Global Student Placement Prediction

Final Documentation

Project Overview

This project aims to analyze and model the **factors influencing student placement outcomes** in international universities. Using a cleaned dataset containing academic, demographic, and application-related information, we built machine learning models to predict whether students are likely to be placed post-graduation and extracted actionable insights for stakeholders such as universities, recruiters, and policy makers.

Dataset Summary

- **Source**: Global student migration and placement dataset.
- **Observations**: 5,000 student records.
- Features:
 - o Academic: gpa or score, test score, field of study
 - o Demographic: origin country, visa status
 - Outcomes: placement status, starting salary usd, placement company

Data Cleaning & Preprocessing

- Filled missing test score values with **0** to indicate "not taken."
- Filled missing placement country with "Unknown".
- Removed columns irrelevant to placement prediction:
- Converted categorical variables using **one-hot encoding**.
- Normalized continuous variables (gpa or score, test score) using StandardScaler.
- Addressed class imbalance using **SMOTE** oversampling.

Exploratory Data Analysis (EDA)

- Students with **higher GPA and test scores** were more likely to be placed.
- Placement rate varied by:
 - o Origin country
 - o Visa status
 - o Field of study
- Key visuals created:
 - o Boxplots of GPA and Test Score by Placement Status
 - o Bar plot of Placement Rate by Origin Country
 - o Placement Trends by Visa Type and Field of Study

All visuals are available in the notebook.

Modeling

Target Variable:

• placement status numeric: 1 = Placed, 0 = Not Placed

Features Used:

Academic and demographic features after encoding:

['gpa_or_score', 'test_score', 'origin_country', 'field_of_study', 'visa_status']

Model 1: Logistic Regression

• Accuracy: 100%

Confusion Matrix:

[[475 0] [0 525]]

Model 2: Random Forest

• Accuracy: 100%

Confusion Matrix:

After applying **SMOTE**, both models performed perfectly. This could indicate:

- High model confidence due to clearly separable features
- Possible data leakage or overfitting (to be monitored)

Insights for Stakeholders

For Universities:

• Students with high GPA and test scores are more employable.

• Programs with lower placement rates may need curriculum review or industry alignment.

For Recruiters:

- Top fields: Engineering, Business, IT had highest placement ratios.
- GPA and test scores remain strong indicators of job-readiness.

For Policy Makers:

- Some visa types and countries show low placement rates.
- Indicates potential barriers to employment (e.g., visa restrictions, employer bias).

Deliverables

17.1	/TAT	4 1		
- 1110	e/IN	oteb	000	K

ISRA EDA Notebook.ipynb

Predicting Student Placement Model.ipynb

cleaned_student_placement_data.csv

global student migration New cleaned.csv

global student migration.csv

Final Report.pdf

Description

EDA and Visualizations

Feature processing, model building, evaluation

Final cleaned dataset

Previous Clean Dataset

Original Dataset

This documentation

Tools Used

- pandas, numpy Data processing
- seaborn, matplotlib Visualizations
- sklearn ML models (Logistic Regression, Random Forest)
- imblearn SMOTE oversampling
- Jupyter Notebook Development environment

Conclusion

This project demonstrates a full pipeline of a **business analytics model**, from data collection and cleaning to model evaluation and stakeholder insights. The findings offer strategic value to multiple actors in the global student placement ecosystem.