HAZARDOUS AREA MONITORING FOR INDUSTRIAL PLANT POWERED BY IOT

A PROJECT REPORT

Submitted by

SAJITHRA CHANDRAVATHY.S KRISHNA GEETHA. S MAANU SRI DURGA.K SAPARNIGA.P

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

in

ELECTRONICS AND COMMUNICATION ENGINEERING
UNIVERSITY VOC COLLEGE OF ENGINEERING, THOOTHUKUDI
ANNA UNIVERSITY:: CHENNAI 600025

BONAFIDE CERTIFICATE

Certified that this project report "HAZARDOUS AREA MONITORING FOR INDUSTRIAL PLANT POWERED BY IoT" is the bonafidework of "SAJITHRA CHANDRAVATHY.S (953219106027),KRISHNA GEETHA.S (953219106301), MAANU SRI DURGA.K(953219106017),SAPARNIGA.P (953219106031) who carried out the project work under my supervision.

Dr. K. ESSAKI MUTHU, Electronics and Communication Engineering, University VOC College of Engineering, Thoothukudi-8. Dr.A.Mookambiga(Assistant Professor), Electronics and Communication Engineering, University VOC College of Engineering, Thoothukudi-8.

HEAD OF THE DEPARTMENT

MENTOR

INTRODUCTION:

1.1 PROJECT OVERVIEW:

The Internet of Things (IoT) represents a general concept of network devices' ability to sense and collect data from the world around us, and then share that data on the Internet, where the data is available. can be processed and used for a variety of practical purposes. aspects of life. The reach of IoT-based systems in industrial zones is still limited, but its potential is huge. In this project, we are creating an IoT-based hazard system monitoring system specifically designed for the requirements of the mining, refining and manufacturing industries.

The system actively records, processes and analyses ambient temperature, noise level, gas leakage and radiation which is an important safety parameter in areas where molten metal is handled, fabricated or welded. In addition, it monitors high levels of harmful gases present in the environment (LPG/Natural Gas). If a setting is violated, the system sends an immediate notification to a set of user lists present on their smartphone, and continues to log and monitor the data for further analysis to recommend improvements to industry security regulations. The sensors used in this prototype can be modified according to industry requirements (e.g. a more powerful temperature sensor may be needed under very harsh conditions) whenever the need arises.

1.2 PURPOSE:

We merge technology with hazardous area monitoring to effectively create a safe environment. Rely on IoT technology and data to create more effective industry surveillance. This project helps industries track the rise and fall of temperature, noise level, gas leakage and radiation. The notification is received when the above parameters exceed the normal limit.

In the event of an emergency, the administrator will be notified at the same time that the worker is alerted. In web applications, administrators can view sensor settings. Therefore, hazardous area monitoring provides us with the most optimal way to effectively monitor the industry using IOT technology.

2 LITERATURE SURVEY:

2.1 EXISTING PROBLEM:

Every day synthetic and toxic chemicals are released into the environment. It

affects our water, soil and air. These pollutants can cause serious health effects such as birth defects, developmental disabilities, breathing problems, cancer, and in some cases, death. In addition, it can also have adverse effects on wildlife and the environment. The main polluting industries in India where harmful gases are emitted are wastewater treatment plants, tanneries, coal mining, textile dye processing and pesticide pollution.

2.2 REFERENCE:

S.NO	TITLE	AUTHORS	DESCRIPTION
1.	IOT Based Industrial Monitoring and Fault Detection System(Research Journal)	Akshara Viju,Prathame sh Shukla,Aditya Pawar,Pratha me sh Sawant	This system is an advanced solution for the supervision level of the factory where in most cases only SCADAs and alarms based on variable values are considered Advantage: Predictive maintenance is stability to provide useful information to the human supervisor showing what the real state of a plant or machine is and helping him in the planning of the factory operation.

hazardous leakage of liquid petroleum gas by using MQ6	
· · ·	
	leakage of liquid petroleum gas by using MQ6

3.	A Hazardous Area Personal Monitoring System for Operators in Gas Depots and	Elia Landi, Lorenzo Parri*, Ada Fort, Marco	This work describes a smart monitoring system for the
	Storage Tanks	Mugnaini,Valer io Vignoli, Dinesh Tamang, Marco Tani	
			The proposed system aims at reducing therisk of fires and explosions, thus increasing the safety of workers engaged in maintenance or inspection of gas storages.
4.	IOT Based Industrial	Prof. Nitin	If there is the presence
	Parameter Monitoring System(Research journal)	Ahirel , Shreya Bandodkar2 Kanchan	of any harmful gas like carbon mono-oxide in the surrounding, the gas is detected by
		Gupta3 , Yasar Farooqui4	the sensor and the voice module plays the audio output

					"gas detected". It is necessary to record the appropriate voice audio note for each parameter respectively. Thus, this prototype can be very beneficial for workers in industries, power plants, etc for the prevention of a hazard that might destroy machinery as well as can risk the life of the workers.
5.	Monitoring Gases	of	Hazardous	P.Raghavi,Dr.	The existing detection

in Process Industries Through Internet	system are available to sense only a particular gas and they use GSM technology to indicate the critical situations.

6.	IOT Based Industrial Monitoring System	Hemlata Yadav,Naomi Oyiza,Sarfaraz Hassan,Dr.Sum an Lata,K.Jaya Chitra	Main Objectives is to adapt the Internet control system to the Internet Of Things ,allowing users to access the application over the internet from anywhere in the globe. Sensors like smoke sensors, humidity, and temperature sensors are used to monitor the surroundings of the machine
7.	A Survey On Toxic Environment Monitoring Using Sensors	,	This paper presents for safety monitoring of dangerous gases in the industrial plants. A single artificial neural network is used for determination of the gas concentrations based on sensor array measurements, performing at the same time compensation of the temperature and humidity influence on the sensor outputs.

IOT Temperature Humidity Mon Framework	Based and itoring	Rafizah Ab Rahman,Um mi Raba'ah Hashim,Sabri na Ahmad	The Monitoring System was also helpful in detecting extreme changes in temperature and humidity and automatically send a notification to IT personal via Email ,short messaging service (SMS) and mobile push notification for further process.
-	Геmperature Humidity Mon	Temperature and Humidity Monitoring	Femperature and Rahman,Um Humidity Monitoring mi Raba'ah Framework Hashim,Sabri

3.IDEATION AND PROPOSED SOLUTION:

3.1 EMPATHY MAP CANVAS:

3.2 IDEATION AND BRAINSTORMING:

3.2.1 CUSTOMER PROBLEM STATEMENT:

3.2.2 BRAINSTORMING:

3.3 PROPOSED SOLUTION:

S.NO	PARAMETER	DESCRIPTION
1.	Problem Statement (Problem to be solved)	1)To ensure more safety to the people working in hazardous area. 2)To help them monitor and ensure safety to the place they visit inside the industry more confidently. 3)Improving the living standard by providing real time analysis.
2.	Idea /Solution description	Our product collects the data from different types of sensors and it sends the value to the main server. The ultimate decision is to shield the workers from the hazard prone area and safeguard their lives using mobile application.
3.	Novelty /Uniqueness	It depends on IOT thus eliminating the need of physical work of the employees. Online assistance providing in depth knowledge to manage hazardous waste.
4.	Social Impact / Customer Satisfaction	Awareness camps organized to teach the importance and advantages of the automation and IoT in the development of Hazardous area monitoring. Information are collected from reliable sources and hence the workers could take more precise decisions.
5.	Business Model (Revenue Model)	Hazardous area monitoring is an advanced and innovative way to keep the employees more-safe and minimize the human efforts by real time analysis.
6.	Scalability of the solution	Automatic adjustment is made feasible by integrating information such as gas and temperature monitoring. With the use of sensors, it has enabled workers to manage hazardous waste and leakage of

	gases.	

3.4 PROBLEM SOLUTION FIT:

4.REQUIREMENT ANALYSIS:

4.1 FUNCTIONAL REQUIREMENTS:

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	IBM Watson IOT platform	 Monitoring parameters such as temperature, gas leakage, noise level, radiation.
FR-2	Node-Red	 Design UI to display the monitored parameters, configure the application to receive the data from cloud
FR-3	Cloudant DB	Publish the data to the cloud.
FR-4	Online Monitoring via Web and Application	 Mobile Application will be created and fast sms will be used to alert abnormality to the user. Websites will be created and connected with the cloud services.

4.2 NON-FUNCTIONAL REQUIREMENTS:

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Our solution is intended for wide range of workers who works in industries under hazardous area
NFR-2	Security	 Security is very high as we provide step by step verification code.
NFR-3	Reliability	 Reliability is high because of timely update. As a result of continuous tracking accident can be predicted.
NFR-4	Performance	When there is any deviation occurs, it send an alert message to admin which results in better performance
NFR-5	Availability	 It can be enabled at any system like laptop, PC, Smart watch, android phone and user friendly It will meet all the requirements of the users with better services.

NFR-6	Scalability	 Users can access the application
		seamlessly without any interrupts of
		errors.
		The sensors are used in this frame
		work are low budget functionalities
		hence they are highly scalable.

5.PROJECT DESIGN:

5.1 DATA FLOW DIAGRAMS:

5.2 SOLUTION ARCHITECTURE:

- 1. Necessary Pythoncode for collecting temperature, noise, gas leakage and radiation details from IoT device is written.
- 2. IoT deviceis connected with the IBM Watson IoT platform for gathering data.
- 3. Next step uses Node-Redservices after IoT platform is all set.
- 4. Cloudant DB is used for storingand retrieving data.
- 5. Node-Red services are used to create Web application and UI designs.
- 6. The user uses mobileapp to receive various information and alerts.

5.3 USER STORIES:

User Type	Functional	User	User	Priority	Release
	Requirement	story	story/Task		
		number			

Technici an	IBM Watson IOT platform	USN-1	Monitoring parameters such as temperature, gas leakage, noise level, radiation	High	Sprint-1
Technici an	Node-red	USN-2	Design UI to display the monitored parameters, configure the application to receive the data from cloud.	High	Sprint-2
Admin	Cloudant DB	USN-3	Publish the data to the cloud.	High	Sprint-3
Worker	Online Monitoring via Web and Application	USN-4	Mobile Application will be created and fast SMS will be used to alert abnormality to the user. Websites will be created and connected with the cloud services.	High	Sprint-4

6.PROJECT PLANNING AND SCHEDULING:

6.1 SPRINT PLANNING AND ESTIMATION:

Sprint	Functional	User	User Story /	Story	Priority	Team
	Requirement	Story Number	Task	Points		Members
Sprint-	(Epic) IBM Watson	USN-1	Monitoring	15	High	Sajithra
'		0314-1	Monitoring	15	підп	
1	IOT platform		parameters			Chandravathy
			such as			S
			temperature,			Krishna
			gas leakage,			Geetha S
			noise level,			Maanu Sri
			radiation			Durga K
						Saparniga P
Sprint-	Node-Red	USN-2	Design UI to	20	High	Sajithra
2			display the			Chandravathy
			monitored			S
			parameters,			Krishna
			configure the			Geetha S
			application			Maanu Sri
			to receive			Durga K
			the data			Saparniga P
			from cloud			
Sprint-	Python-IDLE	USN-4	Publish the	20	High	Sajithra
3	3.7		data to the			Chandravathy
			cloud			S
						Krishna
						Geetha S
						Maanu Sri
						Durga K
						Saparniga P

Sprint-	Online	USN-3	Mobile	20	High	Sajithra
4	Monitoring		Application			Chandravathy
	via Web and		will be			S
	Application		created and			Krishna
			fast sms will			Geetha S
			be used to			Maanu Sri
			alert			Durga K
			abnormality			Saparniga P
			to the user.			
			Websites will			
			be created			
			and			
			connected			
			with the			
			cloud			
			services.			

6.2 SPRINT DELIVERY SCHEDULE:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	2 Days	1 Nov 2022	2 Nov 2022	2	11 Nov 2022
Sprint-2	20	2 Days	3 Nov 2022	05 Nov 2022	2	11 Nov 2022
Sprint-3	20	5 Days	07 Nov 2022	12 Nov 2022	6	11 Nov 2022

Sprint-4	20	5 Days	14 Nov	19 Nov	6	18	Nov
			2022	2022		2022	

6.3 REPORTS FROM JIRA:

7.CODING AND SOLUTIONING:

7.1 FEATURE 1 (CODING AND RESULT):

import time

import sys

import ibmiotf.application

import ibmiotf.device

import random

organization="pyflre"

deviceType="hazard"

deviceId="231099"

authMethod="token"

```
authToken="zHP+8fjUb*HmxvADd8"
def myCommandCallback(cmd):
  print("Command received:%s" % cmd.data['command'])
  status=cmd.data['command']
  if status=="motoron":
    print("Motor is ON")
  else:
    print("Motor is OFF")
try:
       deviceOptions={"org":organization,"type":deviceType, "id":deviceId,"auth-method":
authMethod,"auth-token":authToken}
   deviceCli=ibmiotf.device.Client(deviceOptions)
except Exception as e:
  print("Caught exception connecting device: %s" % str(e))
  sys.exit()
deviceCli.connect()
while True:
  temp=random.randint(0,100)
  noise=random.randint(0,100)
  Gas=random.randint(0,100)
  radn=random.randint(0,100)
  data={'Temperature':temp,'Noise':noise,'Gas_leakage':Gas,'Radiation':radn}
  def myOnPublishCallback():
     print("Published Temperature=%s C" %temp,"Noise:%s db" %noise,"Gas_leakage:%s
                                                 "%radn,"to
J/Kg"
            %Gas,"Radiation:%s
                                      rad
                                                                 IBM
                                                                            Watson")
success=deviceCli.publishEvent("IoTSensor","json",data,qos=0,on_publish=myOnPublish
Callback)
  if not success:
```

```
print("Not connected to IoTF")
time.sleep(1)
deviceCli.commandCallback=myCommandCallback
deviceCli.disconnect()
```

7.1.2 OUTPUT:

7.2 FEATURE 2(MIT APP INVENTER):

SCREEN 1:

SCREEN 2:

SCREEN 3:

SCREEN 4:

SCREEN 5:

7.3 DATA SCHEMA (CLOUDANT DB):

8.RESULTS:

8.1 PERFORMANCE METRICS:

9. ADVANTAGES & DISADVANTAGES:

9.1 ADVANTAGES:

- Industries can be monitored and controlled remotely.
- Increase in convenience to the workers.
- Less labour cost.
- Better standards of living.

9.2 DISADVANTAGES:

- 1. Lack of internet and connectivity issues.
- 2. Added cost of internet.
- 3. Added cost of internet gateway infrastructure.
- 4. Workers have to adapt to the use of web app.

10.CONCLUSION:

Thus the objective of the project to implement an IoT system in order to help the workers of industries to control and monitor has been implement successfully.

11.FUTURE SCOPE:

In industry, workers are looking for ways to improve their living standards by looking for ways to reduce the loss of life. Therefore, there is a need to make better and more optimal decisions and improve livelihood management. Traditional consulting services were once based on general knowledge gained from research experiments, but there is a growing need for industry-generated information and knowledge in a region-specific context. Big Data Technologies is expected to help us better achieve these goals.

12.APPENDIX:

SOURCE CODE:

```
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
organization="pyflre"
deviceType="hazard"
deviceId="231099"
authMethod="token"
authToken="zHP+8fjUb*HmxvADd8"
def myCommandCallback(cmd):
  print("Command received:%s" % cmd.data['command'])
  status=cmd.data['command']
  if status=="motoron":
    print("Motor is ON")
  else:
    print("Motor is OFF")
try:
       deviceOptions={"org":organization,"type":deviceType, "id":deviceId,"auth-method":
authMethod,"auth-token":authToken}
   deviceCli=ibmiotf.device.Client(deviceOptions)
except Exception as e:
  print("Caught exception connecting device: %s" % str(e))
  sys.exit()
deviceCli.connect()
```

```
while True:
          temp=random.randint(0,100)
          noise=random.randint(0,100)
          Gas=random.randint(0,100)
          radn=random.randint(0,100)
          data={'Temperature':temp,'Noise':noise,'Gas_leakage':Gas,'Radiation':radn}
          def myOnPublishCallback():
                         print("Published Temperature=%s C" %temp,"Noise:%s db" %noise,"Gas_leakage:%s
J/Kg" %Gas,"Radiation:%s rad "%radn,"to IBM Watson")
success=deviceCli.publishEvent ("IoTSensor"," json", data, qos=0, on\_publish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish=myOnPublish
Callback)
          if not success:
                   print("Not connected to IoTF")
          time.sleep(1)
          deviceCli.commandCallback=myCommandCallback
deviceCli.disconnect()
```

GITHUB LINK:

https://github.com/IBM-EPBL/IBM-Project-15300-1659596877

DEMO LINK:

https://youtu.be/qN6kxssYvXU

REQUEST NOTE:

We have submitted our project report and demo link in github by 19th November 2022. We didn't have the knowledge of submission through project doc. Hence we edited our file via word. Kindly consider our work as on time submission. We have attached the screenshot of our submission.

