

INSTITUTE OF PSYCHIATRY, PSYCHOLOGY & NEUROSCIENCE

Module:

Techniques in Neuroscience

Week 3:

Immunohistochemistry: Preserving and studying cells of the brain

Carl Hobbs

Voice over by Dr Brenda Williams

Topic 1:

An introduction to immunohistochemistry

Part 4 of 4

Part 4

Week 3 Immunohistochemistry: Preserving and studying cells of the brain

Topic 1: An introduction to immunohistochemistry

Principles of immunotechniques Enzyme based detection methods Fluorescence based detection methods Week 3 Immunohistochemistry: Preserving and studying cells of the brain Topic 1: An introduction to immunohistochemistry 3 of 23

Incorporation of negative controls

Negative controls

- it is mostly sufficient to omit the primary antibody (using the normal serum from the animal that the secondary antibody was raised in instead)
- one then compares the results of the negative control and the positive controls against the test result before drawing a conclusion

Week 3 Immunohistochemistry: Preserving and studying cells of the brain

Topic 1: An introduction to immunohistochemistry

Antigen unmasking/retrieval

Fixation procedures can mask or alter epitopes so that they can no longer bind to the primary antibody.

Antigen unmasking or retrieval refers to any technique where the masking of an epitope is reversed so that the antibody can again bind to it.

Antigen unmasking methods

Heat induced epitope retrieval (HIER)

- · Citric acid pH6
- Citrate buffer pH6
- Tris pH9
- Tris/EDTA pH9
- EDTA pH8
- Tris pH10

Protease-induced epitope retrieval

- Proteinase K
- Trypsin
- Pepsin

Veek 3 Immunohistochemistry: Preserving and studying cells of the brain

Topic 1: An introduction to immunohistochemistry

13 of 23

Blocking non-specific binding

Serum:

• contains proteins that will bind to non-specific sites

Protein – BSA (bovine serum albumin):

 compete with antibodies for nonspecific binding sites

Immunohistochemistry: Preserving and studying cells of the brain

Topic 1: An introduction to immunohistochemistry

To consider when immunostaining of sections

- Inclusion of positive and negative controls
- 2) Do I need to use antigen retrieval?
- 3) Blocking of non-specific binding

Week 3

Immunohistochemistry: Preserving and studying cells of the brain

Topic 1: An introduction to immunohistochemistry

15 of 23

Example of indirect IF using 2 antibodies

Paraffin wax section from a **mouse model of Alzheimers Disease** showing astrocytes surrounding an amyloid plaque.

Method used:

- · double indirect immunofluorescence staining
- incubated simultaneously with two primary antibodies that each recognised a different protein (glial fibrillary acidic protein (GFAP) and beta amyloid)

Nuclei are stained with a fluorescent blue stain called DAPI.

Week 3

Immunohistochemistry: Preserving and studying cells of the brain

Topic 1: An introduction to immunohistochemistry

Paraffin wax section from a normal mouse brain showing an area of the Hippocampus. Method used: • stained with an anti-GFAP antibody that is expressed by astrocytes in the section • the binding of this antibody was detected by indirect immunoperoxidase staining using DAB Counterstained with Haemalum (a blue dye) to show all nuclei.

References

Cho, Y. S., Cho, J. H., Shin, B. N., Cho, G. S., Kim, I. H., Park, J. H., ... & Hong, S. (2015). Ischemic preconditioning maintains the immunoreactivities of glucokinase and glucokinase regulatory protein in neurons of the gerbil hippocampal CA1 region following transient cerebral ischemia. *Molecular medicine reports*, 12(4), 4939-4946.

Glantz, L. A., & Lewis, D. A. (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. *Archives of general psychiatry*, *57*(1), 65-73.

Herms, J., Anliker, B., Heber, S., Ring, S., Fuhrmann, M., Kretzschmar, H., ... & Müller, U. (2004). Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members. *The EMBO journal*, 23(20), 4106-4115.

Lacroix, S., Hamilton, L. K., Vaugeois, A., Beaudoin, S., Breault-Dugas, C., Pineau, I., ... & Fernandes, K. J. (2014). Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions. *PloS one*, *9*(1), e85916.

Lavado, A., He, Y., Paré, J., Neale, G., Olson, E. N., Giovannini, M., & Cao, X. (2013). Tumor suppressor Nf2 limits expansion of the neural progenitor pool by inhibiting Yap/Taz transcriptional coactivators. *Development*, 140(16), 3323-3334.

Lundgren, O., Jodal, M., Jansson, M., Ryberg, A. T., & Svensson, L. (2011). Intestinal epithelial stem/progenitor cells are controlled by mucosal afferent nerves. *PloS one*, 6(2), e16295.

Michnick, S. W., & Sidhu, S. S. (2008). Submitting antibodies to binding arbitration. Nature chemical biology, 4(6), 326-329.

Week

Immunohistochemistry: Preserving and studying cells of the brain

Topic 1: An introduction to immunohistochemistry

19 of 23

References

Milatovic, D., Montine, T. J., Zaja-Milatovic, S., Madison, J. L., Bowman, A. B., & Aschner, M. (2010). Morphometric analysis in neurodegenerative disorders. *Current protocols in toxicology*, 12-16.

Van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. *Nat neurosci*, 2(3), 266-270.

Week

Immunohistochemistry: Preserving and studying cells of the brain

Topic 1: An introduction to immunohistochemistry

Attributions

Anonymous. (circa 1900). Franz Nissl [photograph]. Retrieved from https://commons.wikimedia.org/w/index.php?curid=4680740

Mattei G, Cristiani I, Magliaro C, Ahluwalia A. (2014) Profile analysis of hepatic porcine and murine brain tissue slices obtained with a vibratome. PeerJ PrePrints 2:e561v1 https://doi.org/10.7287/peerj.preprints.561v1

Mumssygris. (2015). Cresyl violet stainig is commonly used in histology to stain nervous tissues [digital reproduction]. Retrieved from https://commons.wikimedia.org/w/index.php?curid=38220541

OpenStax. (2016). Figure 2: Polyclonal and Monoclonal Antibody Production [illustration]. Retrieved from http://cnx.org/contents/55953ebd-7069-45cf-a114-aa7fe120640c@3.

Download for free at http://cnx.org/contents/55953ebd-7069-45cf-a114-aa7fe120640c@3.

Pr495d. (2006). Golgi-stained neurons from somatosensory cortex in the macaque monkey [photograph]. Retrieved from https://commons.wikimedia.org/w/index.php?curid=2542549

Ramón y Cajal, S. (1911). Drawing of the neural circuitry of the rodent hippocampus [drawing]. Retrieved from https://commons.wikimedia.org/w/index.php?curid=612536

Unknown author. (1899). Santiago Ramón y Cajal. Spanish Nobel laureate in medicine [digital reproduction]. Retrieved from https://commons.wikimedia.org/w/index.php?curid=12334552

Week.

Immunohistochemistry: Preserving and studying cells of the brain

Topic 1: An introduction to immunohistochemistry

21 of 23

Attributions

Unknown author. (1906). Camillo Golgi [digital reproduction]. Retrieved from https://commons.wikimedia.org/w/index.php?curid=10308907

Uthman, E. (2006). Tissue Processing 06 [photograph]. Retrieved from https://commons.wikimedia.org/w/index.php?curid=5158960

Week

Immunohistochemistry: Preserving and studying cells of the brain

Topic 1: An introduction to immunohistochemistry

