1. A method of treating a patient having a cancer comprising administering to said patient a compound having the following formula:

).

Hard Mars Mark

min fina

11114, E. H. 18-19.

ŧş

1,71

$$R_1O$$
 N_1
 N_2
 N_2
 N_3
 N_4
 N_2
 N_4
 N_4

wherein:

R₁ is H; C₁₋₂₄ alkyl; C₂₋₂₄ alkenyl; C₆₋₂₄ aryl; C₅₋₂₀ heteroaromatic ring; C₃₋₂₀ non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N, or S; -C(O)R₆; -C(O)OR₆; -C(O)NHR₆; or an amino acid radical or a dipeptide or tripeptide chain or mimetic thereof, wherein the amino acid radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and Gln, and which in each case is optionally terminated by -R₇;

15

20

R₁ can also be a P(O)(OR')₂ group wherein R' is in each case independently H, C_{1-24} alkyl, C_{2-24} alkenyl, C_{6-24} aryl, C_{7-18} arylmethyl, C_{2-18} acyloxymethyl, C_{3-8} alkoxycarbonyloxymethyl, C_{3-8} S-acyl-2-thioethyl; saleginyl, t-butyl, phosphate or diphosphate;

30

R₁ can also be monophosphate, diphosphate, triphosphate or mimetics thereof;

 R_2

is

R₃ and R₄

10

15

20

geng grang gerag wordy gene result, ft. ft. alesty 1 M. H. L. H. L. H. L. H. Harris merit blacks, bl. of the first control of the control of the control of the the first control of the control of th

122

25

30

35

40

$$R_3R_4N$$

case independently H; are in each alkyl; alkenyl; C_{2-24} C_{6-24} aryl; heteroaromatic ring; C3-20 non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N, or $S; -C(0)R_6; -C(0)OR_6; -C(0)NHR_6;$ or an amino acid radical or a dipeptide or tripeptide chain or mimetic thereof wherein the amino acids radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and which and Gln, in each case optionally terminated by -R7;

is, in each case, H, C_{1-20} alkyl, C_{2-20} alkenyl, C_{0-1} 20 alkyl- C_{6-24} aryl, $C_{0,20}$ alkyl- C_{5-20} heteroaromatic ring, non-aromatic ring optionally containing heteroatoms selected from the group comprising O, N or S; and

is, in each case, C_{1-20} alkyl, C_{2-20} alkenyl, C_{6-10} R_7 aryl, C₅₋₂₀ heteroaromatic ring, C₃₋₂₀ non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N or S, $-C(0)R_6$, $-C(0)OR_6$, and

30

35

THE RESERVE AND THE RESERVE SHEET SH

- X and Y are each independently Br, Cl, I, F, OH, OR_3 or NR_3R_4 and at least one of X and Y is NR_3R_4 ; or a pharmaceutically acceptable salt thereof.
- 2. A method according to claim 1, wherein at that least one of R_1 , R_3 and R_4 is other than H, and if R_3 and R_4 are both H and R_1 is $-C(0)R_6$, $-C(0)OR_6$ or $-C(0)NHR_6$, then R_6 is other than H.
- 3. A method according to claim 1, wherein R_2 is of the 15 formula:

$$0 \\ N \\ R_3 \\ R_5$$

4. A method of treating a patient with cancer, wherein the cancer cells are deficient in nucleoside or nucleobase transporter proteins, comprising administering to said patient a compound according to the following formula:

wherein:

R₁ is H; $\mathring{\mathbb{C}}_{1-24}$ alkyl; C_{2-24} alkenyl; C_{6-24} aryl; C_{5-20} heteroaromatic ring; C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N, or S; -C(O)R₆; -C(O)OR₆; -C(O)NHR₆; or an amino acid radical or a dipeptide or tripeptide chain or mimetic

thereof wherein the amino acid radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and Gln, and which in each case is optionally terminated by $-R_7$;

10

 R_1 can also be a $P(O)(OR')_2$ group wherein R' is in each case independently H, C_{1-24} alkyl, C_{2-24} alkenyl, C_{6-24} aryl, C_{7-18} arylmethyl, C_{2-18} acyloxymethyl, C_{3-8} alkoxycarbonyloxymethyl, or C_{3-8} S-acyl-2-thioethyl, saleginyl, t-butyl, phosphate or diphosphate;

15

 R_1 can also be monophosphate, diphosphate or triphosphate or mimetics thereof;

20

[2]

the transmission of the same transmission of t

)8 |-=6 R_2 is

25

R.R.N.N.N.

R₃ and R₄ are

in

X

each case independently H;

Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn

30

35

alkenyl; alkyl; C_{2-24} C_{6-24} aryl; C_{5-18} heteroaromatic ring; C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N, or S; $-C(0)R_6$; $-C(0)OR_6$; $-C(0)NHR_6$; or an amino acid radical or a dipeptide or tripeptide chain or mimetic thereof wherein the amino acid radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile,

15

20

25

30

35

40

- and Gln, and which in each case is optionally terminated by $-R_7$;
 - R₆ is, in each case, H, C_{1-24} alkyl, C_{2-24} alkenyl, C_{0-20} alkyl- C_{6-24} aryl, C_{0-20} alkyl- C_{5-18} heteroaromatic ring, C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N or S;
 - R_7 is, in each case, $C_{1\text{--}20}$ alkyl, $C_{2\text{--}20}$ alkenyl, $C_{6\text{--}10}$ aryl, $C_{5\text{--}10}$ heteroaromatic ring, $C_{3\text{--}20}$ non-aromatic ring optionally containing 1-3 heteroatoms selected

from the group comprising O, N or S, $-C(O)R_6$, $-C(O)OR_6$, and

X and Y are each independently Br, Cl, I, F, OH, OR₃ or NR_3R_4 and at least one of X and Y is NR_3R_4 ; or a pharmaceutically acceptable salt thereof.

- 5. A method according to claim 4, wherein at least one of R_1 , R_3 and R_4 is other than H, and if R_3 and R_4 are both H and R_1 is $-C(O)R_6$, $-C(O)OR_6$, or $-C(O)NHR_6$ then R_6 is other than H.
- 6. A method according to claim 4, wherein said cancer cells are deficient in one or more nucleoside or nucleobase transporter proteins that provide sodium-independent, bidirectional equilibrative transport.
- 7. A method according to claim 4, wherein said cancer cells are deficient in nucleoside or nucleobase transporter proteins that provide sodium-dependent, inwardly directed concentrative processes.
- 8. A method according to claim 7, wherein said cancer cells are deficient in nucleoside or nucleobase transporter proteins that provide sodium-dependent, inwardly directed concentrative processes.

- 5 9. A method according to claim 4, wherein said cancer cells are deficient in es transporter proteins, ei transporter proteins or both.
- 10 10. A method according to claim 4, wherein said cancer cells are deficient in cit transporter proteins, cib transporter proteins, cif transporter proteins, csg transporter proteins, cs transporter proteins, or combinations thereof.
 - 11. A method according to claim 4, wherein R_2 is of the formula:

12. A method of treating patients with cancer comprising administering to said patient a compound of the following formula:

wherein:

15

20

30

35

40

the man Halla that

R₁ is H; C_{1-24} alkyl; C_{2-24} alkenyl; C_{6-24} aryl; C_{5-20} heteroaromatic ring; C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N, or S; $-C(0)R_6$; $-C(0)OR_6$; $-C(0)NHR_6$; or an amino acid radical or a dipeptide or tripeptide chain or mimetic thereof wherein the amino acids radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and Gly, and which in each case is optionally terminated by $-R_7$;

can also be a P(O)(OR')2 group wherein R' is in R_1 independently H, each case C_{1-24} alkyl, alkenyl, C_{6-24} aryl, C_{7-18} arylmethyl, acyloxymethyl, C₃₋₈ alkoxycarbonyloxymethyl, C₃₋₈ S-acyl-2-thioethyl, saleqinyl, t-butyl, phosphate or diphosphate;

 R_1 can also be monophosphate, diphosphate, triophosphate or mimetics thereof;

15

10

 R_2 is

20

The state of the s

122

25

30

R₃ and R₄ are in each case independently H; C_{1-20} C_{2-20} alkenyl; C_{6-10} aryl; C₅₋₁₀ alkyl; heteroaromatic ring; C₃₋₂₀ non-aromatic ring containing optionally 1-3 heteroatoms selected from the group comprising O, N, or S; $-C(0)R_6$; $-C(0)OR_6$; $-C(0)NHR_6$; or an amino acid radical or dipeptide or tripeptide chain or mimetic thereof wherein the amino acids radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu,

20

25

30

35

Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and Gln, and at least one amino acid is not Gly, and which in each case is optionally terminated by -R₇;

R₆ is, in each case, H, C₁₋₂₀ alkyl, C₂₋₂₀ alkenyl, C₀₋₁₀

alkyl- $C_{6\text{--}10}$ aryl, $C_{0\text{--}20}$ alkyl- $C_{5\text{--}10}$ heteroaromatic ring, $C_{3\text{--}20}$ non-aromatic ring optionally containing

1-3 heteroatoms selected from the group comprising O, N or S;

 R_7 is, in each case, $C_{1\text{--}20}$ alkyl, $C_{2\text{--}20}$ alkenyl, $C_{6\text{--}10}$ aryl, $C_{5\text{--}10}$ heteroaromatic ring, $C_{3\text{--}20}$ non-aromatic ring optionally containing 1-3 heteroatoms selected

from the group comprising O, N or S, $-C(O)R_6$, $-C(O)OR_6$, and

X and Y are each independently Br, Cl, I, F, OH, OR₃ or NR₃R₄ and at least one of X and Y is NR₃R₄; with the proviso that least one of R₁, R₃ and R₄ is other than H, and if R₃ and R₄ are both H and R₁ is $-C(0)R_6$, $-C(0)OR_6$, or $-C(0)NHR_6$ then R₆ is other than H; or

a pharmaceutically acceptable salt thereof; wherein said compound is administered at least daily for a period of 2 to 10 days.

13. A method according to claim 12, wherein R_2 is of the formula:

40 14. A method of treating a patient with cancer wherein the cancer is resistant to cytarabine, said method

 R_1

is H; C_{1-24} alkyl; C_{2-24} alkenyl; C_{6-24} aryl; C_{5-20}

15

20

gent, judy grap, court

[]]

:[]

1.75

25

2

30

35

40

R₁ can also be a P(O)(OR')₂ group wherein R' is in each case independently H, C_{1-24} alkyl, C_{2-24} alkenyl, C_{6-24} aryl, C_{7-18} arylmethyl, C_{2-18} acyloxymethyl, C_{3-8} alkoxycarbonyloxymethyl, C_{3-8} S-acyl-2-thioethyl, saleginyl, t-butyl, phosphate or diphosphate;

case is optionally terminated by $-R_7$;

 R_1 can also be monophosphate, diphosphate, triphosphate or mimetics thereof;

 R_2 is

 R_3 and R_4 are in each case independently H; C_{1-24} alkyl; C_{2-24} alkenyl; C_{6-24} aryl; C_{5-18}

25

30

35

ŧ

|seb

100

5

10

15

heteroaromatic ring; C₃₋₂₀ non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N, or S; $-C(0)R_6$; $-C(0)OR_6$; $-C(0)NHR_6$; or an amino acid radical or a dipeptide or a tripeptide chain or mimetic thereof wherein the amino acids are selected from the group comprising Glu, Gly, Ala, Val, Leu, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and Gln, and which in each case optionally terminated by $-R_7$;

is, in each case, H, C_{1-20} alkyl, C_{2-20} alkenyl, C_{0-1} R_6 $_{20}$ alkyl-C $_{6\text{--}24}$ aryl, C $_{0\text{--}20}$ alkyl-C $_{5\text{--}24}$ heteroaromatic C_{3-24} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N or S;

 R_7 is, in each case, C_{1-24} alkyl, C_{2-24} alkenyl, C_{6-24} aryl, C_{5-24} heteroaromatic ring, C_{3-20} non-aromatic 1-3 optionally containing selected from the group comprising O, N or S, $-C(0)R_{6}$, $-C(0)OR_{6}$; and

X and Y are each independently Br, Cl, I, F, OH, OR3 or NR₃R₄ and at least one of X and Y is NR₃R₄; or a pharmaceutically acceptable salt thereof.

15. A method according to claim 14, wherein at least one of R_1 , R_3 and R_4 is other than H, and if R_3 and R_4 are both H and R_1 is $-C(0)R_6$; $-C(0)OR_6$, or $-C(0)NHR_6$ then R_6 is other than H.

A method according to claim 14, wherein R_2 is of the formula:

II.

17. A method of treating a patient with cancer comprising:

determining that a compound enters cancer cells predominately by passive diffusion; and administering said compound to said patient; wherein said compound is a compound according to the formula:

$$R_1O$$
 R_2
 R_1O
 R_2
 R_2

15

20

10

wherein:

is H; C_{1-24} alkyl; C_{2-24} alkenyl; C_{6-24} aryl; C_{5-24} heteroaromatic ring; C_{3-24} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N, or S; $-C(0)R_6$; $-C(0)OR_6$; $-C(0)NHR_6$; or an amino acid radical or dipeptide or tripeptide chain or mimetic thereof wherein the amino acid radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and Gln, and which in each case is

25

The state of the s

452

222

1,77

 R_1 can also be a P(O)(OR')₂ group wherein R' is in each case independently H, C_{1-24} alkyl, C_{2-24} alkenyl, C_{6-24} aryl, C_{7-24} arylmethyl, C_{2-18} acyloxymethyl, C_{3-8} alkoxycarbonyloxymethyl, C_{3-8} S-acyl-2-thioethyl, saleginyl, t-butyl, phosphate or diphosphate;

optionally terminated by $-R_7$;

35

30

 R_1 can also be monophosphate, diphosphate, triphosphate or mimetics thereof;

 R_2 is

15

20

25

$$R_3R_4N$$

independently H; and R4 are in each case alkyl; alkenyl; C1-24 C₆₋₂₄ C5-24 heteroaromatic ring; C₃₋₂₄ non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N, or S; $-C(0)R_6$; $-C(0)OR_6$; $-C(0)NHR_6$; or an amino acid radical or dipeptide or tripeptide chain or mimetic thereof wherein the amino acid radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn Gln, and which in each case optionally terminated by -R7;

- R₆ is, in each case, H, C_{1-24} alkyl, C_{2-24} alkenyl, C_{0-20} alkyl- C_{6-24} aryl, C_{0-20} alkyl- C_{5-24} heteroaromatic ring, C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N or S;
- 30 R₇ is, in each case, C_{1-24} alkyl, C_{2-24} alkenyl, C_{6-24} aryl, C_{5-24} heteroaromatic ring, C_{3-20} nonaromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N or S, $-C(0)R_6$, $-C(0)OR_6$, and
- 35 X and Y are each independently Br, Cl, I, F, OH, OR₃ or NR_3R_4 and at least one of X and Y is NR_3R_4 ; or a pharmaceutically acceptable salt thereof.
- 18. A method according to claim 17, wherein at least one of R_1 , R_3 and R_4 is other than H, and if R_3 and R_4 are both H and R_1 is $-C(0)R_6$ or $-C(0)OR_6$, then R_6 is other than H.

20. A method of treating a patient with cancer comprising:

administering to said patient a compound which has been determined to enter the cancer cells predominately by passive diffusion, wherein said compound is a compound according to the formula:

20

The last training the state of the state of

The state of the s

222

$$R_1O$$
 R_2
 O
 R_2
 O
 O

wherein:

25 R₁

is H; C_{1-24} alkyl; C_{2-24} alkenyl; C_{6-24} aryl; C_{5-24} heteroaromatic ring; C_{3-24} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N, or S; $-C(0)R_6$; $-C(0)OR_6$; $-C(0)NHR_6$; or an amino acid radical or dipeptide or tripeptide chain or mimetic thereof wherein the amino acid radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and Gln, and which in each case is optionally terminated by $-R_7$;

35

30

 R_1 can also be a $P(O)(OR')_2$ group wherein R' is in each case independently H, C_{1-24} alkyl, C_{2-24} alkenyl, C_{6-24} aryl, C_{7-18} arylmethyl, C_{2-18} acyloxymethyl, C_{3-8} alkoxycarbonyloxymethyl, C_{3-8} S-acyl-2-thioethyl, saleginyl, t-butyl, phosphate or diphosphate;

 R_1 can also be monophosphate, diphosphate, triphosphate or mimetics thereof;

 R_2 is

10

15

The street street

man man a m

.[]

===

$$R_3$$
 R_4 R_5 CI Y

$$R_3R_4N$$

$$R_{5}$$
 R_{3}
 R_{4}
 N
 N

. 25

20

30

35

40

each case independently and R₄ are in C_{1-24} alkenyl; aryl; alkyl; C_{2-24} C_{6-24} C_{5-24} heteroaromatic ring; C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N, or S; $-C(0)R_6$; $-C(0)OR_6$; $-C(0)NHR_6$; or an amino acid radical or dipeptide or tripeptide chain or mimetic thereof wherein the amino acid radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn Gln, and which in each optionally terminated by $-R_7$;

R₆ is, in each case, H, C_{1-24} alkyl, C_{2-24} alkenyl, C_{0-20} alkyl- C_{6-24} aryl, C_{0-20} alkyl- C_{5-20} heteroaromatic ring, C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N or S;

 R_7 is, in each case, C_{1-24} alkyl, C_{2-24} alkenyl, C_{6-24} aryl, C_{5-20} heteroaromatic ring, C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms

selected from the group comprising O, N or S, $-C(0)R_{6}$, $-C(0)OR_{6}$; and

X and Y are each independently Br, Cl, I, F, OH, OR3 or NR_3R_4 and at least one of X and Y is NR_3R_4 ; or a pharmaceutically acceptable salt thereof.

10

21. A method according to claim 20, wherein at least one of R_1 , R_3 and R_4 is other than H, and if R_3 and R_4 are both H and R_1 is $-C(0)R_6$; $-C(0)OR_6$ or $-C(0)NHR_6$ then R_6 is other than H.

15

A method according to claim 20, wherein R_2 is of the formula:

1,[] 25

$$0 \qquad N \qquad R_3 R_4 \qquad R_5$$

30

1.75

A method of treating a patient with cancer resistant to troxacitabine, comprising administering to said patient a troxacitabine derivative having a greater lipophilicity than troxacitabine.

35

method according to claim 23, wherein 24. Α said derivative is a compound of the following formula:

40

$$R_1O$$
 R_2
 O
 (I)

wherein:

45

 R_1 is H; C_{1-24} alkyl; C_{2-24} alkenyl; C_{6-24} aryl; C_{5-24} heteroaromatic ring; C₃₋₂₀ non-aromatic optionally containing 1-3 heteroatoms selected from the group comprising O, N, or S; $-C(O)R_6$; $-C(0)OR_6$; $-C(0)NHR_6$; or an amino acid radical or

15

20

14

;=± 25

30

35

40

dipeptide or tripeptide chain or mimetic thereof wherein the amino acid radicals are selected from the group comprising Glu, Gly, Ala, Val, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and Gln and the amino acid chain contains at least one amino acid other than Gly, and which in each case is optionally terminated by $-R_7$;

 R_1 can also be a P(O)(OR')2 group wherein R' is in each case independently H, C₁₋₂₄ alkyl, C_{2-24} alkenyl, C_{6-24} aryl, C_{7-24} arylmethyl, acyloxymethyl, C_{3-8} alkoxycarbonyloxymethyl, C_{3-8} S-acyl-2-thioethyl, saleginyl, t-butyl, phosphate or diphosphate;

 R_1 can be monophosphate, diphosphate, triphosphate or mimetics thereof;

is R_2

$$N$$
 N
 N
 N
 N
 N
 N
 N
 N

R₃ and R₄ are in each case independently H; C_{1-20} alkyl; C_{2-20} alkenyl; C_{6-10} aryl; C₅₋₁₀ heteroaromatic ring; C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms

selected from the group comprising O, N, or S; $-C(0)R_6$; $-C(0)OR_6$; $-C(0)NHR_6$; or an amino acid radical or dipeptide or tripeptide chain or mimetic thereof wherein the amino acid radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and Gln and the amino acid chain contains at least one amino acid other than Gly, and which in each case is optionally terminated by $-R_7$;

R₆ is, in each case, H, C_{1-20} alkyl, C_{2-20} alkenyl, C_{0-20} alkyl- C_{6-10} aryl, C_{0-20} alkyl- C_{5-10} heteroaromatic ring, C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N or S;

R₇ is, in each case, C_{1-20} alkyl, C_{2-20} alkenyl, C_{6-10} aryl, C_{5-10} heteroaromatic ring, C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N or S, $-C(0)R_6$, $-C(0)OR_6$; and

X and Y are each independently Br, Cl, I, F, OH, OR₃ or NR₃R₄ and at least one of X and Y is NR₃R₄; with the proviso that least one of R₁, R₃ and R₄ is other than H, and if R₃ and R₄ are both H and R₁ is $-C(O)R_6$, $-C(O)OR_6$ or $-C(O)NHR_6$, then R₆ is other than H; or a pharmaceutically acceptable salt thereof.

35 25. A method according to claim 24, wherein R_2 is of the formula:

NR₃R₄

25

30

26. A method of treating a patient with cancer comprising:

determining that a compound does not enter cancer cells predominately by nucleoside or nucleobase transporter proteins; and administering said compound to said patient; wherein said compound is a compound according to the formula:

15

20

25

wherein:

R₁ is H; C₁₋₂₄ alkyl; C₂₋₂₄ alkenyl; C₆₋₂₄ aryl; C₅₋₂₀ heteroaromatic ring; C₃₋₂₀ non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N, or S; -C(O)R₆; -C(O)OR₆; -C(O)NHR₆; or an amino acid radical or dipeptide or tripeptide chain or mimetic thereof wherein the amino acid radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and Gln, and which in each case is optionally terminated by -R₇;

30

R₁ can also be a P(O)(OR')₂ group wherein R' is in each case independently H, C_{1-24} alkyl, C_{2-24} alkenyl, C_{6-24} aryl, C_{7-24} arylmethyl, C_{2-17} acyloxymethyl, C_{3-8} alkoxycarbonyloxymethyl, C_{3-8} S-acyl-2-thioethyl, saleginyl, t-butyl, phosphate or diphosphate;

35

 R_1 can also be monophosphate, diphosphate, triphosphate or mimetics thereof;

R₂ is

10

15

20

25

30

35

40

each case independently H; R₃ and R₄ are in C_{2-24} alkenyl; alkyl; C_{6-24} aryl; C_{5-24} heteroaromatic ring; C3-20 non-aromatic ring containing 1-3 optionally heteroatoms selected from the group comprising O, N, or S; $-C(0)R_6$; $-C(0)OR_6$; $-C(0)NHR_6$; or an amino acid radical or dipeptide or tripeptide chain or mimetic thereof wherein the amino acid radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn Gln, and which in each case optionally terminated by -R7;

R₆ is, in each case, H, C_{1-24} alkyl, C_{2-24} alkenyl, C_{0-20} alkyl- C_{6-24} aryl, C_{0-20} alkyl- C_{5-20} heteroaromatic ring, C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N or S;

 R_7 is, in each case, C_{1-24} alkyl, C_{2-24} alkenyl, C_{6-24} aryl, C_{5-20} heteroaromatic ring, C_{3-20} non-aromatic

10

15

ring optionally containing 1-3 heteroatoms selected from the group comprising O, N or S, $-C(0)R_6$, $-C(0)OR_6$; and

X and Y are each independently Br, Cl, I, F, OH, OR_3 or NR_3R_4 and at least one of X and Y is NR_3R_4 ; or a pharmaceutically acceptable salt thereof.

27. A method according to claim 26, wherein at least one of R_1 , R_3 and R_4 is other than H, and if R_3 and R_4 are both H and R_1 is $-C(0)R_6$, $-C(0)OR_6$ or $-C(0)NHR_6$ then R_6 is other than H.

28. A method according to claim 27, wherein R_{2} is of the formula:

 $O = N R_3 R_4 R_5$

25

Tring per sent the pert

15

|-==

111

les b

30 129.

A method according to any one of claims 1-28, wherein said cancer is prostate cancer, colon cancer, lung cancer, melanoma, ovarian cancer, renal cancer, breast cancer, lymphoma, pancreatic cancer or bladder cancer.

35

30. A method according to any one of claims 3-28, wherein said cancer is leukemia.

31. A method according to any one of claims 1-28, wherein at least one of R_1 , R_3 , or R_4 is piperazinyl, piperidinyl, morpholinyl, pyrrolidinyl, adamantyl or quinuclidinyl.

32. A method according to any one of claims 1-28, wherein at least one of R_1 , R_3 or R_4 is acetyl, propionyl, butyryl, valeryl, caprioic, caprylic, capric, lauric, myristic, palmitic, stearic, oleic, linoleic, or linolenic.

- A method according to any one of claims 1-28, wherein at least one of R_1 , R_3 or R_4 is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, napthyl or biphenyl.
- 34. A method according to any one of claims 1-28, wherein at least one of R_1 , R_3 or R_4 contains a heterocyclic group 10 selected from the following group:

ij.

ij

I.II

25

furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazoyl, oxazolyl, \isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrimidinyl\ triazolyl, tetrazolyl, oxadrazolyl,

15 thiadiazolyl thiopyranyl, pyrazinyl, benzofuryl, benzothiophenxl, indolyl, benzimidazolyl, benzopyrazolyl, benzoxazolyl benzisoxazolyl, benzothiozolyl, benzisothiazolyl, benzoxadiazolyl, quinolinyl, carbazolyl, acridinyl, cinnolinyl isoquinolinyļ, 20 quinazolinyl!

35. A method according to any one of claims 1-28, wherein said compound\is administered at least daily for a period of 2 to 10 days\every 2 to 5 weeks.

A method according to any one of claims 1-28, wherein said compound is administered at least daily for a period of 2 to 10 days every 3 to 4 weeks.

- A method according to any one of claims 1-28, wherein 30 said compound is administered at least daily for 3 to 7 days every 2 to 5 weeks.
- A method according to any one of claims 1-28, wherein 38. said compound is administered at least daily 4 to 6 days 35 every 2 to 5 weeks.

A compound having the following formula: olectel.

$$R_1O$$
 R_2
 (I)

	5	wherein: \
		R_1 \(\sqrt{is}\) H; C_{1-20} alkyl; C_{2-20} alkenyl; C_{6-10} aryl; C_{5-10}
		heteroaromatic ring; C_{3-20} non-aromatic ring
		optionally containing 1-3 heteroatoms selected
		from the group comprising O, N, or S; $-C(0)R_6$;
	10	$-C(0)OR_6$; $-C(0)NRH_6$; or an amino acid radical or
		dipeptide or tripeptide chain wherein the amino
		acid radicals are selected from the group
		comprising Glu, Gly, Ala, Val, Leu, Ile, Pro,
		Phe Tyr, Trp, Ser, Thr, Met, Cys, Asn and Gln,
	15	and which in each case is optionally terminated
		by $-\mathbf{R}_7$;
1.23		R_1 can also be a P(O)(OR') ₂ group wherein R' is in
Auch Aug nich den richt is fin deutscheiten der Greine		each case independently H, C_{1-20} alkyl, C_{2-20}
14,	20	alkeny $\frac{1}{1}$, C_{6-10} aryl, C_{7-11} arylmethyl, C_{2-7}
		acyloxymethyl, C_{3-8} alkoxycarbonyloxymethyl, C_{3-8}
; *** ***		$S-acyl-\frac{1}{2}-thioethyl$, saleginyl, t-butyl,
		phosphate or diphosphate;
a=b	0.5	
127	25	R_1 can also be monophosphate, diphosphate,
1,71		triphosphate or mimetics thereof;
1		R_2 is
	30	NR ₃ R ₄
		$\int_{\mathbb{R}}^{3} \mathbb{R}$
		N HN Y
		0, 1,
	35	' \
		CI HN HN
		$N \longrightarrow N$
		R_3R_4N
		R_3R_4N
	40	R_3 and R_4 are in each case independently H; C_{1-20}
		alkyl; C_{2-70} alkenyl; C_{6-10} aryl; C_{5-10}
		heteroaromatic ring; C_{3-20} non-aromatic ring

containing 1-3 5 optionally heteroatoms selected from the group comprising O, N, or S; $-C(0)R_6$; $-C(0)OR_6$; $-C(0)NRH_6$; or an amino acid radical or dipeptide or tripeptide chain or mimetic thereof wherein the amino acid radicals are selected from the group 10 comprising Glu, Gly, Ala, Val, Leu, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn Gln, and which in each and case optionally terminated by -R7; i's, in each case, H, C_{1-20} alkyl, C_{2-20} alkenyl, C_{0-1} 15 R_6 $alkyl-C_{6-10}$ aryl, C_{0-20} alkyl- C_{5-10} heteroaromatic non-aromatic ring optionally C₃₋₂₀ containing 1-3 heteroatoms selected from the group comprising O, N or S; is, in each case, C_{1-20} alkyl, C_{2-20} alkenyl, C_{6-10} 20 R_7 aryl, C_{5-10} heteroaromatic ring, C_{3-20} nonaromatic optionally containing 1-3 heteroatoms selected from the group comprising O, N or S, $-C(0)R_6$ $-C(0)OR_6$; and X and Y are each independently Br, Cl, I, F, OH, OR₃ 25 or NR₃R₄ and at least one of X and Y is NR₃R₄; or a pharmaceutically acceptable salt thereof; with the \proviso that at least one of R_1 , R_3 and R₄ is 30 C₇₋₂₀ alkyl C7-20 alkenyl; C₆₋₁₀ aryl; C₅₋₁₀ heteroaromatic ring; C_{4-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N, or S; 35 $C(0)R_6$ in which R_6 is 1, C_{7-20} alkyl, C_{7-20} alkenyl, C_{0-20} alkyl- C_{6-10} aryl, C_{0-20}^{1} alkyl- C_{5-10} heteroaromatic ring, ring optionally containing non-aromatic heteroatoms selected from the group comprising O, N or S; $-C(0)OR_6$ in which R_6 is C_{7-20} alkyl, C_{7-20} alkenyl, 40 C_{0-20} alkyl- C_{6-10} aryl, C_{0-20} alkyl- C_{5-10} heteroaromatic ring,

À

ring\

non-aromatic

C₄₋₂₀

optionally containing

5 heteroatoms selected from the group comprising O, N or S; or

a dipeptide or tripeptide or mimetic thereof where the amino acid radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and Gln, and which is optionally terminated by $-R_7$.

40. A method of treating a patient with cancer comprising administering to said patient a prodrug form of troxacitabine, having a lipophilic structure to enhance entry of the prodrug into the cancer cells by passive diffusion, wherein said lipophilic structure is cleavable by cellular enzymes, thereby increasing the amount of troxacitabine within the cancer cells to a level greater than that allowable by administration of troxacitabine in nonprodrug form

41. A method of treating a patient having cancer which is resistant to gencitabine, cytarabine or both, comprising administering to said patient a troxacitabine derivative having a lipophilic structure which enhances the entry of the derivative into the cancer cell by the passive diffusion.

42. A method of treating a patient having cancer wherein the cancer cells are deficient in nucleoside or nucleobase transporter proteins, comprising administering to said patient a troxacitabine derivative having a lipophilic structure which enhances entry of the derivative into the cancer cells by passive diffusion.

43. A method according to claim 4, wherein said cancer cells are deficient in one or more nucleobase transporter proteins.

44. A method according to any one of claims 1-28, wherein the compound is of the formulas

1.4

10

15

25

30

1,77

35

, D

40

Maria

NO₂

goods given, goods, would gave enough H in should in these counts Death the should be thought the should be the state of the should be the sho :5 |seb

[seb 7

[;]

|cak

A method according to any one of claims 1 to 28 45. wherein the compound is of the formula

ŔΟ

A method according to any one of claims 1 to 28, wherein the compound is of the formula

10

245 method according to any one of claims 1 to 28, wherein\the compound is selected from 4-HEXYL-BENZOIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL) $-\sqrt{1}$ 3] DI ϕ XOLAN-2-YLMETHYL ESTER (No. 191); 8-PHENYL-OCTANOIC ACID [1-(2-HYDROXYMETHYL-[1,3] h 10x Ox An-4-YL -2-0x 0-1 -2-DIHYDRO-PYRIMIDIN-4-YL]-AMTDE (No. 197); -PHENYL-OCTANQIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL) - [1, 3] DIOXQLAN-2-YLMETHYL ESTER (No. 198); 4-PENTYL →BICYCLO[2, 2.2]OCTANE-1-CARBOXYLIC ACID 4-(4-AMINO-2-0(2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-15 YLMETHYL ESTER (No. 211); 4-PENTYL-CYCLOHEXANECARBOXYLIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN+1-YL)-[1,3]DIQXOLAN-2-YLMETHYL ESTER (No. 240) or mixtures thereof. 20