

COMP 2019

Week 7
ML Training

Learning Objectives

- Explain the machine learning process (CO3)
- Explain how data is prepared (CO3)
- Explain how ML models are trained (CO3)
- Explain how ML models are evaluated (CO3)

Supervised Learning from Data

ML Process

Understanding Data

- Key attribute distribution
- Label distribution
- Relationships between key attributes
- Attributes of important sub-populations
- Simple aggregation results
- Simple analysis of statistics

Examine the Quality of Data

- Is the data complete, covering all the required cases?
- Is the data correct?
 - How often do errors occur?
 - What is the nature of errors?
- Does the data contain missing values?
 - Where do they occur?
 - How they are they represented?
 - How frequent?
 - Systematic or random?

Preparing Data

- Cleaning the data
 - Rectify data quality issues
- Construct features
- Generate records
 - Negative cases may not be represented in the data
- Integration: combine data from multiple sources
- Aggregation

Data Sets

Never use the same data for training and testing

Model Fitting

Training Dataset

x 1	 xn	у

Type of model?

Learning algorithm?

Types of Model

Training as Optimisation

Deep Neural Net

GoogLeNet/InceptionV1 (2014) has 22 layers and 4 million parameters

Optimisation Algorithm

Metrics and Loss

Learning = Generalisation

How well does the model perform on UNSEEN data?

Model Evaluation

x 1	 xn	у

Metrics

(R)MSE

Accuracy and Precision

Precision =

How many selected

How many relevant items are selected?

Precision AND Recall?

	Precision	Recall
Classifier 1	0.5	0.4
Classifier 2	0.7	0.1
Classifier 3	0.02	1.0

- Usually there is a trade-off between Precision and Recall
- Mean $(\frac{P+R}{2})$ is <u>not</u> meaningful
 - Classifier 3 has highest mean but predicts 'positive' all the time

F₁ Score

	Precision	Recall	F ₁
Classifier 1	0.5	0.4	0.444
Classifier 2	0.7	0.1	0.175
Classifier 3	0.02	1.0	0.039

$$\bullet \quad F_1 = 2 \frac{P \times R}{P + R}$$

- Higher is better
- F_1 is 0 if P=0 or R=0
- F_1 is 1 if P=1 and R=1

Accuracy Paradox

Contingency Tables: > 2 Classes

	Predicted C1	Predicted C2	Predicted C3
Actual C1	100	40	25
Actual C2	25	50	4
Actual C3	1	0	7

Summary

- ML systems are created in a 6 step process
 - Data collection & preparation is where most effort is spent
- ML Models are trained and evaluated on separate data sets
- Training means choosing parameters that optimise a metric
- Knowing the distribution of (unseen) data is important for selecting models and metrics

University of South Australia

Questions?