Computação Gráfica Representação e Descrição

Profa. Fátima Nunes

Reconhecimento de padrões

- Após a segmentação > dar significado aos objetos extraídos da cena.
- Interesse: representar e descrever os resultados dos pixels segmentados de forma adequada para processamento posterior.
- Duas opções:
 - representação das características externas (bordas)
 - representação das características internas (dentro das bordas)

Reconhecimento de padrões

- Características de forma: geralmente representação externa.
- Propriedades de refletividade (cor e textura): representação interna.
- Em ambos os casos: importante que as características selecionadas sejam insensíveis a variações de tamanho, translação e rotação.

Esquemas de representação

- Resultados da segmentação: pixels de borda ou pixels contidos em uma região.
- Objetivo dos esquemas de representação: compactar dados em representações mais úteis no cálculo de descritores.

Esquemas de representação

- Chain Codes

- Usados para representar uma borda como uma sequência de segmentos de reta de comprimento e direção estabelecidos.
- Representação baseada na conectividade-4 ou conectividade-8.
- A direção de cada segmento é representada por um número.

- Esquemas de representação
 - Chain Codes

4-chain code

8-chain code

Esquemas de representação

- Chain Codes
 - É possível gerar o *chain code* simplesmente seguindo a borda da imagem segmentada.
 - Problemas: código muito longo e ruídos.
 - O que se faz: reamostragem com uma grade maior.

- Chain Codes
 - Exemplo:

Algoritmo para gerar8-Chain Code

Esquemas de representação

- Aproximação poligonal
 - Representação de uma borda por meio de um polígono.
 - Curva fechada: aproximação exata quando o número de segmentos no polígono é igual ao número de pontos na borda.
 - Objetivo: capturar a essência da forma da borda com o mínimo possível de segmentos poligonais.

Esquemas de representação

- Aproximação poligonal
 - Método de Sklansky, Chazin e Hansen (1972)(*)
 - Cercar a borda por um conjunto de células concatenadas.
 - Diminuir a borda para encaixar nos vértices das células.

(*) Sklansky, K., Chazin, R.L., Hansen, B.J. Minimum-perimeter polygons of digitized silhouettes. *IEEE Trans. Comput. v. C-21 (3), p. 260-268, 1972.*

- Aproximação poligonal
 - Exemplo:

- Esquemas de representação
 - Aproximação poligonal
 - Método de Splitting
 - Inscrever um polígono convexo na borda do objeto.
 - Sucessivamente subdividir um segmento em duas partes até que um critério seja satisfeito (exemplo: distância máxima de um segmento de borda a um determinado ponto).
 - Juntar os vértices.
 - Sugestão de início: pontos mais distantes entre si.

início - segmento entre dois pontos mais distantes

> pontos (c) e (d) - os mais distantes perpendicularmente entre a borda e o segmento *ab*

polígono final que representa a borda.

resultado após união dos vértices threshold = 0.25 vezes o comprimento do segmento *ab*.

Esquemas de representação

- Assinaturas
 - Representação da borda em uma função unidimensional.
 - Forma mais simples: plotar a distância do centróide da borda como uma função do ângulo.

- Esquemas de representação
 - Assinaturas Exemplo

Esquemas de representação

- Segmentos de borda
 - Decompor uma borda em segmentos a fim de reduzir sua complexidade.
 - Interessante quando a borda contém uma ou mais concavidades com informação de forma.
 - Permite o uso de uma casca convexa H da região cercada pela borda.
 - A casca convexa de um conjunto arbitrário S é o menor conjunto convexo contendo S.
 - A diferença H S é chamada deficiência convexa D do conjunto S.

- Esquemas de representação
 - Segmentos de borda

Esquemas de representação

- Esqueletização
 - Importante para representar a forma estrutural de uma região.
 - Esqueleto de uma região pode ser obtido pela transformação do eixo medial da região.

- Esquemas de representação
 - Esqueletização
 - Dada uma região R com borda B:
 - Para cada ponto p em R, encontrar o vizinho mais próximo em B.
 - Se p tem mais que um vizinho semelhante, p
 pertence ao eixo medial (skeleton) de R.

- Esquemas de representação
 - Esqueletização Exemplo:

Esquemas de representação

- Esqueletização
 - Algoritmo demanda muito esforço computacional.
 - Outros algoritmos de 'afinamento' são propostos.
 - Exemplo: Zhang e Suen (1984)(*)

(*) Zhang, T.Y. and Suen, C.Y. A fast parallel algorithm for thinning digital patterns. Comm ACM, v. 27 (3), p. 236-239, 1984.

Esqueletização

- Exemplo: Zhang e Suen (1984)(*)
 - Dois passos sucessivos aplicados aos pontos de borda de uma região.
 - Considera uma região binarizada (borda=1 e fundo = 0) e a vizinhança de 8 um um ponto p de borda).

Esqueletização

- Exemplo: Zhang e Suen (1984)(*)
 - Primeiro passo: o ponto p é marcado para eliminação se as seguintes condições são satisfeitas:

(a)
$$2 \le N(P1) \le 6$$

(b)
$$S(P1) = 1$$

(c)
$$p2*p4*p6 = 0$$

(d)
$$p4*p6*p8 = 0$$

onde:

$$N(P1)$$
 é a quantidade de vizinhos não zeros de p1
 $N(p1)$ = p2 + p3 + + p9

S(p1) é a quantidade de transições 0-1 na sequência ordenada de p2, p3, ..., p9,p2.

Esqueletização

- N(P1) é a quantidade de vizinhos não zeros de p1
 - N(p1) = p2 + p3 + + p9
- S(p1) é a quantidade de transições 0-1 na sequência ordenada de p2, p3, ..., p9,p2.

– Exemplo: Zhang e Suen (1984)(*)

$$N(P1) = 4$$

 $S(p1) = 3$

0	0	1
1	p1	0
1	0	1

Esqueletização

–Segundo passo: condições (a) e (b) permanecem as mesmas:

(c)
$$p2*p4*p8 = 0$$

(d)
$$p2*p6*p8 = 0$$

Esqueletização

- Exemplo: Zhang e Suen (1984)(*)
 - 1. Aplicar o passo 1 para marcar os pontos para eliminação.
 - 2. Eliminar os pontos marcados.
 - 3. Aplicar o passo 2 para marcar para eliminação os pontos de borda remanescentes.
 - 4. Eliminar os pontos marcados.

Repetir o algoritmo acima até que não haja mais pontos a eliminar.

Esqueletização

– Exemplo:

Esqueletização

– Exemplo:

Descritores de Borda

- Perímetro
 - Forma mais simples: contagem dos pixels pertencentes à borda.

Descritores de Borda

- Perímetro de um polígono (usando chaincode)
 - Considerando um objeto como um polígono com um vértice no centro de cada pixel:
 - perímetro pode ser calculado como a soma das laterais (peso 1) mais a soma das diagonais (peso $\sqrt{2}$):

$$P = N_P + \sqrt{2} N_I$$

 N_P =quantidade de passos pares N_I =quantidade de passos ímpares

- Descritores de Borda
 - Perímetro de um polígono
 - Exemplo:

$$P = N_P + \sqrt{2} N_I$$

Chain Code: 07076064542424212

$$N_{P}=13$$

$$N_{I}=4$$

$$P \cong 18,65$$

- Descritores de Borda
 - Diâmetro

$$Diam(B) = \max_{i,j} [D(p_i, p_j)]$$

- onde:
 - D é a distância medida
 - p_i e p_j são pontos na borda.

- Outros descritores de Borda
 - Números de forma a partir do chain-code:

- Outros descritores de Borda
 - Números de forma a partir do chain-code:

Chain code: 0 0 0 0 3 0 0 3 2 2 3 2 2 1 2 1 1

Difference: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape no.: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

Outros descritores de Borda

Descritores de Fourier

- discretiza borda
- aplica transformada de Fourier da função descrita pela borda da figura
- mapear os pontos da borda em termos de coordenadas (X,Y) num vetor [v0, v1, ..., vn]
- v0 é a média da forma (pode ser descartado)
- demais elementos podem ser usados como classificadores

- Outros descritores de Borda
 - Momentos: medem espalhamento e simetria de borda.

Análise de forma

- Frequentemente os objetos de uma classe podem ser distinguidos de outros objetos considerando sua forma.
- Características de forma podem ser usadas independentemente ou em combinação com medidas de tamanho.

Descritores de Região

- Área
 - Forma mais simples: contagem dos pixels contidos dentro de sua borda.
 - Lembrando: perímetro = comprimento da borda

- Descritores de região
 - Área de um polígono

$$A = N_o - \left[\frac{N_b}{2}\right] + 1$$

N_o=quantidade de pixels no objeto, incluindo as bordas N_b=quantidade de pixels de borda

Considera que um pixel de borda está metade dentro e metade fora do objeto.

- Descritores de Região
 - Compacidade

$$C = \frac{P^2}{A}$$

- medida sem dimensão
- insensível a mudanças de escala e orientação
- mínima para região em forma de disco

Descritores de Região

Retangularidade

$$R = \frac{A_o}{A_R}$$

A_O=área do objeto

A_R=área do MER do objeto

R representa o quanto um objeto preenche o seu

MER.

MER = minimum enclosing rectangle

Descritores de Região

- Retangularidade

$$R = \frac{A_o}{A_R}$$

- Assume valor máximo 1 para objetos retangulares.
- Assume valor $\pi/4$ para objetos circulares.
- Se torna menor para objetos mais finos e curvados.

- Descritores de Região
 - Razão de aspecto

$$A = \frac{W}{L}$$

- Razão de largura e altura do MER.
- Permite distinguir objetos finos de quadrados bruscos ou objetos circulares.

- Descritores de Região
 - Descritores topológicos
 - Topologia: estudo das propriedades de uma figura que não são afetadas por alguma deformação, contanto que não haja rasgos ou junção da figura.

- Descritores de Região
 - Descritores topológicos
 - Número de buracos (H)

Não afetado por stretching ou rotação, mas poderá ser alterado se rasgar ou dobrar a figura.

- Descritores de Região
 - Descritores topológicos
 - Número de componentes conectados (C)
 - subconjunto de tamanho máximo tal que quaisquer dois de seus pontos podem ser ligados por uma curva conectada desenhada totalmente dentro do subconjunto.

- Descritores de Região
 - Descritores topológicos
 - Número de componentes conectados (C)

- Descritores de Região
 - Descritores topológicos
 - Número de Euler

E = C - H

onde:

C = número de componentes conectados

H = número de buracos.

- Descritores de Região
 - Descritores topológicos
 - Número de Euler Exemplos

- Descritores de Região
 - Descritores topológicos
 - Número de Euler Exemplos
 - Regiões representadas por segmentos de reta têm interpretação particularmente simples.
 - Frequentemente é importante classificar as regiões interiores em faces e buracos.

- Descritores de Região
 - Descritores topológicos
 - Número de Euler Exemplos
 - Considerando:

W = número de vértices

Q = número de bordas

F = número de faces

$$E = W - Q + F = C - H$$

- Descritores de Região
 - Descritores topológicos
 - Número de Euler Exemplos

$$E=W-Q+F=$$
 $C-H=$
 $7-11+2=$
 $1-3=-2$

Exercícios (para entregar)

Para os exercícios a seguir, deve ser postado o programa fonte, as imagens de entrada e o resultado solicitado (arquivo PDF).

- 1)Implemente um algoritmo que considere a borda de um objeto representado em uma imagem e devolva um array com a assinatura deste objeto. Teste com 2 imagens diferentes.
- 2)Implemente um programa que invoque o algoritmo do exercício 2, analise a assinatura e imprima se a figura está mais próxima de um quadrado, retângulo ou círculo. Exemplos de imagens de entrada:

3) Implementar o algoritmo de esqueletização de Zhang e Suen e testar com as imagens abaixo.

Exemplos de imagens de entrada:

Computação Gráfica Representação e Descrição

Profa. Fátima Nunes