Week 9 SSH

4 March 2019 CS 35L Lab 4 Jeremy Rotman

Announcements

- → Assignment #8 is due Saturday by 11:55pm
- → For Assignment #10
 - ◆ Email me to tell me what story you are choosing
 - Here is the link to see what stories people have signed up for already
 - Choose a story at least one week before you present
- → Submission for Assignments #8 and #10 will be done on CCLE, there will be a link specific to our lab
- → Reminder for future assignments:
 - ◆ Assignments #9 and #10 DO NOT allow late submissions

Outline

- → SSH
- → Assignment 8

Questions?

Communicating Over the Internet

What guarantees do we want?

Communicating Over the Internet

What guarantees do we want?

- → Confidentiality
 - Message secrecy
- → Data integrity
 - Message consistency
- → Authentication
 - Identity confirmation
- → Authorization
 - ◆ Resource access rights specification

SSH

- → <u>Secure Sh</u>ell
- → Used to remotely access shell
- → Successor of telnet
- → Encrypted and better authenticated session

Encryption Types

- → Symmetric Key Encryption
 - shared/secret key
 - Key used to encrypt is the same as key used to decrypt
- → Asymmetric Key Encryption
 - public/private
 - 2 different, but related keys, public and private key
 - Private key cannot be derived from the public key
 - Data encrypted with public key can only be decrypted with private key
 - Public key can be seen by anyone
 - Never publish private key

Symmetric vs. Asymmetric

Symmetric

Asymmetric

SSH Protocol

Client SSH's to remote server:

- → If this is the first time:
 - ssh does not know the host
 - ◆ Shows hostname, IP address, and fingerprint of the server's public key so you can confirm the correct host
 - If the client accepts, connection, it saves the public key to its known hosts
 - ~/.ssh/known_hosts

SSH Protocol

- → The next time, if the host's public key does not match what was already saved
 - Client encrypts a message with the public key
 - The host decrypts this with its private key to prove that it is the real host
- → Once the host is verified
 - ◆ Host and client agree on a symmetric encryption key
 - For the session
 - All messages between the host and client are encrypted and decrypted with the session key

SSH Protocol

- → User Authentication
 - Password authentication
 - User is prompted for password
 - Key-based authentication
 - Generate key-pair
 - Copy the public key to the server
 - Server authenticates client if it can demonstrate it has the private key
 - Private key can have a passphrase attached
 - o But this forces you to enter passphrase every time the private key is used

ssh-agent

- → Program that works with OpenSSH that provides a secure way of storing private key
- → ssh-add prompts user for passphrase once and adds to the list maintained by ssh-agent
- → Once passphrase is added to ssh-agent, user will not be prompted for it again when using SSH
- → OpenSSH will talk to ssh-agent and retrieve private key automatically

X Window System

- → Windowing system for GUIs on UNIX
- → X is network based
 - ◆ A program can run on one computer but display on another
 - ◆ X session forwarding

Lab 8

- → You will have to team up with one other person
 - ◆ May need one team of 3 since we have an odd number of people
- → You will need to set up your BeagleBone as described on Piazza
- → Use OpenSSH to enable secure login to each other's hosts
- → Generate key-pairs
- → Use ssh-agent to make your logins convenient
 - Passphrase entered only once
- → Use port forwarding to run a command from a remote host on your host

Lab Environment Setup

- → If you're on Ubuntu
 - ◆ Make sure you have openssh-server and openssh-client installed
 - dpkg --get-selections | grep openssh
 - Should give you
 - o openssh-client install
 - o openssh-server install
 - If not, install them
 - o sudo apt-get install openssh-client
 - sudo apt-get install openssh-server

Server Steps

- → Generate public and private keys
 - ◆ ssh-keygen (by default saved to ~/.ssh/is_rsa and id_rsa.pub)
- → Create an account for the client on the server
 - ◆ sudo useradd -d /home/<homedir_name> -m <username>
 - ◆ sudo passwd <username>
- → Create .ssh directory for new user
 - cd /home/<homedir_name>
 - ◆ sudo mkdir .ssh

Server Steps

- → Change ownership and permission on .ssh directory
 - ♦ sudo chown -R username .ssh
 - ♦ sudo chmod 700 .ssh
- → Optionally, disable password-based authentication
 - emacs /etc/ssh/sshd config
 - Change the PasswordAuthentication option to no

Client Steps

- → Generate public and private keys
 - ♦ ssh-keygen
- → Copy your public key to the server for key-based authentication
 - ◆ ssh-copy-id -i <username>@<server_ip_addr>
- → Add private key to authentication agent
 - ♦ ssh add
- → SSH to server
 - ◆ ssh -X <username>@<server_ip_addr>
- → Run command on remote host
 - ◆ E.g. firefox

Checking IP address

- → ifconfig
 - Configure or display the current network interface configuration information
- → hostname -I
 - ◆ Give IP address of your machine directly
- → ping <ip_addr> (packet internet groper)
 - ◆ Test reachability of a host on IP network
 - Measure round-trip time for messages sent from source to a destination

Questions?