Problem Statement: Circle C_1 has a radius of 1 and is centered at the origin. Circle C_2 is tangent to circle C_1 at the point $(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$, entirely contains circle C_1 , and has twice the area of C_1 . We need to write the equation of C_2 in standard form.

Figure 1: Two tangent circles

Solution:

1. Determine the Radius of C_2 :

- The area of C_2 is twice that of C_1 . Since the area of a circle is πr^2 , and the radius of C_1 (r_1) is 1, the radius of C_2 (r_2) can be found using $\pi \times 1^2 \times 2 = \pi r_2^2$.
- Solving this gives $r_2 = \sqrt{2}$.

2. Find the Center of C_2 :

- Since C_2 is tangent to C_1 at $(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$ and contains C_1 , its center must be along the line extending from the origin to the point of tangency, but in the opposite direction.
- The center of C_2 is $\sqrt{2}$ units away from the origin in this direction. Given the symmetry and the tangency point, the center is at $(1 \frac{\sqrt{2}}{2}, 1 \frac{\sqrt{2}}{2})$.

3. Write the Equation of C_2 :

- The standard form of a circle's equation is $(x h)^2 + (y k)^2 = r^2$, where (h, k) is the center and r is the radius.
- Substituting $h = 1 \frac{\sqrt{2}}{2}$, $k = 1 \frac{\sqrt{2}}{2}$, and $r = \sqrt{2}$ gives the equation of C_2 as $(x 1 + \frac{\sqrt{2}}{2})^2 + (y 1 + \frac{\sqrt{2}}{2})^2 = 2$.

Therefore, the equation of circle C_2 in standard form is:

$$(x-1+\frac{\sqrt{2}}{2})^2+(y-1+\frac{\sqrt{2}}{2})^2=2$$

This represents the circle with twice the area of C_1 , tangent to C_1 at $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$, and enclosing C_1 completely.