Numerical Linear Algebra Module 5: Eigenvalues

Dr. Zahra Lakdawala

December 2, 2020

Rayleigh Quotient, Inverse Iteration

Outline

- 1 Eigenvalue problems
- 2 Eigenvalue algorithms
- 3 Hessenberg Form
- 4 Rayleigh Quotient, Inverse Iteration
- 5 QR

Eigenvalue problems

Eigenvalue problems

•00000000000

Eigenvalue problem of $m \times m$ matrix **A** is

$$\mathbf{A}\mathbf{x}=\lambda\mathbf{x}$$

with eigenvalues λ and eigenvectors \mathbf{x} (nonzero)

- The set of all the eigenvalues of A is the spectrum of A
- Eigenvalue are generally used where a matrix is to be compounded iteratively
- Eigenvalues are useful for algorithmic and physical reasons
 - Algorithmically, eigenvalue analysis can reduce a coupled system to a collection of scalar problems
 - Physically, eigenvalue analysis can be used to study resonance of musical instruments and stability of physical systems

Eigenvalue problems

Eigenvalue Decomposition

Eigenvalue decomposition of A is

$$\mathbf{A} = \mathbf{X} \Lambda \mathbf{X}^{-1}$$
 or $\mathbf{A} \mathbf{X} = \mathbf{X} \Lambda$

with eigenvectors \mathbf{x} i as columns of \mathbf{X} and eigenvalues λ_i along diagonal of Λ . Alternatively,

$$\mathbf{A}\mathbf{x}_i = \lambda_i \mathbf{x}_i$$

■ Eigenvalue decomposition is change of basis to "eigenvector coordinates"

$$\mathbf{A}\mathbf{x} = \mathbf{b} \rightarrow (\mathbf{X}\mathbf{b}^{-1}) = \Lambda(\mathbf{X}^{-1}\mathbf{x})$$

- Note that eigenvalue decomposition may not exist
- Question: How does eigenvalue decomposition differ from SVD?

Eigenvalue problems

Geometric Multiplicity

Eigenvalue problems

- Eigenvectors corresponding to a single eigenvalue λ form an eigenspace $E_{\lambda} \subseteq \mathbb{C}^{m \times m}$
- Eigenspace is invariant in that $\mathbf{A}E_{\lambda} \subseteq E_{\lambda}$
- lacksquare Dimension of E_{λ} is the maximum number of linearly independent eigenvectors that can be found
- Geometric multiplicity of λ is dimension of E_{λ} , i.e., dim(null($\mathbf{A} \lambda \mathbf{I}$))

Algebraic Multiplicity

Eigenvalue problems

00000000000

The characteristic polynomial of A is degree m polynomial

$$p_{\mathbf{A}}(z) = det(z\mathbf{I} - \mathbf{A}) = (z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_m)$$

which is monic in that coefficient of z^m is 1

- λ is eigenvalue of **A** iff $p_{\mathbf{A}}(\lambda) = 0$
 - If λ is eigenvalue, then by definition, $\lambda \mathbf{x} \mathbf{A} \mathbf{x} = (\lambda \mathbf{I} \mathbf{A}) \mathbf{x} = 0$, so $(\lambda \mathbf{I} - \mathbf{A})$ is singular and its determinant is 0
- Algebraic multiplicity of λ is its multiplicity as a root of p_A
- Any matrix A has m eigenvalues, counted with algebraic multiplicity
- Question: What are the eigenvalues of a triangular matrix?
- Question: How are geometric multiplicity and algebraic multiplicity related?

Similarity Transformations

- The map $A \to Y^{-1}AY$ is a similarity transformation of A for any nonsingular $\mathbf{Y} \in \mathbb{C}^{m \times m}$
- **A** and **B** are similar if there is similarity transformation $\mathbf{B} = \mathbf{Y}^{-1}\mathbf{A}\mathbf{Y}$

Theorem

Eigenvalue problems

00000000000

If Y is nonsingular, then A and $Y^{-1}AY$ have the same characteristic polynomials. eigenvalues, and algebraic and geometric multiplicities.

1 For characteristic polynomial:

$$det(z\mathbf{I} - \mathbf{Y}^{-1}\mathbf{A}\mathbf{Y}) = det(\mathbf{Y}^{-1}(z\mathbf{I} - \mathbf{A})\mathbf{Y}) = det(z\mathbf{I} - \mathbf{A})$$

so algebraic multiplicities remain the same

If $x \in E_{\lambda}$ for A, then $Y^{-1}x$ is in eigenspace of $Y^{-1}AY$ corresponding to λ , and vice versa, so geometric multiplicities remain the same

Algebraic Multiplicity > Geometric Multiplicity

- Let n be be geometric multiplicity of λ for \mathbf{A} . Let $\hat{\mathbf{V}} \in \mathbb{C}^{m \times n}$ constitute of orthonormal basis of the E₁
- **E**xtend $\hat{\mathbf{V}}$ to unitary $\mathbf{V} = [\hat{\mathbf{V}}, \tilde{\mathbf{V}}] \in \mathbb{C}^{m \times m}$ and form

$$\mathbf{B} = \mathbf{V}^* \mathbf{A} \mathbf{V} = \begin{bmatrix} \hat{\mathbf{V}}^* \mathbf{A} \hat{\mathbf{V}} & \hat{\mathbf{V}}^* \mathbf{A} \tilde{\mathbf{V}} \\ \tilde{\mathbf{V}}^* \mathbf{A} \hat{\mathbf{V}} & \tilde{\mathbf{V}}^* \mathbf{A} \tilde{\mathbf{V}} \end{bmatrix} = \begin{bmatrix} \lambda \mathbf{I} & \mathbf{C} \\ \mathbf{0} & \mathbf{D} \end{bmatrix}$$

- $\det(z\mathbf{I} \mathbf{B}) = \det(z\mathbf{I} \lambda\mathbf{I}) \det(z\mathbf{I} \lambda\mathbf{D}) = (z \lambda)^n \det(z\mathbf{I} \lambda\mathbf{D})$, so the algebraic multiplicity of λ as an eigenvalue of **B** is > n
- **A** and **B** are similar, so the algebraic multiplicity of λ as an eigenvalue of **A** is at least > n
- Examples:

$$\mathbf{A} = \begin{bmatrix} 2 & & \\ & 2 & \\ & & 2 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 2 & 1 & \\ & 2 & 1 \\ & & 2 \end{bmatrix}$$

Their characteristic polynomial is $(z-2)^3$, so algebraic multiplicity of $\lambda=2$ is 3. But geometric multiplicity of **A** is 3 and that of **B** is 1.

Eigenvalue problems

Defective and Diagonalizable Matrices

- An eigenvalue of a matrix is defective if its algebraic multiplicity > its geometric multiplicity
- A matrix is defective if it has a defective eigenvalue. Otherwise, it is called nondefective.

Theorem

Eigenvalue problems

000000000000

An $m \times m$ matrix **A** is nondefective iff it has an eigenvalue decomposition $\mathbf{A} = \mathbf{X} \wedge \mathbf{X}^{-1}$

Defective and Diagonalizable Matrices

- An eigenvalue of a matrix is defective if its algebraic multiplicity > its geometric multiplicity
- A matrix is defective if it has a defective eigenvalue. Otherwise, it is called nondefective.

Theorem

Eigenvalue problems

00000000000

An $m \times m$ matrix **A** is nondefective iff it has an eigenvalue decomposition $\mathbf{A} = \mathbf{X} \wedge \mathbf{X}^{-1}$

- (\Leftarrow) \land is nondefective, and **A** is similar to \land , so **A** is nondefective.
- (⇒) A nondefective matrix has m linearly independent eigenvectors. Take them as columns of **X** to obtain $\mathbf{A} = \mathbf{X} \Lambda \mathbf{X}^{-1}$.
- Nondefective matrices are therefore also said to be diagonalizable.

Determinant and Trace

Eigenvalue problems

00000000000

■ Determinant of **A** is $det(\mathbf{A}) = \prod_{i=1}^{m} \lambda_i$, because

$$det(\mathbf{A}) = (-1)^m det(-\mathbf{A}) = (-1)^m p_{\mathbf{A}}(0) = \prod_{j=1}^m \lambda_j$$

■ Trace of **A** is $tr(\mathbf{A}) = \sum_{i=1}^{m} \lambda_i$, since

$$p_{\mathbf{A}}(z) = det(z\mathbf{I} - \mathbf{A}) = z^m - \sum_{j=1}^m a_{jj} z^{m-1} + O(z^{m-2})$$

$$p_{\mathbf{A}}(z) = \prod_{j=1}^{m} (z - \lambda_j) = z^m - \sum_{j=1}^{m} \lambda_j z^{m-1} + O(z^{m-2})$$

Question: Are these results valid for defective or nondefective matrices?

Eigenvalue problems

- **A** matrix **A** is unitarily diagonalizable if $\mathbf{A} = \mathbf{Q} \Lambda \mathbf{Q}^*$ for a unitary matrix \mathbf{Q}
- A hermitian matrix is unitarily diagonalizable, with real eigenvalues
- A matrix \mathbf{A} is normal if $\mathbf{A}^*\mathbf{A} = \mathbf{A}\mathbf{A}^*$
 - Examples of normal matrices include hermitian matrices, skew hermitian matrices
 - hermitian ⇔ matrix is normal and all eigenvalues are real
 - skew hermitian ⇔ matrix is normal and all eigenvalues are imaginary
 - If A is both triangular and normal, then A is diagonal
- Unitarily diagonalizable ⇔ normal
 - "⇒" is easy. Prove "⇐" by induction using Schur factorization next

Schur Factorization

Schur factorization is $A = QTQ^*$, where Q is unitary and T is upper triangular

Theorem

Eigenvalue problems

00000000000

Every square matrix **A** has a Schur factorization.

Proof by induction on dimension of **A**. Case m=1 is trivial. For m > 2, let **x** be any unit eigenvector of **A**, with corresponding eigenvalue λ . Let **U** be unitary matrix with x as first column. Then

$$\mathbf{U}^*\mathbf{A}\mathbf{U} = \begin{bmatrix} \lambda & \mathbf{w}^* \\ 0 & \mathbf{C} \end{bmatrix}$$

By induction hypothesis, there is a Schur factorization $\tilde{\mathbf{T}} = \mathbf{V}^* \mathbf{C} \mathbf{V}$. Let

$$\mathbf{Q} = \mathbf{U} \begin{bmatrix} 1 & 0 \\ 0 & \mathbf{V} \end{bmatrix}, \quad \mathbf{T} = \begin{bmatrix} \lambda & \mathbf{w}^* \mathbf{V} \\ 0 & \tilde{\mathbf{T}} \end{bmatrix}$$

and then $A = QTQ^*$

- Eigenvalue-revealing factorization of square matrix A
 - Diagonalization $\mathbf{A} = \mathbf{X} \Lambda \mathbf{X}^{-1}$ (nondefective \mathbf{A})
 - Unitary Diagonalization $\mathbf{A} = \mathbf{Q}\Lambda\mathbf{Q}^*$ (normal \mathbf{A})
 - Unitary triangularization (Schur factorization) $\mathbf{A} = \mathbf{Q}\mathbf{T}\mathbf{Q}^*$ (any A)
 - Jordan normal form $\mathbf{A} = \mathbf{XJX}$, where \mathbf{J} block diagonal with

$$\mathbf{J}_i = egin{bmatrix} \lambda_i & 1 & & & & \ & \lambda_i & \ddots & & \ & & \ddots & 1 \ & & & \lambda_i \end{bmatrix}$$

- In general, Schur factorization is used, because
 - Unitary matrices are involved, so algorithm tends to be more stable
 - If **A** is normal, then Schur form is diagonal

Eigenvalue problems

Eigenvalue algorithms

- \blacksquare Eigenvalue-revealing factorization of square matrix \boldsymbol{A}
 - Diagonalization $\mathbf{A} = \mathbf{X} \Lambda \mathbf{X}^{-1}$ (nondefective \mathbf{A})
 - Unitary Diagonalization $\mathbf{A} = \mathbf{Q} \Lambda \mathbf{Q}^*$ (normal \mathbf{A})
 - \blacksquare Unitary triangularization (Schur factorization) $\mathbf{A} = \mathbf{Q}\mathbf{T}\mathbf{Q}^*$ (any $\mathbf{A})$
 - lacktriangle Jordan normal form $oldsymbol{A} = oldsymbol{XJX}$, where $oldsymbol{J}$ block diagonal with

$$\mathbf{J}_i = egin{bmatrix} \lambda_i & 1 & & & & \ & \lambda_i & \ddots & & \ & & \ddots & 1 \ & & & \lambda_i \end{bmatrix}$$

- In general, Schur factorization is used, because
 - Unitary matrices are involved, so algorithm tends to be more stable
 - If **A** is normal, then Schur form is diagonal

"Obvious" Algorithms

- Most obvious method is to find roots of characteristic polynomial $p_{\mathbf{A}}(\lambda)$, but it is very ill-conditioned
- Another idea is power iteration, using fact that

$$\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}, \frac{\boldsymbol{A}\boldsymbol{x}}{\|\boldsymbol{A}\boldsymbol{x}\|}, \frac{\boldsymbol{A}^2\boldsymbol{x}}{\|\boldsymbol{A}^2\boldsymbol{x}\|}, \frac{\boldsymbol{A}^3\boldsymbol{x}}{\|\boldsymbol{A}^3\boldsymbol{x}\|}, \cdots$$

converge to an eigenvector corresponding to the largest eigenvalue of A in absolute value, but it may converge very slowly

"Obvious" Algorithms

- Most obvious method is to find roots of characteristic polynomial $p_{\mathbf{A}}(\lambda)$, but it is very ill-conditioned
- Another idea is power iteration, using fact that

$$\frac{\textbf{x}}{\|\textbf{x}\|}, \frac{\textbf{A}\textbf{x}}{\|\textbf{A}\textbf{x}\|}, \frac{\textbf{A}^2\textbf{x}}{\|\textbf{A}^2\textbf{x}\|}, \frac{\textbf{A}^3\textbf{x}}{\|\textbf{A}^3\textbf{x}\|}, \cdots$$

converge to an eigenvector corresponding to the largest eigenvalue of A in absolute value, but it may converge very slowly

Instead, compute a eigenvalue-revealing factorization, such as Schur factorization

$$A = QTQ^*$$

by introducing zeros, using algorithms similar to QR factorization

A Fundamental Difficulty

However, eigenvalue-revealing factorization cannot be done in finite number of steps:

Any eigenvalue solver must be iterative

■ To see this, consider a general polynomial of degree *m*

$$p(z) = z^m + a_{m-1}z^{m-1} + \cdots + a_1z + a_0$$

There is no closed-form expression for the roots of p: (Abel, 1842) In general, the roots of polynomial equations higher than fourth degree cannot be written in terms of a finite number of operations

A Fundamental Difficulty Cont'd

■ However, the roots of p_{Δ} are the eigenvalues of the companion matrix

$$\mathbf{A} = \begin{bmatrix} 0 & & & -a_0 \\ 1 & 0 & & -a_1 \\ & 1 & \ddots & & \vdots \\ & & \ddots & 0 & -a_{m-2} \\ & & & 1 & -a_{m-1} \end{bmatrix}$$

- Therefore, in general, we cannot find the eigenvalues of a matrix in a finite number of steps
- In practice, however, there are algorithms that converge to desired precision in a few iterations

Schur Factorization and Diagonalization

 Most eigenvalue algorithms compute Schur factorization A = QTQ* by transforming A with similarity transformations

$$\underbrace{\mathbf{Q}_{j}^{*}\cdots\mathbf{Q}_{2}^{*}\mathbf{Q}_{1}^{*}}_{\mathbf{Q}^{*}}\mathbf{A}\underbrace{\mathbf{Q}_{1}\mathbf{Q}_{2}\cdots\mathbf{Q}_{j}}_{\mathbf{Q}},$$

where \mathbf{Q}_i are unitary matrices, which converge to \mathbf{T} as $j \to \infty$

- Note: Real matrices might need complex Schur forms and eigenvalues
- Question: For hermitian A, what matrix will the sequence converge to?

General A: First convert to upper-Hessenberg form, then to upper triangular

■ Hermitian A: First convert to tridiagonal form, then to diagonal

■ In general, phase 1 is direct and requires $O(m^3)$ flops, and phase 2 is iterative and requires O(m) iterations, and $O(m^3)$ flops for non-Hermitian matrices and $O(m^2)$ flops for Hermitian matrices First attempt: Compute Schur factorization $\mathbf{A} = \mathbf{Q}\mathbf{T}\mathbf{Q}^*$ by applying Householder reflectors from both left and right

- Unfortunately, the right multiplication destroys the zeros introduced by \mathbf{Q}_1^* (has the effect of replacing each column by linear combination of all columns)
- This would not work because of Abel's theorem no finite process can reveal the eigenvalues of A
- However, the subdiagonal entries typically decrease in magnitude (even if it doesn't make it zero)

Hessenberg Form

The Hessenberg Form

■ Second attempt: try to compute upper Hessenberg matrix **H** similar to **A**:

- The zeros introduced by Q₁*A were not destroyed this time!
- Continue with remaining columns would result in Hessenberg form:

The Hessenberg Form

■ After m-2 steps, we obtain the Hessenberg form:

■ For hermitian matrix **A**, **H** is hermitian and hence is tridiagonal

Algorithm: Householder Reduction to Hessenberg Form

for
$$k = 1$$
 to $m - 2$
 $\mathbf{x} = \mathbf{A}_{k+1:m,k}$
 $\mathbf{v}_k = sign(\mathbf{x}_1) \|\mathbf{x}\|_2 \mathbf{e}_1 + \mathbf{x}$
 $\mathbf{v}_k = \mathbf{v}_k / \|\mathbf{v}_k\|_2$
 $\mathbf{A}_{k+1:m,k:m} = \mathbf{A}_{k+1:m,k:m} - 2\mathbf{v}_k (\mathbf{v}_k^* \mathbf{A}_{k+1:m,k:m})$
 $\mathbf{A}_{1:m,k+1:m} = \mathbf{A}_{1:m,k+1:m} - 2(\mathbf{A}_{1:m,k+1:m}\mathbf{v}_k) \mathbf{v}_k^*$

- Compare it to QR Factorization with Household Reflectors (Algorithm 10.1)
- Note: Q is never formed explicitly (as in Algorithm 10.1)
- Operation count

$$\sim \sum_{k=1}^{m-2} 4(m-k)^2 + 4m(m-k) \sim \frac{4m^3}{3} + 4m^3 - \frac{4m^3}{2} = \frac{10m^3}{3}$$

Rayleigh Quotient, Inverse Iteration

Reduction to Tridiagonal Form

If A is hermitian, then

$$\underbrace{\mathbf{Q}_{m-2}^* \cdots \mathbf{Q}_2^* \mathbf{Q}_1^*}_{\mathbf{Q}^*} \mathbf{A} \underbrace{\mathbf{Q}_1 \mathbf{Q}_2 \cdots \mathbf{Q}_{m-2}}_{\mathbf{Q}} = \mathbf{H} = \begin{bmatrix} \times & \times & \times & & \\ \times & \times & \times & & \\ & \ddots & \ddots & \ddots & \\ & & \times & \times & \times \\ & & & \times & \times & \times \end{bmatrix}$$

- For Hermitian A, operation count would be same as Householder QR: $\frac{4m^3}{3}$
 - First, taking advantage of sparsity, cost of applying right reflectors is also $4(m-k)^2$ instead of 4m(m-k), so cost is

$$\sim \sum_{k=1}^{m-2} 8(m-k)^2 \sim \frac{8m^3}{3}$$

 Second, taking advantage of symmetry, cost is reduced by 50% to $\frac{4m^3}{3}$

Stability of Hessenberg Reduction

Theorem

Householder reduction to Hessenberg form is backward stable, in that

$$ilde{\mathbf{Q}} ilde{\mathbf{H}} ilde{\mathbf{Q}}^* = \mathbf{A} + \delta \mathbf{A}, \qquad rac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|} = O(\varepsilon_{machine})$$

for some $\delta \mathbf{A} \in \mathbb{C}^{m \times m}$

Note: Similar to Householder QR, $\tilde{\mathbf{Q}}$ is exactly unitary based on some reflection vectors $\tilde{\mathbf{v}}_k$

Rayleigh Quotient, Inverse Iteration

- All eigenvalue solvers must be iterative
- Iterative algorithms have multiple facets:
 - Basic idea behind the algorithms
 - Convergence and techniques to speed-up convergence
 - 3 Efficiency of implementation
 - Termination criteria
- We will focus on first two aspects

- We will consider eigenvalue problems for real symmetric matrices, i.e. $\mathbf{A} = \mathbf{A}^T \in \mathbb{R}^{m \times m}$, and $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^m$
- **A** has real eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_m$ and orthonormal eigenvectors $\mathbf{q}_1, \mathbf{q}_2, \cdots \mathbf{q}_m$, where $\|\mathbf{q}_j\| = 1$
- Eigenvalues are often also ordered in a particular way (e.g., ordered from large to small in magnitude)
- In addition, we focus on symmetric tridiagonal form
 - Why? Because phase 1 of two-phase algorithm reduces matrix into tridiagonal form

Rayleigh Quotient

■ The Rayleigh quotient of $\mathbf{x} \in \mathbb{R}^m$ is the scalar

$$r(\mathbf{x}) = \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

- For an eigenvector x, its Rayleigh quotient is $r(x) = x^T \lambda x / x^T x = \lambda$, the corresponding eigenvalue of x
- For general \mathbf{x} , $r(\mathbf{x}) = \alpha$ that minimizes $\|\mathbf{A}\mathbf{x} \alpha\mathbf{x}\|_2$.
- **x** is eigenvector of $\mathbf{A} \leftrightarrow \nabla r(\mathbf{x}) = \frac{2}{\mathbf{x}^T \mathbf{x}} (\mathbf{A} \mathbf{x} r(\mathbf{x}) \mathbf{x}) = 0$ with $\mathbf{x} \neq \mathbf{0}$
- $\mathbf{r}(\mathbf{x})$ is smooth and $\nabla r(\mathbf{q}_j) = 0$ for any j, and therefore is quadratically accurate:

$$r(\mathbf{x}) - r(\mathbf{q}_J) = O(\|x - q_J\|^2)$$
 as $x \to \mathbf{q}_J$ for some J

Power Iteration

Simple power iteration for largest eigenvalue

Algorithm: Power Iteration

$$\begin{aligned} \mathbf{v}^{(0)} &= \text{some unit-length vector} \\ & \text{for } k = 1, 2, \cdots \\ & \mathbf{w} &= \mathbf{A} \mathbf{v}^{(k-1)} \\ & \mathbf{v}^{(k)} &= \mathbf{w} / \| \mathbf{w} \| \\ & \lambda^{(k)} &= r(\mathbf{v}^{(k)}) = (\mathbf{v}^{(k)})^T \mathbf{A} \mathbf{v}^{(k)} \end{aligned}$$

Termination condition is omitted for simplicity

Convergence of Power Iteration

Expand initial $v^{(0)}$ in orthonormal eigenvectors \mathbf{q}_i , and apply \mathbf{A}^k :

$$\begin{aligned}
 v^{(0)} &= a_1 \mathbf{q}_1 + a_2 \mathbf{q}_2 + \dots + a_m \mathbf{q}_m \\
 v^{(k)} &= c_k \mathbf{A}^k \mathbf{v}^{(0)} \\
 &= c_k (a_1 \lambda_1^k \mathbf{q}_1 + a_2 \lambda_2^k \mathbf{q}_2 + \dots + a_m \lambda_m^k \mathbf{q}_m) \\
 &= c_k \lambda_1^k (a_1 \mathbf{q}_1 + a_2 (\lambda_2 / \lambda_1)^k \mathbf{q}_2 + \dots + a_m (\lambda_m / \lambda_1)^k \mathbf{q}_m)
 \end{aligned}$$

Theorem

If $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_m| \ge 0$ and $\mathbf{q}_1^T \mathbf{v}^{(0)} \ne 0$, this gives

$$\|\mathbf{v}^{(k)} - (\pm \mathbf{q}_1)\| = O(|\lambda_2/\lambda_1|^k), \quad |\lambda^{(k)} - \lambda_1| = O(|\lambda_2/\lambda_1|^{2k})$$

as $k \to \infty$ where \pm sign is chosen to be sign of $\mathbf{q}^T \mathbf{v}^{(k)}$

- It finds the largest eigenvalue (unless eigenvector is orthogonal to $\mathbf{v}^{(0)}$)
- Error reduces by only a constant factor $(\approx |\lambda_2/\lambda_1|)$ each step, and very slowly especially when $|\lambda_2|\approx |\lambda_1|$

- It can only find the eigenvector corresponding to the largest eigenvalue
- \blacksquare Convergence is linear, reducing the error only by a constant $\approx |\frac{\lambda_2}{\lambda_1}|$ at each iteration
- Quality of this algorithm depends on having a largest eigenvalue that is significantly larger than others
- Limited use, however powerful concept!!!

Inverse Iteration

- lacksquare Apply power iteration on $(\mathbf{A}-\mu\mathbf{I})^{-1}$, with eigenvalues $\{(\lambda_j-\mu)-1\ \}$
- If $\mu \approx \lambda_J$ for some J, then $(\lambda_J \mu) 1$ may be far larger than $(\lambda_j \mu)^{-1}, j \neq J$, so power iteration may converge rapidly

Algorithm: Inverse Iteration

```
 \begin{aligned} \mathbf{v}^{(0)} &= \text{some unit-length vector} \\ & \text{for } k = 1, 2, \cdots \\ & \text{Solve } (\mathbf{A} - \mu \mathbf{I}) \mathbf{w} = \mathbf{v}^{(k-1)} \text{ for } \mathbf{w} \\ & \mathbf{v}^{(k)} &= \mathbf{w} / \| \mathbf{w} \| \\ & \lambda^{(k)} &= r(\mathbf{v}^{(k)}) = (\mathbf{v}^{(k)})^T \mathbf{A} \mathbf{v}^{(k)} \end{aligned}
```

Convergence of Inverse Iteration

- Linear convergence (similar to the power iteration)
- Unlike power iteration, we can chose the eigenvector that will be found by suppling an estimate of μ of the corresponding eigenvalue.
- \blacksquare We can control the rate of linear convergence (chosing μ to be closer to the eigenvalue of ${\bf A}$

Theorem

Suppose λ_J is the closest eigenvalue to μ and λ_K is the second closest, such that $|\mu-\lambda_J|<|\mu-\lambda_K|\leq |\mu-\lambda_j|$ for each $j\neq J$. The iterates converges to eigenvector \mathbf{q}_J with

$$\left\|\mathbf{v}^{(k)} - (\pm \mathbf{q}_J)\right\| = O(\left|\frac{\mu - \lambda_J}{\mu - \lambda_K}\right|^k), |\lambda^{(k)} - \lambda_J| = O(\left|\frac{\mu - \lambda_J}{\mu - \lambda_K}\right|^{2k})$$

as $k \to \infty$.

 Standard method for determining eigenvector given eigenvalue (minus the Rayleigh quotient)

Rayleigh Quotient Iteration

- Parameter μ is constant in inverse iteration, but convergence is better for μ close to the eigenvalue
- Improvement: At each iteration, set μ to last computed Rayleigh quotient

Algorithm: Rayleigh Quotient Iteration

$$\begin{aligned} \mathbf{v}^{(0)} &= \text{some unit-length vector} \\ \lambda^{(0)} &= r(\mathbf{v}^{(0)}) = (\mathbf{v}^{(0)})^T \mathbf{A} \mathbf{v}^{(0)} \\ \text{for } k &= 1, 2, \cdots \\ \text{Solve } (\mathbf{A} - \lambda^{(k-1)} \mathbf{I}) \mathbf{w} = \mathbf{v}^{(k-1)} \text{ for } \mathbf{w} \\ \mathbf{v}^{(k)} &= \mathbf{w} / \| \mathbf{w} \| \\ \lambda^{(k)} &= r(\mathbf{v}^{(k)}) = (\mathbf{v}^{(k)})^T \mathbf{A} \mathbf{v}^{(k)} \end{aligned}$$

Cost per iteration is linear for tridiagonal matrix

■ Spectacular: Cubic convergence in Rayleigh quotient iteration

Theorem

Rayleigh Quotient Iteration converges to sn eigenvalue/eigenvector pair for all except a set of zero starting vectors. When it converges, the convergence is ultimately cubic in the sense that if λ_J is an eigenvalue of **A** and $\mathbf{v}^{(0)}$ is close to \mathbf{q}_J , then

$$\left\| v^{(k+1)} - (\pm \mathbf{q}_J) \right\| = O(\left\| \mathbf{v}^{(k)} - (\pm \mathbf{q}_J) \right\|^3)$$

and

$$|\lambda^{(k+1)} - \lambda_J| = O(|\lambda^{(k)} - \lambda_J|^3)$$

as $k \to \infty$.

- In other words, each iteration triples number of digits of accuracy
- Rayleigh quotient is great in finding largest (or smallest) eigenvalue and its corresponding eigenvector. What if we want to find all eigenvalues?

Operation Counts

In Rayleigh quotient iteration:

- if $\mathbf{A} \in \mathbb{R}^{m \times m}$ is full matrix, then solving $(\mathbf{A} \mu \mathbf{I})\mathbf{w} = \mathbf{v}^{(k-1)}$ may take $O(m^3)$ flops per step
- if $\mathbf{A} \in \mathbb{R}^{m \times m}$ is upper Hessenberg, then each step takes $O(m^2)$ flops
- if $\mathbf{A} \in \mathbb{R}^{m \times m}$ is tridiagonal, then each step takes O(m) flops

QR

QR Algorithm

Most basic version of QR algorithm is remarkably simple:

Algorithm: "Pure" QR Algorithm

$$\begin{aligned} \mathbf{A}^{(0)} &= \mathbf{A} \\ \text{for } k = 1, 2, \cdots \\ \mathbf{Q}^{(k)} \mathbf{R}^{(k)} &= \mathbf{A}^{(k-1)} \\ \mathbf{A}^{(k)} &= \mathbf{R}^{(k)} \mathbf{Q}^{(k)} \end{aligned}$$

- With some suitable assumptions, $\mathbf{A}^{(k)}$ converge to Schur form of \mathbf{A} (diagonal if \mathbf{A} is symmetric)
- Similarity transformation of A:

$$\mathbf{A}^{(k)} = \mathbf{R}^{(k)} \mathbf{Q}^{(k)} = (\mathbf{Q}^{(k)})^T \mathbf{A}^{(k-1)} \mathbf{Q}^{(k)}$$

But why does it work?

Unnormalized Simultaneous Iteration

- To understand QR algorithm, first consider simple algorithm
- Simultaneous iteration is power iteration applied to several vectors
- Start with linearly independent $\mathbf{v}_1^{(0)}, \dots, \mathbf{v}_n^{(0)}$
- We know from power iteration that $\mathbf{A}^k \mathbf{v}_1$ converge to \mathbf{q}_1
- With some assumptions, the space $\langle \mathbf{A}^k \mathbf{v}_1^{(0)}, \cdots, \mathbf{A}^k \mathbf{v}_n^{(0)} \rangle$ should converge to $\langle \mathbf{q}_1, \cdots, \mathbf{q}_n \rangle$
- Notation: Define initial matrix $\mathbf{V}^{(0)}$ and matrix $\mathbf{V}^{(k)}$ at step k:

$$\mathbf{V}^{(0)} = [\mathbf{v}_1^{(0)}|\cdots|\mathbf{v}_n^{(0)}], \quad \mathbf{V}^{(k)} = \mathbf{A}^k\mathbf{V}^{(0)} = [\mathbf{v}_1^{(k)}|\cdots\mathbf{v}_n^{(k)}]$$

- Define orthogonal basis for column space of $\mathbf{V}^{(k)}$ by reduced QR factorization $\hat{\mathbf{Q}}^{(k)}\hat{\mathbf{R}}^{(k)} = \mathbf{V}^{(k)}$
- We assume that
 - 1 leading n+1 eigenvalues are distinct, and
 - 2 all leading principal submatrices of $\hat{\mathbf{Q}}^T \mathbf{V}^{(0)}$ are nonsingular where $\hat{\mathbf{Q}} = [\mathbf{q}_1 | \cdots | \mathbf{q}_n]$
- We then have columns of $\hat{\mathbf{Q}}^{(k)}$ converge to eigenvectors of \mathbf{A} :

$$\left\|\mathbf{q}_{j}^{(k)}-(\pm\mathbf{q}_{j})\right\|=O(C^{k}),$$

where
$$c = max_{1 \leq k \leq n} |\lambda_{k+1}| / |\lambda_k|$$

■ Proof idea: Show that subspace of any leading j columns of $\mathbf{V}^{(k)} = \mathbf{A}^k \mathbf{V}^{(0)}$ converges to subspace of first j eigenvectors of A, so does the subspace of any leading i columns of $\hat{\mathbf{Q}}^{(k)}$.

- We know that other eigenvectors are orthogonal to the dominant one
- so we can use the power method, and force that the second vector is orthogonal to the first one
- this way we guarantee that they will converge to two different eigenvectors
- we can do this for many vectors, not just two
- this is called "Simaltaneous Iteration"

Simultaneous/Orthogonal Iteration

- Matrices $V^{(k)} = A^k V^{(0)}$ are highly ill-conditioned
- Orthonormalize at each step rather than at the end

Algorithm: Simultaneous Iteration

Pick
$$\hat{\mathbf{Q}}^{(0)} \in \mathbb{R}^{m \times n}$$

for $k = 1, 2, \cdots$
 $\mathbf{Z}^{(k)} = \mathbf{A}\hat{\mathbf{Q}}^{(k-1)};$
 $\hat{\mathbf{Q}}^{(k)}\hat{\mathbf{R}}^{(k)} = \mathbf{Z}^{(k)}$

Column spaces of $\hat{\mathbf{Q}}^{(k)}$ and $\mathbf{Z}^{(k)}$ are both equal to column space of $\mathbf{A}^k\hat{\mathbf{Q}}^{(0)}$, therefore same convergence as before


```
Simultaneous Iteration Pick \hat{\mathbf{Q}}^{(0)} \in \mathbb{R}^{m \times n} for k = 1, 2, \cdots \mathbf{Z} = \mathbf{A}\hat{\mathbf{Q}}^{(k-1)} \hat{\mathbf{Q}}^{(k)}\hat{\mathbf{R}}^{(k)} = \mathbf{Z}
```

```
"Pure" QR Algorithm \mathbf{A}^{(0)} = \mathbf{A} for k = 1, 2, \cdots \mathbf{Q}^{(k)} \mathbf{R}^{(k)} = \mathbf{A}^{(k-1)} \mathbf{A}^{(k)} = \mathbf{R}^{(k)} \mathbf{Q}^{(k)}
```

- lacksquare QR algorithm is equivalent to simultaneous iteration with $\hat{f Q}^{(0)}={f I}$
- Since the matrices are now square, get rid of the hats. Replace $\hat{\mathbf{R}}^{(k)}$ by $\mathbf{R}^{(k)}$ and $\hat{\mathbf{Q}}^{(k)}$ by $\underline{\mathbf{Q}}^{(k)}$ (underline to differentiate between Simultaneous and QR algorithm).

■ Further, we introduce a new statement $\mathbf{A}^{(k)} = (\underline{\mathbf{Q}}^{(k)})^T \mathbf{A} \underline{\mathbf{Q}}^{(k)}$ in simultaneous iteration

```
Simultaneous Iteration \begin{array}{l} \text{Pick } \hat{\mathbf{Q}}^{(0)} \in \mathbb{R}^{m \times n} \\ \text{for } k = 1, 2, \cdots \\ \mathbf{Z} = \mathbf{A}\underline{\mathbf{Q}}^{(k-1)} \\ \mathbf{Z} = \underline{\mathbf{Q}}^{(k)} \mathbf{R}^{(k)} \\ \mathbf{A}^{(k)} = (\underline{\mathbf{Q}}^{(k)})^T \mathbf{A}\underline{\mathbf{Q}}^{(k)} \end{array}
```

```
"Pure" QR Algorithm
\mathbf{A}^{(0)} = \mathbf{A}
for k = 1, 2, \cdots
\mathbf{A}^{(k-1)} = \mathbf{Q}^{(k)} \mathbf{R}^{(k)}
\mathbf{A}^{(k)} = \mathbf{R}^{(k)} \mathbf{Q}^{(k)}
\underline{\mathbf{Q}}^{(k)} = \mathbf{Q}^{(1)} \mathbf{Q}^{(2)} \cdots \mathbf{Q}^{(k)}
```

- Let's look at the sequence of $\mathbf{R}^{(k)}$: $\mathbf{R}^k = (\mathbf{Q}^{(k)})^T \mathbf{Z}^{(k)} = (\mathbf{Q}^{(k)})^T \mathbf{A} \mathbf{Q}^{(k-1)}$
- if \mathbf{Q}_k converges to some \mathbf{Q} then $\mathbf{Q}^T \mathbf{A} \mathbf{Q} = \mathbf{R}$ is upper triangular
- This is a Schur Decomposition of **A**
- Thus, the eigenvalues of A are located on the main diagonal of R
- And the columns of Q are the eigenvectors

Simultaneous Iteration ⇔ QR Algorithm

$$\mathbf{Q}^{(k)} = \mathbf{Q}^{(1)} \mathbf{Q}^{(2)} \cdots \mathbf{Q}^{(k)}$$
. Let $\mathbf{R}^{(k)} = \mathbf{R}^{(k)} \mathbf{R}^{(k-1)} \cdots \mathbf{R}^{(1)}$

Theorem

Both schemes generate QR factorization of k-th power of A:

$$\mathbf{A}^k = \underline{\mathbf{Q}}^{(k)}\underline{\mathbf{R}}^{(k)}$$

and projection

$$\mathbf{A}^{(k)} = (\underline{\mathbf{Q}}^{(k)})^T \mathbf{A} \underline{\mathbf{Q}}^{(k)}$$

Proof by induction. For k=0 it is trivial for both algorithms. For $k\geq 1$ with simultaneous iteration, $\mathcal{A}^{(k)}$ is given by definition, and

$$\mathbf{A}^k = \underline{\mathbf{Q}}^{(k-1)}\underline{\mathbf{R}}^{(k-1)} = \underline{\mathbf{Q}}^{(k)}\mathbf{R}^{(k)}\underline{\mathbf{R}}^{(k-1)} = \underline{\mathbf{Q}}^{(k)}\underline{\mathbf{R}}^{(k)}$$

For $k \ge 1$ with QR algorithm,

$$\mathbf{A}^k = \mathbf{Q}^{(k-1)}\underline{\mathbf{R}}^{(k-1)} = \mathbf{Q}^{(k-1)}\mathbf{A}^{(k-1)}\underline{\mathbf{R}}^{(k-1)} = \mathbf{Q}^{(k)}\underline{\mathbf{R}}^{(k)}$$

and

$$\mathbf{A}^{(k)} = (\mathbf{Q}^{(k)})^{\mathsf{T}} \mathbf{A}^{(k-1)} \mathbf{Q}^{(k)} = (\mathbf{Q}^{(k)})^{\mathsf{T}} \mathbf{A} \mathbf{Q}^{(k)} + \mathbf{Q} + \mathbf$$

- Since $\underline{\mathbf{Q}}^{(k)} = \hat{\mathbf{Q}}^{(k)}$ in simultaneous iteration, column vectors of $\underline{\mathbf{Q}}^{(k)}$ converge linearly to eigenvectors if \mathbf{A} has distinct eigenvalues
- $\mathbf{A}^{(k)} = (\mathbf{Q}^{(k)})^T \mathbf{A} \mathbf{Q}^{(k)}$, diagonal entries of $\mathbf{A}^{(k)}$ are Rayleigh quotients of column vectors of $\mathbf{Q}^{(k)}$, so they converge linearly to eigenvalues of \mathbf{A}
- $lue{}$ Off-diagonal entries of ${\bf A}^{(k)}$ converge to zeros, as they are generalized Rayleigh quotients involving approximations of distinct eigenvectors
- Overall, $\mathbf{A} = \underline{\mathbf{Q}}^{(k)} \mathbf{A}^{(k)} (\underline{\mathbf{Q}}^{(k)})^T$. For a symmetric matrix, it converges to eigenvalue decomposition of \mathbf{A}

