### 統計学(基礎)

第5回 対応のあるデータとマクネマーの検定 (対応のある  $\chi^2$ 検定)

1/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

1

2

統計学(基礎)

## Health Habits(健康習慣)

- ・データライブラリ 5. Frequencies Health Hbits
- ・1,184人の学生における身体活動量と果物の摂取量
- 変数:
  - Physical Activity 参加者の身体活動量(Low=低い、Moderate=中程度、 Vigorous=高い)
  - Fruit Consumption 参加者の果物摂取量(Low=少ない、Medium=中程度、High=多い)

3/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

2





#### 統計学(基礎) 標準化残差(standardized residual) 絶対値 約1以下 偶然の範囲 特に偏りなし 約1.96以上 5%水準で有意 有意な偏り 約2.58以上 1%水準で有意 強い偏り Fruit Consumption Physical Activity Moderate 170.00 Standardized residuals -1.19 -0.21 1.59 569.00 321.00 294.00 1.184.0 7/43 川崎市立看護大学大学院 看護学研究科 博士前期課程

統計学(基礎)

### 標準化残差(standardized residual)

- ・各セルの「観測度数 期待度数」がどの程度大きいか を標準偏差単位で示した値
- ・これをさらに分割表全体の分散構造を考慮して補正し たのが「調整済み標準化残差(adjusted standardized residual) I
  - 「調整済みピアソン」とも言う

6/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

6

#### 統計学(基礎)

8

# グッドマン=クラスカルのガンマ (Goodman-Kruskal's $\gamma$ )

- ・順序カテゴリ間の関係(クロス表)を評価するための指標
- ・2つの順序変数の一致(C:concordant pairs)・不一 致の組(D:discordant pairs)の差に基づく。

 $\gamma = 1 \rightarrow 完全に一致(すべてのペアが同じ方向)$ 

 $\gamma = -1 \rightarrow$  完全に逆方向

 $\gamma = 0 \rightarrow -$ 致と不一致が同じくらい(関係ない)

8/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

# ケンドールの順位相関係数 (Kendall's $\tau$ )

- ・グッドマン=クラスカルのガンマと似ているが同順位も 考慮
  - より厳密になる
  - グッドマン=クラスカルの方が値が大きめ
  - -1~1 の範囲
    - ±0.3 くらい:弱い関係
    - ±0.5 前後:中程度
    - ±0.7 以上:強い関係

9/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

#### 統計学(基礎)

# グッドマン=クラスカルのヶと ケンドールの順位相関(Tb)

- ・ χ<sup>2</sup>乗検定で有意確率がある程度小さい(標準化残差の 大きいところがある)けど、 $\gamma$ や $\tau$ が低い
- →行列の間に関係性はあるけど、一貫した関係性(順序性 や上昇・下降傾向)はない

11/43

©Ryota Takayanagi 2025

#### 統計学(基礎)

# グッドマン=クラスカルのγと ケンドールの順位相関 $(\tau b)$

- γ は「クロス表で傾向をざっくり見る」ためのもの
- τ は「順位データの一致度を精密に見る」ためのもの
- $\cdot \gamma$ は単純な方向一致率、 $\tau$ は同順位も含めた厳密な一 致度を表す

10/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Rvota Takayanagi 2025

10

#### 統計学(基礎)

## 「分割が多いクロス表」は扱いにくい

- ・期待度数が小さくなりやすい
  - ヤルが増えると、1ヤルあたりのデータ数が減る
  - その結果、「期待度数<5」のセルが増えて、χ²検定の前提 (大標本近似)が崩れる
  - フィッシャー検定でも、分割が大きくなると計算が膨大(ほぼ 不可能)になる
    - ・JASPは2×2まで。jamoviはそれ以上でもやるけど途中で止まる

12/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

### 「分割が多いクロス表」は扱いにくい

- ・「どこに差があるか」が直感的に見えない
  - 2×2なら「多いか少ないか」がすぐわかる
  - 3×4とかになると、全体で有意でも「どのセルが寄与しているのか」が読みにくい
  - 標準化残差で見るにしても、±1.96以上のセルが点在していて、説明しにくい(順序変数だけど順序性がない場合の説明をどうするか)

13/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

13

統計学(基礎)

対応のあるデータ

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

15/43

#### 統計学(基礎)

### クロス表作成上の注意

- あまり大きなクロス表は作らない
- クロス集計表はシンプルなほど関係が見えやすい
  - 直感的に結果が説明できる、2×2クロスがベスト
- 分割が増えると情報が増えても、期待度数が少なくなるので、結果の信頼性が下がる場合がある
- ・3×3以上は、基本的には、集約・再分類を検討した方がいい
  - できれば、2×2、せめて2×3くらいに整理して考えるのが基本

14/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

14

#### 統計学(基礎)

### 対応のあるデータ

- ・同じ対象で複数回のデータ
- ・前の回と後の回で解答傾向が同じか違うか
- ・違っているなら、前と後の間で何かがあったと考える

16/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

# 対応の無いデータ

#### ・クラスとおやつ

| No | クラス | おやつ    |
|----|-----|--------|
| 1  | きつね | きのこの里  |
| 2  | たぬき | きのこの里  |
| 3  | たぬき | きのこの里  |
| 4  | きつね | きのこの里  |
| 5  | きつね | たけのこの山 |
| 6  | たぬき | きのこの里  |
| 7  | きつね | たけのこの山 |
| 8  | たぬき | きのこの里  |

| クラス別の<br>希望するおやつ |     |       | おやつ    |    |  |
|------------------|-----|-------|--------|----|--|
|                  |     | きのこの里 | たけのこの山 | 計  |  |
| <i></i>          | たぬき | 20    | 10     | 30 |  |
| クラマ              | きつね | 12    | 18     | 30 |  |
| ٨                | 計   | 32    | 28     | 60 |  |

17/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

17

統計学(基礎)

# 対応のあるデータ

・就職前後で、朝食を食べている、食べていない

| 番号 | 就職前    | 就職後    |
|----|--------|--------|
| 1  | 食べている  | 食べている  |
| 2  | 食べている  | 食べていない |
| 3  | 食べている  | 食べている  |
| 4  | 食べている  | 食べていない |
| 5  | 食べていない | 食べている  |
| 6  | 食べている  | 食べている  |
| 7  | 食べている  | 食べていない |
| 8  | 食べている  | 食べていない |

|   |        |       | 就職後    |     |
|---|--------|-------|--------|-----|
|   |        | 食べている | 食べていない | 合計  |
| 計 | 食べている  | 35    | 25     | 60  |
| 職 | 食べていない | 15    | 25     | 40  |
| 前 | 合計     | 50    | 50     | 100 |

18/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

18

#### 統計学(基礎)

# 対応のない、ある

#### データを見る

| No | クラス | おやつ    |
|----|-----|--------|
| 1  | きつね | きのこの里  |
| 2  | たぬき | きのこの里  |
| 3  | たぬき | きのこの里  |
| 4  | きつね | きのこの里  |
| 5  | きつね | たけのこの山 |
| 6  | たぬき | きのこの里  |
| 7  | きつね | たけのこの山 |
| 8  | たぬき | きのこの里  |
|    |     |        |

川崎市立看護大学大学院 看護学研究科 博士前期課程

| 番号 | 就職前    | 就職後    |
|----|--------|--------|
| 1  | 食べている  | 食べている  |
| 2  | 食べている  | 食べていない |
| 3  | 食べている  | 食べている  |
| 4  | 食べている  | 食べていない |
| 5  | 食べていない | 食べている  |
| 6  | 食べている  | 食べている  |
| 7  | 食べている  | 食べていない |
| 8  | 食べている  | 食べていない |

19/43

©Ryota Takayanagi 2025

統計学(基礎)

## 対応のない、ある

#### クロス集計では一見わかりにくい

| クラス別の<br>希望するお<br>やつ |     |       | おやつ    |    |
|----------------------|-----|-------|--------|----|
|                      |     | きのこの里 | たけのこの山 | 計  |
| h                    | たぬき | 20    | 10     | 30 |
| クラ                   | きつね | 12    | 18     | 30 |
| ス                    | 計   | 32    | 28     | 60 |

| 就職後 |        |    |    |     |  |
|-----|--------|----|----|-----|--|
|     | 合計     |    |    |     |  |
| 就職  | 食べている  | 35 | 25 | 60  |  |
|     | 食べていない | 15 | 25 | 40  |  |
| 前   | 合計     | 50 | 50 | 100 |  |

20/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

マクネマーの検定ともいいます

## 対応のあるχ²検定

21/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

21

統計学(基礎)

## 対応のある検定とは

- ・データ間に対応がある場合は別の計算方法を使う
- ・対応のあるデータ(繰り返しのあるデータ)
  - 同じ対象に対して複数回データを取っている
- ・統計値の計算方法は異なるが、結果の分布は同じ
- 有意差がある場合は、その間に何かがあったと考える

23/43

©Ryota Takayanagi 2025

統計学(基礎)

### 対応のあるデータ

・就職前後で、朝食を食べている、食べていない

| 番号 | 就職前    | 就職後    |
|----|--------|--------|
| 1  | 食べている  | 食べている  |
| 2  | 食べている  | 食べていない |
| 3  | 食べている  | 食べている  |
| 4  | 食べている  | 食べていない |
| 5  | 食べていない | 食べている  |
| 6  | 食べている  | 食べている  |
| 7  | 食べている  | 食べていない |
| 8  | 食べている  | 食べていない |

|     |        |       | 就職後    |     |
|-----|--------|-------|--------|-----|
|     |        | 食べている | 食べていない | 合計  |
| 計   | 食べている  | 35    | 25     | 60  |
| 就職前 | 食べていない | 15    | 25     | 40  |
| 囙   | 合計     | 50    | 50     | 100 |

22/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

22





### 対応がある場合の帰無仮説の考え方

- 棄却されたとき
  - 今回のサンプルからは両群が同じだと言うことは難しい (同じである確率は低い)→変化があった
- 棄却されなかったとき
  - 今回のサンプルからは両群が同じであると推定できる (同じである確率が高い)→変化がなかった

26/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

26

統計学(基礎)

## 対応のある χ 2検定

- 同じ人の繰り返しデータ
- ・変化があったのは緑色の部分
- その部分の影響がわかればよい

|    |        |       | 就職後    |     |  |  |  |
|----|--------|-------|--------|-----|--|--|--|
|    |        | 食べている | 食べていない | 合計  |  |  |  |
| ++ | 食べている  | 35    | 25     | 60  |  |  |  |
| 職  | 食べていない | 15    | 25     | 40  |  |  |  |
| 前  | 合計     | 50    | 50     | 100 |  |  |  |

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

27/43

統計学(基礎)

### 対応のある χ²検定:マクネマーの検定

• (b-c)の2乗を(b+c)で割った値は自由度1の $\chi^2$ 分布に従う

$$Z = \frac{(b-c)^2}{(b+c)}$$

- 計算の仕方は違う(関数を使わない)けど、この値がχ<sup>2</sup>分布になる
- 期待度数表は作らない

|     |        |       | 就職後 |     |     |    |     |
|-----|--------|-------|-----|-----|-----|----|-----|
|     |        | 食べている |     | 食べて | いない | 合計 |     |
| 坮   | 食べている  | а     | 35  | b   | 25  |    | 60  |
| 就職前 | 食べていない | С     | 15  | d   | 25  |    | 40  |
| 刨   | 合計     |       | 50  |     | 50  |    | 100 |

28/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

Ryota Takayanagi 2025

### $\chi^2$ 検定の結果の判断(再)

- ・ P値を直接計算できない場合
  - 右のような確率分布表を使う
    - 対応無くてもあっても同じ
  - 自由度と、主な有意確率の時の χ<sup>2</sup>値の表
    - ・自由度1でχ<sup>2</sup>値が3.84のとき有意確率は0.05
    - ・自由度1でχ<sup>2</sup>値が6.63のとき有意確率は0.01
    - ・自由度1でχ<sup>2</sup>値が10.83のとき有意確率は0.001

|   |     |    | 有意確率  |       |       |       |  |  |
|---|-----|----|-------|-------|-------|-------|--|--|
|   |     |    | 0.10  | 0.05  | 0.01  | 0.001 |  |  |
|   | 自由度 | 1  | 2.71  | 3.84  | 6.63  | 10.83 |  |  |
|   |     | 2  | 4.61  | 5.99  | 9.21  | 13.82 |  |  |
|   |     | 3  | 6.25  | 7.81  | 11.34 | 16.27 |  |  |
|   |     | 4  | 7.78  | 9.49  | 13.28 | 18.47 |  |  |
| 1 |     | 5  | 9.24  | 11.07 | 15.09 | 20.52 |  |  |
| į |     | 6  | 10.64 | 12.59 | 16.81 | 22.46 |  |  |
|   |     | 7  | 12.02 | 14.07 | 18.48 | 24.32 |  |  |
|   |     | 8  | 13.36 | 15.51 | 20.09 | 26.12 |  |  |
|   |     | 9  | 14.68 | 16.92 | 21.67 | 27.88 |  |  |
|   |     | 10 | 15.99 | 18.31 | 23.21 | 29.59 |  |  |

29/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

29

30

#### 統計学(基礎)

### 実は

- JASPにはマクネマー検定がありません。
  - Rにはあるので、コマンドで実行は可能
  - 手計算でいけるのと、後述の理由でプライオリティが低いと 考えられている
- jamoviにはあります

©Ryota Takayanagi 2025

川崎市立看護大学大学院 看護学研究科 博士前期課程

31/43

#### 統計学(基礎)

## Excelで行う対応のある x<sup>2</sup>検定

- χ<sup>2</sup>値
  - 式の計算で出せる
  - 期待度数表はいらない
  - CHISQ.TEST関数では出せない
- p值
- =CHISQ.DIST.RT (χ²値,自由度)
- $-\chi^2$ 値と自由度から、その $\chi^2$ 値に該当する確率値を算出
- 自由度はクロス集計表から求めるのでこの場合は1

30/43

32/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

統計学(基礎)



32





34

統計学(基礎)

## 2×2より大きな繰り返し

- マクネマーではなくバウカー検定
  - Bowker's test:拡張マクネマー検定
- 3×3が限界かなぁ
- ・解釈に順序性が出てくるので、そこがうまく説明できる かどうか
- ・順序性を考えるならWilcoxon符号付順位検定

- ノンパラで説明

川崎市立看護大学大学院 看護学研究科 博士前期課程

35/43

©Ryota Takayanagi 2025

統計学(基礎)

## 大きな繰り返しのあるデータ

- ・ jamoviだと、対応のある $\chi^2$ 検定が、 $3\times3$ 以上になる と、自動でバウカー検定になる
  - そもそもマクネマー検定は2×2しかできない

36/43

川崎市立看護大学大学院 看護学研究科 博士前期課程



統計学(基礎)

# 大きな繰り返しのあるデータ

・あまり進めない理由

川崎市立看護大学大学院 看護学研究科 博士前期課程

- データがたくさん必要
- バウカー検定は順序性は見ていない
- カテゴリ数が多い場合、そのカテゴリは順序性があるのか?
  - そもそも前後の差を見るときに、変わったかどうかだけなのか、何らかの順序性を仮定しないのか
  - →分析手法では無くて、研究計画の問題

39/43

©Ryota Takayanagi 2025

38

#### 統計学(基礎)

#### クロス集計では無いのかも

- ・基本的にχ<sup>2</sup>検定は比率の差の検定(前回説明)
  - 厳密に言うと期待度数との乖離を見ている
  - なので、観測度数が多くなると、差が出る傾向がある
  - 順序性を考慮する場合は、グッドマン=クラスカルの $\gamma$ やケンドールの順位相関( $\tau$ b)を見る
- ・対応がある場合(マクネマー、バウカー)は、対称性の検定
  - 変化無しを境にして、どちらかの変化が多いかを見ている
  - 方向性までは見ていない

40/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

### 対称性

- ・対称軸を境に同じ比率かどうかを見ているだけ
- ・順序(方向)は見ていない

|    |    | 事後 |    |    |    |  |
|----|----|----|----|----|----|--|
|    |    | 低  | 中  | 高  | 合計 |  |
|    | 低  | *4 | 8  | 8  | 20 |  |
| 事前 | 中  | 3  | þ  | 11 | 20 |  |
| 前  | 高  | 1  | 3  | 16 | 20 |  |
|    | 合計 | 8  | 17 | 35 | 60 |  |

41/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

41

#### 統計学(基礎)

# カテゴリに順序性がある場合

- ・2値(はい・いいえ)の場合、変化=順序と見なせる
- ・ 3値だと、順序性があるかないかを考える必要がある
  - 大抵は「よい・ふつう・わるい」のように順序性がある場合が 多い
  - 同じ質的変数でも、名義尺度か順序尺度かはこういうときに 気をつけないといけない
  - どういうデータにするかは研究計画でちゃんと決める

43/43

©Ryota Takayanagi 2025

統計学(基礎)

### カテゴリに順序性があるのなら

- ・クロス集計をしてマクネマーやバウカー検定はしない
  - ウィルコクソン符号付順位検定を選んだ方がいい
    - ・「10回目 ノンパラメトリック検定」で説明
    - ・対応のある順序変数の検定
- ・順序性を考慮しなくてはいけないかどうかは、研究計画 時点での問題

42/43

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

42

川崎市立看護大学大学院 看護学研究科 博士前期課程