Strong Induction Sai Sivakumar

11. Let m, n be integers, and set $d = \gcd(m, n)$. Prove that there are integers x, y such that mx + ny = d.

Proof. It suffices to prove the theorem for m, n being nonnegative integers since we can pass any negative signs into the coefficients x, y (or pass them back into |m|, |n|); that is, if m is negative and we have coefficients x, y that satisfy mx + ny = d, then we also have that |m|(-x) + ny = d, so that $d = \gcd(m, n) = \gcd(|m|, n)$. We can do the same if n was negative, or if both m and n were negative.

Let m, n be nonnegative integers and $d = \gcd(m, n)$ as given, where without loss of generality, let $n \ge m$. By strong induction on $h \ge 0$, suppose that for nonnegative integers a, b where a + b < h there exist integers s, t such that $d = \gcd(a, b) = as + bt$. When h = n + m = 0, then both m, n are zero and so x, y are both zero as well (where the greatest common of 0 and 0 is 0 because the divisor should be less than or equal to 0 in the nonnegative integers). If m (the lesser of the two) is 0 and n is nonzero (so that n = n), then the greatest common divisor is n, and we find that n = n(1) + m(0). Then let $m \ge 1$, with n = n + m.

Consider $\gcd(m, n-m)$. Observe that m+(n-m)=n=h-m< h, since $m\geq 1$. Then by the inductive hypothesis, there exist integers a,b such that $\gcd(m,n-m)=ma+(n-m)b=m(a-b)+nb$. This quantity is actually the greatest common divisor of m and n. Any common divisor of m and n will divide the quantity m(a-b)+nb since this is a linear combination of m,n. Hence there are integers x=(a-b),y=b such that $d=\gcd(m,n)=mx+ny$.

Therefore, by mathematical induction, for any integers m, n, there exist integers x, y such that $d = \gcd(m, n) = mx + ny$.

14. Let x be a real number such that $x + x^{-1}$ is an integer. Prove that $x^n + x^{-n}$ is an integer for all positive integers n.

Proof. Let $x \in \mathbb{R}$ be given so that $x + x^{-1} \in \mathbb{Z}$ as given. Then by strong induction on n, suppose that for $1 \le k < n$, $x^k + x^{-k} \in \mathbb{Z}$.

Since $x + x^{-1} \in \mathbb{Z}$, we have that $(x + x^{-1})^n \in \mathbb{Z}$. Then by binomial expansion,

$$(x+x^{-1})^n = x^n + x^{-n} + \sum_{k=1}^{n-1} \binom{n}{k} x^k (x^{-1})^{n-k},$$

and we can further simplify this using the symmetry of binomial coefficients, where $\binom{n}{k} = \binom{n}{n-k}$. However, we must handle an "extra" constant term that forms when n is even (where k = n - k for some k). So in the first case when n is even, write n = 2a for some positive integer a. Then substitute and simplify using the symmetry of binomial coefficients to find

$$x^{n} + x^{-n} + \sum_{k=1}^{2a-1} \binom{2a}{k} x^{k} (x^{-1})^{2a-k} = x^{n} + x^{-n} + \binom{2a}{a} + \sum_{k=1}^{a-1} \binom{2a}{k} \left[x^{2(a-k)} + (x^{-1})^{2(a-k)} \right],$$

Strong Induction Sai Sivakumar

and observe that $\binom{2a}{a}$ is an integer. By the inductive hypothesis, all of the terms $\binom{2a}{k} \left[x^{2(a-k)} + (x^{-1})^{2(a-k)} \right]$ for $1 \le k \le a-1$ are integers as well since 2(a-k) < n. Then it follows that $x^n + x^{-n} = (x+x^{-1})^n - \binom{2a}{a} - \sum_{k=1}^{a-1} \binom{2a}{k} \left[x^{2(a-k)} + (x^{-1})^{2(a-k)} \right]$ is an integer since a sum of integers is an integer.

Similarly, when n is odd, write n = 2b + 1 for some positive integer b, and we have that

$$x^{n} + x^{-n} + \sum_{k=1}^{2b} {2b+1 \choose k} x^{k} (x^{-1})^{2b+1-k} = x^{n} + x^{-n} + \sum_{k=1}^{b} {2b+1 \choose k} \left[x^{2(b-k)+1} + (x^{-1})^{2(b-k)+1} \right],$$

where because $1 \le k \le b$, 2(b-k)+1 < n, all of the terms $\binom{2b+1}{k} \left[x^{2(b-k)+1} + (x^{-1})^{2(b-k)+1} \right]$ are integers. Again, we have that $x^n + x^{-n} = (x+x^{-1})^n - \sum_{k=1}^b \binom{2b+1}{k} \left[x^{2(b-k)+1} + (x^{-1})^{2(b-k)+1} \right]$ is an integer.

Hence in both cases $x^n + x^{-n}$ is an integer, and by mathematical induction, $x^n + x^{-n}$ is an integer for all positive integers n.