UNCLASSIFIED

AD NUMBER AD093337 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; APR 1953. Other requests shall be referred to Air Force Wright Air Development Center, Wright-Patterson AFB, Oh 45433. **AUTHORITY** afwal ltr, 17 apr 1980

Armed Services Technical Information Hgency

Reproduced by DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, OHIO

This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Document Service Center, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE. USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

STUDIES ON THERMAL STRESSES

FOR

AIRCRAFT STRUCTURES EXPOSED TO TRANSIENT EXTERNAL HEATING

VOLUME I

EVALUATION OF THE THERMAL RESPONSE, FORCE AND MOMENT IN A PLATE

J. E. Mahlmeister

T. Ishimoto

A. Ambrosio

University of California Department of Engineering Los Angeles, California

April 1955

WRIGHT AIR DEVELOPMENT CENTER

STUDIES ON THERMAL STRESSES

FOR

AIRCRAFT STRUCTURES EXPOSED TO TRANSIENT EXTERNAL HEATING

VOLUME I

EVALUATION OF THE THERMAL RESPONSE, FORCE AND MOMENT IN A PLATE

J. E. Mahlmeister
T. Ishimoto
A. Ambrosio

University of California Department of Engineering Los Angeles, California

April 1955

Aircraft Laboratory Contract No. AF 33(616)-293 Project No. 1350

Wright Air Development Center Air Research and Development Command United States Air Force Wright-Patterson Air Force Base, Ohio

FOREWORD

This report was prepared by J. E. Mahlmeister, T. Ishimoto, and A. Ambrosio of the Department of Engineering, University of California, Los Angeles, under Contract No. AF 33(616)-293. The contract was initiated under Project No. 1350, "Effects of Atomic Weapons on Aircraft Systems," and was administered by the Aircraft Laboratory, Directorate of Laboratories, Wright Air Development Center, with Lt. Joseph W. Saylor, Jr. acting as Project Engineer.

Alphonso Ambrosio directed and was technically responsible for the research described in this report and Walter C. Hurty acted as the representative of the Chairman of the Department, L.M.K. Boelter.

The authors wish to acknowledge the assistance of J. Schwartz, J. Snow, J. Barnes, and I. Grossman in the preparation of the graphs for this report.

ABSTRACT

This report is one of a series of analytical studies of air-craft structures exposed to transient heating. The present study reports on the response characteristics of the front surface temperature and the front-back temperature difference across a finite plate as well as the "thermal force" and "thermal moment" which exists as a result of the heating. The results are given in graphical form for use in future studies.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

DANIEL D. MCKEE

Colonel, USAF

Chief, Aircraft Laboratory Directorate of Laboratories

CONTENTS

INT	RODUÇTI	ON	•	•	•	•	•	•	•	•	•	•	•	•	•	,	•	•	•	•	٠	. •	•	•	•	•	•		•	1
HEAT	TRANS	SFEF	3 5	SYS	TE	M	•		•	•		•	•	•	•		•	•	•			•	•	•	•	•	•			2
THE	THERMA	AL F	OF	CE	A	NI)	10	ME	N	1	•	•	•	•	•			•	•	•		•	,	•	•	•		•	5
DIS	CUSSION	OF	•	RES	UL	TS.	;	•	•	•	•	•	,	•	•	•	•	•	,	•	•	•	•	•		,	•	•	•	7
	CLUSION																													
REF	ERENCES	3.	•	•	•	•	•	•	•	,	•	•	•	•	•	,	•	•	•	•	•	•	•		•	•		,	•	11
APP	ENDIX .		•					•			•	•				•	•	•	•					,					•	12

LIST OF FIGURES

Figure	Title	Page
1	Coordinate System for Uniformly Irradiated Finite Plate	2
2	Transient Heating Function	2
3	Schematic Temperature-Time Response for a Finite Plate	4
4	Coordinate System for Heated Plate Equations	5
5	Dimensionless Thermal Moment	6
6	Dimensionless Thermal Force	6
A-1 to A-2	Front Surface Temperatures	13, 14
A-3 to A-6	Front-Back Temperature Differences	15 - 18
A-7 to A-8	Thermal Forces	. 19, 20
A-9 to A-1	2 Thermal Moments	21 - 24

NOMENCLATURE

_		Thermal diffusivity $(k/\rho C_p)$	ft ² /hr
a b	-	Plate thickness	ft
Bi		Biot modulus	dimensionless
C_{p}	*	Heat capacity	Btu/lb •F
E	*	Modulus of elasticity	lb/in ²
h_{C}	*	Unit thermal conductance	Btu/hr ft ² •F
, I	*	Integral $\left(\int_{0}^{\infty} \frac{q}{q_{n}} dt^{+}\right)$	
k	¥	Thermal conductivity	Btu/hr ft2 •F/ft
¥	=	Thermal moment	lb in/in
N	=	Thermal force	lb/in
q	=	Rate of heat flow per unit area into plate	Btu/hr ft ²
Q	=	Total heat absorbed by plate	Btu/ft^2
T	=	Temperature	•F
t	=	Time	sec or hr
Z	~	Cartesian coordinate (Z'refers to distance from back surface)	fţ
α	=	Coefficient of linear thermal expansion	•F-1
β	=	Heat transfer parameter $(b/\sqrt{a\eta})$	dimensionless
Δ	=	Difference	
η	=	Reference time (time for the input function to maximize)	sec or hr
ν	=	Poisson's ratio	
ρ	=	Weight density	lb/ft ³

Subscripts

Superscript

f	*	Thermal	+	-	dimensionless
	=	maximum			

ambient

reference

ş.,

INTRODUCTION

Previous studies 1-5* concerning the effects of heating aircraft structures have indicated that excessive temperatures and stresses can occur. The combination of temperatures and stresses can greatly increase aerodynamic drag due to large deflections and cause permanent deformations in the skins of wings and control surfaces.

Studies^{3,5} of the heated plate equations originally developed by A. Nadai⁴ have shown the necessity of evaluating the so-called "Thermal Force" and "Thermal Moment" resulting from restrained thermal expansions and temperature distributions, respectively. These quantities are the essential factors which combine the heat transfer and thermal stress investigations. The heat transfer investigation² resulted in an analytical determination of the thermal response of a finite plate exposed to transient heating.

A numerical evaluation of the thermal force and moment is presented in this study using the results of the uniformly irradiated finite plate of reference 2. In addition, the front surface temperature rise and the front to back surface temperature difference are reported in terms of dimensionless parameters. It is visualized that these results will be utilized in future thermal stress evaluation of aircraft structures.

^{*}Numbers in superscripts indicate references in the bibliography at the end of the report.

HEAT TRANSFER SYSTEM

The idealized heat transfer system of reference 2 is shown in Figure 1. It consists of a uniformly irradiated plate with a constant thermal conductance (h_c) on the lower side and an insulated boundary on the other. The transient heating function q(t) is shown in Figure 2. In order to present the results in dimensionless form, the following definitions were employed:

1,

FIGURE I COORDINATE SYSTEM FOR UNIFORMLY IRRADIATED FINITE PLATE

FIGURE 2 TRANSIENT HEATING FUNCTION

$$Z' = \frac{z'}{h}, \qquad (1)$$

$$t^+ = \frac{t}{n} , \qquad (2)$$

$$T^{+} = \frac{T - T_{\infty}}{\Delta T_{ref}} , \qquad (3)$$

$$\Delta T_{ref} = \frac{Q}{\rho C_b b} , \qquad (4)$$

$$I = \int_{0}^{\infty} \frac{q}{q_{m}} dt^{+}, \qquad (5)$$

$$Q = \int_{\eta dt}^{\infty} dt, \qquad (6)$$

$$Bi = \tau \beta^2 = \frac{h_c b}{k} , \qquad (7)$$

$$\tau = \frac{h_o \eta}{\rho C_{\Delta} b} , \qquad (8)$$

and

$$\beta = \frac{b}{\sqrt{a \pi}} , \qquad (9)$$

In terms of the dimensionless quantities defined above, the heat conduction equation is written as:

$$\frac{\partial^2 T^{\dagger}}{\partial Z^{\prime 2}} = \beta^2 \frac{\partial T^{\dagger}}{\partial t^{\dagger}} \tag{10}$$

with the following initial and boundary conditions:

when:
$$t^{+} = 0$$
, $T^{+} = 0$;
at: $Z' = 0$, $\frac{\partial T^{+}}{\partial Z'} = 0$; (11)
and at: $Z' = 1$, $\frac{1}{\beta^{2}} \frac{\partial T^{+}}{\partial Z'} = \frac{q^{+}(t^{+})}{I} - \tau T^{+}$

The solution to equations (10) and (11) is:2

$$T^{\bullet}(Z',t^{+}) = \int_{0}^{t^{+}} \frac{q^{+}(\lambda)}{I} \sum_{N=1}^{\infty} 2\left[\frac{\cos V_{N}Z'}{\cos V_{N}} - \frac{\exp\left[-\frac{V_{N}^{2}}{r_{N}^{2}}(t^{+}-\lambda)\right]}{\left[1 + \frac{Bi}{V_{N}^{2}}(1 + Bi)\right]}\right] d\lambda \qquad (12)$$

where

This solution was evaluated for the front surface temperature rise and the temperature difference across the plate utilizing the heating function shown schematically in Figure 2. The front surface temperature is expressed as:

$$T^{+}(1,t^{+}) = \int_{0}^{t^{+}} \frac{q^{+}(\lambda)}{I} \sum_{\beta=1}^{\infty} 2 \left[\frac{exp\left[-\frac{y_{\beta}^{2}}{\beta^{2}}(t^{+}-\lambda)\right]}{1+\frac{Bi}{y^{2}}(1+Bi)} \right] d\lambda$$
 (13)

The temperature difference across the plate (front surface temperature minus back surface temperature) is:

$$T^{+}(1,t^{+}) - T^{+}(0,t^{+}) = \int_{0}^{t^{+}} \frac{q^{+}(\lambda)}{I} \sum_{y=1}^{\infty} 2\left[\frac{1 - \frac{1}{\cos y_{y}}}{1 + \frac{Bi}{y_{y}^{2}}(1 + Bi)}\right] exp \left[-\frac{y_{y}^{2}}{\beta^{2}}(t^{+} - \lambda)\right] d\lambda \quad (14)$$

FIGURE 3 SCHEMATIC TEMPERATURE -TIME RESPONSE FOR A FINITE PLATE

Each temperature response evaluation was made for given values of the heat transfer parameters, Bi and β , as shown schematically in Figure 3. These curves are presented in the appendix for a range of Bi and β .

THE THERMAL FORCE AND MOMENT

The Thermal Force and Moment were developed as logical connecting parameters between the isotropic heated plate equations and the heat conduction solutions. These have been defined as:^{3,5}

$$N_{T} = \frac{1}{1-\nu} \int E \alpha \left(T - T_{\infty}\right) dZ \qquad (15)$$

and

$$M_{\mathbf{f}} = \frac{1}{1-\nu} \int E \alpha (T-T_{\infty}) Z dZ \qquad (16)$$

FIGURE 4 COORDINATE SYSTEM FOR HEATED PLATE EQUATIONS

When the mechanical properties of the material can be considered constant across the plate thickness, the neutral axis occurs at the plate center. This coordinate system is shown in Figure 4.

In terms of this coordinate system with the origin at the plate center, equations (15) and (16) are normalized to:

$$N_{T}^{+} = \frac{(1 - \nu) N_{T}}{Ea \Delta T_{ref} b} = \int_{-\infty}^{+\infty} T^{+} dZ$$
 (17)

and

$$M_{\tilde{g}}^{+} = \frac{(1-\nu)}{Ea\Delta T_{ref}} \frac{M_{\tilde{g}}}{b^{2}} = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} T^{+}Z \, dZ \tag{18}$$

The dimensionless thermal moment, M_T^+ , and thermal force, N_T^+ , are functions of the heat transfer parameters Bi and β . Typical plots of these functions are shown schematically in Figures 5 and 6. These curves are presented in the appendix for the range of heat transfer parameters considered.

FIGURE 5 DIMENSIONLESS THERMAL MOMENT

FIGURE 6 DIMENSIONLESS THERMAL FORCE

DISCUSSION OF RESULTS

Comparison of thermal force and moment curves with temperature curves show that N_T^+ and M_T^+ are similar to T^+ and ΔT^+ , respectively. The maximum value of N_T^+ = 1.0 corresponds to the case of no convective cooling. This is the limiting case where all the input energy remains in the structure. The peak values of N_T^+ occurs approximately in the range of t^+ = 1.0 - 6.0 and for the case of no cooling occurs at the end of the input. The dimensionless thermal moment was found to peak at short times (t^+ = 1.0 - 2.0) with a maximum value of approximately 0.27 for the range of heat transfer parameters (B_I , β) considered. The sequence of events, for a plate exposed to transient heating is as follows: (1) The plate is subjected to a maximum moment with a relatively small thermal force; (2) then a large thermal force occurs with a small moment; and (3) the thermal force and moments then decay as elapsed time increases.

In order to illustrate the utility of these curves for the determination of the response characteristics an illustrative problem will be given. The following quantities must be assumed or determined from other analyses:

Properties

$$\eta$$
 = 3.00 sec = 8.33 x 10⁻⁴ hr ρ = 173 lb/ft³
 Q = 44 Btu/ft²
 h_c = 42 Btu/hr ft² °F
 k = 66.7 Btu/hr ft °F
 k = 66.7 Btu/hr ft °F
 k = 1.67 ft²/hr

 k = 130 psi/°F
 k = 0.33

From equation (9)

$$\beta = \frac{b}{\sqrt{a\eta}} = \frac{0.0156}{\sqrt{1.67 \times 8.33 \times 10^{-4}}} = 0.42 \approx 0.4$$

From equation (7)

$$Bi = \tau \beta^2 = \frac{h_c b}{k} = \frac{42 \times 0.0156}{66.7} = 0.01;$$

and from equation (2)

$$t = \eta t^{+} = 3.00 t^{+}$$

Equation (4) gives the reference temperature

The actual thermal force and moment can be calculated from equations (17) and (18) as:

$$N_{\mathbf{f}} = \frac{Ea \Delta T_{\mathbf{ref}} b}{(1-\nu)} N_{\mathbf{f}}^{+} = \frac{Ea Q}{(1-\nu)\rho C_{p}} N_{\mathbf{f}}^{+}$$

$$N_{\bar{x}} = \frac{130 \times 70.8 \times .187}{(1-0.33)} N_{\bar{x}}^{+} = \frac{2460 N_{\bar{x}}^{+}}{}$$

and

$$\mathbf{M}_{\mathbf{f}} = \frac{E \alpha \Delta T_{ref} b^2}{1 - \nu} \mathbf{M}_{\mathbf{f}}^+ = \frac{E \alpha Q b}{(1 - \nu) \rho C_p} \mathbf{M}_{\mathbf{f}}^+$$

$$M_{g} = \frac{130 \times 70.8 (3/16)^{3}}{(1-0.33)} M_{g}^{+} = \frac{460 M_{g}^{+}}{1}$$

Reference to Figures A-1, A-4, A-7, and A-10 in the appendix indicates that maximum values of the dimensionless quantities and their

associated dimensionless times are as follows:

Quantity	Maximum Dimen- sionless Value	Dimensionless Time(t ⁺)	Value
Front Surface Temperature (Figure A-1)	0.77	5.5	'54'.'5 °F
Front-Back Temper- ature Difference (Figure A-4)	0.035	1.0	2.5 °F
Thermal Force (Figure A-7)	0.75	5.0 - 6.0	1844 lb/in
Thermal Moment (Figure A-10)	0.0031	1.0	1.43 lb in/in

Inspection of the above table shows that for the particular example, the thermal force is the predominating factor, the moment being quite small.

CONCLUSIONS

In summary, the results indicate the following:

- 1. The uniformly irradiated plate is subjected to a combination of thermal moment and force at each instant due to the transient temperature distribution.
- 2. The maximum thermal moment precedes the maximum thermal force with both quantities decaying as time progresses.
- 3. The maximum possible values of N_T^+ and N_T^+ are 1.0 and 0.27 respectively for the range of variables under consideration.

REFERENCES

- 1. Allied Research, Time Dependent Thermo-Elastic Studies of Thin Skinned Construction Used in Modern Aircraft, Document No. ARA M-5174, June, 1954.
- 2. Ambrosio, A. and Ishimoto, T., "Analytical Studies of Aircraft Structures Exposed to Transient External Heating," Volume II, Thermal Response of a Finite Plate and the "Thin" Plate Criterion, WADC TR 54-579, Department of Engineering, University of California, Los Angeles, November, 1954.
- 3. Tsien, H. S., "Similarity Laws for Stressing Heated Wings," Journal of Aero. Sci. 20, 1-11 (1953).
- 4. Nadai, A., Elastiche Platten, (Elastic Plates), Julius Springer Verlag, Berlin, Germany, 326, 1925.
- 5. Zizicas, G. A., Transient Thermal Stresses in Thin Isotropic Elastic Plates, Department of Engineering Report No. 52-7, University of California, Loa Angeles, April, 1952.

APPENDIX

The appendix contains a series of graphs for the front surface temperature, T_F^+ , the front-back temperature difference, ΔT^+ , thermal force, N_{F}^+ , and thermal moment, M_F^+ , as a function of time t^+ . The range of parameters for which the numerical results are applicable are as follows:

$$Bi = 0.001 - 1.0$$

 $\beta = 0.01 - 20$

The Index for the Specific Graphs

																								Figure
Front	Surfa	ce	Tempera	t	ur	e																		
	Bi	*	0.001																					A-1
	Bi	=	0.01																					A-1
	Bi	=	0.1										٠											A-2
	Bi	=																						A-2
Front-	Back	Tes	peratu	re	D:	if:	fe	rei	nc	е														
	Bi	-	0.001												•									A-3
	Bi	=	0.01									•												A-4
	Bi	=	0.1																					A-5
	Bi	=	1.0																					A-6
Therma	l For	ce																						
	Bi	-	0.001																					A-7
	Bi	=	0.01	•																				A-7
	Bi	*																						A-8
	Bi	=	1.0									•												A-8
Therma	ıl Moi	en i	t																					
	Bi	-	0.001							٠	e :	٠	٠	٠										A-9
	Bi	*																						A-10
	Bi											•												A-11
	Bi.		i.c													_		_	-	-	-	-	-	A-12

WADC-TR-55-192 Vol I

WADC-TR-55-192 Vol I

WADC-TR-55-192 Vol I

WADC-TR-55-192 Vol I

Ö

+7∆ 0

9.0

Bi = 0.1

WADC-TR-55-192 Vol I

0.5

(⁸0!X) +T∆ o o 4 ü

Bi = 0.1

Α.

0.8

+14

WADC-TR-55-192 Vol I

<u>0</u>.0 0.08

WADC-TR-55-192 Vol I

8

8

 $\mathbf{+}^{\mathbf{L}}\mathbf{N}$

9.0

800 0.07 90.0 *_TN 0. 8 0.0 8

WADC-TR-55-192 Vol I

0.3

0.2

0.20 F

0.15 0.15 0.00

+_TN

WADC-TR-55-192 Vol I

WADC-TR-55-192 Vol I

(^EOIX)+_TM

0.8

0.6

WADC-TR-55-192 Vol I

الله (x انها)

DISTRIBUTION LIST

SECTION I

Io. Copies	Address	No. Copies	Address
Two -	Commander Wright Air Development Center Wright-Patterson AFB, Ohio Attn: WCLS	Three	Commander Wright Air Development Center Wright-Patterson AFB, Ohio Attn: WCOSI-4
Two	Commander Wright Air Development Center Wright-Patterson AFB, Ohio Attn: Maj. Andrew Boreske, WCOES	Five	Director Armed Services Technical Information Agency Document Service Center Knott Building Dayton 2, Ohio
	SECTION	11	
Two	Chief Bureau of Aeronautics Department of the Navy Attn: Mr. Robert F. Speaker	One	Chief of Naval Operations (OP-36) Navy Department Washington 25, D. C.
One	DE-11 Washington 25, D.C. Chief of Naval Research	One	Commander Operational Development Force U.S. Naval Base Norfolk 11, Va.
Q.O.	Code 219, Room 1807 Bldg. T-3 Attn: RD Control Officer Washington 25, D. C.	()ne	Commanding Officer Naval Air Test Center Patuxent River, Md.
One	Director U.S. Naval Research Laboratory Washington 25, D.C.	One	Commanding Officer Air Development Squadron Five VX5 U.S. Naval Air Station Moffett Field, California
One	Dr. Edward O. Hulbert U.S. Naval Research Laboratory Washington 25, D.C.	One	Commanding Officer Air Development Squadron Three VX 3 U.S. Naval Air Station Moffett Field, California
One	Chief Bureau of Ordnance Department of the Navy Washington 25, D.C.	One	Commanding Officer Naval Air Special Weapons Facility Kirtland Air Force Base, New Mexico
One	Commanding Officer U.S. Naval Radiological Defense Laboratory Attn: Dr. Andrew Guthrie San Francisco 24, California	()ne	Office of Operational Research Johns Hopkins University Fort Leslie J. McNair Attn: Brig. Gen. L. O. Flory Washington 25, D.C.
One	Director The Material Laboratory New York Naval Shipyard Attn: J. M. McGreevy Brooklyn 1, New York	One	Commending General Aberdeen Proving Ground Attn: Mr. H. K. Weiss Maryland
One .	Communder U.S. Naval Air Development Center Johnsville, Pa.	One	Chief of Research and Development Department of the Army Washington 25, D. C.
One	Chief of Naval Operations (O P-55) Navy Department Washington 25, D.C.	One	Deputy Chief of Staff Operations, Hq. USAF Attn: Assistant for Atomic Energy Washington 25, D. C.

No. Copies	Address	No. Copies	Address
One	Deputy Chief of Staff Operations Hq U S A F Attn: Dr. J.C. Mouzon, Rm 5D-870 Washington 25, D.C.	Two	Deputy Chief of Staff Development Hq. U S A F Attn: Development Planning Washington 25, D.C.
One	Director of Operations Hq. U S A F Washington 25, D.C.	One	Deputy Chief of Staff Development Hq. U S A F Attn: Director of Research & Development Strategic Air Group
One	Director of Operations Hq. U S A F Attn: Operations Analysis Washington 25, D.C.	One	Washington 25, D.C. Deputy Chief of Staff Development Hq. U S A F
One	Commander Strategic Air Command		Attn: Director of Research & Development Aeronautics Division Washington 25, D.C.
One	Attn: Chief Operations Analysis Offutt Air Force Base, Nebraska Commander	One	Director of Intelligence Ng. USAF Washington 25, D.C.
	Tactical Air Command Attn: Chief, Operations Analysis Section Langley Air Force Base, Virginia	One	Director of Intelligence Hq. U S A F Attn: Physical Vulnerability Division Washington 25, D.C.
One	Commander Air Defense Command Attn: A D M A R - 2 Ent Air Force Base, Colorado	Three	Commander Air Force Special Weapons Center Attn: A F Atomic Energy Library Kirtland Air Force Base, New Mexico
Three	Commander Air Research and Development Command Attn: R D T D A P. O. Box 1395 Baltimore 3, Md.	One	Executive Secretary Weapons Systems Evaluation Group Office of the Secretary of Defense The Pentagon
.One	Commander Air Research and Development Command Attn: R D G T Col. D'Ettore P.O. Box 1395 Baltimore 3, Md.	One	Washington 25, D.C. Director of Military Application U. S. Atomic Energy Commission 1901 Constitution Avenue, N.W. Washington 25, D.C.
One	Commander Air University Library Maxwell Air Force Base, Ala.	One	Director Division of Research U.S. Atomic Energy Commission Washington 25, D. C.
One	Deputy Chief of Staff Development Hq. U S A F Attn: Lt. General D. Putt Washington 25, D. C.	One	Chief Armed Forces Special Weapons Project Attn: S W P T I - 2 Washington 25, D. C.
One	Deputy Chief of Staff Development Hq. U S A F Attn: Major Beavers Washington 25, D. C.	Four	Headquarters Field Command Armed Forces Special Weapons Project Technical Training Group Library Attn: Miss E. Pauline Dunlavy, Librarian Sandia Base, New Mexico
One	Commander Air Force Cambridge Research Center Attn: Robert Chapman Geophysics Research Directorate 230 Albany Street Cambridge 39, Mass.	One '	Army Field Forces Department of the Army Directorate of Special Weapons Development Fort Bliss, Texas
One	Chief Bureau of Ordnance Department of the Navy Attn: K E - 9 Washington 25, D.C.	One	Assistant for Operation Analysis D C S / O Hq. U S A F Attn: John Intlekofer A F O O A Washington 25, D.C.

SECTION III

Io. Copies	Address	No. Copies	Address
Two	Dr. Alvin C. Graves J-1 Division Los Alamos Scientific Laboratory P.O. Box 1663 Los Alamos, New Mexico	One	Dr. Harold Agnew Director's Office Los Alamos Scientific Laboratory P. O. Box 1663 Los Alamos, New Mexico
One	Director N A C A Attn: Richard Rhode 1512 H Street, N.W. Washington 25, D.C.		
	SECT	ION IV	,
Forty	University of California Department of Engineering Engineering Research Attn: Prof. Walter C. Hurty Los Angeles 24, California	One	Consolidated Vultee Aircraft Corporation Attn: Chief Engineer San Diego Division San Diego 12, California
One .	Massachusetts Institute of Technology Department of Aeronautical Engineering Aeroelastic and Structures Research Laboratory	One	Douglas Aircraft Company, Inc. Attn: Charles Strang 300 Ocean Park Blvd. Santa Monica, California
One .	Attn: Mr. J.C. Loria Cambridge 39, Mass. Allied Research Associates, Inc.	One	Douglas Aircraft Company, Inc. Attn: J. C. Buckwalter Chief Engineer 3855 Lakewood Blvd.
••••	Attn: Mr. Lawrence Levy, President 43 Leon Street Boston 15, Mass.	One	Long Beach, California Grumman Aircraft Engineering Company
One	Massachusetts Institute of Technology Department of Mechanical Engineering Attn: Prof. H.C. Hottel		Attn: Chief Engineer Bethpage Long Island, New York
Two	Cambridge 39, Mass. Rand Corporation (Thru: W C O S I) Attn: Dr. E. H. Plesset 1700 Main Street	One	Lockheed Aircraft Corporation Factory "A" Attn: Jerome C. McBrearty P.O. Box 71 Burbank, California
One	Santa Monica, California Vitro Corporation of America Attn: Dr. C. T. Molloy P. O. Box 146	One	Glenn L. Martin Company Attn: Chief Engineer Baltimore 3, Md.
One	Verona, New Jersey Bell Aircraft Corporation Attn: Chief Engineer	One	McDonnell Aircraft Corporation Attn: Chief Engineer P.O. Box 516 Municipal Airport
Two	Niagara Falls, New York Boeing Airplane Company Attn: E. Wells	One	St. Louis, Missouri North American Aviation, Inc. Attn: R. L. Schleicher
	Chief Engineer 200 W. Michigan Avenue Seattle 14, Washington	One	Municipal Airport Los Angeles, California Northrop Aircraft, Inc.
One	Chance Vought Aircraft, Inc. Attn: Chief Engineer Dallas, Texas	Ole	Attn: Miss M. J. Sommer Librarian for Mr. Mangurin Chief Engineer Northrop Field
One	Consolidated Vultee Aircraft Corp. Attn: R. H. Widmer, Chief Engineer Fort Worth Division Fort Worth, Texas	One	Hawthorne, California Republic Aviation Corporation Attn: Chief Engineer, Farmingdale

No. Copies	1ddress	No. Copies	A ddress
One	Cook Research Laboratories Division of Cook Electric Company 8100 Monticello Avenue Skokie, Ill.	One	Boeing Airplane Co. Wichita Division Attn: Messrs. B. Hodges and K. K. Holtby Wichita, Kansas
One	Johns Hopkins University Operations Research Office 6410 Connecticut Avenue Chevy Chase, Md.	One	California Institute of Technology Guggenheim Aeronautical Laboratory Attn: Prof. E. E. Sechler Pasadena, California
One	University of Dayton Division of Research Attn: Dr. K.C. Schraut Dayton 3, Ohio	One	Columbia University Department of Civil Engineering Attn: Dr. Bruno A. Boley New York 27, New York
One	Assessment Group c/o Applied Physics Laboratory Johns Hopkins University Attn: Technical Reports Office Silver Springs, Md.	One	New York University College of Engineering Department of Mechanical Engineering Attn: Dr. Frederick Landis University Heights New York 53, New York