Week 4 - Notes

Ben Karsberg

2021-22

1 Harlow Second Theorem

- Harlow's 2nd theorem generalise erasure correction that allows A to access only partial information about the encoded state
- He calls this 'subsystem quantum erasure correction'
- The rough idea is to consider a code subspace which itself factorises as $\mathcal{H}_{\text{code}} = \mathcal{H}_a \otimes \mathcal{H}_{\overline{a}}$ and then only ask for recovery of the state of \mathcal{H}_a

Theorem 1.1 (Subsystem Error Correction). Suppose $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_{\overline{A}}$, and $\mathcal{H}_{code} = \mathcal{H}_a \otimes \mathcal{H}_{\overline{a}}$ is a subspace of \mathcal{H} . Choose orthonormal bases $|i_a\rangle$ of \mathcal{H}_a and $|\bar{i}_{\overline{a}}\rangle$ of $\mathcal{H}_{\overline{a}}$. Then, the following 4 statements are equivalent:

1. For any operator O_a acting on \mathcal{H}_a , there exists an operator O_A with an equivalent action; that is, for any $|\psi_L\rangle \in \mathcal{H}_{code}$, we have

$$O_A |\psi_L\rangle = O_a |\psi_L\rangle$$

$$O_A^{\dagger} |\psi_L\rangle = O_a^{\dagger} |\psi_L\rangle$$
(1.1)

2. For any operator $X_{\overline{A}}$ on $\mathcal{H}_{\overline{A}}$, we have

$$P_{code}X_{\overline{A}}P_{code} = (I_a \otimes X_{\overline{a}})P_{code} \tag{1.2}$$

where $X_{\overline{a}}$ is an operator on $\mathcal{H}_{\overline{a}}$

3. Define two auxiliary systems R and \overline{R} with $\mathcal{H}_R = \mathcal{H}_a$ and $\mathcal{H}_{\overline{R}} = \mathcal{H}_{\overline{a}}$. Define the state $|\phi\rangle = \frac{1}{\sqrt{|R||\overline{R}|}} \sum_{i,j} |i\rangle_R |\overline{j}\rangle_{\overline{R}} |i_a\overline{j}_{\overline{a}}\rangle_{A\overline{A}}$. Then, in the state $|\phi\rangle$ we have

$$\rho_{R\overline{RA}}[\phi] = \rho_R[\phi] \otimes \rho_{\overline{RA}}[\phi] \tag{1.3}$$

4. $|a| \leq |A|$, and if we decompose $\mathcal{H}_A = (\mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}) \oplus \mathcal{H}_{A_3}$ with $|A_1| = |a|$ and $|A_3| < |a|$, there exists a unitary transformation U_A on \mathcal{H}_A and a set of orthonormal states $|\chi_j\rangle_{A_2\overline{A}} \in \mathcal{H}_{A_2\overline{A}}$ such that

$$|i_a \overline{j}_{\overline{a}}\rangle = U_A(|i\rangle_{A_1} \otimes |\chi_j\rangle_{A_2 \overline{A}})$$
 (1.4)

where $|i\rangle_{A_1}$ is an orthonormal basis for \mathcal{H}_{A_1} .

• The proof is similar to before, but we still go through it for completeness since Harlow does not

Proof. (1) \Longrightarrow (2): Contradiction again. Suppose there was an $X_{\overline{A}}$ such that $P_{\text{code}}X_{\overline{A}}P_{\text{code}} \neq (I_a \otimes X_{\overline{a}})P_{\text{code}}$ for any operator $X_{\overline{a}}$. Schur's lemma then implies that there must be an operator O_a on \mathcal{H}_a which does not commute with $X_{\overline{A}}$ and a state $|\psi_L\rangle \in \mathcal{H}_{\text{code}}$ such that

$$\langle \psi_L | [P_{\text{code}} X_{\overline{A}} P_{\text{code}}, O_a] | \psi_L \rangle = \langle \psi_L | [X_{\overline{A}}, O_a] | \psi_L \rangle \neq 0$$
 (1.5)

But such an O_a cannot have a representation O_A on \mathcal{H}_A since it would then commute with $X_{\overline{A}}$, which contradicts (1).

 $(2) \implies (3)$: First, note that (2) implies

$$\langle i_a \bar{i}_{\overline{a}} | X_{\overline{A}} | j_a \overline{j}_{\overline{a}} \rangle = \langle i_a \bar{i}_{\overline{a}} | P_{\text{code}} X_{\overline{A}} P_{\text{code}} | j_a \overline{j}_{\overline{a}} \rangle = \langle i_a \bar{i}_{\overline{a}} | I_a \otimes X_{\overline{a}} | j_a \overline{j}_{\overline{a}} \rangle = \delta_{ij} \langle \overline{i}_{\overline{a}} | X_{\overline{a}} | \overline{j}_{\overline{a}} \rangle$$
(1.6)

and so, for arbitrary operators O_R and $O_{\overline{R}}$ on \mathcal{H}_R and $\mathcal{H}_{\overline{R}}$ respectively, we have

$$\langle \phi | O_R O_{\overline{R}} X_{\overline{A}} | \phi \rangle = \frac{1}{|R||\overline{R}|} \langle i | O_R | j \rangle_R \langle \overline{i} | O_{\overline{R}} | \overline{j} \rangle_{\overline{R}} \langle i_a \overline{i}_{\overline{a}} | X_{\overline{A}} | j_a \overline{j}_{\overline{a}} \rangle_{A\overline{A}}$$

$$= \frac{1}{|R||\overline{R}|} \langle i | O_R | i \rangle_R \langle \overline{i} | O_{\overline{R}} | \overline{j} \rangle \langle \overline{i}_{\overline{a}} | X_{\overline{a}} | \overline{j}_{\overline{a}} \rangle_{A\overline{A}}$$

$$(1.7)$$

However, also note that

$$\langle \phi | O_R | \phi \rangle = \frac{1}{|R|} \langle i | O_R | i \rangle_R$$
 (1.8)

and

$$\langle \phi | O_{\overline{R}} X_{\overline{A}} | \phi \rangle = \frac{1}{|\overline{R}|} \langle \overline{i} | O_{\overline{R}} | \overline{j} \rangle_{\overline{R}} \langle \overline{i}_{\overline{a}} | X_{\overline{a}} | \overline{j}_{\overline{a}} \rangle_{A\overline{A}}$$

$$(1.9)$$

which together mean that

$$\langle \phi | O_R O_{\overline{R}} X_{\overline{A}} | \phi \rangle = \langle \phi | O_R | \phi \rangle \langle \phi | O_{\overline{R}} X_{\overline{A}} | \phi \rangle \tag{1.10}$$

and so provided $|\phi\rangle$ has no non-vanishing connected correlators for any such $O_R,\ O_{\overline{R}},\ X_{\overline{A}}$, then

$$\rho_{R\overline{RA}}[\phi] = \rho_R[\phi] \otimes \rho_{\overline{RA}}[\phi] \tag{1.11}$$

as required.

(3) \Longrightarrow (4): First, note that $|\phi\rangle$ is a purification of $\rho_{R\overline{RA}}[\phi]$ by definition. Moreover, $|\phi\rangle$ maximally entangles R with \overline{RA} , so $\rho_R[\phi] = I_R/|R|$, and (3) becomes

$$\rho_{R\overline{RA}}[\phi] = \frac{I_R}{|R|} \otimes \rho_{\overline{RA}}[\phi] \tag{1.12}$$

(basically same)
$$\Box$$