

Laboratório de Pesquisa em Redes e Multimídia

Aritmética Binária e Complemento a Base

Bernardo Nunes Gonçalves

Sumário

- Soma e multiplicação binária
- Subtração e divisão binária
- Representação com sinal
 - Sinal e magnitude
 - Complemento a base.

Adição binária

Regras:

- 0 + 0 = 0
- 0+1=1
- 1 + 0 = 1
- $\mathbf{1} + \mathbf{1} = \mathbf{0}$ (e "vai 1" para o dígito de ordem superior)
- 1+1+1=1 (e "vai 1" para o dígito de ordem superior)

Adição binária

Ex: 101 + 011

Multiplicação binária

- Regras:
 - $0 \times 0 = 0$
 - $0 \times 1 = 0$
 - $1 \times 0 = 0$
 - $1 \times 1 = 1$
- Mesmo método que o decimal: deslocamentos e adições.
- Número maior deve ser colocado acima do menor.

Multiplicação binária

Ex: 101 x 011

Subtração binária

Regras:

- 0 0 = 0
- 0 1 = 1 (e "pede emprestado 1" para o dígito de ordem superior)
- 1 0 = 1
- 1 1 = 0

Subtração binária

Ex: 101 - 011

Divisão binária

 Mesmo método que o decimal: deslocamentos e subtrações.

Ex:

Representação de números com sinal

Sistema sinal-magnitude

Sistema sinal-magnitude

- Algoritmo de soma (números com sinal):
 - Sinais diferentes
 - Encontra número com maior magnitude
 - Subtrai menor do maior
 - Atribui ao resultado o sinal do número de maior magnitude
 - Sinais iguais
 - Soma e atribui sinal dos operandos
 - Atenção deve ser dada ao estouro de magnitude
 - Algoritmo de soma (números com sinal)

Questões de projeto de circuitos lógicos

- Algoritmo do sistema sinal-magnitude: lógica complexa por conta das diversas condições (requer vários testes) leva a aritmética complicada em termos de hardware.
- Também a multiplicação em computadores é feita por um artifício: para multiplicar um número A por n, basta somar A com A, n vezes. Por exemplo, 4 x 3 = 4 + 4 + 4.
- E a divisão também pode ser feita por subtrações sucessivas.

Complemento a Base

- Em computadores a subtração em binário é feita por um artifício: o "Método do Complemento a Base".
- Consiste em encontrar o complemento do número em relação a base e depois somar os números.
- Os computadores funcionam sempre na base 2, portanto o complemento a base será complemento a dois.

Representação de números em complemento

- Complemento é a diferença entre o maior algarismo possível na base e cada algarismo do número.
- Através da representação em complemento a subtração entre dois números pode ser substituída pela sua soma em complemento.

Representação de números positivos em complemento

 A representação de números positivos em complemento é idêntica à representação em sinal e magnitude.

Representação de números negativos em complemento a (base -1)

 A representação dos números inteiros negativos é obtida efetuando-se: (base - 1) menos cada algarismo do número. Fica mais fácil entender através de exemplos...

Representação de números negativos em complemento a (base -1)

- Ex 1: Calcular o complemento a (base 1) do número
 297₁₀
- Se a base é 10, então 10 1 = 9 e o complemento a (base -1) será complemento a 9.

Representação de números negativos em complemento a (base -1)

- Ex 2: Calcular o complemento a (base 1) do número
 3A7E₁₆
- Se a base é 16, então 16 1 = 15 = F e o complemento a (base -1) será complemento a F.

Caso particular: números na base 2 -> complemento a (base -1) = complemento a 1

- Para se obter o complemento a 1 de um número binário, devemos subtrair cada algarismo de 1.
- Uma particularidade dos números binários é que, para efetuar esta operação, basta inverter todos os bits.

Representação de números negativos em complemento a (base - 1)

- Ex: Calcular o complemento a (base 1) do número 0011 2 (estamos usando 4 dígitos).
- Se a base é 2, então 2 1 = 1 e o complemento a (base -1) será complemento a 1 (C1).

1111 - <u>0011</u> 1100 (C1)

Espaço de representação

• Quantas grandezas (inteiras) diferentes podemos representar usando (n) posições em um sistema de base (b)?

Resposta: b (do zero a b - 1)

Espaço de representação

- Exemplos na base 2; quantos números conseguimos representar com...
- Com até um dígito: 0, 1 -> 2 1 números
- Com até dois dígitos: 00, 01, 10, 11 -> 2 ² números
- Com até três dígitos: 000, 001, 010, 011, 100, 101, 110,
 111 -> 2³ números

Representação em C1 dos números binários de 4 dígitos

Decimal (positivo)	Binário (se o número é positivo, não há alteração)	Decimal (negativo)	Binário (em C1)
0	0000	0	1111
1	0001	-1	1110
2	0010	-2	1101
3	0011	-3	1100
4	0100	-4	1011
5	0101	-5	1010
6	0110	-6	1001
7	0111	-7	1000

 Repare como o espaço de representação da base 2 com 4 dígitos está sendo usado na representação em C1 (note que há 2 representações para o zero).

Representação em C1 dos números binários de 4 dígitos

Base 10 com 3 dígitos

A representação varia de 000 a 999 (10³ representações), representando os números de -499 a -1 (faixa negativa), de +1 a +499 (faixa positiva);

Base 10	Faixa Inferior (positiva)	Faixa Superior (negativa)
C9	1 2 498 499	500 501 997 998
Número representado	1 2 498 499	-499 -4982 -1

 O zero pode ser representado tanto por 000 quanto por 999.

Aritmética em complemento a (base -1)

 Na aritmética em complemento a (base - 1), basta somar os números, sendo que um número negativo será representado por seu complemento a (base – 1).

Aritmética em complemento a (base -1)

Ex.: Somar + 123 com - 418 (decimal).

Sinal e magnitude	Complemento a (base-1)	Verificação
- 418	581 (C9)	999
+ <u>123</u>	+ <u>123</u>	- <u>295</u>
- 295	704	704

Aritmética em complemento a (base -1)

Ex.: Somar + 123 com - 418 (decimal).

Sinal e magnitude	Complemento a (base-1)	Verificação
- 418	581 (C9)	999
+ <u>123</u>	+ <u>123</u>	- <u>295</u>
- <mark>2</mark> 95	704	704

 Verificamos que o resultado 704 (C9) é um número negativo, isto é, o complemento a 9 (base 10 -1) de 295.

Base 10	Faixa Inferior (positiva)	Faixa Superior (negativa)
C9	1 2 498 499	500 501 997 998
Número representado	1 2 498 499	-499 -4982 -1

Aritmética em complemento

- Repare que a subtração (ou soma de um número positivo com um número negativo) se transforma, nesta representação, em uma soma em complemento, isto é, a soma dos complementos do número positivo com o número negativo.
- Portanto, uma subtração pode ser realizada simplesmente através da soma dos números "complementados".
- Se o número é positivo, mantenha-o; se o número é negativo, complemente-o; e aí, é só somar.

Aritmética em complemento

- Dessa forma, podemos constatar que o algoritmo da soma em complemento é muito mais simples que o da soma em sinal e magnitude, uma vez que não requer nenhum teste.
- No entanto, continuamos com duas representações para o zero. Vamos a seguir discutir a solução para esse problema.

Representação de números negativos em complemento a base

- A representação dos números inteiros negativos em complemento a base é obtida subtraindo-se da base cada algarismo do número. Por ex., base 10 com 3 dígitos: 1000 x
- Ora, seria a mesma coisa subtrair cada algarismo de (base - 1), isto é, calcular o complemento a (base -1) e depois somar 1 ao resultado.
- Ou seja, encontramos o complemento a (base 1) do número (o que facilita muito no caso dos números binários) e depois somamos 1 ao resultado. Fica mais fácil entender através de exemplos...

Complemento a base

- Ex 1: calcular o complemento a base do número 297₁₀
- Queremos então calcular o complemento a 10 (C10) desse número.

Ex.1	Ex.1 (alternativa)
1000	999
- <u>297</u>	- <u>297</u>
703	702
	+ <u>001</u>
	703

Note que o método alternativo é mais eficiente.

Complemento a base

- Ex 2: calcular o complemento a base do número 3A7E₁₆
- Queremos então calcular o complemento a 16 (C16) desse número.

Ex.2

FFFF

- <u>3A7E</u>

C581

+ <u>0001</u>

C582

Caso particular: base 2 (complemento a 2)

- Subtrair cada algarismo de 1 (complemento a 1) e depois somar 1 ao resultado.
- Assim, conforme mencionado anteriormente, para obter o C1 de um número binário, basta inverter todos os bits.
- E para obter o C2 de um número obtemos primeiro o C1 (invertendo os bits) e depois somamos 1 ao resultado.

Caso particular: base 2 (complemento a 2)

Ex: calcular o complemento a 2 (C2) de um número binário 0011 com 4 dígitos:

```
1111
- <u>0011</u>
1100 (C1)
+ <u>0001</u>
1101 (C2)
```


Representação em C2 dos números binários de 4 dígitos

Decimal (positivo)	Binário (se o número é positivo, não há alteração)	Decimal (negativo)	Binário (C2)	
0	0000	-1		
1.	0001	-2	1110	
2 _	0010	-3	1101	
3	0011	-4	1100	
4	0100	-5	1011	
5	5 0101		1010	
6 0110		-7	1001	
7	0111	-8	1000	

 Vemos assim que em C2, não há duas representações para o valor 0 e consequentemente abriu-se lugar para mais uma representação. No caso, mais um número negativo pode ser representado.

Representação em C2 dos números binários de 4 dígitos

Faixa de Representação - 2ⁿ representações

Aritmética em complemento a base

Na aritmética em complemento a base, basta somar os números, sendo que um número negativo será representado por seu complemento a base.

Aritmética em complemento a base

Ex.: Somar + 123 com - 418 (decimal).

Sinal e magnitude	Cálculo C10	C10	Verificação
- 418	999	582	999
+ <u>123</u>	- <u>418</u>	+ 123	- <u>295</u>
- 295	581 (C9)	705 (C10)	704
	+ <u>001</u>		+ <u>001</u>
	582 (C10)		705

Aritmética em complemento a base

Ex.: Somar + 123 com - 418 (decimal).

Sinal e magnitude	Cálculo C10	C10	Verificação
- 418	999	582	999
+ <u>123</u>	- <u>418</u>	+ 123	- <u>295</u>
- 295	581 (C9)	705 (C10)	704
	+ <u>001</u>		+ <u>001</u>
	582 (C10)		705

 Verificamos que o resultado 705 (C10) é um número megativo, isto é, o complemento a 10 (base 10) de 295.

Base 10	Faixa Inferior (positiva)	(positiva) Faixa Superior (nega	
C10	1 2 499	500 501	999
Número representado	1 2 499	-500 -4991	

- A adição de dois números nesse sistema de representação segue duas regras:
 - Some os dois números e observe se ocorre o carry (vai 1) sobre o bit de sinal e se ocorre o carry após o bit de sinal.
 - Se ocorrer um e somente um dos dois carry, então houve estouro; caso contrário o resultado da soma está dentro do campo de definição.

Obs: A subtração em complemento de 2 é realizada através da soma de nos negativos.

Exemplos para n = 4 bits

$$\begin{array}{cccc}
0 & 1 & 0 & 1 & 5 \\
0 & 1 & 1 & 0 & 6 \\
+ & & & & \\
\hline
1 & 0 & 1 & 1 & 1
\end{array}$$
Carry sobre o bit de sinal -> estouro = overflow

Não houve $Carry = \mathbf{não}$ overflow

$$\begin{array}{c} 0 & 1 & 0 & 1 \\ + & 1 & 0 & 1 & 0 \\ \hline & 1 & 1 & 1 & 1 \end{array}$$

Não houve $Carry = \mathbf{não}$ overflow

$$\begin{array}{c}
0 & 1 & 1 & 0 \\
+ & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}$$

Carry sobre o "bit de sinal" e após ele = **não overflow**

$$\begin{array}{c}
1 \ 0 \ 1 \ 1 \\
+ 1 \ 0 \ 1 \ 0 \\
\hline
0 \ 1 \ 0 \ 1
\end{array}$$

Carry somente após o "bit de sinal" = **overflow**

Complemento a dois: adição

• Ex: $5_{10} + 3_{10} = 8_{10}$ (utilização de 4 bits)

Notar: quando o bit mais significativo for 1, trata-se de um número negativo. No caso desse exemplo seria necessário mais um bit para representar 8 usando a representação binária em complemento de dois.

Representação em C2 dos números binários de 4 dígitos

Decimal (positivo)	Binário (se o número é positivo, não há alteração)	Decimal (negativo)	Binário (C2)	
0	0000	-1		
1	0001	-2	1110	
2	0010	-3	1101	
3	0011	0011 -4		
4/	0100	-5	1011	
5	5 0101		1010	
6 0110		0110 -7		
7	0111	-8	1000	

Complemento de dois: estouro de magnitude

- Em qualquer sistema de complemento de dois, existe sempre um limite para o tamanho dos números a serem representados.
- Exemplo: quando usamos complemento de dois com padrões de quatro bits (um para o sinal), ao valor 9 não está associado padrão algum; por isso não conseguimos obter uma resposta certa para a soma 5 + 4, o resultado apareceria como -7.

Adição em complemento de dois

• Ex: $5_{10} + 3_{10} = 8_{10}$ (utilização de 4 bits)

• Utilizando-se 4 bits, o número 1000 em C2 é o -8 $_{_{10}}$, e não o 8 $_{_{10}}$

Complemento de dois: subtração

- Somar usando representação em C2:
- Ex: 5 3 = 2 (utilização de 4 bits)

$$3_{10} = 0 \ 0 \ 1 \ 1_2$$

 $-3_{10} = 1 \ 1 \ 0 \ 1_2$
 $0 \ 1 \ 0 \ 1_2$
 $+ 1 \ 1 \ 0 \ 1_2$
 $(1) \ 0 \ 0 \ 1 \ 0_2$

Subtração em complemento de dois

- Somar usando representação em C2:
- Ex: 5 3 = 2 (utilização de 4 bits)

$$3_{10} = 0 \ 0 \ 1 \ 1_2$$

 $-3_{10} = 1 \ 1 \ 0 \ 1_2$
 $0 \ 1 \ 0 \ 1_2$
 $+ 1 \ 1 \ 0 \ 1_2$
 $(1) \ 0 \ 0 \ 1 \ 0_2$

 Notar: o bit mais significativo (decorrente do último "vaium") deve ser desprezado.

Aritmética em complemento a 2: exemplos

Problema na base de dez	Problema em complemento de dois	Resposta na base de de	ez
3	0011		A vantagem da notação de
+ 2	+ 0010	5 complemento de adição qualquer o números, positivos podem ser efetua mesmo algoritmo	complemento de dois é que a
	0101		adição qualquer combinação de números, positivos e negativos, podem ser efetuadas usando o mesmo algoritmo, portanto o
-3	1101		mesmo circuito.
+ -2	+ 1110	-5	
	1011		
			7 0111 0111
7	0111		+ -5 - 0101 + 1011
+ -5	+ 1011	2	0010 = 2
3,7	A		

0010

Conclusões

- O que concluímos? Que qualquer operação aritmética pode ser realizada em computadores apenas através de somas (diretas ou em complemento)!
- Legal, mas para que serve isso? Por enquanto, ficamos por aqui. Em circuitos lógicos veremos como essas propriedades serão úteis para os engenheiros que projetam os computadores.