CS 3.307

Performance Modeling for Computer Systems

Tejas Bodas

Assistant Professor, IIIT Hyderabad

► There are two versions of Markov chains- Discrete time and Continuous time.

- There are two versions of Markov chains- Discrete time and Continuous time.
- A stochastic process $\{X_n, n \in \mathbb{Z}_+\}$ is a discrete time Markov chain if for any $n_1 < n_2 < \ldots < n_k < n$,

$$P(X_n = j | X_{n_1} = x_1, ..., X_{n_k} = i) = P(X_n = j | X_{n_k} = i)$$

- There are two versions of Markov chains- Discrete time and Continuous time.
- A stochastic process $\{X_n, n \in \mathbb{Z}_+\}$ is a discrete time Markov chain if for any $n_1 < n_2 < \ldots < n_k < n$,

$$P(X_n = j | X_{n_1} = x_1, ..., X_{n_k} = i) = P(X_n = j | X_{n_k} = i)$$

► $\{X(t), t \ge 0\}$ is a Markov process (ctmc) if for $t_1 < t_2 < \dots t_n < t$,

$$P(X(t) = j | X(t_1) = x_1, ..., X(t_n) = i) = P(X(t) = j | X(t_n) = i)$$

- There are two versions of Markov chains- Discrete time and Continuous time.
- A stochastic process $\{X_n, n \in \mathbb{Z}_+\}$ is a discrete time Markov chain if for any $n_1 < n_2 < \ldots < n_k < n$,

$$P(X_n = j | X_{n_1} = x_1, ..., X_{n_k} = i) = P(X_n = j | X_{n_k} = i)$$

► $\{X(t), t \ge 0\}$ is a Markov process (ctmc) if for $t_1 < t_2 < \dots t_n < t$,

$$P(X(t) = j | X(t_1) = x_1, ..., X(t_n) = i) = P(X(t) = j | X(t_n) = i)$$

This is known as the Markov property.

- There are two versions of Markov chains- Discrete time and Continuous time.
- A stochastic process $\{X_n, n \in \mathbb{Z}_+\}$ is a discrete time Markov chain if for any $n_1 < n_2 < \ldots < n_k < n$,

$$P(X_n = j | X_{n_1} = x_1, ..., X_{n_k} = i) = P(X_n = j | X_{n_k} = i)$$

► $\{X(t), t \ge 0\}$ is a Markov process (ctmc) if for $t_1 < t_2 < \dots t_n < t$,

$$P(X(t) = j | X(t_1) = x_1, ..., X(t_n) = i) = P(X(t) = j | X(t_n) = i)$$

- This is known as the Markov property.
- \triangleright State space in both cases can be integers or general (\mathbb{R}^d)

- There are two versions of Markov chains- Discrete time and Continuous time.
- A stochastic process $\{X_n, n \in \mathbb{Z}_+\}$ is a discrete time Markov chain if for any $n_1 < n_2 < \ldots < n_k < n$,

$$P(X_n = j | X_{n_1} = x_1, ..., X_{n_k} = i) = P(X_n = j | X_{n_k} = i)$$

► $\{X(t), t \ge 0\}$ is a Markov process (ctmc) if for $t_1 < t_2 < \dots t_n < t$,

$$P(X(t) = j | X(t_1) = x_1, ..., X(t_n) = i) = P(X(t) = j | X(t_n) = i)$$

- This is known as the Markov property.
- ightharpoonup State space in both cases can be integers or general (\mathbb{R}^d)
- We will stick with integer or finite state space

In a Markovian coin with memory, the outcome of the next toss depends on the current toss.

- In a Markovian coin with memory, the outcome of the next toss depends on the current toss.
- \nearrow $X_n = 1$ for heads and $X_n = -1$ otherwise. $S = \{+1, -1\}$.

- In a Markovian coin with memory, the outcome of the next toss depends on the current toss.
- $ightharpoonup X_n = 1$ for heads and $X_n = -1$ otherwise. $S = \{+1, -1\}$.
- Sticky coin : $P(X_{n+1} = 1 | X_n = 1) = 0.9$ and $P(X_{n+1} = -1 | X_n = -1) = 0.8$ for all n.

- In a Markovian coin with memory, the outcome of the next toss depends on the current toss.
- $ightharpoonup X_n = 1$ for heads and $X_n = -1$ otherwise. $S = \{+1, -1\}$.
- Sticky coin : $P(X_{n+1} = 1 | X_n = 1) = 0.9$ and $P(X_{n+1} = -1 | X_n = -1) = 0.8$ for all n.
- ► Flippy Coin: $P(X_{n+1} = 1 | X_n = 1) = 0.1$ while $P(X_{n+1} = -1 | X_n = -1) = 0.3$ for all n.

- In a Markovian coin with memory, the outcome of the next toss depends on the current toss.
- $ightharpoonup X_n = 1$ for heads and $X_n = -1$ otherwise. $S = \{+1, -1\}$.
- Sticky coin : $P(X_{n+1} = 1 | X_n = 1) = 0.9$ and $P(X_{n+1} = -1 | X_n = -1) = 0.8$ for all n.
- ► Flippy Coin: $P(X_{n+1} = 1 | X_n = 1) = 0.1$ while $P(X_{n+1} = -1 | X_n = -1) = 0.3$ for all n.
- This can be represented by a transition diagram (see board)

- In a Markovian coin with memory, the outcome of the next toss depends on the current toss.
- $ightharpoonup X_n = 1$ for heads and $X_n = -1$ otherwise. $S = \{+1, -1\}$.
- Sticky coin : $P(X_{n+1} = 1 | X_n = 1) = 0.9$ and $P(X_{n+1} = -1 | X_n = -1) = 0.8$ for all n.
- ► Flippy Coin: $P(X_{n+1} = 1 | X_n = 1) = 0.1$ while $P(X_{n+1} = -1 | X_n = -1) = 0.3$ for all n.
- ▶ This can be represented by a transition diagram (see board)
- ▶ The transition probability matrix *P* for the two cases is

$$P_s = \begin{bmatrix} 0.9 & .1 \\ 0.2 & 0.8 \end{bmatrix}$$
 and $P_f = \begin{bmatrix} 0.1 & 0.9 \\ 0.7 & 0.3 \end{bmatrix}$

- In a Markovian coin with memory, the outcome of the next toss depends on the current toss.
- $ightharpoonup X_n = 1$ for heads and $X_n = -1$ otherwise. $S = \{+1, -1\}$.
- Sticky coin : $P(X_{n+1} = 1 | X_n = 1) = 0.9$ and $P(X_{n+1} = -1 | X_n = -1) = 0.8$ for all n.
- ► Flippy Coin: $P(X_{n+1} = 1 | X_n = 1) = 0.1$ while $P(X_{n+1} = -1 | X_n = -1) = 0.3$ for all n.
- ► This can be represented by a transition diagram (see board)
- The transition probability matrix P for the two cases is $P_s = \begin{bmatrix} 0.9 & .1 \\ 0.2 & 0.8 \end{bmatrix}$ and $P_f = \begin{bmatrix} 0.1 & 0.9 \\ 0.7 & 0.3 \end{bmatrix}$
- The row corresponds to present state and the column corresponds to next state.

In a markovian dice with memory, the outcome of the next roll depends on the current roll.

- In a markovian dice with memory, the outcome of the next roll depends on the current roll.
- $X_n = i \text{ for } i \in S \text{ where } S = \{1, \dots, 6\}.$

- In a markovian dice with memory, the outcome of the next roll depends on the current roll.
- $ightharpoonup X_n = i ext{ for } i \in \mathcal{S} ext{ where } \mathcal{S} = \{1, \dots, 6\}.$
- Example transition probability matrix

$$P = \begin{bmatrix} 0.9 & .1 & 0 & 0 & 0 & 0 \\ 0 & .9 & .1 & 0 & 0 & 0 \\ 0 & 0 & 0.9 & 0.1 & 0 & 0 \\ 0 & 0 & 0 & 0.9 & 0.1 & 0 \\ 0 & 0 & 0 & 0 & 0.9 & 0.1 \\ 0.1 & 0 & 0 & 0 & 0 & 0.9 \end{bmatrix}$$

- In a markovian dice with memory, the outcome of the next roll depends on the current roll.
- $\succ X_n = i \text{ for } i \in \mathcal{S} \text{ where } \mathcal{S} = \{1, \dots, 6\}.$
- Example transition probability matrix

$$P = \begin{bmatrix} 0.9 & .1 & 0 & 0 & 0 & 0 \\ 0 & .9 & .1 & 0 & 0 & 0 \\ 0 & 0 & 0.9 & 0.1 & 0 & 0 \\ 0 & 0 & 0 & 0.9 & 0.1 & 0 \\ 0 & 0 & 0 & 0 & 0.9 & 0.1 \\ 0.1 & 0 & 0 & 0 & 0 & 0.9 \end{bmatrix}$$

In the ctmc counterpart for these examples, imagine the coin tosses itself/ dice rolls itself after waiting in the state for a random time that is exponentially distributed. (more later)

➤ A DTMC is said to be time homogeneous if the one step transition probabilities are same at all time.

➤ A DTMC is said to be time homogeneous if the one step transition probabilities are same at all time.

$$P(X_{n+1}=j|X_n=i)=P(X_{n+1+s}=j|X_{n+s}=i):=p_{ij}$$

➤ A DTMC is said to be time homogeneous if the one step transition probabilities are same at all time.

$$P(X_{n+1}=j|X_n=i)=P(X_{n+1+s}=j|X_{n+s}=i):=p_{ij}$$

▶ One step transition probability matrix $P = [[p_{ij}]]$

➤ A DTMC is said to be time homogeneous if the one step transition probabilities are same at all time.

$$P(X_{n+1}=j|X_n=i)=P(X_{n+1+s}=j|X_{n+s}=i):=p_{ij}$$

- ▶ One step transition probability matrix $P = [[p_{ij}]]$
- ▶ $i, j \in \mathcal{S}$ which is countable and $|\mathcal{S}| \leq \infty$

For a CTMC ...

For a CTMC ...

► For a time homogeneous CTMC, we have

$$P(X(t) = j | X(t_n) = i) = P(X(t + s) = j | X(t_n + s) = i)$$

= $P(X(t - t_n) = j | X(0) = i)$.

For a CTMC ...

► For a time homogeneous CTMC, we have

$$P(X(t) = j|X(t_n) = i) = P(X(t+s) = j|X(t_n+s) = i)$$

= $P(X(t-t_n) = j|X(0) = i).$

We have a transition probability matrix with entries $p_{ij}(t)$, i.e., $P(t) = [[p_{ij}(t)]]$.

For a time homogeneous DTMC, we have a transition probability matrix with entries p_{ij} , i.e., $P = [[p_{ij}]]$.

- For a time homogeneous DTMC, we have a transition probability matrix with entries p_{ij} , i.e., $P = [[p_{ij}]]$.
- ► Let $Y_n = \inf\{s > 0 : X_{n+s} \neq X_n\}$

- For a time homogeneous DTMC, we have a transition probability matrix with entries p_{ij} , i.e., $P = [[p_{ij}]]$.
- ► Let $Y_n = \inf\{s > 0 : X_{n+s} \neq X_n\}$
- \triangleright Y_n is the remaining time that the process spends in whichever state it is in, at time n.

- For a time homogeneous DTMC, we have a transition probability matrix with entries p_{ij} , i.e., $P = [[p_{ij}]]$.
- ► Let $Y_n = \inf\{s > 0 : X_{n+s} \neq X_n\}$
- $\succ Y_n$ is the remaining time that the process spends in whichever state it is in, at time n.
- Consider a Markov coin, its state transition matrix and diagram

- For a time homogeneous DTMC, we have a transition probability matrix with entries p_{ij} , i.e., $P = [[p_{ij}]]$.
- ► Let $Y_n = \inf\{s > 0 : X_{n+s} \neq X_n\}$
- $\succ Y_n$ is the remaining time that the process spends in whichever state it is in, at time n.
- Consider a Markov coin, its state transition matrix and diagram
- \triangleright Y_n is geometric random variable.

- For a time homogeneous DTMC, we have a transition probability matrix with entries p_{ij} , i.e., $P = [[p_{ij}]]$.
- ► Let $Y_n = \inf\{s > 0 : X_{n+s} \neq X_n\}$
- $\succ Y_n$ is the remaining time that the process spends in whichever state it is in, at time n.
- Consider a Markov coin, its state transition matrix and diagram
- \triangleright Y_n is geometric random variable.
- What would be the time spent in a state for a continuous time Markov chain ?

For a time homogeneous CTMC, we have a transition probability matrix with entries $p_{ij}(t)$, i.e., $P(t) = [[p_{ij}(t)]]$.

- For a time homogeneous CTMC, we have a transition probability matrix with entries $p_{ij}(t)$, i.e., $P(t) = [[p_{ij}(t)]]$.
- ► Let $Y_t = inf\{s > 0 : X(t+s) \neq X(t)\}$

- For a time homogeneous CTMC, we have a transition probability matrix with entries $p_{ij}(t)$, i.e., $P(t) = [[p_{ij}(t)]]$.
- ► Let $Y_t = inf\{s > 0 : X(t + s) \neq X(t)\}$
- $\succ Y_t$ is the remaining time that the process spends in whichever state it is in, at time t.

- For a time homogeneous CTMC, we have a transition probability matrix with entries $p_{ij}(t)$, i.e., $P(t) = [[p_{ij}(t)]]$.
- ► Let $Y_t = inf\{s > 0 : X(t+s) \neq X(t)\}$
- $\succ Y_t$ is the remaining time that the process spends in whichever state it is in, at time t.
- Intuitively, the time spent in a state should depend only on what state it is in, and not on the previous state.

- For a time homogeneous CTMC, we have a transition probability matrix with entries $p_{ij}(t)$, i.e., $P(t) = [[p_{ij}(t)]]$.
- ► Let $Y_t = inf\{s > 0 : X(t+s) \neq X(t)\}$
- $\succ Y_t$ is the remaining time that the process spends in whichever state it is in, at time t.
- Intuitively, the time spent in a state should depend only on what state it is in, and not on the previous state.

Theorem

$$P(Y_t > u | X(t) = i) := \bar{G}_i(u) = e^{-a_i u}$$

for all $i \in S$ and $t \ge 0$, $u \ge 0$ and for some real number $a_i \in [0, \infty]$.

 $\bar{G}_i(u+v) = P(X(s)=i, s \in [t, t+u+v]|X(t)=i)$

- $\bar{G}_i(u+v) = P(X(s)=i, s \in [t, t+u+v]|X(t)=i)$
- $\bar{G}_i(u+v) = P(X(s) = i, s \in [t+u, t+u+v]; X(p) = i, p \in [t, t+u]|X(t) = i)$

- $\bar{G}_i(u+v) = P(X(s)=i, s \in [t, t+u+v]|X(t)=i)$
- $\bar{G}_i(u+v) = P(X(s) = i, s \in [t+u, t+u+v]; X(p) = i, p \in [t, t+u]|X(t) = i)$
- ightharpoonup P(AB|C) = P(A|BC)P(B|C)

- $\bar{G}_i(u+v) = P(X(s)=i, s \in [t, t+u+v]|X(t)=i)$
- $\bar{G}_i(u+v) = P(X(s) = i, s \in [t+u, t+u+v]; X(p) = i, p \in [t, t+u]|X(t) = i)$
- ightharpoonup P(AB|C) = P(A|BC)P(B|C)
- ▶ Due to Markov property we have P(AB|C) = P(A|B)P(B|C)

- $\bar{G}_i(u+v) = P(X(s)=i, s \in [t, t+u+v]|X(t)=i)$
- $\bar{G}_i(u+v) = P(X(s) = i, s \in [t+u, t+u+v]; X(p) = i, p \in [t, t+u]|X(t) = i)$
- ightharpoonup P(AB|C) = P(A|BC)P(B|C)
- ▶ Due to Markov property we have P(AB|C) = P(A|B)P(B|C)
- $P(X(s) = i, s \in [t + u, t + u + v]|X(p) = i, p \in [t, t + u]) =$

- $\bar{G}_i(u+v) = P(X(s)=i, s \in [t, t+u+v]|X(t)=i)$
- $\bar{G}_i(u+v) = P(X(s) = i, s \in [t+u, t+u+v]; X(p) = i, p \in [t, t+u]|X(t) = i)$
- ightharpoonup P(AB|C) = P(A|BC)P(B|C)
- ▶ Due to Markov property we have P(AB|C) = P(A|B)P(B|C)
- $P(X(s) = i, s \in [t + u, t + u + v]|X(p) = i, p \in [t, t + u]) =$
- $P(X(s) = i, s \in [t + u, t + u + v]|X(t + u) = i) = \bar{G}_i(v)$

- $\bar{G}_i(u+v) = P(X(s)=i, s \in [t, t+u+v]|X(t)=i)$
- $\bar{G}_i(u+v) = P(X(s) = i, s \in [t+u, t+u+v]; X(p) = i, p \in [t, t+u]|X(t) = i)$
- ightharpoonup P(AB|C) = P(A|BC)P(B|C)
- ▶ Due to Markov property we have P(AB|C) = P(A|B)P(B|C)
- $P(X(s) = i, s \in [t + u, t + u + v]|X(p) = i, p \in [t, t + u]) =$
- $P(X(s) = i, s \in [t + u, t + u + v]|X(t + u) = i) = \bar{G}_i(v)$
- $P(X(p) = i, p \in [t, t + u]|X(t = i)) = \bar{G}_i(u)$

- $\bar{G}_i(u+v) = P(X(s)=i, s \in [t, t+u+v]|X(t)=i)$
- $\bar{G}_i(u+v) = P(X(s) = i, s \in [t+u, t+u+v]; X(p) = i, p \in [t, t+u]|X(t) = i)$
- ightharpoonup P(AB|C) = P(A|BC)P(B|C)
- ▶ Due to Markov property we have P(AB|C) = P(A|B)P(B|C)
- $P(X(s) = i, s \in [t + u, t + u + v]|X(p) = i, p \in [t, t + u]) =$
- $P(X(s) = i, s \in [t + u, t + u + v]|X(t + u) = i) = \bar{G}_i(v)$
- $P(X(p) = i, p \in [t, t + u]|X(t = i)) = \bar{G}_i(u)$
- $ightharpoonup ar{G}_i(u+v) = ar{G}_i(u)ar{G}_i(v)$

- $\bar{G}_i(u+v) = P(X(s)=i, s \in [t, t+u+v]|X(t)=i)$
- $\bar{G}_i(u+v) = P(X(s) = i, s \in [t+u, t+u+v]; X(p) = i, p \in [t, t+u]|X(t) = i)$
- ightharpoonup P(AB|C) = P(A|BC)P(B|C)
- ▶ Due to Markov property we have P(AB|C) = P(A|B)P(B|C)
- $P(X(s) = i, s \in [t + u, t + u + v]|X(p) = i, p \in [t, t + u]) =$
- $P(X(s) = i, s \in [t + u, t + u + v]|X(t + u) = i) = \bar{G}_i(v)$
- $P(X(p) = i, p \in [t, t + u]|X(t = i)) = \bar{G}_i(u)$
- $ightharpoonup ar{G}_i(u+v) = ar{G}_i(u)ar{G}_i(v)$
- Only CCDF function which satisfies this equation is the exponential distribution. This requires a proof. We will skip this part.