

Find values of the intrinsic carrier concentration n_i for silicon at -55°C, 0°C, 20°C, 75°C, and 125°C. At each temperature, what fraction of the atoms is ionized? Recall that a Silicon crystal has approximately 5 x 10^{22} atoms/cm³.

$$n_i = BT^{3/2}e^{-E_g/2kT}$$

°C	Kelvin	n, ratio	
-55	218	2.68E+06	5.37E-17
0	273	1.52E+09	3.05E-14
20	293	8.60E+09	1.72E-13
75	348	3.70E+11	7.40E-12
125	398	4.72E+12	9.45E-11
27	300	1.49E+10	2.99E-13

For a p-type silicon in which the dopant concentration $N_A = 5 \times 10^{18} / \text{cm}^3$, find the hole and electron concentrations at T = 300 K.

$$n_i = BT^{3/2}e^{-E_g/2kT} = 1.5 \times 10^{10} \text{ 1/cm}^3$$
 At 300K

$$p_p \approx N_A = 5 \text{ x } 10^{18} / \text{cm}^3$$

$$n_p \approx n_i^2 / N_A = (1.5 \text{ x } 10^{10})^2 / (5 \text{ x } 10^{18}) = 45/\text{cm}^3$$

In a phosphorus-doped silicon layer with impurity concentration of 10¹⁷/cm³, find the hole and electron concentrations at 27°C and 125°C.

$$n_i = BT^{3/2}e^{-E_g/2kT} = 1.5 \times 10^{10} \text{ 1/cm}^3$$
 At 300K (27C)
 $n_n \approx N_D = 10^{17}/\text{cm}^3$
 $p_n \approx n_i^2/N_D = (1.5 \text{x} 10^{10})^2/10^{17} = 2.25 \text{x} 10^3/\text{cm}^3$
 $n_i = BT^{3/2}e^{-E_g/2kT} = 4.72 \times 10^{12} \text{ 1/cm}^3$ At 398K (125C)
 $n_n \approx N_D = 10^{17}/\text{cm}^3$
 $p_n \approx n_i^2/N_D = (4.72 \text{x} 10^{12})^2/10^{17} = 2.23 \text{x} 10^8/\text{cm}^3$

Find the current that flows in a silicon bar of 10- μ m length having a 5- μ m x 4- μ m cross section and having free electron and hole densities of $10^4/\text{cm}^3$ and $10^{16}/\text{cm}^3$, respectively, when 1 V is applied end-to-end. Use $\mu_n = 1200 \text{ cm}^2/\text{V} \cdot \text{s}$ and $\mu_p = 500 \text{ cm}^2/\text{V} \cdot \text{s}$.

$$I = I_p + I_n = qA(p\mu_p + n\mu_n)E$$

$$\mu_n := 1200 \frac{\text{cm}^2}{\text{V} \cdot \text{s}} \qquad \mu_p := 500 \frac{\text{cm}^2}{\text{V} \cdot \text{s}} \qquad n_p := \frac{10^4}{\text{cm}^3} \qquad p_p := \frac{10^{16}}{\text{cm}^3}$$

$$q = 1.602 \times 10^{-19} C$$
 $E_{field} := \frac{1 \text{V}}{10 \mu \text{m}}$

$$Area := 5\mu \text{m} \cdot 4\mu \text{m} = 2 \times 10^{-7} \cdot \text{cm}^2$$

$$I_{3.8} := q \cdot Area \cdot (n_p \cdot \mu_n + p_p \cdot \mu_p) \cdot E_{field} = 160.2 \cdot \mu A$$

Both the carrier mobility and diffusivity decrease as the doping concentration of silicon is increased. The table below provides a few data points for μ_n and μ_p versus doping concentration. Use the Einstein relationship to obtain the corresponding values for D_n and D_p .

$$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = V_T$$
 Einstein Relationship

At room temperature (\sim 300K) V_T = 25.9 mV

doping concentration (/cm3)		μ _p (cm²/Vs)	D_n (cm ² /s)	D_p (cm ² /s)
1.50E+10	1350	480	34.965	12.432
1.00E+16	1200	400	31.08	10.36
1.00E+17	750	260	19.425	6.734
1.00E+18	380	160	9.842	4.144