

Autonomously Attaching Camera Trap

Raul Galvez, Quentin MacFarlane, Nils Roede, Jose Santillan Pratt School of Engineering, Duke University

Design Objective

To create a device that autonomously attaches to tree branches in the rainforest. The device will be carried by a drone and should record any wildlife that moves across a selected branch with an integrated camera. Our client will use this device in the Rainforest XPRIZE Competition.

Background and Motivation

Motivation

 Humans scale trees to manually implement cameras, which is dangerous and takes too much time

XPRIZE Competition

Desi o ... v. uriteria

Criteria

Duration

Weight

Durability

Camera Range

Cost

Size

- Teams create novel technology to record and assess the biodiversity in rainforests
- Goal is to better understand and monitor rainforest ecosystems
- Competition only allows contestants to record biodiversity data for 8 hours - solution should cut down the time to setup camera traps

Figure 1. Previous Camera Trap Solution

Target Value

< 1 lb.

rainfall

≥ 30 ft

≥ 8 hours on branch

Total cost < \$100

Fits within < 1 ft³

Lasts for ≥ 8 hours of

Results

Final Solution

- Outer Casing:
 - o 3D-printed PLA box with a slidable panel
- Sides of casing have knobs to connect to finger-jointed clamps
- Clamps:
 - o Finger joints that bend at intervals
 - Rubber strips superglued on the inside of clamps to provide extra grip
 - Fishing wire runs through the clamps to pull the clamps and curl them around branch

Figure 2. Mechanical Components

- · Camera:
 - Camera module for Raspberry Pi
- · Electronics:
 - Distance sensor on bottom of casing senses arrival at the branch
 - spool to tighten clamps

Figure 3. Electrical Components

Testing

Design Criteria	Test	Results
Duration	Leave attached to branch for 8 hours	TBD
Weight	Weigh final solution	1.07 lbs > 1 lb FAIL
Cost	Calculate cost of the solution	\$64.82 < \$100 PASS
Durability	Soak with 204 mL of water	Only a few droplets inside PASS
Size	Measure total volume of solution	0.302 ft ³ < 1 ft ³ PASS
Camera Range	Take pictures at 5 ft intervals up to 30 ft	Image readable at 30 ft PASS

Conclusion

Summary:

 We created a device that autonomously senses when it's set on a branch, contracts its clamps to stay on top of the branch for long periods of time, and takes pictures when it detects animals moving nearby

Future Work:

- Develop integrated method to attach and detach solution to drones
- Refine components to reduce likelihood of failure or damage

Acknowledgements

Dr. Martin Brooke, Client
Dr. Michael Rizk, Professor
Dr. Jennifer West, Professor
Parker Faircloth - Henise, TA
Eric Stach, Technical Mentor
Annie Tighe, Writing Consultant
Murad Maksumov, Lab Manager