Bucle for... end, if ..end, while..end

```
>> k=1:10;>> y=k.^2;>> whosVariables in the current scope:
```

```
      Attr Name
      Size
      Bytes Class

      ====
      ====
      =====

      k
      1x10
      24 double

      y
      1x10
      80 double
```

Total is 20 elements using 104 bytes

```
>> k
k =

1  2  3  4  5  6  7  8  9  10
>> y
y =

1  4  9  16  25  36  49  64  81  10
```

Bucle for...end

```
>> for k=1:10
y(k)=k^2;
end
>> k
k = 10
>> y
y =
1 4 9 16 25 36 49 64 81 100
```

>> whosVariables in the current scope:

Attr Name	Size	Bytes Class
==== ====	====	===== =====
k 1	LX1	8 double
y 1	x10	80 double

Total is 11 elements using 88 bytes

>> potencia2

Vamos a suponer que queremos realizar la suma de:

$$suma = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2$$

>> k=1:10;
>> y=k.^2;
>> suma=sum(y)
suma = 385
>> whos
Variables in the current scope:

Attr Name	Size	Bytes Class
==== ====	====	===== =====
k	1x10	24 double
suma	1x1	8 double
У	1x10	80 double

Total is 21 elements using 112 bytes


```
sumapotencia2.m 

1    suma=0;
2    for k=1:10
3    suma=suma+k^2;
4    end
```

```
>> sumapotencia2
```

>> whos

Variables in the current scope:

```
      Attr Name
      Size
      Bytes Class

      ====
      ====
      =====

      k
      1x1
      8 double

      suma
      1x1
      8 double
```

Total is 2 elements using 16 bytes >> suma suma = 385

Actividad 1

a) Realizar el diagrama de flujo para calcular suma de la siguiente expresión utilizando únicamente escalares.

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{100}$$

- b) Realizar un script utilizando el diagrama de flujo del punto a.
- c) Indique el resultado, tamaño y tipo de la variables del espacio de trabajo

Bucle if...end

```
Algoritmo comparacion
 escribir un número'
         a<0
             'es negativo'
    FinAlgoritmo
```

```
comparacion.m 

1    a=input('Escribir un numero');
2    —if a<0
3    disp('es negativo')
4    end
```



```
comparacion.m 
a=input('Escribir un numero');
2  if a<0
3  disp('es negativo')
else
disp('es positivo')
end</pre>
```

Actividad 2

- a) Realizar el diagrama de flujo para las raíces de una polinomio de grado 2 si son reales en caso contrario indicar que las raíces no son reales
- b) Realizar un script utilizando el diagrama de flujo del punto a.

$$y = ax^{2} + bx + c$$

$$x1 = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}, \quad ,x2 = \frac{-b - \sqrt{b^{2} - 4ac}}{2a}$$

Bucle while...end


```
sumarmientras.m 
i=1;
suma=0;
suma<20
4 suma=suma+i;
i=i+1;
6 end</pre>
```

Prueba de escritorio

suma	i	condición
0	1	V
1	2	V
3	3	V
6	4	V
10	5	V
15	6	V
21	7	F

Actividad 3

Sea la siguiente sucesión:

$$a(k) = \frac{1}{k^k}; a(1) = 1; a(2) = \frac{1}{2^2}; a(3) = \frac{1}{3^3}, \dots$$

Se define $s(n) = \sum_{k=1}^{n} a(k)$

a) Realizar el diagrama de flujo que calcule s(n) hasta que

$$a(n) \leq \frac{0.005}{s(n)}$$

- b) Realizar un script utilizando el diagrama de flujo del punto a.
- c) Indique el resultado s(n), tamaño y tipo de la variables del espacio de trabajo

k	a(k)	s(n)
1	1	1
2	1/4	1.25
3	1/27	1.2870
4	1/256	1.2909

se cumple ¿ $a(n) \leq \frac{0.005}{s(n)}$?