

Power PMAC IDE Overview

IDE Overview

The Integrated Development Environment or IDE

- o Primary "low-level" software for developing an application/machine with Power PMAC
- O Visual studio environment and project management style
- o Provides all the necessary tools to integrate an application

Layout Components

- Solution explorer; project file management
- o Terminal window; online commands
- Watch window; live monitoring/troubleshooting
- o Status windows; live update of global, coordinate systems, motors, and network status bits
- o Editor window; script and C language programming
- o Position windows; live update of actual motor position, velocity, and following error
- o Message windows; error, unsolicited messages, output display

> Tools

- Plot tool; data gathering
- o Tuning tool; open-loop test utility, current, position loop tuning, filter(s) calculation
- o Jog ribbon; general purpose motor/axis jog application
- o Task manager; CPU and active system information
- o Scope; live graphical data display

Typical Layout

Solution Explorer

Organized view of project files

- o C Language
- o Configuration: Saved variables and start/disable commands
- o Documentation: Downloaded but not run to store documentation
- Log: Error logs uploaded from PMAC
- o PMAC Script Language
 - Global Includes: Header files ran on startup
 - Kinematics Routines: Needed if axis definitions are not linear
 - Libraries: Subprograms
 - Motion Programs
 - PLC Programs

Terminal Window

- > The Terminal window is a text parser
 - Send/query
 - Set/query structure elements/user variables
 - Issue motor (e.g. jog, kill) commands
 - Execute/abort/list motion programs
 - Enable/disable/list PLCs
 - Intellisense (auto-completion)
 - o Up/down arrow keys of command history in active session

The terminal is a direct link to Power PMAC, commands sent take effect almost immediately

Watch Window

> The Watch window is a text parser

- Continuous monitoring
 - Structure elements
 - User Variables
- o Intellisense (auto-completion)
- o Customizable display formatting
- One-shot command execution
 - Check "On Demand" box and hit "Send"

The watch window is a direct link to Power PMAC. Commands sent take effect almost immediately (and <u>repeatedly</u>, if not on demand)

Watch: Online [192.168.0.200 : SSH] ▼ □ ×			
Send	On Demand	Command	Response
S		MyVar = MyVar + 1 MyVar	5
S		MyVar1 = 0.45 * SIND(MyVar) MyVar1	[F]:0.039
S		L0 = Sys.Udata[512] / 4096 L0	0

Status Windows

> The Status window displays the current state of status bits

- Motor
- Coordinate System
- Global
- o Network
 - MACRO, EtherCAT

> Valuable tool for troubleshooting

- Most common and useful status bits
- Why is the motor not moving
- Why is the motion program (coordinate system) stopped
- o Errors highlighted in red

Global Status

Status

False

False

False

False

False

False

Description

HWChangeErr

ProjectLoadErr

PwrOnFault

WDTFault

NoClocks

Status

False

False

False

False

NoFault

Description

BufSizeErr

Default

ConfigLoadErr

FileConfigErr

FlashSizeErr

Editor Window

> The Editor window is the text editor for.

- Writing programs: PLC's, motion programs, subroutines and C programs.
- Writing header files with user variables and structure elements
- o Reading/Editing configuration files with structure elements
- Writing startup, disable and custom save files.
- Reading logs and project documentation

> Features, settings and shortcuts

- o Color coded and auto-indenting
- o Intellisense (auto-completion)
- Fonts and colors set in Tools -> Options
- o Can be made full screen: ALT+SHIFT+ENTER
- o To save: single editor window: CTRL+S
- o To save: all editor windows: CTRL+SHIFT+ENTER

```
// =================== MOTOR #1 =============================
// ANALOG AMP. 2/4A @ 2 sec, 48 VDC MAIN BUS SUPPLY. TRANSCONDUCTANCE 0.5A/V.
// DC BRUSHED MOTOR 2/4A @ 2 sec
GLOBAL Ch1AmpsPerVolt = 0.5;
                                               // [A/v]
GLOBAL Ch1CtsPerVolt = 32768 / 10;
                                               // [cts/v]
GLOBAL Ch1PeakCur = 4;
                                               // [amps]
GLOBAL Ch1ContCur = 2;
                                               // [amps]
GLOBAL Ch1TimeAtPeak = 2:
                                               // [secl
GLOBAL Enc1Res = 500 * 4;
                                               // [cts/rev]
                                               // [rev/mm] 1:5
GLOBAL Mtr1Gear = 1/5;
// AMP. MOTOR CONFIGURATION
ACC24E3[0].Chan[0].EncCtrl = 7
                                               // 4 x A QUAD B, CCW
Motor[1].ServoCtrl = 1
                                               // ACTIVATE CHANNEL
Motor[1].pEnc = EncTable[1].a
                                               // POSITION FEEDBACK POINTER
Motor[1].pEnc2 = EncTable[1].a
                                               // VELOCITY FEEDBACK POINTER
Motor[1].PosSf = 1 / (Mtr1Gear * Enc1Res)
                                               // MILLIMETERS PER COUNT
Motor[1].Pos2Sf = Motor[1].PosSf
                                               // SAME ENCODER
Motor[1].DacBias = 0
                                               // DAC OUTPUT OFFSET
Motor[1].plimits = ACC24E3[0].Chan[0].Status.a // =0 TO DISABLE
Motor[1].MaxDac = Ch1PeakCur * Ch1CtsPerVolt / Ch1AmpsPerVolt
Motor[1].I2TSet = Ch1ContCur * Ch1CtsPerVolt / Ch1AmpsPerVolt
Motor[1].I2tTrip = (POW(Motor[1].MaxDac,2) - POW(Motor[1].I2TSet,2)) * Ch1TimeAtPeak
// POSITION LOOP GAINS
Motor[1].Servo.Kp = 90000
Motor[1].Servo.Kvfb = 1100000
Motor[1].Servo.Kvifb = 0
Motor[1].Servo.Kvff = 1138000
Motor[1].Servo.Kviff = 0
Motor[1].Servo.Kaff = 7000000
```

Position Window

- > Distance, time units and decimal places can be changed.
 - Right click and select properties -> control -> motor specific.
 - o Time units will scale automatically with label.
 - o Position units scale with "Counts Per Unit"
 - o To change for all motors at once, click window and use CTRL+A

- **Each window displays position, velocity or following error.**
 - o Right click and select type to change.

Output and Error Windows

Output window shows output to PMAC

o Useful for seeing if build and download are successful

> Error window displays all errors that PMAC reports

```
PowerPMAC Error: Online [192.168.0.200 : SSH]

Select Device to start communication
GetErrors thread started
Giobal errors will be displayed in Color [Red]
CS errors will be displayed in Color [OrangeRed]
Motor errors will be displayed in Color [Maroon]
MACRO errors will be displayed in Color [Navy]
```

Unsolicited Messages

- > Sends or receives messages over 1 of 8 buffers
 - o These messages can be used to communicate with an HMI

Windows Properties

- ➤ Most windows provide ambient and settings control
 - o Right click menu
 - o General / item specific

Plot Tool

> Tool for gathering then graphing data

- o Variables can be added with quick, detailed or manual methods
- o Variables can be processed: scaled, offset, multiplied, differentiated, etc.
- Two vertical axes
- Variables can be gathered at up to phase rate
- o Gathering can be started and stopped manually or programmatically

Tuning Tool

- > Convenient utility to change motor gains and see response
 - o Runs open loop tests
 - Tunes current and position loops
 - o Calculates and implements filters
 - Also shows some motor status

Jog Ribbon

→ Graphical tool for moving motor/axis

- o Motors can be jogged indefinitely or incrementally
- o Axes can be moved incrementally

Task Manager

> Shows CPU information and which tasks are running

- Useful for troubleshooting
- o Can check which PLCs and Motion programs are running
- o Can check CPU load

Scope Tool

> Plots data continuously in real time

- o Detailed and manual setup like plot
- No quick setup

