

(PCT Article 18 and Rules 43 and 44)

| Applicant's or agent's file reference 4239-53232                                            |                                                                                            | of Transmittal of International Search Report<br>/220) as well as, where applicable, item 5 below. |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| International application No.                                                               | International filing date (day/month/year)                                                 | (Earliest) Priority Date (day/month/year)                                                          |  |  |  |  |  |  |
| PCT/US 99/18750                                                                             | 17/08/1999                                                                                 | 17/08/1998                                                                                         |  |  |  |  |  |  |
| Applicant                                                                                   |                                                                                            |                                                                                                    |  |  |  |  |  |  |
| THE GOVERNMENT OF THE UNI                                                                   | TED STATESet. al.                                                                          |                                                                                                    |  |  |  |  |  |  |
| This International Search Report has bee according to Article 18. A copy is being tra       | n prepared by this International Searching Au<br>ansmitted to the International Bureau.    | uthority and is transmitted to the applicant                                                       |  |  |  |  |  |  |
| This International Search Report consists  X  It is also accompanied by                     | of a total of sheets. a copy of each prior art document cited in th                        | is report.                                                                                         |  |  |  |  |  |  |
| Basis of the report                                                                         |                                                                                            |                                                                                                    |  |  |  |  |  |  |
| <ul> <li>With regard to the language, the<br/>language in which it was filed, un</li> </ul> | international search was carried out on the b<br>less otherwise indicated under this item. | asis of the international application in the                                                       |  |  |  |  |  |  |
| the international search w<br>Authority (Rule 23.1(b)).                                     | ras carried out on the basis of a translation of                                           | f the international application furnished to this                                                  |  |  |  |  |  |  |
| b. With regard to any <b>nucleotide ar</b> was carried out on the basis of th               | nd/or amino acid sequence disclosed in the                                                 | international application, the international search                                                |  |  |  |  |  |  |
| 1 555                                                                                       | onal application in written form.                                                          |                                                                                                    |  |  |  |  |  |  |
| 1 ===                                                                                       | ernational application in computer readable fo                                             | orm.                                                                                               |  |  |  |  |  |  |
| 1 =                                                                                         | this Authority in written form.                                                            |                                                                                                    |  |  |  |  |  |  |
| furnished subsequently to                                                                   | this Authority in computer readble form.                                                   |                                                                                                    |  |  |  |  |  |  |
|                                                                                             | bsequently furnished written sequence listing as filed has been furnished.                 | does not go beyond the disclosure in the                                                           |  |  |  |  |  |  |
| the statement that the inf furnished                                                        | ormation recorded in computer readable form                                                | n is identical to the written sequence listing has been                                            |  |  |  |  |  |  |
| 2. Certain claims were fou                                                                  | ınd unsearchable (See Box I).                                                              |                                                                                                    |  |  |  |  |  |  |
| 3. Unity of invention is lac                                                                | king (see Box II).                                                                         |                                                                                                    |  |  |  |  |  |  |
| 4. With regard to the <b>title</b> ,                                                        |                                                                                            |                                                                                                    |  |  |  |  |  |  |
| The text is approved as si                                                                  | ubmitted by the applicant.                                                                 |                                                                                                    |  |  |  |  |  |  |
| 1 =                                                                                         | shed by this Authority to read as follows:                                                 |                                                                                                    |  |  |  |  |  |  |
| 5. With regard to the <b>abstract</b> ,                                                     | ubmitted by the applicant.                                                                 |                                                                                                    |  |  |  |  |  |  |
| the text has been establi                                                                   |                                                                                            | ority as it appears in Box III. The applicant may, report, submit comments to this Authority.      |  |  |  |  |  |  |
| 6. The figure of the <b>drawings</b> to be pub                                              | ·                                                                                          |                                                                                                    |  |  |  |  |  |  |
| as suggested by the app                                                                     | licant.                                                                                    | X None of the figures.                                                                             |  |  |  |  |  |  |
| because the applicant fa                                                                    | iled to suggest a figure.                                                                  |                                                                                                    |  |  |  |  |  |  |
| because this figure bette                                                                   | r characterizes the invention.                                                             |                                                                                                    |  |  |  |  |  |  |

International Application No

A. CLASSIFICATION OF SUBJECT N IPC 7 C12Q1/68

N15/11

C07K16/14

According to International Patent Classification (IPC) or to both national classification and IPC

### B. FIELDS SEARCHED

 $\frac{\text{Minimum documentation searched (classification system followed by classification symbols)}}{1\,PC-7-C12Q-C12N-C07K}$ 

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

| Category ° | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                        | Relevant to claim No. |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X          | GARBE T. &STRINGER J.: "Molecular characterization of clustered variants of genes encoding major surface antigens of human Pneumocystis carinii" INFECTION AND IMMUNITY, vol. 62, no. 8, - August 1994 (1994-08) pages 3092-3101, XP002128593 cited in the application the whole document | 1-45                  |
|            | ·                                                                                                                                                                                                                                                                                         |                       |

| X Further documents are listed in the continuation of box C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | χ Patent family members are listed in annex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Special categories of cited documents:</li> <li>"A" document defining the general state of the art which is not considered to be of particular relevance</li> <li>"E" earlier document but published on or after the international filling date</li> <li>"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</li> <li>"O" document referring to an oral disclosure, use, exhibition or other means</li> <li>"P" document published prior to the international filing date but later than the priority date claimed</li> </ul> | "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention  "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.  "8" document member of the same patent family |
| Date of the actual completion of the international search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date of mailing of the international search report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 25 January 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10/02/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Name and mailing address of the ISA  European Patent Office, P.B. 5818 Patentlaan 2  NL – 2280 HV Rijswijk  Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  Fax: (+31-70) 340-3016                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Authorized officer  Müller, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

International Application No
T/US 99/18750

| <u></u>    | nation) DOCUMENTS CONS                                                                                                                                                                                                                                                                |                       |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Category ° | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                    | Relevant to claim No. |
| X          | THEUS S A ET AL: "Immunization with the major surface glycoprotein of Pneumocystis carinii elicits a protective response" VACCINE,GB,BUTTERWORTH SCIENTIFIC. GUILDFORD, vol. 16, no. 11-12, - 11 July 1998 (1998-07-11) page 1149-1157 XP004124618 ISSN: 0264-410X the whole document | 24,25                 |
| X          | KOVACS J.A. ET AL.,: "Multiple genes encode the major surface glycoprotein of Pneumocystis carinii" J. BIOLOGICAL CHEMISTRY, vol. 268, no. 8, - 15 March 1993 (1993-03-15) pages 6034-6040, XP002128594 the whole document                                                            | 1,23                  |
| X          | CHARY-REDDY S ET AL: "IDENTIFICATION OF EXTRAPULMONARY PNEUMOCYSTIS CARINII IN IMMUNOCOMPROMISED RATS BY PCR" JOURNAL OF CLINICAL MICROBIOLOGY,US,WASHINGTON, DC, vol. 34, no. 7, - July 1996 (1996-07) page 1660-1665 XP000865721 ISSN: 0095-1137 the whole document                 | 1,23                  |
| Α          | US 5 776 680 A (LEIBOWITZ MICHAEL J ET AL) 7 July 1998 (1998-07-07) cited in the application the whole document                                                                                                                                                                       |                       |
| P , X      | MEI Q. ET AL.,: "Characterization of major surface glycoprotein genes of human pneumocystis carinii and high-level expression of a conserved region" INFECTION AND IMMUNITY, vol. 66, no. 9,  - September 1998 (1998-09) pages 4268-4273, XP002128595 the whole document ^            | 1-45                  |
|            |                                                                                                                                                                                                                                                                                       |                       |

|   |             |                                     | Inform | ation on patent family mem | bers    | lni<br>                   |       | pplication No       |  |
|---|-------------|-------------------------------------|--------|----------------------------|---------|---------------------------|-------|---------------------|--|
|   |             |                                     |        |                            |         |                           | /US 9 | 9/18750             |  |
|   | Pa<br>cited | atent document<br>d in search repor | rt     | Publication date           | r<br>Pa | atent family<br>member(s) |       | Publication<br>date |  |
|   | US          | 5776680                             | Α      | 07-07-1998                 | US      | 5849484                   | A     | 15-12-1998          |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
|   |             |                                     |        |                            |         |                           |       |                     |  |
| ł |             |                                     |        |                            |         |                           |       |                     |  |
| i |             |                                     |        |                            |         |                           |       |                     |  |



To:

| From tl | he INT | ERNAT | TONAL | BUREAU |
|---------|--------|-------|-------|--------|
|---------|--------|-------|-------|--------|

**PCT** 

### **NOTIFICATION OF ELECTION**

(PCT Rule 61.2)

Assistant Commissioner for Patents United States Patent and Trademark

Office Box PCT Washington, D.C.20231 ETATS-UNIS D'AMERIQUE

in its capacity as elected Office

| Date of mailing (day/month/year) |  |
|----------------------------------|--|
| 09 May 2000 (09.05.00)           |  |

International application No. PCT/US99/18750

International filing date (day/month/year) 17 August 1999 (17.08.99) Applicant's or agent's file reference 4239-53232

Priority date (day/month/year) 17 August 1998 (17.08.98)

**Applicant** 

KOVACS, Joseph, A. et al

| 1. | The designated Office is hereby notified of its election made:                                                                      |
|----|-------------------------------------------------------------------------------------------------------------------------------------|
|    | X in the demand filed with the International Preliminary Examining Authority on:                                                    |
|    | 16 March 2000 (16.03.00)                                                                                                            |
|    | in a notice effecting later election filed with the International Bureau on:                                                        |
|    |                                                                                                                                     |
| 2. | The election X was                                                                                                                  |
|    | was not                                                                                                                             |
|    | made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b). |
|    |                                                                                                                                     |
|    |                                                                                                                                     |
|    |                                                                                                                                     |
|    |                                                                                                                                     |
|    |                                                                                                                                     |
|    |                                                                                                                                     |

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Authorized officer

Pascal Piriou

Telephone No.: (41-22) 338.83.38

Facsimile No.: (41-22) 740.14.35

# **PCT**

20 OCT 2000

# INTERNATIONAL PRELIMINARY EXAMINATION REPORTS

(PCT Article 36 and Rule 70)

| Applicant's or agent's file reference 4239-53232  FOR FUR |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | FOR FURTHER ACTION                                                                                                                                                  | See Notific<br>Preliminary             | ation of Transmittal of International<br>r Examination Report (Form PCT/IPEA/416)        |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------|
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Air - No                                                                                                                                                                       | International filing date (day/mon                                                                                                                                  | th/vear)                               | Priority date (day/month/year)                                                           |
| nternational                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | 17/08/1999                                                                                                                                                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 17/08/1998                                                                               |
| PCT/US9                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                                                                                                                                     |                                        |                                                                                          |
| nternational<br>C12Q1/68                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Classification (IPC) of I                                                                                                                                                      | national classification and IPC                                                                                                                                     |                                        |                                                                                          |
| Applicant                                                 | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                |                                                                                                                                                                     |                                        |                                                                                          |
| THE GOV                                                   | 'ERN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MENT OF THE UN                                                                                                                                                                 | ITED STATES et al.                                                                                                                                                  |                                        |                                                                                          |
| 1. This ir and is                                         | transı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ional preliminary exa<br>nitted to the applican                                                                                                                                | mination report has been prepar<br>t according to Article 36.                                                                                                       | ed by this Inte                        | ernational Preliminary Examining Authority                                               |
| 2. This F                                                 | EPOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RT consists of a total                                                                                                                                                         | of 7 sheets, including this cover                                                                                                                                   | sheet.                                 |                                                                                          |
| b                                                         | en ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nended and are the b                                                                                                                                                           | nied by ANNEXES, i.e. sheets of<br>pasis for this report and/or sheets<br>607 of the Administrative Instruc                                                         | containing r                           | on, claims and/or drawings which have ectifications made before this Authority the PCT). |
| Those                                                     | anne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | xes consist of a total                                                                                                                                                         | of 5 sheets.                                                                                                                                                        |                                        |                                                                                          |
| THESE                                                     | aiiie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Xes consist of a total                                                                                                                                                         |                                                                                                                                                                     |                                        |                                                                                          |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                                                                                                                                     |                                        |                                                                                          |
| 3. This r                                                 | eport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | contains indications r                                                                                                                                                         | elating to the following items:                                                                                                                                     |                                        |                                                                                          |
| 1                                                         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                |                                                                                                                                                                     |                                        |                                                                                          |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Basis of the report                                                                                                                                                            |                                                                                                                                                                     |                                        |                                                                                          |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Basis of the report<br>Priority                                                                                                                                                |                                                                                                                                                                     |                                        |                                                                                          |
| •                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Priority                                                                                                                                                                       | of opinion with regard to novelty,                                                                                                                                  | inventive step                         | p and industrial applicability                                                           |
| II                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Priority  Non-establishment of Lack of unity of inve                                                                                                                           | ntion                                                                                                                                                               |                                        |                                                                                          |
| II<br>III                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Priority Non-establishment of Lack of unity of inve                                                                                                                            | ntion                                                                                                                                                               |                                        | p and industrial applicability ventive step or industrial applicability;                 |
| II<br>III<br>IV                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Priority Non-establishment of Lack of unity of inve                                                                                                                            | ntion<br>t under Article 35(2) with regard<br>ations suporting such statement                                                                                       |                                        |                                                                                          |
| II<br>III<br>IV<br>V                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Priority Non-establishment of Lack of unity of inverse Reasoned statement citations and explant Certain documents Certain defects in the                                       | ntion<br>t under Article 35(2) with regard<br>ations suporting such statement<br>cited<br>e international application                                               |                                        |                                                                                          |
| II<br>III<br>IV<br>V                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Priority Non-establishment of Lack of unity of inverse Reasoned statement citations and explant Certain documents Certain defects in the                                       | ntion<br>t under Article 35(2) with regard<br>ations suporting such statement<br>cited                                                                              |                                        |                                                                                          |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Priority Non-establishment of Lack of unity of inve Reasoned statemen citations and explan Certain documents Certain defects in th Certain observations                        | ntion t under Article 35(2) with regard ations suporting such statement cited e international application s on the international application                        | to novelty, inv                        | ventive step or industrial applicability;                                                |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Priority Non-establishment of Lack of unity of inverse Reasoned statement citations and explant Certain documents Certain defects in the                                       | ntion t under Article 35(2) with regard ations suporting such statement cited e international application s on the international application                        |                                        | ventive step or industrial applicability;                                                |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Priority Non-establishment of Lack of unity of inve Reasoned statemen citations and explan Certain documents Certain defects in th Certain observations                        | ntion t under Article 35(2) with regard ations suporting such statement cited e international application s on the international application  Date                  | to novelty, inv                        | ventive step or industrial applicability;                                                |
| II III IV V VI VII VIII Date of sul                       | omission of the company of the compa | Priority Non-establishment of Lack of unity of inverse Reasoned statement citations and explant Certain documents Certain defects in the Certain observations on of the demand | ntion t under Article 35(2) with regard ations suporting such statement cited e international application s on the international application  Date                  | of completion                          | ventive step or industrial applicability;                                                |
| II III IV V VI VIII Date of sul                           | omission of example of the control o | Priority Non-establishment of Lack of unity of inverse Reasoned statement citations and explant Certain documents Certain defects in the Certain observations on of the demand | ntion t under Article 35(2) with regard ations suporting such statement cited e international application s on the international application  Date  17.1 ional  Bra | of completion                          | ventive step or industrial applicability; of this report                                 |



# INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/US99/18750

| I. B | asis | of | the | rep | ort |
|------|------|----|-----|-----|-----|
|------|------|----|-----|-----|-----|

 This report has been drawn on the basis of (substitute sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to the report since they do not contain amendments.):
 Description, pages:

|    | Des  | cription, pages:                   |                                                                                                                                       |
|----|------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|    | 1-30 | 1                                  | as originally filed                                                                                                                   |
|    | Clai | ms, No.:                           |                                                                                                                                       |
|    | 1-45 | 5                                  | as amended under Article 19                                                                                                           |
|    | Dra  | wings, sheets:                     |                                                                                                                                       |
|    | 1/13 | 3-13/13                            | as originally filed                                                                                                                   |
| 2. | The  | amendments hav                     | e resulted in the cancellation of:                                                                                                    |
|    |      | the description,                   | pages:                                                                                                                                |
|    |      | the claims,                        | Nos.:                                                                                                                                 |
|    |      | the drawings,                      | sheets:                                                                                                                               |
| 3. |      | This report has b considered to go | een established as if (some of) the amendments had not been made, since they have been beyond the disclosure as filed (Rule 70.2(c)): |
| 4. | Add  | litional observation               | ns, if necessary:                                                                                                                     |

see separate sheet



International application No. PCT/US99/18750

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)

Yes:

Claims 1-27,33-45

No:

Claims 28-32

Inventive step (IS)

Yes:

Claims 4-16,22,24,33-45

No:

Claims 1-3,17-21,23,25-32

Industrial applicability (IA)

Yes:

Claims 1-45

Claims No:

2. Citations and explanations

see separate sheet

# VII. Certain defects in the international application

The following defects in the form or contents of the international application have been noted:

see separate sheet

# VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

see separate sheet



### Section I

- Basis of the opinion 1.
- Originally filed documents also include pages 1-57 of sequence listing. a.
- Sequence listing pages 1-57, filed with the letter of 19.10.99, do not form part of b. the application (Rule 13ter.1(f) PCT).

### Section V

- The applicant's observations submitted with the amended claims have been 2. considered in establishing this report.
- Reference is made to the following documents: 3.
  - D1: Garbe and Stringer, Infect.Immun., Vol.62, pp.3092-3101 (1994);
  - D2: Chary-Reddy and Graves, J.Clin.Microbiol., Vol.34, pp.1660-1665 (1996);
  - D3: Kovacs et al., J.Biol.Chem., Vol.268, pp.6034-6040 (1993).
- Novelty (Article 33(2) PCT) 4.

Claim 28 is directed to a nucleic acid molecule comprising a sequence selected from the group consisting of the given portions of SEQ ID NOs 1,3,5,7,9,11,13,15 and sequences with at least 70% sequence identity with the said portions. The sequence shown in Fig.5a of D1 comprises a sequence highly homologous with those of the claim, for instance, nucleotides 2987-3232 show >96% homology with residues 2839-3084 of SEQ ID NO 7. Therefore the subject-matter of claim 28 is not novel over D1. Similarly, the nucleic acid molecules of claims 29 and 30 are comprised in the msgl sequence of D1, which thereby renders said claims not novel; moreover, in view of the cloning methods used to gain said sequences (D1: Materials and Methods), the recombinant vector (claim 31) and cell containing said vector (claim 32) are also inevitably disclosed by D1.



- Inventive step (Article 33(3) PCT) 5.
- Methods of detecting pathogenic microorganisms based on identification of a. specific DNA sequences, using PCR amplification and/or oligonucleotide probe hybridization, are common in the art. For instance, D2 describes the identification of P. carinii from rat tissues by PCR amplification of a portion of the rat P. carinii msg gene (p.1660, Introduction, paragraph 2). The targeting of sequences which are conserved in, but unique to, the pathogenic organisms in any one disease is an important aspect of such an analysis, and indeed the primers in D2 were chosen according to specific homology with rat msg genes (p.1663, col.1, paragraph 1).
- The MSG protein of P. carinii is encoded by multiple related genes producing a b. family of closely related proteins, as disclosed in D3 for rat P. carinii. However, as pointed out in the present application (p.2, I.20-26), more variation occurs between msg genes isolated from different host-specific strains, so that sequences suitable for detection in the rat are not necessarily applicable to humans.
- Claims 1 and 23 are directed to methods of detecting Pneumocystis carinii, in C. which a conserved region within human P. carinii is amplified using primers from the human P. carinii MSG protein encoding sequence (claim 1), or is hybridized with a probe for a conserved region within the human P. carinii MSG protein encoding sequence. However, these claims simply define the standard approach to identifying pathogenic microorganisms, applied here to a specific case, without defining the essential feature required to carry it out, i.e the conserved sequence.
- Moreover, D1 discloses a complete human P. carinii msg sequence, as well as d. several partial sequences: Fig.6 shows alignment of amino acid sequence data from four msg clones. Several portions clearly show a high degree of homology, which would be expected to extend also to the nucleic acid sequences.
- Thus, the skilled person seeking to detect human P. carinii would use standard e. methods and the sequence data provided in D1, concentrating on possible homologous regions in order to increase his chances of success. As such, the



**EXAMINATION REPORT - SEPARATE SHEET** 

subject-matter of claims 1 and 23 does not appear to be inventive.

Dependent claims 2, 3 and 17-21 do not appear to contain any additional features which, in combination with the features of the claims to which they refer, would render them inventive in the sense of Article 33(3) PCT, as said features are considered standard in the art.

- Claims 25-27 are directed to the human MSG proteins 1, 3, 11, 14, 32, 33 and 35, f. and their corresponding nucleic acid sequences. Although these sequences have not previously been disclosed and are therefore novel, they are not considered to be inventive. The existence of a number of variants would be expected in the light of D3, and the availability of complete human MSG gene and protein sequences from D1 means that it would be routine practice for the skilled person to isolate such variants; this indeed is what appears to have been done in the present application. Therefore, claims 25-27 are not considered to be inventive.
- 6a. Claims 4-16, 22 and 24 each provide preferred embodiments of the claimed methods, using specific sequences, all of which are directed to a particular conserved region of the msg genes. Although the teaching of D1 might enable the skilled person to try certain portions of the genes based on the incomplete comparisons in Fig.6, he would not specifically be directed to the conserved region in question. Thus said claims appear to be novel and inventive.
- Similarly the kits (claims 33-43) comprising primers taken from the specified b. conserved region are not anticipated by any prior art document, taken alone or in combination, and therefore seem to be new and inventive.
- The antibodies defined in claims 44 and 45 are raised against two specific C. sequences, providing different effects: one is unique to and thus specific for HMSG32 (claim 44); the other is for a conserved MSG epitope (claim 45). Both are novel and inventive, as the antigenic peptides defined are not indicated in the prior art.
- The document Mei et al., Infect.Immun., Vol.66, pp.4268-4273 (Sept.1998), was 7. cited as a P,X-document in the International Search Report. However, the priority



date of 17.08.98 for the present application is considered to be valid, so that the cited document does not count as prior art under Rule 64.1 PCT for the purposes of Article 33 PCT.

### Section VII

Contrary to the requirements of Rule 5.1(a)(ii) PCT, the relevant background art 8. disclosed in the document D2 is not mentioned in the description, nor is this document identified therein.

### Section VIII

- The following objections are under Article 6 PCT: 9.
- The phrase "and conservative substitutions thereof", used in claim 25, is vague a. and leaves the reader in doubt as to the exact nature of the subject-matter being claimed, thereby rendering the definition of the subject-matter of said claims unclear. Although conservative substitutions are discussed in the description (p.13-14), it is unclear in what way such substitutions may be limited. In particular, this same passage refers to sequences of at least 63% homology (which would include the MSG disclosed in D1), and thereby implies that the subject-matter for which protection is sought may be different to that defined by claims 25-27, i.e. not restricted to the sequences given. Therefore, a lack of clarity in the claims arises when using the description to interpret them.
- Claims 4-7, 28 and 33-35 refer to residues 2887-3132 of HMSG33 (SEQ ID b. NO:11), although said SEQ ID NO:11 extends only as far as residue 3054. Said claims are therefore unclear.
- The vague and imprecise statement in the description, p.30, I.9-13, referring to the C. "spirit" of the invention, implies that the subject-matter for which protection is sought may be different to that defined by the claims, thereby resulting in lack of clarity (Article 6 PCT) when used to interpret them (see also PCT Guidelines, C-III, 4.3a).

PCT/US99/18750



-31-

#### **CLAIMS**

We claim:

5

1. A method of detecting the presence of *Pneumocystis carinii* in a biological specimen, comprising:

amplifying a highly conserved region within a human-P. carinii nucleic acid sequence, if such sequence is present in the sample, using two or more oligonucleotide primers derived from human-P. carinii MSG protein encoding sequence; and

determining whether an amplified sequence is present.

10

- 2. The method according to claim 1, wherein amplification of the human-P. carinii nucleic acid sequence is by polymerase chain reaction.
- 3. The method of claim 1, wherein the human-P. carinii nucleic acid sequence is a highly conserved region within an MSG-protein encoding sequence.

15

4. The method of claim 3, wherein the highly conserved region comprises a sequence selected from the group consisting of: residues 2894-3042 of HMSGp1 (SEQ ID NO: 1), 2758-3006 of HMSGp3 (SEQ ID NO: 3), 2845-3090 of HMSG11 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ ID NO: 7), 2836-3081 of HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), and 1-249 of HMSGp2 (SEQ ID NO: 15).

20

25

5. The method of claim 1, wherein at least one oligonucleotide primer comprises at least 15 contiguous nucleotides from a sequence chosen from the group consisting of: residues 2894-3042 of HMSGp1 (SEQ ID NO: 1), 2758-3006 of HMSGp3 (SEQ ID NO: 3), 2845-3090 of HMSG11 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ ID NO: 7), 2836-3081 of HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), and 1-249 of HMSGp2 (SEQ ID NO: 15) and nucleic acid sequences having at least 70% sequence homology with residues 2894-3042 of HMSGp1 (SEQ ID NO: 1), 2758-3006 of HMSGp3 (SEQ ID NO: 3), 2845-3090 of HMSG11 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ ID NO: 7), 2836-3081 of HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), and 1-249 of HMSGp2 (SEQ ID NO: 15).

30

6. The method of claim 5, wherein at least one oligonucleotide primer comprises at least 15 contiguous nucleotides from a nucleic acid sequence having at least 90% sequence homology with residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).

35

7. The method of claim 5, wherein at least one oligonucleotide primer comprises at least 15 contiguous nucleotides from a nucleic acid sequence having at least 95% sequence homology with residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of

10

15

25

30

35



HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), and 1-249 of HMSGp2 (SEQ ID NO: 15).

- The method of claim 5, wherein the oligonucleotide primers are chosen from the 8. group consisting of: SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO:20, SEQ ID NO: 23, and SEQ ID NO: 24.
- The method of claim 5, wherein the pair of oligonucleotide primers consist of one 9. upstream primer and one downstream primer.
  - The method of claim 9, wherein: 10.

the upstream primer is chosen from the group consisting of: SEQ ID NO:

17, SEQ ID NO: 18, SEQ ID NO:19, SEQ ID NO:23; and

the downstream primer is chosen from the group consisting of: SEQ ID

- NO: 20 and SEQ ID NO: 24. The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ 11.
- ID NO: 17.
  - The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ
- ID NO: 18.
  - The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ 13.
- ID NO: 19.
  - The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ 14.
- ID NO: 20. 20
  - The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ 15.
  - ID NO: 23.
    - The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ 16.
  - ID NO: 24.
  - The method of claim 1, wherein the biological specimen is from the oropharyngeal 17. tract.
    - The method of claim 1, wherein the biological specimen is from blood. 18.
    - The method of claim 1, wherein the step of determining whether an amplified 19. sequence is present comprises one or more of:
      - (a) electrophoresis and staining of the amplified sequence; or
      - (b) hybridization to a labeled probe of the amplified sequence.
    - The method of claim 19, wherein the amplified sequence is detected by 20. hybridization to a labeled probe.
    - The method of claim 22, wherein the probe comprises a detectable non-isotopic 21. label chosen from the group consisting of:
      - a fluorescent molecule;
      - a chemiluminescent molecule;
      - an enzyme;

10

15

a co-factor;

an enzyme substrate; and

a hapten.

- 22. The method of claim 21, wherein the labeled probe comprises a nucleic acid sequence according to SEQ ID NO: 19.
- 23. A method of detecting the presence of *Pneumocystis carinii* in a biological specimen, comprising:

exposing the biological specimen to a probe that hybridizes to a highly conserved region within a human-P. carinii nucleic acid sequence, if the sequence is present in the sample to form a hybridization complex; and

determining whether the hybridization complex is present

wherein the nucleic acid sequence derived from human-P. carinii is an MSG encoding sequence.

- 24. The method of claim 23, wherein the labeled probe comprises a nucleic acid sequence according to SEQ ID NO: 19.
- 25. A purified protein comprising an amino acid sequence selected from the group consisting of
  - (a) SEQ ID NO: 2;
  - (b) SEQ ID NO: 4;
- 20 (c) SEQ ID NO: 6;
  - (d) SEQ ID NO: 8;
  - (e) SEQ ID NO: 10;
  - (f) SEQ ID NO: 12;
  - (g) SEQ ID NO: 14;
- 25 and conservative substitutions thereof.
  - 26. An isolated nucleic acid molecule encoding a protein according to claim 25.
  - 27. The isolated nucleic acid molecule according to claim 26, wherein the nucleic acid molecule has a sequence selected from the group consisting of: SEQ ID NO: 1; SEQ ID NO: 2; SEQ ID NO: 3; SEQ ID NO: 4, SEQ ID NO: 5; SEQ ID NO: 6, SEQ ID NO: 7; SEQ ID NO: 15; and SEQ ID NO: 17.
  - 28. An isolated nucleic acid molecule comprising a sequence selected from the group consisting of: residues 2894-3042 of HMSGp1 (SEQ ID NO: 1), 2758-3006 of HMSGp3 (SEQ ID NO: 3), 2845-3090 of HMSG11 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ ID NO: 7), 2836-3081 of HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), and 1-249 of HMSGp2 (SEQ ID NO: 15); and a sequence with at least 70% sequence identity with residues 2894-3042 of HMSGp1 (SEQ ID NO: 1), 2758-3006 of HMSGp3 (SEQ ID NO: 3), 2845-3090 of HMSG11 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ

30

35

10

15

20

25

30

35

ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).

- 29. An isolated nucleic acid molecule comprising a sequence selected from the group consisting of: at least 15 contiguous nucleotides of the nucleic acid molecule according to claim 28.
- 30. An isolated nucleic acid molecule comprising a sequence selected from the group consisting of: at least 20 contiguous nucleotides of the nucleic acid molecule according to claim 29.
  - A recombinant vector comprising the nucleic acid molecule according to claim 28.
  - 32. A transgenic cell comprising the vector according to claim 31.
- pair of primers each comprising at least 15 contiguous nucleotides of sequence selected from the group consisting of: residues 2894-3042 of HMSGp1 (SEQ ID NO: 1), 2758-3006 of HMSGp3 (SEQ ID NO: 3), 2845-3090 of HMSG11 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ ID NO: 7), 2836-3081 of HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), and 1-249 of HMSGp2 (SEQ ID NO: 15); and a sequence with at least 70% sequence identity with residues 2894-3042 of HMSGp1 (SEQ ID NO: 1), 2758-3006 of HMSGp3 (SEQ ID NO: 3), 2845-3090 of HMSG11 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ ID NO: 7), 2836-3081 of HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), and 1-249 of HMSGp2 (SEQ ID NO: 15).
- pair of primers each comprising at least 20 contiguous nucleotides of sequence selected from the group consisting of: residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15); and a sequence with at least 70% sequence identity with residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).
- pair of primers each comprising at least 30 contiguous nucleotides of sequence selected from the group consisting of: residues 2894-3042 of HMSGp1 (SEQ ID NO: 1), 2758-3006 of HMSGp3 (SEQ ID NO: 3), 2845-3090 of HMSG11 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ ID NO: 7), 2836-3081 of HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), and 1-249 of HMSGp2 (SEQ ID NO: 15); and a sequence with at least 70% sequence identity with residues 2894-3042 of HMSGp1 (SEQ ID NO: 1), 2758-3006 of HMSGp3 (SEQ ID NO: 3), 2845-3090 of HMSG11 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ ID NO: 7), 2836-3081 of HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), and 1-249 of HMSGp2 (SEQ ID NO: 15).

10

15

- 36. The kit of claim 33, wherein at least one of the oligonucleotide primers comprises a sequence selected from the group consisting of: SEQ ID NO: 17; SEQ ID NO: 18; SEQ ID NO: 19; SEQ ID NO: 20; SEQ ID NO: 21; SEQ ID NO: 22; SEQ ID NO: 23; and SEQ ID NO: 24.
- 37. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 17.
- 38. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 18.
- 39. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 19.
- 40. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 21.
- 41. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 22.
- 42. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 23.
- 43. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 24.
  - 44. Antibody raised against the peptide sequence according to SEQ ID NO: 25.
  - 45. Antibody raised against the peptide sequence according to SEQ ID NO: 26.



From the

INTERNATIONAL PRELIMINARY EXAMINING AUTHORITY

NOONAN, William D. KLARQUIST, SPARKMAN, CAMPBELL, LEIGH & WHINSTON, LLP One World Trade Center, Suite 1600 121 S.W. Salmon Street Portland, Oregon 97204 **ETATS-UNIS D'AMERIQUE** 

# PCT

NOTIFICATION OF TRANSMITTAL OF THE INTERNATIONAL PRELIMINARY **EXAMINATION REPORT** (PCT Rule 71.1)

Date of mailing (day/month/year)

17.10.2000

Applicant's or agent's file reference

4239-53232

International filing date (day/month/year) 17/08/1999

Priority date (day/month/year)

IMPORTANT NOTIFICATION

17/08/1998

International application No. PCT/US99/18750

Applicant

THE GOVERNMENT OF THE UNITED STATES ... et al.

- 1. The applicant is hereby notified that this International Preliminary Examining Authority transmits herewith the international preliminary examination report and its annexes, if any, established on the international application.
- 2. A copy of the report and its annexes, if any, is being transmitted to the International Bureau for communication to all the elected Offices.
- 3. Where required by any of the elected Offices, the International Bureau will prepare an English translation of the report (but not of any annexes) and will transmit such translation to those Offices.

## 4. REMINDER

The applicant must enter the national phase before each elected Office by performing certain acts (filing translations and paying national fees) within 30 months from the priority date (or later in some Offices) (Article 39(1)) (see also the reminder sent by the International Bureau with Form PCT/IB/301).

Where a translation of the international application must be furnished to an elected Office, that translation must contain a translation of any annexes to the international preliminary examination report. It is the applicant's responsibility to prepare and furnish such translation directly to each elected Office concerned.

For further details on the applicable time limits and requirements of the elected Offices, see Volume II of the PCT Applicant's Guide.

Name and mailing address of the IPEA/

European Patent Office D-80298 Munich

Tel. +49 89 2399 - 0 Tx: 523656 epmu d

Fax: +49 89 2399 - 4465

Authorized officer

Digiusto, M

Tel.+49 89 2399-8162





# **PCT**

# INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

| •                   | _            | t's file reference                       | FOR FURTHER ACTIO                                               | See Notifica  ON Preliminary | ation of Transmittal of International<br>Examination Report (Form PCT/IPEA/416)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|--------------|------------------------------------------|-----------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1239-5323           | 2            |                                          |                                                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nternational        | applic       | ation No.                                | International filing date (day/i                                | month/year)                  | Priority date (day/month/year)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PCT/US99            | /187         | 50                                       | 17/08/1999                                                      |                              | 17/08/1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C12Q1/68  Applicant |              |                                          | ational classification and IPC                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. This in          | erna         | tional preliminary exam                  |                                                                 | epared by this Inte          | ernational Preliminary Examining Authority                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2. This R           | EPO          | RT consists of a total o                 | f 7 sheets, including this co                                   | over sheet.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| be<br>(se           | en a<br>e Ru | mended and are the ba                    | asis for this report and/or sh<br>607 of the Administrative Ins | eets containing re           | on, claims and/or drawings which have ectifications made before this Authority he PCT).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3. This re          | port         | contains indications re                  | lating to the following items:                                  | :                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                   | Ø            | Basis of the report                      |                                                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H                   |              | Priority                                 |                                                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| III                 |              | Non-establishment of                     | opinion with regard to nove                                     | elty, inventive step         | o and industrial applicability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IV                  |              | Lack of unity of inven                   | tion                                                            |                              | La contraction of the contractio |
| ٧                   | ×            | Reasoned statement citations and explana | under Article 35(2) with regations suporting such statem        | ard to novelty, inv<br>vent  | ventive step or industrial applicability;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VI                  |              | Certain documents of                     |                                                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VII                 | $\boxtimes$  | Certain defects in the                   | international application                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VIII                | ×            | Certain observations                     | on the international applica                                    | tion                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date of sub         |              | on of the demand                         |                                                                 | Date of completion           | of this report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     |              | ng address of the internation            | onal                                                            | Authorized officer           | also es mig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| preliminary         | ехап         | nining authority:                        |                                                                 |                              | ( Estate )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10                  | ⊫ur          | opean Patent Office                      |                                                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Bradbrook, D

Telephone No. +49 89 2399 7413

Fax: +49 89 2399 - 4465

Tel. +49 89 2399 - 0 Tx: 523656 epmu d

D-80298 Munich







International application No. PCT/US99/18750

| I. Basis | of the | report |
|----------|--------|--------|
|----------|--------|--------|

This report has been drawn on the basis of (substitute sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to the report since they do not contain amendments.):
 Description, pages:
 1-30 as originally filed

Claims, No.:

1-45 as amended under Article 19

Drawings, sheets:

1/13-13/13 as originally filed

2. The amendments have resulted in the cancellation of:

| the description, pages:
| the claims, Nos.:
| the drawings, sheets:

3. | This report has been established as if (some of) the amendments had not been made, since they have been

considered to go beyond the disclosure as filed (Rule 70.2(c)):

4. Additional observations, if necessary:

see separate sheet







International application No. PCT/US99/18750

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)

Yes:

Claims 1-27,33-45

No:

Claims 28-32

Inventive step (IS)

Yes:

Claims 4-16,22,24,33-45 Claims 1-3,17-21,23,25-32

Industrial applicability (IA)

No: Yes:

Claims 1-45

No:

Claims

2. Citations and explanations

see separate sheet

# VII. Certain defects in the international application

The following defects in the form or contents of the international application have been noted:

see separate sheet

# VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

see separate sheet





# INTERNATIONAL PRELIMINARY Internation REPORT - SEPARATE SHEET

International application No. PCT/US99/18750

### Section I

- 1. Basis of the opinion
- a. Originally filed documents also include pages 1-57 of sequence listing.
- Sequence listing pages 1-57, filed with the letter of 19.10.99, do not form part of the application (Rule 13<sup>ter</sup>.1(f) PCT).

#### Section V

- 2. The applicant's observations submitted with the amended claims have been considered in establishing this report.
- Reference is made to the following documents:
  - D1: Garbe and Stringer, Infect.Immun., Vol.62, pp.3092-3101 (1994);
  - D2: Chary-Reddy and Graves, J.Clin.Microbiol., Vol.34, pp.1660-1665 (1996);
  - D3: Kovacs et al., J.Biol.Chem., Vol.268, pp.6034-6040 (1993).
- 4. Novelty (Article 33(2) PCT)

Claim 28 is directed to a nucleic acid molecule comprising a sequence selected from the group consisting of the given portions of SEQ ID NOs 1,3,5,7,9,11,13,15 and sequences with at least 70% sequence identity with the said portions. The sequence shown in Fig.5a of D1 comprises a sequence highly homologous with those of the claim, for instance, nucleotides 2987-3232 show >96% homology with residues 2839-3084 of SEQ ID NO 7. Therefore the subject-matter of claim 28 is not novel over D1. Similarly, the nucleic acid molecules of claims 29 and 30 are comprised in the msgl sequence of D1, which thereby renders said claims not novel; moreover, in view of the cloning methods used to gain said sequences (D1: Materials and Methods), the recombinant vector (claim 31) and cell containing said vector (claim 32) are also inevitably disclosed by D1.





# INTERNATIONAL PRELIMINARY International applicate EXAMINATION REPORT - SEPARATE SHEET

International application No. PCT/US99/18750

- 5. Inventive step (Article 33(3) PCT)
- a. Methods of detecting pathogenic microorganisms based on identification of specific DNA sequences, using PCR amplification and/or oligonucleotide probe hybridization, are common in the art. For instance, D2 describes the identification of P. carinii from rat tissues by PCR amplification of a portion of the rat P. carinii msg gene (p.1660, Introduction, paragraph 2). The targeting of sequences which are conserved in, but unique to, the pathogenic organisms in any one disease is an important aspect of such an analysis, and indeed the primers in D2 were chosen according to specific homology with rat msg genes (p.1663, col.1, paragraph 1).
- b. The MSG protein of P. carinii is encoded by multiple related genes producing a family of closely related proteins, as disclosed in D3 for rat P. carinii. However, as pointed out in the present application (p.2, l.20-26), more variation occurs between msg genes isolated from different host-specific strains, so that sequences suitable for detection in the rat are not necessarily applicable to humans.
- c. Claims 1 and 23 are directed to methods of detecting Pneumocystis carinii, in which a conserved region within human P. carinii is amplified using primers from the human P. carinii MSG protein encoding sequence (claim 1), or is hybridized with a probe for a conserved region within the human P. carinii MSG protein encoding sequence. However, these claims simply define the standard approach to identifying pathogenic microorganisms, applied here to a specific case, without defining the essential feature required to carry it out, i.e the conserved sequence.
- d. Moreover, D1 discloses a complete human P. carinii msg sequence, as well as several partial sequences: Fig.6 shows alignment of amino acid sequence data from four msg clones. Several portions clearly show a high degree of homology, which would be expected to extend also to the nucleic acid sequences.
- e. Thus, the skilled person seeking to detect human P. carinii would use standard methods and the sequence data provided in D1, concentrating on possible homologous regions in order to increase his chances of success. As such, the





## INTERNATIONAL PRELIMINARY **EXAMINATION REPORT - SEPARATE SHEET**

subject-matter of claims 1 and 23 does not appear to be inventive.

Dependent claims 2, 3 and 17-21 do not appear to contain any additional features which, in combination with the features of the claims to which they refer, would render them inventive in the sense of Article 33(3) PCT, as said features are considered standard in the art.

- Claims 25-27 are directed to the human MSG proteins 1, 3, 11, 14, 32, 33 and 35, f. and their corresponding nucleic acid sequences. Although these sequences have not previously been disclosed and are therefore novel, they are not considered to be inventive. The existence of a number of variants would be expected in the light of D3, and the availability of complete human MSG gene and protein sequences from D1 means that it would be routine practice for the skilled person to isolate such variants; this indeed is what appears to have been done in the present application. Therefore, claims 25-27 are not considered to be inventive.
- Claims 4-16, 22 and 24 each provide preferred embodiments of the claimed 6a. methods, using specific sequences, all of which are directed to a particular conserved region of the msg genes. Although the teaching of D1 might enable the skilled person to try certain portions of the genes based on the incomplete comparisons in Fig.6, he would not specifically be directed to the conserved region in question. Thus said claims appear to be novel and inventive.
- Similarly the kits (claims 33-43) comprising primers taken from the specified b. conserved region are not anticipated by any prior art document, taken alone or in combination, and therefore seem to be new and inventive.
- The antibodies defined in claims 44 and 45 are raised against two specific C. sequences, providing different effects: one is unique to and thus specific for HMSG32 (claim 44); the other is for a conserved MSG epitope (claim 45). Both are novel and inventive, as the antigenic peptides defined are not indicated in the prior art.
- The document Mei et al., Infect.Immun., Vol.66, pp.4268-4273 (Sept.1998), was 7. cited as a P,X-document in the International Search Report. However, the priority





# INTERNATIONAL PRELIMINARY Internation EXAMINATION REPORT - SEPARATE SHEET

International application No. PCT/US99/18750

date of 17.08.98 for the present application is considered to be valid, so that the cited document does not count as prior art under Rule 64.1 PCT for the purposes of Article 33 PCT.

## Section VII

8. Contrary to the requirements of Rule 5.1(a)(ii) PCT, the relevant background art disclosed in the document D2 is not mentioned in the description, nor is this document identified therein.

## Section VIII

- 9. The following objections are under Article 6 PCT:
- a. The phrase "and conservative substitutions thereof", used in claim 25, is vague and leaves the reader in doubt as to the exact nature of the subject-matter being claimed, thereby rendering the definition of the subject-matter of said claims unclear. Although conservative substitutions are discussed in the description (p.13-14), it is unclear in what way such substitutions may be limited. In particular, this same passage refers to sequences of at least 63% homology (which would include the MSG disclosed in D1), and thereby implies that the subject-matter for which protection is sought may be different to that defined by claims 25-27, i.e. not restricted to the sequences given. Therefore, a lack of clarity in the claims arises when using the description to interpret them.
- b. Claims 4-7, 28 and 33-35 refer to residues 2887-3132 of HMSG33 (SEQ ID NO:11), although said SEQ ID NO:11 extends only as far as residue 3054. Said claims are therefore unclear.
- c. The vague and imprecise statement in the description, p.30, l.9-13, referring to the "spirit" of the invention, implies that the subject-matter for which protection is sought may be different to that defined by the claims, thereby resulting in lack of clarity (Article 6 PCT) when used to interpret them (see also PCT Guidelines, C-III, 4.3a).



From the:

INTERNATIONAL PRELIMINARY EXAMINING AUTHORITY

To-

NOONAN, William D.

PTO/PCT Rock

KLARQUIST, SPARKMAN, CAMPBELL,

**LEIGH & WHINSTON, LLP** 

One World Trade Center, Suite 1600

121 S.W. Salmon Street Portland, Oregon 97204 ETATS-UNIS D'AMERIQUE 90 FEB 2001

PCT

WRITTEN OPINION

(PCT Rule 66)

Date of mailing 26.05.2000 (day/month/year) within 3 month(s) **REPLY DUE** Applicant's or agent's file reference from the above date of mailing 4239-53232 Priority date (day/month/year) International application No. International filing date (day/month/year) 17/08/1998 PCT/US99/18750 17/08/1999 International Patent Classification (IPC) or both national classification and IPC C12Q1/68 **Applicant** THE GOVERNMENT OF THE UNITED STATES... et al.

| 1. | This written opinion is the first drawn up by this International Preliminary Examining Authority.                                   |             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 2. | This opinion contains indications relating to the following items:                                                                  |             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|    | 1                                                                                                                                   | $\boxtimes$ | Basis of the opinion                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|    | H                                                                                                                                   |             | Priority                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|    | III   Non-establishment of opinion with regard to novelty, inventive step and industrial applicability                              |             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|    |                                                                                                                                     |             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|    | ٧                                                                                                                                   | ×           | Reasoned statement under Rule 66.2(a)(ii) with regard to novelty, inventicitations and explanations supporting such statement                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|    | VI                                                                                                                                  |             | Certain document cited                                                                                                                                                                                                         | BOCKETED FOR 8.86.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|    | VII                                                                                                                                 | $\boxtimes$ | Certain defects in the international application                                                                                                                                                                               | The second secon |  |  |  |  |
|    | VIII                                                                                                                                | $\boxtimes$ | Certain observations on the international application                                                                                                                                                                          | COMPUTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 3. | The a                                                                                                                               | oplica      | ant is hereby <b>invited to reply</b> to this opinion.                                                                                                                                                                         | BOOK -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|    | When?                                                                                                                               | ?           | See the time limit indicated above. The applicant may, before the expiration of that request this Authority to grant an extension, see Rule 66.2(d).                                                                           | 3878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|    | How?                                                                                                                                |             | By submitting a written reply, accompanied, where appropriate, by amendments, across the form and the language of the amendments, see Rules 66.8 and 66.9.                                                                     | CORN SVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|    | Also:                                                                                                                               |             | For an additional opportunity to submit amendments, see Rule 66.4.  For the examiner's obligation to consider amendments and/or arguments, see Rule 66.4 bis.  For an informal communication with the examiner, see Rule 66.6. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|    | If no reply is filed, the international preliminary examination report will be established on the basis of this opinion.            |             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 4. | The final date by which the international preliminary examination report must be established according to Rule 69.2 is: 17/12/2000. |             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

Name and mailing address of the international preliminary examining authority:



European Patent Office D-80298 Munich

Tel. +49 89 2399 - 0 Tx: 523656 epmu d

Fax: +49 89 2399 - 4465

Authorized officer / Examiner

Bradbrook, D

Formalities officer (incl. extension of time limits)

Borinski, W

Telephone No. +49 89 2399 8237







# **WRITTEN OPINION**

International application No. PCT/US99/18750

| 1  |     | io . | ∧ŧ. | tha | ani | nı | $\sim$ |
|----|-----|------|-----|-----|-----|----|--------|
| ı. | Bas | 13   | vı. | uic | uu  |    | J11    |
|    |     |      |     |     |     |    |        |

| 1. | This opinion has been drawn on the basis of (substitute sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this opinion as "originally filed".): |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Description, pages:                                                                                                                                                                                                     |

1-30 as originally filed

Claims, No.:

1-45 as received on 16/03/2000 with letter of 13/03/2000

Drawings, sheets:

1/13-13/13 as originally filed

2. The amendments have resulted in the cancellation of:

☐ the description, pages:☐ the claims, Nos.:☐ the drawings, sheets:

- 3. This opinion has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed (Rule 70.2(c)):
- 4. Additional observations, if necessary:

see separate sheet

- V. Reasoned statement under Rule 66.2(a)(ii) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement
- 1. Statement

Novelty (N)

Claims 28-32 (NO)

Inventive step (IS)

Claims

1-3,17-21,23,25-27 (NO)

Industrial applicability (IA)

Claims

2. Citations and explanations

see separate sheet



# WRITTEN OPINION



International application No. PCT/US99/18750

# VII. Certain defects in the international application

The following defects in the form or contents of the international application have been noted:

see separate sheet

# VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

see separate sheet



### Section I

- 1. Basis of the opinion
- a. Originally filed documents also include pages 1-57 of sequence listing.
- b. Sequence listing pages 1-57, filed with the letter of 19.10.99, do not form part of the application (Rule 13<sup>ter</sup>.1(f) PCT).

### Section V

- The applicant's observations submitted with the amended claims have been considered in establishing this written opinion.
- 3. Reference is made to the following documents:
  - D1: Garbe and Stringer, Infect.Immun., Vol.62, pp.3092-3101 (1994);
  - D2: Chary-Reddy and Graves, J.Clin.Microbiol., Vol.34, pp.1660-1665 (1996);
  - D3: Kovacs et al., J.Biol.Chem., Vol.268, pp.6034-6040 (1993).
- 4. Novelty (Article 33(2) PCT)

Claim 28 is directed to a nucleic acid molecule comprising a sequence selected from the group consisting of the given portions of SEQ ID NOs 1,3,5,7,9,11,13,15 and sequences with at least 70% sequence identity with the said portions. The sequence shown in Fig.5a of D1 comprises a sequence highly homologous with those of the claim, for instance, nucleotides 2987-3232 show >96% homology with residues 2839-3084 of SEQ ID NO 7. Therefore the subject-matter of claim 28 is not novel over D1. Similarly, the nucleic acid molecules of claims 29 and 30 are comprised in the msgl sequence of D1, which thereby renders said claims not novel; moreover, in view of the cloning methods used to gain said sequences (D1: Materials and Methods), the recombinant vector (claim 31) and cell containing said vector (claim 32) are also inevitably disclosed by D1.





# 5. Inventive step (Article 33(3) PCT)

- a. Methods of detecting pathogenic microorganisms based on identification of specific DNA sequences, using PCR amplification and/or oligonucleotide probe hybridization, are common in the art. For instance, D2 describes the identification of P. carinii from rat tissues by PCR amplification of a portion of the rat P. carinii msg gene (p.1660, Introduction, paragraph 2). The targeting of sequences which are conserved in, but unique to, the pathogenic organisms in any one disease is an important aspect of such an analysis, and indeed the primers in D2 were chosen according to specific homology with rat msg genes (p.1663, col.1, paragraph 1).
- b. The MSG protein of P. carinii is encoded by multiple related genes producing a family of closely related proteins, as disclosed in D3 for rat P. carinii. However, as pointed out in the present application (p.2, l.20-26), more variation occurs between msg genes isolated from different host-specific strains, so that sequences suitable for detection in the rat are not necessarily applicable to humans.
- c. Claims 1 and 23 are directed to methods of detecting Pneumocystis carinii, in which a conserved region within human P. carinii is amplified using primers from the human P. carinii MSG protein encoding sequence (claim 1), or is hybridized with a probe for a conserved region within the human P. carinii MSG protein encoding sequence. However, these claims simply define the standard approach to identifying pathogenic microorganisms, applied here to a specific case, without defining the essential feature required to carry it out, i.e the conserved sequence.
- d. Moreover, D1 discloses a complete human P. carinii msg sequence, as well as several partial sequences: Fig.6 shows alignment of amino acid sequence data from four msg clones. Several portions clearly show a high degree of homology, which would be expected to extend also to the nucleic acid sequences.
- e. Thus, the skilled person seeking to detect human P. carinii would use standard methods and the sequence data provided in D1, concentrating on possible homologous regions in order to increase his chances of success. As such, the



# WRITTEN OPINION SEPARATE SHEET

International application No. PCT/US99/18750

subject-matter of claims 1 and 23 does not appear to be inventive.

Dependent claims 2, 3 and 17-21 do not appear to contain any additional features which, in combination with the features of the claims to which they refer, would render them inventive in the sense of Article 33(3) PCT, as said features are considered standard in the art.

- f. Claims 25-27 are directed to the human MSG proteins 1, 3, 11, 14, 32, 33 and 35, and their corresponding nucleic acid sequences. Although these sequences have not previously been disclosed and are therefore novel, they are not considered to be inventive. The existence of a number of variants would be expected in the light of D3, and the availability of complete human MSG gene and protein sequences from D1 means that it would be routine practice for the skilled person to isolate such variants; this indeed is what appears to have been done in the present application. Therefore, claims 25-27 are not considered to be inventive.
- 6a. Claims 4-16, 22 and 24 each provide preferred embodiments of the claimed methods, using specific sequences, all of which are directed to a particular conserved region of the msg genes. Although the teaching of D1 might enable the skilled person to try certain portions of the genes based on the incomplete comparisons in Fig.6, he would not specifically be directed to the conserved region in question. Thus said claims appear to be novel and inventive.
- b. Similarly the kits (claims 33-43) comprising primers taken from the specified conserved region are not anticipated by any prior art document, taken alone or in combination, and therefore seem to be new and inventive.
- c. The antibodies defined in claims 44 and 45 are raised against two specific sequences, providing different effects: one is unique to and thus specific for HMSG32 (claim 44); the other is for a conserved MSG epitope (claim 45). Both are novel and inventive, as the antigenic peptides defined are not indicated in the prior art.
- 7. The document Mei et al., Infect.Immun., Vol.66, pp.4268-4273 (Sept.1998), was cited as a P,X-document in the International Search Report. However, the priority





date of 17.08.98 for the present application is considered to be valid, so that the cited document does not count as prior art under Rule 64.1 PCT for the purposes of Article 33 PCT.

### Section VII

8. Contrary to the requirements of Rule 5.1(a)(ii) PCT, the relevant background art disclosed in the document D2 is not mentioned in the description, nor is this document identified therein.

## Section VIII

- 9. The following objections are under Article 6 PCT:
- a. The phrase "and conservative substitutions thereof", used in claim 25, is vague and leaves the reader in doubt as to the exact nature of the subject-matter being claimed, thereby rendering the definition of the subject-matter of said claims unclear. Although conservative substitutions are discussed in the description (p.13-14), it is unclear in what way such substitutions may be limited. In particular, this same passage refers to sequences of at least 63% homology (which would include the MSG disclosed in D1), and thereby implies that the subject-matter for which protection is sought may be different to that defined by claims 25-27, i.e. not restricted to the sequences given. Therefore, a lack of clarity in the claims arises when using the description to interpret them.
- Claims 4-7, 28 and 33-35 refer to residues 2887-3132 of HMSG33 (SEQ ID NO:11), although said SEQ ID NO:11 extends only as far as residue 3054.
- c. The vague and imprecise statement in the description, p.30, I.9-13, referring to the "spirit" of the invention, implies that the subject-matter for which protection is sought may be different to that defined by the claims, thereby resulting in lack of clarity (Article 6 PCT) when used to interpret them (see also PCT Guidelines, C-III, 4.3a).



EPA/EPO/OE

D-80298 Münch

+49 89 2399-0

523 656 epmu d FAX +49 89 2399-4465 Europäisches **Patentamt** 



Office européen des brevets

Generaldirektion 2

Directorate General 2

Direction Générale 2

# Correspondence with the EPO on PCT Chapter II demands

In order to ensure that your PCT Chapter II demand is dealt with as promptly as possible you are requested to use the enclosed self-adhesive labels with any correspondence relating to the demand sent to the Munich Office.

One of these labels should be affixed to a prominent place in the upper part of the letter or form etc. which you are filing.





# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C12Q 1/68, C12N 15/11, C07K 16/14

(11) International Publication Number:

WO 00/09760

A1 (

(43) International Publication Date:

24 February 2000 (24.02.00)

(21) International Application Number:

PCT/US99/18750

(22) International Filing Date:

17 August 1999 (17.08.99)

(30) Priority Data:

60/096,805

17 August 1998 (17.08.98) US

Center, Suite 1600, 121 SW Salmon Street, Portland, OR 97204 (US).

(74) Agent: NOONAN, William, D., M., D.; Klarquist, Sparkman,

Campbell, Leigh & Whinston, LLP, One World Trade

(71) Applicant (for all designated States except US): THE GOV-ERNMENT OF THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; The National Institutes of Health, Office of Technology Transfer, Suite 325, 6011 Executive Boulevard, Rockville, MD 20852 (US).

(72) Inventors; and

(72) Inventors; and
(75) Inventors/Applicants (for US only): KOVACS, Joseph, A. [US/US]; 12512 Meadow Farm Road, Potomac, MD 20854
(US). HUANG, Shengning [CN/US]; Apartment 405, 4998
Battery Lane, Bethesda, MD 20814 (US). MASUR, Henry
[US/US]; 4810 Fort Sumner Drive, Bethesda, MD 20816
(US). FISCHER, Steven, H. [US/US]; Apartment 203, 10600 Montrose Avenue, Bethesda, MD 20814 (US). GILL, Vee, J. [US/US]; 10816 Fox Hunt Lane, Potomac, MD 20854 (US). MEI, Qin [CN/US]; 230 Tudor Drive, North Wales, PA 19454 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.
With amended claims.

Date of publication of the amended claims:

18 May 2000 (18.05.00)

(54) Title: IDENTIFICATION OF A REGION OF THE MAJOR SURFACE GLYCOPROTEIN (MSG) GENE OF HUMAN PNEUMO-CYSTIS CARINII

(57) Abstract

Particularly sensitive techniques for the detection of *P. carinii* in clinical samples are disclosed. These techniques relate to the PCR amplification and/or detection of human–*P. carinii* major surface glycoprotein (*MSG*) gene sequences. Also disclosed are seven novel genes encoding human–*P. carinii* MSG, and the proteins encoded for by these genes. These genes provide proof that human–*P. carinii* MSG is encoded for by a highly conserved gene family, and that the corresponding proteins have a very highly conserved region of about 100 amino acids near their C-terminal end. This highly conserved carboxy-terminal region has a significantly different sequence than that found in rat-derived MSG.

# FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL  | Albania                  | ES | Spain               | LS   | Lesotho               | SI | Slovenia                 |
|-----|--------------------------|----|---------------------|------|-----------------------|----|--------------------------|
| AM  | Armenia                  | FI | Finland             | LT   | Lithuania             | SK | Slovakia                 |
| AT  | Austria                  | FR | France              | LU   | Luxembourg            | SN | Senegal                  |
| AU  | Australia                | GA | Gabon               | LV   | Latvia                | SZ | Swaziland                |
| AZ  | Azerbaijan               | GB | United Kingdom      | MC   | Monaco                | TD | Chad                     |
| BA  | Bosnia and Herzegovina   | GE | Georgia             | MD . | Republic of Moldova   | TG | Togo                     |
| BB  | Barbados                 | GH | Ghana               | MG   | Madagascar            | TJ | Tajikistan               |
| BE  | Belgium                  | GN | Guinea '            | MK   | The former Yugoslav   | TM | Turkmenistan             |
| BF  | Burkina Faso             | GR | Greece              |      | Republic of Macedonia | TR | Turkey                   |
| BG  | Bulgaria                 | HU | Hungary             | ML   | Mali                  | TT | Trinidad and Tobago      |
| BJ  | Benin                    | IE | Ireland             | MN   | Mongolia              | UA | Ukraine                  |
| BR  | Brazil                   | IL | Israel              | MR   | Mauritania            | UG | Uganda                   |
| BY  | Belarus                  | IS | Iceland             | MW   | Malawi                | US | United States of America |
| CA  | Canada                   | IT | Italy               | MX   | Mexico                | UZ | Uzbekistan               |
| CF  | Central African Republic | JP | Japan               | NE   | Niger                 | VN | Viet Nam                 |
| CG  | Congo                    | KE | Kenya               | NL   | Netherlands           | YU | Yugoslavia               |
| CH  | Switzerland              | KG | Kyrgyzstan          | NO   | Norway                | zw | Zimbabwe                 |
| CI  | Côte d'Ivoire            | KP | Democratic People's | NZ   | New Zealand           |    |                          |
| CM  | Cameroon                 |    | Republic of Korea   | PL   | Poland                |    |                          |
| CN  | China                    | KR | Republic of Korea   | PΥ   | Portugal              |    |                          |
| CU  | Cuba                     | ΚZ | Kazakstan           | RO   | Romania               |    |                          |
| CZ  | Czech Republic           | LC | Saint Lucia         | RU   | Russian Federation    |    |                          |
| DE  | Germany                  | LI | Liechtenstein       | SD   | Sudan                 |    |                          |
| DK  | Denmark                  | LK | Sri Lanka           | SE   | Sweden                |    |                          |
| DIC | E-ti-                    | ID | I iberia            | SG   | Singapore             |    |                          |

SE SG

Singapore

LK LR

Sri Lanka Liberia

ý

DK EE

Estonia

## **PCT**





## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C12Q 1/68, C12N 15/11, C07K 16/14

(11) International Publication Number:

WO 00/09760

(43) International Publication Date:

24 February 2000 (24.02.00)

(21) International Application Number:

PCT/US99/18750

A1

(22) International Filing Date:

17 August 1999 (17.08.99)

(30) Priority Data:

60/096.805

17 August 1998 (17.08.98) US

(71) Applicant (for all designated States except US): THE GOV-ERNMENT OF THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; The National Institutes of Health, Office of Technology Transfer, Suite 325, 6011 Executive Boulevard, Rockville, MD 20852 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KOVACS, Joseph, A. [US/US]; 12512 Meadow Farm Road, Potomac, MD 20854 (US). HUANG, Shengning [CN/US]; Apartment 405, 4998 Battery Lane, Bethesda, MD 20814 (US). MASUR, Henry [US/US]; 4810 Fort Sumner Drive, Bethesda, MD 20816 (US). FISCHER, Steven, H. [US/US]; Apartment 203, 10600 Montrose Avenue, Bethesda, MD 20814 (US). GILL, Vee, J. [US/US]; 10816 Fox Hunt Lane, Potomac, MD 20854 (US). MEI, Qin [CN/US]; 230 Tudor Drive, North Wales, PA 19454 (US).

(74) Agent: NOONAN, William, D., M., D.; Klarquist, Sparkman, Campbell, Leigh & Whinston, LLP, One World Trade Center, Suite 1600, 121 SW Salmon Street, Portland, OR 97204 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### **Published**

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: IDENTIFICATION OF A REGION OF THE MAJOR SURFACE GLYCOPROTEIN (MSG) GENE OF HUMAN PNEUMO-CYSTIS CARINII

### (57) Abstract

Particularly sensitive techniques for the detection of P. carinii in clinical samples are disclosed. These techniques relate to the PCR amplification and/or detection of human-P. carinii major surface glycoprotein (MSG) gene sequences. Also disclosed are seven novel genes encoding human-P. carinii MSG, and the proteins encoded for by these genes. These genes provide proof that human-P. carinii MSG is encoded for by a highly conserved gene family, and that the corresponding proteins have a very highly conserved region of about 100 amino acids near their C-terminal end. This highly conserved carboxy-terminal region has a significantly different sequence than that found in rat-derived MSG.

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL | Albania                  | ES | Spain               | LS | Lesotho               | SI | Slovenia                 |
|----|--------------------------|----|---------------------|----|-----------------------|----|--------------------------|
| AM | Armenia                  | FI | Finland             | LT | Lithuania             | SK | Slovakia                 |
| AΤ | Austria                  | FR | France              | LU | Luxembourg            | SN | Senegal                  |
| ΑU | Australia                | GA | Gabon               | LV | Latvia                | SZ | Swaziland                |
| AZ | Azerbaijan               | GB | United Kingdom      | MC | Monaco                | TD | Chad                     |
| BA | Bosnia and Herzegovina   | GE | Georgia             | MD | Republic of Moldova   | TG | Togo                     |
| BB | Barbados                 | GH | Ghana               | MG | Madagascar            | TJ | Tajikistan               |
| BE | Belgium                  | GN | Guinea              | MK | The former Yugoslav   | TM | Turkmenistan             |
| BF | Burkina Faso             | GR | Greece              |    | Republic of Macedonia | TR | Turkey                   |
| BG | Bulgaria                 | HU | Hungary             | ML | Mali                  | TT | Trinidad and Tobago      |
| BJ | Benin                    | IE | Ireland             | MN | Mongolia              | UA | Ukraine                  |
| BR | Brazil                   | IL | Israel              | MR | Mauritania            | UG | Uganda                   |
| BY | Belarus                  | IS | Iceland             | MW | Malawi                | US | United States of America |
| CA | Canada                   | IT | Italy               | MX | Mexico                | UZ | Uzbekistan               |
| CF | Central African Republic | JP | Japan               | NE | Niger                 | VN | Viet Nam                 |
| CG | Congo                    | KE | Kenya               | NL | Netherlands           | YU | Yugoslavia               |
| CH | Switzerland              | KG | Kyrgyzstan          | NO | Norway                | zw | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP | Democratic People's | NZ | New Zealand           |    |                          |
| CM | Cameroon                 |    | Republic of Korea   | PL | Poland                |    |                          |
| CN | China                    | KR | Republic of Korea   | PT | Portugal              |    |                          |
| CU | Cuba                     | KZ | Kazakstan           | RO | Romania               |    |                          |
| CZ | Czech Republic           | LC | Saint Lucia         | RU | Russian Federation    |    |                          |
| DE | Germany                  | LI | Liechtenstein       | SD | Sudan                 |    |                          |
| DK | Denmark                  | LK | Sri Lanka           | SE | Sweden                |    |                          |
| EE | Estonia                  | LR | Liberia             | SG | Singapore             |    |                          |

10

15

20

25

30

35

### IDENTIFICATION OF A REGION OF THE MAJOR SURFACE GLYCOPROTEIN (MSG) GENE OF HUMAN PNEUMOCYSTIS CARINII

### FIELD OF THE INVENTION

This invention relates to methods for detecting *Pneumocystis carinii* infection in humans, specifically to such methods that involve polymerase chain reaction or other amplification of nucleic acid sequences that encode a *Pneumocystis carinii* sp. f. hominis protein.

### **BACKGROUND OF THE INVENTION**

Pneumocystis carinii is an important life threatening opportunistic pathogen of immunocompromised patients, especially those with human immunodeficiency virus (HIV) infection. Conventional diagnosis of Pneumocystis carinii pneumonia (PCP) involves analysis of a tissue sample or oropharyngeal secretion sample for the presence of a P. carinii organism through staining and microscopic examination. Sample acquisition techniques have included such invasive methods as transbronchial biopsy, percutanenous lung biopsy, or open lung biopsy. Each of these techniques is fraught with possible complications and requires significant time and expense. In the mid 1980's, bronchoalveolar lavage (BAL) was introduced as a less invasive, less expensive, and less complication-prone technique for acquiring samples to be used in PCP diagnosis (Ognibene et al. (1984) Am. Rev. Respir. Dis. 129:929-932). However BAL, coupled with bronchoscopy, still required special equipment and facilities, as well as the time of a physician and technician. Simpler still, it is now known that the Pneumocystis organism can also be detected in induced sputum samples (Bigby et al. (1986) Am. Rev. Respir. Dis. 133:515-518; Kovacs et al. (1988) NEJM 318:589-593).

Advances also have occurred in the techniques used to detect the *Pneumocystis* organism in tissue and oropharyngeal secretion samples. Direct microscopic examination of clinical samples stained with, for instance, Giemsa stain or toluidine blue O, requires time-consuming sample preparation and subsequent examination by specially trained and experienced microscopy technicians (see, for instance, Bigby *et al.* (1986) *Am. Rev. Respir. Dis.* 133:515-518). This procedure has been somewhat simplified and rendered more amenable to mechanization through the use of monoclonal antibodies in detection of *P. carinii* antigens in clinical samples (Kovacs *et al.* (1988) *NEJM* 318:589-593). A few groups have used oligonucleotide probes complementary to *P. carinii* nucleotide sequences to detect the organism through hybridization, as in U. S. Pat. No. 5,164,490 (the Santi patent).

Polymerase chain reaction (PCR) -mediated amplification of DNA or RNA-encoding sequences has been used to diagnose various diseases including leprosy (Santos et al. (1997) J. Med. Microbiol. 46:170-172) and PCP. This technique exhibits increased sensitivity over simple probe hybridization methods. Primers complementary to sequences encoding P. carinii mitochondrial or chromosomal ribosomal RNA (rRNA) have been used to amplify Pneumocystis-specific DNA

10

15

20

25

30

35

sequence, as in Wakefield et al. (1990) Mol. Biochem. Parasit. 43:69-76; Wakefield et al. (1990) Lancet 336:451-453; Lipschik et al. (1992) Lancet 340:203-206; WO 91/19005; and U.S. Pat. Nos. 5,519,127 (the Shah patent), 5,593,836 (the Niemiec patent) and 5,776,680 (the Leibowitz patent).

Other recent research advances relate to elucidating the molecular mechanisms involved in *P. carinii* infection. A great deal of interest has focused on the major surface glycoprotein (MSG; also called glycoprotein A) of *P. carinii*, because it is considered to be both a virulence factor and a target of host immune responses. MSG is the most abundant protein expressed on the surface of *P. carinii*, as assessed by Coomassie blue staining. It appears to play a critical role in the pathogenesis of pneumocystosis, possibly by acting as an attachment ligand to lung cells. MSG is also a target of both humoral and cellular immune responses by the host.

Multiple genes encode the MSG of rat-P. carinii, and different MSGs may be expressed in the lung of a rat infected with P. carinii (Angus et al. (1996) J. Exp. Med. 183:1229-1234; Kovacs et al. (1993) J. Biol. Chem. 268:6034-6040). Similarly, multiple genes encode the MSG of P. carinii infecting ferrets and mice (Haidaris et al. (1998) DNA Res. 5:77-85; Haidaris et al. (1992) J. Infect. Dis. 166:1113-1123). Additional studies have shown that there is a single genomic site for expression of rat MSG variants (Edman et al. (1996) DNA Cell Biol. 15:989-999; Sunkin and Stringer (1996) Mol. Microbiol. 19:283-295; Wada and Nakamura (1996) DNA Res. 3:55-64; Wada et al. (1995) J. Infect. Dis. 171:1563-1568). These studies suggest that P. carinii has developed an elaborate system for antigenic variation, presumably to evade host defense mechanisms.

Molecular and immunological studies have clearly demonstrated that *P. carinii* isolated from different host species are distinct organisms, and may in fact be separate species (Gigliotti (1992) *J. Infect. Dis.* 165:329-336; Keely et al. (1994) *J. Eukaryot. Microbiol.* 41:94S; Kovacs et al. (1989) *J. Infect. Dis.* 159:60-70; Stringer (1993) *Infect. Agents Dis.* 2:109-117). There is a high level of variation among orthologous genes, including the *MSG* genes, isolated from different host-specific strains of the *Pneumocystis*. Hence, diagnosis of *P. carinii* infection in human patients ideally requires *P. carinii* sp. f. hominis (hereinafter "human-*P. carinii*") derived reagents.

The cloning of human-*P. carinii MSG* genes has recently been reported (Garbe and Stringer (1994) *Infect. Immun.* 62:3092-3101; Stringer *et al.* (1993) *J. Eukaryot. Microbiol.* 40:821-826); however, only one full-length sequence was reported.

### SUMMARY OF THE INVENTION

The inventors have discovered that human-P. carinii MSG is encoded for by a large, highly-conserved gene family, with a particularly conserved region of about 100 amino acids in the C-terminal region of the proteins. The have further discovered that direct detection or nucleic acid amplification (e.g., PCR amplification) of human-P. carinii MSG-encoding genes provides a particularly sensitive and specific technique for the detection of P. carinii, and the diagnosis of PCP.

This invention encompasses the purified novel human-P. carinii proteins represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12,

10

15

20

25

30

35

and SEQ ID NO: 14, and isolated nucleic acid molecules that encode these proteins. Specific nucleic acid molecules encompassed in this invention include those represented in SEQ ID NO: 1; SEQ ID NO: 2; SEQ ID NO: 3; SEQ ID NO: 4, SEQ ID NO: 5; SEQ ID NO: 6, SEQ ID NO: 7; SEQ ID NO: 15; and SEQ ID NO: 17. Also encompassed within this invention are the isolated nucleic acid sequences that encode the carboxy-terminal conserved about 100 amino acids of the disclosed human-*P. carinii MSGs*; these may be used for amplification or as probes. The sequences of these conserved nucleic acid molecule regions include residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), or 1-249 of *HMSGp2* (SEQ ID NO: 15). In addition, this invention encompasses sequences with at least 70% sequence identity to these regions, and recombinant vectors comprising such nucleic acid molecules and conserved regions from within such nucleic acid molecules, as well as transgenic cells including such a recombinant vector.

Another aspect of this invention provides a method of detecting the presence of Pneumocystis carinii in a biological specimen, by amplifying with a nucleic acid amplification method (e.g., the polymerase chain reaction) a human-P. carinii nucleic acid sequence using two or more oligonucleotide primers derived from a human-P. carinii MSG protein encoding sequence, then determining whether an amplified sequence is present. In a preferred embodiment of this invention, the human-P. carinii nucleic acid sequence is a highly conserved region within an MSG-protein encoding sequence. Such a highly conserved region may, for instance, include residues 2894-3042 of HMSGp1 (SEQ ID NO: 1), 2758-3006 of HMSGp3 (SEQ ID NO: 3), 2845-3090 of HMSG11 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ ID NO: 7), 2836-3081 of HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), or 1-249 of HMSGp2 (SEQ ID NO: 15). A further aspect of this invention is the method of detecting the presence of Pneumocystis carinii in a biological specimen, by determining whether an amplified sequence is present, for instance by electrophoresis and staining of the amplified sequence, or hybridization to a labeled probe of the amplified sequence. Appropriate labels for the hybridization probe include a fluorescent molecule, a chemiluminescent molecule, an enzyme, a co-factor, an enzyme substrate, or a hapten. The nucleotide sequence of such a probe can be chosen from any MSG gene sequence that is amplified in the detection method, and for instance can include a nucleic acid sequence according to SEQ ID NO: 19.

Another aspect of this invention is a method of detecting the presence of *Pneumocystis* carinii in a biological specimen by exposing the biological specimen to a probe that hybridizes to a human-*P. carinii* nucleic acid sequence derived from a human-*P. carinii* MSG protein encoding sequence. The labeled probe to be used in this method may, for instance, include the nucleic acid sequence of SEQ ID NO: 19.

This invention also encompasses one or more oligonucleotide primers including at least 15, or at least 20, 25, 30, 35, 40, 50, or 100, contiguous nucleotides from any of the highly conserved

10

15

20

25

30

35

regions within an MSG-protein encoding sequence disclosed herein, or from any nucleic acid sequences having at least 70%, or at least 90% or 95%, sequence homology with these sequences. Specific examples of such oligonucleotide primer sequences are shown in SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 23, and SEQ ID NO: 24. Of these primers, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, and SEQ ID NO:23 may serve as upstream primers, while SEQ ID NO: 20 and SEQ ID NO: 24 may serve as down stream primers.

Kits for detection of a human-*P. carinii* nucleic acid sequence are another aspect of this invention. Such kits may include at least a pair of primers each comprising at least 15, or at least 20, 25, 30, 35, 40, 45, 50, or 100 contiguous nucleotides of any of the conserved regions of the herein disclosed MSG-encoding sequences, and homologs having at least 70% identity with such sequences. Representative primers include those represented by the nucleotide sequences of SEQ ID NO: 17; SEQ ID NO: 18; SEQ ID NO: 19; SEQ ID NO: 20; SEQ ID NO: 21; SEQ ID NO: 22; SEQ ID NO: 23; and SEQ ID NO: 24. These kits may further including a positive nucleic acid amplification (*e.g.*, PCR) control sequence.

Antibodies raised to the peptide sequence according to SEQ ID NO: 25 or SEQ ID NO: 26 are also included within the scope of this invention.

The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description of several embodiments, which proceeds with reference to the accompanying figure and tables.

### **BRIEF DESCRIPTION OF THE DRAWINGS**

Figure 1A-1M is an alignment of the deduced amino acid sequences encoded by two of the human -P. carinii MSG genes contained in the genomic clone (HMSGp1, SEQ ID NO: 2; and HMSGp3, SEQ ID NO: 4) and the five genes generated by PCR (HMSG11, SEQ ID NO: 6; HMSG14, SEQ ID NO: 8; HMSG32, SEQ ID NO: 10; HMSG33, SEQ ID NO: 12 and HMSG35, SEQ ID NO: 14), together with a published sequence (GBHMSG) and a rat-P. carinii MSG sequence (RMSGGP3, GenBank accession number: L05906). A methionine was substituted for valine at position 1 in the PCR clones during amplification to facilitate expression, and thus is excluded from the alignment. The peptides that were synthesized and used to generate anti-peptide antibodies are shaded in light grey in Figure 1L (conserved epitope) or dark grey (HMSG32-specific epitope). The arrows (Figure 1L) flank the conserved region that was expressed in pET28a. The conserved carboxy-terminal region of the proteins is boxed (Figure 1L).

#### SEQUENCE LISTING

The nucleic and amino acid sequences listed in the accompanying sequence listing are shown using standard letter abbreviations for nucleotide bases, and three letter code for amino acids. Only one strand of each nucleic acid sequence is shown, but the complementary strand is understood as included by any reference to the displayed strand.

10

15

20

25

30

35

SEQ ID NO: 1 shows the nucleic acid sequence of MSG HMSGp1, GenBank Accession No: AF038556.

SEQ ID NO: 2 shows the amino acid sequence of MSG protein HMSGp1.

SEQ ID NO: 3 shows the nucleic acid sequence of MSG HMSGp3, GenBank Accession No: AF038556.

SEQ ID NO: 4 shows the amino acid sequence of MSG protein HMSGp3.

SEQ ID NO: 5 shows the nucleic acid sequence of MSG HMSG11, GenBank Accession No: AF033208.

SEQ ID NO: 6 shows the amino acid sequence of MSG protein HuMSG11.

SEQ ID NO: 7 shows the nucleic acid sequence of MSG HMSG14, GenBank Accession No: AF033209.

SEQ ID NO: 8 shows the amino acid sequence of MSG protein HuMSG14.

SEQ ID NO: 9 shows the nucleic acid sequence of MSG HMSG32, GenBank Accession No: AF033212.

SEQ ID NO: 10 shows the amino acid sequence of MSG protein HuMSG32.

SEQ ID NO: 11 shows the nucleic acid sequence of MSG HMSG33, GenBank Accession No: AF033210.

SEQ ID NO: 12 shows the amino acid sequence of MSG protein HuMSG33.

SEQ ID NO: 13 shows the nucleic acid sequence of MSG HMSG35, GenBank Accession No: AF033211.

SEQ ID NO: 14 shows the amino acid sequence of MSG protein HMSG35.

SEQ ID NO: 15 shows the nucleic acid sequence of the conserved carboxy-terminal portion of MSG HMSGp2, GenBank Accession Number: AF038556.

SEQ ID NO: 16 shows the amino acid sequence of the conserved carboxy-terminal portion of MSG protein HMSGp2.

SEQ ID NO: 17 shows oligonucleotide JKK14 (upstream primer).

SEQ ID NO: 18 shows oligonucleotide JKK15 (upstream primer).

SEQ ID NO: 19 shows oligonucleotide JKK16 (internal probe).

SEQ ID NO: 20 shows oligonucleotide JKK17 (downstream primer).

SEQ ID NO: 21 shows oligonucleotide JK151 (upstream cloning primer).

SEQ ID NO: 22 shows oligonucleotide JK152 (downstream cloning primer).

SEQ ID NO: 23 shows oligonucleotide JK451 (upstream C-terminal cloning primer).

SEQ ID NO: 24 shows oligonucleotide JK452 (downstream C-terminal cloning primer).

SEQ ID NO:25 shows the amino acid sequence of the internal peptide used to generate antibodies.

SEQ ID NO: 26 shows the amino acid sequence of the C-terminal peptide used to generate antibodies.

### DETAILED DESCRIPTION OF THE INVENTION

### I. Abbreviations and Definitions

### A. Abbreviations

PCP: Pneumocystis carinii pneumonia (pneumocystosis)

MSG: major surface glycoprotein

human-P. carinii: P. carinii sp. f. hominis, human-derived Pneumocystis carinii

### B. Definitions

10

15

20

5

Unless otherwise noted, technical terms are used according to conventional usage.

Definitions of common terms in molecular biology may be found in Benjamin Lewin, Genes V, published by Oxford University Press, 1994 (ISBN 0-19-854287-9); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, published by Blackwell Science Ltd., 1994 (ISBN 0-632-02182-9); and Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 1-56081-569-8).

In order to facilitate review of the various embodiments of the invention, the following definitions of terms are provided:

Biological Specimen: A biological specimen is a sample of bodily fluid or tissue used for laboratory testing or examination. As used herein, biological specimens include all clinical samples useful for detection of microbial infection in subjects.

Appropriate tissue samples may be taken from the oropharyngeal tract, for instance from lung or bronchial tissue. Samples can be taken by biopsy or during autopsy examination, as appropriate. Biological fluids include blood, derivatives and fractions of blood such as serum, and fluids of the oropharyngeal tract, such as sputum.

25

Examples of appropriate specimens for use with the current invention for the detection of *P. carinii* include conventional clinical samples, for instance blood or blood-fractions (e.g., serum), and bronchoalveolar lavage (BAL), sputum, and induced sputum samples. Techniques for acquisition of such samples are well known in the art. Blood and blood fractions (e.g., serum) can be prepared in traditional ways. Oropharyngeal tract fluids can be acquired through conventional techniques, including sputum induction, bronchoalveolar lavage (BAL), and oral washing. Oral washing provides an excellent, non-invasive technique for acquiring appropriate samples to be used in nucleic acid amplification (e.g., PCR) of human-*P. carinii* MSG sequences. Obtaining a sample from oral washing involves having the subject gargle with an amount normal saline for about 10-30 seconds and then expectorate the wash into a sample cup.

35

30

cDNA (complementary DNA): A piece of DNA lacking internal, non-coding segments (introns) and transcriptional regulatory sequences. cDNA may also contain untranslated regions (UTRs) that are responsible for translational control in the corresponding RNA molecule. cDNA is synthesized in the laboratory by reverse transcription from messenger RNA extracted from cells.

10

15

20

25

30

35

Isolated: An "isolated" biological component (such as a nucleic acid molecule, protein or organelle) has been substantially separated or purified away from other biological components in the cell of the organism in which the component naturally occurs, *i.e.*, other chromosomal and extrachromosomal DNA and RNA, proteins and organelles. Nucleic acids and proteins that have been "isolated" include nucleic acids and proteins purified by standard purification methods. The term also embraces nucleic acids and proteins prepared by recombinant expression in a host cell as well as chemically synthesized nucleic acids.

Oligonucleotide: A linear polynucleotide sequence of between 10 and 100 nucleotide bases in length.

Operably linked: A first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein-coding regions, in the same reading frame.

**ORF** (open reading frame): A series of nucleotide triplets (codons) coding for amino acids without any internal termination codons. These sequences are usually translatable into a peptide.

Ortholog: Two nucleic acid or amino acid sequences are orthologs of each other if they share a common ancestral sequence and diverged when a species carrying that ancestral sequence split into two species. *P. carinii* isolated from different host species (for instance rats and humans) are known to be distinct organisms, and may in fact be separate *Pneumocystis* species. Because of this, genes and proteins derived from *P. carinii* isolated from different host species are orthologous to each other (e.g., the *MSG11* gene isolated from human-*P. carinii* (*HMSG11*) would be an ortholog of *MSG11* isolated from rat-*P. carinii*). Orthologous sequences are also homologous sequences.

Probes and primers: Nucleic acid probes and primers can be readily prepared based on the nucleic acid molecules provided in this invention. A probe comprises an isolated nucleic acid attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, enzyme substrates, co-factors, ligands, chemiluminescent or fluorescent agents, haptens, and enzymes. Methods for labeling and guidance in the choice of labels appropriate for various purposes are discussed, e.g., in Sambrook et al. (In Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989) and Ausubel et al. (In Current Protocols in Molecular Biology, Greene Publ. Assoc. and Wiley-Intersciences, 1992).

Primers are short nucleic acid molecules, preferably DNA oligonucleotides 15 nucleotides or more in length. Primers can be annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, and then the primer extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other nucleic-acid amplification methods known in the art.

Methods for preparing and using probes and primers are described, for example, in Sambrook et al. (In Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989), Ausubel et al. (In Current Protocols in Molecular Biology, Greene Publ. Assoc. and Wiley-Intersciences, 1992), and Innis et al. (PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc., San Diego, CA, 1990). PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, © 1991, Whitehead Institute for Biomedical Research, Cambridge, MA). One of ordinary skill in the art will appreciate that the specificity of a particular probe or primer increases with its length. Thus, for example, a primer comprising 20 consecutive nucleotides of the human-P. carinii MSG11 gene will anneal to a target sequence, such as another MSG gene homolog from the gene family contained within a human-P. carinii genomic DNA library, with a higher specificity than a corresponding primer of only 15 nucleotides. Thus, in order to obtain greater specificity, probes and primers can be selected that comprise 20, 25, 30, 35, 40, 50 or more consecutive nucleotides of human-P. carinii MSG gene sequences.

15

20

10

5

The invention thus includes isolated nucleic acid molecules that comprise specified lengths of the disclosed human-*P. carinii MSG* gene sequences. Such molecules may comprise at least 20, 25, 30, 35, 40 or 50 consecutive nucleotides of these sequences, and may be obtained from any region of the disclosed sequences. By way of example, the human-*P. carinii MSG* gene sequences may be apportioned into halves or quarters based on sequence length, and the isolated nucleic acid molecules may be derived from the first or second halves of the molecules, or any of the four quarters. The human-*P. carinii MSG11* gene, shown in SEQ ID NO: 3, can be used to illustrate this. The human-*P. carinii MSG11* gene is 3088 nucleotides in length and so may be hypothetically divided into about halves (nucleotides 1-1544 and 1545-3088) or about quarters (nucleotides 1-772, 773-1544, 1545-2371 and 2372-3088), for instance. Nucleic acid molecules may be selected that comprise at least 20, 25, 30, 35, 40 or 50 consecutive nucleotides of any of these portions of the human-*P. carinii MSG11* gene.

Thus, one such nucleic acid molecule might comprise at least 25 consecutive nucleotides of the region comprising nucleotides 2372-3088 of the disclosed human-*P. carinii MSG11* gene (SEQ ID NO: 5).

25

Further nucleic acid molecules might comprise at least 15 consecutive nucleotides of the regions encoding the conserved carboxy-terminal portion of each human-*P. carinii MSG* gene. These regions comprise nucleotides 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15), respectively.

35

30

**Recombinant:** A recombinant nucleic acid is one that has a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two otherwise separated segments of sequence. This artificial combination can be accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, *e.g.*, by genetic engineering techniques.

Sequence identity: The similarity between two nucleic acid sequences, or two amino acid sequences, is expressed in terms of the similarity between the sequences, otherwise referred to as sequence identity. Sequence identity is frequently measured in terms of percentage identity (or similarity or homology); the higher the percentage, the more similar the two sequences are. Homologs of human-P. carinii MSG proteins, and the corresponding gene sequences, will possess a relatively high degree of sequence identity when aligned using standard methods. This homology will be more significant when the proteins or gene sequences are derived from P. carinii isolated from one host species (i.e., two human-P. carinii MSG homologs will typically have greater sequence identity than that shown by one human- and one rat-P. carinii MSG ortholog).

10

5

Typically, human-P. carinii MSG homologs are 74 to 91% identical at the nucleotide level and 63 to 88% identical at the amino acid level when comparing pairs of clones. In comparison, there is approximately 60% identity at the DNA level and 40% identity at the amino acid level when comparing a human P. carinii MSG to the rat P. carinii ortholog MSGGP3.

15

Methods of alignment of sequences for comparison are well known in the art. Various programs and alignment algorithms are described in: Smith & Waterman (1981) Adv. Appl. Math. 2: 482; Needleman & Wunsch (1970) J. Mol. Biol. 48: 443; Pearson & Lipman (1988) Proc. Natl. Acad. Sci. USA 85: 2444; Higgins & Sharp (1988) Gene, 73: 237-244; Higgins & Sharp (1989) CABIOS 5: 151-153; Corpet et al. (1988) Nuc. Acids Res. 16, 10881-90; Huang et al. (1992) Computer Appls. in the Biosciences 8, 155-65; and Pearson et al. (1994) Meth. Mol. Bio. 24, 307-31. Altschul et al. (1990) J. Mol. Biol. 215:403-410, presents a detailed consideration of sequence alignment methods and homology calculations.

20

25

The NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al. (1990) J. Mol. Biol. 215:403-410) is available from several sources, including the National Center for Biotechnology Information (NCBI, Bethesda, MD) and on the Internet, for use in connection with the sequence analysis programs blastp, blastn, blastx, tblastn and tblastx. It can be accessed at <a href="http://www.ncbi.nlm.nih.gov/BLAST/">http://www.ncbi.nlm.nih.gov/BLAST/</a>. A description of how to determine sequence identity using this program is available at <a href="http://www.ncbi.nlm.nih.gov/BLAST/blast\_help.html">http://www.ncbi.nlm.nih.gov/BLAST/blast\_help.html</a>. For comparisons of amino acid sequences of greater than about 30 amino acids, the Blast 2 sequences function is employed using the default BLOSUM62 matrix set to default parameters, (gap existence cost of 11, and a per residue gap cost of 1). When aligning short peptides (fewer than around 30 amino acids), the alignment should be performed using the Blast 2 sequences function, employing the PAM30 matrix set to default parameters (open gap 9, extension gap 1 penalties).

30

35

Other members of the gene family of the disclosed human-P. carinii MSG proteins typically possess at least 60% sequence identity counted over full-length alignment with the amino acid sequence of human-P. carinii MSG using the NCBI Blast 2.0, gapped blastp set to default parameters. Sequence identity over the about 100 C-terminal amino acids will typically be higher than 60%, for instances about 63%. Proteins with even greater similarity to the reference sequence will show increasing percentage identities when assessed by this method, such as at least 70%, at least 75%, at least 80%, at

10

15

20

25

30

35

least 90%, at least 95%, or at least 98% sequence identity. When less than the entire sequence is being compared for sequence identity, homologs will typically possess at least 75% sequence identity over short windows of 10-20 amino acids, and may possess sequence identities of at least 85% or at least 90% or 95% depending on their similarity to the reference sequence. Methods for determining sequence identity over such short windows are described at http://www.ncbi.nlm.nih.gov/BLAST/blast FAQs.html.

One of ordinary skill in the art will appreciate that these sequence identity ranges are provided for guidance only; it is entirely possible that strongly significant homologs could be obtained that fall outside of the ranges provided. The present invention provides not only the peptide homologs that are described above, but also nucleic acid molecules that encode such homologs.

An alternative indication that two nucleic acid molecules are closely related is that the two molecules hybridize to each other under stringent conditions. Stringent conditions are sequence-dependent and are different under different environmental parameters. Generally, stringent conditions are selected to be about 5°C to 20°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The T<sub>m</sub> is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Conditions for nucleic acid hybridization and calculation of stringencies can be found in Sambrook *et al.* ((1989) In *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor, New York) and Tijssen ((1993) Laboratory Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes Part I, Chapter 2, Elsevier, New York). Nucleic acid molecules that hybridize under stringent conditions to a human-P. carinii MSG gene sequence will typically hybridize to a probe based on either an entire human-P. carinii MSG gene or selected portions of the gene under wash conditions of 2x SSC at 50°C. A more detailed discussion of hybridization conditions is presented below.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences, due to the degeneracy of the genetic code. It is understood that changes in nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid molecules that all encode substantially the same protein.

Specific binding agent: An agent that binds substantially only to a defined target. Thus an MSG protein-specific binding agent binds substantially only the MSG protein. As used herein, the term "MSG protein specific binding agent" includes anti- MSG protein antibodies and other agents that bind substantially only to the MSG protein.

Anti-MSG protein antibodies may be produced using standard procedures described in a number of texts, including Harlow and Lane (Antibodies, A Laboratory Manual, CSHL, New York, 1988). The determination that a particular agent binds substantially only to the MSG protein may readily be made by using or adapting routine procedures. One suitable in vitro assay makes use of the Western blotting procedure (described in many standard texts, including Harlow and Lane (Antibodies, A Laboratory Manual, CSHL, New York, 1988)). Western blotting may be used to determine that a

10

15

20

25

30

35

given MSG protein binding agent, such as an anti-MSG protein monoclonal antibody, binds substantially only to the MSG protein.

Shorter fragments of antibodies can also serve as specific binding agents. For instance, FAbs, Fvs, and single-chain Fvs (SCFvs) that bind to MSG would be MSG-specific binding agents.

Transformed: A transformed cell is a cell into which has been introduced a nucleic acid molecule by molecular biology techniques. As used herein, the term transformation encompasses all techniques by which a nucleic acid molecule might be introduced into such a cell, including transfection with viral vectors, transformation with plasmid vectors, and introduction of naked DNA by electroporation, lipofection, and particle gun acceleration.

Vector: A nucleic acid molecule as introduced into a host cell, thereby producing a transformed host cell. A vector may include nucleic acid sequences that permit it to replicate in a host cell, such as an origin of replication. A vector may also include one or more selectable marker genes and other genetic elements known in the art.

### II. Human-P. Carinii MSG Sequences

This specification provides MSG proteins and MSG-encoding nucleic acid molecules, including gene sequences, derived from human-*P. carinii*. The prototypical *MSG* sequences are the human-*P. carinii* sequences as presented herein (*HMSGp1*, *HMSGp3*, *HMSG11*, *HMSG14*, *HMSG32*, *HMSG33*, and *HMSG* 35).

a. Human-P. carinii HMSGp1, HMSGp3, HMSG11, HMSG14, HMSG32, HMSG33, and HMSG35

Human-P. carinii HMSGp1, HMSGp3, HMSG11, HMSG14, HMSG32, HMSG33, and HMSG35 genomic sequences are shown in SEQ ID NOS: 1, 3, 5, 7, 9, 11, and 13, respectively. The sequences typically encode proteins that are about 1000 to about 1030 amino acids in length (for instance, SEQ ID NO: 5 shows the amino acid sequence of the MSG11 protein, which is 1028 amino acids long). These human-P. carinii MSG proteins show significant sequence similarity to each other, and a lesser degree of sequence similarity to MSG proteins derived from organisms in other hosts.

With the provision herein of seven novel human-P. carinii MSG gene sequences, nucleotide amplification methods, for instance polymerase chain reaction (PCR), may now be utilized as a preferred method for producing nucleic acid sequences encoding these human-P. carinii MSG proteins. For example, PCR amplification of the human-P. carinii MSG11 gene sequence may be accomplished by direct PCR from a clinical sample. Methods and conditions for direct PCR are known in the art and are described in Innis et al. (PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc., San Diego, CA, 1990). Appropriate sampling methods are described more fully below.

The selection of amplification primers will be made according to the portions of the gene that are to be amplified. Primers may be chosen to amplify small segments of the gene, the open reading frame, or the entire gene sequence. Variations in amplification conditions may be required to

10

15

20

25

30

35

accommodate primers of differing lengths; such considerations are well known in the art and are discussed in Innis et al. (PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc., San Diego, CA, 1990), Sambrook et al. (In Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989), and Ausubel et al. (In Current Protocols in Molecular Biology, Greene Publ. Assoc. and Wiley-Intersciences, 1992). By way of example only, the human-P. carinii HMSG11 gene as shown in SEQ ID NO: 5 can be amplified using the following combination of primers:

primer JK151: 5' TTT CAT ATG GCG CGG GCG GTC AAG CGG CAG 3' (SEQ ID NO: 21)

primer JK152: 5' CTA AAT CAT GAA CGA AAT AAC CAT TGC TAC 3' (SEQ ID NO: 22).

The sequence encoding the conserved carboxy-terminal region of human-P. carinii HMSG11 can be amplified using the following primer pair:

primer JKK14: 5' GAA TGC AAA TCC TTA CAG ACA ACA G 3' (SEQ ID NO: 17) primer JKK17: 5' AAA TCA TGA ACG AAA TAA CCA TTG C 3' (SEQ ID NO: 20).

These primers are illustrative only; one skilled in the art will appreciate that many different primers may be derived from the provided MSG gene sequences in order to amplify particular regions of these molecules. Resequencing of PCR products obtained by these amplification procedures is recommended; this will facilitate confirmation of the amplified sequence and will also provide information on natural variation on this sequence in different ecotypes and plant populations. Oligonucleotides derived from the human-P. carinii MSG gene sequences provided may be used in such sequencing methods.

Further homologous human-*P. carinii MSGs* can be cloned in a similar manner. In order to increase the number of *MSGs* that can be amplified in a single PCR reaction, a third primer can be added. For instance, a second upstream primer (*e.g.*, primer JKK15: 5' GAA TGC AAA TCT TTA CAG ACA ACA G 3' (SEQ ID NO: 18)) may be added to the amplification reaction along with primers JKK14 and JKK17. Typically, when more than two primers are provided in a single PCR amplification reaction, those primers that anneal to the same site on the target nucleotide sequence (*e.g.*, JKK14 and JKK15) will be provided in equimolar amounts (for instance, 0.625 pM each), and such that the total amount of primer provided for each end of the amplicon will be equivalent (for instance, 1.25 pM each).

Oligonucleotides that are derived from the human-P. carinii HMSGp1, HMSGp3, HMSG11, HMSG14, HMSG32, HMSG33, and HMSG35 gene sequences (SEQ ID NOS: 1, 3, 5, 7, 9, 11, and 13, respectively), as well as the fragment of HMSGp2 disclosed (SEQ ID NO: 15), are encompassed within the scope of the present invention. Preferably, such oligonucleotide primers will comprise a

10

15

20

25

sequence of at least 15-20 consecutive nucleotides of the relevant human-*P. carinii MSG* gene sequence. To enhance amplification specificity, oligonucleotide primers comprising at least 25, 30, 35, 40, 45 or 50 consecutive nucleotides of these sequences may also be used. These primers for instance may be obtained from any region of the disclosed sequences. By way of example, human-*P. carinii MSG* gene sequences may be apportioned into halves or quarters based on sequence length, and the isolated nucleic acid molecules may be derived from the first or second halves of the molecules, or any of the four quarters. In addition, primers may be specifically chosen from the conserved carboxy-terminal region of each *MSG* coding sequence. This region comprises nucleic acid residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).

### b. MSG Sequence Variants

With the provision of human-*P. carinii* HMSGp1, HMSGp3, HMSG11, HMSG14, HMSG32, HMSG33, and HMSG35 proteins and corresponding gene sequences herein, the creation of variants of these sequences is now enabled.

Variant MSG proteins include proteins that differ in amino acid sequence from the human-P. carinii MSG sequences disclosed but that share at least 63% amino acid sequence homology (for example at least 80%, 90%, 95% or 98% homology) with any of the provided human MSG proteins. Such variants may be produced by manipulating the nucleotide sequence of the, for instance, human-P. carinii HMSG11 gene using standard procedures, including for instance site-directed mutagenesis or PCR. The simplest modifications involve the substitution of one or more amino acids for amino acids having similar biochemical properties. These so-called conservative substitutions are likely to have minimal impact on the activity of the resultant protein. Table 1 shows amino acids that may be substituted for an original amino acid in a protein, and which are regarded as conservative substitutions.

Table 1.

|    | Original Residue | Conservative Substitutions |
|----|------------------|----------------------------|
|    | Ala              | ser                        |
|    | Arg              | lys                        |
| 5  | Asn              | gln; his                   |
|    | Asp              | glu                        |
|    | Cys              | ser                        |
|    | Gln              | asn                        |
|    | Glu              | asp                        |
| 10 | Gly              | pro                        |
|    | His              | asn; gln                   |
|    | Ile              | leu; val                   |
|    | Leu              | ile; val                   |
|    | Lys              | arg; gln; glu              |
| 15 | Met              | leu; ile                   |
|    | Phe              | met; leu; tyr              |
|    | Ser              | thr                        |
|    | Thr              | ser                        |
|    | Trp              | tyr                        |
| 20 | Tyr              | trp; phe                   |
|    | Val              | ile; leu                   |

More substantial changes in enzymatic function or other protein features may be obtained by selecting amino acid substitutions that are less conservative than those listed in Table 1. Such changes include changing residues that differ more significantly in their effect on maintaining polypeptide backbone structure (e.g., sheet or helical conformation) near the substitution, charge or hydrophobicity of the molecule at the target site, or bulk of a specific side chain. The following substitutions are generally expected to produce the greatest changes in protein properties: (a) a hydrophilic residue (e.g., seryl or threonyl) is substituted for (or by) a hydrophobic residue (e.g., leucyl, isoleucyl, phenylalanyl, valyl or alanyl); (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain (e.g., lysyl, arginyl, or histadyl) is substituted for (or by) an electronegative residue (e.g., glutamyl or aspartyl); or (d) a residue having a bulky side chain (e.g., phenylalanine) is substituted for (or by) one lacking a side chain (e.g., glycine).

35

40

45

25

30

Variant MSG genes may be produced by standard DNA mutagenesis techniques, for example, M13 primer mutagenesis. Details of these techniques are provided in Sambrook et al. (In Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989), Ch. 15. By the use of such techniques, variants may be created which differ in minor ways from the human-P. carinii MSG gene sequences disclosed. DNA molecules and nucleotide sequences which are derivatives of those specifically disclosed herein and that differ from those disclosed by the deletion, addition, or substitution of nucleotides while still encoding a protein that has at least 63% sequence identity with the MSG sequences disclosed (SEQ ID NOS: 1, 3, 5, 7, 9, 11, and 13) are comprehended by this invention. In their most simple form, such variants may differ from the disclosed sequences by alteration of the coding region to fit the codon usage bias of the particular organism into which the molecule is to be introduced.

10

15

20

25

30

35

Alternatively, the coding region may be altered by taking advantage of the degeneracy of the genetic code to alter the coding sequence such that, while the nucleotide sequence is substantially altered, it nevertheless encodes a protein having an amino acid sequence substantially similar to the disclosed human *P. carinii* MSG protein sequences. For example, the 2nd amino acid residue of the human *P. carinii* HMSG11 protein is alanine. The nucleotide codon triplet GCG encodes this alanine residue. Because of the degeneracy of the genetic code, three other nucleotide codon triplets - GCT, GCC and GCA - also code for alanine. Thus, the nucleotide sequence of the human *P. carinii* HMSG11 ORF could be changed at this position to any of these three alternative codons without affecting the amino acid composition or characteristics of the encoded protein. Based upon the degeneracy of the genetic code, variant DNA molecules may be derived from the cDNA and gene sequences disclosed herein using standard DNA mutagenesis techniques as described above, or by synthesis of DNA sequences. Thus, this invention also encompasses nucleic acid sequences which encode an MSG protein, but which vary from the disclosed nucleic acid sequences by virtue of the degeneracy of the genetic code.

Variants of the MSG protein may also be defined in terms of their sequence identity with the prototype MSG proteins shown in SEQ ID NOS: 2, 4, 6, 8, 10, 12, and 14. As described above, human MSG proteins share at least 60% (for example, at least 63%) amino acid sequence identity with the human *P. carinii* HMSGp1, HMSGp3, HMSG11, HMSG14, HMSG32, HMSG33, or HMSG35 proteins (SEQ ID NOS: 2, 4, 6, 8, 10, 12, and 14, respectively). Nucleic acid sequences that encode such proteins may readily be determined simply by applying the genetic code to the amino acid sequence of an MSG protein, and such nucleic acid molecules may readily be produced by

Nucleic acid molecules that are derived from the human *P. carinii MSG* gene sequences disclosed include molecules that hybridize under stringent conditions to the disclosed prototypical *MSG* nucleic acid molecules, or fragments thereof. Stringent conditions are hybridization at 65°C in 6 x SSC, 5 x Denhardt's solution, 0.5% SDS and 100 µg sheared salmon testes DNA, followed by 15-30 minute sequential washes at 65°C in 2 x SSC, 0.5% SDS, followed by 1 x SSC, 0.5% SDS and finally 0.2 x SSC, 0.5% SDS.

assembling oligonucleotides corresponding to portions of the sequence.

Low stringency hybridization conditions (to detect less closely related homologs) are performed as described above but at 50°C (both hybridization and wash conditions); however, depending on the strength of the detected signal, the wash steps may be terminated after the first 2 x SSC wash.

Human-P. carinii HMSGp1, HMSGp3, HMSG11, HMSG14, HMSG32, HMSG33, and HMSG35 genes (SEQ ID NOS: 1, 3, 5, 7, 9, 11 and 13), as well as the fragment of HMSGp2 disclosed (SEQ ID NO: 15), and homologs of these sequences may be incorporated into transformation or expression vectors.

10

15

20

25

30

35

### III. Detection of P. Carinii In Clinical Specimens

The conserved nature of human-*P. carinii* MSG genes provided in this specification, and particularly the highly-conserved about 100 amino acid region in the C-terminal portion of the protein, makes these genes useful targets for use in detection of *P. cari*nii in clinical samples and diagnosis of PCP.

#### a. Clinical Specimens

Appropriate specimens for use with the current invention in detection of *P. carinii* include any conventional clinical samples, for instance blood or blood-fractions (e.g., serum), and bronchoalveolar lavage (BAL), sputum, and induced sputum samples. Techniques for acquisition of such samples are well known in the art. See, for instance, Schluger et al. (J. Exp. Med 176:1327-1333) (collection of serum samples); Bigby et al. (Am. Rev. Respir. Dis. 133:515-518, 1986) and Kovacs et al. (NEJM 318:589-593, 1988) (collection of sputum samples); and Ognibene et al. (Am. Rev. Respir. Dis. 129:929-932,1984) (collection of bronchoalveolar lavage (BAL).

In addition to conventional methods, oral washing provide an excellent, non-invasive technique for acquiring appropriate samples to be used in nucleic acid amplification (e.g., PCR) of human-P. carinii MSG sequences (Helweg-Larsen et al. (1998) J. Clin. Microbiol. 36:2068-2072). Oral washing involves having the subject gargle with 50 cc of normal saline for 10-30 seconds and then expectorate the wash into a sample cup.

Serum or other blood fractions can be prepared in the conventional manner. About 200 µL of serum is an appropriate amount for the extraction of DNA for use in amplification reactions. See also, Schluger *et al.*, (1992) *J. Exp. Med.* 176:1327-1333; Ortona *et al.*, (1996) *Mol. Cell Probes* 10:187-90.

Once a sample has been obtained, DNA can be extracted through any conventional method. For instance, rapid DNA preparation can be performed using a commercially available kit (e.g., the InstaGene Matrix, BioRad, Hercules, CA; the NucliSens isolation kit, Organon Teknika, Netherlands). Preferably the DNA preparation technique chosen yields a nucleotide preparation that is accessible to and amenable to nucleic acid amplification.

### b. Direct Hybridization Probing Detection

Human-P. carinii MSG gene sequences can be detected through the hybridization of an oligonucleotide probe to nucleic acid molecules prepared from a clinical sample. The sequence of appropriate oligonucleotide probes will correspond to a region within one or more of the human-P. carinii MSG sequences disclosed herein. Techniques for use in hybridization of oligonucleotide probes to target sequences will be known to one of ordinary skill in the art. See, for instance, U.S. Patent Nos. 5,164,490 (disclosing use of sequences from the P. carinii dihydrofolate reductase gene as direct hybridization probes) and 5,519,127 (using nucleic acid probes capable of hybridizing to rRNA or rDNA of P. carinii for detection of the organism). In general, hybridization probes will be at least 15 bases in length, and may be 20, 25, 30, 35, 40 or 50 or more bases in length. For instance, a probe may comprise the entire conserved sequence of an MSG (e.g., residues 2845-3090 of

10

15

20

25

30

35

HMSG11), or the entire coding sequence of the gene. Typically such a probe will be detectably labeled in some fashion, either with an isotopic or non-isotopic label. Such non-isotopic labels may, for instance, comprise a fluorescent or luminescent molecule, or an enzyme, co-factor, enzyme substrate, or hapten. The probe is generally incubated with a single-stranded preparation of DNA, RNA, or a mixture of both, and hybridization determined after separation of double and single-stranded molecules. Alternatively, probes may be incubated with a nucleotide preparation after it has been separated by size and/or charge and immobilized on an appropriate medium. Hybridization techniques suitable for use with oligonucleotides are well known to those of ordinary skill in the art. For general references on the conditions and options that are appropriate, see Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, and Ausubel et al. (1992) In Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley-Intersciences.

#### c. Nucleic Acid-Mediated Detection

It may be advantageous to amplify target *P. carinii* gene sequences in a clinical sample prior to using a hybridization probe to detect its presence. For instance, for detection of human-*P. carinii MSG* gene sequences, it may be advantageous to amplify part or all of the *MSG* gene sequence, then detect the presence of the amplified sequence pool. Any nucleic acid amplification method can be used, including polymerase chain reaction (PCR) amplification. Amplification can be carried out in a simple single reaction using a pair of primers, or can be enhanced by the use of multiple degenerate primers to increase the number of *MSG* homologs that are amplified. Where degenerate primers are used, the sequence variability of the disclosed human-*P. carinii MSG* gene sequences can be used to design appropriate primers that will be specific for multiple human *P. carinii MSG* homologs. Alternately, amplification specificity can be increased through the use of nested PCR techniques, which are known (see, for instance, Lipschik *et al.* (1992) *Lancet* 340:203-206, using nested sets of primers to rRNA in the detection of *Pneumocystis carinii*).

It is also possible to run sequential PCR amplification experiments on samples using different targets in each reaction, such that putative positive samples detected in the first reaction are confirmed by amplification of a second sequence. For instance, it would be possible to analyze clinical samples through PCR amplification of a human-P. carinii MSG gene, then to take only those samples that are positive for amplification of MSG and test them also for the presence of P. carinii rRNA, for instance. Such sequential testing of samples will help reduce false positive results due to cross contamination of PCR samples; it is unlikely that a clinical sample will become contaminated with both target sequences.

The selection of PCR primers will be made according to the portions of the gene sequence that are to be amplified. For use in PCR detection of *P. carinii*, it is advantageous to choose primerannealing sites that are highly conserved across many different members of the human-*P. carinii* MSG gene family For instance, it is advantageous to choose primer sites from within the regions of human-*P. carinii* sequence displaying greater than 63% sequence identity across the disclosed family

10

15

20

25

30

35

members, e.g., that portion of the gene encoding the conserved carboxy-terminal region of the protein. The highly conserved carboxy-terminal regions of the disclosed genes are as follows: residues 2894-3042 of HMSGp1 (SEQ ID NO: 1), 2758-3006 of HMSGp3 (SEQ ID NO: 3), 2845-3090 of HMSG11 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ ID NO: 7), 2836-3081 of HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), and 1-249 of HMSGp2 (SEQ ID NO: 15).

Variations in amplification conditions may be required to accommodate primers of differing lengths; such considerations are well known in the art and are discussed in Sambrook et al. ((1989) In Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York) and Ausubel et al. (In Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley-Intersciences, 1992). By way of example only, primers JKK14, JKK15, and JKK17 (SEQ ID NOS: 17, 18, and 20 respectively) can be used to amplify the C-terminal conserved region of several human-P. carinii MSG genes. These primers are illustrative only; one skilled in the art will appreciate that many different primers may be derived from the provided cDNA and gene sequences in order to amplify particular regions of these molecules.

Oligonucleotides to be used in detection of the *P. carinii* organism or diagnosis of PCP that are derived from the human-*P. carinii MSG* gene sequences disclosed herein are encompassed within the scope of the present invention.

### d. Detection of Amplified P. carinii MSG sequences

The presence of amplified human-*P. carinii MSG* sequences can be determined in any conventional manner, including electrophoresis and staining (for instance, with ethidium bromide) of the amplified sequence, or hybridization of a labeled probe to the amplified sequence. For general guidelines on such techniques, see *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor, New York (1989), and *Current Protocols in Molecular Biology*, Greene Publishing Associates and Wiley-Intersciences (1987). Hybridization probes appropriate for use in detection of amplified human-*P. carinii MSG* sequences are essentially equivalent to those described above for direct hybridization. The region of the gene that has been amplified will be important in choosing an appropriate probe; the detection probe should hybridize to a sequence that falls between the ends of the amplification primers such that the annealing site of the probe is amplified. By way of example, one appropriate oligonucleotide probe is JKK16 (SEQ ID NO: 19), which corresponds to residues of 3004-3029 of *HMSG33*. This probe could be used for detection of both full-length and carboxy-terminal amplified fragments of human-*P. carinii MSG* genes.

Typically, oligonucleotide probes will be labeled as discussed above, and detection will be carried out through conventional methods. In general, detection of amplified sequences will be more sensitive than direct hybridization.

In addition to radioisotope labeled hybridizing probes, amplicons can be detected using fluorescent labeled probes. One such appropriate fluorescent label is europium (Eu<sup>3+</sup>). See, for instance, Lopez *et al.* (1993) *Clin. Chem.* 39(2):196-201 (using a europium derivative for time-

10

15

20

25

30

35

resolved fluorescence detection of amplified human papillomavirus sequences); Eskola et al. (1994) Clin. Biochem. 27(5):373-379 (using PCR and europium-labeled DNA probes to detect a marker for chronic myelogenous leukemia); and Dahlen et al. (1991) J. Clin. Microbiol. 29(4):798-804 (detection of PCR amplified HIV sequences using biotinylated and europium labeled oligonucleotide probes).

### e. Preparation of a Positive Nucleic Acid Amplification Control

It is advantageous to provide a positive control sequence for use in nucleic acid amplification reactions, to ensure that the system is functioning properly. The positive control sequence should be one the provided oligonucleotide primers are known to anneal to. Therefore, in the present invention, appropriate positive control sequences include, for instance, any sequences that can be amplified with the same primers as are used to amplify human-*P. carinii MSG*. For instance, primers JKK14 (SEQ ID NO: 17) and JKK17 (SEQ ID NO: 20) can serve as appropriate primers. It is advantageous, however, if the internal amplified sequence is distinguishable from the *MSG* target (*i.e.*, is a mimic rather than identical sequence); this allows specific and separate detection of the target and mimic amplified products. Appropriate differences between the two sequences include overall length of the amplicon (where detection of the PCR products will be performed using electrophoresis and subsequent staining) and amplicon sequence differences (where detection of the PCR products will be performed using hybridization to a labeled probe specific for each amplified sequence).

Nucleic acid amplification positive control sequences can be provided in the form of independent, linear nucleotide sequences. Alternately, a recombinant vector comprising the appropriate positive control sequence may be provided. Construction of such a recombinant vector is by conventional means, and any of a myriad of conventional cloning vectors can be used. In general, the vector will include one or more restriction enzyme sites into which the PCR control sequence can be inserted. The vector may also comprise a replication site to provide for its production in a suitable host cell, for instance in a bacterial cell. The choice of appropriate cloning vector will be within the skill of an ordinary artisan.

### IV. Kits For Detection of P. Carinii

The oligonucleotide primers disclosed herein can be supplied in the form of a kit for use in detection of *P. carinii* or diagnosis of PCP. In such a kit, an appropriate amount of one or more of the oligonucleotide primers is provided in one or more containers. The oligonucleotide primers may be provided suspended in an aqueous solution or as a freeze-dried or lyophilized powder, for instance. The container(s) in which the oligonucleotide(s) are supplied can be any conventional container that is capable of holding the supplied form, for instance, microfuge tubes, ampoules, or bottles. In some applications, pairs of primers may be provided in pre-measured single use amounts in individual, typically disposable, tubes or equivalent containers. With such an arrangement, the

10

15

20

25

35

40

sample to be tested for the presence of human-P. carinii can be added to the individual tubes and amplification carried out directly.

The amount of each oligonucleotide primer supplied in the kit can be any appropriate amount, depending for instance on the market to which the product is directed. For instance, if the kit is adapted for research or clinical use, the amount of each oligonucleotide primer provided would likely be an amount sufficient to prime several PCR amplification reactions. Those of ordinary skill in the art know the amount of oligonucleotide primer that is appropriate for use in a single amplification reaction. General guidelines may for instance be found in Innis et al. (PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc., San Diego, CA, 1990), Sambrook et al. (In Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989), and Ausubel et al. (In Current Protocols in Molecular Biology, Greene Publ. Assoc. and Wiley-Intersciences, 1992).

A kit may include more than two primers, in order to facilitate the PCR amplification of a larger number of human-*P. carinii MSG* genes. For instance, primers JKK14 (SEQ ID NO: 17) and JKK15 (SEQ ID NO: 18) both may be provided as upstream primers, while primer JKK17 (SEQ ID NO: 20) is provided as a downstream primer. These primers are provided by way of example only.

In some embodiments of the current invention, kits may also include the reagents necessary to carry out PCR amplification reactions, including, for instance, DNA sample preparation reagents, appropriate buffers (e.g., polymerase buffer), salts (e.g., magnesium chloride), and deoxyribonucleotides (dNTPs).

Kits may in addition include either labeled or unlabeled oligonucleotide probes for use in detection of the amplified human-*P. carinii* sequences. The appropriate sequences for such a probe will be any sequence that falls between the annealing sites of the two provided oligonucleotide primers, such that the sequence the probe is complementary to is amplified during the PCR reaction. Primer JKK16 (SEQ ID NO: 19) exemplifies such a sequence, and an appropriate probe could comprise this sequence.

It may also be advantageous to provided in the kit one or more control sequences for use in the PCR reactions. Appropriate positive control sequences may be essentially as those discussed above.

30 EXAMPLES

Example 1: Isolation of multiple human-P. carinii MSG sequences.

### A. Polymerase Chain Reaction (PCR) Amplification Cloning

DNA was isolated from an autopsy lung sample of an HIV-infected patient with *P. carinii* pneumonia according to standard methods, using SDS and proteinase K (0.5 µg/ml), followed by phenol-chloroform extraction and ethanol precipitation (Davis et al. (1986) *Basic Methods in* 

10

15

20

25

30

35

Molecular Biology, Elsevier, NY). A genomic library using the same DNA cloned into the Xho 1 site of lambda GEM 12 vector (Promega, Madison, WI) was commercially prepared (Lofstrand Labs Limited, Gaithersburg, MD).

Primers to amplify full-length human *P. carinii* genes were designed based on published data (Garbe and Stringer (1994) *Infect. Immun.* 62(8):3092-3101). The sense primer, JK151 (5'-TTT CAT ATG GCG CGG GCG GTC AAG CGG CAG-3') (SEQ ID NO: 21) corresponds to nucleotides 153 to 175 of a published *MSG* sequence (GenBank accession number L27092), and the antisense primer JK152 (5'-CTA AAT CAT GAA CGA AAT AAC CAT TGC TAC-3') (SEQ ID NO: 22) is complementary to nucleotides 3215 to 3244 of the same sequence. An Nde I site was created at the beginning of JK151, which substitutes a methionine for the valine of the original sequence, to facilitate subcloning and expression. For amplification, 1 μg of genomic DNA was added to a 50 μl reaction containing primers (25 pM each), dNTPs (0.2 mM), 5 U of AmpliTaq (Perkin-Elmer), and MgCl<sub>2</sub> (2.5 mM). The DNA amplification was performed on a Perkin Elmer Cetus DNA thermal cycler. An initial denaturation cycle (1 minute at 96°C) was followed by 36 cycles of denaturation at 95°C for 1 minute, annealing at 50°C for 2 minutes and extension at 72°C for 2 minutes, followed by a final extension after the last cycle at 72°C for 10 minutes.

A band of the correct size (approximately 3.1 Kb) was amplified and subjected to electrophoresis in 1% agarose gel in 1X TBE buffer. PCR products were then directly subcloned into PCR II (Invitrogen, Carlsbad, CA) according to the manufacturer's instructions. Five clones that differed in their restriction mapping and hybridization patterns were identified and sequenced (HMSG11 (SEQ ID NO: 5) GenBank accession number AF033208; HMSG14 (SEQ ID NO: 7) number AF033209; HMSG33 (SEQ ID NO: 11) number AF033210; HMSG35 (SEQ ID NO: 13) number AF033211; and HMSG32 (SEQ ID NO: 9) number AF033212).

Nucleotide sequencing was performed using an automated sequencer (Model 373 or 377, Applied Biosystems/Perkin Elmer, Foster City, CA). The nucleotide sequence and deduced amino acid sequence data were analyzed by Factura and AutoAssembler (both from Applied Biosystems), Sequencher (Gene Codes Corp., Ann Arbor, MI), MacVector (Scientific Imaging Systems, New Haven, CT), ClustalW (40), and GeneWorks (IntelliGenetics, Mountain View, CA).

All clones encoded MSG variants that were clearly related but differed from each other. The coding region of the clones varied in length from 3,054 to 3,087 bases, encoding proteins of 1,008 to 1,028 amino acids with predicted molecular weights of 114 to 117 KDa. They are 74 to 91% identical at the nucleotide level and 63 to 88% identical at the amino acid level when comparing pairs of clones. Overall, approximately 50% of the amino acids are conserved in all five clones. The clones are more closely related to each other than to rat P. carinii MSG genes. There is an approximately 60% identity at the DNA level and 40% identity at the amino acid level when comparing a human P. carinii MSG to rat P. carinii MSGGP3.

WO 00/09760 PCT/US99/18750

-22-

Southern hybridization/Library

### screening

B.

5

10

15

20

25

30

35

40

For southern hybridization with a radioactive probe, DNA was treated with restriction enzymes, separated by agarose gel electrophoresis and transferred to Hybond N+ membranes (Amersham, Life Science, Arlington Heights, IL) with 0.4 M NaOH. DNA was probed using an approximately 600 bp Xba I fragment of the human P. carinii MSG III gene (Garbe and Stringer (1994) Infect. Immuno. 62:3092-3101) that had been labeled with  $\alpha$ -32P dATP or  $\alpha$ -32P dCTP by a random priming kit (Boehringer Mannheim). Filters were prehybridized for 4 hours and then hybridized overnight at 55°C in 6X SSPE with 0.5% SDS, and 5X Denhardt's solution. Blots were washed in 6X SSPE with 0.5% SDS at room temperature for 10 minutes and then in 0.5X SSPE with 0.5% SDS at 55°C twice for 30 minutes each. The genomic library was screened using a gel-purified full-length fragment of HMSG11 under the same conditions as above. One clone that hybridized strongly to the probe was subcloned into the Bam H1 site of pBluescript II (Stratagene, La Jolla, CA). This 12,792 bp clone (GenBank accession number AF038556) contained three full-length and one partial MSG sequences in a head to tail tandem arrangement, similar to what has previously been reported (Garbe and Stringer (1994) Infect. Immun. 62:3092-3101; Stringer et al. (1993) J. Eukaryot. Microbiol. 40:821-826). One of the full-length MSG sequences did not have a complete open reading frame due to a frame shift between bases 6290 and 6347. The codon corresponding to a methionine at the beginning of rat P. carinii MSG clones encoded a valine in all the open reading frames, consistent with earlier observations (Garbe and Stringer (1994) Infect. Immun. 62:3092-3101; Stringer et al. (1993) J. Eukaryot. Microbiol. 40:821-826). Nucleotide sequencing was performed as above.

### Example 2: Characterization of Human-P. carinii MSG Proteins

Figure 1 shows an alignment of the predicted proteins encoded by the full length MSG genes cloned by PCR (MSG11, 14, 32, 33, and 35) and Southern (MSGp1 and p3), together with previously published a human (Garbe and Stringer (1994) Infect. Immun. 62:3092-3101) and rat P. carinii MSG sequence (GenBank accession number L05906). Among the human-P. carinii MSG sequences, there is substantial variability downstream of the amino-terminus, while the region near the carboxyl terminus is highly conserved. For example, there is 63% identity in the last 100 amino acids among all the genes (excluding the region encoded by the PCR primer JK152), which is about five times as high as the conservation among the first 100 amino acids (13% excluding the primer region corresponding to primer JK151). Like most known genes of P. carinii, all human P. carinii MSG genes show a strong AT bias, especially in the third position (approximately 70% A or T) (Edman et al. (1989) Proc. Natl. Acad. Sci. USA. 86:8625-8629; Garbe and Stringer (1994) Infect. Immun. 62:3092-3101; Kovacs et al. (1993) J. Biol. Chem. 268:6034-6040; Wada et al. (1993) J. Infect. Dis. 168:979-985). As in other MSG molecules, cysteine residues of the human P. carinii MSG

molecules are relatively numerous (5.7 to 5.9%) and are highly conserved: 96% of all the cysteine residues present in the human-*P. carinii* MSG clones are conserved in all the clones. When comparing HuMSG11 to rat *P. carinii* MSG clone GP3, 94% of cysteine residues are conserved. The cysteine residues are unevenly distributed in four main regions and often show a pattern of two cysteines separated by 6 to 7 amino acids, similar to what is seen in rat *P. carinii* (Kovacs *et al.* (1993) *J. Biol. Chem.* 268:6034-6040). There is no predictable pattern to the intervening amino acids. All human MSG proteins share a highly conserved amino acid domain rich in threonine and serine residues near the carboxyl terminus. Seven to thirteen potential N-linked glycosylation sites (NXS/T) were observed in the MSGs. A premature stop codon was seen in MSG 32 after residue 1008 which is most probably due to a PCR artifact resulting in a point mutation; studies using the ligase chain reaction with primers specific for the mutation supported this conclusion.

## A. Construction and expression of full length recombinant human P. carinii MSG

5

10

15

20

25

30

35

40

The full-length *HMSG32* gene, which contains the premature stop codon, was inserted into pBlueBacHis2A (Invitrogen, Carlsbad, CA) at the Eco R1 site for expression in a baculovirus insect cell system. Correct insertion was confirmed by restriction mapping and sequencing. Isolation of recombinant virus, plaque purification and amplification of high titer virus stock were performed according to the manufacturer's protocols (Invitrogen, Carlsbad, CA). PCR amplification using genespecific primers was used to confirm the presence of the gene in the virus. Sf9 cells were grown at 27°C in SFII-900 medium (GIBCO BRL Grand Island, NY) with 5% fetal calf serum to a density of 2.0x10<sup>6</sup> cells/ml. Cells were infected at a multiplicity of infection (moi) of 5. Seventy-two hours after infection, cells were harvested by centrifugation, washed with phosphate buffered saline supplemented with PMSF (1 mM/ml), then resuspended in 10 mM Tris-HCl, pH 8 with 1 mM PMSF, and sonicated. The cell lysates were analyzed by SDS-PAGE and western blotting.

SDS-PAGE and western blotting were performed using standard techniques (see Kovacs et al. (1988) J. Immunol. 140:2023-2031). Electrophoresis was done in pre-poured discontinuous 8% and 14% acrylamide tris-glycine gels (Novex, San Diego, CA). Proteins were stained by Coomassie blue or transferred to nitrocellulose membranes, following which western blots were performed with a variety of antisera using standard techniques (Kovacs et al. (1988) J. Immunol. 140:2023-2031). Recombinant rat P. carinii HMSGp3 protein (expressed in a baculovirus system) (Mei et al. (1996) J. Eukarot. Microbiol. 43:31S) and purified recombinant β-galactosidase (expressed in the pET 28-E. coli system) were used as controls in western blotting.

Anti-peptide antisera were commercially generated in rabbits to a peptide specific for HMSG32 (KMYGLFYGSGKEWFKKLLEKIM (SEQ ID NO: 25), corresponding to amino acids 461-482) and to a conserved human-*P. carinii* MSG epitope contained within the recombinant carboxyl terminal fragment (TITSTITSKITLTST (SEQ ID NO:26) corresponding to amino acids 968 to 982 of MSG32) by the multiple antigenic peptide system method (Posnett *et al.* (1988) *J. Biol.* 

Chem. 263:1719-1725) (Research Genetics, Huntsville, AL). Anti-Xpress monoclonal antibody, which detects an epitope tag at the amino terminus of the fusion proteins expressed in pBlueBacHis2A, was purchased from Invitrogen (Carlsbad, CA). T7-tag monoclonal antibody, which detects an epitope tag at the amino terminus of the fusion proteins derived from PET 28A, was purchased from Novagen, Inc. (Madison, WI).

A time course showed that maximal expression occurred after 60-72 hours of infection. The identity of the recombinant protein was confirmed by western blotting using both an antibody against a peptide tag present in the vector as well as an anti-peptide antibody raised against a peptide (SEQ ID NO: 25) specific for MSG32. No reactivity was seen when SF9 cells alone or recombinant baculovirus-derived rat MSG GP3 were used as the targets. Multiple bands were seen in the western blots, especially when using the MSG-specific anti-peptide antibody. These likely represent protein degradation products, or possibly modification of the recombinant protein.

Although rat MSGGP3 could be produced at a high level in a baculovirus system, and was easily purified by affinity chromatograph using a nickel column (Mei et al. (1996) J. Eukarot. Microbiol. 43:31S), prolonged attempts to produce and purify high levels of human P. carinii MSG were unsuccessful.

# B. Construction and Expression of the Conserved C-terminal Portion of Human-P. carinii MSGs

5

10

15

20

25

30

35

40

PCR was used to amplify the conserved carboxy-terminal region of the human *P. carinii* MSG gene without the carboxyl terminus hydrophobic tail, since this hydrophobic tail could potentially interfere with expression and purification. Primers were designed based on the alignment of five new MSG genes as well as the published sequence. The sense primer was JK451 (5'-GAA TTC GAT CTG AAG CCT CTG GAG-3') (SEQ ID NO: 23), and the antisense primer was JK452 (5'-TTC TAG AAA CCC ACT CAT CTT CAA-3') (SEQ ID NO: 24). An Eco RI site was added to the sense primer and an Xba I site, which encoded an in frame stop codon, was added to the antisense primer to facilitate subcloning. One µg of plasmid DNA was used for PCR amplification under the same conditions used above for isolation of PCR clones.

The 306 bp PCR product of carboxy-terminal region amplified from MSG33 was ligated in frame into pET28A (Novagen, Inc. Madison, WI) at the Eco RI site. pET28A is an expression vector in which a histidine tag precedes the insertion site. The presence of a six histidine (hexa-his) sequence in the expressed portion of the vector preceding the insert allows rapid, one-step purification of the recombinant protein by binding to nickel metal affinity chromatography matrix. Restriction mapping and sequencing were performed to confirm correct insertion. Expression was induced in E. coli strain BL21 (DE3) using 1 mM IPTG. Recombinant protein was solubilized with 6M urea and purified by affinity chromatography using a nickel column according to the manufacturer's instructions (Novagen, Inc., Madison, WI). The sample was eluted with elution buffer without urea, dialyzed using 0.5X PBS to eliminate imidazole, and lyophilized for storage.

10

15

20

25

30

35

40

Recombinant protein was analyzed by SDS-PAGE and western blotting as above. High level expression was observed within two hours; no equivalent band was seen using pET 28A without insert under the same conditions. Although the yield was variable from experiment to experiment, typically about 7 milligrams of purified protein was obtained from a one liter culture of *E. coli*. The identity of the protein was confirmed by immunoblotting using both T7-tag monoclonal antibody and a polyclonal anti-epitope antibody generated in rabbits against an epitope (SEQ ID NO: 26) contained within the recombinant carboxyl terminal fragment. No reactivity was seen with preimmune rabbit serum, with uninduced *E. coli* extracts, or with second antibody alone.

### C. Evaluation of Human Sera Using Antibodies to Human-P. carinii MSG

Human sera evaluated by immunoblotting included sera from both AIDS and non-AIDS patients with and without a history of *P. carinii* pneumonia, as well as healthy individuals. Samples included those from 11 immunosuppressed patients with recent or acute *P. carinii* pneumonia but without HIV infection, 5 patients with HIV infection and *P. carinii* pneumonia, 17 patients with HIV infection but without *P. carinii* pneumonia, 3 patients with neither HIV infection nor *P. carinii* pneumonia, and 13 healthy laboratory workers. Human sera were tested at a dilution of 1:100. Horseradish peroxidase-conjugated goat anti-human IgG, alkaline phosphatase conjugated goat anti-rabbit IgG and goat anti-mouse IgG (all from GIBCO BRL) or horseradish peroxidase conjugated goat anti-cat, anti-rat, and anti-mouse IgG (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA) were used as second antibodies in western blotting.

All 49 samples reacted by immunoblotting with the recombinant peptide. Because the recombinant peptide included a vector-derived region, a subset of 4 samples was simultaneous evaluated for reactivity with recombinant  $\beta$ -galactosidase expressed in the same vector. None of the samples reacted with the recombinant  $\beta$ -galactosidase, demonstrating that the reactivity seen was against the *P. carinii* derived peptide region. In addition, little or no reactivity was seen when using rat, mouse, or cat serum.

## Example 3: Detection of Human- P. carinii Nucleic Acid Sequences.

### A. Preparation of a Vector Comprising A Control Sequence

A mimic amplification construct containing a positive control sequence was prepared using the tetracycline resistance (tet<sup>R</sup>) gene coding sequence from pBR322 (Backman and Boyer (1983) *Gene* 26:197). In order to generate a tet<sup>R</sup> gene-based amplicon that could be amplified using *MSG*-specific primers JKK14/15 and JKK17, bipartite primers were generated with two distinct annealing regions. The 5' region of each primer was taken from the *MSG* target sequences (e.g., SEQ ID NOS: 17 and 20). The 3' region of each primer was designed to be specific to the tet<sup>R</sup> coding sequence.

WO 00/09760 PCT/US99/18750

Amplification using these primers generated an amplicon containing an approximately 280 base internal fragment of tet<sup>R</sup> coding sequence, with 25 nucleotide *MSG*-specific ends. For amplification, 1 μg of tet<sup>R</sup> coding sequence DNA was added to a 50 μl reaction containing primers (25 pM each), dNTPs (0.2 mM), 5 U of AmpliTaq (Perkin-Elmer), and MgCl<sub>2</sub> (2.5 mM). The DNA amplification was performed on a Perkin Elmer Cetus DNA thermal cycler. An initial denaturation cycle (2 minutes at 94°C) was followed by 34 cycles of denaturation at 94°C for 1 minute, annealing at 68°C for 1 minute and extension at 72°C for 2 minutes, followed by a final extension after the last cycle at 72°C for 5 minutes.

The resultant 294 base pair amplicon was ligated in to the pCR 2.1 vector and transformed into *E. coli* following the manufacturer's procedures (TA cloning Kit, Invitrogen, Carlsbad, CA). Confirmation of the insert was performed through standard cloning and PCR techniques.

### B. Collection and Preparation of Clinical Samples

5

10

15

20

25

30

35

40

Clinical samples for use in MSG-PCR detection of P. carinii can be collected in any conventional way. Sputum was collected as described in Bigby et al. (Am. Rev. Respir. Dis. 133:515-518, 1986), and Kovacs et al. (NEJM 318:589-593, 1988). Bronchoalveolar lavage (BAL) was performed as described in Ognibene et al. (Am. Rev. Respir. Dis. 129:929-932,1984). Oral washes were carried out by having the subject gargle with 50 cc of normal saline for 10-30 seconds and then expectorate the wash into a sample cup (Helweg-Larsen et al. (1998) J. Clin. Microbiol. 36:2068-2072). Serum samples were obtained from blood in a conventional fashion. A 200 µL aliquot of serum was used for DNA extraction.

Oral washes, sputum and bronchoalveolar lavages were spun down 3500 rpm for 10 minutes and the supernatant decanted, leaving approximately 1 ml of liquid in which to resuspend the pellet. Samples were transferred to 2 ml microfuge tubes and centrifuge at 10,000 rpm for 10 minutes to remove remaining liquid. A 250  $\mu$ L aliquot of InstaGene Matrix (BioRad. Cat. #732-6030, Hercules, CA) was added to the pellet and vortexed briefly. The samples were then incubated at 56° C for 20 minutes, vortexed for 10 seconds and incubated at 100° C for 8 minutes. The samples are vortexed again for 10 seconds and centrifuged at 12,000 rpm for 3 minutes; 5  $\mu$ L of the resultant supernatant was used in each standard 50  $\mu$ L PCR reaction.

In certain experiments, DNA was extracted from samples prepared as above using the NucliSens Isolation System (Organon Teknika Corp., Netherlands), using the manufacturer's instructions.

### C. Conditions for PCR reactions

To minimize contamination, DNA extraction, amplification and product detection procedures were carried out in separate areas of the laboratory, aerosol-barrier pipette tips were used for all reagent transfers, and multiple negative controls were included in each experiment. In order to

10

15

20

25

30

35

minimize carry-over contamination from amplified samples, all specimens were irradiated with UV light after completion of amplification to cross-link the IP-10, which reacts with the PCR product to make it unamplifiable while not interfering with detection (Isaacs et al. (1991) Nucleic Acids Res. 19:109-116; Rys and Persing (1993) J. Clin. Microbiol. 31:2356-2360).

MSG sequence: For PCR amplification of human-P. carinii MSG in clinical samples, the upstream primer used was an equimolar mixture of JKK14 (SEQ ID NO: 17) (corresponding to the residues of 2887-2911 of HMSG33, which is also 2845-2869 of hMSG11) and JKK15 (SEQ ID NO: 18) (corresponding to the residues of 2836-2860 of HMSG32). The downstream primer used was JKK17 (SEQ ID NO: 20) (complementary to the conserved residues 3106-3130 of HMSG33, which is also 3064-3088 of MSG11). In experiments wherein the amplified product was detected using the DELFIA<sup>TM</sup> system, the downstream primer was biotinylated at the 5' end to allow specific capture of amplified sequences through the use of streptavidin.

PCR amplification was carried out in standard PCR reaction mixture (50 mM KCl, 10 mM Tris, pH 8.0, 0.01% gelatin, 3 mM MgCl<sub>2</sub>, 400  $\mu$ M dNTPs (Boehringer Mannheim), 1  $\mu$ M each oligonucleotide primer, and 0.025 units/ $\mu$ l of Amplitaq (Perkin Elmer Cetus)). The HRI AmpStop<sup>TM</sup> system was used to control carry-over contaminations; IP-10 (a psoralen derivative) (4  $\mu$ g/ $\mu$ l) was added to each reaction to enable UV cross-linking at the end of the amplification cycle, thereby reducing the possibility of cross contaminating of other samples by amplified products (HRI Research, Inc., Concord, CA).

Samples were amplified using one of the following two PCR cycles: (1) an initial denaturation cycle (5 minutes at 94° C) was followed by 44 cycles of denaturation at 94° C for 30 seconds, annealing at 65° C for 1 minute and extension at 72° C for 2 minutes, followed by a final extension after the last cycle at 72° C for 5 minutes; (2) an initial denaturation at 96° C for 1 minute was followed by 43 cycles of denaturation at 95° C for 1 minute, annealing at 65° C for 1 minute, and extension at 72° C for 1 minute, with a final extension time of 10 minutes at 72° C. All specimens were irradiated with UV light after completion of cycling to cross-link the incorporated IP-10.

Mitochondria large subunit rRNA (MRSU): Previously published PCR primers pAZ102-E and pAZ102-H were used to amplify *P. carinii* mitochondrial large subunit rRNA (MRSU) in clinical samples (Wakefield *et al.* (1990) *Mol. and Biochem. Parasitol.* 43:69-76). Primer pAZ102H was biotinylated at the 5' end to allow streptavidin-mediated capture of the amplified product in experiments wherein the amplified product was detected using the DELFIA<sup>TM</sup> system. The PCR reaction mixture employed was as above. Samples were amplified using one of the following two PCR cycles: (1) an initial denaturation cycle (2 minutes at 94° C) was followed by 40 cycles of denaturation at 94° C for 1.5 minutes, annealing at 55° C for 1.5 minutes and extension at 72° C for 2 minutes, followed by a final extension after the last cycle at 72° C for 5 minutes; (2) an initial denaturation at 96° C for 1 minute was followed by 43 cycles of denaturation at 95° C for 1 minute, annealing at 65° C for 1 minute, and extension at 72° C for 1 minute, with a final extension time of 10 minutes at 72° C.

10

15

20

25

30

35

### D. Detection of Amplified PCR Products

Southern Blotting: Standard southern blotting techniques were used to confirm the PCR results (Tables 2 and 3). Following agarose gel electrophoresis, PCR products were transferred to Hybond N+ membranes (Amersham, Live Science, Arlington Heights, IL). Amplification of human-*P. carinii MSG* was detected using probe JKK16 (SEQ ID NO: 19), which corresponds to residues of 3004-3029 of *HMSG33*. Amplification of *P. carinii* MRSU was detected using pAZ102-L2 (Wakefield *et al.* (1990) *Mol. and Biochem. Parasitol.* 43:69-76). Oligonucleotides were labeled with [γ-<sup>32</sup>P]-ATP by T4 polynucleotide kinase (Ready-to-Go<sup>TM</sup> Molecular Biology Reagents, Pharmacia Biotech, Denmark). Prehybridization and hybridization were performed overnight at 52° C in 6 X SSPE, 1% sodium dodecyl sulfate (SDS), 10 X Denhardts' solution (Research Genetics, Huntsville, Alabama). Filters were washed at 52° C in 1 x SSPE, 0.5% SDS for 30 min, then 0.1 x SSPE, 0.5% SDS for 15 minutes.

Time-Resolved Fluorescence: Time-resolved fluorescence detection of amplified sequences was carried out using the DELFIA® system essentially as described by the manufacturer (EG&G Wallac Co.). Using standard procedures, amplicons with incorporated biotin were immobilized in streptavidin-coated microtiter plate wells and washed. Europium-labeled JKK16 was used to probe for the presence of amplified MSG sequences; europium-labeled pAz102-L2 was used to probe for the presence of amplified RNA sequences. Results are summarized in Tables 4 and 5, in comparison to DFA staining.

### F. Comparison of P. carinii Detection Methods

Oral wash samples were collected along with sputum, induced sputum or BAL. All samples were evaluated by direct fluorescent antibody (DFA) staining. DFA staining was performed using a commercially available kit per the manufacturer's instructions (Genetics Systems, Seattle, WA). Oral wash samples were further tested by PCR, using both primer pairs as detailed above. Summarized results from multiple experiments are shown. Table 2 summarizes the results of a comparison between DFA staining and MSG and MRSU PCR amplification of BAL samples. Table 3 shows the results of a similar comparison using oral wash specimens. Table 4 shows the results of the comparison of samples taken via oral wash; results were determined using the Delfia<sup>TM</sup> hybridization capture system. Table 5 shows the results of the comparison of samples taken from serum; results were determined using the Delfia<sup>TM</sup> hybridization capture system.

The DFA-/PCR+ samples (Table 4) likely represent true positive results based on PCR amplification of corresponding sputum samples or concordance between the two PCR methods. One patient with PCP diagnosed by BAL had a negative PCR of oral wash and sputum by both methods, and negative DFA of induced sputum. These data suggest that PCR performed on oral washes can be an accurate, non-invasive means of diagnosing PCP.

40

55



| _  | •             | No. of BAL specimens |          |           |                   |  |
|----|---------------|----------------------|----------|-----------|-------------------|--|
| 5  | Stain Results | MSG gene primers     |          | MRSU gene | MRSU gene primers |  |
|    | Sum Rosum     | Positive             | Negative | Positive  | Negative          |  |
| 10 | Positive      | 7                    | 0        | 6         | 1                 |  |
|    | Negative      | 0                    | 12       | 0         | 12                |  |

Table 3: Results of DFA staining compared to MSG and MRSU gene primer PCR amplification in oral wash specimens, as measured by Southern hybridization.

| Stain Bassita | No. of oral wash specimens  MSG gene primers  MRSU gene primers |                                   |                                                |                                                           |  |
|---------------|-----------------------------------------------------------------|-----------------------------------|------------------------------------------------|-----------------------------------------------------------|--|
| Stain Results | Positive                                                        | Negative                          | Positive                                       | Negative                                                  |  |
| Positive      | 4                                                               | 4                                 | 3                                              | 5                                                         |  |
| Negative      | 3                                                               | 70                                | 0                                              | 73                                                        |  |
|               |                                                                 | Stain Results Positive Positive 4 | Stain Results  Positive Negative  Positive 4 4 | Stain Results  Positive Negative Positive  Positive 4 4 3 |  |

Table 4: Results of DFA staining compared to MSG and MRSU gene primer PCR amplification in oral wash specimens, as measured by Delfia™ hybridization capture assay.

| 30 | Stain Danulta | No. of oral wash specimens  MRSU gene primers  MRSU gene primers |          |          |          |  |
|----|---------------|------------------------------------------------------------------|----------|----------|----------|--|
|    | Stain Results | Positive                                                         | Negative | Positive | Negative |  |
| 35 | Positive      | 11                                                               | 0        | 9        | 2        |  |
| 33 | Negative      | 4                                                                | 157      | 3        | 158      |  |

Table 5: Results of DFA staining compared to MSG and MRSU gene primer PCR amplification in blood serum specimens, as measured by Delfia™ hybridization capture assay.

|    | Stain Results |             | <i>MSG</i> g | No. of serum ene primers | -        | MRSU gene primers |  |
|----|---------------|-------------|--------------|--------------------------|----------|-------------------|--|
| 45 | Stain r       | Cosuits     | Positive     | Negative                 | Positive | Negative          |  |
|    |               | Positive    | 3            | 0                        | 2        | 1                 |  |
| 50 |               | Negative    | 0            | 7                        | 0        | 7                 |  |
|    | G.            | Sensitivity | of PCR Using | g Human- <i>P</i> .      |          |                   |  |

carinii MSG

The sensitivity of the PCR assay was tested quantitatively by serial dilution of DNA isolated from an autopsy lung sample of an HIV-infected patient with P. carinii pneumonia (as above). From

10

this DNA preparation, amplified PCR product could be generated with the MSG gene primers (JKK14, JKK15 and JKK17) using about as little as 16 fg of genomic DNA containing human P. carinii DNA as the template. This amount indicates that MSG gene amplification is about 10 to 100 fold more sensitive than amplification using the large subunit rRNA gene primers (pAZ102-E and pAZ102-H). This calculation is based on total DNA, the vast majority of which is human DNA, not P. carinii DNA, since there is no good method for purifying human-P. carinii away from the human DNA in a single sample. Amounts of DNA were measured by spectrophotometry.

The foregoing examples are provided by way of illustration only. One of skill in the art will appreciate that numerous variations on the biological molecules and methods described above may be employed to make and use oligonucleotide primers for the amplification of human-*P. carinii* MSG-encoding sequences, and for their use in detection and diagnosis of *P. carinii* in clinical samples. We claim all such subject matter that falls within the scope and spirit of the following claims.

#### **CLAIMS**

We claim:

5

10

15

1. A method of detecting the presence of *Pneumocystis carinii* in a biological specimen, comprising:

amplifying a human-P. carinii nucleic acid sequence, if such sequence is present in the sample, using two or more oligonucleotide primers derived from human-P. carinii MSG protein encoding sequence; and

determining whether an amplified sequence is present.

The method according to claim 1, wherein amplification of the human-P. carinii

- nucleic acid sequence is by polymerase chain reaction.
- 3. The method of claim 1, wherein the human-P. carinii nucleic acid sequence is a highly conserved region within an MSG-protein encoding sequence.
- 4. The method of claim 3, wherein the highly conserved region comprises a sequence selected from the group consisting of: residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).

20

5. The method of claim 1, wherein at least one oligonucleotide primer comprises at least 15 contiguous nucleotides from a sequence chosen from the group consisting of: residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15) and nucleic acid sequences having at least 70% sequence homology with residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).

30

25

6. The method of claim 5, wherein at least one oligonucleotide primer comprises at least 15 contiguous nucleotides from a nucleic acid sequence having at least 90% sequence homology with residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).

35

7. The method of claim 5, wherein at least one oligonucleotide primer comprises at least 15 contiguous nucleotides from a nucleic acid sequence having at least 95% sequence homology with residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of

10

20

25

30

35

HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), and 1-249 of HMSGp2 (SEQ ID NO: 15).

- 8. The method of claim 5, wherein the oligonucleotide primers are chosen from the group consisting of: SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 23, and SEQ ID NO: 24.
- 9. The method of claim 5, wherein the pair of oligonucleotide primers consist of one upstream primer and one downstream primer.
  - 10. The method of claim 9, wherein:

the upstream primer is chosen from the group consisting of: SEQ ID NO:

17, SEQ ID NO: 18, SEQ ID NO:19, SEQ ID NO:23; and

the downstream primer is chosen from the group consisting of: SEQ ID NO: 20 and SEQ ID NO: 24.

- 11. The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ ID NO: 17.
- 15 12. The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ ID NO: 18.
  - 13. The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ ID NO: 19.
  - 14. The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ ID NO: 20.
  - 15. The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ ID NO: 23.
  - 16. The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ ID NO: 24.
  - 17. The method of claim 1, wherein the biological specimen is from the oropharyngeal tract.
    - 18. The method of claim 1, wherein the biological specimen is from blood.
  - 19. The method of claim 1, wherein the step of determining whether an amplified sequence is present comprises one or more of:
    - (a) electrophoresis and staining of the amplified sequence; or
    - (b) hybridization to a labeled probe of the amplified sequence.
  - 20. The method of claim 19, wherein the amplified sequence is detected by hybridization to a labeled probe.
  - 21. The method of claim 22, wherein the probe comprises a detectable non-isotopic label chosen from the group consisting of:
    - a fluorescent molecule;
    - a chemiluminescent molecule:
    - an enzyme;

10

15

20

30

35

a co-factor; an enzyme substrate; and a hapten.

- 22. The method of claim 21, wherein the labeled probe comprises a nucleic acid sequence according to SEQ ID NO: 19.
- 23. A method of detecting the presence of *Pneumocystis carinii* in a biological specimen, comprising:

exposing the biological specimen to a probe that hybridizes to a human-*P. carinii* nucleic acid sequence, if the sequence is present in the sample to form a hybridization complex; and determining whether the hybridization complex is present

wherein the nucleic acid sequence derived from human-P. carinii is an MSG encoding sequence.

- 24. The method of claim 23, wherein the labeled probe comprises a nucleic acid sequence according to SEQ ID NO: 19.
- 25. A purified protein comprising an amino acid sequence selected from the group consisting of
  - (a) SEQ ID NO: 2;
  - (b) SEQ ID NO: 4;
  - (c) SEQ ID NO: 6;
  - (d) SEQ ID NO: 8;
  - (e) SEQ ID NO: 10;
  - (f) SEQ ID NO: 12;
  - ()
  - (g) SEQ ID NO: 14;

and conservative substitutions thereof.

- 25 26. An isolated nucleic acid molecule encoding a protein according to claim 25.
  - 27. The isolated nucleic acid molecule according to claim 26, wherein the nucleic acid molecule has a sequence selected from the group consisting of: SEQ ID NO: 1; SEQ ID NO: 2; SEQ ID NO: 3; SEQ ID NO: 4, SEQ ID NO: 5; SEQ ID NO: 6, SEQ ID NO: 7; SEQ ID NO: 15; and SEQ ID NO: 17.
  - An isolated nucleic acid molecule comprising a sequence selected from the group consisting of: residues 2894-3042 of HMSGp1 (SEQ ID NO: 1), 2758-3006 of HMSGp3 (SEQ ID NO: 3), 2845-3090 of HMSG11 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ ID NO: 7), 2836-3081 of HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), and 1-249 of HMSGp2 (SEQ ID NO: 15); and a sequence with at least 70% sequence identity with residues 2894-3042 of HMSGp1 (SEQ ID NO: 1), 2758-3006 of HMSGp3 (SEQ ID NO: 3), 2845-3090 of HMSG11 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ ID NO: 7), 2836-3081 of HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), and 1-249 of HMSGp2 (SEQ ID NO: 15).

10

15

20

25

30

35

- 29. An isolated nucleic acid molecule comprising a sequence selected from the group consisting of: at least 15 contiguous nucleotides of the nucleic acid molecule according to claim 28.
- 30. An isolated nucleic acid molecule comprising a sequence selected from the group consisting of: at least 20 contiguous nucleotides of the nucleic acid molecule according to claim 29.
  - 31. A recombinant vector comprising the nucleic acid molecule according to claim 28.
  - 32. A transgenic cell comprising the vector according to claim 31.
- 33. A kit for detecting a human-*P. carinii* nucleic acid sequence comprising at least a pair of primers each comprising at least 15 contiguous nucleotides of sequence selected from the group consisting of: residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15); and a sequence with at least 70% sequence identity with residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).
- 34. A kit for detecting a human-*P. carinii* nucleic acid sequence comprising at least a pair of primers each comprising at least 20 contiguous nucleotides of sequence selected from the group consisting of: residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15); and a sequence with at least 70% sequence identity with residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).
- 35. A kit for detecting a human-*P. carinii* nucleic acid sequence comprising at least a pair of primers each comprising at least 30 contiguous nucleotides of sequence selected from the group consisting of: residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15); and a sequence with at least 70% sequence identity with residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).

10

15

- 36. The kit of claim 33, wherein at least one of the oligonucleotide primers comprises a sequence selected from the group consisting of: SEQ ID NO: 17; SEQ ID NO: 18; SEQ ID NO: 19; SEQ ID NO: 20; SEQ ID NO: 21; SEQ ID NO: 22; SEQ ID NO: 23; and SEQ ID NO: 24.
- 37. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 17.
- 38. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 18.
- 39. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 19.
- 40. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 21.
- 41. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 22.
- 42. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 23.
- 43. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 24.
  - 44. Antibody raised against the peptide sequence according to SEQ ID NO: 25.
  - 45. Antibody raised against the peptide sequence according to SEQ ID NO: 26.

## AMENDED CLAIMS

[received by the International Bureau on 16 March 2000 (16.03.00); original claims 1-45 replaced by amended claims 1-45 (5 pages)]

5

10

1. A method of detecting the presence of *Pneumocystis carinii* in a biological specimen, comprising:

amplifying a highly conserved region within a human-P. carinii nucleic acid sequence, if such sequence is present in the sample, using two or more oligonucleotide primers derived from human-P. carinii MSG protein encoding sequence; and

determining whether an amplified sequence is present.

- 2. The method according to claim 1, wherein amplification of the human-*P. carinii* nucleic acid sequence is by polymerase chain reaction.
- 3. The method of claim 1, wherein the human-P. carinii nucleic acid sequence is a highly conserved region within an MSG-protein encoding sequence.

4. The method of claim 3, wherein the highly conserved region comprises a sequence selected from the group consisting of: residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).

20

25

15

5. The method of claim 1, wherein at least one oligonucleotide primer comprises at least 15 contiguous nucleotides from a sequence chosen from the group consisting of: residues 2894-3042 of HMSGp1 (SEQ ID NO: 1), 2758-3006 of HMSGp3 (SEQ ID NO: 3), 2845-3090 of HMSG11 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ ID NO: 7), 2836-3081 of HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), and 1-249 of HMSGp2 (SEQ ID NO: 15) and nucleic acid sequences having at least 70% sequence homology with residues 2894-3042 of HMSGp1 (SEQ ID NO: 1), 2758-3006 of HMSGp3 (SEQ ID NO: 3), 2845-3090 of HMSG11 (SEQ ID NO: 5), 2839-3084 of HMSG14 (SEQ ID NO: 7), 2836-3081 of HMSG32 (SEQ ID NO: 9), 2887-3132 of HMSG33 (SEQ ID NO: 11), 2821-3072 of HMSG35 (SEQ ID NO: 13), and 1-249 of HMSGp2 (SEQ ID NO: 15).

30

6. The method of claim 5, wherein at least one oligonucleotide primer comprises at least 15 contiguous nucleotides from a nucleic acid sequence having at least 90% sequence homology with residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).

35

7. The method of claim 5, wherein at least one oligonucleotide primer comprises at least 15 contiguous nucleotides from a nucleic acid sequence having at least 95% sequence homology with residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of

10

15

25

30

35

*HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).

- 8. The method of claim 5, wherein the oligonucleotide primers are chosen from the group consisting of: SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO:20, SEQ ID NO: 23, and SEQ ID NO: 24.
- 9. The method of claim 5, wherein the pair of oligonucleotide primers consist of one upstream primer and one downstream primer.
  - 10. The method of claim 9, wherein:

the upstream primer is chosen from the group consisting of: SEQ ID NO:

17, SEQ ID NO: 18, SEQ ID NO:19, SEQ ID NO:23; and

the downstream primer is chosen from the group consisting of: SEQ ID NO: 20 and SEQ ID NO: 24.

- 11. The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ
- ID NO: 17.
- The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ ID NO: 18.
  - The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ ID NO: 19.
    - 14. The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ

20 ID NO: 20.

- 15. The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ ID NO: 23.
- 16. The method of claim 8, wherein one of the oligonucleotide primers comprises SEQ ID NO: 24.
- 17. The method of claim 1, wherein the biological specimen is from the oropharyngeal tract.
  - 18. The method of claim 1, wherein the biological specimen is from blood.
- 19. The method of claim 1, wherein the step of determining whether an amplified sequence is present comprises one or more of:
  - (a) electrophoresis and staining of the amplified sequence; or
  - (b) hybridization to a labeled probe of the amplified sequence.
- 20. The method of claim 19, wherein the amplified sequence is detected by hybridization to a labeled probe.
- 21. The method of claim 22, wherein the probe comprises a detectable non-isotopic label chosen from the group consisting of:
  - a fluorescent molecule:
  - a chemiluminescent molecule;

an enzyme;

5

10

15

30

35

a co-factor; an enzyme substrate; and a hapten.

- 22. The method of claim 21, wherein the labeled probe comprises a nucleic acid sequence according to SEQ ID NO: 19.
- 23. A method of detecting the presence of *Pneumocystis carinii* in a biological specimen, comprising:

exposing the biological specimen to a probe that hybridizes to a highly conserved region within a human-*P. carinii* nucleic acid sequence, if the sequence is present in the sample to form a hybridization complex; and

determining whether the hybridization complex is present wherein the nucleic acid sequence derived from human-P. carinii is an MSG encoding sequence.

- 24. The method of claim 23, wherein the labeled probe comprises a nucleic acid sequence according to SEQ ID NO: 19.
- 25. A purified protein comprising an amino acid sequence selected from the group consisting of
  - (a) SEQ ID NO: 2;
  - (b) SEQ ID NO: 4;
- 20 (c) SEQ ID NO: 6;
  - (d) SEQ ID NO: 8;
  - (e) SEQ ID NO: 10;
  - (f) SEQ ID NO: 12;
  - (g) SEQ ID NO: 14;
- 25 and conservative substitutions thereof.
  - 26. An isolated nucleic acid molecule encoding a protein according to claim 25.
  - 27. The isolated nucleic acid molecule according to claim 26, wherein the nucleic acid molecule has a sequence selected from the group consisting of: SEQ ID NO: 1; SEQ ID NO: 2; SEQ ID NO: 3; SEQ ID NO: 4, SEQ ID NO: 5; SEQ ID NO: 6, SEQ ID NO: 7; SEQ ID NO: 15; and SEQ ID NO: 17.
  - An isolated nucleic acid molecule comprising a sequence selected from the group consisting of: residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15); and a sequence with at least 70% sequence identity with residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ

10

15

20

25

ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).

- 29. An isolated nucleic acid molecule comprising a sequence selected from the group consisting of: at least 15 contiguous nucleotides of the nucleic acid molecule according to claim 28.
- 30. An isolated nucleic acid molecule comprising a sequence selected from the group consisting of: at least 20 contiguous nucleotides of the nucleic acid molecule according to claim 29.
  - 31. A recombinant vector comprising the nucleic acid molecule according to claim 28.
  - 32. A transgenic cell comprising the vector according to claim 31.
- 33. A kit for detecting a human-*P. carinii* nucleic acid sequence comprising at least a pair of primers each comprising at least 15 contiguous nucleotides of sequence selected from the group consisting of: residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15); and a sequence with at least 70% sequence identity with residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).
- A kit for detecting a human-*P. carinii* nucleic acid sequence comprising at least a pair of primers each comprising at least 20 contiguous nucleotides of sequence selected from the group consisting of: residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15); and a sequence with at least 70% sequence identity with residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).
- A kit for detecting a human-*P. carinii* nucleic acid sequence comprising at least a pair of primers each comprising at least 30 contiguous nucleotides of sequence selected from the group consisting of: residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15); and a sequence with at least 70% sequence identity with residues 2894-3042 of *HMSGp1* (SEQ ID NO: 1), 2758-3006 of *HMSGp3* (SEQ ID NO: 3), 2845-3090 of *HMSG11* (SEQ ID NO: 5), 2839-3084 of *HMSG14* (SEQ ID NO: 7), 2836-3081 of *HMSG32* (SEQ ID NO: 9), 2887-3132 of *HMSG33* (SEQ ID NO: 11), 2821-3072 of *HMSG35* (SEQ ID NO: 13), and 1-249 of *HMSGp2* (SEQ ID NO: 15).

30

10

15

- 36. The kit of claim 33, wherein at least one of the oligonucleotide primers comprises a sequence selected from the group consisting of: SEQ ID NO: 17; SEQ ID NO: 18; SEQ ID NO: 19; SEQ ID NO: 20; SEQ ID NO: 21; SEQ ID NO: 22; SEQ ID NO: 23; and SEQ ID NO: 24.
- 37. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 17.
- 38. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 18.
- 39. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 19.
- 40. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 21.
- 41. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 22.
- 42. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 23.
- 43. The kit of claim 36, wherein one of the oligonucleotide primers comprises the sequence according to SEQ ID NO: 24.
  - 44. Antibody raised against the peptide sequence according to SEQ ID NO: 25.
  - 45. Antibody raised against the peptide sequence according to SEQ ID NO: 26.

FIGURE

| • |  |
|---|--|

| 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                        | 600<br>600<br>600<br>600<br>600<br>600<br>600<br>600<br>600<br>600            | 000000000000000000000000000000000000000                                                                                                                          |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O H N K K K H H A<br>K O H N N K O O O                                          | N N N N N N N N N N N N N N N N N N N                                         | ままなののは<br>ままではは<br>は<br>で<br>は<br>に<br>は<br>に<br>は<br>に<br>は<br>に<br>は<br>に<br>は<br>に<br>に<br>は<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に |
| XXEXXEQXX<br>UEZXXXEE                                                           | <b>UUEEUEEEEE</b>                                                             |                                                                                                                                                                  |
| ZHHAHHHA                                                                        |                                                                               | OOGKAARHA                                                                                                                                                        |
| нинининин                                                                       | <pre></pre>                                                                   | X D H H H H H L Z                                                                                                                                                |
| [ [ ] [ ] [ ] [ ] [ ] [ ]                                                       | NOKKKKKOE                                                                     | DOOOOOOO                                                                                                                                                         |
| $\alpha$                                                                        | 医医环因医医医医后                                                                     | BXXXXXXXX                                                                                                                                                        |
| 4444444                                                                         | льччччыга                                                                     | DKAQQQGKA                                                                                                                                                        |
| てんまけんくけでけ                                                                       | ZHUZZKOZH                                                                     | BENKKKE                                                                                                                                                          |
|                                                                                 | スリスコリコリコリ                                                                     | ひひひひしひまり                                                                                                                                                         |
| X>EHHEN>HK                                                                      | OKFGGGHKK                                                                     | <b>XZXXXXXZ</b>                                                                                                                                                  |
| 阿瓦瓦西西西西西西                                                                       | $\alpha$                                                                      | <b>KKTZZEA4</b> K                                                                                                                                                |
| Опппппппппп                                                                     | RENZZZZKEZ                                                                    | <b>KKBKKKOKK</b>                                                                                                                                                 |
| PUDUUUA                                                                         | <b>よられてててれてよ</b>                                                              | ひころいいこしてこれ                                                                                                                                                       |
| 困エススエエSC田                                                                       | 다다다다다다다다                                                                      | ОББООБС                                                                                                                                                          |
| D> I Q Q > Q Q Z                                                                | わ召耳エエエAIM                                                                     | <b>X X X O O X O X E</b>                                                                                                                                         |
| N N N N N N N N N N N N N N N N N N N                                           | <b>XXEXXXEQU</b>                                                              | 0                                                                                                                                                                |
| 11114111                                                                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                         | X X X X X X X X X X                                                                                                                                              |
| 1 1 1 1 1 1 1 1 1 1 1 1                                                         | <b>なれななななればない。</b>                                                            | 田文文田田名下下文                                                                                                                                                        |
| A N Z O O N N O X                                                               | X X II II II X X X II                                                         |                                                                                                                                                                  |
| OAOAAAAH>                                                                       | 田田太田田田田太太                                                                     | RXHRXAKAQ                                                                                                                                                        |
|                                                                                 | HUUUUUUUH                                                                     | XXTXXXXXX                                                                                                                                                        |
| PHAMMAHAA                                                                       | E E E E E E E E E E E E E E E E E E E                                         |                                                                                                                                                                  |
|                                                                                 | X II X X X X X X X X X X X X X X X X X                                        | 1 1 1 1 1 1 1 1 1 1                                                                                                                                              |
| K K K K K K K K K K K K K K K K K K K                                           | OCCCCCCC                                                                      | XXDDDXDDD                                                                                                                                                        |
| XXXXXXXXX                                                                       | XXXXXXXXXXX<br>CCCCCCCC                                                       |                                                                                                                                                                  |
| >>>>>>>                                                                         | OXDHFZHOO                                                                     | DDKDDEGEK                                                                                                                                                        |
| $\sigma$                                                                        | MUZUUUUMM                                                                     | 0                                                                                                                                                                |
| 及民民民民民民民民                                                                       | EDZEE IESD                                                                    | मेमममममममम                                                                                                                                                       |
| $\alpha$                                                                        | KKEZITEKK                                                                     |                                                                                                                                                                  |
| $\Sigma > > $ $ $ $ $ $ $ $ $ $ $ $>$                                           | K Q V C Q X C X                                                               | <b>X X D X X X X X X X</b>                                                                                                                                       |
| RMSGGP3<br>HMSGp1<br>HMSG11<br>HMSG14<br>HMSG32<br>HMSG33<br>HMSG33<br>GBHMSG35 | RMSGGP3<br>HMSGp1<br>HMSG11<br>HMSG14<br>HMSG32<br>HMSG33<br>HMSG33<br>GBHMSG | RMSGGP3<br>HMSGp1<br>HMSG11<br>HMSG14<br>HMSG32<br>HMSG33<br>HMSG33<br>GBHMSG35                                                                                  |
|                                                                                 | 1/13                                                                          |                                                                                                                                                                  |

| WO 00/09760                                                         |                                                            | PC1/0S99/18/50                                                                                     |
|---------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 123<br>123<br>123<br>123<br>123<br>123<br>123                       | 744661<br>744661<br>744666<br>7666<br>7666<br>7666<br>7666 | 186<br>184<br>184<br>186<br>186<br>187<br>186                                                      |
| Q U U U U U U U D                                                   | днадарада                                                  | $\mathbb{R}^{-1}$                                                                                  |
| H $A$                           | なまりなななななな                                                  | S X X H H X $O$ Z $I$                                                                              |
| ппососо                                                             | 民民民民民民民民民                                                  | $\Sigma$                                                                                           |
| ппппппппп                                                           |                                                            |                                                                                                    |
| コロロロロロロロロ                                                           |                                                            | пыпыпыпы                                                                                           |
| 디타타타타타다다다                                                           | ハススマススマスロ                                                  |                                                                                                    |
| нчччччччч                                                           | 医瓦瓦瓦瓦瓦瓦瓦瓦                                                  | $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$                            |
| 0 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                               | 医灰压瓦瓦瓦瓦瓦瓦                                                  | 日內日日日日日日日                                                                                          |
| X Q Q Q Q Q Q Q Q                                                   | AAAAAAAAA                                                  | R O K K K O K K O                                                                                  |
| 正の瓦のひのQROR                                                          |                                                            | 0                                                                                                  |
| 瓦瓦瓦瓦瓦瓦瓦瓦瓦                                                           | <b>XXDXXXQX</b> 0                                          | THETHHEH                                                                                           |
| > Z Z Z Z Z Z Z Z                                                   | ROOKKOOR                                                   | > 国 国 队 X 因 > > X                                                                                  |
| <b>环环环环环团团团团</b>                                                    | 民民民民民民民民民                                                  | <b>ЧООЧЧТЧЧ</b>                                                                                    |
| <b>ほ T X X X X X X X X</b>                                          | <b>XXXEDXXXX</b>                                           | $\mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} $ |
| 0                                                                   | <b>UNKKKKKK</b>                                            | <b>ムエエルムルルスム</b>                                                                                   |
| ZHODODZOO                                                           | なるのななななな                                                   | TPB国用国日口                                                                                           |
| EDZEEEDXD                                                           | <b>在在在在在在在</b> 在在                                          | N E X X X X X X X                                                                                  |
|                                                                     | 0                                                          | ZUUUUUUH                                                                                           |
| <b>KKETHTESH</b>                                                    | T X Z X Z X Z Z Z Z Z Z Z Z Z Z Z Z Z Z                    | <b>KKKKKKKK</b>                                                                                    |
| нччччччч                                                            | MZZZZZZZ                                                   | GZZKKGKKK                                                                                          |
| N H N C E E E E E E E E                                             | <b>我我我我我我我</b>                                             | 队团队团团团团团团                                                                                          |
| 1                                                                   |                                                            | OODOOD HOO                                                                                         |
| ・女女エエビゴエム                                                           | BUBKKFKFK                                                  | K O H H H H H H H                                                                                  |
| 一国ほれれれれれて                                                           |                                                            | <b>AZZXXHU&gt;</b> H                                                                               |
| ・                                                                   |                                                            | 压灰灰下下压下分灰                                                                                          |
| Z X X Q X X Q X X                                                   |                                                            | RODEMEZEGN                                                                                         |
| エママダムヘに                                                             |                                                            | RKKZZHZZO                                                                                          |
| > I A A A A A A F                                                   |                                                            |                                                                                                    |
| <b>水豆又THEDO豆C</b>                                                   |                                                            |                                                                                                    |
| Q 豆 口 Q Q T T T K E                                                 |                                                            |                                                                                                    |
| 년년년년년 · 년년                                                          | O S H H H A H X D                                          | 0 0 0 0 0 0 0 0 0 0 0                                                                              |
| 压压压灰灰灰:灰灰                                                           | х эгдддги                                                  | <b>GKKKKKKK</b>                                                                                    |
| RMSGGP3<br>HMSGp1<br>HMSG11<br>HMSG14<br>HMSG32<br>HMSG33<br>HMSG35 | SGD<br>SGD<br>SG1<br>SG3<br>SG3<br>SG3<br>SG3              | RMSGGP3<br>HMSGp1<br>HMSG11<br>HMSG14<br>HMSG32<br>HMSG33<br>HMSG35<br>GBHMSG                      |

| 2210<br>2212<br>2212<br>21218<br>21218<br>21218                                           | 22222222222222222222222222222222222222                       | 254<br>267<br>277<br>277<br>262<br>262<br>274                                                    |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                                                                           |                                                              |                                                                                                  |
| DHKKKKIIZ                                                                                 | 111222114                                                    | <ul><li>□ &gt; 0 0 0 0 0 0 0 0</li></ul>                                                         |
| 攻下は攻攻は日らら田                                                                                | + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$                        | $\sigma$                                                                                         |
| HHHHHHHH                                                                                  | こことなれてここの                                                    | <b>AUAHHHUPH</b>                                                                                 |
| ママヤなななななる                                                                                 | $O \cap \bowtie                                  $           | X H A Z Z H H Z H                                                                                |
| KELEEAKK                                                                                  | K S O K K S O D S                                            | <b>ななななななななな</b>                                                                                 |
| · TO H H H K A K                                                                          | <b>40000H004</b>                                             | H T V V V V V V V V V V V V V V V V V V                                                          |
| ・ ヌエッッッッ>                                                                                 | AUUUUUHAN                                                    | ннднннннн                                                                                        |
| LUCHECZUC                                                                                 | Обыпыпоск                                                    | SZZZZZZZ                                                                                         |
| · NEXXOATE                                                                                | 0                                                            | <b>KKEEEEZOOK</b>                                                                                |
| <b>K K K B B B K K K B</b>                                                                | A N N N N N P                                                | GEKKKEHEK                                                                                        |
| コアコンコンコンコ                                                                                 | 田 田 v c c c c c c c                                          | 取りひはははなりは                                                                                        |
| <b>THAHHHAHHH</b>                                                                         | б口GRRRTT田                                                    | 0                                                                                                |
| REKUUZHGZ                                                                                 | エスススHHススス                                                    | OKKKKKKKE                                                                                        |
| 0                                                                                         | <b>ਸਿਸਿਸਿਸਿਸਿਸਿਸਿ</b>                                        | ықоны>ооы                                                                                        |
| <b>VKKKKKKKK</b>                                                                          | エススススススエH                                                    | THA A A A D D A                                                                                  |
| TOYSSKKKK                                                                                 | 0                                                            | F                                                                                                |
| GOEKKOUUU                                                                                 | 我 D D O O O C D D D O O C D D D O C D D D D                  | 不压压压压下压压压                                                                                        |
| しまえほほれれれた                                                                                 | имининии                                                     | KSKDDDHHD                                                                                        |
| 环压尺尺尺日日日入                                                                                 | - הרורורורר                                                  | 0                                                                                                |
| <b>KKSTFTKHF</b>                                                                          | スコテココココココ                                                    | ・                                                                                                |
| 以ママクママエエM                                                                                 | 医七七七十日日日                                                     | - Ц - ФФФН н Ф                                                                                   |
| чччччг                                                                                    | дочечачач                                                    | 「エエでムムゼー」                                                                                        |
| DZDQQHZZZ                                                                                 | 0 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                        | よ こ ス 攻 攻 ス こ こ                                                                                  |
| GUG>>XEXH                                                                                 | <b>KKKKKKH</b> EK                                            | і і і БББ І і С                                                                                  |
| 0                                                                                         | 医灰冠冠冠臼冠冠臼                                                    | コニエズズゾニニ田                                                                                        |
| 44444444                                                                                  | <b>AKKKKKKK</b>                                              | טווטטטווט                                                                                        |
| <b>KZKTHZKEK</b>                                                                          | ココココココススコ                                                    | 1 1 1 1 1 1 1 1 1 1 1                                                                            |
| <b>AKEKKKKK</b>                                                                           | N O L E E E E E                                              | 二二、瓦环区区二、瓦                                                                                       |
| $\alpha$ | N E O N N O N N N                                            | Z Z Q Z                                                                                          |
| OZZKKKODO                                                                                 | 10111111                                                     | ¼ ¼ ฬ                                                                                            |
| ロアコロコココココ                                                                                 | 152111111                                                    | птрант                                                                                           |
| 0                                                                                         | · <b>K 団 ・ I K ・ I K</b>                                     |                                                                                                  |
| <del>Д</del> 1 8 1 4 2 8 7 <del>Д</del> 3                                                 | <del>р</del> 1 2 1 4 2 6 1 5<br>6                            | т<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п |
| RMSGG<br>HMSGD<br>HMSG1<br>HMSG1<br>HMSG3<br>HMSG3<br>HMSG3<br>GBHMSG                     | ISGG<br>ISGP<br>ISGP<br>ISG1<br>ISG3<br>ISG3<br>ISG3<br>ISG3 | ISGG<br>ISGD<br>ISGD<br>ISG1<br>ISG3<br>ISG3<br>ISG3<br>ISG3<br>ISG3<br>ISG3                     |
| RMSGI<br>HMSGI<br>HMSGI<br>HMSGI<br>HMSGI<br>HMSGI<br>GBHMS                               | RMS(HMS) HMS(HMS) HMS(HMS) HMS(HMS) HMS(GBH)                 | RMSG<br>HMSG<br>HMSG<br>HMSG<br>HMSG<br>HMSG<br>HMSG<br>GBHM                                     |
|                                                                                           | 2/13<br>3/13                                                 | и и и и и и и и о                                                                                |
|                                                                                           | •                                                            |                                                                                                  |

FIGURE 1C

| WO 00/09760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                       |                |                            |                                           | PCT/US99/18750                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------|----------------|----------------------------|-------------------------------------------|----------------------------------------------------------|
| 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n o o                                        | 315<br>323<br>317     | 200            | $\sim - \sim$              | 404                                       | 359<br>359<br>350<br>349<br>362                          |
| н>н>.>н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - н н                                        | X Q Q                 | <b>X X X</b>   | ZMC                        | N IZE                                     | よま > ら ら み                                               |
| нчятьти                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | т [ <del>т</del> ]                           | - F ≮                 | 1 1 1          | <b></b>                    | i らず取                                     | ZZZZZZ                                                   |
| H H H H H D > 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | > > >                                        | ı <del>[  </del> ı    | 1 1 1          | G디ド                        | Z A A                                     | のXXOE団                                                   |
| $\bigcirc \bigcirc $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 60 60                                      | 1 H                   | ι ι Δ          | HODE                       | 1 東田S                                     | KKZZKZ                                                   |
| 肝思及口口因                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 900                                          | $\Box$ $\odot$ $\Box$ | 1 1 6          | ひららり                       | 000                                       | 0 $0$ $0$ $0$ $0$ $0$ $0$                                |
| <b>末田末田田田</b> 田                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | च ध्य ध्य                                    | ᅜᆸᅀ                   | ئر ا ا         | 3000                       | - 111                                     | цпычпы                                                   |
| 国众》田田众四                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 出田人                                          | DDD                   | 1 1 2          | 4 X I Z                    | : Krop                                    | DSSDSS                                                   |
| $\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>X</b> > <b>X</b>                          | 及の女                   | X X C          | となりな                       | 田比比                                       | 田田日東田日                                                   |
| N K E K K K K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 K K                                        | $\Omega$ H $\Omega$   | ュロロ            | <b>+ &gt; + +</b>          | LHT.                                      | чччччч                                                   |
| <b>ススマズズス</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>4                                    </b> | 나다다                   | ппг            | 1111                       | ннш                                       | <b>ムなエななり</b>                                            |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K K K                                        | 디타디                   | ППГ            | 1111                       | H D H                                     | пппппп                                                   |
| > H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 그다니                                          | AAL                   | 444            | 1 H A A                    | ZHH                                       | <b>HHHHHH</b>                                            |
| 口GK田田田田                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | मध्य                                         | エクロ                   | дді            | 1111                       | 口田田                                       | 田田Sの田耳                                                   |
| Опппппп                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 口田田                                          | 디디디                   | ннн            | 1111                       | マ な な な な                                 | HHKOHK                                                   |
| 444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111                                          | DAA                   | 444            | 4 A A A                    | 저니正                                       | L T S L T T                                              |
| Q $Q$ $Q$ $Q$ $Q$ $Q$ $Q$ $Q$ $Q$ $Q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ם ש ב                                        | OH>                   |                |                            | SZZ                                       | RZZEZZ                                                   |
| н>нннн                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | 口丸田                   | 444            | 444                        | 4 X G                                     | 田田瓦瓦瓦瓦                                                   |
| SEEDODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 900                                          | FAC                   | 996            | 9000                       | 000                                       | 0 $0$ $0$ $0$ $0$ $0$ $0$                                |
| 及田田田田田田                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | च ह्य ह्य                                    | X A X                 | 民民口            | <b>4 R4 R4 R4</b>          | C K K                                     | ZZZXSX                                                   |
| <b>UKKKKK</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 444                                          | Εр                    | >>>            | - ユロマ                      | - KUK                                     | KKUUKZ                                                   |
| 447777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ムェア                                          | <b>С</b> ) і і        | 1 1 1          | 1 1 1                      | 田田瓦                                       | <b>环环环团 Q E</b>                                          |
| SHRHHHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H EH EH                                      | ω i i                 | 1 1            | I I I                      | H디디                                       | чччччч                                                   |
| <b>К</b> ННФФФ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 A D                                        | <b>X</b> 1 1          | 1 1 1          | 1 1 1                      | $\triangleleft$ $\vdash$ $\triangleright$ | ぬなびまなび                                                   |
| <b>以因对因因对</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 田田田                                          | R L R                 | 日田口            | 4 H H C                    | - XXD                                     | <b>KKKKEK</b>                                            |
| чочточо                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 과 다 다                                        | ддд                   | 9 O O          | HZD                        | 1 下文区                                     | HHEZEK                                                   |
| <b>スロスXXX</b> で                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X X X                                        | 1                     | 1 1 1          | 17 1 1                     | טטט                                       | 0                                                        |
| > + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | Діі                   | 1 1 1          | <b>i</b> i i               | X X O                                     | 田田田丸丸丸                                                   |
| $\sigma \sigma $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 과 다 다                                        | > 1 1                 | 1 1 1          | 1 1 1                      | 東田口                                       | 田田瓦田田田田                                                  |
| SUDDUZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | Ф і і                 | 1 1 1          | 1 1                        | ロドド                                       | <b>x x G G X X</b>                                       |
| 니면면면면                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>ਜ਼ ਜ਼ਿ</u>                                | $\Omega$ 1 1          | 1 1 1          |                            | $\nabla$                                  | <b>スズマエロ田</b>                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | <b>环</b>              | 民民政            | 4 K K K                    | 田田田                                       | NONOLE                                                   |
| \( \omega | 과 다 다                                        | טטט                   | ט ט ט          | טטטט                       | X X Z                                     | FFSZXA                                                   |
| RMSGGP3<br>HMSGp1<br>HMSG11<br>HMSG14<br>HMSG32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | בס בס לז              | HMSG1<br>HMSG1 | HMSG33<br>HMSG35<br>HMSG35 | SGG<br>SGD<br>SGD                         | HMSG11<br>HMSG32<br>HMSG33<br>HMSG35<br>HMSG35<br>GBHMSG |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                       |                |                            |                                           |                                                          |

FIGURE 1D

1瓦

| 374<br>387<br>387<br>381<br>382<br>387<br>387<br>387              | 406<br>418<br>419<br>423<br>421<br>421<br>421<br>421<br>421                                                  | 44444444444444444444444444444444444444                 |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                                                                   | ОККОККОКШ                                                                                                    | <b>5</b>                                               |
| 0 H F R R H H R H                                                 |                                                                                                              | Z L > K K O K K K                                      |
| N N N N N N N N N N N N N N N N N N N                             |                                                                                                              | RHAAAADAA                                              |
| HENNANNAN ALVANAN                                                 | нччччччччч<br>ымчыйыйый                                                                                      |                                                        |
| X H L X L L E L X L X L X L X L X L X L X L                       | B X X X X X X X X X X X X X X X X X X X                                                                      |                                                        |
|                                                                   | 4 H H A A H A A A A A A A A A A A A A A                                                                      |                                                        |
| XXXHHXHXX<br>HEALLIND                                             |                                                                                                              | XXXXXXXXX<br>XXXXXXXXX                                 |
| L S X S S S D S D S D S D S D S D S D S D                         |                                                                                                              | **************************************                 |
| X H O H H F X H O                                                 | GKKEEZEEQ                                                                                                    | 000000000                                              |
|                                                                   | MZHUUUZZU<br>0                                                                                               | 4444444                                                |
| ZFFOOHZHH                                                         | н х д х х х Н х х                                                                                            | 44444444                                               |
| T X T T T X T X X X X X X X X X X X X X                           |                                                                                                              | RRKKKKKK<br>444444                                     |
| DOHOOFOOF                                                         | ममममममममम                                                                                                    | CHLC <clhd< td=""></clhd<>                             |
| K H K H H W H H W                                                 |                                                                                                              | ZZZZZZZZ                                               |
| BEHXXZXXZ                                                         | Ф № Щ Ф Ф Б Ф Ф №                                                                                            | OMNZZZZXX                                              |
| AHAZAKZA                                                          | 44444444                                                                                                     |                                                        |
| てままでくへでまく                                                         | OZEKKKKUK                                                                                                    | 444441141                                              |
|                                                                   | SHRSSHRS                                                                                                     | KHKBBKBZK                                              |
| 一下玫                                                               | MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM                                                                      | <b>UBBKKDKEK</b>                                       |
| HOEEEEZOF                                                         | ល <b>ក</b>                                                                                                   | начьочарч                                              |
| нчччччччч                                                         | псснななまれ                                                                                                     | 2111111                                                |
| <b>кыныныны</b>                                                   | дннннрннн                                                                                                    | 21111111                                               |
| KEEDOKKEE                                                         | Обыссыхый                                                                                                    | A A D - Z D A                                          |
| 0                                                                 | $\alpha$ $\square$ | xxrrrrrrr                                              |
| <b>ス                                    </b>                      | H Z > A A I Z Z I                                                                                            | ROOPOOPOOR                                             |
| 因攻因攻攻国因攻攻                                                         | OKIIIIOI                                                                                                     | A S O H H O A M D                                      |
| <b>NOXFEHXFE</b>                                                  | $\Omega$                                                                                                     | <b>X X S E E S X X X O</b>                             |
| $R$ $R$ $P$ $\Omega$ $\Omega$ $\Omega$ $\Omega$ $\Omega$ $\Omega$ | OZIIIIZI                                                                                                     | 压压灰灰灰灰压压丸                                              |
| SOKRODROR                                                         | > O I I I I I ⊟ I                                                                                            | ヨゴスユススマゴロ                                              |
| · XDSSOAZO                                                        | $\mathbf{H} \cup \mathbf{Z} \otimes \mathbf{G} \otimes \mathbf{G} + \mathbf{G} \otimes \mathbf{G}$           | <b>在</b> 在 在 在 在 在 在 在                                 |
| INSCASS                                                           | H $D$ $A$ $H$ $H$ $D$ $D$ $D$                                                                                | 면기대대대대대대대                                              |
| A L T P P P P P L P                                               | S H T Y Y S Y F S                                                                                            | 0000000000                                             |
| GGP3<br>GP1<br>GP1<br>G11<br>G11<br>G32<br>G33<br>G35<br>MSG      | GP3<br>PD1<br>111<br>332<br>33<br>SG                                                                         | GP3<br>111<br>114<br>114<br>32<br>33<br>35<br>35<br>86 |
| 15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0              | RMSGG<br>HMSGD<br>HMSG1<br>HMSG1<br>HMSG3<br>HMSG3<br>HMSG3<br>GBHMSG                                        |                                                        |
| RMS(HMS(HMS(HMS(HMS(HMS(HMS(HMS(HMS(HMS(H                         | RMS<br>HMS<br>HMS<br>HMS<br>HMS<br>GBH                                                                       | RMSG<br>HMSG<br>HMSG<br>HMSG<br>HMSG<br>HMSG<br>GBHI   |
|                                                                   |                                                                                                              |                                                        |

| RMSGGP3 LN K F F Q K E L K G K L G H V R F Y S D P K D C K K Y V V E N HNGGP1 A N E V L Q K E M R G M L H G S - N K T W L S G F Q K K L I E V 478 HNGGP3 A N E A L Q D K L R G K L Q G S - N R T W L E T L Q K N L V K V 480 HNGG11 A N S V L Q K N M R G L L R G S - N K D W L K R F Q Q E L A K V 480 HNGG12 A N E A L Q K K M R G L L R G S - N R D W L K R F Q Q E L V K V 480 HNGG32 A N K V L Q E N M R G L L R G S - N Q S W L K E F Q Q R L V K V 473 HNGG33 A N K V L Q E N M R G M L R G S - N Q S W L K E F Q Q R L V K V 473 HNGG32 C T K L D K - K Y L P R C L Y P K E L C Y G L B V K V 473 HNGG93 C T K L D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>WO</b> 00/09/00                                                                                           |                 |                  |                |          |             |        |              |        |            |                     |            | 10       | 1,00       | ,,,,     | 0,00   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------|------------------|----------------|----------|-------------|--------|--------------|--------|------------|---------------------|------------|----------|------------|----------|--------|
| RMSGGP3 LN K F F Q K E L K G K L G H V R F Y S D P K D C K K Y V V B HMSGP1 AN E V L Q K E M R G M L H G S - N R T W L E T L Q K K L I E HMSGP1 AN E V L Q D K L R G K L G G S - N R T W L E T L Q K K L I E HMSG11 AN S V L Q K N M R G L L H G S - N R D W L K F P Q Q E L V K HMSG11 AN S V L Q K N M R G L L H G S - N R D W L K F P Q Q E L V K HMSG12 AN E V L Q E N M R G L L R G S - N Q S W L K F P Q Q R L V K HMSG32 AN K V L Q E N M R G L L R G S - N Q S W L K F P Q Q R L V K HMSG31 AN K V L Q E N M R G L L R G S - N Q S W L K F P Q Q R L V K G M K G V F P S N E L F V L C V Q P S K A A R L L HMSG11 C K K V K K E N K G V F P S N E L F V L C N Q P S K A A R L L HMSG11 C K K V K K E N K G V F P S N E L F V L C N Q P S K A A R L L HMSG11 C K K L K - G N K G S F P N D E L F V L C N Q P A K A A R L L HMSG11 C K E L K - E N K G S F P N D E L F V L C V Q P A K A A R L L HMSG11 C K E L K E N K G S F P N D E L F V L C V Q P A K A A R L L HMSG11 C K E L K E N K G S F P N D E L F V L C V Q P A K A A R L L HMSG11 C K E L K E N K G S F P N D E L F V L C V Q P A K A A R L L C MSG11 H D L R M K T I F L Q D D L N R K R D F P T K R D C K E L G R HMSG11 H H Q M R V I F L R Q Q L D Q K R D F P T D K D C K E L G R HMSG11 H H Q M R V I F L R Q Q L D Q K R D F P T D K D C K E L G R HMSG11 H D L R M R T I F L R Q Q L D Q K R D F P T D K D C K E L G R HMSG12 H D L R M R T I F L R Q Q L D Q K R D F P T D K D C K E L G R HMSG13 H D L R M R T I F L R Q Q L D Q K R D F P T D K D C K E L G R HMSG13 H D L R M R T I F L R Q Q L D Q K R D F P T D K D C K E L G R HMSG13 H D L R M R T I F L R Q Q L D Q K R D F P T D K D C K E L G R HMSG13 H D L R M T T I F L R Q Q L D Q K R D F P T D K D C K E L G R HMSG14 H D L R M T T I F L R Q Q L D Q K R D F P T U K T A R T R E L G R HMSG14 H D L R M T T I F L R Q Q L D Q K R D F P T U K T A R T R E L G R HMSG14 H D L R M T T I F L R Q Q L D Q K R D F P T U K T A K T R E L G R HMSG14 H D L R M T T I F L R Q C L D Q K R D F P T U K T A K T I R E R E L R HMSG14 H D L R M T T I F L R Q C L D Q K R D F P T U K T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14888844                                                                                                     | $\sim \infty$ o | $\sim$ c         | ب حر           | 0        | 0           | 9      | <del>,</del> | 2      | <b>4</b> ( | ソィ                  | 4 4        | 4 7      | ro         | ω,       | 4      |
| RMSGGP3         L N K F F Q K E L K G K L G H V R F Y S D P K D C K K Y V HWSGP1         A N E V L Q K E M R G M L H G S - N R T W L S G F Q K K L L HWSGP1           HMSGP3         A N E V L Q K N M R G L L H G S - N R T W L E T L Q K N L L W R G L L H G S - N R T W L K E F Q Q R L L M R G L L H G S - N R D W L K K E F Q Q R L HWSG31           A N S V L Q K N M R G L L L R G S - N Q S W L K E F Q Q R L HWSG33         A N K V L Q E N M R G L L R G S - N Q S W L K E F Q Q R L HWSG33           A N K V L Q E N M R G L L R G S - N Q S W L K E F Q Q R L HWSG31         A N K V L Q E N M R G L L R G S - N Q S W L K F Q Q E L HWSG33           RMSGGP3         C T K L D K - R Y L P R C L Y P K E L C Y Q P S M L K R F Q Q E L HWSG31         C K K V K E N K G V F P S N E L F V L C V Q P S K A A R HWSG31           RMSGGP3         C T K L K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |                 |                  |                |          |             |        |              |        |            |                     |            |          |            |          |        |
| RMSGGP3         L N K F F Q K E L K G K L G H V R F Y S D P K D C K K Y HWSGP1         A N E V L Q K E M R G M L H G S - N K T W L S G F Q K K HWSGP1           HMSGP1         A N E V L Q K N M R G L L R G S - N K T W L S G F Q K K HWSGP1         A N S V L Q K N M R G L L R G S - N K D W L K F F Q Q B HWSG32           HMSG31         A N B A L Q K K M M R G L L R G S - N K D W L K E F Q Q R M K V L Q E N M R G L L R G S - N Q S W L K E F Q Q B R HWSG33         A N K V L Q E N M R G L L R G S - N Q S W L K E F Q Q B R HWSG32           HMSG32         A N K V L Q E N M R G L L R G S - N Q S W L K E F Q Q E G B R M K V L Q E N M R G L L R G S - N Q S W L K F Q Q E G R W L M C G L Y P K E L C L Y P K E L C L W C M L R G L X F C L Y P K E L C L W C G S F S N D E L F V L C V Q P S K A A HWSG32           RMSGGP1         C K K V K K E N K G V F P S N E L F V L C V Q P S K A A A HWSG32         C K E L K - E N K G S F S N D E L F V L C V Q P A K A A C M C C E E L K - E N K G S F S N D E L F V L C V Q P A K A A C M C C E E L K - E N K G S F S N D E L F V L C V Q P A K A A C M C C E E L K - E N K G S F S N D E L F V L C V Q P A K A A C M C C E E L K - E N K G S F S N D E L F V L C V Q P A K A A C M C C E E L K C E N K G S F S N D E L F V L C V Q P A K A A C C E K L K K E N K G S F S N D E L F V L C V Q P A K A A C C E K L K K E N K G S F S N D E L F V L C V Q P A K A A C C E K L K K E N K G S F S N D E L F V L C V Q P A K A A C C E K E L K C E L K C E L S A L L D D Q K R D F P T D K D C K E E L K C C L C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              |                 |                  |                |          |             |        |              |        |            |                     |            |          |            |          |        |
| RMSGGP3 L N K F F Q K E L K G K L G H V R F Y S D P K D C K K HWSGP1 A N E V L Q K E M R G M L H G S - N K T W L S G F Q K HWSGP1 A N S V L Q K N M R G L L R G S - N R T W L E T L Q K HWSGP1 A N S V L Q K N M R G L L R G S - N R D W L K F P Q Q HWSG11 A N S V L Q K N M R G L L R G S - N R D W L K F P Q Q HWSG32 A N R V L Q E N M R G L L R G S - N Q S W L K F P Q Q HWSG32 A N K V L Q E N M R G L L R G S - N Q S W L K F P Q Q GBHMSG A N K V L Q E N M R G L L R G S - N Q S W L K F P Q Q GBHMSG C T K L D K - K Y L P R C L Y P K E L HWSGP1 C K K V K K E N K G V F P S N D E L F V L C V Q P S K A HWSGP1 C K K V K K E N K G V F P S N D E L F V L C V Q P S K A HWSGP1 C K K V K K E N K G S F P N D E L F V L C V Q P S K A HWSGP1 C K K L K C E N K G S F P N D E L F V L C V Q P S K A HWSGP1 C K E L K - E N K G S F S N D E L F V L C V Q P S K A HWSGP1 C K E L K - E N K G S F S N D E L F V L C V Q P S K A HWSGP1 C K E L K - E N K G S F S N D E L F V L C V Q P S K A HWSGP1 C K E L K - E N K G S F S N D E L F V L C V Q P S K A HWSGP1 C E K L K E E N K G S F S N D E L F V L C V Q P S K A HWSGP1 C E K L K E E N K G S F S N D E L F V L C V Q P S K A HWSGP1 C E K L K E E N K G S F S N D E L F V L C V Q P S K A HWSGP1 C E K L K E E N K G S F S N D E L F V L C V Q P S K A HWSGP1 C E K L K E E N K G S F S N D E L F V L C V Q P S K A HWSGP1 C E K L K E E N K G S F S N D E L F V L C V Q P S K A HWSGP1 C E K L K E E N K G S F S N D E L F V L C V Q P S K A HWSGP1 C E K L K E E N K G S F S N D E L F V L C V Q P S K A HWSGP1 C E K L K E E N K G S F S N D E L F V L C V Q P C K HWSGP1 C E K L K E E N K G S F S N D E L F V L C V Q P C K HWSGP1 C E K L K E E N K G S F S N D E L F V L C V Q P C K HWSGP1 C E K L K E L K Q Q L D Q K R D F P T D K D C K HWSGP1 C E K L K E L K Q Q L D Q K R D F P T D K C K C K E L K C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                              |                 |                  |                |          |             |        |              |        |            |                     |            |          |            |          |        |
| RMSGGP3         L N K F F Q K E L K G K L G H V R F Y S D P K D C K HWSGP1         A N E V L Q K E M R G M L H G S - N K T W L S G F Q HWSGP1         A N E A L Q D K L R G K L Q G S - N R T W L E T L Q HWSG11         A N S V L Q K N M R G L L H G S - N R T W L E T L Q HWSG14         A N S V L Q K N M R G L L R G S - N R D W L K R F Q D HWSG33         A N E A L Q E N M R G L L R G S - N R D W L K R F Q Q HWSG33         A N E A L Q E N M R G L L R G S - N R S W L E R F Q G HWSG33         A N K V L Q E N M R G L L R G S - N R S W L E R F Q G R L R G S - N R S W L E R F Q G R L R G S - N R S W L E R F Q G R L R G S - N R S W L E R F Q G R L R G S - N R S W L E R F Q G R R R R G L L R G S - N R S W L E R F Q G R R R R G L L R G S - N R S W L E R F Q G R R R R R R R R G L L R G S - N R S W L E R F Q C R R L R R C R R R R R R R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                 | -                |                | -        |             |        |              |        |            |                     |            |          |            |          | _      |
| RMSGGP3         L N K F F O K E L K G K L G H V R F Y S D P K D HNSGP1           AN E V L O K E M R G M L H G S - N K T W L S G HNSGP1           AN E A L O D K L R G K L O G S - N R T W L E T HNSGP1           AN S V L O K N M R G L L R G S - N K D W L K B HNSGP1           AN S V L O K N M R G L L R G S - N K D W L K B HNSGP3           AN K V L O E N M R G L L R G S - N O S W L K B HNSGP3           AN K V L O E N M R G L L R G S - N O S W L K B K B HNSGP1           C K K V K K E N K G L L R G S - N O S W L K B K B HNSGP1           C K E L K - G N K G S F S N D E L F V L C V O P HNSGP3           C K E L K - E N K G S F S N D E L F V L C V O P HNSGP3           C K E L K - E N K G S F S N D E L F V L C V O P HNSGP3           C K E L K - E N K G S F S N D E L F V L C V O P HNSGP3           C K E L K - E N K G S F S N D E L F V L C V O P HNSGP3           C K E L K - E N K G S F S N D E L F V L C V O P GBHNSG           C K E L K E E N K G S F S N D E L F V L C V O P GBHNSG           C E K L K E E N K G S F S N D E L F V L C V O P GBHNSG           C E K L K E E N K G S F S N D E L F V L C V O P F HNSGP1           C B K L K E E N K G S F S N D E L F V L C V O P F F T D K HNSGP1           C B K L K E E N K G S F S N D E L F V L C V O P F T D K HNSGP1           C B K L K E E N K G S F S N D E L F V L C V D F F T D K HNSGP1           C B K L K E E N K G S F S N D E L F V L C V D F F T D K HNSGP1           C B K M K T I F L R O D L D C K R D F F T D K G D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                 | <b>4 ×</b>       | x x            | X X      | ×           | ×      | ×            | ט      | ט ו        | ט ז                 | ပ (        | ט כ      | ט כ        | ບ        | Ø      |
| RMSGGP3         L N K F F O K E L K G K L G H V R F Y S D P K HNSGP1         A N E V L O K E M R G M L H G S - N K T W L B HNSGP1           HMSGP1         A N E A L O D K L R G K L O G S - N R T W L R HNSGP1         A N S V L O K N M R G L L H G S - N R T W L K HNSGP1           HMSG14         A N S V L O K N M R G L L R G S - N R T W L K HNSGP3         A N K V L O E N M R G L L R G S - N O S W L K HNSGP3           HMSG33         A N K V L O E N M R G L L R G S - N O S W L K HNSGP1         C K V K K E N K G V F P S N E L F V L C V O HNSGP1           RMSGGP3         C K K V K K E N K G V F P S N E L F V L C V O HNSGP1         C K E L K - E N K G S F S N D E L F V L C V O G D D L N K G S F S N D E L F V L C V O G D D L N K G S F S N D E L F V L C V O G D D L N K G S F S N D E L F V L C V O G D D L N K G S F S N D E L F V L C V O G D D L N K G S F S N D E L F V L C V O G D D L N K G S F S N D E L F V L C V O G D D L N R K R D F P T D D D L N R K R D F P T D D D L N R K R D F P T D D D L N R K R D F P T D D D L N R K R D F P T D D D L N R K R D F P T D D D L N R K D F P T D D D L N R K D F P T D D D L N R K D F P T D D D L N R K D F P T D D D L N R K D F P T D D D L N R K D F P T D D D L N R K D F P T D D D L N R K D F P T D D D L N R K T I F L R Q O L D O K R D F P T D D D L N R M T I F L R Q O L D O K R D F P T D D D L N R M T I F L R Q O L D O K R D F P T D D D L N R M T I F L R Q O L D O K R D F P T D D D L N R M T I F L R Q O L D O K R D F P T D D D L N R M T I F L R Q O L D O K R D F P T D D D L N R M T I F L R Q O L D O K R D F P T D D D L N R M T I F L R Q O L D O K R D F P T D D D L N R M T I F L R Q O L D O K R D F P T D D D L N R M T I F L R Q O L D O K R D F P T D D L N R M T I F L R Q O L D O K R D F P T D D L N R M T I F L R Q O L D O K R D F P T D D L N R M T I F L R Q O L D O C R R D F P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              | ביו דין         | 4 W              | Нα             | ď⊢       | A           | Ø      | Ø            | Ω      | Ω          | Ω                   | <b>Ω</b> 1 | ם נ      | D<br>D     | Z        | Η      |
| RMSGGP3         L N K F F Q K E L K G K L G H V R F Y S D P           HMSGP1         A N E V L Q K E M R G M L H G S - N K T W L           HMSG11         A N E V L Q K N M R G L L H G S - N K T W L           HMSG14         A N S V L Q K N M R G L L H G S - N K D W L           HMSG32         A N E V L Q E N M R G L L R G S - N K D W L           HMSG33         A N K V L Q E N M R G L L R G S - N Q S W L           HMSG35         A N K V L Q E N M R G L L R G S - N Q S W L           HMSG91         C E K L K C B N M R G L L R G S - N Q S W L           HMSG91         C E K L K C B N M R G L L R G S - N Q S W L           HMSG92         C E K L K C B N K G S F S N B L F V L C V           HMSG14         C K E L K - G N K G S F S N D E L F V L C V           HMSG35         C S E L K - G N K G S F S N D E L F V L C V           HMSG35         C S E L K - G N K G S F S N D E L F V L C V           C B K L K E N K G S F S N D E L F V L C V           C B K L K E N K G S F S N D E L F V L C V           C B K L K E N K G S F S N D E L F V L C V           C B K L K E N K G S F S N D E L F V L C V           C B K L K E N K G S F S N D E L F V L C V           C B K L K E N K E L S S N D E L F V L C V           C B K L K E N K E E N K G S F S N D E L F V L C V           C B K L K E N K E L S S N D E L F V L C V           C B K L K E N K E L S S N D D D N S D F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              |                 |                  |                |          |             |        |              |        |            |                     |            |          |            |          |        |
| RMSGGP3         L N K F F O K E L K G K L G H V R F Y S D           HMSGP1         A N E V L O K E M R G M L H G S - N K T W           HMSGP1         A N E V L O K N M R G L L H G S - N R T W           HMSG11         A N S V L O K N M R G L L R G S - N R D W           HMSG32         A N E A L O K K M R G L L R G S - N C S W           HMSG33         A N K V L O E N M R G L L R G S - N O S W           HMSG91         C K V K C E N M R G L L R G S - N C S W           HMSGP1         C K K V K K E N M R G L L R G S - N O S W           HMSGP3         C K K V K K E N M R G L L R G S - N O S W           HMSGP1         C K K V K K E N K G V F P S N E L F V L C           HMSGP3         C K E L K - E N K G S F P N D E L F V L C           HMSG33         C K E L K - E N K G S F S N D E L F V L C           HMSG33         C K E L K - E N K G S F S N D E L F V L C           HMSG33         C K E L K - E N K G S F S N D E L F V L C           HMSG33         C K E L K - E N K G S F S N D E L F V L C           HMSG35         C E K L K E E N K G S F S N D E L F V L C           HMSG35         C E K L K E E N K G S F S N D E L F V L C           C B M K G S F S N D E L F V L C           HMSG33         C M K E D K G S F S N D E L F V L C           HMSG33         C M K E D K G S F S N D E R F V D F P HMSG           HMSG31 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |                 |                  |                |          |             |        |              |        |            |                     |            |          |            |          |        |
| RMSGGP3         L N K F F Q K E L K G K L G H V R F Y S           HMSGP1         A N E V L Q K N M R G L L H G S - N K T           HMSG11         A N S V L Q K N M R G L L H G S - N K T           HMSG14         A N S V L Q K N M R G L L R G S - N R T           HMSG32         A N K V L Q E N M R G L L R G S - N Q S           HMSG33         A N K V L Q E N M R G L L R G S - N Q S           HMSGGP3         A N K V L Q E N M R G L L R G S - N Q S           HMSGGP3         C K K V K K E N M R G L L R G S - N Q S           HMSGGP3         C K K V K K E N M R G L L R G S - N Q S           HMSGGP3         C K K L K - G N K G S F S N D E L F V L L M C G S F S N D E L F V L L M C G S F S N D E L F V L L M C G S F S N D E L F V L L M C G S F S N D E L F V L L M C G S F S N D E L F V L L L G D D L N R K R D F M C G S F S N D E L F V L L L L G D D L N R K R D F M C G S F S N D E L F V L L L R R R R R R R R R R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Carrie                                                                                                     |                 | •                |                | •        | •           |        |              |        |            |                     |            |          |            |          |        |
| RMSGGP3         L N K F F Q K E L K G K L G H V R F F W L Q D K L R G K L Q G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S - N H M S G L L R G S F S N D E L F H M S G S G F S N D E L F H M S G S G F S N D E L F H M S G S G F S N D E L F H M S G S G F S N D E L F H M S G S G F S N D E L F H M S G S G F S N D E L F H M S G S G F S N D E L F H M S G S G F S N D E L F H M S G S G F S N D E L F H M S G S G F S N D E L F H M S G S G F S N D E L F H M S G S G F S N D E L F H M S G S G F S N D E L F H M S G S G F S N D E L F H M S G S G F S N D E L F H M S G S F S N D E L F H M S G S F S N D E L F H M S G S F S N D E L F H M S G S F S N D E L F H M S G S F S N D E L F H M S G S F S N D E L F F H M S G S F S N D E L F F H M S G S F S N D E L F F H M S G S F S N D E L F F H M S G S F S N D E L F F H M S G S F S N D E L F F H M S G S F S N D E L F F F F R G S F S N D E L F F F F R G S F S N D E L F F F F F F F F F F F F F F F F F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | •               |                  |                |          |             |        |              |        |            |                     |            |          |            |          |        |
| RMSGGP3         L         R         F         Q         K         E         L         G         K         L         G         K         L         G         K         L         G         K         L         G         K         L         G         K         L         G         B         B         G         L         H         G         S         -         -         H         G         L         H         G         S         -         -         H         G         L         H         G         S         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>NKKKO KO</td> <td>K O K</td> <td>۲ Þ</td> <td>&gt;&gt;</td> <td>&gt; -</td> <td><b>&gt;</b></td> <td>Н</td> <td>&gt;</td> <td>Ω</td> <td>Ω</td> <td>Ω</td> <td>ДΙ</td> <td>Ω t</td> <td><u>а</u> С</td> <td>Д</td> <td>О</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NKKKO KO                                                                                                     | K O K           | ۲ Þ              | >>             | > -      | <b>&gt;</b> | Н      | >            | Ω      | Ω          | Ω                   | ДΙ         | Ω t      | <u>а</u> С | Д        | О      |
| RMSGGP3 L N K F F Q K E L K G K L G H V HNSGP1 A N E V L Q K E M R G M L H G S HNSGP1 A N S V L Q K N M R G L L H G S HNSGP1 A N S V L Q K N M R G L L R G S HNSGP3 A N E A L Q E N M R G L L R G S HNSGP3 A N E A L Q E N M R G L L R G S HNSGP3 A N K V L Q E N M R G L L R G S HNSGP3 A N K V L Q E N M R G L L R G S S HNSGP3 C T K L D G S S D E HNSGP1 C K K V K E N K G V F P S N E HNSGP1 C K K V K C N K G S F P N D E HNSGP1 C K E L K G S S D E HNSGP3 C S E L K - S N C S F P N D E HNSGP3 C S E L K - S N K G S F P N D E HNSGP3 C S E L K - S N K G S F P N D E HNSGP3 C S E L K - S N K G S F S N D E HNSGP3 C S E L K - S N K G S F S N D E HNSGP3 C S K L K E E N K G S F S N D E HNSGP3 C S K L K E E N K G S F S N D E HNSGP3 C S K L K E E N K G S F S N D E HNSGP3 C D L R M K T I F L Q D D L N R HNSGP1 H D L R M K T I F L R Q Q L D Q HNSGP3 H D L R M R V I F L R Q Q L D Q HNSGP3 H D L R M R V I F L R Q Q L D Q HNSGP3 H D L R M R V I F L R Q Q L D Q HNSGP3 H D L R M R V I F L R Q Q L D Q HNSGP3 H D L R M R T I F L R Q Q L D Q HNSGP3 H D L R M R T I F L R Q Q L D Q HNSGP3 H D L R M R T I F L R Q Q L D Q HNSGP3 H D L R M R T I F L R Q Q L D Q HNSGP3 H D L R M R T I F L R Q Q L D Q C D D C C D D C C D D C C D C C D C C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EZZZZ Z                                                                                                      | ZZ +            | 그 [파             | ביו ביי        | ᅜᅜ       | ı [ī        | ഥ      | ഥ            | 內      | <b>K</b>   | ద                   | <b>보</b>   | <b>K</b> | 보다         | ద        | ద      |
| RMSGGP3       L       N       K       F       P       K       E       L       K       G       K       L       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       G       H       H       H       H       H       H </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                 |                  |                |          |             |        |              |        |            |                     |            |          |            |          |        |
| RMSGGP3         L         R         F         P         R         E         L         G         K         E         L         G         K         L         G         K         L         G         K         L         G         K         L         G         K         L         G         K         L         B         C         L         D         K         L         D         K         L         D         K         L         D         K         L         D         K         L         D         K         L         D         K         L         D         K         L         D         K         L         D         K         L         D         K         L         D         K         L         D         K         L         D         K         L         D         K         L         D         K         L         D         K         L         D         K         L         D         K         K         L         D         K         K         L         D         K         K         L         D         L         R         L         D         L         D         L </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              |                 |                  |                |          |             |        |              |        |            |                     |            |          |            |          |        |
| RMSGGP3         L         K         F         Q         K         E         L         G         K         L         G         K         L         H         G         K         L         L         C         K         E         L         C         K         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              |                 |                  |                |          |             |        |              |        |            |                     |            |          |            |          |        |
| HMSGGP3 L N K F F Q K E L K G K HMSGP1 A N E V L Q K E M R G M HMSG11 A N S V L Q K N M R G L HMSG11 A N S V L Q K N M R G L HMSG32 A N E A L Q K K K R R G L HMSG33 A N K V L Q E N M R G L HMSG93 A N K V L Q E N M R G L HMSG91 C K K V K K E N K G V F HMSG91 C K K V K K E N K G V F HMSG93 C T K L K G HMSG93 C T K L K - G N K G S F HMSG93 C E K L K - C G HMSG33 C E K L K - C N K G S F HMSG33 C E K L K - C N K G S F HMSG33 C E K L K - C N K G S F HMSG33 C E K L K - E N K G S F HMSG93 C E K L K E N K G S F HMSG93 C E K L K E N K G S F HMSG93 C E K L K E N K G S F HMSG93 T D L R M K T I F L Q D HMSG93 T D L R M K T I F L R Q HMSG32 A D I Q A R A V F L R C HMSG33 H D L R M R V I F L R Q HMSG33 H D L R M R T I F L R Q HMSG33 H D L R M T I F L R Q HMSG35 H D L R M T I F L R Q HMSG35 H D L R M T I F L R Q C B HMSG35 H D L R M T I I F L R Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                              |                 |                  |                |          |             |        |              |        |            |                     |            |          |            |          |        |
| HMSGP3 L N K F F O K E L K HMSGP3 A N E V L O K E M R HMSG11 A N S V L O K N M R HMSG14 A N S V L O K N M R HMSG32 A N E A L O K N M R HMSG93 A N K V L O E N M R HMSG93 C T K L D HMSG93 C T K L D HMSG91 C K K V K E N K G HMSG93 C E K T K - G N K G HMSG32 C E K T K - G N K G HMSG32 C E K L K - G N K G HMSG33 C E K L K - E N K G HMSG93 C E K L K E N K G HMSG93 C E K L K E N K G HMSG93 C E K L K E N K G HMSG93 C E K L K E N K G HMSG93 C E K L K E N K G HMSG93 C E K L K E N K G HMSG93 C E K L K E N K G HMSG93 T D L R M K T I F L HMSG32 A D I O A R V T F L HMSG33 H D H O M R V I F L HMSG33 H D H O M R V I F L HMSG33 H D H O M R V I F L HMSG33 H D H O M R V I F L HMSG33 H D H O M R V I F L HMSG35 H D L R M T I F L HMSG35 H D L R M T I I F L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                              |                 |                  |                |          |             |        |              | Ø      | О          | 臼                   | o .        | O F      | 40         | i<br>O   | Ø      |
| RMSGGP3 L N K F F O K E L HMSGP1 A N E A L O D K L HMSG11 A N S V L O K N M HMSG11 A N S V L O K N M HMSG35 A N E A L O E N M K V L O E N M K V L O E N M K V L O E N M K V L O E N M K V L O E N M K V L O E N M K V L O E N M K V L O E N M K V L O E N M K V L O E N M K V L O E N M K V L O E N M K V L O E N K W K E L K HMSG11 C K E L K - E N K HMSG32 C E K L K - E N K HMSG33 C K E L K - E N K HMSG35 C E K L K E E N K HMSG35 C E K L K E E N K HMSG91 H D L R M K T I F HMSG11 H H H O M R V I F HMSG32 A D I O A R A V F HMSG32 H D L R M K T I F HMSG35 H D L R M K T I F HMSG35 H D L R M T T I F HMSG35 H D L R M T T I F HMSG35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              |                 | ı >              | ı Ø            | S I      | വ           | വ      | ß            | ß      | O          | Ø                   | <b>~</b>   | <b>克</b> | K<br>K     | 姳        | ĸ      |
| HMSGP1 AN E V L O K E HMSGP1 AN E V L O K E HMSG11 AN S V L O K N HMSG11 AN S V L O K N K V L O K N K V L O E N K V L O E N K V K E N K V L O E N K V L O E N K V L O E N K V L O E N K V L O E N K V L O E N K V L O E N K V L O E N K V K E N K V K E N K V K K E N K V K K E N K V K K E N K V K K E N K V K K E N K V K K E N K V K K E N K V K K E N K V K K E N K V K K E N K V K K E N K V K K E N K V K K E N K V K K E N K V K K E N K V K K E N K V K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K E N K K F E N K K E N K K F E N K K E N K K F E N K K E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K F E N K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              | 요 요             | ı O              | ı Ö            | r<br>D   | ט           | ŋ      | Ŋ            | Н      | Ы          | Ц                   | H          | H.       | ם ב        | Н        | 니      |
| RMSGGP3 L N K F F O K HMSGP1 A N E V L O K HMSG11 A N E A L O D HMSG11 A N S V L O K HMSG32 A N K V L O E HMSG35 A N K V L O E HMSG91 C K K V K K HMSG91 C K K V K K HMSG91 C K K V K K HMSG11 C E K L K  HMSG32 C E K L K  HMSG32 C E K L K  HMSG33 C E K L K  HMSG31 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |                 |                  |                |          |             |        |              |        |            | •                   |            |          |            |          |        |
| RMSGGP3 L N K F F O HMSGD1 A N E V L O HMSG11 A N E V L O HMSG14 A N E A L O HMSG32 A N E A L O HMSG33 A N K V L O CBHMSG3 A N K V L O CBHMSG11 C E K L K - HMSG11 C E K L K - HMSG11 C E K L K - HMSG32 C E K L K - HMSG32 C E K L K - HMSG32 C E K L K - HMSG33 C E K L K E HMSG14 C E K L K E HMSG33 C E K E K L K HMSG33 C E K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |                 |                  |                |          |             |        |              |        |            |                     |            |          |            |          |        |
| RMSGGP3 L N K F F HMSGP1 A N E A L HMSG11 A N E A L HMSG11 A N E A L HMSG32 A N E A L HMSG93 A N K V L K HMSG93 C E K L K HMSG91 C E K L K HMSG93 C E K L K HMSG93 C E K L K HMSG93 C E K L K HMSG91 HD L R M HMSG91 HD L R M HMSG11 H H H D H Q M HMSG32 A D I Q A HMSG33 H D L R M HMSG35 H D L R M GBHMSG H D L R M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |                 |                  |                |          |             |        |              |        |            |                     |            |          |            |          |        |
| RMSGGP3 L N K F HMSGD1 A N E V HMSG11 A N E A HMSG14 A N E A HMSG32 A N E A HMSG33 A N K V HMSGB1 C K K V HMSGB1 C E K L HMSG11 C E K L HMSG11 C E K L HMSG11 C E K L HMSG33 C E K L HMSGB1 H D L R HMSG11 H H H D HMSG33 H D L R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |                 |                  |                |          |             |        |              |        |            |                     |            |          |            |          |        |
| RMSGGP3 L N HMSGP1 A N HMSG11 A N HMSG11 A N HMSG14 A N HMSG32 A N HMSG33 A N HMSG33 A N HMSGP1 C K HMSGP3 C E HMSGP1 C E HMSGP3 C E HMSGP1 C E HMSGP3 C E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              |                 | <b>⊣</b> ⊳       | ㅁㅁ             | ПΡ       | - L         | Ы      | Н            | ഥ      | ద          | R                   | Q          | 0        | 2 0        | <b>1</b> | ద      |
| RMSGGP3 L<br>HMSGp1 A<br>HMSG11 A<br>HMSG11 A<br>HMSG12 A<br>HMSG33 A<br>HMSG33 A<br>HMSG21 C<br>HMSG21 C<br>HMSG21 C<br>HMSG21 C<br>HMSG21 C<br>HMSG32 C<br>HMSG32 C<br>HMSG33 C<br>HMSG33 C<br>HMSG33 C<br>HMSG33 C<br>HMSG33 C<br>HMSG33 C<br>HMSG33 C<br>HMSG33 C<br>HMSG33 C<br>HMSG21 H<br>HMSG21 H<br>HMSG21 H<br>HMSG21 H<br>HMSG21 H<br>HMSG32 A<br>HMSG33 C<br>HMSG33 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>水田田SS田</b> K                                                                                              | XX :            | 저 도              | X X            | 田口       | ा छ         | ×      | X            | Н      | Ы          | Ц                   | 出          | Ϊ ι      | <b>-</b> # | Н        | Ц      |
| RMSGGP3 HMSGP3 HMSG11 HMSG11 HMSG32 HMSG33 HMSG235 HMSG211 HMSG235 HMSG32 HMSG32 HMSG33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ZZZZZZ                                                                                                       | ZZ              | <b>∃</b> ₩       | 田田             | K O      | ) K         | 田      | 闰            |        |            |                     |            |          |            |          |        |
| RMSGGP<br>HMSGP1<br>HMSGP1<br>HMSG11<br>HMSG32<br>HMSG33<br>HMSG32<br>HMSG32<br>HMSG33<br>HMSG33<br>HMSG33<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB3<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB1<br>HMSGB3<br>HMSGB3<br>HMSGB1<br>HMSGB3<br>HMSGB3<br>HMSGB1<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB1<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSGB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HMSBB3<br>HM | TAKKKKK                                                                                                      | AA (            | ט ט              | טט             | ט נ      | ט נ         | ບ      | ט            | Z      | 二          | H                   | 田          | Η·       | K H        | H        | H      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 324<br>324<br>324<br>324<br>324<br>324<br>325<br>335<br>335<br>335<br>335<br>335<br>335<br>335<br>335<br>335 | 35              | KMSGGP<br>HMSGp1 | HMSGP<br>HMSG1 | $\vdash$ | $\sim$      | $\sim$ | BHIMS        | $\cap$ | HMSGp1     | HMSG <sub>D</sub> 3 | HMSG11     | HMSG14   | HMSG33     | HMSG35   | GBHMSG |

| 556<br>573<br>574<br>574<br>565<br>568<br>578                                                                                          | 588<br>605<br>590<br>606<br>606<br>600<br>610                                           | 622<br>638<br>638<br>638<br>639<br>642<br>642                                 |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Быжннннн                                                                                                                               | <b>队队队队队队队队员</b><br>队队队队队队员                                                             | <b>よほれほれほれれれ</b><br>VKGघれれれれば                                                 |
| N 女 H H H H H H H H H H H H H H H H H H                                                                                                | XXXXXXXX<br>> O F O O O O O O O                                                         | <ul><li>З Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н</li></ul>                     |
| > 2 8 4 4 4 4 4 4                                                                                                                      | OEKKKKKKK                                                                               | SKKKEEE                                                                       |
| x x x y q q q q q q q                                                                                                                  | HZHHHHZHZ                                                                               | 0                                                                             |
| иччччччч                                                                                                                               | 000000000                                                                               | D O X X X X X X X X                                                           |
| NOKE KEEK                                                                                                                              | R B K K B K B B B B<br>K K K K K K K K K K                                              | S X E O X X X X O<br>O X S D D D D D D                                        |
|                                                                                                                                        | HXXXXXXXX<br>HHXKHKHH                                                                   |                                                                               |
| RZHOOOOOO                                                                                                                              | 114111111<br>1                                                                          | HOZOOOOO                                                                      |
| K 000000000                                                                                                                            | <b>太太太太太祖太</b> [4]                                                                      | 戸田民氏氏刀口氏氏氏                                                                    |
| 队马瓦田民田田田                                                                                                                               | KMEKKKKKH                                                                               | マッドマッシッショ                                                                     |
| コロロロロロロロロ                                                                                                                              | エロヌ丸VTVV                                                                                | $\Sigma \Sigma H \Sigma \Sigma H \Sigma \Sigma \Sigma$                        |
| 4444444                                                                                                                                | 00000000                                                                                | AHXUUUUUU<br>AHXUUUUU                                                         |
|                                                                                                                                        |                                                                                         | OOOOOOOOO<br>SKKHHKHHK                                                        |
| $\mathcal{L}$                                                                                                                          |                                                                                         | HH>HHHHHH                                                                     |
| MEMEMAME                                                                                                                               | HZDWDHDDH                                                                               | BKJKKKKKK                                                                     |
| ЧЫХНЬХЬНЬ                                                                                                                              | $\Sigma$ $R$ $R$ $R$ $R$ $R$ $R$ $R$ $R$ $R$                                            | HZHZZZZZZ                                                                     |
| Zнннннннн                                                                                                                              | H                                                                                       | OOOOOOOO                                                                      |
| <b>山区田田田区田田田</b>                                                                                                                       | 0 H H H H H H H                                                                         | 五县出入京出口几几                                                                     |
| -<br>                                                                                                                                  |                                                                                         | 440>>>>>                                                                      |
| 0 0 0 0 0 0 0 p                                                                                                                        | O X X X X X X X X X                                                                     | < < < < < < > < < < < > < < < < > < < < < < < < < < < < < < < < < < < < <     |
|                                                                                                                                        | X H H H H H H H H H H H H H H H H H H H                                                 | 4 H H H H H D L C                                                             |
| SKKKKKKEK                                                                                                                              | RZKDDDDDZ                                                                               | $\alpha \alpha \bowtie \alpha \alpha \alpha \alpha \alpha \alpha$             |
| $\alpha \bowtie \alpha \circ $ | нгнгигин                                                                                | 단단단단단단단단                                                                      |
| 44444444                                                                                                                               |                                                                                         | 经民政民民民民民民民                                                                    |
| 田女り口口女口口口                                                                                                                              | ひしままでりりし                                                                                | ZHZOOOOOO                                                                     |
| O E E O O E O O O                                                                                                                      | ひ O O O O O D E I D I                                                                   | KZZDDDDD                                                                      |
| 000000000                                                                                                                              | R K B K K K K K K                                                                       | <b>以及其口口口口口口</b>                                                              |
| RMSGGP3<br>HMSGp1<br>HMSG11<br>HMSG14<br>HMSG32<br>HMSG33<br>HMSG35<br>GBHMSG                                                          | RMSGGP3<br>HMSGP1<br>LV HMSGP3<br>EL/L HMSG11<br>HMSG32<br>HMSG33<br>HMSG35<br>GBHMSG35 | RMSGGP3<br>HMSGp1<br>HMSG11<br>HMSG14<br>HMSG32<br>HMSG33<br>HMSG35<br>GBHMSG |

PCT/US99/18750

FIGURE 1H

|        | 00/09760      |  |
|--------|---------------|--|
| VV L J | 1317/117/1013 |  |

| •                                                                             |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 652<br>661<br>644<br>666<br>666<br>667<br>657<br>670                          | 684<br>690<br>690<br>689<br>689<br>684<br>694                                                     | 715<br>716<br>703<br>723<br>721<br>713<br>716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MMMMMMMM                                                                      | OEZXXXXXX                                                                                         | HHNGGGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>Б н н а а а а а а</b>                                                      | дыдднынн                                                                                          | KKZUUUUUH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\Box$                                                                        | AOKKKKKK                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                         | B B K O H O H H H                                                                                 | XZEXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ZZHZHZHZZ                                                                     | 0 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                             | OKUHUZUUZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BTXXXXXX                                                                      | Z X O F O F O O P                                                                                 | · X > H X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| пончнчаны                                                                     | HZGHZHZZZ                                                                                         | DMZZDZDDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                               | OIOKEKEEK                                                                                         | $\bowtie$ $\square$ $\bowtie$ $\bowtie$ $\square$ $\square$ $\bowtie$ $\square$ |
| <u>Д</u> ттттт                                                                | <b>Z</b>                                                                                          | 44444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>4</b>                                                                      | יוווווו ויווט                                                                                     | SHSKKKK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 国<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1                  | <b>Z</b> ; ; ; ; ; ; ;                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ZIIIIIII                                                                      | 0111111                                                                                           | K K K K Q Q Q Q K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 攻団・STSTTT                                                                     | <b>Z</b> :::::::                                                                                  | コアココココココココ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M H H H H H H H H                                                             | 田・末・・・・・                                                                                          | 计区区区区区区区区                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4 4 - 1 - 1 - 1                                                               | $\Join$ $\iota$ $\mathfrak{G}$ $\iota$ $\iota$ $\iota$ $\iota$ $\iota$ $\iota$ $\iota$ $\iota$    | 日中ロッシッシッ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>エ・エヌヌヌヌヌ</b>                                                               | $m{lpha}$ ושטטטווו                                                                                | 0 $+ > X X X X X X X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| KIIHZHZZZ                                                                     | <b>XXXXXXXX</b>                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| H 1 1 0 F 0 F F F                                                             | L I X X H X H H S                                                                                 | 田女女女女女女女女                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>HHZZZZZZ</b>                                                               | ОЧГГГГГГ                                                                                          | BUNDUUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BKKKZZZZZ                                                                     | $\Box \Box $ | пыппыпып                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\Omega$ F A X E X E E E                                                      | $\sigma$                                                                                          | コココココココココ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| нқн廿廿廿廿廿廿                                                                     | 0 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                             | <b>X D 女 &gt; 女 &gt; 女 女 女 女 女</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ズ岛田岛市岛市市                                                                      | ZZZZZZZZ                                                                                          | しスロドドドドドド                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| E D S D E N E E E                                                             | постере                                                                                           | X O X K K K K K K K K K K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| THHZHZHH>                                                                     | N S S H I S I S I S S                                                                             | 压火压火火火火火压                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| нр∨ннннн                                                                      | 五年五年五年五年                                                                                          | <b>众众众众众戊江众贞</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 田太太口太口NON                                                                     | ORXKKKKK                                                                                          | 五岁古古古古五九                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 田 y z s s s s s s s s                                                         | HHKONONN                                                                                          | $\mathbf{x}$ $\mathbf{v}$ $\mathbf{v}$ $\mathbf{v}$ $\mathbf{v}$ $\mathbf{v}$ $\mathbf{v}$ $\mathbf{v}$ $\mathbf{v}$ $\mathbf{v}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Z X H A A A A A A >                                                           | 0                                                                                                 | <b>XXXDDDDDX</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>KKEOKOKK</b>                                                               | なえな な な な な H H                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HHZZHZHHH                                                                     | <b>криргинг</b>                                                                                   | <b>VEEKEKAK</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ZZZZZZZZ                                                                      | DHAHHHHH                                                                                          | BKKKKKKK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RMSGGP3<br>HMSGp1<br>HMSG11<br>HMSG14<br>HMSG32<br>HMSG33<br>HMSG33<br>GBHMSG | RMSGGP3<br>HMSGD1<br>FLMSG11<br>HMSG14<br>HMSG32<br>HMSG35<br>HMSG35<br>GBHMSG35                  | RMSGGP3<br>HMSGp1<br>HMSG11<br>HMSG14<br>HMSG32<br>HMSG33<br>HMSG35<br>GBHMSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| - O - M > M > M > O > O > O + O + O + O + O + O + O + O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K S S L V L S L S L V L S F                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K S S L V L S K S S L V L S                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K S S L V L K S S L V L V L V L V L V L V L V L V L V |
| - I - S D S D D D D B B B B B B B B B B B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K S S L V                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X X X X X X X X X X X X X X X X X X X                 |
| 10.8787770 070554554 11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * * * * *<br>* * * * *<br>* * * * *                   |
| - 1 0 1 国 X 国 X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | * * * *                                               |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X X X                                                 |
| NONSTA THEFFER ANANANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |
| D $\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |
| OZKKKKKK POOKKKKKE EHEZZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 4 4                                                 |
| COCCOCCO COCCCCC HEEEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ΞΣΞ                                                   |
| A T T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44                                                    |
| COLOCOCO XEEOEOEOEE XXXXEXE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 田瓦瓦                                                   |
| 化环团分分区分分尺 化环环团团团团团队 团队团队团团团                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 田氏                                                    |
| ママママエエ へんへんへんてんく ヘエエエエエににて                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AA                                                    |
| 下 : : : : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 以民臣                                                   |
| 水下一分分分分分分 口口火田火田火火日 大火田田火火火                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 以正                                                    |
| ドヌほみみらみみな ママエママママロ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X X                                                   |
| THEFER TETTESTER ZZZZZZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 디디디                                                   |
| HUHNNNNN KKKKKKK DKKHHKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 121 121                                             |
| NH4>>>>> KEETELEEEE CEKEEEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 田田田                                                   |
| KIKKKK UUUUUUUU NNNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | エスス                                                   |
| ыОққоқоо >ЧЧЧЧЧЧ ыОқты                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · [- [-                                               |
| TRUTALA ZKEKERE ZKEKKEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |
| 五 なんの ロンスンス こく                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                     |
| HHHHHHHH IKKKKKK ZKKDDDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DD                                                    |
| OOOOOOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |
| XXXXIII XQQIQXXII KKKKKKXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |
| 英英王民民民民员 二二年民国民国国 江江江江江江                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |
| CONENERS I I NO I I I E E PODODO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |
| HHHHHHHH MHODODDD XXMX4X4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |
| <b>ЧИРАЧЧАЧ ЖЕОЧОРООГ ЖЖЖЕДЕ</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : A A                                                 |
| RMSGGP3<br>HMSGP1<br>HMSG11<br>HMSG14<br>HMSG32<br>HMSG32<br>HMSGGP3<br>HMSG11<br>HMSG32<br>HMSG32<br>HMSG32<br>HMSG33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33<br>HMSGB33 | SG3<br>HMS                                            |

FIGURE 11

FIGURE 1J

| 831<br>820<br>834<br>832<br>833<br>823<br>826<br>836<br>836                     | 863<br>843<br>843<br>834<br>837<br>837                              | 895<br>847<br>867<br>865<br>865<br>865<br>869<br>869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>ω</b>                                                                        | טווווווו ט                                                          | <b>KKAKKKKK</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ווווווו                                                                         | Ω                                                                   | PATAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <u>Δ</u> , , , , , , , , , , , , , , , , , , ,                                  |                                                                     | ымынынын                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Δ</b> 1                                                                      | 01111111                                                            | T L L O L O L A K <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Δ, , , , , , , , , , , , , , , , , , ,                                          | Ω, , , , , , , , , , , , , , , , , , ,                              | пприприпри                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Δ, , , , , , , , , , , ,                                                        | E-1111111                                                           | 31111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| יווווון ש                                                                       | <b>७</b> ।।।।।।                                                     | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>4</b>                                                                        | <u> Ωιι τ΄ ι ι ι τ ι</u>                                            | T S S S S L H O G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Δ, , , , , , , , , , , , , , , , , , ,                                          | <del>[</del>                                                        | 0>><<<>>>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>4</b>                                                                        | יוווווו ט                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 01111111                                                                        | <b>5</b>                                                            | びたたたたたただん                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Δ, 1 1 1 1 1 1 1 1                                                              | $\omega$ , , , , , , , ,                                            | と 互 丸 VVVVVV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 44444444                                                                        | 4                                                                   | F $Z$ $Z$ $U$ $U$ $U$ $U$ $U$ $U$ $U$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ひられれれれれれば                                                                       | 011111111                                                           | 民民民民民民民民民                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GUZZZUZZO                                                                       | E-111111111                                                         | <b>水灰瓦瓦瓦瓦瓦瓦瓦</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>ひ                                    </b>                                    | 52                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| □ > 0 0 0 0 0 0 0 0                                                             | ${\mathfrak G}$ is the fit                                          | ЧЧЧнннннн                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| HIIZZOZZZ                                                                       | 01111111                                                            | GKKKKKKKK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                           | $\Omega_1$ I I I I I I I I                                          | ムマスロントリン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>UXXXXXXXX</b>                                                                | H I O H H H H H H                                                   | HHHHHKGHK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\alpha$ $\Xi$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\sigma$            | は・取りりひりり                                                            | <b>ムッTKKEKKK</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 H Z H > H > > H                                                               | なっちひひひひひこ                                                           | H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + |
| ZXZZZZZZZ                                                                       | 15、121111111111111111111111111111111111                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| OZZXXXXXXX                                                                      | 0 1 1 0 0 0 0 0 0 1                                                 | Ziiiiiiiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 人口口居田田田田口                                                                       | ZOXZZZZZZ                                                           | $\Sigma$ , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ZHAZZOZZO                                                                       | Q Q H Q Q Q Q Q Q Q                                                 | Финини                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| りらられれれれれれ                                                                       | 0 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                               | <b>७</b> ।।।।।।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\Sigma$ : : : : : : :                                                          | SPUPAHAAD                                                           | Δ, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| >                                                                               | OOONNAN                                                             | E-1111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| H                                                                               | <b>ひ                                    </b>                        | 01111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| O( I I I I I I I I I                                                            | Δ, ι ι ι ι ι ι ι                                                    | $\Omega_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>KKKKKKKK</b>                                                                 | $\Omega_{i}$                                                        | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RMSGGP3<br>HMSGp1<br>HMSG11<br>HMSG14<br>HMSG32<br>HMSG33<br>HMSG35<br>GBHMSG35 | RMSGGP3  CHMSGD1  CHMSG11  HMSG14  HMSG32  HMSG32  HMSG35  GBHMSG35 | RMSGGP3<br>HMSGp1<br>HMSG11<br>HMSG14<br>HMSG32<br>HMSG33<br>HMSG35<br>GBHMSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

FIGURE 1K

|                                                                                                    |                                                                                           | _                                                                               |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 927<br>879<br>870<br>899<br>897<br>896<br>888<br>891<br>901                                        | 958<br>910<br>927<br>927<br>928<br>931                                                    | 990<br>930<br>945<br>930<br>930<br>930<br>930                                   |
| $\mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} $ |                                                                                           | ×                                                                               |
| ОММОООООО                                                                                          | HHZ::::                                                                                   | HILLITE                                                                         |
| 因以及口冠田田田口                                                                                          | н>хыыыыыы                                                                                 | <b>国</b>                                                                        |
| <b>XXXXXXXXX</b>                                                                                   | X                                                                                         | H 1 1 1 1 1 1 1 1 1 1                                                           |
| дынн>ннн                                                                                           | 田式マンマンマン                                                                                  | > 1 1 1 1 1 1 1 1                                                               |
| G 田 G G R R R R G G                                                                                |                                                                                           | HIIIIII                                                                         |
| 0                                                                                                  | 计正可可可可可可可                                                                                 | <b>X</b>                                                                        |
|                                                                                                    | нниннинн                                                                                  | ·国1111111                                                                       |
| L O K O O O O O L                                                                                  | $\sigma$                                                                                  | > : : : : : : : :                                                               |
| 西区工工区区区区下                                                                                          | <b>XXXXXXXXX</b>                                                                          | H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                         |
| <b>너 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다</b>                                                     | $H \mathbin{>} \mathbin{>} \mathbin{>} \mathbin{>} \mathbin{>} \mathbin{>} \mathbin{>} >$ | $\bowtie$ $\square$                                                             |
| <b>AHHKKKKK</b>                                                                                    | 压坏坏压屈转压压压                                                                                 | 田口・・・・・・・                                                                       |
| RIZBZZZZB                                                                                          | ччччччччч                                                                                 | $\Box$                                                                          |
| 0 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                              | 4 4 4 4 4 4 4 4 4                                                                         | A > A A A A A A A A                                                             |
| 因下工以及及及及及                                                                                          | БББКККККК                                                                                 | X T X X X X X X X X                                                             |
| 医瓦瓦瓦瓦瓦瓦瓦瓦                                                                                          | дначачача                                                                                 | GK丸FPFFFF                                                                       |
| <b>XXXXXXXXX</b>                                                                                   | L X H O X X X X D                                                                         | OMDDDDDDD                                                                       |
| 보다다다다다다다                                                                                           | <b>よこらHRSRRR</b>                                                                          | E                                                                               |
|                                                                                                    | 0 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                     | <b>以正エマママママン</b>                                                                |
| 4444444                                                                                            | N Y Y A A Y H H L                                                                         | 444444444                                                                       |
| <b>太太太太太太太太太</b>                                                                                   | TKGKKGKKK                                                                                 | エエエエエエエルへ買                                                                      |
| <b>111288888</b>                                                                                   | <b>UEQEZOZZX</b>                                                                          | 4444444                                                                         |
| 国 o 口 c c c c c c c c                                                                              |                                                                                           | X II T T T T T T T T T T T T T T T T T T                                        |
| 되면되면되면되다                                                                                           | <b>NEXXXXXX</b>                                                                           | 4444444                                                                         |
| 444>>>>>                                                                                           | はれれられられれら                                                                                 | 4444444                                                                         |
| 工工队团团团团团团                                                                                          | 0                                                                                         |                                                                                 |
| F                                                                                                  | 女 Q な ひ ひ ひ ひ ひ ひ                                                                         | 4444444                                                                         |
| エンソスよりよんよ                                                                                          | ОООБИВОВИО                                                                                | 4444444                                                                         |
| 411111111                                                                                          | <b>X X B X B B B B X</b>                                                                  | 444444KE                                                                        |
|                                                                                                    | ноочачача                                                                                 | H H H W D W W W W                                                               |
| 단한단단단단단단                                                                                           | 0 1 1 0 0 0 0 0 0                                                                         | ×                                                                               |
| $\alpha$                                                                                           | アドロロドドドドロ                                                                                 | [                                                                               |
| RMSGGP3<br>HMSGp1<br>HMSG11<br>HMSG14<br>HMSG32<br>HMSG33<br>HMSG35<br>GBHMSG                      | RMSGGP3<br>HMSGP1<br>HMSG11<br>HMSG14<br>HMSG14<br>HMSG32<br>HMSG33<br>HMSG33<br>GBHMSG35 | RMSGGP3<br>HMSGp1<br>HMSG11<br>HMSG14<br>HMSG32<br>HMSG33<br>HMSG35<br>GBHMSG35 |

| 1022<br>954<br>942<br>970<br>967<br>962<br>962                                                                                                                    | 10<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90                                                     | 1086<br>1012<br>1026<br>1026<br>1020<br>1020<br>1028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| нанананан                                                                                                                                                         | <b>×</b>                                                                                                                 | मुस्या । सम्मिस्                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\exists$ $\Omega$                                                               | 01111111                                                                                                                 | $\Sigma$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4444444                                                                                                                                                           | E                                                                                                                        | >ннн г ннн                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$                                                                                  | <b>闰</b> 111111                                                                                                          | H Z H > > : > > >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4444444                                                                                                                                                           | × 1 1 1 1 1 1 1 1                                                                                                        | > = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| пнининин                                                                                                                                                          | Ø I I I I I I I                                                                                                          | 04444   444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| нанананны                                                                                                                                                         | 0.121111111                                                                                                              | 444144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\omega$ $\omega$ $\omega$ $\omega$ $\omega$ $\omega$ $\omega$ $\omega$ $\omega$                                                                                  | $\neg \circ \circ$ | ДДДНН І ННН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| +++++++++                                                                                                                                                         | 4444444                                                                                                                  | $\Sigma$ $\rangle$ $\rangle$ $\rangle$ $\rangle$ $\rangle$ $\langle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 x x 0 0 0 0 0 0 0                                                                                                                                               | ннннннннн                                                                                                                | H $O$ $O$ $O$ $O$ $O$ $O$ $O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4444444                                                                                                                                                           | 0                                                                                                                        | <b>张段段段改二 段段段</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| >>>>>                                                                                                                                                             | <b>XXXXXXXXX</b>                                                                                                         | $H \Sigma \Sigma \Sigma \Sigma : \Sigma \Sigma \Sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RESESSE                                                                                                                                                           | +++++++++                                                                                                                | $\Sigma$ $\rangle$ $\rangle$ $\rangle$ $\rangle$ $\rangle$ $\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| +++++++++                                                                                                                                                         | $\sigma$                                                                                                                 | D R R R I R R R B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                   | <b>XXXXXXXXX</b>                                                                                                         | DESET SEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ++++++++++                                                                                                                                                        | 0                                                                                                                        | > ७ ७ ७ ७ ७ ७ ७ ७ ७                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 44444444                                                                                                                                                          | <b>- 瓦瓦瓦瓦瓦瓦瓦瓦</b>                                                                                                        | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9 m 9 9 9 9 9 9 9 9                                                                                                                                               | 及民民民民民民民民                                                                                                                | H Z Z Z > Z > Z > Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| нчччччччч                                                                                                                                                         | <b>Е</b> НННННННН                                                                                                        | <b>环民民</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\mathbf{\Sigma}$ $\mathbf{\Omega}$ $\mathbf{\Omega}$ $\mathbf{\Omega}$ $\mathbf{\Omega}$ $\mathbf{\Omega}$ $\mathbf{\Omega}$ $\mathbf{\Omega}$ $\mathbf{\Omega}$ | $\alpha$                                | ZHHHHHHH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HKHKKKKK                                                                                                                                                          | PHHHHHHHH                                                                                                                | 000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D D D D D D D D                                                                                                                                                   | нанананан                                                                                                                | пппппппп                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 可以口口口口口口口口                                                                                                                                                        | PHHHHHHHH                                                                                                                | X \(\alpha\) \(\alp |
| 西西                                                                                                                                                                | рннннннн                                                                                                                 | 다 다 다 다 다 다 다 다 다                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| [                                                                                                                                                                 | HRKKKKKKK                                                                                                                | <b>XXXXXXXXX</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                   | n w w w w w w w w                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>X</b>                                                                                                                                                          | PERFERE                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Ö</b>                                                                                                                                                          | РЭЭННННН                                                                                                                 | поорыныон                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>U</b>                                                                                                                                                          | PERFEREN                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>७</b> ।।।।।।                                                                                                                                                   | លលលលលលលល                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| >                                                                                                                                                                 | <b>HHHHHHHH</b>                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| αιιιιιιι                                                                                                                                                          | реннинны                                                                                                                 | 田田田・・・田田・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u>Б</u>                                                                                                                                                          | 14 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                 | 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SGG<br>ISGP<br>ISG1<br>ISG1<br>ISG3<br>ISG3<br>ISG3<br>ISG3<br>ISG3                                                                                               | SGG<br>SGD<br>SG1<br>SG3<br>SG3<br>HMS                                                                                   | ISGG<br>ISGP<br>ISGD<br>ISG1<br>ISG1<br>ISG3<br>ISG3<br>ISG3<br>ISG3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RMSG<br>HMSG<br>HMSG<br>HMSG<br>HMSG<br>HMSG<br>GBHM                                                                                                              | RMSGI<br>HMSGI<br>HMSGI<br>HMSGI<br>HMSGI<br>HMSGI<br>GBHMS                                                              | RMSG<br>HMSG<br>HMSG<br>HMSG<br>HMSG<br>HMSG<br>HMSG<br>GBHM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14 14 14 14 14 14 14 O                                                                                                                                            | 12/13                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

 RMSGGP3
 M

 HMSGp1
 M

 HMSG11
 M

 HMSG14
 M

 HMSG32

 HMSG33
 M

 HMSG35
 M

 HMSG37
 M

 HMSG38
 M

 HMSG39
 M

 HMSG37
 M

 HMSG38
 M

 HMSG39
 M

 HMSG31
 M

## SEQUENCE LISTING

| <110> Kovacs, et al.                                                                                                                              |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <120> Identification of a region of the major surface glycoprotein (MSG) gene of human Pneumocystis carinii                                       |     |
| <130> 53232                                                                                                                                       |     |
| <140><br><141>                                                                                                                                    |     |
| <160> 26                                                                                                                                          |     |
| <170> PatentIn Ver. 2.0                                                                                                                           |     |
| <210> 1<br><211> 3042<br><212> DNA<br><213> Pneumocystis carinii sp. f. hominis                                                                   |     |
| <220> <221> CDS <222> (1)(3042)                                                                                                                   |     |
| <400> 1 gtg gcg cgg gcg gtt aag cgg cag gta aca gga gca tca gga gta gat Val Ala Arg Ala Val Lys Arg Gln Val Thr Gly Ala Ser Gly Val Asp 1 5 10 15 | 48  |
| gag gag gaa gtg cgt ctt ttg gct tta ata cta aaa gaa gat tct aag<br>Glu Glu Val Arg Leu Leu Ala Leu Ile Leu Lys Glu Asp Ser Lys<br>20 25 30        | 96  |
| gat gat aaa aaa tgc gaa gaa aaa tta gaa aaa cat tgc aaa gaa tta<br>Asp Asp Lys Lys Cys Glu Glu Lys Leu Glu Lys His Cys Lys Glu Leu<br>35 40 45    | 144 |
| agt gaa gca aat cta act cca gaa caa gta cat gaa aag tta aaa gat<br>Ser Glu Ala Asn Leu Thr Pro Glu Gln Val His Glu Lys Leu Lys Asp<br>50 55 60    | 192 |
| ttc tgt gat agc aaa aaa cgt gat aaa aaa tgt aaa gaa cta aaa aaa<br>Phe Cys Asp Ser Lys Lys Arg Asp Lys Lys Cys Lys Glu Leu Lys Lys<br>65 70 75 80 | 240 |
| aat gtt gaa aaa aaa tgc ggt gat ttt aaa aca gaa tta gaa gaa ttg<br>Asn Val Glu Lys Lys Cys Gly Asp Phe Lys Thr Glu Leu Glu Glu Leu<br>85 90 95    | 288 |
| gtg aaa aag gaa gct tca aat ttg aaa aat gat gag tgt aca aaa aat<br>Val Lys Lys Glu Ala Ser Asn Leu Lys Asn Asp Glu Cys Thr Lys Asn<br>100 105 110 | 336 |
| gaa caa cag tgc ttg ttt tta gaa gaa gca tgc tct gat ctt aca aag<br>Glu Gln Gln Cys Leu Phe Leu Glu Glu Ala Cys Ser Asp Leu Thr Lys<br>115 120 125 | 384 |
| aat tgc aac gat tta aga aac aaa tgt tat cag aat aag cgt gat aag<br>Asn Cys Asn Asp Leu Arg Asn Lys Cys Tyr Gln Asn Lys Arg Asp Lys<br>130 135 140 | 432 |

| WO 00/09760 | 1 | • | PCT/US99/18750 |
|-------------|---|---|----------------|

|                   |            |                   |            |                   |                   |            |                   |            |                   | aaa<br>Lys<br>155 |            |                   |            |                   |                   | 480  |
|-------------------|------------|-------------------|------------|-------------------|-------------------|------------|-------------------|------------|-------------------|-------------------|------------|-------------------|------------|-------------------|-------------------|------|
| gat<br>Asp        | aaa<br>Lys | aat<br>Asn        | tca<br>Ser | tgt<br>Cys<br>165 | gaa<br>Glu        | aat<br>Asn | aaa<br>Lys        | ctg<br>Leu | gaa<br>Glu<br>170 | gta<br>Val        | tac<br>Tyr | tgt<br>Cys        | caa<br>Gln | gaa<br>Glu<br>175 | tta<br>Leu        | 528  |
|                   |            |                   |            |                   |                   |            |                   |            |                   | tgt<br>Cys        |            |                   |            |                   |                   | 576  |
| acg<br>Thr        | tgt<br>Cys | gat<br>Asp<br>195 | aat<br>Asn | ctt<br>Leu        | gta<br>Val        | aaa<br>Lys | gaa<br>Glu<br>200 | acg<br>Thr | caa<br>Gln        | caa<br>Gln        | aag<br>Lys | tgt<br>Cys<br>205 | gaa<br>Glu | tct<br>Ser        | ttc<br>Phe        | 624  |
|                   |            |                   |            |                   |                   |            |                   |            |                   | aag<br>Lys        |            |                   |            |                   |                   | 672  |
| aaa<br>Lys<br>225 | aaa<br>Lys | aaa<br>Lys        | tgc<br>Cys | cca<br>Pro        | tta<br>Leu<br>230 | tta<br>Leu | tat<br>Tyr        | gaa<br>Glu | gaa<br>Glu        | tgc<br>Cys<br>235 | att<br>Ile | ttt<br>Phe        | tat<br>Tyr | gat<br>Asp        | gaa<br>Glu<br>240 | 720  |
|                   |            |                   |            |                   |                   |            |                   |            |                   | gaa<br>Glu        |            |                   |            |                   |                   | 768  |
|                   |            |                   |            |                   |                   |            |                   |            |                   | tat<br>Tyr        |            |                   |            |                   |                   | 816  |
|                   |            |                   |            |                   |                   |            |                   |            |                   | gta<br>Val        |            |                   |            |                   |                   | 864  |
|                   |            |                   |            |                   |                   |            |                   |            |                   | gtt<br>Val        |            |                   |            |                   |                   | 912  |
| gca<br>Ala<br>305 | gat<br>Asp | gct<br>Ala        | act<br>Thr | gct<br>Ala        | ttg<br>Leu<br>310 | gtg<br>Val | gca<br>Ala        | ttt<br>Phe | ttg<br>Leu        | att<br>Ile<br>315 | caa<br>Gln | gat<br>Asp        | cca<br>Pro | tct<br>Ser        | ctt<br>Leu<br>320 | 960  |
|                   |            |                   |            |                   |                   |            |                   |            |                   | aaa<br>Lys        |            |                   |            |                   |                   | 1008 |
|                   |            |                   |            |                   |                   |            |                   |            |                   | ata<br>Ile        |            |                   |            |                   |                   | 1056 |
|                   |            |                   |            |                   |                   |            |                   |            |                   | aaa<br>Lys        |            |                   |            |                   |                   | 1104 |
|                   |            |                   |            |                   |                   |            |                   |            |                   | att<br>Ile        |            |                   |            |                   |                   | 1152 |

|   |                   | wo 0              | 0/097             | 60                | 4                 |                   |                   |                   |                   |                   |                   |                   |                   | <b>&gt;</b>       |                   | PC                | T/US99/18 |
|---|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------|
| Ι | tt<br>le<br>85    | cat<br>His        | ttt<br>Phe        | ttt<br>Phe        | ggc<br>Gly        | gat<br>Asp<br>390 | gga<br>Gly        | aat<br>Asn        | aaa<br>Lys        | aat<br>Asn        | gat<br>Asp<br>395 | gga<br>Gly        | att<br>Ile        | att<br>Ile        | aaa<br>Lys        | tgg<br>Trp<br>400 | 1200      |
| g | igg<br>ily        | aat<br>Asn        | tta<br>Leu        | tca<br>Ser        | acg<br>Thr<br>405 | ttt<br>Phe        | cta<br>Leu        | agc<br>Ser        | aat<br>Asn        | aaa<br>Lys<br>410 | gat<br>Asp        | tgt<br>Cys        | aca<br>Thr        | aaa<br>Lys        | tta<br>Leu<br>415 | gaa<br>Glu        | 1248      |
| ţ | cg                | tat<br>Tyr        | tgt<br>Cys        | ctt<br>Leu<br>420 | tat<br>Tyr        | ttt<br>Phe        | gaa<br>Glu        | aaa<br>Lys        | agc<br>Ser<br>425 | tgt<br>Cys        | aga<br>Arg        | agc<br>Ser        | gaa<br>Glu        | act<br>Thr<br>430 | gca<br>Ala        | tgc<br>Cys        | 1296      |
| I | ag<br>ys          | aat<br>Asn        | atc<br>Ile<br>435 | aga<br>Arg        | gca<br>Ala        | gca<br>Ala        | tgc<br>Cys        | tac<br>Tyr<br>440 | aag<br>Lys        | aga<br>Arg        | gga<br>Gly        | ctt<br>Leu        | gac<br>Asp<br>445 | aca<br>Thr        | tta<br>Leu        | gca<br>Ala        | 1344      |
| Ē | at<br>Asn         | gaa<br>Glu<br>450 | gta<br>Val        | tta<br>Leu        | caa<br>Gln        | aaa<br>Lys        | gaa<br>Glu<br>455 | atg<br>Met        | cga<br>Arg        | gga<br>Gly        | atg<br>Met        | ctg<br>Leu<br>460 | cat<br>His        | ggt<br>Gly        | tca<br>Ser        | aat<br>Asn        | 1392      |
| 1 | aaa<br>Lys<br>165 | aca<br>Thr        | tgg<br>Trp        | ctt<br>Leu        | agt<br>Ser        | ggt<br>Gly<br>470 | ttc<br>Phe        | caa<br>Gln        | aaa<br>Lys        | aaa<br>Lys        | ctc<br>Leu<br>475 | ata<br>Ile        | gaa<br>Glu        | gtg<br>Val        | tgc<br>Cys        | aaa<br>Lys<br>480 | 1440      |
| í | aaa<br>Lys        | gtg<br>Val        | aaa<br>Lys        | aaa<br>Lys        | gag<br>Glu<br>485 | aat<br>Asn        | aaa<br>Lys        | gga<br>Gly        | gtt<br>Val        | ttt<br>Phe<br>490 | ccg<br>Pro        | agt<br>Ser        | aat<br>Asn        | gaa<br>Glu        | tta<br>Leu<br>495 | ttt<br>Phe        | 1488      |
| 7 | gtc<br>/al        | tta<br>Leu        | tgt<br>Cys        | gta<br>Val<br>500 | caa<br>Gln        | cca<br>Pro        | tca<br>Ser        | aaa<br>Lys        | gca<br>Ala<br>505 | gct<br>Ala        | cga<br>Arg        | ttg<br>Leu        | ctt<br>Leu        | tcg<br>Ser<br>510 | cat<br>His        | gat<br>Asp        | 1536      |
| 3 | ctt<br>Leu        | cgg<br>Arg        | atg<br>Met<br>515 | aaa<br>Lys        | act<br>Thr        | atc<br>Ile        | ttt<br>Phe        | ttg<br>Leu<br>520 | caa<br>Gln        | gac<br>Asp        | gat<br>Asp        | ttg<br>Leu        | aac<br>Asn<br>525 | aga<br>Arg        | aag<br>Lys        | cga<br>Arg        | 1584      |
| j | gat<br>Asp        | ttt<br>Phe<br>530 | cca<br>Pro        | gtg<br>Val        | aaa<br>Lys        | gaa<br>Glu        | gac<br>Asp<br>535 | tgc<br>Cys        | gaa<br>Glu        | gaa<br>Glu        | tta<br>Leu        | tta<br>Leu<br>540 | aag<br>Lys        | aaa<br>Lys        | tgt<br>Cys        | gag<br>Glu        | 1632      |
|   | gct<br>Ala<br>545 | cta<br>Leu        | aga<br>Arg        | aag<br>Lys        | gat<br>Asp        | tct<br>Ser<br>550 | aaa<br>Lys        | aaa<br>Lys        | att<br>Ile        | gaa<br>Glu        | tgg<br>Trp<br>555 | Pro               | tgt<br>Cys        | cat<br>His        | aca<br>Thr        | tta<br>Leu<br>560 | 1680      |
|   | agc<br>Ser        | caa<br>Gln        | aat<br>Asn        | tgt<br>Cys        | gat<br>Asp<br>565 | caa<br>Gln        | ttg<br>Leu        | aga<br>Arg        | aac<br>Asn        | gct<br>Ala<br>570 | aaa<br>Lys        | gaa<br>Glu        | ttg<br>Leu        | aaa<br>Lys        | gaa<br>Glu<br>575 | ctt<br>Leu        | 1728      |
|   | tta<br>Leu        | cta<br>Leu        | aat<br>Asn        | gaa<br>Glu<br>580 | His               | aag<br>Lys        | gat<br>Asp        | ata<br>Ile        | ttg<br>Leu<br>585 | Lys               | aat<br>Asn        | caa<br>Gln        | gag<br>Glu        | aat<br>Asn<br>590 | Cys               | gga<br>Gly        | 1776      |
|   | Met               | _                 | Leu<br>595        | Lys               | Glu               | Lys               | Cys               | Asn<br>600        | Glu               | Trp               | Ser               | Arg               | Arg<br>605        | Arg               | Asn               | Glu               | 1824      |
|   | cgt<br>Arg        | ttc<br>Phe<br>610 | Ser               | ctt<br>Leu        | tta<br>Leu        | tgt<br>Cys        | gct<br>Ala<br>615 | Leu               | caa<br>Gln        | aat<br>Asn        | agg<br>Arg        | act<br>Thr<br>620 | : Cys             | aga<br>Arg        | ata<br>Ile        | atg<br>Met        | 1872      |
|   | gta               | gaa               | gat               | gtg               | aaa               | aat               | caa               | tgc               | : aaa             | ata<br>3          | ttt               | gaa               | aaa               | aac               | att               | aaa               | 1920      |

PCT/US99/18750

|                   | wo 0              | 0/097             | 60                | 1                 |                   |                   |                   |                   |                   |                   | •                 |                           |                   |                   | PC                | Γ/US99/18750 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------------|-------------------|-------------------|-------------------|--------------|
| Val<br>625        |                   | Asp               | Val               | Lys               | Asn<br>630        | Gln               | Cys               | Lys               | Ile               | Phe<br>635        | Glu               | Lys                       | Asn               | Ile               | Lys<br>640        |              |
| aaa<br>Lys        | tac<br>Tyr        | caa<br>Gln        | ggt<br>Gly        | att<br>Ile<br>645 | gat<br>Asp        | agt<br>Ser        | aaa<br>Lys        | act<br>Thr        | aaa<br>Lys<br>650 | ata<br>Ile        | gaa<br>Glu        | gaa<br>Glu                | tta<br>Leu        | ggg<br>Gly<br>655 | aca<br>Thr        | 1968         |
| tat<br>Tyr        | tgt<br>Cys        | cct<br>Pro        | att<br>Ile<br>660 | tgg<br>Trp        | cac<br>His        | cca<br>Pro        | cac<br>His        | tgc<br>Cys<br>665 | cat<br>His        | aga<br>Arg        | ttt<br>Phe        | gga<br>Gly                | ccc<br>Pro<br>670 | aat<br>Asn        | tgc<br>Cys        | 2016         |
| ccg<br>Pro        | gat<br>Asp        | ctt<br>Leu<br>675 | gaa<br>Glu        | aaa<br>Lys        | aat<br>Asn        | aaa<br>Lys        | tgt<br>Cys<br>680 | gaa<br>Glu        | gac<br>Asp        | ttt<br>Phe        | gaa<br>Glu        | aaa<br>Lys<br>685         | tat<br>Tyr        | tgc<br>Cys        | aaa<br>Lys        | 2064         |
| cct<br>Pro        | tat<br>Tyr<br>690 | tat<br>Tyr        | aag<br>Lys        | caa<br>Gln        | aga<br>Arg        | gac<br>Asp<br>695 | ctt<br>Leu        | gaa<br>Glu        | aat<br>Asn        | gca<br>Ala        | ctt<br>Leu<br>700 | ata<br>Ile                | ttt<br>Phe        | gag<br>Glu        | ttt<br>Phe        | 2112         |
| aga<br>Arg<br>705 | gga<br>Gly        | cat<br>His        | ctt<br>Leu        | gat<br>Asp        | aag<br>Lys<br>710 | aaa<br>Lys        | aaa<br>Lys        | aac<br>Asn        | tgc<br>Cys        | aaa<br>Lys<br>715 | aca<br>Thr        | aat<br>Asn                | ctt<br>Leu        | gat<br>Asp        | aag<br>Lys<br>720 | 2160         |
| tac<br>Tyr        | tgt<br>Cys        | aca<br>Thr        | cta<br>Leu        | tgg<br>Trp<br>725 | gat<br>Asp        | caa<br>Gln        | aca<br>Thr        | gga<br>Gly        | aat<br>Asn<br>730 | aaa<br>Lys        | aca<br>Thr        | ctt<br>Leu                | aaa<br>Lys        | ggt<br>Gly<br>735 | ttt<br>Phe        | 2208         |
| tgt<br>Cys        | aac<br>Asn        | agt<br>Ser        | tct<br>Ser<br>740 | act<br>Thr        | gat<br>Asp        | aac<br>Asn        | aat<br>Asn        | gaa<br>Glu<br>745 | aca<br>Thr        | ttt<br>Phe        | aga<br>Arg        | gat<br>Asp                | aaa<br>Lys<br>750 | ctt<br>Leu        | tgc<br>Cys        | 2256         |
| gaa<br>Glu        | aaa<br>Lys        | cta<br>Leu<br>755 | gtt<br>Val        | cag<br>Gln        | cgt<br>Arg        | gtg<br>Val        | aaa<br>Lys<br>760 | gaa<br>Glu        | aaa<br>Lys        | tgc<br>Cys        | caa<br>Gln        | gga<br>Gly<br><b>76</b> 5 | tta<br>Leu        | tca<br>Ser        | aaa<br>Lys        | 2304         |
| gaa<br>Glu        | ctt<br>Leu<br>770 | gaa<br>Glu        | aaa<br>Lys        | gca<br>Ala        | aaa<br>Lys        | aat<br>Asn<br>775 | gat<br>Asp        | tta<br>Leu        | gaa<br>Glu        | gaa<br>Glu        | aaa<br>Lys<br>780 | cat<br>His                | aaa<br>Lys        | gat<br>Asp        | tat<br>Tyr        | 2352         |
| gaa<br>Glu<br>785 | aaa<br>Lys        | gta<br>Val        | aaa<br>Lys        | aag<br>Lys        | gat<br>Asp<br>790 | aca<br>Thr        | aaa<br>Lys        | aat<br>Asn        | gca<br>Ala        | atg<br>Met<br>795 | gaa<br>Glu        | gaa<br>Glu                | aca<br>Thr        | aat<br>Asn        | ctc<br>Leu<br>800 | 2400         |
| gtt<br>Val        | ttt<br>Phe        | tca<br>Ser        | aca<br>Thr        | act<br>Thr<br>805 | aaa<br>Lys        | tca<br>Ser        | aca<br>Thr        | gat<br>Asp        | aat<br>Asn<br>810 | aaa<br>Lys        | aca<br>Thr        | gaa<br>Glu                | aaa<br>Lys        | gga<br>Gly<br>815 | gtc<br>Val        | 2448         |
| aag<br>Lys        | cct<br>Pro        | agt<br>Ser        | acg<br>Thr<br>820 | cct<br>Pro        | agt<br>Ser        | gta<br>Val        | gtt<br>Val        | caa<br>Gln<br>825 | gat<br>Asp        | att<br>Ile        | gta<br>Val        | cat<br>His                | ttt<br>Phe<br>830 | aaa<br>Lys        | ctt<br>Leu        | 2496         |
| gta<br>Val        | aaa<br>Lys        | aga<br>Arg<br>835 | aat<br>Asn        | gaa<br>Glu        | aaa<br>Lys        | gtt<br>Val        | caa<br>Gln<br>840 | gtg<br>Val        | aca<br>Thr        | gaa<br>Glu        | aaa<br>Lys        | gaa<br>Glu<br>845         | gca<br>Ala        | aaa<br>Lys        | gcg<br>Ala        | 2544         |
| ttt<br>Phe        | gat<br>Asp<br>850 | ttg<br>Leu        | gta<br>Val        | gca<br>Ala        | cta<br>Leu        | gca<br>Ala<br>855 | ttc<br>Phe        | agt<br>Ser        | ctt<br>Leu        | tat<br>Tyr        | gta<br>Val<br>860 | gag<br>Glu                | tta<br>Leu        | aaa<br>Lys        | gaa<br>Glu        | 2592         |
| acg<br>Thr        | tgt<br>Cys        | cac<br>His        | cat<br>His        | cta<br>Leu        | aag<br>Lys        | gat<br>Asp        | gat<br>Asp        | tgc<br>Cys        | gaa<br>Glu<br>4   | ttt<br>Phe        | aga<br>Arg        | aaa<br>Lys                | gaa<br>Glu        | tgt<br>Cys        | aaa<br>Lys        | 2640         |

**SUBSTITUTE SHEET (RULE 26)** 

| WO 00/09760 |  | <br>PCT/US99/18750 |
|-------------|--|--------------------|

|                                          |            |                   | •                 |            |            |                    |                   |                   |            |            |                    | _                 |                   |            |               |
|------------------------------------------|------------|-------------------|-------------------|------------|------------|--------------------|-------------------|-------------------|------------|------------|--------------------|-------------------|-------------------|------------|---------------|
| 865                                      |            |                   |                   | 870        |            |                    |                   | •                 | 875        |            |                    |                   |                   | 880        |               |
| tgt aaa<br>Cys Lys                       |            |                   |                   |            |            |                    |                   |                   |            |            |                    |                   |                   |            | 2688          |
| cca cto<br>Pro Leu                       |            |                   |                   |            |            |                    |                   |                   |            |            |                    |                   |                   |            | 2736          |
| ata aca<br>Ile Thr                       |            |                   |                   |            |            |                    |                   |                   |            |            |                    |                   |                   |            | 2784          |
| gac gga<br>Asp Gly<br>930                | Glu        |                   |                   |            |            |                    |                   |                   |            |            |                    |                   |                   |            | 2832          |
| aag acg<br>Lys Thr<br>945                |            |                   |                   |            |            |                    |                   |                   |            |            |                    |                   |                   |            | 2880          |
| tca aga<br>Ser Arg                       | ata<br>Ile | aca<br>Thr        | ctg<br>Leu<br>965 | acc<br>Thr | tcg<br>Ser | acg<br>Thr         | agg<br>Arg        | cgg<br>Arg<br>970 | tgt<br>Cys | aag<br>Lys | cct<br>Pro         | acg<br>Thr        | aag<br>Lys<br>975 | tgt<br>Cys | 2 <b>92</b> 8 |
| acg aca<br>Thr Thr                       | gga<br>Gly | gag<br>Glu<br>980 | gaa<br>Glu        | gat<br>Asp | gaa<br>Glu | gca<br>Ala         | gga<br>Gly<br>985 | gag<br>Glu        | gtg<br>Val | aag<br>Lys | ccg<br>Pro         | agt<br>Ser<br>990 | gag<br>Glu        | Gly<br>ggg | 2976          |
| ctg agg<br>Leu Arg                       | Met<br>995 | agt<br>Ser        | G] À<br>ààà       | tgg<br>Trp | Ser        | gtg<br>Val<br>1000 | atg<br>Met        | aga<br>Arg        | G1A<br>aaa | Val        | tta<br>Leu<br>L005 | tta<br>Leu        | gca<br>Ala        | atg<br>Met | 3024          |
| atg att<br>Met Ile<br>1010               | Ser        |                   | _                 |            |            |                    |                   |                   |            |            |                    |                   |                   |            | 3042          |
| <210> 2<br><211> 1<br><212> P<br><213> P | 014<br>RT  | ocyst             | is o              | carin      | nii s      | sp. 1              | f. ho             | omini             | Ls         |            |                    |                   |                   |            |               |
| <400> 2<br>Val Ala<br>1                  |            | Ala               | Val<br>5          | Lys        | Arg        | Gln                | Val               | Thr<br>10         | Gly        | Ala        | Ser                | Gly               | Val<br>15         | Asp        |               |
| Glu Glu                                  | Glu        | Val<br>20         | Arg               | Leu        | Leu        | Ala                | Leu<br>25         | Ile               | Leu        | Lys        | Glu                | Asp<br>30         | Ser               | Lys        |               |
| Asp Asp                                  | Lys<br>35  | Lys               | Cys               | Glu        | Glu        | Lys<br>40          | Leu               | Glu               | Lys        | His        | Cys<br>45          | Lys               | Glu               | Leu        |               |
| Ser Glu<br>50                            |            | Asn               | Leu               | Thr        | Pro<br>55  | Glu                | Gln               | Val               | His        | Glu<br>60  | Lys                | Leu               | Lys               | Asp        |               |
| Phe Cys<br>65                            | Asp        | Ser               | Lys               | Lys<br>70  | Arg        | Asp                | Lys               | Lys               | Cys<br>75  | Lys        | Glu                | Leu               | Lys               | Lys<br>80  |               |
| Asn Val                                  | Glu        | Lys               | Lys               | Cys        | Gly        | Asp                | Phe               | Lys<br>5          | Thr        | Glu        | Leu                | Glu               | Glu               | Leu        |               |



WO 00/09760 95 90 Val Lys Lys Glu Ala Ser Asn Leu Lys Asn Asp Glu Cys Thr Lys Asn 105 Glu Gln Gln Cys Leu Phe Leu Glu Glu Ala Cys Ser Asp Leu Thr Lys 120 Asn Cys Asn Asp Leu Arg Asn Lys Cys Tyr Gln Asn Lys Arg Asp Lys 135 Val Ala Lys Glu Val Leu Leu Arg Ile Ile Lys Gly Lys Asn Phe Lys Asp Lys Asn Ser Cys Glu Asn Lys Leu Glu Val Tyr Cys Gln Glu Leu 170 Ser Gln Met Ser Asp Glu Leu Met Lys Leu Cys Phe Asp Gln Lys Asn 185 Thr Cys Asp Asn Leu Val Lys Glu Thr Gln Gln Lys Cys Glu Ser Phe 200 Lys Asn Leu Lys Thr Glu Ile Lys Thr Ile Lys Glu Asp Glu Gln Leu Lys Lys Lys Cys Pro Leu Leu Tyr Glu Glu Cys Ile Phe Tyr Asp Glu ) 230 Ser Cys Gly Asn Asp Ser Leu Lys Cys Ser Glu Leu Glu Lys Lys Cys Gln Glu Lys Asn Ile Thr Tyr Thr Leu Ser Tyr Ser Gly Phe Asp Pro Ile Glu Pro Glu Ile Thr Leu Ala Glu Glu Val Asp Leu Glu Gly Ile

Tyr Arg Lys Ala Ala Glu Glu Gly Thr Leu Val Gly Lys Pro Leu Pro

Ala Asp Ala Thr Ala Leu Val Ala Phe Leu Ile Gln Asp Pro Ser Leu 315

Thr Thr Gln Arg Thr Asn Lys Glu Lys Cys Lys Ile Leu Glu Asp

Lys Cys Lys Asn Leu Lys Glu His Asp Ile Ile Lys Gly Leu Cys Glu 345

Asp Tyr Asn Ala Asn Lys Asp Lys Asp Lys Cys Glu Glu Leu Ser

Thr Asp Ile Glu Glu Thr Cys Lys Phe Phe Ile Ser Lys Thr Leu Met 375

Ile His Phe Phe Gly Asp Gly Asn Lys Asn Asp Gly Ile Ile Lys Trp

Gly Asn Leu Ser Thr Phe Leu Ser Asn Lys Asp Cys Thr Lys Leu Glu 405 410

| Ser        | Tyr        | Cys        | Leu<br>420 | Tyr        | Phe        | Glu        | Lys        | Ser<br>425 | Cys        | Arg          | Ser        | Glu        | Thr<br>430 | Ala        | Cys        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|
| Lys        | Asn        | Ile<br>435 | Arg        | Ala        | Ala        | Cys        | Tyr<br>440 | Lys        | Arg        | Gly          | Leu        | Asp<br>445 | Thr        | Leu        | Ala        |
| Asn        | Glu<br>450 | Val        | Leu        | Gln        | Lys        | Glu<br>455 | Met        | Arg        | Gly        | Met          | Leu<br>460 | His        | Gly        | Ser        | Asn        |
| Lys<br>465 | Thr        | Trp        | Leu        | Ser        | Gly<br>470 | Phe        | Gln        | Lys        | Lys        | Leu<br>475   | Ile        | Glu        | Val        | Cys        | Lys<br>480 |
| Lys        | Val        | Lys        | Lys        | Glu<br>485 | Asn        | Lys        | Gly        | Val        | Phe<br>490 | Pro          | Ser        | Asn        | Glu        | Leu<br>495 | Phe        |
| Val        | Leu        | Cys        | Val<br>500 | Gln        | Pro        | Ser        | Lys        | Ala<br>505 | Ala        | Arg          | Leu        | Leu        | Ser<br>510 | His        | Asp        |
| Leu        | Arg        | Met<br>515 | Lys        | Thr        | Ile        | Phe        | Leu<br>520 | Gln        | Asp        | Asp          | Leu        | Asn<br>525 | Arg        | Lys        | Arg        |
| Asp        | Phe<br>530 | Pro        | Val        | Lys        | Glu        | Asp<br>535 | Cys        | Glu        | Glu        | Leu          | Leu<br>540 | Lys        | Lys        | Cys        | Glu        |
| Ala<br>545 | Leu        | Arg        | Lys        | Asp        | Ser<br>550 | Lys        | Lys        | Ile        | Glu        | Trp<br>555   | Pro        | Cys        | His        | Thr        | Leu<br>560 |
| Ser        | Gln        | Asn        | Cys        | Asp<br>565 | Gln        | Leu        | Arg        | Asn        | Ala<br>570 | Lys          | Glu        | Leu        | Lys        | Glu<br>575 | Leu        |
| Leu        | Leu        | Asn        | Glu<br>580 | His        | Lys        | Asp        | Ile        | Leu<br>585 | Lys        | Asn          | Gln        | Glu        | Asn<br>590 | Cys        | Gly        |
| Met        | Tyr        | Leu<br>595 | Lys        | Glu        | Lys        | Cys        | Asn<br>600 | Glu        | Trp        | Ser          | Arg        | Arg<br>605 | Arg        | Asn        | Glu        |
| Arg        | Phe<br>610 |            | Leu        | Leu        | Cys        | Ala<br>615 |            | Gln        | Asn        | Arg          | Thr<br>620 | .Cys       | Arg        | Ile        | Met        |
| Val<br>625 |            | Asp        | Val        | Lys        | Asn<br>630 | Gln        | Cys        | Lys        | Ile        | Phe<br>635   | Glu        | Lys        | Asn        | Ile        | Lys<br>640 |
| Lys        | Tyr        | Gln        | Gly        | Ile<br>645 |            | Ser        | Lys        | Thr        | Lys<br>650 | Ile          | Glu        | Glu        | Leu        | Gly<br>655 | Thr        |
| Tyr        | Cys        | Pro        | 11e<br>660 |            | His        | Pro        | His        | Cys<br>665 | His        | Arg          | Phe        | Gly        | Pro<br>670 | Asn        | Cys        |
| Pro        | Asp        | 675        |            | Lys        | Asn        | Lys        | Cys<br>680 |            | Asp        | Phe          | Glu        | Lys<br>685 | Tyr        | Cys        | Lys        |
| Pro        | 690        |            | Lys        | Gln        | Arg        | Asp<br>695 |            | Glu        | Asn        | Ala          | Teu<br>700 |            | Phe        | Glu        | Phe        |
| Arg<br>705 |            | / His      | Leu        | Asp        | 710        |            | Lys        | Asn        | Cys        | 1 Lys<br>715 | Thr        | Asn        | Leu        | Asp        | 720        |

Tyr Cys Thr Leu Trp Asp Gln Thr Gly Asn Lys Thr Leu Lys Gly Phe 725 730 735

Cys Asn Ser Ser Thr Asp Asn Asn Glu Thr Phe Arg Asp Lys Leu Cys Glu Lys Leu Val Gln Arg Val Lys Glu Lys Cys Gln Gly Leu Ser Lys Glu Leu Glu Lys Ala Lys Asn Asp Leu Glu Glu Lys His Lys Asp Tyr Glu Lys Val Lys Lys Asp Thr Lys Asn Ala Met Glu Glu Thr Asn Leu Val Phe Ser Thr Thr Lys Ser Thr Asp Asn Lys Thr Glu Lys Gly Val Lys Pro Ser Thr Pro Ser Val Val Gln Asp Ile Val His Phe Lys Leu

Val Lys Arg Asn Glu Lys Val Gln Val Thr Glu Lys Glu Ala Lys Ala

Phe Asp Leu Val Ala Leu Ala Phe Ser Leu Tyr Val Glu Leu Lys Glu

Thr Cys His His Leu Lys Asp Asp Cys Glu Phe Arg Lys Glu Cys Lys 870

Cys Lys Asp Gln Cys Lys Glu Ile Glu Lys Ile Cys Leu Lys Ile Glu 890

Pro Leu Lys Val Lys Pro His Glu Ile Lys Thr Val Thr Glu Thr Asn

Ile Thr Thr Val Thr Glu Thr Val Lys Glu Ala Glu Lys Thr Val Gly 920

Asp Gly Glu Lys Cys Lys Ser Leu Ser Thr Thr Asp Thr Trp Val Thr 935

Lys Thr Ser Thr His Thr Ser Thr Ser Thr Thr Thr Ser Thr Val Thr 950 955

Ser Arg Ile Thr Leu Thr Ser Thr Arg Arg Cys Lys Pro Thr Lys Cys 965

Thr Thr Gly Glu Glu Asp Glu Ala Gly Glu Val Lys Pro Ser Glu Gly 985

Leu Arg Met Ser Gly Trp Ser Val Met Arg Gly Val Leu Leu Ala Met 1000

Met Ile Ser Phe Met Ile 1010

<210> 3

<211> 3006

<212> DNA

<213> Pneumocystis carinii sp. f. hominis

<220>

<221> CDS <222> (1)..(3006)

| <400<br>gtg<br>Val<br>l  | gcg               | cgg<br>Arg        | gcg<br>Ala        | gtc<br>Val<br>5   | aag<br>Lys        | cgg<br>Arg        | cgg<br>Arg        | gct<br>Ala        | gca<br>Ala<br>10  | gca<br>Ala        | cag<br>Gln        | aat<br>Asn        | agt<br>Ser        | gtt<br>Val<br>15  | gaa<br>Glu        | 48  |
|--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| gaa<br>Glu               | gaa<br>Glu        | tat<br>Tyr        | ctt<br>Leu<br>20  | ttg<br>Leu        | gct<br>Ala        | ttg<br>Leu        | att<br>Ile        | tta<br>Leu<br>25  | gaa<br>Glu        | aat<br>Asn        | gag<br>Glu        | tat<br>Tyr        | gaa<br>Glu<br>30  | aat<br>Asn        | aat<br>Asn        | 96  |
| gat<br>Asp               | aaa<br>Lys        | tgt<br>Cys<br>35  | aaa<br>Lys        | aaa<br>Lys        | agg<br>Arg        | ttg<br>Leu        | aaa<br>Lys<br>40  | gag<br>Glu        | tat<br>Tyr        | tgt<br>Cys        | gaa<br>Glu        | gtt<br>Val<br>45  | tta<br>Leu        | aaa<br>Lys        | aat<br>Asn        | 144 |
| gta<br>Val               | aca<br>Thr<br>50  | aaa<br>Lys        | gaa<br>Glu        | cca<br>Pro        | aaa<br>Lys        | aaa<br>Lys<br>55  | cta<br>Leu        | gaa<br>Glu        | gaa<br>Glu        | aag<br>Lys        | tta<br>Leu<br>60  | gac<br>Asp        | gga<br>Gly        | atc<br>Ile        | tgc<br>Cys        | 192 |
| a <b>aa</b><br>Lys<br>65 | gat<br>Asp        | gat<br>Asp        | aaa<br>Lys        | aca<br>Thr        | ata<br>Ile<br>70  | gaa<br>Glu        | gca<br>Ala        | aaa<br>Lys        | tgc<br>Cys        | aaa<br>Lys<br>75  | gaa<br>Glu        | tca<br>Ser        | gaa<br>Glu        | aca<br>Thr        | aag<br>Lys<br>80  | 240 |
| gtt<br>Val               | aaa<br>Lys        | gca<br>Ala        | aag<br>Lys        | tgt<br>Cys<br>85  | act<br>Thr        | agt<br>Ser        | ttt<br>Phe        | caa<br>Gln        | aca<br>Thr<br>90  | gaa<br>Glu        | ctt<br>Leu        | gat<br>Asp        | aaa<br>Lys        | gca<br>Ala<br>95  | gtc<br>Val        | 288 |
| aaa<br>Lys               | aag<br>Lys        | gga<br>Gly        | gct<br>Ala<br>100 | tca<br>Ser        | aca<br>Thr        | tta<br>Leu        | gaa<br>Glu        | gat<br>Asp<br>105 | aat<br>Asn        | gat<br>Asp        | tgt<br>Cys        | aag<br>Lys        | aag<br>Lys<br>110 | aat<br>Asn        | gaa<br>Glu        | 336 |
| cga<br>Arg               | caa<br>Gln        | tgc<br>Cys<br>115 | ctg<br>Leu        | ttt<br>Phe        | ttg<br>Leu        | gag<br>Glu        | gga<br>Gly<br>120 | gca<br>Ala        | tgt<br>Cys        | cca<br>Pro        | aca<br>Thr        | gaa<br>Glu<br>125 | ctt<br>Leu        | aaa<br>Lys        | gat<br>Asp        | 384 |
| aaa<br>Lys               | tgt<br>Cys<br>130 | aat<br>Asn        | gaa<br>Glu        | ctg<br>Leu        | agg<br>Arg        | aat<br>Asn<br>135 | aaa<br>Lys        | tgt<br>Cys        | tat<br>Tyr        | caa<br>Gln        | aaa<br>Lys<br>140 | aaa<br>Lys        | cga<br>Arg        | gac<br>Asp        | gac<br>Asp        | 432 |
| gta<br>Val<br>145        | gca<br>Ala        | gaa<br>Glu        | aaa<br>Lys        | gct<br>Ala        | ctt<br>Leu<br>150 | tta<br>Leu        | aga<br>Arg        | gta<br>Val        | ctt<br>Leu        | aga<br>Arg<br>155 | Gly               | aac<br>Asn        | ctt<br>Leu        | aag<br>Lys        | gat<br>Asp<br>160 | 480 |
| aaa<br>Lys               | aac<br>Asn        | aca<br>Thr        | tgc<br>Cys        | aaa<br>Lys<br>165 | aat<br>Asn        | aag<br>Lys        | tta<br>Leu        | aag<br>Lys        | ggg<br>Gly<br>170 | gtt<br>Val        | tgt<br>Cys        | caa<br>Gln        | gaa<br>Glu        | ttc<br>Phe<br>175 | aac<br>Asn        | 528 |
|                          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | gac<br>Asp        |                   |                   |                   |                   | 576 |
| tgt<br>Cys               | gga<br>Gly        | gat<br>Asp<br>195 | ctt<br>Leu        | gta<br>Val        | tct<br>Ser        | aag<br>Lys        | aaa<br>Lys<br>200 | gaa<br>Glu        | tac<br>Tyr        | aaa<br>Lys        | tgc<br>Cys        | aaa<br>Lys<br>205 | cct<br>Pro        | ctc<br>Leu        | aaa<br>Lys        | 624 |
| gaa<br>Glu               | gga<br>Gly<br>210 | att<br>Ile        | gat<br>Asp        | cta<br>Leu        | gtg<br>Val        | ctt<br>Leu<br>215 | gga<br>Gly        | aag<br>Lys        | gaa<br>Glu        | gat<br>Asp        | tta<br>Leu<br>220 | tta<br>Leu        | aaa<br>Lys        | gaa<br>Glu        | aaa<br>Lys        | 672 |
| tgt                      |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |



| Cys<br>225 | Leu | Leu | Phe | Leu | Glu<br>230 | Glu | Cys | Tyr | Phe | Tyr<br>235 | Gly               | Ser | Asn | Cys | Glu<br>240 |      |
|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|-------------------|-----|-----|-----|------------|------|
|            |     |     |     |     |            |     |     |     |     |            | aaa<br>Lys        |     |     |     |            | 768  |
|            |     | _   |     | -   | _          |     |     |     |     |            | gat<br>Asp        |     | _   |     |            | 816  |
| _          |     |     |     | _   |            | _   |     | •   |     | -          | aaa<br>Lys        | _   |     | -   | _          | 864  |
|            |     |     |     |     |            |     |     |     |     |            | tca<br>Ser<br>300 |     |     |     |            | 912  |
| -          | _   |     | _   | _   |            |     | _   | _   | _   | -          | gct<br>Ala        |     |     |     |            | 960  |
|            |     |     |     |     |            |     |     |     |     |            | tgt<br>Cys        |     |     |     |            | 1008 |
|            |     |     |     |     |            |     |     |     |     |            | aag<br>Lys        |     |     |     |            | 1056 |
|            |     |     |     |     |            |     |     |     |     |            | gag<br>Glu        |     |     |     |            | 1104 |
|            |     |     |     |     |            |     |     |     |     |            | ttc<br>Phe<br>380 |     |     |     |            | 1152 |
| Val        |     | Glu | Ile | Ile | Gly        | Trp | His |     | Leu |            | aca<br>Thr        |     |     |     |            | 1200 |
|            |     |     |     |     |            |     |     |     |     |            | tat<br>Tyr        |     |     |     |            | 1248 |
|            |     |     |     |     |            |     |     |     |     |            | gca<br>Ala        |     |     |     |            | 1296 |
|            |     |     |     |     |            |     |     |     |     |            | caa<br>Gln        |     |     |     |            | 1344 |
|            |     |     |     |     |            |     |     |     |     |            | gaa<br>Glu<br>460 |     |     |     |            | 1392 |
|            |     |     |     |     |            |     |     |     |     |            | gaa<br>Glu        |     |     |     |            | 1440 |

|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 425               |                   |                   |                   |                   | 480               |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| 465               |                   |                   |                   |                   | 470               |                   |                   |                   |                   | 475               |                   |                   |                   |                   | 400               |      |
| ttt<br>Phe        | gta<br>Val        | cta<br>Leu        | tgt<br>Cys        | atg<br>Met<br>485 | aac<br>Asn        | cca<br>Pro        | ata<br>Ile        | aaa<br>Lys        | acg<br>Thr<br>490 | gct<br>Ala        | ctt<br>Leu        | aca<br>Thr        | gtg<br>Val        | tca<br>Ser<br>495 | aca<br>Thr        | 1488 |
| gat<br>Asp        | ttg<br>Leu        | cga<br>Arg        | atg<br>Met<br>500 | agg<br>Arg        | gca<br>Ala        | gtt<br>Val        | gct<br>Ala        | ttg<br>Leu<br>505 | caa<br>Gln        | gag<br>Glu        | cat<br>His        | ttg<br>Leu        | aac<br>Asn<br>510 | gaa<br>Glu        | aaa<br>Lys        | 1536 |
| cga<br>Arg        | gat<br>Asp        | ttt<br>Phe<br>515 | cca<br>Pro        | aca<br>Thr        | gaa<br>Glu        | aag<br>Lys        | gat<br>Asp<br>520 | tgt<br>Cys        | aaa<br>Lys        | gaa<br>Glu        | tta<br>Leu        | gag<br>Glu<br>525 | aaa<br>Lys        | aaa<br>Lys        | tgt<br>Cys        | 1584 |
| gag<br>Glu        | gtc<br>Val<br>530 | tta<br>Leu        | gga<br>Gly        | aaa<br>Lys        | gat<br>Asp        | tca<br>Ser<br>535 | aga<br>Arg        | gaa<br>Glu        | att<br>Ile        | aaa<br>Lys        | tgg<br>Trp<br>540 | tca<br>Ser        | tgt<br>Cys        | tat<br>Tyr        | acg<br>Thr        | 1632 |
| tta<br>Leu<br>545 | aaa<br>Lys        | cag<br>Gln        | cat<br>His        | tgc<br>Cys        | aat<br>Asn<br>550 | cgg<br>Arg        | ctg<br>Leu        | aag<br>Lys        | agc<br>Ser        | ata<br>Ile<br>555 | gag<br>Glu        | cac<br>His        | tta<br>Leu        | gaa<br>Glu        | gag<br>Glu<br>560 | 1680 |
| gag<br>Glu        | ttg<br>Leu        | cta<br>Leu        | aaa<br>Lys        | gaa<br>Glu<br>565 | aat<br>Asn        | aaa<br>Lys        | gga<br>Gly        | tat<br>Tyr        | tta<br>Leu<br>570 | aaa<br>Lys        | gat<br>Asp        | gaa<br>Glu        | aat<br>Asn        | agc<br>Ser<br>575 | tgc<br>Cys        | 1728 |
| aaa<br>Lys        | gaa<br>Glu        | gaa<br>Glu        | gct<br>Ala<br>580 | aag<br>Lys        | aaa<br>Lys        | cga<br>Arg        | tgt<br>Cys        | gaa<br>Glu<br>585 | aaa<br>Lys        | tgg<br>Trp        | ttt<br>Phe        | aga<br>Arg        | aga<br>Arg<br>590 | gaa<br>Glu        | aat<br>Asn        | 1776 |
| aat<br>Asn        | aaa<br>Lys        | ttt<br>Phe<br>595 | ttt<br>Phe        | tcg<br>Ser        | gct<br>Ala        | tgt<br>Cys        | tct<br>Ser<br>600 | gac<br>Asp        | ttg<br>Leu        | gaa<br>Glu        | ctt<br>Leu        | gtt<br>Val<br>605 | tgc<br>Cys        | aaa<br>Lys        | aag<br>Lys        | 1824 |
| atc<br>Ile        | act<br>Thr<br>610 | Arg               | aat<br>Asn        | gtt<br>Val        | gaa<br>Glu        | tct<br>Ser<br>615 | aaa<br>Lys        | tgt<br>Cys        | aat<br>Asn        | ata<br>Ile        | ttg<br>Leu<br>620 | aaa<br>Lys        | gga<br>Gly        | cat<br>His        | atg<br>Met        | 1872 |
| gaa<br>Glu<br>625 | Thr               | atg<br>Met        | aac<br>Asn        | gtt<br>Val        | ata<br>Ile<br>630 | agt<br>Ser        | gaa<br>Glu        | ata<br>Ile        | gct<br>Ala        | aaa<br>Lys<br>635 | aaa<br>Lys        | gag<br>Glu        | gaa<br>Glu        | aaa<br>Lys        | ata<br>Ile<br>640 | 1920 |
| tgt<br>Cys        | gaa<br>Glu        | ttt<br>Phe        | tgg<br>Trp        | gct<br>Ala<br>645 | Pro               | tat<br>Tyr        | tgt<br>Cys        | aaa<br>Lys        | aag<br>Lys<br>650 | tac<br>Tyr        | gag<br>Glu        | caa<br>Gln        | aat<br>Asn        | tgt<br>Cys<br>655 | gaa<br>Glu        | 1968 |
| aaa<br>Lys        | ctt<br>Leu        | aaa<br>Lys        | aac<br>Asn<br>660 | Gly               | gga<br>Gly        | aaa<br>Lys        | gat<br>Asp        | ggg<br>Gly<br>665 | Gln               | tgc<br>Cys        | aaa<br>Lys        | aaa<br>Lys        | ctc<br>Leu<br>670 | Asn               | aaa<br>Lys        | 2016 |
| aag<br>Lys        | tgc<br>Cys        | aaa<br>Lys<br>675 | Ser               | ttc<br>Phe        | ctt<br>Leu        | gaa<br>Glu        | aaa<br>Lys<br>680 | Glu               | gct<br>Ala        | tta<br>Leu        | gaa<br>Glu        | aat<br>Asn<br>685 | Lys               | gtt<br>Val        | gta<br>Val        | 2064 |
| gaa<br>Glu        | gaa<br>Glu<br>690 | Let               | aaa<br>Lys        | a ggt<br>s Gly    | agt<br>Ser        | tta<br>Leu<br>695 | ı Ser             | aac<br>Asr        | gta<br>Val        | a gga<br>L Gly    | gaa<br>Glu<br>700 | Cys               | aac<br>Asn        | aat<br>Asn        | aca<br>Thr        | 2112 |
| ctt<br>Leu<br>705 | a Asr             | ata<br>n Ile      | tac<br>Tyi        | c tgt             | aca<br>Thr<br>710 | Glr               | a tto<br>n Lev    | g aaa<br>Lys      | a aaq<br>s Lys    | 715               | a Glu             | ı aat<br>ı Asr    | ggg<br>Gly        | , tto<br>, Lev    | gaa<br>Glu<br>720 | 2160 |



| act<br>Thr        | ttg<br>Leu        | tgc<br>Cys        | aaa<br>Lys        | agc<br>Ser<br>725 | aaa<br>Lys        | gaa<br>Glu        | aac<br>Asn        | acc<br>Thr        | aag<br>Lys<br>730 | agt<br>Ser        | gac<br>Asp        | att<br>Ile        | aaa<br>Lys        | gtt<br>Val<br>735 | aga<br>Arg        | 2208         |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------|
| gaa<br>Glu        | gaa<br>Glu        | ctc<br>Leu        | tgt<br>Cys<br>740 | gaa<br>Glu        | aag<br>Lys        | cta<br>Leu        | ata<br>Ile        | aaa<br>Lys<br>745 | cgt<br>Arg        | ata<br>Ile        | aaa<br>Lys        | gaa<br>Glu        | aaa<br>Lys<br>750 | tgc<br>Cys        | tca<br>Ser        | 2256         |
| aaa<br>Lys        | ttg<br>Leu        | aag<br>Lys<br>755 | gac<br>Asp        | gag<br>Glu        | ctt<br>Leu        | gaa<br>Glu        | gaa<br>Glu<br>760 | gta<br>Val        | aaa<br>Lys        | gag<br>Glu        | gtc<br>Val        | tta<br>Leu<br>765 | gaa<br>Glu        | aag<br>Lys        | aaa<br>Lys        | 2304         |
| gaa<br>Glu        | gaa<br>Glu<br>770 | aag<br>Lys        | tat<br>Tyr        | aaa<br>Lys        | aaa<br>Lys        | att<br>Ile<br>775 | aaa<br>Lys        | gaa<br>Glu        | gaa<br>Glu        | gca<br>Ala        | gaa<br>Glu<br>780 | aaa<br>Lys        | gcc<br>Ala        | atg<br>Met        | gaa<br>Glu        | 2352         |
| gat<br>Asp<br>785 | gca<br>Ala        | aac<br>Asn        | ctt<br>Leu        | att<br>Ile        | tta<br>Leu<br>790 | tcg<br>Ser        | aga<br>Arg        | gcg<br>Ala        | aaa<br>Lys        | gga<br>Gly<br>795 | cct<br>Pro        | gat<br>Asp        | aat<br>Asn        | aat<br>Asn        | aat<br>Asn<br>800 | 2400         |
| aat<br>Asn        | aag<br>Lys        | tca<br>Ser        | gta<br>Val        | aat<br>Asn<br>805 | aaa<br>Lys        | gac<br>Asp        | tca<br>Ser        | tct<br>Ser        | gat<br>Asp<br>810 | aca<br>Thr        | cct<br>Pro        | aag<br>Lys        | gaa<br>Glu        | gga<br>Gly<br>815 | aaa<br>Lys        | 2448         |
| ggc<br>Gly        | aca<br>Thr        | aca<br>Thr        | gga<br>Gly<br>820 | ttt<br>Phe        | aaa<br>Lys        | ctt<br>Leu        | gta<br>Val        | aga<br>Arg<br>825 | aga<br>Arg        | aat<br>Asn        | gca<br>Ala        | aaa<br>Lys        | gtg<br>Val<br>830 | cat<br>His        | gta<br>Val        | 2496         |
| aca<br>Thr        | gaa<br>Glu        | aaa<br>Lys<br>835 | gaa<br>Glu        | tta<br>Leu        | gca<br>Ala        | gca<br>Ala        | ttt<br>Phe<br>840 | gat<br>Asp        | ttg<br>Leu        | gta<br>Val        | gca<br>Ala        | aga<br>Arg<br>845 | gca<br>Ala        | ttt<br>Phe        | gat<br>Asp        | 2544         |
| ctc<br>Leu        | tat<br>Tyr<br>850 | Leu               | gaa<br>Glu        | ttg<br>Leu        | aaa<br>Lys        | gaa<br>Glu<br>855 | ata<br>Ile        | tgt<br>Cys        | aat<br>Asn        | cat<br>His        | tca<br>Ser<br>860 | ctg<br>Leu        | aag<br>Lys        | aat<br>Asn        | tgt<br>Cys        | 2 <b>592</b> |
| ggt<br>Gly<br>865 | ttc<br>Phe        | aaa<br>Lys        | aaa<br>Lys        | gag<br>Glu        | tgt<br>Cys<br>870 | gac<br>Asp        | tgt<br>Cys        | gag<br>Glu        | gat<br>Asp        | cca<br>Pro<br>875 | Cys               | aaa<br>Lys        | aag<br>Lys        | ata<br>Ile        | cag<br>Gln<br>880 | 2640         |
| gga<br>Gly        | ata<br>Ile        | tgt<br>Cys        | tca<br>Ser        | aca<br>Thr<br>885 | Leu               | gag<br>Glu        | cca<br>Pro        | cta<br>Leu        | aaa<br>Lys<br>890 | Val               | aga<br>Arg        | cca<br>Pro        | cac<br>His        | gaa<br>Glu<br>895 | ata<br>Ile        | 2688         |
| gta<br>Val        | act               | aaa<br>Lys        | aac<br>Asn<br>900 | Ile               | aca<br>Thr        | act<br>Thr        | aca<br>Thr        | acc<br>Thr<br>905 | Thr               | acc<br>Thr        | acc<br>Thr        | acc<br>Thr        | Thr<br>910        | Thr               | acc<br>Thr        | 2736         |
| att<br>Ile        | aaa<br>Lys        | gac<br>Asp<br>915 | Ala               | aag<br>Lys        | gca<br>Ala        | aca<br>Thr        | gac<br>Asp<br>920 | Cys               | cac<br>His        | tct<br>Ser        | tta<br>Lev        | cag<br>Gln<br>925 | Thr               | aca<br>Thr        | gat<br>Asp        | 2784         |
| acg<br>Thr        | tgg<br>Trp<br>930 | . Val             | aca<br>Thr        | aag<br>Lys        | acg<br>Thr        | Ser<br>935        | Thr               | cat<br>His        | act<br>Thr        | ago<br>Ser        | aca<br>Thr<br>940 | Ser               | aca<br>Thr        | acc<br>Thr        | aca<br>Thr        | 2832         |
| tct<br>Ser<br>945 | Thi               | gto<br>Val        | acq<br>Thr        | g tca<br>Ser      | aga<br>Arç<br>950 | , Ile             | aco<br>Thr        | tto<br>Lev        | acc<br>Thr        | Ser<br>955        | r Thi             | a aga<br>c Aro    | cgo<br>Aro        | ı tgt<br>ı Cys    | aag<br>Lys<br>960 | 2880         |

3006

cct acg aag tgt acg aca gga gag gaa gat gaa gca gga gac gtg aaa 2928 Pro Thr Lys Cys Thr Thr Gly Glu Glu Asp Glu Ala Gly Asp Val Lys 965 970 975

tta tta gca atg acg att tca ttc atg att Leu Leu Ala Met Thr Ile Ser Phe Met Ile 995 1000

<210> 4 <211> 1002 <212> PRT <213> Pneumocystis carinii sp. f. hominis

<400> 4
Val Ala Arg Ala Val Lys Arg Arg Ala Ala Ala Gln Asn Ser Val Glu
10 15

Glu Glu Tyr Leu Leu Ala Leu Ile Leu Glu Asn Glu Tyr Glu Asn Asn 20 25 30

Asp Lys Cys Lys Lys Arg Leu Lys Glu Tyr Cys Glu Val Leu Lys Asn 35 40 45

Val Thr Lys Glu Pro Lys Lys Leu Glu Glu Lys Leu Asp Gly Ile Cys 50 55 60

Lys Asp Asp Lys Thr Ile Glu Ala Lys Cys Lys Glu Ser Glu Thr Lys 65 70 75 80

Val Lys Ala Lys Cys Thr Ser Phe Gln Thr Glu Leu Asp Lys Ala Val 85 90 95

Lys Lys Gly Ala Ser Thr Leu Glu Asp Asn Asp Cys Lys Lys Asn Glu 100 105 110

Arg Gln Cys Leu Phe Leu Glu Gly Ala Cys Pro Thr Glu Leu Lys Asp 115 120 125

Lys Cys Asn Glu Leu Arg Asn Lys Cys Tyr Gln Lys Lys Arg Asp Asp 130 135 140

Val Ala Glu Lys Ala Leu Leu Arg Val Leu Arg Gly Asn Leu Lys Asp 145 150 155 160

Lys Asn Thr Cys Lys Asn Lys Leu Lys Gly Val Cys Gln Glu Phe Asn 165 170 175

Lys Glu Ser Asp Glu Leu Ile Lys Leu Cys Leu Asp Glu Glu Lys Thr 180 185 190

Cys Gly Asp Leu Val Ser Lys Lys Glu Tyr Lys Cys Lys Pro Leu Lys 195 200 205

Glu Gly Ile Asp Leu Val Leu Gly Lys Glu Asp Leu Leu Lys Glu Lys 210 215 220

| Cys<br>225 | Leu        | Leu        | Phe        | Leu        | Glu<br>230 | Glu        | Cys        | Tyr        | Phe        | Tyr<br>235 | Gly        | Ser        | Ashi <sup>r</sup> | Cys        | Glu<br>240 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|
| Thr        | Asp        | Gln        | Pro        | Lys<br>245 | Cys        | Lys        | Glu        | Phe        | Ala<br>250 | Ser        | Lys        | Cys        | Gln               | Lys<br>255 | Glu        |
| Asn        | Leu        | Val        | Tyr<br>260 | Ala        | Ala        | Pro        | Gly        | Ser<br>265 | His        | Phe        | Asp        | Pro        | Thr<br>270        | Lys        | Leu        |
| Lys        | Ile        | Arg<br>275 | Leu        | Ala        | Glu        | Glu        | Ile<br>280 | Asp        | Leu        | Glu        | Lys        | Leu<br>285 | Tyr               | Val        | Glu        |
| Ala        | Val<br>290 | Lys        | Lys        | Gly        | Ile        | His<br>295 | Ile        | Gly        | Arg        | Pro        | Ser<br>300 | Ile        | Lys               | Asp        | Glu        |
| Val<br>305 | Ala        | Leu        | Leu        | Ala        | Leu<br>310 | Leu        | Ser        | Lys        | Ser        | Asp<br>315 | Ala        | Gln        | Asn               | Thr        | Phe<br>320 |
| Lys        | Asp        | Gln        | Cys        | Glu<br>325 | Asp        | Val        | Ile        | Lys        | Lys<br>330 | Lys        | Cys        | Gly        | Asn               | Phe<br>335 | Lys        |
| Glu        | His        | Ile        | Ile<br>340 | Leu        | Lys        | Asp        | Leu        | Cys<br>345 | Ser        | Asn        | Lys        | Thr        | Ile<br>350        | Thr        | Asp        |
| Asn        | Pro        | Lys<br>355 | Glu        | Lys        | Cys        | Glu        | Glu<br>360 | Leu        | Asn        | Lys        | Glu        | Leu<br>365 | Thr               | Thr        | Arg        |
| Ile        | Leu<br>370 | Thr        | Val        | Ser        | Lys        | Arg<br>375 | Ile        | Glu        | Lys        | Tyr        | Phe<br>380 | Ala        | Pro               | Ala        | Asn        |
| Val<br>385 | Lys        | Glu        | Ile        | Ile        | Gly<br>390 | Trp        | His        | Met        | Leu        | His<br>395 | Thr        | Phe        | Leu               | Gly        | Glu<br>400 |
| Arg        | Glu        | Cys        | Thr        | Lys<br>405 | Leu        | Leu        | Ser        | Asp        | Cys<br>410 | Phe        | Tyr        | Leu        | Lys               | Ser<br>415 | Gln        |
| Ala        | Pro        | Leu        | Glu<br>420 | Lys        | Pro        | Cys        | Asn        | Asn<br>425 | Leu        | Lys        | Ala        | Ala        | Cys<br>430        | Tyr        | Lys        |
| Lys        | Gly        | Leu<br>435 | Glu        | Ala        | Val        | Ala        | Asn<br>440 | Glu        | Ala        | Leu        | Gln        | Asp<br>445 | Lys               | Leu        | Arg        |
| Gly        | Lys<br>450 | Leu        | Gln        | Gly        | Ser        | Asn<br>455 | Arg        | Thr        | Trp        | Leu        | Glu<br>460 | Thr        | Leu               | Gln        | Lys        |
| Asn<br>465 |            | Val        | Lys        | Val        | Cys<br>470 | Glu        | Lys        | Thr        | Lys        | Gly<br>475 | Glu        | Ser        | Asp               | Glu        | Leu<br>480 |
| Phe        | Val        | Leu        | Cys        | Met<br>485 |            | Pro        | Ile        | Lys        | Thr<br>490 | Ala        | Leu        | Thr        | Val               | Ser<br>495 |            |
| Asp        | Leu        | Arg        | Met<br>500 |            | Ala        | Val        | Ala        | Leu<br>505 | Gln        | Glu        | His        | Leu        | Asn<br>510        |            | Lys        |
| Arg        | Asp        | Phe<br>515 |            | Thr        | Glu        | Lys        | Asp<br>520 |            | Lys        | Glu        | Leu        | Glu<br>525 |                   | Lys        | Cys        |
| Glu        | Val<br>530 |            | Gly        | Lys        | Asp        | Ser<br>535 |            | Glu        | Ile        | Lys        | Trp<br>540 |            | Cys               | Tyr        | Thr        |
| Leu        | Lys        | Gln        | His        | Cys        | Asn        | Arg        | Leu        | Lys        | Ser<br>14  |            | Glu        | His        | Leu               | Glu        | Glu        |

| •                     |            |            |            |            |              |            |            |            |            |            |            |            |            |            |            |
|-----------------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 545                   |            |            |            |            | 550          |            |            |            |            | 555        |            |            |            |            | 560        |
| Glu                   | Leu        | Leu        | Lys        | Glu<br>565 | Asn          | Lys        | Gly        | Tyr        | Leu<br>570 | Lys        | Asp        | Glu        | Asn        | Ser<br>575 | Cys        |
| Lys                   | Glu        | Ģlu        | Ala<br>580 | Lys        | Lys          | Arg        | Cys        | Glu<br>585 | Lys        | Trp        | Phe        | Arg        | Arg<br>590 | Glu        | Asn        |
| Asn                   | Lys        | Phe<br>595 | Phe        | Ser        | Ala          | Cys        | Ser<br>600 | Asp        | Leu        | Glu        | Leu        | Val<br>605 | Cys        | Lys        | Lys        |
| Ile                   | Thr<br>610 | Arg        | Asn        | Val        | Glu          | Ser<br>615 | Lys        | Cys        | Asn        | Ile        | Leu<br>620 | Lys        | Gly        | His        | Met        |
| Glu<br>625            | Thr        | Met        | Asn        | Val        | Ile<br>630   | Ser        | Glu        | Ile        | Ala        | Lys<br>635 | Lys        | Glu        | Glu        | Lys        | Ile<br>640 |
| Cys                   | Glu        | Phe        | Trp        | Ala<br>645 | Pro          | Tyr        | Cys        | Lys        | Lys<br>650 | Tyr        | Glu        | Gln        | Asn        | Cys<br>655 | Glu        |
| Lys                   | Leu        | Lys        | Asn<br>660 | Gly        | Gly          | Lys        | Asp        | Gly<br>665 | Gln        | Cys        | Lys        | Lys        | Leu<br>670 | Asn        | Lys        |
| Lys                   | Cys        | Lys<br>675 | Ser        | Phe        | Leu          | Glu        | Lys<br>680 | Glu        | Ala        | Leu        | Glu        | Asn<br>685 | Lys        | Val        | Val        |
| Glu                   | Glu<br>690 |            | Lys        | Gly        | Ser          | Leu<br>695 | Ser        | Asn        | Val        | Gly        | Glu<br>700 | Cys        | Asn        | Asn        | Thr        |
| Leu<br>705            |            | Ile        | Tyr        | Cys        | Thr<br>710   | Gln        | Leu        | Lys        | Lys        | Ala<br>715 | Glu        | Asn        | Gly        | Leu        | Glu<br>720 |
| Thr                   | Leu        | Cys        | Lys        | Ser<br>725 |              | Glu        | Asn        | Thr        | Lys<br>730 | Ser        | Asp        | Ile        | Lys        | Val<br>735 | Arg        |
| Glu                   | Glu        | Leu        | Cys<br>740 |            | Lys          | Leu        | Ile        | Lys<br>745 | Arg        | Ile        | Lys        | Glu        | Lys<br>750 | Cys        | Ser        |
| Lys                   | Leu        | Lys<br>755 |            | Glu        | Leu          | Glu        | Glu<br>760 |            | Lys        | Glu        | Val        | Leu<br>765 | Glu        | Lys        | Lys        |
| Glu                   | Glu<br>770 |            | туг        | Lys        | Lys          | Ile<br>775 | Lys        | Glu        | Glu        | Ala        | Glu<br>780 | Lys        | Ala        | Met        | Glu        |
| Asp<br>785            |            | Asr        | . Lev      | ılle       | Leu<br>790   |            | Arg        | Ala        | Lys        | Gly<br>795 | Pro        | Asp        | Asn        | Asn        | Asn<br>800 |
| Asn                   | Lys        | s Sei      | . Val      | 805        |              | Asp        | Ser        | Ser        | 810        | Thr        | Pro        | Lys        | Glu        | Gly<br>815 | Lys        |
| Gly                   | Thi        | Th:        | 61 S       |            | e Lys        | : Leu      | ı Val      | Arg<br>825 |            | g Asn      | Ala        | Lys        | 830        | . His      | Val        |
| Thi                   | Glu        | Ly:        |            | ı Let      | ı Ala        | a Alá      | Phe<br>840 |            | Let        | Val        | Ala        | 845        | g Ala      | . Phe      | Asp        |
| Let                   | тут<br>850 |            | u Gli      | ı Let      | ı Lys        | 855        |            | e Cys      | s Ası      | n His      | 860        | Leu        | ı Lys      | a Asr      | Cys        |
| Gl <sub>3</sub><br>86 |            | e Ly       | s Ly       | s Gl       | ц Суя<br>870 |            | o Cys      | s Glu      | ı Ası      | 875        | Cys<br>5   | s Lys      | s Lys      | s Ile      | 880        |

Gly Ile Cys Ser Thr Leu Glu Pro Leu Lys Val Arg Pro His Glu Ile 905 Ile Lys Asp Ala Lys Ala Thr Asp Cys His Ser Leu Gln Thr Thr Asp 920 Thr Trp Val Thr Lys Thr Ser Thr His Thr Ser Thr Ser Thr Thr Thr Ser Thr Val Thr Ser Arg Ile Thr Leu Thr Ser Thr Arg Arg Cys Lys Pro Thr Lys Cys Thr Thr Gly Glu Glu Asp Glu Ala Gly Asp Val Lys 970 Pro Ser Glu Gly Leu Arg Met Ser Gly Trp Ser Val Met Arg Gly Val 985 Leu Leu Ala Met Thr Ile Ser Phe Met Ile 1000 <210> 5 <211> 3090 <212> DNA <213> Pneumocystis carinii sp. f. hominis <220> <221> CDS <222> (1)..(3090) <400> 5 atg gcg cgg gcg gtc aag cgg cgg gca aaa ggt gca cag aat agc att Met Ala Arg Ala Val Lys Arg Arg Ala Lys Gly Ala Gln Asn Ser Ile gat gag gag cat gtt tta gct ttg att tta aaa aaa aat gga tta gaa Asp Glu Glu His Val Leu Ala Leu Ile Leu Lys Lys Asn Gly Leu Glu gat aca aaa tgc aaa act aag ttg gaa gaa tat tgc aaa aca tta aca 144 Asp Thr Lys Cys Lys Thr Lys Leu Glu Glu Tyr Cys Lys Thr Leu Thr aat gca gga tta aat cca gaa aaa gtt cac gaa aaa tta aaa gat ttc 192 Asn Ala Gly Leu Asn Pro Glu Lys Val His Glu Lys Leu Lys Asp Phe tgt gat aac ggg aaa cga aat gaa aaa tgt caa gat cta aaa aac aaa Cys Asp Asn Gly Lys Arg Asn Glu Lys Cys Gln Asp Leu Lys Asn Lys gtc aat caa aaa tgc att aaa ttt caa gga aaa ctt caa aca gct gct Val Asn Gln Lys Cys Ile Lys Phe Gln Gly Lys Leu Gln Thr Ala Ala 85 gga aaa aaa att tca gaa tta aca gat gag gat tgc aaa aag aat gaa

| Gly                | Lys               | Lys               | Ile<br>100        | Ser               | Glu               | Leu                        | Thr               | Asp<br>105        | Glu               | Asp               | Cys               | Lys               | Lys<br>110        | Asn               | Glu               |      |
|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|                    |                   |                   |                   |                   |                   |                            |                   |                   |                   |                   | aca<br>Thr        |                   |                   |                   |                   | 384  |
| gac<br>Asp         | tgc<br>Cys<br>130 | aat<br>Asn        | aaa<br>Lys        | tta<br>Leu        | agg<br>Arg        | aat<br>Asn<br>135          | aac<br>Asn        | tgt<br>Cys        | tat<br>Tyr        | caa<br>Gln        | aaa<br>Lys<br>140 | gaa<br>Glu        | cgg<br>Arg        | aac<br>Asn        | aat<br>Asn        | 432  |
| gtg<br>Val<br>145  | gca<br>Ala        | gaa<br>Glu        | gaa<br>Glu        | gtt<br>Val        | ctt<br>Leu<br>150 | ttg<br>Leu                 | agg<br>Arg        | gcg<br>Ala        | ctt<br>Leu        | cgt<br>Arg<br>155 | ggt<br>Gly        | gat<br>Asp        | ctc<br>Leu        | aat<br>Asn        | gaa<br>Glu<br>160 | 480  |
|                    |                   |                   |                   |                   |                   |                            |                   |                   |                   |                   | tgc<br>Cys        |                   |                   |                   |                   | 528  |
| aga<br>Arg         | gaa<br>Glu        | agc<br>Ser        | gat<br>Asp<br>180 | gaa<br>Glu        | tta<br>Leu        | acg<br>Thr                 | gag<br>Glu        | ctt<br>Leu<br>185 | tgt<br>Cys        | ctt<br>Leu        | tat<br>Tyr        | caa<br>Gln        | aaa<br>Lys<br>190 | aca<br>Thr        | aca<br>Thr        | 576  |
|                    |                   |                   |                   |                   |                   |                            |                   |                   |                   |                   | tgt<br>Cys        |                   |                   |                   |                   | 624  |
|                    |                   |                   |                   |                   |                   |                            |                   |                   |                   |                   | ttg<br>Leu<br>220 |                   |                   |                   |                   | 672  |
|                    |                   |                   |                   |                   |                   |                            |                   |                   |                   |                   | Gly<br>ggg        |                   |                   |                   |                   | 720  |
| gac<br>Asp         | aaa<br>Lys        | tca<br>Ser        | aag<br>Lys        | tgc<br>Cys<br>245 | aat<br>Asn        | aaa<br>Lys                 | cct<br>Pro        | aat<br>Asn        | aat<br>Asn<br>250 | aaa<br>Lys        | gac<br>Asp        | tgc<br>Cys        | aaa<br>Lys        | gaa<br>Glu<br>255 | tat<br>Tyr        | 768  |
| gta<br>Val         | cca<br>Pro        | gag<br>Glu        | Cys               | Asp               | Glu               | Leu                        | Ala               | Glu               | Lys               | Cys               | gga<br>Gly        | Lys               | Glu               | aat<br>Asn        | att<br>Ile        | 816  |
| gtt<br>Val         | tat<br>Tyr        | atg<br>Met<br>275 | cat<br>His        | cca<br>Pro        | gga<br>Gly        | tcc<br>Ser                 | gat<br>Asp<br>280 | ttc<br>Phe        | gat<br>Asp        | cca<br>Pro        | act<br>Thr        | aag<br>Lys<br>285 | cca<br>Pro        | gag<br>Glu        | cct<br>Pro        | 864  |
| aca<br>Thr         | cta<br>Leu<br>290 | gca<br>Ala        | gag<br>Glu        | gac<br>Asp        | ata<br>Ile        | ggg<br>Gly<br>2 <b>9</b> 5 | ctg<br>Leu        | gaa<br>Glu        | gag<br>Glu        | ctt<br>Leu        | tat<br>Tyr<br>300 | aag<br>Lys        | agg<br>Arg        | gca<br>Ala        | gaa<br>Glu        | 912  |
| gag<br>Glu<br>305  | gat<br>Asp        | gga<br>Gly        | att<br>Ile        | ttt<br>Phe        | gtt<br>Val<br>310 | gga<br>Gly                 | aga<br>Arg        | caa<br>Gln        | cat<br>His        | gta<br>Val<br>315 | aga<br>Arg        | gat<br>Asp        | gca<br>Ala        | aca<br>Thr        | gct<br>Ala<br>320 | 960  |
|                    |                   |                   |                   |                   |                   |                            |                   |                   |                   |                   | aaa<br>Lys        |                   |                   |                   |                   | 1008 |
| a <b>aa</b><br>Lys | gcc<br>Ala        | ctt<br>Leu        | aaa<br>Lys        | aaa<br>Lys        | aac<br>Asn        | tgc<br>Cys                 | gaa<br>Glu        | aac<br>Asn        | cct<br>Pro<br>17  | cat<br>His        | gaa<br>Glu        | cat<br>His        | gag<br>Glu        | gcc<br>Ala        | tta<br>Leu        | 1056 |

| WO 00/09760 |  | PCT/US99/18750 |
|-------------|--|----------------|

|   |   |   | 340 | : |   |   |   | 245 |   |   |                   |   | 250 |   |   |      |
|---|---|---|-----|---|---|---|---|-----|---|---|-------------------|---|-----|---|---|------|
|   |   |   | 340 |   |   |   |   | 345 |   |   |                   |   | 350 |   |   |      |
| - |   |   | _   | - | _ |   |   |     | _ | - | gat<br>Asp        |   | -   |   |   | 1104 |
| - | - | - |     |   |   | - | - |     |   |   | tgt<br>Cys<br>380 |   | _   |   |   | 1152 |
|   |   |   |     |   |   | _ |   |     |   |   | cct<br>Pro        | _ |     |   |   | 1200 |
| - |   |   |     |   | _ |   |   |     | - | _ | gaa<br>Glu        | _ | _   | _ |   | 1248 |
|   |   |   |     |   |   |   |   |     |   |   | tgt<br>Cys        |   |     |   |   | 1296 |
|   |   |   |     |   |   |   |   |     |   |   | aag<br>Lys        |   |     |   | - | 1344 |
| - |   | - |     | _ |   | _ |   |     |   | _ | cga<br>Arg<br>460 |   |     | _ |   | 1392 |
|   |   |   |     |   |   |   |   |     |   |   | caa<br>Gln        |   |     |   |   | 1440 |
| - | _ |   |     |   |   |   |   |     |   | _ | ttc<br>Phe        | - |     | - | _ | 1488 |
| _ |   | - |     |   |   |   |   | _   | - | - | gca<br>Ala        | _ |     |   |   | 1536 |
|   |   |   |     |   |   |   |   |     |   |   | caa<br>Gln        |   |     |   |   | 1584 |
|   |   |   |     |   |   |   |   |     |   |   | gaa<br>Glu<br>540 |   |     |   |   | 1632 |
| _ |   | _ |     |   | _ | - |   |     | _ |   | aca<br>Thr        |   |     | - |   | 1680 |
|   |   |   |     |   |   |   |   |     |   |   | aca<br>Thr        |   |     |   |   | 1728 |
|   |   |   |     |   |   |   |   |     |   |   | aaa<br>Lys        |   |     |   |   | 1776 |

| tgt<br>Cys        | gca<br>Ala        | aaa<br>Lys<br>595 | Tyr               | tta<br>Leu        | aaa<br>Lys        | aga<br>Arg        | aaa<br>Lys<br>600 | tgc<br>Cys        | cat<br>His        | aaa<br>Lys        | tgg<br>Trp        | tct<br>Ser<br>605 | aga<br>Arg        | agg<br>Arg        | ggt<br>Gly        | 1824 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| gat<br>Asp        | gat<br>Asp<br>610 | cgt<br>Arg        | ttt<br>Phe        | tct<br>Ser        | ttt<br>Phe        | gta<br>Val<br>615 | tgt<br>Cys        | gtt<br>Val        | ttc<br>Phe        | caa<br>Gln        | aac<br>Asn<br>620 | gct<br>Ala        | aca<br>Thr        | tgt<br>Cys        | gag<br>Glu        | 1872 |
| ctg<br>Leu<br>625 | atg<br>Met        | gta<br>Val        | aaa<br>Lys        | gac<br>Asp        | gtg<br>Val<br>630 | caa<br>Gln        | gat<br>Asp        | agg<br>Arg        | tgc<br>Cys        | aaa<br>Lys<br>635 | ata<br>Ile        | ttc<br>Phe        | gaa<br>Glu        | gaa<br>Glu        | aat<br>Asn<br>640 | 1920 |
| atg<br>Met        | caa<br>Gln        | gca<br>Ala        | tca<br>Ser        | gat<br>Asp<br>645 | att<br>Ile        | aat<br>Asn        | gat<br>Asp        | tcc<br>Ser        | ctt<br>Leu<br>650 | aaa<br>Lys        | aaa<br>Lys        | aat<br>Asn        | caa<br>Gln        | ata<br>Ile<br>655 | aaa<br>Lys        | 1968 |
| gca<br>Ala        | gaa<br>Glu        | tca<br>Ser        | gca<br>Ala<br>660 | gca<br>Ala        | aat<br>Asn        | att<br>Ile        | tgt<br>Cys        | ccc<br>Pro<br>665 | tca<br>Ser        | tgg<br>Trp        | cat<br>His        | cca<br>Pro        | tac<br>Tyr<br>670 | tgc<br>Cys        | gat<br>Asp        | 2016 |
| aga<br>Arg        | ttt<br>Phe        | tta<br>Leu<br>675 | ccc<br>Pro        | aat<br>Asn        | tgt<br>Cys        | cct<br>Pro        | gat<br>Asp<br>680 | ctt<br>Leu        | aag<br>Lys        | aaa<br>Lys        | gga<br>Gly        | aaa<br>Lys<br>685 | act<br>Thr        | ttc<br>Phe        | tgt<br>Cys        | 2064 |
| caa<br>Gln        | aat<br>Asn<br>690 | ctt<br>Leu        | aaa<br>Lys        | aaa<br>Lys        | tat<br>Tyr        | tgc<br>Cys<br>695 | gaa<br>Glu        | cca<br>Pro        | ttc<br>Phe        | tac<br>Tyr        | aaa<br>Lys<br>700 | aga<br>Arg        | aag<br>Lys        | gtt<br>Val        | tta<br>Leu        | 2112 |
| gaa<br>Glu<br>705 | gat<br>Asp        | gct<br>Ala        | ctt<br>Leu        | aaa<br>Lys        | gta<br>Val<br>710 | gag<br>Glu        | ctt<br>Leu        | cga<br>Arg        | gga<br>Gly        | aat<br>Asn<br>715 | tta<br>Leu        | agt<br>Ser        | aat<br>Asn        | ata<br>Ile        | act<br>Thr<br>720 | 2160 |
| aaa<br>Lys        | tgt<br>Cys        | gaa<br>Glu        | cct<br>Pro        | gca<br>Ala<br>725 | tta<br>Leu        | gaa<br>Glu        | aga<br>Arg        | tat<br>Tyr        | tgt<br>Cys<br>730 | aca<br>Thr        | gta<br>Val        | ttg<br>Leu        | aaa<br>Lys        | gac<br>Asp<br>735 | gta<br>Val        | 2208 |
| aat<br>Asn        | aat<br>Asn        | gcg<br>Ala        | tca<br>Ser<br>740 | atc<br>Ile        | agc<br>Ser        | agt<br>Ser        | tta<br>Leu        | tgt<br>Cys<br>745 | aaa<br>Lys        | gat<br>Asp        | aat<br>Asn        | acc<br>Thr        | gaa<br>Glu<br>750 | agt<br>Ser        | aaa<br>Lys        | 2256 |
| act<br>Thr        | aaa<br>Lys        | aag<br>Lys<br>755 | gcc<br>Ala        | gat<br>Asp        | aat<br>Asn        | aaa<br>Lys        | aat<br>Asn<br>760 | gtt<br>Val        | aga<br>Arg        | aag<br>Lys        | aag<br>Lys        | ctt<br>Leu<br>765 | tgt<br>Cys        | cta<br>Leu        | aaa<br>Lys        | 2304 |
| tta<br>Leu        | gtg<br>Val<br>770 | gaa<br>Glu        | gag<br>Glu        | gtg<br>Val        | gaa<br>Glu        | cag<br>Gln<br>775 | caa<br>Gln        | tgc<br>Cys        | aaa<br>Lys        | gta<br>Val        | tta<br>Leu<br>780 | cca<br>Pro        | aca<br>Thr        | gaa<br>Glu        | tta<br>Leu        | 2352 |
| aca<br>Thr<br>785 | gag<br>Glu        | ctg<br>Leu        | gaa<br>Glu        | aaa<br>Lys        | agt<br>Ser<br>790 | cta<br>Leu        | aaa<br>Lys        | aaa<br>Lys        | gat<br>Asp        | gtt<br>Val<br>795 | aag<br>Lys        | aca<br>Thr        | tat<br>Tyr        | gag<br>Glu        | gaa<br>Glu<br>800 | 2400 |
| ctt<br>Leu        | aag<br>Lys        | gaa<br>Glu        | agg<br>Arg        | gca<br>Ala<br>805 | aaa<br>Lys        | aaa<br>Lys        | gca<br>Ala        | atg<br>Met        | aac<br>Asn<br>810 | aag<br>Lys        | tcc<br>Ser        | agc<br>Ser        | ctt<br>Leu        | gtt<br>Val<br>815 | Leu               | 2448 |
| tca<br>Ser        | ctt<br>Leu        | gtt<br>Val        | aag<br>Lys<br>820 | aaa<br>Lys        | aac<br>Asn        | gaa<br>Glu        | agt<br>Ser        | aat<br>Asn<br>825 | aca<br>Thr        | tcg<br>Ser        | aaa<br>Lys        | aat<br>Asn        | aat<br>Asn<br>830 | agc<br>Ser        | aaa<br>Lys        | 2496 |

| WO 00/09760 |  |  | ( |  | PCT/US99/18750 |
|-------------|--|--|---|--|----------------|
|-------------|--|--|---|--|----------------|

| aac aac<br>Asn Lys                       |           |            |            |             |                    |            |            |                 |     |                    |            |            |            |            | 2544 |
|------------------------------------------|-----------|------------|------------|-------------|--------------------|------------|------------|-----------------|-----|--------------------|------------|------------|------------|------------|------|
| tat gto<br>Tyr Val<br>850                | . Lys     |            |            |             |                    |            |            |                 |     |                    |            |            |            |            | 2592 |
| tct gaa<br>Ser Glu<br>865                |           |            |            |             |                    |            |            |                 |     |                    |            |            |            |            | 2640 |
| gta gad<br>Val Asp                       |           |            |            |             |                    |            |            |                 |     |                    |            |            |            |            | 2688 |
| aaa gad<br>Lys Asp                       |           |            |            |             |                    |            |            |                 |     |                    |            |            |            |            | 2736 |
| aca tgt<br>Thr Cys                       |           |            |            |             |                    |            |            |                 |     |                    |            |            |            |            | 2784 |
| aca gaa<br>Thr Glu<br>930                | Ser       |            |            |             |                    |            |            |                 |     |                    |            |            |            |            | 2832 |
| ccg aag<br>Pro Lys<br>945                |           |            |            |             |                    |            |            |                 |     |                    |            |            |            |            | 2880 |
| aca cag<br>Thr Glr                       |           |            |            |             |                    |            |            |                 |     |                    |            |            |            |            | 2928 |
| aca tca<br>Thr Ser                       |           |            |            |             |                    |            |            |                 |     |                    |            |            |            |            | 2976 |
| tgt acg<br>Cys Thr                       |           |            |            |             | Ala                |            |            |                 |     | Pro                |            |            |            |            | 3024 |
| aag atg<br>Lys Met<br>1010               | Ser       | ggg<br>Gly | tgg<br>Trp | Ser         | gtg<br>Val<br>1015 | atg<br>Met | agg<br>Arg | GJ À<br>āāā     | Val | ata<br>Ile<br>1020 | gta<br>Val | gca<br>Ala | atg<br>Met | gtt<br>Val | 3072 |
| att tcg<br>Ile Ser<br>1025               |           | _          | Ile        | tag<br>1030 |                    |            |            |                 |     |                    |            |            |            |            | 3090 |
| <210> 6<br><211> 1<br><212> F<br><213> F | 029<br>RT | ocyst      | is o       | cario       | nii s              | sp. f      | . ho       | omini           | is  |                    |            |            |            |            |      |
| <400> 6<br>Met Ala<br>1                  |           | Ala        | Val<br>5   | Lys         | Arg                | Arg        | Ala        | Lys<br>10<br>20 | Gly | Ala                | Gln        | Asn        | Ser<br>15  | Ile        |      |

Asp Glu Glu His Val Leu Ala Leu Ile Leu Lys Lys Asn Gly Leu Glu Asp Thr Lys Cys Lys Thr Lys Leu Glu Glu Tyr Cys Lys Thr Leu Thr Asn Ala Gly Leu Asn Pro Glu Lys Val His Glu Lys Leu Lys Asp Phe Cys Asp Asn Gly Lys Arg Asn Glu Lys Cys Gln Asp Leu Lys Asn Lys Val Asn Gln Lys Cys Ile Lys Phe Gln Gly Lys Leu Gln Thr Ala Ala Gly Lys Lys Ile Ser Glu Leu Thr Asp Glu Asp Cys Lys Lys Asn Glu 110 Gln Gln Cys Leu Phe Leu Glu Gly Ala Cys Pro Thr Glu Leu Lys Asp 120 Asp Cys Asn Lys Leu Arg Asn Asn Cys Tyr Gln Lys Glu Arg Asn Asn Val Ala Glu Glu Val Leu Leu Arg Ala Leu Arg Gly Asp Leu Asn Glu 150 155 Thr Lys Thr Cys Glu Lys Lys Leu Lys Glu Val Cys Pro Lys Leu Glu Arg Glu Ser Asp Glu Leu Thr Glu Leu Cys Leu Tyr Gln Lys Thr Thr Cys Val Ser Leu Val Thr Lys Gly Lys Ser Lys Cys Asp Thr Leu Glu Lys Glu Val Glu Glu Ala Leu Lys Lys Asn Glu Leu Arg Glu Lys Cys Leu Leu Leu Glu Gln Cys Tyr Phe His Arg Gly Asn Cys Glu Gly Asp Lys Ser Lys Cys Asn Lys Pro Asn Asn Lys Asp Cys Lys Glu Tyr Val Pro Glu Cys Asp Glu Leu Ala Glu Lys Cys Gly Lys Glu Asn Ile Val Tyr Met His Pro Gly Ser Asp Phe Asp Pro Thr Lys Pro Glu Pro 280 Thr Leu Ala Glu Asp Ile Gly Leu Glu Glu Leu Tyr Lys Arg Ala Glu Glu Asp Gly Ile Phe Val Gly Arg Gln His Val Arg Asp Ala Thr Ala 315 Leu Leu Ala Leu Leu Lys Lys Thr Leu Lys Lys Glu Glu Cys Ile 325

Lys Ala Leu Lys Lys Asn Cys Glu Asn Pro His Glu His Glu Ala Leu 345 340 Glu Asn Leu Cys Lys Glu Asn Lys Pro Ser Ser Asp Gly Thr Lys Lys 360 Cys Asp Glu Leu Glu Lys Asp Val Asn Lys Thr Cys Thr Ser Leu Thr 375 Ser Thr Ile Leu Lys Asn Arg Leu Tyr Ile Ser Pro Asp Gly Ile Ala 390 395 Glu Trp Gly Lys Leu Pro Thr Phe Leu Ser Asp Glu Asp Cys Ala Lys 405 Leu Glu Ser Tyr Cys Phe Tyr Tyr Lys Glu Thr Cys Pro Asp Val Lys 425 Glu Ala Cys Met Asn Val Arg Ala Ala Cys Tyr Lys Arg Gly Leu Asp Ala Arg Ala Asn Ser Val Leu Gln Lys Asn Met Arg Gly Leu Leu His 455 Gly Ser Asn Lys Asp Trp Leu Lys Lys Phe Gln Glu Leu Ala Lys 465 Val Cys Glu Lys Leu Lys Gly Asn Lys Gly Ser Phe Ser Asn Asp Glu Leu Phe Val Leu Cys Ile Gln Pro Ala Lys Ala Ala Arg Leu Leu Thr His His His Gln Met Arg Val Ile Phe Leu Arg Gln Gln Leu Asp Gln 520 Lys Arg Asp Phe Pro Thr Asp Lys Asp Cys Lys Glu Leu Gly Arg Lys Cys Gln Asp Leu Gly Lys Asp Ser Lys Glu Ile Thr Trp Pro Cys His 550 555 Thr Leu Glu Gln Gln Cys Asn Arg Leu Gly Ile Thr Glu Ile Leu Lys Gln Ile Leu Leu Asp Glu His Lys Asp Thr Leu Lys Ser His Glu Asn 585 Cys Ala Lys Tyr Leu Lys Arg Lys Cys His Lys Trp Ser Arg Arg Gly Asp Asp Arg Phe Ser Phe Val Cys Val Phe Gln Asn Ala Thr Cys Glu 615 Leu Met Val Lys Asp Val Gln Asp Arg Cys Lys Ile Phe Glu Glu Asn 625 Met Gln Ala Ser Asp Ile Asn Asp Ser Leu Lys Lys Asn Gln Ile Lys 650 Ala Glu Ser Ala Ala Asn Ile Cys Pro Ser Trp His Pro Tyr Cys Asp 660 665 670

Arg Phe Leu Pro Asn Cys Pro Asp Leu Lys Lys Gly Lys Thr Phe Cys 680 Gln Asn Leu Lys Lys Tyr Cys Glu Pro Phe Tyr Lys Arg Lys Val Leu 695 Glu Asp Ala Leu Lys Val Glu Leu Arg Gly Asn Leu Ser Asn Ile Thr Lys Cys Glu Pro Ala Leu Glu Arg Tyr Cys Thr Val Leu Lys Asp Val Asn Asn Ala Ser Ile Ser Ser Leu Cys Lys Asp Asn Thr Glu Ser Lys Thr Lys Lys Ala Asp Asn Lys Asn Val Arg Lys Lys Leu Cys Leu Lys Leu Val Glu Glu Val Glu Gln Gln Cys Lys Val Leu Pro Thr Glu Leu Thr Glu Leu Glu Lys Ser Leu Lys Lys Asp Val Lys Thr Tyr Glu Glu Leu Lys Glu Arg Ala Lys Lys Ala Met Asn Lys Ser Ser Leu Val Leu Ser Leu Val Lys Lys Asn Glu Ser Asn Thr Ser Lys Asn Asn Ser Lys 825 Asn Lys Asp Lys Asn Val Val Ser Asn Gly Leu Gln Asp Thr Thr Lys Tyr Val Lys Ile Leu Arg Arg Gly Val Lys Glu Ala Leu Val Thr Glu 855 Ser Glu Ala Lys Ala Phe Asp Leu Ala Ala Glu Val Phe Gly Arg Tyr Val Asp Leu Lys Glu Lys Cys Glu Lys Leu Thr Ser Asp Cys Gly Ile 890 Lys Asp Asp Cys Asp Gly Leu Lys Glu Val Cys Gly Lys Ile Glu Lys Thr Cys His Asp Leu Lys Pro Leu Glu Val Lys Ser His Glu Ile Val 930 935 Pro Lys Ala Thr Glu Cys Lys Ser Leu Gln Thr Thr Asp Thr Trp Val 950 955 Thr Gln Thr Ser Thr His Thr Ser Thr Ser Thr Ile Thr Ser Thr Ile Thr Ser Lys Ile Thr Leu Thr Ser Thr Arg Arg Cys Lys Pro Thr Lys 980 985

Cys Thr Thr Gly Asp Glu Ala Gly Asp Val Lys Pro Ser Glu Gly Leu 995 1000 1005

Lys Met Ser Gly Trp Ser Val Met Arg Gly Val Ile Val Ala Met Val 1010 1020

Ile Ser Phe Met Ile 025

<210> 7

<211> 3084

<212> DNA

<213> Pneumocystis carinii sp. f. hominis

<220>

<221> CDS

<222> (1)..(3084)

<400> 7

atg gcg cgg gcc aag cgg cag gca aaa ggt gca cag aat agc att 48
Met Ala Arg Ala Val Lys Arg Gln Ala Lys Gly Ala Gln Asn Ser Ile
1 10 15

gat gag gag cat gtt tta gct ttg att tta aaa aaa aat gga tta gaa 96 Asp Glu Glu His Val Leu Ala Leu Ile Leu Lys Lys Asn Gly Leu Glu 20 25 30

gat aca aaa tgc aaa act aag ttg gaa gaa tat tgc aaa aca tta aca 144
Asp Thr Lys Cys Lys Thr Lys Leu Glu Glu Tyr Cys Lys Thr Leu Thr
35 40

aat gca gga tta aat cca gaa aaa gtt cac gaa aaa tta aaa gat ttc 192 Asn Ala Gly Leu Asn Pro Glu Lys Val His Glu Lys Leu Lys Asp Phe 50 60

tgt gat aac ggg aaa cga aat gaa aaa tgt caa gat cta aaa aac aaa 240 Cys Asp Asn Gly Lys Arg Asn Glu Lys Cys Gln Asp Leu Lys Asn Lys 65 70 75 80

gtc aat caa aaa tgc att aaa ttt caa gga aaa ctt caa aca gct gct 288 Val Asn Gln Lys Cys Ile Lys Phe Gln Gly Lys Leu Gln Thr Ala Ala 85 90 95

aga aaa aaa att tca gaa tta aca gat gag gat tgc aaa aag aat gaa 336 Arg Lys Lys Ile Ser Glu Leu Thr Asp Glu Asp Cys Lys Lys Asn Glu 100 105

caa caa tgc cta ttt ttg gag gga gca tgt cca aca gaa ctt aaa gat 384 Gln Gln Cys Leu Phe Leu Glu Gly Ala Cys Pro Thr Glu Leu Lys Asp 115

gac tgc aat aaa tta agg aat aac tgt tat caa aaa gaa cgg aac aat 432 Asp Cys Asn Lys Leu Arg Asn Asn Cys Tyr Gln Lys Glu Arg Asn Asn 130 135 140

gtg gca gaa gat ctt ttg agg gcg ctt cgt ggt gat ctc aat gaa 480 Val Ala Glu Glu Val Leu Leu Arg Ala Leu Arg Gly Asp Leu Asn Glu 145 150 155 160

| WO 00/09760 |  |  |  | PCT/US99/18750 |
|-------------|--|--|--|----------------|
|-------------|--|--|--|----------------|

|     | _   |     | tgt<br>Cys        | _   |     |     | -   |     | -                | _   | -   | -   |     |     | _   | 528  |
|-----|-----|-----|-------------------|-----|-----|-----|-----|-----|------------------|-----|-----|-----|-----|-----|-----|------|
|     |     |     | gat<br>Asp<br>180 |     |     |     |     |     |                  |     |     |     |     |     |     | 576  |
|     |     |     | ctt<br>Leu        |     |     |     |     |     |                  |     |     |     |     |     |     | 624  |
|     |     |     | gaa<br>Glu        |     |     |     |     |     |                  |     |     |     |     |     |     | 672  |
|     |     |     | ctt<br>Leu        |     |     |     |     |     |                  |     |     |     |     |     |     | 720  |
|     |     |     | aag<br>Lys        |     |     |     |     |     |                  |     |     |     |     |     |     | 768  |
|     |     |     | tgt<br>Cys<br>260 |     |     |     |     |     |                  |     |     |     |     |     |     | 816  |
|     |     |     | cat<br>His        |     |     |     |     |     |                  |     |     |     |     |     |     | 864  |
|     |     |     | gag<br>Glu        |     |     |     |     |     |                  |     |     |     |     |     |     | 912  |
|     |     |     | att<br>Ile        |     |     | Gly |     |     |                  |     |     |     |     |     |     | 960  |
|     |     |     | cta<br>Leu        |     |     |     |     |     |                  |     |     |     |     |     |     | 1008 |
|     |     |     | aaa<br>Lys<br>340 |     |     |     |     |     |                  |     |     |     |     |     |     | 1056 |
|     |     |     | tgt<br>Cys        |     |     |     |     |     |                  |     |     |     |     |     |     | 1104 |
|     |     |     | cta<br>Leu        |     |     |     |     |     |                  |     |     |     |     |     |     | 1152 |
|     |     |     | ctt<br>Leu        |     |     |     |     |     |                  |     |     |     |     |     |     | 1200 |
| gaa | tgg | gga | aaa               | tta | ccg | aca | ttt | ctt | agt<br><b>25</b> | gat | gaa | gat | tgt | gca | aaa | 1248 |

|                    |                   |                   |                   | _          |                   |                   |                   |                   |            |                   |                   |                   |                   |                   |                   |      |
|--------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| Glu                | Trp               | Gly               | Lys               | Leu<br>405 | Pro               | Thr               | Phe               | Leu               | Ser<br>410 | Asp               | Glu               | Asp               | Cys               | Ala<br>415        | Lys               |      |
| cta<br>Leu         | gaa<br>Glu        | tct<br>Ser        | tat<br>Tyr<br>420 | tgc<br>Cys | ttt<br>Phe        | tat<br>Tyr        | tat<br>Tyr        | aaa<br>Lys<br>425 | gaa<br>Glu | act<br>Thr        | tgt<br>Cys        | cca<br>Pro        | gat<br>Asp<br>430 | gtc<br>Val        | aaa<br>Lys        | 1296 |
| g <b>aa</b><br>Glu | gct<br>Ala        | tgt<br>Cys<br>435 | atg<br>Met        | aat<br>Asn | gtg<br>Val        | agg<br>Arg        | gca<br>Ala<br>440 | gcg<br>Ala        | tgt<br>Cys | tac<br>Tyr        | aag<br>Lys        | aga<br>Arg<br>445 | ggg<br>Gly        | ctt<br>Leu        | gat<br>Asp        | 1344 |
| gca<br>Ala         | cgg<br>Arg<br>450 | gca<br>Ala        | aac<br>Asn        | agt<br>Ser | gtg<br>Val        | ttg<br>Leu<br>455 | caa<br>Gln        | aaa<br>Lys        | aat<br>Asn | atg<br>Met        | cgt<br>Arg<br>460 | gly               | tta<br>Leu        | tta<br>Leu        | cgt<br>Arg        | 1392 |
| ggt<br>Gly<br>465  | tca<br>Ser        | aat<br>Asn        | caa<br>Gln        | agt<br>Ser | tgg<br>Trp<br>470 | ctt<br>Leu        | aag<br>Lys        | gag<br>Glu        | ttt<br>Phe | caa<br>Gln<br>475 | caa<br>Gln        | aga<br>Arg        | tta<br>Leu        | gta<br>Val        | aaa<br>Lys<br>480 | 1440 |
|                    |                   |                   |                   |            |                   |                   |                   |                   |            | agt<br>Ser        |                   |                   |                   |                   |                   | 1488 |
| ata<br>Ile         | ttt<br>Phe        | gtt<br>Val        | ctg<br>Leu<br>500 | tgt<br>Cys | gta<br>Val        | cag<br>Gln        | cca<br>Pro        | gca<br>Ala<br>505 | aaa<br>Lys | gct<br>Ala        | gca<br>Ala        | cga<br>Arg        | tta<br>Leu<br>510 | ctt<br>Leu        | aca<br>Thr        | 1536 |
| cac<br>His         | gat<br>Asp        | cat<br>His<br>515 | caa<br>Gln        | atg<br>Met | agg<br>Arg        | gtt<br>Val        | acc<br>Thr<br>520 | ttt<br>Phe        | tta<br>Leu | cga<br>Arg        | caa<br>Gln        | caa<br>Gln<br>525 | ttg<br>Leu        | gat<br>Asp        | caa<br>Gln        | 1584 |
| aag<br>Lys         | aga<br>Arg<br>530 | gat<br>Asp        | ttt<br>Phe        | ccg<br>Pro | aca<br>Thr        | gat<br>Asp<br>535 | aaa<br>Lys        | gac<br>Asp        | tgc<br>Cys | aag<br>Lys        | gaa<br>Glu<br>540 | cta<br>Leu        | Gly<br>ggg        | aaa<br>Lys        | aaa<br>Lys        | 1632 |
|                    |                   |                   |                   |            |                   |                   |                   |                   |            | att<br>Ile<br>555 |                   |                   |                   |                   |                   | 1680 |
| aca<br>Thr         | ctg<br>Leu        | gag<br>Glu        | cag<br>Gln        | Gln        | tgc<br>Cys        | Asn               | Arg               | Leu               | Gly        | act<br>Thr        | aca<br>Thr        | gaa<br>Glu        | Ile               | tta<br>Leu<br>575 | Lys               | 1728 |
|                    |                   |                   |                   |            |                   |                   |                   |                   |            | ttg<br>Leu        |                   |                   |                   |                   |                   | 1776 |
| tgt<br>Cys         | gta<br>Val        | aaa<br>Lys<br>595 | tac<br>Tyr        | cta<br>Leu | aaa<br>Lys        | gaa<br>Glu        | aag<br>Lys<br>600 | tgt<br>Cys        | aat<br>Asn | aaa<br>Lys        | tgg<br>Trp        | tct<br>Ser<br>605 | aga<br>Arg        | aga<br>Arg        | gga<br>Gly        | 1824 |
| gat<br>Asp         | gac<br>Asp<br>610 | cgt<br>Arg        | ttc<br>Phe        | tct<br>Ser | ttt<br>Phe        | gta<br>Val<br>615 | tgt<br>Cys        | gtt<br>Val        | ttc<br>Phe | caa<br>Gln        | aac<br>Asn<br>620 | gct<br>Ala        | acg<br>Thr        | tgt<br>Cys        | gag<br>Glu        | 1872 |
| ctg<br>Leu<br>625  | atg<br>Met        | gta<br>Val        | aaa<br>Lys        | gac<br>Asp | gtg<br>Val<br>630 | aaa<br>Lys        | gac<br>Asp        | agg<br>Arg        | tgt<br>Cys | gaa<br>Glu<br>635 | gta<br>Val        | ttc<br>Phe        | aaa<br>Lys        | aaa<br>Lys        | aat<br>Asn<br>640 | 1920 |
|                    |                   |                   |                   |            |                   |                   |                   |                   |            | gaa<br>Glu        |                   |                   |                   |                   |                   | 1968 |

|            |            |                   |            | 645        |            |            |                   |            | 650        |            |            |                            |            | 655        |             |      |
|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|----------------------------|------------|------------|-------------|------|
|            |            |                   |            |            |            |            | tgt<br>Cys        |            |            |            |            |                            |            |            |             | 2016 |
|            |            |                   |            |            |            |            | ggc<br>Gly<br>680 |            |            |            |            |                            |            |            |             | 2064 |
|            |            |                   |            |            |            |            | ccg<br>Pro        |            |            |            |            |                            |            |            |             | 2112 |
|            |            |                   |            |            |            |            | caa<br>Gln        |            |            |            |            |                            |            |            |             | 2160 |
|            |            |                   |            |            |            |            | tat<br>Tyr        |            |            |            |            |                            |            |            |             | 2208 |
|            |            |                   |            |            |            |            | tgc<br>Cys        |            |            |            |            |                            |            |            |             | 2256 |
| gga<br>Gly | aag<br>Lys | agt<br>Ser<br>755 | gat<br>Asp | gag<br>Glu | gat<br>Asp | gct<br>Ala | aga<br>Arg<br>760 | aag<br>Lys | gaa<br>Glu | ctc<br>Leu | tgt<br>Cys | gag<br>Glu<br>7 <b>6</b> 5 | aaa<br>Lys | tca<br>Ser | gtg.<br>Val | 2304 |
|            |            |                   |            |            |            |            | aaa<br>Lys        |            |            |            |            |                            |            |            |             | 2352 |
|            |            |                   |            |            |            |            | gat<br>Asp        |            |            |            |            |                            |            |            |             | 2400 |
|            |            |                   |            |            |            |            | aac<br>Asn        |            |            |            |            |                            |            |            |             | 2448 |
|            |            |                   |            |            |            |            | gta<br>Val        |            |            |            |            |                            |            |            |             | 2496 |
|            |            |                   |            |            |            |            | gga<br>Gly<br>840 |            |            |            |            |                            |            |            |             | 2544 |
|            |            |                   |            |            |            |            | aag<br>Lys        |            |            |            |            |                            |            |            |             | 2592 |
|            |            |                   |            |            |            |            | gca<br>Ala        |            |            |            |            |                            |            |            |             | 2640 |
|            |            |                   |            |            |            |            | ttg<br>Leu        |            |            |            |            |                            |            |            |             | 2688 |

| gat tgc aaa<br>Asp Cys Lys                                                                                    |                                                     |                             |                               |                                |                                |                   |                         |                         |                  |                         |                   |      |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------|-------------------------------|--------------------------------|--------------------------------|-------------------|-------------------------|-------------------------|------------------|-------------------------|-------------------|------|
|                                                                                                               | -                                                   | -                           | -                             | -                              |                                | _                 |                         |                         | _                | _                       | -                 | 2736 |
| cgc aat ctg<br>Arg Asn Leu<br>915                                                                             | Lys Pro                                             |                             |                               |                                |                                |                   |                         |                         |                  |                         |                   | 2784 |
| ggt aca acg<br>Gly Thr Thr<br>930                                                                             |                                                     |                             | r Thr                         |                                |                                |                   |                         |                         |                  |                         |                   | 2832 |
| gca acg gaa<br>Ala Thr Glu<br>945                                                                             | -                                                   |                             | -                             |                                |                                | -                 |                         |                         | -                |                         | -                 | 2880 |
| aca tcg aca<br>Thr Ser Thr                                                                                    |                                                     | -                           | -                             |                                |                                |                   |                         |                         |                  |                         |                   | 2928 |
| aaa ata aca<br>Lys Ile Thr                                                                                    |                                                     |                             |                               |                                |                                |                   |                         |                         |                  |                         |                   | 2976 |
| aca ggg gat<br>Thr Gly Asp<br>995                                                                             | Asp Ala                                             |                             |                               |                                |                                |                   | Glu                     |                         |                  |                         |                   | 3024 |
| agc ggg tgg<br>Ser Gly Trp<br>1010                                                                            |                                                     |                             | g Gly                         |                                |                                | Val               |                         |                         |                  |                         |                   | 3072 |
|                                                                                                               |                                                     |                             |                               |                                |                                |                   |                         |                         |                  |                         |                   |      |
| ttc atg att<br>Phe Met Ile<br>1025                                                                            | -                                                   |                             |                               |                                |                                |                   |                         |                         |                  |                         |                   | 3084 |
| Phe Met Ile                                                                                                   |                                                     | carinii                     | sp.                           | f. hc                          | mini                           | LS                |                         |                         |                  |                         |                   | 3084 |
| Phe Met Ile<br>1025<br><210> 8<br><211> 1027<br><212> PRT                                                     | ocystis                                             | Lys Ar                      | -                             |                                |                                |                   | Ala                     | Gln                     | Asn              | Ser<br>15               | Ile               | 3084 |
| Phe Met Ile<br>1025<br><210> 8<br><211> 1027<br><212> PRT<br><213> Pneum<br><400> 8<br>Met Ala Arg            | ocystis<br>Ala Val<br>5                             | Lys Ar                      | g Gln                         | Ala                            | Lys<br>10                      | Gly               |                         |                         |                  | 15                      |                   | 3084 |
| Phe Met Ile<br>1025<br><210> 8<br><211> 1027<br><212> PRT<br><213> Pneum<br><400> 8<br>Met Ala Arg<br>1       | ocystis<br>Ala Val<br>5<br>His Val<br>20<br>Cys Lys | Lys Ar                      | g Gln<br>a Leu                | Ala<br>Ile<br>25               | Lys<br>10<br>Leu               | Gly<br>Lys        | Lys                     | Asn                     | Gly<br>30        | 15<br>Leu               | Glu               | 3084 |
| Phe Met Ile<br>1025  <210> 8 <211> 1027 <212> PRT <213> Pneum <400> 8 Met Ala Arg 1  Asp Glu Glu  Asp Thr Lys | ocystis<br>Ala Val<br>5<br>His Val<br>20<br>Cys Lys | Lys Ar Leu Al Thr Ly Pro Gl | g Gln<br>a Leu<br>s Leu<br>40 | Ala<br>Ile<br>25<br>Glu        | Lys<br>10<br>Leu<br>Glu        | Gly<br>Lys<br>Tyr | Lys<br>Cys              | Asn<br>Lys<br>45        | Gly<br>30<br>Thr | 15<br>Leu<br>Leu        | Glu<br>Thr        | 3084 |
| Phe Met Ile<br>1025  <210> 8 <211> 1027 <212> PRT <213> Pneum <400> 8 Met Ala Arg                             | ocystis  Ala Val 5  His Val 20  Cys Lys  Leu Asn    | Lys Ar Leu Al Thr Ly Pro Gl | g Gln a Leu s Leu 40 u Lys 5  | Ala<br>Ile<br>25<br>Glu<br>Val | Lys<br>10<br>Leu<br>Glu<br>His | Gly<br>Lys<br>Tyr | Lys<br>Cys<br>Lys<br>60 | Asn<br>Lys<br>45<br>Leu | Gly<br>30<br>Thr | 15<br>Leu<br>Leu<br>Asp | Glu<br>Thr<br>Phe | 3084 |

| Arg Lys Lys Ile Ser Glu Leu Thr Asp Glu Asp Cys Lys Lys Asp Illo  Gln Gln Cys Leu Phe Leu Glu Gly Ala Cys Pro Thr Glu Leu Ly 125  Asp Cys Asn Lys Leu Arg Asn Asn Cys Tyr Gln Lys Glu Arg Asp 130  Val Ala Glu Glu Val Leu Leu Arg Ala Leu Arg Gly Asp Leu Asp 145  Thr Lys Thr Cys Glu Lys Lys Leu Lys Glu Val Cys Pro Lys Leu 170  Arg Glu Ser Asp Glu Leu Thr Glu Leu Cys Leu Tyr Gln Lys The 180  Cys Val Ser Leu Val Thr Lys Gly Lys Ser Lys Cys Asp Thr Leu 195  Lys Glu Val Glu Glu Ala Leu Lys Lys Lys Asn Glu Leu Arg Glu Lys Lys Leu Lys Lys Leu Lys Lys Asn Glu Leu Arg Glu Lys Lys Leu Lys Lys Leu Lys Lys Asn Glu Leu Arg Glu Lys Lys Leu Lys Lys Leu Lys Lys Asn Glu Leu Arg Glu Lys Lys Leu Lys Lys Lys Asn Glu Leu Arg Glu Lys Lys Leu Lys Lys Lys Asn Glu Leu Arg Glu Lys Lys Leu Leu Leu Lys Lys Asn Glu Leu Arg Glu Lys Lys Leu Leu Leu Leu Lys Lys Asn Glu Leu Arg Glu Lys Lys Leu Leu Leu Leu Leu Glu Gln Cys Tyr Phe His Arg Gly Asn Cys Glu Lys Lys Asn Cys Glu Asn Cys Glu Leu Leu Leu Leu Leu Glu Gln Cys Tyr Phe His Arg Gly Asn Cys Glu Lys Lys Asn Cys Glu And Cys Glu Lys Lys Asn Cys Glu Lys Lys Lys Asn Glu Leu Arg Glu Lys Lys Lys Lys Asn Glu Leu Arg Glu Lys Lys Lys Asn Glu Leu Arg Glu Lys Lys Lys Lys Asn Glu Leu Arg Glu Lys Lys Lys Lys Asn Glu Leu Arg Glu Lys Lys Lys Lys Asn Glu Leu Arg Glu Lys Lys Lys Lys Asn Glu Leu Arg Glu Lys Lys Lys Lys Asn Glu Lys Lys Lys Lys Asn Glu Leu Arg Glu Lys Lys Lys Lys Asn Glu Lys Lys Lys Asn Glu Lys Lys Lys Lys Lys Asn Glu Lys Lys Lys Lys Lys Asn Glu Lys | n Asn<br>n Glu<br>160<br>u Glu<br>5 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Asp Cys Asn Lys Leu Arg Asn Asn Cys Tyr Gln Lys Glu Arg Ash 130  Val Ala Glu Glu Val Leu Leu Arg Ala Leu Arg Gly Asp Leu Ash 145  Thr Lys Thr Cys Glu Lys Lys Leu Lys Glu Val Cys Pro Lys Leu 170  Arg Glu Ser Asp Glu Leu Thr Glu Leu Cys Leu Tyr Gln Lys The 180  Cys Val Ser Leu Val Thr Lys Gly Lys Ser Lys Cys Asp Thr Leu 195  Lys Glu Val Glu Glu Ala Leu Lys Lys Lys Asn Glu Leu Arg Glu Lys Lys Cys Arg Glu Lys Cys Cys Arg Glu Lys Cys Cys Arg Glu Lys Cys Cys Cys Arg Glu Lys Cys Cys Cys Cys Cys Cys Cys Cys Cys C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n Asn<br>n Glu<br>160<br>u Glu<br>5 |
| Val Ala Glu Glu Val Leu Leu Arg Ala Leu Arg Gly Asp Leu Associated Thr Lys Thr Cys Glu Lys Lys Leu Lys Glu Val Cys Pro Lys Leu Arg Glu Ser Asp Glu Leu Thr Glu Leu Cys Leu Tyr Gln Lys Thr 180  Cys Val Ser Leu Val Thr Lys Gly Lys Ser Lys Cys Asp Thr Leu 195  Lys Glu Val Glu Glu Ala Leu Lys Lys Asn Glu Leu Arg Glu Lys 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Glu<br>160<br>u Glu<br>5          |
| Thr Lys Thr Cys Glu Lys Lys Leu Lys Glu Val Cys Pro Lys Leu Lys Glu Ser Asp Glu Leu Thr Glu Leu Cys Leu Tyr Gln Lys Thr 180  Cys Val Ser Leu Val Thr Lys Gly Lys Ser Lys Cys Asp Thr Leu 195  Lys Glu Val Glu Glu Ala Leu Lys Lys Asn Glu Leu Arg Glu Lys 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 160<br>u Glu<br>5                   |
| Arg Glu Ser Asp Glu Leu Thr Glu Leu Cys Leu Tyr Gln Lys The 180 Cys Val Ser Leu Val Thr Lys Gly Lys Ser Lys Cys Asp Thr Let 205 Lys Glu Val Glu Glu Ala Leu Lys Lys Asn Glu Leu Arg Glu Ly 210 215 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                   |
| Cys Val Ser Leu Val Thr Lys Gly Lys Ser Lys Cys Asp Thr Leg 200 Lys Glu Val Glu Glu Ala Leu Lys Lys Asn Glu Leu Arg Glu Ly 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r Thr                               |
| 195 200 205  Lys Glu Val Glu Glu Ala Leu Lys Lys Asn Glu Leu Arg Glu Ly 210 215 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| 210 215 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | u Glu                               |
| Leu Leu Leu Glu Gln Cys Tyr Phe His Arg Gly Asn Cys Gl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s Cys                               |
| 225 230 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | u Gly<br>240                        |
| Asp Lys Ser Lys Cys Asn Lys Pro Asn Asn Lys Asp Cys Lys Gl<br>245 250 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |
| Val Pro Glu Cys Asp Glu Leu Ala Glu Lys Cys Gly Lys Glu As<br>260 265 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n Ile                               |
| Val Tyr Met His Pro Gly Ser Asp Phe Asp Pro Thr Lys Pro Gl<br>275 280 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | u Pro                               |
| Thr Leu Ala Glu Asp Ile Gly Leu Glu Glu Leu Tyr Lys Arg Al<br>290 295 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a Glu                               |
| Glu Asp Gly Ile Phe Val Gly Arg Gln His Val Arg Asp Ala Th<br>305 310 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r Ala<br>320                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |
| Leu Leu Ala Leu Leu Lys Lys Thr Leu Lys Lys Glu Glu Cy<br>325 330 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a Tou                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a Leu                               |
| 325 330 33<br>Lys Ala Leu Lys Lys Asn Cys Glu Asn Pro His Glu His Glu Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |
| Lys Ala Leu Lys Lys Asn Cys Glu Asn Pro His Glu His Glu Al 340 345 350  Glu Asn Leu Cys Lys Glu Asn Lys Pro Ser Ser Asp Gly Thr Ly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s Lys                               |
| Lys Ala Leu Lys Lys Asn Cys Glu Asn Pro His Glu His Glu Al 340 345 350  Glu Asn Leu Cys Lys Glu Asn Lys Pro Ser Ser Asp Gly Thr Ly 355 360 365  Cys Asp Glu Leu Glu Lys Asp Val Asn Lys Thr Cys Thr Ser Let                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s Lys<br>u Thr                      |



| **           | 000        | ,0,,0      |            |            |                     |            |            |            |            |            |            |            |            |            |            |
|--------------|------------|------------|------------|------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Leu (        | Slu        | Ser        | Tyr<br>420 | Cys        | Phe                 | Tyr        | Tyr        | Lys<br>425 | Glu        | Thr        | Cys        | Pro        | Asp<br>430 | Val        | Lys        |
| Glu A        |            | Cys<br>435 | Met        | Asn        | Val                 | Arg        | Ala<br>440 | Ala        | Cys        | Tyr        | Lys        | Arg<br>445 | Gly        | Leu        | Asp        |
| Ala A        | Arg<br>150 | Ala        | Asn        | Ser        | Val                 | Leu<br>455 | Gln        | Lys        | Asn        | Met        | Arg<br>460 | Gly        | Leu        | Leu        | Arg        |
| Gly 5<br>465 | Ser        | Asn        | Gln        | Ser        | Trp<br>470          | Leu        | Lys        | Glu        | Phe        | Gln<br>475 | Gln        | Arg        | Leu        | Val        | Lys<br>480 |
| Val (        | Cys        | Lys        | Glu        | Leu<br>485 | Lys                 | Glu        | Asn        | Lys        | Gly<br>490 | Ser        | Phe        | Pro        | Asn        | Asp<br>495 | Glu        |
| Ile          | Phe        | Val        | Leu<br>500 | Cys        | Val                 | Gln        | Pro        | Ala<br>505 | Lys        | Ala        | Ala        | Arg        | Leu<br>510 | Leu        | Thr        |
| His          | Asp        | His<br>515 | Gln        | Met        | Arg                 | Val        | Thr<br>520 | Phe        | Leu        | Arg        | Gln        | Gln<br>525 | Leu        | Asp        | Gln        |
| _            | Arg<br>530 | Asp        | Phe        | Pro        | Thr                 | Asp<br>535 | Lys        | Asp        | Cys        | Lys        | Glu<br>540 | Leu        | Gly        | Lys        | Lys        |
| Cys<br>545   | Gln        | Asp        | Leu        | Gly        | Lys<br>5 <b>5</b> 0 | Asp        | Ser        | Lys        | Glu        | Ile<br>555 | Thr        | Trp        | Pro        | Cys        | His<br>560 |
|              |            |            |            | Gln<br>565 |                     |            |            |            | 570        |            |            |            |            | 5/5        |            |
|              |            |            | 580        |            |                     |            |            | 585        |            |            |            |            | 590        |            |            |
| _            |            | 595        | •          |            |                     |            | 600        |            |            |            |            | 605        |            |            | Gly        |
| _            | 610        |            |            |            |                     | 615        |            |            |            |            | 620        |            |            |            | Glu        |
| 625          |            |            |            |            | 630                 |            |            |            |            | 635        | )          |            |            |            | Asn<br>640 |
|              |            |            |            | 645        | •                   |            |            |            | 650        | )          |            |            |            | 655        |            |
|              |            |            | 660        | )          |                     |            |            | 665        |            |            |            |            | 670        | )          | s Asn      |
|              |            | 675        | 5          |            |                     |            | 680        | )          |            |            |            | 685        | )          |            | s Thr      |
| -            | 690        | )          |            |            |                     | 695        | 5          |            |            |            | 700        | )          |            |            | ı Glu      |
| 705          |            |            |            |            | 710                 | )          |            |            |            | 71         | 5          |            |            |            | 720        |
| _            |            |            |            | 72         | 5                   |            |            |            | 73         | 0          |            |            |            | 13         |            |
| Asn          | Ala        | a Se       | r Il       | e Se       | r Gly               | y Le       | ı Cys      | . Lys      | s Al.<br>3 | a Asi<br>O | n Th:      | r Ly:      | s As       | p As       | n Ser      |

740 745 750

Gly Lys Ser Asp Glu Asp Ala Arg Lys Glu Leu Cys Glu Lys Ser Val 755 760 765

Lys Glu Val Glu Glu Gln Cys Lys Ala Leu Pro Thr Glu Leu Gly Gln 770 780

Pro Ala Ala Asp Leu Lys Lys Asp Tyr Lys Thr Tyr Glu Glu Leu Lys 785 790 795 800

Lys Arg Ala Glu Glu Ala Met Asn Lys Ser Ser Leu Val Leu Ser Leu 805 810 815

Ile Lys Lys Asn Glu Ser Asn Val Ser Lys Ser Asn Ser Lys Asn Lys 820 825 830

Asp Lys Asn Ala Val Ser Asn Gly Leu Gln Asp Thr Thr Lys His Val 835 840 845

Lys Ile Leu Arg Arg Gly Val Lys Asp Val Ser Val Thr Glu Leu Glu 850 855

Ala Lys Ala Phe Asp Leu Ala Ala Glu Val Phe Gly Arg Tyr Val Asp 865 870 875 880

Leu Lys Glu Arg Cys Asn Lys Leu Glu Ser Asp Cys Arg Ile Lys Glu 885 890 895

Asp Cys Lys Asp Leu Glu Glu Val Cys Lys Lys Ile Asn Lys Ala Cys 900 905

Arg Asn Leu Lys Pro Leu Glu Val Lys Pro His Glu Thr Val Thr Glu 915 920 925

Ala Thr Glu Cys Lys Ser Leu Gln Thr Thr Asp Thr Trp Val Thr Gln 945 950 955 960

Thr Ser Thr His Thr Ser Thr Ser Thr Ile Thr Ser Thr Ile Thr Ser 975

Lys Ile Thr Leu Thr Ser Thr Arg Arg Cys Lys Pro Thr Lys Cys Thr 980 985 990

Thr Gly Asp Asp Ala Glu Asp Val Lys Pro Ser Glu Gly Leu Arg Val 995 1000 1005

Ser Gly Trp Asn Val Met Arg Gly Val Ile Val Ala Met Val Ile Ser 1010 1015 1020

Phe Met Ile 025

<210> 9

<211> 3081

<212> DNA

<213> Pneumocystis carinii sp. f. hominis

PCT/US99/18750

| **** | 00 | 100760 |  |
|------|----|--------|--|
| wu   | UU | /09760 |  |

| <220<br><221<br><222    | > CD              |                     | 3030              | )                 |                   |                   |                     |                   |                  |                   |                       |                       |                   |                   |                   |     |
|-------------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|------------------|-------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|-----|
| <400<br>atg<br>Met<br>1 | aca               | cgg<br>Arg          | gcg<br>Ala        | gtc<br>Val<br>5   | aag<br>Lys        | cgg<br>Arg        | cag<br>Gln          | gct<br>Ala        | gca<br>Ala<br>10 | aaa<br>Lys        | gca<br>Ala            | tca<br>Ser            | Gly               | gct<br>Ala<br>15  | agt<br>Ser        | 48  |
| gta<br>Val              | tat<br>Tyr        | gat<br>Asp          | ggt<br>Gly<br>20  | gaa<br>Glu        | gaa<br>Glu        | att<br>Ile        | ctt<br>Leu          | ttg<br>Leu<br>25  | gct<br>Ala       | tta<br>Leu        | att<br>Ile            | gca<br>Ala            | gga<br>Gly<br>30  | aaa<br>Lys        | aaa<br>Lys        | 96  |
| tat<br>Tyr              | aat<br>Asn        | gat<br>Asp<br>35    | aat<br>Asn        | gaa<br>Glu        | tgc<br>Cys        | aaa<br>Lys        | aaa<br>Lys<br>40    | gaa<br>Glu        | tta<br>Leu       | gaa<br>Glu        | aaa<br>Lys            | tat<br>Tyr<br>45      | tgt<br>Cys        | aag<br>Lys        | aca<br>Thr        | 144 |
| tta<br>Leu              | acg<br>Thr<br>50  | gat<br>Asp          | gca<br>Ala        | gaa<br>Glu        | tta<br>Leu        | aaa<br>Lys<br>55  | cca<br>Pro          | gaa<br>Glu        | aaa<br>Lys       | gtt<br>Val        | cac<br>His<br>60      | aaa<br>Lys            | aaa<br>Lys        | ctt<br>Leu        | aag<br>Lys        | 192 |
| gag<br>Glu<br>65        | ttt<br>Phe        | tgt<br>Cys          | gaa<br>Glu        | aat<br>Asn        | aaa<br>Lys<br>70  | aaa<br>Lys        | gca<br>Ala          | gat<br>Asp        | tca<br>Ser       | aaa<br>Lys<br>75  | tgc<br>Cys            | aaa<br>Lys            | gaa<br>Glu        | ctg<br>Leu        | aaa<br>Lys<br>80  | 240 |
| gaa<br>Glu              | aaa<br>Lys        | ctc<br>Leu          | act<br>Thr        | caa<br>Gln<br>85  | aaa<br>Lys        | tgt<br>Cys        | act<br>Thr          | gca<br>Ala        | atc<br>Ile<br>90 | aaa<br>Lys        | gga<br>Gly            | aaa<br>Lys            | ctt<br>Leu        | aca<br>Thr<br>95  | gaa<br>Glu        | 288 |
| gca<br>Ala              | atc<br>Ile        | aaa<br>Lys          | aaa<br>Lys<br>100 | aaa<br>Lys        | aat<br>Asn        | tca<br>Ser        | gat<br>Asp          | tta<br>Leu<br>105 | acg<br>Thr       | gat<br>Asp        | gaa<br>Glu            | gat<br>Asp            | tgc<br>Cys<br>110 | гаг               | gag<br>Glu        | 336 |
| aat<br>Asn              | gaa<br>Glu        | caa<br>Gln<br>115   | caa<br>Gln        | tgc<br>Cys        | cta<br>Leu        | ttt<br>Phe        | ttg<br>Leu<br>120   | Glu               | gga<br>Gly       | gca<br>Ala        | tgt<br>Cys            | cca<br>Pro<br>125     | gcg<br>Ala        | gaa<br>Glu        | ctt<br>Leu        | 384 |
| aaa<br>Lys              | gat<br>Asp<br>130 | Asp                 | tgc<br>Cys        | aat<br>Asn        | act<br>Thr        | ttg<br>Leu<br>135 | Arg                 | aat<br>Asn        | aag<br>Lys       | tgc<br>Cys        | tat<br>Tyr<br>140     | caa<br>Gln            | aag<br>Lys        | aag<br>Lys        | cgt<br>Arg        | 432 |
| gat<br>Asp<br>145       | Lys               | gtg<br>Val          | gcg<br>Ala        | gaa<br>Glu        | gaa<br>Glu<br>150 | gct<br>Ala        | ctt<br>Leu          | tta<br>Leu        | aga<br>Arg       | gca<br>Ala<br>155 | gtt<br>Val            | cgt<br>Arg            | gga<br>Gly        | ggt<br>Gly        | cta<br>Leu<br>160 | 480 |
| atc<br>Ile              | aat<br>Asn        | gaa<br>Glu          | act<br>Thr        | aca<br>Thr<br>165 | Cys               | gaa<br>Glu        | gga<br>Gly          | aag<br>Lys        | cto<br>Lev       | ı Lys             | ı gag<br>Glu          | gtt<br>Val            | tgc<br>Cys        | ata<br>Ile<br>175 | gag<br>Glu        | 528 |
| tto<br>Lev              | g agt<br>n Ser    | caa<br>Glr          | gaa<br>Glu<br>180 | Ser               | gat<br>Asp        | gaç<br>Glu        | y tta<br>ı Lev      | acq<br>Thr<br>185 | : Lys            | g ctt<br>s Lei    | tgt<br>ı Cys          | ctt<br>Leu            | tat<br>Tyr<br>190 | C GII             | aaa<br>Lys        | 576 |
| ato<br>Met              | g aco             | g tgo<br>Cys<br>195 | Lys               | aca<br>Thi        | ttt<br>Phe        | gta<br>Val        | tta<br>L Lei<br>200 | ı Glu             | a aaa<br>1 Lys   | a caa<br>s Gli    | a aaa<br>n Lys        | a aaa<br>E Lys<br>205 | Cys               | aat<br>s Asr      | gct<br>Ala        | 624 |
| ct1<br>Le               | aaa<br>Lys<br>210 | s Glr               | g gat<br>n Asp    | gti<br>Vai        | aac<br>L Asr      | gca<br>Ala<br>21  | a Ala               | a cti<br>a Lei    | t gad<br>u Gli   | u Ly:             | g aaa<br>s Lys<br>220 | s Asp                 | gad<br>Glu        | g tta<br>u Lev    | a cga<br>ı Arg    | 672 |

| WO 00/09760 |  |  | PCT/US99/18750 |
|-------------|--|--|----------------|
|-------------|--|--|----------------|

| gga<br>Gly<br>225 | aaa<br>Lys         | tgt<br>Cys         | tta<br>Leu         | Pro                   | ctg<br>Leu<br>230 | ctt<br>Leu         | gaa<br>Glu         | cga<br>Arg         | tgc<br>Cys        | tat<br>Tyr<br>235   | ttt<br>Phe           | tat<br>Tyr           | aga<br>Arg         | ggg<br>Gly           | aat<br>Asn<br>240   | 720  |
|-------------------|--------------------|--------------------|--------------------|-----------------------|-------------------|--------------------|--------------------|--------------------|-------------------|---------------------|----------------------|----------------------|--------------------|----------------------|---------------------|------|
| tgt<br>Cys        | gaa<br>Glu         | gat<br>Asp         | ata<br>Ile         | tca<br>Ser<br>245     | aaa<br>Lys        | tgt<br>Cys         | aat<br>Asn         | aaa<br>Lys         | tca<br>Ser<br>250 | tcc<br>Ser          | gaa<br>Glu           | gac<br>Asp           | tgt<br>Cys         | tat<br>Tyr<br>255    | gaa<br>Glu          | 768  |
| tat<br>Tyr        | ttg<br>Leu         | cca<br>Pro         | gtg<br>Val<br>260  | tgt<br>Cys            | gat<br>Asp        | aca<br>Thr         | ttg<br>Leu         | gca<br>Ala<br>265  | gtg<br>Val        | aaa<br>Lys          | tgt<br>Cys           | gaa<br>Glu           | gaa<br>Glu<br>270  | aat<br>Asn           | aag<br>Lys          | 816  |
| att<br>Ile        | att<br>Ile         | tat<br>Tyr<br>275  | aca<br>Thr         | cat<br>His            | ccg<br>Pro        | gga<br>Gly         | tcc<br>Ser<br>280  | gat<br>Asp         | ttc<br>Phe        | aat<br>Asn          | cca<br>Pro           | act<br>Thr<br>285    | aag<br>Lys         | tca<br>Ser           | aag<br>Lys          | 864  |
| cct<br>Pro        | act<br>Thr<br>290  | gta<br>Val         | gca<br>Ala         | gaa<br>Glu            | gac<br>Asp        | ata<br>Ile<br>295  | gga<br>Gly         | ctg<br>Leu         | gaa<br>Glu        | gag<br>Glu          | ctt<br>Leu<br>300    | TAT                  | aaa<br>Lys         | aag<br>Lys           | gcc<br>Ala          | 912  |
| gca<br>Ala<br>305 | gaa<br>Glu         | gaa<br>Glu         | ggt<br>Gly         | gtt<br>Val            | cat<br>His<br>310 | att<br>Ile         | gga<br>Gly         | aag<br>Lys         | cct<br>Pro        | cct<br>Pro<br>315   | gta<br>Val           | aga<br>Arg           | gat<br>Asp         | gca<br>Ala           | act<br>Thr<br>320   | 960  |
| gct<br>Ala        | cta<br>Leu         | ctg<br>Leu         | gcg<br>Ala         | ctt<br>Leu<br>325     | ttg<br>Leu        | att<br>Ile         | ca <b>a</b><br>Gln | aat<br>Asn         | cta<br>Leu<br>330 | Asp                 | cct<br>Pro           | aag<br>Lys           | agt<br>Ser         | caa<br>Gln<br>335    | VOI.                | 1008 |
| ggt<br>Gly        | aaa<br>Lys         | gaa<br>Glu         | tgc<br>Cys<br>340  | Glu                   | aaa<br>Lys        | gtt<br>Val         | ctt<br>Leu         | aaa<br>Lys<br>345  | Asp               | aac<br>Asn          | tgt<br>Cys           | aaa<br>Lys           | gag<br>Glu<br>350  | . 1,00               | aaa<br>Lys          | 1056 |
| agt<br>Ser        | cat                | gaa<br>Glu<br>35   | ı Ile              | ttg<br>Leu            | gga<br>Gly        | gat<br>Asp         | ttt<br>Phe<br>360  | Cys                | aat<br>Asr        | caa<br>Glr          | a aat<br>n Asi       | gta<br>Nal<br>365    | . Alc              | ggt<br>Gly           | caa<br>Gln          | 1104 |
| aat<br>Asr        | gaa<br>Glu<br>370  | ı Ile              | gaa<br>e Glu       | a aag<br>1 Lys        | tgt<br>Cys        | aaa<br>Lys<br>375  | Glu                | tta<br>Leu         | gaç<br>Glı        | g aaq<br>1 Lys      | g gad<br>s Gl:<br>38 | n re                 | a gca<br>ı Ala     | a aac<br>a Asr       | agt<br>Ser          | 1152 |
| act<br>Thi<br>385 | c Ly               | a at               | t cti<br>e Lei     | ttt<br>ı Phe          | gaa<br>Glu<br>390 | ı Lys              | a ata              | a aaq<br>e Lys     | g aat<br>s Asi    | aaa<br>n Ly:<br>39! | s ml                 | c cto<br>s Le        | c tci<br>u Sei     | t gga<br>r Gly       | tcc<br>y Ser<br>400 | 1200 |
| gga<br>Gl         | a gaa<br>y Gl      | a gt<br>u Va       | c ati              | t cca<br>e Pro<br>40! | o Tri             | tai<br>Ty:         | t aag              | g tto<br>s Lev     | ace<br>Th:        | C 111.              | a tt<br>r Ph         | t ct<br>e Le         | t ag<br>u Se:      | t gad<br>r Asj<br>41 | c aat<br>p Asn<br>5 | 1248 |
| ga<br>As          | c tg<br>p Cy       | c ac<br>s Th       | a ag<br>r Ar<br>42 | g Le                  | a gad<br>u Gl     | g tc<br>u Se       | a ga<br>r As       | c tg<br>p Cy<br>42 | 5 211             | t ta<br>e Ty        | t tt<br>r Le         | a aa<br>u Ly         | a ag<br>s Se<br>43 |                      | a gca<br>n Ala      | 1296 |
| cc<br>Pr          | t ct<br>o Le       | t ga<br>u As<br>43 | p Ly               | a ga<br>s Gl          | a tg<br>u Cy      | t aa<br>s As       | t aa<br>n As<br>44 | n Le               | g aa<br>u Ly      | g gc<br>s Al        | a go<br>a Al         | a tg<br>.a Cy<br>44  | SIY                | t aa<br>r Ly         | g aga<br>s Arg      | 1344 |
| gg<br>Gl          | g ct<br>y Le<br>45 | u Gl               | a gc<br>u Al       | a ca<br>a Gl          | a gc<br>n Al      | t aa<br>a As<br>45 | n Gl               | a gc<br>u Al       | a tt<br>a Le      | g ca<br>u Gl        | נם וו.               | aa aa<br>/s Ly<br>50 | ig at<br>vs Me     | g ta<br>t Ty         | c gga<br>r Gly      | 1392 |

|   | `   | WOU | U/U9 / | DU  |     |     |     |     |     |           |                   |     |     |     |     | PCI | /0399/10 |
|---|-----|-----|--------|-----|-----|-----|-----|-----|-----|-----------|-------------------|-----|-----|-----|-----|-----|----------|
|   |     |     |        |     |     |     |     |     |     |           | aag<br>Lys<br>475 |     |     |     |     |     | 1440     |
|   |     | _   | -      | _   | _   | _   | _   |     |     |           | aca<br>Thr        | _   | -   |     | _   |     | 1488     |
|   |     |     |        |     |     |     |     |     |     |           | aga<br>Arg        |     |     |     |     |     | 1536     |
|   |     |     |        |     |     |     |     |     |     |           | caa<br>Gln        |     |     |     |     |     | 1584     |
|   |     |     |        |     |     |     |     |     |     |           | tta<br>Leu        |     |     |     |     |     | 1632     |
| ž |     |     |        |     |     |     |     |     |     |           | tgg<br>Trp<br>555 |     |     |     |     |     | 1680     |
|   |     |     |        |     |     |     |     |     |     |           | gaa<br>Glu        |     |     |     |     |     | 1728     |
|   |     |     |        |     |     |     |     |     |     |           | act<br>Thr        |     |     |     |     |     | 1776     |
|   |     |     |        |     |     |     |     |     |     |           | tct<br>Ser        |     |     |     |     |     | 1824     |
|   |     |     |        |     |     |     |     |     |     |           | gct<br>Ala        |     |     |     |     |     | 1872     |
| 1 |     |     |        |     |     |     |     |     |     |           | ttt<br>Phe<br>635 |     |     |     |     |     | 1920     |
|   |     |     |        |     |     |     |     |     |     |           | aaa<br>Lys        |     |     |     |     |     | 1968     |
|   |     |     |        |     |     |     |     |     |     |           | cca<br>Pro        |     |     |     |     |     | 2016     |
|   |     |     |        |     |     |     |     |     |     |           | aaa<br>Lys        |     |     | -   |     |     | 2064     |
|   |     |     |        |     |     |     |     |     |     |           | agg<br>Arg        |     |     |     |     |     | 2112     |
|   | gct | ctt | aaa    | gta | gag | ctt | caa | ggg | aat | tta<br>34 | agt               | aat | aga | aat | aaa | tgt | 2160     |

PCT/US99/18750

WO 00/09760

| WO 00/09760 |  |  |  | PCT/US99/18750 |
|-------------|--|--|--|----------------|
|-------------|--|--|--|----------------|

| `                 | <b>WO</b> 0       | 0/07/              |                       |                   |                   |                     |                     |                   |                                |                   |                       |                   | _                 |                   |                   |      |
|-------------------|-------------------|--------------------|-----------------------|-------------------|-------------------|---------------------|---------------------|-------------------|--------------------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|------|
| Ala<br>705        | Leu               | Lys                | Val                   |                   | Leu<br>710        | Gin                 | Gly                 | Asn               | Leu                            | Ser<br>715        | Asn                   | Arg               | Asn               | Lys               | Cys<br>720        |      |
| gaa<br>Glu        | tct<br>Ser        | gca<br>Ala         | tta<br>Leu            | gaa<br>Glu<br>725 | aga<br>Arg        | tat<br>Tyr          | tgc<br>Cys          | aca<br>Thr        | ata<br>Ile<br>730              | ttg<br>Leu        | aaa<br>Lys            | aat<br>Asn        | vaı               | agt<br>Ser<br>735 | gat<br>Asp        | 2208 |
| tca<br>Ser        | tca<br>Ser        | atc<br>Ile         | aac<br>Asn<br>740     | agt<br>Ser        | tta<br>Leu        | tgt<br>Cys          | aaa<br>Lys          | gat<br>Asp<br>745 | aat<br>Asn                     | acc<br>Thr        | gaa<br>Glu            | agt<br>Ser        | aaa<br>Lys<br>750 | act<br>Thr        | aaa<br>Lys        | 2256 |
| aag<br>Lys        | acc<br>Thr        | gat<br>Asp<br>755  | aat<br>Asn            | gaa<br>Glu        | gtt<br>Val        | aga<br>Arg          | aag<br>Lys<br>760   | aag<br>Lys        | ctt<br>Leu                     | tgt<br>Cys        | cta<br>Leu            | aaa<br>Lys<br>765 | tta<br>Leu        | gtg<br>Val        | gaa<br>Glu        | 2304 |
| gag<br>Glu        | gtg<br>Val<br>770 | gaa<br>Glu         | cag<br>Gln            | caa<br>Gln        | tgt<br>Cys        | aaa<br>Lys<br>775   | atg<br>Met          | tta<br>Leu        | cca<br>Pro                     | gca<br>Ala        | gaa<br>Glu<br>780     | ttg<br>Leu        | gag<br>Glu        | cat<br>His        | gag<br>Glu        | 2352 |
| gaa<br>Glu<br>785 | aaa<br>Lys        | gac<br>Asp         | cta<br>Leu            | aaa<br>Lys        | gat<br>Asp<br>790 | gat<br>Asp          | ttt<br>Phe          | gaa<br>Glu        | aca<br>Thr                     | ttt<br>Phe<br>795 | gaa<br>Glu            | aaa<br>Lys        | ctt<br>Leu        | aaa<br>Lys        | aaa<br>Lys<br>800 | 2400 |
| cag<br>Gln        | gca<br>Ala        | gag<br>Glu         | aaa<br>Lys            | aca<br>Thr<br>805 | atg<br>Met        | aat<br>Asn          | aaa<br>Lys          | tcc<br>Ser        | aat<br>Asn<br>810              | ctt<br>Leu        | gtt<br>Val            | tta<br>Leu        | tca<br>Ser        | ttc<br>Phe<br>815 | gtt<br>Val        | 2448 |
| aag<br>Lys        | aaa<br>Lys        | gat<br>Asp         | gaa<br>Glu<br>820     | Asn               | aat<br>Asn        | aca<br>Thr          | tcg<br>Ser          | aaa<br>Lys<br>825 | aat<br>Asn                     | agt<br>Ser        | agc<br>Ser            | aaa<br>Lys        | gac<br>Asp<br>830 | aag<br>Lys        | gat<br>Asp        | 2496 |
| aag<br>Lys        | aat<br>Asn        | acc<br>Thr<br>835  | · Val                 | tca<br>Ser        | aac<br>Asn        | gga<br>Gly          | ctt<br>Leu<br>840   | Gln               | gat<br>Asp                     | acc<br>Thr        | aca<br>Thr            | gaa<br>Glu<br>845 | cat<br>His        | atg<br>Met        | aaa<br>Lys        | 2544 |
| ata<br>Ile        | cta<br>Leu<br>850 | Arg                | aga<br>Arg            | gga<br>Gly        | gtt<br>Val        | aag<br>Lys<br>855   | gat<br>Asp          | gta<br>Val        | tcc<br>Ser                     | gta<br>Val        | aca<br>Thr<br>860     | gaa<br>Glu        | tct<br>Ser        | gaa<br>Glu        | gct<br>Ala        | 2592 |
| Lys               | Ala               | Phe                | Asp                   | ttg<br>Leu        | Val               | Ala                 | Glu                 | gta<br>Val        | ttt<br>Phe                     | gga<br>Gly<br>875 | Arg                   | tat<br>Tyr        | cta<br>Leu        | gac<br>Asp        | ttg<br>Leu<br>880 | 2640 |
| aaa<br>Lys        | ı gaa<br>s Glu    | aga<br>Arq         | a tgt<br>g Cys        | aat<br>Asn<br>885 | Lys               | ttg<br>Leu          | gaa<br>Glu          | tca<br>Ser        | gat<br>Asp<br>890              | Cys               | aga<br>Arg            | gtt<br>Val        | aag<br>Lys        | gag<br>Glu<br>895 | ASP               | 2688 |
| tg:               | aaq<br>Lys        | g gat<br>s Asj     | t tta<br>p Lev<br>900 | ı Glü             | gga<br>Gly        | gta<br>Val          | tgt<br>Cys          | gga<br>Gly<br>905 | , Lys                          | g ata             | a caa<br>e Glr        | n gga<br>n Gly    | gta<br>Val<br>910 | . Cys             | tcg<br>Ser        | 2736 |
| aaa<br>Lys        | a tta<br>s Le     | a aa<br>u Ly<br>91 | s Pro                 | a cto<br>o Leu    | g aaa<br>1 Lys    | a gtç<br>s Val      | g aaq<br>Lys<br>920 | s Pro             | g cad<br>o His                 | gaa<br>Gli        | a aca<br>u Thi        | gtg<br>Val<br>925 | . Thi             | a gaa<br>Glu      | a agc<br>ı Ser    | 2784 |
| ac.<br>Th         | a acer Th         | r Th               | g ac                  | c acq             | g acq<br>Thi      | g aca<br>Thi<br>93! | r Thi               | a aco             | g aco                          | c gt<br>r Va      | t act<br>1 Th:<br>940 | r Asp             | cco<br>Pro        | g aad<br>b Ly:    | g gca<br>s Ala    | 2832 |
| ac<br>Th          | a ga<br>r Gl      | a tg<br>u Cy       | c aa<br>s Ly          | a tc<br>s Se      | t tta             | a cad<br>u Gli      | g ac                | a ac              | a ga<br>r As <sub>l</sub><br>3 | p Th              | a tge<br>r Tr         | g att<br>p Ile    | aca<br>Thi        | a ca<br>r Gl      | g act<br>n Thr    | 2880 |

| WO 00/09760                                              |                                                 |                                                                   | PCT/US99/18750  |
|----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|-----------------|
| 945                                                      | 950                                             | 955                                                               | 960             |
| tcg aca cat acc ac<br>Ser Thr His Thr Se                 | r Thr Ser Thr 116                               | e aca tct aca atc aca tca<br>e Thr Ser Thr Ile Thr Ser<br>970 975 | aaa 2928<br>Lys |
| ata aca ctc aca to<br>Ile Thr Leu Thr Se<br>980          | a aca agg cgt tgo<br>r Thr Arg Arg Cy:<br>98!   | c aaa cca acc aag tgt acg<br>s Lys Pro Thr Lys Cys Thr<br>5 990   | aca 2976<br>Thr |
| ggg gat gat gca ga<br>Gly Asp Asp Ala G<br>995           | ng gac gtg aag cc<br>nu Asp Val Lys Pro<br>1000 | g agt gag gga ttg aag atg<br>o Ser Glu Gly Leu Lys Met<br>1005    | agt 3024<br>Ser |
| ggg tga aacgtgatg<br>Gly<br>1010                         | a ggggggtgat agta                               | gcaatg gttatttcgt tcatgat                                         | tta g 3081      |
| <210> 10<br><211> 1009<br><212> PRT<br><213> Pneumocysti | s carinii sp. f.                                | hominis                                                           |                 |
| <400> 10<br>Met Ala Arg Ala V<br>1                       | al Lys Arg Gln Al<br>5                          | la Ala Lys Ala Ser Gly Ala<br>10 15                               | s Ser           |
| Val Tyr Asp Gly G                                        | lu Glu Ile Leu Le<br>2                          | eu Ala Leu Ile Ala Gly Lys<br>25 30                               | s Lys           |
| Tyr Asn Asp Asn G                                        | lu Cys Lys Lys Gi<br>40                         | lu Leu Glu Lys Tyr Cys Lys<br>45                                  | 5 Thr           |
| Leu Thr Asp Ala (                                        | lu Leu Lys Pro G<br>55                          | lu Lys Val His Lys Lys Let<br>60                                  | ı Lys           |
|                                                          |                                                 | - C To- Coo Inc Chy In                                            | n I.vs          |

Glu Phe Cys Glu Asn Lys Lys Ala Asp Ser Lys Cys Lys Glu Leu Lys 65 70 75 80

Glu Lys Leu Thr Gln Lys Cys Thr Ala Ile Lys Gly Lys Leu Thr Glu 85 90 95

Ala Ile Lys Lys Lys Asn Ser Asp Leu Thr Asp Glu Asp Cys Lys Glu 100 105 110

Asn Glu Gln Gln Cys Leu Phe Leu Glu Gly Ala Cys Pro Ala Glu Leu 115 120 125

Lys Asp Asp Cys Asn Thr Leu Arg Asn Lys Cys Tyr Gln Lys Lys Arg 130 135 140

Asp Lys Val Ala Glu Glu Ala Leu Leu Arg Ala Val Arg Gly Gly Leu 145 150 155 160

Ile Asn Glu Thr Thr Cys Glu Gly Lys Leu Lys Glu Val Cys Ile Glu 165 170 175

Leu Ser Gln Glu Ser Asp Glu Leu Thr Lys Leu Cys Leu Tyr Gln Lys 180 185 190

Met Thr Cys Lys Thr Phe Val Leu Glu Lys Gln Lys Lys Cys Asn Ala 200 Leu Lys Gln Asp Val Asn Ala Ala Leu Glu Lys Lys Asp Glu Leu Arg 215 Gly Lys Cys Leu Pro Leu Leu Glu Arg Cys Tyr Phe Tyr Arg Gly Asn 230 Cys Glu Asp Ile Ser Lys Cys Asn Lys Ser Ser Glu Asp Cys Tyr Glu Tyr Leu Pro Val Cys Asp Thr Leu Ala Val Lys Cys Glu Glu Asn Lys Ile Ile Tyr Thr His Pro Gly Ser Asp Phe Asn Pro Thr Lys Ser Lys 280 Pro Thr Val Ala Glu Asp Ile Gly Leu Glu Glu Leu Tyr Lys Lys Ala Ala Glu Glu Gly Val His Ile Gly Lys Pro Pro Val Arg Asp Ala Thr Ala Leu Leu Ala Leu Leu Ile Gln Asn Leu Asp Pro Lys Ser Gln Val 330 Gly Lys Glu Cys Glu Lys Val Leu Lys Asp Asn Cys Lys Glu Leu Lys Ser His Glu Ile Leu Gly Asp Phe Cys Asn Gln Asn Val Ala Gly Gln Asn Glu Ile Glu Lys Cys Lys Glu Leu Glu Lys Glu Leu Ala Asn Ser 375 Thr Lys Ile Leu Phe Glu Lys Ile Lys Asn Lys His Leu Ser Gly Ser Gly Glu Val Ile Pro Trp Tyr Lys Leu Thr Thr Phe Leu Ser Asp Asn 410 Asp Cys Thr Arg Leu Glu Ser Asp Cys Phe Tyr Leu Lys Ser Gln Ala Pro Leu Asp Lys Glu Cys Asn Asn Leu Lys Ala Ala Cys Tyr Lys Arg Gly Leu Glu Ala Gln Ala Asn Glu Ala Leu Gln Lys Lys Met Tyr Gly 450 Leu Phe Tyr Gly Ser Gly Lys Glu Trp Phe Lys Lys Leu Leu Glu Lys 475 Ile Met Glu Glu Cys Ser Glu Leu Lys Thr Thr Ser Asp Glu Leu Phe 490 Leu Leu Cys Ile Asp Pro Leu Lys Ala Val Arg Ile Leu Ala Ala Asp 505 Ile Gln Ala Arg Ala Val Phe Leu Arg Lys Gln Leu Asp Gln Lys Arg

37

525 520 515 Asp Phe Pro Thr Asp Lys Asp Cys Lys Glu Leu Gly Arg Lys Cys Glu 535 Ala Leu Gly Lys Asp Ser Asn Gln Ile Lys Trp Pro Cys His Thr Leu 550 Lys Gln Gln Cys Asp Arg Leu Gly Thr Thr Glu Ile Leu Lys Gln Val Leu Leu Asp Glu His Lys Asp Thr Leu Arg Thr His Glu Asn Cys Thr Lys Tyr Leu Lys Arg Lys Cys His Lys Trp Ser Arg Arg Gly Asp Asp Arg Phe Ser Phe Val Cys Val Tyr Gln Asn Ala Thr Cys Lys Leu Ile Val Asp Asp Val Lys Asp Arg Cys Glu Val Phe Glu Lys Asn Met Gln Ala Ser Asp Ile Asn Asn Ser Leu Lys Asn Lys Gln Ile Lys Thr Glu 650 Ser Ala Ala Asn Ile Cys Pro Ser Trp His Pro Tyr Cys Asp Arg Phe Leu Pro Asn Cys Pro Asp Leu Lys Lys Gly Lys Thr Phe Cys Gln Asn Leu Lys Lys Tyr Cys Glu Pro Phe Tyr Lys Arg Lys Val Leu Glu Asp Ala Leu Lys Val Glu Leu Gln Gly Asn Leu Ser Asn Arg Asn Lys Cys 715 Glu Ser Ala Leu Glu Arg Tyr Cys Thr Ile Leu Lys Asn Val Ser Asp Ser Ser Ile Asn Ser Leu Cys Lys Asp Asn Thr Glu Ser Lys Thr Lys 745 Lys Thr Asp Asn Glu Val Arg Lys Leu Cys Leu Lys Leu Val Glu Glu Val Glu Gln Gln Cys Lys Met Leu Pro Ala Glu Leu Glu His Glu Glu Lys Asp Leu Lys Asp Phe Glu Thr Phe Glu Lys Leu Lys Lys Gln Ala Glu Lys Thr Met Asn Lys Ser Asn Leu Val Leu Ser Phe Val

Lys Lys Asp Glu Asn Asn Thr Ser Lys Asn Ser Ser Lys Asp Lys Asp 820 825 830

Lys Asn Thr Val Ser Asn Gly Leu Gln Asp Thr Thr Glu His Met Lys 835 840 845

| Ile Leu Arg A<br>850                                | rg Gly Val                   | Lys Asp<br>855           | Val Se                  | r Val 1                  | Thr Glu<br>860           | Ser Glu                    | ı Ala                    |     |
|-----------------------------------------------------|------------------------------|--------------------------|-------------------------|--------------------------|--------------------------|----------------------------|--------------------------|-----|
| Lys Ala Phe A                                       | sp Leu Val                   | l Ala Glu<br>)           | ı Val Ph                | e Gly 2<br>875           | Arg Tyr                  | Leu Asp                    | 880                      |     |
| Lys Glu Arg C                                       | ys Asn Ly:<br>885            | s Leu Glu                | ser As<br>89            | p Cys                    | Arg Val                  | Lys Gla                    | Asp                      |     |
| Cys Lys Asp I                                       | eu Glu Gl                    | y Val Cy                 | Gly Ly<br>905           | s Ile                    | Gln Gly                  | Val Cy<br>910              | s Ser                    |     |
| Lys Leu Lys E<br>915                                | Pro Leu Ly                   | s Val Ly<br>92           | s Pro H:<br>O           | is Glu                   | Thr Val<br>925           | Thr Gl                     | u Ser                    |     |
| Thr Thr Thr 1                                       | Thr Thr Th                   | r Thr Th<br>935          | r Thr T                 | hr Val                   | Thr Asp<br>940           | Pro Ly                     | s Ala                    |     |
| Thr Glu Cys 1                                       | Lys Ser Le<br>95             | u Gln Th                 | r Thr A                 | sp Thr<br>955            | Trp Ile                  | Thr Gl                     | n Thr<br>960             |     |
| Ser Thr His '                                       | Thr Ser Th                   | ar Ser Th                | r Ile T                 | hr Ser<br>70             | Thr Ile                  | Thr Se                     | r Lys<br>5               |     |
| Ile Thr Leu                                         | Thr Ser Th<br>980            | nr Arg Ar                | g Cys I<br>985          | ys Pro                   | Thr Lys                  | S Cys Ti<br>990            | nr Thr                   |     |
| Gly Asp Asp<br>995                                  | Ala Glu As                   | sp Val Ly<br>100         | ys Pro S<br>00          | Ger Glu                  | Gly Let<br>100           | ı Lys Me<br>5              | et Ser                   |     |
| Gly                                                 |                              |                          |                         |                          |                          |                            |                          |     |
| <210> 11<br><211> 3054<br><212> DNA<br><213> Pneumo | ocystis ca                   | rinii sp                 | . f. ho                 | minis                    |                          |                            |                          |     |
| <220><br><221> CDS<br><222> (1)                     | (3054)                       |                          |                         |                          |                          |                            |                          |     |
| <400> 11<br>gcg cgg gcg<br>Ala Arg Ala<br>1         | gtc aag c<br>Val Lys F<br>5  | egg cag g<br>Arg Gln V   | ta aca<br>'al Thr       | gga gca<br>Gly Ala<br>10 | a tca go<br>a Ser Gl     | gg caa t<br>Ly Gln T       | at gat 4<br>yr Asp<br>15 | 8   |
| gat gaa gtg<br>Asp Glu Val                          | aat att t<br>Asn Ile 1<br>20 | tg gcg t<br>Leu Ala I    | tg att<br>Leu Ile<br>25 | cta ca<br>Leu Gl:        | a gaa ga<br>n Glu As     | at gca a<br>sp Ala 1<br>30 | itg gaa 9<br>Met Glu     | 6   |
| gat aca aaa<br>Asp Thr Lys<br>35                    | Cys Lys                      | aaa agt 1<br>Lys Ser 1   | ta gaa<br>Leu Glu<br>40 | aaa ta<br>Lys Ty         | r Cys G.                 | aa gag<br>lu Glu :<br>45   | tg aaa l<br>Leu Lys      | 44  |
| aaa gca tca<br>Lys Ala Ser                          | a cta gac<br>Leu Asp         | atg gaa<br>Met Glu<br>55 | aaa gta<br>Lys Val      | cat aa<br>His Ly         | a atg c<br>s Met L<br>60 | tt aaa<br>eu Lys           | gat ttc 1<br>Asp Phe     | 192 |
| 50                                                  |                              |                          |                         |                          |                          |                            |                          |     |

| V                 | /O 00/            | /09 <b>7</b> 6(   | )                 | •                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | PCT               | /US99/18750 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------|
| Cys<br>65         | Gly               | Asn               | Gly               | Lys               | Ala<br>70         | Ser               | Lys               | Ala               | Asn               | Thr<br>75         | Lys               | Cys               | Gln               | Gly               | Leu<br>80         |             |
| caa<br>Gln        | gcc<br>Ala        | aaa<br>Lys        | gtt<br>Val        | acg<br>Thr<br>85  | Gly<br>ggg        | aaa<br>Lys        | tgt<br>Cys        | aca<br>Thr        | aat<br>Asn<br>90  | ttt<br>Phe        | aaa<br>Lys        | aca<br>Thr        | caa<br>Gln        | aag<br>Lys<br>95  | cta<br>Leu        | 288         |
| gga<br>Gly        | cca<br>Pro        | gcg<br>Ala        | tta<br>Leu<br>100 | aca<br>Thr        | aat<br>Asn        | cca<br>Pro        | tca<br>Ser        | gat<br>Asp<br>105 | gat<br>Asp        | aat<br>Asn        | tgc<br>Cys        | aaa<br>Lys        | gag<br>Glu<br>110 | agt<br>Ser        | gaa<br>Glu        | 336         |
| cga<br>Arg        | caa<br>Gln        | tgc<br>Cys<br>115 | cta<br>Leu        | ttt<br>Phe        | ttg<br>Leu        | gag<br>Glu        | gga<br>Gly<br>120 | gca<br>Ala        | tgc<br>Cys        | cat<br>His        | aat<br>Asn        | ctt<br>Leu<br>125 | gta<br>Val        | gaa<br>Glu        | gat<br>Asp        | 384         |
| tgt<br>Cys        | aac<br>Asn<br>130 | aaa<br>Lys        | cta<br>Leu        | agg<br>Arg        | aat<br>Asn        | cta<br>Leu<br>135 | tgt<br>Cys        | tac<br>Tyr        | cag<br>Gln        | aaa<br>Lys        | aaa<br>Lys<br>140 | cgt<br>Arg        | gac<br>Asp        | gga<br>Gly        | gta<br>Val        | 432         |
| gca<br>Ala<br>145 | Glu               | gaa<br>Glu        | gtc<br>Val        | ctt<br>Leu        | ttg<br>Leu<br>150 | agg<br>Arg        | gca<br>Ala        | ctt<br>Leu        | cgt<br>Arg        | agt<br>Ser<br>155 | gat<br>Asp        | ctc<br>Leu        | aat<br>Asn        | aaa<br>Lys        | aca<br>Thr<br>160 | 480         |
| gaa<br>Glu        | aca<br>Thr        | cat<br>His        | gaa<br>Glu        | aaa<br>Lys<br>165 | Lys               | ctg<br>Leu        | aaa<br>Lys        | gag<br>Glu        | att<br>Ile<br>170 | tgc<br>Cys        | cca<br>Pro        | gtc<br>Val        | ttg<br>Leu        | cag<br>Gln<br>175 | agg<br>Arg        | 528         |
| gaa<br>Glu        | agt<br>Ser        | aat<br>Asn        | gaa<br>Glu<br>180 | Leu               | acg<br>Thr        | gac<br>Asp        | ttg<br>Leu        | tgt<br>Cys<br>185 | Leu               | aac<br>Asn        | cag<br>Gln        | aaa<br>Lys        | aag<br>Lys<br>190 | TIII              | tgc<br>Cys        | 576         |
| gaq<br>Glu        | g aat<br>1 Asr    | att<br>11e        | : Ile             | aaa<br>Lys        | gaa<br>Glu        | aaa<br>Lys        | gat<br>Asp<br>200 | Lys               | aaa<br>Lys        | tgc<br>Cys        | act<br>Thr        | act<br>Thr<br>205 | ctt<br>Leu        | aaa<br>Lys        | gca<br>Ala        | 624         |
| aat<br>Asi        | gtt<br>n Val      | L Ala             | a aca<br>a Thr    | gca<br>Ala        | a ctt<br>a Leu    | gga<br>Gly<br>215 | Ser               | ttt<br>Phe        | aaa<br>Lys        | aaa<br>Lys        | gaa<br>Glu<br>220 | TIE               | tgc<br>Cys        | ctt<br>Leu        | gaa<br>Glu        | 672         |
| tt                | a ctt             | t gaa             | a caa             | a tgo             | tat               | ttt               | tac               | att               | gga               | a aat             | tgo<br>CVS        | gga<br>Glv        | gac               | gac<br>Asr        | gat<br>Asp        | 720         |

|                   |                   |                   |                   |                   | :                 | SUBS              | TIT               | UTE               | SHE               | et (r             | RULE              | 26)               |                   |                   |                   |     |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
| tta<br>Lev        | ttg<br>Lev        | acg<br>Thr        | ttg<br>Leu        | ttg<br>Leu        | gtt<br>Val        | aag<br>Lys        | aaa<br>Lys        | gat<br>Asp        | gat<br>Asp<br>40  | rnr               | gga<br>Gly        | aaa<br>Lys        | aat<br>Asn        | aat<br>Asn        | aat<br>Asn        | 900 |
| Glu               | Asp<br>290        | Gly               | Val               | Phe               | Ile               | Gly<br>295        | Lys               | His               | His               | Leu               | 300               | Asp               | Ald               | . 1111            | gct<br>Ala        | 912 |
| aca<br>Thr        | cta<br>Leu        | gca<br>Ala<br>275 | Glu               | gac<br>Asp        | ata<br>Ile        | gac<br>Asp        | ctg<br>Leu<br>280 | Asp               | gag<br>Glu        | ctt<br>Leu        | tat<br>Tyr        | aaa<br>Lys<br>285 | aag<br>Lys        | gca<br>Ala        | gaa<br>Glu        | 864 |
| gtt<br>Val        | tat<br>Tyr        | ata<br>Ile        | cca<br>Pro<br>260 | cca<br>Pro        | gga<br>Gly        | ccc<br>Pro        | gat<br>Asp        | ttt<br>Phe<br>265 | gat<br>Asp        | cca<br>Pro        | act<br>Thr        | aga<br>Arg        | cca<br>Pro<br>270 | gag<br>Glu        | gct<br>Ala        | 816 |
| ata<br>Ile        | att<br>Ile        | aaa<br>Lys        | tgt<br>Cys        | att<br>Ile<br>245 | gaa<br>Glu        | ttg<br>Leu        | gga<br>Gly        | ggg<br>Gly        | aaa<br>Lys<br>250 | tgc<br>Cys        | caa<br>Gln        | gaa<br>Glu        | caa<br>Gln        | aac<br>Asn<br>255 | att<br>Ile        | 768 |
| tta<br>Leu<br>225 | ctt<br>Leu        | gaa<br>Glu        | caa<br>Gln        | tgc<br>Cys        | tat<br>Tyr<br>230 | ttt<br>Phe        | tac<br>Tyr        | att<br>Ile        | gga<br>Gly        | aat<br>Asn<br>235 | tgc<br>Cys        | gga<br>Gly        | gac<br>Asp        | gac<br>Asp        | gat<br>Asp<br>240 | 720 |
| aat<br>Asn        | gtt<br>Val<br>210 | gca<br>Ala        | aca<br>Thr        | gca<br>Ala        | ctt<br>Leu        | gga<br>Gly<br>215 | agt<br>Ser        | ttt<br>Phe        | aaa<br>Lys        | aaa<br>Lys        | gaa<br>Glu<br>220 | ata<br>Ile        | tgc<br>Cys        | ctt<br>Leu        | gaa<br>Glu        | 672 |
| Glu               | Asn               | Ile<br>195        | Ile               | Lys               | Glu               | Lys               | Asp<br>200        | Lys               | Lys               | Cys               | Thr               | Thr<br>205        | Leu               | rys               | Ala               |     |

| WO 00/09760 |     |       | PCT/US99/18750 |
|-------------|-----|-------|----------------|
| 305         | 310 | . 315 | 320            |

| WO 00/09/60                                       |                                                      | _                                                             |                              |
|---------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|------------------------------|
| 305                                               | 310                                                  |                                                               | 320                          |
| atc gga gaa aaa tgc<br>Ile Gly Glu Lys Cys<br>325 | aat aag att ctc gaa<br>Asn Lys Ile Leu Glu<br>330    | gat aaa tgc aaa aac<br>Asp Lys Cys Lys Asn<br>335             | tct 1008<br>Ser              |
| caa cag cat gaa gct<br>Gln Gln His Glu Ala<br>340 | cta aaa aat tta tgt<br>Leu Lys Asn Leu Cys<br>345    | aat aat aat agt cct<br>Asn Asn Asn Ser Pro<br>350             | aat 1056<br>Asn              |
| gca tat gga aaa gaa<br>Ala Tyr Gly Lys Glu<br>355 | aaa tgc aaa gaa tta<br>Lys Cys Lys Glu Leu<br>360    | gaa gaa gat att aaa<br>Glu Glu Asp Ile Lys<br>365             | aaa 1104<br>Lys              |
| aca tgc aca aac ctc<br>Thr Cys Thr Asn Leu<br>370 | aaa cca acg att ctt<br>Lys Pro Thr Ile Leu<br>375    | aaa aac cat ctt tat<br>1 Lys Asn His Leu Tyr<br>380           | gat 1152<br>Asp              |
| cca aat gat aaa att<br>Pro Asn Asp Lys Ile<br>385 | gtt gag tgg aga aaa<br>Val Glu Trp Arg Lys<br>390    | a ctg cca aca ttt ctt<br>s Leu Pro Thr Phe Leu<br>395         | act 1200<br>Thr<br>400       |
| aat gaa gac tgt gca<br>Asn Glu Asp Cys Ala<br>409 | Arg Leu Glu Ser ly                                   | t tgt ttt tac tac gaa<br>r Cys Phe Tyr Tyr Glu<br>0 415       | aaa 1248<br>Lys              |
| gct tgt cca aat gc<br>Ala Cys Pro Asn Al<br>420   | c aaa gaa gag tgt at<br>a Lys Glu Glu Cys Me<br>425  | g aat ttg agg gca gcg<br>t Asn Leu Arg Ala Ala<br>430         | tgt 1296<br>Cys              |
| tat aag aga ggg ct<br>Tyr Lys Arg Gly Le<br>435   | t gat gga cgg gca aa<br>u Asp Gly Arg Ala As<br>440  | t aaa gtg ctg caa gaa<br>n Lys Val Leu Gln Glu<br>445         | aat 1344<br>Asn              |
| atg cgt ggg tta tt<br>Met Arg Gly Leu Le<br>450   | a cgt ggt tca aat ca<br>u Arg Gly Ser Asn Gl<br>455  | aa agt tgg ctt aag gag<br>In Ser Trp Leu Lys Glu<br>460       | ttt 1392<br>Phe              |
| caa caa aga tta gt<br>Gln Gln Arg Leu Va<br>465   | a aaa gta tgt aag ga<br>11 Lys Val Cys Lys Gl<br>470 | ag cta aaa gaa aat aaa<br>lu Leu Lys Glu Asn Lys<br>475       | a gga 1440<br>s Gly<br>480   |
| Ser Phe Pro Asn As                                | sp Glu lie Phe var n                                 | tg tgt gta cag cca gc<br>eu Cys Val Gln Pro Al<br>90 49       | - 3                          |
| gct gca cga tta c<br>Ala Ala Arg Leu L<br>500     | tt aca cac gat cat c<br>eu Thr His Asp His G<br>505  | aa atg agg gtt atc tt<br>ln Met Arg Val Ile Ph<br>510         | t tta 1536<br>e Leu          |
| cga caa caa ttg g<br>Arg Gln Gln Leu A<br>515     | at caa aag aga gat t<br>sp Gln Lys Arg Asp P<br>520  | tt ccg aca gat aaa ga<br>he Pro Thr Asp Lys As<br>525         | c tgc 1584<br>sp Cys         |
| aag gaa tta ggg a<br>Lys Glu Leu Gly L<br>530     | aa aaa tgc caa gat t<br>ys Lys Cys Gln Asp I<br>535  | ta gga aag gat tca aa<br>Leu Gly Lys Asp Ser Ly<br>540        | aa gaa 1632<br>ys Glu        |
| att aca tgg cca t<br>Ile Thr Trp Pro C<br>545     | gt cat acg ctg gag c<br>cys His Thr Leu Glu C<br>550 | cag caa tgc aat cgc tt<br>Gln Gln Cys Asn Arg Le<br>555<br>41 | tg ggg 1680<br>eu Gly<br>560 |

|             |          |  | PCT/US99/18750 |
|-------------|----------|--|----------------|
| WA 00/00760 | <b>V</b> |  | 101/05/        |

| act<br>Thr        | aca<br>Thr         | gaa<br>Glu         | att<br>Ile                       | tta<br>Leu<br>565 | aag (<br>Lys (       | cag (<br>Gln '       | gtt<br>Val           | Leu                   | ttg<br>Leu<br>570         | gat<br>Asp         | gaa<br>Glu         | cac<br>His           | aaa<br>Lys        | gat<br>Asp<br>575    | act<br>Thr            | 1728 |
|-------------------|--------------------|--------------------|----------------------------------|-------------------|----------------------|----------------------|----------------------|-----------------------|---------------------------|--------------------|--------------------|----------------------|-------------------|----------------------|-----------------------|------|
| ttg<br>Leu        | aaa<br>Lys         | gac<br>Asp         | caa<br>Gln<br>580                | gaa<br>Glu        | agt<br>Ser (         | tgt<br>Cys           | gta<br>Val           | aaa<br>Lys<br>585     | tac<br>Tyr                | cta<br>Leu         | aaa<br>Lys         | gaa<br>Glu           | aag<br>Lys<br>590 | tgt<br>Cys           | aat<br>Asn            | 1776 |
| aaa<br>Lys        | tgg<br>Trp         | tct<br>Ser<br>595  | aga<br>Arg                       | aga<br>Arg        | gga<br>Gly           | gat<br>Asp           | gac<br>Asp<br>600    | cgt<br>Arg            | ttc<br>Phe                | tct<br>Ser         | ttt<br>Phe         | gta<br>Val<br>605    | tgt<br>Cys        | gtc<br>Val           | ttc<br>Phe            | 1824 |
| caa<br>Gln        | aac<br>Asn<br>610  | gct<br>Ala         | acg<br>Thr                       | tgt<br>Cys        | gag<br>Glu           | ctg<br>Leu<br>615    | atg<br>Met           | gta<br>Val            | aaa<br>Lys                | gac<br>Asp         | gtg<br>Val<br>620  | aaa<br>Lys           | gac<br>Asp        | agg<br>Arg           | tgt<br>Cys            | 1872 |
| gaa<br>Glu<br>625 | gta<br>Val         | ttc<br>Phe         | aaa<br>Lys                       | aaa<br>Lys        | aat<br>Asn<br>630    | ata<br>Ile           | aaa<br>Lys           | gct<br>Ala            | tca<br>Ser                | tat<br>Tyr<br>635  | att<br>Ile         | att<br>Ile           | gaa<br>Glu        | ttt<br>Phe           | ctt<br>Leu<br>640     | 1920 |
| gaa<br>Glu        | aat<br>Asn         | aat<br>Asn         | aca<br>Thr                       | aat<br>Asn<br>645 | aaa<br>Lys           | ata<br>Ile           | aca<br>Thr           | aca<br>Thr            | ctg<br>Leu<br>650         | gaa<br>Glu         | aga<br>Arg         | aat<br>Asn           | tgt<br>Cys        | ccc<br>Pro<br>655    | tct<br>Ser            | 1968 |
| tgg<br>Trp        | cat<br>His         | acg<br>Thr         | tat<br>Tyr<br>660                | Cys               | aat<br>Asn           | aga<br>Arg           | ttt<br>Phe           | tca<br>Ser<br>665     | cct<br>Pro                | aat<br>Asn         | tgt<br>Cys         | cca<br>Pro           | ggt<br>Gly<br>670 | neu                  | acg<br>Thr            | 2016 |
| aaa<br>Lys        | gag<br>Glu         | aat<br>Asr<br>675  | Ser                              | tgt<br>Cys        | aca<br>Thr           | aaa<br>Lys           | atc<br>Ile<br>680    | Lys                   | aag<br>Lys                | cat<br>His         | tgt<br>Cys         | gag<br>Glu<br>685    | FIC               | ttc<br>Phe           | tat<br>Tyr            | 2064 |
| aaa<br>Lys        | aga<br>Arg         | Lys                | g gcc<br>s Ala                   | ttg<br>Leu        | gaa<br>Glu           | gat<br>Asp<br>695    | Ala                  | ctc<br>Leu            | aaa<br>Lys                | gta<br>Val         | gag<br>Glu<br>700  | 1 reu                | caa<br>Gln        | gga<br>Gly           | aaa<br>Lys            | 2112 |
| tto<br>Lei<br>705 | Thi                | gat<br>Asp         | aaa<br>Lys                       | tct<br>Ser        | aaa<br>Lys<br>710    | Cys                  | gaa<br>Glu           | cct<br>Pro            | gca<br>Ala                | Lei<br>715         | л гАз              | a aga<br>s Arç       | tat<br>Tyr        | tgt<br>Cys           | aca<br>Thr<br>720     | 2160 |
| gta<br>Val        | a gcç<br>L Ala     | g gg<br>a Gl       | a aac<br>y Ası                   | gta<br>Val<br>725 | . Asn                | aat<br>Asn           | gcg<br>Ala           | g tca<br>Ser          | 1 ato<br>11e<br>730       | s Se               | ggo<br>Gl          | c tta<br>y Leu       | tgo<br>LCy:       | 2 aaa<br>5 Lys<br>73 | a gct<br>s Ala<br>5   | 2208 |
| aa<br>Asi         | c ace              | c aa<br>r Ly       | g gat<br>s As <sub>l</sub><br>74 | o Asr             | tct<br>Ser           | gga<br>Gly           | a aaq<br>/ Lys       | g agt<br>s Sei<br>745 | AS                        | ga<br>Gl           | g ga<br>u As       | t gct<br>p Ala       | a Are             | a ra.                | g gaa<br>s Glu        | 2256 |
| ct<br>Le          | c tg<br>u Cy       | t ga<br>s Gl<br>75 | u Ly                             | a tta<br>s Lei    | a gtç<br>ı Val       | g aaa<br>L Lys       | a gaa<br>s Gli<br>76 | u Va.                 | g gaa<br>l Gli            | a ga<br>u Gl       | a ca<br>u Gl       | g tgo<br>n Cy:<br>76 | г гу              | a gc<br>s Al         | a tta<br>a Leu        | 2304 |
| cc<br>Pr          | a ac<br>o Th<br>77 | r Gl               | a tt<br>u Le                     | a gga<br>u Gl     | a caa<br>y Glr       | a cco<br>n Pro<br>77 | o Al                 | a gc                  | t ga <sup>.</sup><br>a As | t tt<br>p Le       | a aa<br>u Ly<br>78 | г гу                 | a ga<br>s As      | t ta<br>p Ty         | t aag<br>r Lys        | 2352 |
| ac<br>Th<br>78    | r Ty               | it ga<br>vr Gl     | ıg ga<br>.u Gl                   | a ct<br>u Le      | t aad<br>u Ly:<br>79 | s Ly                 | a cg<br>s Ar         | t gc<br>g Al          | a ga<br>a Gl              | g ga<br>u Gl<br>79 | u Al               | a at<br>a Me         | g aa<br>t As      | c aa<br>n Ly         | g tcc<br>s Ser<br>800 | 2400 |

| v                 | VO 00                    | )/0976             | 50                 | 1                    |                   |                     |                     |                    |                      |                       |                   |                      |                    |                      | PC7                 | r/US99/18750 |
|-------------------|--------------------------|--------------------|--------------------|----------------------|-------------------|---------------------|---------------------|--------------------|----------------------|-----------------------|-------------------|----------------------|--------------------|----------------------|---------------------|--------------|
| agt<br>Ser        | ctt<br>Leu               | gtt<br>Val         | ttg<br>Leu         | tca<br>Ser<br>805    | ctc<br>Leu        | att<br>Ile          | aag<br>Lys          | aaa<br>Lys         | aac<br>Asn<br>810    | gaa<br>Glu            | agt<br>Ser        | aat<br>Asn           | gta<br>Val         | tca<br>Ser<br>815    | aaa<br>Lys          | 2448         |
| agt<br>Ser        | aat<br>Asn               | agc<br>Ser         | aaa<br>Lys<br>820  | aac<br>Asn           | aag<br>Lys        | gat<br>Asp          | aag<br>Lys          | aat<br>Asn<br>825  | gcc<br>Ala           | gtt<br>Val            | tca<br>Ser        | aac<br>Asn           | gga<br>Gly<br>830  | ctt<br>Leu           | caa<br>Gln          | 2496         |
| gat<br>Asp        | acc<br>Thr               | aca<br>Thr<br>835  | aaa<br>Lys         | cat<br>His           | gtg<br>Val        | aaa<br>Lys          | ata<br>Ile<br>840   | cta<br>Leu         | cgg<br>Arg           | aga<br>Arg            | gga<br>Gly        | gtt<br>Val<br>845    | aag<br>Lys         | gat<br>Asp           | gta<br>Val          | 2544         |
| tcc<br>Ser        | gta<br>Val<br>850        | aca<br>Thr         | gaa<br>Glu         | tta<br>Leu           | gaa<br>Glu        | gct<br>Ala<br>855   | aaa<br>Lys          | gca<br>Ala         | ttt<br>Phe           | gat<br>Asp            | ttg<br>Leu<br>860 | gca<br>Ala           | gca<br>Ala         | gaa<br>Glu           | gta<br>Val          | 2592         |
| ttt<br>Phe<br>865 | gga<br>Gly               | aga<br>Arg         | tat<br>Tyr         | gta<br>Val           | gat<br>Asp<br>870 | ttg<br>Leu          | aag<br>Lys          | gaa<br>Glu         | aga<br>Arg           | tgt<br>Cys<br>875     | aat<br>Asn        | aaa<br>Lys           | ttg<br>Leu         | gaa<br>Glu           | tca<br>Ser<br>880   | 2640         |
| gat<br>Asp        | tgc<br>Cys               | aga<br>Arg         | att<br>Ile         | aag<br>Lys<br>885    | gag<br>Glu        | gat<br>Asp          | tgc<br>Cys          | aaa<br>Lys         | gac<br>Asp<br>890    | Leu                   | gaa<br>Glu        | gaa<br>Glu           | gta<br>Val         | tgc<br>Cys<br>895    | aaa<br>Lys          | 2688         |
| aag<br>Lys        | att<br>Ile               | aat<br>Asn         | aag<br>Lys<br>900  | Ala                  | tgt<br>Cys        | cgc<br>Arg          | aat<br>Asn          | ctg<br>Leu<br>905  | гh                   | cct<br>Pro            | cto<br>Lev        | g gag<br>1 Glu       | gtg<br>Val<br>910  | цуз                  | ccg<br>Pro          | 2736         |
| cac<br>His        | gaa<br>Glu               | aca<br>Thr<br>915  | : Val              | aca<br>Thr           | gaa<br>Glu        | agt<br>Ser          | aca<br>Thr<br>920   | Thi                | aca<br>Thr           | act<br>Thr            | aca<br>Thi        | a aca<br>Thr<br>925  | . 1111             | aca<br>Thr           | aca<br>Thr          | 2784         |
| acc<br>Thr        | gtt<br>Val               | Ala                | e gat<br>a Asp     | ccg<br>Pro           | aag<br>Lys        | gca<br>Ala<br>935   | Thr                 | g gaa<br>Glu       | tgo<br>LCys          | aaa<br>Lys            | Se:               | r ne                 | a caq<br>1 Glr     | g aca                | aca<br>Thr          | 2832         |
| gac<br>Asp<br>945 | Th                       | a tgo              | g gt:<br>p Va.     | t aca                | caç<br>Glr<br>950 | Thi                 | tco<br>Sei          | g aca              | a cad                | c aca<br>s Thi<br>95! | . <i>.</i>        | c acc                | g tot<br>r Sei     | act<br>Thi           | atc<br>Ile<br>960   | 2880         |
| aca<br>Thr        | tc<br>Se                 | t ac<br>r Th       | c at               | c aca<br>e Thi<br>96 | r Se              | a aaa<br>c Lys      | a ata               | a ac<br>e Th       | a tte<br>r Lei<br>97 | u Thi                 | a tc<br>r Se      | a ac<br>r Th         | g age              | g cga<br>g Ara<br>97 | a tgc<br>g Cys<br>5 | 2928         |
| aaa<br>Lys        | a cc<br>s Pr             | a ac<br>o Th       | c aa<br>r Ly<br>98 | s Cy                 | t ac              | g ac                | a gg<br>r Gl        | g ga<br>y As<br>98 | p As                 | t gc<br>p Al          | a ga<br>a Gl      | a ga<br>u As         | c gt<br>p Va<br>99 | т п                  | g cca<br>s Pro      | 2976         |
| agt<br>Se:        | t ga<br>r Gl             | a gg<br>u Gl<br>99 | y Le               | g ag<br>u Ar         | g gt<br>g Va      | g ag<br>1 Se        | c gg<br>r Gl<br>100 | A LI               | g aa<br>p As         | t gt<br>n Va          | g at<br>l Me      | g ag<br>et Ar<br>100 | g GI               | g gt<br>y Va         | g ata<br>l Ile      | 3024         |
| gt<br>Va          | a go<br>1 Al<br>101      | a Me               | g gt<br>et Va      | t at                 | t to<br>e Se      | g tt<br>r Ph<br>101 | e Me                | g at<br>t Il       | t ta<br>Le           | g                     |                   |                      |                    |                      |                     | 3054         |
| <2                | 10><br>11><br>12><br>13> | 101'               |                    | ystis                | cai               | inii                | . sp.               | . £.               | homi                 | inis<br>43            |                   |                      |                    |                      |                     |              |



| <400<br>Ala | > 1<br>Arg | 2<br>A | la       | Val        | Lys        | : A:     | rg (       | Gln        | Va.     | 1 1 | hr         | Gly<br>10  | Al        | a S      | Ser        | Gly        | Gln        | T         | yr <i>P</i><br>15 | Asp          |
|-------------|------------|--------|----------|------------|------------|----------|------------|------------|---------|-----|------------|------------|-----------|----------|------------|------------|------------|-----------|-------------------|--------------|
| Asp         | Glu        | V      | al       | Asn<br>20  | Ile        | e L      | eu         | Ala        | Le      | u I | le<br>25   | Leu        | Gl        | n (      | Slu        | Asp        | Ala<br>30  | M         | et (              | Glu          |
| Asp         | Thr        | · L    | ys<br>35 | Cys        | Lys        | s L      | ys         | Ser        | Le<br>4 | u ( | Glu        | Lys        | Ту        | r (      | Cys        | Glu<br>45  | Glu        | ı L       | eu l              | Lys          |
| Lys         | Ala<br>50  |        | er       | Leu        | Ası        | р M      | let        | Glu<br>55  | Ly      | s ¹ | Val        | His        | Lλ        | /s l     | Met<br>60  | Leu        | Lys        | s A       | sp                | Phe          |
| Cys<br>65   | Gly        | , P    | Asn      | Gly        | Ly         | s Æ      | 1a<br>70   | Ser        | L       | /S  | Ala        | Asn        | Th        | nr<br>75 | Lys        | Cys        | Gli        | n G       | lу                | Leu<br>80    |
| Gln         | Ala        | a I    | Lys      | Val        | Th<br>8    | r (      | Sly        | Lys        | C?      | /S  | Thr        | Asn<br>90  | . P)      | ne       | Lys        | Thr        | Gl         | n I       | ys<br>95          | Leu          |
| Gly         | Pr         | o 1    | Ala      | Leu<br>100 |            | r A      | Asn        | Pro        | Se      | er  | Asp<br>105 | Asp        | ) A       | sn       | Cys        | Lys        | Gl<br>11   | u 5<br>0  | Ser               | Glu          |
|             |            |        | 115      |            |            |          |            |            | 1.      | 20  |            |            |           |          | Asn        | 12.        | •          |           |                   |              |
| Cys         | As<br>13   |        | Lys      | Let        | ı Ar       | g .      | Asn        | Let<br>135 | ı C     | ys  | Tyr        | Gl         | n L       | ys       | Lys<br>140 | Arg        | g As       | p (       | Gly               | Val          |
| 145         |            |        |          |            |            |          | 150        |            |         |     |            |            | 1         | .55      |            |            |            |           |                   | Thr<br>160   |
|             |            |        |          |            | 10         | 65       |            |            |         |     |            | 1,         | U         |          |            |            |            |           |                   | Arg          |
|             |            |        |          | 18         | 0          |          |            |            |         |     | 182        | •          |           |          |            |            | -          |           |                   | Cys          |
|             |            |        | 19       | 5          |            |          |            |            | 4       | 200 |            |            |           |          |            | 20         | _          |           |                   | Ala          |
|             | 2          | 10     |          |            |            |          |            | 21         | .5      |     |            |            |           |          | 22         | •          |            |           |                   | Glu          |
| 22.         | 5          |        |          |            |            |          | 231        | U          |         | •   |            |            |           | 2,00     |            |            |            |           |                   | 240          |
| 11          | e I        | le     | Ly       | s C        | ys I<br>2  | le<br>45 | Gl         | u Le       | eu 1    | G17 | 7 Gl       | y Ly<br>2! | ys<br>50  | Cys      | Gl:        | n Gl       | Lu G       | ln        | Asr<br>255        | lle          |
| ۷a          | 1 T        | yr     | Il       | e P        | ro I<br>60 | Pro      | Gl         | y Pi       | 0.0     | Asp | Ph<br>26   | е А:<br>5  | sp        | Pro      | Th         | r Ai       | rg F<br>2  | ro<br>170 | Glı               | ı Ala        |
| Th          | r L        | eu     | Al<br>27 |            | lu /       | Asp      | Il         | e A        | sp      | Le: | ı As       | рG         | lu        | Le       | ту ту      | r Ly<br>21 | ys I<br>85 | .ys       | Ala               | a Glu        |
|             | 2          | 290    | )        |            |            |          |            | 2          | 95      |     |            |            |           |          | 50         | , 0        |            |           |                   | r Ala        |
| Le<br>30    |            | Let    | ı Ti     | nr L       | eu         | Lev      | 1 Va<br>31 | 11 L       | ys      | Ly  | s As       | sp A       | .sp<br>44 | Th<br>31 | r G1<br>5  | y L        | ys i       | Asr       | n As              | n Asn<br>320 |

| Ile        | Gly        | Glu        | Lys        | Cys<br>325 | Asn        | Lys        | Ile        | Leu        | Glu<br>330 | Asp         | Lys        | Cys        | Lys        | Asn<br>335 | Ser          |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|--------------|
| Gln        | Gln        | His        | Glu<br>340 | Ala        | Leu        | Lys        | Asn        | Leu<br>345 | Cys        | Asn         | Asn        | Asn        | Ser<br>350 | Pro        | Asn          |
| Ala        | Tyr        | Gly<br>355 | Lys        | Glu        | Lys        | Cys        | Lys<br>360 | Glu        | Leu        | Glu         | Glu        | Asp<br>365 | Ile        | Lys        | Lys          |
| Thr        | Cys<br>370 | Thr        | Asn        | Leu        | Lys        | Pro<br>375 | Thr        | Ile        | Leu        | Lys         | Asn<br>380 | His        | Leu        | Tyr        | Asp          |
| Pro<br>385 | Asn        | Asp        | Lys        | Ile        | Val<br>390 | Glu        | Trp        | Arg        | Lys        | Leu<br>395  | Pro        | Thr        | Phe        | Leu        | Thr<br>400   |
| Asn        | Glu        | Asp        | Cys        | Ala<br>405 | Arg        | Leu        | Glu        | Ser        | Tyr<br>410 | Cys         | Phe        | Tyr        | Tyr        | Glu<br>415 | Lys          |
| Ala        | Cys        | Pro        | Asn<br>420 | Ala        | Lys        | Glu        | Glu        | Cys<br>425 | Met        | Asn         | Leu        | Arg        | Ala<br>430 | Ala        | Суѕ          |
| Tyr        | Lys        | Arg<br>435 |            | Leu        | Asp        | Gly        | Arg<br>440 | Ala        | Asn        | Lys         | Val        | Leu<br>445 | Gln        | Glu        | Asn          |
| Met        | Arg<br>450 |            | Leu        | Leu        | Arg        | Gly<br>455 | Ser        | Asn        | Gln        | Ser         | Trp<br>460 | Leu        | Lys        | Glu        | Phe          |
| Gln<br>465 |            | Arg        | Leu        | Val        | Lys<br>470 | Val        | Cys        | Lys        | Glu        | 475         | Lys        | Glu        | Asn        | Lys        | Gly<br>480   |
| Ser        | Phe        | Pro        | Asn        | Asp<br>485 | Glu        | Ile        | Phe        | Val        | Leu<br>490 | ı Cys       | : Val      | Gln        | Pro        | Ala<br>495 | Lys          |
| Ala        | a Ala      | a Arg      | 500        |            | Thr        | His        | Asp        | His<br>505 | Glr        | n Met       | : Arg      | , Val      | Il∈<br>510 | Phe        | e Leu        |
|            | _          | 515        | 5          |            |            |            | 520        | )          |            |             |            | 525        | •          |            | Cys          |
| _          | 530        | )          |            |            |            | 535        | 5          |            |            |             | 540        | J          |            |            | s Glu        |
| 54.        | 5          |            |            |            | 550        | )          |            |            |            | 33          | <b>.</b>   |            |            |            | 560          |
|            |            |            |            | 56         | 5          |            |            |            | 57         | U           |            |            |            | 31         |              |
|            |            |            | 58         | 0          |            |            |            | 583        | 5          |             |            |            | 33         | o          | s Asn        |
| _          |            | 59         | 5          |            |            |            | 60         | 0          |            |             |            | 60         | 5          |            | l Phe        |
| G1         | n As<br>61 |            | a Th       | r Cy       | s Gl       | u Le<br>61 | u Me<br>5  | t Va       | l Ly       | s As        | p Va<br>62 | 1 Ly<br>0  | s As       | p Ar       | g Cys        |
| G1<br>62   |            | l Ph       | e Ly       | s Ly       | s As<br>63 |            | e Ly       | s Al       | a Se       | er Ty<br>63 | r Il<br>35 | e Il       | e Gl       | u Ph       | e Leu<br>640 |

PCT/US99/18750

Glu Asn Asn Thr Asn Lys Ile Thr Thr Leu Glu Arg Asn Cys Pro Ser Trp His Thr Tyr Cys Asn Arg Phe Ser Pro Asn Cys Pro Gly Leu Thr Lys Glu Asn Ser Cys Thr Lys Ile Lys Lys His Cys Glu Pro Phe Tyr 680 Lys Arg Lys Ala Leu Glu Asp Ala Leu Lys Val Glu Leu Gln Gly Lys Leu Thr Asp Lys Ser Lys Cys Glu Pro Ala Leu Lys Arg Tyr Cys Thr Val Ala Gly Asn Val Asn Asn Ala Ser Ile Ser Gly Leu Cys Lys Ala Asn Thr Lys Asp Asn Ser Gly Lys Ser Asp Glu Asp Ala Arg Lys Glu Leu Cys Glu Lys Leu Val Lys Glu Val Glu Glu Gln Cys Lys Ala Leu Pro Thr Glu Leu Gly Gln Pro Ala Ala Asp Leu Lys Lys Asp Tyr Lys Thr Tyr Glu Glu Leu Lys Lys Arg Ala Glu Glu Ala Met Asn Lys Ser Ser Leu Val Leu Ser Leu Ile Lys Lys Asn Glu Ser Asn Val Ser Lys Ser Asn Ser Lys Asn Lys Asp Lys Asn Ala Val Ser Asn Gly Leu Gln 825 Asp Thr Thr Lys His Val Lys Ile Leu Arg Arg Gly Val Lys Asp Val 835 Ser Val Thr Glu Leu Glu Ala Lys Ala Phe Asp Leu Ala Ala Glu Val 855 Phe Gly Arg Tyr Val Asp Leu Lys Glu Arg Cys Asn Lys Leu Glu Ser Asp Cys Arg Ile Lys Glu Asp Cys Lys Asp Leu Glu Glu Val Cys Lys 890 Lys Ile Asn Lys Ala Cys Arg Asn Leu Lys Pro Leu Glu Val Lys Pro 905 His Glu Thr Val Thr Glu Ser Thr Thr Thr Thr Thr Thr Thr Thr Thr 920 Thr Val Ala Asp Pro Lys Ala Thr Glu Cys Lys Ser Leu Gln Thr Thr 935 Asp Thr Trp Val Thr Gln Thr Ser Thr His Thr Ser Thr Ser Thr Ile 955 950

Thr Ser Thr Ile Thr Ser Lys Ile Thr Leu Thr Ser Thr Arg Arg Cys

970

965

975

Lys Pro Thr Lys Cys Thr Thr Gly Asp Asp Ala Glu Asp Val Lys Pro

Ser Glu Gly Leu Arg Val Ser Gly Trp Asn Val Met Arg Gly Val Ile 1000

Val Ala Met Val Ile Ser Phe Met Ile

<210> 13

<211> 3072

<212> DNA

<213> Pneumocystis carinii sp. f. hominis

<220>

<221> CDS

<222> (1)..(3072)

<400> 13

atg gcg cgg gcg gtc aag cgg cag gca gcg gcg aca cag aat agc att Met Ala Arg Ala Val Lys Arg Gln Ala Ala Gly Thr Gln Asn Ser Ile

gat gag gaa cat gtt tta gct tta att cta aag gaa gat gga cta agt 96 Asp Glu Glu His Val Leu Ala Leu Ile Leu Lys Glu Asp Gly Leu Ser

gag cag gaa tgc aaa aaa aaa cta aaa aaa tat tgc caa gaa ttg act 144 Glu Gln Glu Cys Lys Lys Leu Lys Lys Tyr Cys Gln Glu Leu Thr

gaa gca aaa cta aat ata gaa caa gta cac aga aaa ctt aaa ggt ttt 192 Glu Ala Lys Leu Asn Ile Glu Gln Val His Arg Lys Leu Lys Gly Phe

tgc gaa gat gga aaa gca gat aca aaa tgc aaa gaa ctg aaa gcc aat 240 Cys Glu Asp Gly Lys Ala Asp Thr Lys Cys Lys Glu Leu Lys Ala Asn

att gag aaa aaa tgt act aca atc aaa gga aaa ctt aaa gaa gca att 288 Ile Glu Lys Lys Cys Thr Thr Ile Lys Gly Lys Leu Lys Glu Ala Ile 90

aaa aaa aat cag att ata acg gat aag gat tgc aaa gag aat gaa Lys Lys Lys Ile Gln Ile Ile Thr Asp Lys Asp Cys Lys Glu Asn Glu 105

caa caa tgc cta ttt ttg gag gga gta tgt tca aaa gaa ctt aaa gat Gln Gln Cys Leu Phe Leu Glu Gly Val Cys Ser Lys Glu Leu Lys Asp 120

gat tgc aat act ttg aga aat aag tgc tat caa aag aaa cgt gat aaa Asp Cys Asn Thr Leu Arg Asn Lys Cys Tyr Gln Lys Lys Arg Asp Lys 135

gtt gcg gaa gaa gtt ctt tta aga gca ctt cgt agc gat ctt aat gga 480 Val Ala Glu Glu Val Leu Leu Arg Ala Leu Arg Ser Asp Leu Asn Gly 155 150 145 47

| tca gt                |                              | . + 4 +               | gaa                   | aaa                  | aaa                 | ctt                | aaa                 | gag                | att                | tgc                   | cct                          | gtc                 | atg                   | ggg                      | 528  |
|-----------------------|------------------------------|-----------------------|-----------------------|----------------------|---------------------|--------------------|---------------------|--------------------|--------------------|-----------------------|------------------------------|---------------------|-----------------------|--------------------------|------|
| Ser Va                | 1 Ile                        | e Cys                 | Glu<br>165            | Lys                  | Lys                 | Leu                | гуэ                 | 170                | 110                | 0,10                  |                              |                     | 175                   |                          |      |
| agg ga<br>Arg Gl      | aa ag<br>Lu Se               | t gat<br>r Asp<br>180 | gag<br>Glu            | tta<br>Leu           | aca<br>Thr          | aac<br>Asn         | ttg<br>Leu<br>185   | tgt<br>Cys         | ctg<br>Leu         | aac<br>Asn            | cag<br>Gln                   | aaa<br>Lys<br>190   | gag<br>Glu            | aca<br>Thr               | 576  |
| tgt aa<br>Cys Ly      | ag aa<br>ys As<br>19         | n Ile                 | tta<br>Leu            | att<br>Ile           | gaa<br>Glu          | aaa<br>Lys<br>200  | gat<br>Asp          | aag<br>Lys         | aag<br>Lys         | tgc<br>Cys            | ggt<br>Gly<br>205            |                     | ctt<br>Leu            | aaa<br>Lys               | 624  |
| aca ga<br>Thr A       | at gt<br>sp Va<br>10         | t tca<br>1 Ser        | gca<br>Ala            | gca<br>Ala           | cta<br>Leu<br>215   | gga<br>Gly         | agt<br>Ser          | ttt<br>Phe         | aaa<br>Lys         | a aaa<br>s Lys<br>220 |                              | aca<br>Thr          | tgt<br>Cys            | ctt<br>Leu               | 672  |
| gaa t<br>Glu L<br>225 | ta ct<br>eu Le               | c gaa<br>eu Glu       | caa<br>Glr            | tgc<br>Cys<br>230    | Tyr                 | ttt<br>Phe         | tac<br>Tyr          | att                | gga<br>Gl:<br>23   | y                     | t tgo<br>n Cys               | e gga<br>s Gly      | gac<br>Asp            | gac<br>Asp<br>240        | 720  |
| gat a<br>Asp I        | ita a'<br>[le I              | tt aaa<br>le Ly:      | a tgt<br>s Cys<br>24! | s TTE                | gaa<br>Glu          | tto<br>Lei         | g gga<br>ı Gly      | gg<br>Gl:<br>25    | y 1                | a tg<br>s Cy          | c caa                        | a gaa<br>n Glu      | a·caa<br>ı Glr<br>255 | aat<br>Asn               | 768  |
| att 9<br>Ile F        | gct t<br>Ala T               | at at<br>yr Me<br>26  | t Pr                  | a cca<br>o Pro       | a gga<br>o Gly      | cc<br>Pr           | c ga<br>o As<br>26  | 5                  | t ga<br>e As       | t cc<br>p Pr          | a ac<br>o Th                 | t ag<br>r Ar<br>27  | g cca<br>g Pro<br>O   | gag<br>Glu               | 816  |
| gct a                 | Thr I                        | ta gc<br>le Al<br>75  | a ga<br>a Gl          | g gat<br>u Asj       | t ata<br>o Ile      | gg<br>e Gl<br>28   | у                   | g ga<br>u Gl       | a ga<br>u Gl       | ig tt<br>.u Ph        | t ta<br>ne Ty<br>28          | _                   | g aa<br>s Ly          | g gta<br>s Val           | 864  |
| Glu                   | gag 9<br>Glu <i>l</i><br>290 | gat gg<br>Asp Gl      | a gt<br>y Va          | t tt<br>il Ph        | t at<br>e Il<br>29  | e GI               | a aa<br>.y Ly       | g aa<br>'s As      | it ca<br>sn H:     |                       | ta ag<br>eu Ar<br>00         | ga ga<br>:g As      | t gc                  | g aca<br>a Thr           | 912  |
| gct<br>Ala<br>305     | ttg !<br>Leu !               | tg go<br>Leu Al       | a tt<br>la Le         | g tt<br>eu Le<br>31  | ים דד               | c ca<br>e Gl       | aa ga<br>Ln As      | at to<br>sp So     |                    | gt c<br>er L<br>15    | tt aa<br>eu Ly               | aa aa<br>ys Ly      | aa aa<br>/s L}        | a gac<br>vs Asp<br>320   | 960  |
| gac<br>Asp            | aaa<br>Lys                   | gag aa<br>Glu L       | ys C                  | gc ga<br>ys Gl<br>25 | a ga<br>.u Gl       | a go<br>.u A       | cc ci<br>la L       | eu G               | aa a<br>ln L<br>30 | aa a<br>ys S          | gc to<br>er C                | gc a<br>ys L        | aa aa<br>ys As<br>3:  | at cct<br>sn Pro<br>35   | 1008 |
| cat<br>His            | gaa<br>Glu                   | His G                 | ag g<br>lu A<br>40    | ct ti<br>la Le       | ta ga<br>eu Gl      | aa a<br>Lu S       | er n                | ta t<br>eu C<br>45 | gt a<br>ys I       | ag a<br>ys I          | aa a<br>.ys A                | at g<br>sn G<br>3   | gt t<br>ly L<br>50    | ta agt<br>eu Ser         | 1056 |
| aat<br>Asn            | gat<br>Asp                   | gga a<br>Gly T<br>355 | cg a                  | aa a<br>ys L         | aa t<br>ys C        | ys G               | aa g<br>lu G<br>160 | aa t<br>lu I       | tg d<br>eu (       | aa a<br>Gln <i>l</i>  |                              | at a<br>sp I<br>165 | tt a<br>le A          | ac aaa<br>sn Lys         | 1104 |
| act<br>Thr            | tgc<br>Cys<br>370            | aaa a<br>Lys 1        | itt t<br>le E         | tc a<br>he T         | hr S                | ca a<br>er I<br>75 | aa q<br>Lys \       | tc a<br>/al :      | act a<br>Thr       |                       | aat o<br>Asn <i>I</i><br>380 | egt o               | tt t<br>.eu F         | tt gat<br>he Asp         | 1152 |
| cca<br>Pro<br>385     | Thr                          | aaa (                 | gga a<br>Gly i        | Asn P                | at g<br>sn G<br>390 | aa a               | att (<br>Ile '      | gtt (<br>Val (     | GTĀ                | tgg<br>Trp<br>395     | gaa (<br>Glu (               | ggg 1               | tg d<br>Leu I         | ca aca<br>Pro Thi<br>400 | 1200 |

| WO 00/09760                               |                                       |                                              |                                                   | PCT/US99/1875       |
|-------------------------------------------|---------------------------------------|----------------------------------------------|---------------------------------------------------|---------------------|
| Phe Leu Ser Asn                           | gaa gat tgt g<br>Glu Asp Cys A<br>405 | gcg aaa ttg g<br>Ala Lys Leu G<br>410        | ag too tat tgt tto<br>lu Ser Tyr Cys Phe<br>415   | tat 1248<br>Tyr     |
| ttt gaa aaa aaa<br>Phe Glu Lys Lys<br>420 | tgt cca gat o<br>Cys Pro Asp (        | gga gaa aat g<br>Gly Glu Asn A<br>425        | ca tgt aaa aat ata<br>la Cys Lys Asn Ile<br>430   | aga 1296<br>Arg     |
| gca aca tgt tac<br>Ala Thr Cys Tyr<br>435 | Lys Arg Gly                           | ctt gat gca c<br>Leu Asp Ala <i>P</i><br>440 | gg gca aat aaa gtg<br>Arg Ala Asn Lys Val<br>445  | ctg 1344<br>Leu     |
| caa gaa aat atg<br>Gln Glu Asn Met<br>450 | cga gga atg<br>Arg Gly Met<br>455     | tta cat ggt t<br>Leu His Gly S               | ca aac aaa agc tgg<br>Ger Asn Lys Ser Trp<br>460  | ctt 1392<br>Leu     |
| Glu Lys Phe Gln<br>465                    | Gln Glu Leu<br>470                    | val Lys val (                                | igt gag aaa ctg aaa<br>Cys Glu Lys Leu Lys<br>475 | 480                 |
| Glu Asn Lys Gly                           | Ser Phe Ser<br>485                    | Ash Asp Glu 490                              | tta ttt att ctg tgt<br>Leu Phe Ile Leu Cys<br>495 | 5                   |
| cag cca gca aaa<br>Gln Pro Ala Lys<br>500 | Ala Ala Arg                           | ttg ctt aca<br>Leu Leu Thr<br>505            | cat gat ctt cga ato<br>His Asp Leu Arg Met<br>510 | g aaa 1536<br>t Lys |
| Thr Ile Phe Leu<br>515                    | Arg Gin Gin                           | 520                                          | aag cga gat ttc cc<br>Lys Arg Asp Phe Pro<br>525  | •                   |
| gat aaa aat tgo<br>Asp Lys Asn Cys<br>530 | aag gaa ttg<br>Lys Glu Leu<br>535     | ggg aga aag<br>Gly Arg Lys                   | tgc caa gat tta gg<br>Cys Gln Asp Leu Gl<br>540   | a gag 1632<br>y Glu |
| Asp Ser Lys Glu<br>545                    | lle Thr Trp<br>550                    | Pro Cys HIS                                  | aca ctg gag cag ca<br>Thr Leu Glu Gln Gl<br>555   | 560                 |
| Asn Arg Leu Gl                            | y Thr Thr Glu<br>565                  | 570                                          | cag gtt tta ttg ga<br>Gln Val Leu Leu As<br>57    | 75                  |
| His Lys Asp Th<br>58                      | r Leu Lys Asp<br>O                    | 585                                          | tgt gta aaa tac ct<br>Cys Val Lys Tyr Le<br>590   |                     |
| Glu Lys Cys As<br>595                     | n Lys Trp Sei                         | 600                                          | gat gac cgt ttc to<br>Asp Asp Arg Phe Se<br>605   |                     |
| Val Cys Val Ph<br>610                     | ne Gln Asn Ala<br>61!                 | a Thr Cys Giu                                | ctg atg gta aaa g<br>Leu Met Val Lys A<br>620     | <b>5p</b>           |
| Lys Asp Arg C)<br>625                     | ys Glu Val Ph<br>630                  | e Lys Lys Asi                                | : ata aaa gct tca t<br>n Ile Lys Ala Ser T<br>635 | 640                 |
| att gaa ttt c                             | tt gaa aat aa                         | t aca aat aaa<br>49                          | a ata aca aca ctg g<br>9                          | aa aga 1968         |

| WO 00/09760 |  |  |  | PCT/US99/18750 |
|-------------|--|--|--|----------------|
|-------------|--|--|--|----------------|

| WO 00/03                        | 700 1                         |                              |                           |                        |                           |                             |                         |                       |                   |      |
|---------------------------------|-------------------------------|------------------------------|---------------------------|------------------------|---------------------------|-----------------------------|-------------------------|-----------------------|-------------------|------|
| Ile Glu Phe                     | e Leu Gl                      |                              | n Thr A                   | Asn Ly<br>65           | s Ile                     | Thr Thr                     | Leu                     | Glu A<br>655          | rg                |      |
| aat tgt ccc<br>Asn Cys Pro      | c tct tg<br>Ser Tr<br>660     | g cat ac<br>p His Th         | r Tyr C                   | gc aa<br>Cys As<br>665 | at aga<br>sn Arg          | ttt tca<br>Phe Ser          | Pro<br>670              | aat t<br>Asn C        | gt<br>ys          | 2016 |
| cca ggt ct<br>Pro Gly Le<br>67  | u Thr Ly                      | a gag aa<br>s Glu As         | t agt t<br>n Ser (<br>680 | tgt ac<br>Cys Tì       | ca aaa<br>hr Lys          | atc aad<br>Ile Lys<br>685   | 2 rå2                   | cat c<br>His A        | gt<br>rg          | 2064 |
| gag ccg tt<br>Glu Pro Ph<br>690 | c tat aa<br>e Tyr Ly          | a aga aa<br>s Arg Ly<br>69   | s Ala                     | ttg ga<br>Leu G        | aa gat<br>lu Asp          | gct cto<br>Ala Leo<br>700   | c aaa<br>1 Lys          | gta g<br>Val G        | gag<br>Slu        | 2112 |
| ctt caa gg<br>Leu Gln Gl<br>705 | a aaa tt<br>y Lys Le          | g act ga<br>u Thr As<br>710  | t aaa<br>p Lys            | tct a<br>Ser L         | aa tgt<br>ys Cys<br>715   | gaa cc<br>Glu Pr            | t gca<br>o Ala          | nea 1                 | aaa<br>Lys<br>720 | 2160 |
| aga tat to<br>Arg Tyr Cy        | s Thr Va                      | a gcg gg<br>al Ala Gi<br>25  | a aac<br>y Asn            | val A                  | at aat<br>sn Asn<br>30    | gcg tc<br>Ala Se            | a atc<br>r Ile          | agt (<br>Ser (<br>735 | ggc<br>Gly        | 2208 |
| tta tgc aa<br>Leu Cys Ly        | aa gct aa<br>ys Ala A:<br>740 | ac acc acsn Thr L            | ng gat<br>ys Asp          | aac t<br>Asn S<br>745  | ct gga<br>Ser Gly         | aag ag<br>Lys Se            | t gat<br>r Asp<br>750   | gag<br>Glu            | gat<br>Asp        | 2256 |
| gct aga as<br>Ala Arg Ly<br>7   | ag gaa c<br>ys Glu L<br>55    | tc tgt g<br>eu Cys G         | ag aaa<br>Lu Lys<br>760   | tta g<br>Leu V         | gtg aaa<br>Val Lys        | gaa gt<br>Glu Va<br>76      | I GIU                   | gaa<br>Glu            | cag<br>Gln        | 2304 |
| tgc aaa g<br>Cys Lys A<br>770   | ca tta c<br>la Leu P          | ro Thr G                     | aa tta<br>lu Leu<br>75    | gga d<br>Gly (         | caa cco<br>Gln Pro        | g gca go<br>o Ala Al<br>780 | t gat<br>La Asp         | cta<br>Leu            | aaa<br>Lys        | 2352 |
| aaa gat t<br>Lys Asp T<br>785   | at aag a<br>yr Lys T          | ca tat g<br>hr Tyr G<br>790  | ag gaa<br>lu Glu          | ctt a                  | aag aaa<br>Lys Lys<br>79! | s Arg A.                    | ca gag<br>la Glu        | gaa<br>Glu            | gca<br>Ala<br>800 | 2400 |
| atg aac a<br>Met Asn L          | ys Ser S                      | gt ctt g<br>Ser Leu V<br>105 | tt ttg<br>al Leu          | Ser.                   | ctc at<br>Leu Il<br>810   | t aag a<br>e Lys L          | aa aac<br>ys Asr        | gaa<br>Glu<br>815     | agt<br>Ser        | 2448 |
| aat gta t<br>Asn Val S          | ca aaa a<br>Ser Lys S<br>820  | ngt aat a<br>Ser Asn S       | gc aaa<br>er Lys          | aac<br>Asn<br>825      | aag ga<br>Lys As          | t aag a<br>p Lys A          | at gco<br>sn Ala<br>830 | 2 VO.                 | tca<br>Ser        | 2496 |
| aac gga c<br>Asn Gly I          | ctt caa d<br>Leu Gln i<br>335 | gat acc a<br>Asp Thr 1       | ca aaa<br>hr Lys<br>840   | His                    | gtg aa<br>Val Ly          | s rie r                     | ta cg<br>eu Ar<br>45    | g agg<br>g Arg        | gga<br>Gly        | 2544 |
| gtt aag (<br>Val Lys 1<br>850   | gat gta<br>Asp Val            | Ser Val '                    | aca gaa<br>Thr Glu<br>355 | tta<br>Leu             | gaa go<br>Glu Al          | t aaa g<br>.a Lys A<br>860  | ca tt<br>la Ph          | t gat<br>e Asp        | ttg<br>Leu        | 2592 |
| gca gca (<br>Ala Ala (<br>865   | gaa gta<br>Glu Val            | ttt gga<br>Phe Gly<br>870    | aga tat<br>Arg Tyr        | gta<br>r Val           | gat tt<br>Asp Le          | eu Lys o                    | jaa ag<br>Slu Ar        | a tgt<br>g Cys        | aat<br>Asn<br>880 | 2640 |
| aaa ttg<br>Lys Leu              | gaa tca<br>Glu Ser            | gat tgc<br>Asp Cys           | aga att<br>Arg Ile        | t aag<br>e Lys         | gag ga<br>Glu As<br>50    | at tgc a<br>sp Cys 1        | aaa ga<br>Lys As        | ić tta<br>p Lev       | gaa<br>Glu        | 2688 |

| WU                               | 00/07/                | UU                | "                 |                   |                    |                    |                   |                   |                   |                    | •                  |                   |                   |                   | -,   |
|----------------------------------|-----------------------|-------------------|-------------------|-------------------|--------------------|--------------------|-------------------|-------------------|-------------------|--------------------|--------------------|-------------------|-------------------|-------------------|------|
|                                  |                       |                   | 885               |                   |                    |                    |                   | 890               |                   |                    |                    |                   | 895               |                   |      |
| gaa gta<br>Glu Val               | tgc<br>L Cys          | aaa<br>Lys<br>900 | aag<br>Lys        | att<br>Ile        | aat<br>Asn         | aag<br>Lys         | gct<br>Ala<br>905 | tgt<br>Cys        | cgc<br>Arg        | aat<br>Asn         | ctg<br>Leu         | aag<br>Lys<br>910 | cct<br>Pro        | ctg<br>Leu        | 2736 |
| gag gto<br>Glu Val               | g aag<br>L Lys<br>915 | ccg<br>Pro        | cac<br>His        | gaa<br>Glu        | aca<br>Thr         | gtg<br>Val<br>920  | aca<br>Thr        | gaa<br>Glu        | agt<br>Ser        | aca<br>Thr         | acg<br>Thr<br>925  | aca<br>Thr        | act<br>Thr        | aca<br>Thr        | 2784 |
| aca aca<br>Thr Thi               | r Thr                 | aca<br>Thr        | acc<br>Thr        | gtt<br>Val        | gcc<br>Ala<br>935  | gat<br>Asp         | ccg<br>Pro        | aag<br>Lys        | gca<br>Ala        | acg<br>Thr<br>940  | gaa<br>Glu         | tgc<br>Cys        | aaa<br>Lys        | tcc<br>Ser        | 2832 |
| tta cad<br>Leu Gla<br>945        | g aca<br>n Thr        | aca<br>Thr        | gac<br>Asp        | aca<br>Thr<br>950 | tgg<br>Trp         | gtt<br>Val         | aca<br>Thr        | Gln               | aca<br>Thr<br>955 | tcg<br>Ser         | aca<br>Thr         | cac<br>His        | aca<br>Thr        | agc<br>Ser<br>960 | 2880 |
| acg tc<br>Thr Se                 | t act<br>r Thr        | atc<br>Ile        | aca<br>Thr<br>965 | tct<br>Ser        | acc<br>Thr         | atc<br>Ile         | aca<br>Thr        | tca<br>Ser<br>970 | aaa<br>Lys        | ata<br>Ile         | aca<br>Thr         | ttg<br>Leu        | aca<br>Thr<br>975 | tca<br>Ser        | 2928 |
| acg ag<br>Thr Ar                 | g cga<br>g Arg        | tgc<br>Cys<br>980 | Lys               | cca<br>Pro        | acc<br>Thr         | aag<br>Lys         | tgt<br>Cys<br>985 | acg<br>Thr        | aca<br>Thr        | gga<br>Gly         | gag<br>Glu         | gaa<br>Glu<br>990 | gat<br>Asp        | gat<br>Asp        | 2976 |
| gca gg<br>Ala Gl                 | a gac<br>y Asp<br>995 | Val               | aaa<br>Lys        | ccg<br>Pro        | Ser                | gag<br>Glu<br>1000 | Gly               | ctg<br>Leu        | agg<br>Arg        | Met                | agt<br>Ser<br>1005 | Gly               | tgg<br>Trp        | aat<br>Asn        | 3024 |
| gtg at<br>Val Me<br>101          | t Arg                 | ggg               | gtg<br>Val        | Ile               | gta<br>Val<br>1015 | Ala                | atg<br>Met        | gtt<br>Val        | Ile               | tcg<br>Ser<br>1020 | ttc<br>Phe         | atg<br>Met        | att<br>Ile        | tag               | 3072 |
| <210><br><211><br><212><br><213> | 1023<br>PRT           | ıocys             | tis               | cari              | nii                | sp.                | f. h              | omin              | is                |                    |                    |                   |                   |                   |      |
| <400><br>Met Al                  | 14<br>.a Arg          | , Ala             | Val               |                   | Arg                | Gln                | Ala               | Ala<br>10         | Gly               | Thr                | Gln                | . Asn             | Ser<br>15         | Ile               |      |
| Asp Gl                           | lu Glu                | His<br>20         |                   | Leu               | Ala                | Leu                | Ile<br>25         |                   | Lys               | Glu                | Asp                | Gly<br>30         | Leu               | Ser               |      |
| Glu Gl                           | in Glu<br>35          |                   | Lys               | Lys               | Lys                | Leu<br>40          |                   | Lys               | туг               | Cys                | Gln<br>45          | Glu               | Leu               | Thr               |      |
| Glu A                            | la Lys<br>50          | s Lev             | ı Asn             | Ile               | Glu<br>55          |                    | Val               | . His             | s Arç             | 60<br>Lys          |                    | Lys               | : Gl              | Phe               |      |
| Cys Gi<br>65                     | lu Asp                | Gly               | / Lys             | Ala<br>70         |                    | Thr                | Lys               | Cys               | 5 Lys<br>75       |                    | . Lev              | ı Lys             | : Ala             | Asn<br>80         |      |
| Ile G                            | lu Ly:                | s Lys             | s Cys             |                   | Thi                | : Ile              | e Lys             | Gl <sub>3</sub>   |                   | s Lev              | ı Lys              | s Glu             | a Ala<br>95       | a Ile             |      |
| Lys L                            | ys Ly:                | 100               |                   | ı Ile             | e Ile              | e Thi              | 105               |                   |                   | о Суз              | 5 Lys              | 3 Glu<br>110      | ı Ası<br>)        | n Glu             |      |



| Gln        | Gln        | Cys<br>115 | Leu        | Phe        | Leu        | Glu        | Gly<br>120 | Val          | Cys        | Ser        | Lys        | Glu<br>125 | Leu        | Lys        | Asp        |
|------------|------------|------------|------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|
| Asp        | Cys<br>130 | Asn        | Thr        | Leu        | Arg        | Asn<br>135 | Lys        | Cys          | Tyr        | Gln        | Lys<br>140 | Lys        | Arg        | Asp        | Lys        |
| Val<br>145 | Ala        | Glu        | Glu        | Val        | Leu<br>150 | Leu        | Arg        | Ala          | Leu        | Arg<br>155 | Ser        | Asp        | Leu        | Asn        | Gly<br>160 |
| Ser        | Val        | Ile        | Суѕ        | Glu<br>165 | Lys        | Lys        | Leu        | Lys          | Glu<br>170 | Ile        | Суѕ        | Pro        | Val        | Met<br>175 | Gly        |
| Arg        | Glu        | Ser        | Asp<br>180 | Glu        | Leu        | Thr        | Asn        | Leu<br>185   | Cys        | Leu        | Asn        | Gln        | Lys<br>190 | Glu        | Thr        |
| Cys        | Lys        | Asn<br>195 | Ile        | Leu        | Ile        | Glu        | Lys<br>200 | Asp          | Lys        | Lys        | Cys        | Gly<br>205 | Thr        | Leu        | Lys        |
| Thr        | Asp<br>210 |            | Ser        | Ala        | Ala        | Leu<br>215 | Gly        | Ser          | Phe        | Lys        | Lys<br>220 | Glu        | Thr        | Cys        | Leu        |
| Glu<br>225 | Leu        | Leu        | Glu        | Gln        | Cys<br>230 | Tyr        | Phe        | Tyr          | Ile        | Gly<br>235 | Asn        | Cys        | Gly        | Asp        | Asp<br>240 |
| Asp        | Ile        | Ile        | Lys        | Cys<br>245 | Ile        | Glu        | Leu        | Gly          | Gly<br>250 | Lys        | Cys        | Gln        | Glu        | Gln<br>255 | Asn        |
| Ile        | Ala        | Tyr        | Met<br>260 |            | Pro        | Gly        | Pro        | Asp<br>265   | Phe        | Asp        | Pro        | Thr        | Arg<br>270 | Pro        | Glu        |
|            |            | 275        |            |            |            |            | 280        | Leu          |            |            |            | 285        |            |            |            |
|            | 290        | 1          |            |            |            | 295        |            | Lys          |            |            | 300        |            |            |            |            |
| 305        |            |            |            |            | 310        |            |            | Asp          |            | 315        |            |            |            |            | 320        |
| _          |            |            |            | 325        |            |            |            | Leu          | 330        |            |            |            |            | 335        |            |
|            |            |            | 340        | )          |            |            |            | 345          |            |            |            |            | 350        |            | Ser        |
|            |            | 355        | 5          |            |            |            | 360        | <b>)</b>     |            |            |            | 365        |            |            | Lys        |
|            | 370        | )          |            |            |            | 375        | 5          |              |            |            | 380        |            |            |            | Asp        |
| 385        | 5          |            |            |            | 390        | )          |            |              |            | 395        | ì          |            |            |            | 400        |
|            |            |            |            | 405        | 5          |            |            |              | 410        | )          |            |            |            | 415        |            |
| Phe        | e Glu      | Ly:        | 420        |            | s Pro      | Asp        | o Gly      | / Glu<br>425 |            | n Ala      | . Cys      | Lys        | 430        | lle        | Arg        |



|            |            |            |            |            |            |            |            |            |                    |            |            |            | _          |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|
| Ala        | Thr        | Cys<br>435 | Tyr        | Lys        | Arg        | Gly        | Leu<br>440 | Asp        | Ala                | Arg        | Ala        | Asn<br>445 | Lys        | Val        | Leu        |
| Gln        | Glu<br>450 | Asn        | Met        | Arg        | Gly        | Met<br>455 | Leu        | His        | Gly                | Ser        | Asn<br>460 | Lys        | Ser        | Trp        | Leu        |
| Glu<br>465 | Lys        | Phe        | Gln        | Gln        | Glu<br>470 | Leu        | Val        | Lys        | Val                | Cys<br>475 | Glu        | Lys        | Leu        | Lys        | Lys<br>480 |
| Glu        | Asn        | Lys        | Gly        | Ser<br>485 | Phe        | Ser        | Asn        | Asp        | Glu<br>490         | Leu        | Phe        | Ile        | Leu        | Cys<br>495 | Val        |
| Gln        | Pro        | Ala        | Lys<br>500 | Ala        | Ala        | Arg        | Leu        | Leu<br>505 | Thr                | His        | Asp        | Leu        | Arg<br>510 | Met        | Lys        |
| Thr        | Ile        | Phe<br>515 | Leu        | Arg        | Gln        | Gln        | Leu<br>520 | Asp        | Gln                | Lys        | Arg        | Asp<br>525 | Phe        | Pro        | Thr        |
| Asp        | Lys<br>530 | Asn        | Cys        | Lys        | Glu        | Leu<br>535 | Gly        | Arg        | Lys                | Cys        | Gln<br>540 | Asp        | Leu        | Gly        | Glu        |
| Asp<br>545 | Ser        | Lys        | Glu        | Ile        | Thr<br>550 | Trp        | Pro        | Cys        | His                | Thr<br>555 | Leu        | Glu        | Gln        | Gln        | Cys<br>560 |
| Asn        | Arg        | Leu        | Gly        | Thr<br>565 | Thr        | Glu        | Ile        | Leu        | Lys<br>5 <b>70</b> | Gln        | Val        | Leu        | Leu        | Asp<br>575 | Glu        |
| His        | Lys        | Asp        | Thr<br>580 | Leu        | Lys        | Asp        | Gln        | Glu<br>585 | Ser                | Cys        | Val        | Lys        | Tyr<br>590 | Leu        | Lys        |
| Glu        | Lys        | Cys<br>595 | Asn        | Lys        | Trp        | Ser        | Arg<br>600 | Arg        | Gly                | Asp        | Asp        | Arg<br>605 | Phe        | Ser        | Phe        |
| Val        | Cys<br>610 | Val        | Phe        | Gĺn        | Asn        | Ala<br>615 | Thr        | Cys        | Glu                | Leu        | Met<br>620 | Val        | Lys        | Asp        | Val        |
| Lys<br>625 | _          | Arg        | Cys        | Glu        | Val<br>630 | Phe        | Lys        | Lys        | Asn                | Ile<br>635 |            | Ala        | Ser        | Tyr        | 11e<br>640 |
| Ile        | Glu        | Phe        | Leu        | Glu<br>645 |            | Asn        | Thr        | Asn        | Lys<br>650         |            | Thr        | Thr        | Leu        | Glu<br>655 | Arg        |
| Asn        | Суз        | Pro        | Ser<br>660 | Trp        | His        | Thr        | Tyr        | Cys<br>665 | Asn                | Arg        | Phe        | Ser        | Pro<br>670 | Asn        | Cys        |
| Pro        | Gly        | Leu<br>675 |            | Lys        | Glu        | Asn        | Ser<br>680 | Cys        | Thr                | Lys        | Ile        | Lys<br>685 |            | His        | Arg        |
| Glu        | Pro<br>690 |            | Tyr        | Lys        | Arg        | Lys<br>695 |            | Leu        | Glu                | Asp        | 700        |            | Lys        | Val        | Glu        |
| Leu<br>705 |            | Gly        | Lys        | Leu        | 710        |            | Lys        | Ser        | Lys                | Cys<br>715 |            | Pro        | Ala        | Leu        | Lys<br>720 |
|            | _          |            |            | 725        | •          |            |            |            | 730                | 1          |            |            |            | 735        |            |
| Leu        | Cys        | Lys        | 740        |            | Thr        | Lys        | Asp        | Asn<br>745 |                    | Gly        | , Lys      | Ser        | 750        |            | Asp        |
| Ala        | Arg        | Lys        | Glu        | Leu        | Cys        | Glu        | Lys        | Leu        | Val<br>53          |            | Glu        | val        | . Glu      | Glu        | Gln        |



755 760 765

Cys Lys Ala Leu Pro Thr Glu Leu Gly Gln Pro Ala Ala Asp Leu Lys 770 780

Lys Asp Tyr Lys Thr Tyr Glu Glu Leu Lys Lys Arg Ala Glu Glu Ala 785 790 795 800

Met Asn Lys Ser Ser Leu Val Leu Ser Leu Ile Lys Lys Asn Glu Ser 805 810 815

Asn Val Ser Lys Ser Asn Ser Lys Asn Lys Asp Lys Asn Ala Val Ser 820 825 830

Asn Gly Leu Gln Asp Thr Thr Lys His Val Lys Ile Leu Arg Arg Gly 835

Val Lys Asp Val Ser Val Thr Glu Leu Glu Ala Lys Ala Phe Asp Leu 850 855 860

Ala Ala Glu Val Phe Gly Arg Tyr Val Asp Leu Lys Glu Arg Cys Asn 865 870 875

Lys Leu Glu Ser Asp Cys Arg Ile Lys Glu Asp Cys Lys Asp Leu Glu 885 890 895

Glu Val Cys Lys Lys Ile Asn Lys Ala Cys Arg Asn Leu Lys Pro Leu 900 905 910

Glu Val Lys Pro His Glu Thr Val Thr Glu Ser Thr Thr Thr Thr Thr 915 920 925

Thr Thr Thr Thr Val Ala Asp Pro Lys Ala Thr Glu Cys Lys Ser 930 935 940

Leu Gln Thr Thr Asp Thr Trp Val Thr Gln Thr Ser Thr His Thr Ser 945 950 955 960

Thr Ser Thr Ile Thr Ser Thr Ile Thr Ser Lys Ile Thr Leu Thr Ser 965 970 975

Thr Arg Arg Cys Lys Pro Thr Lys Cys Thr Thr Gly Glu Glu Asp Asp 980 985 990

Ala Gly Asp Val Lys Pro Ser Glu Gly Leu Arg Met Ser Gly Trp Asn 995 1000 1005

Val Met Arg Gly Val Ile Val Ala Met Val Ile Ser Phe Met Ile 1010 1015 1020

<210> 15

<211> 249

<212> DNA

<213> Pneumocystis carinii sp. f. hominis

<220>

<221> CDS

<222> (1)..(249)

<400> 15

| WO 0             | 0/097 | 60 |  |  |  |  | 1 |  | PC' | Г/US99/18750 |
|------------------|-------|----|--|--|--|--|---|--|-----|--------------|
| tgc<br>Cys       |       |    |  |  |  |  |   |  |     | 48           |
| cat<br>His       |       |    |  |  |  |  |   |  |     | 96           |
| ctc<br>Leu       |       |    |  |  |  |  |   |  |     | 144          |
| gaa<br>Glu<br>50 |       |    |  |  |  |  |   |  |     | 192          |
| ggg<br>Gly       |       |    |  |  |  |  |   |  |     | 240          |

ttc atg att 249
Phe Met Ile

<210> 16

<211> 83

<212> PRT

<213> Pneumocystis carinii sp. f. hominis

<400> 16

Glu Cys Gln Ser Leu Gln Thr Thr Asp Thr Trp Val Thr Lys Thr Ser 1 5 10 15

Thr His Thr Ser Thr Ser Thr Thr Thr Ser Thr Val Thr Ser Arg Ile 20 25 30

Thr Leu Thr Ser Thr Arg Arg Cys Lys Pro Thr Lys Cys Thr Thr Gly 35 40 45

Glu Glu Asp Asp Ala Gly Glu Val Lys Pro Ser Glu Gly Leu Arg Met 50 55 60

Ser Gly Trp Ser Val Met Arg Gly Val Leu Leu Ala Met Met Ile Ser 65 70 75 80

Phe Met Ile

<210> 17

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
 oligonucleotide

<400> 17

gaatgcaaat ccttacagac aacag

| <210> | 18                                            |    |
|-------|-----------------------------------------------|----|
| <211> |                                               |    |
| <212> |                                               |    |
| <213> | Artificial Sequence                           |    |
|       | •                                             |    |
| <220> | •                                             |    |
| <223> | Description of Artificial Sequence: synthetic |    |
|       | oligonucleotide                               |    |
|       | y                                             |    |
| <400> | 18                                            |    |
|       | caaat ctttacagac aacag                        | 25 |
| 55    | •                                             |    |
|       |                                               |    |
| <210> | 19                                            |    |
| <211> |                                               |    |
| <212> |                                               |    |
|       | Artificial Sequence                           |    |
|       | •                                             |    |
| <220> |                                               |    |
| <223> | Description of Artificial Sequence: synthetic |    |
|       | oligonucleotide                               |    |
|       | <b></b>                                       |    |
| <400> | 19                                            |    |
|       | accaa ccaagtgtac gacagg                       | 26 |
| - 3   |                                               |    |
|       |                                               |    |
| <210> | 20                                            |    |
| <211> | 25                                            |    |
| <212> | DNA                                           |    |
| <213> | Artificial Sequence                           |    |
|       |                                               |    |
| <220> |                                               |    |
| <223> | Description of Artificial Sequence: synthetic |    |
|       | oligonucleotide                               |    |
|       |                                               |    |
| <400> |                                               | 25 |
| aaatc | atgaa cgaaataacc attgc                        | 25 |
|       |                                               |    |
| .0105 | 21                                            |    |
| <210> |                                               |    |
| <211> |                                               |    |
| <212> | Artificial Sequence                           |    |
| <213> | Artificial Sequence                           |    |
| <220> |                                               |    |
|       | Description of Artificial Sequence: synthetic |    |
| \223/ | oligonucleotide                               |    |
|       | Oligonacicociac                               |    |
| <400> | 21                                            |    |
|       | tatgg cgcgggcggt caagcggcag                   | 30 |
| 00000 |                                               |    |
|       |                                               |    |
| <210> | 22                                            |    |
| <211> |                                               |    |
| <212> |                                               |    |
| <213> | Artificial Sequence                           |    |
|       | -                                             |    |
| <220> |                                               |    |
|       | Description of Artificial Sequence: synthetic |    |
|       | oligonucleotide                               |    |

| WO 00/09760                                                                                     | PCT/US99/18750 |
|-------------------------------------------------------------------------------------------------|----------------|
| <400> 22 ctaaatcatg aacgaaataa ccattgctac                                                       | 30             |
| <210> 23<br><211> 24<br><212> DNA<br><213> Artificial Sequence                                  |                |
| <220> <223> Description of Artificial Sequence: synthetic oligonucleotide                       |                |
| <400> 23 gaattcgatc tgaagcctct ggag                                                             | 24             |
| <210> 24<br><211> 24<br><212> DNA<br><213> Artificial Sequence                                  |                |
| <220> <223> Description of Artificial Sequence: synthetic oligonucleotide                       |                |
| <400> 24<br>ttctagaaac ccactcatct tcaa                                                          | 24             |
| <210> 25<br><211> 22<br><212> PRT<br><213> Artificial Sequence                                  |                |
| <220> <223> Description of Artificial Sequence: synthetic peptide                               |                |
| <400> 25 Lys Met Tyr Gly Leu Phe Tyr Gly Ser Gly Lys Glu Trp Phe Lys 1 5 10 15                  | Lys            |
| Leu Leu Glu Lys Ile Met<br>20                                                                   |                |
| <210> 26<br><211> 15<br><212> PRT<br><213> Artificial Sequence                                  |                |
| <220> <223> Description of Artificial Sequence: synthetic peptide                               |                |
| <pre>&lt;400&gt; 26 Thr Ile Thr Ser Thr Ile Thr Ser Lys Ile Thr Leu Thr Ser Thr 1 5 10 15</pre> |                |



Inter onal Application No

PCT/US 99/18750

| A. CLASSIF    | C12Q1/68 C12N15/11 C07K16/1                                                                                                                                                         | Λ                                                                                     |                                                 |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------|--|--|
| IPC 7         | C12Q1/68 C12N15/11 C0/K10/15                                                                                                                                                        | <b>.</b>                                                                              |                                                 |  |  |
|               |                                                                                                                                                                                     |                                                                                       |                                                 |  |  |
|               | International Patent Classification (IPC) or to both national classification                                                                                                        | tion and IPC                                                                          |                                                 |  |  |
| B. FIELDS S   | SEARCHED cumentation searched (classification system followed by classification                                                                                                     | n symbols)                                                                            |                                                 |  |  |
| IPC 7         | C12Q C12N C07K                                                                                                                                                                      |                                                                                       |                                                 |  |  |
|               |                                                                                                                                                                                     |                                                                                       |                                                 |  |  |
| Documentati   | on searched other than minimum documentation to the extent that su                                                                                                                  | uch documents are included in the fields se-                                          | arched                                          |  |  |
|               |                                                                                                                                                                                     |                                                                                       |                                                 |  |  |
| Electronic da | ata base consulted during the international search (name of data bas                                                                                                                | e and, where practical, search terms used)                                            |                                                 |  |  |
|               | •                                                                                                                                                                                   |                                                                                       |                                                 |  |  |
|               |                                                                                                                                                                                     |                                                                                       |                                                 |  |  |
|               |                                                                                                                                                                                     |                                                                                       |                                                 |  |  |
|               | ENTS CONSIDERED TO BE RELEVANT                                                                                                                                                      | PART TRANSPORT TRAVE                                                                  | Relevant to claim No.                           |  |  |
| Category °    | Citation of document, with indication, where appropriate, of the rele                                                                                                               | avant passages                                                                        | Titolovani to diamitte                          |  |  |
| X             | GARBE T. &STRINGER J.: "Molecul                                                                                                                                                     | ar                                                                                    | 1-45                                            |  |  |
| ^             | characterization of clustered var                                                                                                                                                   | iants of                                                                              |                                                 |  |  |
|               | genes encoding major surface anti                                                                                                                                                   | gens of                                                                               |                                                 |  |  |
|               | human Pneumocystis carinii"<br>INFECTION AND IMMUNITY,                                                                                                                              |                                                                                       |                                                 |  |  |
|               | vol. 62, no. 8, - August 1994 (1                                                                                                                                                    | (994-08)                                                                              |                                                 |  |  |
|               | pages 3092-3101, XP002128593                                                                                                                                                        |                                                                                       |                                                 |  |  |
|               | cited in the application the whole document                                                                                                                                         |                                                                                       |                                                 |  |  |
| į             |                                                                                                                                                                                     | ,                                                                                     |                                                 |  |  |
| 1             | •                                                                                                                                                                                   | -/- <del>-</del>                                                                      |                                                 |  |  |
| }             |                                                                                                                                                                                     |                                                                                       |                                                 |  |  |
|               |                                                                                                                                                                                     |                                                                                       |                                                 |  |  |
|               |                                                                                                                                                                                     |                                                                                       |                                                 |  |  |
|               |                                                                                                                                                                                     |                                                                                       |                                                 |  |  |
|               |                                                                                                                                                                                     |                                                                                       |                                                 |  |  |
| 1             |                                                                                                                                                                                     |                                                                                       |                                                 |  |  |
|               |                                                                                                                                                                                     | Y Patent family members are listed                                                    | lin anney                                       |  |  |
| X Fun         | ther documents are listed in the continuation of box C.                                                                                                                             | X Tatelli lallilly members are noted                                                  |                                                 |  |  |
| 1 '           | ategories of cited documents :                                                                                                                                                      | "T" later document published after the into or priority date and not in conflict with | ernational filing date<br>n the application but |  |  |
| consi         | ent defining the general state of the art which is not dered to be of particular relevance                                                                                          | cited to understand the principle or the invention                                    | neory underlying the                            |  |  |
| "E" earlier   | document but published on or after the international date                                                                                                                           | "X" document of particular relevance; the<br>cannot be considered novel or cannot     | ot be considered to                             |  |  |
| "L" docum     | "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention |                                                                                       |                                                 |  |  |
| citatio       | on or other special reason (as specified)<br>nent referring to an oral disclosure, use, exhibition or                                                                               | cannot be considered to involve an in<br>document is combined with one or m           | nventive step when the<br>nore other such docu- |  |  |
| other         | other means  "P" document published prior to the international filing date but  "P" document published prior to the international filing date but                                   |                                                                                       |                                                 |  |  |
| later         | later than the priority date claimed "&" document member of the same patent family                                                                                                  |                                                                                       |                                                 |  |  |
| Date of the   | Date of the actual completion of the international search  25 January 2000  Date of mailing of the international search report  10/02/2000                                          |                                                                                       | earan rahan                                     |  |  |
|               |                                                                                                                                                                                     |                                                                                       |                                                 |  |  |
| Name and      | mailing address of the ISA                                                                                                                                                          | Authorized officer                                                                    |                                                 |  |  |
|               | European Patent Office, P.B. 5818 Patentlaan 2<br>NL – 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,                                                               | Müller F                                                                              |                                                 |  |  |
| 1             | Fav: (+31-70) 340-2046, TX: 01 001 900 III,                                                                                                                                         | Müller, F                                                                             |                                                 |  |  |

3





Inte. onal Application No PCT/US 99/18750

| C.(Continu | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                            |                       |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Category   | Citation of document, with indication where appropriate, of the relevant passages                                                                                                                                                                                                     | Relevant to claim No. |
| X          | THEUS S A ET AL: "Immunization with the major surface glycoprotein of Pneumocystis carinii elicits a protective response" VACCINE,GB,BUTTERWORTH SCIENTIFIC. GUILDFORD, vol. 16, no. 11-12, - 11 July 1998 (1998-07-11) page 1149-1157 XP004124618 ISSN: 0264-410X the whole document | 24,25                 |
| X          | KOVACS J.A. ET AL.,: "Multiple genes encode the major surface glycoprotein of Pneumocystis carinii"  J. BIOLOGICAL CHEMISTRY, vol. 268, no. 8, - 15 March 1993 (1993-03-15) pages 6034-6040, XP002128594 the whole document                                                           | 1,23                  |
| X          | CHARY-REDDY S ET AL: "IDENTIFICATION OF EXTRAPULMONARY PNEUMOCYSTIS CARINII IN IMMUNOCOMPROMISED RATS BY PCR" JOURNAL OF CLINICAL MICROBIOLOGY, US, WASHINGTON, DC, vol. 34, no. 7, - July 1996 (1996-07) page 1660-1665 XP000865721 ISSN: 0095-1137 the whole document               | 1,23                  |
| A          | US 5 776 680 A (LEIBOWITZ MICHAEL J ET AL) 7 July 1998 (1998-07-07) cited in the application the whole document                                                                                                                                                                       |                       |
| P,X        | MEI Q. ET AL.,: "Characterization of major surface glycoprotein genes of human pneumocystis carinii and high-level expression of a conserved region" INFECTION AND IMMUNITY, vol. 66, no. 9, - September 1998 (1998-09) pages 4268-4273, XP002128595 the whole document               | 1-45                  |
|            |                                                                                                                                                                                                                                                                                       |                       |

3





Information on patent family members

Inte onal Application No PCT/US 99/18750

| Patent document cited in search report | Publication date | Patent family member(s) | Publication<br>date |
|----------------------------------------|------------------|-------------------------|---------------------|
| US 5776680 A                           | 07-07-1998       | US 5849484 A            | 15-12-1998          |