AUG 1 0 2001 65

SEQUENCE LISTING

#

Hauptmann, Rudolph Himmler, Adolph Maurer-Fogy, Ingrid Stratowa, Christian

<120> TNF Receptors, TNF Binding Proteins and DNAs Coding for Them

<130> 98,385-I

<140> 09/898,234

<141> 2001-07-03

<150> 09/525,998

<151> 2000-03-15

<150> 08/383,676

<151> 1995-02-01

<150> 08/153,287

<151> 1993-11-17

<150> 07/821,750

<151> 1992-01-02

<150> 07/511,430

<151> 1990-04-20

<160> 87

<170> PatentIn Ver. 2.0

<210> 1

<211> 1368

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(1368)

<220>

<221> sig_peptide

<222> (1)..(87)

<220>

<221> misc feature

<222> (88)..(120)

<223> Portion of TNF-BP pro protein cleaved by extracellular proteases following secretion.

<220>

<221> misc_feature

<222> (606)..(633)

<223> Portion of TNF-BP pro protein cleaved by
 extracellular proteases following secretion.

<10I	0> 1						1									
atg	ggc					cct Pro										48
						tac Tyr										96
						aag Lys										144
						aat Asn 55										192
			_			gac Asp	_	•		_		_	_	_	_	240
						ggc Gly										288
						tcc Ser										336
						gtg Val										384
						tat Tyr 135										432
						aat Asn										480
						acc Thr										528
						agt Ser										576
						att Ile										624
ggc	acc	aca	gtg	ctg	ttg	ccc	ctg	gtc	att	ttc	ttt	ggt	ctt	tgc	ctt	672

Gly	Thr 210	Thr	Val	Leu	Leu	Pro 215	Leu	Val	Ile	Phe	Phe 220	Gly	Leu	Cys	Leu	
		ctc Leu														720
	_	ctc Leu				-	_			_			-			768
		ctt Leu														816
	_	ccc Pro 275								-			_			864
		tcc Ser					_							_	_	912
		ttt Phe														960
		ccc Pro														1008
		cag Gln														1056
		gac Asp 355														1104
		tgg Trp														1152
		cgg Arg														1200
		atg Met														1248
		gag Glu														1296
		gag Glu														1344

ccc gcg ccc agt ctt ctc aga tga 1368
Pro Ala Pro Ser Leu Leu Arg
450 455

<210> 2 <211> 455 <212> PRT

<213> Homo sapiens

<400> 2
Met Gly Leu Ser Thr Val Pro Asp Leu Leu Pro Leu Val Leu Leu
10

Glu Leu Leu Val Gly Ile Tyr Pro Ser\Gly Val Ile Gly Leu Val Pro
20 25\ 30

His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys
35 40 45

Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys
50 55 60

Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp
65 70 75 80

Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu 85 90 95

Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val

Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg
115 120 125

Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe 130 135 140

Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu 145 150 156 160

Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu 165 170 175

Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys Thr

Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp Ser 195 200 205

Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe Gly Leu Cys Leu 210 215 220

Leu Ser Leu Leu Phe Ile Gly Leu Met Tyr Arg Tyr cln Arg Trp Lys 225 230 235 240

Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys Glu 250 Gly Glu Leu Glu Gly Thr Thr Thr Lys Pro Leu Ala Pro Asn Pro Ser 265 Phe Ser Pro Thr Pro Gly Phe Thr Pro Thr Leu Gly Phe Ser Pro Val 280 Pro Ser Ser Thr Phe Thr Ser Ser Set Thr Tyr Thr Pro Gly Asp Cys 295 Pro Asn Phe Ala Ala Pro Arg Arg Glu\Val Ala Pro Pro Tyr Gln Gly 315 Ala Asp Pro Ile Leu Ala Thr Ala Leu Ala Ser Asp Pro Ile Pro Asn Pro Leu Gln Lys Trp Glu Asp Ser Ala His Lys Pro Gln Ser Leu Asp 345 Thr Asp Asp Pro Ala Thr Leu Tyr Ala Val Val Glu Asn Val Pro Pro 355 360 Leu Arg Trp Lys Glu Phe Val Arg Arg Leu Gly Leu Ser Asp His Glu 375 Ile Asp Arg Leu Glu Leu Gln Asn Gly Art Cys Leu Arg Glu Ala Gln 385 390 395 400 Tyr Ser Met Leu Ala Thr Trp Arg Arg Ard Thr Pro Arg Arg Glu Ala 410 Thr Leu Glu Leu Leu Gly Arg Val Leu Arg Asp Met Asp Leu Leu Gly 425 Cys Leu Glu Asp Ile Glu Glu Ala Leu Cys Gly Pro Ala Ala Leu Pro 435 440 445 Pro Ala Pro Ser Leu Leu Arg 450 <210> 3 <211> 483 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(483) <400> 3 gat agt gtg tgt ccc caa gga aaa tat atc cac cct caa aat aat tcg Asp Ser Val Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser 10

									,							
							٩	1								
	_	tgt Cys												_	_	96
		ccg Pro 35														144
		gct Ala														192
		aag Lys														240
		acc Thr														288
		aac Asn														336
		cac His 115														384
		ggt Gly														432
tgt Cys 145	aag Lys	aaa Lys	agc Ser	ctg Leu	gag Glu 150	tgc Cys	acg Thr	aag Lys	ttg Leu	tgc Cys 155	cta Leu	ccc Pro	cag Gln	att Ile	gag Glu 160	480
aat Asn																483
<21 <21	0> 4 1> 1 2> P1 3> H		sapie	ens						,						
	0> 4 Ser	Val	Cys	Pro 5	Gln	Gly	Lys	Tyr	Ile 10	His	Pro	Gln	Asn	Asn 15	Ser	
Ile	Cys	Cys	Thr 20	Lys	Cys	His	Lys	Gly 25	Thr	Tyr	Leu	Tyr	Asn 30	Asp	Cys	
Pro	Gly	Pro 35	Gly	Gln	Asp	Thr	Asp 40	Cys	Arg	Glu	Сув	Glu 45	Ser	Gly	Ser	
Phe	Thr	Ala	Ser	Glu	Asn	His	Leu	Arg	His	Cys	Leu	Ser	Cys	Ser	Lys	
										6	,					
												.\				

		J				
50		eie /		60		
Cys Arg Lys Gl 65	u Met Gly 70		Glu Ile	Ser Ser Cys 75	Thr Val	Asp 80
Arg Asp Thr Va	l Cys Gly 85	Cys Arg	Lys Asn 90	Gln Tyr Arg	His Tyr 95	Trp
Ser Glu Asn Le		Cys Phe	Asn Cys 1	Ser Leu Cys	Leu Asn 110	Gly
Thr Val His Le	u Ser Cys	Gln Glu 120	Lys Gln	Asn Thr Val 125	Cys Thr	Cys
His Ala Gly Ph 130	e Phe Leu	Arg Glu 135	Asn Glu	Cys Val Ser 140	Cys Ser	Asn
Cys Lys Lys Se 145	r Leu Glu 150			Cys Leu Pro 155		Glu 160
Asn						
<210> 5 <211> 87 <212> DNA <213> Homo sap <220> <221> CDS <222> (1)(87						
<400> 5 atg ggc ctc tc Met Gly Leu Se 1						
gag ctg ttg gt Glu Leu Leu Va 2	l Gly Ile			- 1		87
<210> 6 <211> 29 <212> PRT <213> Homo sap	iens					
<400> 6 Met Gly Leu Se 1	r Thr Val 5	Pro Asp	Leu Leu 1	Leu Pro Leu	Val Leu 15	Leu

<210> 7

Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly
20 25

```
<211> 33
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)..(33)
<400> 7
ctg gtc cct cac cta ggg gac agg gag aag aga
                                                                    33
Leu Val Pro His Leu Gly Asp Arg Glu Lys Arg
<210> 8
<211> 11
<212> PRT
<213> Homo sapiens
<400> 8
Leu Val Pro His Leu Gly Asp Arg Gl\(\mu\) Lys Arg
            , 5
<210> 9
<211> 30
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)..(30)
<400> 9
                                                                    30
gtt aag ggc act gag gac tca ggc acc aca
Val Lys Gly Thr Glu Asp Ser Gly Thr Thr
<210> 10
<211> 10
<212> PRT
<213> Homo sapiens
<400> 10
Val Lys Gly Thr Glu Asp Ser Gly Thr Thr
1
<210> 11
<211> 1334
<212> DNA
<213> Artificial Sequence
<220>
<221> CDS
<222> (213)..(1325)
```

<220>

<223> Description of Artificial Sequence: cDNA insert of lambdaTNF-BP15 and pTNF-BP15 vectors

<400> 11 gaattctctg	gactgaggo	ct ccagt	tctag co	:tttggggl	: tcaagat	cac tggga	accagg	60
ccgtgatctc	tatgcccga	ag tctca	acccd ca	actgtcad	cccaagg	cac ttgg	gacgtc	120
ctggacagac	cgagtccc	gg gaagc	cccag \ca	ctgccgct	gccacact	tgc cctga	agccca	180
aatgggcgag	tgagaggco	ca tagct	gtctg gc		c ctc tcc Leu Ser			233
gac ctg ctg Asp Leu Leu 10								281
ccc tca ggg Pro Ser Gly 25								329
aga gat agt Arg Asp Ser 40					His Pro			377
tcg att tgc Ser Ile Cys	_				_		-	425
tgt cca ggc Cys Pro Gly				Cys Ar				473
tcc ttc acc Ser Phe Thr 90								521
aaa tgc cga Lys Cys Arg 105								569
gac cgg gac Asp Arg Asp 120					d Gln Tyr			617
tgg agt gaa Trp Ser Glu								665
ggg acc gtg Gly Thr Val				Lys Gl				713
tgc cat gca	ggt ttc	ttt cta	aga gaa	aac ga	tgt gtc	tcc tgt	agt	761

Cys	His	Ala 170	Gly	Phe	Phe	Leu	Arg 175	Glu	Asn	Glu	Cys	Val 180	Ser	Cys	Ser	
		aag Lys														809
		gtt Val														857
_	_	att Ile					-1									905
	_	tat Tyr	_							-					_	953
		aaa Lys 250														1001
		ccc Pro														1049
		acc Thr														1097
_		acc Thr					-	_	1				-		_	1145
		gtg Val														1193
		gcc Ala 330														1241
		cac His														1289
		gtg Val										aago	gaati	tc		1334
<213 <213	0> 12 1> 3 2> PI 3> A	71	icia	l Sed	quenc	ce										

<220>

<223> Description of Artificial Sequence: cDNA insert of lambdaTNF-BP15 and pTNF-BP15 vectors

<400> 12

Met Gly Leu Ser Thr Val Pro Asp Leu Leu Leu Pro Leu Val Leu Leu
1 5 10 15

Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro
20 25 30

His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys

Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys
50 55 60

Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp 65 70 75 80

Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu
85 90 95

Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val

Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg 115 120 125

Lys Asn Gln Tyr Arg His Tyr Trp Set Glu Asn Leu Phe Gln Cys Phe 130 140

Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu
145 150 155 160

Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu 165 170 175

Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Ser Leu Glu Cys Thr 180 185 190

Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp Ser 195 200 205

Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe Gly Leu Cys Leu 210 215 220

Leu Ser Leu Leu Phe Ile Gly Leu Met Tyr Arg Tyr Gln Arg Trp Lys 225 230 235 240

Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Set Thr Pro Glu Lys Glu 245 250 255

Gly Glu Leu Glu Gly Thr Thr Thr Lys Pro Leu Ala Pro Asn Pro Ser 260 265 270

Phe Ser Pro Thr Pro Gly Phe Thr Pro Thr Leu Gly Phe Ser Pro Val

275 280 285 Pro Ser Ser Thr Phe Thr Ser Ser Ser Thr Tyr Thr Pro Gly Asp Cys 295 290 Pro Asn Phe Ala Ala Pro Arg Arg Glu Val Ala Pro Pro Tyr Gln Gly 310 315 Ala Asp Pro Ile Leu Ala Thr\Ala Leu Ala Ser Asp Pro Ile Pro Asn 325 330 Pro Leu Gln Lys Trp Glu Asp \$er Ala His Lys Pro Gln Ser Leu Asp 340 345 Thr Asp Asp Pro Ala Thr Leu Tyk Ala Val Val Glu Asn Val Pro Pro 360 365 Leu Arg Trp 370 <210> 13 <211> 6414 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: pADCMV1 vector <220> <221> unsure <222> (344) <223> "n" can be a, g, c, or t <220> <221> unsure <222> (4157) <223> "n" can be a, g, c, or t <220> <221> unsure <222> (5135) <223> "n" can be a, g, c, or t <220> <221> unsure <222> (6255) <223> "n" can be a, g, c, or t <400> 13 tcgacattga ttattgacta gttattaata gtaatcaatt acgggggtcat tagttcatag 60 cccatatatg gagttccgcg ttacataact tacggtaaat ggcccgcctc gctgaccgcc 120 caacgacccc cgcccattga cgtcaataat gacgtatgtt cccatagtaa cgccaatagg 180

gactttccat tgacgtcaat gggtggagta tttacggtaa actgcccact tggcagtaca 240

tcaagtgtat catatgccaa gtacgccccc tattgacgtc aatgacggta aatggcccgc 300 ctggcattat gcccagtaca tga ϕ cttatg ggactttcct actnggcagt acatctacgt 360 attagtcatc gctattacca tygtgatgcg gttttggcag tacatcaatg ggcgtggata 420 gcggtttgac tcacggggat ttccaagtct ccaccccatt gacgtcaatg ggagtttgtt 480 ttggcaccaa aatcaacggg actttccaaa atgtcgtaac aactccgccc cattgacgca 540 aatgggcggt aggcgtgtac ggtgggaggt ctatataagc agagctctct ggctaactag 600 agaacccact gcttaactgg cttatcgaa ttaatacgac tcactatagg gagacccaag 660 cttctgcagg tcgacatcga tggatccggt\ acctcgagcg cgaattctct agaggatctt 720 tgtgaaggaa ccttacttct gtggtgtgac þtaattggac aaactaccta cagagattta 780 aagctctaag gtaaatataa aatttttaag t\tataatgt gttaaactac tgattctaat 840 tgtttgtgta ttttagattc caacctatgg aatgatgaa tgggagcagt ggtggaatgc 900 ctttaatgag gaaaacctgt tttgctcaga agaaatgcca tctagtgatg atgaggctac 960 tgctgactct caacattcta ctcctccaaa aaagaaga aaggtagaag accccaagga 1020 ctttccttca gaattgctaa gttttttgag tcatg&tgtg tttagtaata gaactcttgc 1080 ttgctttgct atttacacca caaaggaaaa agctgcactg ctatacaaga aaattatgga 1140 aaaatatttg atgtatagtg ccttgactag agatcataat cagccatacc acatttgtag 1200 aggttttact tgctttaaaa aacctcccac acctccccdt gaacctgaaa cataaaatga 1260 atgcaattgt tgttgttaac ttgtttattg cagcttata tggttacaaa taaagcaata 1320 gcatcacaaa tttcacaaat aaagcatttt tttcactgca \ttctagttgt ggtttgtcca 1380 aactcatcaa tgtatcttat catgtctgga tcaattctga \dot{q} aaactagcc ttaaagacag 1440 acagetttgt tetagteage eaggeaagea tatgtaaata aagtteetea gggaactgag 1500 gttaaaagat gtatcctgga cctgccagac ctggccattc ac\gtaaacag aagattccgc 1560 ctcaagttcc ggttaacaac aggaggcaac gagatctcaa atcfattact tctaatcggg 1620 taattaaaac ettteaacta aaacaeggae eeacggatgt cae ϕ eacttt teetteeeeg 1680 geteegeeet teteagtaet ecceaceatt aggetegeta etecacetee aetteeggge 1740 gegacaceca egtgeeetet eccaceegae getaaceeeg eccetdeeeg tetgaceeeg 1800 cccaccacct ggccccgccc cgttgaggac agaagaaacc ccgggcagcc gcagccaagg 1860 cggacgggta gacgctgggg gcgctgagga gtcgtcctct accttct&tg ctggctcggt 1920

gggggacgcg gtggatctca ggcttccgga agactggaag aaccggctca gaaccgcttg 1980 tctccgcggg gcttgggcgg cggadgaatg gccgctagac gcggacttgg tgcgaggcat 2040 cgcaggatgc agaagagcaa gcccg&cggg agcgcgcggc tgtactaccc cgcgcctgga 2100 gcggccacgc cggactgggc ggggccqgcc tggtggaggc ggagtctgac ctcgtggagg 2160 cggggcctct gatgttcaaa taggatg ϕ ta ggcttgttga ggcgtggcct ccgattcaca 2220 agtgggaage agegeeggge gaetgeaatt tegegeeaaa ettgggggaa geacagegta 2280 caggetgeet aggtgatege tgetgetgt \not e atggttegae egetgaactg categtegee 2340 gtgtcccaga atatgggcat cggcaagaad ggagacette cetggccaat getcaggtae 2400 tggctggatt gggttaggga aaccgaggcg \gttcgctgaa tcgggtcgag cacttggcgg 2460 agacgcgcgg gccaactact tagggacagt qatgaggggt aggcccgccg gctgctgccc 2520 ttgcccatgc ccgcggtgat ccccatgctg tqccagcctt tgcccagagg cgctctagct 2580 gggagcaaag tccggtcact gggcagcacc accccgga cttgcatggg tagccgctga 2640 gatggagcct gagcacacgt gacagggtcc ctgttaacgc agtgtttctc taactttcag 2700 gaacgagttc aagtacttcc aaagaatgac cacdacctcc tcagtggaag gtaaacagaa 2760 cctggtgatt atgggccgga aaacctggtt ctccattcct gagaagaatc gacctttaaa 2820 ggacagaatt aatatagttc tcagtagaga gctcaaggaa ccaccacaag gagctcattt 2880 tettgecaaa agtetggace atgeettaaa aettattgaa eaaceagagt tageagataa 2940 agtggacatg gtttggatag ttggaggcag ttccgtttac aaggaagcca tgaatcagcc 3000 aggecatete agaetetttg tgacaaggat catgeaggaa tttgaaagtg acaegttett 3060 cccagaaatt gatttggaga aatataaact tctcccagag tacccagggg tcctttctga 3120 agtccaggag gaaaaaggca tcaagtataa atttgaagtc tatgagaaga aaggctaaca 3180 gaaagatact tgctgattga cttcaagttc tactgcttt¢ ctcctaaaat tatgcatttt 3240 tacaagacca tgggacttgt gttggcttta gatcctgtgd atcctgggca actgttgtac 3300 totaagocac tooccaaagt catgococag cocotgtata\attotaaaca attagaatta 3360 ttttcatttt cattagtcta accaggttat attaaatata ctttaagaaa caccatttgc 3420 cataaagtto toaatgooco toocatgoag ootoaagtgg ¢toocoagca gatgoatagg 3480 gtagtgtgtg tacaagagac cccaaagaca tagagcccct dagagcatga gctgatatgg 3540 gggctcatag agataggagc tagatgaata agtacaaagg g¢agaaatgg gttttaacca 3600 gcagagctag aactcagact ttaaagaaaa ttagatcaaa gtagagactg aattattctg 3660 cacatcagac tetgageaga gttetgttea eteagaeaga aaatgggtaa attgagaget 3720 ggctccattg tgctccttag agatg|ggagc aggtggagga ttatataagg tctggaacat 3780 ttaacttete egttteteat etteaфtgag attecaaggg atactaeaat tetgtggaat 3840 gtgtgtcagt tagggtgtgg aaagtc\cca ggctccccag caggcagaag tatgcaaagc 3900 atgcatetea attagteage aaceaggtgt ggaaagteee caggeteece ageaggeaga 3960 agtatgcaaa gcatgcatct caattagtca gcaaccatag teeegeeeet aaeteegeee 4020 atcocgocco taactoogoo cagttoogdo cattotoogo cocatggotg actaattttt 4080 tttatttatg cagaggccga ggcgcctct ϕ agctattcca gaagtagtga ggaggctttt 4140 ttggaggeet aggettntge aaaaaageta\ atteageetg aatggegaat gggaegegee 4200 ctgtagcggc gcattaagcg cggcgggtgt |ggtggttacg cgcagcgtga ccgctacact 4260 tgccagcgcc ctagcgcccg ctcctttcgc ttcttccct tcctttctcg ccacgttcgc 4320 eggettteee egteaagete taaategggg geteeettta gggtteegat ttagtgettt 4380 acggcacete gaceceaaaa aettgattag ggtgatggtt caegtagtgg gecategeee 4440 tgatagacgg tttttcgccc tttgacgttg gadtccacgt tctttaatag tggactcttg 4500 ttccaaactg gaacaacact caaccctatc tcg&tctatt cttttgattt ataagggatt 4560 ttgccgattt cggcctattg gttaaaaaat gagctgattt aacaaaaatt taacgcgaat 4620 tttaacaaaa tattaacgtt tacaatttca ggtg $rac{1}{3}$ cactt ttcggggaaa tgtgcgcgga 4680 acccctattt gtttatttt ctaaatacat tcaaatatgt atccgctcat gagacaataa 4740 ccctgataaa tgcttcaata atattgaaaa aggaagagta tgagtattca acatttccgt 4800 gtcgccctta ttcccttttt tgcggcattt tgcctt&ctg tttttgctca cccagaaacg 4860 ctggtgaaag taaaagatgc tgaagatcag ttgggtgcac gagtgggtta catcgaactg 4920 gateteaaca geggtaagat eettgagagt tttegee¢eg aagaaegttt teeaatgatg 4980 agcactttta aagttetget atgtggegeg gtattateee gtattgaege egggeaagag 5040 caactcggtc gccgcataca ctattctcag aatgactt\(g \) ttgagtactc accagtcaca 5100 gaaaagcatc ttacggatgg catgacagta agagnattat gcagtgctgc cataaccatg 5160 agtgataaca ctgcggccaa cttacttctg acaacgatc\(g gaggaccgaa ggagctaacc 5220) gcttttttgc acaacatggg ggatcatgta actcgccttd atcgttggga accggagctg 5280 aatgaagcca taccaaacga cgagcgtgac accacgatgc\ctgtagcaat ggcaacaacg 5340

ttgcgcaaac tattaactgg cgaactactt actctagett cccggcaaca attaatagac 5400 tggatggagg cggataaagt tgcaggacda cttctgcgct cggcccttcc ggctggctgg 5460 tttattgctg ataaatctgg agccggtga\g cgtgggtctc gcggtatcat tgcagcactg 5520 gggccagatg gtaagccctc ccgtatcgta/gttatctaca cgacggggag tcaggcaact 5580 atggatgaac gaaatagaca gatcgctgag \ataggtgcct cactgattaa gcattggtaa 5640 ctgtcagacc aagtttactc atatatactt tagattgatt taaaacttca tttttaattt 5700 aaaaggatet aggtgaagat eetttttgat aateeteatga eeaaaateee ttaaegtgag 5760 ttttcgttcc actgagcgtc agaccccgta galaaagatca aaggatcttc ttgagatcct 5820 ttttttctgc gcgtaatctg ctgcttgcaa acaaaaac caccgctacc agcggtggtt 5880 tgtttgccgg atcaagagct accaactett tttdcgaagg taactggett cagcagagcg 5940 cagataccaa atactgtcct tctagtgtag ccgtagttag gccaccactt caagaactct 6000 gtagcacege ctacatacet egetetgeta atcet&ttac cagtggetge tgecagtgge 6060 gataagtegt gtettacegg gttggaetea agaegatagt taeeggataa ggegeagegg 6120 tegggetgaa eggggggtte gtgeaeaeag eecagettgg agegaaegae etacaeegaa 6180 ctgagatacc tacagcgtga gcattgagaa agcgccacgc ttcccgaagg gagaaaggcg 6240 gacaggtate eggtnagegg cagggtegga acaggagagc geaegaggga getteeaggg 6300 ggaaacgeet ggtatettta tagteetgte gggtttege¢ acetetgaet tgagegtega 6360 tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa\acgccagcaa cgcc 6414

```
<210> 14

<211> 2173

<212> DNA

<213> Artificial Sequence

<220>

<221> CDS

<222> (245)..(1630)

<220>
```

<223> Description of Artificial Sequence: raTNF-R8

<400> 14
gaatteettt teteegagtt tetegaacte tggeteatga tegggettae tggatacgag 60
aateetggag gacegtacce tgattteeat etacetetga etttgageet ttetaaceeg 120
gggeteacge tgeeaacace egggeeacet ggteegateg tettaettea tteaceageg 180
ttgeeaattg etgeeetgte eecageeeca atgggggagt gagagaggee aetgeeggee 240

Leu Pro Ile	c gtg cct ggo e Val Pro Gly			
	ata cac cca Ile His Pro			
	gag aag agg Glu Lys Arg 40			
	aat aat tcc Asn Asn Ser 55			
 	agt gac tgt Ser Asp Cys 70	_		
	aaa ggc acc Lys Gly Thr	_		
	tgc aag aca Cys Lys Thr			
	aaa gct gac Lys Ala Asp 120			
 -	cgc tac ctg Arg Tyr Leu 135			-
 -	ttc aat ggc Phe Asn Gly 150	1	_	_
 	tgt aac tgc Cys Asn Cys			
	tgc agc cac Cys Ser His			
 •	cca gtt gca Pro Val Ala 200	- 1	_	-
 	ttg cct ctg Leu Pro Leu 215	-		_

											cga Arg 235				961
											tca Ser				1009
											cta Leu				1057
											ccc Pro				1105
_				_		_		١.	_		agt Ser				1153
											gtg Val 315				1201
											ctc Leu				1249
						_		-			tgg Trp	-			1297
											cct Pro				1345
_			_								aag Lys				1393
	-		-	_							ttg Leu 395		_	_	1441
											ctg Leu				1489
-	_		_	_			_	_	_	_	gta Val			_	 1537
											aac Asn				1585
cta	gaa	agc	cct	gcc	cac	tcg	tcc	acg	acc	cac	cfc	ccg	cga	taa	1630

Leu Glu Ser Pro Ala His Ser Ser Thr Thr His Leu Pro Arg
450 455 460

ggccacaccc ccacctcagg aacgggactc gaaggaccat cctgctagat gccctgcttc 1690 cctgtgaacc tcctctttgg tcctctaggg ggcaggctcg atctggcagg ctcgatctgg 1750 cagccacttc cttggtgcta ccgacttggt gtacatagct tttcccagct gccgaggaca 1810 gcctgtgcca gccacttgtg catggcaggg aagtgtgcca tctgctcca gacagctgag 1870 ggtgccaaaa gccaggagag gtgattgtgg agaaaaagca caatctatct gatacccact 1930 tgggatgcaa ggacccaaac aaagcttctc agggcctcct cagttgatt ctgggccctt 1990 ttcacagtag ataaaacagt ctttgtattg attatatcac actaatggat gaacggttga 2050 actccctaag gtaggggcaa gcacagaaca gtggggtctc cagctggagc ccccgactct 2110 tgtaaataca ctaaaaatct aaaagtgaaa aaaaaaaaa aaaaaaaaa aaaaaaggaa 2170 ttc

<210> 15

<211> 461

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: raTNF-R8

<400> 15

Met Gly Leu Pro Ile Val Pro Gly Leu Leu Ser Leu Val Leu Leu
1 5 10 15

Ala Leu Leu Met Gly Ile His Pro Ser Gly Val Thr Gly Leu Val Pro
20 25 30

Ser Leu Gly Asp Arg Glu Lys Arg Asp Asn Leu Cys Pro Gln Gly Lys
35 40 45

Tyr Ala His Pro Lys Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys
50 55 60

Gly Thr Tyr Leu Val Ser Asp Cys Pro Ser Pro Gly Gln Glu Thr Val 65 70 75 80

Cys Glu Leu Ser His Lys Gly Thr Phe Thr Ala Ser Gln Asn His Val 85 90 95

Arg Gln Cys Leu Ser Cys Lys Thr Cys Arg Lys\Glu Met Phe Gln Val
100 105 110

Glu Ile Ser Pro Cys Lys Ala Asp Met Asp Thr val Cys Gly Cys Lys
115 120 125

Lys Asn Gln 130	Phe Gln	Arg Tyr	Leu	Ser	Glu	Thr	His 140	Phe	Gln	Cys	Val
Asp Cys Ser 145	Pro Cys	Phe Asn 150	Gly	Thr	Val	Thr 155	Ile	Pro	Cys	Lys	Glu 160
Lys Gln Asn	Thr Val 165	Cys Asn	Cys	His	Ala 170	Gly	Phe	Phe	Leu	Ser 175	Gly
Asn Glu Cys	Thr Pro 180	Cys Ser	His	Cys 185	Lys	Lys	Asn	Gln	Glu 190	Cys	Met
Lys Leu Cys 195	Leu Pro	Pro Val	Ala 200	Asn	Val	Thr	Asn	Pro 205	Gln	Asp	Ser
Gly Thr Ala 210	Val Leu	Leu Pro 215	Leu	Val	Ile	Phe	Leu 220	Gly	Leu	Cys	Leu
Leu Phe Phe 225	Ile Cys	Ile Ser 230	Leu	Цеи	Cys	Arg 235	Tyr	Pro	Gln	Trp	Arg 240
Pro Arg Val	Tyr Ser 245	Ile Ile	Cys	Ard	Asp 250	Ser	Ala	Pro	Val	Lys 255	Glu
Val Glu Gly	Glu Gly 260	Ile Val	Thr	Lys 265	Pro	Leu	Thr	Pro	Ala 270	Ser	Ile
Pro Ala Phe 275	Ser Pro	Asn Pro	Gly 280	Phe	Asn	Pro	Thr	Leu 285	Gly	Phe	Ser
Thr Thr Pro 290	Arg Phe	Ser His 295	Pro	Val	Ser	Ser	Thr 300	Pro	Ile	Ser	Pro
Val Phe Gly 305	Pro Ser	Asn Trp 310	His	Asn	Phe	Val 315	Pro	Pro	Val	Arg	Glu 320
Val Val Pro	Thr Gln 325	Gly Ala	Asp	Pro	Leu 330	Leu	Tyr	Gly	Ser	Leu 335	Asn
Pro Val Pro	Ile Pro 340	Ala Pro	Val	Arg 345	Lys	Trb	Glu	Asp	Val 350	Val	Ala
Ala Gln Pro 355	Gln Arg	Leu Asp	Thr 360	Ala	Asp	Pro	Ala	Met 365	Leu	Tyr	Ala
Val Val Asp 370	Gly Val	Pro Pro 375	Thr	Arg	Trp	Lys	Glu 380	Phe	Met	Arg	Leu
Leu Gly Leu 385	Ser Glu	His Glu 390	Ile	Glu	Arg	Leu 395	\$lu	Leu	Gln	Asn	Gly 400
Arg Cys Leu	Arg Glu 405	Ala His	Tyr	Ser	Met 410	Leu	Glu	Ala	Trp	Arg 415	Arg
Arg Thr Pro	Arg His 420	Glu Ala	Thr	Leu 425	Asp	Val	Va	Gly	Arg 430	Val	Leu

Cys Asp Met Asn Leu Arg Gly Cys Leu Glu Asn Ile Arg Glu Thr Leu 435 440 445
Glu Ser Pro Ala His Ser Ser Thr Thr His Leu Pro Arg 450 460
<210> 16 <211> 2141 <212> DNA <213> Artificial Sequence
<220> <221> CDS <222> (213)(1580)
<220> <223> Description of Artificial Sequence: human TNF-R in 1TNF-R2
<400> 16 gaattetetg gaetgagget ceagttetgg cetttggggt teaagateae tgggaeeagg 60
ccgtgatctc tatgcccgag tctcaaccct caactgtcac cccaaggcac ttgggacgtc 120
ctggacagac cgagtcccgg gaagccccag dactgccgct gccacactgc cctgagccca 180
katgggggag tgagaggcca tagctgtctg gc atg ggc ctc tcc acc gtg cct 233 Met Gly Leu Ser Thr Val Pro 1 5
gac ctg ctg ctg cca ctg gtg ctc ctg gag ctg ttg gtg gga ata tac 281 Asp Leu Leu Pro Leu Val Leu Leu Glu Leu Leu Val Gly Ile Tyr 10 15 20
ccc tca ggg gtt att gga ctg gtc cct cac cta ggg gac agg gag aag 329 Pro Ser Gly Val Ile Gly Leu Val Pro His Leu Gly Asp Arg Glu Lys 25 30 35
aga gat agt gtg tgt ccc caa gga aaa tat atc cac cct caa aat aat 377 Arg Asp Ser Val Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn 40 45 50 55
tcg att tgc tgt acc aag tgc cac aaa gga acc tac ttg tac aat gac 425 Ser Ile Cys Cys Thr Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp 60 65 70
tgt cca ggc ccg ggg cag gat acg gac tgc agg gag tgt gag agc ggc 473 Cys Pro Gly Pro Gly Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly 75 80 85
tcc ttc acc gct tca gaa aac cac ctc aga cac tgc ctc agc tgc tcc 521 Ser'Phe Thr Ala Ser Glu Asn His Leu Arg His Cys Leu Ser Cys Ser 90 95 100
aaa tgc cga aag gaa atg ggt cag gtg gag ate tct tct tgc aca gtg 569 Lys Cys Arg Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val

	105			1/10				115			
					tgc Cys						617
					tgc Cys						665
					cag Glh						713
					aga Arg 175						761
					tgc Cys						809
					gac Asp						857
-	-				tgc Cys						905
					tgg Trp						953
					aaa Lys 255						1001
					cca Pro						1049
		_		_	ccc Pro		- 1				1097
					gac Asp						1145
_		 _			cag Gln	 -	_				1193
					ccc Pro 335						1241

agc gcc cac aag Ser Ala His Lys 345					1289
tac gcc gtg gtg Tyr Ala Val Val 360					1337
cgg cgc cta ggg Arg Arg Leu Gly					1385
aac ggg cgc tgc Asn Gly Arg Cys 395				a Thr Trp	1433
agg cgg cgc acg Arg Arg Arg Thr 410					1481
gtg ctc cgc gac Val Leu Arg Asp 425					1529
gcg ctt tgc ggc Ala Leu Cys Gly 440					1577
tga ggctgcgccc c	tgcgggcag c	tctaaggac\cg [.]	teetgega gatego	ette	1630
caaccccact ttttt	ctgga aagga	ggggt cctgca	gggg caagcaggaq	ctagcagccg	1690
cctacttggt gctaa	cccct cgatg	tacat agctit	tete agetgeetge	gegeegeega	1750
cagtcagcgc tgtgc	gcgcg gagag	aggtg cgccg	gggc tcaagagcct	gagtgggtgg	1810
tttgcgagga tgagg	gacgc tatgc	ctcat gcccgt	tttg ggtgtcctca	ccagcaaggc	1870
tgctcggggg cccct	ggttc gtccc	tgagc cttttt	caca gtgcataago	: agttttttt	1930
gtttttgttt tgttt	tgttt tgttt	ttaaa tcaatc	tgt tacactaata	gaaacttggc	1990
actcctgtgc cctct	gcctg gacaa	gcaca tagcaa	gctg aactgtccta	aggcaggggc	2050
gagcacggaa caatg	gggcc ttcag	ctgga gctgtg	gact tttgtacata	cactaaaatt	2110
ctgaagttaa aaaaa	aaaaa aaaag	gaatt c			2141

<210> 17

<211> 455

<212> PRT

<213> Artificial Sequence

<220>

<223> Descrip	- \	cificial	Sequence	: human	TNF-R in	ı
<400> 17						
Met Gly Leu S	Ser Thr Val 5	Pro Asp	Leu Leu 10	Leu Pro	Leu Val	Leu Leu 15
Glu Leu Leu V	Val Gly Ile 20	Tyn Pro	Ser Gly 25	Val Ile	Gly Leu 30	Val Pro
His Leu Gly A	Asp Arg Glu	Lys Arg	Asp Ser	Val Cys	Pro Gln 45	Gly Lys
Tyr Ile His 1 50	Pro Gln Asn	Asn Ser 55	Ile Cys	Cys Thr 60	Lys Cys	His Lys
Gly Thr Tyr 1 65	Leu Tyr Asn 70	Asp Cys	Pro Gly	Pro Gly 75	Gln Asp	Thr Asp 80
Cys Arg Glu (Cys Glu Ser 85	Gly Ser	Phe Thr .	Ala Ser	Glu Asn	His Leu 95
Arg His Cys I	Leu Ser Cys 100	Ser Lys	dys Arg 105	Lys Glu	Met Gly 110	Gln Val
Glu Ile Ser S 115	Ser Cys Thr	Val Asp 120	Arg Asp	Thr Val	Cys Gly 125	Cys Arg
Lys Asn Gln 1 130	Tyr Arg His	Tyr Trp 135	Set Glu	Asn Leu 140	Phe Gln	Cys Phe
Asn Cys Ser 1 145	Leu Cys Leu 150	Asn Gly	l l	His Leu 155	Ser Cys	Gln Glu 160
Lys Gln Asn 1	Thr Val Cys 165	Thr Cys	His Ala	Gly Phe	Phe Leu	Arg Glu 175
Asn Glu Cys 1	Val Ser Cys 180		Cys Lys 185	Lys Ser	Leu Glu 190	Cys Thr
Lys Leu Cys I 195	Leu Pro Gln	Ile Glu 200	Asn Val	Lys Gly	Thr Glu 205	Asp Ser
Gly Thr Thr V 210	Val Leu Leu	Pro Leu 215	Val Ile	Phe Phe 220	Gly Leu	Cys Leu
Leu Ser Leu 1 225	Leu Phe Ile 230	Gly Leu		Arg Tyr 235	Gln Arg	Trp Lys 240
Ser Lys Leu S	Tyr Ser Ile 245	Val Cys	Gly Lys 250	Ser Thr	Pro Glu	Lys Glu 255
Gly Glu Leu (Glu Gly Thr 260		Lys Pro 265	Leu Ala	Pro Asn 270	Pro Ser
Phe Ser Pro 275	Thr Pro Gly	Phe Thr 280	Pro Thr	Leu Gly	Phe Ser 285	Pro Val

Pro Ser Ser Thr Phe Thr Ser Ser Ser Thr Tyr Thr Pro Gly Asp Cys 29 Pro Asn Phe Ala Ala Pro Arg Arg Glu Val Ala Pro Pro Tyr Gln Gly 310 315 Ala Asp Pro Ile Leu Ala Thr Ala Leu Ala Ser Asp Pro Ile Pro Asn 330 Pro Leu Gln Lys Trp Glu Asp Ser Ala His Lys Pro Gln Ser Leu Asp Thr Asp Asp Pro Ala Thr Leu Tyr Ala Val Val Glu Asn Val Pro Pro 355 360 Leu Arg Trp Lys Glu Phe Val Arg Arg Leu Gly Leu Ser Asp His Glu 375 380 Ile Asp Arg Leu Glu Leu Gln Asn Gly Arg Cys Leu Arg Glu Ala Gln 390 395 Tyr Ser Met Leu Ala Thr Trp Arg Arg Thr Pro Arg Arg Glu Ala 405 Thr Leu Glu Leu Leu Gly Arg Val Leu Arg Asp Met Asp Leu Leu Gly 425 Cys Leu Glu Asp Ile Glu Glu Ala Leu Cys Gly Pro Ala Ala Leu Pro 435 440 Pro Ala Pro Ser Leu Leu Arg 450 <210> 18 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: N-terminal amino acid sequence of protein purified from urine (main sequence) <220> <221> UNSURE <222> (4) <223> Identity of "Xaa" could not be determined. <400> 18 Asp Ser Val Xaa Pro Gln Gly Lys Tyr Ile His Prd Gln 10 <210> 19

<211> 9

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: N-terminal
      amino acid sequence of protein purified from urine
      (sudsidiary sequence)
<220>
<221> UNSURE
<222> (7)
<223> Identity of "Xaa" could not be determined.
<400> 19
Leu Val Pro His Leu Gly Xaa Arg Glu
<210> 20
<211> 151
<212> DNA
<213> Homo sapiens
<400> 20
caggggaaaa tattcaccct caaataattc datttgctgt accaagtgcc acaaaggaaa 60
ctacttgtac aatgactgtc caggcccggg gdaggatacg gactgcaggg agtgtgagag 120
                                                                   151
cggctccttc acagcctcag aaaacaacaa g
<210> 21
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 21
Asp Ser Val Cys Pro Gln Gly Lys
<210> 22
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF BP tryptic
      cleavage peptide
<220>
<221> UNSURE
<222> (1)..(2)
```

```
<223> Identity of "Xaa" cduld not be determined.
<400> 22
Xaa Xaa Leu Ser Cys Ser Lys
<210> 23
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 23
Asp Thr Val Cys Gly Cys Arg
<210> 24
<21:1> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 24
Glu Asn Glu Cys Val Ser Cys Ser Asn C∜s Lys
<210> 25
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 25
Glu Asn Glu Cys Val Ser Cys Ser Asn Cys Lys
<210> 26
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
```

```
<220>
<221> UNSURE
<222> (6)
<223> Identity of "Xaa" could not be determined.
<220>
<221> UNSURE
<222> (10)..(12)
<223> Identity of "Xaa" could not be determined.
<400> 26
Tyr Ile His Pro Gln Xaa Asn Ser Ile Xaa Xaa Xaa Lys
<210> 27
<211> 14
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 27
Glu Cys Glu Ser Gly Ser Phe Thr Ala\ Ser Glu Asn Asn Lys
                  5
<210> 28
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
     cleavage peptide
<400> 28
Leu Val Pro His Leu Gly Asp Arg
<210> 29
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 29
Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp Arg
                                                          15
```

```
<210> 30
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 30
Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln
<210> 31
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<220>
<221> UNSURE
<222> (9)..(11)
<223> Identity of "Xaa" could not be determined.
<400> 31
Glu Met Gly Gln Val Glu Ile Ser Xaa Xaa Xaa Val Asp
<210> 32
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp Arg Asp
                                      10
Thr Val Cys Gly
<210> 33
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<220>
<221> UNSURE
<222> (6)
<223> Identity of "Xaa" could not be determined.
<220>
<221> UNSURE
<222> (18)
<223> Identity of "Xaa" could not be determined.
<400> 33
Tyr Ile His Pro Gln Xaa Asn der Ile Cys Cys Thr Lys Cys His Lys
                                     10
Gly Xaa Tyr
<210> 34
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<220>
<221> UNSURE
<222> (16)..(17)
<223> Identity of "Xaa" could not be determined.
<400> 34
Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Xaa
Xaa Arg
<210> 35
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 35
Leu Cys Leu Pro Gln Ile Glu Asn
```

```
<210> 36
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Arti\ficial Sequence: TNF-BP tryptic
      cleavage peptide
<220>
<221> UNSURE
<222> (7)
<223> Identity of "Xaa" could not be determined.
<400> 36
Gln Asn Thr Val Cys Thr Xaa His Ala Gly Phe Phe Leu Arg
 1
<210> 37
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 37
Ser Leu Glu Cys Thr Lys Leu Cys Leu Pro Gln Ile Glu Asn
<210> 38
<211> 13
<212> PRT
<213> Homo sapiens
<220>
<223> Description of Artificial Sequence: \TNF-BP tryptic
      cleavage peptide
<400> 38
Asp Ser Val Cys Pro Gln Gly Lys Tyr Ile His Pro Gln
                  5
                                      10
<210> 39
<211> 7
<212> PRT
<213> Homo sapiens
<220>
<223> Description of Artificial Sequence: TNF-AP tryptic
      cleavage peptide
<400> 39
```

	Ly Lys Tyr Ile His Pro	
1	5	
<210>	I	
<211>		
<212>	Artificial Sequence	
.220		
<220>		
<223>	Description of Artificial Sequence: Hybridization probe	
	\	
<400>		
caaggt	caaat atattcatcc	20
<210>		
<211> <212>		
	Artificial Sequence	
12101		
<220>		
<223>	Description of Artificial Sequence: Hybridization probe	
	probe	
<400>	,	
cagggt	aagt acatccatcc	20
<210>	42	
<211>		
<212>	Artificial Sequence	
\2132	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Hybridization probe	
	probe \ .	
<400>	\	
caaggt	caaat atatacatcc \	20
<210>	1	
<211>	· ·	
<212>	Artificial Sequence	
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Hybridization	
	probe	
<400>		
caaggo	caaat atattcatcc	20
<210>	44	

```
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Hybridization
      probe
<400> 44
                                                                   20
cagggcaagt acatccaccc
<210> 45
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Hybridization
      probe
<400> 45
                                                                    20
caaggcaaat atatacatcc
<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Hybridization
      probe
<400> 46
caaggaaaat atattcatcc
                                                                    20
<210> 47
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Hybridization
      probe
<400> 47
                                                                    20
cagggaaagt acatccaccc
<210> 48
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
```

<223> Description of Artificial Sequence: Hybridization probe	
<400> 48 caaggaaaat atatacatcc	20
<210> 49 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Hybridization probe	
<400> 49 caagggaaat atattcatcc	20
<210> 50 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Hybridization probe	
<400> 50	
caggggaagt acatccaccc \	20
<pre>caggggaagt acatccaccc <210> 51 <211> 20 <212> DNA <213> Artificial Sequence</pre>	20
<210> 51 <211> 20 <212> DNA	20
<210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Hybridization	20
<210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Hybridization probe <400> 51	
<pre><210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Mybridization probe <400> 51 caagggaaat atatacatcc <210> 52 <211> 14 <212> PRT</pre>	

```
<210> 53 <211> 14
```

<212> PRT

<213> Artificial Sequence

5

<220>

<223> Description of Art\ficial Sequence: TNF-BP tryptic cleavage peptide

<400> 53

Glu Cys Gly Ser Gly Ser Phe Thr Ala Ser Cys Asn Asn Lys
1 10

<210> 54

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<400> 54

Phe Thr Ala Ser Glu Asn Asn Lys

<210> 55

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<400> 55

Phe Thr Ala Ser Cys Asn Asn Lys 1 5

<210> 56

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Hybridization probe

<400> 56

aaatgacgga gactcttgtt gttcctaggg

30

```
<210> 57
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Hybridization
     probe
<400> 57
                                                                    30
aagtggcgta gtcttttgtt gttcctaggg
<210> 58
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Hybridization
     probe
<400> 58
                                                                    30
aaatgtcgga gactcttgtt gttcctaggd
<210> 59
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Hybridization
     probe
<400> 59
                                                                    30
aaatgacggt cactcttgtt gttcctaggg
<210> 60
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Hybridization
      probe
<400> 60
                                                                    30
aagtggcgtt ctcttttgtt gttcctaggg
<210> 61
<211> 30
<212> DNA
<213> Artificial Sequence
```

<220> <223> Description of Artificial Sequence: Hybridization probe	
<400> 61 aaatgtcggt cactcttgtt gttctaggg	30
<210> 62 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Hybridization probe	
<400> 62 aaatgacgga gaacattgtt gttcctaggg	30
<210> 63 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Hybridization probe	
<400> 63 aagtggcgta gtactttgtt gttcctaggg	30
<210> 64 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence Hybridization probe	
<400> 64 aaatgtcgga gaacattgtt gttcctaggg	30
<210> 65 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Hybridization probe	

<400> 65 aaatgacggt caacattgtt gt cctaggg	30
<210> 66 <211> 30 <212> DNA	
<213> Artificial Sequence <220>	
<223> Description of Artificial Sequence: Hybridization probe	
<400> 66 aagtggcgtt ctactttgtt gttcctaggg	30
<210> 67 <211> 30 <212> DNA <213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Hybridization probe	
<400> 67 aaatgtcggt caacattgtt gttcctaggg	30
<210> 68 <211> 158 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (1)(153)	
<400> 68	
cag ggg aaa tat att cac cct caa aat aat tcg att tgc tgt acc aag Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys 1 5 10 15	48
tgc cac aaa gga acc tac ttg tac aat gad tgt cca ggc ccg ggg cag Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln 20 25 30	96
gat acg gac tgc agg gag tgt gag agc ggc tcc ttc aca gcc tca gaa Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu 35 40 45	144
aac aac aag gatcc Asn Asn Lys 50	158

```
<210> 69
<211> 51
<212> PRT
<213> Homo sapiens
<400> 69
Gln Gly Lys Tyr Ile His Aro Gln Asn Asn Ser Ile Cys Cys Thr Lys
                                     10
Cys His Lys Gly Thr Tyr Let Tyr Asn Asp Cys Pro Gly Pro Gly Gln
                                  25
Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu
                             40
Asn Asn Lys
     50
<210> 70
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR primer
      EBI-1786
<400> 70
ggaattcagc ctgaatggcg aatggg
                                                                    26
<210> 71
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR primer
      EBI-1729
<400> 71
                                                                    25
cctcgagcgt tgctggcgtt tttcc
<210> 72
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR\primer
      EBI-1733
<400> 72
                                                                    23
ggtcgacatt gattattgac tag
```

```
<210> 73
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR primer
     EBI-1734
<400> 73
                                                                   23
ggaattccct aggaatacag cgg
<210> 74
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Mutagenesis
      primer EBI-1751
<400> 74
                                                                   19
gtacttgaac tcgttcctg
<210> 75
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Mutagenesis
     primer EBI-1857
<400> 75
ggcaagggca gcagccgg
                                                                   18
<210> 76
<211> 53
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:
      Oligonucleotide EBI-1823
agettetgea ggtegacate gatggategg tacetegage dgcegegaat tet
                                                                   53
<210> 77
<211> 54
<212> DNA
<213> Artificial Sequence
```

<220> <223>	Description of Artificial Sequence: Oligonucleotide EBI-1829	
<400> ctagaç	77 gaatt cgcggccgct cgaggtaccg gatccatcga tgtcgacctg caga	54
<210><211><211><212><213>	63	
<220> <223>	Description of Artificial Sequence: Oligonucleotide EBI-1820	
<400> agctct	78 cagag attegeggee getegaggta ceggatecat egatgtegae etgeagaage	60
ttg		63
<210> <211> <212> <213>	64	
<220> <223>	Description of Artificial Sequence: Oligonucleotide EBI-1821	
<400>	1	
ctagca	aaget tetgeaggte gacategatg gateeggtae etegagegge egegaattet	60
ctag		64
<210> <211> <212> <213>	25	
<220> <223>	Description of Artificial Sequence: PCR primer EBI-1986	
<400> caggat	80 tccga gtctcaaccc tcaac	25
<210><211><211><212><213>	43	

 \mathcal{Z}_{i_0}

<220> <223>	Description of Artificial Sequence: PCR primer EBI-1929	
<400> gggaat	81 ctcct tatcaattct caatctgggg taggcacaac ttc	43
<210><211><211><212><213>	81	
<220> <223>	Description of Artificial Sequence: PCR primer EBI-2452	
<400> cacagt	82 cgac ttacatttgc ttctgacaca actgtgttca ctagcaacct caaacagaca	60
ccatgo	ggcct ctccaccgtg c	81
<210> <211> <212> <213>	17	
<220> <223>	Description of Artificial Sequence: PCR primer EBI-1922	
<400> gaggct	83 :gcaa ttgaagc	17
<210><211><211><212><213>	17	
<220> <223>	Description of Artificial Sequence: PCR primer EBI-2316	
<400> attcgt	84 . degegg egectag	17
<210> <211> <212> <213>	17	
<220> <223>	Description of Artificial Sequence: PCR primer EBI-2467	

17 <400> 85 gtcggtagca ccaagga <210> 86 <211> 17 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: PCR primer EBI-1986 17 <400> 86 gttttcccag tcacgac <210> 87 .<211> 18 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Sequencing primer EBI-2112 18 <400> 87 gtccaattat gtcacacc 43