

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{44} - u^{43} + \dots - 2u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 44 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{44} - u^{43} + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{8} + u^{6} + u^{4} + 1 \\ u^{8} + 2u^{6} + 2u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{11} - 2u^{9} - 2u^{7} + u^{3} \\ u^{13} + 3u^{11} + 5u^{9} + 4u^{7} + 2u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{32} + 7u^{30} + \dots + 2u^{12} + 1 \\ -u^{34} - 8u^{32} + \dots - 4u^{6} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{21} + 4u^{19} + 9u^{17} + 12u^{15} + 12u^{13} + 10u^{11} + 9u^{9} + 6u^{7} + 3u^{5} + u \\ u^{21} + 5u^{19} + 13u^{17} + 20u^{15} + 20u^{13} + 13u^{11} + 7u^{9} + 4u^{7} + 3u^{5} + u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{43} 4u^{42} + \cdots + 12u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{44} - u^{43} + \dots - 2u + 1$
c_2	$u^{44} + 21u^{43} + \dots + 2u + 1$
c_3	$u^{44} + 5u^{43} + \dots + 82u + 13$
c_4, c_8	$u^{44} + u^{43} + \dots + 2u + 1$
<i>c</i> ₆	$u^{44} + u^{43} + \dots + 68u + 17$
C ₇	$u^{44} - u^{43} + \dots - 68u + 17$
<i>c</i> ₉	$u^{44} - 21u^{43} + \dots - 2u + 1$
c_{10}	$u^{44} - 5u^{43} + \dots - 82u + 13$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_8	$y^{44} + 21y^{43} + \dots + 2y + 1$
c_2, c_9	$y^{44} + 5y^{43} + \dots + 6y + 1$
c_3, c_{10}	$y^{44} + 9y^{43} + \dots + 5314y + 169$
c_{6}, c_{7}	$y^{44} - 11y^{43} + \dots - 4794y + 289$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.219635 + 1.024160I	-1.08070I	-60.10 + 1.298529I
u = 0.219635 - 1.024160I	1.08070I	-60.10 - 1.298529I
u = -0.651337 + 0.622116I	-3.71248 + 6.51845I	-4.95829 - 6.88419I
u = -0.651337 - 0.622116I	-3.71248 - 6.51845I	-4.95829 + 6.88419I
u = -0.567171 + 0.946930I	-2.75664 - 1.75570I	-3.52773 + 0.85914I
u = -0.567171 - 0.946930I	-2.75664 + 1.75570I	-3.52773 - 0.85914I
u = 0.525013 + 0.980467I	-0.14884 - 2.53826I	0.24501 + 3.05915I
u = 0.525013 - 0.980467I	-0.14884 + 2.53826I	0.24501 - 3.05915I
u = -0.254705 + 1.115020I	4.35508 - 1.04298I	6.65567 + 0.28795I
u = -0.254705 - 1.115020I	4.35508 + 1.04298I	6.65567 - 0.28795I
u = -0.662694 + 0.538070I	-5.06451 - 1.08737I	-7.53766 + 0.51091I
u = -0.662694 - 0.538070I	-5.06451 + 1.08737I	-7.53766 - 0.51091I
u = 0.603028 + 0.598100I	-1.27162 - 1.94114I	-1.79245 + 3.31415I
u = 0.603028 - 0.598100I	-1.27162 + 1.94114I	-1.79245 - 3.31415I
u = 0.228645 + 1.128370I	2.27286 + 5.97235I	3.25101 - 4.61402I
u = 0.228645 - 1.128370I	2.27286 - 5.97235I	3.25101 + 4.61402I
u = -0.323792 + 1.114600I	5.06451 + 1.08737I	7.53766 - 0.51091I
u = -0.323792 - 1.114600I	5.06451 - 1.08737I	7.53766 + 0.51091I
u = -0.570170 + 1.011790I	-3.67003 + 5.88530I	-4.74516 - 6.36553I
u = -0.570170 - 1.011790I	-3.67003 - 5.88530I	-4.74516 + 6.36553I
u = 0.764138 + 0.339961I	-2.30812 + 8.68200I	-3.24304 - 6.31705I
u = 0.764138 - 0.339961I	-2.30812 - 8.68200I	-3.24304 + 6.31705I
u = 0.358424 + 1.122990I	3.67003 - 5.88530I	4.74516 + 6.36553I
u = 0.358424 - 1.122990I	3.67003 + 5.88530I	4.74516 - 6.36553I
u = 0.721497 + 0.387567I	-4.35508 + 1.04298I	-6.65567 - 0.28795I
u = 0.721497 - 0.387567I	-4.35508 - 1.04298I	-6.65567 + 0.28795I
u = -0.737315 + 0.329710I	-3.75579I	0. + 2.66459I
u = -0.737315 - 0.329710I	3.75579I	0 2.66459I
u = 0.494931 + 1.113460I	2.75664 - 1.75570I	3.52773 + 0.85914I
u = 0.494931 - 1.113460I	2.75664 + 1.75570I	3.52773 - 0.85914I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.523186 + 1.116830I	3.71248 + 6.51845I	4.95829 - 6.88419I
u = -0.523186 - 1.116830I	3.71248 - 6.51845I	4.95829 + 6.88419I
u = 0.568139 + 1.097600I	-2.27286 - 5.97235I	-3.25101 + 4.61402I
u = 0.568139 - 1.097600I	-2.27286 + 5.97235I	-3.25101 - 4.61402I
u = 0.326591 + 0.684448I	-1.50871I	0. + 4.89247I
u = 0.326591 - 0.684448I	1.50871I	0 4.89247I
u = -0.560153 + 1.120390I	2.30812 + 8.68200I	3.24304 - 6.31705I
u = -0.560153 - 1.120390I	2.30812 - 8.68200I	3.24304 + 6.31705I
u = 0.570711 + 1.124900I	-13.7161I	0. + 10.01278I
u = 0.570711 - 1.124900I	13.7161 <i>I</i>	0 10.01278I
u = -0.663842 + 0.251119I	1.27162 - 1.94114I	1.79245 + 3.31415I
u = -0.663842 - 0.251119I	1.27162 + 1.94114I	1.79245 - 3.31415I
u = 0.633616 + 0.150714I	0.14884 - 2.53826I	-0.24501 + 3.05915I
u = 0.633616 - 0.150714I	0.14884 + 2.53826I	-0.24501 - 3.05915I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_5	$u^{44} - u^{43} + \dots - 2u + 1$
c_2	$u^{44} + 21u^{43} + \dots + 2u + 1$
c_3	$u^{44} + 5u^{43} + \dots + 82u + 13$
c_4, c_8	$u^{44} + u^{43} + \dots + 2u + 1$
c_6	$u^{44} + u^{43} + \dots + 68u + 17$
c_7	$u^{44} - u^{43} + \dots - 68u + 17$
c_9	$u^{44} - 21u^{43} + \dots - 2u + 1$
c_{10}	$u^{44} - 5u^{43} + \dots - 82u + 13$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_8	$y^{44} + 21y^{43} + \dots + 2y + 1$
c_2, c_9	$y^{44} + 5y^{43} + \dots + 6y + 1$
c_3,c_{10}	$y^{44} + 9y^{43} + \dots + 5314y + 169$
c_{6}, c_{7}	$y^{44} - 11y^{43} + \dots - 4794y + 289$