CSC 480

Artificial Intelligence

Instructor: Daniel Kauffman Fall 2018 - Cal Poly, San Luis Obispo

Problem Descriptions [1/4]

Sliding Tile Puzzle

- Objective: Get tiles in numerical order
- Move tile horizontally or vertically into empty space
- ❖ WIDTH!/2 configurations

Problem Descriptions [2/4]

N-Queens

- Objective: No attacking pairs
- Queens attack horizontally, vertically, diagonally
- Queens may be placed on any empty square
- ♦ 64! configurations

Problem Descriptions [3/4]

Knuth's Problem

- Objective: Using 4 reach a specified integer using:
 - > Factorial
 - Square root
 - > Floor
- Infinite configurations

Problem Descriptions [4/4]

Romania Travel Problem

- Objective: Get from Arad to Bucharest
- Cost of each action varies
- Ideally, find shortest route

Problem Solving

Components of a Problem

- Initial State
- Action Set
- Transition Model
- Goal Test
- Path Cost

Problem Solving: Initial State

Components of a Problem

- Initial State
- Action Set
- Transition Model
- Goal Test
- Path Cost

Starting point of problem

- Simplified description of state
- Only relevant properties used

Define problems where:

- Initial states known or not known in advance?
- Initial states not known at present?

Problem Solving: Action Set

Components of a Problem

- Initial State
- Action Set
- Transition Model
- Goal Test
- Path Cost

From any state, some set of actions must be available to proceed

Actions available may differ for different states

Define problems where:

 Action set is always/never same for all possible states

Problem Solving: Transition Model

Components of a Problem

- Initial State
- Action Set
- Transition Model
- Goal Test
- Path Cost

Problem must define outcome of an action in a particular state

Model represented as function:

$$Result(s, a) = s'$$

Problem Solving: Goal Test

Components of a Problem

- Initial State
- Action Set
- Transition Model
- Goal Test
- Path Cost

Determine whether solution found

Test may be applied to frontier or explored states (depending on problem requirements)

Define problems where:

- Goal test is computationally expensive
- Multiple goals exist

Problem Solving: Path Cost

Components of a Problem

- Initial State
- Action Set
- Transition Model
- Goal Test
- Path Cost

Cost of solution, from initial state to goal state

Define problems where:

- Path cost is irrelevant to solution
- Cost is difficult to calculate

State Space

All reachable states from initial state make up the state space

Explored States

 States already visited by search algorithm

Frontier States

 Unexplored states adjacent to at least one explored state

Black: Explored

White: Frontier

Search

Find sequence of actions to go from initial state to goal state

- Path may or may not be relevant to solution
- Optimality may not be feasible

State space may have cycles

- Tree Search: Assume no cycles in state space
- Graph Search: Keep set of explored states to avoid cycles
 - "Algorithms that forget their history are doomed to repeat it."

Searches may be informed or uninformed