REMARKS

It is respectfully submitted that the amendments submitted herewith function to add new claims 50-54 and to insert the sequence listing and appropriate sequence identifiers into the text of the present application to comply with 37 C.F.R. §1.821 to 1.825. These amendments are made without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents.

It is submitted that new claims 50-54 are in full compliance with the requirements of 35 U.S.C. §112. The amendments and remarks herein are not made for the purpose of patentability within the meaning of 35 U.S.C. §§ 101, 102, 103 or 112; but rather the amendments and remarks are made simply for clarification and to round out the scope of protection to which Applicants are entitled.

Support for the new claims is found throughout the specification, and may specifically be found in example 8 on pages 45-53.

It is respectfully asserted that the sequence disclosure contained in the application now fully complies with the requirements set forth in 37 C.F.R. § 1.821 to § 1.825.

It is respectfully submitted that the Sequence Listing conforms to the requirements of 37 C.F.R. §1.823(b). The Statements required by 37 C.F.R §1.821(f) and (g) are set forth below.

Pursuant to 37 C.F.R. §1.821 (g), the undersigned hereby states that this submission, filed in accordance with 37 C.F.R. §1.821 (g), does not contain new matter.

Pursuant to 37 C.F.R. §1.821 (f), the undersigned hereby states that the content of the paper and computer readable copies of the Sequence Listing submitted in accordance with 37 C.F.R. §1.821 (c) and (e), respectively, are the same.

CONCLUSION

In view of the amendments, remarks and enclosures herein, it is respectfully submitted that the application now complies with all requirements set forth in the Notice. Accordingly, reconsideration and withdrawal of the Notice to Comply with Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence Disclosures ("Notice to Comply") is respectfully requested.

Respectfully submitted,

FROMMER LAWRENCE & HAUG LLP

Attorneys for the Applicant

By:

Thomas J. Kowalski

Reg. No. 32,147 (212) 588-0800

Enclosures:

Paper and Diskette copies of Sequence Listing

Copy of Notice to Response To Notice To Comply

Return receipt postcard

"VERSION WITH MARKINGS TO SHOW CHANGES MADE"

Page 1, line 19:

The "strength" or "weakness" of doughs <u>are</u> [is] an important aspect of making farinaceous finished products from doughs, including baking. The "strength" or "weakness" of a dough is primarily determined by its content of protein and in particular the content and quality of the gluten protein is an important factor in that respect. Flours with a low protein content <u>are</u> [is]generally characterized as "weak." Thus, the cohesive, extensible, rubbery mass which is formed by mixing water and weak flour will usually be highly extensible when subjected to stress, but it will not return to its original dimensions when the stress is removed.

Page 28, line 32:

Table 3.1. Alignment of lipase 3 peptides with known lipase sequences

LIP_RHIDL (SEQ ID 1	NO: 10)	MVSFISISQGVSLCLLVSSMMLGSSAVPVSGKSGSSNTAVSASDNAALPP	50
LIP_RHIMI (SEQ ID N	NO: 11)	MVLKQRANYLGFLIVFFTAFLVEAVPIKRQSNSTVDSLLP	40
MDLA_PENCA (SEQ	ID NO: 12)	MRLSFFTALSAVASLGYALPG	21
N-Terminal		SVSTSTLDELQLFAQWSAAAYXSNN (SEQ ID NO: 20)	
LIP_RHIDL	LISSRO	CAPPSNKGSKSDLQAEPYNMQKNTEWYESHGGNLTSIGKRDDNLV	100
LIP_RHIMI	LIPSR	rsapssspsttdpeapamsrngplpsdvetk	76
MDLA_PENCA	KLQSF	DVSTSELDQFEFWVQYAAASY	47
	**	. *	
LIP_RHIDL	GGMT	LDLPSDAPPISLSSSTNSASDGGKVVAATTAQIQEFTKYAGIAATA	150
LIP_RHIMI	YGMA	LNATSYPDSVVQAMSIDGGIRAATSQEINELTYYTTLSANS	121
MDLA_PENCA		YEADYTAQVGDKL	60
LIP_RHIDL	YCRS\	VPGNKWDCVQCQKWVPDGKIITTFT-SLLSDTNGYVLRSDKQKTI	199
LIP_RHIMI	YCRTV	/IPGATWDCIHCDA-TEDLKIIKTWS-TLIYDTNAMVARGDSEKTI	169
MDLA_PENCA	SCSKC	GNCPEVEATGATVSYDFSDSTITDTAGYIAVDHTNSAV	102
Page 29, line 4:			
Peptide 1		VHTGFWK (SEQ ID NO: 2)	
Peptide 2		AWESAADELTSK (SEQ ID NO: 19)	
LIP_RHIDL	YLVFR	RGTNSFRSAITDIVFNFSDYKPVKGAKVHAGFLSSYEQVVNDYFPV	249
LIP_RHIMI	YIVFR	GSSSIRNW IADLTFVPVSYPPVSGTKVHKGFLDSYGEVQNELVAT	219
MDLA_PENCA	VŁAFR	GSYSVRNWVADATFVHTNPGLCDGCLAELGFWSSWKLVRDDIIKE	152

-12-

Peptide 2	IK		
LIP_RHIDL		VQEQLTAHPTYKVIVTGHSLGGAQALLAGMDLYQREPRLSPKNLSIFTVG	299
LIP_RHIMI		VLDQFKQYPSYKVAVTGHSLGGATALLCALDLYQREEGLSSSNLFLYTQG	269
MDLA_PENCA		LKEVVAQNPNYELVVVGHSLGAAVATLAATDL RGKGYPSAKLYAYA	198
LIP_RHIDL		GPRVGNPTFAYYVESTGPFQRTVHKRDIVPHVPPQSFGFLHPGESWIK	349
LIP RHIMI		QPRVGDPAFANYVVSTGIPYRRTVNERDIVPHLPPAAFGFLHAGEEYWIT	319
– MDLA-PENCA		SPRVGNAALAKYITAQGNNF-RFTHTNDPVPKLPLLSMGYVHVSPEYWIT	247
		***** * * * * * * *	
LIP_RHIDL		SGTSN – V QICTSEIETKDCSNSIVPFTSILD – HLSYF - DINEGSC	391
_ LIP_RHIMI		DNSPETV QVCTSDLETSDCSNSIVPFTSVLD – HLSYF - GINTGLC	362
MDLA_PENCA		SPNNATVSTSDIKVIDGDVSFDGNTGTGLPLLTDFEAHIWYFVQDAGKG	297
LIP_RHIDL		L 392	
LIP_RHIMI		T 363	
MDLA_PENCA		PGLPFKRV 305	

Page 30, line 37:

Degenerated primers for PCR amplification of a fragment of the lipase gene were designed based on the amino acid sequence of the isolated peptides. The following three PCR primers were synthesized:

C035: TTC CAR YTN TTY GCN CAR TGG (SEQ ID NO: 5)

18 mer 256 mixture, based on the N-terminal sequence QLFAQW. (SEQ ID NO: 21)

C037: GCV GCH SWY TCC CAV GC (SEQ ID NO: 6)

17 mer 216 mixture, based on internal peptide 2 sequence AWESAA (reversed).(SEQ ID NO: 22)

Page 33, line 7:

Table 5.1. (SEQ ID NO: 13)PCR-generated putative *lipA* sequence

(The four amino acid fragments of table 5.1 are contained in SEQ ID NOS: 14-17)

10 60 20 30 40 50 tacccgggntccattCAGTTGTTCGCGCAATGGTCTGCCGCAGCTTATTGCTCGAATA W S_N 90 100 110 70 80 120 $ATATCGACTCGAAAGAVTCCAACTTGACATGC \hspace{-0.2cm} \begin{picture}(c) \line \l$ <u>N</u> D S K X N L T E 160 170 130 140 180 AGGCCAGTACCACGATGCTGCTGCTGGTGGAGTTCGACCTGTATGTCACTCAGATCGCAGACATAG F D. L Ε 190 200 210 220 230 240 Н N R N D F R Η R 250 260 270 280 290 300 G P K G O HQ R G Q Η D E L 310 330 320 ATTGCTAATCYTGACTTCATCCTGGRAGATAACG DC-X-LHPXR-(SEQIDNO: 13)

Page 37, line 10:

The gene was sequenced using cycle sequencing and conventional sequencing technology. The complete sequence (SEQ ID NO: [8] 18) is shown below in Table 6.1. The sequence has been determined for both strands for the complete coding region and about 100bp upstream and downstream of the coding region. The sequences downstream to the coding region have only been determined on one strand and [contains] contain a few uncertainties. In the sequence as shown below, the intron sequences are indicated as lowercase letters and the N-terminal and the two internal peptides (peptide 1 and peptide 2) are underlined:

Page 37, line 22:

Table 6.1. (SEQ ID NO: 18) The DNA sequence for the lipA gene and flanking sequences

2	CCNDTTAATCCCCCACCGGGGTTCCCGCTCCCGGATGGAGATGGGGCCCAAAACTGGCAAC
61	CCCCAGTTGCGCAACGGAACAACCGCCGACCCGGAACAAAGGATGCGGATGAGGAGATAC
121	GGTGCCTGATTGCATGGCTGGCTTCATCTGCTATCGTGACAGTGCTCTTTGGGTGAATAT
181	TGTTGTCTGACTTACCCCGCTTCTTGCTTTTTCCCCCCTGAGGCCCTGATGGGGAATCGC
241	GGTGGGTAATATGATATGGGTATAAAAGGGAĢATCGGAGGTGCAGTTGGATTGAGGCAGT
301	GTGTGTGTGTGCATTGCAGAAGCCCGTTGGTCGCAAGGTTTTGGTCGCCTCGATTGTTTG
361	TATACCGCAAGATGTTCTCTGGACGGTTTGGAGTGCTTTTGACAGCGCTTGCTGCGCTGG
	M F S G R F G V L L T A L A A L
421	GTGCTGCCGCGCCGCCACCGCTTGCTGCGGAgtaggtgtgcccgatgtgagatggttg
	G A A A P A P L A V R
481	gatagcactgatgaagggtgaatagGTGTCTCGACTTCCACGTTGGATGAGTTGCAATTG
	S V S T S T L D E L Q L
541	TTCGCGCAATGGTCTGCCGCAGCTTATTGCTCGAATAATATCGACTCGAAAGACTCCAAC
	FAQWSAAAYCSNNIDSKDSN
601	TTGACATGCACGGCCAACGCCTGTCCATCAGTCGAGGAGGCCAGTACCACGATGCTGCTG
	GAGTTCGACCTgtatgtcactcagatcgcagacatagagcacagctaatttgaacagGAC
	E F D L
722	GAACGACTTTGGAGGCACAGCCGGTTTCCTGGCCGCGGACAACACCAACAAGCGGCTCGT
	NDFGGTAGFLAADNTNKRLV
782	GGTCGCCTTCCGGGGAAGCAGÇACGATTGAGAACTGGATTGCTAATCTTGACTTCATCCT
	V A F R G S S T I E N W I A N L D F I L
842	GGAAGATAACGACGACCTCTGCACCGGCTGCAAGGTCCATACTGGTTTCTGGAAGGCATG
	EDNDDLC, TGCK <u>VHTGFWKAW</u>
902	GGAGTCCGCTGCCGACGAACTGACGAGCAAGATCAAGTCTGCGATGAGCACGTATTCGGG
	ESAADELTSKIKSAMSTYSG
962	CTATACCCTATACTTCACCGGGCACAGTTTGGGCGGCGCATTGGCTACGCTGGGAGCGAC
	Y T L Y F T /G H S L G G A L A T L G A T
1022	AGTTCTGCGAAATGACGGATATAGCGTTGAGCTGGTGAGTCCTTCACAAAGGTGATGGAG
	V L R N D G' Y S V E L
1082	CGACAATCGGGAACAGTCAATAGTACACCTATGGATGTCCTCGAATCGGAAACTAT
	Y T Y G C P R I G N Y
1142	GCGCTGGCTGAGCATATCACCAGTCAGGGATCTGGGGCCAACTTCCGTGTTACACACTTG
	A L A E H / I T S Q G S G A N F R V T H L
1202	AACGACATCGTCC¢CCGGGTGCCACCCATGGACTTTGGATTCAGTCAGCCAAGTCCGGAA
	N D I V P R V P P M D F G F S Q P S P E
1262	TACTGGATCACCÁGTGGCAATGGAGCCAGTGTCACGGCGTCGGATATCGAAGTCATCGAG Y W I T S G N G A S V T A S D I E V I E
1222	Y W I T S G N G A S V T A S D I E V I E
1322	$\tt GGAATCAATTC{\red}ACGGCGGGAAATGCAGGCGAAGCAACGGTGAGCGTTGTGGCTCACTTG$
	GGAATCAATTCAACGGCGGAAATGCAGGCGAAGCAACGGTGAGCGTTGTGGCTCACTTG G I N S 'T A G N A G E A T V S V V A H L
1382	GGAATCAATTCAACGGCGGGAAATGCAGGCGAAGCAACGGTGAGCGTTGTGGCTCACTTG G I N S T A G N A G E A T V S V V A H L TGGTACTTTTTGCGATTTCCGAGTGCCTGCTATAACTAGACCGACTGTCAGATTAGTGG
1382	GGAATCAATTCAACGGCGGGAAATGCAGGCGAAGCAACGGTGAGCGTTGTGGCTCACTTG G I N S T A G N A G E A T V S V V A H L TGGTACTTTTTTGCGATTTCCGAGTGCCTGCTATAACTAGACCGACTGTCAGATTAGTGG W Y F F A I S E C L L -
1382 1442	GGAATCAATTCAACGGCGGGAAATGCAGGCGAAGCAACGGTGAGCGTTGTGGCTCACTTG G I N S T A G N A G E A T V S V V A H L TGGTACTTTTTGCGATTTCCGAGTGCCTGCTATAACTAGACCGACTGTCAGATTAGTGG W Y F F A I S E C L L - ACGGGAGAAGTGTACATAAGTAATTAGTATAATCAGAGCAACCCAGTGGTGGTGATGG
1382 1442 1502	GGAATCAATTCAACGGCGGGAAATGCAGGCGAAGCAACGGTGAGCGTTGTGGCTCACTTG G I N S T A G N A G E A T V S V V A H L TGGTACTTTTTGCGATTTCCGAGTGCCTGCTATAACTAGACCGACTGTCAGATTAGTGG W Y F F A I S E C L L - ACGGGAGAAGTGTACATAAGTAATTAGTATATAATCAGAGCAACCCAGTGGTGGTGATGG TGGTGAAAGAAGAAACACATTGAGTTCCCATTACGKAGCAGWTAAAGCACKTKKGGAGGC
1382 1442 1502 1562	GGAATCAATTCAACGGCGGGAAATGCAGGCGAAGCAACGGTGAGCGTTGTGGCTCACTTG G I N S T A G N A G E A T V S V V A H L TGGTACTTTTTGCGATTCCGAGTGCCTGCTATAACTAGACCGACTGTCAGATTAGTGG W Y F F A I S E C L L ACGGGAGAAGTGTACATAAGTAATTAGTATATAATCAGAGCAACCCAGTGGTGGTGATGG TGGTGAAAGAAGAAACACATTGAGTTCCCATTACGKAGCAGWTAAAGCACKTKKGGAGGC GCTGGTTCCTCCACTTGGCAGTTGGCGGCCATCAATCATCTTTCCTCTCCTTACTTTCGT
1382 1442 1502 1562 1622	GGAATCAATTCAACGGCGGGAAATGCAGGCGAAGCAACGGTGAGCGTTGTGGCTCACTTG G I N S T A G N A G E A T V S V V A H L TGGTACTTTTTGCGATTCCGAGTGCCTGCTATAACTAGACCGACTGTCAGATTAGTGG W Y F F A I S E C L L - ACGGGAGAAGTGTACATAAGTAATTAGTATATAATCAGAGCAACCCAGTGGTGGTGATGG TGGTGAAAGAAGAACACATTGAGTTCCCATTACGKAGCAGWTAAAGCACKTKKGGAGGC GCTGGTTCCTCCACTTGGCAGTTGCGCGCCATCAATCATCTTTCCTCTCTTACTTTCGT CCACCACAACTCCCATCCTGCCAGCTGTCGCATCCCCGGGTTGCAACAACTATCGCCTCC
1382 1442 1502 1562 1622 1682	GGAATCAATTCAACGGCGGGAAATGCAGGCGAAGCAACGGTGAGCGTTGTGGCTCACTTG G I N S T A G N A G E A T V S V V A H L TGGTACTTTTTGCGATTCCGAGTGCCTGCTATAACTAGACCGACTGTCAGATTAGTGG W Y F F A I S E C L L - ACGGGAGAAGTGTACATAAGTAATTAGTATATAATCAGAGCAACCCAGTGGTGGTGATGG TGGTGAAAGAAGAACACATTGAGTTCCCATTACGKAGCAGWTAAAGCACKTKKGGAGGC GCTGGTTCCTCCACTTGGCAGTTGGCGGCCATCAATCATCTTTCCTCTCTTACTTTCGT CCACCACAACTCCCATCCTGCCAGCTGTCGCATCCCGGGTTGCAACAACTATCGCCTCC GGGGCCTCCGTGGTTCTCCTATATTATTCCATCCGACGGCCGACGTTTCACCCTCAACCT
1382 1442 1502 1562 1622	GGAATCAATTCAACGGCGGGAAATGCAGGCGAAGCAACGGTGAGCGTTGTGGCTCACTTG G I N S T A G N A G E A T V S V V A H L TGGTACTTTTTGCGATTCCGAGTGCCTGCTATAACTAGACCGACTGTCAGATTAGTGG W Y F F A I S E C L L - ACGGGAGAAGTGTACATAAGTAATTAGTATATAATCAGAGCAACCCAGTGGTGGTGATGG TGGTGAAAGAAGAACACATTGAGTTCCCATTACGKAGCAGWTAAAGCACKTKKGGAGGC GCTGGTTCCTCCACTTGGCAGTTGCCGCCATCACTCTTCCTTTCCTTTCCTT

Page 39, line 1:

Table 6.2 Alignment of the lipase 3 sequence with known fungal lipases

LIPASE 3	MFSGTALAA	-15
MDLA_PENCA	MRLS FETAL SAVAS	-14
LIP_RHIDL	MVSFISISQGVSLCLLVSSMMLGSSAVPVSGKSGSSNTAVSADNAALPP	-50
LIP_RHIMI	MVLKQRANYLGFLIVFFTAFLY EAVPIKRQSNSTVDS LPP	-40
	/	
	· · ·	
LIPASE 3	L	-16
MDLA_PENCA	L	-15
LIP_RHIDL	LISSRCAPPSNKGSKSDLQAEPYNMQKNTEWYESHGGNLTSIGKRDDNLV	-100
LIP_RHIMI	LIPSRTSAPSSSPSTTDPEAPAM SRNGPLPS DVETK	-76
LIPASE 3	GAAAPAPLAVRSVSTSTLDELQLFAQWSAAA	-47
MDLA_PENCA	GYALPGKLQSRDVSTSELDQFEFWVQYAAAS	-46
LIP_RHIDL	GGMTLDLPSDAPPISLSSSTNSASDGGKVVAATTAQIQEFTKYAGIAATA	-150
LIP_RHIMI	YGMALNATSYPDSVVQAMSIDGGIRAATSQEINELTYYTTLSANS	-121
LIPASE 3	YCSNNIDSK-DSNLTCTANACPSVEEASTTMLLEFDLTNDFGGTAGFLAA	-96
MDLA_PENCA	YYEADYTAQVGDKLSCSKGNCPEVEATGATVSYDFS-DSTITDTAGYIAV	-95
LIP_RHIDL	YCRSVVPGNKWDCVQCQKWVPDGKIITTFTSLLSDTNGYVLR	-192
LIP_RHIMI	YCRTVIPGATWDCIH—CDA-TEDLKIIKTWSTLIYDTNAMVAR	-162
LIPASE 3	DNTNKRLVVAFRGSSTIENWIANLDFILEDNDDLCTGCKVHTGFWKAWES	-146
MDLA_PENCA	DHTNSAVVLAFRGSYSVRNWVADATFV-HTNPGLCDGCLAELGFWSSWKL	-144
LIP_RHIDL	SDKQKTIYLVFRGTNSFRSAITDIVFNFSDYKPV-KGAKVHAGFLSSYEQ	-241
LIP_RHIMI	GDSEKTIYIVFRGSSSIRNWIADLTFVPVSYPPV-SGTKVHKGFLDSYGE	-211
LIPASE 3	AADELTSKIKSAMSTYSGYTLYFTGHSLGGALATLGATVL—RNDGY-SV	-193
MDLA_PENCA	VRDDIIKELKEVVAQNPNYELVVVGHSLGAAVATLAATDL—RGKGYPSA	-192
LIP_RHIDL	VVNDYFPVVQEQLTAHPTYKVIVTGHSLGGAQALLAGMDLYQREPRLSPK	-291
LIP_RHIMI	VQNELVATVLDQFKQYPSYKVAVTGHSLGGATALLCALDLYQREEGLSSS	-261
LIPASE 3	ELYTY—GCPRIGNYALAEHITSQGSGANFRVTHLNDIVPRVPPMDFGFS	-241
MDLA PENCA	KLYAY ASPRVGNAALAKYITAQGN NFRFTHTNDPVPKLPLLSMGYV	-238
LIP_RHIDL	NLSIFTVGGPRVGNPTFAYYVESTGIPFQ-RTVHKRDIVPHVPPQSFGFL	-340
LIP_RHIMI	NLFLYTQGQPRVGDPAFANYVVSTGIPYR-RTVNERDIVPHLPPAAFGFL	-310
LIPASE 3	QPSPEYWITSGNGASVTASDIEVIEGINSTAGNAGEATVSVVAHLWY	-288
MDLA_PENCA	HVSPEYWITSPNNATVSTSDIKVIDGDVSFDGNTGTGLPLLTDFEAHIWY	-288
LIP_RHIDL	HPGVESWIKSGTSN-VQICTSEIETKDCSNSIVPETSILDHLSY	-383
LIP RHIMI	HAGEEYWITDNSPETVQVCTSDLETSDCSNSIVPFTSVLDHLSY	-354

FFAISECL L	-297 <u>(SEQ ID NO: 9)</u>
FVQVDAGKGPGLPFKŘV	-305 (SEQ ID NO: 12)
F - DINEGSC / L	-392 (SEQ ID NO: 10)
F - GINTGLO T	-363 (SEQ ID NO: 11)
*	
	FVQVDAGKGPGLPFKŔV F - DINEGSC / L

Page 40, line 31:

Table 6.3 Alignment of coding sequence of the *lipA* gene and gene coding for mono-diacyl lipase from *Penicillium camemberti*

LIPASE 3	MFSGRFGVLLTALAALGAAAPAPLAVRSVSTSTLDELQLFAQWSAAAYCS	-50
MDLA_PENCA		-49
LIPASE 3	NN I DSK – DSNLTCTANACPSVEEASTTMLLEFDLTNDFGGTAGFLAADNT	-99
MDLA_PENCA	ADYTAQVGDKLSCSKGNCPEVEATGATVSYDFS – DSTITDTAGY IAVDHT	-98
LIPASE 3	NKRLVVAFRGSSTIENW I ANLDFILEDNDDLCTGCKVHTGFWKAWESAAD	-149
MDLA PENCA		-147
_		
LIPASE 3	ELTSKIKSAMSTYSGYTLYFTGHSLGGALATLGATVLRNDGY-SVELYTY	-198
MDLA_PENCA	DIIKELKEVVAQNPNYELVVVGHSLGAAVATLAATDLRGKGYPSAKLYAY	-197
LIPASE 3	GCPR IGNYALAEHITSQGSGANFRVTHLNDIVPRVPPMDFGFSQPSPEYW	-248
MDLA_PENCA	ASPRVGNAALAKYITAQGN NFRFTHTNDPVPKLPLLSMGYVHVSPEYW	-245
LIPASE 3	ITSGNGASVTASDIEVIEGINSTAGNAGEATVSVV AHLWYFFAISEC	295
MDLA_PENCA		-295
LIPASE 3	LL –297 (SEQ ID NO: 9)	
MDLA_PENCA	KGPGLPFKRV –305 (SEQ ID NO: 12)	
Identity: 126 amino ac	rids (42.42%)	

-17-

Page 41, line 30:

Table 6.4: Amino acid sequence of the precursor of lipase 3 (SEQ ID No	NO: 91	10: 9
--	--------	-------

5 10 15 / 20 25 30

- 1 MFSGRFGVLLTALAALGAAAPAPLAVRSVS
- 31 TSTLDELQLFAQWSAAAYCSNNIDSKDSNL
- 61 TCTANACPSVEEASTTMLLEFDLTNDFGGT
- 91 AGFLAADNTNKRLVVAFRGSSTIENWIANL
- 121 DFILEDNDDLCTGCKVHTGFWKAWESAADE
- 151 LTSKIKSAMSTYSGYTLYFTGHSLGGALAT
- 181 LGATVLRNDGYSVELYTYGCPRIGNYALAE
- 211 HITSQGSGANFRVTHLNDIVPRVPPMDFGF
- 241 SQPS P EYWITSGNGASVTASDIEVIEGINS
- 271 TAGNAGEATVSVVAHLWYFFAISECLL

Number of residues: 297