Intraday FX Trading: An Evolutionary Reinforcement Learning Approach

	ence Paper in Lecture Notes in Computer Science · November 2002	
CITATION:	S	READS 2,036
2 autho	rs, including:	
	Michael A. H. Dempster University of Cambridge 335 PUBLICATIONS SEE PROFILE	
Some o	f the authors of this publication are also working on these related projects:	
Project	Optimization and Control View project	
Project	Scheduling, Distribution and Logistics View project	

Civitas Foundation Finance Seminar Princeton University, 20 November 2002

Intraday FX Trading: An Evolutionary Reinforcement Learning Approach

M A H Dempster

Centre for Financial Research
Judge Institute of Management
University of Cambridge
mahd2@cam.ac.uk – http://www-cfr.jims.cam.ac.uk

Co-worker: Y S Romahi

Outline

- 1. Motivation
- 2. Problem Definition
- 3. Computational learning techniques
 - Reinforcement Learning
 - Evolutionary Learning
 - Evolutionary Reinforcement Learning

4. Results

- Performance of the three systems
- What are the implications of different frequency trading?
- Should the indicators fed into the system be pre-optimized?
- Does allowing a neutral state improve or hinder performance?

5. Conclusions

Motivation

- Increasing evidence that markets are predictable
 - Lo & McKinley state that rather than being a symptom of inefficiency, predictability in the financial markets is the "oil that lubricates the gears of capitalism"
- Most technical traders are active in the FX markets and at high frequency
 - Daily vs high frequency [Neeley (1999)]
 - Equities vs FX [Taylor & Allen (1992)]
 - Asset allocation vs trading [Dempster & Jones (2001)]

Previous Work

- Previous work examining popular indicators does not find evidence of profit opportunities, e.g. [Dempster & Jones (1999)]
- [Neeley, Weller and Dittmar (1997)] found out-of-sample annual excess returns in the 1-7% range in currency markets against the dollar during 1981-1995
- [Dempster et al. (2001)] found significant out-of-sample annual returns up to about 2bp slippage using various computational learning methods

Intelligent Trading Systems

- Trading System
 - Trading systems generate buy rules, sell rules and exit rules
 - Rules are defined as a mapping between states and actions
 - States are defined as a combination of **indicators** (which can be technical/fundamental/composite)
- Key Features of an Intelligent Trading System
 - Learning & Discovery
 - Adaptation
 - Explanation

Adaptive Trading

- Strategies are **combinations of technical indicators** drawn from the worlds of technical analysis
- Best performing strategies are selected using computational learning techniques
- System can be overlaid by a simple cash/risk management filter
- Adaptation is achieved in several ways:
 - Online Learning
 - Re-mining at set intervals
 - Profitability dependent time intervals
 - (e.g. if portfolio loses money for *n* consecutive periods)

Data

- 4 years of high frequency (1 minute) midpoint data from Bank of America
- Currencies: GBPUSD, USDCHF and USDJPY
- Frequencies: 15 minute, 1 hour, 2 hour, 4 hour and 8 hour
- Dates: January 1995 to December 1998 (1995 used for first in-sample learning period)

The Need For High Frequency Data

- To simulate the actions of traders
 - 'desk traders' watch the markets 'tick by tick' and apply the concepts of technical analysis at frequencies much higher than 'daily'
- Trade entry and exit strategies
 - Even technical traders who look for patterns in daily data alone often use tick data for confirmatory entry signals
 - The vast majority of traders place stops in the markets alongside their trades to manage downside risk and such stops are activated at 'tick' level
- In general realism

Objective Function

- Simulate simple trader in single currency pair
 - Trades by drawing on a credit line, converting, holding and then converting back and accumulating any profit/shortfall in domestic currency (dollars)
 - Can borrow \$1 (or equivalent) in either currency
 - Cumulated profit or loss at end of sample period is objective value
- Transaction costs (due to bid-ask spread and slippage) charged at 0, 1, 2 and 4 basis points of amount exchanged

More Formally...

• With transaction cost c exchange rates (expressed per unit of home currency) of F_t at trade entry and F_t , at trade exit drawing on a credit line of C units of home currency and taking a long position in the foreign currency will yield a return per unit of home currency of

$$\left[\frac{F_t}{F_{t'}}(1-c)^2-1\right]$$

• If a short position is taken in the foreign currency then C/F_t units of foreign currency are drawn from the credit line and the return per unit of home currency is:

$$\left[(1-c) - \frac{F_{t'}}{F_t} \frac{1}{(1-c)} \right]$$

Objective Function

- Indicator signals over time **s** a *stochastic process* with state space **S** driven by the exchange rate process **F**
- Solve the *stochastic optimization problem* defined by the maximisation of expected return over the trading horizon net of transaction costs

$$\mathbb{E}\sum_{i=1}^{\mathbf{N}_T} r_i\left(F_{t_i}, F_{t_i}\right)$$

- The statistics of the processes \mathbf{F} and \mathbf{s} are entirely unknown
- Computational learning methods attempt to find approximate solutions by discovering a (feedback) *trading strategy* ϕ : $S \times \{l,s\} \rightarrow \{l,s\}$ that maps the current market state s_t and position to a new position

Technical Indicators

- A number of popular indicators used as inputs:
 - Momentum Oscillator
 - Price Channel Breakout
 - Moving Average Crossover
 - Relative Strength Index
 - Adaptive Moving Average
 - Moving Average Convergence/Divergence
 - Stochastics
 - Commodity Channel Index

Problem Definition

- Technical indicators together define market state
- System attempts to learn what trading action to take in each state. Two systems are examined;
 - 2-way system: Always in the market (long/short positions)
 - 3-way system: Can take neutral positions (out of the market)
- Train on 12-month moving window, use 1 month out-of-sample

Genetic Algorithm

- GA evolves trading rules
- Rules are represented as binary trees
 - Terminals are indicators (MO, PCB, MAX, etc.)
 - Non-terminals are Boolean functions (AND, OR, XOR)
 - Together represent simple functions (e.g. IF MO AND PCB THEN LONG)
- Rule is executed at each time step to get position at next time step
- Best in-sample performing rule (on raw return) is used out-of-sample

Reinforcement Learning

- Attempts to discover which trading action to take in each market state (as defined by indicators) by receiving rewards; aim is to maximise total reward
- Reward function is increase in wealth
- Makes multiple passes through in-sample period, refining its actions each time
- Uses Watkins' Q-Learning algorithm so rewards 'trickle down' to actions that caused them

Reinforcement Learning

• Learning while interacting with the environment

• RL methods estimate value functions (defined in terms of total reward) based upon previously learned estimates

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t - a_t) \right]$$

Evolutionary RL

- RL was prone to overfitting when given too many inputs [Dempster et al. (2001)]
- Can we use a Genetic Algorithm to constrain the inputs to RL?

Evolutionary RL

- Genetic Algorithm bitstring defines the indicators that are fed into the RL
- The fitness function is defined as maximum return or some measure of risk adjusted return

Reinforcement vs Evolutionary Learning

Results: Comparison of Methods (Two State)

Results: Comparison of Methods (Two State)

Results: Comparison of Methods

- Returns are broadly similar at 0bp & 1bp slippage
- At higher slippage values GA is able to trade profitably at up to 4bp whereas RL is unable to trade profitably beyond 1bp
- RL suffers from overfitting the in-sample data
- ERL system overcomes this issue and obtains the highest returns at 4bp in 2 of the 3 currencies studied

Constraining Trading Frequency

Constraining Trading Frequency

RL - Average Monthly Trading Frequency							
Slippage	0 bp	1 bp	2 bp	4 bp	8 bp		
GBPUSD – 15 minute	324.52	135.14	112.44	0.36	0		
GBPUSD – 1 hour	71.61	37.78	29.53	4.64	0.39		
GBPUSD – 2 hour	38.61	22.33	8.97	3.17	2.58		
GBPUSD – 4 hour	16.31	11.92	10.56	7.22	4.61		
GBPUSD – 8 hour	11.19	8.17	6.92	6.14	1.89		

RL – Average Monthly Trading Frequency							
Slippage	0 bp	1 bp	2 bp	4 bp	8 bp		
USDJPY – 15 minute	492.25	86.81	58.53	5.69	0.39		
USDJPY – 1 hour	75.86	31.11	13.30	4.67	3.33		
USDJPY – 2 hour	37.42	22.11	17.31	15.61	9.67		
USDJPY – 4 hour	21.39	11.72	10.13	8.56	4.83		
USDJPY – 8 hour	11.03	9.19	8.67	7.78	5.25		

Note that results for GA were broadly similar

Frequency Effect

- As slippage increases monthly dealing adapts to frequency
- Rather than constrain the frequency artificially in the pre-processing step, the algorithm should be left to choose its own trading frequency by feeding it with the highest frequency data available

Optimized vs Unoptimized Performance

Should We Optimize Parameters?

- Indicators attempt to capture similar dynamics
- By optimizing indicator parameters the correlation between the indicators increases significantly
- Thus information content for the learning methods decreases

Results: Evolutionary RL System 3-state

Results: 2-state vs 3-state

• We examine whether allowing a neutral state improves the system or impedes performance

Results: 2-state vs 3-state

• These results demonstrate the advantages of allowing a neutral state as the 3-state system consistently outperforms its 2 state counterpart

Significance Test

- We utilize a simple non-parametric binomial test [Dempster and Jones (2001)]
- Null hypothesis: out-of-sample cumulative trading profits and losses are periodically sampled from a continuous time stationary ergodic process with state distribution having median zero
- Under this null hypothesis, profits and losses are equally likely
- It follows that over n monthly periods, the number of profitable months n+ is binomially distributed with parameters n and $\frac{1}{2}$
- We test the two-tailed hypothesis that median profit and loss is non-zero with the statistic n+

Significance of Two-State Results

p-value					
Trading Frequency	GBPUSD	USDCHF	USDJPY		
RL 0bp	100	99.99	99.99		
GA 0bp	100	99.99	99.99		
ERL 0bp	100	100	100		
RL 1bp	100	95.22	90.98		
GA 1bp	99.99	95.22	99.02		
ERL 1bp	100	99.99	95.22		
RL 2bp	9.12	25.25	63.06		
GA 2bp	90.88	50	84.12		
ERL 2bp	95.22	63.06	84.12		
RL 4bp	50	15.86	36.94		
GA 4bp	25.25	74.75	84.13		
ERL 4bp	74.75	63.06	50		

At 8bp and 10bp the results were uniformly not significant

Evolutionary RL System – USDCHF 2-state 15 minute at 2bp

p-value 0.9082

Evolutionary RL System – USDCHF 2-state 15 minute at 2bp

Significance of Three State Result

p-values					
Trading Frequency	GBPUSD	USDCHF	USDJPY		
RL 0bp	100	100	100		
ERL 0bp	100	100	100		
RL 1bp	100	95.22	95.22		
ERL 1bp	99.99	99.99	99.99		
RL 2bp	99.02	90.88	65.54		
ERL 2bp	99.99	99.02	95.22		
RL 4bp	63.06	80.75	84.13		
ERL 4bp	90.88	90.88	95.22		

At 8bp and 10bp the results were uniformly not significant

Indicator Usage by the ERL System

Indicator Usage by the ERL System

Indicator Usage Over Time

- The systems **continuously adapt** as market dynamics change and the indicators chosen do not remain static
- Certain indicators are consistently favoured by the evolutionary subsystem at low slippage (0bp and 1bp) while different indicators are favoured at the higher (4bp) slippage value

Optimizing Risk Adjusted Return

- RL typically requires immediate rewards
 - RL runs into difficulty associating delayed negative feedback with the states that caused them
 - Difficult to incorporate drawdown or Sharpe ratio as these are not *instantaneous* measures
- Evolutionary RL system is ideally suited to solve this
 - Introduction of risk adjusted optimization moved to the GA layer where it is straightforward to incorporate
 - GA wrapper fitness function maximizes some measure of risk-adjusted reward over the evaluation period
 - RL optimization remains as discussed earlier

Results: Risk Adjusted Returns

• Results:

- The results demonstrated that the risk parameters improved although returns remained broadly in line with those outlined previously
- The quoted results illustrate the Sharpe Ratios of two ERL systems –the optimization of a drawdown adjusted return compared to total return

Sharpe Ratios	GBPUSD	USDCHF	USDJPY
Drawdown Adjusted Return (0bp)	2.33	2.3	1.84
No Risk Adjustment (0bp)	2.21	2.22	1.82
Drawdown Adjusted Return (1bp)	1.46	0.52	0.41
No Risk Adjustment (1bp)	1.51	0.5	0.37
Drawdown Adjusted Return (2bp)	0.79	0.4	0.2
No Risk Adjustment (2bp)	0.7	0.25	0.13
Drawdown Adjusted Return (4bp)	0.02	0.24	0.07
No Risk Adjustment (4bp)	-0.04	0.16	0.12

Conclusions

• RL vs EL and ERL

- RL tends to over-fit
- Need to constrain in-sample learning
- This is what was done with the ERL approach
- ERL was shown successfully to improve out-of-sample performance
- GA is *significantly* profitable at up to 2bp
- GA is able to trade profitably up to 4bp
- GA and hybrid ERL results similar and allow for easier analysis of the indicators being used

Conclusions 2

• Frequency effect

• Trading systems should be left to adapt to the frequency automatically. This is done based on the slippage – rather than artificially constraining the inputs in the pre-processing step

Indicator optimization

optimization does not appear to improve results due to increased correlation amongst indicators

Across currencies

 Results across currencies were broadly in line giving further confidence in the results

Further Work

- Hybrid ERL system has shown to be an improvement over the basic RL and competitive with the GA
- Areas currently being studied:
 - Optimizing risk adjusted return
 - Overlay of cash management strategies
 - Alternative forms of reinforcement learning
 - Incorporation of trade volume and order flow data

Data

- 5 \(^3\)/4 months of order book and order flow data
- Currencies: GBPUSD, EURUSD and USDJPY
 - USDJPY was not considered for the order book due to errors in the file
- Intraday order book/flow data but for this pilot study was collated into daily
- Dates: March 1, 2002 August 19, 2002
- Insample period: 1st March 30th May (65 data pts)
- Out-of-sample: 1st of June 19th August (58 data pts)

Order Flow Data

- HSBC broke down transactions into several categories
- These categories were used to derive the indicators:
 - Net daily transactions in that currency pair (1 if positive volume, 0 if negative)
 - Net retail transactions
 - Retail speculative transactions
 - Retail nonspeculative transactions
 - Net institutional transactions
 - Institutional speculative transactions
 - Institutional nonspeculative transactions
 - Net speculative Transactions
 - Net nonspeculative transactions

Order Book Data

- For each day the following **indicators** are generated:
 - Net customer sales for stop-loss orders where the price is more than 0.0% and less than or equal to 0.5% from the current spot.
 - Net customer sales for stop-loss orders where the price is more than 0.5% and less than 1% from the current spot.
 - Net customer sales for stop loss orders where the price is between 0 and 1% (i.e. the sum of the former two)
- These are calculated for **all** orders and for **take-profit** orders for the **whole** order book as at the time of the snapshot of the book and for **new** orders only
- The total number of indicators derived from the order book is 12

Order Book Data Return Correlations

- Interestingly correlations are significant at a lag of 2 days
- Similar indicators are found to be significant in the two currencies
- Indicators of stop losses at more than 0.5% of the spot appear to be most significant

GBPUSD Net Customer Sales	FXReturns	lag(1)	lag(2)
New: 0%-0.5% of spot	4.572 (0.46)	-0.292 (-0.02)	5.114 (0.51)
New: 0.5%-1% of spot	6.895 (0.69)	-4.729 (-0.47)	-9.305 (-0.93)
New: 0%-1% of spot	8.37 (0.84)	-3.888 (-0.39)	-3.943 (-0.39)
New: 0%-0.5% of spot (TP)	7.643 (0.77)	-1.188 (-0.11)	7.455 (0.74)
New: 0.5%-1% of spot (TP)	-12.445 (-1.26)	-3.015 (-0.3)	17.744 (1.8)
New: 0%-1% of spot (TP)	-3.17 (-0.32)	-3.258 (-0.32)	19.549 (1.99)
All: 0%-0.5% of spot	2.102 (0.21)	5.597 (0.56)	1.481 (0.14)
All: 0.5%-1% of spot	4.675 (0.47)	-4.269 (-0.42)	-17.329 (-1.75)
All: 0%-1% of spot	4.5 (0.45)	-0.23 (-0.02)	-11.896 (-1.19)
All: 0%-0.5% of spot (TP)	4.395 (0.44)	1.943 (0.19)	1.313 (0.13)
All: 0.5%-1% of spot (TP)	2.597 (0.26)	-0.084 (0)	9.262 (0.93)
AII: 0%-1% (TP)	5.768 (0.58)	1.498 (0.15)	8.96 (0.89)

EURUSD Net Customer Sales	FXReturns	lag(1)	lag(2)
New: 0%-0.5% of spot	13.502 (1.38)	14.2 (1.44)	-5.17 (-0.52)
New: 0.5%-1% of spot	10.729 (1.09)	9.209 (0.93)	-13.178 (-1.33)
New: 0%-1% of spot	19.407 (2)	18.871 (1.94)	-14.16 (-1.43)
New: 0%-0.5% of spot (TP)	3.411 (0.34)	10.077 (1.02)	-3.62 (-0.36)
New: 0.5%-1% of spot (TP)	-4.102 (-0.41)	0.335 (0.03)	24.358 (2.52)
New: 0%-1% of spot (TP)	-0.988 (-0.1)	7.07 (0.71)	17.094 (1.74)
AII: 0%-0.5% of spot	12.573 (1.28)	8.606 (0.87)	-6.34 (-0.63)
All: 0.5%-1% of spot	5.752 (0.58)	0.21 (0.02)	-19.556 (-2)
All: 0%-1% of spot	15.201 (1.56)	7.624 (0.77)	-20.098 (-2.06)
All: 0%-0.5% of spot (TP)	2.652 (0.26)	12.175 (1.23)	-1.847 (-0.18)
All: 0.5%-1% of spot (TP)	-3.19 (-0.32)	3.992 (0.4)	27.469 (2.87)
AII: 0%-1% (TP)	-0.383 (-0.03)	11.799 (1.2)	18.633 (1.9)

Preliminary Results – Benchmark (Technical Indicator) Tests

Currency	Slippage	In-sample	Out-of-sample
EURUSD	0	1.46	0.09
EURUSD	2	1.02	0.47
EURUSD	4	0	0
EURUSD	8	0	0
EURUSD	10	0	0
GBPUSD	0	1.14	0.82
GBPUSD	2	1.64	0.36
GBPUSD	4	1.72	2.02
GBPUSD	8	1.16	0.16
GBPUSD	10	0	0
USDJPY	0	0	0
USDJPY	2	3.23	1.54
USDJPY	4	0	0
USDJPY	8	0.14	0.94
USDJPY	10	0	0

Table 1: Average Monthly Returns on Benchmark Tests

Currency	Slippage	In-sample	Out-of-sample
EURUSD	0	19	9.82
EURUSD	2	21	11.27
EURUSD	4	0	0
EURUSD	8	0	0
EURUSD	10	0	0
GBPUSD	0	16	14.91
GBPUSD	2	2.33	1.82
GBPUSD	4	1.67	1.09
GBPUSD	8	1.67	1.82
GBPUSD	10	0	0
USDJPY	0	0	0
USDJPY	2	27.67	15.64
USDJPY	4	0	0
USDJPY	8	1.33	1.09
USDJPY	10	0	0

Table 2: Average Number of Monthly Trades:
Benchmark Technical Tests

Preliminary Results – Technical/Order Book Tests

Currency	Slippage	In-sample	Out-of-sample
EURUSD	0	3.22	0.17
EURUSD	2	2.26	1.17
EURUSD	4	1.57	-0.75
EURUSD	8	3.66	1.52
EURUSD	10	2.38	0.81
GBPUSD	0	1.05	1.25
GBPUSD	2	0.97	1.68
GBPUSD	4	1.1	0.4
GBPUSD	8	0	0
GBPUSD	10	0	0

Currency	Slippage	In-sample	Out-of-sample
EURUSD	0	10	13.45
EURUSD	2	6	5.45
EURUSD	4	10.67	11.27
EURUSD	8	5.67	6.18
EURUSD	10	4	2.91
GBPUSD	0	4.67	5.82
GBPUSD	2	7.67	10.18
GBPUSD	4	4	5.09
GBPUSD	8	0	0
GBPUSD	10	0	0

Table 9: Average Monthly Returns on Joint Technical and Order Book Tests

Table 10: Average Number of Monthly Trades:

Joint Technical and Order Flow Tests

- Merging technical with order flow indicators improved the out-of-sample returns
- Merging technical with order book indicators proved to be the best combination in both currencies examined

Performance over time

- To illustrate the cumulative return over the out-of-sample period, these are the graphs of EURUSD at 2bp slippage and GBPUSD at 4bp
- The report contains a full set of graphs for EURUSD and GBPUSD

Order Book Indicators Used by GA

	New:	New:	New:	New:	New:	All:	All:
Currency Slippage	OB1	OB2	OB3	OB2 (1P)	OB3 (TP)	OB1	OB2
EURUSD 0			х				х
EURUSD 2			x				x
EURUSD 4	х	Х			х		х
EURUSD 8			х		х	Х	
EURUSD 10		Х	х		х	Х	Х
GBPUSD 0	х	х		х	х		Х
GBPUSD 2	x	х		х	х		х
GBPUSD 4		х	х	х		Х	х
GBPUSD 8							х
GBPUSD 10							х

- Some consistency is found in the indicators chosen in both currencies across slippage values
- We find that the highly correlated indicators are often chosen (typically where the stop-losses are further from the spot)
- OB1 refers to sales for stop loss orders where the price is within 0.5% of the current spot
- OB2 refers to sales for stop loss orders where the price is between 0.5% & 1%
- OB3 refers to sales for stop loss orders where the price is between 0% and 1%
- TP refers to "Take Profit" orders
- Note that all indicators that were consistently not used have been removed from the above table for clarity

Conclusions

- Results show significant promise in approach
 - We demonstrate that order book based trading can significantly improve the results
- Feeding in technicals is often important but not in isolation rather in addition to order book information

