Assignment Project Exam Help Deep Learning for COMP6714 - Part I

https://eduassistpro.github.

Outline

Assignment Project Exam Help

https://eduassistpro.github.

Problem Definition

Assignment Project Exam Help Labelled data: $\{x_{(i)}, y_{(i)}\}_{i \in [n]}$

https://eduassistpro.github.

- |C|-class classification: $y_{(i)} \in$
- Regression: $y_{(i)} \in \mathbb{R}$.
- · And dru Wood hat pedu_assist_pr class) from dom $\mathbf{x} \to \text{dom } \mathbf{y}$ such t minimized.
 - Assumption:
 - Training and test data are drawn i.i.d. from the same (unknown) distribution (defined over dom $\mathbf{X} \times \text{dom } \mathbf{y}$).

Key Concepts

Assignment: Projecto Exam Help

How to approximate it?

- https://eduassistpro.github.
 - Test data:
- How to rein mode? ech data edu_assist_pr
 - Minimize the loss function on the training data
 - (Optionally) also considering some regularization measures.
 - To prevent overfitting

Loss Functions

Assignment ball of the contract of the contrac

https://eduassistpro.github.

Commonly Used Loss Functions

Assification: $L(\{\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n\}, \{t_1, t_2, \dots, t_n\})$:

• Classification:

- https://eduassistpro.github.
 - classification problems.
- RATION WeChat edu_assist_property of the state of the s

(Traditional) Machine Learning vs. Deep Learning

Assignment of Project Exam Help

https://eduassistpro.github.

Examples

Assignment Pariet extension of the position of

- https://eduassistpro.github.
 - The final classifier is in fact a simple softma

Feed Forward Network / Multilayer Perceptron (MLP)

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Concepts:

- Neurons
- Input / hidden / output layers
- Activitation function

NN with Multiple Hidden Layers

NN with One Hidden Layer and Biases

Assignment Project Exam Help

 $z_1 | a_1$

https://eduassistpro.g/thub.

 $\mathbf{Add}_{\mathbf{a}_n} \mathbf{WeChat}_{\mathbf{b}_n}$ edu_assist_pr

- $\mathbf{y} = \mathbf{a}_n$ and $\mathbf{x} = \mathbf{a}_1$
- σ_n s are typically non-linear functions, applied element-wise to the input vector.

11/29

Non-linearalities /1

Assignoid (aka. logistic) $\sigma(z)$ in the signoid (aka. logistic) $\sigma(z)$

https://eduassistpro.github.

•
$$\sigma(z) = \sigma(z)(1 - \sigma(z))$$

Logit Addrestic Furcions hat edu_assist_p

Recall that $logit(p) = log \frac{p}{1-p}$. It follows th

$$logit(p) = z \iff logistic(z) = p$$

Non-linearalities /2

Assignment tanh (z) = exp(z) - exp(-z) ect Exam Help

- ullet Squashing $\mathbb R$ to [1,1], and differentiable every where.
- https://eduassistpro.github.vanishing problems. Hence, popular for DL models.
 - There exist many slight variants.

Add (zWe Chat edu_assist_properties)

Illustration of Non-linearalities

Assignment Project Exam Help https://eduassistpro.github. Add WeChat edu_assist_pr

Forward Computation

Assignment Project Exam Help https://eduassistpro.github.

Notated assist_pr layer l-1 to the *j*-th neuron in layer lThings to ponder:

- - Which weights influence $z_1^{[2]}$?
- What's the impact to y if x_1 increases by a tiny amount ϵ ?

Function Approximation

Assign the different Toject Exam Help

• Learning: find $oldsymbol{ heta} = \operatorname{arg\,min}$

$$\ell(\mathbf{y},\mathbf{t})$$
, where $\mathbf{y}=f(\mathbf{x}_i;oldsymbol{ heta})$

https://eduassistpro.github.

Function Minimization

Assignance to minimize a general function.

Typically, NP-hard to minimize a general function.

The global minimum.

https://eduassistpro.github.

Based on this approximation, find the be

• Extended Taylor selection neighborhood, Then, Ju assist pr

$$f(\mathbf{x}_0 + \epsilon) \approx f(\mathbf{x}_0) + f'(\mathbf{x}_0)\epsilon$$

 $f(\mathbf{x}_0 + \epsilon) \approx f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \epsilon \rangle$

Which ϵ can minimize $f(\mathbf{x}_0 + \epsilon)$ subject to $\|\epsilon\| \le$ some small constant?

Illustration of GD

Assignment Project Exam Help

https://eduassistpro.github.

Variants of GD

Assignment descent (GP) roject Exam Help

- https://eduassistpro.github.
- Mini batch SGD:
 - ullet $abla_L(heta)$ is evaluated only on a mini-batch o
 - Down whate size navace ou _assist_pr
- - Think of the gradient as the velocity, and θ as the position. Then this method keeps a portion of the last velocity value together with new gradient.
 - Helps to get over some difficult regions quickly (e.g., avoid too much oscillation).

19/29

Derivative

Assignment Project Exam Help

Rewrite y in a verbose manner:

- https://eduassistpro.github.
- \bullet $z_2 = a \cdot x$
- Then Add WeChat edu_assist_pr

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial z_1} \frac{\partial z_1}{\partial x}$$

$$\frac{\partial z_1}{\partial x} = \frac{\partial z_2}{\partial x} + 3\frac{\partial z_3}{\partial x}$$

Rules

```
Assignment \frac{\partial y}{\partial z_1} and \frac{\partial y}{\partial z_2} of ect Exam Help
```

Note https://eduassistpro.github.

- We require that $\frac{\partial}{\partial x}$ has the same shape as x.
- We can use this as a cue to work out which term ne the solution. We Chat edu_assist_pr

Computational Graph

Assignment Project Exam Help

https://eduassistpro.github.

Baby Network

Assignment Project Exam Help For single x Rd:

- * https://eduassistpro.github.

Shapes:

- y iA de WeChat edu_assist_pr
 - (d = 3 here)
 - W is a matrix. $\mathbb{R}^{d\times 1}$
- b (plot as x_0) is a scalar

Simplifying the Bias Terms

Assignment Project Exam Help • Extend \mathbf{x} to \mathbb{R}^{d+1} and let x_0

- be t
- https://eduassistpro.github.

Shapes:

- y is a row vector, R1×(d+1) hat edu_assist_pr
 - (d = 3 here)
- **W** is a matrix, $\mathbb{R}^{(d+1)\times 1}$

Exercise:

$$\frac{\partial y}{\partial M} =$$

$$\frac{\partial y}{\partial \mathbf{M}} =$$

Add the Non-linear Transformation

Assignment Project Exam Help For simplicity, ignore the

- bi
- .thhttps://eduassistpro.github.
- Let of be the sigmoid funding the chart edu_assist_property.

Shapes:

Exercise:

• $\frac{\partial y}{\partial \mathbf{W}} =$

Add the Loss Function

Assignment Projecte: Exam Help $\sum_{i=\ell(\sigma(\mathbf{w}\mathbf{x}),t)} \mathbf{Proj} \underbrace{\mathbf{Evam}}_{i} \underbrace{\mathbf{Evam}}_{\partial \mathbf{w}} \underbrace{\mathbf{Help}}_{\partial \mathbf{w}}$

. ethttps://eduassistpro.github.

Vectorized Version

Assignment Projecte: Exam Help $\sum_{\mathbf{v}} \int_{\mathbf{v}} \int_{\mathbf{$

. ethttps://eduassistpro.github.

Computational Graph

Assignment Projectse: Exam Help
$$I = I(\sigma(\mathbf{w}\mathbf{x}), \mathbf{t})$$

. thttps://eduassistpro.github.

Figure: NN2

References

Assignment Project Exam Help

https://eduassistpro.github.