GEORGIA INSTITUTE OF TECHNOLOGY

Mathematical Foundations of Machine Learning, Quiz #1

September 28, 2022

Name:	Solution	•	
	Last,	First	

- Closed book, closed notes, one $8\frac{1}{2}'' \times 11''$ handwritten sheet is allowed.
- Seventy-five (75) minute time limit.
- No calculators. None of the problems require involved calculations.
- There are four problems, each are worth 25 points. Subproblems are given equal weight.
- All work should be performed on the quiz itself. If more space is needed, use the backs of the pages.
- This quiz will be conducted under the rules and guidelines of the Georgia Tech Honor Code and no cheating will be tolerated.
- · Write your final answers in the boxes provided.
- Turn in your "cheat sheet" by placing it in between the first and second pages.

Problem 1:

(a) Let $\|\cdot\|_A$ and $\|\cdot\|_B$ be the following valid norms on \mathbb{R}^2

$$\|x\|_A = \sqrt{16x_1^2 + x_2^2}, \quad \|x\|_B = \sqrt{x_1^2 + 9x_2^2}.$$

Sketch the unit balls on the axes below.

 $\mathcal{B}_A = \{ \boldsymbol{x} : \|\boldsymbol{x}\|_A \leq 1 \}$

$$\mathcal{B}_B = \{ \boldsymbol{x} : \|\boldsymbol{x}\|_B \leq 1 \}$$

- O Must indicate $(t_4,0),(0,t_1)$ on B_A $(t_1,0),(0,t_3)$ on B_B
- De Must indicate that the interior of unit balls are parts of the unit ball.

(b) Let

$$\|x\|_C = \max(\|x\|_A, \|x\|_B),$$

where $\|\cdot\|_A$ and $\|\cdot\|_B$ are the norms defined in the previous part. Sketch the unit ball on the axes below.

 $\mathcal{B}_C = \{ \boldsymbol{x} : \|\boldsymbol{x}\|_C \leq 1 \}$

Drawing must indicate Bc = BANBB. 1 Port have to be explicit).

(c) True or False: $\|\cdot\|_C$ is a valid norm on \mathbb{R}^2 .

Circle one: True False

Justification: Must show by definition.

11) $||\vec{x}||_{C} = 0 \iff \max(||X||_{A}, ||X||_{B}) = 0$ Since $||X||_{A}, ||X||_{B}|| \neq 0$.

(2). $||\vec{x}||_{C} = \max(||\vec{x}||_{A}, ||\vec{x}||_{B})$ $= ||\vec{x}||_{C} \times ||\vec{x}||_{C}$ $= ||\vec{x}||_{C} \times ||\vec{x}||_{A}, ||\vec{x}||_{B})$ $= ||\vec{x}||_{C} \times ||\vec{x}||_{A}, ||\vec{x}||_{B})$ $= ||\vec{x}||_{C} \times ||\vec{x}||_{A}, ||\vec{x}||_{B} + ||\vec{y}||_{B})$ $= ||\vec{x}||_{C} \times ||\vec{x}||_{A} + ||\vec{y}||_{A}, ||\vec{x}||_{B} + ||\vec{y}||_{B})$ $= ||\vec{x}||_{C} \times ||\vec{x}||_{A} + ||\vec{x}||_{B} + ||\vec{y}||_{B})$

= 11XVC7 11911c

(d) Let

$$\|x\|_D = \min(\|x\|_A, \|x\|_B),$$

where $\|\cdot\|_A$ and $\|\cdot\|_B$ are the norms defined in the previous part. Sketch the unit ball on the axes below.

 $\mathcal{B}_D = \{ \boldsymbol{x} : \|\boldsymbol{x}\|_D \leq 1 \}$

Should express the understanding that $B_D = B_A \cup B_B$.

(e) True or False: $\|\cdot\|_D$ is a valid norm on \mathbb{R}^2 .

Circle one: True (False)

Justification:

Must find, Counter example.

Consider $\vec{x} = \vec{L}_0 \vec{J} \quad \vec{y} = \vec{L}_1 \vec{J}$ $||\vec{x}||_{A} = 1 \quad ||\vec{x}||_{B} = 3 \quad ||\vec{x}||_{D} = \min(1.3) = 1$ $||\vec{y}||_{A} = 3 \quad ||\vec{y}||_{B} = 1 \quad ||\vec{y}||_{D} = \min(3.1) = 1$ $||\vec{x} + \vec{y}||_{A} = ||\vec{x} + \vec{y}||_{B} = \sqrt{10} \quad ||\vec{x} + \vec{y}||_{D} = \sqrt{10}$ $||\vec{x} + \vec{y}||_{D} = \sqrt{10} \quad ||\vec{x} + \vec{y}||_{D} + ||\vec{y}||_{D} \quad ||\vec{x} + \vec{y}||_{D} = \sqrt{10}$

Problem 2: Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a third-order spline defined by the overlap of six B-splines:

$$f(t) = \sum_{k=0}^{5} \alpha_k b_3(t-k),$$

where $b_3(t)$ is the cubic B-spline function:

$$b_3(t) = \begin{cases} (t+2)^3/6 & -2 \le t \le -1 \\ -t^3/3 - t^2 + 2/3 & -1 \le t \le 0 \\ t^3/2 - t^2 + 2/3 & 0 \le t \le 1 \\ -(t-2)^3/6 & 1 \le t \le 2 \\ 0 & |t| \ge 2 \end{cases}$$

Suppose

$$f(0) = -5$$
, $f(1) = -1$, $f(2) = 3$, $f(3) = 0$ $f(4) = -3$, $f(5) = 7$

Write the linear system of equations that we have to solve to find the unique α_k corresponding to these samples. (You do not have to solve the system.)

Problem 3: Given a 2×2 matrix Q, define

$$\langle oldsymbol{x}, oldsymbol{y}
angle_Q = oldsymbol{x}^{\mathrm{T}} oldsymbol{Q} oldsymbol{y} \quad ext{ for all } oldsymbol{x}, oldsymbol{y} \in \mathbb{R}^2.$$

Circle the matrices Q below that make $\langle \cdot, \cdot \rangle_Q$ a valid inner product on \mathbb{R}^2 .

$$Q = \begin{bmatrix} 0.999 & 0 \\ 0 & 0.001 \end{bmatrix}$$

$$Q = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

$$\boldsymbol{Q} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$oldsymbol{Q} = egin{bmatrix} 4 & 2 \ 3 & 4 \end{bmatrix}$$

Problem 4:

(a) Given 4 data points

$$(x_i, y_i) \in \{(1,1), (1,0), (-1,0), (-1,-1)\},\$$

find the vector $\widehat{\boldsymbol{\beta}} = \begin{bmatrix} \widehat{\beta}_0 \\ \widehat{\beta}_1 \end{bmatrix}$ such that

$$\widehat{oldsymbol{eta}} = rg \min_{eta = [eta_0,eta_1]^ op \in \mathbb{R}^2} \sum_{i=1}^4 \left(y_i - eta_0 - eta_1 x_i
ight)^2.$$

You need to set up the least-squares problem in the matrix form by providing the design matrix X and the target vector y such that $y \approx X \hat{\beta}$. Sketch the linear regression line $\hat{f}(x) = \hat{\beta}_0 + \hat{\beta}_1 x$ on the axes below along with the 4 data points.

$$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \\ 1 & -1 \end{bmatrix} \qquad y = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix} \qquad \widehat{\beta} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$$

Data points denoted by "x"

(b) Given 4 data points

$$(x_i, y_i) \in \{(1, 1), (0, 1), (0, -1), (-1, -1)\},\$$

find the vector $\widehat{m{\beta}} = \begin{bmatrix} \widehat{m{\beta}}_0 \\ \widehat{m{\beta}}_1 \end{bmatrix}$ such that

$$\widehat{oldsymbol{eta}} = rg \min_{eta = [eta_0,eta_1]^{ op} \in \mathbb{R}^2} \sum_{i=1}^4 \left(y_i - eta_0 - eta_1 x_i
ight)^2.$$

You need to set up the least-squares problem in the matrix form by providing the design matrix X and the target vector y such that $y \approx X \hat{\beta}$. Sketch the linear regression line $\hat{f}(x) = \hat{\beta}_0 + \hat{\beta}_1 x$ on the axes below along with the 4 data points.

$$X = \begin{bmatrix} & 1 & & 1 \\ & 1 & & 0 \\ & 1 & & 0 \\ & 1 & & -1 \end{bmatrix} \qquad y = \begin{bmatrix} & 1 & \\ & 1 & \\ & -1 & \\ & -1 & \end{bmatrix} \qquad \widehat{\beta} = \begin{bmatrix} & 0 & \\ & 1 & \\ & & 1 \end{bmatrix}$$

Pata points denoted by "x"