Теоретические ("малые") домашние задания

Математическая логика, ИТМО, МЗ234-МЗ239, весна 2018 года

Домашнее задание №1

Докажите при любых подстановках метапеременных α , β и γ :

- 1. $\vdash \alpha \& \beta \rightarrow \beta \& \alpha$
- 2. $\vdash \alpha \rightarrow \neg \neg \alpha$
- $3. \vdash \alpha \& (\beta \lor \gamma) \to (\alpha \lor \beta) \& (\alpha \lor \gamma)$
- 4. $\vdash \neg(\alpha \& \beta) \rightarrow \neg \alpha \lor \neg \beta$
- 5. $\vdash (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$

Домашнее задание №2

В данном домашнем задании вам будет предложено доказать несколько важных лемм, используемых в теореме о полноте исчисления высказываний. Подробнее с этой теоремой можно ознакомиться в конспекте курса, глава 5.

- 1. Докажите при любых значениях метапеременных α , β :
 - (a) $\alpha, \beta \vdash \alpha \& \beta$
 - (b) $\neg \alpha, \beta \vdash \neg (\alpha \& \beta)$
 - (c) $\alpha, \neg \beta \vdash \neg (\alpha \& \beta)$
 - (d) $\neg \alpha, \neg \beta \vdash \neg (\alpha \& \beta)$
 - (e) $\alpha, \beta \vdash \alpha \lor \beta$
 - (f) $\neg \alpha, \beta \vdash \alpha \lor \beta$
 - (g) $\alpha, \neg \beta \vdash \alpha \vee \beta$
 - (h) $\neg \alpha, \neg \beta \vdash \neg (\alpha \lor \beta)$
 - (i) $\alpha, \beta \vdash \alpha \rightarrow \beta$
 - (j) $\alpha, \neg \beta \vdash \neg(\alpha \rightarrow \beta)$
 - (k) $\neg \alpha, \beta \vdash \alpha \rightarrow \beta$
 - (1) $\neg \alpha, \neg \beta \vdash \alpha \rightarrow \beta$
 - (m) $\neg \alpha \vdash \neg \alpha$
 - (n) $\alpha \vdash \neg \neg \alpha$
- 2. Докажите, что при любых значениях метапеременной α справедливо $\vdash \alpha \lor \neg \alpha$
- 3. Докажите, что при любых списках формул Γ и Δ и при любых значениях метапеременных γ,δ,ζ если $\Gamma \vdash \gamma, \ \Delta \vdash \delta$ и $\gamma,\delta \vdash \zeta$, то $\Gamma,\Delta \vdash \zeta$
- 4. Докажите, что если Γ , $\rho \vdash \alpha$ и Γ , $\neg \rho \vdash \alpha$, то $\Gamma \vdash \alpha$