Name and student number:

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. If A = [0, 2] and B = [-1, 1], compute:
- [2] (a) $f(A \cap B)$

[2] (b) $f(A) \cap f(B)$

[2] (c) $f^{-1}(f(A))$

2. Let $f: A \to B$ be a given function. We know that for any subset $C \subseteq A$, $C \subseteq f^{-1}(f(C))$, since if $x \in C$, then $f(x) \in f(C) = \{f(c) | c \in C\}$, and thus

$$x \in f^{-1}(f(C)) = \{x \in A | f(x) \in f(C)\}.$$

Prove that if f is one-to-one, then the reverse inclusion holds; that is, $f^{-1}(f(C)) \subseteq C$. Hint: Suppose $x \in f^{-1}(f(C))$, and let y = f(x). If $y \in f(C)$, that doesn't immediately guarantee that $x \in C$, but it does guarantee that there is some $c \in C$ such that f(c) = y.

Total: 10 points