

Algorithm Design and Analysis (H) CS216

Instructor: Shan CHEN (陈杉)

chens3@sustech.edu.cn

Course Review

Course Chapters

Introduction

• Dynamic Programming

Algorithm Analysis

Intractability

Greedy Algorithms

Network Flow

• Divide and Conquer

Randomized Algorithms

Introduction

One-to-one stable matching.

- > Example: marriage
- Gale-Sharpley algorithm
- Perfect stable matching
- Man optimality vs woman optimality

One-to-many stable matching.

- Example: medical students applying for hospitals
- extended Gale-Sharpley algorithm
- Stable matching
- Student optimality vs hospital optimality

Algorithm Analysis

Computational tractability.

- Worst-case/average-case analysis
- Efficient = worst-case polynomial-time

Asymptotic order of growth.

- \triangleright O, Ω , Θ definitions and their properties
- Common running times: logarithmic, linear, linearithmic, quadratic, cubic, polynomial, exponential, factorial, etc.

• Five representative problems on independent set.

Interval scheduling, weighted interval scheduling, bipartite matching, independent set, competitive facility location.

Greedy Algorithms

Scheduling.

- Interval scheduling: greedy algorithm stays ahead
- Interval partitioning: "structural" bound
- Scheduling to minimize lateness: exchange argument

Graphs.

- Single-source/destination shortest paths: Dijkstra's algorithm
- Single-pair shortest path: A* search algorithm
- Minimum spanning trees and k-clustering: Prim's, Kruskal, Borůvka, etc.
- \triangleright Min-cost arborescences: Chu-Liu's algorithm and its $O(m \log n)$ implementation

Other greedy algorithms.

Huffman codes and optimal caching

Divide and Conquer

Divide and conquer.

- > Divide up problem into several independent subproblems (of the same kind).
- Solve (conquer) each subproblem recursively.
- Combine solutions to subproblems into overall solution.

Applications.

- Merge sort and counting inversions
- Randomized quick sort and randomized quick select
- Closest pair of points
- Integer/matrix multiplication
- Convolution and the fast Fourier transform (FFT)

Dynamic Programming

Dynamic Programming.

- ➤ Divide up problem into several overlapping subproblems and combine solutions to subproblems into overall solution.
- Strategy: define subproblems, memorize intermediate results for later use, and order subproblems from "smallest" to "largest".

Techniques and applications.

- Binary choice: weighted interval scheduling
- Multiway choice: segmented least squares
- > Adding a new variable: knapsack problem
- ➤ Intervals: RNA secondary structure
- > DP + divide and conquer: sequence alignment
- Graphs: shortest paths with negative weights, distance vector, negative cycles

Intractability

- Basic reduction strategies.
 - \triangleright Simple equivalence: INDEPENDENT-SET \equiv_{P} VERTEX-COVER.
 - \triangleright Special case to general case: VERTEX-COVER \leq_{p} SET-COVER.
 - \triangleright Encoding with gadgets: 3-SAT \leq_{p} INDEPENDENT-SET.
- Three types of problems.
 - > Decision problem vs search problem vs optimization problem
- Important complexity classes and examples.
 - > P, NP, NP-complete definitions
 - The first NP-complete problem: CIRCUIT-SAT
 - > 3-SAT is **NP**-complete

Network Flow

Theory and algorithms.

- Duality: max-flow value = min-cut capacity
- Ford-Fulkerson algorithm: improve flow value with augmenting paths
- More advanced algorithms: capacity-scaling, Edmonds-Karp, Dinitz.

Applications.

- Bipartite matching
- Disjoint paths
- Circulation with supplies, demands, and lower bounds
- Survey design
- Airline scheduling
- Image segmentation

Randomized Algorithms

• Why randomize?

- > Can lead to simplest, fastest, or only known algorithm for a particular problem.
- Examples: linear randomized MST algorithms, linear randomized quick select.

Applications.

- Content resolution
- Global min cut
- MAX 3-SAT
- Load balancing

Important math bounds.

- Union bound
- Chernoff bounds