Package 'Immprobe'

June 1, 2024

Type Package			
Title Sparse high-dimensional linear mixed modeling with a partitioned empirical Bayes ECM algorithm (LMM-PROBE).			
Version 1.0			
Date 2023-09-07			
Author Anja Zgodic, Alex McLain, Peter Olejua			
Maintainer Anja Zgodic <azgodic@email.sc.edu></azgodic@email.sc.edu>			
Description Linear Mixed Modeling using the PROBE algorithm. This package is in development.			
License GPL (>= 2)			
Encoding UTF-8			
RoxygenNote 7.2.0			
Depends R (>= 3.5.0), Rcpp (>= 1.0.8.3), snow (>= 0.4.4), snowfall (>= 1.84.6.1), tidyr (>= 1.2.0), lme4 (>= 1.1.29)			
LinkingTo Rcpp, RcppArmadillo			
NeedsCompilation yes			
R topics documented:			
Immprobe-package1Immprobe2SLE4			
Index			
1mmprobe-package Sparse high-dimensional linear mixed modeling with a partitioned empirical Bayes ECM algorithm (LMM-PROBE).			

Description

Linear Mixed Modeling using the PROBE algorithm. This package is in development.

2 *Immprobe*

Package Content

Index of help topics:

SLE High-dimensional dataset for sparse linear

mixed modeling.

1mmprobe Sparse high-dimensional linear mixed modeling

with PaRtitiOned empirical Bayes ECM

(LMM-PROBE) algorithm.

lmmprobe-package Sparse high-dimensional linear mixed modeling

with a partitioned empirical Bayes ECM

algorithm (LMM-PROBE).

Maintainer

Anja Zgodic <azgodic@email.sc.edu>

Author(s)

Anja Zgodic, Alex McLain, Peter Olejua

1mmprobe Sparse high-dimensional linear mixed modeling with PaRtitiOned em-

pirical Bayes ECM (LMM-PROBE) algorithm.

Description

Sparse high-dimensional linear mixed modeling with PaRtitiOned empirical Bayes ECM (LMM-PROBE) algorithm. Currently, the package offers functionality for two scenarios. Scenario 1: only a random intercept, each unit has the same number of observations; Scenario 2: a random intercept and a random slope, each unit has the same number of observations. We are actively expanding the package for more flexibility and scenarios.

Arguments

Y	A training-data matr	rix containing the outcome Y.
---	----------------------	-------------------------------

Ζ A training-data matrix containing the sparse fixed-effect predictors on which to

apply the Immprobe algorithm. The first columns should be the "id" column.

٧ A training-data matrix containing non-sparse predictors for the random effects.

> This matrix is currently only programmed for two scenarios. Scenario 1: only a random intercept, where V is a matrix with one column containing ID's and each unit has the same number of observations. Scenario 2: a random intercept and a random slope, where V is a matrix with two columns. The first column is ID and the second column is a continuous variable (e.g. time) for which a random slope is to be estimated. Each unit has the same number of observations.

ID_data A factor vector of IDs for subjects in the training set.

Y_test A testing-data matrix containing the outcome Y. Default is NULL.

Z_test A training-data matrix containing the sparse fixed-effect predictors on which to

apply the Immprobe algorithm. The first columns should be the "id" column.

Default is NULL.

Immprobe 3

V_test	A training-data matrix containing non-sparse predictors for the random effects. This matrix is currently only programmed for two scenarios. Scenario 1: only a random intercept, where V is a matrix with one column containing ID's and each unit has the same number of observations. Scenario 2: a random intercept and a random slope, where V is a matrix with two columns. The first column is ID and the second column is a continuous variable (e.g. time) for which a random slope is to be estimated. Each unit has the same number of observations. Default is NULL.
ID_test	A factor vector of IDs for subjects in the testing set.
alpha	Type I error; significance level.
ер	Value against which to compare convergence criterion, we recommend 0.05.
В	The number of groups to categorize estimated coefficients in to calculate correlation ρ . We recommend five.
adj	A factor multiplying Silverman's 'rule of thumb' in determining the bandwidth for density estimation, same as the 'adjust' argument of R's density function. Default is three.
maxit	Maximum number of iterations the algorithm will run for. Default is 10000.
cpus	The number of CPUS user would like to use for parallel computations. Default is four.
LR	A learning rate parameter r. Using zero corresponds to the implementation described in Zgodic et al.
С	A learning rate parameter c. Using one corresponds to the implementation described in Zgodic et al.
sigma_init	An initial value for the residual variance parameter. Default is NULL which corresponds to the sample variance of Y.

Value

A list of the output of the Immprobe function, including

beta_hat,beta_hat_var MAP estimates of the posterior expectation (beta_hat) and variance (beta_hat_var) of the prior mean (β) of the regression coefficients assuming $\gamma=1$,

gamma the posterior expectation of the latent $\boldsymbol{\gamma}$ variables,

preds predictions of Y,

PI_lower, PI_upper lower and upper prediction intervals for the predictions,

sigma2_est MAP estimate of the residual variance,

random_var MAP estimate of the random effect(s) variance,

random_intercept estimated random intercept terms,

random_slope estimated random slope terms, if applicable.

References

Zgodic A, Bay R, Zhang J, Olejua P, and McLain AC (2023). Sparse high-dimensional linear mixed modeling with a partitioned empirical Bayes ECM algorithm. arXiv preprint arXiv:2310.12285.

4 SLE

Examples

```
library(lmmprobe)
data(SLE)
Y <- matrix(real_data[,"y"], ncol=1)
Z <- real_data[,4:ncol(real_data)]
V <- matrix(real_data[,"id"], ncol=1)
ID_data <- as.numeric(as.character(real_data$id))
full_res <- lmmprobe(Y = Y, Z = Z, V = V, ID_data = ID_data)</pre>
```

SLE

High-dimensional dataset for sparse linear mixed modeling.

Description

This is the Systemic Lupus Erythematosus (SLE) data used in the data analysis section of the LMM-PROBE reference. The dataset has 353 observations, 125 subjects, and 15397 predictors.

Usage

data(SLE)

Format

A data frame 'real_data' with 353 observations.

References

Banchereau, R., Hong, S., Cantarel, B., Baldwin, N., Baisch, J., Edens, M., Cepika, A.-M., Acs, P., Turner, J., Anguiano, E., Vinod, P., Khan, S., Obermoser, G., Blankenship, D., Wakeland, E., Nassi, L., Gotte, A., Punaro, M., Liu, Y.-J., Banchereau, J., Rossello-Urgell, J., Wright, T., and Pascual, V. (2016), "Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients," Cell, 165, 551–565.

Zgodic A, Bay R, Zhang J, Olejua P, and McLain AC (2023). Sparse high-dimensional linear mixed modeling with a partitioned empirical Bayes ECM algorithm. arXiv preprint arXiv:2310.12285.

Examples

```
data(SLE)
Y <- matrix(real_data[,"y"], ncol=1)
Z <- real_data[,4:ncol(real_data)]
V <- matrix(real_data[,"id"], ncol=1)
ID_data <- as.numeric(as.character(real_data$id))</pre>
```

Index

```
* datasets
     SLE, 4
* package
     1mmprobe-package, 1

1mmprobe, 2
1mmprobe (1mmprobe-package), 1
1mmprobe-package, 1

SLE, 4
```