SPRAWOZDANIE – LABORATORIUM 2

Rozwiązywanie UARL metodą LU

Jan Wojdylak, 14.03.2021

1. Cel ćwiczenia

Rozwiązanie równania macierzowego metodą LU, a następnie wyliczenie wartości wielomianu.

2. Opis problemu

Dane mamy N punktów (x_i, y_i) dla i = 1,...,N, przez, które należy poprowadzić wielomian stopnia N – 1 o własności $w(x_i) = y_i$. W celu wyznaczenia takiego wielomianu można wyliczyć jego współczynniki c_i gdzie:

$$w(x) = \sum_{i=0}^{N-1} c_i x^i.$$

Współczynniki dane są układem N liniowych równań

$$\begin{cases} c_0 & +c_1x_1 & +c_2x_1^2 & +\dots & +c_{N-2}x_1^{N-2} + & c_{N-1}x_1^{N-1} & = y_1 \\ c_0 & +c_1x_2 & +c_2x_2^2 & +\dots & +c_{N-2}x_2^{N-2} + & c_{N-1}x_2^{N-1} & = y_2 \\ & & \vdots & & & & \vdots \\ c_0 & +c_1x_N & +c_2x_N^2 & +\dots & +c_{N-2}x_N^{N-2} + & c_{N-1}x_N^{N-1} & = y_N \end{cases}$$

Które można przedstawić w postaci macierzowej $\mathbf{A} * \mathbf{x} = \mathbf{b}$:

$$\begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{N-2} & x_1^{N-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{N-2} & x_2^{N-1} \\ \vdots & & & & \vdots \\ 1 & x_N & x_N^2 & \dots & x_N^{N-2} & x_N^{N-1} \end{pmatrix} \cdot \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{N-1} \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}.$$

W celu wyznaczenia współczynników c rozwiążemy układ metodą LU, znając współczynniki będziemy mogli wyznaczyć wartości wielomianu dla argumentu x.

3. Opis metody

Metoda LU polega na rozkładzie macierzy wejściowej A na dwie macierze L i U spełniające warunek **A = L * U**. Macierz U to macierz górnotrójkątna, natomiast macierz L to macierz dolnotrójkątna z 1

na diagonali. Macierzowo nasze równanie wygląda następująco:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ l_{21} & 1 & 0 & 0 \\ l_{31} & l_{32} & 1 & 0 \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} \times \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

Do rozkładu macierzy LU posłużyłem się metodą Gaussa. Dla pierwszej kolumny w metodzie Gaussa odejmujemy od i-tego wiersza (i = 2,3,..,n) pierwszy wiersz pomnożony przez współczynnik $l_{i1} = \frac{a_{i1}}{a_{11}}$, po przejściu przez wszystkie wiersze w pierwszej kolumnie wyzerujemy wszystkie wartości poniżej diagonali. Jednak tym razem w metodzie LU współczynniki l zapisujemy w macierzy L. Macierz L po przejściu przez pierwszą kolumnę wygląda następująco:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ l_{21} & 1 & 0 & 0 \\ l_{31} & 0 & 1 & 0 \\ l_{41} & 0 & 0 & 1 \end{bmatrix}$$

Analogicznie przechodząc po wszystkich kolumnach otrzymamy macierz L i U.

Zatem nasz układ $\mathbf{A} * \mathbf{c} = \mathbf{y}$ przyjmuje postać $\mathbf{L} * \mathbf{U} * \mathbf{c} = \mathbf{y}$, aby szybko rozwiązać taki układ najpierw znajdziemy wektor y, taki, że $\mathbf{L} * \mathbf{z} = \mathbf{y}$, a następnie mając y obliczymy szukany wektor współczynników c, rozwiązując układ $\mathbf{U} * \mathbf{c} = \mathbf{z}$. Korzyścią takiego rozwiązania jest proste wyliczenie y i x. Wektor y podstawiając w przód i (i = 2,3, ...,n) i wykorzystując wzór

$$y_1 = b_1$$

 $y_i = b_i - \sum_{j=1}^{i-1} l_{ij} y_j$

Oraz podstawiając wstecz dla i = n-1, n-2, ..., 1

$$x_n = \frac{y_n}{u_{n,n}}$$

$$x_i = \frac{y_i - \sum_{j=i+1}^n u_{ij} x_j}{u_{ii}}$$

Znając stopień wielomianu oraz jego współczynniki możemy wyliczyć wartości w(x) korzystając ze schematu Hornera.

$$w(x) = \sum_{i=0}^{N-1} c_i x^i = \left(\dots \left((c_{N-1}x + c_{N-2})x + c_{N-3} \right)x + \dots + c_1 \right) x + c_0$$

Korzystając z metody LU łatwo można wyliczyć wyznacznik macierzy A korzystając z twierdzenia Cauchy'ego:

$$det(A) = det(L * U) = det(L) * det(U)$$

oraz z faktu, że wyznacznik macierzy trójkątnej jest iloczynem elementów na przekątnej

$$\mathbf{det}(\mathbf{L}) = \mathbf{1}_{11} * \mathbf{1}_{22} * \dots * \mathbf{1}_{nn} = 1 * 1 * \dots * 1$$

$$det(U) = u_{11} * u_{22} * ... * u_{nn}$$

wiedząc, że na przekątnej macierzy L są same jedynki to det(L) = det(U).

Korzystając z rozkładu LU można wyliczyć macierz odwrotna A⁻¹ macierzy A. W tym celu skorzystamy z własności

Przy założeniu, że macierz A jest macierzą nieosobliwą, możemy obliczyć macierz odwrotną A⁻¹ jako iloczyn macierzy odwrotnych

$$A^{-1} = U^{-1} * L^{-1}$$

Macierz odwrotna do L jest także macierzą dolnotrójkątna, a jej elementy l'_{ij} wyznaczamy ze wzorów:

$$l'_{ij} = -l_{ij} - \sum_{k=j+1}^{i-1} l_{ik} \cdot l'_{kj}$$
$$l'_{ii} = 1$$

Macierz odwrotna do U jest również macierzą górnotrójkątną, elementy u'_{ij} wyznaczamy ze wzorów:

$$u'_{ij} = \left(-\sum_{k=i}^{j-1} u_{kj} u'_{ik}\right) / u_{jj}$$
$$u'_{ii} = 1 / u_{ii}$$

W celu sprawdzenia wyniku wykonujemy mnożenie $A * A^{-1}$, które zgodnie z teorią powinno równać się macierzy jednostkowej **I.**

Wskaźnik uwarunkowania macierzy określa w jaki sposób błąd numeryczny danych wejściowych wpływa na błąd wyniku. Jeśli problem posiada niski wskaźnik uwarunkowania to jest dobrze uwarunkowany, w przeciwnym wypadku, kiedy wskaźnik jest wysoki problem jest źle uwarunkowany. Wskaźnik wyliczamy ze wzoru:

$$k(A) = \left| \left| A^{-1} \right| \right| \cdot \left| \left| A \right| \right|,$$

gdzie podwójne nawiasy || oznaczają normę macierzy. Jako normę wybieramy największy element w macierzy.

4. Wyniki

W celu otrzymania ciągłego wykresu rozwiązałem układy równań dla kolejnych x-ów z podanego przedziału. Kolejny x jest większy od poprzedniego o 0.1, współczynniki c pozostaje stały. Na wykresach poniżej przedstawiam wykresy dla trzech wybranych wielomianów.

4.2 Dla tak zdefiniowanej macierzy A:

1.0000	3.0000	9.0000	27.0000	81.0000	243.0000
1.0000	2.0000	4.0000	8.0000	16.0000	32.0000
1.0000	4.0000	16.0000	64.0000	256.0000	1024.0000
1.0000	-2.0000	4.0000	-8.0000	16.0000	-32.0000
1.0000	-3.0000	9.0000	-27.0000	81.0000	-243.0000
1.0000	5.0000	25.0000	125.0000	625.0000	3125.0000
Otrzymaliśn	ny macierz	odwrotna:			
-4.0000	3.0000	2.1429	0.4286	-0.1429	-0.4286
0.4667	0.1500	-0.4286	-0.4071	0.1119	0.1071
1.4000	-0.8583	-0.7738	0.0702	0.0071	0.1548
-0.1833	0.0583	0.1548	0.0345	-0.0256	-0.0387
-0.1000	0.0583	0.0595	-0.0131	0.0071	-0.0119
0.0167	-0.0083	-0.0119	0.0012	-0.0006	0.0030

Oraz otrzymaliśmy wynik mnożenia $A * A^{-1}$ w celu weryfikacji poprawności danych, otrzymana macierz jest macierzą jednostkową co potwierdza otrzymany wynik.

1.0000	0.0000	0.0000	-0.0000	0.0000	-0.0000
-0.0000	1.0000	0.0000	-0.0000	0.0000	0.0000
-0.0000	0.0000	1.0000	-0.0000	0.0000	0.0000
0.0000	-0.0000	-0.0000	1.0000	0.0000	0.0000
0.0000	-0.0000	-0.0000	-0.0000	1.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	1.0000

Obliczyliśmy także wyznacznik macierzy A obliczając wyznacznik macierzy U:

acierz	

1.0000	3.0000	9.0000	27.0000	81.0000	243.0000	
0.0000	-1.0000	-5.0000	-19.0000	-65.0000	-211.0000	
0.0000	0.0000	2.0000	18.0000	110.0000	570.0000	
0.0000	0.0000	0.0000	-120.0000	-840.0000	-4920.0000	
0.0000	0.0000	0.0000	0.0000	210.0000	840.0000	
0.0000	0.0000	0.0000	0.0000	0.0000	336.0000	

Otrzymany wyznacznik wynosi: 16934400.0 co zgadza się z wartością analityczną, więc wynik jest poprawny. Natomiast wskaźnik uwarunkowania macierzy wyniósł 9375.

5. Podsumowanie

Sprawozdanie dotyczyło rozwiązania układów liniowych metodą LU. Korzystając z tej metody obliczyliśmy współczynniki c_i wielomianu interpolacyjnego w(x). Znając kolejne argumenty oraz współczynniki c_i , mogliśmy obliczyć wartości wielomianu korzystając ze schematu Hornera. Na podstawie otrzymanych danych stworzyliśmy wykres, który był wykresem danego wielomianu. Następnie dalej korzystając z metody LU i właściwości macierzy L i U obliczyliśmy macierz odwrotna A^{-1} , wyznacznik macierzy A oraz wskaźnik uwarunkowania macierzy.