Neural Machine Translation

Manish Shrivastava

Reference Materials

- Deep Learning for NLP by Richard Socher http://cs224d.stanford.edu/
- Tutorial and Visualization tool by Xin Rong http://www-personal.umich.edu/~ronxin/pdf/w2vexp.pdf
- Word2vec in Gensim by Radim Řehůřek http://rare-technologies.com/deep-learning-with-word2vec-and-gensim/
- Slides by Girish K, Vagelis Hristidis, Richard Socher and many others.

Deep Learning

- Number of Applications
- Primary premise:
 - Word Representation: Words represented as dense vectors embedded in a vector space
- Many different approaches to learn
- Many different applications
 - Some new ones: Word Analogies, Semantic Similarity etc.

Role of Deep Learning in NLP

- Similarity?
 - France:Paris::Russia:Moscow
 - E(King)-E(Man)+E(Woman)=E(Queen)

"You shall know a word by the company it keeps!" Firth (1957)

Role of Deep Learning in NLP

- Similarity?
 - Not Really!!
- Methods for Semantic Similarity have existed for a long time.
 - Distributional Semantics

Singular Value Decomposition

The problem with this method, is that we may end up with matrices having billions of rows and columns, which makes SVD computationally restrictive.

Singular Value Decomposition (SVD)

- Handy mathematical technique that has application to many problems
- Given any m×n matrix A, algorithm to find matrices U, V, and W such that

 $A = UWV^{T}$

U is $m \times n$ and orthonormal

W is $n \times n$ and diagonal

V is $n \times n$ and orthonormal

SVD

$$\begin{pmatrix} \mathbf{A} & \mathbf{V} & \mathbf{V}$$

• Treat as black box: code widely available

SVD

- The w_i are called the singular values of **A**
- If **A** is singular, some of the w_i will be 0
- In general $rank(\mathbf{A})$ = number of nonzero w_i
- SVD is mostly unique (up to permutation of singular values, or if some w_i are equal)

SVD and Inverses

- Why is SVD so useful?
- Application #1: inverses
- $A^{-1}=(V^T)^{-1}W^{-1}U^{-1}=VW^{-1}U^T$
 - Using fact that inverse = transpose for orthogonal matrices
 - Since W is diagonal, W⁻¹ also diagonal with reciprocals of entries of W

SVD and Inverses

- $A^{-1}=(V^T)^{-1}W^{-1}U^{-1}=VW^{-1}U^T$
- This fails when some w_i are 0
 - It's *supposed* to fail singular matrix
- Pseudoinverse: if $w_i=0$, set $1/w_i$ to 0 (!)
 - "Closest" matrix to inverse
 - Defined for all (even non-square, singular, etc.)
 matrices
 - Equal to $(A^TA)^{-1}A^T$ if A^TA invertible

SVD and Eigenvectors

- Let $A=UWV^T$, and let x_i be i^{th} column of V
- Consider $\mathbf{A}^{\mathsf{T}}\mathbf{A} x_i$:

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}x_{i} = \mathbf{V}\mathbf{W}^{\mathrm{T}}\mathbf{U}^{\mathrm{T}}\mathbf{U}\mathbf{W}\mathbf{V}^{\mathrm{T}}x_{i} = \mathbf{V}\mathbf{W}^{2}\mathbf{V}^{\mathrm{T}}x_{i} = \mathbf{V}\mathbf{W}^{2}\begin{pmatrix}0\\ \vdots\\1\\0\end{pmatrix} = \mathbf{V}\begin{pmatrix}0\\ \vdots\\w_{i}^{2}\\\vdots\\0\end{pmatrix} = w_{i}^{2}x_{i}$$

- So elements of W are sqrt(eigenvalues) and columns of V are eigenvectors of A^TA
 - What we wanted for robust least squares fitting!

Word Representations

Traditional Method - Bag of Words Model		Word Embeddings
Uses one hot encoding	•	Stores each word in as a point in space, where it is represented by a vector of
 Each word in the vocabulary is represented by neighbouring words 		fixed number of dimensions (generally 300)
 For example, if we have a vocabulary of 10000 words, and "Hello" is a word in the dictionary, it would be represented by: 	•	Unsupervised, built just by reading huge corpus
[12 3 1 0 0 4 1 50 0]	•	For example, "Hello" might be represented as:
 Each number (in this instance) is the frequency of surrounding words in all 		[0.4, -0.11, 0.55, 0.3 0.1, 0.02]
contexts	•	Dimensions are basically projections along different axes, more of a mathematical
• Dimensions are words.		concept.

1. Word Similarity

- Easily identifies similar words and synonyms since they occur in similar contexts
- Stemming (thought -> think)
- Inflections, Tense forms
- eg. Think, thought, ponder, pondering,
- eg. Plane, Aircraft, Flight

2. Machine Translation

- I am a cook.
 - நான் ஒரு சமையல்காரன்.
 - मैं एक बावर्ची हूं
 - Je suis un cuisinier.

3. Part-of-Speech and Named Entity Recognition

	POS WSJ (acc.)	NER CoNLL (F1)
State-of-the-art*	97.24	89.31
Supervised NN	96.37	81.47
Unsupervised pre-training followed by supervised NN**	97.20	88.87
+ hand-crafted features***	97.29	89.59

4. Relation Extraction

Relationship	Example 1	Example 2	Example 3
France - Paris big - bigger Miami - Florida	Italy: Rome small: larger Baltimore: Maryland	Japan: Tokyo cold: colder Dallas: Texas	Florida: Tallahassee quick: quicker Kona: Hawaii
Einstein - scientist Sarkozy - France copper - Cu	Messi: midfielder Berlusconi: Italy zinc: Zn	Mozart: violinist Merkel: Germany gold: Au	Picasso: painter Koizumi: Japan uranium: plutonium
Berlusconi - Silvio Microsoft - Windows Microsoft - Ballmer Japan - sushi	Sarkozy: Nicolas Google: Android Google: Yahoo Germany: bratwurst	Putin: Medvedev IBM: Linux IBM: McNealy France: tapas	Obama: Barack Apple: iPhone Apple: Jobs USA: pizza

5. Sentiment Analysis

Cassifying sentences as positive and negative

- Building sentiment lexicons using seed sentiment sets
- No need for classifiers, we can just use cosine distances to compare unseen reviews to known reviews.

Enter word or sentence (EXIT to break): sad						
Word: sad Position in vocabulary: 4067						
Word	Cosine distance					
saddening	0.727309					
Sad	0.661083					
saddened	0.660439					
heartbreaking	0.657351					
disheartening	0.650732					
Meny_Friedman	0.648706					
parishioner_Pat_Patello	0.647586					
saddens_me	0.640712					
distressing	0.639909					
reminders_bobbing	0.635772					
Turkoman Shiites	0.635577					
saddest	0.634551					
unfortunate	0.627209					
sorry	0.619405					
bittersweet	0.617521					
tragic	0.611279					
regretful	0.603472					

6. Co-reference Resolution

• Chaining entity mentions across multiple documents - can we find and unify the multiple contexts in which mentions occurs?

7. Clustering

Words in the same class naturally occur in similar contexts, and this
feature vector can directly be used with any conventional clustering
algorithms (K-Means, agglomerative, etc). Human doesn't have to
waste time hand-picking useful word features to cluster on.

8. Semantic Analysis of Documents

• Build word distributions for various topics, etc.

Represent the meaning of word Word2vec

- 2 basic neural network models:
 - Continuous Bag of Word (CBOW): use a window of word to predict the middle word
 - Skip-gram (SG): use a word to predict the surrounding ones in win PROJECTION OUTPUT INPUT PROJECTION OUTPUT

Word2vec – Continuous Bag of Word

- E.g. "The cat sat on floor"
 - Window size = 2

We can consider either W or W' as the word's representation. Or even take the average.

Some interesting results Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

Word analogies

Now what?

- Word2Vec == Deep Learning
 - No!
 - The first step
- Embeddings are dense vectors
 - Can encapsulate context information
 - Can serve as information points similar to pixels
 - Serve as input to Deep learning models
 - CNNs, RNNs and many more

Deep Learning and NLP

- Tasks
 - Language Modeling
 - Semantic encoding of larger sentential units
 - Semantic similarity at larger granularity for various tasks

Language Modelling Problem

- Aim is to calculate the probability of a sequence (sentence) P(X)
- Can be decomposed into product of conditional probabilities of tokens (works):

$$P(W) = P(w(1), w(2), w(3), ..., w(M+1)) = \prod_{k=1}^{\infty} P(w(k)|w(1), ..., w(k-1))$$

In practice, only finite content used

$$P(w(k)|w(1),...,w(k-1)) \approx P(w(k)|w(1),...,w(k-N+1))$$

N-Gram Language Model

• N-Grams estimate word conditional probabilities via counting:

$$P(w(k)|h_{k-N+1}^{k-1}) = \frac{Count[w(k), h_{k-N+1}^{k-1}]}{Count[h_{k-N+1}^{k-1}]}$$

- Sparse (alleviated by back-off, but not entirely)
- Doesn't exploit word similarity
- Finite Context

Neural Network Language Models (NNLMs)

Feed-forward NNLM

Recurrent NNLM

Neural Network Language Model

Limitation of Neural Network Language Model

- Sparsity Solved
- World Similarity Solved
- Finite Context Not
- Computational Complexity Softmax

Recurrent Neural Network Language Model

[X. Liu, et al.]

Input layer Hidden layer Output layer

Recurrent Neural Network

How does RNN reduce complexity?

Given function f: h',y=f(h,x)

h and h' are vectors with the same dimension

No matter how long the input/output sequence is, we only need one function f. If f's are different, then it becomes a feedforward NN. This may be treated as another compression from fully connected network.

Bidirectional RNN

$$y,h=f_1(x,h)$$
 $z,g = f_2(g,x)$

Naïve RNN

• Given function f: h',y=f(h,x)

Problems with naive RNN

- When dealing with a time series, it tends to forget old information. When there is a distant relationship of unknown length, we wish to have a "memory" to it.
- Vanishing gradient problem.