

High Voltage Isolated Differential Probe

EE314: EDL Project Evaluation 3

Team Members:

Shashi prabha 200020043

Mouli Venkata Prakash 200020027

Devi Prasad 200020022

Project Supervisor

Prof. Dr.Abhijit Kshirsagar Dept. of Electrical Engineering IIT Dharwad

Project Timeline

A. First Evaluation

- 1. Study of existing solutions
- 2. Requirement Building / Spec freeze
- 3. High-level system Design by 27/Jan 2023

B. <u>Second Evaluation</u>

- 4. Simulation
- 5. Prototyping
- 6. PCB design by 17/Feb 2023

C. Third Evaluation

- 7. Prototyping and Assembling
- 8. Integration 17/March 2023

D. Final Evaluation

- 9. Testing and Calibration
- 10. Bugs and Fixing
- 11. Final PoC System Demonstration 10/April 2023

Wish specifications:

- Voltage Range: 0-600V
- Impedance: 10MΩ
- Bandwidth: DC-5MHz
- Common Mode Rejection Ratio (CMRR): > 65dB
- Signal Noise Ratio (SNR): > 65dB
- Isolation Voltage Rating: 1000V
- Input Connector: Banana jack type
- Output Connector: BNC
- Operating Temperature: 10°C to 50°C
- Power Source: External

System Block diagram

Gain correction

Test plan

	A	В	C	D
1		Dc	low frequency (linearity)	high frequency
2	Identify 3 power sources	<u>~</u>		
3	Checking attenuator stage	<u>~</u>	<u>✓</u>	✓
4	Checking isolated amplifier (gain,offset)	~		✓
5	check diffrential amplifier	✓	<u>~</u>	✓
6	Checking Offset correction	<u>~</u>		<u>~</u>
7	at low voltage	√		<u>~</u>
8	at moderate voltage	<u>~</u>		<u>~</u>
9	at high voltage (60V max applied)	<u> </u>	<u>~</u>	
10	checking gain correction	~		

Checking attenuator stage:

since at the starting stage we can't deal with 600V so we start with

- 1) One stage attenuator
- 2) two stage attenuator
- 3)three stage attenuator
- 4) four stage attenuator

At an input of 480V pp

Expected = 480V / 1760 = 272mV Obtained = 268mV

Attenuator

60V DC four stage attenuator

Calculations

Expected = 60V/1760 =34mV Obtained = 42mV

60V DC one stage attenuator

attenuation = 1/440 expected output = 136mV obtained = 130 mV

60V DC two stage attenuator

attenuation = 1/880 expected output = 68.1mV obtained = 68.5 mV

60V DC three stage attenuator

attenuation = 1/1320 expected output = 45.45mV obtained = 52.7 mV

At an input of 200 mv pp to isolation amplifier at 2kHz

Expected gain = 8 expected output = 2V obtained output = 1.08V obtained gain = around (5-6)

Circuit of isolation amplifier with one stage attenuator

Output of isolation amplifier at 10kHz

POWER SOURCE for isolation amplifier

- 1) Input side and output side with RPS
- 2) Both side RPS through isolation transformer
- 3) Input side with battery and output side with RPS
- 4) Input side with RPS and output side with battery
- 5) used LC filter for cancellation of noise
- 6) Input side and output side with battery

LC Filter Circuit used for noise correction

Differential Amplifier

Summing amplifier(offset correction)

Inverting amplifier (Gain Correction)

3D PCB DESIGN

Future work / path to completion

Final Evaluation

- 1. Testing and Calibration
- 2. Bugs and Fixing
- 3. Final PoC System Demonstration 10/April 2023

Final demo plan

We will show our working design for 600V DC which will display voltage value in DSO.