MATHIOD 2

LECTURE 2-E

DISTANCE AND ANGLES BETWEEN VECTORS

Recall: The distance between two points a, b & IR is

the absolute value of their difference.

$$|b-a| = \sqrt{(b-a)^2}$$

Similarly, we define the distance between two vectors \vec{u} , \vec{v} to be the length/wagnitude of their difference:

Definition: the distance between two vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$ is

$$d(\dot{\alpha},\dot{\gamma}) := \|\dot{\alpha} - \dot{\gamma}\|$$

$$= \sqrt{(\alpha_1 - \gamma_1)^2 + \dots + (\alpha_n - \gamma_n)^2}$$

>> a measure of how "different" û & √ are.

Key fact: $d(\vec{u}, \vec{v}) = 0 \iff \vec{u} = \vec{v}$.

Exercise: prove this.

Solution: $d(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}|| = 0$

€ 2-1 =0

 \Leftrightarrow $\vec{u} = \vec{v}$.

Another key fact $d(\vec{u}, \vec{v}) = d(\vec{v}, \vec{u})$

Example

Exercise: Find the distance between $\hat{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\hat{v} = \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix}$.

Solution: We have
$$\vec{u} - \vec{V} = \begin{bmatrix} 1-2 \\ \sqrt{2}-0 \\ -1-(-2) \end{bmatrix} = \begin{bmatrix} -1\\ \sqrt{2}\\ 1 \end{bmatrix}$$

$$= \int d(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}|| = \sqrt{(-1)^2 + \sqrt{2}^2 + \sqrt{2}^2}$$

$$= \sqrt{1 + 2 + 1} = \sqrt{4}$$

$$= 2.$$

The angle between two vectors:

- measures the difference between the directions of two vectors (length is not relevant here)
- · gives a geometric interpretation of the dot product.

Start with \mathbb{R}^2 , \mathbb{R}^3 :

We can measure the angle between two vectors, to find a value $\theta \in [0, \pi \epsilon]$

Recall from school: The cosine rule

Consider a friangle with sides \vec{u} , \vec{v} & $\vec{w} = \vec{u} - \vec{v}$

Let $\theta \in [0, \pi]$ be the angle between $\vec{u} & \vec{v}$.

Then $\|\vec{w}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - a\|\vec{u}\|\|\vec{v}\| \cos \Theta$

On the other hand, we now know:

$$\|\vec{w}\|^{2} = \|\vec{u} - \vec{v}\|^{2} = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})$$

$$= \vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} - \vec{v} \cdot \vec{u} + \vec{v} \cdot \vec{v}$$

$$= \|\vec{u}\|^{2} + \|\vec{v}\|^{2} - \alpha \vec{u} \cdot \vec{v}.$$

Comparing the two formulas for $||\vec{v}||^2$, we conclude that $||\vec{v}|| ||\vec{v}|| \cos \theta = \vec{v} \cdot \vec{v}$.

Motivated by this, we make the following definition:

Definition: For two non-zero vectors \vec{u} , $\vec{v} \in \mathbb{R}^n$, we define the angle between \vec{u} , \vec{v} to see the unique value $\theta \in [0, \pi c]$ such that $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$

Remark: Mis only makes sense if we know $\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} \in \mathbb{T}$ -1,1].

Cauchy- Schwarz: | [1.1] ≤ | | 111 | 111

$$=) \quad 1 \leq \frac{\vec{\upsilon} \cdot \vec{v}}{\|\vec{\upsilon}\| \|\vec{v}\|} \leq 1 \qquad \Box$$

Remark:

If $\vec{u} \cdot \vec{v} > 0$, then $\cos \theta > 0 \Rightarrow \theta$ is acute.

If $\vec{u} \cdot \vec{v} < 0$ then $\cos \theta < 0 \Rightarrow \theta$ is obtuse.

If $\vec{u} \cdot \vec{v} = 0$ then $\cos \theta = 0 \implies \theta = \frac{\pi}{2}$, a right angle.

Definition: We say that two vectors \vec{u} , $\vec{v} \in \mathbb{R}^n$ are orthogonal if $\vec{u} \cdot \vec{v} = 0$.

• By the above remark, this means that the angle between \vec{u} & \vec{v} is TV_2 .

i.e. i & i are perpendicular.

Example 1 Determine whether the angle between $\vec{u} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is acute, dotuse, or a right angle.

Southar: We have $\vec{u} \cdot \vec{v} = |x| + (-3)x| + 0x| = |-3|$ = -2 <0.

So $\cos\theta < 0$; the angle θ is dotuse.

Exercise: Find $\cos\theta$ and hence (using a calculation) find θ .

Solution: 0000 = 1001 11511

• $\frac{1}{4} \cdot \frac{1}{4} = -2$ above

• $\|\vec{u}\| = \sqrt{1^2 + (-3)^2 + 0^2} = \sqrt{10}$

•
$$\|\dot{\nabla}\| = \sqrt{|2| + |2| + |2|} = \sqrt{3}$$

$$\implies \cos \theta = -\frac{2}{\sqrt{20}}.$$

Example #2 find a
$$\in \mathbb{R}$$
 such that $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} a^2 \\ a \end{bmatrix}$

are orthogonal.

Solution: We need to find a such that

$$\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} \alpha^2 \\ \alpha \\ -3 \end{bmatrix} = 0$$

i.e.
$$1 \times \alpha^2 + (-1) \times \alpha + 2 \times (-3)$$

= $\alpha^2 - \alpha - 6$
= $(\alpha - 3)(\alpha + 2) = 0$

So he two vectors are armogenal if
$$a = 3$$
 cr
$$a = -2$$

Summary of the lecture

- We defined · distance
 angle
 between û, û ∈ Rⁿ.
 - \vec{u} , \vec{v} are crthogonal if $\vec{u} \cdot \vec{v} = 0$

You should be able to:

- · Calculate the distance stangle between two vectors
- · Use $\vec{u} \cdot \vec{v}$ to determine wheme
- * solve for variables to ensure two vectors are armogenal.