Systèmes dynamiques

Feuille d'exercices 7

Soit M une variété compacte et $f: M \to M$ un \mathcal{C}^1 -difféomorphisme de M. On rappelle qu'un fermé $\Lambda \subset M$ invariant par f est dit hyperbolique si tout $x \in \Lambda$, il existe une décomposition $T_x M = E^s(x) \oplus E^u(x)$ dépendant continument du paramètre $x \in \Lambda$ et vérifiant les points suivants.

1. La décomposition est stable par f,

$$\mathrm{d}f_x(E^{\bullet}(x)) = E^{\bullet}(f(x)), \quad x \in M, \quad \bullet = s, u.$$

2. Il existe une norme lisse $\|\cdot\|$ sur TM et $\lambda \in (0,1)$ telle que pour tout $x \in M$

$$\|\mathrm{d}f_x v\| \le \lambda \|v\|, \quad v \in E^s(x),$$
$$\|\mathrm{d}f_x^{-1} v\| \le \lambda \|v\|, \quad v \in E^u(x).$$

Si $\Lambda = M$, on dit que f est un difféomorphisme d'Anosov.

Exercice 1. Normes adaptées

Montrer que dans le cas d'un difféomorphisme d'Anosov, on peut remplacer la condition ?? de la définition ci-dessus par la condition suivante. Il existe une norme lisse $\|\cdot\|$ sur TM et des constantes $C>0, \lambda\in(0,1)$ telle que pour tout $x\in M$ et tout $n\in \mathbb{N}$

$$\|\mathrm{d}(f^n)_x v\| \le C\lambda^n \|v\|, \quad v \in E^s(x),$$

$$\|\mathrm{d}(f^{-n})_x v\| \le C\lambda^n \|v\|, \quad v \in E^u(x).$$

Indication : on pourra commencer par construire une norme adaptée continue, puis l'approcher par des normes lisses.

Exercice 2. Points périodiques des difféomorphismes d'Anosov

Soit M une variété compacte connexe et $f: M \to M$ un difféomorphisme d'Anosov.

- 1. Montrer que tout point périodique de f est hyperbolique.
- 2. On veut montrer que f est une application expansive de (M, d), où d est la distance induite par n'importe quelle norme sur TM. Pour cela on raisonne par l'absurde et on suppose qu'il existe deux suites de (x_k) et (y_k) de M telles que pour tout k on a $x_k \neq y_k$ et $d(f^n(x_k), f^n(y_k)) < \frac{1}{k}$ pour tout $n \in \mathbb{Z}$.
 - (a) Montrer qu'on peut supposer que $\frac{\mathrm{d}(f^n(x_k),f^n(y_k))}{\mathrm{d}(x_k,y_k)} \leqslant 2$ pour tout $n \in \mathbf{Z}$ et tout $k \in \mathbf{N}$.
 - (b) Montrer que quitte à extraire on peut supposer que x_k et y_k sont contenus dans une carte autour d'un point $z \in M$ avec $x_k, y_k \to z \in M$ quand $k \to +\infty$, et que (dans ladite carte)

$$\frac{y_k - x_k}{\|y_k - x_k\|} \to v \in S^{\dim(M) - 1}.$$

- (c) Montrer qu'on peut trouver $z^+, z^- \in M$ et des extractions $(n_j^+), (n_j^-)$ telles que $f^{\pm n_j^{\pm}}(z) \to z^{\pm}$ quand $j \to +\infty$.
- (d) En déduire que v vérifie $\left\| d\left(f^{n_j^{\pm}}\right)_z(v) \right\| \leqslant C$ pour tout j assez grand et en déduire une contradiction.
- 3. Montrer que pour tout $\varepsilon > 0$, il existe une constante C > 0 telle que

$$p_n(f) \stackrel{\text{def}}{=} \operatorname{card} \{ p \in M, \ f^n(p) = p \} \le C e^{n(h_{\text{top}}(f) + \varepsilon)}, \quad n \ge 1.$$

Exercice 3. Hyperbolicité et transversalité

Soit $f: M \to M$ un difféomorphisme. On définit

$$Gr(f) = \{(f(x), x), x \in M\}, \Delta(M) = \{(x, x), x \in M\}.$$

Montrer que Gr(f) et $\Delta(M)$ sont des sous-variétés de $M \times M$. Montrer qu'un point fixe p de f est non dégénéré (i.e. $1 \notin \operatorname{sp}(\operatorname{d} f_p)$) si, et seulement si, Gr(f) et $\Delta(M)$ s'intersectent transversalement en (p,p).

Exercice 4. Pistage et stabilité structurelle

Soit $f: \mathbf{T}^2 \to \mathbf{T}^2$ un difféomorphisme d'Anosov.

1. Montrer qu'il existe une matrice $A \in M_2(\mathbf{Z})$ telle que si $F : \mathbf{R}^2 \to \mathbf{R}^2$ relève f, alors

$$F(x+k, y+\ell) = F(x, y) + A(k, \ell), \quad (x, y) \in \mathbf{R}^2, \quad (k, \ell) \in \mathbf{Z}^2.$$

On note $f_{\star} = f_A : \mathbf{T}^2 \to \mathbf{T}^2$.

- 2. Montrer que $|\det A| = 1$.
- 3. Montrer que les applications f et f_{\star} sont homotopes en tant qu'applications $\mathbf{T}^2 \to \mathbf{T}^2$.

On suppose dans la suite que |tr(A)| > 2.

4. Soit r > 0. Montrer qu'il existe $\delta > 0$ tel que pour toute suite $(p_n)_{n \in \mathbb{Z}}$ de \mathbb{R}^2 vérifiant

$$||p_{n+1} - Ap_n|| \le r, \quad n \in \mathbf{Z},$$

il existe un unique $q \in \mathbf{R}^2$ tel que

$$||A^nq - p_n|| \le \delta, \quad n \in \mathbf{Z}.$$

Indication: on pourra écrire $p_n = a_n v + b_n w$ où $Av = \lambda v$ et $Aw = \lambda^{-1} w$ avec $|\lambda| > 1$ et montrer que les suites $(\lambda^{-n} a_n)_{n \ge 0}$ et $(\lambda^n b_{-n})_{n \ge 0}$ sont de Cauchy.

5. Montrer que pour toute application continue bornée $g: \mathbf{R}^2 \to \mathbf{R}^2$, l'application $\mathrm{Id} + g: \mathbf{R}^2 \to \mathbf{R}^2$ est surjective.

Indication : on pourra appliquer le théorème de Brouwer (toute application continue d'une boule fermée dans elle-même admet un point fixe).

- 6. En déduire qu'il existe une application continue surjective $h: \mathbf{T}^2 \to \mathbf{T}^2$ telle que $f_{\star} \circ h = h \circ f$.
- 7. Montrer que tout automorphisme hyperbolique de \mathbf{T}^2 est structurellement stable.

Exercice 5. Gradients de fonctions de Morse

Soit M une variété compacte et $f: M \to \mathbf{R}$ une fonction lisse. On dit que f est une fonction de Morse si pour tout point $p \in M$ tel que $\mathrm{d} f_p = 0$, la matrice Hessienne de f en p (dans une carte locale) est non dégénérée.

- 1. Montrer que la condition précédente ne dépend pas de la carte choisie.
- 2. Montrer que l'ensemble des fonctions de Morse est ouvert dans $C^2(M, \mathbf{R})$.

Soit $f:M\to M$ une fonction de Morse. On se donne une métrique Riemannienne g sur M et on définit $\nabla^g f\in\mathcal{C}^\infty(M,TM)$ le g-gradient de f par

$$\mathrm{d}f_p(v) = g_p(\nabla^g f, v), \quad p \in M, \quad v \in T_p M.$$

On suppose que pour tout point critique $p \in \text{Crit}(f)$, il existe des coordonnées locales (x^1, \dots, x^n) centrées en p telles que

$$g = \sum_{i=1}^{n} (\mathrm{d}x^i)^2,$$

$$f(x^1, \dots, x^n) = f(p) \sum_{i=1}^r (x^i)^2 - \sum_{i=r+1}^n (x^i)^2.$$

On note $\varphi_t: M \to M$ le flot de $X = -\nabla^g f$.

- 3. On suppose $\varphi_t(x) = x$. Montrer que t = 0 ou $\nabla^g f(x) = 0$.
- 4. Soit $x \in M$ un point non-errant. Montrer que $\nabla^g f(x) = 0$.
- 5. Soit $x \in M$. Montrer qu'il existe $p, q \in \text{Crit}(f)$ tels que si $t \to +\infty$

$$\varphi_t(x) \to p, \quad \varphi_{-t}(x) \to q.$$