Day 26: Nested Logic

Objective

Today's challenge puts your understanding of nested conditional statements to the test. You already have the knowledge to complete this challenge, but check out the Tutorial tab for a video on testing.

Task

Your local library needs your help! Given the expected and actual return dates for a library book, create a program that calculates the fine (if any). The fee structure is as follows:

- 1. If the book is returned on or before the expected return date, no fine will be charged (i.e.: fine = 0).
- 2. If the book is returned after the expected return day but still within the same calendar month and year as the expected return date, $fine = 15 \, \mathrm{Hackos} \, \times \, (\mathrm{the \, number \, of \, days \, late}).$
- 3. If the book is returned after the expected return *month* but still within the same calendar year as the expected return date, the $fine = 500 \text{ Hackos} \times \text{(the number of months late)}$.
- 4. If the book is returned after the calendar year in which it was expected, there is a fixed fine of 10000 Hackos.

Example

d1, m1, y1 = 12312014 returned date

d2, m2, y2 = 112015 due date

The book is returned on time, so no fine is applied.

d1, m1, y1 = 112015 returned date

d2, m2, y2 = 12312014 due date

The book is returned in the following year, so the fine is a fixed 10000.

Input Format

The first line contains **3** space-separated integers denoting the respective *day*, *month*, and *year* on which the book was *actually* returned.

The second line contains 3 space-separated integers denoting the respective *day*, *month*, and *year* on which the book was *expected* to be returned (due date).

Constraints

- 1 ≤ D ≤ 31
- 1 < M < 12
- 1 < Y < 3000
- · It is guaranteed that the dates will be valid Gregorian calendar dates.

Output Format

Print a single integer denoting the library fine for the book received as input.

Sample Input

```
STDIN Function
----
9 6 2015 day = 9, month = 6, year = 2015 (date returned)
6 6 2015 day = 6, month = 6, year = 2015 (date due)
```

Sample Output

45

Explanation

Given the following return dates:

Returned:
$$D_1 = 9, M_1 = 6, Y_1 = 2015$$

Due:
$$D_2=6, M_2=6, Y_2=2015$$

Because $Y_2 \equiv Y_1$, it is less than a year late.

Because $M_2 \equiv M_1$, it is less than a month late.

Because $D_2 < D_1$, it was returned late (but still within the same month and year).

Per the library's fee structure, we know that our fine will be $15~\mathrm{Hackos}~\times~(\#~\mathrm{days~late})$. We then print the result of

 $15 imes (D_1 - D_2) = 15 imes (9-6) = 45$ as our output.