BILGISAYAR MIMARISI

Yıliçi Sınavı - İKİNCİ Öğretim

1) Aşağıdaki tabloda bulunan pseudo-komutlar için gerçek MIPS makine dili komutları karşılıklarını bulunuz? [20p]

\$at register, geçici değer atamaları için kullanılabilir...

F	seudo	o-instruction	Solution
clear	\$t5		
li	\$t5,	imm32	
beq	\$t5,	imm32, Label	
bge	\$t5,	\$t3, Label	

2) Aşağıda verilen MIPS yazılımının yaptığı fonksiyonun C dilindeki ifadesini yazınız? [20p]

\$25 : 5 sabit değerini tutar

\$4: x dizisinin başlangıç adresini tutar \$20: y dizisinin başlangıç adresini tutar

X: lw \$10, 0(\$4)

lw \$11, 4(\$4)

add \$12, \$11, \$10

sw \$12, 0(\$20)

addi \$20, \$20, 4

addi \$4, \$4, 4

subi \$25, \$25, 1

bne \$0, \$25, X

3) Tek Çevrimli (Single Cycle) Veriyolu yapısı üzerinde JALR komutu için üretilmesi gerekli kontrol işaretleri tablo 1 ve tablo 2 de görülmektedir. Buna göre şekilde verilen donanım üzerinde eksik bağlantıları gösteriniz? [20p]

Return Adress = PC + 4,

RA: Dönüş Adres Kontrol işareti

JREG: Jump Register (Rs) Kontrol İşareti

TABLO 1.. JALR Komutu için Kontrol İşaretleri

Instr.	RegDst	RegWrite	ALUSrc	ALUOp	MemWrite	MemtoReg	Branch	Jump
JALR	Rd = 1	1	$\mathbf{Rt} = 0$	R-type	0	0	0	0

TABLO 2. ALU Kontrol İşaretleri

ALUOp	func	JReg	RA	ALUCtrl
R-type	JALR	1	0	X

,	Aşağıda makine kodları verilen programı MIPS komutları ile yazınız? [15p]
	0x40 10001100101101110000000000100100
	0x44 00000010111001001011000000100011
	0x48 0001111011000000111111111111110000

5) Register \$s0 içinde bir n pozitif tamsayısı bulunduğunu düşünün. Fibonacci 1,1,2,3,5,8,13,... dizisi olarak bilinen diziyi hesaplayan programı MIPS komutları kullanarak yazınız? Toplam sonucu register \$t2 da tutulacaktır.. [25p]

Category	Instr	Op Code	Example	Meaning	
Arithmetic	add	0 and 32	add \$s1, \$s2, \$s3	\$s1 = \$s2 + \$s3	
(R&I	subtract subtract unsigned	0 and 34 0 and 35		\$s1 = \$s2 - \$s3 \$s1 = \$s2 - \$s3	
format)	add immediate	8	addi \$s1, \$s2, 6	\$s1 = \$s2 + 6	
	or immediate	13	ori \$s1, \$s2, 6	\$s1 = \$s2 v 6	
Data	load word	35	lw \$s1, 24(\$s2)	\$s1 = Memory(\$s2+24)	
Transfer	store word	43	sw \$s1, 24(\$s2)	Memory(\$s2+24) = \$s1	
(I format)	load byte	32	lb \$s1, 25(\$s2)	\$s1 = Memory(\$s2+25)	
	store byte	40	sb \$s1, 25(\$s2)	Memory(\$s2+25) = \$s1	
	load upper imm	15	lui \$s1, 6	\$s1 = 6 * 2 ¹⁶	
Cond.	br on equal	4	beq \$s1, \$s2, L	if (\$s1==\$s2) go to L	
Branch (I & R	br on not equal	5	bne \$s1, \$s2, L	if (\$s1 !=\$s2) go to L	
format)	set on less than	0 and 42	slt \$s1, \$s2, \$s3	if (\$s2<\$s3) \$s1=1 else \$s1=0	
	set on less than immediate	10	slti \$s1, \$s2, 6	if (\$s2<6) \$s1=1 else \$s1=0	
	brunch on greater than zero 7		bgtz \$s, offset	If \$s>0 PC= C+4+4xsign_ext(imm16) else PC=PC+4	
Uncond.	jump	2	j 2500	go to 10000	
Jump (J&R	jump register	0 and 8	jr \$t1	go to \$t1	
format)	jump and link	3	jal 2500	go to 10000; \$ra=PC+4	

MIPS KOMUT FORMATLARI

Instruction Formats All instructions are 32-bit wide, Three instruction formats: ❖ Register (R-Type) ♦ Register-to-register instructions ♦ Op: operation code specifies the format of the instruction Rs⁵ Rt⁵ Rd⁵ funct6

❖ Immediate (I-Type)

Op6

♦ 16-bit immediate constant is part in the instruction

- Jump (J-Type)
 - Used by jump instructions

MIPS Instruction Set Architecture

COE 301 - Computer Organization - KFUPM

© Muhamed Mudawar – slide 9

YANITLAR

BILGISAMAR MIMARISI IKINCI DERETIM G5 2 JINLEY clear \$ +5 addu \$t, \$t2, \$200 UP subu \$t5, \$ti, \$ti Li \$ts., imm 32 Lui \$ts, upper 16 2P ori \$ts, \$ts, lower 163p beg \$t5, imm 32, label Lui \$at, upper 16 DP ori \$at, \$at, Lower 162P beg \$+5, \$a+, label 2P. bge \$ts, \$t3, Label SLt \$at, \$15, \$t3 2P beg fat, \$zero, Label 3p

2) $x: Lw \ $10,0(\$4) \ \# \ $10 = x(0)$ $Lw \ $11) \ 4(\$4) \ \# \ $11 = x(1)$ $odd \ $12,$11,$10 \ \# \ $12 = x(0) + x(1)$ $sw \ $12,0(\$20) \ \# \ $g(0) = x(0) + x(1)$ $addi \ $20,$20,$4 \ \# \ $20 = $20 + 4$ $addi \ $41,$41,$4 \ \# \ $44 = $44 + 4$ $subi \ $25,$25,$1 \ \# \ $25 = $25 - 1$ $bne \ $0,$25,$X \ $# If $25 = 0,$gotoX

for(i=0; i < 5; i++) y(i) = x(i) + x(i+1)

(5P) Lw Rt, Imm 16 (Rs)
[Lw \$23, 36 (\$5)] 5P

(2B)

