

# Analisi di Macchine Sequenziale Sincrone Corso di Reti Logiche A

Docente: prof. William FORNACIARI

fornacia@elet.polimi.it www.elet.polimi.it/~fornacia

#### Analisi delle Macchine Sequenziali



- Reverse engineering
  - Ottenere un modello delle funzionalità di una macchina sequenziale tramite l'analisi del circuito
- Esempi di utilizzo
  - Analizzare il comportamento per rilevare problemi
  - Spingere l'ottimizzazione verso altre direzioni rispetto a quelle del progetto iniziale (es. consumo di potenza)
  - Inserire la macchina in un sistema più vasto
  - Modificare la tecnologia realizzativa (es. da logica programmabile passare ad ASIC)
  - Copiare...e migliorare

#### Architettura di riferimento



Struttura generale di una macchina sequenziale:



## Passi della metodologia di analisi



- 1. Identificazione delle funzioni implementate dalla rete combinatoria
  - Funzione di eccitazione
  - Funzione di uscita
- 2. Rappresentazione delle funzioni su tabella degli stati
  - Funzione di stato prossimo
  - Indentificazione del tipo di macchina (Mealy o Moore)
  - Creazione diagramma degli stati (se richiesto)
- Quando i bistabili non sono di tipo D non è banale la relazione fra ingressi di eccitazione e stato prossimo

## Esempio 1: funzioni caratteristiche



Derivare il diagramma degli stati della seguente macchina sequenziale



## Esempio 1: tabelle



- La tabella delle transizioni si ricava a partire dalle equazioni
  - $Y_1 = x'y_1 + xy_2$
  - $Y_2=x'y_2+xy_1'$
  - Arr Z= (x'y<sub>1</sub>+xy<sub>2</sub>)'+ (x'y<sub>2</sub>+xy<sub>1</sub>')



y1 y2

#### Tabella delle transizioni

#### Tabella degli stati

| 0    | 1    |
|------|------|
| 0/1  | 01/1 |
| )1/1 | 11/1 |
| 1/1  | 10/0 |

00/1

Ingresso X

D1=Y1 D2=Y2, Z

10/0



|                | 5                 |                   |  |  |  |  |
|----------------|-------------------|-------------------|--|--|--|--|
|                | 0                 | 1                 |  |  |  |  |
| So             | S <sub>0</sub> /1 | $S_1/1$           |  |  |  |  |
| $S_1$          | S <sub>1</sub> /0 | $S_2/1$           |  |  |  |  |
| S <sub>2</sub> | $S_2/1$           | S <sub>3</sub> /0 |  |  |  |  |
| S <sub>3</sub> | S <sub>3</sub> /0 | S <sub>0</sub> /0 |  |  |  |  |

Ingresso X

Stato futuro/ uscita

00

01

11

10

#### Esempio 1: diagramma degli stati



- Il diagramma si ottiene dalla tabella degli stati
  - La macchina, come emerge anche dalle equazioni e soprattutto dalla tabella, è di Mealy

| Diagramma | degli | stati |
|-----------|-------|-------|
| Diagramma | ucgu  | stati |

Tabella degli stati



|                | Ingresso X        |                   |  |  |  |
|----------------|-------------------|-------------------|--|--|--|
|                | 0                 | 1                 |  |  |  |
| So             | S <sub>0</sub> /1 | $S_{1}/1$         |  |  |  |
| $S_1$          | S <sub>1</sub> /0 | $S_2/1$           |  |  |  |
| S <sub>2</sub> | $S_2/1$           | S <sub>3</sub> /0 |  |  |  |
| S <sub>3</sub> | S <sub>3</sub> /0 | S <sub>0</sub> /0 |  |  |  |

I.. .... V

Stato futuro/uscita

## Esempio 2: funzioni caratteristiche



Derivare il diagramma degli stati della seguente macchina sequenziale



- Funzioni di eccitazione
  - ►  $J_1 = x'y_2 + xy_2'$
  - $K_1 = (x'y_2)' = x + y_2'$
  - $\rightarrow$  J<sub>2</sub>=K<sub>2</sub>=xy<sub>1</sub>
- Funzione uscita
  - $\triangleright$  Z=  $y_1y_2$

# Esempio 2: derivazione tabelle



• 
$$J_1 = x'y_2 + xy_2'$$

$$K_1 = (x'y_2)' = x + y_2'$$

$$\triangleright$$
 Z=  $y_1y_2$ 

| Q | Q* | JК  |
|---|----|-----|
| 0 | 0  | 0 - |
| 0 | 1  | 1 - |
| 1 | 0  | - 1 |
| 1 | 1  | - 0 |



#### Tabella delle transizioni

Tabella delle eccitazioni

|       |    | Ingr | esso X |       | Moore |                               |    | Ingr                              | esso X                          |
|-------|----|------|--------|-------|-------|-------------------------------|----|-----------------------------------|---------------------------------|
|       |    | 0    | 1      | Moore |       |                               | 0  | 1                                 |                                 |
|       | 00 | 00   | 10     | 0     |       |                               | 00 | 01,00,0                           | 11,00,0                         |
| y1 y2 | 01 | 11   | 01     | 0     |       | y <sub>1</sub> y <sub>2</sub> | 01 | 10,00,0                           | 01,00,0                         |
|       | 11 | 11   | 00     | 1     |       |                               | 11 | 10,00,1                           | 01,11,1                         |
|       | 10 | 00   | 01     | 0     |       |                               | 10 | 01,00,0                           | 11,11,0                         |
|       |    | Y1   | Y2     | Z     | l     |                               |    | J <sub>1</sub> K <sub>1</sub> , J | <sub>2</sub> K <sub>2</sub> , Z |

# Esempio 2: diagramma degli stati

|       |         |          |           |                       |                                                              |                |                |                | REPORTED IN |
|-------|---------|----------|-----------|-----------------------|--------------------------------------------------------------|----------------|----------------|----------------|-------------|
|       | Tabella | delle ti | ransizior | ni                    |                                                              | T              | abella de      | gli stati      |             |
|       | Ingre   | esso X   | uscita Z  | <u>7</u>              |                                                              |                | Ingr           | esso X         | uscita Z    |
| y1 y2 | 0       | 1        |           |                       |                                                              |                | 0              | 1              |             |
| 00    | 00      | 10       | 0         |                       |                                                              | S <sub>0</sub> | $S_0$          | $S_3$          | 0           |
| 01    | 11      | 01       | 0         |                       | Stato                                                        | $S_1$          | $S_2$          | $S_1$          | 0           |
| 11    | 11      | 00       | 1         |                       | presente                                                     | S <sub>2</sub> | $S_2$          | S <sub>0</sub> | 1           |
| 10    | 00      | 01       | 0         |                       |                                                              | S <sub>3</sub> | S <sub>0</sub> | $S_1$          | 0           |
|       | Ύ       | 1 Y2     |           | 0 S <sub>0</sub> /0   | $1$ $S_2/1$                                                  | 0              | State          | o futuro       |             |
|       |         |          |           | 0 1 S <sub>3</sub> /0 | $\begin{array}{c} 1 \\ \hline \\ 1 \\ \hline \\ \end{array}$ | ) <sub>1</sub> |                |                |             |

#### Esempio 3: Ottimizzazione e re-sintesi



Derivare il diagramma degli stati della seguente macchina sequenziale. Ottimizzarlo nell'ipotesi di una sintesi facente uso di soli Flip-Flop JK



#### Funzioni di eccitazione

▶ 
$$D_1 = Q_1(Q_1X) + X Q_1' = X$$

#### Funzione uscita

$$\triangleright$$
 Z<sub>1</sub>= Q<sub>1</sub>

$$ightharpoonup Z_2 = Q_2$$

## Esempio 3: derivazione tabelle



► 
$$D_1 = Q_1(Q_1X) + X Q_1' = X$$



Tabella delle eccitazioni

Ingresso X

|          |    | 0  | 1  |
|----------|----|----|----|
|          | 00 | 00 | 10 |
| $Q_1Q_2$ | 01 | 00 | 10 |
|          | 11 | 00 | 10 |
|          | 10 | 00 | 10 |

$$D_1, D_2 = Z_1, Z_2$$



Z2 è sempre bloccato a 0, gli stati 01 e 11 essendo irraggiungibili possono essere eliminati (se non sono uno stato iniziale).



## Esempio 3: circuito finale



Il circuito rimane un FF D1 pilotato direttamente da X, decisamente meno complesso di quello di partenza



