中华人民共和国国家标准

GB 3102.7 - 93

声学的量和单位

代替 GB 3102.7--86

Quantities and units-Acoustics

引言

本标准参照采用国际标准 ISO 31-7:1992《量和单位 第七部分:声学》。

本标准是目前已经制定的有关量和单位的一系列国家标准之一,这一系列国家标准是:

- GB 3100 国际单位制及其应用;
- GB 3101 有关量、单位和符号的一般原则;
- GB 3102.1 空间和时间的量和单位;
- GB 3102.2 周期及其有关现象的量和单位;
- GB 3102.3 力学的量和单位;
- GB 3102.4 热学的量和单位;
- GB 3102.5 电学和磁学的量和单位;
- GB 3102.6 光及有关电磁辐射的量和单位;
- GB 3102.7 声学的量和单位;
- GB 3102.8 物理化学和分子物理学的量和单位;
- GB 3102.9 原子物理学和核物理学的量和单位;
- GB 3102.10 核反应和电离辐射的量和单位;
- GB 3102.11 物理科学和技术中使用的数学符号;
- GB 3102.12 特征数;
- GB 3102.13 固体物理学的量和单位。

上述国家标准贯彻了《中华人民共和国计量法》、《中华人民共和国标准化法》、国务院于 1984 年 2 月 27 日公布的《关于在我国统一实行法定计量单位的命令》和《中华人民共和国法定计量单位》。

本标准的主要内容以表格的形式列出。表格中有关量的各栏列于左面各页,而将其单位列于对应的右面各页并对齐。两条实线间的全部单位都是左面各页相应实线间的量的单位。

量的表格列出了本标准领域中最重要的量及其符号,在大多数情况下给出了定义,但这些定义只用于识别,并非都是完全的。

某些量的矢量特性,特别是当定义需要时,已予指明,但并不企图使其完整或一致。

在大多数情况下,每个量只给出一个名称和一个符号。当一个量给出两个或两个以上的名称或符号,而未加以区别时,则它们是处于同等的地位。当有两种斜体字母(例如:θ、θ,φ、φ、g、g)存在时,只给出其中之一,这并不意味着另一个不同等适用。一般这种异体字不应当给予不同的意义。在括号中的符号为"备用符号",供在特定情况下主符号以不同意义使用时使用。

量的相应单位连同其国际符号和定义一起列出。

单位按下述方式编排:

一般只给出 SI 单位。应使用 SI 单位及其用 SI 词头构成的十进倍数和分数单位。十进倍数和分数

1994-07-01 实施

单位未明确地给出。可与 SI 的单位并用的和属于国家法定计量单位的非 SI 的单位,列于 SI 单位之下。并用虚线同相应的 SI 单位隔开。专门领域中使用的非国家法定计量单位,列于"换算因数和备注"栏。一些非国家法定计量单位列于附录(参考件)中,这些参考件不是标准的组成部分。

关于量纲一的量的单位说明:

任何量纲一的量的一贯单位都是数字一(1)。在表示这种量的值时,单位 1 一般并不明确写出。词头不应加在数字 1 上构成此单位的十进倍数或分数单位。词头可用 10 的乘方代替。

例:

折射率
$$n=1.53\times1=1.53$$
 雷诺数 $Re=1.32\times10^3$

考虑到一般是将平面角表示为两长度之比,将立体角表示为面积与长度的平方之比,国际计量委员会(CIPM)在1980年决定,弧度和球面度在国际单位制中为无量纲的导出单位;这就意味着将平面角和立体角作为无量纲的导出量。为了便于识别量纲相同而性质不同的量,在导出单位的表示式中可以使用单位弧度和球面度。

数值表示:

"定义"栏中的所有数值都是准确的。

在"换算因数和备注"栏中的数值如果是准确的,则在数值后用括号加注"准确值"字样。

本标准的特殊说明:

关于指数性量的单位:

对于依赖于时间的阻尼振荡,其幅值按指数规律衰减,此量的表示式可写成如下形式:

$$F(t) = Ae^{-\delta t} \cos \omega t = Re(Ae^{-(\delta + j\omega)t})$$

式中 δ 为阻尼系数,可用 t_1 和 t_2 时刻的量 F_1 和 F_2 的幅值比的以e为底的对数表示,即

$$\delta = \frac{1}{(t_1 - t_2)} \ln \frac{F_1}{F_2}$$

阻尼系数 δ 的单位为 s $^{-1}$,如果量纲一的量 $\ln(F_1/F_2)$ 的单位给以特殊名称奈培(Np),则 δ 的单位为 Np/s。

对于依赖于空间变化的量,同样可表示为:

$$F(x) = Ae^{-\alpha x} \cos \beta x = Re(Ae^{-\gamma x}), \quad \gamma = \alpha + j\beta$$

式中 α 为衰减系数, β 为相位系数, γ 为传播系数,其单位为 m^{-1} ,如果用特殊名称的单位奈培(Np)和弧度(rad)表示时,则 α 的单位为Mp/m, β 的单位为Mp/m.

关于对数性量的单位:

声学量的级为对数性量,其定义为某声学量(功率类量)与其基准值之比的以 10 为底的对数,例如声功率级 $L_W=\lg(W/W_0)$

声压级
$$L_p = 2\lg(p/p_0)$$

该量为量纲一的量,可用特殊名称的单位贝[尔](B)表示,实际使用时常用其分数单位分贝(dB, 1 dB=0.1 B)。

声学量的级及隔声量、指向性指数等对数性量中的声学量因没有指数特性,故不适宜用自然对数表示及以奈培为单位。奈培和贝[尔]均为非 SI 的单位,但分贝为国家法定计量单位。

1 主题内容与适用范围

本标准规定了声学的量和单位的名称与符号;在适当时,给出了换算因数。 本标准适用于所有科学技术领域。

2 名称和符号

量:7-1~7-8

项 号	量的名称	符号	定义	备注
7-1	周期 period, periodic time	T	重复现象每重复一次所需的时间	·
7-2	频率 frequency	f,v	f=1/T	
7-3	频程 frequency interval		两个声或其他信号的频率间的 距离,以高频和低频两个频率之 比的以2为底的对数表示	
7-4	角频率 angular frequency, pulsatance	ω	$\omega = 2\pi f$	
7-5	波长 wavelength	λ	在周期波的传播方向上,在某 一时间相位相同的两相邻点间的 距离	
7-6	波数 repetency, wavenumber	σ	$\sigma = 1/\lambda$	与波数、角波数对应 的矢量 σ,k 分别称为波 矢量和传播矢量
7-7	角波数 angular repetency, angular wavenumber	k	$k=2\pi/\lambda$	
7-8	[质量]密度 volumic mass, mass density, density	ρ	单位体积的媒质质量	Augus

单位:7-1.a~7-8.a

		T	T .	単位:7-1.a~7-8.a
项号	单位名称	符号	定义	换算因数和备注
7-1. a	秒 second	S		
7-2. a	赫[兹] hertz	Hz	1 Hz 为周期 1 s 的周 期现象的频率	1 Hz=1 s ⁻¹
7-3. a	倍频程 octave	(oct)	当 $f_2/f_1=2$ 时, f_1 和 f_2 间的频程为 1 oct	以 oct 为单位的频程,其数值由式 $lb(f_2/f_1)$, $(f_2>f_1)$ 给出。常用的分数单位为: $\frac{1}{3}$ oct, $\frac{1}{6}$ oct, $\frac{1}{12}$ oct等
7-4. a 7-4. b	弧度每秒 radian per second 每秒 reciprocal second, second to the power minus one	rad/s s ⁻¹		
7-5. a	米 metre	m		
7-6. a	每米 reciprocal metre, metre to the power minus one	m ⁻¹		
7-7. b	弧度每米 radian per metre 每米 reciprocal metre, metre to the power minus one	rad/m m ⁻¹		
	千克每立方米 kilogram per cubic metre	kg/m³		

量:7-9.1~7-14.2

项 号	量的。名為称為	符号	定义	备注
7-9.1	静压 static pressure (瞬时)声压 (instantaneous) sound pressure	$p_s, (P_0)$	没有声波时媒质中的压力 有声波时媒质中的瞬时总压力 与静压之差	对于周期性量7-9.2至7-13,其有效值如有效声压(简称声压)也用此符号
7-10	(瞬时)[声]质点, 位移 (instantaneous) (sound) particle displacement		媒质中某一质点离没有声波时 的位置的瞬时位移	
7-11	(瞬时)[声]质点 速度 (instantaneous) (sound)particle velocity	и , v	$u = \frac{\partial \xi}{\partial t}$	
7-12	(瞬间)[声]质点 加速度 (instantaneous) (sound)particle acceleration	a	$a = \frac{\partial u}{\partial t}$	
7-13	(瞬时)体积流量,(体积速度) (instantaneous) volume flow rate, (volume velocity)	$U,q,(q_v)$	媒质中因声波存在而引起的瞬时体积流量	
7-14.1	声速,(相速) velocity of sound, (phase velocity)	С	声波在媒质中的传播速度 $c=\omega/k=\lambda f$	
7-14-2	群速 group velocity	<i>C</i> _g	$c_{\rm g} = \frac{\mathrm{d}\omega}{\mathrm{d}k}$	

单位:7-9.a~7-14.a

		1	Τ		平1½:7-9.a~7-14.a
项号	单位名称	符号	定	义	换算因数和备注
7-9. a	帕[斯卡] pascal	Pa			以前用过微巴(μbar)为单位。 1 Pa=10 μbar(准确值)
7-10. a	米 metre	m			
7-11. a	米每秒 metre per second	m/s		,	
7-12. a	米每二次方秒 metre per second squared	m/s²			
7-13. a	立方米每秒 cubic metre per second	m³/s		·	
,	米毎秒 metre per second	m/s			

量:7-15~7-22.3

项号	量的名称	符号	定义	备注
7-15	声能密度 sound energy density, volumic sound energy	w,(e),(D)	某一给定体积中的平均声能除 以该体积	如果声能密度随时间 变化,则要在该声波可 认为统计上稳定的时间 间隔内求平均
7-16	声功率 sound power	W,P	声波辐射的、传输的或接收的 功率	
7-17	声强[度] sound intensity	I,J	通过一与传播方向垂直的表面 的声功率除以该表面的面积	
7-18. 1 7-18. 2	声阻抗 acoustic impedance 声阻	$Z_{ m a}$. $R_{ m a}$	某表面上的声压和体积流量的 复数比 声阻抗的实数部分	
7-18.3	acoustic resistance 声抗 acoustic reactance	X_{a}	声阻抗的虚数部分	· •
7-19	声质量 acoustic mass	$M_{\scriptscriptstyle B}$	惯性声抗除以角频率,与媒质 的动能有关	
7-20	声劲 acoustic stiffness	${\mathcal S}_{\mathrm a}$	容性声抗乘以角频率,与媒质 或其边界的位能有关	
7-21	声顺 acoustic compliance	Ca	声劲的倒数	
7-22.1	声导纳 acoustic admittance	$Y_{\rm a}$	声阻抗的倒数	
7-22.2	声导 acoustic conductance	G_{a}	声导纳的实数部分	
7-22.3	声纳 acoustic susceptance	$B_{\mathtt{a}}$	声导纳的虚数部分	

单位:7-15.a~7-22.a

					単位:7-15.a~7-22.a
项号	单位名称	符号	定	义。	换算因数和备注
7-15. a	焦[耳]每立方米 joule per cubic metre	J/m³			
7-16. a	瓦[特] watt	W			
7-17.a	瓦[特]每平方米 watt per square metre	W/m²			
7-18. a	帕[斯卡]秒每立 方米 pascal second per cubic metre	Pa•s/m³			
7-19. a	帕[斯卡]二次方 秒每立方米 pascal second squared per cubic metre	Pa•s²/m³			
7-20. a	帕斯卡爾立方米 pascal per cubic metre	Pa/m³		-	
7-21. a	立方米每帕斯卡 cubic metre per pascal	m³/Pa			
7-22. a	立方米每帕[斯 卡]秒 cubic metre per pascal second	m ³ /(Pa • s)	•		

量:7-23~7-30

项 号	量的名称	符号	定义	备 注
7-23	力 force	F	作用于一物体的合力,等于该 物体的动量变化率	对于周期振动,有效值也用此符号
7-24	(瞬时)[振动]位 移 (instantaneous) (vibration) displacement	d	物体相对于某一参考坐标位置的变化量	
7-25	(瞬时)[振动]速 度 (instantaneous) (vibration) velocity	υ	$v = \frac{\partial d}{\partial t}$	
7-26	(瞬时)[振动]加速度 (instantaneous) (vibration) acceleration	· a	$a = \frac{\partial v}{\partial t}$	
7-27. 1	力阻抗 mechanical impedance	$Z_{\mathfrak{m}}$	某表面(或某点)上的力与在此 力方向上该表面上的平均质点速 度(或该点上的质点速度)的复数 比	
7-27.2	力阻 mechanical resistance	$R_{ m m}$	力阻抗的实数部分	
7-27.3	力抗 mechanical reactance	$X_{\mathfrak{m}}$	力阻抗的虚数部分	
7-28	[力]质量 (mechanical) mass	М	惯性力抗除以角频率	
7-29	力劲 mechanical stiffness	S_{m}	容性力抗乘以角频率	
7-30	力顺 mechanical compliance	$C_{\mathfrak{m}}$	力劲的倒数 ,	

单位:7-23.a~7-30.a

	T	<u> </u>	T		平址:7-23. a∼7-30. a
项号	单位名称	符号	定	义	换算因数和备注
7-23. a	牛[顿] newton	N			
7-24. a	米 metre	m			
7-25.a	米每秒 metre per second	m/s			
7-26. a	米每二次方秒 metre per second squared	m/s²			·
7-27. a	牛[顿]秒每米 newton second per metre	N•s/m			
7.00	ナ 士				
7-28. a	千克 kilogram	kg			
7-29. a	牛[顿]每米 newton per metre	N/m	•		
7-30. a	米每牛[顿] metre per newton	m/N			

量:7-31.1~7-35

项 号	量的名称	符号	定 义	备 注
7-31.1	力导纳 mechanical mobility	$Y_{\mathfrak{m}}$	力阻抗的倒数	
7-31.2	力导 mechanical responsivenes	$G_{\mathfrak{m}}$	力导纳的实数部分	
7-31.3	力纳 mechanical excitability	$B_{\mathfrak{m}}$	力导纳的虚数部分	
7-32-1	声阻抗率 surface density of mechanical impedance, specific acoustic impedance	Z_{s}	某表面上的声压与质点速度的 复数比	对于无损耗的媒质, $Z_c = \rho c$ 在 $7-18$, $7-27$, $7-32$ 的定义中,分子和分母的量均设想是正弦式量 $Z_s = \frac{Z_s}{A}$, $Z_m = AZ_s$ 式中 A 为所考虑的表面的面积
7-32. 2	[媒质的声]特性 阻抗 (acoustic) characteristic impedance of a medium	$Z_{ m c}$	对一平面行波,媒质中某点处 的声压与质点速度的复数比	ы п ј ы үл
7-33	声压级 sound pressure level	$L_{\scriptscriptstyle p}$	$L_p = 2 \lg(p/p_0)$ 式中 p 为声压; p_0 为基准声压, 在空气中 $p_0 = 20 \mu Pa$, 在水中 $p_0 = 1 \mu Pa$	此处 p , I , W 均为有效值 声压级 L , 的下标 p 可略去, 特别是当需用 其他下标时
7-34	声强级 sound intensity level	L_{I}	$L_I \! = \! \lg(I/I_0)$ 式中 I 为声强 ; I_0 为基准声强 , 等 于 $1 \; \mathrm{pW/m^2}$	
7-35	声功率级 sound power level	L_{W}	$L_{W} = \lg(W/W_{\circ})$ 式中 W 为声功率; W_{\circ} 为基准声功率,等于1 pW	

单位:7-31.a~7-35.a

		1	7	単位:7-31.a~7-35.a
项 号	单位名称	符号	定义	换算因数和备注
7-31. a	米每牛[顿]秒 metre per newton second	m/(N•s)		
7-32. a	帕[斯卡]秒每米 pascal second	Pa•s/m		
	per metre			
				-
				·
7-33. a	贝[尔] bel	В	1 B 为 2 lg(p/p₀)= 1 时的声压级	通常用 dB 为单位。 1 dB=0.1 B
7-34. a	贝[尔] bel	В	1 B 为 lg(I/I ₀) = 1 时的声强级	
7-35. a	贝[尔] bel ,	В	1 B 为 lg(W/W ₀) = 1 时的声功率级	

量:7-36~7-39.3

项 号	量 的 名 称	符号	定义	备注
7-36	阻尼系数 damping coefficient	δ	如果一量是时间 t 的函数,且为 $F(t) = Ae^{-\delta t}\cos[\omega(t-t_0)]$ 则 δ 为阻尼系数	
7-37	时间常数,弛豫 时间 time constant, relaxation time	τ	τ=1/δ 式中 δ 为阻尼系数	
7-38	对数减缩率 logarithmic decrement	Λ	阻尼系数 δ 和周期 T 的乘积。 $\Lambda = \delta T$	
7-39.1	衰减系数 attenuation coefficient	α	若一量是距离 x 的函数,且为 $F(x) = Ae^{-\alpha x} \cos[\beta(x-x_0)],则$ α 为衰减系数, β 为相位系数	量 $l=1/\alpha$ 称为衰减 长度。 量 $m=2\alpha$ 称为功率 衰减系数。 当与 7-40.4 混淆时, 常用 $m/2$ 代替 α
7-39.2	相位系数 phase coefficient	β		量 $\beta(x-x_0)$ 称为相位
7-39. 3	传播系数 propagation coefficient	γ	$\gamma = \alpha + j\beta$	k'=-jγ 为复数角波 数

单位:7-36.a~7-39.a

			T		単位:7-36.a~7-39.a
项 号	单位名称	符号	定	义	换算因数和备注
7-36. a	每秒 reciprocal second, second to the power minus one	s ⁻¹			
7-36. b	奈培每秒 neper per second	Np/s			有时也用 dB/s 为单位。 1 dB/s=0.115 129 Np/s
7-37. a	秒 second	S			
7-38. a	奈培 neper	Np			有时也用 dB 为单位。 1 dB=0.115 129 Np
7-39. a	每米 reciprocal metre, metre to the power minus one	m ⁻¹			α 和 β 常 分 别 用 Np/m 和 rad/m为单位。 α 有时也用 dB/m 为单位。 1 dB/m=0.115 129 Np/m

量:7-40.1~7-40.4

项 号	量的名称	符号	定义	备 注
7-40.1	损耗因数, (损耗系数) dissipation factor, dissipance, (dissipation coefficient)	δ,ψ	损耗声功率与入射声功率之比	
7-40. 2	反射因数, (反射系数) reflection factor, reflectance, (reflection coefficient)	$\gamma,(\rho)$	反射声功率与入射声功率之比	
7-40.3	透射因数, (透射系数) transmission factor, transmittance, (transmission coefficient)	τ	透射声功率与入射声功率之比	$\delta+\gamma+\tau=1$
7-40.4	吸收因数, (吸声系数) absorption factor, absorbance, (absorption coefficient)	α	吸收声功率与入射声功率之比	$\alpha = \delta + \tau$

单位:7-40.a

项 号	单位名称	符号	定义	典位:7-4 换算因数和备注	
7-40. a	one	1			,
			,		
					The state of the s

量:7-41.1~7-46

项 号	量的名称	符号	定 义	备注
7-41.1	声压反射因数, (声压反射系数) sound pressure reflection factor, (sound pressure reflection coefficient)	γ_{p}	反射声压与入射声压之比	
7-41.2	声压透射因数, (声压透射系数) sound pressure transmission factor, (sound pressure transmission coefficient)	$ au_p$	透射声压与入射声压之比	
7-42	孔隙率 porosity	q	材料内部空隙的体积与材料所 占有总体积之比	
7-43	流阻 flow resistance	$R_{\rm f}$	材料两边的压力差与流体的线 速度之比	
7-44	衰变常数 decay constant	k	一量 y 对时间的相对减低率 $k = \frac{1}{y} \frac{\mathrm{d}y}{\mathrm{d}t}$	只适用于声压和质点 速度
7-45	衰变率 decay rate	K	一声学量的级对时间的相对减 低率	. ,
7-46	隔声量 sound reduction index	R	$R = \frac{1}{2} \lg(1/\tau)$ 式中 τ 为透射因数	

单位:7-41.a~7-46.a

项 号	单位名称	符 号	定义	単位:7-41.a~7-46.a 換算因数和备注
7-41. a	one one	1		
		,		
7-42. a	one one	1		通常用百分率(%)表示
7-43. a	帕[斯卡]秒每米 pascal second per metre	Pa•s/m		
7-44. a	每秒 reciprocal second, second to the power minus one	s ⁻¹		
7-45. a	贝[尔]每秒 bel per second	B/s		通常用 dB/s 为单位。 1 dB/s=0.1 B/s
7-46. a	贝[尔] bel	В	1 B 为 lg(1/τ)=1 时 的隔声量	通常用 dB 为单位。 1 dB=0.1 B

量:7-47~7-54

	1			T
项 号	单位名称	符号	定义	备注
7-47	吸声量 equivalent absorption area of a surface or object	A	吸收因数乘以材料的表面积	
7-48	混响时间 reverberation time	$T, (T_{60})$	在一房间中,当声音达到稳定 状态后停止声源,其平均声能 密度自原始值衰减至 10 ⁻⁶ (即 60 dB)所需的时间	
7-49	响度级 loudness level	$L_{\scriptscriptstyle N}$	L_N = 20 $\lg(p/p_0)_{1 \text{ kHz}}$ 式中 p 为在正常测听条件下,正 常听者判断一个声音与 1 kHz 纯 音等响的有效声压; p_0 为基准声 压,等于 20 μ Pa	此二个量不是纯物理 量,而是主观评价量
7-50	响度 loudness	N	正常听者判断一个声音比响度 级为 40 方的参考声音强的倍数	
7-51	音程 pitch interval		两个声音的音调间的频率间隔,是高音与低音的音调比的对数	
7-52	自由场灵敏度 free-field sensitivity	М	传声器或水听器的开路电压与 未受干扰时的自由场声压之比	
7-53	感觉噪声级 preceived noise level	$L_{ ext{PN}}$	$L_{PN}=2 \lg(p_f/p_0)_{1 \text{ kHz}}$ 式中 p_f 为测试者判断为具有相 等噪度的来自正前方中心频率 1 kHz的倍频带噪声的声压级	此二个量不是纯物理 量,而是主观评价量
7-54	噪度 noiseness	$N_{\scriptscriptstyle m a}$	与人们主观判断噪声的"吵闹" 程度成比例的数值量	
				L

单位:7-47.a~7-54.a

单位名称	符 号	定义	换算因数和备注
平方米 squa r e metre	m²	·	
秒 second	S		
·			
方 phon	(phon)	1 phon 为 20 lg(p/ p ₀) _{1 kHz} =1 时的响度级	对于频率 1 kHz 的纯音,其响 度级 1 phon≙1 dB
宋 sone	(sone)	1 sone 是响度级为 40 phon的声音的响度	以 sone 为单位的响度和以 phon 为单位的响度级之间的实 际应用的标准关系见 GB 3239
八度 octave	(oct)	1 oct 等于高音与低音的音调比的以 2 为底的对数等于 1 时的音程	较小的单位有: 半音 1半音=1/12 oct 音分 1音分=1/1200 oct
伏[特]每帕[斯 卡] volt per pascal	V/Pa		
贝[尔] bel	В	1 B 为 2 lg(p _f /p ₀)= 1 时的感觉噪声级	通常以 dB 为单位。 1 dB=0.1 B
呐 noy	(noy)	1 呐是感觉噪声级为 40 dB 的噪声的噪度	
	平方米 square metre 秒 second 方 phon (大) (大) (大) (大) (大) (大) (大) (大) (大) (大	平方米 square metre	平方米 square metre m² 秒 second s 方 phon 1 phon 为 20 lg(p/po), lkHz=1 lbin lbin lbin lbin lbin lbin lbin lbin

量:7-55~7-60

项 号	量的名称	符号	定义	备注
7-55	声源强度 sound source strength	Q_s	简单声源发出正弦式波时的最 大体积流量	
7-56	[声源]指向性因数 (source) directivity factor	R_{θ}	在声源某一辐射方向(或主轴) 上远处一定点上某频率的声压平 方,与通过该点和声源同心球面 上同一频率的声压平方的平均值 的比值	
7-57	[声源]指向性指数 (source) directivity index	D_1	$D_{\mathrm{I}} = \lg R_{\theta}$ 式中 R_{θ} 为指向性因数	
7-58	[声学]房间常数 (acoustic) room constant	R,R_r	$R=\alpha S/(1-\alpha)$ 式中 α 为平均吸收因数, S 为房间总表面积, αS 为房间总吸声量	
7-59	[声学]插入损失 (acoustic) insertion loss	D	在插入换能器、仪器或其他声 学器件前输送到系统插入点处的 声功率级和插入后输送到该点处 的声功率级之差	
7-60	[振动]传递比 (vibration) transfer ratio	$T_{ m r}$	振动系统在稳态受迫振动中, 某量的响应幅值与激励幅值之比	

单位:7-55.a~7-60.a

项 号	单位名称	符号	定义	换算因数和备注
7-55. a	立方米每秒 cubic metre per second	m³/s		
7-56. a	one	1		
7-57. a	贝[尔] bel	В	1 B 为 lg R _θ =1 时指 向性指数	通常以 dB 为单位。 1 dB=0.1 B
7-58. a	平方米 square metre	m²		
7-59. a	贝[尔] bel	В		通常以 dB 为单位。 1 dB=0.1 B
7-60. ε	one	1		

附 录 A 常用声级的量和单位 (参考件) . . .

·					·\
项号	量的名称	量的符号	单位名称	单位符号	
1	声压谱[密度]级	$ig _{L_{p{ m s}}}$	贝[尔]	В	基准值:
					空气中为 20 μPa/√Hz;
					水中为1 μPa/√Hz
2.1	频带声压 级	$ig _{L_{ ho f}}$	贝[尔]	В :	· · · (1)频带宽度应说明;
					[. (2)基准声压:20 μPa
	le de da da da da				
2.2	频带声强 级 频带声功 率级	L_{H}			· 基准声强 21 pW/m²
	1	Lwf			· 基准声功率:1 pW
3. 1	A[计权]声[压]	$L_{p\Lambda}$	[贝[东]	B	(1)用其他计权网络如 B,
	級 : :/: : : : : :				C,D等测量时,则分别称为
	-/-: : : : : : : : : : : : : : : : : :				B,C,D, 声级,符号相应为
	\ \(\dots \			<u> </u>	$E_{pB}, E_{pC}, \hat{L}_{pD};$
					(2)基准声压:20 μPa
	े च्यानिका				世第二十四章 1 W/ 2
3. 2	A.声强级	L_{IA}	\ 		基准声强: l pW/m²
3.3	A·声功率级	L_{WA} ::::			· 基准声功率:1 pW
4.1	快档"A 声级	$oxedsymbol{L}_{ ho m AF} oxedsymbol{ec{arphi}} oxedsymbol{ec{arphi}} oxedsymbol{ec{arphi}}$	贝[余]:	B. //	··(1)同 3.1 中说明(1);
4.2	"慢档"A.声级	$oxedsymbol{L_{ ho extsf{AS}}}$	T		.·(2)基准声压:20 μPa
4.3	"脉冲"A:声级	$oxed{L_{ ho \Lambda I}}$			
4.4	"峰值"A 声级	$oxedsymbol{L_{ ho ext{AP}}}$			
5. 1	平均声压级	$L_{ ho m}$, $\overline{L}_{ ho}$	- 贝[尔]	В ::	···(1)平均的方法如空间平
		pm 7 - p	/ · C/1/	- ::	少均、时间平均等应说明;
5. 2	平均频带声压级	$oldsymbol{L}_{ ho f ext{m}}$, $\overline{L}_{ ho f}$		<i> </i>	· (2)基准声压:20 μPa
5.3	平均A声级	$L_{ ho\Lambda m m}$, $\overline{L}_{ ho\Lambda}$		/ : : :	
	<u> </u>			<u> </u>	
6	累积百分声级	Lan.T	贝[尔]	B	(1)时间间隔 T 和 N%应
	\:	(L_{AN}, L_{N})			说明,例如对于1h内有
					90%的时间超过的 A 声级,
					则其符号应记为 L _{A90,1 h}
					$(L_{A90}, L_{90});$
					(2)基准声压:20 μPa

		·				
项号	量的	名称	量的符号	单位名称。	单位符号	说 明
在: 1 声E 2 单在	级或声级	安 A]声 符号用其 形好数	Lasger (Leg) ク常可略去,特別是当 単位 dB,1 dB=0.1:18	贝[尔] ····································	· · · · · · · · · · · · · · · · · · ·	(1) 平均时间 T 应说明,例如对于 1 h 内 A 声级的能量 平均值、则 其 符 号 为: L _{Au 16} ; (2) 基准声压: 20 μPa
本标准 1	全国量和	11单位标准	E化技术委员会提出 化技术委员会第四	3并归口。 1分技术委员	会负责起背	

