11 Publication number:

0 559 625 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 93830083.7

(1) Int. Cl.5: **C07C** 229/22, A61K 31/22

2 Date of filing: 01.03.93

Priority: 02.03.92 IT RM920138

43 Date of publication of application: 08.09.93 Bulletin 93/36

Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IE IT LI LU MC
 NL PT SE

Applicant: Sigma-Tau Industrie Farmaceutiche Riunite S.p.A. Viale Shakespeare, 47 I-00144 Rome(IT)

Inventor: Scafetta, Nazareno Via Siena, 10 I-00040 Pavona di Albano RM(IT) Inventor: Santaniello, Mosé

> Via G. D'Anna, 18 I-80026 Casoria NA(IT)

Inventor: Tinti, Maria Ornella Via Ernesto Basile, 81 I-00182 Roma RM(IT) Inventor: Misiti, Domenico Via Bacchiglione, 3 I-00199 Roma(IT)

Inventor: Stasi, Maria Antonietta
Via C.A. Della Chiesa, 22/12
I-00040 Torvaianica RM(IT)
Inventor: Vesci, Loredana
Via A. Claldi, 70
I-00154 Roma RM(IT)
Inventor: Corsico, Nerima
Via Niccolini, 20
I-20134 Milano Mi(IT)

Representative: Cavattoni, Fabio et al Cavattoni & Raimondi Viale dei Parioli, 160 I-00197 Roma (IT)

- (54) Esters of L-carnitine and acyl L-carnitine endowed with muscle relaxant activityselective on gastrointestinal tract and pharmaceutical compositions containing same.
- (I): Esters of L-carnitine and acyl L-carnitine of formula

wherein

R is hydrogen or is a straight or branched, saturated or unsaturated acyl group having 2 to 26 carbon atoms; R₁ is a straight or branched, saturated or unsaturated alkyl group having 4 to 26 carbon atoms; and X⁻ is the anion of a pharmacologically acceptable acid

are endowed with potent muscle relaxant activity selective on the gastrointestinal tract and are therefore therapeutically useful for treating e.g. adaptive colitis syndromes.

Danis Varanti di No Braziliana Canada a

The present invention relates to esters of L-carnitine and acyl L-carnitine of formula (I):

wherein

5

10

25

45

50

55

75 R is hydrogen or is a straight or branched, saturated or unsaturated acyl group having 2 to 26 carbon atoms:

 R_1 is a straight or branched, saturated or unsaturated alkyl group having 4 to 26 carbon atoms; and X^- is the anion of a pharmacologically acceptable acid.

These compounds are endowed with calcium-antagonist activity. However, unlike known calcium antagonists (such as e.g. Diltiazem, Verapamil and Nitrendipina) it was surprisingly found that the compounds of formula (I) exhibit potent muscle relaxant activity affecting the gastrointestinal tract selectively, with no effect whatsoever on the cardiovascular tract. Moreover, they exhibit remarkable muscle relaxant activity on the intestinal contractility brought about by contracture-inducing drugs having different mode of action (e.g. acetylcholine).

The compounds of formula (I) are useful as active ingredients in orally or parenterally administrable pharmaceutical compositions, for treating adaptive colitis syndromes as well as all those pathologies wherein an increase of intestinal contractility and/or motility can be found.

In compounds of formula (I), when R is a straight saturated acyl group having 2 to 26 carbon atoms, it is preferably selected from acetyl, propionyl, butyryl, palmitoyl, undecanoyl and hexacosanoyl;

when R is branched acyl, it is preferably selected from isobutyryl, isovaleryl, isocaproyl and 2- methylhex-anoyl;

when R is unsaturated acyl, it is preferably 10-undecenoyl.

As regards R₁ (alkyl group having 4 to 26 carbon atoms), when R₁ is straight saturated alkyl, it is preferably selected from n-butyl, n-heptyl, n-undecyl and n-hexacosyl;

when R₁ is branched alkyl, it is preferably selected from isobutyl, isooctyl, hexylmethylcarbyl, ethylpentyl-carbyl, ethylhexylcarbyl, decylmethylcarbyl, dipentylcarbyl and methylnonylcarbyl;

when R₁ is unsaturated alkyl, it is preferably pentylvinylcarbyl or 10-undecenyl.

The anion X⁻ of the pharmacologically acceptable acid is preferably selected from chloride; bromide; iodide; aspartate, particularly acid aspartate; citrate, particularly acid citrate; tartrate; phosphate, particularly acid phosphate; fumarate, particularly acid fumarate; glycerophosphate; glucosephosphate; lactate; maleate, particularly acid maleate; orotate; oxalate, particularly acid oxalate; sulphate, particularly acid sulphate; trichloroacetate; trifluoroacetate and methansulphonate.

The esters of formula (I) may be prepared following two distinct synthesis processes. The first process (illustrated in the Synthesis Scheme 1) comprises the steps consisting of:

- (a) halogenating an acyl L-carnitine with a halogenating agent such as thionyl chloride and oxalyl chloride (molar ratio comprised between 1:1 and 1:4) in an anhydrous organic inert solvent such as acetonitrile or methylene chloride at a temperature comprised between 0°C and 30°C for 1-4 hours, concentrating the raw reaction product and using it in the following step;
- (b) dissolving the acid chloride of step (a) in an anhydrous organic inert solvent such as acetonitrile or methylene chloride and adding the alcohol diluted in the same solvent at a ratio comprised between 1:1 and 1:2 at temperatures comprised between 0 °C and 30 °C for 2-10 hours, concentrating the solution and, if needed, purifying the compound by chromatography on silica gel; and
- (c) eluting the product dissolved in water or in an organic solvent on a strongly basic ion exchange resin such as Amberlite IRA 402 or on a weakly basic ion exchange resin such as Amberlist A 21, activated with the desired HX acid and isolating the final product by lyophilization or concentration.

The second process (illustrated in the Synthesis Scheme 2) comprises the steps consisting of:

(a') reacting carnitine or an acyl carnitine inner salt with the relevant alkyl halogenide (preferably bromide or iodide) in an organic anhydrous inert solvent at a temperature comprised between 30 °C and 60 °C for

8-24 hours and then isolating the resulting compound by concentration;

- (b') acylating the ester obtained in step (a') with the desired acid chloride by known techniques, in case the starting compound in step (a') is carnitine;
- (c') eluting an aqueous or alcoholic solution of the compound of step (a') or (b') on an ion exchange resin such as Amberlite IRA 402 or Amberlist A 21 activated with the desired HX acid.

Synthesis Scheme 1

40 R = acyl

5

25

55

45

Synthesis Scheme 2

Example 1

45 Preparation of acetyl L-carnitine heptyl ester chloride (ST 904)

Step (a'): Preparation of acetyl L-carnitine heptyl ester iodide.

Acetyl L-carnitine inner salt (30 g; 0.148 moles) was suspended in 50 ml anhydrous CH₃CN. To this mixture heptyl iodide (24.5 ml; 0.149 moles) was added. The resulting solution was reacted for 12 hours at 50 °C and then concentrated under vacuum. An oily residue was obtained which was used as such in the next step.

Step (c'):

55

The raw products of step a' was dissolved in H_2O and eluted through a column of 600 ml Amberlite IRA 402 resin activated in Cl^- form. The collected eluate was lyophilized and 45 g of a vitreous solid product were obtained. Yield 91%.

 $[\alpha]^{25}_D$ = -11.2(c = 0.5% CHCl₃) E.A. C₁₆H₃₂CINO₄

5

	C%	Н%	Ν%	CI%
calculated (anhydrous) found	56.96	9.49	4.15	10.52
	54.63	10.17	4.06	9.74

H₂O 3.8% HPLC

Column: Spherisorb Cl 5 µm

t: 50 ° C

Flow rate: 1 ml/min Rt: 17.44 min

NMR D₂O δ 5.6 (1H,m,

CH); | OCO

20

25

4.1 (2H,t,OCH₂); 4.0-3.7 (2H,m,N + CH₂-); 3.3 (9H,s,(CH₃)₃N⁺); 2.8 (2H,dd,CH₂COO); 2.1 (3H,s,COCH₃); 1.3 (10H,m, (CH₂)₅); 0.9 (3H,m,CH₂CH₃)

Example 2

Preparation of isobutyryl L-carnitine heptyl ester chloride (ST 713)

30 Step (a): Preparation of the acid chloride of isobutyryl L-carnitine chloride.

Isobutyryl L-carnitine chloride was suspended in oxalyl chloride (16 ml; 0.095 moles). The mixture was kept under stirring at room temperature for 6 hours. Anhydrous ethyl ether was then added till complete precipitation of an oily product. The solution was concentrated and the residue washed three times with anhydrous acetone and dried under vacuum. 9 g of product were obtained. The raw product was used as such in the next step.

Step (b): Preparation of isobutyryl L-carnitine heptyl ester chloride (ST 713).

To the acid chloride of isobutyryl L-carnitine (9 g) (prepared as shown in step a), heptanol (50 ml) was added under stirring at 0 ° C.

The resulting solution was kept at room temperature for 8 hours, then concentrated under vacuum to a small volume, diluted with CHCl₃ and chromatographed on silica buffered with 2% Na₂HPO₄. The column was eluted with CHCl₃ to remove the unreacted heptanol and then against CHCl₃-MeOH gradient till 100% MeOH. The oily residue thus obtained was repeatedly washed with hexane and dried under vacuum.

10.5 g of a hygroscopic oily product were obtained. Yield 89%.

TLC CHCl₃-MeOH-H₂O-IsoprOH (60-40-15-10)

RF = 0.7

 $[\alpha]^{25}D = -16.7 (c = 1\% H_2O)$

E.A. C₁₈ H₃₆ NO₄ Cl

	C%	Н%	N%	CI%
calculated (anhydrous) found	59.07	9.91	3.82	9.68
	56.87	10.30	3.63	9.12

H₂O 4.6%
HPLC
Column: Lichrosorb BRP2 (10 μm)
Mobile phase: (NH₄)₂HPO₄ 0.05M-CH₃CN (1:1)
5 pH 7 with H₃PO₄
Flow rate: 2 ml/min
RT = 7.44
RT = 5.07 10% carnitine heptil ester
NMR CDCl₃ δ 5.5 (1H,m,

CH); | OCO

4.2-3.8 (4H,m,N+CH₂-; OCH₂); 3.3 (9H,s, (CH₃)₃N+); 2.7 (2H,m,CH₂COO); 2.4 (1H,m,COCH); 1.5-0.8 (19H,m, (CH₂)₅-CH₃;

The compounds of Examples 3-7 were prepared following the procedures disclosed in Example 1.

The compounds of Examples 8-9 and 12-32 were prepared following the procedures disclosed in Example 2.

30

10

15

20

25

35

40

45

50

					1		
5				4			
10	,		CH ₂ ;OCH ₂);	CH ₂ CH ₂ CH ₃); 1, ,CH ₃);0,9		CH ₂ ; OCH ₂); CH ₂ COO);	1 CH ₃): 1,2 H CH ₃)
15		NMR & CDCI ₃	5.7(1H,m,C H); 4.2-4.0(4H,m,N*CH ₂ ;OCH ₂); 0 3.3 (9H,s,(CH ₃) ₃ N*); 2.9(2H,m,CH ₂ COO);	2,5 (1H,m,OCOCH); 1,6 (2H m,CH ₂ CH ₂ CH ₃); 1,4 (2H,m,CH ₂ CH ₃); 1,1 (6H,d,CH ² CH ₃); 0,9	(c)	5.7(1H,m,C _f H); 4.0-3.8(4H,m,N*CH ₂ ; OCH ₂); O 3.2 (9H,s.(CH ₃) ₃ N*); 2.9(2H,m,CH ₂ COO);	2,6 (1H,m,COCH); 2,0 (1H m,CH CH ₃ CH ₃ CH ₃ (6H,d,CH CH ₃ CH ₃ (6H,d,CH CH ₃
20	ū.		5,7(1H,m,C H) O 3,3 (9H,s,(CH	2,5 (111,m,OC (211,m,C <u>H</u> 2C1	(311,m,CH ₂ CH ₃)	5,7(1H,m,ÇH) o 3,2 (9H,s,(CH	2,6 (1H,m,CO / C (6H,d,CH / C
25	c e	[a] ²⁵ c - 1% 11.0	- 19,3			-19,5	
30	CI13 X O	11% N% CI%	calc. 55,63 9,33 4,32 10,95 found 53,36 9,36 4,17 10,60			calc. 55,80 9,36 4,33 10,67 found 50,28 9,72 4,28 10,99	
35	ਹ ਹੈ ਹ	E.A. C%	calc. 55,63 9 found 53,36			calc. 55,80 found 50,28 9	
40		11 ₂ 0% KF	3%			3,6%	
		HPI.C RI	4.04			5,65°	
45		Œ	n-butyl 4,04*			iso- butyl	
50		ST code	ST 665 isobutyryl			ST 305 1so- isobutyryl butyl	
		Ä.	3			4	

	i i			
5		OCH ₂); OO); H ₃); H ₂ ,CH ₃);	(¹CH₂); SOO); SCH₃);	
10	ء اکار	(4H,m,N*CH ₂ ; 28(2H,m,CH ₂ C 1 (1H m,CH ² 1); 1,4 (2H,m,C ;CH ₂ CH ₃)	(4H,m,OCH ₂ ;) 2,8(2H,m,CH ₂ (,0(2H m,2C <u>H</u> _	
15	NMR 8 CDCl ₃	5.7(1H,m,CH); 4.4-4.0(4H,m,N*CH ₂ ; OCH ₂); 0c0 3.5 (9H,s.(CH ₃) ₃ N*); 2.8(2H,m,CH ₂ COO); 2.2 (2H,m,COCH ₂); 2.1 (1H m,CH ₂ CH ₃); 1.6(2H,m,CH ₂ CH ₂ CH ₃); 1.4 (2H,m,CH ₂ CH ₃); 0.9(9H,m,CH ₂ CH ₂ CH ₃); 1.4 (2H,m,CH ₂ CH ₃);	5,7(1H,m,CH); 4,0-3,6(4H,m,OCH ₂ ;N ⁺ CH ₂); 0,00 3,2 (9H,s,(CH ₃) ₃ N ⁺); 2,8(2H,m,CH ₂ COO); 2,4 (1H,m,COCH2); 2,0(2H m,2CH ⁺); CH ₃ 0,9(12H,dd, 2CH ⁺ CH ₃)	
20		5,7(1H,r 3,5 (9H, 2,2 (2H, 1,6(2H,	5,7(1H,4	
25	[α] ²⁵ [α] ⁰ C-1%11,c	-18,7	82	
30	N% CI%	4,29 10,87 4,06 19,7	55,80 9,55 4,15 10,49 55,80 9,61 5,44 10,42	
35	. C% H%	calc. 55,28 9,83 4,29 10,87	•	
	E.A.	<u> </u>	found	
40	H ₂ O% KF	0'2%	1,8%	
	HPLC	6,44	7,66 ^b	
45	E.	n- butyl	iso- butyl	
50	ST code	ST 603 f so- valeryl	ST 684 fso- valeryl	
50	E.	വ	9	•

				- ·	,							
5 10	NMR & CDCl ₃	5,7(1H,m,ÇH); 4,2-3,8(4H,m,N*CH ₂ ; OCH ₂);	3,2 (911,5,(0:13)3N); 2,8(2H,0,0:H2,0:U0) 2,2 (2H,m,0COCH2CH); 1,5 (1H m,CHCH,); 1,2	(13H, m,(CH ₂) ₅ CH ₃); 0,9 (6H,d,CH ^{CH₃})	4.6(1H,m,ÇH); 4.1(2H,1,COOCH ₂);	3.6 (2H,m,N°CH2); 3,2(9H,s,(CH3)3N°); 2,8	(2H,m,CH2COO), 1,6 (2H,m,OCH2CH2);1,3 (8H,s,(CH2),)	CH ₃)	5.7 (1H.m.ÇH); 4.4-4.0 (4H,dm,NCH2; OCH2);	3.5 (9H.s.(CH3)3N) 2.9(2H,m,CH2COO);	2,2 (3H,s,COCH ₃); 1,6(2H,m,CH ₂);1,3 (46H,s,(CH ₂) ₂₃);	СН3)
20		5,7(1H,m	3,2 (911,5 2,2 (2H,1	(13Н, ш,	4.6(1H,m	3.6 (2H,m	(2H,m,CF	0,9(3H,1,CH ₃)	5,7 (1H,n	3,5 (914,8,	2,2 (3H,s	0,9(3H,s,CH ₃)
	[α] ²⁵ C= 1% 110	- 15				-10,6	_			-10,4		
25	%IO %N	3,60 9,34 3,29 9,24				.74 11,98	1,62 11,68			,30 5,82 ,33 5,65		
30	C% H%	2,2%, calc. 60,05 10,67 3,68 9,34 found 56,61 10,34 3,29 9,24				2,5% calc.56,83 10,22 4,74 11,98	10 55,40 10,23 4		1	0,7% calc. 69,0/ 11,6/ 2,30 5,82 found 68,74 12,62 2,33 5,65		
35	E.A.	calc				, S	5		•	ra ica Foun		
55	1120% KF	2,2%				2,5%				0.7%		
40	HPLC Rt	8,77				8,91				\		
.5	R,	heptyl 8,77 ^d	•			ST 895 heptyl 8,91				rexa-		
	ST code n	ST 697	, 5			ST 895 H			ST 961		cetyl	
45	EX.	^				8			6		-	

Lichrosorb RP₂ (10 μ) column, t=35°C, eluant CH₃CN-50mM KH₂PO₄ (30-70), flow rate 1 ml/min

d: as c, eluant CH₂OH-5OmM KH₂PO₄ (60-40)

e: as c, eluant CH₃CN-KH₂PO₄ (

f: c=1% NeO

g: c-1\$ CHC13

Example 10

50

Preparation of isovaleryl L-carnitine undecyl ester chloride (ST 722)

55 Step A: Preparation of isovaleryl L-carnitine chloride acid chloride.

Isovaleryl L-carnitine chloride (30 g; 0.106 moles) was suspended in 100 ml anhydrous CH2 Cl2.

The mixture was cooled at 0° C and oxalyl chloride (13 ml; 0.15 moles) diluted in 15 ml anhydrous CH₂Cl₂ was slowly added under stirring.

After 30 minutes at room temperature, a further amount of oxalyl chloride (19 ml; 0.21 moles) diluted in 10 ml anhydrous CH₂Cl₂ was added.

The resulting solution was kept under stirring for 2 hours at room temperature, then concentrated under vacuum.

The residue thus obtained was washed twice with anhydrous CH₂Cl₂ and concentrated under vacuum.

The raw products thus obtained was used as such in the next reaction.

50 Step B: Preparation of isovaleryl L-carnitine undecyl ester chloride (ST 722).

The acid chloride previously prepared (0.106 moles) was dissolved in anhydrous CH₂Cl₂ (40 ml).

The solution was cooled at 0 °C and undecylic acid (35 ml; 0.168 moles) diluted in 35 ml CH₂Cl₂ was added in a nitrogen atmosphere.

The solution was kept under stirring at room temperature for 2 hours and then concentrated under vacuum until an oily residue was obtained.

The raw reaction mixture was chromatographed on a silica gel column buffered with 2% Na₂HPO₄, eluting with CH₂Cl₂ till complete elution of undecylic alcohol and then with CH₂Cl₂-MeOH 9:1 till complete elution of the compound.

The pooled fractions were concentrated and gave 28 g of the title compound; yield 60%.

 $[\alpha]^{25}_D = -10.5 (c = 1\% H_2O)$

E A. C₂₃H₄₆CINO₄

	C%	Н%	N%	CI%
calculated (anhydrous) found	63.35	10.63	3.21	8.13
	60.87	0.88	3.29	8.14

H₂O 2.4%

HPLC

5

15

25

Column: Spherisorb CI (5 µm)

t: 50 ° C

Eluant: CH₃OH/50 mM KH₂PO₄ (65:35)

Flow rate: 1 ml/min RT = 14.82 min

NMR CDCl₃ δ 5.5 (1H,m,

CH); | OCO

4.2-3.8 (4H,m,N+CH₂-; OCH₂); 3.3 (9H,s, (CH₃)₃N+); 2.8(2H,m,CH₂COO); 2.2(2H,m,OCOCH₂); 1.6-1.0 (22H,m,

(CH₂)₉-CH₃); 0.8 (6H,d,

55

50

Example 11

10 Preparation of isobutyryl L-carnitine undecyl ester chloride (ST 712)

The compound was prepared as described in Example 10, substituting isobutyryl L-carnitine chloride for isovaleryl L-carnitine chloride. Yield 55%.

 $[\alpha]^{25}D = -15.8 (c = 1\% H_2O)$

15 E.A. C₂₂H₄₄O₄NCI

20

H₂O 0.8% HPLC

Column: Spherisorb Cl (4.6 μm)

Eluant: CH₃OH/50 mM KH₂PO₄ (60:40)

Flow rate: 1 ml/min RT = 14.75 min

NMR CDCl₃ δ 5.5 (1H,m,

30

CH); | OCO

35

40

 $4.2-3.8\;(4H,m,N^{+}CH_{2}-;\;OCH_{2});\;3.3\;(9H,s,\;(CH_{3})_{3}N^{+});\;2.8\;(2H,m,CH_{2}COO);\;2.5\;(1H,m,COCH);\;1.5-0.9\;(27H,m,CH_{2}COO);\;2.5\;(1H,m,COCH);\;1.5-0.9\;(27H,m,CH_{2}COO);\;2.5\;(1H,m,COCH);\;2.5-0.9\;(27H,m,CH_{2}COO);\;2.5\;(1H,m,COCH);\;2.5-0.9\;(27H,m,CH_{2}COO);\;2.5-0.9\;(27H,m,CH_{2}COO);\;2.5-0.9\;(27H,m,COCH);\;2.5-0.9\;(27H,m,CH_{2}COO);\;2.5-0.9\;(27H,m,CH_{2}COO);\;2.5-0.9\;(27H,m,COCH);\;2.5-0.9\;(27H,m,COCH);\;2.5-0.9\;(27H,m,CH_{2}COO);\;2.5-0.9\;(27H,m,COCH$

CH CH3

(CH₂)₉-CH₃)

50

5	9		1,OCH2):4,0- (9H,s,(CH3)3N+); ; 2,6-2,3(2H,m, m,2CH2,-CH); 1,3 (6H,d, (CH3)2);	H,t,OCH ₂); 4,0-3,7 1s,(CH ₃)3N+);); 2,5-2,3(2H,m, 1g); 1,3(22H,m, CH ₃). D ₂ O	(4H,m,CH2N+; 13N+); 28(2H,m, CCCH2); 1,6(4H, CH2); 0,9(6H,21,	(4H,m,CH2N+; 13N+); 2,8(2H,m, H); 1,6(2H,m, 2);1,1 (3H,m, 13). CDCl3	,m,OCH2);4,0-3,7,5,(CH3);3N-1;3,0-3(2H,m,OCOCH2); 2H,m,CH2);1,3 2H,m,CH2);1,3 9 (6H,dd,
10	NMR 8		5,7(1H,m,CHO);4,1(2H,t,OCH ₂);4,0-3,7(2H,m, CH ₂ N+ ¹); 3,2(9H,s,(CH ₃)3N+ ¹); 3,0-2,7(2H,m,CH ₂ COO); 2,6-2,3(2H,m,OCOCH ₂); 1,7-1,4(5H,m,2CH ₂ ,-CH); 1,3 (16H, broad,8CH ₂); 0,9 (6H,d, (CH ₃)2); 0,8(3H,t,CH ₃). D ₂ O	5,7(1H,m,CHO); 4,1(2H,t,OCH ₂); 4,0-3,7 (2H,m,CH ₂ N+1); 3,2 (9H,s,(CH ₃)3N+1); 3,0-2,7 (2H,m,CH ₂ COO); 2,5-2,3(2H,m,COCH ₂); 1,6(4H,m,2CH ₂); 1,3(22H,m,1)CH ₂); 0,9-0,8(6H,2t,2CH ₃). D ₂ O	5,7(1H,m,CHO); 4,3-4,0 (4H,m,CH ₂ N+; OCH ₂); 3,5 (9H,s,(CH ₃) ₃ N+); 2,8(2H,m, CH ₂ COO); 2,3(2H,m,OCOCH ₂); 1,6(4H, m,2CH ₂); 1,3(26H,m,13CH ₂); 0,9(6H,21, 2CH ₃). CDCl ₃	5,7(1H,m,CHO); 4,3-4,0 (4H,m,CH ₂ N+; OCH ₂); 3,5 (9H,s,(CH ₃) ₃ N+); 2,8(2H,m, CH ₂ COO); 2,4 (1H,m,CH); 1,6(2H,m, CH ₂);1,3(26H,m,13 CH ₂);1,1 (3H,m, CHC <u>H₃</u>);0,9(6H,21,2CH ₃). CDCl ₃	5,7(1H,m,CHO);4,1(2H,m,OCH2);4,0-3,7 (2H,m,CH2N ⁺);3,2(9H,s,(CH3)3N ⁺);3,0- 2,7(2H,m,CH2CO);2,3(2H,m,OCOCH2); 2,1(1H,m,CH2CH);1,6(2H,m,CH2);1,3 (20H, broad, 11 CH2);0,9 (6H,dd, CH(CH3)2);0,8(3H,t,CH3), D>O
15	HIPLC	Rt min	8,45d	9,35d	9,13e	28,03 ^b	р6£'6
20	m.p.	ပွ	oil /not determined	not determined	dec.	not determined	dec. 150
		H20	1,9%	1,3%	0,3%	0,4%	1,2%
25	-	Ü	4CI 9,01%	6,68%	4CI 6,70%	4Cl 6,93%	4CI 7,03%
30	E.A. found	Z	C24H48NO4CI	C25H49NO4CI	C27H54N04CI	C27H54NO4Cl	C25H50NO4CI
35		C	61,28%	64,35%	65,26%	65,06%	63,73%
40	[a] 25	D	-13,12 (c=0,8% H ₂ O)	-12,1 (c=1% H ₂ O)	-10,3 (c=0,7% CHCl ₃)	-8,8 (c=1% CHCl3)	-11,8 (c=1%H2O)
	×		- 5	Ö	· i 5	ن	Ü
			02	01	12	12	12
45	R		isocaproyl	eptanoyl	eptanoyl	2-methyl esanoyl	isovaleryl
50	æ.	90 90 90	12 ST 1034	13 ST 1036	14 ST 1050	15 ST 1051	16 ST 1033

NMR &		5,7(1H,m,CHO);4,3-4,0(4H,m, CH ₂ N+;OCH ₂); 3,5(9H,s,(CH ₃) ₃ N+); 2,9- 2,7(2H,m,CH ₂ COO); 2,3(2H,t,OCOCH ₂); 1,6(4H,m,2CH ₂); 1,3(24H, broad,12 CH ₂); 0,9(6H,m,2CH ₃). CDCl ₃	5,7(1H,m,CHO);4,3-4,0(4H,m, CH ₂ N+;OCH ₂); 3,5(9H,s,(CH ₃)3N+); 2,9- 2,7(2H,m,CH ₂ COO); 2,3(2H,m,OCOCH ₂); 1,6(4H,m,2CH ₂); 1,3(28H, broad,14 CH ₂); 0,9(6H,m,2CH ₃). CDCl ₃	5,7(1H,m,CHO);4,4-4,0(4H,m, N+CH ₂ ; OCH ₂) 3,5(9H,s,N ⁺ (CH ₃)3); 2,8(2H,m,CH ₂ COO); 2,2(2H,m,OCOCH ₂); 2,0(1H,m,C <u>H</u> (CH ₃)2); 1,6 (2H,m,CH ₂); 1,2(18H,broad, 9(CH ₂); 0,9-0,8(9H,d+1, CH ₃ ;(CH ₃)2). CDCl ₃	5,7(1H,m,CHO);4,4-4,0(4H,m, N+CH ₂ , OCH ₂); 3,5(9H,s,N ⁺ (CH ₃) ₃); 2,9-2,7(2H,m,CH ₂ COO);2,6-2,5(1H,m, CH(CH ₃) ₂);1,6(2H,m,CH ₂);1,3(18H, broad, 9CH ₂); 1,1 (6H,d, CH(CH ₃) ₂); 0.8 (3H,t,CH ₃). CDC13	5,7(1H,m,CHO);4,4-4,0(4H,m, N+CH2; OCH2); 3,5(9H,s,N+(CH3)3); 2,8(2H,m,CH2COO);2,4(2H,t, COOCH2) 1,6(2H,m,CH2);1,3 (26H, broad ,13 CH2); 0,9 (6H,2t, 2CH3)
HPLC	Rt min	14,86°	14,71 ^C	12,65ª	14,0a	10,47f
m.p.	ၞ	dec. 120-130	dec. 150-160	dec. 150-160	dec. 150-155	not determined
	1120	1,2%	0,7%	1,0%	0,4%	0,6%
	ט	7,14%	4Cl 6,93%	4Cl 7,81%	4CI 7,86%	4CI 6,60%
A. found	z	2,93%	8H56NO 2,71%	3,15%	3,27% 3,27%	C26H52NO4CI % 2,41% 6
	Ι	C ₂	C ₂	C2 12,26%	11,47%	C2 67,00% 12,12%
	O	65,01%	66,46%	63,46%	62,90%	%00′29
[a] 25	Ω	-10,7 (c=1%CHCl3)	-9,8 (c=1%CHCl3)	-12,2 (c=1%H ₂ O)	-14,5 (c=1%H ₂ O)	-12,7 (c=1%MelOH)
×		ن	÷	-to	ن	ö
	-	12	12	=	Ξ	Ξ
×		esanoyl	octanoyl	isovaleryl	isobutirryl	eptanoyl
短.	oge	17 ST 1052	18 ST 1053	19 ST 1037	20 ST 1038	21 ST 1060
	R X- (α 25 E.A. found m.p.	R N- (a) 25 E.A. found m.p. HPLC P D C H N CI H2O °C Rt min	R X- [a] 25 E.A. found m.p. HPLC n D C H N CI H2O °C Rt min csanoyl 12 CI- -10,7 65,01% 11,87% 2,93% 7,14% 1,2% dec. 14,86c (c=1%CHCl3) (c=1%CHCl3) 120-130 120-130 120-130 120-130	No. No.	R N X [a] 25 E.A. found m.p. HPLC	No. C H N C H HPLC

5		.		n,CHO);4,5(2H,5, 2CHOH); 4,1-m, N+CH2; OCH2); 3,2 (9H,5,N+1); 3,0-2,7(2H,m,CH2COO); 2,4-m, OCOCH2); 2,1-2,0 (1H, m,3)2);1,6(2H,m,CH2);1,3 (16H, RCH2); 0,9(6H,d,CH(CH3)2); CH3). D2O	(1H,m,CHO); OCH2);3,2(9H,s,N+ ,CH2COO);2,4-2,2 1H,m,CH(CH3)2); H,broad,8CH2);0,9 3H,t,CH3). D2O	H,q,CH);4,4-4,0 +,s,N+(CH ₃); ,2(2H,m, CH(CH ₃);1,5(4H, 4,3CH ₂);	1(2H,m,COOCH2););3,3(9H,s, CH2COO); iH,m,8CH2);
10		NMR &		5,7(1H,m,CHO);4,5(2H,s, 2CHOH); 4,1-3,6 (4H,m, N*CH2; OCH2); 3,2 (9H,s,N*CH3)3); 3,0-2,7(2H,m,CH2COO); 2,4-2,2(2H,m, OCOCH2); 2,1-2,0 (1H, m,CH(CH3)2);1,6(2H,m,CH2);1,3 (16H, broad, 8CH2); 0,9(6H,d,CH(CH3)2); 0,8(3H,t,CH3). D2O	6,6(2H,s,CH=CH); 5,7(1H,m,CHO); 4,1-3,7(4H,m,N+CH2;OCH2);3,2(9H,s,N+ (CH3)3); 3,0-2,7(2H,m,CH2COO);2,4-2,2 (2H,m,OCOCH2);2,0(1H,m,CH(CH3)2); 1,6(2H,m,CH2);1,3(16H,broad,8CH2);0,9 (6H,t,CH(CH3)2);0,8(3H,t,CH3). D2O	5,7(2H,m,CHO);4,8(1H,q,CH);4,4-4,0 (2H,m,N+CH2);3,4(9H,s,N*(CH3)3); 2,8(2H,m,CH2COO);2,2(2H,m, OCOCH2);2,1(1H,m,CH(CH3)2);1,5(4H, m,2CH2);1,3(6H,broad,3CH2); 1,0-0,9(9H,d+t,CH(CH3)2;CH3).CDCl3	4,7 (1H,m,C <u>H</u> OH); 4,1(2H,m,COOCH ₂); 3,5-3,4(2H,m,N ⁺ CH ₂);3,3(9H,s, (CH ₃) ₃ N ⁺);2,6(2H,m,CH ₂ COO); 1,7(2H,m,CH ₂);1,3(16H,m,8CH ₂); 0,9(3H,t,CH ₃). D ₂ O
15		HPLC	Rt min	13,74a	13,99a	2'36ر	11,90ª
20)	m.p.	ပ္	not determined	dec. 120	dec. 150-160	oil not determined
25	5		CI 1120	8.4	0,7%	CI 6.69% 1,3%	9,45% 1,4%
30	0	E.A. found	z	C27H51NO10 9,78% 2,44%	C ₂₇ H ₄₉ NO ₈ 9,90% 2,54%	C23H46NO4CI	C18H38NO3C1
38	5		C	56,87%	62,23%	61,33%	59,85%
4(0	[a] 25	D	-1,9 (c=1%H2O)	- 13,3% (c=1%H ₂ O)	-12,9 (c=1%H ₂ O)	- 11,2% (c=0,7%14 ₂ O)
		×		tartra te acid	fuma rate acid	± .	<u>ت</u> .
		e e	-	02	01	6- unde cil	10
4	5	R		isovaleryl	ST 1017 isovaleryl	isovaleryl	I
5	0	ā	apoo	22 ST 1018	23 ST 1017	24 ST 1035	25 ST 1013

NMR &		6,0-5,8(1H,m,C <u>H</u> =CH ₂);5,7(1H,m, CHOCO);5,1-5,0(2H,m,CH=C <u>H</u> ₂); 4,2(2H,t,COOCH ₂);4,0-3,8(2H,m,N ⁺ CH ₂) 3,3(9H _{.8} ,(CH ₃) ₃ N ⁺);2,9(2H,m,CH ₂ COO);	2,3(2H,d,OCOCH2);2,2-2,0(3H,m,CH2; CH(CH3)2);1,7(2H,m,CH2);1,4(14H, broad,7CH2);1,0(6H,d,2CH3).CD3OD	6,8(2H,s,CH =CH),6,0-5,8(1H,m, C <u>H</u> =CH2),5,7(1H,m,CHOCO); 5,1-5,0(2H,m,CH=C <u>H</u> 2),4,2(2H,t,	COOCH2);4,0-3,8(2H,m,N*CH2) 3,3(9H,s,(CH3)3N*);2,9(2H,m,CH2COO); 2,3(2H,d,OCOCH2);2,2-2,0(3H,m,CH2; C <u>H</u> (CH3)2);1,7(2H,m,CH2);1,4(14H, broad,7CH2);1,0(6H,d,2CH3);CD3OD	6,0-5,8(1H,m,CH =CH2);5,7(1H,m, CHOCO);5,1-5,0(2H,m,CH=CH2); 4,4(2H,s,2CHOH);4,2(2H,1,COOCH2);4,0	-3,8(2H,m,N ⁺ CH ₂);3,3(9H,s, (CH ₃) ₃ N ⁺);2,9(2H,m,CH ₂ COO); 2,3(2H,d,OCOCH ₂);2,2-2,0(3H,m,CH ₂); C <u>H</u> (CH ₃) ₂);1,7(2H,m,CH ₂);1,4(14H, broad,7CH ₂);1,0(6H,d,2CH ₃).D ₂ O	5,7(1H,m,CHOCO),4,1(2H,m,COOCH ₂);	4,0-3,7(2H,m,N~CH2);3,2(9H,s, (CH3)3N+);3,0-2,7(2H,m,CH2COO); 2,3(2H,m,OCOCH2);2,1(1H,m,CH	(CH3)2);1,6(2H,m,CH2);1,3(10H,broad; 5CH2);1,0(6H,d,CH(C <u>H3</u>)2); 0,8(3H,t,CH3). D ₂ O
HPLC	Rt min	14,92a		10,42e		11,33ª		5,75		
m.p.	ပူ	oil not determ.		oil not determ.		oil not determ.		oil not	מכובוווי	
	H20	1,5%		%8′0		26'0		1,7%	•	
	G	,4Cl 7,40%		80		0110		04 8,64%		
E.A. found	z	3H44NO. 3,14%		27H47NC 2,66%		271 ¹ 51NC 2,51%		3,55%		
	Н	C ₂		9,39%		9,45%		11,66		
	C	61,43%		62,07%		58,08%		59,98%		
[a] 25	D	- 11,1% (c=1%CHCl3)		- 11,8% (c=1%H ₂ O)		. 2,7% (c=1%H2O)		- 17,4%	(02118/1=1)	
×		Ġ.		fuma -rate acid		tartra te acid		-io		
E		чочомчо		40-104410		Chyalias		2		
×		isovaleryl		isovaleryl		isovaleryl		isovaleryl		
æ ş	1	26 ST 1014		27 ST 1015		28 ST 1016		29 ST 1032		
	R n X- (a) 25 E.A. found m.p. HPLC	n X- [a] 25 E.A. found m.p. HPLC D C H N C! H2O °C Rt min	R	R. N. N. Fa] 25 E.A. found m.p. HPLC	R	R	R	R	R	R

. 55

5
10
15
20
25
30
35
40
45

ă	Ж	٦	×	(a) 25		E.A. found	5		m.p.	HPLC	NMR &
code				۵	U	z	ō	H20	ů	Rt min	
30 ST 1055	stearov	01	5	- 2,7%	68,21%	C36H72NO4CI	04Cl	1,9%		17,898	5,7(1H,m,CHOCO);4,4-4,0(4H,m,N+CH2;
3		!	;	(c=1%CHCl ₃)					determ.		COOCH2);3,4(9H,s,(CH3)3N+1);2,8(2H,m, CH2COO);2,3(2H,m,OCOCH2);1,7(20H,
											broad,10CH2);1,3(28H,broad,14CH2); 0,9(3H,t,CH3).CDCl3
31	31 ST 1072 isovalery	6	<u> </u>	- 13,6%	58,88%	C22H44NO4CI 8,24% 3,17% 7	04Cl	1%	oil not	6,11e	
			;	(c=1%H ₂ O)					determ.		4,0-3,8(2H,m,N+CH2);3,2(9H,s, (CH3)3N+1;3,0-2,7(2H,m,CH2COO);
				•							2,4(2H,m,OCOCH2);2,1(1H,m,CH
											(CH3)2);1,7(2H,m,CH2);1,3(14H,oroad, 7CH2);1,0(6H,d,CH(C <u>H3</u>)2),0,9(3H,1,
											CH3)D2O
32	10 40.00	CHACKOR		6.4%	66.80%	C29H54NO4Cl	04Cl 6 7.01%	0.6%	oil not	oil not 25,22h	5,9-5,8(2H,m,2CH=CH2);
25.10	novi	:	<u> </u>	(c=1%CHCl3)	2				determ.		
	}										4,4-4,0(4H,m,N+CH2;COOCH2);
											3,4(9H,s,(CH3)3N+);2,8(2H,m,CH2COO);
											2,4(2H,1,OCOCH2);2,0(4H,m,2CH2-CH=)
											1,6(4H,broad,2CH2);1,4-1,2(20H,broad,
											10CH ₂).CDCl ₃

10	NMR &		5,7(1H,m,CHO);4,3-4,0 (4H,m,CH2N*; OCH2); 3,5(9Hs,(CH3);3N*); 2,8 (2H,m, CH2COO); 2,3(2H,t,OCOCH2);1,8(4H,m, 2 CH2); 1,6 (4H,m,2 CH2); 1,3 (20H, broad, 10 CH2); 0,9 (6H, 2t, 2 CH3);CDC];	5,7(1H,m,CHO);4,4-4,0(4H,m, N+CH2; OCH2); 3,5(9H,s,N+(CH3)3); 2,8(2H,m,CH2COO);2,2(3H,m, CH(CH3)2);1,6(2H,m,CH2);1,3(26H, broad, 13 CH2);1,0-0,9(9H,d+t, CH3,CH(CH3)2). CDCl3	5,7(1H,m,CHOCO);4,44,0(4H,m, N*CH2; COOCH2); 3,3(9H,s,(CH3);N*); 2,8(2H,m,CH2COO);2,4(2H,m, OCOCH2);2,2 (1H,brosd,CH2);1,6(4H,m, 2CH2);1,2-1,1(44H,brosd,22CH2);1,0- 0,9(6H,dt,2CH3). CDCl3
15	ньгс	Rt min	10,28ª	12,12ª	not deter- mined
20	m.p.	ů	103-105	not determined	not determined
		H ₂ O	3,2%	0,5%	1,3%
25		٥	6,96%	,CI 7,57%	5,20% 5,20%
30	E.A. found	Ι ν	C26H52NO4C	C28H54NO4Cl	C37H74NO4C1
		ں	62,84%	C2 65,30% 11,11%	69,46%
35	[a] 25	O	.10,7 (c=1%CHCl3)	-12,6 (c=0,5%H2O)	-12,6 (c=0,5%H2O)
40	×		Ö	ַט	טֹ
		c	01	15	м
4 5	×		octanoyl	isovaleryl	35 ST 1061 Hexacosan oyl
50	Ä	ş	33 ST 1000	34 ST 1001	35 ST 1061
	_				

EP 0 559 625 A2

	a:	Column: Nucleosil-SA (5 μ) 1.2 mm, i.d. 4.0 mm t: 40°C
5		Mobile phase: 50mM (NH ₄) ₂ HPO ₄ /CH ₃ CN 1:1 pH 4 with H ₃ PO ₄ Flow rate: 0.75 ml/min
10	b;	Column: Spherisorb C1 (5 µ) 1.2 mm, i.d. 4.6 mm t: 50°C
		Mobile phase: $CH_3OH/50mM KH_2PO_4$ 60:40 Flow rate: 0.5 ml/min
15	c:	Column: Spherisorb C1 (5 μ) 1.2 mm, i.d. 4.6 mm t: 50°C
		Mobile phase: $CH_3OH/50mM \ KH_2PO_4 \ 70:30 \ pH \ 3.9 \ with \ H_3PO_4$ Flow rate: 0.5 ml/min
20	d:	Column: Spherisorb C1 (5 µ) 1.2 mm, i.d. 4.6 mm t: 40°C
25		Mobile phase: $\rm CH_3OH/50mM~KH_2PO_4~65:35~pH~4.5~with~H_3PO_4$ Flow rate: 0.5 ml/min
	e:	Column: Nucleosil-SA (5 μ) 1.2 mm, i.d. 4.0 mm t: 30°C
30		Mobile phase: $50 \text{mM} (\text{NH}_4)_2 \text{HPO}_4 / \text{CH}_3 \text{CN} 65:35 \text{ pH} 3.5 \text{ with H}_3 \text{PO}_4$ Flow rate: 0.75 ml/min
35	f;	Column: Spherisorb C1 (5 μ) 1.2 mm, i.d. 4.6 mm t: 40°C
		Mobile phase: $CH_3OH/50mM$ KH_2PO_4 65:35 pH 4.5 with H_3PO_4 Flow rate: 1 ml/min
40	g;	Column: Spherisorb C1 (5 µ) 1.2 mm, i.d. 4.6 mm t: 50°C
45		Mobile phase: CH ₃ CN/50mM KH ₂ PO ₄ 70:30 Flow rate: 0.8 ml/min
	h:	Column: Spherisorb C1 (5 μ) 1.2 mm, i.d. 4.6 mm
50		t: 50°C Mobile phase: CH ₃ CN/50mM KH ₂ PO ₄ 60:40 Flow rate: 1 ml/min

Binding studies of ca++ channel receptors

The "binding" of the tested compounds to the sites associated to calcium channels labeled by ³H-Nitrendipine, ³H-Verapamil and ³H-Diltiazem has been assayed in rat brain according to the method of

Schoemaker H. et al. Eur. J. Pharmacol. <u>111</u>, 273 (1985) and of Reynolds I.J. et al. Eur. J. Pharmacol. <u>95</u>, 319 (1983).

Brain cortices are removed from decollated male Crl: CD (SD) BR rats weighing 250-300 g.

The tissues were homogenized in Tris-HCl buffer and centrifuged at 50000 x g for 10 minutes. The pellet was washed twice through a fresh buffer suspension and centrifuged at 50000 x g for 10 minutes.

After suspension of the precipitate in the incubation buffer the compounds under examination were added to the medium, starting from a concentration 10^{-5} M. Incubation conditions were: 3 H-Nitrendipine (0.5 nM) x 60' at 30 °C; 3 H-Verapamil (10 μ M) x 20' at 37 °C; and 3 H-d-cis Diltiazem (4 nM) x 60' at 30 °C. Final volume was 1 ml. Incubation was stopped by rapid filtration under vacuum through GF/B (0.1% polyethylene) fiber filters which were washed with cold incubation buffer (3 x 3 ml) using the system of filtration Brandel Cell Harvester. Filters were put in 8 ml of Optifluor (Packard) and the radioactivity bound to the membranes trapped by fibers counted by liquid scintillation spectrometer TRI-CARB 1900 CA (Packard). The counting efficiency was about 50%.

15 Evaluation of binding data

The percentage inhibition of the specific ³H-ligand binding to its respective receptors was calculated for each concentration (mean of three incubates).

The competition curve, the slope of the curve and IC₅₀ ± standard deviation values (drug concentration that reduces specific ³H-ligand binding to its respective receptors by 50% of its maximum value) were calculated by using the "Allfit" program (De Lean A. et al., Am. J. Physiol. <u>235</u>, E97, 1978) running on an IBM 55-SH. The results obtained are shown in Table 1. Compounds resulted inactive at the concentration 10⁻⁵ M have not been tested at higher concentrations.

25 Assessment of behaviour and mortality in mice

The assessment of normal behaviour in mice was carried out following S. Irwin's method, Psychophar-macologia 13, 222 (1968). This method allows alterations in some behavioural, neurophysiologic and neurovegetative parameters to be detected, which are directly observable by the researcher. The study was conducted using male Crl: (CD-I)(ICR)BR mice (Charles River - Italy) weighing 22-25 g, following oral administration of the compounds suspended in carboxymethylcellulose (0.5% by weight in H₂O) to groups of 4 animals/dose.

The animals were continuously kept under observation for five hours following treatment and twice a day in the subsequent five days. Mortality was also observed during the overall test period. The initial dose was 1000 mg/kg per os; lower doses were administered in case of death or if the initial dose brought about an excessive response.

The results are shown in Table 2.

ST 722 studies on isolated organs

The compound was examined in the following preparations of isolated organs:

- Guinea pig ileum
- Rat portal vein

40

55

45 Isolated guinea pig ileum

Antagonism to Ca++ induced contractions

ST 722 action has been tested in ileal segments K⁺ depolarized and bathed in Ca-free physiological solution at 37 °C. A contractile response was evoked by CaCl₂ as described by Spedding M., J. Pharmac. 83, 211 (1984). ST 722 antagonized dose-dependently from 0.1 to 1 µg/ml CaCl₂ contractions.

Antagonism to angiotensin induced contractions

lleal segments bathed at 37 °C wered made to contract by angiotensin according to the method of Rubin B. et al., J. Pharmacol. Exper. Therap. 204, 271 (1978). ST 722 dose-dependently inhibited angiotensin effect in dose ranging from 0.1 to 1 μg/ml.

Antagonism to substance P induced contractions

Inhibition to the submaximal contractile response evoked by substance P has been determined in ileum segments bathed at 37 °C as described by Holtzer P. et al., Eur. Pharm. 91, 83 (1983). Doses ranging from 0.1 to 1 µg/ml resulted active.

Antagonsim to methacholine contractions

The compound action has been assayed by using ileum segments made to contract by methacholine chloride according to Magnus R. et al., Physiol. 102, 123 (1904). ST 722 antagonized dose-dependently from 0.1 to 1 µg/ml methacholine contractions.

Rat portal vein

15

20

25

30

The effect of the compound on the contractions evoked by high K⁺ concentrations in the rat portal vein has been tested according to Shetty S.S. et al., Europ. J. Pharm. 141, 485 (1989). ST 722 resulted inactive at a concentration of 10 mg/ml.

Study of the effect on blood pressure and heart rate

The effect of the substance has been tested after oral administration of 100 mg/kg to conscious spontaneously hypertensive rats (SHR). No changes of blood pressure and heart rate were observed 1, 2 and 4 hours after the administration. The experimental procedure was run according to Yeer T.T. et al, Life Sciences 22, 359 (1978).

In conclusion, compounds of the invention resulted active in inhibiting the binding to sites associated to Ca⁺⁺ channels at concentrations of pharmacological interest.

The compounds of the invention, like reference Ca-antagonists, antagonize the contractile activiti of the ileum, but at variance with reference compounds are inactive on contractile activity of portal vein. In addition, they counteracted the contractions evoked by angiotensin, substance P and methacholine.

A pharmacological profile such as shown by these compounds, a Ca-antagonist and anti-cholinergic action in the gastrointestinal tract, but not in other districts (see rat portal vein) in absence of effects on blood pressure "in vivo" is absolutely unexpected.

Table 1

7	и	ς	:	
v	١,	J	,	

40

45

Compound	IC ₅₀ Uptake sites of Ca ⁺⁺ channels labelled with			
	³ H-Nitrendipine	³ H-Verapamil	³ H-Diltiazem	
ST 305	3.3 x 10 ⁻⁵	3.5 × 10 ^{−6}	> 10 ⁻⁵	
ST 683	> 10 ⁻⁵	2.4×10^{-6}	1.5 x 10 ^{−5}	
ST 684	> 10 ⁻⁵	1.6 x 10 ⁻⁶	7.8 x 10 ^{−6}	
ST 697	> 10 ⁻⁵	1.5 x 10 ⁻⁶	5 x 10 ⁻⁷	
ST 712	5.3 x 10 ⁻⁶	2.8 x 10 ⁻⁶	1.2 x 10 ^{−6}	
ST 713	> 10 ⁻⁵	1.2 x 10 ⁻⁶	1.3 x 10 ⁻⁶	
ST 722	1.6 x 10 ⁻⁶	3.8×10^{-7}	1.4 x 10 ^{−6}	
ST 904	> 10 ⁻⁵	3.2×10^{-6}	> 10 ⁻⁵	

50

Table 2

Assessment of behaviour and death rate in mice

Symptoms

n.e.

n.e.

convulsions (*)

convulsions (*)

n.e.

n.e.

convulsions (*)

convulsions (*)

convulsions (*)

n.e.

n.e.

convulsions (*)

convulsions (*)

convulsions (*)

salivation, diarrhea

n.e.

convulsions (*)

convulsions (*)

n.e.

convulsions (*)

convulsions (*)

Dose

1000

300

600

1000

1000

100

300

600

1000

1000

100

300

600

1000

1000

300

600

1000

300

600

1000

(*) = in connection with death rate only

Death rate

0/4

0/4

2/4

4/4

0/4

0/4

1/4

2/4

4/4

0/4

0/4 2/4

3/4

4/4

0/4

0/4

2/4

4/4

0/4

2/4

4/4

10

15

20

25

30

35

40

45

Claims

1. Esters of L-carnitine and acyl L-carnitine of formula (I):

Compound

ST 305

ST 683

ST 684

ST 697

ST 712

ST 713

ST 722

ST 895

ST 904

n.e. = no effect

50

55

wherein

R is hydrogen or is a straight or branched, saturated or unsaturated acyl group having 2 to 26 carbon atoms:

R₁ is a straight or branched, saturated or unsaturated alkyl group having 4 to 26 carbon atoms; and X⁻ is the anion of a pharmacologically acceptable acid.

2. Esters according to claim 1, wherein R is

EP 0 559 625 A2

- (a) a saturated straight acyl group selected from acetyl, propionyl, butyryl, palmitoyl, undecanoyl and hexacosanoyl; or
- (b) a branched acyl group selected from isobutyryl, isovaleryl, isocaproyl and 2-methylheaxanoyl; or
- (c) 10-undecenoyl.

5

10

15

25

35

- 3. Esters according to claims 1 or 2, wherein R₁ is
 - (a) a saturated straight alkyl group selected from n-butyl, n-heptyl, n-undecyl and n-hexacosyl; or
 - (b) a branched alkyl group selected from isobutyl, isooctyl, hexylmethylcarbyl, ethylpentylcarbyl, ethylhexylcarbyl, decylmethylcarbyl, dipentylcarbyl and methylnonylcarbyl; or
 - (c) an unsaturated alkyl group selected from pentylvinylcarbyl and 10-undecenoyl.
- 4. Esters according to anyone of the preceding claims, wherein X⁻ is selected from chloride; bromide; iodide; aspartate, particularly acid aspartate; citrate, particularly acid citrate; tartrate; phosphate, particularly acid phosphate; fumarate, particularly acid fumarate; glycerophosphate; glucosephosphate; lactate; maleate, particularly acid maleate; orotate; oxalate, particularly acid oxalate; sulphate, particularly acid sulphate; trichloroacetate; trifluoroacetate and methansulphonate.
- 5. Acetyl L-carnitine heptyl ester chloride.
- 20 6. Isobutyryl L-carnitine heptyl ester chloride.
 - 7. Isobutyryl L-carnitine n-butyl ester chloride.
 - 8. Isobutyryl L-carnitine isobutyl ester chloride.
 - 9. Isovaleryl L-carnitine n-butyl ester chloride.
 - 10. Isovaleryl L-carnitine isobutyl ester chloride.
- 11. Isovaleryl L-carnitine heptyl ester chloride.
 - 12. L-carnitine heptyl ester chloride.
 - 13. Acetyl L-carnitine hexacosyl ester chloride.
 - 14. Isovaleryl L-carnitine undecyl ester chloride.
 - 15. Isobutyryl L-carnitine undecyl ester chloride.
- 40 16. An orally or parenterally administrable pharmaceutical composition comprising an ester of anyone of the preceding claims as active ingredient and a pharmacologically acceptable excipient therefor.
 - 17. The composition of claim 16 having muscle relaxant activity selective on the gastrointestinal tract.
- 45 18. The composition of claim 16 for treating adaptive colitis syndromes and pathological conditions characterized by increased intestinal contractility and/or motility.

50