Introduction

Admin: no homework submission

Computability and Complexity

Computability

- abstract, fully known, explored
- what can be computed, what can not?
- which
 - functions can be computed?

$$f:\mathbb{N}^k o\mathbb{N}$$

o languages can be decided?

$$L\subseteq \Sigma^*$$

- o "problems" can be solved?
- with a Turing machine
- o three equivalent statements
- Cardinalities
 - How many functions

$$\mathbb{N} \to \mathbb{N}$$

uncountably many

How many

$$f:\mathbb{N} o \{0,1\}$$

■ any f can be characterized by an indicator sequence (0-0, 1-0, 2-1, 3-1, ...) → as many as natural numbers

0	1	2	3	4	•••
0	0	1	0	1	

- this is how we can characterize subsets of natural numbers (bitmask idea)
- uncountably many
- Turing machines
 - Finite transition table
 - → only countably many

Complexity

- Only concerned with computable functions / problems
- How difficult / expensive
 - o time: run length
 - o memory requirement
 - o algorithm description complexity
 - o energy consumption
 - o descriptive complexity (understanding the problem)
 - how much logic to invest in order to understand the algorithm

0

• Example functions in

$$\mathbb{N} \to \mathbb{N}$$

o super cheap:

$$f: n \mapsto 0$$

o little more expensive:

$$f: n \mapsto n$$

o more:

$$f: n \mapsto n^2$$
 $f: n \mapsto e^n$ $f: n \mapsto 0 ext{ if } n ext{ is prime - 1 if } n ext{ is not prime } f: n \mapsto ext{smallest prime factor of } n$

Example:

- suffix tree algorithm
 - o input: long string (e.g. DNA sequence)
 - o output: reordering string into a tree (suffix tree) →

$$O(n) + c$$
 (huge overhead)

o naive algorithm:

$$O(n^2)$$

- Matrix multiplication
 - Naive algorithm

$$O(n^3)$$

o Strassen's algorithm

$$O(n^{2.3\dots})+c$$

o Conjecture

$$\to O(n^{2+\epsilon})$$