Hedging with Futures

Tyler J. Brough, Ph.D.

December 9, 2017

Introduction

Short Hedge: a hedge that involves a short position in futures contracts. A short hedge is appropriate when the hedger already owns as asset and expects to sell it at some time in the future.

Long Hedge: a hedge that involves a long position in futures contracts. A long hedge is appropriate when a hedger knows it will have to purchase a certain asset in the future and wants to lock in the price now.

The Minimum-Variance Hedge

The minimum-variance hedge is given by the following:

$$h^* = \rho \frac{\sigma_s}{\sigma_f}$$

where ρ is the correlation between the spot and futures prices.

This can be most efficiently estimated via OLS regression, since:

$$\hat{\beta} = \frac{Cov(s, f)}{Var(f)}$$

$$= \frac{\rho \sigma_s \sigma_f}{\sigma_f \sigma_f}$$

$$= \rho \frac{\sigma_s}{\sigma_f}$$

The Simple Fixed 1-for-1 Hedge

The simplest hedge is the fixed one-for-one hedge ratio that was used by MGRM. This simple hedge sets h = 1. That is for every unit of the underlying asset the risk manager hedges with futures in exactly the same amount of units (either short or long).

MGRM's Hedging Strategy

Let's first estimate the risk-minimizing hedge ratio as a benchmark.

Let's start with the month that the program began in December, 1991.

```
basePath <- "/home/brough/USU/Research/Projects/local/MGRM"
srcDir <- paste(basePath, "/src/R", sep="")
datDir <- paste(basePath, "/data/December/", sep="")
setwd(srcDir)</pre>
```

```
## Read in the data for heating oil
infile1 <- paste(datDir, "heatingoil-spot.csv", sep="")</pre>
ho.s.raw <- read.csv(infile1, sep=",", header=T)
names(ho.s.raw) <- c("Date", "Spot")</pre>
ho.s.raw$Date <- as.Date(ho.s.raw$Date, "%Y-%m-%d")
infile2 <- paste(datDir, "heatingoil-futures.csv", sep="")</pre>
ho.f.raw <- read.csv(infile2, sep=",", header=T)
names(ho.f.raw) <- c("Date", "Futures")</pre>
ho.f.raw$Date <- as.Date(ho.f.raw$Date, "%Y-%m-%d")
## Merge the datasets
oil.raw <- merge(ho.s.raw, ho.f.raw, by="Date")</pre>
oil.raw <- oil.raw[order(oil.raw$Date), ]</pre>
oil.raw$Basis <- log(oil.raw$Futures) - log(oil.raw$Spot)</pre>
head(oil.raw)
           Date Spot Futures
                                    Basis
## 1 1986-06-02 0.402 0.378 -0.06155789
## 2 1986-06-03 0.393 0.380 -0.03363836
## 3 1986-06-04 0.378 0.358 -0.05436121
## 4 1986-06-05 0.390 0.374 -0.04189094
## 5 1986-06-06 0.385 0.372 -0.03434948
## 6 1986-06-09 0.373 0.366 -0.01894509
tail(oil.raw)
##
              Date Spot Futures
                                       Basis
## 7867 2017-11-03 1.791 1.887 0.05221414
## 7868 2017-11-06 1.831 1.942 0.05885610
## 7869 2017-11-07 1.827 1.922 0.05069103
## 7870 2017-11-08 1.808 1.922 0.06114505
## 7871 2017-11-09 1.833 1.947 0.06033576
## 7872 2017-11-13 1.830 1.932 0.05423977
We will now subset the data and perform the statistical analysis.
## Subset the data
begDate <- as.Date("1990-11-30", "%Y-%m-%d")
endDate <- as.Date("1991-12-30", "\Y-\m^-\d")
ind <- (oil.raw$Date >= begDate & oil.raw$Date <= endDate)</pre>
oil.sub <- oil.raw[ind, ]</pre>
## Take a Peak
head(oil.sub)
              Date Spot Futures
## 1127 1990-11-30 0.860 0.859 -0.001163467
## 1128 1990-12-03 0.854 0.847 -0.008230499
## 1129 1990-12-04 0.848 0.869 0.024462489
## 1130 1990-12-05 0.832 0.811 -0.025564387
## 1131 1990-12-06 0.818 0.797 -0.026007658
## 1132 1990-12-07 0.810 0.792 -0.022472856
tail(oil.sub)
```

Basis

##

Date Spot Futures

```
## 1393 1991-12-20 0.489
                           0.511 0.04400710
## 1394 1991-12-23 0.494 0.518 0.04743973
                           0.518 0.04138522
## 1395 1991-12-24 0.497
## 1396 1991-12-26 0.477
                           0.503 0.05307368
## 1397 1991-12-27 0.479
                           0.504 0.05087567
## 1398 1991-12-30 0.457
                           0.481 0.05118388
Now calculate the minimum-variance hedge ratio.
delS <- diff(oil.sub$Spot)</pre>
delF <- diff(oil.sub$Futures)</pre>
fit <- lm(delS ~ delF)
summary(fit)
##
## Call:
## lm(formula = delS ~ delF)
##
## Residuals:
##
         Min
                    1Q
                          Median
                                         3Q
## -0.033855 -0.002605 0.000158 0.002087 0.063850
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0001583 0.0005277
                                       -0.30
## delF
               0.9526565 0.0202164
                                        47.12
                                                <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.008674 on 269 degrees of freedom
## Multiple R-squared: 0.8919, Adjusted R-squared: 0.8915
## F-statistic: 2221 on 1 and 269 DF, p-value: < 2.2e-16
What if we use log-differences instead of price level differences?
delS <- diff(log(oil.sub$Spot))</pre>
delF <- diff(log(oil.sub$Futures))</pre>
fit <- lm(delS ~ delF)
summary(fit)
##
## Call:
## lm(formula = delS ~ delF)
##
## Residuals:
##
         Min
                    1Q
                          Median
                                        3Q
## -0.050850 -0.004256  0.000481  0.003654  0.094901
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.0003996 0.0007855 -0.509
## delF
                0.9035155 0.0215311 41.963 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.01291 on 269 degrees of freedom
```

```
## Multiple R-squared: 0.8675, Adjusted R-squared: 0.867
## F-statistic: 1761 on 1 and 269 DF, p-value: < 2.2e-16
Let's see how the minimum-variance hedge ratio changes over time.
## Make a function to take in data of appropriate period and output the mv hedge ratio
minvarHedgeRatio <- function(dat)</pre>
 delS <- diff(dat$Spot)</pre>
 delF <- diff(dat$Futures)</pre>
 fit <- lm(delS ~ delF)</pre>
 hr <- coef(fit)[2]
 return(hr)
}
addMonth <- function(date, n)
 return(seq(from=date, by=paste(n, "months"), length=2)[2])
lastDate <- as.Date("2001-11-30", "%Y-%m-%d")
ind <- (oil.raw$Date >= begDate & oil.raw$Date <= lastDate)</pre>
oil.full <- oil.raw[ind, ]</pre>
head(oil.full)
##
              Date Spot Futures
                                         Basis
## 1127 1990-11-30 0.860 0.859 -0.001163467
## 1128 1990-12-03 0.854 0.847 -0.008230499
## 1129 1990-12-04 0.848 0.869 0.024462489
## 1130 1990-12-05 0.832 0.811 -0.025564387
## 1131 1990-12-06 0.818 0.797 -0.026007658
## 1132 1990-12-07 0.810 0.792 -0.022472856
tail(oil.full)
              Date Spot Futures
                                         Basis
## 3877 2001-11-21 0.531 0.534 0.005633818
## 3878 2001-11-26 0.509 0.522 0.025219571
## 3879 2001-11-27 0.541
                            0.539 -0.003703708
## 3880 2001-11-28 0.530 0.531 0.001885015
## 3881 2001-11-29 0.507 0.519 0.023392880
## 3882 2001-11-30 0.531 0.532 0.001881468
nrow(oil.full)
## [1] 2756
Okay. Down to business.
dates <- seq(from=endDate, to=lastDate, by="month")</pre>
nper <- length(dates)</pre>
indBeg <- begDate</pre>
indEnd <- endDate</pre>
hr \leftarrow rep(0, nper)
for(i in 1:nper)
```

```
ind <- (oil.full$Date >= indBeg & oil.full$Date <= indEnd)
oil.tmp <- oil.full[ind, ]
hr[i] <- minvarHedgeRatio(oil.tmp)
indBeg <- addMonth(indBeg, 1)
indEnd <- addMonth(indEnd, 1)
}
summary(hr)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1445 0.8830 0.9293 0.8864 0.9636 1.0120
```

Let's plot the time series of hedge ratios.

```
dm <- data.frame(Date=dates, HedgeRatio=hr)
plot(HedgeRatio ~ Date, dm, xaxt="n", type="l")
axis(1, dm$Date, format(dm$Date, "%b-%Y"), cex.axis = .7)</pre>
```


Dec-1991 Mar-1993 Jun-1994 Sep-1995 Dec-1996 Mar-1998 Jun-1999 Sep-2000

Date

Plot the time series of basis

```
plot(Basis ~ Date, oil.full, xaxt="n", type="l")
axis(1, oil.full$Date, format(oil.full$Date, "%b-%Y"), cex.axis = .7)
```


Nov-1990 Apr-1992 Jul-1993 Oct-1994 Feb-1996 Jun-1997 Oct-1998 Jan-2000 May-2001

Date

Something weird is happening between Jun-1999 and Sep-2000. Let's check it out.

Note: turns out there were extremely cold temperatures in the north east and there was a resulting heating oil shortfall during Jan - Feb, 2000.

```
beg <- as.Date("2000-01-01", "%Y-%m-%d")
end <- as.Date("2000-03-01", "%Y-%m-%d")
ind <- (oil.full$Date >= beg & oil.full$Date <= end)
oil.eh <- oil.full[ind, ]
oil.eh</pre>
```

```
##
              Date Spot Futures
                                        Basis
## 3406 2000-01-04 0.687
                           0.678 -0.013187004
## 3407 2000-01-05 0.671
                           0.666 -0.007479466
## 3408 2000-01-06 0.675
                           0.663 -0.017937701
## 3409 2000-01-07 0.660
                           0.648 -0.018349139
## 3410 2000-01-10 0.660
                           0.647 -0.019893541
## 3411 2000-01-11 0.671
                           0.668 -0.004480963
## 3412 2000-01-12 0.697
                           0.685 -0.017366572
## 3413 2000-01-13 0.709
                           0.693 -0.022825527
  3414 2000-01-14 0.762
                           0.738 -0.032002731
## 3415 2000-01-18 0.814
                           0.770 -0.055569851
  3416 2000-01-19 0.862
                           0.800 -0.074643543
  3417 2000-01-20 1.080
                           0.865 -0.221986813
                           0.935 -0.302280872
  3418 2000-01-21 1.265
## 3419 2000-01-24 1.288
                           0.864 -0.399273138
  3420 2000-01-25 1.359
                           0.904 -0.407675054
## 3421 2000-01-26 1.308
                           0.921 -0.350794496
  3422 2000-01-27 1.212
                           0.912 -0.284387177
## 3423 2000-01-28 1.185
                           0.925 -0.247704316
## 3424 2000-01-31 0.820
                           0.952 0.149260695
## 3425 2000-02-01 1.030
                           0.772 -0.288329531
## 3426 2000-02-02 1.231
                           0.755 -0.488864377
## 3427 2000-02-03 1.403
                           0.779 -0.588357034
```

```
## 3428 2000-02-04 1.765
                          0.788 -0.806407880
## 3429 2000-02-07 1.103 0.758 -0.375105634
## 3430 2000-02-08 1.020 0.728 -0.337256858
## 3431 2000-02-09 0.926
                         0.746 -0.216148634
## 3432 2000-02-10 0.825
                         0.745 -0.101999168
## 3433 2000-02-11 0.795
                         0.742 -0.068992871
## 3434 2000-02-14 0.797
                          0.757 -0.051491425
                          0.752 -0.027542725
## 3435 2000-02-15 0.773
## 3436 2000-02-16 0.773
                          0.762 -0.014332493
## 3437 2000-02-17 0.757
                          0.751 -0.007957602
## 3438 2000-02-18 0.765
                          0.755 -0.013158085
## 3439 2000-02-22 0.757
                          0.749 -0.010624270
## 3440 2000-02-23 0.771
                          0.761 -0.013055016
## 3441 2000-02-24 0.789
                          0.780 -0.011472401
## 3442 2000-02-25 0.830
                          0.829 -0.001205546
## 3443 2000-02-28 0.816
                          0.817 0.001224740
## 3444 2000-02-29 0.820 0.825 0.006079046
## 3445 2000-03-01 0.849 0.797 -0.063204508
```