

氧气的性质和制备

日期:	时间:	姓名:	
Date:	Time:	Name:	

初記

初露锋芒

我们经常遇到的是氧气不足,如一氧化碳中毒及氰酸中毒等。此时一氧化碳或氰酸主要影响血 红蛋白与细胞色素,使血红蛋白与氧气不能结合。在这种情况下,要使氧的压力增高,使血红蛋白 与氧结合后,才能使一氧化碳或氰酸离开血红蛋白,所以对于这种病人常采用高压氧疗法,在一个 大容器里,使氧气达到高压。

但是,这并不是说氧对人体无害,有时也会发生氧中毒。比如当我们吸入 100% 氧气时,就会刺激气管引起咳嗽、咽喉痛。达到一个气压以上时肌肉会痉挛,目眩,昏睡,在 4 个气压下 30 分钟以上或 6 个气压下几分钟时,人便进入昏睡状态。所以,在较高气压的氧气中生活时间长的话,会有生命危险。

	1. 掌握氧气的性质
	2. 掌握氧气的实验室制法以及气体的收集方法
学习目标	3. 掌握催化剂的概念作用和特点
&	4. 掌握氧化反应、化合反应与分解反应
重难点	1. 氧气的性质
	2. 氧气的实验室制法(加热氯酸钾、双氧水、其他),气体的收集方法
	3. 催化剂

根深蒂固

、氧气的性质	
1. 物理性质	
(1) 物理性质:	
答案: 无色、无味的气体,不	易溶于水,密度比空气大。
2. 化学性质:	
答案:比较活泼,能支持燃烧	,供给呼吸,能和很多物质发生反应
3. 物质在氧气中燃烧的实验	
(1) 镁在空气中燃烧	
现象:	
化学方程式:	
答案: 现象: 发出耀眼的	白光,同时放出大量的热,生成白色固体热。
化学方程式: 2Mg+O2-	□□→2MgO
分会 	和 CO 华州与应
(2) 白磷在空气中燃烧	2和 CO2 发生反应,在空气中燃烧后最终固体并不是白色的。
现象:	
答案:	
玩象:产生大量的白烟,	同时放中士曼的热
127 Aug - 2 CE - 200	
化学方程式: 4P + 5O ₂ —	$2P_2O_5$
注意:一般不会在裸露的	空气中进行燃烧实验,污染空气,同时生成物会与空气中水蒸气
反应生成有害物质。	
(3) 木炭在氧气中燃烧	
现象:	

化学方程式:
答案: 现象: 比在空气中更旺, 发出白光, 并放出热量, 生成物使石灰水变浑浊
化学方程式: $C+O_2 \xrightarrow{\square\square} CO_2$
注意: 不完全燃烧会生成 CO, 有毒。
(4) 硫磺在氧气中燃烧
现象:
化学方程式:
答案: 现象; 硫在空气中燃烧, 发出微弱的淡蓝色火焰, 氧气中燃烧发出明亮的蓝紫色火
焰,生成有刺激性气味的气体,并放出热量。
化学方程式: $S+O_2 \xrightarrow{\square\square} SO_2$
注意: SO, 是污染性气体, 造成酸雨, 实验室做该实验一般瓶底会放稍许水主要吸收 SO,。
LE. 50/2017 THE THE REMARKS A WINNESS TO SOLUTION TO S
(5) 细铁丝在氧气中燃烧
现象:
化学方程式:
答案: 现象: 细铁丝在氧气里剧烈燃烧,火星四射,放出大量热,生成了黑色固体
化学方程式: 3Fe+2O ₂ ─□□→Fe ₃ O ₄
注意: 需要在集气瓶底部预先放少量水或铺一层细沙。
铁丝绕成螺旋状
带火柴将要燃尽时插入集气瓶中
(6) 氢气在氧气中燃烧
现象:
化学方程式:
答案:
现象: 纯净的氢气在空气中安静地燃烧,产生淡蓝色火焰,放出大量的热,烧杯内壁有液
滴生成。
化学方程式: $2H_2 + O_2 \xrightarrow{\square \square} 2H_2O$
综上: 氧气是一种化学性质比较活泼的气体, 在一定条件下, 氧气能和许多物质发生反应, 并
放出大量的热。

二、氧化物、氧化反应和化合反应

1、氧化物

定义:

答案: 有两种元素组成其中一种是氧元素的化合物

分类: _____

答案: 金属氧化物和非金属氧化物

2. 氧化反应

定义: _____

答案: 氧化反应指的是物质与氧发生的化学反应

注意: 氧气与金属、非金属和化合物的反应均为氧化反应。

氧化反应并非专指物质与氧气的反应,如木炭还原氧化铜中,木炭发生了氧化反应,因为此时供氧的物质是氧化铜,所以氧气只是氧中的一小部分。

3、化合反应

定义: _____

特点: 多变一

字母表达式: A+B→C

答案: 两种或两种以上的物质发生反应生成一种物质的反应

4、化合反应和氧化反应的关系

【小结】化合反应和氧化反应特点不同,化合反应为"多变一",氧化反应中反应物氧是否参加反应。

三、氧气的工业制法

1. 氧气工业制法原料

空气

2. 氧气工业制法原理

根据空气中各组成成分的沸点

成分	氮气		氧气		二氧化	七碳	氩气		氖气		氦气	
沸	-195.8	°C	-183.0	°C	-78.4	°C	-185.4	°C	-245.9	°C	-268.9	°C
点℃												

3. 氧气工业制法具体流程

四、氧气的实验室制法

1. 加热氯酸钾和二氧化锰的混合物

1	反应原理:					

②装置类型和收集方法: ①固+液,不加热型

②固体,加热型

3 用排水法或向下排空气法收集

由于氯酸钾是固体,且反应需要加热,故采用大试管、铁架台(带铁 夹)、酒精灯、导管等仪器装配反应装置。

4检验方法:	

⑤实验步骤:

a 仪器组装: 先下后上, 从左到右的顺序。
b 气密性检查:
c 装入药品: 按粉末状固体取用的方法(药匙或纸槽)。
d 加热药品: 先使试管均匀受热, 后在反应物部位用酒精灯外焰由前向后加热。
e 收集气体:
f 检验及验满: 用带火星的木条伸入试管中, 发现木条复燃, 说明是氧气;
用带火星的木条靠近集气瓶口部,木条复燃,证明已满。
仪器的拆卸:
注意事项:
a 酒精灯内的酒精不应超过酒精灯容积的 2/3,也不应少于 1/4.
b酒精灯外焰要对准装有药品的部位加热。
c 药品要斜铺在试管底部, 便于。
d 铁夹应夹在试管的中上部(大约距管口 1/3 处)
e试管内导管稍露出胶塞即可,便于气体排出。
f 管口要略微向下倾斜:。
g 导气管伸入发生装置内要稍露出橡皮塞: 有利于产生的气体排出。
h 试管口塞一团棉花: 防止加热时,氧气流把氯酸钾粉末吹入导管,使导管堵塞。
i 排气法收集气体时, 导气管要伸入接近集气瓶底部: 有利于集气瓶内空气排出, 使收集的
气体更纯。
j 实验结束后, 先将导气管移出水面, 然后熄灭酒精灯:。
小结: 查装定点收移熄
小名:豆衣是黑似砂心
【答案】 $2KClO_3 \xrightarrow{MnO_2} 2KCl+3O_2\uparrow$ 用带火星的木条,氧气能使其复燃
日余』 $2KCIO_3$ 一人 Δ
将导管的一端浸入水槽中,用手紧握试管外壁,若水中的导管口有气泡冒出,证明装置不
漏气。松开手后,导管口出现一段水柱。
若用排水集气法收集气体, 当气泡均匀冒出时再收集; 当集气瓶口处有大量气泡逸出时,
表示气体已经收集满了。或用向上集气法。
按先右后左, 先上后下的顺序。
均匀加热 防止生成的水回流,使试管底部破裂
防止水槽中的水倒流, 炸裂试管

2. 用分解过氧化氢溶液的方法制氧气

(1)	原理:	

- (2)发生装置的选择:由于过氧化氢是液体,二氧化锰是固体,且反应不需要加热,故需要用锥形瓶作为反应容器,配双孔胶塞,一孔插入分液漏斗,另一孔插入导管。
- (3) 收集装置的选择:由于氧气不易溶于水且不和水反应,故要制取较纯净的气体,需采用排水法收集。又由于氧气的密度比空气的大,故要制取较干燥的气体时,需采用向上排空气法收集。

注意事项:

①分液漏斗可以用长颈	顶漏斗代替,但其下端应该深入液面以下,防	止
②导管只需略微伸入证	; 【 管塞	
	NE AS	
4)装药品时,先装固体	本后装液体	
⑤该装置的优点:		

【答案】 $2H_2O_2 \xrightarrow{MnO_2} 2H_2O+O_2\uparrow$ 生成的气体从长颈漏斗中逸出

用止水夹关闭,打开分液漏斗活塞,向漏斗中加入水,水面不持续下降,就说明气密性良好可以控制反应的开始与结束,可以随时添加液体

3. 气体的收集方法

气体收集是化学学习中必须要掌握的基本实验技能,是气体实验考查中经常出现的问题。 气体的收集要依据气体的密度和水溶性。

(1) 常见的气体收集装置

常用气体的收集方法有三种

A: 排水法

适用于难或不溶于水且与水不反应的气体,导管稍稍伸进瓶内

B: 向上排空气法

气体密度大于空气(相对分子质量大于 29)且不与空气中的成分反应可用向上排空气法收集。

C: 向下排空气法

气体密度小于空气(相对分子质量小于 29)且不与空气中的成分反应可用向下排空气法收集; 备注:排气法收集气体时,导管应伸入瓶底

(2) 其他装置

如果要收集的气体有毒且易溶于水可以用上图。

(1)若气体的密度大于空气,则从____口入;

(2)若气体的密度小于空气,则从_____口入;

若过把集体瓶倒过来,则

- (3)若气体的密度大于空气,则从____口入;
- (4)若气体的密度小于空气,则从____口入;

若收集的气体不溶于水,我们还可以用这个装置来收集气体:

气体从____口入;

对于易溶性气体,一定要注意防止倒吸这个问题。!

【答案】a b b a b

4. 催化剂

- (1) 催化剂的特点是:一变二不变。
- 一变: 能改变(加快或减慢)别的物质的化学反应速率;
- 二不变:在反应过程中本身的**化学性质**不发生改变;在反应前后,本身的**质量**没有增减。
- (2) 催化剂的作用: 催化作用,加快反应速率
- 工业很多实验都需要催化剂,如酿酒用到酶做催化剂,合成氨用铁触媒等。

5. 分解反应

- (1) 定义:由一种反应物生成两种或两种以上其他物质的反应叫做分解反应。
- (2) 特点: 一种物质生成两种或两种以上
- (3) 表示: A→B+C+D
- (4) 举例: 氯酸钾─^{加热}→氯化钾+氧气

枝繁叶茂

知识点1: 氧气的性质

【例1】下列关于氧气性质的描述中,错误的是()

- A. 在通常状况下,氧气是一种无色、无味的气体
- B. 在压强为 101kPa, 氧气在-183 变为淡蓝色液体
- C. 氧气是一种化学性质比较活泼的气体
- D. 氧气极易溶于水

【难度】★

【答案】D

变式 1: 有一位同学暑假去西藏发生了严重的高原反应,医生让他吸氧后症状缓解. 吸氧可以帮助人克服高原反应的原因是()

- A. 氧气是无色无味的无毒气体
- B. 氧气可以燃烧
- C. 吸氧为人体呼吸提供了适量的氧气
- D. 氧气可以支持燃烧

【难度】★

【答案】C

变式 2: 氧气的化学性质比较活泼,能与多种物质反应.下列对有关反应的描述正确的是()

- A. 在点燃的条件下,细铁丝在氧气中剧烈燃烧,火星四射,生成黑色的四氧化三铁
- B. 在点燃的条件下, 硫在氧气里燃烧, 发出蓝紫色火焰, 生成无色无味的气体
- C. 铁、硫、酒精在氧气中的燃烧都是化合反应
- D. 物质与氧气的反应属于氧化反应,氧气具有氧化性

【难度】★

【答案】D

变式3: 下列实验现象的描述中,正确的是()

- A. 木炭在氧气中燃烧, 生成有刺激性气味的气体
- B. 硫在氧气中燃烧,发出淡蓝色火焰
- C. 红磷在空气中燃烧产生大量的白雾
- D. 铁丝在氧气中燃烧, 火星四射, 生成黑色固体

【难度】★

【答案】D

知识点 2: 氧化物、氧化反应、化合反应与分解反应

【例1】下列物质不属于氧化物的是(

- A. 二氧化锰 B. 四氧化三铁 C. 氧化镁 D. 氧气

【难度】★

【答案】D

【例 2】下列反应中既为化合反应又为氧化反应的是()

- A. 水—^{通电}→ 氢气+氧气
- B. 镁+氧气—^{点燃}→氧化镁
- C. 水+二氧化碳→碳酸
- D. 酒精+氧气 $-\frac{\text{点燃}}{}$ 水+二氧化碳

【难度】★★

【答案】B

【例3】下列变化属于分解反应的是()

- A. 从空气中分离出氧气和氮气 B. 加热氯酸钾制取氧气
- C. 红磷在氧气中燃烧生成五氧化二磷 D. 蜡烛在氧气中燃烧生成二氧化碳和水

【难度】★

【答案】B

知识点 3: 氧气制备

【例1】工业上制取大量氧气的方法是 ()

- A. 加热氯酸钾
- B. 加热高锰酸钾
- C. 分离液态空气
- D. 加热二氧化锰

【难度】★

【答案】C

【例2】实验室用如图所示装置制取氧气,下列有关说法不正确的是()

- A. 试管中加入的药品是 MnO₂和 H₂O₂
- B. 实验前应检查装置的气密性
- C. 待导管口产生连续均匀的气泡时才开始收集氧气
- D. 实验结束时应先从水槽中取出导管,再停止加热

【难度】★

【答案】A

变式1:实验室用如图所示装置制取氧气,下列实验操作正确的是()

- A. 加热前,将集气瓶注满水,用玻璃片盖着倒立在盛水的水槽中
- B. 先将导管口移入集气瓶, 再开始加热
- C. 收集 O₂ 后,将集气瓶移出水槽,然后盖上玻璃片
- D. 停止加热时, 先熄灭酒精灯, 再移出导气管

【难度】★

【答案】A

变式 2: 如图所示,向盛有 MnO_2 的集气瓶中滴加过氧化氢(H_2O_2)溶液后,下列现象正确的是(

- A. 气球胀大,红墨水左移 B. 气球缩小,红墨水右移
- C. 气球胀大, 红墨水右移 D. 气球缩小, 红墨水左移

【难度】★

【答案】D

变式 3: 在一次化学实验课上,老师拿出了两瓶无标签的药品,分别是固体和液体,老师分别从中取出少量放入同一试管中,立即产生一种无色气体,同学们对此展开了一系列探究,请你参与探究并回答下列问题.

【答案】BC

(1) 写出图中带标号仪器的名称: ①, ②
(2) ①此气体是什么物质?验证它的方案如下:
【猜想】此气体可能是(填化学式);
【实验步骤】;
【现象与结论】
②请根据该猜想写出一个实验室制取该气体的化学方程式
③请从图中选择制取该气体的发生装置(填序号),收集装置,
选择此收集装置的理由是
【难度】★
【答案】
(1) 酒精灯;集气瓶
(2) O2, 分别取少量固体和液体放入试管中, 并将带火星的木条伸入到试管内;; 木条复燃,
说明是氧气; $2H_2O_2 \xrightarrow{MnO2} 2H_2O + O_2 \uparrow$; B; C(或 E);氧气不易溶于水且不与水发生反应(或
密度比空气大).
知识点 4: 催化剂
【例1】下列关于催化剂的说法正确的是()
A. 催化剂必定加快反应速率
B. 反应前后催化剂的化学性质通常会发生改变
C. 在酿造工业和制药工业,一般都要用酶作催化剂
D. 用氯酸钾制取氧气时,加入催化剂可使生成氧气的质量增加
【难度】★
【答案】C
变式 1: 下列操作能放出 O ₂ , 且较快的是 ()
A. 在试管中放入 5mL5%的过氧化氢溶液,静置
B. 向过氧化氢溶液中加入碎瓷片
C. 向盛有过氧化氢溶液的试管中加入少量 MnO ₂
D. 加热盛 MnO₂ 的试管
【难度】★

第 13 页 共 20 页

知识点 5: 图像题

【例 1】如图表示一定质量的 $KClO_3$ 和 MnO_2 固体混合物受热过程中,某变量 y 随时间的变化趋势,

纵坐标表示的是()

- A. 固体中氧元素的质量 B. 生成 O₂ 的质量
- C. 固体中 MnO₂ 的质量 D. 固体中钾元素的质量

【难度】★★

【答案】A

变式: 某同学取用一定量的过氧化氢溶液与一定量的二氧化锰混合制取氧气,下列有关氧气的体积 (V)、二氧化锰的质量 (m)与时间 (t)关系的图示中正确的是 (

【难度】★★

【答案】D

瓜熟蒂落

1	工列伽连目复从伽的目	1	1
1.	下列物质是氧化物的是	()

- A. O_2 B. KMn O_4
- C. KClO₃ D. H₂O₂

【难度】★

【答案】D

- 2. 下列物质在氧气里燃烧,发生的反应不是化合反应的是()
 - A. 焦炭 B. 白磷 C. 硫磺 D. 乙炔

【难度】★

【答案】D

- 3. 做铁丝在氧气中燃烧的实验时,要先点燃铁丝上系着的火柴,再伸入集满氧气的集气瓶中,火柴 燃烧所起的作用是()
 - A. 升高铁丝的着火点 B. 升高铁丝的温度
 - C. 增加可燃物 D. 增大与氧气的接触面积

【难度】★★

【答案】B

4. 如图所示, 在盛有水的广口瓶中插入底部有洞的试管, 试管口用带燃烧匙的橡皮塞塞 紧,燃烧匙中盛有硫粉,硫粉燃烧前,试管内外水面相平.硫粉燃烧、冷却后,试管内 外水面将()

A. 仍然持平 B. 试管外水面高 C. 试管内水面高 D. 无法判断

【难度】★★

【答案】C

5. 实验室用如图所示装置制取氧气,下列有关说法不正确的是()

- A. 试管中加入的药品是 MnO₂ 和 H₂O₂
- B. 实验前应检查装置的气密性
- C. 待导管口产生连续均匀的气泡时才开始收集氧气
- D. 实验结束时应先从水槽中取出导管,再停止加热

【难度】★★

【答案】B

6. 下列收集装置,可以用来收集氧气的是()

A. (1)3 B. (1)2)3(6) C. (1)5(6) D. (1)2)3(4)

【难度】★★

【答案】D

- 7. 对下列实验中出现的异常现象分析不合理的是()
 - A. 制取 O₂ 时,始终收集不到 O₂ - - 装置漏气
 - B. 量筒量取液体时,所得液体偏少----俯视读数
 - C. 细铁丝在氧气中燃烧时,集气瓶底炸裂----用于引燃的火柴过长
 - D. 给试管里的固体加热时,试管炸裂----试管口未略向下倾斜

【难度】★

【答案】C

- 8. 关于催化剂的下列说法中,正确的是()
 - A. 化学反应后催化剂本身的质量减少
 - B. 化学反应后催化剂本身的质量增加
 - C. 催化剂可改变化学反应速率
 - D. 化学反应后催化剂的化学性质发生变化

【难度】★

【答案】C

9. 如图所示装置,有洗气、储气等用途. 医院给病人输氧气时,也利用了类似的装置. 以下说法不正确的是()

- A. B 导管连接供氧钢瓶
- B. B 导管连接病人吸氧导气管
- C. 该装置可用来观察是否有氧气输出
- D. 该装置可用来观察输出氧气的速度

【难度】★

【答案】A

10. 在用加热氯酸钾和二氧化锰混合物的方法制取氧气时,某实验小组的四位同学,将反应过程中二氧化锰在混合物里的质量分数 (n%) 随时间的变化,绘制成了下列图像,你认为其中符合实际的是()

【难度】★★

【答案】C

11. 为比较 Fe^{3+} 和 Cu^{2+} 对 H_2O_2 分解反应的催化效果,甲乙两组同学分别设计了如图 1、图 2 所示的实验. 下列叙述中不正确的是(

- A. 图 1 实验可通过观察产生气泡快慢来比较反应速率的大小
- B. 若图 1 所示实验中反应速率为①>②,则一定说明 Fe^{3+} 比 Cu^{2+} 对 H_2O_2 分解催化效果好
- C. 用图 2 装置测定反应速率,可测定反应产生的气体体积及反应时间
- D. 为检查图 2 装置的气密性,可关闭 A 处活塞,将注射器的活塞拉出一定距离,过一段时间 后再松开活塞,观察活塞是否回到原位

【难度】★★★

【答案】B

12. 如图是实验室制取干燥氧气的装置: (提示: 分液漏斗可以防止气体外逸)

- (1) 写出图中标号 d 的仪器名称
- (2) a 中的药品是_____; c 中试剂的作用是_____.
- (3) 请说明如何改正装置中的两处错误: 、

【难度】★

【答案】

- (1) 集气瓶
- (2) 过氧化氢溶液 ; 干燥氧气
- (3) 用向上排空气法收集、装置 c 中的左边导管插入液面下
- 13. 图是某同学设计的实验室制取氧气的装置图。

(1)	与	出	有	标	号	的	仪	器	名	称	:
---	----	---	---	---	---	---	---	---	---	---	---	---

①,	2	, ③	, 4	
----	---	-----	-----	--

(2)改正图中的错误:

(1	

2

3__________

4)

(5)

【难度】★★

【答案】(1) 酒精灯②试管③铁架台④集气瓶

【解析】该装置错误分析:对固体加热,应该使得试管管口向下倾斜,以防止固体中含有的水蒸汽冷凝后回流,炸裂试管;导气管管口应该紧贴橡皮塞,不应该伸入试管太长;应该用酒精灯的外焰加热,不能使用焰心加热;铁夹不应该夹在试管的中部,而应该夹在离管口 1/3 处;导气管应该深入到集气瓶瓶底,不应该在集气瓶瓶口。

14. 如图是几种实验室制取气体的发生装置和收集装置,请回答下列问题:

(1) 指出图中标有数字的仪器名称: ①______: ②______

(2) 实验室用双氧水和二氧化锰制取氧气时应选用 (填字母标号,下同)做发生 装置,写出该反应的化学方程式_____;若要收集较为纯净的氧气最好选用

(3) F是一种可用于集气、洗气等的多功能装置. 若将 F 装置内装满水, 再连接量筒, 用可用于测 定不溶于水且不与水反应的气体体积,测量时气体应从_____(填"a"或"b")进入F中.

【难度】★★

装置.

【答案】 (1) 酒精灯; 集气瓶 (2) B $2H_2O_2 \xrightarrow{MnO2} 2H_2O + O_2 \uparrow D$ (3) b

15. 如图所示:

(1)写出①②两种仪器的名称: ①______,②_______

(2)实验室室制取氧气,应将气体发生装置 和收集装置 (只填排空气法) 连接(填字母代号)。

【难度】★★

【答案】 (1) ①锥形瓶 ②长颈漏斗 (2) A D

【解析】本题考查氧气的实验室制法,包括气体发生、收集装置。

16. 据图回答下列问题

(1)	写出装置图中标有	a	b	符号的仪器名称:	a	,	b	0

(2) 实验室用双氧	水制	即氧气时,	可选用的发生	生装置是	;	用氯酸钾制取氧化	气时可选用的
发生装置是	;	可选用_	或	装置收集氧气	((写装置代号)。	原因是氧气
且_							

(3)	固体过氧化钠与水	反应的化学方程式如下:	$2Na_2O_2$	$+2H_2O-$	\rightarrow 4NaOH $+$ O ₂ \uparrow .	若通过此反应制
取氧气	气, 可选用	装置作气体发生装置	[(写装]	置代号)。		

(4) 甲烷 (CH ₄) 是一	种无色、无味的气体,	密度比空气	气小且极	及难溶于水,	是天然气的主要成分。
实验室制取甲烷气体常	用无水醋酸钠 (固体)	和碱石灰	(固体)	加热制得。	则实验室制取甲烷可选
用的发生装置是	,选用的收集装置	置是		o	

【难度】★★

【答案】(1)试管 集气瓶(2)B. A. CD. 不易溶于水且密度略大于空气

(3) B (4) A CE