北京化工大学 2019——2020 学年第一学期

《应用数理统计》考试试卷

-	
-,	填空题(每空 3 分, 共 24 分)
	及总体 X 服从参数为 λ (>0) 的 Poisson 分布, X_1, \dots, X_n 是来自该总体的样本,则样本的联合分布
	$p(X=k) = \frac{\lambda^k e^{-\lambda^k}}{k}$ $k=001:$ n .
2. j	及样本的频数分布为 K-W1 K-W1.
	X 0 1 2 3 4
	X 0 1 2 3 4
	设随机变量 $X \sim t(n)$, $Y \sim F(1,n)$, 若常数 c 满足 $P(X > c) = 0.1$,则 $P(Y > c^2) = $
4.	设 $X \sim N(2,1)$, Y_1,Y_2,Y_3,Y_4 相互独立且均服从 $N(0,4)$, X 与 Y_1,Y_2,Y_3,Y_4 相互独立,令
2,1) <u>K2</u>	$T=4(X-2)/\sqrt{\sum_{i=1}^{4}Y_{i}^{2}}$,且满足 $P(T >k)=0.01$,则 $k=$
5.1	$\sim N(U_1)$. $\sim N$
	大似然估计值为 O CX=A·
6.	设总体 X 服从参数为 λ (>0) 的指数分布 $\exp(\lambda)$, X_1, \dots, X_n 是样本均值. 若 $C\overline{X}^2$ 为
	D(X) 的无偏估计量,则常数 $C = $ $C(X)$
7.	设总体 $X\sim N(\mu,16)$, X_1,\cdots,X_{36} 是来自该总体的样本, \overline{X} 是样本均值,如果 $(\overline{X}-1,\overline{X}+1)$ 为 μ 的
	置信区间,则置信度为
8.	. 设总体 $X\sim N(\mu,\sigma^2)$,其中 μ , σ^2 未知, X_1,\cdots,X_n 是来自该总体的样本, S^{*2} 是修正样本方差. 欲检
	验 H_0 : σ^2 = 1, H_1 : σ^2 ≠ 1, 在显著水平 α 下, H_0 的接受域为
_	U_{6}^{1} 6号 U_{1}^{2} 6号 U_{1}^{2} 6号 U_{1}^{2} 6号 U_{2}^{2} 8年 自总体 U_{2}^{2} 6号 U_{3}^{2} 6号 U_{4}^{2} 6号 U_{5}^{2} 8年 自总体
且	两样本相互独立,令 $F = \sum_{i=1}^{9} (X_i - 2)^2 / \sum_{i=1}^{17} (Y_i - \overline{Y})^2$,其中 $\overline{Y} = \sum_{i=1}^{17} Y_i / 17$,求 $P(0.0836 < F < 0.945)$ 之
值.	

 $= \sqrt{(15\, \mathcal{G})}$ 总体X 的概率密度函数 $f(x) = egin{cases} \frac{\beta \alpha^{\beta}}{x^{\beta+1}}, & x \geq \alpha \\ 0, & x < \alpha \end{cases}$,其中参数 $\alpha > 0, \beta > 1,$ 设 X_1, \cdots, X_n 是来自

该总体的样本.

- (1) 当 α =1时,求未知参数 β 的矩估计量;
- (2) 当 $\alpha=1$ 时,求未知参数 β 的极大似然估计量;
- (3) 当 β =2时,求未知参数 α 的极大似然估计量.

四、(93)设总体X满足 $E(X)=\mu$ 和 $D(X)=\sigma^2(\sigma^2>0)$,从总体中分别抽取容量为 n_1,n_2 的两个独立 样本,样本均值分别为 $\overline{X}_1,\overline{X}_2$,试证:对于任意满足a+b=1的常数a和b, $T=a\overline{X}_1+b\overline{X}_2$ 都是 μ 的无 偏估计量;并确定常数a,b,使方差D(T)达到最小.

五、(12 分)比较甲乙两种棉花品种的优劣,假设用它们纺出的棉纱强度分别服从正态分布 $N(\mu_i, \sigma_i^2)$, $N(\mu_2,\sigma_2^2)$, 试验者分别从这两种棉纱中抽取样本容量 $n_1=100$, $n_2=50$ 的样本,测得样本均值分别为 $\overline{x}=5.6$, $\overline{y}=5.2$,修正样本方差分别为 $s_1^{*2}=4$, $s_2^{*2}=2.56$.设两样本相互独立. 试在显著性水平 $\alpha=0.05$

下检验假设 $H_0: \mu_1 \leq \mu_2, H_1: \mu_1 > \mu_2$.

agnh.

(1) 若
$$\sigma_1^2 = 2.2^2$$
, $\sigma_2^2 = 1.8^2$.

(2) 若
$$\sigma_1^2 = \sigma_2^2$$
未知.

之√(10分)某船厂的历史资料显示,生产的船只销往A,B,C,D,E地区的比例分别为20%,28%,8%,12%和32%。 在今年生产的船只中,观测了 500 艘,发现销往上述地区的船只分别为 110,138,43,66,143.用 χ^2 拟合检验 法在显著性水平 α =0.05下检验销售比例是否改变.

七、(20分)以家庭为单位,某种商品年需求量 y 与该商品价格 x 之间的一组调查数据如下表:

价格 x (元)	5	2	2	2.3	2.5	2.6	2.8	. 3	3.3	3.5
需求量 y (千克)	1	3.5	3	2.7	2.4	2.5	2	1.5	1.2	1.2

设 $y = \beta_0 + \beta_1 x + \varepsilon, \varepsilon \sim N(0, \sigma^2)$.

- (1) 求回归系数 $oldsymbol{eta}_0$, $oldsymbol{eta}_1$ 的最小二乘估计 $\hat{oldsymbol{eta}}_0$,并写出y对x的回归方程:
- (2) 求 σ^2 的无偏估计,和判定系数 r^2 ;
- (3) 求 β _I 的置信度为95%的置信区间;
- (4) 对回归方程的显著性进行检验($\alpha = 0.05$).
- (5) 当 $x_0 = 4$ 时,求 y_0 的预测值.

附表:可能用到的标准正态分布, χ^2 -分布,t-分布和F-分布的下侧分位数:

$$1. \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

x	0.645	1	1.5	1.645	1.96	2
$\Phi(x)$	0.7405	0.8413	0.9332	0.95	0.975	0.9772

$$2. P\left\{\chi^2(n) < \chi^2_{\alpha}(n)\right\} = \alpha:$$

3.
$$P\{t(n) < t_{\alpha}(n)\} = \alpha$$
:

$$t_{0.975}(8) = 2.306, t_{0.975}(9) = 2.2622,$$

4.
$$P\{F(n_1, n_2) < F_{\alpha}(n_1, n_2)\} = \alpha$$
:

$$F_{0.95}(16,9) = 2.99, F_{0.95}(9,16) = 2.54,$$

$$\chi_{0.95}^2(4) = 9.488, \ \chi_{0.95}^2(5) = 11.07.$$

$$t_{0.99}(4) = 3.7469, t_{0.995}(4) = 4.6041,$$

$$t_{0.975}(10) = 2.2281.$$

$$F_{0.95}(1,8) = 5.32, F_{0.95}(1,9) = 5.12,$$

$$F_{0.99}(16,9) = 4.92, F_{0.99}(9,16) = 3.78.$$