单片机控制与应用实验报告

计科八班 姚金喆 53160812

实验一 电路原理图分析与设计

实验内容 1: 分析示例文件电路图

- (1) 实验要求:分析示例文件,使用选择网络功能跟踪线路流向,判断分析电路功能。
- (2) 思考题
 - a. 写出示例电路图中存储器 2764 的寻址范围。

2764 的寻址范围是 6000H-7FFFH

b. 写出示例电路图中 8155 三个端口的地址。

PA:1111xxx1xxxxx001

PB:1111xxx1xxxxx010

PC:1111xxx1xxxxx011

- c. 若在某个七段数码管上显示一个符号,应该如何控制输出端口。 向 PA 端口低五位写入想使用的数码管,PB 写入显示字符的代码
- d. 说明如何检测键盘中是否有某个键按下; 当键盘中的 EXE 键按下后,会读入什么样的数据。

第一步先输出行信号,确定列的位置;第二步进行线反转,确定行的位置。

PAO -> 1

PC2 -> 0

实验内容 2: 设计一个 8031 基本应用电路的原理图

- (1) 实验要求:包括 8031CPU 及辅助电路,外接 8K EPROM,地址范围从 2000H 开始。使用 P1 口进行四路开关量输入,四路发光管 LED 输出。当有任意一路开关闭合,产生中断信号送入 INT1。
- (2) 电路原理:

使用的器件: 8031, 74LS374, 2764, 74LS138, 74LS08

8031 P0 口接 74LS374 锁存器芯片数据输入端 D7-D0,CLK 端接 8031 的 ALE 信号。输出端 Q7—Q0 接外部程序存储器 A7—A0 端,当 ALE 为高电平时,将 P0 口送出地址低八位信号送 374 内部锁存器保存;当 ALE 为低电平时,74LS374 输出低 8 位地址信息不变。因此当 P0 口用来作数据总线时,不会造成地址低 8 位信息的丢失。P2 口始终输出高 8 位信号,故无 需加地址锁存电路。存储器 2764 的低 8 位地址 A7—A0 接 374 的输出端,高 5 位地址接 8031 的 P20-P24 口,D0-D7 数据口接 8031 的 P0 口。为了使地址范围从 2000H 开始,8031 的 P27-P25 口的值应为 001,因此通过 74LS138 接入到 CE 口。

8031 的 P10-P14 口接四个发光二极管作为输出,P15-P17 口接四个开关。四个开关再接入到一个由三个与门构成的逻辑电路,当有任意一个开关闭合时将会有一个低电平信号输入到 INT1。

(3) 电路原理图:

(4)BOM 文件及价格估算:

	MyDes	sign1.ddb	Documents	Sheet1.Sch	Sheet
	A				-
Ш		Α	В	С	D
ı	1	Part Type	Designator	Footprint	
	2	74LS08	U5	DIP-14	
	3	74LS08	U6	DIP-14	
	4	74LS08	U4	DIP-14	
	5	74LS138	U7	DIP-16	
	6	74LS374	U2	DIP-20	
	7	2764	U3	DIP-28	
	8	8031	U1	DIP-40	
	9	CAP	C3	AXIAL0.3	
	10	CAP	C2	AXIAL0.3	
	11	CRYSTAL	CR1	AXIAL0.3	
	12	ELECTRO1	C1	RAD0.3	
	13	LED1	D1	AXIAL0.3	
	14	LED1	D2	AXIAL0.3	
	15	LED1	D4	AXIAL0.3	
	16	LED1	D3	AXIAL0.3	
	17	RES2	R6	AXIAL0.3	
	18	RES2	R7	AXIAL0.3	
	19	RES2	R8	AXIAL0.3	
	20	RES2	R5	AXIAL0.3	
	21	RES2	R10	AXIAL0.3	
	22	RES2	R9	AXIAL0.3	
	23	RES2	R4	AXIAL0.3	
	24	RES2	R2	AXIAL0.3	
	25	RES2	R1	AXIAL0.3	
	26	RES2	R3	AXIAL0.3	
	27	SW SPST	S4	AXIAL0.3	
	28	SW SPST	S1	AXIAL0.3	
	29	SW SPST	S2	AXIAL0.3	
	30	SW SPST	S3	AXIAL0.3	
	31				
	32				
	33				

估价约为 38.2 元

实验二 电路图设计与线路板制作

1.制版图:

2.比对结果:

```
Warning: Footprint of U7 has been changed from DIP16 to DIP-16
Warning: Footprint of U6 has been changed from DIP14 to DIP-14
Warning: Footprint of U5 has been changed from DIP14 to DIP-14
Warning: Footprint of U4 has been changed from DIP14 to DIP-14
Warning: Footprint of U3 has been changed from DIP28 to DIP-28
Warning: Footprint of U2 has been changed from DIP20 to DIP-20
Warning: Footprint of U1 has been changed from DIP40 to DIP-40

Total components with Footprints changed = 7
Total components with Comments changed = 0

Total extra components = 0

Total nets with names changed = 0

Total nets with missing/extra pins = 0

Total extra nets in Sheet1 = 0

Total nets in Sheet1 = 0

Total nets in Sheet1 = 49

Total components in Sheet1 = 49

Total components in Sheet1 = 29

Total components in Sheet1 = 29

Total components in Exported PCB1 = 29
```

3.思考题:

a. 写出你所设计的电路中使数码管点亮的指令,和读入开关状态的指令。

P1=0x0F

- b. 你所完成的制版图的最小尺寸是多少,是否可以改进。 3 英寸*4 英寸 ,可以
- c. 设电路版制作成本为 0.5 元/平方厘米,结合器件成本,计算电路图总成本。 总成本约为 76.9 元
- **d.** 你认为在制作板图的过程中有那些值得注意的事项。 对元件的封装以及对元件位置的排布
- e. 参阅其他参考书,说明那些问题是在设计原理图时可以忽略,而在设计板图时必须和应该考虑的。

元件及针脚的名称

问题与反思:

设计电路时未能考虑到开关的开闭两种状态要对应 0,1 两种逻辑状态,出现了悬空状态。最后用开关短路的方式解决了该问题。以及没有考虑到为二极管加保护电阻。设计时一定要考虑好元器件的封装问题以及完成后对器件的编号。