Tasi Zoltán György	Progtech 1. beadandó/9. feladat	2021.október 19.
HM37UQ		
tasi.zoltan07@gmail.com		
8. csoport		

Feladat

Töltsön fel egy gyűjteményt különféle szabályos (kör, szabályos háromszög, négyzet, szabályos hatszög) síkidomokkal! Adja meg azt a síkidomot, amelynek a területe és a kerülete a legkisebb mértékben tér el egymástól! Minden síkidom reprezentálható a középpontjával és az oldalhosszal, illetve a sugárral, ha feltesszük, hogy a sokszögek esetében az egyik oldal párhuzamos a koordináta rendszer vízszintes tengelyével, és a többi csúcs ezen oldalra fektetett egyenes felett helyezkedik el. A síkidomokat szövegfájlból töltse be! A fájl első sorában szerepeljen a síkidomok száma, majd az egyes síkidomok. Az első jel azonosítja a síkidom fajtáját, amit követnek a középpont koordinátái és a szükséges hosszúság. A feladatokban a beolvasáson kívül a síkidomokat egységesen kezelje, ennek érdekében a síkidomokat leíró osztályokat egy közös ősosztályból származtassa!

Megoldási terv:

A megoldási tervhez különböző alakzatokat fogunk tárolni a ShapeManager osztályban, azon belül egy beépített ArrayList gyűjteményben. Ezekben általános Shape típusokat tárolunk, aminek meg van adva absztrakt getArea() és getPerimeter() metódusai. A négy fajta alakzatokat ebből a Shape osztályból származtatjuk, illetve a három poligonhoz még bevezetünk egy Polygon osztályt is, ami az oldalhosszúságot absztraktálja ki.

A ShapeManager osztályt a read() metódussal töltjük fel, ami egy filenevet kap. Ebből fogja beolvasni, létrehozni és eltárolni a különböző alakzatokat. Az alakzatok típusait így jelöljük: Kör – C, háromszög – T, négyzet – S, hatszög – H.

A feladat eredményét a ShapeManager getResultShape metódusa fogja visszaadni. Ez egy programozási tételt, a maximum kiválasztást fogja használni a gyűjteményen, hogy visszaadja a síkidomot aminek a területe és kerülete a legkisebb mértékben tér el. Ha a gyűjtemény üres, kivétel váltódik ki.

Megoldás UML diagramja:

Típusok

A feladat fő típusa a **Shape** absztrakt osztály, ami szülője minden használt alakzatnak. Ennek van egy Point típusú középpontja, és egy megvalósítatlan getArea és getPerimeter metódusa.

A **Point** osztálynak két adattagja van, a double typusú x és y koordináták.

Shape osztályból származik a **Circle** osztály, aminek van egy double típusú radius adattagja, és megvalósítja a szükséges metódusokat.

A Shape osztályból származik még a **Polygon** absztrakt osztály, aminek csak egy sideLength adattagot ad hozzá a Shape-hez.

Polygon-ból származik még a **Triangle**, **Square** és a **Hexagon**, ezek mind megvaósítják a getArea és getPerimeter metódusokat.

A **ShapeManager** osztály lesz ami kezeli a gyűjteményünket, beolvas, és megoldja a feladatot a Megoldási tervben leírtak szerint.

Tesztelési terv

Általános teszt több alakzatra	4	Négyzet, aminek (0,0) a
(test1.txt)	H123	középpontja és 3 hosszú oldala
	5003	van
	T -1 -4 3	
	C 0,5 -0,5 3	
Üres fájl	0	EmptyCollectionException
(test2.txt)		
Nem létező fájl	-	FileNotFoundException
Rossz számformátumú fájl	4	InvalidInputException
(test4.txt)	H egy 2 3	
	S 0 0 3	
	T -1 -4 3	
Nem létező V alakzat a fájlban	4	InvalidInputException
(test5.txt)	H123	
	V003	
	T -1 -4 3	
Több alakzatra teszt	4	Háromszög, aminek (-1, -4) a
(test6.txt)	H 1 2 5,5	középpontja és 2 az
	S006	oldalhossza
	T -1 -4 2	
	C 0,5 -0,5 5	
Több alakzatra teszt, nagyobb	4	Hexagon, aminek (1,2) a
és 1-nél kisebb oldalhosszakkal	H 1 2 0,5	középpontja és 0,5 az
(test7.txt)	S 0 0 112	oldalhossza
	T -1 -4 100	
	C 0,5 -0,5 900	
Egy alakzatra teszt	1	Hexagon, aminek (1,2) a
(test8.txt)	H 1 2 0,5	középpontja és 0,5 az
		oldalhossza