NISTMSQC - Software for Monitoring LC-MS Performance

Mass Spectrometry Data Center
Chemical and Biochemical Reference Data Division
National Institute of Standards and Technology
United States Department of Commerce

under interagency agreement with the

National Cancer Institute's Clinical Proteomic Technologies for Cancer

version 1.0.3 (beta)

December 29, 2009

<u>About:</u> This document is intended to provide instructions on how to run the NISTMSQC software on your computer. The metrics have been described and benchmark values have been reported in two publications (<u>19837981</u>, <u>19858499</u>). If you have questions about the metrics, please refer to these documents first.

For more background information, you may also wish to visit the following URLs:

http://www.nist.gov/cstl/chemical_properties/data/perfmetproteomics.cfm
http://proteomics.cancer.gov/

Technical Contacts: paul.rudnick@nist.gov or steve.stein@nist.gov

Description:

Important Note on Data Formats: Use of this version is limited to analysis of data acquired on Thermo Scientific© ion trap and hybrid mass spectrometers (e.g., LTQ, LTQ-Orbitrap, FT-LTQ), generating MS/MS spectra by CID, and stored in .RAW format. Future releases may allow comparison of data files generated on mass spectrometers produced by other manufacturers provided sources of accessible data formats can be identified.

This program was written to systematically evaluate analytical performance of a common discovery-based proteomics platform by monitoring selected output from a liquid chromatography -mass spectrometry (LC-MS) system. The software was developed to help researchers identify sources of variations due to analytical problems. It is hypothesized that if analytical variations can be minimized using defined mixtures, variations due to biological differences in complex samples can be more confidently identified.

NISTMSQC expects that the MS/MS spectra are produced from analysis of a tryptic digest of a protein mixture. However, future releases will allow any set of MS/MS data files, such as those from analysis of metabolites or other small molecules and can be identified by a spectral library search, to be used. Typically, data files might come from routine analysis of a QC standard over time but may be from different instruments in the same or different laboratories. Analysis is carried out by calculating and comparing a defined set of data metrics from one or more set of MS data files. The use of this program does not require any new data acquisition; it has been designed to be run post-data acquisition and is therefore suitable for examining older data files for historical purposes. However, best practice for this software would be iterations of controlled runs of a sample, followed data analysis, and correction of any problems identified by fluctuations in key metrics.

This software contains many component software applications which are controlled by a single Perl program. The software is intended to be run as a "pipeline." That is, processing starts from RAW mass spectrometry data files and is passed through many programs, where output from the previous application is required by the next. It is therefore important that the program be allowed to run in its entirety. Progress of the pipeline is reported by the software and a reasonable attempt has been made to catch common errors and provide suitable remedies.

System Requirements:

Microsoft© WindowsTM

XCaliburTM (preferably the same version used on the data acquisition computer)

Perl (as can be freely downloaded from http://www.activestate.com/activeperl/)

Spectral Libraries and Sequence Databases

One or more search library/database packs. These should be relevant to the sample you are using. For example, if your QC sample is S. cerevesiae (i.e., yeast), you will need to extract the yeast.zip archive in the 'libs' directory of your installation. Library packs for some common laboratory samples can be downloaded from here,

ftp://chemdata.nist.gov/download/paul/collab/NISTMSQC/libs/

Quick Start:

- 1) This software is intended to be run from the Windows console. To open a console window, click on Start->Run and type cmd.
- 2) Use the command cd to change to the **NISTMSQC\scripts** directory created by extracting the zip archive. For example,

cd C:\NISTMSQC\scripts

3) The control program is called run_NISTMSQC_pipeline.pl, and it can be run with a set of command-line arguments (described in detail below) like the following example:

```
run_NISTMSQC_pipeline.pl --in_dir "C:\directory_with_RAW_files" -
-out_dir "C:\NISTMSQC\out_dirs\test1" --out_file
"C:\NISTMSQC\reports\test1.txt" --instrument_type ORBI --library
yeast
```

This command will process the RAW files in "C:\directory_with_RAW_files" and produce the report file "C:\NISTMSQC\out_files\test1.txt". --in_dir, and --out_dir can point to any local or networked drive. See below for more on command-line arguments and options.

<u>Useful tips:</u> Typing the up arrow from the console will bring up the last command issued. This allows editing of a command-line instead of re-typing. Additionally, the tab key can be used to auto-complete directory paths.

Included Software Components and Versions (version 1.0):

Program	Category	Order in NISTMSQC	Version	Date	Source	Reference (PubMed)
run_NISTMSQC_pipeli ne	Control	N/A	0.99	11/13/09	NIST	<u>19837981</u>
ReAdW4Mascot2	Converter	1	1.2	20091027a	NIST	<u>19837981</u>
MSPepSearch	Search Engine	2*	0.9	11/17/2009	NIST	none
ProMS	MS1 analysis	3 (optl.)		12/23/09	NIST	
SpectraST	Search Engine	2*	3.1	20090908	ISB	17295354
OMSSA	Search Engine	2*	2.1.7	9/9/09	NCBI	15473683
nistms_metrics	Calc. Metrics	3		11/16/09	NIST	<u>19837981</u>
merge_pep_results	Calc. Metrics	4		9/26/08	NIST	<u>19837981</u>
ParseMetrics	Output Parser	5		11/13/09	NIST	none

^{*} Indicates only one can be selected to run at a time.

Description of Arguments (required):

--in_dir Full path to a directory containing Thermo .RAW files or previously generated MGF+MS1 files. If you wish to use previously generated MGF+MS1 files, these MUST have been produced by a recent version of ReAdW4Mascot2. More than one set of files can be processed by specifying multiple -- in_dir arguments, as in the example:

```
--in_dir "C:\NISTMSQC\runs1 --in_dir "C:\NISTMSQC\runs2"
```

In this example, "C:\NISTMSQC\runs2" contains a second, optional set of files. However, as few as 1 file can be analyzed.

--out_dir Full path to directory where all intermediate output files are to be written. If this directory does not exist, NISTMSQC will attempt to create it for you. NISTMSQC will write output files from *all* input directories to this path. Example:

```
--out_dir "C:\NISTMSQC\out\runs1"
```

--out_file Full path to file where NISTMSQC summary is to be written. This tab-delimited, text file contains all of the calculated metrics values for all runs and series. Example:

```
--out_file "C:\NISTMSQC\metrics\runs1.txt"
```

If this file name has been previously used, NISTMSQC will "increment" the file. For example, instead of overwriting runs1.txt, the file runs1___1.txt will be created instead.

--library Name of library file located in the 'lib' directory of your installation. (Note: this is NOT a full path) MSPepSearch, OMSSA, SpectraST and FASTA libraries should all have the same root file name. So, if custom libraries are generated, files should be named according to this convention. Example:

```
--library yeast --library sigmaups1
```

Multiple libraries (--library) can ONLY be used with MSPepSearch (default).

--instrument_type (allowable values: LCQ, LTQ, LXQ, ORBI and FT) Used to specify the instrument model used to generate the data. If ORBI or FT is specified, precursor tolerance will be reduced and monoisotopic precursor masses will be used. Additionally, ReAdW4Mascot2 will attempt to correct any precursor mass miscalls made by XCaliburTM by re-evaluating the MS1 isotopic envelope for the sampled ion.

```
--instrument_type ORBI
```

Command-line Options (NOT required):

--search_engine (allowable values: MSPepSearch [default], OMSSA or SpectraST) Used to specify the search engine identifying the MS/MS spectra. OMSSA is a sequence search engine and will only search BLAST-formatted databases. These are provided in the bundles found on the FTP site (above). The other two search engines require MS/MS mass spectral libraries. Library requirements are specific to the search engine option used and will be adjusted automatically by NISTMSQC. Example:

```
--search_engine OMSSA
```

In the above option, peptides will be identified using OMSSA searching a BLAST-formatted database.

--fasta Full path to a fasta file. If not specified, NISTMSQC will automatically look for a fasta file in the 'libs' directory of the name specified using --library. FASTA files are ONLY used during protein mapping by nistms_metrics (i.e., if --mode full has been set) and are NOT required for general

use. Additionally, if MSPepSearch was used to search multiple libraries AND --mode full has been set, you will need to create a FASTA file containing sequences found in all libraries specified.

```
--fasta "C:\NISTMSQC\libs\maltose_binding_protein.fasta"
```

In the above example, the protein sequence(s) found in the indicated file will be to calculate protein-level metrics.

--sort_by (allowable values: date [default] and name) Used to order the runs as columns in the final output file. Sometimes when files are copied their date stamps change in unpredictable ways. Therefore, if names of files give a better ordering ("ASCII-betically") within a series, name should be specified.

```
--sort_by name
```

--overwrite_all If specified, all processing on RAW files will be repeated and any output files will be overwritten. Useful if converter has been updated, for example.

```
--overwrite all
```

--overwrite_searches If specified, searches will re-run and older output files (TSV or pepXML) will be overwritten. Peak list converter (i.e., ReAdW4Mascot2) will not re-run.

```
--overwrite_searches
```

--no_peptide If specified, only a spectral library search engine is allowed and FASTA option is ignored. Useful if searching a library of metabolite MS/MS spectra.

```
--no_peptide
```

--mcp_summary If specified, a parsed report of only the metrics described in the MCP publication (Rudnick *et al*, 19837981) will be generated as a CSV file that can be opened with a spreadsheet application like Microsoft© ExcelTM. The field headers also contain the metric *codes* (e.g., C2-A) referenced in the publication. This file is suitable for rapid generation of plots.

```
--mcp_summary
```

--mode (allowable values are lite [default] and full) if full is specified, additional peptide and protein-level analysis will be performed. **NOTE:** Information generated in the output by specifying this option is experimental and no documentation is available.

```
--mode full
```

--pro_ms If specified, results from ProMS, a NIST-developed MS1 data analysis program, will be used instead of values calculated by ReAdW4Mascot2. ProMS requires MS1 profile spectra mzXML format, so these (large) files will additionally be generated during data conversions. In our hands, ProMS's XIC methods give more consistent results especially for high-resolution MS1 data.

--log_file If specified, output from the pipeline will be specified to a log file. These files can be found in the same location as --out_file with the extension .LOG.

--ini_tag Name of tag in scripts\ms.ini file, e.g, [test]. This option allows manual editing of a section of the ms.ini file. This may be used to re-run an analysis after changing the ordering of files or by grouping them as series. To group a set of runs by series, insert SERIES between FILE links. In order to use this option, edit the value between the braces in ms.ini and save the file. NOTE: Editing this file incorrectly may cause problems; use caution when editing the file. Additionally, no checking of other arguments in the ms.ini section is currently done or are tags checked for duplication. If the specified tag appears more than once, the first one will be used.

--help Descriptions of arguments and options are printed to the screen, then NISTMSQC exits.

Example of output

Note on Output/Metric Fields: Fields not described in Rudnick *et al* are continuously under development and appear for evaluation purposes. Questions concerning these output fields can be sent via email to the technical contacts listed at the beginning of this document.

The following output was generated by NISTMSQC from the analysis 5 technical replicates of an *E. coli* lysate and is given as an example:

Files Analyzed (5)					
1	C:\projects	\NISTMSQC3\ou	t_dirs\ecoli\s	<u> </u> sh_072808p_E_c	L oli.RAW.MGF.TS	SV
2	C:\projects	\NISTMSQC3\ou	t_dirs\ecoli\s	sh_072808p_E_c	oli_0807301609	20.RAW.MGF.TSV
3	C:\projects	\NISTMSQC3\ou	t_dirs\ecoli\s	sh_072808p_E_c	oli_0807300639	17.RAW.MGF.TSV
4	C:\projects	\NISTMSQC3\ou	t_dirs\ecoli\s	sh_072808p_E_c	oli_0807291138	58.RAW.MGF.TSV
5	C:\projects	\NISTMSQC3\ou	t_dirs\ecoli\s	sh_072808p_E_c	oli_0807292109	09.RAW.MGF.TSV
Run Number	1	2	3	4	5	
Spectrum Counts						
MS2 Scans	16766	17342	17158	17301	17352	
MS1 Scans/Full	5329	5295	5395	5357	5297	
MS1 Scans/Other	0	0	0	0	0	
First and Last MS						
First MS1	15	15	15	15	15	•
Last MS1	184	183.99	183.99	184	184	
Tryptic Peptide C	Olinta					
Peptides	3023	3037	3122	3021	3059	
Ions	3518	3540	3692	3540	3568	
Identifications	3704	3752	3902	3745	3775	
Abundance Pct	98.99	99.14	99.32	98.9	99.39	
Abundance/1000	9206028	11682686	12057072	14164751	13852958	
Ions/Peptide	1.16	1.17	1.18	1.17	1.17	
IDs/Peptide	1.23	1.24	1.25	1.24	1.23	
Peptide Counts						
Peptides	3041	3055	3146	3045	3082	
Ions	3539	3561	3719	3566	3594	
Identifications	3726	3775	3931	3774	3805	
Semi/Tryp Peps	0.006	0.006	0.008	0.008	0.008	
Semi/Tryp Cnts	0.006	0.006	0.007	0.008	0.008	
				l .	l	j

Semi/Tryp Abund	0.01	0.009	0.007	0.011	0.006
Miss/Tryp Peps	0.269	0.255	0.258	0.273	0.27
Miss/Tryp Cnts	0.287	0.275	0.28	0.298	0.288
Miss/Tryp Abund	0.288	0.257	0.266	0.3	0.278
Net Oversample	1.23	1.24	1.26	1.25	1.24
Ions/Peptide	1.16	1.17	1.18	1.17	1.17
IDs/Peptide	1.23	1.24	1.25	1.24	1.23
Middle Peptide Re	tantian Mina	Davied (min	.)		
Half Period	32.62	33.94	34.3	35 30	34.62
				35.29	
Start Time	48.55	46.85	47.6	46.9	46.79
Mid Time	62.38	61.42	61.76	62.55	61.95
Qratio Time	1.36	1.33	1.42	1.25	1.28
MS2 scans	4840	5084	5131	5323	5207
MS1 Scans	633	652	664	692	676
Pep ID Rate	46.62	45.01	45.86	43.14	44.52
ID Rate	55.22	54.68	55.86	51.91	52.78
ID Efficiency	0.37	0.37	0.37	0.34	0.35
MS1 During Middle	(and Farly)	Pentide Pet	ention Deri	od.	
S/N Median	99.3	116	117.5	108.3	108.5
TIC Median/1000	164104	222292	224154	285832	265984
Npeaks Median	960	987	985	1008	1000
Scan-to-Scan	1.059	1.061	1.058	1.06	1.061
S2S-3Q/Med	1.695	1.664	1.677	1.718	1.706
S2S-1Qrt/Med	0.817	0.835	1.144	0.914	0.85
S2S-2Qrt/Med	0.997	1.014	1.108	1.028	1.037
	1.02	0.923	0.935	0.881	0.993
S2S-3Qrt/Med S2S-4Qrt/Med	0.918	0.923	1.042	1.012	0.993
ESI Off Middle	0.910	0.849	1.042	0	0.841
ESI Off Early			_	-	
-	0	0	0	0	0
Max MS1 Jump	1.36	1.41	1.82	1.41	1.4
Max MS1 Fall	1.4	1.28	1.83	1.37	1.35
MS1 Jumps >10x	0	0	0	0	0
MS1 Falls >10x	0	0	0	0	0
MS1 Total Ion Cur	rent For Dif	ferent RT Pe	eriods		
1st Quart ID	0.13	0.12	0.12	0.14	0.12
Middle ID	0.22	0.24	0.23	0.28	0.25
Last ID Quart	0.67	0.66	0.63	0.72	0.63
To End of Run	0.33	0.34	0.37	0.72	0.37
	0.33	5.51	0.57	5.20	3.37

Total Ion Current	For IDs at	Peak Maxima			
Med TIC ID/1000	140438	189625	188495	241630	227245
InterQ TIC	2.32	1.89	1.91	2.29	2
Mid InterQ TIC	2.32	1.89	1.91	2.29	2
Precursor m/z for	IDs				
Median	612.59	622.82	625.28	649.34	643.34
Half Width	289.59	280.78	288.99	296.63	292.79
Quart Ratio	1.614	1.586	1.604	1.601	1.596
Precursor Min	303.2	303.2	303.7	300.7	304.2
Precursor Max	1465.7	1656.4	1484.2	1655.9	1655.9
Med @ Q1 TIC	749.4	717.4	731.7	754.1	738.7
Med @ Q4 TIC	486.2	497.8	501.7	497.8	500.3
Med @ Q1 RT	478.7	481.8	481.8	487.3	487.7
Med @ Q4 RT	825.7	811.2	826.4	846.4	841.4
Med Charge +1	797.4	787.9	802.8	800.4	802.4
Med Charge +2	605.8	616.3	616.3	632.3	625.8
Med Charge +3	631.3	642.7	645	675	671.3
Med Charge +4	640.3	617.8	653.1	677.1	664.3
Number of Ions vs					
Charge +1	9	9	17	10	17
Charge +2	2252	2388	2444	2340	2378
Charge +3	1079	992	1071	1020	1026
Charge +4	198	171	186	195	172
Charge +5	1	1	1	1	1
Averages vs RT fo:	r IDed Pept	ides			
Length Q1	9.62	9.59	9.52	9.62	9.53
Length Q4	20.14	19.57	19.9	20.53	20.31
Charge Q1	2.2	2.16	2.16	2.16	2.14
Charge Q4	2.66	2.6	2.6	2.65	2.64
Precursor m/z - Pe	eptide Ion	m/z (+2 Char	ge Only, Rej	ect >0.45 m/	z)
Spectra	2168	2271	2302	2221	2247
Median	-0.0011	-0.0004	0	-0.0005	-0.0004
Mean Absolute	0.0063	0.0083	0.0097	0.0069	0.0071
ppm Median	-2.02	-0.75	0	-0.95	-0.64
ppm InterQ	3.36	3.39	3.44	3.49	3.42

Ion IDs by Charge	State (Relat	tive to +2)			
+2 Ion Count	2252	2388	2444	2340	2378
Charge +1	0.004	0.004	0.007	0.004	0.007
Charge +2	1	1	1	1	1
Charge +3	0.479	0.415	0.438	0.436	0.431
Charge +4	0.088	0.072	0.076	0.083	0.072
Average Peptide Le	angths for Di	ifforent Cha	argo Statos		
	7	7.67	7.53	7.4	7.41
Charge +1	·				
Charge +2	11.75	11.83	11.84	12.05	11.97
Charge +3	17.07	17.14	17.25	17.93	17.85
Charge +4	22.74	22.3	23.04	23.89	23.38
Average Peptide Le	engths For Ch	narge 2 for	Different N	umbers of Mo	bile Protons
NAA,Ch=2,MP=-1	12.62	11.85	12.19	11.9	11.91
NAA,Ch=2,MP=0	11.8	11.68	11.77	11.85	11.73
NAA,Ch=2,MP=1	11.71	11.88	11.85	12.13	12.06
NAA,Ch=2,MP=2	19	20.67	20	21	18.67
Numbers of Ion Ids	s at Differer	nt Charges w	ith 1 Mobile	e Proton	
Ch=1 MP=1	2	2	2	1	2
Ch=2 MP=1	1633	1667	1717	1606	1629
Ch=3 MP=1	713	662	723	673	691
Ch=4 MP=1	119	119	120	122	109
Percent of IDs at	Different Ch	narges and M	Mobile Proto	ns Relative	to IDs with
Proton					
Ch=1 MP=-1	50	50	100	300	150
Ch=1 MP=0	300	300	650	600	600
Ch=1 MP=1	100	100	100	100	100
Ch=2 MP=-1	2.8	3.2	3.1	3.9	4.1
Ch=2 MP=0	35	39.8	39	41.4	41.4
Ch=2 MP=1	100	100	100	100	100
Ch=3 MP=-1	4.5	3	3	3.6	3.9
Ch=3 MP=0	39.4	39	37.3	41	38.4
Ch=3 MP=1	100	100	100	100	100
Precursor m/z - Mo	noigotono E	ragt m/s			
	,		1616	1 E O O	1610
More Than 100	1391	1559	1616	1582	1618
Betw 100.0-50.0	1124	1157	1168	1162	1136
Betw 50.0-25.0	761	651	739	140	163
Betw 25.0-12.5	246	183	182	149	163

Betw 12.5-6.3 Betw 6.3-3.1	16	11	14	7	10					
			11	,	10					
Do+ 2 1 1 C	1	0	0	0	0					
Betw 3.1-1.6	0	0	0	0	0					
Betw 1.6-0.8	0	0	0	0	0					
Top Half	22	2	4	13	10					
Next Half (2)	90	63	53	81	102					
Next Half (3)	335	208	185	277	338					
Next Half (4)	756	596	532	723	772					
Next Half (5)	1135	984	1036	1094	1153					
Next Half (6)	853	1101	1167	979	872					
Next Half (7)	315	502	600	358	309					
Next Half (8)	0	0	0	0	0					
MS2 ID Spectra										
NPeaks Median	427	454	458	485	474					
NPeaks InterQ	1.54	1.5	1.49	1.55	1.51					
S/N Median	79.33	87.12	86.38	89.08	89.78					
S/N InterQ	3.14	3.2	3.14	3.13	3.19					
ID Score Median	0.55	0.554	0.55	0.552	0.554					
ID Score InterQ	0.117	0.12	0.119	0.122	0.124					
IDSc Med Q1Msmx	0.561	0.571	0.567	0.575	0.571					
MS1 ID Max										
Median	1202701	1477312	1479548	1821886	1772069					
Half Width	2174033	2750052	2661805	3400904	3181242					
Quart Ratio	5.15	5	4.97	5.15	4.94					
Median MidRT	1516479	1828956	1803880	2407164	2156945					
75/25 MidRT	4.3	4.5	4.4	4.3	4.4					
95/5 MidRT	34.5	36	33.4	35.3	34.2					
75/25 Pctile	5.2	5	5	5.1	4.9					
95/5 Pctile	62.7	63.7	62.8	68.6	64.4					
Fraction of MS2 Id	lentified a	t Different	MS1max Quart	iles						
ID Fract Q1	0.491	0.48	0.484	0.453	0.474					
ID fract Q2	0.38	0.381	0.377	0.346	0.368					
ID Fract Q3	0.316	0.319	0.331	0.308	0.302					
ID Fract Q4	0.295	0.272	0.299	0.259	0.27					
		MS1 ID Abund at MS2 Acquisition								
MS1 ID Abund at MS	32 Acquisit	ion								
MS1 ID Abund at MS Median Half Width	52 Acquisit 555319 796075	ion 673623	693291	871913	833839					

75/25 Pctile	3.9	3.5	3.7	3.6	3.5
95/5 Pctile	32	30.8	30.2	31.6	31.1
MS2 ID Abund Repor	rted				
Median	15731	16961	16706	19577	18539
Half Width	15044	18065	17818	18401	19024
75/25 Pctile	2.5	2.7	2.7	2.4	2.6
95/5 Pctile	10.4	12	11.7	12.2	11.9
Max Peak Width for	IDs (sec)				
Median Value	75.3	74.04	74.46	75.3	74.64
Third Quart	93.78	93	94.02	93.78	93.9
Last Decile	119.4	120.66	121.8	122.1	121.98
Peak Width at Half	Height for	IDs			
Median Value	19.86	19.8	20.1	19.86	19.68
Med Top Quart	20.46	20.58	20.58	20.52	20.58
Med Top 16th	20.76	21.18	20.64	21.12	20.7
Med Top 100	21.3	20.88	21.06	22.44	20.88
Median Disper	6.12	7.02	7.02	6.9	6.9
Med Quart Disp	5.04	5.82	5.46	5.46	5.76
Med 16th Disp	5.22	5.1	5.22	6	5.28
Med 100 Disp	4.98	5.64	6.36	7.56	5.52
3Quart Value	23.4	23.76	24.06	23.7	23.7
9Dec Value	29.46	30.72	30.42	30.96	31.32
MS1 Interscan/s	3.09	3.12	3.1	3.06	3.07
MS1 Scan/FWHM	6.42	6.34	6.49	6.49	6.41
IDs Used	3508	3526	3687	3518	3558
Peak Widths at Hal	lf Max over H	RT deciles	for IDs		
First Decile	16.08	14.58	15.66	14.94	15.24
Median Value	20.34	19.98	19.62	19.62	18.78
Last Decile	21.3	21.9	22.02	22.26	22.38
Nearby Resampling	of IDs - Ove	ersampling	Details		
Repeated IDs	187	214	212	208	211
Med RT Diff/s	62.46	63.6	63.18	63.24	63
1Q RT Diff/s	60.06	60.84	60.54	60.72	60.24
1Dec RT Diff/s	11.1	31.56	20.22	10.08	10.44
Median dm/z	0	0.01	0	0	0.01
Quart dm/z	0	0	0	0	0

Wide RT Difference	es for IDs (> 4 min)				
Peptides	27	30	28	30	22	
Spectra	84	112	105	104	91	
Fraction of Repea	t Peptide ID	s with Diver	gent RT (RT	vs RT-best 1	ID) - Chromat	ograph
'Bleed' - 4 min	0.0027	0.0034	0.0031	0.0042	0.0026	
+ 4 min	0.0051	0.0109	0.0071	0.0064	0.0058	
Early and Late RT	Oversamplin	g (Spectrum)	IDs/Unique P	eptide IDs)	- Chromatog	caphic:
Flow Through/Bleed	d					
First Decile	0.978	0.979	0.97	0.99	1.011	
Last Decile	1.153	1.252	1.202	1.237	1.215	
Peptide Ion IDs b	y > 3 Spectr	a (Hi) vs 1	-3 Spectra (Lo) - Extrem	ne Oversampli	ing
Pep Ions (Hi)	7	8	9	10	10	
Ratio Hi/Lo	0.002	0.002	0.002	0.003	0.003	
Spec Cnts (Hi)	32	56	55	50	53	
Ratio Hi/Lo	0.009	0.015	0.014	0.013	0.014	
Spec/Pep (Hi)	4.571	7	6.111	5	5.3	
Spec Cnt Excess	0.003	0.008	0.007	0.005	0.006	
Ratios of Peptide	Tana IDad b	Different 1	Alimbara of C		and the same	
Once/Twice	28.24	26.18	26.96	28.42	26	easure
Twice/Thrice	5.71	7.22	7.76	5	7.33	
TWICE/ IIII ICC	3.71	7.22	7.70	3	7.55	
Single Spectrum Pe	 eptide Ion I	dentification	ns - Oversam	pling Measur	re	
Peptide Ions	3389	3403	3559	3410	3432	
Fract >1 Ions	0.04	0.04	0.04	0.04	0.04	
1 vs >1 PepIon	22.74	21.68	22.38	22	21.32	
1 vs >1 Spec	10.12	9.2	9.62	9.42	9.25	
MS1max/MS1sampled	Abundance R	atio IDs - I	nefficient S	ampling	1	
Median All IDs	1.78	1.79	1.78	1.74	1.81	
3Q All IDs	3.22	3.3	3.3	3.2	3.31	
9Dec All IDs	6.73	7.03	6.9	6.87	6.73	
Med Top 100	11.56	9.39	10.61	8.6	11.2	
Med Top Dec	6.03	6.03	6.19	5.46	6	
Med Top Quart	3.75	3.91	3.81	3.93	3.92	
Med Bottom 1/2	1.43	1.39	1.38	1.36	1.41	
RT(MS1max)-RT(MS2) for IDs (s	ec)				

Med Diff Abs	9	9	9	9	9	
Median Diff	7	6	6	7	7	
First Quart	0	-1	-1	0	0	
Third Quart	12	11	11	11	11	
Ion Injection Time	es for IDs	(ms)	L			
MS1 Median	49	38	39	29	30	
MS1 Maximum	144	131	158	111	118	
MS2 Median	100	100	100	100	100	
MS2 Maximun	100	100	100	100	100	
MS2 Fract Max	0.873	0.82	0.815	0.721	0.76	
Relative Fraction	of Peptide	s in Retenti	on Decile Ma	tching a Pep	tide in Othe	r Runs
All Deciles	0.658	0.655	0.636	0.657	0.649	
First Decile	1.095	1.129	1.159	1.185	1.168	
Last Decile	0.059	0.126	0	0	0	
Comp to First	0	0.658	0.658	0.658	0.658	
Comp to Last	0.649	0.649	0.649	0.649	0	
Relative Uniquenes	ss of Pepti	des in Decil	e Found Anyw	here in Othe	r Runs	
First Decile	1.1	1.13	1.16	1.19	1.17	
Last Decile	0.06	0.13	0	0	0	
Differences in El	ution Rank	(Percent) of	Matching Pe	ptides in Ot	her Runs	
Average Diff	0.998	0.914	0.987	0.973	0.947	
Median Diff	0.295	0.293	0.288	0.278	0.269	
Comp to First	0	0.325	0.327	0.26	0.269	
Comp to Last	0.231	0.322	0.293	0.232	0	
Median Ratios of I	MS1 Intensi	ties of Matc	hing Peptide	s in Other R	uns	
Median Diff	1.39	1.359	1.345	1.354	1.339	
Median*2 Diff	1.84	1.789	1.778	1.775	1.743	
Comp to First	0	1.423	1.401	1.357	1.379	
Comp to Last	1.379	1.341	1.32	1.315	0	
Comp to First*2	0	1.918	1.875	1.772	1.796	
Comp to Last*2	1.796	1.754	1.724	1.696	0	
Uncorrected and R	r Corrected	Relative In	tensities of	Matching Pe	ptides in Otl	ner Runs
Uncor rel First	0	0	0	0	0	
Uncor rel Last	0	0	0	0	0	
Corr rel First	0	0	0	0	0	

Corr rel Last	0	0	0	0	0	
Magnitude of RT Co	rrection of	Intensitie	s of Matchin	g Peptides i	n Other Runs	
Comp to First	0	0	0	0	0	
Comp to Last	0	0	0	0	0	
Top Ion Abundance	Measures					
Top 10% Abund	20	20	22	22	22	•
Top 25% Abund	89	85	92	91	94	•
Top 50% Abund	359	354	376	368	371	
Fractab Top	0.009	0.009	0.009	0.01	0.008	
Fractab Top 10	0.062	0.064	0.058	0.057	0.057	
Fractab Top 100	0.268	0.274	0.262	0.263	0.259	
End Series=1						
ENG Series=1						
End Runseries Resu	ılts					

Other Details:

Search engine thresholds for peptide/compound identification

The implemented values are empirical approximations of a 1% false discovery rate threshold on the peptide spectrum match (PSM) level. These are approximate values and should NOT be considered exact. An analysis of decoy matches or other statistical evaluation should be performed as needed if a more precise, dataset-specific threshold is desired. In the current version, threshold values cannot be adjusted without modifying source code. This may become an option for each search engine in a later release.

Search Engine	Score	Value
MSPepSerach	Score	450
OMSSA	E-value	0.1
SpectraST	Fval	0.45

OMSSA Searches

OMSSA searches are run using the iterative searching option -is <threshold as indicated above>. This option performs a semitryptic search of spectra scoring poorly or not at in a preliminary fully tryptic search. In the semitryptic iteration, only protein sequences with at least one fully tryptic matching peptide with an E-value scoring better than threshold are considered as candidates.

Metrics Reporting All Zeroes

Currently, the following two metrics report no values:

Median Ratios of MS1 Intensities of Matching Peptides in Other Runs Magnitude of RT Correction of Intensities of Matching Peptides in Other Runs

Values for these inter-run metrics will be added in a future release.

Commercial implementations of NISTMSQC or its components

MassQC - Proteome Software, Inc. (http://www.massqc.com/)

SpecMSMS - BioProximity (http://specmsms.com/)

Footnote:

Certain commercial equipment, instruments, or materials are identified in this document. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose.