ГЛАВА 8. НОРМИРОВАННЫЕ ПРОСТРАНСТВА И ПРОСТРАНСТВА СО СКАЛЯРНЫМ ПРОИЗВЕДЕНИЕМ

1 Нормированные пространства

Опр. Линейное пространство X называется *нормированным пространством*, если каждому вектору $x \in X$ поставлено в соответствие вещественное число ||x|| (*норма* вектора x), удовлетворяющее следующим 3 аксиомам:

- 1) $||x|| \ge 0 \quad \forall x \in X; \quad ||x|| = 0 \Leftrightarrow x = 0;$
- 2) $\|\lambda x\| = |\lambda| \|x\| \quad \forall x \in X \quad \forall \lambda;$
- 3) $\|x+y\| \leqslant \|x\| + \|y\| \quad \forall \, x,y \in X \,$ (неравенство треугольника).

Чтобы норму в пространстве X отличать от норм в других пространствах, вместо $\|\cdot\|$ пишут $\|\cdot\|_X$.

Замечание. Функционал p(x) = ||x|| является однородно выпуклым.

Всякое нормированное пространство X является метрическим с метрикой

$$\rho(x,y) = ||x - y||.$$

Поэтому в X определено понятие сходимости: последовательность $\{x_n\}_{n=1}^{\infty} \subset X$ cxodumcs к элементу $x \in X$ (пишут $x_n \to x$ или $x = \lim_{n \to \infty} x_n$), если $||x_n - x|| \to 0$ при $n \to \infty$. Такую сходимость называют cxodumocmbo по норме или cunbhoŭ cxodumocmbo.

Замыкание множества $E\subset X$ обозначается через [E] или $\overline{E}.$

Опр. Подпространство L' нормированного пространства L называется $\mathit{за-}$ мкнутым, если [L'] = L'.

Опр. Систему элементов $\{x_{\alpha}\}\subset X$ называют *полной в* X, если

$$[\operatorname{span}(\{x_{\alpha}\})] = X.$$

Пример. Система элементов $1, x, x^2, \dots, x^n, \dots$ полна в C[a, b] в силу того, что $[\mathscr{P}]_{C[a,b]} = C[a,b].$

Опр. Пусть в линейном пространстве X заданы две нормы $\|\cdot\|_1$ и $\|\cdot\|_2$. Они называются *эквивалентными*, если существуют положительные постоянные c_1 и c_2 такие, что

$$c_1 ||x||_1 \leqslant ||x||_2 \leqslant c_2 ||x||_1 \quad \forall x \in X.$$

Из курса линейной алгебры известна следующая теорема.

Теорема 1.1. B конечномерном линейном пространстве любые две нормы эквивалентны.

В бесконечномерных пространствах нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ не обязаны быть эквивалентными.

Пример. Покажем, что введенные на пространстве C[a,b] нормы

$$||f||_1 = \max_{t \in [a,b]} |f(t)|, \quad ||f||_2 = \int_a^b |f(t)| dt.$$

не эквивалентны.

Ясно, что

$$||f||_2 \le (b-a)||f||_1 \quad \forall f \in C[a,b].$$

Покажем, что не существует постоянной $c_1 > 0$ такая, что

$$c_1 || f ||_1 \le || f ||_2 \quad \forall f \in C[a, b].$$

Возьмем

$$f_n(t) = \begin{cases} 1 - n(t - a), & t \in [a, a + 1/n], \\ 0, & t \in [a + 1/n, b]. \end{cases}$$

Ясно, что

$$\|f_n\|_1 = \max_{t \in [a,b]} |f_n(t)| = 1, \quad \text{HO} \quad \|f_n\|_2 = \int\limits_a^b |f_n(t)| \, dt \to 0$$

Ряды в нормированных пространствах

Опр. Пусть X – нормированное пространство и $\{x_k\}_{k=1}^{\infty} \subset X$.

Ряд $\sum_{k=1}^{\infty} x_k \ cxodumcs \ e \ X$, если существует такой элемент $S \in X$, называемый

 $\mathit{суммой}\ \mathit{pядa}$ и обозначаемый также через $\sum_{k=1}^\infty x_k,$ что

$$S = \lim_{N o \infty} S_N$$
, где $S_N = \sum_{k=1}^N x_k$ – частичная сумма ряда,

то есть существует элемент $S \in X$ такой, что

$$||S - S_N|| \to 0$$
 при $N \to \infty$.

Опр. Пусть X – бесконечномерное нормированное пространство. Последовательность $\{e_k\}_{k=1}^{\infty} \subset X$ образует базис в X, если любой элемент $x \in X$ может быть однозначно представлен в виде сходящегося ряда

$$x = \sum_{k=1}^{\infty} \alpha_k e_k,$$

где α_k – числа, называемые *координатами* вектора x в базисе $\{e_k\}_{k=1}^{\infty}$.

Опр. Пусть X и Y – нормированные пространства. Говорят, что Y непрерывно вложено в X, если $Y \subset X$ и существует постоянная c>0 такая, что

$$||y||_X \leqslant c||y||_Y \quad \forall \, y \in Y.$$

Если дополнительно Y всюду плотно в X (то есть $[Y]_X = X$), то говорят, что Y непрерывно и плотно вложено в X.

ДЗ 1.1. Показать, что C[a,b] непрерывно вложено в $L_p(a,b)$, $1 \le p \le \infty$. При каких значениях показателя p вложение является плотным?

Банаховы пространства

Опр. Полное нормированное пространство называется *банаховым пространством*.

Теорема 1.2. Пространство $L_p(E)$ при $p \in [1, \infty]$ является банаховым.

Теорема 1.3. Пространства $C[a,b] \ u \ C^m[a,b]$ – банаховы.

Теорема 1.4. Пространства ℓ_p , $1 \leqslant p \leqslant \infty$ с нормами

$$||x||_{\ell_p} = \begin{cases} \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p}, & 1 \leq p < \infty, \\ \sup_{k \geq 1} |x_k|, & p = \infty \end{cases}$$

являются банаховыми.

Теорема 1.2 была доказана раньше. Полнота пространства C[a,b] тоже была доказана.

ДЗ 1.2. Доказать, что пространство $C^1[a,b]$ непрерывно дифференцируемых на отрезке [a,b] функций с нормой

$$||f||_{C^1[a,b]} = \max_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |f'(x)|$$

является банаховым.

Домашнее задание к 13 апреля Задачи 1.1 – 1.14 из параграфа 2.1