Trabalho prático

Máquina de Lavar Roupa

Afonso Alves nº 45286

André Rato nº 45517

José Alexandre nº45223

Sistemas Digitais

Évora, 18 de janeiro de 2020

Índice

Objetivos	3
Introdução	4
Desenvolvimento	6
Módulo de controle da máquina	6
Modelo ASM	6
Tabela de verdade	7
Tabela de excitação flipflop T	7
Mapas de karnaugh	8
Logigrama	10
Módulo de controle de lavagem	11
Modelo ASM	11
Tabela de verdade	12
Tabela de excitação flipflop T	12
Mapas de karnaugh	13
Logigrama	17
Módulo de controle da água	18
Modelo ASM	18
Tabela de verdade	19
Tabela de excitação flipflop T	19
Mapas de karnaugh	20
Logigrama	23
Circuito Final	24
Implementação	25
Comentários	26
Conclusão	26

Objetivos

O objetivo deste trabalho é criar um sistema de controlo para uma máquina de lavar com três módulos de controle.

Introdução

Pretende-se criar um sistema de controle para uma máquina de lavar roupa. A máquina é composta pelos seguintes módulos:

- Módulo de controle da máquina;
- Módulo de controle da água;
- Módulo de controle da lavagem.

Para além dos módulos de controle, a máquina tem os seguintes sensores e botões:

- Botão de início (BI): A máquina deve começar a trabalhar quando este botão tomar o valor 1;
- Sensor de nível de água (SNA): Este sensor toma o valor 1 quando a água atinge o nível necessário para se dar início à lavagem; quando a máquina não tem água no seu interior, toma o valor 0;
- Sensor de temperatura da água (STA): Este sensor toma o valor 1 quando a água atingir a temperatura necessária para se dar início à lavagem;

e os seguintes componentes:

- Válvula de entrada de água (VA): Esta válvula serve para deixar entrar água na máquina. Quando receber o valor 1, a válvula encontra-se aberta e deixa entrar água;
- Resistência de aquecimento da água (AQ): Esta resistência serve para aquecer a água da lavagem. Quando receber o valor 1, a resistência está ligada e aquece a água;
- Motor roda para a direita (MD): Esta entrada do motor serve para rodar o motor para a direita. Quando receber o valor 1, o motor roda para a direita;
- Motor roda para a esquerda (ME): Esta entrada do motor serve para rodar o motor para a esquerda. Quando receber o valor 1, o motor roda para a esquerda;
- Motor modo centrifugação (MC): Esta entrada do motor serve para colocar o motor em modo de centrifugação. Quando recebe o valor 1, o motor roda em modo de centrifugação;
- Bomba de água (BA): A bomba de água serve para remover a água da máquina no final da lavagem. Quando tomar o valor 1, a bomba é acionada e a água expelida da máquina;

Modo de funcionamento

Quando se inicia o sistema, todos os sensores da máquina devem ter o valor 0 e todos os módulos e componentes devem estar parados. Quando o Botão de Início (BI) tomar o valor 1, a Válvula de Entrada de Água (VA) deve ser ativada, sendo desativada apenas quando a água atingir o nível necessário para se iniciar a lavagem. De seguida, a Resistência de Aquecimento da Água (RAQ) deve ser ativada, sendo desativada apenas quando a água atingir a temperatura necessária para dar início à lavagem da roupa.

Depois da água atingir a temperatura necessária para se iniciar a lavagem, o motor deve rodar para a direita (MD) durante 4 ciclos de relógio, rodar para a esquerda (ME) durante 4 ciclos de relógio, e depois ativar a Bomba de Água (BA). A Bomba de Água (BA) deve continuar a trabalhar até que o Sensor de Nível de Água (SNA) deixe de estar ativo.

Depois da água ser removida da máquina, o motor deve ser ativado no modo de centrifugação durante 2 ciclos e depois parar. Durante a centrifugação a Bomba de Água (BA) deve continuar a trabalhar.

Depois da centrifugação parar, a máquina deve parar e ficar pronta para iniciar outro ciclo de lavagem.

Desenvolvimento

Módulo de controle da máquina

Modelo ASM:

Tabela de verdade:

ВІ	DMCA	DMCL	Qn	Qn+1	X1n	X0n	X1n+1	X0n+1	AMCA	AMCL	T1	T0
0	Χ	Χ	Α	Α	0	0	0	0	0	0	0	0
1	Χ	Χ	Α	В	0	0	0	1	0	0	0	1
Χ	0	Χ	В	В	0	1	0	1	1	0	0	0
Χ	1	Χ	В	С	0	1	1	0	1	0	1	1
Χ	Χ	0	С	С	1	0	1	0	0	1	0	0
Χ	Х	1	С	Α	1	0	0	0	0	1	1	0

Tabela de excitação flipflop T:

Q*	Q	T
0	0	0
0	1	1
1	0	1
1	1	0

Mapas de karnaugh:

	BI=0			
X1 X0 DMCA DMCL	00	01	11	10
00	0	1	0	0
01	0	1	0	0
11	0	1	0	0
10	0	1	0	0

		BI=1		
X1 X0 DMCA DMCL	00	01	11	10
00	0	1	0	0
01	0	1	0	0
11	0	1	0	0
10	0	1	0	0

AMCA= X1 X0

BI=0

X1 X0 DMCA DMCL	00	01	11	10
00	0	0	0	0
01	0	0	0	<mark>1</mark>
11	0	1	0	<mark>1</mark>
10	0	1	0	0

BI=1

DMCA I	(1 X0 DMCL	00	01	11	10
00	0	0	0	0	0
0:	1	0	0	0	<mark>1</mark>
1	1	0	1	0	<mark>1</mark>
10	0	0	1	0	0

T1=DMCA X1 X0 + DMCL X1 X0

X1 X0	00	01	11	10
DMCA DMCL				
00	0	0	0	0
01	0	0	0	0
11	0	1	0	0
10	0	1	0	0

BI=0

		BI=1		
X1 X0 DMCA DMCL	00	01	11	10
00	1	0	0	0
01	1	0	0	0
11	1	1	0	0
10	1	1	0	0

T0= DMCA X1 X0 + BI X1 X0

	_
ĸı	=()
$\boldsymbol{\omega}$	-0

X1 X0 DMCA DMCL	00	01	11	10
00	0	0	0	1
01	0	0	0	<mark>1</mark>
11	0	0	0	1
10	0	0	0	<mark>1</mark>

BI=1

		5, 1		
X1 X0 DMCA DMCL	00	01	11	10
00	0	0	0	<mark>1</mark>
01	0	0	0	<mark>1</mark>
11	0	0	0	<mark>1</mark>
10	0	0	0	<mark>1</mark>

DMCL= X1 X0

Logigrama:

Modelo ASM:

Tabela de verdade:

DMCA	SNA	Qn	Qn+1	X2	X1	X0	X2n+1	X1n+1	X0n+1	MD	ME	ВА	MC+BA	DMCL	T2	T1	T0
0	Х	Α	Α	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Χ	Α	В	0	0	0	0	0	1	0	0	0	0	0	0	0	1
Χ	Χ	В	С	0	0	1	0	1	0	1	0	0	0	0	0	1	1
Χ	Χ	C	D	0	1	0	0	1	1	1	0	0	0	0	0	0	1
Χ	Χ	D	Е	0	1	1	1	0	0	0	1	0	0	0	1	1	1
X	Χ	Ε	F	1	0	0	1	0	1	0	1	0	0	0	0	0	1
Χ	0	F	G	1	0	1	1	1	0	0	0	1	0	0	0	1	1
Χ	1	F	F	1	0	1	1	0	1	0	0	1	0	0	0	0	0
Χ	Χ	G	Н	1	1	0	1	1	1	0	0	0	1	0	0	0	1
Χ	Χ	Н	Α	1	1	1	0	0	0	0	0	0	0	1	1	1	1

Tabela de excitação flipflop T:

Q*	Q	Т
0	0	0
0	1	1
1	0	1
1	1	0

Mapas de karnaugh:

X2=0

X2=1

			I	
X1 X0	00	01	11	10
DMCA SNA				
00	0	1	0	0
01	0	1	0	0
11	0	1	0	0
10	0	1	0	0

X1 X0 DMCA SNA	00	01	11	10
		_		
00	0	1	0	0
01	0	1	0	0
11	0	1	0	0
10	0	1	0	0

MD= X2 X1 X0 + X2 X1 X0

X2=0

Y 2	-1	

X1 X0	00	01	11	10
DMCA SNA				
00	0	0	<mark>1</mark>	0
01	0	0	1	0
11	0	0	1	0
10	0	0	<mark>1</mark>	0

	00	01	11	10
X1 X0	00	01	11	10
DMCA SNA				
00	0	0	<mark>1</mark>	0
01	0	0	1	0
11	0	0	1	0
10	0	0	1	0

X2=0 X2=1

X1 X0 DMCA SNA	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	0	0
10	0	0	0	0

X1 X0	00	01	11	10
DMCA SNA				
00	0	1	0	0
01	0	1	0	0
11	0	1	0	0
10	0	1	0	0

BA=X1 X0 X2

X2=0

X2=1

X1 X0	00	01	11	10
DMCA SNA				
00	0	0	0	0
01	0	0	0	0
11	0	0	0	0
10	0	0	0	0

X1 X0	00	01	11	10
DMCA SNA				
00	0	0	0	1
01	0	0	0	1
11	0	0	0	1
10	0	0	0	1

MC+BA= X1 X0 X2

X2=0 X2=1

X1 X0 DMCA SNA	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	0	0
10	0	0	0	0

X1 X0	00	01	11	10
DMCA SNA				
00	0	0	<mark>1</mark>	0
01	0	0	1	0
11	0	0	<mark>1</mark>	0
10	0	0	1	0

DMCL= X1 X0 X2

X2=0

X1 X0 DMCA SNA	00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	0	0	1	0
10	0	0	<mark>1</mark>	0

X1 X0	00	01	11	10
DMCA SNA				
00	0	0	<mark>1</mark>	0
01	0	0	1	0
11	0	0	<mark>1</mark>	0
10	0	0	1	0

X2=1

T2= X1 X0

	X2=1			
X1 X0 DMCA SNA	00	01	11	10
00	0	1	1	0
01	0	0	<mark>1</mark>	0
11	0	0	1	0
10	0	1	1	0

T1=X1 X0 + X2 X0 + SNA X0

X2=0

` '	1	4

X1 X0	00	01	11	10
DMCA SNA				
00	0	1	1	1
01	0	1	1	1
11	1	1 <mark>1</mark>		1
10	1	1	<mark>1</mark>	1
			V	

X1 X0 DMCA SNA		00		00 01		11	10	
00		1		1	1			
01		1		0	1	1 1		
11		1		0	1	1		
10		1		1	1	1		

T0= X1 + X2 DMCA SNA + X2 X0 + X2 SNA DMCA + X2 X1 X0 + X2 SNA DMCA

Logigrama:

Modelo ASM:

Tabela de verdade:

AMCA	SNA	STA	Qn	Qn+1	X1	X0	X1n+1	X0n+1	VA	RAQ	DMCA	T1	T0
0	Х	Х	Α	Α	0	0	0	0	0	0	0	0	0
1	Х	Х	Α	В	0	0	0	1	0	0	0	0	1
X	0	Х	В	В	0	1	0	1	1	0	0	0	0
Х	1	Х	В	С	0	1	1	0	1	0	0	1	1
Х	Х	0	С	С	1	0	1	0	0	1	0	0	0
Х	Х	1	С	D	1	0	1	1	0	1	0	0	1
Х	Х	Х	D	Α	1	1	0	0	0	0	1	1	1

Tabela de excitação flipflop T:

Q*	Q	Т
0	0	0
0	1	1
1	0	1
1	1	0

Mapas de karnaugh:

AMCA=0 AMCA=1

X1 X0 SNA STA	00	01	11	10
00	0	1	0	0
01	0	1	0	0
11	0	1	0	0
10	0	<mark>1</mark>	0	0

X1 X0 SNA STA	00	01	11	10
00	0	<mark>1</mark>	0	0
01	0	<mark>1</mark>	0	0
11	0	<mark>1</mark>	0	0
10	0	<mark>1</mark>	0	0

VA= X1 X0

AMCA=0

AMCA=1

X1 X0	00	01	11	10
SNA STA				
00	0	0	0	<mark>1</mark>
01	0	0	0	<mark>1</mark>
11	0	0	0	1
10	0	0	0	<mark>1</mark>

	00	01	11	10
X1 X0	00	01	11	10
SNA STA				
00	0	0	0	1
	·	Ü	Ü	
01	0	0	0	1
	O	O	O	_
11	•	•	•	4
1	0	0	0	
10	0	0	0	1

RAQ= X1 X0

AMCA=0

X1 X0 SNA STA	00	01	11	10
00	0	0	1	0
01	0	0	<mark>1</mark>	0
11	0	0	1	0
10	0	0	<mark>1</mark>	0

AMCA=1

X1 X0	00	01	11	10
SNA STA				
00	0	0	<mark>1</mark>	0
01	0	0	1	0
11	0	0	1	0
10	0	0	1	0

DMCA= X1 X0

AMCA=0

X1 X0	00	01	11	10
SNA STA				
00	0	0	1	0
01	0	0	1	0
11	0	<mark>1</mark>	1	0
10	0	1	1	0

AMCA=1

X1 X0	00	01	11	10
SNA STA				
00	0	0	1	0
01	0	0	1	0
11	0	1	1	0
10	0	<mark>1</mark>	1	0

T1=X1 X0 + SNA X0

AMCA=1 AMCA=1

X1 X0 SNA STA	00	01	11	10
00	0	0	1	0
01	0	0	1	1
11	0	1	1	1
10	0	1	1	0

X1 X0 SNA STA	00		01	11	10
00	1		0	1	0
01	1		0	1	1
11	1		1	1	1
10	1		1	1	0

T0=X1 X0 + AMCA X1 X0 + STA X1 + X0 SNA

Logigrama:

Circuito Final

Implementação

Implementou-se separadamente os módulos de controle da máquina, lavagem e água, respetivamente.

Para cada um dos módulos, seguiu-se o procedimento usual para a síntese de circuitos sequenciais:

- Definiu-se claramente quais são as entradas e as saídas do circuito.
- Desenhou-se modelo ASM
- Escreveu-se as tabelas de transição de estados e das saídas
- Escolheu-se o tipo de flip-flop a utilizar.
- Encontrou-se as equações de entrada dos flip-flops e das saídas utilizando as tabelas de excitação dos flip-flops escolhidos para desenhar os mapas de Karnaugh e extrair as equações simplificadas.
- Projetou-se o circuito simplificado no Logisim.
- Por fim após a implementação dos três módulos, combinaram-se os mesmo no Logisim de forma a implementar a máquina de lavar roupa.

Comentários

Após várias tentativas para desenvolver o circuito para a máquina de lavar, devido a vários erros cometidos, foi possível terminar o circuito da melhor forma.

Foi escolhido o Flip-flop T na construção dos módulos de forma a simplificar o circuito.

~

Conclusão

Para concluir, este trabalho colocou em prática as temáticas abordadas nas aulas teóricas e praticas.

Após vários erros no desenvolvimento do trabalho e a correção dos mesmos o resultado final é bastante positivo uma vez que foi possível desenvolver uma máquina de lavar roupa e "criar" algo que durante as aulas seria complicado criar.

Assim sendo o este trabalho serviu para colocar à prova as nossas capacidades.