Laborübungen: Mechanik und Wärme

15. Februar 2012

Bestimmung des Adiabatenexponent \varkappa

1 Aufgabenstellung

- 1. Bestimmung des Adiabatenexponenten der Luft nach der Methode von Rüchardt.
- 2. Bestimmung des Adiabatenexponenten der Luft nach der Methode von Clement-Desormes.
- 3. Überprüfung der Methode nach Clement-Desormes auf systematische Fehler.

2 Grundlagen

2.1 Methode nach Rüchardt

Läßt man in einem nach oben offenen Präzisionsglasrohr mit der Querschnittsfläche A (siehe Abbildung 1) eine Kugel K mit Masse m fallen, so schwingt sie auf dem durch das abgeschlossene Volumen V_0 gebildeten Luftpolster mit der Periodendauer τ . Da nur wenig Zeit für einen Wärmeaustausch mit der Umgebung zur Verfügung steht, wird die (De-)Kompression als adiabatisch angesehen. Aus der Differentialgleichung für eine ungedämpfte Schwingung ergibt sich für den Adiabatenexponenten

$$\kappa = 4\pi^2 \frac{mV_0}{A^2 p \tau^2} \tag{1}$$

wobei p der Druck im Präzisionsglasrohr in der Nullposition der Kugel ist. Wird vom Barometer, das den Luftdruck auf Meereshöhe angibt, der Wert p_0 abgelesen, so ergibt sich unter Zuhilfenahme der barometrischen Höhenformel

$$p = p_0 \exp\left(-\frac{h}{8000 \text{ m}}\right) + \frac{mg}{A} \tag{2}$$

wobei die Seehöhe h in Metern einzusetzen und $g = 9.81 \,\mathrm{m \, s^{-2}}$ ist.

2.2 Methode nach Clement-Desormes

In eine Glasflasche (siehe Abbildung 2) wird mit einem Blasbalg Luft eingepumpt. Nachdem sich die Temperatur in der Flasche an die Raumtemperatur angeglichen hat, wird der Überdruck h_1 (z.B. in mm Wasersäule) abgelesen. Wird der Hahn kurz geöffnet, so erfolgt der Druckausgleich (auf Labordruck) adiabatisch, wobei sich die eingeschlossene Luft abkühlt. Nach der anschließenden isochoren Erwärmung wird der Überdruck h_2 abgelesen. Aus den Gesetzen für adiabatische und isochore Zustandsänderungen ergibt sich der Adiabatenexponent zu

$$\kappa = \frac{h_1}{h_1 - h_2} \tag{3}$$

Dabei wurde vorausgesetzt, daß der Überdruck klein im Vergleich zum Luftdruck im Labor ist.

3 Versuchsaufbauten

Abbildung 1: Versuchsaufbau nach Rüchardt. Das Gefäß mit Volumen V_0 kann mit dem Blasbalg B aufgepumpt werden bis die Kugel K vom Magneten M gehalten wird. Durch Öffnen von H wird der Druck auf Laborbedingungen ausgeglichen.

Abbildung 2: Versuchsaufbau nach Clement-Desormes. Mit dem Hahn H kann entweder das Vorratsgefäß aufgepumpt (Blasbalg B) oder auf Labordruck gebracht werden. Der Überdruck wird über ein U-Rohrmanometer angezeigt.