Методы машинного обучения. Искусственные нейронные сети

Bopoнцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: voron@forecsys.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-21-22 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 8 февраля 2022

Содержание

- Многослойные нейронные сети
 - Проблема полноты
 - Вычислительные возможности нейронных сетей
 - Многослойная нейронная сеть
- Метод обратного распространения ошибок
 - Метод стохастического градиента
 - Алгоритм BackProp
 - BackProp: преимущества и недостатки
- Эвристики
 - Эвристики для улучшения сходимости
 - Методы регуляризации
 - Функции активации и другие эвристики

Напоминание: линейные модели классификации и регрессии

Обучающая выборка: $X^\ell=(x_i,y_i)_{i=1}^\ell$, объекты $x_i\in\mathbb{R}^n$, ответы y_i

Задача регрессии: $Y=\mathbb{R}$

 $a(x,w) = \langle w, x_i \rangle$ — линейная модель регрессии

$$Q(w; X^{\ell}) = \sum_{i=1}^{\ell} (\sigma(\langle w, x_i \rangle) - y_i)^2 \to \min_{w};$$

Задача классификации с двумя классами: $Y=\{\pm 1\}$ $a(x,w)=\mathrm{sign}\langle w,x_i\rangle$ — линейная модель классификации $\mathscr{L}(M)$ — невозрастающая функция отступа, например, $\mathscr{L}(M)=\ln(1+e^{-M}),\;\;(1-M)_+,\;\;e^{-M},\;\;\frac{1}{1+e^M},\;$ и др.

$$Q(w; X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}(\underbrace{\langle w, x_i \rangle y_i}_{M_i(w)}) o \min_{w};$$

Напоминание: линейная модель нейрона МакКаллока-Питтса

$$f_j \colon X o \mathbb{R}$$
, $j = 1, \ldots, n$ — числовые признаки;

$$a(x, w) = \sigma(\langle w, x \rangle) = \sigma\left(\sum_{j=1}^{n} w_j f_j(x) - w_0\right),$$

 w_i — веса признаков, $\sigma(z)$ — функция активации

Насколько богатый класс функций реализуется нейроном? А сетью (суперпозицией) нейронов?

Нейронная реализация логических функций

Функции И, ИЛИ, НЕ от бинарных переменных x^1 и x^2 :

Эвристики

$$x^{1} \wedge x^{2} = \left[x^{1} + x^{2} - \frac{3}{2} > 0\right];$$

 $x^{1} \vee x^{2} = \left[x^{1} + x^{2} - \frac{1}{2} > 0\right];$
 $\neg x^{1} = \left[-x^{1} + \frac{1}{2} > 0\right];$

Логическая функция XOR (исключающее ИЛИ)

Функция $x^1 \oplus x^2 = [x^1 \neq x^2]$ не реализуема одним нейроном. Два способа реализации:

- Добавлением нелинейного признака: $x^1 \oplus x^2 = [x^1 + x^2 2x^1x^2 \frac{1}{2} > 0];$
- Сетью (двухслойной суперпозицией) функций И, ИЛИ, НЕ: $x^1 \oplus x^2 = \left[(x^1 \lor x^2) (x^1 \land x^2) \frac{1}{2} > 0 \right].$

Любую ли функцию можно представить нейросетью?

- Двухслойная сеть в $\{0,1\}^n$ позволяет реализовать произвольную булеву функцию (ДНФ).
- Двухслойная сеть в \mathbb{R}^n позволяет отделить произвольный выпуклый многогранник.
- Трёхслойная сеть \mathbb{R}^n позволяет отделить произвольную многогранную область, не обязательно выпуклую, и даже не обязательно связную.
- С помощью линейных операций и одной нелинейной функции активации σ можно приблизить любую непрерывную функцию с любой желаемой точностью.

Практические рекомендации:

- Двух-трёх слоёв теоретически достаточно.
- Глубокие сети это встроенное обучение признаков.

Любую ли функцию можно представить нейросетью?

Функция
$$\sigma(z)$$
 — *сигмоида*, если $\lim_{z \to -\infty} \sigma(z) = 0$ и $\lim_{z \to +\infty} \sigma(z) = 1$.

Теорема Цыбенко (1989)

Если $\sigma(z)$ — непрерывная сигмоида, то для любой непрерывной на $[0,1]^n$ функции f(x) существуют такие значения параметров $H,\ \alpha_h\in\mathbb{R},\ w_h\in\mathbb{R}^n,\ w_0\in\mathbb{R},\$ что двухслойная сеть

$$a(x) = \sum_{h=1}^{H} \alpha_h \sigma(\langle x, w_h \rangle + w_0)$$

равномерно приближает f(x) с любой точностью ε :

$$|a(x) - f(x)| < \varepsilon$$
, для всех $x \in [0,1]^n$.

George Cybenko. Approximation by Superpositions of a Sigmoidal function. Mathematics of Control, Signals, and Systems. 1989.

Двухслойная нейронная сеть с М-мерным выходом

Пусть для общности $Y=\mathbb{R}^M$, для простоты слоёв только два.

Вектор параметров модели $w \equiv \left(w_{jh}, w_{hm}
ight) \in \mathbb{R}^{Hn+H+MH+M}$

Напоминание: алгоритм SG (Stochastic Gradient)

Минимизация средних потерь на обучающей выборке:

$$Q(w) := \frac{1}{\ell} \sum_{i=1}^{\ell} \mathscr{L}_i(w) \to \min_{w}.$$

```
Вход: выборка X^{\ell}; темп обучения \eta; параметр \lambda; Выход: вектор весов w \equiv (w_{jh}, w_{hm}); инициализировать веса w и текущую оценку Q(w); повторять
```

```
выбрать объект x_i из X^\ell (например, случайно); вычислить потерю \mathcal{L}_i := \mathcal{L}_i(w); градиентный шаг: w := w - \eta \mathcal{L}_i'(w); оценить значение функционала: Q := (1-\lambda)Q + \lambda \mathcal{L}_i;
```

пока значение Q и/или веса w не стабилизируются;

Задача дифференцирования суперпозиции функций

Выходные значения сети $a^m(x_i)$, m=1..M на объекте x_i :

$$a^{m}(x_{i}) = \sigma_{m}\left(\sum_{h=0}^{H} w_{hm} u^{h}(x_{i})\right); \qquad u^{h}(x_{i}) = \sigma_{h}\left(\sum_{j=0}^{J} w_{jh} f_{j}(x_{i})\right).$$

Без ограничения общности (только для примера) будем рассматривать среднеквадратичную функцию потерь:

$$\mathscr{L}_{i}(w) = \frac{1}{2} \sum_{m=1}^{M} (a^{m}(x_{i}) - y_{i}^{m})^{2}.$$

Промежуточная задача: найти частные производные

$$\frac{\partial \mathcal{L}_i(w)}{\partial a^m}; \qquad \frac{\partial \mathcal{L}_i(w)}{\partial u^h}.$$

Быстрое вычисление градиента

Промежуточная задача: частные производные

$$\frac{\partial \mathcal{L}_i(w)}{\partial a^m} = a^m(x_i) - y_i^m = \varepsilon_i^m$$

— это ошибка на выходном слое (для квадратичных потерь);

$$\frac{\partial \mathcal{L}_i(w)}{\partial u^h} = \sum_{m=1}^M \frac{\partial \mathcal{L}_i(w)}{\partial a^m} \sigma'_m(\cdot) w_{hm} = \sum_{m=1}^M \varepsilon_i^m \sigma'_m w_{hm} = \varepsilon_i^h$$

— назовём это *ошибкой на скрытом слое*. Похоже, что ε_i^h вычисляется по ε_i^m , если запустить сеть «задом наперёд»:

Быстрое вычисление градиента

Теперь, имея частные производные $\mathcal{L}_i(w)$ по a^m и u^h , легко выписать градиент $\mathcal{L}_i(w)$ по весам w:

$$\begin{split} \frac{\partial \mathcal{L}_{i}(w)}{\partial w_{hm}} &= \frac{\partial \mathcal{L}_{i}(w)}{\partial a^{m}} \frac{\partial a^{m}}{\partial w_{hm}} = \varepsilon_{i}^{m} \sigma_{m}' u^{h}(x_{i}), \quad m = 1..M, \quad h = 0..H; \\ \frac{\partial \mathcal{L}_{i}(w)}{\partial w_{ih}} &= \frac{\partial \mathcal{L}_{i}(w)}{\partial u^{h}} \frac{\partial u^{h}}{\partial w_{ih}} = \varepsilon_{i}^{h} \sigma_{h}' f_{j}(x_{i}), \quad h = 1..H, \quad j = 0..n; \end{split}$$

Алгоритм обратного распространения ошибки BackProp:

Вход: $X^{\ell} = (x_i, y_i)_{i=1}^{\ell} \subset \mathbb{R}^n \times \mathbb{R}^M$; параметры H, λ, η ; Выход: синаптические веса w_{jh}, w_{hm} ;

. . .

Алгоритм BackProp

```
инициализировать веса w_{ih}, w_{hm};
повторять
     выбрать объект x_i из X^{\ell} (например, случайно);
     прямой ход:
             u_i^h := \sigma_h(\sum_{i=0}^J w_{jh} x_i^j), \quad h = 1..H;
             a_i^m := \sigma_m(\sum_{h=0}^H w_{hm} u_i^h), \quad m = 1..M;
            \varepsilon_i^m := \frac{\partial \mathcal{L}_i(w)}{\partial z^m}, \quad m = 1..M;
     Q := (1 - \lambda)Q + \lambda \mathcal{L}_i(w)
     обратный ход:
            \varepsilon_{i}^{h} := \sum_{m=1}^{M} \varepsilon_{i}^{m} \sigma_{m}' w_{hm}, \quad h = 1..H;
     градиентный шаг:
             w_{hm} := w_{hm} - \eta \varepsilon_i^m \sigma_m' u_i^h, \quad h = 0..H, \quad m = 1..M;
             w_{ih} := w_{ih} - \eta \varepsilon_i^h \sigma_h' x_i^J, \quad j = 0..n, \quad h = 1..H;
пока Q не стабилизируется;
```

Алгоритм BackProp: преимущества и недостатки

Преимущества:

- быстрое вычисление градиента
- ullet обобщение на любые σ , ${\mathscr L}$ и любое число слоёв
- возможность динамического (потокового) обучения
- сублинейное обучение на сверхбольших выборках (когда части объектов х; уже достаточно для обучения)
- возможно распараллеливание

Недостатки — все те же, свойственные SG:

- медленная сходимость
- застревание в локальных экстремумах
- ullet «паралич сети» из-за горизонтальных асимптот σ
- проблема переобучения
- подбор комплекса эвристик является искусством

Напоминание: метод накопления инерции (momentum)

Momentum — экспоненциальное скользящее среднее градиента по $\approx \frac{1}{1-\gamma}$ последним итерациям [Б.Т.Поляк, 1964]:

$$v := \frac{\gamma v + (1 - \gamma) \mathcal{L}'_i(w)}{w := w - \eta v}$$

NAG (Nesterov's accelerated gradient) — стохастический градиент с инерцией [Ю.Е.Нестеров, 1983]:

$$v := \gamma v + (1 - \gamma) \mathcal{L}'_i(w - \eta \gamma v)$$
$$w := w - \eta v$$

Адаптивные градиенты

RMS Prop (running mean square) — выравнивание скоростей изменения весов скользящим средним по $\approx \frac{1}{1-\alpha}$ итерациям, ускоряет обучение по весам, которые пока мало изменялись:

$$G := {\alpha G + (1 - \alpha) \mathcal{L}'_i(w) \odot \mathcal{L}'_i(w)}$$

$$w := w - \eta \mathcal{L}'_i(w) \oslash (\sqrt{G} + \varepsilon)$$

где ⊙ и ⊘ — покоординатное умножение и деление векторов.

AdaDelta (adaptive learning rate) — двойная нормировка приращений весов, после которой можно брать $\eta=1$:

$$G := \alpha G + (1 - \alpha) \mathcal{L}'_i(w) \odot \mathcal{L}'_i(w)$$

$$\delta := \mathcal{L}'_i(w) \odot \frac{\sqrt{\Delta} + \varepsilon}{\sqrt{G} + \varepsilon}$$

$$\Delta := \alpha \Delta + (1 - \alpha) \delta \odot \delta$$

$$w := w - \eta \delta$$

Комбинированные градиентные методы

Adam (adaptive momentum) = инерция + RMSProp:

$$\begin{aligned} v &:= \gamma v + (1 - \gamma) \mathcal{L}'_i(w) & \hat{v} &:= v (1 - \gamma^k)^{-1} \\ G &:= \alpha G + (1 - \alpha) \mathcal{L}'_i(w) \odot \mathcal{L}'_i(w) & \hat{G} &:= G (1 - \alpha^k)^{-1} \\ w &:= w - \eta \hat{v} \oslash (\sqrt{\hat{G}} + \varepsilon) \end{aligned}$$

Калибровка \hat{v} , \hat{G} увеличивает v, G на первых итерациях, где k — номер итерации; $\gamma=0.9$, $\alpha=0.999$, $\varepsilon=10^{-8}$

Nadam (Nesterov-accelerated adaptive momentum): те же формулы для v, \hat{v} , G, \hat{G} ,

$$w := w - \eta \left(\gamma \hat{\mathbf{v}} + \frac{1 - \gamma}{1 - \gamma^k} \mathcal{L}_i'(w) \right) \oslash \left(\sqrt{\hat{G}} + \varepsilon \right)$$

Timothy Dozat. Incorporating Nesterov Momentum into Adam. ICLR-2016.

Сравнение сходимости методов

Alec Radford's animation:

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Напоминание: диагональный метод Левенберга-Марквардта

Метод Ньютона-Рафсона (второго порядка):

$$w := w - \eta \big(\mathscr{L}_{i}^{"}(w) \big)^{-1} \mathscr{L}_{i}^{\prime}(w),$$

где
$$\left(\mathscr{L}_{i}''(w)\right)=\left(rac{\partial^{2}\mathscr{L}_{i}(w)}{\partial w_{ih}\partial w_{i'h'}}
ight)$$
 — гессиан, размера $\left(H(n+M+1)+M\right)^{2}$.

Эвристика. Считаем, что гессиан диагонален:

$$w_{jh} := w_{jh} - \eta \left(\frac{\partial^2 \mathscr{L}_i(w)}{\partial w_{jh}^2} + \mu \right)^{-1} \frac{\partial \mathscr{L}_i(w)}{\partial w_{jh}},$$

 η — темп обучения (можно брать $\eta=1$),

 μ — параметр, предотвращающий обнуление знаменателя.

Отношение η/μ есть темп обучения на ровных участках функционала $\mathcal{L}_i(w)$, где вторая производная обнуляется.

Проблема взрыва градиента и эвристика gradient clipping

Проблема взрыва градиента (gradient exploding)

Эвристика Gradient Clipping: если $\|g\| > \theta$ то $g := g\theta/\|g\|$

При грамотном подборе γ проблема взрыва градиента не возникает, и эвристика Gradient Clipping не нужна.

Метод случайных отключений нейронов (Dropout)

Этап обучения: делая градиентный шаг $\mathscr{L}_i(w) o \min_w$ отключаем h-ый нейрон ℓ -го слоя с вероятностью p_ℓ :

$$x_{ih}^{\ell+1} = \xi_h^{\ell} \, \sigma_h igl(\sum_j w_{jh} x_{ij}^{\ell} igr), \qquad \mathsf{P}(\xi_h^{\ell} = 0) = p_{\ell}$$

Этап применения: включаем все нейроны, но с поправкой:

$$x_{ih}^{\ell+1} = (1 - p_{\ell})\sigma_h(\sum_i w_{jh}x_{ij}^{\ell})$$

Интерпретации Dropout

- аппроксимируем простое голосование по 2^N сетям с общим набором из N весов, но с различной архитектурой связей
- регуляризация: из всех сетей выбираем более устойчивую
 к утрате р
 № нейронов, моделируя надёжность мозга
- О сокращаем переобучение, заставляя разные части сети решать одну и ту же исходную задачу вместо того, чтобы подстраивать их под компенсацию ошибок друг друга

Обратный Dropout и L_2 -регуляризация

На практике чаще используют не Dropout, a Inverted Dropout.

Этап обучения:

$$x_{ih}^{\ell+1} = \frac{1}{1-p_{\ell}} \xi_h^{\ell} \, \sigma_h \left(\sum_j w_{jh} x_{ij}^{\ell} \right), \qquad \mathsf{P}(\xi_h^{\ell} = 0) = p_{\ell}$$

Этап применения не требует ни модификаций, ни знания p_ℓ :

$$x_{ih}^{\ell+1} = \sigma_h \left(\sum_j w_{jh} x_{ij}^{\ell}\right)$$

L₂-регуляризация предотвращает рост параметров на обучении:

$$\mathscr{L}_i(w) + \frac{\lambda}{2} \|w\|^2 \to \min_{w}$$

Градиентный шаг с Dropout и L_2 -регуляризацией:

$$w := w(1 - \eta \lambda) - \eta \frac{1}{1 - \rho_{\ell}} \xi_h^{\ell} \mathcal{L}_i'(w)$$

Функции активации ReLU и PReLU (LeakyReLU)

Функции $\sigma(y) = \frac{1}{1+e^{-y}}$ и $th(y) = \frac{e^y - e^{-y}}{e^y + e^{-y}}$ могут приводить к затуханию градиентов или «параличу сети»

Функция положительной срезки (rectified linear unit)

$$ReLU(y) = \max\{0, y\};$$

$$\mathsf{ReLU}(y) = \max\{0, y\}; \qquad \mathsf{PReLU}(y) = \max\{0, y\} + \alpha \min\{0, y\}$$

Пакетная нормализация данных (Batch Normalization)

 $B = \{x_i\}$ — пакеты (mini-batch) данных.

Усреднение градиентов $\mathscr{L}_i(w)$ по пакету ускоряет сходимость.

 $B^\ell = \{u_i^\ell\}$ — векторы объектов x_i на выходе ℓ -го слоя.

Batch Normalization:

1. Нормировать каждую j-ю компоненту вектора u_i^ℓ по пакету:

$$\hat{u}_{ij}^{\ell} = \frac{u_{ij}^{\ell} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}; \quad \mu_j = \frac{1}{|B|} \sum_{x_i \in B} u_{ij}^{\ell}; \quad \sigma_j^2 = \frac{1}{|B|} \sum_{x_i \in B} (u_{ij}^{\ell} - \mu_j)^2.$$

2. Добавить линейный слой с настраиваемыми весами:

$$\tilde{u}_{ij}^{\ell} = \gamma_i^{\ell} \hat{u}_{ij}^{\ell} + \beta_i^{\ell}$$

3. Параметры γ_i^ℓ и β_i^ℓ настраиваются BackProp.

Эвристики для начального приближения

1. Выравнивание дисперсий выходов в разных слоях:

$$w_j := \operatorname{uniform} \left(-\frac{1}{\sqrt{h}}, \frac{1}{\sqrt{h}} \right)$$

2. Выравнивание дисперсий градиентов в разных слоях:

$$w_j := \operatorname{uniform} \left(-\frac{6}{\sqrt{h+m}}, \frac{6}{\sqrt{h+m}} \right),$$

где h, m — число нейронов в предыдущем и текущем слое

- 3. Послойное обучение нейронов как линейных моделей:
 - ullet либо по случайной подвыборке $X'\subseteq X^\ell$;
 - либо по случайному подмножеству входов;
 - либо из различных случайных начальных приближений;

тем самым обеспечивается различность нейронов.

- 4. Инициализация весами предобученной модели
- 5. Инициализация случайным ортогональным базисом

Прореживание сети (OBD — Optimal Brain Damage)

Пусть w — локальный минимум Q(w), тогда Q(w) можно аппроксимировать квадратичной формой:

$$Q(w + \delta) = Q(w) + \frac{1}{2}\delta^{\mathsf{T}}Q''(w)\delta + o(\|\delta\|^2),$$

где
$$Q''(w)=\left(rac{\partial^2 Q(w)}{\partial w_{jh}\partial w_{j'h'}}
ight)$$
 — гессиан, размера $\left(H(n+M+1)+M
ight)^2$.

Эвристика. Пусть гессиан Q''(w) диагонален, тогда

$$\delta^{\mathsf{T}} Q''(w) \delta = \sum_{j=0}^{n} \sum_{h=1}^{H} \delta_{jh}^{2} \frac{\partial^{2} Q(w)}{\partial w_{jh}^{2}} + \sum_{h=0}^{H} \sum_{m=0}^{M} \delta_{hm}^{2} \frac{\partial^{2} Q(w)}{\partial w_{hm}^{2}}.$$

Хотим обнулить вес: $w_{jh} + \delta_{jh} = 0$. Как изменится Q(w)?

Определение. Значимость (salience) веса w_{jh} — это изменение функционала Q(w) при его обнулении: $S_{jh}=w_{jh}^2 \frac{\partial^2 Q(w)}{\partial w_{jh}^2}$.

Прореживание сети (OBD — Optimal Brain Damage)

- $lacksymbol{0}$ В BackProp вычислять вторые производные $rac{\partial^2 Q}{\partial w_{ih}^2}, \; rac{\partial^2 Q}{\partial w_{hm}^2}.$
- $oldsymbol{oldsymbol{arepsilon}}$ Если процесс минимизации Q(w) пришёл в минимум,то
 - ullet упорядочить все веса по убыванию S_{jh} ;
 - удалить N связей с наименьшей значимостью;
 - снова запустить BackProp.
- ullet Если $Q(w,X^\ell)$ или $Q(w,X^k)$ существенно ухудшился, то вернуть последние удалённые связи и выйти.

Отбор признаков с помощью OBD — аналогично.

Суммарная значимость признака:
$$S_j = \sum_{h=1}^H S_{jh}$$
.

Эмпирический опыт: результат постепенного прореживания обычно лучше, чем BackProp изначально прореженной сети.

- Нейрон = линейная классификация или регрессия.
- Нейронная сеть = суперпозиция нейронов с нелинейной функцией активации. Теоретически двух-трёх слоёв достаточно для решения очень широкого класса задач.
- Глубокие нейросети автоматизируют выделение признаков из сложно структурированных данных (feature extraction)
- BackProp = быстрое дифференцирование суперпозиций.
 Позволяет обучать сети практически любой архитектуры.
- Некоторые меры по улучшению сходимости и качества:
 - адаптивный градиентный шаг
 - функции активации типа ReLU
 - регуляризация и DropOut
 - пакетная нормализация (batch normalization)
 - инициализация нейронов как отдельных алгоритмов