

Programação e IoT

CONECTIVIDADE

O Futuro

Até 2025, estima-se que haverá mais de 21 bilhões de dispositivos IoT

Source: https://us.norton.com/internetsecurity-iot-5-predictions-for-the-future-of-iot.html

CONCEITOS SOBRE IOT: CONECTIVIDADE

<u>loT</u>

O loT promete conectar todas as coisa e tem a tendência de aumentar com o passa dos anos. O objetivo central é melhorar a qualidade de vida. Porém, é preciso haver uma regulamentação

CARACTERISTICAS DAS FAIXAS DE FREQUÊNCIAS

Frequência	Comprimento de onda	Designação	Abreviatura ^[4]
3–30 Hz	10 ⁵ –10 ⁴ km	Extremely low frequency	ELF
30–300 Hz	10 ⁴ –10 ³ km	Super low frequency	SLF
300–3000 Hz	10 ³ –100 km	Ultra low frequency	ULF
3–30 kHz	100–10 km	Very low frequency	VLF
30–300 kHz	10–1 km	Low frequency	LF
300 kHz – 3 MHz	1 km – 100 m	Medium frequency	MF
3–30 MHz	100–10 m	High frequency	HF
30–300 MHz	10–1 m	Very high frequency	VHF
300 MHz – 3 GHz	1 m – 10 cm	Ultra high frequency	UHF
3–30 GHz	10–1 cm	Super high frequency	SHF
30–300 GHz	1 cm – 1 mm	Extremely high frequency	EHF
300 GHz – 3000 GHz	1 mm – 0.1 mm	Tremendously high frequency	THF

CONCEITOS SOBRE IOT: CONECTIVIDADE

 A loT não define um padrão específico para a comunicação, desta forma diversas tecnologias de comunicação surgiram:

• Redes celulares
Saraiva, L.S. Projeto de hardware e software para dispositivos finais em uma rede LoRaWAN. Julho/2017. Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina. Bacharelado em Engenharia de Telecomunicações

CONCEITOS SOBRE IoT: ZigBee

Distância

Na falha de um dispositivos ele migra a informação para os dispositivos mais próximos

Realiza a conexão entre os dispositivos, apresenta baixo consumo de energia, porém não apresenta ampla área de cobertura.

EXEMPLO:

Interruptor e lâmpada com a tecnologia ZigBee

CONCEITOS SOBRE IoT: ZigBee

Características:

- Robustez (ambiente hostil)
- Baixo consumo de energia
- Baixa latência na comunicação
- Rede de até 65.000 nós

Tipos de nós:

- Zigbee Coordinator (ZC): Raiz da rede
- Zigbee Router (ZR): Permite a troca de dados entre os dispositivos
- Zigbee End Device (ZED): Envia os dados ao ZR ou ZC

CONCEITOS SOBRE IoT: Bluetooth

Cria conexão entre dispositivos de mesma frequência e utiliza uma rede chamada de piconet que permite fazer a conexão de até 8 dispositivos (1 mestre e 7 escravos). É uma comunicação utilizada para pequenas distâncias.

Exemplos:

- Computadores e celulares com fones de ouvido.

CONCEITOS SOBRE IoT: Bluetooth

Banda: 2.4GHz ISM (2.402 – 2.480 GHz)

Canais: 79 canais de 1MHz

Frequency-Hopping Spread Spectrum (FHSS)

Modulação:

- GFSK, permite taxa de transferência de ate 1 Mb/s
- π/4 DQPSK, permite taxa de transferência de ate 2 Mb/s
- 8DPSK, permite taxa de transferência de ate 3 Mb/s
- Topologia: ponto-a-ponto

Classe	Potência Máxima Permitida	Alcance (aproximado)
Classe 1	100 mW (20 dBm)	até 100 metros
Classe 2	2.5 mW (4 dBm)	até 10 metros
Classe 3	1 mW (0 dBm)	~ 1 metro

CONCEITOS SOBRE IoT: WiFi

O WiFi capta, emite e decodifica sinais e tem a função de estabelecer a conexão entre aparelhos. Estabelece a conexão sem a necessidade de fios.

A comunicação é feita por ondas de rádio de 2,4 a 5 GHz

Quanto mais alta a frequência maior é a capacidade de transferência de dados.

CONCEITOS SOBRE IoT: WiFi

- A especificação 802.11 para WLAN define os protocolos:
 - MAC: Controle de Acesso ao Meio
 - PHY: nível físico
- Regras da camada física IEEE 802.11 alcance INDOOR / OUTDOOR
 - 802.11a: até 54 Mbit/s (na banda de 5GHz) 25m / 75m
 - 802.11b: até 11 Mbit/s (na banda de 2,4GHz) 35m / 100m
 - 802.11g: até 54 Mbit/s (na banda de 2,4GHz) 25m / 75m
 - 802.11n: até 450 Mbit/s (na banda de 2,4GHz ou 5GHz) 50m / 126m
 - Até 4 antenas
 - 802.11ac: até 1300 Mbit/s (na banda de 5GHz)
 - Até 8 antenas

CONCEITOS SOBRE IoT: LoRa

Baseia-se na rede com topologia estrela utilizada em radares e aplicações militares. Utilizado para comunicações de longas distâncias e apresenta baixa potência. Utilizado em locais de difícil acesso e apresentam alta imunidade a ruídos

São encontrados:

- End-points;
- Gateways;
- Servidores.
- End-points (sensores que enviam as informações);
- Gateways (encaminham as informações dos sensores para os servidores);
- Servidores (centralizam as informações).

CONCEITOS SOBRE IoT: LoRa

- LoRaWAN é uma especificação de rede sem fio de longa distância e baixa potência (LPWAN)
 - Os dispositivos são alimentados por bateria
- A tecnologia LoRA (Long Range) foi patenteada pela empresa norte-americana Semtech
 - Longo alcance: pode chegar a mais de 15Km
 - Capacidade: até um milhão de nós
 - Alta imunidade a ruídos
- LoRa Alliance: associação sem fins lucrativos que tem como missão padronizar a tecnologia
 LoRa por meio da especificação LoRaWAN
 - Protocolo padrão de comunicação
 - Cobre requisitos fundamentais de IoT:
 - Comunicação bidirecional segura
 - Mobilidade

CONCEITOS SOBRE IoT: Sigfox

Realiza a comunicação para longas distâncias e com baixo consumo de energia.

Possui arquitetura horizontal funcionando basicamente através da representação descrita abaixo.

CONCEITOS SOBRE IoT: Sigfox

- Usa técnica Ultra Narrow Band para a transmissão de dados
 - Comunicação em longas distâncias de forma confiável
 - Ao enviar uma mensagem o dispositivo também envia duas réplicas em diferentes frequências e tempo
 - Aumenta a resistência a interferências por permitir que o dado "navegue" por diferentes
 caminhos
- Arquitetura é horizontal de 2 camadas:
 - Network Equipment que recebe as mensagens os dispositivos
 - Sigfox Support System que processa os dados e envia para o usuário
- De forma simplificada, o Sigfox pode ser considerado como uma nova rede de comunicação celular, criada exclusivamente para transmitir dados entre dispositivos que precisam estar continuamente

CONCEITOS SOBRE IOT: CELULAR

- CCC = Central de Comutação e Controle
 - Validação dos assinantes
 - Processamento de chamadas
 - Interface com a rede fixa de telefonia
 - Interface com outras CCC
- ERB = Estação Rádio Base

CONCEITOS SOBRE IOT: CELULAR

O sistema de comunicação móvel é dividido em: EM: Estação Móvel; ERB: Estação Rádio Base; CCC: Central de Comutação e Controle. Linhas telefônicas; fibras ópticas e rádios digitais Estação Fixa Estação Fixa Rede CCC Pública **ERB**

CONCEITOS SOBRE IOT: CELULAR

Estação Rádio Base (ERB): Central de Comutação e Controle (CCC): Estação Móvel (EM): A CCC faz interface entre o as ERB e a A ERB realiza a interface entre a EM Compreende terminal ao rede pública. e a CCC. móvel do usuário, realiza a Ela controla funções, como: Esta estação é composta por: interface entre o usuário e o - Alocação de frequência; - Transmissores; sistema. - Controle de tráfego; - Receptores; - Rastreamento: - Filtros. - Localização; - Tarifação. Estação **ERB** Rede Usuário Móvel Pública CCC Sistema de Comunicação

CONCEITOS SOBRE IoT: EVOLUÇÃO DO 3G, 3,5G, 4G E 5G

- Alta velocidade de download;

CONCEITOS SOBRE IOT: CELULAR – 3G

- Geração mais utilizada no mundo
 - Marcou uma maneira mais eficiente de se navegar na internet em redes sociais
 - Utilizar o smartphone em tarefas do dia-a-dia como:
 - Comunicação VoIP,
 - ' Vídeo
 - Mensagens de e-mail
 - Mensagens instantâneas
- Passou a ser oferecido em 2001 em regiões como Japão, China e Europa
 - Sistema UMTS (Universal Mobile Telecommunications System, ou Sistema Móvel de Telecomunicações Universal)
 - Permite velocidades da ordem dos megabits por segundo
- Como a rede não utilizava a mesma frequência de rádio da geração anterior
 - A adoção do padrão foi mais lenta, já que as operadoras precisaram investir nas novas redes e bandas
 - Áreas com baixas coberturas ainda são comuns
 - Principalmente em países como o Brasil, que tem uma cobertura 19% pior do que a média global
 - Inconveniência das sombras na rede e baixa velocidade média
 - Redução da vida útil de baterias por causa da constante busca por sinal de 3G
- Bandas utilizadas no Brasil: 850MHz, 900MHz, 1800MHz e 2100MHz

<u> https://pt.slideshare.net/guilhermevb/apresentao-resumida-de-monografia-zigbee</u>

CONCEITOS SOBRE IoT: CELULAR – 3.5G (HPSA)

- HPSA (e HPSA+) = High Speed Packet Access
 (Pacote de Acesso de Alta Velocidade)
 - Melhora o desempenho do 3G
 - Protocolos HSDPA e HSUPA
- Lançado em 2008 e adotado mundialmente em 2010
 - Permite velocidades hipotéticas de até 84 Mpbs de download em sua versão mais atual, o HPSA+.

<u> https://pt.slideshare.net/guilhermevb/apresentao-resumida-de-monografia-zigbee</u>

CONCEITOS SOBRE IOT: CELULAR – 4G (LTE)

- LTE = Long Term Evolution (Evolução de Longo Prazo)
 - Padrão mais recente e ainda em implantação pelo mundo
 - Promete transmissões de dados em bandas ultra largas com mobilidade
- O 4G tem potencial para atingir velocidades de até 300 Mbps
 - A Suécia lidera o ranking de países com a melhor velocidade de 4G do mundo, com downloads de 22,1 Mbps para os usuários
- Bandas utilizadas no Brasil:
 - B7: 2600 MHz. Bom alcance, mas grandes perdas em ambientes internos
 - B3 1800 MHz
 - B28: 700 MHz. Era utilizada pela TV analógica. Alcance menor, mas melhor cobertura em ambientes internos
- A migração da rede 3G para 4G, em proporções mundiais, não será algo tão rápido

CONCEITOS SOBRE IOT: CELULAR – 5G

- Já estão sendo feitos testes de campo da nova tecnologia
 - Huawei é uma das empresas envolvidas neste processo
- Vantagens:
 - Download: pode chegar a 1Gbps
 - Baixa latência: < 10ms
 - Facilidades para processadores centralizados e IoT
 - Facilidade no fatiamento das bandas
 - Menor consumo de energia
- Desvantagem:
 - Tempo para implementação
- Bandas utilizadas no Brasil:
 - 2,3 GHz: uso mundial para os sistema IMT (International Mobile Telecommunications)
 - 3,5 GHz: porta de entrada para 5G

