Series de Tiempo 2018

Maestría en Estadística Aplicada, UNR Unidad 6

Luis Damiano damiano.luis@gmail.com 2018-04-17

Contenido

- Identificación
 - Transformaciones
 - Selección de orden
 - Desplazamiento
- Ejercicio: Ventas en supermercados
- Ejercicio: Producción de automóviles

Identificación

ARIMA

Típicamente, la identificación de una serie de tiempo incluye los siguientes pasos:¹

- Análisis exploratorio.
 - ¿Qué dice la teoría subyacente a los datos?
 - ¿Es estacionario en la media? ¿Tiene tendencia? ¿De qué tipo?
 - ¿Es estacionario en la varianza? ¿De qué forma se relaciona la varianza con la media?
 - ¿Tiene estacionalidad? ¿Es estacionaria? ¿Es constante a lo largo del tiempo? ¿Es aditiva o multiplicativa?
 - ¿Tiene valores atípicos?
 - ¿Presenta cambios (quiebres) en los patrones?
- 2. Identificar las transformaciones necesarias.
 - Eliminar tendencia.
 - Estabilizar varianza.

Maestría en Estadística Aplicada, UNR

- 3. Seleccionar los órdenes p y q.
- 4. Identificar la existencia de tendencia determinística (desplazamiento o drift) en series diferenciadas.

Series de Tiempo (2018)

¹Típicamente es la palabra clave de esta oración. Esta receta es una mera guía indicativa para hacer los primeros análisis. En la práctica, los datos reales desafían todos los protocolos.

1 Análisis exploratorio

Recordar el análisis exploratorio visto en la Unidad 5.

2 Identificación de la raíz unitaria

Primeros lineamientos

- Patrón: ACF decae muy lentamente y la PACF se corta abruptamente luego del primer rezago.
- Pruebas de raíz unitarias: Dickey-Fuller, Dickey-Fuller Aumentado, Phillips-Perron.
- Otras reglas prácticas:
 - Si la suma de los parámetros AR es cercana a la unidad, probar de incrementar el orden de la diferenciación d y reducir el orden del componente autorregresivo p.
 - Si la suma de los parámetros MA es cercana a la unidad, probar de reducir el orden de la diferenciación d y reducir el orden del componente de media móvil q.
- ¿Caso muy dudoso? Probar diferenciando.

Identificación de ARIMA(0,1,0)

Maestría en Estadística Aplicada, UNR

```
set.seed(9000)
z <- arima.sim(
 model = list(order = c(0, 1, 0), sd = 1),
        = 500
 n
library(tseries)
adf.test(z, alternative = "stationary")
##
##
   Augmented Dickey-Fuller Test
##
## data: z
## Dickey-Fuller = -1.4611, Lag order = 7, p-value = 0.8064
## alternative hypothesis: stationary
pp.test(z, alternative = "stationary")
##
   Phillips-Perron Unit Root Test
##
## data: z
## Dickey-Fuller Z(alpha) = -5.7519, Truncation lag parameter = 5,
## p-value = 0.7889
## alternative hypothesis: stationary
```

Series de Tiempo (2018)

9/41

Identificación de ARIMA(0,1,0)

Maestría en Estadística Aplicada, UNR

Series de Tiempo (2018)

10/41

Identificación de ARIMA(2,0,0)conraíz(casi)unitaria

```
set.seed(9000)
z <- arima.sim(
  model = list(order = c(2, 0, 0), ar = c(0.7, 0.29), sd = 1),
        = 500
  n
library(tseries)
adf.test(z, alternative = "stationary")
##
##
    Augmented Dickey-Fuller Test
##
## data: z
## Dickey-Fuller = -3.036, Lag order = 7, p-value = 0.1398
## alternative hypothesis: stationary
pp.test(z, alternative = "stationary")
##
    Phillips-Perron Unit Root Test
##
## data: z
## Dickey-Fuller Z(alpha) = -22.216, Truncation lag parameter = 5,
## p-value = 0.04457
## alternative hypothesis: stationary
   Maestría en Estadística Aplicada, UNR
                                                     Series de Tiempo (2018)
                                                                                               11/41
```

Identificación de ARIMA(2, 0, 0) conraíz(casi) unitaria

3 Seleccionar los órdenes p y q

Selección de los órdenes p y q

Proceso	ACF	PACF	
AR(p)	Decae exponencialmente (raíz real) Sinusoidal (raíz compleja)	Se corta en el rezago p	
MA(q)	Se corta en el rezago q	Decae exponencialmente (raíz real) Sinusoidal (raíz compleja)	
ARMA(p, q)	Decae luego de $q-p$	Decae luego de $p-q$	

En ciertas oportunidades, los términos AR y MA se cancelan. Cuando se identifica un modelo con ambos componentes, probar de disminuir ambos órdenes en una unidad. Por ejemplo, partiendo de ARIMA(1,1,2), probar ARIMA(0,1,1).

Identificación de ARIMA(1,0,0)

Identificación de ARIMA(3,0,0)

Identificación de ARIMA(2,0,0) con raíces complejas

El siguiente es un proceso AR(2):

$$Z_t - 1.7Z_{t-1} + 0.8Z_{t-2} = a_t, \ t = 0, \pm 1, \dots, \ a_t \sim \mathcal{N}(0, 1).$$

Ejercicio en clases

Calcular analíticamente las raíces del polinomio característico

Maestría en Estadística Aplicada, UNR

Identificación de ARIMA(2,0,0) con raíces complejas

Identificación de ARIMA(0,0,1)

Identificación de *ARIMA*(0, 0, 3)

Identificación de $\overline{ARIMA(1,0,1)}$

4 Identificación de tendencia determinística

¿Qué representa el desplazamiento?³

Supongamos un ARMA(p,q) diferenciado d veces (donde Z_t^\prime representa la d-ésima diferencia)

$$Z_t'=c+\phi_1Z_{t-1}'+\cdots+\phi_\rho Z_{t-\rho}'+\theta_1a_{t-1}+\cdots+\theta_qa_{t-q}+a_t,\ t=0,\pm 1,\ldots$$

La constante c se llama desplazamiento o drift, y tiene un efecto muy importante en los pronósticos de largo plazo 2 .

с	d	Pronóstico de largo plazo
0	0	Cero
0	1	Constante distinta de cero
0	2	Línea recta
$\neq 0$	0	Promedio muestral
$\neq 0$	1	Línea recta
≠ 0	2	Tendencia cuádratica

Maestría en Estadística Aplicada, UNR

²Los pronósticos se desarrollan formalmente en la Unidad 9.

³Hyndman and Athanasopoulos (2018), sec. 8.5. Ver online.

Ejemplos simulados

Ejercicio: Ventas en supermercados

Ejercicio en clases

Identificar la serie de tiempo de ejemplo.

Este ejercicio invita a discutir temas como significancia estadística, parsimonia, y otras cuestiones subjetivas que hacen al análisis de series de tiempo. No esperen una respuesta clara y contundente cuando trabajen con datos reales. Asimismo, no consideren que el modelo elegido por auto.arima es la respuesta definitiva al proceso de identificación. El Anexo incluye algunos gráficos útiles.

Algunos pasos:

- Descargar los datos desde https://bit.ly/2GXzXoa.
- De la Sección A 1.11, leer los datos mensuales para la columna Ventas totales.⁴
- Graficar y describir la serie original. ¿Es estacionaria en la media y en la varianza? ¿Observan tendencia y estacionalidad? ¿De qué tipo?
- Graficar y describir las ACF y PACF muestrales. ¿Observan algunos de los patrones estudiados?

⁴ Hay una copia local en data/INDECSuper.txt en caso de que el sitio esté fuera de línea.

Maestría en Estadística Aplicada, UNR

Series de Tiempo (2018)

Ejercicio: Producción de automóviles

Ejercicio en clases

Identificar la serie de tiempo de ejemplo.

El Anexo incluye algunos gráficos útiles.

Algunos pasos:

- Descargar los datos desde https://bit.ly/2GXzXoa.
- De la Sección A 1.22, leer los datos mensuales para la columna Automóviles.⁵
- Graficar y describir la serie original. ¿Es estacionaria en la media y en la varianza? ¿Observan tendencia y estacionalidad? ¿De qué tipo?
- Graficar y describir las ACF y PACF muestrales. ¿Observan algunos de los patrones estudiados?

⁵Hay una copia local en data/haciendasAutos.txt en caso de que el sitio esté fuera de línea.

Maestría en Estadística Aplicada, UNR | Series de Tiempo (2018) |

Anexo: Ventas en supermercados

Lectura & procesamiento

```
# https://bit.ly/2GXzXoa
df <- read.table(
 file = "data//INDECSuper.txt",
 header = TRUE.
 sep = "\t"
df[, 1] \leftarrow as.POSIXct(df[, 1], format = "%Y-%m-%d")
z \leftarrow xts(x = df[, 2] / 1000, order.by = df[, 1])
z_ts <- ts(z, frequency = 12) # stl requiere un objeto del tipo ts
t(head(z, 9))
   1996-07-01 1996-08-01 1996-09-01 1996-10-01 1996-11-01 1996-12-01
## x
          1.036
                     1.064
                               0.975
                                           1.025
                                                      1.073
                                                                 1.371
```

y

1997-01-01 1997-02-01 1997-03-01

1.013 1 1.172

Visualización

Serie transformada (In)

Primera diferencia de la serie transformada (In)

Ajuste

```
## Series: log(z_ts)
## ARIMA(3,1,0)(2,1,2)[12]
##
## Coefficients:
##
           ar1
                   ar2
                           ar3 sar1
                                        sar2
                                                sma1
                                                       sma2
  -0.3977 -0.0677 0.3190 0.813 -0.5900 -1.3668 0.6808
## s.e. 0.0697 0.0662 0.0618 0.100 0.0872 0.1265 0.0892
##
## sigma^2 estimated as 0.0007995: log likelihood=522.97
## AIC=-1029.93 AICc=-1029.32 BIC=-1001.89
```

Residuos de un modelo ajustado

Anexo: Producción de automóviles

Lectura & procesamiento

```
# https://bit.ly/2GXzXoa

df <- read.table(
    file = "data//haciendaAutos.txt",
    header = TRUE,
    sep = "\t"
)

df[, 1] <- as.POSIXct(df[, 1], format = "\"\Y-\m-\"\d")

z <- xts(x = df[, 2] / 1000, order.by = df[, 1])
z_ts <- ts(z, frequency = 12) # stl requiere un objeto del tipo ts

t(head(z, 9))</pre>
```

```
## 1993-01-01 1993-02-01 1993-03-01 1993-04-01 1993-05-01 1993-06-01

## x 22.01 4.033 21.971 21.919 24.172 25.468

## 1993-07-01 1993-08-01 1993-09-01

## x 26.967 27.342 28.936
```

Visualización

٠

Serie transformada (In)

Primera diferencia de la serie transformada (In)

Ajuste

```
## Series: log(z_ts)
## ARIMA(2,1,1)(1,0,0)[12]
##
## Coefficients:
## ar1 ar2 ma1 sar1
## 0.4717 0.222 -0.9620 0.5760
## s.e. 0.0708 0.073 0.0387 0.0551
##
## sigma^2 estimated as 0.07724: log likelihood=-42.18
## AIC=94.35 AIC=94.56 BIC=112.89
```

Residuos de un modelo ajustado

Referencias

Hyndman, Rob J, and George Athanasopoulos. 2018. Forecasting: Principles and Practice. https://otexts.org/fpp2/.