模型-运筹学-规划论-线性规划【czy】

- 1. 模型名称
- 2. 适用范围
- 3. 形式
 - 3.1一般形式
 - 3.1 标准形式
 - 3.2 矩阵形式
 - 3.3 转化为标准形式
- 4. 概念和参数说明
 - 4.1 线性规划问题的解的概念
 - 4.1.1 可行解
 - 4.1.2 基、基向量和基解
 - 4.1.3 基可行解
 - 4.1.4 可行基
 - 4.2 单纯形表
 - 4.3 单纯形法的矩阵描述
- 5. 求解方法
 - 4.1 图解法(Graphical Solution)
 - 4.1.1 步骤
 - 4.2 单纯形方法(Simplex Method)
 - 4.2.1 基本思路
 - 4.2.2 步骤
 - 4.2.2.1 初始基可行解的确定
 - 4.2.2.2 最优性检验与解的判别
 - 4.2.2.3 基变换
 - 4.2.2.4 迭代(旋转运算)
 - 4.2.3 实例
 - 4.2.4 代码实现
 - 4.2.4.1 python实现
 - 4.3 对偶单纯形法
 - 4.3.1 概念
 - 4.3.2 适用范围
 - 4.3.2 步骤
 - 4.3.3. 实例
 - 4.3.4 代码实现 🛊
 - 4.4 内点法(Interior Point Method)
 - 4.4.1 概念
 - 4.4.2 步骤
 - 4.4.3 实例
 - 4.4.4 代码实现
- 5. 补充资料

模型-运筹学-规划论-线性规划【czy】

1. 模型名称

线性规划 (Linear programming, 简称LP)

2. 适用范围

线性约束下线性目标函数的极值问题的数学理论和方法

3. 形式

3.1一般形式

1. 决策变量

每一个问题都用一组决策变量 (x_1, x_2, \ldots, x_n) 表示某一方案,这组决策变量的值就代表一个具体方案。一般这些变量取值是非负且连续的。

2. 目标函数

一个要求达到的目标,它可用决策变量的线性函数(称为目标函数)来表示。按问题的不同,要求目标函数实现最大化或最小化。

3. 约束条件

存在一定的约束条件,这些约束条件可以用一组线性等式或线性不等式来表示。

满足以上三个条件的数学模型称为线性规划的数学模型。

其一般形式为:

目标函数
$$max(min)z=c_1x_1+c_2x_2+\ldots+c_nx_n$$

$$\begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n\leq (=,\geq)b_1\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n\leq (=,\geq)b_2\\ \ldots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n\leq (=,\geq)b_m\\ x_1,x_2,\ldots,x_n\geq 0 \end{cases}$$
 变量的非负约束条件

3.1 标准形式

 (M_1)

$$\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \ s.t. egin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1 \ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2 \ \dots \ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m \ x_1, x_2, \dots, x_n \geq 0 \end{cases}$$

 (M_1')

$$egin{aligned} \max z &= \sum_{j=1}^n c_j x_j \ ext{s.t.} & \left\{ \sum_{j=1}^n a_{ij} x_j = b_i \ x_j &\geq 0, j = 1, 2, \dots, n \end{aligned}
ight.$$

标准形式中规定 $b_i > 0; i \in (1, 2, \dots, m)$ 。 否则等式两端乘以"-1"。

3.2 矩阵形式

 (M_1'')

$$egin{aligned} \max z &= CX \ ext{s.t.} egin{cases} \sum_{j=1}^n P_j x_j &= b \ x_j &\geq 0, j = 1, 2, \dots, n \end{cases}$$

其中: $C = (c_1, c_2, \dots, c_n)$, C———价值向量

$$X = egin{bmatrix} x_1 \ x_2 \ \dots \ x_n \end{bmatrix} P_j = egin{bmatrix} a_{1j} \ a_{2j} \ \dots \ a_{mj} \end{bmatrix} b = egin{bmatrix} b_1 \ b_2 \ \dots \ b_m \end{bmatrix}$$

X———决策变量向量, b———资源向量

向量 P_i 对应的决策变量为 x_i

用矩阵描述时为:

$$\begin{aligned} \max z &= CX \\ AX &= b \\ X &> 0 \end{aligned}$$

其中

$$A=egin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}\ \cdots&\cdots&\cdots&\cdots\ a_{m1}&a_{m2}&\cdots&a_{mn} \end{bmatrix}=(P_1,P_2,\cdots,P_n),\;\;0=egin{bmatrix} 0\ 0\ \cdots\ 0 \end{bmatrix}$$

A———约束条件的 $m \times n$ 维**系数矩阵**,一般m < n

3.3 转化为标准形式

- 1. 目标函数是求最小值 minZ = CX, 令 S = -Z 则 maxS = -CX
- 2. 约束不等式为小于等于不等式,可以在左端加入非负松弛变量(Slack Variable),转变为等式,比如:

$$x_1 + 2x_2 \leq 9 \Rightarrow \left\{egin{array}{c} x_1 + 2x_2 + x_3 = 9 \ x_3 > 0 \end{array}
ight.$$

- 3. 约束不等式为大于等于不等式时,可以在左端减去一个非负松弛变量(Slack Variable),也称剩余变量(Surplus Variable),变为等式
- 4. 若约束条件右边的某一常数 $b_i < 0$,这时只要在 b_i 相对应的约束方程两边乘上 -1
- 5. 若存在取值无约束的变量,可转变为两个非负变量的差,比如:

$$-\infty \leq x_k \leq +\infty \Rightarrow \left\{egin{array}{l} x_k = x_m - x_n \ x_m, x_n \geq 0 \end{array}
ight.$$

4. 概念和参数说明

4.1 线性规划问题的解的概念

4.1.1 可行解

满足($M_1^{'}$)中(s.t.)两式的解 $X=(x_1,x_2,\ldots,x_n)^T$,称为线性规划问题的可行解,其中使目标函数达到最大值的可行解称为**最优解**。

4.1.2 基、基向量和基解

A为约束条件的 $m \times n$ 维系数矩阵,其秩为m。B是矩阵A中 $m \times m$ 的矩阵,如果B是由A中m个线性独立的列向量组成,则称B是线性规划问题的一个基。

可设

$$B=egin{bmatrix} a_{11}&a_{12}&\cdots&a_{1m}\ \cdots&\cdots&&\cdots\ a_{m1}&a_{m2}&\cdots&a_{mm} \end{bmatrix}=(P_1,P_2,\cdots,P_m)$$

称 $P_j(j=1,2,\cdots,m)$ 为基向量,与基向量 P_j 相应的变量 $x_j(j=1,2,\ldots,m)$ 为基变量,其他的决策变量称为非基变量。

由约束条件组可得方程组:

$$\sum_{j=1}^m P_j x_j = b - \sum_{j=m+1}^n P_j x_j$$

B是这个方程组的一个基,设 X_B 是对应于这个基的基变量 $X_B = (x_1, x_2, ..., x_m)^T$

若另非基变量 $x_{m+1}, x_{m+2}, \ldots, x_n = 0$,这时变量的个数等于线性方程的个数,

利用高斯消去法可求出一个解

$$X=(x_1,x_2\ldots,x_m,0,\ldots,0)^T$$

该解的非零分量的数目不大于方程个数m,称X为**基解**。(有一个基,就可以求出一个基解)

约束方程组(1-5)具有基解的数目最多是 C_n^m 个

4.1.3 基可行解

满足非负条件的基解

4.1.4 可行基

对应于基可行解的基。

4.2 单纯形表

将方程组

$$(1-23) \left\{ egin{array}{lll} x_1 & +a_{1,m+1}x_{m+1}+\cdots +a_{1n}x_n = b_1 \ x_2 & +a_{2,m+1}x_{m+1}+\cdots +a_{2n}x_n = b_2 \ & \ddots \ x_m + a_{m,m+1}x_{m+1}+\cdots +a_{mn}x_n = b_m \ & -z + c_1x_1 + c_2x_2 + \ldots + c_nx_n = 0 \end{array}
ight.$$

写成增广矩阵

将z看作不参与基变换的基变量,它与 x_1,x_2,\ldots,x_m 的系数构成一个基,这时可采用行初等变换将 c_1,c_2,\ldots,c_m 变换为零,使其对应的系数矩阵为单位矩阵。得到

可根据上述增广矩阵设计计算表, 见表1-2。

```
\begin{tabular}{c|c|c|c|c|c|c|c}
\model{c} \model{c} \model{c} \model{c} $$ \model{c} \model{c} \model} \% \model{c} \model{c} \model{c} \model} $$ \model{c} \model{c} \model{c} \model{c} \model} $$ \model{c} \model{c} \model{c} \model{c} \model{c} \model} $$ \model{c} \model{
 $c_{m+1}$ & $\ldots$ & $c_{n}$ & \multirow{2}{c|}{$\theta_{i}$} \\
\hline
 C_{B} & $x_{B}$ & $b$ & $x_{1}$ & $\cdots$ & $x_{m}$ & $x_{m+1}$ & $\cdots$ &
 $x_{n}$ \\
 \tilde{s}_{1} & x_{1} & $b_1$ & 1 & $\cdots$ & 0 & $a_{1}, m+1}$ & $\cdots$ &
 $a_{1,n}$ & $\theta_{1}$ \\
 c_{2} & x_{2} & b_{2} & 0 & \cdots & 0 & a_{2}, m+1 & \cdots &
    $a_{2,n}$ & $\theta_{2}$ \\
  $\ldots$ & $\cdots$ & 
  $\cdots$ & $\cdots$ & \\
  c_{m} & x_{m} & b_{m} & 0 & \cdots & 1 & a_{m} & \cdots &
 a_{m,n} theta_m$\\
\hline
 \label{local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_loc
 c_{m+1}-\sum_{i=1}^{m} c_{i} a_{i}, m+1 & $\cdots$ & $c_{n}-\sum_{i=1}^{m}
 c_{i} a_{i,n}$ \\
 \hline
 \end{tabular}
```

可根据上述增广矩阵设计计算表,见表 1-2。

表 1-2

		$c_j \rightarrow$	Cl		Ст	<i>Cm</i> + 1		Cn	
C_B	X_B	b	x_1		χ_m	X_{m+1}		X_n	θ_i
c_{l}	x_1	b	1	•••	0	$\mathcal{Q}_{1,m+1}$		a_{ln}	θ_{l}
a	X 2	b	0		0	\mathcal{A} , $m+1$		Œ n	θ_2
•••									
C_m	x_m	b_m	0		1	$a_{m,m+1}$		$a_{m n}$	θ_m
-	z	$-\sum_{i=1}^m c_i b_i$			$c_n - \sum_i c_i a_{in}$				

 X_B 列中填入基变量,这里是 x_1, x_2, \ldots, x_m ;

 C_B 列中填入基变量的价值系数,这里是 c_1, c_2, \ldots, c_m ;它们是与基变量相对应的;

b列中填入约束方程组右端的常数;

 c_i 行中填入基变量的价值系数 c_1, c_2, \ldots, c_n ;

 θ 。列的数字是在确定换入变量后,按 θ 规则计算后填入:

最后一行称为检验数行,对应各非基变量 x_i 的检验数是

$$c_j-\sum_{i=1}^m c_i a_{ij}, j=1,2,\ldots,n$$

表1-2称为初始单纯形表,每迭代一步构造一个新单纯形表。

4.3 单纯形法的矩阵描述

设线性规划问题: $\max z = CX$; $AX \le b$; $X \ge 0$ 。给这线性规划问题的约束条件加入松弛变量 $X_s = (x_{sl}, x_{sl}, \dots, x_{sm})^{\mathsf{T}}$ 以后,得到标准型:

max
$$z = CX + OX_s$$
; $AX + IX_s = b$; $X, X_s \ge 0$

这里的 $I \stackrel{\cdot}{=} m \times m$ 单位矩阵。若以 X_s 为基变量,这时可标记成 X_B 。其对应的单位矩阵就是基矩阵 B,这时将系数矩阵(A,I)分为(B,N)两块。N 是非基变量的系数矩阵,

相应的决策变量被分为 $X = \begin{bmatrix} X_B \\ X_N \end{bmatrix}$,同时目标函数的系数 C分为 C_B , C_N 分别对应于基变量和非基变量,并记作 $C = (C_B, C_N)$ 。

经过迭代运算后,在基矩阵中可能还存在松弛变量或全无松弛变量。为了阐述方便 起见,设

$$X_{B} = \begin{bmatrix} X_{B1} \\ X_{S1} \end{bmatrix}; X_{N} = \begin{bmatrix} X_{N1} \\ X_{S2} \end{bmatrix}; X_{S} = \begin{bmatrix} X_{S1} \\ X_{S2} \end{bmatrix}; A = \begin{bmatrix} B \\ N \end{bmatrix}; N = \begin{bmatrix} N_{1} \\ S_{2} \end{bmatrix}$$

目标函数

$$max\ z = C_B X_B + C_N X_N = C_B X_B + C_{N1} X_{N1} + C_{S2} X_{S2}$$

约束条件

$$BX_B + NX_N = BX_B + N_1X_{N1} + S_2X_{S2} = b$$

非负条件

$$X_B, X_N \geq 0$$

$$X_B = B^{-1}b - B^{-1}N_1X_{N1} - B^{-1}S_2X_{S2}$$
 (2-4)

整理得(S_2 单位矩阵): (2-5)

$$z = C_B B^{-1} b + (C_{N1} - C_B B^{-1} N_1) X_{N1} + (C_{S2} - C_B B^{-1} I) X_{S2}$$

令非基变量 $X_N = 0$,得到一个基可行解

$$X^{(1)} = \left[egin{array}{c} B^{-1}b \ 0 \end{array}
ight]$$

这时目标函数 $z = C_B B^{-1} b$

(1)非基变量的系数 $(C_{N1}-C_BB^{-1}N_1)$ 就是检验数,因为 $C_{S2}=0$,I为单位矩阵,所以 X_{S2} 的系数为 $-C_BB^{-1}$,

 X_B 在(2-5)中的系数是0,实质是 $C_B - C_B B^{-1} B = 0$

(2)用矩阵表达时, θ 规则的表达式

$$heta = min[rac{(B^{-1}b)_i}{(B^{-1}P_i)_i}|(B^{-1}P_j)_i > 0]$$

这里的 $(B^{-1}b)_i$ 表示 $(B^{-1}b)$ 中的第i个元素, $(B^{-1}P_i)_i$ 表示向量 $(B^{-1}P_i)$ 中的第i个元素。

(3)单纯形表与矩阵表示的关系

由
$$(3-5)$$
、 $(3-6)$ 式知
$$X_B + B^{-1}NX_N = B^{-1}b$$
$$-z + (C_N - C_B B^{-1}N)X_N = -C_B B^{-1}b$$

上两式用矩阵表示为

$$\begin{bmatrix} 0 & 1 & B^{-1}N \\ 1 & 0 & C_N - C_B B^{-1}N \end{bmatrix} \begin{vmatrix} -z \\ X_B \\ X_N \end{vmatrix} = \begin{bmatrix} B^{-1}b \\ -C_B B^{-1}b \end{bmatrix}$$

	基变量	丰基	非基变量		
	Χs	Хв	ΧN	等抗边	(AX= BXB+NXN)
瓣毯	I	В	N	Ь	→ IXs+AX=b
超路数	0	Св	Cv	-2 <i>=0</i>] → CBXB+ CNXN=Z

	基量	非基变	星从	RHS	
	Хв	Xni	Xsz	新施	
系数 短阵	B B=I	B_,N'	BI	B_lP) (2 -4)
梅 硷 数	CB-CBB B=0	Cni-CBB-INI	-CBB-1	-Z = -CBB"b	→(2-5)

5. 求解方法

4.1 图解法(Graphical Solution)

4.1.1 步骤

- 1. 确定约束区域
- 2. 画出目标函数等值线, 平移目标函数等值线求最优解

4.2 单纯形方法(Simplex Method)

4.2.1 基本思路

单纯形法是从一个初始解开始,不断地改进现有的解,直到所要求的目标函数值被满足为止。即是进行反复的迭代,直到得到需要的最优解。

(单纯形法就是通过设置不同的基向量,经过矩阵的线性变换,求得基可行解(可行域顶点),并判断该解是否最优,否则继续设置另一组基向量,重复执行以上步骤,直到找到最优解。)

4.2.2 步骤

1. 找出初始可行基,确定初始基可行解,建立初始单纯形表。

4.2.2.1 初始基可行解的确定

(1)若线性规划问题

$$egin{aligned} max \ z &= \sum_{j=1}^n c_j x_j \ &\sum_{j=1}^n P_j x_j = b \ &x_j \geq 0, j = 1, 2, \dots, n \end{aligned}$$

从 $P_i(j=1,2,\ldots,n)$ 中一般能直接观察到一个初始可行基

$$B = (P_1, P_2, \dots, P_m) = egin{bmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ \cdots & \cdots & \cdots & \cdots \ 0 & 0 & \cdots & 1 \end{bmatrix}$$

(2)对所有约束条件都是 \leq 的不等式,可以利用化为标准型的方法,在每个约束条件的左端加上一个松弛变量。经过整理,重新对 x_i 及 a_{ij} ($i=1,2,\ldots,m;j=1,2,\ldots,n$)进行编号,则可得下列方程组

显然得到一个 $m \times m$ 单位矩阵

$$B=(P_1,P_2,\ldots,P_m)= egin{bmatrix} 1&0&\cdots&0\ 0&1&\cdots&0\ \ldots&\ldots&\ldots&\ldots\ 0&0&\cdots&1 \end{bmatrix}$$

令 $x_{m+1}, x_{m+2}, \ldots, x_n = 0$,可得

$$x_i=b_i \ (i=1,2,\ldots,m)$$

因 $b_i \geq 0$,所以得到一个初始基可行解

$$X = (x_1, x_2, \dots, x_m, 0, \dots, 0)^T = (b_1, b_2, \dots, b_m, 0, \dots, 0)^T$$

(3)对所有约束条件是≥形式的不等式及等式约束情况,若不存在单位矩阵时,就采用人造基方法。即对不等式约束减去一个非负的剩余变量后,再加上一个非负的人工变量;对于等式约束再加上一个非负的人工变量,总能得到一个单位矩阵。

2. 检验各非基变量 x_i 的检验数是

$$\sigma_j = c_j - \sum_{i=1}^m c_i a_{ij}$$
, ä $\sigma_j \leq 0$, $j=m+1,\ldots,n$

则已得到最优解,可停止计算。否则转入下一步。

4.2.2.2 最优性检验与解的判别

对线性规划问题的求解结果可能出现唯一最优解、无穷多最优解、无界解和无可行解四种情况,为此需要 建立对解的判别准则。

一般情况下,经过迭代后(1-23)式变成

$$x_i=b_i'-\sum_{i=m+1}^n a_{ij}'x_j\ (i=1,2,\ldots,m)$$

把目标函数z用非基变量表示

$$z = \sum_{i=1}^{m} c_i b_i^{'} + \sum_{j=m+1}^{n} (c_j - \sum_{i=1}^{m} c_i a_{ij}^{'}) x_j$$

$$z_0 = \sum_{i=1}^m c_i b_i^{'}, z_j = \sum_{i=1}^m c_i a_{ij}^{'}, j = m+1, \ldots, n$$

于是

$$z=z_0+\sum_{i=m+1}^n(c_j-z_j)x_j$$

再令

$$\sigma_j = c_j - z_j \ (j=m+1,\ldots,n)$$

则

$$z=z_0+\sum_{j=m+1}^n\sigma_jx_j$$

1. 最优解的判别定理

若 $X^{(0)}=(b_1^{'},b_2^{'},\ldots,b_m^{'},0,\ldots,0)^T$ 为对应基B的一个基可行解,且对于所有 $j=m+1,\ldots,n$,有 $\sigma_i\leq 0$,则 $X^{(0)}$ 为最优解,称 σ_i 为检验数

2. 无穷多最优解判别定理

若 $X^{(0)}=(b_1^{'},b_2^{'},\ldots,b_m^{'},0,\ldots,0)^T$ 为一个基可行解,对于所有 $j=m+1,\ldots,n$,有 $\sigma_j\leq 0$,且存在某个非基变量的检验数 $\sigma_{m+k}=0$,则线性规划问题有无穷多可行解

3. 无界解判别定理

若 $X^{(0)}=(b_1^{'},b_2^{'},\ldots,b_m^{'},0,\ldots,0)^T$ 为一个基可行解,有一个 $\sigma_{m+k}>0$,并且对于 $i=1,2,\ldots,m$.有

 $a_{1,m+k} \leq 0$ (对应的系数列),那么该线性规划问题具有无界解(或称无最优解)。

以上讨论都是**针对标准型**,即**求目标函数极大化**时的情况。当求目标函数极小化时,一种情况如前所述,将其化为标准型。如果不化为标准型,只需在上述1,2点中把 $\sigma_j \leq 0$ 改为 $\sigma_j \geq 0$,第3点中将 $\sigma_{m+k} > 0$ 改写为 $\sigma_{m+k} < 0$ 即可。

- 3. 在 $\sigma_j>0, j=m+1,\ldots,n$ 中,若有某个 σ_k 对应 x_k 的系数列向量 $P_k\leq 0$,则此问题是无界,停止计算。否则,转入下一步。
- 4. 根据 $\max(\sigma_i > 0) = \sigma_k$,确定 x_k 为换入变量,按θ规则计算

$$heta = min(rac{b_i}{a_{i,k}}|a_{i,k}>0) = rac{b_l}{a_{lk}}, \;\; i=1,2,\ldots,m$$

可确定 x_l 为换出变量,转入下一步。

4.2.2.3 基变换

(从一个基可行解到另一个基可行解的变换,就是进行一次基变换。从几何意义上讲,就是从可行域的一个顶点转向另一个顶点)

若初始基可行解 $X^{(0)}$ 不是最优解及不能判别无界时,需要找一个新的基可行解。具体做法是从原可行解基中换一个列向量(当然要保证线性独立),得到一个新的可行基,这称为基变换。为了换基,先要确定换入变量,再确定换出变量,让它们相应的系数列向量进行对换,就得到一个新的基可行解。

1. 换入变量的确定

当某些 $\sigma_j>0$ 时, x_j 增加则目标函数值还可以增大,这时要将某个非基变量 x_j 换到基变量中去(称为换入变量)。若有两个以上的 $\sigma_j>0$,为了使目标函数值增加得快,一般选 $\sigma_j>0$ 中的大者,即 $\max_j(\sigma_j>0)=\sigma_k$ 则对应的xk为换入变量。

2. 换出变量的确定

设 P_1, P_2, \ldots, P_m 是一组线性独立的向量组,对应基可行解 $X^{(0)}$,带入约束方程组有

$$\sum_{i=1}^m x_i^{(0)} P_i = b$$

其他非基变量的列向量可以用 P_1, P_2, \ldots, P_m 线性表示,若确定 P_{m+t} 为换入变量,必然有一组不全为0的数使得

$$P_{m+t} = \sum_{i=1}^{m} \beta_{i,m+t} P_i$$

在上式两边同时乘以正数 θ ,再加到上上式中,得

$$\sum_{i=1}^m (x_i^{(0)}- hetaeta_{i,m+t})P_i+ heta P_{m+t}=b$$

 θ 取 $\frac{x_i^{(0)}}{\beta_{i,m+t}}$ 中大于零的且最小的数。设 x_l 为换出变量(l在1~m之间)。将这个 $\theta=\frac{x_i^{(0)}}{\beta_{i,m+t}}$ 代入X中,得到新的基可行解

$$X^{(1)} = [x_1^{(0)} - heta eta_{1,m+t}, \dots, 0, \dots, x_m^{(0)} - heta eta_{m,m+t}, 0, \dots, rac{x_l^{(0)}}{eta_{l,m+t}}, \dots, 0]$$

5. 以 a_{lk} 为主元素进行迭代(即用高斯消去法或称为旋转运算),把 x_k 所对应的列向量 P_k 转变为 P_l

$$P_k = egin{bmatrix} a_{1k} \ a_{2k} \ \cdots \ a_{lk} \ \cdots \ a_{mk} \end{bmatrix} P_l = egin{bmatrix} 0 \ \cdots \ 1 \ 0 \ \cdots \ 0 \end{bmatrix}$$

将 X_B 列中的 x_l 换为 x_k ,得到新的单纯形表。重复(2)~(5),直到终止。

4.2.2.4 迭代(旋转运算)

上述讨论的基可行解的转换方法是用**向量方程**来描述,在实际计算时不太方便,因此采用**系数矩阵法**。 约束方程组经过处理很容易得到

$$(1-23) \left\{ egin{array}{ll} x_1 & +a_{1,m+1}x_{m+1}+\cdots+a_{1n}x_n=b_1 \ x_2 & +a_{2,m+1}x_{m+1}+\cdots+a_{2n}x_n=b_2 \ & \cdots \ x_m+a_{m,m+1}x_{m+1}+\cdots+a_{mn}x_n=b_m \ x_1,x_2,\ldots,x_n\geq 0 \end{array}
ight.$$

其中 x_1, x_2, \ldots, x_m 为基变量,令其他非基变量等于零,可得到一个基可行解。若它不是最优解,则要另找一个使目标函数值增大的基可行解。这时从非基变量中确定 x_k 为换入变量。这时 θ 为

$$heta = min(rac{b_i}{a_{i,k}}|a_{i,k}>0), i=1,2,\ldots,m$$

按 θ 规则确定 x_l 为换出变量, x_k, x_l 的系数列向量分别为

$$P_k = egin{bmatrix} a_{1k} \ a_{2k} \ \cdots \ a_{lk} \ \cdots \ a_{mk} \end{bmatrix} P_l = egin{bmatrix} 0 \ \cdots \ 1 \ 0 \ \cdots \ 0 \end{bmatrix}$$

为了使 x_k 与 x_l 进行对换,须把 P_k 变为单位向量,这可以通过(1-23)式系数矩阵的增广矩阵进行初等变换来实现。

步骤

(1)将增广矩阵 (1-34) 第l行除以 a_{lk} ,得到

$$[0,\ldots,0,rac{1}{a_{lk}},0,\ldots,0,rac{a_{l,m+1}}{a_{l,k}},\ldots,1,\ldots,rac{a_{ln}}{a_{lk}}|rac{b_l}{a_{lk}}] \ (1-35)$$

(2)将(1-34)中 x_k 列中各元素,除 a_{lk} 变换为1以外,其他都变换为0。

将(1-35)式乘以 $a_{ik}(i \neq l)$ 后,从(1-34)式子的第i行减去,得到新的第i行

(3)经过初等变换后的新增广矩阵是(1-36)

(4)非基变量为0,得到一个基可行解

$$X^{(1)} = (b_1^{'}, \ldots, 0, \ldots, b_m^{'}, 0, \ldots, b_k^{'}, 0, \ldots, 0)$$

4.2.3 实例

某工厂在计划期内要安排生产 $I \times II$ 两种产品,已知生产单位产品所需的设备台时及 $A \times B$ 两种原材料的消耗,如表 1-1 所示。

例 1 某工厂在计划期内要安排生产 $I \setminus II$ 两种产品,已知生产单位产品所需的设备台时及 $A \setminus B$ 两种原材料的消耗,如表 1-1 所示。

表 1-1

	I	II	
设备	1	2	8 台时
原材料 A	4	0	16 kg
原材料 B	0	4	12 kg

目标函数

$$max\ z = 2x_1 + 3x_2$$

满足约束条件:
$$\left\{egin{array}{l} x_1+2x_2\leq 8 \ 4x_1\leq 16 \ 4x_2\leq 12 \ x_1,x_2\geq 0 \end{array}
ight.$$

化为标准形式

$$max\ z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5 \ \begin{cases} x_1 + 2x_2 + x_3 = 8 \ 4x_1 + x_4 = 16 \ 4x_2 + x_5 = 12 \ x_1, x_2, x_3, x_4, x_5 \geq 0 \end{cases}$$

约束方程的系数矩阵

$$A=(P_1,P_2,P_3,P_4,P_5)=egin{bmatrix} 1 & 2 & 1 & 0 & 0 \ 4 & 0 & 0 & 1 & 0 \ 0 & 4 & 0 & 0 & 1 \end{bmatrix}$$

1. 很容易看出初始可行基

$$B=(P_3,P_4,P_5)=egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

基变量为 x_3, x_4, x_5 。它们和z都可以用非基变量 x_1, x_2 表示

$$\begin{cases} x_3 = 8 - x_1 - 2x_2 \\ x_4 = 16 - 4x_1 \\ x_5 = 12 - 4x_2 \end{cases}$$

令非基变量为0,得到初始基可行解

$$X^{(0)} = (0, 0, 8, 16, 12)$$
\$ $z =$ \$

初始单纯行表为

表 1-3

	Cj	→	2	3	0	0	0	0
Св	X_B	b	xı	<i>X</i> 2	23	<i>X</i> 4	X 5	б
0	<i>x</i> ₃	8	1	2	1	0	0	4
0	X 4	16	4	0	0	1	0	-
0	хз	12	0	[4]	0	0	1	3
	- z	0	2	3	0	0	0	

- 2. 和3. 因检验数都大于0, 且 P_1 , P_2 有正分量存在,转入下一步
- 3. $max(\sigma_1, \sigma_2) = max(2,3) = 3$,所以对应 x_2 为换入变量,计算 θ

$$heta = min(rac{b_i}{a_{i,2}}|a_{i,2}>0) = min(8/2,-,12/4) = 3$$

则它对应的 x_5 为换出变量。 x_2 所在列和 x_5 所在行的交叉处[4]称为主元素或枢元素(pivot element)。

4. 以[4]为主元素进行旋转运算,即初等行变换,使P2变换为(0,0,1),在 x_B 列中将 x_2 替换 x_5 ,于是得到新表 1-4。

表 1-4

	c_{j}	→	2	3	0	0	0	0
C_B	X_B	<u>b</u>	xı	x	xs	<i>X</i> 4	X 5	Θ_i
0	<i>X</i> 3	2	[1]	0	1	0	- 1/2	2
0	<i>x</i> ₄	16	4	0	0	1	0	4
_ 3	x_2	3	0	1	0	0	1/ 4	-
	- z		2	0	0	0	- 3/ 4	

得到新的基可行解为 $x^{(1)}=(0,3,2,16,0)^T$,目标函数的取值为z=9。

4. (1-4)中 x_1 的 $\sigma = 2 > 0$,所以 x_1 为换入变量,重复运算,得到表1-5。

表 1-5

	C_j	→	2	3	0	0	0	0
$C_{\!\scriptscriptstyle B}$	X_{B}	b	x_{l}	x ₂	<i>X</i> ₃	<i>x</i> ₄	<i>x</i> ₅	Θ_i
2	xı	2	1	0	1	0	- 1/2	-
0	<i>X</i> 4	8	0	0	- 4	1	[2]	4
3	x_2	3	0	1	0	0	1/4	12
- z		- 13	0	0	- 2	0	1/4	

5. (1-5)中 x_5 , $\sigma = 1/4 > 0$,所以 x_5 为换入变量,重复运算,得到表1-6。

续表

	C j	→	2	3	0	0	0	0
C_B	X_{B}	b	x_{l}	χ_2	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	θ_i
2	m	4	1	0	0	1/4	0	
0	<i>X</i> 5	4	0	0	- 2	1/2	1	
3	<i>X</i> 2	2	0	1	1/2	- 1/ 8	0	
	- z	- 14	0	0	- 3/ 2	- 1/ 8	0	

发现最后一行所有检验数都已经为负或0。表示目标函数值已不可能再增大,于是得到最优解

$$X^* = X^{(3)} = (4, 2, 0, 0, 4)^T$$

目标函数值

$$z^* = 14$$

4.2.4 代码实现

4.2.4.1 python实现

```
# 线性规划-单纯形算法
import numpy as np
np.set_printoptions(precision=4, suppress=True, threshold=np.inf)
# 线性规划转化为松弛形式
def get_loose_matrix(matrix):
    row, col = matrix.shape
    loose_matrix = np.zeros((row, row + col))
    for i, _ in enumerate(loose_matrix):
        loose_matrix[i, 0: col] = matrix[i]
        loose_matrix[i, col + i] = 1.0 # 对角线
    return loose_matrix
# 松弛形式的系数矩阵A、约束矩阵B和目标函数矩阵C组合为一个矩阵
```

```
def join_matrix(a, b, c):
   row, col = a.shape
   s = np.zeros((row + 1, col + 1))
   s[1:, 1:] = a # 右下角是松弛系数矩阵A
   s[1:, 0] = b # 左下角是约束条件值矩阵B
   s[0, 1: len(c) + 1] = c # 右上角是目标函数矩阵C
   return s
# 旋转矩阵-替换替出替入变量的角色位置
def pivot_matrix(matrix, k, j):
   # 单独处理替出变量所在行,需要除以替入变量的系数matrix[k][j]
   matrix[k] = matrix[k] / matrix[k][j]
   # 循环除了替出变量所在行之外的所有行
   for i, _ in enumerate(matrix):
      if i != k:
          matrix[i] = matrix[i] - matrix[k] * matrix[i][j]
# 根据旋转后的矩阵,从基本变量数组中得到一组基解
def get_base_solution(matrix, base_ids):
   X = [0.0] * (matrix.shape[1]) # 解空间
   for i, _ in enumerate(base_ids):
      X[base_ids[i]] = matrix[i + 1][0]
   return X
# 构造辅助线性规划
def Laux(matrix, base_ids):
   1_matrix = np.copy(matrix)
   # 辅助矩阵的最后一列存放x0的系数,初始化为-1
   l_matrix = np.column_stack((l_matrix, [-1] * l_matrix.shape[0]))
   # 辅助线性函数的目标函数为z = x0
   l_{matrix}[0, :-1] = 0.0
   1_{matrix}[0, -1] = 1
   k = 1_matrix[1:, 0].argmin() + 1 # 选择一个b最小的那一行的基本变量作为替出变量
   j = 1_matrix.shape[1] - 1 # 选择x0作为替入变量
   # 第一次旋转矩阵,使得所有b为正数
   pivot_matrix(l_matrix, k=k, j=j)
   base_ids[k - 1] = j # 维护基本变量索引数组
   # 用单纯形算法求解该辅助线性规划
   l_matrix = simplex(l_matrix, base_ids)
   # 如果求解后的辅助线性规划中x0仍然是基本变量,需要再次旋转消去x0
   if l_matrix.shape[1] - 1 in base_ids:
      j = np.where(l_matrix[0, 1:] != 0)[0][0] + 1 # 找到矩阵第一行(目标函数)系数
不为0的变量作为替入变量
      k = base_ids.index(l_matrix.shape[1] - 1) + 1 # 找到x0作为基本变量所在的那一
行,将x0作为替出变量
      pivot_matrix(1_matrix, k=k, j=j) # 旋转矩阵消去基本变量x0
      base_ids[k - 1] = j # 维护基本变量索引数组
   return 1_matrix, base_ids
# 从辅助函数中恢复原问题的目标函数
def resotr_from_Laux(l_matrix, z, base_ids):
   z_ids = np.where(z != 0)[0] - 1 # 得到目标函数系数不为0的索引数组(即基本变量索引数
组)
   restore_matrix = np.copy(l_matrix[:, 0:-1]) # 去掉x0那一列
   restore_matrix[0] = z # 初始化矩阵的第一行为原问题的目标函数向量
   for i, base_v in enumerate(base_ids):
      # 如果原问题的基本变量存在新基本变量数组中,说明需要替换消去
      if base_v in z_ids:
          restore_matrix[0] -= restore_matrix[0, base_v + 1] *
restore_matrix[i + 1] # 消去原目标函数中的基本变量
   return restore_matrix
# 单纯形算法求解线性规划
```

```
def simplex(matrix, base_ids):
   matrix = matrix.copy()
   # 如果目标系数向量里有负数,则旋转矩阵
   while matrix[0, 1:].min() < 0:
       # 在目标函数向量里,选取系数为负数的第一个变量索引,作为替入变量
       j = np.where(matrix[0, 1:] < 0)[0][0] + 1
       # 在约束集合里,选取对替入变量约束最紧的约束行,那一行的基本变量作为替出变量
       k = np.array([matrix[i][0] / matrix[i][j] if matrix[i][j] > 0 else
0x7fff for i in
                    range(1, matrix.shape[0])]).argmin() + 1
       # 说明原问题无界
       if matrix[k][j] <= 0:</pre>
           print('原问题无界')
           return None, None
       pivot_matrix(matrix, k, j) # 旋转替换替入变量和替出变量
       base_ids[k - 1] = j - 1 # 维护当前基本变量索引数组
   return matrix
# 单纯形算法求解步骤入口
def solve(a, b, c, equal=None):
   loose_matrix = get_loose_matrix(a) # 转化得到松弛矩阵
   if equal is not None:
       loose_matrix = np.insert(loose_matrix, 0, equal, axis=0)
   matrix = join_matrix(loose_matrix, b, c) # 得到ABC的组合矩阵
   base_ids = list(range(len(c), len(b) + len(c))) # 初始化基本变量的索引数组
   # 约束系数矩阵有负数约束,证明没有可行解,需要辅助线性函数
   if matrix[:, 0].min() < 0:
       print('构造求解辅助线性规划函数...')
       1_matrix, base_ids = Laux(matrix, base_ids) # 构造辅助线性规划函数并旋转求解
之
       if l_matrix is not None:
          matrix = resotr_from_Laux(1_matrix, matrix[0], base_ids) # 恢复原问题
的目标函数
       else:
           print('辅助线性函数的原问题没有可行解')
           return None, None, None
   ret_matrix = simplex(matrix, base_ids) # 单纯形算法求解拥有基本可行解的线性规划
   X = get_base_solution(ret_matrix, base_ids) # 得到当前最优基本可行解
   if ret_matrix is not None:
       return matrix, ret_matrix, X
   else:
       print('原线性规划问题无界')
       return None, None, None
if __name__ == '__main__':
   equal = None
   # 不带等式约束的线性规划测试
   \# a = np.array([[4, -1], [2, 1], [-5, 2]])
   # b = [8, 10, 2]
   \# c = [-1, -1]
   \# a = np.array([[1, 1], [-1, -1]])
   \# b = [2, -1]
   \# c = [1, 2]
   \# a = np.array([[1, -1], [-1.5, 1], [50, 20]])
   # b = [0, 0, 2000]
   \# c = [-1, -1]
   # a = np.array([[1, 1, 1, 1], [4, 8, 2, 5], [4, 2, 5, 5], [6, 4, 8, 4]])
   \# b = [480, 2400, 2000, 3000]
   \# c = [-9, -6, -11, -8]
   \# a = np.array([[1, -1], [-1, -1], [-1, 4]])
```

```
# b = [8, -3, 2]
 \# c = [-1, -3]
 \# a = np.array([[-21, 0, 0, 0], [0, -28, -4, 0], [-2, -1, -10, -11]])
 \# b = [-500, -600, -250]
 \# c = [1, 1, 1, 1]
 \# a = np.array([[2, -1], [1, -5]])
 \# b = [2, -4]
 \# c = [-2, 1]
# 带等式约束的线性规划测试
 \# a = np.array([[1, -2]])
 \# \text{ equal} = [1, 1] + [0] * a.shape[0]
 # b = [7, 4]
 \# c = [-2, 3]
 \# a = np.array([[1, -2, 1], [4, -1, -2]])
 \# \text{ equal} = [-2, 0, 1] + [0] * a.shape[0]
 \# b = [1, 11, -3]
 \# c = [-3, 1, 1]
 a = np.array([[-2, 5, -1], [1, 3, 1]])
 equal = [1, 1, 1] + [0] * a.shape[0]
 b = [7, -10, 12]
 c = [-2, -3, 5]
 matrix, ret_matrix, X = solve(a, b, c, equal=equal)
 print('本次迭代的最优解为: {}'.format(np.round(X[0: len(c)], 4)))
 print('该线性规划的最优值是: {}'.format(np.round(-ret_matrix[0][0], 4)))
```

```
111
线性规划实战-连续投资问题
考虑下列投资项目:
项目A: 在第1~4年每年年初可以投资,并于次年年末收回本利115%;
项目B: 第3年年初可以投资,一直到第5年年末能收回本利125%,且规定最大投资额不超过4万元;
项目C: 第2年年初可以投资,一直到第5年年末能收回本利140%,且规定最大投资额不超过3万元;
项目D: 5年内每一年年初均可以购买公债,并于当年年末归还本金,并加获得利息6%。
如果你有10万元本金,求确定一个有效的投资方案,使得第5年年末你拥有的资金的本利总额最大?
import numpy as np
from copy import deepcopy
np.set_printoptions(precision=4, suppress=True, threshold=np.inf)
# 线性规划转化为松弛形式
def get_loose_matrix(matrix):
   row, col = matrix.shape
   loose_matrix = np.zeros((row, row + col))
   for i, _ in enumerate(loose_matrix):
      loose_matrix[i, 0: col] = matrix[i]
      loose_matrix[i, col + i] = 1.0 # 对角线
   return loose_matrix
# 松弛形式的系数矩阵A、约束矩阵B和目标函数矩阵C组合为一个矩阵
def join_matrix(a, b, c):
   row, col = a.shape
   s = np.zeros((row + 1, col + 1))
   s[1:, 1:] = a # 右下角是松弛系数矩阵A
   s[1:, 0] = b # 左下角是约束条件值矩阵B
   s[0, 1: len(c) + 1] = c # 右上角是目标函数矩阵C
   return s
# 旋转矩阵-替换替出替入变量的角色位置
def pivot_matrix(matrix, k, j):
   # 单独处理替出变量所在行,需要除以替入变量的系数matrix[k][j]
   matrix[k] = matrix[k] / matrix[k][j]
```

```
# 循环除了替出变量所在行之外的所有行
   for i, _ in enumerate(matrix):
      if i != k:
          matrix[i] = matrix[i] - matrix[k] * matrix[i][j]
# 根据旋转后的矩阵,从基本变量数组中得到一组基解
def get_base_solution(matrix, base_ids):
   X = [0.0] * (matrix.shape[1]) # 解空间
   for i, _ in enumerate(base_ids):
      X[base_ids[i]] = matrix[i + 1][0]
   return X
# 构造辅助线性规划
def Laux(matrix, base_ids):
   1_matrix = np.copy(matrix)
   # 辅助矩阵的最后一列存放x0的系数,初始化为-1
   1_matrix = np.column_stack((l_matrix, [-1] * l_matrix.shape[0]))
   # 辅助线性函数的目标函数为z = x0
   l_{matrix}[0, :-1] = 0.0
   l_{matrix}[0, -1] = 1
   k = 1_matrix[1:, 0].argmin() + 1 # 选择一个b最小的那一行的基本变量作为替出变量
   j = 1_{matrix.shape}[1] - 1
                          # 选择x0作为替入变量
   # 第一次旋转矩阵,使得所有b为正数
   pivot_matrix(l_matrix, k=k, j=j)
   base_ids[k - 1] = j # 维护基本变量索引数组
   # 用单纯形算法求解该辅助线性规划
   l_matrix = simplex(l_matrix, base_ids)
   # 如果求解后的辅助线性规划中x0仍然是基本变量,需要再次旋转消去x0
   if l_matrix.shape[1] - 1 in base_ids:
      j = np.where(l_matrix[0, 1:] != 0)[0][0] + 1 # 找到矩阵第一行(目标函数)系数
不为0的变量作为替入变量
      k = base_ids.index(l_matrix.shape[1] - 1) + 1 # 找到<math>x0作为基本变量所在的那一
行,将x0作为替出变量
      pivot_matrix(1_matrix, k=k, j=j) # 旋转矩阵消去基本变量x0
      base_ids[k - 1] = j # 维护基本变量索引数组
   return 1_matrix, base_ids
# 从辅助函数中恢复原问题的目标函数
def resotr_from_Laux(1_matrix, z, base_ids):
   z_ids = np.where(z != 0)[0] - 1 # 得到目标函数系数不为0的索引数组(即基本变量索引数
组)
   restore_matrix = np.copy(l_matrix[:, 0:-1]) # 去掉x0那一列
   restore_matrix[0] = z # 初始化矩阵的第一行为原问题的目标函数向量
   for i, base_v in enumerate(base_ids):
       # 如果原问题的基本变量存在新基本变量数组中,说明需要替换消去
      if base_v in z_ids:
          restore_matrix[0] -= restore_matrix[0, base_v + 1] *
restore_matrix[i + 1] # 消去原目标函数中的基本变量
   return restore_matrix
# 单纯形算法求解线性规划
def simplex(matrix, base_ids):
   matrix = matrix.copy()
   # 如果目标系数向量里有负数,则旋转矩阵
   while matrix[0, 1:].min() < 0:
      # 在目标函数向量里,选取系数为负数的第一个变量索引,作为替入变量
      j = np.where(matrix[0, 1:] < 0)[0][0] + 1
      # 在约束集合里,选取对替入变量约束最紧的约束行,那一行的基本变量作为替出变量
      k = np.array([matrix[i][0] / matrix[i][j] if matrix[i][j] > 0 else
0x7fff for i in
                   range(1, matrix.shape[0])]).argmin() + 1
```

```
# print('替出变量为: {}, 替入变量为: {}'.format(k, j, matrix[k]
[j]))
       # 说明原问题无界
       if matrix[k][j] <= 0:</pre>
           print('原问题无界')
           return None, None
       pivot_matrix(matrix, k, j) # 旋转替换替入变量和替出变量
       base_ids[k - 1] = j - 1 # 维护当前基本变量索引数组
   return matrix
# 单纯形算法求解步骤入口
def solve(a, b, c, equal=None):
   loose_matrix = get_loose_matrix(a) # 转化得到松弛矩阵
   if equal is not None:
       for i, e in enumerate(equal):
           loose_matrix = np.insert(loose_matrix, i, e, axis=0)
   matrix = join_matrix(loose_matrix, b, c) # 得到ABC的组合矩阵
   base_ids = list(range(len(c), len(b) + len(c))) # 初始化基本变量的索引数组
   # 约束系数矩阵有负数约束,证明没有可行解,需要辅助线性函数
   if matrix[:, 0].min() < 0:
       print('构造求解辅助线性规划函数...')
       1_matrix, base_ids = Laux(matrix, base_ids) # 构造辅助线性规划函数并旋转求解
之
       if l_matrix is not None:
           matrix = resotr_from_Laux(1_matrix, matrix[0], base_ids) # 恢复原问题
的目标函数
       else:
           print('辅助线性函数的原问题没有可行解')
           return None, None, None
   ret_matrix = simplex(matrix, base_ids) # 单纯形算法求解拥有基本可行解的线性规划
   X = get_base_solution(ret_matrix, base_ids) # 得到当前最优基本可行解
   if ret_matrix is not None:
       return matrix, ret_matrix, X
   else:
       print('原线性规划问题无界')
       return None, None, None
if __name__ == '__main__':
   x = [0 for _ in range(20)] # 定义决策变量
   e1, e2, e3, e4, e5 = deepcopy(x), deepcopy(x), deepcopy(x), deepcopy(x),
deepcopy(x) # 等式约束
   e1[0], e1[15] = 1, 1
   e2[1], e2[11], e2[16], e2[15] = 1, 1, 1, -1.06
   e3[2], e3[7], e3[17], e3[0], e3[16] = 1, 1, 1, -1.15, -1.06
   e4[3], e4[18], e4[1], e4[17] = 1, 1, -1.15, -1.06
   e5[19], e5[2], e5[18] = 1, -1.15, -1.06
   a1, a2 = deepcopy(x), deepcopy(x) # 不等式约束
   a1[7] = 1
   a2[11] = 1
   a = np.array([a1, a2])
   b = [10, 0, 0, 0, 0] + [4, 3]
   equal = []
   equal.append(e1 + [0] * a.shape[0])
   equal.append(e2 + [0] * a.shape[0])
   equal.append(e3 + [0] * a.shape[0])
   equal.append(e4 + [0] * a.shape[0])
   equal.append(e5 + [0] * a.shape[0])
   c = deepcopy(x) # 目标函数
   c[3], c[7], c[11], c[19] = -1.15, -1.25, -1.4, -1.06
   # 单纯形法求解数学模型
```

```
# 线性规划实战-投资的收益和风险
import numpy as np
from copy import deepcopy
import matplotlib.pyplot as plt
np.set_printoptions(precision=4, suppress=True, threshold=np.inf)
# 线性规划转化为松弛形式
def get_loose_matrix(matrix):
   row, col = matrix.shape
   loose_matrix = np.zeros((row, row + col))
   for i, _ in enumerate(loose_matrix):
       loose_matrix[i, 0: col] = matrix[i]
       loose_matrix[i, col + i] = 1.0 # 对角线
   return loose_matrix
# 松弛形式的系数矩阵A、约束矩阵B和目标函数矩阵C组合为一个矩阵
def join_matrix(a, b, c):
   row, col = a.shape
   s = np.zeros((row + 1, col + 1))
   s[1:, 1:] = a # 右下角是松弛系数矩阵A
   s[1:, 0] = b # 左下角是约束条件值矩阵B
   s[0, 1: len(c) + 1] = c # 右上角是目标函数矩阵C
   return s
# 旋转矩阵-替换替出替入变量的角色位置
def pivot_matrix(matrix, k, j):
   # 单独处理替出变量所在行,需要除以替入变量的系数matrix[k][j]
   matrix[k] = matrix[k] / matrix[k][j]
   # 循环除了替出变量所在行之外的所有行
   for i, _ in enumerate(matrix):
       if i != k:
          matrix[i] = matrix[i] - matrix[k] * matrix[i][j]
# 根据旋转后的矩阵,从基本变量数组中得到一组基解
def get_base_solution(matrix, base_ids):
   X = [0.0] * (matrix.shape[1]) # 解空间
   for i, _ in enumerate(base_ids):
       X[base\_ids[i]] = matrix[i + 1][0]
   return X
# 构造辅助线性规划
def Laux(matrix, base_ids):
   1_matrix = np.copy(matrix)
   # 辅助矩阵的最后一列存放x0的系数, 初始化为-1
   l_matrix = np.column_stack((l_matrix, [-1] * l_matrix.shape[0]))
   # 辅助线性函数的目标函数为z = x0
   l_{matrix}[0, :-1] = 0.0
   1_{matrix}[0, -1] = 1
   k = 1_{matrix}[1:, 0].argmin() + 1 # 选择一个b最小的那一行的基本变量作为替出变量
   j = 1_matrix.shape[1] - 1 # 选择x0作为替入变量
```

```
# 第一次旋转矩阵, 使得所有b为正数
   pivot_matrix(l_matrix, k=k, j=j)
   base_ids[k - 1] = j # 维护基本变量索引数组
   # 用单纯形算法求解该辅助线性规划
   l_matrix = simplex(l_matrix, base_ids)
   # 如果求解后的辅助线性规划中x0仍然是基本变量,需要再次旋转消去x0
   if l_matrix.shape[1] - 1 in base_ids:
       j = np.where(l_matrix[0, 1:] != 0)[0][0] + 1 # 找到矩阵第一行(目标函数)系数
不为0的变量作为替入变量
       k = base_ids.index(l_matrix.shape[1] - 1) + 1 # 找到<math>x0作为基本变量所在的那一
行,将x0作为替出变量
       pivot_matrix(1_matrix, k=k, j=j) # 旋转矩阵消去基本变量x0
       base_ids[k - 1] = j # 维护基本变量索引数组
   return 1_matrix, base_ids
# 从辅助函数中恢复原问题的目标函数
def resotr_from_Laux(l_matrix, z, base_ids):
   z_ids = np.where(z != 0)[0] - 1 # 得到目标函数系数不为0的索引数组(即基本变量索引数
组)
   restore_matrix = np.copy(l_matrix[:, 0:-1]) # 去掉x0那一列
   restore_matrix[0] = z # 初始化矩阵的第一行为原问题的目标函数向量
   for i, base_v in enumerate(base_ids):
       # 如果原问题的基本变量存在新基本变量数组中,说明需要替换消去
       if base_v in z_ids:
          restore_matrix[0] -= restore_matrix[0, base_v + 1] *
restore_matrix[i + 1] # 消去原目标函数中的基本变量
   return restore_matrix
# 单纯形算法求解线性规划
def simplex(matrix, base_ids):
   matrix = matrix.copy()
   # 如果目标系数向量里有负数,则旋转矩阵
   while matrix[0, 1:].min() < 0:
       # 在目标函数向量里,选取系数为负数的第一个变量索引,作为替入变量
       j = np.where(matrix[0, 1:] < 0)[0][0] + 1
       # 在约束集合里,选取对替入变量约束最紧的约束行,那一行的基本变量作为替出变量
       k = np.array([matrix[i][0] / matrix[i][j] if matrix[i][j] > 0 else
0x7fff for i in
                   range(1, matrix.shape[0])]).argmin() + 1
       # 说明原问题无界
       if matrix[k][j] <= 0:</pre>
          print('原问题无界')
          return None, None
       pivot_matrix(matrix, k, j) # 旋转替换替入变量和替出变量
       base_ids[k - 1] = j - 1 # 维护当前基本变量索引数组
   return matrix
# 单纯形算法求解步骤入口
def solve(a, b, c, equal=None):
   loose_matrix = get_loose_matrix(a) # 转化得到松弛矩阵
   if equal is not None:
       loose_matrix = np.insert(loose_matrix, 0, equal, axis=0)
   matrix = join_matrix(loose_matrix, b, c) # 得到ABC的组合矩阵
   base_ids = list(range(len(c), len(b) + len(c))) # 初始化基本变量的索引数组
   # 约束系数矩阵有负数约束,证明没有可行解,需要辅助线性函数
   if matrix[:, 0].min() < 0:
       print('构造求解辅助线性规划函数...')
       1_matrix, base_ids = Laux(matrix, base_ids) # 构造辅助线性规划函数并旋转求解
之
       if l_matrix is not None:
```

```
matrix = resotr_from_Laux(1_matrix, matrix[0], base_ids) # 恢复原问题
的目标函数
       else:
           print('辅助线性函数的原问题没有可行解')
           return None, None, None
   ret_matrix = simplex(matrix, base_ids) # 单纯形算法求解拥有基本可行解的线性规划
   X = get_base_solution(ret_matrix, base_ids) # 得到当前最优基本可行解
   if ret_matrix is not None:
       return matrix, ret_matrix, X
   else:
       print('原线性规划问题无界')
       return None, None, None
# 画图显示结果
def draw_result(x, y):
   plt.plot(x, y, color='r', linestyle=':', marker='*', label='Profit / Risk')
   plt.legend()
   plt.xlabel('Risk')
   plt.ylabel('Profit')
   plt.plot([x[6], x[6]], [y[0], y[6]], color='g', linestyle='--')
   plt.scatter([x[6], ], [y[6], ], 50, color='red')
   plt.annotate("Risk={0}\nProfit={1}".format(round(x[6], 4), round(y[6], 4)),
xy=(x[6], y[6]), xytext=(-20, 20),
                textcoords='offset points', fontsize=12)
   plt.plot([x[25], x[25]], [y[0], y[25]], color='g', linestyle='--')
   plt.scatter([x[25], ], [y[25], ], 50, color='red')
   plt.annotate('Risk={0}\nProfit={1}'.format(round(x[25], 4), round(y[25],
4)), xy=(x[25], y[25]), xytext=(-20, -40),
                textcoords='offset points', fontsize=12)
   plt.show()
if __name__ == '__main__':
   a = np.array([[0, 0.025, 0, 0, 0], [0, 0, 0.015, 0, 0],
                 [0, 0, 0, 0.055, 0], [0, 0, 0, 0.026]]) # 不等式约束系数
   equal = [1, 1.01, 1.02, 1.045, 1.065] + [0] * a.shape[0] # 等式约束系数
   c = [-0.05, -0.27, -0.19, -0.185, -0.185] # 目标函数系数
   M = 1 # 总投资
   risk = 0.0 / M # 风险率
   x_point, y_point = [], [] # 不同风险对应的收益点
   while risk < 0.05:
       b = [M] + [risk] * a.shape[0] # M为等式约束, 其余为不等式约束
       matrix, ret_matrix, X = solve(np.copy(a), deepcopy(b), deepcopy(c),
deepcopy(equal)) # 单纯形算法求解目标函数
       if ret_matrix is not None:
           print('等式约束检查', np.dot(equal, X[0:-1]))
           print('当风险率为{}时,本次迭代的最优解为: {}'.format(np.round(risk, 4),
np.round(X[0: len(c)], 4).tolist()))
           print('该线性规划的最优值是: {}'.format(np.round(ret_matrix[0][0], 4)))
           x_point.append(risk)
           y_point.append(ret_matrix[0][0])
       risk += 0.001
   draw_result(x_point, y_point)
```

4.3 对偶单纯形法

4.3.1 概念

对偶单纯形法根据对偶问题的对称性,可以保持对偶问题基本解是可行解,而原问题由不可行基本解开始,通过迭代,逐步达到基本可行解,这样也使原问题与对偶问题都达到最优,采用这种思想的优化方法称为对偶单纯形法。

4.3.2 适用范围

1. 对变量较少而约束很多的线性规划问题,首先将其变为对偶问题,再用对偶单纯形法求解,从而简化计算。(这是因为在单纯形法的计算中,工作量的大小主要取决于约束条件的多少而不是变量的多少)

2. 此法用于灵敏度分析

概念:

灵敏度分析以上在讨论线性规划时, 均把 C_j , a_{ij} , b_i 看做常数, 但实际上这些数据有的是测量值, 有的是经验值, 既非绝对准确, 也非稳定不变, 因此, 有必要分析数据发生波动时, 对当前最优解和最优值有何影响, 这就是所谓的灵敏度分析。

灵敏度分析通常有两类问题:

- 一是当 C、A、b 中某部分数据发生给定的变化时, 讨论最优解和最优值如何变化;
- 二是分析 C、A、 b 中数据在多大范围内波动, 原最优基仍保持不变, 同时最优解和最优值如何变化。

4.3.2 步骤

4.3.3. 实例

4.3.4 代码实现 拳

简述:COPT的Python接口,手动设置模型,手动设置求解时间,对偶单纯形法求解LP问题

代码:

<u>lp.py</u>

```
The problem to solve:
    Maximize:
        1.2x + 1.8y + 2.1z
   Subject to:
        1.5x + 1.2y + 1.8z <= 2.6
        0.8x + 0.6y + 0.9z >= 1.2
    where:
       0.1 <= x <= 0.6
        0.2 \ll y \ll 1.5
        0.3 <= z <= 2.8
.....
# Import the Python interface library
from coptpy import *
# Create COPT environment
env = Envr()
# Create COPT model
model = env.createModel("lp_ex1")
```

```
# Add variables: x, y, z
x = model.addVar(lb=0.1, ub=0.6, name="x")
y = model.addvar(1b=0.2, ub=1.5, name="y")
z = model.addVar(lb=0.3, ub=2.8, name="z")
# Add constraints
model.addConstr(1.5*x + 1.2*y + 1.8*z \le 2.6)
model.addConstr(0.8*x + 0.6*y + 0.9*z >= 1.2)
# Set objective function
model.setObjective(1.2*x + 1.8*y + 2.1*z, sense=COPT.MAXIMIZE)
# Set parameter
model.setParam(COPT.Param.TimeLimit, 10.0)
# Solve the model
model.solve()
# Analyze solution
if model.status == COPT.OPTIMAL:
    # Get objective value
    print("Objective value: {}".format(model.objval))
    allvars = model.getVars()
   # Get valiable solution
    print("Variable solution:")
   for var in allvars:
        print(" x[{0}]: {1}".format(var.index, var.x))
    # Get variable basis status
    print("Variable basis status:")
    for var in allvars:
        print(" x[{0}]: {1}".format(var.index, var.basis))
# Write MPS model, solution, basis and parameters files
model.write("lp_ex1.mps")
model.write("lp_ex1.sol")
model.write("lp_ex1.bas")
model.write("lp_ex1.par")
```

结果:

4.4 内点法(Interior Point Method)

4.4.1 概念

1984年 Karmarkar 提出了一个比 Khanchian 法好的多项式时间算法的内点法, 称为 Karmarkar 法。由于该法引用了非线性规划中的牛顿投影, 因此又称 Karmarkar 投影法。Karmarkar 法的提出在线性规划领域具有极大的理论意义。与椭球法不同, 这个新算法不仅在最坏情况下在时间复杂度上优于单纯形法, 在大型实际问题中也有潜力与单纯形法竞争。这一方法的提出掀起了一股内点法的研究热潮。鉴于 Karmarkar 法的难读性, 一些研究学者对 Karmarkar 法进行了适度的修改, 使其简便易读。然而直接用该方法编程解题的测试表明, 与目前基于单纯形法的商用软件相比, 并没有明显的优势。

4.4.3 实例

4.4.4 代码实现

简述: **COPT的Python接口**,从**MPS模型文件**或**LP格式模型文件**中读取,手动设置求解时间,**内点法**求解**LP**问题,并将求解过程输入求解日志

代码:

lp in.py

```
The problem is read from:
    /Applications/copt30/examples/python/lp_ex1.mps
# Import the Python interface library
from coptpy import *
# Create COPT environment
env = Envr()
# Create COPT model
model = env.createModel("lp_ex1")
# Read MPS model
model.read("lp_ex1.mps")
# Set log file
m.setLogFile("lp_ex1.log")
# Set parameter
m.setParam(COPT.Param.TimeLimit, 10.0)
# Set solving methos to Barrier
m.setParam(COPT.Param.LpMethod, 2)
# Solve the model
model.solve()
# Analyze solution
if model.status == COPT.OPTIMAL:
    # Get objective value
    print("Objective value: {}".format(model.objval))
    allvars = model.getVars()
    # Get valiable solution
    print("Variable solution:")
    for var in allvars:
        print(" x[{0}]: {1}".format(var.index, var.x))
    # Get variable basis status
    print("Variable basis status:")
    for var in allvars:
        print(" x[{0}]: {1}".format(var.index, var.basis))
# Write MPS model, solution, basis and parameters files
```

```
model.write("lp_ex1.mps")
model.write("lp_ex1.sol")
model.write("lp_ex1.bas")
model.write("lp_ex1.par")
```

结果:

5. 补充资料

- 1. 数模官网 线性规划
- 2. qq小群 培训资料 "15-焦玲玲-COPT求解器使用教程.pdf" p56~p71
- 3. 1216 每日推送
- 4. <u>单纯形法</u>
- 5. 教材 运筹学----第三版 .pdf
- 6. GitHub----线性规划-单纯形算法
- 7. 矩阵单纯性法