Exercices - Série 3 Régression linéaire simple

Exercice 1 - Densité européenne

Dans le fichier *Europe.xlsx* disponible sur le site web du cours, vous trouverez la population et la superficie de 27 pays d'Europe.

- a) Tracer le nuage de points de la population en fonction de la superficie. En examinant ce graphique, êtes-vous portés à dire que les postulats du modèle de régression linéaire sont respectés? Quelle est la conséquence de votre réponse?
- b) Pour estimer la densité de population moyenne en Europe, on propose 3 approches :
 - i) en calculant la densité de chaque pays, puis en faisant la moyenne de ces 27 densités.
 - ii) en calculant la population totale des 27 pays, et en la divisant par la superficie totale des 27 pays.
 - iii) en estimant la pente de la droite de régression aux moindres carrés

Exprimer les 3 quantités ci-dessus en nombre d'habitants par km², et commenter chacune d'elles. Laquelle des approches vous apparaît la meilleure?

Exercice 2 - Drill, baby, drill! (Comme disait Sarah Palin)

- a) Montrer que la somme des produits croisés $S_{XY} = \sum_{i=1}^{n} (X_i \overline{X})(Y_i \overline{Y})$ peut aussi s'écrire $S_{XY} = \sum_{i=1}^{n} X_i Y_i n \overline{X} \overline{Y}$.
- b) Montrer que la somme des produits croisés $S_{XY} = \sum_{i=1}^{n} (X_i \overline{X})(Y_i \overline{Y})$ peut aussi s'écrire $S_{XY} = \sum_{i=1}^{n} (X_i \overline{X})Y_i$.
- c) Retrouver les estimateurs des moindres carrés de la pente et de l'ordonnée à l'origine en annulant les dérivées partielles par rapport à β_0 et β_1 de la somme des carrés des erreurs :

$$S = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

d) On peut déduire des résultats précédents que $\hat{\beta}_1$ est une combinaison linéaire des Y_i (lorsqu'on considère les X_i fixés). Quelle est la principale conséquence de cet état de fait ?

Exercice 3 - Dans le ventre de sa maman...

Téléchargez sur le site du cours le jeu de données gestation_longévité.xlsx. À l'aide de la commande Régression linéaire de l'Utilitaire d'analyse, ajustez un modèle de régression linéaire simple sur les variables suivantes : (Demandez de faire calculer les résidus.)

Modèle 1 :	Longévité	en fonction de	Gestation
Modèle 2:	Longévité	en fonction de	ln(Gestation)
Modèle 3 :	$ln(Long\'{e}vit\'{e})$	en fonction de	Gestation
Modèle 4 :	ln(Longévité)	en fonction de	ln(Gestation)

- a) En étudiant les quatre nuages de points, lequel des modèles proposés est préférable pour mettre en lien ces deux variables ? Pourquoi ?
- b) Dans les résultats de son analyse, Excel fournit trois coefficients permettant d'évaluer la qualitéde l'ajustement. Pouvez-vous les identifier, et préciser la formule utilisée pour calculer chacun d'eux?
- c) En vous basant sur le \mathbb{R}^2 , lequel des quatre modèles proposés fournit le meilleur ajustement?
- d) Pour le modèle que vous avez choisi en a), quelle est l'estimation de la variance des observations autour de la droite?
- e) Pour le modèle que vous avez choisi en a), calculez la moyenne et l'écart-type des résidus. Auriez-vous pu trouver ces valeurs sans les faire calculer par Excel à partir de la liste des résidus?

Exercice 4 - Jouons avec les Y

Considérons les données suivantes :

Variable X	Variable Y_1	Variable Y_2	Variable Y_3
0	1	11,0	1,5
10	1,5	10,4	2,6
19	2,6	8,3	5,1
27	2,7	7,9	7,9
29	5,0	7,2	7,2
32	5,1	5,1	10,4
34	7,2	5,0	2,7
43	7,9	2,7	11,0
50	8,3	2,6	8,3
51	10,4	1,5	5,0
55	11,0	1,0	1,0

- a) Estimer les paramètres du modèle de régression linéaire de Y_1 en fonction de X:
 - i) par la méthode de Mayer;
 - ii) par la méthode médiane-médiane;
- b) Si on inverse l'ordre des Y_i (et donc qu'on travaille avec la variable Y_2), qu'advient-il des paramètres avec les deux méthodes? Pouvez-vous répondre sans faire de calcul?
- c) Si on change complètement l'ordre des Y_i (et donc qu'on travaille avec la variable Y_3), devez-vous réordonner les Y_i avant de calculer les points moyens et médians?

Exercice 5 - Un air de déjà vu...

Un scientifique désire étudier l'influence d'un antibiotique sur une culture bactérienne. Il répartit dans 10 tubes des volumes égaux de culture additionnée d'une quantité X d'antibiotique, et il mesure (après incubation) la densité optique Y. Il a noté que $\overline{x}=0,6$ et que $\overline{y}=4,15$.

Les résultats sont illustrés par le graphique suivant :

X = antibiotique	0.2	0.2	0.4	0.4	0.6	
Y = densité	2.9	3.0	3.5	3.6	4.0	

$$X = \text{antibiotique} \begin{vmatrix} 0.6 & 0.8 & 0.8 & 1.0 & 1.0 \\ Y = \text{densit\'e} & 4.2 & 4.7 & 4.9 & 5.3 & 5.4 \end{vmatrix}$$

- a) D'après les résultats de l'expérience, lorsqu'il n'y a pas d'antibiotique, la densité optique est estimée à 2,335. Trouver l'équation de la droite de régression. Ajouter la droite de régression à votre graphique.
- b) Sachant que la variance échantillonnale des x_i est 0,0889, que celle des y_i est 0,8206, et que la somme des carrés des erreurs du modèle est de 0,0645, donner une estimation de l'erreur-type associée à $\hat{\beta}_0$ et de l'erreur-type associée à $\hat{\beta}_1$.

- c) Peut-on dire que la pente de la droite est supérieure à 3 au seuil $\alpha = 5\%$?
- d) Quelle est la proportion de variation de la densité optique expliquée par la quantité d'antibiotique?
- e) Un onzième tube est additionné d'une quantité d'antibiotique égale à 0,9. Donner un intervalle de valeurs permettant de prédire la densité optique de ce tube qu'on mesurera après incubation. Utiliser $\alpha = 0,05$.
- f) Toutes choses étant égales par ailleurs, l'intervalle que vous avez calculé au numéro précédent aurait-il été plus long ou plus court...
 - i) si on avait choisi une quantité d'antibiotique égale à 0,7?
 - ii) si on avait choisi $\alpha = 0.01$?
 - iii) si on avait utilisé une taille d'échantillon de 20 unités?
 - iv) si on avait construit l'intervalle pour estimer la densité optique moyenne de tous les tubes ayant reçu une quantité d'antibiotique égale à 0,9?
- g) Considérons un tube dont la quantité d'antibiotique additionnée est située à 1,5 écarttype sous la moyenne.
 - i) Combien d'unités d'antibiotique ce tube a-t-il reçu?
 - ii) Quelle est la valeur de densité optique prédite par le modèle pour ce tube?
 - iii) À combien d'écarts-types de la densité optique moyenne cette valeur se situe-telle? Est-ce à 1,5 écart-type sous la densité moyenne?
 - iv) Pouvez-vous déduire de vos calculs au numéro précédent la valeur du coefficient de corrélation?
- h) Un autre analyste propose de calculer la moyenne de tous les y_i ayant une même valeur de X avant d'ajuster un modèle de régression. On utiliserait donc les cinq points suivants :

$$X = \text{antibiotique}$$
 0.2 0.4 0.6 0.8 1.0 $Y = \text{densit\'e}$ 2.95 3.55 4.1 4.8 5.35

Pouvez-vous déterminer quel sera l'impact de cette approche sur ...

- i) la moyenne des x_i et des y_i ?
- ii) l'équation de la droite de régression?
- iii) l'estimation de la variance autour de la droite et la précision des prédictions?

L'une des deux analyses est-elle préférable à l'autre?

Exercice 6 - Ma cabane au Canada

On veut modéliser le prix moyen des maisons au Canada en fonction du temps et on obtient les données suivantes (malheureusement incomplètes...) :

Année (X)	1980	1981	 2010
Prix moyen des maisons ($\$$) (Y)	74 721	76236	 249017

Une analyse de ces données montre qu'un modèle linéaire pourrait éventuellement s'appliquer pour expliquer le prix des maisons à partir de l'année. On calcule la covariance et la corrélation échantillonnales, et on obtient les quantités suivantes :

$$Cov(X,Y) = 374 225$$

$$r = 0.77$$

- a) On décide d'exprimer le prix des maisons en milliers de dollars plutôt qu'en dollars. Que deviennent la covariance et la corrélation?
- b) Conservons les prix initiaux (en dollars). On veut maintenant exprimer le temps en nombre d'années écoulées depuis 1980. Qu'advient-il de la covariance et de la corrélation?