1 Introduction

The algebraic descriptions of vector addition and scalar multiplication for vectors in a plane yield the following properties:

- 1. For all vectors x and y, x + y = y + x.
- 2. For all vectors x, y, and z, (x + y) + z = x + (y + z).
- 3. There exists a vector denoted θ such that $x + \theta = x$ for each vector x.
- 4. For each vector x there is a vector y such that x + y = 0.
- 5. For each vector x, 1x = x.
- 6. For each pair of real numbers a and b and each vector x, (ab)x = a(bx).
- 7. For each real number a and each pair of vectors x and y, a(x+y) = ax+ay.
- 8. For each pair of real numbers a and b and each vector x, (a+b)x = ax+bx.

Any mathematical structure possessing these eight properties is called a *vector space*.

2 Vector Spaces

Definition. A vector space (or linear space) \mathbf{V} over a field F consists of a set on which two operations (called addition and scalar multiplication, respectively) are defined so that for each pair of elements x, y, in \mathbf{V} there is a unique element x+y in \mathbf{V} , and for each element a in F and each element x in \mathbf{V} there is a unique element x in \mathbf{V} , such that the following conditions hold:

- (VS 1) For all x, y in \mathbf{V} , x + y = y + x (commutativity of addition).
- (VS 2) For all x, y, z in \mathbf{V} , (x+y)+z=x+(y+z) (associativity of addition).
- (VS 3) There exists an element in V denoted by 0 such that x + 0 = x for each x in V.
- (VS 4) For each element x in **V** there exists and element y in **V** such that x + y = 0.
- (VS 5) For each element x in \mathbf{V} , 1x = x.
- (VS 6) For each pair of elements a, b in F and each element x in \mathbf{V} , (ab)x = a(bx).
- (VS 7) For each element a in F and each pair of elements x, y in \mathbf{V} , a(x + y) = ax + ay.
- (VS 8) For each pair of elements a, b in F and each element x in \mathbf{V} , (a + b)x = ax + bx.

The elements x + y and ax are called the **sum** of x and y and the **product** of a and x, respectively.

The elements of the field F are called **scalars** and the elements of the vector space \mathbf{V} are called **vectors**.

An object of the form $(a_1, a_2, ..., a_n)$ where the entries $a_1, a_2, ..., a_n$ are elements of a field F, is called an n-tuple with entries from F. The elements $a_1, a_2, ..., a_n$ are called the **entries** or **components** of the n-tuple. Two n-tuples $(a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n)$ are called **equal** if $a_i = b_i$ for i = 1, 2, ..., n.

An $m \times n$ matrix with entries from a field F is a rectangular array of the form

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

where each entry a_{ij} is an element of F. We call the entries a_{ij} with i = j the diagonal entries of the matrix.

The $m \times n$ matrix in which each entry equals zero is called the **zero matrix** and is denoted by O.

If the number of rows and columns of a matrix are equal, the matrix is called **square**.

A **polynomial** with coefficients from a field F is an expression of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where n is a nonnegative integer and each a_k , called the **coefficient** of x^k , is in F. If f(x) = 0, then f(x) is called the **zero polynomial** and, for convenience, its degree is defined to be -1; otherwise, the **degree** of a polynomial is defined to be the largest exponent of x that appears in the representation with a nonzero coefficient.

Theorem 1 (Cancellation Law for Vector Addition). If x, y, and z are vectors in a vector space \mathbf{V} such that x+z=y+z then x=y.

The vector θ in (VS 3) is called the **zero vector** of **V**, and the vector y in (VS 4) is called the **additive inverse** of x and is denoted by -x.

Theorem 2. In any vector space **V**, the following statements are true:

- (a) 0x = 0 for each $x \in \mathbf{V}$.
- (b) (-a)x = -(ax) = a(-x) for each $a \in F$ and each $x \in V$.
- (c) a0 = 0 for each $a \in F$.

Exercises

- 1. Label the following statements as true or false.
 - (a) Every vector space contains a zero vector **True**. It is included in the definition of a vector space (VS 3).
 - (b) A vector space may have more than one zero vector **False**. Suppose there were two such vectors, x and y, and one nonzero vector z. Then x + z = z = y + z, and x + (z + (-z)) = x = y + (z + (-z)) = y.
 - (c) In any vector space, ax = bx implies that a = b False. Consider x = 0 but $a \neq b$.
 - (d) In any vector space, ax = ay implies that x = y False. Consider a = 0 but $x \neq y$.
 - (e) A vector in F^n may be regarded as a matrix in $M_{n\times 1}(F)$ **True**.
 - (f) An $m \times n$ matrix has m columns and n rows False. An $m \times n$ matrix has m rows and n columns.
 - (g) In P(F), only polynomials of the same degree may be added **False**. Not true based on the definition of addition in P(F).
 - (h) If f and g are polynomials of degree n, then f+g is a polynomial of degree n **False**.

Consider x and -x.

- (i) If f is a polynomial of degree n and c is a nonzero scalar, then cf is a polynomial of degree n **True**.
 - Follows from definition of scalar multiplication in P(F).
- (j) A nonzero scalar of F may be considered to be a polynomial in P(F) having degree zero \mathbf{True} .

If a is a nonzero scalar, it can be expressed as ax^0 .

(k) Two functions in $\mathcal{F}(S,F)$ are equal if and only if the have the same value at each element of S - **True**.

By definition, two functions f, g in $\mathcal{F}(S,F)$ are equal when f(x) = g(x) for each x in F.

2. Write the zero vector of $M_{3\times 4}(F)$.

8. In any vector space V, show that (a+b)(x+y) = ax + ay + bx + by for any $x,y \in V$ and any $a,b \in F$.

$$(a + b)(x + y) = (a + b)x + (a + b)y = ax + bx + ay + by.$$

9. Prove Corollaries 1 and 2 of Theorem 1.1 and Theorem 1.2(c).

Corollary. The vector 0 described in (VS 3) is unique.

Proof. Suppose that there are vectors
$$x, y, z \in \mathbf{V}$$
 such that $x + z = y + z = z$. Then $x = x + 0 = x + (z + (-z)) = (x + z) + (-z) = (y + z) + (-z) = y + (z + (-z)) = y + 0 = y$.

Corollary. The vector y described in (VS 4) is unique.

Proof. Suppose that there are vectors
$$x, y, z \in \mathbf{V}$$
 such that $x + y = x + z = 0$. Then $y = 0 + y = x + (-x) + y = (x+y) + (-x) = (x+z) + (-x) = x + (-x) + z = 0 + z = z$.

11. Let $V = \{0\}$ consist of a single vector 0 and define 0 + 0 = 0 nad c0 = 0 for each scalar c in F. Prove that V is a vector space over F. (V is called the zero vector space.)

Proof. For any $x, y, z \in \mathbf{V}$ and $a, b \in F$:

1.
$$x + y = 0 + 0 = y + x$$
 (VS 1)

2.
$$(x+y) + z = (0+0) + 0 = 0 + (0+0) = x + (y+z)$$
 (VS 2)

3.
$$x + 0 = 0 + 0 = 0 = x$$
 (VS 3)

4.
$$x + y = 0 + 0 = 0$$
 (VS 4)

5.
$$1x = 1 \times 0 = 0 = x$$
 (VS 5)

6.
$$(ab)x = (ab) \times 0 = 0 = a(b \times 0) = a(bx)$$
 (VS 6)

7.
$$a(x+y) = a(0+0) = 0 + 0 = a \times 0 + a \times 0 = ax + ay$$
 (VS 7)

8.
$$(a+b)x = (a+b) \times 0 = 0 = 0 + 0 = a \times 0 + b \times 0 = ax + bx$$
 (VS 8)

Therefore V satisfies all conditions necessary for it to be a vector space.

13. Let V denote the set of ordered pairs of real numbers. If (a_1, a_2) and (b_1, b_2) are elements of V and $c \in R$, define

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2)$$

and

$$c(a_1, a_2) = (ca_1, a_2).$$

Is V a a vector space over R with these operations?

Proof. Let $(x_1, x_2) \in \mathbf{V}$ and $a, b \in R$. Then

$$(a+b)(x_1,x_2) = ((a+b)x_1,x_2) = (ax_1+bx_1,x_2)$$

and

$$a(x_1, x_2) + b(x_1, x_2) = (ax_1, x_2) + (bx_1, x_2) = (ax_1 + bx_1, x_2^2)$$

SO

$$(a+b)(x_1,x_2) \neq a(x_1,x_2) + b(x_1,x_2)$$

so V is not a vector space over R.

14. Let $V = \{(a_1, a_2, \dots, a_n) : a_i \in C \text{ for } i = 1, 2, \dots, n\}$; so V is a vector space over C by Example 1. Is V a vector space over the field of real numbers with the operations of coordinatewise addition and multiplication?

Proof. Notice that any number $x \in R$ can be expressed as x + 0i in C, so if **V** is a vector space over C, it is also a vector space over R.

15. Let $V = \{(a_1, a_2, \dots, a_n) : a_i \in R \text{ for } i = 1, 2, \dots, n\}$; so V is a vector space over R by Example 1. Is V a vector space over the field of complex numbers with the operations of coordinatewise addition and scalar multiplication?

Proof. Consider c = x + yi and $a = (a_1)$ with $y, a_1 \neq 0$. Then $ca = (x + yi)(a_1) = (xa_1 + ya_1i)$, so the entries of ca aren't in R, so **V** is not a vector space over C.