Job No.: 511-5025142 - 2 **Address:** 3219 Arundel Rakaia Gorge Road, Cavendish, New **Date:** 18/09/2024

Zealand

Latitude: -43.720174 **Longitude:** 171.387041 **Elevation:** 365.5 m

General Input

R	loof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
S	now Zone	N4	Ground Snow Load	1.68 KPa	Roof Snow Load	1.06 KPa
E	arthquake Zone	2	Subsoil Category	D	Exposure Zone	В
I	mportance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	5.3 m
V	Vind Region	NZ2	Terrain Category	2.09	Design Wind Speed	50.1 m/s
V	Vind Pressure	1.51 KPa	Lee Zone	YES	Ultimate Snow ARI	50 Years
V	Vind Category	extra High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 6.05 m Cpe = -0.9 pe = -1.22 KPa pnet = -1.22 KPa

For roof CP,e from 6.05 m To 12.10 m Cpe = -0.5 pe = -0.68 KPa pnet = -0.68 KPa

For wall Windward $Cp_i = -0.3$ side Wall $Cp_i = -0.3$

For wall Windward and Leeward CP,e from 0 m To 11.50 m Cpe = 0.7 pe = 0.95 KPa pnet = 1.40 KPa

For side wall CP,e from 0 m To 6.05 m Cpe = pe = -0.88 KPa pnet = -0.88 KPa

Maximum Upward pressure used in roof member Design = 1.22 KPa

Maximum Downward pressure used in roof member Design = $0.59\ KPa$

Maximum Wall pressure used in Design = 1.40 KPa

Maximum Racking pressure used in Design = 1.36 KPa

Design Summary

Girt Design Front and Back

Girt's Spacing = 900 mm Girt's Span = 2667 mm Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.78 S1 Downward =10.36 S1 Upward =17.84

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.12 Kn-m	Capacity	1.28 Kn-m	Passing Percentage	114.29 %
Vo.9D-WnUn	1.68 Kn	Capacity	10.13 Kn	Passing Percentage	602.98 %

Deflections

Second page

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 21.16 mm

Limit by Woolcock et al, 1999 Span/100 = 26.67 mm

Sag during installation = 3.79 mm

Reactions

Maximum = 1.68 kn

Girt Design Sides

Girt's Spacing = 900 mm

Girt's Span = 2875 mm

Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.96 S1 Downward =10.36 S1 Upward =13.10

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$ 1.30 Kn-m Capacity 1.58 Kn-m Passing Percentage 121.54 % $V_{0.9D-WnUp}$ 1.81 Kn Capacity 10.13 Kn Passing Percentage 559.67 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 28.57 mm

Limit by Woolcock et al. 1999 Span/100 = 28.75 mm

Sag during installation =5.11 mm

Reactions

Maximum = 1.81 kn

End Pole Design

Geometry For End Bay Pole

Geometry

175 SED H5 (Minimum 200 dia. at Floor Level) Dry Use Height 5150 mm

Area 27598 mm2 As 20698.2421875 mm2

Ix 60639381 mm4 Zx 646820 mm3 Iy 60639381 mm4 Zx 646820 mm3

 $Lateral \, Restraint \hspace{1.5cm} mm \, c/c \\$

Loads

Total Area over Pole = 3.8338125 m2

0.96 Kn Live 0.96 Kn Dead Wind Down 2.26 Kn Snow 4.06 Kn Moment Wind 1.18 Kn-m 3.81 Kn-m Moment snow Phi 0.38 0.8 K8

K1 snow 0.8 K1 Dead	0.6
---------------------	-----

K1 wind 1

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	152.92 Kn	PhiMnx Wind	7.23 Kn-m	PhiVnx Wind	49.01 Kn
PhiNcx Dead	91.75 Kn	PhiMnx Dead	4.34 Kn-m	PhiVnx Dead	29.41 Kn
PhiNcx Snow	122.34 Kn	PhiMnx Snow	5.78 Kn-m	PhiVnx Snow	39.21 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.57 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.32 < 1 OK$

Deflection at top under service lateral loads = 26.73 mm < 52.87 mm

L = 1000 mm Pile embedment length

f1 = 3975 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 3.8338125 m2

Moment Wind =	3.81 Kn-m	Moment Snow =	1.18 Kn-m
Shear Wind =	0.96 Kn	Shear Snow =	1.18 Kn

Pile Properties

Safety Factory 0.55

Hu = 1.79 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 4.04 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.94 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L = 1000 mm Pile embedment length

f1 = 3975 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 3.81 Kn-m Moment Snow = 1.18 Kn-m Shear Wind = 0.96 Kn Shear Snow = 1.18 Kn

Pile Properties

Safety Factory 0.55

Hu = 1.79 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 4.04 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.94 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1500) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1500)

Skin Friction = 18.17 Kn

Weight of Pile + Pile Skin Friction = 23.08 Kn

Uplift on one Pile = 15.26 Kn

Uplift is ok