МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ и систем» Тема: Изучение режимов адресации и формирования исполнительного адреса

Студент гр. 0382	 Азаров М.С.
Преподаватель	 Ефремов М.А

Санкт-Петербург 2021

Цель работы.

Изучить режимы адресации и формирование исполнительного адреса.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции.

Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя.

На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Порядок выполнения работы.

1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и занести свои данные вместо значений, указанных в приведенной ниже программе.

- 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы.
- 3. Снова протранслировать программу и скомпоновать загрузочный модуль.
- 4. Выполнить программу в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.
- 5. Результаты прогона программы под управлением отладчика должны быть подписаны преподавателем и представлены в отчете.

Ход работы

- 1. Описание обнаруженных при первоначальной трансляции ошибок и их объяснение :
 - (47) *mov mem3, [bx]* Нельзя читать из памяти и писать в память одной командой .
 - (54) *mov cx, vec2[di]* Несоответствие типов операндов.
 - (58) *mov cx, matr[bx][di]* Несоответствие типов операндов.
 - (59) *mov ax, matr[bx*4][di]* Нельзя умножать 16-битные регистры, нужно использовать регистры EXX.
 - (79) *mov ax, matr[bp+bx]* Нельзя использовать более одного базового регистра.
 - (80) *mov ax, matr[bp+di+si]* Нельзя использовать более одного индексного регистра.
- 2. Запуск программы под управлением отладчика с пошаговым выполнением и занесением данных в таблицу 1:

Начальное значение сегментных регистров:

CS = 1A0A; DS = 19F5;

ES = 19F5; SS = 1A05;

Таблица 1 - Отладка LR2 COMP.EXE

Адрес	Символический	16-ричный	Содержимое ре	гистров и ячеек
Команды	код команды	код команды	пам	ИТК
			до выполнения	После
				выполнения
0000	PUSH DS	1E	DS = 19F5	DS = 19F5
			IP = 0000	IP = 0001
			SP = 0018	SP = 0016
			Stack +0 0000	Stack +0 19F5
			+2 0000	+2 0000
			+4 0000	+4 0000
			+6 0000	+6 0000
0001	SUB AX, AX	2BC0	AX = 0000	AX = 0000
			IP = 0001	IP = 0003
0003	PUSH AX	50	AX = 0000	AX = 0000
			IP = 0003	IP = 0004
			SP = 0016	SP = 0014
			Stack +0 19F5	Stack +0 0000
			+2 0000	+2 19F5
			+4 0000	+4 0000
			+6 0000	+6 0000
0004	MOV AX, 1A07	B8071A	IP = 0004	IP = 0007
			AX = 0000	AX = 1A07
0007	MOV DS, AX	8ED8	IP = 0007	IP = 0009
			DS = 19F5	DS = 1A07
0009	MOV AX, 01F4	B8F401	AX = 1A07	AX = 01F4
			IP = 0009	IP = 000C

000C	MOV CX, AX	8BC8	AX = 01F4	AX = 01F4
			CX = 00B0	CX = 01F4
			IP = 000C	IP = 000E
000E	MOV BL, 24	B324	BX = 0000	BX = 0024
			IP = 000E	IP = 0010
0010	MOV BH, CE	B7CE	BX = 0024	BX = CE24
			IP = 0010	IP = 0012
0012	MOV [0002], FFCE	C7060200CEFF	IP = 0012	IP = 0018
			DS:0002 = 00	DS:0002 = CE
			DS:0003 = 00	DS:0003 = FF
0018	MOV BX, 0006	BB0600	BX = CE24	BX = 0006
			IP = 0018	IP = 001B
001B	MOV [0000], AX	A30000	IP = 001B	IP = 001E
			AX = 01F4	AX = 01F4
			DS:0000 = 00	DS:0000 = F4
			DS:0001 = 00	DS:0001 = 01
001E	MOV AL, [BX]	8A07	AX = 01F4	AX = 0101
			BX = 0006	BX = 0006
			IP = 001E	IP = 0020
0020	MOV AL, [BX+03]	8A4703	AX = 0101	AX = 0104
			BX = 0006	BX = 0006
			IP = 0020	IP = 0023
0023	MOV CX, [BX+03]	8B4F03	CX = 01F4	CX = 0804
			BX = 0006	BX = 0006
			IP = 0023	IP = 0026
0026	MOV DI, 0002	BF0200	DI = 0000	DI = 0002
			IP = 0026	IP = 0029
0029	MOV AL,[000E+DI]	8A850E00	AX = 0104	AX = 010A
			DI = 0002	DI = 0002
			IP = 0029	IP = 002D
			DS:0010 = 0A	DS:0010 = 0A
002D	MOV BX, 0003	BB0300	BX = 0006	BX = 0003
			IP = 0002D	IP = 00030
0030	MOV AL,[0016+BX+DI]	8A811600	AX = 010A	AX = 01FD

			DX = 0003	DX = 0003
			DI = 0002	DI = 0002
			IP = 0030	IP = 0034
			DS:001B = FD	DS:001B = FD
0034	MOV AX, 1A07	B8071A	IP = 0034	IP = 0037
			AX = 01FD	AX = 1A07
0037	MOV ES,AX	8EC0	ES = 19F5	ES = 1A07
			AX = 1A07	AX = 1A07
			IP = 0037	IP = 0039
0039	MOV AX, ES:[BX]	268B07	AX = 1A07	AX = 00FF
			ES = 1A07	ES = 1A07
			BX = 0003	BX = 0003
			IP = 0039	IP = 003C
			DS:0003 = FF	DS:0003 = FF
			DS:0004 = 00	DS:0004 = 00
003C	MOV AX, 0000	B80000	IP = 003C	IP = 003F
			AX = 00FF	AX = 0000
003F	MOV ES, AX	8EC0	IP = 003F	IP = 0041
			ES = 1A07	ES = 0000
			AX = 0000	AX = 0000
0041	PUSH DS	1E	DS = 1A07	DS = 1A07
			IP = 0041	IP = 0042
			SP = 0014	SP = 0012
			Stack +0 0000	Stack +0 1A07
			+2 19F5	+2 0000
			+4 0000	+4 19F5
			+6 0000	+6 0000
0042	POP ES	07	ES = 0000	ES = 1A07
			IP = 0042	IP = 0043
			SP = 0012	SP = 0014
			Stack +0 1A07	Stack +0 0000
			+2 0000	+2 19F5
			+4 19F5	+4 0000
			1 7 1 71 3	1 7 0000

0043	MOV CX, ES:[BX-01]	268B4FFF	CX = 0804	CX = FFCE
			IP = 0043	IP = 0047
			BX = 0003	BX = 0003
			ES =1A07	ES =1A07
			DS:0002 = CE	DS:0002 = CE
			DS:0003 = FF	DS:0003 = FF
0047	XCHG AX,CX	91	AX = 0000	AX = FFCE
			CX = FFCE	CX = 0000
			IP = 0047	IP = 0048
0048	MOV DI, 0002	BF0200	DI = 0002	DI = 0002
			PI = 0048	PI = 004B
004B	MOV ES:[BX+DI], AX	268901	AX= FFCE	AX= FFCE
			IP = 004B	IP = 004E
			BX = 0003	BX = 0003
			ES =1A07	ES =1A07
			DI = 0002	DI = 0002
			DS:0005 = 00	DS:0005 = CE
			DS:0006 = 01	DS:0006 = FF
004E	MOV BP, SP	8BEC	SP = 0014	SP = 0014
			BP = 0000	BP = 0014
			PI = 004E	PI = 0050
0050	PUSH [0000]	FF360000	IP = 0050	IP = 0054
			SP = 0014	SP = 0012
			DS:0000 = F4	DS:0000 = F4
			DS:0001 = 01	DS:0001 = 01
			Stack +0 0000	Stack +0 01F4
			+2 19F5	+2 0000
			+4 0000	+4 19F5
			+6 0000	+6 0000
0054	PUSH [0002]	FF360000	IP = 0054	IP = 0058
			SP = 0012	SP = 0010
			DS:0002 = CE	DS:0002 = CE
			DS:0003 = FF	DS:0003 = FF

			Stack +0 01F4	Stack +0 FFCE
			+2 0000	+2 01F4
			+4 19F5	+4 0000
			+6 0000	+6 19F5
0058	MOV BP, SP	8BEC	BP = 0014	BP = 0010
			SP = 0010	SP = 0010
			IP = 0058	IP = 005A
005A	MOV DX, [BP+02]	8B5602	BP = 0010	BP = 0010
			DX = 0000	DX = 01F4
			IP = 005A	IP = 005D
			SS:0012 = 01F4	SS:0012 = 01F4
005D	RET Far 0002	CA0200	IP = 005D	IP = FFCE
			SP = 0010	SP = 0016
			CS = 1A0A	CS = 01F4
			Stack +0 FFCE	Stack +0 19F5
			+2 01F4	+2 0000
			+4 0000	+4 0000
			+6 19F5	+6 0000

Вывод.

Изучены режимы адресации и формирование исполнительного адреса.

В ходе работы был исправлен и пошагово отлажен исходных файл.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lr2 comp.asm

```
; Программа изучения режимов адресации процессора IntelX86
EOL EOU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
     DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 Dw 0
vec1 DB 1,2,3,4,8,7,6,5
vec2 DB -10, -20, 10, 20, -30, -40, 30, 40
matr DB 1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8,-7,-6,-5
DATA ENDS
; Код программы
CODE SEGMENT
     ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
     push DS
     sub AX, AX
     push AX
     mov AX, DATA
     mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
     mov ax, n1
     mov cx, ax
     mov bl, EOL
     mov bh, n2
; Прямая адресация
     mov mem2, n2
     mov bx, OFFSET vec1
     mov mem1,ax
; Косвенная адресация
     mov al, [bx]
      ; mov mem3, [bx] ; Нельзя читать из памяти и писать в память одной
командой
```

```
; Базированная адресация
     mov al, [bx]+3
     mov cx, 3[bx]
; Индексная адресация
     mov di, ind
     mov al, vec2[di]
     ; mov cx, vec2[di] ; Heсоответствие типов операндов
; Адресация с базированием и индексированием
     mov bx, 3
     mov al, matr[bx][di]
     ; mov cx, matr[bx][di] ; Несоответствие типов операндов
     ; mov ax, matr[bx*4][di] ; Hельзя умножать 16-битные регистры, нужно
использовать регистры EXX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ---- вариант 1
     mov ax, SEG vec2
     mov es, ax
     mov ax, es:[bx]
     mov ax, 0
; ---- вариант 2
     mov es, ax
     push ds
     pop es
     mov cx, es: [bx-1]
     xchg cx, ax
; ----- вариант 3
     mov di, ind
    mov es:[bx+di],ax
; ---- вариант 4
     mov bp, sp
     ;mov ax,matr[bp+bx] ;Нельзя использовать более одного базового
     ; mov ax, matr[bp+di+si] ; Hельзя использовать более одного
индексного регистра
; Использование сегмента стека
     push mem1
     push mem2
     mov bp, sp
     mov dx, [bp]+2
     ret 2
Main ENDP
CODE ENDS
     END Main
```

Название файла: LR2.LST

#Microsoft (R) Macro Assembler Version 5.10

10/19/21 14:33:0 Page 1-1 ; Программа изучения режимов адресации процессо pa IntelX86 = 0024EOL EQU '\$' = 0002ind EQU 2 = 01F4n1 EQU 500 =-0032 n2 EQU -50 ; Стек программы 0000 AStack SEGMENT STACK 0000 10000 DW 12 DUP(?) 3333] AStack ENDS 0018 ; Данные программы 0000 DATA SEGMENT ; Директивы описания данных 0000 0000 mem1 DW 0 0002 0000 mem2 DW 0 0004 0000 mem3 Dw 0 0006 01 02 03 04 08 07 vec1 DB 1,2,3,4,8,7,6,5 06 05 vec2 DB -10,-20,10,20,-30,-40,30,40 000E F6 EC 0A 14 E2 D8 1E 28 0016 01 02 03 04 FC FD matr DB 1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8,-7,-6,-5 FE FF 05 06 07 08 F8 F9 FA FB 0026 DATA ENDS ; Код программы 0000 CODE SEGMENT ASSUME CS:CODE, DS:DATA, SS:AStack ; Головная процедура 0000 Main PROC FAR 0000 1E push DS 0001 2B CO sub AX, AX 0003 50 push AX 0004 B8 ---- R mov AX, DATA 0007 8E D8 mov DS, AX ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ ; Регистровая адресация 0009 B8 01F4 mov ax, n1

```
000C 8B C8
                                mov cx, ax
 000E B3 24
                                mov bl, EOL
 0010 B7 CE
                                mov bh, n2
                     ; Прямая адресация
 0012 C7 06 0002 R FFCE
                                mov mem2, n2
 0018 BB 0006 R mov bx, OFFSET vec1
 001B A3 0000 R
                          mov mem1,ax
                      ; Косвенная адресация
 001E 8A 07
                                mov al, [bx]
                                                             10/19/21
#Microsoft (R) Macro Assembler Version 5.10
14:33:0
                                                             Page
1 - 2
                           ; mov mem3, [bx]; Heльзя читать из памяти
                      и писать в память одной командой
                      ; Базированная адресация
 0020 8A 47 03
                                mov al, [bx]+3
 0023 8B 4F 03
                                mov cx, 3[bx]
                      ; Индексная адресация
 0026 BF 0002
                                mov di, ind
 0029 8A 85 000E R
                                mov al, vec2[di]
                           ; mov cx, vec2[di] ; Heсоответствие типов
                      операндов
                      ; Адресация с базированием и индексированием
 002D BB 0003
                                mov bx, 3
 0030 8A 81 0016 R
                                mov al, matr[bx][di]
                           ;mov cx, matr[bx][di] ;Heсоответствие ти
                      пов операндов
                           ; mov ax, matr[bx*4][di]; Нельзя умножать
                       16-битные регистры, нужно использовать регистр
                      ы ЕХХ
                      ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
                      ; Переопределение сегмента
                      ; ---- вариант 1
 0034 B8 ---- R
                          mov ax, SEG vec2
 0037 8E CO
                                mov es, ax
                           mov ax, es:[bx]
 0039 26: 8B 07
 003C B8 0000
                                mov ax, 0
                      ; ---- вариант 2
 003F
     8E C0
                                mov es, ax
 0041
      1E
                           push ds
 0042
      07
                           pop es
      26: 8B 4F FF
 0043
                                mov cx, es: [bx-1]
 0047 91
                           xchg cx, ax
                      ; ---- вариант 3
 0048 BF 0002
                                mov di, ind
 004B 26: 89 01
                          mov es:[bx+di],ax
                      ; ----- вариант 4
 004E 8B EC
                                mov bp, sp
                           ; mov ax, matr[bp+bx] ; Нельзя использоват
                      ь более одного базового регистра
                           ; mov ax, matr[bp+di+si] ; Нельзя использо
```

вать более одного индексного регистра ; Использование сегмента стека 0050 FF 36 0000 R push mem1 0054 FF 36 0002 R push mem2 0058 8B EC mov bp,sp 005A 8B 56 02 mov dx,[bp]+2 005D CA 0002 ret 2 0060 Main ENDP 0060 CODE ENDS END Mai #Microsoft (R) Macro Assembler Version 5.10 10/19/21 14:33:0				
N a m e Lengt	th Align Combine Class			
ASTACK	0018 PARA STACK 0060 PARA NONE 0026 PARA NONE			
Symbols:				
Name Type	Value Attr			
EOL	NUMBER 0024			
IND	NUMBER 0002			
MAIN	F PROC 0000 CODE Length =			
MATR	L BYTE 0016 DATA L WORD 0000 DATA L WORD 0002 DATA L WORD 0004 DATA			
N1	NUMBER 01F4 NUMBER -0032			
VEC1	L BYTE 0006 DATA L BYTE 000E DATA			
@CPU	TEXT 0101h TEXT LR2_COMP TEXT 510			
89 Source Lines 89 Total Lines 19 Symbols				

47796 + 459464 Bytes symbol space free

- 0 Warning Errors
- O Severe Errors