Лабораторная работа № 3

Рассмотрим простейший процесс управления.

В ходе управления некоторым объектом он перемещается в параметрическом пространстве по стационарной траектории с нестационарными отклонениями (возмущениями).

Перемещение объекта в заданных границах отсчета времени назовем реализацией процесса.

Управление процессом заключается в том, чтобы при заданных входных параметрах в условиях нестационарных возмущений модуль отклонения объекта от его стационарной траектории не превышал заданную величину для любых реализациях процесса.

Например, рассмотрим объект в пространстве $(y/\Delta y, \phi/\Delta \phi, t/\Delta t)$. Здесь: y – возмущение (случайное отклонение объекта от стационарной траектории) с квантом Δy ; ϕ – воздействие (управляющее воздействие, которое возвращает объект на стационарную траекторию) с квантом $\Delta \phi$; t – время с квантом Δt . Будем называть $t/\Delta t$ тактом управления.

Рис. 1. Простейший процесс управления.

На рис. 1 стационарная траектория объекта – горизонтальная ось графиков, реализация – линия, отмеченная красным цветом. На такте $t/\Delta t = 1$ объект получает отклонение $y/\Delta y = 1$. Для возврата на стационарную траекторию требуется воздействие $\phi/\Delta \phi = -1$. В результате такого воздействия объект на такте $t/\Delta t = 2$ возвращается на стационарную траекторию и в отсутствие возмущения перемещается по ней до такта $t/\Delta t = 3$.

На множествах: наблюдений $D = \{d_1, d_2, d_3\}$ – возмущение и состояний $C = \{c_1, c_2, c_3\}$ – воздействие можно построить процесс из рис. 1 в пространстве ($D, C, t/\Delta t$) следующим образом.

Рис. 2. Простейший процесс управления в пространстве ($D, C, t/\Delta t$).

На рис. 2 стационарная траектория объекта — горизонтальная ось графиков, реализация — линия, отмеченная красным цветом. На такте $t/\Delta t = 1$ объект получает отклонение d_3 . Для возврата на стационарную траекторию требуется воздействие c_1 .

В результате такого воздействия объект на такте $t/\Delta t = 2$ возвращается на стационарную траекторию и в отсутствие возмущения перемещается по ней до такта $t/\Delta t = 3$.

В реализациях любой процесс может иметь два типа управления: однозначное и неоднозначное.

При однозначном управлении в ответ на возмущение вырабатывается один вариант управляющего воздействия, т. е. объект может быть перемещен однозначно.

При неоднозначном управлении в ответ на возмущение вырабатывается несколько вариантов управляющих воздействий, т. е. объект может быть перемещен неоднозначно.

В технологиях искусственного интеллекта последний случай является тупиком, так как для выбора варианта перемещения объекта приходиться применять методы: { эвристические, стохастические }, а это требует затрат времени и других ресурсов.

Один их выходов из тупика — надлежащий выбор начальных и/или граничных условий управления с результатом — однозначное управление процессом на заданном наборе тактов.

Процесс из рис. 1 может быть показан на диаграммах в координатах ($y/\Delta y$, $\phi/\Delta \phi$) с тактами в точках квантования координат: (0,0); (1, -1) и переходами между двумя тактами: такт 1 \rightarrow такт 2; такт 2 \rightarrow такт 3, т. е. однозначное управление: между каждыми двумя тактами переход существует и он единственный.

Рис. 3. Однозначное управление. Здесь:

¹, ², ³ – номера тактов, → и − переходы между тактами.

На рис. 4 на диаграммах в координатах (у/ Δ у, ϕ / $\Delta\phi$) показано неоднозначное управление: имеется хотя бы одна пара тактов из набора { 1, 2, 3 }, между которыми существует несколько переходов.

Рис. 4. Неоднозначное управление. Здесь:

¹, ², ³ – номера тактов, → и ^{*} – переходы между тактами.

Указанные диаграммы построены по результатам, полученным при временном входе в лабораторную работу № 4 и вызове программы C3.

Условия управления: начальное — μ_0 и граничные — μ_{max} , μ_{min} , . Таким образом, в пространстве (μ_{max} , μ_{min} , μ_0) могут быть определены области неоднозначности управления процессом, что является результатами выполнения лабораторной работы N_2 3.

Пример результатов приведен в таблице.

Пространство		μ_{min} Диапазон μ_{min}									
$(\mu_{\text{max}}, \mu_{\text{min}}, \mu_0)$		0.1	0.2	0.3	0.4	0.5		0.7	0.8	0.9	1.0
		Области неоднозначности при µ0									
Диапазон µ _{max}	0.1	0.1								_	
	0.2		0.2								
	0.3			0.3							
	0.4				0.4						
	0.5	0.5				0.5					
	0.6	0.6	0.6				0.6				
	0.7	0.7	0.7	0.7				0.7			
	0.8	0.3	0.8	0.8	0.8				0.8		
		0.8									
	0.9	0.3	0.4	0.9	0.9	0.9				0.9	
		0.4	0.9								
		0.9									
	1.0	0.3	0.4	0.5							[0,
		0.4	0.5								1]
		0.5									

Для получения указанных результатов в пространстве (μ_{max} , μ_{min} , μ_{0}) следует зафиксировать два параметра и с шагом 0.1 варьировать третий.

Результаты можно получать в лабораторной работе № 3 при вызове программы «Управление», либо в лабораторной работе № 4 при вызове программы С3.