Results

April 6, 2021

Tables of Friedman, Bonferroni-Dunn, Holm, Hochberg and Hommel Tests

Table 1: Average Rankings of the algorithms

Ranking	2.954545454545453	1.863636363636363	1.18181818181817
Algorithm	ppvs	sodd des	svdd desthr

Friedman statistic considering reduction performance (distributed according to chi-square with 2 degrees of freedom: 35.1818181818181888. P-value computed by Friedman Test: 2.295204948321583E-8. Iman and Davenport statistic considering reduction performance (distributed according to F-distribution with 2 and 42 degrees of freedom: 83.7835051546356.

P-value computed by Iman and Daveport Test: 2.1900489658918368E-15.

Bonferroni-Dunn's procedure rejects those hypotheses that have a p-value ≤ 0.025 .

Table 2: Holm / Hochberg Table for $\alpha = 0.05$

Holm/Hochberg/Hommel	0.025	0.05
d D	4.115791519432499E-9	0.023738515250054618
$z = (R_0 - R_i)/SE$	5.879471219266385	2.261335084333226
algorithm	ppas	sydd des
i	2	-1

Hochberg's procedure rejects those hypotheses that have a p-value ≤ 0.05 . Hommel's procedure rejects all hypotheses.

Table 3: Holm / Hochberg Table for $\alpha = 0.10$

Holm/Hochberg/Hommel	0.05	0.1
d	4.115791519432499E-9	0.023738515250054618
$z = (R_0 - R_i)/SE$	5.879471219266385	2.261335084333226
algorithm	ppvs	svdd des
۰.	01	1

Bonferroni-Dunn's procedure rejects those hypotheses that have a p-value ≤ 0.05 . Hochberg's procedure rejects those hypotheses that have a p-value ≤ 0.1 . Hommel's procedure rejects all hypotheses.

Table 4: Adjusted p-values

sted p pBonf PHolm PHoch PHomm	432499E-9 $8.231583038864998E-9$ $8.231583038864998E-9$ $8.231583038864998E-9$ $8.231583038864998E-9$	$0.023738515250054618 \qquad 0.047477030500109235 \qquad 0.023738515250054618 \qquad 0.0237585150054618 \qquad 0.02375851500054618 \qquad 0.02375851500054618 \qquad 0.025758518600000$	
unadjusted p pBonf	4.115791519432499E-9 8.231583038864	0.023738515250054618 0.047477030500	
algorithm	ppvs	sydd des	
		7	ĺ

Table 5: Holm / Shaffer Table for $\alpha = 0.05$

		/ TITIOTT OTCOT	/ CITATION TARGET A	3	
.2	algorithms	$z = (R_0 - R_i)/SE$	р	Holm	Shaffer
es.	svdd vs. svdd desthr	5.879471219266385	4.115791519432499E-9	0.01666666666666666	0.016666666666666666
7	svdd vs. svdd des	3.6181361349331596	2.967323112931028E-4	0.025	0.05
П	svdd des vs. svdd desthr	2.261335084333226	0.023738515250054618	0.05	0.05

Bergmann's procedure rejects these hypotheses:

• svdd vs. svdd des

• svdd vs. svdd desthr

• svdd des vs. svdd desthr

Table 6: Holm / Shaffer Table for $\alpha = 0.10$

Shaffer	0.03333333333333333	0.1	0.1	
Holm	0.03333333333333333	0.05	0.1	
d	4.115791519432499E-9	2.967323112931028E-4	0.023738515250054618	
$z = (R_0 - R_i)/SE$	5.879471219266385	3.6181361349331596	2.261335084333226	
algorithms	sydd vs. sydd desthr	svdd vs. svdd des	svdd des vs. svdd desthr	
. 2	8	7	1	

• svdd vs. svdd des

• svdd vs. svdd desthr

• svdd des vs. svdd desthr

Table 7: Adjusted p-values

6	hypothesis svdd vs.svdd desthr svdd vs.svdd des	unadjusted p 4.115791519432499E-9 2.967323112931028E-4	Table 7: Adjust PNeme 1.2347374558297497E-8 8.901969338793084F-4	$\begin{array}{ccc} \text{ljusted p-values} \\ & \begin{array}{cccc} & & & & & & & & & & & & & & & & & $	${}^{p}Shaf$ 1.2347374558297497E-8 2.96732311.9331028E-4	$\frac{pBerg}{1.2347374558297497E-8} \\ 2.967323112931028E-4$
ı n	. T	0.023738515250054618	0.07121554575016385	0.023738515250054618	0.023738515250054618	0.023738515250054618