

مبانی رایانش نرم

معاسبات زیستی، پردازش تکاملی

هادی ویسی h.veisi@ut.ac.ir

دانشگاه تهران – دانشکده علوم و فنون نوین

فمرست

- الگوریتمهای جستجو: معرفی و مفاهیم
 - و پردازش تکاملی
 - مفاهیم
 - نمایش کروموزوم
 - جمعیت اولیه
 - تابع برازش
 - (Selection) انتخاب
- تولید مثل: بازترکیب (Recombination)/همبرش (Crossover)، جهش (Mutation)
 - جايگزيني
 - شرايط توقف
 - کنترل قابلیت پویش و انتفاع
 - نظریه اسکیما
 - الگوريتم ژنتيك: مثال

محاسبات زيستي

o محاسبات زیستی (Evolutionary Computing)

• حل مسائل بهینهسازی، جستجو و یادگیری ماشین با الهام از تکامل زیستی

• نظریه تکامل زیستی داروین (۱۸۵۹)

- o حیوانات و گیاهان امروزی از نسل موجوات ماقبل تاریخ هستند-صدها میلیون سال از حیات می گذرد
- حیات تنها با یک یا تعدادی ار گانیسم ساده شروع شده و بعدها تکامل یافته و تبدیل به میلیونها گونه
 متفاوت امروزی شده است
- o تمامی فر آیند خلقت گونههای مختلف حیات، ناشی از یکی از نیروهای هدایت کننده در طبیعت با نام انتخاب طبیعی (Natural Selection) است
 - از بین رفتن نمونههای ضعیف و زنده ماندن نمونههای برتر = تکامل تدریجی
- انتخاب طبیعی راز بقای بر ترینها در طبیعت و انتقال خصوصیات بر تر به نسل بعد= قانون بقای اصلح (Survival of the Fittest)

الگوريتمهاي جستجو . . .

الگوريتمهاي جستجو . . .

- (Analytical Search) جستجوی تحلیلی
- استفاده از توابع و روشهای ریاضی برای یافتن حل بهینه: گرادیان، مشتق دوم
 - o نیوتون *ر*افسون (برای یافتن ریشه تابع)
 - (Uninformed (Blind) Search) جستجوی ناآگاهانه
- عدم وجود از اطلاعات جانبی درباره نقاط فضای جستجو: تنها تشخیص هدف از غیرهدف
 - پیمایش فضای جستجو به صورت درختی
 - دو نوع
 - ٥ كامل: پيمايش كامل فضاى جستجو و تضمين يافتن يك راه حل (بهينه يا غيربهينه)
 - o ناکامل: جستجو تا یافتن یک راهحل
 - روشها
 - o جستجوی اول سطح (Breadth-First Search)
 - o جستجوی هزینه یکنواخت (Uniform-Cost Search)
 - o جستجوی اول عمق (Depth-First Search) جستجوی

الگوريتمهاي جستجو

- o جستجوی آگاهانه (Informed Search)
- استفاده از یک تابع تخمین در مورد فضای جستجو (دانش مساله)
 - جستجوی اول –بهترین (Best-First Search) مکاشفهای
- o جستجوی Graph-Search) Tree-Search)- انتخاب یک گره بر اساس تخمین هزینه گسترش آن
 - ٥ روشها
 - جستجوی حریصانه (Greedy Search): جستجوی نزدیک ترین گره به هدف
 - مینه کردن کل هزینه برآورد شده- محاسبه زیاد و نیاز به حافظه زیاد ($A^* \ Search) A^*$ جستجوی A^*
 - جستجوی فرامکاشفهای (Meta-Heuristic Search)
 - o روشهای قدیمی: نیاز به نمایش فضای جستجو با درخت
 - عدم امکان نمایش فضای جستجو با درخت (به ویژه برای فضاهای بزرگ و نامنظم)
 - ۰ الهام از پدیدههای طبیعی برای جستجو (زیستی و غیرزیستی)

جستجو: مفاهيم . . .

o فضای جستجو و دورنمای برازش (Fitness Landscape) ...

- فضای جستجو: یک سرزمین حاوی کلیه مقادیر ممکن برای پاسخ مساله
 - ۵ گاهی بسیار بزرگ و نامنظم
 - o جستجوی هوشمندانه: پیمایش بخش مهم فضای پاسخ

• دورنمای برازش: پستی و بلندیهای سرزمین جستجو

- o تابع برازش (Fitness Function)؛ تعیین پستی و بلندیهای سرزمین جستجو
 - تعریف بر اساس اطلاعات مساله
 - در هر لحظه شامل نقطه پاسخ فعلی (موقعیت) و مقدار برازش (شایستگی) آن نقطه (ارتفاع)

- ارتفاع متناظر با شایستگی: نقطه بهینه = بیشینه مقدار (بلندترین قله) 🗅
 - ارتفاع متناظر با هزینه: نقطه بهینه = کمینه مقدار (عمیق ترین دره)

o فضای جستجو و دورنمای برازش (Fitness Landscape)

- در مسائل واقعی، دورنمای برازش پیچیده است
 - o فضای چندقلهای یا خارپشتی (multimodal)

جستجو: مفاهيم . . .

- (Exploration) قابلیت پویش
- جستجوی آزادانه کل فضا بدون توجه به دستاوردهای آن در طول جستجو
 - رفتار تصادفی تر الگوریتم
 - (Exploitation) قابلیت انتفاع
 - توجه به دستاوردهای الگوریتم در طول جستجو
 - رفتار حساب شده و محتاطانه
 - نیاز به تنظیم دو قابلیت بر اساس شرایط مساله
- ایجاد مصالحه (trade-off) بین این دو قابلیت با پارامترهای روش جستجو

جستجو: مفاهيم . . .

و قابلیت پویش و انتفاع

• برای مسائلی با دورنمای برازش منظم، باید انتفاع را تقویت و پویش را کم کنیم

• برای مسائلی با دورنمای برازش نامنظم (خارپشتی)، باید قابلیت پویش را زیاد کنیم

- جستجوی با بیشترین پویش= جستجوی تصادفی (Random Search)
- جستجوی با بیشترین انتفاع = جستجوی تپه نوردی (Hill-Climbing Search)

جستجو، مفاهيم

- مصالحه قابلیتهای پویش و انتفاع با توجه به مساله
- وجود یک الگوریتم مناسب برای هر مساله با توجه به شرایط آن
 - عدم وجود یک روش جستجوی بهینه برای کار در همه شرایط

(از ناهار مجانی خبری نیست!) No Free Lunch Theorem o

پردازش تکاملی . . .

- و مفاهیم . . .
- کروزموزم (Chromosome) محل ذخیرهسازی اطلاعات ژنی یک موجود
 - o تشکیل شده از DNA
 - ه انسان تقریباً ۲۲ هزار ژن در DNA خود دارد DNA
 - ٥ رشته، گراف، درخت= پاسخ مساله

• ژن (Gene) واحدهای کوچکتر تشکیل دهنده کروموزم

ویژگی (مشخصه) دادهها

پردازش تکاملی . . .

٥ مفاهيم . . .

- رنوتایپ (Genotype) ترکیب تمام ژن ها برای یک فرد مشخص -
- فنوتایپ (Phenotype) خصوصیات ظاهری یک فرد، حاصل شده از رمز گشایی یک ژنوتایپ
 - آلل (Allele) مقادیر مجاز برای هر ژن
 مقادیر مجاز برای مشخصههای هر پاسخ
 - برازش (Fitness) میزان شایستگی یک موجود در جمعیت

پردازش تکاملی . . .

○ مراحل يك الگوريتم تكاملي . . .

- ۱ تولید جمعیت اولیه (پاسخهای اولیه مساله)
 - ۲- محاسبه برازش جمعیت ورودی
- ۳- انتخاب (Selection) برای تولید مثل (Reproduction): انتخاب والدین شایسته تر
 - o قانون بقای اصلح دا*ر*وین
- ۴- بازترکیب (Recombination) والدین انتخاب شده: تولید یک یا چند فرزند با ترکیب (Crossover) ژنهای دو یا چند والد با همبرش
 - ٥ مفهوم جفت گيري
 - ۵- جهش (Mutation) فرزندان تولید شده: تغییر تصادفی ژنها در یک کروموزوم ها در یک کروموزوم و افتن مقادیر جدید برای ژن فرزندان (ایجاد تفاوت با والدین)
 - ۶- محاسبه برازش جمعیت فرزندان: محاسبه شایستگی فرزندان جدید
- ۷- انتخاب برای جایگزینی (Replacement): تولید یک جمعیت به عنوان نسل جدید (از والدین قبلی و فرزندان جدید)

• مراحل یک الگوریتم تکاملی

پردازش تکاملی: نمایش کروموزوم

از مهمترین مراحل

- فرموله کردن مساله برای الگوریتم تکاملی
 - تاثیر زیاد بر کارایی و پیچیدگی الگوریتم

و روشها

- - نمایش مبتنی بر اعداد حقیقی (هر ژن یک عدد حقیقی): برای متغیرهای پیوسته 1.12 32.6 15.1 19.4 6.19 0.12 10.5 12.3 65.1
 - جایگشت عناصر: مثلاً برای فروشنده دوره گرد

• نمایش درختی: برای برنامهها و روابط ریاضی

پردازش تکاملی، جمعیت اولیه

جمعیت = تعدادی از راهحلهای کاندید برای مساله

- جمعیت اولیه = پاسخ اولیه مساله
- روش تصادفی: مقدار تصادفی در بازه مجاز برای هر ژن (پوشش یکنواخت فضا)
- روش هوشمندانه: تولید کروموزمهای اولیه با برازندگی بالا (پوشش بخشها مهم فضا)

اندازه جمعیت: معمولاً ثابت

- o افزایش اندازه جمعیت = تقویت قابلیت پویش: پوشش دادن فضای جستجوی بزرگتر
 - o افزایش اندازه جمعیت = تقویت قابلیت انتفاع: افزایش شانس عملگرهای تولیدمثل
 - افزایش اندازه جمعیت = افزایش محاسبات

پردازش تکاملی: تابع برازش

- تابع برازش: محاسبه میزان شایستگی پاسخها (نسلها)
 - نگاشت شایستگی هر کروموزوم به یک مقدار عددی
 - کاربرد در عملگر انتخاب برای تعیین اعضای برازنده
 - وابسته به کاربرد
 - o تعیین تابع برازش در برخی کاربردها کار مشکلی است

پردازش تکاملی: انتخاب . . .

○ انتخاب= یکی از عملگرهای اصلی پردازش تکاملی

- بیانگر مفهوم بقای اصلح نظریه داروین
- هدف: یافتن پاسخهای برتر مساله در جمعیت جاری برای اعمال عملگر تولید مثل
- فشار انتخاب (Selective Pressure): میزان فشار عملگر انتخاب برای بردن جمعیت به راهحلهای خوب
 - o فشار انتخاب زیاد = توجه بیش از اندازه به اعضای برازنده = کاهش تنوع جمعیت = افزایش قابلیت انتفاع = کاهش قابلیت پویش = همگرایی سریع (محلی)

• روشهای مختلفی برای انتخاب

- ٥ انتخاب تصادفي
- o انتخاب نسبی (Proportional)
- o انتخاب رتبهای (Rank-based)
- o انتخاب مسابقهای (Tournament)
 - o انتخاب برشی (Truncation)

پردازش تکاملی، انتخاب . . .

انتخاب تصادفی

- انتخاب هر کدام از اعضای جمعیت با احتمال برابر = عدم استفاده از برازش
 - كمترين فشار انتخاب

O انتخاب نسبی (Proportional)

- شانس بیشتر برای موجوات بر تر
- محاسبه احتمال انتخاب عضو i محاسبه احتمال انتخاب عضو $= N \circ$
- پیادهسازی انتخاب نسبی با چرخ روالت (Roulette Wheel Selection)
 - ه در نظر گرفتن یک دایره (چرخ دوار) که به تعداد N بخش (قطعه) تقسیم شده است o
- o هر قطعه مرتبط با هر عضو بوده که اندازه آن متناسب با احتمال آن عضو (برازندگی) است
 - میکند N بار و انتخاب عضوی که چرخ روی آن توقف میکند N

پردازش تکاملی: انتخاب . . .

(Proportional) انتخاب نسبی

• فشار انتخاب زیاد چرخ رولت = همگرایی سریع در بهینه محلی

• بهبود: چرخ رولت با بیش از یک اشارهگر

o تعداد N اشاره گر

٥ يک بار چرخاندن

٥ تعديل فشار انتخاب

No	Chromosome	F _i (Fitness)	p _i
1	01101	169	14.4
2	11000	576	49.2
3	01000	64	5.5
4	10011	361	30.9

Selection Point

پردازش تکاملی، انتخاب . . .

(Rank-based) انتخاب رتبهای o

• استفاده از رتبه برازندگی اعضا به جای استفاده از مقدار مطلق برازندگی

$$N-2 = N-1$$
 po $N-2 = N-1$

... 0

$$p_i = rac{f_i}{\sum_{i=1}^N f_i}$$
 محاسبه با روش فوق)

- کاهش فشار انتخاب در مقایسه با چرخ رولت
 - عدم همگرایی زودرس

پردازش تکاملی: انتخاب . . .

(Tournament) انتخاب مسابقه ای

- انتخاب یک گروه t < N عضو) از جمعیت به صورت تصادفی ullet
 - مقایسه برازش اعضای انتخاب شده و انتخاب بهترین عضو
- اگر t خیلی بزرگ نباشد، از انتخاب برترین افراد جلوگیری میشود (فشار انتخاب کم) t=N میشه بهترین فرد انتخاب میشود t=N برای t=N همیشه بهترین فرد انتخاب میشود t=N
 - اگر t خیلی کوچک باشد، شانس انتخاب ضعیف ترین افراد افزایش می یابد t الگوریتم انتخاب تصادفی
 - مقدار معمول برای t: مقدار ۲ یا ۳

پردازش تکاملی، انتخاب . . .

o انتخاب برشی (Truncation)

- مرتب کردن اعضای جمعیت بر اساس شایستگی آنها
 - انتخاب ${
 m T}$ درصد از اعضای بر تر ullet
- انتخاب N عضو به صورت تصادفی (از میان T درصد از برترین اعضا) lacktriangle
 - مقدار T بزرگ تر = فشار انتخاب کمتر ٥ مقدار T=100 معادل انتخاب تصادفی

پردازش تکاملی، تولید مثل . . .

• تولید مثل = تولید جمعیت جدید (فرزندان) از والدین انتخاب شده با

• بازترکیب (Recombination) یا همبرش (Crossover)

- ٥ معادل مفهوم جفت گيري
- ٥ تولید یک یا چند فرزند با ترکیب ژنهای تصادفی انتخاب شده از دو یا چند والد
 - o اعمال روی اعضای (والدین) انتخاب شده در مرحله انتخاب (برازنده)
- o تولید فرزندان مشابه والدین: انتقال ژنهای کروموزومهای والدین به فرزندان
 - 🔾 به ارث بردن ژنهای والدین و تولید پاسخهایی با برازش بهتر
 - $p_{\rm c}$ اعمال عملگر بازتر کیب روی اعضای جمعیت با احتمال $oldsymbol{\circ}$
 - ٥ استفاده بیشتر از عملگر بازترکیب = افزایش قابلیت انتفاع

• جهش (Mutation)

- o تغییر تصادفی ژنها در کروموزوم
- ٥ هدف: یافتن مقادیر جدید ژن برای فرزندان که در والدین نبوده است
 - 🔾 افزایش تنوع ژنوتایپی
 - p_m اعمال عملگر جہش روی فرزندان با احتمال o
 - افزایش بیشتر از عملگر جهش = افزایش قابلیت پویش

🔾 حالت دودویی

• همبرش (بازترکیب) تک نقطهای (One-point crossover)

- o انتخاب یک نقطه تصادفی و برش کروموزومها از این نقطه
 - o بخش اول والد اول و بخش دوم والد دوم = فرزند اول
 - بخش دوم والد اول و بخش اول والد دوم = فرزند دوم

			ی	ظه برت	نعد												
				,	,												
1	1	1	0	1	0	0	1	1	1	1	1	0	1	1	0	0	1
0	1	0	1	1	1	0	0	1	0	1	0	1	1	0	0	1	1

• همبرش (بازترکیب) دونقطهای

- o انتخاب دو نقطه تصادفی و برش کروموزومها از این نقاط
- بخش اول و سوم والد اول و بخش دوم والد دوم = فرزند اول
- بخش دوم والد اول و بخش اول و سوم والد دوم = فرزند دوم

			ی	اط برث	ئق													
		,	,		,	,												
1	1	1	0	1	0	0	1	1	_	1	1	1	1	1	1	0	1	1
0	1	0	1	1	1	0	0	1		0	1	0	0	1	0	0	0	1

۰ حالت دودویی

- همبرش (بازترکیب) یکنواخت (Uniform crossover)
 - ٥ انتخاب هر ژن فرزند از ژن متناسب یکی از دو والد
 - o استفاده از یک توزیع تصادفی برای انتخاب ژن فرزند
 - o شانس مشابه هر دو والد برای حضور در ژن فرزند
 - 🔾 برای ضریب ترکیب 50% ، شانس هر دو والد برابر خواهد بود

🔾 حالت حقیقی . . .

- بازترکیب ساده (Simple)
- ٥ انتخاب یک بخش از کروموزومها
- ٥ انتقال بخش اول از والد اول به فرزند اول
- ٥ انتقال بخش اول از والد دوم به فرزند دوم
- محاسبه ژنهای بخش انتخاب نشده فرزند اول: جمع کردن مقدار ژنهای دو کروموزوم و ضرب حاصل در α (بین α)
- محاسبه ژنهای بخش انتخاب نشده فرزند دوم: جمع کردن مقدار ژنهای دو کروموزوم و ضرب حاصل در 1- α

٥ توسعه: استفاده از عملگرهای دیگر، غیر از جمع

○ حالت حقیقی

- بازترکیب حسابی ساده (Simple Arithmetic)
 - ٥ مشابه بازتر كيب ساده اما فقط يك ژن تغيير مى كند

- بازترکیب حسابی کامل (Whole Arithmetic)
 - ٥ مشابه بازتر كيب ساده اما تمام ژنها تغيير مي كند
- ٥ فرزندان شباهتی به والدین ندارند: افزایش قابلیت پویش

🔾 حالت جايگشت . . .

- بازترکیب ترتیبی (Order Recombination)
 - ٥ انتخاب دو نقطه تصادفي
- ٥ گام اول: استفاده از والد اول = انتقال بخش میانی والد اول به فزند اول
- o گام دوم: استفاده از والد دوم = شروع از نقطه اول بخش پایانی برای استفاده از ژنهای والد دوم در بخش پایانی فرزند اول
 - 🔾 اگر مقدار ژنی قبلاً در فرزند وجود داشته باشد از آن صرفنظر میشود
 - ٥ ادامه این فرایند برای بخش آغازی (ابتدایی) فرزند اول

گام اول-استفاده از والد اول

- ٥ برای فرزند دوم
- فرآیند قبل با عوض کردن جای دو والد

گام دوم- استفاده از والد دوم

۰ حالت جایگشت

- ... (Cycle Recombination) بازترکیب چرخشی
 - o گام اول: تعیین دورها
- \circ شروع از ژن اول والد اول (در اینجا 1) و به همان موقعیت از ژن دوم بروید (ژن اول با مقدار 9)
- مقدار ژن والد دوم (مقدار 9) را در والد اول جستجو کنید (موقعیت 9ام) و به همان موقعیت (9ام) از ژن دوم بروید
- مقدار ژن والد دوم (مقدار 4) را در والد اول جستجو کنید (موقعیت 4ام) و به همان موقعیت (4ام) از ژن دوم بروید
 - © تکرار گام فوق برای تا رسیدن به ژن اول والد اول (**دور**: در صورت رسیدن به نقطهای که شروع کردهایم)
 - 🔾 تكرار الگوريتم فوق در صورت وجود ژن پيمايش نشده با شروع از اولين ژن پيمايش نشده در والد اول
 - الم دوم: تعیین ژنها
 - انتقال ژنهای دور اول از والد اول به فرزند اول
 - انتقال ژنهای دور دوم از والد دوم به فرزند اول
 - انتقال ژنهای دور سوم از والد اول به فرزند اول
 - 🔾 انتقال ژنهای دور چهارم از والد دوم به فرزند اول
 - ... 0

 الحور ۳
 الحور ۲
 الحور ۱
 الحور ۱
 الحور ١
 الحور ١

 1
 2
 3
 4
 5
 6
 7
 8
 9

 9
 3
 7
 8
 2
 6
 5
 1
 4

نقاط شکست در تشکیل فرزندان = دورها

۰ برای فرزند دوم: عوض کردن جای دو والد

Hadi Veisi (h.veisi@ut.ac.ir)

حالت جایگشت

Parent1: 8 4 7 3 6 2 5 1 9 0 Parent2: 0 1 2 3 4 5 6 7 8 9

• بازترکیب چرخشی (Cycle Recombination) – مثال

٥ دور ١

Parent1: 8 4 7 3 6 2 5 1 9 0

Parent2: 0 1 2 3 4 5 6 7 8 9

Parent1: 8 4 7 3 6 2 5 1 9 0

Parent2: 0 1 2 3 4 5 6 7 8 9

٥ دور ٢ ○ شروع از اولین ژن والد اول (مقدار 4) و رفتن به همان موقعیت از والد دوم (مقدار 1)

○ يافتن مقدار 9 در والد اول (موقعت 9) و رفتن به همان موقعت در والد دوم (مقدار 8)

 \circ شروع از اولین ژن والد اول (مقدار \circ) و رفتن به همان موقعیت از والد دوم (مقدار \circ)

○ يافتن مقدار 0 در والد اول (موقعيت 10) و رفتن به موقعيت معادل در والد دوم (مقدار 9)

 \circ یافتن مقدار 1 در والد اول (موقعیت 8) و رفتن به موقعیت معادل در والد دوم (مقدار 7

○ يافتن مقدار 7 در والد اول (موقعيت 3) و رفتن به همان موقعبت در والد دوم (مقدار 2)

یافتن مقدار 2 در والد اول (موقعیت 6) و رفتن به همان موقعیت در والد دوم (مقدار 5)

 \circ یافتن مقدار \circ در والد اول (موقعیت \circ) و رفتن به همان موقعیت در والد دوم (مقدار \circ

○ یافتن مقدار 6 در والد اول (موقعت 5) و رفتن به همان موقعت در والد دوم (مقدار 4)

ه دور ۳

○ شروع از اولين ژن والد اول (مقدار 3) و رفتن به همان موقعيت از والد دوم (مقدار 3)

Parent1: 8 4 7 3 6 2 5 1 9 0

Parent2: 0 1 2 3 4 5 6 7 8 9

Parent1: 8 4 7 3 6 2 5 1 9 0 Parent2: 0 1 2 3 4 5 6 7 8 9

Child1: 8 1 2 3 4 5 6 7 9 0

Child2: 0 4 7 3 6 2 5 1 8 9

پردازش تکاملی: تولید مثل (بازترکیب)

• حالت درخت

- در نظر گرفتن نقاط شکست در دو والد
 - جابجایی زیردرختهای انتخاب شده

پردازش تکاملی: تولید مثل (جهش) . . .

o حالت دودویی: معکوسسازی بیت (Bit-flipping mutation)

- انتخاب یک یا چند بیت به صورت تصادفی
 - تغییر مقدار آن بیت (۰ به ۱ و برعکس)
 - عدم استفاده از اطلاعات موجود

پردازش تکاملی، تولید مثل (جهش) . . .

- o حالت حقیقی: جهش مکمل (Complement Mutation)
 - انتخاب یک یا چند ژن برای ژن
 - کم کردن مقدار بیشینه ممکن برای آن ژن از مقدار جاری آن ژن
 - ٥ جمع مقادیر قبلی و جدید ژن = مقدار بیشینه ممکن برای آن ژن

پردازش تکاملی: تولید مثل (جمش) . . .

۰ حالت جايگشت . . .

- جهش جابجایی (Swap Mutation)
- ٥ انتخاب دو ژن به صورت تصادفی و جابجا کردن مقادیر آنها

1	2	3	4	5	6	7	8	9	\rightarrow	1	5	3	4	2	6	7	8	9

- جهش درجی (Insert Mutation)
 - o انتخاب دو ژن به صورت تصادفی
- ٥ کپی کردن ژن دوم در ژن بعد از ژن اول
 - o شیفت دادن ژنهای دیگر به *ر*است

پردازش تکاملی: تولید مثل (جمش) . . .

۰ حالت جابگشت

- جهش درهمسازی (Scramble Mutation)
 - o انتخاب دو ژن به صورت تصادفی
 - ٥ جابجایی تصادفی مقادیر ژنهای بین دو نقطه

1 2 3 4 5 6 7 8 9

1 3 5 4 2 6 7 8 9

○ افزایش فاصله بین دو نتقطه انتخابی= قابلیت پویش بیشتر

- جهش معکوس (Inversion Mutation)
 - o انتخاب دو ژن به صورت تصادفی
- حابجا کردن مقادیر ژنهای بین دو نقطه به صورتی که نسبت به وسط آنها وارونه باشند
 - گذاشتن آینه در نقطه وسط بین دو نقطه

1 2 3 4 5 6 7 8 9

1 5 4 3 2 6 7 8 9

پردازش تکاملی: تولید مثل (جهش)

• حالت درخت

- تغییر مقدار مربوط به یک گره
 - مقدار جدید = تصادفی

پردازش تکاملی: جایگزینی . . .

- ۰ گزینش جمعیت جدید (پاسخهای جدید)
- از روی جمعیت والدین (پاسخهای فعلی) و جمعیت فرزندان (پاسخهای جدید)
 - دو نوع کلی
 - o جایگزینی حالت پایدار (پایا) (Steady State Replacement)
 - o جایگزینی نسلی (Generational Replacement)
- . . . (Steady State Replacement) (چایا) حایگزینی حالت پایدار
 - حفظ کردن بخش بزرگی از جمعیت والدین
 - جایگزینی بخشی از والدین با بهترین فرزندان تولید شده
- حفظ بافت قبلی جمعیت و گوناگونی جمعیت: جلوگیری از همگرایی به بهینه محلی
 - پارامتر کنترلی: $p_{rep} = c_{rep}$ یارامتر کنترلی: پارامتر کنترلی: پارامترلی: پا
 - o افزایش این پا*ر*امتر = کاهش تنوع = همگرایی سریع
 - o شکاف نسلی (generation gap): میزان همپوشانی نسل کنونی و نسل بعد

پردازش تکاملی، جایگزینی . . .

(Steady State Replacement) (چایا) حایگزینی حالت پایدار

- تصادفی: جایگزینی فرزند با یک والد که به صورت تصافی انتخاب میشود
 - بدترین: جایگزینی بدترین والد با فرزند
- رقابتی: انتخاب تصادفی مجموعهای از والدین و جایگزینی بدترین آنها با فرزند
- قدیمی ترین: والدی که زود تر وارد شده، زود تر خارج می شود، امکان حذف بهترین پاسخ
- محافظه کار: انتخاب دو والد که یکی از آنها پیرترین والد است و جایگزینی بدترین آنها با فرزند؛ حفظ بهترین والد پیر
 - نخبه گرایی: حفظ بهترین پاسخها (والدها)

پردازش تکاملی: جایگزینی

o جایگزینی نسلی (Generational Replacement) جایگزینی

- جایگزینی کل والدین (نسل قبل) با کل فرزندان (نسل جدید)
- جایگزین شدن بهترین عضو در جمعیت والدین با ضعیف ترین عضو در جمعیت فرزندان (Elitism): جلو گیری از نابودی بهترین پاسخ
 - همگرایی سریع الگوریتم
 - (μ,λ) و $(\mu+\lambda)$ در استراتژی تکاملی: روش انتخاب $(\mu+\lambda)$ و
 - میشوند $\mu+\lambda$): تعداد μ عضو برتر والدین و تعداد λ فرزند انتخاب میشوند
 - میشوند μ عضو برتر از میان λ فرزند انتخاب شده و به نسل بعد منتقل میشوند μ

پردازش تکاملی: شرایط توقف

- ۰ رسیدن به بهترین پاسخ
- برای حالتی که مقدار برازش بهترین پاسخ را داریم
 - همیشه ممکن نیست
- محدود كردن تعداد نسلها (تعداد تكرار الگوريتم)
 - راکد شدن (Stagnant) جمعیت ㅇ
 - عدم تغییر جمعیت در نسلهای متوالی
- شمارش تعداد نسلهایی که بهترین پاسخ تغییر نکرده است

پردازش تکاملی: کنترل قابلیت پویش و انتفاع . . .

کنترل پارامترها

- احتمال باز ترکیب (p_c) : افزایش (کاهش) باعث افزایش (کاهش) قابلیت انتفاع
 - احتمال جهش (p_m) : افزایش (کاهش) باعث افزایش (کاهش) قابلیت پویش
- درصد جایگزینی ($p_{
 m rep}$): افزایش (کاهش) باعث افزایش (کاهش) قابلیت انتفاع ullet
- تعداد اعضای مورد گزینش در انتخاب مسابقهای ($p_{
 m tourn}$): افزایش (کاهش) باعث افزایش (کاهش) قابلیت انتفاع
 - o انتخاب یک گروه از جمعیت به صورت تصادفی و انتخاب بهترین عضو
- درصد اعضای مورد بررسی در انتخاب برشی (p_{trunc}): افزایش (کاهش) باعث افزایش (کاهش) قابلیت پویش
- مرتب کردن اعضای جمعیت بر اساس شایستگی آنها، انتخاب ${
 m T}$ درصد از اعضای برتر و انتخاب ${
 m N}$ عضو به صورت تصادفی (از میان ${
 m T}$ درصد از برترین اعضا)

پردازش تکاملی: کنترل قابلیت پویش و انتفاع . . .

• به کارگیری روش مناسب برای انتخاب، بازترکیب، جهش و جایگزینی

- انتخاب چرخ رولت ساده: تقویت قابلیت انتفاع
- انتخاب چرخ رولت با چنداشاره گر: تقویت قابلیت پویش
- باز ترکیب تک نقطهای در مقایسه با چند نقطهای: قابلیت انتفاع بیشتر
 - باز ترکیب یکنواخت: بهترین انتخاب برای تقویت قابلیت پویش
 - جهش: تخریب بیشتر در کروموزومها = قابلیت پویش بیشتر
- جایگزینی حالت پایدار در مقایسه با جایگزینی نسلی قابلیت پویش بیشتری دارد

پردازش تکاملی: کنترل قابلیت پویش و انتفاع . . .

o حفظ تنوع جمعیت: کرانهسازی (Niching)

• جمعیت به سمت کرانهها (نقاط بهینه) میروند

• اشتراک برازش (Fitness Sharing)

- o ایده به اشتراک گذاری منابع محدود برای موجوداتی که در یک منطقه زندگی میکنند
 - o تشویق الگوریتم برای پویش بیشتر با در نظر گرفتن برازش کاذب برای اعضا
 - 🔾 تغییر مقدار برازش واقعی

• انبوهسازی (Crowding)

- حایگزینی اعضای جدید با اعضای مشابه خود در جمعیت
- o روش اول: انتخاب بخشی از اعضا در جمعیت (حدود ۱۰٪) برای اعمال عملگر انتخاب و جهش، سپس، برای هر فرزند جدید تعداد Crowding Factor) CF) (عددی بین ۲ تا ۵) نفر از جمعیت انتخاب شده و با آن فرزند مقایسه میشوند تا فرزند جایگزین شبیهترین عضو شود
- o روش دوم (انتخاب مسابقهای محدود شده): جلوگیری از رقابت یک پاسخ با پاسخهای خیلی متفاوت از آن

پردازش تکاملی، کنترل قابلیت پویش و انتفاع

o حفظ تنوع جمعیت: گونهسازی (Speciation)

- ایده: شیرها با شیرها و فیلها با فیلها جفت گیری می کنند
- گونه: دستهای از اعضا که شباهت بیشتری به همدیگر دارند
 - ایده گونهسازی: تنها اعضای مشابه اجازه تولیدمثل دارند
- o کاهش پاسخهای مہلک (Lethal): برازش خیلی ضعیف، جلوگیری از بازترکیب اعضای کرانههای مختلف
- روش اول: در بازترکیب، یک عضو با نام m را انتخاب کرده، سپس از میان جمعیت یک عضو تصادفی انتخاب شده، اگر فاصله m با این عضو کمتر از یک آستانه باشد، بازترکیب انجام می شود
- روش دوم (روش Flag bits): هر کروموزوم با یک (دو گونه) یا چند بیت نشانه برچسپ زده میشود که نشانگر گونه کروموزوم است.
 - o هر کروموزوم فقط به یک گونه تعلق دارد.
 - ه برازش نسبی عضو iام در گونه jام برابر با $f_i/\|s_j\|$ است ($\|s_j\|$ اندازه گونه jام).
 - o تقویت برازش نسبی اعضای حاضر در مجموعههای کوچ*ک*
 - o عمل بازتر کیب تنها روی اعضای یک گونه

پردازش تکاملی، بھینەسازی چند ھدفه

- o مثال: میخواهید به یک تور دیدنی، ارزان قیمت، ۷ روزه بروید.
 - هدف: بهینهسازی با چند هدف (چند تابع برازش)
- استفاده از توابع تجمیعی (Aggregation Functions): ترکیب توابع برازش مختلف با وزنهای متفاوت (مثلاً جمع وزندار)
 - رویکرد جمعیتی (Population-based): تفکیک جمعیت به زیرجمعیتهایی برابر با تعداد اهداف و بهینهسازی مستقل آنها
 - کاربرد عمده در مسائل با تعداد اهداف زیاد
 - o ضعف: عدم توان در حفظ پاسخهای غیرمغلوب (Pareto) (پاسخ بهینه با توجه به همه اهداف)
 - حذف پاسخهایی که در همه هداف مساوی هستند (و ممکن است بهینه سراسری باشند)
- رویکرد مبتنی بر پرتو (Pareto-based): شناسایی پاسخهای غیرمغلوب و سعی در حفظ آنها
 - کاربرد در مسائلی که ارزش همه اهداف مساله یکسان است

پردازش تکاملی: اسکیما (Schema) ...

نظریهای برای بیان درستی عملکرد الگوریتم تکاملی

- توسط هالند (Holland)
- فرموله کردن تکامل در جمعیت در طی زمان
- تعداد اسکیماها در جمعیت به سمت برازش نسبی خود میل میکند
- o اسکیما: مجموعهای از رشته بیتهای تشکیل شده از 0، 1و * (که *= صغر یا یک = 0
 - عدم ارائه تصویر درست از رفتار الگوریتم!

پردازش تکاملی: اسکیما (Schema)

o بلوک سازنده (Building Block)

- اسکیمایی که دارای سه خاصیت زیر است:
- o دارای برازندگی بالاتر از میانگین برازندگی جمعیت است
 - ٥ دارای طول کوتاه باشد
 - o دارای مرتبه پایین باشد
- تعداد بلوکهای سازنده در طول نسلها به صورت نمایی افزایش می یابد.
- بلوکهای سازنده با عملگرهای ژنتیکی با یکدیگر ترکیب شده و بلوکهای با مرتبه و طول بزرگتر میسازند.
 - تكرار این فرآیند منجر به یافتن پاسخ بهینه میشود.

(Genetic Programming) برنامهنویسی ژنتیک o

(Evolutionary Strategy) استراتژی تکامل

o برنامهنویسی تکاملی (Evolutionary Programming)

o تكامل تفاضلى (Differential Evolution) تكامل تفاضلي

o الكوريتم فرهنكي (Cultural Algorithm)

(Co-Evolutionay Algorithm) الكوريتم همتكاملي (Co-Evolutionay O

o الگوريتم ممتيك (Memtic Algorithm)

Asexual Reproduction) بهینهسازی تولیدمثل غیرجنسی
 Optimization

... 0

الگوريتم ژنتيک . . .

۰ تاریخچه

- اولین بار توسط Fraser در ۱۹۵۷
- ادامه توسط Bremermann در ۱۹۶۲ و Reed
 - تکمیل و توسعه توسط Holland در ۱۹۷۵
 - ٥ هالند = پدر الگوریتم ژنتیک

0 کاربرد

• جستجو، بهینهسازی، یادگیری ماشین، کنترل، زمانبندی کارها، رباتیک

ㅇ عملگرها

- انتخاب (مدلسازی قانون بقای اصلح)
 - تولید مثل: باز ترکیب و جهش

الگوريتم ژنتيک . . .

• خصوصيات الگوريتم ژنتيک استاندارد

- استفاده از نمایش رشته بیتی
- طول ثابت و یکسان برای کروموزومها
 - تعداد اعضای جمعیت ثابت
- استفاده از عملگر انتخاب نسبی برای انتخاب والدین
 - استفاده از باز ترکیب تک نقطه
 - استفاده از جهش معکوسسازی بیت
 - احتمال بازتر کیب بالا (حدود ۹۵.۰ و بیشتر)
- احتمال جهش پایین: برابر با 1/L که L طول کروموزوم است $lue{}$

الگوريتم ژنتيك؛ مثال . . .

o فروشنده دورهگرد (Travelling Salesman Problem) فروشنده دورهگرد

- سهر n یافتن کوتاه ترین مسیر برای یک فروشنده با عبور از n شهر \bullet
 - از تمامی شهرها دقیقاً یک بار بگذرد و به شهر اول برگردد
 - جزو مسائل NP-Hard
 - 0.5(n-1)! = تعداد کل راهحلها برای n شهر
 - ه برای ۵ شهر = 12
 - o برای ۱۰ شهر = 1.814.400
 - o برای ۳۰ شهر = 1.3*10

الگوریتم ژنتیک، مثال (فروشنده دورهگرد) . . .

- نمایش کروموزوم: جایگشت
- برای شهرهای تهران (۱)، اصفهان (۲)، مشهد (۳)، شیراز (۴)، تبریز (۵)، زاهدان (۶)
 - [136425] o

ا) تور	(هزينه	فاصله	ع کل	ش: جم	۰ بران
--------	--------	-------	------	-------	--------

• فاصله کمتر = برازش بهتر

	تهران	اصفهان	مشهد	شيراز	تبريز	زاهدان
تهران	•	۴۳۹	۸۹۴	975	1054	1057
اصفهان	F W9		1777	۴۸۵	119.	119.
مشهد	19 4	1777	•	1874	961	961
شيراز	974	410	1874	•	1617	11
تبريز	1884	119.	961	1017	•	7188
زاهدان	1884	119.	961	11	4188	

- انتخاب: مسابقهای، رتبهای، ...
- بازترکیب: ترتیبی یا چرخشی
- جهش: جابجایی، درجی، جهش، معکوس

الگوریتم ژنتیک، مثال (فروشنده دورهگرد)

پارامترها: برای ۳۰ شهر

- جمعیت: ۵۰
- o جمعیت اولیه: تصادفی (میتواند هوشمندانه هم باشد)
 - تعداد نسلها (تکرار): ۱۰.۰۰۰
- نرخ جهش (p_m) = 0.00 (می تواند در طول الگوریتم افزایش یابد)

الكوريتم ژنتيك. مثال . . .

- و چینش بهینه حروف فارسی بر روی صفحه کلید
- اهمیت چینش بهینه حروف فارسی بر روی صفحه کلید برای تایپ (به ویژه تایپ زیاد)
 ٥ راحت تر و سریع تر کردن تایپ: جابجایی کمتر انگشتان در حین تایپ
 - بهینهسازی با الگوریتم ژنتیک: جستجو در فضای چینشهای مختلف حروف

[سجاد مرادی، سعید شیری قیداری، بهینهسازی چینش حروف فارسی بر روی صفحه کلید با استفاده از الگوریتمهای ژنتیکی، یازدهمین کنفرانس سالانه انجمن کامپیوتر ایران، ۱۳۸۴]

• نمایش کروموزوم

- هندسه صفحه کلید ثابت است
- ٥ تعداد ٣٣ نشانه (٣٢ حرف الفباي فارسى و حرف همزه "ءِ")
 - o سه ردیف صفحه کلید، دارای ۱۲، ۱۱ و ۱۰ کلید

• نمایش جایگشت

- ٥ هر ژن = یک حرف
- o کروموزوم = برداری از حروف فارسی (بیانگر ترکیبهای مختلف حروف فارسی روی صفحه کلید)
 - هر بردار شامل ۳۳ عنصر

1	2	3	3	4	5		6	7		8	1	9	10	1	1	12
13	1	4	15	1	6	17	1	8	19		20	21	2	2	23	Τ
	24	2	5 2	26	27	1	28	25	9	30	3	1	32	3	3	

	ض	ص	ث	ق	ف	• • •	ژ
•	1	۲	٣	۴	۵		٣٣

 $33! = 8.7*10^{36}$ تعداد چینشهای مختلف: •

تابع برازش...

- بیانگر میزان راحت یا سخت بودن تایپ با چینش جاری حروف بر روی صفحه کلید
 - یک مساله پیچیده ار گونومیک

• چهار هدف را برای طراحی یک صفحه کلید کارا

- ۰ برابر بودن کاری که دو دست انجام میدهند
- ٥ بیشترین تایپ حروف به صورت متناوب با دو دست
 - ٥ كمترين تكرار تايپ دو حرف متوالى با يک انگشت
- o بیشترین تایپ حروف بر روی کلیدهای پایهای (کلیدهای ردیف وسط)
 - تابع برازش = کمی کردن چهار هدف فوق

نابع برازش . . .

- اندازه گیری مقدار دو هدف اول: ${
 m C}_{
 m hand}=$ هزینه استفاده از یک دست برای تایپ دو حرف پشت سر هم
 - o برابری بودن کاری که دو دست انجام میدهند
 - میشترین تایپ حروف به صورت متناوب با دو دست
- اندازه گیری هدف سوم: $\mathrm{C}_{\mathrm{finger}}$ هزینه استفاده از یک انگشت برای تایپ دو حرف پشت سر هم
 - ٥ کمترین تکرار تایپ دو حرف متوالی با یک انگشت
 - اندازه گیری هدف چهارم و برخی عوامل دیگر: $\mathrm{c}_{\mathrm{ergonomic}}=$ هزینه تایپ یک حرف با توجه به موقعیت آن حرف بر روی صفحه کلید.
 - o بیشترین تایپ حروف بر روی کلیدهای پایهای (کلیدهای ردیف وسط)
 - استفاده از انگشتان مختلف دست
 - o میزان جابجایی انگشتان روی صفحه کلید

تابع برازش...

- تابع برازش = مجموع سه فاكتور
- محاسبه برای یک مجموعه متن فارسی

$$Fitness (layout) = \sum_{w_i \in W} \sum_{l_j \in w_i} [C_{hand}(l_j, l_{j-1}) + C_{finger}(l_j, l_{j-1}) + C_{ergonomic}(l_j)]$$

- مجموعه تمامی کلمات موجود در متن مورد استفاده ${
 m W}$
 - W_i کلمه v_i کلمه v_i
 - $oldsymbol{\mathrm{w}}_{\mathrm{i}}$ حرف $oldsymbol{\mathrm{j}}$ احرف $oldsymbol{\mathrm{j}}$
- هزینه فشردن کلیدها: مصاحبه با تایپیستهای حرفهای (راست دست)

Jeffrey S. Goettl, Alexander W. Brugh, Bryant A. Julstrom: Call me e-mail: arranging the keyboard with a permutation-coded genetic algorithm. SAC 2005: 947-951

Fitness (layout) =
$$\sum_{\mathbf{w}_i \in W} \sum_{l_i \in w_i} [C_{\text{hand}}(l_j, l_{j-1}) + C_{\textit{finger}}(l_j, l_{j-1}) + C_{\textit{ergonomic}}(l_j)]$$
 تابع برازش

- مقداری ثابت برای حالتی که دو حرف jام و j-ام با یک دست تایپ ح C_{hand} ($l_{\mathrm{j}},\,l_{\mathrm{j-1}}$) هود
 - ٥ در غیراین صورت مقدار آن صفر است
 - $C_{finger}\left(l_{j},\ l_{j\text{-}1}
 ight)$ مقدار ثابت = یک چہارم
- مقداری ثابت برای حالتی که دو حرف زام و j-زام با یک انگشت تایپ ${
 m C}_{
 m finger} \, (l_{
 m j}, \, l_{
 m j-1})$ شود،
- 70
 40
 30
 50
 60
 80
 60
 30
 40
 65
 80
 150

 32
 20
 5
 0
 50
 50
 0
 5
 20
 30
 80

 80
 90
 60
 25
 80
 25
 50
 88
 89
 60

- ٥ در غیراین صورت مقدار آن صفر است
- ٥ مقدار ثابت = متوسط اعداد هزینه فشردن کلیدها
- مقدار معادل هزینه فشردن کلیدها = $C_{ergonomic}\left(l_{j}\right)$ •

عملگرها

- در اینجا تنها از عملگر جهش استفاده شده است
- ٥ دليل عدم استفاده از عملگر بازتركيب: هزينه زماني بالا

• عملگر جهش

- o سعی در حفظ پاسخهای بر گزیده
- o در نظر گرفتن درصدی از پاسخها به عنوان جامعه نخبگان (بیشترین مقدار برای تابع برازش): جابجایی چهار ژن به صورت تصادفی
 - ٥ برای سایر پاسخها (افراد عادی جمعیت): جابجایی ۱۲ ژن

ارزیابی: پارامترها

- تعداد اعضای جمعیت: ۱۰۰ کروموزوم
 - نسل اول: به صورت تصادفی
- درصد تشکیلدهنده جامعه نخبگان برای عملگر جهش ۱۰٪ کل جمعیت
 - تعداد کل نسلها: ۵۰۰ نسل

۰ ارزیابی: پاسخ

متوسط مقادیر برازش همه اعضای جمعیت

متوسط مقادير برازش جامعه نخبگان

بهترین برازش

الگوريتم ژنتيک، مثال (صفحه کليد)

۰ ارزیابی

هزینه بهترین چینش با الگوریتم ژنتیک = ۱۸۱۵ هزینه چینش کنونی

برنامهنویسی ژنتیک

o برنامهنویسی ژنتیک (Genetic Programming)

- ارائه شده توسط Koza برای تکامل برنامههای کامپیوتری
 - ٥ هدف: پيدا كردن برنامه بهينه
- کاربردها: برنامهنویسی خودکار، برنامهریزی، درخت تصمیم، طراحی شبکه عصبی، ...
 - میتوان آن را یکی از الگوریتمهای ژنتیک دانست!
 - تفاوت اصلی با الگوریتم ژنتیک: استفاده از نمایش درختی
 - ویژگیها
 - o طول متغیر برای کروموزوم (ویژگی انحصاری)
 - ٥ تعداد اعضاى جمعيت ثابت است
 - ه استفاده از عملگرهای بازترکیب (با احتمال بیشتر از ۹۰٪) و جهش (کمتر از ۱٪٪) استفاده از عملگرهای بازترکیب (1.%)
 - o استفاده از عملگر تغییر معماری (Architecture Alternation)
 - ویرایش برخی قوانین (مثلاً جایگزینی X and X با X)
 - شناسایی بلوکهای سازنده و جلوگیری از تغییر بلوکهای مفید با عملگرهای تولید مثل
 - تابع برازش: کارایی موجود (برنامه) بر روی یک مجموعه آزمون

استراتزي تكامل

(Evolutionary Strategy) استراتژی تکامل (o

- ارائه شده توسط ریچنبرگ در سال ۱۹۶۰
 - هدف: بهینهسازی فرآیند تکامل است
- علاوه بر ویژگیهای ژنی برای هر موجود، پارامترهای استراتژی هم وجود دارد
 - ٥ مدلسازی رفتار موجود در محیط
 - o تکامل همزمان ویژگیهای ژنی و پارامترهای استراتژی
 - کاربردها: بهینه سازی، طراحی کنترل گر، سیستمهای قدرت
 - ویژگیها
 - ٥ نمایش اعداد حقیقی
 - o تعداد ثابت برای اعضای جمعیت
 - o استفاده از عملگر جهش با نرخ تطبیقی (بازتر کیبی در موارد محدودی استفاده میشود)
 - 🔾 پاسخهای بهتر دارای نرخ جهش کم و برعکس
 - هر موجود دارای پارامترهای استراتژی مربوط به خود است
 - استفاده از جایگرینیهای $(\mu+\lambda)$ و $(\mu+\lambda)$ و $(\mu+\lambda)$ [مراجعه به چند اسلاید قبل]