ÁLGEBRA MATRICIAL Y GEOMETRÍA ANALÍTICA

Solución de Tercera Práctica Dirigida Semestre Académico 2021-1

Horario: Todos.

Indicaciones:

Los estudiantes deberán subir a PAIDEIA un archivo(**en formato PDF**) donde se muestre la solución detallada de los ejercicios 6 y 7. Dicho archivo se podrá subir desde las 00:00 horas del día sábado 05 de junio hasta las 23:59 horas del día lunes 07 de junio.

1. Sean \overrightarrow{a} , \overrightarrow{b} y \overrightarrow{c} vectores no nulos en \mathbb{R}^3 . Analice cuál de las siguientes operaciones tiene sentido; en aquellas en las que su respuesta sea afirmativa, simplifique la expresión usando propiedades.

a)
$$\overrightarrow{a} \times (\|\overrightarrow{b} \times \overrightarrow{c}\|^2)\overrightarrow{c} + \overrightarrow{a} \times [(\overrightarrow{a} \cdot \overrightarrow{c}) + \overrightarrow{b} \times \overrightarrow{a}]$$

b)
$$\left(\frac{\overrightarrow{a} + \overrightarrow{b}}{\overrightarrow{a} \bullet \overrightarrow{b}}\right) \bullet \left[\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\frac{1}{\|\overrightarrow{a}\|} \left(\overrightarrow{a} + \overrightarrow{b}\right)\right)\right]$$
, siendo $\overrightarrow{a} \bullet \overrightarrow{b} \neq 0$

Solución.

a) Como $(\overrightarrow{a} \cdot \overrightarrow{c}) \in \mathbb{R}$ y $\overrightarrow{b} \times \overrightarrow{a} \in \mathbb{R}^3$, entonces $(\overrightarrow{a} \cdot \overrightarrow{c}) + \overrightarrow{b} \times \overrightarrow{a}$ no tiene sentido.

b)

$$\left(\frac{\overrightarrow{a}+\overrightarrow{b}}{\overrightarrow{a}\bullet\overrightarrow{b}}\right)\bullet\left[\left(\overrightarrow{a}-\overrightarrow{b}\right)\times\left(\frac{1}{\parallel\overrightarrow{a}\parallel}\left(\overrightarrow{a}+\overrightarrow{b}\right)\right)\right]=\frac{(\overrightarrow{a}+\overrightarrow{b})\bullet\left[(\overrightarrow{a}-\overrightarrow{b})\times(\overrightarrow{a}+\overrightarrow{b})\right]}{(\overrightarrow{a}\bullet\overrightarrow{b})\parallel\overrightarrow{a}\parallel}=0$$

2. En el paralelogramo ABCD, M es punto medio de AB y N un punto sobre MC tal que $\frac{\overline{MN}}{\overline{NC}} = \frac{1}{2}$.

a) **Empleando vectores**, demuestre que $\overrightarrow{DN} = \frac{1}{3}(\overrightarrow{DC} + 2\overrightarrow{DM})$.

b) Si M(-2;2), $N\left(0;\frac{5}{3}\right)$, la abscisa de B es negativa, $||\overrightarrow{BC}|| = \sqrt{29}$ y el vector \overrightarrow{AD} es paralelo al vector $\overrightarrow{v} = (10;-4)$, halle las coordenadas de los vértices A,B,C y D.

Solución:

a) Una representación gráfica es la siguiente

•
$$\overrightarrow{DN} = \overrightarrow{DC} + \overrightarrow{CN}$$
. Además, como $\overrightarrow{CN} = 2\overrightarrow{NM}$, se tiene $\overrightarrow{NM} = \frac{\overrightarrow{DN} - \overrightarrow{DC}}{2}$

• Como
$$\overrightarrow{DM} = \overrightarrow{DN} + \overrightarrow{NM}$$
, tenemos $\overrightarrow{DM} = \overrightarrow{DN} + \frac{\overrightarrow{DN} - \overrightarrow{DC}}{2}$, de donde resulta $\overrightarrow{DN} = \frac{1}{3}(\overrightarrow{DC} + 2\overrightarrow{DM})$.

b) • Teniendo en cuenta que
$$\overrightarrow{MN} = \left(-2; \frac{1}{3}\right)$$
 y $\overrightarrow{CN} = 2\overrightarrow{MN}$, obtenemos $C(4; 1)$.

- Como el vector \overrightarrow{AD} es paralelo al vector \overrightarrow{v} , se tiene $\overrightarrow{AD}=t(10;-4)$ para algún $t\in\mathbb{R}$. Asimismo, teniendo en cuenta $||\overrightarrow{BC}||=||\overrightarrow{AD}||=\sqrt{29}$, obtenemos $t=\frac{1}{2}$ o $t=-\frac{1}{2}$. Para $t=\frac{1}{2}$ obtenemos B(-1;3), que cumple con la condicón del problema.
- Como M es punto medio del segmento \overline{AB} , obtenemos A(-3;1).
- Teniendo en cuenta que \overrightarrow{AD} = (5;2), resulta que las coordenadas del punto D son (2;-1).
- 3. En un trapecio \overrightarrow{ABCD} con lados paralelos \overrightarrow{BC} y \overrightarrow{AD} , H(-4;-2) es el pie de la perpendicular trazada desde el vértice B sobre AC, $\overrightarrow{AB} = (1;7)$, $Proy_{\overrightarrow{AC}}\overrightarrow{AB} = (3;6)$, $Proy_{\overrightarrow{AD}}\overrightarrow{AB} = (4;3)$ y $||\overrightarrow{AD}|| = 15$ unidades. Halle las coordenadas de los vértices A, B, C y D.

Solución

Una representación gráfica es la siguiente

• Como
$$\overrightarrow{AH} = Proy_{\overrightarrow{AC}}\overrightarrow{AB} = (3;6)$$
, se tiene $A(-7;-8)$.

•
$$\overrightarrow{AB} = \overrightarrow{AH} + \overrightarrow{HB}$$
, de donde $\overrightarrow{HB} = (-2; 1)$. Así, $B(-6; -1)$.

• El vector
$$\overrightarrow{BC}$$
 es paralelo al vector $Proy_{\overrightarrow{AD}}\overrightarrow{AB}$, luego

$$\overrightarrow{BC} = tProy_{\overrightarrow{AD}}\overrightarrow{AB}$$
, para algún $t \in \mathbb{R}$.

De donde, $\overrightarrow{BC} = (4t; 3t)$.

- Como $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$, se tiene $\overrightarrow{AC} = (1 + 4t; 7 + 3t)$.
- El vector \overrightarrow{AC} es ortogonal al vector \overrightarrow{HB} , de donde se obtiene t=1. Esto es, $\overrightarrow{AC}=(5;10)$.
- Teniendo en cuenta que \overrightarrow{AC} = (5;10) obtenemos C(-2;2).
- El vector \overrightarrow{AD} es paralelo al vector $Proy_{\overrightarrow{AD}}\overrightarrow{AB}$, luego

$$\overrightarrow{AD} = sProy_{\overrightarrow{AD}}\overrightarrow{AB}$$
, para algún $s \in \mathbb{R}$.

De donde, $\overrightarrow{AD} = (4s; 3s)$.

- Teniendo en cuenta que $||\overrightarrow{AD}|| = 15$, obtenemos s = 3. Luego, como $\overrightarrow{AD} = (12; 9)$ se tiene D(5; 1).
- 4. El volumen del cubo que se muestra en la figura es $64 u^3$.

Si las aristas \overrightarrow{AC} y \overrightarrow{AD} son paralelas a los vectores $\overrightarrow{u} = (-\sqrt{6}; -\sqrt{6}, -2)$ y $\overrightarrow{v} = (3; -1; -\sqrt{6})$, respectivamente,

- a) halle las coordenadas del vértice B,
- b) halle el valor de

$$\left\| \left(3\overrightarrow{AD} - \overrightarrow{AC} \right) \times \left(4\overrightarrow{AD} - 5\overrightarrow{AC} \right) \right\|.$$

Solución.

a) Como el volumen del cubo es $64\mathrm{u}^3$ entonces la longitud d sus arista es $\ell=4$ u. De otro lado, $\overrightarrow{AB}\parallel\overrightarrow{u}\times\overrightarrow{v}=(4;-12;4\sqrt{6})$. Así $\overrightarrow{AB}=\kappa(1;-3;\sqrt{6})$, entonces

$$|\overrightarrow{AB}\| = \|(\kappa; 3 - \kappa; \kappa\sqrt{6})\| = 4$$

$$|\kappa| = 1$$

$$\kappa = \pm 1$$

Por lo tanto, $\overrightarrow{AB} = (1-3;\sqrt{6})$, de donde B(2;2;1) o $B(0;8;2-\sqrt{6})$. Según la gráfica elegimos B(2;2;1).

b) Simplificamos el producto vectorial del módulo, es decir

$$\left(3\overrightarrow{AD} - \overrightarrow{AC}\right) \times \left(4\overrightarrow{AD} - 5\overrightarrow{AC}\right) = 11\overrightarrow{AC} \times \overrightarrow{AD}.$$

Luego,

$$\begin{split} \left\| \left(3\overrightarrow{AD} - \overrightarrow{AC} \right) \times \left(4\overrightarrow{AD} - 5\overrightarrow{AC} \right) \right\| &= \left\| 11\overrightarrow{AC} \times \overrightarrow{AD} \right\| = 11 \left\| \overrightarrow{AC} \right\| \left\| \overrightarrow{AD} \right\| \operatorname{sen}(\phi) \\ &\quad \operatorname{donde} \phi = \frac{\pi}{2} \text{ es el ángulo formado por } \overrightarrow{AC} \text{ y } \overrightarrow{AD} \\ &= 11(4)(4) = 176 \end{split}$$

5. Considere las rectas

$$\mathcal{L}_1: P = (1,0,-1) + t(1,2,2), t \in \mathbb{R}.$$

 $\mathcal{L}_2: P = (-1,3,6) + r(2,-3,1), r \in \mathbb{R}.$

- a) ¿El punto $P_0(-3, -8, -9)$ pertenece a \mathcal{L}_1 ?, ¿la recta \mathcal{L}_3 : $P = (-3, -8, -9) + s(-2, -2, -4), s \in \mathbb{R}$ coincide con la recta \mathcal{L}_1 ?
- b) Halle la ecuación vectorial de la recta que pasa por el punto $P_0(-3, -8, -9)$ y es paralela al eje Z.
- c) Verifique que las rectas \mathcal{L}_1 y \mathcal{L}_2 son alabeadas (es decir, no se intersecan y no son paralelas).
- d) Halle las coordenadas de los puntos A en \mathcal{L}_1 y B en \mathcal{L}_2 tal que la recta que pasa por A y B sea perpendicular tanto a \mathcal{L}_1 como a \mathcal{L}_2 .

Solución.

- a) Un punto cualquiera de \mathcal{L}_1 tiene la forma P=(1+t,2t,-1+2t) con $t\in\mathbb{R}$. Para ver si P_0 es uno de ellos analizamos si la igualdad (1+t,2t,-1+2t)=(-3,-8,-9) tiene algún t como solución. Ello equivale al sistema de ecuaciones lineales $1+t=-3\wedge 2t=-8\wedge -1+2t=-9$. Como t=-4 es solución del sistema, entonces concluimos que se cumple $P_0\in\mathcal{L}_1$.
 - Notemos que los vectores dirección $\overrightarrow{d_1}$ = (1,2,2) y $\overrightarrow{d_1}$ = (-2,-2,-4) no son paralelos, por lo tanto $\mathcal{L}_1 \neq \mathcal{L}_3$.
- b) Un vector dirección para \mathcal{L} es $\vec{d} = (0,0,1)$. Luego, una ecuación vectorial de \mathcal{L} es $P = (-3,-8,-9) + t(0,0,1), t \in \mathbb{R}$.
- c) Notemos que los vectores dirección $\overrightarrow{d_1}$ = (1,2,2) y $\overrightarrow{d_2}$ = (2,-3,1) no son paralelos, lo cual demuestra que \mathcal{L}_1 y \mathcal{L}_2 no son paralelas.
 - Falta probar que las rectas no se intersecan. Para ello igualamos un punto genérico de cada una, lo cual se expresa como

$$(1+t,2t,-1+2t)=(-1+2r,3-3r,6+r),$$

lo cual conduce el sistema de ecuaciones

$$t - 2r = -2 \tag{1}$$

$$2t + 3r = 3 \tag{2}$$

$$2t - r = 7. (3)$$

Resolviendo por ejemplo (2) y (3), obtenemos t = 3, r = -1. Pero al reemplazar dichos valores en (1) comprobamos que no satisfacen dicha ecuación. En conclusión, las rectas no se intersecan.

d) Los puntos A y B tienen la forma genérica A = (1+t,2t,-1+2t) y B = (-1+2r,3-3r,6+r). Se cumple, por ejemplo, que el vector \overrightarrow{AB} es perpendicular a $\overrightarrow{d_1} = (1,2,2)$ y $\overrightarrow{d_2} = (2,-3,1)$. Por lo tanto, \overrightarrow{AB} es paralelo a $\overrightarrow{d_1} \times \overrightarrow{d_2} = (8,3,-7)$. La igualdad $\overrightarrow{AB} = s(\overrightarrow{d_1} \times \overrightarrow{d_2})$, para algún $s \in \mathbb{R}$ se expresa como

$$(-1+2r)-(1+t)=8s \wedge (3-3r)-2t=3s \wedge (6+r)-(-1+2t)=-7s$$
.

que se traduce en el siguiente sistema de ecuaciones:

$$-t+2r-8s = 2$$

 $2t+3r+3s = 3$
 $-2t+r+7s = -7$.

Resolviendo dicho sistema se obtiene $r=\frac{9}{61},\,t=\frac{120}{61}.$ Los puntos buscados son $A=\left(\frac{181}{61},\frac{240}{61},\frac{179}{61}\right)$ y $B=\left(\frac{-43}{61},\frac{156}{61},\frac{375}{61}\right).$

- 6. Sean los vectores \overrightarrow{u} , \overrightarrow{v} y \overrightarrow{w} de \mathbb{R}^3 , con \overrightarrow{u} y \overrightarrow{v} unitarios y perpendiculares entre sí, y $\overrightarrow{w} = (\overrightarrow{u} \overrightarrow{v}) \times (\overrightarrow{u} + \overrightarrow{v})$.
 - a) Calcule el área del paralelogramo formado por los vectores \overrightarrow{u} y \overrightarrow{v} .
 - b) Halle $(2\overrightarrow{u} \times 3\overrightarrow{v}) \cdot \overrightarrow{w}$.
 - c) Halle la proyección ortogonal del vector \overrightarrow{w} sobre $\overrightarrow{u} \times \overrightarrow{v}$.

Solución:

- a) $||\overrightarrow{u} \times \overrightarrow{v}|| = ||\overrightarrow{u}||||\overrightarrow{v}|| \operatorname{sen}\left(\frac{\pi}{2}\right) = 1.$
- b) Aplicando propiedades del producto vectorial, se tiene

$$\overrightarrow{w} = (\overrightarrow{u} - \overrightarrow{v}) \times \overrightarrow{u} + (\overrightarrow{u} - \overrightarrow{v}) \times \overrightarrow{v}$$

$$= \overrightarrow{u} \times \overrightarrow{u} - \overrightarrow{v} \times \overrightarrow{u} + \overrightarrow{u} \times \overrightarrow{v} - \overrightarrow{v} \times \overrightarrow{v}$$

$$= 2\overrightarrow{u} \times \overrightarrow{v} .$$

Luego,

$$(2\overrightarrow{u} \times 3\overrightarrow{v}) \cdot \overrightarrow{w} = (2\overrightarrow{u} \times 3\overrightarrow{v}) \cdot (2\overrightarrow{u} \times \overrightarrow{v}) = 12||\overrightarrow{u} \times \overrightarrow{v}||^2 = 12.$$

c) Tenemos

$$Proy_{\overrightarrow{u}\times\overrightarrow{v}}\overrightarrow{w} = \frac{\overrightarrow{w}\cdot(\overrightarrow{u}\times\overrightarrow{v})}{||\overrightarrow{u}\times\overrightarrow{v}||^2}\overrightarrow{u}\times\overrightarrow{v} = 2\overrightarrow{u}\times\overrightarrow{v} = \overrightarrow{w}.$$

7. Los vértices de un tetraedro son los puntos A(1;1;1), B(2;0;2), C(2;2;2) y D(3;-4;-3). Halle la altura $\|\overrightarrow{DE}\|$ y el volumen del tetraedro.

Solución

Hallamos los vectores:

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (1; -1; 1)$$

$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = (1; 1; 1)$$

$$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = (2; -5; 4)$$

Luego,

$$\left[\overrightarrow{AD},\overrightarrow{AB},\overrightarrow{AC}\right] = \overrightarrow{AD} \bullet \left(\overrightarrow{AB} \times \overrightarrow{AC}\right) = (2;-5;4) \bullet (-2;0;2) = -12.$$

Así, el volumen del tetraedro es

$$V = \frac{1}{6} \left| \left[\overrightarrow{AD}, \overrightarrow{AB}, \overrightarrow{AC} \right] \right| = 2u^3.$$

De otro lado,

$$V = \frac{1}{3}\mathbf{A}_b \times \mathbf{h} \Leftrightarrow 2 = \frac{\|\overrightarrow{AB} \times \overrightarrow{AC}\| \mathbf{h}}{6}$$

$$12 = \|(-2;0;2)\|\mathbf{h}$$

$$12 = \sqrt{8}\mathbf{h}$$

$$\mathbf{h} = 3\sqrt{2}.$$

San Miguel, 07 de junio de 2021.