

TMall Repeat Buyers Prediction

Big Data Intelligence – Tsinghua University

Armando Fortes, David Pissarra, Gabriele Oliaro 14 December 2021

How promotions work

Offer discounts on particular occasions

Attract a large number of new customers

 Expect some of the new buyers to become regular customers

 Avoid one-time deal hunters as much as possible

 Maximize return on investment (ROI) by targeting people most likely to become loyal customers

How promotions work

Offer discounts on particular occasions

Attract a large number of new customers

 Expect some of the new buyers to become regular customers

 Avoid one-time deal hunters as much as possible

 Maximize return on investment (ROI) by targeting people most likely to become loyal customers

When to use Big Data

- Predicting repeated buyers requires a lot of data
- Difficult to do for individual stores
- Readily available for large e-commerce platforms, such as TMALL
- Models trained on data from large platforms can be used by individual stores, if made available

The competition details

- Data from Tmall.com user behavior in the 6 months leading up to 11/11 promotion
- Given a training and testing dataset
- Need to predict labels for testing dataset and upload results in CSV format
- Use AUC (Area Under the ROC Curve) to evaluate predictions

The competition dataset

The dataset contains two types of data:

- Customer demographic information, such as age and gender
- Customer-merchant interaction data:
 - Label indicating whether the customer is a repeated buyer (training dataset)
 - Activity log: one record (with timestamp, category, brand and item number, plus the action type) for each item that was clicked, added to cart, purchased or added to favorite

The evaluation criteria

- We use the AUC (Area Under the ROC Curve) to benchmark our solutions
- The ROC curve is obtained by plotting the True Positive (TP) rate as a function of the False Positive (FP) rate, with one point for each classification threshold
- The AUC is the integral of the curve, evaluated from (0.0) to (1.1).
- AUC is a good measure because it is scaleinvariant

Image credits: developers.google.com

The roadmap

O1 Clean data ////////

The first step was to reorganize the dataset to optimize memory usage, and replace invalid (nan) values **03** Training ////////

We train several classifier models (CatBoostClassifier, LGBMClassifier, XGBClassifier) and optimize their hyperparameters

O4
Predicting

O2 Feature Engineering

Before training, we need to arrange the data in a way that makes training most effective. This involves creating features of interest by organizing and transforming the data with various techniques We predict using an ensemble of the trained classifier models, taking their best instances, and optimizing the weight of each model.

Feature Engineering

Feature Engineering

- There's no strong correlation between users and merchants in the initial dataset
 Solution: Create features!
- 1. Counting features (counting user purchase frequency, etc.)
- 2. Statistical analysis features based on counting features
- 3. Time period features (time span analysis, double 11 features)
- 4. Principal component analysis features (PCA features)

Counting Features

Interactions regarding users, merchants or even both together.

User ID	Items	Categories	Brands	Days	Months
263947	36	26	20	22	6
338674	68	14	34	23	6
9058	42	18	19	16	5
237186	20	9	18	6	4
100871	56	22	35	17	6
49472	17	12	11	7	4
28974	129	43	61	21	4
359629	223	55	64	34	5
216711	1950	319	726	126	6
61119	153	46	72	34	5

Statistical Analysis Features

Over the calculated user-merchant counting features:

- Max
- Mean
- Median
- Standard deviation

User ID	Merchant ID	Purchases
34176	3906	1
34176	121	1
34176	4356	6
34176	2217	1

User ID	34176
max	6
mean	2.25
median	1
std	2.5

Time Period Features

Period	Purchases
1	2
2	10
3	5
4	21
5	19
6	50

.

$n(\Sigma xy) - (\Sigma x)(\Sigma y)$)
$n(\Sigma x^2) - (\Sigma x)^2$	

.

Period	Clicks
1	347901
2	125048
3	101852
4	150874
5	70247
6	90115

Double 11 Features

- 11th November shopping festival
- Huge volume of online transactions
- One-time deal hunters

PCA Features

Summarize all features in 5 dimensions using Principal Component Analysis and append it to the other features

Training Models

Gradient Boosting

- Gradient Boosting is a stage-wise additive model which generates weak-learners during the learning process.
- Decision trees are gradually added one at a time, each of them being trained using the residual errors of their predecessors as labels.
- The contribution of a given decision tree to the ensemble is based on the gradient descent optimization process, where we attempt to minimize the overall error of the strong-learner.

Gradient Boosting Implementations

Stands for eXtreme Gradient
Boosting. Initially started as a
research project by Tianqi
Chen in March 2014,
becoming famous by 2016.

Developed by Microsoft, being first released in January 2017.

Specifically designed to achieve faster training speeds and higher efficiency.

Open-sourced by Yandex, one of Russia's leading tech companies in April 2017.
Provides an innovative algorithm for processing

Categorical features.

K-Fold Cross Validation

Avg Score: **0.6913**Best Score: **0.7067**

Avg Score: 0.6773 Best Score: 0.6876 Avg Score: 0.6871 Best Score: 0.7011

Ensemble Model

$$P(u,m) = \sum_{k} w_k \cdot P_k(u,m)$$

Ensemble Model

$$P(u,m) = \sum_{K} w_k \cdot P_k(u,m)$$

Model	ROC-AUC Score
XGBoost	0.6913
LightGBM	0.6773
CatBoost	0.6871
Ensemble Model	0.6924

Fetching Best Features using XGBoost

Feature	Importance
items_user_merchant	5.358978
purchases_user_merchant_period_5	5.250384
purchases_user_merchant	5.186556
categories_user_merchant	4.047388
periods_user_merchant	4.018932
double11_periods_user_merchant_ratio	2.951180
categories_merchant	2.078619
favourites_merchant_user_max	2.042979

Fetching Best Features using XGBoost

	Feature	Importance
	items_user_merchant	5.358978
	purchases_user_merchant_period_5	5.250384
	purchases_user_merchant	5.186556
,	categories_user_merchant	4.047388
	periods_user_merchant	4.018932
	double11_periods_user_merchant_ratio	2.951180
	categories_merchant	2.078619
	favourites_merchant_user_max	2.042979
		·

290
Features

150
Features

Final Scores

Model	Every Feature (290)	Best Features (150)
XGBoost	0.6913	0.6916
LightGBM	0.6773	0.6757
CatBoost	0.6871	0.6882
Ensemble Model	0.6924	0.6925

Conclusion

- Analyzed and cleaned large dataset
- Performed feature engineering to extract a variety of features of different complexity levels
- Implemented prediction model based on ensemble of classifiers
- Submitted our solution on tianchi.aliyun.com and made it to the Top 40 Leaderboard!

