

BUNDESREPUBLIK DEUTSCHLAND

⁽¹⁾ Offenlegungsschrift⁽¹⁾ DE 41 16 274 A 1

(51) Int. Cl.⁵: C 09 K 5/04 F 25 B 1/00

DEUTSCHES PATENTAMT

(21) Aktenzeichen:

P 41 16 274.9

2 Anmeldetag:

17. 5.91

43) Offenlegungstag:

19.11.92

(1) Anmelder:

Forschungszentrum für Kältetechnik und Wärmepumpen GmbH, 3000 Hannover, DE

(74) Vertreter:

Kuhnen, R., Dipl.-Ing.; Wacker, P., Dipl.-Ing. Dipl.-Wirtsch.-Ing.; Fürniß, P., Dipl.-Chem. Dr.rer.nat., Pat.-Anwälte; Hübner, H., Dipl.-Ing., Rechtsanw.; Röß, W., Dipl.-Ing.Univ., 8050 Freising; Kaiser, J., Dipl.-Chem.Univ.Dr.rer.nat., 8000 Muenchen; Brandl, F., Dipl.-Phys., Pat.-Anwälte, 8050 Freising

(72) Erfinder:

Kruse, Horst, Prof. Dr.-Ing., 3008 Garbsen, DE; Hesse, Ulrich, Dr.-Ing., 3000 Hannover, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Kältemittel

Ein umweltfreundliches Kältemittel für Kältemaschinen oder Wärmepumpen besteht aus einem Gemisch aus CO₂ und mindestens einem teilfluorierten Kohlenwasserstoff. Es ist als Ersatzstoff für die bekannten Kältemittel aus Fluorchlorkohlenwasserstoffen, insbesondere für das Kältemittel CHCIF₂ (R 22) und damit gleichzeitig für das Kältemittel (R 502), sowie für das Kältemittel CF₃Br (R 13, B 1) verwendbar.

Beschreibung

Die Erfindung betrifft ein Kältemittel gemäß Patentanspruch 1. Sie betrifft insbesondere ein Kältemittel für Kältemaschinen und Wärmepumpen, das umwelt- 5 freundlich ist.

Im Stand der Technik wurden Gemische halogenierter Kohlenwasserstoffe als Kühlmittel vorgeschlagen, die ein relativ niedriges Ozon-Abbaupotential ODP (ozone depletion potential) besitzen (US-A 48 10 403). 10 Diese bestehen aus einem ternären Gemisch aus halogenierten Kohlenwasserstoffen mit niedrigem, mittlerem und hohem Siedepunkt. Jedoch enthalten diese be-Gemische Fluorchlorkohlenwasserstoffe (FCKW), die Ozon abbauen und daher umweltschädlich 15 sind. Die bekannten ternären Gemische sind als Ersatz für das viel verwendete Kältemittel CCl₂F₂ (R 12) vorgeschlagen worden.

Ein gebräuchliches Kältemittel für Kältemaschinen oder Wärmepumpen ist Ammoniak, das insofern um- 20 weltfreundlich ist, als sein Ozon-Abbaupotential ODP 0 beträgt. Es weist jedoch den Nachteil auf, daß es toxisch und brennbar ist. Ferner ist sein Geruch sehr durchdringend und reizt die Schleimhäute, so daß es beim Austreten aus der Kältemaschine oder Wärmepumpe ein ho- 25 hes Panik-Risiko beinhaltet und daher nur mit erheblichem Aufwand in der Gebäudetechnik einsetzbar ist. Schließlich darf es nicht mit Buntmetallen, z. B. Kupfer. verwendet werden, da es mit diesen chemische Verbindungen bildet und sie daher zerstört. Es sind also ge- 30 schweißte Stahlkonstruktionen nötig, welche die Kältemaschinen oder Wärmepumpen übermäßig verteuern.

Aus der DE-C 31 41 202 sind Kältemittel zur Kälteerzeugung mit Kompressionskühlaggregaten bekannt, die bestehen. Diese sind in der Regel Fluorchlorkohlenwasserstoffe; als eine Komponente kann auch CO2 verwendet werden. Diese bekannten Kältemittel sind daher äu-Berst umweltschädlich, da sie ein hohes Ozon-Abbaupotential ODP besitzen.

In der Vergangenheit wurde CO2 als Kältemittel eingesetzt. Wegen des ungünstigen Tripelpunktes und der ungünstigen Drucklage ist es jedoch mit Aufkommen der FCKW als Kältemittel bedeutungslos geworden.

Der Erfindung liegt daher die Aufgabe zugrunde, ein 45 Kältemittel für Kältemaschinen oder Wärmepumpen zur Verfügung zu stellen, das umweltfreundlich und im Gebrauch leicht und gefahrlos handhabbar ist.

Diese Erfindung wird durch den Gegenstand des Patentanspruchs 1 gelöst.

Die erfindungsgemäßen Gemische aus CO2 und teilfluorierten Kohlenwasserstoffen haben vor allen Dingen folgende Vorteile:

zung in gewissen Grenzen variieren. Somit ist ein derartiges Kältemittelgemisch, abhängig von Zusammensetzung und den Siedepunkten der gewählten Gemischkomponenten, ein verfügbarer Ersatzstoff für unterschiedliche chlorhaltige Kältemittel 60 wie zum Beispiel CHCIF₂ (R 22), für die bisher noch keine brauchbaren Ersatzstoffe bekannt waren; 2. Die Mischung von CO₂ mit einem oder mehreren brennbaren Arbeitsstoffen, sowie die Mischung von CO2 mit einem oder mehreren brennbaren und gleichzeitig mit einem oder mehreren nicht brennbaren teilfluorierten Kohlenwasserstoffen kann ein Gemisch ergeben, das selbst nicht brennbar ist;

3. Das vorgeschlagene Kältemittel besitzt kein Ozon-Abbaupotential, das heißt, der Wert für ODP

4. Es ist bekannt, daß viele Fluorchlorkohlenwasserstoffe ein sehr hohes Treibhauspotential GWP besitzen und somit die Erwärmung der Atmosphäre, die durch den zunehmenden Gehalt an CO2 ständig vergrößert wird, unverhältnismäßig erhöhen. Dagegen ist der Wert für das Treibhauspotential GWP bei den erfindungsgemäß eingesetzten teilfluorierten Kohlenwasserstoffen deutlich niedriger als etwa für das Kältemittel CCl₂F₂ (R 12). Dies gilt insbesondere für die Kältemittel CHF2-CH3 (R 152a) und CH₂F₂ (R 32), die aber wegen ihrer Brennbarkeit als reine Kältemittel nicht einsetzbar sind. Auch die vollständig fluorierten Kohlenwasserstoffe CF₃CF₂CF₃ (R 218) und C₄F₈ (RC 318) besitzen ein hohes Treibhauspotential GWP und sind daher erfindungsgemäß weniger bevorzugt. Durch das geringe direkte Treibhauspotential des CO₂, das um 1-3 Zehnerpotenzen unter dem der teilfluorierten Kohlenwasserstoffe liegt, ergeben sich mit dem erfindungsgemäßen Kältemittelgemisch Ersatzstoffe, die hinsichtlich ihres direkten Treibhauspotentials günstiger sind als die jeweiligen reinen teilfluorierten Kohlenwasserstoffe; 5. CO2 ist ein seit langem bekannter, nicht toxischer, nicht brennbarer Ersatzstoff. Sein Einsatz kann damit sofort erfolgen und bedarf keiner langwierigen und kostenintensiven toxikologischen Untersuchungen.

Der Gegenstand des Anspruchs 2 besitzt den Vorteil, daß die darin genannten teilfluorierten Kohlenwasseraus einem Gemisch aus mindestens vier Komponenten 35 stoffe ein niedriges Treibhauspotential GWP besitzen. Diese sind im einzelnen CHF₃ (R 23), CH₂F₂ (R 32), CHF_2-CH_3 (R 152a), CHF_2-CH_2F (R 143), CF_3-CH_3 (R 143a), CHF₂-CHF₂ (R 134), CF₃-CH₂F (R 134a), $CF_3-CHF_2(R 125)$ und/oder $CF_3-CHF-CF_3(R 227)$.

Bevorzugte Kältemittelgemische gemäß der Erfindung enthalten einen Gehalt von 1-99, insbesondere 4-80, Gewichtsprozent CO2 und 99-1, insbesondere 96 – 20, Gewichtsprozent an teilfluorierten Kohlenwasserstoffen.

Wie oben bereits ausgeführt wurde, wurde als Ersatz für den FCKW CCl₂F₂ (R 12) mit befriedigenden Eigenschaften bereits das Kältemittel CF3-CH2F (R 134a) entwickelt. Dagegen ist es im Stand der Technik nicht gelungen, das in großem Maßstab eingesetzte Kältemittel CHCIF2 (R 22) durch einen umweltfreundlicheren Ersatzstoff zu ersetzen, denn die Siedelage für R 22 ist 10 - 20 K tiefer als für R 12.

R 22 wird zur Zeit noch selbst als Ersatzstoff für das Kältemittel R 502 eingesetzt, bei dem es sich um ein 1. Die Siedelage läßt sich je nach Zusammenset- 55 azeotropes Gemisch aus CHClF2 (R 22) und C2ClF5 (R 115) handelt. Wegen seines noch vorhandenen ODP wird der Einsatz in Neuanlagen und die Produktion von R 22 ab dem Jahr 2000 in der Bundesrepublik verboten.

Auch für das seltener eingesetzte Kältemittel CF₃Br (R 13 B1), das wegen seines Brom-Anteils ein extrem hohes ODP aufweist, fehlt bisher ein geeigneter Ersatzstoff.

Erfindungsgemäß wurde nun sestgestellt, daß das erfindungsgemäße Gemisch aus CO2 und mindestens ei-65 nem teilfluorierten Kohlenwasserstoff sich gut als Ersatzmittel für das Kältemittel R 22 und damit auch für das Kältemittel R 502 eignet.

Bevorzugt für diesen Zweck sind die Kältemittelge-

4

mische gemäß Patentanspruch 5, wobei besonders bevorzugt solche sind, die neben CO₂ CHF₂—CH₃ (R 152a), CF₄CH₂ (R 134a) und/oder CHF₂—CHF₂ (R 134) enthalten. Diese Kältemittel stellen einen nicht toxischen, nicht brennbaren Ersatzstoff mit befriedigender 5 Siedelage, gutem Materialverhalten und guten umweltrelevanten Eigenschaften dar.

Als besonders bevorzugt haben sich die folgenden Gemische erwiesen: 4-25 Gewichtsprozent CO₂ und 75-96 Gewichtsprozent C₂H₂F₄ (R 134a); 4-25 Gewichtsprozent CO₂ und 75-96 Gewichtsprozent C₂H₄F₂ (R 152a) (die beiden letzteren besonders als Ersatz für die Kältemittel R 22 und R 502); 5-50 Gewichtsprozent CO₂ und 50-95 Gewichtsprozent R 32, 5-50 Gewichtsprozent CO₂ und 50-95 Gewichtsprozent R 143a, 5-50 Gewichtsprozent CO₂ und 50-95 Gewichtsprozent R 125, und 5-50 Gewichtsprozent CO₂ und 25-70 Gewichtsprozent R 32 und 25-50 Gewichtsprozent R 125; (die letzteren vier besonders als Ersatz für das Kältemittel CF₃Br (R 13 B1)).

Allgemein eignen sich als Ersatz für das Kältemittel CF₃Br (R 13 B1) Gemische, in denen neben CO₂ CH₂F₂ (R 32), CF₃-CH₃ (R 143a) und/oder CF₃-CHF₂ (R 125) vorliegen.

Wie oben erläutert wurde, beträgt das Ozonabbaupotential ODP für CO₂ und die erfindungsgemäß eingesetzten teilfluorierten Kohlenwasserstoffe 0, während es für CHClF₂ (R 22) 0,05 für das azeotrope Gemisch aus CHClF₂ mit C₂ClF₅ (R 502) 0,2, für CCl₂F₂ (R 12) 0,9, und für CF₃Br (R 13 B1) 10 beträgt (ODP für CCl₃F=1). 30 Ebenso ist die atmosphärische Lebensdauer und damit das direkte Treibhauspotential der erfindungsgemäß eingesetzten Kältemittel deutlich geringer als das der Fluorchlorkohlenwasserstoffe FCKW.

Besonders bevorzugte Ausführungsformen der Erfin- 35 dung werden in den folgenden Beispielen näher erläutert:

Beispiel 1:

Kältemittel bestehend aus 4-25 Gewichtsprozent CO₂ und 75 bis 96 Gewichtsprozent CF₃-CH₂F (R 134a).

R 134a ist ein inzwischen bekannter, akzeptierter und weitgehend untersuchter Ersatzstoff für das Kältemittel 45 R 12. Die Serienproduktion von Komponenten für dieses Kältemittel läuft z. Zt. an.

Durch die Mischung mit CO₂ kann nun auch ein Ersatzkältemittel mit einer Siedelage wie R 22 und R 502 bereitgestellt werden, ohne daß langwierige toxikologische Untersuchungen erforderlich sind.

Beispiel 2:

Kältemittel bestehend aus 4-25 Gewichtsprozent $_{55}$ CO₂ und 75-96 Gewichtsprozent CHF₂-CH₃ (R 152a).

R 152a ist ein seit langem produzierter und bekannter Stoff mit einer Siedelage wie R 12. Gegenüber R 134a weist R 152a den Vorteil auf, daß es über ein deutlich niedrigeres Treibhauspotential (GWP) verfügt. Nachteilig ist die Brennbarkeit des reinen R 152a.

Durch die Mischung von R 152a mit CO₂ kann nun auch ein Ersatz-Kältemittel für R 22 und R 502 sofort bereitgestellt werden, das bei reduzierter Brennbarkeit über ein minimales Treibhauspotential (GWP) verfügt.

Patentansprüche

- Kältemittel für Kältemaschinen oder Wärmepumpen, bestehend aus einem Gemisch aus CO₂ und mindestens einem teilfluorierten Kohlenwasserstoff.
- 2. Kältemittel nach Anspruch 1, dadurch gekennzeichnet, daß der teilfluorierte Kohlenwasserstoff CHF₃ (R 23), CH₂F₂ (R 32), CHF₂—CH₃ (R 152a), CHF₂—CH₂F (R 143), CF₃—CH₃ (R 143a), CHF₂—CHF₂ (R 134), CF₃—CH₂F (R 134a), CF₃—CHF₂ (R 125) und/oder CF₃—CHF—CF₃ (R 227) ist.
- 3. Kältemittel nach Anspruch I und/oder 2, gekennzeichnet durch einen Gehalt von 1-99 Gewichtsprozent CO₂ und 99-1 Gewichtsprozent an teilfluoriertem Kohlenwasserstoff.
- 4. Kältemittel nach Anspruch 3, gekennzeichnet durch einen Gehalt von 4-80 Gewichtsprozent CO₂ und 96-20 Gewichtsprozent an teilfluoriertem Kohlenwasserstoff.
- 5. Kältemittel nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß der teilfluorierte Kohlenwasserstoff CH₂F₂ (R 32), CF₃-CH₃ (R 143a) und/oder CF₃-CHF₂ (R 125) ist.
- 6. Kältemittel nach Anspruch 4, gekennzeichnet durch einen Gehalt von 4-25 Gewichtsprozent CO₂ und 75-96 Gewichtsprozent CF₃-CH₂F (R 134a).
- 7. Kältemittel nach Anspruch 4, gekennzeichnet durch einen Gehalt von 4-25 Gewichtsprozent CO₂ und 75-96 Gewichtsprozent CHF₂-CH₃ (R 152a).
- 8. Kältemittel nach Anspruch 4, gekennzeichnet durch einen Gehalt von 5-50 Gewichtsprozent CO_2 und 50-95 Gewichtsprozent CH_2F_2 (R 32).
- 9. Kältemittel nach Anspruch 4, gekennzeichnet durch einen Gehalt von 5-50 Gewichtsprozent CO₂ und 50-95 Gewichtsprozent CF₃-CH₃ (R 143a).
- 10. Kältemittel nach Anspruch 4, gekennzeichnet durch einen Gehalt von 5-50 Gewichtsprozent CO₂ und 50-95 Gewichtsprozent CF₃-CHF₂ (R 125).
- 11. Kältemittel nach Anspruch 4, gekennzeichnet durch einen Gehalt von 5-50 Gewichtsprozent CO₂, 25-70 Gewichtsprozent CH₂F₂ (R 32) und 25-50 Gewichtsprozent CF₃-CHF₂ (R 125).
- 12. Verwendung eines Kältemittels nach Anspruch 4 als Ersatz für das Kältemittel CHClF₂ (R 22) oder R 502 (azeotropes Gemisch aus CHClF₂ (R 22) und C₂ClF₅ (R 115)), dadurch gekennzeichnet, daß der teilfluorierte Kohlenwasserstoff CHF₂-CH₃ (R 152a), CHF₂-CH₂F (R 143), CHF₂-CHF₂ (R 134), CF₃-CH₂F (R 134a) und/oder CF₃-CHF-CF₃ (R 227) ist.
- 13. Verwendung eines Kältemittels nach Anspruch 6 oder 7 als Ersatz für das Kältemittel CHCIF₂ (R 22) oder (R 502) (azeotropes Gemisch aus CHCIF₂ (R 22) und C₂CIF₅ (R 115).
- 14. Verwendung eines Kältemittels nach einem der Ansprüche 8-11 als Ersatz für das Kältemittel CF₃Br (R 13 B1).

-Leerseite-