Consider probabilities $\alpha_1, \ldots, \alpha_d$. Note that we'll often think of μ the discrete distribution that places weight one on each α_i . (This is kind of a different normalization from how it's defined in HJW.)

Our goal will be to use weak Schur sampling to estimate

$$\int x^k \mu(dx) = \sum_{i=1}^d \alpha_i^k,$$

(where bounds on error come from [AISW19]). Subsequently, we use these estimates to perform the "local moment matching" of [HJW18] to hopefully get a better sample complexity.

1 Classical component

Trying to interpret the analysis in [HJW18].

Theorem 1. Fix some $K \in \mathbb{N}$. Suppose that, with probability $\geq 1 - \delta$, we have an estimate \hat{m}_k for all $k \in [K]$ such that

$$\left| \hat{m}_k - \int x^k \mu(dx) \right| < V_k.$$

Then we can find an estimate $\hat{\alpha}$ such that

$$\mathrm{E}[\|\alpha^{<} - \hat{\alpha}^{<}\|_{1}] \lesssim \frac{1}{K} \sqrt{Bd(1+V_{1})} + \delta + 2^{9K/2}B \sum B^{-k}V_{k}$$

[HJW18] takes $K = c_2 \ln(n), B = c_1 \ln(n)/n$, and $V_k = \sqrt{d \ln(n)} (\frac{c_3}{c_1} B)^k = \sqrt{d \ln(n)} (\frac{c_3 \ln n}{n})^k (c_3 > c_1)$, achieving:

$$\begin{split} & \mathrm{E}[\|\alpha^{<} - \hat{\alpha}^{<}\|_{1}] \\ & \lesssim \frac{1}{K} \sqrt{Bd(1+V_{1})} + \delta + 2^{9K/2}B \sum_{n} B^{-k}V_{k} \\ & = \frac{1}{c_{2}\ln(n)} \sqrt{\frac{c_{1}\ln(n)d}{n}} (1 + \frac{\sqrt{d}\ln^{1.5}(n)c_{3}}{n}) + \delta + c_{1}n^{\frac{9}{2}c_{2}-1}\ln(n) \sum_{k=1}^{c_{2}\ln(n)} \sqrt{d\ln(n)} \Big(\frac{c_{3}}{c_{1}}\Big)^{k} \\ & \lesssim \sqrt{\frac{d}{n\ln(n)}} (1 + \frac{\sqrt{d}\ln^{1.5}(n)c_{3}}{n}) + \delta + n^{\frac{9}{2}c_{2}-1}\ln(n)\sqrt{d\ln(n)}n^{c_{2}\ln(c_{3}/c_{1})} \\ & \lesssim \sqrt{\frac{d}{n\ln(n)}} + \delta + n^{c_{4}-1}\sqrt{d} \end{split}$$

Where we simply choose parameters to be sufficiently small, and c_4 can be as small as needed. Note that V_k can be quite large: the bound of $\sqrt{d \ln(n)} \cdot (O(B))^k$ can be replaced by any $d^{1-\varepsilon}(O(B))^k$ to get the $\frac{d}{\ln(d)}$ dependence we desire. (I think the whole argument still goes through even if variance is larger, in fact. It's not an artifact of having this B assumption.)

Proof. Recall the derivation done in [HJW18]: consider our given probability vector $\alpha = (\alpha_1, \dots, \alpha_d)$, along with an estimate probability vector $\beta = (\beta_1, \dots, \beta_d)$ that is formed by considering a measure ν and discretizing it as in [HJW18, Definition 8]. Then

$$\begin{split} \mathrm{E}[\|\alpha^<-\beta^<\|_1] &= \mathrm{E}[W(\mu,\mu_\beta)] & \text{by [HJW18, Lemma 7]} \\ &= W(\mu,\nu) & \text{by [HJW18, Lemma 9]} \\ &= \sup_{f:\|f\|_{\mathrm{Lip}}\leq 1} \int f(x) (\mu(dx)-\nu(dx)). & \text{by [HJW18, Lemma 10]} \end{split}$$

So, the goal is to find some measure ν (not necessarily discrete) that cannot be distinguished from the target distribution μ via 1-Lipschitz functions.

Let $\hat{\mu}$ be any measure satisfying $\hat{\mu}([0,1]) = \mu([0,1]) = n$ and

$$\left| \hat{m}_k - \int x^k \hat{\mu}(dx) \right| < V_k$$

for all $k \in [K]$. From the proof assumption, such a $\hat{\mu}$ exists with probability $\geq 1 - \delta$, and by triangle inequality this $\hat{\mu}$ satisfies

$$\left| \int x^k \hat{\mu}(dx) - \int x^k \mu(dx) \right| < 2V_k. \tag{1}$$

This will be our proposed estimate measure. So, consider some $f: \mathbb{R} \to \mathbb{R}$ that is 1-Lipschitz satisfying f(0) = 0 (without loss of generality). We will take a polynomial approximation to f. Fix a polynomial $P(x) = \sum_{k=0}^{K} a_k x^k$. Then

$$\begin{split} & \left| \int f(x) (\mu(dx) - \hat{\mu}(dx)) \right| \\ & \leq \left| \int (f(x) - P(x)) (\mu(dx) - \hat{\mu}(dx)) \right| + \left| \int P(x) (\mu(dx) - \hat{\mu}(dx)) \right| \\ & \leq \int |f(x) - P(x)| (\mu(dx) + \hat{\mu}(dx)) + \sum_{k=1}^{K} |a_k| \cdot 2V_k \\ & \leq \int |f(x) - P(x)| (\mu(dx) + \hat{\mu}(dx)) + 2 \sum_{k=1}^{K} |a_k| V_k \end{split}$$

We take $P := \arg\min_{Q} \max_{x} |Q(x) - f(x)|$. Using Jackson's inequality [HJW18, Lemma 22], for a constant C,

$$\begin{split} &\int |f(x) - P(x)| (\mu(dx) - \hat{\mu}(dx)) \\ &\leq \frac{C\sqrt{B}}{K} \int \sqrt{x} (\mu(dx) + \hat{\mu}(dx)). \end{split}$$

Continuing with bounding the first term:

$$\leq \frac{C\sqrt{B}}{K} \sqrt{\left(\int \sqrt{x^2} (\mu(dx) + \hat{\mu}(dx))\right) \left(\int 1^2 (\mu(dx) + \hat{\mu}(dx))\right)}$$
 by Cauchy-Schwarz
$$= \frac{C\sqrt{2Bd}}{K} \sqrt{\int x (\mu(dx) + \hat{\mu}(dx))}$$

$$= \frac{C\sqrt{2Bd}}{K} \sqrt{\int x (2\mu(dx)) + \int x (\hat{\mu}(dx) - \mu(dx))}$$
 by Eq. (1)
$$\lesssim \frac{1}{K} \sqrt{Bd(1+V_1)}$$

To upper bound the second part, we need upper bounds on the coefficients.

$$|P(x)| \le |P(x) - f(x)| + |f(x)| \le \frac{CB}{K} + B$$

so, using coefficient bounds [HJW18, Lemma 27], for all $k \in [K]$

$$|a_k| \le 2^{7K/2+1} B \left(1 + \frac{C}{K}\right) \left(\frac{B}{2}\right)^{-k}$$

 $\le 2^{9K/2+1} \left(1 + \frac{C}{K}\right) B^{1-k}$

and

$$\begin{split} 2\sum_{k=1}^{K} |a_k| V_k &\leq 2\sum_{k=1}^{K} 2^{9K/2+1} \Big(1 + \frac{C}{K}\Big) B^{1-k} V_k \\ &\leq (1+C) 2^{9K/2+2} \sum_{k=1}^{K} B^{1-k} V_k \lesssim 2^{9K/2} \sum_{k=1}^{K} B^{1-k} V_k \end{split}$$

Putting everything together, we have

$$\begin{split} & \operatorname{E} \| \alpha^{<} - \beta^{<} \|_{1} \\ & = \operatorname{E} \sup_{f: \|f\|_{\operatorname{Lip}} \leq 1} \int_{\mathbb{R}} f(x) (\mu(dx) - \hat{\mu}(dx)) \\ & \lesssim \left(\frac{1}{K} \sqrt{Bd(1+V_{1})} + 2^{9K/2} \sum B^{1-k} V_{k} \right) + (\max \|P^{<} - \hat{P}^{<}\|_{1}) (\Pr[\text{alg fails}]) \\ & \lesssim \frac{1}{K} \sqrt{Bd(1+V_{1})} + 2^{9K/2} \sum B^{1-k} V_{k} + \delta \end{split}$$

2 Quantum component

Lemma 2 ([AISW19, Lemma 9]). There is a constant C_k depending only on k such that

$$E\left[\frac{1}{n^{\underline{k}}}p_{(k)}^{\#}(\boldsymbol{\lambda})\right] = \int x^{k}\mu(dx) \tag{2}$$

$$\operatorname{Var}\left[\frac{1}{n^{\underline{k}}}p_{(k)}^{\#}(\boldsymbol{\lambda})\right] = C_{k}\left(n^{-k} + n^{-1} \int x^{2k-1}\mu(dx)\right) \tag{3}$$

Here, $p_{(k)}^{\#}(\lambda)$ is the estimator arising from what I think is the naive thing, which is writing the power sum (which they call $M_k(\alpha)$) in the Schur polynomial basis $\{s_{\lambda}(\alpha)\}$ and using the coefficients to renormalize the probabilities such that the estimator is unbiased. $n^{\underline{k}}$ is the falling power $(n)(n-1)\cdots(n-k+1)$.

3 Combining the two

For simplicity, we'll take the case in [HJW18] where $B = O(\ln^2 d/d)$.

$$E[\|\alpha^{<} - \hat{\alpha}^{<}\|_{1}] \lesssim \frac{1}{K} \sqrt{Bd(1+V_{1})} + \delta + 2^{9K/2}B \sum B^{-k}V_{k}$$
$$\lesssim \frac{1}{K} \ln(d) \sqrt{1+V_{1}} + \delta + \frac{2^{9K/2}}{d} (\text{poly log}(d)) \sum V_{k} d^{k}$$

We'll do a very rough sanity check by judging V_k to be like square root of variance and taking $C_k = 1$ (though this will make a difference in the log factors), making this

$$\lesssim \frac{\ln d}{K} + \delta + \frac{2^{9K/2}}{d} \operatorname{poly} \log d \sum d^k \sqrt{n^{-k} + n^{-1} d^{3-2k}}$$

Now, we take $K = O(\ln d)$ for sufficiently small constant.

$$\lesssim 1 + \delta + d^{\varepsilon - 1} \operatorname{poly} \log d \sum_{k} d^k \sqrt{n^{-k} + n^{-1} d^{3 - 2k}}$$

$$\lesssim 1 + \delta + d^{\hat{\varepsilon} - 1} \sum_{k} d^k \sqrt{n^{-k} + n^{-1} d^{3 - 2k}}$$

Where we bound V_k^2 as follows:

$$n^{-k} + n^{-1} \int x^{2k-1} \mu(dx) \le n^{-k} + n^{-1} dB^{2k-2} \lesssim n^{-k} + n^{-1} d^{3-2k}$$

The final quantity should be O(1) when we take $n = O(d^2/\operatorname{poly}\log(d))$, which is the desired dependence (presumably one can add dependence on ε later).

References

- [AISW19] Jayadev Acharya, Ibrahim Issa, Nirmal V. Shende, and Aaron B. Wagner. Measuring quantum entropy. In 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, July 2019.
- [HJW18] Yanjun Han, Jiantao Jiao, and Tsachy Weissman. Local moment matching: A unified methodology for symmetric functional estimation and distribution estimation under wasserstein distance. volume 75 of *Proceedings of Machine Learning Research*, pages 3189–3221. PMLR, 06–09 Jul 2018.