On *r*-Dynamic Chromatic Number of the Corronation of Path and Several Graphs

Arika Indah Kristiana^{1,2}, Dafik^{1,2}, M. Imam Utoyo⁴, Ika Hesti Agustin^{1,3}

¹CGANT University of Jember Indonesia ²Mathematics Edu. Depart. University of Jember, Indonesia ³Mathematics Depart. University of Jember, Indonesia ⁴Mathematics Depart. University of Airlangga, Surabaya, Indonesia

Abstract—This study is a natural extension of k-proper coloring of any simple and connected graph G. By an r-dynamic coloring of a graph G, we mean a proper k-coloring of graph G such that the neighbors of any vertex v receive at least min $\{r, d(v)\}$ different colors. The r-dynamic chromatic number, written as $\chi_r(G)$, is the minimum k such that graph G has an r-dynamic k-coloring. In this paper we will study the r-dynamic chromatic number of the coronation of path and several graph. We denote the corona product of G and H by $G \odot H$. We will obtain the r-dynamic chromatic number of $\chi_r(P_n \odot P_m)$, $\chi_r(P_n \odot C_m)$ and $\chi_r(P_n \odot W_m)$ for m, $n \ge 3$.

Keyword— r-dynamic chromatic number, path, corona product.

I. INTRODUCTION

An r-dynamic coloring of a graph G is a proper k-coloring of graph G such that the neighbors of any vertex v receive at least min $\{r, d(v)\}$ different colors. The r-dynamic chromatic number, introducedby Montgomery [4] written as $\chi_r(G)$, is the minimum k such that graph G has an r-dynamic k-coloring. The I-dynamic chromatic number of a graph G is $\chi_1(G) = \chi(G)$, well-known as the ordinary chromatic number of G. The G-dynamic chromatic number is simply said to be a dynamic chromatic number, denoted by $\chi_2(G) = \chi_d(G)$, see Montgomery [4]. The G-dynamic chromatic number has been studied by several authors, for instance in [1], [5], [6], [7], [8], [10], [11].

The following observations are useful for our study, proposed by Jahanbekam[11].

Observation 1.[10] Always $\chi(G) = \chi_1(G) \le \cdots \le \chi_{\Delta(G)}(G)$. If $r \ge \Delta(G)$, then $\chi_r(G) = \chi_{\Delta(G)}(G)$

Observation 2.Let $\Delta(G)$ be the largest degree of graph G. It holds $\chi_r(G) \geq \min\{\Delta(G), r\} + 1$.

Given two simple graphs G and H, the corona product of G and H, denoted by $G \odot H$, is a connected graph obtained by taking a number of vertices |V(G)| copy of H, and making the i^{th} of V(G)adjacent to every vertex of the i^{th} copy of V(H), Furmanczyk[3]. The following example is $P_3 \odot C_3$.

[Vol-4, Issue-4, Apr- 2017]

ISSN: 2349-6495(P) | 2456-1908(O)

Fig.1: Graph $P_3 \odot C_3$

There have been many results already found, The first one was showed by Akbari et.al [10]. They found that for every two natural number m and n, m, $n \ge 2$, the cartesian product of P_m and P_n is $\chi_2(P_m \square P_n) = 4$ and if 3|mn, then $\chi_2(C_m \square C_n) = 3$ and $\chi_2(C_m \square C_n) = 4$. In [2], they then conjectured $\chi_2(G) \le \chi(G) + 2$ when G is regular, which remains open. Akbari et.al. [9] alsoproved Montgomery's conjecture for bipartite regular graphs, as well as Lai, et.al. [5] provedthat $\chi_2(G) \le \Delta(G) + 1$ for $\Delta(G) \ge 4$ when no component is the 5-cycle. By a greedy coloring algorithm, Jahanbekama [11] proved that $\chi_r(G) \le r\Delta(G) + 1$, and equality holds for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5. They improved the bound to $\chi_r(G) \le \Delta(G) + 2r - 2$ when $\delta(G)$

 $>2r \ln n$ and $\chi_r(G) \le \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.

II. THE RESULTS

We are ready to show our main theorems. There are three theorems found in this study. Those deal with corona product of graph P_n with P_m , C_m , and W_m .

Theorem 1. Let $G = P_n \odot P_m$ be a corona graph of P_n and P_m . For $n, m \ge 2$, the r-dynamic chromatic number is:

www.ijaers.com

$$\chi_r(G) = \begin{cases} 3 & , & r = 1, 2 \\ r + 1 & , & 3 \le r \le \Delta - 1 \\ m + 3 & , & r \ge \Delta \end{cases}$$

Proof. The graph $P_n \odot P_m$ is a connected graph with vertex set $V(P_n \odot P_m) = \{y_i, 1 \leq i \leq n\} \cup \{x_{ij}; 1 \leq i \leq n, 1 \leq j \leq m\}$ and edge set $E(P_n \odot P_m) = \{y_i y_{(i+1)}; 1 \leq i \leq n - 1\} \cup \{y_i x_{ij}; 1 \leq i \leq n, 1 \leq j \leq m\} \cup \{x_{ij}, x_{i(j+1)}; 1 \leq i \leq n, 1 \leq j \leq m\} \cup \{x_{ij}, x_{i(j+1)}; 1 \leq i \leq n, 1 \leq j \leq m - 1\}$. The order of graph $P_n \odot P_m$ is $|V(P_n \odot P_m)| = n(m+1)$ and the size of graph $P_n \odot P_m$ is $|E(P_n \odot P_m)| = 2mn - 1$. Thus, $\Delta(P_n \odot P_m) = m + 2$.

By observation 2, $\chi_r(P_n \odot P_m) \ge \min\{r, \Delta(P_n \odot P_m)\} + 1 = \min\{r, m+2\} + 1$. To find the exact value of r-dynamic chromatic number of $P_n \odot P_m$, we define two cases, namely for $\chi_{r=1,2}(P_n \odot P_m)$ and $\chi_r(P_n \odot P_m)$.

Case 1. For $\chi_{r=1,2}(P_n \odot P_m)$, define $c_1 : V(P_n \odot P_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, $m \ge 3$, by the following:

$$c_1(y_i) = \begin{cases} 1 & , & i \text{ odd, } 1 \leq i \leq n \\ 2 & , & i \text{ even, } 1 \leq i \leq n \end{cases}$$

$$c_1(x_{ij}) = \begin{cases} 1 & , & i \text{ odd, } 1 \leq i \leq n \\ 2 & , & i \text{ even, } j \text{ odd, } 1 \leq i \leq n, 1 \leq j \leq m \end{cases}$$

$$c_1(x_{ij}) = \begin{cases} 1 & , & i \text{ even, } j \text{ odd, } 1 \leq i \leq n, 1 \leq j \leq m \\ 2 & , & i \text{ odd, } j \text{ odd, } 1 \leq i \leq n, 1 \leq j \leq m \end{cases}$$

$$3 & , & j \text{ even, } 1 \leq i \leq n, 1 \leq j \leq m \end{cases}$$

It easy to see that c_1 is map c_1 : $V(P_n \odot P_m) \rightarrow \{1, 2, 3\}$, thus it gives $\chi_{r=1,2}(P_n \odot P_m) = 3$.

Case 2.

Subcase 2.1 For $\chi_r(P_n \odot P_m)$, $3 \le r \le \Delta - 1$, define c_2 : $V(P_n \odot P_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, $m \ge 3$, by the following:

$$\begin{split} c_2(y_i) &= \begin{cases} 1 &, & i \text{ odd, } 1 \leq i \leq n \\ 2 &, & i \text{ even, } 1 \leq i \leq n \end{cases} \\ c_2(x_{11}, x_{12}, x_{13}) &= 2, 3, 4, \\ \text{ for } m &= 3, r = 3 \\ c_2(x_{21}, x_{22}, x_{23}) &= 1, 3, 4, \\ \text{ for } m &= 3, r = 3 \\ c_2(x_{11}, x_{12}, x_{13}) &= 3, 4, 5, \\ \text{ for } m &= 3, r = 4 \\ c_2(x_{11}, x_{12}, x_{13}, x_{14}) &= 2, 3, 4, 5, \\ \text{ for } m &= 4, r = 4 \end{cases} \\ c_2(x_{11}, x_{12}, x_{13}, x_{14}) &= 3, 4, 5, 6, \\ \text{ for } m &= 4, r = 5 \end{split}$$

It easy to see that c_2 is a map c_2 : $V(P_n \odot P_m) \rightarrow \{1, 2, ..., r+1\}$, thus it gives $\chi_r(P_n \odot P_m) = r+1, 3 \le r \le \Delta-1$ **Subcase 2.2** The last for $\chi_r(P_n \odot P_m), r \ge \Delta$, define c_3 : $V(P_n \odot P_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, $m \ge 3$, by the following:

$$c_3(y_i) = \begin{cases} 1 &, & i = 3t + 1, t \ge 0, 1 \le i \le n \\ 2 &, & i = 3t + 2, t \ge 0, 1 \le i \le n \\ 3 &, & i = 3t, t \ge 1, 1 \le i \le n \end{cases}$$

Fig.2: $\chi_6(P_3 \odot P_4) = 7$ with n = 3, m = 4, r = 6

$$\begin{aligned} c_3(x_{11},x_{12},x_{13}) &= 4,5,6, \text{ for } m = 3,r = 5 \\ c_3(x_{11},x_{12},x_{13},x_{14}) &= 3,4,5,6, \\ \text{ for } m &= 4,r = 6 \\ c_3(x_{21},x_{22},x_{23},x_{24}) &= 4,5,6,7 \\ \text{ for } m &= 4,r = 6 \\ c_3(x_{21},x_{22},x_{23},x_{24},x_{25}) &= 4,5,6,7,8 \\ \text{ for } m &= 5,r = 7 \end{aligned}$$

It easy to see that c_3 is a map c_3 : $V(P_n \odot P_m) \rightarrow \{1, 2, ..., m+3\}$, so it gives $\chi_r(P_n \odot P_m) = m + 3, r \ge \Delta$. It concludes the proof

Theorem 2. Let $G = P_n \odot C_m$ be a corona graph of P_n and C_m . For $n \ge 3$, $m \ge 3$, the r-dynamic chromatic number is:

$$\chi_{r=1,2}(G) = \begin{cases} 3, & m \text{ even or } m = 3k, k \ge 1\\ 4, & m \text{ odd or } m = 5 \end{cases}$$

$$\chi_{r=3}(G) = \begin{cases} 4 & , & m = 3k, k \ge 1 \\ 6 & , & m = 5 \\ 5 & , & m \text{ otherwise} \end{cases}$$

$$\chi_r(G) = \begin{cases} r+1 & , & 4 \le r \le \Delta - 1 \\ \\ m+3 & , & r \ge \Delta \end{cases}$$

Proof. The graph $P_n \odot C_m$ is connected graph with vertex set $V(P_n \odot C_m) = \{ y_i; 1 \leq i \leq n \} \cup \{ x_{ij}; 1 \leq i \leq n, 1 \leq j \leq m \}$ and edge set $E(P_n \odot C_m) = \{ y_i y_{i+1}; 1 \leq i \leq n - 1 \} \cup \{ x_{ij} x_{i(j+1)}; 1 \leq i \leq n, 1 \leq j \leq m-1 \} \cup \{ x_{i1} x_{im}; 1 \leq i \leq n \} \cup \{ y_i x_{ij}; 1 \leq i \leq n, 1 \leq j \leq m \}.$ The order of graph $P_n \odot C_m$ is $|V(P_n \odot C_m)| = n(m+1)$ and the size of graph

 $P_n \odot C_m$ is $|E(P_n \odot C_m)| = 2mn + n - 1$, thus $\Delta(P_n \odot C_m) = m + 2$. By Observation 2, we have $\chi_r(P_n \odot C_m) \ge \min\{r, \Delta(P_n \odot C_m)\} + 1 = \min\{r, m + 2\} + 1$. To find the exact value of r-dynamic chromatic

www.ijaers.com Page | 97

[Vol-4, Issue-4, Apr-2017] ISSN: 2349-6495(P) | 2456-1908(O)

number of $P_n \odot C_m$, we define three case, namely for $\chi_{r=1,2}(P_n \odot C_m)$, $\chi_{r=3}(P_n \odot C_m)$ and $\chi_r(P_n \odot C_m)$.

Case 1.

Subcase 1.1 For $\chi_{r=1,2}(P_n \odot C_m)$, define c_4 : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m even or $m = 3k, k \ge 1$, by the following:

$$c_4(y_i) = \begin{cases} 1 & , & i \text{ odd, } 1 \leq i \leq n \\ 2 & , & i \text{ even, } 1 \leq i \leq n \end{cases}$$

$$c_4(x_{ij}) = \begin{cases} 1 & , & i \text{ even, } j \text{ odd, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\ 2 & , & i \text{ odd, } j \text{ odd, } 1 \leq i \leq n, 1 \leq j \leq m \\ 3 & , & j \text{ even, } 1 \leq i \leq n, 1 \leq j \leq m \\ 4 & , & i \text{ even, } 1 \leq i \leq n, j = m \end{cases}$$

It easy to see that c_4 is a map c_4 : $V(P_n \odot C_m) \rightarrow \{1, 2, 3\}$, so it gives $\chi_{r=1,2}(P_n \odot C_m) = 3$, m even or m = 3k, $k \ge 1$

Subcase 1.2 For $\chi_{r=1,2}(P_n \odot C_m)$ define c_5 : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m odd or m = 5, by the following:

$$c_5(y_i) = \begin{cases} 1 &, & i \text{ odd, } 1 \leq i \leq n \\ 2 &, & i \text{ even, } 1 \leq i \leq n \end{cases}$$

$$c_5(x_{ij}) = \begin{cases} 1 &, & i \text{ even, } j \text{ odd, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\ 2 &, & i \text{ odd, } j \text{ odd, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\ 3 &, & j \text{ even, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\ 4 &, & 1 \leq i \leq n, j = m \end{cases}$$

It easy to see that c_5 is a map c_5 : $V(P_n \odot C_m) \rightarrow \{1, 2, 3, 4\}$, so it gives $\chi_{r=1,2}(P_n \odot C_m) = 4$, m odd or m = 5

Fig.3: $\chi_2(P_3 \odot C_5) = 4$ with n = 3, m = 5, r = 2

Case 2.

Subcase 2.1 For $\chi_{r=3}(P_n \odot C_m)$, define c_6 : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m = 3k, $k \ge 1$, by the following:

$$\begin{split} c_6(y_i) &= \begin{cases} 1 &, & i \text{ odd, } 1 \leq i \leq n \\ 2 &, & i \text{ even, } 1 \leq i \leq n \end{cases} \\ c_6(x_{ij}) \\ &= \begin{cases} 1 &, & i \text{ even, } j = 3t+1, \, t \geq 0, \, 1 \leq i \leq n, \, 1 \leq j \leq m \\ 2 &, & i \text{ odd, } j = 3t+1, \, t \geq 0, \, 1 \leq i \leq n, \, 1 \leq j \leq m \\ 3 &, & j = 3t+2, \, t \geq 0, \, 1 \leq i \leq n, \, 1 \leq j \leq m \\ 4 &, & j = 3t, \, t \geq 1, \, 1 \leq i \leq n, \, 1 \leq j \leq m \end{cases} \end{split}$$

It easy to see that c_6 is map c_6 : $V(P_n \odot C_m) \rightarrow \{1, 2, 3, 4\}$, so it gives $\chi_{r=3}(P_n \odot C_m) = 4$, m = 3k, $k \ge 1$.

Subcase 2.2 For $\chi_{r=3}(P_n \odot C_m)$, define c_7 : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m = 5, by the following:

$$c_7(y_i) = \begin{cases} 1 &, & i \text{ odd, } 1 \le i \le n \\ 2 &, & i \text{ even, } 1 \le i \le n \end{cases}$$

$$c_7(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}) = 2, 3, 4, 5, 6$$

$$c_7(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}) = 1, 3, 4, 5, 6$$

It easy to see that c_7 is a map c_7 : $V(P_n \odot C_m) \rightarrow \{1, 2, 3, 4, 5, 6\}$. Thus it given $\chi_{r=3}(P_n \odot C_5) = 6$

Subcase 2.3 For $\chi_{r=3}(P_n \odot C_m)$, define c_8 : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m otherwise, by the following:

$$c_8(y_i) = \begin{cases} 1 &, & i \text{ odd, } 1 \le i \le n \\ 2 &, & i \text{ even, } 1 \le i \le n \end{cases}$$

$$c_{8}(x_{ij})$$

$$= \begin{cases} 1 & , & i \text{ even}, j = 4t+1, t \geq 0, 1 \leq i \leq n, 1 \leq j \leq m \\ 2 & , & i \text{ odd}, j = 4t+1, t \geq 0, 1 \leq i \leq n, 1 \leq j \leq m \\ 3 & , & j = 4t+2, t \geq 0, 1 \leq i \leq n, 1 \leq j \leq m \\ 4 & , & j = 4t+3, t \geq 1, 1 \leq i \leq n, 1 \leq j \leq m \\ 5 & , & j = 4t, t \geq 1, 1 \leq i \leq n, 1 \leq j \leq m \end{cases}$$

It easy to see that c_8 is map c_8 : $V(P_n \odot C_m) \rightarrow \{1, 2, 3, 4, 5\}$, so it gives $\chi_{r=3}(P_n \odot C_m) = 5$

Case 3

Subcase 3.1 For $\chi_r(P_n \odot C_m)$, $4 \le r \le \Delta - 1$, define c_9 : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, $m \ge 3$, by the following:

$$c_9(y_i) = \begin{cases} 1 &, & i \text{ odd, } 1 \leq i \leq n \\ 2 &, & i \text{ even, } 1 \leq i \leq n \end{cases}$$

$$c_9(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) = 3, 4, 5, 3, 4, 5,$$

$$\text{for } m = 6, r = 4$$

$$c_9(x_{31}, x_{32}, x_{33}, x_{34}, x_{35}, x_{36}) = 3, 4, 5, 3, 4, 5,$$

$$\text{for } m = 6, r = 4$$

$$c_9(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) = 3, 4, 5, 6, 3, 5,$$

$$\text{for } m = 6, r = 5$$

$$c_9(x_{11}, x_{12}, x_{14}, x_{15}, x_{16}) = 3, 4, 5, 6, 7, 3,$$

$$\text{for } m = 6, r = 6$$

$$c_9(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) = 3, 4, 5, 6, 7, 8,$$

$$\text{for } m = 6, r = 7$$

It easy to see that c_9 is a map c_9 : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., r+1\}$, so it gives $\chi_r(P_n \odot C_m) = r+1, 4 \le r \le \Delta-1$

Subcase 3.2The last for $\chi_r(P_n \odot C_m), r \ge \Delta$, define c_{10} : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, $m \ge 3$, by the following:

$$c_{10}(y_i) = \begin{cases} 1 &, & i \text{ odd, } 1 \le i \le n \\ 2 &, & i \text{ even, } 1 \le i \le n \end{cases}$$

$$c_{10}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) = 4, 5, 6, 7, 8, 9$$

www.ijaers.com

for
$$m = 6, r = 8$$

$$c_{10}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}) = 4, 5, 6, 7, 8, 9, 10$$
for $m = 7, r = 9$

$$c_{10}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18})$$

$$= 4, 5, 6, 7, 8, 9, 10, 11$$
for $m = 8, r = 10$

It easy to see that c_{10} is map c_{10} : $V(P_n \odot C_m) \rightarrow \{1, 2, ..., n\}$ m+3}, so it given $\chi_r(P_n \odot C_5) = m+3, r \ge \Delta$. It concludes the proof.

Theorem 3. Let $G = P_n \odot W_m$ be a corona graph of P_n and W_m . For $n \ge 3$, $m \ge 3$, the r-dynamic chromatic number is:

$$\chi_{r=1,2,3}(G) = \begin{cases} 4 &, m \text{ even} \\ 5 &, m \text{ odd} \end{cases}$$

$$\chi_{r=4}(G) = \begin{cases} 5 &, m = 3k, k \ge 1 \\ 7 &, m = 5 \\ 6 &, m \text{ otherwise} \end{cases}$$

$$\chi_{r}(G) = \begin{cases} r+1 &, 5 \le r \le \Delta - 1 \\ m+4 &, r \ge \Delta \end{cases}$$

Proof. The graph $P_n \odot W_m$ is a connected graph with vertex set $V(P_n \odot W_m) = \{y_i; 1 \le i \le n\} \cup \{x_{ii}; 1 \le i \le n, 1 \le i \le n\}$ $j \le m\} \cup \{A_i; 1 \le i \le n\}$ and edge set $E(P_n \odot W_m) =$ $\{y_i y_{i+1}; 1 \le i \le n-1\} \cup \{x_{i,i} x_{i(i+1)}; 1 \le i \le n, 1 \le j \le n\}$ m-1} $\cup \{x_{i1}x_{im}; 1 \le i \le n\} \cup \{y_ix_{ij}; 1 \le i \le n, 1 \le j \le n\}$ m} $\cup \{A_i x_{ij}; 1 \le i \le n, 1 \le j \le m\} \cup \{A_i y_i; 1 \le i \le n\}.$

The order of graph $P_n \odot W_m$ is $|V(P_n \odot W_m)| = mn + 2n$ and the size of graph $P_n \odot W_m$ is $|E(P_n \odot W_m)| = 3mn +$ 2n-1, thus $\Delta(P_n \odot W_m) = m+3$.

By observation 2, we have the following

 $\chi_r(P_n \odot W_m) \ge \min\{r, \Delta(P_n \odot W_m)\} + 1 = \min\{r, m + 1\}$ 3} + 1. To find the exact value of r-dynamic chromatic number of $P_n \odot W_m$, we define three case, namely for $\chi_{r=1,2,3}(P_n \odot W_m)$, $\chi_{r=4}(P_n \odot W_m)$ and $\chi_r(P_n \odot W_m)$.

Subcase 1.1 For $\chi_{r=1,2,3}(P_n \odot W_m)$, define c_{11} : $V(P_n \odot W_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m even by the following:

$$c_{11}(y_i) = \begin{cases} 1 & , & i \text{ odd, } 1 \leq i \leq n \\ 2 & , & i \text{ even, } 1 \leq i \leq n \end{cases}$$

$$c_{11}(A_i) = \begin{cases} 1 & , & i \text{ even, } 1 \leq i \leq n \\ 2 & , & i \text{ odd, } 1 \leq i \leq n \end{cases}$$

$$c_{11}(x_{ij}) = \begin{cases} 3 & , & j \text{ odd, } 1 \leq i \leq n, 1 \leq j \leq m \\ 4 & , & j \text{ even, } 1 \leq i \leq n, 1 \leq j \leq m \end{cases}$$
It easy to see that c_{11} is map c_{11} : $V(P_n \odot W_m) \rightarrow \{1, 2, 3, 4\}$,

so it gives $\chi_{r=1,2,3}(P_n \odot W_m) = 4$, m even.

Subcase 1.2 For $\chi_{r=1,2,3}(P_n \odot W_m)$, define c_{12} : $V(P_n \odot W_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m odd by the following:

$$c_{12}(y_i) = \begin{cases} 1 &, & i \text{ odd, } 1 \leq i \leq n \\ 2 &, & i \text{ even, } 1 \leq i \leq n \end{cases}$$

$$c_{12}(A_i) = \begin{cases} 1 &, & i \text{ even, } 1 \leq i \leq n \\ 2 &, & i \text{ odd, } 1 \leq i \leq n \end{cases}$$

$$c_{12}(x_{ij}) = \begin{cases} 3 &, & j \text{ odd, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\ 4 &, & j \text{ even, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\ 5 &, & j = m, 1 \leq i \leq n \end{cases}$$

5}, so it gives $\chi_{r=1,2,3}(P_n \odot W_m) = 5$, m even.

Case 2

Subcase 2.1 For $\chi_{r=4}(P_n \odot W_m)$, define $V(P_n \odot W_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m = 3k, $k \ge 1$ by the following:

$$\begin{split} c_{13}(y_i) &= \begin{cases} 1 &, & i \text{ odd, } 1 \leq i \leq n \\ 2 &, & i \text{ even, } 1 \leq i \leq n \end{cases} \\ c_{13}(A_i) &= \begin{cases} 1 &, & i \text{ even, } 1 \leq i \leq n \\ 2 &, & i \text{ odd, } 1 \leq i \leq n \end{cases} \\ c_{13}(x_{ij}) \\ &= \begin{cases} 3 &, & j = 3t+1, t \geq 0, \, 1 \leq i \leq n, \, 1 \leq j \leq m \\ 4 &, & j = 3t+2, t \geq 0, \, 1 \leq i \leq n, \, 1 \leq j \leq m \\ 5 &, & j = 3t, \, t \geq 1, \, 1 \leq i \leq n, \, 1 \leq j \leq m \end{cases} \end{split}$$

It easy to see that c_{13} is a map c_{13} : $V(P_n \odot W_m) \rightarrow \{1, 2, 3, 4, \dots, 2, 3, 4, \dots, 2, \dots, 2,$ 5}, so it given $\chi_{r=4}(P_n \odot W_m) = 5, m = 3k, k \ge 1$.

2.2 For $\chi_{r=4}(P_n \odot W_m)$, define $V(P_n \odot W_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m = 5 by the following:

$$\begin{split} c_{14}(y_i) &= \begin{cases} 1 &, & i \text{ odd, } 1 \leq i \leq n \\ 2 &, & i \text{ even, } 1 \leq i \leq n \end{cases} \\ c_{14}(A_i) &= \begin{cases} 1 &, & i \text{ even, } 1 \leq i \leq n \\ 2 &, & i \text{ odd, } 1 \leq i \leq n \end{cases} \\ c_{14}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}) &= 3, 4, 5, 6, 7 \end{cases} \end{split}$$

It easy to see that c_{14} is a map c_{14} : $V(P_n \odot W_m) \rightarrow \{1, 2, 3, 4,$ 5, 6, 7}, so it gives $\chi_{r=4}(P_n \odot W_m) = 7, m = 5$.

 $\chi_{r=4}(P_n \odot W_m)$, define **2.3** For $V(P_n \odot W_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, m otherwise by the following:

$$\begin{split} c_{15}(y_i) &= \begin{cases} 1 &, & i \text{ odd, } 1 \leq i \leq n \\ 2 &, & i \text{ even, } 1 \leq i \leq n \end{cases} \\ c_{15}(A_i) &= \begin{cases} 1 &, & i \text{ even, } 1 \leq i \leq n \\ 2 &, & i \text{ odd, } 1 \leq i \leq n \end{cases} \\ c_{15}(x_{ij}) \\ &= \begin{cases} 3 &, & j = 3t+1, t \geq 0, 1 \leq i \leq n, 1 \leq j \leq m-1 \\ 4 &, & j = 3t+2, t \geq 0, 1 \leq i \leq n, 1 \leq j \leq m-1 \\ 5 &, & j = 3t, t \geq 1, 1 \leq i \leq n, 1 \leq j \leq m-1 \\ 6 &, & j = m, 1 \leq i \leq n \end{cases} \end{split}$$

Page | 99 www.ijaers.com

[Vol-4, Issue-4, Apr- 2017] ISSN: 2349-6495(P) | 2456-1908(O)

Fig.4:. $\chi_4(P_3 \odot W_4) = 6 withn = 3$, m = 4, r = 6It easy to see that c_{15} is map c_{15} : $V(P_n \odot W_m) \rightarrow \{1, 2, 3, 4, 5, 6\}$, so it gives $\chi_{r=4}(P_n \odot W_m) = 6$, m otherwise.

Case 3

Subcase 3.1 For $\chi_r(P_n \odot W_m)$ $5 \le r \le \Delta - 1$, define $c_{16} : V(P_n \odot W_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, $m \ge 3$ by the following:

$$\begin{split} c_{16}(y_i) &= \begin{cases} 1 &, & i \text{ odd, } 1 \leq i \leq n \\ 2 &, & i \text{ even, } 1 \leq i \leq n \end{cases} \\ c_{16}(A_i) &= \begin{cases} 1 &, & i \text{ even, } 1 \leq i \leq n \\ 2 &, & i \text{ odd, } 1 \leq i \leq n \end{cases} \\ c_{16}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}) &= 3, 4, 5, 3, 4, 5, 6, \\ \text{for } m &= 7, r = 5 \\ c_{16}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}) &= 3, 4, 5, 6, 7, 4, 5, \\ \text{for } m &= 7, r = 6 \\ c_{16}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}) &= 3, 4, 5, 6, 7, 8, 5, \\ \text{for } m &= 7, r = 7 \end{cases} \\ c_{16}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}) &= 3, 4, 5, 6, 7, 8, 9, \\ \text{for } m &= 7, r = 8 \end{split}$$

It easy to see that c_{16} is a map c_{16} : $V(P_n \odot W_m) \rightarrow \{1, 2, ..., r+1\}$, so it gives $\chi_r(P_n \odot W_m) = r+1, 5 \le r \le \Delta-1$.

Subcase 3.2 For $\chi_r(P_n \odot W_m)$, $r \ge \Delta$, define c_{17} : $V(P_n \odot W_m) \rightarrow \{1, 2, ..., k\}$ where $n \ge 3$, $m \ge 3$ by the following:

$$c_{17}(y_i) = \begin{cases} 1 &, & i = 3t+1, t \geq 0, 1 \leq i \leq n \\ 2 &, & i = 3t+2, t \geq 0, 1 \leq i \leq n \\ 3 &, & i = 3t, t \geq 1, 1 \leq i \leq n \end{cases}$$

$$c_{17}(A_i) = \begin{cases} 1 &, & i = 4t+3, t \geq 0, 1 \leq i \leq n \\ 2 &, & i = 4t, t \geq 1, 1 \leq i \leq n \\ 3 &, & i = 4t+1, t \geq 0, 1 \leq i \leq n \\ 4 &, & i = 4t+2, t \geq 0, 1 \leq i \leq n \end{cases}$$

$$c_{17}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) = 4, 5, 6, 7, 8, 9,$$

$$for m = 6, r = 9$$

$$c_{17}(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}) = 5, 6, 7, 8, 9, 10,$$

$$for m = 6, r = 9$$

$$c_{17}(x_{11}, x_{12}, x_{13}, x_{14}, x_{15}) = 4, 5, 6, 7, 8,$$

$$for m = 5, r = 8$$

$$c_{17}(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}) = 5, 6, 7, 8, 9,$$

$$for m = 5, r = 8$$

$$c_{17}(x_{11}, x_{12}, x_{13}, x_{14}) = 4, 5, 6, 7,$$

$$for m = 4, r = 7$$

$$c_{17}(x_{21}, x_{22}, x_{23}, x_{24}) = 5, 6, 7, 8,$$

$$for m = 4, r = 7$$

It easy to see that c_{17} is map c_{17} : $V(P_n \odot W_m) \rightarrow \{1, 2, ..., m+4\}$, so it gives $\chi_r(P_n \odot W_m) = m+4, r \geq \Delta$. It concludes the proof.

III. CONCLUSION

We have found some r-dynamic chromatic number of corona product of graphs, namely $\chi_r(P_n \odot P_m) = \chi_r(P_n \odot C_m) = \chi_r(P_n \odot W_m) = r+1$, for $4 \le r \le \Delta-1$. and $\chi_r(P_n \odot P_m) = \chi_r(P_n \odot C_m) = m+3$, for $r \ge \Delta$. All numbers attain abest lower bound. For the characterization of the lower bound of $\chi_r(G \odot H)$ for any connected graphs G and H, we have not found any result yet, thus we propose the following open problem.

Open Problem 1. Given that any connected graphs G and H. Determine the sharp lower bound of $\chi_r(G \odot H)$.

ACKNOWLEDGEMENT

We gratefully acknowledge to the support from CGANT – University of Jember of year 2017.

REFERENCES

- [1] Ali Taherkhani. On r-Dynamic Chromatic Number of Graphs. Discrete Applied Mathematics 201 (2016) 222
 – 227
- [2] B. Montgomery, Dynamic Coloring of Graphs (Ph.D Dissertation), West Virginia University, 2001
- [3] Hanna Furmanczyk, Marek Kubale. Equitable Coloring of Corona Products of Cubic Graphs is Harder Than Ordinary Coloring. Ars Mathematica Contemporanea 10 (2016) 333 – 347
- [4] H.J. Lai, B. Montgomery. Dynamic Coloring of Graph. Department of Mathematics, West Virginia University, Mongantown WV 26506-6310. 2002
- [5] H.J. Lai, B. Montgomery, H. Poon. Upper Bounds of Dynamic Chromatic Number. Ars Combinatoria. 68 (2003) 193 – 201
- [6] M. Alishahi, On the dynamic coloring of graphs, Discrete Appl. Math. 159 (2011) 152–156.
- [7] M. Alishahi, Dynamic chromatic number of regular graphs, Discrete Appl. Math. 160 (2012) 2098–2103.
- [8] Ross Kang, Tobias Muller, Douglas B. West. On r-Dynamic Coloring of Grids. Discrete Applied Mathematics 186 (2015) 286 – 290
- [9] S. Akbari, M. Ghanbari, S. Jahanbekam. On The Dynamic Chromatic Number of Graphs, Combinatorics and Graph, in: Contemporary

www.ijaers.com Page | 100

[Vol-4, Issue-4, Apr- 2017] ISSN: 2349-6495(P) | 2456-1908(O)

 $\frac{\text{Mathematics} - \text{American Mathematical Society} 513}{(2010) \ 11 - 18}$

- [10] S. Akbari, M. Ghanbari, S. Jahanbekam. On The Dynamic Coloring of Cartesian Product Graphs, Ars Combinatoria 114 (2014) 161 – 167
- [11] SogolJahanbekam, Jaehoon Kim, Suil O, Douglas B. West. On *r*-Dynamic Coloring of Graph. Discrete Applied Mathematics 206 (2016) 65 72

www.ijaers.com Page | 101