Sorting Conclusions

Insertion sort:

- Easy to code
- Fast on small inputs (less than ~50 elements)
- Fast on nearly-sorted inputs
- O(n²) worst case
- O(n²) average (equally-likely inputs) case
- O(n²) reverse-sorted case

- Merge sort:
 - Divide-and-conquer:
 - Split array in half
 - Recursively sort subarrays
 - Linear-time merge step
 - O(n lg n) worst case
 - Doesn't sort in place

- Heap sort:
 - Uses the very useful heap data structure
 - Complete binary tree
 - Heap property: parent key > children's keys
 - O(n lg n) worst case
 - Sorts in place
 - Fair amount of shuffling memory around

- Quick sort:
 - Divide-and-conquer:
 - Partition array into two subarrays, recursively sort
 - All of first subarray < all of second subarray
 - No merge step needed!
 - O(n lg n) average case
 - Fast in practice
 - O(n²) worst case
 - worst case on sorted input
 - Address this with randomized quicksort

How Fast Can We Sort?

- First, an observation: all of the sorting algorithms so far are *comparison sorts*
 - The only operation used to gain ordering information about a sequence is the pairwise comparison of two elements
 - Comparisons sorts must do at least n comparisons (why?)
 - What do you think is the best comparison sort running time?

Comparison-based sorting

- Sorted order is determined based only on a comparison between input elements
 - A[i] < A[j]
 - A[i] > A[j]
 - $\bullet \quad A[i] = A[j]$
 - A[i] ≤ A[j]
 - A[i] ≥ A[j]
- Do any of the sorting algorithms we've looked at use additional information?

Comparison-based sorting

- Sorted order is determined based only on a comparison between input elements
 - A[i] < A[j]
 - A[i] > A[j]
 - A[i] = A[j]
 - A[i] ≤ A[j]
 - A[i] ≥ A[j]
- Do any of the sorting algorithms we've looked at use additional information?
 - No
 - All the algorithms we've seen are comparison-based sorting algorithms

Comparison-based sorting

- Sorted order is determined based only on a comparison between input elements
 - A[i] < A[j]
 - A[i] > A[j]
 - $\bullet \quad A[i] = A[j]$
 - $A[i] \leq A[j]$
 - A[i] ≥ A[j]
- Can we do better than O(n log n) for comparison based sorting approaches?

Decision Trees

- Abstraction of any comparison sort.
- Represents comparisons made by
 - a specific sorting algorithm
 - on inputs of a given size.
- Abstracts away everything else: control and data movement.
 - We're counting only comparisons.
- Each node is a pair of elements being compared
- Each edge is the result of the comparison (< or >=)
- Leaf nodes are the sorted array

Decision-tree model

- Full binary tree representing the comparisons between elements by a sorting algorithm
- Internal nodes contain indices to be compared

Leaves contain a complete permutation of the input

$$[3, 12, 7] \longrightarrow [1,3,2] \longrightarrow [3, 7, 12]$$

$$[7, 3, 12] \longrightarrow [2,1,3] \longrightarrow [3, 7, 12]$$

 Tracing a path from root to leave gives the correct reordering/permutation of the input for an input

Is $12 \le 7$ or is 12 > 7?

Is $12 \le 3$ or is 12 > 3?

Is $12 \le 3$ or is 12 > 3?

Is $12 \le 3$ or is 12 > 3?

Is
$$7 \le 3$$
 or is $7 > 3$?

Is
$$7 \le 3$$
 or is $7 > 3$?

How many leaves are in a decision tree?

- Leaves must have all possible permutations of the input
- What if decision tree model didn't?
- Some input would exist that didn't have a correct reordering
- Input of size n, n! leaves

A lower bound

 What is the worst-case number of comparisons for a tree?

A lower bound

The longest path in the tree, i.e. the height

A lower bound

- What is the maximum number of leaves a binary tree of height h can have?
- A complete binary tree has 2^h leaves

$$2^h \ge n!$$
 $h \ge \log n!$ log is monotonically increasing $h = \Omega(n \log n)$

Can we do better?

Sorting in Linear Time

Counting sort
Radix sort
Bucket sort

Counting Sort – Sort small numbers

- Why it's not a comparison sort:
 - Assumption: input integers in the range 0..k
 - No comparisons made!
- Basic idea:
 - determine for each input element x its rank: the number of elements less than x.
 - once we know the rank r of x, we can place it in position r+1

Counting Sort The Algorithm

- Counting-Sort(A)
 - Initialize two arrays B and C of size n and k respectively, and set all entries to 0
- Count the number of occurrences of every A[i]
 - for i = 1..n
 - **do** $C[A[i]] \leftarrow C[A[i]] + 1$
- Count the number of occurrences of elements <= A[i]
 - for i = 2...n
 - **do** $C[i] \leftarrow C[i] + C[i-1]$
- Move every element to its final position
 - for i = n..1
 - do B[C[A[i]] $\leftarrow A[i]$
 - $C[A[i]] \leftarrow C[A[i]] 1$

Counting Sort Example

Counting Sort Example

Counting Sort Example


```
CountingSort(A, B, k)
                                     Takes time O(k)
2
            for i=1 to k
3
                   C[i] = 0;
            for j=1 to n
                   C[A[j]] += 1;
5
            for i=2 to k
6
                                               Takes time O(n)
                   C[i] = C[i] + C[i-1];
            for j=n downto 1
8
9
                   B[C[A[j]]] = A[j];
10
                   C[A[j]] = 1;
```

What will be the running time?

Counting Sort

- Total time: O(n + k)
 - Usually, k = O(n)
 - Thus counting sort runs in O(n) time
- But sorting is $\Omega(n \lg n)$
 - No contradiction--this is not a comparison sort (in fact, there are no comparisons at all.)
 - Notice that this algorithm is stable
 - If numbers have the same value, they keep their original order

• A sorting algorithms is **stable** if for any two indices i and j with i < j and $a_i = a_j$, element a_i precedes element a_i in the output sequence.

Observation: Counting Sort is stable.

Counting Sort

- Linear Sort! Cool! Why don't we always use counting sort?
- Because it depends on range k of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, k too large ($2^{32} = 4,294,967,296$)

Radix Sort

- Why it's not a comparison sort:
 - Assumption: input has d digits each ranging from 0 to k
 - Example: Sort a bunch of 4-digit numbers, where each digit is 0-9
- Basic idea:
 - Sort elements by digit starting with *least* significant
 - Use a stable sort (like counting sort) for each stage

Radix Sort The Algorithm

- Radix Sort takes parameters: the array and the number of digits in each array element
- Radix-Sort(A, d)
- 1 for i = 1..d
- do sort the numbers in arrays A by their i-th digit from the right, using a stable sorting algorithm

Radix Sort Example

Radix Sort Correctness and Running Time

- •What is the running time of radix sort?
 - •Each pass over the d digits takes time O(n+k), so total time O(dn+dk)
 - •When *d* is constant and k=O(n), takes O(n) time
- •Stable, Fast
- •Doesn't sort in place (because counting sort is used)

Bucket Sort

- Assumption: input n real numbers from [0, 1]
- Basic idea:
 - Create n linked lists (buckets) to divide interval [0,1] into subintervals of size 1/n
 - Add each input element to appropriate bucket and sort buckets with insertion sort
- Uniform input distribution → O(1) bucket size
 - Therefore the expected total time is O(n)

Bucket Sort

Bucket-Sort(A)

- 1. $n \leftarrow \text{length}(A)$
- 2. **for** $i \leftarrow 1$ to $n \leftarrow Distribute$ elements over buckets
- 3. **do** insert A[i] into list B[floor(n*A[i])]
- **4. for** $i \leftarrow 0$ to $n-1 \leftarrow Sort$ each bucket
- 5. **do** Insertion-Sort(B[i])
- 6. Concatenate lists *B*[*0*], *B*[*1*], ... *B*[*n 1*] in order

Bucket Sort Example

Bucket Sort – Running Time

- All lines except line 5 (Insertion-Sort) take O(n) in the worst case.
- In the worst case, O(n) numbers will end up in the same bucket, so in the worst case, it will take $O(n^2)$ time.
- Lemma: Given that the input sequence is drawn uniformly at random from [0,1], the expected size of a bucket is O(1).
- So, in the average case, only a constant number of elements will fall in each bucket, so it will take O(n) (see proof in book).
- Use a different indexing scheme (hashing) to distribute the numbers uniformly.

Summary

- Every comparison-based sorting algorithm has to take Ω(n lg n) time.
- Merge Sort, Heap Sort, and Quick Sort are comparisonbased and take O(n lg n) time. Hence, they are optimal.
- Other sorting algorithms can be faster by exploiting assumptions made about the input
- Counting Sort and Radix Sort take linear time for integers in a bounded range.
- Bucket Sort takes linear average-case time for uniformly distributed real numbers.

Review of Existing Linear Sorting

Non-Comparison Based Sorting Algorithms

- Counting sort assumes input elements are in range [0,1,2,..,k] and uses array indexing to count the number of occurrences of each value.
- ➤ Radix sort assumes each integer consists of d digits, and each digit is in range [1,2,..,k'].
- ➤ **Bucket sort** requires advance knowledge of input distribution (sorts n numbers uniformly distributed in range in O(n) time) 54

Non-comparison Sort: A new approach (DR)

DR Features

Salient Features of DR (Dividend-Remainder) are:

- ✓ First algorithm which works only on arithmetic operators.
- ✓ Easy to understand and implement.
- ✓ Worst case as well as expected running time complexity is $O\left(n\frac{\log k}{\log n}\right)$ where k is the largest number in the input sequence, n is the total number of inputs.
- ✓ Does not require the uniform distribution of numbers as bucket sort does.
- ✓ Works with same time complexity no matter what is the range of input integers as required by count sort which runs in time $O(n^2)$ if the range of integers $K = O(n^2)$
- ✓ **Stable** sorting algorithm.
- ✓ Incremental sort: can produce outputs in the each subsequent passes. On the other hand, Radix sort, Bucket sort, Count sort produce results at the end of the entire pass.
- ✓ It does not extend the memory usage as Radix sort does when increase its based to n.

55

DR Algorithm

```
Count =0;
    While (Count <n)
3.
          For all elements
4.
              Calculate Remainder and Dividend (= element/n)
5.
              Store the Dividend at the remainder position
          End for
          For all elements
7.
8.
              If (Dividend of element==0)
                 Store it in Output list
9.
10.
                 Count++;
11.
              End if
12.
          End for
13. End while
```

DR Demonstration

$$n=12, k=189$$

Elements (Initial	Index	Pass 1:
Input List)		Dividend(Element)
125	0	10(120),14(168)
167	1	13(157)
120	2	
115	3	9(111)
189	4	
111	5	10(125),7(89),10(125)
89	6	
127	7	9(115),10(127)
168	8	10(128)
128	9	15(189)
157	10	
125	11	13(167)

Final output:							
	l			l		l	

DR Demonstration

Elements	Inde	Pass 1:	Pass 2
	X	Dividend(Element	
125	0	10(120),14(168)	
167	1	13(157)	1(157),1(167)
120	2		1(168)
115	3	9(111)	1(189)
189	4		
111	5	10(125),7(89),10(125)	
89	6		
127	7	9(115),10(127)	0(89)
168	8	10(128)	
128	9	15(189)	0(111),0(115)
157	10		0(120),0(125),0(125),0(127)0(128)
125	11	13(167)	

Final output:	89	111	115	120	125	125	127	128			

DR Demonstration

Elements	Index	Pass 1:	Pass 2	Pass 3:
		Dividend(Elem		
		ent)		
125	0	10(120),14(168)		
167	1	13(157)	1(157),1(167)	0(157),0(167),0(
				168),0(189)
120	2		1(168)	
115	3	9(111)	1(189)	
189	4			
111	5	10(125),7(89),1		
		0(125)		
89	6			
127	7	9(115),10(127)	0(89)	
168	8	10(128)		
128	9	15(189)	0(111),0(115)	
157	10		0(120),0(125),0(1	
			25),0(127)0(128)	
125	11	13(167)		

													_
Final output:	89	111	115	120	125	125	127	128	157	167	168	189	

Implementation

Algorithm 1 DR: Dividend-Remainder Algorithm using array of Linked Lists

Require: Array A[n] of input integers, where n is the size of input **Ensure:** Array B[n] containing sorted sequence of input numbers 1: set flag = 0, out = 0, index[n], idx[n], list[n] \triangleright list[n] is an array of pointers of node type 2: while out < n do if flag = 0 then **for** i = 0 to n - 1 **do** 4: dividend = A[i]/n5: remainder = A[i]%n6: Insertnode (dividend, remainder) 7: index[i] = index[i] + 18: end for 9: else 10: **for** i = 0 to n - 1 **do** 11: set pointer p = list[i]12: while index[i] > 0 do 13: if p- > dividend == 0 then 14: B[out + +] = p - > key15: else 16: dividend = p - > dividend/n17: remainder = p - > dividend%n18: Insertnode(p->dividend, remainder) 19: 20: idx[remainder] = idx[remainder] + 1end if 21:DELETENODE(p, i)22: index[i] = index[i] - 123: end while 24: end for 25: copy array idx to index26: 27: end if flag = 1

29: end while

Experimental Results

${\bf Table\ I:\ List\ of\ Noncomparison\ Based\ Practical\ Sorting\ Algorithm}$

Comparative Study

		oncomparison			88-	
Name	Time (Average Case)	Time (worst Case)	Memory	Stability	$n < < 2^k$	Remarks
LSD Radix Sort [Cor- men et al. 2001]	nk/d	nk/d	$n+2^d$	yes	no	Depends on other sorting like count, insertion sort and less space efficient
MSD Radix Sort	nk/d	nk/d	$n+2^d$	yes	no	Depends on other sorting like count, insertion sort and less space efficient
MSD Radix Sort (in place)	nk/d	nk/d	2^d	yes	no	Depends on other sorting like count, insertion sort.
Counting Sort [Cor- men et al. 2001]	n+r	n+r	n+r	yes	yes	Limited to range of value i.e. $k << O(n^2)$
Bucket Sort [Cor- men et al. 2001]	n+r	n+r	n+r	yes	yes	Limited to uniform distribution, also de- pends on other sort- ing like count, inser- tion sort.
Spread Sort [Ross 2002]	nk/d	n(k/s+d)	$2^d(k/d)$	no	no	Limited to uniform distribution, more programmer effort is required in implementation.
Burst Sort [Sinha and Zobel 2004]	nk/d	nk/d	nk/d	no	no	Uses trie (standard prefix tree) for stor- age efficiency but in time complexity as similar as MSD radix sort.
Flash Sort [Neubert 1998]	n+r	n^2	n	Can be with additional $O(n)$ space	no	Requires uniform distribution to run in $O(n)$ otherwise it drives in $O(n^2)$ as insertion sort.
Postman Sort	nk/d	nk/d	$n+2^d$	_	no	A variation of bucket sort, very specific to MSD radix sort.
DR	$n \log k/\log r$	$n n \log k / \log n$	ιn	yes	no	

DR Algorithm: Summary

- ✓ First novel sorting algorithm using **Division & Modulus Operators.**
- ✓ It overcomes the drawbacks of the count, bucket and radix sort with improved performance.
- ✓ The novelty of the DR algorithm in terms of time its complexity: upper bounded by O(n) (for k < n).
- ✓ DR algorithm is also **tested through real system implementation**.
- ✓ It **beats three algorithms** (count, bucket and radix sort) for large data values, using array implementation.
- **✓** Constraint free.
- **✓** Incremental sort.
- ✓ Can be used for parallel applications.