Training problems for the final exam

1. Let $u, v : \mathbb{C} \to \mathbb{R}$ be given by

$$u(x+iy) = x^3 - 3xy^2, \quad (x,y) \in \mathbb{R}^2,$$

$$v(x+iy) = 3x^2y - y^3, \quad (x,y) \in \mathbb{R}^2,$$

and let $f:\mathbb{C}\to\mathbb{C}$ be given by f=u+iv. Prove that f is holomorphic on \mathbb{C} and compute the derivative of f.

2. Let $u, v : \mathbb{C} \to \mathbb{R}$ be given by

$$u(x+iy) = ax^{2} + e^{-y}\cos x, \quad (x,y) \in \mathbb{R}^{2},$$

$$v(x+iy) = e^{-y}\sin x, \quad (x,y) \in \mathbb{R}^2,$$

where $a \in \mathbb{R}$, and let $f : \mathbb{C} \to \mathbb{C}$ be given by f = u + iv.

- a) Find $a \in \mathbb{R}$ such that u is harmonic.
- b) For the value found for a), prove that f is holomorphic and compute its derivative.
- **3.** a) Find the Möbius transformation $f: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ such that $f(0) = \infty, f(i) = 1, f(\infty) = 2$.
- b) Let $g: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ be given by $g(z) = -\frac{1}{z}, z \in \mathbb{C}_{\infty}$, and let

$$D = \{ z \in \mathbb{C} : \operatorname{Re} z > 0, \operatorname{Im} z > 0, |z| < 1 \}.$$

Represent graphically the domain q(D).

4. a) Find the Möbius transformation $f: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ such that

$$f(i) = \infty, \ f(0) = 2i, \ f(\infty) = 1.$$

b) Let $g: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ be given by $g(z) = \frac{z+i}{z+1}$, $z \in \mathbb{C}_{\infty}$, and let

$$D=\{z\in\mathbb{C}: -1<\mathrm{Re}\,z<0, \mathrm{Im}\,z<0\}.$$

Represent graphically the domain g(D).

5. Let $\gamma:[0,1]\to\mathbb{C}, \ \gamma(t)=2e^{2\pi it}, t\in[0,1].$ Compute the complex integrals:

a)
$$\int_{\gamma} \frac{\sin z^2}{z^2} dz$$
; b) $\int_{\gamma} \frac{1}{z^2 + 1} dz$; c) $\int_{\gamma} (z - 1)e^{\frac{1}{z-1}} dz$.

6. Let
$$\gamma:[0,1]\to\mathbb{C},\ \gamma(t)=2e^{it},t\in[0,2\pi].$$
 Compute the integrals:
a) $\int_{\gamma}\frac{\cos z}{z-\frac{\pi}{2}}dz;$ **b)** $\int_{\gamma}\frac{1}{z^3-3z^2}dz;$ **c)** $\int_{\gamma}z\cdot\cos\frac{1}{z-1}dz.$

7. Let $f, g \in \mathcal{H}(\mathbb{C})$ be such that $f(x) \cdot g(x) = 0, \forall x \in \mathbb{R}$. Prove that $f \equiv 0$ or $g \equiv 0$.

8. (1 point) Let $f \in \mathcal{H}(\mathbb{C})$ be such that $|f(z)| \leq |z|, \forall z \in \mathbb{C}$. Prove that there exits $\alpha \in \mathbb{C}$ such that $f(z) = \alpha z, \forall z \in \mathbb{C}.$

9. Find $\max_{z \in \overline{U}(0.1)} |z^3 e^{-z^2 - z}|$.