,\beta,\gamma} (\lambda^* x^{\alpha}. M) (\lambda^* x^{\alpha}. N)$

Theorem [completeness]

$$\forall M \in CL_{\rightarrow}, \{x_1, ..., x_n\} = FV(M) \exists \text{ closed term (combinator) } N : N x_1 ... x_n \twoheadrightarrow_{CL_{\rightarrow}} M$$

Proof:
$$N = \lambda^* x_1 \dots \lambda^* x_n M$$

Theorem [Abstraction in CL_{\rightarrow}]

$$\forall M \in CL_{\rightarrow}$$
. $\forall \text{ var } x : \alpha$. $\exists \text{ term } \lambda^* x^{\alpha}.M \text{ s.t. } x \notin FV(\lambda^* x^{\alpha}.M) \text{ and } (\lambda^* x^{\alpha}.M)N^{\alpha} \twoheadrightarrow_{CL_{\rightarrow}} M[x^{\alpha}/N^{\alpha}]$

Proof:
$$\lambda^* x^{\alpha}. x^{\alpha} \leftrightharpoons S_{\alpha,\alpha \to \alpha,\alpha} K_{\alpha,\alpha \to \alpha} K_{\alpha,\alpha}$$
 (i.e. $I \equiv SKK$) $\lambda^* x^{\alpha}. y^{\beta} \leftrightharpoons K_{\beta,\alpha} y^{\beta}$ $\lambda^* x^{\alpha}. (M^{\beta \to \gamma} N^{\gamma}) \leftrightharpoons S_{\alpha,\beta,\gamma} (\lambda^* x^{\alpha}. M) (\lambda^* x^{\alpha}. N)$

Theorem [completeness]

$$\forall M \in CL_{\rightarrow}, \{x_1, \dots, x_n\} = FV(M) \exists \text{ closed term (combinator) } N : N x_1 \dots x_n \twoheadrightarrow_{CL_{\rightarrow}} M$$

Proof: $N = \lambda^* x_1 \dots \lambda^* x_n M$

Is there any difference between λ^* and λ (abstraction in STLC)?

CL_{\rightarrow} Properties

Theorem [Abstraction in CL_{\rightarrow}]

 $\forall M \in CL_{\rightarrow}$. $\forall \text{ var } x : \alpha$. $\exists \text{ term } \lambda^* x^{\alpha}.M \text{ s.t. } x \notin FV(\lambda^* x^{\alpha}.M) \text{ and } (\lambda^* x^{\alpha}.M)N^{\alpha} \twoheadrightarrow_{CL_{\rightarrow}} M[x^{\alpha}/N^{\alpha}]$

Proof:
$$\lambda^* x^{\alpha}. x^{\alpha} \leftrightharpoons S_{\alpha,\alpha \to \alpha,\alpha} K_{\alpha,\alpha \to \alpha} K_{\alpha,\alpha}$$
 (i.e. $I \equiv SKK$) $\lambda^* x^{\alpha}. y^{\beta} \leftrightharpoons K_{\beta,\alpha} y^{\beta}$ $\lambda^* x^{\alpha}. (M^{\beta \to \gamma} N^{\gamma}) \leftrightharpoons S_{\alpha,\beta,\gamma} (\lambda^* x^{\alpha}. M) (\lambda^* x^{\alpha}. N)$

Theorem [completeness]

 $\forall M \in CL_{\rightarrow}, \{x_1, \dots, x_n\} = FV(M) \exists \text{ closed term (combinator) } N: N x_1 \dots x_n \twoheadrightarrow_{CL_{\rightarrow}} M$

Proof: $N = \lambda^* x_1 \dots \lambda^* x_n M$

Is there any difference between λ^* and λ (abstraction in STLC)?

YES!

$$M = M'$$
 in $CL_{\rightarrow} \not \times \lambda^* x. M = \lambda^* x. N$ in CL_{\rightarrow}

Counterexample: $K \times K =_{CL} x$ but there are two different normal forms:

$$\lambda^* x.K \ x \ K = S(S(KK)(S(KK)))(KK) \qquad \lambda^* x.x = SKK$$

Theorem [Abstraction in CL_{\rightarrow}]

 $\forall M \in CL_{\rightarrow}$. $\forall \text{ var } x : \alpha$. $\exists \text{ term } \lambda^* x^{\alpha}.M \text{ s.t. } x \notin FV(\lambda^* x^{\alpha}.M) \text{ and } (\lambda^* x^{\alpha}.M)N^{\alpha} \twoheadrightarrow_{CL_{\rightarrow}} M[x^{\alpha}/N^{\alpha}]$

Proof: $\lambda^* x^{\alpha}.x^{\alpha} \leftrightharpoons S_{\alpha,\alpha \to \alpha,\alpha} K_{\alpha,\alpha \to \alpha} K_{\alpha,\alpha}$ (i.e. $I \equiv SKK$) $\lambda^* x^{\alpha}.y^{\beta} \leftrightharpoons K_{\beta,\alpha} y^{\beta}$ $\lambda^* x^{\alpha}.(M^{\beta \to \gamma} N^{\gamma}) \leftrightharpoons S_{\alpha,\beta,\gamma}(\lambda^* x^{\alpha}.M)(\lambda^* x^{\alpha}.N)$

Theorem [completeness]

 $\forall M \in CL_{\rightarrow}, \{x_1, ..., x_n\} = FV(M) \exists \text{ closed term (combinator) } N : N x_1 ... x_n \twoheadrightarrow_{CL_{\rightarrow}} M$

Proof: $N = \lambda^* x_1 \dots \lambda^* x_n M$

Is there any difference between λ^* and λ (abstraction in STLC)?

M = M' in $CL \rightarrow \times \lambda^* x.M = \lambda^* x.N$ in $CL \rightarrow \times X$

YES!

Counterexample: $K \times K =_{CL} x$ but there are two different normal forms:

 $\lambda^* x.K \ x \ K = S(S(KK)(S(KK)))(KK) \qquad \lambda^* x.x = SKK$

Untyped CL

Two terms Equality Derivability Problem is undecidable

CL is a "simplest" system with so "simple" undesidable problem

Outline for section 3

- 1 Simply Typed Lambda Calculus (STLC; λ_{\rightarrow})
 - Syntax; à la Curry; à la Church
 - Properties
- Curry-Howard Isomorphism
 - Intuitionistic Proposition Logic Int.,
 - Curry-Howard Isomorphism
 - Hilbert's Propositional Calculus
 - KS-calculi
- STLC
 - Strong Normalization
 - Type Inference
 - Robinson's Unification Algorithm
 - Set-Theoretic Semantics
- Polymorphism
 - System F
 - Hindley-Milner Type System
 - Barendregt's Lambda Cube

Daniil Berezun Types 2022

STLC: Strong normalization

Definition [computable terms]

 $[\Leftarrow Comp]$

 $> \alpha = p \quad u \in Comp_P \Leftrightarrow u \in SN$

 $\Rightarrow \alpha = \sigma \rightarrow \tau \quad u \in Comp_{\sigma \rightarrow \tau} \Leftrightarrow \forall v \in Comp_{\sigma} : uv \in Comp_{\tau}$

Lemma 1

(a) $u \in Comp_{\tau} \Rightarrow u \in SN$

(b) $u \in Comp_{\tau} \wedge u \rightarrow_{\beta} u' \Rightarrow u' \in Comp_{\tau}$

(c) $u: \tau, u \not\equiv \lambda \dots \\ \forall u'.(u \rightarrow u' \Rightarrow u' \in Comp_{\tau})$ $\Rightarrow u \in Comp_{\tau}$

Lemma 2

 $\forall v \in Comp_{\sigma}. \ u[x/v] \in Comp_{\tau} \Rightarrow \lambda x.u \in Comp_{\sigma \to \tau}$

Lemma 3

$$FV(u) \subseteq \{X_1^{\sigma_1}, \dots, X_n^{\sigma_n}\}$$

$$\forall i.v_i \in Comp_{\sigma_i}$$

$$\Rightarrow u[x_1/v_1, \dots, x_n/v_n] \in Comp_{\tau}$$

Theorem [Strong Normalization]

 $u: \tau \Rightarrow u \in Comp_{\tau}$

 $\stackrel{\text{def}}{\Rightarrow} u \in SN$

Theorem [STLC: WN + CR]

 $\forall u \exists ! u_0 \in NF : u =_{\beta} u_0$

Type Inference: Principal Type

Definition [principal (most general type)]

 τ is most general type of a term in context Γ if both

$$> \Gamma \vdash u : \tau$$

$$> \Gamma \vdash u : \tau' \implies \tau' = \sigma(\tau) \text{ where}$$

 σ is a type substitution that does not affect types from context Γ

Type Inference: Principal Type

Definition [principal (most general type)]

 τ is most general type of a term in context Γ if both

$$> \Gamma \vdash u : \tau$$

$$> \Gamma \vdash u : \tau' \implies \tau' = \sigma(\tau)$$
 where

 σ is a type substitution that does not affect types from context Γ

Example

$$> + \lambda x.\lambda y.x: \ \alpha_1 \to \alpha_2 \to \alpha_1 \qquad \alpha_1 \coloneqq \beta, \ \alpha_2 \coloneqq \gamma \qquad \beta \to \gamma \to \beta \qquad -ok$$

$$> X : \alpha \vdash X : \alpha$$
 $\alpha := \beta \rightarrow \gamma$ $X : \alpha \vdash X : \beta \rightarrow \gamma$ — not ok

Type Inference: Principal Type

Definition [principal (most general type)]

au is most general type of a term in context Γ if both

$$> \Gamma \vdash u : \tau$$

$$> \Gamma \vdash u : \tau' \implies \tau' = \sigma(\tau) \text{ where}$$

 σ is a type substitution that does not affect types from context Γ

Example

$$> + \lambda x.\lambda y.x : \alpha_1 \to \alpha_2 \to \alpha_1 \qquad \alpha_1 \coloneqq \beta, \ \alpha_2 \coloneqq \gamma \qquad \beta \to \gamma \to \beta \qquad -ok$$

$$> x : \alpha \vdash x : \alpha \qquad \alpha \coloneqq \beta \to \gamma \qquad x : \alpha \vdash x : \beta \to \gamma \qquad -not \ ok$$

Lemma

 $\Gamma \vdash u : \beta$ and substitution σ doesn't affect primitive types (constants) from Γ then $\Gamma \vdash u : \sigma(\beta)$

Theorem [Type inference is possible]

Term u is typable in context Γ then exist the principal type u in context Γ and an efficient algorithm of its inference

Type Inference: Unification

Rule	Equations
$\Gamma, X : \alpha \vdash X : r$	$r \approx \alpha$
$\frac{\Gamma \vdash u : r_2 \Gamma \vdash v : r_3}{\Gamma \vdash uv : r_1}$	$r_2 \approx r_3 \rightarrow r_1$
$\frac{\Gamma, x : r_2 \vdash u : r_3}{\Gamma \vdash \lambda x. u : r_1}$	$r_1 \approx r_2 \rightarrow r_3$

Type Inference: Unification

Rule	Equations
$\Gamma, X : \alpha \vdash X : r$	$r \approx \alpha$
$\frac{\Gamma \vdash u : r_2 \Gamma \vdash v : r_3}{\Gamma \vdash uv : r_1}$	$r_2 \approx r_3 \rightarrow r_1$
$\frac{\Gamma, x : r_2 \vdash u : r_3}{\Gamma \vdash \lambda x. u : r_1}$	$r_1 \approx r_2 \rightarrow r_3$

Definition [Unifier]

A unifier for equation system $\begin{cases} \alpha_1 \approx \beta_1 \\ \dots \\ \alpha_n \approx \beta_n \end{cases}$ is a substitution σ : $\forall i. \ \sigma(\alpha_i) = \sigma(\beta_i)$

Example

$$r_1 \rightarrow (r_2 \rightarrow r_3) \approx (r_4 \rightarrow r_5) \rightarrow r_6$$

 $r_1 := \alpha \rightarrow \alpha$
 $r_6 := \alpha \rightarrow \alpha$
 $r_{2,3,4,5} := \alpha$
 $(\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha)$

Type Inference: Unification

Rule	Equations
$\Gamma, \mathbf{X} : \alpha \vdash \mathbf{X} : \mathbf{r}$	$r \approx \alpha$
$\frac{\Gamma \vdash u : r_2 \Gamma \vdash v : r_3}{\Gamma \vdash uv : r_1}$	$r_2 \approx r_3 \rightarrow r_1$
$\Gamma, x : r_2 \vdash u : r_3$	

Definition [Unifier]

A unifier for equation system $\left\{ \begin{array}{l} \alpha_1 \approx \beta_1 \\ \dots \\ \alpha_n \approx \beta_n \end{array} \right.$ is a substitution σ : $\forall i. \ \sigma(\alpha_i) = \sigma(\beta_i)$

Example

$$\frac{\Gamma, x : r_2 \vdash u : r_3}{\Gamma \vdash \lambda x. u : r_1} \qquad r_1 \approx r_2 \rightarrow r_3$$

$$r_1 \Rightarrow (r_2 \rightarrow r_3) \approx (r_4 \rightarrow r_5) \rightarrow r_6$$

$$r_1 := \alpha \rightarrow \alpha$$

$$r_6 := \alpha \rightarrow \alpha$$

$$r_{2,3,4,5} := \alpha$$

$$(\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha)$$

Definition [Most General Unifier; MGU]

MGU is a unifier σ_0 : $\forall \sigma'$ —unifier $\exists \mu$ — substitution s.t. $\sigma' = \mu \circ \sigma_0$

(i.e.
$$\sigma'(\beta) = \mu(\sigma_0(\beta))$$
)

» MGU ↔ principal type

Lemma

 σ is a unifier for $\Sigma = r \approx A, \Sigma'$ and r doesn't contain A iff

 $\sigma = \sigma' \circ [r/A]$ where σ' is a unifier for $\Sigma'[r/A]$

Robinson [MGU for Σ]

Lemma

 σ is a unifier for $\Sigma = r \approx A, \Sigma'$ and r doesn't contain A iff

 $\sigma = \sigma' \circ [r/A]$ where σ' is a unifier for $\Sigma'[r/A]$

Robinson [MGU for Σ]

Type variables: constants $(p_1, ..., p_n)$ and variables $(r_1, ..., r_n)$

Lemma

 σ is a unifier for $\Sigma = r \approx A, \Sigma'$ and r doesn't contain A iff

 $\sigma = \sigma' \circ [r/A]$ where σ' is a unifier for $\Sigma'[r/A]$

Robinson [MGU for Σ]

- **1** $A \approx A$ then remove

Lemma

 σ is a unifier for $\Sigma = r \approx A, \Sigma'$ and r doesn't contain A iff $\sigma = \sigma' \circ [r/A]$ where σ' is a unifier for $\Sigma'[r/A]$

Robinson [MGU for Σ]

- **1** $A \approx A$ then remove
- **2** $A_1 \rightarrow A_2 \approx B_1 \rightarrow B_2$ then replace it with pair $A_1 \approx B_1$, $A_2 \approx B_2$
- **3** $p_i \approx B(\text{or } B \approx p_i)$ where B "constant", $\neq p_i$ or →-type

Lemma

 σ is a unifier for $\Sigma = r \approx A, \Sigma'$ and r doesn't contain A iff $\sigma = \sigma' \circ [r/A]$ where σ' is a unifier for $\Sigma'[r/A]$

Robinson [MGU for Σ]

- **1** $A \approx A$ then remove
- **2** $A_1 \rightarrow A_2 \approx B_1 \rightarrow B_2$ then replace it with pair $A_1 \approx B_1$, $A_2 \approx B_2$
- **3** $p_i \approx B(\text{or } B \approx p_i)$ where B "constant", $\neq p_i$ or \rightarrow -type then fail
- **4** $r_i \approx B(\text{or } B \approx r_i)$ where B contains but not equal to variable r_i

Lemma

 σ is a unifier for $\Sigma = r \approx A, \Sigma'$ and r doesn't contain A iff $\sigma = \sigma' \circ [r/A]$ where σ' is a unifier for $\Sigma'[r/A]$

Robinson [MGU for Σ]

- **1** $A \approx A$ then remove
- **2** $A_1 \rightarrow A_2 \approx B_1 \rightarrow B_2$ then replace it with pair $A_1 \approx B_1$, $A_2 \approx B_2$
- **③** $p_i \approx B(\text{or } B \approx p_i)$ where B "constant", $\neq p_i$ or →-type then fail
- $r_i \approx B(\text{or } B \approx r_i)$ where B contains but not equal to variable r_i then fail
- **3** $r_i \approx B(\text{or } B \approx r_i)$ where B doesn't contain var r_i

Lemma

 σ is a unifier for $\Sigma = r \approx A, \Sigma'$ and r doesn't contain A iff $\sigma = \sigma' \circ [r/A]$ where σ' is a unifier for $\Sigma'[r/A]$

Robinson [MGU for Σ]

- **1** $A \approx A$ then remove
- **2** $A_1 \rightarrow A_2 \approx B_1 \rightarrow B_2$ then replace it with pair $A_1 \approx B_1$, $A_2 \approx B_2$
- **3** $p_i \approx B(\text{or } B \approx p_i)$ where B "constant", $\neq p_i$ or \rightarrow -type then fail
- $r_i \approx B(\text{or } B \approx r_i)$ where B contains but not equal to variable r_i then fail
- **⑤** $r_j \approx B(\text{or } B \approx r_j)$ where B doesn't contain var r_j then recursive call with $\Sigma' := \Sigma[r_j/B]$ $\underline{\text{If }} \Sigma[r_j/B]$ is unifiable $(robinson(\Sigma[r_j/B]) = \sigma_0')$ then $\sigma_0 \stackrel{Lemma}{:=} \sigma_0' \circ [r_j/B]$ unifies Σ

Lemma

 σ is a unifier for $\Sigma = r \approx A, \Sigma'$ and r doesn't contain A iff $\sigma = \sigma' \circ [r/A]$ where σ' is a unifier for $\Sigma'[r/A]$

Robinson [MGU for Σ]

- **1** $A \approx A$ then remove
- **2** $A_1 \rightarrow A_2 \approx B_1 \rightarrow B_2$ then replace it with pair $A_1 \approx B_1$, $A_2 \approx B_2$
- **3** $p_i \approx B(\text{or } B \approx p_i)$ where B "constant", $\neq p_i$ or \rightarrow -type then fail
- $r_i \approx B(\text{or } B \approx r_i)$ where B contains but not equal to variable r_i then fail
- **③** $r_j \approx B(\text{or } B \approx r_j)$ where B doesn't contain var r_j then recursive call with $\Sigma' := \Sigma[r_j/B]$ $\underline{\text{If } \Sigma[r_j/B]}$ is unifiable $(robinson(\Sigma[r_j/B]) = \sigma_0')$ then $\sigma_0 \stackrel{Lemma}{:=} \sigma_0' \circ [r_j/B]$ unifies Σ More over σ_0 is MGU: for some unifier σ since σ_0' is MGU for $\Sigma[r_j/B]$

$$\sigma \stackrel{Lemma}{=} \sigma' \circ [r_j/B] \stackrel{\checkmark}{=} \tau \circ \sigma'_0 \circ [r_j/B] \stackrel{def}{=} \sigma_0 \tau \circ \sigma_0$$

Type Inference: Robinson's algorithm

Lemma

 σ is a unifier for $\Sigma = r \approx A, \Sigma'$ and r doesn't contain A iff $\sigma = \sigma' \circ [r/A]$ where σ' is a unifier for $\Sigma'[r/A]$

Robinson [MGU for Σ]

Type variables: constants (p_1, \ldots, p_n) and variables (r_1, \ldots, r_n)

- **1** $A \approx A$ then remove
- 2 $A_1 \rightarrow A_2 \approx B_1 \rightarrow B_2$ then replace it with pair $A_1 \approx B_1$, $A_2 \approx B_2$
- **⑤** $p_i \approx B(\text{or } B \approx p_i)$ where B "constant", $\neq p_i$ or \rightarrow -type then fail
- $r_i \approx B(\text{or } B \approx r_i)$ where B contains but not equal to variable r_i then fail
- \bullet $r_i \approx B$ (or $B \approx r_i$) where B doesn't contain var r_i then recursive call with $\Sigma' := \Sigma[r_i/B]$ If $\Sigma[r_i/B]$ is unifiable $(robinson(\Sigma[r_i/B]) = \sigma_0')$ then $\sigma_0 \stackrel{Lemma}{:=} \sigma_0' \circ [r_i/B]$ unifies Σ More over σ_0 is MGU: for some unifier σ since σ'_0 is MGU for $\Sigma[r_J/B]$

$$\sigma \stackrel{Lemma}{=} \sigma' \circ [r_j/B] \stackrel{\checkmark}{=} \tau \circ \sigma'_0 \circ [r_j/B] \stackrel{def \sigma_0}{=} \tau \circ \sigma_0$$

Why does it terminate?

Type Inference: Robinson's algorithm

Lemma

 σ is a unifier for $\Sigma = r \approx A, \Sigma'$ and r doesn't contain A iff

$$\sigma = \sigma' \circ [r/A]$$
 where σ' is a unifier for $\Sigma'[r/A]$

Robinson [MGU for Σ]

Type variables: constants $(p_1, ..., p_n)$ and variables $(r_1, ..., r_n)$

- **1** $A \approx A$ then remove
- **2** $A_1 \rightarrow A_2 \approx B_1 \rightarrow B_2$ then replace it with pair $A_1 \approx B_1$, $A_2 \approx B_2$
- ③ $p_i \approx B(\text{or } B \approx p_i)$ where B "constant", $\neq p_i$ or \rightarrow -type then fail
- $r_i \approx B(\text{or } B \approx r_i)$ where B contains but not equal to variable r_i then fail
- **1** $r_j \approx B(\text{or } B \approx r_j)$ where B doesn't contain var r_j then recursive call with $\Sigma' := \Sigma[r_j/B]$

 $\underline{\text{If }}\Sigma[r_j/B] \text{ is unifiable } (robinson(\Sigma[r_j/B]) = \sigma_0') \ \underline{\text{then}} \ \sigma_0 \stackrel{\text{Lemma}}{:=} \sigma_0' \circ [r_j/B] \text{ unifies } \Sigma$ $\underline{\text{More over}} \ \sigma_0 \text{ is MGU: for some unifier } \sigma \quad \underline{\text{since }} \sigma_0' \text{ is MGU for } \Sigma[r_j/B]$

$$\sigma \stackrel{Lemma}{=} \sigma' \circ [r_j/B] \stackrel{\checkmark}{=} \tau \circ \sigma'_0 \circ [r_j/B] \stackrel{def \sigma_0}{=} \tau \circ \sigma_0$$

> Why does it terminate?

Daniil Berezun

STLC: Set-Theoretic Semantics

Domains

$$\Rightarrow$$
 base type $p \mapsto D_p$

$$> D_{\sigma \to \tau} = (D_{\sigma} \to D_{\tau}) = D_{\tau}^{D_{\sigma}}$$

Terms

- > Vars: $\theta: \mathbf{X}^{\sigma} \mapsto \theta_{\mathbf{X}} \in D_{\sigma}$ evaluation function
- > Interpretation of terms: $[\![u]\!]_{\theta} \in D_{\tau}$ where τ is a type of u

STLC: Set-Theoretic Semantics

Domains

$$\Rightarrow$$
 base type $p \mapsto D_p$

$$> D_{\sigma \to \tau} = (D_{\sigma} \to D_{\tau}) = D_{\tau}^{D_{\sigma}}$$

Terms

- > Vars: $\theta: \mathbf{X}^{\sigma} \mapsto \theta_{\mathbf{X}} \in D_{\sigma}$ evaluation function
- > Interpretation of terms: $[\![u]\!]_a \in D_\tau$ where τ is a type of u

 - **2** $\|uv\|_{\theta} = \|u\|_{\theta} (\|v\|_{\theta})$

Note:

$$u: \tau \Rightarrow \llbracket u \rrbracket_{\theta} \in D_{\tau}$$

Theorem [correctness]

$$u =_{\beta} v \Rightarrow \forall \theta. \ \llbracket u \rrbracket_{\theta} = \llbracket v \rrbracket_{\theta}$$

What about completeness?

$$\forall \theta. \ \llbracket u \rrbracket_{\theta} = \llbracket v \rrbracket_{\theta} \stackrel{?}{\Rightarrow} u =_{\beta} v$$

STLC: Set-Theoretic Semantics

Domains

$$>$$
 base type $p \mapsto D_p$

$$> D_{\sigma \to \tau} = (D_{\sigma} \to D_{\tau}) = D_{\tau}^{D_{\sigma}}$$

Terms

- > Vars: $\theta: \mathbf{X}^{\sigma} \mapsto \theta_{\mathbf{X}} \in D_{\sigma}$ evaluation function
- > Interpretation of terms: $[u]_a \in D_\tau$ where τ is a type of u

Note:

 $U \neq_{\beta} V$

$$u: \tau \Rightarrow \llbracket u \rrbracket_{\theta} \in D_{\tau}$$

Theorem [correctness]

$$u =_{\beta} v \Rightarrow \forall \theta. \ \llbracket u \rrbracket_{\theta} = \llbracket v \rrbracket_{\theta}$$

What about completeness?

$$\forall \theta. \ \llbracket u \rrbracket_{\theta} = \llbracket v \rrbracket_{\theta} \stackrel{?}{\Rightarrow} u =_{\beta} v$$

completeness?: counterexample

$$U = \lambda X^{\alpha}.(Y^{\alpha \to \beta}X) : \alpha \to \beta$$
$$V = V$$

$$\llbracket u \rrbracket_{\theta} = f : \alpha \mapsto \llbracket yx \rrbracket_{\theta[x/a]} \stackrel{\text{def}}{=} f : a \mapsto \underbrace{\theta(y)}_{\llbracket y \rrbracket_{\theta[x/a]}} (a) = \llbracket v \rrbracket_{\theta}$$

Definition [η -reduction]

$$\lambda x.(ux) \rightarrow_{\eta} u, \quad x \notin FV(u)$$

Properties $\rightarrow_{\beta\eta}$

- > CR
- > WN, SN
- > Type preserving
- > Interpretation preserving
- $> CR + WN \Rightarrow \exists! \beta \eta NF$

Definition [η -reduction]

$$\lambda x.(ux) \rightarrow_{\eta} u, \quad x \notin FV(u)$$

Properties $\rightarrow_{\beta\eta}$

- > CR
- > WN, SN
- > Type preserving
- > Interpretation preserving
- > CR + WN $\Rightarrow \exists! \beta \eta$ -NF

Lemma

$$u, v - \beta \eta - NF, \quad u \neq v \quad \Rightarrow \quad \exists \theta : \ [\![u]\!]_{\theta} \neq [\![v]\!]_{\theta}$$

Theorem [completeness]

$$(\forall D, \ \theta. \ \llbracket u \rrbracket_{\theta} = \llbracket v \rrbracket_{\theta}) \Rightarrow u =_{\beta\eta} v$$

Lemma [extensionality]

x-fresh, $ux =_{\beta\eta} vx \Rightarrow u =_{\beta\eta} v$

STLC: Conclusion

v Very simple

v Type checking and type inference are decidable

x Limited: no recursion!

> Some function are typable not by type but by *type schemes*

Example: $id \equiv \lambda x.x$ is typing by $type\ scheme\ \{\tau_1 \to \tau_1\}_{\tau_1 \text{ is a simple type}}$

Outline for section 4

- 1 Simply Typed Lambda Calculus (STLC; λ_{\rightarrow})
 - Syntax; à la Curry; à la Church
 - Properties
- Curry-Howard Isomorphism
 - Intuitionistic Proposition Logic Int →
 - Curry-Howard Isomorphism
 - Hilbert's Propositional Calculus
 - KS-calculi
- STLC
 - Strong Normalization
 - Type Inference
 - Robinson's Unification Algorithm
 - Set-Theoretic Semantics
- Polymorphism
 - System F
 - Hindley-Milner Type System
 - Barendregt's Lambda Cube

System F (aka λ 2)

$$\tau := \alpha \mid \tau \to \tau \mid \forall \alpha.\tau$$

$$e := x \mid \lambda x \cdot e \mid e_1 e_2 \mid \Lambda \alpha \cdot e \mid e \alpha$$

System F (aka λ 2)

$$\tau := \alpha \mid \tau \to \tau \mid \forall \alpha.\tau$$

$$e := x \mid \lambda x . e \mid e_1 e_2 \mid \Lambda \alpha . e \mid e \alpha$$

Typing Rules

$$\frac{\Gamma \vdash \mathsf{e} : \forall \alpha. \tau_2}{\Gamma \vdash \mathsf{e} \tau_1 : \tau_2[\alpha/\tau_1]} \ [\mathit{TApp}] \qquad \qquad \frac{\Gamma \vdash \mathsf{e} : \tau}{\Gamma \vdash \Lambda \alpha. \mathsf{e} : \forall \alpha. \tau} \ [\mathit{TAbs}]$$

Examples

$$3 \equiv \Lambda \alpha . \lambda \mathbf{X}^{\alpha} . \lambda \mathbf{f}^{\alpha \to \alpha} . f(f(f(\mathbf{X}))) : \forall \alpha . \alpha \to (\alpha \to \alpha) \to \alpha \qquad id \equiv \Lambda \alpha . \lambda \mathbf{X}^{\alpha} . \mathbf{X} : \forall \alpha . \alpha \to \alpha$$
$$id(\forall \alpha . \alpha \to \alpha) : (\forall \alpha . \alpha \to \alpha) \to (\forall \alpha . \alpha \to \alpha)$$

System F: Disadvantages

What about Most General Type?

> Consider *\lambda x.xx*

$$\begin{array}{lll} \textbf{\textit{X}}: \forall \alpha.\alpha \rightarrow \alpha & \vdash \textbf{\textit{X}}: t \rightarrow t \\ \textbf{\textit{X}}: \forall \alpha.\alpha \rightarrow \alpha & \vdash \textbf{\textit{X}}: (t \rightarrow t) \rightarrow (t \rightarrow t) \\ \textbf{\textit{X}}: \forall \alpha.\alpha \rightarrow \alpha & \vdash \textbf{\textit{XX}}: (t \rightarrow t) \\ & \vdash \lambda \textbf{\textit{X}}.\textbf{\textit{XX}}: (\forall \alpha.\alpha \rightarrow \alpha) \rightarrow (\forall \beta.\beta \rightarrow \beta) \end{array}$$

Types

> Is it the most general type?

System F: Disadvantages

What about Most General Type?

> Consider *\lambda x.xx*

$$\begin{array}{lll} \textit{X}: \forall \alpha.\alpha \rightarrow \alpha & \vdash \textit{X}: \textit{t} \rightarrow \textit{t} \\ \textit{X}: \forall \alpha.\alpha \rightarrow \alpha & \vdash \textit{X}: (\textit{t} \rightarrow \textit{t}) \rightarrow (\textit{t} \rightarrow \textit{t}) \\ \textit{X}: \forall \alpha.\alpha \rightarrow \alpha & \vdash \textit{XX}: (\textit{t} \rightarrow \textit{t}) \\ & \vdash \lambda \textit{X}.\textit{XX}: (\forall \alpha.\alpha \rightarrow \alpha) \rightarrow (\forall \beta.\beta \rightarrow \beta) \end{array}$$

> Is it the most general type?

NO!

$$\vdash \lambda \mathbf{X}.\mathbf{X}\mathbf{X} : (\forall \alpha.(\alpha \to \alpha) \to (\alpha \to \alpha)) \to (\forall \beta.(\beta \to \beta) \to (\beta \to \beta))$$

- > Essence: $(\forall r.\xi) \rightarrow (\forall t.\eta)$
 - specification of η makes type more general
 - specification of ξ makes type more concrete
- > Example: squaring function

$$dup = \lambda f. \lambda x. f(f(x)) : \forall \gamma. (\gamma \to \gamma) \to (\gamma \to \gamma)$$
But not
$$\forall \rho. \rho \to \rho$$

What about Most General Type?

> Consider ∆x.xx

$$\begin{array}{lll} \textit{\textbf{X}}: \forall \alpha.\alpha \rightarrow \alpha & \vdash \textit{\textbf{X}}: t \rightarrow t \\ \textit{\textbf{X}}: \forall \alpha.\alpha \rightarrow \alpha & \vdash \textit{\textbf{X}}: (t \rightarrow t) \rightarrow (t \rightarrow t) \\ \textit{\textbf{X}}: \forall \alpha.\alpha \rightarrow \alpha & \vdash \textit{\textbf{XX}}: (t \rightarrow t) \\ & \vdash \lambda\textit{\textbf{X}}.\textit{\textbf{XX}}: (\forall \alpha.\alpha \rightarrow \alpha) \rightarrow (\forall \beta.\beta \rightarrow \beta) \end{array}$$

> Is it the most general type?

$$\vdash \lambda \mathbf{X}.\mathbf{X}\mathbf{X} : (\forall \alpha.(\alpha \to \alpha) \to (\alpha \to \alpha)) \to (\forall \beta.(\beta \to \beta) \to (\beta \to \beta))$$

- > Essence: $(\forall r.\xi)$ → $(\forall t.\eta)$
 - specification of η makes type more general
 - specification of ξ makes type more concrete
- > Example: squaring function

$$dup = \lambda f. \lambda x. f(f(x)) : \forall \gamma. (\gamma \to \gamma) \to (\gamma \to \gamma)$$
But not
$$\forall \rho. \rho \to \rho$$

Type Annotations	Type Checking	Type Inference
Yes	Straightforward	Undecidable
No	Undecidable	Undecidable

Hindley-Milner

Idea: Separate mono- from poly- morphic types Also add type constructors

Terms

$$= x \qquad \qquad \text{Var} \\ | e_1 e_2 \qquad \qquad \text{App} \\ | \lambda x \cdot e \qquad \qquad \text{Abs} \\ | \textbf{let } x = e_1 \textbf{ in } e_2 \qquad \text{Let}$$

Types

```
mono \tau = \alpha Type vars \mid C \tau_1 \dots \tau_n \mid Type Constructor poly* \sigma = \tau \mid \forall \alpha . \sigma
```

Examples

```
C = { Map<sup>2</sup>, Int<sup>0</sup>, -><sup>2</sup>, ...}
Map String Int
Int -> Int
\forall \alpha. Map \alpha Int -> [(\alpha, Int)]
```

Hindley-Milner: Typing Rules

Hindley-Milner: Typing Rules

yping Rules

[Abs]

STLC
$$\frac{\mathbf{X}: \sigma \in \Gamma}{\Gamma \vdash \mathbf{X}: \sigma}$$
 [Var]

$$\frac{\Gamma \vdash e_1 : \tau_1 \to \tau_2 \quad \Gamma \vdash e_2 : \tau_1}{\Gamma \vdash e_1 e_2 : \tau_2} \ [App]$$

$$\underline{\Gamma \vdash \mathbf{e} : \sigma \quad \alpha \notin \mathrm{FV}(\Gamma)}$$

$$\frac{\Gamma \vdash e : \sigma \quad \alpha \notin FV(\Gamma)}{\Gamma \vdash e : \forall \alpha.\sigma} \quad [Gen] \qquad \frac{\Gamma \vdash e_1 : \sigma \quad \Gamma, \mathbf{X} : \sigma \vdash e_2 : \delta}{\Gamma \vdash \mathbf{let} \ \mathbf{X} = e_1 \ \mathbf{in} \ e_2 : \delta} \quad [Let] \qquad \frac{\Gamma \vdash e : \sigma' \quad \sigma' \sqsubseteq \sigma}{\Gamma \vdash e : \sigma} \quad [Inst]$$

$$\Gamma \vdash \lambda x.e : \tau_1 \to \tau_2$$

$$\Gamma \vdash \mathbf{e} : \sigma' \quad \sigma' \sqsubseteq \sigma$$
 [In

Type scheme

Example: let $id = \lambda x.x$ in $id : \forall \alpha.\alpha \rightarrow \alpha$

$$\frac{X : \alpha \in \{X : \alpha\}}{X : \alpha \vdash X : \alpha}$$

$$\frac{x : \alpha}{\alpha \to \alpha} [Abs] \qquad \alpha \notin FV(\emptyset)$$

+ $\lambda x.x : \forall \alpha.\alpha \to \alpha$

 $\frac{\alpha \notin \mathrm{FV}(\emptyset)}{\to \alpha} \ [\mathsf{Gen}] \quad \frac{\mathsf{id} : \forall \alpha.\alpha \to \alpha \in \{\mathsf{id} : \forall \alpha.\alpha \to \alpha\}}{\mathsf{id} : \forall \alpha.\alpha \to \alpha + \mathsf{id} : \forall \alpha.\alpha \to \alpha} \ [\mathsf{Var}]$ \vdash let $id = \lambda x.x$ in $id : \forall \alpha.\alpha \rightarrow \alpha$

Alternative syntax:

(1)
$$X : \alpha \vdash X : \alpha$$

(2) $\vdash \lambda X.X : \alpha \rightarrow \alpha$

$$X: \alpha \in \{X: \alpha\}$$

$$(2) \vdash \lambda X.X : \alpha \to \alpha$$

$$(3) \vdash \lambda X.X : \forall \alpha.\alpha \to \alpha$$

[Abs] (1)
[Gen] (2),
$$\alpha \notin FV(\emptyset)$$

4)
$$id: \forall \alpha.\alpha \rightarrow \alpha \vdash id: \forall \alpha.\alpha \rightarrow$$

$$(4) \quad id: \forall \alpha.\alpha \to \alpha \vdash id: \forall \alpha.\alpha \to \alpha \qquad [Var] \quad id: \forall \alpha.\alpha \to \alpha \in \{id: \forall \alpha.\alpha \to \alpha\}$$

(5)
$$\vdash$$
 let $id = \lambda x.x$ **in** $id : \forall \alpha.\alpha \rightarrow \alpha$

$$\forall \alpha. \alpha \rightarrow \alpha$$

Instantiation

$$\frac{\Gamma \vdash \mathbf{e} : \sigma' \qquad \sigma' \sqsubseteq \sigma}{\Gamma \vdash \mathbf{e} : \sigma} \quad [Inst]$$

Examples

$$\forall \alpha. \ \alpha \to \alpha \sqsubseteq \mathbf{Int} \quad -> \mathbf{Int}$$

$$\forall \alpha. \ \alpha \to \alpha \sqsubseteq \forall \beta. \ \beta \to \beta$$

$$\forall \alpha \beta. \ \alpha \to \beta \to \alpha \sqsubseteq \mathbf{Int} \quad -> \mathbf{Bool} \quad -> \mathbf{Int}$$

Instantiation (Specialization) formally

$$\sigma \sqsubseteq \delta \text{ if } \exists \text{ substitution } S = \{\alpha_i/\tau_i\}: \qquad \qquad \sigma = S \circ \delta = \delta[S] = \delta[\{\alpha_i/\tau_i\}]$$

$$\frac{\tau' = \tau[\{\alpha_i/\tau_i\}] \quad \beta_i \notin FV(\forall \alpha_1 \dots \forall \alpha_n.\tau)}{\forall \alpha_1 \dots \forall \alpha_n.\tau \sqsubseteq \forall \beta_1 \dots \forall \beta_m.\tau'}$$

- > ⊑ is a partial order
- > Principal type exists

let-polymorphism

$$\frac{\Gamma \vdash e_1 : \sigma \qquad \Gamma, \, \textit{X} : \sigma \vdash e_2 : \tau}{\Gamma \vdash (\textbf{let} \, \textit{X} = e_1 \, \textbf{in} \, e_2) : \tau} \quad [\texttt{Let}]$$

> Example:

```
let double f z = f (f z) in
  (double (λ x . x+1) 1, double (λ x . not x) false)
> :: (Int , Bool) = (3, false)
```

let-polymorphism

$$\frac{\Gamma \vdash e_1 : \sigma \qquad \Gamma, \, X : \sigma \vdash e_2 : \tau}{\Gamma \vdash (\mathbf{let} \, X = e_1 \, \mathbf{in} \, e_2) : \tau} \quad [\mathsf{Let}]$$

> Example:

```
let double f z = f (f z) in
(double (\lambda x . x+1) 1, double (\lambda x . not x) false)
> :: (Int , Bool) = (3, false)
```

> Note, the following is not typing in Hindley-Milner system:

```
(\lambda double . ( double (\lambda x . x+1) 1 , double (\lambda x . not x) false) )
```

Hindley-Milner: To Take Away

- v Let-polymorphism
- v Type-inference is decidable (pretty the same way as in STLC)
- v Is a foundation for type systems in Haskell and ML
- > Extensions may break type inference decidability in Haskell:
 - GADT
 - RankNTypes (≈ System F)
 - . . .

Hindley-Milner: To Take Away

- v Let-polymorphism
- v Type-inference is decidable (pretty the same way as in STLC)
- v Is a foundation for type systems in Haskell and ML
- > Extensions may break type inference decidability in Haskell:
 - GADT
 - RankNTypes (≈ System F)
 - ...

> Just for fun: try in GHCi!

```
f \ a \ b \ c \ d = (a, b, c, d)
p1 = (f, f, f, f)
p2 = (p1, p1, p1, p1)
p3 = (p2, p2, p2, p2)
p4 = (p3, p3, p3, p3)
p5 = (p4, p4, p4, p4)
p6 = (p5, p5, p5, p5)
p7 = (p6, p6, p6, p6)
p8 = (p7, p7, p7, p7)
-- p9 = (p8, p8, p8, p8)
ghci> :t p8
```

Barendregt's Lambda Cube

(29

