Manipulation of Algebraic Expressions

Manipulating Formula

• A formula is a statement that two quantities are equal. E.g.

$$S = \frac{a}{1 - r}$$

• Transposing formula involves the manipulation of the formula when a value other than the subject is required. For example if the value 'a' is required in the above formula it would read as follows:

$$a = S(1-r)$$

Basic Rule of Manipulating of Formula:

- 1. That the equality of an equation must be maintained
- 2. Whatever is done on the left hand side must be done on the right hand side

Problem 1:

Manipulate k=x+y+z to make y the subject.

Firstly, change the equation around so that y is on the LHS:

$$x+y+z=k$$

Subtract x+z from both sides to get the y isolated

$$X-X+Y+Z-Z=k-X-Z$$

$$y=k-x-z$$

This proves that a quantity can be moved from one side of an equation to the other with a simple change of sign.

Problem 2:

If a+b=p-q-s express q as the subject.

Rearrange: p-q-s = a+b

Multiply both sides by -1:

Multiplying across the equation by -1 resulted in all signs changing.

The reason for multiplying by -1 was to change the -q to +q as we generally express answers with a positive quantity first i.e. in this case q.

Problem 3:

Make d the subject matter of the formula: $p = \frac{\pi d}{2}$

Rewrite as $\frac{\pi d}{2} = p$

Multiply both sides by $2:\pi d = 2p$

Divide both sides by π to obtain $d = \frac{2p}{\pi}$

Multiplication is used to change a formula, which includes a fraction, to whole numbers (also called integers). To remove π from the d in the above example, we divide both sides by π .

Problem 4:

The formula for calculating the surface area of a sphere is: A = $4 \pi r^2$ Make r (radius) the subject matter of this formula.

$$4 \pi r^2 = A$$

$$r^2 = \frac{A}{4\pi}$$
 Divide by 4 π both sides to isolate r^2

$$r^2 = \frac{A}{4\pi}$$
 Divide by 4 π both sides to isolate $r = \sqrt{\frac{A}{4\pi}}$ To obtain r, square root both sides

If you have an element which is cubed, you would cube root it and so on.

