Greining Rása

Jafngildisrásir

Ólafur Bjarki Bogason

 $1.\ {\rm febrúar}\ 2021$

Línuleg kerfi/rásir

- Samband innmerkis og útmerkis er stundum skrifað y = S(x)
- Tvö innmerki x_1 og x_2 ; Tvö samsvarandi útmerki $y_1 = S(x_1)$ og $y_2 = S(x_2)$
- Fyrir **línuleg kerfi** gildir

$$\alpha y_1 + \beta y_2 = S(\alpha x_1 + \beta x_2)$$

fyrir alla stuðla α og β

• Dæmi um línuleg kerfi eru viðnám, þéttar og spólur

Samlagningareiginleiki

- Rás sem samanstendur af viðnámum, þéttum, spólum, stýrðum lindum er línuleg rás/kerfi
- Í línulegri rás með fleiri en einni óháðari lind, þá má reikna útmerki (spennu eða straum) í rás með því að leggja saman tillegg óháðu lindanna hverrar fyrir sig þegar hinar lindirnar eru núllstilltar.

- Tveggja póla rásir (tvípólar) eru kallaðar jafngildar miðað við pólana (a-b) ef sami straumur streymir inn í báðar rásir þegar sama spenna er á milli pólanna; eða öfugt.
- Dæmi um slíkar jafngildisrásir eru jafngildisviðnám fyrir hliðtengingar og raðtengingar viðnáma.

 Thévenin og Norton sýndu fram á að rás sem inniheldur línuleg viðnám og lindir (spennu eða straum, stýrðar eða óháðar) hefur jafngildisrásir á forminu:

- Til að finna $v_{\rm Th}$, $R_{\rm Th}$, $i_{\rm N}$ og $R_{\rm N}$ höfum við rásirnar fyrst ótengdar (ytra viðnám $R_L=\infty$). Þá er augljóst að i=0 og spennurnar $V_{\rm oc}$ eru þær sömu.
- ullet Köllum spennuna $V_{
 m oc}$ tómgangsspennuna. Sjáum að

$$V_{\rm oc} = V_{\rm Th} = I_{\rm N} R_{\rm N}$$

- Síðan skammhleypum við milli pólanna a og b (ytra viðnám $R_L=0$). Þá er v=0 og straumurinn $I_{\rm sc}$ rennur frá a til b
- \bullet Köllum strauminn $I_{\rm sc}$ skammhlaupsstraum
- Sjáum að

$$I_{\rm sc} = I_{\rm N} = \frac{V_{\rm Th}}{R_{\rm Th}}$$

Berum saman ofangreindar jöfnur og sjáum að

$$R_{\rm Th} = R_{\rm N} \equiv R_{eq}$$

- 1. Spennulindin í Thévenin-rásinni er tómgangsspenna rásarinnar $V_{\rm Th} = V_{\rm oc}$
- 2. Straumlindin í Norton-rásinni er skammhlaupsstraumur rásarinnar $I_{\rm N}=I_{\rm sc}$
- 3. Raðtengda viðnámið í Thévenin-rásinni er jafnstórt og hliðtengda viðnámið í Norton-rásinni $R_{\rm Th}=R_{\rm N}$. Það er oft kallað **útgangsviðnám** R_o og stundum **jafngildisviðnám** R_{eq}
- 4. Lögmál Ohms tengir saman tómgangs- spennuna, skammhlaupsstrauminn og útgangsviðnámið

$$V_{\rm oc} = I_{\rm sc} R_{\rm Th} = I_{\rm sc} R_{\rm N}$$

- Einnig sjáum við að ef spennulindin í Thévenin-rásinni er núllstillt (skammhlaup) þá er $R_{\rm Th}$ það viðnám sem við sjáum á milli pólanna
- Sama gildir um Norton rásina; ef straumlindin er núllstillt (opin rás) þá er $R_{\rm N}$ það viðnám sem við sjáum á milli pólanna

Fyrir hvaða rás sem er (viðnám og lindir) má finna jafngildis útgangsviðnám:

- 1. Núllstilla allar óháðar lindir
 - setja skammhlaup fyrir spennulind
 - opna rás fyrir straumlind
- 2. Finna jafngildisviðnám milli pólanna.

Algengasta leiðin er að setja 1 A prufustraum inn á rásina (milli pólanna) og finna hver spennan verður á milli pólanna. Sú spenna er þá tölulega jafnstór og jafngildisviðnámið, þ.e

$$R_{\rm Th} = \frac{V_{\rm o} [V]}{1 [A]} = V_{\rm o} [\Omega]$$

- Til að finna Thévenin- og Norton-jafngildisrásir fyrir tiltekna rás er nægilegt að finna tvær af stærðunum þremur $R_{\rm Th},\,V_{\rm oc}$ og $I_{\rm sc}.$
- Athuga ber að Thévenin- og Norton- jafngildisrásir eru aðeins jafngildar miðað við pólana (a og b); þær segja ekkert um hvað gerist inni í rásinni, t.d. afltöp.

Skoðum nú I-V kennilínur Thévenin- og Norton-rásanna.

Spennan v í Thévenin-rásinni fæst samkvæmt KVL:

$$v = V_{\rm oc} - iR_{\rm o}$$

$$i = -\frac{1}{R_{\rm o}}v + \frac{V_{\rm oc}}{R_{\rm o}} = -\frac{1}{R_{\rm o}}v + I_{\rm sc}$$

sem fæst einnig með KCL út frá Norton-rásinni.

Kennilínan er því bein lína með hallatölu $-1/R_{\rm o}$ og skurðpunkt við i–ás í $i=I_{\rm sc}$.

Tengjum viðnám milli pólanna á Thévenin- rásinni og teiknum i-v kennilínu viðnámsins inn á sömu mynd og i-v kennilínu Thévenin rásarinnar.

Skurðpunktur línanna segir til um þá spennu og þann straum sem uppfyllir skilyrði beggja rásahluta og er hann jafnframt eina lausnin (v_0, i_0) .

Hvernig á að velja R_L til að hámarka aflið í R_L ?

Finnum fyrst Thévenin-jafngildisrás fyrir rásina. Finnum síðan aflið í R_L , $P_L(t)$, sem fall af R_L .

Með spennudeilingu fæst að

$$v_{\rm o}(t) = V_{\rm Th}(t) \frac{R_L}{R_{\rm Th} + R_L}$$

og alfið í R_L er

$$P_L(t) = \frac{v_o^2(t)}{R_L} = \frac{V_{\text{Th}}^2(t)}{R_L} \frac{R_L^2}{(R_{\text{Th}} + R_L)^2} = \frac{V_{\text{Th}}^2(t)R_L}{(R_{\text{Th}} + R_L)^2}$$

Diffrum með tilliti til R_L og setjum diffurkvótann núll

$$\frac{\partial P_L(t)}{\partial R_L} = 0$$

$$V_{\rm Th}^2 \frac{(R_L + R_{\rm Th})^2 - R_L 2(R_L + R_{\rm Th})}{(R_L + R_{\rm Th})^4} = 0$$
$$R_L^2 + 2R_L R_{\rm Th} + R_{\rm Th}^2 - 2R_L^2 - 2R_L R_{\rm Th} = 0$$

eða

eða

$$R_{\rm Th}^2 - R_L^2 = 0$$

og

$$R_{\rm Th} = R_L$$

Hámarksaflið verður þá

$$(P_L(t))_{\text{max}} = \frac{v_o^2}{R_L} = \frac{V_{\text{Th}}^2}{4R_{\text{Th}}}$$

kallað mesta fánlegt afl og það er fáanlegt aðeins ef álagsviðnámið R_L er aðhæft að rásinni.

• Getum endurritað

$$\frac{P_L}{V_{\rm Th}^2/R_{\rm Th}} = \frac{R_{\rm L}/R_{\rm Th}}{(1 + R_{\rm L}/R_{\rm Th})^2}$$

Aflnýtni

• Aflnýtni er afl sem eyðist í álagi deilt með heildarafli sem flutt er til rásar

$$\frac{P_L}{P_{heild}} = \frac{I^2 R_L}{I^2 (R_L + R_{Th})}$$
$$= \frac{R_L}{R_L + R_{Th}}$$