Scaling Analysis of a Moving Guassion Heat Source in Steady State in a Semi-Infinite Solid

X. Y. Jimmy^{a,*}, P. F. Mendez^a

^aDepartment of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada

Abstract

Abstract goes here

Keywords: keyword1, keyword2, keyword3, keyword4

1. Introduction

Our research focuses on developing simplified formulas with high accuracy that will substitute complex numerical calculations.

2. Governing Equation

$$T^* = \frac{1}{\sqrt{2\pi}} \int_0^\infty d\tau \frac{\tau^{-\frac{1}{2}}}{\tau + \sigma^{*2}} e^{-\frac{x^{*2} + 2\tau^* x^* + \tau^{*2} + y^{*2}}{2\tau + 2\sigma^{*2}} - \frac{z^{*2}}{2\tau}}$$
(1)

Eq. 1 has some disadvantages. Firstly, it is a improper integral and the up limit is infinity which makes the calculation more difficult. Secondly, the integrand has two peaks. One locates at $\tau=0$, and the other moves and is hard to determine, which may results in the omitting of second peak in integral. Use variable substitution method $t=\arctan\frac{\sqrt{\tau}}{\sigma}$, and do not consider the depth of pool, which means $z^*=0$.

$$T^* = \frac{2}{\sqrt{2\pi}\sigma^*} \int_0^{\frac{\pi}{2}} e^{-\frac{1}{2} \left[\sigma^{*2} \left(\cos^2 t + \frac{1}{\cos^2 t} - 2 \right) + \frac{\cos^2 t \left(x^{*2} + y^{*2} \right)}{\sigma^{*2}} + 2x^* \left(1 - \cos^2 t \right) \right]} dt \tag{2}$$

Eq. 2 avoids the disadvantages of Eq. 1. The integral is bounded. The integrand has one peak located at $t = \arccos \{\sigma^*[(\sigma^{*2} - x^*)^2 + y^{*2}]\}$. However, Eq. 2 can't be applied to the point-source condition.

3. the highest temperature T_m^* corresponding to σ^*

To calculating the highest T^* corresponding to σ^* , y^* should be set as 0 because the maximum temperature T_{m} decreases as $|y^*|$ increases according to Eq. 1.

^{*}Corresponding author. Tel: +1-780-XXX-XXXX Email addresses: jimmy@ualberta.ca (X. Y. Jimmy), pmendez@ualberta.ca (P. F. Mendez)

3.1. $\sigma \rightarrow 0$

According the numerical calculation, x^* should be much smaller than σ^* , so $\left|\frac{x^*}{\sigma^*}\right| \sim 0$. Eq. 2 can be simplified as:

$$\widehat{T}^*_{mI} = \frac{2}{\sqrt{2\pi}\sigma^*} \int_0^{\frac{\pi}{2}} e^{-\frac{1}{2} \left[\sigma^{*2} \left(\cos^2 t + \frac{1}{\cos^2 t} - 2\right) + \frac{\cos^2 t \, x^{*2}}{\sigma^{*2}} + 2x^* \left(1 - \cos^2 t\right)\right]} dt$$

$$\approx \frac{2}{\sqrt{2\pi}\sigma^*} \int_0^{\frac{\pi}{2}} e^{-\frac{1}{2}\sigma^{*2} \left(\cos^2 t + \frac{1}{\cos^2 t} - 2\right)} dt$$

$$\approx \frac{2}{\sqrt{2\pi}\sigma^*} \frac{\pi}{2} = \sqrt{\frac{\pi}{2}} \, \sigma^{*-1}$$
(3)

3.2. $\sigma \to \infty$

When σ tends to infinity, the peak locates at 0, and the integrand decreases sharply.

$$\widehat{T^*}_{mII} = \frac{2}{\sqrt{2\pi}\sigma^*} \int_0^{\frac{\pi}{2}} e^{-\frac{1}{2} \left[\sigma^{*2} \left(\cos^2 t + \frac{1}{\cos^2 t} - 2\right) + \frac{\cos^2 t}{\sigma^{*2}} x^{*2}} + 2x^* \left(1 - \cos^2 t\right)\right] dt
\approx \frac{2}{\sqrt{2\pi}\sigma^*} \int_0^{\delta} e^{-\frac{1}{2} \left[\sigma^{*2} \left(\cos^2 t + \frac{1}{\cos^2 t} - 2\right) + \frac{\cos^2 t}{\sigma^{*2}} x^{*2}} + 2x^* \left(1 - \cos^2 t\right)\right] dt
\approx \frac{2}{\sqrt{2\pi}\sigma^*} \int_0^{\delta} e^{-\frac{1}{2} \left[\sigma^{*2} t^4 + \frac{(1 - t^2)x^{*2}}{\sigma^{*2}} + 2x^* t^2\right]} dt
= \frac{2}{\sqrt{2\pi}\sigma^*} \int_0^{\delta} e^{-\frac{1}{2} \left[\sigma^{*2} t^4 + \left(2x^* - \frac{x^{*2}}{\sigma^{*2}}\right)t^2 + \frac{x^{*2}}{\sigma^{*2}}\right]} dt
\approx \frac{2}{\sqrt{2\pi}\sigma^*} \int_0^{\delta} e^{-\frac{1}{2} \left[\sigma^{*2} t^4 + 2x^* t^2 + \frac{x^{*2}}{\sigma^{*2}}\right]} dt
\approx \frac{2}{\sqrt{2\pi}\sigma^*} \int_0^{\delta} e^{-\frac{1}{2} \left(\sigma^* t^2 + \frac{x^*}{\sigma^*}\right)^2} dt
\approx \frac{2}{\sqrt{2\pi}\sigma^*} \int_0^{\delta} e^{-\frac{1}{2} \left(\sigma^* t^2 + \frac{x^*}{\sigma^*}\right)^2} dt$$

$$(4)$$

Where δ is infinitesimal, and $x^* \sim \sigma^* \gg 1$.

Use numerical method to find the maximum value of Eq. 4 with changes of x^* . When $x^* = -0.7650 \sigma^*$, T^* reaches maximum value.

$$\widehat{T}^*_{mII} = \frac{2.5596}{\sqrt{2\pi}} \ \sigma^{*-1.5} \tag{5}$$

3.3. blending

Use Eq. 3 and Eq. 5 to obtaining the blending equation for all σ .

$$\widehat{T^*}_m^+(\sigma^*) = \left[\left(\sqrt{\frac{\pi}{2}} \ \sigma^{*-1} \right)^n + \left(\frac{2.5596}{\sqrt{2\pi}} \ \sigma^{*-1.5} \right)^n \right]^{\frac{1}{n}}$$
 (6)

Where n = -1.9464, and the maximum error reaches 0.1901%.

(a) correspondence between T_m^* and σ^* (b) relative error changes with σ^* when n =(c) maximum error changes with n around -1.9464

Fig. 1: Results of the blending between T_m^* and σ^*

Eq. 6 reveals the one-to-one correspondence between σ^* and T^* . For any melting point T^* , there is a certain σ^* , below which the base substance can't melt, and vice versa. So, Eq. 3 and Eq. 5 can be rewritten as:

$$\widehat{\sigma^*}_{mI} = \sqrt{\frac{\pi}{2}} Ry \tag{7}$$

Where $Ry^* = \frac{1}{T^*}$.

$$\widehat{\sigma^*}_{mII} = 1.0140 \ Ry^{\frac{2}{3}} \tag{8}$$

$$\widehat{\sigma^*}_m^+(Ry) = \left[\left(1.0140 \ Ry^{\frac{2}{3}} \right)^n + \left(\sqrt{\frac{\pi}{2}} Ry \right)^n \right]^{\frac{1}{n}}$$
 (9)

Where n = -2.3975, and the maximum error reaches minimum, 1.39%.

Fig. 2: Results of the blending between σ_m^* and Ry

4. $\sigma \rightarrow \sigma_m$

When σ^* tends to σ_m^* , the welding pool vanishes, and should be axisymmetric, which means the maximum width point locates above the maximum temperature point, i.e. $x_{m,\text{corresponding to maximum width point}} = x_{m,\text{corresponding to maximum temperature point}}$.

4.1. $\sigma \rightarrow 0$

$$T_{I;x_{0},y}^{*} = \frac{2}{\sqrt{2\pi}\sigma^{*}} \int_{0}^{\frac{\pi}{2}} e^{-\frac{1}{2} \left[\sigma^{*2} \left(\cos^{2}t + \frac{1}{\cos^{2}t} - 2\right) + \frac{\cos^{2}t \left(x_{0}^{*2} + y^{*2}\right)}{\sigma^{*2}} + 2x_{0}^{*} \left(1 - \cos^{2}t\right)\right]} dt$$

$$= \frac{2}{\sqrt{2\pi}\sigma^{*}} \int_{0}^{\frac{\pi}{2}} e^{-\frac{1}{2} \left[\sigma^{*2} \left(\cos^{2}t + \frac{1}{\cos^{2}t} - 2\right) + \frac{\cos^{2}t x_{0}^{*2}}{\sigma^{*2}} + 2x_{0}^{*} \left(1 - \cos^{2}t\right)\right]} \cdot e^{-\frac{\cos^{2}t y^{*2}}{2\sigma^{*2}}} dt$$

$$\approx \frac{2}{\sqrt{2\pi}\sigma^{*}} \int_{0}^{\frac{\pi}{2}} 1 \cdot e^{-\frac{\cos^{2}t y^{*2}}{2\sigma^{*2}}} dt$$

$$= \frac{2}{\pi} T_{I;x_{0},y=0}^{*} \cdot \int_{0}^{\frac{\pi}{2}} e^{-\frac{\cos^{2}t y^{*2}}{2\sigma^{*2}}} dt$$

$$\approx \frac{2}{\pi} T_{I;x_{0},y=0}^{*} \cdot \int_{0}^{\frac{\pi}{2}} 1 - \frac{\cos^{2}t y^{*2}}{2\sigma^{*2}} dt$$

$$\approx T_{I;x_{0},y=0}^{*} \cdot \frac{2}{\pi} \left(\frac{\pi}{2} - \frac{y^{*2}\pi}{8\sigma^{*2}}\right)$$

$$= T_{I;x_{0},y=0}^{*} \cdot \left(1 - \frac{y^{*2}}{4\sigma^{*2}}\right)$$

$$= T_{I;x_{0},y=0}^{*} \cdot \left(1 - \frac{y^{*2}}{4\sigma^{*2}}\right)$$

$$= T_{I;x_{0},y=0}^{*} \cdot \left(1 - \frac{y^{*2}}{4\sigma^{*2}}\right)$$

$$= T_{I;x_{0},y=0}^{*} \cdot e^{-\frac{y^{*2}}{4\sigma^{*2}}}$$

$$(10)$$

Where $x_0^* = 0$, $y^* \ll \sigma^*$.

According to Eq. 10,

$$\widehat{y^*}_{mI} = 2\sigma^* \sqrt{\ln \frac{T_m^*(\sigma^*)}{T^*}} = 2\sigma^* \sqrt{\ln \frac{Ry}{Ry_{min}(\sigma^*)}}$$
 (11)

4.2. $\sigma \to \infty$

When σ tends to infinity, the location of maximum temperature point $x_0^* = -0.7650 \ \sigma^*$, and the integrand focuses on t = 0, i.e. $\cos t = 1$.

$$T_{I;x_{0},y}^{*} = \frac{2}{\sqrt{2\pi}\sigma^{*}} \int_{0}^{\frac{\pi}{2}} e^{-\frac{1}{2} \left[\sigma^{*2} \left(\cos^{2}t + \frac{1}{\cos^{2}t} - 2 \right) + \frac{\cos^{2}t \left(x_{0}^{*2} + y^{*2} \right)}{\sigma^{*2}} + 2x_{0}^{*} \left(1 - \cos^{2}t \right) \right]} dt$$

$$\approx \frac{2}{\sqrt{2\pi}\sigma^{*}} \int_{0}^{\delta} e^{-\frac{1}{2} \left[\sigma^{*2} \left(\cos t + \frac{1}{\cos^{2}t} - 2 \right) + \frac{\cos^{2}t \left(x_{0}^{*2} + y^{*2} \right)}{\sigma^{*2}} + 2x_{0}^{*} \left(1 - \cos^{2}t \right) \right]} dt$$

$$\approx \frac{2}{\sqrt{2\pi}\sigma^{*}} \int_{0}^{\delta} e^{-\frac{1}{2} \left[\sigma^{*2}t^{4} + \frac{\left(1 - t^{2} \right) \left(x_{0}^{*2} + y^{*2} \right)}{\sigma^{*2}} + 2x_{0}^{*}t^{2} \right]} dt$$

$$= \frac{2}{\sqrt{2\pi}\sigma^{*}} \int_{0}^{\delta} e^{-\frac{1}{2} \left[\sigma^{*2}t^{4} + \left(2x_{0}^{*} - \frac{x_{0}^{*2}}{\sigma^{*2}} \right) t^{2} + \frac{x_{0}^{*2}}{\sigma^{*2}} \right]} \cdot e^{-\frac{y^{*2}}{2\sigma^{*2}}} dt$$

$$= T_{II;x_{0},y=0}^{*} \cdot e^{-\frac{y^{*2}}{2\sigma^{*2}}}$$

$$(12)$$

According to Eq. 12,

$$\widehat{y^*}_{mII} = \sqrt{2}\sigma^* \sqrt{\ln \frac{T^*(\sigma^*)}{T^*}} = \sqrt{2}\sigma^* \sqrt{\ln \frac{Ry}{Ry_{min}(\sigma^*)}}$$
(13)

4.3. blending

Use Eq. 11 and Eq. 13 to obtained the approximation of y_m^* when σ^* tends to σ_m^* :

$$\widehat{y^*}_{m,near} = K\sigma^* \sqrt{\ln \frac{Ry}{Ry_{min}(\sigma^*)}}$$
(14)

K changes with Ry.

$$K = k_0 - A * \tanh\left(B \ln \frac{Ry}{C}\right) \tag{15}$$

Where $k_0 = \frac{2+\sqrt{2}}{2}, A = \frac{2-\sqrt{2}}{2}, B = 0.3775, C = 1.0690$. The maximum error reaches 0.5%. Eq. 14 can be

Fig. 3: Results of approximation of coefficient K against Ry^*

written as a function depicting the near field temperature distribution around the maximum temperature

point:

$$Ry = Ry_{min}\left(\sigma^*\right) e^{\frac{y_m^{*2}}{K^2 \sigma^{*2}}} \tag{16}$$

5. quasi point source

When $\sigma^* = 0$, the Eq. 1 describes the point heat source.

$$\frac{1}{\sqrt{2\pi}} \int_0^\infty d\tau \quad \tau^{-\frac{3}{2}} e^{-\frac{x^{*2} + 2\tau^* x^* + \tau^{*2} + y^{*2}}{2\tau}} = \frac{1}{r^*} e^{-r^* - x^*}$$
(17)

Do derivations on Eq. 17 with respect to y:

$$\frac{1}{\sqrt{2\pi}} \int_0^\infty d\tau \quad \tau^{-\frac{3}{2}} e^{-\frac{x^{*2} + 2\tau^* x^* + \tau^{*2} + y^{*2}}{2\tau}} = \frac{1}{r^*} e^{-r^* - x^*}
\frac{1}{\sqrt{2\pi}} \int_0^\infty d\tau \quad \tau^{-\frac{5}{2}} e^{-\frac{x^{*2} + 2\tau^* x^* + \tau^{*2} + y^{*2}}{2\tau}} = -\frac{1}{y^*} \frac{\partial}{\partial y^*} \left(\frac{1}{r^*} e^{-r^* - x^*}\right)
= e^{-r^* - x^*} \left(\frac{1}{r^{*2}} + \frac{1}{r^{*3}}\right)$$
(18)

$$\frac{1}{\sqrt{2\pi}} \int_0^\infty d\tau \quad \tau^{-\frac{7}{2}} e^{-\frac{x^{*2} + 2\tau^* x^* + \tau^{*2} + y^{*2}}{2\tau}} = \frac{1}{y^*} \left[\frac{1}{y^*} \frac{\partial}{\partial y^*} \left(\frac{1}{r^*} e^{-r^* - x^*} \right) \right] \\
= e^{-r^* - x^*} \left(\frac{1}{r^{*3}} + \frac{3}{r^{*4}} + \frac{3}{r^{*5}} \right) \tag{20}$$

When $\frac{\sigma^*}{\sigma_m^*}$ tends to zero, the Gaussian heat source can be treated as point source, with little error. So, use Eq. 1 rather than Eq. 2.

$$\widehat{T^*}_{far} = \frac{1}{\sqrt{2\pi}} \int_0^\infty d\tau \frac{\tau^{-\frac{1}{2}}}{\tau + \sigma^{*2}} e^{-\frac{x^{*2} + 2\tau^* x^* + \tau^{*2} + y^{*2}}{2\tau + 2\sigma^{*2}}}$$

$$\approx \frac{1}{\sqrt{2\pi}} \int_0^\infty d\tau \, \tau^{-\frac{3}{2}} e^{-\frac{x^{*2} + 2\tau^* x^* + \tau^{*2} + y^{*2}}{2\tau}} \cdot \left[\left(1 + \frac{\sigma^{*2}}{2} \right) + \sigma^{*2} \left(x - 1 \right) \frac{1}{\tau} + \frac{x^{*2} + y^{*2}}{2\tau} \sigma^{*2} \frac{1}{\tau^2} \right]$$

$$= e^{-r^* - x^*} \left[\left(1 + \frac{\sigma^{*2}}{2} \right) \frac{1}{r^*} + \sigma^{*2} \left(x - 1 \right) \left(\frac{1}{r^{*2}} + \frac{1}{r^{*3}} \right) + \frac{\sigma^{*2}}{2} \left(\frac{1}{r^*} + \frac{3}{r^{*2}} + \frac{3}{r^{*3}} \right) \right]$$

$$(21)$$

This process uses the first two terms of Taylor series of integrand with respect to σ^* . Eq. 21 describes the temperature distribution of far field.

5.1. $\sigma \rightarrow 0$

When $\sigma \to 0$, $x^* \ll y^* \ll 1$. Eq. 21 can be simplified as

$$\begin{split} T^* &\approx e^{-r^* - x^*} \left[\left(1 + \frac{\sigma^{*2}}{2} \right) \frac{1}{r^*} + \sigma^{*2} \left(x - 1 \right) \left(\frac{1}{r^{*2}} + \frac{1}{r^{*3}} \right) + \frac{\sigma^{*2}}{2} \left(\frac{1}{r^*} + \frac{3}{r^{*2}} + \frac{3}{r^{*3}} \right) \right] \\ &\approx 1 \cdot \left[\left(1 + \frac{\sigma^{*2}}{2} \right) \frac{1}{y^*} - \sigma^{*2} \frac{1}{y^{*3}} + \frac{\sigma^{*2}}{2} \frac{3}{y^{*3}} \right] \\ &\approx \frac{1}{y^*} + \frac{\sigma^{*2}}{2} \frac{1}{y^{*3}} \end{split}$$

Use perturbation method, $y_{m,gauss}^* = y_{m,point}^* (1 + a\sigma^{*2}), a\sigma^{*2} \ll 1$, $y_{m,point}^* = Ry$.

$$\frac{1}{Ry} \approx \frac{1}{y^*} + \frac{\sigma^{*2}}{2} \frac{1}{y^{*3}}$$

$$\approx \frac{1}{y_{m,point}^* (1 + a\sigma^{*2})} + \frac{\sigma^{*2}}{2} \frac{1}{y_{m,point}^{*3} (1 + 3a\sigma^{*2})}$$

$$\approx \frac{1}{Ry (1 + a\sigma^{*2})} + \frac{\sigma^{*2}}{2} \frac{1}{Ry^3 (1 + 3a\sigma^{*2})}$$

$$\Rightarrow a = \frac{1}{2Ry^2}$$

$$y_{m,gauss,0}^* = y_{m,point}^* \left(1 + \frac{1}{2Ry^2}\sigma^{*2}\right)$$
(23)

5.2. $\sigma \to \infty$

When $\sigma \to \infty$, $1 \ll \sigma^* \ll y^* \ll x^*$. Eq. 21 can be simplified as

$$T^* \approx e^{-r^* - x^*} \left[\left(1 + \frac{\sigma^{*2}}{2} \right) \frac{1}{r^*} + \sigma^{*2} \left(x - 1 \right) \left(\frac{1}{r^{*2}} + \frac{1}{r^{*3}} \right) + \frac{\sigma^{*2}}{2} \left(\frac{1}{r^*} + \frac{3}{r^{*2}} + \frac{3}{r^{*3}} \right) \right]$$

$$\approx e^{-r^* - x^*} \left[\frac{1}{r^*} + \frac{\sigma^{*2} \left(r^* + x^{*2} \right)}{r^{*2}} - \frac{\sigma^{*2}}{2r^{*2}} \right]$$

$$\approx e^{\frac{1}{2} \frac{y^{*2}}{x^*}} \left[-\frac{1}{x^*} + \frac{\sigma^{*2}}{x^{*2}} \left(-\frac{y^{*2}}{2x^*} - 0.5 \right) \right]$$
(24)

Use perturbation method, $y_{m,gauss}^* = y_{m,point}^* \left(1 + b\sigma^{*2}\right)$, $x_{m,gauss}^* = x_{m,point}^* \left(1 + c\sigma^{*2}\right)$, $b\sigma^{*2} \ll 1$, $c\sigma^{*2} \ll 1$, $y_{m,point}^* = \sqrt{\frac{2}{e}Ry}, x_{m,point}^* = -\frac{Ry}{e}$.

$$\frac{1}{Ry} \approx e^{\frac{1}{2}\frac{y^{*2}}{x^{*}}} \left[-\frac{1}{x^{*}} + \frac{\sigma^{*2}}{x^{*2}} \left(-\frac{y^{*2}}{2x^{*}} - 0.5 \right) \right]
\approx e^{\frac{1}{2}\frac{y^{*2}}{x^{*}}} \left[-\frac{1}{x^{*}} + \frac{\sigma^{*2}}{x^{*2}} \left(0.5 + 2b\sigma^{*2} - c\sigma^{*2} \right) \right]
\approx e^{\frac{1}{2}\frac{y^{*2}}{x^{*}}} \left(-\frac{1}{x^{*}} + 0.5\frac{\sigma^{*2}}{x^{*2}} \right)
y^{*} = \sqrt{2x^{*} \ln \frac{x^{*2}/Ry}{-x^{*} + 0.5\sigma^{*2}}}
\frac{dy^{*}}{-x^{*} + 0.5\sigma^{*2}} = \frac{\sqrt{2} \left(2\ln \left(-\frac{2tx^{2}}{-s^{2} + 2x} \right) + \frac{4x - 4s^{2}}{-s^{2} + 2x} \right)}{4\sqrt{x \ln \left(-\frac{2tx^{2}}{2x - s^{2}} \right)}} = 0
\Rightarrow x^{*}_{m,gauss} = x^{*}_{m,point}
\Rightarrow b = \frac{e}{4Ry}
y^{*}_{m,gauss,infinity} = y^{*}_{m,point} \left(1 + \frac{e}{4Ry} \sigma^{*2} \right)$$
(25)

5.3. blending

Use the following equation to blending:

$$y_{m,gauss}^* = y_{m,point}^* \left(1 + P * \sigma^{*2} \right) \tag{26}$$

$$P = \left[\left(\frac{1}{2Ry^2} \right)^n + \left(\frac{e}{4Ry} \right)^n \right]^{\frac{1}{n}} \tag{27}$$

Where n = 0.8655, maximum error reaches 1.45%.

Fig. 4: Results of approximation of coefficient K against Ry

6. Combination

The maximum width of welding pool is a combination of far-field and near-field. To cover the middle range of $\frac{\sigma}{\sigma_m}$, the correction of both equations is needed.

6.1. near-field

$$L = 0.93175 - 0.06825 \tanh \left(-0.6571 \ln \frac{Ry}{15.926} \right) - 0.0132 \sin \left[3\pi \tanh \left(0.2485 Ry^{0.3718} \right) \right]$$
 (28)

Fig. 5: Results of approximation of coefficient L against Ry

The maximum error reaches 0.55%.

6.2. far-field

The maximum width can be written in form of step function, consisting of far-field expression and near-field expression. However, lines of $y_{m,1}^* and y_{m,12}^*$ cross. A correction of far-field expression is applied, which is a confinement with the range of $\frac{\sigma^*}{\sigma_m^*}$. It's difficult to calculate the cross points directly, so a back step is took that the point between two cross points is found with any Ry.

When $Ry \leq 5 \times 10^3$, lin = 0.4.

When $Ry > 5 \times 10^3$,

$$y_{m,1}^* - y_{m,12}^* = \sqrt{\frac{2}{e}Ry} + 0.5993 \left(\frac{\sigma^*}{\sigma_m^*}\right)^2 Ry^{\frac{5}{6}} - 2.4838 \frac{\sigma^*}{\sigma_m^*} \sqrt{\log \frac{\sigma_m^*}{\sigma^*}} Ry^{\frac{2}{3}} < 0$$

When $\frac{\sigma^*}{\sigma_m^*}=Ry^{-\frac{1}{6}},$ the in-equation is satisfied. So:

$$lin = Ry^{-\frac{1}{6}} \cdot (Ry > 5 \times 10^3) + 0.4 (Ry \le 5 \times 10^3);$$
 (29)

7. whole plane

$$y_{m}^{*} = MAX\{ y_{m,far}^{*}, y_{m,near}^{*} \}$$

$$y_{m,far}^{*} = y_{m,point}^{*} (1 + P\sigma^{*2}) \cdot (\sigma^{*}/\sigma_{m}^{*} < lin)$$

$$y_{m,near}^{*} = K \left[L (\sigma^{*} - \sigma_{m}^{*}) + \sigma_{m}^{*} \right] \sqrt{\ln \frac{Ry^{*}}{Ry_{min}^{*}(\sigma^{*})}}$$
(30)

The parameters in equations are as follows:

$$\begin{split} y_{m,point}^* &= \left[(Ry)^n + \left(\sqrt{\frac{2}{e}} Ry \right)^n \right]^{\frac{1}{n}} \\ \text{Where } &= -1.7312 \\ P &= \left[\left(\frac{1}{2Ry^2} \right)^n + \left(\frac{e}{4Ry} \right)^n \right]^{\frac{1}{n}} \\ \text{Where } &= 0.8655 \\ lin &= Ry^{-\frac{1}{6}} \cdot \left(Ry > 5 \times 10^3 \right) + 0.4 \left(Ry \leqslant 5 \times 10^3 \right); \\ K &= k_0 - A * \tanh \left(B \ln \frac{Ry}{C} \right) \\ \text{Where } k_0 &= \frac{2+\sqrt{2}}{2}, A = \frac{2-\sqrt{2}}{2}, B = 0.3775, C = 1.0690. \\ L &= 0.93175 - 0.06825 \tanh \left(-0.6571 \ln \frac{Ry}{15.926} \right) - 0.0132 \sin \left[3\pi \tanh \left(0.2485 \, Ry^{0.3718} \right) \right] \\ \sigma_m^* &= \left[\left(1.0140 \, Ry^{\frac{2}{3}} \right)^n + \left(\sqrt{\frac{\pi}{2}} Ry \right)^n \right]^{\frac{1}{n}} \\ \text{Where } n &= -2.3975 \\ Ry_{min}(\sigma^*) &= \left[\left(\sqrt{\frac{\pi}{2}} \, \sigma^{*-1} \right)^n + \left(\frac{2.5596}{\sqrt{2\pi}} \, \sigma^{*-1.5} \right)^n \right]^{-\frac{1}{n}} \\ \text{Where } n &= -1.9464 \end{split}$$

The maximum error reaches 5.25%. There is a limit that $\frac{\sigma^*}{\sigma_m^*} < 98\%$, because when $\frac{\sigma^*}{\sigma_m^*}$ tends to 1, y_m^* tends to 0, the approximation (means that it's not accurate) of Ry_{min} , σ_m^* leads to a large relative error. If the high-precision value is obtained these equations still work.

8. Results

Results

Fig. 6: relative error over whole plane.

9. Discussion

10. Conclusions

Conclusions Section

11. Conclusions

Conclusions Section

12. Acknowledgement

This study has been supported by...

13. References