FIRST NAME: LAST NAME: ID NUMBER:

- 1. The goal of supervised learning is:
 - (a) to learn useful features
 - (b) to learn a model with low generalization error.
 - (c) to learn a model with low training error.
 - (d) to learn a neural network
 - (e) none of the above
- 2. If you flip 10 times a coin that has probability 0.25 to give tail, the probability that you obtain 10 heads is:
 - (a) 0.25×10
 - (b) $(1-0.25) \times 10$
 - (c) $(1-0.25)^{10}$
 - (d) $(0.25)^{10}$
 - (e) none of the above
- 3. Let $\mathcal{X}, \mathcal{Y}, \mathcal{D}, \ell(\mathbf{x}, y), \mathcal{H}, h, S$ defined as usual during the course. The definition of training error $L_S(h)$ is:
 - (a) $L_S(h) = \mathbf{E}_{\mathbf{x}, y \sim \mathcal{S}}[(h(\mathbf{x}) y)^2]$
 - (b) $L_S(h) = \frac{1}{|S|} \sum_{i=1}^{|S|} (h(\mathbf{x}_i) y_i)^2$
 - (c) $L_S(h) = \mathbf{E}_{\mathbf{x}, y \sim \mathcal{S}}[\ell(h, (\mathbf{x}, y))]$
 - (d) $L_S(h) = \frac{1}{|S|} \sum_{i=1}^{|S|} \ell(h, (\mathbf{x}_i, y_i))$ (e) none of the above
- 4. Let $\mathcal{X}, \mathcal{Y}, \mathcal{D}, \ell(\mathbf{x}, y), \mathcal{H}, h, S$ defined as usual during the course. The definition of generalization error $L_{\mathcal{D}}(h)$ is:
 - (a) $L_{\mathcal{D}}(h) = \mathbf{E}_{\mathbf{x}, y \sim \mathcal{D}}[(h(\mathbf{x}) y)^2]$
 - (b) $L_{\mathcal{D}}(h) = \frac{1}{|\mathcal{D}|} \sum_{i=1}^{|\mathcal{D}|} (h(\mathbf{x}_i) y_i)^2$
 - (c) $L_{\mathcal{D}}(h) = \mathbf{E}_{\mathbf{x}, y \sim \mathcal{D}}[\ell(h, (\mathbf{x}, y))]$
 - (d) $L_{\mathcal{D}}(h) = \frac{1}{|\mathcal{D}|} \sum_{i=1}^{|\mathcal{D}|} \ell(h, (\mathbf{x}_i, y_i))$
 - (e) none of the above
- 5. To use the ERM approach means that we learn a model by:
 - (a) finding the hypothesis with smallest training error
 - (b) finding the hypothesis with smallest generalization error
 - (c) finding the hypothesis with smallest complexity
 - (d) finding the hypothesis that minimizes the expected regularization
 - (e) none of the above
- 6. The difference between classification and regression is given by:
 - (a) the type of models you can use (e.g., SVM vs linear models)
 - (b) the loss function ℓ you can use
 - (c) the approach used to find the model
 - (d) the label set \mathcal{Y}
 - (e) none of the above
- 7. What does "overfitting" refer to?
 - (a) Learning a model that has perfect accuracy on all datasets
 - (b) Learning a model that is too simple
 - (c) Learning a model that performs well on training data but poorly on new data
 - (d) Failing to converge during training
 - (e) none of the above

- 8. The realizability assumption is defined as:
 - (a) there exists $h^* \in \mathcal{H}$ with $L_S(h) = 0$
 - (b) there exists $h^* \in \mathcal{H}$ with $L_{\mathcal{D}}(h) = 0$
 - (c) ERM finds $h^* \in \mathcal{H}$ such that $L_S(h) = 0$
 - (d) ERM finds $h^* \in \mathcal{H}$ such that $L_{\mathcal{D}}(h) = 0$
 - (e) none of the above
- 9. For an hypothesis class \mathcal{H} , being PAC learnable with respect to a loss function ℓ , means:
 - (a) that for all \mathcal{D} we can find the best h in \mathcal{H} , with enough data
 - (b) that for some \mathcal{D} we can find the best h in \mathcal{H} , independently of the amount of data
 - (c) that for all \mathcal{D} we can find the best h in \mathcal{H} , independently of the amount of data
 - (d) that for some \mathcal{D} we can find the best h in \mathcal{H} , with enough data
 - (e) none of the above
- 10. What is the main idea behind the concept of bias-complexity trade-off?
 - (a) Balancing the trade-off between model simplicity and interpretability
 - (b) Balancing the trade-off between accuracy and training time
 - (c) Balancing the trade-off between estimation error and approximation error
 - (d) Balancing the trade-off between feature selection and feature engineering
 - (e) none of the above
- 11. What is the purpose of regularization?
 - (a) To reduce model complexity so to prevent overfitting
 - (b) To increase model complexity so to prevent overfitting
 - (c) To improve training speed
 - (d) To eliminate bias in the model
 - (e) none of the above
- 12. What is the purpose of validation?
 - (a) To train the model on multiple datasets
 - (b) To assess the model's performance on the training set
 - (c) To compare different models on unseen data
 - (d) To obtain a good estimate of the generalization error
 - (e) none of the above
- 13. What is a main difference between SVMs and linear models?
 - (a) there is no difference
 - (b) SVM can be used to learn models that are polynomial in the features
 - (c) SVMs can be used only for linearly separable data
 - (d) SVMs consider the margin of the model, linear models do not
 - (e) none of the above
- 14. The VC dimension is a measure of:
 - (a) the dimension of each point in a dataset
 - (b) the complexity of an hypothesis class
 - (c) the number of features in a model
 - (d) the generalizability of an hypothesis
 - (e) none of the above
- 15. What is the primary goal of clustering?
 - (a) predicting a continuous target variable
 - (b) assigning labels to data points
 - (c) identifying patterns in unlabeled data
 - (d) classifying data into predefined categories
 - (e) none of the above