MAST30022 Decision Making 2021 Tutorial 7

1. **(PS5-7)** Let

$$A = \{1, 2, 3, 4\}$$

and

$$\theta = \{(1,1), (1,3), (2,3), (3,4), (4,4)\}.$$

Is θ transitive?

Solution

Since $1\theta 3$ and $3\theta 4$ but $\neg 1\theta 4$, θ is not transitive.

2. (PS5-8) Let \mathbb{Z} be the set of integers, and k a positive integer. Let θ be the binary relation on \mathbb{Z} defined by

$$\theta = \{(x, y) : k \text{ is a divisor of } x - y\}.$$

Prove that θ is an equivalence relation on \mathbb{Z} , that is, θ is reflexive, transitive, and symmetric.

Solution

- Reflexivity: Let $x, y, z \in \mathbb{Z}$. Since k is a divisor of 0 = x x, by the definition of θ we have $x\theta x$ and hence θ is reflexive.
- **Transitivity:** If $x\theta y$ and $y\theta z$, then k is a divisor of x-y and a divisor of y-z. So x-y=ak and y-z=bk for some integers a and b. Hence x-z=(x-y)+(y-z)=ak+bk=(a+b)k, and k is a divisor of x-z, that is, $x\theta z$. Thus θ is transitive.
- **Symmety:** Finally, if $x\theta y$, then k is a divisor of x-y and hence is also a divisor of y-x, that is, $y\theta x$. Hence θ is symmetric.
- 3. (PS5-9) Let A_1, \ldots, A_n be sets equipped with binary relations $\succeq_1, \ldots, \succeq_n$ respectively. Let

$$A = A_1 \times \cdots \times A_n = \{(a_1, \dots, a_n) : a_i \in A_i, 1 \le i \le n\}$$

be the Cartesian product of A_1, \ldots, A_n . Define a binary relation \succeq on A such that

$$(a_1,\ldots,a_n)\succeq(b_1,\ldots,b_n)$$

if and only if $a_i \succeq_i b_i$ for all i = 1, 2, ..., n.

- (a) Prove that, if all \succeq_i (i = 1, 2, ..., n) have one and the same of the following properties:
 - transitivity
 - reflexivity
 - symmetry
 - antisymmetry
 - asymmetry

then \succeq has the same property.

(b) Prove or disprove the following statement: if all \succeq_i (i = 1, 2, ..., n) are weak orders then so is \succeq .

Solution

(a) **Transitivity:** Suppose

$$(a_1,\ldots,a_n)\succcurlyeq(b_1,\ldots,b_n)$$

$$(b_1,\ldots,b_n)\succcurlyeq (c_1,\ldots,c_n).$$

By the definition of \geq ,

$$a_i \succcurlyeq_i b_i, b_i \succcurlyeq_i c_i$$

for all i = 1, 2, ..., n. But each \succeq_i is transitive by our assumption. So

$$a_i \succcurlyeq_i c_i$$

for all i = 1, 2, ..., n. This means that

$$(a_1,\ldots,a_n)\succcurlyeq(c_1,\ldots,c_n)$$

and hence \geq is transitive.

Reflexivity: Since all \succeq_i are reflexive by our assumption, we have $a_i \succeq_i a_i$ for all i. Thus

$$(a_1,\ldots,a_n)\succcurlyeq(a_1,\ldots,a_n)$$

and \geq is reflexive.

Symmetry: Suppose

$$(a_1,\ldots,a_n)\succcurlyeq (b_1,\ldots,b_n).$$

Then

$$a_i \succcurlyeq_i b_i$$

for all i = 1, 2, ..., n. Since all \succeq_i are symmetric by our assumption, we have

$$b_i \succcurlyeq_i a_i$$

for all $i = 1, 2, \ldots, n$. Thus,

$$(b_1,\ldots,b_n)\succcurlyeq (a_1,\ldots,a_n).$$

So we have proved that

$$(a_1,\ldots,a_n) \succcurlyeq (b_1,\ldots,b_n) \Longrightarrow (b_1,\ldots,b_n) \succcurlyeq (a_1,\ldots,a_n)$$

and hence \geq is symmetric.

Antisymmetry: Suppose

$$(a_1,\ldots,a_n)\succcurlyeq(b_1,\ldots,b_n)$$

$$(b_1,\ldots,b_n)\succcurlyeq (a_1,\ldots,a_n).$$

Then

$$a_i \succcurlyeq_i b_i, b_i \succcurlyeq_i a_i$$

for all i = 1, 2, ..., n. But each \succeq_i is antisymmetric. So we must have

$$a_i = b_i$$

for each i. In other words,

$$(a_1,\ldots,a_n)=(b_1,\ldots,b_n)$$

and hence \geq is antisymmetric.

Asymmetry: Suppose

$$(a_1,\ldots,a_n)\succcurlyeq (b_1,\ldots,b_n).$$

Then

$$a_i \succeq_i b_i$$

for all i = 1, 2, ..., n. But each \geq_i is asymmetric. So we must have

$$b_i \not\succeq_i a_i$$

for each i. This implies that

$$(b_1,\ldots,b_n)\not\succeq (a_1,\ldots,a_n)$$

and hence \succeq is asymmetric. (Note that $(b_1, \ldots, b_n) \not\succeq (a_1, \ldots, a_n)$ as long as $b_i \not\succeq_i a_i$ for at least one i.)

(b) The statement is false since \geq does not inherit comparability from \geq_i 's. For example, if we take all $A_i = \mathbb{R}$ and all \geq_i 's to be \geq in the usual sense, then \geq_i 's are comparable but \geq is not comparable. For instance, in the case where n=2 we have

$$(1,4) \not\geq (3,2)$$
 (as $1 \not\geq 3$)

and

$$(3,2) \not\ge (1,4)$$
 (as $2 \not\ge 4$).

4. (PS5-10) Let

$$A = \{(-2,3,1), (0,1,-1), (1/2,4,2), (3,2,1), (5,-1,0)\}.$$

- (a) List the lexicographic order of A, and find the greatest and least elements of A
- (b) For the Pareto order on A draw the corresponding directed graph such that for each directed edge the tail is "better than" the head. Find the sets $P_{\min}(A)$ and $P_{\max}(A)$, and the Pareto greatest and least elements (if any) of A.

Solution

(a) The lexicographic order is:

$$(5,-1,0), (3,2,1), (1/2,4,2), (0,1,-1), (-2,3,1)$$

Under this order the greatest element is (5, -1, 0) and the least element is (-2, 3, 1).

(b) Denote

$$a = (-2, 3, 1), b = (0, 1, -1), c = (1/2, 4, 2)$$

 $d = (3, 2, 1), e = (5, -1, 0).$

The graphical representation of the Pareto order on A is shown in Figure 1.

Figure 1: PS5-10

From the graph we see that there is no greatest element or least element in A under the Pareto order.

 $P_{\min}(A)$ is the set of vertices without leaving edges (apart from loops).

 $P_{\text{max}}(A)$ is the set of vertices without entering edges (apart from loops).

Hence

$$P_{\min}(A) = \{a, b, e\}, P_{\max}(A) = \{c, d, e\}.$$

- 5. **(PS5-14)** Let $A = \{(2,0,3), (1,2,3), (-4,-2,1), (8,1,1), (-5,0,2), (2,1,1), (-6,-2,0)\}.$
 - (a) List the lexicographic order of A, and find the greatest and least elements of A under this order.
 - (b) Give the Pareto order of A and represent it using a Boolean matrix. Find $P_{\min}(A)$ and $P_{\max}(A)$. Also, find the greatest and least elements (if any) of A under the Pareto order.

Solution

(a) The lexicographic order of A is:

$$(8,1,1), (2,1,1), (2,0,3), (1,2,3), (-4,-2,1), (-5,0,2), (-6,-2,0).$$

So (8,1,0) is the greatest element and (-6,-2,0) is the least element of A w.r.t. the lexicographic order.

(b) Let

$$a = (2,0,3), b = (1,2,3), c = (-4,-2,1), d = (8,1,1),$$

 $e = (-5,0,2), f = (2,1,1), g = (-6,-2,0).$

The Boolean matrix representation is

\succeq_P	a	b	c	d	e	f	g
a	×		\times		\times		\times
b		×	×		×		×
c			×				×
d			X	X		X	×
e					X		\times
f			×			×	×
g							×

Minimal elements with respect to \succeq_P have, for every \times in a row of the Boolean matrix, a symmetric \times . Thus

$$P_{\min}(A) = \{g\}.$$

Maximal elements with respect to \succeq_P have, for every \times in a column of the Boolean matrix, a symmetric \times . Thus

$$P_{\max}(A) = \{a, b, d\}.$$

Least elements have the entire column populated with \times s. Thus g is a least element (the only one). Greatest elements have the entire row populated with \times s. Thus there are no greatest elements.

6. (PS5-15) Seven clerks share an office. Each has an ideal working temperature τ_i (i = 1, 2, ..., 7) with

$$\tau_1 < \tau_2 < \tau_3 < \tau_4 < \tau_5 < \tau_6 < \tau_7$$
.

Their individual preferences between any two room temperatures t and t' depends only on the magnitude of the departure of t and t' from their ideal, that is,

$$t \succeq_i t' \iff |t - \tau_i| \le |t' - \tau_i|$$

for i = 1, 2, ..., 7.

They decide as a group to adopt the fourth clerk's preference and set the room temperature to τ_4 because three would prefer a cooler room and three would prefer a warmer room. Show that in doing so they are implicitly adopting the simple majority rule; that is, show that, when $t \succ_4 t'$, at least three others hold $t \succ_i t'$, and that when $t \sim_4 t'$, the number who hold $t \succ_i t'$ equals the number who hold $t' \succ_i t$. (Adapted from "Decision Theory", S. French, 1986)

Solution

One can show that, if t is nearer τ_4 than t', then t is nearer at least three other ideal points than t'. (There are two possibilities to consider: t and t' are on different and on the same sides of τ_4 .) In other words, if $t \succ_4 t'$, then there are at least three other $i \neq 4$ such that $t \succ_i t'$.

If $t \sim_4 t'$, then $|t - \tau_4| = |t' - \tau_4|$ and t, t' are on different sides of τ_4 . So the number who hold $t \succ_i t'$ equal the number who hold $t' \succ_i t$.

In particular, since $\tau_4 \succ_4 t'$ for any $t' \neq \tau_4$, most clerks prefer τ_4 than any other choice. Thus by choosing τ_4 the clerks are using the simple majority rule.