Graph Theory

Korrigsbery Bridge Pooblem
Whether we can leave horne, cross every bridge way wathy one of return have.

Graph is triple consisting of vertex set, edge set, relation blue edge 4 poiso of vertex and parallel edges

over a sold loop (degree += 32)

edges

over a solated vertex (degree = 0)

vertex (degree = 1)

pendant edge

degree of vertex: Nov. of edges from that vertex

Sum of degrees of all vertex in a graph is even if twice the nov. of edges

Graph Type = 1) Simple Graph [Graph with no multiple edges or self loop)

2) Multiple (Mult) Graph Caraph with multiple edges)

3) Pseudo Graph [Graph with self loop and multiple edges]

in-degree = $V_1 = 0$, $V_2 = 3$, $V_3 = 1$, $V_4 = 1$, $V_5 = 1$, out-degree = $V_1 = 2$, V_5 .

Regulas Graph = Every vertex has same degree 2-Regulas graph =

3-regular =

Complete graph = Every voortex is connected to every other vertex

Id-II- Every complete graph is a regular graph

VX

Repeate	Repeate Edge	open	Ussed	
4	4	Ч	_	walk
Ч	Ч	_	4	Closed Walk
Ч	N	Ч	-	Trial
Y	N		Y	Circuit

H Closure law +a,bEG, arbEG

(1) Associative law

ta,b,c EG a(b*c) = (a*b) * c

(maplete Grouph: Every vertices are connected to each other.

Representation = K, Kz

Kn n is not of verties

Complements of graph

It consists of all the vertices but those edges that are not

present in graph

in: 2 5 5 5 6 5

Note: 646 should be form complete graph.

₹0,0₹ \$0, P} \$P, q} \$9, n\$

papergrid Date: / / ~ \ (\lambda-1) (\lambda-2)^2 (\lambda+3) 1 (2-1)2(2-2)2 $\lambda(\lambda-1)(\lambda-2)^3$ h: 3 9 - 3 1.4 g:3 k:4 3:3 × : 3 y: 2 Enter circuit = If a circuit traverses every edge of graph exactly tamilton cycle = of A cycle that contains every vertex in V. Hamilton path = Path & in graph that contains each vertex

Trees

$$|V_2| = 2|V_1| = 2 \times 18 = 36$$

(8) (a)
$$2|E| = 7 + 4(2) + 1(3) + 2(4) + 1(4)$$

$$2(2+7) = x+24$$

$$\frac{2}{b}$$

papergrid

	Date: / /
-	spanning tree = It should haven cycle heeds to make trees. Non-isomosphic = Different shapes with same vertices & edge
-	Non-isomosphic = Different shapes with same vertices & edge
1	Tree = Acyclic
	m-n+1 = 151-1V1+1 tare edges to removed to make spanning
	tree.
	$id(x) = 0 \qquad 0 - xoot node$ $id(sig) = 1 \qquad 1 - other nodes$
	in-degree = parent count
_	od () = out-degree = noj. of childrens
_	If cd(v) ≤ m then its m-asy tree If oah ≤ 2. then its binasy tree If od(v) = 0 os m then complete m-asy tree If od(v) = 0 then its complete binasy tree
	Decomposition theorem for spanning tree
_	