Análise e implementação de um método para prover integridade a sistemas de banco de dados

Gabriel Garcia Becker, Lucas Pandolfo Perin, Anderson Luiz Silvério,

Marcelo Carlomagno Carlos, Ricardo Felipe Custódio

Laboratório de Segurança em Computação Universidade Federal de Santa Catarina

{gabrielbecker, lucasperin, anderson.luiz, custodio}@inf.ufsc.br
marcelo.carlos.2009@rhul.ac.uk

19 de Novembro de 2012

Sumário

Introdução

Proposta

Desempenho

Implementação

Introdução

Introdução

Proposta

Desempenho

Implementação

- Modificação não autorizada
- Adição não autorizada
- Remoção não autorizada
- Consulta não autorizada

id	nome	email	salário
41	João	joao@labsec.ufsc.br	3000
42	Maria	maria@labsec.ufsc.br	4500 <mark>0</mark>

- Modificação não autorizada
- Adição não autorizada
- Remoção não autorizada
- Consulta não autorizada

id	nome	email	salário
41	João	joao@labsec.ufsc.br	3000
42	Maria	maria@labsec.ufsc.br	4500
43	Roberto	roberto@labsec.ufsc.br	10000

- Modificação não autorizada
- Adição não autorizada
- Remoção não autorizada
- Consulta não autorizada

id	nome	email	salário
41	João	joao@labsec.ufsc.br	3000
42	Maria	maria@labsec.ufsc.br	4500

- Modificação não autorizada
- Adição não autorizada
- Remoção não autorizada
- Consulta não autorizada

id	nome	email	salário
41	João	joao@labsec.ufsc.br	3000
42	Maria	maria@labsec.ufsc.br	4500

Objetivos

- Confidencialidade
- Integridade
- Autenticidade
- Rastreabilidade

Proposta

Introdução

Proposta

Desempenho

Implementação

Sigilo

- Confidencialidade
- o Integridade
- Autenticidade
- Rastreabilidade

Encrypt (chave, salario)

id	nome	email	salário
41	João	joao@labsec.ufsc.br	7dk2dk
42	Maria	maria@labsec.ufsc.br	dyrn73

Figura: Sigilo

HMac

- Evitar a modificação não autorizada de registros contidos na base de dados.
- Permite identificar as modificaçãos não autorizadas.

HMac

- o Confidencialidade
- o Integridade
- Autenticidade
- o Rastreabilidade

HMAC(chave, id||nome||email)

id	nome	email	salário	hmac
41	João	joao@labsec.ufsc.br	7dk2dk	aqw2s3
42	Maria	maria@labsec.ufsc.br	dyrn73	kjh43kj

Figura: HMac

Histórico cifrado

- Com o HMac, não é possivel identificar remoções não autorizadas.
- O Histórico Cifrado permite identificar as modificaçãos não autorizadas.
- Permite relacionar dois ou mais registros de forma que possa se detectar a ausência de um deles.

Histórico cifrado

- Não permitir que uma terceira parte possa calcular o "histórico cifrado" sem conhecer as chaves de cifração.
- Utilização de operações de baixo custo computacional: criptografia simétrica e a operação lógica "ou exclusivo" (XOR);

Histórico cifrado

Figura: Histórico Cifrado

Desempenho

Introdução

Proposta

Desempenho

Implementação

Desempenho

Tabela: Descrição do ambiente de simulação

Processador	Intel Core 2 Duo 2.53Mhz
Memória RAM	4GB
Sistema Operacional	Mac OS X 10.6.4
Linguagem	PHP 5.3
SGDB	MySQL 5.1
Algoritmo de Hash	SHA-1
Tamanho de Chave HMAC	128 bits
Algoritmo de cifração	AES 128 bits
Tamanho de chave simétrica	128 bits

Select, Insert, Updade e Delete

Tempo de execução (ms)

Figura: Tempo de execução em segundos.

Calculo em tabelas ja existentes

Figura: Tempo de execução em segundos.

Verificar integridade

Figura: Tempo de execução em segundos.

Implementação

Introdução

Proposta

Desempenho

Implementação

Biblioteca

Figura: Representação do provider da biblioteca

Considerações finais

Introdução

Proposta

Desempenho

Implementação

- Desenvolvimento de método independente de SGBD.
- Testes mostram que o uso do HMAC é imperceptível na execução das operações básicas.
- Testes de operações em lote com tempos satisfatórios.
- Implementação de uma biblioteca.

Perguntas?

