EVAPORATED LaAIO, FILMS FOR GATE DIELECTRICS

ABSTRACT

A gate dielectric containing LaAlO₃ and method of fabricating a gate dielectric contained LaAlO₃ produce a reliable gate dielectric having a thinner equivalent oxide thickness than attainable using SiO₂. The LaAlO₃ gate dielectrics formed are thermodynamically stable such that these gate dielectrics will have minimal reactions with a silicon substrate or other structures during processing. A LaAlO₃ gate dielectric is formed by evaporating Al₂O₃ at a given rate, evaporating La₂O₃ at another rate, and controlling the two rates to provide an amorphous film containing LaAlO₃ on a transistor body region. The evaporation deposition of the LaAlO₃ film is performed using two electron guns to evaporate dry pellets of Al₂O₃ and La₂O₃. The two rates for evaporating the materials are selectively chosen to provide a dielectric film composition having a predetermined dielectric constant ranging from the dielectric constant of an Al₂O₃ film to the dielectric constant of a La₂O₃ film. In addition to forming a LaAlO₃ gate dielectric for a transistor, memory devices, and information handling devices such as computers include elements having a LaAlO₃ gate electric with a thin equivalent oxide thickness.

15

"Express Mail" mailing label number: <u>EV041074555US</u>
Date of Deposit: <u>February 20, 2002</u>

This paper or fee is being deposited on the date indicated above with the United States Postal Service pursuant to 37 CFR 1.10, and is addressed to the Commissioner for Patents, Box Patent Application, Washington, D.C. 20231.

25