NJ TRANSIT PERFORMANCE PREDICTION

•••

Dec 9, 2019

TEAM MEMBER

Siyuan Tang

ARIMA Part

Chenghao Xu

Linear Regression Part

Wenhuan Liu

Visualization Part

Mengting Yang

Facebook Prophet Part

AGENDA

INTRODUCTION

Brielfly introduce the project and the dataset

VISUALIZATION

We plot our data in and do some analysis.

PREDICTION

We use different models to predict the delay minutes based on Time Series:

- Linear Regression
- ARIMA
- Facebook Prophet

INTRODUCTION

OVERVIEW

NJ Transit is the second largest commuter rail network in the United States by ridership; it spans New Jersey and connects the state to New York City. On the Northeast Corridor, the busiest passenger rail line in the United States, Amtrak also operates passenger rail service; together, NJ Transit and Amtrak operate nearly 750 trains across the NJ Transit rail network.

Despite serving over 300,000 riders on the average weekday, no granular, trip-level performance data is publicly available for the NJ Transit rail network or Amtrak. This datasets aims to publicly provide such data.

CONTENT

This dataset contains monthly CSVs covering the performance of nearly every train trip on the NJ Transit rail network.

Stop-level, minute resolution data on 287,000+ train trips (248,000+ NJ Transit trips, 38,000+ Amtrak trips)

Coverage from November 1, 2018 to April 30, 2019 (updated monthly)

Transparent reporting on train trips for which data was missing/invalid, or that were scraped or parsed incorrectly (97.5% of train trips were correctly captured)

VISUALIZATION

Probability density Function of Delay

According to the histogram, we can know that there are some outliers with large delays

Status of trains from Nov 2018 - April 2019

Lines' relationship with delay and cancellation

line	
Bergen Co. Line	0.005272
Gladstone Branch	0.051631
Main Line	0.003927
Montclair-Boonton	0.018388
Morristown Line	0.019404
No Jersey Coast	0.019425
Northeast Corrdr	0.013485
Pascack Valley	0.006463
Raritan Valley	0.007298
dtype: fleated	

line	
Bergen Co. Line	503
Gladstone Branch	4222
Main Line	391
Montclair-Boonton	1679
Morristown Line	3200
No Jersey Coast	2960
Northeast Corrdr	2380
Pascack Valley	451
Raritan Valley	487
Name: cancelled,	dtype: int64

From the graph and the result we get, we can get the conclusion that all 9 lines has at least 25% of trips existing delay more than 5 minutes.

Also, we can see the delay and cancellation do not have much relation with different lines.

Stops' relationship with delay

From the above, we can see the stop sequence 's increasing will increase the delay time in some degree.

Origins and destinations' relationship with delay

from				
Harriman	7.798562			
North Branch	7.278237			
Campbell Hall	6.885622			
Wayne-Route 23	6.577950			
Lincoln Park	6.376451			
Mountain View	6.160504			
Lebanon	6.117999			
Tuxedo	6.051452			
Aberdeen-Matawan	5.849044			
Otisville	5.837905			
Name: delay_minutes, dtype: float64				

```
to
Salisbury Mills-Cornwall
                            7.990103
White House
                            7,192601
Mountain View
                            6.504376
Lebanon
                            6.300306
Tuxedo
                            6.229354
North Branch
                            6.175628
Little Falls
                            6.086691
Aberdeen-Matawan
                            5.943596
Hazlet
                            5.930178
Towaco
                            5.854664
Name: delay minutes, dtype: float64
```

The results show that the delay time does not have relation with origins and destinations.

Compare date with delays and cancellations to see when these delays and cancellations happen

From the graph we can see that during 2018 Nov and Dec it has two times high delays. And after our investigation, we get the reason is that because of the heavy snow.

Compare date with delays and cancellations to see when these delays and cancellations happen

From the graph we can see that the cancellation rate is high in 2018 Nov and 2019 Feb.

Compare time with delays and cancellations to see when these delays and cancellations happen

From the above we can see that the peak hour of delay is around 8pm and 1-3am.

Compare time with delays and cancellations to see when these delays and cancellations happen

From the above we can see that the peak hours of high cancellation is around 6am.

Delay report per month

PREDICTION

PREDICTION

LINEAR REGRESSION

- Implement Linear regression
- Predict the future value

ARIMA

- Make data dictionary
- Implement the model

FACEBOOK PROPHET

- Making Future Data Frames
- Trends and Patterns

Linear Regression

LINEAR REGRESSION

INTRODUCTION

Linear regression attempts to model the relationship between two variables by **fitting a linear equation** to observed data. One variable is considered to be an explanatory variable, and the other is considered to be a dependent variable. For example, a modeler might want to relate the weights of individuals to their heights using a linear regression model.

Before attempting to fit a linear model to observed data, a modeler should first determine whether or not there is a relationship between the variables of interest. This does not necessarily imply that one variable causes the other (for example, higher SAT scores do not cause higher college grades), but that there is some significant association between the two variables.

LINEAR REGRESSION

INTRODUCTION

A linear regression line has an equation of the form Y = a + bX, where X is the explanatory variable and Y is the dependent variable. The slope of the line is b, and a is the intercept (the value of y when x = 0).

Implement Linear Regression

The Linear Regression is always the first model to come up with when we need to predict some dataset. So in this case, first we need to analyze the data types and make sure it can be implemented as a linear regression model.

	date	train_id	stop_sequence	from	from_id	to	to_id	scheduled_time	actual_time	delay_minutes	status	line	type
0	11/1/18	3244	1	Long Branch	74	Long Branch	74	11/1/18 11:54	11/1/18 11:53	0.000000	departed	No Jersey Coast	NJ Transit
1	11/1/18	3244	2	Long Branch	74	Little Silver	73	11/1/18 12:02	11/1/18 12:02	0.316667	departed	No Jersey Coast	NJ Transit
2	11/1/18	3244	3	Little Silver	73	Red Bank	130	11/1/18 12:06	11/1/18 12:09	3.183333	departed	No Jersey Coast	NJ Transit
3	11/1/18	3244	4	Red Bank	130	Middletown NJ	85	11/1/18 12:12	11/1/18 12:13	1.300000	departed	No Jersey Coast	NJ Transit
4	11/1/18	3244	5	Middletown NJ	85	Hazlet	59	11/1/18 12:18	11/1/18 12:20	2.050000	departed	No Jersey Coast	NJ Transit

```
Data columns (total 10 columns):
train id
                 1014624 non-null int64
stop sequence
                 1014624 non-null int64
                 1014624 non-null int64
from id
to id
                 1014624 non-null int64
scheduled time
               1014624 non-null object
actual time
                 1014624 non-null object
delay minutes
                 1014624 non-null float64
line
                 1014624 non-null category
line label
                 1014624 non-null int8
                 1014624 non-null float64
label
dtypes: category(1), float64(2), int64(4), int8(1), object(2)
```

LINEAR REGRESSION

INTRODUCTION

We are only using the essential columns required, which will be the features that will help us predict the outcome. Here the date time will help us in indexing the dataframe for ease of access, whereas, other columns will be predictors, that will allow us to forecast the future using the historical data we have until now. We pick up data that can be used in this model. Meanwhile, Line_label is also be created to distinguish the different train names.

```
df[['line']] = df["line"].astype('category')
df['line_label'] = df["line"].cat.codes
df.groupby('line')['line label'].unique()
line
Bergen Co. Line
                     [0]
Gladstone Branch
                     [1]
Main Line
                      [2]
Montclair-Boonton
                     [3]
Morristown Line
                      [4]
                     [5]
No Jersey Coast
Northeast Corrdr
                     [6]
Pascack Valley
                     [7]
Raritan Valley
                     [8]
Name: line label, dtype: object
```

Generally, you want your features in machine learning to be in a range of -1 to 1. This may do nothing, but it usually speeds up processing and can also help with accuracy. Because this range is so popularly used, it is included in the preprocessing module of Scikit-Learn. To utilize this, you can apply preprocessing scale to your X variable.

```
X = np.array(df[['train_id','stop_sequence','from_id','to_id','line_label']])
X = preprocessing.scale(X)
```

Now comes the training and testing. The way this works is you take, for example, 75% of your data, and use this to train the machine learning classifier. Then you take the remaining 25% of your data, and test the classifier. Since this is your sample data, you should have the features and known labels. Thus, if you test on the last 25% of your data, you can get a sort of accuracy and reliability, often called the confidence score.

Very bad score here, it means the dataset is definitely not linear predictable! Lets see how we can analyse the errors to understand this better.

```
X = np.array(df[['train_id','stop_sequence','from_id','to_id','line_label']])
X = preprocessing.scale(X)

y = np.array(df['delay_minutes'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

clf = LinearRegression()
results = clf.fit(X_train, y_train)
accuracy = clf.score(X_test, y_test)
print(accuracy) #means we can not use LR model to predict the delay!

0.0077642886537293565
```

We can see that the regression error is much less compared to the baseline error. It means we cannot simply use linear regression model to predict the value, we need to make some improvements.

Try to predict the future value

Since the prediction results do not have a strong connection with the coefficients in Linear Regression model. We tried to use Time Series to predict the future values.

In short, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data.

day/hour/minute	day_avg/ hour_avg/ minute_agv
weekday/holiday	weekday_avg/ holiday_avg

Try to predict the future value

And we consider the shift and time variation in this dataset.

```
# make feature
def build feature(data, lag start, lag end, test size, target encoding=False, num day pred=1):
   # build future data with 0
   last date = data["date"].max()
   pred points = int(num day pred * 24)
   pred date = pd.date range(start=last date, periods=pred points + 1, freq="1h")
   pred date = pred date[pred date > last date]
   future_data = pd.DataFrame({"date": pred_date, "y": np.zeros(len(pred_date))})
   # concat future data and last data
   df = pd.concat([data, future data])
   df.set index("date", drop=True, inplace=True)
   #print(df)
   # make feature
   for i in range(lag start, lag end):
       df["lag {}".format(i)] = df.y.shift(i)
   df["diff_lag_{}".format(lag_start)] = df["lag_{}".format(lag_start)].diff(1)
   df["hour"] = df.index.hour
   # df["day"] = df.index.day
   # df["month"] = df.index.month
   df["minute"] = df.index.minute
   df["weekday"] = df.index.weekday
   df["weekend"] = df.weekdav.isin([5, 6]) * 1
   df["holiday"] = 0
   df.loc["2018-11-28 00:00:00":"2018-11-29 23:00:00","holiday"] = 1
   #print(df)
   # df["holiday"]
   # average feature
   if target_encoding:
       df["weekday_avg"] = list(map(cal_mean(df[:last_date], "weekday", "y").get, df.weekday))
       df["hour avg"] = list(map(cal mean(df[:last date], "hour", "y").get, df.hour))
       df["weekend_avg"] = list(map(cal_mean(df[:last_date], "weekend", "y").get, df.weekend))
       df["minute avg"] = list(map(cal mean(df[:last date], "minute", "y").get, df.minute))
       df = df.drop(["hour", "minute", "weekday", "weekend"], axis = 1)
   #df = pd.get_dummies(df, columns = ["hour", "minute", "weekday", "weekend"])
```

Use specific build_feature method to fit the time series data according to the different kinds of data. Then scale data by using this method and train the data in Linear Regression model. We can get the result of future prediction.

ARIMA

Introduction

ARIMA stands for Auto-Regressive Integrated Moving Averages. The ARIMA forecasting for a stationary time series is nothing but a linear (like a linear regression) equation. The predictors depend on the parameters (p,d,q) of the ARIMA model:

Number of AR (Auto-Regressive) terms (p): AR terms are just lags of dependent variable. For instance if p is 5, the predictors for x(t) will be x(t-1)...x(t-5).

Number of MA (Moving Average) terms (q): MA terms are lagged forecast errors in prediction equation. For instance if q is 5, the predictors for x(t) will be e(t-1)....e(t-5) where e(i) is the difference between the moving average at ith instant and actual value.

Number of Differences (d): These are the number of nonseasonal differences, i.e. in this case we took the first order difference. So either we can pass that variable and put d=0 or pass the original variable and put d=1. Both will generate same results.

An importance concern here is how to determine the value of 'p' and 'q'. We use plots of Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) to determine these numbers.

Make our data stationary

Although stationary assumption is taken in many TS model, most of the practical time series are not stationary. Also, the theories related to stationary series are more mature and easier to implement as compared to non-stationary series.

There is some period fluctuation in the plot. But we cannot say it is stationary or not. Formally, we can check stationarity using the Dickey-Fuller Test.

Dickey-Fuller Test

Here the null hypothesis is that the TS is non-stationary. The test results comprise of a Test Statistic and some Critical Values for difference confidence levels. If the 'Test Statistic' is less than the 'Critical Value', we can reject the null hypothesis and say that the series is stationary. We plotted standard deviation instead of variance to keep the unit similar to mean.

Dickey-Fuller Test

It shows us it reject the null hypothesis (H0), the data does not have a unit root and is stationary. the test statistic is less than Critical Value (1%). It means we have 99% confidence to say that the data is stationary.

We want to reduce the fluctuation range. So we can apply Log transformation which penalize higher values more than smaller values.

We use Moving Average Model to estimate the trend and remove it from our series. In this approach, we take average of 'k' consecutive values depending on the frequency of time series. As we take one day, so k is 12. Red line is the rolling mean. Since we are taking average of last 12 values, rolling mean is not defined for first 11 values. We need to drop Nan in series.

From the picture above, we can see the fluctuation range reduce and p value reduces a lot as well.

We take a Weighted Moving Average to improve it. In WMA model, it gives a higher weight for more recent value.

Difference

The simple trend reduction techniques discussed before don't work in all cases, particularly the ones with high seasonality. So we implement Difference in our time series.

Implementation

As we mentioned in the introduction of the ARIMA model. The parameter of p and q is important. We draw the picture of ACF and PACF to see the value of p and q.

Implementation

As we get the value for both p and q are 1. We implement the time series in AR, MA and ARIMA. We pick up ARIMA model at the last because it has the least RSS score.

```
print('ARIMA RSS: %.4f'% sum((ts_log_diff-results_ARIMA.fittedvalues)**2))
print('AR RSS: %.4f'% sum((results_AR.fittedvalues-ts_log_diff)**2))
print('MA RSS: %.4f'% sum((results_MA.fittedvalues-ts_log_diff)**2))

ARIMA RSS: 194.8127
AR RSS: 254.3815
MA RSS: 217.3101
```

Implementation

The RMSE has a small value which means our model has a good result of prediction.

INTRODUCTION

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with **yearly**, **weekly**, **and daily seasonality**, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

MODELING

We first import prophet and rename the columns in our data to the correct format. The Date column must be called 'ds' and the value column we want to predict 'y'. We then create prophet models and fit them to the data, much like a Scikit-Learn machine learning model.

	ds	delay_minutes
0	2018-11-01 11:54:00	0.000000
1	2018-11-01 12:02:00	0.316667
2	2018-11-01 12:06:00	3.183333
3	2018-11-01 12:12:00	1.300000
4	2018-11-01 12:18:00	2.050000

MODELING

We check the statistic information of the dataset and plot the data by setting 'scheduled_time' as index.

The average delay minutes is 4 minutes and 75% is 5 minutes. It's strange that we have 326 minutes as our max value. So next, we draw a plot to have a deep look of this extreme value.

	stop_sequence	from_id	to_id	delay_minutes
count	1014624.0	1014624.0	1014624.0	1014624.0
mean	8.0	4481.0	4470.0	4.0
std	5.0	12077.0	12063.0	6.0
min	1.0	3.0	3.0	0.0
25%	4.0	62.0	61.0	1.0
50%	8.0	105.0	105.0	3.0
75%	12.0	138.0	138.0	5.0
max	26.0	43599.0	43599.0	326.0

We can easily see that around the end of February, there is a high delay of NJ Transit. We then check this abnormal situation in detail.

	date	train_id	stop_sequence	from_id	to_id	scheduled_time	actual_time	delay_minutes
scheduled_time								
2019-02-27 21:19:00	2019-02-27	3284	2.0	74.0	73.0	2019-02-27 21:19:00	2019-02-28 02:44:00	325.0
2019-02-27 21:23:00	2019-02-27	3284	3.0	73.0	130.0	2019-02-27 21:23:00	2019-02-28 02:48:00	325.0
2019-02-27 21:28:00	2019-02-27	3284	4.0	130.0	85.0	2019-02-27 21:28:00	2019-02-28 02:54:00	326.0
2019-02-27 21:34:00	2019-02-27	3284	5.0	85.0	59.0	2019-02-27 21:34:00	2019-02-28 02:59:00	325.0
2019-02-27 21:38:00	2019-02-27	3284	6.0	59.0	37169.0	2019-02-27 21:38:00	2019-02-28 03:03:00	325.0
2019-02-27 21:47:00	2019-02-27	3284	7.0	37169.0	139.0	2019-02-27 21:47:00	2019-02-28 03:13:00	326.0

This delay started from Long Branch to South Amboy and the line is North Jersey Coast Line. The final station of this train is NEW YORK PENN STATION. We then find the reason of the delay. According to the Tweets from @NJTRANSIT on Feb 27, 2019.

Rail service in and out Penn Station New York is subject to up to 30-minute delays due to a disabled NJ TRANSIT train in one of the Hudson River Tunnels.

— NJ TRANSIT (@NJTRANSIT) February 27, 2019

So, this delay was caused by a disabled train which is not happened frequently, we can remove these situations to have a better prediction.

We extract the data except these extreme values as our new dataset and check the plot again.

MAKING FUTURE DF

We specify the number of **future periods to predict (one week ahead which is 7 days)** and the frequency of predictions (day). We then make predictions with the prophet model we created and the future dataframe.

Our future dataframes contain the estimated minutes and hours 7 days into the future. We can visualize predictions with the prophet plot function.

TRENDS AND PATTERNS

The last step of the analysis is to look at the **overall trend and patterns**. Prophet allows us to easily visualize the overall trend and the component patterns. We will split this plot into trend, yearly seasonality, and weekly seasonality of the time series.

FACEBOOK PROPHET TRENDS AND PATTERNS

The **overall trend** of delay minutes is decreasing.

During a week, **Sunday and Wednesday** are great days to take NJ Transit because they have least delay. On the opposite, trains on **Thursday** and Friday are more likely to be delayed.

During a day, time around 9 am and 7 pm are peak times because of the work commuters and trains also got many delays around 2 am. This may because there are less train staff during this time.

TRENDS AND PATTERNS

Prophet also **detects changepoints** by first specifying a large number of potential changepoints at which the rate is allowed to change.

It then puts a sparse prior on the magnitudes of the rate changes (equivalent to L1 regularization)

DIAGNOSTICS

This cross validation procedure can be done automatically for a range of historical cutoffs using the **cross_validation function**.

We specify the forecast horizon (horizon), and then optionally the size of the initial training period (initial) and the spacing between cutoff dates (period). By default, the initial training period is set to three times the horizon, and cutoffs are made every half a horizon.

DIAGNOSTICS

The output of cross_validation is a dataframe with the **true values y** and the **out-of-sample forecast values yhat,** at each simulated forecast date and for each cutoff date.

In particular, a forecast is made for every observed point between cutoff and cutoff + horizon. This dataframe can then be used to **compute error measures of yhat vs. y.**

	ds	yhat	yhat_lower	yhat_upper	У	cutoff
0	2018-11-25 03:13:00	3.004663	-6.679809	12.765498	1.100000	2018-11-25 03:10:00
1	2018-11-25 03:22:00	2.836850	-7.195098	12.394706	0.000000	2018-11-25 03:10:00
2	2018-11-25 03:48:00	2.385678	-7.318251	12.243165	9.583333	2018-11-25 03:10:00
3	2018-11-25 03:54:00	2.294401	-7.659857	11.229298	3.583333	2018-11-25 03:10:00
4	2018-11-25 04:00:00	2.209808	-7.301374	11.838781	2.433333	2018-11-25 03:10:00

DIAGNOSTICS

The metrics include mean squared error, MSE, root mean squared error, RMSE, mean absolute error, MAE, mean absolute percent error, MAPE and the estimate coverage of yhat_lower and yhat_upper.

The estimate coverage of yhat_lower and yhat_upper is high which means our prediction covers most real data.

INFO:fbprophet:Skipping MAPE because y close to 0								
	horizon	mse	rmse	mae	coverage			
0	15:27:00	24.845259	4.984502	3.333910	0.941077			
1	15:28:00	24.880525	4.988038	3.337846	0.940909			
2	15:29:00	24.989466	4.998947	3.345184	0.940615			
3	15:30:00	25.084558	5.008449	3.349188	0.940500			
4	15:31:00	25.120285	5.012014	3.352801	0.940371			

THNAK YOU