Deep Learning Approaches for Medical Imaging

Wintertagung der AG Thoraxpathologie DGPath

Elvis Murina

Institute of Data Analysis and Process Design Zurich University of Applied Sciences

03.02.2018

Overview

- Motivation
- Traditional image analysis vs. Deep Learning
- ImageNet competition
- Artificial neural networks
- Convolutional neural networks
- Deep Learning for feature extraction

Motivation

- Medical field produces a lot of images
- Goal is often some kind of classification in types or stages
- □ Time-consuming and manual process
- □ Expert needed

Motivation

- Histology
 - adeno vs sqcc
- □ Eye fundus
 - five DR stages
- MRI
 - stroke/ no stroke
- High content screening
 - diffrent pheotypes
- □ X-ray
- □ CT
- □ ...

Traditional image analysis vs. Deep Learning

Traditional:

Extract handcrafted features and use these features to train/fit a model (SVM, RF) and use fitted model to perform classification/prediction.

Deep learning:

In deep neural networks start with raw data and learn during training/fitting to extract appropriate hierarchical features and to use them for classification/prediction.

ImageNet competition

1000 classes1 Mio samples

Human: 5% misclassification

GoogLeNet 6.7%

A. Krizhevsky first CNN in 2012

2015

4.95% Microsoft (surpassing human performance 5.1%)

4.8% Google (further improved to 3.6%)

3.57% Microsoft (Resnet winner 2015)

Artificial neural networks

Sigmoid

Dendrites

Cell

body

Axon

tanh

Relu

Artificial neural networks

are learned during the training phase of the network

Artificial neural networks

- □ Two main disadvantages
 - Images are often big and therefore you need a lot of weights (also for the hidden layers)
 - Spatial information of the image gets lost, because of flatten inputs
 - Images left and right are the same for the network

Adeno vs Sqcc example

Mnist example

The weights of each filter are randomly initiated and then adapted during the training.

Input image 6x6x1

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} W_{i}$$

Input image 6x6x1

Feature map 4x4x1

32.5

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} w_{i}$$

Input image 6x6x1

32.5	-105.5
------	--------

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} w_{i}$$

Input image 6x6x1

32.5	-105.5	185.5
------	--------	-------

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} w_{i}$$

Input image 6x6x1

32.5	-105.5	185.5	54
------	--------	-------	----

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} W_{i}$$

Input image 6x6x1

32.5	-105.5	185.5	54
-105.5			

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} w_{i}$$

Input image 6x6x1

32.5	-105.5	185.5	54
-105.5	104		

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} W_{i}$$

Input image 6x6x1

32.5	-105.5	185.5	54
-105.5	104	217.5	

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} W_{i}$$

Input image 6x6x1

32.5	-105.5	185.5	54
-105.5	104	217.5	31

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} w_{i}$$

Input image 6x6x1

32.5	-105.5	185.5	54
-105.5	104	217.5	31
-44			

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} W_{i}$$

Input image 6x6x1

32.5	-105.5	185.5	54
-105.5	104	217.5	31
-44	224		

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} w_{i}$$

Input image 6x6x1

32.5	-105.5	185.5	54
-105.5	104	217.5	31
-44	224	38.5	

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} W_{i}$$

Input image 6x6x1

32.5	-105.5	185.5	54
-105.5	104	217.5	31
-44	224	38.5	-18

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} w_{i}$$

Input image 6x6x1

32.5	-105.5	185.5	54
-105.5	104	217.5	31
-44	224	38.5	-18
-60.5			

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} w_{i}$$

Input image 6x6x1

32.5	-105.5	185.5	54
-105.5	104	217.5	31
-44	224	38.5	-18
-60.5	213.5		

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} w_{i}$$

Input image 6x6x1

32.5	-105.5	185.5	54
-105.5	104	217.5	31
-44	224	38.5	-18
-60.5	213.5	52.5	

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} w_{i}$$

Input image 6x6x1

32.5	-105.5	185.5	54
-105.5	104	217.5	31
-44	224	38.5	-18
-60.5	213.5	52.5	37.5

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} w_{i}$$

Input image 6x6x1

32.5	-105.5	185.5	54
-105.5	104	217.5	31
-44	224	38.5	-18
-60.5	213.5	52.5	37.5

₹е	lυ
\sim	. •

32.5	0	185.5	54
0	104	217.5	31
0	224	38.5	0
0	213.5	52.5	37.5

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} W_{i}$$

Input image 6x6x1

Feature map 4x4x1

		•	
32.5	-105.5	185.5	54
-105.5	104	217.5	31
-44	224	38.5	-18
-60.5	213.5	52.5	37.5

32.5	0	185.5	54
0	104	217.5	31
0	224	38.5	0
0	213.5	52.5	37.5

Maxpool (2x2x1)

104

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} W_{i}$$

Input image 6x6x1

Feature map 4x4x1

		•	
32.5	-105.5	185.5	54
-105.5	104	217.5	31
-44	224	38.5	-18
-60.5	213.5	52.5	37.5

32.5	0	185.5	54
0	104	217.5	31
0	224	38.5	0
0	213.5	52.5	37.5

Maxpool (2x2x1)

217.5 104

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} w_{i}$$

Input image 6x6x1

Feature map 4x4x1

32.5	-105.5	185.5	54
-105.5	104	217.5	31
-44	224	38.5	-18
-60.5	213.5	52.5	37.5

_	
\mathbf{D}_{\sim}	
K C	IU

32.5	0	185.5	54
0	104	217.5	31
0	224	38.5	0
0	213.5	52.5	37.5

Maxpool (2x2x1)

104	217.5
224	

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} W_{i}$$

Input image 6x6x1

32.5	-105.5	185.5	54	
-105.5	104	217.5	31	
-44	224	38.5	-18	
-60.5	213.5	52.5	37.5	

Relu				
32.5	0	185.5	54	
0	104	217.5	31	
0	224	38.5	0	
0	213.5	52.5	37.5	

Maxpool (2x2x1)

104	217.5
224	52.5

-0.7	0.2	0.1
0.3	0.5	0.4
-0.2	-0.4	0.2

$$z = b + \sum_{i} x_{i} W_{i}$$

Typical architecture of a CNN

Spatial resolution is decreased e.g. via max-pooling while more abstract image features are detected in deeper layers.

Forward pass

Calculate the output based on the current parameters

Backward pass

Update the parameters to minimize the loss

$$Loss = -\frac{1}{N} \sum_{i}^{N} y_{i} (\log(\widehat{y}_{i}))$$

Categorical crossentropy

Deep Learning for feature extraction

- Pretrained VGG16 network, trained on ImageNet data as a feature extractor
- 4096 features of the third last layer ("Fc1")
 before the activation function were extracted for each image
- 2D tsne representation of all images in the training set.
- Very good separation and if you take a close look, you see that similar images are close to each other

Deep Learning for feature extraction

Thank you, Questions?

