МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

ТЕМА: «Оценка параметров надежности программ по временным моделям обнаружения ошибок»

Студент гр. 6304	Иванов В.С.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2020

Задание

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
- A) равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, CKO $s_{\text{равн}}=20/(2*\text{sqrt}(3))=5.8$.
- Б) экспоненциальным законом распределения

$$W(y) = b*exp(-b*y),$$
 y>=0, с параметром b=0.1 и соответственно $m_{3\kappa c \Pi} = s_{3\kappa c \Pi} = 1/b = 10.$

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t) \, / \, b$

В) релеевским законом распределения

$$W(y)=(y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$$
 параметром $c=8.0$ и соответственно $m_{pen}=c*sqrt(\pi/2), s_{pen}=c*sqrt(2-\pi/2).$

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = c * \text{sqrt}(-2*\ln(t))$.

2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.

3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30,24 и 18 элементов).

Примечание: для каждого значения n следует генерировать и сортировать новые массивы.

- 4. Если В>n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения k<= 5 следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.

Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы

1) Равномерный закон

a. 100% (n = 30)

i	X	i	X	i	X
1	0.359	11	5.739	21	9.682
2	0.646	12	5.763	22	9.901
3	0.652	13	5.954	23	10.490
4	1.303	14	6.338	24	11.243
5	1.888	15	6.511	25	11.569
6	4.351	16	6.716	26	12.063
7	4.564	17	7.038	27	13.995

8	5.066	18	8.211	28	17.387
9	5.089	19	8.606	29	17.723
10	5.329	20	8.689	30	19.335

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 20.75$$

$$20.75 > 15.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	31	32	33	34	35
f	3.995	3.027	2.558	2.255	2.035
g	2.927	2.667	2.449	2.264	2.105
f-g	1.068	0.361	0.110	0.009	0.070

$$m = 34 => B = m - 1 = 33$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}.$$

K = 0.009751

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	31	32	33
Xi	34.186	51.279	102.559

Время до полного завершения тестирования 188.024

Полное время: 420.224

b. 80% (n = 24)

i	X	i	X	i	X
1	1.034	9	6.122	17	12.423
2	1.370	10	6.544	18	13.614
3	1.920	11	6.891	19	14.870
4	3.118	12	7.416	20	15.412
5	3.612	13	9.386	21	16.454
6	3.885	14	9.852	22	17.284
7	4.540	15	11.553	23	18.037
8	5.930	16	11.664	24	18.207

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 16.607$$

$$16.607 > 12.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	25	26	27	28
f	3.776	2.816	2.354	2.058
g	2.859	2.555	2.309	2.107
f-g	0.916	0.261	0.045	0.048

$$m = 27 => B = m - 1 = 26$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}.$$

K = 0.010442

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\widehat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	25	26
Xi	47.882	95.763

Время до полного завершения тестирования 143.645

Полное время: 364.783

c. 60% (n = 18)

i	X	i	X	i	X
1	3.220	7	8.015	13	14.109
2	4.118	8	8.860	14	15.149
3	6.585	9	8.895	15	15.910
4	6.736	10	9.798	16	16.564
5	7.795	11	10.828	17	19.019
6	7.897	12	13.826	18	19.703

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 11.733$$

$$11.733 > 9.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	19	20	21	22	23
f	3.495	2.548	2.098	1.812	1.607
g	2.477	2.177	1.942	1.753	1.598
f-g	1.018	0.370	0.155	0.059	0.010

$$m = 23 => B = m - 1 = 22$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}.$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	19	20	21	22
Xi	0.832	41.110	61.664	123.329

Время до полного завершения тестирования 256.935

Полное время: 453.962

2) Экспоненциальный закон

a. 100% (n = 30)

i	X	i	X	i	X
1	0.237	11	6.381	21	15.407
2	0.311	12	6.602	22	15.925
3	1.229	13	8.667	23	16.833
4	1.429	14	8.930	24	17.075
5	1.945	15	9.075	25	17.217
6	3.034	16	9.782	26	22.898
7	3.228	17	11.401	27	31.033
8	3.430	18	11.964	28	32.387
9	3.513	19	12.013	29	34.535
10	5.349	20	12.109	30	39.908

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 22.462$$

$$22.462 > 15.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	31	32	33
f	3.995	3.027	2.558
g	3.514	3.145	2.847
f-g	0.481	0.118	0.288

$$m = 32 => B = m - 1 = 31$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}.$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	31
Xi	115.677

Время до полного завершения тестирования 115.677

Полное время: 479.524

b. 80% (n = 24)

i	X	i	X	i	X
1	0.445	9	5.165	17	14.637
2	0.741	10	5.689	18	15.311
3	1.949	11	7.889	19	16.399
4	2.354	12	9.091	20	18.625
5	2.754	13	10.769	21	20.749
6	2.814	14	10.823	22	27.470
7	3.411	15	11.614	23	28.191
8	4.022	16	12.092	24	29.310

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 17.775$$

$$17.775 > 12.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	25	26	27
f	3.776	2.816	2.354
g	3.322	2.918	2.602
f-g	0.454	0.102	0.247

$$m = 26 \Rightarrow B = m - 1 = 25$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}.$$

K = 0.011124

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	25
Xi	89.892

Время до полного завершения тестирования 89.892

Полное время: 352.206

c. 60% (n = 18)

i	X	i	X	i	X
1	0.071	7	3.982	13	9.176

2	0.419	8	4.669	14	12.321
3	1.543	9	5.165	15	12.669
4	1.658	10	8.286	16	13.199
5	1.811	11	8.319	17	20.525
6	2.691	12	8.656	18	22.433

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 13.613$$

$$13.613 > 9.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	19	20
f	3.495	2.548
g	3.341	2.818
f-g	0.154	0.270

$$m = 19 \Longrightarrow B = m - 1 = 18$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}.$$

K = 0.024284

Время до полного завершения тестирования 0

Полное время: 137.593

3) Релеевский закон

a. 100% (n = 30)

i	X	i	X	i	X
1	1.004	11	7.726	21	12.919
2	3.847	12	9.569	22	13.246

3	4.190	13	10.378	23	13.521
4	4.877	14	10.420	24	13.621
5	5.097	15	10.498	25	13.985
6	5.967	16	10.747	26	15.789
7	6.322	17	10.878	27	16.484
8	6.471	18	11.029	28	17.912
9	6.602	19	11.176	29	18.232
10	7.143	20	11.448	30	21.387

Проверка существования максимума В:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 19.333$$

$$19.333 > 15.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	31	32	33	34	35	36	37	38	39
f	3.995	3.027	2.558	2.255	2.035	1.863	1.725	1.609	1.510
g	2.571	2.368	2.195	2.045	1.915	1.800	1.698	1.607	1.525
f-g	1.424	0.659	0.363	0.210	0.120	0.063	0.026	0.002	0.015

$$m = 38 => B = m - 1 = 37$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}.$$

K = 0.005143

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}.$$

i	31	32	33	34	35
Xi	27.776	32.406	38.887	48.609	64.812

 X_{36} и X_{37} не рассчитаны, т.к. по заданию k <= 5.

Время до полного завершения тестирования 212.49

Полное время: 524.974

b. 80% (n = 24)

i	X	i	X	i	X
1	1.144	9	7.464	17	11.485
2	4.834	10	7.842	18	11.713
3	5.253	11	9.163	19	13.353
4	5.336	12	9.428	20	13.833
5	6.585	13	9.761	21	16.232
6	6.941	14	10.075	22	16.746
7	7.215	15	10.138	23	17.450
8	7.367	16	10.712	24	20.894

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 15.485$$

$$15.485 > 12.5$$

Найдём $m \ge n+1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	25	26	27	28	29	30	31	32
f	3.776	2.816	2.354	2.058	1.844	1.678	1.545	1.434
g	2.522	2.283	2.084	1.918	1.776	1.653	1.547	1.453
f-g	1.254	0.533	0.270	0.140	0.068	0.025	0.002	0.019

$$m = 31 => B = m - 1 = 30$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}.$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	25	26	27	28	29
Xi	25.962	31.154	38.943	51.923	77.885

 X_{30} не рассчитаны, т.к. по заданию k <= 5.

Время до полного завершения тестирования 225.867

Полное время: 466.831

c. 60% (n = 18)

i	X	i	X	i	X
1	3.051	7	9.354	13	13.065
2	4.851	8	9.677	14	14.124
3	5.138	9	10.400	15	15.172
4	6.599	10	11.156	16	17.197
5	6.625	11	11.451	17	17.534
6	8.450	12	12.332	18	19.006

Проверка существования максимума В:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 11.635$$

$$11.635 > 9.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	19	20	21	22	23	24	25

f	3.495	2.548	2.098	1.812	1.607	1.451	1.326
g	2.444	2.152	1.922	1.737	1.584	1.456	1.347
f-g	1.051	0.396	0.176	0.075	0.024	0.005	0.021

$$m = 24 \Longrightarrow B = m - 1 = 23$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}.$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	19	20	21	22	23
Xi	26.816	33.521	44.694	67.041	134.082

Время до полного завершения тестирования 306.155

Полное время: 501.337

4) Итоговые таблицы

а. Оценки первоначального числа ошибок

Закон	n = 30	n = 24	n = 18
распределения			
Равномерный	33	26	22
Экспоненциальный	31	25	18
Релеевский	37	30	23

b. Оценки полных времен проведения тестирования

Закон	n = 30	n = 24	n = 18
распределения			
Равномерный	420.224	364.783	453.962
Экспоненциальный	479.524	352.206	137.593
Релеевский	524.974	466.831	501.337

с. Анализ

Худшие результаты по обоим показателям показал релеевский закон распределения. Экспоненциальный закон распределения уступил равномерному закону распределения только при оценке полного времени проведения тестирования для n = 30. В остальных случаях экспоненциальный закон распределения показал лучшие результаты. Это соответствует одному из предположений, на которых основана модель Джелински-Моранды («Время до следующего отказа программы распределено экспоненциально»).

Выводы

В результате выполнения данной лабораторной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.