AMS 261: Probability Theory (Fall 2017)

Homework 3 solutions

1. Consider a countable sequence $\{X_n : n = 1, 2, ...\}$ of \mathbb{R}^+ -valued random variables defined on a common probability space (Ω, \mathcal{F}, P) . Assume that all random variables X_n have the same distribution, with distribution function given by $F(x) = 1 - \exp(-x)$, $x \in \mathbb{R}^+$.

Show that

$$P\left(\liminf_{n\to\infty}\left\{\omega\in\Omega:X_n(\omega)\leq (1+\delta)\log(n)\right\}\right)=1,$$

for any fixed $\delta > 0$.

Solution: Fix $\delta > 0$, and for each n, let $A_n = \{\omega \in \Omega : X_n(\omega) > (1 + \delta) \log(n)\}$. (Note that each $A_n \in \mathcal{F}$, since each X_n is a random variable.) We need to show that $P(\liminf_{n \to \infty} A_n^c) = 1$. We have

$$P(A_n) = 1 - P(X_n \le (1+\delta)\log(n)) = \exp\{-(1+\delta)\log(n)\} = \frac{1}{n^{(1+\delta)}}$$

using the form of the distribution function for each X_n , $P(X_n \le x) = 1 - \exp(-x)$, $x \in \mathbb{R}^+$. Hence,

$$\sum_{n=1}^{\infty} P(A_n) = \sum_{n=1}^{\infty} \frac{1}{n^{(1+\delta)}} < \infty,$$

since $\delta > 0$, and the Borel lemma yields $P(\limsup_{n \to \infty} A_n) = 0$, i.e., $P(\liminf_{n \to \infty} A_n^c) = 1$.

2. Let F and G be distribution functions on \mathbb{R} such that $G(t) \leq F(t)$, for all $t \in \mathbb{R}$ (in which case, G is said to be stochastically larger than F).

• Construct two \mathbb{R} -valued random variables X and Y, defined on the same probability space (Ω, \mathcal{F}, P) , such that the distribution function of X is G, the distribution function of Y is F, and $P(X \geq Y) = 1$. Solution: Consider $\Omega = (0,1)$, \mathcal{F} the Borel σ -field on (0,1), and P the uniform distribution on (0,1). Next, define \mathbb{R} -valued functions X and Y on (Ω, \mathcal{F}, P) by $X(\omega) = \inf\{t \in \mathbb{R} : G(t) \geq \omega\}$ and $Y(\omega) = \inf\{t \in \mathbb{R} : F(t) \geq \omega\}$, for each $\omega \in (0,1)$. Then, X and Y are random variables with distribution functions G and F, respectively. Moreover, because $G(t) \leq F(t)$ for any $t \in \mathbb{R}$, we have that $\{t \in \mathbb{R} : G(t) \geq \omega\} \subseteq \{t \in \mathbb{R} : F(t) \geq \omega\}$ for any $\omega \in (0,1)$, and thus, $\inf\{t \in \mathbb{R} : G(t) \geq \omega\} \geq \inf\{t \in \mathbb{R} : F(t) \geq \omega\}$ for any $\omega \in (0,1)$. Therefore, $X(\omega) \geq Y(\omega)$ for any $\omega \in (0,1)$, which yields the result.

3. Consider a simple random variable X defined on some probability space (Ω, \mathcal{F}, P) , and let F be its distribution function. Denote by $F(x^-) = \lim_{y \nearrow x} F(y)$ (or equivalently, $F(x^-) = \lim_{n \to \infty} F(x_n)$ for an arbitrary increasing sequence $\{x_n : n = 1, 2, ...\}$ converging to x).

• Show that the expectation of X can be written in the form

$$\mathrm{E}(X) = \sum_{x \in \mathbb{R}} x \{ F(x) - F(x^-) \}.$$

Solution: Because X is a simple random variable, it can be expressed in the form $\sum_{j=1}^k c_j 1_{C_j}$, where the c_j are the distinct values of X and the C_j partition Ω , in particular, $C_j = \{\omega \in \Omega : X(\omega) = c_j\}$. Denote by Q_X the probability measure induced on $\mathbb R$ by X. Consider an arbitrary increasing sequence $\{x_n:n=1,2,\ldots\}$ converging to c_j . If we define $A_n=(-\infty,x_n],\ n=1,2,\ldots$, we have $\lim_{n\to\infty}A_n=\bigcup_{n=1}^\infty A_n=(-\infty,c_j)$. Hence, using continuity of probability measure, we obtain $\lim_{n\to\infty}Q_X(A_n)=Q_X((-\infty,c_j))$, i.e., $\lim_{n\to\infty}F(x_n)=P(\{\omega\in\Omega:X(\omega)< c_j\})$, and thus $F(c_j^-)=P(\{\omega\in\Omega:X(\omega)< c_j\})+P(C_j)$, and hence $P(C_j)=F(c_j)-F(c_j^-)$. Therefore, $P(X_j)=P($

- 4. Let X be a simple random variable (taking both negative and positive values) defined on some probability space (Ω, \mathcal{F}, P) .
 - Show that expectation definitions 1 (for simple random variables) and 3 (for general random variables taking values on the extended real line) are equivalent.

Solution: We can write X in the form $\sum_{j=1}^k c_j 1_{C_j}$, where the c_j are the distinct values of X ($c_j \in \mathbb{R}$), and $\{C_j: j=1,...,k\}$ is a finite measurable partition of Ω (in particular, $C_j = \{\omega \in \Omega : X(\omega) = c_j\}$). Hence, $X^+ = \sum_{j \in J_1} c_j 1_{C_j}$, and $X^- = -\sum_{j \in J_2} c_j 1_{C_j}$, where $J_1 = \{j: c_j \geq 0\}$, and $J_2 = \{j: c_j < 0\}$. Because X^+ and X^- are both simple random variables, based on definition 1, we have $E_1(X^+) = \sum_{j \in J_1} c_j P(C_j)$, and $E_1(X^-) = -\sum_{j \in J_2} c_j P(C_j)$, both finite. Moreover, as shown in class, expectation definitions 1 and 2 are equivalent, and thus $E_2(X^+) = E_1(X^+)$ and $E_2(X^-) = E_1(X^-)$. Therefore, the expectation of X according to definition 3 exists and is given by $E_3(X) = E_2(X^+) - E_2(X^-) = \sum_{j \in J_1} c_j P(C_j) + \sum_{j \in J_2} c_j P(C_j) = \sum_{i=1}^k c_j P(C_j) = E_1(X)$.

- 5. Consider an $\overline{\mathbb{R}}^+$ -valued random variable X defined on some probability space (Ω, \mathcal{F}, P) , and assume that $\mathrm{E}(X) < \infty$. Let $A = \{\omega \in \Omega : X(\omega) = +\infty\}$, and note that, based on the general definition for $\overline{\mathbb{R}}^+$ -valued measurable functions, we have $A \in \mathcal{F}$.
 - Show that X is almost surely finite, that is, P(A) = 0. Solution: Consider the countable sequence of random variables $\{X_n : n = 1, 2, ...\}$, with X_n defined by $X_n(\omega) = n1_A(\omega)$, $\omega \in \Omega$. By construction, $X_n(\omega) \leq X(\omega)$, for all n and for all $\omega \in \Omega$. Note also that each X_n is a simple random variable with $E(X_n) = nP(A)$. Therefore, we have that, for all n, $nP(A) = E(X_n) \leq E(X) < \infty$, which can only occur if P(A) = 0.
- 6. Consider a sequence $\{X_n: n=1,2,...\}$ of \mathbb{R}^+ -valued random variables defined on the same probability space (Ω, \mathcal{F}, P) . Assume that the sequence is (pointwise) increasing, that is, for all n and for each $\omega \in \Omega$, $X_n(\omega) \leq X_{n+1}(\omega)$. Denote by X the pointwise limit of $\{X_n: n=1,2,...\}$, that is, for each $\omega \in \Omega$, $X(\omega) = \lim_{n \to \infty} X_n(\omega)$, and assume that $E(X) < \infty$. Define the variance for X by $Var(X) = E\{(X E(X))^2\}$, and similarly, for each n, $Var(X_n) = E\{(X_n E(X_n))^2\}$. (In general, the variance for a random variable Y with finite expectation E(Y) is given by $Var(Y) = E\{(Y E(Y))^2\}$, whether finite or infinite.)
 - Prove that $Var(X) = \lim_{n \to \infty} Var(X_n)$.

Solution: Let $\mu = E(X)$ and, for $n = 1, 2, ..., \mu_n = E(X_n)$. The increasing structure of the X_n and the assumption $\mu = E(X) < \infty$ imply that $\mu_n < \infty$ for each n. Hence, Var(X) and $Var(X_n)$, for each n, are well defined, and, based on the variance definition, we can write $Var(X) = E(X^2) - \mu^2$, and $Var(X_n) = E(X_n^2) - \mu_n^2$, for n = 1, 2, ... (by expanding the square and using additivity of expectation).

Next, applying the MCT to the sequence $\{X_n: n=1,2,...\}$, we have $\lim_{n\to\infty}\mu_n=\mu$, and thus $\lim_{n\to\infty}\mu_n^2=\mu^2$. Note that the sequence $\{X_n^2: n=1,2,...\}$ also satisfies the MCT assumptions; it is a pointwise increasing sequence with pointwise limit X^2 . Therefore, $\lim_{n\to\infty} E(X_n^2)=E(X^2)$. Combining the above results/expressions, we obtain

$$\lim_{n \to \infty} \text{Var}(X_n) = \lim_{n \to \infty} \{ E(X_n^2) - \mu_n^2 \} = \lim_{n \to \infty} E(X_n^2) - \lim_{n \to \infty} \mu_n^2 = E(X^2) - \mu^2 = \text{Var}(X).$$