Bigdata Analytics

Final Report

INE5015 - 22057

빅데이터 애널리틱스 8조

| 최준희 | 이강산 | 장혜연 | 황태영 |

List of Contents

- Logic of Data Preprocessing
- step-by-step process
 - Step 0 ~ Step 2 : raw file refining
 - Data Cleaning Overview (3 Steps)
 - ◆ Step 3 : correlation check and correction
 - ◆ Step 4 : Missing Value Imputation
 - ◆ Step 5 : Outlier corrections
 - Step 6 : Data Scaling
- Feature Selection
- Data Sampling overview
- Performance
 - The performance of two samplings
 - Prediction accuracy according to each algorithm
 - Logistic Regression
 - Decision Tree
 - ◆ Random Forest
 - Boosting

GITHUB: https://github.com/ChoiJunhee/INE5015_bigdata_analytics

Logic of our Data Processing

전반적인 Preprocessing 과정은 기능, 목적에 따라 Step으로 구별했고, 매 Step마다 시각적, 통계적 데이터를 확인하면서 진행하였다. 아래는 Step에 대한 구성 Logic이다.

Proceed with 8 steps as above

DataAnalytics 함수에서 필요한 함수를 호출하여 사용하는 구조이며, 각 단계마다 csv 파일을 저장하도록 하여 변화를 직관적으로 확인하기 용이하도록 디자인하였다.

각 Step을 크게 나누어 보면 Raw data를 가공에 용이하도록 조정하는 부분, Pass/Fail 데이터를 분리해 총 3가지 데이터셋으로 나누어 진행할 수 있도록 하는 부분이 있다.

이후 각 Feature (독립변수)간 종속성을 확인하고, 제거하기 위해 진행하는 Correlation과, 결측치 처리/보정 과정, 이상치 처리/보정 과정. 즉, 데이터 클리닝 과정이 있다.

마지막으로 Feature Selection과 샘플링을 통해 최종 데이터 셋 후보를 선정하고, 퍼포 먼스를 확인하는 과정으로 마무리한다.

Step 0 ~ Step 2 : Ready to Preprocess

이 단계는 데이터 파일을 불러오고, 이후 보정에 있어 편의성을 높이기 위해 보정한다.

Explanation of Steps

STEP	STEP DESCRIPTION		
	raw_csv 함수를 통해, Pandas Read_CSV를 실행하여 데이터		
STEP 0	셋을 받아온다. 이후 작업의 편의를 위해 행 위치 변경, Prefix		
	추가 등의 과정을 거친 Dataframe 파일을 받고, 저장한다.		
	일정 계수 미만의 표준편차를 가진, 특징 선택의 필요도가 낮은		
STEP 1	Feature들을 제거하고, Dataframe 파일을 저장한다. 그리고		
	데이터 셋을 3개로 나누는 과정을 거친다.		
	데이터 셋은 Pass Data, Fail Data, Both Data로 나뉘며, 이렇게		
STEP 2	데이터 셋을 나누는 것은 프로젝트 초기의 아이디어 중 유용		
	한, 유의미한 결과를 가져오는 계기가 된다.		

Step 0 부터 Step 2까지의 3 과정은 데이터 전 처리를 위한 준비 단계에 불과하다.

> 위 과정에서 1566개 (1463+104)의 테스트 케이스, 247개의 Feature Data가 남았다.

Step 3 ~ Step 5 : Data Cleaning

이 단계에서는 데이터셋의 노이즈를 제거하기 위해 데이터 클리닝을 진행하는 과정이다. 크게 독립변수 간 종속성 (비율), 결측치 제거 및 보정, 이상치 제거 및 보정으로 나뉜다.

Explanation of Steps

STEP	STEP DESCRIPTION		
	각 독립변수 (Feature)간 상관성이 높다는 것은 다중공선성 발		
STEP 3	생 소지가 있고, 정확한 예측을 방해하는 요인으로 작용할 수		
	있다. 상관관계가 높은 Feature들을 제거하는 과정이다.		
	데이터에 결측치가 많아도 정확한 예측을 방해한다. 독립변수의		
STEP 4	수를 최대한 유지하기 위해, 결측치가 60% 이상인 Feature를		
	제거하고, 60% 미만은 Iterativelmputer를 통해 보정한다.		
	각 Featuer의 사분위 값을 확인하고, IQR 방식을 통해 양 극단		
STEP 5	에 있는 이상치들을 제거한다. 이 때, Fail 데이터셋은 오버샘		
	플링을 진행하지 않았기 때문에 가중치를 달리 설정한다.		

다음 페이지에는 Step3, 4, 5의 구체적인 내용과 편차 제거의 효용성을 비교한다.

Data Cleaning - Overview

데이터 전처리 과정에 있어, 데이터 클리닝 과정은 매우 중요하다. 특히 결측치와 이상치에 대해 처리하는 것은 데이터 분석 및 모델링 결과를 크게 변화할 수 있기 때문에, 데이터의 불안전성과 잡음, 불일치 등을 최대한 효과적으로 처리해야 한다.

Step 3 - Correlation

상관관계를 분석 (Correlation Analysis)을 한다는 것은 통계학적으로 두 변수간 선형적 관계를 분석하는 것이다. 독립 변수 (=Feature)간 상관관계가 높다면 두 변수의 연관성 이 높다는 것이고, 필요치 않은 연산을 할 뿐만 아니라 Clustering 에도 방해가 된다.

우리는 이 프로젝트 과정에서 상관관계가 높은 Feature들을 계산했고 아래 예시처럼 선택된 Feature들을 제거했다. (여기서, Fail 데이터와 All/Pass 데이터간 상관관계 분석 내용이 달라 약 20여개의 Feature가 Fail 데이터에는 남아있게 되었다.

(시각화 자료 들어갈 위치)

Step 4 - Missing Value

이 프로젝트에 있는 결측치는 패턴이 없는, Random Missing Feature 라 가정하고 진행하였다. 결측치를 처리하는 방법에는 삭제, 대치, 예측이 있는데, 결측치들의 특성이 패턴을 가지고 있다는 가정 하에 예측 모델을 구현해야 하기 때문에 이 프로젝트에서는 Deletion, Imputation 두 가지 방법을 사용하였다.

Scikit Learn에서 제공하고 있는 impute 중 Iterative Imputer를 사용하였다. 다른 모든 특성에서 개별 특성을 추정하는 다변량 대치 방식이며, Round Robin 알고리즘으로 각 Feature를 모델링 하여 결측값을 대치하는 기능을 한다.

또한 Iterative Imputer는 KNN 알고리즘으로 결측 치를 예측하여 채워 넣는 방식인데,

Max-Iter를 30으로 조정함으로써 최종 라운드 동안 계산된 결과를 반환하기전에, 수행할 Round의 수를 늘림으로써 데이터의 완전성이 높아지기를 기대하였다.

위 사진은 결측치 보정이 완료된 Feature들의 일부 사진이다. 위 사진에서 있는 F223, F252의 경우 이상치 처리와 보정이 이루어지지 않아 편차의 정도를 알 수 없으며, 다음 단계인 이상치 보정 (삭제, 보정, 편차제거) 단계를 통해 결과를 확인할 수 있다.

기존에는 Fail 데이터에 IQR 가중치를 높여 20여개의 Feature 개수 차이가 났으나, 데이터 왜곡이 우려되어 동일하게 적용하였다.

Step 5 - Outlier Value

이상치의 기준은 IQR Weight 1.5 를 적용하였으며, 일반적인 이상치들을 보정할 수 있었다. 기준 이상인 데이터는 기준치의 최대값으로 대체 하였고, 기준 이하인 데이터는 기준치의 최솟값으로 대체 하였다. 이후 편차 제거를 통해 대체 방법의 단점을 상쇄하였다.

Step 4에서는 편차가 작아 제거되어야 할 대상으로 보였던 Feature 223, 252의 이상치처리 이후의 그래프다. 이상치를 제거하면서 생긴 편차의 변동을 반영하기 위해 편차 제거를 약한 단계 (표준편차 기준 0.1 0.5 1.0)부터 높은 단계로 여러 번 시각화를 통해 확인한 결과 중간 단계가 이 단계에서의 최적의 값이라고 판단 되었다.

테스트 해본 결과, 편차의 변동이 생기는 STEP5에서만 Feature 수의 변화가 있었다.

Step 5를 진행한 Feature들의 모습이다.

DataCleaning Abstract

데이터 과학의 목표인 모집단에 대한 결론 도출을 정상적으로 진행하기 위해 필요한 작업이다. 표본 평균과 실제 평균의 차이를 표본 오차, 표본 데이터들의 평균값을 산출하여 표본 평균의 표준 편차를 구할 수 있다.

우리는 이 프로젝트에서 신뢰 구간을 IQR * 1.5 으로 정했고, 그 외의 값은 결측치로 간주하여 값을 대체 하도록 하였다. Skewed Data를 다루다 보니 데이터 샘플링 이전까지는 Feature 제거에 있어 색다른 시도 보다는, 일반적이고 보수적으로 진행하였다.

선형 회귀 모델에서는 이 외에도 추가적인 조건이 필요하다. 노이즈 (outlier)가 없어야 되는 것은 기본이고 상관관계가 높은 변수가 있는 경우 overfitting의 여지가 있다. 또한, 정규 분포를 따를 때 더 신뢰할 수 있는 예측이 이루어진다.

그렇게 이 프로젝트에서는 이상치 제거와 상관관계 제거를 진행했으며, 오버샘플링 이후에도 추가적인 상관관계 제거를 실행하였다. (샘플링 과정에서 진행)

(STEP3 ~ 5의 히스토그램 등 변화를 알 수 있는 시각화 데이터)

Step 6~8: Data Scaling, Feature Selection, Sampling

이전의 3 단계를 통해 데이터 클리닝을 진행했다면, 앞으로 할 3단계는 모델 성능을 높이기 위한 작업이다. Step 6에서는 스케일링을 진행, Scikit-Learn에서 제공하는 4가지 알고리즘 (Standard Scaler, Robust Scaler, MinMax Scaler, Normalizer)을 사용하였다.

 $Image\ reference: https://homeproject.tistory.com/entry/\%EB%8D\%B0\%EC\%9D\%84\%ED\%84\%B0-\%EC\%8A\%A4\%EC\%BC\%8D\%8C\%9D\%BC\%EB%A7\%81-Data-Scaling through the properties of the properti$

4 가지 스케일러의 특징을 나타낸 이미지이다. 여기서 이상치의 영향을 받지 않는 Robust 는 추후에 탐지 못할 이상치를 데이터셋에 그대로 남길 여지가 있어 제외하였고, Standard Scaler, MinMax Scaler를 선택하였다. Rogitstic 성능 테스트와 여러 테스트 결과 두 가지 방법에서 큰 차이는 없었다.

→ MinMax Scaler 를 사용하기로 결정하였다.

Feature Selection

Feature Selection은 크게 3가지 방법으로 나눌 수 있다. Filtering, Wrapper, 그리고 둘을 합친 Embedded 가 있으며, 이 프로젝트에서 Filter Method와 Wrapper Method를 하나씩 사용하여 두 방법의 차이를 비교하였다. 그리고 두 과정 모두 모델 학습을 위한 작업으로, Feature들의 품질을 향상을 위해 특성을 선별하는 과정이다.

SelectKBest

단일 변수 선택법으로, 앙상블 기법을 사용한다. Feature를 하나씩 사용했을 때의 예측 모델의 성능을 평가하여 정확도가 가장 좋은 Feature들을 선택하는 것이다.

Recursive Feature Elimination

모든 특성의 조합을 시도하고, 가장 좋은 특성 셋을 구하는 Brute Force 방법을 사용한다. 또한 이 과정에서는 '데이터 전처리'에 초점을 맞추어 특성 개수를 자동으로 정해주는 RFECV가 아닌 RFE를 사용하였다.

Result

```
RFE_MMS_ALL
0.8272 0.8061 0.8624 0.8332 0.8947
KBS_MMS_ALL
0.8112 0.7843 0.8595 0.8201 0.8804
```

Logistic Regression, SMOTE 알고리즘을 사용하여 샘플링 후 성능평가를 무작위로 100회 시도한 평균 값이다. (순서대로 Accuracy, Precision, Recall, F1-Score, ROC_curve)

	SelectKBest	Recursive Feature Elimination
Accuracy	-	약 1%p 우세
Precision	-	약 2%p 우세
Recall	무의미한 차이	
F1-Score	-	약 1%p 우세
ROC_curve	-	약 1.5%p 우세

위 결과에 따라, 두 가지 방법 중 RFE를 선정하였고 오버샘플링을 진행하였다.

Sampling

샘플링 소개 (언더샘플링, 단순 오버샘플링, SMOTE, ADASYN등 알고리즘) SMOTE (KNN기반)

ADASYN(SMOTE + @)

Cost-Sensitive Learning (가중치 주는거…) Xgboost 사용할 때도 weight 으로 지정 가능…

오버샘플링 SMOTE 랜덤 100회 평균 (test_size = 0.2, LogisticRegression) acc, pre, rec, f1, roc_curve

```
RFE_MMS_ALL

0.8272  0.8061  0.8624  0.8332  0.8947

KBS_MMS_ALL

0.8112  0.7843  0.8595  0.8201  0.8804

RFE_STD_ALL

0.8264  0.8065  0.8596  0.8321  0.8941

KBS_STD_ALL
```

0.8112 0.783 0.862 0.8205 0.8817

오버샘플링 이전에 상관관계 / 편차 제거를 실행한 결과

```
RFE_MMS
0.8169 0.7958 0.8535 0.8235 0.8907
```

(큰 의미가 있는 결과는 없었음 / 0.05 0.6)

MMS / STD간 큰 차이를 보이지 않았음.

여기서 Fail 데이터에 맞추어 다운 샘플링한 결과도 좀 비교하고 싶은데…

시간이 되면 해보겠습니다.

오버샘플링 이후 상관관계 히트맵

상관관계 제거를 진행한 (세팅값 0.6) 히트맵

Prediction accuracy

Logistic Regression

Decision Tree

Random Forest

Boosting