Математический анализ

Тюленев Александр Иванович (Конспектировал Иван-Чай) 01.09.2023

1 Сатанистские символы

1.1 Логические операции

∧ - и

V - или

¬ - нет

1.2 Кванторы

∀ - для любого (квантор всеобщности)

 \exists - существует

∃! - существует и только один

 \hookrightarrow - выполняется

1.3 Еще обозначения

:= - равно по определению

: - такой, что

 \Rightarrow - следует

 \Leftrightarrow - равносильно

1.4 Операции над множеством

A,B - множества обозначаются большими буквами

a,b - элементы маленькими

∅ - пустое множество

 $A \cup B := \{x : x \in A \vee x \in B\}$

 $A\cap B:=\{x:x\in A\wedge x\in B\}$

$$A \setminus B := \{x : x \in A \land x \notin B\}$$

$$A \triangle B := (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (B \cap A)$$

2 Определения

Def 1. Множество X называется бесконечным, если $\forall n \in \mathbb{N}$ X содержит n различных элементов.

Def 2. Пусть X, Y - непустыве множества, тогда декартово произведение

$$X \times Y := \{(x, y) : x \in X, y \in Y\}$$

Def 3. Задано соответствие f из X в Y, если в $X \times Y$. выделено подмножество $G_f \subset X \times Y$.

Def 4. Если $(x,y) \in G_f$, то говорят, что у поставлен в соответствие x.

Def 5. Область определения

$$D_f := \{ x \in X : \exists y \in Y \hookrightarrow (x, y) \in G_f \}$$

Def 6. Область значений

$$E_f := \{ y \in Y : \exists x \in X \hookrightarrow (x, y) \in G_f \}$$

Def 7. Если $D_f = X$, то говорят, что задано многозначное отображение из $X \in Y$.

Def 8. $X,Y \neq \varnothing$ Будем говорить, что $f:X \to Y$ отображение, если $\begin{cases} D_f = X \\ \forall x \in X \quad \exists ! \quad y \in Y: (x,y) \in G_f \end{cases}$

Def 9. Композицией отображения f и g называется отображение $h=g\cdot f$, если h=g(f(x)), где X,Y,Z - непустые множества, $f:X\to Y,\quad g:Y\to Z$ - отображения.

Def 10. Отображение $f: X \to Y$ - инъекция, если $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

Def 11. Отображение $f: X \to Y$ - сюрьекция, если $E_f = Y$.

Def 12. Отображение $f: X \to Y$ называют обратимым, если $\exists f^{-1}: Y \to X$ такое, что

$$\begin{cases} f\cdot f^{-1}=Id_Y\\ f^{-1}\cdot f=Id_X\\ npu этом f^{-1} называют обратным κ f .$$

Def 13. $Id_A := \{(a, a) : a \in A\}$

3 Множества натуральных, целых, рациональных и действительных чисел

3.1 Натуральные и целые числа

Это материал лекции, на которую мы случайно не туда попали. Потом и ее законспектирую тоже.

3.2 Рациональные числа

 ${f Def.}\ {\Bbb Q}$ - множество всех рациональных чисел.

 \mathbb{Q} - множество несократимых дробей вида $\frac{n}{m}$, где $n \in \mathbb{Z}, m \in \mathbb{N}$.

3.3 Действительные числа

Def. A расположено левее B, если $\forall a \in A$ и $\forall b \in B \hookrightarrow a \leqslant b$, где A, B - непустые множества.

Def. Множеством действительных чисел \mathbb{R} называется непустое множество R, на котором введены бинарные операции "+" : $\mathbb{R}^2 \to \mathbb{R}$, u "*" : $\mathbb{R}^2 \to \mathbb{R}$, u отношение порядка " \leq ", которое удволетворяет следующим 15 аксиомам

- 1. $a+b=b+a \quad \forall a,b \in \mathbb{R}$.
- 2. $a + (b+c) = (a+b) + c \quad \forall a, b, c \in \mathbb{R}$.
- 3. $\exists 0 \in \mathbb{R} : a + 0 = a \quad \forall a \in \mathbb{R}$.
- 4. $\forall a \in \mathbb{R} \quad \exists (-a) \in \mathbb{R} : a + (-a) = 0.$
- 5. $ab = ba \quad \forall a, b \in \mathbb{R}$.
- 6. $a(bc) = (ab)c \quad \forall a, b, c \in \mathbb{R}$
- 7. $\exists 1 \in \mathbb{R} : a \cdot 1 = a \quad \forall a \in \mathbb{R}.$
- 8. $\forall a \in \mathbb{R} \setminus \{0\}$ $\exists \frac{1}{a} \in \mathbb{R} : a \frac{1}{a} = 1$.
- 9. $a(b+c) = ab + ac \quad \forall a, b, c \in \mathbb{R}$.
- 10. $a, b \in \mathbb{R} \hookrightarrow a \leqslant b \lor b \leqslant a$.
- 11. $\forall a, b, c \in \mathbb{R} (a \leqslant b \Rightarrow a + c \leqslant b + c).$
- 12. если $a \leq b$, то $\forall c \geq 0 \hookrightarrow ac \leq bc \quad \forall a, b, c \in \mathbb{R}$.
- 13. $a \leq b \land b \leq c \Rightarrow a \leq c \quad \forall a, b, c \in \mathbb{R}$.
- 14. Echu $a \leq b \wedge b \leq a$, mo $a = b \quad \forall a, b \in \mathbb{R}$.
- 15. Аксиома непрерывности: $\forall A, B \subset \mathbb{R}$, если A расположено левее B, то $\exists c \in \mathbb{R} : a \leqslant c \leqslant b \quad \forall a \in A \ u \ b \in B$.
- **Def.** (1) (4) Абелева группа по сложению.
- **Def.** (1) (9) алгеброическое поле.

4 Ограниченность

Def. Множество $A \subset \mathbb{R}$ называется ограниченным сверху, если $\exists m \in \mathbb{R} : a \leqslant M \quad \forall a \in A.$

Def. Множество $A \subset \mathbb{R}$ называется ограниченным снизу, если $\exists m \in \mathbb{R} : a \geqslant M \quad \forall a \in A.$

Def. Множество A называется ограниченным, если оно ограниченно сверху u снизу.

Def. Множество $A \subset \mathbb{R}$ называется неограниченным сверху, если $\forall m \in \mathbb{R} \quad \exists a(m) \in A: a(m) > m$.

Def. Множество $A \subset \mathbb{R}$ называется неограниченным снизу, если $\forall m \in \mathbb{R} \quad \exists a(m) \in A: a(m) < m$.