DSC 40A - Discussion 02

January 21, 2020

1 Inequalities

Inequalities are a fundamental part of mathematical proofs. We will go over the basic properties to brush up on things.

- Law of Trichotomy: $\forall x, y \in \mathbb{R}$, either x < y, x = y or x > y.
- Transitive property: if $x \leq y$ and $y \leq z$ then $\forall x, y, c \in \mathbb{R}, x \leq z$
- Addition property: if $x \leq y$, then $\forall x, y, c \in \mathbb{R}$, $x + c \leq y + c$
- Multiplication property: if $x \leq y$, then $\forall x, y \in \mathbb{R}$
 - $\forall c \ge 0 \in \mathbb{R}, cx \le cy$
 - $\forall c \le 0 \in \mathbb{R}, cx \ge cy$

Problem 1.

Which of the statements below are always true? If $a \leq b$ and $c \leq d$,

- 1. $a + c \le b + d$
- 2. $a c \le b + d$
- 3. a < bc
- 4. $ac \leq bd$
- $5. |ac| \leq |bd|$

- 6. $a^2 \leq b^2$
- 7. $min(a, c) \leq min(b, d)$
- 8. $min(a,c) \leq max(b,d)$
- 9. $min(a, max(b, d)) \leq min(c, max(b, d))$
- 10. $min(a, max(b, d)) \leq max(b, d)$

Solution:

- 1. **True.** We know $a \le b$. First, we add d to both sides, $a + d \le b + d$. We also know that $c \le d$. Adding a to both sides gives us $a + c \le a + d$. Then, we use transitivity to say that $a + c \le b + d$.
- 2. Not always true. Pick a = 3, b = 3, c = -2, d = -1. Then, a c = 5 > b + d = 2.
- 3. Not always true. Pick a = 3, b = 3, c = -2, d = -1. Then, a = 3 > bc = -6.
- 4. Not always true. Pick a = 3, b = 10, c = -2, d = -1. Then, ac = -6 > bd = -10.
- 5. Not always true. Pick a = -100, b = 10, c = 1, d = 2. Then, |ac| = 100 > |bd| = 20.
- 6. $a^2 \le b^2$. Not always true. Pick a = -2, b = 0. Then, $a^2 = 4 > b^2 = 0$.
- 7. $min(a,c) \leq min(b,d)$. **True**. $min(a,c) \leq a$ and $min(a,c) \leq c$. Also, $a \leq b$ and $c \leq d$. By transitivity, $min(a,c) \leq b$ and $min(a,c) \leq d$. Since min(b,d) is either b or d and min(a,c) is smaller than or equal to both, $min(a,c) \leq min(b,d)$.
- 8. $min(a,c) \leq max(b,d)$. True. Using the same argument above, $min(a,c) \leq b$ and $min(a,c) \leq d$. Hence, $2*min(a,c) \leq b+d \leq 2*max(b,d)$. Then, $min(a,c) \leq max(b,d)$
- 9. $min(a, max(b, d)) \le min(c, max(b, d))$. Not always true. Pick a = 10, b = 20, c = -2, d = 100.

Then, min(10, max(20, 100)) = 10 > min(-2, max(20, 100)) = -2.

10. $min(a, max(b, d)) \le max(b, d)$. **True**. Let max(b, d) = e. Then the equation becomes $min(a, e) \le e$. But we know that $min(a, e) \le a$ and $min(a, e) \le e$!

Challenge Problem.

Let f(x,y) be a function from $\mathbb{R}^2 \to \mathbb{R}$. Show that

$$max_x min_u f(x, y) \leq min_u max_x f(x, y)$$

Solution: Let the maximizer in x dimension be x_{max} and the minimizer in y dimension be y_{min} . Then, we have to show:

$$max_x f(x, y_{min}) \le min_y f(x_{max}, y)$$

First, we have to make the following observation.

$$f(x, y_{min}) \le f(x, y) \le f(x_{max}, y)$$

. By transitivity,

$$f(x, y_{min}) \le f(x_{max}, y)$$

Take min_y of both sides.

$$min_y f(x, y_{min}) \le min_y f(x_{max}, y)$$

The term on the left is unchanged as the y value is already fixed! So, we have

$$f(x, y_{min}) \le min_y f(x_{max}, y)$$

Now, take max_x of both sides.

$$max_x f(x, y_{min}) \le max_x min_y f(x_{max}, y)$$

Well, the term on the right is unchanged as the x value is already fixed! Hence,

$$max_x f(x, y_{min}) \le min_y f(x_{max}, y)$$

If you're curious, you can look up the Minimax algorithm which relies on the principle above.

2 Convexity

In class, we saw how to minimize functions using gradient descent. This method will converge at a local minimum (provided that the step size is small enough). However, if the loss function is convex (and differentiable), it is guaranteed to find the global optimum! A function, $f : \mathbb{R} \to \mathbb{R}$ is convex if and only if it satisfies the following inequality:

$$f(ta + (1-t)b) \le tf(a) + (1-t)f(b)$$
 $\forall a, b \in \mathbb{R}, t \in [0, 1]$

What this means is that if we pick any two points on f and draw a line segment between them, all the points on the line segment should lie above f. If a function is not convex, it is nonconvex.

We can also prove if a function is convex with the **second derivative test**, but we will not touch upon it in today's discussion.

Problem 2.

(Sample problem with solution)

Prove that f(x) = |x| is convex. Hint: Remember triangle inequality: $|a + b| \le |a| + |b|$.

We want to show that $f(ta + (1-t)b) \le tf(a) + (1-t)f(b)$.

$$\begin{split} f(ta+(1-t)b) &= |ta+(1-t)b| \\ &\leq |ta|+|(1-t)b| & \text{(triangle inequality)} \\ &= t|a|+(1-t)|b| & \text{($t\in[0,1]$, can take it out)} \\ &= tf(a)+(1-t)f(b) & \text{(introduce f)} \end{split}$$

Problem 3.

Let $h(x): \mathbb{R} \to \mathbb{R} = \max(f(x), g(x))$ where f(x) and g(x) are convex functions and $x \in \mathbb{R}$.

Prove that h convex.

Solution: We have to show that

$$h(ta + (1-t)b) \le th(a) + (1-t)h(b)$$

Since h(ta + (1-t)b) = max(f(ta + (1-t)b), g(ta + (1-t)b)), it suffices to show that

$$f(ta + (1-t)b) \le th(a) + (1-t)h(b)$$

AND

$$g(ta + (1-t)b) \le th(a) + (1-t)h(b)$$

Let's start with the first inequality.

$$f(ta+(1-t)b) \le tf(a)+(1-t)f(b)$$
 (f is convex)

$$\le tmax(f(a),g(a))+(1-t)max(f(b),g(b))$$

= $th(a)+(1-t)h(b)$

Similarly,

$$g(ta + (1-t)b) \le tg(a) + (1-t)g(b)$$
 (g is convex)
 $\le tmax(f(a), g(a)) + (1-t)max(f(b), g(b))$
 $= th(a) + (1-t)h(b)$

Hence, h is convex.