ELECTRÓNICA ANALÓGICA. 2º CURSO ING. TELECOMUNICACIÓN EXAMEN FINAL. JULIO 2007

- 1. En el amplificador operacional de la figura para los transistores: β = 200 y V_{BE} = 0.7 V en activa. Las entradas son las bases de Q_1 y Q_2 y la salida el emisor de Q_5 .
 - a. Explicar la función de cada una de las etapas del amplificador.
 - b. Indique cuál es la entrada inversora y la no inversora. Halle la corriente de polarización I_B del operacional.
 - c. Incluya una resistencia de 1 k Ω de la salida (emisor de Q_5) a tierra, no tenga en

cuenta el condensador y suponga fuentes de corriente ideales:

- Calcule la ganancia de tensión de cada etapa.
- Calcule la ganancia total de tensión
- Calcule la resistencia de entrada y de salida del amplificador

- 2. El circuito de la figura es un convertidor de voltaje, v_i , a corriente, i_o . V_r es una referencia de voltaje constante y estable dada.
 - a. Suponiendo amplificadores operacionales ideales, obtenga i_o en función del voltaje de entrada, v_i , y del voltaje constante V_r .
 - b. Calcule la influencia que tiene en la corriente de salida la tensión de offset, V_{OS}, del primer amplificador operacional (VFA).
 - c. Con R_1 = 25 k Ω , R = 49.9 Ω y V_r = 10 V, diseñe el resto de resistencias para que el rango tensiones de entrada de 0 a 10 V se convierta en el rango de 4 mA a 20 mA de corriente a la salida.

Primer parcial: Ejercicio 1 Segundo parcial: Ejercicio 2 Final: Examen completo