Govind Chari

govindchari.com | gmc93@cornell.edu | 518-986-6236

EDUCATION

UNIV. OF WASHINGTON

PHD IN CONTROLS Advisor: Behçet Açikmeşe May 2026 | Seattle, WA

CORNELL UNIV.

BS IN MECHE GPA: 4.18 May 2022 | Ithaca, NY

LINKS

LinkedIn:// govindchari Github:// govindchari Website:// govindchari.com

COURSEWORK

Advanced Astrodynamics (g)
Stochastic Controls (g)
Model-Based Estimation (g)
Linear Systems (g)
Feedback Controls (g)
Numerical Analysis (g)
Spaceflight Mechanics
Probability and Inference
Mechatronics
Dynamics
Mechanics of Materials
Fluid Mechanics
Heat Transfer

(g) indicates graduate coursework

SKILLS SOFTWARE

C++ • Julia • Python Matlab • ANSYS • Solidworks (CSWA Cert) HSMWorks

HOBBIES

Tennis • Badminton Stargazing • Hiking Weightlifting

EXPERIENCE

SPACEX | Associate GNC Engineer

Jun 2022 - Aug 2022 | Hawthorne, CA

- Ran Monte-Carlo simulations and analysis to assess the impact of altering thruster configuration on Dragon's entry performance
- Prototyped new thrust allocation scheme
- Added state machine branch for debris avoidance maneuvers
- Built verification tool to ensure positive propellant margin in all two fault propulsion cases

SPACEX | Propulsion Analysis Intern

Jun 2021 - Aug 2021 | Hawthorne, CA

- Performed nonlinear structural and thermal analysis of Raptor and Merlin engines components using ANSYS and documented results for the responsible engineers
- Assessed multiple fluid fitting designs to mitigate flight risk for Starship orbital test flight
- Analyzed deflections in Raptor fuel turbopump housing at critical sealing surfaces
- Assessed gapping, structural margins, and fatigue life on Raptor high pressure lines
- Conducted modal and random vibration analysis on high pressure Merlin LOx line

CORNELL SPACE SYSTEMS DESIGN STUDIO | GNC ENGINEER

April 2021 - May 2022 | Ithaca, NY

- Worked on the development of a high fidelity 6DOF simulation for PAN
- Tuned orbital rendezvous controller and worked on flight software implementation
- Conducted HITL and HOOTL tests to verify performance of orbital rendezvous controller and propulsion system
- Ran simulations to determine if deployment dispersions met our satellite's delta-v budget

PERSONAL PROJECTS

CONVEX SOLVERS | JAN 2022

- Wrote a primal-dual interior point solver for convex quadratic programs in C++ based on Mehrotra's predictor-corrector
- Wrote an Augmented Lagrangian solver for convex quadratic programs in Julia
- Wrote unit tests, set up CI pipeline, and code coverage using Github Actions

G-FOLD IMPLEMENTATION | March 2021-June 2021

- Recreated Acikemese and Blackmore's powered descent algorithm
- Utilized lossless convexification and modified problem to help with feasibility
- Coded algorithm and a 6DOF simulation in C++ to verify robustness to disturbances
- Conducted Monte-Carlo trials to determine landing ellipse of the algorithm

VERTICAL TAKEOFF AND LANDING VEHICLE | APRIL 2020-AUGUST 2020

- Built and coded a vertical takeoff and landing vehicle powered by racing drone motors which utilizes servo driven thrust vectoring fins for attitude control
- Wrote GNC code from scratch using C++ including a Kalman Filter to fuse altimeter and accelerometer readings which reduced variance in altitude readings by 44%
- Designed and printed thrust test stand to accurately model the nonlinear thrust curve of racing drone motors and to measure the effectiveness of the thrust vectoring fins
- Conducted isolated unit tests to validate efficacy of the roll controller

ROCKET SIMULATION AND UKF | Nov 2021

- Created a Matlab script to simulate the 6DOF dynamics of a high powered rocket including wind and aerodynamic forces and moments
- Wrote an Unscented Kalman Filter for position, velocity, and attitude estimation given accelerometer, gyro, and GPS readings