Academic Resources in Robotics

Academic Resources in Robotics

Top-tier Journals & Conferences Overview

Top-tier Journals

Abbreviation	Cycle	Publisher	Description
IJRR	30d	SAGE	International Journal of Robotics Research
RAS	30d	Elsevier	Robotics and Autonomous Systems
RA-L	30d	IEEE	Robotics and Automation Letters
Science Robotics	30d	AAAS	Science Robotics Journal
T-RO	90d	IEEE	Transactions on Robotics
AURO	90d	Springer	Autonomous Robots
Nature Robotics	90d	Nature	Nature Machine Intelligence

Cycle indicates publication frequency in days

III Top-tier Conferences

Abbreviation	Cycle	Organization	Description
ICRA	365d	IEEE	Int'l Conf. on Robotics and Automation
IROS	365d	IEEE & RSJ	Int'l Conf. on Intelligent Robots and Systems
RSS	365d	RSS	Robotics: Science and Systems
CoRL	365d	PMLR	Conference on Robot Learning
ISRR	730d	IFRR	Int'l Symposium of Robotics Research

III Publication Frequency Statistics

- **High-frequency Journals** (30d): IJRR, RAS, RA-L, Science Robotics
- Medium-frequency Journals (90d): T-RO, AURO, Nature Robotics
- Annual Conferences (365d): ICRA, IROS, RSS, CoRL
- Biennial Conference (730d): ISRR

Contents

Month	Year	Status	Papers	Highlights
July	2025	Available	6 papers	IJRR special collection
August	2025	Coming Soon	TBD	ICRA & IROS selections
September	2025	77 Planned	TBD	CoRL & RSS highlights

Academic Resources in Robotics

July 2025 Paper Review

5

Heatured Papers

No.	Venue	Title	Authors	Key Contribution
1	IJRR	RflyMAD: A Dataset for Multicopter Fault Detection and Health Assessment	Le et al.	Comprehensive fault detection dataset
2	IJRR	FusionPortableV2: A Unified Multi-Sensor Dataset for Generalized SLAM	Wei et al.	Multi-platform SLAM dataset
3	IJRR	BRNE: Mixed Strategy Nash Equilibrium for Crowd Navigation	Sun et al.	Bayesian Robot Navigation Engine
4	IJRR	Shared Visuo-Tactile Interactive Perception for Robust Object Pose Estimation	Murali et al.	Visuo-tactile shared perception framework
5	IJRR	Multi-Tactile Sensor Calibration via Motion Constraints	Yu et al.	Motion constraint calibration method
6	IJRR	JVS-SLAM: Joint Vector-Set Distribution SLAM	Inostroza et al.	Unified frontend-backend SLAM

Paper 1: RflyMAD Dataset

RflyMAD: A Dataset for Multicopter Fault Detection and Health Assessment

IJRR | Le et al., Beihang University

© Problem & Solution

- Gap: Lack of public fault detection datasets for multicopters
- **Solution**: Comprehensive dataset bridging simulation and real flight

Dataset Overview

- **5,629 Flight Cases**: 2,566 SIL + 2,566 HIL + 497 Real flights
- 11 Fault Types: Motor, Propeller, Sensors, Environmental
- 6 Flight Modes: Hover, Waypoints, Velocity, Circling, Accel/Decel
- **3 Platforms**: X200/X450/X680 multicopters (200mm-680mm)

RflyMAD Research Details

№ Data Composition & Scale

Component	SIL	HIL	Real	Description
Motor Faults	921	921	231	1-4 motors failure
Sensor Faults	690	690	182	IMU, GPS, Barometer
Environmental	320	320	_	Wind, Load changes
No Fault	200	200	84	Normal operations

© Research Contributions

- Comprehensive Coverage: Bridges simulation and real-world data
- Multi-modal Data: ULog, ROS bag, Telemetry, Ground Truth
- Transfer Learning: Validates sim-to-real generalization
- Benchmark Dataset: First public multicopter fault detection dataset

Paper 2: FusionPortableV2 Dataset

FusionPortableV2: A Unified Multi-Sensor Dataset for Generalized SLAM

IJRR | Wei et al., HKUST & UCL

© Problem & Solution

- Gap: SLAM algorithms lack generalization across platforms and environments
- Solution: Unified multi-sensor dataset spanning diverse platforms and scenarios

Dataset Overview

- 27 Sequences: 2.5 hours total, 38.7 km distance
- 4 Platforms: Handheld, Legged robot, UGV, Vehicle
- Multi-sensors: LiDAR, Stereo cameras, Event cameras, IMU, INS
- 12 Environments: Campus, underground, highway, multi-layer parking

9

Paper 3: BRNE Algorithm

BRNE: Mixed Strategy Nash Equilibrium for Crowd Navigation

IJRR | Sun et al., Northwestern Univ. & Honda Research Inst.

@ Problem & Solution

- Pain Points: Freezing robot (uncertainty), reciprocal dance (oscillation), real-time failure (O(N³) computation)
- Solution: BRNE with mixed strategy Nash equilibrium & Bayesian updates

% Core Design

- Game Model: Captures human behavior uncertainty
- **Update**: Iterative Bayesian (prior: trajectory; likelihood: collision risk)
- Theoretical Gain: Provable global equilibrium
- Real-time: O(TM²N²) (5 agents: Jetson; 8 agents: laptop)

Paper 3: BRNE Algorithm

Engineering: From Theory to Deployment

Key Implementation & Validation

→ Technical Details

- Strategy Representation: Gaussian Process (GP) sampling (M=50-100 trajectories)
 - Mean: Robot (RRT) / Human (constant velocity)
 - Kernel: Smooth constraint (e.g., RBF)
- Weight Update: Init (1/M) \rightarrow Likelihood ($L \propto \exp(-\gamma \sum R_{ik})$) \rightarrow Posterior (normalized)

Validation Results

- Simulation (ETH/UCY): ↓30-50% collision rate, ↓15-25% navigation time
- Hardware: Quadruped (Jetson NX) + 3-5 humans (no freezing/oscillation)
- **Human-Level**: Matches real pedestrian trajectory consistency

□ Paper 4: Visuo-Tactile Shared Perception

Shared Visuo-Tactile Interactive Perception for Robust Object Pose Estimation

IJRR | Murali, Porr, Kaboli

© Problem & Solution

- Pain Points:
 - i. Visual-only fails on transparent/specular objects; tactile-only is sparse/local.
 - ii. Mono-modal shared perception can't handle cross-modal (vision+touch) mismatch.
- Solution: Two-robot shared visuo-tactile framework.

% Core Design

- Shared Perception: UR5 + Franka Panda (Kinect) share scene data to declutter dense clutter.
- S-TIQF: Stochastic Translation-Invariant Quaternion Filter (Bayesian + stochastic optimization).
- In Situ Calibration: Visuo-tactile hand-eye calibration with arbitrary objects (no special targets).

Paper 4: Visuo-Tactile Shared Perception

Key Implementation & Validation

Technical Details & Experimental Results

* Technical Details

- Scene Decluttering: Declutter graph (edges = overlap/proximity; actions = grasp/push) → autosingulate objects via semantic/grasp affordance networks.
- Active Reconstruction:
 - NBV: Hemisphere sampling (Panda reach: 855mm, radius: 550mm) → camera orientation toward object centroid.
 - NBT: Bounding box face sampling → touch direction = face normal.
 - \circ Sensor Selection: Energy cost D(at) (prefer touch for transparent objects via IoU heuristic: IoUpc/rgb < ω).
- S-TIQF Workflow: Decouple rotation/translation → Bayesian update (prior: trajectory; likelihood: collision risk) → global optimal pose.

Paper 5: Multi-Tactile Sensor Calibration

Multi-Tactile Sensor Calibration via Motion Constraints with Tactile Measurements

IJRR | Yu et al., SJTU

© Problem & Solution

- Pain Points: Multi-finger robots lack encoder-free calibration; No overlapping regions (no shared features like cameras); high-cost encoders unavailable for low-cost/soft hands.
- **Solution**: Calibrate via rigid object's shared motion.

% Core Design

- **Key Constraint**: Grasped object is rigid (shared unique motion for all sensors).
- Motion Estimation: Each sensor (e.g., GelSlim) infers object motion via contact pt registration.
- Calibration Target: Homogeneous transform matrix X (rotation + translation) between sensors.
- No Object Prior: Works for arbitrary object shapes/sizes (no CAD/models needed).

Paper 5: Multi-Tactile Sensor Calibration

Key Implementation & Validation

1. Object Motion Estimation:

- Sensor: GelSlim (vision-based tactile sensor) → captures contact 3D point clouds.
- Process: Perturb object slightly → improved ICP → get motion matrix M (R + T) per sensor.

2. Calibration Workflow:

- For 2 sensors: M₁ (sensor1's motion), M₂ (sensor2's motion), X (sensor2 → sensor1 pose).
- Constraint: $M_1X = XM_2$ (rigid object motion consistency).
- \circ Solve: Collect multi-group (M₁,M₂) \rightarrow overdetermined equations \rightarrow least squares to get X.
- 3. **Extension**: 3+ sensors via pairwise calibration (e.g., $X_{12} \rightarrow X_{23} \rightarrow X_{13}$).

Paper 6: JVS-SLAM

Combining the SLAM back and front ends with a joint vector-set distribution

IJRR | Inostroza, Adams

© Problem & Solution

- Pain Points: Traditional SLAM splits frontend (heuristic association) & backend; frontend errors (e.g., low-light misassociation) cause convergence failure; no map cardinality/association uncertainty.
- **Solution**: JVS-SLAM unify frontend-backend via Bayesian RFS + batch optimization.

% Core Design

- Joint State: Trajectory (fixed vector) + map (RFS, random cardinality) → co-estimated.
- RFS: Handles ambiguous association/false alarms without heuristics.
- Batch Integration: Combines RFS with g2o-like solvers for global consistency.
- No Separate Frontend: Association/map management = part of joint Bayesian estimation.

August 2025 Paper Review

Coming Soon - ICRA & IROS Selections

Stay tuned for comprehensive reviews of papers from:

- ICRA 2025: International Conference on Robotics and Automation
- IROS 2025: IEEE/RSJ International Conference on Intelligent Robots and Systems
- **Selected Journal Papers**: Latest publications in top robotics journals

Expected coverage areas:

- Langulation & Grasping
- Autonomous Navigation
- 💆 Learning & AI in Robotics

September 2025 Paper Review

Planned - CoRL & RSS Highlights

Upcoming comprehensive reviews from:

- CoRL 2025: Conference on Robot Learning
- RSS 2025: Robotics: Science and Systems
- Specialized Workshops: Focus on emerging robotics research

Anticipated research themes:

- Position
 Deep Learning for Robotics
- Field & Service Robotics
- Property Real-time Robotics Applications

Academic Resources in Robotics