Final Project - Traffic Sign Classification using CNNs

Name: Sushruth Danivasa Sridhar

1. Introduction

Problem Statement:

The classification of traffic signs is a critical task for autonomous driving systems and advanced driver assistance systems (ADAS). Recognizing traffic signs accurately helps ensure safety and compliance on the road.

Approach:

This project addresses the problem using Convolutional Neural Networks (CNNs), a deep learning approach highly effective for image classification tasks. Three models were implemented:

Model 1: Pre-trained MobileNetV2 as a feature extractor.

Model 2: A custom CNN architecture with data augmentation and dropout layers.

Model 3: An advanced CNN architecture with additional convolutional layers and optimizations.

The models were trained and evaluated on the German Traffic Sign Recognition Benchmark (GTSRB) dataset.

Significance:

Accurate traffic sign classification improves road safety, supports automated navigation systems, and demonstrates deep learning's capability to solve real-world problems. This project also highlights how various CNN architectures influence accuracy and efficiency.

Methodology

Dataset: The GTSRB dataset, consisting of images of 43 traffic sign classes.

https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign

Data Distribution:

Training set: 70% of the images. Validation set: 30% of the images.

Test set: Separate test images with labels provided in Test.csv.

Image Preprocessing:

Resized all images to 30x30x3 dimensions.

Normalized pixel values to the range [0, 1] for consistent input into models.

Algorithms and Models:

Model 1: MobileNetV2-based Architecture

- A pre-trained MobileNetV2 model was used as a feature extractor, followed by custom dense layers:
 - GlobalAveragePooling2D
 - Dense(512, ReLU), Batch Normalization, Dropout(0.5).

Model 2: Custom CNN

- Architecture:
 - Multiple convolutional layers: Filters of size $16 \rightarrow 32 \rightarrow 64 \rightarrow 128$.
 - MaxPooling layers after every 2 convolutional layers.
 - o Batch Normalization and Dropout (0.3 and 0.5 rates) to reduce overfitting.
 - Fully connected layer (Dense 512) with Batch Normalization and Dropout.

Model 3: Advanced Custom CNN

- Deeper CNN with:
 - Convolutional layers: Filters $32 \rightarrow 64 \rightarrow 128 \rightarrow 256$.
 - Increased Dropout regularization (0.5 rate).
 - Optimized learning rate (0.0001).

Optimization

- Optimizer: Adam
- Loss Function: Categorical Crossentropy
- Epochs: 20
- Data Augmentation: Applied random rotation, zoom, shift, and shear transformations using ImageDataGenerator.

Workflow

- 1. **Data Preprocessing**: Image resizing, normalization, and augmentation.
- 2. Model Training: Trained three models on the preprocessed dataset.
- 3. Evaluation: Used accuracy, precision, recall, F1-score, and ROC-AUC to evaluate performance.

4. Visualization:

- Training/validation accuracy and loss plots.
- o Confusion matrices.
- O ROC-AUC curves for performance comparison.

3. Results and Evaluation

Key Observations:

- Model 1 showed the lowest accuracy due to limited generalization capacity.
- Model 2 and Model 3 achieved high accuracy, with Model 3 slightly outperforming Model 2 in terms of loss and validation metrics.
- Both Model 2 and Model 3 demonstrated near-perfect AUC scores, indicating excellent performance.
- The best model is Model 3

Model	Loss	Accuracy	Validation Loss	Validation	AUC
				Accuracy	
Model 1	0.3795	0.8719	0.2598	0.9140	0.9905
Model 2	0.0773	0.9775	0.0035	0.9991	0.9998
Model 3	0.0367	0.9891	0.0022	0.9993	0.9999

Visualizations:

• Training and Validation Metrics:

Plots show rapid convergence for Model 2 and Model 3 compared to Model 1.

Confusion Matrices:

Model 3 shows minimal misclassifications across all 43 classes.

ROC Curves:

Model 2 and Model 3 display near-perfect ROC curves, confirming their robustness.

Test Accuracy:

• Model 1: 79.22%

• Model 2: 98.87%

• Model 3: 98.52%

Best Model: Model 3, based on its overall accuracy, AUC, and generalization.

4. Discussion

Challenges:

- 1. Class Imbalance: Some traffic sign classes had significantly fewer images, affecting performance for those classes.
- 2. Overfitting: Early experiments showed overfitting, mitigated by applying dropout and data augmentation.
- 3. Computation: Training deeper CNN models required substantial time and computational resources.

What I Learned:

- Pre-trained models like MobileNetV2 are effective for feature extraction but may not outperform welloptimized custom CNNs.
- Hyperparameter tuning, regularization, and data augmentation are critical for model generalization.
- A deeper architecture with appropriate dropout and learning rate scheduling improves accuracy.

Future Improvements:

- Class Imbalance Handling: Use techniques like SMOTE or weighted loss to improve minority class performance.
- 2. Real-time Deployment: Optimize the model for real-time inference using TensorRT or quantization.
- 3. Transfer Learning: Experiment with other pre-trained models like ResNet or EfficientNet.
- 4. Edge Deployment: Optimize the best model for deployment on edge devices like Raspberry Pi.