Ejercicio 41

Enunciado

Sea K un cuerpo de característica 0 y $a,b \in K$ tales que el polinomio $f(t) := t^4 + at^2 + b$ es irreducible en K[t]. Hallar, en función de los valores de a y b, el grupo de Galois de f sobre K.

Solución:

Sabemos¹ que la resolvente del polinomio será $g(t)=t^3-2at^2+\left(a^2-4b\right)t$ que es claramente reducible en K[t]. También sabemos² que $\Delta\left(f\right)=16b\left(4b-a^2\right)^2$. Observando entonces la tabla de la Proposición V.3.3[2], tenemos que el grupo de Galois de f sobre K, $G_K(f)$, será isomorfo a una de las siguientes opciones: $\mathbb{Z}_2\times\mathbb{Z}_2,\ \mathcal{D}_4$ ó \mathbb{Z}_4 .

Empecemos distinguiendo el caso en el que la raíz cuadrada (positiva) del discriminante pertenece a K. Esto es equivalente a que $\delta:=\sqrt{16b\left(4b-a^2\right)^2}=4\sqrt{b}\left(4b-a^2\right)\in K$. Como el segundo término del producto lo cumple por definición, solo nos queda ver cuándo se da para el primero, que será si $\exists c\in K: b=c^2$. Si esto ocurre, observamos la tabla y vemos que $\boxed{G_K(f)\simeq \mathbb{Z}_2\times \mathbb{Z}_2}$. En caso contrario, que es lo que asumiremos en lo sucesivo, tendremos que no existe tal c o, dicho de otra manera, b no es un cuadrado en K, es decir, $K(\delta)=K\left(\sqrt{b}\right)$. Además, $G_K(f)$ será isomorfo a alguno de los otros dos grupos nombrados. Veamos cuando se da cada caso.

Estudiemos ahora la irreducibilidad de f en $K(\delta)[t]$ según a y b. Que f sea reducible puede significar una de dos cosas:

- Que tenga una raíz $\alpha \in K(\delta)$.
- Que f se descomponga como el producto de otros dos polinomios irreducibles de grado 2 sobre $K(\delta)[t]$.

Sin embargo, la primera posibilidad la podemos descartar debido a que, si la asumimos como cierta, al ser f irreducible en K[t], tendríamos la siguiente desigualdad:

$$4 = \deg\left(f\right) = \deg\left(P_{K,\alpha}\right) = \left[K\left(\alpha\right) : K\right] \le \left[K\left(\delta\right) : K\right] = \left[K\left(\sqrt{b}\right) : K\right] = 2$$

que es una contradicción.

Veamos, pues, bajo que condiciones podemos descomponer f como producto de polinomios de grado dos en $K(\delta)[t]$. Debido a que f es un polinomio bicuadrado podemos calcular fácilmente sus raíces:

$$u := \sqrt{\frac{-a + \sqrt{a^2 - 4b}}{2}}$$
 $v := \sqrt{\frac{-a - \sqrt{a^2 - 4b}}{2}}$

 $^{^{1}}$ Subsección V.3.c[2].

 $^{^{2}}$ Ejemplos VII.2.13 (3.1)[1].

³Transitividad del grado. Proposición I.1.6[2].

y sus opuestos. Naturalmente, $u,v\in K_f$, ⁴ lo que quiere decir, a su vez, que $\beta:=\sqrt{a^2-4b}=2u^2+a\in K_f$. Por lo tanto, podemos factorizar f como:

$$\begin{split} f\left(\mathbf{t}\right) &= \mathbf{t}^{4} + a\mathbf{t}^{2} + b \\ &= \left(\mathbf{t}^{2} + \frac{a}{2}\right)^{2} - \frac{a^{2} - 4b}{4} \\ &= \left(\mathbf{t}^{2} + \frac{a}{2} - \frac{\sqrt{a^{2} - 4b}}{2}\right) \left(\mathbf{t}^{2} + \frac{a}{2} + \frac{\sqrt{a^{2} - 4b}}{2}\right) \\ &= \left(t^{2} + \frac{a}{2} - \frac{\beta}{2}\right) \left(\mathbf{t}^{2} + \frac{a}{2} + \frac{\beta}{2}\right) \end{split}$$

Es decir, si $\beta\in K\left(\sqrt{b}\right)$, f es reducible en $K\left(\sqrt{b}\right)[\mathrm{t}]$ y $G_{K}\left(f\right)\simeq\mathbb{Z}_{4}$.

Si suponemos ahora que $\beta \not\in K\left(\sqrt{b}\right)$, tendremos que $K\left(\sqrt{b}\right) \mid K$ y $K\left(\beta\right) \mid K$ son dos subextensiones distintas de grado $\mathrm{dos^5}$ de $K_f \mid K$, pero como \mathbb{Z}_4 solo tiene un subgrupo de índice 2, por la primera parte del Teorema Fundamental de la teoría de Galois, 6 solo puede haber una subextensión de grado 2. Como solo teníamos dos alternativas para el grupo de Galois, $G_K\left(f\right) \simeq \mathcal{D}_4$.

⁶Teorema IV.2.5[2]

 $^{^4}K_f$ denota el cuerpo de descomposición de f sobre K.

⁵Sabemos que $K(\beta) \mid K$ tiene grado 2 porque $a^2 - 4b \in K$.

Bibliografía

- [1] J. Manuel Gamboa José F. Fernando. <u>Estructuras Algebraicas: Divisibilidad en Anillos Conmutativos.</u> Sanz y Torres, 2021.
- [2] J. Manuel Gamboa José F. Fernando. <u>Ecuaciones Algebraicas: Extensiones de Cuerpos y Teoría de Galois</u>. Sanz y Torres, 2022.