- 8 En un LED es produeix llum:
- a) Per la creació de parells electró-forat a la zona de transició.
- b) Per recombinacions electró-forat a la zona de transició.
 - c) Per efecte Joule en tot el díode.
 - d) Pel moviment de forats en el costat p.

- **9** Donada la unió p-n representada a la figura, quina de les següents afirmacions és certa? ($V\gamma = 0.7 \text{ V}$)
- a) Si V_A - $V_B \le V\gamma$ llavors $I \ge 0$
- \rightarrow b) Si V_A - $V_B > \underline{V\gamma}$ llavors I > 0
 - c) I=0, independentment del valor de V_A-V_B
 - d) Si V_A - V_B =0 llavors I > 0

Transistor nMOS d'enriquiment

14. Per un transistor NMOS d'enriquiment amb $V_T = 2 \text{ V}$ circula un corrent de 1 mA quan $V_{GS} = V_{DS} = 3 \text{ V}$ Determineu:

VGT = VGS-VT

a) el valor del corrent quan $V_{GS} = 4 \text{ V i } V_{DS} = 5 \text{ V}$ $V_{CS} = 3 \text{ V} \Rightarrow V_{T} = 2 \text{ V}$ $V_{CS} = 3 \text{ V} \Rightarrow V_{T} = 2 \text{ V}$ $V_{CS} \Rightarrow V_{CT} \Rightarrow$

- T4) Al circuit de la figura sabem que el transistor treballa en règim de saturació amb $I_D = 1 \,\mathrm{mA}$, i que $V_T = 1 \text{ V. Quin és el valor més aproximat de } \beta$?
 - a) $0.22 \frac{\text{mA}}{\text{V}^2}$ b) $1.00 \frac{\text{mA}}{\text{V}^2}$ c) $0.77 \frac{\text{mA}}{\text{V}^2}$ d) $4.66 \frac{\text{mA}}{\text{V}^2}$

$$\beta = \frac{2\tau_0}{V_{L_1}^{\gamma}} = \frac{2\cdot 1}{\left(4-\phi-1\right)^{\gamma}} = 0.27 \frac{mA}{\sqrt{\gamma}}$$

16. La figura mostra un circuit amb un transistor MOS d'enriquiment de canal n. Si els seus paràmetres característics són $V_T = (1 \text{ y})$ i $\beta = 0.125 \text{ mA/V}^2$, determineu I_D i V_{DS} quan

$$\Rightarrow (00) t_{D} = 0$$

$$V_{\text{pl}} + 0 \cdot R_{\text{p}} = 0 \qquad V_{\text{pl}} = V_{\text{pl}} = 20$$

$$(N) V_{GS} > V_{T} =) \circ N \implies \text{Hips} \text{ for } : \partial H \text{mi}(A) \qquad I_{D} = \beta \left[V_{GT} V_{DS} - V_{DS} \right]$$

$$V_{DS} + I_{D} R_{D} - V_{DS} = D \implies I_{D} = V_{DD} - V_{DS}$$

$$V_{DS} + I_{D} R_{D} - V_{DS} = D \implies I_{D} = V_{DD} - V_{DS}$$

$$\left\{ \begin{array}{c} \left(\frac{1}{2} \right) \\ \left(\frac$$

$$R_0 \cdot \beta = 3.6 \cdot \beta^{-2} = 0.45 \cdot \left(15 \cdot V_{05} - \frac{V_{05}^2}{2}\right)$$

$$0.225 V_{05}^2 - 7.75 V_{05} + 20 = 0$$

19. Els paràmetres característics del MOS de la figura són $V_T = 1$ V i $\beta = 0.04$ mA/V². Determineu el potencial de sortida V_{out} , quan el d'entrada va 0 V i 5 V.

10 k Ω

PORTA?

٧ ₄	٧,	JA	16	1	NR	Vont
0	0	0	0	0	0	V D D
0	√ 0 0					
V ^D D	0					
V00	VaD					

26. Analitzeu el circuit de la figura i determineu les tensions de porta, drenador i font, junt amb la intensitat de drenador. Els paràmetres del transistor són $V_T = 1$ V i $\beta = 1$ mA/V².

- 14. Per un transistor NMOS d'enriquiment amb $V_T = 2$ V circula un corrent de 1 mA quan $V_{GS} = V_{DS} = 3$ V. Determineu: a) el valor del corrent quan $V_{GS} = 4$ V i $V_{DS} = 5$ V
- \rightarrow b) el valor de la resistència r_{DS} quan $V_{GS} = 4 \text{ V}$

13. Per a un NMOS d'enriquiment, tenim que per a valors petits de V_{DS} , la intensitat és proporcional a $(V_{GS}-V_T)V_{DS}$. Determineu la constant de proporcionalitat pel dispositiu representat pel gràfic de la figura, i doneu el rang de resistències font-drenador quan V_{GS} varia entre 2 V i 5 V. $(V_T=1\ V)$.

