MATH 135 Fall 2020: Extra Practice 7

Warm-Up Exercises

WE01. Find the complete integer solution to 7x + 11y = 3.

Solution. Begin by applying the EEA to determine one solution for x and y:

\boldsymbol{x}	y	r	q
1	0	7	0
0	1	11	0
-1	1	4	-1
2	-1	3	2

which gives 7(2)+11(-1)=3. Since 7 and 11 are prime, we immediately know their GCD is 1. Now, apply the LDET to determine the complete solution set:

$$\{(x,y): x = 2 + 11n, y = -1 - 7n, n \in \mathbb{Z}\}$$

WE02. Find the complete integer solution to 28x + 60y = 10.

Solution. Begin by applying the EEA to find the GCD:

Therefore, gcd(28,60) = 4. However, $4 \nmid 10$, so there are no solutions to this equation. \square

Recommended Problems

RP01. Find all non-negative integer solutions to 12x + 57y = 423.

Solution. Since $12 = 3 \times 4$ and $57 = 3 \times 19$, clearly gcd(12, 57) = 3. We also have that $423 \mid 3$, so solutions exist. Applying EEA, we have

$$\begin{array}{c|c|cccc} y & x & r & q \\ \hline 1 & 0 & 57 & 0 \\ 0 & 1 & 12 & 0 \\ 1 & -4 & 9 & 4 \\ -1 & 5 & 3 & 1 \\ \hline \end{array}$$

so our base solution is 12(5) + 57(-1) = 3. Multiplying through by $\frac{423}{3} = 141$, we have 12(705) + 57(-141) = 423. By the LDET, we arrive at our solution set in the integers:

$$\{(x,y): x = 705 + 19n, y = -141 - 4n, n \in \mathbb{Z}\}\$$

However, we want to restrict $x \ge 0$ and $y \ge 0$. Notice that $x \ge 0$ when $n \ge -\frac{705}{19}$, that is, $n \ge -37$. Likewise, $y \ge 0$ when $n \le -\frac{141}{35}$, that is, $n \le -36$.

This just means that $-37 \le n \le -36$, or n = -37, -36. Therefore, the solution set is $(x,y) \in \{(2,7),(21,3)\}.$

RP02. Prove or disprove the following implications:

(a) For all integers a, b, and c, if there exists an integer solution to $ax^2 + by^2 = c$, then $gcd(a,b) \mid c$.

Proof. Let a, b, and c be integers. Suppose there is an integer solution in x and y to the equation $ax^2 + by^2 = c$. Since x^2 and y^2 are integers, this is a solution to the equation as + bt = c with integers $s = x^2$ and $t = y^2$.

It immediately follows from the LDET that $gcd(a, b) \mid c$.

(b) For all integers a, b, and c, if $gcd(a,b) \mid c$, then there exists an integer solution to $ax^2 + by^2 = c$.

Proof. Consider the counterexample where a = b = 1 and c = -2. We have that gcd(a, b) = gcd(1, 1) = 1 and clearly $1 \mid -2$.

We now have the equation $(1)x^2 + (1)y^2 = -2$. From the properties of integers, $x^2 \ge 0$ and $y^2 \ge 0$, so $x^2 + y^2 \ge 0$. Then, $x^2 + y^2 \ge 0$ but -2 is not non-negative. Therefore, no solutions to $x^2 + y^2 = -2$ exist.

RP03. Consider the following statement: For all integers a, b, c, and x_0 , there exists an integer y_0 such that $ax_0 + by_0 = c$.

(a) Carefully write down the negation of this statement and prove that this negation is true.

Proof. We prove the negation:

There exist integers a, b, c, and x_0 such that for all integers y_0 , $ax_0 + by_0 \neq c$.

Select $a = x_0 = 1$, b = 0, and c = 2. Let y_0 be an integer. We must show that $(1)(1) + (0)y_0 \neq (2)$. This is just $1 \neq 2$, which is true independent of y_0 .

(b) Let $a, b, c \in \mathbb{Z}$. Fill in the blank to make the following statement true and prove that it is true. b is non-zero, $b \mid a$, and $b \mid c$ if and only if for all integers x_0 , there exists an integer y_0 such that $ax_0 + by_0 = c$.

Proof. Let a, b, and c be integers.

We prove the biconditional by proving both implications.

 (\Rightarrow) Suppose b is non-zero, $b \mid a$, and $b \mid c$. We break into cases on a:

If a = 0, then we must show that there exists a y_0 such that $by_0 = c$. This follows immediately from the fact that $b \mid c$.

If a is non-zero, it follows that gcd(a, b) = |b|. Then, since $b \mid c$, we have $gcd(a, b) \mid c$. We may now apply the LDET. The solution set to the linear Diophantine equation $ax_0 + by_0 = c$ is

$$\{(x_0, y_0) : x_0 = x + \frac{b}{|b|}n, y_0 = y + \frac{a}{|b|}n, n \in \mathbb{Z}\}$$

for some initial solution (x, y). Since n ranges through all integers, we may drop the absolute value bars. Then, $x_0 = x + n$, so every integer x_0 appears in the solution set at $n = x_0 - x$, with a corresponding y_0 .

Alternatively stated, for every integer x_0 , there exists a y_0 such that $ax_0 + by_0 = c$.

(\Leftarrow) Suppose that for all integers x_0 , we may choose an integer y_0 so $ax_0 + by_0 = c$. Let x_0 be an integer.

Suppose for a contradiction that b = 0, so $ax_0 = c$. This is clearly not true for all a, c, and x_0 . Therefore, b is non-zero.

Now, break into cases on a. Suppose that a = 0. Then, we may find y_0 such that $by_0 = c$, which is the same as saying $b \mid c$.

Suppose that a is non-zero. Since both a and b are non-zero and $ax_0 + by_0 = c$ is a solution to the LDE ax + by = c, the LDET applies, giving $gcd(a, b) \mid c$.

However, since the LDET applies, there is an entire solution set given by

$$\{(x,y): x = x_0 + \frac{b}{\gcd(a,b)}n, y = y_0 + \frac{a}{\gcd(a,b)}n, n \in \mathbb{Z}\}$$

Now, recall that x_0 is an arbitrary integer. Therefore, the values of x given in the set above must also span the integers, that is, any arbitrary integer x may be written $x_0 + \frac{b}{\gcd(a,b)}n$.

This implies that $\frac{b}{\gcd(a,b)} = 1$, that is, $b = \gcd(a,b)$, since GCD is positive.

Therefore, b is non-zero, gcd(a, b) = b divides c, and by definition, b divides a.

RP04. Suppose a and b are integers. Prove that $\{ax+by: x,y\in\mathbb{Z}\}=\{n\gcd(a,b):n\in\mathbb{Z}\}$.

Proof. Let a and b be integers with GCD d. We prove $\{ax + by : x, y \in \mathbb{Z}\} = \{nd : n \in \mathbb{Z}\}$ by mutual containment.

- (\subseteq) Let x and y be integers. Then, since $d \mid a$ and $d \mid b$, $d \mid (ax + by)$. This means we may write ax + by as nd, as desired.
- (\supseteq) Let n be an integer. By Bézout's Lemma, we may write d = xs + yt for integers s and t. Multiplying through by n, we have nd = (ns)x + (nt)y. We may let a = ns and b = nt, which are integers, and have nd = ax + by as desired.

Therefore, since the sets are mutually contained, they are equal.

Note: This is essentially a restatement of Jerry Wang's GCD derivation by subgroups.

Challenge

C01. For how many integer values of c does 8x + 5y = c have exactly one solution where both x and y are strictly positive integers?