

Introductory Course on Model Reduction of Linear Time Invariant Systems

Jan Heiland

July 7 – July 17, 2020 Shanghai University, Shanghai, China

SHU Remote Course

- 1. Introduction to Linear Time Invariant Systems
- 2. Mathematical Basics for LTI Systems
- Mathematical Basics for LTI System 2
- 4. Introduction to Model Reduction
- Model Reduction by Projection
- 6. Gramians and Balanced Realizations
- 7. Balanced Truncation

CSC Typical Situation

- Fry a steak
- The cook controls the heat at the fireplace
- and observes the process, e.g. via measuring the temperature in the inner

Typical Situation

The model

$$\begin{split} \dot{\theta} &= \nabla \cdot (\nu \nabla \theta) & \text{ in } (0, \infty) \times \Omega, \\ \theta &= u, & \text{ at the plate}, \\ \theta(0) &= 0. \end{split}$$

- The cook controls the heat at the fireplace, which we denote by u
- and observes the process, e.g. he measures the temperature y in the center: $y = f(\theta)$.

The model:

$$\begin{aligned} \dot{\theta} &= \nabla \cdot (\nu \nabla \theta), \\ \theta &= u, \\ \theta(0) &= 0. \end{aligned}$$

- The cook controls the heat *u*
- and observes the process via $y = f(\theta)$.
- A Finite Element discretization of the problem leads to the finite dimensional model

$$E\dot{\theta}(t) = A\theta(t) + Bu(t), \quad \theta(0) = 0, \tag{1}$$

$$y(t) = C\theta(t), \tag{2}$$

a linear time invariant system.

csc Linear State Space System

$$E\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$$
 (3a)

$$y(t) = Cx(t) + Du(t), \tag{3b}$$

with

- $x(t) \in \mathbb{R}^n$: the system's state
- $u(t) \in \mathbb{R}^m$: the input or control
- $y(t) \in \mathbb{R}^q$: the output or measurements
- n, m, $q \in \mathbb{N}$: the system dimensions

csc Linear State Space System

$$E\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$$
 (3a)

$$y(t) = Cx(t) + Du(t), \tag{3b}$$

with

- $E \in \mathbb{R}^{n \times n}$: the identity or the mass matrix
- $A \in \mathbb{R}^{n \times n}$: the system matrix
- $B \in \mathbb{R}^{n \times m}$: the input matrix
- $C \in \mathbb{R}^{q \times n}$: the output matrix
- $D \in \mathbb{R}^{q \times n}$: the throughput

Linear State Space System

$$E\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$$
 (3a)

$$y(t) = Cx(t) + Du(t), \tag{3b}$$

with

- $E \in \mathbb{R}^{n \times n}$: the identity or the mass matrix
- $A \in \mathbb{R}^{n \times n}$: the system matrix
- $B \in \mathbb{R}^{n \times m}$: the input matrix
- $C \in \mathbb{R}^{q \times n}$: the output matrix
- $D \in \mathbb{R}^{q \times n}$: the throughput

- $x(t) \in \mathbb{R}^n$: the system's state
- $u(t) \in \mathbb{R}^m$: the input or control
- $y(t) \in \mathbb{R}^q$: the output or measurements
- n, m, $q \in \mathbb{N}$: the system dimensions

We will assume that E = I and denote the LTI (3) by (A, B, C, D).

CSC Some Preliminary Thoughts

$$E\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t) + Du(t)$$

A simple question...

What is x?

- it is a physical state in the model like the temperature
- \blacksquare in practise, we may not access it only the measurement y=Cx
- it is but a mathematical object as a part of a model
- furthermore, as we will see later, the state x can be severely changed e.g. in the course of model reduction

The state x can be seen...

...as nothing but an artificial object of the model for the input to output behavior

G:
$$u \mapsto y$$

of an abstract system P:

that maps an input u to the corresponding output y.

The state x can be seen...

...as nothing but an artificial object of the model for the input to output behavior

G:
$$u \mapsto y$$

of an abstract system P:

$$y \leftarrow \underbrace{\begin{array}{c} y(t) = Cx(t) \\ x(t) = Ax(t) + Bu(t) \end{array}}_{x(t)} u$$

that maps an input u to the corresponding output y.

Transfer Function in Time-Domain

If **P** is modelled trough an (A, B, C, D) system, then the function **G** can be defined via

$$\mathbf{G}\colon u\mapsto y\colon y(t)=C\big[\mathrm{e}^{At}x_0+\int_0^t\mathrm{e}^{A(t-s)}Bu(s)\;\mathrm{d}s\big]+Du(t),$$

known as the formula of variation of constants.

This is in **time-domain**: A function u depending on time $t \in [0, \infty)$ is mapped onto a function y depending on time $t \in [0, \infty)$.

Jan Heiland

Introducing Frequency-Domain

Through the Laplace transform $\mathcal L$ and its inverse $\mathcal L^{-1}$, we can switch between time-domain and frequency-domain representations of the input and output signals:

$$U(s) := \mathcal{L}\{u\}(s) := \int_0^\infty e^{-st} u(t) dt,$$

where $s \in \mathbb{C}$ is the *frequency* and

$$y(t) := \mathcal{L}^{-1}\{Y\}(t) := \lim_{T \to \infty} \frac{1}{2\pi i} \int_{\gamma - iT}^{\gamma + iT} e^s Y(s) ds$$

where $\gamma \in \mathbb{R}$ is chosen such that the contour path of the integration is the domain of convergence of Y.

Jan Heiland

Laplace Transform of an LTI

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

With the basic properties of the Laplace transform

- $\dot{X}(s) := \mathcal{L}\{\dot{x}\}(s) x(0) = s\mathcal{L}\{x\}(s) = sX(s) x(0)$
- and linearity $\mathcal{L}{Ax}(s) = AX(s)$

with zero initial value x(0) = 0, the (A, B, C, D) system defines the transfer function

$$G(s) := C(sI - A)^{-1}B + D$$

in frequency domain.

Fact

An LTI (A, B, C, D) always defines a transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

which is a matrix $G \in \mathbb{R}^{q \times m}$ with coefficients that are rational functions of s.

Question

Given a rational matrix function $s\mapsto G(s)\in\mathbb{R}^{q\times m}$, is there an

system, so that $G(s) = C(sI - A)^{-1}B + D$?

given
$$G$$
, find (A, B, C, D) ,

$$G(s) = C(sI - A)^{-1}B + D$$

If there is one such (A, B, C, D), then there are infinitely many:

■ For $T \in \mathbb{R}^{n \times n}$ invertible, also $(TAT^{-1}, TB, CT^{-1}, D)$ is a realization:

$$C(sI - A)^{-1}B + D = CT^{-1}(sI - TAT^{-1})^{-1}TB + D.$$

■ Moreover, also

$$(\begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} B \\ 0 \end{bmatrix}, \begin{bmatrix} C & 0 \end{bmatrix}, D)$$

is a realization of G.

Facts and Thoughts on Realizations

- If G is *proper*, then there is a realization (A, B, C, D) as a state space system.
- This realization is by no means unique.
- The dimension of the state can be arbitrary large. What is the smallest possible dimension? (cf. model reduction)
- What is a good choice for the state?

Remark: A transfer function $G: s \mapsto G(s) \in \mathbb{R}^{q \times m}$ with coefficients that are rational functions in s, is *proper*, if in each coefficient the polynomial degree of the numerators does not exceed the degree of denominators.

Controllability and Observability

Based on the previous considerations, we can say that

- The states of an LTI system (A, B, C, D) are just a part of a model that realizes a transfer function G
- $lue{}$ The transfer function G describes how controls u lead to outputs y
- As seen above in the example, there can be states that are neither affected (controlled) by the inputs nor seen (observed) by the outputs
- These states are obviously not needed to realize the input to output behavior of *G*.

We will give a thorough characterization of the *controllable* and *observable* states of an LTL.

Theorem (Kalman Canonical Decomposition)

Given an LTI (A, B, C, D), there is a state space transformation T such that the transformed system $(TAT^{-1}, TB, CT^{-1}, D)$ has the form

$$\frac{d}{dt} \begin{bmatrix} x_{co} \\ x_{c\bar{o}} \\ x_{\bar{c}o} \\ x_{\bar{c}o} \end{bmatrix} = \begin{bmatrix} A_{co} & 0 & A_{13} & 0 \\ A_{21} & A_{c\bar{o}} & A_{23} & A_{24} \\ 0 & 0 & A_{\bar{c}o} & 0 \\ 0 & 0 & A_{43} & A_{\bar{c}\bar{o}} \end{bmatrix} \begin{bmatrix} x_{co} \\ x_{c\bar{o}} \\ x_{\bar{c}o} \\ x_{\bar{c}o} \end{bmatrix} + \begin{bmatrix} B_{co} \\ B_{c\bar{o}} \\ 0 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} C_{co} & 0 & C_{\bar{c}o} & 0 \end{bmatrix} \begin{bmatrix} x_{co} \\ x_{c\bar{o}} \\ x_{\bar{c}o} \\ x_{\bar{c}o} \\ x_{\bar{c}o} \\ x_{\bar{c}o} \end{bmatrix} + Du,$$

with the subsystem $(A_{co}, B_{co}, C_{co}, D)$ being controllable and observable, while the remaining states $x_{\bar{c}o}$, $x_{c\bar{o}}$, or $x_{\bar{c}\bar{o}}$ are not controllable, not observable, or neither of them.

For a constructive proof of the Theorem, see Ch. 3.3 of [Zhou, Doyle, Glover '96]

Outcomes of the Kalman Decomposition

For any state space system (A, B, C, D), there is a transformation T so that the transformed states $T^{-1}x$ decompose into

- \mathbf{x}_{co} controllable and observable
- $\mathbf{x}_{c\bar{o}}$ controllable but not observable
- $\mathbf{x}_{\bar{c}o}$ observable but not controllable
- $\mathbf{x}_{\bar{c}\bar{o}}$ not observable and not controllable

Moreover, for the transfer function, it holds that

$$G(s) = C(sI - A)^{-1}B = C_{co}(sI - A_{co})^{-1}B_{co}.$$

Conclusion from the Kalman Decomposition

What does this mean for us and a transfer function G(s)?

- The minimal dimension of a realization is the dimension of x_{co} in the Kalman Canonical Decomposition
- Such a realization is called minimal realization
- It is the starting point for further model reduction. (Throwing out $x_{\bar{c}o}$ etc. does not effect G(s) and is typically not considered a model reduction)
- There are algorithm to reduce a realization to a minimal one, cf. [Varga '90].
- In practice, the uncontrolled and unobserved states play a role and they may cause troubles. (check the literature for zero dynamics)

- LTI as model for physical processes (e.g. heat transfer)
- The input/output behavior is often more important than the state
- Moreover, the state need not have a meaning
- State space systems (A, B, C, D) can be seen as realizations of transfer functions
- A transfer function has multiple realizations
- The minimal realizations are of our interest
- A stable system can have stable realization
- Minimal and stable realization can be balanced

csc More on the LTI topics

K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. (Chapter 3 for LTI) Prentice-Hall, Upper Saddle River, NJ, 1996.

🗐 A. Varga.

Computation of irreducible generalized state-space realizations. Kybernetika, 26(2):89-106, 1990.

A. Gaul.

Leckerbraten – a lightweight Python toolbox to solve the heat equation on arbitrary domains

https://github.com/andrenarchy/leckerbraten, 2013.

J. Heiland.

The slides, additional material, and information on this course https://www.janheiland.de/20-shu-mor/, 2020.

Basic Notions of Norms

Ingredients of a normed space $(V, \|\cdot\|)$:

- lacksquare A linear space V over $\mathbb C$ (or $\mathbb R$)
- and a functional

$$\|\cdot\|\colon V\to\mathbb{R}$$

that has the following properties:

- $i) \|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|,$
- ii) $||v + w|| \le ||v|| + ||w||$, and
- iii) $\|v\| \ge 0$ and $\|v\| = 0$ if, and only if, v = 0,

for any v, $w \in V$ and any $\alpha \in \mathbb{C}$ (or \mathbb{R}).

Norms of Linear Operators

If $(V,\|\cdot\|_V)$ and $(W,\|\cdot\|_W)$, then for the space of linear maps $(V\to W)$ a norm is defined via

$$||G||_* := \sup_{v \in V, v \neq 0} \frac{||Gv||_W}{||v||_V}.$$

This is the norm for $G \colon V \to W$ that is induced by $\|\cdot\|_V$ and $\|\cdot\|_W$. There can be other norms that are not induced.

Norms of Signals

Common norms and spaces for the input or output signals

$$u: [0, \infty) \to \mathbb{R}^m$$
 or $y: [0, \infty) \to \mathbb{R}^q$

- All definitions work similar for finite time intervals [0, T] or the whole time axis $(-\infty, \infty)$.
- Where it is clear from the context, we will drop the superscripts *p* and *m* that denote the dimension of the signals.

Norms of Signals

Definition

The \mathcal{L}_1^m norm

$$\|u\|_{\mathcal{L}_1} := \int_0^\infty \sum_{i=1}^m |u_i(t)| \; \mathrm{d}t$$

defines the \mathcal{L}_1^m space of integrable (summable) functions

$$\mathcal{L}_1^m := \left\{ u \colon [0, \infty) \to \mathbb{R}^m : \|u\|_{\mathcal{L}_1} < \infty \right\}$$

on the positive time axis.

Norms of Signals

Definition

The \mathcal{L}_{∞}^{m} norm

$$||u||_{\mathcal{L}_{\infty}} := \max_{i=\{1,...,m\}} \sup_{t>0} |u_i(t)|$$

defines the \mathcal{L}_{∞}^m space of bounded functions

$$\mathcal{L}_{\infty}^m := \big\{u \colon [0,\infty) \to \mathbb{R}^m : \|u\|_{\mathcal{L}_{\infty}} < \infty\big\}.$$

Definition

The \mathcal{L}_2^q norm

$$\|y\|_{\mathcal{L}_2} := ig(\int_0^\infty \sum_{i=1}^q |y_i(t)|^2 dtig)^{rac{1}{2}}$$

defines the \mathcal{L}_2^q space of square integrable functions

Norms of Signals

The \mathcal{L}_2 norm can also be evaluated in frequency domain

Theorem

For $u \in \mathcal{L}_2$ it holds that

$$\|u\|_{\mathcal{L}_2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} U(i\omega)^* U(i\omega) d\omega\right)^{\frac{1}{2}},$$

where U is the Fourier transform of u.

The Fourier transform $\mathcal F$ and the Laplace transform $\mathcal L$ coincide for $s=i\omega$, $\omega\in\mathbb R$ and u(t)=0 for $t\leq 0$:

$$\mathcal{F}(u)(i\omega) := \int_{-\infty}^{\infty} u(t)e^{-i\omega t} dt = \int_{0}^{\infty} u(t)e^{-st} dt = \mathcal{L}(u)(s)$$

Norm of a System

A system G or (A, B, C, D) transfers inputs to outputs.

Ask yourself...

- What does a norm mean for a system?
- What is a large system, what is a small system?

Norm of a System

From the definition of an operator norm:

$$||G|| = \sup_{u \neq 0} \frac{||Gu||}{||u||}$$

we derive that for all u:

$$||y|| = ||Gu|| \le ||G|| ||u||.$$

An Answer

For systems, large refers to what extend an input is amplified. Therefore, ||G|| is often called the *gain*.

Norm of a System

From the definition of an operator norm:

$$||G|| = \sup_{u \neq 0} \frac{||Gu||}{||u||}$$

we derive that for all u:

$$||y|| = ||Gu|| \le ||G|| ||u||.$$

With a norm, one can compare two systems G_1 and G_2 via the difference in the output for the same input:

$$||y_1 - y_2|| = ||G_1u - G_2u|| \le ||G_1 - G_2|| ||u||.$$

Defining a Norm for Systems

We consider a SISO system (A,B,C,-), i.e m=q=1 and D=0. Consider (A,B,C,-) a with stable and strictly proper transfer function G is stable. Then the *impulse response* of the system

$$g(t) = C \int_0^t e^{A(t-\tau)} B\delta(\tau) ds = Ce^{At} B$$

A system (A, B, C, D) or A is stable, if there exists a $\lambda > 0$, such that $||e^A t|| \le e^{-\lambda t}$, for t > 0. This means that all eigenvalues of A must have a negative real part.

Tmpulse response:
$$\delta(\tau) := \begin{cases} 0, & \text{if } t \neq 0, \\ \text{very large, if } t = 0 \end{cases}$$
 so that $\int_{-\infty}^{\infty} u(\tau) \delta(\tau) \ \mathrm{d}\tau = u(0).$

Defining a Norm for Systems

We consider a SISO system (A, B, C, -), i.e m = q = 1 and D = 0.

Consider (A,B,C,-) a with stable and strictly proper transfer function G is stable. Then the *impulse response* of the system

$$g(t) = C \int_0^t e^{A(t-\tau)} B\delta(\tau) ds = Ce^{At} B$$

decays exponentially and

$$\|g\|_{\mathcal{L}_2} = \left(\frac{1}{2\pi}\int_{-\infty}^{\infty} G(i\omega)^* G(i\omega) d\omega\right)^{\frac{1}{2}} =: \|G\|_2 < \infty.$$

Defining a Norm for Systems

We consider a SISO system (A,B,C,-), i.e m=q=1 and D=0. Consider (A,B,C,-) a with stable and strictly proper transfer function G is stable. Then the *impulse response* of the system

$$g(t) = C \int_0^t e^{A(t-\tau)} B\delta(\tau) ds = Ce^{At} B$$

decays exponentially and

$$\|g\|_{\mathcal{L}_2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} G(i\omega)^* G(i\omega) d\omega\right)^{\frac{1}{2}} =: \|G\|_2 < \infty.$$

This defines a norm for systems since (Exercise!)

- $G = C(sI A)^{-1}B$ is indeed the Laplace transform of g
- \blacksquare the functional $\|\cdot\|_2$ for stable and strictly proper transferfunctions is a norm

Furthermore, $||y||_{\mathcal{L}_{\infty}} \leq ||G||_2 ||u||_{\mathcal{L}_{\infty}}$. (Exercise!)

Defining a Norm for Systems

For MIMO systems (A, B, C, -) with $u(t) \in \mathbb{R}^m$ and $y(t) \in \mathbb{R}^q$, with a stable and strictly proper transferfunction $\mathcal{G} \colon s \to \mathbb{R}^{q \times m}$, the \mathcal{H}_2 norm is defined as

$$\|G\|_2 := \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{trace} G(i\omega)^* G(i\omega) \, \mathrm{d}\omega\right)^{\frac{1}{2}}.$$

Fact

This is the norm of the Hardy space \mathcal{H}_2 of matrix functions that are analytic in the open right half of the complex plane. Stable and strictly proper transfer functions are in \mathcal{H}_2 .

Introduction to Linear Time Invariant Systems

Defining a Norm for Systems

For a stable and proper transfer function one can define the \mathcal{H}_{∞} norm:

$$\|G\|_{\infty} := \sup_{\omega \in \mathbb{R}} \sigma_{\mathsf{max}} (G(i\omega)),$$

where $\sigma_{\text{max}}(G(i\omega))$ is the largest singular value of $G(i\omega)$.

Fact 1

This is the norm of the Hardy space \mathcal{H}_{∞} of matrix functions that are analytic in the open right half of the complex plane and bounded on the imaginary axis. Stable and strictly proper transfer functions are in \mathcal{H}_{∞} .

Fact 2

The \mathcal{H}_{∞} -norm is induced by the \mathcal{L}_2 norm:

$$\|G\|_{\infty} = \sup_{u \in \mathcal{L}_2, u \neq 0} \frac{\|Gu\|_{\mathcal{L}_2}}{\|u\|_{\mathcal{L}_2}}.$$

Relation to Model Reduction

Approximation Problems - Model Reduction

Output errors in time-domain

Comparing the original system G and the reduced system \hat{G} :

$$\begin{aligned} \|y - \hat{y}\|_{\mathcal{H}_2} & \leq & \|G - \hat{G}\|_{\mathcal{H}_{\infty}} \|u\|_{\mathcal{H}_2} & \Longrightarrow \|G - \hat{G}\|_{\mathcal{H}_{\infty}} < \text{tol} \\ \|y - \hat{y}\|_{\mathcal{H}_{\infty}} & \leq & \|G - \hat{G}\|_{\mathcal{H}_2} \|u\|_{\mathcal{H}_2} & \Longrightarrow \|G - \hat{G}\|_{\mathcal{H}_2} < \text{tol} \end{aligned}$$

Relation to Model Reduction

Approximation Problems - Model Reduction

Output errors in time-domain

Comparing the original system G and the reduced system \hat{G} :

$$\begin{aligned} \|y - \hat{y}\|_{\mathcal{H}_2} & \leq & \|G - \hat{G}\|_{\mathcal{H}_{\infty}} \|u\|_{\mathcal{H}_2} & \Longrightarrow \|G - \hat{G}\|_{\mathcal{H}_{\infty}} < \text{tol} \\ \|y - \hat{y}\|_{\mathcal{H}_{\infty}} & \leq & \|G - \hat{G}\|_{\mathcal{H}_2} \|u\|_{\mathcal{H}_2} & \Longrightarrow \|G - \hat{G}\|_{\mathcal{H}_2} < \text{tol} \end{aligned}$$

\mathcal{H}_{∞} -norm	best approximation problem for given reduced order r
	in general open; balanced truncation yields suboptimal
	solution with computable \mathcal{H}_{∞} -norm bound.
\mathcal{H}_2 -norm	necessary conditions for best approximation known; (lo-
	cal) optimizer computable with iterative rational Krylov
	algorithm (IRKA)
$ G _H := \sigma_{max}$	optimal Hankel norm approximation (AAK theory).

- 1. Introduction to Linear Time Invariant Systems
- 2. Mathematical Basics for LTI Systems I
- 3. Mathematical Basics for LTI System 2
- 4. Introduction to Model Reduction
- 5. Model Reduction by Projection
- 6. Gramians and Balanced Realizations
- Balanced Truncation

For a linear (time-invariant) system

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & \text{with transfer function} \\ y(t) = Cx(t) + Du(t), & G(s) = C(sI - A)^{-1}B + D, \end{cases}$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ .

For a linear (time-invariant) system

$$\Sigma: \left\{ \begin{array}{ll} \dot{x}(t) &=& Ax(t)+Bu(t), \quad \text{with transfer function} \\ y(t) &=& Cx(t)+Du(t), \quad G(s)=C(sI-A)^{-1}B+D, \end{array} \right.$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ .

Realizations are not unique!

Transfer function is invariant under state-space transformations,

$$\mathcal{T}: \left\{ \begin{array}{ccc} x & \rightarrow & Tx, \\ (A,B,C,D) & \rightarrow & (TAT^{-1},TB,CT^{-1},D), \end{array} \right.$$

For a linear (time-invariant) system

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & \text{with transfer function} \\ y(t) = Cx(t) + Du(t), & G(s) = C(sI - A)^{-1}B + D, \end{cases}$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ .

Realizations are not unique!

Transfer function is invariant under addition of uncontrollable/unobservable states:

$$\frac{d}{dt} \begin{bmatrix} x \\ x_1 \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & A_1 \end{bmatrix} \begin{bmatrix} x \\ x_1 \end{bmatrix} + \begin{bmatrix} B \\ B_1 \end{bmatrix} u(t), \quad y(t) = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ x_1 \end{bmatrix} + Du(t), \quad (4)$$

$$\frac{d}{dt} \begin{bmatrix} x \\ x_2 \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} x \\ x_2 \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u(t), \quad y(t) = \begin{bmatrix} C & C_2 \end{bmatrix} \begin{bmatrix} x \\ x_2 \end{bmatrix} + Du(t), \quad (5)$$

for arbitrary $A_i \in \mathbb{R}^{n_j \times n_j}$, j = 1, 2, $B_1 \in \mathbb{R}^{n_1 \times m}$, $C_2 \in \mathbb{R}^{q \times n_2}$ and any $n_1, n_2 \in \mathbb{N}$.

For a linear (time-invariant) system

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & \text{with transfer function} \\ y(t) = Cx(t) + Du(t), & G(s) = C(sI - A)^{-1}B + D, \end{cases}$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ .

Realizations are not unique!

Hence,

are all realizations of Σ !

For a linear (time-invariant) system

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & \text{with transfer function} \\ y(t) = Cx(t) + Du(t), & G(s) = C(sI - A)^{-1}B + D, \end{cases}$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ .

Definition

The McMillan degree of Σ is the unique minimal number $\hat{n} \geq 0$ of states necessary to describe the input-output behavior completely.

A minimal realization is a realization $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ of Σ with order \hat{n} .

For a linear (time-invariant) system

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & \text{with transfer function} \\ y(t) = Cx(t) + Du(t), & G(s) = C(sI - A)^{-1}B + D, \end{cases}$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ .

Definition

The McMillan degree of Σ is the unique minimal number $\hat{n} \geq 0$ of states necessary to describe the input-output behavior completely.

A minimal realization is a realization $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ of Σ with order \hat{n} .

Theorem

A realization (A, B, C, D) of a linear system is minimal \iff (A, B) is controllable and (A, C) is observable.

The LTI (A, B, C, D) or the pair (A, B) is said to be *controllable* if, for any initial state $x(0) = x_0$, $t_1 > 0$ and final state x_1 , there exists a (piecewise continuous) input u such that the solution of (3) satisfies $x(t_1) = x_1$. Otherwise, the system (A, B, C, D) or the pair (A, B) is said to be *uncontrollable*.

Theorem

The following statements are equivalent:

- (i.) The pair (A, B) is controllable.
- (ii.) The controllability matrix $C := \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$ has full rank.
- (iii.) The matrix $[A \lambda I \quad B]$ has full rank for all $\lambda \in \mathbb{C}$.

The LTI (A, B, C, D) or the pair (C, A) is said to be *observable* if, for any $t_1 > 0$, the initial state $x(0) = x_0$ can be determined from the time history of the input u and the output y in the interval of $[0, t_1]$. Otherwise, the system (A, B, C, D), or (C, A), is said to be *unobservable*.

Observability is the dual concept of controllability:

Theorem

The pair (C, A) is observable if and only if the pair (A^T, C^T) is controllable.

Invariance Under State Space Transformation

Theorem

The LTI (A, B, C, D) is controllable (observable) if, and only if, the transformed LTI $(TAT^{-1}, TB, CT^{-1}, D)$ is controllable (observable), where T is a regular matrix.

- Recall that also a transfer function is invariant with respect to state space transformations on its realization.
- Next, we find the states that are at least necessary for the realization of a transfer function...

Theorem (Kalman Canonical Decomposition)

Given an LTI (A, B, C, D), there is a state space transformation T such that the transformed system $(TAT^{-1}, TB, CT^{-1}, D)$ has the form

$$\frac{d}{dt} \begin{bmatrix} x_{co} \\ x_{c\bar{o}} \\ x_{\bar{c}o} \\ x_{\bar{c}o} \end{bmatrix} = \begin{bmatrix} A_{co} & 0 & A_{13} & 0 \\ A_{21} & A_{c\bar{o}} & A_{23} & A_{24} \\ 0 & 0 & A_{\bar{c}o} & 0 \\ 0 & 0 & A_{43} & A_{\bar{c}\bar{o}} \end{bmatrix} \begin{bmatrix} x_{co} \\ x_{c\bar{o}} \\ x_{\bar{c}o} \\ x_{\bar{c}o} \end{bmatrix} + \begin{bmatrix} B_{co} \\ B_{c\bar{o}} \\ 0 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} C_{co} & 0 & C_{\bar{c}o} & 0 \end{bmatrix} \begin{bmatrix} x_{co} \\ x_{c\bar{o}} \\ x_{\bar{c}o} \\ x_{\bar{c}o} \\ x_{\bar{c}o} \\ x_{\bar{c}o} \end{bmatrix} + Du,$$

with the subsystem $(A_{co}, B_{co}, C_{co}, D)$ being controllable and observable, while the remaining states $x_{\bar{c}o}$, $x_{c\bar{o}}$, or $x_{\bar{c}\bar{o}}$ are not controllable, not observable, or neither of them.

For a constructive proof of the Theorem, see Ch. 3.3 of [Zhou, Doyle, Glover '96]

- 1. Introduction to Linear Time Invariant Systems
- 2. Mathematical Basics for LTI Systems
- 3. Mathematical Basics for LTI System 2
- 4. Introduction to Model Reduction
- 5. Model Reduction by Projection
- 6. Gramians and Balanced Realizations
- 7. Balanced Truncation

A linear system

$$E\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

is stable if its transfer function G(s) has all its poles in the left half plane and it is asymptotically (or Lyapunov or exponentially) stable if all poles are in the open left half plane $\mathbb{C}^- := \{z \in \mathbb{C} \mid \Re(z) < 0\}$.

A linear system

$$E\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

is stable if its transfer function G(s) has all its poles in the left half plane and it is asymptotically (or Lyapunov or exponentially) stable if all poles are in the open left half plane $\mathbb{C}^- := \{z \in \mathbb{C} \mid \Re(z) < 0\}$.

Lemma

Sufficient for asymptotic stability is that A is asymptotically stable (or Hurwitz), i.e., the spectrum of $A - \lambda E$, denoted by $\sigma(A, E)$, satisfies $\sigma(A, E) \subset \mathbb{C}^-$.

Note that by abuse of notation, often *stable system* is used for asymptotically stable systems.

Stability

■ A system G is stable if all poles of G are located in the left half-plane \mathbb{C}^- .

If m=q=1, then $G(s)=\frac{N(s)}{D(s)}$, where N(s) and D(s) are polynomials and the *poles* are the roots of D(s), i.e. those $s\in\mathbb{C}$ for which D(s)=0.

If m, q > 1, then one can use the McMillan form of G to determine the poles.

Stability

- A system G is stable if all poles of G are located in the left half-plane \mathbb{C}^- .
- If (A, B, C, D) is a minimal realization of a stable system G, then the poles of G are the eigenvalues of A.

Stability

- A system G is stable if all poles of G are located in the left half-plane \mathbb{C}^- .
- If (A, B, C, D) is a minimal realization of a stable system G, then the poles of G are the eigenvalues of A.
- In this case, the system is stable if

 λ is an eigenvalue of A, then $\lambda \in \mathbb{C}^-$.

Stability

- A system G is stable if all poles of G are located in the left half-plane \mathbb{C}^- .
- If (A, B, C, D) is a minimal realization of a stable system G, then the poles of G are the eigenvalues of A.
- In this case, the system is stable if

 λ is an eigenvalue of A, then $\lambda \in \mathbb{C}^-$.

■ Such an A is called *stable* or *Hurwitz*.

Stability

- A system G is stable if all poles of G are located in the left half-plane \mathbb{C}^- .
- If (A, B, C, D) is a minimal realization of a stable system G, then the poles of G are the eigenvalues of A.
- In this case, the system is stable if

 λ is an eigenvalue of A, then $\lambda \in \mathbb{C}^-$.

- Such an *A* is called *stable* or *Hurwitz*.
- A stable system can have a stable realization.

If m=q=1, then $G(s)=\frac{N(s)}{D(s)}$, where N(s) and D(s) are polynomials and the *poles* are the roots of D(s), i.e. those $s\in\mathbb{C}$ for which D(s)=0.

If m, q > 1, then one can use the McMillan form of G to determine the poles.

Consider a transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

and input functions $u \in \mathscr{L}_2^m \cong L_2^m(-\infty,\infty)$, with the L_2 -norm

$$||u||_{\mathcal{H}_2}^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u(j\omega)^H u(j\omega) d\omega.$$

Assume A (asympotically) stable: $\sigma(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \text{re } z < 0\}.$

Consider a transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

and input functions $u \in \mathcal{L}_2^m \cong L_2^m(-\infty,\infty)$, with the L_2 -norm

$$||u||_{\mathcal{H}_2}^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u(j\omega)^H u(j\omega) d\omega.$$

Assume A (asympotically) stable: $\sigma(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \text{re } z < 0\}$. (Here, $\|.\|$ denotes the Euclidian vector or spectral matrix norm.)

Consider a transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

and input functions $u \in \mathcal{L}_2^m \cong L_2^m(-\infty,\infty)$, with the L_2 -norm

$$||u||_{\mathcal{H}_2}^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u(j\omega)^H u(j\omega) d\omega.$$

Assume A (asympotically) stable: $\sigma(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \text{re } z < 0\}$. (Here, $\|.\|$ denotes the Euclidian vector or spectral matrix norm.)

Consider a transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

and input functions $u \in \mathcal{L}_2^m \cong L_2^m(-\infty,\infty)$, with the L_2 -norm

$$||u||_{\mathcal{H}_2}^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u(j\omega)^H u(j\omega) d\omega.$$

Assume A (asympotically) stable: $\sigma(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \text{re } z < 0\}$. (Here, $\|.\|$ denotes the Euclidian vector or spectral matrix norm.)

Consider a transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

and input functions $u \in \mathscr{L}_2^m \cong L_2^m(-\infty,\infty)$, with the L_2 -norm

$$||u||_{\mathcal{H}_2}^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u(j\omega)^H u(j\omega) d\omega.$$

Assume A (asymptotically) stable: $\sigma(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \operatorname{re} z < 0\}.$ $\Longrightarrow y \in \mathcal{L}_2^q \cong L_2^q(-\infty,\infty).$

Consider a transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

and input functions $u \in \mathscr{L}_2^m \cong L_2^m(-\infty,\infty)$, with the L_2 -norm

$$||u||_{\mathcal{H}_2}^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u(j\omega)^H u(j\omega) d\omega.$$

Assume A (asympotically) stable: $\sigma(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \operatorname{re} z < 0\}$. Consequently, the 2-induced operator norm

$$||G||_{\mathcal{H}_{\infty}} := \sup_{\|u\|_{\mathcal{H}_{2}} \neq 0} \frac{||Gu||_{\mathcal{H}_{2}}}{\|u\|_{\mathcal{H}_{2}}}$$

is well defined. It can be shown that

$$\|G\|_{\mathcal{H}_{\infty}} = \sup_{\omega \in \mathbb{R}} \|G(\jmath\omega)\| = \sup_{\omega \in \mathbb{R}} \sigma_{max} (G(\jmath\omega)).$$

Consider a transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

and input functions $u \in \mathscr{L}_2^m \cong L_2^m(-\infty,\infty)$, with the L_2 -norm

$$||u||_{\mathcal{H}_2}^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u(j\omega)^H u(j\omega) d\omega.$$

Assume A (asympotically) stable: $\sigma(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \operatorname{re} z < 0\}$. Consequently, the 2-induced operator norm

$$||G||_{\mathcal{H}_{\infty}} := \sup_{\|u\|_{\mathcal{H}_{2}} \neq 0} \frac{||Gu||_{\mathcal{H}_{2}}}{\|u\|_{\mathcal{H}_{2}}}$$

is well defined. It can be shown that

$$\|G\|_{\mathcal{H}_{\infty}} = \sup_{\omega \in \mathbb{R}} \|G(\jmath\omega)\| = \sup_{\omega \in \mathbb{R}} \sigma_{max} \left(G(\jmath\omega)\right).$$

Consider a transfer function

$$G(s) = C (sI - A)^{-1} B + D.$$

Hardy space \mathcal{H}_{∞}

Function space of matrix-/scalar-valued functions that are analytic and bounded in \mathbb{C}^+ .

The \mathcal{H}_{∞} -norm is

$$\|F\|_{\mathcal{H}_{\infty}} := \sup_{\mathsf{re}\,s>0} \sigma_{\mathsf{max}}\left(F(s)\right) = \sup_{\omega\in\mathbb{R}} \sigma_{\mathsf{max}}\left(F(\jmath\omega)\right).$$

Stable transfer functions are in the Hardy spaces

- lacksquare \mathcal{H}_{∞} in the SISO case (single-input, single-output, m=q=1);
- $\mathcal{H}_{\infty}^{q \times m}$ in the MIMO case (multi-input, multi-output, m > 1, q > 1).

Consider a transfer function

$$G(s) = C (sI - A)^{-1} B + D.$$

Paley-Wiener Theorem (Parseval's equation/Plancherel Theorem)

$$L_2(-\infty,\infty)\cong\mathscr{L}_2,\quad L_2(0,\infty)\cong\mathcal{H}_2$$

Consequently, 2-norms in time and frequency domains coincide!

Consider a transfer function

$$G(s) = C (sI - A)^{-1} B + D.$$

Paley-Wiener Theorem (Parseval's equation/Plancherel Theorem)

$$L_2(-\infty,\infty)\cong\mathscr{L}_2,\quad L_2(0,\infty)\cong\mathcal{H}_2$$

Consequently, 2-norms in time and frequency domains coincide!

\mathcal{H}_{∞} approximation error

Reduced-order model \Rightarrow transfer function $\hat{G}(s) = \overline{\hat{C}(sl_r - \hat{A})^{-1}\hat{B} + \hat{D}}$.

$$\|y - \hat{y}\|_{\mathcal{H}_2} = \|Gu - \hat{G}u\|_{\mathcal{H}_2} \le \|G - \hat{G}\|_{\mathcal{H}_{\infty}} \|u\|_{\mathcal{H}_2}.$$

 \Longrightarrow compute reduced-order model such that $\|\mathit{G} - \hat{\mathit{G}}\|_{\mathcal{H}_{\infty}} < to!$

Note: error bound holds in time- and frequency domain due to Paley-Wiener!

Consider stable transfer function

$$G(s) = C(sI - A)^{-1} B$$
, i.e. $D = 0$.

Hardy space \mathcal{H}_2

Function space of matrix-/scalar-valued functions that are analytic \mathbb{C}^+ and bounded w.r.t. the \mathcal{H}_2 -norm

$$||F||_{\mathcal{H}_2} := \frac{1}{2\pi} \left(\sup_{\mathsf{re}\,\sigma > 0} \int_{-\infty}^{\infty} ||F(\sigma + \jmath\omega)||_F^2 \, d\omega \right)^{\frac{1}{2}}$$

$$= \frac{1}{2\pi} \left(\int_{-\infty}^{\infty} ||F(\jmath\omega)||_F^2 \, d\omega \right)^{\frac{1}{2}}.$$

Stable transfer functions are in the Hardy spaces

- \mathcal{H}_2 in the SISO case (single-input, single-output, m=q=1);
- $\mathcal{H}_2^{q \times m}$ in the MIMO case (multi-input, multi-output, m > 1, q > 1).

Consider stable transfer function

$$G(s) = C(sI - A)^{-1} B$$
, i.e. $D = 0$.

Hardy space \mathcal{H}_2

Function space of matrix-/scalar-valued functions that are analytic \mathbb{C}^+ and bounded w.r.t. the \mathcal{H}_2 -norm

$$\|F\|_{\mathcal{H}_2} = rac{1}{2\pi} \left(\int_{-\infty}^{\infty} \|F(\jmath\omega)\|_F^2 d\omega
ight)^{\frac{1}{2}}.$$

\mathcal{H}_2 approximation error for impulse response $(u(t) = u_0 \delta(t))$

Reduced-order model \Rightarrow transfer function $\hat{G}(s) = \hat{C}(sI_r - \hat{A})^{-1}\hat{B}$.

$$\|y - \hat{y}\|_{\mathcal{H}_2} = \|Gu_0\delta - \hat{G}u_0\delta\|_{\mathcal{H}_2} \le \|G - \hat{G}\|_{\mathcal{H}_2}\|u_0\|.$$

 \implies compute reduced-order model such that $\|G - \hat{G}\|_{\mathcal{H}_2} < to!$

Consider stable transfer function

$$G(s) = C(sI - A)^{-1}B$$
, i.e. $D = 0$.

Hardy space \mathcal{H}_2

Function space of matrix-/scalar-valued functions that are analytic \mathbb{C}^+ and bounded w.r.t. the \mathcal{H}_2 -norm

$$\|F\|_{\mathcal{H}_2} = rac{1}{2\pi} \left(\int_{-\infty}^{\infty} \|F(\jmath\omega)\|_F^2 d\omega
ight)^{\frac{1}{2}}.$$

Theorem (Practical Computation of the \mathcal{H}_2 -norm)

$$||F||_{\mathcal{H}_2}^2 = \operatorname{trace} B^T Q B = \operatorname{trace} C P C^T$$
,

where P,Q are the controllability and observability Gramians of the corresponding LTI system.

CSC Approximation Problems

Output errors in time-domain

$$\begin{aligned} \|y - \hat{y}\|_{\mathcal{H}_2} & \leq & \|G - \hat{G}\|_{\mathcal{H}_{\infty}} \|u\|_{\mathcal{H}_2} & \Longrightarrow \|G - \hat{G}\|_{\mathcal{H}_{\infty}} < \text{tol} \\ \|y - \hat{y}\|_{\mathcal{H}_{\infty}} & \leq & \|G - \hat{G}\|_{\mathcal{H}_2} \|u\|_{\mathcal{H}_2} & \Longrightarrow \|G - \hat{G}\|_{\mathcal{H}_2} < \text{tol} \end{aligned}$$

GSC Approximation Problems

Output errors in time-domain

$$\begin{split} \|y-\hat{y}\|_{\mathcal{H}_2} & \leq & \|G-\hat{G}\|_{\mathcal{H}_\infty} \|u\|_{\mathcal{H}_2} & \Longrightarrow \|G-\hat{G}\|_{\mathcal{H}_\infty} < \mathrm{tol} \\ \|y-\hat{y}\|_{\mathcal{H}_\infty} & \leq & \|G-\hat{G}\|_{\mathcal{H}_2} \|u\|_{\mathcal{H}_2} & \Longrightarrow \|G-\hat{G}\|_{\mathcal{H}_2} < \mathrm{tol} \end{split}$$

\mathcal{H}_{∞} -norm	best approximation problem for given reduced order r in general open; balanced truncation yields suboptimal solution with computable \mathcal{H}_{∞} -norm bound.
\mathcal{H}_2 -norm	necessary conditions for best approximation known; (local) optimizer computable with iterative rational Krylov algorithm (IRKA)
Hankel-norm $\ G\ _H := \sigma_{max}$	optimal Hankel norm approximation (AAK theory).

System Norms and System Spaces

Evaluating system norms is computationally very (sometimes too) expensive.

Other measures

- absolute errors $\|G(\jmath\omega_i) \hat{G}(\jmath\omega_i)\|_{\mathcal{H}_{\gamma}}$, $\|G(\jmath\omega_i) \hat{G}(\jmath\omega_i)\|_{\mathcal{H}_{\infty}}$ $(j = 1, ..., N_{\omega})$;
- relative errors $\frac{\|G(\jmath\omega_j) \hat{G}(\jmath\omega_j)\|_{\mathcal{H}_2}}{\|G(\jmath\omega_j)\|_{\mathcal{H}_2}}$, $\frac{\|G(\jmath\omega_j) \hat{G}(\jmath\omega_j)\|_{\mathcal{H}_\infty}}{\|G(\jmath\omega_j)\|_{\mathcal{H}_\infty}}$;
- "eyeball norm", i.e. look at frequency response/Bode (magnitude) plot: for SISO system, log-log plot frequency vs. $|G(j\omega)|$ (or $|G(j\omega) - \hat{G}(j\omega)|$) in decibels, 1 dB \simeq 20 log₁₀(value).

For MIMO systems, $q \times m$ array of plots G_{ii} .

Evaluating system norms is computationally very (sometimes too) expensive.

Other measures

- absolute errors $\|G(\jmath\omega_j) \hat{G}(\jmath\omega_j)\|_{\mathcal{H}_2}$, $\|G(\jmath\omega_j) \hat{G}(\jmath\omega_j)\|_{\mathcal{H}_\infty}$ $(j = 1, ..., N_\omega)$;
- $\qquad \text{relative errors } \frac{\|G(\jmath\omega_j) \hat{G}(\jmath\omega_j)\|_{\mathcal{H}_2}}{\|G(\jmath\omega_j)\|_{\mathcal{H}_2}}, \ \frac{\|G(\jmath\omega_j) \hat{G}(\jmath\omega_j)\|_{\mathcal{H}_\infty}}{\|G(\jmath\omega_j)\|_{\mathcal{H}_\infty}};$
- "eyeball norm", i.e. look at frequency response/Bode (magnitude) plot: for SISO system, log-log plot frequency vs. $|G(\jmath\omega)|$ (or $|G(\jmath\omega)-\hat{G}(\jmath\omega)|$) in decibels, $1 \text{ dB} \simeq 20 \log_{10}(\text{value})$.

- 1. Introduction to Linear Time Invariant Systems
- 2. Mathematical Basics for LTI Systems
- 3. Mathematical Basics for LTI System 2
- 4. Introduction to Model Reduction
- 5. Model Reduction by Projection
- 6. Gramians and Balanced Realizations
- 7. Balanced Truncation

- 1. Introduction to Linear Time Invariant Systems
- 2. Mathematical Basics for LTI Systems
- Mathematical Basics for LTI System 2
- 4. Introduction to Model Reduction
 Model Reduction for Dynamical Systems
 Application Areas
 Motivating Examples
- 5. Model Reduction by Projection
- 6. Gramians and Balanced Realizations
- 7. Balanced Truncation

Model Reduction — Abstract Definition

Problem

Given a model of a physical problem with dynamics described by the states $x(t) \in \mathbb{R}^n$, where n is the dimension of the state space.

Model Reduction — Abstract Definition

Problem

Given a model of a physical problem with dynamics described by the states $x(t) \in \mathbb{R}^n$, where n is the dimension of the state space.

The dimension n is large because x(t) typically contains information that

- is (almost) redundant,
- not (really) important,
- or not (really) of interest.

Model Reduction — Abstract Definition

Problem

Given a model of a physical problem with dynamics described by the states $x(t) \in \mathbb{R}^n$, where n is the dimension of the state space.

The dimension n is large because x(t) typically contains information that

- is (almost) redundant,
- not (really) important,
- or not (really) of interest.

We want to adjust the model such that the new state is of small dimension but still bears all important and interesting information.

Model Reduction — Abstract Definition

Problem

Given a model of a physical problem with dynamics described by the states $x(t) \in \mathbb{R}^n$, where n is the dimension of the state space.

The dimension n is large because x(t) typically contains information that

- is (almost) redundant,
- not (really) important,
- or not (really) of interest.

We want to adjust the model such that the new state is of small dimension but still bears all important and interesting information.

This is the task of model reduction (also: dimension reduction, order reduction).

Model Reduction for Dynamical Systems

Dynamical Systems

$$\Sigma: \left\{ \begin{array}{lcl} \dot{x}(t) & = & f(t,x(t),u(t)), & x(t_0) = x_0, \\ y(t) & = & g(t,x(t),u(t)) \end{array} \right.$$

with

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^q$.

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^q$.

Goal

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^q$.

Reduced-Order Model (ROM)

$$\widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), u(t)), \\ \hat{y}(t) = \widehat{g}(t, \widehat{x}(t), u(t)). \end{array} \right.$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^q$.

Goal

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals.

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^q$.

Reduced-Order Model (ROM)

$$\widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), u(t)), \\ \hat{y}(t) = \widehat{g}(t, \widehat{x}(t), u(t)). \end{array} \right.$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^q$.

Goal:

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals.

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^q$.

Reduced-Order Model (ROM)

$$\widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), u(t)), \\ \hat{y}(t) = \widehat{g}(t, \widehat{x}(t), u(t)). \end{array} \right.$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^q$.

Goal:

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals.

Socondary goal: reconstruct approximation of v from \$

Linear Systems

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lcl} E\dot{x} & = & f(t,x,u) & = & Ax+Bu, & E,A\in\mathbb{R}^{n\times n}, & B\in\mathbb{R}^{n\times m}, \\ y & = & g(t,x,u) & = & Cx+Du, & C\in\mathbb{R}^{q\times n}, & D\in\mathbb{R}^{q\times m}. \end{array}$$

Linear Systems

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lcl} E\dot{x} & = & f(t,x,u) & = & Ax+Bu, & E,A\in\mathbb{R}^{n\times n}, & B\in\mathbb{R}^{n\times m}, \\ y & = & g(t,x,u) & = & Cx+Du, & C\in\mathbb{R}^{q\times n}, & D\in\mathbb{R}^{q\times m}. \end{array}$$

Linear, Time-Invariant Parametric Systems

$$E(p)\dot{x}(t;p) = A(p)x(t;p) + B(p)u(t),$$

$$y(t;p) = C(p)x(t;p) + D(p)u(t),$$

where $A(p), E(p) \in \mathbb{R}^{n \times n}, B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n}, D(p) \in \mathbb{R}^{q \times m}$.

Structural Mechanics / Finite Element Modeling

since \sim 1960ies

- Resolving complex 3D geometries ⇒ millions of degrees of freedom.
- Analysis of elastic deformations requires many simulation runs for varying external forces.

Structural Mechanics / Finite Element Modeling

since \sim 1960ies

- Resolving complex 3D geometries ⇒ millions of degrees of freedom.
- Analysis of elastic deformations requires many simulation runs for varying external forces.

Standard MOR techniques in structural mechanics: modal truncation, combined with Guyan reduction (static condensation) \rightsquigarrow Craig-Bampton method.

Application Areas

(Optimal) Control

since \sim 1980ies

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_\infty$ -) control design: $N \ge n$.

csc Application Areas

(Optimal) Control

since \sim 1980ies

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_\infty$ -) control design: $N \ge n$.

Practical controllers require small N ($N\sim 10$, say) due to

- real-time constraints,
- increasing fragility for larger N.

csc Application Areas

(Optimal) Control

since \sim 1980ies

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_\infty$ -) control design: $N \ge n$.

Practical controllers require small N ($N\sim 10$, say) due to

- real-time constraints,
- increasing fragility for larger N.
- \implies reduce order of plant (n) and/or controller (N).

csc Application Areas

(Optimal) Control

since \sim 1980ies

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_\infty$ -) control design: $N \ge n$.

Practical controllers require small N ($N\sim 10$, say) due to

- real-time constraints,
- increasing fragility for larger N.
- \implies reduce order of plant (n) and/or controller (N).

since \sim 1990ies

- Verification of VLSI/ULSI chip design needs a large number of simulations.
- Moore's Law (1965/75) states that the number of on-chip transistors doubles each 24 months.

since ${\sim}1990$ ies

- Verification of VLSI/ULSI chip design needs a large number of simulations.
- Moore's Law (1965/75)

 steady increase of describing equations, i.e., network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.

since $\sim\!1990$ ies

- Verification of VLSI/ULSI chip design needs a large number of simulations.
- Moore's Law (1965/75)

 steady increase of describing equations, i.e., network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.
- Increase in packing density and multilayer technology requires modeling of interconnect to ensure that thermic/electro-magnetic effects do not disturb signal transmission.

Intel 4004 (1971)	Intel Core 2 Extreme (quad-core) (2007)
1 layer, 10μ technology	9 layers, 45 <i>nm</i> technology
2,300 transistors	> 8, 200, 000 transistors
64 kHz clock speed	> 3 GHz clock speed.

Application Areas

Micro Electronics/Circuit Simulation

since ${\sim}1990$ ies

- Verification of VLSI/ULSI chip design needs a large number of simulations.
- Moore's Law (1965/75)

 steady increase of describing equations, i.e., network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.
- Increase in packing density and multilayer technology requires modeling of interconnect to ensure that thermic/electro-magnetic effects do not disturb signal transmission.

since ${\sim}1990$ ies

- Verification of VLSI/ULSI chip design needs a large number of simulations.
- Moore's Law (1965/75)

 steady increase of describing equations, i.e., network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.
- Here: mostly MOR for linear systems, they occur in micro electronics through modified nodal analysis (MNA) for RLC networks. e.g., when
 - decoupling large linear subcircuits,
 - modeling transmission lines,
 - modeling pin packages in VLSI chips,
 - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

since ${\sim}1990$ ies

Progressive miniaturization

- Verification of VLSI/ULSI chip design needs a large number of simulations.
- Moore's Law (1965/75)

 steady increase of describing equations, i.e., network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.

~ Clear need for model reduction techniques in order to facilitate or even enable circuit simulation for current and future VLSI design.

since \sim 1990ies

Progressive miniaturization

- Verification of VLSI/ULSI chip design needs a large number of simulations.
- Moore's Law (1965/75)

 steady increase of describing equations, i.e., network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.

→ Clear need for model reduction techniques in order to facilitate or even enable circuit simulation for current and future VLSI design.

Standard MOR techniques in circuit simulation: Krylov subspace / Padé approximation / rational interpolation methods.

Many other disciplines in computational sciences and engineering like

- computational fluid dynamics (CFD),
- computational electromagnetics,
- chemical process engineering,
- design of MEMS/NEMS (micro/nano-electrical-mechanical systems),
- computational acoustics,
- . . .

Electro-Thermic Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

■ SIMPLORER[®] test circuit with 2 transistors.

- Conservative thermic sub-system in SIMPLORER: voltage → temperature, current → heat flow.
- Original model: n = 270.593, $m = q = 2 \Rightarrow$ Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):
 - Main computational cost for set-up data $\approx 22 \text{min}.$
 - Computation of reduced models from set-up data: 44–49sec. (r = 20-70).

Electro-Thermic Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

- Original model: n = 270.593, $m = q = 2 \Rightarrow$ Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):
 - Main computational cost for set-up data $\approx 22min$.
 - Computation of reduced models from set-up data: 44–49sec. (r = 20-70).
 - $-\,$ Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
 - 7.5h for original system, < 1min for reduced system.
 - Speed-up factor: 18 including $/ \geq$ 450 excluding reduced model generation!

Electro-Thermic Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

- Original model: n = 270.593, $m = q = 2 \Rightarrow$ Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):
 - Main computational cost for set-up data $\approx 22min$.
 - Computation of reduced models from set-up data: 44–49sec. (r = 20-70).
 - Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
 - 7.5h for original system, < 1min for reduced system.
 - Speed-up factor: 18 including $/ \geq$ 450 excluding reduced model generation!

Motivating Examples

A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

■ Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

$$\epsilon v_t(x,t) = \epsilon^2 v_{xx}(x,t) + f(v(x,t)) - w(x,t) + g,$$

$$w_t(x,t) = hv(x,t) - \gamma w(x,t) + g,$$

with f(v) = v(v - 0.1)(1 - v) and initial and boundary conditions

$$egin{aligned} v(x,0) &= 0, & w(x,0) &= 0, & x \in [0,1] \ v_x(0,t) &= -i_0(t), & v_x(1,t) &= 0, & t \geq 0, \end{aligned}$$

where $\epsilon = 0.015$, h = 0.5, $\gamma = 2$, g = 0.05, $i_0(t) = 50000t^3 \exp(-15t)$.

Motivating Examples

A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

■ Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

$$\epsilon v_t(x,t) = \epsilon^2 v_{xx}(x,t) + f(v(x,t)) - w(x,t) + g,$$

$$w_t(x,t) = hv(x,t) - \gamma w(x,t) + g,$$

with f(v) = v(v - 0.1)(1 - v) and initial and boundary conditions

$$v(x,0) = 0,$$
 $w(x,0) = 0,$ $x \in [0,1]$ $v_x(0,t) = -i_0(t),$ $v_x(1,t) = 0,$ $t \ge 0,$

where
$$\epsilon = 0.015$$
, $h = 0.5$, $\gamma = 2$, $g = 0.05$, $i_0(t) = 50000t^3 \exp(-15t)$.

- Parameter g handled as an additional input.
- Original state dimension $n=2\cdot 400$, QBDAE dimension $N=3\cdot 400$, reduced QBDAE dimension r=26, chosen expansion point $\sigma=1$.

A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

Motivating Examples

Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

- Voltage applied to electrodes induces vibration of wings, resulting rotation due to Coriolis force yields sensor data.
- FE model of second order: $N = 17.361 \rightsquigarrow n = 34.722, m = 1, q = 12.$
- Sensor for position control based on acceleration and rotation.

Application: inertial navigation.

Motivating Examples

Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FE model: $M(d)\ddot{x}(t) + D(\Phi, d, \alpha, \beta)\dot{x}(t) + T(d)x(t) = Bu(t)$.

Motivating Examples

Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FE model:

$$M(d)\ddot{x}(t) + D(\Phi, d, \alpha, \beta)\dot{x}(t) + T(d)x(t) = Bu(t),$$

wobei

$$M(d) = M_1 + dM_2,$$

 $D(\Phi, d, \alpha, \beta) = \Phi(D_1 + dD_2) + \alpha M(d) + \beta T(d),$
 $T(d) = T_1 + \frac{1}{d}T_2 + dT_3,$

with

- width of bearing: d,
- angular velocity: Φ,
- Rayleigh damping parameters: α, β .

Parametric MOR: Applications in Microsystems/MEMS Design

- 1. Introduction to Linear Time Invariant Systems
- 2. Mathematical Basics for LTI Systems
- 3. Mathematical Basics for LTI System 2
- 4. Introduction to Model Reduction
- 5. Model Reduction by Projection
- 6. Gramians and Balanced Realizations
- 7. Balanced Truncation

- 1. Introduction to Linear Time Invariant Systems
- 2. Mathematical Basics for LTI Systems
- 3. Mathematical Basics for LTI System 2
- 4. Introduction to Model Reduction
- Model Reduction by Projection Projection and Interpolation Modal Truncation
- 6. Gramians and Balanced Realizations
- 7. Balanced Truncation

Goals

Requirements: A Model Reduction approach should:

lacksquare Automatically generate compact models \hat{G} from a given model G

Goals

Requirements: A Model Reduction approach should:

- Automatically generate compact models \hat{G} from a given model G
- Satisfy desired error tolerance tol for all admissible input signals u

$$\|y - \hat{y}\| = \|Gu - \hat{G}u\| < \mathsf{tol} \cdot \|u\|$$
 for all admissable u .

⇒ Provide computable error bound/estimate!

Goals

Requirements: A Model Reduction approach should:

- lacksquare Automatically generate compact models \hat{G} from a given model G
- $lue{}$ Satisfy desired error tolerance tol for all admissible input signals u

$$\|y - \hat{y}\| = \|Gu - \hat{G}u\| < \mathsf{tol} \cdot \|u\|$$
 for all admissable u .

- ⇒ Provide computable error bound/estimate!
- Preserve physical properties:

Goals

Requirements: A Model Reduction approach should:

- lacksquare Automatically generate compact models \hat{G} from a given model G
- Satisfy desired error tolerance tol for all admissible input signals u

$$\|y - \hat{y}\| = \|Gu - \hat{G}u\| < \mathsf{tol} \cdot \|u\|$$
 for all admissable u .

- \Longrightarrow Provide computable error bound/estimate!
- Preserve physical properties:
 - stability

A G is stable, if all poles of G are in \mathbb{C}^- . A system (A, B, C, D) or A is stable, if all eigenvalues of A have a negative real part. Compare: $G(s) = C(sI - A)^{-1}B$

Goals

Requirements: A Model Reduction approach should:

- lacksquare Automatically generate compact models \hat{G} from a given model G
- Satisfy desired error tolerance tol for all admissible input signals u

$$\|y - \hat{y}\| = \|Gu - \hat{G}u\| < \mathsf{tol} \cdot \|u\|$$
 for all admissable u .

- ⇒ Provide computable error bound/estimate!
- Preserve physical properties:
 - stability
 - minimum phase

A system G has minimum phase if all zeros of G are in the left half-plane \mathbb{C}^- .

Goals

Requirements: A Model Reduction approach should:

- lacksquare Automatically generate compact models \hat{G} from a given model G
- Satisfy desired error tolerance tol for all admissible input signals u

$$\|y - \hat{y}\| = \|Gu - \hat{G}u\| < \mathsf{tol} \cdot \|u\|$$
 for all admissable u .

- \Longrightarrow Provide computable error bound/estimate!
- Preserve physical properties:
 - stability
 - minimum phase
 - passivity

A system G is passive if, bluntly speaking, it does not generate energy. Condition for passivity:

$$\int_{0}^{t} u(\tau)^{T} y(\tau) d\tau \geq 0 \quad \text{for all } t \in \mathbb{R}, \quad \text{for all } u \in L_{2}(\mathbb{R}, \mathbb{R}^{m}).$$

Projection Basics

Definition

A projector $P \colon \mathcal{X} \to \mathcal{X}$ is a linear map, or a matrix, with $P^2 = P$.

Example

$$\mathcal{X} = \mathbb{R}^2$$

$$P = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
 is a projector in \mathcal{X}

Notion and Properties of Projectors

■ A projector is a linear map $P: \mathcal{X} \to \mathcal{X}$ with $P^2 = P$.

Notion and Properties of Projectors

- A projector is a linear map $P: \mathcal{X} \to \mathcal{X}$ with $P^2 = P$.
- If $\mathcal{X} = \mathbb{R}^n$, a projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$.

Notion and Properties of Projectors

- A projector is a linear map $P: \mathcal{X} \to \mathcal{X}$ with $P^2 = P$.
- If $\mathcal{X} = \mathbb{R}^n$, a projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$.
- Let V = range P, then P is called a projector onto V.

Notion and Properties of Projectors

- A projector is a linear map $P: \mathcal{X} \to \mathcal{X}$ with $P^2 = P$.
- If $\mathcal{X} = \mathbb{R}^n$, a projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$.
- Let V = range P, then P is called a projector onto V.
- If $\{v_1, \ldots, v_r\}$ is a basis of some $\mathcal{V} \subset \mathcal{X}$ and $V = [v_1, \ldots, v_r]$, then

$$P := V(V^T V)^{-1} V^T$$

defines the orthogonal projector onto \mathcal{V} .

Notion and Properties of Projectors

- A projector is a linear map $P: \mathcal{X} \to \mathcal{X}$ with $P^2 = P$.
- If $\mathcal{X} = \mathbb{R}^n$, a projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$.
- Let $\mathcal{V} = \operatorname{range} P$, then P is called a projector onto \mathcal{V} .
- If $\{v_1,\ldots,v_r\}$ is a basis of some $\mathcal{V}\subset\mathcal{X}$ and $V=[v_1,\ldots,v_r]$, then

$$P := V(V^T V)^{-1} V^T$$

defines the orthogonal projector onto \mathcal{V} .

■ If $W \subset X$ is another r-dimensional subspace with a basis matrix $W = [w_1, \dots, w_r]$ so that $W^T V$ is not singular, then

$$P = V(W^T V)^{-1} W^T$$

defines the oblique projector onto \mathcal{V} along the orthogonal complement \mathcal{W}_{\perp} of \mathcal{W} .

Notion and Properties of Projectors

- A projector is a linear map $P: \mathcal{X} \to \mathcal{X}$ with $P^2 = P$.
- If $\mathcal{X} = \mathbb{R}^n$, a projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$.
- Let V = range P, then P is called a projector onto V.
- If $\{v_1, \ldots, v_r\}$ is a basis of some $\mathcal{V} \subset \mathcal{X}$ and $V = [v_1, \ldots, v_r]$, then

$$P := V(V^T V)^{-1} V^T$$

defines the orthogonal projector onto \mathcal{V} .

• If $W \subset \mathcal{X}$ is another *r*-dimensional subspace with a basis matrix $W = [w_1, \dots, w_r]$ so that $W^T V$ is not singular, then

$$P = V(W^T V)^{-1} W^T$$

defines the oblique projector onto $\mathcal V$ along the orthogonal complement $\mathcal W_\perp$ of $\mathcal W.$

■ For a projector P, the projector I - P onto ker P is the complementary projector.

Projection and Interpolation

Methods:

- 1. Modal Truncation
- Rational Interpolation (Padé-Approximation and (rational) Krylov Subspace Methods)
- 3. Balanced Truncation
- 4. many more...

Joint feature of these methods:

computation of reduced-order model (ROM) by projection!

The ideal model reduction

■ There is a space $\mathcal{V} \subset \mathbb{R}^n$ with dim $\mathcal{V} = r < n$, such that $x(t) \in \mathcal{V}$ for all time t and input u.

- There is a space $\mathcal{V} \subset \mathbb{R}^n$ with dim $\mathcal{V} = r < n$, such that $x(t) \in \mathcal{V}$ for all time t and input u.
- Take a space W, so that $W_{\perp} \oplus V = \mathbb{R}^n$.

CSC

Model Reduction by Projection

- There is a space $\mathcal{V} \subset \mathbb{R}^n$ with dim $\mathcal{V} = r < n$, such that $x(t) \in \mathcal{V}$ for all time t and input u.
- Take a space W, so that $W_{\perp} \oplus V = \mathbb{R}^n$.
- Galerkin-type projections: W = V.

CSC

Model Reduction by Projection

- There is a space $\mathcal{V} \subset \mathbb{R}^n$ with dim $\mathcal{V} = r < n$, such that $x(t) \in \mathcal{V}$ for all time t and input u.
- Take a space W, so that $W_{\perp} \oplus V = \mathbb{R}^n$.
- Galerkin-type projections: W = V.
- Petrov-Galerkin projections: $W \neq V$.

- There is a space $\mathcal{V} \subset \mathbb{R}^n$ with dim $\mathcal{V} = r < n$, such that $x(t) \in \mathcal{V}$ for all time t and input u.
- Take a space W, so that $W_{\perp} \oplus V = \mathbb{R}^n$.
- Galerkin-type projections: W = V.
- Petrov-Galerkin projections: $W \neq V$.
- Take matrices V and W that form bases of V and W, with

$$W^{\mathsf{T}}V = I_r$$

The ideal model reduction

- There is a space $\mathcal{V} \subset \mathbb{R}^n$ with dim $\mathcal{V} = r < n$, such that $x(t) \in \mathcal{V}$ for all time t and input u.
- Take a space W, so that $W_{\perp} \oplus V = \mathbb{R}^n$.
- Galerkin-type projections: W = V.
- Petrov-Galerkin projections: $W \neq V$.
- Take matrices V and W that form bases of V and W, with

$$W^{\mathsf{T}}V = I_r$$

■ Then $V(W^{\mathsf{T}}V)^{-1}W = VW^{\mathsf{T}}$ is a projector onto \mathcal{V}

- There is a space $\mathcal{V} \subset \mathbb{R}^n$ with dim $\mathcal{V} = r < n$, such that $x(t) \in \mathcal{V}$ for all time t and input u.
- Take a space W, so that $W_{\perp} \oplus V = \mathbb{R}^n$.
- Galerkin-type projections: W = V.
- Petrov-Galerkin projections: $W \neq V$.
- Take matrices V and W that form bases of V and W, with

$$W^{\mathsf{T}}V = I_r$$

- Then $V(W^{\mathsf{T}}V)^{-1}W = VW^{\mathsf{T}}$ is a projector onto \mathcal{V}
- Define $\hat{x}(t) := W^\mathsf{T} x(t) \in \mathbb{R}^r$ and define $\tilde{x}(t) := V \hat{x}(t) = V W^\mathsf{T} x(t)$

- There is a space $\mathcal{V} \subset \mathbb{R}^n$ with dim $\mathcal{V} = r < n$, such that $x(t) \in \mathcal{V}$ for all time t and input u.
- Take a space W, so that $W_{\perp} \oplus V = \mathbb{R}^n$.
- Galerkin-type projections: W = V.
- Petrov-Galerkin projections: $W \neq V$.
- lacksquare Take matrices V and W that form bases of $\mathcal V$ and $\mathcal W$, with

$$W^{\mathsf{T}}V = I_r$$

- Then $V(W^{\mathsf{T}}V)^{-1}W = VW^{\mathsf{T}}$ is a projector onto \mathcal{V}
- Define $\hat{x}(t) := W^\mathsf{T} x(t) \in \mathbb{R}^r$ and define $\tilde{x}(t) := V \hat{x}(t) = V W^\mathsf{T} x(t)$
- If everything is exact, then

$$||x(t) - \tilde{x}(t)|| = ||x(t) - VW^{\mathsf{T}}x(t)|| = 0$$

The ideal model reduction

- There is a space $\mathcal{V} \subset \mathbb{R}^n$ with dim $\mathcal{V} = r < n$, such that $x(t) \in \mathcal{V}$ for all time t and input u.
- Take a space W, so that $W_{\perp} \oplus V = \mathbb{R}^n$.
- Galerkin-type projections: W = V.
- Petrov-Galerkin projections: $W \neq V$.
- Take matrices V and W that form bases of V and W, with

$$W^{\mathsf{T}}V = I_r$$

- Then $V(W^{\mathsf{T}}V)^{-1}W = VW^{\mathsf{T}}$ is a projector onto \mathcal{V}
- Define $\hat{x}(t) := W^\mathsf{T} x(t) \in \mathbb{R}^r$ and define $\tilde{x}(t) := V \hat{x}(t) = V W^\mathsf{T} x(t)$
- If everything is exact, then

$$||x(t) - \tilde{x}(t)|| = ||x(t) - VW^{\mathsf{T}}x(t)|| = 0$$

■ and given (A, B, C, D), the reduced-order model $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ is

$$\hat{A} := W^T A V, \quad \hat{B} := W^T B, \quad \hat{C} := C V, \quad (\hat{D} := D).$$

Model reduction in practise

- Assume that there is a space $\mathcal{V} \subset \mathbb{R}^n$ with dim $\mathcal{V} = r < n$, such that $x(t) \in \mathcal{V}$ for all time t and input u.
- Take a space W, so that $W_{\perp} \oplus V = \mathbb{R}^n$.
- Galerkin-type projections: W = V.
- Petrov-Galerkin projections: $W \neq V$.
- Find matrices V and W that approximate bases of V and W, with

$$W^{\mathsf{T}}V = I_r$$

- Then $V(W^{\mathsf{T}}V)^{-1}W = VW^{\mathsf{T}}$ is a projector almost onto \mathcal{V}
- Define $\hat{x}(t) := W^\mathsf{T} x(t) \in \mathbb{R}^r$ and define $\tilde{x}(t) := V \hat{x}(t) = V W^\mathsf{T} x(t)$
- If everything is done well, then

$$||x(t) - \tilde{x}(t)|| = ||x(t) - VW^{\mathsf{T}}x(t)|| \approx 0$$

■ and given (A, B, C, D), the reduced-order model $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ is

$$\hat{A} := W^T A V, \quad \hat{B} := W^T B, \quad \hat{C} := C V, \quad (\hat{D} := D).$$

Definition of the reduced model

 \dots and given an (A, B, C, D) system,

the reduced-order model $(\hat{A},\hat{B},\hat{C},\hat{D})$ is

$$\hat{A} := W^T A V, \quad \hat{B} := W^T B, \quad \hat{C} := C V, \quad (\hat{D} := D).$$

Why is the ROM defined like this:

It is the (Petrov)-Galerkin condition $\dot{\tilde{x}} - A\tilde{x} - Bu \perp \mathcal{W}$:

$$W^{T}(\dot{\tilde{x}} - A\tilde{x} - Bu) = W^{T}(VW^{T}\dot{x} - AVW^{T}x - Bu)$$

Definition of the reduced model

...and given an (A, B, C, D) system,

the reduced-order model $(\hat{A},\hat{B},\hat{C},\hat{D})$ is

$$\hat{A} := W^T A V, \quad \hat{B} := W^T B, \quad \hat{C} := C V, \quad (\hat{D} := D).$$

Why is the ROM defined like this:

It is the (Petrov)-Galerkin condition $\dot{\tilde{x}} - A\tilde{x} - Bu \perp \mathcal{W}$:

$$W^{T}(\dot{\tilde{x}} - A\tilde{x} - Bu) = W^{T}(VW^{T}\dot{x} - AVW^{T}x - Bu)$$

$$= \underbrace{W^{T}\dot{x}}_{\dot{\hat{x}}} - \underbrace{W^{T}AV}_{-\hat{A}}\underbrace{W^{T}x}_{=\hat{x}} - \underbrace{W^{T}B}_{-\hat{B}}u$$

Definition of the reduced model

...and given an (A, B, C, D) system,

the reduced-order model $(\hat{A},\hat{B},\hat{C},\hat{D})$ is

$$\hat{A} := W^T A V, \quad \hat{B} := W^T B, \quad \hat{C} := C V, \quad (\hat{D} := D).$$

Why is the ROM defined like this:

It is the (Petrov)-Galerkin condition $\ddot{\tilde{x}} - A\tilde{x} - Bu \perp \mathcal{W}$:

$$W^{T}(\dot{\tilde{x}} - A\tilde{x} - Bu) = W^{T}(VW^{T}\dot{x} - AVW^{T}x - Bu)$$

$$= \underbrace{W^{T}\dot{x}}_{\dot{\tilde{x}}} - \underbrace{W^{T}AV}_{=\hat{A}} \underbrace{W^{T}x}_{=\hat{x}} - \underbrace{W^{T}B}_{=\hat{B}}u$$

is zero, if, and only if,

$$\dot{\hat{x}} - \hat{A}\hat{x} - \hat{B}u = 0.$$

Projection → Rational Interpolation

A Petrov-Galerkin projected ROM interpolates the transfer function:

Theorem 3.3

[Grimme '97, Villemagne/Skelton '87]

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

and $s_* \in \mathbb{C} \setminus (\sigma(A) \cup \sigma(\hat{A}))$, if either

- $(s_*I_n-A)^{-1}B \in \text{range } V$, or
- $(s_* I_n A)^{-*} C^T \in \text{range } W,$

then the interpolation condition

$$G(s_*) = \hat{G}(s_*).$$

in s_* holds.

Projection \leadsto Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

the error transfer function can be written as

$$G(s) - \hat{G}(s) = (C(sI_n - A)^{-1}B + D) - (\hat{C}(sI_r - \hat{A})^{-1}\hat{B} + \hat{D})$$

Projection \leadsto **Rational Interpolation**

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

the error transfer function can be written as

$$G(s) - \hat{G}(s) = (C(sI_n - A)^{-1}B + D) - (\hat{C}(sI_r - \hat{A})^{-1}\hat{B} + \hat{D})$$

$$= C((sI_n - A)^{-1} - V(sI_r - \hat{A})^{-1}W^T)B$$

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

the error transfer function can be written as

$$G(s) - \hat{G}(s) = (C(sI_n - A)^{-1}B + D) - (\hat{C}(sI_r - \hat{A})^{-1}\hat{B} + \hat{D})$$

$$= C((sI_n - A)^{-1} - V(sI_r - \hat{A})^{-1}W^T)B$$

$$= C(I_n - \underbrace{V(sI_r - \hat{A})^{-1}W^T(sI_n - A)}_{=:P(s)})(sI_n - A)^{-1}B.$$

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

the error transfer function can be written as

$$G(s) - \hat{G}(s) = (C(sI_n - A)^{-1}B + D) - (\hat{C}(sI_r - \hat{A})^{-1}\hat{B} + \hat{D})$$

$$= C(I_n - \underbrace{V(sI_r - \hat{A})^{-1}W^T(sI_n - A)}_{=:P(s)})(sI_n - A)^{-1}B.$$

If
$$s_* \in \mathbb{C} \setminus (\sigma(A) \cup \sigma(\hat{A}))$$
, then $P(s_*)$ is a projector onto \mathcal{V} :
range $P(s_*) \subset \text{range } V$, all matrices have full rank \Rightarrow "=",
$$P(s_*)^2 = V(s_*I_r - \hat{A})^{-1}W^T(s_*I_n - A)V(s_*I_r - \hat{A})^{-1}W^T(s_*I_n - A)$$

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

the error transfer function can be written as

$$G(s) - \hat{G}(s) = (C(sI_n - A)^{-1}B + D) - (\hat{C}(sI_r - \hat{A})^{-1}\hat{B} + \hat{D})$$

$$= C(I_n - \underbrace{V(sI_r - \hat{A})^{-1}W^T(sI_n - A)}_{=:P(s)})(sI_n - A)^{-1}B.$$

If $s_* \in \mathbb{C} \setminus (\sigma(A) \cup \sigma(\hat{A}))$, then $P(s_*)$ is a projector onto \mathcal{V} :

 $\mathsf{range}\, P(s_*) \subset \mathsf{range}\, V, \ \mathsf{all} \ \mathsf{matrices} \ \mathsf{have} \ \mathsf{full} \ \mathsf{rank} \Rightarrow "=",$

$$P(s_*)^2 = V(s_*I_r - \hat{A})^{-1}W^T(s_*I_n - A)V(s_*I_r - \hat{A})^{-1}W^T(s_*I_n - A)$$

$$= V(s_*I_r - \hat{A})^{-1}\underbrace{(s_*I_r - \hat{A})(s_*I_r - \hat{A})^{-1}}_{-I}W^T(s_*I_n - A) = P(s_*).$$

Projection ~> Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

the error transfer function can be written as

$$G(s) - \hat{G}(s) = (C(sI_n - A)^{-1}B + D) - (\hat{C}(sI_r - \hat{A})^{-1}\hat{B} + \hat{D})$$

$$= C(I_n - \underbrace{V(sI_r - \hat{A})^{-1}W^T(sI_n - A)}_{=:P(s)})(sI_n - A)^{-1}B.$$

If
$$s_* \in \mathbb{C} \setminus (\sigma(A) \cup \sigma(\hat{A}))$$
, then $P(s_*)$ is a projector onto $\mathcal{V} \Longrightarrow$

if
$$(s_*I_n - A)^{-1}B \in \mathcal{V}$$
, then $(I_n - P(s_*))(s_*I_n - A)^{-1}B = 0$,

hence

$$G(s_*) - \hat{G}(s_*) = 0 \implies G(s_*) = \hat{G}(s_*)$$
, i.e., \hat{G} interpolates G in $s_*!$

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

the error transfer function can be written as

$$G(s) - \hat{G}(s) = (C(sI_n - A)^{-1}B + D) - (\hat{C}(sI_r - \hat{A})^{-1}\hat{B} + \hat{D})$$

$$= C(I_n - \underbrace{V(sI_r - \hat{A})^{-1}W^T(sI_n - A)}_{=:P(s)})(sI_n - A)^{-1}B.$$

Analogously, =
$$C(sI_n - A)^{-1} (I_n - \underbrace{(sI_n - A)V(sI_r - \hat{A})^{-1}W^T}_{=:Q(s)})B.$$

If $s_* \in \mathbb{C} \setminus (\sigma(A) \cup \sigma(\hat{A}))$, then $Q(s)^H$ is a projector onto $\mathcal{W} \Longrightarrow$

if
$$(s_*I_n - A)^{-*}C^T \in \mathcal{W}$$
, then $C(s_*I_n - A)^{-1}(I_n - Q(s_*)) = 0$,

hence

$$G(s_*) - \hat{G}(s_*) = 0 \implies G(s_*) = \hat{G}(s_*)$$
, i.e., \hat{G} interpolates G in $s_*!$

Model Reduction by Projection

Projection → Rational Interpolation

A Petrov-Galerkin projected ROM interpolates the transfer function:

Theorem 3.3

[Grimme '97, Villemagne/Skelton '87]

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

and $s_* \in \mathbb{C} \setminus (\sigma(A) \cup \sigma(\hat{A}))$, if either

- $(s_*I_n-A)^{-1}B \in \text{range } V$, or
- $(s_* I_n A)^{-*} C^T \in \text{range } W,$

then the interpolation condition

$$G(s_*) = \hat{G}(s_*).$$

in s_* holds.

CSC Modal Truncation

Basic method:

Assume A is diagonalizable, $T^{-1}AT = D_A$, project state-space onto A-invariant subspace $\mathcal{V} = \operatorname{span}(t_1, \ldots, t_r)$, $t_k = \operatorname{eigenvectors}$ corresp. to "dominant" modes / eigenvalues of A. Then with

$$V = T(:, 1:r) = [t_1, ..., t_r], \quad \tilde{W}^H = T^{-1}(1:r,:), \quad W = \tilde{W}(V^H \tilde{W})^{-1},$$

reduced-order model is

$$\hat{A} := W^H A V = \text{diag}\{\lambda_1, \dots, \lambda_r\}, \quad \hat{B} := W^H B, \quad \hat{C} = C V$$

Also computable by truncation:

$$T^{-1}AT = \begin{bmatrix} \hat{A} \\ A_2 \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix}, \quad CT = [\hat{C}, C_2], \quad \hat{D} = D.$$

Basic method:

Assume A is diagonalizable, $T^{-1}AT = D_A$, project state-space onto A-invariant subspace $\mathcal{V} = \mathrm{span}(t_1,\ldots,t_r)$, $t_k =$ eigenvectors corresp. to "dominant" modes / eigenvalues of A. Then with

$$V = T(:, 1:r) = [t_1, \dots, t_r], \quad \tilde{W}^H = T^{-1}(1:r,:), \quad W = \tilde{W}(V^H \tilde{W})^{-1},$$

reduced-order model is

$$\hat{A} := W^H A V = \operatorname{diag} \{\lambda_1, \dots, \lambda_r\}, \quad \hat{B} := W^H B, \quad \hat{C} = C V$$

Also computable by truncation:

$$T^{-1}AT = \begin{bmatrix} \hat{A} \\ A_2 \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix}, \quad CT = [\hat{C}, C_2], \quad \hat{D} = D.$$

Properties:

Simple computation for large-scale systems, using, e.g., Krylov subspace methods (Lanczos, Arnoldi), Jacobi-Davidson method.

Basic method:

$$T^{-1}AT = \begin{bmatrix} \hat{A} \\ A_2 \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix}, \quad CT = [\hat{C}, C_2], \quad \hat{D} = D.$$

Properties:

Error bound:

$$\|G - \hat{G}\|_{\mathcal{H}_{\infty}} \le \|C_2\| \|B_2\| \frac{1}{\min_{\lambda \in \sigma(A_2)} |\operatorname{Re}(\lambda)|}.$$

Proof:

$$G(s) = C(sI - A)^{-1}B + D = CTT^{-1}(sI - A)^{-1}TT^{-1}B + D$$

$$= CT(sI - T^{-1}AT)^{-1}T^{-1}B + D$$

$$= [\hat{C}, C_2] \begin{bmatrix} (sI_r - \hat{A})^{-1} \\ (sI_{n-r} - A_2)^{-1} \end{bmatrix} \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix} + D$$

$$= \hat{G}(s) + C_2(sI_{n-r} - A_2)^{-1}B_2,$$

Basic method:

$$T^{-1}AT = \begin{bmatrix} \hat{A} & \\ & A_2 \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix}, \quad CT = [\hat{C}, C_2], \quad \hat{D} = D.$$

Properties:

Error bound:

$$\|G - \hat{G}\|_{\mathcal{H}_{\infty}} \le \|C_2\| \|B_2\| \frac{1}{\min_{\lambda \in \sigma(A_2)} |\operatorname{Re}(\lambda)|}.$$

Proof:

$$G(s) = \hat{G}(s) + C_2(sI_{n-r} - A_2)^{-1}B_2$$

observing that
$$\|G - \hat{G}\|_{\mathcal{H}_{\infty}} = \sup_{\omega \in \mathbb{R}} \sigma_{\max} (C_2(\jmath \omega I_{n-r} - A_2)^{-1} B_2)$$
, and

$$C_2(\jmath\omega I_{n-r}-A_2)^{-1}B_2=C_2 {\sf diag}\left(rac{1}{\jmath\omega-\lambda_{r+1}},\ldots,rac{1}{\jmath\omega-\lambda_n}
ight)B_2.$$

Basic method:

Assume A is diagonalizable, $T^{-1}AT = D_A$, project state-space onto A-invariant subspace $\mathcal{V} = \operatorname{span}(t_1, \ldots, t_r)$, $t_k = \operatorname{eigenvectors}$ corresp. to "dominant" modes / eigenvalues of A. Then reduced-order model is

$$\hat{A} := W^H A V = \operatorname{diag} \{\lambda_1, \dots, \lambda_r\}, \quad \hat{B} := W^H B, \quad \hat{C} = C V$$

Also computable by truncation:

$$T^{-1}AT = \begin{bmatrix} \hat{A} \\ A_2 \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix}, \quad CT = [\hat{C}, C_2], \quad \hat{D} = D.$$

Difficulties:

- Eigenvalues contain only limited system information.
- Dominance measures are difficult to compute.
 ([Litz '79] use Jordan canonicial form; otherwise merely heuristic criteria, e.g., [Varga '95]. Recent improvement: dominant pole algorithm.)
- Error bound not computable for really large-scale problems.

Example

BEAM, SISO system from SLICOT Benchmark Collection for Model Reduction, n=348, m=q=1, reduced using 13 dominant complex conjugate eigenpairs, error bound yields $\|G-\hat{G}\|_{\mathcal{H}_{\infty}} \leq 1.21 \cdot 10^3$

Bode plots of transfer functions and error function Bode Diagram Bode

Extensions

Base enrichment

Static modes are defined by setting $\dot{x}=0$ and assuming unit loads, i.e., $u(t)\equiv e_j,\,j=1,\ldots,m$:

$$0 = Ax(t) + Be_j \implies x(t) \equiv -A^{-1}b_j.$$

Projection subspace V is then augmented by $A^{-1}[b_1, \ldots, b_m] = A^{-1}B$. Interpolation-projection framework $\Longrightarrow G(0) = \hat{G}(0)!$

If two sided projection is used, complimentary subspace can be augmented by $A^{-T}C^T \Longrightarrow G'(0) = \hat{G}'(0)!$ (If $m \neq q$, add random vectors or delete some of the columns in $A^{-T}C^T$).

csc Modal Truncation

Extensions

Guyan reduction (static condensation)

Partition states in masters $x_1 \in \mathbb{R}^r$ and slaves $x_2 \in \mathbb{R}^{n-r}$ (FEM terminology) Assume stationarity, i.e., $\dot{x} = 0$ and solve for x_2 in

$$0 = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u$$

$$\Rightarrow x_2 = -A_{22}^{-1} A_{21} x_1 - A_{22}^{-1} B_2 u.$$

Inserting this into the first part of the dynamic system

$$\dot{x}_1 = A_{11}x_1 + A_{12}x_2 + B_1u, \quad y = C_1x_1 + C_2x_2$$

then yields the reduced-order model

$$\dot{x}_1 = (A_{11} - A_{12}A_{22}^{-1}A_{21})x_1 + (B_1 - A_{12}A_{22}^{-1}B_2)u$$

$$y = (C_1 - C_2A_{22}^{-1}A_{21})x_1 - C_2A_{22}^{-1}B_2u.$$

Dominant Poles

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with D=0:

$$G(s) = \sum_{k=1}^{n} \frac{R_k}{s - \lambda_k}$$

with the residues $R_k := (Cx_k)(y_k^H B) \in \mathbb{C}^{q \times m}$.

csc Modal Truncation

Dominant Poles

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with D=0:

$$G(s) = \sum_{k=1}^{n} \frac{R_k}{s - \lambda_k}$$

with the residues $R_k := (Cx_k)(y_k^H B) \in \mathbb{C}^{q \times m}$.

Note: this follows using the spectral decomposition $A = XDX^{-1}$, with $X = [x_1, ..., x_n]$ the right and $X^{-1} =: Y = [y_1, ..., y_n]^H$ the left eigenvector matrices:

$$G(s) = C(sI - XDX^{-1})^{-1}B = CX(sI - \operatorname{diag}\{\lambda_1, \dots, \lambda_n\})^{-1}YB$$

$$= \left[Cx_1, \dots, Cx_n\right] \begin{bmatrix} \frac{1}{s - \lambda_1} & & \\ & \ddots & \\ & & \frac{1}{s - \lambda_n} \end{bmatrix} \begin{bmatrix} y_1^H B \\ \vdots \\ y_n^H B \end{bmatrix}$$

Dominant Poles

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with D=0:

$$G(s) = \sum_{k=1}^{n} \frac{R_k}{s - \lambda_k}$$

with the residues $R_k := (Cx_k)(y_k^H B) \in \mathbb{C}^{q \times m}$.

Note: $R_k = (Cx_k)(y_k^H B)$ are the residues of G in the sense of the residue theorem of complex analysis:

$$\operatorname{res}(G, \lambda_{\ell}) = \lim_{s \to \lambda_{\ell}} (s - \lambda_{\ell}) G(s) = \sum_{k=1}^{n} \underbrace{\lim_{s \to \lambda_{\ell}} \frac{s - \lambda_{\ell}}{s - \lambda_{k}}}_{= \begin{cases} 0 \text{ for } k \neq \ell \\ 1 \text{ for } k = \ell \end{cases}} R_{k} = R_{\ell}.$$

Dominant Poles

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with D=0:

$$G(s) = \sum_{k=1}^{n} \frac{R_k}{s - \lambda_k}$$

with the residues $R_k := (Cx_k)(y_k^H B) \in \mathbb{C}^{q \times m}$.

As projection basis use spaces spanned by right/left eigenvectors corresponding to dominant poles, i.e., (λ_j, x_j, y_j) with largest

$$||R_k||/|\operatorname{re}(\lambda_k)|.$$

Dominant Poles

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with D=0:

$$G(s) = \sum_{k=1}^{n} \frac{R_k}{s - \lambda_k}$$

with the residues $R_k := (Cx_k)(y_k^H B) \in \mathbb{C}^{q \times m}$.

As projection basis use spaces spanned by right/left eigenvectors corresponding to dominant poles, i.e., (λ_j, x_j, y_j) with largest

$$||R_k||/|\operatorname{re}(\lambda_k)|$$
.

Remark

The dominant modes have most important influence on the input-output behavior

CSC Dominant Poles

Random SISO Example $(B, C^T \in \mathbb{R}^n)$

Algorithms for computing dominant poles and eigenvectors:

- Subspace Accelerated Dominante Pole Algorithm (SADPA),
- Rayleigh-Quotient-Iteration (RQI),
- Jacobi-Davidson-Method.

odes

- 1. Introduction to Linear Time Invariant Systems
- 2. Mathematical Basics for LTI Systems
- 3. Mathematical Basics for LTI System 2
- 4. Introduction to Model Reduction
- Model Reduction by Projection
- 6. Gramians and Balanced Realizations
- 7. Balanced Truncation

Mathematical Basics

If A is stable, then the Lyapunov equations

$$A^*P + PA + BB^* = 0$$

and

$$AQ + Q^*A + C^*C = 0$$

have a unique positive definite solutions P and Q, respectively.

- The matrix *P* is called the the (infinite) controllability Gramian
- and Q is called the (infinite) observability Gramian

Mathematical Basics

If A is stable, then the Lyapunov equations

$$A^*P + PA + BB^* = 0$$

and

$$AQ + Q^*A + C^*C = 0$$

have a unique positive definite solutions P and Q, respectively.

- The matrix *P* is called the the (infinite) controllability Gramian
- and Q is called the (infinite) observability Gramian
- and one can show that P and Q fulfill

$$P = \int_0^\infty e^{A au} B B^* e^{A^* au} \ \mathrm{d} au \quad \text{and} \quad Q = \int_0^\infty e^{A^* au} C^* C e^{A au} \ \mathrm{d} au.$$

Mathematical Basics

$$A*P + PA + BB* = 0$$

$$AQ + Q*A + C*C = 0$$

- If P and Q are the Gramians of a stable realization (A, B, C, D),
- then the transformed system $(\hat{A}, \hat{B}, \hat{C}, \hat{D}) = (TAT^{-1}, TB, CT^{-1}, D)$ has the Gramians

$$\hat{P} = TPT^*$$
 and $\hat{Q} = (T^{-1})^*QT^{-1}$

for any regular transformation T.

Mathematical Basics

- For any minimal and stable system (A, B, C, D),
- there are particular transformations T,
- so that the transformed system has Gramians that are equal and diagonal:

$$\hat{P} = \hat{Q} = \begin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{bmatrix},$$
 with $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > 0$.

These realizations are called Balanced Realizations.

Definition

A realization (A, B, C, D) of a linear system Σ is balanced if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

Definition

A realization (A, B, C, D) of a linear system Σ is balanced if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

When does a balanced realization exist?

Definition

A realization (A, B, C, D) of a linear system Σ is balanced if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

When does a balanced realization exist?

Theorem

Given a stable minimal linear system $\Sigma : (A, B, C, D)$, a balanced realization is obtained by the state-space transformation with

$$T_b := \Sigma^{-\frac{1}{2}} V^T R,$$

where $P = S^T S$, $Q = R^T R$ (e.g., Cholesky decompositions) and $SR^T = U \Sigma V^T$ is the SVD of SR^T

Proof. Exercise!

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

 $\sigma_1, \ldots, \sigma_n$ are the Hankel singular values of Σ .

Note: $\sigma_1, \ldots, \sigma_n \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_1, \ldots, \sigma_n > 0$ in case of minimality!

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \text{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, j = 1, \dots, n-1$).

 $\sigma_1, \ldots, \sigma_n$ are the Hankel singular values of Σ .

Note: $\sigma_1, \ldots, \sigma_n \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_1, \ldots, \sigma_n > 0$ in case of minimality!

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are system invariants, i.e. they are unaltered by state-space transformations!

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are system invariants, i.e. they are unaltered by state-space transformations!

Proof. Exercise!

csc Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

 $\sigma_1, \ldots, \sigma_n$ are the Hankel singular values of Σ .

Note: $\sigma_1, \ldots, \sigma_n \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_1, \ldots, \sigma_n > 0$ in case of minimality!

Remark

For non-minimal systems, the Gramians can also be transformed into diagonal matrices with the leading $\hat{n} \times \hat{n}$ submatrices equal to $\operatorname{diag}(\sigma_1, \dots, \sigma_{\hat{n}})$, and

$$\hat{P}\hat{Q} = \operatorname{diag}(\sigma_1^2, \dots, \sigma_{\hat{n}}^2, 0, \dots, 0).$$

see [Laub/Heath/Paige/Ward 1987, Tombs/Postlethwaite 1987].

- 1. Introduction to Linear Time Invariant Systems
- 2. Mathematical Basics for LTI Systems
- 3. Mathematical Basics for LTI System 2
- 4. Introduction to Model Reduction
- 5. Model Reduction by Projection
- 6. Gramians and Balanced Realizations
- 7. Balanced Truncation

- 1. Introduction to Linear Time Invariant Systems
- 2. Mathematical Basics for LTI Systems
- Mathematical Basics for LTI System 2
- 4. Introduction to Model Reduction
- 5. Model Reduction by Projection
- 6. Gramians and Balanced Realizations
- 7. Balanced Truncation

The Basic Method
Theoretical Background
Singular Perturbation Approximation

Basic principle:

 \blacksquare Recall: a stable system Σ , realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, A^{T}Q + QA + C^{T}C = 0,$$

satisfy:
$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 with $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n > 0$.

Basic principle:

 \blacksquare Recall: a stable system Σ , realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

satisfy:
$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 with $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n > 0$.

 $\sigma(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .

Basic principle:

 \blacksquare Recall: a stable system Σ , realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

satisfy:
$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 with $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n > 0$.

- $\sigma(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .
- Compute balanced realization of the system via state-space transformation

$$\mathcal{T}: (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$$

$$= \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D \right)$$

Basic principle:

■ Recall: a stable system Σ , realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

satisfy:
$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 with $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n > 0$.

- $\sigma(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .
- Compute balanced realization of the system via state-space transformation

$$\mathcal{T}: (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$$

$$= \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D \right)$$

■ Truncation \rightsquigarrow $(\hat{A}, \hat{B}, \hat{C}, \hat{D}) := (A_{11}, B_1, C_1, D).$

Motivation:

The HSVs $\sigma(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are system invariants: they are preserved under

$$\mathcal{T}: (A,B,C,D) \mapsto (TAT^{-1},TB,CT^{-1},D)$$

Motivation:

The HSVs $\sigma(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are system invariants: they are preserved under

$$\mathcal{T}: (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$$

in transformed coordinates, the Gramians satisfy

$$(TAT^{-1})(TPT^{T}) + (TPT^{T})(TAT^{-1})^{T} + (TB)(TB)^{T} = 0.$$

$$(TAT^{-1})^{T}(T^{-T}QT^{-1}) + (T^{-T}QT^{-1})(TAT^{-1}) + (CT^{-1})^{T}(CT^{-1}) = 0.$$

$$\Rightarrow (TPT^{T})(T^{-T}QT^{-1}) = TPQT^{-1}.$$

hence
$$\sigma(PQ) = \sigma((TPT^T)(T^{-T}QT^{-1})).$$

Implementation: SR Method

1. Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.

Implementation: SR Method

- 1. Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.
- 2. Compute SVD $SR^T = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1' \\ V_2^T \end{bmatrix}$.

Implementation: SR Method

- 1. Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.
- 2. Compute SVD $SR^T = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}$.
- 3. ROM is (W^TAV, W^TB, CV, D) , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

Implementation: SR Method

- 1. Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.
- 2. Compute SVD $SR^T = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}$.
- 3. ROM is (W^TAV, W^TB, CV, D) , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

$$V^T W = (\Sigma_1^{-\frac{1}{2}} U_1^T S) (R^T V_1 \Sigma_1^{-\frac{1}{2}})$$

Implementation: SR Method

- 1. Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.
- 2. Compute SVD $SR^T = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}$.
- 3. ROM is (W^TAV, W^TB, CV, D) , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

$$V^{T}W = (\Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}S)(R^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}) = \Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}U\Sigma V^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}$$

Implementation: SR Method

- 1. Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.
- 2. Compute SVD $SR^T = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & & |V_1| \\ & \Sigma_2 & |V_2| \end{bmatrix}$.
- 3. ROM is (W^TAV, W^TB, CV, D) , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

$$V^{T}W = (\Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}S)(R^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}) = \Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}U\Sigma V^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}$$

$$= \Sigma_{1}^{-\frac{1}{2}}[I_{r}, 0] \begin{bmatrix} \Sigma_{1} & \\ & \Sigma_{2} \end{bmatrix} \begin{bmatrix} I_{r} \\ 0 \end{bmatrix} \Sigma_{1}^{-\frac{1}{2}}$$

Implementation: SR Method

- 1. Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.
- 2. Compute SVD $SR^T = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}$.
- 3. ROM is (W^TAV, W^TB, CV, D) , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

Note:

$$V^{T}W = (\Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}S)(R^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}) = \Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}U\Sigma V^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}$$

$$= \Sigma_{1}^{-\frac{1}{2}}[I_{r}, 0]\begin{bmatrix}\Sigma_{1} & \\ & \Sigma_{2}\end{bmatrix}\begin{bmatrix}I_{r} \\ 0\end{bmatrix}\Sigma_{1}^{-\frac{1}{2}} = \Sigma_{1}^{-\frac{1}{2}}\Sigma_{1}\Sigma_{1}^{-\frac{1}{2}} = I_{r}$$

 $\implies VW^T$ is a projector, hence BT is a projection method.

Properties:

■ Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_r$.

Properties:

- Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_r$.
- Adaptive choice of r via computable error bound:

$$||y - \hat{y}||_{\mathcal{H}_2} \le \left(2\sum_{k=r+1}^n \sigma_k\right) ||u||_{\mathcal{H}_2}.$$

Linear, Time-Invariant (LTI) Systems

$$\dot{x} = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n},$ $B \in \mathbb{R}^{n \times m},$
 $y = Cx,$ $C \in \mathbb{R}^{q \times n},$ $x(-\infty) = 0.$

Alternative to State-Space Operator: Hankel Operator

Instead of

$$\mathcal{S}\colon u\mapsto y,\quad y(t)=\int_{-\infty}^t C\mathrm{e}^{A(t- au)} \mathsf{B} u(au)\,d au\quad ext{for all } t\in\mathbb{R}.$$

use the Hankel operator: (the future response of the past inputs)

$$\mathcal{H} \colon u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 C \mathrm{e}^{A(t-\tau)} B u(\tau) \ \mathrm{d} au \quad \text{for } t > 0,$$

Linear, Time-Invariant (LTI) Systems

$$\dot{x} = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n},$ $B \in \mathbb{R}^{n \times m},$
 $y = Cx,$ $C \in \mathbb{R}^{q \times n},$ $x(-\infty) = 0.$

Alternative to State-Space Operator: Hankel Operator

Instead of

$$\mathcal{S} \colon u \mapsto y, \quad y(t) = \int_{-\infty}^t C e^{A(t-\tau)} B u(\tau) \, d au \quad ext{for all } t \in \mathbb{R}.$$

use the Hankel operator: (the future response of the past inputs)

$$\mathcal{H} \colon u_{-} \mapsto y_{+}, \quad y_{+}(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) \, d\tau \quad \text{for } t > 0,$$

$$= Ce^{At} \int_{-\infty}^{0} e^{-A\tau} Bu(\tau) \, d\tau \quad \text{for } t > 0,$$

$$= Ce^{At} \chi(0; u_{-}) \quad \text{for } t > 0.$$

Linear, Time-Invariant (LTI) Systems

$$\dot{x} = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n},$ $B \in \mathbb{R}^{n \times m},$
 $y = Cx,$ $C \in \mathbb{R}^{q \times n},$ $x(-\infty) = 0.$

Alternative to State-Space Operator: Hankel Operator

use the Hankel operator: (the future response of the past inputs)

$$\mathcal{H} \colon u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 C e^{A(t-\tau)} B u(\tau) \ \mathrm{d} au \quad \text{for } t > 0,$$

- lacktriangle The operator ${\mathcal H}$ is compact $\Rightarrow {\mathcal H}$ has discrete SVD
 - \rightarrow The Hankel singular values: $\{\sigma_j\}_{j=1}^{\infty}: \sigma_1 \geq \sigma_2 \geq \ldots \geq 0$
 - \rightarrow An SVD-type approximation of the linear map ${\cal H}$ is possible!

Linear, Time-Invariant (LTI) Systems

$$\dot{x} = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n},$ $B \in \mathbb{R}^{n \times m},$
 $y = Cx,$ $C \in \mathbb{R}^{q \times n},$ $x(-\infty) = 0.$

Alternative to State-Space Operator: Hankel Operator

 ${\cal H}$ compact $$\downarrow$$ ${\cal H}$ has a discrete SVD $$\downarrow$$ Hankel singular values

Linear, Time-Invariant (LTI) Systems

$$\dot{x} = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n},$ $B \in \mathbb{R}^{n \times m},$
 $y = Cx,$ $C \in \mathbb{R}^{q \times n},$ $x(-\infty) = 0.$

Alternative to State-Space Operator: Hankel Operator

$$\mathcal{H} \colon u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 C e^{A(t-\tau)} B u(\tau) \, d au \quad \text{for all } t>0.$$

 \mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD

⇒ Best approximation problem w.r.t. 2-induced operator norm well-posed

Linear, Time-Invariant (LTI) Systems

$$\dot{x} = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n},$ $B \in \mathbb{R}^{n \times m},$
 $y = Cx,$ $C \in \mathbb{R}^{q \times n},$ $x(-\infty) = 0.$

Alternative to State-Space Operator: Hankel Operator

$$\mathcal{H} \colon u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 C e^{A(t-\tau)} B u(\tau) \, d au \quad \text{for all } t>0.$$

 \mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD

- ⇒ Best approximation problem w.r.t. 2-induced operator norm well-posed
- ⇒ solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

Linear, Time-Invariant (LTI) Systems

$$\dot{x} = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n},$ $B \in \mathbb{R}^{n \times m},$
 $y = Cx,$ $C \in \mathbb{R}^{q \times n},$ $x(-\infty) = 0.$

Alternative to State-Space Operator: Hankel Operator

$$\mathcal{H} \colon u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 C e^{A(t-\tau)} B u(\tau) \, d au \quad \text{for all } t>0.$$

 \mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD

- \Rightarrow Best approximation problem w.r.t. 2-induced operator norm well-posed
- ⇒ solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

But: computationally unfeasible for large-scale systems.

The Hankel Singular Values are Singular Values!

Theorem

Let P,Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\sigma(PQ)^{\frac{1}{2}}=\{\sigma_1,\ldots,\sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

Singular Perturbation Approximation (aka Balanced Residualization)

Assume the system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u, \quad y = \begin{bmatrix} C_1, C_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + Du$$

is in balanced coordinates.

Singular Perturbation Approximation(aka Balanced Residualization)

Assume the system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u, \quad y = \begin{bmatrix} C_1, C_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + Du$$

is in balanced coordinates.

Balanced truncation would set $x_2 = 0$ and use (A_{11}, B_1, C_1, D) as reduced-order model, thereby the information present in the remaining model is ignored!

Singular Perturbation Approximation(aka Balanced Residualization)

Assume the system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u, \quad y = \begin{bmatrix} C_1, C_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + Du$$

is in balanced coordinates.

Balanced truncation would set $x_2 = 0$ and use (A_{11}, B_1, C_1, D) as reduced-order model, thereby the information present in the remaining model is ignored!

Particularly, if $G(0) = \hat{G}(0)$ ("zero steady-state error") is required, one can apply the same condensation technique as in Guyan reduction: instead of $x_2 = 0$, set $\dot{x}_2 = 0$. This yields the reduced-order model

$$\dot{x}_1 = (A_{11} - A_{12}A_{22}^{-1}A_{21})x_1 + (B_1 - A_{12}A_{22}^{-1}B_2)u,
y = (C_1 - C_2A_{22}^{-1}A_{21})x_1 + (D - C_2A_{22}^{-1}B_2)u,$$

with

- the same properties as the reduced-order model w.r.t. stability, minimality, error bound. but $\hat{D} \neq D$:
- zero steady-state error, $G(0) = \hat{G}(0)$ as desired.

Singular Perturbation Approximation(aka Balanced Residualization)

Particularly, if $G(0) = \hat{G}(0)$ ("zero steady-state error") is required, one can apply the same condensation technique as in Guyan reduction: instead of $x_2 = 0$, set $\dot{x}_2 = 0$. This yields the reduced-order model

$$\dot{x}_1 = (A_{11} - A_{12}A_{22}^{-1}A_{21})x_1 + (B_1 - A_{12}A_{22}^{-1}B_2)u,
y = (C_1 - C_2A_{22}^{-1}A_{21})x_1 + (D - C_2A_{22}^{-1}B_2)u,$$

with

- the same properties as the reduced-order model w.r.t. stability, minimality, error bound, but $\hat{D} \neq D$;
- **z**ero steady-state error, $G(0) = \hat{G}(0)$ as desired.

- A_{22} invertible as in balanced coordinates, $A_{22}\Sigma_2 + \Sigma_2 A_{22}^T + B_2 B_2^T = 0$ and (A_{22}, B_2) controllable, $\Sigma_2 > 0 \implies A_{22}$ stable.
- If the original system is not balanced, first compute a minimal realization by applying balanced truncation with $r = \hat{n}$.

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \dots \ge \sigma_n > 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

GSC Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \dots \ge \sigma_n > 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Classical Balanced Truncation (BT) [Mullis/Roberts '76, Moore '81]

- \blacksquare P = controllability Gramian of system given by (A, B, C, D).
- Q =observability Gramian of system given by (A, B, C, D).
- P, Q solve dual Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0.$$

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \dots \ge \sigma_n > 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

LQG Balanced Truncation (LQGBT)

Jonckheere/Silverman '83_.

- P/Q = controllability/observability Gramian of closed-loop system based on LQG compensator.
- P, Q solve dual algebraic Riccati equations (AREs)

$$0 = AP + PA^{T} - PC^{T}CP + B^{T}B,$$

$$0 = A^{T}Q + QA - QBB^{T}Q + C^{T}C.$$

CSC Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \dots \ge \sigma_n > 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Balanced Stochastic Truncation (BST)

[Desai/Pal '84, Green '88]

- $P = \text{controllability Gramian of system given by } (A, B, C, D), i.e., solution of Lyapunov equation <math>AP + PA^T + BB^T = 0$.
- Q = observability Gramian of right spectral factor of power spectrum of system given by (A, B, C, D), i.e., solution of ARE

$$\hat{A}^T Q + Q \hat{A} + Q B_W (D D^T)^{-1} B_W^T Q + C^T (D D^T)^{-1} C = 0,$$

where $\hat{A} := A - B_W (DD^T)^{-1} C$, $B_W := BD^T + PC^T$.

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \dots \ge \sigma_n > 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Positive-Real Balanced Truncation (PRBT)

Green '88_.

- Based on positive-real equations, related to positive real (Kalman-Yakubovich-Popov-Anderson) lemma.
- \blacksquare P, Q solve dual AREs

$$0 = \bar{A}P + P\bar{A}^{T} + PC^{T}\bar{R}^{-1}CP + B\bar{R}^{-1}B^{T},$$

$$0 = \bar{A}^{T}Q + Q\bar{A} + QB\bar{R}^{-1}B^{T}Q + C^{T}\bar{R}^{-1}C,$$

GSC Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \dots \ge \sigma_n > 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Other Balancing-Based Methods

- Bounded-real balanced truncation (BRBT) based on bounded real lemma [OPDENACKER/JONCKHEERE '88];
- \blacksquare H_{∞} balanced truncation (HinfBT) closed-loop balancing based on H_{∞} compensator [Mustafa/Glover '91].

Both approaches require solution of dual AREs.

Frequency-weighted versions of the above approaches.

Balancing-Related Methods

- Guaranteed preservation of physical properties like
 - stability (all),
 - passivity (PRBT),
 - minimum phase (BST).
- Computable error bounds, e.g.,

$$\begin{split} \mathsf{BT:} \| \mathit{G} - \mathit{G}_r \|_{\mathcal{H}_{\infty}} & \leq 2 \sum_{j=r+1}^n \sigma_j^{\mathit{BT}}, \\ \mathsf{LQGBT:} \| \mathit{G} - \mathit{G}_r \|_{\mathcal{H}_{\infty}} & \leq 2 \sum_{j=r+1}^n \frac{\sigma_j^{\mathit{LQG}}}{\sqrt{1 + (\sigma_j^{\mathit{LQG}})^2}} \\ \mathsf{BST:} \| \mathit{G} - \mathit{G}_r \|_{\mathcal{H}_{\infty}} & \leq \left(\prod_{j=r+1}^n \frac{1 + \sigma_j^{\mathit{BST}}}{1 - \sigma_j^{\mathit{BST}}} - 1 \right) \| \mathit{G} \|_{\mathcal{H}_{\infty}}, \end{split}$$

Can be combined with singular perturbation approximation for steady-state performance.

csc References for BT I

U. B. Desai and D. Pal.

A transformation approach to stochastic model reduction. IEEE Trans. Autom. Control, AC-29:1097-1100, 1984.

M. Green.

Balanced stochastic realization.

Linear Algebra Appl., 98:211-247, 1988.

E. A. Jonckheere and L. M. Silverman.

A new set of invariants for linear systems – application to reduced order compensator design.

IEEE Trans. Autom. Control. 28:953–964. 1983.

C. Mullis and R. A. Roberts.

Synthesis of minimum roundoff noise fixed point digital filters. IEEE Trans. Circuits and Systems, CAS-23(9):551-562, 1976.

csc References for BT II

D. Mustafa and K. Glover.

Controller design by \mathcal{H}_{∞} -balanced truncation.

IEEE Trans. Autom. Control, 36(6):668-682, 1991.

P. C. Opdenacker and E. A. Jonckheere.

A contraction mapping preserving balanced reduction scheme and its infinity norm error bounds.

IEEE Trans. Circuits Syst., 35(2):184-189, 1988.

- 1. Introduction to Linear Time Invariant Systems
- 2. Mathematical Basics for LTI Systems
- 3. Mathematical Basics for LTI System 2
- 4. Introduction to Model Reduction
- Model Reduction by Projection
- 6. Gramians and Balanced Realizations
- 7. Balanced Truncation

System Theoretic Aspects of DAEs

Consider

$$Ex(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$$

$$y(t) = Cx(t),$$

- $\mathbf{x}(t) \in \mathbb{R}^n$: the system's state
- $u(t) \in \mathbb{R}^m$: the input or control
- $\mathbf{v}(t) \in \mathbb{R}^q$: the output or measurements

System Theoretic Aspects of DAEs

Consider

$$Ex(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$$

$$y(t) = Cx(t),$$

- $\mathbf{x}(t) \in \mathbb{R}^n$: the system's state
- $u(t) \in \mathbb{R}^m$: the input or control
- $\mathbf{v}(t) \in \mathbb{R}^q$: the output or measurements

- $E \in \mathbb{R}^{n \times n}$ is singular
- $A \in \mathbb{R}^{n \times n}$: the system matrix
- $B \in \mathbb{R}^{n \times m}$: the input matrix
- $C \in \mathbb{R}^{q \times n}$: the output matrix

System Theoretic Aspects of DAEs

Consider

$$Ex(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$$

$$y(t) = Cx(t),$$

- $\mathbf{x}(t) \in \mathbb{R}^n$: the system's state
- $u(t) \in \mathbb{R}^m$: the input or control
- $y(t) \in \mathbb{R}^q$: the output or measurements

- $\mathbf{E} \in \mathbb{R}^{n \times n}$ is singular
- $A \in \mathbb{R}^{n \times n}$: the system matrix
- $B \in \mathbb{R}^{n \times m}$: the input matrix
- $lackbox{C} \in \mathbb{R}^{q \times n}$: the output matrix
- We will denote the system by (E; A, B, C, D).
- \blacksquare (E; A, B, C, D) are referred to as descriptor or singular systems.

System Theoretic Aspects of DAEs

The transfer function of an (E; A, B, C, D) system in time domain:

G: $u \mapsto y$:

$$y(t) = C \left[e^{E^{D}At} x_{0} + \int_{0}^{\tau} e^{E^{D}A(t-\tau)} E^{D} B u(\tau) d\tau - - (I - E^{D}E) \sum_{i=0}^{\nu-1} (EA^{D})^{i} A^{D} B u^{(i)}(t) \right] + D u(t),$$

- \blacksquare E^{D} is the Drazin inverse of E
- ν is the differentiation index of the DAE $E\dot{x}=Ax$
- $\mathbf{u}^{(i)}$ denotes the *i*-th derivative of u

System Theoretic Aspects of DAEs

The transfer function of an (E; A, B, C, D) system in time domain:

G: $u \mapsto y$:

$$y(t) = C \left[e^{E^{D}At} x_{0} + \int_{0}^{t} e^{E^{D}A(t-\tau)} E^{D} B u(\tau) d\tau - \right.$$
$$\left. - (I - E^{D}E) \sum_{i=0}^{\nu-1} (EA^{D})^{i} A^{D} B u^{(i)}(t) \right] + D u(t),$$

where

- \blacksquare E^{D} is the Drazin inverse of E
- ν is the differentiation index of the DAE $E\dot{x}=Ax$
- $\mathbf{u}^{(i)}$ denotes the *i*-th derivative of u

Note that if E = I, then $E^{D} = I$ and the transfer function is well-known:

$$\mathbf{G} \colon u \mapsto y \colon y(t) = C \left[e^{At} x_0 + \int_0^t e^{A(t-\tau)} Bu(\tau) \, d\tau \right] + Du(t).$$

System Theoretic Aspects of DAEs

 In frequency domain (after a Laplace transform) the transfer function is given as

$$G(s) = C(sE - A)^{-1}B + D$$

.

System Theoretic Aspects of DAEs

■ In frequency domain (after a *Laplace* transform) the transfer function is given as

$$G(s) = C(sE - A)^{-1}B + D$$

Depending on B and C, the transfer function is likely to be improper.

For an improper it holds that $||G(s)|| \to \infty$ as $s \to \infty$.

System Theoretic Aspects of DAEs

- In frequency domain (after a Laplace transform) the transfer function is given as $G(s) = C(sE - A)^{-1}B + D$.
- Depending on B and C, the transfer function is likely to be improper.
- Since standard model reduction approaches return a *proper* reduced system \hat{G} , the error will grow for large frequencies.

System Theoretic Aspects of DAEs

- In frequency domain (after a *Laplace* transform) the transfer function is given as $G(s) = C(sE A)^{-1}B + D$.
- $lue{}$ Depending on B and C, the transfer function is likely to be improper.
- Since standard model reduction approaches return a *proper* reduced system \hat{G} , the error will grow for large frequencies.

System Theoretic Aspects of DAEs

The general problem is:

- the transfer function can have an improper part (frequency domain)
- the system differentiates the input (time domain)

The general approach is:

- 1. Project the DAE onto the part that is an ODE, i.e. a standard state space system
- 2. Keep the remainder, i.e. the algebraic or improper part, as it is

This means: no model reduction on the algebraic part!

Balanced Truncation for Navier-Stokes Systems

We consider linearized Navier-Stokes equations:

$$M\dot{v}(t) = A_1v(t) + J^T p(t) + B_1u(t),$$

 $Jv(t) = B_2u(t),$
 $y(t) = C_1v(t) + C_2p(t).$

- $v(t) \in \mathbb{R}^n$: state (velocity)
- $p(t) \in \mathbb{R}^p$: state (pressure)
- $u(t) \in \mathbb{R}^m$: input or control
- $v(t) \in \mathbb{R}^q$: the output or measurements

- $M \in \mathbb{R}^{n \times n}$: mass matrix (symmetric
- $A_1 \in \mathbb{R}^{n \times n}$: the system matrix
- $J \in \mathbb{R}^{p \times n}$ is another system matrix (full
- $B_1 \in \mathbb{R}^{n \times m}$, $B_2 \in \mathbb{R}^{p \times m}$: input matrices
- $C_1 \in \mathbb{R}^{q \times n}$, $C_2 \in \mathbb{R}^{q \times p}$: output matrices

Balanced Truncation for Navier-Stokes Systems

We consider linearized Navier-Stokes equations:

$$M\dot{v}(t) = A_1v(t) + J^T p(t) + B_1u(t),$$

 $Jv(t) = B_2u(t),$
 $y(t) = C_1v(t) + C_2p(t).$

- $\mathbf{v}(t) \in \mathbb{R}^n$: state (velocity)
- $p(t) \in \mathbb{R}^p$: state (pressure)
- $u(t) \in \mathbb{R}^m$: input or control
- $y(t) \in \mathbb{R}^q$: the output or measurements

- lacksquare $M \in \mathbb{R}^{n imes n}$: mass matrix (symmetric
- lacksquare $A_1 \in \mathbb{R}^{n \times n}$: the system matrix
- $J \in \mathbb{R}^{p \times n}$ is another system matrix (full
- $B_1 \in \mathbb{R}^{n \times m}$, $B_2 \in \mathbb{R}^{p \times m}$: input matrices
- $C_1 \in \mathbb{R}^{q \times n}$, $C_2 \in \mathbb{R}^{q \times p}$: output matrices

Note that this is an (E; A, B, C, D) with

$$E := \begin{bmatrix} M & 0 \end{bmatrix}$$
, $A := \begin{bmatrix} A_1 & -J \end{bmatrix}$, $B := \begin{bmatrix} B_1 \end{bmatrix}$, and $C := \begin{bmatrix} C_1 & C_2 \end{bmatrix}$.

Decoupling Differential and Algebraic Parts

$$M\dot{v}(t) = A_1v(t) + J^T p(t) + B_1u(t),$$

 $Jv(t) = B_2u(t),$
 $y(t) = C_1v(t) + C_2p(t).$

Consider the projector

$$P := I - M^{-1}J^{\mathsf{T}}(JM^{-1}J^{\mathsf{T}})^{-1}J$$

and see that with $v = Pv + (I - P)v =: v_d + v_a$ the system writes as

$$M\dot{v}_{d}(t) = P^{\mathsf{T}}A_{1}v_{d}(t) + P^{\mathsf{T}}A_{1}v_{a}(t) + P^{\mathsf{T}}B_{1}u(t),$$

$$v_{a}(t) = -M^{-1}J^{\mathsf{T}}(JM^{-1}J^{\mathsf{T}})^{-1}JB_{2}u(t),$$

$$p(t) = -(JM^{-1}J^{\mathsf{T}})^{-1}[JM^{-1}[A(v_{a}(t) + v_{d}(t)) + B_{1}u(t)] - B_{2}\dot{u}(t)],$$

$$y(t) = C_{1}v_{d}(t) + C_{1}v_{a}(t) + C_{2}p(t).$$

Decoupling Differential and Algebraic Parts

Since v_a and p depend linearly on v_d , u, and \dot{u} is an (E; A, B, C, D) system with the state v_d and

$$E := M,$$

$$A := P^{\mathsf{T}} A,$$

$$B := P^{\mathsf{T}} [B_1 - AM^{-1} J^{\mathsf{T}} (JM^{-1} J^{\mathsf{T}})^{-1} JB_2],$$

$$C := C_1 - C_2 (JM^{-1} J^{\mathsf{T}})^{-1} JM^{-1} A,$$

$$D := D_1 + D_2,$$

with

$$D_1 := -C_1 M^{-1} J^{\mathsf{T}} (J M^{-1} J^{\mathsf{T}})^{-1} J B_2 + C_2 (J M^{-1} J^{\mathsf{T}})^{-1} J M^{-1} A M^{-1} J^{\mathsf{T}} (J M^{-1} J^{\mathsf{T}})^{-1} J B_2$$

$$D_2 := -C_2 (J M^{-1} J^{\mathsf{T}})^{-1} B_2 \frac{\mathsf{d}}{\mathsf{d} t}.$$

Decoupling Differential and Algebraic Parts

$$\begin{aligned} D_1 &= -C_1 M^{-1} J^\mathsf{T} (J M^{-1} J^\mathsf{T})^{-1} J B_2 + C_2 (J M^{-1} J^\mathsf{T})^{-1} J M^{-1} A M^{-1} J^\mathsf{T} (J M^{-1} J^\mathsf{T})^{-1} J B_1 \\ D_2 &= -C_2 (J M^{-1} J^\mathsf{T})^{-1} B_2 \frac{d}{dt}. \end{aligned}$$

Note that

■ The transfer function is given as $G = C(sE - A)^{-1}B + D_1 + sD_2$

Decoupling Differential and Algebraic Parts

$$\begin{aligned} D_1 &= -C_1 M^{-1} J^\mathsf{T} (J M^{-1} J^\mathsf{T})^{-1} J B_2 + C_2 (J M^{-1} J^\mathsf{T})^{-1} J M^{-1} A M^{-1} J^\mathsf{T} (J M^{-1} J^\mathsf{T})^{-1} J B_1 \\ D_2 &= -C_2 (J M^{-1} J^\mathsf{T})^{-1} B_2 \frac{d}{dt}. \end{aligned}$$

Note that

- The transfer function is given as $G = C(sE A)^{-1}B + D_1 + sD_2$
- if B_2 or C_2 is zero, then D_2 is zero,
 - \blacksquare no \dot{u} in the output
 - $lue{}$ no obviously improper part sD_2 in G

Decoupling Differential and Algebraic Parts

$$\begin{aligned} D_1 &= -C_1 M^{-1} J^\mathsf{T} (J M^{-1} J^\mathsf{T})^{-1} J B_2 + C_2 (J M^{-1} J^\mathsf{T})^{-1} J M^{-1} A M^{-1} J^\mathsf{T} (J M^{-1} J^\mathsf{T})^{-1} J B_1 \\ D_2 &= -C_2 (J M^{-1} J^\mathsf{T})^{-1} B_2 \frac{d}{dt}. \end{aligned}$$

Note that

- The transfer function is given as $G = C(sE A)^{-1}B + D_1 + sD_2$
- if B_2 or C_2 is zero, then D_2 is zero,
 - \blacksquare no \dot{u} in the output
 - no obviously improper part sD_2 in G
- if B_2 is zero, then D_1 , $D_2 = 0$
 - we obtain a standard (E; A, B, C, D) system
 - no improper parts in *G*

Decoupling Differential and Algebraic Parts

If B_2 and C_2 are zero, then we have a standard (A, B, C, -) system:

$$M\dot{v}_d = P^\mathsf{T} A v_d + P^\mathsf{T} B_1 u,$$

 $y = C_1 v.$

Decoupling Differential and Algebraic Parts

If B_2 and C_2 are zero, then we have a standard (A, B, C, -) system:

$$M\dot{v}_d = P^{\mathsf{T}}Av_d + P^{\mathsf{T}}B_1u,$$

$$y = C_1v.$$

If we want to apply Balanced Truncation, we need to cope with the following difficulties:

- The system is not minimal
 - → this is automatically *fixed* by BT, if we can find the right solutions of the nonregular Lyapunov equations like

$$MXP^{\mathsf{T}}A + APXM + P^{\mathsf{T}}BB^{\mathsf{T}}P = 0.$$

Decoupling Differential and Algebraic Parts

If B_2 and C_2 are zero, then we have a standard (A, B, C, -) system:

$$M\dot{v}_d = P^{\mathsf{T}}Av_d + P^{\mathsf{T}}B_1u,$$

$$y = C_1v.$$

If we want to apply Balanced Truncation, we need to cope with the following difficulties:

- The system is not minimal
 - → this is automatically fixed by BT, if we can find the right solutions of the nonregular Lyapunov equations like

$$MXP^{\mathsf{T}}A + APXM + P^{\mathsf{T}}BB^{\mathsf{T}}P = 0.$$

- The system is not stable
 - \rightarrow Combine BT with *LQG*-stabilization [Benner and Heiland, '15]

Decoupling Differential and Algebraic Parts

If B_2 and C_2 are zero, then we have a standard (A, B, C, -) system:

$$M\dot{v}_d = P^{\mathsf{T}}Av_d + P^{\mathsf{T}}B_1u,$$

$$y = C_1v.$$

If we want to apply Balanced Truncation, we need to cope with the following difficulties:

- The system is not minimal
 - ightarrow this is automatically *fixed* by BT, if we can find the right solutions of the nonregular Lyapunov equations like

$$MXP^{\mathsf{T}}A + APXM + P^{\mathsf{T}}BB^{\mathsf{T}}P = 0.$$

- The system is not stable
 - \rightarrow Combine BT with *LQG*-stabilization [Benner and Heiland, '15]
- Explicit computation of the projector P is not possible for large scale systems
 - ightarrow use algorithms that do not need P explicitly, cf. [GUGERCIN, STYKEL,

Numerical Example NSE

- 2D cylinder wake
- Navier-Stokes Equations
- Re = 100
- Taylor-Hood finite elements
- 30000 velocity nodes

Numerical Example NSE

- 2D cylinder wake
- Navier-Stokes Equations
- Re = 100
- Taylor-Hood finite elements
- 30000 velocity nodes

- Boundary control at 2 outlets
- distributed observation with 6 degrees of freedom
- LQGBT-reduced order observer and controller of state dimension r = 13
- Target: stabilization of the steady-state solution

LQGBT Reduction - Bode Plot

Figure: The error in the frequency response for varying thresholds κ measured in the Frobenius norm with i denoting the imaginary unit and the transfer functions in frequency domain as defined, e.g., in [4].

Cylinder Wake Stabilization

Figure: Measured signal y versus time $t \in [0, 12]$ of the perturbed closed loop system with a reduced controller of dimension r = 13 (left), compared to the response of the uncontrolled system (right). Blue corresponds to the x-component of the velocity and red to y-component. Below, a snapshot of the magnitude of the velocity solutions at t = 12.

Conclusion

Linear Time Invariant DAEs typically have improper transfer functions

- Linear Time Invariant DAEs typically have improper transfer functions
- One can decouple a DAE to extract the differential/proper part of the system

- Linear Time Invariant DAEs typically have improper transfer functions
- One can decouple a DAE to extract the differential/proper part of the system
- The differential part is a standard (A, B, C, -) and can be reduced with standard methods

- Linear Time Invariant DAEs typically have improper transfer functions
- One can decouple a DAE to extract the differential/proper part of the system
- The differential part is a standard (A, B, C, -) and can be reduced with standard methods
- The algebraic part must not be reduced

- Linear Time Invariant DAEs typically have improper transfer functions
- One can decouple a DAE to extract the differential/proper part of the system
- The differential part is a standard (A, B, C, -) and can be reduced with standard methods
- The algebraic part must not be reduced
- The efficient implementation requires further effort

- Linear Time Invariant DAEs typically have improper transfer functions
- One can decouple a DAE to extract the differential/proper part of the system
- The differential part is a standard (A, B, C, -) and can be reduced with standard methods
- The algebraic part must not be reduced
- The efficient implementation requires further effort
- For Navier-Stokes equations there are examples of efficient application of BT related methods

CSC Literature on DAE-NSE I

P. Kunkel and V. Mehrmann.

Differential-Algebraic Equations. Analysis and Numerical Solution. European Mathematical Society Publishing House, Zürich, Switzerland, 2006.

P. Benner and J. Heiland.

LQG-balanced truncation low-order controller for stabilization of laminar flows.

In R. King, editor, Active Flow and Combustion Control 2014, volume 127 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages 365–379. Springer International Publishing, 2015.

S. Gugercin, T. Stykel, and S. Wyatt.

Model reduction of descriptor systems by interpolatory projection methods.

SIAM J. Sci. Comput., 35(5):B1010-B1033, 2013.

CSC Literature on DAE-NSE II

M. Heinkenschloss, D. C. Sorensen, and K. Sun.

Balanced truncation model reduction for a class of descriptor systems with applications to the Oseen equations.

SIAM J. Sci. Comput., 30(2):1038-1063, 2008.