MACHINE LEARNING

REGRESSION FRAMEWORK

Sebastian Engelke

MASTER IN BUSINESS ANALYTICS

Regression: the stochastic framework

The stochastic/population model

- ▶ We have a quantitative response Y and p predictors X_1, \ldots, X_p .
- We assume there is a relationship between Y and $X = (X_1, \dots, X_p)$

$$Y = f(X) + \epsilon$$

where ϵ is a random error term with $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2$.

► The function f is fixed but <u>unknown</u> and represents the <u>systematic</u> information that X provides about Y.

Example: $[Y = \text{house price } (100k); X = \text{size } (m^2)]$

$$Y = 2 + 0.03X + \epsilon$$

house price = $2 + 0.03 \times \text{size} + \text{error}$

- ▶ This true relationship f(X) = 2 + 0.03X is called the population regression line.
- Note: (X, Y) is a (p + 1)-dimensional random vector. In this simulated example:

$$X = \mathcal{N}(0, \sigma_X^2), \text{ and } Y = 2 + 0.03X + \mathcal{N}(0, \sigma_\epsilon^2).$$

Regression: the statistical framework

The training data

- Assume we are given n measurements $(x_1, y_1), \dots, (x_n, y_n)$ of (X, Y), where $x_i = (x_{i1}, \dots, x_{ip})^{\top}$, and
 - $x_i = (x_{i1}, \dots, x_{ip})$, and
 - ▶ the inputs $x_i \in \mathbb{R}^p$ are called predictors;
 - ightharpoonup the outputs y_i are called responses.
- We will use this data to <u>learn</u> the unknown relationship f between Y and X, i.e., to <u>train</u> (or <u>estimate</u>) a predictive model \hat{f} .

Example:
$$[Y = \text{house price } (100k); X = \text{size } (m^2)]$$

house price
$$pprox \widehat{f}(\text{size}) = 2.977 + 0.027 imes \text{size}$$

 The training data are realizations of the random vector (X, Y), e.g.,

	X	Y
(x_1, y_1)	327	9.0
(x_2, y_2)	154	7.9
(x_3, y_3)	233	8.7
(x_4, y_4)	206	9.0
(x_5, y_5)	96	7.1
(x_6, y_6)	257	6.2

Why do we estimate f?

1. Prediction (Machine learning)

- ▶ A set of inputs *X* are readily available, but *Y* cannot be easily obtained.
- ▶ We can predict Y by

$$\widehat{Y} = \widehat{f}(X),$$

where \hat{f} is our predictive model for f.

- ▶ The function \hat{f} is often treated as black box: we are not concerned with the exact form of \hat{f} provided it yields good prediction for Y.
- 2. Inference (Classical multivariate statistics)
 - We are often interested in understanding how Y is affected as X_1, \ldots, X_p change.
 - ▶ Cannot treat \hat{f} as black box, we need to know the exact form.
 - ▶ We want to answer questions such as:
 - Which predictor is associated with the response?
 - ▶ What is the relationship of the response and each predictor (positive, negative,...)?
 - Is the relationship linear or more complicated?
 - etc.

What is a good \widehat{f} ?

- For a fixed value of X, say X = 3 is there an optimal prediction $\widehat{f}(X)$?
- ▶ There might be many values at X = 3, and a good choice, minimizing squared error, is

$$\widehat{f}(3) = \mathrm{E}(Y \mid X = 3),$$

where $E(Y \mid X = 3)$ is the expected value (average) of Y given X = 3.

The loss function

- We have to specify what we mean with a good prediction. This will depend on the application.
- Introduce a loss function L that measures the discrepancy between a response y and its prediction \hat{y} .
- ▶ In the regression setup, we typically use squared error loss, i.e.,

$$L(y, \widehat{y}) = (y - \widehat{y})^2$$
.

For our predictive model \hat{f} , the expected squared prediction error is

$$\operatorname{Err}_{\widehat{f}} = \operatorname{E}[\{Y - \widehat{f}(X)\}^2],$$

where the expectation is taken over (X, Y).

- Ideally, we would like to find the optimal f^* that minimizes Err_{f^*} .
- ▶ In fact, f* is the so-called regression function

$$f^*(x) = \mathrm{E}(Y|X=x),$$

which satisfies $f^* = f$ if $Y = f(X) + \epsilon$.

How do we estimate \widehat{f} ?

- Typically we have few or no data points with X = 3.
- ▶ So we cannot compute $E(Y \mid X = 3)!$
- ► The k-Nearest-Neighbors method aims at approximating this expectation by the average

$$\widehat{f}(x_0) = \operatorname{Ave}(Y \mid X \in N_k(x_0)),$$

where $N_k(x_0)$ are the k closest points x_i to $x_0 = 3$.

▶ The number k is a tuning parameter.

How do we estimate \widehat{f} ?

- Nearest neighbor averaging works good for small dimension p and a large training data size n.
- ▶ When the number of predictors $X_1, ..., X_p$ is larger, then kNN does not work well! The reason is the curse of dimensionality.
- ▶ We will study structured methods that
 - need less data to fit;
 - may be nicely interpretable;
 - but at the price of lower flexibility.
- ▶ The difficulty is to find a good compromise between flexibility and parsimony.

The empirical loss: model evaluation

How can we estimate the
$$\operatorname{Err}_{\widehat{f}} = \operatorname{E}[\{Y - \widehat{f}(X)\}^2]$$
?

The test data

- For model evaluation we require a new, independent test data set $\mathcal{T}_m = \{(\tilde{\mathbf{x}}_1, \tilde{\mathbf{y}}_1), \dots, (\tilde{\mathbf{x}}_m, \tilde{\mathbf{y}}_m)\}.$
- ▶ For each input \tilde{x}_i we predict the response with our model: $\hat{y}_i = \hat{f}(\tilde{x}_i)$.
- We compare this prediction with the observed output \tilde{y}_i .
- lacktriangle The empirical prediction error of our model \widehat{f} is the empirical version of $\mathrm{Err}_{\widehat{f}}$, namely

$$\operatorname{err}_{\widehat{f}} = \frac{1}{m} \sum_{i=1}^{m} \{ \widetilde{y}_i - \widehat{f}(\widetilde{x}_i) \}^2,$$

also called mean squared error.

In practice: separate all data into training and test and do cross-validation (later).