The basic function of a **comparator** is to compare the magnitudes of two binary quantities to determine the relationship of those quantities

| Α | В | A <b< th=""><th>A=B</th><th>A&gt;B</th></b<> | A=B | A>B |
|---|---|----------------------------------------------|-----|-----|
| 0 | 0 | 0                                            | 1   | 0   |
| 0 | 1 | 1                                            | 0   | 0   |
| 1 | 0 | 0                                            | 0   | 1   |
| 1 | 1 | 0                                            | 1   | 0   |

#### Equality comparator

$$A_0$$
 $B_0$ 
 $G_1$ 
 $G_1$ 

#### 2-bit Equality comparator

LSBs 
$$A_0$$
  $G_1$   $G_2$   $G_2$   $G_2$ 

| А | В | A=B |
|---|---|-----|
| 0 | 0 | 1   |
| 0 | 1 | 0   |
| 1 | 0 | 0   |
| 1 | 1 | 1   |

$$A = B$$
  
HIGH indicates equality.

**Inequality Comparator** 

$$A > B = AB'$$
 $A > B = AB'$ 
 $A > B = AB'$ 

| Α | В | A <b< th=""><th colspan="2">A&gt;B</th></b<> | A>B |  |
|---|---|----------------------------------------------|-----|--|
| 0 | 0 | 0                                            | 0   |  |
| 0 | 1 | 1                                            | 0   |  |
| 1 | 0 | 0                                            | 1   |  |
| 1 | 1 | 0                                            | 0   |  |





## Comparators 2-bit Comparator

| INPUT |    |    | OUTPUT |                                              |     |     |
|-------|----|----|--------|----------------------------------------------|-----|-----|
| A1    | A0 | B1 | В0     | A <b< th=""><th>A=B</th><th>A&gt;B</th></b<> | A=B | A>B |
| 0     | 0  | 0  | 0      | 0                                            | 1   | 0   |
| 0     | 0  | 0  | 1      | 1                                            | 0   | 0   |
| 0     | 0  | 1  | 0      | 1                                            | 0   | 0   |
| 0     | 0  | 1  | 1      | 1                                            | 0   | 0   |
| 0     | 1  | 0  | 0      | 0                                            | 0   | 1   |
| 0     | 1  | 0  | 1      | 0                                            | 1   | 0   |
| 0     | 1  | 1  | 0      | 1                                            | 0   | 0   |
| 0     | 1  | 1  | 1      | 1                                            | 0   | 0   |
| 1     | 0  | 0  | 0      | 0                                            | 0   | 1   |
| 1     | 0  | 0  | 1      | 0                                            | 0   | 1   |
| 1     | 0  | 1  | 0      | 0                                            | 1   | 0   |
| 1     | 0  | 1  | 1      | 1                                            | 0   | 0   |
| 1     | 1  | 0  | 0      | 0                                            | 0   | 1   |
| 1     | 1  | 0  | 1      | 0                                            | 0   | 1   |
| 1     | 1  | 1  | 0      | 0                                            | 0   | 1   |
| 1     | 1  | 1  | 1      | 0                                            | 1   | 0   |

The table shows all the possible comparisons for two 2-bit numbers.

We can use Karnaugh maps to identify the implementat ion circuits.

# Comparators 2-bit Comparator



### 2-bit Comparator



# Comparators 2-bit Comparator



### **For A<B**

A1'B1 +A0'B1B0 +A1'A0'B0

### 2-bit Comparator Circuit Implementation



IC comparators provide outputs to indicate which of the numbers is larger or if they are equal. The bits are numbered starting at 0, rather than 1 as in the case of adders. Cascading inputs are provided to expand the comparator to larger numbers.



Outputs

The IC shown is the 4-bit 74LS85.

IC comparators can be expanded using the cascading inputs as shown. The lowest order comparator has a HIGH on the A = B input.





# **Example Solution**

How could you test two 4-bit numbers for equality?



The function of a comparator is to compare the magnitudes of two binary numbers to determine the relationship between them. In the simplest form, a comparator can test for equality using XNOR gates.

# **Example Solution**

How could you test two 4-bit numbers for equality?

AND the outputs of four XNOR gates.

