Reinforcement Learning: Basics and DQN

Changyou Chen

Department of Computer Science and Engineering Universitpy at Buffalo, SUNY changyou@buffalo.edu

April 25, 2019

Limitation

Limitations:

- Iteration over / storage for all states and actions: requires small, discrete state-action space:
 - sampling-based approximations
- Update equations require access to dynamics mode:
 - Q/V function fitting.

Can tabular methods scale?

Gridworld 10^1

Tetris 10^60

Atari 10^308 (ram) 10^16992 (pixels)

Approximate Q-Learning

- Instead of a table, we have a parametrized *Q*-function $Q_{\theta}(s, a)$:
 - Can be a linear function in features:

$$Q_{\theta}(s,a) = \theta_0 f_0(s,a) + \theta_1 f_1(s,a) + \cdots + \theta_n f_n(s,a)$$

- Or a complicated neural network.
- Learning rule:

$$egin{aligned} heta_{k+1} &= heta_k - lpha
abla_{ heta} \left[rac{1}{2} \left(Q_{ heta}(s, a) - ext{target}(s')
ight)^2
ight] |_{ heta = heta_k} \ ext{target}(s') &\triangleq R(s, a, s') + \gamma \max_{a'} Q_{ heta_k}(s', a') \end{aligned}$$

$$Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right)$$

$$\approx R(s, a, s') + \gamma \max_{a'} Q_k(s', a'), \text{ with } s' \sim P(\cdot|s, a)$$

Connection to Tabular Q-Learning

Suppose
$$\theta \in \mathbb{R}^{|S| \times |A|}$$
, $Q_{\theta}(s, a) \equiv \theta_{sa}$
$$\nabla_{\theta_{sa}} \left[\frac{1}{2} (Q_{\theta}(s, a) - \operatorname{target}(s'))^2 \right]$$

$$= \nabla_{\theta_{sa}} \left[\frac{1}{2} (\theta_{sa} - \operatorname{target}(s'))^2 \right]$$

$$= \theta_{sa} - \operatorname{target}(s')$$

Plug into update:
$$\theta_{sa} \leftarrow \theta_{sa} - \alpha(\theta_{sa} - \text{target}(s'))$$

$$= (1 - \alpha)\theta_{sa} + \alpha[\text{target}(s')]$$

Compare with Tabular Q-Learning update:

$$Q_{k+1}(s, a) \leftarrow (1 - \alpha)Q_k(s, a) + \alpha \left[\text{target}(s') \right]$$

Convergence of Approximate Q-Learning

- It is not guaranteed to converge, even if the function approximation is expressive enough to represent the true *Q*-function:
 - ► The approximation is sequential, so if each time there induces a large enough error, the aggregate error might be exploded.

Deep Q-Learning¹

Artari Games

Breakout game

How to define a state?

- Location of the paddle
- Location/direction of the ball
- Presence/absence of each individual brick

Use screen pixels!

DQN in Atari

Deep Q-Learning

- Naive Q-learning oscillates or diverges with neural nets:
 - Data is sequential:
 - Successive samples are correlated, non-i.i.d.
 - Policy changes rapidly with slight changes to Q-values:
 - Policy may oscillate
 - Distribution of data can swing from one extreme to another
 - Scale of rewards and Q-values is unknown:
 - Naive Q-learning gradients can be large unstable when backpropagated

Approximate Q-Learning

- Instead of a table, we have a parametrized *Q*-function $Q_{\theta}(s, a)$:
 - Can be a linear function in features:

$$Q_{\theta}(s,a) = \theta_0 f_0(s,a) + \theta_1 f_1(s,a) + \cdots + \theta_n f_n(s,a)$$

- Or a complicated neural network.
- Learning rule:

$$egin{aligned} heta_{k+1} &= heta_k - lpha
abla_{ heta} \left[rac{1}{2} \left(Q_{ heta}(s, a) - \operatorname{target}(s')
ight)^2
ight] |_{ heta = heta_k} \ \operatorname{target}(s') &\triangleq R(s, a, s') + \gamma \max_{a'} Q_{ heta_k}(s', a') \end{aligned}$$

Deep Q-Learning

- Deep Q-Network provides a stable solution to deep value-based RL:
 - Use experience replay:
 - Break correlations in data, bring us back to i.i.d. setting
 - Learn from all past policies
 - Using off-policy Q-learning
 - Freeze target Q-network:
 - Avoid oscillations
 - Break correlations between Q-network and target
 - Clip rewards or normalize network adaptively to sensible range:
 - Robust gradients

Algorithm:

Start with $Q_0(s,a)$ for all s, a.

Deep *Q***-Learning: Experience Replay**

- To remove correlations, build data-set from agent's own experience:
 - ▶ Take action a_t according to ϵ -greedy policy
 - Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D} (Huge data base to store historical samples)
 - ▶ Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
 - ▶ Optimize MSE between *Q*-network and *Q*-learning targets, *e.g.*,

$$\begin{aligned} L_k(\theta_k) &= \mathbb{E}_{s,a,r,s' \sim \mathcal{D}} \left[\frac{1}{2} \left(Q_{\theta_k}(s,a) - \text{target}(s') \right)^2 \right] \\ \text{target}(s') &\triangleq R(s,a,s') + \gamma \max_{a'} Q_{\theta_k}(s',a') \end{aligned}$$

Deep *Q*-Learning: Fixed Target *Q*-Network

- To avoid oscillations, fix parameters used in Q-learning target:
 - ▶ Compute *Q*-learning targets w.r.t. old, fixed parameters θ_k^- :

$$\mathsf{target}(\boldsymbol{s}';\boldsymbol{\theta}_k^-) \triangleq R(\boldsymbol{s},\boldsymbol{a},\boldsymbol{s}') + \gamma \max_{\boldsymbol{a}'} Q_{\boldsymbol{\theta}_k^-}(\boldsymbol{s}',\boldsymbol{a}')$$

▶ Optimize MSE between *Q*-network and *Q*-learning targets, *e.g.*,

$$L_k(heta_k) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}} \left[rac{1}{2} \left(Q_{ heta_k}(s,a) - \mathsf{target}(s'; heta_k^-)
ight)^2
ight]$$

• Periodically update fixed parameters $\theta_k^- = \theta_k$.

Deep Q-Learning: Reward / Value Range

- DQN clips the reward to [-1, +1].
- This prevents Q-values from becoming too large.
- Ensures gradients are well-conditioned.

Stable DQN

DQN

With replay, with target Q	With replay, without target Q	Without replay, with target Q	Without replay, without target Q
316.8	240.7	10.2	3.2
1006.3	831.4	141.9	29.1
7446.6	4102.8	2867.7	1453.0
2894.4	822.6	1003.0	275.8
1088.9	826.3	373.2	302.0
	with target Q 316.8 1006.3 7446.6 2894.4	with target Q without target Q 316.8 240.7 1006.3 831.4 7446.6 4102.8 2894.4 822.6	with target Q without target Q with target Q 316.8 240.7 10.2 1006.3 831.4 141.9 7446.6 4102.8 2867.7 2894.4 822.6 1003.0

Algorithm

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function \hat{Q} with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1,T do
         With probability \varepsilon select a random action a_t
         otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
         Execute action a_t in emulator and observe reward r_t and image x_{t+1}
         Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
         Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
         Sample random minibatch of transitions (\phi_i, a_j, r_j, \phi_{j+1}) from D
        \mathrm{Set}\,y_{j} = \left\{ \begin{array}{cc} r_{j} & \mathrm{if}\,\,\mathrm{episode}\,\,\mathrm{terminates}\,\,\mathrm{at}\,\,\mathrm{step}\,\,\mathrm{j} + 1 \\ r_{j} + \gamma\,\,\mathrm{max}_{a'}\,\,\hat{Q}\Big(\phi_{j+1}, a';\,\theta^{-}\Big) & \mathrm{otherwise} \end{array} \right.
         Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
         network parameters \theta
         Every C steps reset \hat{Q} = Q
   End For
End For
```

Training

Testing

After Training

Results

Results

- Train 2 action-value functions, Q_1 and Q_2 .
- Do Q-learning on both, but
 - never on the same time steps (Q_1 and Q_2 are independent)
 - ightharpoonup pick Q_1 or Q_2 at random to be updated on each step
- If updating Q_1 , use Q_2 to evaluate the target:

$$Q_1(s_t, a_t) = Q_1(s_t, a_t) + \alpha \left(R_{t+1} + Q_2(s_{t+1}, \underset{a}{\operatorname{argmax}} Q_1(s_{t+1}, a)) - Q_1(s_t, a_t) \right)$$

• Action selections are ϵ -greedy with respect to the sum of Q_1 and Q_2 .

Deep Q-Learning

$$\begin{aligned} \mathsf{target}(s'; \theta_k^-) &\triangleq R(s, a, s') + \gamma \max_{a'} Q_{\theta_k^-}(s', a') \\ L_k(\theta_k) &= \mathbb{E}_{s, a, r, s' \sim \mathcal{D}} \left[\frac{1}{2} \left(Q_{\theta_k}(s, a) - \mathsf{target}(s'; \theta_k^-) \right)^2 \right] \end{aligned}$$

```
Initialize Q_1(s,a) and Q_2(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily Initialize Q_1(terminal\text{-}state,\cdot) = Q_2(terminal\text{-}state,\cdot) = 0 Repeat (for each episode):
   Initialize S Repeat (for each step of episode):
   Choose A from S using policy derived from Q_1 and Q_2 (e.g., \varepsilon-greedy in Q_1 + Q_2) Take action A, observe R, S' With 0.5 probabilility:
   Q_1(S,A) \leftarrow Q_1(S,A) + \alpha \Big(R + \gamma Q_2 \big(S', \arg \max_a Q_1(S',a)\big) - Q_1(S,A)\Big) else:
   Q_2(S,A) \leftarrow Q_2(S,A) + \alpha \Big(R + \gamma Q_1 \big(S', \arg \max_a Q_2(S',a)\big) - Q_2(S,A)\Big) S \leftarrow S':
```

until S is terminal

- Current Q-network θ is used to select actions.
- Older Q-network θ^- is used to evaluate actions.

Dueling Network Architecture

Motivation

Q function should be designed more wisely: containing an action-independent component

For many states:

- unnecessary to estimate the value of each action choice, for example, move left or right only matters when a collision is eminent.
- In most of states, the choice of action has no affect on what happens

Decompose Q

$$Q^{\pi}(s,a) = V^{\pi}(s) + A^{\pi}(s,a)$$

 $\Rightarrow A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s) = Q^{\pi}(s,a) - \mathbb{E}_{a \sim \pi}[Q^{\pi}(s,a)]$
(advantage function)

Saliency map on the Atari game Enduro

- 1. Focus on **horizon**, where new **cars appear**
- 2. Focus on the score

Not pay much attention when there are **no cars** in front

Attention on car immediately in front making its choice of action very relevant

Dueling Network

- Single Q-network with two streams.
- Produce separate estimations of state value function V and advantage function A.

sharing convolutional feature learning module

• outputs a scalar value V(s) and a |A|-dimensional vector A(s, a).

Aggregation Modules

- Add: Q(s, a) = V(s) + A(s, a).
- Subtract max: $Q(s, a) = V(s) + (A(s, a) \max_{a'} A(s, a'))$:
 - force A to have zero at the chosen optimal action.
 - Equivalent to shifting V.
- Subtract mean: $Q(s, a) = V(s) + \left(A(s, a) \frac{1}{|\mathcal{A}|} \sum_{a'} A(s, a')\right)$:
 - ▶ loses the original semantics of V and A.
 - but increases the stability of the optimization.
 - often works best.

Experiments

Table 1. Mean and median scores across all 57 Atari games, measured in percentages of human performance.

	30 no-ops		Human Starts	
	Mean	Median	Mean	Median
Prior. Duel Clip	591.9%	172.1%	567.0%	115.3%
Prior. Single	434.6%	123.7%	386.7%	112.9%
Duel Clip	373.1%	151.5%	343.8%	117.1%
Single Clip	341.2%	132.6%	302.8%	114.1%
Single	307.3%	117.8%	332.9%	110.9%
Nature DQN	227.9%	79.1%	219.6%	68.5%