

Design **Analysis** of **Algorithms**

Lecture 9

General Plan for Analyzing the Time Efficiency

- 1. Decide on a parameter (or parameters) indicating an input's size.
- 2. Identify the algorithm's basic operation.
- 3. Check whether the number of times the basic operation is executed can vary on different inputs of the same size; if it can, the worst-case, average-case, and best-case efficiencies must be investigated separately.

General Plan for Analyzing the Time Efficiency

- 4. Set up a recurrence relation, with an appropriate initial condition, for the number of times the basic operation is executed.
- **5.** Solve the recurrence or, at least, ascertain the order of growth of its solution.

Example 2

Solving the Tower of Hanoi puzzle.

Tower of Hanoi

- In this puzzle, we have n disks of different sizes that can slide onto any of three pegs.
- Initially, all the disks are on the first peg in order of size, the largest on the bottom and the smallest on top.
- The goal is to move all the disks to the third peg, using the second one as an auxiliary, if necessary.
- We can move only one disk at a time, and it is forbidden to place a larger disk on top of a smaller one.

Recursive solution to the Tower of Hanoi puzzle

Recursive solution to the Tower of Hanoi puzzle

To move *n>*1 disks from peg 1 to peg 3 (with peg 2 as auxiliary), we first move recursively *n* − 1 disks from peg 1 to peg 2 (with peg 3 as auxiliary), then move the largest disk directly from peg 1 to peg 3, and, finally, move recursively *n* − 1 disks from peg 2 to peg 3 (using peg 1 as auxiliary).

• Of course, if n = 1, we simply move the single disk directly from the source peg to the destination peg.

Recursive solution to the Tower of Hanoi puzzle

- The input's size indicator- the number of disks n
- Basic operation- moving one disk
- The number of moves M(n) depends on n only, and the recurrence equation is the following:

$$M(n) = M(n-1) + 1 + M(n-1)$$
 for $n > 1$.

 With the initial condition, we get the recurrence relation as

$$M(n) = 2M(n-1) + 1$$
 for $n > 1$,
 $M(1) = 1$.

Recursive solution to the Tower of Hanoi puzzle

$$M(n) = 2M(n-1) + 1$$
 sub. $M(n-1) = 2M(n-2) + 1$
= $2[2M(n-2) + 1] + 1 = 2^2M(n-2) + 2 + 1$ sub. $M(n-2) = 2M(n-3) + 1$
= $2^2[2M(n-3) + 1] + 2 + 1 = 2^3M(n-3) + 2^2 + 2 + 1$.

after *i* substitutions, we get

$$M(n) = 2^{i}M(n-i) + 2^{i-1} + 2^{i-2} + \dots + 2 + 1 = 2^{i}M(n-i) + 2^{i} - 1$$

for n = 1, which is achieved for i = n - 1, we

$$M(n) = 2^{n-1}M(n - (n-1)) + 2^{n-1} - 1$$

= $2^{n-1}M(1) + 2^{n-1} - 1 = 2^{n-1} + 2^{n-1} - 1 = 2^n - 1$

Recursive solution to the Tower of Hanoi puzzle

 When a recursive algorithm makes more than a single call to itself, it can be useful for analysis purposes to construct a tree of its recursive calls.

Recursive solution to the Tower of Hanoi puzzle

 By counting the number of nodes in the tree, we can get the total number of calls made by the Tower of Hanoi algorithm:

$$C(n) = \sum_{l=0}^{n-1} 2^l \text{ (where } l \text{ is the level in the tree in Figure)} = 2^n - 1$$

Example 3

Binary number representation.

```
ALGORITHM BinRec(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n's binary representation if n = 1 return 1

else return BinRec(\lfloor n/2 \rfloor) + 1
```

Binary number representation.

Recurrence relation

$$A(n) = A(\lfloor n/2 \rfloor) + 1 \quad \text{for } n > 1$$
$$A(1) = 0$$

• Standard approach to solving such a recurrence is to solve it only for $n = 2^k$ and then take advantage of the theorem called the **smoothness** rule. $A(2^k) = A(2^{k-1}) + 1$ for k > 0,

$$A(2^0) = 0.$$

Recurrence relation Solution

$$A(2^{k}) = A(2^{k-1}) + 1$$
 substitute $A(2^{k-1}) = A(2^{k-2}) + 1$
 $= [A(2^{k-2}) + 1] + 1 = A(2^{k-2}) + 2$ substitute $A(2^{k-2}) = A(2^{k-3}) + 1$
 $= [A(2^{k-3}) + 1] + 2 = A(2^{k-3}) + 3$...
 $= A(2^{k-i}) + i$
...
 $= A(2^{k-k}) + k$.

Thus, we end up with

$$A(2^k) = A(1) + k = k,$$

or, after returning to the original variable $n = 2^k$ and hence $k = \log_2 n$,

$$A(n) = \log_2 n \in \Theta(\log n).$$

References

Chapter 2: Anany Levitin, "Introduction to the Design and Analysis of Algorithms", Pearson Education, Third Edition, 2017.

Chapter 2: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", MIT Press/PHI Learning Private Limited, Third Edition, 2012.

Homework

- Fibonacci Number Generation
 - Non-recursively
 - Recursively