

Interfacce di Comunicazione

Prof. Vincenzo Auletta

auletta@dia.unisa.it http://www.dia.unisa.it/professori/auletta/

Ricezione e Decodifica

- il ricevente riceve un segnale e deve estrarre i dati
- ◆ campiona il segnale ogni "bit time" per determinarne il valore
 - il sistema garantisce che solo al centro di ogni bit time il segnale è molto simile a quello trasmesso
- per una corretta decodifica il ricevente deve conoscere
 - tempo di arrivo
 - durata di ogni bit ricevuto
- trasmettitore e ricevente si devono sincronizzare

Trasmissione Seriale e Parallela

- Trasmissione seriale
 - esiste un unico percorso su cui sono inviati i dati
 - elementi di segnale spediti sul canale uno alla volta
 - ogni elemento di segnale porta un certo numero di bit di informazioni
 - ◆ < 1 → codifica Manchester
 </p>
 - = 1 → NRZ-L e FSK
 - > 1 → QPSK
- Trasmissione parallela
 - simile ma si utilizzano più percorsi paralleli
 - l'informazione è inviata contemporaneamente su tutti i percorsi (un pezzo per ogni percorso)

Esempio di Decodifica del Segnale

Sincronizzazione

- ◆ se i clock operano a velocità differenti è difficile mantenere la sincronizzazione e campionare sempre al centro dell'intervallo di bit
 - si trasmette a blocchi di dati, un blocco alla volta
 - ogni blocco richiede una risincronizzazione
- due soluzioni
 - trasmissione asincrona
 - trasmissione sincrona

5

Esempio di Trasmissione Asincrona

- durante l'idle state il trasmettitore invia continuamente 1
- lo start bit consente di sincronizzarsi
 - transizione da 1 a 0 rilevata
- il ricevente campiona ogni bit del carattere al centro dell'intervallo di bit
- i bit di stop segnalano la fine della trasmissione
 - in genere i bit di stop sono due o più

Trasmissione Asincrona

- si trasmette un carattere alla volta
 - ogni carattere è lungo da 5 a 8 bit
 - la sincronizzazione è mantenuta solo per la trasmissione del singolo carattere
- il ricevente deve risincronizzarsi all'inizio di ogni carattere
 - prima di trasmettere un carattere si devono trasmettere dei bit di sincronizzazione

Caratteristiche della Trasmissione Asincrona

- consente la trasmissione solo tra dispositivi abbastanza sincronizzati
 - se i clock differiscono di molto si perde la sincronizzazione
- utilizzo della linea inefficiente
 - per ogni carattere (8 bit) spediti 3 bit di controllo
 - inutilizzati 3/8 della larghezza di banda disponibile

APE Prof

7

Trasmissione Sincrona

- ◆ si trasmettono grandi frame (qualche migliaio di bit)
 - ogni frame preceduto e seguito da caratteri di sincronizzazione
 - il frame viene trasmesso in blocco senza ritardi
 - all'interno del frame non ci sono caratteri di sincronizzazione
- Struttura di un frame
 - preambolo+dati+coda+bit di controllo

fields

9

Sincronizzazione di Bit

- i due clock devono essere in sincronia per tutta la trasmissione del frame
- Due possibili soluzioni
 - linea di clock separata inviata dal trasmettitore
 - un impulso per bit time,
 - utilizzabile solo per brevi distanze e bassi tassi
 - embedding del clock nei segnali
 - ci deve essere un alto numero di transizioni di segnale
 - es. codifica Manchester (per segnali digitali)
 - es. freguenza della portante (per segnali analogici)

Livelli di Sincronizzazione

- ◆ Il ricevitore deve sincronizzarsi con il segnale ricevuto per
 - individuare inizio e fine di ogni intervallo di bit
 - individuare inizio e fine di ogni ottetto
 - individuare inizio e fine di ogni frame

Autunno 2003 Prof. Vincenzo Auletta

10

Sincronizzazione di Carattere e Frame

- Il ricevitore ed il trasmettitore concordano il numero di bit utilizzati per rappresentare ogni carattere
 - il ricevitore conta il numero di bit ricevuti
- Ogni frame identificato da caratteri di inizio e fine frame
 - previsti dal codice ASCII
 - serve una tecnica diversa per trasmettere file binari

Caratteristiche della Trasmissione Sincrona

- Trasmissione efficiente adatta ad essere utilizzata ad alti tassi di trasmissione
 - Es. HDLC ha 48 bit di controllo e circa 8000 bit di dati per ogni frame
- utilizzata per trasmettere dati generati a tasso costante

13

Terminologia

- DTE (Data Terminal Equipment)
 - identifica ogni dispositivo terminale (computer, terminale o altro dispositivo in grado di elaborare dati)
- DCE (Data Circuit-terminating Equipment)
 - identifica un dispositivo in grado di ricevere e trasmettere bit su una linea di trasmissione (es. modem, schede di rete, ecc.)
- La comunicazione tra DTE e DCE avviene attraverso un insieme di circuiti
 - per favorire l'interoperabilità sono stati definiti standard di interfacciamento tra DTE e DCE

Interfaccia di Comunicazione

◆ I computer hanno limitate capacità di trasmissione dati

- possono generare solo segnali NRZ per comunicare con le periferiche ma non possono essere collegati direttamente ad una rete di comunicazione
- utilizzano un dispositivo intermedio che li interfaccia con la rete

14

Comunicazione tra DTE e DCE

- ◆ DCE trasmette bit sul canale
- DCE scambia dati ed informazioni di controllo con il DTE
 - serve un protocollo per la comunicazione tra DTE e DCE

serie

- standard definiti dalla ITU-T
 - serie V (PSTN)
 - serie X (PSDN)
 - serie I (ISDN)

Autunno 2003

15

Caratteristiche di un Interfaccia

- L'interfaccia di comunicazione definisce le caratteristiche
 - Meccaniche: forma e struttura dei connettori
 - Elettriche: livelli dei segnali, temporizzazzione, tipo di codifica del segnale
 - Funzionali: operazioni svolte dall'interfaccia
 - Procedurali: sequenza delle operazioni

17

Interfaccia con Modem

- modem operano a diverse velocità e con diverse forme di modulazione
- servono standard per rendere compatibili modem di diversi costruttori
 - EIA-232F / V.24
 - EIA-530 / V.11
 - V.35
 - X.21

Modem

- ◆ Converte segnali digitali in analogici per trasmetterli sulla rete telefonica
 - converte il segnale digitale proveniente dal DTE, in segnale analogico
 - converte il segnale analogico ricevuto, in segnale digitale da trasmettere al DTF
- Spesso utilizzato per indicare qualsiasi dispositivo di interfacciamento DTE/rete
 - ...modem ISDN, modem ADSL

18

V.24/EIA-232-F

- ◆ ITU-T v.24 (Europa)
 - specifica solo le caratteristiche funzionali e procedurali
 - fa riferimento ad altri standard meccanici ed elettrici
- ◆ EIA-232-F (USA)
 - evoluzione dello standard RS-232
 - livello meccanico ISO 2110
 - livello elettrico v.28
 - livello funzionale v.24
 - livello procedurale v.24

Specifica Meccanica

connettore a 25 pin

di Calculatori) Prof. Vincenzo Aulet

21

Specifica Funzionale

circuiti raggruppati in

- dati, controllo, temporizzazione, segnale di terra
- ogni circuito svolge una sola funzione (l'informazione è rappresentata dalla presenza o assenza del segnale)
- due coppie di circuiti dati (primary e secondary)
 - primary è full duplex
 - secondary utilizzato per gestire l'half duplex

Specifica Elettrica

Standard V.28

- Specifica i livelli di tensione definiti nelle interfacce A-232F / V.24 :
 - +3 volt per lo zero binario
 - -3 volt per l'uno binario.
- all'interno del calcolatore i livelli di tensione sono:
 - 0.2÷0.8 volt per un zero binario
 - 2÷5 volt per un *uno binario*
- Utilizza segnali digitali con codifica NRZ-L
 - valori interpretati come dati o segnali di controllo a seconda del circuito
- Utilizzabile per collegamenti fino a 15 m con tasso < 20 kbps

22

Specifica Funzionale

- circuiti di controllo
 - 10 per canali primary e 6 per canali secondary
 - usati per avvio e chiusura connessione, controllo qualità del segnale, loopback control
- circuiti di sincronizzazione
 - usati solo per trasmissione sincrona
 - il segnale, inviato dal DCE al DTE, trasporta un segnale di temporizzazione con transizione al centro della cella

Autunno 2003

23

Specifica Procedurale

- ◆ Definisce l'ordine con cui vengono utilizzati i circuiti da un'applicazione
- ◆ Es: asynchronous private line modem
 - all'accensione il DCE invia segnale ready
 - quando il DTE vuole spedire dati invia Request to Send
 - se in half duplex inibisce ricezione
 - DCE risponde con Clear to send
 - DTE manda i dati
 - il DCE invia un Receive Line Signal Detector e trasmette i dati sul canale

Interfaccia Null Modem

 L'interfaccia FTA-232F può essere usata per collegare direttamente due DTE

- ogni DTE pensa di parlare con un DCE
- bisogna modificare il cablaggio cavo

26

Autunno 2003 Prof. Vincenzo Aule

25

EIA-530

- ◆ Usa stessa logica di EIA-232F ma segnali differenziali (V.11)
 - consente maggior tasso di trasmissione
 - copre distanze più lunghe
- utilizzato per collegamenti sincroni punto-punto su linee a larga banda
- connettore a 37 piedini

28

Altri Standard di Interfaccia

- ◆ V.35
 - Progettata per collegare un DTE ad un modem sincrono a larga banda
 - stessi segnali di EIA-232F ma senza canali secondari
 - usa sia segnali bilanciati che non bilanciati
 - connettore a 34 piedini
- ◆ X.21 e X.21bis
 - collega un DTE ad un DCE di una rete pubblica di trasmissione dati (PSDN)
 - usa segnali bilanciati
 - pochi circuiti di controllo (il controllo viene gestito dall'interfaccia) e connettore a 15 piedini

Specifiche Fisica ed Elettrica dell'Interfaccia ISDN

- ◆ Collegamento tra un Terminal Equipment (cfr. DTE) ed un Network Terminating (cfr. DCE)
- due circuiti per trasmissione in ognuna delle due direzioni
 - due flussi dati paralleli con dati e segnali di controllo sullo stesso circuito
- connettore con soli 8 pin (RJ45)
- usa solo segnali differenziali
- tipo di codifica dipendente dal tasso di trasmissione
 - tasso base di 192kbps usa pseudoternary
 - tasso principale usa AMI con scrambling

Schema dell'Interfaccia Fisica di ISDN

30

