```
In [1]: import pandas as pd
```

In [2]: data=pd.read_csv("/home/placement/Downloads/Titanic Dataset.csv")

In [3]: data.describe()

Out[3]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [4]: data.head(10)

Out[4]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

In [5]: data.shape

Out[5]: (891, 12)

```
In [6]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 891 entries, 0 to 890
        Data columns (total 12 columns):
             Column
                           Non-Null Count Dtype
              _ _ _ _ _ _
                                            ----
             PassengerId 891 non-null
                                            int64
                           891 non-null
         1
             Survived
                                           int64
             Pclass
         2
                           891 non-null
                                           int64
          3
                           891 non-null
                                           obiect
             Name
          4
                           891 non-null
                                           object
             Sex
                           714 non-null
                                           float64
          5
             Age
          6
                           891 non-null
                                           int64
             SibSp
         7
             Parch
                           891 non-null
                                           int64
                           891 non-null
                                           obiect
             Ticket
                                           float64
         9
             Fare
                           891 non-null
         10
             Cabin
                           204 non-null
                                           obiect
         11 Embarked
                           889 non-null
                                            object
        dtypes: float64(2), int64(5), object(5)
        memory usage: 83.7+ KB
In [7]:
        data.isna().sum()
Out[7]: PassengerId
                          0
        Survived
                          0
        Pclass
                          0
```

```
Name
                  0
Sex
                  0
                177
Age
SibSp
                  0
Parch
                  0
Ticket
                  0
Fare
                  0
Cabin
                687
Embarked
dtype: int64
```

```
In [8]: data['Pclass'].unique()
Out[8]: array([3, 1, 2])
In [9]: data['Survived'].unique()
Out[9]: array([0, 1])
In [10]: data['Parch'].unique()
Out[10]: array([0, 1, 2, 5, 3, 4, 6])
In [11]: data['Age'].unique()
Out[11]: array([22. , 38. , 26. , 35. ,
                                           nan, 54. , 2. , 27. , 14. ,
                   , 58.
                                , 39. , 55. , 31.
                                                    , 34.
                                                           , 15.
                4.
                         , 20.
                          , 40. , 66. , 42. , 21.
                                                    , 18.
                                                           , 3.
                                , 28.5 , 5. , 11.
                                                    , 45.
                          , 65.
                                                           , 17.
                   , 25.
                          , 0.83, 30.
                                       , 33. , 23.
                                                    , 24.
               71. , 37. , 47. , 14.5 , 70.5 , 32.5 , 12.
                                      , 1.
               51. , 55.5 , 40.5 , 44.
                                            , 61.
                                                   , 56.
               45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. ,
               60. , 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. ,
               70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
```

```
In [12]:
         data['PassengerId'].unique()
Out[12]: array([ 1,
                        2,
                                        5,
                                             6,
                                                       8,
                                                            9,
                                                                 10,
                                                                      11,
                                                                           12,
                             3,
                                                  7,
                                                                                13.
                                  4,
                                                           22,
                       15.
                            16,
                                  17,
                                       18,
                                            19,
                                                 20,
                                                      21,
                                                                 23,
                                                                      24,
                                                                           25.
                                                                                26.
                  14,
                                 30,
                                                 33,
                                                      34,
                                                           35,
                  27,
                       28,
                            29,
                                       31,
                                            32,
                                                                 36,
                                                                      37,
                                                                           38,
                                                                                 39,
                  40.
                       41,
                            42,
                                  43,
                                       44,
                                            45,
                                                 46,
                                                      47,
                                                            48,
                                                                 49,
                                                                      50,
                                                                           51.
                                                                                 52.
                       54,
                            55,
                                  56,
                                            58,
                                                 59,
                                                           61,
                                                                 62,
                  53,
                                       57,
                                                      60,
                                                                      63,
                                                                           64,
                                                                                 65,
                                            71,
                                                 72,
                                                      73,
                                                           74,
                  66,
                       67,
                            68,
                                  69,
                                       70,
                                                                 75,
                                                                      76,
                                                                           77,
                                                                                78,
                                 82,
                                            84,
                                                           87,
                  79,
                       80.
                            81,
                                       83,
                                                 85,
                                                      86,
                                                                 88,
                                                                      89,
                            94,
                                  95,
                                       96,
                                            97,
                                                 98,
                                                      99, 100, 101, 102, 103, 104,
                  92,
                       93,
                 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
                 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
                 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
                 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
                 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
                 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,
                 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
                 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,
                 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,
                 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,
                 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,
                 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
                 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273,
                 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286,
                 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299
                 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312,
                 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325,
                 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338,
                 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351,
                 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364,
                 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377,
                 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390,
                 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403,
                 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416,
                 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429
                 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442,
                 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455,
                 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468,
                 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481,
                 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494,
                 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507,
```

```
508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520,
521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533,
534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546,
547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559,
560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572,
573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585,
586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598,
599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611,
612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624,
625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637,
638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650,
651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663,
664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676,
677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689,
690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702,
703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715,
716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728,
729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741,
742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754,
755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767,
768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780,
781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793,
794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806,
807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819,
820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832,
833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845,
846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858,
859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871,
872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884,
885, 886, 887, 888, 889, 890, 891])
```

```
data['Ticket'].unique()
In [13]:
                 '19877', '11967', 'SC/Paris 2163', '349236', '349233', 'PC 17612',
                 '2693', '113781', '19988', '9234', '367226', '226593', 'A/5 2466',
                 '17421', 'PC 17758', 'P/PP 3381', 'PC 17485', '11767', 'PC 17608',
                 '250651', '349243', 'F.C.C. 13529', '347470', '29011', '36928',
                 '16966', 'A/5 21172', '349219', '234818', '345364', '28551',
                 '111361', '113043', 'PC 17611', '349225', '7598', '113784',
                 '248740', '244361', '229236', '248733', '31418', '386525',
                 'C.A. 37671', '315088', '7267', '113510', '2695', '2647', '345783',
                 '237671', '330931', '330980', 'SC/PARIS 2167', '2691',
                 'SOTON/0.0. 3101310', 'C 7076', '110813', '2626', '14313',
                 'PC 17477', '11765', '3101267', '323951', 'C 7077', '113503',
                 '2648', '347069', 'PC 17757', '2653', 'STON/O 2. 3101293'
                 '349227', '27849', '367655', 'SC 1748', '113760', '350034',
                 '3101277', '350052', '350407', '28403', '244278', '240929',
                 'STON/O 2. 3101289', '341826', '4137', '315096', '28664', '347064',
                 '29106', '312992', '349222', '394140', 'STON/0 2. 3101269',
                 '343095', '28220', '250652', '28228', '345773', '349254',
                 'A/5. 13032', '315082', '347080', 'A/4. 34244', '2003', '250655',
                 '364851', 'SOTON/0.Q. 392078', '110564', '376564', 'SC/AH 3085',
                 'STON/O 2 3161274' '13567' 'C A 18723' '345760'
In [14]: | data['SibSp'].unique()
Out[14]: array([1, 0, 3, 4, 2, 5, 8])
```

```
In [15]: data['Cabin'].unique()
Out[15]: array([nan, 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6',
                 'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33',
                'F G73', 'E31', 'A5', 'D10 D12', 'D26', 'C110', 'B58 B60', 'E101',
                 'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49', 'F4',
                 'A32', 'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78', 'D35',
                 'C87', 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19',
                 'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54',
                 'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91', 'E40',
                 'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'B96 B98', 'E10', 'E44',
                 'A34', 'C104', 'C111', 'C92', 'E38', 'D21', 'E12', 'E63', 'A14',
                 'B37', 'C30', 'D20', 'B79', 'E25', 'D46', 'B73', 'C95', 'B38',
                 'B39', 'B22', 'C86', 'C70', 'A16', 'C101', 'C68', 'A10', 'E68',
                 'B41', 'A20', 'D19', 'D50', 'D9', 'A23', 'B50', 'A26', 'D48',
                 'E58', 'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F G63',
                 'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45', 'C46', 'D30',
                 'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17', 'A36',
                 'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42',
                 'C148'l, dtype=object)
```

```
data['Fare'].unique()
In [16]:
                                                               8.05
Out[16]: array([ 7.25
                             71.2833,
                                         7.925 ,
                                                   53.1
                                                                          8.4583.
                                        11.1333,
                                                   30.0708,
                                                              16.7
                   51.8625.
                             21.075 ,
                                                                         26.55
                  31.275 ,
                              7.8542,
                                        16.
                                                   29.125 ,
                                                              13.
                                                                         18.
                                         8.0292,
                                                   35.5
                                                              31.3875, 263.
                             26.
                   7.225 ,
                   7.8792,
                              7.8958,
                                        27.7208, 146.5208,
                                                               7.75
                                                                         10.5
                  82.1708,
                             52.
                                         7.2292,
                                                   11.2417,
                                                               9.475 ,
                                                                         21.
                             15.5
                                        21.6792,
                                                              39.6875,
                  41.5792.
                                                   17.8
                                                              80.
                                                                         83.475
                  76.7292,
                             61.9792,
                                        27.75
                                                   46.9
                  27.9
                             15.2458,
                                         8.1583,
                                                    8.6625,
                                                              73.5
                                                                         14.4542,
                  56.4958,
                              7.65
                                        29.
                                                   12.475 ,
                                                               9.
                                                                          9.5
                                        15.85
                   7.7875,
                             47.1
                                                   34.375 ,
                                                              61.175 .
                                                                         20.575 .
                                        23.
                   34.6542,
                             63.3583,
                                                   77.2875,
                                                               8.6542,
                                                                          7.775 ,
                   24.15
                              9.825 ,
                                        14.4583, 247.5208,
                                                               7.1417,
                                                                         22.3583,
                   6.975 ,
                              7.05
                                        14.5
                                                   15.0458,
                                                              26.2833,
                                                                          9.2167,
                                        11.5
                   79.2
                              6.75
                                                   36.75
                                                               7.7958,
                                                                         12.525 ,
                  66.6
                              7.3125,
                                        61.3792,
                                                    7.7333,
                                                              69.55
                                                                         16.1
                             20.525 ,
                                        55.
                                                   25.925 ,
                                                              33.5
                  15.75
                                                                         30.6958,
                                                              39.
                  25.4667,
                             28.7125,
                                         0.
                                                   15.05
                                                                         22.025 ,
                                         6.4958,
                  50.
                              8.4042,
                                                   10.4625,
                                                              18.7875,
                                                                         31.
                             27.
                                                   90.
                                                               9.35
                                                                         13.5
                 113.275 ,
                                        76.2917,
                    7.55
                             26.25
                                        12.275 ,
                                                    7.125 .
                                                              52.5542,
                                                                         20.2125,
                   86.5
                            512.3292,
                                        79.65
                                                , 153.4625, 135.6333,
                                                                         19.5
                   29.7
                             77.9583,
                                        20.25
                                                   78.85
                                                              91.0792,
                                                                         12.875 ,
                          , 151.55
                                        30.5
                                                   23.25
                    8.85
                                                             12.35
                                                                     , 110.8833,
                 108.9
                             24.
                                        56.9292,
                                                   83.1583, 262.375
                                                                         14.
                                         6.2375,
                                                              28.5
                 164.8667, 134.5
                                                   57.9792,
                                                                      , 133.65
                                        35.
                  15.9
                                                   75.25
                                                              69.3
                                                                         55.4417,
                              9.225 ,
                 211.5
                              4.0125, 227.525 ,
                                                   15.7417,
                                                               7.7292,
                                                                         12.
                             12.65
                                        18.75
                                                              32.5
                                                                          7.875 ,
                 120.
                                                    6.8583,
                  14.4
                             55.9
                                         8.1125,
                                                   81.8583,
                                                              19.2583,
                                                                         19.9667,
                  89.1042,
                             38.5
                                         7.725 ,
                                                   13.7917,
                                                               9.8375,
                                                                          7.0458,
                                                                         15.1
                             12.2875,
                                         9.5875,
                   7.5208,
                                                   49.5042,
                                                              78.2667,
                             22.525 ,
                                        26.2875,
                    7.6292,
                                                   59.4
                                                               7.4958,
                                                                         34.0208,
                  93.5
                          , 221.7792, 106.425 ,
                                                   49.5
                                                              71.
                                                                         13.8625,
                   7.8292.
                             39.6
                                                   51.4792.
                                                              26.3875,
                                                                         30.
                                        17.4
                  40.125 ,
                              8.7125,
                                        15.
                                                   33.
                                                              42.4
                                                                         15.55
                             32.3208,
                                         7.0542,
                                                    8.4333,
                                                              25.5875,
                                                                          9.8417,
                   65.
                    8.1375.
                             10.1708, 211.3375,
                                                   57.
                                                              13.4167.
                                                                          7.7417.
                    9.4833,
                              7.7375,
                                         8.3625,
                                                  23.45
                                                             25.9292,
                                                                          8.6833,
```

```
8.5167, 7.8875, 37.0042,
                                                         6.95 ,
                                               6.45 ,
                  6.4375, 39.4 , 14.1083, 13.8583, 50.4958,
                  9.8458, 10.5167])
In [17]: data['Sex'].unique()
Out[17]: array(['male', 'female'], dtype=object)
In [18]: list(data)
Out[18]: ['PassengerId',
          'Survived',
          'Pclass',
          'Name',
          'Sex',
          'Age',
          'SibSp',
          'Parch',
          'Ticket',
          'Fare',
          'Cabin',
          'Embarked']
In [19]: data1=data.drop(['PassengerId','Name','Ticket','Cabin','SibSp'],axis=1)
```

In [20]: data1

Out[20]:

	Survived	Pclass	Sex	Age	Parch	Fare	Embarked
0	0	3	male	22.0	0	7.2500	S
1	1	1	female	38.0	0	71.2833	С
2	1	3	female	26.0	0	7.9250	S
3	1	1	female	35.0	0	53.1000	S
4	0	3	male	35.0	0	8.0500	S
886	0	2	male	27.0	0	13.0000	S
887	1	1	female	19.0	0	30.0000	S
888	0	3	female	NaN	2	23.4500	S
889	1	1	male	26.0	0	30.0000	С
890	0	3	male	32.0	0	7.7500	Q

891 rows × 7 columns

In [23]: data1

Out[23]:

	Survived	Pclass	Sex	Age	Parch	Fare	Embarked
0	0	3	1	22.0	0	7.2500	S
1	1	1	0	38.0	0	71.2833	С
2	1	3	0	26.0	0	7.9250	S
3	1	1	0	35.0	0	53.1000	S
4	0	3	1	35.0	0	8.0500	S
886	0	2	1	27.0	0	13.0000	S
887	1	1	0	19.0	0	30.0000	S
888	0	3	0	NaN	2	23.4500	S
889	1	1	1	26.0	0	30.0000	С
890	0	3	1	32.0	0	7.7500	Q

891 rows × 7 columns

In [24]: data2=data1.fillna(data1.median)

In [25]: data2

Out[25]:

	Survived	Pclass	Sex	Age	Parch	Fare	Embarked
0	0	3	1	22.0	0	7.2500	S
1	1	1	0	38.0	0	71.2833	С
2	1	3	0	26.0	0	7.9250	S
3	1	1	0	35.0	0	53.1000	S
4	0	3	1	35.0	0	8.0500	S
886	0	2	1	27.0	0	13.0000	S
887	1	1	0	19.0	0	30.0000	S
888	0	3	0	<pre><bound method="" ndframeadd_numeric_operations<="" pre=""></bound></pre>	2	23.4500	S
889	1	1	1	26.0	0	30.0000	С
890	0	3	1	32.0	0	7.7500	Q

891 rows × 7 columns

Out[26]: <AxesSubplot:>

50

60

10

20

30

```
In [28]: plt.hist(data1['Fare'])
Out[28]: (array([732., 106., 31., 2., 11.,
                                                 6.,
                                                             0.,
                                                                    0., 3.]),
                                                       0.,
                       , 51.23292, 102.46584, 153.69876, 204.93168, 256.1646 ,
          array([ 0.
                 307.39752, 358.63044, 409.86336, 461.09628, 512.3292 ]),
          <BarContainer object of 10 artists>)
          700
          600
          500
          400
          300
          200
          100
                            200
                                   300
                                                  500
                                          400
                     100
```

```
data1.fillna(35,inplace=True)
In [30]:
In [31]:
           data1.describe()
Out[31]:
                    Survived
                                 Pclass
                                              Sex
                                                         Age
                                                                  Parch
                                                                              Fare
            count
                  891.000000
                             891.000000
                                        891.000000
                                                   891.000000
                                                              891.000000
                                                                        891.000000
                    0.383838
                               2.308642
                                                    30.752155
                                                                0.381594
                                                                         32.204208
                                          0.647587
            mean
                    0.486592
                               0.836071
                                                                          49.693429
              std
                                          0.477990
                                                    13.173100
                                                                0.806057
              min
                    0.000000
                               1.000000
                                          0.000000
                                                     0.420000
                                                                0.000000
                                                                          0.000000
             25%
                    0.000000
                               2.000000
                                          0.000000
                                                    22.000000
                                                                0.000000
                                                                          7.910400
             50%
                    0.000000
                               3.000000
                                          1.000000
                                                    32.000000
                                                                0.000000
                                                                         14.454200
                                                    35.000000
             75%
                    1.000000
                               3.000000
                                          1.000000
                                                                0.000000
                                                                         31.000000
                    1.000000
                               3.000000
                                          1.000000
                                                    80.000000
                                                                6.000000 512.329200
             max
In [32]:
           data1['Age'].unique()
                                          , 35.
Out[32]: array([22.
                                  , 26.
                                                     54.
                         , 38.
                                                               2.
                                                                      27.
                                          , 55.
                                                     31.
                                                           , 34.
                   58.
                         , 20.
                                  , 39.
                                                                    , 15.
                                                                            , 28.
                                  , 66.
                                            42.
                                                     21.
                                                           , 18.
                                                                      3.
                                             5.
                                                   , 11.
                                                           , 45.
                   29.
                                  , 28.5 ,
                                                                    , 17.
                                                                              32.
                             0.83, 30.
                                          , 33.
                                                     23.
                                                           , 24.
                                                                      46.
                                                                              59.
                                                     32.5
                                                             12.
                                                                       9.
                                                                              36.5
                                          , 70.5
                                  , 14.5
                                                                            , 36.
                   55.5 , 40.5 , 44.
                                          , 1.
                                                     61.
                                                           , 56.
                                                                      50.
                                          , 52.
                                                   , 63.
                                                           , 23.5
                                                                      0.92, 43.
                                 , 13.
                                         , 48.
                                                      0.75, 53.
                                                                   , 57.
                                                                           , 80.
                                                  ,
                   24.5 , 6. , 0.67 , 30.5 ,
                                                      0.42, 34.5 , 74.
```

In [33]: data1.groupby(['Age']).count()

Out[33]:

	Survived	Pclass	Sex	Parch	Fare	Embarked
Age						
0.42	1	1	1	1	1	1
0.67	1	1	1	1	1	1
0.75	2	2	2	2	2	2
0.83	2	2	2	2	2	2
0.92	1	1	1	1	1	1
70.00	2	2	2	2	2	2
70.50	1	1	1	1	1	1
71.00	2	2	2	2	2	2
74.00	1	1	1	1	1	1
80.00	1	1	1	1	1	1

88 rows × 6 columns

```
In [34]: data1['Pclass']=data1['Pclass'].map({1:'F',2:'S',3:'Third'})
```

In [37]:

```
In [35]: data1.isna().sum()
Out[35]: Survived
                       0
          Pclass
                        0
          Sex
                        0
          Age
          Parch
          Fare
          Embarked
          dtype: int64
          data1.head()
In [36]:
Out[36]:
             Survived Pclass Sex Age Parch
                                              Fare Embarked
                       Third
                              1 22.0
                                             7.2500
                                                          S
           0
                                         0
                   0
           1
                   1
                              0
                                 38.0
                                         0 71.2833
                                                          С
           2
                       Third
                              0 26.0
                                             7.9250
                                                          S
                                 35.0
                                         0 53.1000
                                                          S
           3
                       Third
                              1 35.0
                                             8.0500
                                                          S
```

data1=pd.get_dummies(data1)

In [38]: data1

Out[38]:

	Survived	Sex	Age	Parch	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
0	0	1	22.0	0	7.2500	0	0	1	0	0	0	1
1	1	0	38.0	0	71.2833	1	0	0	0	1	0	0
2	1	0	26.0	0	7.9250	0	0	1	0	0	0	1
3	1	0	35.0	0	53.1000	1	0	0	0	0	0	1
4	0	1	35.0	0	8.0500	0	0	1	0	0	0	1
								•••				
886	0	1	27.0	0	13.0000	0	1	0	0	0	0	1
887	1	0	19.0	0	30.0000	1	0	0	0	0	0	1
888	0	0	35.0	2	23.4500	0	0	1	0	0	0	1
889	1	1	26.0	0	30.0000	1	0	0	0	1	0	0
890	0	1	32.0	0	7.7500	0	0	1	0	0	1	0

891 rows × 12 columns

In [39]: data1.shape

Out[39]: (891, 12)

In [40]: data1.head(500)

Out[40]:

	Survived	Sex	Age	Parch	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
0	0	1	22.0	0	7.2500	0	0	1	0	0	0	1
1	1	0	38.0	0	71.2833	1	0	0	0	1	0	0
2	1	0	26.0	0	7.9250	0	0	1	0	0	0	1
3	1	0	35.0	0	53.1000	1	0	0	0	0	0	1
4	0	1	35.0	0	8.0500	0	0	1	0	0	0	1
495	0	1	35.0	0	14.4583	0	0	1	0	1	0	0
496	1	0	54.0	0	78.2667	1	0	0	0	1	0	0
497	0	1	35.0	0	15.1000	0	0	1	0	0	0	1
498	0	0	25.0	2	151.5500	1	0	0	0	0	0	1
499	0	1	24.0	0	7.7958	0	0	1	0	0	0	1

500 rows × 12 columns

In [41]: cor_mat=data1.corr()
 cor_mat

Out[41]:

	Survived	Sex	Age	Parch	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q
Survived	1.000000	-0.543351	-0.083713	0.081629	0.257307	0.285904	0.093349	-0.322308	0.060095	0.168240	0.003650
Sex	-0.543351	1.000000	0.091930	-0.245489	-0.182333	-0.098013	-0.064746	0.137143	-0.064296	-0.082853	-0.074115
Age	-0.083713	0.091930	1.000000	-0.196800	0.074199	0.302149	-0.022021	-0.242412	0.069343	0.036953	0.040528
Parch	0.081629	-0.245489	-0.196800	1.000000	0.216225	-0.017633	-0.000734	0.015790	-0.022467	-0.011069	-0.081228
Fare	0.257307	-0.182333	0.074199	0.216225	1.000000	0.591711	-0.118557	-0.413333	0.045646	0.269335	-0.117216
Pclass_F	0.285904	-0.098013	0.302149	-0.017633	0.591711	1.000000	-0.288585	-0.626738	0.083847	0.296423	-0.155342
Pclass_S	0.093349	-0.064746	-0.022021	-0.000734	-0.118557	-0.288585	1.000000	-0.565210	-0.024197	-0.125416	-0.127301
Pclass_Third	-0.322308	0.137143	-0.242412	0.015790	-0.413333	-0.626738	-0.565210	1.000000	-0.052550	-0.153329	0.237449
Embarked_35	0.060095	-0.064296	0.069343	-0.022467	0.045646	0.083847	-0.024197	-0.052550	1.000000	-0.022864	-0.014588
Embarked_C	0.168240	-0.082853	0.036953	-0.011069	0.269335	0.296423	-0.125416	-0.153329	-0.022864	1.000000	-0.148258
Embarked_Q	0.003650	-0.074115	0.040528	-0.081228	-0.117216	-0.155342	-0.127301	0.237449	-0.014588	-0.148258	1.000000
Embarked_S	-0.155660	0.125722	-0.065062	0.063036	-0.166603	-0.170379	0.192061	-0.009511	-0.076588	-0.778359	-0.496624

```
sns.heatmap(cor mat, vmax=1, vmin=-1, annot=True, linewidth=-5, cmap='bwr')
In [42]:
Out[42]: <AxesSubplot:>
                                                                                       - 1.00
                     Survived - 1 0.5-0.084.0820.260.290.0930.320.060.10.003-0.16
                          Sex - 0.54 1 0.0920.250.180.098.0650.140.064.088.0740.13
                                                                                       - 0.75
                         Age -0.08@.092 1 -0.20.074 0.3-0.0220.240.0690.0370.0440.065
                                                                                       - 0.50
                        Parch 0.0820.25-0.2 1 0.220.04080000301-0.0240.0140.080.063
                         Fare -0.26-0.180.0740.22 1 0.55-0.12 0.4-0.0460.27-0.120.17
                                                                                      -0.25
                     Pclass F -0.290.0980.3-0.018.59 1 -0.29 0.60.084 0.3 -0.160.17
                                                                                       -0.00
                     Pclass_S 0.0920.068.022000708120.29 1 0.5:0.0240.130.130.19
                 Pclass Third ~0.320.14-0.240.016 0.4 0.6 0.5 0.5 0.0530.150.240.0095
                                                                                      - -0.25
                Embarked 35 -0.060.060.060.060.020.026.040.0840.0240.053
                                                                                       - -0.50
                 Embarked C -0.170.088.0370.0110.27 0.3 -0.130.150.023 1 -0.15 1.78
                 Embarked Q 9.00307.076.0440.0840.120.160.130.240.0150.15
                                                                                       - -0.75
                 Embarked S <0.160.130.068.0630.170.170.180.0090507
                                                                                       - -1.00
                                                     Pclass_F
                                                Fare
                                                         Pclass_S
                                                            Pclass_Third
                                                                 Embarked_35
                                                                     Embarked_C
                                                                         Embarked_Q
```

```
In [52]: data1.groupby('Survived').count()
Out[52]:
                  Sex Age Parch Fare Pclass F Pclass S Pclass Third Embarked 35 Embarked C Embarked Q Embarked S
           Survived
                0 549
                       549
                             549
                                 549
                                          549
                                                  549
                                                             549
                                                                         549
                                                                                    549
                                                                                               549
                                                                                                          549
                1 342
                       342
                             342 342
                                          342
                                                  342
                                                             342
                                                                         342
                                                                                    342
                                                                                               342
                                                                                                          342
In [53]: y=data1['Survived']
          x=data1.drop('Survived',axis=1)
In [54]: y
Out[54]: 0
                 0
                 1
          2
          3
                 0
          886
                 0
          887
          888
                 0
          889
                 1
          890
          Name: Survived, Length: 891, dtype: int64
In [55]: from sklearn.model_selection import train_test_split
          x train,x test,y_train,y_test = train_test_split(x,y,test_size=0.33,random_state=42)
```

```
In [56]: import warnings
         warnings.filterwarnings("ignore")
         from sklearn.linear model import LogisticRegression
         classifier= LogisticRegression()
         classifier.fit(x train,y_train)
Out[56]: LogisticRegression()
In [57]: y pred=classifier.predict(x test)
In [58]: y_pred
Out[58]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
                0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
                0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
                0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
                0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
                0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,
                1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
                0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
                0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 1, 1, 0])
In [59]: from sklearn.metrics import confusion matrix
         confusion matrix(y test,y pred)
Out[59]: array([[154, 21],
                [ 36, 8411)
In [60]: from sklearn.metrics import accuracy score
         accuracy score(y test,y pred)
Out[60]: 0.8067796610169492
In [ ]:
```