Pro or Anti? A Social Influence Model to Stance Flipping Predictions of Coronavirus Vaccine

Lynnette Ng

Social Influence

- ☐ Social Influence = change of opinions in a complex social environment
- ☐ Incorporates individual past stances & impact of interpersonal influence
- ☐ Examine COVID vaccine stance behavior from April 2020 to May 2021
- Considers agent's past tweets and overall network structure towards a stance score
- ☐ Model for prediction of stance flipping behavior achieves 86% accuracy

Data

- □ Collected Twitter data using the hashtag #coronavirus from April 2020 to May 2021
- Bot Annotation: bot-probability annotation using the BotHunter algorithm at the 0.70 threshold level
- Stance Labelling: Manually inspected hashtags and classified them into pro/con; used network-based stance propagation algorithm to label
- ☐ Linguistic Annotation: characterized thoughts and emotions through key lexical categories (positive, negative terms, 1st person pronouns)...
- Network annotation: characterized influence of agent in a network (centrality values)

Social Influence on Vaccine Stance

- Describe the formation of a stance towards the coronavirus vaccine with:
 - ☐ Agent static variables linguistic cues, number of tweets, number of followers...
 - ☐ Interpersonal influences from the network neighbor's factors

- Describe the formation of a stance towards the coronavirus vaccine with:
 - ☐ Agent static variables linguistic cues, number of tweets, number of followers...
 - ☐ Interpersonal influences from the network neighbor's factors

Neighbor stance value
$$Y_{\{neighbor\}} = \gamma C X_* B_* + R$$

Reciprocity

(Two way interaction between agents)

- ☐ We only consider neighbors that are one and two hops away
- ☐ Influence weight of each neighbor tends to 0 as number of hops of agents increases

- We only consider neighbors that are one and two hops away
- ☐ Influence weight of each neighbor tends to 0 as number of hops of agents increases

$$Y_{\{agent\}} = \gamma C X_* B_*$$

$$Y_{\{neighbor\}} = \gamma C X_* B_* + R$$

$$I = \alpha \left[\sum_{i=0}^{n} Y_{\{1st \text{ deg } neighbors\}} + \sum_{i=0}^{n} \sum_{j=0}^{m} \beta Y_{\{2nd \text{ deg } neighbors\}} \right], \alpha = \frac{1}{n}, \beta = \frac{1}{m}$$

Influence from 1st degree neighbors (1 hop away)

Influence from 2nd degree neighbors (2 hops away)

Determining Variable Importance

- Performed a binary classification task with a decision tree model
- Most important features:
 - ☐ Linguistic variables: number of tweets, avg word/sentence length, reading difficulty, type of pronouns
 - Network variables: num of followers, eigenvector centrality, betweenness centrality

- Both linguistic + network factors are important to the influence of agent stances
- ☐ Accuracy (F1-score) increases drastically upon the reciprocal ties

Model #	Model	Accuracy
Baseline	Decision Tree	0.53
Base - network	Base social influence model without network variables	0.47
Base - linguistic	Base social influence model without linguistic variables	0.55
Base Model 1	Base social influence model	0.50
Model 2	Model 1 + 2nd deg neighbor information	0.59
Model 3	Model 2 + stance strength	0.72
Model 4	Model 3 + connection	0.73
Model 5	Model 4 + reciprocity	0.86

Table 2: Results of Social Influence Models. The base social influence model is agent stance with 1st degree neighbor information.

■ Model accurately predicts 86% of the stance flips

☐ Positive examples:

Green: provax Red: antivax

Circle: Agent in focus

Stance of agent depicted before flip

Bot vs Non-bot agents

- □ 53.7% of the population are bots
- □ 6.6% of the overall population flip, while only 2.7% of non-bot agents flip
- Bot population have lower deflection score and overall population averages; form more interactions; more convicted

Collective Expression of Agents

- Idea is derived from "coordinated activity" in social media
- Identify posting of hashtags synchronized in time
 - ☐ Removed common words (e.g. #covid, #vaccine)
 - ☐ Identify pairs of agents that post a lot of the same hashtags within a 5-min time window
- For agents that flip, larger proportion of neighbors are of opposite stance & participate in collective expression
 - ☐ Floods news feeds, illusion that neighbors are all of the opposite expression

	Agents that flip stances	Agents that do not flip stances	p-value
Proportion of bots	0.452	0.293	2.14e-13*
Percentage of neighbors that are bots	0.352 ± 0.372	0.358 ± 0.280	0.051
Proportion of neighbors of the opposite stance	0.409±0.443	0.196±0.271	0.011*
Proportion of neighbors participating in collective expression	0.0389±0.068	0.0302±0.115	0.027*
Proportion of neighbors participating in collective expression and are of opposite stance	0.0207±0.0996	0.0136±0.0350	0.0078*

TABLE 4: Comparison of actors that flip stances and do not flip stances with respect to their 2-degree neighborhood. A * denotes a p-value that is significant at the 0.05 significance level.

6/10/24 Your Name Here

Collective Expression of Agents

References/ Contact

- Lynnette Ng and lynnetteng@cmu.edu
- □ L. H. X. Ng and K. M. Carley, "Pro or Anti? a Social Influence Model of Online Stance Flipping," in *IEEE Transactions on Network Science and Engineering*, 2022, doi: 10.1109/TNSE.2022.3185785.

6/10/24 Your Name Here