LITTLEWOOD-RICHARDSON COEFFICIENTS AND HOOK INTERPOLATIONS (EXTENDED ABSTRACT)

RON M. ADIN, AVITAL FRUMKIN, AND YUVAL ROICHMAN

ABSTRACT. The hook components of $V^{\otimes n}$ interpolate between the symmetric power $\operatorname{Sym}^n(V)$ and the exterior power $\wedge^n(V)$. When V is the vector space of $k \times m$ matrices, a decomposition of the hook components into irreducibles involving convolutions of Littlewood-Richardson coefficients is presented. Classical theorems of Ehresmann, Thrall, Helgason, James, Shimura and others are proved as boundary cases.

RÉSUMÉ. Les composants d'équerres de $V^{\otimes den}$ interpolent entre la puissance symétrique $\operatorname{Sym}^n(v)$ et la puissance extérieure $\wedge^n(v)$. Quand V est l'espace vectoriel des matrices $k \times m$, une décomposition des composantes d'équerres en composantes irréductibles comprenant des convolutions de coefficients de Littlewood-Richardson est présentée. Des théorèmes classiques d'Ehresmann, de Thrall, de Helgason, de James, de Shimura et de d'autres sont prouvés comme des cas limites.

1. Introduction

The vector space $M_{k,m}$ of $k \times m$ matrices over \mathbb{C} carries a (left) $GL_k(\mathbb{C})$ -action and a (right) $GL_m(\mathbb{C})$ -action. A classical Theorem of Ehresmann [3] describes the decomposition of an exterior power of $M_{k,m}$ into irreducible bimodules. The symmetric analogue was given later (cf. [7]). See Section 4 below.

In this paper we present a natural interpolation between these theorems, in terms of hook components of the n-th tensor power of $M_{k,m}$. This interpolation involves convolutions of the Littlewood-Richardson coefficients. Duality and asymptotics of the decomposition of hook components follow.

Similar concepts are applied to the diagonal two-sided $GL_k(\mathbb{C})$ -action on the vector space of $k \times k$ matrices. Classical theorems of Thrall [19] and James [8] (for the symmetric powers of symmetric matrices), and of Helgason [5], Shimura [15] and Howe [6] (for the symmetric powers of anti-symmetric matrices) are extended, and a bivariate interpolation is presented. This interpolation involves natural extensions of the Littlewood-Richardson coefficients.

Proofs are obtained using the representation theory of the symmetric and hyperoctahedral groups, together with plethysm of symmetric functions and Schur-Weyl duality. The techniques are different in spirit from those used in the classical works cited above, except for [8].

The interpolations presented have surprising combinatorial implications, which will be studied elsewhere.

2. Definitions and Notations

Let n be a positive integer. A partition of n is a vector of positive integers $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$, where $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_k$ and $\lambda_1 + \dots + \lambda_k = n$. We denote this by

Research was supported in part by the Israel Science Foundation, founded by the Israel Academy of Sciences and Humanities, and by internal research grants from Bar-Ilan University.

 $\lambda \vdash n$. The size of a partition $\lambda \vdash n$, denoted $|\lambda|$, is n, and its length, $\ell(\lambda)$, is the number of parts. The empty partition \emptyset has size and length zero: $|\emptyset| = \ell(\emptyset) = 0$. The set of all partitions of n with at most k parts is denoted by $\operatorname{Par}_k(n)$.

For a partition $\lambda = (\lambda_1, \dots, \lambda_k)$ define the *conjugate partition* $\lambda' = (\lambda'_1, \dots, \lambda'_t)$ by letting λ'_i be the number of parts of λ that have size at least i.

A partition $\lambda = (\lambda_1, \dots, \lambda_k)$ may be viewed as the subset

$$\{(i,j) \mid 1 \le i \le k, 1 \le j \le \lambda_i\} \subseteq \mathbb{Z}^2,$$

the corresponding Young diagram. Using this interpretation, we may speak of inclusion $\mu \subseteq \lambda$, intersection $\lambda \cap \mu$ and the set difference $\lambda \setminus \mu$ of any two partitions. The set difference is called a *skew shape*; when $\mu \subseteq \lambda$ it is usually denoted λ/μ .

A semistandard Young tableau of shape λ/μ is obtained by inserting positive integers as entries in the cells of the Young diagram of shape λ , so that the entries weakly increase along rows and strictly increase down columns. The content vector of a semistandard Young tableau T cont $(T) = (m_1, m_2, ...)$ is defined by $m_i := |\{\text{cells in } T \text{ with entry } i\}|$ for all $i \ge 0$.

We shall also use the Frobenius notation for partitions, defined as follows: Let λ be a partition of n and set $d := \max\{i \mid \lambda_i - i \geq 0\}$ (i.e., the length of the main diagonal in the Young diagram of λ). Then the Frobenius notation for λ is $(\lambda_1 - 1, \dots, \lambda_d - d \mid \lambda_1' - 1, \dots, \lambda_d' - d)$.

For any partition $\lambda = (\lambda_1, \dots, \lambda_k)$ of n define the following doubling operation

$$2 \cdot \lambda := (2\lambda_1, \dots, 2\lambda_k) \vdash 2n.$$

If all the parts of λ are distinct, define also

$$2 * \lambda := (\lambda_1, \dots, \lambda_k \mid \lambda_1 - 1, \dots, \lambda_k - 1) \vdash 2n$$

in the Frobenius notation.

3. THE LITTLEWOOD-RICHARDSON COEFFICIENTS

Let $\bar{a} = (a_1, a_2, \dots, a_n)$ be a sequence of positive integers. \bar{a} is called a *reverse ballot sequence* if for every $1 \leq i < n$ and $1 \leq j \leq n$ the number of occurences of i in the prefix (a_1, \dots, a_i) is not less than the number of occurences of i + 1 in (a_1, \dots, a_i) .

A semistandard Young tableau of shape λ/μ is *proper* if, when reading its entries from right to left, starting in the topmost row and going down, we obtain a reverse ballot sequence.

The Littlewood-Richardson coefficient $c_{\mu\nu}^{\lambda}$ is the number of proper semistandard Young tableaux of shape λ/μ and content vector ν .

The irreducible S_n -modules (Specht modules) will be denoted by S^{λ} , and the irreducible $GL_k(\mathbb{C})$ -modules (Weyl modules) by V_k^{λ} . The Littlewood-Richardson coefficients describe the decomposition of tensor products of Weyl modules. Let $\mu \vdash t$ and $\nu \vdash n - t$. Then

$$V_k^{\mu} \otimes V_k^{\nu} \cong \bigoplus_{\lambda \vdash n} c_{\mu\nu}^{\lambda} V_k^{\lambda},$$

for $k \ge \max\{\ell(\lambda), \ell(\mu), \ell(\nu)\}$ (and the coefficients $c_{\mu\nu}^{\lambda}$ are then independent of k).

By Schur-Weyl duality they are also the coefficients of the outer product of Specht modules. Namely,

$$(S^{\mu} \otimes S^{\nu}) \uparrow_{S_t \times S_{n-t}}^{S_n} \cong \bigoplus_{\lambda \vdash n} c_{\mu\nu}^{\lambda} S^{\lambda}.$$

Let λ and μ be two partitions of the same integer n, and let $0 \le i \le n$. Define

$$c^{\lambda\mu}(i) := \sum_{\alpha \vdash n-i, \ \beta \vdash i} c^{\lambda}_{\alpha\beta} c^{\mu}_{\alpha\beta'} \ .$$

Thus $c^{\lambda\mu}(i)$ is the number of pairs of proper semistandard Young tableaux of shapes λ/α , μ/α respectively (where α is some partition of n-i) with conjugate content vectors. **Example.**

(3.1)
$$c^{\lambda\mu}(0) = \delta_{\lambda\mu} \quad , \qquad c^{\lambda\mu}(n) = \delta_{\lambda\mu'} \quad .$$

We shall use also the following notation for extended Littlewood-Richardson coefficients:

$$c^{\lambda}_{\alpha\beta\gamma\delta} := \sum_{\mu,\nu} c^{\lambda}_{\alpha\mu} c^{\mu}_{\beta\nu} c^{\nu}_{\gamma\delta};$$

so that

$$V_k^{\alpha} \otimes V_k^{\beta} \otimes V_k^{\gamma} \otimes V_k^{\delta} = \bigoplus_{\lambda} c_{\alpha\beta\gamma\delta}^{\lambda} V_k^{\lambda}.$$

4. Symmetric and Exterior Powers of Matrix Spaces

In this section we cite well-known classical theorems, concerning the decomposition into irreducibles of symmetric and exterior powers of matrix spaces, which are to be generalized in this paper.

Let $M_{k,m}$ be the vector space of $k \times m$ matrices over \mathbb{C} . Then $M_{k,m}$ carries a (left) $GL_k(\mathbb{C})$ -action and a (right) $GL_m(\mathbb{C})$ -action. A classical Theorem of Ehresmann [3] (see also [11]) describes the decomposition of an exterior power of $M_{k,m}$ into irreducible $GL_k(\mathbb{C}) \times GL_m(\mathbb{C})$ -modules.

Theorem 4.1. The n-th exterior power of $M_{k,m}$ is isomorphic, as a $GL_k(\mathbb{C}) \times GL_m(\mathbb{C})$ module, to

$$\wedge^n(M_{k,m}) \cong \bigoplus_{\lambda \vdash n} \bigoplus_{and \ \lambda \subseteq (m^k)} V_k^{\lambda} \otimes V_m^{\lambda'},$$

where λ' is the partition conjugate to λ .

The following three results on symmetric powers were proved several times independently; these results may be found in [7] and [4].

The symmetric analogue of Theorem 4.1 was studied, for example, in [7, (11.1.1)] and [4, Theorem 5.2.7].

Theorem 4.2. The n-th symmetric power of $M_{k,m}$ is isomorphic, as a $GL_k(\mathbb{C}) \times GL_m(\mathbb{C})$ module, to

$$Sym^n(M_{k,m}) \cong \bigoplus_{\lambda \vdash n \ and \ \ell(\lambda) \leq \min(k,m)} V_k^{\lambda} \otimes V_m^{\lambda}.$$

Let $M_{k,k}^+$ be the vector space of symmetric $k \times k$ matrices over \mathbb{C} . This space carries a natural two sided $GL_k(\mathbb{C})$ -action. The following theorem describes the decomposition of its symmetric powers into irreducible $GL_k(\mathbb{C})$ -modules.

Theorem 4.3. The n-th symmetric power of $M_{k,k}^+$ is isomorphic, as a $GL_k(\mathbb{C})$ -module, to

$$Sym^n(M_{k,k}^+) \cong \bigoplus_{\lambda \in Par_k(n)} V_k^{2 \cdot \lambda}.$$

This theorem was proved by A.T. James [8], but had already appeared in an early work of Thrall [19]. See also [6], [15], [7, (11.2.2)] and [4, Theorem 5.2.9] for further proofs and references.

Let $M_{k,k}^-$ be the vector space of skew symmetric $k \times k$ matrices over \mathbb{C} . Then

Theorem 4.4. The n-th symmetric power of $M_{k,k}^-$ is isomorphic, as a $GL_k(\mathbb{C})$ -module, to

$$Sym^n(M_{k,k}^-) \cong \bigoplus_{(2\cdot\lambda)'\in Par_k(2n)} V_k^{(2\cdot\lambda)'}.$$

This theorem was proved in [5], [6], [15]. See also [7, (11.3.2)] and [4, Theorem 5.2.11].

5. Main Results

Let $M_{k,m}$ be the vector space of $k \times m$ matrices over \mathbb{C} . The tensor power $M_{k,m}^{\otimes n}$ carries a natural S_n -action by permuting the factors. This action decomposes the tensor power into irreducible S_n -modules. Let $M_{k,m}^{\otimes n}(i)$ be the isotypic component of $M_{k,m}^{\otimes n}$ corresponding to the irreducible S_n -representation indexed by the hook $(n-i,1^i)$, where $0 \le i \le n-1$. This component still carries a $GL_k(\mathbb{C}) \times GL_m(\mathbb{C})$ -action. Its decomposition into irreducibles is given by a convolution of the Littlewood-Richardson coefficients.

Theorem 5.1. Let λ and μ be partitions of n, of lengths at most k and m, respectively. For every $0 \le i \le n$ the multiplicity of the irreducible $GL_k(\mathbb{C}) \times GL_m(\mathbb{C})$ -module $V_k^{\lambda} \otimes V_m^{\mu}$ in $M_{k,m}^{\otimes n}(i-1) \oplus M_{k,m}^{\otimes n}(i)$ is the restricted convolution $c^{\lambda\mu}(i)$, as defined in Section 3 above. By convention, $M_{k,m}^{\otimes n}(-1) = M_{k,m}^{\otimes n}(n) = 0$.

Theorem 5.1 interpolates between two well-known classical theorems, Theorems 4.1 and 4.2. Indeed, $M_{k,m}^{\otimes n}(0) \cong \operatorname{Sym}^n(M_{k,m})$ and $M_{k,m}^{\otimes n}(-1) = 0$. Substituting i = 0 and applying (3.1) shows that the relevant multiplicity is $\delta_{\lambda\mu}$, thus proving Theorem 4.2. Similarly, the substitution i = n gives Theorem 4.1.

The following corollary generalizes the duality between Theorem 4.1 and Theorem 4.2.

Corollary 5.2. Let $\mu \subseteq (m^m)$ and λ be partitions of n. For every $0 \le i \le n-1$ the multiplicity of $V_k^{\lambda} \otimes V_m^{\mu}$ in $M_{k,m}^{\otimes n}(i)$ is equal to the multiplicity of $V_k^{\lambda} \otimes V_m^{\mu'}$ in $M_{k,m}^{\otimes n}(n-1-i)$.

Let λ and μ be partitions of n. Define the distance

$$d(\lambda, \mu) := \frac{1}{2} \sum_{i} |\lambda_i - \mu_i|.$$

Theorem 5.1 together with results of Regev [14, Theorem 12] and Dvir [2, Theorem 1.6] imply

Theorem 5.3. If $V_k^{\lambda} \otimes V_m^{\mu}$ appears as a factor in $M_{k,m}^{\otimes n}(t)$ (for some $0 \leq t \leq n-1$) then $d(\lambda,\mu) < km$.

This shows that, for $V_k^{\lambda} \otimes V_m^{\mu}$ to appear in a hook component, λ and μ must be very "close" to each other (for k and m fixed, n tending to infinity).

Consider now the vector space $M_{k,k}$ of $k \times k$ square matrices over \mathbb{C} . Let $M_{k,k}^{\otimes n}(i,j)$ be the component of $M_{k,k}^{\otimes n}(i)$ consisting of tensors with j skew symmetric and n-j symmetric factors. $M_{k,k}^{\otimes n}(i,j)$ carries a $GL_k(\mathbb{C})$ two-sided diagonal action. The following theorem describes its decomposition as a $GL_k(\mathbb{C})$ -module.

Theorem 5.4. Let λ be a partition of 2n of length at most k. For every $0 \leq i \leq n$ and $0 \leq j \leq n$ the multiplicity of V_k^{λ} in $M_{k,k}^{\otimes n}(i,j) \oplus M_{k,k}^{\otimes n}(i-1,j)$ is

$$\sum_{|\alpha|+|\beta|+|\gamma|+|\delta|=n,\ |\beta|+|\delta|=j\ ,\ |\gamma|+|\delta|=i} c^{\lambda}_{2\cdot\alpha,(2\cdot\beta)',2*\gamma,(2*\delta)'},$$

where the sum runs over all partitions $\alpha, \beta, \gamma, \delta$ with total size n such that γ and δ have distinct parts, β and δ have total size j, and γ and δ have total size i. The operations * and \cdot are as defined in Section 2, and the extended Littlewood-Richardson coefficients $c_{\alpha\beta\gamma\delta}^{\lambda}$ are as defined in Section 3.

The proof of Theorem 5.4 involves results on plethysm of elementary and homogeneous symmetric functions [13, Ch. I §8 Ex 5-6].

Theorem 5.4, for i=0, interpolates between classical results, regarding symmetric powers of the spaces of symmetric and skew symmetric matrices (Theorems 4.3 and 4.4). Another boundary case, i=n, gives an interpolation between exterior powers of the same matrix spaces.

Corollary 5.5. Let $\lambda \subseteq (k^k)$ be a partition of 2n. For every $0 \le i \le n-1$ and $0 \le j \le n$, the multiplicity of V_k^{λ} in $M_{k,k}^{\otimes n}(i,j)$ is equal to the multiplicity of $V_k^{\lambda'}$ in $M_{k,k}^{\otimes n}(i,n-j)$.

For proofs and more details see [1].

Acknowledgments. The authors thank R. Howe and N. Wallach for their useful comments.

References

- [1] R. M. Adin, A. Frumkin and Y. Roichman, Hook Interpolations. J. Algebra, to appear.
- [2] Y. Dvir, On the Kronecker product of S_n characters. J. Algebra 154 (1993), 125–140.
- [3] C. Ehresmann, Sur la topologie de certains espaces homogènes. Ann. of Math. 35 (1934), 396-443.
- [4] R. Goodman and N. R. Wallach, *Representations and Invariants of the Classical Groups*. Encyclopedia of Math. and its Appl. Vol. 68, Cambridge University Press, 1998.
- [5] S. Helgason, A duality for symmetric spaces with applications. Adv. Math. 5 (1970), 1–54.
- [6] R. Howe, Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313 (1989), 539–570.
- [7] R. Howe and T. Umeda, The Capelli identity, the double commutant theorem, and multiplicity-free actions. Math. Ann. 290 (1991), 565–619.
- [8] A. T. James, Zonal polynomials of the real positive definite matrices. Annals of Math. 74 (1961), 456–469.
- [9] G. D. James and A. Kerber, *The Representation Theory of the Symmetric Group*. Encyclopedia of Math. and its Appl. Vol. 16, Addison-Wesley, 1981.
- [10] A. Kerber, Algebraic Combinatorics via Finite Group Actions. Bibliographisches Institut, Mannheim, 1991.
- [11] B. Kostant, Lie algebra cohomology and the generalized Borel Weil theorem. Ann. of Math. 74 (1961), 329–387.
- [12] J. P. Serre, Linear Representations of Finite Groups. Springer-Verlag, 1977.
- [13] I. G. Macdonald, Symmetric Functions and Hall Polynomials. second edition, Oxford Math. Monographs, Oxford Univ. Press, Oxford, 1995.
- [14] A. Regev, The Kronecker product of S_n characters and an $A \otimes B$ theorem for Capelli identities. J. Algebra 66 (1980), 505–510.
- [15] G. Shimura, On differential operators attached to certain representations of classical groups. Invent. Math. 77 (1984), 463–488.
- [16] R. P. Stanley, Enumerative Combinatorics, Volume II. Cambridge Univ. Press, Cambridge, 1999.
- [17] J. R. Stembridge, On Schur Q-functions and the primitive idempotents of commutative Hecke algebra. J. Alg. Combin. 1 (1992), 71–95.
- [18] J. Stembridge, On the eigenvalues of representations of reflection groups and wreath products. Pacific J. Math. 140 (1989), 359–396.

[19] R. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring. Amer. J. Math. 64 (1942), 371–388.

Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel

E-mail address: radin@math.biu.ac.il

Sackler School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel

E-mail address: frumkin@math.tau.ac.il

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, BAR-ILAN UNIVERSITY, RAMAT-GAN 52900, ISBAFI

E-mail address: yuvalr@math.biu.ac.il