RF and Microwave Solid State Devices (CRL722): CARE Major Test, I-Semester (2008-09)

November 22, 2008

Duration: 2 Hours, Maximum marks: 55

Note: All the questions are compulsory. The values of various constants and some formule are given at the end, and can be used wherever required.

Question No. 1

- 1. State the conditions under which a MOS transistor is called "ideal".
- Define the threshold voltage (V_T) of a MOS transistor. Derive an expression for V_T for a non-ideal MOS. State and justify the assumptions made.
- 3. Explain the terms: "flat band conditions" and "flat band voltage". (4)

Question No. 2

- i. Draw a schematic diagram showing various current components in an n-p-n transistor biased in "normal" mode of operation. (5)
- ii. Based on this diagram, write expressions for emitter, base and collector currents. (5)
- iii. Further, derive expressions for common base current gain (α), transport factor (β_T) and injection efficiency (γ) (5)

Ouestion No. 3

Derive an expression for the totel current in a forward biased p-n junction. Give reascuring and justification for the method used in total current calculation.

Question No. 4

- i. Calculate the threshold voltage of an Al-gate NMOSFET having 0.1 μm thick gate exide made on P-silicon having 10¹⁷ cm⁻³ uniform doping and fixed charge (Q_f / q) value of 10¹¹ cm⁻².
- ii. In CMOS technology, explain the role of fixed oxide charge (Q_f) and oxide thickness in the field area in parasitic transistor formation. (6)

Formulae: $Q_{SDMax} = -[4 q \epsilon_{Si} N_A \phi_f]^{1/2}$

Constants:

 $q = 1.6 \times 10^{-19} \text{ C}$, $\epsilon_0 = 8.854 \times 10^{-14} \text{ F/cm}$, kt/q at room tem. = 0.026V

Silicon at Room Tem.: $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$, $E_g = 1.1 \text{ eV}$,

Relative dielectric constant (ε or k): Si = 11.7, SiO₂ = 3.8

Al-SiO₂ energy barrier ($\phi_{M,OX}$) = 3.2 eV: $\phi_{S,OX}$ (also called χ) = 3.25 eV