Lab9.Employees Hopping prediction using Random Forests

NAME: BERCHMANS KEVIN S

ROLL NO: 215229107

STEP -1 UNDERSTAND DATA

Out[46]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Educati
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life S
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life S
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life S
4	27	No	Travel_Rarely	591	Research & Development	2	1	

5 rows × 35 columns

In [47]: df.shape

Out[47]: (1470, 35)

int64

int64

int64

int64

In [49]: df.dtypes

In [49]:	df.dtypes	
Out[49]:	Age	int64
	Attrition	object
	BusinessTravel	object
	DailyRate	int64
	Department	object
	DistanceFromHome	int64
	Education	int64
	EducationField	object
	EmployeeCount	int64
	EmployeeNumber	int64
	EnvironmentSatisfaction	int64
	Gender	object
	HourlyRate	int64
	JobInvolvement	int64
	JobLevel	int64
	JobRole	object
	JobSatisfaction	int64
	MaritalStatus	object
	MonthlyIncome	int64
	MonthlyRate	int64
	NumCompaniesWorked	int64
	0ver18	object
	OverTime	object
	PercentSalaryHike	int64
	PerformanceRating	int64
	RelationshipSatisfaction	int64
	StandardHours	int64
	StockOptionLevel	int64
	TotalWorkingYears	int64
	TrainingTimesLastYear	int64
	WorkLifeBalance	int64

localhost:8888/notebooks/PML_LAB9_215229107.ipynb#

YearsAtCompany

dtype: object

YearsInCurrentRole

YearsWithCurrManager

YearsSinceLastPromotion

In [50]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1470 entries, 0 to 1469 Data columns (total 35 columns): Age 1470 non-null int64 Attrition 1470 non-null object BusinessTravel 1470 non-null object 1470 non-null int64 DailyRate Department 1470 non-null object DistanceFromHome 1470 non-null int64 Education 1470 non-null int64 EducationField 1470 non-null object EmployeeCount 1470 non-null int64 EmployeeNumber 1470 non-null int64 EnvironmentSatisfaction 1470 non-null int64 Gender 1470 non-null object HourlyRate 1470 non-null int64 JobInvolvement 1470 non-null int64 JobLevel 1470 non-null int64 1470 non-null object JobRole 1470 non-null int64 JobSatisfaction MaritalStatus 1470 non-null object 1470 non-null int64 MonthlyIncome MonthlyRate 1470 non-null int64 NumCompaniesWorked 1470 non-null int64 Over18 1470 non-null object OverTime 1470 non-null object PercentSalaryHike 1470 non-null int64 PerformanceRating 1470 non-null int64 RelationshipSatisfaction 1470 non-null int64 1470 non-null int64 StandardHours StockOptionLevel 1470 non-null int64 TotalWorkingYears 1470 non-null int64 TrainingTimesLastYear 1470 non-null int64 WorkLifeBalance 1470 non-null int64 1470 non-null int64 YearsAtCompany YearsInCurrentRole 1470 non-null int64 YearsSinceLastPromotion 1470 non-null int64 YearsWithCurrManager 1470 non-null int64 dtypes: int64(26), object(9) memory usage: 402.0+ KB In [51]: df['JobRole'].value counts() Out[51]: Sales Executive 326 Research Scientist 292 Laboratory Technician 259 Manufacturing Director 145 Healthcare Representative 131 Manager 102 83 Sales Representative Research Director 80

52

Human Resources

Name: JobRole, dtype: int64

STEP -2 EXTRACT X AND Y

```
In [52]:
           X = df.drop(['Attrition'],axis=1)
           y = df['Attrition']
           y = y.apply(lambda x:1 if x == 'Yes' else 0)
In [53]:
In [54]: X
                                                      Research &
                                              1005
                                                                                               2
                                                                                                    Life Scienc ^
               5
                    32
                       Travel_Frequently
                                                                                   2
                                                     Development
                                                      Research &
               6
                                                                                               3
                    59
                            Travel Rarely
                                              1324
                                                                                    3
                                                                                                         Medic
                                                     Development
                                                      Research &
               7
                    30
                            Travel_Rarely
                                              1358
                                                                                  24
                                                                                               1
                                                                                                    Life Scienc
                                                     Development
                                                      Research &
               8
                                               216
                                                                                                    Life Scienc
                        Travel_Frequently
                                                                                  23
                                                                                               3
                    38
                                                     Development
                                                      Research &
                                                                                               3
               9
                    36
                            Travel_Rarely
                                               1299
                                                                                                         Medic
                                                                                  27
                                                     Development
                                                      Research &
              10
                    35
                            Travel_Rarely
                                               809
                                                                                  16
                                                                                               3
                                                                                                         Medic
                                                     Development
                                                      Research &
                    29
                                                                                                    Life Scienc
              11
                            Travel Rarely
                                                                                               2
                                               153
                                                                                  15
                                                     Development
                                                      Research &
              12
                    31
                            Travel_Rarely
                                               670
                                                                                  26
                                                                                                    Life Scienc
                                                     Development
```

In [55]:	у	
Out[55]:	0	1
	1	0
	2	1
	3	0
	4	0
	5 6	00
	7	0
	8	0
	9	0
	10	0
	11	0
	12	0
	13	0
	14 15	1 0
	16	0
	17	0
	18	0
	19	0
	20	0
	21	1
	22	0
	23	0
	24 25	1 0
	26	1
	27	0
	28	0
	29	0
	1440	0
	1441 1442	0 1
	1443	0
	1444	1
	1445	0
	1446	0
	1447	0
	1448	0
	1449	0
	1450 1451	00
	1451	1
	1453	0
	1454	0
	1455	0
	1456	0
	1457	0
	1458	0
	1459 1460	00
	1460	1
	1461	0
	1462	

0

1463

STEP - 3 FEATURE ENGINEERING

```
In [56]: df = pd.get_dummies(df,columns=['BusinessTravel','Department','EducationField','G
```

In [57]: df

Out[57]:

	Age	Attrition	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber
0	41	Yes	1102	1	2	1	1
1	49	No	279	8	1	1	2
2	37	Yes	1373	2	2	1	4
3	33	No	1392	3	4	1	5
4	27	No	591	2	1	1	7
5	32	No	1005	2	2	1	8
6	59	No	1324	3	3	1	10
7	30	No	1358	24	1	1	11
8	38	No	216	23	3	1	12
9	36	No	1299	27	3	1	13
10	35	No	809	16	3	1	14
11	29	No	153	15	2	1	15
12	31	No	670	26	1	1	16
13	34	No	1346	19	2	1	18
14	28	Yes	103	24	3	1	19
15	29	No	1389	21	4	1	20
16	32	No	334	5	2	1	21
17	22	No	1123	16	2	1	22
18	53	No	1219	2	4	1	23
19	38	No	371	2	3	1	24
20	24	No	673	11	2	1	26
21	36	Yes	1218	9	4	1	27
22	34	No	419	7	4	1	28
23	21	No	391	15	2	1	30
24	34	Yes	699	6	1	1	31
25	53	No	1282	5	3	1	32
26	32	Yes	1125	16	1	1	33
27	42	No	691	8	4	1	35
28	44	No	477	7	4	1	36
29	46	No	705	2	4	1	38
1440	36	No	688	4	2	1	2025
1441	56	No	667	1	4	1	2026
1442	29	Yes	1092	1	4	1	2027

	Age	Attrition	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber
1443	42	No	300	2	3	1	2031
1444	56	Yes	310	7	2	1	2032
1445	41	No	582	28	4	1	2034
1446	34	No	704	28	3	1	2035
1447	36	No	301	15	4	1	2036
1448	41	No	930	3	3	1	2037
1449	32	No	529	2	3	1	2038
1450	35	No	1146	26	4	1	2040
1451	38	No	345	10	2	1	2041
1452	50	Yes	878	1	4	1	2044
1453	36	No	1120	11	4	1	2045
1454	45	No	374	20	3	1	2046
1455	40	No	1322	2	4	1	2048
1456	35	No	1199	18	4	1	2049
1457	40	No	1194	2	4	1	2051
1458	35	No	287	1	4	1	2052
1459	29	No	1378	13	2	1	2053
1460	29	No	468	28	4	1	2054
1461	50	Yes	410	28	3	1	2055
1462	39	No	722	24	1	1	2056
1463	31	No	325	5	3	1	2057
1464	26	No	1167	5	3	1	2060
1465	36	No	884	23	2	1	2061
1466	39	No	613	6	1	1	2062
1467	27	No	155	4	3	1	2064
1468	49	No	1023	2	3	1	2065
1469	34	No	628	8	3	1	2068

1470 rows × 56 columns

STEP - 4 CHECK SHAPE OF X AND Y

```
In [58]: X = df.drop(['Attrition'],axis=1)
    print('X Shape : ',X.shape)
    print('y Shape : ',y.shape)

X Shape : (1470, 55)
    y Shape : (1470,)
```

STEP- 5: MODEL DEVELOPMENT

```
In [59]: import warnings
     warnings.filterwarnings('ignore')
In [60]: from sklearn.model selection import train test split
     X_train, X_test, y_train, y_test = train_test_split(X,y, test_size =0.2, random_s
In [61]: from sklearn.ensemble import RandomForestClassifier
     RFC = RandomForestClassifier(n estimators=100, max features=0.3)
In [62]: RFC.fit(X_train,y_train)
Out[62]: RandomForestClassifier(bootstrap=True, ccp alpha=0.0, class weight=None,
                  criterion='gini', max_depth=None, max_features=0.3,
                  max leaf nodes=None, max samples=None,
                  min impurity decrease=0.0, min impurity split=None,
                  min_samples_leaf=1, min_samples_split=2,
                  min weight fraction leaf=0.0, n estimators=100,
                  n jobs=None, oob score=False, random state=None,
                  verbose=0, warm start=False)
In [63]: RFC_y_pred = RFC.predict(X_test)
     RFC_y_pred
1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
         0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
         0, 0, 0, 0, 0, 0, 0], dtype=int64)
```

STEP-6 TESTING

```
In [64]: from sklearn.metrics import accuracy_score,classification_report
```

```
In [65]: RFC_acc = accuracy_score(y_test,RFC_y_pred)
    RFC_acc
```

Out[65]: 0.8741496598639455

In [66]: | print(classification_report(y_test, RFC_y_pred))

	precision	recall	f1-score	support
0	0.88	0.99	0.93	255
1	0.62	0.13	0.21	39
accuracy			0.87	294
macro avg	0.75	0.56	0.57	294
weighted avg	0.85	0.87	0.84	294

STEP-7 FEATURE IMPORTANT VALUE

In [67]: print(RFC.feature_importances_)

In [68]: feature_name = pd.DataFrame(RFC.feature_importances_, index=X_train.columns, colu
feature_name

Out[68]:

	Important_Feature
Age	0.052496
DailyRate	0.049458
DistanceFromHome	0.040685
Education	0.014859
EmployeeCount	0.000000
EmployeeNumber	0.045873
EnvironmentSatisfaction	0.024121
HourlyRate	0.039484
Jobinvolvement	0.019157
JobLevel	0.024570
JobSatisfaction	0.023236
MonthlyIncome	0.088300
MonthlyRate	0.041218
NumCompaniesWorked	0.034426
PercentSalaryHike	0.025057
PerformanceRating	0.003319
RelationshipSatisfaction	0.017264
StandardHours	0.000000
StockOptionLevel	0.029563
TotalWorkingYears	0.043194
TrainingTimesLastYear	0.021894
WorkLifeBalance	0.021729
YearsAtCompany	0.040140
YearsInCurrentRole	0.022378
YearsSinceLastPromotion	0.025543
YearsWithCurrManager	0.024391
BusinessTravel_Non-Travel	0.002621
BusinessTravel_Travel_Frequently	0.011774
BusinessTravel_Travel_Rarely	0.005083
Department_Human Resources	0.002207
Department_Research & Development	0.005053
Department_Sales	0.009137
EducationField_Human Resources	0.002572

	Important_Feature
EducationField_Life Sciences	0.004940
EducationField_Marketing	0.005165
EducationField_Medical	0.005833
EducationField_Other	0.003051
EducationField_Technical Degree	0.007604
Gender_Female	0.004819
Gender_Male	0.005216
JobRole_Healthcare Representative	0.001779
JobRole_Human Resources	0.002136
JobRole_Laboratory Technician	0.007702
JobRole_Manager	0.000625
JobRole_Manufacturing Director	0.002230
JobRole_Research Director	0.001336
JobRole_Research Scientist	0.005675
JobRole_Sales Executive	0.006003
JobRole_Sales Representative	0.009383
MaritalStatus_Divorced	0.004590
MaritalStatus_Married	0.004921
MaritalStatus_Single	0.022935
Over18_Y	0.000000
OverTime_No	0.042268
OverTime_Yes	0.040987

In [69]: import matplotlib.pyplot as plt
import seaborn as sns

In [70]: pd.Series(RFC.feature_importances_, index=X_train.columns).sort_values(ascending=

Out[70]: <matplotlib.axes. subplots.AxesSubplot at 0x174175b3e80>

STEP- 8 Visualize your RF Decision Tree using graphviz

```
In [71]: estimator = RFC.estimators_[5]
In [72]: from sklearn import tree
    from sklearn.tree import export_graphviz
    with open("RFDT.dot", 'w') as f:
        f = tree.export_graphviz(estimator, out_file=f, max_depth=4, impurity=False,
```

```
In [73]: !dot - Tpng RFDT.dot -o RFDT.png
```

'dot' is not recognized as an internal or external command, operable program or batch file.

```
In [74]: import matplotlib.pyplot as plt
image = plt.imread('RFDT.png')
plt.figure(figsize=(19,15))
plt.imshow(image)
```

Out[74]: <matplotlib.image.AxesImage at 0x174178d06d8>

STEP-9:RF WITH A RANGE OF TREES

```
In [75]: import warnings
warnings.filterwarnings('ignore')
```

```
In [76]: rf2 = RandomForestClassifier(oob_score=True, random_state=42, warm_start=True, n_
    oob_list = list()
    for n_trees in [15, 20, 30, 40, 50, 100, 150, 200, 300, 400]:
        rf2.set_params(n_estimators=n_trees)
        rf2.fit(X_train, y_train)
        oob_error = 1 - rf2.oob_score_
        oob_list.append(pd.Series({'n_trees': n_trees, 'oob': oob_error}))

rf_oob_df = pd.concat(oob_list, axis=1).T.set_index('n_trees')
    rf_oob_df
```

Out[76]:

n_trees				
15.0	0.163265			
20.0	0.159014			
30.0	0.148810			
40.0	0.144558			
50.0	0.139456			
100.0	0.140306			
150.0	0.138605			
200.0	0.140306			
300.0	0.137755			
400.0	0.140306			

STEP- 10 PLOT OOB -ERROR FOR EACH TREE

The following lines will help you

```
In [77]: ax = rf_oob_df.plot(legend=False, marker='o', figsize=(10,5))
ax.set(ylabel='out-of-bag error')
```

Out[77]: [Text(0, 0.5, 'out-of-bag error')]

STEP- 11 COMPARE WITH DECISION TREE CLASSIFIER

Create DecisionTreeClassifier, fit and predict on test set

Visualize the tree using graphviz

Print accuracy score

Print classification report

What is the result of the comparision between RF and DT models? Which gives best accuracy?.

What is your comment on precision, recall, f1 score values?

```
In [78]: from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import accuracy_score,classification_report
    clf = DecisionTreeClassifier(max_depth=4, random_state=42)
    clf.fit(X_test,y_test)
```

```
In [79]: y_pred1 = clf.predict(X_test)
y_pred1
```

```
In [80]: from sklearn import tree
    from sklearn.tree import export_graphviz
    with open("DTC2.dot", 'w') as f:
        f = tree.export_graphviz(clf,out_file=f,max_depth = 4,impurity = False,feature
```

Now open treedtc.dot file which will be created in your working directory then Copy and paste the code to http://webgraphviz.com/ (http://webgraphv

```
In [81]: !dot -Tpng DTC2.dot -o DTC2.png
```

'dot' is not recognized as an internal or external command, operable program or batch file.

```
In [82]: image = plt.imread('DTC2.png')
    plt.figure(figsize=(19,15))
    plt.imshow(image)
```

Out[82]: <matplotlib.image.AxesImage at 0x174191b8320>

In [83]: print("Accuracy of test :",clf.score(X_test,y_test))

Accuracy of test : 0.9183673469387755

In [84]: print(classification_report(y_test,RFC_y_pred))

	precision	recall	f1-score	support
0	0.88	0.99	0.93	255
1	0.62	0.13	0.21	39
accuracy			0.87	294
macro avg weighted avg	0.75 0.85	0.56 0.87	0.57 0.84	294 294

In [85]: from sklearn.metrics import precision_score, recall_score, accuracy_score, roc_au

```
In [86]: print("RF model :",accuracy_score(y_test,RFC_y_pred))
    print("RF Precision:",precision_score(y_test,RFC_y_pred))
    print("RF Recall :",recall_score(y_test,RFC_y_pred))
    print("RF F1 score :",f1_score(y_test,RFC_y_pred))
    print("\n")
    print("DT model :",accuracy_score(y_test,y_pred1))
    print("DT Precision:",precision_score(y_test,y_pred1))
    print("DT Recall :",recall_score(y_test,y_pred1))
    print("DT F1 score :",f1_score(y_test,y_pred1))
```

RF model: 0.8741496598639455

RF Precision: 0.625

RF Recall : 0.1282051282051282 RF F1 score : 0.21276595744680848

DT model : 0.9183673469387755

DT Precision: 1.0

DT Recall : 0.38461538461538464 DT F1 score : 0.555555555555556