

SME0822 Análise Multivariada e Aprendizado Não-Supervisionado

Aula 4c: Inferência sobre a média

Prof. Cibele Russo

cibele@icmc.usp.br

http://www.icmc.usp.br/~cibele

Baseado em Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis.

Prentice Hall.

Sejam X_1,\ldots,X_n vetores que representam uma amostra aleatória de uma distribuição $N_p(\underline{\mu},\Sigma)$. A função densidade de probabilidade conjunta de X_1,\ldots,X_n é dada por

$$f(\chi_1, ..., \chi_n) = \prod_{j=1}^n \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{(\chi_j - \mu)^\top \Sigma^{-1} (\chi_j - \mu)}{2} \right\}$$
$$= \frac{1}{(2\pi)^{np/2} |\Sigma|^{n/2}} \exp \sum_{j=1}^n \left\{ -\frac{(\chi_j - \mu)^\top \Sigma^{-1} (\chi_j - \mu)}{2} \right\}.$$

Resultado

Seja $A_{k \times k}$ uma matriz simétrica e $\underline{x}_{k \times 1}$ um vetor

$$\bullet \ \ \overset{}{\underline{x}}^{\top} A \overset{}{\underline{x}} = tr(\overset{}{\underline{x}}^{\top} A \overset{}{\underline{x}}) = tr(A \overset{}{\underline{x}} \overset{}{\underline{x}}^{\top})$$

• $tr(A) = \sum_{i=1}^{k} \lambda_i$, com λ_i autovalores de A para i = 1, ..., k.

Utilizando o resultado anterior, temos que

$$\sum_{j=1}^{n} \left\{ (\mathbf{x}_{j} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{j} - \boldsymbol{\mu}) \right\} =$$

$$\sum_{j=1}^{n} \operatorname{tr} \left\{ (\mathbf{x}_{j} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{j} - \boldsymbol{\mu}) \right\} =$$

$$\sum_{j=1}^{n} \operatorname{tr} \left\{ \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{j} - \boldsymbol{\mu}) (\mathbf{x}_{j} - \boldsymbol{\mu})^{\top} \right\} =$$

$$\operatorname{tr} \left\{ \boldsymbol{\Sigma}^{-1} \sum_{j=1}^{n} (\mathbf{x}_{j} - \boldsymbol{\mu}) (\mathbf{x}_{j} - \boldsymbol{\mu})^{\top} \right\} =$$

$$\operatorname{tr}\left\{\Sigma^{-1}\sum_{j=1}^{n}(\underline{x}_{j}-\underline{\mu})(\underline{x}_{j}-\underline{\mu})^{\top}\right\} =$$

$$\operatorname{tr}\left\{\Sigma^{-1}\sum_{j=1}^{n}(\underline{x}_{j}-\overline{\underline{x}}+\overline{\underline{x}}-\underline{\mu})(\underline{x}_{j}-\overline{\underline{x}}+\overline{\underline{x}}-\underline{\mu})^{\top}\right\} =$$

(após alguns cálculos - exercício)

$$\operatorname{tr}\left\{\Sigma^{-1}\left[\sum_{j=1}^{n}(\underline{x}_{j}-\overline{\underline{x}})(\underline{x}_{j}-\overline{\underline{x}})^{\top}+n(\overline{\underline{x}}-\underline{\mu})(\overline{\underline{x}}-\underline{\mu})^{\top}\right]\right\}.$$

Reescrevemos então a função densidade de probabilidade agora como função de verossimilhança:

$$L(\underline{\mu}, \Sigma | \underline{x}_1, \dots, \underline{x}_n) = \frac{1}{(2\pi)^{np/2} |\Sigma|^{n/2}} \times \exp \left\{ -\text{tr} \left\{ \sum_{j=1}^n (\underline{x}_j - \overline{\underline{x}}) (\underline{x}_j - \overline{\underline{x}})^\top + n(\overline{\underline{x}} - \underline{\mu}) (\overline{\underline{x}} - \underline{\mu})^\top \right] \right\} / 2 \right\}$$

e então, obtemos o logaritmo da verossimilhança:

$$\begin{split} \log \ & L(\underline{\mu}, \Sigma | \underline{x}_1, \dots, \underline{x}_n) = -\frac{np}{2} \log(2\pi) - \frac{n}{2} \log |\Sigma| \\ & - \text{tr} \left\{ \Sigma^{-1} \left[\sum_{j=1}^n (\underline{x}_j - \overline{\underline{x}}) (\underline{x}_j - \overline{\underline{x}})^\top + n(\overline{\underline{x}} - \underline{\mu}) (\overline{\underline{x}} - \underline{\mu})^\top \right] \right\} / 2. \end{split}$$

Resultado

$$\hat{\mu} = \overline{X}$$
 e $\hat{\Sigma}_{MV} = \frac{1}{n} \sum_{j=1}^{n} (X_j - \overline{X})(X_j - \overline{X})^{\top}$.

As estimativas de máxima verossimilhança (após observar a amostra) de $\underline{\mu}$ e Σ são dados por

$$\hat{\mu} = \overline{x}$$
 e $\hat{\Sigma}_{MV} = \frac{1}{n} \sum_{j=1}^{n} (\underline{x}_j - \overline{\underline{x}}) (\underline{x}_j - \overline{\underline{x}})^{\top}$

Prova em Johnson (2007, p. 172).

Note que, como já mostramos, $\hat{\Sigma}_{MV}$ é viesado para estimar Σ . Assim, em muitas aplicações consideramos o estimador não viesado para Σ :

$$\hat{\Sigma} = S = \frac{1}{n-1} \sum_{j=1}^{n} (X_j - \overline{X})(X_j - \overline{X})^{\top}$$

Distribuição amostral de \overline{X} e S

Sejam
$$\hat{\mu} = \overline{X}$$
 e $\hat{\Sigma} = S = \frac{1}{n-1} \sum_{j=1}^{n} (X_j - \overline{X})(X_j - \overline{X})^{\top}$.

Temos o seguinte

Resultado

- **2** $(n-1)S \sim Wishart(n-1)$.
- 3 \overline{X} e S são independentes.

Distribuição amostral de \overline{X} e S

Obs: A distribuição Wishart é uma generalização da distribuição Gama, e é definida como a soma de produtos de normais multivariadas independentes de média $\underline{0}$ e variância Σ : Em outras palavras, seja

$$W = \sum_{j=1}^{n} Z_{j} Z_{j}^{\top} \operatorname{com} \ Z_{j} \stackrel{i.i.d}{\sim} N(\underline{0}, \Sigma),$$

Então

$$W \sim Wishart(\Sigma, n)$$
.

A distribuição assintótica de \overline{X}

Teorema do Limite Central

Seja X_1, \ldots, X_n uma amostra aleatória de uma distribuição qualquer p-variada com $E(X_i) = \underline{\mu}$ e $Var(X_i) = \Sigma$, para $i = 1, \ldots, n$ e Σ positiva definida.

Então, para n suficientemente grande e n >> p, temos

$$\sqrt{n}(\overline{X} - \underline{\mu}) \sim N_p(\underline{0}, \Sigma)$$

e ainda

$$n(\overline{X} - \mu)^{\top} S^{-1}(\overline{X} - \mu) \sim \chi_p^2$$

Seja $\underline{X}_1,\ldots,\underline{X}_n$ uma amostra aleatória de uma distribuição normal p-variada com vetor de médias $\underline{\mu}$ e matriz de variâncias e covariâncias Σ . Sejam $\overline{\underline{X}}$ e S o vetor de médias amostrais e a matriz de variâncias e covariâncias amostrais.

Queremos avaliar se

$$H_0: \underline{\mu} = \underline{\mu}_0 \text{ contra}$$

 $H_1: \underline{\mu} \neq \underline{\mu}_0,$

Relembramos o resultado anterior

Resultado

- **2** $(n-1)S \sim Wishart(n-1)$.
- 3 \overline{X} e S são independentes.

Além disso,

$$T^2 = \sqrt{n}(\underline{X} - \underline{\mu})^\top \left(\frac{(n-1)S}{n-1}\right) \sqrt{n}(\underline{X} - \underline{\mu}) \sim \frac{(n-1)p}{n-p} F_{p,n-p}$$

A quantidade

$$T^{2} = n(\underline{X} - \underline{\mu})^{\top} S^{-1}(\underline{X} - \underline{\mu}) \sim \frac{(n-1)p}{n-p} F_{p,n-p}$$

é conhecida como a Estatística T^2 de Hotelling.

Assim, rejeitamos H_0 a um nível de significância α se

$$T_{obs}^2 = n(\underline{x} - \underline{\mu})^{\top} S^{-1}(\underline{x} - \underline{\mu}) > \frac{(n-1)p}{n-p} \ q_{F_{p,n-p,\alpha}}$$

em que $q_{F_{p,n-p,\alpha}}$ é o quantil α -superior de uma distribuição $F_{p,n-p}$.

Propriedade de T^2

Seja X_1, \dots, X_n uma amostra aleatória de uma distribuição normal p-variada com vetor de médias μ_X e matriz de variâncias e covariâncias Σ_X .

Seja $Y_i = CX_i + Q_i$, com C uma matriz não singular fixa e Q um vetor fixo.

Temos que
$$\mathsf{E}(\widecheck{Y}_i) = C_{\widecheck{\mathcal{L}}_{y}} + \widecheck{\mathcal{Q}}, \, \mathsf{Var}(\widecheck{Y}_i) = C\Sigma_X C^\top.$$

Além disso, $\overline{\underline{Y}} = C\overline{\underline{X}} + \underline{\underline{\sigma}} \text{ e } S_Y = CS_XC^\top$ (exercício).

Propriedade de T²

É possível mostrar que a estatística \mathcal{T}^2 para avaliar

$$H_0: \underline{\mu} = \underline{\mu}_0 \text{ contra}$$

 $H_1: \underline{\mu} \neq \underline{\mu}_0,$

é equivalente à estatística T^2 para avaliar

$$\begin{split} & H_0: C \underline{\mu} + \underline{d} = C \underline{\mu}_0 + \underline{d} \text{ contra} \\ & H_1: C \underline{\mu} + \underline{d} \neq C \underline{\mu}_0 + \underline{d}, \end{split}$$