Operational Reactor Safety 22.091/22.903

Professor Andrew C. Kadak Professor of the Practice

Spring 2008

Lecture 2: Reactor Physics Review

Topics to Be Covered

- Cross Sections
- Fission Process
- Infinite Reactor Systems
- Finite Reactor Systems
- Four Factor Formula
- Criticality Control
- Diffusion Theory
- Neutron Transport (Boltzman Equation)

Nuclear Reactor Physics Review

FIGURE 2-4
Possible outcomes from neutron irradiation of ²³⁵₉₂U.

Cross Sections

FIGURE 2-10

The hierarchy of microscopic cross sections used to calculate neutron interaction rates.

Cross Sections

TABLE 2-3
Thermal-Neutron Cross Sections and Parameters for Important Fissile and Fertile Nuclides

		Cross section (b)	†			
Nuclide	σ_a	σ_c	$\sigma_{\!f}$	α	$ u^{\ddagger}$	η
²³² Th	7.4	7.4				
²³³ U	577	46	531	0.087	2.50	2.30
²³⁵ U	6 584	99	585	. 0.169	2.44	2.09
²³⁸ U	2.68	2.68				_
²³⁹ Pu	1021	271	750	0.361	2.90	2.13
²⁴⁰ Pu	290	290	0.05			
²⁴¹ Pu	1371	361	1010	0.357	3.00	2.21

[†]Cross sections from Chart of the Nuclides (GE/Chart, 1989) for 0.025 eV "thermal" neutrons; σ_c has been assumed to be equal to the radiative-capture cross section σ_{γ} .

 $^{^{\}ddagger}\nu$ values at 0.025 eV from Hughes/BNL-325 (1958).

Uranium Cross Sections

FIGURE 2-12

Microscopic fission cross section for fissile ²³⁵U and fissionable ²³⁸U. (Data from Hughes/BNL-325, 1955.)

Fission Chain Reaction

1.
$$n + \frac{235}{92}U \rightarrow 2$$
 Fission Products + 2.5 n + Other Stuff

2. 1.5 Absorbed By Non-Fissioning Nuclei, or Escape From Reactor

1.5 Absorbed By Non-Fissioning Nuclei, or Escape From Reactor

1.5 Absorbed By Non-Fissioning Nuclei, or Escape From Reactor

2. $1 + \frac{235}{92}U \rightarrow 2$ Fission Products + 2.5 n + Other Stuff

1.5 Absorbed By Non-Fissioning Nuclei, or Escape From Reactor

1.5 Absorbed By Non-Fissioning Nuclei, or Escape From Reactor

2. $1 + \frac{235}{92}U \rightarrow 2$ Fission Products + 2.5 n + Other Stuff

Neutron Multiplication Factor	Condition	Consequence
K > 1	Supercritical	Neutron Population & Fission Rate Grow
K = 1	Critical	Neutron Population & Fission Rate Steady
K < 1	Subcritical	Neutron Population & Fission Rate Decrease

Fission Neutron Energy

FIGURE 2-8

Fission-neutron energy spectrum $\chi(E)$ for the thermal fission of ²³⁵U approximated by an empirical expression.

Fission Energy

TABLE 2-2
Representative Distribution of Fission Energy

	Fission	Heat	Heat produced	
Energy source	energy (MeV)	MeV	% of tot:	
Fission fragments	168	168	84	
Neutrons	5	5	2.5	
Prompt gamma rays	7	7	3.5	
Delayed radiations				
Beta particles [†]	20	8	4	
Gamma rays	7	7	3.5	
Radiative capture gammas‡		5	2.5	
Total	207	200	100	

[†]Includes energy carried by beta particles and antineutrinos; the latter do not produce heat in reactor systems.

[‡]Nonfission capture reactions contribute heat energy in all real systems; design-specific consideration may change this number by about a factor of two in either direction.

Fission Product Decay Chain

FIGURE 2-7

Two representative fission-product decay chains (from different fissions). (Adapted courtesy of U.S. Department of Energy.)

Fission Yield by Mass Number

FIGURE 2-6

Fission yield as a function of mass number for thermal-neutron fission of ²³⁵U. (Adapted from *Nuclear Chemical Engineering* by M. Benedict and T. H. Pigford, © 1957 by McGraw-Hill Book Company, Inc. Used by permission of McGraw-Hill Book Company.)

Chart of the Nuclides

Structure and data presentation in the Chart of the Nuclides for ²³⁵U, ²³⁸U, and ²³⁹Pu. (Adapted from the Chart of the Nuclides, courtesy of Knolls Atomic Power Laboratory, Schenectady, New York. Operated by the General Electric Company for the United States Department of Energy Naval Reactors Branch.)

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

FIGURE 2-16
Neutron irradiation chains for heavy elements of interest for nuclear reactors.

Conversion Chain: Fertile→ **Fissile**

FIGURE 2-5

Chains for conversion of fertile nuclides to fissile nuclides: (a) $^{232}_{90}$ Th to $^{233}_{92}$ U; (b) $^{238}_{92}$ U to $^{239}_{94}$ Pu; (c) $^{240}_{94}$ Pu to $^{241}_{94}$ Pu.

Reaction Rates*

- How do we make power?
- Factors to consider in design
 - Changes in fuel material
 - Life of reactor core
 - Reactivity swing
 - Refueling strategies

NEUTRON SLOWING DOWN

Fast:

1-10 MeV, Zone of Neutron Birth From Fission

Slowing Down:

1 MeV-1 eV, Zone of Neutron Collisions With Moderator

Nuclei, and Kinetic Energy Exchange to Target Nuclear; Zone

of Resonance Absorption

Thermal:

< 1 eV, Zone of Neutron Elimination (via Absorption or

Escape); Zone of Kinetic Energy Exchange To, From Neutron

and Target Nucleus; Rate Depends Upon Temperature of

Target Medium

ENERGY DEPENDENCE OF TYPCIAL TARGET NUCLEUS NEUTRON REACTOR CROSS SECTION

Neutron Moderation Parameters

Reactor Physics

105

TABLE 4-1
Parameters Related to Neutron Moderation by Nuclides of Interest in Power Reactors

Nuclide	$\frac{\Delta E_{\max}}{E}$	$\alpha = \frac{E_{\min}}{E}$	$(\Delta u)_{\mathrm{max}}^{\dagger}$	ŧ	Number of collisions ‡
¦H	1.000	0.000	_	1.000	18
	0.889	0.111	2.198	0.725	24
i²C	0.284	0.716	0.334	0.158	111
² D ¹ / ₆ C ² / ₁ Na	0.160	0.840	0.174	0.085	206
238 U	0.017	0.983	0.017	0.0084	2084

Lethargy change associated with maximum energy change.

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Prof. Andrew C. Kadak, 2008 Page 18

[‡]Average requirement for a 1-MeV fission neutron to be reduced in energy to 0.025 eV.

Infinite & Finite Reactor Systems*

- Infinite Systems
 - Neutron Multiplication
 - Four Factor Formula
- Finite Systems
 - Leakage
 - Six Factor Formula
- Diffusion Theory

FIGURE 4-3
Flow diagram for neutrons in a thermal reactor from the standpoint of the four-factor formula.

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Core Multiplication Factor

 It is useful to define a 'core multiplication factor' which is denoted by the symbol 'K' and which is the product of the six factors that define the neutron life cycle. Thus,

$$K = \epsilon L_f p L_t f \eta$$

The above expression, which is called the 'six-factor formula, has physical meaning:

$$K = \frac{\text{Neutrons Produced from Fission}}{\text{Neutrons Absorbed + Neutron Leakage}} \quad \text{or}$$

$$K = \frac{Number Neutrons in Present Generation}{Number Neutrons in Preceding Generation}$$

$$K = \frac{n_1}{n_0} = \frac{n_2}{n_1} = \frac{n_3}{n_2}$$
 when n is the number of neutrons in each generation.

- 3. If K is unity, the reactor is critical.
- If we know the K-value for a reactor core, we can determine the rate of change of its neutron population. This is most useful in reactor startups.

Definitions of Neutron Life Cycle Factors

 $\varepsilon = \frac{\text{Total Number of Fast Neutrons Produced from Fast and Thermal Fission}}{\text{Number of Fast Neutrons Produced from Thermal Fission}}$

 $L_f = \frac{\text{Total Number of Fast Neutrons Escaping Leakage}}{\text{Total Number of Fast Neutrons Produced from Fast and Thermal Fission}}$

p = Total Number of Thermalized Neutrons

Total Number of Fast Neutrons Escaping Leakage

 $L_{t} = \frac{Total\ Number\ of\ Thermal\ Neutrons\ Escaping\ Leakage}{Total\ Number\ of\ Thermalized\ Neutrons}$

Definitions of Neutron Life Cycle Factors (cont.)

$$\eta = \frac{\text{Thermal Neutrons Captured in Fuel Which Cause Fission}}{\text{Thermal Neutrons Absorbed in Fuel}} \quad \text{or}$$

$$\eta = \frac{\text{Number of Fast Neutrons Produced from Thermal Fission}}{\text{Thermal Neutrons Absorbed in the Fuel}}$$

Of the above factors, the reactor operator can alter 'f' by changing the control rod position or by adjusting the soluble poison content. The leakage terms also vary during routine operation whenever coolant temperature changes. The other terms are fixed by the fuel type.

NEUTRON LOSS MECHANISMS

- Escape From Reactor
 - Reactor length scale: L ~ m
 - Neutron length scale: λ ~ 0.1 m
 - Probability of Escape Grows as (λ/L) Grows
- Capture By Reactor Materials
 - Control materials
 Control rods (e.g., B, Cd)
 Burnable poisons (e.g., Gd, Sm)
 - Structural materials (Fe, Zr)
 - Moderator, used to slow down neutrons (H, C)
 - Coolant, used to remove heat from reactor (H₂O, He, Na)

Criticality Control

- K should = 1 for 18 to 24 months
 - How ?
 - Fuel excess reactivity (fuel)
 - Balance with control rods or soluble boron
 - Burnable poisons in fuel to deplete with time
 - Leakage
 - On-line refueling CANDU Pebble Beds

Diffusion Theory*

- One group
 - Neutron Balance for critical reactor
 - Consider production absorption and leakage
- Multi-group
 - Include different energy groups

Diffusion Theory Fluxes and Bucklings

TABLE 4-2
Diffusion Theory Fluxes and Bucklings for Bare Critical Systems of Uniform Composition

Geometry	Dimensions	Normalized flux $\frac{\Phi(r)}{\Phi(0)}$	Geometric buckling B_g^2
Sphere	Radius R	$\frac{1}{r}\sin\left(\frac{\pi r}{R}\right)$	$\left(\frac{\pi}{R}\right)^2$
Finite cylinder	Radius R, height H (centered about $z = 0$ and extending to $z = \pm H/2$)	$J_0\left(\frac{2.405r}{R}\right)\cos\left(\frac{\pi z}{H}\right)$	$\left(\frac{2.405}{R}\right)^2 + \left(\frac{\pi}{H}\right)^2$
Infinite cylinder	Radius R	$J_{o}\left(\frac{2.405r}{R}\right)$	$\left(\frac{2.405}{R}\right)^2$
Rectangular parallelepiped [cuboid] †	$A \times B \times C$ (centered about $x = y = z = 0$ and extending to $x = \pm A/2$, etc.)	$\cos\left(\frac{\pi x}{A}\right)\cos\left(\frac{\pi y}{B}\right)\cos\left(\frac{\pi z}{C}\right)$	$\left(\frac{\pi}{A}\right)^2 + \left(\frac{\pi}{B}\right)^2 + \left(\frac{\pi}{C}\right)^2$
Infinite slab	Thickness A (centered about $x = 0$ and extending to $x = \pm A/2$)	$\cos\left(\frac{\pi x}{A}\right)$	$\left(\frac{\pi}{A}\right)^2$

[†]The term cuboid—a synonym for rectangular parallelepiped used in the KENO Monte Carlo code—is commonly employed in the field of nuclear criticality safety (and may catch on elsewhere).

Multigroup Calculations

FIGURE 4-6

Partitioning of the energy axis for multigroup calculations.

Diffusion Theory Flux Shapes

FIGURE 4-5

Normalized flux shapes predicted by diffusion theory for critical spheres of race cylinders of radius R, and infinite-area slabs of thickness A.

Fast and Thermal Flux Shapes

FIGURE 4-7

Comparison of (a) one- and (b) two-energy-group (fast and thermal) fluxes in core and reflector regions of a spherical reactor. (Adapted from *Reactor Analysis*, by R. V. Megrehblian and D. K. Holmes, © 1960 by McGraw-Hill Book Company, Inc. Used by permission of McGraw-Hill Book Company.)

FIGURE 4-8

Flow diagram for an analog Monte Carlo method used to calculate the effective multiplication factor k. † Locations for generation N based on fission points from generation N-1; † record neutron number and fission location for generation N+1 starting locations.

Boltzman Equation

- Neutron Transport Theory
- Fundamental Equation of neutron interaction

Homework

• Knief Chapter 4

- Problems: 4.3, 5, 8, 10, 11, 14, 15

MIT OpenCourseWare http://ocw.mit.edu

22.091 Nuclear Reactor Safety Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.