Statistical modeling

November 15, 2016

Introduction

... Since the estimate $\hat{A}_{y,y}$ is obtained as a difference statistic of the slopes in the up- and down-polarized trials, its variance $\sigma\left[\hat{A}_{y,y}\right] = C\sqrt{2} \cdot \sigma\left[\hat{\beta}\right]$, with the proportionality coefficient $C = (\nu\sigma_0\Theta P^t\Delta P)^{-1} \approx 1.3 \cdot 10^5$.

For the mean,

$$\sigma\left[\langle \hat{A}_{y,y}\rangle\right] = \frac{\sigma\left[\hat{A}_{y,y}\right]}{\sqrt{N}} = \sqrt{2}\sqrt{\frac{h}{H}} \cdot \sigma\left[\hat{A}_{y,y}\right],\tag{1}$$

where H is the beam time, h the cycle length, and so the number of estimate pairs N = H/2h.

1 Necessary beam time

Under the Gauss-Markov conditions, the slope estimate's standard error is

$$\sigma\left[\hat{\beta}\right] = \frac{\sigma\left[\epsilon\right]}{\sqrt{\sum_{k}(t_{k} - \langle t \rangle)^{2}}}.$$
(2)

Table 1: Parameter values (June 2016)

Parameter	Value	Dimension
ν	0.79	MHz
Θ	$1.1 \cdot 10^{14}$	${ m at\cdot cm^{-2}}$
P^t	0.88	_
ΔP	1.48	_
σ_0^{a}	70	mb
a T	D4:-1-	D-4- C-

a From Particle Data Gr-poup http://pdg.lbl.gov/ 2016/hadronic-xsections/ rpp2014-pd_pn_plots.pdf

Since the measurements are taken uniformly in time with the step Δt , rewriting eq. (2) in physical terms gets:

$$\begin{split} \sum_{k=1}^{K} (t_k - \langle t \rangle)^2 &= \sum_k (k\Delta t - \frac{1}{K} \sum_{k=1}^{K} k\Delta t)^2; \\ \frac{1}{K} \sum_{k=1}^{K} k\Delta t &= \frac{\Delta t}{2} (K+1) \equiv \Delta t \mu, \\ \sum_k (k\Delta t - \mu \Delta t)^2 &= \Delta t^2 \sum_k \left(k^2 - 2k\mu + \mu^2 \right) \\ &= \Delta t^2 \left(\sum_k k^2 - 2\mu \sum_k k + \mu^2 K \right) \\ &= \Delta t^2 \left(\frac{2K+1}{3} K\mu - 2\mu^2 K + \mu^2 K \right) = \Delta t^2 \mu K \left(\frac{2K+1}{3} - \mu \right) \\ &= \Delta t^2 \mu K \frac{K-1}{6} \\ &= \frac{\Delta t^2}{12} K (K^2 - 1), \end{split}$$

and hence

$$\sqrt{\sum_{k=1}^{K} (t_k - \langle t \rangle)^2} = \frac{\Delta t}{2\sqrt{3}} \sqrt{K} \sqrt{K^2 - 1}.$$

As the number of measurements grows, $K \gg 1, K^2 - 1 \approx K^2$, and so

$$\sqrt{\sum_{k} (t_{k} - \langle T \rangle)^{2}} \approx \frac{\Delta t}{2\sqrt{3}} K \sqrt{K}.$$

The number K of measurements that go into evaluating a slope is related to the state time h as $K\Delta t = h$, hence

$$\sqrt{\sum_{k=1}^{K} (t_k - \langle t \rangle)^2} \approx \frac{h\sqrt{h}}{2\sqrt{3}\sqrt{\Delta t}}.$$

Finally, for the slope variance,

$$\sigma\left[\hat{\beta}\right] = 2\sqrt{3}\sqrt{\frac{\Delta t}{h}}\frac{\sigma\left[\epsilon\right]}{h}.$$

By plugging it in eq. (1) we get

$$\sigma\left[\langle \hat{A}_{y,y}\rangle\right] = 4\sqrt{3}C \cdot \frac{\sqrt{\Delta t}}{h\sqrt{H}} \cdot \sigma\left[\epsilon\right]. \tag{3}$$

2 Necessary cycle length

Figure 1: Beam time (in full days) as a function of the standard error of the mean $A_{y,y}$ estimate, required in the case of 15-minute cycles.