- 1. Express as concisely and accurately as you can the relationship between b|a and a/b. b|a means b divides a or a=bn for some integer n. This is equivalent to a/b or a divided by b with no remainder. So b|a iff $a/b \in \mathbb{Z}$
- 2. Determine whether each of the following is true or false and prove your answer.
 - (a) 0|7 False. $0|7 \rightarrow 7/0 \in \mathbb{Z}$. But 7/0 is undefined.
 - (b) $9|0 \text{ True. } 9|0 \to 0/9 \in \mathbb{Z}. \ 0/9 = 0 \in \mathbb{Z}.$
 - (c) 0|0 False. $0|0 \to 0/0 \in \mathbb{Z}$. But 0/0 is undefined.
 - (d) 1|1 True. $1|1 \to 1/1 \in \mathbb{Z}$. $1/1 = 1 \in \mathbb{Z}$.
 - (e) 7|44 False. $7|44 \rightarrow 44/7 \in \mathbb{Z}$. But $(\not\exists n \in \mathbb{Z})(44 = 7n)$.
 - (f) 7|(-42) True. $7|(-42) \rightarrow -42/7 \in \mathbb{Z}$. $-42/7 = -6 \in \mathbb{Z}$.
 - (g) (-7)|(-49) True. $(-7)|(-42) \to -49/-7 \in \mathbb{Z}$. $-49/-7 = 7 \in \mathbb{Z}$.
 - (h) (-7)|(-56) True. $(-7)|(-56) \rightarrow -56/-7 \in \mathbb{Z}$. $-56/-7 = 8 \in \mathbb{Z}$.
 - (i) $(\forall n \in \mathbb{Z})(1|n)$ True. $(\forall n \in \mathbb{Z})(1|n) \to (\forall n \in \mathbb{Z})(n/1) \in \mathbb{Z}$. $n/1 = n \in \mathbb{Z}$.
 - (j) $(\forall n \in \mathbb{N})(n|0)$ True. $(\forall n \in \mathbb{N})(n|0) \to (\forall n \in \mathbb{Z})(0/n) \in \mathbb{Z}$. $0/n = 0 \in \mathbb{Z}$.
 - (k) $(\forall n \in \mathbb{Z})(n|0)$ True. $(\forall n \in \mathbb{Z})(n|0) \to (\forall n \in \mathbb{Z})(0/n) \in \mathbb{Z}$. $0/n = 0 \in \mathbb{Z}$.
- 3. Prove all the parts of the theorem in the lecture, giving the basic properties of divisibility. Namely, show that for any integers a, b, c, d with $a \neq 0$
 - (a) a|0, a|a. $a|0 \to 0/a \in \mathbb{Z}$ (True). $a|a \to a/a = 1 \in \mathbb{Z}$ (True).
 - (b) a|1 if and only if $a = \pm 1$ $a|1 \rightarrow 1/a \in \mathbb{Z} \rightarrow a = \pm 1$. $a = \pm 1 \rightarrow 1|1$.
 - (c) If a|b and c|d, then ac|bd for $c \neq 0$. a|b and $c|d \to b/a \in \mathbb{Z}$ and $d/c \in \mathbb{Z}$. So b=am and d=cn for integers m, n. $a=\frac{b}{m}$ and $c=\frac{d}{n}$. This means $ac=\frac{bd}{mn}$. It follows that ac|bd.
 - (d) If a|b and b|c, then a|c for $a \neq 0$. $a|b \text{ and } b|c \to b = am \text{ and } c = bn \text{ for integers } m, n. \text{ So } a = \frac{(c/n)}{m} \text{ and } am = \frac{c}{n}. \ a = \frac{b}{m} \text{ and } c = \frac{d}{n}.$ This means $ac = \frac{bd}{mn}$ and amn = c. a|c follows since mn is an integer.
 - (e) a|b and b|a if and only if $a=\pm b$. b=am and $a=bn\to (1=mn \text{ and } 1=n/m)\to m=n\to [(b=a \text{ and } a=b) \text{ or } (b=-a \text{ and } a=-b)]$. This proves the first conditional. Now assume $a=\pm b$. b|a since $\pm 1\in\mathbb{Z}$. $a=\pm b\to b=\pm a$, so b=(a)(1) or b=(a)(-1). But this implies a|b since $\pm 1\in\mathbb{Z}$, which proves the second conditional.
 - (f) If a|b and $b \neq 0$ then $|a| \leq |b|$. a|b, so b = am for some integer m. Now assume |b| < |a|. Then $m = \frac{|b|}{|a|}$, which means 0 < m < 1. But this means m is not an integer, which is a contradiction. Therefore, $|a| \leq |b|$.
 - (g) If a|b and a|c, then a|bx + cy for integers x, y. If a|b and a|c, then b = ax and c = ay for integers x, y. So $x = \frac{b}{a}$ and $y = \frac{c}{a}$. $bx = b\frac{b}{a}$ and $cy = c\frac{c}{a}$. $bx + cy = \frac{b^2 + c^2}{a}$. But $2 + c^2$ is an integer, so a|bx + cy.