Main topic: Correlation, energy density spectra, Simple filter Josign: Problem 1:) Derice the energy density spectrum $S_{XX}(f)$ of the Signal; $x(n) = \begin{cases} a^n, n \ge 0, |a| \le 1 \\ 0, n \le 0 \end{cases}$ We know that! $Y_{\infty}[J-X[J*X[-J] \xrightarrow{\mathcal{F}} S_{\infty}(w)-\overline{X}(w)\overline{X}(w)-\overline{X}(w)]$ $X(n) = U(n) a^{n}$ $X(u) = X(n) = U(n) a^{n}$ $X(u) = X(n) = \sum_{n=0}^{\infty} a^{n} e^{-jun}$ $= \sum_{n=0}^{\infty} (ne^{-ju})^{n}$

=)	Sxx(u	w) =	1		1	
		(1- Ge ^{-jh}		1-90	14
				A		
				1 w -jw 2 - 9e t9		
			1- 40	-ae 1a		
	eurs' form					
		-ae=	(C) Co	s(w) t i Sinl	w))	
		_jw	- (a)	s(w) t j S:nl cos(w) - j s	. (11)	
		-45	[0[(()	
	=)	Sxx (w		1		
		0.00		1-290	$[av(w)+a^2]$	
	Wc	. Unow the	W:2	nt		
	=)	Sxx (f)	_	1		
	_			1-24(0)(2mf) + a2	

Derive	the autocon	rolation Pxx	(9:	
	(x() - 5	> X[n+l])	([n]	
(%)X	1/xx(y = ==	è Wha	· U[n+]a	
- Y X(-+1)-1 of - x(-)	, WE	-60		
	Whi	n Uln + () We know that	U[n+) +0
	Yxx (1) = 2	> ulha	nt L	
	<	$\frac{\infty}{2}$ 2nt $\frac{2}{2}$	$\begin{array}{c c} \infty & 2n & 1 \\ \geq & \alpha & \alpha \end{array}$	= a \sum_{N=0}^{2n}
	V	1=0	VI-9	
				= a \ \(\frac{\infty}{\infty} \big(\frac{2}{3} \big)^n
	Yx(y=_	du		
	14(19 -	1 - a2	/ \(\a^2\) L	1

Use
$$f(x)$$
 to unit, the express for $f(x)$:

$$f(f(x)) = f(x)$$
We take the DTFT:

$$f(x) = f(x)$$

$$f(x) = f(x)$$
We take the DTFT:

$$f(x) = f(x)$$

$$f(x)$$

$$= \frac{1}{1-\alpha^{2}} \left(\frac{jw}{1-\alpha e^{jw}} + 1(1-\alpha e^{jw}) - 1 - \alpha^{2} + 1(1-\alpha e^{jw}) - 1$$

We can start by Compring a = 0.4 with a = 0.95.

As we can see from the X[n] platy X[n] varies much
fest for a = 0.4. We can therfore see that the Correlation
is much Smaller with a = 0.4 in contrast to a = 0.93 with
hes a wey bigger Correlation.
It is also clear that since X[n] a = 0.4 dresticly felly it
Contains higher frequency, we can see this with the
energy spectral with a = 0.95

By Compains a= 0.95 and a= -0.93, we see some

Symmetry. The only difference is that with a= -0.95 that

X (h) Value and the auto correlation "jumps" from positive

to Najative Values. This large changes in Sign macry

that Signal Contains high frequency Components. With

Can be Verified by looking at the energy spectral

density. $E_{X} = f_{XX}[0] = \frac{a^{|0|}}{1 - a^{2}}$ 1-02

$$H_{1}(u) = \sum_{n=\infty}^{\infty} (f(n) - af(n-1))^{-jun}$$

$$= \frac{1 - ae}{1 - ae}$$

$$|H_{1}(f)|^{2} = (1 - ae)/(1 - ae)/(1 - ae)/(1 - 1 + a^{2} - 2a\cos(2\pi f))$$

$$Sy_{1}y_{1}(f) = |H_{1}(f)|^{2} Sx_{x}(f) = \frac{1 + a^{2} - 2a\cos(2\pi f)}{1 - 2a\cos(2\pi f) + a^{2}} = \frac{1}{1 - 2a\cos(2\pi f) + a^{2}}$$

$$Sy_{1}(f) = \frac{1}{1 - 2a\cos(2\pi f) + a^{2}}/(au) = \frac{1}{1 - 2a\cos($$

•	Son	icth	ins .	4	ens	W	ith	76	بر	C.7	C 8	ו פ	7 1	odent	W	ork.	
	Ca	lda	* †	isur	(0	ut	the	Pr	hlen	- 11							