

Combining active learning machine learning with transfer learning: Building better interatomic potentials for nuclear fuels

Liz Stippell

PhD Candidate: University of Southern California

Dana and David Dornsife College of Letters, Arts and Sciences

Background: Simulations of Nuclear Fuels

Why do we simulate nuclear fuels?

Allows a better understanding of nuclear fuels under varying conditions which can be difficult to investigate experimentally.

Simulations help predict nuclear fuel properties.

Can we create a machine learning interatomic potential (**MLIP**) that can accurately predict values within reasonable error to experimental values?

Uranium Dioxide (Nuclear Cell)

Background: Machine Learning

Kulichenko, M. et al. "The Rise of Neural Networks for Materials and Chemical Dynamics." *J. Phys. Chem. Lett.*, 2021, **12**, 26, 6227-6243

Methods: Building a Machine Learning Potential

DFT Density Functional Theory **MLIP** Machine Learning Interatomic Potential **DFT+U** DFT plus Hubbard Parameter

Active Learning ML

An iterative method that automatically trains the MLIP

- 1. Sampling
 - Atomic coordinates are generated and added to training dataset
- 2. Labeling
 - Energies and forces for each atom (in each system) assigned
- 3. Training
 - Fit the MLIP to the training dataset, described by steps 1 and 2

Methods: Building a Machine Learning Potential

Results: Temperature Dependent Properties

Two different machine learning interatomic potentials (MLIPs):

- 1. Sole DFT data
- Mixture of DFT+U and DFT data

Dataset consists of:

- 96 atom supercell
- MD simulations from 300 – 2,500 K
- Both zero pressure and non-zero pressure systems
- Structures containing point defects

4x4x4 supercell 768 atoms UO₂

MLIP-DFT+U overestimates lattice parameters by ~0.10Å

Qualitatively, MLIP-DFT+U follows a similar trend to experiment

Results: Temperature Dependent Properties

MLIP-DFT+U provides great accuracy compared to experiment at high temperatures

MLIP-DFT provides great accuracy compared to experiment at lower temperatures

$$c_p = \frac{1}{n} \left(\frac{\partial H}{\partial T} \right)_p$$

Qualitatively, MLIP-DFT follows a similar trend to experiment

MLIP-DFT+U performs better than the Yakub force field

$$K = -V \frac{dP}{dV} \bigg|_{V=V_0}$$

Results: Zero Temperature Properties

	Property	MLIP-DFT	MLIP-DFT+U	FF	DFT	DFT+U	Ехр.		
→	a (Å)	5.45 (-0.42%)	5.51 (+0.68%)	5.45	5.42	5.54	5.473*	Lattice Parameter	
	C ₁₁ (GPa)	389.47 (+0.04%)	344.75 (-11.44%)	406.3	371.7	393.8	389.3		
	C ₁₂ (GPa)	121.21 (+2.04%)	118.20 (-0.42%)	124.7	117.5	114.7	118.7	Elastic	
	C ₄₄ (GPa)	77.98 (+30.62%)	37.19 (-37.71%)	63.89	66.3	63.9	59.7	Constants	
	B (GPa)	207.80 (-0.53%)	190.98 (-8.58%)	218.6	202.9	197	208.9		

Similar to the temperature dependent lattice parameter, DFT+U overestimates the zero-temperature lattice parameter

The MLIP-DFT shows agreement with experimental values

*Value at ambient temperature

Results: Defect Energies

Schottky (SD)
The Removal of one
UO₂ unit

Frenkel Pair (FP)
The removal of an
atom and an
inclusion of an
interstitial atom

Red: oxygen Blue: uranium

Yellow: vacancy

Dark Blue: interstitial

MLIP-DFT+U performs better than classical force fields when compared to experiment

Defect energy (eV)	MLIP-DFT	MLIP- DFT+U	FF	DFT (Lit.)	DFT+U (Lit.)	Exp.
SD _{isolated}	5.26	6.31	10.64	5.6-10.6	4.2-11.8	6.0-7.0
SD ₁	4.09	4.30	6.18			
SD ₂	3.95	3.96	5.27			
SD ₃	3.92	3.86	5.05			
U-FP _{isolated}	9.40	10.15	15.47	10.6-17.2	9.1-16.5	9.5
U-FP₁	6.83	7.30	11.09			
O-FP _{isolated}	5.86	5.25	5.73	2.6-5.77	2.4-7.0	3.0-4.0
O-FP ₁	3.94	4.36	5.37			
O-FP ₂	3.95	4.26	4.94			

Conclusions

The active learning MLIP paired with transfer learning was successful in reproducing important characteristics of uranium oxide.

By including DFT+U data, the accuracy of the MLIP increased, showing the importance of antiferromagnetism in nuclear fuels.

Moving Forward

This model can be improved by training the MLIP using experimental data.

This model can be expanded to include other novel nuclear fuels, including UN and UC.

Acknowledgements

Collaborators:

Lorena Alzate-Vargas

Kashi N. Subedi
Roxanne M. Tutchton
Michael W.D. Cooper
Sergei Tretiak
Tammie Gibson
Richard A. Messerly

