CI5438. Inteligencia Artificial II Clase 6: Redes Neuronales Cap 20.5 Russel & Norvig Cap 4 Mitchell

Ivette C. Martínez

Universidad Simón Bolívar

14 de Octubre de 2009

Modelos Conexionistas

Consideremos los seres humanos:

- ullet Tiempo de activación de las neuronas pprox 0,001 segundos
- Número de neuronas $\approx 10^{10}$
- Conexiones por neurona $\approx 10^{4-5}$
- ullet Tiempo para reconoces una escena pprox 0.1 segundos
- 100 pasos de inferencia no parecen ser suficientes
- → Muchos cómputos paralelos

Propiedades de las redes neurales artificiales:

- Muchas unidades de activación de umbral, como "neuronas".
- Muchas interconecciones pesadas entre las unidades
- Procesamiento distribuido, altamente paralelo
- Énfasis en la entonación automática de pesos.

ALVINN

Cuándo considerar Redes Neurales

- La entrada es de muchas dimensiones, de valores discretos o reales (e.j. Entradas de un sensor)
- La salida es de valores discretos o contínuos
- La salida es un vector de valores
- Los datos son posiblemente ruidosos
- La forma de la fución objetivo es desconocida
- La legibilidad de los resultados por parte de los humanos no tiene importancia

Ejemplos:

- Reconocimiento de fonémas hablados [Waibel]
- Clasificación de imágenes [Kanade, Baluja, Rowley]
- Predicción financiera

Neurona

Perceptrón

$$o(x_1,...,x_n) = \begin{cases} 1 & \text{if } w_o + w_1 x_1 + ... + w_n x_n > 0 \\ -1 & \text{otherwise} \end{cases}$$

Algunas veces usamos la notación vectorial, que es más simple:

$$o(\vec{x}) = \left\{ egin{array}{ll} 1 & ext{if } \vec{w}.\vec{x} > 0 \ -1 & ext{otherwise} \end{array}
ight.$$

Superficies de Decisión de un Perceptrón

Se pueden representar algunas funciones útiles

• Qué pesos representan a

$$g(x_1,x_2) = AND(x_1.x_2)$$

Pero algunas funciones no son representables

- ejem., Funciones que no sean separable linealmente
- Luego, vamos a necesitar redes de estas unidades

Regla de entrenamiento del Perceptrón

$$w_i \leftarrow w_i + \Delta w_i$$

donde:

$$\Delta w_i = \eta(t-o)x_i$$

Donde:

- $t = c(\vec{x})$ es el valor objetivo
- o es la salida del perceptrón
- η es una constante pequeña (ejem., 0,1) denominada tasa de aprendizaje

Regla de entrenamiento del Perceptrón

Se puede demostrar que converge:

- Si los datos de entrenamiento son linealmente separables
- ullet y η es lo suficientemente pequeña

Para entender, consideremos la unidad lineal más simple, donde:

$$o = w_o + w_1 x_1 + ... + w_n x_n$$

Vamos a aprender los w_i que minimicen el error cuadrático

$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Donde *D* es el conjunto de ejemplos de entrenamiento

$$\nabla E[\vec{w}] \equiv \left[\frac{\delta E}{\delta w_0}, \frac{\delta E}{\delta w_1}, ... \frac{\delta E}{\delta w_n}\right]$$

Regla de entrenamiento:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

es decir:

$$\Delta w_i = -\eta \frac{\delta E}{\delta w_i}$$

$$\frac{\frac{\delta E}{\delta w_i}}{\delta w_i} = \frac{\delta}{\delta w_i} \frac{1}{2} \sum_{d} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} \frac{\delta}{\delta w_i} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\delta}{\delta w_i} (t_d - o_d)
= \sum_{d} (t_d - o_d) \frac{\delta}{\delta w_i} (t_d - \vec{w} \cdot \vec{x_d})
\frac{\delta E}{\delta w_i} = \sum_{d} (t_d - o_d) (-x_{i,d})$$

Gradient-Descent $(training_examples, \eta)$

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero.
 - For each $\langle \vec{x}, t \rangle$ in $training_examples$, Do
 - * Input the instance \vec{x} to the unit and compute the output o
 - * For each linear unit weight w_i , Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t-o)x_i$$

- For each linear unit weight w_i , Do

$$w_i \leftarrow w_i + \Delta w_i$$

Resumen

La regla de entrenamiento del perceptrón tiene un éxito garantizado si:

- Los ejemplos de entrenamiento son linealmente separables
- ullet La tasa de aprendizaje η es suficientemente pequeña

La regla de entrenamiento de unidades lineales usando descenso del gradiente:

- Garantiza converger a la hipótesis con el menor error cuadrático
- ullet Dada una tasa de aprendizaje η es suficientemente pequeña
- Aún cuando los datos de entrenamiento contengan ruido
- Aún cuando los datos de entrenamiento no sean separable por H

Descenso del Gradiente Incremental (Estocástico)

Batch mode Gradient Descent:

Do until satisfied

- 1. Compute the gradient $\nabla E_D[\vec{w}]$
- 2. $\vec{w} \leftarrow \vec{w} \eta \nabla E_D[\vec{w}]$

Incremental mode Gradient Descent:

Do until satisfied

- \bullet For each training example d in D
 - 1. Compute the gradient $\nabla E_d[\vec{w}]$
 - 2. $\vec{w} \leftarrow \vec{w} \eta \nabla E_d[\vec{w}]$

$$E_D[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$
$$E_d[\vec{w}] \equiv \frac{1}{2} (t_d - o_d)^2$$

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η made small enough

Redes Multicapas de Unidades Sigmoidales

Unidades Sigmoidales

 $\sigma(x)$ es la función sigmoidal

$$\frac{1}{1+e^{-x}}$$

Buena propiedad: $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$ Podemos derivar reglas del descenso de gradiente para entrenar:

- Una unidad sigmoidal
- ullet Redes multicapa de unidades sigmoidales o Backpropagation

Gradiente del error para una Unidad Sigmoidal

$$\begin{array}{rcl} \frac{\delta E}{\delta w_i} & = & \frac{\delta}{\delta w_i} \frac{1}{2} \sum_d (t_d - o_d)^2 \\ & = & \frac{1}{2} \sum_d \frac{\delta}{\delta w_i} (t_d - o_d)^2 \\ & = & \frac{1}{2} \sum_d 2 (t_d - o_d) \frac{\delta}{\delta w_i} (t_d - o_d) \\ & = & \sum_d (t_d - o_d) \left(-\frac{\delta o_d}{\delta w_i} \right) \\ & = & -\sum_d (t_d - o_d) \frac{\delta o_d}{\delta net_d} \frac{\delta net_d}{\delta w_i} \end{array}$$

Pero sabemos que:

$$egin{aligned} rac{\delta o_d}{\delta \textit{net}_d} &= rac{\delta \sigma(\textit{net}_d)}{\delta \textit{net}_d} = o_d(1 - o_d) \ &rac{\delta \textit{net}_d}{\delta w_i} &= rac{\delta(ec(w).ec(x_d))}{\delta w_i} = x_{i,d} \end{aligned}$$

Entonces:

$$\frac{\delta E}{\delta w_i} = -\sum_d (t_d - o_d) o_d (1 - o_d) x_{i,d}$$

Algoritmo de Backpropagation

Initialize all weights to small random numbers. Until satisfied, Do

- For each training example, Do
 - Input the training example to the network and compute the network outputs
 - 2. For each output unit k

$$\delta_k \leftarrow o_k (1 - o_k) (t_k - o_k)$$

3. For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

4. Update each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j x_{i,j}$$

Más sobre Backpropagation

- Descenso del gradiente sobre el vector de pesos de la red completo
- Fácilmente generalizable para grafos dirigidos arbitrários
- Se encontrará un mínimo local del error, no necesariamente el mínimo error global
 - En la práctica, casi siempre funciona bien (se pueden realizar múltiples corridas)
- Algunas veces se incluye un momentun de los pesos

$$\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1)$$

- Minimiza el error sobre los ejemplos de entrenamiento
 - Generalizará bien para ejemplos posteriores?
- El entrenamiento puede tomar miles de iteraciones → lento!
- El uso de la red despues del entrenamiento es muy rápido

