



# Phongův osvětlovací model

© 1996-2019 Josef Pelikán CGG MFF UK Praha

pepca@cgg.mff.cuni.cz
https://cgg.mff.cuni.cz/~pepca/

### Stínování a vržené stíny





## Světelný model





## Difusní složka E<sub>D</sub>



#### Odpovídá ideálně matnému tělesu

$$\mathbf{E}_{\mathsf{D}} = \mathbf{I}_{\mathsf{i}} \cdot \mathbf{C}_{\mathsf{D}} \cdot \mathbf{k}_{\mathsf{D}} \cdot \cos \alpha$$

I<sub>i</sub> ... intenzita světelného zdroje

**C**<sub>D</sub> ... barva difusní složky (RGB)

**k**<sub>D</sub> ... koeficient difusního světla (0.0 až 1.0)

 $\cos \alpha = \mathbf{l} \cdot \mathbf{n} \dots$  skalární součin normovaných vektorů

## Okolní světlo E<sub>A</sub>



Všesměrové konstantní osvětlení

Napodobuje sekundární odražené světlo

$$\mathbf{E}_{\mathsf{A}} = \mathbf{C}_{\mathsf{D}} \cdot \mathbf{k}_{\mathsf{A}}$$

**C**<sub>D</sub> ... barva stejná jako u difusní složky (RGB)

**k**<sub>A</sub> ... koeficient okolního světla (0.0 až 1.0)

#### Difusní a okolní světlo





## Lesklý odraz E<sub>s</sub>



Simuluje **odlesk** na povrchu lesklých těles

$$\mathbf{E}_{\mathsf{S}} = \mathbf{I}_{\mathsf{i}} \cdot \mathbf{C}_{\mathsf{S}} \cdot \mathbf{k}_{\mathsf{S}} \cdot \mathsf{cos}^{\mathsf{h}} \beta$$

**C**<sub>s</sub> ... barva lesklého odrazu (RGB)

**k**<sub>s</sub> ... koeficient lesklého odrazu (0.0 až 1.0)

 $\cos \beta = \overrightarrow{r} \cdot \overrightarrow{v}$  ... skalární součin normovaných vektorů

h ... ovlivňuje velikost odlesku (5 ... 500)

## Vliv lesklé složky odrazu





#### Vliv okolního světla









$$E = E_A + E_D + E_S$$

#### **Barvy**

 $C_D = C$  ... barva materiálu (RGB)

 $C_s = C_L$  ... barva světelného zdroje (RGB)

#### Konzistence

 $\mathbf{k}_{A} + \mathbf{k}_{D} + \mathbf{k}_{S} = \mathbf{1}$  (proti přetečení)





$$E = E_A + \Sigma_i (E_D + E_S)$$

Výpočet vektoru odrazu

$$R = 2\overrightarrow{n}(\overrightarrow{n} \cdot \overrightarrow{l}) - \overrightarrow{l}$$

Původní **Phongův** vzorec pro lesklý odraz

místo konstantního členu  $\mathbf{C_s} \cdot \mathbf{k_s}$  obsahuje funkci  $\mathbf{W}(\alpha)$  (silnější odraz pro velké úhly)





Měla by být ... 1/d²

příliš velký rozsah hodnot (monitor počítače není schopen zobrazit)

Používá se ... 
$$1/(c_0 + c_1 d + c_2 d^2)$$

$$E = E_A + \sum_i (E_D + E_S)/(c_0 + c_1 d_i + c_2 d_i^2)$$

#### Zjednodušení výpočtů (Blinn)



Světelné zdroje v nekonečnu (směrové světelné zdroje)

- v celé scéně budou konstantní vektory  $\overline{\mathbf{I}}_{i}$ 

Rovnoběžná projekce (pozorovatel v nekonečnu)

v celé scéně bude konstantní vektor v

#### Zjednodušení (Blinn)



Pokud platí obě předchozí podmínky, lze místo  $(\overrightarrow{r_i} \cdot \overrightarrow{v})^h$  použít  $(\overrightarrow{h_i} \cdot \overrightarrow{n})^{4h}$ 

Půlící vektor 
$$\overrightarrow{h}_i = (\overrightarrow{l}_i + \overrightarrow{v}) / |\overrightarrow{l}_i + \overrightarrow{v}|$$

→ h<sub>i</sub> je konstantní v celé scéně

Někdy se nazývá "Blinn-Phong model"

#### Literatura



J. Foley, A. van Dam, S. Feiner, J. Hughes: *Computer Graphics, Principles and Practice*, 721-734

Jiří **Žára a kol.:** *Počítačová grafika, principy a algoritmy,* 343-346