# Practice Sessions Astrophysical Simulations

# Part 4b: Differential equation (Solution)



Master of Science in Physics and Astronomy
2018-2019
Peter Camps
peter.camps@ugent.be
S9, 1st floor, office 110.014

## **Assignment: solve differential equation**

#### Part 1

 Implement the forward, backward, centered and centered-time finite difference methods to numerically solve the ODE

$$\dot{y} = -y$$
 with  $y(0)=1$  for  $y(t)$  in the interval  $t \in [0,1]$  using time step h=0.01

 Plot the solutions and the errors relative to the analytical solution, in function of t

#### Part 2

- Adjust (a copy of) your program to use a sequence of time steps  $h = 1, 0.1, 0.01, ... 10^{-9}$  (do not output all the computed points!)
- Plot the relative error at the end of the interval (t<sub>end</sub> =1) in function of h, and interpret the results

## Time evolution of y(t) for h=0.01



- All implemented methods produce results near the analytical solution
- The forward and backward methods have "opposite" errors
- This plot does not allow proper evaluation of the results

#### Error on time evolution of y(t) for h=0.01



- At the end of the interval (i.e. after 100 steps) the relative error for the forward and backward difference methods is substantial (0.5%)
- The centered-time difference method far outperforms the other methods
  - » Almost three orders of magnitudes better than forward and backward
  - » Even a lot better than centered method which has the same order

#### Error on y(t=1) in function of h



- The forward and backward methods produce errors with opposite sign
- The centered and centered-time difference methods produce better results for the same time step
- The linear scale of the plot does not allow evaluating the results for small h

## Error on y(t=1) in function of h



- The centered and centered-time difference methods produce far better results for the same time step
- Choosing the time step too small has an adverse effect on the result (in addition to increasing the runtime); for the centered-time method, the optimal time step value is  $h \approx 10^{-5}$  achieving an accuracy of about  $10^{-11}$

#### Finite difference functions

| Scheme                   | Order              | Equation                             |  |
|--------------------------|--------------------|--------------------------------------|--|
| Forward difference       | O(h <sup>2</sup> ) | $y_{n+1} = y_n + hg_n$               |  |
| Backward difference      | O(h <sup>2</sup> ) | $y_{n+1} = y_n + hg_{n+1}$           |  |
| Centered difference      | O(h <sup>3</sup> ) | $y_{n+1} = y_{n-1} + 2hg_n$          |  |
| Centered time difference | O(h <sup>3</sup> ) | $y_{n+1} = y_n + h(g_n + g_{n+1})/2$ |  |

```
double forward(double y_n, double h) {
    return (1. - h) * y_n;
}
double backward(double y_n, double h) {
    return y_n / (1. + h);
}
double centered(double y_nml, double y_n, double h) {
    return y_nml - 2.*h * y_n;
}
double centered_time(double y_n, double h) {
    return y_n * (1. - 0.5*h) / (1. + 0.5*h);
}
```

Substitute  $g_n = -y_n$  and rearrange if needed

#### **Initial conditions**

```
Setup constants defining the
const double t0 = 0.;
                                                    problem
const double y0 = 1.;
const double t end = 1.;
const double h = 0.01;
                                          Open the output file and set high
                                            precision because we will be
ofstream outfile("ode1.txt");
                                            evaluating small differences
outfile << setprecision(15);
                                                between numbers
double t = t0;
                                          Initialize variables for the time and
double forw = y0;
double back = y0;
                                            for each method to the initial
double cent = y0;
                                                   conditions
double cntm = y0;
outfile << t << ' ' << y anal(t) << '
         << forw << ' ' << back << ' '
                                                     Output the initial
         << cent << ' ' << cntm << '\n';
```

conditions as the first

line in the file

#### The first time step

The first time step is performed outside of the loop because of the special needs of the centered difference method; we need to make an initial guess of  $y_1$  because the method calculates  $y_{n+1}$  from  $y_{n-1}$  and  $y_n$ 

the first time step

#### The time loop

```
for (t += h; t < t end+h/2.; t += h) {
                                                   Loop over time with
   forw = forward(forw, h);
                                                 steps h; ensure that we
   back = backward(back, h);
                                                   go just beyond tend
   double temp = cent;
   cent = centered(cent prev, cent, h);
   cent prev = temp;
                                           Remember the y_{n-1} value for the
   cntm = centered time(cntm, h);
                                            centered difference method
   outfile << t << ' ' << y anal(t) << '
            << forw << ' ' << back << '
            << cent << ' ' << cntm << '\n';
                                                  Output the results for
                                                     each time step
outfile.close();
                         Close the output file after
```

the loop has completed

## Adjusting the code for looping over h

```
Loop over a sequence of
double h = 0.1;
                                           time steps h
while (h >= 5e-10) {
    cout << "Starting time step " << h << endl;</pre>
                        Here goes the previous code,
                          with all output removed
                                Output the results
                                for each value of h
    outfile << h << ' ' << y_anal(t-h) << ' '
             << forw << ' ' << back <<\
             << cent << ' ' << cntm <<
   h /= 2;
```

Calculate the next time step h (spaced evenly in logarithmic space) Use t-h because the for loop has incremented the loop variable by one extra step

## **Questions?**