

Cycle Initial en Technologies de l'Information de Saint-Étienne

SECOND ORDER ACTIVE FILTER TOPOLOGY

Lucas Lescure - Charlie Durand

Table of Content

1.	Abstract	_ / 2	2
2.	Sallen-Key Low-Pass Filter	/ :	3
	2.1. Study in sinusoidal regime	. ;	3
	2.2. Study in impulsive regime	, ;	3
<u>3.</u>	Multiple Feedback High-Pass Filter	_ 4	ŀ
	3.1. Study in sinusoidal regime	. 4	ŀ
	3.2. Study in impulsive regime		ı

1. Abstract

The goal of this report is to introduce ourselves to different second order active filter topologies. In this case we'll be studying the Sallen-Key and Multiple Feedback filters in an effort to understand and manipulate the effects of damping and resonance on these kinds of filters.

2. Sallen-Key Low-Pass Filter

Figure 2.1. Sallen-Key Low-Pass Filter

2.1. Study in sinusoidal regime

Using the formulas provided in the preparation of the experiment we quickly calculate the damping coefficient m=0.25 as well as the constant gain factor K=2.5

Judging by the Bode diagram we can accurately measure a cut-off frequency at about $2500~H_z$ as well as a resonance frequency at $1600~H_z$ which maxes out at the curve's maximal gain 17.5~dB, as well as a -40~dB/dec slope.

On this non-unity-gain filter we notice that due to the damping factor being inferior to 1 a peak of high gain manifests itself highlighting the resonance which can later be used for signal processing.

2.2. Study in impulsive regime

Figure 2.2. Chronograms of V_s and V_e

To study the signal response we'll be choosing a frequency of $100\,H_z$ allowing us to clearly see the damped oscillations as the frequency goes below the resonance.

This being done we can then measure the rise at about $124~\mu s$, which can be considered slow . However the observed values correspond to our expectations since the damping coefficient remains lesser than 1, responsible for the damped oscillations.

3. Multiple Feedback High-Pass Filter

Figure 3.1. Multiple Feedback High-Pass Filter

3.1. Study in sinusoidal regime

Using the formulas provided in the preparation of the experiment we quickly calculate the damping coefficient m=1 as well as the cut-off frequency at $f_0=2321\ Hz$

Judging by the Bode diagram we can accurately measure a cut-off frequency at about $2500\ H_z$ from which point rearwards the gain slope is at $40\ dB/dec$. All of which correspond to the expected values. Unlike last study, the damping coefficient is equal to 1 therefore the cut-off frequency is much clear and no resonance is expected.

We can notice a second higher cut-off frequency at about $1300\,H_z$ this is due to the limitation of the operational amplifier which can no longer properly process the

3.2. Study in impulsive regime

rapid input changes.

Figure 3.2. Chronograms of V_s and V_e

To study the signal response we'll be choosing a frequency of $10~KH_z$ allowing us to clearly see the exponential decay as the frequency goes above cut-off.

This being done we can then measure the rise at about $707\ ns$.

The observed values correspond to our expectations since the damping coefficient remains equal to 1, responsible for the exponential decay curve.