

Amendments to the Claims

- 1 1. (currently amended) A method for playing frames of a video adaptively,
2 comprising the steps of:
3 measuring a spatial frequency of pixel within frames of the video, wherein
4 the spatial frequency is measured from discrete cosine transform coefficients of the
5 pixels in the frames, and wherein basis functions of the discrete cosine
6 transformation are in a form

$$\begin{aligned} & \cos\left(\frac{\pi k_x(2x+1)}{2N}\right) \cdot \cos\left(\frac{\pi k_y(2y+1)}{2N}\right) \\ & = \cos\left(2\pi \frac{k_x}{2N}x + 2\pi \frac{k}{4N}\right) \cdot \cos\left(2\pi \frac{k_y}{2N}y + 2\pi \frac{k}{4N}\right), \end{aligned}$$

7
8 where k_x is a frequency f_x in an x direction and k_y is a frequency f_y in a y direction
9 in the frame represented as

$$\cos\left(2\pi \frac{f_x}{N}x + 2\pi \frac{f_y}{N}y\right),$$

10
11 where N is 8 for DCT macro-blocks, and each DCT basis is a superimposition of
12 two two dimensional sinusoids;

13 measuring a temporal velocity of corresponding pixels between
14 frames of the video, wherein the temporal velocity is measured from motion
15 vectors of corresponding pixels between the frames;

16 multiplying the spatial frequency by the temporal velocity to obtain a
17 measure of visual complexity of the frames of the video; and
18 playing the frames of the video at a frame rate that corresponds to the
19 measure of visual complexity.

- 1 2. (original) The method of claim 1 wherein the video is compressed.
3. (canceled)
4. (canceled)
- 1 5. (currently amended) The method of ~~claim 4~~ claim 1 wherein each basis function
- 2 is a superimposition of two 2D sinusoids, one with a spatial frequency $\vec{f}_1 = (\frac{k_x}{2}, \frac{k_y}{2})$
- 3 and another with a spatial frequency $\vec{f}_2 = (\frac{k_x}{2}, -\frac{k_y}{2})$.
- 1 6. (original) The method of claim 5 wherein a particular motion vector is
- 2 $\vec{v} = (v_x, v_y)$.
- 1 7. (original) The method of claim 6 wherein the visual complexity resulting from
- 2 the discrete cosine coefficient and the motion vectors are
- 3 $\omega_1 = \vec{f}_1 \cdot \vec{v}_1 = \frac{k_x}{2}v_x + \frac{k_y}{2}v_y$, and
- 4 $\omega_2 = \vec{f}_2 \cdot \vec{v}_2 = \frac{k_x}{2}v_x - \frac{k_y}{2}v_y$.

- 1 8. (original) The method of claim 3 further comprising:
 - 2 discarding motion vectors with a low texture;
 - 3 median filtering the motion vectors; and
 - 4 fitting a global motion model to the motion vectors to reduce spurious
 - 5 motion vectors.
- 1 9. (original) The method of claim 3 wherein the compressed video includes I-frames and P-frames, and further comprising:
 - 3 determined discrete cosine transformation coefficients of the P-frames by
 - 4 applying motion compensation; and
 - 5 determining motion vectors for the I-frames by interpolating the motion
 - 6 vectors of the P-frames.
- 1 10. (original) The method of claim 1 further comprising:
 - 2 averaging the visual complexity over a set of frames to determine a
 - 3 complexity of a video segment.
- 1 11. (currently amended) The method of claim 1 further comprising:
 - 2 applying motion blur while playing playing the video to reduce aliasing.
- 1 12. (previously presented) The method of claim 1 wherein the frame rate of
- 2 playing is inversely proportional to the visual complexity.
- 1 13. (original) The method of claim 1 further comprising:
 - 2 applying coring to spatial filter the video while playing.

- 1 14. (original) The method of claim 1 wherein the video is uncompressed.
- 1 15. (original) The method of claim 1, in which a temporal distortion of the video is
2 minimized during playback.
- 1 16. (original) The method of claim 15, in which the minimizing uses a quantization
2 of the visual complexity.
- 1 17. (original) The method of claim 15, in which the minimizing uses a smoothing
2 and filtering of the visual complexity.
- 1 18. (original) The method of claim 15, in which the minimizing constructs a piece-
2 wise linear approximation of the visual complexity so that the visual complexity is
3 substantially linear.
- 1 19. (original) The method of claim 15, in which the minimizing assigns a constant
2 visual complexity to a consistent temporal segment of the video.