Gruppi algebre di Lie 3.1-3.6 Corso di Laurea in Matematica A.A. 2020-2021 Docente: Andrea Loi

- 1. Dimostrare che il prodotto diretto di due gruppi di Lie é un gruppo di Lie.
- 2. Sia $\pi: \mathbb{R}^2 \to S^1 \times S^1$, $(t,s) \mapsto (e^{2\pi it}, e^{2\pi is})$, $L = \{(t,\alpha t) \mid \alpha \in \mathbb{R} \setminus \mathbb{Q}\}$ e $f = \pi_{|L}: L \to S^1 \times S^1$. Sia τ_f la topologia indotta da f su $H = \pi(L)$ e τ_s quella indotta dall'inclusione $H \subset S^1 \times S^1$. Dimostrare che $\tau_s \subset \tau_f$.
- 3. Sia $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Dimostrare che $e^X = \begin{pmatrix} \cosh 1 & \sinh 1 \\ \sinh 1 & \cosh 1 \end{pmatrix}$.
- 4. Trovare due matrici A e B tali che $e^{A+B} \neq e^A e^B$.
- 5. Dimostrare che il gruppo unitario U(n) é compatto per ogni $n \ge 1$.
- 6. Sia G un gruppi di Lie e sia G_0 la componente connessa di G che contiene e (elemento neutro di G). Se μ e i denotano la moltiplicazione e l'inversione in G, provare che
 - 1. $\mu(\lbrace x \rbrace \times G_0) \subset G_0, \forall x \in G;$
 - 2. $i(G_0) \subset G_0$;
 - 3. G_0 é un sottoinsieme aperto di G
 - 4, G_0 é un sottogruppo di Lie di G.
- 7. Sia H un sottogruppo (algebrico) di un gruppo di Lie G. Supponiamo che G sia connesso e H aperto in G. Dimostrare che H=G.
- 8. Sia G un gruppo di Lie e $\mu: G \times G \to G$ la moltiplicazione. Dimostrare che

$$\mu_{*(a,b)}(X_a, Y_b) = (R_b)_{*a}(X_a) + (L_a)_{*b}(Y_b), \ \forall (a,b) \in G \times G, \ \forall X_a \in T_aG, \ \forall Y_b \in T_bG,$$

dove L_a (risp. R_b) denota la traslazione a sinistra (risp. a destra) associata ad a (risp. b).

9. Sia G un gruppo di Lie con inversione $i: G \to G, a \mapsto i(a) = a^{-1}$. Dimostrare che

$$I_{*a}(Y_a) = -(R_{a^{-1}})_{*e}(L_{a^{-1}})_{*a}(Y_a), \ \forall a \in G, \ \forall Y_a \in T_aG.$$

10. Verificare che il commutatore tra matrici [A, B] = AB - BA definisce un'algebra di Lie sullo spazio tangente all'identità dei gruppi O(n), SO(n), U(n), SU(n), $SL_n(\mathbb{R})$ e $SL_n(\mathbb{C})$.

- 11. Dimostrare che \mathbb{R}^3 con il prodotto vettoriale è un'algebra di Lie isomorfa all'algebra di Lie del gruppo ortogonale O(3).
- 12. Dimosatrare che SO(2) è diffeomorfo a S^1 e SU(2) è diffeomorfo a S^3 .
- 13. Dimostrare le algebre di Lie di SU(2) e SO(3) sono isomorfe.
- 14. Verificare che l'esponenziale di una matrice definisce un'applicazione $e: T_{I_n}G \to G, A \mapsto e^A$ per $G = GL_n(\mathbb{R}), GL_n(\mathbb{C}), O(n), SO(n), U(n), SU(n), SL_n(\mathbb{R}), SL_n(\mathbb{C}).$
- 15. Sia $G = G_1 \times \cdots \times G_s$ il prodotto diretto di gruppi di Lie. Dimostrare che l'algebra di Lie di G é isomorfa alla somma diretta delle algebre di Lie dei G_i .
- 16. Siano H e K due sottogruppi di Lie di un gruppo di Lie G. Dimostare che l'algebra di Lie di $H \cap K$ é isomorfa all'intersezione delle algebre di Lie di H e di K.
- 17. Dimostrare che ogni gruppo di Lie é parallelizzabile.