Funciones Simples:

Def: Sic (X, A) espacio mesurable. Las funciones de la forma

(*)
$$f(x) = \sum_{i=1}^{N} c_i \mathbb{1}_{A_i}(x)$$
, con HeIN, ciello A: Ef, disjointos

u llaman jondone simples.

Si tenemos
$$f(\pi) = \sum_{i=1}^{N} c_i \mathbf{1}_{B_i}(\pi)$$
 (xx) donde NEIN, $c_i \in \mathbb{R}$, $B_i \in A$ y $X = \bigcup_{i=1}^{N} B_i$

decimo que f está en su representación estandar.

Qbs! (*) y (**) no son vimicas!

Ej:
$$A \in A$$
. $\mathcal{I}_A(x)$ $\mathcal{I}_{A}(x)$

5: toma mos la partición $P = \{A, A^c\}$, entonces $f(x) = \mathbb{1}_{A}(x) + 0$. $\mathbb{1}_{A^c}(x) \leftarrow$ representación

Prop: Toda formión simple f. X-IR es mesurable.

Prneba: Ejemplo 2.

Prop: Toda fimilions mesurable 2:X-3/R que toma solo un minuse finito de valores, es simple.

Pruoba: Sea $u(X) = \{y_1, y_2, ..., y_N\} \subseteq |R|$ finito. Los conjuntos de la forma $\{u=a\}$, $a\in u(X)$, forman una particion de X.

Además, $hu=ar=hu\geq ar-hu>ar\in A$ $\Rightarrow hu=ar$ son mesurables.

De ahí

$$u(x) = \sum_{\alpha \in u(x)} \alpha \cdot 1_{\{1^{1} = \alpha^{3}\}^{3}} = \sum_{i=1}^{N} y_{i} \cdot 1_{\{1^{1} = y_{i}\}^{i}} (x)$$

y como X= [] {u=yi} \Rightarrow u es simple.

Teorema: (Sombrero le mma).

Sen (X, A) es pario memiable. Toda función menuable, no-negativa, $u: X \to \mathbb{R}$ es el Winte de ma recuentia caeciente de fuciono simple foi $X \to \mathbb{R}$. Esto es, $u(x) = \sup_{x \to \infty} f_n(x) = \lim_{x \to \infty} f_n(x)$, $\forall x \in X$.

Idea de la pruebo:

Fijamos no IN y definimon los conjuntos de nivel n $A_{k}^{n} = \begin{cases} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \\ \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \end{cases}$; $k = 0,1,2,...,n2^{n-1}$

Las funciones aproximantes por

$$f_n(x) = \sum_{k=0}^{n2^n} \frac{k!}{2^n} \int_{A_k}^{n} (x)$$
 es simple.

•
$$|u(x) - f_n(x)| \in \frac{1}{n}$$
 $|u(x)| \leq n$

•
$$0 \le f_n \le f_{n \ge 1} \le u$$
, $\forall n \in \mathbb{N}$
• $|u(x) - f_n(x)| \le \frac{1}{2^n}$, $|h| u(x) \le n$
• $A_k^n = \left\{\frac{k}{2^n} \le n \le \frac{k+1}{2^n}\right\} = \left\{\frac{k}{2^n} \le n\right\} \cap \left\{u \le \frac{k+1}{2^n}\right\} \in A$.

• $A_{n \ge n}^n = \left\{u > n\right\} \in A$.

Corplanio 1 Sea (x, %) esp. mesurable. Toda función mesurable 1:X-7/R es el l'inite de formions soimples ¿for}, tales que Ifor | 5 /ul. Si ues l'initado, este l'unite es uniforme.

Prueba: Sea vi.X - IR mesurable. Definimos ut, vi.X -> IR $u^{+}(x) = \begin{cases} u(x); & u(x) \ge 0 \\ 0; & u(x) < 0 \end{cases}$ $= m (x) \begin{cases} u(x); & u(x) \le 0 \\ 0; & u(x) > 0 \end{cases}$ $= -m (n \{0, u(x)\}) \begin{cases} u(x) \le n \\ 0; & u(x) < n \end{cases}$

 $u = u^{\dagger} - u$ $y |u| = u^{\dagger} + u^{\dagger}$.

ri, ri se llaman la parte pontiva de u, y la parte hegativa de u

Tome v=ut-u con vt, re: X-IR no-negativas.

=> u, u son mesurables.

Por el Teorema anterior, existen funciones simples (fin) y fynt tales

Tome $\{f_n-g_n\}_{n\geq i}$ Salemos que como f_n,g_n son simples \Rightarrow existen $A_1,...,A_N \in \mathcal{A}$ disjusts con $B_1,...,B_M \in \mathcal{A}$ disjusts con $f_n = \sum_{i=1}^N c_i \mathbb{1}_{A_i}$ $y g_n = \sum_{j=1}^M d_j \mathbb{1}_{B_j}$.

 $\Rightarrow f_n - g_n = \sum_{i=1}^{N} c_i \mathbb{1}_{A_i} - \sum_{j=1}^{M} d_j \mathbb{1}_{B_j} = \sum_{k=1}^{L} \alpha_k \mathbb{1}_{C_k} \quad c_k = A_i \wedge B_j$

=> fr-gn pon funciones simples.

y lim (fn-gn) = limfn - limgn = ut - u = u.

Adomás. | fn-gn | = |fn | + |gn | = u+ u = |u|.

Por último, is u es limitadas, digamos |u(x) | Lc, treX,

Entonus, para todo
$$n \ge N$$

$$\Rightarrow |f_n - u + | \langle \varepsilon, | g_n - u - | \langle \varepsilon | \rangle |$$

$$= |(f_n - g_n)(x) - u(x)| = |(f_n - g_n)(x) - (u - u)(x)|$$

$$= |(f_n - u +)(x) - (g_n - u)(x)|$$

$$\leq |f_n(x) - u + | \langle x | \rangle + |g_n(x) - u + |\chi \rangle$$

$$\leq |\chi_2 - u + | \chi_2 - u + |\chi_2 -$$

vt v