Семинар 19: Linux networking

30 апреля, 2020

Протоколы

- Современные сети строятся на основе протоколов
- Каждый протокол абстракция над другим протоколом (более низким) для решения какой-то проблемы
- ▶ Поэтому иногда говорят стек протоколов

Модель OSI

- Разделяет современные протоколы на 7 уровней
- Physical layer, L1
- Data link layer, L2
- ► Network layer, L3
- ► Transport layer, L4
- ▶ Тут немного пропустим :D
- ► Application layer, L7

Модель OSI: physical layer

- Самый нижний слой
- Описывает то, как данные будут переданы через физическую среду
- Протоколы:
- ► Bluetooth
- Ethernet physical layer: Ethernet over twisted pair, Fast Ethernet, Gigabit Ethernet, ...
- ► IEEE 802.11

Модель OSI: link layer

- ► Строится поверх L1
- ▶ Обеспечивает обмен данными между узлами в одной сети LAN (local area network) или WAN (wide area network)
- ► На этом уровне появляется канальный адрес (link address), например, MAC-адрес
- ► IEEE 802.11
- Ethernet
- На этом уровне работают, например, сетевые коммутаторы (свитчи)

Модель OSI: network layer

- ▶ Обеспечивает связь между разными LAN и WAN
- ► На этом уровне появляется *сетевой адрес (network address)*, например, IP-адрес
- Появляется понятие маршрутизации
- Основной протокол Internet Protocol (IP)

IP: IP-адрес и маски подсетей

- ▶ IPv4 адрес состоит из 32 бит (для IPv6 128)
- ▶ Маска подсети множество IP-адресов с одинаковым префиксом
- ► CIDR-нотация: 10.0.0.0/8 общий префикс 8 бит
- ▶ Ещё иногда записывают так: 255.0.0.0
- ▶ Некоторые зарезервированные сети: 10.0.0.0/8, 127.0.0.1/8, 192.168.0.0./16

ІР: маршрутизация

▶ Теперь не все узлы сети связаны напрямую. Как передавать данные между ними?

ІР: маршрутизация

- Теперь не все узлы сети связаны напрямую. Как передавать данные между ними?
- ▶ Через другие узлы!
- ▶ Передача между соседними узлами в IP-сети называется прыжком или хопом (hop)
- ▶ Каждый узел сети имеет таблицу маршрутизации (иногда даже несколько)
- Эта таблица содержит маски подсетей и узел, куда нужно переслать данные
- AS это система IP-сетей и маршрутизаторов, управляемых одним или несколькими операторами, имеющими единую политику маршрутизации с Интернетом (©Wikipedia)

ІР: маршрутизация

- ► AS это система IP-сетей и маршрутизаторов, управляемых одним или несколькими операторами, имеющими единую политику маршрутизации с Интернетом (ⓒWikipedia)
- ▶ Точка обмена трафиком точки обмена трафиком между разными AS :)
- ▶ Одна из самых крупных в Европе и России MSK-IX

IPv4: устройство пакета

												I	v4 F	lead	er Fo	orma	ıt																	
Offsets	Octet					0				1							2								3									
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	2	5 26	27	7 2	8 2	9 3	30	31
0	0		Ver	sion		Г	- 1	HL			DSCP EC						CN	Total Length																
4	32	Identification Flags Fragment												gment Offset																				
8	64	Time To Live									Protocol									Header Checksum														
12	96		Source IP Address																															
16	128														D	esti	natio	n IP	Add	ress														
20	160																																	
24	192															0-		CE Y		e.														
28	224															Op	lons	(if II	nL>	٥)														
32	256																																	

©Wikipedia

IP: мини-бонус про TTL

- ► TTL tive-to-live
- Байт, который описывает максимальное количество прыжков в сети
- Если очередной хост уменьшил TTL до нуля, то пакет просто дропается, а отправителю посылается специальное сообщение по протоколу ICMP (TTL exceeded)

ІР: проблемы

- ► Не гарантирует доставку данных (packet loss)
- ► Не гарантирует порядок доставки (packet reordering)
- ► Не гарантирует, что пакет будет отправлен лишь один раз (packet duplication)
- ► Непонятно как реализовывать multitenancy IP протокола нельзя всем приложениям рассылать все IP-пакеты

Модель OSI: transport layer

- Используется для передачи данных между различными приложениями на узлах сети
- ► Примеры: TCP, UDP, SCTP

TCP

- ▶ Вводит понятие порта приложения адрес получателя на IP-узле
- Обеспечивает надёжную доставку данных (reliable delivery)
- ▶ Обеспечивает порядок доставки и дедупликацию данных
- Connection-oriented приложения должны установить полнодуплексное соединение
- Data stream данные передаются не отдельными пакетами, а непрерывным потоком
- ► Также обеспечивает congestion control и flow control

ТСР: устройство пакета

TCP segment header																																			
Offsets	Octet	0									1										:	2					3								
Octet	Bit	7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3														3	2	1	0																
0	0		Source port															Destination port																	
4	32		Sequence number																																
8	64		Acknowledgment number (if ACK set)																																
12	96	Di	Data offset Reserved N C R W C R C S S F I Window Size																																
16	128									Chec	ksum	1										Urg	gent	t po	int	er	(if l	JR	G s	et)					
20	160								Optio	ons (i	data	offse	et > 5.	Pado	led a	the	end v	vith	"0"	byt	es	if n	ece	ssa	ry.))									

- ▶ Механизм установки соединения «рукопожатие»
- ▶ Выполняется в три этапа:

- ▶ Механизм установки соединения «рукопожатие»
- Выполняется в три этапа:
- 1. Инициатор соединения (клиент) посылает пакет с флагом **SYN** серверу

- ▶ Механизм установки соединения «рукопожатие»
- ▶ Выполняется в три этапа:
- 1. Инициатор соединения (клиент) посылает пакет с флагом **SYN** серверу
- 2. Сервер посылает пакет с флагами **SYN** и **ACK** клиенту, а также sequence number, с которого будут нумероваться все остальные байты

- ▶ Механизм установки соединения «рукопожатие»
- Выполняется в три этапа:
- 1. Инициатор соединения (клиент) посылает пакет с флагом **SYN** серверу
- 2. Сервер посылает пакет с флагами **SYN** и **ACK** клиенту, а также sequence number, с которого будут нумероваться все остальные байты
- 3. Клиент посылает АСК

UDP

- Не даёт никаких гарантий
- ▶ Пересылка осуществляется через пакеты (UDP datagrams)
- ▶ Используется там, где важна latency (например, онлайн игры)
- ► Или bandwidth (например, BitTorrent)

Модель OSI: application layer

- ▶ Протоколы приложений (веб-браузеры, почтовые клиенты, игры)
- ▶ Один из самых известных HyperText Transfer Protocol (HTTP)
- ▶ Почтовые протоколы SMTP, POP3
- Secure Shell (SSH)

Теперь о том, как с этим работать в Linux

Спасибо!