Segunda lista de exercícios.

Potenciação. Radiciação. Equações do primeiro grau.

- 1. Expanda as expressões e simplifique-as sempre que possível.
 - a) $(3x 4) \cdot (2x)$.
 - b) -2x(3x-4).
 - c) $\left(\frac{x}{5}\right) \cdot \left(\frac{2}{3} 2x\right)$.
 - d) $\left(-\frac{x}{2}\right) \cdot \left(2 3\frac{x}{4}\right)$
 - e) $(3-2x) \cdot (2-3x)$.
 - f) -2(1-x)(3+x/2).
 - g) 3x[x-2-4(5-2x)]
 - h) -x[4-x(2-3x)]
 - i) $\left(x \frac{1}{2}\right) \cdot \left(\frac{1}{3} x\right)$.
 - j) $\left(\frac{x}{2}-3\right)\cdot\left(\frac{5}{4}+x\right)$.
 - k) $\left(\frac{2x}{3} \frac{3}{2}\right) \cdot \left(\frac{3}{4} \frac{x}{3}\right)$.
 - l) $\frac{1}{x+3} + \frac{4}{5-x}$
 - m) $\frac{2}{2x/3} \frac{\left(\frac{12}{3}\right)}{2x}$.
 - n) $\left(\frac{8}{1+3x}\right) \cdot \left(\frac{1-9x^2}{1-3x}\right)$
- 2. Calcule as potências abaixo nos casos em que c vale -3, -2, -1, 0, 1, 2, 3.
 - a) 2^{c} .
 - b) $(-2)^c$.
 - c) -2^{c} .
 - d) 2^{-c} .
- 3. Quanto valem 2^0 , 5^0 e $(-5)^0$?
- 4. Quanto valem 0^1 , 0^2 e 0^5 ?
- 5. É possível calcular 0^{-1} ? E 0^{0} ? E $\left(\frac{1}{5}\right)^{0}$?
- 6. O volume de uma esfera é dado pela fórmula $\frac{4}{3}\pi r^3$, em que r é o raio da esfera. Quantos litros de aço são necessários para produzir 1.000.000 esferas de rolamento, cada qual com 3 mm de raio? (Lembre-se que 1 litro = 1000 cm³.)
- 7. Simplifique a expressão $5x^2 2x^2 8x^3 + 4.5x^3$.
- 8. Simplifique as expressões, eliminando expoentes negativos, caso existam. Sempre

que necessário, suponha que o denominador é não nulo.

- a) $2^4 \cdot 2^3$.
- b) $-2^4 \cdot 2^3$.
- c) $(-2)^4 \cdot 2^3$.
- d) $2^4 \cdot (-2)^3$.
- e) $(-2)^4 \cdot (-2)^3$.
- f) $2^4 \cdot 2^{-3}$.
- g) $2^{-4} \cdot 2^3$.
- h) $(-2)^4 \cdot 2^{-3}$.
- i) $2^4 \cdot (-2)^{-3}$.
- i) $x^2 \cdot x^5$.
- k) $x^2 \cdot x^{-5}$.
- 1) $x^{-2} \cdot x^{-5}$.
- m) $2^{x} \cdot 2^{-y}$.
- n) $2^{x} \cdot 2^{-x}$.
- o) $3^{-3}/4^{-2}$.
- p) $3^{-3}/4^2$.
- q) $3^3/4^{-2}$.
- r) x^{5}/x^{2} .
- s) x^5/x^{-2} .
- t) x^{-5}/x^2 .
- u) x^{-5}/x^{-2}
- v) $\left(\frac{2}{5}\right)^0 3^{-2}$.
- w) $\left(\frac{1}{3}\right)^4 (-3)^2$.
- x) $\left(\frac{1}{2}\right)^4 \left(\frac{5}{2}\right)^{-2}$
- y) $\left(\frac{5}{3}\right)^3 \left(\frac{2}{3}\right)^2$
- z) $\left(\frac{5}{3}\right)^3 \left(\frac{2}{3}\right)^{-2}$
- 9. Simplifique as expressões.
 - a) $(3^2)^5$.
 - b) $(3^{-2})^5$.
 - c) $(3^2)^{-5}$.
 - d) $(-3^2)^5$.
 - e) $((-3)^2)^5$.
- 10. Reescreva as expressões abaixo, colocando algum termo em evidência.
 - a) $x^2 2x$.
 - b) $2 + 4x^2$.
 - c) $5x/2 x^2/2$.

- d) $9x/4 x^2/4 + 1/2$.
- e) $-5x/9 + x^3/3$.
- 11. É possível calcular $\sqrt{0}$?
- 12. Mostre com um exemplo numérico que $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$.
- 13. Mostre com um exemplo numérico que $\sqrt{a^2 + b^2} \neq a + b.$
- 14. Por causa da curvatura da Terra, o ponto mais distante que se pode ver uma altura h (em km) a partir do solo está a uma distância dada, aproximadamente, por

$$D = \sqrt{12742h + h^2}.$$

Usando uma calculadora, determine quão longe se pode enxergar a partir do último andar do edifício Burj Khalifa, nos Emirados Árabes, que está a 621,3 m do chão.

- 15. Reescreva as expressões abaixo na notação de potência, simplificando-as sempre que possível.
 - a) $\sqrt{3}$.
 - b) $1/\sqrt{3}$.
 - c) $\sqrt[3]{2}$.
 - d) $\sqrt[4]{5^2}$.
 - e) $1/\sqrt{2^3}$.
 - f) $\sqrt[3]{7^2}$
 - g) $1/\sqrt{3^5}$.
 - h) $\sqrt[3]{-2}$.
- 16. Escreva as expressões abaixo na notação de raízes.
 - a) $3^{2/5}$.
 - b) $5^{2,5}$.
 - c) $(-3)^{5/3}$.
 - d) $3^{-5/2}$.
 - e) $2^{-1/2}$.
 - f) $4^{-2/3}$
 - g) $4^{2/3}$.
 - h) $2^{-1,5}$.
- 17. Simplifique as expressões. Sempre que necessário, suponha que as variáveis são positivas.
 - a) $\sqrt{4x^2}$.
 - b) $\sqrt{4x}$.

- c) $\sqrt{20}$.
- d) $\sqrt{8x^4}$.
- e) $\sqrt{4/49}$.
- f) $\sqrt{2/25}$.
- g) $\sqrt{64/9}$.
- h) $\sqrt{4/x^2}$
- i) $\sqrt{8/x^4}$.
- j) $\sqrt{7}\sqrt{28}$.
- k) $\sqrt[3]{8/27}$.
- 1) $\sqrt[3]{-64}$.
- m) $\sqrt[3]{-125}$.
- n) $\sqrt[3]{-8/27}$.
- o) $\sqrt{5}\sqrt{20}$.
- p) $\sqrt{6}\sqrt{150}$.
- q) $\frac{\sqrt{20}}{\sqrt{5}}$.

- r) $\frac{\sqrt{5}}{\sqrt{14}}$ s) $\frac{\sqrt{18}}{\sqrt{8}}$ t) $\frac{\sqrt{6}}{5\sqrt{8}}$ u) $\frac{\sqrt{7}\sqrt{11}}{\sqrt{77}}$ v) $\frac{\sqrt{3}}{2\sqrt{12}}$
- w) $\sqrt[3]{3^6}$
- 18. Simplifique as expressões. Sempre que necessário, suponha que as variáveis são positivas.
 - a) $9^{-1/2}$.
 - b) $25^{-1/2}$.
 - c) $(4x)^{1/2}$.
 - d) $(x/4)^{1/2}$.

 - f) $(3^2)^{1/2}$.
 - g) $(5^{1/3})^3$.
 - h) $(5^{1/2})^{-3}$.
 - i) $x^{-3}/4^{1/2}$.
 - i) $x^{-3}/4^{-1/2}$.
- 19. Racionalize os denominadores das frações. Sempre que necessário, suponha que as variáveis são positivas e os denominadores são não nulos.
 - a) $1/\sqrt{3}$.
 - b) $5/\sqrt{5}$.
 - c) x^2/\sqrt{x} .
 - d) $4/\sqrt{2^3}$.

- 20. Simplifique as expressões, eliminando expoentes negativos, caso existam, e racionalizando os denominadores. necessário, suponha que as variáveis são positivas e que os denominadores são não nulos.
 - a) $2^{-1} + 4^{-1}$.
 - b) $(5^2)^3\sqrt{5}/5^{3/2}$.
 - c) $\sqrt[3]{3^4}/\sqrt{3^5}$.
 - d) $\left(\frac{3}{4}\right)^2 \left(\frac{3}{2}\right)^{-3}$. e) $\frac{x^2 x^3}{x}$. f) $\frac{x^2 + x^4}{3x^3}$. g) $\frac{3x^3y^5}{x^6y^4}$.

 - i) $\frac{x^{2}}{y} \cdot \frac{1}{2x^{5}}$. j) $\frac{2x^{2}y^{5}}{x^{4}y^{3}} \frac{y^{2}}{x^{2}}$. k) $\frac{3u^{3}v^{3}}{v^{5}u^{2}} + \frac{u^{2}}{v^{2}}$.
 - l) $\left(\frac{3}{2}\right)^{-3} \sqrt{\frac{9}{16}}$
 - m) $\sqrt[4]{81x^2y^8}$
 - n) $\sqrt[4]{16x^6y^2}$.
 - o) $\sqrt{x^7}/\sqrt{x^3}$.
 - p) $\sqrt{y^5}/\sqrt{y^3}$
 - q) $\sqrt{y^3}/\sqrt{y^5}$.
 - r) $\frac{\sqrt{2}}{\sqrt{3}} + \frac{2\sqrt{8}}{\sqrt{3}}$.

 - u) $(x^3)^2/\sqrt{x^5x^3}$.
 - v) $(4x^2y^4)/(2x^5y)$. w) $(\frac{y}{3x^{-2}})^{-3}$.

 - $(x^{-5}y^{1/3})^{-3/5}$
 - y) $\sqrt{x\sqrt{x}}$.
 - z) $\frac{8}{\sqrt{3}} + 3\sqrt{\frac{16}{27}}$.
 - aa) $(w^2)^{1/3}/\sqrt{w^3}$.
 - bb) $\frac{5^{-1/2} \cdot (5x^{5/2})}{(5x)^{3/2}}$.
- 21. Resolva as equações.
 - a) x 35 = 155.
 - b) y + 22 = 42.
 - c) v + 42 = 22.

- d) 2x 3 = 25.
- e) -3x + 2 = -7.
- f) $\frac{3x}{5} = -\frac{4}{9}$.
- g) $x \frac{2}{3} = \frac{1}{6}$
- h) $\frac{a}{2} 5 = 2$.
- i) $\frac{\tilde{a}-5}{2} = 2$.
- i) 3(x-4)+8=5.
- 22. Transforme os problemas em equações e os resolva.
 - a) Qual é o número que, quando somado a 3/4, resulta em 1/2?
 - b) Por quanto devemos multiplicar 2/3 para obter 5/4?
 - c) Dividindo um número por 2 e somando o resultado a 5, obtemos 8. Que número é esse?
 - d) Somando o dobro de um número ao seu triplo, obtemos 125. Que número é esse?
 - e) Qual é o número que, somado à sua quarta parte, fornece 15?
 - f) Somando a metade de um número à terça parte desse mesmo número, obtemos 30. Qual é esse número?
 - g) Somando três números consecutivos, obtemos 66. Quais são esses números?
- 23. Resolva as equações.
 - a) x + 12 = 2x 5.
 - b) 3y + 4 = -9y + 14.
 - c) 2(x-3) = 4(2x+1).
 - d) $x \frac{x}{6} = -3$.
 - e) 3.5x + 2 = 2.9x 1.
 - f) 3-3(x-2)=2x-(x-4).
 - g) 5(z+1)-2(3z+1)=4(5-z).
 - h) $\frac{4a-2}{3} = \frac{5(a+3)}{2}$

 - i) $\frac{3x}{2} + 2 = 3x 2$. j) $\frac{2x-3}{4} + \frac{x-1}{2} = \frac{5-x}{2}$ k) $\frac{x+2}{3} \frac{4-5x}{2} = \frac{3x-5}{4} + \frac{1}{3}$

Nos exercícios 24 a 38, escreva uma equação e resolva-a para determinar a resposta desejada.

24. Em determinada disciplina são aplicadas quatro provas, cujos pesos são 2, 2, 3 e 3. Dessa forma, a nota final é dada pela fórmula $NF = \frac{2P_1 + 2P_2 + 3P_3 + 3P_4}{10}$. Quanto um

- aluno precisa tirar na última prova para ficar com nota 5 se suas notas nas três primeiras provas foram, respectivamente, 4: 4.5 e 6?
- 25. Um barbante com 50 m de comprimento foi dividido em duas partes. Se a primeira parte era 15 m menor que a outra, quanto media a parte menor?
- 26. A largura (l) de um terreno retangular é igual a um terço da profundidade (p). Se o perímetro do terreno é igual a 120 m, determine suas dimensões. (Lembre-se que o perímetro do terreno é igual a 2l + 2p).
- 27. João e Marcelo passaram alguns meses guardando dinheiro para comprar uma bicicleta de R\$ 380,00. Ao final de 6 meses, os dois irmãos haviam juntado o mesmo valor, mas ainda faltavam R\$ 20,00 para pagar a bicicleta. Determine quanto dinheiro cada um conseguiu poupar.
- 28. Quando nasci, minha mãe tinha 12 cm a mais que o triplo de minha altura. Se minha mãe tem 1,68 m, como àquela época, com que altura eu nasci?
- 29. Fernanda e Maria têm, respectivamente, 18 e 14 anos. Daqui a quantos anos a soma das idades das duas atingirá 80 anos?
- 30. Em um torneio de tênis, são distribuídos prêmios em dinheiro para os três primeiros colocados, de modo que o prêmio do segundo colocado é a metade do prêmio do primeiro, e o terceiro colocado ganha a metade do que recebe o segundo. Se são distribuídos R\$ 350.000,00, quanto ganha cada um dos três premiados?
- 31. Às vésperas da páscoa, um supermercado cobrava, pelo ovo de chocolate com 500g, exatamente o dobro do preço do ovo de 200g. Se João pagou R\$105 para levar 2 ovos de 500g e 3 ovos de 200g, quanto custava cada ovo?
- 32. Em uma partida de basquete, todos os 86 pontos de um time foram marcados por apenas três jogadores: Adão, Aldo e Amauri. Se Adão marcou 10 pontos a mais que Amauri e 9 pontos a menos que Aldo, quantos pontos cada jogador marcou?

- 33. Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar condicionado [AC]. O consumo da lâmpada equivale a 2/3 do consumo da TV e o consumo do AC equivale a 10 vezes o consumo da TV. Se a lâmpada, a TV e o AC forem ligados simultaneamente, o consumo total de energia será de 1,05 kWh. Qual é o consumo, em kWh, da TV?
- 34. Em virtude da interdição de uma ponte, os motoristas que transitavam por um trecho de estrada tiveram que percorrer um desvio com 52 km. Se esse desvio era 8 km maior que o dobro do comprimento do trecho interditado, qual o comprimento do trecho original da estrada?
- 35. Uma pesquisa com 1000 crianças visava determinar, dentre duas marcas refrigerante sabor cola, qual era a favorita da garotada. Dos entrevistados, 280 disseram não gostar de nenhum das marcas, e a marca A teve apenas 3/5 dos votos da marca B. Quantos votos recebeu cada marca de refrigerante?
- 36. Encontre três números pares consecutivos cuja soma dê 828.
- 37. Uma companhia de telefonia móvel cobra R\$4,50 por mês por um pacote de 100 torpedos. Para cada torpedo adicional enviado no mesmo mês, a companhia cobra R\$0,07. Se a conta telefônica mensal de Alex inclui R\$ 6,95 em torpedos, quantas mensagens ele enviou?
- 38. Mariana, Luciana e Fabiana gastaram, juntas, R\$ 53,00 em uma lanchonete. Mariana, a mais faminta, comeu uma sobremesa, gastando R\$ 5,00 a mais que Luciana. Por sua vez, Fabiana, de regime, pagou apenas 2/3 do valor gasto por Luciana. Quanto cada uma das amigas desembolsou na lanchonete?
- 39. Resolva as equações.

a)
$$\frac{5}{x} = 4$$

b)
$$\frac{1}{x} + 2 = -3$$

c)
$$\frac{3}{x} + \frac{2}{x} = \frac{1}{2}$$
.

a)
$$\frac{5}{x} = 4$$

b) $\frac{1}{x} + 2 = -3$.
c) $\frac{3}{x} + \frac{2}{x} = \frac{1}{2}$.
d) $\frac{2}{x} + 1 = \frac{3}{2} - \frac{4}{x}$.

e)
$$\frac{2}{3} + \frac{1}{23} = 4$$

e)
$$\frac{2}{x} + \frac{1}{2x} = 4$$
.
f) $\frac{1}{x} - 2 = -5 + \frac{2}{3x}$.
g) $\frac{x-1}{x} = 3$.
h) $\frac{2-x}{x} + 1 = -4$.
i) $\frac{3x+2}{x+1} = \frac{3}{2}$.
j) $\frac{2x-1}{3-4x} - \frac{1}{6} = \frac{1}{3}$.

g)
$$\frac{x-1}{x} = 3$$

h)
$$\frac{2-x}{x} + 1 = -4$$
.

i)
$$\frac{3x+2}{x+1} = \frac{3}{2}$$

$$j) \quad \frac{2x-1}{3-4x} - \frac{1}{6} = \frac{1}{3}$$

Respostas.

- 1. a. 6x2 8x; b. $-6x^2 + 8x$; c. $\frac{2x}{15} \frac{2x^2}{5}$; d. $-x + \frac{3x^2}{8}$; e. $6 13x + 6x^2$; f. $-6 + 5x + x^2$; g. $-66x + 27x^2$; h. $-4x + 2x^2 3x^3$; i. $-\frac{1}{6} + \frac{5x}{6} x^2$; j. $-\frac{15}{4} \frac{19x}{8} + \frac{x^2}{2}$; k. $-\frac{9}{8} + x \frac{2x^2}{9}$. l. $\frac{3x + 17}{-x^2 + 2x + 15}$; m. 1/x; n. 8.
- 2. a. 1/8; 1/4; 1/2; 1; 2; 4; 8. b. -1/8; 1/4; -1/2; 1; -2; 4; -8. c. -1/8; -1/4; -1/2; -1; -2; -4; -8. d. 8; 4; 2; 1; 1/2; 1/4; 1/8.
- 3. Todas as potências valem 1.
- 4. Todas as potências valem 0.
- 5. Não é possível calcular 0^{-1} porque não podemos dividir por zero. O termo 0° é indeterminado. Já $\left(\frac{1}{5}\right)^{0}$ vale 1.
- 6. 36π litros.
- 7. $3x^2 3.5x^3$.
- 8. a. 2⁷; b. -2⁷; c. 2⁷; d. -2⁷; e. -2⁷; f. 2; g. 1/2; h. 2; i. -2; j. x⁷; k. x⁻³; l. x⁻⁷; m. 2^{x-y}; n. 1; o. 4²/3³; p. $\frac{1}{4^23^3}$; q. 3³4²; r. x³; s. x⁷; t. 1/x⁷; u. 1/x³; v. 1/3²; w. 1/3²; x. $\frac{1}{2^25^2}$; y. $\frac{5^3 \cdot 2^2}{3^5}$; z. $\frac{5^3}{3 \cdot 2^2}$.
- 9. a. 3^{10} ; b. 3^{-10} ; c. 3^{-10} ; d. -3^{10} ; e. 3^{10} .
- 10. a. x(x-2); b. $2(1+2x^2)$; c. $\frac{x}{2}(5-x)$; d. $\frac{1}{2}(\frac{9x}{2}-\frac{x^2}{2}+1)$; e. $\frac{x}{3}(-\frac{5}{3}+x^2)$;
- 11. Sim. O resultado é zero.
- 12. Exemplo: $\sqrt{16 + 9} = \sqrt{25} = 5$, enquanto $\sqrt{16} + \sqrt{9} = 4 + 3 = 7$.
- 13. Exemplo: $\sqrt{12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13$, enquanto 12 + 5 = 17.
- 14. Cerca de 89 km.
- 15. a. $3^{1/2}$; b. $3^{-1/2}$; c. $2^{1/3}$; d. $5^{1/2}$; e. $2^{-3/2}$; f. $7^{2/3}$; g. $3^{-5/2}$; h. $-2^{1/3}$.
- 16. a. $\sqrt[5]{3^2}$; b. $\sqrt{5^5}$; c. $\sqrt[3]{(-3)^5}$; d. $1/\sqrt{3^5}$; e. $1/\sqrt{2}$; f. $1/\sqrt[3]{4^2}$; g. $\sqrt[3]{4^2}$; h. $1/\sqrt{2^3}$.
- 17. a. 2x; b. $2\sqrt{x}$; c. $2\sqrt{5}$; d. $2x^2\sqrt{2}$; e. 2/7; f. $\sqrt{2}/5$; g. 8/3; h. 2/x; i. $2\sqrt{2}/x^2$; j. 1/2; k. 2/3; l. -4; m. -5; n. -2/3; o. 10; p. 30; q. 2; r. $\sqrt{7}$; s. 3/2; t. $\sqrt{3}/10$; u. 1; v. $\frac{1}{4}$; w. 9.
- 18. a. 1/3; b. 1/5; c. $2\sqrt{x}$; d. $\sqrt{x}/2$; e. -9/4; f. 3; g. 5; h. $\frac{1}{5\sqrt{5}}$; i. $\frac{1}{2x^3}$; j. $\frac{2}{x^3}$.
- 19. a. $\sqrt{3}/3$; b. $\sqrt{5}$; c. $x\sqrt{x}$; d. $\sqrt{2}$.

- 20. a. 3/4; b. 5⁵; c. 3^{1/2}; d. 1/6; e. $x x^2$; f. $\frac{1+x^2}{3x}$; g. $\frac{3y}{x^3}$; h. $\frac{2y}{x^2}$; i. $\frac{1}{2yx^3}$ j. $\frac{y^2}{x^2}$; k. $\frac{3u+u^2}{v^2}$; l. 2/9; m. $3y^2\sqrt{x}$; n. $2x\sqrt{xy}$; o. x^2 ; p. y; q. 1/y; r. $\frac{5\sqrt{2}}{\sqrt{3}}$; s. 0; t. $\frac{30}{\sqrt{15}} = 2\sqrt{15}$; u. x^2 . v. $\frac{2y^3}{x^3}$; w. $\frac{27}{x^6y^3}$; x. $\frac{x^3}{y^{1/5}}$; y. $x^{3/4}$; z. $4\sqrt{3}$; aa. $1/w^{5/6}$; bb. x/5.
- 21. a. x = 190; b. y = 20; c. y = -20; d. x = 14; e. x = 3; f. $x = -\frac{20}{27}$; g. $x = \frac{5}{6}$; h. a = 14; i. a = 9; j. x = 3.
- 22. a. $x + \frac{3}{4} = \frac{1}{2} \rightarrow x = -\frac{1}{4}$; b. $\frac{2}{3}x = \frac{5}{4} \rightarrow x = \frac{15}{8}$; c. $\frac{x}{2} + 5 = 8 \rightarrow x = 6$; d. $2x + 3x = 125 \rightarrow x = 25$; e. $x + \frac{x}{4} = 15 \rightarrow x = 12$; f. $\frac{x}{2} + \frac{x}{3} = 30 \rightarrow x = 36$; g. $x + (x + 1) + (x + 2) = 66 \rightarrow x = 21$. Os números são 21, 22 e 23.
- 23. a. x = 17; b. y = 5/6; c. x = -5/3; d. x = -18/5; e. x = -5; f. x = 5/4; g. z = 17/3; h. a = -7; i. x = 8/3; j. x = 5/2; k. x = 1/5.
- 24. Nota 5.
- 25. A parte menor media 17,5 cm.
- 26. O terreno tem 15 m x 45 m.
- 27. Cada um poupou R\$ 180,00.
- 28. Nasci com 52 cm.
- 29. Daqui a 24 anos.
- 30. O terceiro colocado ganha R\$ 50.000,00, o segunda ganha R\$ 100.000,00 e o campeão leva R\$ 200.000,00.
- 31. O ovo de 200g custava R\$ 15,00 e o de 500 g custava R\$ 30,00.
- 32. Adão marcou 29, Amauri 19 e Aldo 38 pontos.
- 33. 0,09 kWh.
- 34. 22 km.
- 35. A marca A obteve 270 votos e a marca B alcançou 450 votos.
- 36. 274, 276 e 278.
- 37. 35 mensagens.
- 38. Fabiana gastou R\$12,00, Luciana gastou R\$ 18,00 e Mariana gastou R\$23,00.
- 39. a. x = 5/4; b. x = -1/5; c. x = 10; d. x = 12; e. x = 5/8; f. x = -1/9; g. x = -1/2; h. x = -1/2; i. x = -1/3; j. x = 5/8.