MODELS AND STATISTICAL INFERENCE

A statistical model is a *simplification* and *idealization* of reality that captures our key assumptions about some process underlying our data (the **data generating process** or DGP).

WHY DO WE USE MODELS?

- Making predictions (forecasting)
- Exploration and discovery
- Hypothesis testing

STEPS IN STATISTICAL ANALYSIS

- 1. Import
- 2. Transform
- 3. Visualize
- 4. Specify
- 5. Estimate
- 6. Validate
- 7. Interpret
- 8. Report
- 9. Archive

STATISTICAL RECIPES

- t-test
- correlation & regression
- multiple regression
- Analysis of Variance
- mixed-effects modeling
- All of these are special cases of the General Linear Model (GLM).

SOME GLM EXAMPLES

regression	$Y_i = eta_0 + eta_1 X_i + e_i$
t-test	$Y_i = \mu + A_i + e_i$
one-way ANOVA	$Y_i = \mu + A_i + e_i$
factorial ANOVA	$Y_{ij} = \mu + A_i + B_j + AB_{ij} + e_{ij}$
multiple regression	$Y_i=eta_0+eta_1X_{1i}+eta_2X_{2i}+e_i$

father	son
169	174
153	162
179	177
180	175
182	178
173	172
167	167
176	174

father	son
169	174
153	162
179	177
180	175
182	178
173	172
167	167
176	174

SPECIFYING THE MODEL

$$Y_i = eta_0 + eta_1 X_i + e_i$$

$\mid Y_i \mid$	response	son's height (observed)
X_i	predictor	father's height (observed)
$oxed{eta_0}$	intercept	prediction when $X_i=0$
$oxed{eta_1}$	slope	increase in Y for each increase in X
$oxed{e_i}$	residual	observed minus predicted

$$e_i \sim N(0,\sigma^2)$$

ESTIMATING MODEL PARAMETERS IN R

```
mod <- lm(son ~ father, hgt)

> ?lm

lm(formula, data, subset, weights, na.action,
    method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
    singular.ok = TRUE, contrasts = NULL, offset, ...)

'lm' is used to fit linear models. It can be used to carry out
regression, single stratum analysis of variance and analysis of
covariance (although 'aov' may provide a more convenient interface
for these).
```

INTERPRETING R OUTPUT

summary(mod)

Call: $lm(formula = son \sim father, data = hgt)$ Residuals: Min 1Q Median 3Q Max -11.287 -2.740 -0.395 2.918 14.332 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 49.18917 13.77029 3.572 0.000818 *** father 0.71441 0.07831 9.122 4.69e-12 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 4.331 on 48 degrees of freedom Multiple R-squared: 0.6342, Adjusted R-squared: 0.6266 F-statistic: 83.22 on 1 and 48 DF, p-value: 4.688e-12

MODEL VALIDATION

Are the predictions of your model sensible?

MODEL VALIDATION

Are the residuals normally distributed?

```
hgt2 <- mutate(hgt, resid = residuals(mod))
ggplot(hgt2, aes(resid)) +
  geom_histogram()</pre>
```


MAKING PREDICTIONS

coef(mod)

(Intercept) father 49.1891719 0.7144094

$$\hat{eta}_0 = 49.19; \hat{eta}_1 = 0.71 \ \hat{Y}_i = 49.19 + 0.71 X_i$$

We want to use the model to predict the heights of boys when they grow up. We have measured their fathers' heights.

$$\hat{Y}_i = 49.19 + 0.71 X_i$$

by "hand"

```
int <- coef(mod)[1]
slp <- coef(mod)[2]

dads <- c(176, 198, 160)

preds <- int + slp * dads
preds

[1] 174.9252 190.6422 163.4947</pre>
```

using predict()

INTERPRETING AND REPORTING

Adult sons' heights were related to their fathers' heights by the formula $SON = 49.19 + 0.71 \times FATHER. The$ model explained about 63% of the variance, and the association was significant, F(1,48)=83.22, p < .001.

RELATIONSHIP BETWEEN CORRELATION AND REGRESSION

$$Y_i = eta_0 + eta_1 X_i + e_i \ e_i \sim N\left(0, \sigma^2
ight)$$

$$eta_1 =
ho_{xy} rac{\sigma_y}{\sigma_x} \ eta_0 = \mu_y - eta_1 \mu_x$$

IMPLICATIONS

$$egin{align} Y_i &= eta_0 + eta_1 X_i + e_i & eta_1 &=
ho_{xy} rac{\sigma_y}{\sigma_x} \ e_i &\sim N\left(0,\sigma^2
ight) & eta_0 &= \mu_y - eta_1 \mu_x \ \end{pmatrix}$$

- $eta_1>0$ implies ho>0, since standard deviations can't be negative.
- $\beta_1 < 0$ implies $\rho < 0$, for the same reason.
- ullet Rejecting $H_0:eta_1=0$ is the same as rejecting $H_0:
 ho=0$.
 - also, same p-values for β_1 in lm() as for r in cor.test().

REGRESSION FROM CORRELATION

A study of student performance obtains a correlation of .16 between final exam score and number of lectures attended. The mean score on the final exam was 70 (SD=10), and the mean number of courses attended was 6 (SD=2).

Write the regression equation predicting exam score from attendance.

$$egin{aligned} Y_i &= eta_0 + eta_1 X_i + e_i \ e_i &\sim N\left(0,\sigma^2
ight) \ eta_1 &=
ho_{xy}rac{\sigma_y}{\sigma_x} \ eta_0 &= \mu_y - eta_1 \mu_x \end{aligned}$$

CORRELATION FROM REGRESSION

A study on the relationship between wellbeing and hours spent on social media (per week) yields the following regression:

with 5 for the standard deviation of wellbeing and .1 for the standard deviation of number of hours.

What is the correlation?

$$egin{aligned} Y_i &= eta_0 + eta_1 X_i + e_i \ e_i &\sim N\left(0,\sigma^2
ight) \ eta_1 &=
ho_{xy}rac{\sigma_y}{\sigma_x} \ eta_0 &= \mu_y - eta_1 \mu_x \end{aligned}$$