Two Variable Functions & Double Integrals

So far we have exclusively looked at functions of the form y=f(x) and x=h(y), but not all curves or equations follow this form. For example, a circle. The equation of a circle centered at (0,0) with radius y is given by $y^2+y^2=y$. This equation can not be transformed into one of the forms mentioned above. We can solve for y or y but are left with $y=\frac{1}{2}\sqrt{r^2-x^2}$ or $y=\frac{1}{2}\sqrt{r^2-y^2}$ but these are technically two functions each, the top and bottom hemispheres or the left and right hemisphere.

Two Variable Functions

enclosed by the fover.

Let us get familiar with these two variable functions with a visual example. Let's say we have a house with a circular floor plan with a cut-off for the entrance. The height at any point in this house can be given by the two variable function $f(x,y) = 14 - 100 (x^2 + y^2)$. Using the picture below answer the questions to the side.

Notume enclosed by the surface $f(x,y) = f(x,x-zo) = 14 + 100 (x^2 - y^2)$ over the region

Exit Ticket Improper Integrals

Improper Integrals

- 1. If $\int_a^c f(x)dx$ exists for every t > a, then $\int_a^\infty f(x)dx = \lim_{c \to \infty} \int_a^c f(x)dx$ provided that the limit exists and is finite.
- 2. If $\int_c^a f(x)dx$ exists for every c < b, then $\int_{-\infty}^b f(x)dx = \lim_{c \to -\infty} \int_c^b f(x)dx$ provided that the limit exists and is finite.
- 3. If f(x) is continuous on the interval [a,b) and not at x=b, then $\int_a^b f(x)dx = \lim_{c \to b} \int_a^c f(x)dx$ provided that the limit exists and is finite.
- 4. If f(x) is continuous on the interval (a, b] and not at x = a, then $\int_a^b f(x) dx = \lim_{c \to a} \int_c^b f(x) dx$ provided that the limit exists and is finite.
- 5. If f(x) is not continuous x = t where a < t < b, then $\int_a^b f(x)dx = \lim_{c \to t} \left[\int_a^c f(x)dx + \int_c^b f(x)dx \right]$ provided that the limit exists and is finite.

The integral is considered **convergent** if the limit exists and is finite and **divergent** if the limit doesn't exist or is infinite.

Solve the following integrals using the concept above: