

On the Hamilton-Jacobi equation

Artur Stephan

Berlin Mathematical School Humboldt-Universität zu Berlin

BMS-Student-Conference 21st February 2018

Aim: Describing the trajectory $t \mapsto x(t) \in \mathfrak{X}$ of a particle!

Revising Classical Mechanics

Aim: Describing the trajectory $t \mapsto x(t) \in \mathfrak{X}$ of a particle!

■ Newton's law of motion: $\mathbf{F} = \frac{\mathrm{d}}{\mathrm{d}t} p$.

Aim: Describing the trajectory $t \mapsto x(t) \in \mathfrak{X}$ of a particle!

- Newton's law of motion: $\mathbf{F} = \frac{\mathrm{d}}{\mathrm{d}t} p$.
- Lagrange description "principle of least action": Lagrangian $\mathbf{L}: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$

Aim: Describing the trajectory $t \mapsto x(t) \in \mathfrak{X}$ of a particle!

- Newton's law of motion: $\mathbf{F} = \frac{\mathrm{d}}{\mathrm{d}t} p$.
- Lagrange description "principle of least action": Lagrangian $\mathbf{L}:\mathfrak{X}\times\mathfrak{X}\to\mathbb{R}$ Trajectory satisfies the Lagrange equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\partial_2\mathbf{L}(x,\dot{x}) = \partial_1\mathbf{L}(x,\dot{x})$$

Aim: Describing the trajectory $t \mapsto x(t) \in \mathfrak{X}$ of a particle!

- Newton's law of motion: $\mathbf{F} = \frac{\mathrm{d}}{\mathrm{d}t} p$.
- Lagrange description "principle of least action": Lagrangian $\mathbf{L}: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$

Trajectory satisfies the Lagrange equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\partial_2\mathbf{L}(x,\dot{x}) = \partial_1\mathbf{L}(x,\dot{x})$$

Example: $\mathbf{L}(x,y) = T(y) - V(x)$.

Aim: Describing the trajectory $t \mapsto x(t) \in \mathfrak{X}$ of a particle!

- Newton's law of motion: $\mathbf{F} = \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{\rho}$.
- Lagrange description "principle of least action": Lagrangian $\mathbf{L}: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ Trajectory satisfies the Lagrange equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\partial_2\mathbf{L}(x,\dot{x}) = \partial_1\mathbf{L}(x,\dot{x})$$

Example: $\mathbf{L}(x,y) = T(y) - V(x)$.

■ Hamiltonian description: Motion is governed by the Hamiltonian $\mathbf{H}:\mathfrak{X}^* \times \mathfrak{X} \to \mathbb{R}$

$$\frac{\mathrm{d}}{\mathrm{d}t}p = -\partial_x \mathbf{H}(p,x), \quad \frac{\mathrm{d}}{\mathrm{d}t}x = \partial_p \mathbf{H}(p,x)$$

Aim: Describing the trajectory $t \mapsto x(t) \in \mathfrak{X}$ of a particle!

- Newton's law of motion: $\mathbf{F} = \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{\rho}$.
- Lagrange description "principle of least action": Lagrangian $\mathbf{L}: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$

Trajectory satisfies the Lagrange equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\partial_2\mathbf{L}(x,\dot{x}) = \partial_1\mathbf{L}(x,\dot{x})$$

Example: **L**(*x*, *y*) = T(y) - V(x).

- Hamiltonian description: Motion is governed by the Hamiltonian $\mathbf{H}:\mathfrak{X}^* \times \mathfrak{X} \to \mathbb{R}$
 - $\frac{\mathrm{d}}{\mathrm{d}t}p = -\partial_x \mathbf{H}(p,x), \quad \frac{\mathrm{d}}{\mathrm{d}t}x = \partial_p \mathbf{H}(p,x)$

Example: $\mathbf{H}(p,x) = T^*(p) + V(x)$

Let $F: \mathfrak{X} \to \mathbb{R}$ be a functional on some Banach space \mathfrak{X} with dual \mathfrak{X}^* and dual pairing $\langle \cdot, \cdot \rangle$.

Let $F: \mathfrak{X} \to \mathbb{R}$ be a functional on some Banach space \mathfrak{X} with dual \mathfrak{X}^* and dual pairing $\langle \cdot, \cdot \rangle$.

We define

$$F^*(\xi) := \sup_{x \in \mathfrak{X}} \left\{ \langle \xi, x \rangle - F(x) \right\}.$$

Let $F: \mathfrak{X} \to \mathbb{R}$ be a functional on some Banach space \mathfrak{X} with dual \mathfrak{X}^* and dual pairing $\langle \cdot, \cdot \rangle$.

We define

$$F^*(\xi) := \sup_{x \in \mathfrak{X}} \left\{ \langle \xi, x \rangle - F(x) \right\}.$$

Examples:

Let $A: \mathfrak{X} \to \mathfrak{X}^*$ be a linear symmetric positive operator; and $F(x) = \frac{1}{2} \langle Ax, x \rangle$. Then, $F^*(\xi) = \frac{1}{2} \langle \xi, A^{-1} \xi \rangle$.

Let $F: \mathfrak{X} \to \mathbb{R}$ be a functional on some Banach space \mathfrak{X} with dual \mathfrak{X}^* and dual pairing $\langle \cdot, \cdot \rangle$.

We define

$$F^*(\xi) := \sup_{x \in \mathfrak{X}} \left\{ \langle \xi, x \rangle - F(x) \right\}.$$

Examples:

- Let $A: \mathfrak{X} \to \mathfrak{X}^*$ be a linear symmetric positive operator; and $F(x) = \frac{1}{2} \langle Ax, x \rangle$. Then, $F^*(\xi) = \frac{1}{2} \langle \xi, A^{-1} \xi \rangle$.
- Let $x_0 \in \mathfrak{X}$. Let

$$F(x) = \chi_{\{x_0\}}(x) = \begin{cases} 0, & \text{if } x = x_0 \\ \infty, & \text{if } x \neq x_0 \end{cases}.$$

Then $F^*(\xi) = \langle \xi, x_0 \rangle$.

$$\mathbf{H}(p,x) := \text{Legendre Transform}(\mathbf{L}(x,\cdot))(p) = \sup_{y \in \mathcal{X}} \left\{ \langle p, y \rangle - \mathbf{L}(x,y) \right\}.$$

The Hamilton-Jacobi equation

Aim: Deriving an equation for the action

$$(x,t)\mapsto S(x,t)=\int_0^t \mathbf{L}(x(t'),\dot{x}(t'))\mathrm{d}t'.$$

Motivation: Starting point for wave-particle duality, QM...

The Hamilton-Jacobi equation

Aim: Deriving an equation for the action

$$(x,t)\mapsto S(x,t)=\int_0^t \mathbf{L}(x(t'),\dot{x}(t'))\mathrm{d}t'.$$

Motivation: Starting point for wave-particle duality, QM...

$$0 = \partial_t S(x,t) + \mathbf{H}(\partial_x S(x,t),x)$$

 $S(x,0) = S_0(x).$

Aim: Deriving an equation for the action

$$(x,t)\mapsto S(x,t)=\int_0^t \mathbf{L}(x(t'),\dot{x}(t'))\mathrm{d}t'.$$

Motivation: Starting point for wave-particle duality, QM...

$$0 = \partial_t S(x,t) + \mathbf{H}(\partial_x S(x,t),x)$$

 $S(x,0) = S_0(x).$

- First-order partial differential equation
- Highly nonlinear.

How to solve the HJE?

We assume: $\mathbf{L}(x, y) = T(y)$ where

■ $T: \mathfrak{X} \to \mathbb{R}$ is a sufficiently smooth convex functional with T(0) = T'(0) = 0.

How to solve the HJE?

We assume: $\mathbf{L}(x, y) = T(y)$ where

- $T: \mathfrak{X} \to \mathbb{R}$ is a sufficiently smooth convex functional with T(0) = T'(0) = 0.
- $\mathbf{H}(p,x) = T^*(p)$ is state-independent or potential free.

We assume: $\mathbf{L}(x,y) = T(y)$ where

- $T: \mathfrak{X} \to \mathbb{R}$ is a sufficiently smooth convex functional with T(0) = T'(0) = 0.
- $\mathbf{H}(p,x) = T^*(p)$ is state-independent or potential free.

The Hamilton-Jacobi equation for a given initial action S_0 reads:

$$0 = \partial_t S(x, t) + T^*(\partial_x S(x, t))$$

$$S(x, t = 0) = S_0(x).$$

We assume: $\mathbf{L}(x,y) = T(y)$ where

- $T: \mathfrak{X} \to \mathbb{R}$ is a sufficiently smooth convex functional with T(0) = T'(0) = 0.
- $\mathbf{H}(p,x) = T^*(p)$ is state-independent or potential free.

The Hamilton-Jacobi equation for a given initial action S_0 reads:

$$0 = \partial_t S(x, t) + T^*(\partial_x S(x, t))$$

$$S(x, t = 0) = S_0(x).$$

(Often:
$$T^*(p) = \frac{p^2}{2m}$$
.)

$$\frac{\mathrm{d}}{\mathrm{d}t}\partial_2\mathbf{L}(x,\dot{x}) = \partial_1\mathbf{L}(x,\dot{x})$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\partial_2 \mathbf{L}(x,\dot{x}) = \partial_1 \mathbf{L}(x,\dot{x}) \Rightarrow 0 = \frac{\mathrm{d}}{\mathrm{d}t}T'(\dot{x}) = T''(x)\ddot{x}$$

The action can be computed directly from the Lagrange equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\partial_2\mathbf{L}(x,\dot{x}) = \partial_1\mathbf{L}(x,\dot{x}) \Rightarrow 0 = \frac{\mathrm{d}}{\mathrm{d}t}T'(\dot{x}) = T''(x)\ddot{x}$$

Since
$$T''(x) > 0$$
, we get $x(t) = tv_0 + x_0 \Rightarrow v_0 = \frac{x - x_0}{t}$.

$$\frac{\mathrm{d}}{\mathrm{d}t}\partial_2\mathbf{L}(x,\dot{x}) = \partial_1\mathbf{L}(x,\dot{x}) \Rightarrow 0 = \frac{\mathrm{d}}{\mathrm{d}t}T'(\dot{x}) = T''(x)\ddot{x}$$

Since T''(x) > 0, we get $x(t) = tv_0 + x_0 \Rightarrow v_0 = \frac{x - x_0}{t}$. And hence

$$S(x,t) = \int_0^t T(\dot{x}(t')) dt' = \int_0^t T(v_0) dt' = tT\left(\frac{x-x_0}{t}\right).$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\partial_2\mathbf{L}(x,\dot{x}) = \partial_1\mathbf{L}(x,\dot{x}) \Rightarrow 0 = \frac{\mathrm{d}}{\mathrm{d}t}T'(\dot{x}) = T''(x)\ddot{x}$$

Since T''(x) > 0, we get $x(t) = tv_0 + x_0 \Rightarrow v_0 = \frac{x - x_0}{t}$. And hence

$$S(x,t) = \int_0^t T(\dot{x}(t')) dt' = \int_0^t T(v_0) dt' = tT\left(\frac{x-x_0}{t}\right).$$

Using $T^*(T'(x)) = xT'(x) - T(x)$, we get indeed: $S(x,t) = tT\left(\frac{x-x_0}{t}\right)$ satisfies $\partial_t S(x,t) = -T^*(\partial_x S(x,t))$.

$$\frac{\mathrm{d}}{\mathrm{d}t}\partial_2\mathbf{L}(x,\dot{x}) = \partial_1\mathbf{L}(x,\dot{x}) \Rightarrow 0 = \frac{\mathrm{d}}{\mathrm{d}t}T'(\dot{x}) = T''(x)\ddot{x}$$

Since T''(x) > 0, we get $x(t) = tv_0 + x_0 \Rightarrow v_0 = \frac{x - x_0}{t}$. And hence

$$S(x,t) = \int_0^t T(\dot{x}(t')) dt' = \int_0^t T(v_0) dt' = tT\left(\frac{x-x_0}{t}\right).$$

Using
$$T^*(T'(x)) = xT'(x) - T(x)$$
, we get indeed: $S(x,t) = tT\left(\frac{x-x_0}{t}\right)$ satisfies $\partial_t S(x,t) = -T^*(\partial_x S(x,t))$.

The initial value?

$$\frac{\mathrm{d}}{\mathrm{d}t}\partial_2\mathbf{L}(x,\dot{x}) = \partial_1\mathbf{L}(x,\dot{x}) \Rightarrow 0 = \frac{\mathrm{d}}{\mathrm{d}t}T'(\dot{x}) = T''(x)\ddot{x}$$

Since T''(x) > 0, we get $x(t) = tv_0 + x_0 \Rightarrow v_0 = \frac{x - x_0}{t}$. And hence

$$S(x,t) = \int_0^t T(\dot{x}(t')) dt' = \int_0^t T(v_0) dt' = tT\left(\frac{x-x_0}{t}\right).$$

Using
$$T^*(T'(x)) = xT'(x) - T(x)$$
, we get indeed: $S(x,t) = tT\left(\frac{x-x_0}{t}\right)$ satisfies $\partial_t S(x,t) = -T^*(\partial_x S(x,t))$.

The initial value?

For $x = x_0$: S(x, t) = 0 for any t > 0.

$$\frac{\mathrm{d}}{\mathrm{d}t}\partial_2\mathbf{L}(x,\dot{x}) = \partial_1\mathbf{L}(x,\dot{x}) \Rightarrow 0 = \frac{\mathrm{d}}{\mathrm{d}t}T'(\dot{x}) = T''(x)\ddot{x}$$

Since T''(x) > 0, we get $x(t) = tv_0 + x_0 \Rightarrow v_0 = \frac{x - x_0}{t}$. And hence

$$S(x,t) = \int_0^t T(\dot{x}(t')) dt' = \int_0^t T(v_0) dt' = tT\left(\frac{x-x_0}{t}\right).$$

Using
$$T^*(T'(x)) = xT'(x) - T(x)$$
, we get indeed: $S(x,t) = tT\left(\frac{x-x_0}{t}\right)$ satisfies $\partial_t S(x,t) = -T^*(\partial_x S(x,t))$.

The initial value?

For $x = x_0$: S(x, t) = 0 for any t > 0. If $x \neq x_0$ and $t \to 0$, we get $S(x, t) \to \infty$. Hence $S_0 = \chi_{\{x_0\}}(x)$.

Solution method of E. Hopf (1965)

$$0 = \partial_t S(x, t) + T^*(\partial_x S(x, t))$$

$$S(x, 0) = S_0(x).$$

Solution method of E. Hopf (1965)

$$0 = \partial_t S(x, t) + T^*(\partial_x S(x, t))$$

$$S(x, 0) = S_0(x).$$

For $y \in \mathfrak{X}, q \in \mathfrak{X}^*$, we introduce the function

$$v_{y,q}(x,t) = S_0(y) + \langle q, x - y \rangle - tT^*(q),$$

then

$$\partial_t v_{y,q} = -T^*(q), \ \partial_x v_{y,q} = q.$$

Solution method of E. Hopf (1965)

$$0 = \partial_t S(x,t) + T^*(\partial_x S(x,t))$$

$$S(x,0) = S_0(x).$$

For $y \in \mathfrak{X}, q \in \mathfrak{X}^*$, we introduce the function

$$v_{y,q}(x,t) = S_0(y) + \langle q, x - y \rangle - tT^*(q),$$

then

$$\partial_t v_{y,q} = -T^*(q), \ \partial_x v_{y,q} = q.$$

Hence, $v_{v,q}(x,t)$ is a solution of HJE for any y and q.

$$v_{y,q}(x,t) = S_0(y) + \langle x-y,q \rangle - tT^*(q).$$

How do we choose y and q to get the initial value $S_0(x)$?

$$v_{y,q}(x,t) = S_0(y) + \langle x - y, q \rangle - tT^*(q).$$

How do we choose y and q to get the initial value $S_0(x)$?

Remark: y = x and $q = \partial_x S_0(x)$ is not possible.

$$v_{y,q}(x,t) = S_0(y) + \langle x - y, q \rangle - tT^*(q).$$

How do we choose y and q to get the initial value $S_0(x)$?

Remark: y = x and $q = \partial_x S_0(x)$ is not possible.

Calculation from convex analysis:

$$\inf_{y} \sup_{q} \{S_0(y) + \langle q, x - y \rangle\} = \inf_{y} \{S_0(y) + \chi_{\{0\}}(x - y)\} = S_0(x).$$

$$v_{y,q}(x,t) = S_0(y) + \langle x-y,q \rangle - tT^*(q).$$

How do we choose y and q to get the initial value $S_0(x)$?

Remark: y = x and $q = \partial_x S_0(x)$ is not possible.

Calculation from convex analysis:

$$\inf_{y} \sup_{q} \{S_{0}(y) + \langle q, x - y \rangle\} = \inf_{y} \{S_{0}(y) + \chi_{\{0\}}(x - y)\} = S_{0}(x).$$

The solution is

$$S(x,t) = \inf_{y} \sup_{q} v_{y,q}(x,t) = \inf_{y} \sup_{q} \{S_0(y) + \langle q, x - y \rangle - tT^*(q) \rangle \} =$$

$$= \inf_{y} \left\{ S_0(y) + tT\left(\frac{x - y}{t}\right) \right\}$$

$$v_{y,q}(x,t) = S_0(y) + \langle x - y, q \rangle - tT^*(q).$$

How do we choose y and q to get the initial value $S_0(x)$?

Remark: y = x and $q = \partial_x S_0(x)$ is not possible.

Calculation from convex analysis:

$$\inf_{y} \sup_{q} \{S_{0}(y) + \langle q, x - y \rangle\} = \inf_{y} \{S_{0}(y) + \chi_{\{0\}}(x - y)\} = S_{0}(x).$$

The solution is

$$egin{aligned} S(x,t) &= \inf_{y} \sup_{q} V_{y,q}(x,t) = \inf_{y} \sup_{q} \{S_{0}(y) + \langle q, x - y \rangle - t T^{*}(q) \rangle \} = \ &= \inf_{y} \left\{ S_{0}(y) + t T\left(rac{x-y}{t}
ight)
ight\} = \left(S_{0} \stackrel{ ext{inf}}{\Delta} t T\left(rac{\cdot}{t}
ight)
ight) (x). \end{aligned}$$

Brief remark to Harmonic Anaylsis

Consider the Heat equation on \mathbb{R} :

$$\dot{u} = \partial_{xx} u, \quad u(0,x) = u_0(x).$$

How do we solve this equation? We use Fourier transform

$$\tilde{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{D}} e^{-i\xi x} f(x) dx.$$

and the L^2 -convolution

$$(f*g)(x) = \int_{\mathbb{D}} f(x-y)g(y)dy.$$

Heat aquation on D

Heat equation on \mathbb{R} :

$$\dot{u} = \partial_{xx} u, \quad u(0,x) = u_0(x).$$

Heat kernel - fundamental solution :

$$k_{\mathrm{Heat}}(x,t) = \frac{1}{\sqrt{2t}} \mathrm{e}^{\frac{-x^2}{4t}}.$$

and the solution is

$$u(x,t) = \frac{1}{\sqrt{2\pi}}(k_{\mathrm{Heat}} * u_0)(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} e^{\frac{-(x-y)^2}{4t}} u_0(y) dy.$$

Brief remark to Harmonic Anaylsis

Equations

Initial value problem

Abstract transform

fundamental solution

General solution via Convolution

Brief remark to Harmonic Anaylsis

Equations

Initial value problem

Abstract transform

fundamental solution

General solution via Convolution

Heat equation

$$\dot{u} = \partial_{xx} u$$
 $u_0(x) = u(0, x)$

$$k_{\mathrm{Heat}}(x,t) = \frac{1}{\sqrt{t}} \mathrm{e}^{-\left(\frac{x}{\sqrt{t}}\right)^2}$$

 L^2 -convolution
 $\int_{\mathbb{R}} k_{\mathrm{Heat}}(x-y) u_0(y) \mathrm{d}y$

$$\int_{\mathbb{R}} k_{\mathrm{Heat}}(x-y)u_0(y)\mathrm{d}y$$

Hamilton-Jacobi equation

$$\partial_t S(x,t) = -T^*(\partial_x S(x,t))$$

$$S(0,x) = S_0(x)$$

Legendre transform

$$\sup_{x\in\mathfrak{X}}\left\{\left\langle \xi,x\right\rangle -F(x)\right\}$$

Kernel.

$$k_{\mathrm{HJE}}(x,t) = tT\left(\frac{x}{t}\right)$$

Thank you for your attention!

Thank you for your attention!

and
have fun in the Botanic Garden!