Amendments to the Claims

1. (Currently Amended) A method of operating a DC/DC up-down converter which has

- an input voltage (U_{in}) and at least a first and a second output voltage (U_A, U_B);
- at least one inductive energy storage means (L₁), which is connected with a first terminal (X₁) to a main switching means (T₁) and can be connected with a second terminal (Y₁) to at least two outputs (A-B) via switching means (T₃, D₂);
- output switching means (T₃, D₃) for providing electrical energy for the first and second output voltages(U_A, U_B) by supplying a coil current (I_{LI}),
- a main switching means (T₊)-between the inductive energy storage means (L₊)-and a DC voltage source generating the input voltage (U_{in})₅
- a free-wheeling switching means $(T_2 D_2)$ which makes possible the continuation of the current flow in the inductive means (L_4) if the main switching means (T_4) is switched off and
- a control means (controller) for selective actuation of all switching means (T_1, T_2, T_3, T_4) ,

wherein

- the first output voltage (U_A) , which is lower than the input voltage (U_{in}) , is present on the first output (A) and
- the second output voltage (U_B), which is higher than the input voltage (U_{in}),
 is

present on the second output-(B)
at least a further switching means (F₃)-for controlling the direction of the coil
current (I_{L1})-into the first output (A)-or into the second output (B)-is
connected

in series with the first output (A),

characterized in that the control means (controller)

-- controls the output switching means (T_2, T_4) , so that in the course of one switching cycle (SZ_1, SZ_2) the coil current (I_{L1}) flows from the second terminal (Y_1) into both output branches (A, B) and

Appl. No. Unassigned; Docket No. DE04 0003 US1 Amdt. dated June 29, 2006 Preliminary Amendment

- -- controls the main switch (T_{\downarrow}) in the transient state of the up-down converter, so that the average voltage on the first terminal (X_{\downarrow}) is equal to the voltage on the second terminal (Y_{\downarrow}) .
- 2. (Currently Amended) A method as claimed in claim 1 in which the control means (controller) generates switching phases $(\Phi_2, \Phi_3 \text{ and } \Phi_5, \Phi_6, \text{ respectively})$ for the switching means (T_1, T_2, T_3, T_4) and the course of the coil current (I_{L+}) -comprises an up-conversion phase and a down-conversion phase, characterized in that the down-conversion phase of the coil current (I_{L+}) -comprises at least two switching phases (Φ_2, Φ_3) -conversion phase of the coil current (I_{L+}) -comprises at least two switching phases (Φ_2, Φ_3) -conversion phase of the coil current (I_{L+}) -comprises at least two switching phases (Φ_2, Φ_3) -conversion phase of the coil current (I_{L+}) -comprises at least two switching phases (Φ_3, Φ_3) -conversion phase of the coil current (I_{L+}) -comprises at least two switching phases (Φ_3, Φ_3) -conversion phase of the coil current (I_{L+}) -comprises at least two switching phases (Φ_3, Φ_3) -conversion phase of the coil current (I_{L+}) -comprises at least two switching phases (Φ_3, Φ_3) -conversion phase of the coil current (I_{L+}) -comprises at least two switching phases (Φ_3, Φ_3) -conversion phase (Φ_3, Φ_3) -conversion
- 3. (Currently Amended) A method as claimed in claim 2, characterized in that the switching cycle (SZ1, SZ2) has all the switching phases (Φ_1 , Φ_2 , Φ_3 and Φ_4 , Φ_5 , Φ_6 , respectively), exactly once.
- 4. (Currently Amended) A method of operating a DC/DC up-down converter which has
 - an input voltage (U_{in})-and at least a first and a second output voltage (U_D, U_D),
 - at least one inductive energy storage means (L₂), which is connected with a first terminal (X₂) to a DC voltage source generating in the input voltage (U_{in}) and can be connected with a second terminal (Y₂) to the outputs (D, E) via the switching means (T₆, D₄),
 - output switching means T_6 , D_4) for providing electrical energy for the first and the second output voltage (U_D, U_E) by supplying a coil current (I_{L2}) ,
 - a main switching means (T₅) between a second terminal (Y₂) of the inductive energy storage means (L₂) and the other pole of the DC voltage source, and
 - -a control means (controller) for selectively actuating all switching means (T_5, T_6, T_6, T_7)
 - wherein
 - the first output voltage (U_D), which is lower than the input voltage (U_{in}), is present on the first output (D) and

Appl. No. Unassigned; Docket No. DE04 0003 US1 Amdt. dated June 29, 2006 Preliminary Amendment

- the second output voltage (U_E), which exceeds the input voltage (U_{in}), is
 present on the second output (E),
- at least a further switching means (T₆)-for controlling the direction of the coil current (I_{L2})-into the first output (D)-or into the second output (E)-is connected in series with the first output (D)₃

characterized in that the control means (controller)

- -- controls the output switching means (T_6, T_2) , so that in the course of one switching cycle (SZ_3, SZ_4) the coil current $(I_{1,2})$ -flows from the second terminal (Y_2) -into both output branches (D, E, F)-at least once and and
- -- controls the main switch (T_5) -in the transient state of the up-down converter so that the average voltage on the second terminal (Y_2) -of the cloil (L_2) -is equal to the voltage on the first terminal (X_1) , thus equal to the input voltage (U_{in}) .
- 5. (Currently Amended) A method as claimed in claim 4, wherein the control means (controller) generates switching phases (Φ_7 , Φ_8 , Φ_9 and Φ_{10} , Φ_{11} , Φ_{12} , Φ_{13} respectively) for each switching means (T_5 , T_6 , T_7) and the pattern of the coil current ($I_{1,2}$) has an up-conversion phase and a down-conversion phase, characterized in that the up-conversion phase of the coil current ($I_{1,2}$) comprises at least two switching phases (Φ_7 , Φ_8 and Φ_{10} , Φ_{11} respectively).
- 6. (Currently Amended) A method as claimed in claim 5, characterized in that the switching cycle (SZ_3 , SZ_4) comprises all switching phases (Φ_7 , Φ_8 , Φ_9 and Φ_{10} , Φ_{11} , Φ_{12} , Φ_{13} , respectively), exactly once.
- 7. (Currently Amended) A method as claimed on one of the preceding elaims in claim 1, characterized in that the switching means $(T_1, T_2, ..., T_7)$ are MOSFETs; IGBTs, GTOs or bipolar transistors.
- 8. (Currently Amended) Implementation of a method as defined in the Claims 1 to 9claim 1, for the operation of a DC/DC up-down converter in electronic appliances in which consumers are to be supplied with different voltages such as, for example, in mobile telephones, PDAs (Personal Digital Assistants) or MP3 players.