

# 7.1 Hypothesis Testing Using Excel (see below for LibreOffice)

## The Related Samples T Test

## Example 7.1

Consider the container design data in Data Set F (see the Data Annexe). Notice that the two variables Con1 and Con 2 indeed measure the same characteristic (the number of items sold), but under two different "conditions" (the two different container designs).

We conduct a two-tailed related samples t test of whether the underlying (population) mean number of items sold differs between the two container designs.

Strictly speaking, before undertaking the test we should calculate the differences D = Con1 - Con 2 for each observation. A normal plot of these differences (i.e., of the values of the variable D) should then be constructed in order to check whether the data are acceptably near-normally distributed.

We will assume for now that the data are indeed so distributed so that the resulting t test is valid. You might want to construct the normal plot as an additional exercise. (Ensure you save your answers in the Exercise sheets for your submission.)

## Exa 7.4F.xlsx

- 1. Open the Excel workbook **Exa-8.4F.xlsx** from the Examples folder. This contains the relevant data.
- From the Data menu bar tab, select Data Analysis from the Analysis group, and from the
  ensuing dialogue box, select t test: Paired Two Sample for Means. A new dialogue box
  appears.
- 3. In the **Variable 1 Range** box, enter the cell range where the data for the first variable (Con1) can be found, including the variable name, that is, the range B1:B11. In the **Variable 2 Range** box, enter the cell range where the data for the second variable (Con2) can be found, including the variable name, that is, the range C1:C11. Ensure that the **Labels** box is checked.



- 4. Type:0 in the **Hypothesised Mean Difference** box. This represents the null hypothesis of no difference between the treatment means.
- 5. Ensure that the **Alpha** box contains the value 0.05. This is only of marginal relevance, as we shall make direct use of the p-value that will be output.
- 6. Select the **Output Range** button, and in the corresponding box, enter the cell reference E1. Click the **OK** button. Some output appears in your spreadsheet. Widen columns E, F and G so that all the text becomes readable.
- 7. In cell E16, type: Difference in Means, and in cell F16, enter the formula **=F4-G4**.

The resulting output is presented below.

Not all this output is relevant, so it need not all be discussed.

The obtained related samples t = 2.875 with 9 degrees of freedom.

The associated two-tailed p-value is p = 0.018, so the observed t is significant at the 5% level (two-tailed).



| t-Test: Paired Two Sample    | for Means   |             |
|------------------------------|-------------|-------------|
|                              | Con1        | Con2        |
| Mean                         | 172.6       | 159.4       |
| Variance                     | 750.2666667 | 789.3777778 |
| Observations                 | 10          | 10          |
| Pearson Correlation          | 0.863335004 |             |
| Hypothesised Mean Difference | 0           |             |
| df                           | 9           |             |
| t Stat                       | 2.874702125 |             |
| P(T<=t) one-tail             | 0.009167817 |             |
| t Critical one-tail          | 1.833112923 |             |
| P(T<=t) two-tail             | 0.018335635 |             |
| t Critical two-tail          | 2.262157158 |             |
|                              |             |             |
| Difference in Means          | 13.2        |             |

The data therefore constitute strong evidence (on a one-tailed test) that the underlying mean number of containers sold was greater for Design 1, by an estimated 172.6 - 159.4 = 13.2 items per store. The results continue to suggest that Design 1 should be preferred. Although broadly similar conclusions were reached as before, a higher level of significance was obtained with the one-tailed test.

Notice that if we had sought to test the alternative pair of one-tailed hypotheses  $H_0$ :  $\mu_1 \ge \mu_2$  against  $H_1$ :  $\mu_1 < \mu_2$  we would have found the difference in sample means to be consistent with the *null hypothesis* that the population mean sales for Design 2 was no greater than that for Design 1. We would thus have declared the result to be not significant without even bothering to inspect the p-value.



### Exercise 7.1

Recall that in the previous unit exercises, a two-tailed test was undertaken whether the population mean impurity differed between the two filtration agents in Data Set G. **Exe 8.4G.xlsx** 

Suppose instead a one-tailed test had been conducted to determine whether Filter Agent 1 was the more effective. What would your conclusions have been?

## The INDEPENDENT Samples T Test

Consider again Data Set B, the dietary data. Not unreasonably, we wish to test whether the population mean weight loss differs between the two diets. Since separate samples of individuals undertook the two diets (i.e., no-one underwent both diets), the independent samples t test is appropriate here.

### Exa 7.6B.xlsx

- 1. Open the Excel workbook **Exa 8.6B.xlsx** from the Examples folder. This contains the relevant data, together with some of the previously calculated summary statistics for the weight loss on each diet.
  - We begin by performing the F test of variances.
- 2. From the **Data** menu bar tab, select **Data Analysis** from the **Analysis** group, and from the ensuing dialogue box, choose **F-test Two-Sample for Variances** and click **OK**. A further dialogue box opens.
- 3. In the **Variable 1 Range** box, enter the cell range where the Diet A weight losses can be found (B2:B51), and in the **Variable 2 Range** box, enter the cell range where the Diet B weight losses can be found (B52:B101). Ensure that the **Labels** option is unchecked.
- 4. In the **Alpha** box, ensure that 0.05 is entered (although this is relatively unimportant as we are going to use p-values). Click the **Output Range** button and enter the cell reference H3 in the corresponding box. Then click **OK**.
- 5. Some output appears. Widen columns H to J to render it legible. In cell H14, type: p2, and in cell I14, enter the formula: =2\*I11 to obtain the required two-tailed p-value.



The relevant output is as follows:

| F-Test Two-Sample for | or Variances |            |
|-----------------------|--------------|------------|
|                       | Variable 1   | Variable 2 |
| Mean                  | 5.3412       | 3.70996    |
| Variance              | 6.429280612  | 7.66759359 |
| Observations          | 50           | 50         |
| df                    | 49           | 49         |
| F                     | 0.838500442  |            |
| P(F<=f) one-tail      | 0.269951479  |            |
| F Critical one-tail   | 0.622165467  |            |
|                       |              |            |
| p2                    | 0.5399       |            |

The sample variances for the two diets are, respectively  $s_1^2 = 6.429$  **and**  $s_2^2 = 7.668$ . The observed F test statistic is F = 0.839 with 49 and 49 associated degrees of freedom, giving a two tailed p-value of p =  $0.5399^{\rm NS}$ .

The observed F ratio is thus *not significant*. The data are consistent with the assumption that the population variances underlying the weight losses under the two diets do not differ, and we therefore proceed to use the *equal variances* form of the unrelated samples t test.

Since we wish to test if the population mean weight losses differ between the two diets, a two-tailed t test is appropriate here.

From the Data menu bar tab, select Data Analysis from the Analysis group, and from the
ensuing dialogue box, choose t-test: Two-Sample Assuming Equal Variances and click OK. A
further dialogue box opens.



- 2. In the **Variable 1 Range** box, enter the cell range where the Diet A weight losses can be found (B2:B51), and in the **Variable 2 Range** box, enter the cell range where the Diet B weight losses can be found (B52:B101). Ensure that the **Labels** option is unchecked.
- 3. Type: 0 in the **Hypothesised Difference** box. In the **Alpha** box, ensure that 0.05 is entered (although this is relatively unimportant as we are going to use p-values). Click the **Output Range** button and enter the cell reference H17 in the corresponding box. Then click **OK**.
- 4. Some output appears. Widen columns H to J to render it legible.
- 5. In cell H32, type: Difference in Means, and in cell I32, enter the formula **=120-J20**. The output is as follows:

| t-Test: Two-Sample Assum     | ning Equal Variances |            |
|------------------------------|----------------------|------------|
|                              | Variable 1           | Variable 2 |
| Mean                         | 5.3412               | 3.70996    |
| Variance                     | 6.429280612          | 7.66759359 |
| Observations                 | 50                   | 50         |
| Pooled Variance              | 7.048437101          |            |
| Hypothesized Mean Difference | 0                    |            |
| df                           | 98                   |            |
| t Stat                       | 3.072143179          |            |
| P(T<=t) one-tail             | 0.001375772          |            |
| t Critical one-tail          | 1.660551218          |            |
| P(T<=t) two-tail             | 0.002751544          |            |
| t Critical two-tail          | 1.984467404          |            |
|                              |                      |            |
| Difference in means          | 1.63124              |            |



The obtained independent samples t = 3.072 with 98 degrees of freedom. The associated two-tailed p-value is p = 0.0028, so the observed t is significant at the 1% level (two-tailed). The sample mean weight losses for Diets A and B were, respectively, 5.341 kg and 3.710 kg.

The data therefore constitute strong evidence that the underlying mean weight loss was greater for Diet A, by an estimated 5.314 - 3.710 = 1.631 kg. The results strongly suggest that Diet A is more effective in producing a weight loss.

## Exercise 7.2

Consider the bank cardholder data of Data Set C. Open the Excel workbook **Exa8.6C.xlsx** which contains this data from the Exercises folder. **Exe 8.6C.xlsx** 

Assuming the data to be suitably distributed, complete an appropriate test of whether the population mean income for males exceeds that of females and interpret your findings. What assumptions underpin the validity of your analysis, and how could you validate them?



# Hypothesis Testing Using LibreOffice

## The Related Samples T Test

Consider the container design data in Data Set F (see the Data Annexe). Notice that the two variables Con1 and Con 2 indeed measure the same characteristic (the number of items sold), but under two different "conditions" (the two different container designs).

We conduct a two-tailed related samples t test of whether the underlying (population) mean number of items sold differs between the two container designs.

Strictly speaking, before undertaking the test we should calculate the differences D = Con1 - Con 2 for each observation. A normal plot of these differences (i.e., of the values of the variable D) should then be constructed in order to check whether the data are acceptably near-normally distributed.

We will assume for now that the data are indeed so distributed so that the resulting t test is valid. You might want to construct the normal plot as an additional exercise. (Ensure you save your answers in the Exercise sheets for your submission.)

- 1. Open the Excel workbook **Exa 8.4F.xlsx** from the Examples folder. This contains the relevant data.
- 2. From the **Data** menu bar tab, select **Statistics** and from the ensuing dialogue box, select **Paired t-test**. A new dialogue box appears.
- 3. In the **Variable 1 Range** box, enter the cell range where the data for the first variable (Con1) can be found, that is, the range B2:B11. In the **Variable 2 Range** box, enter the cell range where the data for the second variable (Con2) can be found, that is, the range C2:C11.
- 4. Put the results in the cell.



The resulting output is presented below. Not all this output is relevant, so it need not all be discussed. The obtained related samples t = 2.875 with 9 degrees of freedom. The associated two-tailed p-value is p = 0.018, so the observed t is significant at the 5% level (two-tailed).

| Paired t-test                |            |            |
|------------------------------|------------|------------|
| Alpha                        | 0.05       |            |
| Hypothesized Mean Difference | 0          |            |
|                              | Variable 1 | Variable 2 |
| Mean                         | 172.600    | 159.400    |
| Variance                     | 750.267    | 789.378    |
| Observations                 | 10.000     | 10.000     |
| Pearson Correlation          | 0.863      |            |
| Observed Mean Difference     | 13.200     |            |
| Variance of the Differences  | 210.844    |            |
| df                           | 9.000      |            |
| t Stat                       | 2.875      |            |
| P (T<=t) one-tail            | 0.009      |            |
| t Critical one-tail          | 1.833      |            |
| P (T<=t) two-tail            | 0.018      |            |
| t Critical two-tail          | 2.262      |            |
|                              |            |            |

The sample mean numbers of items sold for Container Designs 1 and 2 were, respectively 172.6 and 159.4. The data therefore constitute significant evidence that the underlying mean number of containers sold was greater for Design 1, by an estimated 172.6-159.4 = 13.2 items per store. The results suggest that Design 1 should be preferred.



### Exercise 7.3

Consider the filtration data of Data Set G. Open the Excel workbook **Exa8.4G.xlsx** which contains these data from the Exercises folder.

Assuming the data to be suitably distributed, complete a two-tailed test of whether the population mean impurity differs between the two filtration agents, and interpret your findings.

## **The One-Tailed Test**

## Example 7.4

Recall that we conducted a two-tailed related samples t test of whether the underlying (population) mean number of items sold differs between the two container designs of data Set F.

However, now suppose that Container Design 1 is a new, hopefully more attractive design, whereas Container Design 2 is the design in current use. Presumably, the company will only go to the expense of implementing the new design if it can be shown to lead to higher sales than the current design.

Thus, the investigators seek evidence that  $\mu_1 > \mu_2$ , so wish to test:  $\mathbf{H_0}$ :  $\mu_1 \le \mu_2$  against  $\mathbf{H_1}$ :  $\mu_1 > \mu_2$ . The relevant t test is conducted exactly as before. However, this time, the results are interpreted a little differently.

We first check whether the data are consistent with the one-tailed alternative hypothesis. As before, the sample mean numbers of items sold for Container Designs 1 and 2 were, respectively 172.6 and 159.4, so that the data are indeed consistent with  $H_1$ .

As before, the obtained related samples t = 2.875 with 9 degrees of freedom. The associated one-tailed p-value is p = 0.009, so the observed t is significant at the 1% level (one-tailed).



| t-Test: Paired Two Sample    | for Means   |             |
|------------------------------|-------------|-------------|
|                              | Con1        | Con2        |
| Mean                         | 172.6       | 159.4       |
| Variance                     | 750.2666667 | 789.3777778 |
| Observations                 | 10          | 10          |
| Pearson Correlation          | 0.863335004 |             |
| Hypothesised Mean Difference | 0           |             |
| df                           | 9           |             |
| t Stat                       | 2.874702125 |             |
| P(T<=t) one-tail             | 0.009167817 |             |
| t Critical one-tail          | 1.833112923 |             |
| P(T<=t) two-tail             | 0.018335635 |             |
| t Critical two-tail          | 2.262157158 |             |
|                              |             |             |
| Difference in Means          | 13.2        |             |

The data therefore constitute strong evidence (on a one-tailed test) that the underlying mean number of containers sold was greater for Design 1, by an estimated 172.6 - 159.4 = 13.2 items per store. The results continue to suggest that Design 1 should be preferred.

Although broadly similar conclusions were reached as before, a higher level of significance was obtained with the one-tailed test.

Notice that if we had sought to test the alternative pair of one-tailed hypotheses  $H_0$ :  $\mu_1 \ge \mu_2$  against  $H_1$ :  $\mu_1 < \mu_2$  we would have found the difference in sample means to be consistent with the *null hypothesis* that the population mean sales for Design 2 was no greater than that for Design 1. We would thus have declared the result to be not significant without even bothering to inspect the p-value.



### Exercise 7.4

Recall that in Exercise 8.4, a two-tailed test was undertaken of whether the population mean impurity differs between the two filtration agents in Data Set G.

Suppose instead a one-tailed test had been conducted to determine whether Filter Agent 1 was the more effective. What would your conclusions have been?

# The INDEPENDENT Samples T Test

## Example 7.5

Consider again Data Set B, the dietary data. Not unreasonably, we wish to test whether the population mean weight loss differs between the two diets. Since completely separate samples of individuals undertook the two diets (i.e., no-one underwent both diets), the independent samples t test is appropriate here.

We know that such a test (and the F test that precedes it) will yield valid results, as we have already completed normal plots for the weight loss data for each of the two diets and have found both sets of data to exhibit acceptable near normality.

- Open the Excel workbook Exa 8.6B.xlsx from the Examples folder. This contains the relevant data, together with some of the previously calculated summary statistics for the weight loss on each diet. We begin by performing the F test of variances.
- 2. From the **Data** menu bar tab, select **Statistics** and from the ensuing dialogue box, choose **F-test**. A further dialogue box opens.
- 3. In the **Variable 1 Range** box, enter the cell range where the Diet A weight losses can be found (B2:B51), and in the **Variable 2 Range** box, enter the cell range where the Diet B weight losses can be found (B52:B101).
- 4. Put the results in H2.
- 5. Some output appears. Widen columns H to J to render it legible. In cell H14, type: p2, and in cell I14, enter the formula: =2\*I11 to obtain the required two-tailed p-value.



The relevant output is as follows (to 3 decimal places):

| F Test                |            |            |
|-----------------------|------------|------------|
| Alpha                 | 0.05       |            |
|                       | Variable 1 | Variable 2 |
| Mean                  | 5.341      | 3.710      |
| Variance              | 6.429      | 7.668      |
| Observations          | 50.000     | 50.000     |
| df                    | 49.000     | 49.000     |
| F                     | 0.839      |            |
| P (F<=f) right-tail   | 0.730      |            |
| F Critical right-tail | 1.607      |            |
| P (F<=f) left-tail    | 0.270      |            |
| F Critical left-tail  | 0.622      |            |
| P two-tail            | 0.540      |            |
|                       |            |            |
| F Critical two-tail   | 0.567      | 1.762      |

The sample variances for the two diets are, respectively  $s_1^2 = 6.429$  and  $s_2^2 = 7.668$ . The observed F test statistic is F = 0.839 with 49 and 49 associated degrees of freedom, giving a two tailed p-value of p =  $0.5399^{NS}$ .

The observed F ratio is thus *not significant*. The data are consistent with the assumption that the population variances underlying the weight losses under the two diets do not differ, and we therefore proceed to use the *equal variances* form of the independent samples t test.



Since we wish to test if the population mean weight losses differ between the two diets, a two-tailed t test is appropriate here.

- 1. We will use the formula **=TTEST(data1;data2;mode;type**). Here the first two are self-explanatory, **mode** indicates whether it is a 1 tailed test (1) or a two tailed test (2), **type** indicates whether it is a paired t test (1), an equal variances independent t test (2) or and unequal variances independent t test (3). This then returns the p-value for the chosen test.
- 2. As we have chosen a two tailed test then our formula will read **=TTEST(B2:B51,B52:B101,2,2)**. We have shown above that we can assume equal variances.

The output is as follows (The one tailed p-value is included for completeness):

Two-tailed 0.00275154 P-value

One-tailed 0.00137577 P-value

The associated two-tailed p-value is p = 0.0028, so the observed t is significant at the 1% level (two-tailed). The sample mean weight losses for Diets A and B were, respectively, 5.341 kg and 3.710 kg. Notice that these findings are consistent with the results of Example 3.1 and Exercise 3.1.

The data therefore constitute strong evidence that the underlying mean weight loss was greater for Diet A, by an estimated 5.314 - 3.710 = 1.631 kg. The results strongly suggest that Diet A is more effective in producing a weight loss.

#### Exercise 7.5

Consider the bank cardholder data of Data Set C. Open the Excel workbook **Exa8.6C.xlsx** which contains this data from the Exercises folder.

Assuming the data to be suitably distributed, complete an appropriate test of whether the population mean income for males exceeds that of females and interpret your findings. What assumptions underpin the validity of your analysis, and how could you validate them?