UFRGS

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2023/2

Prova da área I

1	2	3	4	5	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z) e g=g(x,y,z) são funções escalares; $\vec{F}=\vec{F}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.

	(x,y,z) e $G=G(x,y,z)$ sao iunções vetoriais.
1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$\vec{\nabla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$
3.	$\vec{\nabla} \times \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{G}$
4.	$\vec{\nabla}\left(fg\right) = f\vec{\nabla}g + g\vec{\nabla}f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$\vec{\nabla} imes \left(f \vec{F} ight) = \vec{\nabla} f imes \vec{F} + f \vec{\nabla} imes \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$\vec{ abla} imes \left(\vec{ abla} f \right) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes\left(ec{ abla} imesec{F} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = \vec{G} \cdot \left(\vec{\nabla} \times \vec{F} \right) - \vec{F} \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$ \vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right) $
14.	$\vec{\nabla} \varphi(r) = \varphi'(r)\hat{r}$

Curvatura, torção e aceleração:

Curvatura, torção e aceleração:				
Nome	Fórmula			
Vetor normal	$\vec{N} = \frac{\vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)}{\ \vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)\ }$			
Vetor binormal	$ec{B} = rac{ec{r}'(t) imes ec{r}''(t)}{\ ec{r}'(t) imes ec{r}''(t)\ }$			
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{d\vec{T}}{\frac{dt}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$			
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$			
Módulo da Torção	$ au = \left\ rac{dec{B}}{ds} ight\ = \left\ rac{dec{B}}{rac{ds}{dt}} ight\ $			
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$			
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$			

Equações de Frenet-Serret:

$$\frac{d\vec{T}}{ds} = \kappa \vec{N}$$

$$\frac{d\vec{N}}{ds} = -\kappa \vec{T} + \tau \vec{B}$$

$$\frac{d\vec{B}}{ds} = -\tau \vec{N}$$

 \bullet Questão 1 (3.0 pontos) A curva produzida pelas equações paramétricas

$$x(t) = 30\cos(t) + 50\cos\left(\frac{3}{2}t\right), \qquad y(t) = 30\sin(t) - 50\sin\left(\frac{3}{2}t\right),$$

 $-2\pi \leq t \leq 2\pi,$ é chamada de Hipotrocoide. Em uma apresentação de drift, o desafio do piloto é descrever o movimento da curva acima mantendo a velocidade do carro constante. É sabido que o carro pode sair da trajetória ou rodar na pista se a aceleração normal exceder $47 \mathrm{m/s}^2.$

- a) (0.5 ponto) Sem calcular, marque sobre a curva o(s) ponto(s) crítico(s) onde o carro pode sair da trajetória com maior facilidade.
- b) (0.5 ponto) Calcule os vetores \vec{T} e \vec{N} no ponto t=0.
- c) (0.5 ponto) Calcule o ponto t no intervalo $\left(-\frac{\pi}{4},\frac{\pi}{4}\right)$ onde a curvatura é máxima. Assuma que a curva é simétrica pelo eixo x. Neste item, não é necessário calcular os pontos críticos derivando a função curvatura, mas justifique o resultado usando seus conhecimentos geométricos de curvatura, a simetria da figura ao lado e a expressão dada no enunciado.
- d) (1.0 ponto) Calcule a curvatura da curva dada no ponto do item c).
- e) (0.5 ponto) Calcule a velocidade máxima do carro para que o veículo não saia da trajetória no intervalo $\left(-\frac{\pi}{4},\frac{\pi}{4}\right)$.

 \bullet Questão 2 (1.0 ponto) Calcule a função torção para a curva

$$\vec{r}(t) = \ln(t)\vec{i} + \frac{t^2}{2}\vec{j} + t\vec{k}, \qquad t > 0.$$

• Questão 3 (2.0 pontos) Considere o campo conservativo

$$\vec{F} = (y-1)e^{x(y-1)}\vec{i} + xe^{x(y-1)}\vec{j} + 5\vec{k}$$

e a curva ${\cal C}$ dada pela parametrização

$$\vec{r} = t \sin\left(\frac{\pi}{2}t\right) \vec{i} + 2t \cos(2\pi t) \vec{j} + 3t \cos(4\pi t) \vec{k}, \qquad 0 \le t \le 2.$$

- a) (1.0 ponto) Calcule o potencial.
- b) (1.0 ponto) Calcule $\int_C \vec{F} \cdot d\vec{r}$.

\bullet Questão 4 (2.0 pontos) Considere o campo

$$\vec{F} = (4x^3 + y + e^z)\vec{i} + (4y^3 + x + z)\vec{j} + (4z^3 + e^x + e^y)\vec{k}$$

e a superfície fechada formada pelo hemisfério $z=\sqrt{4-x^2-y^2}$, limitada apenas ao primeiro octante, isto é, $x\geq 0,\,y\geq 0$ e $z\geq 0$, e os planos $x=0,\,y=0$, e z=0, orientada para fora.

- a) (0.5 ponto) Calcule $\vec{\nabla} \cdot \vec{F}$.
- b) (1.5 ponto) Calcule

$$\iint_{S} \vec{F} \cdot \vec{n} dS.$$

 \bullet Questão 5 (2.0 pontos) Considere o campo

$$\vec{F} = (x - zy^2 + z)\vec{i} + (zx^2 + y - z)\vec{j} + (-x + y + z)\vec{k}$$

e a curva fechada formada pela poligonal formada pelos pontos $P_0=(0,0,3),\,P_1=(4,2,3)$ e $P_2=(4,0,3)$ no sentido $P_0\to P_1\to P_2\to P_0$.

- a) (0.5 ponto) Calcule $\vec{\nabla}\times\vec{F}$.
- b) (1.5 ponto) Calcule

$$\int_C \vec{F} \cdot d\vec{r}.$$