1 Seifert

Na fig. 1 jest powierzchnia Seiferta 6_1 , kolory oznaczają pętelki-generatory. Moduł Alexandera wychodzi $\mathbb{Z}[\mathbb{Z}]/(-2t^2+5t-2)$, czyli nic niezwykłego.

Figure 1: Powierzchnia Seiferta 6_1 .

Powierzchnia Seiferta węzła 9₄₆ jest z kolei na fig. 2 i nie wychodzi ładnie. To znaczy, relacje po rozpisaniu wyglądają następująco (nad znakami równości z których czerwonych pętelek przychodzą, pozostałe to obserwacje obrazku):

$$ta^{-} \stackrel{a}{=} X - f^{-} - a^{-}$$

$$0 \stackrel{b}{=} -Y + E + a^{-}$$

$$tX + tC \stackrel{c}{=} c^{+}$$

$$-tY \stackrel{d}{=} c^{+}$$

$$tZ - tE \stackrel{e}{=} -Y + G$$

$$tf^{-} \stackrel{f}{=} Z - c^{+} + X$$

$$C - G = c^{+}$$

$$0 = X + Y + Z$$

Figure 2: Powierzchnia Seiferta 9_{46} .

Z tych równań wyciągam tylko tyle, że

$$Z(1-t) + X(1-2t) + a^{-}(t^{2}+t) = 0$$

oraz

$$Y(3t^2 + 2t - 3) = X(1 + t - t^2).$$

Moim zdaniem powinno wyjść coś z dwoma generatorami, ale jeszcze nie wymyśliłam jak je wyciągnąć.

2 Relacja na macierzach

Nie mam aktualnie zeszytu w którym pracowałam do tej pory, więc zaczęłam od przykładów.

Diagramiki skrzyżowań w prawym górnym rogu oznaczają, które skrzyżowanie ma au + bi = -o, a które $\alpha u + \beta i = -o$.

Niech D będzie diagramem po usunięciu kinku, a D' przed (góra-dół na rysunku). Dla prostoty $D: M^s \to N^x$ i $D: M^{s+1} \to N^{x+1}$ to macierze powstałe z odpowiednich diagramów.

Wtedy kolumny łuczków w D, które nie plączemy (ich jest s-1 sztuk) są bez zmiany, czyli

$$D(M^{s-1}) = D'(M^{s-1}).$$

Dodatkowo, jeśli M_s jest łuczkiem, który zaplątaliśmy (ostatnia współrzędna, na obrazku troszkę nie wyszło), a M_{s+1} łuczkiem, który przez zaplątanie powstał, to chcemy, żeby

$$(D'(M_s) + D'(M_{s+1})) \cap N^x = D(M_s),$$

gdzie to przecięcie po lewej stronie rozumiemy jako ograniczenie się do pierwszych x współrzędnych powstałego wektora (x+1-sza to nowe skrzyżowanie).

W tym ruchu wyjęcia nitki spod spodu naruszyliśmy tylko jeden łuczek w diagramie po wyjęciu D (diagram przed wyciągnięciem to D'). W takim razie, podobnie jak wcześniej chcemy

$$D(M^{s-1}) = D'(M^{s-1}) \cap N^x.$$

Możemy posunąć się dalej, i jeśli pierwsza nitka M_1 to ta, spod której wyjmowaliśmy, to chcemy

$$(D(M^{s-1}), 0, 0) = D'(M^{s-1}) - \omega_{+}(M_1, 0, 0) - \omega_{-}(M_1, 0, 0),$$

gdzie $\omega_{\pm}(u, i, o)$ to funkcja kolorująca odpowiadająca za każdy z rodzai skrzyżowań, jaki powstał przez wsunięcie pod M_1 nitki M_s . Oczywiście, musimy wiedzieć, które skrzyżowanie w D' to który rodzaj skrzyżowania i umieścić $\omega_{\pm}(M_1, 0, 0)$ na odpowiedniej współrzędnej.

Ta część wydaje mi się nieco brzydka. Po prostu chciałam jakoś zaakcentować fakt, że na ostatnich dwóch wierszach jedna nitka ma zawsze być górą i ma być górą na dwa różne sposoby.

Pozostaje powiedzieć, że fragmenty wsuniętej nitki dodają się do tego, co widzimy w nitce przed byciem wsuwaną:

$$D(M_s) = [D'(M_s) + D'(M_{s+1}) + D'(M_{s+2})] \cap N^x$$

Pozostaje ostatni ruch Reidenmeistera oraz (chyba) napisanie tego samego dla odwrotnej orientacji.

A 3 4	B			100	PI			
T AE 1					1 1			
	1	A	B	-1	D	E	FO	G
	_	a	10	T				0
	2	6	0	a	-1	0	0	0
	3	-1	a	b	0	0	0	0
	4	0	-1	a	0	0	0	6
	5	d	J	0	0	0	B	-1
	6	0	0	α	0	B	-1	D
	7	O	0	0	a+b	- 1	0	0

3 Troszkę grafu Gaussa

Łuczki między grotami strzałek w grafie Gaussa odpowiadają łuczkom w grafie Reidemeistera.

To, gdzie idzie strzałka zaczynająca się gdzieś na łuczku mówi nam, nad którymi innymi dwoma łuczkami będzie on przechodził i w jakiej kolejności.

Nie wiem do końca jak będzie wtedy wyglądał kink.

To jedyna obserwacja jaką do tej pory miałam.

References