North South University

Final Project Report

Title: 32bit MIPS processor.

Course Code: CSE332

Semester: Summer 2019

<u>Submitted By:</u> <u>Submitted To:</u>

Ridwanul Haque Nur Yan

ID: 172 1144 042 Initial: NYH

Section: 11

Submission Date: 11-August-2019

Objective:

Our objective is to implement a 32-bit single cycle CPU which can perform the following type instructions:

O R-type:

O I-type:

O J-type:

Instruction SET Architecture Design:

+ R-type:

Opcode	RS	RT	RD	Shamt	Function
6 bit	5 bit	5 bit	5 bit	5 bit	6 bit

+ I-type:

Opcode	RS	RT	Immediate
6 bit	5 bit	5 bit	16 bit

+ J-type:

Opcode	Address
6 bit	26 bit

Here,

RS = First Source Register

RT = Second Source Register

RD = Destination Register

Data bits: 32 bits throughout the project

Instruction with Opcode List:

Instructions	Opcode
R-Type	000000
ORI	000001
LW	000010
BNE	000011
BEQ	000100
J	000101

Given Instructions List:

R-Type								
Instruction Name Action Function								
ADD rd, rs, rt	Addition	rd = rs + rt	00001					
OR rd, rs, rt	OR	rd = rs rt	00010					
AND rd, rs, rt	AND	rd = rs & rt	00011					

<u>I-Type</u>									
Instruction	Function								
ORI rt, rs, imm	OR immediate	rt = rs imm	XXXXXX						
LW rt, offset(rs)	Load Word	rt = M[offset + rs]	XXXXXX						
BNE rs, rt, offset	Branch Not Equal	if(rs!=rt) than $pc = pc + offset$	XXXXXX						
BEQ rs, rt, offset	Branch On Equal	if(rs==rt) than $pc = pc + offset$	XXXXXX						

	<u>J-Type</u>							
Instruction Name Action Opcode								
J target	Jump	pc [0-19] = target; pc [2023] = (pc+1) [20-23];	000101					

Control unit signals:

Instructio	RegDe	ALUSr	Me	Reg	Me	Me	BE	BN	Jum	ALUOp	ALUOp
n	st	c	m	Writ	m	m	Q	E	p	1	0
			toRe	е	Rea	Writ					
			g		d	e					
R-	1	0	0	1	0	0	0	0	0	1	0
format											
LW	0	1	1	1	1	0	0	0	0	0	0
ORI	0	1	0	1	0	0	0	0	0	1	1
BNE	0	0	0	0	0	0	0	1	0	0	1
BEQ	0	0	0	0	0	0	1	0	0	0	1
JUMP	0	0	0	0	0	0	0	0	1	X	X

<u>Instruction table for ALU control:</u>

Instruction	Control Unit Opcode	ALU Op	Instruction Operation	Function Field	Desired ALU Action	ALU Control Input
R-type	000000	10	Add	000001	And	000
R-type	000000	10	Or	000010	Or	010
R-type	000000	10	And	000011	Add	001
ORI	000001	11	Or imidiate	XXXXXX	Or	010
LW	000010	00	Load	XXXXXX	Add	000
BNE	000011	01	Branch not Equal	XXXXXX	Sub	100
BEQ	000100	01	Branch Equal	XXXXXX	Sub	100
Jump	000101	XX	Jump unconditional	XXXXXX	XX	XXX

ALU Control Table for ALU Operation:

ALU OP						Tunctio	OPERATION		
Op2	Op1		F5	F4	F3	F2	F 1	F0	Bin S1 S0
0	0	LW	X	X	X	X	X	X	000
1	0	BNE,	X	X	X	X	X	X	100
		BEQ							
1	1	Ori	X	X	X	X	X	X	010
0	1	Add	0	0	0	0	0	1	000
0	1	Or	0	0	0	0	1	0	010
0	1	And	0	0	0	0	1	1	001

Equations for ALU Operations:

Bin = OP1'. OP2

S1 = Op1. F0

S0 = F0. F1