Pontificia Universidad Católica del Perú

Escuela de Posgrado

Análisis Complejo (semana 7)

FORMULA INTEGRAL DE CAUCHY

1. Calcular

$$\int_{\gamma} \frac{dz}{(z-1)(z+i)(z-i)},$$

donde γ es una curva simple para cada uno de los siguientes casos

- a) El punto 1 está en el interior de γ , pero $\pm i$ están en el exterior de la curva.
- b) Los puntos i y 1 están en el interior de γ y -i está en el exterior de la curva.
- c) Los tres puntos 1, i y i están en el interior de γ .
- (El exterior (resp. interior) de una curva simple es la componente conexa (resp. limitada) ilimitada que contiene el infinito).

2. Evaluar las siguientes integrales.

Evaluar las signientes integrales.

a)
$$\int_{\gamma} \frac{e^{z}}{z+1} dz$$
, $\gamma: z(t) = 2e^{it}$, $0 \le t \le 2\pi$.

b) $\int_{\gamma} \frac{z^{2}+3z-1}{(z+3)(z-2)} dz$, $\gamma: z(t) = 1+2e^{it}$, $0 \le t \le 2\pi$.

c) $\int_{\gamma} \frac{e^{\pi z}}{z^{2}+1} dz$, $\gamma: z(t) = 2e^{it}$, $0 \le t \le 2\pi$.

d) $\int_{\gamma} z^{m} (1-z)^{n} dz$, $\gamma: z(t) = 2e^{it}$, $0 \le t \le 2\pi$.

e) $\int_{\gamma} \frac{e^{iz}}{z^{2}} dz$, $\gamma: z(t) = e^{it}$, $0 \le t \le 2\pi$.

f) $\int_{\gamma} \frac{dz}{z-a}$, $\gamma: z(t) = a + re^{it}$, $0 \le t \le 2\pi$.

g) $\int_{\gamma} \frac{sen(z)}{z^{3}} dz$, $\gamma: z(t) = e^{it}$, $0 \le t \le 2\pi$.

3. Calcular

$$\int_{|z|=1} \frac{e^z}{z} dz + \int_{|z|=1} \frac{e^z}{z^n} dz.$$

4. Calcular

$$\int_{|z|=1} \frac{dz}{z^2 + 1}$$

por medio de una descomposición del integrando en fracciones parciales.

5. Calcular

$$\int_{|z|=\rho} \frac{|dz|}{|z-a|^2}$$

bajo la suposición que $|a| \neq \rho$ (usar $z\bar{z} = \rho^2$ y $|dz| = -i\rho \frac{dz}{z}$).

- 6. Evaluar la integral de $\frac{e^{(z^2-1)}}{z^2-4}$ sobre el cuadrado de vertices 1+i, -1+i, -1-i y 1-itrazado 10 veces en el sentido antihorario.
- 7. Sea $n \ge 1$ un entero.
 - a) Verificar la identidad

$$\frac{z^n}{z-a} = z^{n-1} + a \frac{z^{n-1}}{z-a}.$$

b) Sea γ una curva cerrada simple con orientación positiva tal que a está en su interior. Usar inducción y la parte (7a) para probar

$$\frac{1}{2\pi i} \int_{\gamma} \frac{z^n}{z - a} = a^n.$$

- 8. Considere una curva cerrada simple γ , positivamente orientada.
 - a) Probar

$$\int_{\gamma} \bar{z}dz = 2iA,$$

donde A es el área de la region limitada por γ .

- b) Use (8a) para calcular $\int_{\gamma} \text{Re}(z)dz$ y $\int_{\gamma} \text{Im}(z)dz$.
- 9. Sea f(z) una función analítica en una vecindad abierta de $D_1 = \{z \in \mathbb{C} : |z| \le 1\}$. Para cada $a \in D_1$, halle el valor

$$\int_{\partial D_1} \frac{f(z)}{z - \frac{1}{a}} dz.$$

10. Probar que cada curva cerrada $\gamma \subset E$ en el dominio de una función analítica f satisface

$$\int_{\gamma} f(z)dz = 0,$$

siempre que E sea estrellado: existe un ponto $z_0 \in E$ de modo que cada elemento $z \in E$ genera un segmento $[z_0, z] = \{(1 - t)z_0 + tz : 0 \le t \le 1\} \subset E$ (construya una primitiva).

- 11. Probar la siguientes afirmaciones.
 - a) Sea una f(z) continua en la región U. Si la integral a lo largo de la frontera de cualquier retangulo cerrado en U es cero, entonces f(z) es analítica en U.
 - b) Si f(z) es analítica en la región U, entonces f(z) tiene derivadas de todos los ordenes y cada una también es analítica.
 - c) Cada función analítica y acotada en todo el plano es constante.
 - d) Cada polinomio P(z) de grado mayor que uno admite al menos una raiz: existe z_0 con $P(z_0) = 0$.
- 12. Probar que una función analítica en todo el plano (entera) que satisface $|f(z)| < |z|^n$ para algún n y todo z en el complemento de un disco compacto se reduce a un polinomio.
- 13. Si f(z) es analítica y $|f(z)| \le M$ para $|z| \le R$, hallar una cota superior para la derivada $|f^{(n)}(z)|$ en $|z| \le \rho < R$.
- 14. Para función analítica f(z) analice la siguiente afirmación: «existe z donde las derivadas satisfacen $|f^{(n)}(z)| > n!n^n$ ».
- 15. Considere una función analítica en una vecindad abierta del rectangulo $R = [a, b] \times [c, d]$. Mostrar que la integral de linea en la frontera ∂R satisface

$$\frac{1}{2i} \int_{\partial R} f(z) dz = \int \int_{R} \frac{\partial f}{\partial \overline{z}} dx dy,$$

donde la integral de la derecha denota la integral doble, usual.

16. Sea f(z) una función analítica en una región D que se obtiene de un disco D al omitir un número finito de puntos interiores w_i . Asumir que $\lim_{z\to w_j}(z-w_j)f(z)=0, 1\leq j\leq n$ y $a\notin\{w_1,\ldots,w_n\}$. Si a no está en una curva cerrada γ , probar

$$\eta(\gamma, a) f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - a} dz,$$

donde $\eta(\gamma, a)$ es el índice de a con respecto a γ .

17. Utilizar el índice de un punto respecto a una curva cerrada para probar que el complemento de cada curva cerrada simple tiene al menos dos componentes (teorema de la curva de Jordan)