Chap 3 Regular Languages and Regular Grammars

3.1 Regular Expressions

Formal Definition of a Regular Expression

Definition 3.1

Let Σ be a given alphabet. Then

- 1. \emptyset , λ , and $a \in \Sigma$ are all regular expressions. These are called **primitive** regular expressions.
- **2.** If r_1 and r_2 are regular expressions, so are $r_1 + r_2$, $r_1 \cdot r_2$, r_1^* , and r_2 .
- 3. A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in (2).

Example 3.1

For $\Sigma = \{a, b, c\}$, the string

$$(a+b\cdot c)^*\cdot (c+\varnothing)$$

is a regular expression, since it is constructed by application of the above rules. For example, if we take $r_1 = c$ and $r_2 = \emptyset$, we find that $c + \emptyset$ and $(c + \emptyset)$ are also regular expressions. Repeating this, we eventually generate the whole string. On the other hand, (a + b +) is not a regular expression, since there is no way it can be constructed from the primitive regular expressions.

Languages	Associated	with	Regular	Expressions
			•	

Regular expressions can be used to	describe some simple languages. If r is a
regular expression, we will let $L(r)$	denote the language associated with r .

Definition 3.2

The language $L\left(r\right)$ denoted by any regular expression r is defined by the following rules.

2.
$$\lambda$$
 is a regular expression denoting $\{\lambda\}$,

3. For every $a \in \Sigma$, a is a regular expression denoting $\{a\}$.

If r_1 and r_2 are regular expressions, then

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$
,

5.
$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$
,

6.
$$L((r_1)) = L(r_1)$$
,

7.
$$L(r_1^*) = (L(r_1))^*$$
.

Example 3.2 Exhibit the language $L(a^* \cdot (a+b))$ in set notation.

$$L(a^* \cdot (a+b)) = L(a^*) L(a+b)$$

$$= (L(a))^* (L(a) \cup L(b))$$

$$= \{\lambda, a, aa, aaa, ...\} \{a, b\}$$

$$= \{a, aa, aaa, ..., b, ab, aab, ...\}.$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_1 and r_2 are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b + c$. We can consider this as being made up of $r_1 = a \cdot b$ and $r_2 = c$. In this case, we find $L(a \cdot b + c) = \{ab, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_1 = a$ and $r_2 = b + c$. We now get a different result, $L(a \cdot b + c) = \{ab, ac\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results. Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also, the symbol for concatenation may be omitted, so we can write r_1r_2 for $r_1 \cdot r_2$.

Example 3.3

For $\Sigma = \{a, b\}$, the expression

$$r = (a+b)^* (a+bb)$$

is regular. It denotes the language

$$L(r) = \{a, bb, aa, abb, ba, bbb, \dots\}.$$

We can see this by considering the various parts of r. The first part, $(a+b)^*$, stands for any string of a's and b's. The second part, (a+bb) represents either an a or a double b. Consequently, L(r) is the set of all strings on $\{a,b\}$, terminated by either an a or a bb.

Example 3.4

The expression

$$r = (aa)^* (bb)^* b$$

denotes the set of all strings with an even number of a's followed by an odd number of b's; that is,

$$L(r) = \{a^{2n}b^{2m+1} : n \ge 0, \ m \ge 0\}.$$

Example 3.5

For $\Sigma = \{0, 1\}$, give a regular expression r such that

 $L(r) = \{w \in \Sigma^* : w \text{ has at least one pair of consecutive zeros}\}.$

One can arrive at an answer by reasoning something like this: Every string in L(r) must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^*$. Putting these observations together, we arrive at the solution

$$r = (0+1)^* 00 (0+1)^*$$
.

Example 3.6 Find a regular expression for the language

$$L = \{w \in \{0,1\}^* : w \text{ has no pair of consecutive zeros}\}.$$

Even though this looks similar to Example 3.5, the answer is harder to construct. One helpful observation is that whenever a 0 occurs, it must be followed immediately by a 1. Such a substring may be preceded and followed by an arbitrary number of 1's. This suggests that the answer involves the repetition of strings of the form $1 \cdots 101 \cdots 1$, that is, the language denoted by the regular expression (1*011*)*. However, the answer is still incomplete, since the strings ending in 0 or consisting of all 1's are unaccounted for. After taking care of these special cases we arrive at the answer

$$r = (1^*011^*)^* (0 + \lambda) + 1^* (0 + \lambda).$$

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01, the shorter expression

$$r = (1+01)^* (0+\lambda)$$

might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5. However, the regular expressions are not very similar and do not suggest clearly the close relationship between the languages.