JP9111539

Title: PRODUCTION OF POLYESTER FILAMENT YARN

Abstract:

PROBLEM TO BE SOLVED: To obtain the subject yarn, capable of readily separating a core part from a fin part by weight reduction with an alkali and useful for woven or knitted fabrics by adding and mixing a compound capable of microscopically separating a phase from a polyester with the polyester, discharging the core part and fin parts from separate discharging holes and then joining both the parts. SOLUTION: A compound having 0.1-2.0 compatibility parameter &chi of the formula &chi =Va /RT(&delta a -&delta b) <2> [Va is the molar volume of a polyester (cm<3> /mol); R is a gas constant (J/mol.K); T is the absolute temperature (K); &delta a and &delta b are each the solubility parameter of the polyester and added compound (J<1/2> /cm<3/2>)] in an amount of 0.5-5.0wt.% based on the total weight of the polyester is added and mixed with the polyester according to a masterbatch method. The core and fin parts are melt discharged from the separate discharging holes and then joined. Thereby, the filament yarn capable of assuming a bulky and soft touch feeling and producing a woven or a knitted fabric having a uniform appearance can be obtained by weight reduction with an alkali.

(19)日本国特許庁 (JP)

(51) Int.Cl.6

(12) 公開特許公報(A)

庁内整理番号

(11)特許出願公開番号

愛媛県松山市北吉田町77番地 帝人株式会

社松山事業所内

(74)代理人 弁理士 前田 純博

特開平9-111539

技術表示箇所

(43)公開日 平成9年(1997)4月28日

D01F	8/14			D 0		8/14		Z	
D01D	5/253			D0	1 D	5/253			
D 0 1 F	6/62	3 0 1		D 0	1 F	6/62		3 0 1 Z	
		303						303A	
								303J	
			審査請求	未請求	請求以	頁の数3	OL	(全 7 頁)	最終頁に続く
(21)出顧番号	•	特顏平7-272479		(71)	出願人		000003001 帝人株式会社		
(22)出顧日		平成7年(1995)10月20日		(70)	v'e nnle.	大阪府	大阪市		1丁目6番7号
				(12)	発明者	益田	剛		

FΙ

(54) 【発明の名称】 ポリエステルフィラメント糸の製造方法

識別記号

(57)【要約】

【課題】 アルカリ減量によってコアー部とフィン部が 容易に分離され、嵩高で柔らかい風合を呈すると共に、 均整な外観を有する織編物が製造可能なポリエステルフィラメントの製造方法を提供する。

【解決手段】 相溶性パラメーター x が 0.1~2.0 である化合物を、ポリエステル全重量に対して 0.5~5.0重量%含有するポリエステルを溶融紡糸して得た、断面が円形のコアー部と、該コアー部から放射状に突出し、且つ該コアー部の長さ方向に沿って延在する複数のフィン部とからなるポリエステルフィラメントを、アルカリ減量することにより、該フィン部を該コアー部から分離するに際し、該化合物を高濃度で含有するマスターバッチを該ポリエステルの重合工程以降の段階で、該ポリエステルに添加、混合して、溶融紡糸する。

【特許請求の範囲】

【請求項1】 下記式で表される相溶性パラメーター x が 0.1~2.0である化合物を、ポリエステル全重量 に対して 0.5~5.0重量%含有するポリエステルを 溶融紡糸して得た、断面が円形のコアー部と、該コアー部から放射状に突出し、且つ該コアー部の長さ方向に沿って延在する複数のフィン部とからなるポリエステルフィラメントを、アルカリ減量することにより、該フィン部を該コアー部から分離するに際し、該化合物を高濃度で含有するマスターバッチを該ポリエステルの重合工程 以降の段階で、該ポリエステルに添加、混合して、溶融 紡糸することを特徴とするポリエステルフィラメント糸の製造方法。

【数1】

$\chi = Va / RT (\delta a - \delta b)^{2}$

(上記式において、Va はポリエステルのモル容積(c m³ /mol)、Rは気体定数($J/mol\cdot K$)、T は絶対温度(K)、 δa 及び δb はそれぞれポリエステル及び化合物の溶解度パラメーター($J^{1/2}$ /c $m^{3/2}$)を表わす。)

【請求項2】 ポリエステルを溶融紡糸するに際し、円形吐出孔を通して溶融吐出されたポリエステルに、該円形吐出孔の周囲に間隔をおいて放射状に配置したスリット状吐出孔を通して溶融吐出させたポリエステルを溶融状態で接合し、冷却固化して、断面が円形のコアー部と、該コアー部の長さ方向に沿ってコアー部から放射状に突き出したフィン部とからなるフィラメント得ることを特徴とする請求項1記載のポリエステルフィラメント糸の製造方法。

【請求項3】 円形吐出孔の直径DA、並びにスリット 状吐出孔の最大長さLB及び最大幅WBが、下記式 (1)及び(2)を同時に満足する請求項2記載のポリ エステルフィラメント糸の製造方法。

【数2】

- $(1) 1 \le LB / DA \le 4$
- (2) $1/7 \le WB/DA \le 1/2$

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、特殊ポリエステルフィラメントの製造方法に関するものであり、更に詳しくは、アルカリ減量によりコア一部とフィン部が容易に分離され、フィラメント内に大きな空隙が形成されて、 嵩高で柔らかい風合いを呈することが可能なポリエステルフィラメントを製造する方法に関するものである。

[0002]

【従来の技術】ポリエステル繊維、特にポリエチレンテレフタレートマルチフィラメントは、衣料素材として広く用いられているが、緻密な繊維構造を有しているために、風合が硬い上、ふくらみが乏しいという欠点を有し

【0003】このような欠点を改良するため、特公平1-12487号公報及び特公平1-16922号公報には、ボデー部から分離されたウイング部を持ち、該ウイング部の一部が破断した自由突出端によって特徴付けられる嵩高フィラメント及び該フィラメントが製造可能な開裂性フィラメントが開示されている。

【0004】しかしながら、上記開裂性フィラメントは、単一の吐出孔からポリマーを吐出して形成されたものであるため、ボデー部とウイング部が一体化しており、両者の境界での分離が極めて困難である。

【0005】そのため、ウイング部の分離及び破断手段 として、高圧の圧空流を用いた流体ノズル処理等、多大 のエネルギー移動が起こるような物理的手段を採用せざ るを得なかった。

【0006】しかも、分離されたウイング部は、その半数以上が破断されて自由突出端を形成するため、その外観は、あたかも毛羽によって特徴付けられる紡績糸様であり、織編物とした場合に均整性に欠けるという欠点を有していた。

【0007】また、特公平2-38699号公報には、 実質的に連続的な本体部分と、該本体部分から分裂し、 その一部が自由突出端を形成する翼部分とを有する合成 繊維要素からなり、糸の長さ1cmあたりに10~15 0の自由端を有する糸が開示されている。

【0008】この糸は、上記フィラメントと同様、毛羽によって特徴付けられる紡績糸様であり、織編物とした場合、やはり均整性に欠けるという欠点を有していた。 【0009】一方、ポリエステル繊維からなる織編物をアルカリ減量し、単繊維間の接圧を下げて、柔軟なシルキー風合を付与する方法も英国特許第652,948号公報等により広く知られている。

【0010】しかしながら、該方法は各単繊維の直径を 均一に減じ、構成単繊維間に若干の空隙を付与するのみ であるため、嵩高性を向上させるには限度があった。

[0011]

【発明が解決しようとする課題】本発明の目的は、上記 従来技術の有する問題点を解消し、コアー部とフィン部 が容易に分離され、嵩高で柔らかい風合を呈すると共 に、均整な外観を有する織編物が製造可能なポリエステ ルフィラメントの製造方法を提供することにある。

[0012]

【課題を解決するための手段】本発明者らは、上記目的を達成するために鋭意検討した結果、断面が円形のコアー部と、該コアー部の長さ方向に添ってコアー部から放射状に突き出したフィン部とを有するポリエステルフィラメントを製造するに際し、該ポリエステルに、ポリエステルとミクロに相分離する化合物をマスターバッチ方式により添加混合せしめ、且つコアー部とフィン部を別々の吐出孔から吐出した後で接合するとき、アルカリ減

のフィラメントが得られることを究明し本発明に到達し た。

【0013】かくして本発明によれば、下記式で表される相溶性パラメーターxが0.1~2.0である化合物を、ポリエステル全重量に対して0.5~5.0重量%含有するポリエステルを溶融紡糸して得た、断面が円形のコアー部と、該コアー部から放射状に突出し、且つ該コアー部の長さ方向に沿って延在する複数のフィン部とからなるポリエステルフィラメントを、アルカリ減量することにより、該フィン部を該コアー部から分離するに際し、該化合物を高濃度で含有するマスターバッチを該ポリエステルの重合工程以降の段階で、該ポリエステルに添加、混合して、溶融紡糸することを特徴とするポリエステルフィラメント糸の製造方法が提供される。

[0014]

【数3】

$\chi = Va / RT (\delta a - \delta b)^{2}$

【0015】上記式において、Va はポリエステルのモル容積 (cm^3 / mol) 、Rは気体定数 $(J/mol \cdot K)$ 、Tは絶対温度 (K)、 δa 及び δb はそれぞれポリエステル及び化合物の溶解度パラメーター $(J^{1/2}/cm^{3/2})$ を表わす。

[0016]

【発明の実施の形態】本発明で使用するポリエステルポリマーは、繰り返し単位の85モル%以上、好ましくは90モル%以上がエチレンテレフタレート単位から構成されるポリエステルポリマーを言う。

【 O O 1 7 】上記ポリエステルには、本発明の目的を損なわない範囲で、他のポリマー成分が共重合されていても良く、少量の艷消剤や無機物等を添加しても良い。

【0018】尚、本発明のフィラメントは単一のポリエステルポリマーで構成されるものであるが、これは2種以上の組成のポリエステルポリマーで構成された複合繊維を含まない意味であり、ポリマー組成自体は2種以上のポリエステルポリマーからなっていても良い。

【0019】上記ポリエステルの粘度には特に制限はなく、通常溶融紡糸に供される、固有粘度0.5~1.1 のものが任意に使用できる。

【0020】本発明においては、上記ポリエステルに、下記式で表される相溶性パラメーターxが0.1~2.0である化合物を、ポリエステル全重量に対して0.5~5.0重量%、好ましくは0.5~4.0重量%添加、混合させることが必要である。

[0021]

【数4】

$\chi = Va /RT (\delta a - \delta b)^{2}$

【0022】上記式において、Va はポリエステルのモル容積 $(cm^3 / mo1)$ 、Rは気体定数(J/mo1・K)、Tは絶対温度 (K)、 δa 及び δb はそれぞれ

/c m^{3/2})を表わす。

【0023】ここで、xが0.1未満の場合は、ポリエステルと上記の化合物が相溶化し、アルカリ減量によるフィン部の分離が困難になる。一方、xが2.0を超える場合は、ポリエステルと上記の化合物が完全に相分離し、ポリマーが増粘するので、紡糸調子が悪化する。

【0024】また、上記化合物の、ポリエステルへの含有量が0.5重量%未満の場合は、本発明の効果が充分に発現せず、一方、含有量が5.0重量%を超える場合は、上記化合物が凝集を起こし、紡糸調子が悪化して、やはり本発明の効果が充分に発現しない。

【0025】上記化合物の具体例としては、ポリエチレ ン、ポリプロピレン、ポリイソブチレン、ポリスチレ ン、ポリテトラフルオロエチレン、ポリクロロテトラエ チレン、ポリクロロトリフルオロエチレン、ポリビニル プロピオネート、ポリヘプタフルオロブチルアクリレー ト、ポリブタジエン、ポリイソプレン、ポリクロロプレ ン、ポリエチレングリコール、ポリテトラメチレングリ コール、ポリトリエチレングリコール、ポリメチルアク リレート、ポリプロピルアクリレート、ポリブチルアク リレート、ポリイソブチルアクリレート、ポリメチルメ タクリレート、ポリエチルメタクリレート、ポリベンジ ルメタクリレート、ポリエトキシエチルメタクリレー ト、ポリホルムアルデヒド、ポリエチレンサルファイ ド、ポリスチレンサルファイド等のポリマーやシリコー ン、あるいはこれらの変性物等が挙げられる。上記化合 物は2種以上併用しても良い。

【0026】上記化合物の平均分子量は、あまり小さ過ぎると、ルーダーや紡糸パック中に滞留した時、熱分解を起こし、一方、あまり大き過ぎると、ポリエステルとの溶融混和性が低下するので、3000~25000とすることが好ましい。

【0027】さらに、上記化合物をポリエステルへ添加、混合するに際しては、該化合物を高濃度で含有するマスターバッチを、重合工程以降の段階で、該ポリエステルに添加、混合することが必要がある。

【0028】マスターバッチ方式以外の方法、例えば、上記化合物をポリエステルに溶融混練した後、ペレット化し、そのペレットを溶融紡糸する方法や、溶融紡糸工程で、上記化合物をポリエステルにインジェクションブレンドする方法、あるいはスタティックミキサーにより、上記化合物をポリエステルにブレンドして、溶融紡糸する方法などを採用した場合は、得られたコアー部とフィン部とからなるポリエステルフィラメントをアルカリ減量して、該フィン部を該コアー部から分離する際に、フィン部の充分な分離を行おうとすると、上記化合物を多量に添加し、苛酷なアルカリ減量条件を採用しなければならず、コスト高になるという問題が生ずる。

【0029】本発明で用いるマスターバッチのベースポ

合物を添加、混合しようとしているポリエステルと同一 のポリエステルであることが好ましい。

【0030】マスターバッチにおける上記化合物の配合量は、1~40重量%が好ましく、1重量%未満では、マスターバッチの上記ポリエステルへの混合率を大きくしなければならず、上記化合物の局在化が不充分となり、フィン部の分離効果が不十分となる。逆に40重量%を越えると、上記化合物の凝集などが起こり易い。

【0031】本発明においては、先ず上記ポリエステルポリマーを、例えば図1(A)に示すような、円形吐出孔A及び該円形吐出孔Aの周囲に間隔をおいて放射状に配置したスリット状吐出孔Bを介して溶融吐出させ、溶融状態で接合した後で冷却固化して、断面が円形のコアー部と、該コアー部から放射状に突出し、且つ該コアー部の長さ方向に沿って延在する複数のフィン部とからなるポリエステルフィラメントを得る。

【0032】この場合、上記円形吐出孔Aの直径をDA、スリット状吐出孔Bの最大長さ及び最大幅をそれぞれLB及びWBとするとき、DA、LB、WBが下記式(1)及び(2)を同時に満足することが好ましい。【0033】

【数5】

- (1) $1 \leq LB / DA \leq 4$
- (2) $1/7 \le WB / DA \le 1/2$

【 O O 3 4 】 D A 、 L B 、 W B が上記範囲から外れる場合には、紡糸調子が低下したり、織編物にした際、充分な嵩高性が発現しない場合がある。

【0035】また、スリット状吐出孔は必ずしも一様な 矩形である必要はなく、図1(B)に示すように、その 一部に円弧状のふくらみ部分を有していたり、その幅が 連続的に変化していても構わない。

【0036】なお、上記ポリエステルポリマーを単一の 吐出孔から吐出させて、コアー部とフィン部とからなる ポリエステルフィラメントを得た場合は、コアー部とフィン部の界面にミクロな欠陥が形成されなくなり、後述 の、アルカリ減量によるフィン部の分離が困難になる。 【0037】上記フィラメントには、必要に応じて延伸 や熱処理等を施しても良い。

【0038】上記フィラメントにおけるフィン部の数には特に制限はないが、フィン部の数が3~6個の場合に、特に好ましい結果が得られる。さらに好ましいフィン部の個数は4個である。

【0039】また、各フィン部の断面積、長さ及び幅は 必ずしも同じである必要はなく、それぞれ異なっていて もよい。さらに、各フィン部はコアー部を中心として放 射状に等間隔で突き出していることが好ましいが、これ に限定されるものではない。

【0040】次いで、上記フィラメントをアルカリ減量 処理して、フィン部をコアー部から分離するが、フィン されないような条件で実施することが好ましい。

【0041】但し、自由突出端ができるだけ形成されないとは、前述の特公平1-12487号公報に開示されたような物理的手段を用い、糸に毛羽を付与するために意図的に形成された自由突出端を有していない状態をいい、製糸工程あるいは織編成工程中で偶発的に形成された自由突出端が存在していても構わない。

【 0 0 4 2 】自由端が形成された場合は、例えば織編物 とした時に紡績糸様の外観を呈し、織編物の均整性が損 なわれる場合がある。

【0043】上記アルカリ処理は、フィラメント、ヤーンあるいは織編物の状態で実施すれば良く、通常のポリエステル繊維のアルカリ処理条件がそのまま採用できる。

【0044】具体的には、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムなどの水溶液を用い、濃度は10~100g/1、温度は40~180℃、処理時間は2分~2時間の範囲で適宜設定すれば良い。また、好ましいアルカリ減量率の範囲は5~25%である。

【0045】このようなアルカリ減量により、図2に示すように、フィン部がコアー部から分離しているフィラメントが得られる。

【0046】図2は、本発明方法により製造したフィラメントの一例を示す拡大側面図であり、1はコアー部、2、3はコアー部から放射状に突出したフィン部(図2では4個のフィン部のうち2個のみを図示している)を表わす。

【0047】フィン部2は、コアー部1との接合面において、アルカリ減量により容易にコアー部から分離され、例えば織編物にした場合、隣り合うコアー部間に充分な空隙を付与することができるので、嵩高性が向上する。

【0048】上記のフィン部の分離は、図2のフィン部2のように、フィラメントの長さ方向に連続して起こり、該フィン部2が独立したフィラメントのように挙動できることが好ましいが、必ずしもフィラメントの全長に亘って分離している必要はなく、フィン部3のように、コアー部1と接合した部分が存在していても構わない。良好な嵩高性を有する織編物を得るためには、後述するフィン部の分離率Sが60%以上であることが好ましい。

【0049】また、分離したフィン部2、3の配向と、コアー部1との配向に差がある場合には、アルカリ減量や織編物の染色、仕上工程で加熱された際に、フィン部2、3とコアー部1との収縮差が顕在化して糸足差やループが形成され、嵩高性がさらに向上する。

[0050]

【作用】前述の、特公平1-12487号公報及び特公

及び開裂性フィラメントは、ボデー部とウイング部の接合面が強固に接合されているので、ウイング部の分離及び破断手段として、高圧の圧空流を用いた流体ノズル等による物理的処理を採用する必要があり、結果として破断された自由突出端を形成するものであった。

【0051】仮に、このようなフィラメントをアルカリ 処理してもフィラメント全体が均一に減量されるに過ぎ ない。

【0052】これに対して本発明では、フィラメントを構成するポリエステル中に、該ポリエステルとミクロに相分離する化合物を含有させ、コアー部とフィン部界面のアルカリ減量性を選択的に低下させたフィラメントとし、これにアルカリ減量を施すことにより、自由突出端を形成させることなくフィン部をコアー部から分離させることができる。

【0053】つまり、上記の化合物は、ポリエステル中に混合された場合、伸長応力が付与される紡糸工程においてマイグレーションを起こし、紡出糸表面にミクロな欠陥を形成するので、アルカリ減量が該欠陥部から優先的に進行し、フィン部が容易に分離される。

【0054】特に、上記化合物をマスターバッチとして 重合工程以降の段階で添加、混合すると、上記化合物の ポリエステル中での分散が不均一となり、その結果、ア ルカリ減量を優先的に受ける欠陥部分の局在化がより著 しくなり、フィン部の分離が更に容易となる。従って、 織編物の風合が向上し、一方で、上記化合物の添加量を 少なくし、アルカリ減量条件を穏やかにすることがで き、コストを低減することも可能となる。

【0055】さらに、本発明においては、円形吐出孔及び該円形吐出孔の周囲に間隔をおいて放射状に配置したスリット状吐出孔を通してポリエステルを溶融吐出させ、溶融状態で接合した後で冷却固化するので、コアー部とフィン部との接合面(接合前のコアー部及びフィン部の表面に相当する)に沿ってミクロ欠陥が形成され、極めて容易にフィン部の分離が起こる。

【0056】そして、フィン部がコア部から分離されたフィラメントを例えば織編物にした場合、隣り合うコアー部間に充分な空隙を付与することができ、あたかも異形、異デニールのフィラメントを混繊した時のように、

S=(分離しているフィンの数/フィンの全数)×100

【0066】(5)織編物の風合

織編物の嵩高性、ソフト感を、極めて良好(◎)、良好(○)、普通(△)、不良(×)の4段階で官能判定した。

【0067】[実施例 $1\sim7$ 、比較例 $1\sim10$]固有粘度0.64のポリエチレンテレフタレートに、表1に示す化合物を20重量%添加、混合して、マスターバッチを作成した。

【0068】これらのマスターバッチを、固有粘度0.

嵩高で柔らかい風合を呈することができる。

【0057】さらに、円形吐出孔及び該円形吐出孔の周囲に間隔をおいて放射状に配置したスリット状吐出孔を通してポリエステルを溶融吐出させ、溶融状態で接合した後で冷却固化したフィラメントを使用するので、コアー部とフィン部が、ドラフト差に起因する収縮差を有しており、アルカリ減量や織編物の染色、仕上工程で加熱された時、該収縮差が顕在化して、嵩高性がさらに向上する。

[0058]

【実施例】以下、本発明を実施例によりさらに具体的に 説明する。尚、実施例における各物性は下記の方法によ り測定した。

【0059】(1)相溶性パラメーターェ

各種溶媒への溶解度から、ポリエステル及び該ポリエステルとミクロに相分離する化合物の溶解度パラメーター δa 、 δb を求め、次式により算出した。

[0060]

【数6】

$\chi = Va / RT (\delta a - \delta b)^{2}$

【0061】上記式において、Va はポリエステルのモル容積(cm^3 /mo1)、Rは気体定数(J/mo1・K)、Tは絶対温度(K)、 δa 及び δb はそれぞれポリエステル及び化合物の溶解度パラメーター($J^{1/2}$ $/cm^{3/2}$)を表わす。

【0062】(2)紡糸調子

紡糸中に発生した断糸の回数を数え、紡出糸条の巻取長さ10⁶ m当たりの断糸回数で表した。

【0063】(3)強伸度

インストロン型引張試験機を用い、試料長25cm、引張速度30cm/分で測定した。

【0064】(4)フィン部の分離率S

アルカリ減量後のフィラメント20本を1000倍で撮影した写真観察より、分離しているフィン部の数を求め、下記式によりフィン部の分離率S(%)を算出した。フィン部の分離率Sが85%以上のとき、好ましい結果が得られる。

[0065]

【数7】

量が表1に示す値となるようにペレット状態で混合し、図1(B)に示す形状を有する吐出孔を24組備えた紡糸口金から285℃で溶融吐出し、コアー部とフィン部を接合させながら、横吹紡糸筒内で冷却して1400m/分の速度で巻き取った。

【0069】この際、LB / DA = 2、WB / DA = 1 /3とした。

【0070】次いで、巻取ったフィラメント群を、温度 95℃の加熱ローラーと温度150℃のスリットヒータ し、75デニール/24フィラメントのマルチフィラメント糸を得た。

【0071】得られたマルチフィラメント糸を20ゲージの筒編地となし、該筒編地を濃度35g/1の水酸化ナトリウム水溶液中で煮沸処理し、減量率が15重量%となるまで減量加工を行なった。

【0072】添加、混合した化合物のxの値及び添加量 並びに各フィラメントの紡糸調子を表1に、また、得ら れた各フィラメントの強伸度、減量後のフィン部の分離 率及び筒編地の風合を表2に示す。

【0073】一方、比較のために、実施例1~4において、ポリエステルとミクロに相分離する化合物を、マスターバッチで添加、混合する代わりに、重合工程で直接ポリエステルに添加、混合し、その他の条件は実施例1~4と同じにしてフィラメント糸を製造し、評価を行った。それらの結果も、表1及び表2に示す。

[0074]

【表1】

	化合物の種類	x	季加量 (%)	添加方法	助糸買子 (断糸) (回/10° m)
比較例1		-	_	_	0. 2
比較例2	PEG	0. 08	2. 5	М	1. 3
実施例1	C, H ₁₁ 基グラフトPEG	0. 1	2. 5	М	0. 7
実施例2	CisHsi基グラフトPEG	0. 25	2. 5	М	0. 8
実施例3	PE/PMMA共重合体 (電合比90/10モル%)	1. 3	2. 5	М	0. 3
実施例4	PE/PMMA共重合体 (重合比95/5 モル%)	1. 7	2. 5	М	0. 4
比较例3	PE	2. 2	2. 5	M	34. 2
比較例4	PMMA	2. 3	2. 5	М	10. 1
比較例5	CisHsi基グラフトPEG	0. 25	0. 3	M	0, 1
実施例5	C15H31基グラフトPEG	0. 25	0. 7	М	0. 4
実施例6	C15日31基グラフトPEG	0. 25	4. 0	М	1. 0
実施例7	CisHsi基グラフトPEG	0. 25	4. 7	М	1, 3
比較例6	CisHii基グラフトPEG	0. 25	5. 3	М	8. 9
比較例7	C5 H11基グラフトPEG	0. 1	2, 5	P	0. 6
比較例8	C15H31基グラフトPEG	0. 25	2. 5	P	0. 5
比較例9	PE/PMMA共重合体 (宣合比90/10モル%)	1. 3	2. 5	P	0. 3
比較例10	PE/PMMA共重合体 (重合比95/5 モル%)	1. 7	2. 5	P	0. 3

PEG: ポリエチレングリコール、PE: ポリエチレン、PMMA: ポリメチルメタクリレート、縁加方法のM: マスターパッチでの添加、<math>P:置合工程での直接添加

【0075】 【表2】

	<u>強度</u> (g/de)	伸度 (%)	フィン部の分離率 (%)	戦闘物 の風合
比較例1	4. 1	30	0	×
比較例2	3. 0	38	10	×
実施例1	3. 2	33	70	0
実施例2	a. 0	39	9 5	0
実施例3	3. 6	31	8 5	0
実施例 4	3. 7	31	8.0	0
比較例3	3. 0	40	. 0	×
比較例4	3. 7	39	8	×
比較例5	3. 9	31	6	×
実施例5	3. 5	3 5	70	0
実施例 6	3. 3	37	90	0
実施例?	3. 1	38	90	0
比較何6	3. 2	4 3	30	×
比較例7	3. 3	a 2	4 0	Δ
比較例8	3. 1	40	60	Δ
比較例9	8. 7	33	5 0	Δ
比較例10	3. 8	80	4 0	Δ

【0076】表1及び表2から明らかなように、添加、混合した化合物のxの値が0.1~2.0で、添加量が0.5~5.0重量であり、且つマスターバッチで添加、混合した場合(実施例1~7)は、フィン部の分離率が高く、フィラメント間に充分な空隙が付与されるので、良好な風合が得られた。

【0077】これに対して、ポリエステルと > 2口に相分離する化合物を添加しない場合(比較例1)、添加、混合した化合物のxの値及び添加量が上記の範囲から外れる場合(比較例 $2\sim6$)、あるいはマスターバッチによらないで添加、混合した場合(比較例 $7\sim10$)は、紡糸調子が不良になったり、フィラメント間に充分な空隙が付与されず、筒編地の嵩高性が不足していた。

【図面の簡単な説明】

【図1】本発明方法で使用する紡糸口金の吐出孔の一例を示す平面図である。

【図2】本発明方法により得られたフィラメントの一例を示す側面図である。

【符号の説明】

1 コアー部

2、3 フィン部

A 円形吐出孔

B スリット状吐出孔

【図1】

【図2】

フロントページの続き

(51) Int. Cl. 6

識別記号 庁内整理番号

FΙ

D O 6 M 5/02

技術表示箇所

F

D O 6 M 11/38