MATH 232 Section 3.5 pre-lecture comments

Lecture Outline

We discuss the relation between solutions of $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{0}$ (Same A!). We also discuss the column space and how it relates to the consistency problem.

New terminology

- 1. homogeneous linear system (old term, new way of thinking)
- 2. non-homogeneous linear system
- 3. general solution
- 4. particular solution
- 5. column space

Homogeneous vs. Non-Homogeneous Linear Systems

Example Let
$$A = \begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$. Compare the solution sets of $A\vec{x} = \vec{0}$ and $A\vec{x} = \vec{b}$.

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & 0 \\ 0 & 0 & 1 & 3 & | & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & -1 \\ 0 & 0 & 1 & 3 & | & -1 \\ 0 & 0 & 1 & 3 & | & -1 \\ 0 & 0 & 1 & 3 & | & -1 \\ 0 & 0 & 1 & 3 & | & -1 \\ 0 & 0 & 1 & 3 & | & -1 \\ 0 & 0 & 1 & 3 & | & -$$

Note. We call Ax = 0 the homogeneous linear system associated with $A\mathbf{x} = \mathbf{b}$.

Definition

A general solution describes all possible solutions.

A particular solution is one specific solution.

Even though the solution set of homogeneous system is a subspace, the solution set of a non-homogeneous system is **not a subspace**. (Why?) (Why?) O is not a solution to AZZE (5+0)

Solution to system

Every solution of a consistent non-homogeneous linear system Ax =**b** has the form

where
$$x_0$$
 is a particular solution of $Ax = b$ and

 $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \cdots + t_k\mathbf{v}_k$ is a general solution of $A\mathbf{x} = \mathbf{0}$. (homogeneous)

The consistency problem revisited

The consistency problem For a given matrix A, find all vectors \mathbf{b} such that $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$ has a solution.

Rewrite $A\mathbf{x} = \mathbf{b}$ in terms of column vectors of A:

A =
$$\begin{bmatrix} \zeta_1 & \zeta_2 & \ldots & \zeta_n \\ \zeta_1 & \zeta_2 & \ldots & \zeta_n \end{bmatrix}$$

Rewrite Az= $\begin{bmatrix} \chi_1 & \chi_2 & \ldots & \zeta_n \\ \chi_n & \zeta_n & \ldots & \zeta_n \end{bmatrix}$

$$x_1\vec{c_1} + x_2\vec{c_2} + \dots + x_n\vec{c_n} = \vec{b}$$

A**x** = **b** is consistent if and only if **b** is a linear combination of the columns of A (span of the column vectors of A).

Span of the column vectors of *A* is one of the important subspaces, and it has a special name:

Definition. Let A be an $m \times n$ matrix. Its **column space** col(A) is the span of its column vectors:

$$\operatorname{col}(A) = \operatorname{span}\left(\overrightarrow{\mathbf{c}}_{1}(A), \overrightarrow{\mathbf{c}}_{2}(A), \dots, \overrightarrow{\mathbf{c}}_{n}(A)\right).$$

Column space of A is a subspace of \mathbb{R}^m .

This proves the following result.

Theorem 3.5.5 A linear system $Ax = \mathbf{b}$ is consistent if and only if \mathbf{b} belongs to the span of the columns vectors of A.

So now, given a system, deciding its consistency reduces to answering if \mathbf{b} is in the span of the column space, or equivalently if \mathbf{b} is a linear combination of the columns of A.

Example Is
$$\begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
 $\vec{x} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix}$ consistent? $\begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad x_1 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix}$$

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \vec{x} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix}$$

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \vec{x} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + \vec{x} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + \vec{x} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + \vec{x} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + \vec{x} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + \vec{x} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + \vec{x} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + \vec{x} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + \vec{x} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + \vec{x} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} +$$

Note that if $A\vec{x} = \vec{b}$ is consistent, it must have the same number of solutions as $A\vec{x} = \vec{0}$.

Theorem 3.5.3 If A is an $m \times n$ matrix, then the following statements are equivalent:

- 1. Ax = 0 has only the trivial solution (x = 0).
- 2. For every vector $\mathbf{b} \in R^m$, the system $A\mathbf{x} = \mathbf{b}$ has either one solution, or no solutions.

inconsistent

Remarks

- 1) This is similar to the fundamental theorem. How?
- 2) If $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions then $A\mathbf{x} = \mathbf{b}$ has either

Theorem 3.5.4 A non-homogeneous linear system with more unknowns than equations has either infinitely many solutions or is inconsistent.