

ЭТИКЕТКА

СЛКН.431232.068 ЭТ

Микросхема интегральная 564 ИЕ19Т2ЭП Функциональное назначение — $5^{\text{тм}}$ — разрядный счетчик Джонсона с предварительной установкой

Климатическое исполнение УХЛ Схема расположения выводов Условное графическое обозначение

Таблица назначения выводов

№ вывода	Обозначение вывода	Назначение вывода	№ вывода	Обозначение вывода	Назначение вывода
1	D	Вход информационный	9	J4	Вход предварительной установки 4 разряда
2	J1	Вход предварительной установки 1 разряда	10	EN	Вход разрешения предварительной установки
3	J2	Вход предварительной установки 2 разряда	11	Q 4	Выход 4 разряда
4	$\overline{\mathrm{Q2}}$	Выход 2 разряда	12	J5	Вход предварительной установки 5 разряда
5	Q1	Выход 1 разряда	13	Q5	Выход 5 разряда
6	$\overline{\mathrm{Q3}}$	Выход 3 разряда	14	CL	Вход тактовых импульсов
7	Ј3	Вход предварительной установки 3 разряда	15	SR	Вход установки
8	0V	Общий	16	V_{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: U_{CC} = 5 B, U_{IH} = 5 B, U_{IL} = 0B U_{CC} = 10 B, U_{IH} = 10 B, U_{IL} = 0B	U _{OL}	-	0,05 0,05
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5$ B, $U_{IH} = 5$ B, $U_{IL} = 0$ B $U_{CC} = 10$ B, $U_{IH} = 10$ B, $U_{IL} = 0$ B	U_{OH}	4,95 9,95	-
3. Максимальное выходное напряжение низкого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	U _{OH min}	4,2 9,0	-
5. Ток потребления, мкА, при: $U_{CC} = 10 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 10 \; B \\ U_{CC} = 15 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 15 \; B$	I_{CC}	-	10 20
6. Входной ток низкого уровня, мкА, при: $U_{\rm CC} = 15~{\rm B},~U_{\rm IL} = 0~{\rm B},~U_{\rm IH} = 15~{\rm B}$	I_{IL}	-	/-0,1/
7. Входной ток высокого уровня, мкА, при: $U_{\rm CC} = 15~{\rm B}, U_{\rm IL} = 0~{\rm B}, U_{\rm IH} = 15~{\rm B}$	I _{IH}	-	0,1
8 . Выходной ток низкого уровня, мА, при: $U_{CC}=5$ B, $U_{IL}=0$ B, $U_{IH}=5$ B, $U_{O}=0.5$ B $U_{CC}=10$ B, $U_{IL}=0$ B, $U_{IH}=10$ B, $U_{O}=0.5$ B	I_{OL}	0,150 0,350	-

1

Продолжение таблицы 1			
1	2	3	4
9. Выходной ток высокого уровня, мА, при: $U_{CC}=5$ B, $U_{IL}=0$ B, $U_{IH}=5$ B, $U_{O}=4.5$ B $U_{CC}=10$ B, $U_{IL}=0$ B, $U_{IH}=10$ B, $U_{O}=9.5$ B	I_{OH}	/-0,150/ /-0,350/	
10. Максимальная тактовая частота, МГц, при: $U_{CC} = 5$ B, $U_{IL} = 0$ B, $U_{IH} = 5$ B, $C_L = 50$ пФ $U_{CC} = 10$ B, $U_{IL} = 0$ B, $U_{IH} = 10$ B, $C_L = 50$ пФ	f _{c max}	1,0 3,0	
11. Время задержки распространения при выключении и включении (от вывода 14 к выводам 4, 5, 6, 11, 13) , нС, при: $U_{CC} = 5 \text{ B, } U_{IL} = 0 \text{ B, } U_{IH} = 5 \text{ B, } C_L = 50 \text{ п}\Phi$ $U_{CC} = 10 \text{ B, } U_{IL} = 0 \text{ B, } U_{IH} = 10 \text{ B, } C_L = 50 \text{ n}\Phi$	t _{PLH1} t _{PHL1}	-	1000 350
12. Время задержки распространения при выключении и включении (от вывода $10~\mathrm{k}$ выводам $4, 5, 6, 11, 13$), нс, при: $U_{CC} = 5~\mathrm{B},~U_{IL} = 0~\mathrm{B},~U_{IH} = 5~\mathrm{B},~C_L = 50~\mathrm{n}\Phi$ $U_{CC} = 10~\mathrm{B},~U_{IL} = 0~\mathrm{B},~U_{IH} = 10~\mathrm{B},~C_L = 50~\mathrm{n}\Phi$	t _{PLH2} t _{PHL2}	-	1000 350
13. Время задержки распространения при выключении (от вывода 15 к выводам 4, 5, 6, 11, 13), нс, при: $U_{CC} = 5 \text{ B, } U_{IL} = 0 \text{ B, } U_{IH} = 5 \text{ B, } C_L = 50 \text{ п}\Phi$ $U_{CC} = 10 \text{ B, } U_{IL} = 0 \text{ B, } U_{IH} = 10 \text{ B, } C_L = 50 \text{ п}\Phi$	t _{PLH3}	-	1000 350
14. Входная ёмкость , п Φ , при: $U_{CC} = 10~B,~U_1 = 0~B$	C _I	-	7,5

1.2 Содержание драгоценных металлов в 1000 шт. изделий:

золото г, серебро г, в том числе: золото г/мм на 16 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ С не менее 100000 ч, а в облегченном режиме ($U_{\rm CC}$ от 5 до 10B)- не менее 120000 ч.
- 2.2 Гамма процентный срок сохраняемости (T_{C_Y}) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте 3ИП , должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.610-28ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие.

Срок гарантии исчисляется с даты изготовления, нанесенной на микросхемы.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИЕ19Т2ЭП соответствуют	техническим условиям АЕЯР.43120	00.610-28ТУ и признаны г	одными для эксплуатации.

Приняты по		OT		
	(извещение, акт и др.)		(дата)	_
Место для шта	мпа ОТК			Место для штампа ВП
Место для шта	импа «Перепроверка г	произведена	ı	» (дата)
Приняты по _	(извещение, акт и др.)	от	(дата)	_
Место для шта	импа ОТК			Место для штампа ВП
Пена договорн	เลต			

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка, вход – выход, питание-общая точка.

Остальные указания по применению и эксплуатации – в соответствии с АЕЯР.431200.610ТУ