Concours Blanc : corrigé

Lycée Carnot

6 janvier 2010

Problème 2 : Nombre de surjections entre ensembles finis

1 Exemples et généralités

- 1. Soit f une application surjective de $\{(1;2;3)\}$ dans $\{(1;2)\}$. Les triplets possibles pour (f(1);f(2);f(3)) sont (1;1;2); (1;2;1); (1;2;2); (2;1;1); (2;1;2) et (2;2;1), ce qui nous donne $S_{3,2}=6$. De même, si g est une application surjective de $\{(1;2;3;4)\}$ dans $\{(1;2)\}$, les quadruplets possibles pour (g(1);g(2);g(3);g(4)) sont (1;1;1;2); (1;1;2;1); (1;1;2;2); (1;2;1;1); (1;2;1;2); (1;2;2;1); (1;2;2;1); (2;2;1;1); (2;2;1;2) et (2;2;2;1), d'où $S_{4,2}=14$.
- 2. Une application ayant pour ensemble de départ $\{1; 2; ...; n\}$ ne peut prendre qu'au plus n valeurs différentes, donc ne pourra pas être surjective dans $\{1; 2; ...; p\}$ si n < p. Autrement dit, $S_{n,p} = 0$ dans ce cas.
- 3. La seule application ayant pour ensemble d'arrivée l'ensemble réduit à un seul élément $\{1\}$ est l'application constante égale à 1 (quel que soit l'ensemble de départ). Elle est par ailleurs surjective dès que $n \ge 1$, donc $S_{n,1} = 1$ pour $n \ge 1$.
- 4. Une application surjective de $\{1; 2; ...; n\}$ dans lui-même n'est autre qu'une permutation de l'ensemble $\{1; 2; ...; n\}$, qui sont au nombre de n!, donc $S_{n,n} = n!$.

2 Détermination de $S_{n,2}$

- 1. On a vu plus haut que $S_{2,2} = 2! = 2$.
- 2. Considérons une application surjective f de $\{1; 2; ...; n+1\}$ dans $\{1; 2\}$, et supposons que f(n+1) = 1. Pour que f soit surjective, il suffit alors que la restriction de f à $\{1; 2; ...; n\}$ soit déjà surjective (u_n) possibilités) ou que $f(1) = f(2) = \cdots = f(n) = 2$. Il y a de même u_n+1 applications surjectives pour lesquelles f(n+1) = 2, ce qui nous donne bien au total $u_{n+1} = 2(u_n+1)$.
- 3. La suite (u_n) est une suite arithmético-géométrique. Son équation de point fixe, x = 2x + 2, a pour solution x = -2. Posons donc $v_n = u_n + 2$, on a alors $v_{n+1} = u_{n+1} + 2 = 2u_n + 2 + 2 = 2(u_n + 2) = 2v_n$. La suite (v_n) est donc une suite géométrique de raison 2 et vérifiant $v_2 = u_2 + 2 = 4$. On en déduit que $\forall n \geq 2$, $v_n = 4 \times 2^{n-2} = 2^n$, puis $u_n = v_n 2 = 2^n 2$.
- 4. Il y a au total 2^n applications de $\{1; 2; ...; n\}$ dans $\{1; 2\}$. Parmi celles-ci, les seules qui ne sont pas surjectives sont les deux applications constantes respectivement égales à 1 et à 2. Le nombre d'applications surjectives est donc $2^n 2$.

3 Détermination de $S_{n,3}$

- 1. Toujours en revenant à la dernière question de la première partie, $v_3 = S_{3,3} = 3! = 6$.
- 2. Soit g une application surjective de $\{1; 2; \ldots; n+1\}$ dans $\{1; 2; 3\}$ telle que g(n+1)=3. Il y a alors deux possibilités pour la restriction de g à $\{1; 2; \ldots; n\}$: soit elle est surjective dans $\{1; 2; 3\}$, soit elle est surjective dans $\{1; 2\}$ (sans prendre la valeur 3). Ces deux possibilités ne pouvant se

produire simultanément, il y a $v_n + u_n$ applications g convenables. Un raisonnement identique dans le cas où g(n+1) = 1 et g(n+1) = 2 nous permet d'obtenir au total $v_{n+1} = 3(v_n + u_n)$. Comme $u_n = 2^n - 2$, on a donc $v_{n+1} = 3v_n + 3 \times 2^n - 6$.

3. PROGRAM recurrence;

```
USES wincrt;  \begin{array}{l} VAR \ i,n,v,w : integer \,; \\ BEGIN \\ WriteLn('Choisissez \ la \ valeur \ de \ l'entier \ n >= 3') \,; \\ ReadLn(n) \,; \\ v := 6 \,; \ w := 3*8 \,; \\ FOR \ i := 4 \ TO \ n \ DO \\ BEGIN \\ v := 3*v+w-6 \,; \ w := 2*w \,; \\ END \,; \\ WriteLn('La \ valeur \ de \ v\_',n,' \ est \ de \ ',v) \,; \\ END \,; \\ \end{array}
```

- 4. D'après le résultat de la question 2, $w_{n+1} = v_{n+1} 3 = 3v_n + 3 \times 2^n 6 3 = 3(v_n 3 + 2^n) = 3(w_n + 2^n)$.
- 5. Calculons $t_{n+1} = w_{n+1} + 3 \times 2^{n+1} = 3(w_n + 2^n + 2^{n+1}) = 3(w_n + 2^n + 2 \times 2^n) = 3(w_n + 3 \times 2^n) = 3t_n$. La suite (t_n) est donc bien géométrique de raison 3.
- 6. Il ne reste plus qu'à remonter : $t_3 = w_3 + 3 \times 2^3 = w_3 + 24 = v_3 3 + 24 = v_3 + 21 = 6 + 21 = 27$. On en déduit que $t_n = 27 \times 3^{n-3} = 3^n$, puis $w_n = 3^n 3 \times 2^n$ et enfin $v_n = 3^n 3 \times 2^n + 3$.
- 7. Les applications de $\{1; 2; \ldots n+1\}$ dans $\{1; 2; 3\}$ peuvent être classées selon le nombre de valeurs différentes qu'elles prennent : soit elle prennent les trois valeurs possibles, et il y a par définition v_n telles applications; soit elles en prennent exactement deux, qu'on peut choisir de $\binom{3}{2} = 3$ façons différentes, et il y a à chaque fois u_n telles applications, donc $3u_n$ au total; soit elles sont constantes, ce pour quoi on a 3 possibilités. Comme il y a un total de 3^n applications de $\{1; 2; \ldots; n\}$ dans $\{1; 2; 3\}$, on obtient la relation $3^n = v_n + 3u_n + 3$, donc $v_n = 3^n 3u_n 3 = 3^n 3(2^n 2) 3 = 3^n 3 \times 2^n + 3$.

4 Détermination de $S_{n+1,n}$

- 1. L'application f étant surjective, tout élément de $\{1;2;\ldots;n\}$ admet (au moins) un antécédent par f. Choisissons donc un antécédent pour chaque élément de l'ensemble d'arrivée, cela nous donne n éléments de $\{1;2,\ldots;n+1\}$ ayant des images distinctes par f. Le dernier élément de $\{1;2;\ldots;n+1\}$ a une image identique à l'un des autres éléments de $\{1;2;\ldots;n+1\}$ (puisqu'on a déjà épuisé tous les éléments de l'ensemble d'arrivée), et cette image est bien l'unique élément de notre ensemble d'arrivée ayant exactement deux antécédents.
- 2. Il faut choisir deux éléments dans un ensemble en contenant n+1, il y a donc $\binom{n+1}{2} = \frac{n(n+1)}{2}$ possibilités.
- 3. Une fois choisis l'élément de l'ensemble d'arrivée ayant deux antécédents (n possibilités) et les deux antécédents en question, les n-1 éléments restants dans chaque ensemble sont reliés de façon bijective par f, ce qui laisse (n-1)! possibilités. On a donc $S_{n+1,n} = n \times \frac{n(n+1)}{2} \times (n-1)! = \frac{n(n+1)!}{2}$.

5 Cas général

1. Considérons une application surjective f de $\{1; 2; ...; n\}$ dans $\{1; 2; ...; p\}$. On a p choix possibles pour l'image de n par cette application, et la restriction de f à $\{1; 2; ...; n-1\}$ est soit surjective vers $\{1; 2; ...; p\}$ (il y a pour cela $S_{n-1,p}$ possibilités), soit elle prend toutes les valeurs sauf f(n) (il y a pour cela $S_{n-1,p-1}$ possibilités). Cela nous donne bien la relation de récurrence $S_{n,p} = p(S_{n-1,p} + S_{n-1,p-1})$.

2.

$S_{n,p}$	p = 0	p=1	p=2	p=3	p=4	p=5
n = 0	0	0	0	0	0	0
n = 1	0	1	0	0	0	0
n=2	0	1	2	0	0	0
n=3	0	1	6	6	0	0
n=4	0	1	14	36	24	0
n=5	0	1	30	150	240	120

- 3. Calculons séparément les membres de gauche et de droite : $\binom{p}{k}\binom{k}{j} = \frac{p!}{k!(p-k)!}\frac{k!}{j!(k-j)!} = \frac{p!}{(p-k)!(k-j)!j!}$. De l'autre côté, $\binom{p}{j}\binom{p-j}{k-j} = \frac{p!}{j!(p-j)!}\frac{(p-j)!}{(k-j)!(p-k)!} = \frac{p!}{j!(k-j)!(p-k)!} = \frac{p!}{j!(k-j)!(p-k)!}$. Les deux membres sont bien égaux.
- 4. On a, en utilisant l'égalité précédente, $\sum_{k=q}^{k=p} (-1)^k \binom{p}{k} \binom{k}{q} = \sum_{k=q}^{k=p} (-1)^k \binom{p}{q} \binom{p-q}{k-q}$. Le premier coefficient binomial ne dépendant pas de k, on peut le sortir de la somme. On va par ailleurs effectuer le changement d'indice j=k-q pour se ramener à $\binom{p}{q} \sum_{j=0}^{j=p-q} (-1)^{j+q} \binom{p-q}{j} = \binom{p-q}{j}$

$$\binom{p}{q} \sum_{j=0}^{j=p-q} \binom{p-q}{j} 1^j (-1)^{j+q}$$
. Comme $(-1)^{j+q} = (-1)^{j+q-2j} = (-1)^{q-j}$, on peut reconnaitre

dans la somme une formule du binome de Newton égale à $(1-1)^{p-q} = 0$, d'où la nullité de la somme initiale.

- 5. Il faut choisir les j valeurs qui seront prises par notre application (il y a pour cela $\binom{p}{j}$ choix), et il reste ensuite à choisir une application surjective d'un ensemble à n éléments vers un ensemble à j éléments, ce pour quoi on a par définition $S_{n,j}$ possibilités. Les applications prenant exactement j valeurs sont donc au nombre de $\binom{p}{j}S_{n,j}$.
- 6. Il y a au total p^n applications de $\{1; 2; \ldots; n\}$ vers $\{1; 2; \ldots; p\}$, et chacune d'elle prend un nombre de valeurs compris entre 1 et p. En sommant les expressions obtenues à la question précédente pour j variant de 1 à p, on obtiendra donc p^n (on ne compte manifestement pas deux fois une même application).
- 7. Tentons donc de calculer la somme de droite, en inversant la somme double qui apparait dès que possible :

$$(-1)^p \sum_{k=0}^{k=p} (-1)^k \binom{p}{k} k^n = (-1)^p \sum_{k=0}^{k=p} (-1)^k \binom{p}{k} \sum_{j=1}^{j=k} \binom{k}{j} S_{n,j} = (-1)^p \sum_{j=1}^{j=p} S_{n,j} \sum_{k=j}^{k=p} (-1)^k \binom{p}{k} \binom{k}{j} \binom{k}$$

La somme de droite est justement celle dont on a montré qu'elle était nulle pour toutes les valeurs de j inférieures ou égales à p-1. Le seul terme restant est donc $(-1)^p S_{n,p} \sum_{k=p}^{k=p} (-1)^k \binom{p}{k} \binom{k}{p} = (-1)^{2p} S_{n,p} = S_{n,p}$. L'égalité demandée est donc prouvée.