Algebra — Blatt 13 — (Tutoriumsblatt)

Aufgabe 0 (Vorbereitung auf das Tutorium)

- (a) Durch welche beiden Eigenschaften ist eine Galois-Erweiterung definiert?
- (b) Zwischen welchen beiden Mengen postuliert der Hauptsatz der Galoistheorie, angewendet auf eine endliche Galois-Erweiterung L|K, eine bijektive Korrespondenz?
- (c) War bereits vor der Formulierung des Hauptsatzes klar, dass diese beiden Mengen endlich sind?
- (d) Seien $\alpha, \beta, \gamma \in \mathbb{C}$, und nehmen wir an, dass $K|\mathbb{Q}$ mit $K = \mathbb{Q}(\alpha, \beta, \gamma)$ eine Galois-Erweiterung ist. Wie lassen sich die Elemente der Galois-Gruppe $Gal(K|\mathbb{Q})$ konkret angeben?
- (e) Inwiefern kann mit den Minimalpolynomen von α, β, γ über \mathbb{Q} gezeigt werden, dass es für die Elemente von $\operatorname{Gal}(K|\mathbb{Q})$ von vornherein nur endlich viele Möglichkeiten gibt?

Aufgabe 1

Es sei $\zeta \in \mathbb{C}^{\times}$ ein Element der Ordnung 5 und $K = \mathbb{Q}(\zeta)$. Ohne Beweis darf verwendet werden, dass $[K : \mathbb{Q}] = 4$ gilt.

- (a) Bestimmen Sie das Minimalpolynom $f = \mu_{\mathbb{Q},\zeta}$ und weisen Sie nach, dass sämtliche komplexen Nullstellen von f bereits in K liegen. Begründen Sie damit, dass es sich bei $K|\mathbb{Q}$ um eine Galois-Erweiterung handelt.
- (b) Begründen Sie, dass $G = \operatorname{Gal}(K|\mathbb{Q})$ neben id_K genau drei Elemente $\sigma_2, \sigma_3, \sigma_4$ enthält, die durch die Gleichungen $\sigma_k(\zeta) = \zeta^k$ für k = 2, 3, 4 eindeutig bestimmt sind.
- (d) Geben Sie für die Gruppe G die Verknüpfungstabelle an, und zeigen Sie mit Hilfe dieser Tabelle, dass $G\cong \mathbb{Z}/4\mathbb{Z}$ gilt.

Aufgabe 2

Sei L|K eine endliche Galois-Erweiterung, deren Galoisgruppe Gal(L|K) isomorph zu $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ ist.

- (a) Bestimmen Sie die Anzahl der Zwischenkörper M von L|K mit [M:K]=4.
- (b) Zeigen Sie, dass es genau drei Zwischenkörper M_1, M_2, M_3 von L|K mit $[M_1 : K] = [M_2 : K] = [M_3 : K] = 2$ gibt.

Aufgabe 3

- (a) Sei L|K eine endliche Galois-Erweiterung und $G = \operatorname{Gal}(L|K)$ die zugehörige Galoisgruppe. Sei außerdem $f \in K[x]$ ein irreduzibles Polynom, und seien $\alpha, \beta \in L$ Nullstellen von f. Begründen Sie mit den Sätzen aus der Vorlesung, dass ein $\sigma \in G$ mit $\sigma(\alpha) = \beta$ existiert.
- (b) Sei nun $f \in K[x]$ ein irreduzibles Polynom und L ein Zerfällungskörper von f über K, und nehmen wir an, dass L|K eine Galois-Erweiterung mit abelscher Galoisgruppe ist. Zeigen Sie mit Hilfe von Prop. (17.9), dass $L = K(\alpha)$ für jede Nullstelle $\alpha \in L$ von f gilt.

Aufgabe 4 (Zahlentheorie)

- (a) Zerlegen Sie das Polynom $x^5 7x^3 + 503x^2 + 12x 2012 \in \mathbb{Q}[x]$ in irreduzible Faktoren.
- (b) Bestimmen Sie alle irreduziblen Polynome von Grad ≤ 3 in $\mathbb{F}_2[x]$.
- (c) Beweisen Sie mit Hilfe von Teil (b) und dem Reduktionskriterium, dass das Polynom $x^5 4x^4 + 10x^3 + 9x^2 18x + 51$ in $\mathbb{Q}[x]$ irreduzibel ist.

Dieses Blatt wird vom 31. Januar bis zum 3. Februar im Tutorium bearbeitet.

Algebra

— Blatt 13 —

(Globalübungsblatt)

Aufgabe 1 (5+5 Punkte)

Sei L|K eine endliche Galois-Erweiterung mit zyklischer Galois-Gruppe.

- (a) Beweisen Sie, dass genau dann für alle Zwischenkörper M_1, M_2 von L|K jeweils $M_1 \subseteq M_2$ oder $M_2 \subseteq M_1$ erfüllt ist, wenn der Erweiterungsgrad [L:K] eine Primzahlpotenz p^n ist.
- (b) Sei nun M ein Zwischenkörper von L|K mit $[M:K]=p^{n-1}$. Zeigen Sie, dass für jedes $\alpha \in L \setminus M$ jeweils $L=K(\alpha)$ gilt.

Aufgabe 2 (10 Punkte)

Sei $f \in \mathbb{Q}[x]$ ein irreduzibles Polynom, das mindestens eine reelle und mindestens eine nicht-reelle komplexe Nullstelle besitzt. Zeigen Sie, dass die Galoisgruppe $\operatorname{Gal}(f|\mathbb{Q})$ nicht abelsch ist.

Aufgabe 3

Sei L|K eine Galois-Erweiterung mit $\operatorname{Gal}(L|K) \cong A_4$. Dabei bezeichnet A_4 die zwölfelementige alternierende Gruppe.

- (a) Bestimmen Sie die Anzahl der Zwischenkörper von L|K.
- (b) Für wieviele Zwischenkörper M von L|K ist Gal(M|K) eine Galois-Erweiterung?
- (c) Zeigen Sie, dass ein Zwischenkörper M von L|K mit [M:K]=4 existiert, der $M=K(\alpha)$ für alle $\alpha \in M \setminus K$ erfüllt. Dabei darf ohne Beweis verwendet werden, dass A_4 keine Untergruppe der Ordnung 6 besitzt.

Aufgabe 4 (Zahlentheorie)

- (a) Zeigen Sie, dass die Polynome $f_{m,n} = x^3 + (3m-1)x + (3n+1)$ mit $m, n \in \mathbb{Z}$ alle im Polynomring $\mathbb{Q}[x]$ irreduzibel sind.
- (b) Geben Sie ein normiertes, über \mathbb{Q} irreduzibles Polynom $f \in \mathbb{Z}[x]$ vom Grad 2 an mit der Eigenschaft, dass f(x+d) für kein $d \in \mathbb{Z}$ die Voraussetzungen des Eisenstein-Kriteriums erfüllt.

Abgabe: Dienstag, 8. Februar 2022, 12:15 Uhr

Verspätete Abgaben können aus organisatorischen Gründen leider nicht nachträglich angenommen werden. Bitte geben Sie auf jeder Abgabe die Nummer Ihrer Übungsgruppe an.