《线性代数》第二章作业(5月14日提交)

临班 370

2023年4月12日

班级:______ 姓名:_____ 学号:_____

1. 判断题 (错误请给出说明或反例. 每题 2 分, 共 20 分):		
(1) $ A+B = A + B $.		
$(2) k \cdot A = k \cdot A .$		
(3) AB = BA .		
(4) AB = BA.		
$(5) A^*A = AA^*.$		
(6) $(A+B)^{-1} = A^{-1} + B^{-1}$.		
$(7) (A+B)(A-B) = A^2 - B^2.$		
(8) $A^2 = O$, $M A = O$.		
(9) $(A+B)^2 = A^2 + 2AB + B^2$.		
$(10) \not\equiv AX = AY, A \neq O, \ \ \mathbb{M} \ X = Y.$		
2. 填空题 (每空 3 分, 共 15 分):		
(1) 已知矩阵 $A, B, C = (c_{ij})_{s \times n}$, 满足 $AC = CB$, 则 B 是	阶矩	

(2) 己知 $A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} X = \begin{pmatrix} 4 & -6 \\ 2 & 1 \end{pmatrix}$,则 $X = \underline{\qquad}$

 $(3) \ A = \begin{pmatrix} 3 & 0 & -2 \\ -2 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix}, \ \mathbb{A}^* = \underline{\qquad}, \ A^{-1} = \underline{\qquad}.$

3. 计算题 (每题 10 分, 共 50 分):

(1) 设
$$A = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$
, 用二项式展开计算 A^{10} .

(1) 设
$$A = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$
, 用二项式展开计算 A^{10} .

(2) 设 $\alpha = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$, $\beta = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$ $A = \alpha \beta^T$, 求 A^{100} .

(3) 用
$$A^{-1} = \frac{A^*}{|A|}$$
,求矩阵 $A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 4 & -2 \\ 5 & -4 & 1 \end{pmatrix}$ 的逆矩阵.

- 4. 证明题 (第 (1) 题 5 分, 第 (2) 题 10 分, 共 15 分):
 - (1) AB = A + B, 证明 A E 可逆.
- (2) 设列向量 $X = (x_1, x_2, \dots, x_n)^T$ 满足 $X^T X = 1, H = E 2XX^T$. 证明: H 为对称矩阵, 且 $HH^T = E$.