Solutions to hw2 homework on Convex Optimization

https://web.stanford.edu/class/ee364b/homework.html

Andrei Keino

January 12, 2021

2.1 (8 points, 1 point per question)

Let f be a convex function with domain in \mathbb{R}^n . We fix $x \in \operatorname{int} \operatorname{dom} f$ and $d \in \mathbb{R}^n$. Recall the definition of the directional derivative of f at x along the direction d

$$f'(x,d) = \lim_{t \to 0} \frac{f(x+td) - f(x)}{t}$$

In this question we aim to show that f'(x,d) exists and is finite, and that we have the following relationship between $\partial f(x)$ and f'(x,d),

$$f'(x,d) = \sup_{g \in \partial f(x)} g^T d$$

(a) Show that the ratio $\frac{f(x+td)-f(x)}{t}$ is a nondecrasing function of t>0. Deduce that f'(x,d) exists and is either finite or equal to $-\infty$. We know from the lectures that, since $x\in \mathbf{int}$ dom \mathbf{f} , the subdifferential set ∂f is non - empty, convex and compact.

Solution:

Proof of non - decreasing. Definition of subgradient is

$$f(z) > f(x) + q^T(z-x)$$

let z = x + td; then

$$f(x+td) \ge f(x) + g^T(x+td-x)$$

or

$$f(x+td) - f(x) \ge tg^T d$$

dividing both part of the inequality by t (as t > 0, we can do it) gives

$$\frac{f(x+td) - f(x)}{t} \ge g^T d$$

as the right - hand side of the equation is not depends of t, differentiating by t gives

$$\partial \frac{\frac{f(x+td)-f(x)}{t}}{\partial t} \ge 0$$

As the $\frac{\partial f'(x,d)}{\partial t} \geq 0$, it means the function f'(x,d) is nondecreasing by variable t.

Proof of possible equality to $-\infty$.

The definition of convexity:

$$f(\theta x + (1 - \theta)y)) \le \theta f(x) + (1 - \theta)f(y)$$

where $0 < \theta < 1$.

let $t = 1 - \theta$, 0 < t < 1. then

$$f((1-t)x + ty)) \le (1-t)f(x) + tf(y)$$

or

$$f(x + t(y - x)) \le f(x) + t(f(y) - f(x))$$

as we can choose y any of the point in domain f, we can set d = y - x. Then

$$f(x+td) \le f(x) + t(f(y) - f(x))$$

or

$$f(x+td) - f(x) < t(f(y) - f(x))$$

or

$$\frac{f(x+td) - f(x)}{t} \le f(y) - f(x)$$

As f(x) can be equal to ∞ on the domain of f, so $f'(x,d) = \frac{f(x+td)-f(x)}{t}$ can be less or equal than (for the infinity with sign minus it means strictly equal) $-\infty$ on the domain of f. This means that f'(x,d) can be equal to $-\infty$ on domain of f.

(b) Let $g \in \partial f(x)$. Show that $f'(x,d) \geq g^T d$. Deduce that f'(x,d) is finite and $f'(x,d) \geq \sup_{g \in \partial f(x)} g^T d$.

Solution:

We already shown that

$$f'(x,d) > q^T d$$

in part (a). We also shown in part (a) that

$$\frac{f(x+td) - f(x)}{t} \le f(y) - f(x)$$

Second upper inequality means that f'(x,d) is bounded from upper side (i.e it can't be equal to ∞), it means its value is finite.

As the first of upper inequalities is correct \forall subgradients in domain of f, it means, that it is correct for the supremum of these subgradients in domain f. It means that

$$f'(x,d) \ge \sup_{g \in \partial f(x)} g^T d.$$

In the remaining part of this question, we will establish the converse inequality $f'(x,d) \leq \sup_{g \in \partial f(x)} g^T d$, by showing the existence of a subgradient $g^* \in \partial f(x)$, such that $f'(x,d) \leq g^{*T} d$. We introduce two following sets

$$C_1 = \{(z,t) \mid z \in \mathbf{dom} f, \ f(z) < t\}$$

$$C_2 = \{(y,v) \mid y = x + \alpha d, \ v = f(x) + \alpha f'(x,d), \ \alpha \ge 0\}$$

(c) Prove that C_2 and C_2 are nonempty, convex and disjoint.

Solution:

 C_1 is the epigraph of the convex function, therefore it is nonempty and convex.

 C_2 is the nonempty set, because it have at least one point, which corresponds to $\alpha=0,\,y=x,\,v=f(x)$. It is also a convex set, because $C_2^1=\{y\mid y=x+\alpha d\}$ is a convex set as it is translated domain of f which is a convex set and $C_2^2=\{v\mid v=f(x)+\alpha f'(x,d),\ \alpha\geq 0\}$ is either a straight line or a beam or a segment.

Proof of disjointedness:

We should show that there is exists a nonzero vector $(a, \beta) \in \mathbb{R}^n \times \mathbb{R}$ such as

$$a^{T}(x + \alpha d) + \beta(f(x) + \alpha f'(x, d)) \le a^{T}z + \beta w$$

for all α geq0, $z \in \mathbf{dom} f$, and f(z) < w.

Solution: As we shown earlier,

$$f'(x,d) \le f(y) - f(x)$$

where $x, y \in \mathbf{dom} f$. As x, y can be any points in domain f, it follows that

$$f'(x,d) \le \min_{z \in \text{dom } f} (f(z)) - \max_{z \in \text{dom } f} (f(z))$$

Lets just derive equation for β .

$$\beta(f(x) + \alpha f'(x, d) - w) \le a^{T}(z - x - \alpha d)$$

or

$$\beta \le \frac{a^T(z - x - \alpha d)}{f(x) + \alpha f'(x, d) - w}$$

I don't know how to solve items (e) - (g)

(h) Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $\lambda > 0$, and fix a direction $d \in \mathbb{R}^n$. Consider the function $\frac{1}{2}||Ax - b||_2^2 + \lambda ||x||_1$. Compute f'(0,d). Remark: you can either compute it directly by using the definition of the directional derivative, or, use the variational formula $f'(0,d) = \sup_{g \in \partial f(0)} g^T d$.

Solution:

 $\nabla ||x||_1 = sign(x)$

$$\nabla ||Ax - b||_2^2 = \nabla ((Ax - b)^T (Ax - b)) = 2(Ax - b)^T A$$

 $see https://math.stackexchange.com/questions/606646/matrix-derivative-ax-btax-band \ http://www.math.uwaterloo.ca/~hwolkowi//matrixcookbook.pdf$

$$\nabla(\frac{1}{2}||Ax - b||_2^2 + \lambda||x||_1) = 2(Ax - b)^T A + \lambda sign(x)$$

Then

$$f'(0,d) = d^T((Ax - b)^T A + \lambda[-1,1]_n)$$

where $[-1,1]_n$ is a vector in \mathbb{R}^n with component values in range $-1 \leq x_i \leq 1, \ i \in 1, \ldots, n$.

2.2 (4 Points)

In this question, we will show that a subgradient of the function $h(x) = \min_{z \in C} ||x - z||_2$ is

$$g = \frac{x - z^*}{||x - z^*||_2}$$

where C is a compact set in \mathbb{R}^n , x is a given point in \mathbb{R}^n , which does not belong to C, and

 $z^* = P_C(x) := \arg\min_{z \in C} ||x - z||_2$ denotes the Euclidean projection of x onto C (which exists and is unique).

(a) (0.5 point) Use the fact that $||x-z||_2 = \max_{u:||u||_2 \le 1} u^T(x-z)$ to transform the minimization problem] $h(x) = \min_{z \in C} ||x-z||_2$ into the following saddle point problem

$$\min_{z \in C} \max_{u:||u||_2 \le 1} u^T(x-z)$$

Solution:

We get it by substituting expression $\max_{u:||u||_2 \le 1} u^T(x-z)$ instead the expression $||x-z||_2$.

(b) (2 points) Now, we will use (a simple version of) the Sion's minimax theorem, which can be stated as follows.

Let $X \subseteq \mathbb{R}^n$, $Y \subseteq \mathbb{R}^n$, be compact and convex sets. Let f be a real valued function on $X \times Y$ such that

- $f(x, \cdot)$ is continuous and concave on $Y, \forall x \in X$.
- $f(\cdot, y)$ is continuous and convex on $X, \forall y \in Y$.

Then, we have $\min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y)$

Further, there exists a (saddle) point $(x^*, y^*) \in X \times Y$ such that

$$f(x*,y*) = \min_{x \in X} f(x,y^*) = \max_{y \in Y} f(x*,y) = \min_{x \in X} \max_{y \in Y} f(x,y) = \max_{y \in Y} \min_{x \in X} f(x,y)$$

Apply Sion's minimax theorem to conclude that

$$\min_{z \in C} \max_{u:||u||_2 \le 1} u^T(x-z) = \max_{u:||u||_2 \le 1} \min_{z \in C} u^T(x-z)$$

Define $u^* = \frac{x-z^*}{||x-z^*||_2}$. Show that (z^*, u^*) is a saddle point of the above minimax problem.

Solution:

C is compact and convex. u defined on the closed sphere S of unity radius, therefore its domain is compact and convex also. The function $f(u,z) = u^T(x-z)$ is linear in sense of both $f(z,\cdot)$ on C and $f(\cdot,u)$ on S. It means that it is concave and convex in both cases. So, applying Sion's minimax theorem we have:

$$\min_{z \in C} \max_{u:||u||_2 \le 1} u^T(x-z) = \max_{u:||u||_2 \le 1} \min_{z \in C} u^T(x-z)$$

where $f(z, u) = u^{T}(x - z)$ and there exist a saddle point (z^{*}, u^{*}) in $C \times S$ such that

$$f(z^*, u^*) = \min_{z \in C} f(z, u^*) = \max_{u \in S} f(z^*, y) = \min_{z \in C} \max_{u \in S} f(z, u) = \max_{z \in C} \min_{u \in S} f(z, u)$$

define $u^* = \frac{x-z^*}{||x-z^*||_2}$. It is evident, that u^* is the solution of the problem $\max_{u:||u||_2 \le 1} u^T(x-z)$. Also, this is evident, that the point z^* is the solution of the problem $z^* = P_C(x) := \arg\min_{z \in C} u^T(x-z)_2$. Then, by Sion's theorem the point $(z^*, u^*) : f(z^*, u^*) = \min_{z \ inC} f(z, u^*)$, where $f(z, u^*) = u^{*T}(x-z)$ is a saddle point of the problem

$$\min_{z \in C} \max_{u \in S} u^T (x - z)_2.$$

(c) (1.5 points) Using the 'max-min' representation of h(x), compute a subgradient of h at x.

Solution:

$$g = u\nabla(x - z^*) = u = \frac{x - z^*}{||x - z^*||_2}$$

2.3 (4 points)

For this question, you need to submit your code in addition to any description of your algorithm. Let Σ be an $n \times n$ diagonal matrix with entries $\sigma_1 \geq \cdots \geq \sigma_n$ and y a given vector in \mathbb{R}^n . Consider the compact convex sets $\mathcal{E} = \{z \in \mathbb{R}^n | ||\Sigma^{\frac{1}{2}}z||_2 \leq 1\}$ and $B = \{z \in \mathbb{R}^n | ||z - y||_{\infty} \leq 1\}$.

(a) (2 points) Formulate an optimization problem and propose an algorithm in order to

find a point $x \in \mathcal{E} \cap B$. You can assume that $\mathcal{E} \cap B$ is not empty. Your algorithm must be provably converging (although you do not need to prove it and you can simply refer to the lectures' slides).

Solution:

As Σ is a diagonal matrix, $||\Sigma^{\frac{1}{2}}z||_2 = ||\lambda^Tz||_2$, where $\lambda \in R^n$, and $\lambda = (\sqrt{\sigma_1}, \ldots, \sqrt{\sigma_n})$. It means that \mathcal{E} is an ellipse in R^n with the center in the point $(0)^n$. The set B is a cube in R^n with edge length 2 and with the center at the point y.