

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants:

Constantin Bulucea and Rebecca Rossen

Assignee:

Siliconix incorporated

Title:

Trench DMOS Power Transistor With Field-Shaping Body Proffle and

Three-Dimensional Geometry

Application No.:

08/851,608

Filed:

5 May 1997

Examiner:

S. Crane

Group Art Unit:

2811

Docket No.:

M-799-4C US

San Jose, California 23 December 2002

BOX CPA COMMISSIONER FOR PATENTS Washington, D. C. 20231

INFORMATION DISCLOSURE STATEMENT UNDER 37 CFR 1.97(b)

Sir:

Pursuant to 37 CFR 1.56, 1.97, and 1.98, the documents listed on the accompanying substitute PTO Form 1449 are called to the attention of the Examiner for the above patent application. Copies of these documents are enclosed, including translations where indicated. Copies of English abstracts of all the cited Japanese Patent Publications ("JPPs") are also enclosed, except for JPP 63-124762, a utility model JPP.

The present application is a file-wrapper continuation of parent U.S. patent application 08/453,285 which, in turn, is a file-wrapper continuation of grandparent U.S patent application 08/086,976. Hence all documents cited in parent application 08/453,285 and in grandparent application 08/086,976 are of record in the present application.

JPP 62-12167 was previously cited in grandparent application 08/086,976 and is re-cited here because an English translation of JPP 62-12167 is enclosed.

JPP 62-37965 was previously cited in grandparent application 08/086,976 using the partial number "0037965". JPP 62-37965 is re-cited here for clarity using its full publication

par

LAW OFFICES OF SKJERVEN MORRILL LLF

METRO DRIVE, SUITE 700 SAN JOSE, CA 95110 (408) 453-9200 FAX (408) 453-7979

Serial No.: 08/851/608

number. Also, the JPP 62-37965 publication date, previously given as 15 February 1987, is corrected here to 18 February 1987.

Blanchard, "Optimization of High Power MOS Transistors", was cited in parent application 08/453,285 and is re-cited here to identify the page numbers and indicate that the document is a Ph.D. dissertation.

Katoh et al, "Design of New Structural High Breakdown Voltage V-MOSFET -- Static Shield V-MOSFET", was cited earlier in this application and is re-cited here because a copy of the Japanese version of the document is enclosed.

Ueda et al, "High Speed Power MOSFET, U-MOS Power FET", was cited earlier in this application using the partial title "U-MOS Power FET" and is re-cited here (a) to present the full title and (b) because an English translation is enclosed. Inasmuch as the Japanese version of Ueda et al, "High Speed Power MOSFET, U-MOS Power FET", has two sets of page numbers, both sets of page numbers "335 - 442" and "143 - 150" are included here in the citation rather than the single set of page numbers "143 - 150" previously used in the citation.

Applicants' attorney does not have an English translation of Kato et al, "A Study for High Voltage V-MOS Structure". However, Kato et al, "A Study for High Voltage V-MOS Structure", appears to deal with material similar to that in Katoh et al, "Design of New Structural High Breakdown Voltage V-MOSFET—Static Shield V-MOSFET", and similar to that in Katoh et al, "Design of High Breakdown V-MOSFET Applying Static Shield Effect".

Applicants' attorney recognizes that the enclosed copies of some of the cited documents repeat copies previously provided to the PTO in connection with the present application, with parent application 08/453,285, or with grandparent application 08/086,976. To the extent that such accumulation of multiple copies may be inconsistent with PTO policy or rules, Applicants' attorney requests the Examiner to discard the earlier-provided copies.

Further enclosed to simplify printing of the present application is a Summary of all the Documents Cited, i.e., now of record, in the present application and suitable for being listed on the first page of the patent as "References Cited". In the enclosed Summary of Cited Documents, the citations for some of the journal articles have been simplified by deleting unnecessary material such as the names of authors after the first-named authors.

LAW OFFICES OF SKJERVEN MORRILL LLP 25 METRO DRIVE, SUITE 700 SAN JOSE, CA 95110 (408) 453-9200 FAX (408) 453-7979

904444 v1 - 2 - Serial No.: 08/851/608

Siliconix inc. ("Siliconix"), the assignee of the present application, is also the assignee of (a) U.S. Patent 5,072,266, the great grandparent of the present application, and (b) U.S. Patent 5,298,442, the great grandparent of the present application.

Siliconix sued Fairchild Semiconductor Corp. ("Fairchild") for infringement of U.S. Patents 5,072,266 and 5,298,442. The patent infringement suit, now settled, was brought in the Northern District of California as case no. 99-04797 SBA. In the infringement suit, Fairchild submitted a 66-page Response Chart in which Fairchild alleged that certain claims of U.S. Patents 5,072,266 and 5,298,442 were invalid as anticipated by, or/and obvious in view of, certain references cited in the Response Chart.

A copy of the Response Chart, dated 30 August 2000, is enclosed. Subject to the comments in the next two paragraphs, all of the documents cited in the Response Chart are included with the enclosed substitute PTO Form 1449 or are already of record in the present application including parent application 08/753,285 and grandparent application 08/086,976. Likewise, aside from the documents already of record in the present application, copies of all the documents cited in the Response Chart are included with the enclosed copies of the references cited in the substitute PTO Form 1449.

On page 3 of the Response Chart, the citation to Kato et al, "A Study of High Voltage V-MOS Structure", should apparently be Kato et al, "A Study for High Voltage V-MOS Structure". That is, "of" in the title should apparently be "for".

Page 3 of the Response Chart cites (a) Katoh et al, "Design of High Breakdown Voltage V-MOSFET Applying Static Shield Effect," IEICE Transactions C, Vol. 66, No. 6, 1983, and then (b) Kato et al, "High Voltage-ization Using Static Shield Effect", Electrical Communications Laboratories Technical Journal, Vol. 33, No. 2, 1984. As far as applicants' attorney can determine, these two documents are respective English and Japanese versions of a single reference. Also, the journal/date citation information appears to be wrong for the English version, item (a). Referring to the enclosed substitute PTO Form 1449 and the accompanying copies of the cited documents, items (a) and (b) appear to be Katoh et al, "Design of High Breakdown Voltage V-MOSFET Applying Static Shield Effect", Review of the Electrical Communications Laboratories (which is probably an alternative English translation of the Japanese journal translated into English as Electrical Communications

Laboratories Technical Journal for item b) while the remaining citation information is Vol.

LAW OFFICES OF SKJERVEN MORRILL LLP 25 METRO DRIVE, SUTTE 700 SAN JOSE, CA 95110 (408) 453-9200 FAX (408) 453-7979

904444 v1 - 3 - Serial No.: 08/851/608

32, No. 6, 1984, pages 1107-1114, for the English version, and Vol. 33, No. 2, 1984, pages 257-268, for the Japanese version.

In the Siliconix/Fairchild patent infringement suit, Fairchild also submitted an Amended Initial Disclosure of Defendant Fairchild Semiconductor - Prior Art in which Fairchild cited over five hundred references, including references cited in the Response Chart. A copy of this Amended Initial Prior Art Disclosure, likewise dated 30 August 2000, is enclosed.

Certain of the references cited in the Amended Initial Prior Art Disclosure are classified as "102" or/and "103" references with respect to U.S. Patents 5,072,266 and 5,298,442. However, the Amended Initial Prior Art Disclosure does not cite any particular claim(s) of U.S. Patents 5,072,266 and 5,298,442, and does not provide any analogies between any of the claims of U.S. Patents 5,072,266 and 5,298,442, on one hand, and the material of any of the cited references, including the "102", "102/103", and "103" references, on the other hand. All of the "102" references, including three "102" references not mentioned in the Response Chart, are listed on the accompanying substitute PTO Form 1449 or are already of record in the present application.

Aside from the references cited in both the enclosed substitute PTO Form 1449 and the Amended Initial Prior Art Disclosure, Applicants' attorney has not obtained copies of and/or reviewed any of the further references cited in the Amended Initial Prior Art Disclosure in connection with the present application, and expresses no view as to the materiality of any of these further references to any of the claims of this application. The enclosed copy of the Amended Initial Prior Art Disclosure is provided in fulfillment of applicants' attorneys' obligation of candor and good faith with the PTO.

If the Response Chart and the Amended Initial Prior Art Disclosure themselves need to be listed on a (substitute) PTO Form 1449 in order for the Examiner to be obligated to consider these two Fairchild documents, please so inform Applicants' attorney.

Citation of the above documents shall not be construed as:

- 1. an admission that the documents are necessarily prior art with respect to the instant invention;
- 2. a representation that a search has been made; or

- 4 -Serial No.: 08/851/608 904444 vl

LAW OFFICES OF KJERVEN MORRILL LLP ETRO DRIVE, SUITE 700 SAN JOSE, CA 95110 (408) 453-9200 AX (408) 453-7979

3. an admission that the information cited herein is, or is considered to be, material to patentability as defined in 37 CFR 1.56(b).

Please telephone Applicants' attorney at 408-453-9200, ext. 1371, if there are any questions regarding this submission.

EXPRESS MAIL LABEL NO.

EL 945 229 950 US

Respectfully submitted,

Ronald J. Meetin

Attorney for Applicants

Reg. No. 29,089

LAW OFFICES OF SKJERVEN MORRILL LLP

25 METRO DRIVE, SUITE 700 SAN JOSE, CA 95110 (408) 453-9200 FAX (408) 453-7979

Serial No.: 08/851/608

- 5 -

TERRENCE P. McMAHON (State Bar No. 71910) WILLIAM L. ANTHONY, JR. (State Bar No. 106908) MONTE COOPER (State Bar No. 196746)

KAI TSENG (State Bar No. 193756)

SILICONIX INCORPORATED, a

FAIRCHILD SEMICONDUCTOR

Plaintiff.

CORPORATION, a Delaware corporation,

Defendant.

THOMAS J. GRAY (State Bar No. 191411) ORRICK, HERRINGTON & SUTCLIFFE LLP

1020 Marsh Road

Menlo Park, CA 94025

Telephone: (650) 614-7400 Facsimile: (650) 614-7401

6 7

3

Attorneys for Defendant

Delaware corporation,

FAIRCHILD SEMICONDUCTOR CORPORATION

8

10

11

12

13

14

15

16

17

18

19 20

21

22

23 24

25

26

27

ORRICK HERRINGTON & SUTCLIFFE LLP SILICON VALLEY

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

(OAKLAND DIVISION)

CASE NO. 99-04797 SBA

RESPONSE CHART

(Civil L.R. 16-9(b))

Pursuant to Civil Local Rule 16-9(b), Fairchild Semiconductor Corporation ("Fairchild") herein serves its response chart on Plaintiff Siliconix Incorporated Siliconix"). Fairchild provides the following claim invalidity analysis under 35 U.S.C. §§ 102 and 103.

I. INTRODUCTION

Local Rule 16-9(a) requires that the party alleging infringement of a patent must submit a claim chart which "must contain" information identifying "where each element of each infringed claim is found within each apparatus, product [or] device . . .". L.R. 16-9(a)(4). Siliconix's claim chart alleges that Claim 1 of U.S. Patent No. 5,072,266 ("the '266 patent") and Claims 17, 18, 19, 20, 22, 23 and 24 of U.S. Patent No. 5,298,442 ("the '442 patent") are infringed by the Fairchild FDS 6680A product. Siliconix has failed to provide a claim chart which applies the asserted claims of the '266 patent and '442 patent against any other Fairchild product. RESPONSE CHART PURSUANT TO CIVIL L.R. 16-9(b) DOCSSV2:500277.1 (Case No. C-99-04797 SBA)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Accordingly, Siliconix should be precluded from asserting infringement of the '266 patent and/or '422 patent against any other Fairchild product. II. **RESPONSIVE CHART**

The following chart indicates which claims of the patent are anticipated by which pieces of prior art. Please note that the information in this document is provisional and subject to revision, for the following reasons:

- (i) Fairchild's position on the invalidity of particular claims will depend on how those claims are construed by the Court. Because claim construction has not yet occurred, Fairchild cannot take a final position on the bases for invalidity of disputed claims because the Court may construe those claims to mean something different from what Fairchild presently assumes them to mean.
 - (ii) Fairchild has not yet completed its search for prior art.
- (iii) Fairchild has not completed its discovery from Plaintiff. Depositions of the persons involved in the drafting and prosecution of the patent-in-suit, and of the inventor, for instance, will likely reveal information that affects the conclusions herein.

Fairchild reserves the right to revise and/or supplement the claim chart. Fairchild incorporates herein the prosecution file history of the '266 patent and the '442 patent.

Presently, Fairchild intends to rely upon the following prior art patents and references:

JP 55146976

JP 58137254

JP 62-16572 -

Physics and Technology of Power MOSFETs, Shi-Chung Sun, UMI Dissertation Services.

February 1982

Optimization of Discrete High Power MOS Transistors, Richard A. Blanchard, UMI

Dissertation Services, Dec. 1981

JP 62012167

U.S. Patent 4,420,379

DOCSSV2:500277.1

SUTCLIFFE LLP

SILICON VALLEY

1	JP 63-124762	
2	JP 63-224260	
3	JP 59-181668	
4	JP 54-57871	
5	JP 57-72365	
6	JP 59-193064	
7	JP 60-28271	
8	JP_57-18365	
9	JP 59-80970	
10	U.S. Patent 4,345,265	
11	U.S. Patent 4,443,931	
12	U.S. Patent 4,532,534	
13	U.S. Patent 4,374,455	
14	U.S. Patent 4,767,722	
15	U.S. Patent 3,412,297	
16	U.S. Patent 4,783,694	
17	U.S. Patent 4,593,302	
18	Design of New Structural High Breakdown Voltage V-MOSFET – Static Shield V-	
19	MOSFET, Kuniharu Katoh and Yuki Shimada, Electronics and Communications in	
20	. Japan, Vol. 66-C, No. 6, 1983	
21	A Study of High Voltage V-MOS Structure, Kunihara Kato, et al., IEICE Transactions C.,	
22	Vol. 81, No. 7(ED81-4), 1981.	
23	Design of High Breakdown Voltage V-MOSFET Applying Static Shield Effect, Kunihara	
24	Kato, et al., IEICE Transactions C, Vol. 66, No. 6, 1983.	
25	High Voltage-ization Using Static Shield Effect, Kunihara Kato, et al., Electrical	
26	Communications Laboratories Technical Journal, Vol. 33, No. 2, 1984.	
27	U-MOS Power MOSFET, Daisuke Ueda, et al., National Technical Report, Vol. 29, No. 2,	
28	Apr. 1983	

28
ORRICK
HERRINGTON
& SUTCLIFFE LLP
SILICON VALLEY

DOCSSV2:500277.1

RESPONSE CHART PURSUANT TO CIVIL L.R. 16-9(b) (Case No. C-99-04797 SBA)

The Following References (referred hereinafter as "KATOH") Will Be Analyzed Together:

Design of New Structural High Breakdown Voltage V-MOSFET - Static Shield V-MOSFET, Kuniharu Katoh and Yuki Shimada, Electronics and Communications in Japan, Vol. 66-C, No. 6, 1983

A Study of High Voltage V-MOS Structure, Kunihara Katoh, et al., IEICE Transactions C., Vol. 81, No. 7(ED81-4), 1981.

Design of High Breakdown Voltage V-MOSFET Applying Static Shield Effect, Kunihara Katoh, et al., IEICE Transactions C, Vol. 66, No. 6, 1983.

High Voltage-ization Using Static Shield Effect, Kunihara Katoh, et al., Electrical Communications Laboratories Technical Journal, Vol. 33, No. 2, 1984.

INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,072,266 U.S. Patent 5,072,266 JP 55146976 14 CLAIM 1 1. A trench DMOS transistor cell comprising: Double Diffusion Insulating Gate Field Effect Transistor 15 a substrate of semiconductor material of heavily doped N+ layer (101) first electrical conductivity type; 16 a first covering layer of semiconductor material of said N- layer (102) first electrical conductivity type lying on the substrate; 17 a second covering layer of semiconductor material of P layer (3) second electrical conductivity type lying on the first 18 covering layer; a third covering layer of semiconductor material of N+ layer (104) 19 heavily doped said first electrical conductivity type and having a top surface and partly lying over the second the P layer (3) has a heavily doped P+ region (103) 20 which extends upward through the N+ layer (104) and covering layer, wherein a portion of the second covering which extends downward (110-1 and 110-2) into the Nlayer is heavily doped and this portion extends both 21 layer (102) vertically upward and downward, an upward portion extending through the third covering layer to the top 22 surface of the third covering layer and a downward portion extending downward into the first covering 23 a trench having a bottom surface and side surfaces and trench (5) with a bottom surface and side surfaces which 24 extending vertically downward from the top surface of extend vertically downward from the top surface of the the third covering layer through the third covering layer N+ layer (104) through the N+ layer (104), the P layer 25 (3) and through a portion of the N- (102) layer, wherein and the second covering layer and through a portion of the first covering layer, wherein the bottom surface of the bottom surface of the trench (5) lies above a lowest

ORRICK HERRINGTON SUTCLIFFE LLP SILICON VALLEY

26

27

28

1

2

3

4

5

6

7

8

9

10

11

1.

13

DOCSSV2:500277.1

the trench lies above a lowest part of the downward

electrically conducting semiconductor material

portion of the second covering layer;

positioned within the trench;

part of the downward portion of the P+ region of the P

layer.

semiconductor material (107)

1	a layer of oxide positioned within the trench between the	oxide (106)
	electrically conducting semiconductor material and the	
2	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	three electrodes electrically coupled to the semiconductor
3	conducting semiconductor material, to the third covering	material (107), to the N+ layer (104) and to the N+
	layer and to the substrate, respectively.	substrate (101).

_	U.S. Patent No. 5,298,442	JP 55146976
7	CLAIM 17	
8	17. A method for providing a transistor, said method comprising the steps of:	Double Diffusion Insulating Gate Field Effect Transistor
9	providing a first region of a first conductivity type;	N+ layer (101) and N- layer (102)
0	providing a second region of a second conductivity type over said first region;	P layer (3) formed by a first diffusion
1	providing a third region of said first conductivity type such that said first and third regions are separated by	N+ layer (104) formed by a second diffusion
2	said second region; providing a trench through said third and second regions; and	trench (5) with a bottom surface and side surfaces which extend vertically downward from the top surface of the N+ layer (104) through the N+ layer (104), the P layer
4	providing a gate in said trench;	(3) and through a portion of the N- (102) layer. Al gate electrode (107)
5	wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said	the P layer (3) has a heavily doped P+ region (103) which extends upward through the N+ layer (104) and which extends downward (110-1 and 110-2) through the
5	trench so that, if a predetermined voltage is applied to said gate and to said third region and another predetermined voltage is applied to said first region, an	N- layer (102) deeper than the trench (5)
7	avalanche breakdown occurs away from a surface of said trench.	
3		
, [CLAIM 18	
)	18. The method of claim 17 wherein said portion P of said second region is doped heavier than another portion	the P layer (3) has a heavily doped P+ region (103) laterally spaced from the trench (5)
1	of said second region which portion is adjacent said trench.	
2	CLAIM 19 19. The method of claim 17 wherein said first region	N+ layer (101) under N- layer (102)
,	comprises a first portion and a second portion over said first portion, said second portion being lighter doped	
1	than said first portion.	
۱ ا	CLAIM 20 20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
	breakdown is a reach-through breakdown across said second portion.	across the N- layer (102)
5	CLAIM 22	
- 1	21. The method of claim 17 further comprising the step	oxide (106)

1	CLAIM 23	
2	23. A method for providing a transistor, said method comprising the steps of:	Double Diffusion Insulating Gate Field Effect Transistor
3	providing a first region of a first conductivity type; providing a second region of said first conductivity type	N+ layer (101)
-	over said first region, said second region being lighter	N- layer (102)
4	doped than said first region;	
5	providing a third region of a second conductivity type over said second region, said second and third regions forming a junction;	P layer (3) formed by a first diffusion
6	providing a fourth region of said first conductivity type over said third region;	N+ layer (104) formed by a second diffusion
. 7	providing a trench through said fourth region and third	trench (5) with a bottom surface and side surfaces which
8	regions; and	extend vertically downward from the top surface of the N+ layer (104) through the N+ layer (104), the P layer (3) and through a portion of the N- (102) layer.
9	providing a gate in said trench;	Al gate electrode (107)
10	wherein a deepest part of said third regions is laterally spaced from said trench;	P layer (3) is laterally spaced from said trench
11	wherein a distance between said deepest part of said third region and said first region is less than a depletion	the distance between the deepest part of the P layer (3) and the N+ layer (101) is less than a depletion width of a
12	width of a planar junction which has the same doping profile as does said junction between said second and	planar junction which has the same doping profile as does the junction between the N- layer (102) and the P
13	third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage.	layer (3) at the deepest part of the P layer (3) and which is reverse biased around its breakdown voltage
14	CLAIM 24	
17	24. The method of claim 23 wherein said deepest part of	the deepest part of the P layer (3) is heavier doped (P+
15	said third region is doped heavier than a part of said third region which part is adjacent said trench.	region(103)) than the part of the P layer (3) adjacent trench (5)

U.S. Patent 5,072,266	JP 58137254
CLAIM 1	
A trench DMOS transistor cell comprising:	Insulated Gate Semiconductor Device See Fig. 7
substrate of semiconductor material of heavily doped strate conductivity type;	N+ layer (1)
first covering layer of semiconductor material of said rst electrical conductivity type lying on the substrate;	N- layer (2)
second covering layer of semiconductor material of cond electrical conductivity type lying on the first overing layer;	P layer (13)

28
ORRICK
HERRINGTON
& SUTCLIFFE LLP
SILICON VALLEY

DOCSSV2:500277.1

1		
1	a third covering layer of semiconductor material of	N+ layer (14);
	heavily doped said first electrical conductivity type and	1 71 (12) 1 11 1 17 1 (12)
2	having a top surface and partly lying over the second	the P layer (13) has a heavily doped P+ region (19)
İ	covering layer, wherein a portion of the second covering	portion which extends upward through the N+ layer (14)
3	layer is heavily doped and this portion extends both	and which extends downward into the N- layer (2)
	vertically upward and downward, an upward portion	
4	extending through the third covering layer to the top	
	surface of the third covering layer and a downward	
5	portion extending downward into the first covering	
-	layer;	
6	a trench having a bottom surface and side surfaces and	trench with a bottom surface and side surfaces which
١	extending vertically downward from the top surface of	extend vertically downward from the top surface of the
7	the third covering layer through the third covering layer	N+ layer (14) through the N+ layer (104), the P layer
′	and the second covering layer and through a portion of	(13) and through a portion of the N- (19) layer, wherein
8	the first covering layer, wherein the bottom surface of	the bottom surface of the trench lies above a lowest part
°	the trench lies above a lowest part of the downward	of the downward portion of the P+ region of the P layer.
9	•	
9	portion of the second covering layer;	gate semiconductor material (17)
	electrically conducting semiconductor material	gate semiconductor material (17)
10	positioned within the trench;	
	a layer of oxide positioned within the trench between the	oxide insulating film (16)
11	electrically conducting semiconductor material and the	
Į.	bottom and side surfaces of the trench; and	
12	three electrodes electrically coupled to the electrically	three electrodes electrically coupled to the gate
	conducting semiconductor material, to the third covering	semiconductor material (17), to the N+ layer (14) and to
13	layer and to the substrate, respectively.	the N+ substrate (1).
n		

1	_	

U.S. Patent No. 5,298,442	JP 58137254
CLAIM 17	
17. A method for providing a transistor, said method comprising the steps of:	Insulated Gate Semiconductor Device See Fig. 7
providing a first region of a first conductivity type;	N+ layer (1) and N- layer (2)
providing a second region of a second conductivity type over said first region;	P layer (13) formed by a first diffusion
providing a third region of said first conductivity type such that said first and third regions are separated by said second region;	N+ layer (14) formed by a second diffusion
providing a trench through said third and second regions; and	trench with a bottom surface and side surfaces which extend vertically downward from the top surface of the N+ layer (14) through the N+ layer (14), the P layer (13) and through a portion of the N- (2) layer.
providing a gate in said trench;	gate semiconductor material (17)

ORRICK HERRINGTON

& SUTCLIFFE LLP

SILICON VALLEY

1	wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said	the P layer (13) has a heavily doped P+ region (19) which extends upward through the N+ layer (14) and
2	trench so that, if a predetermined voltage is applied to	which extends downward through the N- layer (2) deeper than the trench
3	said gate and to said third region and another predetermined voltage is applied to said first region, an	than the deficit
4	avalanche breakdown occurs away from a surface of said trench.	
	3333	
5	CV ATACLO	
6	CLAIM 18	
	18. The method of claim 17 wherein said portion P of	the P layer (13) has a heavily doped P+ region (19)
7	said second region is doped heavier than another portion of said second region which portion is adjacent said	which is laterally spaced from the trench
8	trench. CLAIM 19	
	19. The method of claim 17 wherein said first region	N+ layer (1) under N- layer (2)
, 9	comprises a first portion and a second portion over said	14 layer (1) under 14 layer (2)
	first portion, said second portion being lighter doped	_
10	than said first portion.	
11	CLAIM 20	
••	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
12	breakdown is a reach-through breakdown across said	across the N- layer (2)
	second portion.	
13	CLAIM 22	
	21. The method of claim 17 further comprising the step	oxide insulating film (16)
14	of providing an insulator between said surface of said trench and said gate.	
15	CLAIM 23	
13	23. A method for providing a transistor, said method	Insulated Gate Semiconductor Device
16	comprising the steps of:	
	providing a first region of a first conductivity type;	N+ layer (1)
17	providing a second region of said first conductivity type	N- Layer (2)
	over said first region, said second region being lighter	
18	doped than said first region;	
19	providing a third region of a second conductivity type	P layer (13) formed by a first diffusion
19	over said second region, said second and third regions forming a junction;	
20	providing a fourth region of said first conductivity type	N+ layer (14) formed by a second diffusion
	over said third region;	14 layer (14) formed by a second diffusion
21	providing a trench through said fourth region and third	V trench which extends vertically downward from the
	regions; and	top surface of the N+ layer (14) through the N+ layer
22	~	(14), the P layer (13) and through a portion of the N- (2)
23		layer.
23	providing a gate in said trench;	gate electrode (17)
24	wherein a deepest part of said third regions is laterally spaced from said trench;	P layer (13) is laterally spaced from said V trench
25	wherein a distance between said deepest part of said	the distance between the deepest part of the P layer (13)
رے	third region and said first region is less than a depletion	and the N+ layer (1) is less than a depletion width of a
26	width of a planar junction which has the same doping	planar junction which has the same doping profile as
_	profile as does said junction between said second and third regions at said deepest part of said third region and	does the junction between the N- layer (2) and the P layer
27	which is reverse biased around its breakdown voltage.	(13) at the deepest part of the P layer (13) and which is reverse biased around its breakdown voltage
-	which is reverse clased around its oreakdown voltage.	reverse orased around its oreazinown voltage

1	CLAIM 24	
2	24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench.	the P layer (13) has a heavily doped P+ region (19) which is laterally spaced from the trench
3		

٠	U.S. Patent 5,072,266	
6	CLAIM 1	JP 6216572
7	1. A trench DMOS transistor cell comprising:	Vertical-type Semiconductor Device and Manufacturing Method Therefore
8		See figs. 1(a) and 1(b)
9	a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer (1)
0	a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	N layer (2)
2	a second covering layer of semiconductor material of second electrical conductivity type lying on the first covering layer;	P layer (4)
3	a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and having a top surface and partly lying over the second covering layer, wherein a portion of the second covering	N+ layer (8) (p. 11 of translation: "Contracted by an n+stype semiconductor layer 8, the p-type semiconductor layer 4 (channel region) thus forms long and short portions underneath the n+-type semiconductor layer 8."
5	layer is heavily doped and this portion extends both vertically upward and downward, an upward portion	p. 11 of translation: "Forming p+-type semiconductor
i	extending through the third covering layer to the top surface of the third covering layer and a downward portion extending downward into the first covering	layers 3 in cells by photolithography is used as another way of reducing the likelihood of the punch-through phenomenon occurring in conventional DSA MOS
, 	layer;	FETs."
		the P layer (4) has a heavily doped P+ region (3) portion which extends upward through the N+ layer (1) and which extends downward into the N layer (2)
	a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of	p. 12 of translation: "The vertical-type semiconductor device in accordance with the present invention is
	the third covering layer through the third covering layer and the second covering layer and through a portion of	characterized by comprising a semiconductor substrate of a first conduction type whose principal surface is
	the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward portion of the second covering layer;	provided with a groove; a semiconductor film or conductor film pattern formed through the agency of a first insulating film over the groove formed in the
		principal surface of the semiconductor substrate"
	,	As seen from Fig. 1(b), the P layer (4) has a heavily doped P+ region (3) portion which extends upward
	electrically conducting and	through the N+ layer (8) and which extends downward into the N layer (2)
	electrically conducting semiconductor material positioned within the trench;	source Al electrode 9 is formed on this insulating film
		p. 12 of translation: " a semiconductor film or conductor film pattern formed through the agency of a
- 11	·	first insulating film over the groove formed in the

28
ORRICK
HERRINGTON
& SUTCLIFFE LLP
SILICON VALLEY

RESPONSE CHART PURSUANT TO CIVIL L.R. 16-9(b) (Case No. C-99-04797 SBA)

1	a layer of oxide positioned within the trench between the	first insulating film (5a)
	electrically conducting semiconductor material and the	
2	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	Source Al electrode (9a).
3	conducting semiconductor material, to the third covering	, ,
	layer and to the substrate, respectively.	Gate Al electrode (9b).
4		·
i		Since the device is a vertical-type semiconductor device,
5		the N+ layer (1) must have a drain electrode.
5		Since the device is a vertical-type semiconductor device the N+ layer (1) must have a drain electrode.

INVALIDITY CLAIM CHART F U.S. Patent No. 5,298,442	
CLAIM 17	JP 62-16572
17. A method for providing a transistor, said method	Vertical-type Semiconductor Device and Manufacturing
comprising the steps of:	Method Therefore
11: 6	See figs. 1(a) and 1(b)
providing a first region of a first conductivity type;	N+ layer (1) and N layer (2).
providing a second region of a second conductivity typ over said first region;	
providing a third region of said first conductivity type	N+ layer (8) (p. 11 of translation: "Contracted by an n+-
such that said first and third regions are separated by said second region;	type semiconductor layer 8, the p-type semiconductor layer 4 (channel region) thus forms long and short
	portions underneath the n+-type semiconductor layer 8.")
providing a trench through said third and second	p. 12 of translation: "The vertical-type semiconductor
regions; and	device in accordance with the present invention is
	characterized by comprising a semiconductor substrate of
	a first conduction type whose principal surface is provided with a groove; "
providing a gate in said trench;	p. 12 of translation: "a semiconductor film or
•	conductor film pattern formed through the agency of a
	first insulating film over the groove formed in the
wherein a portion P of said second region, which portion	principal surface of the semiconductor substrate" the P layer (4) has a heavily doped P+ region (3) which
s spaced from said trench, extends deeper than said	extends upward through the N+ layer (8) and which
rench so that, if a predetermined voltage is applied to	extends downward through the N- layer (2) deeper than
said gate and to said third region and another	the groove
predetermined voltage is applied to said first region, an avalanche breakdown occurs away from a surface of	
aid trench.	
-	
CLAIM 18	
18. The method of claim 17 wherein said portion P of	the P layer (4) has a heavily doped P+ region (3) which is
said second region is doped heavier than another portion	spaced away from the groove
of said second region which portion is adjacent said trench.	
CLAIM 19	
19. The method of claim 17 wherein said first region	N+ layer (1) under N layer (2).
comprises a first portion and a second portion over said	2
first portion, said second portion being lighter doped	
than said first portion.	

1	CLAIM 20	
	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
2	breakdown is a reach-through breakdown across said	across the N layer (2)
	second portion.	
3	CLAIM 22	
	21. The method of claim 17 further comprising the step	first insulating film (5a)
4	of providing an insulator between said surface of said	
	trench and said gate.	
5	CLAIM 23	
	23. A method for providing a transistor, said method	Vertical-type Semiconductor Device and Manufacturing
6	comprising the steps of:	Method Therefore
. 7		See figs. 1(a) and 1(b)
	providing a first region of a first conductivity type;	N+ layer (1)
8	providing a second region of said first conductivity type	N layer (2)
	over said first region, said second region being lighter	
9	doped than said first region;	
10	providing a third region of a second conductivity type	P layer (4)
10	over said second region, said second and third regions	
.,	forming a junction;	•
11	providing a fourth region of said first conductivity type	N+ layer (8) (p. 11 of translation: "Contracted by an n+-
12	over said third region;	type semiconductor layer 8, the p-type semiconductor
12	·	layer 4 (channel region) thus forms long and short
13		portions underneath the n+-type semiconductor layer 8.")
		p. 12 of translation: "The vertical-type semiconductor
14	providing a trench through said fourth region and third regions; and	device in accordance with the present invention is
	regions, and	characterized by comprising a semiconductor substrate of
15		a first conduction type whose principal surface is
	·	provided with a groove; a semiconductor film or
16		conductor film pattern formed through the agency of a
		first insulating film over the groove formed in the
17		principal surface of the semiconductor substrate"
		Assess Complete (A) de Pile es (A) 1 1 1
18		As seen from Fig. 1(b), the P layer (4) has a heavily
		doped P+ region (3) portion which extends upward through the N+ layer (8) and which extends downward
19		into the N layer (2)
	providing a gate in said trench;	p. 12 of translation: "The vertical-type semiconductor
20	providing a gate in said denoti,	device in accordance with the present invention is
		characterized by comprising a semiconductor substrate of
21		a first conduction type whose principal surface is
22		provided with a groove;"
22		
23	·	p. 12 of translation: " a semiconductor film or
2.5		conductor film pattern formed through the agency of a
24		first insulating film over the groove formed in the principal surface of the semiconductor substrate"
- "	wherein a deepest part of said third regions is laterally	P layer (4) is laterally spaced from said groove.
25	spaced from said trench;	1 Tayor (4) is faterally spaced from said groove.
	spaceu nom sam nenen,	

28
ORRICK
HERRINGTON
& SUTCLIFFE LLP

SILICON VALLEY

26

27

DOCSSV2:500277.1

wherein a distance between said deepest part of said third region and said first region is less than a depletion width of a planar junction which has the same doping profile as does said junction between said second and third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage.	the distance between the deepest part of the P layer (3) and the N+ layer (1) is less than a depletion width of a planar junction which has the same doping profile as does the junction between the N layer (2) and the P layer (4) at the deepest part of the P layer (4) and which is reverse biased around its breakdown voltage
CLAIM 24	
24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench.	the P layer (4) has a heavily doped P+ region (3) which is spaced away from the groove

U.S. Patent 5,072,266	Physics and Technology of Power MOSFETs
CLAIM 1	
1. A trench DMOS transistor cell comprising:	VDMOS – see Figs. 2.1, 2.21 and 3.21
a substrate of semiconductor material of heavily dop	ed N+ layer
first electrical conductivity type;	
a first covering layer of semiconductor material of sa	aid N- layer
first electrical conductivity type lying on the substrate	te;
a second covering layer of semiconductor material o	f P layer
second electrical conductivity type lying on the first	
covering layer;	
a third covering layer of semiconductor material of	N+ layer
heavily doped said first electrical conductivity type	and
having a top surface and partly lying over the second	As seen in Fig. 2.1, a portion of the P layer is neavily
covering layer, wherein a portion of the second covering	bring doped P+; the P+ region extends vertically upward
layer is heavily doped and this portion extends both	around the N+ layer and downward into the N- layer
vertically upward and downward, an upward portion	1
extending through the third covering layer to the top	
surface of the third covering layer and a downward	
portion extending downward into the first covering	
layer;	
a trench having a bottom surface and side surfaces a	nd trench with a bottom surface and side surfaces which
extending vertically downward from the top surface	of extend vertically downward from the top surface of the
the third covering layer through the third covering la	ayer N+ layer through the N+ layer, the P layer and unough
and the second covering layer and through a portion	of portion of the N- layer.
the first covering layer, wherein the bottom surface	of
the trench lies above a lowest part of the downward	
portion of the second covering layer;	
electrically conducting semiconductor material	semiconductor material
positioned within the trench;	
a layer of oxide positioned within the trench between	en the oxide between the trench and gate
electrically conducting semiconductor material and	the
bottom and side surfaces of the trench; and	
three electrodes electrically coupled to the electrical	three electrodes electrically coupled to the semiconduc
conducting semiconductor material, to the third cov	rering material, to the top N+ layer and to the N+ substrate.
layer and to the substrate, respectively.	

SILICON VALLEY

	U.S. Patent No. 5,298,442	Physics and Technology of Power MOSFETs
	CLAIM 17	
	method for providing a transistor, said method rising the steps of:	VDMOS – see Figs. 2.1, 2.21 and 3.21
	ling a first region of a first conductivity type;	N+ layer substrate and N- layer
provid	ling a second region of a second conductivity type	P layer formed by a first diffusion
provid	aid first region; ling a third region of said first conductivity type	N+ layer formed by a second diffusion
said s	hat said first and third regions are separated by econd region;	
	ding a trench through said third and second as; and	trench with a bottom surface and side surfaces which extend vertically downward from the top surface of the N+ layer through the N+ layer, the P layer and through
		portion of the N- layer.
provid	ding a gate in said trench;	Al gate electrode
where	ein a portion P of said second region, which portion	the P layer has a heavily doped P+ region which extend
is spa	ced from said trench, extends deeper than said a so that, if a predetermined voltage is applied to	upward through the N+ layer and which extends downward through the N- layer deeper than the trench.
said g	ate and to said third region and another termined voltage is applied to said first region, an	
avala	nche breakdown occurs away from a surface of rench.	
<u></u>	CLAIM 18	
18. T	he method of claim 17 wherein said portion P of	the P layer has a heavily doped P+ region which is
said s	econd region is doped heavier than another portion d second region which portion is adjacent said	laterally spaced away from the trench
trenc		
-	CLAIM 19	N+ layer substrate under the N- layer
	he method of claim 17 wherein said first region orises a first portion and a second portion over said	14. layor substrate under the 14- layor
first	portion, said second portion being lighter doped	
	said first portion.	
	CLAIM 20	
break	he method of claim 19 wherein said avalanche down is a reach-through breakdown across said	avalanche breakdown is a reach-through breakdown across the N- layer
	od portion. CLAIM 22	
of pr	he method of claim 17 further comprising the step oviding an insulator between said surface of said	oxide between the trench and gate
	h and said gate. CLAIM 23	
	A method for providing a transistor, said method prising the steps of:	VDMOS – see Figs. 2.1, 2.21 and 3.21
prov	iding a first region of a first conductivity type; iding a second region of said first conductivity type	N+ layer N- Layer
H	Advant a content region of cold tirel committee in its increase.	

1	providing a third region of a second conductivity type over said second region, said second and third regions	P layer formed by a first diffusion
2	forming a junction;	
	providing a fourth region of said first conductivity type	N+ layer formed by a second diffusion
3	over said third region;	
	providing a trench through said fourth region and third	trench with a bottom surface and side surfaces which
4	regions; and	extend vertically downward from the top surface of the
		N+ layer through the N+ layer, the P layer and through a
5		portion of the N- layer.
	providing a gate in said trench;	Al gate electrode
6	wherein a deepest part of said third regions is laterally	P layer is laterally spaced from said trench
	spaced from said trench;	
7	wherein a distance between said deepest part of said	the distance between the deepest part of the P layer and
	third region and said first region is less than a depletion	the N+ layer is less than a depletion width of a planar
8	width of a planar junction which has the same doping	junction which has the same doping profile as does the
	profile as does said junction between said second and	junction between the N- layer and the P layer at the
9	third regions at said deepest part of said third region and	deepest part of the P layer and which is reverse biased
	which is reverse biased around its breakdown voltage.	around its breakdown voltage
10	CLAIM 24	
	24. The method of claim 23 wherein said deepest part of	the P layer has a heavily doped P+ region which is
11	said third region is doped heavier than a part of said	laterally spaced away from the trench
	third region which part is adjacent said trench.	
12		

15 16	U.S. Patent 5,072,266	Optimization of Discrete High Power MOS Transistors
	CLAIM 1	
17	1. A trench DMOS transistor cell comprising:	VMOS Structure – see Fig. 4.22
	a substrate of semiconductor material of heavily doped	N+ layer
18	first electrical conductivity type;	
	a first covering layer of semiconductor material of said	N- layer
19	first electrical conductivity type lying on the substrate;	
	a second covering layer of semiconductor material of	P layer
20	second electrical conductivity type lying on the first	
	covering layer;	
21	a third covering layer of semiconductor material of	N+ layer;
	heavily doped said first electrical conductivity type and	1 D1 1 - 1 - 1 - 1 - 1 - 1 D1 ion mortion which
22	having a top surface and partly lying over the second	the P layer has a heavily doped P+ region portion which extends upward through the N+ layer and which extends
22	covering layer, wherein a portion of the second covering	downward into the N layer.
23	layer is heavily doped and this portion extends both	downward into the 14 tayor.
24	vertically upward and downward, an upward portion	
24	extending through the third covering layer to the top	
25	surface of the third covering layer and a downward	÷
23	portion extending downward into the first covering	
26	layer;	trench with a bottom surface and side surfaces which
20	a trench having a bottom surface and side surfaces and	extend vertically downward from the top surface of the
27	extending vertically downward from the top surface of	N+ layer through the N+ layer, the P layer and through a
۷,	the third covering layer through the third covering layer	portion of the N- layer.
၁၀	and the second covering layer and through a portion of	r

1.

1	the first covering layer, wherein the bottom surface of	
	the trench lies above a lowest part of the downward	
2	portion of the second covering layer;	
	electrically conducting semiconductor material	semiconductor material
3	positioned within the trench;	
	a layer of oxide positioned within the trench between the	oxide between the trench and gate
4	electrically conducting semiconductor material and the	
	bottom and side surfaces of the trench; and	
5	three electrodes electrically coupled to the electrically	three electrodes electrically coupled to the semiconductor
	conducting semiconductor material, to the third covering	material, to the top N+ layer and to the N+ substrate.
6	layer and to the substrate, respectively.	

U.S. Patent No. 5,298,442	Optimization of Discrete High Power MOS Transistors
CLAIM 17	
17. A method for providing a transistor, said method comprising the steps of:	VMOS Structure – see Fig. 4.22
providing a first region of a first conductivity type;	N+ layer substrate and N- layer
providing a second region of a second conductivity type over said first region;	P layer formed by a first diffusion
providing a third region of said first conductivity type	N+ layer formed by a second diffusion
such that said first and third regions are separated by said second region;	
providing a trench through said third and second regions; and	trench with a bottom surface and side surfaces which extend vertically downward from the top surface of the N+ layer through the N+ layer, the P layer and through
	portion of the N- layer.
providing a gate in said trench; wherein a portion P of said second region, which portion	Al gate electrode the P layer has a heavily doped P+ region which extend
is spaced from said trench, extends deeper than said trench so that, if a predetermined voltage is applied to	upward through the N+ layer and which extends downward through the N- layer deeper than the trench.
said gate and to said third region and another predetermined voltage is applied to said first region, an	
avalanche breakdown occurs away from a surface of said trench.	
,	·
CLAIM 18	
18. The method of claim 17 wherein said portion P of said second region is doped heavier than another portion	the P layer has a heavily doped P+ region which is laterally spaced away from the trench
of said second region which portion is adjacent said trench.	
CLAIM 19	1 4 27 1
19. The method of claim 17 wherein said first region	N+ layer substrate under the N- layer
comprises a first portion and a second portion over said first portion, said second portion being lighter doped	
than said first portion.	

1	CLAIM.20	
	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
2	breakdown is a reach-through breakdown across said	across the N- layer.
	second portion.	
3	CLAIM 22	·
	21. The method of claim 17 further comprising the step	oxide between the trench and gate
4	of providing an insulator between said surface of said	
	trench and said gate.	
5	CLAIM 23	
_	23. A method for providing a transistor, said method	VMOS Structure – see Fig. 4.22
6	comprising the steps of:	
_	providing a first region of a first conductivity type;	N+ layer
7	providing a second region of said first conductivity type	N- Layer
	over said first region, said second region being lighter	·
8	doped than said first region;	
9	providing a third region of a second conductivity type	P layer formed by a first diffusion
,	over said second region, said second and third regions	
10	forming a junction;	
	providing a fourth region of said first conductivity type	N+ layer formed by a second diffusion
11	over said third region;	
·	providing a trench through said fourth region and third	trench with a bottom surface and side surfaces which
12	regions; and	extend vertically downward from the top surface of the
		N+ layer through the N+ layer, the P layer and through a portion of the N- layer.
13	providing a gate in said trench;	Al gate electrode
	wherein a deepest part of said third regions is laterally	P layer is laterally spaced from said trench
14	spaced from said trench;	r layer is laterally spaced from said deficit
	wherein a distance between said deepest part of said	the distance between the deepest part of the P layer and
15	third region and said first region is less than a depletion	the N+ layer is less than a depletion width of a planar
. 16	width of a planar junction which has the same doping	junction which has the same doping profile as does the
10	profile as does said junction between said second and	junction between the N- layer and the P layer at the
17	third regions at said deepest part of said third region and	deepest part of the P layer and which is reverse biased
*/	which is reverse biased around its breakdown voltage.	around its breakdown voltage
18	CLAIM 24	
	24. The method of claim 23 wherein said deepest part of	the P layer has a heavily doped P+ region which is
19	said third region is doped heavier than a part of said	laterally spaced away from the trench
	third region which part is adjacent said trench.	
20		

22	U.S. Patent 5,072,266	R U.S. PATENT NO. 5,072,266 JP 62012167
3	CLAIM 1	
4	1. A trench DMOS transistor cell comprising:	Manufacture of Vertical Type Semiconductor Device with Groove Section
.5		See fig. 1(f).
26 27	a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer (11) (p. 5 of the translation: "a n+-type semiconductor substrate 11 with a high concentration of impurities is coated with an n-type semiconductor layer 12 having a lower concentration of impurities.")
.8	a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	N layer (12)
	DOCSSV2:500277.1	RESPONSE CHART PURSUANT TO CIVIL L.R. 16-9(b

1	a second covering layer of semiconductor material of	P layer (16)
	second electrical conductivity type lying on the first	
2	covering layer;	
	a third covering layer of semiconductor material of	N+ layer (17) lying partly over the P layer (16)
3	heavily doped said first electrical conductivity type and	
	having a top surface and partly lying over the second	P layer (16) extends vertically upward through the N+
4	covering layer, wherein a portion of the second covering	layer (17) to the top surface and downward into the N
	layer is heavily doped and this portion extends both	layer (12)
5	vertically upward and downward, an upward portion	
	extending through the third covering layer to the top	
6	surface of the third covering layer and a downward	,
	portion extending downward into the first covering	
7	layer;	
	a trench having a bottom surface and side surfaces and	p. 6 of translation: "The grooved portion 20 has smooth
8	extending vertically downward from the top surface of	outlines and does not have any sharp pointed sections."
	the third covering layer through the third covering layer	
9	and the second covering layer and through a portion of	As seen from fig. 1(f), the grooved portion (20) extends
	the first covering layer, wherein the bottom surface of	upward through the N+ layer (17) and which extends
10	the trench lies above a lowest part of the downward	downward into the P layer (16) and the N layer (12)
	portion of the second covering layer;	
11	electrically conducting semiconductor material	p. 6 of translation: " polycrystalline silicon film 22
	positioned within the trench;	constituting a gate electrode"
12	a layer of oxide positioned within the trench between the	gate oxide film (21)
	electrically conducting semiconductor material and the	
13	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	three electrodes electrically coupled to the semiconductor
14	conducting semiconductor material, to the third covering	material (22), to the top N+ layer (17) and to the N+
	layer and to the substrate, respectively.	substrate (11).
15	,	·
	II	

U.S. Patent No. 5,298,442	JP 62012167
CLAIM 17	
17. A method for providing a transistor, said method comprising the steps of:	Manufacture of Vertical Type Semiconductor Device with Groove Section
	See fig. 1(f).
providing a first region of a first conductivity type;	N+ layer (11) and N layer (12).
providing a second region-of a second conductivity type over said first region;	P layer (16).
providing a third region of said first conductivity type such that said first and third regions are separated by said second region;	N+ layer (17) lying above the P layer (16).
providing a trench through said third and second regions; and	p. 6 of translation: "The grooved portion 20 has smooth outlines and does not have any sharp pointed sections."
	As seen from fig. 1(f), the grooved portion (20) extends upward through the N+ layer (17) and which extends downward into the P layer (16) and the N layer (12)
providing a gate in said trench;	gate oxide film (21)

1 2 3 4	wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said trench so that, if a predetermined voltage is applied to said gate and to said third region and another predetermined voltage is applied to said first region, an avalanche breakdown occurs away from a surface of said trench.	the P layer (16) extends upward through the N+ layer (17) and which extends downward through the N layer (12) deeper than the grooved portion (20)
5		
6	CLAIM 18	
U	18. The method of claim 17 wherein said portion P of	N/A
7	said second region is doped heavier than another portion	
	of said second region which portion is adjacent said	
8	trench.	·
	CLAIM 19	
9	19. The method of claim 17 wherein said first region comprises a first portion and a second portion over said first portion, said second portion being lighter doped	N+ substrate (11) under N layer (12)
ı	than said first portion.	·
1	CLAIM 20	
12	20. The method of claim 19 wherein said avalanche breakdown is a reach-through breakdown across said second portion.	avalanche breakdown is a reach-through breakdown across the N layer (12)
	CLAIM 22	
13	21. The method of claim 17 further comprising the step	gata avida (21)
14	of providing an insulator between said surface of said trench and said gate.	gate oxide (21)
5	CLAIM 23	
_	23. A method for providing a transistor, said method	Manufacture of Vertical Type Semiconductor Device
6	comprising the steps of:	with Groove Section
7		See fig. 1(f).
	providing a first region of a first conductivity type;	N+ layer (11)
8	providing a second region of said first conductivity type over said first region, said second region being lighter doped than said first region;	N layer (12)
0	providing a third region of a second conductivity type over said second region, said second and third regions forming a junction;	P layer (16)
1	providing a fourth region of said first conductivity type over said third region;	N+ layer (17) lying above the P layer (16)
2	providing a trench through said fourth region and third	p. 6 of translation: "The grooved portion 20 has smooth
3	regions; and	outlines and does not have any sharp pointed sections."
4	·	As seen from fig. 1(f), the grooved portion (20) extends upward through the N+ layer (17) and which extends downward into the P layer (16) and the N layer (12)
5	providing a gate in said trench;	gate oxide film (21)
	wherein a deepest part of said third regions is laterally	P layer (16) is laterally spaced from said groove.

28 ORRICK
HERRINGTON
& SUTCLIFFE LLP
SILICON VALLEY

27

-19-

wherein a distance between said deepest part of said third region and said first region is less than a depletion width of a planar junction which has the same doping	the distance between the deepest part of the P layer (16) and the N+ layer (11) is less than a depletion width of a planar junction which has the same doping profile as
profile as does said junction between said second and third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage.	does the junction between the N- layer (12) and the P layer (16) at the deepest part of the P layer (16) and which is reverse biased around its breakdown voltage
CLAIM 24	
24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench.	N/A

- U.S. Patent 5,072,266	U.S. Patent 4,420,379
CLAIM 1	·
1. A trench DMOS transistor cell comprising:	Method for the Formation of Polycrystalline Silicon
	Layers, and its Application in the Manufacture of a Self
	Aligned, Non Planar, MOS Transistor
·	
	See Figs. 3-19.
a substrate of semiconductor material of heavily doped	N+ layer (20)
first electrical conductivity type;	
a first covering layer of semiconductor material of said	N- layer (21)
first electrical conductivity type lying on the substrate;	
a second covering layer of semiconductor material of	P layer (22), (25) and (27)
second electrical conductivity type lying on the first	
covering layer;	
a third covering layer of semiconductor material of	N+ layer (26)
heavily doped said first electrical conductivity type and	
having a top surface and partly lying over the second	the P layer has a heavily doped P+ region (22) which
covering layer, wherein a portion of the second covering	extends upward through the N+ layer (26) and which
layer is heavily doped and this portion extends both	extends downward into the N- layer (21)
vertically upward and downward, an upward portion	C-1 4 les 22 26 57- 45 - 45 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
extending through the third covering layer to the top	Col. 4, lns. 23-26: "In the stage shown as FIG. 5, the device undergoes an oxidizing treatment which
surface of the third covering layer and a downward	simultaneously deepens the P+ type guard ring and
portion extending downward into the first covering	protects the peripheral part of the junction under a thick
layer;	oxide layer 23 (1 micron), called the field oxide."
a trench having a bottom surface and side surfaces and	trench (30) with a bottom surface and side surfaces whi
extending vertically downward from the top surface of	extend vertically downward from the top surface of the
the third covering layer through the third covering layer	N+ layer (26) through the N+ layer (26), the P layer (23)
and the second covering layer and through a portion of	and through a portion of the N- (21) layer, wherein the
the first covering layer, wherein the bottom surface of	bottom surface of the trench (30) lies above a lowest pa
the trench lies above a lowest part of the downward	of the downward portion of the P layer (22)
portion of the second covering layer;	
electrically conducting semiconductor material	semiconductor material (32)
positioned within the trench;	
a layer of oxide positioned within the trench between the	oxide (31)
electrically conducting semiconductor material and the	
bottom and side surfaces of the trench; and	
three electrodes electrically coupled to the electrically	gate semiconductor material (32), source electrode (33)
conducting semiconductor material, to the third covering	and drain at N+ substrate (20)
layer and to the substrate, respectively.	

2

3

4

5

U.S. Patent No. 5,298,442	U.S. Patent No. 4,420,379
CLAIM 17	, , , , , , , , , , , , , , , , , , , ,
17. A method for providing a transistor, said method	Method for the Formation of Polycrystalline Silicon
comprising the steps of:	Layers, and its Application in the Manufacture of a Se
	Aligned, Non Planar, MOS Transistor
	See Figs. 3-19.
providing a first region of a first conductivity type;	N+ layer (20) and N- layer (21)
providing a second region of a second conductivity type over said first region;	P layer (22), (25) and (27)
providing a third region of said first conductivity type	N+ layer (26)
such that said first and third regions are separated by said second region;	
providing a trench through said third and second	trench (30) through the N+ layer (26), the P layer (25)
regions; and	and through a portion of the N- (21) layer
providing a gate in said trench;	gate semiconductor material (32)
wherein a portion P of said second region, which portion	a portion of the P layer (22), which portion is spaced
is spaced from said trench, extends deeper than said	from the trench (30), extends deeper than the trench (3
trench so that, if a predetermined voltage is applied to	a morrion of the D.L. (22)
said gate and to said third region and another	a portion of the P Layer (22) acts as a guard rail to spre
predetermined voltage is applied to said first region, an avalanche breakdown occurs away from a surface of	the electric field at the periphery and away from the
said trench.	· ·
CLAIM 18	-
18. The method of claim 17 wherein said portion P of	P layer has a heavily doped P+ portion (22) which is
said second region is doped heavier than another portion	laterally spaced from the trench
of said second region which portion is adjacent said	
trench.	
CLAIM 19	
19. The method of claim 17 wherein said first region	N+ layer (20) under N- layer (21)
comprises a first portion and a second portion over said	· · · · · · · · · · · · · · · · · · ·
first portion, said second portion being lighter doped	
than said first portion.	
CLAIM 20	
20. The method of claim 19 wherein said avalanche breakdown is a reach-through breakdown across said	avalanche breakdown is a reach-through breakdown
second portion.	across the N- layer (21)
CLAIM 22	
21. The method of claim 17 further comprising the step	oxide (31)
of providing an insulator between said surface of said	Oxide (31)
rench and said gate.	
CLAIM 23	
23. A method for providing a transistor, said method	Method for the Formation of Polycrystalline Silicon
comprising the steps of:	Layers, and its Application in the Manufacture of a Self
	Aligned, Non Planar, MOS Transistor
	See Figs. 3-19.

1	providing a second region of said first conductivity type over said first region, said second region being lighter	N- layer (21)
2	doped than said first region;	P1 (00) (05) 1 (05)
3	providing a third region of a second conductivity type over said second region, said second and third regions forming a junction;	P layer (22), (25) and (27)
4	providing a fourth region of said first conductivity type over said third region;	N+ layer (26)
5	providing a trench through said fourth region and third regions; and	trench (30) through the N+ layer (26) and the P layer (25) and through a portion of the N- (21) layer
6	providing a gate in said trench;	gate semiconductor material (32)
7	wherein a deepest part of said third regions is laterally spaced from said trench;	the P layer region (22) is laterally spaced from trench (30)
8	wherein a distance between said deepest part of said third region and said first region is less than a depletion	the distance between the deepest part of the P layer (22) and the N+ layer (20) is less than a depletion width of a
9	width of a planar junction which has the same doping profile as does said junction between said second and	planar junction which has the same doping profile as does the junction between the N- layer (21) and the P
10	third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage.	layer (22) at the deepest part of the P layer (22) and which is reverse biased around its breakdown voltage
11	CLAIM 24	
11	24. The method of claim 23 wherein said deepest part of	the deepest part of the third region is P+ and is doped
12	said third region is doped heavier than a part of said third region which part is adjacent said trench.	heavier than the part of the third region P (25) adjacent the trench

U.S. Patent 5,072,266	JP 63-124762
CLAIM 1	
1. A trench DMOS transistor cell comprising:	Vertical MOSFET
	See fig. 1
a substrate of semiconductor material of heavily doped	N+ layer (1)
first electrical conductivity type;	
a first covering layer of semiconductor material of said	N layer (2)
first electrical conductivity type lying on the substrate;	
a second covering layer of semiconductor material of	P layer (3), (11) and (12)
second electrical conductivity type lying on the first	
covering layer;	
a third covering layer of semiconductor material of	N+ layer (4) lying partly over the P layer (3)
heavily doped said first electrical conductivity type and	A - and an a Caller D lawer (11) and (12) in heavile down t
having a top surface and partly lying over the second	A portion of the P layer (11) and (12) is heavily doped P+ and extends upward through the N+ layer (4) to the
covering layer, wherein a portion of the second covering	top and downward into the N layer (2).
layer is heavily doped and this portion extends both vertically upward and downward, an upward portion	top and downward into the 14 layer (2).
extending through the third covering layer to the top	
surface of the third covering layer and a downward	
portion extending downward into the first covering	
layer;	
a trench having a bottom surface and side surfaces and	trench (8) having a bottom surface and side surfaces an
extending vertically downward from the top surface of	extending vertically downward from the top surface of
the third covering layer through the third covering layer	the N+ layer (4) through the N+ layer (4) and the P layer

1	and the second covering layer and through a portion of the first covering layer, wherein the bottom surface of	(3) and through a portion of the N layer (2), wherein the bottom surface of the trench (8) lies above a lowest part
2	the trench lies above a lowest part of the downward	of the P+ layer (12)
	portion of the second covering layer;	
3	electrically conducting semiconductor material	trench (8) possess a highly doped poly-silicon gate
	positioned within the trench;	electrode (9)
4	a layer of oxide positioned within the trench between the	gate oxide film (7)
	electrically conducting semiconductor material and the	
5	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	gate electrode (9), source electrode (14) and drain
6	conducting semiconductor material, to the third covering	electrode (15)
	layer and to the substrate, respectively.	

INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,298,442		
U.S. Patent No. 5,298,442	JP 63-124762	
CLAIM 17		
17. A method for providing a transistor, said method	Vertical MOSFET	
comprising the steps of :		
Comprising the steps of the	See fig. 1	
providing a first region of a first conductivity type;	N+ layer (1) and N layer (2)	
providing a second region of a second conductivity type	P layer (3), (11) and (12)	
over said first region;		
providing a third region of said first conductivity type	N+ layer (4) such that P layer (3) is between the N layer	
such that said first and third regions are separated by	(2) and the N+ layer (4)	
said second region;		
providing a trench through said third and second	trench (8) extending through the N+ layer (4) and the F	
regions; and	layer (3)	
providing a gate in said trench;	trench (8) possess a highly doped poly-silicon gate	
	portion P+ (12) is spaced from trench (8) and extends	
wherein a portion P of said second region, which portion	deeper than said trench (8) so that, if a predetermined	
is spaced from said trench, extends deeper than said	voltage is applied to the gate (9) and to N+ layer (4) an	
trench so that, if a predetermined voltage is applied to	another predetermined voltage is applied to the N+ layer	
said gate and to said third region and another predetermined voltage is applied to said first region, an	(1), an avalanche breakdown occurs away from a surfa	
avalanche breakdown occurs away from a surface of	of the trench (8).	
said trench.	·	
Salu uchen.		
CLAIM 18		
18. The method of claim 17 wherein said portion P of	A portion of the P layer (11) and (12) is heavily doped	
said second region is doped heavier than another portion	P+	
of said second region which portion is adjacent said		
trench.	P layer (3) is adjacent the trench (8)	
CLAIM 19		
19. The method of claim 17 wherein said first region	N+ layer (1) under N layer (2)	
comprises a first portion and a second portion over said		
first portion, said second portion being lighter doped	•	
than said first portion.		

SILICON VALLEY

1 [CLAIM 20	
	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
2	breakdown is a reach-through breakdown across said	across the N layer (2)
	second portion.	
3	CLAIM 22	
	21. The method of claim 17 further comprising the step	gate oxide film (7)
4	of providing an insulator between said surface of said	,
	trench and said gate.	
5	CLAIM 23	
Ì	23. A method for providing a transistor, said method	Vertical MOSFET
6	comprising the steps of:	
	•	See fig. 1
7	providing a first region of a first conductivity type;	N+ layer (1)
	providing a second region of said first conductivity type	N layer (2)
8	over said first region, said second region being lighter	
	doped than said first region;	
9	providing a third region of a second conductivity type	P layer (3), (11) and (12) over N layer (2)
	over said second region, said second and third regions	
10	forming a junction;	
11	providing a fourth region of said first conductivity type	N+ layer (4) lying above the P layer (3).
11	over said third region;	
12	providing a trench through said fourth region and third	trench (8) through N+ layer (4) and P layer (3)
12	regions; and	
13	providing a gate in said trench;	gate oxide film (9)
15	wherein a deepest part of said third regions is laterally	portions of P layer (11) and (12) are laterally spaced from
14	spaced from said trench;	trench (8)
	wherein a distance between said deepest part of said	the distance between the deepest part of the P layer (12)
15	third region and said first region is less than a depletion	and the N+ layer (1) is less than a depletion width of a
	width of a planar junction which has the same doping	planar junction which has the same doping profile as
16	profile as does said junction between said second and	does the junction between the N- layer (2) and the P layer (12) at the deepest part of the P layer (12) and which is
	third regions at said deepest part of said third region and	reverse biased around its breakdown voltage
17	which is reverse biased around its breakdown voltage.	reverse diased around its dieakdown voltage
	CLAIM 24	to the standard major in D (12) and in
18	24. The method of claim 23 wherein said deepest part of	the deepest part of the third region is P+ (12) and is doped heavier than the part of the third region P (3)
	said third region is doped heavier than a part of said	
19	third region which part is adjacent said trench.	adjacent the trench (8)
	П	

21 **INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,072,266** JP 63-224260 U.S. Patent 5,072,266 22 CLAIM 1 23 1. A trench DMOS transistor cell comprising: VMOS FET 24 See fig. 1 P layer (11) (opposite conductivity type with respect to a substrate of semiconductor material of heavily doped 25 drain). first electrical conductivity type; N- layer (12) a first covering layer of semiconductor material of said 26 first electrical conductivity type lying on the substrate; P layer (13) (20) lying on N layer (12) a second covering layer of semiconductor material of 27 second electrical conductivity type lying on the first

DOCSSV2:500277.1

covering layer;

20

28

ORRICK

HERRINGTON & SUTCLIFFE LLP

SILICON VALLEY

- 1		
1	a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and	N+ layer (14) lying partly over the P layer (13), wherein a portion of the P layer (20) is heavily doped P+ and
2	having a top surface and partly lying over the second covering layer, wherein a portion of the second covering	extends downward into the N- Layer (12)
3	layer is heavily doped and this portion extends both vertically upward and downward, an upward portion	
4	extending through the third covering layer to the top	
5	surface of the third covering layer and a downward portion extending downward into the first covering	
	layer;	
6	a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of	trench (15) having a bottom surface and side surfaces and extends vertically downward from the top surface of N+
7	the third covering layer through the third covering layer and the second covering layer and through a portion of	layer (14) through the N+ layer (14) and the P layer (13) and through a portion of the N- layer (12), wherein the
8	the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward	bottom surface of the trench (15) lies above the lowest part of the downward portion of the P layer (20) which is heavily doped
9	portion of the second covering layer;	
	electrically conducting semiconductor material	poly gate material (18) in trench (15)
10	positioned within the trench;	
	a layer of oxide positioned within the trench between the	gate oxide film (17)
11	electrically conducting semiconductor material and the	
	bottom and side surfaces of the trench; and	
12	three electrodes electrically coupled to the electrically	gate electrode (18), source electrode (9) and drain
	conducting semiconductor material, to the third covering	electrode (24)
13	layer and to the substrate, respectively.	

i	INVALIDITY CLAIM CHART FOR	
16	U.S. Patent No. 5,298,442	JP 63-224260
_	CLAIM 17	
7 1	7. A method for providing a transistor, said method	VMOS FET
18 C	comprising the steps of:	
	·	See fig. 1
ع وا	providing a first region of a first conductivity type;	N- layer (12).
	providing a second region of a second conductivity type	P layer (16) and (20)
	over said first region;	1 21 (10)
l p	providing a third region of said first conductivity type	N+ layer (14) lying above the P layer (16)
	such that said first and third regions are separated by	
s	said second region;	1 (17) and Player
22 F	providing a trench through said third and second	trench (15) extends through N+ layer (17) and P layer
1	regions; and	(16)
23 L	providing a gate in said trench;	poly gate (18)
	wherein a portion P of said second region, which portion	a portion of the P layer (20) is laterally spaced from the
24 i	is spaced from said trench, extends deeper than said	trench (15) and extends deeper than the trench (15)
t	trench so that, if a predetermined voltage is applied to	·
25	said gate and to said third region and another	
1	predetermined voltage is applied to said first region, an	
- V 11	avalanche breakdown occurs away from a surface of	
] :	said trench.	×
27		

ORRICK

HERRINGTON & SUTCLIFFE LLP

SILICON VALLEY

9		
1	CLAIM 18	
1	18. The method of claim 17 wherein said portion P of	a portion P of the P layer is P+ (20) and is doped heavier
2	said second region is doped heavier than another portion	than the portion (26) of the P layer adjacent the trench
	of said second region which portion is adjacent said	(15)
3	trench.	
ſ	CLAIM 19	
4	19. The method of claim 17 wherein said first region	N/A
	comprises a first portion and a second portion over said	
5	first portion, said second portion being lighter doped	
	than said first portion.	
6	CLAIM 20	
	20. The method of claim 19 wherein said avalanche	N/A
7	breakdown is a reach-through breakdown across said	
	second portion.	
8 [CLAIM 22	
	21. The method of claim 17 further comprising the step	gate oxide film (17)
9	of providing an insulator between said surface of said	
10	trench and said gate.	
10	CLAIM 23	10.000
11	23. A method for providing a transistor, said method	VMOS FET
	comprising the steps of:	C 5- 1
12		See fig. 1. P substrate (11)
ŀ	providing a first region of a first conductivity type;	N layer (12)
13	providing a second region of said first conductivity type	N layer (12)
	over said first region, said second region being lighter doped than said first region;	
14	providing a third region of a second conductivity type	P layer (13) and (20)
_	over said second region, said second and third regions	- 1.5/01 (1.5/) === (==)
15	forming a junction;	
.	providing a fourth region of said first conductivity type	N+ layer (14) lying above P layer (13)
16	over said third region;	
17	providing a trench through said fourth region and third	trench (15) extending through N+ layer (13) and P layer
1/	regions; and	(13)
18	providing a gate in said trench;	poly gate (18)
-	wherein a deepest part of said third regions is laterally	the deepest part of the P layer (20) is laterally spaced
19	spaced from said trench;	from trench (15)
	wherein a distance between said deepest part of said	the distance between the deepest part of the P layer (20)
20	third region and said first region is less than a depletion	and the P layer (11) is less than a depletion width of a
	width of a planar junction which has the same doping	planar junction which has the same doping profile as
21	profile as does said junction between said second and	does the junction between the N- layer (12) and the P
	third regions at said deepest part of said third region and	layer (20) at the deepest part of the P layer (20) and
22	which is reverse biased around its breakdown voltage.	which is reverse biased around its breakdown voltage
	CLAIM 24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
23	24. The method of claim 23 wherein said deepest part of	the deepest part of the third region is P+ (20) which is doped heavier than the part of the third region adjacent
24	said third region is doped heavier than a part of said	the trench (15)
24	third region which part is adjacent said trench.	The deficit (13)
	K	

28 Orrick Herrington & Sutcliffe LLP

SILICON VALLEY

25

26

27

DOCSSV2:500277.1

1	INVALIDITY CLAIM CHART FO	R U.S. PATENT NO. 5,072,266
2	U.S. Patent 5,072,266	JP 59-181668
	CLAIM 1	
3	1. A trench DMOS transistor cell comprising:	VMOS FET
4		See fig. 3
5	a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer (11) and (12)
6	a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	N layer (13)
7	a second covering layer of semiconductor material of second electrical conductivity type lying on the first covering layer;	P layer (14) and (16) lying on N layer (13)
8	a third covering layer of semiconductor material of	N+ layer (15) lying partly over the P layer (14), wherein
9	heavily doped said first electrical conductivity type and having a top surface and partly lying over the second	a portion of the P layer is a heavily doped P+ (16) and extends vertically upward through the N+ layer (15) and
10	covering layer, wherein a portion of the second covering layer is heavily doped and this portion extends both	vertically downward into the N layer (13)
11	vertically upward and downward, an upward portion extending through the third covering layer to the top	·
12	surface of the third covering layer and a downward portion extending downward into the first covering	
13	layer; a trench having a bottom surface and side surfaces and	trench (21) having a bottom surface and side surface and
14	extending vertically downward from the top surface of the third covering layer through the third covering layer	extending vertically downward through the N+ layer (15), the P layer (14) and through a portion of the N layer
15	and the second covering layer and through a portion of the first covering layer, wherein the bottom surface of	(13), wherein the bottom surface of the trench (21) lies above the lowest part of the P layer (16).
16	the trench lies above a lowest part of the downward portion of the second covering layer;	
17	electrically conducting semiconductor material positioned within the trench;	poly gate in trench (19)
18	a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the	gate oxide layer (17)
19	bottom and side surfaces of the trench; and three electrically coupled to the electrically	gate electrode (19), source electrode (20) and drain
20	conducting semiconductor material, to the third covering layer and to the substrate, respectively.	electrode (not shown)

23

24

25

26

27

21

U.S. Patent No. 5,298,442	JP 59-181668	
CLAIM 17		
17. A method for providing a transistor, said method	VMOS FET	
comprising the steps of:		
	See fig. 3	
providing a first region of a first conductivity type;	N+ layer (11) and (12), and N layer (13)	
providing a second region of a second conductivity type	P layer (14) and (16) lying on N layer (13)	
over said first region;		

28 Orrick Herrington & Sutcliffe LLP

SILICON VALLEY

DOCSSV2:500277.1

1	providing a third region of said first conductivity type	N+ layer (15) lying wherein N layer (13) and N+ layer
	such that said first and third regions are separated by	(15) are separated by P layer (14)
2	said second region;	
	providing a trench through said third and second	trench (21) extending vertically downward through the
3	regions; and	N+ layer (15) and P layer (14)
	providing a gate in said trench;	poly gate in trench (19)
4	wherein a portion P of said second region, which portion	a portion of the P layer (16), which is spaced from the
	is spaced from said trench, extends deeper than said	trench, extends deeper than the trench (21)
5	trench so that, if a predetermined voltage is applied to	
	said gate and to said third region and another	
6	predetermined voltage is applied to said first region, an	
7	avalanche breakdown occurs away from a surface of	
	said trench.	
8		
	CLAIM 18	
9	18. The method of claim 17 wherein said portion P of	a portion of the P layer (14) is a heavily doped P+ (16)
	said second region is doped heavier than another portion	which is laterally spaced from the trench (21)
10	of said second region which portion is adjacent said	
	trench.	
11	CLAIM 19	
12	19. The method of claim 17 wherein said first region	N+ layer (11) and (12) under N layer (13)
12	comprises a first portion and a second portion over said	
13	first portion, said second portion being lighter doped	
13	than said first portion.	
14	CLAIM 20	
17	20. The method of claim 19 wherein said avalanche	avalanched breakdown is a reach-through breakdown
15	breakdown is a reach-through breakdown across said	across the N layer (13)
••	second portion.	
16	CLAIM 22	
	21. The method of claim 17 further comprising the step	gate oxide layer (17)
17	of providing an insulator between said surface of said	
	trench and said gate.	
18	CLAIM 23	
	23. A method for providing a transistor, said method	VMOS FET
19	comprising the steps of:	
		See fig. 3
20	providing a first region of a first conductivity type;	N+ layer (11) and (12)
	providing a second region of said first conductivity type	N layer (13)
21	over said first region, said second region being lighter	
	doped than said first region;	
22	providing a third region of a second conductivity type	P layer (14) and (16) lying on N layer (13)
	over said second region, said second and third regions	·
23	forming a junction;	
	providing a fourth region of said first conductivity type	N+ layer (15) lying over the P layer (14)
24	over said third region;	·
25	providing a trench through said fourth region and third	trench (21) extending vertically downward through the
25	regions; and	N+ layer (15) and P layer (14)
26	providing a gate in said trench;	gate oxide layer (17)
26	wherein a deepest part of said third regions is laterally	a portion of the P layer (16) is laterally spaced from the
27	spaced from said trench;	trench (21)
21		

SILICON VALLEY

wherein a distance between said deepest part of said third region and said first region is less than a depletion width of a planar junction which has the same doping profile as does said junction between said second and third regions at said deepest part of said third region and	the distance between the deepest part of the P layer (16) and the N+ layer (12) is less than a depletion width of a planar junction which has the same doping profile as does the junction between the N layer (13) and the P layer (16) at the deepest part of the P layer (16) and
which is reverse biased around its breakdown voltage.	which is reverse biased around its breakdown voltage
CLAIM 24	
24. The method of claim 23 wherein said deepest part of	the deepest part of the third region is P+ region (16)
said third region is doped heavier than a part of said	which is doped heavier than P region (14) adjacent the
third region which part is adjacent said trench.	trench (21)

		:
8	INVALIDITY CLAIM CHART FO	R U.S. PATENT NO. 5.072.266
9	U.S. Patent 5,072,266	JP 54-57871
	CLAIM 1	
10	1. A trench DMOS transistor cell comprising:	VMOS FET
11	· .	See fig. 2
12	a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer (1)
13	a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	N layer (2)
14	a second covering layer of semiconductor material of second electrical conductivity type lying on the first	P layer (3) and (10)
15	a third covering layer of semiconductor material of	N+ layer (4) lying partly over the P layer (3), wherein a
16	heavily doped said first electrical conductivity type and having a top surface and partly lying over the second	portion of the P layer is a heavily doped P+ (10) and extends vertically upward through the N+ layer (4) and
17	covering layer, wherein a portion of the second covering layer is heavily doped and this portion extends both	vertically downward into the N layer (2)
18	vertically upward and downward, an upward portion extending through the third covering layer to the top	
19	surface of the third covering layer and a downward portion extending downward into the first covering	
20	layer; a trench having a bottom surface and side surfaces and	trench (11) having a bottom surface and side surfaces and
21	extending vertically downward from the top surface of the third covering layer through the third covering layer	extending vertically downward through the N+ layer (4), the P layer (3) and through a portion of the N layer (2),
22	and the second covering layer and through a portion of the first covering layer, wherein the bottom surface of	wherein the bottom surface of the trench (11) lies above the lowest part of the P layer (10)
23	the trench lies above a lowest part of the downward portion of the second covering layer;	
24	electrically conducting semiconductor material positioned within the trench;	Al gate (6) in trench (11)
25	a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the	gate oxide layer (5)
26	bottom and side surfaces of the trench; and	
27	three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering	gate electrode (6), source electrode (7) and drain electrode (9)

28
ORRICK
HERRINGTON
& SUTCLIFFE LLP
SILICON VALLEY

1

2

3

4

5

6

7

DOCSSV2:500277.1

layer and to the substrate, respectively.

U.S. Patent No. 5,298,442	JP 54-57871
CLAIM 17	
17. A method for providing a transistor, said method	VMOS FET
comprising the steps of:	
	See fig. 2
providing a first region of a first conductivity type;	N+ layer (1) and N layer (2).
providing a second region of a second conductivity type	P layer (3) and (10).
over said first region;	N. 1 (4) 1 1 1 1 1 1 1 (2)
providing a third region of said first conductivity type	N+ layer (4) lying above the P layer (3).
such that said first and third regions are separated by	
said second region;	the trench (11) extends through the N+ layer (4) and th
providing a trench through said third and second	P layer (3)
regions; and	Al gate (6) in trench (11)
providing a gate in said trench; wherein a portion P of said second region, which portion	the P layer (10) extends upward through the N+ layer
is spaced from said trench, extends deeper than said	(17) and which extends downward through the N- layer
trench so that, if a predetermined voltage is applied to	(12)
said gate and to said third region and another	
predetermined voltage is applied to said first region, an	
avalanche breakdown occurs away from a surface of	
said trench.	
CLAIM 18	
18. The method of claim 17 wherein said portion P of	a portion P of the second region (10) is doped heavier
said second region is doped heavier than another portion	than another portion (3) of the second region which is
of said second region which portion is adjacent said	adjacent the trench (11)
trench. CLAIM 19	
19. The method of claim 17 wherein said first region	N+ layer (1) under N layer (2)
comprises a first portion and a second portion over said	111 16/01 (1) 011001 11 16/01 (2)
first portion, said second portion being lighter doped	
than said first portion.	
CLAIM 20	
20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
breakdown is a reach-through breakdown across said	across N layer (2)
second portion.	
CLAIM 22	
21. The method of claim 17 further comprising the step	gate oxide layer (5)
of providing an insulator between said surface of said	
trench and said gate.	
CLAIM 23	La con TETT
23. A method for providing a transistor, said method	VMOS FET
comprising the steps of:	San fig. 2
	See fig. 2
providing a first region of a first conductivity type;	N+ layer (1)
providing a second region of said first conductivity type	N layer (2)
over said first region, said second region being lighter	
doped than said first region;	P layer (3) and (10)
providing a third region of a second conductivity type	1 layer (3) and (10)
over said second region, said second and third regions	
forming a junction;	

DOCSSV2:500277.1

1	providing a fourth region of said first conductivity type over said third region;	N+ layer (4) lying above the P layer (3)
2	providing a trench through said fourth region and third regions; and	trench (11) through N+layer (4) and P layer (3)
3	providing a gate in said trench;	gate oxide film (5)
4	wherein a deepest part of said third regions is laterally spaced from said trench;	P layer (10) is laterally spaced from trench (11)
5	wherein a distance between said deepest part of said third region and said first region is less than a depletion	the distance between the deepest part of the P layer (10) and the N+ layer (1) is less than a depletion width of a
6	width of a planar junction which has the same doping profile as does said junction between said second and third regions at said deepest part of said third region and	planar junction which has the same doping profile as does the junction between the N layer (2) and the P layer
7	which is reverse biased around its breakdown voltage.	(10) at the deepest part of the P layer (10) and which is reverse biased around its breakdown voltage
ا ہ	CLAIM 24	
8	24. The method of claim 23 wherein said deepest part of	the deepest part of the third region (10) is doped heavier
	said third region is doped heavier than a part of said	than part (3) which is adjacent the trench (11)
9	third region which part is adjacent said trench.	

13	U.S. Patent 5,072,266	JP 57-72365
13	CLAIM 1	
14	1. A trench DMOS transistor cell comprising:	VMOS FET
15		See fig. 1
13	a substrate of semiconductor material of heavily doped	P+ substrate (1)
16	first electrical conductivity type;	
	a first covering layer of semiconductor material of said	N layer (2)
17	first electrical conductivity type lying on the substrate;	
	a second covering layer of semiconductor material of	P layer (3) and (4)
18	second electrical conductivity type lying on the first	
	covering layer;	
19	a third covering layer of semiconductor material of	N+ layer (5) lying partly over the P layer (4), wherein the
	heavily doped said first electrical conductivity type and	P layer is heavily doped P+ and extends both vertically
20	having a top surface and partly lying over the second	upward through the N+ layer (5) and downward into the
	covering layer, wherein a portion of the second covering	N layer (2)
21	layer is heavily doped and this portion extends both	
	vertically upward and downward, an upward portion	
22	extending through the third covering layer to the top	, i
	surface of the third covering layer and a downward	
23	portion extending downward into the first covering	
. 4	layer; a trench having a bottom surface and side surfaces and	trench (6) having a bottom surface and side surfaces and
24	extending vertically downward from the top surface of	extending vertically through the N+ layer (5) and the P
25	the third covering layer through the third covering layer	layer (4), and through a portion of the N layer (2), where
23	and the second covering layer and through a portion of	the bottom surface of the trench (6) lies above the lowest
26	the first covering layer, wherein the bottom surface of	part of the P layer (3)
.0	the trench lies above a lowest part of the downward	ļ ·
27	portion of the second covering layer;	
- /	electrically conducting semiconductor material	metal layer (8)
28	positioned within the trench;	
	DOGGGVA CARATT I	DECRONCE CHART PURCHANT TO CIVIL I D. 14 04.

1	a layer of oxide positioned within the trench between the	gate oxide (7)
	electrically conducting semiconductor material and the	
2	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	gate electrode (8), source electrode (9) and drain (D)
3	conducting semiconductor material, to the third covering	
	layer and to the substrate, respectively.	

U.S. Patent No. 5,298,442	JP 57-72365
CLAIM 17	
17. A method for providing a transistor, said method	VMOS FET
comprising the steps of:	i '
	See fig. 1
providing a first region of a first conductivity type;	N layer (2)
providing a second region of a second conductivity type	P layer (4) lying over said N layer (2)
over said first region;	
providing a third region of said first conductivity type	N+ layer (5) lying above the P layer (4)
such that said first and third regions are separated by	
said second region;	
providing a trench through said third and second	trench (6) through the N+ layer (5) and the P layer (4)
regions; and	(0)
providing a gate in said trench;	metal gate layer (8)
wherein a portion P of said second region, which portion	a portion of the P layer (3) is spaced from the trench (6) and extends deeper than trench (6)
is spaced from said trench, extends deeper than said	and extends deeper than trench (6)
trench so that, if a predetermined voltage is applied to said gate and to said third region and another	
predetermined voltage is applied to said first region, an	
avalanche breakdown occurs away from a surface of	
said trench.	
CLAIM 18	
18. The method of claim 17 wherein said portion P of	a portion of the second region is doped P+ (3) which is
said second region is doped heavier than another portion	heavier doped than another portion of the second region
of said second region which portion is adjacent said	that is adjacent the trench (6)
trench.	
CLAIM 19	
19. The method of claim 17 wherein said first region	P+ layer (1) under N layer (2)
comprises a first portion and a second portion over said	
first portion, said second portion being lighter doped	
than said first portion.	
CLAIM 20	
20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
breakdown is a reach-through breakdown across said	across the N layer (2)
second portion.	
CLAIM 22	
21. The method of claim 17 further comprising the step	gate oxide (7)
of providing an insulator between said surface of said	
trench and said gate.	

CLAIM 23	
23. A method for providing a transistor, said method	VMOS FET
comprising the steps of:	
	See fig. 1
providing a first region of a first conductivity type;	
providing a second region of said first conductivity type	N layer (2)
over said first region, said second region being lighter	
doped than said first region;	
providing a third region of a second conductivity type	P layer (4)
	N+ layer (5) lying above the P layer (4)
	trench (6) through the N+ layer (5) and the P layer (4).
	metal gate layer (8)
	the deepest part of the P layer (3) is laterally spaced from
	trench (6)
	the distance between the deepest part of the P layer (3)
	and the P+ layer (1) is less than a depletion width of a
	planar junction which has the same doping profile as
	does the junction between the N layer (2) and the P layer
third regions at said deepest part of said third region and	(3) at the deepest part of the P layer (3) and which is reverse biased around its breakdown voltage
	reverse blased around its bleakdown voltage
	the deepest part of the third region is doped P+ (3) which
	is heavier doped than the part of the third region (4)
	adjacent the trench (6)
	adjacent me nemen (o)
	23. A method for providing a transistor, said method comprising the steps of: providing a first region of a first conductivity type; providing a second region of said first conductivity type over said first region, said second region being lighter doped than said first region;

1	6	
1	7	

U.S. Patent 5,072,266	JP 59-193064
CLAIM 1	
1. A trench DMOS transistor cell comprising:	VMOS FET
	See fig. 2
a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer
a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	N layer (3)
a second covering layer of semiconductor material of second electrical conductivity type lying on the first covering layer;	P layer (4)
a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and having a top surface and partly lying over the second covering layer, wherein a portion of the second covering layer is heavily doped and this portion extends both vertically upward and downward, an upward portion	N+ layer (5) lying partly over the P layer (4), a portion of the P layer (4) extending vertically upward through the N+ layer (5) and downward into the N layer (3)

1	surface of the third covering layer and a downward portion extending downward into the first covering	·
2	layer;	
3	a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of the third covering layer through the third covering layer	trench (1) having a bottom surface and side surfaces and extending vertically downward through the N+ layer (5), the P layer (4) and a portion of the N layer (3), where the
4	and the second covering layer and through a portion of	bottom surface of the trench (10 lies above the lowest
	the first covering layer, wherein the bottom surface of	portion of the P layer (4)
5	the trench lies above a lowest part of the downward	
	portion of the second covering layer;	
6	electrically conducting semiconductor material positioned within the trench;	gate semiconductor material (8) in trench (1)
7	a layer of oxide positioned within the trench between the	gate oxide (2)
	electrically conducting semiconductor material and the	
8	bottom and side surfaces of the trench; and	
9	three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering	gate (8), source (7) and drain (6)
	layer and to the substrate, respectively.	
10		· · · · · · · · · · · · · · · · · · ·

U.S. Patent No. 5,298,442	JP 59-193064
CLAIM 17	
17. A method for providing a transistor, said method	VMOS FET
comprising the steps of:	
	See fig. 2
providing a first region of a first conductivity type;	N+ layer and N layer (3)
providing a second region of a second conductivity type	P layer (4) over N layer (3)
over said first region;	
providing a third region of said first conductivity type	N+ layer (5) lying above the P layer (4).
such that said first and third regions are separated by	
said second region;	
providing a trench through said third and second regions; and	trench (1) through N+ layer (5) and P layer (4)
providing a gate in said trench;	coto comico dustas metalica (0)
wherein a portion P of said second region, which portion	gate semiconductor material (8)
is spaced from said trench, extends deeper than said	a portion of the P layer (4) is spaced from trench (1) an extends deeper than trench (1)
trench so that, if a predetermined voltage is applied to	extends deeper than bench (1)
said gate and to said third region and another	
predetermined voltage is applied to said first region, an	
avalanche breakdown occurs away from a surface of	
said trench.	
CLAIM 18	
18. The method of claim 17 wherein said portion P of	obvious to have the second region with a heavier doped
said second region is doped heavier than another portion	P+ portion
of said second region which portion is adjacent said	·
trench.	

1	CLAIM 19	
	19. The method of claim 17 wherein said first region	N+ layer under N- layer (3)
2	comprises a first portion and a second portion over said	, (-)
	first portion, said second portion being lighter doped	
3	than said first portion.	
	CLAIM 20	
4	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
	breakdown is a reach-through breakdown across said	across the N- layer (3)
5	second portion.	
,	CLAIM 22	
6	21. The method of claim 17 further comprising the step	gate oxide (2)
7	of providing an insulator between said surface of said	
7	trench and said gate.	
8	CLAIM 23	
0	23. A method for providing a transistor, said method	VMOS FET
9	comprising the steps of:	·
		See fig. 2
10	providing a first region of a first conductivity type;	N+ layer
	providing a second region of said first conductivity type	N layer (3) lying above the N+ layer
11	over said first region, said second region being lighter	
•	doped than said first region;	
12	providing a third region of a second conductivity type	P layer (4)
	over said second region, said second and third regions	
13	forming a junction;	
	providing a fourth region of said first conductivity type	N+ layer (5) lying above the P layer (4)
14	over said third region;	
	providing a trench through said fourth region and third	trench (1) through the N+ layer (5) and P layer (4)
15	regions; and	11 (2)
	providing a gate in said trench;	gate oxide (2)
16	wherein a deepest part of said third regions is laterally	the deepest part of P layer (4) is laterally spaced from
	spaced from said trench;	trench (1)
17	wherein a distance between said deepest part of said	the distance between the deepest part of the P layer (4)
10	third region and said first region is less than a depletion width of a planar junction which has the same doping	and the N+ layer is less than a depletion width of a planar
18	profile as does said junction between said second and	junction which has the same doping profile as does the
19	third regions at said deepest part of said third region and	junction between the N- layer (3) and the P layer (4) at
19	which is reverse biased around its breakdown voltage.	the deepest part of the P layer (4) and which is reverse
20	. CLAIM 24	biased around its breakdown voltage
20	24. The method of claim 23 wherein said deepest part of	abyrious to have the second series with the
21	said third region is doped heavier than a part of said	obvious to have the second region with a heavier doped
~ 1	third region which part is adjacent said trench.	P+ portion laterally spaced from the trench (1)
22		

2-

25

26

27

U.S. Patent 5,072,266	JP 60-28271
CLAIM 1	
. A trench DMOS transistor cell comprising:	VMOSFET
	See fig. 3(a-h)
a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer (1)

ORRICK
HERRINGTON
& SUTCLIFFE LLP
SILICON VALLEY

. 1	a first covering layer of semiconductor material of said	N layer (2)
2	first electrical conductivity type lying on the substrate;	
2	a second covering layer of semiconductor material of	P layer (8) and (11)
3	second electrical conductivity type lying on the first	
3	covering layer;	
4	a third covering layer of semiconductor material of	N+ layer (9) lying partly over the P layer (8), where a
4	heavily doped said first electrical conductivity type and	portion of the P layer (11) extends vertically upward
5	having a top surface and partly lying over the second	through the N+ layer
)	covering layer, wherein a portion of the second covering	
6	layer is heavily doped and this portion extends both	
U	vertically upward and downward, an upward portion	
7	extending through the third covering layer to the top	*
,	surface of the third covering layer and a downward	
8	portion extending downward into the first covering	
٥	layer;	
9	a trench having a bottom surface and side surfaces and	trench (10) having a bottom surface and side surfaces and
9	extending vertically downward from the top surface of	extending vertically downward through the N+ layer (9)
10	the third covering layer through the third covering layer	and the P layer (8) and through a portion of the N layer
10	and the second covering layer and through a portion of	(2)
11	the first covering layer, wherein the bottom surface of	
11	the trench lies above a lowest part of the downward	
12	portion of the second covering layer;	
	electrically conducting semiconductor material positioned within the trench:	poly gate (6) in trench (10)
13		
13	a layer of oxide positioned within the trench between the	gate oxide film (5)
14	electrically conducting semiconductor material and the	
17	bottom and side surfaces of the trench; and	
15	three electrodes electrically coupled to the electrically	gate (6), source (14) and drain (backside)
	conducting semiconductor material, to the third covering	
16	layer and to the substrate, respectively.	

U.S. Patent No. 5,298,442	JP 60-28271
CLAIM 17	
7. A method for providing a transistor, said method comprising the steps of:	VMOSFET
-	See fig. 3(a-h)
providing a first region of a first conductivity type;	N+ layer (1) and N layer (2).
providing a second region of a second conductivity type over said first region;	P layer (8) and (11).
roviding a third region of said first conductivity type such that said first and third regions are separated by sid second region;	N+ layer (9) lying above the P layer (8).
roviding a trench through said third and second gions; and	trench (10) through N+ layer (9) and P layer (8)
roviding a gate in said trench;	poly gate (6) in trench (10)

Orrick Herrington & Sutcliffe LLP

SILICON VALLEY

- 1		
1	wherein a portion P of said second region, which portion	a portion P of the second region (11) is spaced from the trench (10);
2	is spaced from said trench, extends deeper than said trench so that, if a predetermined voltage is applied to	
_	said gate and to said third region and another	the second region extends deeper than the trench (10)
3	predetermined voltage is applied to said first region, an avalanche breakdown occurs away from a surface of	
4	said trench.	
*	Salu ucuon.	
5		
	CLAIM 18	· ·
6	18. The method of claim 17 wherein said portion P of	portion P of the second region (11) is doped heavier than
7	said second region is doped heavier than another portion	another portion (8) which is adjacent the trench
	of said second region which portion is adjacent said	
8	trench. CLAIM 19	
	19. The method of claim 17 wherein said first region	N+ layer (1) under N layer (2)
9	comprises a first portion and a second portion over said	
	first portion, said second portion being lighter doped	
10	than said first portion.	·
11	CLAIM 20	1 d l l l l l l l l l l l l l l l l l l
••	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
12	breakdown is a reach-through breakdown across said	across the N layer (2)
	second portion. CLAIM 22	
13	21. The method of claim 17 further comprising the step	gate oxide film (5)
	of providing an insulator between said surface of said	guto omao mm (o)
14	trench and said gate.	
15	CLAIM 23	X X
15	23. A method for providing a transistor, said method	VMOSFET
16	comprising the steps of:	
		See fig. 3(a-h)
17	providing a first region of a first conductivity type;	N+ layer (1)
	providing a second region of said first conductivity type	N layer (2)
18	over said first region, said second region being lighter	
19	doped than said first region; providing a third region of a second conductivity type	P layer (8)
17	over said second region, said second and third regions	
20	forming a junction;	
	providing a fourth region of said first conductivity type	N+ layer (9) lying above the P layer (8)
21	over said third region;	(2) 121 (2)
	providing a trench through said fourth region and third	trench (10) through N+ layer (9) and P layer (8)
22	regions; and	1 (6) in trough (10)
23	providing a gate in said trench;	poly gate (6) in trench (10) deepest part of the third region is laterally spaced from
23	wherein a deepest part of said third regions is laterally	the trench (10)
24	spaced from said trench; wherein a distance between said deepest part of said	the distance between the deepest part of the P layer (8)
- '	third region and said first region is less than a depletion	and the N+ layer (1) is less than a depletion width of a
25	width of a planar junction which has the same doping	planar junction which has the same doping profile as
	profile as does said junction between said second and	does the junction between the N- layer (2) and the P layer
26	third regions at said deepest part of said third region and	(8) at the deepest part of the P layer (8) and which is
	which is reverse biased around its breakdown voltage.	reverse biased around its breakdown voltage
27		

ORRICK HERRINGTON & SUTCLIFFE LLP

SILICON VALLEY

ı	CLAIM 24	
ı	24. The method of claim 23 wherein said deepest part of	obvious to have deepest part of the third region doped
	said third region is doped heavier than a part of said	heavier than the part adjacent said trench
	third region which part is adjacent said trench.	

1

2

3

5	INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,072,266	
6	U.S. Patent 5,072,266	JP 57-18365
7	CLAIM 1	
7	1. A trench DMOS transistor cell comprising:	VMOS FET
8		
	a substante of seminar due to material of heavily do not	See fig. 2
9	a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer (1)
10	a first covering layer of semiconductor material of said	N layer (2)
	first electrical conductivity type lying on the substrate;	71 (0)
11	a second covering layer of semiconductor material of second electrical conductivity type lying on the first	P layer (3)
	covering layer;	
12	a third covering layer of semiconductor material of	N+ layer (4) lying partly over the P layer (3)
13	heavily doped said first electrical conductivity type and	
	having a top surface and partly lying over the second	
14	covering layer, wherein a portion of the second covering layer is heavily doped and this portion extends both	
	vertically upward and downward, an upward portion	
15	extending through the third covering layer to the top	
16	surface of the third covering layer and a downward	
10	portion extending downward into the first covering	
17	layer;	
	a trench having a bottom surface and side surfaces and	trench (5) have a bottom surface and side surfaces which
18	extending vertically downward from the top surface of the third covering layer through the third covering layer	extend vertically downward through the N+ layer (4) and the P layer (3) and through a portion of the N layer (2)
	and the second covering layer and through a portion of	ate 1 rayor (5) and amough a portion of the 1 rayor (2)
19	the first covering layer, wherein the bottom surface of	in fig. 4, the P layer (2) lies between the N+ layer (4) and
20	the trench lies above a lowest part of the downward	the N layer (2) and extends below the bottom surface of
	portion of the second covering layer;	the trench (5)
21	electrically conducting semiconductor material	gate (7) in trench (5)
	positioned within the trench; a layer of oxide positioned within the trench between the	gate oxide layer between gate (7) and trench (5)
22	electrically conducting semiconductor material and the	gate oxide layer between gate (7) and trench (3)
23	bottom and side surfaces of the trench; and	·
23	three electrodes electrically coupled to the electrically	gate (7), source (6) and drain (not drawn)
24	conducting semiconductor material, to the third covering	
	layer and to the substrate, respectively.	·
1		

2526

27

28

	U.S. Patent No. 5,298,442	JP 57-18365
ļ	CLAIM 17	
	17. A method for providing a transistor, said method	VMOS FET
	comprising the steps of:	
	providing a first ragion of a first and the	See fig. 2
	providing a first region of a first conductivity type; providing a second region of a second conductivity type	N+ layer (1) and N layer (2).
	over said first region;	P layer (3).
	providing a third region of said first conductivity type	N+ layer (4) lying above the P layer (3).
	such that said first and third regions are separated by	i tv layer (4) lying above the r layer (3).
	said second region;	
ſ	providing a trench through said third and second	trench (5) through N+ layer (4) and P layer (3)
ĺ	regions; and	
	providing a gate in said trench;	gate (7) in trench (5)
	wherein a portion P of said second region, which portion	the P layer (3) extends upward through the N+ layer (4
	is spaced from said trench, extends deeper than said	
	trench so that, if a predetermined voltage is applied to	in fig. 4, P layer (4) extends deeper than trench (5)
	said gate and to said third region and another	•
	predetermined voltage is applied to said first region, an avalanche breakdown occurs away from a surface of	
	said trench.	
ı		
1	CLAIM 18	
I	18. The method of claim 17 wherein said portion P of	obvious to have the second region with a heavier dopec
	said second region is doped heavier than another portion	P+ portion laterally spaced from the trench (1)
	of said second region which portion is adjacent said	·
	trench.	
Ĺ	CLAIM 19	
	19. The method of claim 17 wherein said first region	N+ layer (1) under N- layer (2)
ı	comprises a first portion and a second portion over said	
	first portion, said second portion being lighter doped	
L	than said first portion.	
-	CLAIM 20	
	20. The method of claim 19 wherein said avalanche breakdown is a reach-through breakdown across said	avalanche breakdown is a reach-through breakdown across the N- layer (2)
	second portion.	across the 14- tayor (2)
۲	CLAIM 22	
۲	21. The method of claim 17 further comprising the step	gate oxide layer between gate (7) and trench (5)
	of providing an insulator between said surface of said	5
11	trench and said gate.	
	CLAIM 23	
	23. A method for providing a transistor, said method	VMOS FET
	comprising the steps of:	
L		See fig. 2
	providing a first region of a first conductivity type;	N+ layer (1)
	providing a second region of said first conductivity type	N layer (2)
	over said first region, said second region being lighter	
1	doped than said first region;	•

providing a third region of a second conductivity type over said second region, said second and third regions forming a junction; providing a fourth region of said first conductivity type over said third region; providing a trench through said fourth region and third regions; and providing a gate in said trench; wherein a deepest part of said third region is less than a depletion width of a planar junction which has the same doping profile as does said junction between said deepest part of said third regions at said deepest part of said third regions at said deepest part of said third region and said first region is less than a depletion width of a planar junction which has the same doping profile as does said junction between said second and third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage CLAIM 24 24. The method of claim 23 wherein said deepest part of said third region which part is adjacent said trench. P layer (3) N+ layer (4) lying above the P layer (3) trench (5) through N+ layer (4) and P layer (3) deepest part of the third region is laterally spaced from the trench (5) the distance between the deepest part of the P layer (3) and the N+ layer (1) is less than a depletion width of a planar junction which has the same doping profile as does the junction between the N- layer (2) and the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the		<u> </u>	
over said third region; providing a trench through said fourth region and third regions; and providing a gate in said trench; wherein a deepest part of said third regions is laterally spaced from said trench; wherein a distance between said deepest part of said third region and said first region is less than a depletion width of a planar junction which has the same doping profile as does said junction between said second and third regions at said deepest part of said third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage. 24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench trench (5) through N+ layer (4) and P layer (3) deepest part of the third region is laterally spaced from the trench (5) the distance between the deepest part of the P layer (3) and the N+ layer (1) is less than a depletion width of a planar junction which has the same doping profile as does the junction between the N- layer (2) and the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) and which is reverse biased around its breakdown voltage CLAIM 24 24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench	1 2	over said second region, said second and third regions	P layer (3)
regions; and providing a gate in said trench; wherein a deepest part of said third regions is laterally spaced from said trench; wherein a distance between said deepest part of said third region and said first region is less than a depletion width of a planar junction which has the same doping profile as does said junction between said second and third regions at said deepest part of said third region and said first region is less than a depletion width of a planar junction which has the same doping profile as does the junction between the N- layer (2) and the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) and which is reverse biased around its breakdown voltage CLAIM 24 24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench	3	over said third region;	N+ layer (4) lying above the P layer (3)
wherein a deepest part of said third regions is laterally spaced from said trench; wherein a distance between said deepest part of said third region and said first region is less than a depletion width of a planar junction which has the same doping profile as does said junction between said second and third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage. wherein a deepest part of the third region is laterally spaced from the trench (5) the distance between the deepest part of the P layer (3) and the N+ layer (1) is less than a depletion width of a planar junction which has the same doping profile as does the junction between the N- layer (2) and the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the N- layer (2) and the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (1) is less than a depletion width of a planar junction which has the same doping profile as does the junction between the N- layer (2) and the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) at the de	4		trench (5) through N+ layer (4) and P layer (3)
spaced from said trench; wherein a distance between said deepest part of said third region and said first region is less than a depletion width of a planar junction which has the same doping profile as does said junction between said second and third regions at said deepest part of said third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said trench deepest part of the third region is laterally spaced from the trench (5) the distance between the deepest part of the P layer (1) is less than a depletion width of a planar junction which has the same doping profile as does the junction between the N- layer (2) and the P layer (3) at the deepest part of the P layer (3) and which is reverse biased around its breakdown voltage CLAIM 24 24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region with a heavier doped P+ portion laterally spaced from the trench (7)			gate (7) in trench (5)
third region and said first region is less than a depletion width of a planar junction which has the same doping profile as does said junction between said second and third regions at said deepest part of said third region at said deepest part of said third region at said deepest part of said third region and which is reverse biased around its breakdown voltage. 10 the distance between the deepest part of the P layer (3) and the N+ layer (1) is less than a depletion width of a planar junction which has the same doping profile as does the junction between the N- layer (2) and the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) and which is reverse biased around its breakdown voltage CLAIM 24 24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench			deepest part of the third region is laterally spaced from the trench (5)
third region and said first region is less than a depletion width of a planar junction which has the same doping profile as does said junction between said second and third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage. 10 third region and said first region is less than a depletion width of a planar junction which has the same doping profile as does the junction between the N- layer (2) and the P layer (3) at the deepest part of the P layer (3) at the deepest part of the P layer (3) and which is reverse biased around its breakdown voltage CLAIM 24 24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench	6		the distance between the deepest part of the P layer (3)
profile as does said junction between said second and third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage. CLAIM 24 24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench does the junction between the N- layer (2) and the P layer (3) at the deepest part of the P layer (3) and which is reverse biased around its breakdown voltage obvious to have the second region with a heavier doped P+ portion laterally spaced from the trench (7)	7	width of a planar junction which has the same doping	and the N+ layer (1) is less than a depletion width of a
which is reverse biased around its breakdown voltage. CLAIM 24 24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said third region which part is adjacent said trench reverse biased around its breakdown voltage obvious to have the second region with a heavier doped P+ portion laterally spaced from the trench (7)	8	third regions at said deepest part of said third region and	does the junction between the N- layer (2) and the P layer
said third region is doped heavier than a part of said third region which part is adjacent said trench P+ portion laterally spaced from the trench (7)	9		
11 unit region which part is adjacent said trench.	10	said third region is doped heavier than a part of said	obvious to have the second region with a heavier doped P+ portion laterally spaced from the trench (7)
	11	unru region which part is adjacent said french.	

1~	HO Date of OFF 266		
14	U.S. Patent 5,072,266	JP 59-80970	
	CLAIM 1		
15	1. A trench DMOS transistor cell comprising:	V Groove MOSFET	
16		See fig. 2	
17	a substrate of semiconductor material of heavily doped first electrical conductivity type;	N+ layer (2)	
18	a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	N layer (1)	
19	a second covering layer of semiconductor material of second electrical conductivity type lying on the first	P layer (8)	
	covering layer;	,	
20	a third covering layer of semiconductor material of	N+ layer (4) lying partly over the P layer (8), where the P	
	heavily doped said first electrical conductivity type and	layer (8) extends vertically upward through the N+ layer	
21	having a top surface and partly lying over the second	(4) and vertically downward into the N layer (1)	
	covering layer, wherein a portion of the second covering		
22	layer is heavily doped and this portion extends both		
	vertically upward and downward, an upward portion		
23	extending through the third covering layer to the top		
	surface of the third covering layer and a downward		
24	portion extending downward into the first covering layer;		
25	a trench having a bottom surface and side surfaces and	trench having a bottom surface and side surface, and	
	extending vertically downward from the top surface of	extending vertically downward through the N+ layer (4)	
26	the third covering layer through the third covering layer	and the P layer (8) and through a portion of the N layer	
	and the second covering layer and through a portion of	(1)	
27	the first covering layer, wherein the bottom surface of		
	the trench lies above a lowest part of the downward		
28	portion of the second covering layer;		
- 1	DOCSSV2-500277.1		

1	electrically conducting semiconductor material	gate (6) in trench
	positioned within the trench;	
2	a layer of oxide positioned within the trench between the	gate oxide layer (5)
	electrically conducting semiconductor material and the	
3	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	gate (5), source (7) and drain (not drawn)
4	conducting semiconductor material, to the third covering	
	layer and to the substrate, respectively.	·
5		

_	
7	
,	

7	INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,298,442		
8	U.S. Patent No. 5,298,442	JP 59-80970	
	CLAIM 17		
.9	17. A method for providing a transistor, said method comprising the steps of:	V Groove MOSFET	
10	comprising the steps of :	See fig. 2	
11	providing a first region of a first conductivity type;	N+ layer (2) and N layer (1)	
12	providing a second region of a second conductivity type over said first region;	P layer (8)	
12	providing a third region of said first conductivity type	N+ layer (4) lying above the P layer (8)	
13	such that said first and third regions are separated by said second region;		
14	providing a trench through said third and second regions; and	trench through N+ layer (4) and P layer (8)	
15	providing a gate in said trench;	gate (6) in trench	
16	wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said	a portion of the P layer (8) is laterally spaced from the trench	
17	trench so that, if a predetermined voltage is applied to said gate and to said third region and another		
. 1 ′	predetermined voltage is applied to said first region, an	·	
18	avalanche breakdown occurs away from a surface of said trench.		
19			
-			
20	CLAIM 18		
21	18. The method of claim 17 wherein said portion P of	obvious to have the second region with a heavier doped P+ portion laterally spaced from the trench	
-1	said second region is doped heavier than another portion of said second region which portion is adjacent said	r+ portion laterary spaced from the trench	
22	trench.		
[CLAIM 19		
23	19. The method of claim 17 wherein said first region	N+ layer (2) under N- layer (1)	
24	comprises a first portion and a second portion over said first portion, said second portion being lighter doped		
	than said first portion.		
25	CLAIM 20		
26	20. The method of claim 19 wherein said avalanche breakdown is a reach-through breakdown across said	avalanche breakdown is a reach-through breakdown across the N- layer (1)	
27	second portion.		

-41-

1	CLAIM 22	
	21. The method of claim 17 further comprising the step	gate oxide layer (5)
2	of providing an insulator between said surface of said	
	trench and said gate.	
3	CLAIM 23	
	23. A method for providing a transistor, said method	V Groove MOSFET
4	comprising the steps of:	
_		See fig. 2
5	providing a first region of a first conductivity type;	N+ layer (2)
_	providing a second region of said first conductivity type	N layer (1)
6	over said first region, said second region being lighter	
7	doped than said first region;	
/	providing a third region of a second conductivity type	P layer (8)
8	over said second region, said second and third regions	
0	forming a junction;	·
9	providing a fourth region of said first conductivity type	N+ layer (4) lying above the P layer (8)
	over said third region;	
10	providing a trench through said fourth region and third	V trench extends through the N+ layer (4) and the P layer
	regions; and	(3)
11	providing a gate in said trench;	gate (6) in the V trench
	wherein a deepest part of said third regions is laterally	the deepest part of the P layer (8) is laterally spaced from
12	spaced from said trench;	the V trench
	wherein a distance between said deepest part of said	the distance between the deepest part of the P layer (8)
13	third region and said first region is less than a depletion width of a planar junction which has the same doping	and the N+ layer (2) is less than a depletion width of a
	profile as does said junction between said second and	planar junction which has the same doping profile as
14	third regions at said deepest part of said third region and	does the junction between the N-layer (1) and the P layer
	which is reverse biased around its breakdown voltage.	(8) at the deepest part of the P layer (8) and which is reverse biased around its breakdown voltage
15	CLAIM 24	reverse blased around its breakdown voltage
,	24. The method of claim 23 wherein said deepest part of	obvious to have the second region with a harrist 1
16	said third region is doped heavier than a part of said	obvious to have the second region with a heavier doped P+ portion laterally spaced from the trench
17	third region which part is adjacent said trench.	portion faterally spaced from the trench
1/		<u> </u>

INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,072,266 U-MOS Power FET, National Technical U.S. Patent 5,072,266 Report, Vol. 29(2), April 1983 CLAIM 1 1. A trench DMOS transistor cell comprising: U-MOSFET - see Fig. 3 Conceptional fabrication process of U-MOSFET a substrate of semiconductor material of heavily doped n+ layer first electrical conductivity type; a first covering layer of semiconductor material of said n- layer first electrical conductivity type lying on the substrate; a second covering layer of semiconductor material of p layer second electrical conductivity type lying on the first covering layer; a third covering layer of semiconductor material of n+ layer heavily doped said first electrical conductivity type and

ORRICK
HERRINGTON
& SUTCLIFFE LLP
SILICON VALLEY

18

19

2υ

21

22

23

24

25

26

27

	1	
1	having a top surface and partly lying over the second covering layer, wherein a portion of the second covering	the p layer includes a p+ portion which extends upward through the n+ layer and downward into the n-layer
2	layer is heavily doped and this portion extends both vertically upward and downward, an upward portion	
3	extending through the third covering layer to the top surface of the third covering layer and a downward	
4	portion extending downward into the first covering layer;	•
5	a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of	trench with a bottom surface and side surfaces which extends downward from the top surface of the n+ layer
6	the third covering layer through the third covering layer and the second covering layer and through a portion of	through the n+ layer, the p layer and through a portion of the n- layer.
7	the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward	
8	portion of the second covering layer;	
	electrically conducting semiconductor material	semiconductor material within the trench
9	positioned within the trench;	
	a layer of oxide positioned within the trench between the	oxide positioned within the trench between the
10	electrically conducting semiconductor material and the	semiconductor material and the bottom and side surfaces
	bottom and side surfaces of the trench; and	of the trench
11	three electrodes electrically coupled to the electrically	three electrodes electrically coupled to the semiconductor
	conducting semiconductor material, to the third covering	material, to the top n+ layer and to the n+ substrate.
12	layer and to the substrate, respectively.	

I	3	
1	4	

19

20

21

22

23

15	INVALIDITY CLAIM CHART FOR U.S. PATENT NO. 5,298,442	
16		U-MOS Power FET, National Technical Report, Vol. 29(2), April 1983
17	CLAIM 17	
1/	17. A method for providing a transistor, said method	U-MOSFET – see Fig. 3 Conceptional fabrication
	comprising the steps of	process of U-MOSFET

comprising the steps of :	process of O-WOSI ET
providing a first region of a first conductivity type;	n+ layer substrate and n- layer
providing a second region of a second conductivity type over said first region;	p layer
providing a third region of said first conductivity type such that said first and third regions are separated by said second region;	n+ layer
providing a trench through said third and second regions; and	trench with a bottom surface and side surfaces which extend vertically downward through the n+ third region, and the p second region
providing a gate in said trench;	gate electrode in the trench
wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said	the p second region has a heavily doped p+ region which is spaced from said trench and extends deeper than said

24	is spaced from said trench, extends deeper than said trench so that, if a predetermined voltage is applied to said gate and to said third region and another predetermined voltage is applied to said first region, an
	trench so that, if a predetermined voltage is applied to
25	said gate and to said third region and another
	predetermined voltage is applied to said first region, an
26	avalanche breakdown occurs away from a surface of

trench

27

SILICON VALLEY

said trench.

1	CLAIM 18	
	18. The method of claim 17 wherein said portion P of	the p second region contains a portion P which is doped
2	said second region is doped heavier than another portion	heavier than another portion of said second region which
	of said second region which portion is adjacent said	is adjacent said trench
3	trench.	
	CLAIM 19	
4	19. The method of claim 17 wherein said first region	the first region comprises a n+ layer substrate (first
	comprises a first portion and a second portion over said	portion) and a n- layer (second portion)
5	first portion, said second portion being lighter doped	
	than said first portion.	
6	CLAIM 20	
	20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
. 7	breakdown is a reach-through breakdown across said	across the n- layer (second portion) of the first region
	second portion.	
8	CLAIM 22	·
_	21. The method of claim 17 further comprising the step	oxide positioned within the trench between the
9	of providing an insulator between said surface of said	semiconductor material and the bottom and side surfaces
10	trench and said gate.	of the trench
10	CLAIM 23	
11	23. A method for providing a transistor, said method	U-MOSFET – see Fig. 3 Conceptional fabrication
11	comprising the steps of:	process of U-MOSFET
12	providing a first region of a first conductivity type;	n+ layer
	providing a second region of said first conductivity type	n- layer
13	over said first region, said second region being lighter	
	doped than said first region;	
14	providing a third region of a second conductivity type	p layer over n- layer
	over said second region, said second and third regions	•
15	forming a junction;	
	providing a fourth region of said first conductivity type	n+ layer formed over the p layer
16	over said third region;	4 1 4 1 (6 4
	providing a trench through said fourth region and third regions; and	trench extending downward through the n+ layer (fourth
17	providing a gate in said trench;	region) and the p layer (third region) gate electrode in the trench
10	wherein a deepest part of said third regions is laterally	the deepest part of the p layer (third region) is laterally
18	spaced from said trench;	spaced from the trench
19	wherein a distance between said deepest part of said	spaced from the deficit
17	third region and said first region is less than a depletion	•
20	width of a planar junction which has the same doping	-
	profile as does said junction between said second and	
21	third regions at said deepest part of said third region and	
-	which is reverse biased around its breakdown voltage.	
22	CLAIM 24	
	24. The method of claim 23 wherein said deepest part of	the deepest part of the p layer (third region) is doped
23	said third region is doped heavier than a part of said	heavier (p+) than the part of the p layer (third region)
	third region which part is adjacent said trench.	adjacent the trench
24		

28
ORRICK
HERRINGTON
& SUTCLIFFE LLP

SILICON VALLEY

25

2.

U.S. Patent 5,		КАТОН
CLAIM		
1. A trench DMOS transistor cel	ll comprising:	Design of New Structural High Breakdown Voltage V- MOSFET—Static Shield V-MOSFET
		Fig. 3 Cross-sectional view and device parameters of SSV-MOSFET
a substrate of semiconductor ma first electrical conductivity type;		n+ layer
a first covering layer of semicon first electrical conductivity type	lying on the substrate;	n- layer
a second covering layer of semic second electrical conductivity ty covering layer;	onductor material of pe lying on the first	p layer
a third covering layer of semicon heavily doped said first electrical having a top surface and partly ly	conductivity type and ring over the second	n+ layer
covering layer, wherein a portion layer is heavily doped and this po	ortion extends both	
vertically upward and downward extending through the third cover surface of the third covering laye	ring layer to the top	
portion extending downward into layer;	the first covering	
a trench having a bottom surface	and side surface 1	
extending vertically downward fr the third covering layer through the	om the top surface of	trench extends downward from the top surface of the n+ layer through the n+ layer, the p layer and through a portion of the n- layer.
and the second covering layer and the first covering layer, wherein the	I through a portion of he bottom surface of	
the trench lies above a lowest part portion of the second covering lay	t of the downward ver;	
electrically conducting semicondupositioned within the trench;		semiconductor material within the trench
a layer of oxide positioned within electrically conducting semicondu	ctor material and the	oxide positioned within the trench between the semiconductor material and the bottom and side surface:
bottom and side surfaces of the tre	ench; and	of the trench
three electrodes electrically couple conducting semiconductor materia layer and to the substrate, respecti	al, to the third covering	three electrodes electrically coupled to the semiconducto material, to the top n+ layer and to the n+ substrate.

23

24

25

26

27

U.S. Patent No. 5,298,442	КАТОН
CLAIM 17	
17. A method for providing a transistor, said method	Design of New Structural High Breakdown Voltage V
comprising the steps of:	MOSFET—Static Shield V-MOSFET
	Fig. 1.C. and the second of th
	Fig. 3 Cross-sectional view and device parameters of SSV-MOSFET
providing a first region of a first conductivity type;	n+ layer substrate and n- layer
providing a second region of a second conductivity type	p layer
over said first region;	
providing a third region of said first conductivity type	n+ layer
such that said first and third regions are separated by	
said second region;	
providing a trench through said third and second	trench extends through the n+ layer (third region) and
regions; and	p layer (second region)
providing a gate in said trench;	gate electrode in the trench
wherein a portion P of said second region, which portion	the p second region has a portion which is spaced from
is spaced from said trench, extends deeper than said	said trench and extends deeper than said trench
trench so that, if a predetermined voltage is applied to said gate and to said third region and another	_
predetermined voltage is applied to said first region, an	
avalanche breakdown occurs away from a surface of	' ·
said trench.	
CLAIM 18	
18. The method of claim 17 wherein said portion P of	N/A
said second region is doped heavier than another portion	
of said second region which portion is adjacent said	
trench.	
CLAIM 19	
19. The method of claim 17 wherein said first region	the first region comprises a n+ layer substrate (first
comprises a first portion and a second portion over said	portion) and a n- layer (second portion)
first portion, said second portion being lighter doped than said first portion.	
CLAIM 20	
20. The method of claim 19 wherein said avalanche	avalanche breakdown is a reach-through breakdown
breakdown is a reach-through breakdown across said	across the n- layer (second portion) of the first region
second portion.	, (, , , , , , , , , , , , , , , , , ,
CLAIM 22	-7-
21. The method of claim 17 further comprising the step	oxide positioned within the trench between the
of providing an insulator between said surface of said	semiconductor material and the bottom and side surface
trench and said gate.	of the trench
CLAIM 23	
	Design of New Structural High Breakdown Voltage V-
23. A method for providing a transistor, said method	
	MOSFET—Static Shield V-MOSFET
23. A method for providing a transistor, said method	MOSFET—Static Shield V-MOSFET
23. A method for providing a transistor, said method	

	providing a second region of said first conductivity type	n- layer
	over said first region, said second region being lighter	
	doped than said first region;	·
١	providing a third region of a second conductivity type	p layer over n- layer
- 1	over said second region, said second and third regions	
	forming a junction;	
	providing a fourth region of said first conductivity type	n+ layer formed over the p layer
l	over said third region;	• •
	providing a trench through said fourth region and third	trench extending downward through the n+ layer (fourth
	regions; and	region) and the p layer (third region)
	providing a gate in said trench;	gate electrode in the trench
	wherein a deepest part of said third regions is laterally	the deepest part of the p layer (third region) is laterally
	spaced from said trench;	spaced from the trench
	wherein a distance between said deepest part of said	
	third region and said first region is less than a depletion	
	width of a planar junction which has the same doping	
	profile as does said junction between said second and	
	third regions at said deepest part of said third region and	
1	which is reverse biased around its breakdown voltage.	
Ļ	CLAIM 24	
ı	24. The method of claim 23 wherein said deepest part of	N/A
	said third region is doped heavier than a part of said	
	third region which part is adjacent said trench.	
ti		· · · · · · · · · · · · · · · · · · ·

Prior Art Under 35 U.S.C. § 103 Which Render the '266 and '442 Patents Obvious:

U.S. Patent 4,345,265 in combination with U.S. Patent 4,374,455

U.S. Patent 4,443,931 in combination with U.S. Patent 4,374,455

U.S. Patent 4,532,534 in combination with U.S. Patent 4,374,455

U.S. Patent 4,345,265 in combination with U.S. Patent 4,767,722

U.S. Patent 4,783,694 in combination with U.S. Patent 3,412,297

U.S. Patent 4,593,302 in combination with U.S. Patent 3,412,297

(Multiple alternative combinations using the prior art references combined above can be made which additionally render the '266 and '442 patents obvious)

25

26

2

3

5

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

27

28

ORRICK

HERRINGTON

& SUTCLIFFE LLP

SILICON VALLEY

_	INVALIDITY CLAIM CHART FOI	
2	U.S. Patent 5,072,266	U.S. Patent 4,345,265 In Combination With U.S. Patent 4,374,455
	CLAIM 1	
4 5	1. A trench DMOS transistor cell comprising:	'265 Patent: MOS Power Transistor With Improved- High-Voltage Capability
6		'455 Patent: Method for Manufacturing a Vertical, Grooved MOSFET
7	a substrate of semiconductor material of heavily doped first electrical conductivity type;	'265 Patent: Figs. 4-6: N+ layer (10) '455 Patent: Fig. 2: N+ layer (34)
8	a first covering layer of semiconductor material of said	'265 Patent: Figs. 4-6: N- layer (12)
	first electrical conductivity type lying on the substrate;	(455 D
9	a second covering layer of semiconductor material of	'455 Patent: Fig. 2: N- layer (36) '265 Patent: Figs. 4-6: P- layer (20), (21), (22) and (23)
10	second electrical conductivity type lying on the first covering layer;	
11		'455 Patent: Fig. 2: P layer (52) and (54)
12	a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and	'265 Patent: Figs. 4-6: N+ layer (32) and (34) partly lying over P- layer (20) and (22).
13	having a top surface and partly lying over the second covering layer, wherein a portion of the second covering layer is heavily doped and this portion extends both	'265 Patent: Figs. 4-6: a portion of the P- layer is a heavily doped P+ region (21) and (23) and extends both
14	vertically upward and downward, an upward portion	vertically upward and downward; an upward portion of
15	extending through the third covering layer to the top surface of the third covering layer and a downward	the P+ region extends through the N+ layer (32) and (34) and a downward portion extends downward into the N-layer (12).
16	portion extending downward into the first covering layer;	'455 Patent: Fig. 2: N+ layer (40) partly lying over P
17		layer (52) and (54)
18		'455 Patent: Fig. 2: a portion of the P layer (52) is a heavily doped P+ region (54) and extends both vertically upward and downward; an upward portion of the P+
19		region extends through the N+ layer (40) and a downward portion extends downward in the N- layer
20		(36).
21	a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of the third covering layer through the third covering layer	'455 Patent: Fig. 2: groove (42) having a bottom surface and side surfaces and extending vertically downward from the N+ layer (40) through the N+ layer (40) and the
22	and the second covering layer and through a portion of the first covering layer, wherein the bottom surface of	P layer (52) and through a portion of the N- layer (36).
23	the trench lies above a lowest part of the downward portion of the second covering layer;	'265 patent and '455 patent: the deep P+ region (21) and (23) of the '265 patent would be below the lowest point
24	electrically conducting semiconductor material	of the grove (42) of the '455 patent '455 Patent: Fig. 2: electrode (49)
25	positioned within the trench; a layer of oxide positioned within the trench between the	'455 Patent: Fig. 2: oxide layer (47) within the groove
26	electrically conducting semiconductor material and the bottom and side surfaces of the trench; and	(42)
27	three electrodes electrically coupled to the electrically conducting semiconductor material, to the third covering	'455 Patent: Fig. 2: source electrodes (58), drain electrode (50) and gate electrode (49).
28	layer and to the substrate, respectively.	

1	INVALIDITY CLAIM CHART FOR	R U.S. PATENT NO. 5,298,442
2 3	U.S. Patent No. 5,298,442	U.S. Patent 4,345,265 In Combination With U.S. Patent 4,374,455
Ī	CLAIM 17	
4 5	17. A method for providing a transistor, said method comprising the steps of:	'265 Patent: MOS Power Transistor With Improved High-Voltage Capability
6		'455 Patent: Method for Manufacturing a Vertical, Grooved MOSFET
7	providing a first region of a first conductivity type;	'265 Patent: Figs. 4-6: N+ layer (10) and N- layer (12)
8	providing a second region of a second conductivity type over said first region;	'455 Patent: Fig. 2: N+ layer (34) and N- layer (36) '265 Patent: Figs. 4-6: P- layer (20), (21), (22) and (23); Col. 3, ln. 42.
9		'455 Patent: Fig. 2: P layer (52) and (54)
10	providing a third region of said first conductivity type such that said first and third regions are separated by	'265 Patent: Figs. 4-6: N+ layer (32) and (34) partly lying over P- layer (20) and (22).
11	said second region;	'455 Patent: Fig. 2: N+ layer (40)
12	providing a trench through said third and second regions; and	'455 Patent: Fig. 2: groove (42) extending vertically downward through the N+ layer (40) and the P layer (52)
13	providing a gate in said trench;	'455 Patent: Fig. 2: gate electrode (49) in groove (42)
14	wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said	'265 Patent: Col. 5, Ins. 32-47 - "The effect of regions 21 and 23 in enhancing the breakdown characteristic of the
15	trench so that, if a predetermined voltage is applied to said gate and to said third region and another predetermined voltage is applied to said first region, an	DMOS structure comes about in several ways. First, the fact that the breakdown occurs at the external periphery of or beneath regions 21 and 22 diverts breakdown from
16	avalanche breakdown occurs away from a surface of said trench.	the sensitive channel regions of the DMOS device in the P- regions under the gate 24."
17 18	·	'265 patent and '455 patent: the deep P+ region (21) and (23) of the '265 patent would be below the lowest point of the grove (42) of the '455 patent
	CLAIM 18	
19	18. The method of claim 17 wherein said portion P of said second region is doped heavier than another portion	'455 Patent: Fig. 2: a portion of the P layer (52) is a heavily doped P+ region (54) and extends both vertically upward and downward; an upward portion of the P+
21	of said second region which portion is adjacent said trench.	region extends through the N+ layer (40) and a downward portion extends downward in the N- layer
22		(36).
23		'265 Patent: Figs. 4-6: a portion of the P- layer is a heavily doped P+ region (21) and (23) and extends both vertically upward and downward; P+ region (21) and
24		(23) are more heavily doped than P- region (20) and (22) near the gate region.
25	CLAIM 19	1455 patents Fig. 2: NJ Javar (24) under NJ Javar (25)
26	19. The method of claim 17 wherein said first region comprises a first portion and a second portion over said first portion, said second portion being lighter doped	'455 patent: Fig. 2: N+ layer (34) under N- layer (36) '265 Patent: Figs. 4-6: N+ layer (10) under N- layer (12)
27	than said first portion.	

SILICON VALLEY

1	CLAIM 20	
	20. The method of claim 19 wherein said avalanche	'265 Patent and '455 Patent: avalanche breakdown
2	breakdown is a reach-through breakdown across said	would be a reach-through breakdown across the N- layer
	second portion.	(12)
3	CLAIM 22	
Ì	21. The method of claim 17 further comprising the step	'455 Patent: oxide (47)
4	of providing an insulator between said surface of said	
- 1	trench and said gate.	
5	CLAIM 23	
	23. A method for providing a transistor, said method	'265 Patent: MOS Power Transistor With Improved
6	comprising the steps of:	High-Voltage Capability
-		
7		'455 Patent: Method for Manufacturing a Vertical,
		Grooved MOSFET
8	providing a first region of a first conductivity type;	'265 Patent: Figs. 4-6: N+ layer (10)
9		'455 Patent: Fig. 2: N+ layer (34)
_ [providing a second region of said first conductivity type	'265 Patent: Figs. 4-6: N- layer (12)
10	over said first region, said second region being lighter	
	doped than said first region;	'455 Patent: Fig. 2: N- layer (36)
11	providing a third region of a second conductivity type	'265 Patent: Figs. 4-6: P- layer (20), (21), (22) and (23)
	over said second region, said second and third regions	over the second region
12	forming a junction;	(455 D
.,		'455 Patent: Fig. 2: P layer (52)
13	providing a fourth region of said first conductivity type	'265 Patent: Figs. 4-6: N+ layer (32) and (34) partly lying over P- layer (20) and (22).
14	over said third region;	lying over F- layer (20) and (22).
14		'455 Patent: Fig. 2: N+ layer (40) partly lying over P
15	·	layer (52)
15	providing a trench through said fourth region and third	'455 Patent: Fig. 2: groove (42) through the N+ layer
16	regions; and	(40) and the P layer (52)
.	providing a gate in said trench;	'455 Patent: Fig. 2: gate electrode (49)
17	wherein a deepest part of said third regions is laterally	'265 Patent: Figs. 4-6: P+ region (21) and (23) is
1	spaced from said trench;	laterally spaced from the gate
18	wherein a distance between said deepest part of said	'265 and '455: a distance between said deepest part of a
	third region and said first region is less than a depletion	third region and a first region would be less than a
19	width of a planar junction which has the same doping	depletion width of a planar junction which has the same
	profile as does said junction between said second and	doping profile as does said junction between a second
20	third regions at said deepest part of said third region and	and third regions at said deepest part of the third region
	which is reverse biased around its breakdown voltage.	and which is reverse biased around its breakdown
21	Š	voltage.
	CLAIM 24	
22	24. The method of claim 23 wherein said deepest part of	'265 Patent: Figs. 4-6: a portion of the P- layer is a
	said third region is doped heavier than a part of said	heavily doped P+ region (21) and (23) and extends both
23	third region which part is adjacent said trench.	vertically upward and downward; P+ region (21) and
	' '	(23) are more heavily doped than P- region (20) and (22)
24	V V	(25) Me more heavily deped than 1 region (26) and (22)

25

26

27

	U.S. Patent 5,072,266	U.S. Patent 4,443,931 In Combination With U.S. Patent 4,374,455
L	CLAIM 1	
1	I. A trench DMOS transistor cell comprising:	'931 Patent: Method of Fabricating a Semiconductor Device With a Base Region Having a Deep Portion
L		'455 Patent: Method for Manufacturing a Vertical, Grooved MOSFET
a fi	substrate of semiconductor material of heavily doped irst electrical conductivity type;	'931 Patent: Fig. 13: N+ layer (12)
2	first covering layer of semiconductor material of said	'455 Patent: Fig. 2: N+ layer (34)
fi	irst electrical conductivity type lying on the substrate;	'931 Patent: Fig. 13: N layer (14)
L	<u> </u>	'455 Patent: Fig. 2: N- layer (36)
a	second covering layer of semiconductor material of	'931 Patent: Fig. 13: P layer (34) and (28)
se	econd electrical conductivity type lying on the first	S ==== (0.1) and (20)
	overing layer;	'455 Patent: Fig. 2: P layer (52) and (54)
he	third covering layer of semiconductor material of eavily doped said first electrical conductivity type and	'931 Patent: Fig. 13: N+ layer (36) partly lying over layer (34) and (28).
ha	aving a top surface and partly lying over the second	
CC	overing layer, wherein a portion of the second covering	'931 Patent: Fig. 13: a portion of the P layer (34) is a
la	yer is heavily doped and this portion extends both	heavily doped P+ region (28) and extends both vertical
VE	ertically upward and downward, an upward portion	upward and downward; an upward portion of the P+
ex	stending through the third covering layer to the top	region extends through the N+ layer (38) and a
su	urface of the third covering layer and a downward	downward portion extends downward into the N layer (14).
	ortion extending downward into the first covering	(14).
la:	yer;	'455 Patent: Fig. 2: N+ layer (40) partly lying over P
		layer (52) and (54)
		'455 Patent: Fig. 2: a portion of the P layer (52) is a heavily doped P+ region (54) and extends both vertica
		upward and downward; an upward portion of the P+ region extends through the N+ layer (40) and a
		downward portion extends downward to the N- layer (36).
ex	trench having a bottom surface and side surfaces and tending vertically downward from the top surface of a third covering layer through the third covering layer through the third.	'455 Patent: Fig. 2: groove (42) having a bottom surfa and side surfaces and extending vertically downward
an	d the second covering layer and through a portion of	from the N+ layer (40) through the N+ layer (40) and P layer (52) and through a portion of the N- layer (36).
the	e first covering layer, wherein the bottom surface of e trench lies above a lowest part of the downward rtion of the second covering layer;	
ر <u>ان بر</u> مام	retrically conducting associated	1155
pos	ectrically conducting semiconductor material sitioned within the trench;	'455 Patent: Fig. 2: electrode (49)
a la	ayer of oxide positioned within the trench between the	'455 Patent: Fig. 2: oxide layer (47) within the groove
ele L-	ectrically conducting semiconductor material and the	(42)
001	ttom and side surfaces of the trench; and	
ur	ree electrodes electrically coupled to the electrically	'455 Patent: Fig. 2: source electrodes (58), drain
COL	nducting semiconductor material, to the third covering	electrode (50) and gate electrode (49).

U.S. Patent No. 5,298,442	U.S. Patent 4,443,931 In Combination With U.S. Patent 4,374,455
CLAIM 17	
17. A method for providing a transistor, said method comprising the steps of:	'931 Patent: Method of Fabricating a Semiconductor Device With a Base Region Having a Deep Portion
	'455 Patent: Method for Manufacturing a Vertical, Grooved MOSFET
providing a first region of a first conductivity type;	'931 Patent: Fig. 13: N+ layer (12) and N layer (14)
providing a second region of a second conductivity type	'455 Patent: Fig. 2: N+ layer (34) and N- layer (36) '931 Patent: Fig. 13: P layer (34) and (28)
over said first region;	'455 Patent: Fig. 2: P layer (52)
providing a third region of said first conductivity type	'931 Patent: Fig. 13: N+ layer (12) partly lying over P
such that said first and third regions are separated by said second region;	layer (34)
	'455 Patent: Fig. 2: N+ layer (40)
providing a trench through said third and second regions; and	'455 Patent: Fig. 2: groove (42) extending vertically downward through the N+ layer (40) and the P layer (52)
providing a gate in said trench;	'455 Patent: Fig. 2: gate electrode (49) in groove (42)
wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said	'931 patent and '455 patent: the deep P+ region (28) of the '931 patent would be below the lowest point of the
trench so that, if a predetermined voltage is applied to said gate and to said third region and another	grove (42) of the '455 patent
predetermined voltage is applied to said first region, an avalanche breakdown occurs away from a surface of	
said trench.	
CLAIM 18	
18. The method of claim 17 wherein said portion P of said second region is doped heavier than another portion	'931 Patent: Fig. 13: a portion of the P layer (34) is a heavily doped P+ region (28)
of said second region which portion is adjacent said trench.	'455 Patent: Fig. 2: a portion of the P layer (52) is a heavily doped P+ region (54) and extends both verticall
	upward and downward; an upward portion of the P+ region extends through the N+ layer (40) and a
-	downward portion extends downward in the N- layer (36).
CLAIM 19	
19. The method of claim 17 wherein said first region comprises a first portion and a second portion over said	'455 patent: Fig. 2: N+ layer (34) under N- layer (36)
first portion, said second portion being lighter doped	'931 Patent: Fig. 13: N+ layer (12) under N- layer (14)
than said first portion.	
CLAIM 20	
20. The method of claim 19 wherein said avalanche	'931 Patent and '455 Patent: avalanche breakdown
breakdown is a reach-through breakdown across said	would be a reach-through breakdown across the N- laye
second portion.	(12)

	11	
1	CLAIM 22	
	21. The method of claim 17 further comprising the step	'455 Patent: oxide (47)
2	of providing an insulator between said surface of said	
	trench and said gate.	
3	CLAIM 23	
	23. A method for providing a transistor, said method	'931 Patent: Method of Fabricating a Semiconductor
4	comprising the steps of:	Device With a Base Region Having a Deep Portion
5		'455 Patent: Method for Manufacturing a Vertical,
		Grooved MOSFET
6	providing a first region of a first conductivity type;	'931 Patent: Fig. 13: N+ layer (12)
~		
7		'455 Patent: Fig. 2: N+ layer (34)
0	providing a second region of said first conductivity type	'931 Patent: Fig. 13: N layer (14)
8	over said first region, said second region being lighter	'455 Patent: Fig. 2: N- layer (36)
9	doped than said first region;	'931 Patent: Fig. 13: P layer (34) and (28)
9	providing a third region of a second conductivity type	931 Patent: Fig. 13: P layer (34) and (28)
10	over said second region, said second and third regions forming a junction;	'455 Patent: Fig. 2: P layer (52)
	providing a fourth region of said first conductivity type	'931 Patent: Fig. 13: N+ layer (36) partly lying over P
11	over said third region;	layer (34) and (28)
	over said time region,	
12	, and the second	'455 Patent: Fig. 2: N+ layer (40) partly lying over P
		layer (52)
13	providing a trench through said fourth region and third	'455 Patent: Fig. 2: groove (42) through the N+ layer
	regions; and	(40) and the P layer (52)
14	providing a gate in said trench;	'455 Patent: Fig. 2: gate electrode (49)
	wherein a deepest part of said third regions is laterally	'931 Patent: Fig. 13: P+ region (28) is laterally spaced
15	spaced from said trench;	from the gate
	wherein a distance between said deepest part of said	'931 and '455: a distance between said deepest part of a
16	third region and said first region is less than a depletion	third region and a first region would be less than a
17	width of a planar junction which has the same doping	depletion width of a planar junction which has the same
1/	profile as does said junction between said second and	doping profile as does said junction between a second
18	third regions at said deepest part of said third region and	and third regions at said deepest part of the third region
10	which is reverse biased around its breakdown voltage.	and which is reverse biased around its breakdown
19	CLAIM 24	voltage.
		'931 Patent: Fig. 13: a portion of the Player is a heavily
20	24. The method of claim 23 wherein said deepest part of said third region is doped heavier than a part of said	doped P+ region (28) and extends both vertically upward
	third region which part is adjacent said trench.	and downward; P+ region (28) is more heavily doped
21	ding region which part is adjacent said dencil.	than P- region (34) near the gate region.
		1 man 1 - region (34) near are gate region.

28
ORRICK
HERRINGTON
& SUTCLIFFE LLP

SILICON VALLEY

22

23

24

25

26

27

2	U.S. Patent 5,072,266	U.S. Patent 4,532,534 In Combination With U.S. Patent4,374,455
1	CLAIM 1	0.0.1 acone 1,0 / 1,100
	1. A trench DMOS transistor cell comprising:	'534 Patent: MOSFET With Perimeter Channel
;		'455 Patent: Method for Manufacturing a Vertical, Grooved MOSFET
	a substrate of semiconductor material of heavily doped first electrical conductivity type;	'534 Patent: Fig. 2: N+ layer (118)
,		'455 Patent: Fig. 2: N+ layer (34)
	a first covering layer of semiconductor material of said	'534 Patent: Fig. 2: N- layer (120)
3	first electrical conductivity type lying on the substrate;	'455 Patent: Fig. 2: N- layer (36)
	1	'534 Patent: Fig. 2: P layer (124) and (126)
)	a second covering layer of semiconductor material of second electrical conductivity type lying on the first	
).	covering layer;	'455 Patent: Fig. 2: P layer (52) and (54)
	a third covering layer of semiconductor material of	'534 Patent: Fig. 2: N+ layer (128) partly lying over P
i	heavily doped said first electrical conductivity type and	layer (124) and (126)
	having a top surface and partly lying over the second	'534 Patent: Fig. 2: a portion of the P layer is a heavily
?	covering layer, wherein a portion of the second covering	doped P+ region (126) and extends both vertically
	layer is heavily doped and this portion extends both	upward and downward; an upward portion of the P+
,	vertically upward and downward, an upward portion	region extends through the N+ layer (128) and a
	extending through the third covering layer to the top	downward portion extends downward into the N- layer
	surface of the third covering layer and a downward	(120).
	portion extending downward into the first covering	
;	layer;	'455 Patent: Fig. 2: N+ layer (40) partly lying over P layer (52) and (54)
5		C.1 D.1 (50)
7		'455 Patent: Fig. 2: a portion of the P layer (52) is a heavily doped P+ region (54) and extends both vertically upward and downward; an upward portion of the P+
	•	region extends through the N+ layer (40) and a
3	·	downward portion extends downward to the N- layer
•		(36).
,	a trench having a bottom surface and side surfaces and	'455 Patent: Fig. 2: groove (42) having a bottom surface
)	extending vertically downward from the top surface of	and side surfaces and extending vertically downward
•	the third covering layer through the third covering layer	from the N+ layer (40) through the N+ layer (40) and the
l	and the second covering layer and through a portion of	P layer (52) and through a portion of the N- layer (36).
-	the first covering layer, wherein the bottom surface of	
2	the trench lies above a lowest part of the downward	
	portion of the second covering layer;	
3	electrically conducting semiconductor material	'455 Patent: Fig. 2: electrode (49)
	positioned within the trench;	
ļ	a layer of oxide positioned within the trench between the	'455 Patent: Fig. 2: oxide layer (47) within the groove
	electrically conducting semiconductor material and the	(42)
5	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	'455 Patent: Fig. 2: source electrodes (58), drain
5	conducting semiconductor material, to the third covering	electrode (50) and gate electrode (49).
	layer and to the substrate, respectively.	

1	INVALIDITY CLAIM CHART FOR	R U.S. PATENT NO. 5,298,442
2 3	U.S. Patent No. 5,298,442	U.S. Patent 4,443,534 In Combination With U.S. Patent 4,374,455
_	CLAIM 17	
4	17. A method for providing a transistor, said method comprising the steps of:	'534 Patent: MOSFET With Perimeter Channel
5		'455 Patent: Method for Manufacturing a Vertical, Grooved MOSFET
6	providing a first region of a first conductivity type;	'534 Patent: Fig. 2: N+ layer (118) and N layer (120)
7		'455 Patent: Fig. 2: N+ layer (34) and N- layer (36) '534 Patent: Fig. 2: P layer (124) and (126)
8	providing a second region of a second conductivity type over said first region;	'455 Patent: Fig. 2: P layer (52)
}		'534 Patent: Fig. 2: N+ layer (128) partly lying over P
9	providing a third region of said first conductivity type such that said first and third regions are separated by	layer (124) and (126)
10	said second region;	'455 Patent: Fig. 2: N+ layer (40)
11	providing a trench through said third and second regions; and	'455 Patent: Fig. 2: groove (42) extending vertically downward through the N+ layer (40) and the P layer (52)
.,	providing a gate in said trench;	'455 Patent: Fig. 2: gate electrode (49) in groove (42)
12 13	wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said	'534 patent and '455 patent: the deep P+ region (126) of the '534 patent would be below the lowest point of the- grove (42) of the '455 patent
14	trench so that, if a predetermined voltage is applied to said gate and to said third region and another	grove (42) of the 433 patent
15	predetermined voltage is applied to said first region, an avalanche breakdown occurs away from a surface of	·
16	said trench.	
17	CLAIM 18	
18	18. The method of claim 17 wherein said portion P of said second region is doped heavier than another portion	'534 Patent: Fig. 12: a portion of the P layer is a heavily doped P+ region (126)
19	of said second region which portion is adjacent said trench.	'455 Patent: Fig. 2: a portion of the P layer (52) is a
20	,	heavily doped P+ region (54) and extends both vertically upward and downward; an upward portion of the P+ region extends through the N+ layer (40) and a
21		downward portion extends downward in the N- layer (36).
22	CLAIM 19 19. The method of claim 17 wherein said first region	'455 patent: Fig. 2: N+ layer (34) under N- layer (36)
23	comprises a first portion and a second portion over said	'534 Patent: Fig. 2: N+ layer (118) under N- layer (120)
24	first portion, said second portion being lighter doped than said first portion.	33.12.102.11 1.g. 2.11 1.g. (1.11)
24	CLAIM 20	
25	20. The method of claim 19 wherein said avalanche breakdown is a reach-through breakdown across said	'534 Patent and '455 Patent: avalanche breakdown would be a reach-through breakdown across the N- layer
26	second portion.	

SILICON VALLEY

- 1		
1	CLAIM 22	
	21. The method of claim 17 further comprising the step	'455 Patent: oxide (47)
2	of providing an insulator between said surface of said	
	trench and said gate.	
3	CLAIM 23	
	23. A method for providing a transistor, said method	'534 Patent: Method of Fabricating a Semiconductor
4	comprising the steps of:	Device With a Base Region Having a Deep Portion
5		'455 Patent: Method for Manufacturing a Vertical, Grooved MOSFET
_		
6	providing a first region of a first conductivity type;	'534 Patent: Fig. 2: N+ layer (118)
7		'455 Patent: Fig. 2: N+ layer (34)
′	1	'534 Patent: Fig. 2: N- layer (120)
8	providing a second region of said first conductivity type	JUT Latent. Tig. 2. 13- layer (120)
٥	over said first region, said second region being lighter	'455 Patent: Fig. 2: N- layer (36)
_	doped than said first region;	'534 Patent: Fig. 2: P layer (124) and (126)
. 9	providing a third region of a second conductivity type	334 Patent: Fig. 2: P layer (124) and (126)
.,	over said second region, said second and third regions	'455 Patent: Fig. 2: P layer (52)
10	forming a junction;	
	providing a fourth region of said first conductivity type	'534 Patent: Fig. 2: N+ layer (128) partly lying over P
11	over said third region;	layer (124) and (126)
		'455 Patent: Fig. 2: N+ layer (40) partly lying over P
12		layer (52)
13	providing a trench through said fourth region and third	'455 Patent: Fig. 2: groove (42) through the N+ layer
13	regions; and	(40) and the P layer (52)
14		'455 Patent: Fig. 2: gate electrode (49)
14	providing a gate in said trench;	'534 Patent: Figs. 4-6: P+ region (126) is laterally
15	wherein a deepest part of said third regions is laterally	spaced from the gate
13	spaced from said trench;	
16	wherein a distance between said deepest part of said	'534 and '455: a distance between said deepest part of a
10	third region and said first region is less than a depletion	third region and a first region would be less than a depletion width of a planar junction which has the same
17	width of a planar junction which has the same doping	doping profile as does said junction between a second
17	profile as does said junction between said second and	
10	third regions at said deepest part of said third region and	and third regions at said deepest part of the third region and which is reverse biased around its breakdown
18	which is reverse biased around its breakdown voltage.	voltage.
19	CLAIM 24	
	24. The method of claim 23 wherein said deepest part of	'534 Patent: Figs. 4-6: a portion of the P layer is a
20	said third region is doped heavier than a part of said	heavily doped P+ region (126) and extends both
	third region which part is adjacent said trench.	vertically upward and downward; P+ region (126) is
21	mine radion timen have in adjacant pere grana.	more heavily doped than P region (124) which is near the
		gate region.
22		J G G

28
ORRICK
HERRINGTON
& SUTCLIFFE LLP

SILICON VALLEY

23

24

25

26

27

U.S. Patent 5,072,266	U.S. Patent 4,345,265 In Combination With U.S. Patent 4,767,722
CLAIM 1	·
1. A trench DMOS transistor cell comprising:	'265 Patent: MOS Power Transistor With Improved High-Voltage Capability
	'722 Patent: Method for Making Planar Vertical Cha DMOS Structures
a substrate of semiconductor material of heavily doped first electrical conductivity type;	'265 Patent: Figs. 4-6: N+ layer (10)
	'722 Patent: Figs. 6 and 8: N+ layer (10)
a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	'265 Patent: Figs. 4-6: N- layer (12)
a second covering layer of semiconductor material of second electrical conductivity type lying on the first	'722 Patent: Figs. 6 and 8: N- layer (11) '265 Patent: Figs. 4-6: P- layer (20), (21), (22) and (
covering layer;	'722 Patent: Figs. 6 and 8: P layer (20a)
a third covering layer of semiconductor material of heavily doped said first electrical conductivity type and having a top surface and partly lying over the second	'265 Patent: Figs. 4-6: N+ layer (32) and (34) partly lying over P- layer (20) and (22).
covering layer, wherein a portion of the second covering layer is heavily doped and this portion extends both	'265 Patent: Figs. 4-6: a portion of the P- layer is a heavily doped P+ region (21) and (23) and extends be
vertically upward and downward, an upward portion extending through the third covering layer to the top surface of the third covering layer and a downward portion extending downward into the first covering	vertically upward and downward; an upward portion the P+ region extends through the N+ layer (32) and and a downward portion extends downward into the l layer (12).
layer;	'722 Patent: Figs. 6 and 8: N+ layer (21a) partly lyin over P layer (20a)
a trench having a bottom surface and side surfaces and extending vertically downward from the top surface of	'722 Patent: Figs. 6 and 8: groove (31) having a bott surface and side surfaces and extending vertically
the third covering layer through the third covering layer and the second covering layer and through a portion of	downward from the N+ layer (21a) through the N+ la (21a) and the P layer (20a) and through a portion of the N-layer (11)
the first covering layer, wherein the bottom surface of the trench lies above a lowest part of the downward	N- layer (11). '265 patent and '455 patent: the deep P+ region (21)
portion of the second covering layer;	(23) of the '265 patent would be below the lowest po of the grove (42) of the '455 patent
electrically conducting semiconductor material positioned within the trench;	'722.Patent: Figs. 6 and 8: gate (34)
a layer of oxide positioned within the trench between the electrically conducting semiconductor material and the	'722 Patent: Figs. 6 and 8: oxide layer (32) within the groove (31)
bottom and side surfaces of the trench; and three electrically coupled to the electrically	'722 Patent: Fig. 6 and 8: source electrodes (50), dra

26

27

U.S. Patent No. 5		U.S. Patent 4,345,265 In Combination With U.S. Patent 4,767,722
CLAIM 1		
17. A method for providing a trancomprising the steps of:	sistor, said method	'265 Patent: MOS Power Transistor With Improved High-Voltage Capability
		'722 Patent: Method for Making Planar Vertical Char DMOS Structures
providing a first region of a first of	conductivity type;	'265 Patent: Figs. 4-6: N+ layer (10) and N- layer (12
		'722 Patent: Figs. 6 and 8: N+ layer (10) and N- layer (11)
providing a second region of a secover said first region;	cond conductivity type	'265 Patent: Figs. 4-6: P- layer (20), (21), (22) and (2 Col. 3, ln. 42.
		'722 Patent: Figs. 6 and 8: P layer (20a)
providing a third region of said fit such that said first and third region		'265 Patent: Figs. 4-6: N+ layer (32) and (34) partly lying over P- layer (20) and (22).
said second region;		'722 Patent: Figs. 6 and 8: N+ layer (21a)
providing a trench through said the regions; and	nird and second	'722 Patent: Figs. 6 and 8: groove (31) extending vertically downward through the N+ layer (21a) and the P layer (20a)
providing a gate in said trench;		'722 Patent: Figs. 6 and 8: gate (34) in groove (31)
wherein a portion P of said secon- is spaced from said trench, extend trench so that, if a predetermined said gate and to said third region predetermined voltage is applied avalanche breakdown occurs awa said trench.	ds deeper than said voltage is applied to and another to said first region, an	'265 Patent: Col. 5, lns. 32-47 – "The effect of regions and 23 in enhancing the breakdown characteristic of the DMOS structure comes about in several ways. First, the fact that the breakdown occurs at the external peripher of or beneath regions 21 and 22 diverts breakdown from the sensitive channel regions of the DMOS device in the P- regions under the gate 24."
		'265 patent and '722 patent: the deep P+ region (21) a (23) of the '265 patent would be below the lowest poi of the grove (31) of the '722 patent
CLAIM 1	18	or my board (an) or my , and barrens
18. The method of claim 17 wher said second region is doped heav of said second region which portion.	rein said portion P of ier than another portion	'265 Patent: Figs. 4-6: a portion of the P- layer is a heavily doped P+ region (21) and (23) and extends be vertically upward and downward; P+ region (21) and (23) are more heavily doped than P- region (20) and (near the gate region.
AT 1 44 5 1	10	non do gate region.
19. The method of claim 17 when comprises a first portion and a se	rein said first region	'722 patent: Figs. 6and 8: N+ layer (10) under N- layer (11)
first portion, said second portion than said first portion.	-	'265 Patent: Figs. 4-6: N+ layer (10) under N- layer (
CLAIM	20	
20. The method of claim 19 when breakdown is a reach-through breakdown.	rein said avalanche	'265 Patent and '722 Patent: avalanche breakdown would be a reach-through breakdown across the N- la (11) of the '722 Patent

1	CLAIM 22	
	21. The method of claim 17 further comprising the step	'722 Patent: oxide (32)
2	of providing an insulator between said surface of said	
	trench and said gate.	
3	CLAIM 23	
	23. A method for providing a transistor, said method	'265 Patent: MOS Power Transistor With Improved
4	comprising the steps of:	High-Voltage Capability
5		
ر		'722 Patent: Method for Making Planar Vertical Channel
6		DMOS Structures
v	providing a first region of a first conductivity type;	'265 Patent: Figs. 4-6: N+ layer (10)
. 7		(700 P) (710 C) 10 2V 1 (10)
	C 15	'722 Patent: Figs. 6 and 8: N+ layer (10)
8	providing a second region of said first conductivity type	'265 Patent: Figs. 4-6: N- layer (12)
	over said first region, said second region being lighter doped than said first region;	'722 Patent: Figs. 6 and 8: N- layer (11)
9	providing a third region of a second conductivity type	'265 Patent: Figs. 4-6: P- layer (20), (21), (22) and (23)
	over said second region, said second and third regions	over the second region
10	forming a junction;	
.,		'722 Patent: Figs. 6 and 8: P layer (20a)
11	providing a fourth region of said first conductivity type	'265 Patent: Figs. 4-6: N+ layer (32) and (34) partly
12	over said third region;	lying over P- layer (20) and (22).
	,	(722 Patant) Fig. 6 and 9. NJ Javan (21a) northylping
13		'722 Patent: Fig. 6 and 8: N+ layer (21a) partly lying over P layer (20a)
	providing a trench through said fourth region and third	'722 Patent: Figs. 6 and 8: groove (31) through the N+
14	regions; and	layer (21a) and the P layer (20a)
	providing a gate in said trench;	'722 Patent: Figs. 6 and 8: gate (34)
15	wherein a deepest part of said third regions is laterally	'265 Patent: Figs. 4-6: P+ region (21) and (23) is
	spaced from said trench;	laterally spaced from the gate
16	wherein a distance between said deepest part of said	'265 and '722: a distance between said deepest part of a
17	third region and said first region is less than a depletion	third region and a first region would be less than a
1/	width of a planar junction which has the same doping	depletion width of a planar junction which has the same
18	profile as does said junction between said second and	doping profile as does said junction between a second
	third regions at said deepest part of said third region and	and third regions at said deepest part of the third region
19	which is reverse biased around its breakdown voltage.	and which is reverse biased around its breakdown
}	CLAIM 24	voltage.
20	24. The method of claim 23 wherein said deepest part of	'265 Patent: Figs. 4-6: a portion of the P- layer is a
	said third region is doped heavier than a part of said	heavily doped P+ region (21) and (23) and extends both
21	third region which part is adjacent said trench.	vertically upward and downward; P+ region (21) and
		(23) are more heavily doped than P- region (20) and (22)
22	`	near the gate region.
		<u> </u>

28
ORRICK
HERRINGTON
& SUTCLIFFE LLP

SILICON VALLEY

23

24

25

26

U.S. Patent 5,072,266	U.S. Patent 4,783,694 In Combination With U.S. Patent 3,412,297
CLAIM 1	
1. A trench DMOS transistor cell comprising:	'694 Patent: Integrated Bipolar-MOS Semiconductor Device with Common Collector and Drain
	'297 Patent: MOS Field-Effect Transistor with a One-
	Micron Vertical Channel
a substrate of semiconductor material of heavily doped first electrical conductivity type;	'694 Patent: Fig. 5: N substrate (40c)
a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	'694 Patent: Fig. 5: N-Epi layer (40)
	'297 Patent: Figs. 4-6: N layer (10)
a second covering layer of semiconductor material of	'694 Patent: Fig. 5: P layer (42), (42a) and (42e)
second electrical conductivity type lying on the first covering layer;	'297 Patent: Figs. 4-6: P layer (12)
a third covering layer of semiconductor material of	'694 Patent: Fig. 5: N+ layer (44) partly lying over P
heavily doped said first electrical conductivity type and	layer (42a) and (42e) where a portion of the P layer (42 is heavily doped P+ and extends vertically upward
having a top surface and partly lying over the second	through the N+ layer (44) and vertically downward into
layer is heavily doped and this portion extends both	the N-Epi layer (40)
vertically upward and downward, an upward portion	
extending through the third covering layer to the top	'297 Patent: Figs. 4-6: N layer (16) partly lying over P
surface of the third covering layer and a downward	layer (12)
portion extending downward into the first covering	·
layer;	
a trench having a bottom surface and side surfaces and	'297 Patent: Figs 4-6: trench (18) extends downward
extending vertically downward from the top surface of	from the top surface of the N layer (16) through the N
the third covering layer through the third covering layer	layer (16), P layer (12) and through a portion of the N
and the second covering layer and through a portion of	layer (10)
the first covering layer, wherein the bottom surface of	
the trench lies above a lowest part of the downward	·
portion of the second covering layer;	
electrically conducting semiconductor material positioned within the trench;	'297 Patent: conductive semiconductor material (24)
a layer of oxide positioned within the trench between the	'297 Patent: oxide (14)
electrically conducting semiconductor material and the	
bottom and side surfaces of the trench; and	
three electrodes electrically coupled to the electrically	'694 Patent: gate (47), source (36) and drain (40c)
conducting semiconductor material, to the third covering layer and to the substrate, respectively.	'297 Patent: electrodes coupled to the gate (24), source
injoi and to the substrate, respectively.	(22) and drain (20)

24

25

26

27

1	INVALIDITY CLAIM CHART FOI	R U.S. PATENT NO. 5,298,442
2	U.S. Patent No. 5,298,442	U.S. Patent 4,783,694 In Combination With U.S. Patent 3,412,297
	CLAIM 17	
4	17. A method for providing a transistor, said method comprising the steps of:	'694 Patent: Integrated Bipolar-MOS Semiconductor Device with Common Collector and Drain
6		'297 Patent: MOS Field-Effect Transistor with a One- Micron Vertical Channel
7	providing a first region of a first conductivity type;	'694 Patent: Fig. 5: N-Epi layer (40).
۱ ′		'297 Patent: Figs. 4-6: N layer (10)
8	providing a second region of a second conductivity type over said first region;	'694 Patent: Fig. 5: P layer (42), (42a) and (42e) lying over the N-Epi layer (40)
9.		'297 Patent: Figs. 4-6: P layer (12)
10	providing a third region of said first conductivity type such that said first and third regions are separated by	'694 Patent: Fig. 5: N+ layer (44) partly lying over P layer (42a) and (42e)
11	said second region;	'297 Patent: Figs. 4-6: N layer (16) partly lying over P
12	providing a trench through said third and second	layer (12) '297 Patent: Figs. 4-6: trench (18) through the N layer
13	regions; and providing a gate in said trench;	(16) and the P layer (12) '297 Patent: Figs. 4-6: gate (24) in trench (18)
14	wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said	'694 patent and '297 patent: the deep P+ region (42e) of the '694 patent would be below the lowest point of the
15	trench so that, if a predetermined voltage is applied to	trench (18) of the '297 patent
16	said gate and to said third region and another predetermined voltage is applied to said first region, an	·
17	avalanche breakdown occurs away from a surface of said trench.	
18		
	CLAIM 18	
19	18. The method of claim 17 wherein said portion P of said second region is doped heavier than another portion	'694 Patent: Fig. 5: a portion of the P layer is a heavily doped P+ region (42e); the P+ region (42e) is doped
20	of said second region which portion is adjacent said trench.	heavier than the P region (42a) adjacent the gate region.
21	CI AIM 10	
22	19. The method of claim 17 wherein said first region	'694 patent: Fig. 5: N+ layer (40c) under N epi layer (40)
23	comprises a first portion and a second portion over said first portion, said second portion being lighter doped	
24	than said first portion. CLAIM 20	
25	20. The method of claim 19 wherein said avalanche breakdown is a reach-through breakdown across said	'694 Patent and '297 Patent: avalanche breakdown would be a reach-through breakdown across the N epi layer
26	second portion. CLAIM 22	1 10/01
20	21. The method of claim 17 further comprising the step	'297 Patent: oxide (14)
27	of providing an insulator between said surface of said trench and said gate.	
28	may varie Barri	

l l	·	
1	CLAIM 23	
	23. A method for providing a transistor, said method	'694 Patent: Integrated Bipolar-MOS Semiconductor
2	comprising the steps of:	Device with Common Collector and Drain
3		'297 Patent: MOS Field-Effect Transistor with a One- Micron Vertical Channel
4	providing a first region of a first conductivity type;	
5	providing a second region of said first conductivity type over said first region, said second region being lighter	'694 Patent: Fig. 2: N-Epi layer (40)
ĺ	doped than said first region;	'297 Patent: Figs. 4-6: N layer (10)
6	providing a third region of a second conductivity type over said second region, said second and third regions	'694 Patent: Fig. 2: P layer (42), (42a) and (42e)
7	forming a junction;	'297 Patent: Figs. 4-6: P layer (12)
8	providing a fourth region of said first conductivity type over said third region;	'694 Patent: Fig. 2: N+ layer (44) partly lying over P layer (42a) and (42e)
9		'297 Patent: Figs. 4-6: N layer (16) partly lying over P layer (12)
10	providing a trench through said fourth region and third regions; and	'297 Patent: Figs. 4-6: trench (18) through N layer (16) and P layer (12)
11	providing a gate in said trench;	'297 Patent: Figs. 4-6: gate (24) in trench (18)
12	wherein a deepest part of said third regions is laterally spaced from said trench;	'694 Patent: Fig. 5: the deepest part of the P region (42e) is laterally spaced form said trench
13	wherein a distance between said deepest part of said third region and said first region is less than a depletion	'694 and '297: a distance between said deepest part of a third region and a first region would be less than a
14	width of a planar junction which has the same doping profile as does said junction between said second and	depletion width of a planar junction which has the same doping profile as does said junction between a second
15	third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage.	and third regions at said deepest part of the third region and which is reverse biased around its breakdown voltage.
16	CLAIM 24	Votage
17	24. The method of claim 23 wherein said deepest part of	'694 Patent: Fig. 5: a portion of the P layer is a heavily doped P+ region (42e) and extends both vertically
.,	said third region is doped heavier than a part of said	upward and downward; P+ region (42e) is more heavily
18	third region which part is adjacent said trench.	doped than P region (42a) which is near the gate region.

20	INVALIDITY CLAIM CHART	FOR U.S. PATENT NO. 5,072,266
21	U.S. Patent 5,072,266	U.S. Patent 4,593,302 In Combination With U.S. Patent 3,412,297
22	CLAIM 1	
23	1. A trench DMOS transistor cell comprising:	'302 Patent: Process for Manufacture of High Power MOSFET with Laterally Distributed High Carrier
24		Density Beneath the Gate Oxide
25		'297 Patent: MOS Field-Effect Transistor with a One- Micron Vertical Channel
26	a substrate of semiconductor material of heavily doped first electrical conductivity type;	'302 Patent: Figs. 20 and 22: N+ layer
27	a first covering layer of semiconductor material of said first electrical conductivity type lying on the substrate;	'302 Patent: Figs. 20 and 22: N layer (100)
		'297 Patent: Figs. 4-6: N layer (10)

1	a second covering layer of semiconductor material of	'302 Patent: Figs. 20 and 22: P layer (220) and (221)
	second electrical conductivity type lying on the first	
2	covering layer;	'297 Patent: Figs. 4-6: P layer (12)
	a third covering layer of semiconductor material of	'302 Patent: Figs. 20 and 22: N+ layer (170) and (171)
3	heavily doped said first electrical conductivity type and	partly lying over P layer (220) and (221) where a portion
	having a top surface and partly lying over the second	of the P layer (220) and (221) is heavily doped P+ and
4	covering layer, wherein a portion of the second covering	extends vertically upward through the N+ layer (170) and
	layer is heavily doped and this portion extends both	(171) and vertically downward into the N layer (100)
5	vertically upward and downward, an upward portion	'297 Patent: Figs. 4-6: N layer (16) partly lying over P
	extending through the third covering layer to the top	layer (12)
6	surface of the third covering layer and a downward	\
-	portion extending downward into the first covering	
7	layer;	'297 Patent: Figs 4-6: trench (18) extends downward
8	a trench having a bottom surface and side surfaces and	from the top surface of the N layer (16) through the N
٥	extending vertically downward from the top surface of the third covering layer through the third covering layer	layer (16), P layer (12) and through a portion of the N
9	and the second covering layer and through a portion of	layer (10)
,	the first covering layer, wherein the bottom surface of	
10	the trench lies above a lowest part of the downward	
10	portion of the second covering layer;	
11	electrically conducting semiconductor material	'297 Patent: conductive semiconductor material (24)
	positioned within the trench;	
12	a layer of oxide positioned within the trench between the	'297 Patent: oxide (14)
	electrically conducting semiconductor material and the	
13	bottom and side surfaces of the trench; and	
	three electrodes electrically coupled to the electrically	'320 Patent: gate (132), source (210) and drain (270)
14	conducting semiconductor material, to the third covering	
	layer and to the substrate, respectively.	'297 Patent: electrodes coupled to the gate (24), source
15		(22) and drain (20)

16		
17	INVALIDITY CLAIM CHART FO	R U.S. PATENT NO. 5,298,442
18	U.S. Patent No. 5,298,442	U.S. Patent 4,593,302 In Combination With U.S. Patent 3,412,297
19	CLAIM 17	
20	17. A method for providing a transistor, said method comprising the steps of:	'302 Patent: Process for Manufacture of High Power MOSFET with Laterally Distributed High Carrier Density Beneath the Gate Oxide
21		
22	· -	'297 Patent: MOS Field-Effect Transistor with a One- Micron Vertical Channel
	providing a first region of a first conductivity type;	'302 Patent: Figs. 20 and 22: N+ layer and N layer (100)
23		'297 Patent: Figs. 4-6: N layer (10)
24	providing a second region of a second conductivity type over said first region;	'302 Patent: Figs. 20 and 22: P+ layer (220) and (221) lying over the N layer (100)
25	,	'297 Patent: Figs. 4-6: P layer (12)
26	providing a third region of said first conductivity type such that said first and third regions are separated by	'302 Patent: Figs. 20 and 22: N+ layer (170) and (171) partly lying over P layer (220) and (221)
27	said second region;	'297 Patent: Figs. 4-6: N layer (16) partly lying over P
28		layer (12)

providing a trench through said third and second regions; and	'297 Patent: Figs. 4-6: trench (18) through the N layer (16) and the P layer (12)
 	'297 Patent: Figs. 4-6: gate (24) in trench (18)
wherein a portion P of said second region, which portion	'302 patent and '297 patent: the deep P+ region (220) and (221) of the '302 patent would be below the lowest
trench so that, if a predetermined voltage is applied to	point of the trench (18) of the '297 patent
predetermined voltage is applied to said first region, an	
said trench.	
•	
CLAIM 18	(200 P F
said second region is doped heavier than another portion	'302 Patent: Figs. 20 and 22: a portion of the P layer is heavily doped P+ region (220) and (221); the P+ region
of said second region which portion is adjacent said trench.	(220) and (221) could be doped heavier than the P region adjacent the gate region.
comprises a first portion and a second portion over said	'302 patent: Figs. 20 and 22: N+ layer under N- layer (100)
than said first portion.	-
breakdown is a reach-through breakdown across said	'302 Patent and '297 Patent: avalanche breakdown would be a reach-through breakdown across the N- layer
	(100)
	/00g D
	'297 Patent: oxide (14)
trench and said gate.	
CLAIM 23	
23. A method for providing a transistor, said method comprising the steps of:	'302 Patent: Process for Manufacture of High Power MOSFET with Laterally Distributed High Carrier
	Density Beneath the Gate Oxide
	'297 Patent: MOS Field-Effect Transistor with a One-
providing a first region of a first conductivity time:	Micron Vertical Channel '302 Patent: Figs. 20 and 22: N+ layer
	'302 Patent: Figs. 20 and 22: N+ layer (100)
over said first region, said second region being lighter	'297 Patent: Figs. 4-6: N layer (10)
providing a third region of a second conductivity type	'302 Patent: Figs. 20 and 22: P layer (220) and (221)
forming a junction;	'297 Patent: Figs. 4-6: P layer (12)
providing a fourth region of said first conductivity type over said third region;	'302 Patent: Figs. 20 and 22: N+ layer (170) and (171) partly lying over P layer (220) and (221)
	'297 Patent: Figs. 4-6: N layer (16) partly lying over P layer (12)
providing a trench through said fourth region and third regions: and	'297 Patent: Figs. 4-6: trench (18) through N layer (16) and P layer (12)
	'297 Patent: Figs. 4-6: gate (24) in trench (18)
DOCSSV2:500277.1	RESPONSE CHART PURSUANT TO CIVIL L.R. 16-9(b) (Case No. C-99-04797 SRA)
	regions; and providing a gate in said trench; wherein a portion P of said second region, which portion is spaced from said trench, extends deeper than said trench so that, if a predetermined voltage is applied to said gate and to said third region and another predetermined voltage is applied to said first region, an avalanche breakdown occurs away from a surface of said trench. CLAIM 18 18. The method of claim 17 wherein said portion P of said second region is doped heavier than another portion of said second region which portion is adjacent said trench. CLAIM 19 19. The method of claim 17 wherein said first region comprises a first portion and a second portion over said first portion, said second portion being lighter doped than said first portion. CLAIM 20 20. The method of claim 19 wherein said avalanche breakdown is a reach-through breakdown across said second portion. CLAIM 22 21. The method of claim 17 further comprising the step of providing an insulator between said surface of said trench and said gate. CLAIM 23 23. A method for providing a transistor, said method comprising the steps of: providing a first region of a first conductivity type; providing a second region of said first conductivity type over said first region, said second region being lighter doped than said first region; providing a third region, said second and third regions forming a junction; providing a fourth region of said first conductivity type over said second region of said first conductivity type over said second region of said first conductivity type over said second region, said second and third regions forming a junction; providing a fourth region of said first conductivity type over said third region;

1	wherein a deepest part of said third regions is laterally spaced from said trench;	'302 Patent: Figs 20 and 22: deepest part the third (220) and (221) is laterally spaced from said gate region
2	wherein a distance between said deepest part of said	'302 and '297: a distance between said deepest part of a
	third region and said first region is less than a depletion	third region and a first region would be less than a
3	width of a planar junction which has the same doping	depletion width of a planar junction which has the same
	profile as does said junction between said second and	doping profile as does said junction between a second
4	third regions at said deepest part of said third region and	and third regions at said deepest part of the third region
ı	which is reverse biased around its breakdown voltage.	and which is reverse biased around its breakdown
5		voltage.
1	CLAIM 24	
6	24. The method of claim 23 wherein said deepest part of	'302 Patent: Figs. 20 and 22: a portion of the P layer is a
İ	said third region is doped heavier than a part of said	heavily doped P+ region (220) and (221) and extends
7	third region which part is adjacent said trench.	both vertically upward and downward; P+ region (220)
ļ	_	and (221) could be more heavily doped than P region
8 [-	which is near the gate region.
	I	·

Fairchild reserves the right to revise and supplement the claim analysis upon further discovery, investigation and analysis prior to the close of discovery. Additionally, the claim construction found by the Court may significantly alter Fairchild's invalidity arguments.

Fairchild asserts that the '266 and '442 patents are invalid under 35 U.S.C. § 112, ¶ 1, as not containing a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the invention.

Additionally, Fairchild asserts that claim 1 of the '266 and claims 17, 18, 19, 20, 22, 23 and 24 of the '442 patent are invalid as being indefinite under the 35 U.S.C. § 112, ¶ 2. Claim 1 of the '266 and claims 17, 18, 19, 20, 22, 23 and 24 of the '442 patent fail to distinctly claim the subject matter of the invention. For example, the limitation of claim 23 of the '442 patent "wherein a distance between said deepest part of said third region and said first region is less than a depletion width of a planar junction which has the same doping profile as does said junction between said second and third regions at said deepest part of said third region and which is reverse biased around its breakdown voltage" is indefinite under 35 U.S.C § 112, ¶ 2.

Additionally, Fairchild reserves the right to raise a best mode defense upon completion of discovery, specifically upon completion of the depositions of the inventors

ORRICK HERRINGTON

SUTCLIFFE LLP

		•	
1	In defense of Siliconix's alle	egation of willful infringement, Fairchild intends to rely	
2	upon the opinion(s) of counsel Townsend, Townsend & Crew dated December 23, 1998 and		
3	December 8, 1999. Supplemental invalidit	y/non-infringement opinion(s) will soon be provided to	
4	trial counsel.		
5	Dated: August 30, 2000.	•	
6		TERRENCE P. MCMAHON	
7		WILLIAM L. ANTHONY, JR MONTE COOPER KAI TSENG	
8		THOMAS J. GRAY	
9		ORRICK, HERRINGTON & SUTCLIFFE LLP	
10		Kr. Jane	
11		Kai Tseng Attorneys for Defendant	
12		FAIRCHILD SEMICONDUCTOR, INC.	
13	·		
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
27			
21			

2

3

4

6

7

8

9

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

TERRENCE P. McMAHON (State Bar No. 71910) WILLIAM L. ANTHONY, JR. (State Bar No. 106908) MONTE COOPER (State Bar No. 196746) KAI TSENG (State Bar No. 193756) THOMAS J. GRAY (State Bar No. 191411) ORRICK, HERRINGTON & SUTCLIFFE LLP 1020 Marsh Road Menlo Park, CA 94025 Telephone: (650) 614-7400 Facsimile: (650) 614-7401 Attorneys for Defendant,

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

10 SILICONIX INCORPORATED, a 11

Delaware corporation 12

Plaintiff.

FAIRCHILD SEMICONDUCTOR

14

FAIRCHILD SEMICONDUCTOR CORPORATION, a Delaware corporation,

Defendant.

CASE NO: C99-04797 SBA

AMENDED INITIAL DISCLOSURE OF DEFENDANT FAIRCHILD SEMICONDUTOR - PRIOR ART PURSUANT TO CIVIL LOCAL RULE 16-7

AMENDED INITIAL DISCLOSURE OF PRIOR ART PURSUANT I. TO L.R. 16-7(D)

Pursuant to Local Rule 16-7(d), defendant Fairchild Semiconductor Corporation ("Fairchild") makes the following amended initial disclosure of prior art:

Attached hereto is Fairchild's amended initial disclosure of prior art patents, products and publications, and tables categorizing those references. Fairchild's investigation, and its analysis of the listed references, is continuing, and Fairchild reserves the right to supplement and to revise the information provided herein as further analysis is performed, additional information becomes available and discovery is completed. All patents are U.S. patents unless otherwise noted. On information and belief, each listed publication was published at least as early as the date given.

10414-4 JG3

DOCSSV2:503110.1

AMENDED INITIAL DISCLOSURE OF PRIOR ART C 99-04797 SBA

ORRICK, HERRINGTON & SUTCLIFFE LLP

Fairchild incorporates, in full, all references cited (however partially) in the patents-in-suit and/or in their respective file histories, as if fully set forth herein. 2 3 While Fairchild will preliminarily identify pursuant to Local Rule 16-7(e) the prior art references which Fairchild believes anticipates the asserted claims or the combination of 4 prior art references which render the asserted claims obvious, please note that the information in 5 this document is provisional and subject to revision, for the following reasons: 6 7 Fairchild's position on the invalidity of particular claims will depend on (i) how those claims are construed by the Court. Because claim construction has not yet occurred, 8 Fairchild cannot take a final position on the bases for invalidity of disputed claims because the 9 Court may construe those claims to mean something different from what Fairchild presently 10 11 assumes them to mean. 12 Fairchild's search for prior art is on-going. (ii) 13 Fairchild has not completed its discovery from Siliconix Inc. Depositions (iii) of the persons involved in the drafting and prosecution of the patent-in-suit, and of the inventors, 14 15 for instance, will likely reveal information that affects the conclusions herein. 16 PRODUCTION OF DOCUMENTS PURSUANT TO L.R. 16-7(F) II. 17 As required by Local Rule 16-7(f), Fairchild has already produced technical documentation for the Fairchild FDS6680A, the only product accused of infringement in 18 19 Siliconix's Claim Chart. 20 The undersigned certifies that pursuant to local rule 16-6(c) to the best of his knowledge information and belief, formed after a reasonable inquiry, that the disclosure is 21 22 complete and correct, as of this date. 23 Dated: August 30, 2000 24 ORRICK, HERRINGTON & SUTCLIFFE LLP 25 26 27 Attorneys for Defendant 28 Fairchild Semiconductor Corporation ORRICK, HERRINGTON DOCSSV2:503110.1 -2-& SUTCLIFFE LLP 10414-4 103 AMENDED INITIA. SCLOSURE OF PRIOR ART

C 99-04797 5BA

1

AMENDED INITIAL DISCLOSURE OF PRIOR ART U.S. Patents No. 5,072,266 & 5,298,422

SILICONIX INC. VS. FAIRCHILD SEMICONDUCTOR CORPORATION

Z	PATENT OR	AUTHOR/	PATENT	ISSUE/
	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION
		INVENTOR		DATE
-	Mos Field-Effect Transistor	P.R. Amlinger	U.S. PT. NO.	11/19/68
	With A One-Micron Vertical	•	3,412,297	
	Channel			
2	Integrated Circuit Utilizing	Jean-Claude Frouin et	U.S. PT. NO.	03/10/70
	Dielectric Plus Junction	al.	3,500,139	
	Isolation			
3	Complementary Field-Effect	Roger Cullis	U.S. PT. NO.	06/30/70
	Transistors On Common		3,518,509	
	Substrate By Multiple Epitaxy			
	Techniques			
4	Modified Planar Process For	Loyd H. Clevenger	U.S. PT. NO.	10/13/70
	Making Semiconductor		3,534,234	
	Devices Having Ultrafine		•	
	Mesa Type Geometry	•		
5	Method Of Fabricating	Peltzer	U.S. PT. NO.	03/07/72
	Integrated Circuits, With		3,648,125	
	Integrated Circuits With			
	Oxidized Isolations And The			
	Resulting Structure			

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
6	Method Of Manufacturing	Appels et al.	U.S. PT. NO.	08/19/75	103
	Which Silicon Oxide Regions		3,700,330		
	Inset In Silicon Are Formed				
	By A Masking Oxidation,				
	Wherein An Intermediate				
	Layer Of Polycrystalline				
	Silicon Is Provided Between				
	The Substrate And The				
	Oxidation Mask				
7	Low Capacitance V. Grove	Rodgers	U.S. PT. NO.	12/02/75	102, 103
	Mos Nor Gate And Method		3,924,265		
	Of Manufacture				
œ	Multilevel Conductor	Naber	U.S. PT. NO.	12/09/75	103
	Structure And Method		3,925,572		
y	Semiconductor Device	Webb	U.S. PT. NO.	05/18/76	
	Manufacture		3,958,040		
10	Semiconductor Device	Abbas et al.	U.S. PT. NO.	06/01/76	
	Having Electrically Insulating	-	3,961,355		
	Barriers For Surface Leakage				
	Sensitive Devices And				
	Method Of Forming				
<u>-</u>	Method For Forming	Antipov	U.S. PT. NO.	06/08/76	
	Recessed Dielectric Isolation		3,961,999		
	With A Minimized "Birds				
	Beak" Problem				

				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
	20	19	18	17	16	15		13	12	NO.
1	Large Value Capacitor	Field Effect Semiconductor Device	Single Igfet Memory Cell With Buried Storage Element	Method For Forming Masks Comprising Silicon Nitride And Novel Mask Structures Produced Thereby	Method Of Manufacturing A Semiconductor Device Utilizing Monocrystalline- Polycrystalline Growth	Method Of Forming Raised Electrical Contacts On A Semiconductor Device	Method For Producing A Semiconductor Device And A Semiconductor Device Produced By Said Method	Dielectrically Isolated Semiconductor Devices	Method For Forming Dielectric Isolation Combining Dielectric Deposition And Thermal Oxidation	PATENT OR PUBLICATION TITLE
	Kendall et al.	Fukuta	Jenne	Magdo et al.	Kaji et al.	Reichert	Kooi	Hochberg	Feng et al.	AUTHOR/ ASSIGNEE/OR INVENTOR
4,017,885	U.S. PT. NO.	U.S. PT. NO. 4,015,278	U.S. PT. NO. 4,003,036	U.S. PT. NO. 4,002,511	U.S. PT. NO. 3,977,378	U.S. PT. NO. 3,993,515	U.S. PT. NO. 3,970,486	U.S. PT. NO. 3,966,577	U.S. PT. NO. 3,966,514	PATENT NUMBER
	04/12/77	03/29/77	01/11/77	01/11/77	12/14/76	11/23/76	07/20/76	06/29/76	06/29/76	ISSUE/ PUBLICATION DATE
,			103							CLASSIFICATION

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
21	Method Of Electrically Isolating Individual Semiconductor Circuits In A Wafer	Nelson et al.	U.S. PT. NO. 4,046,605	09/06/77	
22	Superintegrated V-Grove Isolated Bipolar And Vmos Transistors	Bohn	U.S. PT. NO. 4,048,649	09/13/77	103
23	Fabrication Of Power Field Effect Transistors And The Resulting Structures	Jambotkar	U.S. PT. NO. 4,055,884	11/01/77	
24	Self-Aligned Double Implanted Short Channel V-Grove Mos Device	Ouyang	U.S. PT. NO. 4,065,783	12/27/77	103
25	Vmos Transistor	Wickstrom	U.S. Pt. No. 4,070,690	01/24/78	103
26	Insulated Gate Field Effect Transistor	Ishitani	U.S. PT. NO. 4,072,975	02/07/78	103
27	Field Effect Transistor With A Short Channel Length	Tihani et al.	U.S. PT. NO. 4,101,922	07/18/78	
28	Method For Forming Isolated Regions Of Silicon Utilizing Reactive Ion Etching	Bondur et al.	U.S. PT. NO. 4,104,086	08/01/78	103
29	Epitaxial Method Of Fabricating Single Igfet Memory Cell With Buried Storage Element	Jenne	U.S. PT. NO. 4,105,475	08/08/78	103
30	Semiconductor Memory Device	Masuoka et al.	U.S. PT. NO. 4,115,795	09/19/78	

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
31	Method Of Making V-MOS Field Effect Transistor For A	Vinson	U.S. PT. NO. 4,116,720	09/26/78	103
	Dynamic Memory Cell Having Improved Capacitance				
32	Isolation Of Integrated	Murphy et al.	U.S. PT. NO. 4 140.558	02/20/79	103
	Etching And Diffusion		1,110,000		
33	Power Field Effect	Jambotkar	U.S. PT. NO.	03/20/79	
	Transistors		4,145,700		
34	Semiconductor Apparatus	Hendrickson	U.S. PT. NO. 4,148,047	04/03/79	103
35	Method For Fabrication	Anantha et al.	U.S. PT. NO.	07/03/79	
	Vertical NPN And PNP		4,159,915		
	Structures Utilizing Ion-				
	Implantation				
36					103
	High Capacity Dynamic Ram Cell	Tasch, Jr.	U.S. PT. NO. 4.164.751	08/14/79	
37	Method Of Selective	Barlett et al.	U.S. PT. NO.	10/09/79	
	Oxidation In Manufacture Of	•	4,170492	-	
	Semiconductor Devices				
38	VMOS Read Only Memory	Kuo	U.S. PT. NO.	04/15/80	103
39	Semiconductor Memory	Natori et al.	U.S. PT. NO.	04/22/80	
	Device		4,199,772		

Nulliar et al. 0.3. F1. NO. 4,301,324
Harrington et al. U.S. PT. NO
4,262,296
Shealy et al. U.S. PT. NO.
4,225,945
U.S. PT. NO
4,222,792
Lever et al. U.S. PT. NO.
4,222,063
Rodgers U.S. PT. NO.
4,222,062
Trotter et al. U.S. PT. NO
4,219,836
Mcelroy U.S. PT. NO
4,202,916
Chadda U.S. PT. NO.
INVENTOR
≆
AUTHOR/ PATENT

Z C	PATENT OR	AUTHOR/	PATENT	ISSUE/	CLASSIFICATION
	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	
49	One Device Field Effect	Scheuerlein	U.S. PT. NO.	03/09/82	
	Transistor (FET) AC Stable		4,319,342		
	Random Access Memory				
	(Ram) Array				
50	Method Of Fabricating MOS	Chang et al.	U.S. PT. NO.	04/13/82	
	Field Effect Transistors		4,324,038		
15	Method Of Manufacturing	lwai et al.	U.S. PT. NO.	05/04/82	
	Semiconductor Devices		4,327,476		
52	Insulated Gate Type	Nishizawa	U.S. PT. NO.	06/08/82	
	Semiconductor Device		4,334,235		
53	Combined DMOS And A	Pao et al.	U.S. PT. NO.	08/10/82	
-	Vertical Bipolar Transistor		4,344,081		
	Device And Fabrication				
	Method Therefor				
54	MOS Power Transistor With	Blanchard	U.S. PT. NO.	08/17/82	103
	Improved High-Voltage	-	4,345,265		
	Capability				
55	Silicon Integrated Circuits	Jaccodine et al.	U.S. PT. NO.	10/05/82	
			4,333,080		
56	Power MOSFET With An	Becke et al.	U.S. PT. NO.	12/14/82	103
	Anode Region		4,364,073		
57	V-MOS Device With Self-	Garnache et al.	U.S. PT. NO.	12/14/82	102
	Aligned Multiple Electrodes		4,364,074		
85	Semiconductor Integrated	Crowder et al.	U.S. PT. NO.	12/21/82	103
	Circuit Interconnections		4,364,166		
59	Vertical MOSFET With	Goodman et al.	U.S. PT. NO.	12/28/82	<u>E</u>
	Reduced Turn-On Resistance	-	4,366,495		
60	VMOS Memory Cell And	Hiltpold	U.S. PT. NO.	12/25/83	103
	Method For Making Same		4,369,564		

Method For Manufacturing A Vertical, Grooved MOSFET Power Static Induction Transistor Fabrication High Power MOSFET With Low On-Resistance And High Breakdown Voltage Method Of Fabricating A Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysilicon Utilizing A Chlorine Etch Gas And Process And Process Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Device Planar Structure For High Field Regions Matsumura et al. U.S. PT. NO. 4,376,286 U.S. PT. NO. 4,376,286 U.S. PT. NO. 4,443,931 A,443,931 A,443,931 A,443,931 A,443,931 A,443,931 A,443,931 A,383,885 Chlorine Etch Gas And Process A Semiconductor Device Planar Structure For High Voltage Semiconductor Device Planar Structure For High Voltage Semiconductor Device Matsumura et al. U.S. PT. NO. 4,397,075 A,404,735 A,404,735 A,404,735 A,404,735 A,412,242 U.S. PT. NO. U.S. PT. NO. 4,404,735 A,404,735 A,404,7	NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR	PATENT NUMBER	ISSUE/ PUBLICATION	
Vertical, Grooved MOSFET Power Static Induction Fransistor Fabrication High Power MOSFET With Low On-Resistance And High Breakdown Voltage Method Of Fabricating A Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysilicon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.	61	Method For Manufacturing A	Goodman	U.S. PT. NO.	02/22/83	/83
Power Static Induction Transistor Fabrication High Power MOSFET With Low On-Resistance And High Breakdown Voltage Method Of Fabricating A Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysilicon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.		Vertical, Grooved MOSFET		4,374,455		
High Power MOSFET With Low On-Resistance And High Breakdown Voltage Method Of Fabricating A Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysificon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.	62	Power Static Induction	Cogan	U.S. PT. NO.	03/01/83	1/83
High Power MOSFET With Low On-Resistance And High Breakdown Voltage Method Of Fabricating A Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysiticon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al. Matsumura et al.		Transistor Fabrication		4,3/5,124		
Low On-Resistance And High Breakdown Voltage Method Of Fabricating A Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysilicon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Matsumura et al. Matsumura et al.	63	High Power MOSFET With	Lidow et al.	U.S. PT. NO.	03/0	03/08/83
Breakdown Voltage Method Of Fabricating A Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysilicon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process FET Memory Cell Structure Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al. Matsumura et al.		Low On-Resistance And High		4,376,286		
Method Of Fabricating A Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysilicon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al. Matsumura et al.		Breakdown Voltage			·	
Semiconductor Device With A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysificon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al. Matsumura et al.	64	Method Of Fabricating A	Baliga et al.	U.S. PT. NO.	<u>6</u>	04/24/84
A Base Region Having A Deep Portion Reactive Sputter Etching Of Polysilicon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.		Semiconductor Device With		4,443,931		
Reactive Sputter Etching Of Reactive Sputter Etching Of Polysilicon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al. Matsumura et al.		A Base Region Having A				
Polysilicon Utilizing A Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al. Matsumura et al.	65	Reactive Sputter Etching Of	Mavdan et al	US PT NO	寸	05/17/83
Chlorine Etch Gas FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al. Matsumura et al.		Polysilicon Utilizing A	•	4,383,885		
FET Memory Cell Structure And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al. Matsumura et al.		Chlorine Etch Gas			╁	
And Process Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.	66	FET Memory Cell Structure	Fatula Jr. et al.	U.S. PT. NO.	0	08/09/83
Fabrication Method For High Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.		And Process		4,397,075		
Power MOS Device Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.	67	Fabrication Method For High	Blanchard et al.	U.S. PT. NO.	0	08/16/83
Method For Manufacturing A Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.		Power MOS Device		4,398,339		
Field Isolation Structure For A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.	80	Method For Manufacturing A	Sakurai	U.S. PT. NO.	_	09/20/83
A Semiconductor Device Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.		Field Isolation Structure For		4,404,735		
Planar Structure For High Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.		A Semiconductor Device				
Voltage Semiconductor Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.	69	Planar Structure For High	Herman et al.	U.S. PT. NO.		10/25/83
Devices With Gaps In Glassy Layer Over High Field Regions Semiconductor Device Matsumura et al.		Voltage Semiconductor		4,412,242		
Layer Over High Field Regions Semiconductor Device Matsumura et al.		Devices With Gaps In Glassy				
Regions Semiconductor Device Matsumura et al.		Layer Over High Field				
Semiconductor Device Matsumura et al.		Regions			-	
	70	Semiconductor Device	Matsumura et al.	U.S. PT. NO. 4.412.237		10/25/83

NC.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR	PATENT	ISSUE/	CLASSIFICATION
71	Method Of Fabrication Many	INVENTOR		DATE	
	MOSFET Using Overhang Mask	Kicc	U.S. PT. NO. 4,419,811	12/13/83	
72	Semiconductor Memory Device	Takei	U.S. PT. NO.	02/14/84	103
73	Enhancement Mode IEET	NI: A:	4,432,006		
	Dynamic Memory	NIShizawa	U.S. PT. NO.	02/28/84	
74	Fabrication of MOS	Finle of al	4,404,400		
:	Integrated Circuit Devices		4,450,620	05/29/84	
2	Integrated Circuits	Joy et al.	U.S. PT. NO.	06/19/84	
76	Isolation For High Density Integrated Circuits	Joy et al.	U.S. PT. NO.	06/19/84	
η			1,40,404/		
	Method Of Manufacturing A Self-Aligned U-MOS Semiconductor Device	lwai	U.S. PT. NO. 4,455,740	06/26/84	103
78	Vertical MESFET With	Rice	U.S. PT. NO.	07/10/84	
79	Method For Manufacturing	Cal	4,459,605		
	VLSI Complementary MOS	Schwade et al.	U.S. PT. NO.	07/17/84	103
	Field Effect Transistor	·	4,439,740		
	Circuits In Silicon Gate				-
č	Single Flectroda II MOCEET				
		rio et al.	U.S. PT. NO.	07/24/84	103
<u>«</u>		Temple	U.S. PT. NO.	08/21/84	
	Devices With Integral Shorts		4,466,176		

PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION INTENT INVENTOR NUMBER PUBLICATION INVENTOR Number Date Date of Action of Fabricating A El-Karach U.S. PT. NO. Bipolar Dynamic Memory Cell V-MOS Filed Effect Pransistor David et al. U.S. PT. NO. Bipolar Dynamic Memory Cell V-MOS Filed Effect Pransistor David et al. U.S. PT. NO. Bipolar Dynamic Memory Cell V-MOS Filed Effect David et al. U.S. PT. NO. Bipolar Dynamic Memory Cell Ulizing Self-Aligned Diffusion and Etching Techniques Method Fabricating Power Method For Fabricating Self-Aligned Diffusion and Etching Techniques Self-Aligned Power MOSFET Love U.S. PT. NO. Beniconductor Devices Self-Aligned Power MOSFET Love U.S. PT. NO. Beniconductor Device With Deep Grip Accessible Via The Surface And Process For Manutacturing Same Method For Forning A Void Beyer et al. U.S. PT. NO. D6/04/85 U.S. PT. NO.	103	07/30/85	U.S. PT. NO.	Ford et al.	Channel Channel	90
NO. PATENT OR AUTHOR NUMBER NUMBER PUBLICATION TITLE INVENTOR NUMBER PUBLICATION					Techniques	
PUBLICATION TITLE PUBLICATION TITLE PUBLICATION TITLE PUBLICATION TITLE PUBLICATION Rethod For Manufacturing Method Of Fabricating A Bipolar Dynamic Memory Cell V-MOS Filed Effect Publicating Power MoSFET Structure Utilizing Self-Aligned Diffusion and Etching Techniques Method For Fabricating Self-Aligned Power MOSFET With Integral Source-Base Short And Methods Of Making Semiconductor Devices Self-Aligned Power MOSFET With Integral Source-Base Short And Methods Of Making Semiconductor Devices Semiconductor Devices With Deep Grip Accessible Via The Surface And Process For Manufacturing Same Method For Forming A Void Free Isolation Structure ASSIGNEE/OR NUMBER PUBLICATION PATIENT PUBLICATION NUMBER PUBLICATION PUBLICATION PATIENT PUBLICATION PATIENT PUBLICATION PATIENT PUBLICATION PUBLICATION PATIENT PUBLICATION PUBLICATION PUBLICATION PUBLICATION PUBLICATION PUBLICATION PUBLICATION PUBLICATION PUBLICATION PUBLICATION PUBLICATION PUBLICATION PUBLICATION PUBLICATION PUBLICATION PUBLICATION PATIENT PUBLICATION PUBLICATION PATIENT PUBLICATION PATIENT PUBLICATION PATIENT PUBLICATION PUBLICATION PATIENT PUBLICATION PUBLICATION PATIENT PUBLICATION PUBLICATI					Utilizing Etch And Refill	
PUBLICATION TITLE PUBLICATION TITLE PUBLICATION PATENT OR ASSIGNEE/OR NUMBER PUBLICATION			4,528,047		Free Isolation Structure	
PUBLICATION TITLE PUBLICATION TITLE PUBLICATION PUBLICATION RETENT ASSIGNEE/OR NUMBER PUBLICATION PUBLICATION NUMBER PUBLICATION NATE NATION NUMBER PUBLICATION NUMBER PUBLICATION NATE NATION NOMBER PUBLICATION NATE NATION NOMBER PUBLICATION NUMBER PUBLICATION NUMBER PUBLICATION NUMBER PUBLICATION NUMBER PUBLICATION NATE NATION NOMBER PUBLICATION NATE NATE NOMBER PUBLICATION NATE NATION NOMBER PUBLICATION NATE NATE NATE NOMBER NOMBER PUBLICATION NATE NATE NATE NOMBER NOMBER PUBLICATION NATE NATE NOMBER NATE NOMBER NATE NATE NOMBER NATE NATE NOMBER NATE NOMBER NATE NATE NOMBER NATE NATE NATE NOMBER NATE NATE NOMBER NATE NATE NATE NOMBER NATE NATE NOMBER NATE NOMBER NATE NATE NATE NOMBER NATE NATE NATE NOMBER NATE NATE NATE NATE NATE NOMBER NATE NATE NATE NATE NATE NATE NOMBER NATE NOMBER NATE	103	07/09/85	U.S. PT. NO.	Beyer et al.	Method For Forming A Void	89
PUBLICATION TITLE PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION INVENTOR Method For Manufacturing Semiconductor Device Method Of Fabricating A Bipolar Dynamic Memory Cell V-MOS Filed Effect Fransistor Method Of Fabricating Power Method Of Fabricating Self-Aligned Diffusion and Etching Techniques Method For Fabricating Semiconductor Devices Self-Aligned Power MOSFET With Integral Source-Base Short And Methods Of Making Semiconductor Device With Deep Grip Accessible Via The Surface And Process For Mospie Process For AUS. PT. NO. 03/05/85 4,503,449 U.S. PT. NO. 03/12/85 U.S. PT. NO. 04/09/85 U.S. PT. NO. 05/07/85					Manufacturing Same	
NO. PATENT OR PUBLICATION TITLE AUTHOR ASSIGNEE/OR INVENTOR PATENT DATE ISSUE/ DATE Method For Manufacturing Semiconductor Device Kanneyanna U.S. PT. NO. 09/18/84 Method Of Fabricating A Bipolar Dynamic Memory Cell El-Karach U.S. PT. NO. 10/16/84 V-MOS Filed Effect Transistor David et al. U.S. PT. NO. 03/05/85 Method Of Fabricating Power MoSFET Structure Utilizing Self-Aligned Diffusion and Etching Techniques Vora, et al. U.S. PT. NO. 03/05/85 Method For Fabricating Self-Aligned Power MOSFET With Integral Source-Base Short And Methods Of Making Goto, et al. U.S. PT. NO. 03/12/85 Semiconductor Devices Semiconductor Device With Deep Grip Accessible Via Arnould et al. U.S. PT. NO. 05/07/85					The Surface And Process For	
PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Method For Manufacturing Kanneyanna U.S. PT. NO. 09/18/84 Semiconductor Device U.S. PT. NO. 10/16/84 Bipolar Dynamic Memory Cell V-MOS Filed Effect Pransistor Method Of Fabricating Power MOSFET Structure Utilizing Self-Aligned Diffusion and Etching Techniques Method For Fabricating Semiconductor Devices Self-Aligned Power MOSFET Love With Integral Source-Base Short And Methods Of Making Semiconductor Device With Arnould et al. U.S. PT. NO. 05/07/85 Semiconductor Device With Arnould et al. U.S. PT. NO. 05/07/85			4,520,552		Deep Grip Accessible Via	
MO. PUBLICATION TITLE ASSIGNEE/OR PUBLICATION PUBLICATION PUBLICATION PUBLICATION NUMBER NUMBER PUBLICATION DATE NUMBER PUBLICATION BIATE PUBLICATION DATE NUMBER PUBLICATION DATE PUBLICATION DATE PUBLICATION DATE PUBLICATION PUBLICATION DATE PUBLICATION DATE PUBLICATION DATE PUBLICATION A,477,240 U.S. PT. NO. 03/05/85 U.S. PT. NO. 03/05/85 PUBLICATION PUBLICATION PUBLICATION PUBLICATION DATE PUBLICATION PUBLICATION DATE PUBLICATION PUBLICATION DATE PUBLICATION DATE PUBLICATION PUBLICATION DATE PUBLICATION PUBLICATION DATE PUBLICATION PUBLICATION A,477,240 U.S. PT. NO. 03/05/85 U.S. PT. NO.	-	06/04/85	U.S. PT. NO.	Arnould et al.	Semiconductor Device With	& &
MO. PUBLICATION TITLE ASSIGNEE/OR INVENTOR PATENT DATE ISSUE/ Method For Manufacturing Semiconductor Device Method Of Fabricating A Bipolar Dynamic Memory Cell U.S. PT. NO. 10/16/84 V-MOS Filed Effect David et al. U.S. PT. NO. 03/05/85 Transistor Method Of Fabricating Power MoSFET Structure Utilizing Self-Aligned Diffusion and Etching Techniques Method For Fabricating Self-Aligned Power MOSFET Love Short And Methods Of Love Short And Methods Of Short And Methods Of Methods Of Short And Methods Of Methods Of Short And Methods Of Met					Making	
PATENT OR AUTHOR PATENT ASSIGNEE/OR NUMBER PUBLICATION INVENTOR Multod For Manufacturing Semiconductor Device Method Of Fabricating A Bipolar Dynamic Memory Cell V-MOS Filed Effect MoSFET Structure Utilizing Self-Aligned Diffusion and Etching Techniques Method For Fabricating Isolation Region In Semiconductor Devices Self-Aligned Power MOSFET With Integral Source-Base ASSIGNEE/OR NUMBER PUBLICATION INVENTOR U.S. PT. NO. 09/18/84 4,472,240 U.S. PT. NO. 10/16/84 4,476,623 U.S. PT. NO. 03/05/85 U.S. PT. NO. 03/05/85 4,503,499 U.S. PT. NO. 03/12/85 4,503,598 U.S. PT. NO. 04/09/85 U.S. PT. NO. 05/07/85					Short And Methods Of	•
PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Method For Manufacturing Kanneyanna 4,472,240 Method Of Fabricating A Bipolar Dynamic Memory Cell V-MOS Filed Effect Power Mosfet Structure Utilizing Self-Aligned Diffusion and Etching Techniques Method For Fabricating Goto, et al. U.S. PT. NO. 03/05/85 Method For Fabricating Goto, et al. U.S. PT. NO. 03/12/85 Self-Aligned Power MOSFET Love U.S. PT. NO. 04/09/85 Self-Aligned Power MOSFET Love U.S. PT. NO. 04/09/85			4,516,143		With Integral Source-Base	
PATENT OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Method For Manufacturing Semiconductor Device Method Of Fabricating A Bipolar Dynamic Memory Cell V-MOS Filed Effect David et al. Method Of Fabricating Power Method Of Fabricating Power Self-Aligned Diffusion and Etching Techniques Method For Fabricating Semiconductor Devices Method For Fabricating Goto, et al. Semiconductor Devices ASSIGNEE/OR NUMBER PUBLICATION ISSUE/ PUBLICATION ISSUE/ PUBLICATION PUBLICATION PATENT ISSUE/ PUBLICATION PATENT ISSUE/ PUBLICATION PATENT ISSUE/ PUBLICATION PATENT ISSUE/ PUBLICATION PATENT ISSUE/ PUBLICATION PATENT ISSUE/ PUBLICATION 1,503,PT.NO. 09/18/84 4,472,240 U.S. PT. NO. 03/05/85 U.S. PT. NO. 03/05/85 4,503,449 U.S. PT. NO. 03/12/85	103	05/07/85	U.S. PT. NO.	Love	Self-Aligned Power MOSFET	87
PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Method For Manufacturing Kanneyanna 4,472,240 Method Of Fabricating A El-Karach 4,472,240 V-MOS Filed Effect Cell Method Of Fabricating Power Method Of Fabricating Power Self-Aligned Diffusion and Etching Techniques Method For Fabricating Power Solation Region In Method For Fabricating Coto, et al. Method For Fabricating Power Solation Region In Method For Fabricating Coto, et al. Method For Fabrication Coto, et al. Method For Fabrication Coto, et al.		-			Semiconductor Devices	
PATENT OR PATENT OR PATENT OR PATENT OR PUBLICATION TITLE ASSIGNEE/OR Method For Manufacturing Semiconductor Device Method Of Fabricating A Bipolar Dynamic Memory Cell V-MOS Filed Effect Transistor Method Of Fabricating Power Method Of Fabricating Power Self-Aligned Diffusion and Etching Techniques Method For Fabricating Goto, et al. ASSIGNEE/OR NUMBER PUBLICATION DATE PUBLICATION NUMBER PUBLICATION NUMBER PUBLICATION U.S. PT. NO. 09/18/84 U.S. PT. NO. 03/05/85 U.S. PT. NO. 03/05/85 U.S. PT. NO. 03/12/85 U.S. PT. NO. 03/12/85 U.S. PT. NO. 03/12/85			4,509,249		Isolation Region In	
PUBLICATION TITLE ASSIGNEE/OR PUBLICATION TITLE ASSIGNEE/OR NUMBER NUMBER PUBLICATION NATE NATENT NATENT PUBLICATION NOMBER NOMBER PUBLICATION NOMBER NOMBE		04/09/85	U.S. PT. NO.	Goto, et al.	Method For Fabricating	86
PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Method For Manufacturing Kanneyanna U.S. PT. NO. 09/18/84 Semiconductor Device Hethod Of Fabricating A Bipolar Dynamic Memory Cell V-MOS Filed Effect David et al. U.S. PT. NO. 03/05/85 Method Of Fabricating Power MoSFET Structure Utilizing Self-Aligned Diffusion and Se					Etching Techniques	
PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Method For Manufacturing Kanneyama U.S. PT. NO. 09/18/84 Semiconductor Device 4,472,240 Method Of Fabricating A El-Karach U.S. PT. NO. 10/16/84 PUBLICATION DATE NOS Filed Effect David et al. U.S. PT. NO. 03/05/85 Pransistor Vora, et al. U.S. PT. NO. 03/05/85 Method Of Fabricating Power MOSFET Structure Utilizing Vora, et al. 4,503,598		-			Self-Aligned Diffusion and	
PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Method For Manufacturing Kanneyanna U.S. PT. NO. 09/18/84 Semiconductor Device 4,472,240 Method Of Fabricating A Bipolar Dynamic Memory Cell V-MOS Filed Effect David et al. U.S. PT. NO. 03/05/85 Method Of Fabricating Power Vora, et al. U.S. PT. NO. 03/12/85			4,503,598		MOSFET Structure Utilizing	
PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Method For Manufacturing Kanneyanna U.S. PT. NO. 09/18/84 Method Of Fabricating A El-Karach U.S. PT. NO. 10/16/84 Bipolar Dynamic Memory Cell V-MOS Filed Effect David et al. U.S. PT. NO. 4,503,449	103	03/12/85	U.S. PT. NO.	Vora, et al.	Method Of Fabricating Power	85
PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Method For Manufacturing Kanneyanna U.S. PT. NO. 09/18/84 Method Of Fabricating A El-Karach U.S. PT. NO. 10/16/84 Bipolar Dynamic Memory Cell V-MOS Filed Effect David et al. U.S. PT. NO. 03/05/85			4,503,449		Transistor	
PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Method For Manufacturing Kameyama U.S. PT. NO. 09/18/84 Semiconductor Device 4,472,240 Method Of Fabricating A Bipolar Dynamic Memory Cell 4,476,623	103	03/05/85	U.S. PT. NO.	David et al.	V-MOS Filed Effect	84
PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Method For Manufacturing Kanneyanna Semiconductor Device Method Of Fabricating A Bipolar Dynamic Memory ASSIGNEE/OR NUMBER PUBLICATION DATE INVENTOR U.S. PT. NO. 09/18/84 4,472,240 U.S. PT. NO. 10/16/84			,		Cell	
PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Method For Manufacturing Kanneyanna Semiconductor Device Method Of Fabricating A El-Karach PUBLICATION DATE Mothod Of Fabricating A El-Karach PUBLICATION DATE NUMBER PUBLICATION DATE NUMBER PUBLICATION DATE NUMBER PUBLICATION DATE 1NVENTOR 4,472,240 U.S. PT. NO. 10/16/84			4,476,623		Bipolar Dynamic Memory	
NO. PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Method For Manufacturing Kameyama Method For Manufacturing Kameyama Semiconductor Device AUTHOR/ ASSIGNEE/OR NUMBER PUBLICATION DATE 1NVENTOR U.S. PT. NO. 09/18/84 4,472,240		10/16/84	U.S. PT. NO.	El-Karach	Method Of Fabricating A	83
NO. PATENT OR AUTHOR/ PATENT ISSUE/ PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION INVENTOR DATE Method For Manufacturing Kanneyanna U.S. PT. NO. 09/18/84	-		4,472,240		Semiconductor Device	
PATENT OR AUTHOR/ PATENT ISSUE/ PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION INVENTOR DATE	103	09/18/84	U.S. PT. NO.	Kameyama	Method For Manufacturing	82
PATENT OR AUTHOR/ PATENT ISSUE/ PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION		DATE		INVENTOR		
PATENT OR AUTHOR/ PATENT ISSUE/		PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
	CLASSIFICATION	ISSUE/	PATENT	AUTHOR/	PATENT OR	NO.

Z	BATENT OR	AHTHOR/	PATENT	ISSIIS/	NOLLY JEHNS VID
:	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER		
92	Bidirectional Power With	Schutten et al.	U.S. PT. NO.	09/10/85	103
	Substrate-Referenced Shield		4,541,001		
93	Lateral Bidirectional Notch	Schutten et al.	U.S. PT. NO.	10/08/85	103
	FET With Extended Gate		4,546,367		
	Insulator				
94	Bidirectional Power FET	Schutten et al.	U.S. PT. NO.	11/12/85	
	With Field Shaping		4,553,151		
95		Duplicate			
96	Simplified Planarization	Shepard	U.S. PT. NO.	11/26/85	-
	Process For Polysilicon		4,554,728		
	Filled Trenches				
97	Method Of Fabricating VLSI	Levinstein et al.	U.S. PT. NO.	12/3/85	
	CMOS Devices Having		4,555,842		
	Complementary Threshold		•		
	Voltages				
98	Inversion-Mode Insulated-	Baliga	U.S. PT. NO.	02/03/86	103
	Gate Gallium Arsenide Field-		4,568,958		
	Effect Transistors				
99	Method Of Making Vertical	Baliga et al.	U.S. PT. NO:	02/25/86	
	Channel Field Controlled		4,571,815		
	Device Employing A				
	Recessed Gate Structure				
100	Method of Manufacturing	Kawakatsu	U.S. PT. NO.	04/15/86	
	integrated Semiconductor		4,582,565		
	Circuit Devices				
101	Process for Manufacturing of	Lidow, et al.	U.S. PT. NO.	06/03/86	103
	High Power MOSFET with		4,593,302		
	Laterally Distributed High		•		
	Carrier Density Beneath The	-			
	Gate Oxide				

				trenches	
				sidewalls of isolation	
	02/03/87	H204	Oh et al.	Method for implanting the	011
				polycrystalline silicone	
				silicides having a high	
				double layers of metal	•
		4,640,844		of gate electrodes formed of	
	02/03/97	U.S. PAT NO.	Neppl et al.	Method for the manufacture	601
		4,639,754		Diminished Bipolar Effects	
103	01/27/87	U.S. PT. NO	Wheatley, Jr. et al.	Vertical MOSFET with	801
			-	An Insulating Trench	
				Field Oxide With Respect To	-
		4,636,281	-	Autopositioning Of A Local	
	01/13/87	U.S. PT. NO	Buiguez et al.	Process For The	107
		4,631,803		Free Trench Isolation Devices	
	12/20/86	U.S. PT. NO	Hunter et al.	Method of Fabrication Defect	106
103	12/16/86	U.S. PT. NO 4,630,088	Ogura et al.	MOS Dynamic Ram	105
				Terminal Means	
				Dual Gate Reference	
				Channel Stacking And With	
		4,622,569		FET With Notched Multi-	
103	11/11/86	U.S. PT. NO	Lade et al.	Lateral Bidirectional Power	104
		4,608,584		Transistor	
103	08/24/86	U.S. PT. NO	Mihara	Vertical Type MOS	103
				Its Manufacture	
		4,596,999		Component And Process For	
	06/24/86	U.S. PT. NO	Gobrecht et al.	Power Semiconductor	102
	DATE		INVENTOR		
-	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	Ç
CLASSIFICATION	ISSUE/	PATENT	AIITHOR/	BO TRATE	

					Of Accidity AT
NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	CLASSIFICATION
Ξ	Dynamic memory device	Lu	U.S. PAT NO.	03/17/87	
	having a single-crystal		6,649,625		
	transistor on a trench				
	capacitor structure and a				
	fabrication method therefor				
112	Shallow grove capacitor	Erb et al.	U.S. PAT NO.	03/17/87	
	fabrication method		4,650,544		
113	Dynamic memory device	Lu	U.S. PAT NO.	03/17/87	
	having a single-crystal		4,649,625		
	transistor on a trench	•			
	capacitor structure and a				
	fabrication method therefor				
114、	Dram cell and array	Malhi	U.S. PAT NO. 4,651,184	03/17/87	103
5	Complementary mos	Sunami et al.	U.S. PAT NO.	06/02/87	
;	integrated circuits having		4,670,768		
	vertical channel fets				
911	Semiconductor memory	Miura et al.	U.S. PAT NO.	06/09/87	103
	device with trench		4,672,410		
	surrounding each memory cell				
117	Vertical dram cell and method	Chatterjee et al.	U.S. PAT NO.	06/16/87	103
			4,6/3,962		
811	mos transistor	Terry et al.	U.S. PAT NO.	06/23/87	103
	Bassas for manifesture of	I idom at al	4,0/3,/13	07/21/87	1/13
	high power mosfet with		4,680,853		
	laterally distributed high				•
	carrier density beneath the				
	gate oxide				

100	0,110	1084937	0		
1/13	00/27/67	United Kingdom	Rover Cullis		130
		4,751,588		field shield	
	06/14/88	U.S. PAT NO.	Kenney	High density memory with	129
		4,751,557		capacitor	
	06/14/88	U.S. PAT NO.	Sunami et al	Dram with fet stacked over	128
		4,721,987		high density dynamic ram	
	01/26/88	U.S. PAT NO.	Baglee et al.	Trench capacitor process for	127
				switching transistor	
		4,717,942		groove surrounding	
	01/05/88	U.S. PAT NO.	Nakamura et al.	Dynamic ram with capacitor	126
				fabricating same	
	•	4,707,721		system and method for	
	11/17/87	U.S. PAT NO.	Ang et al.	Passivated dual dielectric gate	125
				cells including the capacitor	
				high density dynamic memory	
				semiconductor capacitor and	
		4,704,368		incorporated monolithic	
•	11/3/87	U.S. PAT NO.	Goth et al.	Method of making trench-	124
		4,702,795			
	10/27/87	U.S. PAT NO.	Douglas	Trench etch process	123
				state	
		4,697,201		resistance in the conducting	
	09/29/87	U.S. PAT NO.	Mihara	Power mos fet with decreased	122
		4,683,486	•		
103	07/28/87	U.S. PAT NO.	Chatterjee	Dram cell and array	121
		4,682,405		and vertical dmos transistors	
103	07/28/87	U.S. PAT NO.	Blanchard et al.	Methods for forming lateral	120
	DATE		INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	ISSUE/	PATENT	AUTHOR	PATENT OR	NO.

	01/00/85	Japan 0012752			157
103	10/00/84	United Kingdom			156
	06/00/84	Japan 0108325		·	155
				Compositions, Article Manufactured Therefrom And Processes For Preparing The Cured Compositions And Manufactured Articles	
	09/00/83	European Pat.	Eugene Bertozzi	Curable And Cured Polysulfide Polymer	154
	03/00/83	Japan 0050752			153
	02/00/83	Japan 141262			152
	01/00/83	Japan 0003269			151
	01/00/83	Japan 0010861			150
	01/00/83	Japan 0003287			149
	12/00/82	European Pat. Off. 0066081	Joseph Shepard	Dense Vertical FET And Method Of Making	148
	07/00/82	Japan 109367			147
	01/00/82	Japan 0010973			146
CLASSIFICATION	ISSUE/ PUBLICATION DATE	PATENT NUMBER	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT OR PUBLICATION TITLE	NO.

160
Vertical Bidirectional Stacked James Benjamin, et al. Power Fet Semiconductor Memory Natsuro Tsubouchi, et al. Dynamic Ram Cell Nicky Chau-Chun Lu, et al.
Vertical Bidirectional Stacked James Benjamin, et al. Power Fet Semiconductor Memory Natsuro Tsubouchi, et al. Dynamic Ram Cell Nicky Chau-Chun Lu, et al.
Vertical Bidirectional Stacked Power Fet Semiconductor Memory Device Dynamic Ram Cell Cet al. Nicky Chau-Chun Lu, et al.
Vertical Bidirectional Stacked James Benjamin, et al. Power Fet Semiconductor Memory Natsuro Tsubouchi, et Device al. Dynamic Ram Cell Nicky Chau-Chun Lu, et al.
Vertical Bidirectional Stacked Power Fet Semiconductor Memory Natsuro Tsubouchi, et Device Nicky Chau-Chun Lu, et al.
Vertical Bidirectional Stacked Power Fet Power Fet Semiconductor Memory Natsuro Tsubouchi, et al. Dynamic Ram Cell Nicky Chau-Chun Lu, et al.
Semiconductor Memory Device Dynamic Ram Cell Dynamic Ram Cell Dynamic Ram Cell Nicky Chau-Chun Lu, et al.
Dynamic Ram Cell et al.

			Trotter		
			Jenne, James D.		
			Frederick, John J.	State Circuits	
			Randy Hiltpold, Bruce	from IEEE Journal of Solid-	
103	Oct. 1977	N/A	T.J. Rodgers, W.	"VMOS Memory Technology	178
				Disclosure Bulletin	
				Process" from IBM Technical	
	June, 1977	N/A	S.A. Abbas	"Recessed Oxide Isolation	177
			J. Donald Trotter		
			Randolph Hiltpold and		
			J. Barnes, W.	Circuits Conference	
			Bruce Frederick, John	International Solid-State	
		•	Frederick B. Jenne,	Technology" from IEEE	
103	Feb. 16, 1977	N/A	Thurman J. Rodgers,	"VMOS Memory	176
				from Solid State Electronics	
			A.S. Grove	Planar Silicon Junctions"	
	April 15, 1966	N/A	O. Leistiko, Jr. and	"Breakdown Voltage Of	175
		198590	-		
	11/00/86	Japan			174
		186875			
	•	Off.			
	07/00/86	European Pat.			173
		61-142774			
	98/00/90	Japan			172
,		176254			
		Off			-
	04/00/86	Furonean Pat			171
	DATE		INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	13:5:15/	PATENT	AUTHOR/	PATENT OR	Z O.

Publication Title Assicnee/OR Number Publication	NO.	PATENT OR	AUTHOR/	PATENT	ISSUE/	CLASSIFICATION
"Dynamic DMOS Random-Access Memory Cell Design with Trench" from IBM Technical Discosure Bulletin "Fabrication of V-MOS or U-T.S. Chang and S. N/A Dec. 1979 MoS Random-Access Memory Celts With A Self-Aligned Word Line from IBM Technical Disclosure Bulletin "N. Skin Elimination In UMOS Device By Re-Oxidation from IBM Technical Disclosure Bulletin "Short-Channel Field-Effect Ifform IBM Technical Disclosure Bulletin "Short-Channel Field-Effect Ifform IBM Technical Disclosure Bulletin "Vertical FET Random-Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Tandsom-Access Memories With Deep Trench Isolation on Electron Devices Transactions on Electron Devices Professore Dynamic Memory D.M. Kenney D.M. Kenney N/A Dec. 1978 Dec. 1979 Dec. 197		PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	
Access Memory Cell Design with Trench" from IBM Terchnical Disclosure Bulletin "Fabrication of V-MOS or U- MOS Random-Access Memory Cells With A Self- Aligned Word Line from IBM Technical Disclosure Bulletin "N. Skin Elimination In UMOS Device By Re- Oxidation from IBM Technical Disclosure Bulletin "Short-Channel Field-Effect Transistors in V-Groves" from IBM Technical Disclosure Bulletin "Vertical FET Random- Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin Disclosure Bulletin Devices "V-Groove Dynamic Memory D.M. Kenney N/A Aug. 1980 D.M. Kenney N/A Aug. 1980	179	"Dynamic DMOS Random-	F. Barson	N/A	Dec. 1978	103
with Trench' from IBM Technical Disclosure Bulletin Technical Disclosure Bulletin Technical Disclosure Mos Random-Access Memory Cells With A Self- Aligned Word Line from IBM Technical Disclosure Bulletin "N. Skin Elimination In UMOS Device By Re- Oxidation from IBM Technical Disclosure Bulletin "Short-Channel Field-Effect Transistors in V-Groves" from IBM Technical Disclosure Bulletin "Vertical FET Random- Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices Transactions on Electron Devices Devices Devices Devices Deviced Disclosure Bulletin Solicon from IEEE Transactions on Electron Devices De		Access Memory Cell Design			00	
Technical Disclosure Bulletin "Fabrication of V-MOS or U-TS. Chang and S. N/A Dec. 1979 MOS Random-Access Memory Cells With A Self-Aligned Word Line from IBM Technical Disclosure Bulletin "N. Skin Elimination In UMOS Device By Re-Oxidation from IBM Technical Disclosure Bulletin "Short-Channel Field-Effect Transistors in V-Groves" Troutman from IBM Technical Disclosure Bulletin "Vertical FET Random-Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Elie S. Animar and Devices Transactions on Electron Devices "V-Groove Dynamic Memory D.M. Kenney N/A Aug. 1980 "V-Groove Dynamic Memory D.M. Kenney N/A Aug. 1980		with Trench" from IBM		•	-	
"Fabrication of V-MOS or U- MOS Random-Access Memory Cells With A Self- Aligned Word Line from IBM Technical Disclosure Bulletin "N. Skin Elimination In UMOS Device By Re- Oxidation from IBM Technical Disclosure Bulletin "Short-Channel Field-Effect Transistors in V-Groves" from IBM Technical Disclosure Bulletin "Vertical FET Random- Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin Disclosure Bulletin Devices Devices Devices Devices Devices Devices Downa Ogura N/A Jan. 1980 Dan. 1980 T.S. Chang and D.L. N/A Jan. 1980 T.S. Chang and D.L. N/A Jan. 1980 T.S. Chang and D.L. N/A Jan. 1980 Aug. 1980 Devices N/A Aug. 1980		Technical Disclosure Bulletin				
MOS Random-Access Memory Cells With A Self- Aligned Word Line from IBM Technical Disclosure Bulletin "N. Skin Elimination In UMOS Device By Re- Oxidation from IBM Technical Disclosure Bulletin "Short-Channel Field-Effect Transistors in V-Groves" from IBM Technical Disclosure Bulletin "Vertical FET Random- Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin D.M. Kenney N/A Aug. 1980 D.M. Kenney N/A Aug. 1980	180	"Fabrication of V-MOS or U-	T.S. Chang and S.	N/A	Dec. 1979	103
Memory Cells With A Self- Aligned Word Line from IBM Technical Disclosure Bulletin 'N. Skin Elimination In UMOS Device By Re- Oxidation from IBM Technical Disclosure Bulletin 'Short-Channel Field-Effect Transistors in V-Croves' from IBM Technical Disclosure Bulletin 'Vertical FET Random- Access Memories With Deep Trench Isolation' from IBM Technical Disclosure Bulletin 'UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices Troove Dynamic Memory Cell' from IBM Technical Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin		MOS Random-Access	Ogura			
Aligned Word Line from IBM Technical Disclosure Bulletin "N. Skin Elimination In UMOS Device By Re- Oxidation from IBM Technical Disclosure Bulletin "Short-Channel Field-Effect Transistors in V-Groves" from IBM Technical Disclosure Bulletin "Vertical FET Random- Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices Transistors on (110) Silicon from IEEE Transactions on Electron Devices Tron IBM Technical Disclosure Bulletin Disclosure Bulletin Devices Tom IBM Technical Disclosure Bulletin Devices Tom IBM Technical Disclosure Bulletin Devices Tom IBM Technical Disclosure Bulletin T.J. Rodgers T.J. Rodgers N/A Aug. 1980 Aug. 1980	•	Memory Cells With A Self-				
## Billetin "N. Skin Elimination In UMOS Device By Re-Oxidation from IBM Technical Disclosure Bulletin "Short-Channel Field-Effect Transistors in V-Groves" from IBM Technical Disclosure Bulletin "Vertical FET Random-Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin		Aligned Word Line from				
**N. Skin Elimination In UMOS Device By Re- Oxidation from IBM Technical Disclosure Bulletin "Short-Channel Field-Effect Transistors in V-Groves" from IBM Technical Disclosure Bulletin "Vertical FET Random- Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices "V-Grove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Devices "V-Grove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin Disclosure Bulletin		1BM Technical Disclosure				
"N. Skin Elimination In UMOS Device By Re- Oxidation from IBM Technical Disclosure Bulletin "Short-Channel Field-Effect H.S. Lee and R.R. "Short-Channel Field-Effect IT foutman IBM Technical Disclosure Bulletin "Vertical FET Random- Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin Disclosure Bulletin D.M. Kenney D.M. Kenney N/A Jan. 1980 Jan. 1980 T.S. Chang and D.L. N/A Jan. 1980 Jan. 1980 T.J. Rodgers T.J. Rodgers N/A Aug. 1980 Aug. 1980 Aug. 1980		Bulletin				
UMOS Device By Re- Oxidation from IBM Technical Disclosure Bulletin "Short-Channel Field-Effect Troutman from IBM Technical Disclosure Bulletin "Vertical FET Random- Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin Disclosure Bulletin Downer Bulletin Oxidation from IBM Technical Disclosure Bulletin Garbarino H.S. Lee and R.R. N/A Troutman Troutman T.S. Chang and D.L. N/A Jan. 1980 Critchlow T.J. Rodgers T.J. Rodgers N/A May 1980 May 1980 Oxidation from IBM Technical Disclosure Bulletin Oxidation from IBM Technical Disclosure Bulletin	181	"N. Skin Elimination In	J.J. Fatula, Jr. and P.L.	N/A		
Oxidation from IBM Technical Disclosure Bulletin "Short-Channel Field-Effect H.S. Lee and R.R. N/A Jan. 1980 Transistors in V-Groves" from IBM Technical Disclosure Bulletin "Vertical FET Random- Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin Disclosure Bulletin Oxidation from IPR H.S. Lee and R.R. N/A I an. 1980 Troutman Troutman Troutman T.S. Chang and D.L. N/A Jan. 1980 T.S. Chang and D.L. N/A May 1980 Technical Disclosure Bulletin T.J. Rodgers Tom IBM Technical Disclosure Bulletin N/A Aug. 1980		UMOS Device By Re-	Garbarino			
Technical Disclosure Bulletin "Short-Channel Field-Effect H.S. Lee and R.R. N/A Jan. 1980 Transistors in V-Groves" from IBM Technical Disclosure Bulletin "Vertical FET Random- Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin Disclosure Bulletin Toutman T.S. Chang and D.L. N/A T.S. Chang and D.L. N/A In 1980 T.S. Chang and D.L. N/A Jan. 1980 May 1980 May 1980 May 1980 Cell" from IBM Technical Disclosure Bulletin		Oxidation from IBM				
"Short-Channel Field-Effect Troutman Transistors in V-Groves" Troutman Transistors in V-Groves" Troutman Transistors in V-Groves" Troutman Transistors in V-Groves Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin Transactions on Electron Devices Transistors on (110) Elie S. Animar and Devices Transactions on Electron Devices Dynamic Memory D.M. Kenney D.M. Kenney D.M. Kenney D.M. Kenney N/A Aug. 1980		Technical Disclosure Bulletin				
Transistors in V-Groves" from IBM Technical Disclosure Bulletin "Vertical FET Random- Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin	182	"Short-Channel Field-Effect	H.S. Lee and R.R.	N/A	Jan. 1980	103
from IBM Technical Disclosure Bulletin "Vertical FET Random- Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin Disclosure Bulletin T.J. Rodgers "NA May 1980 May 1980 May 1980 May 1980 May 1980 May 1980 May 1980 May 1980		Transistors in V-Groves"	Troutman			
## Disclosure Bulletin "Vertical FET Random-Access Memories With Deep Trench Isolation" from IBM ## Technical Disclosure Bulletin "UMOS Transistors on (110) ## Silicon from IEEE ## Transactions on Electron ## Devices "V-Groove Dynamic Memory Cell" from IBM Technical ## Disclosure Bulletin ## Disclosure Bulletin ## Disclosure Bulletin ## Disclosure Bulletin ## Disclosure Bulletin ## Disclosure Bulletin ## Disclosure Bulletin		from IBM Technical	•			
"Vertical FET Random- Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin T.S. Chang and D.L. N/A Critchlow Critchlow Critchlow Critchlow Critchlow Critchlow Critchlow Critchlow May 1980 May 1980 May 1980 May 1980 May 1980 May 1980		Disclosure Bulletin				
Access Memories With Deep Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin	183	"Vertical FET Random-	T.S. Chang and D.L.	N/A	Jan. 1980	103
Trench Isolation" from IBM Technical Disclosure Bulletin "UMOS Transistors on (110) Elie S. Ammar and Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin		Access Memories With Deep	Critchlow			
Technical Disclosure Bulletin "UMOS Transistors on (110) Elie S. Annmar and Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin		Trench Isolation" from IBM				
"UMOS Transistors on (110) Elie S. Ammar and Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin		Technical Disclosure Bulletin				
Silicon from IEEE Transactions on Electron Devices "V-Groove Dynamic Memory Cell" from IBM Technical Disclosure Bulletin	184	"UMOS Transistors on (110)	Elie S. Ammar and	A/N	May 1980	103
Transactions on Electron Devices "V-Groove Dynamic Memory D.M. Kenney N/A Aug. 1980 Cell" from IBM Technical Disclosure Bulletin		Silicon from IEEE	T.J. Rodgers			
Devices "V-Groove Dynamic Memory D.M. Kenney N/A Aug. 1980 Cell" from IBM Technical Disclosure Bulletin		Transactions on Electron				
"V-Groove Dynamic Memory D.M. Kenney N/A Aug. 1980 Cell" from IBM Technical Disclosure Bulletin		Devices				•
	185	"V-Groove Dynamic Memory	D.M. Kenney	N/A	Aug. 1980	103
Disclosure Bulletin		Cell" from IBM Technical			•	
		Disclosure Bulletin				

				Electron Devices	
			Smith	Digital Converter IC's from	
			R. Curtice, and Rene	GaAs MESFET Analog-to-	
			Upadhyayula, Walter	Evaluation of 2- and 3-Bit	
	Jan. 1983	N/A	L. Chamulu	"Design, Fabrication, and	191
			Jacob Riseman		
			Joseph F. Shepard and		
			Codella, Nivo Rovedo,	from IEEE	
,			Christopher F.	Using Double Implanted LDD	
	1982	N/A	Seiki Ogura,	"A Half Micron MOSFET	190
			Nagakubo		
			Momose, and Y.	Devices" from IEEE	
103	1982	N/A	R.D. Rung, H.	"Deep Trench Isolated CMOS	189
				Solid State Technology	
				Technology for VLSI from	•
			Israel Beinglass	and Contact Barrier	
	Dec. 1982	N/A	Nicholas E. Miller and	"CVD Tungsten Interconnect	881
_			Critchlow		
			Shepard, and Dale L.	Technology	
			Walker, Joseph F.	Oxide Sidewall-Spacer	
-			Ogura, William W.	Performance LDDFET's with	
	April 1982	A/N	Paul J. Tsang, Seiki	"Fabrication of High-	187
				Disclosure Bulletin	
•				Devices from IBM Technical	
				Capacitance in VMOS	
103	Feb. 1981	N/A	D.M. Kenney	"Reduced BIT Line	186
	DATE		INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	ISSUE/	PATENT	AUTHOR/	PATENT OR	NO.

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
192	"A New Vertical Power MOSFET Structure with	Daisuke Euda, Hiromitsu Takagi, and	N/A	Jan. 1984	
	Extremely Reduced On-	Gota Kano			
	Resistance from IEEE		•		
	Transactions on Electron				
	Devices		-		
193	"The Insulated Gate	B. Jayant Baliga,	A/N	June 1984	103
	Transistor: A New Three-	Michael S. Adler,			
	Terminal MOS-Controlled	Robert P. Love, Peter			
	Bipolar Power Device from	V. Gray and Nathan			
	IEEE Transactions on	D. Zommer			
	Electron Devices				
194	"Compact One-Device	C.G. Jambotkar	N/A	July 1984	
	Dynamic Ram Cell With High				
	Storage Capacitance from				
	IBM Technical Disclosure				
	Bulletin				
195	"Characterization of As-P	K. Balasubramanyam,	A/N	1984	
	Double Diffused Drain	M.J. Hargrove, H.I.			
	Structure from IEDM	Hanafi, M.S. Lin, D.			
		Hoyniak, J. LaRue and			
		D.R. Thomas			
196	"Self-Aligned Titamium	K. Tsukamoto, T.	N/A	1984	
	Silicidation of Submicron	Okamoto, M. Shimizu,			
	MOS Devices by Rapid Lamp	T. Matsukawa, and H.			
	Annealing from IEDM	Nakata			

	02/28/89	4,808,543	Parrillo et al.	Well Extensions For Trench Devices	205
	08/30/88	4,767,722	Blanchard	Method For Making Planar Vertical Channel DMOS Structures	204
103	08/16/88	4,764,481	Alvi et al.	Grown Side-Wall Silicided Source/Drain Self-Align CMOS Fabrication Process	203
103	03/26/85	4,506,435	Pliskin et al.	Method For Forming Recessed Isolated Regions	202
103	08/16/83	4,398,339	Blanchard et al.	Fabrication Method For High Power MOS Device	201
	April 1987	N/A	Y. Pauleau	"Interconnect Materials for VLSI Circuits +	200
			Temple, Wirojana Tantraporn and B. Jayant Baliga	of 1 mΩ · cm2 from IEEE Transactions on Electron Devices	
	Nov. 1987	N/A	HR Chang, R.D. Black, V.A.K.	"Self-Aligned UMOSFET's with a Specific On-Resistance	199
			Gota Kano	by Using a Fully Self-Aligned Process from IEEE Transaction on Electron Devices	
	April 1987	N/A	Daisuke Euda, Hiromitsu Takagi, and	"An Ultra-Low On-Resistance Power MOSFET Fabricated	198
			Leung, W.T. Cochran, R. Harney, A. Maury and H.P.W. Hey	Submicron CMOS Process With Self-Aligned Chan-Stop and Punch-Through Implants (Twin-Tub V) from IEEE	Š
CLASSIFICATION	ISSUE/ PUBLICATION DATE 1986	PATENT NUMBER	AUTHOR/ ASSIGNEE/OR INVENTOR M-L Chen. C-W.	PATENT OR PUBLICATION TITLE	NO.

206 207 208 209	PATENT OR PUBLICATION TITLE Grooved DMOS Process With Varying Gate Dielectric Thickness Vertical DMOS Transistor Fabrication Process Vertical Floating-Gate Transistor Method Of Making Topographic Pattern Delineated Power MOSFET With Profile Tailored	AUTHOR/ ASSIGNEE/OR INVENTOR Blanchard Blanchard Mori Meyer et al.	PATENT NUMBER 4,914,058 4,983,535 5,016,068 5,019,522	ISSUE/ PUBLICATION DATE 04/03/90 01/08/91 05/14/91
210	Method Of Making A Vertical	Mori	5 160 491	11/03/02
	MOS Transistor			
211	Integrated MOS Electrical Component	D. Edwards and R. Hofmann	German PT. Off. DE 3028561	
212.	Longitudinal Semiconductor Device and Manufacture Thereof	Sasaki Yoshitaka	Japanese PT. Off. JP62037965A	02/18/87
213	Manufacture of Vertical Type Semiconductor Device With Groove Section	Sasaki Yoshitaka	Japanese PT. Off. JP62012167A	01/21/87
214	Avalanche Injection Into The Oxide In Silicon Gate-Controlled Devices-I Theory From Solid-State Electronics. 1975 Vol. 18, pp. 363-374	C. Bulucea	N/A	03/18/74

	BATTATA	AUTHOR/	DATENT.	lee le	NOTE OF THE PARTY IN
Š	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	
215	Avalanche Injection Into The	C. Bulucea	N/A	03/18/74	
·	Controlled Devices-II				
	Experimental Results From				
	Solid-State Electronics, 1975				
	Vol. 18, pp. 381-391				
216	The Oxidation of Shaped	R.B. Marcus and T.T.	N/A	06/00/82	
_	Silicon Surfaces From	Sheng			
	Journal of the				
	Electrochemical Society				
217	A New Vertical Power	Daisuke Ueda	N/A	01/00/85	103
	MOSFET Structure with	Hiromitsu Takagi and			
	Extremely Reduced On-	Gota Kano			
	Resistance From IEEE				
	Transactions on Electron				
	Devices, Vol. ED-32, No. 1		•		
218	Oxidation of Curved Silicon	Lynn O. Wilson and	N/A	02/00/87	
	Surfaces From Journal of the	R.B. Marcus			
	Electrochemical Society Vol.				
	134, No. 2				
219	Nonplanar Oxidation and	Kikuo Yamabe and	N/A	08/00/87	
	Reduction of Oxide Leakage	Keitaro Imai			
	Currents at Silicon Corners by				
	Rounding-off Oxidation From				
	IEEE Transactions On				
	Electron Devices Vol. ED-34,				
	No. 8				

NC.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR	NUMBER	PUBLICATION	CLASSIFICATION
		INVENTOR		DATE	
220	Self-Aligned UMOSFET's	HR. Chang, R.D.	N/A	11/00/87	103
	with a Specific On-	Black, V.A.K.	-		
	Resistance of 1mΩ · cm2	Temple, Wirojana			
•	From IEEE Transactions On	Tantraporn and B.			
	Electron Devices Vol. ED-34,	Jayant Baliga			
	No. 11				
221	Breakdown Voltage of	Constantin Bulucea	N/A	05/28/91	
	Diffused Epitaxial Junctions				
	From Solid-State Electronics				
	Vol. 34, No. 12 pp. 1313-1318				
222	Process for Manufacture of	Lidow et al.	4,593,302	06/03/86	103
	High Power Mosfet With				
	Laterally Distributed High				
	Carrier Density Beneath the		-		
	Gate Oxide				
223	Gate Shield Structure For	Neilson et al.	4,631,564	12/23/86	
	Power Mos Device				
224	Semiconductor Device and	Shimizu	4,663,644	05/05/87	103
	Method of Manufacturing the		•		
	Same				
225	Process for Manufacture of	Lidow et al.	4,680,853	07/21/87	103
	High Power Mosfet With	•			
	Laterally Distributed High				
	Carrier Density Beneath the				
	Gate Oxide				
226	Method for Making Planar	Blanchard	4,767,722	08/30/88	102, 103
	Vertical Channel DMOS			-	
	Sturctures				

103		Japanese PT. Off. 56131960 A	Yasuno Kosuke, et al.	Preparation	238:
103		Japanese PT. Off. 1 – 142775			237
·	08/02/89	Japanese PT. Off. 1 – 192174			236
	05/19/88	Japanese PT. Off. 63114173	and Ochiai Toshiyukl	Manufacture Thereof	233
103				Various Abstracts of Foreign and Domestic Patents	234
102, 103	04/00/82	IDEZ696-2	Richard A. Blanchard	Optimization of Discrete High Power MOS Transistors	233
102, 103	02/00/82	IDEZ696-1	S.C. Sun	Physics and Technology of Power MOSFETs	232
	11/08/94	U.S. PT NO. 5,362,665	Lu	Method of Making Vertical Drain Cross Point Memory Cell	231
103	08/11/87	U.S. PT NO. 4,685,196	Lee	Method For Making Planar FET having Gate, Source and. Drain In The Same Plane	230
102, 103	01/09/90	4,893,160	Blanchard	Method for Increasing the Performance of Trenched Devices and the Resulting Structure	229
103	04/25/89	4,824,793	Richardson et al.	Method of Making DRAM Cell with Trench Capacitor	228
	12/27/88	4,794,561	Hsu	Static RAM Cell with Trench Pull-Down Transistors and Buried-Layer Ground Plate	227
CLASSIFICATION	ISSUE/ PUBLICATION DATE	PATENT NUMBER	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT OR PUBLICATION TITLE	NO.

NO.	PATENT OR	AUTHOR/	PATENT	ISSUE/	CLASSIFICATION
	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	
239			Japanese PT. Off.		
			2 - 102579		
240			Japanese PT. Off.		
			1 - 310576		
241	Semiconductor Device and	Ueda Daisuke, Takagi	Japanese PT. Off.		103
-	Manufacture Thereof	Hiromitsu, and Kano	57-18365 A		
		Kota		-	
242			Japanese PT. Off.		
			60-28271		
243	•	•	Japanese PT. Off.		103
			00 20271		
1	Semiconductor Device with		620121167 A		
	Grove Section				
245	Methods for Forming Lateral	Blanchard et al.	U.S. PT. No.	07/28/87	103
	and Vertical DMOS		4,682,405		
	Transistors				
246	Method of Fabricating Power	Vora et al.	U.S. PT. NO.	03/12/85	103
	MOSFET Structure Utilizing		4,503,598		
	Self-Aligned Diffusion and				
	Etching				
247	Vertical MOSFET and	Morie et al.	U.S. PT. NO.	11/22/88	103
	Method of Manufacturing the		4,786,953		
	Same				
248	FET For High Reserve Bias	Hendrickson et al.	U.S. PT. NO.	04/05/88	
	Voltage and Geometrical		4,735,914		
	Design for Low On	_			•
	Resistance				

	00/00/88		Takayuki Gomi et al.	A Sub-30psec Si Bipolar LSI Technology from IEEE	255
	00/00/88		S. Duncan et al.	A lum Trench High Speed Bipolar Transistor from 17 cr	254
			Yuzuriha, and Valdis E. Garuts		
٠			Drobny, Todd H.		
			Ahrendt, Vladimir F.		
			Herman, Diane R.	Base Implant from IEEE	
			Patton, Robert D.	Poly Process with Coupling-	
			S. Lee, Evan E	rechnology Using Borosenic-	
			Yu, Eric E. Lane, June	Double Poly-Si Bipolar	
	08/00/88		Yeou-Chong Simon	Performance of High-Speed	
	00/00/00		Tadanori Yamaguchi.	Process and Device	253
			John Mauer		
			Duan-Lee Tang, and	Technology from IEEE	
			Ketchen, Denny	Self-Aligned Bipolar	
103	11/00/0/		C.T. Chuang, Mark B.	Performance Trench-Isolated	
	71////11		G.P. Li, Tak H. Nine	An Advanced High-	252
			Burger		
			Isaac, and Rudolph E.		
			Ning, Randall D.	from IEEE	
	10,00,02		M. Solomon, Tak H.	Self-Aligned Bipolar Circuits	
	10/00/82		Denny D. Tang, Paul	1.25 um Deep-Grove-Isolated	251
			Nagakubo		
103	20,00,00		Momose, and Y.	Devices from IEEE	
,	COVINIO		R.D. Rung, H.	Deep Trench Isolated CMOS	250
-		4,510,143	•	Short and Methods of Making	
103	05/07/85	U.S. PT. NO.		With Integral Source-Base	
	DATE			Self-Aligned Power MOSFE'F	249
	PUBLICATION	NUMBER	ASSIGNEE/OR	· OBEICATION HILL	
CLASSIFICATION	ISSUE/	PATENT	AUTHOR/	PURI DATION TITLE	

!			DATENT	leelle/	CI VECIEIC VILION
Š	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION	
256	Process He: A Highly	P.C. Hunt and M.P.		00/00/88	-
	Advanced Trench Isolated	Cooke			
	Bipolar Technology For				
	Analogue and Digital				
	Applications				
257	A 0.5 vm Very-High-Speed	Takeo Shiba et al.		11/00/91	
	Silicon Bipolar Devices				
	Technology-U-Groove-				
	Isolated SICOS from IEEE				
258	MOSAIC V - A Very High	V. dela Torre et al.		00/00/91	
	Performance Bipolar				
	Technology form IEEE				
259	A Scaled 0.25-vm Bipolar	John D. Cressler et al.		05/00/92	
	Technology Using Full e-				
	Beam Lithography from IEEE				
260	A High Performance	M. Kerber et al.		00/00/92	
	BICMOS Process Featuring		•		
	40 GHz/21 ps from IEEE				
261	A Half-micron Super Self-	T.M. Liu et al.		00/00/92	
	aligned BiCMOS Technology				
	for High Speed Applications				
	from IEDM				
262	Bipolar Technology For A	S. Nakamura et al.		00/00/92	
	0.5-Micron-Wide Base	,			
	Transistor With An ECL Gate				
	Delay of 21.5 Picoseconds				
	from IEDM			·	
263	Sub-20psec ECL Circuits	Fumihiko Sato, et al.		00/00/92	
	with 50GHz fmax Self-				
	aligned SiGe HBTs by IEEE				

NC.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
264	Process and Device Characterization for a 30-GHz	Tadanori Yamaguchi		08/00/93	
	ff Submicrometer Double				
	Poly-Si Bipolar Tehcnology				
	Using BF2-Implanted Base				
	with Rapid Thermal Process				
	from IEEE				
265	0.5 vm Bipolar Technology	Chikara Yuamaguchi		00/00/93	
	Using a New Base Formation	et al.			
	Method: SSTIC from IEEE				
266	UHF-1: A High Speed	C. Davis et al.		00/00/92	
	Complementary Bipolar				
	Analog Process on SOI from				
	IEEE 1992 Bipolar Circuits				
	and Technology Meeting				
267	CB: A High Speed	J.J.J. Feindt et al.		00/00/92	
	Complementary Bipolar				
	Process On Bonded SOI from				
	IEEE 1992 Bipolar Circuits		-		
	and Technology Meeting				
268	Sub-20 ps High-Speed ECL	Toshihiko linuma et		03/00/95	
	Bipolar Transistor with Low	al			
	Parasitic Architecture from				
	IEEE Transactions on	,			
	Electron Devices Vol. 42, No.				
	w				

	00/00/90		al.	from IEEE 1990 Bipolar Circuits Technology Meeting	
	000000		H Barnhard Donne at	Trench Isolation Technology	27x
				Electron Devices Vol., 37 No.	
				from IEEE Transactions on	
· · · · · · · · · · · · · · · · · · ·			-	Performance ECL Circuits	
				for Advanced High-	
				Trench Isolation Capacitance	
	10/00/90		P.F. Lu et al.	On the Scaling Property of	277
				No. 6	
				Electrochem. Soc., Vol. 137,	
				Device Isolation from J.	
				Double Polysilicon Bipolar	
	•			Process for Self-Aligned	
	06/00/90		Y.C. Simon et al.	Planarized Deep-Trench	276
•		•		Co.	
				Center, Samsung Electronics	
-				from Advanced Technology	
				Submicron Silicon Devices	
				Technology for Deep-	
	,			(DTI): A Novel Isolaiton	
	00/00/00	·	T. Park et al.	Double Trench Isolation	275
				Submicron CMOS from IEEE	•
				Sidewall Doping For	
				Technology With Diffused	
				Trench Isolation (STI)	
	00/00/88		B. Davari et al.	A Variable-Size Shallow	274
	DATE	•	INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	ISSUE/	PATENT	AUHIOR	PATENT OR	NC.

				Semiconductor Products	
				from Motorola Inc.,	
			al.	High Voltage Applications	
	00/00/00		Francine Y. Robb et	Deep Trench Isolation for	283
				and Technology Meeting	
				IEEE 1992 Bipolar Circuits	-
				Speed Bipolar LSIs from	
	-			Structures for Ultra-High-	
		•		Deep Trench Isolation	
	00/00/92		N Itoh, et al	Optimization of Shallow and	282
				654	
		•		Engineering 15 (1991 651-	
		•		CMOS from Microelectronic	
				Isolation for Sub-Halfmicron	•
	00/00/91		J.P. Cabanal et al.	Improved Shallow Trench	281
				from IEEE	
				Polysilicon Bipolar Devices	
				Self-Aligned Double	
				Isolation Scheme for 38 GHz	
	00/00/91		E. Bertagonolli et al.	Modular Deep Trench	280
				Laboratory	
				Research and Development	
				from Advanced Products	
-	-			Submicron VLSI Technology	
				LOCOS Isolation for	
	00/00/00		Bich-Yen Nguyen et	Framed Mask Poly Buffered	279
	DATE		INVENTOR	-	
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	ISSUE/	PATENT	AUTHOR	PATENT OR	NC.

	09/00/95		SS Coonerman et al	Ontimization of a Shallow	2×7
•				Trench Isolation Process for	
	09/00/95		S.S. Cooperman et al.	Optimization of a Shallow	287
				141, No. 8, August 1994	
				J. Electrochem. Soc., Vol.	
	08/00/94		S.S. Roth	Offset Trench Isolation from	286
				/FFF	
				SOVTrench Isolation from	
		•		Analog Devices with	
				Complementary Bipolar	
	-			Processing Condition on	
	00/00/93		R. Jerome et al.	The Effect of Trench	285
				from IEEE	
				Deep Submicron DRAMs	
				Trench Isolation Process for	
	00/00/93		Pierree C. Fazan et al.	A Highly Manufacturable	284
	DATE		INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	ISSUE/	PATENT	AUTHOR/	PATENT OR	NC.

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
290	Platop: A Novel Planarized Trench Isolation and Field	R. Bashir, et al.		00/00/00	
	Oxide Formation Using Poly- Silicon from <i>Analog Process</i>				
	Technology Department,				
	National Semiconductors				
291	Trench Isolation for 0.45 um	Asanga H. Perera		00/00/95	
•	Active Pitch and Below from				
	IEEE				
292	Silicon Trench Etoch in a Hex	G.K. Herb et al.		10/00/87	
	Reactor from Solid State				
	Technology				
293	Optimized High Rate Deep	M. Engelhardt	:	00/00/00	
	Silicon Trench Etching for				
	Dielectric Isolation in Smart				
	Power Devices from Siemens				
	AG, Corporate Research and				
	Development Otto-Hahn-Ring				
	6 D-81730 Munich Germany		-	٠	
294	Anisotropic Etching of	C. Pomot et al.		01/00/86	
	Microwave Multipolar Placina	•		02/00/86	
	from J. Vac Sci. technol. B 4	•			
	(I)				
295	Dry Etching of Silicon	Y. Tzeng et al.		09/00/87	
	Materials in SF ₆ Based				
•	Plasmas Roles of N2O and				
	O2 Additives J. Electrochem		•		
•	Soc.: Solid-State Science and	-			-
	Technology				

NO.	PATENT OR	AUTHOR/	PATENT	ISSUE/	CLASSIFICATION
	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION	
296	RIE Etching of Deep	A.M. Krings et al.		00/00/00	
	Trenches in Si Ssing CBrF3				
	and SF ₆ Plasma from				
	Microelectronic Engineering				
	6 (1987) 553-558		•		
297	Reactive Ion Etching in SF ₆	R. Pinto et al.		01/00/87	
	Gas Mixtures from J.				3
	Electrochem. Soc.,: Solid-				
	State Science and Technology				
	Vol. 134 No. 1				
298	Trench Etches in Silicon with	Robert N. Carlile et al.		08/00/88	
	Controllable Sidewall Angles				
	from J. Electrochem. Soc.:				
	Solid-State Science and				
	Technology Vol. 135 No. 8				
299	Plasma Etching of Silicon in	Yeong-Jyh Lii et al.		11/00/90	
•	SF ₆ Experimental and Reactor	1			
	Modeling Studies from J.	-			
	Electrochem. Soc., Vol. 137,	,			
	No. 11				
300	Aperture Effect in Plasma	M. K. Abachev et al.		00/00/91	
	Etching of Deep Silicon	-			
	Trenches from <i>Vaccum</i>				
	Volume 42/ Numbers 1/2				
	pages 129 to 131				
301	Reactive Ion Etching of	Tsengyou Syau et al.	4	10/00/91	
	Silicon Trenches Using	•			
	SF ₆ /O ₂ Gas Mixtures from J.				
٠	Electrochem. Soc., Vol. 138,				
	No. 10		_		

,		/ (I// 8/1/)	DATENT	leelle/	CI ASSIBILIATION
Ç	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	
302	Trench Etching Using a	G Wohl, et al.		01/14/91	
	by Ontical Emission				
	Spectroscopy by Vacuum/				
	Volume 42/Number 14 pages				
	905 10 910				
303	Deep Trench Plasma Etching	Christopher P. D'Emic		05/00/92	
	of Single Crystal Silicon	et al.		06/00/92	
	Using SF ₆ /0 ₂ Gas Mixtures				
	from J. Vac. Sci. Technol. B				
	10(3)				
304	Reactive Ion Etching of Deep	Vladimir N.		00/00/92	
	Trenches in Silicon from 584	Bliznetsov			
	/ SPIE Vol. 1783				
	International Conference of				
	Microelectronics				
305	Influences of Reactant	John C. Arnold		11/00/93	
	Transport on Fluorine			12/00/93	
	Reactive Ion Etching of Deep				
	Trenches in Silicon J. Vac.				
	Sci. Technol. B 11(6)				
306	Etching of Silicon in CBrF3:	Yu P. Baryshev et al.		00/00/92	
	Formation of Deep Trenche				
	and Plasma Diagnostics from				
	386 / SPIE Vol. 1783				
	International Conference of				
	Microelectronics (1992)				

				Vol. 142 No. 6	
	-			from J. Electrochem. Soc.,	
				SF ₆ /O ₂ /CHF ₃ Gas Mixtures	
	-			Etching of Silicon Using	
	06/00/95	-	Rob Legtenberg et al.	Anisotropic Reactive Ion	311
				Micromech. Microeng. 5	
				Profile Control from J.	
				Silicon Trench Etching With	
				Reactive Ion Etcher in Deep	
				Setting of Fluorine-Based	
				Determining The Parameter	
			-	Universal Method for	
	00/00/95		Henri Jansen et al.	The Black Silicon Method: A	310
				23	
				Microelectronic Engineering	
				Trenches in Silicon from	
				Reactive Ion Etching of Deep	
	00/00/94		V.A. Yunkin et al.	Highly Anisotropic Selective	309
				Semicond. Sci. Technol. 8	
				Microwave Discharges from	
				Silicon Nitride Using	
				Silicon, Silicon Dioxide and	
	01/05/93		S.K. Ray	Rapid Plasma Etching of	308
				A. 37-38	
				from Sensors and Actuators	
				Using Photoresist As A Mask	
	00/00/93		E. Cabruja et al.	Deep Trenches in Silicon	307
	DATE		INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	ISSUE/	PATENT	AUTHOR/	PATENT OR	NO.

Ņ.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR	PATENT NUMBER	ISSUE/ PUBLICATION	CLASSIFICATION
312	Deep Trench Fabrication By Si (110) Orientation	Jeremy A. Theil		1:	
	Dependent Etching from J.			10/00/95	
	Vuc. Sci. Techol, B 13(5)				
313	The Black Silicon Method II:	Henri Jansen et al.		00/00/95	
-	The Effect of Mask Material				
	and Loading On The Reactive				
	Ion Etching Of Deep Silicon		•		
	Trenches from				
	Microelectronic Engineering				
	0 1				
514	Selectivity and Si-Load in	K. Paul Muller et al.	,	00/00/95	
	Deep I rench Etching from				
	Microelectronic Engineering	-		-	
	27 (1995) 457-462				
315	Silicon Trench Etching Made	Michael Ameen et al.		09/00/88	
	Easy from 122/Semiconductor		•	07.00.00	
	International				
316	A Step Coverage and a Hole	T. Ohmi, M. Kosugi.		00//00/00	
	Filling of Si Film by Surface	M. Morita, G.S. Jong,			
	Reaction Film Formation	H. Kumagai			**************************************
	Technology, from Abstract	•			
	No. 190, pg. 276 - 277				
317	Energy and Angular	M. Posselt, G. Otto		00/00/01	
	Distribution of lons			00,00,21	
	Backscattered from the				
	Sidewalls During the		·		
	Implantation into Deep				
	Trenches, from Vacuum Vol.				
	42, No. 1, 2, pg. 17 - 19				
					_

INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu lchihara, Yasuhiro Horiike G. Fuse, H. Iwasaki Yasuhiro Horiike G. Fuse, H. Iwasaki L. Lee, David W. Abraham, F. Secord, L. Landstein C-H. Chou, J.L. Berman, S.S.C. Chim, T. Corle, G.Q. Xiao, G.S. Kino G.S. Kino					1.34	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu lehihara, Ide G. Fuse, H. Iwasaki Yasuhiro Horiike O2 Kam L. Lee, David W. Abraham, F. Secord, L. Landstein n C-H. Chou, J.L. Berman, S.S.C. Chim, T. Corle, G.Q. Xiao, G.S. Kino					164	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu lehihara, Ide G. Fuse, H. Iwasaki O2 Kam L. Lee, David W. Abraham, F. Secord, L. Landstein n C-H. Chou, J.L. Berman, S.S.C. Chim, T. Corle, G.Q. Xiao, G.S. Kino					Process Control V ne 145 -	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu lehihara, Ida Yasuhiro Horiike G. Fuse, H. Iwasaki C. Fuse, H. Iwasaki C. Fuse, H. Iwasaki D2 Kam L. Lee, David W. Abraham, F. Secord, L. Landstein n C-H. Chou, J.L. Berman, S.S.C. Chim, T. Corle, G.Q. Xiao, uit G.S. Kino					Metrology, Inspection, and	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu lehihara, Ide G. Fuse, H. Iwasaki 102 Kam L. Lee, David W. Abraham, F. Secord, L. Landstein Abraham, S.S.C. Chim, T. Corle, G.Q. Xiao, T. Corle, G.Q. Xiao,	_			G.S. Kino	Vol. 1464, Integrated Circuit	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu lchihara, Yasuhiro Horiike G. Fuse, H. Iwasaki G. Fuse, H. Iwasaki L. Landstein C-H. Chou, J.L. Berman, S.S.C. Chim,				T. Corle, G.Q. Xiao,	Measurement, from SPIE,	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu Ichihara, Yasuhiro Horiike G. Fuse, H. Iwasaki ide G. Fuse, H. Iwasaki E. Landstein C-H. Chou, J.L.		0		Berman, S.S.C. Chim,	to Trench Bottom-Width	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu Ichihara, Yasuhiro Horiike G. Fuse, H. Iwasaki Lee, David W. Abraham, F. Secord, L. Landstein Masayuki Sakaue, Abraham, F. Secord, L. Landstein	-	16/00/00		C-H. Chou, J.L.	Pattern Recognition Approach	321
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu lehihara, ide G. Fuse, H. Iwasaki O2 Kam L. Lee, David W. Abraham, F. Secord, L. Landstein n		•			- 3568	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu lchihara, Yasuhiro Horiike G. Fuse, H. Iwasaki G. Fuse, H. Iwasaki W. Abraham, F. Secord, L. Landstein					Technology B 9 (6), pg. 3562	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu Ichihara, Yasuhiro Horiike G. Fuse, H. Iwasaki O2 Kam L. Lee, David W. Abraham, F. Secord, L. Landstein					Journal of Vacuum Sci.	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu Ichihara, Yasuhiro Horiike G. Fuse, H. Iwasaki C2 Kam L. Lee, David W. Abraham, F. Secord, L. Landstein					Force Microscope Tip, from	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu Ichihara, Yasuhiro Horiike G. Fuse, H. Iwasaki G. Fuse, H. Iwasaki Man L. Lee, David W. Abraham, F. Secord,				L. Landstein	Beam Fabricated Atomic	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu lehihara, Yasuhiro Horiike G. Fuse, H. Iwasaki Ca. Fuse, H. Iwasaki Kamı L. Lee, David W.				Abraham, F. Secord,	Profiling With an Electron-	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu Ichihara, yasuhiro Horiike G. Fuse, H. Iwasaki		11,12/00/91		Kam L. Lee, David W.	Submicron Si Trench	320
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu Ichihara, Yasuhiro Horiike G. Fuse, H. Iwasaki					Lett 59 (19), pg. 2400 - 2402	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu Ichihara, Yasuhiro Horiike ide G. Fuse, H. Iwasaki					Structure, from Appl. Phys.	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu Ichihara, Yasuhiro Horiike ide G. Fuse, H. Iwasaki					Filled Trench Isolation	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu Ichihara, rd Yasuhiro Horiike		11/04/91		G. Fuse, H. Iwasaki	Arsenic Implantation to Oxide	319
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu Ichihara, Yasuhiro Horiike					L127	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu Ichihara, Yasuhiro Horiike					Vol. 30, No. 1B, pg. L124-	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu Ichihara, Yasuhiro Horiike					Journal of Applied Physics	_
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu Ichihara, Yasuhiro Horiike					Oxidation, from Japanese	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano, Tsutomu Ichihara,				Yasuhiro Horiike	Triethylsilane/Hydrogen and	
INVENTOR Hiroyuki Sakaue, Masayuki Nakano,				Tsutomu Ichihara,	Repetitive Reaction of	
Hiroyuki Sakaue,		-		Masayuki Nakano,	Deposition of SiO ₂ Using a	
		01/00/91		Hiroyuki Sakaue,	Digital Chemical Vapor	318
		DATE		INVENTOR		
ASSIGNEE/OR NUMBER		PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
AUTHOR/ PATENT ISSUE/ CLASSIFICATION	CLASSIFICATION	ISSUE/	PATENT	AUTHOR/	PATENT OR	NO.

ASSIGNEE/OR INVENTOR REtchback Plasma sing HBr, Cl ₂ , and clixtures for Deep-lation, from Relectrochemical ol. 139, No. 2, pg. Deposition on a ched Subtrate by from Applied rence, 70/71, pg. Deposition on a ched Subtrate by from Applied rence, 70/71, pg. TE TE Remical Vapor rof Silicon Nakasako, K. Nakasako, K. Nakasako, K. Nakasako, K. Nakaune, T. Kusuki, A. Miki, Y. Horiike Research Society c., Vol. 284, pg.	NO.	PATENT OR	AUTHOR	PATENT	ISSUE/	CLASSIFICATION
Polysilicon Etchback Plasma Process Using HBr, Cl ₂ , and SF ₆ Gas Mixtures for Deep-Trench Isolation, from Journal of Electrochemical Society, Vol. 139, No. 2, pg. 575 - 579 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 - 767 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 - 767 DUPLICATE Digital Chemical Vapor Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 - 180		PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION DATE	
Process Using HBr, Ch, and SF ₀ Gas Mixtures for Deep-Trench Isolation, from Journal of Electrochemical Society, Vol. 139, No. 2, pg. 575 - 579 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 - 767 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 - 767 DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 - 180	322	Polysilicon Etchback Plasma	Geun-Young Yeom,		02/00/92	
SF ₆ Gas Mixtures for Deep-Trench Isolation, from Journal of Electrochemical Society, Vol. 139, No. 2, pg. 575 - 579 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 - 767 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 - 767 DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 - 180	•	Process Using HBr, Cl ₂ , and	Yoshi Ono, Tad			
Trench Isolation, from Journal of Electrochemical Society, Vol. 139, No. 2, pg. 575 - 579 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 - 767 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 - 767 DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 - 180		SF ₆ Gas Mixtures for Deep-	Yamaguchi			
Journal of Electrochemical Society, Vol. 139, No. 2, pg. 575 - 579 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 - 767 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 - 767 DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 - 180		Trench Isolation, from				
Society, Vol. 139, No. 2, pg. 575 - 579 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 - 767 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 - 767 DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 - 180	-	Journal of Electrochemical				
Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 – 767 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 – 767 DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 – 180		Society, Vol. 139, No. 2, pg.				
Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 – 767 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 – 767 DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 – 180		575 - 579				
Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 - 767 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 - 767 DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 - 180	323	Conformal Deposition on a	Yoshihiko Kusakabe,		00/00/93	
MOCVD, from Applied Surface Science, 70/71, pg. 763 – 767 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 – 767 DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 – 180		Deep-Trenched Subtrate by	Hiroshi Ohnishi, Toru		-	
Surface Science, 70/71, pg. 763 - 767 Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 - 767 DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 - 180		MOCVD, from Applied	Takahama, Yoshiyuki			
Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 – 767 DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 – 180	_	Surface Science, 70/71, pg.	Goto			
Conformal Deposition on a Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 – 767 DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 – 180		763 - 767				
Deep-Trenched Subtrate by MOCVD, from Applied Surface Science, 70/71, pg. 763 – 767 DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 – 180	324	Conformal Deposition on a	Yoshihiko Kusakabe,		. 00/00/93	
MOCVD, from Applied Surface Science, 70/71, pg. 763 – 767 DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 – 180		Deep-Trenched Subtrate by	Hiroshi Ohnishi, Toru			
Surface Science, 70/71, pg. 763 – 767 DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 – 180		MOCVD, from Applied	Takahama, Yoshiyuki			
DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 – 180		Surface Science, 70/71, pg.	Goto			
DUPLICATE Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp Proc., Vol. 284, pg. 169 – 180		763 – 767				
Digital Chemical Vapor Deposition of Silicon Oxide/Nitride and its Surface Reaction Study, from Materials Research Society Symp. Proc., Vol. 284, pg. 169 – 180		DUPLICATE				
 	325	Digital Chemical Vapor	H. Sakaue, T.		00/00/93	
		Deposition of Silicon	Nakasako, K.			
		Oxide/Nitride and its Surface	Nakaune, T. Kusuki,			
Materials Research Society Symp. Proc., Vol. 284, pg. 169 – 180		Reaction Study, from	A. Miki, Y. Horiike			
Symp. Proc., Vol. 284, pg. 169 – 180		Materials Research Society	•		•	
169 – 180		Symp. Proc., Vol. 284, pg.				
		169 – 180				

			J.K. DeBrosse, M.L. Kerbaugh, J.L. Mauer	- 3.4.4	
			Taur, W.G. Schwittek,	(CMP), from <i>IEEE</i> , pg. 3.4.1	
			Furukawa, M. Jost, Y.	Chemical Mechanical Polish	
			J.D. Warnock, T.	Combination of Rie and	
			Koburger, R. Schulz,	Technique, Using a	
	00/00/89	•	B. Davari, C.W.	A New Planarization	329
			Abernathey		
			Buschner, J.A.		
			Armacost, P.C.	-	
			Sukanek, M.	309	
			DeBrosse, P.C.	Pattern Densities - pg. 308 -	
			C.W. Koburger, J.K.	Topography Over Variable	
	00/00/00		T.H. Doubenspock,	Planarization of Ulsi	328
				143, No. 2, pg. 639 - 642	
				Electrochem. Society, Vol.	
				Grains, from Journal of	
			Jong-Choul Kim	Using Island Polysilicon	
			Lim, Byung-Jin Cho,	Oxidation of Silicon Isolation	
	02/00/96		Sung-Ku Kwon, Chan	Nano Trenched Local	327
				pg. 259 - 265	
				Manufacturing, Vol. 7, No. 3,	
				Semiconductor	
		٠		Transactions on	
				by Photoemission, from <i>IEEE</i>	
				Trench-Isolated MOSFET's	
•			Hideyuk	Measurements of Locos- and	
	08/00/94		Takashi Ohzone,	Channel-Width	326
	DATE		INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	ISSUE/	PATENT	AUTHOR	PATENT OR	NO.

NO.	PATENT OR	AUTHOR/	PATENT	ISSUE/	CLASSIFICATION
	PUBLICATION TITLE	INVENTOR	NOMBER	DATE	
330	A Trench Isolation Process	Stephen Poon, Craig		00/00/93	
	for BiCMOS Circuits, from	Lage			
	IEEE 1993 Bipolar Circuits				
	and Technology Meeting 3.3,				-
	pg. 45 – 48	•			
331	Oxide-Filled Trench Isolation	J.M. Pierce, P.		00/00/00	
	Planarized Using	Renteln, W.R. Burger,			
-	Chemical/Mechanical	S.T. Ahn			
	Polishing				
332	Dishing Effects in a Chemical	C. Yu, P.C. Fazan,		09/14/92	
	Mechanical Polishing	V.K. Mathews, T.T.			
	Planarization Process for	Doan			
	Advanced Trench Isolation,				
	from Appl. Physics Letter 61		-		
	(11) (American Institute of				
	Physics)				
333	Chemical/Mechanical	Michael A. Fury		04/00/95	
	Polishing: Emerging				
	Developments in CMP for				
	Semiconductor Planarization,				
	from Solid State Technology,				
	pg. 47 - 52				
334	Physical Characterization of	lqbal Ali, Mark	•	09/00/95	
	Chemical Mechanical	Rodder, Sudipto R.			
	Planarized Surface for Trench	Roy, Greg Shinn,			
	Isolation, from Journal of	Mazhar Islam Raja			
	Electrochemical Society, Vol.				
	142, No. 9, pg. 3088 - 3092				

				Cyline Lenkape Carrette	•
			Yamabe	Oxide Leakage Currents by	•
			V		,
	00/00/86	•	Keitaro Imai, Kikuo	Decrease in Trenched Surface	337
		-		171, pg. 267 - 268	
				Process, from Abstract Inc.	
	•			Descuse from Abstract No.	
				Polishing. The BOx-ON	
			Papon	100% Chemical-Mechanical	
			F. Martin, AM.	Volatile Memories Using	-
			Demoniens, 1. Goon,	Process for High Density Non	
			Designation, C.	Trench Isolation North	
			Heirymann O	Transh Isolation Defill	,,,,
	00/00/00	٠	S. Deleonibus, M.	Ontimization of a Shallow	416
				142, No. 10, pg. L187 - L188	
				Electrochemical Society, Vol.	
				Mechanical Polish, Journal of	
				Etchback of Chemical-	
			Chao	Polysilicon Refill and	
			Fu Lei, Tien Sheng	Trench Isolation Using	
	10/00/95		Yuing-Yi Cheng, Tan	A Novel Planarization of	335
	DAIR		INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
	10000	FAICH	AUTHOR	PATENTOR	NO.
CLASSIFICATION	1001157	DA TELEVISION			

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT	ISSUE/ PUBLICATION DATE	CLASSIFICATION
339	Characterization of the Lateral and Vertical Parasitic	M.C. Roberts, D.J. Foster		00/00/00	
	Transistors in a Trench Isolated CMOS Process, from				
	Abstract No. 274, pg. 411 - 412		·		
340	Narrow-Width Effects of	Kikuyo Ohe, Shinji		06/00/89	
	Shallow Trench-Isolated	Odanaka, Kaori			
	CMOS with n+-Polysilicon	Moriyama, Takashi			
	Gate, from IEEE Transactions	Hori, Genshu Fuse			
	on Electron Devices, Vol. 36,				
	No. 6, pg. 1110 - 1116				
341	A Study of X-Ray Damage	L.C. Hsia		01/00/91	
	Effects on Open-Bottom		-		
	Trench Isolation for Bipolar			_	
	Devices, from the Journal of				
	Electrochemical Society, Vol.				
	138, No. 1, pg. 239 – 242				
342	Junction Breakdown	Yuk L. Tsang, John		09/00/91	-
	Instabilities in Deep Trench	M. Aitken			
	Isolation Structures, from				
	IEEE Transactions on	٠			
	Electron Devices, Vol. 38,			-	
	No. 9, pg. 2134 – 2138				
343	Comparison of Shallow	Brian S. Doyle,		12/00/91	
	Trench and LOCOS Isolation	Kaizad R. Mistry			
	for Hot-Carrier Resistance,			, ,	
	from IEEE Electron Device				
-	Letters, Vol. 12, No. 12, pg.				
	673 - 675				

				ン/ 	
				sub-um PFET, from IEEE, pg.	
			Hansch	Buried- and Surface-Channel	
			Bolam, Wilfried	Isolation on Reliability of	
	00/00/95		William Tonti, Ronald	Impact of Shallow Trench	348
				No. 12, pg. 2477 – 2480	
				Electron Devices, Vol. 41,	
-				from IEEE Transactions on	
			•	LOCOS and Trench Isolation,	
				n+-Diodes Fabricated by	
	•		Hideyuki lwata	Breakdown Characteristics of	
	12/00/94		Takashi Ohzone,	Nonuniform Reverse-	347
				15, No. 12, pg. 496 – 498	
				Electron Device Letter, Vol.	
			-	MOSFET's, from IEEE	
				Buried-Channel P-	
			Alsmeier	Effect in Trench-Isolated	
	12/00/94		J.A. Mandelman, J.	Anomalous Narrow Channel	346
				3033 – 3037	
				Society, Vol. 140, no. 10, pg.	
				Journal of Electrochemical	
				Junction Transistors, from	
			Archer	Aligned Double-Poly Bipolar	
			Fuoss, Eric Lane, Tim	Emitter Leakage in Self-	
	10/00/93		Fanling Yang, Dennis	Characterization of Collector-	345
				412 - 414	
			Poindexter, M. Steger	Letters, Vol. 14, No. 8,mpg.	
			Mandelman, D.	from IEEE Electron Device	
			Geissler, Jack	Inherent to Trench Isolation,	
	08/00/93		Andres Bryant, S.	The Current-Carrying Corner	344
	DATE		INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	ISSUE/	TALENI	AUTHOR	PATENTOR	NO.

349	Process and Device Simulation of Trench Isolation Comer Parasitic Device, from Abstract No. 236, pg. 329 – 330 VIB-2 3D Simulation of Parasitic MOSFET Effects for	INVENTOR T. Furukawa, J.A. Mandelman Gernot Heiser, Matthew Noell. Steve	DATE 00/00/00
350	VIB-2 3D Simulation of Parasitic MOSFET Effects for Box Isolation Technologies, from <i>IEEE Transactions on Electron Devices</i> , Vol. 38, No. 12, pg. 3721 – 3722	Gernot Heiser, Matthew Noell, Steve Poon, Marius Orlowski	12/00/91
351	Efficient Simulation of 3-D Stress Distributions at Trench Structures Caused by Thermal Mismatch of Trench Filling and Silicon Subtrate, from COMPEL – The Internation and Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 13, no. 4, pg. 861 – 870	R. Slehobr, G. Hobler	00/00/94
352	Calculation of the Backscattered Ion Energy and Angular Distributions During the Grazing Implantation, from <i>Vacuum</i> , vol. 46, No. 4, pg. 383 – 388	I.E. Mozolevsky	00/00/95

				pg. 327 – 330	
			Nakakubo	19th Conference on Solid	
	-	•	Watanabe, T.	Extended Abstracts of the	
			Kambayashi, M.	Trench Structure, from	
	00/00/87		S. Nadahara, S.	Micro Area Stress Around	357
			William R. Hunter	586 - 589	
			Christopher Slawinski,	Isolation, from IEDM 84, pg.	
	00/00/84		Clarence W. Teng,	Defect Generation in Trench	356
				30, pg. 345 – 348	
				Microelectronic Engineering	
				Reactive Ion Etching, from	
	-		E. Voges	Effects Observed in Silicon	
		•	Rudenko, D. Fischer,	Aspect Ratio Dependent	
			Lukichev, K.V.	Computer Simulation of	
	00/00/96		V.A. Yunkin, V.F.	Experimental Study and	355
				Vol. 389, pg. 125 – 131	
				Res. Soc. Symposium Proc.	
	-			in LPCVD Process, from Mut.	
			Heup Moonn	Trench and Film Crystallinity	
			Chee Burm Shin, San	Contour in a Narrow Deep	
	00/00/95		Gyeong Soon Hwang,	Simulation of Film Growth	354
			-	Vol. 38, No. 4, pg. 821 – 828.	
				from Solid-State Electronics,	
				with no Quasi-Saturation,	
			M.S. Towers, K. Boad	Trench VDMOST Structure	_
	00/00/95		J. Zeng, P.A. Mawby,	Numerical Analysis of a	353
	DATE		INVENTOR		
	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
CLASSIFICATION	ISSUE/	PATENT	AUTHOR	PATENT OR	NO.

PUBLICATION TITLE PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Sircss from Isolation Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1102 - 1101 Oxidation-Induced Defect Ceneration in Advanced DRAM Structures, from IEEE DRAM Structures, from IEEE DRAM Structures, from IEEE DRAM Structures, from IEEE DRAM Structures, from IEEE Dramsactions on Electron Devices, Vol. 37, No. 5, pg. 1253 - 1258 Cross Sectional Local Stress- Distribution for Trench Isolation, from Extended Abstracts of the 1991 International Conference on Solid State Devices and Matteriats, pg. 234 - 236 Stress Related Problems in Silicon Technology, from Journal of Appl. Physics, 70 (6), pg. R53 - R80 Residual Stress in Silicon Subrate with Shallow Trenches on Surface after Local Thermal Oxidation, Noriaki Okannoto					from JSME International	
PATENT OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Sircss from Isolation Sircss from Isolation Substrates, from Journal of Appl. Physics, 67 (2), pg. 1002 – 1101 Oxidation-Induced Defect Generation in Advanced DRAM Structures, from IEEE Contractions on Electron Devices, Vol. 37, No. 5, pg. 1253 – 1258 Cross Sectional Local Stress- Distribution for Trench Isolation, from Extended Abstracts of the 1991 International Conference on Solid State Devices and Materials, pg. 234 – 236 Stress Related Problems in Silicon Technology, from Journal of Appl. Physics, 70 (0), pg. R53 – R80 Residual Stress in Silicon Subtrate with Shallow Subtrate with Shallow Survey No. 5, pg. 1258 Sircs from Isolation Silicon Technology, from Subtrate with Shallow Survey No. 5, pg. 1258 Sircs from Isolation Silicon Technology, from Subtrate with Shallow Survey No. 5, pg. 1258 Sircs from Isolation Silicon Surface after No. 6, pg. 853 – R80 Noriaki Okamoto Survey No. 7, pg. No. 5, pg. No. 7,				Local Thermal Oxidation,		
PATENT OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Stress from Isolation Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 – 1101 Oxidation-Induced Defect Generation in Advanced DRAM Structures, from IEEE Transactions on Electron Devices, Vol. 37, No. 5, pg. 1253 – 1258 Cross Sectional Local Stress- Distribution for Trench Isolation, from Exended Abstracts of the 1991 International Conference on Solid State Devices and Materials, pg. 234 – 236 Stress Related Problems in Silicon Technology, from Journal of Appl. Physics, 70 (6), pg. R53 – R80 Residual Stress in Silicon Residual Stress in Silicon Hideo Miura, Naoto Subtrate with Shallow Saito, Hiroyuki Ohta, Solid Stress in Silicon Hideo Miura, Naoto Saito, Hiroyuki Ohta,				Noriaki Okamoto	Trenches on Surface after	
PATENT OR PUBLICATION TITLE ASSIGNEE/OR Stress from Isolation Stress from Isolation Stress from Isolation Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1102 – 1101 Oxidation-Induced Defect Concration in Advanced DRAM Structures, from IEEE Koburger, Wayne S. Transactions on Electron Devices, Vol. 37, No. 5, pg. 1253 – 1258 Cross Sectional Local Stress- Distribution for Trench Isolation, from Extended Asstracts of the 1991 International Conference on Solid State Devices and Materials, pg. 234 – 236 Stress Related Problems in Silicon Technology, from Silicon Hideo Miura, Naoto Outlier Publics, 70 (6), pg. R53 – R80 PUBLICATION NUMBER PUBLICATION NUMBER PUBLICATION NUMBER PUBLICATION PUBLICATION PUBLICATION NUMBER PUBLICATION PUBLICATION DATE PUBLICATION NUMBER PUBLICATION PUBLICATION DATE PUBLICATION NUMBER PUBLICATION PUBLICATION DATE PUBLICATION DATE PUBLICATION NUMBER PUBLICATION NUMBER PUBLICATION DATE PUBLICATION NUMBER PUBLICATION DATE PUBLICATION DATE OU/15/90 05/00/90 05/00/91 Doy/00/91 Diving Trenches w. Mamoru Tonnozane, Barbara Vasquesz, Teruki Ikeda Mamoru Tonnozane, Barbara Vasquesz, Teruki Ikeda Ou/00/91 Silicon Technology, from Silicon Hideo Miura, Naoto Ou/00/95				Saito, Hiroyuki Ohta,	Subtrate with Shallow	 .
PATENT OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION NUMBER PUBL	-	00/00/95		Hideo Miura, Naoto	Residual Stress in Silicon	362
PATENT OR PUBLICATION TITLE ASSIGNEE/OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Stress from Isolation Stress from Isolation Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 – 1101 Oxidation-Induced Defect Oxidation-Induced Defect Oxidation-Induced Defect Oxidation in Advanced DRAM Structures, from IEEE Cross Sectional Local Stress- Distribution for Trench Isolation, from Extended Abstracts of the 1991 International Conference on Solid State Devices and Materials, pg. 234 – 236 Stress Related Problems in Silicon Technology, from Journal of Appl. Physics, 70 AUTHOR ASSIGNEE/OR ANSIGNEE/OR NUMBER PUBLICATION OXIVETOR OXIVETOR PUBLICATION					(6), pg. R53 – R80	
PATENT OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 – 1101 Oxidation-Induced Defect Generation in Advanced DRAM Structures, from IEEE Koburger, Wayne S. Transactions on Electron Devices, Vol. 37, No. 5, pg. 1253 – 1258 Cross Sectional Local Stress- Distribution for Trench Isolation, from Extended Abstracts of the 1991 International Conference on Solid State Devices and Materials, pg. 234 – 236 Stress Related Problems in Silicon Technology, from					Journal of Appl. Physics, 70	
PATENT OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 – 1101 Oxidation-Induced Defect Generation in Advanced DPRAM Structures, from IEEE Koburger, Wayne S. Transactions on Electron Devices, Vol. 37, No. 5, pg. 1253 – 1258 Cross Sectional Local Stress- Distribution for Trench Isolation, from Extended Abstracts of the 1991 International Conference on Solid State Devices and Materials, pg. 234 – 236 Stress Related Problems in S.M. Hu PATENT PUBLICATION ISSUE/ PUBLICATION NUMBER PUBLICATION PUBLICATION PUBLICATION PUBLICATION PUBLICATION PUBLICATION OX/15/90 01/15/90 05/00/90 05/00/90 05/00/90 05/00/90 05/00/91 05/00/91 06/00/91					Silicon Technology, from	
PATENT OR PUBLICATION TITLE ASSIGNEE/OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 – 1101 Oxidation-Induced Defect Generation in Advanced DRAM Structures, from IEEE Generations on Electron Devices, Vol. 37, No. 5, pg. 1253 – 1258 Cross Sectional Local Stress- Distribution for Trench Isolation, from Exemded Abstracts of the 1991 International Conference on Solid State Devices and Materials, pg. 234 – 236		09/15/91		S.M. Hu	Stress Related Problems in	361
PATENT OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Stress from Isolation Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 - 1101 Oxidation-Induced Defect Generation in Advanced DRAM Structures, from IEEE Transactions on Electron Devices, Vol. 37, No. 5, pg. 1253 - 1258 Cross Sectional Local Stress- Isolation, from Extended Abstracts of the 1991 International Conference on Solid State Devices and					Materials, pg. 234 - 236	
PATENT OR PUBLICATION TITLE ASSIGNEE/OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION INVENTOR Stress from Isolation Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 – 1101 Oxidation-Induced Defect Generation in Advanced DRAM Structures, from IEEE Koburger, Wayne S. Transactions on Electron Devices, Vol. 37, No. 5, pg. 1253 – 1258 Cross Sectional Local Stress- Isolation, from Extended Abstracts of the 1991 International Conference on Appl. Physics, 67 (2), pg. 1092 – 1101 S.M. Hu Otility O					Solid State Devices and	
PATENT OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION NUMBER NUMBE					International Conference on	-
PATENT OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION NUMBER PUBLICATION NUMBER PUBLICATION NUMBER PUBLICATION NUMBER PUBLICATION NUMBER PUBLICATION NUMBER PUBLICATION NUMBER PUBLICATION NUMBER PUBLICATION NUMBER OI/15/90 S.M. Hu O1/15/90 Oi/15/90 Ceneration in Advanced Defect Ceneration in Advanced DRAM Structures, from IEEE Koburger, Wayne S. Fransactions on Electron Devices, Vol. 37, No. 5, pg. 1253 – 1258 Cross Sectional Local Stress- Distribution for Trench Isolation, from Extended Namoru Tomozane, Barbara Vasquesz, Teruki Ikeda					Abstructs of the 1991	
PATENT OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION TITLE INVENTOR Stress from Isolation Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 – 1101 Oxidation-Induced Defect Ceneration in Advanced DRAM Structures, from IEEE Koburger, Wayne S. Transactions on Electron Devices, Vol. 37, No. 5, pg. 1253 – 1258 Cross Sectional Local Stress- Distribution for Trench Barbara Vasquesz, NUMBER PUBLICATION NUMBER PUBLICATION OUTHOR NUMBER PUBLICATION OUTHOR OUTH		,		Teruki Ikeda	Isolation, from Extended	
PATENT OR PUBLICATION TITLE ASSIGNEE/OR PUBLICATION TITLE INVENTOR Stress from Isolation Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 – 1101 Oxidation-Induced Defect Generation in Advanced DRAM Structures, from IEEE Transactions on Electron Devices, Vol. 37, No. 5, pg. 1253 – 1258 Cross Sectional Local Stress- Mannoru Tomozane, AUTHOR NUMBER DUBLICATION PUBLICATION OUTHOR NUMBER DATE PUBLICATION OUTHOR				Barbara Vasquesz,	Distribution for Trench	
PATENT OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Stress from Isolation Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 - 1101 Oxidation-Induced Defect Generation in Advanced DRAM Structures, from IEEE Transactions on Electron Devices, Vol. 37, No. 5, pg. 1253 - 1258	-	16/00/00		Mamoru Tomozane,	Cross Sectional Local Stress-	360
PATENT OR PUBLICATION TITLE ASSIGNEE/OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Stress from Isolation Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 – 1101 Oxidation-Induced Defect Generation in Advanced DRAM Structures, from IEEE Transactions on Electron Devices, Vol. 37, No. 5, pg. ASSIGNEE/OR NUMBER PUBLICATION OI/15/90 O1/15/90 O1/15/90 O1/15/90 O1/15/90 O1/15/90 O5/00/90 O5/00/90 Berry					1253 - 1258	
PATENT OR PUBLICATION TITLE ASSIGNEE/OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 – 1101 Oxidation-Induced Defect Generation in Advanced DRAM Structures, from IEEE Transactions on Electron ASSIGNEE/OR NUMBER PUBLICATION OI/15/90 OI/15/90 01/15/90 05/00/90 05/00/90 Berry					Devices, Vol. 37, No. 5, pg.	
PATENT OR PUBLICATION TITLE Stress from Isolation Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 – 1101 Oxidation-Induced Defect Generation in Advanced DRAM Structures, from IEEE Koburger, Wayne S. ASSIGNEE/OR NUMBER PUBLICATION DATE Outlean Number PATENT ISSUE/ PUBLICATION OUTLEAN NUMBER DATE 01/15/90 01/15/90 01/15/90 01/15/90 01/15/90 01/15/90 01/15/90				Ветту	Transactions on Electron	•
PATENT OR PUBLICATION TITLE ASSIGNEE/OR Stress from Isolation Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 – 1101 Oxidation-Induced Defect Generation in Advanced AUTHOR ASSIGNEE/OR NUMBER PUBLICATION DATE O1/15/90 01/15/90 05/00/90 05/00/90				Koburger, Wayne S.	DRAM Structures, from IEEE	
PATENT OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Stress from Isolation Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 - 1101 Oxidation-Induced Defect Scott R. Stiffler, Jery PATENT ISSUE/ NUMBER PUBLICATION DATE 01/15/90 01/15/90				B. Lasky, Charles W.	Generation in Advanced	•
PATENT OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg. 1092 – 1101 PATENT ISSUE/ PASSIGNEE/OR NUMBER PUBLICATION NUMBER DATE O1/15/90 S.M. Hu O1/15/90		05/00/90		Scott R. Stiffler, Jery	Oxidation-Induced Defect	359
PATENT OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Stress from Isolation Trenches in Silicon Substrates, from Journal of Appl. Physics, 67 (2), pg.					1092 - 1101	
PATENT OR PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Stress from Isolation Trenches in Silicon Substrates, from Journal of					Appl. Physics, 67 (2), pg.	٠
PATENT OR AUTHOR/ PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Stress from Isolation S.M. Hu 01/15/90 Trenches in Silicon				٠	Substrates, from Journal of	
PATENT OR AUTHOR/ PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION Stress from Isolation S.M. Hu PATENT ISSUE/ NUMBER PUBLICATION DATE 01/15/90					Trenches in Silicon	
PATENT OR AUTHOR/ PATENT ISSUE/ PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION INVENTOR DATE		01/15/90		S.M. Hu	Stress from Isolation	358
PATENT OR AUTHOR/ PATENT ISSUE/ PUBLICATION TITLE ASSIGNEE/OR NUMBER PUBLICATION		DATE		INVENTOR		
DATENT OR AUTHOR/ PATENT ISSUE/		PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
	CLASSIFICATION	ISSUE/	PATENT	AUTHOR/	BOTENT OF	

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
363	Stress Variation Across Arrays of Lines and its	I. De Wolf, R. Rooyackers, H.E.		00/00/95	
	Influence on LOCOS	Maes			
	Oxidation, from Microelectronic Engineering	-			
	28, pg. /9-82	Windows		06711706	
364	Patent Review – presentation	Wipawan Yindeepol		06/11/96	
	materials - Analog/Mixed				
	Signal Process/Device				
	Technology .				
365	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Amitava, Bose, Steven S. Cooperman, Marion M. Garver, Andre I.	U.S. PAT. No. 5,492,858	. 02/20/96	
	Shallow Trench Isolation	Nasr			
	Process for High Aspect Ratio Trenches				
366	Important Trench Patents (06/11/96) - National Semiconductor – Abstract of Patent:	Naoya Matsumoto, Junzoh Shimizu	U.S. PAT. No. 5,474,953	12/12/95	
	Method of Forming an Isolation Region Comprising				
	a Trench Isolation Region and a Selective Oxidation Film				
	Involved in a Semiconductor Device				·
367	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Thomas A. Figura, Nanseng Jeng	U.S. PAT. No. 5;472,904	12/05/95	
	Thermal Trench Isolation				

NO.	PATENT OR	AUTHOR/	PATENT	ISSUE/	CLASSIFICATION
	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION DATE	
368	Important Trench Patents (06/11/96) National Semiconductor - Abstract of Patent:	Sudhir K. Madan	U.S. PAT. No. 5,468,676	11/21/95	
	Trench Isolation Structure and Method for Forming				
369	Important Trench Patents (06/11/96) - National Senuconductor - Abstract of Patent:	Water Lur, Neng H. Shen, Anna Su	U.S. PAT. No. 5,465,003	11/07/95	
	Planarized Local Oxidation				
	Technology, Device Isolation				
	Structure Within a Semiconductor Substrate				
370	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Michael P. Masquelier, Scott S. Roth, Barbara	U.S. PAT. No. 5,455,194	10/03/95	
	Encapsulation Method for Localized Oxidation of	Vasquez			
	Silicon with Trench Isolation				
371	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Stephen J. Gaul, Donald F. Hemmerway	U.S. PAT. No. 5,448,102	09/05/95	
•	Trench Isolation Stress Relief;				
	Integrated Circuit				

	376		375		374		373		372	NC.
Integrated Circuit With Planarized Shallow Trench Isolation	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Simple Planarized Trench Isolation and Field Oxide Formation Using Poly-Silicon	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Shallow Trench Etch; Semiconductors	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Self-Aligned Channel Stop for Trench-Isolated Island	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Method for Fabricating Semiconductor Device Isolation Using Double Oxide Spacers	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	PATENT OR PUBLICATION TITLE
	Fusen E. Chen, Fu-Tai Liou		Rashid Bashir, Datong Chen, Francois Herbert		Philippe Schoenborn		James D. Beasom		Chung-Cheng Wu, Ming-Tzong Yang	AUTHOR/ ASSIGNEE/OR INVENTOR
	U.S. PAT. No. 5,410,176		U.S. PAT. No. 5,411,913		U.S. PAT. No. 5,413,966		U.S. PAT. No. 5,436,189		U.S. PAT. No. 5,436,190	PATENT NUMBER
	04/25/95		05/02/95		05/09/95		07/25/95		07/25/95	ISSUE/ PUBLICATION DATE
										CLASSIFICATION

NO.	PATENT OR	AUTHOR/	PATENT	ISSUE/	CLASSIFICATION
	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	
377	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Water Lur	U.S. PAT No 5,395,790	03/07/95	
	Stress-Free Isolation Layer				
378	Important Trench Patents (06/11/96) – National Semiconductor – Abstract of Patent:	Sung K. Kwon, Hong S. Yang	U.S. PAT. No. 5,387,539	02/07/95	
	Method of Manufacturing Trench Isolation				
379	Important Trench Patents (06/11/96) – National Semiconductor – Abstract of Patent:	Rashid Bashir, Datong Chen, Francois	U.S. PAT. No. 5,385,861	01/31/95	
	Planarized Trench and Field Oxide and Poly Isolation Scheme				
380	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Cheng H. Huang, Water Lur	U.S. PAT. No. 5,371,036	12/06/95	
	Locos Technology With Narrow Silicon Trench				
381	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Shuichi Harajiri	U.S. PAT. No. 5,348,906	09/20/94	
	Method for Manufacturing Semiconductor Device		·		

Important Trench Patents (00/1796) - National Senuconductor - Abstract of Patent: Isolation Technique for Silicon Germanium Devices; Forming Silicon-Germannium layer on Silicon Subtrate, Etching Trench, Forming Silicon Layer and Dielectric	Trench Isolation for Both Large and Small Areas by Means of Silicon Nodules after Metal Etching; Local Oxidation by Means of Silicon Nodules After Metal Etching of Aluminum-Silicon Alloy is Achieved	Planarization Process for IC Trench Isolation Using Oxidized Polysilicon Filler 383 Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	NO. PUBLICATION TITLE 382 Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:
uctor - uctor - ue for n Devices; Germannium ubtrate, forming Dielectric	for Both Areas by Nodules ng; Local ans of Wher Metal num-Silicon	Jsing Con Filler ents (06/11/96) uctor	OR N TITLE ents (06/11/96) uctor -
James H. Comfort, David L. Harame, Scott R. Stiffler		Water Lur, Anna Su, Jiunn Y. Wu	AUTHOR/ ASSIGNEE/OR INVENTOR Steven S. Cooperman, Andre I. Nasr
U.S. PAT. No. 5,308,785		U.S. PAT. No. 5,308,786	PATENT NUMBER U.S. PAT. No. 5,346,584
05/03/94		05/03/94	PUBLICATION DATE 09/13/94
			CLASSIFICATION

NO.	PATENT OR	AUTHOR	PATENT	ISSUE/	CLASSIFICATION
-	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION DATE	
385	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Toru Yamazaki	U.S. PAT. No. 5,306,940	04/26/94	
	Semiconductor Device				
	Including a Locos Type Field				
	Oxide Film and a U Trench Penetrating the Locos Film				
386	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Douglas P. Verret	U.S. PAT. No. 5,298,450	03/29/94	
	Process for Simultaneously				
	Fabricating Isolation Structures for Binolar and				
	CMOS Circuits				
387	Important Trench Patents (06/11/96) - National Semiconductor -	Mark S. Rodder	U.S. PAT. No.	06/29/93	
	Abstract of Patent:		0,440,700		
	Trench Isolation Process with				
	Reduced Topography		-		
388	Important Trench Patents (06/11/96)	Stephen J. Gaul,	U.S. PAT. No.	06/08/93	
	- National Senticonductor - Abstract of Patent:	Donnald F.	5,217,919		
		Hemmenway			•
	Method of Forming Island				
	with Polysilicon-Filled				
	Trench Isolation; Forming				
	Silicon Nitride Protective and				
	Polishing Stop Layer,	-			
	Etching, Stripping to Expose				
	Underlays Oxide Layer				

	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION DATE
389	Important Trench Patents (06/11/96) National Semiconductor – Abstract of Patent:	Guy R. Freeman	U.S. PAT. No. 5,206,182	04/27/93
	Trench Isolation Process; Prevent Inversion of Sidewall of Trenches			
390	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	David Back, Wayne I. Kinney, Jonathan E. Macro, John P. Niemi	U.S. PAT. No. 5,179,038	01/12/93
	High Density Trench Isolation for MOS Circuits			
391	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Mitsuru Sakamott	U.S. PAT. No. 5,168,343	12/01/92
	Semiconductor Integrated			
	Improved Trench Isolation;			
	Surface Grooves of Subtrate			
	are Embedded with Silicon Boron Nitride Dielectric to			
	Isolate Circuit Elements			
392	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Shigeru Morita	U.S. PAT. No. 5,148,258	09/15/92
	Semiconductor Device			
	Having Junction Structure of			
	a Plurality of Elemnt.			
	Isolation Regions			

			Nanba, Takahiro Onai, Takeo Shiba, Katsuyoshi Washio	Semiconductor Device with Optimal Distance Between Emitter and Trench Isolation	
	04/28/92	U.S. PAT. No. 5,109,263	Mastada Horiuchi, Kiyoji Ikeda, Tohru Nakamura, Kazuo Nakazato Mitsuo	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	396
				High Performance Vertical Bipolar Transistor Structure Via Self-Aligning Processing Techniques; Semiconductors	
	07/07/92	U.S. PAT. No. 5,128,271	Gary B. Bronner, David L. Harame, Mark E. Jost	Important Trench Patents (06/11/96) – National Semiconductor – Abstract of Patent:	395
				Method for Forming Planarized Shallow Trench Isolation in an Integrated Circuit and a Structure Formed Thereby	
	07/14/92	U.S. PAT: No. 5,130,268	Fusen E. Chen, Fu-Tai Liou	Having Trench Isolation Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	394
	09/15/92	U.S. PAT. No. 5,148,247	Kazunori Imaoka, Takao Miura	Important Trench Patents (06/11/96) National Semiconductor - Abstract of Patent: Semiconductor Device	393
CLASSIFICATION	ISSUE/ PUBLICATION DATE	PATENT NUMBER	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT OR PUBLICATION TITLE	NO.

25	BATENIT OD	ALIEU CB/	DATENT	lee le	CI ACCIDICATION
	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION	
397	Important Trench Patents (06/11/96) - National Semiconductor -	Jestrey E. Brighton, Deems R.	U.S. PAT. No. 5,104,816	04/14/92	
	Abstract of Patent:	Hollingsworth,			
	Polysilicon Self-Aligned	Manuel L. Torreno Jr.,			
	Bipolar Device Including	Douglas P. Verret			
	Trench Isolation and Process				
	of Manufacturing Same;				
	Forming Inlined Isolation				
	Channel in Semiconductor				
398	Important Trench Patents (06/11/96) - National Semiconductor -	Pier L. Crotti, Nadia	U.S. PAT. No.	11/26/91	
	Abstract of Patent:	Iazzi	3,008,202		
	Process for Excavating				
	Trenches with a Rounded		•		
	Bottom in a Silicon Subtrate				
	for Making Trench Isolation				
	Structures				
399	Important Trench Patents (06/11/96) - National Semiconductor -	Clarence W. Teng	U.S. PAT. No.	10/29/91	
	Abstract of Patent:		3,001,033		
	Trench Isolation Process;	•			
	Filling Groove of Silicon		•		
	Semiconductor Subtrate				
	having Insulating Sidewalls				
	and Bottom with Polysilicon,				
	Forming, Then Oxidizing the		•		
	Upper Surface of a		•		
	Polysilicon Layer Which				
	Extends over the Sidewalls			•	

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
400	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Monte A. Douglas	U.S. PAT. No. 5,010,378	04/23/91	
	Tapered Trench Structure and Process				
401	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Michael L. Kerbaugh, Charles W. Koburger III, Brian J.	U.S. PAT No. 5,006,482	04/09/91	
	Forming Wide Dielectric- Filled Planarized Isolation Trenches in Semiconductors; Using Silicon Nitride as Etch Stop	Macheeney			, .
402	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	Kunio Aomura	U.S. PAT No. 4,988,639	01/29/91	
·	Method of Manufacturing Semiconductor Devices Using Trench Isolation Method that Forms Highly Flat Buried Insulation Film; Silicon Body with Trenches; Insulation Filling, Masking, Dopes				

			Hiroyuki Nihira	Method of Manufacturing	
	06/05/90	U.S. PAT. No. 4,931,409	Nobuyuki Itoh, Hiroomi Nakajima,	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent	406
				Method of Making a CMOS Device with Trench Isolation Devices	
	12/25/90	U.S. PAT. No. 4,980,306	Masafumi Shimbo	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	405
				Trench Isolation Technique to Produce Narrow and Wide Regions	
		·		Method of Fabricating a Semiconductor Device;	
,	12/25/90	U.S. PAT. No. 4,980,311	Isamu Nanios	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	404
				Defect Free Trench Isolation Devices and Method of Fabrication; Semiconductors, Insulation, Stress Resistance, Masking, Dielectrics, Field Oxide	
	01/08/91	U.S. PAT. No. 4,983,226	William R. Hunter, Christopher Slawinski, Clarence Teng	Important Trench Patents (06/11/96) - National Semiconductor — Abstract of Patent:	403
CLASSIFICATION	ISSUE/ PUBLICATION DATE	PATENT NUMBER	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT OR PUBLICATION TITLE	NO.

103		Japan 62-16572			414
103	08/15/83	Japan 58-137254			413
·	05/19/88	Japan 63114173 A	lwabuchi Toshiyuki et al.	Semiconductor Device and Manufacture Thereof (Abstract)	412
	02/09/88	Japan 63-031170	Ajika Natsuo	Semiconductor Device and Manufacture Thereof (Abstract)	411
103	08/11/87	U.S. PT. NO. 4,685,196	Lee	Method For Making Planar FET Having Gate, Source And Drain In The Same Place	410
	11/08/94	U.S. PT. NO. 5,362,665	Lu	Method of Making Vertical Dram Cross Point Memory Cell	409
				Method of Forming an Oxide Liner and Active Area Mask for Selective Epitaxial Growth in an Isolation Trench	
	02/13/90	U.S. PAT. No. 4,900,692	F.J. Robinson	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	408
				Method of Trench Filling; Integrated Circuit Semiconductor Structure	
	05/08/90	U.S. PAT. No. 4,924,284	Klaus D. Beyer, Victor J. Silvestri	Important Trench Patents (06/11/96) - National Semiconductor - Abstract of Patent:	407
CLASSIFICATION	ISSUE/ PUBLICATION DATE	PATENT NUMBER	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT OR PUBLICATION TITLE	NC.

2	PATENTOR	AIITHOR/	PATENT	ISSHE/	CLASSIFICATION
Š	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION	
		INVENTOR		DAIE	
415	Semiconductor Device and Its	Yasuno	JP 56-131960 A	10/15/81	103
	Preparation				
416	Semiconductor Device and	Ucda	JP 57-018365 A	01/30/82	103
	Manufacture Thereof				
417	Insulated Gate Semiconductor	Ashikawa	JP 58-137254 A	08/15/83	102, 103
	Device				
418	High speed high breakdown	Patel	EP 94891 A	11/23/83	103
	voltage Mosfet- has vertical				
	structure with source contact				
	opening extending into gate				
	region				
419	V-Groove Mos Type Field-	Yamamoto	JP 59-080970 A	05/10/84	103
	Effect Transistor				
420	High Withstand Voltage	Tanaka	JP 59-193064 A	11/01/84	103
	Vertical Type Transistor				
	Device				
421	Vertical Type Mosfet	Tominaga	JP 60-028271 A	02/13/85	103
422	Method of Fabricating Power	Vora	US 4,503,598	03/12/85	103
	Mosfet Structure Utilizing				
	Self-Aligned Diffusion and				
	Etching Techniques				
423	Self-Aligned Power Mosfet	Love	US 4, 516, 143	05/07/85	103
	with Integral Source-Base				
	Short and Methods of Making				
424	DMOS transistor - with body	Contiero	EP 179407	04/30/86	103
	channel and source regions		(equivalent to US		
	located in substrate		4,757,032)		
425			JP 61-142775	06/30/86	103

DATENT OD			1	
PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	CLASSIFICATION
Manufacture of Vertical Type Semiconductor Device with Groove Section	Sasaki	JP 62-12167 A	01/21/87	102, 103
-0r-				
Method for Manufacturing				
Grooved Vertical				
Semiconductor Device				
Vertical Type Semiconductor	Sasaki	JP 62-016572 A	01/24/87	100 103
Device and Manufacture				102,
DMOS transistor - with	Rlanchard	2000000	01000	
shaped groove providing		(conivalent to US	01110	100
small area electrical contact		4. 682.405)		
Vertical Type Semiconductor	Sasaki	JP 62-046569 A	02/28/87	103
Device and Manufacture	-		!	
11101001				
and Vertical DMOS	Blanchard	US 4, 682, 405	07/28/87 ·	103
Transistors				
Fet for High Reverse Bias	Hendrickson	US 4,735,914	04/05/88	103
Design for Low on Resistance				
Semiconductor Device and	lwabuchi	JP 63-114173 A	05/19/88	102 103
Manufacture Thereof				102, 103
Vertical Mosfet and Method	Morie	US 4.786.953	11/22/88	103
		JP 1-192174	08/02/89	103
		JP 1-310576	12/14/89	103
	PATENT OR PUBLICATION TITLE Manufacture of Vertical Type Semiconductor Device with Groove Section -or- Method for Manufacturing Grooved Vertical Semiconductor Device Vertical Type Semiconductor Device and Manufacture Thereof DMOS transistor – with shaped groove providing small area electrical contact Vertical Type Semiconductor Device and Manufacture Thereof Methods for Forming Lateral and Vertical DMOS Transistors Fet for High Reverse Bias Voltage and Geometrical Design for Low on Resistance Semiconductor Device and Manufacture Thereof Vertical Mosfet and Method of Manufacturing the Same	E Sas h Sas	E ASSIGNEE/OR INVENTOR Sasaki tor Sasaki Blanchard tor Sasaki Hendrickson Wabuchi Morie	AUTHOR/ R ASSIGNEE/OR NUMBER INVENTOR JP 62-12167 A 0 h P 62-12167 A 0 h P 62-12167 A 0 h P 62-016572 A 0 Iter Sasaki JP 62-016572 A 0 Blanchard EP 209949 A (equivalent to US 4, 682, 405) Iter Sasaki JP 62-046569 A 0 Iter Sasaki JP 63-114173 A 0 Iter Morie JP 1-192174 08 JP 1-192174 08 JP 1-192174 08

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
436			JP 2-102579	04/16/90	103
437	Insulated gate filed effect transistor	Hideshima et al.	JP 55-146976	11/15/80	102
438	Insulated Gate Semiconductor Device	lto et al.	JP 58-137254	08/15/83	102
439	Vertical-type Semiconductor Device and Manufacturing Method Therefor	Sasaki	JP 62-16572	01/24/87	102
440	Physics and Technology of Power MOSFETs	Sun		02/00/82	102
441	Optimization of Discrete High Power MOS Transistors	Blanchard		12/00/81	102
442	Method for Manufacturing Grooved Vertical Semiconductor Device	Sasaki	JP 62-12167	01/21/87	102
.443	Method for the Formation of Polycrystalline Silicon Layers, and Its Application in the Manufacture of a Self-Aligned, Non Planar, MOS Transistor	Tonnel	U.S. 4,420,379	12/13/83	102
444	Vertical MOSFET	Oshikawa	JP 63-124762	08/15/88	102
445	Conductivity-Modulated MOSFET	lioh et al.	JP 63-224260	09/19/88	102
446	Semiconductor Device	Nakatani	JP 59-181668	10/16/84	102
447	Semiconductor Device	Okabe et al.	JP 54-57871	05/10/79	102
448	High voltage semiconductor switch	Pernyeszi	JP 57-72365	05/06/82	102

NO.	PATENT OR	AUTHOR	PATENT	ISSUE/	CLASSIFICATION
	PUBLICATION TITLE	ASSIGNEE/OR INVENTOR	NUMBER	PUBLICATION DATE	
449	High withstand voltage	Tanaka	JP 59-193064	11/01/84	102
	vertical type transistor device		10.00.000	020206	
450	Venical MOSFET	Lommaga	JP 60-282/1	02/13/85	102
451	Semiconductor Device and Its Method of Manufacture	Ueda et al.	JP 57-18365	01/30/82	102
452	V-groove MOS Field Effect Transistor	Yamamoto	JP 59-80970	05/10/84	102
453	MOS Power Transistor with Improved High-Voltage Capability	Blanchard	U.S. 4,345,265	08/17/82	103
454	Method of Fabricating a Semiconductor Device with a Base Region Having a Deep Portion	Baliga et al.	U.S. 4,443,931	04/24/84	103
455	MOSFET with Perimeter Channel	Ford et al.	U.S. 4,532,534	07/30/85	103
456	Method for Manufacturing a Vertical, Grooved MOSFET	Goodman	U.S. 4,374,455	02/22/83	103
457	MOS-Field Effect Transistor with a One-Micron Vertical Channel	Amlinger	U.S. 3,412,297	11/19/68	103
458	Integrated Bipolar-MOS Semiconductor Device with Common Collector and Drain	Merrill et al.	U.S. 4,783,694	11/08/88	103

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATION
459	Process for Manufacture of High Power MOSFET with Laterally Distributed High Carrier Density Beneath the Gate Oxide	Lidow et al.	U.S. 4,593,302	06/03/86	103
460	Design of New Structural High Breakdown Voltage V- MOSFET	Katoh et al.		1983	102
461	A Study for High Voltage V- MOS Structure [Japanese]	Kato et al.		1981	102
462	Design of High Breakdown Voltage V-MOSFET Applying Static Shield Effect	Kato et al.		1983	102
463	High Voltage-ization Using Static Shield Effect	Kato et al.		1984	102
464	U-MOS Power MOSFET	Ueda et al.		04/00/83	102
465	Method for the Formation of Polycrystalline Silicon Layers, and its Application in the Manufacture of a Selfaligned, non planar, MOS Transistor	Tonnel	U.S. 4,420,379		·
466	Integrated Circuit and Method of Fabrication	Wakefield et al.	U.S. 3,793,721	02/26/74	·
467	Gas-Etching Device	Horiike	U.S. 4,192,706	03/11/80	
468	Semiconductor Device with Isolation Between MOSFET and Control Circuit	Takagi et al.	U.S. 4,879,584	11/07/89	

- 4×	480	479	C	C	<u>و</u>	1	478 In	477 SI	476 H	475 L:	474 Bi	473 Bi	472 To St	471 Lo	470 Pc Sc Tr	469 M In Ti	NO.
			Characteristics	Controlled Avalanche	Gate Structure with	Transistors Having Closed	Integrated Gate Field Effect	Split Row Power JFET	High Density, High Voltage Power FET	Lateral Bidirectional Shielded Notch FET	Bidirectional Power FET with Field Shaping	Bidirectional Power FET with Integral Avalanche Protection	Termination of the Power Stage of a Monolithic Semiconductor Device	Low On-Resistance Power MOS Technology	Power Metal-Oxide- Semiconductor Field Effect Transistor	Method of Manufacturing an Insulated Gate Field Effect Transistor	PATENT OR PUBLICATION TITLE
j							Dingwall	Benjamin et al.	Benjamin et al.	Schutten et al.	Schutten et al.	Schutten et al.	Zambrano et al.	Yilmaz et al.	Yilmaz	Ueno	AUTHOR/ ASSIGNEE/OR INVENTOR
Taiwan 762/3	Taiwan 84398	Taiwan 79217	-				U.S. 4,173,022	U.S. 4,635,084	U.S. 4,571,606	U.S. 4,571,512	U.S. 4,553,151	U.S. 4,577,208	U.S. 5,317,182	U.S. 5,304,831	U.S. 5,168,331	U.S. 5,086,007	PATENT NUMBER
04/01/86	01/16/87	07/16/86					10/30/79	01/06/87	02/18/86	02/18/86	11/12/85	03/18/86	05/31/94	04/19/94	12/01/92	02/04/92	ISSUE/ PUBLICATION DATE
			-													·	CLASSIFICATION

S	PATENT OR	AUTHOR/	PATENT	ISSUE/	CLASSIFICATION
	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION	
		INVENTOR		DATE	
482	-		Taiwan 76658	04/16/86	
483		•	Taiwan 81000	09/16/86	
484			Taiwan 76659	04/16/86	
485		•	Taiwan 82853	11/16/86	
486			Taiwan 130553	05/04/89	
487			Taiwan 23752	10/01/78	
488			Taiwan 23753	10/01/78	
489			Taiwan 121200	10/02/89	
490			Taiwan 89006	07/16/87	
491			Taiwan 50783	06/01/83	
492			Taiwan 143728	10/11/90	
493			Taiwan 37622	06/01/81	
494			Taiwan 37624	06/01/81	
495			Taiwan 79990	08/16/86	
496			Taiwan 105722	11/21/88	
497			Taiwan 182074	04/11/92	
498			Taiwan 205111	05/01/93	
499			Taiwan 114082	06/01/89	
500			Taiwan 133506	05/01/90	
501			Taiwan 134124	05/11/90	
502			Taiwan 173429	11/21/91	
503			Taiwan 31771	08/01/80	

_				Product of 160, <i>IEDM 86</i>	
	-		-	MOSFET with an Ron Area	
	12/07/86		Ueda et al.	Deep-Trench Power	509
				Characteristics, IEDM 86	
				Quasi-Saturation	
	-			Improved On-Resistance and	
	1986		Darwish	VDMOS Transistors with	508
				Devices	
				Transactions on Electron	
				Dual-Gate MOSFET, IEEE	
				Characteristics in Trench	•
	09/00/91		Mizuno et al.	High Performance	507
				Conference 1982	
				Electronics Specialists	
				MOSFETS, IEEE Power	
	1982		Chi and Hu	Some Issues of Power	506
ľ				Specialists Conference 1985	
				IEEE Power Electronics	
				Protected Turn-On Feature,	
				to Add an Overvoltage Self-	
	1985	-	Przybysz	Laser Trimming of Thyristors	505
				Devices	
				Trunsactions on Electron	
				Transistors, IEEE	
				VDMOS, and VMOS Power	
				Resistance of LDMOS,	
	02/00/80		Sun and Plummer	Modeling of the On-	504
1	DATE		INVENTOR		
Z	PUBLICATION	NUMBER	ASSIGNEE/OR	PUBLICATION TITLE	
	ISSUE/	PATENT	AUTHOR	PATENT OR	NO.

NO.	PATENT OR PUBLICATION TITLE	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT NUMBER	ISSUE/ PUBLICATION DATE	CLASSIFICATE
) J	Power Semiconductor Devices - A Status Review, IEEE 1982	Pelly		1982	·
511	Power MOSFETs or Bipolar Power Transistors for	Freundel		1982	
	Converter Circuits?, IEEE 1982. International				
	Semiconductor Power				
	Converter Conference				
512	A Complimentary DMOS- VMOS IC Structure, IEEE	Jhabvala and Lin		1978	
	1978, International				
	Semiconductor Power Converter Conference				
513	High-Voltage device	Baliga et al	-		
	termination techniques, A	1		10/00/82	
_	comparative review, <i>IEE</i> Proc.				
514	A Parametric Study of Power	Hu		1070	
	MOSFETs, reprinted from			19/9	
	Specialists Conf.	•			
515	A Low-voltage Power	Rittenhouse and		1990	
	recovery Body Diods 6	Schlecht			
	Synchronous Rectification				
	IEEE Power Electronics				
	Specialists Conformed				

NO.	PATENT OR PUBLICATION TITLE 500V, Power UMOSFETs with an Ultra-Low Specific
	with an Ultra-Low Specific On_Resistance, Proc. of the Symp. on High Voltage and Smart Power ICs
517	Higher power ratings extend V-MOS FETs' dominion, Electronics
815	A New VMOS/Bipolar Darlington Transistor for Power Applications, IEDM 1980
519	Geometry Effects in VMOS Transistors, IEDM 1978
520	Minimization of Parasitic Capacitances in VMOS Transistors, <i>Technical Digest</i>
521	V-Groove Power Field Effect Transistors, <i>Technical Digest</i> 1977, IEDM
522	A Fully Implanted V-Groove Power MOSFET, IEDM 1978
523	A New Injection Suppression Structure for Conductivity Modulated Power MOSFETs, Extended Abstracts of the
	18th Conference on Solid State Devices and Materials

Rossel et al. Rossel et al. y, Lidow et al. Combs et al. Johnsen and Granberg Johnsen and Chang Rav-Noy et al. Rav-Noy et al. Baliga and Chang he Taguchi et al. he Taguchi et al.	:	PURI CATION TETT	ASSIGNEE/OR	NUMBER	PUBLICATION	
Static and High Frequencey Modelling of Vertical Channel MOS Transistor, Revue de Physique Appliquee MOS power devices – trends and results, Solid State Devices 1980 Characterization and Modeling of Simultaneously Fabricated DMOS and VMOS Transistors Design Construction, and Performance of High Power RF VMOS Devices, IEDM 1979 Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS- Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring Modelling of Vertical Lateral Extended Guard Ring Rev-Noy et al. (a) (b) (c) (c) (c) (c) (c) (c) (d) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d			INVENTOR		DATE	
Modelling of Vertical Channel MOS Transistor, Revue de Physique Appliquee MOS power devices – trends and results, Solid State Devices 1980 Power MOSFET Technology, IEDM 1979 Characterization and Modeling of Simultaneously Fabricated DMOS and VMOS Transistors Design Construction, and Performance of High Power RF VMOS Devices, IEDM 1979 Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS- Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring	524	Static and High Frequencey	Rossel et al.		09/11/78	
Channel MOS Transistor, Revue de Physique Appliquee MOS power devices – trends and results, Solid State Devices 1980 Power MOSFET Technology, IEDM 1979 Characterization and Modeling of Simultaneously Fabricated DMOS and VMOS Transistors Design Construction, and Performance of High Power RF VMOS Devices, IEDM 1979 Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS- Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring		Modelling of Vertical				
Revue de Physique Appliquee MOS power devices – trends and results, Solid State Devices 1980 Power MOSFET Technology, Lidow et al. REDM 1979 Characterization and Modeling of Simultaneously Fabricated DMOS and VMOS Transistors Design Construction, and Performance of High Power RF VMOS Devices, IEDM 1979 Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS-Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring Taguchi et al. Taguchi et al.		Channel MOS Transistor,				
and results, Solid State Devices 1980 Power MOSFET Technology, IEDM 1979 Characterization and Modeling of Simultaneously Fabricated DMOS and VMOS Transistors Design Construction, and Performance of High Power RF VMOS Devices, IEDM 1979 Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS- Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring Tibanyi Lidow et al. Combs et al. Combs et al. Troutman Froutman Troutman Transistors Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring		Revue de Physique Appliquee				
and results, Solid State Devices 1980 Power MOSFET Technology, IEDM 1979 Characterization and Modeling of Simultaneously Fabricated DMOS and VMOS Transistors Design Construction, and Performance of High Power RF VMOS Devices, IEDM 1979 Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS- Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring	525	MOS power devices - trends	Tihanyi		09/15/80	
Devices 1980 Power MOSFET Technology, Lidow et al. IEDM 1979 Characterization and Modeling of Simultaneously Fabricated DMOS and VMOS Transistors Design Construction, and Performance of High Power RF VMOS Devices, IEDM 1979 Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs Vertical FET's in GaAs Perional InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Rings Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Rings		and results, Solid State			-	
Power MOSFET Technology, IEDM 1979 Characterization and Modeling of Simultaneously Fabricated DMOS and VMOS Transistors Design Construction, and Performance of High Power RF VMOS Devices, IEDM 1979 Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS- Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring Lidow et al. Combs et al. Combs et al. Troutman Troutman Troutman Troutman Troutman Troutman Troutman Troutman Troutman Tray-Noy et al. Tay-Noy et al.		Devices 1980				
Characterization and Combs et al. Modeling of Simultaneously Fabricated DMOS and VMOS Transistors Design Construction, and Performance of High Power RF VMOS Devices, IEDM 1979 Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS-Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring Taguchi et al.	526	Power MOSFET Technology,	Lidow et al.		12/03/79	
Characterization and Modeling of Simultaneously Fabricated DMOS and VMOS Transistors Design Construction, and Performance of High Power RF VMOS Devices, IEDM 1979 Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS-Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring Taguchi et al.		IEDM 1979	•			
Modeling of Simultaneously Fabricated DMOS and VMOS Transistors Design Construction, and Performance of High Power RF VMOS Devices, IEDM 1979 Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS- Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring Taguchi et al.	527	Characterization and	Combs et al.			
Transistors Design Construction, and Power RF VMOS Devices, IEDM 1979 Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS-Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring Transistors Johnsen and Granberg Johnsen and Granberg Johnsen and Granberg Froutman Troutman	Modeling of Simultaneously Fabricated DMOS and VMOS					
Design Construction, and Performance of High Power RF VMOS Devices, IEDM 1979 Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS- Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring Johnsen and Granberg Troutman Troutman Rav-Noy et al. Baliga and Chang Taguchi et al. Taguchi et al.		Transistors				
Performance of High Power RF VMOS Devices, IEDM 1979 Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS-Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring Performance of High Power Troutman	528	Design Construction, and	Johnsen and Granberg		12/03/79	
Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS-Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring		Performance of High Power				
Epitaxial Layer Enhancement of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS-Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring Troutman Troutman Troutman Troutman Troutman Troutman Troutman Taguchi et al.		1979				
of n-Well Guard Rings for CMOS Circuits Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS- Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring	529	Epitaxial Layer Enhancement	Troutman		12/00/83	
Vertical FET's in GaAs The MOS Depletion-Mode Thyristor: A New MOS- Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring	•	of n-Well Guard Rings for CMOS Circuits				
The MOS Depletion-Mode Thyristor: A New MOS- Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring	530	Vertical FET's in GaAs	Rav-Noy et al.	•	07/00/84	
Thyristor: A New MOS- Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring	531	The MOS Depletion-Mode	Baliga and Chang		08/00/88	
Controlled Bipolar Power Device Planar InP/InGaAs Avalanche Taguchi et al. Photodiodes with Preferential Lateral Extended Guard Ring		Thyristor: A New MOS-				
Planar InP/InGaAs Avalanche Photodiodes with Preferential Lateral Extended Guard Ring		Controlled Bipolar Power				
Planar InP/InGaAs Avalanche Taguchi et al. Photodiodes with Preferential Lateral Extended Guard Ring		Device				
Photodiodes with Preferential Lateral Extended Guard Ring	532	Planar InP/InGaAs Avalanche	Taguchi et al.	-	04/00/86	
Lateral Extended Guard Ring		Photodiodes with Preferential				
	•	Lateral Extended Guard Ring			•	

				Devices	
	06/00/92		Shenai	Optimized Trench MOSFET	541
	06/00/83		Yeh et. al.	A New CMOS Structure with Vertical p-Channel Transistors	540
	01/00/83		Kuo et al.	dV/dt Breakdown in Power MOSFET's	539
	11/00/87		Chang et al.	Self-Aligned UMOSFET's with a Specific On-Resistance of 1 m cm ²	538
	01/00/85	-	Ueda et al.	A New Vertical Power MOSFET Structure with Extremely Reduced On- Resistance	537
	11/00/84		Adler et al.	The Evolution of Power Device Technology	536
	07/00/83		Wang and Navon	Threshold and Punchthrough Behavior of Laterally Nonuniformally Doped Short-Channel MOSFET's	535
	01/00/83		Tamer et al.	Numerical Comparison of DMOS, VMOS, and UMOS Power Transistors	534
	06/0081	·	Lane et al.	Compatible VVMOS and NMOS technology for power MOS ICs	533
CLASSIFICATION	ISSUE/ PUBLICATION DATE	PATENT NUMBER	AUTHOR/ ASSIGNEE/OR INVENTOR	PATENT OR PUBLICATION TITLE	NO.

Talisisto Surceure		
The Minority Carrier Injection Controlled Field- Effect Transistor (MICFET): A New MOS-Gated Power Transistor Structure		08/00/92
White et al.		09/13/82
Static Memory Cell Having a Vertical Driver MOSFET with a Buried Source for the Ground Potential		
A New Soft-Error-Immune Minami et al.		09/00/89
500-V n-Channel Insulated- Gate Bipolar Transistor with a Trench Gate Structure Chang and Baliga		09/00/89
MOS Power Devices - Trends Tihanyi and Results		1980
The Field-Assisted Turn-Off Thyristor: A Regenerative Device with Voltage- Controlled Turn-Off		08/00/92
MOSFFT Drain Envincering Shin et al.		08/00/92
PATENT OR AUTHOR/ PUBLICATION TITLE ASSIGNEE/OR	PATENT NUMBER	

Z	PATENT OF	/dOHJ.IIV	DATENT	/ CH1 G G H	NOTE OF THE PARTY IN
	PUBLICATION TITLE	ASSIGNEE/OR	NUMBER	PUBLICATION	CEASSIFICATION
		INVENTOR		DATE	
550	A High-Density, Self-Aligned	Shenai		05/00/92	
	Power MOSFET Structure				
	Fabricated Using Sacrificial				
	Spacer Technology				
551	A New VDMOSFET	Sakai and Murakami		07/00/89	
	Structure with Reduced				
	Reverse Transfer Capacitance		-		
552	The Design of the Low On-	Pham et al.		09/13/82	
	Resistance Power V-DMOS				
	Transistor			-	
553	Planar Type Semiconductor	Nakagawa et al.	U.S. 4,567,502	01/28/86	
	Device with a High				
	Breakdown Voltage				
554			JP 2-83982	03/26/90	
555	Planar Vertical Channel DMOS Structure	Blanchard	U.S. 5,034,785	07/23/91	102, 103
556	Method for Making Planar	Blanchard	U.S. 4,767,722	08/30/88	103
	Vertical Channel DMOS		-		
	Structures				

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

	, p		
		· .	
	· ·		
IS			,
		· ·	
			•
E PO	OR QUA	LITY	
1	IS	IS	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.