МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

по проведению лабораторной работы № 1 по дисциплине «Теория алгоритмов и вычислительных процессов» Раздел № 1 «Алгоритм и вычислимость по Тьюрингу» ЗАНЯТИЕ № 1/2. Проектирование простых машин Тьюринга с использованием программных симуляторов

Время: 2 часа (90 минут).

Учебные цели:

- 1. Выработать практические умения и навыки в построении Машин Тьюринга, в том числе с помощью симуляторов.
- 2. Формировать способность: применять компьютерные/суперкомпьютерные методы, современное программное обеспечение, в том числе отечественного происхождения, для решения задач профессиональной деятельности (ОПК-2); применять в профессиональной деятельности современные языки программирования и методы параллельной обработки данных, операционные системы, электронные библиотеки и пакеты программ, сетевые технологии (ПК-5).

Программный симулятор доступен по ссылке: https://kpolyakov.spb.ru/prog/turing.htm или —> Пароль к архиву – kpolyakov.spb.ru

Примем следующие обозначения $\Sigma = \left\{a_1, a_2 \dots a_z\right\} - \text{внешний алфавит MT,}$

 λ — символ «пробел» или «пустой символ» (также м.б. обозначен a_0), при вводе команд в симулятор заменяется знаком подчеркивания «_»;

 $Q = \{q_0, q_1 \dots q_z\}$ — алфавит состояний МТ, где q_0, q_z — начальное и конечное состояния МТ соответственно.

Стандартным считаем положение, когда головка стоит напротив крайней левой буквы слова.

Вид команды МТ: $q_i a_j \rightarrow q_i a_j d_k$.

При выполнении задач студентам необходимо сначала построить МТ в тетради, а после проверки использовать симулятор для визуализации и автоматизированной проверки правильности программы.

Вариант №1

Задача №1. Постройте МТ, осуществляющую прибавление 1 к произвольному числу, представленному в троичной системе счисления.

Задача №2. Постройте МТ, осуществляющую прибавление 2 к произвольному числу, представленному в четверичной системе счисления.

Задача №3. Для заданного алфавита $\Sigma = \{0,1\}$ постройте МТ, осуществляющую функцию «копирование слова», т.е., например, из конфигурации ... $a_001101a_0$... формирует заключительную конфигурацию ... $a_001101a_001101a_0$

Задача №4. Для заданного алфавита $\Sigma = \{0,1\}$ постройте МТ, которая из n подряд записанных единиц оставляет на ленте n-2 единиц, также записанные подряд, если $n \ge 2$, и работала бы вечно, если n = 0 или n = 1.

Задача №**5.** Для заданного алфавита $\Sigma = \{0,1\}$ постройте МТ, осуществляющую функцию «обращение», т.е. переворачивающую слово задом наперёд.

Задача №6. Для заданного алфавита $\Sigma = \{2,7,G\}$ постройте МТ, осуществляющую функцию «обращение», т.е. переворачивающую слово задом наперёд.

Задача №7. Постройте МТ, осуществляющую сортировку букв слова, составленного из алфавита $\Sigma = \{1, 2, 3\}$, по убыванию.

Задача №8. Согласно «Правилу» в скобочной последовательности внешние скобки должны поглощать целиком внутренние скобки, т.е. не может быть такой ситуации: (()(()). Постройте МТ, осуществляющую проверку выполнения Правила для произвольного слова, составленного из алфавита $\Sigma = \{(,)\}$.

Задача №9. Согласно «Правилу» в скобочной последовательности внешние скобки должны поглощать целиком внутренние скобки, т.е. не может быть такой ситуации: [(]). Постройте МТ, осуществляющую проверку выполнения Правила для произвольного слова, составленного из алфавита $\Sigma = \{(,),[,]\}$.

<u>Вариант №2</u>

Задача №1. Постройте МТ, осуществляющую прибавление 1 к произвольному числу, представленному в четверичной системе счисления.

Задача №2. Постройте МТ, осуществляющую прибавление 2 к произвольному числу, представленному в троичной системе счисления.

Задача №3. Для заданного алфавита $\Sigma = \{A, B\}$ постройте МТ, осуществляющую функцию «копирование слова», т.е., например, из конфигурации ... $a_0BAABBa_0$... формирует заключительную конфигурацию ... $a_0BAABBa_0BAABBa_0$

Задача №4. Для заданного алфавита $\Sigma = \{0,1\}$ постройте МТ, которая из n подряд записанных единиц оставляет на ленте n-2 единиц, также записанные подряд, если $n \ge 2$, и работала бы вечно, если n = 0 или n = 1.

Задача №5. Для заданного алфавита $\Sigma = \{C, R\}$ постройте МТ, осуществляющую функцию «обращение», т.е. переворачивающую слово задом наперёд.

Задача №6. Для заданного алфавита $\Sigma = \{1, D, R\}$ постройте МТ, осуществляющую функцию «обращение», т.е. переворачивающую слово задом наперёд.

Задача №7. Постройте МТ, осуществляющую сортировку букв слова, составленного из алфавита $\Sigma = \{2,4,6\}$, по возрастанию.

Задача №8. Согласно «Правилу» в скобочной последовательности внешние скобки должны поглощать целиком внутренние скобки, т.е. не может быть такой ситуации: (()((()). Постройте МТ, осуществляющую проверку выполнения Правила для произвольного слова, составленного из алфавита $\Sigma = \{[,]\}$.

Задача №9. Согласно «Правилу» в скобочной последовательности внешние скобки должны поглощать целиком внутренние скобки, т.е. не может быть такой ситуации: [(]). Постройте МТ, осуществляющую проверку выполнения Правила для произвольного слова, составленного из алфавита $\Sigma = \{(,),[,]\}$.