Advanced Macro I Fall 2009

Miklós Koren korenm@ceu.hu koren.hu/teaching

Outline

Outline

- ► Today we finish reviewing continuous-time Markov chains.
 - steady-state distribution
 - Poisson process
- ▶ Then move on to dynamic programming
 - no uncertainty
 - ► Markov chains

Forecasting with Markov chains

- ▶ Suppose you start out employed at t = 0, $\pi_0(0) = 1$.
- ▶ What is the probability that you will be employed at $t + \Delta$?

$$\pi_0(t+\Delta) = (1-\delta\Delta)\pi_0(t) + \lambda\Delta\pi_1(t)$$

$$\mathcal{F}_{\mathbf{A}}\left(\mathbf{O}/\mathbf{O}\right)\mathcal{T}_{\mathbf{O}} + \mathcal{F}_{\mathbf{A}}\left(\mathbf{O}/\mathbf{A}\right)\mathcal{T}_{\mathbf{A}}$$

- with prob $(1-\delta\Delta)$ you remained in state 0
- with prob $\lambda\Delta$ you exited from state 1

$$\pi_0(t + \Delta) = (1 - \delta \Delta)\pi_0(t) + \lambda \Delta \pi_1(t)$$

▶ Subtract $\pi_0(t)$ from both sides and divide by Δ .

$$\frac{\pi_0(t+\Delta) - \pi_0(t)}{\Delta} = -\delta\pi_0(t) + \lambda\pi_1(t) = -\delta\pi_0(t) + \lambda[1 - \pi_0(t)]$$

▶ Take $\Delta \rightarrow 0$

$$\dot{\pi}_0(t) = \lambda - (\lambda + \delta)\pi_0(t)$$

► This is a first-order ordinary differential equation, known as the Kolmogorov forward equation.

The Kolmogorov equation

$$\dot{\pi}_0(t) = \lambda - (\lambda + \delta)\pi_0(t)$$

- ▶ To get the likelihood of each state at any t, we can solve the Kolmogorov equation forward, starting from an initial value at t=0.
- The solution to this ODE

$$\pi_0(t) = \frac{\lambda}{\lambda + \delta} \left[1 - Ce^{-(\lambda + \delta)t} \right],$$

where C is a constant of integration (pinned down by the boundary condition).

The steady-state distribution

► The steady-state distribution of twemployment is

$$\lim_{t \to \infty} \pi_0(t) = \frac{\lambda}{\lambda + \delta}.$$

▶ (We will also derive with another method.)

More generally

▶ More generally, the Kolmogorov equation is

y, the Kolmogorov equation is
$$\begin{pmatrix} \vec{\Pi}_{\mathbf{0}} \\ \vec{\Pi}_{\mathbf{i}} \end{pmatrix}^{\mathbf{I}} = \dot{\pi}(t) = \pi(t) \Lambda. = (\Pi_{\mathbf{0}} \Pi_{\mathbf{i}}) \begin{pmatrix} \vec{\Lambda}_{\mathbf{0}} & \vec{\Lambda}_{\mathbf{i}} \\ \vec{\Lambda}_{\mathbf{i}} & \vec{\Lambda}_{\mathbf{i}} \end{pmatrix}$$

- ▶ Given an initial $\pi(0)$ and a transition rate matrix Λ , we can calculate the probability of each state in any future t.
 - ► Often there is no analytical solution for this ODE.
 - However, in dynamic programming it is sufficient to only look at the *immediate future*.
 - ► The transition rates will be sufficient to do recursive optimization.

$$\Pi_{t-\Delta} = \pi_t P(\Delta) \qquad \frac{\Pi_{t-\Delta} - \pi_t}{\Delta} = \Pi_t \frac{P(\Delta) - J}{\Delta}$$

The stationary distribution

lacksquare A stationary distribution π^* satisfies $\dot{\pi}=0$, so

 $\pi^*\Lambda = 0.$

▶ Remember the transition rate matrix:

$$\Lambda = \begin{bmatrix} -\delta & \delta \\ \lambda & -\lambda \end{bmatrix}$$

- We are looking for π_0^* and $\pi_1^* = 1 \pi_0^*$ such that $\pi^*\Lambda = 0$.
- ► That is,

$$-\delta \pi_0^* + \lambda (1 - \pi_0^*) = 0.$$

ε

$$-\delta \pi_0^* + \lambda (1 - \pi_0^*) = 0.$$

► This gives us

$$\pi_0^* = \frac{\lambda}{\lambda + \delta}.$$

▶ The same as $\pi_0(\infty)$ (not a coincidence).

$$-\delta \pi_0^* + \lambda (1 - \pi_0^*) = 0.$$

► This gives us

$$\pi_0^* = \frac{\lambda}{\lambda + \delta}.$$

- ▶ The same as $\pi_0(\infty)$ (not a coincidence).
- The steady-state probability of employment
 - increases in the job finding rate
 - decreases in the firing rate

ç

Example 3: A faulty email server

- ▶ New emails arrive with rate λ :
 - $n \rightarrow n+1$
- ▶ With arrival rate η , all emails are lost
 - ightharpoonup n o 0

Example 4: The CEU email server

- \blacktriangleright New emails arrive with rate λ :
 - $ightharpoonup n \to n+1$
- lacktriangle After n reaches N, all emails are lost immediately

Example 4: The CEU email server

- \blacktriangleright New emails arrive with rate λ :
 - $n \rightarrow n+1$
- lacktriangle After n reaches N, all emails are lost immediately
- What does immediately mean in this setup?
- 1. $\aleph \to 0$ with arrival rate η , where $\eta \to \infty$
 - 2. N is never reached from N-1

Questions

Questions

Take the 3 different email servers and

- 1. Write down the transition rate matrix.
- 2. Write down the Kolmogorov forward equation.
- 3. Solve for the steady-state distribution.

Example 3: A faulty email server

▶ The transition rate matrix:
$$\begin{bmatrix} -\lambda & \lambda & 0 & \cdots \\ \eta & -\lambda - \eta & \lambda & \cdots \\ \eta & 0 & -\lambda - \eta & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Example 3: A faulty email server

- ▶ What is the stationary distribution of this process?
- ightharpoonup For all n > 0:

$$\lambda \pi_n^* - (\lambda + \eta) \pi_{n+1}^* = 0$$

▶ This defines π_{n+1}^* recursively as

$$\pi_{n+1}^* = \frac{\lambda}{\lambda + \eta} \pi_n^*.$$

(A geometric distribution.)

▶ In turn,

$$\pi_0^* = \frac{\eta}{\lambda + \eta}.$$

(To make sure that π_n^* s sum to 1.)

A geometric distribution

The Poisson process

The Poisson process

- ▶ The possible states are n = 0, 1, 2,
- ▶ The Poisson process is characterized by an arrival rate λ (aka hazard rate).
- ▶ The transition rate matrix is

$$\begin{bmatrix} -\lambda & \lambda & 0 & \cdots \\ 0 & -\lambda & \lambda & \cdots \\ 0 & 0 & -\lambda & \cdots \end{bmatrix}$$

The Poisson process

- ▶ The possible states are n = 0, 1, 2,
- ▶ The Poisson process is characterized by an arrival rate λ (aka hazard rate).
- ▶ The transition rate matrix is

$$\begin{bmatrix} -\lambda & \lambda & 0 & \cdots \\ 0 & -\lambda & \lambda & \cdots \\ 0 & 0 & -\lambda & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

► The Poisson process is used to characterize *rare, memoryless* events.

Examples

- ▶ Phone calls to emergency center.
- ► Particles emitted via radioactive decay.
- Views of the CEU website.

Characterizing the Poisson process

The two key characteristics of the Poisson process

- 1. No two events happen at the same time ("rare events").
- 2. The future arrival of events is independent of past events ("memoryless").

Characterizing the Poisson process

The Poisson process may arise

- ▶ from a truly memoryless process
 - radioactive decay
- ► from the law of small numbers
 - om the law of small numbers

view of the CEU website from California $k \sim B$ inom $(n, p) \rightarrow (OLN)$ $k \sim B$ inom $(n, p) \rightarrow (OLN)$

Visits to econ.ceu.hu from California

Export shipments of shirts from the U.S.

Export shipments of shirts from the U.S. to Iceland

Counterexamples

- ► Emergency phone calls during a natural disaster.
- Arrival of guests at a restaurant.
- Your phone calls to your mother.

Properties of the Poisson process

- ▶ The waiting time between the n-1sth and nth arrival is T_n .
- $ightharpoonup T_n$ is random, exponentially distributed with parameter λ :

$$Pr(T_n \le t) = 1 - \exp(-\lambda t).$$

▶ Waiting times are independent.

Properties of the Poisson process

- Let N = n(t+h) n(t) denote the number of arrivals between t and t+h.
- ightharpoonup N is a Poisson-distributed random variable with parameter λh .
- \blacktriangleright It takes on values 0, 1, 2, ... with pdf

$$Pr(n = k) = \frac{\exp(-\lambda h)(\lambda h)^k}{k!}$$

Properties of Poisson processes (continued)

- ▶ Take two independent Poisson processes with arrival λ_1 and λ_2 .
 - ▶ The sum is also a Poisson process with arrival $\lambda_1 + \lambda_2$.
 - The waiting time for the first arrival is exponential with parameter $\lambda_1 + \lambda_2$. $T_{1,1} = \min \{ 7, 7_2 \}$

Properties of Poisson processes (continued)

- ▶ Take two independent Poisson processes with arrival λ_1 and λ_2 .
 - ▶ The sum is also a Poisson process with arrival $\lambda_1 + \lambda_2$.
 - ▶ The waiting time for the first arrival is exponential with parameter $\lambda_1 + \lambda_2$.
- ▶ Take a Poisson processes with arrival λ and a probability p.
- ▶ Kill each arrival with probability 1 p.
 - ▶ The new process is Poisson with arrival $p\lambda$.

Poisson representation of Markov chains

- ▶ Think of a Markov chain with N states.
- ightharpoonup Starting in any given state, only N-1 things can happen (or nothing).
- ▶ Each N-1 jump has its own arrival rate.
- ▶ The first jump occurs with a Poisson arrival $\lambda_1 + ... + \lambda_{n-1}$ (see above).

Poisson representation of Markov chains (continued)

- ▶ Once there is a jump, which one is it?
- ▶ It could be any one of the 1, ..., n-1.
- ► The probability of jump 1 is

$$\frac{\lambda_1}{\lambda_1 + \dots + \lambda_{n-1}}.$$

Poisson representation of Markov chains (continued)

- Once there is a jump, which one is it?
- ▶ It could be any one of the 1, ..., n-1.
- ► The probability of jump 1 is

$$\frac{\lambda_1}{\lambda_1 + \dots + \lambda_{n-1}}.$$

- ▶ This is a good old probability $\in [0, 1]$.
- ▶ This looks more like a discrete transition matrix.

Poisson representation of Markov chains (continued)

- Once there is a jump, which one is it?
- ▶ It could be any one of the 1, ..., n-1.
- ► The probability of jump 1 is

$$\frac{\lambda_1}{\lambda_1 + \dots + \lambda_{n-1}}.$$

- ▶ This is a good old probability $\in [0,1]$.
- ▶ This looks more like a discrete transition matrix.
- ▶ I find it useful to think about Markov chains as the sum of Poisson processes.

Checklist

By now you should understand

- 1. continuous-time Markov chain
- 2. arrival rate matrix
- 3. forward Kolmogorov equation
- 4. stationary distribution
- 5. Poisson process
- 6. Poisson distribution