181 VERS LE TROU NOIR

→ On ve étudier des sources gravitationnelles où r=2m re thouse à l'exterieur du corps grovitant.

76

734 8.1 Orientation des cônes de lumière

- Etudions les cores de lunière dans le devi-plan (t,r), limités por des géodésiques vadiales (0= q=0) nulles (ds2=0): ds== 0 = - (1-2m/r)dt=+ (1-2m/r)dr=

 $= \frac{1}{4} \frac{dr}{dt} = \frac{1}{4} \left(\frac{1-2m}{r} \right)$

Lo A v fixé, c'est l'équation de 2 deni- droites de prente ± (1-2m/v) O Pour r→00: dr = ±1 cones à 95° comme en n-t plat

@ Pour v-em: dr = 0 L'aventre du cons fend vers 0

La Au dula de V=2m, les trajectoires à V=cst out pour équation ds2 = - (1-2m/r)dt2 => de gense temps pour r>2m; mais de genre espace pour r < 2m.

3 Pour r<2m: ds2>0 (=> 2>C)

L, r est un coordonnée de genre temps pour r<2m

8.2 Observateurs statiques près de V=2m -> Un observateur statique dans la nétrique de Schwarzschild ne trouve à des valeurs fixe de (r, 0, 4). Il s'agit d'un observateur accéléré: Ly n= +x= (n, 0) → grp n°n= - (1-2m/r)(n°)2 =-1 4> 1 = (\(\sqrt{1-2m/n'}, \(\sqrt{0} \)) wax = (Vu u) x = m v, mx = m (de mx + Tex nx) a = Du = n° (an + room o) = (1 - 2m) -1 room Or, an sait que roo = y'e = $= \frac{(1-2m)^2}{1-2m} \cdot \frac{1-1}{2}$ $= \frac{m}{C^2} \left(1-2m/r \right)$ $\alpha^{\kappa} = (0, m/r^2, 0, 0)$ - Dour maitenir en objet de namen statique dans en change de gravitation, il fart li applique un force: F= um dans la direction radiale. Calculous la norm de at, une géé invariante: 10 all = gm a Mar = (1-2m/r)-1 m2/r+ => ||a|| = m -> diverge pour r=2m

1

8.3 Redshift gravitationnel

→ On avait calculé:
$$TE = \frac{dZE}{dER} = \sqrt{-\frac{g_{\infty}(3E)}{-g_{\infty}(2R)}} = \sqrt{\frac{1-2m/3E}{1-2m/3R}} \rightarrow R$$

Le A la limite Newtonienne:

Lo A la limite Newtonienne:

$$\frac{m}{3} = \frac{GM}{Sc^2} \ll 1$$
 on avait $\frac{\Delta E}{\Delta R} = 1 - \frac{\Delta \Phi}{C^2}$ and $\frac{d}{d} = -\frac{GM/r}{A}$

-> Supposons qu'or ait un enetteur proche de v=zm. Alns

VE = \frac{\frac{1}{K}}{VR} = \infty \text{pour ve 2m}

VR \frac{1}{XE}

Lorsque l'enetteur s'approche de r=9m la fréque parce par l'obserateur à 100 → 0: le signal n'arrive plus.

8.4 Chute libre perçue par un obs. distant

- Un obsurateor distant observe un chote libre vadiale (géodésique radiale). L'objet en chure libre obéit à: $-(1-2m/r)\dot{t}^{2}+(1-2m/r)^{-1}\dot{r}^{2}=-1$ $b=(1-2m/r)\dot{t}$

$$(4-2m/r)^{-1}b^{2}+(1-2m/r)^{-1}r^{2}=-1$$

$$= \frac{(1-2m/r)t}{t} + \frac{(1-2m/r)}{r^2} - \frac{1}{r^2} = \frac{1}{4} + \frac{1}{2m/r} + \frac{1}{2m/r} + \frac{1}{2m/r} = \frac{1}{2m/r} + \frac{1}{2m/r} + \frac{1}{2m/r} = \frac{1}{2m$$

Or b= £ (1-2m/r) = £ = b (1-2m/r)-1. Airi,

 $\frac{dr = \dot{r} = -\sqrt{b^2 - (1 - 2m/r)}}{dt \dot{t}} \cdot (1 - 2m/r)$

-> Loriqu
$$r=2m$$
, on a?
$$\frac{dr_{n}-b^{-1}\left(\frac{r-2m}{r}\right)\sqrt{b^{2}}^{2} - \frac{1}{2m}\left(r-2m\right)}{dt}$$

$$\Rightarrow \frac{d(r-2m)}{dt} = \frac{-1}{2m} (r-2m) \Rightarrow (r-2m)(t) \approx e^{-t/2m}$$

Du por de l'observateur exterieur, le corps en chete libre offerit r=2m lorsque ==00.

=> Comps 'figé' à le surfau du trou voir.

7-0	
OEF	On trouve anisi la métrique de Swarzschild en coordonnées
	Eddington Finkelsten entrantes (1):
	ds2 = - (1 - 2m) dv2 + 2 dvar + r2 dQ2
	et un coordannen E-F Sortantes: (M)
	$ds^{2} = -\left(1 - \frac{2m}{r}\right) du^{2} - 2 du dr + r^{2} d\Omega^{2}$
	\overline{r}
\rightarrow	En r=2m, la nétrique est sinic et non-dégérérée (det gpr to)
0	Cônes de lumière en coord. E-F:
0	E-T contrated
<i>→</i>	E-T sortantes: $ds^2 = 0 \Rightarrow \left(1 - 2m\right) dv^2 = 2 dv dv$
	$\left(\frac{1}{r}\right)^{q}$
	$(1-9m)(dar)^2 - 9 dar$
	$(1 - 2m) \left(\frac{dv}{r}\right)^2 = 2 \frac{dv}{dr}$
	$\rightarrow dar = 2(1-9m/r)^{-1}$
	$\Rightarrow \frac{dv}{dr} = 0 \text{ou} \frac{dv}{dr} = 2\left(1 - 2m/r\right)^{-1}$
	Unière basculat
	consales (genre temps / l'unière vers la fotor) en fant dans la
	de l' le sittante le madrie VEQUE Dough OND
	direction de r décroissents. La surjace r=2m fonctionne
	come une surface de non-retour. Elle constitue un
	horizon des évenements
•	
$oldsymbol{v}$	E-T entrantes:
	-> r=2m put être atteit
	par des courbes ceusales
	divigées vers le paré.
	, M
3	Conclusion: puisqu'un m surface me se traver dans le juter et

Conclusion: puisqu'un un surface me se traver dans le justir et dans le premie d'un obsensateur D, à partir de celui-ci, on pert suivre des courbes dirigées uns le futur au le promé, mais on arrivera à des mégions différentes.

34.		
	Ō	Coordonnées de Kruskal-Szekeres:
3		
	\rightarrow	On part continuer à étendre la géorétrie de Schwarzschild,
		que nous renons d'étendre déja vers le fotor et le parré le long des
3		que nous renons d'étendre déja vers le fotor et le pouré le long des géodésiques nulles. L'extrusion analytique maximale de la nétyique de
27		Schnarzschild Mt l'extension de Kruskal - Szekeres.
	-	on définit en premier lier de nouvelle coordonnées (2, 2) alon:
	DEF	O Pour r> 2m (région I):
	~ =	O Pour r> 2m (région I):
•		1 2m (4m)
		a Transition
		10= 1 2m (4m)
		OPour $r < 2m$ (region I); $\int m = \sqrt{1 - \frac{r}{2m}} e^{r/4m} \sinh\left(\frac{t}{4m}\right)$
		$n = \sqrt{1 - \frac{r}{2m}} e^{r/\tau} \sinh\left(\frac{t}{am}\right)$
		10/4HA
		$V = \sqrt{1 - \frac{r}{2m}} e^{r/4m} \cosh\left(\frac{t}{4m}\right)$
		1 , xw (Am.)
		On note que ce chargement du coordonnée n'est per définit en r=2 m
		Analyson cer coordonnées:
	,	-
		$\rightarrow h^2 - \sigma^2 = \left(\frac{r}{2m} - 1\right) e^{\frac{r}{2m}} \ge -1$
		Ly r=2m = to
		W/Y
		-> Deplus: (a = coth t pour r> 2m t
4		of am
39		n = tach t pour r (2m
		ar 4m or no
		(I) (F) (S)
		$\rightarrow a$
		X
		X y= cs you
		F-911
		V

-

O Métrique de Schworzschild en coord. KS:

-> Duisque $n^2 - 2^2 = (\frac{r}{2m} - 1)e^{r/2m}$, on a: $d(n^2 - 2^2) = 2ndn - 2vdv = (\frac{e^{r/2m}}{2m} + (\frac{r}{2m} - 1)\frac{1}{2m}e^{r/2m})dr$ $= \frac{r}{2m} \frac{e^{r/2m}}{2m} dr \implies dr = \frac{8m^2}{r}e^{-r/2m} (ndn - 2rdv)$

- Enryen: n=coth t

 $\frac{du \cdot v - dv \cdot u}{v^{2}} = \frac{-dt}{4m} \frac{-1}{\sinh^{2}(t/4m)} = \frac{-dt}{4m} \left(\frac{v}{2m} - 1\right) \frac{e^{r/2m}}{v^{2}}$ $= \frac{-dt}{4m} \left(u^{2} - q^{2}\right) e^{-r/2m} \frac{e^{r/2m}}{q^{2}}$

=) vdu - udr = -dt (u² - v²) => dt = (udr-vdu) 4m m²-2²

~ Enr < 2m: H= - nde-vdn 4m

→ La métrique sécrit donc: +s²= -(1-2m) dt² + (1-2m/r)-1 dr² (+r² d2²)

= - $(u^2-v^2)e^{-\gamma/2m}$ $(udv-vdu)^2$ $(u^2-v^2)^2$

 $\frac{+ r e^{-r/2m}}{2m a^2 - a^2} \cdot \frac{64 m^4 e^{-r/m} \cdot (n dn - v dv)^2}{r^2}$

 $= -\frac{ds^2}{r} = \frac{32 \, \text{m}^3 \, \text{e}^{-r/2 \, \text{m}} \, (dn^2 - dv^2) + r^2 \, d\Omega^2}{r}$

-> métrique régulière en r-em

→ Dans le plan (21,2), les neyons lumineux Sont donnés par du = ± dr com pour Minhauski à 2 d. [peratique pour étudies la structure causale de l'espace-temps).

