Satisfaction and Saturation

Weak superrationality

Athar Abdul-Quader (joint with M. Łełyk)

Purchase College, SUNY

CUNY Logic Workshop February 10, 2023

Satisfaction classes

$\mathsf{Theorem}$

Let $\mathcal{M} \models PA$ be countable. Then \mathcal{M} has a full satisfaction class $S \subseteq M^2$ if and only if \mathcal{M} is recursively saturated.

Weak superrationality

- Satisfaction class: for each formula ϕ , assignment α , if $\mathcal{M} \models \phi[\alpha]$, then $(\phi, \alpha) \in S$.
- Satisfies Tarski's compositional axioms for satisfaction.
- Full: for each $\phi \in \mathsf{Form}^{\mathcal{M}}$, α , either $(\phi, \alpha) \in S$ or $(\neg \phi, \alpha) \in S$.
- Kotlarski, Krajewski, Lachlan (1981); Lachlan (1981).
- Enayat, Visser (2015): perspicuous model-theoretic proof (of KKL).

(After this: assume all models of PA in this talk are countable and recursively saturated.)

Induction

Definition

Let $\mathcal{M} \models PA$. $X \subseteq M$ is inductive if the expansion $(\mathcal{M}, X) \models PA^*$: that is, if the expansion satisfies induction in the language $\mathcal{L}_{PA} \cup \{X\}$.

- Blur lines: truth predicates / satisfaction classes
- CT⁻ (theory of a full, compositional truth predicate) is conservative over PA: if $\phi \in \mathcal{L}_{PA}$, $CT^- \vdash \phi$ if and only if $PA \vdash \phi$.
- CT is the theory CT⁻ + "T is inductive"
- CT is not conservative over PA: CT ⊢ Con(PA)
- CT₀: CT⁻ + "T is Δ_0 -inductive" also proves Con(PA).

Disjunctive Correctness

Definition

Let $c \in M$, $\langle \phi_i : i \leq c \rangle$ be a (coded) sequence of sentences in \mathcal{M} . Then we define $\bigvee \phi_i$ inductively:

Weak superrationality

•
$$\bigvee \phi_i = \phi_0$$
, and

$$\bigvee_{i < n+1} \phi_i = \bigvee_{i < n} \phi_i \vee \phi_{n+1}.$$

DC is the principle of disjunctive correctness:

$$\forall c \forall \langle \phi_i : i \leq c \rangle T(\bigvee_{i \leq c} \phi_i) \leftrightarrow \exists i \leq c T(\phi_i).$$

Disjunctive Correctness

Definition

Let $c \in M$, $\langle \phi_i : i \leq c \rangle$ be a (coded) sequence of sentences in \mathcal{M} . Then we define $\bigvee \phi_i$ inductively:

Weak superrationality

- $\bigvee \phi_i = \phi_0$, and
- $\bullet \quad \bigvee \quad \phi_i = \bigvee \phi_i \vee \phi_{n+1}.$ i < n+1 i < n

DC is the principle of disjunctive correctness:

$$\forall c \forall \langle \phi_i : i \leq c \rangle T(\bigvee_{i \leq c} \phi_i) \leftrightarrow \exists i \leq c T(\phi_i).$$

Theorem (Enayat-Pakhomov)

$$CT^- + DC = CT_0$$
.

DC-out vs DC-in

- DC-out: $T(\bigvee_{i \leq c} \phi_i) \to \exists i \leq c T(\phi_i)$.
- DC-in: $\exists i \leq cT(\phi_i) \rightarrow T(\bigvee \phi_i)$.

Theorem (Cieśliński, Łełyk, Wcisło)

- CT⁻ + DC-out is not conservative over PA. (in fact, it is equivalent to CT_0).
- CT⁻ + DC-in is conservative over PA.

Disjunctive Triviality

Idea (for conservativity of DC-in): every $\mathcal{M} \models PA$ countable has an elementary extension \mathcal{N} with an expansion to CT^- that is disjunctively trivial.

Disjunctive Triviality

Idea (for conservativity of DC-in): every $\mathcal{M} \models PA$ countable has an elementary extension ${\cal N}$ with an expansion to CT $^-$ that is disjunctively trivial.

That is,
$$(\mathcal{N}, T) \models \mathsf{CT}^-$$
 and, for each $c > \omega$, $\langle \phi_i : i \leq c \rangle$, $T(\bigvee_{i \leq c} \phi_i)$. Hence, $(\mathcal{N}, T) \models \mathsf{DC}\text{-in}$.

Disjunctive Triviality

Idea (for conservativity of DC-in): every $\mathcal{M} \models PA$ countable has an elementary extension \mathcal{N} with an expansion to CT⁻ that is disjunctively trivial.

Weak superrationality

That is,
$$(\mathcal{N}, T) \models \mathsf{CT}^-$$
 and, for each $c > \omega$, $\langle \phi_i : i \leq c \rangle$, $T(\bigvee_{i \leq c} \phi_i)$. Hence, $(\mathcal{N}, T) \models \mathsf{DC}\text{-in}$.

Question

Does every countable, recursively saturated model of PA have a disjunctively trivial expansion?

Intuitively: seems like it should follow from the existence of disjunctively trivial elementary extensions using resplendence?

Slogan

- Preventing pathologies requires (some) induction.
- Conservative truth theories necessarily carry pathologies.

Nonstandard sentences

Fix θ . We consider the following examples of nonstandard iterates of θ .

Weak superrationality

$$\bullet \bigvee_{i < c} \theta := (\bigvee_{i < c - 1} \theta) \vee \theta$$

$$\bullet \bigwedge_{i \le c} \theta := (\bigwedge_{i \le c-1} \theta) \wedge \theta$$

$$\bullet \bigvee_{i \leq c}^{\mathrm{bin}} \theta := (\bigvee_{i \leq c-1}^{\mathrm{bin}} \theta) \vee (\bigvee_{i \leq c-1}^{\mathrm{bin}} \theta)$$

•
$$(\forall y)^c \theta := \forall y [(\forall y)^{c-1} \theta]$$

$$\bullet (\neg \neg)^c \theta := \neg \neg [(\neg \neg)^{c-1} \theta]$$

All of the above are formed by taking θ , the (c-1)-st iterate of θ , and combining them syntactically in a predetermined way.

Generalization

Fix θ an atomic sentence. Let $\Phi(p,q)$ be a finite propositional "template" (essentially a propositional formula with variables p, q, but we allow quantifiers over dummy variables) such that:

Weak superrationality

- q appears in $\Phi(p,q)$.
- if $\mathcal{M} \models \theta$, then $\Phi(\top, q)$ is equivalent to q, and
- if $\mathcal{M} \models \neg \theta$, then $\Phi(\bot, q)$ is equivalent to q.

Define $F: M \to \mathsf{Sent}^{\mathcal{M}}$ by $F(0) = \theta$ and $F(x+1) = \Phi(\theta, F(x))$. We say such an F is a local idempotent sentential operator for θ . Φ is called a *template* for F.

Examples

•
$$\Phi(p,q) = q \vee p$$
. Then $F(x) = \bigvee_{i < x} \theta$.

- $\Phi(p,q) = q \wedge q$. Then $F(x) = \int_{-\infty}^{\infty} \theta$. (Binary conjunctions).
- $\Phi(p,q) = \neg \neg q$. Then $F(x) = (\neg \neg)^x \theta$.
- $\Phi(p,q) = (\forall y)q$. Then $F(x) = (\forall y)^x \theta$.

Main Question

Question

Given θ and a local idempotent sentential operator F, for which sets X is there a satisfaction class S for which

$$X = \{x : S(F(x), \emptyset)\}$$
?

By the definition of F:

- $x \in X \Leftrightarrow x+1 \in X$, so X must be closed under successors and predecessors,
- if $\mathcal{M} \models \theta$, then $\omega \subseteq X$, and,
- if $\mathcal{M} \models \neg \theta$, then $\omega \cap X = \emptyset$.

What else?

Main Question

Question

Given θ and a local idempotent sentential operator F, for which sets X is there a satisfaction class S for which

Weak superrationality

$$X = \{x : S(F(x), \emptyset)\}?$$

By the definition of *F*:

- $x \in X \Leftrightarrow x + 1 \in X$, so X must be closed under successors and predecessors,
- if $\mathcal{M} \models \theta$, then $\omega \subseteq X$, and,
- if $\mathcal{M} \models \neg \theta$, then $\omega \cap X = \emptyset$.

What else?

Definition

Let $X \subseteq M$. X is separable if for each $a \in M$, there is $c \in M$ such that for each $n \in \omega$, $(a)_n \in X$ if and only if $n \in c$.

Separability Theorem 1

The following results are generalizations of unpublished work by J. Schmerl. (Sent to A. Enayat in private communication, 2012).

Weak superrationality

$\mathsf{Theorem}$

Fix θ and a local idempotent sentential operator F. Let $X \subseteq M$ be separable, closed under successors and predecessors, and for each $n \in \omega$, $n \in X$ if and only if $\mathcal{M} \models \theta$. Then \mathcal{M} has a full satisfaction class S such that $X = \{x : S(F(x), \emptyset)\}.$

immediate subformulas.

• For $Y \subseteq \text{Form}^{\mathcal{M}}$, Cl(Y) is the smallest $Z \supseteq Y$ closed under

Weak superrationality

• Y is finitely generated if Y = CI(Y') for some finite Y'.

Main part of construction: suppose Y is finitely generated and S is a full satisfaction class such that (\mathcal{M}, S) is recursively saturated and whenever $F(x) \in Y$, then $x \in X$ if and only if $S(F(x), \emptyset)$. Let $Y' \supset Y$ be finitely generated. Show that the following theory is consistent:

- S' is a full satisfaction class (Enayat-Visser lemma),
- $S \upharpoonright Y = S' \upharpoonright Y$.
- $\{S'(F(x), \alpha) : F(x) \in Y' \text{ and } x \in X\}.$

Using the facts that Y, Y' are finitely generated and X is separable, the above can be expressed recursively. Apply resplendency.

Below, by "A is separable from D" we mean: for each a, if for all $n \in \omega$, $(a)_n \in D$, then there is c such that for all $n \in \omega$, $(a)_n \in A$ if and only if $n \in c$.

Weak superrationality

$\mathsf{Theorem}$

Satisfaction

Let D be any set of sentences, S a full satisfaction class for \mathcal{M} , and $A = \{ \phi \in D : S(\phi, \emptyset) \}$. Then A is separable from D.

Proof sketch: Stuart Smith's Theorem: \mathcal{M} is definably *S-saturated*. That is: if $\langle \phi_i(x) : i \in \omega \rangle$ is coded such that for each $m \in \omega$, there is an assignment α such that for all $i \leq m$, $S(\phi_i, \alpha)$, then there is α such that for all $i \in \omega$, $S(\phi_i, \alpha)$.

Let a be such that $(a)_n \in D$ for all $n \in \omega$, $\phi_i(x)$ the formula $(a)_i \leftrightarrow i \in x$. For each standard m, there is c such that for i < m, $(a)_i \in A$ if and only if $i \in c$. Apply Smith's result.

Arithmetic Saturation

Definition

 \mathcal{M} is arithmetically saturated if whenever $a, b \in M$ and p(x, b) is a consistent type that is arithmetic in tp(a) is realized in \mathcal{M} .

Weak superrationality

Folklore: \mathcal{M} is arithmetically saturated if it is recursively saturated and ω is a strong cut: that is, for each a there is $c > \omega$ such that for each $n \in \omega$, $(a)_n \in \omega$ if and only if $(a)_n < c$. Exercise: ω is a strong cut iff it is separable.

Corollary

Let $\mathcal M$ be countable and recursively saturated. Then $\mathcal M$ is arithmetically saturated if and only if it has a disjunctively trivial expansion to CT⁻.

Weak Superrationality

Definition

 $I \subseteq_{end} M$ is weakly superrational if there is no a such that $I = \sup(\{(a)_n : n \in \omega\} \cap I) = \inf(\{(a)_n : n \in \omega\}).$

Equivalently: if for each $a \in M$, there is c such that for each $n \in \omega$, $(a)_n \in I$ if and only if $(a)_n < c$.

Proposition

 $I \subseteq_{end} M$ is weakly superrational if and only if it is separable.

Proof is an exercise.

Existence

If (\mathcal{M}, I) is recursively saturated, then I is weakly superrational. (Exercise.)

Weak superrationality

Proposition

There are weakly superrational cuts which are closed under successor but not addition, addition but not multiplication, multiplication but not exponentiation, etc.

Proof (for + but not \times): Let $I \subseteq_{end} M$ be any cut which is closed under addition but not multiplication (ex: $c > \omega$, $I = \sup(\{n \cdot c : n \in \omega\})$. Take J such that $(\mathcal{M}, I) \equiv (\mathcal{M}, J)$ and (\mathcal{M}, J) is recursively saturated.

Superrational Cuts

The name comes from the notion of "rational" and "superrational" cuts appearing in a paper by R. Kossak (1989).

Weak superrationality

Definition (Kossak 1989)

Let $I \subseteq_{end} M$.

- **1** I is coded by ω from below if there is $a \in M$ such that $I = \sup(\{(a)_i : i \in \omega\})$. I is coded by ω from above if there is $a \in M$ such that $I = \inf(\{(a)_i : i \in \omega\})$. I is ω -coded if it is either coded by ω from below or from above.
- 2 I is 0-superrational if there is $a \in M$ such that one of the following holds:
 - $\operatorname{Def}_0(a) \cap I$ is cofinal in I and for all $b \in M$, $\operatorname{Def}_0(b) \setminus I$ is not coinitial in $M \setminus I$, or,
 - $\operatorname{Def}_0(a) \setminus I$ is coinitial in $M \setminus I$ and for all $b \in M$, $\operatorname{Def}_0(b) \cap I$ is not cofinal in I.

Weak superrationality

Strength

Theorem

Let $I \subseteq_{end} M$. The following are equivalent:

- **1** I is ω -coded and weakly superrational.
- 1 is 0-superrational.

Proposition

- If ω is a strong cut, then every ω -coded cut is weakly superrational.
- ② If ω is not strong, then every ω -coded cut is not weakly superrational.

Non-local operators

Instead of simply looking at F-iterates of a single θ , what about all F-iterates? (Instead of long idempotent disjunctions of (0=1), what about all idempotent disjunctions?)

Fix $\Phi(p,q)$ a finite propositional template such that:

- q appears in $\Phi(p,q)$,
- $p \wedge q \vdash \Phi(p,q)$,
- $\neg p \land \neg q \vdash \neg \Phi(p,q)$, and,
- Φ has syntactic depth 1.

(Just: $p \lor q$, $p \land q$, $\forall yq$, $q \land q$, $q \lor q$.) Define $F(x, \phi)$ inductively:

- $F(0, \phi) = \phi$.
- $F(x + 1, \phi) = \Phi(\phi, F(x, \phi)).$

We call F an idempotent sentential operator, and say Φ is a template for F.

Accessibility / Additivity

Proposition

Suppose F is an idempotent sentential operator and $\Phi(p,q)$ is a template for F. If p does not appear in Φ , then for any sentence ϕ and any $x, y \in M$, $F(x, F(y, \phi)) = F(x + y, \phi)$.

Weak superrationality

That is: $(\forall y)^{c_1}[(\forall y)^{c_2}\phi] = (\forall y)^{c_1+c_2}\phi$.

We say F is accessible if p occurs in Φ (then you can "access" ϕ from $F(x, \phi)$; F is additive otherwise.

Proposition

Let $I \subseteq_{end} M$ be a cut. Let F be an additive idempotent sentential operator and S a full satisfaction class such that

Weak superrationality

$$I = \{x : \forall c < x \forall \phi(S(\phi, \emptyset) \leftrightarrow S(F(c, \phi), \emptyset))\}.$$

Then I is closed under addition.

Proof: Suppose $x \in I$. Let c < 2x. Then $\lceil \frac{c}{2} \rceil < x$. For $\phi \in Sent$, we have

$$S(\phi,\emptyset) \leftrightarrow S(F(\lceil \frac{c}{2} \rceil,\phi),\emptyset) \leftrightarrow S(F(c,\phi),\emptyset).$$

Let F be an idempotent sentential operator. Then we say I is F-closed if either F is accessible (and I is closed under successors) or F is additive and I is closed under addition.

Result

$\mathsf{Theorem}$

Let F be an idempotent sentential operator, $I \subseteq_{end} M$ be F-closed and weakly superrational. Then there is a full satisfaction class S such that $I = \{x : \forall y < x \forall \phi(S(\phi, \emptyset) \leftrightarrow S(F(y, \phi), \emptyset))\}.$

Weak superrationality

We also say $I \subseteq_{end} M$ has no least F-gap above it if for each x > I, there is v > I such that for each $n \in \omega$, $y \odot n < x$, where \odot is + if F is accessible and \times if F is additive.

$\mathsf{Theorem}$

Let F be an idempotent sentential operator, $I \subseteq_{end} M$ F-closed and has no least F-gap above it. Then there is a full satisfaction class S such that $I = \{x : \forall y < x \forall \phi(S(\phi, \emptyset) \leftrightarrow S(F(y, \phi), \emptyset))\}.$

Converse

Proposition

Let F be an accessible idempotent sentential operator, S a full satisfaction class and

$$I = \{x : \forall y < x \forall \phi(S(\phi, \emptyset) \leftrightarrow S(F(y, \phi), \emptyset))\}.$$

Then either there is no least \mathbb{Z} -gap above I or I is weakly superrational.

Proof: Suppose $\{c - n : n \in \omega\}$ is the least \mathbb{Z} -gap above I. Then there is ϕ such that $\neg S(F(c,\phi),\emptyset) \leftrightarrow S(\phi,\emptyset)$. In fact, for each x < c, one has $S(F(x,\phi),\emptyset) \leftrightarrow S(\phi,\emptyset)$ if and only if $x \in I$. Let $D = \{F(x, \phi) \leftrightarrow \phi : x < c\}$; then by our "local" results, $A = \{F(x, \phi) \leftrightarrow \phi : x \in I\}$ is separable.

Converse. II

Proposition

Let F be an additive idempotent sentential operator, S a full satisfaction class and

$$I = \{x : \forall y < x \forall \phi(S(\phi, \emptyset) \leftrightarrow S(F(y, \phi), \emptyset))\}.$$

Then either there is no least +-gap above I or I is weakly superrational.

(Proof is more involved.)

Arithmetic Saturation, again

$\mathsf{Theorem}$

Let $\mathcal M$ be countable, recursively saturated. Then the following are equivalent:

- M is arithmetically saturated.
- 2 For every idempotent sentential operator F and every F-closed cut I, there is a full satisfation class S such that

$$I = \{x : \forall y < x \forall \phi(S(\phi, \emptyset) \leftrightarrow S(F(y, \phi), \emptyset))\}.$$

- (1) \Longrightarrow (2): if ω is strong, then every cut which is ω -coded is weakly superrational. If it has a least F-gap, it is ω -coded!
- (2) \Longrightarrow (1): if ω is not strong, then cuts which have least F-gaps are not weakly superrational. Previous slides: these cuts cannot be these "F-correct" cuts.

Thank you!

The results mentioned today will appear in Abdul-Quader and Łełyk, "Pathologies in satisfaction classes." (Work in progress)

Some other references:

- Cieśliński, Łełyk and Wcisło, The two halves of disjunctive correctness. Journal of Mathematical Logic (in press).
- Enayat and Pakhomov, Truth, disjunction, and induction. Archive for Mathematical Logic 58, 753-766 (2019).
- Enayat and Visser, New constructions of satisfaction classes. In: Unifying the philosophy of truth, vol 36, 321-335 (2015).
- Kossak, Models with the ω -property. Journal of Symbolic Logic 54, 177-189 (1989).