Estadística Computacional

Inferencia estadística

Braulio Fuentes - Diego Quezada

Temario

- Introducción
- Estimación puntual
 - Propiedades estimadores
 - Método de los momentos
 - Método de máxima verosimilitud (MLE)
- Intervalos de confianza

Introducción

- El objetivo es sacar conclusiones sobre uno o más parámetros que definen la distribución.
- Seguimos trabajando bajo el supuesto IID.
- En particular estudiaremos inferencia paramétrica. Es decir vamos a inferir sobre modelos paramétricos de la forma $f(x;\theta):\theta\in\Theta$.
- Por ejemplo, para data proveniente de una distribución normal el modelo se define como $f(x;\mu,\sigma)$.

Estimación puntual

La idea es obtener una única "mejor estimación" $\hat{\theta}$ de un estadístico de interés θ .

Importante destacar que $\hat{ heta}$ es una función de la muestra X_i , es una **variable aleatoria**.

Dado un parámetro de interés θ , existe más de un estimador razonable $\hat{\theta}$ generalmente. Se elegirá aquel que **mejor se desempeña** para cualquier muestra X_i .

La pregunta es cómo medir el desempeño 🤔

Características

Estimador insesgado

Un estimador puntual $\hat{ heta}$ es un estimador **insesgado** de heta si $E[\hat{ heta}] = heta.$

Para estimadores sesgados es el sesgo es $E[\hat{ heta}] - heta.$

Estimador consistente

Recordemos el mínimo error cuadratico:

$$MSE = E[(\hat{\theta} - \theta)^2] = V[\hat{\theta}] + (E[\hat{\theta}] - \theta)^2$$

$$\sqrt{V[\hat{ heta}]}$$
 se conoce como error estándar y $E[\hat{ heta}] - heta$ como sesgo.

Un estimador es **consistente** cuando el sesgo y el error estándar tienden a cero a medida que $n \to \infty$.

Estimador eficiente

Recordemos la cota de Cramer-Rao:

$$V[\hat{ heta}] \geq rac{1}{-E[rac{\partial^2 \log(f(\underline{x}, heta))}{\partial heta^2}]} = rac{1}{-nE[rac{\partial^2 \log(f(x, heta))}{\partial heta^2}]}$$

Un estimador es **eficiente** cuando su variaza es mínima, es decir cuando su varianza cumple la igualdad en la expresión anterior.

Estimador suficiente

Un estimador es suficiente cuando es posible expresar la función de verosimilitud como:

$$L(\underline{x}, \theta) = h(\hat{\theta}, \theta) \cdot g(\underline{x})$$

En tal caso sabemos que el estimador está utilizando toda la información de la muestra.

Método de los momentos

Supongamos una muestra extraída desde una distribución con m parámetros. Para obtener $\hat{\theta}$ se deben igualar los primeros m momentos muestrales con los poblacionales y resolver las ecuaciones.

Método de máxima verosimilitud

Buscamos los parámetros θ_i que "más concuerdan" con los datos observados.

Asegúrese de comprender la imagen de la primera slide.

Se maximiza la función de verosimilitud (likelihood):

$$f(x_1,\ldots,x_n; heta)=\prod_{i=1}^n f(x_i; heta)$$

A la hora de realizar cálculos se suele maximizar el logaritmo natural de la función de verosimilitud.

Propiedades EMV

- 1. Asintóticamente insesgado.
- 2. Asintóticamente normal.

$$rac{\hat{ heta}- heta}{\sqrt{V[\hat{ heta}]}}
ightsquigartimes N(0,1)$$

- 3. Asintóticamente eficiente.
- 4. Invariante bajo transformaciones biunívocas.

Sea $\hat{\theta}$ el EMV de θ , entonces para cualquier funcion $h(\theta)$ biunívoca, $h(\hat{\theta})$ es el EMV.

5. Si existe un estimador suficiente, entonces EMV lo es.

Intervalos de confianza

Las estimaciones puntuales no indican un grado de correctitud, no se sabe con qué probabilidad $\hat{\theta}=\theta$.

La alternativa es generar un intervalo $[\hat{\theta}_1, \hat{\theta}_2]$ en donde se sepa que el valor θ pertenece a este con un nivel de confianza (probabilidad) dado.

Las ganancia de confiabilidad acarrea una pérdida de precisión.

Algunos intervalos

Intervalos para la media

Notación
$$P(z_{rac{lpha}{2}} \leq Z \leq z_{1-rac{lpha}{2}}) = \gamma = 1-lpha$$

1. Con varianza conocida:

$$\left(\overline{x}+z_{rac{lpha}{2}}\cdotrac{\sigma}{\sqrt{n}},\quad \overline{x}+z_{1-rac{lpha}{2}}\cdotrac{\sigma}{\sqrt{n}}
ight)$$

2. Con varianza desconocida y n "grande":

$$\left(\overline{x}+z_{rac{lpha}{2}}\cdotrac{s}{\sqrt{n}},\quad \overline{x}+z_{1-rac{lpha}{2}}\cdotrac{s}{\sqrt{n}}
ight)$$

Si la muestra no es "grande", se utiliza la distribución t student con n-1 grados de libertad donde n es el tamaño de la muestra.

Notación
$$P(t_{rac{lpha}{2},n-1}\leq T\leq t_{1-rac{lpha}{2}},n-1)=\gamma=1-lpha$$

3. Con varianza desconocida:

$$\left(\overline{x}+t_{rac{lpha}{2},n-1}\cdotrac{\sigma}{\sqrt{n}},\quad \overline{x}+t_{1-rac{lpha}{2},n-1}\cdotrac{\sigma}{\sqrt{n}}
ight)$$

Intervalo para la varianza

Es necesario una muestra proveniente de una distribución normal.

Notación
$$P(\chi^2_{rac{lpha}{2},n-1}\leq \chi^2\leq \chi^2_{1-rac{lpha}{2},n-1})=\gamma=1-lpha$$

Utilizando la distribución chi cuadrado obtenemos:

$$\left(rac{(n-1)S^2}{\chi_{1-rac{lpha}{2},n-1}},rac{(n-1)S^2}{\chi_{rac{lpha}{2},n-1}}
ight)$$

Se puede obtener un intervalo para σ tomando la raiz cuadrada del intervalo para σ^2

Recomendaciones

- 1. https://towardsdatascience.com/understanding-maximum-likelihood-estimation-fa495a03017a
- 2. https://www.statology.org/confidence-intervals-python/