Assignment 4

Gorantla Pranav Sai- CS20BTECH11018

Download all python codes from

and latex-tikz codes from

1 Problem(GATE IN 2018, Q. 5)

Consider a sequence of tossing a fair coin where outcomes of tosses are independent. The probability of getting the head for the third time in the fifth toss

(A)
$$\frac{5}{16}$$
 (B) $\frac{3}{16}$ (C) $\frac{3}{5}$ (D) $\frac{9}{16}$

2 SOLUTION(GATE IN 2018, Q. 5)

Let the random variable $X \in \{0, 1\}$ denotes head and tail in a toss. As both are equally probable.

$$\Pr(X=0) = \frac{1}{2} \tag{2.0.1}$$

$$Pr(X = 0) = \frac{1}{2}$$

$$Pr(X = 1) = \frac{1}{2}$$
(2.0.1)

Event	Description
A	5th toss is a head
В	Exactly 2 heads in first four tosses
С	5th toss is the third head

TABLE 4: Description of events used in problem

$$Pr(A) = Pr(X = 1) = \frac{1}{2}$$
 (2.0.3)

$$\Pr(B) = \frac{{}^{4}C_{2}}{2^{4}} = \frac{3}{8}$$
 (2.0.4)

$$C = AB \tag{2.0.5}$$

$$Pr(C) = Pr(AB) \tag{2.0.6}$$

As A and B are independent events.

$$Pr(C) = Pr(A) Pr(B)$$
 (2.0.7)

$$= \frac{1}{2} \times \frac{3}{8} \tag{2.0.8}$$

$$=\frac{3}{16}\tag{2.0.9}$$

Therefore probability of getting the head for the third time in the fifth toss is $\frac{3}{16}$.