CSE 417T Introduction to Machine Learning

Lecture 4

Instructor: Chien-Ju (CJ) Ho

Logistics: HW1

- Small updates for Problem 3
 - LFD Exercise 1.10 -> LFD Exercise 1.10 (a)-(d)

- Code submission
 - You only need to complete submit the two Matlab files
 - You need to write additional code for generating figures and conducting analysis but do not need to submit it
- You should be ready to answer Problem 1-5 now and problem 7 after today.
 - We'll cover the topic of Problem 6 before next Tuesday.

Logistics: Office Hours

Tentative schedule of TA office hours (starting next week)

Mondays	10:00-11:30AM (Heming)	01:30-03:00PM (Flora)
Tuesdays	01:00-02:30PM (Xinyu)	03:00-04:30PM (Yi)
Wednesdays	10:00-11:30AM (Ziyang)	12:30-2:000PM (Ruoyao)
Thursdays	02:30-04:00PM (Connor)	04:00-05:30PM (Tong)
Fridays	12:30-02:00PM (Brendan)	02:30-04:00PM (Jiahao)
Sundays	05:00-06:30PM (Ina)	

- There might still be changes as we are waiting for the room confirmations.
- Please follow Piazza for the announcements.

Recap

Hoeffding's Inequality

$$\Pr[|\mu - \nu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

Define $\delta = \Pr[|\mu - \nu| > \epsilon]$

- Fix δ , ϵ decreases as N increases
- Fix ϵ , δ decreases as N increases
- Fix N, δ decreases as ϵ increases

Informal intuitions of notations

N: # sample

 δ : probability of "bad" event

 ϵ : error of estimation

Connection to Learning

- Given dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}.$
- Fix a hypothesis h
 - $E_{in}(h) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}[h(\vec{x}_n) \neq f(\vec{x}_n)]$ [In-sample error, analogy to ν]
 - $E_{out}(h) \stackrel{\text{def}}{=} \Pr_{\vec{x} \sim P(\vec{x})}[h(\vec{x}) \neq f(\vec{x})]$ [Out-of-sample error, analogy to μ]
- Apply Hoeffding's inequality

$$Pr[|E_{out}(h) - E_{in}(h)| > \epsilon] \leq 2e^{-2\epsilon^2 N}$$

• This is verification, not learning

Connection to "Real" Learning

- Given a finite hypothesis set $H = \{h_1, ..., h_M\}$
- Apply some learning algorithm on D, output a $g \in H$
- What can we say about $E_{out}(g)$ from $E_{in}(g)$?

$$Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2N}$$
 for any $\epsilon > 0$

[Will discuss more about the interpretations/intuitions today]

Revisit the learning problem

Goal: $g \approx f$

- A general approach:
 - Define a error function E(h, f) that quantify how far away g is to f
 - Choose the one with the smallest error
 - For example: $g = \underset{h \in \mathcal{H}}{\operatorname{argmin}} E(h, f)$
- E is usually defined in terms of a pointwise error function $e(h(\vec{x}), f(\vec{x}))$
 - Binary error (classification): $e(h(\vec{x}), f(\vec{x})) = \mathbb{I}[h(\vec{x}_n) \neq f(\vec{x}_n)]$ (What we have discussed so far)
 - Squared error (regression): $e(h(\vec{x}), f(\vec{x})) = (f(\vec{x}) h(\vec{x}))^2$
- In-sample and out-of-sample errors
 - $E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(\vec{x}_n), f(\vec{x}_n))$
 - $E_{out}(h) = \mathbb{E}_{\vec{x}}[e(h(\vec{x}_n), f(\vec{x}_n))]$

Noisy Target

- What if there doesn't exist f such that $y = f(\vec{x})$?
 - *f* is stochastic instead of deterministic

- Common approach
 - Instead of a target function, define a target <u>distribution</u>
 - Instead of $y = f(\vec{x})$, y is drawn from a conditional distribution $P(y|\vec{x})$
 - $y = f(\vec{x}) + \epsilon$ where $\epsilon \sim N(0, \sigma^2)$

General Setup of (Supervised) Learning

Brief Lecture Notes Today

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

Revisit the "Multi-Hypothesis" Bound

- Given a finite hypothesis set $H = \{h_1, ..., h_M\}$
- Apply some learning algorithm on D, output a $g \in H$
- What can we say about $E_{out}(g)$ from $E_{in}(g)$?

$$Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2N}$$
 for any $\epsilon > 0$

Interpreting $\Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$

- Playing around with the math
 - Define $\delta = \Pr[|E_{out}(g) E_{in}(g)| > \epsilon]$
 - We have $\delta \leq 2Me^{-2\epsilon^2N} \implies \epsilon \leq \sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}}$
- ullet This means, with probability at least $1-\delta$
 - $E_{out}(g) \le E_{in}(g) + \epsilon \le E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$

Discussion/Interpretation on the learning bound

• With probability at least $1-\delta$

$$E_{out}(g) \le (g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

Consider M as a proxy measure on the "complexity" of H

- Our ultimate goal is to have a small $E_{out}(g)$
 - There is a tradeoff of choosing M (what "learning model" to use)
 - Increase $M \rightarrow \text{Smaller } E_{in}(g)$ (more hypothesis to "fit" the training data)
 - Increase $M \rightarrow Larger \epsilon$
 - It also depends on N, the number of data points you have
 - A small number of data points => use simple models (e.g., linear models)
 - Complex models (e.g., deep learning) work when you have a lot of data

What if *M* is infinite?

Key Intuitions in the Multi-Hypothesis Analysis

- Define "bad event of h" B(h) as $|E_{out}(h) E_{in}(h)| > \epsilon$
- If g is selected from $\{h_1, h_2\}$
 - $B(g) \subseteq B(h_1) \cup B(h_2)$
 - $\Pr[B(g)] \le \Pr[B(h_1) \text{ or } B(h_2)] \le \Pr[B(h_1)] + \Pr[B(h_2)]$ (Union Bound)

Union bound considers the worst case: Bad events don't overlap

Do Bad Events Overlap?

Oftentimes, they overlap a lot!

The two linear separators on the left make the same predictions for most points.

If it's a bad event for one, it's likely to be a bad event for the other.

Recall: Informally, you can interpret "bad event of h" as the event that we draw a "unrepresentative dataset D" that makes the in-sample errors of h to be far away from out-of-sample error of h

Effective Number of Hypothesis

Dichotomy

- Informally, consider it as "data-dependent" hypothesis
- Characterized by both H and N data points $(\vec{x}_1, ..., \vec{x}_N)$

$$H(\vec{x}_1, ... \vec{x}_N) = \{h(\vec{x}_1), ..., h(\vec{x}_N) | h \in H\}$$

• The set of possible prediction combinations $h \in H$ can induce on $\vec{x}_1, \dots, \vec{x}_N$

Growth function

• Largest number of dichotomies H can induce across all possible data sets of size N

$$m_H(N) = \max_{(\vec{x}_1, ..., \vec{x}_N)} |H(\vec{x}_1, ..., \vec{x}_N)|$$

Examples: H = Positive Rays

- Data points are in one-dimensional space
- Positive rays: h(x) = sign(x a)

- What is $m_H(N)$?
 - $m_H(N) = N + 1$

Examples: H = Positive Intervals

• What is $m_H(N)$?

•
$$m_H(N) = {N+1 \choose 2} + 1 = \frac{N^2}{2} + \frac{N}{2} + 1$$

Example: H = Convex Sets

- What is $m_H(N)$?
 - $m_H(N) = 2^N$

Note:

 $m_H(N) \le 2^N$ for all H and all N(There are only 2^N possible label combinations for N points)

Why Growth Function?

- Growth function $m_H(N)$
 - Largest number of "effective" hypothesis H can induce on N data points
 - A more precise "complexity" measure for *H*
 - Goal: Replace M in finite-hypothesis analysis with $m_H(N)$

• With prob at least
$$1 - \delta$$
, $E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N} ln \frac{2M}{\delta}}$

Theorem: VC Inequality (1971)

With prob at least $1 - \delta$

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{8}{N} ln \frac{4m_H(2N)}{\delta}}$$