# **INTRO TO MATERIAL BEHAVIORS**

ME 210: MECHANICS OF MATERIALS

SAPPINANDANA AKAMPHON

DEPARTMENT OF MECHANICAL ENGINEERING, TSE

### A LITTLE INTRO

■ Name: Sappinandana Akamphon

■ Room: ENG 421/4

■ mail: sup@engr.tu.ac.th

# CHILDHOOD

■ Born and raised in Khon Kaen, Thailand



# BACHELOR'S DEGREE

■ Sc.B. Brown University, 2002



### MASTER AND DOCTORAL

■ M.S. 2005, Ph.D. 2008, MIT



### **RESEARCH INTERESTS**

- Solar energy utilization
- Water generation



#### MATERIAL BEHAVIORS

- lacktriangle The study of material response to
  - ► External load(s)
  - ► Thermal change(s)

### COORDINATE SYSTEM

- Most quanitities in this class are vectors
- Coordinate systems make it clear on orientation and direction of anything
- Three main systems
  - Cartesian
  - Cylindrical
  - ► Spherical

# CARTESIAN



# CYLINDRICAL



# SPHERICAL COORDINATES



#### EXTERNAL LOADS

- Force(s) or Moment(s)
- Results in deformation, depending on *direction* and *surface*
- How do we define direction and surface

### **SURFACE DIRECTION**

■ Direction of vector *normal* to the surface



#### **FORCES**

- Normal forces → same direction as surface
- Shear forces → perpendicular to surface direction

#### **MOMENTS**

- Follow right-hand rule.
- Torsional moments: same direction as surface
- Bending moments: perpendicular to surface direction

# THE SINGULARITY EQUATION (FOR THIS CLASS)

■ Equilibrium equation

$$\sum F = 0$$

$$\sum M = 0$$

#### **ENGINEERING STATICS**

- We will be trying to determine stresses and deformation of things
- Need to find internal load at any point/surface
- Method of sections

#### METHOD OF SECTIONS

- Use free body diagram to determine internal forces/moments on surface at any point
- What if there are too loads/chages all at once
- Principle of Superposition

#### PRINCIPLE OF SUPERPOSITION

- Split the loads/changes
- Determine individual response
- Add the responses up

#### REVIEW OF HIGH SCHOOL PHYSICS

- Normal Stresses: same direction as surface
- Shear stresses: perpendicular to surface direction

### **NORMAL STRESSES**



# **SHEAR STRESSES**



#### **ALLOWABLE STRESSES**

- Real design needs to take care of uncertainties: materials, conditions, loads, ...
- Use  $\sigma_{allow}$  and  $\tau_{allow}$  instead

$$\sigma_{allow} = \frac{\sigma_f}{N_s}$$
 
$$\tau_{allow} = \frac{\tau_f}{N_s}$$

# SAFETY FACTORS, N<sub>s</sub>

- $\blacksquare$   $N_s$  is called the safety factor
- $N_s \ge 1$  always
- Why? Is there an upper limit to  $N_s$ ?

#### **EXAMPLE: DESIGN WITH SAFETY FACTOR**

We need a steel rod that will take the load of 20 kN with a safety factor of 2. The steel rod has the maximum yield strength of 300 MPa. Determine the required diameter of the rod.

$$\sigma_{allow} = \frac{F}{\pi r^2} = \frac{\sigma_f}{N_s}$$

$$\frac{20000}{\pi r^2} = \frac{300 \times 10^6}{2}$$

$$r^2 = 4.24 \times 10^{-5}$$

$$r = 7.98 \times 10^{-3} \text{ m}$$

### St. Venant's Principle



■ Far enough away from load, stresses follow theoretical values

#### **NORMAL STRAIN**

■ Strain from lengthening or shortening of material

$$\varepsilon = \frac{\delta}{L}$$

### **EXAMPLE: BALLOOON**

■ Air filled balloon with original radius  $r_1$  is pressurized until its radius becomes  $r_2$ . What is its strain?



### **SHEAR STRAIN**

■ Change in angular orientation of material

$$\gamma = \frac{\pi}{2} - \theta_f$$

#### HOOKE'S LAW

- How are stresses and strains related?
- Normal stress-strain

$$\sigma = E\varepsilon$$

■ Shear stress-strain

$$\tau = G\gamma$$

- E is Young's modulus or modulus of elasticity
- G is shear modulus

#### MATERIAL BEHAVIOR

- Most engineering materials have two regions
  - ► Elastic behavior: deformation is reversible
  - ▶ Plastic behavior: deformation is permanent

### MATERIAL PROPERTY TESTING

■ Tensile Test: testing for material response



### MATERIAL TYPES



### STRESS - STRAIN DIAGRAM: DUCTILE



#### **ELASTIC REGION**

- Deformation is reversible → object returns to original shape once load is removed
- Most designed parts are meant to operate in this region

#### YIELD

- Transition from elastic to plastic deformation ~ material failure
- Difficult to specify exact location
- Definition can vary
  - 1. proportionality limit
  - 2. elastic limit
  - 3. offset yield point (0.2% rule)

### STRAIN HARDENING

- Deformation in materials cause temperary hardness increases
- Material can take additional stress because of this

### **NECKING**



- Final phase of plastic deformation before failure
- Cross-sectional area decreases → increased stress

#### STRAIN ENERGY

- Energy stored in deformed body
- Assumed equal to work done by external loadings

$$u = \frac{1}{2}\sigma\varepsilon$$
$$= \frac{1}{2}\frac{\sigma^2}{E}$$

- Area under  $\sigma \varepsilon$  curve
- Important to material strength under impact loading

## MODULUS OF RESILIENCE



■ Amount of energy to permanently deform body

# **MODULUS OF TOUGHNESS**



■ Amount of energy to fracture body

# SHEAR STRESS-STRAIN RELATIONSHIP



#### THERMAL STRAIN

- Change in temperature causes material deformation
  - material normally expands when heated and contracts when cooled
- Definition in 1-D

$$\alpha = \frac{1}{L} \frac{dL}{dT}$$

 $\blacksquare$   $\alpha$  is called the coefficient of thermal expansion (CTE)

### Properties of $\alpha$

- $\blacksquare$   $\alpha$  is typically a function of T
- For many engineering materials (solids),  $\alpha \sim \text{constant}$

$$\delta = \int_0^L \alpha \Delta T dx$$

■ For uniform temperature change

$$\delta = \alpha \Delta T L$$

#### **EXAMPLE: HEATED BAR**

- If a beam has an original length of 2 m and initial T = 20 C
- The beam is heated, after which the temperature along the beam is  $T(x) = 20x^2 + 10x + 30$  C. Beam has  $\alpha = 2.5 \times 10^{-6}$ 
  - ▶ What is the deformation of the middle point of the beam?
  - ▶ What is the final length of the beam?

# Poisson's Effect



 Material's lateral contraction (extension) under longitudinal tensile (compressive) load

$$v = -\frac{\varepsilon_{lat}}{\varepsilon_{long}}$$

■ v is called Poisson's ratio

<sub>5</sub>5

# Poisson's Ratio Range

| Material        | Poisson's ratio |
|-----------------|-----------------|
| rubber          | 0.4999          |
| gold            | 0.42-0.44       |
| saturated clay  | 0.40-0.49       |
| magnesium       | 0.252-0.289     |
| titanium        | 0.265-0.34      |
| copper          | 0.33            |
| aluminium-alloy | 0.32            |
| clay            | 0.30-0.45       |
| stainless steel | 0.30-0.31       |
| steel           | 0.27-0.30       |
| cast iron       | 0.21-0.26       |
| sand            | 0.20-0.45       |
| concrete        | 0.1-0.2         |
| glass           | 0.18-0.3        |
| foam            | 0.10-0.50       |
| cork            | 0               |
|                 |                 |

■ Usual engineering materials have  $0 \le v \le 0.5$ 

## **AUXETIC MATERIAL**

- Materials that exhibit negative Poisson's ratios
- How is that possible?
- Rely on material microstructure
- Useful in many design situations



### MECHANICAL STRAINS VS THERMAL STRAINS

- Strains caused by load vs temperature change
- Mechanical strains: normal strains + lateral strains from Poisson's effect
- Thermal strains: strains in all direction, no Poisson's effect.
- $\bullet$   $\varepsilon_{\text{total}} = \varepsilon_{\text{mech}} + \varepsilon_{\text{therm}}$  (mind the signs)

### MECH VS THERM STRAINS EXAMPLE

A circular cross-sectioned steel bar with radius r=1 cm and length L=2 m is stretched along its length by a stress of 100 MPa. If the steel has E=210 GPa, v=0.3, and  $\alpha=16\times10^{-6}$ /° C, how much temperature change does it need to return to its original volume?

### SOLUTION: MECH VS THERM STRAINS

Match before and after volumes before:

$$V_0 = \pi r^2 l$$

after:

$$l_1 = l\left(1 + \frac{\sigma}{E} + \alpha \Delta T\right)$$
  
$$r_1 = r\left(1 - v\frac{\sigma}{E} + \alpha \Delta T\right)$$

## SOLUTION: MECH VS THERM STRAINS

$$Set V_0 = V_1$$

$$\pi r^2 l = \pi r^2 \left( 1 - v \frac{\sigma}{E} + \alpha \Delta T \right)^2 l \left( 1 + \frac{\sigma}{E} + \alpha \Delta T \right)$$

Keep only first-order terms:

$$0 = \frac{\sigma}{E} - v\frac{\sigma}{E} - v\frac{\sigma}{E} + 2\alpha\Delta T + \alpha\Delta T$$
$$\Delta T = \frac{-\sigma(1 - 2v)}{3\alpha E}$$
$$= -3.97 \text{ C}$$

### THERMAL STRESS

■ Stress in a cooled/heated material constrained from deforming freely

## EXAMPLE: HOT BAR / COOL BAR

- A metal bar is constrained between two walls the same distance as the beam's length, how would you change the temperature so that the beam is ...
  - ▶ in tension?
  - ▶ in compression?
- We can intuit the *direction* of temperature change (up or down), but not yet its magnitude (how much)
- We will learn that soon enough ...