LA2 Komplexe Zahlen

LATEX

Allgemein

Addition / Subtraktion:

$$z_1 = a_1 + b_1 i \quad z_2 = a_2 + b_2 i$$

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$$

$$z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2)i$$

Multiplikation / Division:

$$z_1 = a_1 + b_1 i$$

$$z_2 = a_2 + b_2 i$$

$$z_1 \cdot z_2 = (a_1 \cdot a_2 - b_1 \cdot b_2) + (a_1 \cdot b_2 + a_2 \cdot b_1)i$$

Division
$$\rightarrow \frac{z_1}{z_2} = z_1 \cdot z_2^{-1} = \frac{1}{|z_2|^2} \cdot z_1 \cdot \overline{z_2}$$

Neuer Vektor ist um Summe der Winkel der beiden Vektoren rotiert

Betrag:

$$|z| = \sqrt{a^2 + b^2}$$

Inverse:

$$\alpha = \alpha + bi$$

$$z = a + bi$$

$$z^{-1} = \tfrac{1}{|z_1|^2} \cdot (a-bi)$$

Konjugiert #:

$$z = a + bi$$

$$z \cdot \overline{z} = |z|^2$$

Spiegelt Vektor an x-Achse

$\overline{z} = a - bi$

$$\rightarrow w = \frac{z}{v} \cdot \frac{\overline{v}}{v} = \frac{z \cdot \overline{v}}{|v|^2}$$

Vektordarstellung

$$\vec{z} = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

z₁: Realteil

z₂: Imaginärteil

Kartesische Darstellung

$$z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = z_1 + z_2 \cdot i$$

 z_1 : Realteil z_2 : Imaginärteil

Polar Darstellung

$$e^{it} = \cos(t) + i \cdot \sin(t)$$

 $\rightarrow t$ Winkel (Bogenmass)

$$z = |z| \cdot e^{it} = |z| \cdot (\cos(t) + i \cdot \sin(t))$$

Addition / Subtraktion:

$$z_1 = r_1 \cdot (\cos(t_1) + i \cdot \sin(t_1)) \qquad z_2 = r_2 \cdot (\cos(t_2) + i \cdot \sin(t_2))$$

$$z_1 \pm z_2 = r_1(\cos(\varphi_1) + i \sin(\varphi_1)) \pm r_2(\cos(\varphi_2) + i \sin(\varphi_2))$$

$$= r_1\cos(\varphi_1) + i r_1\sin(\varphi_1) \pm r_2\cos(\varphi_2) \pm i r_2\sin(\varphi_2)$$

$$= r_1\cos(\varphi_1) \pm r_2\cos(\varphi_2) + i (r_1\sin(\varphi_1) \pm r_2\sin(\varphi_2))$$

Multiplikation / Division:

$$z_1 = r_1 \cdot (\cos(t_1) + i \cdot \sin(t_1))$$
 $z_2 = r_2 \cdot (\cos(t_2) + i \cdot \sin(t_2))$

$$z_1 \cdot z_2 = r_1 \cdot r_2 \cdot (\cos(t_1 + t_2) + i \cdot \sin(t_1 + t_2))$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \cdot (\cos(t_1 - t_2) + i \cdot \sin(t_1 - t_2))$$

Eulerische Darstellung

$$z = r(\cos(t) + i \cdot \sin(t)) = r \cdot e^{it}$$

Multiplikation/Division:

$$z_1 \cdot z_2 = r_1 r_2 \cdot e^{i \ (t_1 + t_2)}$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \cdot e^{i \ (t_1 - t_2)}$$

$$\cos(t) = \frac{e^{it} + e^{-it}}{2}$$

 $\sin(t) = \frac{e^{it} - e^{-it}}{2i}$

Satz von Moivre

Eulerische Form: Polar Form: Kartesische Form:

 $z^n = r^n \cdot e^{i nt}$ $z^n = r^n \cdot (\cos(nt) + i \cdot \sin(nt))$

$z^{n} = (a + i \cdot b)^{n}$

Umrechnung Kartesisch, Polar, Euler

$\textbf{Kartesisch} \rightarrow \textbf{Polar:}$

Umrechnung (ohne $z = 0 \rightarrow z = 0/\{\}/\emptyset$)

$$P = \{z\} - \sqrt{\alpha^2 + b^2}$$

Polor: $z = P(\cos(p) + i\sin(p)) - P(\cos(p) + ir \sin(p))$
Kortesisan: $z = a + bi$

$$\cos(t) = \frac{a}{\sqrt{a^2 + b^2}}$$
 $\rightarrow t = \arccos(\frac{a}{\sqrt{a^2 + b^2}}) \in [0, \pi]$

$$\sin(t) = \frac{b}{\sqrt{a^2 + b^2}} \qquad \qquad \rightarrow \quad t = \arcsin(\frac{b}{\sqrt{a^2 + b^2}}) \in [-\frac{\pi}{2}, \frac{\pi}{2}]$$

$$\tan(t) = \frac{b}{a}$$

$\textbf{Polar} \rightarrow \textbf{Euler:}$

$$z = r \cdot (\cos(t) + i \cdot \sin(t))$$

$$z = r \cdot e^{i \ t}$$
 Vorzeichen von $_i$ beachten!

$\textbf{Kartesisch} \rightarrow \textbf{Euler:}$

Gleich wie Kartesisch \rightarrow Polar, dann Polar \rightarrow Euler

Korrektur Winkel (Umrechnung in Polar/Euler):

$$\begin{array}{lll} z \in Q_1: & t = 0^\circ & + |(\arctan /\arccos /\arcsin)| & \rightarrow \mathsf{Betrag} \\ z \in Q_2: & t = 180^\circ - |(\arctan /\arccos /\arcsin)| & \rightarrow \mathsf{Betrag} \\ z \in Q_3: & t = 180^\circ + |(\arctan /\arccos /\arcsin)| & \rightarrow \mathsf{Betrag} \\ z \in Q_4: & t = 360^\circ - |(\arctan /\arccos /\arcsin)| & \rightarrow \mathsf{Betrag} \end{array}$$

Bogenmass: $rad = deg \cdot \frac{\pi}{180^{\circ}}$

Pi Anteil: $\frac{bogen}{\pi} = \frac{1}{x} \cdot \pi$

 $\rightarrow t = \arctan(\frac{b}{a}) \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

Wurzeln

n-Lösungen: $z^{\frac{1}{n}} = \sqrt[n]{x}$ mit Polar/Euler Form rechnen!

$$\underline{\mathbf{n} = 2:} \qquad az^2 + bz + c = 0$$

$$z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$D = b^2 - 4ac$$

$$\overline{z^n = a \cdot e^{i t}} \qquad a_0 = a \quad \alpha = t \quad \rightarrow \quad r = \sqrt[n]{e}$$

Lösungen:
$$t_k = \frac{\alpha + k \cdot 360^{\circ}}{n} \qquad k = 0, 1, 2, \dots, n-1$$

$$\begin{array}{lll} k=0: & z_0=r\cdot e^{i\ t_k}\ =\ r(\cos(t_k)+i\cdot\sin(t_k))\\ k=1: & z_1=r\cdot e^{i\ t_k}\ =\ r(\cos(t_k)+i\cdot\sin(t_k)) \end{array}$$

Sinus/Cosinus Cheatsheet

θ		sin θ	cos 0	tan 0	csc 0	sec 0	cot 0
Rad	Deg	3111 0	003 0		000 0	500 0	5010
0/	0	0	-1	0	Undef	1	Undef
2π							
π/6	30	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$	2	$2\sqrt{3}/3$	$\sqrt{3}$
π/4	45	$\sqrt{2}/2$	$\sqrt{2}/2$	1	$\sqrt{2}$	$\sqrt{2}$	1
π/3	60	$\sqrt{3}/2$	1/2	√3	2√3/3	2	$\sqrt{3}/3$
π/2	90	1	0	Undef	1	Undef	0
$2\pi/3$	120	$\sqrt{3}/2$	- 1/2	- √3	2√3/3	-2	- √3/3
$3\pi/4$	135	$\sqrt{2}/2$	$-\sqrt{2}/2$	-1	$\sqrt{2}$	- √2	-1
5π/6	150	1/2	$-\sqrt{3}/2$	$-\sqrt{3}/3$	2	$-2\sqrt{3}/3$	- √3
π	180	0	-1	0	Undef	-1	Undef
7π/6	210	- 1/2	$-\sqrt{3}/2$	$\sqrt{3}/3$	-2	$-2\sqrt{3}/3$	$\sqrt{3}$
5π/4	225	$-\sqrt{2}/2$	$-\sqrt{2}/2$	1	$-\sqrt{2}$	- √2	1
$4\pi/3$	240	$-\sqrt{3}/2$	- 1/2	√3	$-2\sqrt{3}/3$	-2	$\sqrt{3}/3$
$3\pi/2$	270	-1	0	Undef	-1	Undef	0
5π/3	300	$-\sqrt{3}/2$	1/2	- √3	$-2\sqrt{3}/3$	2	$-\sqrt{3}/3$
7π/4	315	$-\sqrt{2}/2$	$\sqrt{2}/2$	-1	$-\sqrt{2}$	$\sqrt{2}$	-1
11π/6	330	- 1/2	$\sqrt{3}/2$	- √3/3	-2	2√3/3	- √3