

Overview

 This example simulates the laminar flow over a backward facing step at a Reynolds number of 800 based on channel height. The results are compared with numerical as well as experimental results available in literature.

Problem description

• The computational domain for the flow calculations consists of an rectangular region (0 < x < 30; -0.5 < y < 0.5). The flow enters the solution domain from 0 < y < 0.5 while -0.5 < y < 0.0 represents the step. A parabolic velocity profile is specified at the inlet.

$$Re = \frac{\rho V_{av} H}{\mu}$$

Features

Steady laminar flow

Fluid Properties

- Density = 1 unit
- Viscosity = 0.00125 units (the viscosity is chosen so as to set the flow Reynolds number to 800)

Boundary conditions

- Set through thickness velocity components to zero
- No-slip velocity boundary condition at top and bottom walls

•
$$V_x = 0, V_y = 0$$

• Inlet velocity: Parabolic velocity profile - $V_x = f(y)$

$$V_y = 0$$

- Outlet: P = 0
- No-slip velocity boundary condition at the step boundary

•
$$V_x = 0, V_v = 0$$

References

"A test problem for outflow boundary conditions – Flow over a backward-facing step"
 D. K. Gartling, International Journal for Numerical Methods in Fluids
 Vol 11, 953-967, (1990)

1 IOW

Results

Flow Over a Backward Facing Step

	Mesh (Across the channel x along the channel length)	L ₁ Length from the step face to the lower re-attachment point	L ₂ Length from the step face to upper separation point	L ₃ Length of the upper separation bubble
Gartling (1990)	40x800	6.1	4.85	10.48
Abaqus/CFD	Fine 80x1200x1 (Zone 1) 80x832x1 (Zone 2)	5.9919	4.9113	10.334
Abaqus/CFD	Medium 40x600x1 (Zone 1) 40x416x1 (Zone 2)	5.7471	4.8379	10.101
Abaqus/CFD	Coarse 20x300x1 (Zone 1) 20x208x1 (Zone 2)	4.5018	3.9659	8.7748

 Elements used by Gartling (1990) were biquadratic in velocity and linear discontinuous pressure elements. In contrast, the fluid elements in Abaqus/CFD use linear discontinuous in velocity and linear continuous in pressure.

Results

Pressure line plot (0 < x < 30)

Velocity line plot (0 < x < 15)

Out of plane vorticity (0 < x < 30)

DASSAULT SYSTEMES

Flow Over Backward Facing Step

Results

• Horizontal velocity at x = 7 & x = 15

DASSAULT SYSTEMES

Flow Over Backward Facing Step

Results

• Vertical velocity at x = 7 & x = 15

DASSAULT SYSTEMES

Flow Over Backward Facing Step

Files

- ex6_backwardfacingstep.py
 - ex6_backwardfacingstep_coarse.inp
 - ex6_backwardfacingstep_medium.inp
 - ex6_backwardfacingstep_fine.inp
- coarse_parabolic_inlet_velocity.inp
- medium_parabolic_inlet_velocity.inp
- fine_parabolic_inlet_velocity.inp

Note

- The models require a parabolic velocity profile at the inlet. This needs to be manually included as boundary condition in the generated input file.
- The parabolic velocity profile required is provided in files coarse_parabolic_inlet_velocity.inp, medium_parabolic_inlet_velocity.inp and fine_parabolic_inlet_velocity.inp for coarse, medium and fine meshes, respectively.

