Séries d'exercices 4ème inf LOGARITHME

maths au lycee *** alt autr

Site Web: http://maths-akir.midiblogs.com/

EXERCICE N°1

1°)Soit g la fonction définie sur $]0,+\infty[$ par : $g(x) = x \ln(x) - x + 1$.

- a) Etudier le sens de variations de g
- b) En déduire le signe de g.

2°)On considère la fonction f définie sur]1,+ ∞ [par : $f(x) = \frac{\ln(x)}{x-1}$

- a) Etudier les limites de f en $+\infty$ et en 1.
- b) Dresser le tableau de variation de f.
- c) Tracer la courbe représentative de f dans un repère orthonormé (unité : 2cm)

EXERCICE N°2

Partie A

Étude de la fonction f définie sur R_+^* par : $f(x) = \frac{1 + \ln x}{x}$.

On appellera C sa courbe représentative.

- 1°)Étudier la limite de f en +∞ et en 0
- 2°)Étudier les variations de f ; en dresser le tableau de variations.
- 3°)Déterminer la valeur de x telle que f(x) = 0.
- 4°)Écrire l'équation de la tangente T à C en ce point.
- 5°)Tracer C et T.

Partie B

1°)Montrer qu'une primitive de $x \mapsto \frac{\ln x}{x}$ est $x \mapsto \frac{(\ln x)^2}{2}$

En déduire l'ensemble des primitives F de f.

 2°)Déterminer la primitive de f qui s'annule pour x = 1.

Cette primitive sera appelée F_1 .

3°)Déduire de la partie A le sens de variation de F_1 ; déterminer les limites aux bornes de l'ensemble de définition, dresser le tableau de variations et donner les intersections de la courbe représentative de F_1 avec (x'x).

 4°)Représenter graphiquement F_1 .

4°)On appelle F_2 la primitive de f qui prend la valeur 0,5 pour x = 1. Donner l'expression de F_2 . Expliquer la construction de la courbe représentative de F_2 à partir de celle de F_1 . Tracer la courbe représentative de F_2 .

EXERCICE N°3

- 1°) Soit f la fonction définie par : pour tout $x \ge 0$: $f(x) = \ln(x+1) x + \frac{x^2}{2}$
 - a) Etudier les variations de
 - b) En déduire que pour tout $x \ge 0$: $x \frac{x^2}{2} \le \ln(x+1)$
- 2°) Soit f la fonction définie par : pour tout $x \ge 0$: $f(x) = ln(x+1) x + \frac{x^2}{2} \frac{x^3}{3}$
 - a) Etudier les variations de f
 - b) En déduire que pour tout $x \ge 0$: $ln(x+1) \le x \frac{x^2}{2} + \frac{x^3}{3}$
- 3°) Etudier la limite éventuelle en 0^+ de $\frac{\ln(1+x)-x}{x^2}$

EXERCICE Nº4

Soit f définie sur J-1, $1[par f(x) = (1-x^2).ln(\frac{1+x}{1-x})]$. Montrer que f est continue.

- 1°)Etudier la parité de f
- 2°) Montrer que f se prolonge en une fonction continue sur [-1, 1].

EXERCICE N°5

Partie A

On considère la fonction g définie sur]0; $+\infty[$ par $:g(x)=x^2-\frac{1}{x^2}-4 \ln x$

- 1°) Etudier les variations de g. Préciser g(1).
- 2°) En déduire le signe de la fonction g sur chacun des intervalles]0;1[et $]1;+\infty[$.

Partie B

On considère la fonction f définie sur]0; $+\infty$ [par : $f(x) = \frac{1}{4}x^2 + \frac{1}{4x^2}$ - $(\ln x)^2$.

- 1°) Monter que, pour tout réel x > 0, $f(x) = f\left(\frac{1}{x}\right)$.
- 2°) Déterminer la limite de f en $+\infty$ (on pourra mettre x^2 en facteur dans l'expression f(x)). Déterminer la limite de f en 0.
- 3°) Montrer que pour tout réel x > 0, $f'(x) = \frac{1}{2x}g(x)$.

En utilisant la partie A, étudier le sens de variation de la fonction f sur l'intervalle]0; $+\infty$ [.

- 4°) On nomme C la représentation graphique de f dans un repère orthonormé ; unité graphique 5 cm. Tracer C. Partie C
- 1°) Montrer que l'équation f(x) = x admet une seule solution sur l'intervalle]0; [n] pourra étudier le sens de variation de la fonction h définie sur]0 ;1[par h(x) = f(x) - x). On nomme α cette solution.
- 2°) Montrer que l'équation $f(x) = \frac{1}{x}$ admet une seule solution sur l'intervalle H

On nomme β cette solution. Montrer que $\alpha.\beta = 1$.

3°) Déterminer, à l'aide de la calculatrice, un encadrement de β d'amplitude $10^{\circ 2}$. En déduire un encadrement $de \alpha$

EXERCICE N°6

Partie A

On considère la fonction g définie sur]0; $+\infty[$ par : $g(x) = x^3 - x + 1 - 2\ln x.$

- 1°) a) Montrer que g'(x) = $\frac{P(x)}{x}$, où P est un polynôme de degré 3.
- b) Vérifier que P(1) = 0. Factoriser P.
- c) Étudier le sens de variation de g. (On ne demande pas le calcul des limites en 0 et en +∞)
- 2°) Déduire de la question précédente le signe de g(x) suivant les valeurs de x.

Partie B

On considère la fonction f définie sur 10 par : $f(x) = x + 1 + \frac{x + \ln x}{x^2}$

On appelle (C) la courbe représentative de f dans un repère orthonormal (unité graphique 2 cm).

- 1°) a) Déterminer la limite de f(x) quand x tend vers 0.
- b) Démontrer que $\lim_{x\to +\infty} \frac{x + \ln x}{x^2}$ En déduire la limite de f(x) quand x tend vers $+\infty$.
- c) Justifier que les droites (D) et (D') d'équations respectives : x = 0 et y = x + 1 sont asymptotes à la courbe (C).
- 2°) a) Démontrer que la fonction h telle que $h(x) = x + \ln x$ est strictement croissante sur [0]; $+\infty$ et que cette fonction prend des valeurs positives et négatives.
- b) En déduire que (D') coupe (C) en un point unique d'abscisse α vérifiant : $\alpha + \ln \alpha = 0$.

Démontrer que : $0.56 \leqslant \alpha < 0.57$.

- 3°) Étudier le sens de variation de f.
- 4°) Déduire du 3° texistence d'une valeur unique β telle que $f(\beta)=0$.

Démontrer que : $0,46 < \beta < 0,47$.

5°) Construire (C) et (D').

EXERCICE N°7

Le plan P est muni d'un repère orthonormal. (O, \vec{i}, \vec{j}) (unité graphique 3 cm).

1°)On considère la fonction définie sur
$$[0,+\infty[$$
 par $: \begin{cases} f(x) = \frac{\ln(x+1)}{x} \sin x > 0 \\ f(0) = 1 \end{cases}$

Montrer que f est continue.

2°)Soit la fonction g définie sur $[0,+\infty[$ par $g(x) = ln(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3}\right)$

- a) Etudier le sens de variation de g.
- b) Calculer g(0) et en déduire que sur R^+ : $\ln(1+x) \le \left(x \frac{x^2}{2} + \frac{x^3}{3}\right)$
- c) Par une étude analogue, montrer que si $x \ge 0$, alors $\ln(1+x) \ge x \frac{x^2}{2}$
- d) Établir que pour tout x strictement positif on $a: -\frac{1}{2} \le \frac{\ln(1+x)-x}{x^2} \le -\frac{1}{2} + \frac{x}{3}$

En déduire que f est dérivable en zéro et que $f'(0) = -\frac{1}{2}$

- 3°) Soit h la fonction définie sur $[0,+\infty[$ par $:h(x)=\frac{x}{x+1}-ln(1+x)$
 - a) Étudier son sens de variation et en déduire le signe de h sur $[0,+\infty[$.
 - b) Montrer que sur $[0,+\infty[$, $f'(x) = \frac{h(x)}{x^2}$.
 - c) Dresser le tableau de variation de f en précisant la limite de f en $+\infty$
- d) On désigne par (ζf) la représentation graphique de f dans le repère orthonormal $(0,ec{i}\,,ec{j})$

Construire la tangente $T \grave{a}$ (ζf) au point d'abscisse 0.

Montrer que (ζf) admet une asymptote. Tracer la courbe (ζf) .

