

Práctica nº3

Sistemas Ayuda a la Decisión Curso 2021/2022

Teoría de la Utilidad Multi-Atributo y Teoría de Prospecto

Universidad de Jaén Departamento de Informática

OBJETIVO

En esta práctica se pretende que los alumnos apliquen los conocimientos adquiridos en la Teoría de utilidad multi-atributo y Teoría de Prospecto para resolver problemas de Toma de Decisiones.

EJERCICIOS PROPUESTOS

1. Resolver el siguiente problema de decisión multi-criterio utilizando la MAUT con el modelo aditivo:

Calcular el ranking de los siguientes cinco ordenadores portátiles {PC1,...,PC5}, de acuerdo a los siguientes criterios:

- Precio (coste)
- Autonomía (beneficio)
- Disco duro (beneficio)
- RAM (beneficio)

Las valoraciones de los cinco ordenadores portátiles sobre dichos criterios se dan en la siguiente tabla:

Datos	Precio	Autonomía	Disco duro	RAM
iniciales	(€)	(Horas)	(GB)	(Gb)
PC 1	429	17	100	32
PC 2	649	12	300	64
PC 3	459	11	150	32
PC 4	419	18	100	16
PC 5	519	10	200	16

Y sus pesos:

Pesos 0,35 0,35	0,15 0,15
-----------------	-----------

- A. Suponer que todas las funciones de utilidad U_j son lineales. Obtener el ranking solución.
- B. Suponer que las funciones de utilidad para los criterios Precio y Autonomía son respectivamente U_1 y U_2 :

$$U_1(a_j) = \frac{\exp(f_j'(a_j)^5) - 1}{\exp(1) - 1}$$
 $U_2(a_j) = \frac{\exp(f_j'(a_j)^2) - 1}{\exp(1) - 1}$,

Siendo $f'_j(a_j)$ la valoración de la alternativa a_j para el criterio correspondiente y el resto lineales. Obtener el nuevo ranking.

C. Resolver de nuevo el problema suponiendo que las funciones de utilidad para los criterios Precio Autonomía, Disco duro y RAM son respectivamente U_1 , U_2 , U_3 y U_4 :

$$U_1\left(a_j\right) = \frac{\exp(f_j'(a_j)^5) - 1}{\exp(1) - 1}, \, U_2\left(a_j\right) = \frac{\exp(f_j'(a_j)^{1/2}) - 1}{\exp(1) - 1}, \, U_3\left(a_j\right) = f_j'(a_j)^2, \, U_4\left(a_j\right) = f_j'(a_j)^{1/2}$$

D. Una vez obtenidos los resultados con los modelos aditivos anteriores, resolverlo con el modelo producto¹ y obtener el nuevo ranking suponiendo funciones de utilidad lineales.

$$P(A_K) = \prod_{j=1}^n (a_{Kj})^{w_j},$$

2. Resolver el problema anterior usando la Teoría de Prospectos. El alumno debe definir un punto de referencia (Reference Point) para cada uno de los criterios en base a su percepción de pérdidas y ganancias. Para resolver el problema, considerar los siguientes parámetros:

a.
$$\alpha = \beta = 0.88$$

b. $\lambda = 2.25$

$$v(x) = \begin{cases} x^{\alpha}, & x \ge 0 \\ -\lambda(-x)^{\beta}, & x < 0 \end{cases}$$

Para calcular los valores globales de Prospecto, usar la media ponderada.

¹ En este caso no hay que normalizar datos, pero hay que tener en cuenta la transformación de los criterios de coste $a_i = (-a_i) + a_{max} + a_{min}$

RESULTADOS A ENTREGAR

Un fichero zip con dos ficheros:

- Un fichero *pdf* que muestre:
 - O Descripción paso a paso de la resolución de los problemas.
 - o Las soluciones obtenidas.
- Un fichero *xls* que contenga:
 - o La resolución de los ejercicios de la práctica.