Introduction to Machine Learning

Nonlinear Support Vector Machines Feature Generation for Nonlinear Separation

Learning goals

- Understand how nonlinearity can be introduced via feature maps in SVMs
- Know the limitation of feature maps

NONLINEARITY VIA FEATURE MAPS

- How to extend a linear classifier, e.g. the SVM, to nonlinear separation between classes?
- We could project the data from 2D into a richer 3D feature space!

FEATURE MAPS: COMPUTATIONAL LIMITATIONS

Let us have a look at a similar nonlinear feature map $\phi:\mathbb{R}^2\to\mathbb{R}^5$, where we collect all monomial feature extractors up to degree 2 (pairwise interactions and quadratic effects):

$$\phi(x_1,x_2)=(x_1^2,x_2^2,x_1x_2,x_1,x_2).$$

For p features vectors, there are k_1 different monomials where the degree is exactly d, and k_2 different monomials up to degree d.

$$k_1 = \begin{pmatrix} d+p-1 \\ d \end{pmatrix}$$
 $k_2 = \begin{pmatrix} d+p \\ d \end{pmatrix} - 1$

Which is quite a lot, if *p* is large.

