Computer Assignment #1. Due October 16, 2018

Use finite element method to analyze the following planar truss structure. All truss members are considered linear elastic.

Cross-sectional area is 1.0 ft²; $E = 30 \times 10^6 \text{ psf (lb/ft}^2)$

- 1. Obtain displacements at all nodes.
- 2. Obtain reaction forces at the supports.
- 3. Obtain axial stress in all members.

>> Computer_Assignment1_BoXiao

Force_Table =

12×2 table

F_index	F_in_lbs
node1 ['F1'	-3000
L' _{F2}	9250
node > ['F3'	0
roae I Lif4	0
5.4.3 ['F5'	0
node3 ['F5'	0
node y ['F7'	0
"F8'	11750
['F9'	3000
nodes ['F9'	-9000
Yanga (['F11'	0
node 6 ['F11'	-12000

1. Displacement_Table =

12×2 table

U_index	U_in_ft
F 1,,11	0
node1 ['u1' u2'	0
node > ['u3'	0.010222 -0.050792
node3 ['u5'	0.020556 -0.05293
node y ['u7'	0.031
nodes ['u9' u10'	0.021988 -0.05073
node 6 ['u11'	0.011655 -0.052992

2. Readion forces at supports are Ti = -3000 lbs, F2= 9250 lbs at node 1

Fr= 0 lbs , F8= 11750 lbs at node 4

3. Aixal_Stress_Table =

10×2 table

'Element1 node(1,2)'	15333
'Element2 node(2,3)'	15500
'Element3 node(3,4)'	15667
'Element4 node(5,6)'	-15500
'Element5 node(1,5)'	-15417
'Element6 node(2,6)'	-208.33
'Element7 node(3,5)'	208.33
'Element8 node(4,6)'	-19583
'Element9 node(2,5)'	125
'Element10 node(3,6)'	-125