TIME VARYING FIELDS AND MOTIONAL EMF

- Until now, we have restricted our discussions to static, or time invariant Electric and Magnetic fields
- Next, we shall examine situations where electric and magnetic fields are dynamic, or time varying
- It should be mentioned first that in static EM fields, electric and magnetic fields are independent of each other
- >Whereas in dynamic EM fields, the two fields are interdependent
- ➤ In other words, a time-varying electric field necessarily involves a corresponding time-varying magnetic field

- Time-varying EM fields, represented by E(x, y, z, t) and H(x, y, z, t), are of more practical value than static EM fields
- Time-varying fields or waves are usually due to accelerated charges or time-varying currents such as sine or square waves
- >Any pulsating current will produce radiation (time-varying fields)

Figure below shows examples of accelerated charges or timevarying currents

- It is worth noting that pulsating current of the type shown in figure (b) is the cause of radiated emission in digital logic boards
- ➤In summary:
- ➤ Stationary charges → Electrostatic fields
- ➤ Steady currents → Magnetostatic fields
- ightharpoonupTime-varying currents ightharpoonup electromagnetic fields (or waves)

Faraday's Law

- After Oersted's experimental discovery (upon which Biot-Savart and Ampere based their laws) that a steady current produces a magnetic field, it seemed logical to find out if magnetism would produce electricity
- In 1831, about 11 years after Oersted's discovery, Michael Faraday in London and Joseph Henry in New York discovered that a time-varying magnetic field would produce an electric current
- According to Faraday's experiments, a static magnetic field produces no current flow, but a time-varying field produces an induced voltage (called electromotive force or simply emf) in a closed circuit, which causes a flow of current

Faraday's Law

- The Faraday's law states that the induced emf, V_{emf} (in volts), in any closed circuit is equal to the time rate of change of the magnetic flux linkage by the circuit
- Mathematically, Faraday's law can be expressed as:

$$V_{\rm emf} = -\frac{d\lambda}{dt} = -N\frac{d\Psi}{dt}$$

- ightharpoonup where N is the number of turns in the circuit and Ψ is the flux through each turn
- Lenz's law states that the direction of current flow in the circuit is such that the induced magnetic field produced by the induced current will oppose the original magnetic field

Faraday's Law

- From Lenz's law, the negative sign shows that the induced voltage acts in such a way as to oppose the flux producing it
- ➤ Recall that we described an electric field as one in which electric charges experience force
- The electric fields considered so far are caused by electric charges; in such fields, the flux lines begin and end on the charges
- There are other kinds of electric fields not directly caused by electric charges
- >These are emf-produced fields

Electromotive Force (emf)

Consider the electric circuit in figure below, where the battery is a

source of emf

- \triangleright The electrochemical action of the battery results in an emfproduced field \mathbf{E}_f
- > Due to the accumulation of charge at the battery terminals, an electrostatic field $\mathbf{E}_e(-\nabla V)$ also exists

Electromotive Force (emf)

The total electric field at any point is:

$$\mathbf{E} = \mathbf{E}_f + \mathbf{E}_e$$

- \triangleright Note that \mathbf{E}_f is zero outside the battery
- \triangleright **E**_f and **E**_e have opposite directions in the battery
- \triangleright The direction of \mathbf{E}_e inside the battery is opposite to that outside it
- ▶By integrating the above equation over the closed circuit, we get:

$$\oint_{L} \mathbf{E} \cdot d\mathbf{l} = \oint_{L} \mathbf{E}_{f} \cdot d\mathbf{l} + 0 = \int_{N}^{P} \mathbf{E}_{f} \cdot d\mathbf{l} \qquad \text{(through battery)}$$

ightharpoonupWhere $\oint \mathbf{E}_e \cdot d\mathbf{l} = 0$ because \mathbf{E}_e is conservative

Electromotive Force (emf)

The emf of the battery is the line integral of the emf-produced field, that is: $P \qquad P$

$$V_{\text{emf}} = \int_{N}^{P} \mathbf{E}_{f} \cdot d\mathbf{l} = -\int_{N}^{P} \mathbf{E}_{e} \cdot d\mathbf{l} = IR$$

- The negative sign is because \mathbf{E}_f and \mathbf{E}_e are equal but opposite within the battery
- ▶It is important to note that:
- \triangleright An electrostatic field \mathbf{E}_e cannot maintain a steady current in a closed circuit since:

$$\oint_{L} \mathbf{E}_{e} \cdot d\mathbf{I} = 0 = IR$$

 \triangleright This means that an emf-produced field \mathbf{E}_f is non-conservative

Transformer and Motional EMFs

We now examine how Faraday's law links electric and magnetic fields

For a circuit with a single turn (N = 1), we have:

$$V_{\rm emf} = -\frac{d\Psi}{dt}$$

▶In terms of E and B, the above equation may be written as:

$$V_{\text{emf}} = \oint_{L} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_{S} \mathbf{B} \cdot d\mathbf{S}$$

where Ψ has been replaced by $\int_S \mathbf{B} \cdot d\mathbf{S}$ and S is the surface area of the circuit bounded by the closed path L

Transformer and Motional EMFs

- It is clear from above equation that in a time-varying situation, both electric and magnetic fields are present and are interrelated
- The variation of flux with time (as in previous equation) may be caused in three ways:
- 1. By having a stationary loop in a time-varying **B** field
- 2. By having a time-varying loop area in a static **B** field
- 3. By having a time-varying loop area in a time-varying **B** field
- Each of these will be considered separately.

Stationary Loop; Time-Varying B Field

Figure below shows a stationary conducting loop in a time varying magnetic **B** field V_a

$$V_{\text{emf}} = \oint_{L} \mathbf{E} \cdot d\mathbf{l} = -\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}$$

This induced emf is often referred to as transformer emf in power analysis since it is due to transformer action

➤ Observe in the figure that the Lenz's law is obeyed

Stationary Loop; Time-Varying B Field

> By applying Stokes theorem to the emf equation, we obtain:

$$\int_{S} (\nabla \times \mathbf{E}) \cdot d\mathbf{S} = -\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}$$

➤Therefore, we get:

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

- This is second Maxwell's equation for time-varying fields
- ▶It shows that the time varying E field is not conservative

$$(\nabla \times \mathbf{E} \neq 0)$$

This implies that the work done in taking a charge about a closed path in a time-varying electric field, is due to the energy from the time-varying magnetic field

Moving Loop; Static B Field

- ➤ When a conducting loop is moving in a static **B** field, an emf is induced in the loop
- Recall that the force on a charge moving with uniform velocity ${\bf u}$ in a magnetic field ${\bf B}$ is: ${\bf F}_m = Q{\bf u} \times {\bf B}$
- \triangleright We define the motional electric field \mathbf{E}_{m} as:

$$\mathbf{E}_m = \frac{\mathbf{F}_m}{O} = \mathbf{u} \times \mathbf{B}$$

Consider a conducting loop, moving with uniform velocity **u** as consisting of a large number of free electrons, the emf induced is:

$$V_{\text{emf}} = \oint_{L} \mathbf{E}_{m} \cdot d\mathbf{l} = \oint_{L} (\mathbf{u} \times \mathbf{B}) \cdot d\mathbf{l}$$

Moving Loop; Time varying B Field

- ▶In this case, both transformer emf and motional emf are present
- >Hence we combine both the emfs as:

$$V_{\text{emf}} = \oint_{L} \mathbf{E} \cdot d\mathbf{I} = -\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S} + \oint_{L} (\mathbf{u} \times \mathbf{B}) \cdot d\mathbf{I}$$