⁴⁰Ca(³He, ⁸Li) **1976Be08**

1976Be08: ⁴⁰Ca(³He, ⁸Li)³⁵K is studied using 73.7- and 75.8-MeV ³He beams produced by the Michigan State University cyclotron. Targets were 370 and 190 μg/cm² enriched ⁴⁰Ca on a 20 μg/cm² natural carbon backing. ⁸Li particles were detected using a scintillator-proportional counter detector system at the focal plane of the Enge split-pole spectrograph. Measured the cross section of leading to ³⁵K g.s. at 8°. Deduced levels and the mass excess of ³⁵K. Also see 1976BeXJ and 1976BeZJ.

1976Be08: ³⁵Cl(³He,t)³⁵Ar is studied by impinging a 35-MeV ³He beam on a 200 μg/cm² Li-³⁵Cl target using the same setup in an attempt to search for the member of T=3/2 isobaric quartets in ³⁵Ar. A T=3/2, 3/2⁺ level at 5537 keV 25 in ³⁵Ar was observed in ³³S(³He,n)³⁵Ar (1975Da14) but causing an IMME breakdown. No peak is observed in 1976Be08 between 5484 keV 10 and 5591 keV 10 already known from 1973Be26.

35 K Levels

E(level) $J^{\pi^{\dagger}}$ 0
1560 40 1/2⁺
2690 50 (5/2⁺)

[†] proposed by 1976Be08 based on mirror levels in ³⁵S.