

Komunikacijski kanali i signali

Teorija informacije

Signali

- signal pojava koja opisuje neku fizikalnu veličinu
 - u električkim sustavima ta veličina je napon ili struja
- signal se matematički prikazuje (modelira) funkcijom neovisne varijable t, t []
 - t najčešće predstavlja vrijeme
 - funkcija x(t), x: $t \rightarrow x(t)$
 - promatramo isključivo realne signale: $x: \square \rightarrow \square$
- poseban naglasak bit će stavljen na
 - signale u kontinuiranom vremenu
 - na snagu i energiju signala

Kontinuirani i diskretni signali

- signal u kontinuiranom vremenu
 - ako je t kontinuirana varijabla
 - kraći naziv: kontinuirani signal
 - primjer: $x(t) = A \cdot \sin(20 ft)$
 - f frekvencija signala x(t), A amplituda signala
- signal u diskretnom vremenu
 - ako varijabla t poprima vrijednosti isključivo u t
 kT
 - $T \square \square$, $T \ge 0$, k $\square \square$
 - označava se kao $\{x_k\}$ ili x[k] = x[kT]
 - kraći naziv: diskretni signal

Primjeri kontinuiranih i diskretnih signala

a – kontinuirani signal, b – diskretni signal

Analogni i digitalni signali

- promatramo vrijednosti koje signal poprima
- ako neki signal u kontinuiranom vremenu, x(t), može poprimiti bilo koju vrijednost unutar kontinuiranog intervala (a, b), a, b
 tada se takav signal naziva analogni signal
 - primjer analognog signala: $x(t) = A \cdot \sin(2\pi ft)$
 - poprima bilo koju vrijednost na intervalu [-A, A]:
 - $x(t) \square [-A, A]$

Analogni i digitalni signali (II)

- neka je $\{a_1, a_2, ..., a_N\}$ konačan skup od N realnih brojeva
- digitalni signal može u bilo kojem trenutku poprimiti samo jednu od N mogućih vrijednosti iz tog skupa: $x(t) \ \ \{a_1, a_2, ..., a_N\}$
- ako neki signal u diskretnom vremenu, x[n], može poprimiti samo konačan broj različitih vrijednosti, tada se takav signal naziva digitalni signal
- primjer: binarni signal

Teorija inforbisojem trenutku može poprimiti jedinus 46

Primjeri analognog i digitalnog signala

a – analogni signal, b – digitalni signal

Deterministički i slučajni signali

- deterministički signal
 - vrijednosti x(t) su u potpunosti specificirane u svakom vremenskom trenutku
 - deterministički signal može biti modeliran poznatom funkcijom vremena t
- slučajni signal
 - u bilo kojem vremenskom trenutku signal poprima neku slučajnu vrijednost i stoga se karakteriziraju statistički
 - modelira se pomoću slučajnog procesa
- signale u kontinuiranom vremenu dijelimo na periodične i neperiodične signale

Srednja snaga determinističkih signala

napon u(t), odnosno struja i(t) na otporniku od R oma [] proizvodi energiju E, odnosno srednju snagu P

$$E = Ri^{2}(t)dt = Ri^{2}(t)dt = Ri^{2}(t)dt$$
 [Ws],

$$P = \lim_{T = 0} \prod_{i=1}^{1} \prod_{j=1}^{T} Ri^{2}(t) dt [W].$$

- u nastavku napon, odnosno struja x(t)
- R = 1 om

Periodični signali

- periodični signal: x(t) = x(t + T), [t]
 - T je realna konstanta
 - neka je T_0 najmanji T za kojeg vrijedi gornja jednakost
 - $\blacksquare T_0$ se naziva osnovni (fundamentalni) period signala x(t)
- neperiodični signal ne zadovoljava $x(t) = \mathbf{Y}_{b-1}^{\square} c_k e^{jk\omega_0 t}, \omega_0 = 2\pi f_0$ gornje svojstvo

razvoj u Fourirerov red
$$c_{k} = \prod_{T_{0}} \sum_{T_{0}} x(t)e^{-jk\omega_{0}t}dt \quad x(t) \bar{\tau} \quad \mathbf{Y}_{k=-1} \quad c_{k}\delta(f-kf_{0}) = X(f)$$

Diracova delta funkcija

definicija

$$\delta(t) \Box 0$$
 za $t=0$

i , $t\Box$ \Box ,

$$\delta(t) = 0$$
 za $t \square 0$

svojstva

$$\int_{0}^{1} \delta(t) dt = 1$$

■ neka *x*: 🛛 🗎 🔻

Spektar periodičnog signala

- spektar periodičnog signala x(t) je diskretan
 - poprima vrijednosti samo za diskretne vrijednosti frekvencije: $f_k = k/T_0$, $k \square$
 - u općenitom slučaju c_k su kompleksne veličine i vrijedi $c_{-k} = c_k$

$$c_k = c_k e^{-j\theta_k}$$

- apsolutne vrijednosti koeficijenata c_k čine tzv. amplitudni spektar signala x(t)
- \square_k su vrijednosti tzv. faznog spektra signala x(t)

Srednja snaga periodičnog signala

srednja snaga periodičnog signala u kontinuiranom vremenu

$$c_{-k} = c_k$$
 $P = c_0^2 + 2 + \sum_{k=1}^{2} c_k^2$

srednja snaga periodičkog signala jednaka je zbroju srednjih snaga svih harmoničkih komponenti od kojih je signal sastavljen

Primjer 1: spektar i srednja snaga trigonometrijskih signala

- signal $x(t) = A\sin(\pi_0 t)$, $\pi_0 = 2\pi f_0 = 2\pi T_0$
 - spektar X(f) $X(f) = -j\frac{A}{2} * (f f_0) \delta(f + f_0) *$
- signal $x(t) = A\cos(\pi_0 t)$
 - spektar X(f) $X(f) = \frac{A}{2} \Re (f f_0) + \delta (f + f_0) \Re$
 - –j u izrazu za spektar sinusnog signala potječe od faznog kašnjenja funkcije sinus u odnosu na funkciju kosinus: sin(x) = cos(x 1/2), x = 1/2.

Spektar kosinusnog i sinusnog signala

a – kosinusni signal, b – sinusni signal

Primjer 2: periodičan slijed pravokutnih impulsa

Primjer 2: periodičan slijed pravokutnih impulsa (II)

- spektar periodičkog slijeda pravokutnih impulsa) diskretan
 - komponente c_k pojavljuju samo na diskretnim frekvencijama k/T_0 [Hz], k [] [].

$$x(t) = A \frac{\tau}{T} \sum_{k=-1}^{\infty} \frac{\sin(k\omega_0 \tau/2)}{k\omega_0 \tau/2} e^{jk\omega_0 t} = A \frac{\tau}{T} + 2 \frac{\sin(k\omega_0 \tau/2)}{k\omega_0 \tau/2} \cos(k\omega_0 t)$$

Spektar periodičnog slijeda pravokutnih impulsa

Neperiodični signali

I snaga i energija signala x(t)

spektar signala x(t), X(f) – Fourierova transformacija.

transformacija
$$X(t) = \mathbf{x}(t)e^{-j\omega t}dt$$
 ili $X(\omega) = \mathbf{x}(t)e^{-j\omega t}dt$, $\omega = 2\pi f$

Fourirerov transformacijski par

$$x(t) \bar{\tau} \quad X(f) \text{ ili } x(t) \bar{\tau} \quad X(\omega)$$

Neperiodični signali (II)

amplitudni i fazni spektar

$$X(f) = X(f) e^{j\theta(f)}$$

prikaz signala pomoću poznatog spektra

$$x(t) = X(f)e^{j2\pi ft}df \text{ ili } x(t) = \frac{1}{2\pi}X(\omega)e^{j\omega t}d\omega$$

energija neperiodičnog signala (Parsevalov teorem)

teorem)
$$E = \sum_{t=0}^{2} x(t)^{2} dt = \sum_{t=0}^{2} X(f)^{2} df = \sum_{t=0}^{2} X(\omega)^{2} d\omega$$

Razredi neperiodičnih signala

- signali koji imaju konačnu ukupnu energiju, tj. E < []</p>
 - takvi signali moraju imati srednju snagu jednaku nuli;
 - primjer: signal x(t) čija je vrijednost jednaka 1 u intervalu $0 \le t \le 1$, a 0 izvan tog intervala
 - za takav signal vrijedi E = 1, P = 0;
- signali koji imaju konačnu srednju snagu veću od nule
 - ako je P > 0, tada je E = 0;
- signali kojima su i srednja snaga i ukupna energija beskonačne

Primjer: Diracov impuls

spektar Diracovog impulsa

$$\Delta(f) = \prod_{1}^{\square} \delta(t)e^{-j2\pi ft}dt = e^{0} = 1$$

promotrimo funkciju $x(t) = K \mathbb{Z}(t), k \mathbb{Z}$

$$X(f) = \prod_{n=1}^{\infty} K\delta(t)e^{-j2\pi ft}dt = Ke^{0} = K$$

Primjer: pravokutni impuls

definicija pravokutnog impulsa

spektar pravokutnog impulsa

$$X(f) = \sum_{t=0}^{\infty} x(t)e^{-j2\pi ft}dt = A \sum_{t=0}^{\infty} e^{-j2\pi ft}dt = A\tau \frac{\sin(2\pi f\tau/2)}{2\pi f\tau/2}$$

energija pravokutnog impulsa

$$E = \mathbf{r}^2 \mathbf{x}^2 (t) dt = \mathbf{r}^2 \mathbf{X} (f)^2 df = A^2 \tau$$

srednja snaga pravokutnog impulsa

jednaka nuli

Spektar pravokutnog impulsa

- spektar ima maksimalnu vrijednost za frekvenciju f = 0 Hz i iznosi $X(0) = A \mathbb{Z}$
- spektar prolazi kroz nulu u točkama $f_k = k/\mathbb{Z}$, $k \mathbb{D} \mathbb{D}$.

Slučajni signali

- slučajni proces X(t) je familija slučajnih varijabli $\{X(t), t \ \square \ \}$
- srednja vrijednost slučajnog procesa

$$\mu_X(t) = E \Re(t) \Re \prod_{n=1}^{\infty} x f_X(x,t) dx$$

- $f_X(x,t)$ je funkcija gustoće vjerojatnosti prvog reda slučajnog procesa X(t)
- autokorelacijska funkcija i autokovarijanca slučajnog procesa $X(t)_{R_X(t_1,t_2)=E} (t_1) X(t_2)$

$$C_{X}\left(t_{1},t_{2}\right)=E\left\{ \left(t_{1}\right)-\mu_{X}\left(t_{1}\right)\right\} \left(t_{2}\right)-\mu_{X}\left(t_{2}\right)\right\} =R_{X}\left(t_{1},t_{2}\right)-E\left(t_{1}\right)\right\} \left(t_{2}\right)$$

Stacionarni slučajni procesi

ako je slučajni proces X(t) stacionaran u širem smislu, tada zadovoljava sljedeće uvjete $E(t) \Leftrightarrow \mu_X, \forall t \square \ \square$

$$R_{X}\left(t_{1},t_{2}\right)=K_{X}\left(\mathbf{r}_{2}-t_{1}\right)=K_{X}\left(\boldsymbol{\tau}\right),\;\forall t_{1},t_{2}\;\square\;\;\square\;\;,$$

neka je autokorelacijska funkcija slučajnog procesa u kontinuiranom vremenu, X(t), koji je stacionaran u širem smislu definirana kao

$$R_X(\tau) = E \Re(t) X(t+\tau) \Re$$

neka vrijedi: $R_X(-B) = R_X(B)$, $|R_X(B)| = R_X(B)$ neka vrijedi: $R_X(0) = E[X^2(t)] \ge 0$

Spektralna gustoća snage slučajnog signala

$$S_X(f) = \prod_{n=1}^{\infty} R_X(\tau) e^{-j2\pi f \tau} d\tau [W]$$

ako je spektralna gustoća snage $S_{\chi}(f)$ poznata

$$R_X(\tau) = \prod_{i=1}^{n} S_X(f) e^{j2\pi f\tau} df$$

srednja snaga P slučajnog signala modeliranog stacionarnim slučajnim procesom

$$P = E \Re^{2}(t) \Re R_{X}(0) = \prod_{n=1}^{d} S_{X}(f) df$$

Primjer: Gaussov bijeli šum

- slučajan proces W(t) nazivamo bijeli šum ako su njegove vrijednosti, tj. slučajne varijable u trenucima t_i i t_j, t_i l t_j, međusobno potpuno nekorelirane
 - tada je autokovarijanca $C_X(ti, tj)$ jednaka nuli kad god vrijedi $t_i \, \Box \, t_j$
 - ako su slučajne varijable $W(t_i)$ i $W(t_j)$ istovremeno nekorelirane i neovisne, tada se radi o striktno bijelom šumu
 - bijeli šum u kontinuiranom vremenu je stacionarni slučajni proces u širem smislu, W(t)

Gaussov bijeli šum (II)

srednja vrijednost bijelog šuma je jednaka nuli $R_w\left(au
ight) = \sigma^2 \delta\left(au
ight)$

$$S_W(f) = \sigma^2 \prod_{\square} \delta(t) e^{-j2\pi ft} dt = \sigma^2$$

Gaussov bijeli šum (III)

- slučajni proces nazivamo **bijeli Gaussov šum** ako su zadovoljena prethodno
 navedena svojstva bijelog šuma i ako su
 slučajne varijable slučajnog procesa
 Gaussove
 - za neku slučajnu varijablu X kažemo da ima Gaussovu razdiobu ako je njena funkcija gustoće vjerojatnosti definirama $e^{-(x-\mu_X)/2\sigma_X^2}$

$$\operatorname{var}(X) = E\{(X - E[X])^2\} = E *^2 * \{E[X]\}^2 = \sigma_X^2$$

varijanca ili disperzija

$$\operatorname{var}(X) = E \mathcal{F}^2 \mathcal{F} \sigma_X^2$$

- ako vrijedi E[X] = 0, tada je
 - tj. varijanca je jednaka srednjoj snazi signala na otporu

Širina spektra signala

- ovisno o pojasu frekvencija kojeg zauzima amplitudni spektar signala, signale dijelimo na
 - a) signale u osnovnom frekvencijskom pojasu

- primjer: širina spektra pravokutnog signala
 - slajd 24

Komunikacijski kanal

- komunikacijski kanal [] prijenosni medij
- prijenosni mediji
 - žični
 - upredene parice
 - koaksijalni kabeli
 - vodovi energetske mreže
 - optičke niti
 - bežični
 - radijski, mikrovalni ili optički (ovisi o frekvenciji)
- primjer komunikacijskog kanala
 - telefonski kanal: od 300 do 3400 Hz
- po definiciji ITU-T-a kanal je sredstvo za jednosmjerni prijenos između predajnika i prijemnika

Klasifikacija komunikacijskih kanala

- linearni i nelinearni kanali
 - telefonski kanal je primjer linearnog kanala
 - satelitski kanal je obično nelinearan (ali ne uvijek)
- neovisni o vremenu ili ovisni o vremenu
 - primjer vremenski nepromjenjivog kanala: optička nit
 - primjer vremenski promjenjivog kanala: radijski kanal u pokretnoj komunikacijskoj mreži
- ograničenja kanala
 - po širini prijenosnog pojasa (primjer: telefonski kanal) i
 - po raspoloživoj snazi predajnika (primjer: optički

Teorija informacios)

33 od 46

Matematički model kanala

- sustav definiramo kao preslikavanje skupa F (ulaz u sustav) u skup G (izlaz iz sustava)
 - u kontekstu komunikacija sustav je proces uslijed kojeg su ulazni signali transformirani djelovanjem sustava u izlazne signale
 - **kontinuiran** ili **analogni** sustav elementi skupova *F* i *G* funkcije kontinuirane varijable
 - diskretan ili digitalni sustav elementi skupova F i G funkcije diskretne varijable
 - kanal je moguće modelirati sustavom u kontinuiranom ili diskretn sustav u kontinuiranom vremenu x(t) x(t) x(t)

Linearni i vremenski nepromjenjivi kanali

kanal je linearan ako vrijedi:

kanal je vremenski nepromjenjiv ako vrijedi:

Impulsni odziv i prijenosna funkcija kanala

- h(t) impulsni odziv sustava
 - odziv sustava na pobudu Diracovim impulsom

$$y(t) = 2 x(\tau) h(t-\tau) d\tau = 2 h(\tau) x(t-\tau) d\tau$$

$$y(t) = x(t) * h(t) = h(t) * x(t)$$

 \blacksquare H(f) – impulsni odziv sustava

$$H(f) = \prod_{n=1}^{\infty} h(t) e^{-j2\pi ft} dt$$

Svojstva prijenosne funkcije

$$H(f) = H(f) e^{-j\theta(f)}$$

amplitudni i fazni odzH(-f) = H(f), $\theta(-f) = -\theta(f)$.

$$h(t) = \prod_{i=1}^{d} H(f) e^{j2\pi ft} df$$

 impulsni odziv i prijenosna funkcija LTIsustava čine Fourierov transformacijski par

$$h(t) \bar{\tau} H(f)$$

Slučajni signali i LTI-sustav

- pretpostavka: na ulazu LTI-sustava prijenosne funkcije H(f) djeluje signal obilježja stacionarnog slučajnog procesa X(t)

 - spektralna gustoća snape $S_X(f)$

$$S_{Y}(f) = S_{X}(f)H(f)$$

 prolaskom kroz LTI-sustav, slučajni proces zadržava stacionarnost i na izlazu sustava

Širina prijenosnog pojasa kanala

- Širina prijenosnog pojasa kanala je područje frekvencija u kojem komunikacijski kanal propušta signale sa svog ulaza na izlaz
- realni kanali prigušuju signale koje prenose
 - srednja snaga izlaznog signala uvijek je manja od srednje snage ulaznog signala
 - vrijedi i za energiju signala
- prigušenje kanala A(f) = 1/|H(f)|
- kanal djeluje i na fazu signala
 - faze frekvencijskih komponenti ulaznog signala se razlikuju od faza frekvencijskih komponenti izlaznog signala – disperzija signala

Širina prijenosnog pojasa kanala (II)

- na ulaz LTI-kanala dovedemo signal x(t) čiji je spektar X(f) definiran kao X(f) = X(f) = X(f)
- za spektar signala na izlazu LTI-kanala, Y(f), vrijedi Y(f) = Y(f) = Y(f)

$$Y(f) = X(f)H(f),$$

$$\vartheta(f) = \varphi(f) - \theta(f),$$

kanal propušta one frekvencije na kojima je njegov amplitudni odziv veći od nule

Oblik amplitudnog odziva i vrste kanala

- a) niskopropusni kanal, b) visokopropusni kanal
- o) pojasnop popusni kanal, d) pojasna brana

Primjer: RC-krug

- amplitudni odziv RC-kruga: $H(f) = U_2(f)$ $U_1(f) = \sqrt{1 + (2\pi fRC)^2}$
- u praksi se širina prijenosnog pojasa računa pomoću tzv. točaka prigušenja 3 decibela

$$20 \log H(f) = 20 \log$$

- |H(0)| = 1, pa vrijedi $20\log(|H(0)|) = 0$ dB
- na f na kojoj $|H(f)| \approx 0,707$ amplitudni je odziv za 3 dB slabiji

Idealan niskopropusni kanal

$$h(t) = \mathbf{P}H(f) e^{j2\pi ft} df = \mathbf{P}_g e^{-j2\pi f\tau} e^{j2\pi ft} df = 2f_g \sin \mathbf{P}\pi f_g(t-\tau)$$

- svi su realni sustavi kauzalni, tj. odziv sustava ne može početi prije pobude
- u stvarnosti niskopropusni kanal ne može biti striktno ograničen na neki pojas frekvencija

Ograničavanje signala u vremenu

gornje razmatranje vrijedi i kad bi na apscisi na slici a) bila frekvencija, a na slici

b) vrijeme

Praktično određivanje širine prijenosnog pojasa

- kako bi u praksi mogli odrediti točnu širinu prijenosnog pojasa kanala, B, potrebno je definirati iznos prigušenja iznad kojeg smatramo da je prijenosna funkcija kanala praktično jednaka nuli
 - za niskopropusni kanal
 - ullet potrebno je definirati frekvenciju $f_{
 m g}$ takvu da vrijedi
 - $|X(f)| \square 0$ za |f| > fg, B = fg
 - za pojasnopropusni kanal
 - potrebno je definirati frekvencije f_d i f_g takve da vrijedi | X(f)| > 0 samo ako je f_g > | f | > f_d , $B = f_g f_d$

Veza između širine prijenosnog pojasa kanala i širine spektra signala

- signal prije prijenosa kanalom oblikuje kako bi se svojim spektrom što bolje uklopio u prijenosni pojas kanala
 - modulacijski postupci
 - linijsko kodiranje