ST517 Note Outline 2: Summarizing Data

Notes for Lecture 2.1: Types of Data

Types of Variables (Dat	a)
-------------------------	----

rpes of Variables (Data)					
•	Categorical Variable:				
	0	Example: Do you own a car? (Yes, No) Also called qualitative Breaking this down further, a categorical variable can have values that are: Nominal:			
		■ Ordinal:			
•	• Quantitative Variable:				
		Example: What is your age in years? Breaking this down further, a quantitative variable can have values that are:			
		■ Discrete:			
		Continuous:			

• Key idea: Different summaries are appropriate for the different types of variables

Exploratory Data Analysis (EDA)

- Visualize, summarize, and examine data
 - Visualize via graphical display
 - o Also use numeric summaries to summarize and examine data
- Critical first step in the data analysis process (i.e. before you get to formal statistical inference)

Graphical Displays

- Quickly tells us the story behind the data
- Key idea:
 - o Good data visualizations tell the story of the data in a way that is informative, easy to get, and visually appealing
 - Poor data visualizations misrepresent the story of the data, either inadvertently or intentionally
- Graphical Displays for Categorical Variables: Bar (or Mosaic) charts, Pie Charts
- Graphical Displays for Numeric Variables: Histograms, Boxplots, and Scatterplots, Time-series plots, Heat maps

Numeric Summaries

- Allow us to make comparisons
- Simplest numeric summaries for categorical variables: Count or percent in each category, tables
- Some numeric summaries for numeric variables:
 - o Measures of Central Tendency: Mean, median
 - o Measures of Variability: Variation, standard deviation, range, IQR

Notes for Lecture 2.2: Graphical Displays & Numeric Summaries for Categorical Data

Numeric Summaries for Categorical Data

- Count in each category
- Proportion (or percent) in each category
 - O Sample proportion: $\hat{p} = \frac{Count}{Sample \ size} = \frac{y}{n}$
- Tables display counts or percent for one or more categorical variables

Bar Charts

- Useful for displaying one or more categorical variables
- One bar for each category a variable
- Height of bar indicates how many [frequency] or percent of individuals in each category
- Ex (at right): Variable = class on the Titanic; there were over 800 crew members and 300 passengers in 2nd class
- Represent multiple categorical variables with color, using either a...

Bar Charts (continued)

- Flexibility in how you arrange bars
 - o E.g. alphabetically; by frequency
 - Ordinal variable: arrange bars in order (e.g. S, M,L or L,M,S)

• Caution! Bar charts with other shapes can distort volume or scale, and thus distort the story of the data

 Caution! Watch for bar charts with the baseline omitted (y-axis truncated) meaning the y-axis does not start at zero!

Pie Charts

- Useful for displaying a single categorical variable
- One "wedge" for each category of a variable
- Size of wedge shows percent in each category
- Additional variables cannot be added via color, but you could compare pie charts across different levels of a second categorical variable
- Caution! Pie charts are often misused! They are used when not appropriate (e.g. when categories add to more than 100%) or visually distorted (e.g. 3-d pie charts, unusual shapes)

Notes for Lecture 2.3: Graphical Displays for Quantitative Data Histograms and Distribution

Histograms

- Useful for displaying a single numeric variable
- Horizontal axis shows values of variable
- Bars represent ranges ("bins") of values
- Height of bar indicates how many [frequency] *or* percent of individuals in each bin
- Ex (at right): variable = sale price for homes in Apex, NC; looking at 1st bar, we see that there were over 10,000 homes that sold for somewhere between \$0 and \$250,000
- Additional variables cannot be added via color, but you could compare histograms across different levels of a second categorical variable

- Histograms allow us to understand the <u>distribution</u> of the data
 - o 3 major elements of a distribution:
 - 1.
 - 2.
 - 3.

Shape of Distributions

- Skewed Right
 - o Long tail to the right
 - Generally because individuals are stacked up near a lower limit and unlimited on the upper end

Skewed Left

- o Long tail to the left
- Generally because individuals are stacked up near an upper limit and unlimited on the lower end

• Symmetric

- Tails approximately equal in both directions
- Major cluster far from limits on both ends

Shape of Distributions—Other Things to Consider

• Number of peaks (modes)

- Outliers—Unusual values that do not fit with the rest of the pattern
 - o E.g. Total sale prices above \$2,000,000 or Birth years before 1960
 - o Why are they outliers?
 - Data entry errors
 - Invalid data points
 - Actual unusual values
 - o How to deal with outliers (if you cannot remove them)?

Notes for Lecture 2.4: Graphical Displays for Quantitative Data Boxplots and Other Graphs

Boxplots

- Good for a first look at the data
- Visual display of the **5 number summary**:
 - 1.
 - 2.
 - 3.
 - 4.
 - 5.

- The middle ______% of the data is located inside of the box
- Can help determine the shape of a distribution

Skewed Left

• We cannot determine if a distribution is multimodal from a boxplot

- Computer programs identify outliers
 - Box is not subject to outliers
 - Whiskers extend to largest/smallest non-outliers
 - Uses asterisk or dots to mark outliers

Side-by-side Boxplots

- Way to summarize a quantitative variable within levels of a categorical variable
- Useful for comparing distributions

Time Plots

- Special type of scatterplot with *time* on the horizontal access
- Time series data: Measurements of a variable taken at regular intervals over time
 - o Ex: monthly unemployment, daily market performance, progression of symptoms
 - Plot variable over time to observe trends
- Caution! Watch for time plots with the baseline omitted or otherwise distorted axes

Heat Maps

- Useful for representing a variable that has a spatial element to it
- **Spatial data (Geospatial data)**: Data that involves physical space (e.g. size or shape) or geography (e.g. location)
- Uses color to represent different values of the variable
 - o Darker colors indicate a higher or larger values

• Caution! Beware of heat maps that go against color convention; these can be confusing (e.g. blue = hot & red = cold) or misleading (e.g. using lighter color to indicate larger values)

Which states have the most STIs?

Caution! Graphs with Two Y-axes

- Sometimes variables measured on different scales will be put on the same graph
 - o Done to pack a lot of information into a single graph
- Use caution when comparing the variables shown
- Look out for misleading or distorted axes!

• Ex (above): Can't say US has higher working hours than salary—that doesn't make sense! Can say US has longer working hours and lower max salaries than Luxemburg

Notes for Lecture 2.5: Numerical Summaries for Quantitative Data

Measures of Central Tendency

- Mean
 - \circ *Population mean:* μ

O Sample mean:
$$\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

- Median: Middle value in a data set when values are put in increasing order
- Benefits of the Mean:
- Problems with the Mean:
 - o Sometimes misunderstood
 - Sensitive to skewed dataSkewed Right:

Skewed Left:

Symmetric:

Sensitive to unusual values:

Measures of Variability

- Once we have an idea of a "typical" value, it is good to know about how much the individual values vary around this central value
- Example: 3 distributions with same mean (μ = 280) that look very different

260, 270, 280, 290, 300 278, 279, 280, 281, 282 260, 261, 280, 299, 300

Range	IQR	Std.Dev.

- Range = maximum minimum
 - Spread of entire dataset
- Interquartile range: IQR = Q3 Q1
 - o Spread of middle 50%
- **Variance**: Summarizes distance between each individual and the mean
 - o Population Variance: σ^2
 - $\circ \quad Sample \ Variance: \quad s^2 = \frac{\sum_{i=1}^n (y_i \bar{y})^2}{n-1}$
- **Standard deviation**: s = square root of the variance
- Each measure of variability tells us how inconsistent the data values are

- Measures of variability are most useful for comparing distributions
- Benefits of using variance or standard deviation:
- Problems with using variance:
 - $\circ\quad \mbox{Variance}$ (and standard deviation) are sensitive to unusual values or skew
 - Variance is measured in units squared (e.g. dollars²); standard deviation is measured in the original units of the problem (e.g. dollars)

What does Standard Deviation Measure?

- Essentially represents the average distance from each point to the mean
- Simple example: A group of employees at a local company are paid by the hour. The amount they are paid for the six workers is \$7, \$8, \$9, \$10, \$12, and \$14.

7 8 9 10 12 14

When to Use Each Numeric Summary

- Mean (average value)
- Median (middle value)
- Range
- Standard deviation
- IQR

Notes for Lecture 2.6: Transformations of Numerical Summaries

Recall the wage example: A group of employees at a local company are paid by the hour. The amount they are paid for the six workers is \$7, \$8, \$9, \$10, \$12, and \$14

• What would happen if we gave everyone a \$3 raise?

• What would happen if we doubled everyone's pay (multiplied by 2)?

Summary: Transformations

- Data is often transformed (adjusted, rescaled, standardized) to better represent the values or compare variables
- How will the measures change?
- Measures of variability and center respond differently
- Adding or subtracting:
- Multiplying or dividing: