IMPORTANT: Besides your **calculator** and the sheets you use for calculations you are only allowed to have an A4 sized "**copy sheet**" during this exam. Notes, problems and alike are not permitted. **Please submit your "copy sheet" along with your solutions.** You may get your "copy sheet" back after your solutions have been graded. **Do not forget to write down units and convert units carefully! Cell phones are not allowed and should be placed on the front desk before the exam.**

EHB222E INTRODUCTION TO ELECTRONICS (11394)

- 1. Analyze the transistor circuit given below. BJT parameters are V_{BE} = 0,6V, h_{FE} = β_F =300, r_o = 1/ h_{OE} = 34 k and V_T = 25 mV. Resistor values are R_g = 1k, R_1 = 100 k, R_2 = 20 k, R_C = 2,2 k, R_E = 500 Ω , R_Y = 10 k and V_{CC} = 10 V. Remember that C_∞ and C_E are short circuit at AC.
 - a. Calculate V_B , V_C , V_E and I_C .
 - b. Find v_2/v_1 and v_2/v_g .
 - c. Calculate (b) withoutC_E present.
- Assuming MOS transistors below are biased by ideal current sources, and both MOS are in saturation,

- a. Design the two ideal current sources (using BJT or MOS to your liking)
- b. Calculate voltage gain v_o/v_{in} as a function of MOS parameters V_A and g_m .
- c. How does the gain in **(b)** change when this MOS amplifier is fed by a signal generator having a source resistance \mathbf{R}_s , and a load \mathbf{R}_l is connected to the output.
- 3. Assuming the OPAMP on the right is ideal calculate V_D , V_n and V_o for $.(I_{zmin} = 0 \text{ mA})$
 - a. $V_i = -3 \text{ V}$
 - b. $V_i = 3 \text{ V}$
 - c. $V_i = 5 \text{ V}$

SOLUTIONS:

2. Small signal circuit:

$$r_{o1} = \frac{V_{A1}}{I_{D1}}; r_{o2} = \frac{V_{A2}}{I_{D2}}$$

$$A_{v} = \frac{v_{o}}{v_{in}} = \frac{v_{o}}{v_{gs2}} \cdot \frac{v_{gs2}}{v_{in}} = \left(-g_{m2}r_{o2}\right) \cdot \left(-g_{m1}r_{o1}\right) = \underbrace{g_{m1}g_{m2}r_{o1}r_{o2}}_{m1}.$$

The gain in **(b) does NOT** change when this MOS amplifier is fed by a signal generator having a source resistance R_s , because no current flows into the G(ate).

However, when a load \mathbf{R}_{l} is connected to the output, \mathbf{R}_{l} is connected in parallel to r_{o2} . Thus

$$A_{v}^{*} = \frac{v_{o}^{*}}{v_{in}} = \frac{v_{o}^{*}}{v_{oc2}} \cdot \frac{v_{gs2}}{v_{in}} = \left[-g_{m2}(r_{o2} \parallel R_{l}) \right] \cdot \left(-g_{m1}r_{o1} \right) = \underbrace{g_{m1}g_{m2}r_{o1}(r_{o2} \parallel R_{l})}_{m}$$

3. Analyze how the Zener diode works:

- a. The Zener diode is forward biased. $V_D = -V_{DO} = -0.6 \text{ V}$. Assuming $V_n = 0 \text{ V}$ (negative feedback over the OPAMP) $V_0 = -R_F/R_{12}*V_D = 3.6 \text{ V}$ Because -10 V < V_0 <10 V $V_n = 0 \text{ V}$ assumption IS CORRECT.
- b. The Zener diode is reverse biased. Assuming $I_D=0$ mA and $V_n=0$ V, $V_D=1,5$ V. Since $V_D<V_Z$ $I_D=0$ mA assumption IS CORRECT. $V_o=-R_F/R_{I2}*V_D=-9$ V.
 - Because -10 V < V_0 < 10 V $\frac{V_n}{V_n} = 0$ V assumption IS CORRECT.
- c. The Zener diode is reverse biased. Assuming $I_D = 0$ mA and $V_n = 0$ V, $V_D = 2,5$ V. Since $V_D > V_Z$, $I_D = 0$ mA assumption IS <u>NOT</u> CORRECT. If $I_{zmin} = 0$ mA then $V_D = V_Z = 2$ V. Assuming $V_n = 0$ V (negative feedback over the OPAMP) $V_0 = -R_F/R_{I2}*V_D = -12$ V. However, because -10 V $< V_0 < 10$ V, $V_0 = -10$ V. THUS $V_n = 0$ V assumption IS <u>NOT</u> CORRECT. And $V_n = 0,28$ V