Sprawozdanie nr 2 Analiza Obrazów

Tomasz Rajchel 2019-12-16

Spis treści

5	Lab	Laboratorium 5 - Morfologie								
	5.1	Wstęp	1							
	5.2	Skel	1							
	5.3	Remove	2							
	5.4	Shrink	2							
	5.5	Thin	3							
	5.6	Thicken	4							
	5.7	Oddzielanie obiektów	5							
	5.8	Transformata odległościowa	5							
	5.9	Segmentacje	6							
6	Laboratorium 6 - Współczynniki geometryczne									
	6.1	Wstęp	8							
	6.2	Współczynniki dostępne w MATLAB'ie	9							
	6.3	Dodatkowe współczynniki	9							
7	Lab	Laboratorium 7 - Klasyfikacja obiektów przy użyciu sieci neuronowych								
	7.1	Wstęp	11							
	7.2		11							

5 Laboratorium 5 - Morfologie

5.1 Wstęp

Rysunek 1: Obraz bazowy

Na obrazie znajdują się 3 obiekty. Musimy jednak oddzielić je od tła. Wykorzystamy do tego binaryzację (z progiem .55 jasności dla obrazu w odcieniach szarości) i operację zamknięcia by pozbyć się "dziur" powstałych w obiektach.

Rysunek 2: Oddzielanie obiektów od tła.

Liczba Eulera jest miarą topologii obrazu. Jest definiowana jako całkowita liczba obiektów na obrazie (binarnym) minus liczba dziur w obiektach. Manipulując obrazem zależy nam na tym by liczba ta była stała. Nie chcemy zmienić liczby obiektów a jedynie ich kształt. Dla powyższego obrazu liczba Eulera jest równa 3.

Do wykonywania morfologicznych operacji na obrazach binarnych skorzystamy z funkcji dostępnej w MATLAB'ie o nazwie 'bwmorph'.

5.2 Skel

Szkieletowanie usuwa piksele na krawędziach jednocześnie niedopuszczając by obiekt się rozpadł.

Rysunek 3: Szkielety obiektów.

5.3 Remove

'Remove' usuwa środek obiektów. Zwraca tylko obwód.

Rysunek 4: Obwody obiektów.

5.4 Shrink

Operacja 'shrink' zmniejsza obiekt poprzez usuwanie pikseli zaczynając od krawędzi. Warto zaznaczyć, że efekt końcowy nie jest środkiem geometrycznym.

Rysunek 5: 5 iteracji zmniejszania.

Rysunek 6: Maksymalna ilość iteracji zmniejszania.

5.5 Thin

Operacja pocieniania redukuje obiekty aż do samych linii. Ciekawym jej zastosowaniem jest znajdywanie dróg, rzek itp. na zdjęciach satelitarnych.

Rysunek 7: Wynik operacji pocieniania (maks liczba iteracji)

Możemy użyć funkcji 'branchpoints', która zwróci nam końce linii.

 ${\it Te}$ punkty mogą okazać się użyteczne do dalszej analizy lub szkolenia sieci neuronowych do rozpoznawania obiektów.

5.6 Thicken

Operacja poszerzania, powiększy nasze obiekty jednak nie pozwoli im się scalić.

Rysunek 8: Wynik operacji poszerzania (20 iteracji)

Rysunek 9: Wynik operacji poszerzania (maks liczba iteracji)

W każdym z tych obszarów na pewno znajduje się jeden obiekt.

5.7 Oddzielanie obiektów

Możemy wykorzystać etykiety do odróżniania obiektów. Dostępna w matlabie funkcja 'bwlabel' zwróci nam macierz ponumerowanych obiektów dla obrazu binarnego.

Rysunek 10: Ponumerowane kaczki, oznaczone kolorami.

5.8 Transformata odległościowa

Funkcja 'bwdist' zwraca odległość od najbliższego obiektu dla każdego piksela.

Rysunek 11: Wynik operacji 'bwdist'.

5.9 Segmentacje

Korzystając z poprzedniego obrazu (Rysunek 11). Wykonamy operację segmentacji wododziałowej.

Rysunek 12: Segmentacja wododziałowa.

Wpowyższym przykładzie skorzystaliśmy z metryki euklidesowej (najpopularniejsza, zwykła odległość). Ale do niektórych zastosowań lepiej jest skorzystać z innych metryk.

Rysunek 13: Segmentacja z metryką manhattan.

Rysunek 14: Segmentacja z metryką chessboard.

6 Laboratorium 6 - Współczynniki geometryczne

6.1 Wstęp

Rysunek 15: Obraz bazowy - ptaki.jpg

Można zauważyć, że na powyższym kolorowym (RGB) obrazie największa różnica między obiektami (ptakami) a tłem występuje w kanale niebieskim.

Rysunek 16: Kanały RGB i ich histogramy.

Skorzystamy z tej własności, żeby lepiej odseparować obiekty od tła.

Rysunek 17: Obraz binarny, progowanie w kanale niebieskim.

6.2 Współczynniki dostępne w MATLAB'ie

Udało nam się wykryć 8 obiektów, w tym dwa scalone i jeden urywek. Możemy dla nich obliczyć różne współczynniki. Funkcja 'regionprops' w matlabie zwraca 23 parametry. Niektóre z nich to:

- 1. Area Pole powierzchni
- 2. Centroid Środek geometryczny
- 3. BoundingBox najmniejszy ograniczający kwadrat z bokami równoległymi do osi X i Y.
- 4. MajorAxisLength Długość osi wielkiej
- 5. MinorAxisLength Długość osi małej
- 6. Eccentricity Mimośród
- 7. Orientation Skierowanie
- 8. EulerNumber Liczba Eulera
- 9. Perimeter Obwód

Im więcej współczynników tym więcej 'wymiarów' w których obiekty się od siebie różnią. Główną idea obliczania tych współczynników jest łatwiejsze odróżnianie od siebie obiektów.

Dla wielu współczynników punktem odniesienia jest koło (np. mimośród).

6.3 Dodatkowe współczynniki

Zdefiniujemy funkcje obliczające następujące współczynniki:

- 1. Kształt
- 2. Współczynnik Malinowskiej
- 3. Współczynnik Haralick'a
- 4. Średnica Feret'a stosunek średnic z bounding box (bok poziomy do boku pionowego)
- 5. Współczynnik Danielsson'a Średnia odległość piksela od krawędzi, dla koła największa możliwa wartosć
- 6. CircularityS (Kolistość)
- 7. CircularityL (Kolistość)
- 8. Współczynnik Blair'a Bliss'a średnia odległość od środka dla każdego piksela

Współczynniki											
1	2	3	4	5	6	7	8				
3.29	0.81	81.22	0.53	103.88	154.72	280.75	6.98				
2.93	0.71	73.24	0.95	92.18	123.21	211.04	6.00				
2.99	0.73	55.15	0.88	87.10	96.88	167.43	5.45				
3.21	0.79	88.29	0.86	103.31	150.73	269.93	6.65				
3.15	0.78	63.63	0.81	84.69	108.62	192.90	5.77				
3.60	0.90	70.93	0.72	114.52	127.92	242.55	6.25				
2.45	0.57	59.25	0.50	73.63	109.92	172.21	5.93				
1.62	0.27	20.73	2.48	17.62	38.01	48.38	3.45				

Wykorzystamy obliczone współczynniki by pozbyć się obiektów odstających od średniej (scalone ptaki i urywki).

Rysunek 18: Odchylenie standardowe dla różnych obiektów

Jak widać udało nam się zdecydowanie wykluczyć tylko obiekt nr 8 (skrawek, widoczny po prawej stronie).

Potrzebna nam jest metoda która może nauczyć się odróżniać od siebie różne obiekty korzystając z obliczonych parametrów.

7 Laboratorium 7 - Klasyfikacja obiektów przy użyciu sieci neuronowych

7.1 Wstęp

Rysunek 19: Obraz bazowy - ptaki2.jpg

Korzystając ze współczynników przedstawionych w poprzednim rozdziale, nauczymy sieć neuronową odróżniać ptaki z z obrazu 15 od ptaków z obrazu 19.

Rysunek 20: Wykryte, pełne obiekty - ptaki2.

7.2 Uczenie sieci neuronowej

Wejściem sieci bedą współczynniki z podpunktu 6.3.

Zero na wyjściu sieci oznacza obiekt z obrazu 'ptaki.jpg', natomiast jedynka obiekt z obrazu 'ptaki2.jpg'.

Rysunek 21: Struktura sieci neuronowej.

Rysunek 22: Historia wydajności sieci podczas szkolenia.

Widzimy, że na takim miniaturowym zbiorze danych uczenie kończy się już w piątej epoce. Dalej następuje jedynie poprawa na zbiorze uczącym 'Train' - tak zwane przeuczenie.

Sprawdźmy jak dobrze nasza sieć klasyfikuje obiekty. Na wejście podamy 8 elementową macierz współczynników obliczonych dla obiektów z obrazu 'ptaki.jpg' i 6 elementową macierz współczynników dla obiektów z obrazu 'ptaki2.jpg'. Połączone w macierzy 'ucz'.

Rysunek 23: Wyjście z sieci neuronowej dla obiektów ptaki i ptaki2.

Widzimy, że nasza sieć prawidłowo sklasyfikowała wszystkie obiekty.