## PAULO KIYOSHI OYAMA FILHO - 11911BCC022

**Exercício 1**. Um dado equilibrado é lançado 2 vezes e os números obtidos nos dois lançamentos são registrados

P(A)

$$P(A) = 1 - P(A)^c = P(A)^c$$
  
=  $P(A)^c = [(1,1), (1,2), (2,1)] = \frac{3}{36}$   
 $P(A) = 1 - \frac{3}{36} \Rightarrow \frac{33}{36}$ 

P(B|C)

$$P(B|C) = \frac{P(B \cap C)}{P(C)} = \frac{6/36}{11/36} = \frac{6}{11}$$

P(A intersecção D)

$$P(D) = [(1,3),(3,1),(2,3),(3,2),(3,3)] = rac{5}{36}$$
 
$$P(A\cap D) = rac{5}{36}$$

P(CUD)

$$P(C) = [(2,1), (1,2), (2,2), \dots, (6,2)] = \frac{11}{36}$$

$$P(C \cup D) = [(2,3), (3,2)] = \frac{2}{36}$$

$$P(C \cup D) = P(C) + P(D) - P(C \cap D)$$

$$= \frac{11}{36} + \frac{5}{36} - \frac{2}{36} \Rightarrow \frac{14}{36}$$

**Exercício 2**Um exame de sangue feito por um laboratório tem eficiência de 93% para detectar uma certa doença quando ela de fato existe. Entretanto, o teste aponta um resultado falso-positivo para 1% das pessoas sadias testadas (isto é, se uma pessoa testada for saudável, então, com probabilidade 0,01, o teste indicará que a pessoa sadia tem a doença). Se 0,6% da população tem a doença, qual é a probabilidade de uma pessoa ter a doença dado que o resultado de seu exame foi positivo?

$$Doenca = D \ e \ Positivo = P \ e \ Sadio = S$$
 
$$P(D|P) = \frac{P(D \cap P)}{P(P)}$$
 
$$P(P \cap D) = P(D) * P(P|D)$$
 
$$P(P \cap S) = P(S) * P(P|S)$$
 
$$P(P) = P(P \cap D) + P(P \cap S)$$
 
$$Pela \ informado =$$
 
$$P(P|D) = 93\%, P(P|S) = 1\%, P(S) = 1 - P(D) = 99, 4\%, P(D) = 0, 6\%$$
 
$$Logo,$$
 
$$P(D|P) = \frac{P(D) * P(P|D)}{P(D) * P(P|D) + P(S) * P(P|S)}$$
 
$$P(D|P) = \frac{0, 6 * 93}{0, 6 * 93 + 99, 4 * 1} = \frac{55, 8}{155, 2} \Rightarrow 36\%$$

**Exercício 3**- Considere três urnas com as seguintes configurações: a urna I contém 5 bolas pretas, 3 brancas e 4 vermelhas; a urna II contém 3 bolas pretas, 5 brancas e 2 vermelhas; a urna III contém 4 bolas pretas, 2 brancas e 2 vermelhas. Lança-se um dado equilibrado. Se sair 5, uma bola da urna I é retirada; se sair 1, 4, então uma bola da urna II é retirada; se sair 2, 3 ou 6, então uma bola da urna III é retirada.

- (a) Calcule a probabilidade da bola retirada ser vermelha.
- (b) Calcule a probabilidade de ter sido sorteada a urna II, sabendo-se que a bola retirada foi vermelha.

a) 
$$P(Vermelhas) = \frac{1}{6} * \frac{4}{12} + \frac{2}{6} * \frac{2}{10} + \frac{3}{6} * \frac{2}{8} = \frac{1}{18} + \frac{1}{15} + \frac{1}{8} \Rightarrow \frac{89}{360}$$
  
b)  $U1, U2, U3 = Urna \ 1, 2 e \ 3$   
 $P(U2|V) = \frac{P(U2 \cap V)}{P(V)} = \frac{P(U2) * P(V|U2)}{P(V)}$   
 $P(V) = P(U1 \cap V) + P(U2 \cap V) + P(U3 \cap V) = \frac{89}{360}(Letra " a ")$   
 $Logo,$   
 $P(U2|V) = \frac{2/6 * 2/10}{89/360} = \frac{4/60}{89/360} = \frac{24}{89}$ 

**Exercício 4**-Uma moeda é viciada de modo que a probabilidade de sair cara é 4 vezes maior do que a probabilidade de sair coroa. Para dois lançamentos independentes dessa moeda, determine:

(a) O espaço amostral.

$$\Omega = [(Coroa, Cara), (Cara, Coroa), (Coroa, Coroa), (Cara, Cara)]$$

(b) A probabilidade de sair somente uma cara.

$$P(Cara) = 4 * P(Coroa)$$
 $P(Cara) = 1 \Rightarrow P(Cara) = 4/5 e P(Coroa) = 1/5$ 
 $p(x) = P[X = K] = \binom{n}{k} p^k (1-p)^{n-k}$ 
 $n = 2 e k = 1 e p = P(Coroa)$ 
 $logo, \ p(x) = \binom{2}{1} \frac{4}{5} (1 - \frac{4}{5})$ 
 $p(x) = 2 * \frac{4}{5} * \frac{1}{5} \Rightarrow \frac{8}{25}$ 

(c) A probabilidade de sair pelo menos uma cara.

$$P(Cara) = P(Na\ primeira\ e\ n\ o\ na\ segunda) + P(Na\ segunda\ e\ n\ o\ na\ primeira) + P(Nas\ duas)$$
 
$$P(Cara) = 4/5*1/5+1/5*4/5*4/5 = \frac{4}{25} + \frac{4}{25} + \frac{16}{25} \Rightarrow \frac{24}{25}$$

(d) A probabilidade de dois resultados iguais.

$$P(Iguais) = P(Duas\ caras) + P(Duas\ Coroas)$$
  
=  $1/5*1/5+4/5*4/5 = \frac{1}{25} + \frac{16}{25} \Rightarrow \frac{17}{25}$ 

**Exercício 5**-Os amigos David Gilmour, Robert Plant, Nick Manson e Jimmy Page desejam fazer um amigo oculto entre eles. Calcule a probabilidade de que este amigo oculto não d^e errado.

**Obs:** um amigo oculto dá errado quando uma pessoa sorteia ela mesma.

Os participantes David Gilmour, Robert Plant, Nick Manson e Jimmy Page são respectivamente, 1,2,3 e 4.

Probabilidade de dar errado.

| P(1) | P(2) | P(3) | P(4) |
|------|------|------|------|
| 1234 | 1234 | 1234 | 1234 |
| 1243 | 1243 | 1432 | 1324 |
| 1324 | 3214 | 2134 | 2134 |
| 1343 | 3241 | 2431 | 2314 |
| 1423 | 4213 | 4132 | 3124 |
| 1432 | 4231 | 4231 | 3214 |

Considerando os números em negrito como repetidos temos a probabilidade de não acontecer temos que:

$$egin{aligned} P(Acontecer) &= 1 - P(Acontecer)^c \ P(Acontecer)^c &= rac{15}{24} \ Logo, \ P(Acontecer) &= 1 - rac{15}{24} \Rightarrow rac{9}{24} \end{aligned}$$

**Exercício 6**- Seja X uma variável aleatória tal que:

$$P(X = 1) = \frac{1}{8}, \quad P(X = 3) = \frac{2}{8} \quad e \quad P(X = 5) = \frac{5}{8}.$$

- (a) Calcule P(X > 2).
- (b) Calcule  $P(X \le 2)$ .
- (c) Calcule a esperança e a variância de X.
- (d) Esboce o gráfico da função de distribuição acumulada de X.

a) 
$$P(X > 2) = P(X = 3) + P(X = 5) = \frac{2}{8} + \frac{5}{8} \Rightarrow \frac{7}{8}$$
  
b)  $P(X > 2) = P(X = 1) = \frac{1}{8}$   
c)  $E[X] = \sum_{i=1}^{8} xi * P(X = xi)$   
 $E[X] = 1 * \frac{1}{8} + 3 * \frac{2}{8} + 5 * \frac{5}{8} \Rightarrow 4$ 

$$\operatorname{Var}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2.$$

$$\begin{split} E[X^2] &= \sum xi^2 * P(X=xi) \\ E[X^2] &= 1^2 * \frac{1}{8} + 3^2 * \frac{2}{8} + 5^2 * \frac{5}{8} \\ E[X^2] &= \frac{1}{8} + \frac{18}{8} + \frac{125}{8} \Rightarrow \frac{144}{8} \ ou \ 18 \\ Logo, \ Var(X) &= 18 - 4^2 = 18 - 16 \Rightarrow 2 \end{split}$$



**Exercício 7.** Consideremos o lançamento de dois dados equilibrados. O espaço amostral desse experimento é formado pelos pares ordenados (i, j), em que i, j = 1, 2, 3, 4, 5, 6. Suponhamos que nosso interesse esteja no máximo das faces dos dois dados, isto é, vamos considerar a variável aleatória X que é dada por:

X = o máximo das faces dos dois dados.

Assim, por exemplo, se o resultado do experimento foi (2,4), teremos que o valor de X neste ponto será 4, pois

$$X(2,4) = \text{máximo}\{2,4\} = 4.$$

Análise similar nos permite afirmar que se o resultado do experimento foi (5,5), então X assumirá, neste ponto, o valor 5. Em relação a esta variável aleatória X, responda:

- (a) Quais os valores que X assume?
- (b) Para cada valor k que X assume, determine P(X = k).
- (c) Calcule P(X < 3) e  $P(X \ge 3)$ .
- (d) Calcule P(X > 2|X < 5).
- (e) Esboce o gráfico da função de distribuição acumulada de X.

a) 
$$X = \Omega = [1, 2, 3, 4, 5, 6]$$

$$b) P(X = 1) = [(1,1)] = \frac{1}{36}$$

$$P(X = 2) = [(2,1), (2,2), (1,2)] = \frac{3}{36}$$

$$P(X = 3) = [(3,1), (3,2), (3,3)(2,3), (1,3)] = \frac{5}{36}$$

$$Logo,$$

$$P(X = k) = \frac{1+2(k-1)}{36}$$

$$c) P(X < 3) = P(X = 1) + P(X = 2)$$

$$= \frac{1}{36} + \frac{3}{36} = \frac{4}{36}$$

$$Como, P(X >= 3) = 1 - P(X < 3)$$

$$= 1 - \frac{4}{36} \Rightarrow \frac{32}{36}$$

$$d) P(X > 2|X < 5) = \frac{P(2 < X < 5)}{P(X < 5)}$$

$$= \frac{5/36 + 7/36}{1 - (9/36 + 11/36)} = \frac{12/36}{16/36} \Rightarrow \frac{3}{4}$$



**Exercício 8.** Seja  $X \sim \mathcal{N}(5, 16)$ . Obtenha:

(a) 
$$P(X \le 13)$$
.

- (b) P(X > 1).
- (c) Represente graficamente as probabilidades obtidas em (a) e (b).
- (d) O valor de a tal que  $P(X \le a) = 0.04$ .

a) 
$$P(\frac{X-5}{4} \le \frac{13-5}{4})a)$$
  $P(X \le 13) = P(\frac{X-5}{4} \le 2) \Rightarrow P(Z \le 2)$   
 $P(Z \le 2) = 0.5 + P(0 \le X \le 2)$   
 $= 0.5 + 0.4772$   
 $= 0.9772$ 

b) 
$$P(X > 1) = 0.5 - P(0 < X < 1)$$
  
= 0.5 - 0.3413  
= 0.1587

C)



$$d) \ P(X <= a) = 0.04$$
 
$$P(X <= a) = 0.5 + P(0 < X < a)$$
 
$$P(0 < X < a) = 0.04 - 0.5$$
 
$$P(0 < X < a) = -0.460 \Rightarrow a = 1.75$$
 
$$Logo, \ P(X <= -1.75) = 0.04$$

Exercício 9. Num teste educacional com crianças, o tempo para a realização de uma bateria de questões de raciocínio verbal e lógico é medido e anotado para ser comparado com um modelo teórico. Este teste é utilizado para identificar o desenvolvimento das crianças e auxiliar a aplicação de medidas corretivas. O modelo teórico considera T, tempo de teste em minutos, como uma variável aleatória contínua com função densidade de probabilidade dada por:

$$f(t) = \begin{cases} \frac{1}{40}(t-4), & 8 \le t < 10; \\ \frac{3}{20}, & 10 \le t \le 15; \\ 0, & \text{caso contrário.} \end{cases}$$

- (a) Esboce o gráfico de f.
- (b) Prove que f é, de fato, uma função densidade.
- (c) Calcule  $P(0 < T \le 12)$ .
- (d) Calcule  $P(9 < T \le 12)$ .

a)



b)  $Peloinformado \forall f(x) \geq 0$ ,

$$Agora\,veremos\,se\int_{-\infty}^{\infty}f(x)=1,$$

$$\int_{-\infty}^{\infty} f(x) = \int_{-\infty}^{8} 0 \, dx + \int_{8}^{10} \frac{1}{40} (t - 4) \, dx + \int_{10}^{15} \frac{3}{20} \, dx + \int_{15}^{\infty} 0 \, dx$$

$$= \frac{1}{40} \int_{8}^{10} (t - 4) \, dx + \frac{3}{20} \int_{10}^{15} \, dx$$

$$= \frac{1}{40} \left[ \frac{t^{2}}{2} - 4t \right]_{8}^{10} + \frac{3}{20} [x]_{10}^{15}$$

$$= \frac{1}{40} [50 - 40 - 32 + 32] + \frac{3}{20} [15 - 10]$$

$$= \frac{10}{40} + \frac{15}{20}$$

$$= \frac{5}{20} + \frac{15}{20} \Rightarrow 1$$

$$c) P(0 < X \le 12) = \int_0^8 0 \, dx + \int_8^{10} \frac{1}{40} (t - 4) \, dx + \int_{10}^{12} \frac{3}{20} \, dx$$

$$= \frac{1}{40} \int_8^{10} (t - 4) \, dx + \frac{3}{20} \int_{10}^{12} \, dx$$

$$= \frac{1}{40} \left[ \frac{t^2}{2} - 4t \right]_8^{10} + \frac{3}{20} [x]_{10}^{12}$$

$$= \frac{1}{40} [50 - 40 - 32 + 32] + \frac{3}{20} [12 - 10]$$

$$= \frac{10}{40} + \frac{6}{20}$$

$$= \frac{5}{20} + \frac{6}{20} \Rightarrow \frac{11}{20}$$

$$c) P(9 < X \le 12) = \int_{9}^{10} \frac{1}{40} (t - 4) dx + \int_{10}^{12} \frac{3}{20} dx$$

$$= \frac{1}{40} \int_{9}^{10} (t - 4) dx + \frac{3}{20} \int_{10}^{12} dx$$

$$= \frac{1}{40} \left[ \frac{t^2}{2} - 4t \right]_{9}^{10} + \frac{3}{20} [x]_{10}^{12}$$

$$= \frac{1}{40} [50 - 40 - \frac{81}{2} + 36] + \frac{3}{20} [12 - 10]$$

$$= \frac{1}{40} \left[ \frac{-81}{2} + 46 \right] + \frac{6}{20}$$

$$= \frac{1}{40} \left[ \frac{92 - 81}{2} \right] + \frac{6}{20}$$

$$= \frac{1}{40} \frac{11}{2} + \frac{6}{20}$$

$$= \frac{11}{80} + \frac{24}{80} \Rightarrow \frac{35}{80} ou \frac{5}{16}$$