南昌大学物理实验报告

课程名称:		通物理实验(1)	
实验名称:	金)	属导热系数的测	重	
学院:	理学院	专业班级:_	物理学 151 班	
学生姓名:	黄泽豪	学号:	5502115014	
实验地点:	B103	座位号:	14	
实验时间:	第十)	四周星期四上午	十点开始	

【实验目的】

用稳态法测定金属良导热体的导热系数,并与理论值进行比较.

【实验原理】

1882 年法国数学家、物理学家傅里叶给出了一个热传导的基本公式——傅里叶导热方程. 该方程表明,在物体内部,取两个垂直于热传导方向、彼此间相距为 h. 温度分别为 T_1 、 T_2 的平行平面设($T_1 > T_2$),若平面面积均为 S,在 Δt 时间内通过面积 S 的热量 ΔQ 满足下述表达式:

$$\frac{\Delta Q}{\Delta t} = \lambda S \frac{T_1 - T_2}{h} \tag{1}$$

式中 $\frac{\Delta Q}{\Delta t}$ 为热流量, λ 为该物质的热导率(又称作导热系数). λ 在树枝上等于相距单位长度的两平面的温度相差 1 个单位时,单位时间内通过单位面积的热量,其单位是 $W/(\mathbf{m}\cdot\mathbf{K})$.

本实验仪器如图 8-1 所示. 在支架 D 上先放置散热盘 P,在散热盘 P 的上面放上待测样品 B,再把带发热器的圆铜盘 A 放在 B 上,发热器通电后,热量从 A 盘传到 B 盘,再传到 P 盘,在样品 B 上、下分别有一小孔,可用热电偶测出其温度 T_1 和 T_2 . 由式(1)可以知道,单位时间内通过待测样品 B 任一圆截面的热流量为

$$\frac{\Delta Q}{\Delta t} = \lambda \frac{T_1 - T_2}{h_R} \pi R_B^2 \tag{2}$$

式中 R_B 为样品半径, h_B 为样品上、下小孔之间的距离,当热传导达到稳定状态时, T_1 和 T_2 值不变,于是通过 B 盘上表面的热流量与由铜盘 P 向周围散热的速率相等,因此,可通过铜盘 P 在稳定温度 T_3 时的散热速率来求出热流量 $\frac{\Delta Q}{\Delta t}$. 实验中,在读得稳定时的 T_1 、 T_2 和 T_3 后,即可将 B 盘移去,而使 A 盘的底面与铜盘 P 直接接触. 当铜盘 P 的温度上升到高于稳定时的值 T_3 若干摄氏度后,再将圆盘 A 移开,让铜盘 P 自然 $mc \frac{\Delta T}{\Delta t}\Big|_{T=T_2} = \frac{\Delta Q}{\Delta t}$ 冷却,观察其温度 T 随时间 t 的变化情况,然后由此求出铜盘在 T_3 的冷却速率 $\frac{\Delta T}{\Delta t}\Big|_{T=T_2}$, 而(m 为铜盘 P 的质量,c 为铜材的比热容),就是铜盘 P 在温度为 T_3 时的散热速率. 但要注意,这样求出的 $\frac{\Delta T}{\Delta t}$ 是铜盘的

全部表面暴露于空气中的冷却速率其散热表面积为 $2\pi R_P^2 + 2\pi R_P h_P$ (其中 $R_P = h_P$)分别为铜盘的半径与厚度). 然而,在观察测试样品的稳态传热时,P盘的上表面(面积为 πR_P^2)是被样品覆盖着的. 考虑到物体冷却速率与他的表面积成正比,则稳态时铜盘的散热速率的表达式应作如下修正

$$\frac{\Delta Q}{\Delta t} = mc \frac{\Delta T}{\Delta t} \frac{\left(\pi R_p^2 + 2\pi R_p h_p\right)}{\left(2\pi R_p^2 + 2\pi R_p h_p\right)} \tag{3}$$

将式(3)代入式(2),得

$$\lambda = mc \frac{\Delta T}{\Delta t} \frac{\left(R_P + 2h_P\right) \cdot h_B}{\left(2R_P + 2h_P\right)\left(T_1 - T_2\right)} \cdot \frac{1}{\pi R_B^2} \tag{4}$$

【实验仪器】

TC-3型导热系数测定仪、杜瓦瓶、游标卡尺.

【实验内容及步骤】

- (1) 先将两块树脂圆环套在金属圆筒两端,并在金属圆筒两端涂上导热硅胶,然后置于加热盘 A 和散热盘 P 之间,调节散热盘 P 下方的三颗螺丝使金属圆筒与加热盘 A 及散热盘 P 紧密接触.
- (2) 在杜瓦瓶中放入常温水,将热电偶的冷端插入杜瓦瓶中,热端分别插入金属圆筒侧面上、下的小孔中,并分别将热电偶的接线连接到导热系数测定仪的传感器 I、II上.
 - (3) 接通电源,将加热开关置于高档.
- (4) 待达到稳态时(T_1 与 T_2 的数值在 10min 内的变化小于 0.03mV),每隔 2min 记录 T_1 和 T_2 的值.
 - (5) 测量记录散热盘 P 的温度 T_3 .
- (6) 测量散热盘 P 在稳态值 T_2 附近的散热速率 $\frac{\Delta T}{\Delta t}$: 移开加热盘 A 先将两侧温热端取下,再将 T_2 的测温热端插入散热盘 P 的侧面小孔,取下金属圆筒,并使加热盘 A 与散热盘 P 直接接触当散热盘 P 的温度上升到高于稳态 T_3 的值对应的热电势约 0. 2mV 时,再将加热盘 A 移开,让散热盘 P 自然冷却,每隔 30s 记录此时的 U_3 值.
 - (7) 记录金属圆筒的直径和长度, 散热盘 P 的直径、厚度和质量.

【数据处理】

稳态时~对应的热电势的数据:

序次	1	2	3	4	5	平均值
U_1/mV	2.55	2. 54	2.54	2.55	2. 55	2. 546
U_2/mV	2.46	2.46	2. 47	2. 47	2. 48	2. 468

稳态时 $^{\sim}$ 对应的热电势数据 $U_{3}=1.72$ mV

时间/s	30	60	90	120	150	180	210	240
U_3/mV	1.89	1.86	1.83	1.8	1. 77	1.74	1.71	1. 68

散热速率:
$$\frac{\Delta \overline{U}}{\Delta t} = 0.001 / \text{mV} \cdot \text{s}^{-1}$$

$$\lambda = mc \frac{\Delta T}{\Delta t} \frac{(R_P + 2h_P) \cdot h_B}{(2R_P + 2h_P)(T_1 - T_2)} \cdot \frac{1}{\pi R_B^2}$$
= 0.46cal \cdot \cdot

【误差分析】

- 1. 铝棒与散热盘接触不够紧密,使铝棒中的温度梯度发生改变.
- 2. 热电偶放的位置不对,测出的热电势不一定准确.
- 3. 塑料盘没有完整覆盖散热盘的上面,导致散热面积与理论计算时不同.

【实验结果分析与小结】

- 1. 这次实验中,老师的讲解让我知道,在进入实验室前需要明确实验目的和实验原理等. 我感觉我在这方面还做得不够,以后还需多加努力.
- 2. 这次实验我们并没有在杜瓦瓶中放冰水混合物,但依旧可以使实验正常进行,因为热电偶测出的只是冷热两端的温度差,并且做减法运算后并不影响实验的结果. 所以很多实验如果无法达到标准的实验器材,寻找替代品也不失为一种好办法.

【原始数据】(见下页)

南昌大学实验报告

学生姓名: 黄海豪 学号: \$\$02115014 专业班级: 物理 151 证 实验类型: □验证 □综合 □设计 □创新 实验日期: 6.2. 实验成绩:_

序次	1-	2	3	4	5
U./mV	2.55	2.54	2.54	2.55	2.55
序次 U./mV Uz/mV	2.46	2.46	2.47	7.47	2.48

U3 = 1.72 mV

BtiAls V3/mV	30	60	190	120	150	180
V3/mV	1.89	1-86	1.83	1.80	177	1.74
	210	240				
	(-71	1.68				VP P

铜的比热 0.09.197 Calg -1 ° -1

郑 年 T018