

OBJECTIVE

As mentioned before, the datasets contain transactions made by credit cards in September 2013 by European cardholders.

This dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 transactions.

The dataset is highly unbalanced, the positive class (frauds) account for 0.172% of all transactions. It is one of the unique datasets containing an unbalanced data of fraudulent and legitimate transactions.

1. Why this problem needs to be solved -

This problem is used to model past credit card transactions which are known to be fraud. It is then used to identify whether a new transaction is fraudulent or not. We are here to detect 100% of the fraudulent transactions while minimizing the incorrect fraud classifications.

2. The impact of a great solution to the Industry-

'Fraud' in credit card transactions is unauthorized and unwanted usage of an account by someone other than the owner of that account.

Fraud detection involves monitoring the activities of populations of users in order to estimate, perceive or avoid objectionable behavior, which consist of fraud, intrusion, and defaulting.

This is a very relevant problem that demands the attention of communities such as machine learning and data science where the solution to this problem can be automated.

Main challenges involved in credit card fraud detection are:

- Enormous Data is processed every day and the model build must be fast enough to respond to the scam in time.
- Imbalanced Data i.e most of the transactions (99.8%) are not fraudulent which makes it really hard for detecting the fraudulent ones
- Data availability as the data is mostly private.
- Misclassified Data can be another major issue, as not every fraudulent transaction is caught and reported.
- Adaptive techniques used against the model by the scammers.

Understading the Data , Exploring it's length , breadth and height (How BIG , How DIVERSE , How GRANULAR) Called : **EDA**

In order to understand and explore the data for its classification, we need to follow the respective steps as required.

DATA PROCESSING AND MACHINE LEARNING STEPS

Step 1a- IMPORT ALL THE BASIC LIBRARIES

#first import all the necessary libraries as required on the initial part

import numpy as np #provides high-performance multidimensional array with manipulation tool

import pandas as pd #Python-based data analysis toolkit

import matplotlib.pyplot as plt #plotting library for the Python and its numerical mathematics extension NumPy.

import seaborn as sns #Python data visualization library based on matplotlib

import math #To use mathematical functions

import matplotlib

import datetime #supplies classes for manipulating dates and times.

import sklearn #most useful library for machine learning and statistical modelling

import scipy #uses NumPy for more mathematical functions

import warnings #provided to warn the developer of situations that aren't necessarily exceptions

warnings.filterwarnings ('ignore')

Step 1b- GET THE VERSIONS OF THE MODULES AND LIBRARIES

```
! python --version
print(f"Pandas.version : Pandas {pd.__version__}")
print(f"Matplotlib.version : Matplotlib {matplotlib.__version__}")
print(f"Numpy.version : Numpy {np.__version__}")
print(f"Seaborn.version : Seaborn {sns.__version__}")
print(f"Scipy.version : Scipy {scipy.__version__}")
print(f"Skklearn.version : Sklearn {sklearn.__version__}")

RESULTS
```

Python 3.8.3 Pandas.version: Pandas 1.0.5

Matplotlib.version : Matplotlib 3.2.2 Numpy.version : Numpy 1.18.5 Seaborn.version : Seaborn 0.10.1 Scipy.version : Scipy 1.5.0 Skklearn.version : Sklearn 0.23.1

Step 2 - DATA COLLECTION

#import the dataset

cc = pd.read_csv("creditcard.csv")

#top 5 dataset

#used to make all the columns visible, use max_rows for row visibility
pd.set_option('display.max_columns',100)
cc.head()

#bottom 5 dataset

cc.tail()

#length of the dataset

cc.shape

RESULTS Exploring its length

Rows (284807) Columns (31)

Step 3 - DATA PREPARATION

It is comprised of the following parts-

PART 1- DATA DESCRIPTION

#sample dataset cc.sample(10)

#check for the data types cc.info ()

RESULTS

<class 'pandas.core.frame.dataframe'=""></class>	
RangeIndex: 284807 entries, 0 to 284806	
Data columns (total 31 columns):	
# Column Non-Null Count Dtype	15 V15 284807 non-null float64
	16 V16 284807 non-null float64
0 Time 284807 non-null float64	17 V17 284807 non-null float64
1 V1 284807 non-null float64	18 V18 284807 non-null float64
2 V2 284807 non-null float64	19 V19 284807 non-null float64
3 V3 284807 non-null float64	20 V20 284807 non-null float64
4 V4 284807 non-null float64	21 V21 284807 non-null float64
5 V5 284807 non-null float64	22 V22 284807 non-null float64
6 V6 284807 non-null float64	23 V23 284807 non-null float64
7 V7 284807 non-null float64	24 V24 284807 non-null float64
8 V8 284807 non-null float64	25 V25 284807 non-null float64
9 V9 284807 non-null float64	26 V26 284807 non-null float64
10 V10 284807 non-null float64	27 V27 284807 non-null float64
11 V11 284807 non-null float64	28 V28 284807 non-null float64
12 V12 284807 non-null float64	29 Amount 284807 non-null float64
13 V13 284807 non-null float64	30 Class 284807 non-null int64
14 V14 284807 non-null float64	dtypes: float64(30), int64(1)

#Filtering the data into fraud and legit transactions

fraud = cc.loc[cc['Class'] == 1] #filter the data on the basis of Class as Fraud legit = cc.loc[cc['Class'] == 0] #filter the data on the basis of Class as Fraud

print (f"total fraud : {len(fraud)}") #count of fraud data
print (f"total legit : {len(legit)}") #count of legit data

#check for outlier fraction

print (f"outlier_fraction : {len(fraud)/float(len(legit))}")

RESULTS

total fraud: 492 total legit: 284315

outlier_fraction: 0.0017304750013189597

Finding the Complexities and Roadblocks for Modelling this particular Use Case

The dataset has been imbalanced, which can be witnessed from the variations in the fraud and legit transaction data. So, it will be required to balance it using the different sampling techniques. But before that it is important to understand the presence of Null values, duplicates, outliers, etc

PART 2- DATA CLEANING

#different types of data cleaning processes check for missing data check for duplicate values check for outliers

Part 2.1 of Data Cleaning - Deal with missing values

#check for missing values

data = cc[cc.columns[cc.isnull().any()]].isnull().sum()
for y in data:
 print(y)
cc.isnull().sum()

	<u>RESULTS</u>					
Time	0	V15 0				
V1	0	V16 0				
V2	0	V17 0				
V3	0	V18 0				
V4	0	V19 0				
V5	0	V20 0				
V6	0	V21 0				
V7	0	V22 0				
V8	0	V23 0				
V9	0	V24 0				
V10	0	V25 0				
V11	0	V26 0				
V12	0	V27 0				
V13	0	V28 0				
V14	0	Amount 0				
		Class 0				

to return all the null containing columns and the total number

cc[cc.columns[cc.isnull().any()]].isnull().sum()

RESULTS

Series([], dtype: float64)

Part 2.2 of Data Cleaning - Deal with outliers

#check for outliers - part 1

```
outliers = []
def detect_outliers(data):
    threshold = 3
    mean = np.mean(data)
    std = np.std(data)
    for y in data:
        z_score = (y-mean)/std
        if np.abs(z_score)>threshold:
        outliers.append(y)
    return outliers
```

#detection of outliers in the amount column

outliers_datapoints = detect_outliers(cc['Amount'])
print(outliers_datapoints)

#detection of outliers in the class column

outliers_datapoints = detect_outliers(cc['Class'])
print(outliers_datapoints)

OUTCOME

Outliers are present in both the columns

#Outlier removal part 2

```
def indices_of_outliers(x):
    q1, q3 = np.percentile(x, [25,75])
    iqr = q3-q1
lower_bound = q1 -(iqr * 1.5)
    upper_bound = q3 + (iqr * 1.5)
return np.where((x > upper_bound) | (x < lower_bound)) #limit has been set</pre>
```

#Outlier removal part 3 #on the basis of a set max value as limit

```
def outlier_removal(max_val):
    print("Values lost on thr basis of max based removal :{}".format(len(cc[(cc['Class']==0) &
    (cc['Amount']>max_val)])))
print("proportion of data lost :{}".format(len(cc[(cc['Class']==0) & (cc['Amount']>max_val)])/len(cc)))
temp_cc = cc[cc['Amount']< max_val] #outlier removed
print(temp_cc['Class'].value_counts(normalize = True))</pre>
```

#check max for fraud transactions

cc[cc['Class']==1]['Amount'].max()

RESULTS

2125.87

#considering max value as 3000 set as limit of amount, count of how many data_rows are to be dropped

outlier_removal(3000)

RESULTS

Values lost on thr basis of max based removal :284 proportion of data lost :0.0009971665022278245

0 0.998271

1 0.001729

Name: Class, dtype: float64

Part_2.3 of Data Cleaning - Deal with the duplicate values

#check for duplicates

len(cc[cc.duplicated()])

print("total number of duplicates =",len(cc[cc.duplicated()]))

RESULTS

total number of duplicates = 1081

#after removing duplicates

cc = cc.drop_duplicates()

#check the total nos of rows and columns presently

cc.shape

RESULTS

(283726, 31)

OUTCOME

With respect to the data cleaning process only the duplicates (1081) are being removed. As the data can contain high values in terms of the Amount of the transactions, hence the presence of the outliers is there as well. But they are not being removed as they will be required to understand the data better.

PART 3- EXPLORATORY DATA ANALYSIS

Part 3.1.- Numerical Analysis

#rows and columns of respective type of transactions

RESULTS

fraud(rows,columns)= (492, 31) legit(rows,columns)= (284315, 31)

check for different statistics and metrics cc.describe()

#Time, Amount and Class wise statistics

cc[['Time', 'Amount', 'Class']].describe().T

RESULTS

	count	mean	std	min	25%	50%	75%	max
Time	284807.0	94813.859575	47488.145955	0.0	54201.5	84692.0	139320.500	172792.00
Amount	284807.0	88.349619	250.120109	0.0	5.6	22.0	77.165	25691.16
Class	284807.0	0.001727	0.041527	0.0	0.0	0.0	0.000	1.00

Points noted

Time, Amount are the only measurable attributes, While Class is Categorical. In the Amount colmn, Variation of data highly signifies, presence of outliers in them.

#stats related to the legit type transactions-Amount

print(legit.Amount.describe())

#stats related to the fraud type transactions-Amount

print(fraud.Amount.describe())

RESULTS

count 284315.000000
mean 88.291022
std 250.105092
min 0.000000
25% 5.650000
50% 22.000000
75% 77.050000
max 25691.160000

Name: Amount, dtype: float64

RESULTS

492.000000 count mean 122.211321 std 256.683288 0.000000 min 25% 1.000000 50% 9.250000 75% 105.890000 max 2125.870000

Name: Amount, dtype: float64

<u>Points noted</u>- The variation of results that can be clearly be seen from here indicates that the Average Amount transaction for the fraudulent ones is more as compared to the Legit ones. Hence, it makes it complicated to deal with

Part 3.B.- Graphical Analysis

Plot 1- Boxplot for the type of Transactions

plt.figure(figsize= (8,4), dpi = 100) #helps to create a figure object

#the figure is chosen to be boxplot for the two Class variation ie, fraud and legit

RESULTS

Points noted

This box plot shows presence of outliers among the legit transactions, whereas absence of outliers among the fraudulent transactions

Plot 2- Barplot for the type of Transaction

#distribution of classes

value =pd.value_counts(cc['Class'], sort =True)
value.plot(kind = 'bar')
plt.title("Distribution of Transaction_Classes")
plt.xlabel("Fraud_Class")
plt.ylabel("Frequency")

RESULTS

Text(0, 0.5, 'Frequency') Distribution of Transaction_Classes 250000 - 200000 - 100000 - 50000 - 1000000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000

Points noted

We can witness from here, that the most transactions recorded had been legit (0), while few of them are fraud(1)

Plot 3 - Histogram plots of Amounts by Class of Transactions

#transactions with respect to the amount in terms of histogram plots

f, (ax1, ax2) = plt.subplots(2, 1, sharex=True)

f.suptitle('Amount per transaction by class')

bins = 50

ax1.hist(fraud.Amount, bins = bins)

ax1.set title('Fraud')

ax2.hist(legit.Amount, bins = bins)

ax2.set_title('Legit')

plt.xlabel('Amount (\$)')

plt.ylabel('No of transactions')

plt.xlim((0,20000))

plt.yscale('log')

plt.show()

RESULTS

Points noted

The histogram showing the frequency wise distribution of legit and fraud datasets and also if presence of outliers among the different

Most no. of transaction- Legit

Higher amount involved - Legit transaction

Plot 4 - Scatter plots of Time in secs w.r.t.Amounts by Class of Transactions

#transactions with respect to the amount in terms of scatter plots

f, (ax1, ax2) = plt.subplots(2, 1, sharex=True)

f.suptitle('Time w.r.t Amount and class')

bins = 50

ax1.scatter(fraud.Time, fraud.Amount)

ax1.set_title('Fraud')

ax2.scatter(legit.Time, legit.Amount)

ax2.set_title('Legit')

plt.xlabel('Time in seconds')

plt.ylabel('Amount (\$)')

plt.show()

RESULTS

Points noted

Legit Transactions – Higher Amount have taken more time to process, in few of the cases.But in general we can't draw a direct or indirect relation between, the Amount and **Time** taken.

Fraud Transaction - Time taken for process, has been more or less uniform, except for a few large no. involved.

#convert time into hour
cc['hour']= cc['Time']/(60*60)
time plots

#created a subplot with rows = 1 n columns = 2

fig,axs = plt.subplots(1,2, figsize = (8,4))

#using distribution plot ,where we have filtered using class - 0 for legit transactions, considered the hours' column with the values of the same

sns.distplot(cc[cc['Class']==0]['hour'].values, color ='green', bins = 30, ax = axs[0])

#here ax is used from matplotlib

axs[0].set_title("Legit Transactions")

setting axs[0] for the legit transaction

sns.distplot(cc[cc['Class']==1]['hour'].values, color = 'red', bins = 30, ax = axs[1])

#here ax is used from matplotlib

axs[1].set_title("Fraud Transactions") # setting axs[0] for the fraud transaction

fig.suptitle('Comparisons in Transaction frequencies and time for Fraud and Legit Transactions') plt.show()

Points noted

The time and frequencies of fraud and legit transactions are being shown here.

Their distribution shows that fraud transactions are not done too often, they had been abrupt.

Plot 6- Visualising all the data in histogram plots to find all the anomalies

cc.hist(figsize= (20,20))

plt.show()

Points noted

This histogram plot of all the attributes together show the presence of any anomaly.

#Check for Heatmap using correlation

#Plotting the Correlation Matrix

The correlation matrix provides us with graphically visualization about how features correlate with each other which in turn also help us predict what are the features that are most relevant for the prediction.

corrmat = cc.corr()
fig = plt.figure(figsize = (12, 9))
sns.heatmap(corrmat, vmax = .8, square = True)
plt.show()

RESULTS

Points noted

This Heatmap indicates that most of the features do not correlate with each other but there are some features that either has a positive or a negative correlation. For example, V2 and V5 are highly negatively correlated with the feature called Amount. We also see some correlation with V20 and Amount. This gives us a deeper understanding of the Data available to us.

Plot 8- Boxplot of all the variables

for col in cc.columns:
 plt.figure()
 cc[col].plot(kind = 'box')

RESULTS

Points noted

The Box plot of time shows no presence of outliers as only 2 day data is being plotted

Points noted

Amount related to transactions as can be witnessed from here contains outliers because of **HIGH values**.

Class being categorical represents only two types.

check for per hour transactions on the basis of amount

check for per hour transactions on the basis of amount and class cc['hour'] = cc['Time'].apply(lambda x: np.ceil(float(x)/3600) % 24) cc.pivot_table(values= 'Amount',index='hour',columns='Class',aggfunc='count')

RESULTS

Class	0	1
hour		
0.0	10868	17
1.0	7639	6
2.0	4200	10
3.0	3258	48
4.0	3471	17
5.0	2180	23
6.0	2977	11
7.0	4074	9
8.0	7209	23
9.0	10222	9
10.0	15753	16
11.0	16543	8
12.0	16729	53

Class	0	1
hour		
13.0	15358	17
14.0	15308	17
15.0	16495	23
16.0	16347	26
17.0	16378	22
18.0	16100	28
19.0	16928	28
20.0	15549	19
21.0	16688	18
22.0	17618	16
23.0	15361	9

STEP- 4-Choosing a Model

Among all the Machine Learning models, we will be considering only the following to understand the one which best suits this case and provides maximum accuracy (Because the data is **imbalanced**)

- Logistic Regression
- Decision Tree Classifier
- Random Forest Classifier
- K-Neighbours Classifier
- XGBOOST Classifier
- Naïve Bayes Classifier

STEP- 5-Preparing the data through filtering process for the Model

Part 5.1. Splitting the data as per the features and target variables

#get all the columns in terms of list

columns = cc.columns.tolist()

#filter the columns we do not want

columns = [c for c in columns if c not in ["Class"]]

#filtered out all the columns using a for loop to consider all except the 'Class' column #created a target variable where we have placed all the data related to 'Class' column target = "Class"

#Splitting data into feature and target variables

state = np.random.RandomState(42)

```
y = cc[target]
x = cc[columns]
x_outliers = state.uniform(low=0, high=1, size=(x.shape[0], x.shape[1]))
#check for the shape of the individual categories
print(x.shape)
print(y.shape)
```

RESULT

X- (283726, 30) Y- (283726,)

Part 5.2. Importing packages as required step by step

#import the classes associated with the modules required for training the dataset

from sklearn.metrics import precision_score, recall_score, f1_score, roc_auc_score, auc, roc_curve from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

Part 5.3. Splitting the data into training and test dataset

from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(x,y, test_size = 0.30, random_state = 0)

Check for Class imbalance

As we can witness, that there has been quite an imbalance in the transaction data based on Class ie,

total fraud: 492 total legit: 284315

Hence, in order to reduce such class imbalance, we must opt for two processes

- 1. Random Under Sampling
- 2. Random Over Sampling

Part 5.4. Importing packages as required step by step for sampling process

#to deal with sampling techniques, we need to install the following package

!pip install imblearn

#Install the modules associated with this package

from imblearn.under_sampling import RandomUnderSampler from imblearn.over_sampling import RandomOverSampler,SMOTE, ADASYN

counter takes values returns value_counts dictionary

from collections import Counter

to generate a random n class classification problem

from sklearn.datasets import make classification

#x, y = make_classification(n_classes=2) #, class_sep=2,weights=[0.1, 0.9], n_informative=3,
n_redundant=1, flip_y=0,n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
print('Original dataset shape %s' % Counter(y))

RESULT

Original dataset shape Counter ({0: 283253, 1: 473})

RANDOM UNDER SAMPLING

rus = RandomUnderSampler(random_state=42)
x_rus, y_rus = rus.fit_resample(x, y)
print('Resampled dataset shape %s' % Counter(y_rus))

RESULT

Resampled dataset shape Counter ({0: 473, 1: 473})

RANDOM OVER SAMPLING

ros = RandomOverSampler (random_state= 42) x_ros, y_ros = ros.fit_resample (x, y) print ('Resampled dataset shape %s' % Counter(y_ros))

RESUL1

Resampled dataset shape Counter ({0: 283253, 1: 283253})

SMOTE

ros = SMOTE (random_state= 42)
x_ros1, y_ros1 = ros.fit_resample(x, y)
print ('Resampled dataset shape %s' % Counter(y_ros))

RESULT

Resampled dataset shape Counter ({0: 283253, 1: 283253})

.....

Part 5.5. Types of Metrics to be used to check for accuracy and fitness

Confusion Matrix

One of the key concepts in classification performance is **confusion matrix** (or error matrix), which is a tabular visualization of the model predictions versus the ground-truth labels. Each row of confusion matrix represents the instances in a predicted class and each column represents the instances in an actual class.

There are 4 important terms:

- I. True Positives: The cases in which we predicted YES and the actual output was also YES.
- II. True Negatives: The cases in which we predicted NO and the actual output was NO.
- III. False Positives: The cases in which we predicted YES and the actual output was NO.
- IV. False Negatives: The cases in which we predicted NO and the actual output was YES.

Accuracy for the matrix can be calculated by taking average of the values lying across the "main diagonal" i.e

$$Accuracy = \frac{TruePositive + TrueNegative}{TotalSample}$$

Confusion Matrix forms the basis for the other types of metrics.

Classification Accuracy

Classification accuracy is perhaps the simplest metrics one can imagine, and is defined as the number of correct predictions divided by the total number of predictions, multiplied by 100. Or in other words, it is also the ratio of number of correct predictions to the total number of input samples.

$$Accuracy = \frac{Number\ of\ Correct\ predictions}{Total\ number\ of\ predictions\ made}$$

It works well only if there are equal number of samples belonging to each class.

Precision

There are many cases in which classification accuracy is not a good indicator of the model performance. In those scenarios, where class distribution is imbalanced (one class is more frequent than others), even after predicting all samples as the most frequent class one would get a high accuracy rate, which does not make sense at all (because the model is not learning anything, and is just predicting everything as the top class).

Therefore, we need to look at class specific performance metrics too. Precision is one of such metrics, which is defined as:

It is the number of correct positive results divided by the number of positive results predicted by the classifier.

$$Precision = \frac{TruePositives}{TruePositives + FalsePositives}$$

Recall

Recall is another important metric, which is defined as the fraction of samples from a class which are correctly predicted by the model. More formally:

It is the number of correct positive results divided by the number of **all** relevant samples (all samples that should have been identified as positive).

$$recall = \frac{true\ positives}{true\ positives\ +\ false\ negatives}$$

F1 Score

Depending on application, we may want to give higher priority to recall or precision. But there are many applications in which both are important. Therefore, a combination of both as a single metric is required, which is exactly being defined by F1 Score.

- I. **F1-score** is the harmonic mean of precision and recall defined as:
- II. The range for F1 Score is [0, 1]. It tells you how precise your classifier is (how many instances it classifies correctly), as well as how robust it is (it does not miss a significant number of instances).
- III. F1 Score tries to find the balance between precision and recall.
- IV. F1 Score is used to measure a test's accuracy

Sensitivity & Specificity

- **I. Sensitivity** measures the proportion of positives that are correctly identified (i.e. the proportion of those who have some condition (affected) who are correctly identified as having the condition).
- II. **Specificity** measures the proportion of negatives that are correctly identified (i.e. the proportion of those who do not have the condition (unaffected) who are correctly identified as not having the condition).

These are two other popular metrics mostly used in medical and biology related fields, and are also defined as:

• ROC Curve

The **receiver operating characteristic curve** is plot which shows the performance of a binary classifier as function of its cut-off threshold.

- 1. It essentially shows the true positive rate (TPR) against the false positive rate (FPR) for various threshold values.
- II. ROC curve is a popular curve to look at overall model performance and pick a good cutoff threshold for the model.

AUC

The **area under the curve** (AUC), is an aggregated measure of performance of a binary classifier on all possible threshold values (and therefore it is threshold invariant).

- I. AUC calculates the area under the ROC curve, and therefore it is between 0 and 1.
- II. One way of interpreting AUC is as the probability that the model ranks a random positive example more highly than a random negative example.
- III. On high-level, the higher the AUC of a model the better it is. But sometimes threshold independent measure is not what we want, e.g. the model recall can be expected to be higher than 99% (while it has a reasonable precision or FPR). In that case, it requires to tune the model threshold such that it meets the minimum requirement on those metrics

Step- 6 - Model Selection And Training The Model

Classifier 1 - Logistics Regression

#import the regression module

 $from \ sklearn. In ear_model \ import \ Logistic Regression$

#Split the dataset into test train

x_train,x_test,y_train,y_test = train_test_split(x,y, test_size = 0.3, random_state = 0)

#train the model

log_reg = LogisticRegression()

log_reg.fit(x_train, y_train)

```
#predict the model
y pred = log reg.predict(x test)
```

#check for the accuracy score

print(f"Accuracy_Score for Logistics Regression: {accuracy_score(y_pred, y_test)}")

RESULT

Accuracy_Score for Logistics Regression: 0.9990483798961441

STEPS FOR CREATING ROC CURVE

predict probabilities

```
yhat = log_reg.predict_proba(x_test)#[::,1]
# retrieve just the probabilities for the positive class
pos_probs = yhat[:, 1]
# plot no skill roc curve
plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')
```

calculate roc curve for model

```
fpr, tpr, _ = roc_curve(y_test, pos_probs) #fpr, tpr = false positive rate , true positive rate
# calculate roc score for model
auc = roc_auc_score(y_test, y_pred)
plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc=4)
plt.show()
```

RESULT

Points noted

This ROC -AUC curve shows the accuracy to be **76.34%** from the plot, whereas actual score from Logistic Regression shows the accuracy to be **99.90%**

FACTS

We can observe here that the model Accuracy score and roc_auc_score are no way similar in terms of values.

we can expect that the high accuracy score is because of high imbalance dataset

#check for the confusion matrix

Confusion_Matrix = confusion_matrix(y_test,y_pred) print (Confusion_Matrix)

RESULT

[[84969 20] [61 68]]

#create the heatmap of the confusion matrix

sns.heatmap(pd.DataFrame(Confusion_Matrix), annot = True, cmap = 'Blues', fmt = 'd')
plt.xlabel('Predicted')
plt.ylabel('Expected')
plt.title('Heatmap Of Confusion Matrix')
plt.show()

RESULT

Points noted

The heatmap of confusion shows that most of the transactions are being accurately identified, except for a few.

#check for the classification report

print(classification_report(y_pred,y_test))

RESULT

	precision	recall	f1-score	support
0	1.00	1.00	1.00	84989
1	0.68	0.59	0.63	129
accuracy			1.00	85118
macro avg	0.84	0.79	0.82	85118
weighted avg	1.00	1.00	1.00	85118

1.1 Machine Learning Model - Logistic Regression - using Random under sampler

#Split the dataset into test train

x_train_ru, x_test_ru, y_train_ru, y_test_ru = train_test_split(x_rus,y_rus, test_size = 0.3, random_state = 0)

#train the model

log_reg = LogisticRegression()

log_reg.fit(x_train_ru, y_train_ru)

#predict the model

y_pred_ru= log_reg.predict(x_test_ru)

#check for the accuracy score

print(f"Accuracy_Score of RUS : {accuracy_score(y_pred_ru, y_test_ru)}")

RESULT

Accuracy_Score for Logistics Regression (RUS): 0.9401408450704225

STEPS FOR CREATING ROC CURVE

predict probabilities

yhat_ru = log_reg.predict_proba(x_tes_ru)#[::,1]
retrieve just the probabilities for the positive class
pos_probs_ru = yhat_ru[:, 1]
plot no skill roc curve

```
plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')
```

calculate roc curve for model

```
fpr, tpr, _ = roc_curve(y_test_ru, y_pred_ru) #fpr, tpr = false positive rate , true positive rate
# calculate roc score for model
auc_ru = roc_auc_score(y_test_ru, y_pred_ru)
plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_ru))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc=4)
plt.show()
```


False Positive Rate

Points noted

This ROC -AUC curve shows the accuracy to be 93.97% from the plot, whereas actual score from Logistic Regression shows the accuracy to be 94.01%

1.2 Machine Learning Model - Logistic Regression - using Random Over sampler #Split the dataset into test train

x_train_ro, x_test_ro, y_train_ro, y_test_ro = train_test_split(x_ros,y_ros, test_size = 0.3, random_state = 0)

#train the model

log_reg = LogisticRegression()
log_reg.fit(x_train_ro, y_train_ro)
#predict the model
y_pred_ro = log_reg.predict(x_test_ro)

#check for the accuracy score

print(f"Accuracy_Score of ROS : {accuracy_score(y_pred_ro, y_test_ro)}")

RESUL1

Accuracy_Score for Logistics Regression (ROS): 0.9377942007154961

STEPS FOR CREATING ROC CURVE

predict probabilities

yhat_ro = log_reg.predict_proba(x_test_ro)#[::,1] # retrieve just the probabilities for the positive class pos_probs_ro = yhat_ro[:, 1] # plot no skill roc curve plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')

calculate roc curve for model

fpr, tpr, _ = roc_curve(y_test_ro, y_pred_ro) #fpr, tpr = false positive rate , true positive rate
calculate roc score for model
auc_ro = roc_auc_score(y_test_ro, y_pred_ro)
plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_ro))

```
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc=4)
plt.show()
```


<u>RESULT</u>

Points noted

This ROC -AUC curve shows the accuracy to be **93.78%** from the plot, whereas actual score from Logistic Regression shows the accuracy to be **93.77%**

1.2 Machine Learning Model - Logistic Regression - using Random Over sampler(SMOTE) #Split the dataset into test train

x_train_ro2, x_test_ro2, y_train_ro2, y_test_ro2 = train_test_split(x_ros1,y_ros1, test_size = 0.3, random_state = 0)

#train the model

log_reg = LogisticRegression()
log_reg.fit(x_train_ro2, y_train_ro2)

#predict the model

y_pred_ro2 = log_reg.predict(x_test_ro2)

#check for the accuracy score

print(f"Accuracy_Score of ROS using SMOTE : {accuracy_score(y_pred_ro2, y_test_ro2)}")

RESULT

Accuracy_Score Logistics Regression (SMOTE): 0.9377942007154961

STEPS FOR CREATING ROC CURVE

predict probabilities

yhat = log_reg.predict_proba(x_test)#[::,1]
retrieve just the probabilities for the positive class
pos_probs = yhat[:, 1]
plot no skill roc curve
plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')

calculate roc curve for model

fpr, tpr, _ = roc_curve(y_test, y_pred) #fpr, tpr = false positive rate , true positive rate
calculate roc score for model
auc = roc_auc_score(y_test, y_pred)
plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc=4)
plt.show()

RESULT

Points noted

This ROC -AUC curve shows the accuracy to be 93.78% from the plot, whereas actual score from Logistic Regression shows the accuracy to be 93.77%

Step- 7 - Now applying different models and evaluating the dataset

!pip3 install xgboost (to use xgboost classifier)

#checking for different packages for different classifiers

from sklearn.svm import SVC # Support Vector Classifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.naive_bayes import GaussianNB

from xgboost import XGBClassifier

Classifier 2 - Decision Tree Classifier

#Split the dataset into test train

x_train_1, x_test_1, y_train_1, y_test_1 = train_test_split(x, y, test_size=0.3, random_state=0)

#train the model

dte = DecisionTreeClassifier()

dte.fit(x_train_1, y_train_1)

#predict the model

y_pred_1 = dte.predict(x_test_1)

#check for the accuracy score

print(f"Accuracy_Score of Decision Tree Classifier : {accuracy_score(y_pred_1, y_test_1)}")

RESUL1

Accuracy_Score of Decision Tree Classifier: 0.9992715994266782

STEPS FOR CREATING ROC CURVE

predict probabilities

yhat_1 = dte.predict_proba(x_test_1)#[::,1]
retrieve just the probabilities for the positive class
pos_probs_1 = yhat_1[:, 1]

```
# plot no skill roc curve
plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')
```

calculate roc curve for model

```
fpr, tpr, _ = roc_curve(y_test_1, y_pred_1) #fpr, tpr = false positive rate , true positive rate
# calculate roc score for model
auc_1 = roc_auc_score(y_test_1, y_pred_1)
plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_1))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc=4)
plt.show()
```

RESULT

Points noted

This ROC -AUC curve shows the accuracy to be **86.03%** from the plot, whereas actual score from Logistic Regression shows the accuracy to be **99.92%**

#create the heatmap of the confusion matrix

sns.heatmap(pd.DataFrame(confusion_matrix(y_test_1,y_pred_1)), annot = True, cmap = 'Blues', fmt =
'd')
plt.xlabel('Predicted')
plt.ylabel('Expected')
plt.title('Heatmap Of Confusion Matrix')
plt.show()

RESULT

Points noted

The heatmap of the confusion matrix also shows that most of the dataset has been rightly classified except a few

#check for the classification report

print(classification_report(y_test_1,y_pred_1))

<u>RESULT</u>					
	precision	recall	f1-score	support	
0	1.00	1.00	1.00	84989	
1	0.78	0.72	0.75	129	
accuracy			1.00	85118	
macro avg	0.89	0.86	0.87	85118	
weighted avg	1.00	1.00	1.00	85118	

2.1 Machine Learning Model - Decision Tree Classifier - using Random Under sampler

#Split the dataset into test train

x_train_2, x_test_2, y_train_2, y_test_2 = train_test_split(x_rus, y_rus, test_size=0.3, random_state=0)

#train the model

dte = DecisionTreeClassifier()

dte.fit(x_train_2, y_train_2)

#predict the model

y_pred_2 = dte.predict(x_test_2)

#check for the accuracy score

print(f"Accuracy_Score of Decision Tree Classifier(RUS): {accuracy_score(y_pred_2, y_test_2)}")

RESULT

Accuracy_Score of Decision Tree Classifier(RUS): 0.8626760563380281

STEPS FOR CREATING ROC CURVE

predict probabilities

yhat_2 = dte.predict_proba(x_test_2)#[::,1]

retrieve just the probabilities for the positive class

pos_probs_2 = yhat_2[:, 1]

plot no skill roc curve

plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')

calculate roc curve for model

fpr, tpr, _ = roc_curve(y_test_2, y_pred_2) #fpr, tpr = false positive rate , true positive rate

calculate roc score for model

auc_2 = roc_auc_score(y_test_2, y_pred_2)

plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_2))

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('Receiver operating characteristic example')

plt.legend(loc=4)

plt.show()

RESULT

Points noted

This ROC -AUC curve shows the accuracy to be **86.40%** from the plot, whereas actual score from Logistic Regression shows the accuracy to be **86.26%**

2.1 Machine Learning Model - Decision Tree Classifier - using Random Over sampler

#Split the dataset into test train

x_train_3, x_test_3, y_train_3, y_test_3 = train_test_split(x_ros, y_ros, test_size=0.3, random_state=0)
#train the model

dte = DecisionTreeClassifier()

dte.fit(x_train_3, y_train_3)

```
#predict the model
y pred 3 = dte.predict(x test 3)
```

#check for the accuracy score

print(f"Accuracy_Score of Decision Tree Classifier(ROS) : {accuracy_score(y_pred_3, y_test_3)}")

RESULT

Accuracy_Score of Decision Tree Classifier(ROS): 0.9996704951986444
STEPS FOR CREATING ROC CURVE

predict probabilities

yhat_3 = dte.predict_proba(x_test_3)#[::,1]
retrieve just the probabilities for the positive class
pos_probs_3 = yhat_3[:, 1]
plot no skill roc curve
plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')

calculate roc curve for model

fpr, tpr, _ = roc_curve(y_test_3, y_pred_3) #fpr, tpr = false positive rate , true positive rate
calculate roc score for model
auc_3 = roc_auc_score(y_test_3, y_pred_3
plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_3))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc=4)
plt.show()

RESULT

Points noted

This ROC -AUC curve shows the accuracy to be **99.96%** from the plot, whereas actual score from Logistic Regression shows the accuracy to be **99.96%**

#check for the classification report

print(classification_report(y_test_3,y_pred_3))

RESULT

	precision	recall	f1-score	support
0	1.00	1.00	1.00	84730
1	1.00	1.00	1.00	85222
accuracy			1.00	169952
macro avg	1.00	1.00	1.00	169952
weighted avg	1.00	1.00	1.00	169952

Classifier 3 - Random forest Classifier

#Split the dataset into test train

x_train_4, x_test_4, y_train_4, y_test_4 = train_test_split(x, y, test_size=0.3, random_state=0)

#train the model

rfc = RandomForestClassifier()
rfc.fit(x_train_4, y_train_4)
#predict the model
y_pred_4 = rfc.predict(x_test_4)

#check for the accuracy score

print(f"Accuracy_Score of Random Forest Classifier: {accuracy_score(y_pred_4, y_test_4)}")

RESULT

Accuracy_Score of Random Forest Classifier: 0.9995535609389319

STEPS FOR CREATING ROC CURVE

predict probabilities

yhat_4 = rfc.predict_proba(x_test_4)#[::,1]
retrieve just the probabilities for the positive class
pos_probs_4 = yhat_4[:, 1]
plot no skill roc curve
plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')

calculate roc curve for model

fpr, tpr, _ = roc_curve(y_test_4, y_pred_4) #fpr, tpr = false positive rate , true positive rate # calculate roc score for model auc_4 = roc_auc_score(y_test_4, y_pred_4) plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_4)) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc=4) plt.show()

Receiver operating characteristic example 10 0.8 0.6 0.0 No Skill ROC curve, auc=0.8759336935623497 0.0 False Positive Rate

Points noted

This ROC -AUC curve shows the accuracy to be **87.59%** from the plot, whereas actual score from Logistic Regression shows the accuracy to be **99.95%**

3.1 Machine Learning Model - Random Forest Classifier - using Random Under sampler

#Split the dataset into test train

x_train_5, x_test_5, y_train_5, y_test_5 = train_test_split(x_rus, y_rus, test_size=0.3, random_state=0)

#train the model

rfc = RandomForestClassifier()

```
rfc.fit( x_train_5, y_train_5 )
#predict the model
y_pred_5 = rfc.predict(x_test_5)
```

#check for the accuracy score

print(f"Accuracy_Score of Random Forest Classifier(RUS): {accuracy_score(y_pred_5, y_test_5)}")

RESULT

Accuracy_Score of Random Forest Classifier(RUS): 0.9401408450704225

STEPS FOR CREATING ROC CURVE

predict probabilities

```
yhat_5 = rfc.predict_proba(x_test_5)#[::,1]
# retrieve just the probabilities for the positive class
pos_probs_5 = yhat_5[:, 1]
# plot no skill roc curve
plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')
```

calculate roc curve for model

```
fpr, tpr, _ = roc_curve(y_test_5, y_pred_5) #fpr, tpr = false positive rate , true positive rate
# calculate roc score for model
auc_5 = roc_auc_score(y_test_5, y_pred_5)
plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_5))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc=4)
plt.show()
```

RESULT

Points noted

This ROC -AUC curve shows the accuracy to be 93.91% from the plot, whereas actual score from Logistic Regression shows the accuracy to be 94.01%

3.2 Machine Learning Model - Random Forest Classifier - using Random Over sampler

#Split the dataset into test train

x_train_6, x_test_6, y_train_6, y_test_6 = train_test_split(x_ros, y_ros, test_size=0.3, random_state=0)

#train the model

```
rfc = RandomForestClassifier()
rfc.fit( x_train_6, y_train_6 )
```

#predict the model

y_pred_6 = rfc.predict(x_test_6)

#check for the accuracy score

print(f"Accuracy Score of Random Forest Classifier(ROS): {accuracy score(y pred 6, y test 6)}")

RESULT

Accuracy_Score of Random Forest Classifier(ROS): 0.9999117397853512

STEPS FOR CREATING ROC CURVE

predict probabilities

yhat_6 = rfc.predict_proba(x_test_6)#[::,1] # retrieve just the probabilities for the positive class pos_probs_6 = yhat_6[:, 1] # plot no skill roc curve plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')

calculate roc curve for model

fpr, tpr, = roc curve(y test 6, y pred 6) #fpr, tpr = false positive rate, true positive rate # calculate roc score for model auc_6 = roc_auc_score(y_test_6, y_pred_6) plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_6)) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc=4) plt.show()

RESULT

Points noted

This ROC -AUC curve shows the accuracy to be 99.99% from the plot, whereas actual score from Logistic Regression shows the accuracy to be 99.99%

#check for the classification report

print(classification_report(y_test_6,y_pred_6))

RESULT

support	f1-score	recall	precision	ı
84730	1.00	1.00	1.00	0
85222	1.00	1.00	1.00	1
169952	1.00			accuracy
169952	1.00	1.00	1.00	macro avg
169952	1.00	1.00	1.00	weighted avg

Classifier 4 -K Neighbours Classifier

#Split the dataset into test train

x_train_7, x_test_7, y_train_7, y_test_7 = train_test_split(x, y, test_size=0.3, random_state=0)

#train the model

knc =KNeighborsClassifier(n neighbors=3)

knc.fit(x_train_7, y_train_7)

#predict the model

y pred 7 = knc.predict(x test 7)

#check for the accuracy score

print(f"Accuracy_Score of K Neighbours Classifier: {accuracy_score(y_pred_7, y_test_7)}")

RESULT

Accuracy_Score of K Neighbours Classifier: 0.9985314504570126

STEPS FOR CREATING ROC CURVE

predict probabilities

yhat_7 = knc.predict_proba(x_test_7)#[::,1]
retrieve just the probabilities for the positive class
pos_probs_7 = yhat_7[:, 1]
plot no skill roc curve
plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')

calculate roc curve for model

fpr, tpr, _ = roc_curve(y_test_7, y_pred_7) #fpr, tpr = false positive rate , true positive rate
calculate roc score for model
auc_7 = roc_auc_score(y_test_7, y_pred_7)
plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_7))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc=4)
plt.show()

Receiver operating characteristic example 1.0 0.8 0.8 No Skill ROC curve, auc=0.5271141336028804 0.0 False Positive Rate

Points noted

This ROC -AUC curve shows the accuracy to be **52.71%** from the plot, whereas actual score from Logistic Regression shows the accuracy to be **99.85%**

4.1 Machine Learning Model - K Neighbouring Classifier - using Random Under sampler

#Split the dataset into test train

x_train_8, x_test_8, y_train_8, y_test_8 = train_test_split(x_rus, y_rus, test_size=0.3, random_state=0)

#train the model

knc =KNeighborsClassifier(n_neighbors=3)
knc.fit(x_train_8, y_train_8)
#predict the model
y_pred_8 = knc.predict(x_test_8)

#check for the accuracy score

print(f"Accuracy_Score of K Neighbours Classifier(RUS): {accuracy_score(y_pred_8, y_test_8)}")

RESULT

Accuracy_Score of K Neighbours Classifier(RUS): 0.6267605633802817

STEPS FOR CREATING ROC CURVE

predict probabilities

yhat_8 = knc.predict_proba(x_test_8)#[::,1]
retrieve just the probabilities for the positive class
pos_probs_8 = yhat_8[:, 1]
plot no skill roc curve
plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')

calculate roc curve for model

fpr, tpr, _ = roc_curve(y_test_8, y_pred_8) #fpr, tpr = false positive rate , true positive rate
calculate roc score for model
auc_8 = roc_auc_score(y_test_8, y_pred_8
plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_8))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc=4)
plt.show()

RESULT

Points noted

This ROC -AUC curve shows the accuracy to be 62.50% from the plot, whereas actual score from Logistic Regression shows the accuracy to be 62.67%

4.2 Machine Learning Model - K Neighbouring Classifier - using Random Over sampler

#Split the dataset into test train

x_train_9, x_test_9, y_train_9, y_test_9 = train_test_split(x_ros, y_ros, test_size=0.3, random_state=0)

#train the model

knc =KNeighborsClassifier(n_neighbors=3)

knc.fit(x_train_9, y_train_9)

#predict the model

y_pred_9 = knc.predict(x_test_9)

#check for the accuracy score

print(f"Accuracy Score of K Neighbours Classifier(ROS): {accuracy score(y pred 9, y test 9)}")

RESULT

Accuracy_Score of K Neighbours Classifier(ROS): 0.9993998305403878

STEPS FOR CREATING ROC CURVE

predict probabilities

```
yhat_9 = knc.predict_proba(x_test_9)#[::,1]
# retrieve just the probabilities for the positive class
pos_probs_9 = yhat_9[:, 1]
# plot no skill roc curve
plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')
```

calculate roc curve for model

```
fpr, tpr, _ = roc_curve(y_test_9, y_pred_9) #fpr, tpr = false positive rate , true positive rate
# calculate roc score for model
auc_9 = roc_auc_score(y_test_9, y_pred_9)
plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_9))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc=4)
plt.show()
```

RESULT

Points noted

This ROC -AUC curve shows the accuracy to be 99.93% from the plot, whereas actual score from Logistic Regression shows the accuracy to be 99.93%

Classifier 5- XGBoost Classifier

#convert x, y dataset into an optimized data structure called Dmatrix that XGBoost supports and which increases productivity

#data dmatrix = XGBClassifier.DMatrix(data=x,label=y)

#Split the dataset into test train

x_train_10, x_test_10, y_train_10, y_test_10 = train_test_split(x, y, test_size=0.3, random_state=0)

#train the model

```
xgbc =XGBClassifier(n_estimators=100)
xgbc.fit(x_train_10, y_train_10)
#predict the model
y_pred_10 = xgbc.predict(x_test_10)
```

#check for the accuracy score

print(f"Accuracy_Score of XGBoost Classifier : {accuracy_score(y_pred_10, y_test_10)}")

RESULT

Accuracy_Score of XGBoost Classifier: 0.9995653093352758

STEPS FOR CREATING ROC CURVE

predict probabilities

yhat_10 = xgbc.predict_proba(x_test_10)#[::,1] # retrieve just the probabilities for the positive class pos_probs_10 = yhat_10[:, 1] # plot no skill roc curve plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')

calculate roc curve for model

fpr, tpr, _ = roc_curve(y_test_10, y_pred_10) #fpr, tpr = false positive rate , true positive rate
calculate roc score for model
auc_10 = roc_auc_score(y_test_10, y_pred_10) #should we be using predicted value or predicted prob
instead to build the auc?
plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_10))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc=4)
plt.show()

RESULT

Points noted

This ROC -AUC curve shows the accuracy to be **88.75%** from the plot, whereas actual score from Logistic Regression shows the accuracy to be **99.95%**

#check for the classification report

print(classification_report(y_test_10,y_pred_10))

RESULT

	precision	recall	f1-score	support
0	1.00	1.00	1.00	84989
1	0.93	0.78	0.84	129
accuracy			1.00	85118
macro avg	0.96	0.89	0.92	85118
weighted avg	1.00	1.00	1.00	85118

5.1 Machine Learning Model - XGBoost Classifier - using Random Under sampler

#convert x, y dataset into an optimized data structure called Dmatrix that XGBoost supports and which increases productivity

#data_dmatrix = XGBClassifier.DMatrix(data=x,label=y)

#Split the dataset into test train

x_train_11, x_test_11, y_train_11, y_test_11 = train_test_split(x_rus, y_rus, test_size=0.3, random_state=0)

#train the model

xgbc =XGBClassifier(n_estimators=100)
xgbc.fit(x_train_11, y_train_11)
#predict the model
y_pred_11 = xgbc.predict(x_test_11)

#check for the accuracy score

print(f"Accuracy_Score of XGBoost Classifier(RUS) : {accuracy_score(y_pred_11, y_test_11)}")

RESULT

Accuracy_Score of XGBoost Classifier(RUS): 0.9401408450704225

STEPS FOR CREATING ROC CURVE

predict probabilities

yhat_11 = xgbc.predict_proba(x_test_11)#[::,1] # retrieve just the probabilities for the positive class pos_probs_11 = yhat_11[:, 1] # plot no skill roc curve plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')

calculate roc curve for model

fpr, tpr, _ = roc_curve(y_test_11, y_pred_11) #fpr, tpr = false positive rate , true positive rate
calculate roc score for model
auc_11 = roc_auc_score(y_test_11, y_pred_11) #should we be using predicted value or predicted prob
instead to build the auc?
plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_11))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc=4)
plt.show()

RESULT

Points noted

This ROC -AUC curve shows the accuracy to be 93.91% from the plot, whereas actual score from Logistic Regression shows the accuracy to be 94.01%

5.2 Machine Learning Model - XGBoost Classifier - using Random Over sampler

#convert x, y dataset into an optimized data structure called Dmatrix that XGBoost supports and which increases productivity

#data dmatrix = XGBClassifier.DMatrix(data=x,label=y)

#Split the dataset into test train

x_train_12, x_test_12, y_train_12, y_test_12 = train_test_split(x_ros, y_ros, test_size=0.3, random_state=0)

#train the model

xgbc =XGBClassifier(n_estimators=100)

xgbc.fit(x_train_12, y_train_12)

#predict the model

y_pred_12 = xgbc.predict(x_test_12)

#check for the accuracy score

print(f"Accuracy_Score of XGBoost Classifier(ROS) : {accuracy_score(y_pred_12, y_test_12)}")

RESULT

Accuracy_Score of XGBoost Classifier(ROS): 0.9998882037281115

STEPS FOR CREATING ROC CURVE

predict probabilities

yhat_12 = xgbc.predict_proba(x_test_12)#[::,1] # retrieve just the probabilities for the positive class pos_probs_12 = yhat_12[:, 1] # plot no skill roc curve plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')

calculate roc curve for model

fpr, tpr, _ = roc_curve(y_test_12, y_pred_12) #fpr, tpr = false positive rate, true positive rate # calculate roc score for model auc_12 = roc_auc_score(y_test_12, y_pred_12) #should we be using predicted value or predicted prob instead to build the auc? plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_12)) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc=4) plt.show()

RESULT

Points noted

This ROC -AUC curve shows the accuracy to be 99.98% from the plot, whereas actual score from Logistic Regression shows the accuracy to be 99.98%

#check for the classification report

print(classification_report(y_test_12,y_pred_12))

RESULT

	precision	recall	f1-score	support
0	1.00	1.00	1.00	84730
1	1.00	1.00	1.00	85222
accuracy			1.00	169952
macro avg	1.00	1.00	1.00	169952
weighted avg	1.00	1.00	1.00	169952

.....

6. Machine Learning Model--Naive Bayes Classifier

#Split the dataset into test train

x_train_13, x_test_13, y_train_13, y_test_13 = train_test_split(x, y, test_size=0.3, random_state=0)

#train the model

gnb = GaussianNB()

gnb.fit(x_train_13, y_train_13)

#predict the model

y_pred_13 = gnb.predict(x_test_13)

#check for the accuracy score

print(f"Accuracy_Score of Naive Bayes Classifier: {accuracy_score(y_pred_13, y_test_13)}")

RESULT

Accuracy_Score Naive Bayes Classifier 0.9928804718155971

STEPS FOR CREATING ROC CURVE

predict probabilities

yhat_13 = gnb.predict_proba(x_test_13)#[::,1]
retrieve just the probabilities for the positive class
pos_probs_13 = yhat_13[:, 1]
plot no skill roc curve
plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')

calculate roc curve for model

fpr, tpr, _ = roc_curve(y_test_13, y_pred_13) #fpr, tpr = false positive rate , true positive rate
calculate roc score for model
auc_13 = roc_auc_score(y_test_13, y_pred_13)
plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_13))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc=4)
plt.show()

RESULT

Points noted

This ROC -AUC curve shows the accuracy to be 76.80% from the plot, whereas actual score from Logistic Regression shows the accuracy to be 99.28%

6.1 Machine Learning Model - Naive Bayes Classifier - using Random Under sampler

#Split the dataset into test train

x_train_14, x_test_14, y_train_14, y_test_14 = train_test_split(x_rus, y_rus, test_size=0.3, random_state=0)

#train the model

gnb = GaussianNB()
gnb.fit(x_train_14, y_train_14)
#predict the model
y_pred_14 = gnb.predict(x_test_14)

#check for the accuracy score

print(f"Accuracy_Score of Naive Bayes Classifier(RUS) : {accuracy_score(y_pred_14, y_test_14)}")

RESULT

Accuracy_Score of Naive Bayes Classifier(RUS): 0.8767605633802817

STEPS FOR CREATING ROC CURVE

predict probabilities

yhat_14 = gnb.predict_proba(x_test_14)#[::,1]
retrieve just the probabilities for the positive class
pos_probs_14 = yhat_14[:, 1]
plot no skill roc curve
plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')

calculate roc curve for model

fpr, tpr, _ = roc_curve(y_test_14, y_pred_14) #fpr, tpr = false positive rate , true positive rate # calculate roc score for model auc_14 = roc_auc_score(y_test_14, y_pred_14 plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_14)) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc=4) plt.show()

RESULT

Points noted

This ROC -AUC curve shows the accuracy to be **87.35%** from the plot, whereas actual score from Logistic Regression shows the accuracy to be **87.67%**

6.2 Machine Learning Model - Naive Bayes Classifier - using Random Over sampler

#Split the dataset into test train

x_train_15, x_test_15, y_train_15, y_test_15 = train_test_split(x_ros, y_ros, test_size=0.3, random_state=0)

#train the model

gnb = GaussianNB()
gnb.fit(x_train_15, y_train_15)
#predict the model
y_pred_15 = gnb.predict(x_test_15)

#check for the accuracy score

print(f"Accuracy Score of Naive Bayes Classifier(ROS): {accuracy score(y pred 15, y test 15)}")

RESULT

Accuracy_Score of Naive Bayes Classifier(ROS): 0.8757590378459801

STEPS FOR CREATING ROC CURVE

predict probabilities

yhat_15 = gnb.predict_proba(x_test_15)#[::,1]
retrieve just the probabilities for the positive class
pos_probs_15 = yhat_15[:, 1]
plot no skill roc curve
plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')

calculate roc curve for model

fpr, tpr, _ = roc_curve(y_test_15, y_pred_15) #fpr, tpr = false positive rate , true positive rate
calculate roc score for model
auc_15 = roc_auc_score(y_test_15, y_pred_15
plt.plot(fpr,tpr,label="ROC curve, auc="+str(auc_15))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc=4)
plt.show()

RESULT

Points noted

This ROC -AUC curve shows the accuracy to be 87.60% from the plot, whereas actual score from Logistic Regression shows the accuracy to be 87.57%

#check for the classification report

print(classification_report(y_test_15,y_pred_15))

RESULT

	precision	recall	f1-score	support
0	0.81	0.99	0.89	84730
1	0.99	0.76	0.86	85222
accuracy			0.88	169952
macro avg	0.90	0.88	0.87	169952
weighted avg	0.90	0.88	0.87	169952

Step- 8 - Check with all the metrics in	order to compare at once for each classifier
<u>Codes</u>	<u>RESULT</u>
#Check for Accuracy score per classifier log_reg_acc = accuracy_score(y_pred_ro, y_test_ro)*100 dtc_acc = accuracy_score(y_pred_3, y_test_3)*100	log_reg_acc : 93.77942007154961
rfc_acc = accuracy_score(y_pred_6, y_test_6)*100 knn_acc = accuracy_score(y_pred_9, y_test_9)*100 xgb_acc = accuracy_score(y_pred_12, y_test_12)*100	dtc_acc: 99.97057992845039
<pre>gnb_acc = accuracy_score(y_pred_15, y_test_15)*100 print(f"log_reg_acc : {log_reg_acc}")</pre>	rfc_acc: 99.9929391828281
<pre>print(f"dtc_acc: {dtc_acc}")</pre>	knn_acc: 99.93998305403878
print(f"rfc_acc: {rfc_acc}")	· -
print(f"knn_acc: {knn_acc}")	xgb_acc: 99.98882037281115
print(f"xgb_acc: {xgb_acc}")	
print(f"gnb_acc : {gnb_acc}")	gnb_acc : 87.57590378459801
#Check for roc_auc_score per classifier	
log_reg_roc = roc_auc_score(y_pred_ro, y_test_ro) dtc_roc = roc_auc_score(y_pred_3, y_test_3) rfc_roc = roc_auc_score(y_pred_6, y_test_6)	log_reg_roc : 0.9388166226357336
knn_roc = roc_auc_score(y_pred_9, y_test_9) xgb_roc = roc_auc_score(y_pred_12, y_test_12)	dtc_roc : 0.9997068205272539
<pre>gnb_roc = roc_auc_score(y_pred_15, y_test_15) print(f"log_reg_roc : {log_reg_roc}")</pre>	rfc_roc : 0.9999296055564681
print(f"dtc_roc : {dtc_roc}")	knn_roc : 0.9994022783741972
print(f"rfc_roc : {rfc_roc}")	K/III_1 00 : 0.3334022/03/413/2
print(f"knn_roc : {knn_roc}")	xgb_roc : 0.9998885512840066
print(f"xgb_roc : {xgb_roc}")	anh noc : 0 9064107159739477
print(f"gnb_roc : {gnb_roc}")	gnb_roc : 0.8964197158728477
#Check for precision score per classifier	
<pre>log_reg_prc = precision_score(y_pred_ro, y_test_ro) dtc_prc = precision_score(y_pred_3, y_test_3) rfc_prc = precision_score(y_pred_6, y_test_6)</pre>	log_reg_prc : 0.9132735678580648
knn_prc = precision_score(y_pred_9, y_test_9) xgb_prc = precision_score(y_pred_12, y_test_12) gnb_prc = precision_score(y_pred_15, y_test_15)	dtc_prc : 1.0
<pre>print(f"log_reg_prc : {log_reg_prc}")</pre>	rfc_prc : 1.0
print(f"dtc_prc : {dtc_prc}")	knn_prc : 1.0
print(f"rfc_prc : {rfc_prc}")	
print(f"knn_prc : {knn_prc}")	xgb_prc : 1.0
print(f"xgb_prc : {xgb_prc}")	gnb_prc : 0.7617633944286687
print(f"gnb_prc : {gnb_prc}")	

#Check for recall score per classifier log_reg_rcs : 0.9607342122154743 log_reg_rcs = recall_score(y_pred_ro, y_test_ro) dtc_rcs = recall_score(y_pred_3, y_test_3) rfc_rcs = recall_score(y_pred_6, y_test_6) dtc rcs : 0.9994136410545079 knn_rcs = recall_score(y_pred_9, y_test_9) xgb_rcs = recall_score(y_pred_12, y_test_12) gnb_rcs = recall_score(y_pred_15, y_test_15) rfc_rcs : 0.9998592111129362 print(f"log_reg_rcs : {log_reg_rcs}") print(f"dtc rcs: {dtc rcs}") knn_rcs : 0.9988045567483943 print(f"rfc_rcs : {rfc_rcs}") print(f"knn_rcs : {knn_rcs}") xgb_rcs : 0.999777102568013 print(f"xgb_rcs : {xgb_rcs}") print(f"gnb_rcs : {gnb_rcs}") gnb_rcs : 0.987646620316137 #Check for F1 score log_reg_f1sc : 0.9364029019334191 log_reg_f1sc = f1_score(y_pred_ro, y_test_ro) dtc_f1sc = f1_score(y_pred_3, y_test_3) rfc_f1sc = f1_score(y_pred_6, y_test_6) dtc_f1sc : 0.9997067345478434 knn_f1sc = f1_score(y_pred_9, y_test_9) xgb_f1sc = f1_score(y_pred_12, y_test_12) gnb f1sc = f1 score(y pred 15, y test 15) rfc_f1sc : 0.9999296006007415 print(f"log_reg_f1sc : {log_reg_f1sc}") print(f"dtc_f1sc : {dtc_f1sc}") knn_f1sc : 0.9994019208893787 print(f"rfc_f1sc : {rfc_f1sc}") print(f"knn_f1sc : {knn_f1sc}") xgb_f1sc : 0.9998885388618057 print(f"xgb f1sc: {xgb f1sc}") print(f"gnb_f1sc : {gnb_f1sc}") gnb_f1sc : 0.8601220247361763

#Compare results of different metrics based on each classifier results = pd.DataFrame({ 'Model': ['Logistic Regression', 'Decision Tree', 'Random Forest', 'KNN', 'XGBoost', 'Naive Bayes'], 'Recall_Score': [log_reg_rcs, dtc_rcs, 'Accuracy_Score': [log_reg_acc, rfc_rcs, dtc_acc, knn_rcs, rfc_acc, xgb_rcs, knn_acc, gnb rcs], 'F1_Score': [log_reg_f1sc, xgb acc, gnb_acc], dtc_f1sc, 'ROC_AUC_Score': [log_reg_roc, rfc_f1sc, knn_f1sc, dtc_roc, rfc_roc, xgb_f1sc, gnb_f1sc]}) knn_roc, xgb_roc, result_df = results.sort_values(by='Accuracy_Score', gnb_roc], 'Precision_Score': [log_reg_prc, ascending=False) result_df = result_df.set_index('Model') dtc_prc, result_df rfc_prc,

RESULT

	Accuracy_Score	ROC_AUC_Score	Precision_Score	Recall_Score	F1_Score
Model					
Random Forest	99.992939	0.999930	1.000000	0.999859	0.999930
XGBoost	99.988820	0.999889	1.000000	0.999777	0.999889
Decision Tree	99.970580	0.999707	1.000000	0.999414	0.999707
KNN	99.939983	0.999402	1.000000	0.998805	0.999402
Logistic Regression	93.779420	0.938817	0.913274	0.960734	0.936403
Naive Bayes	87.575904	0.896420	0.761763	0.987647	0.860122

Part 8.1. Evaluating models based on various metrics

knn_prc, xgb_prc, gnb_prc],

As we can see from the comparisons above done for all the different models based on several metrics

The most accurate result has been provided by Random Forest (Over Sampling method)

Here, the oversampling method has been used because the data being imbalanced and most of the data belonged to Legit cases.

•	As the dataset provided had been imbalanced, it was important to balance it either by under
•	sampling or by over sampling method. Mostly in the models used, oversampling seemed to be useful and more efficient
	in the models used, oversampling seemed to be useful and more emclent