

月球基地顶棚隔热设计

项目组成员: 余喆蓥、余睿静、刘展旭

目录

content

Part ONE

背景概述

Part TWO

材料选择

Part THREE

结构设计

Part FOUR

模拟计算

Part ONE

背景概述

Part TWO

材料选择

Part THREE

研究内容

Part FOUR

模拟计算

背景概述

随着月球探测和长期驻留任务的推进,构建安全、舒适的月球居住环境成为未来载人月球基地的关键技术挑战之一。月球表面面临**极端的温度变化**(-173°C 到 +127°C)、**强烈的宇宙辐射及微陨石冲击**,因此,顶棚结构不仅需要具备**优异的热绝缘性能**,还需兼顾**轻质、高强度与成本低廉**。本项目聚焦于构建一个具备良好热防护性能的月球基地顶棚,为未来的月面生活提供基础支撑。

本项目从**材料选择、结构设计**和**模拟计算**三个方面入手,综合评估隔热结构的可行性、结构稳定性及热性能表现,探索适用于月球环境的高性能顶棚方案。

Part ONE

背景概述

Part TWO

材料选择

Part THREE

研究内容

Part FOUR

模拟计算

复合结构设计思路

- 需要考虑几点回: 极端温度、微陨石冲击、材料热容、导热率、成本、密度等等。
- 因此选定了如下四种材料,从上到下的顺序为顶棚材料从外到里的排列顺序。

材料名称	密度 (kg/m³)	热导率 (W/m·K)	杨氏模量 (GPa)	泊松比	比热容 (J/kg·K)	单位体积成 本(元/m³)	温度适应范 围 (°C)
SiC/SiC CMC[2][3]	2700	9.000	240.00	0.18	620	13,500,000	-150 ~ 1650
SiC Aerogel _[4]	250	0.018	5.00	0.20	1273	5,588	-200 ~ 1200
Kaowool _[5]	128	0.060	3.00	0.30	1089	1,380.5	-100 ~ 1650
PU Foam[6]	50	0.030	0.05	0.30	1450	2,153.5	-180 ~ 120

微陨石防护层

- 在月球环境中, 顶棚外层主要承担抵御微陨石撞击的任务。
- 根据多项NASA与学术文献数据[7][8], 高速微陨石(直径1-5 mm, 速度5-10 km/s)通常可被1-3 mm厚的高强度陶瓷材料有效破碎或阻挡, 超过此厚度虽略有提升, 但成本与重量迅速增加, 性价比下降。
- 因此,综合考虑**微陨石威胁、材料强度与运输代价**,选用 3 mm 厚的 **SiC 陶瓷基复合材料**作为外层 材料,在保证防护能力的同时,尽量减轻质量与成本,为后续多层隔热结构留出更大优化空间。

主隔热层、结构支撑层与舒适层

- **主隔热层**承担着阻挡月球极端温向内传导的关键任务。
- **SiC 气凝胶**具有较低的热导率(0.018 W/m·K),且能在极端条件下长时间稳定工作,成为深空应用中广泛采用的高性能隔热材料。综合热阻表现、耐温差能力,最终选择 **SiC 气凝胶**作为主隔热层。
- 在多层结构中,主隔热层虽具备出色的保温性能,但通常机械强度有限,难以独立支撑整体结构。 因此、中间需设置一层**结构支撑层**、兼顾一定强度与耐温差能力、同时不过多增加导热。
- 最终选择 Kaowool **陶瓷纤维材料**作为结构支撑层,布置在主隔热层与舒适层之间,不仅提供必要的机械支撑,防止压塌或形变,还能进一步隔断热流,增强整体热阻性能。
- 最内层采用**聚氨酯泡沫**作为**舒适层**,主要作用是提供舱内温感缓冲与人机接触的安全性。**PU 泡沫** 导热率较低,柔软轻便,虽不耐高温,但在被外层有效隔热后,能在室内稳定环境下安全使用。其 低密度也有助于减轻整体结构重量。

材料参数计算器

- **,微陨石防护层**的厚度由其功能和成本共同确定(3mm),但需要对剩余三层的厚度比例做一些计算,来找出相对**热阻较高、重量较轻、成本较低**的方案。
- 因此使用 Python 和 streamlit 制作了多层复合材料性能计算器®,可以很方便地调整每层材料的名称、密度、热导率等信息,可以调整各层厚度比例并将其可视化,最后自动计算出当前厚度比例下总体的热导率、密度、单位体积成本等信息。但关于某些参数的计算不够严谨,仅供参考。

图 1 软件界面截图

确定最终材料参数

• 考虑到多因素计算, 定义了一个价值函数, 用于评估各因素所占比例大小。

$$Value = \frac{\dot{c}$$
 总热导率 $\times 60\% + \frac{\dot{c}$ 它密度 $\times 20\% - \frac{\dot{c}}{4}$ 是大总杨氏模量 $\times 10\% + \frac{\dot{c}$ 是大总成本 $\times 10\%$

- 最终令 value 值最小即可。
- 如下是以 0.5cm 为步长、10cm 为内部三层材料总厚度枚举得到的最优 5 种分布的结果表格。

PU厚度	Kaowool 厚度	Aerogel 厚度	总热导率 (W/m·K)	总密度 (kg/m³)	总成本 (元/m³)	总杨氏模 量(GPa)	value
4.00	0.50	5.50	0.022	163.90	4003.82	2.92	0.415
4.50	0.50	5.00	0.023	153.90	3832.10	2.67	0.415
3.50	0.50	6.00	0.022	173.90	4175.55	3.17	0.415
5.00	0.50	4.50	0.024	143.90	3660.38	2.42	0.416
3.00	0.50	6.50	0.021	183.90	4347.27	3.42	0.416

确定最终材料参数

属性	数值		
密度	237.77 kg/m³		
比热容	1152 J/kg·K		
单位体积成本	397091.09 元/m³		
热导率	0.0230 W/m·K		
杨氏模量	9.83 GPa		
泊松比	0.243		

表 3 最终确定的材料参数

图 2 月球基地顶棚多层材料结构示意图

本部分参考文献

- [1] Jablonski, A. M., & Ogden, K. A. (2008). *Technical Requirements for Lunar Structures*. Journal of Aerospace Engineering, ASCE, April 2008.
- [2] National Academies of Sciences, Engineering, and Medicine. (1998). Ceramic Fibers and Coatings: Advanced Materials for the Twenty-First Century. Washington, DC: The National Academies Press.
- [3] Wikipedia contributors. (n.d.). *Table of specific heat capacities*. Retrieved July 17, 2025, from https://en.wikipedia.org/wiki/Table of specific heat capacities
- [4] Zhang, Z., Liu, C., Li, N., Guo, W., Li, Y., Yang, P., Zhang, S., & Wang, Z. (2025). *Highly Oriented SiC@SiO2 Ceramic Fiber Aerogels with Good Anisotropy of the Thermal Conductivity and High-Temperature Resistance*. Advanced Science, 12(17). https://doi.org/10.1002/advs.202500123 (First published: March 6, 2025)
- [5] 淘宝商家. (n.d.). 硅酸铝陶瓷纤维毯. Retrieved from https://e.tb.cn/h.hjMq2hOGn89CuWB?tk=S9wk4XMloE4 (访问日期: 2025年7月17日)
- [6] Spearpoint, M., Pau, D., Fleischmann, C., & Li, K. Y. (2014). *Thermophysical properties of polyurethane foams and their melts*. Fire and Materials. https://doi.org/10.1002/fam.2188
- [7] Ryan, S., & Christiansen, E. L. (2013). *Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding*. Acta Astronautica, 83, 216–231.
- [8] Rakib, M. A., Smith, S. T., & Tafsirojjaman, T. (2024). A review of shielding systems for protecting off-earth structures from micrometeoroid and orbital debris impact. Acta Astronautica, 223, 404–425.
- [9] STDquantum. (n.d.). 多层复合材料性能计算器. Retrieved from https://stdquantum-shengchanshixi-1-e8ijvk.streamlit.app/

谢谢大家!

项目组成员: 刘展旭、孙煦崴、王义朝

指导老师: 肖锐