UNBOUNDED PROBLEMS

How to detect if the problem is unbounded while pivoting.

An example.

Unbounded Linear Programs

Example

maximize
$$2x_1 + 3x_2 - 5x_3$$

s.t. $x_1 - x_2 \leq 5$
 $-x_1 + x_3 \leq 6$
 $-2x_1 + x_3 \leq 2$
 $-x_1 + x_2 \leq 4$
 $x_1, x_2, x_3 \geq 0$

Initial Dictionary

maximize $2x_1 + 3x_2 - 5x_3$ s.t. $x_1 - x_2 \leq 5$ $-x_1 + x_3 \leq 6$ $-2x_1 + x_3 \leq 2$ $-x_1 + x_2 \leq 4$

$$x_4 = 5 - x_1 + x_2$$
 $x_5 = 6 + x_1 - x_3$
 $x_6 = 2 + 2x_1 - x_3$
 $x_7 = 4 + x_1 - x_2$
 $z = 0 + 2x_1 + 3x_2 - 5x_3$

Entering/Leaving Variable Analysis

$$x_{4} = 5 - x_{1} + x_{2}$$

$$x_{5} = 6 + x_{1} - x_{3}$$

$$x_{6} = 2 + 2x_{1} - x_{3}$$

$$x_{7} = 4 + x_{1} - x_{2}$$

$$z = 0 + 2x_{1} + 3x_{2} - 5x_{3}$$

Second Dictionary

Unbounded Dictionary

- No leaving variables.
- Alternatively: all entries in the column corr. to entering variables are non-negative.

$$x_{B1} = b_1 + a_{11}x_{I1} + \cdots + a_{1j}x_{Ij} + \cdots$$
 $x_{B2} = b_2 + a_{21}x_{I1} + \cdots + a_{2j}x_{Ij} + \cdots$

$$\vdots$$

$$x_{Bm} = b_m + a_{m1}x_{I1} + \cdots + a_{mj}x_{Ij} + \cdots$$

$$z = c_0 + c_1x_{I1} + \cdots + c_jx_{Ij} + \cdots$$

Unbounded Dictionary

- If we encounter an unbounded dictionary during the optimization phase,
 - Declare that the problem is unbounded and EXIT.