最適化 復習

Kosuke Toda

目次

第1章	まえがき	2
第 2 章	数学的準備	3
2.1	諸定義	3
2.2	関数	4
2.3	凸集合	6
2.4	凸関数	6
第3章	証明	7
参考文献		9

第1章

まえがき

様々な問題に対して、最も効率的になるように意思決定をする手法としてオペレーションズ・リサーチ (OR) というものがある [1]. これは、現実の問題を数理モデルに置換し、問題を解決する。最適化理論 $(optimization\ theory)$ は、 $OR\ O$ 基礎理論の 1 つであり、理論だけでなく、現実の問題を解くための手法を 提供してきた [2]. 本資料では、特に連続最適化に焦点を当てる.

第2章

数学的準備

2.1 諸定義

n 次元実数空間 \mathbb{R}^n を考える.

- ε-近傍
 - $B(x,\varepsilon) = \{ \boldsymbol{y} \in \mathbb{R}^n \, | \, \|\boldsymbol{y} \boldsymbol{x}\| < \varepsilon \}$
 - ただし、 $\|\cdot\|$ はユークリッドノルムであり、 $\|x\| = (x^{\mathrm{T}}x)^{1/2}$ である.
- $X \subseteq \mathbb{R}^n$ が開集合 (open set) である
 - $\forall \boldsymbol{x} \in X, \exists \varepsilon > 0; B(\boldsymbol{x}, \varepsilon) \subseteq X$
- $X \subseteq \mathbb{R}^n$ が閉集合 (closed set) である
 - -Xの補集合 X^{c} が開集合である.
- x が $X \subseteq \mathbb{R}^n$ の内点 (interior point) である
 - $-x \in X \subseteq \mathbb{R}^n$ に対して、 $\exists \varepsilon > 0; B(x, \varepsilon) \subseteq X$ が成立する.
- X の内部 (interior), Int(X)
 - $-X\subseteq\mathbb{R}^n$ の内点の集合.
- x が $X \subseteq \mathbb{R}^n$ の触点 (contact point) である
 - $-x \in X \subseteq \mathbb{R}^n$ に対して、 $\forall \varepsilon > 0$; $B(x, \varepsilon) \cap X \neq \emptyset$ が成立する.
- X の閉包 (closure), Cl(X)
 - $-X \subseteq \mathbb{R}^n$ の触点の集合.
 - X を含む最小の閉集合.
- X の境界 (boundary), Bd(X)
 - $\operatorname{Bd}(X) = \operatorname{Cl}(X) \setminus \operatorname{Int}(X)$.
- *x* は *X* の集積点である
 - 任意の $\varepsilon > 0$ に対して, $B(x,\varepsilon) \cap X$ がxと異なる要素を含む.
- 孤立点 (isolated point)
 - X の集積点でない X の触点

- X が有界である (bounded)
 - $-\exists \varepsilon > 0; X \subseteq B(\mathbf{0}, \varepsilon).$
- 収束
 - 点列 $\{x^i\}$, $i=1,2,\ldots$ を考える。 $\forall \varepsilon>0$, $\exists I_{\varepsilon}$; $\|x^i-x\|<\varepsilon$, $i\geq I_{\varepsilon}$ となる点 x が存在するとき,x は点列 $\{x^i\}$ の極限 (limit) といい,点列 $\{x^i\}$ は x に収束する (converge) という.
- 点列 {xⁱ} の集積点
 - $-\{x^i\}$ の部分点列 $\{x^{l_i}\}$ が点 x に収束するとき、点 x を点列 $\{x^i\}$ の集積点という.

有界閉集合 $X \subseteq \mathbb{R}^n$ について, $\{x^i\} \subseteq X$ なる無限点列は少なくとも 1 つの集積点をもつ.

2.2 関数

- 連続性
 - 関数 $\mathbf{f}: X \to \mathbb{R}^m$ を考える $(X \subseteq \mathbb{R}^n)$.

$$\forall \epsilon > 0, \exists \delta > 0; \|\boldsymbol{x} - \boldsymbol{x}\| < \delta \Rightarrow \|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x}^0)\| < \varepsilon$$

が成立するとき, f は点 x^0 で連続 (continuous) であるという.

- 任意の $x \in X$ で連続となるとき、関数fはXで連続という.
- 実数値関数
 - 値域が実数集合の関数 $f: X \to \mathbb{R}$.
- 実数値関数のクラス
 - $-f:X\to\mathbb{R}(X\subseteq\mathbb{R}^n$ は開集合) を考える.
 - f が連続であるとき、X 上で C^0 級と呼ばれ、 $f \in C^0$ と記す.
 - $-f \in C^0$ で、 $\partial f(x)/\partial x_i$, $i=1,2,\ldots,n$ が存在し、連続であれば、f は X 上で C^1 級と呼ばれ、 $f \in C^1$ と表す.
 - $-f\in C^1$ で、 $\partial^2 f(x)/\partial x_i\partial x_j,\,i,j=1,2,\ldots,n$ が存在し、連続であれば、f は X 上で C^2 級と呼ばれ、 $f\in C^2$ と表す.
 - 以後 C^k 級も同様に定義される.
- 勾配ベクトル $\nabla f(x)$

$$\nabla f(\boldsymbol{x}) = \left(\frac{\partial f(\boldsymbol{x})}{\partial x_1}, \frac{\partial f(\boldsymbol{x})}{\partial x_2}, \cdots, \frac{\partial f(\boldsymbol{x})}{\partial x_n}\right)$$

• ヘッセ行列 $H(\mathbf{x}) = \nabla^2 f(\mathbf{x})$

$$\nabla^{2} f(\boldsymbol{x}) = \begin{pmatrix} \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1}^{2}} & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{n}^{2}} \end{pmatrix}$$

- \blacksquare Weierstrass の定理 有界閉集合 $X \subseteq \mathbb{R}^n$ 上の連続な実数値関数 f(x) は X 内の点で最大値, 最小値をとる.
- **■**平均値の定理 $f: X \to \mathbb{R} (X \subseteq \mathbb{R}^n), f \in C^1, x^1, x^2 \in X$ に対して,

$$f(\boldsymbol{x}^1) = f(\boldsymbol{x}^2) + \nabla f(\theta \boldsymbol{x}^1 + (1 - \theta) \boldsymbol{x}^2)^{\mathrm{T}} (\boldsymbol{x}^1 - \boldsymbol{x}^2)$$

を満たす $\theta \in (0,1)$ が存在する.

(注) 関数 $f: I \to \mathbb{R}$ $(I \subset \mathbb{R}), f \in C^1, x_1, x_2 \in I$ に対しては、

$$f(x_1) = f(x_2) + f'(\theta x_1 + (1 - \theta)x_2)(x_1 - x_2)$$

を満たす $\theta \in (0,1)$ が存在する. これは、点 $x_1, x_2 \in I$ を結ぶ線分内に、 $f(x_1), f(x_2)$ を結ぶ直線と同じ傾きとなる接線を持つ点 $c = \theta x_1 + (1-\theta)x_2, \theta \in (0,1)$ が存在することに相当する.

■Taylor の定理 $f: X \to \mathbb{R} (X \subseteq \mathbb{R}^n), f \in C^2, x^1, x^2 \in X$ に対して,

$$f(\boldsymbol{x}^1) = f(\boldsymbol{x}^2) + \nabla f(\boldsymbol{x}^2)^{\mathrm{T}} (\boldsymbol{x}^1 - \boldsymbol{x}^2)^{\mathrm{T}} + \frac{1}{2} (\boldsymbol{x}^1 - \boldsymbol{x}^2)^{\mathrm{T}} \nabla^2 f(\boldsymbol{x}^2) (\boldsymbol{x}^1 - \boldsymbol{x}^2) + o(\|\boldsymbol{x}^1 - \boldsymbol{x}^2\|^2)$$

が成立する. ただし, o は $\lim_{t\to 0} o(t)/t=0$ なる関数である. 同様に, $f\in C^1$ に対して,

$$f(\boldsymbol{x}^1) = f(\boldsymbol{x}^2) + \nabla f(\boldsymbol{x}^2)^{\mathrm{T}} (\boldsymbol{x}^1 - \boldsymbol{x}^2)^{\mathrm{T}} + o(\|\boldsymbol{x}^1 - \boldsymbol{x}^2\|^1)$$

が成立する.

(注) 関数 $f: I \to \mathbb{R}$ $(I \subseteq \mathbb{R}), f \in C^1, x_1, x_2 \in I$ に対しては,

$$f(x_1) = f(x_2) + f'(x_2)(x_1 - x_2) + \frac{f''(x_2)}{2}(x_1 - x_2)^2 + o((x_1 - x_2)^2)$$
$$f(x_1) = f(x_2) + f'(x_2)(x_1 - x_2) + o(x_1 - x_2)$$

が成立する. oを用いずに表すと,

$$f(x_1) = f(x_2) + f'(x_2)(x_1 - x_2) + \frac{f''(x_2)}{2}(x_1 - x_2)^2 + \dots + \frac{f^{(n-1)}(x_2)}{(n-1)!}(x_1 - x_2)^{n-1} + R_n$$

$$R_n := \frac{f^{(n)}(\theta x_1 + (1 - \theta)x_2)}{n!}(x_1 - x_2)^n$$

を満たす $\theta \in (0,1)$ が存在する。 n=1 のときは平均値の定理。 つまり,Taylor の定理は平均値の定理の一般 化と考えることができる.

■陰関数の定理 $h_i: \mathbb{R}^n \to \mathbb{R}, x^0 = (x_1^0, x_1^0, \dots, x_n^0)^T \in \mathbb{R}^n$ の近傍で、 $h_i \in C^p (p \ge 1)$

$$h_i(\mathbf{x}^0) = 0, i = 1, 2, \dots, m$$

が成立するとする. このとき, ヤコビ行列 (Jacobian matrix)

$$J(\boldsymbol{x}^{0}) = \begin{pmatrix} \frac{\partial h_{1}(\boldsymbol{x}^{0})}{\partial x_{1}} & \cdots & \frac{\partial h_{1}(\boldsymbol{x}^{0})}{\partial x_{m}} \\ \vdots & \vdots & \vdots \\ \frac{\partial h_{m}(\boldsymbol{x}^{0})}{\partial x_{1}} & \cdots & \frac{\partial h_{m}(\boldsymbol{x}^{0})}{\partial x_{m}} \end{pmatrix}$$

が正則ならば、ある $\varepsilon>0$ に対して $\hat{\boldsymbol{x}}^0=(x_{m+1}^0,\dots,x_n^0)^{\mathrm{T}}\in\mathbb{R}^{n-m}$ の近傍 $U=B(\hat{\boldsymbol{x}}^0,\varepsilon)$ が存在し、 $\hat{\boldsymbol{x}}\in U$ に対して、

- 1. $\phi_i \in C^p, i = 1, 2, \dots, m$
- 2. $x_i = \phi(\hat{x}), i = 1, 2, \dots, m$
- 3. $h_i(\phi_1(\hat{x}), \phi_2(\hat{x}), \dots, \phi_m(\hat{x}), \hat{x}) = 0, i = 1, 2, \dots, m$

となる陰関数 (implicit function) ϕ_i , i = 1, 2, ..., m が存在する*1.

(注) 2 変数関数を考える。 関数 $f:\Omega\to\mathbb{R}$ $(\Omega\subseteq\mathbb{R}^2),$ $f\in C^p,$ $p\geq 1,$ $(x_1,x_2)\in\Omega$ とする。 $f(x_1,x_2)=0$ のとき, $x=x_1$ を含む開区間 I および I 上で定義された C^p 級の関数 ϕ がただ 1 つ存在し, $\phi(x_1)=x_2$ および

$$u(x) := f(x, \phi(x)) = 0 \ (\forall x \in I)$$

が成立する.

2.3 凸集合

 $X \subseteq \mathbb{R}^n$ とする. $\forall \boldsymbol{x}^1, \boldsymbol{x}^2 \in X, \, \forall \lambda \in [0,1]$ に対して、 $\lambda \boldsymbol{x}^1 + (1-\lambda)\boldsymbol{x}^2 \in X$ が成立するとき、X は凸集合 (convex set) である*2.

補題 1 $X_1,X_2,\ldots\subseteq\mathbb{R}^n$ を凸集合とすると, $\bigcap_{i=1,2,\ldots}X_i$ も凸集合となる.

補題 2(分離超平面の存在) $X\subseteq\mathbb{R}^n$ を空でない閉凸集合, ${m y}\notin X$ とする. このとき,

$$\boldsymbol{a}^{\mathrm{T}}\boldsymbol{x} > b > \boldsymbol{a}^{\mathrm{T}}\boldsymbol{y}, \ \forall x \in X$$

となる分離超平面 (separating hyperplane) $\{x \in \mathbb{R}^n \mid a^{\mathrm{T}}x = b\} \ (a \neq 0)$ が存在する.

補題 3 $X \subseteq \mathbb{R}^n$ を空でない凸集合, $\mathbf{y} \in \mathrm{Bd}(X)$ とする. このとき,

$$\boldsymbol{a}^{\mathrm{T}}\boldsymbol{x} \geq \boldsymbol{a}^{\mathrm{T}}\boldsymbol{y}, \, \forall \boldsymbol{x} \in X$$

なる $a \neq 0$ が存在する.

補題 4 $X,Y \subseteq \mathbb{R}^n$ を空でない凸集合, $X \cap Y = \emptyset$ とする. このとき,

$$a^{\mathrm{T}} x \geq b, \ \forall x \in X,$$

 $a^{\mathrm{T}} y \leq b, \ \forall y \in Y$

なる $a \neq 0$, b が存在する.

2.4 凸関数

^{*1} 解析学の教科書では、陰関数が唯一存在すると記されている.

 $^{^{*2}}$ 2 点 $m{x}^1, m{x}^2$ を結ぶ線分上の任意の内分点は、 $x_\lambda = \lambda m{x}^1 + (1-\lambda) m{x}^2, \, \lambda \in [0,1]$ と書ける.

第3章

証明

この付録には、補題や定理の証明を記載する.

証明 1(補題 1 の証明) 項が 2 つのとき,つまり, $X_1, X_2 \subseteq \mathbb{R}^n$ が凸集合ならば, $X_1 \cap X_2$ も凸集合である(*)を証明する. $\forall x^1, x^2 \in X_1 \cap X_2$ に対し, x^1 と x^2 を結ぶ線分は, $x^1 \in X_1, x^2 \in X_1$ より X_1 に含まれる($:: X_1$ は凸集合). 同様に X_2 にも含まれる.よって, x^1 と x^2 を結ぶ線分は, $X_1 \cap X_2$ に含まれる. つまり, $X_1 \cap X_2$ は凸集合である.補題 1 は,(*)を繰り返し用いることで示される.

補題2の証明には、定理1、補題5を用いる.

定理 1(射影定理) X を Hilbert 空間 *1 とし, $L \subset X$ を閉部分空間とする.このとき,

$$\boldsymbol{u} \in X \text{ (given)} \Rightarrow \exists ! \boldsymbol{v} \in L \text{ s.t. } (\boldsymbol{u} - \boldsymbol{v}, \boldsymbol{w}) = 0, \forall \boldsymbol{w} \in L$$

が成立する (射影が一意に存在する).

補題 5 定理 1 の X が $X=\mathbb{R}^n$ であり, $L\subseteq\mathbb{R}^n$ が空でない閉凸集合とする. $u\in\mathbb{R}^n$ の L への射影を v とする.このとき, $\forall w\in L$ に対して,

$$(\boldsymbol{u} - \boldsymbol{v})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{v}) \le 0 \tag{3.1}$$

が成立する.

証明2(定理1の証明)

証明 3(補題 5 の証明) u の L への射影 v と任意の点 $w \in L$ を結ぶ線分上の点 $x_{\lambda} = (1-\lambda)v + \lambda w$, $0 < \lambda < 1$ を考える. L は凸より, x_{λ} も L に含まれる. v の定義より,

$$\|\boldsymbol{v} - \boldsymbol{u}\|^2 \le \|((1 - \lambda)\boldsymbol{v} + \lambda\boldsymbol{w}) - \boldsymbol{u}\|^2 \tag{3.2}$$

^{*1} 距離 (ノルム) を持つ集合をノルム空間という。内積を持つ線形空間を内積空間という。ノルム空間 X 内の任意のコーシー列が収束するとき,X は完備であるといい,完備性を持つノルム空間 X を Banach 空間という。また,内積空間 X 上の点 $u \in X$ に対し, $\|u\| = \sqrt{(u,u)}$ を内積から誘導されるノルムと呼ぶ。内積から誘導されるノルム空間 X が Banach 空間であるとき,X を Hilbert 空間という。実数空間 \mathbb{R}^n は完備性を持つ。

(3.2) 式を整理すると,

$$(\boldsymbol{v} - \boldsymbol{u}, \boldsymbol{v} - \boldsymbol{u}) \le \|(\boldsymbol{v} - \boldsymbol{u}) + \lambda(\boldsymbol{w} - \boldsymbol{v})\|^2$$

 $\le (\boldsymbol{v} - \boldsymbol{u}, \boldsymbol{v} - \boldsymbol{u}) + 2\lambda(\boldsymbol{v} - \boldsymbol{u})(\boldsymbol{w} - \boldsymbol{v}) + \lambda^2(\boldsymbol{w} - \boldsymbol{v}, \boldsymbol{w} - \boldsymbol{v})$

vs., $\lambda \neq 0, \lambda > 0$ robb, $L \subseteq \mathbb{R}^n$ robbs,

$$2(\boldsymbol{u} - \boldsymbol{v})(\boldsymbol{w} - \boldsymbol{v}) \le \lambda \|\boldsymbol{w} - \boldsymbol{v}\|^2$$

よって、 $\lambda \to 0$ とすると、(3.1) 式を得る.

証明 4(補題 2 の証明) y の X への射影を \bar{y} とする. $y \notin X$ より, $y \neq \bar{y}$ である. よって,

$$\|\bar{\boldsymbol{y}} - \boldsymbol{y}\|^2 = (\bar{\boldsymbol{y}} - \boldsymbol{y})^{\mathrm{T}}(\bar{\boldsymbol{y}} - \boldsymbol{y}) > 0$$
(3.3)

である. また、補題5より、

$$(\boldsymbol{y} - \bar{\boldsymbol{y}})^{\mathrm{T}}(\boldsymbol{x} - \bar{\boldsymbol{y}}) \le 0, \ x \in X$$
 (3.4)

が成立する. (3.3) 式, (3.4) 式より,

$$(\bar{\boldsymbol{y}} - \boldsymbol{y})^{\mathrm{T}} \boldsymbol{x} > (\bar{\boldsymbol{y}} - \boldsymbol{y})^{\mathrm{T}} \bar{\boldsymbol{y}} > (\bar{\boldsymbol{y}} - \boldsymbol{y})^{\mathrm{T}} \boldsymbol{y}, \ x \in X$$

を得る. ここで、 $\mathbf{a} = \bar{\mathbf{y}} - \mathbf{y}, b = (\bar{\mathbf{y}} - \mathbf{y})^{\mathrm{T}} \bar{\mathbf{y}}$ と置くと補題 2 が示される.

証明5(補題3の証明)

証明6(補題4の証明)

参考文献

- [1] オペレーションズ・リサーチとは、公益社団法人日本オペレーションズ・リサーチ学会. https://www.orsj.or.jp/whatisor/whatisor.html. (参照 2020/3/23)
- [2] 茨木俊秀. (2011). 最適化の数学. 共立出版株式会社.