

2010 年第二届全国大学生数学竞赛初赛(非数学类) 试卷

一、计算下列各题(本题共5个小题, 每题5分, 共25分, 要求写出重要步骤)

(1) 设
$$x_n=(1+a)\cdot(1+a^2)\cdots(1+a^{2^n})$$
,其中 $|a|<1$,求 $\lim_{n\to\infty}x_n$.

(2) 求
$$\lim_{x\to\infty} e^{-x} \left(1 + \frac{1}{x}\right)^{x^2}$$
.

(3) 设
$$s>0$$
,求 $I_n=\int_0^{+\infty}e^{-sx}x^n\,\mathrm{d}\,x(n=1,2,\cdots)$.

参考答案参见微信公众号: **考研竞赛数学(ID: xwmath)**菜单 "**竞赛实验**" 下的 "**竞赛试题与通知**" 相关知识点总结与解题思路分析、探索参见公众号《公共基础课》在线课堂,或公众号回复 "在线课堂"

(4) 设
$$f$$
 t 有二阶连续导数, $r=\sqrt{x^2+y^2}$, $g(x,y)=figgl(rac{1}{r}iggr)$,求 $rac{\partial^2 g}{\partial x^2}+rac{\partial^2 g}{\partial y^2}$.

(5) 求直线
$$l_1: \begin{cases} x-y=0 \\ z=0 \end{cases}$$
 与直线 $l_2: \frac{x-2}{4} = \frac{y-1}{-2} = \frac{z-3}{-1}$ 的距离.

第二题: (15 分)设函数 f(x) 在 $(-\infty, +\infty)$ 上具有二阶导数,并且

$$f''(x)>0, \lim_{x o +\infty}f'(x)=lpha>0, \lim_{x o -\infty}f'(x)=eta<0$$
 ,

且存在一点 x_0 ,使得 $f(x_0) < 0$. 证明:方程 f(x) = 0 在 $(-\infty, +\infty)$ 恰有两个实根.

第三题: (15 分)设 y=f(x) 由参数方程 $\begin{cases} x=2t+t^2 \ y=\psi(t) \end{cases}$ (t>-1) 所确定. 且 $\dfrac{d^2y}{dx^2}=\dfrac{3}{4(1+t)}$, 其中 $\psi(t)$

具有二阶导数,曲线 $y=\psi(t)$ 与 $y=\int_1^{t^2}e^{-u^2}\,\mathrm{d}\,u+rac{3}{2e}$ 在 t=1处相切.求函数 $\psi(t)$.

微信公众号:

考研竞赛数学(xwmath)

参考答案参见微信公众号:**考研竞赛数学(ID: xwmath)**菜单"**竞赛实验**"下的"**竞赛试题与通知**"相关知识点总结与解题思路分析、探索参见公众号**《公共基础课》在线课堂**,或公众号回复"**在线课堂**"

第四题: (15 分)设 $a_n>0$, $S_n=\sum_{k=1}^n a_k$, 证明: (1) 当 $\alpha>1$ 时,级数 $\sum_{n=1}^{+\infty} \frac{a_n}{S_n^\alpha}$ 收敛; (2) 当 $\alpha\leq 1$,

且
$$S_n o \infty$$
 $n o \infty$ 时, $\sum_{n=1}^{+\infty} rac{a_n}{S_n^{lpha}}$ 发散.

微信公众号:

考研竞赛数学(xwmath)

第五题: (15 分)设l 是过原点、方向为 (α,β,γ) (其中 $lpha^2+eta^2+\gamma^2=1$) 的直线,均匀椭球

$$rac{x^2}{a^2} + rac{y^2}{b^2} + rac{z^2}{c^2} \leq 1$$
 (其中 $0 < c < b < a$, 密度为 1) 绕 l 旋转.

(1) 求其转动惯量; (2) 求其转动惯量关于方向 (α, β, γ) 的最大值和最小值.

第六题: (15 分)设函数 $\varphi(x)$ 具有连续的导数,在围绕原点的任意光滑的简单闭曲线 C 上,曲线积分 $\oint_C \frac{2xy\,\mathrm{d}\,x+\varphi(x)\,\mathrm{d}\,y}{x^4+y^2}$ 的值为常数.

- (1) 设 L 为正向闭曲线 $(x-2)^2+y^2=1$. 证明: $\oint_L rac{2xy\,\mathrm{d}\,x+arphi(x)\,\mathrm{d}\,y}{x^4+y^2}=0$;
- (2) 求函数 $\varphi(x)$; (3) 设 C 是围绕原点的光滑简单正向闭曲线,求 $\oint_C \frac{2xy \,\mathrm{d}\, x + \varphi(x) \,\mathrm{d}\, y}{x^4 + y^2}$.

微信公众号

考研竞赛数学(xwmath)