

Updates pT Training: KNN

Wei Shi

weishi@rice.edu

EMTF Working Meeting

Mode 14: Station 1-2-3

- Add compare to current EMTF pT(LUT v1)
- Add input variables based on 2016 LUT(dPhi12, 23; theta; CLCT1; dTheta13; FR 1)(keep scale frac 0.8)
- Tune KNN scale frac so as performance is best
- Add input combinations of dPhis, ring number of station 1
- Divide up low/high pT
- Higher statistics[optional]
- Question: what's FR bit? What's bend_1?(integer)
- Weight 1/pT when doing Standard Deviation calculation?

BACK UP

Steps

- Find optimized input/target/k/scalfrac for KNN for other modes
- Select the better one method using for other modes: change inputs
- Include RPC hits and repeat 1-3 step
- Remove/truncate to fit in 29 bits
- Repeat for other modes
- Train charge assignment(classification)

Mode 14

• # of train events: 18746(4)

• # of test events: 18747(2)

[0]Current EMTF performance:[marker 20]

• EMTF Standard Deviation of train sample: 0.0030236

• EMTF Standard Deviation of test sample: 0.00290853

Euclidean distance

x: input variables(dimension d)

of train event

y: input variables of test event

$$R_{ ext{rescaled}} = \left(\sum_{i=1}^d rac{1}{w_i^2} |x_i - y_i|^2
ight)^{\!\!rac{1}{2}}$$

$$\langle t(i,V) \rangle = \frac{\sum_{j \in V} w_j t_j f(\operatorname{dis}(i,j))}{\sum_{j \in V} w_j f(\operatorname{dis}(i,j))}$$

[1]dPhis_2_inv_pT_(UseKernel)

• [marker 21]

k	10	15	20	25	30	35	40	45	50
MSE(test)	0.0037 048	0.00359	0.003524 43	0.003499 85	0.003507 56	0.003490 82	0.003493 63	0.003493 95	0.003501 7
MSE(train)	0.0030	0.003206	0.003274	0.003329	0.003370	0.003403	0.003426	0.003452	0.003461
	5859	9	49	54	16	26	45	31	73
k	55	60	65	70	75	80	85	90	95
MSE(test)	0.0034	0.003500	0.003506	0.003516	0.003524	0.003536	0.003547	0.003549	0.003555
	9819	48	93	32	92	82	09	61	08
MSE(train)	0.0034	0.003489	0.003504	0.003524	0.003536	0.003549	0.003562	0.003577	0.003588
	8042	79	04	81	82	27	43	05	05

[2]dPhis_theta_2_inv_pT_UseKernel_ScalFrac_ _0p8

• [marker 22]

k	10	15	20	25	30	35	40	45	50
MSE(test)	0.0018	0.001874	0.001938	0.001998	0.002049	0.002108	0.002177	0.002242	0.002301
	5647	03	68	63	75	94	45	7	63
MSE(train)	0.0014	0.001649	0.001745	0.001837	0.001913	0.001994	0.002072	0.002136	0.002206
	8462	91	24	29	87	52	28	05	39
k	55	60	65	70	75	80	85	90	95
MSE(test)	0.0023	0.002408	0.002458	0.002507	0.002557	0.002604	0.002649	0.002690	0.002734
	579	21	71	1	31	58	5	85	36
MSE(train)	0.0022	0.002329	0.002397	0.002458	0.002511	0.002561	0.002609	0.002657	0.002701
	7102	95	68	09	72	87	85	38	02

[3]dPhis_theta_CLCT1_2_inv_pT_UseKernel_ ScalFrac_0p8

• [marker 23]

k	10	15	20	25	30	35	40	45	50
MSE(test)	0.0019	0.001953	0.002004	0.002063	0.002115	0.002173	0.002243	0.002299	0.002358
	2618	64	8	1	8	91	29	99	78
MSE(train)	0.0015	0.001687	0.001800	0.001890	0.001983	0.002061	0.002130	0.002198	0.002263
	6352	27	32	26	54	21	61	75	66
k	55	60	65	70	75	80	85	90	95
MSE(test)	0.0024	0.002465	0.002518	0.002572	0.002611	0.002650	0.002697	0.002747	0.002793
	1844	26	16	11	6	83	22	27	35
MSE(train)	0.0023 2797	0.002392 32	0.002454 96	0.00251	0.002553 8	0.002596 69	0.002643 23	0.002691 5	0.002735 33

[4] dPhis_theta_CLCT1_dTh13_2_inv_pT_UseKernel_ ScalFrac_0p8

• [marker 24]

k	10	15	20	25	30	35	40	45	50
MSE(test)	0.0021	0.002255	0.002355	0.002429	0.002488	0.002578	0.002665	0.002734	0.002792
	5762	46	17	63	96	08	39	77	62
MSE(train)	0.0017	0.001964	0.002116	0.002246	0.002359	0.002466	0.002559	0.002632	0.002708
	6634	23	12	19	97	41	35	02	92
k	55	60	65	70	75	80	85	90	95
MSE(test)	0.0028	0.002930	0.002991	0.003047	0.003101	0.003154	0.003202	0.003247	0.003296
	6146	98	53	92	73	73	66	6	41
MSE(train)	0.0027 7716	0.002838 93	0.002913 18	0.002967 75	0.003025	0.003084	0.003132 72	0.003178 45	0.003226 21

[5] dPhis_theta_CLCT1_dTh13_FR1_2_inv_pT_UseKer nel_ScalFrac_0p8

• [marker 25]

k	10	15	20	25	30	35	40	45	50
MSE(test)	0.0024	0.002502	0.002624	0.002716	0.002824	0.002927	0.003009	0.003083	0.003154
	0845	39	02	93	51	6	92	27	39
MSE(train)	0.0018	0.002158	0.002336	0.002482	0.002615	0.002716	0.002824	0.002921	0.003010
	9398	61	36	31	98	06	72	25	88
k	55	60	65	70	75	80	85	90	95
MSE(test)	0.0032	0.003288	0.003354	0.003413	0.003469	0.003528	0.003584	0.003640	0.003694
	22	81	67	67	04	62	05	54	61
MSE(train)	0.0030 9586	0.003166 95	0.003248 5	0.003316 47	0.003379 04	0.003440 32	0.003499	0.003555 91	0.003611 42

[6]dPhis_theta_FR1_2_inv_pT_UseKernel_ScalFrac_0p8

k	10	15	20	25	30	35	40	45	50
MSE(test)	0.0020	0.002093	0.002175	0.002262	0.002355	0.002435	0.002514	0.002585	0.002657
	2694	36	06	77	17	39	24	43	56
MSE(train)	0.0015	0.001751	0.001908	0.002034	0.002168	0.002295	0.002411	0.002509	0.002589
	5848	56	38	67	66	16	7	46	35
k	55	60	65	70	75	80	85	90	95
MSE(test)	0.0027	0.002799	0.002863	0.002927	0.002989	0.003048	0.003106	0.003157	0.003214
	3167	54	66	1	95	83	41	11	7
MSE(train)	0.0026	0.002747	0.002819	0.002889	0.002950	0.003008	0.003067	0.003122	0.003176
	7291	49	33	44	91	45	47	58	49

[7]dPhis_theta_dTh13_inv_pT_UseKernel_ScalFrac_0p8

k	10	15	20	25	30	35	40	45	50
MSE(test)	0.0021	0.002233	0.002305	0.002394	0.002480	0.002557	0.002634	0.002711	0.002776
	0994	47	28	04	48	41	71	58	91
MSE(train)	0.0017	0.001949	0.002098	0.002227	0.002344	0.002438	0.002530	0.002618	0.002709
	2766	63	56	02	27	69	76	52	38
k	55	60	65	70	75	80	85	90	95
MSE(test)	0.0028	0.002919	0.002984	0.003041	0.003095	0.003144	0.003199	0.003252	0.003303
	5207	4	36	94	61	78	92	35	14
MSE(train)	0.0027	0.002848	0.002917	0.002979	0.003038	0.003094	0.003153	0.003206	0.003256
	7898	16	74	5	38	68	97	61	78

[8]dPhis_theta_FR1_CLCT1_2_inv_pT_UseKer nel_ScalFrac_0p8

k	10	15	20	25	30	35	40	45	50
MSE(test)	0.0021	0.002175	0.002256	0.002337	0.002419	0.002507	0.002584	0.002655	0.002722
	4129	82	2	32	46	59	47	93	22
MSE(train)	0.0016	0.001822	0.001969	0.002106	0.002228	0.002347	0.002441	0.002518	0.002603
	1878	03	28	48	55	53	76	97	81
k	55	60	65	70	75	80	85	90	95
MSE(test)	0.0027	0.002861	0.002926	0.002989	0.003041	0.003089	0.003137	0.003190	0.003240
	9667	59	02	02	53	75	26	22	27
MSE(train)	0.0026	0.002753	0.002820	0.002888	0.002949	0.003006	0.003060	0.003110	0.003160
	7993	65	01	9	67	43	54	75	41

[9]dPhis_theta_FR1_dTh13_2_inv_pT_UseKernel_ScalFrac_0p8

k	10	15	20	25	30	35	40	45	50
MSE(test)	0.0023	0.002490	0.002600	0.002707	0.002814	0.002909	0.003007	0.003092	0.003170
	6445	65	32	73	33	92	67	68	89
MSE(train)	0.0018	0.002127	0.002311	0.002467	0.002618	0.002739	0.002847	0.002948	0.003035
	7939	03	27	32	75	22	21	66	45
k	55	60	65	70	75	80	85	90	95
MSE(test)	0.0032	0.003314	0.003381	0.003451	0.003512	0.003573	0.003634	0.003694	0.003750
	484	12	88	07	25	96	27	74	44

BDT parameters(mode 15) from Andrew B.(check)

For mode 15

- 400 trees
- Depths: 5
- 1/pT weight(0-120 GeV), Log2(pT) is better target than 1/pT
- For very high pT, unweighted events better(>120 GeV)
- Input variables: FR bits bring significant improvement at low and high pT
- In addition to track theta, FR 1, and dPhi 1-2, 2-3, and 3-4(LUT v1), add combinations of dPhis, and ring number of station 1
- https://indico.cern.ch/event/608207/contributions/2451751/subcontributions/2 18758/attachments/1402616/2142649/2017 01 26 Mode 15 BDT.pdf

Modes

Mode #	Definiition in code	Stations
15	1+2+4+8	1,2,3,4
14	2+4+8	1,2,3
13	1+4+8	1,2,4
12	4+8	1,2
11	1+2+8	1,3,4
10	2+8	1,3
9	1+8	1,4
8	8	1
7	1+2+4	2,3,4
6	2+4	2,3
5	1+4	2,4
4	4	2
3	1+2	3,4
2	2	3
1	1	4

Version 0->1 changes

Phi->phi_int
Theta->theta_int
Why this?
Double_t dPhi12 = acos(cos((phi2 - phi1)*(PI/180.)));
dPhi12 *= (sin((phi2 - phi1)*(PI/180.)) / max(BIT, abs(sin((phi2 - phi1)*(PI/180.))));
dPhi12 *= (180./PI);

"nkNN=30:ScaleFrac=0.8:SigmaFact=1.0: Kernel=Gaus:UseKernel=F:UseWeight=T:! Trim"

MSE = Deviation^2/N

Mode: 15
Input variables:
dphi12, dphi23,
dphi34
Target variable:
1/Gen pT

/afs/cern.ch/work/a/abrinke1/public/EMTF/Analyzer/ntuples/EMTF_MC_NTuple_SingleMu_noRPC_300k.root

Last plotshows predicted pT tends to be smaller than @ENepT, for large pT

Mode: 15 Input variables: dphi12, dphi23, dphi34 Target variable: 1/Gen pT

KNN Regression

 For a test event, the algorithm finds the k-nearest neighbours using the input variables, where each training event contains a regression value. The predicted regression value for the test event is the weighted average of the regression values of the k-nearest neighbours

"nkNN=95:ScaleFrac=0.8:SigmaFact=1.0:Ker nel=Gaus:UseKernel=F:UseWeight=T:!Trim"

• Test with 131872 events, Train with 131814 events, mode 15, dphi12,23,34 as input, 1/Gen pT as target

k	10	15	20	25	30	35	40	45	50
MSE(test)	0.0011	0.001129	0.001119	0.001114	0.001113	0.001114	0.001117	0.001120	0.001124
	5753	52	74	7	98	96	74	5	62
MSE(train)	0.0009	0.000966	0.000997	0.001017	0.001033	0.001046	0.001060	0.001069	0.001077
	10486	04	173	23	56	84	53	54	52
k	55	60	65	70	75	80	85	90	95
MSE(test)	0.0011	0.001129	0.001133	0.001136	0.001139	0.001141	0.001144	0.001148	0.001152
	2702	89	08	55	34	93	49	28	24

Comments

- What pT range are we caring about? Depends on L1 endcap muon trigger threshold?
- Maybe we don't need to choose the best model, instead, we can use weighted models for final pT LUT
- Maybe we can use different model for different input variables, some model may perform better than others in certain parameter region(eta)

BDT good/bad

Good: little tuning required(simple)

- Bad:
- 1. will ignore non-discriminating variables as for each node splitting only the best discriminating variable is used
- 2. theoretically best performance on a given problem is generally inferior to other techniques like neural networks.

See TMVA tutorial