We are starting at 14:00!

Grab a seat and get ready

Agenda

14:00 - 16:00: The basics of Pytorch

16:00 - 16:30: Break

16:30 - 17:30: Neural Network

17:30 - 18:00: Challenges & Next steps

Pytorch Basics

Pytorch

- Numpy
 - on a GPU
 - with all kinds of ANN related things
 - with a focus on tensors
 - and automatic differentiation

Alternatives to pytorch

- Tensorflow strength in commercial applications
- JAX strength in flexibility
- Matlab

DL in Numpy

```
import numpy as np
# Define sigmoid activation function and its derivative
def sigmoid(x):
   return 1 / (1 + np.exp(-x))
def sigmoid_derivative(x):
   return x * (1 - x)
# Define the NaiveNet class
class NaiveNet:
   def __init__(self, input_size, hidden_size, output_size):
       self.weights_input_hidden = np.random.rand(input_size, hidden_size)
       self.bias_hidden = np.zeros((1, hidden_size))
       self.weights_hidden_output = np.random.rand(hidden_size, output_size)
       self.bias_output = np.zeros((1, output_size))
   def forward(self, inputs):
        # Forward propagation
       self.hidden_input = np.dot(inputs, self.weights_input_hidden) + self.bias_hidden
       self.hidden_output = sigmoid(self.hidden_input)
       self.final_input = np.dot(self.hidden_output, self.weights_hidden_output) + self.bias_output
       self.final_output = sigmoid(self.final_input)
       return self.final_output
   def backward(self, inputs, targets, learning_rate):
       error = targets - self.final_output
       delta_output = error * sigmoid_derivative(self.final_output)
       error_hidden = delta_output.dot(self.weights_hidden_output.T)
       delta_hidden = error_hidden * sigmoid_derivative(self.hidden_output)
       self.weights_hidden_output += self.hidden_output.T.dot(delta_output) * learning_rate
       self.bias_output += np.sum(delta_output, axis=0, keepdims=True) * learning_rate
       self.weights_input_hidden += inputs.T.dot(delta_hidden) * learning_rate
       self.bias_hidden += np.sum(delta_hidden, axis=0, keepdims=True) * learning_rate
```


DL in Pytorch

```
class NaiveNet(nn.Module):
 # Define the structure of your network
  def init (self):
    super(NaiveNet, self). init ()
   # The network is defined as a sequence of operations
    self.layers = nn.Sequential(
       nn.Linear(2, 16),
       nn.ReLU(),
       nn.Linear(16, 2),
 # Specify the computations performed on the data
  def forward(self, x):
   # Pass the data through the layers
    return self.layers(x)
```


Everything in pytorch are tensors: how to make one

A torch. Tensor is a multi-dimensional (or n-dimensional) matrix containing elements of a single data type.

```
# tensor from a list
a = torch.tensor([0, 1, 2])

#tensor from a tuple of tuples
b = ((1.0, 1.1), (1.2, 1.3))
b = torch.tensor(b)

# tensor from a numpy array
c = np.ones([2, 3])
c = torch.tensor(c)
```


More tensors: common constructors

```
x = torch.ones(5, 3)
y = torch.zeros(2)
z = torch.empty(1, 1, 5)
```


Making random tensors

```
# Uniform distribution
a = torch.rand(1, 3)

# Normal distribution
b = torch.randn(3, 4)
```


Ranges in pytorch - just like in numpy

```
a = torch.arange(0, 10, step=1)
b = np.arange(0, 10, step=1)

c = torch.linspace(0, 5, steps=11)
d = np.linspace(0, 5, num=11)
```


Copying Tensors

As with any object in Python, assigning a tensor to a variable makes the variable a label of the tensor, and does not copy it (create a copy of it). For example:

```
a = torch.ones(2, 2)
b = a

a[0][1] = 561  # we change a...
print(b)  # ...and b is also altered
```


Practice

Make a couple of Tensors

(10 minutes max)

Coding Exercise 2.1

What can we do with

tensors?

Everything we do with numpy otherwise.

```
# this only works if c and d already exist
torch.add(a, b, out=c)

# Pointwise Multiplication of a and b
torch.multiply(a, b, out=d)
```


By default everything is pointwise

```
x + y, x - y, x * y, x / y, x**y # The `**` is the exponentiation operator
```


Sums, means etc

Just like in numpy

```
print(f"Sum of every element of x: {x.sum()}")
print(f"Sum of the columns of x: {x.sum(axis=0)}")
print(f"Sum of the rows of x: {x.sum(axis=1)}")
```


Practice

Do a few things with Tensors

(10 minutes max)

Coding Exercise 2.2

Manipulating tensors: indexing

```
x = torch.arange(0, 10)
print(x)
print(x[-1])
print(x[1:3])
print(x[:-2])

tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
tensor(9)
tensor([1, 2])
tensor([0, 1, 2, 3, 4, 5, 6, 7])
```


Similar logic as numpy for n-dimensional tensors

```
# make a 5D tensor
x = torch.rand(1, 2, 3, 4, 5)

print(f" shape of x[0]:{x[0].shape}")
print(f" shape of x[0][0]:{x[0][0].shape}")
print(f" shape of x[0][0][0]:{x[0][0][0].shape}")

shape of x[0]:torch.Size([2, 3, 4, 5])
shape of x[0][0]:torch.Size([3, 4, 5])
shape of x[0][0][0]:torch.Size([4, 5])
```


Flattening/ Reshaping

```
z = torch.arange(12).reshape(6, 2)
print(f"Original z: \n {z}")
# 2D -> 1D
z = z.flatten()
print(f"Flattened z: \n {z}")
Original z:
tensor([[ 0, 1],
        [10, 11]])
Flattened z:
 tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
```


Reshaping

```
# and back to 2D
z = z.reshape(3, 4)
print(f"Reshaped (3x4) z: \n {z}")

Reshaped (3x4) z:
tensor([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9,  10,  11]])
```


Irrelevant dimensions

Squeezing

```
# Let's get rid of that singleton dimension and see what happens now
x = x.squeeze(0)
print(x.shape)
print(f"x[0]: {x[0]}")

torch.Size([10])
x[0]: 0.7273916602134705
```


Dimension

permutation

E.g. going from RGB in dimension 1 to in dimension 3

```
# `x` has dimensions [color,image_height,image_width]
x = torch.rand(3, 48, 64)

# We want to permute our tensor to be [ image_height , image_width , color ]
x = x.permute(1, 2, 0)
# permute(1,2,0) means:
# The 0th dim of my new tensor = the 1st dim of my old tensor
# The 1st dim of my new tensor = the 2nd
# The 2nd dim of my new tensor = the 0th
print(x.shape)
```

```
torch.Size([48, 64, 3])
```


Concatenatio

n

```
# Create two tensors of the same shape
x = torch.arange(12, dtype=torch.float32).reshape((3, 4))
y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
# Concatenate along rows
cat rows = torch.cat((x, y), dim=0)
# Concatenate along columns
cat cols = torch.cat((x, y), dim=1)
# Printing outputs
print('Concatenated by rows: shape{} \n {}'.format(list(cat rows.shape), cat rows))
print('\n Concatenated by colums: shape{} \n {}'.format(list(cat cols.shape), cat cols))
Concatenated by rows: shape[6, 4]
tensor([[ 0., 1., 2., 3.],
        [4., 5., 6., 7.],
        [8., 9., 10., 11.],
       [ 2., 1., 4., 3.],
       [1., 2., 3., 4.],
       [4., 3., 2., 1.]
Concatenated by colums: shape[3, 8]
tensor([[ 0., 1., 2., 3., 2., 1., 4., 3.],
```

[4., 5., 6., 7., 1., 2., 3., 4.],

[8., 9., 10., 11., 4., 3., 2., 1.]])

torch and numpy are friends

Practice

Do the tensor manipulation exercise

Trust me, these "easy" things are where the errors often happen

Coding Exercise 2.3

Graphics cards: using GPUs

Figure 2. Comparison of evolution of memory bandwidth (left) and double precision flops (right) on GPU and CPU • GPU • CPU

Ask torch where a variable

is

```
x = torch.randn(10)
print(x.device)
```

cpu

Ask torch if we have a GPU

```
print(torch.cuda.is_available())
```

True

Specifying devices

```
# common device agnostic way of writing code that can run on cpu OR gpu
# that we provide for you in each of the tutorials
DEVICE = set device()
# we can specify a device when we first create our tensor
x = torch.randn(2, 2, device=DEVICE)
print(x.dtype)
print(x.device)
# we can also use the .to() method to change the device a tensor lives on
y = torch.randn(2, 2)
print(f"y before calling to() | device: {y.device} | dtype: {y.type()}")
y = y.to(DEVICE)
print(f"y after calling to() | device: {y.device} | dtype: {y.type()}")
torch.float32
cuda:0
y before calling to() | device: cpu | dtype: torch.FloatTensor
y after calling to() | device: cuda:0 | dtype: torch.cuda.FloatTensor
```

Saturdays.Al Kigali

Device matters: no mix and match

We can not just mix and match devices - it would be undefined where the computation happens

SEARCH STACK OVERFLOW

Moving CPU<->GPU is easy

```
x = torch.tensor([0, 1, 2], device=DEVICE)
y = torch.tensor([3, 4, 5], device="cpu")
z = torch.tensor([6, 7, 8], device=DEVICE)
# moving to cpu
x = x.to("cpu") # alternatively, you can use x = x.cpu()
print(x + y)
# moving to gpu
y = y.to(DEVICE) # alternatively, you can use y = y.cuda()
print(y + z)
tensor([3, 5, 7])
tensor([ 9, 11, 13], device='cuda:0')
```


Practice

Test the GPU effect

I promise you GPUs are faster

Coding Exercise 2.4

Datasets

Data

+

Model

+

Training

=

DL system

Doing data - basics

- Data science =
- 50% figure out the question you want to answer
- 35% sweat the data
- 10% ML
- 5% glorious DL

How to get data

A lot of data is easy to load for our DL experiments

Practice Display the CIFAR image

Let us look into this

Data

- Data is not made in heaven
- Data is made to answer questions
- We need to be agile with data
- When we try to answer questions we do not want to lie to ourselves

Let us not lie about data

- In DL we generally do prediction
- Caution with Causality
- The real world differs from our dataset (external validity)

Let us not lie about data: Validation

- Always have a validation/ Test set not used for training.
- Train on training set, test on test set
- For hyperparameter optimization you need to further divide the training set
- Match the cross-validation strategy to the use case

The cross-validation strategy must match the use case

Overfitting! Validation

set

- Don't trust yourself
- Overfitting is massive for smaller datasets
- Ideally have a part of the dataset you don't
- have access to
- Even some signs for *huge* datasets (imagenet)

Always have both training and test data

```
# Load the training samples
training data = datasets.CIFAR10(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
# Load the test samples
test data = datasets.CIFAR10(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
```


Practice

See how CIFAR train and test data are loaded

Let us load some data and divide into train and test dataset

Coding Exercise 2.5

More data is what it is all about

Transformations

More data = better learning

How to get more data?

Get more data

Transform the data

e.g. add color variation, etc.

Transformations are crucial across DL

Data Loaders

- In practice we do not load all data.
- But small pieces (minibatches)
- For that we have a function that does the loading

```
# Create dataloaders with
train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)
```


Practice

Load CIFAR images as grayscale

Practice transformation

Break

Neural Networks

Now, let us design a neural network

- (step 0) Get Data
- (step 1) All the variables and structures we need. We need to initialize them
- (step 2) And then we need to use these variables to define the compute in our network
- (step 3) And then we need gradients
- (step 4) And then we need to optimize
- (step 5) And then we need to test

Let us get the data from a csv file

Why? Because many real world datasets are in that format

Load from csv and put on GPU into torch

Can you think of other datasets you could load this way?

Practice

Let us see the anatomy of the network

First, we need to initialize the relevant variables

__init__

And then we need to specify how information travels through network

forward

We will often need to make predictions

While many people just use forward we will separate it and use

predict

and then we need to

train

With __init__ we make network structure

The other components

```
# Specify the computations performed on the data
def forward(self, x):
 # Pass the data through the layers
  return self.layers(x)
# Choose the most likely label predicted by the network
def predict(self, x):
 # Pass the data through the networks
  output = self.forward(x)
  # Choose the label with the highest score
  return torch.argmax(output, 1)
# Train the neural network (will be implemented later)
def train(self, X, y):
  pass
```


Run your first neural network

Check if it actually works and provides the outputs we expect

Practice

Ok hold on. What has just happened

We have a neural network

It is initialized

It produces outputs

But these outputs are not better than chance yet!

Training = lots of small steps into good direction

```
# The Cross Entropy Loss is suitable for classification problems
loss_function = nn.CrossEntropyLoss()

# Create an optimizer (Stochastic Gradient Descent) that will be used to train the network
learning_rate = 1e-2
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

# Number of epochs
epochs = 15000
```


The anatomy of the training loop

```
for i in range(epochs):
    # Pass the data through the network and compute the loss
    y_logits = model.forward(X)
    loss = loss_function(y_logits, y)

# Clear the previous gradients and compute the new ones
    optimizer.zero_grad()
    loss.backward()

# Adapt the weights of the network
    optimizer.step()
```


Practice

We give you code. What happens?

Train your network

Challenges & Next steps!

Kahoot

Any questions?

THANKS

🙀 <u>kigali@saturdays.ai</u>

coming soon