第3章 机器学习与算法

疑难知识 点的解读

1.本章定位与内容简介

- 3.1 数据科学与机器学习
- 3.2 机器学习的应用步骤
- 3.3 数据划分及准备方法
- 3.4 算法类型及选择方法
- 3.5 模型的评估方法
- 3.6 机器学习面临的挑战.
- 3.7 Python 编程实践
- 3.8 继续学习本章知识

习题

2.本章学习提示及要求

了解

- 机器学习与 数据科学的 区别与联系
- 大数据环境 下机器学习 面临的主要 挑战

理解

- 数据科学中 应用机器学 习的基本步 骤
- 算法的类型 及选择方法

掌握

- 面向机器学 习的数据划 分及准备方 法
- 机器学习中 对模型的评 估方法

熟练掌握

· 基于Python 的机器学习 编程实践

3.数据智能及其实现

4.机器学习中的数据加工

5.有监督学习与无监督学习

6.机器学习算法的类型

无监督

有监督

回归 聚类与维度下降 线性回归 连续型 SVD 多项式回归 PCA 决策数 K-Means 随机森林 分类 关联分析 Apriori **KNN** 分类型 逻辑回归 FP-Growth 朴素贝叶斯 隐马尔可夫模型 SVM

7.机器学习中的交叉校验

8.机器学习中的过拟合问题

损失函数的优化方法: 'newton-cg', 'lbfgs', 'liblinear', 'sag

9.机器学习面临的主要挑战

过拟合 (Overfiting)

• 训练集→测试集

维度灾难(Curse of Dimensionality)

• 低维度→高维度

特征工程(Feature Engineering)

• 训练集的特征+领域知识

算法的可扩展性(Scalability)

• 训练集的规模、目标函数的复杂度、算法运行效率之间的平衡

模型集成

Bagging Stacking

10.如何继续学习本章知识

统计学与机器学习 的区别与联系

数据科学中常用的 统计学算法(P78)

表 3-2

统计学与机器学习的术语对照表

	机器学习	统计学
1	训练 (Train)	拟合 (Fit)
2	算法 (Algorithm)	模型 (Model)
3	分类器(Classifier)	假设(Hypothesis)
4	无监督学习(Unsupervised Learning)	聚类 (Clustering)
5	有监督学习(Supervised Learning)	分类(Classification)
6	网络(Network)/图(Graph)	模型 (Model)
7	权重(Weights)	参数(Parameters)
8	变量(Variable)	特征(Feature)

小结

