Examen 1: muestreo estídistico

Unidad 1 y 2: muestreo aleatorio simple y muestro sistemático

Julián Camilo Riaño Moreno

miércoles, junio 24, 2020

Contents

Actividad	1
Solución de la actividad	2
Introducción y especificaciones generales	2
Muestreo Aleatorio simple	2
Definición de la muestra piloto para cada variable	3
Errores aceptados y definición de tamaño de muestra para cada variable	24
Estimadores de las muestra finales utilizando el tamaño de muestra seleccionado para cada variable	25
Conclusiones y comentarios de muestreo aleatorio simple	33
Muestreo sistematico	33
Definición de la muestra piloto para cada variable (muestreo sistemático)	33
Errores aceptados y definición de tamaño de muestra para cada variable (muestreo sistemático).	57
Estimadores de las muestra finales utilizando el tamaño de muestra seleccionado para cada variable (muestreo sistemático)	58
Conlusiones y comentarios del muestreo sistemático	67

Actividad

Este conjunto de datos también está disponible en el repositorio de aprendizaje automático de [UCI (Universidad de California en Irvine)], (https://archive.ics.uci.edu/ml/datasets/wine+quality). Estos conjuntos de datos están relacionados con variantes rojas del vino portugués "Vinho Verde". Para más detalles, consulte la referencia [Cortez et al., 2009].

Variables de entrada (basadas en pruebas fisicoquímicas):

- 1. fixed acidity
- 2. volatile acidity

- 3. citric acid
- 4. residual sugar
- 5. chlorides
- 6. free sulfur dioxide
- 7. total sulfur dioxide
- 8. density
- 9. pH
- 10. sulphates
- 11. alcohol
- 12. quality (score between 0 and 10)

Lo contratan para hacer un análisis de muestreo con esta base de datos, con el objetivo de poder hacer un análisis descriptivo e inferencial.

Utilice el método de muestreo aleatorio simple y sistemático para determinar lo siguiente:

Solución de la actividad

Introducción y especificaciones generales

La base de datos entregada corresponde a un archivo que contiene 12 variables y 4898 observaciones. Por tal razón, se conoce el tamaño de la población que se está estudiante para este caso N = 4898.

Para realizar los análisis de manera más eficiente se definieron 10 funciones para el muestreo aleatorio simple como para el muestro sistemático. que se pueden ver en los archivos en el siguiente repositorio propio de Github: (https://github.com/JCRianoM/Muestro-estad-stico-test1.git)

Dichas funciones realizan el procesamiento visto en clase para una sola variable directamente para todas las variables, de esta forma la información en este documento será definida de esta misma forma. D

Dedido al procesamiento en formato: binary floating-point de R, algunas tablas se mostrarán en números flotantes. Si se desea hacer la verificación y comprobación de dichos números se puede utilizar la siguiente función propia que verifica data.frames a través de la función mpfr del paquete Rmpfr para manejo de números flotantes.

Inicialmente se decide para este ejericio trabajar con un errro de 0.05 y una nivel de confianza de 95. Para hacer los datos reproducibles se asigno un valor de estandar a traves de la función set.seed = 123.

Muestreo Aleatorio simple

Inicialmente se realizó un análisis de muestreo para la prueba piloto. Para esto se tomaron todos las observaciones como población total y se aplicó un error de 0.05, a través de esto, y como se puede observar en la tabla 1. se obtuvo que el tamaño ($n = pil_size$) para el piloto es de n = 245.

Definición de la muestra piloto para cada variable

Table 1: Tamaño población (N) y muestra (n) para el piloto

N_pop	pil_size
4898	245

Table 2: Estimadores de la muestra piloto

	$Media_var$	D.standard	sd_med_var	E.Error
fixed.acidity	6.774	0.8665	0.1279	0.3387
volatile.acidity	0.271	0.08679	0.3203	0.01355
citric.acid	0.3331	0.113	0.3393	0.01665
${f residual.sugar}$	5.941	4.776	0.804	0.297
${f chlorides}$	0.04781	0.02514	0.5259	0.002391
${\it free.sulfur.dioxide}$	36.46	18.18	0.4985	1.823
${f total.sulfur.dioxide}$	139.8	39.17	0.2802	6.99
${f density}$	0.9939	0.002736	0.002753	0.0497
pH	3.203	0.1615	0.05043	0.1601
${f sulphates}$	0.4858	0.1177	0.2424	0.02429
alcohol	10.48	1.174	0.112	0.5239
quality	5.837	0.8285	0.1419	0.2918

Table 3: Tabla de margen de error para cada una de las variables

fixed.ac	id ito latile.ac	eid iityr ic.ac	idesidual.	sughalmoridesi	ree.sulfu	r.di txxial esulfur.	diensite	γрН	sulphat	esslcoho	lquality
0	0	0	0	0	0	0	0	0	0	0	0
0.01	0.00065	5e-04	0.0075	0.00035	0.05	0.2	0.0015	0.004	7e-04	0.015	0.0075
0.02	0.0013	0.001	0.015	7e-04	0.1	0.4	0.003	0.008	0.0014	0.03	0.015
0.03	0.00195	0.0015	0.0225	0.00105	0.15	0.6	0.0045	0.012	0.0021	0.045	0.0225
0.04	0.0026	0.002	0.03	0.0014	0.2	0.8	0.006	0.016	0.0028	0.06	0.03
0.05	0.00325	0.0025	0.0375	0.00175	0.25	1	0.0075	0.02	0.0035	0.075	0.0375
0.06	0.0039	0.003	0.045	0.0021	0.3	1.2	0.009	0.024	0.0042	0.09	0.045
0.07	0.00455	0.0035	0.0525	0.00245	0.35	1.4	0.0105	0.028	0.0049	0.105	0.0525
0.08	0.0052	0.004	0.06	0.0028	0.4	1.6	0.012	0.032	0.0056	0.12	0.06
0.09	0.00585	0.0045	0.0675	0.00315	0.45	1.8	0.0135	0.036	0.0063	0.135	0.0675
0.1	0.0065	0.005	0.075	0.0035	0.5	2	0.015			0.15	0.075
0.11	0.00715	0.0055	0.0825	0.00385	0.55	2.2			0.0077	0.165	0.0825
0.12	0.0078	0.006	0.09	0.0042	0.6	2.4			0.0084	0.18	0.09
0.13	0.00845	0.0065	0.0975	0.00455	0.65	2.6			0.0091	0.195	0.0975
0.14	0.0091	0.007	0.105	0.0049	0.7	2.8			0.0098	0.21	0.105
0.15	0.00975	0.0075	0.1125	0.00525	0.75	3			0.0105	0.225	0.1125
0.16	0.0104	0.008	0.12	0.0056	0.8	3.2			0.0112	0.24	0.12
0.17	0.01105	0.0085	0.1275	0.00595	0.85	3.4			0.0119	0.255	0.1275
0.18	0.0117	0.009	0.135	0.0063	0.9	3.6			0.0126	0.27	0.135
0.19	0.01235	0.0095	0.1425	0.00665	0.95	3.8			0.0133	0.285	0.1425
0.2	0.013	0.01	0.15	0.007	1	4			0.014	0.3	0.15
0.21	0.01365	0.0105	0.1575	0.00735	1.05	4.2			0.0147	0.315	0.1575
0.22	0.0143	0.011	0.165	0.0077	1.1	4.4			0.0154	0.33	0.165
0.23	0.01495	0.0115	0.1725	0.00805	1.15	4.6			0.0161	0.345	0.1725
0.24	0.0156	0.012	0.18	0.0084	1.2	4.8			0.0168	0.36	0.18
0.25	0.01625	0.0125	0.1875	0.00875	1.25	5	0.0375	0.1	0.0175	0.375	0.1875

fixed.ac	id it ylatile.ac	cid itty ric.ac	idesidual.	sughalmoridesf	ree.sulfu	r.di txxial esulfur.	dionide	γрΗ	sulphat	esslcoho	lquality
0.26	0.0169	0.013	0.195	0.0091	1.3	5.2	0.039	0.104	0.0182	0.39	0.195
0.27	0.01755	0.0135	0.2025	0.00945	1.35	5.4	0.0405	0.108	0.0189	0.405	0.2025
0.28	0.0182	0.014	0.21	0.0098	1.4	5.6	0.042	0.112	0.0196	0.42	0.21
0.29	0.01885	0.0145	0.2175	0.01015	1.45	5.8	0.0435	0.116	0.0203	0.435	0.2175
0.3	0.0195	0.015	0.225	0.0105	1.5	6	0.045	0.12	0.021	0.45	0.225
0.31	0.02015	0.0155	0.2325	0.01085	1.55	6.2	0.0465	0.124	0.0217	0.465	0.2325
0.32	0.0208	0.016	0.24	0.0112	1.6	6.4	0.048	0.128	0.0224	0.48	0.24
0.33	0.02145	0.0165	0.2475	0.01155	1.65	6.6	0.0495	0.132	0.0231	0.495	0.2475
0.34	0.0221	_	0.255	0.0119	1.7	6.8	0.051	0.136	0.0238	0.51	0.255
_	0.02275	_	0.2625	0.01225	1.75		0.0525	0.14			0.2625
_	0.0234	_	0.27	_	1.8	_	0.054	0.144			0.27
_		_	0.2775	_	_	_	0.0555	0.148			0.2775
_		_	0.285	_	_	_	0.057	0.152			0.285
_	_		0.2925	_			0.0585	0.156	_		
	_	_	0.3	_		_	_	0.16	_	_	

Table 4: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 1: fixed acidity)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
0.01	628.6	557.1
0.02	157.1	152.3
0.03	69.84	68.86
0.04	39.28	38.97
0.05	25.14	25.01
0.06	17.46	17.4
0.07	12.83	12.79
0.08	9.821	9.801
0.09	7.76	7.748
0.1	6.286	6.277
0.11	5.195	5.189
0.12	4.365	4.361
0.13	3.719	3.716
0.14	3.207	3.205
0.15	2.794	2.792
0.16	2.455	2.454
0.17	2.175	2.174
0.18	1.94	1.939
0.19	1.741	1.741
0.2	1.571	1.571
0.21	1.425	1.425
0.22	1.299	1.298
0.23	1.188	1.188
0.24	1.091	1.091
0.25	1.006	1.005
0.26	0.9298	0.9296
0.27	0.8622	0.8621
0.28	0.8017	0.8016
0.29	0.7474	0.7473
0.3	0.6984	0.6983

Error_v_s	P_infinite_s	P_finite_s
0.31	0.6541	0.654
0.32	0.6138	0.6137
0.33	0.5772	0.5771
0.34	0.5437	0.5437

Muestreo por variable " fixed.acidity "

Figure 1: Gráfica comparación muestra para población infinita y finita Variable 1

Table 5: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 2: volatile acidity)

Error_v_s	$P_infinite_s$	P_finite_s
0	Inf	_
0.00065	932545	4872
0.0013	233136	4797
0.00195	103616	4677
0.0026	58284	4518
0.00325	37302	4330
0.0039	25904	4119
0.00455	19032	3895
0.0052	14571	3666
0.00585	11513	3436

$Error_v_s$	$P_infinite_s$	P_finite_s
0.0065	9325	3211
0.00715	7707	2995
0.0078	6476	2789
0.00845	5518	2595
0.0091	4758	2413
0.00975	4145	2245
0.0104	3643	2089
0.01105	3227	1945
0.0117	2878	1813
0.01235	2583	1691
0.013	2331	1580
0.01365	2115	1477
0.0143	1927	1383
0.01495	1763	1296
0.0156	1619	1217
0.01625	1492	1144
0.0169	1380	1076
0.01755	1279	1014
0.0182	1189	957.1
0.01885	1109	904.2
0.0195	1036	855.2
0.02015	970.4	809.9
0.0208	910.7	767.9
0.02145	856.3	728.9
0.0221	806.7	692.6
0.02275	761.3	658.9
0.0234	719.6	627.4

Muestreo por variable "volatile.acidity"

Figure 2: Gráfica comparación muestra para población infinita y finita Variable 2

Table 6: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 3: citric acid)

$\rm Error_v_s$	$P_infinite_s$	P_finite_s
0	Inf	_
5e-04	1769066	4884
0.001	442267	4844
0.0015	196563	4779
0.002	110567	4690
0.0025	70763	4581
0.003	49141	4454
0.0035	36103	4313
0.004	27642	4161
0.0045	21840	4001
0.005	17691	3836
0.0055	14620	3669
0.006	12285	3502
0.0065	10468	3337
0.007	9026	3175
0.0075	7863	3018
0.008	6910	2866
0.0085	6121	2721

Error_v_s	P_infinite_s	P_finite_s
0.009	5460	2582
0.0095	4900	2450
0.01	4423	2324
0.0105	4011	2205
0.011	3655	2093
0.0115	3344	1987
0.012	3071	1888
0.0125	2831	1794
0.013	2617	1706
0.0135	2427	1623
0.014	2256	1545
0.0145	2104	1472
0.015	1966	1403
0.0155	1841	1338
0.016	1728	1277
0.0165	1624	1220

Muestreo por variable " citric.acid "

Figure 3: Gráfica comparación muestra para población infinita y finita Variable 3

Table 7: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 4: residual sugar)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
0.0075	44143	4409
0.015	11036	3392
0.0225	4905	2451
0.03	2759	1765
0.0375	1766	1298
0.045	1226	980.7
0.0525	900.9	760.9
0.06	689.7	604.6
0.0675	545	490.4
0.075	441.4	404.9
0.0825	364.8	339.5
0.09	306.5	288.5
0.0975	261.2	248
0.105	225.2	215.3
0.1125	196.2	188.6
0.12	172.4	166.6
0.1275	152.7	148.1
0.135	136.2	132.6
0.1425	122.3	119.3
0.15	110.4	107.9
0.1575	100.1	98.09
0.165	91.2	89.54
0.1725	83.45	82.05
0.18	76.64	75.46
0.1875	70.63	69.62
0.195	65.3	64.44
0.2025	60.55	59.81
0.21	56.3	55.66
0.2175	52.49	51.93
0.225	49.05	48.56
0.2325	45.93	45.51
0.24	43.11	42.73
0.2475	40.54	40.2
0.255	38.19	37.89
0.2625	36.03	35.77
0.27	34.06	33.83
0.2775	32.24	32.03
0.285	30.57	30.38
0.2925	29.02	28.85
0.3	27.59	27.43

Muestreo por variable " residual.sugar "

Figure 4: Gráfica comparación muestra para población infinita y finita Variable 4

Table 8: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 5: chlorides)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
0.00035	8671810	4895
7e-04	2167952	4887
0.00105	963534	4873
0.0014	541988	4854
0.00175	346872	4830
0.0021	240884	4800
0.00245	176976	4766
0.0028	135497	4727
0.00315	107059	4684
0.0035	86718	4636
0.00385	71668	4585
0.0042	60221	4530
0.00455	51312	4471
0.0049	44244	4410
0.00525	38541	4346
0.0056	33874	4279
0.00595	30006	4211

Error_v_s	P_infinite_s	P_finite_s
0.0063	26765	4140
0.00665	24022	4068
0.007	21680	3995
0.00735	19664	3921
0.0077	17917	3846
0.00805	16393	3771
0.0084	15055	3696
0.00875	13875	3620
0.0091	12828	3545
0.00945	11895	3469
0.0098	11061	3395
0.01015	10311	3321
0.0105	9635	3247
0.01085	9024	3175
0.0112	8469	3103
0.01155	7963	3033
0.0119	7502	2963
0.01225	7079	2895

Muestreo por variable " chlorides "

Figure 5: Gráfica comparación muestra para población infinita y finita Variable 5

Table 9: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 6: free sulfur dioxide)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
0.05	381.8	354.2
0.1	95.45	93.62
0.15	42.42	42.06
0.2	23.86	23.75
0.25	15.27	15.22
0.3	10.61	10.58
0.35	7.791	7.779
0.4	5.965	5.958
0.45	4.713	4.709
0.5	3.818	3.815
0.55	3.155	3.153
0.6	2.651	2.65
0.65	2.259	2.258
0.7	1.948	1.947
0.75	1.697	1.696
0.8	1.491	1.491
0.85	1.321	1.321
0.9	1.178	1.178
0.95	1.058	1.057
1	0.9545	0.9543
1.05	0.8657	0.8656
1.1	0.7888	0.7887
1.15	0.7217	0.7216
1.2	0.6628	0.6627
1.25	0.6109	0.6108
1.3	0.5648	0.5647
1.35	0.5237	0.5237
1.4	0.487	0.4869
1.45	0.454	0.4539
1.5	0.4242	0.4242
1.55	0.3973	0.3972
1.6	0.3728	0.3728
1.65	0.3506	0.3506
1.7	0.3303	0.3302
1.75	0.3117	0.3116
1.8	0.2946	0.2946

Figure 6: Gráfica comparación muestra para población infinita y finita Variable 6

Table 10: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 7: total sulfur dioxide)

Error_v_s	$P_infinite_s$	P_finite_s
0	Inf	_
0.2	7.541	7.529
0.4	1.885	1.884
0.6	0.8379	0.8377
0.8	0.4713	0.4712
1	0.3016	0.3016
1.2	0.2095	0.2095
1.4	0.1539	0.1539
1.6	0.1178	0.1178
1.8	0.0931	0.09309
2	0.07541	0.07541
2.2	0.06232	0.06232
2.4	0.05237	0.05237
2.6	0.04462	0.04462
2.8	0.03847	0.03847
3	0.03351	0.03351
3.2	0.02946	0.02946
3.4	0.02609	0.02609

Error_v_s	P_infinite_s	P_finite_s
3.6	0.02327	0.02327
3.8	0.02089	0.02089
4	0.01885	0.01885
4.2	0.0171	0.0171
4.4	0.01558	0.01558
4.6	0.01425	0.01425
4.8	0.01309	0.01309
5	0.01207	0.01207
5.2	0.01115	0.01115
5.4	0.01034	0.01034
5.6	0.009618	0.009618
5.8	0.008966	0.008966
6	0.008379	0.008379
6.2	0.007847	0.007847
6.4	0.007364	0.007364
6.6	0.006924	0.006924
6.8	0.006523	0.006523

Muestreo por variable " total.sulfur.dioxide "

Figure 7: Gráfica comparación muestra para población infinita y finita Variable 7

Table 11: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 8: density)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
0.0015	12.94	12.9
0.003	3.234	3.232
0.0045	1.437	1.437
0.006	0.8084	0.8083
0.0075	0.5174	0.5174
0.009	0.3593	0.3593
0.0105	0.264	0.264
0.012	0.2021	0.2021
0.0135	0.1597	0.1597
0.015	0.1294	0.1293
0.0165	0.1069	0.1069
0.018	0.08983	0.08983
0.0195	0.07654	0.07654
0.021	0.066	0.06599
0.0225	0.05749	0.05749
0.024	0.05053	0.05053
0.0255	0.04476	0.04476
0.027	0.03992	0.03992
0.0285	0.03583	0.03583
0.03	0.03234	0.03234
0.0315	0.02933	0.02933
0.033	0.02673	0.02673
0.0345	0.02445	0.02445
0.036	0.02246	0.02246
0.0375	0.0207	0.0207
0.039	0.01913	0.01913
0.0405	0.01774	0.01774
0.042	0.0165	0.0165
0.0435	0.01538	0.01538
0.045	0.01437	0.01437
0.0465	0.01346	0.01346
0.048	0.01263	0.01263
0.0495	0.01188	0.01188
0.051	0.01119	0.01119
0.0525	0.01056	0.01056
0.054	0.009981	0.009981
0.0555	0.009449	0.009449
0.057	0.008958	0.008958
0.0585	0.008504	0.008504

Muestreo por variable " density "

Figure 8: Gráfica comparación muestra para población infinita y finita Variable 8

Table 12: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 9: pH)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
0.004	610.5	542.8
0.008	152.6	148
0.012	67.83	66.9
0.016	38.15	37.86
0.02	24.42	24.3
0.024	16.96	16.9
0.028	12.46	12.43
0.032	9.539	9.52
0.036	7.537	7.525
0.04	6.105	6.097
0.044	5.045	5.04
0.048	4.239	4.236
0.052	3.612	3.61
0.056	3.115	3.113
0.06	2.713	2.712
0.064	2.385	2.384
0.068	2.112	2.111

-		
$Error_v_s$	$P_infinite_s$	P_finite_s
0.072	1.884	1.883
0.076	1.691	1.69
0.08	1.526	1.526
0.084	1.384	1.384
0.088	1.261	1.261
0.092	1.154	1.154
0.096	1.06	1.06
0.1	0.9768	0.9766
0.104	0.9031	0.9029
0.108	0.8374	0.8373
0.112	0.7787	0.7785
0.116	0.7259	0.7258
0.12	0.6783	0.6782
0.124	0.6353	0.6352
0.128	0.5962	0.5961
0.132	0.5606	0.5605
0.136	0.5281	0.528
0.14	0.4983	0.4983
0.144	0.471	0.471
0.148	0.4459	0.4459
0.152	0.4228	0.4227
0.156	0.4014	0.4013
0.16	0.3815	0.3815

Método = muestro aleatorio simple

Figure 9: Gráfica comparación muestra para población infinita y finita Variable 9

P_infinite_s

P_finite_s

Table 13: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 10: sulphates)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
7e-04	460491	4846
0.0014	115123	4698
0.0021	51166	4470
0.0028	28781	4186
0.0035	18420	3869
0.0042	12791	3542
0.0049	9398	3220
0.0056	7195	2914
0.0063	5685	2631
0.007	4605	2373
0.0077	3806	2142
0.0084	3198	1935
0.0091	2725	1751
0.0098	2349	1588
0.0105	2047	1443
0.0112	1799	1316
0.0119	1593	1202

Error_v_s	P_infinite_s	P_finite_s
0.0126	1421	1102
0.0133	1276	1012
0.014	1151	932.1
0.0147	1044	860.7
0.0154	951.4	796.7
0.0161	870.5	739.1
0.0168	799.5	687.3
0.0175	736.8	640.4
0.0182	681.2	598
0.0189	631.7	559.5
0.0196	587.4	524.5
0.0203	547.6	492.5
0.021	511.7	463.3
0.0217	479.2	436.5
0.0224	449.7	411.9
0.0231	422.9	389.3
0.0238	398.3	368.4

Muestreo por variable " sulphates "

Figure 10: Gráfica comparación muestra para población infinita y finita Variable 10

Table 14: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 12: sulphates)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
0.015	214.2	205.2
0.03	53.55	52.97
0.045	23.8	23.68
0.06	13.39	13.35
0.075	8.567	8.552
0.09	5.949	5.942
0.105	4.371	4.367
0.12	3.347	3.344
0.135	2.644	2.643
0.15	2.142	2.141
0.165	1.77	1.769
0.18	1.487	1.487
0.195	1.267	1.267
0.21	1.093	1.093
0.225	0.9519	0.9517
0.24	0.8366	0.8365
0.255	0.7411	0.741
0.27	0.6611	0.661
0.285	0.5933	0.5932
0.3	0.5355	0.5354
0.315	0.4857	0.4856
0.33	0.4425	0.4425
0.345	0.4049	0.4048
0.36	0.3718	0.3718
0.375	0.3427	0.3427
0.39	0.3168	0.3168
0.405	0.2938	0.2938
0.42	0.2732	0.2732
0.435	0.2547	0.2547
0.45	0.238	0.238
0.465	0.2229	0.2229
0.48	0.2092	0.2092
0.495	0.1967	0.1967
0.51	0.1853	0.1853

Muestreo por variable " alcohol "

Figure 11: Gráfica comparación muestra para población infinita y finita Variable 11

Table 15: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 12: sulphates)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
0.0075	1376	1074
0.015	344	321.4
0.0225	152.9	148.2
0.03	85.99	84.51
0.0375	55.04	54.42
0.045	38.22	37.92
0.0525	28.08	27.92
0.06	21.5	21.4
0.0675	16.99	16.93
0.075	13.76	13.72
0.0825	11.37	11.34
0.09	9.555	9.536
0.0975	8.141	8.128
0.105	7.02	7.01
0.1125	6.115	6.107
0.12	5.375	5.369
0.1275	4.761	4.756

Error_v_s	P_infinite_s	P_finite_s
0.135	4.247	4.243
0.1425	3.811	3.808
0.15	3.44	3.437
0.1575	3.12	3.118
0.165	2.843	2.841
0.1725	2.601	2.6
0.18	2.389	2.388
0.1875	2.201	2.2
0.195	2.035	2.034
0.2025	1.887	1.887
0.21	1.755	1.754
0.2175	1.636	1.635
0.225	1.529	1.528
0.2325	1.432	1.431
0.24	1.344	1.343
0.2475	1.263	1.263
0.255	1.19	1.19
0.2625	1.123	1.123
0.27	1.062	1.061
0.2775	1.005	1.005
0.285	0.9528	0.9526

Muestreo por variable " quality "

Método = muestro aleatorio simple

Figure 12: Gráfica comparación muestra para población infinita y finita Variable 12

Errores aceptados y definición de tamaño de muestra para cada variable.

Table 16: Tabla de errores aceptados y valores de tamaño de muestra (n) seleccionado para cada variable

	Error aceptado	Tamaño de muestra (n)
fixed.acidity	0.01	600
volatile.acidity	0.0104	2089
citric.acid	0.011	2093
residual.sugar	0.03	1765
chlorides	0.01225	2895
free.sulfur.dioxide	0.05	355
${f total.sulfur.dioxide}$	0.2	7
${f density}$	0.0015	13
pH	0.004	543
$\operatorname{sulphates}$	0.0077	2142
alcohol	0.015	205
${f quality}$	0.0075	1074

Estimadores de las muestra finales utilizando el tamaño de muestra seleccionado para cada variable.

Table 17: Tabla estimadores de la muestra y totales usando el valor de n=600 resultado del piloto para la variable: fixed.acidity (continued below)

	n	Int.Inferior	Media.muestr	a Int.Superior	Desviacion.std.	Varianza
fixed.acidity	600	6.749	6.817	6.884	0.8267	0.0009996
volatile.acidity	600	0.2672	0.2749	0.2825	0.0938	1.287e-05
citric.acid	600	0.323	0.3324	0.3419	0.1156	1.955 e-05
residual.sugar	600	5.592	5.984	6.377	4.807	0.03379
$\operatorname{chlorides}$	600	0.0433	0.04489	0.04647	0.0194	5.502e-07
free.sulfur.dioxide	600	33.26	34.52	35.78	15.38	0.3461
total.sulfur.dioxide	600	132.9	136.2	139.6	41.06	2.466
density	600	0.9935	0.9938	0.994	0.002853	1.19e-08
pН	600	3.181	3.193	3.206	0.1541	3.473e-05
$\operatorname{sulphates}$	600	0.4781	0.4874	0.4968	0.1143	1.909e-05
alcohol	600	10.52	10.62	10.73	1.252	0.002294
quality	600	5.879	5.95	6.021	0.8653	0.001095

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Tota
fixed.acidity	0.1213	33078	33388	33698	23980
volatile.acidity	0.3413	1311	1346	1381	308.7
citric.acid	0.3479	1585	1628	1671	469.1
residual.sugar	0.8033	27509	29310	31111	810711
$\operatorname{chlorides}$	0.4321	212.6	219.9	227.1	13.2
free.sulfur.dioxide	0.4456	163312	169075	174838	8302265
${\bf total. sulfur. dioxide}$	0.3014	651803	667185	682568	59156489
${f density}$	0.002871	4866	4867	4868	0.2856
pH	0.04825	15584	15642	15699	833.1
$\operatorname{sulphates}$	0.2344	2345	2388	2430	458
alcohol	0.1179	51561	52031	52500	55029
${f quality}$	0.1454	28819	29143	29467	26271

Table 19: Tabla estimadores de la muestra y totales usando el valor de n=2089 resultado del piloto para la variable: volatile.acidity (continued below)

	n	Int.Inferior	Media.muestr	a Int.Superior	Desviacion.std.	Varianza
fixed.acidity	2089	6.808	6.844	6.881	0.8268	0.0001877
volatile.acidity	2089	0.275	0.2795	0.284	0.1026	2.888e-06
citric.acid	2089	0.3273	0.3328	0.3382	0.1246	4.259 e-06
residual.sugar	2089	6.073	6.289	6.505	4.938	0.006695
chlorides	2089	0.0449	0.04591	0.04691	0.02302	1.454 e-07
free. sulfur. dioxide	2089	34.31	35.04	35.78	16.81	0.07761
total.sulfur.dioxide	2089	134.8	136.7	138.5	41.85	0.4808
$\operatorname{density}$	2089	0.9939	0.994	0.9941	0.002899	2.307e-09
m pH	2089	3.186	3.193	3.2	0.1501	6.181e-06
$\operatorname{sulphates}$	2089	0.4829	0.4879	0.4928	0.1136	3.543 e-06

	n	Int.Inferior	Media.muestra	a Int.Superior	Desviacion.std.	Varianza
alcohol	2089	10.47	10.53	10.58	1.246	0.0004262
${f quality}$	2089	5.84	5.879	5.919	0.9096	0.0002271

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Tota
fixed.acidity	0.1208	33390	33524	33659	4503
volatile.acidity	0.3669	1353	1369	1386	69.29
citric.acid	0.3743	1610	1630	1650	102.2
residual.sugar	0.7852	30001	30802	31604	160605
$\operatorname{chlorides}$	0.5014	221.1	224.9	228.6	3.489
free.sulfur.dioxide	0.4798	168918	171647	174376	1861902
total.sulfur.dioxide	0.3062	662602	669394	676187	11534643
$\operatorname{density}$	0.002916	4868	4869	4869	0.05533
pH	0.047	15615	15639	15663	148.3
sulphates	0.2329	2371	2390	2408	85.01
alcohol	0.1184	51353	51555	51757	10224
${f quality}$	0.1547	28650	28797	28945	5449

Table 21: Tabla estimadores de la muestra y totales usando el valor de n=2093 resultado del piloto para la variable: citric.acid (continued below)

	n	Int.Inferior	Media.muestr	a Int.Superior	Desviacion.std.	Varianza
fixed.acidity	2093	6.825	6.862	6.899	0.8445	0.0001951
volatile.acidity	2093	0.2743	0.2788	0.2833	0.102	2.848e-06
citric.acid	2093	0.3285	0.3338	0.339	0.1199	3.933e-06
residual.sugar	2093	6.156	6.376	6.597	5.045	0.006963
chlorides	2093	0.04503	0.046	0.04697	0.02213	1.34e-07
${\bf free. sulfur. dioxide}$	2093	34.81	35.58	36.35	17.62	0.08494
total.sulfur.dioxide	2093	137.3	139.2	141	43.24	0.5116
density	2093	0.9939	0.9941	0.9942	0.00293	2.35e-09
pН	2093	3.185	3.192	3.198	0.1536	6.457 e - 06
$\operatorname{sulphates}$	2093	0.4859	0.4908	0.4958	0.1131	3.497e-06
alcohol	2093	10.45	10.5	10.56	1.214	0.0004035
${f quality}$	2093	5.827	5.865	5.904	0.8778	0.0002108

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Total
fixed.acidity	0.1231	33474	33611	33748	4681
volatile.acidity	0.3659	1349	1366	1382	68.31
citric.acid	0.3592	1615	1635	1654	94.35
residual.sugar	0.7912	30413	31230	32048	167046
$\operatorname{chlorides}$	0.4811	221.7	225.3	228.9	3.215
free.sulfur.dioxide	0.4952	171407	174262	177117	2037704
total.sulfur.dioxide	0.3107	674560	681566	688573	12272552
$\operatorname{density}$	0.002948	4868	4869	4869	0.05637
pH	0.04813	15608	15633	15658	154.9
sulphates	0.2303	2386	2404	2422	83.9
alcohol	0.1156	51252	51448	51645	9679

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Total
quality	0.1497	28586	28728	28870	5058

Table 23: Tabla estimadores de la muestra y totales usando el valor de n=1765 resultado del piloto para la variable: residual.sugar (continued below)

	n	Int.Inferior	Media.muestr	a Int.Superior	Desviacion.std.	Varianza
fixed.acidity	1765	6.824	6.864	6.904	0.8385	0.0002548
volatile.acidity	1765	0.2755	0.2804	0.2853	0.1023	3.793e-06
citric.acid	1765	0.3254	0.3309	0.3364	0.1162	4.894 e-06
${f residual.sugar}$	1765	6.264	6.505	6.746	5.066	0.009302
chlorides	1765	0.04466	0.04569	0.04673	0.02177	1.717e-07
${\it free.sulfur.dioxide}$	1765	34.89	35.72	36.54	17.3	0.1085
total.sulfur.dioxide	1765	136.8	138.8	140.8	42.39	0.6511
$\operatorname{density}$	1765	0.9939	0.9941	0.9942	0.002937	3.125e-09
pH	1765	3.177	3.184	3.191	0.1453	7.651e-06
sulphates	1765	0.4821	0.4875	0.4929	0.1127	4.605 e-06
alcohol	1765	10.46	10.52	10.57	1.232	0.00055
quality	1765	5.844	5.886	5.929	0.8941	0.0002897

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Tota
fixed.acidity	0.1222	33465	33621	33777	6113
volatile.acidity	0.3648	1354	1373	1393	90.99
citric.acid	0.3512	1599	1621	1642	117.4
residual.sugar	0.7789	30915	31860	32805	223170
${f chlorides}$	0.4764	219.7	223.8	227.9	4.119
free.sulfur.dioxide	0.4844	171710	174936	178162	2601856
total.sulfur.dioxide	0.3054	671868	679773	687678	15620840
${f density}$	0.002954	4868	4869	4869	0.07498
pH	0.04563	15569	15596	15623	183.6
sulphates	0.2312	2367	2388	2409	110.5
alcohol	0.1171	51278	51507	51737	13195
${f quality}$	0.1519	28663	28830	28997	6950

Table 25: Tabla estimadores de la muestra y totales usando el valor de n=2895 resultado del piloto para la variable: chlorides (continued below)

	n	Int.Inferior	Media.muestr	a Int.Superior	Desviacion.std.	Varianza
fixed.acidity	2895	6.822	6.853	6.884	0.8303	9.739e-05
volatile.acidity	2895	0.2748	0.2786	0.2823	0.1008	1.434 e - 06
citric.acid	2895	0.3304	0.3349	0.3394	0.1211	2.071e-06
residual.sugar	2895	6.217	6.409	6.6	5.155	0.003754
chlorides	2895	0.04466	0.04544	0.04622	0.02104	6.253 e-08
${\bf free. sulfur. dioxide}$	2895	34.76	35.4	36.05	17.32	0.04236
total.sulfur.dioxide	2895	136.5	138.1	139.7	42.32	0.253
${f density}$	2895	0.9939	0.994	0.9941	0.003044	1.309e-09

	n	Int.Inferior	Media.muestr	ra Int.Superior	Desviacion.std.	Varianza
pН	2895	3.182	3.188	3.193	0.148	3.092e-06
$\operatorname{sulphates}$	2895	0.4851	0.4893	0.4934	0.1119	1.769e-06
alcohol	2895	10.49	10.53	10.58	1.242	0.000218
${f quality}$	2895	5.854	5.887	5.919	0.8796	0.0001093

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Tota
fixed.acidity	0.1212	33468	33565	33661	2337
volatile.acidity	0.3617	1353	1365	1376	34.4
citric.acid	0.3616	1626	1640	1654	49.69
residual.sugar	0.8045	30789	31389	31989	90068
$\operatorname{chlorides}$	0.463	220.1	222.6	225	1.5
free.sulfur.dioxide	0.4891	171388	173404	175420	1016124
total.sulfur.dioxide	0.3065	671420	676347	681274	6068838
$\operatorname{density}$	0.003062	4868	4869	4869	0.0314
pН	0.04641	15597	15615	15632	74.19
sulphates	0.2287	2383	2396	2409	42.43
alcohol	0.118	51445	51590	51735	5231
${f quality}$	0.1494	28731	28833	28935	2622

Table 27: Tabla estimadores de la muestra y totales usando el valor de n=355 resultado del piloto para la variable: free.sulfur.dioxide (continued below)

	n	Int.Inferior	Media.muestr	a Int.Superior	Desviacion.std.	Varianza
fixed.acidity	355	6.766	6.868	6.969	0.9561	0.002389
volatile.acidity	355	0.2626	0.2729	0.2832	0.09705	2.461e-05
citric.acid	355	0.3262	0.339	0.3519	0.1211	3.833e-05
residual.sugar	355	5.973	6.5	7.027	4.962	0.06433
chlorides	355	0.0428	0.04477	0.04674	0.01853	8.976e-07
free.sulfur.dioxide	355	33.88	35.65	37.42	16.7	0.7284
total.sulfur.dioxide	355	132.6	137.2	141.8	43.45	4.933
$\operatorname{density}$	355	0.9937	0.994	0.9943	0.002911	2.214e-08
${f pH}$	355	3.162	3.177	3.191	0.1357	4.808e-05
sulphates	355	0.478	0.4901	0.5021	0.1136	3.369 e-05
alcohol	355	10.39	10.53	10.66	1.27	0.004217
quality	355	5.837	5.932	6.028	0.8963	0.002099

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Total
fixed.acidity	0.1392	33159	33638	34117	57304
volatile.acidity	0.3556	1288	1337	1385	590.3
citric.acid	0.3573	1600	1661	1721	919.6
residual.sugar	0.7634	29353	31838	34322	1543262
${f chlorides}$	0.414	210	219.3	228.6	21.53
free.sulfur.dioxide	0.4683	166263	174624	182985	17475367
total.sulfur.dioxide	0.3167	650234	671992	693750	118354913
density	0.002929	4867	4869	4870	0.5312
pH	0.0427	15492	15560	15628	1153

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Total
sulphates	0.2317	2344	2400	2457	808.3
alcohol	0.1207	50918	51554	52190	101165
quality	0.1511	28608	29057	29506	50353

Table 29: Tabla estimadores de la muestra y totales usando el valor de n=7 resultado del piloto para la variable: total.sulfur.dioxide (continued below)

	n	Int.Inferior	Media.mues	str l nt.Superio	r Desviacion.s	td.Varianza	Coeficiente.var
fixed.acidity	7	6.28	6.8	7.32	0.688	0.06752	0.1012
volatile.acidity	7	0.1713	0.2329	0.2944	0.08139	0.0009449	0.3495
citric.acid	7	0.2214	0.2857	0.35	0.08502	0.001031	0.2976
residual.sugar	7	1.871	5.786	9.701	5.179	3.826	0.8951
${f chlorides}$	7	0.02893	0.03871	0.0485	0.01294	2.39e-	0.3344
						05	
free.sulfur.dioxid	le 7	22.37	33.71	45.06	15.01	32.13	0.4452
total.sulfur.dioxi	$\mathbf{de}7$	108.7	133.9	159	33.27	157.9	0.2486
$\operatorname{density}$	7	0.9916	0.9936	0.9956	0.00268	1.025e-	0.002698
						06	
pH	7	3.058	3.177	3.296	0.1579	0.003555	0.04969
sulphates	7	0.4548	0.5557	0.6566	0.1335	0.002543	0.2403
alcohol	7	9.685	10.63	11.57	1.249	0.2224	0.1175
quality	7	5.127	6	6.873	1.155	0.1902	0.1925

	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Total
fixed.acidity	30761	33306	35852	1619890
volatile.acidity	839.4	1141	1442	22669
citric.acid	1085	1399	1714	24738
residual.sugar	9177	28338	47500	91791044
${f chlorides}$	141.7	189.6	237.5	573.5
${\it free.sulfur.dioxide}$	109605	165133	220660	770832913
${f total.sulfur.dioxide}$	532523	655632	778742	3.789e + 09
${f density}$	4857	4867	4877	24.59
${f pH}$	14978	15562	16146	85297
$\operatorname{sulphates}$	2228	2722	3216	61015
alcohol	47439	52059	56678	5335533
${f quality}$	25116	29388	33660	4563070

Table 31: Tabla estimadores de la muestra y totales usando el valor de n=13 resultado del piloto para la variable: density (continued below)

	n	Int.Inferior	Media.muestr	a Int.Superior	Desviacion.std.	Varianza
fixed.acidity	13	6.89	7.415	7.941	0.9477	0.0689
volatile.acidity	13	0.2344	0.2842	0.334	0.08981	0.0006188
citric.acid	13	0.2903	0.33	0.3697	0.07165	0.0003938
residual.sugar	13	3.837	6.042	8.248	3.976	1.213

	n	Int.Inferior	Media.muesti	ra Int.Superior	Desviacion.std.	Varianza
chlorides	13	0.03143	0.038	0.04457	0.01184	1.075e-05
free.sulfur.dioxide	13	23.1	31.15	39.21	14.52	16.17
total.sulfur.dioxide	13	107.5	136.4	165.3	52.06	207.9
$\operatorname{density}$	13	0.9925	0.994	0.9954	0.002647	5.377e-07
pH	13	3.023	3.118	3.214	0.1725	0.002282
sulphates	13	0.444	0.5038	0.5637	0.1079	0.0008932
alcohol	13	10.01	10.7	11.39	1.237	0.1174
${f quality}$	13	5.834	6.308	6.782	0.8549	0.05606

	${\bf Coeficiente. var.}$	${\bf Int. Inferior. total}$	${\bf Media. Total}$	Int.Superior.Total	Varianza.Total
fixed.acidity	0.1278	33749	36321	38892	1652926
volatile.acidity	0.316	1148	1392	1636	14846
citric.acid	0.2171	1422	1616	1811	9448
residual.sugar	0.658	18808	29595	40383	29093099
$\operatorname{chlorides}$	0.3116	154	186.1	218.2	258
free.sulfur.dioxide	0.466	113196	152592	191987	3.88e + 08
total.sulfur.dioxide	0.3817	526761	668012	809263	4.988e + 09
${f density}$	0.002663	4861	4869	4876	12.9
pH	0.05531	14806	15274	15742	54751
$\operatorname{sulphates}$	0.2142	2175	2468	2761	21428
alcohol	0.1156	49052	52409	55765	2815992
${f quality}$	0.1355	28576	30895	33215	1344994

Table 33: Tabla estimadores de la muestra y totales usando el valor de n=543 resultado del piloto para la variable: pH (continued below)

	n	Int.Inferior	Media.muestr	a Int.Superior	Desviacion.std.	Varianza
fixed.acidity	543	6.767	6.838	6.909	0.8235	0.00111
volatile.acidity	543	0.2624	0.2709	0.2793	0.09852	1.589 e-05
citric.acid	543	0.3345	0.3446	0.3547	0.1177	2.269 e-05
residual.sugar	543	5.874	6.309	6.744	5.063	0.04197
${f chlorides}$	543	0.04325	0.04511	0.04697	0.02166	7.682e-07
free.sulfur.dioxide	543	34.02	35.39	36.77	16.02	0.4205
total.sulfur.dioxide	543	133.8	137.4	141.1	42.63	2.976
density	543	0.9937	0.994	0.9942	0.003033	1.507e-08
pH	543	3.182	3.195	3.208	0.1539	3.879 e - 05
$\operatorname{sulphates}$	543	0.4865	0.4963	0.5061	0.1142	2.135e-05
alcohol	543	10.45	10.56	10.66	1.256	0.002583
quality	543	5.842	5.913	5.985	0.8361	0.001145

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Total
fixed.acidity	0.1204	33165	33492	33818	26638
volatile.acidity	0.3637	1288	1327	1366	381.3
citric.acid	0.3416	1641	1688	1735	544.4
residual.sugar	0.8025	28895	30902	32908	1006896
$\operatorname{chlorides}$	0.4802	212.4	220.9	229.5	18.43

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Tota
free.sulfur.dioxide	0.4528	166995	173347	179699	10087641
total.sulfur.dioxide	0.3102	656201	673101	690001	71401249
$\operatorname{density}$	0.003052	4867	4868	4870	0.3614
pН	0.04817	15588	15649	15710	930.5
sulphates	0.2301	2386	2431	2476	512.2
alcohol	0.119	51201	51699	52197	61964
${f quality}$	0.1414	28633	28964	29295	27464

Table 35: Tabla estimadores de la muestra y totales usando el valor de n=2142 resultado del piloto para la variable: sulphates (continued below)

	n	Int.Inferior	Media.muestr	a Int.Superior	Desviacion.std.	Varianza
fixed.acidity	2142	6.825	6.861	6.896	0.8285	0.0001803
volatile.acidity	2142	0.2756	0.2801	0.2845	0.1032	2.798e-06
citric.acid	2142	0.3305	0.3357	0.3409	0.1202	3.794e-06
residual.sugar	2142	6.212	6.433	6.654	5.103	0.006841
$\operatorname{chlorides}$	2142	0.04536	0.04636	0.04736	0.0231	1.402 e-07
${\it free.sulfur.dioxide}$	2142	34.63	35.36	36.08	16.86	0.07468
total.sulfur.dioxide	2142	137.2	139	140.9	42.39	0.472
density	2142	0.9939	0.9941	0.9942	0.003055	2.451e-09
pН	2142	3.18	3.186	3.193	0.1498	5.898e-06
$\operatorname{sulphates}$	2142	0.4854	0.4904	0.4953	0.1152	3.484 e-06
alcohol	2142	10.45	10.51	10.56	1.249	0.0004098
quality	2142	5.839	5.877	5.915	0.8751	0.0002012

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Tota
fixed.acidity	0.1208	33472	33604	33735	4326
volatile.acidity	0.3685	1355	1372	1388	67.12
citric.acid	0.358	1625	1644	1663	91.02
residual.sugar	0.7933	30699	31509	32319	164109
chlorides	0.4982	223.4	227.1	230.7	3.363
free.sulfur.dioxide	0.4769	170498	173175	175852	1791576
${\bf total. sulfur. dioxide}$	0.3049	674274	681004	687734	11324165
${f density}$	0.003073	4868	4869	4869	0.0588
pH	0.04703	15582	15606	15629	141.5
$\operatorname{sulphates}$	0.2349	2383	2402	2420	83.59
alcohol	0.1189	51257	51455	51653	9831
quality	0.1489	28645	28784	28923	4826

Table 37: Tabla estimadores de la muestra y totales usando el valor de n=205 resultado del piloto para la variable: alcohol (continued below)

	n	${\bf Int. In ferior}$	Media.muestr	a Int.Superior	Desviacion.std.	Varianza
fixed.acidity	205	6.784	6.901	7.019	0.8439	0.003329
volatile.acidity	205	0.2615	0.2752	0.2889	0.0979	4.48e-05

	n	Int.Inferior	Media.muestr	a Int.Superior	Desviacion.std.	Varianza
citric.acid	205	0.3265	0.3479	0.3693	0.1534	0.00011
residual.sugar	205	5.568	6.255	6.943	4.921	0.1132
$\operatorname{chlorides}$	205	0.04221	0.04482	0.04744	0.01874	1.641e-06
free.sulfur.dioxide	205	32.12	34.34	36.57	15.94	1.187
total.sulfur.dioxide	205	127.7	134.1	140.4	45.57	9.705
$\operatorname{density}$	205	0.9934	0.9939	0.9943	0.003031	4.295 e-08
pH	205	3.157	3.179	3.201	0.1553	0.0001127
$\operatorname{sulphates}$	205	0.4642	0.4805	0.4968	0.117	6.393 e-05
alcohol	205	10.43	10.6	10.78	1.255	0.007367
quality	205	5.777	5.907	6.038	0.9321	0.004061

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Total
fixed.acidity	0.1223	33238	33803	34369	79858
volatile.acidity	0.3557	1282	1348	1413	1075
citric.acid	0.441	1601	1704	1807	2640
residual.sugar	0.7868	27343	30639	33935	2715801
$\operatorname{chlorides}$	0.418	207	219.5	232.1	39.37
free.sulfur.dioxide	0.464	157543	168216	178890	28479782
total.sulfur.dioxide	0.3399	626125	656643	687160	232835463
$\operatorname{density}$	0.00305	4866	4868	4870	1.03
pН	0.04885	15466	15570	15674	2704
sulphates	0.2434	2275	2353	2432	1534
alcohol	0.1184	51083	51924	52765	176741
${f quality}$	0.1578	28310	28934	29558	97419

Table 39: Tabla estimadores de la muestra y totales usando el valor de n=1074 resultado del piloto para la variable: quality (continued below)

	n	Int.Inferior	Media.muestra	a Int.Superior	Desviacion.std.	Varianza
fixed.acidity	1074	6.771	6.823	6.875	0.8588	0.0005361
volatile.acidity	1074	0.2724	0.2783	0.2843	0.09723	6.873 e-06
citric.acid	1074	0.3277	0.3351	0.3426	0.1222	1.085e-05
residual.sugar	1074	6.188	6.493	6.799	5.012	0.01826
chlorides	1074	0.04497	0.04634	0.0477	0.02236	3.634 e-07
free.sulfur.dioxide	1074	35.01	36.01	37.02	16.5	0.198
total.sulfur.dioxide	1074	139.1	141.7	144.3	42.14	1.291
$\operatorname{density}$	1074	0.9939	0.9941	0.9943	0.003023	6.643 e-09
pН	1074	3.183	3.193	3.202	0.1514	1.666e-05
sulphates	1074	0.4859	0.4928	0.4997	0.1134	9.341e-06
alcohol	1074	10.42	10.49	10.57	1.265	0.001163
quality	1074	5.814	5.869	5.923	0.8924	0.0005789

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Total
fixed.acidity	0.1259	33192	33419	33646	12862
volatile.acidity	0.3494	1338	1363	1389	164.9
citric.acid	0.3645	1609	1642	1674	260.3

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Tota
residual.sugar	0.7719	30481	31805	33129	438109
$\operatorname{chlorides}$	0.4826	221.1	227	232.9	8.719
free.sulfur.dioxide	0.4583	172035	176394	180753	4750418
total.sulfur.dioxide	0.2974	683006	694136	705266	30969526
${f density}$	0.003041	4868	4869	4870	0.1594
pH	0.04741	15598	15638	15678	399.6
sulphates	0.23	2384	2414	2444	224.1
alcohol	0.1206	51062	51396	51730	27906
quality	0.1521	28509	28745	28981	13888

Conclusiones y comentarios de muestreo aleatorio simple

Se llevó acabo un análisis de muestreo aleatorio simple; se obtuvo inicialmente el tamaño de muestre de la prueba piloto como se indicó anteriomente (tabla 1.), seguidamente se realizó una análisis de estimadores (tabla 2.) y a través de este procedimiento se obtuvo el "error estimado" para cada una de las variables del piloto.

Se construyó una tabla de "margenes de error" para los errores estimados" (tabla 3.), debido a las unidades y los números manejados para cada una de las variables, las secuencias de errores se estableció de manera independiente para cada variable.

Con esta tabla, se siguió a un análisis del estimado del tamaño muestral por método basado en población finita e infinita. Para cada una de las variables se obtuvo una tabla de errores y los posibles tamaños de muestra para población infinita (P_infinite_s) y población finita (P_finite_s), Las gráficas obtenidas van desde la 1 a la 12 y las tablas, desde la 4 a la 15.

Con esta información se decidió tomar un valor de tamaño muestra posible con la aceptación de un grado de error para cada variable. La **tabla 16** muestra estos resultados. Como se puede observa existen variables que presentan valores muy bajos de tamaño muestral como total.sulfur.dioxide (n = 7), esto puede ser dado a la poca varianza de esta variable, como se observa en la tabla 2. Para las otras variables se decidió tomar una muestra casi intermedia de la población total; claramente esta selección que parece arbitraría, se debe definir con otras variables que no dependen de este análisis (económicas, recursos, etc.). El criterio de selección acá fue la minimización máxima del error aceptado con la inclusión de mayor cantidad de personas.

Finalmente, se realizó un remuestreo a través de un método aleatorio simple en la población original, utilizan los tamaños de muestra (n) obtenidos en el análisis de la prueba piloto. A estos nuevos muestreos que acá llamaré muestreos finales, se le hallaron los estimadores finales de cada variable, a saber: Int.Inferior, Media.muestra, Int.Superior, Desviacion.std., Varianza, Coeficiente.var., Int.Inferior.total, Media.Total, Int.Superior.Total, Varianza.Total. Este procedimiento se realizó para el tamaño de muestra (n) obtenido de cada una de las variables. Estos resultados reposan en las tablas 17 a la 39.

Muestreo sistematico

Para este análisis de muestreo sistemático se tomaron todos las observaciones como población total y se aplicó un error de 0.05, a través de esto, y como se puede observar en la tabla 1. se obtuvo que el tamaño (n = pil_size) para el piloto es de n = 245 y un valor k = 20 (se uso el mismo valor de semilla para este muestreo), ver tabla 19.

Definición de la muestra piloto para cada variable (muestreo sistemático)

Table 41: Tamaño población (N) y muestra (n) para el piloto (muestreo sistemático

N_pop	pil_size	Кр
4898	245	20

Table 42: Estimadores de la muestra piloto por muestreo sistemático (size_out_N = estimación pop. infinita; size_with_N = estimación pop. finita)

	Media	Error	Varianza	Size_out_N	Size_with_N
fixed.acidity	6.847	0.3423	0.7729	25	25
volatile.acidity	0.2699	0.01349	0.008298	175	169
citric.acid	0.3313	0.01657	0.01433	201	193
residual.sugar	6.091	0.3046	24.77	1026	848
${f chlorides}$	0.04513	0.002257	0.0004523	341	319
${\it free.sulfur.dioxide}$	37.01	1.85	284.9	320	300
${f total.sulfur.dioxide}$	141.3	7.064	1992	153	148
${f density}$	0.994	0.0497	8.569 e-06	0	0
pН	3.186	0.1593	0.0215	3	3
sulphates	0.4871	0.02435	0.0114	74	73
alcohol	10.48	0.5238	1.426	20	20
quality	5.898	0.2949	0.8379	37	37

Table 43: Tabla de margen de error para cada una de las variables

fixed.a	.cid vt ylatile.a	acid iityr ic.ac	eidesidual	.sughahoridesf	ree.sulfu	r.di txtial esulfur.	dienidey	рΗ	sulphat	esslcoho	lquality
0	0	0	0	0	0	0	0	0	0	0	0
0.03	6e-04	4e-04	0.01	8e-05	0.045	0.2	0.0015	0.004	6e-04	0.015	0.0075
0.06	0.0012	8e-04	0.02	0.00016	0.09	0.4	0.003	0.008	0.0012	0.03	0.015
0.09	0.0018	0.0012	0.03	0.00024	0.135	0.6	0.0045	0.012	0.0018	0.045	0.0225
0.12	0.0024	0.0016	0.04	0.00032	0.18	0.8	0.006	0.016	0.0024	0.06	0.03
0.15	0.003	0.002	0.05	4e-04	0.225	1	0.0075	0.02	0.003	0.075	0.0375
0.18	0.0036	0.0024	0.06	0.00048	0.27	1.2	0.009	0.024	0.0036	0.09	0.045
0.21	0.0042	0.0028	0.07	0.00056	0.315	1.4			0.0042	0.105	0.0525
0.24	0.0048	0.0032	0.08	0.00064	0.36	1.6	0.012	0.032	0.0048	0.12	0.06
0.27	0.0054	0.0036	0.09	0.00072	0.405	1.8	0.0135	0.036	0.0054	0.135	0.0675
0.3	0.006	0.004	0.1	8e-04	0.45	2			0.006	0.15	0.075
0.33	0.0066	0.0044	0.11	0.00088	0.495	2.2	0.0165	0.044	0.0066	0.165	0.0825
0.36	0.0072	0.0048	0.12	0.00096	0.54	2.4	0.018	0.048	0.0072	0.18	0.09
0.39	0.0078	0.0052	0.13	0.00104	0.585	2.6	0.0195	0.052	0.0078	0.195	0.0975
0.42	0.0084	0.0056	0.14	0.00112	0.63	2.8	0.021	0.056	0.0084	0.21	0.105
0.45	0.009	0.006	0.15	0.0012	0.675	3	0.0225	0.06	0.009	0.225	0.1125
0.48	0.0096	0.0064	0.16	0.00128	0.72	3.2	0.024	0.064	0.0096	0.24	0.12
0.51	0.0102	0.0068	0.17	0.00136	0.765	3.4	0.0255	0.068	0.0102	0.255	0.1275
0.54	0.0108	0.0072	0.18	0.00144	0.81	3.6	0.027	0.072	0.0108	0.27	0.135
0.57	0.0114	0.0076	0.19	0.00152	0.855	3.8	0.0285	0.076	0.0114	0.285	0.1425
0.6	0.012	0.008	0.2	0.0016	0.9	4	0.03	0.08	0.012	0.3	0.15
0.63	0.0126	0.0084	0.21	0.00168	0.945	4.2	0.0315	0.084	0.0126	0.315	0.1575
0.66	0.0132	0.0088	0.22	0.00176	0.99	4.4	0.033	0.088	0.0132	0.33	0.165

fixed.ac	id ity latile.a	cidiityric.aci	idesidual	.sughahoridesf	ree.sulfu	r.di txtial esulfur.	dilenisiltey	γрΗ	sulphat	eslcoho	lquality
0.69	0.0138	0.0092	0.23	0.00184	1.035	4.6	0.0345	0.092	0.0138	0.345	0.1725
0.72	0.0144	0.0096	0.24	0.00192	1.08	4.8	0.036	0.096	0.0144	0.36	0.18
0.75	0.015	0.01	0.25	0.002	1.125	5	0.0375	0.1	0.015	0.375	0.1875
0.78	0.0156	0.0104	0.26	0.00208	1.17	5.2	0.039	0.104	0.0156	0.39	0.195
0.81	0.0162	0.0108	0.27	0.00216	1.215	5.4	0.0405	0.108	0.0162	0.405	0.2025
0.84	0.0168	0.0112	0.28	0.00224	1.26	5.6	0.042	0.112	0.0168	0.42	0.21
0.87	0.0174	0.0116	0.29	0.00232	1.305	5.8	0.0435	0.116	0.0174	0.435	0.2175
0.9	0.018	0.012	0.3	0.0024	1.35	6	0.045	0.12	0.018	0.45	0.225
0.93	0.0186	0.0124	0.31	0.00248	1.395	6.2	0.0465	0.124	0.0186	0.465	0.2325
0.96	0.0192	0.0128	0.32	0.00256	1.44	6.4	0.048	0.128	0.0192	0.48	0.24
0.99	0.0198	0.0132	0.33	0.00264	1.485	6.6	0.0495	0.132	0.0198	0.495	0.2475
1.02	0.0204	0.0136	0.34	0.00272	1.53	6.8	0.051	0.136	0.0204	0.51	0.255
1.05	0.021	0.014	0.35	0.0028	1.575	7	0.0525	0.14	0.021		0.2625
1.08	0.0216	0.0144	0.36	0.00288	1.62	7.2	0.054	0.144	0.0216		0.27
1.11	0.0222	0.0148	0.37	0.00296	1.665	7.4	0.0555	0.148	0.0222		0.2775
1.14	0.0228	0.0152	0.38	0.00304	1.71	7.6	0.057	0.152	0.0228		0.285
_	0.0234	0.0156	0.39	0.00312	1.755	7.8	0.0585	0.156	0.0234		0.2925
_	_	0.016	0.4	0.0032	1.8	_	_	_	0.024		_
	_	0.0164	_	_	1.845	_	_	_	_	_	_

Table 44: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 1: fixed acidity)

Error_v	P_infinite	P_finite
0	Inf	
0.03	3299	1971
0.06	824.7	705.9
0.09	366.6	341
0.12	206.2	197.9
0.15	132	128.5
0.18	91.64	89.96
0.21	67.33	66.41
0.24	51.55	51.01
0.27	40.73	40.39
0.3	32.99	32.77
0.33	27.26	27.11
0.36	22.91	22.8
0.39	19.52	19.44
0.42	16.83	16.77
0.45	14.66	14.62
0.48	12.89	12.85
0.51	11.42	11.39
0.54	10.18	10.16
0.57	9.138	9.121
0.6	8.247	8.234
0.63	7.481	7.469
0.66	6.816	6.807
0.69	6.236	6.228
0.72	5.727	5.721
0.75	5.278	5.273
0.78	4.88	4.875

Error_v	P_infinite	P_finite
0.81	4.525	4.521
0.84	4.208	4.204
0.87	3.923	3.92
0.9	3.666	3.663
0.93	3.433	3.43
0.96	3.222	3.22
0.99	3.029	3.028
1.02	2.854	2.852
1.05	2.693	2.692
1.08	2.546	2.544
1.11	2.41	2.409
1.14	2.285	2.284

Muestreo por variable " fixed.acidity "

Método = muestro sistemático

Figure 13: Gráfica comparación muestra para población infinita y finita Variable 1

Table 45: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 2: volatile acidity)

Error_v	P_infinite	P_finite
0	Inf	_
6e-04	88549	4641

Error_v	P_infinite	P_finite
0.0012	22137	4011
0.0018	9839	3270
0.0024	5534	2598
0.003	3542	2056
0.0036	2460	1637
0.0042	1807	1320
0.0048	1384	1079
0.0054	1093	893.7
0.006	885.5	749.9
0.0066	731.8	636.7
0.0072	614.9	546.3
0.0078	524	473.3
0.0084	451.8	413.6
0.009	393.6	364.3
0.0096	345.9	323.1
0.0102	306.4	288.4
0.0108	273.3	258.9
0.0114	245.3	233.6
0.012	221.4	211.8
0.0126	200.8	192.9
0.0132	183	176.4
0.0138	167.4	161.9
0.0144	153.7	149.1
0.015	141.7	137.7
0.0156	131	127.6
0.0162	121.5	118.5
0.0168	112.9	110.4
0.0174	105.3	103.1
0.018	98.39	96.45
0.0186	92.14	90.44
0.0192	86.47	84.97
0.0198	81.31	79.98
0.0204	76.6	75.42
0.021	72.29	71.23
0.0216	68.33	67.39
0.0222	64.68	63.84
0.0228	61.32	60.56
0.0234	58.22	57.53

Muestreo por variable "volatile.acidity"

Figure 14: Gráfica comparación muestra para población infinita y finita Variable $2\,$

Table 46: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 3: citric acid)

Error_v	P_infinite	P_finite
0	Inf	_
4e-04	344103	4829
8e-04	86026	4634
0.0012	38234	4342
0.0016	21506	3989
0.002	13764	3612
0.0024	9558	3239
0.0028	7023	2885
0.0032	5377	2563
0.0036	4248	2275
0.004	3441	2021
0.0044	2844	1799
0.0048	2390	1606
0.0052	2036	1438
0.0056	1756	1292
0.006	1529	1165
0.0064	1344	1055
0.0068	1191	957.8

$Error_v$	P_infinite	P_finite
0.0072	1062	872.8
0.0076	953.2	797.9
0.008	860.3	731.7
0.0084	780.3	673.1
0.0088	711	620.8
0.0092	650.5	574.2
0.0096	597.4	532.5
0.01	550.6	494.9
0.0104	509	461.1
0.0108	472	430.5
0.0112	438.9	402.8
0.0116	409.2	377.6
0.012	382.3	354.7
0.0124	358.1	333.7
0.0128	336	314.5
0.0132	316	296.8
0.0136	297.7	280.6
0.014	280.9	265.7
0.0144	265.5	251.9
0.0148	251.4	239.1
0.0152	238.3	227.2
0.0156	226.2	216.2
0.016	215.1	206
0.0164	204.7	196.5

Muestreo por variable " citric.acid "

Figure 15: Gráfica comparación muestra para población infinita y finita Variable $3\,$

Table 47: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 4: residual sugar)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ccccc} 0.04 & 59459 & 4525 \\ 0.05 & 38054 & 4339 \\ 0.06 & 26426 & 4132 \\ 0.07 & 19415 & 3911 \\ 0.08 & 14865 & 3684 \\ 0.09 & 11745 & 3457 \end{array}$	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
$egin{array}{cccccc} 0.06 & 26426 & 4132 \\ 0.07 & 19415 & 3911 \\ 0.08 & 14865 & 3684 \\ 0.09 & 11745 & 3457 \\ \hline \end{array}$	
0.07 19415 3911 0.08 14865 3684 0.09 11745 3457	
0.08 14865 3684 0.09 11745 3457	
0.09 11745 3457	
0.1 9513 3233	
0.11 7862 3018	
0.12 6607 2813	
0.13 5629 2619	
0.14 4854 2438	
0.15 4228 2269	
0.16 3716 2113	
0.17 3292 1969	

$Error_v$	P_infinite	P_finite
0.18	2936	1836
0.19	2635	1713
0.2	2378	1601
0.21	2157	1498
0.22	1966	1403
0.23	1798	1315
0.24	1652	1235
0.25	1522	1161
0.26	1407	1093
0.27	1305	1030
0.28	1213	972.5
0.29	1131	919
0.3	1057	869.4
0.31	990	823.5
0.32	929	780.9
0.33	873.6	741.4
0.34	823	704.6
0.35	776.6	670.3
0.36	734.1	638.4
0.37	694.9	608.6
0.38	658.8	580.7
0.39	625.5	554.6
0.4	594.6	530.2

Muestreo por variable " residual.sugar "

Figure 16: Gráfica comparación muestra para población infinita y finita Variable $4\,$

Table 48: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 5: chlorides)

Error_v	P_infinite	P_finite
0	Inf	_
8e-05	271494	4811
0.00016	67874	4568
0.00024	30166	4214
0.00032	16968	3801
4e-04	10860	3376
0.00048	7542	2969
0.00056	5541	2600
0.00064	4242	2273
0.00072	3352	1990
8e-04	2715	1747
0.00088	2244	1539
0.00096	1885	1361
0.00104	1606	1210
0.00112	1385	1080
0.0012	1207	968.1
0.00128	1061	871.8
0.00136	939.4	788.2

Error_v	P_infinite	P_finite
0.00144	837.9	715.5
0.00152	752.1	652
0.0016	678.7	596.1
0.00168	615.6	546.9
0.00176	560.9	503.3
0.00184	513.2	464.5
0.00192	471.3	430
0.002	434.4	399
0.00208	401.6	371.2
0.00216	372.4	346.1
0.00224	346.3	323.4
0.00232	322.8	302.9
0.0024	301.7	284.2
0.00248	282.5	267.1
0.00256	265.1	251.5
0.00264	249.3	237.2
0.00272	234.9	224.1
0.0028	221.6	212
0.00288	209.5	200.9
0.00296	198.3	190.6
0.00304	188	181.1
0.00312	178.5	172.2
0.0032	169.7	164

Muestreo por variable " chlorides "

Figure 17: Gráfica comparación muestra para población infinita y finita Variable $5\,$

Table 49: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 6: free sulfur dioxide)

Error_v	P_infinite	P_finite
0	Inf	_
0.045	540370	4854
0.09	135092	4727
0.135	60041	4529
0.18	33773	4278
0.225	21615	3993
0.27	15010	3693
0.315	11028	3392
0.36	8443	3100
0.405	6671	2824
0.45	5404	2569
0.495	4466	2336
0.54	3753	2125
0.585	3197	1935
0.63	2757	1764
0.675	2402	1611
0.72	2111	1475

-		
Error_v	P_infinite	P_finite
0.765	1870	1353
0.81	1668	1244
0.855	1497	1146
0.9	1351	1059
0.945	1225	980.1
0.99	1116	909.2
1.035	1021	845.2
1.08	938.1	787.3
1.125	864.6	734.9
1.17	799.4	687.2
1.215	741.2	643.8
1.26	689.2	604.2
1.305	642.5	568
1.35	600.4	534.8
1.395	562.3	504.4
1.44	527.7	476.4
1.485	496.2	450.6
1.53	467.4	426.7
1.575	441.1	404.7
1.62	417	384.2
1.665	394.7	365.3
1.71	374.2	347.7
1.755	355.3	331.2
1.8	337.7	315.9
1.845	321.5	301.7

Muestreo por variable " free.sulfur.dioxide "

Figure 18: Gráfica comparación muestra para población infinita y finita Variable 6

Table 50: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 7: total sulfur dioxide)

Error_v	P_infinite	P_finite
0	Inf	_
0.2	191308	4776
0.4	47827	4443
0.6	21256	3981
0.8	11957	3475
1	7652	2986
1.2	5314	2549
1.4	3904	2173
1.6	2989	1856
1.8	2362	1593
2	1913	1376
2.2	1581	1195
2.4	1329	1045
2.6	1132	919.5
2.8	976.1	813.9
3	850.3	724.5
3.2	747.3	648.4
3.4	662	583.2

$Error_v$	P_infinite	P_finite
3.6	590.5	526.9
3.8	529.9	478.2
4	478.3	435.7
4.2	433.8	398.5
4.4	395.3	365.7
4.6	361.6	336.8
4.8	332.1	311
5	306.1	288.1
5.2	283	267.5
5.4	262.4	249.1
5.6	244	232.4
5.8	227.5	217.4
6	212.6	203.7
6.2	199.1	191.3
6.4	186.8	180
6.6	175.7	169.6
6.8	165.5	160.1
7	156.2	151.3
7.2	147.6	143.3
7.4	139.7	135.9
7.6	132.5	129
7.8	125.8	122.6

Figure 19: Gráfica comparación muestra para población infinita y finita Variable 7

Table 51: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 8: density)

Error_v	P_infinite	P_finite
0	Inf	_
0.0015	14.63	14.59
0.003	3.657	3.655
0.0045	1.626	1.625
0.006	0.9144	0.9142
0.0075	0.5852	0.5851
0.009	0.4064	0.4063
0.0105	0.2986	0.2985
0.012	0.2286	0.2286
0.0135	0.1806	0.1806
0.015	0.1463	0.1463
0.0165	0.1209	0.1209
0.018	0.1016	0.1016
0.0195	0.08657	0.08656
0.021	0.07464	0.07464
0.0225	0.06502	0.06502
0.024	0.05715	0.05715
0.0255	0.05062	0.05062

Error_v	P_infinite	P_finite
0.027	0.04515	0.04515
0.0285	0.04053	0.04053
0.03	0.03657	0.03657
0.0315	0.03317	0.03317
0.033	0.03023	0.03023
0.0345	0.02766	0.02766
0.036	0.0254	0.0254
0.0375	0.02341	0.02341
0.039	0.02164	0.02164
0.0405	0.02007	0.02007
0.042	0.01866	0.01866
0.0435	0.0174	0.0174
0.045	0.01626	0.01626
0.0465	0.01522	0.01522
0.048	0.01429	0.01429
0.0495	0.01343	0.01343
0.051	0.01266	0.01266
0.0525	0.01194	0.01194
0.054	0.01129	0.01129
0.0555	0.01069	0.01069
0.057	0.01013	0.01013
0.0585	0.009618	0.009618

Muestreo por variable " density "

Figure 20: Gráfica comparación muestra para población infinita y finita Variable $8\,$

Table 52: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 9: pH)

$Error_v$	P_infinite	P_finite
0	Inf	_
0.004	5162	2513
0.008	1291	1021
0.012	573.6	513.5
0.016	322.6	302.7
0.02	206.5	198.1
0.024	143.4	139.3
0.028	105.4	103.1
0.032	80.66	79.35
0.036	63.73	62.91
0.04	51.62	51.09
0.044	42.66	42.3
0.048	35.85	35.59
0.052	30.55	30.36
0.056	26.34	26.2
0.06	22.94	22.84
0.064	20.17	20.08
0.068	17.86	17.8

Error_v	P_infinite	P_finite
0.072	15.93	15.88
0.076	14.3	14.26
0.08	12.91	12.87
0.084	11.71	11.68
0.088	10.67	10.64
0.092	9.759	9.739
0.096	8.962	8.946
0.1	8.26	8.246
0.104	7.637	7.625
0.108	7.081	7.071
0.112	6.585	6.576
0.116	6.138	6.131
0.12	5.736	5.729
0.124	5.372	5.366
0.128	5.041	5.036
0.132	4.74	4.736
0.136	4.466	4.462
0.14	4.214	4.211
0.144	3.983	3.98
0.148	3.771	3.768
0.152	3.575	3.572
0.156	3.394	3.392

Figure 21: Gráfica comparación muestra para población infinita y finita Variable 9

Table 53: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 10: sulphates)

Error_v	P_infinite	P_finite
0	Inf	_
6e-04	121685	4708
0.0012	30421	4219
0.0018	13521	3595
0.0024	7605	2979
0.003	4867	2441
0.0036	3380	2000
0.0042	2483	1648
0.0048	1901	1370
0.0054	1502	1150
0.006	1217	974.7
0.0066	1006	834.4
0.0072	845	720.7
0.0078	720	627.7
0.0084	620.8	551
0.009	540.8	487
0.0096	475.3	433.3
0.0102	421.1	387.7

Error_v	P_infinite	P_finite
0.0108	375.6	348.8
0.0114	337.1	315.4
0.012	304.2	286.4
0.0126	275.9	261.2
0.0132	251.4	239.1
0.0138	230	219.7
0.0144	211.3	202.5
0.015	194.7	187.3
0.0156	180	173.6
0.0162	166.9	161.4
0.0168	155.2	150.4
0.0174	144.7	140.5
0.018	135.2	131.6
0.0186	126.6	123.4
0.0192	118.8	116
0.0198	111.7	109.2
0.0204	105.3	103
0.021	99.33	97.36
0.0216	93.89	92.13
0.0222	88.89	87.3
0.0228	84.27	82.84
0.0234	80	78.72
0.024	76.05	74.89

Muestreo por variable " sulphates "

Figure 22: Gráfica comparación muestra para población infinita y finita Variable 10

Table 54: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 11: alcohol)

Error_v	P_infinite	P_finite
0	Inf	_
0.015	24348	4078
0.03	6087	2714
0.045	2705	1743
0.06	1522	1161
0.075	973.9	812.4
0.09	676.3	594.3
0.105	496.9	451.1
0.12	380.4	353
0.135	300.6	283.2
0.15	243.5	232
0.165	201.2	193.3
0.18	169.1	163.4
0.195	144.1	140
0.21	124.2	121.2
0.225	108.2	105.9
0.24	95.11	93.3
0.255	84.25	82.82

Error_v	P_infinite	P_finite
0.27	75.15	74.01
0.285	67.45	66.53
0.3	60.87	60.12
0.315	55.21	54.6
0.33	50.31	49.79
0.345	46.03	45.6
0.36	42.27	41.91
0.375	38.96	38.65
0.39	36.02	35.75
0.405	33.4	33.17
0.42	31.06	30.86
0.435	28.95	28.78
0.45	27.05	26.9
0.465	25.34	25.21
0.48	23.78	23.66
0.495	22.36	22.26
0.51	21.06	20.97

Muestreo por variable " alcohol "

Figure 23: Gráfica comparación muestra para población infinita y finita Variable 11

Table 55: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 12: quality)

Error_v	P_infinite	P_finite
0	Inf	_
0.0075	57223	4512
0.015	14306	3649
0.0225	6358	2767
0.03	3576	2067
0.0375	2289	1560
0.045	1590	1200
0.0525	1168	943
0.06	894.1	756.1
0.0675	706.5	617.4
0.075	572.2	512.4
0.0825	472.9	431.3
0.09	397.4	367.6
0.0975	338.6	316.7
0.105	292	275.5
0.1125	254.3	241.8
0.12	223.5	213.8
0.1275	198	190.3
0.135	176.6	170.5
0.1425	158.5	153.5
0.15	143.1	139
0.1575	129.8	126.4
0.165	118.2	115.4
0.1725	108.2	105.8
0.18	99.35	97.37
0.1875	91.56	89.88
0.195	84.65	83.21
0.2025	78.49	77.26
0.21	72.99	71.92
0.2175	68.04	67.11
0.225	63.58	62.77
0.2325	59.55	58.83
0.24	55.88	55.25
0.2475	52.55	51.99
0.255	49.5	49.01
0.2625	46.71	46.27
0.27	44.15	43.76
0.2775	41.8	41.45
0.285	39.63	39.31
0.2925	37.62	37.34

Errores aceptados y definición de tamaño de muestra para cada variable (muestreo sistemático).

Figure 24: Gráfica comparación muestra para población infinita y finita Variable 12

Table 56: Tabla de errores aceptados y valores de tamaño de muestra (n) seleccionado para cada variable (muestreo sistemático)

	Error aceptado	Tamaño de muestra (n)
fixed.acidity	0.03	1971
volatile.acidity	0.003	2056
citric.acid	0.004	2021
residual.sugar	0.16	2113
chlorides	0.00072	1990
free.sulfur.dioxide	0.54	2125
total.sulfur.dioxide	1.6	1856
density	0.0015	15
pН	0.008	1021
sulphates	0.0036	2000
alcohol	0.045	1743
quality	0.0375	1560

Estimadores de las muestra finales utilizando el tamaño de muestra seleccionado para cada variable (muestreo sistemático)

Table 57: Tabla estimadores (muestreo sistemático) de la muestra y totales usando el valor de n=1971 resultado del piloto para la variable: fixed.acidity (continued below)

	n	kp	Int.Inferior	Media.muest	raInt.Superior	Desviacion.std.	Varianza
fixed.acidity	1971	2	6.817	6.856	6.895	0.8606	0.0002245
volatile.acidity	1971	2	0.2739	0.2785	0.283	0.1005	3.06e-06
citric.acid	1971	2	0.329	0.3344	0.3399	0.121	4.439e-
							06
residual.sugar	1971	2	6.189	6.415	6.64	5.01	0.00761
${f chlorides}$	1971	2	0.04467	0.04562	0.04656	0.02104	1.342e-
							07
free.sulfur.dioxide	1971	2	34.29	35.03	35.78	16.56	0.08316
total.sulfur.dioxide	1971	2	137	138.9	140.8	42.29	0.5422
density	1971	2	0.9939	0.994	0.9942	0.002922	2.588e-
							09
$_{ m pH}$	1971	2	3.182	3.189	3.196	0.153	7.101e-
							06
$\operatorname{sulphates}$	1971	2	0.4859	0.4911	0.4963	0.1157	4.062e-
							06
alcohol	1971	2	10.45	10.51	10.57	1.236	0.0004635
${f quality}$	1971	2	5.841	5.881	5.921	0.8891	0.0002397

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Tota
fixed.acidity	0.1255	33434	33581	33728	5387
volatile.acidity	0.3607	1347	1364	1381	73.4
citric.acid	0.3618	1617	1638	1659	106.5
residual.sugar	0.781	30564	31419	32273	182567
$\operatorname{chlorides}$	0.4613	219.8	223.4	227	3.22
free.sulfur.dioxide	0.4728	168760	171585	174410	1995160
total.sulfur.dioxide	0.3045	673065	680278	687491	13007518
$\operatorname{density}$	0.002939	4868	4869	4869	0.06209
pН	0.04799	15595	15621	15647	170.4
sulphates	0.2357	2386	2405	2425	97.44
alcohol	0.1176	51270	51480	51691	11120
quality	0.1512	28652	28804	28956	5750

Table 59: Tabla estimadores (muestreo sistemático) de la muestra y totales usando el valor de n=2056 resultado del piloto para la variable: volatile.acidity (continued below)

	n	kp	Int.Inferior	Media.muest	traInt.Superior	Desviacion.std.	Varianza
fixed.acidity	2056	2	6.818	6.856	6.894	0.8606	0.000209
volatile.acidity	2056	2	0.274	0.2785	0.2829	0.1005	2.848e-
							06
citric.acid	2056	2	0.3291	0.3344	0.3397	0.121	4.132e-
							06

	n	kp	Int.Inferior	Media.muest	raInt.Superior	Desviacion.std.	Varianza
residual.sugar	2056	2	6.194	6.415	6.636	5.01	0.007084
$\operatorname{chlorides}$	2056	2	0.04469	0.04562	0.04654	0.02104	1.249e-
							07
free.sulfur.dioxide	2056	2	34.3	35.03	35.76	16.56	0.07741
total.sulfur.dioxide	2056	2	137	138.9	140.8	42.29	0.5047
density	2056	2	0.9939	0.994	0.9942	0.002922	2.409e-
							09
pH	2056	2	3.182	3.189	3.196	0.153	6.61 e-06
$\operatorname{sulphates}$	2056	2	0.486	0.4911	0.4962	0.1157	3.781e-
							06
alcohol	2056	2	10.46	10.51	10.57	1.236	0.000431
quality	2056	2	5.842	5.881	5.92	0.8891	0.0002233

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Total
fixed.acidity	0.1255	33439	33581	33723	5014
volatile.acidity	0.3607	1347	1364	1380	68.32
citric.acid	0.3618	1618	1638	1658	99.12
residual.sugar	0.781	30594	31419	32243	169936
$\operatorname{chlorides}$	0.4613	220	223.4	226.9	2.997
free.sulfur.dioxide	0.4728	168859	171585	174311	1857131
total.sulfur.dioxide	0.3045	673319	680278	687237	12107635
$\operatorname{density}$	0.002939	4868	4869	4869	0.05779
pН	0.04799	15595	15621	15646	158.6
sulphates	0.2357	2386	2405	2424	90.7
alcohol	0.1176	51277	51480	51684	10351
quality	0.1512	28658	28804	28950	5352

Table 61: Tabla estimadores (muestreo sistemático) de la muestra y totales usando el valor de n=2021 resultado del piloto para la variable: citric.acid (continued below)

	n	kp	Int.Inferior	Media.muest	raInt.Superior	Desviacion.std.	Varianza
fixed.acidity	2021	2	6.818	6.856	6.894	0.8606	0.0002152
volatile.acidity	2021	2	0.274	0.2785	0.2829	0.1005	2.933e-
							06
citric.acid	2021	2	0.329	0.3344	0.3398	0.121	4.255e-
							06
residual.sugar	2021	2	6.192	6.415	6.638	5.01	0.007295
${f chlorides}$	2021	2	0.04468	0.04562	0.04655	0.02104	1.287e-
							07
free.sulfur.dioxide	2021	2	34.29	35.03	35.77	16.56	0.07972
total.sulfur.dioxide	2021	2	137	138.9	140.8	42.29	0.5197
${f density}$	2021	2	0.9939	0.994	0.9942	0.002922	2.481e-
							09
pH	2021	2	3.182	3.189	3.196	0.153	6.807e-
							06
$\operatorname{sulphates}$	2021	2	0.4859	0.4911	0.4962	0.1157	3.894e-
							06
alcohol	2021	2	10.46	10.51	10.57	1.236	0.0004443

	n	kp	Int.Inferior	Media.muest	raInt.Superior	Desviacion.std.	Varianza
quality	2021	2	5.841	5.881	5.92	0.8891	0.0002298

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Tota
fixed.acidity	0.1255	33437	33581	33725	5164
volatile.acidity	0.3607	1347	1364	1381	70.36
citric.acid	0.3618	1618	1638	1658	102.1
residual.sugar	0.781	30582	31419	32255	175008
$\operatorname{chlorides}$	0.4613	219.9	223.4	226.9	3.087
free.sulfur.dioxide	0.4728	168819	171585	174351	1912560
${\bf total. sulfur. dioxide}$	0.3045	673216	680278	687340	12469008
${f density}$	0.002939	4868	4869	4869	0.05952
pH	0.04799	15595	15621	15646	163.3
sulphates	0.2357	2386	2405	2425	93.41
alcohol	0.1176	51274	51480	51687	10660
quality	0.1512	28656	28804	28952	5512

Table 63: Tabla estimadores (muestreo sistemático) de la muestra y totales usando el valor de n=2113 resultado del piloto para la variable: residual.sugar (continued below)

	n	kp	Int.Inferior	Media.muest	raInt.Superior	Desviacion.std.	Varianza
fixed.acidity	2113	2	6.819	6.856	6.894	0.8606	0.0001993
volatile.acidity	2113	2	0.2741	0.2785	0.2828	0.1005	2.715e- 06
citric.acid	2113	2	0.3291	0.3344	0.3397	0.121	3.94 e-06
residual.sugar	2113	2	6.197	6.415	6.633	5.01	0.006754
$\operatorname{chlorides}$	2113	2	0.0447	0.04562	0.04653	0.02104	1.191e- 07
free.sulfur.dioxide	2113	2	34.31	35.03	35.75	16.56	0.07381
total.sulfur.dioxide	2113	2	137	138.9	140.7	42.29	0.4812
density	2113	2	0.9939	0.994	0.9942	0.002922	2.297e- 09
pН	2113	2	3.183	3.189	3.196	0.153	6.303e- 06
$\operatorname{sulphates}$	2113	2	0.486	0.4911	0.4961	0.1157	3.605e- 06
alcohol	2113	2	10.46	10.51	10.56	1.236	0.0004114
${f quality}$	2113	2	5.842	5.881	5.919	0.8891	0.0002127

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Tota
fixed.acidity	0.1255	33443	33581	33719	4781
volatile.acidity	0.3607	1348	1364	1380	65.15
citric.acid	0.3618	1618	1638	1657	94.52
residual.sugar	0.781	30614	31419	32224	162036
$\operatorname{chlorides}$	0.4613	220	223.4	226.8	2.858
free.sulfur.dioxide	0.4728	168924	171585	174246	1770791
total.sulfur.dioxide	0.3045	673482	680278	687074	11544737

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Tota
density	0.002939	4868	4869	4869	0.05511
pН	0.04799	15596	15621	15645	151.2
$\operatorname{sulphates}$	0.2357	2387	2405	2424	86.49
alcohol	0.1176	51282	51480	51679	9870
quality	0.1512	28661	28804	28947	5103

Table 65: Tabla estimadores (muestreo sistemático) de la muestra y totales usando el valor de n=1990 resultado del piloto para la variable: chlorides (continued below)

	n	kp	Int.Inferior	Media.muest	raInt.Superior	Desviacion.std.	Varianza
fixed.acidity	1990	2	6.818	6.856	6.895	0.8606	0.000221
volatile.acidity	1990	2	0.274	0.2785	0.283	0.1005	3.011e- 06
citric.acid	1990	2	0.329	0.3344	0.3398	0.121	4.368e- 06
residual.sugar	1990	2	6.19	6.415	6.639	5.01	0.007488
chlorides	1990	2	0.04467	0.04562	0.04656	0.02104	1.321e- 07
free.sulfur.dioxide	1990	2	34.29	35.03	35.77	16.56	0.08184
total.sulfur.dioxide	1990	2	137	138.9	140.8	42.29	0.5335
density	1990	2	0.9939	0.994	0.9942	0.002922	2.547e- 09
pH	1990	2	3.182	3.189	3.196	0.153	6.988e- 06
$\operatorname{sulphates}$	1990	2	0.4859	0.4911	0.4963	0.1157	3.997e- 06
alcohol	1990	2	10.46	10.51	10.57	1.236	0.0004561
quality	1990	2	5.841	5.881	5.921	0.8891	0.0002358

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Total
fixed.acidity	0.1255	33435	33581	33727	5301
volatile.acidity	0.3607	1347	1364	1381	72.23
citric.acid	0.3618	1617	1638	1658	104.8
residual.sugar	0.781	30571	31419	32267	179650
chlorides	0.4613	219.9	223.4	227	3.169
free.sulfur.dioxide	0.4728	168783	171585	174387	1963283
total.sulfur.dioxide	0.3045	673123	680278	687433	12799697
$\operatorname{density}$	0.002939	4868	4869	4869	0.0611
pH	0.04799	15595	15621	15647	167.6
sulphates	0.2357	2386	2405	2425	95.89
alcohol	0.1176	51271	51480	51690	10943
${f quality}$	0.1512	28654	28804	28954	5658

Table 67: Tabla estimadores (muestreo sistemático) de la muestra y totales usando el valor de n=2125 resultado del piloto para la variable: free.sulfur.dioxide (continued below)

	n	kp	Int.Inferior	Media.muest	raInt.Superior	Desviacion.std.	Varianza
fixed.acidity	2125	2	6.819	6.856	6.893	0.8606	0.0001973
volatile.acidity	2125	2	0.2741	0.2785	0.2828	0.1005	2.689e- 06
citric.acid	2125	2	0.3292	0.3344	0.3397	0.121	3.901e- 06
residual.sugar	2125	2	6.197	6.415	6.632	5.01	0.006687
$\operatorname{chlorides}$	2125	2	0.0447	0.04562	0.04653	0.02104	1.179e- 07
free.sulfur.dioxide	2125	2	34.31	35.03	35.75	16.56	0.07308
total.sulfur.dioxide	2125	2	137.1	138.9	140.7	42.29	0.4764
density	2125	2	0.9939	0.994	0.9942	0.002922	2.274e- 09
pН	2125	2	3.183	3.189	3.196	0.153	6.24 e-06
$\operatorname{sulphates}$	2125	2	0.4861	0.4911	0.4961	0.1157	3.569e- 06
alcohol	2125	2	10.46	10.51	10.56	1.236	0.0004073
quality	2125	2	5.842	5.881	5.919	0.8891	0.0002106

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Total
fixed.acidity	0.1255	33443	33581	33719	4734
volatile.acidity	0.3607	1348	1364	1380	64.5
citric.acid	0.3618	1619	1638	1657	93.58
residual.sugar	0.781	30618	31419	32220	160427
$\operatorname{chlorides}$	0.4613	220.1	223.4	226.8	2.83
free.sulfur.dioxide	0.4728	168937	171585	174233	1753204
total.sulfur.dioxide	0.3045	673516	680278	687040	11430080
$\operatorname{density}$	0.002939	4868	4869	4869	0.05456
pН	0.04799	15596	15621	15645	149.7
sulphates	0.2357	2387	2405	2424	85.63
alcohol	0.1176	51283	51480	51678	9772
quality	0.1512	28662	28804	28946	5053

Table 69: Tabla estimadores (muestreo sistemático) de la muestra y totales usando el valor de n=1856 resultado del piloto para la variable: total.sulfur.dioxide (continued below)

	n	kp	Int.Inferior	Media.muest	raInt.Superior	Desviacion.sto	l. Varianza
fixed.acidity	1856	3	6.808	6.848	6.888	0.8675	0.0002518
volatile.acidity	1856	3	0.2738	0.2784	0.283	0.1001	3.352e-
							06
citric.acid	1856	3	0.3256	0.331	0.3364	0.1168	4.568e-
							06
${f residual.sugar}$	1856	3	6.135	6.367	6.598	4.992	0.008337
chlorides	1856	3	0.04492	0.04595	0.04698	0.02213	1.638e-
							07

	n	kp	Int.Inferior	Media.muest	raInt.Superior	Desviacion.std	l. Varianza
free.sulfur.dioxide	1856	3	34.48	35.32	36.16	18.14	0.1101
total.sulfur.dioxide	1856	3	137.9	139.9	141.9	43.42	0.6309
density	1856	3	0.9939	0.994	0.9942	0.002878	2.771e-
							09
pH	1856	3	3.185	3.192	3.199	0.1551	8.052e-
							06
$\operatorname{sulphates}$	1856	3	0.4856	0.4909	0.4963	0.1146	4.395e-
							06
alcohol	1856	3	10.44	10.49	10.55	1.21	0.0004896
${f quality}$	1856	3	5.848	5.89	5.932	0.9071	0.0002754

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Total
fixed.acidity	0.1267	33387	33543	33698	6042
volatile.acidity	0.3595	1346	1364	1382	80.41
citric.acid	0.353	1600	1621	1642	109.6
residual.sugar	0.784	30289	31184	32078	2e + 05
chlorides	0.4815	221.1	225.1	229	3.93
free.sulfur.dioxide	0.5136	169746	172997	176247	2641426
total.sulfur.dioxide	0.3104	677282	685063	692843	15134461
$\operatorname{density}$	0.002895	4868	4869	4869	0.06648
pH	0.0486	15606	15634	15661	193.2
sulphates	0.2334	2384	2405	2425	105.4
alcohol	0.1153	51181	51398	51615	11745
${f quality}$	0.154	28685	28848	29010	6606

Table 71: Tabla estimadores (muestreo sistemático) de la muestra y totales usando el valor de n=15 resultado del piloto para la variable: density (continued below)

	n	kp	${\bf Int. Inferior}$	Media.muest	raInt.Superior	Desviacion.std.	Varianza
fixed.acidity	15	327	6.442	6.947	7.451	0.9768	0.06341
volatile.acidity	15	327	0.2243	0.2813	0.3384	0.1105	0.0008117
citric.acid	15	327	0.2987	0.3773	0.456	0.1523	0.001541
${f residual.sugar}$	15	327	4.659	8.11	11.56	6.683	2.969
chlorides	15	327	0.03452	0.04773	0.06095	0.02559	4.351e-
							05
${\bf free.sulfur.dioxide}$	15	327	32.47	43.23	54	20.85	28.89
total.sulfur.dioxide	15	327	133.6	169.3	204.9	69.05	316.9
$\operatorname{density}$	15	327	0.9933	0.9951	0.9968	0.003357	7.492e-
							07
pH	15	327	3.05	3.122	3.194	0.1403	0.001308
sulphates	15	327	0.4513	0.5073	0.5633	0.1085	0.0007819
alcohol	15	327	9.767	10.25	10.73	0.928	0.05724
quality	15	327	4.994	5.467	5.939	0.9155	0.0557

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Tota
fixed.acidity	0.1406	31558	34025	36492	1521269
volatile.acidity	0.3928	1099	1378	1657	19472
$\operatorname{citric.acid}$	0.4036	1464	1848	2233	36979
residual.sugar	0.8241	22845	39723	56601	71219049
$\operatorname{chlorides}$	0.536	169.2	233.8	298.4	1044
free.sulfur.dioxide	0.4823	159100	211757	264414	693184878
${\bf total. sulfur. dioxide}$	0.4079	654695	829068	1003442	7.602e + 09
${f density}$	0.003374	4865	4874	4882	17.97
pН	0.04493	14937	15292	15646	31370
sulphates	0.2138	2211	2485	2759	18757
alcohol	0.09057	47844	50188	52532	1373212
quality	0.1675	24464	26776	29088	1336311

Table 73: Tabla estimadores (muestreo sistemático) de la muestra y totales usando el valor de n=1021 resultado del piloto para la variable: pH (continued below)

	n	kp	Int.Inferior	Media.muest	raInt.Superior	Desviacion.std.	Varianza
fixed.acidity	1021	5	6.851	6.904	6.956	0.8441	0.0005524
volatile.acidity	1021	5	0.2681	0.2741	0.28	0.09493	6.987e-
							06
citric.acid	1021	5	0.3303	0.3384	0.3466	0.1304	1.319e-
							05
residual.sugar	1021	5	6.262	6.577	6.893	5.037	0.01967
chlorides	1021	5	0.04455	0.04588	0.04722	0.02134	3.529e-
							07
free.sulfur.dioxide	1021	5	35.21	36.4	37.6	19.1	0.2828
${\bf total. sulfur. dioxide}$	1021	5	137.4	140	142.6	41.9	1.361
density	1021	5	0.994	0.9941	0.9943	0.002949	6.741e-
							09
pH	1021	5	3.17	3.18	3.19	0.1571	1.913e-
							05
$\operatorname{sulphates}$	1021	5	0.4844	0.4913	0.4982	0.1102	9.412e-
							06
alcohol	1021	5	10.4	10.47	10.55	1.248	0.001208
${f quality}$	1021	5	5.828	5.884	5.939	0.8907	0.0006151

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Total
fixed.acidity	0.1223	33583	33814	34044	13253
volatile.acidity	0.3464	1317	1342	1368	167.6
citric.acid	0.3854	1622	1658	1693	316.5
residual.sugar	0.7657	30843	32217	33590	471822
chlorides	0.465	218.9	224.7	230.6	8.467
free.sulfur.dioxide	0.5247	173090	178300	183509	6785032
total. sulfur. dioxide	0.2993	674312	685740	697168	32652283
$\operatorname{density}$	0.002966	4869	4869	4870	0.1617
${f pH}$	0.04939	15532	15575	15617	458.8
sulphates	0.2243	2376	2406	2436	225.8
alcohol	0.1192	50961	51301	51642	28979

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Total
quality	0.1514	28575	28818	29061	14756

Table 75: Tabla estimadores (muestreo sistemático) de la muestra y totales usando el valor de n=2000 resultado del piloto para la variable: sulphates (continued below)

	n	kp	Int.Inferior	Media.muest	raInt.Superior	Desviacion.std.	Varianza
fixed.acidity	2000	2	6.817	6.853	6.89	0.827	0.0002023
volatile.acidity	2000	2	0.2735	0.278	0.2825	0.1012	3.027e-
							06
citric.acid	2000	2	0.3286	0.334	0.3394	0.1211	4.336e-
							06
residual.sugar	2000	2	6.139	6.368	6.598	5.134	0.007799
chlorides	2000	2	0.04492	0.04593	0.04694	0.02263	1.515e-
							07
free.sulfur.dioxide	2000	2	34.8	35.58	36.36	17.44	0.08998
${\bf total. sulfur. dioxide}$	2000	2	135.9	137.8	139.7	42.71	0.5396
density	2000	2	0.9939	0.994	0.9942	0.003059	2.769e-
							09
pН	2000	2	3.181	3.187	3.194	0.149	6.564e-
							06
sulphates	2000	2	0.4836	0.4886	0.4936	0.1125	3.744e-
							06
alcohol	2000	2	10.46	10.52	10.57	1.225	0.0004439
${f quality}$	2000	2	5.836	5.875	5.915	0.8823	0.0002303

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Tota
fixed.acidity	0.1207	33429	33568	33708	4854
volatile.acidity	0.3638	1345	1362	1379	72.62
citric.acid	0.3625	1615	1636	1656	104
residual.sugar	0.8062	30326	31192	32057	187092
chlorides	0.4927	221.1	225	228.8	3.635
free.sulfur.dioxide	0.4901	171355	174293	177231	2158632
total.sulfur.dioxide	0.3099	667907	675103	682299	12945678
$\operatorname{density}$	0.003078	4868	4869	4869	0.06642
\mathbf{pH}	0.04673	15587	15612	15637	157.5
sulphates	0.2302	2374	2393	2412	89.81
alcohol	0.1165	51311	51517	51724	10650
quality	0.1502	28627	28776	28925	5525

Table 77: Tabla estimadores (muestreo sistemático) de la muestra y totales usando el valor de n=1743 resultado del piloto para la variable: alcohol (continued below)

	n	kp	Int.Inferior	Media.muest	traInt.Superior	Desviacion.std.	Varianza
fixed.acidity	1743	3	6.822	6.86	6.899	0.7984	0.0002356

	n	kp	Int.Inferior	Media.muest	raInt.Superior	Desviacion.std.	Varianza
volatile.acidity	1743	3	0.2733	0.2782	0.2831	0.1019	3.837e-
							06
citric.acid	1743	3	0.3309	0.3368	0.3428	0.1246	5.736e-
							06
residual.sugar	1743	3	6.276	6.524	6.773	5.187	0.009944
${f chlorides}$	1743	3	0.04491	0.04601	0.04711	0.02301	1.957e-
							07
free.sulfur.dioxide	1743	3	34.55	35.32	36.1	16.17	0.09657
total.sulfur.dioxide	1743	3	135.8	137.9	139.9	42.39	0.6642
density	1743	3	0.9939	0.9941	0.9942	0.003128	3.617e-
							09
pH	1743	3	3.178	3.185	3.192	0.1466	7.946e-
							06
$\operatorname{sulphates}$	1743	3	0.4859	0.4915	0.4971	0.1173	5.089e-
							06
alcohol	1743	3	10.46	10.52	10.58	1.235	0.0005635
quality	1743	3	5.842	5.884	5.926	0.8737	0.0002821

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Tota
fixed.acidity	0.1164	33452	33602	33753	5652
volatile.acidity	0.3663	1343	1363	1382	92.05
citric.acid	0.3699	1626	1650	1673	137.6
residual.sugar	0.795	30980	31957	32934	238555
chlorides	0.5002	221	225.4	229.7	4.696
free.sulfur.dioxide	0.4577	169963	173008	176052	2316784
${\bf total. sulfur. dioxide}$	0.3075	667305	675288	683272	15934562
${f density}$	0.003147	4868	4869	4870	0.08676
\mathbf{pH}	0.04605	15570	15598	15626	190.6
sulphates	0.2388	2385	2407	2429	122.1
alcohol	0.1174	51296	51529	51761	13517
${f quality}$	0.1485	28654	28818	28983	6768

Table 79: Tabla estimadores (muestreo sistemático) de la muestra y totales usando el valor de n=1560 resultado del piloto para la variable: quality (continued below)

	n	kp	Int.Inferior	Media.muest	raInt.Superior	Desviacion.std.	Varianza
fixed.acidity	1560	3	6.82	6.86	6.901	0.7984	0.0002785
volatile.acidity	1560	3	0.273	0.2782	0.2834	0.1019	4.536e- 06
citric.acid	1560	3	0.3305	0.3368	0.3432	0.1246	6.781e- 06
residual.sugar	1560	3	6.262	6.524	6.787	5.187	0.01175
$\operatorname{chlorides}$	1560	3	0.04485	0.04601	0.04718	0.02301	2.314e- 07
free.sulfur.dioxide	1560	3	34.5	35.32	36.14	16.17	0.1142
total.sulfur.dioxide	1560	3	135.7	137.9	140	42.39	0.7852
density	1560	3	0.9939	0.9941	0.9942	0.003128	4.275e-

	n	kp	Int.Inferior	Media.muest	raInt.Superior	Desviacion.st	d. Varianza
pН	1560	3	3.177	3.185	3.192	0.1466	9.393e- 06
sulphates	1560	3	0.4856	0.4915	0.4974	0.1173	6.016e- 06
alcohol quality	$1560 \\ 1560$	3	$10.46 \\ 5.839$	$10.52 \\ 5.884$	$10.58 \\ 5.928$	$1.235 \\ 0.8737$	0.0006661 0.0003335

	Coeficiente.var.	Int.Inferior.total	Media.Total	Int.Superior.Total	Varianza.Tota
fixed.acidity	0.1164	33439	33602	33766	6681
volatile.acidity	0.3663	1342	1363	1383	108.8
citric.acid	0.3699	1624	1650	1675	162.7
residual.sugar	0.795	30895	31957	33019	281999
$\operatorname{chlorides}$	0.5002	220.7	225.4	230.1	5.551
free.sulfur.dioxide	0.4577	169698	173008	176317	2738706
total.sulfur.dioxide	0.3075	666608	675288	683968	18836486
$\operatorname{density}$	0.003147	4868	4869	4870	0.1026
pН	0.04605	15568	15598	15628	225.4
sulphates	0.2388	2383	2407	2431	144.3
alcohol	0.1174	51276	51529	51782	15979
quality	0.1485	28639	28818	28997	8001

Conlusiones y comentarios del muestreo sistemático

En la segunda parte de esta actividad, se llevó acabo un análisis de muestreo sistemático; se obtuvo inicialmente el tamaño de muestre de la prueba piloto como se indicó anteriomente (tabla 41.), además se obtuvo un valor de Kp=20 para la piloto. Seguidamente se realizó una análisis de estimadores (tabla 42.) y a través de este procedimiento se obtuvo el "error estimado" para cada una de las variables del piloto.

Se construyó una tabla de "margenes de error" para los errores estimados" (tabla 43.), debido a las unidades y los números manejados para cada una de las variables, las secuencias de errores se estableció de manera independiente para cada variable.

Con esta tabla, se siguió a un análisis del estimado del tamaño muestral por método basado en población finita e infinita. Para cada una de las variables se obtuvo una tabla de errores y los posibles tamaños de muestra para población infinita (P_infinite_s) y población finita (P_finite_s), Las gráficas obtenidas van desde la 13 a la 24 y las tablas, desde la 44 a la 55.

Con esta información se decidió tomar un valor de tamaño muestra posible con la aceptación de un grado de error para cada variable. La **tabla 56** muestra estos resultados. Como se puede observa existen variables que presentan valores muy bajos de tamaño muestral como **density** (n = 15), esto puede ser dado a la poca varianza de las observaciones obtenidas por este muestreo para el pilot, como se observa en la tabla 42. Para las otras variables se decidió tomar una muestra casi intermedia de la población total; claramente esta selección que parece arbitraría, se debe definir con otras variables que no dependen de este análisis (económicas, recursos, etc.). El criterio de selección acá fue la minimización máxima del error aceptado con la inclusión de mayor cantidad de personas.

Finalmente, se realizó un remuestreo a través de un método aleatorio simple en la población original, utilizan los tamaños de muestra (n) obtenidos en el análisis de la prueba piloto. A estos nuevos muestreos que acá llamaré muestreos finales, se le hallaron los estimadores finales de cada variable, a saber: Int.Inferior, Media.muestra, Int.Superior, Desviacion.std., Varianza, Coeficiente.var., Int.Inferior.total,

Media. Total, Int. Superior. Total, Varianza. Total. Este procedimiento se realizó para el tamaño de muestra (n) obtenido de cada una de las variables. Estos resultados reposan en las **tablas 57 a la 79**.