StatMod2 - Hierarchical Models and Shrinkage - Exercises 4

Maurice Diesendruck

April 6, 2015

1 School Averages and Sample Size

Larger samples tend to "smooth" out extreme scores, so small samples are more likely to be extreme.

```
attach(data)
boxplot(mathscore ~ school, xlab="School", ylab="Score")
```



```
school.avgs <- aggregate(data, list(school=school), mean)[,3]
school.ssize <- aggregate(data, list(school=school), length)[,3]
plot(cbind(school.avgs, school.ssize))
fit <- lowess(cbind(school.avgs, school.ssize))
lines(fit)</pre>
```


1.1 Normal Hierarchical Model with Gibbs Sampling

1.1.1 Model

For school $i = 1, \dots, p$; student $j = 1, \dots, n_i$; and $\sum n_i = n$; let a = b = c = d = 1, and note that for this data, p = 100 and n = 1993:

$$y_{ij} \sim N(\theta_i, \sigma^2)$$

 $\theta_i \sim N(\mu, \tau^2)$
 $\mu \sim N(m, v)$
 $\sigma^2 \sim InvGa(a, b)$
 $\tau^2 \sim InvGa(c, d)$

1.1.2 Joint and Posterior Distributions

See attached sheets.

1.1.3 Gibbs Sampler

The Gibbs Sampler produces the following results. Immediately below are the posterior estimates for θ .

```
## [1] 50.51003 46.76601 48.68838 47.46504 38.42135 40.81311 41.92385
## [8] 48.75465 49.04415 42.40514 55.54075 50.25178 49.24118 57.04885
## [15] 54.38310 54.39402 41.56460 49.98703 44.52868 46.26326 50.21306
## [22] 47.97774 51.22848 46.00253 45.33894 46.74912 44.53177 51.34644
## [29] 46.61217 49.30503 49.06949 49.95425 47.46797 46.04563 54.34171
## [36] 52.19013 46.37511 51.15531 46.49257 48.86489 55.62025 46.38389
## [43] 50.77899 49.03702 45.82999 41.40744 44.73532 47.10874 40.19376
## [50] 42.70538 61.67738 49.22951 43.98558 46.66859 43.88010 49.12179
```

```
## [57] 44.37257 48.45245 49.51989 42.84086 45.46777 50.88362 49.35530
## [64] 43.80215 48.00024 48.28518 56.62764 45.40195 51.38905 43.95266
## [71] 46.98120 39.64060 53.07232 41.71179 48.77520 53.80514 45.19835
## [78] 41.35697 58.58670 51.00293 47.14796 42.88651 44.88587 44.21317
## [85] 48.70792 52.64602 56.46694 53.17146 53.07175 48.53131 47.88498
## [92] 48.07271 51.49883 47.06121 45.36017 47.18530 46.13284 52.52240
## [99] 51.05314 48.09516
```


Shrinkage Per School, Ordered By Sample Size

Trajectories of SigmaSq

Trajectories of TauSq

1.2 Shrinkage

In general, the smaller the sample size, the more extreme the sample mean, and the larger the shrinkage coefficient.