You must justify your answers to receive full credit.

1. For each set of vectors below, determine the value(s) of h for which the set is linearly dependent:

a)
$$\left\{ \begin{bmatrix} 1\\-1\\4 \end{bmatrix}, \begin{bmatrix} 3\\-5\\7 \end{bmatrix}, \begin{bmatrix} -1\\5\\h \end{bmatrix} \right\}$$

b)
$$\left\{ \begin{bmatrix} 2\\-4\\1 \end{bmatrix}, \begin{bmatrix} -6\\7\\-3 \end{bmatrix}, \begin{bmatrix} 8\\h\\4 \end{bmatrix} \right\}$$

2. Without doing any row-reduction, determine whether the following sets are linearly independent, and explain why:

a)
$$\left\{ \begin{bmatrix} 4\\4 \end{bmatrix}, \begin{bmatrix} -1\\3 \end{bmatrix}, \begin{bmatrix} 2\\5 \end{bmatrix}, \begin{bmatrix} 8\\1 \end{bmatrix} \right\}$$

b)
$$\left\{ \begin{bmatrix} -8\\12\\-4 \end{bmatrix}, \begin{bmatrix} 2\\-1\\-1 \end{bmatrix} \right\}$$

$$c) \left\{ \begin{bmatrix} 2\\-4\\8\\10 \end{bmatrix}, \begin{bmatrix} -3\\6\\-12\\-15 \end{bmatrix} \right\}$$

d)
$$\left\{ \begin{bmatrix} 1\\4\\-7 \end{bmatrix}, \begin{bmatrix} -2\\5\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$$

- 3. For each matrix A in parts a), b), c) below, determine:
 - (i) does the equation $A\mathbf{x} = 0$ have a nontrivial solution; and,
 - (ii) does the equation $A\mathbf{x} = \mathbf{b}$ have at least one solution for every possible \mathbf{b} ?
 - a) A is a 3×3 matrix with three pivot positions.
 - b) A is a 3×3 matrix with two pivot positions.
 - c) A is a 3×2 matrix with two pivot positions.

MATH 2207: Linear Algebra Homework 2, due 13:45 Friday 17 February 2017

- 4. For each of the transformations below:
 - (i) decide whether it is linear, and explain your answer,
 - (ii) if it is linear, find its standard matrix,
 - (iii) if it is linear, decide whether it is one-to-one and whether it is onto.

a)
$$f: \mathbb{R}^4 \to \mathbb{R}^2$$
 given by $f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}\right) = \begin{bmatrix} \sqrt{2}x_1 + x_2 - x_3 \\ 0 \end{bmatrix} + x_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

- b) $g: \mathbb{R}^2 \to \mathbb{R}^3$ given by $g(\mathbf{x}) = \mathbf{0}$.
- c) $h: \mathbb{R}^2 \to \mathbb{R}^2$ given by rotation through an angle of $\frac{\pi}{2}$ counterclockwise about the point (-1,1).
- 5. Let $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ be a linearly independent subset of \mathbb{R}^n , and $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - a) Prove that, if T is one-to-one, then $\{T(\mathbf{v_1}), T(\mathbf{v_2}), T(\mathbf{v_3})\}$ is linearly independent.
 - b) Show that the assumption that T is one-to-one is necessary that is, find a numerical example of a linear transformation T that is not one-to-one, and a linearly independent set $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$, such that $\{T(\mathbf{v_1}), T(\mathbf{v_2}), T(\mathbf{v_3})\}$ is linearly dependent.
- 6. State whether each of the following statements is (always) true or (sometimes) false. If it is true, give a brief justification; if it is false, give a counterexample with an explanation.
 - a) If \mathbf{w} is in Span $\{\mathbf{u},\mathbf{v}\}$ and \mathbf{x} is in Span $\{\mathbf{u},\mathbf{v},\mathbf{w}\}$, then \mathbf{x} is in Span $\{\mathbf{u},\mathbf{v}\}$.
 - b) If $A\begin{bmatrix} 2\\0\\4\\-3 \end{bmatrix} = \mathbf{0}$, then $A\mathbf{e}_4$ is a linear combination of the first three columns of A.
 - c) $A\mathbf{x} = \mathbf{b}$ is a homogeneous equation if and only if $\mathbf{x} = \mathbf{0}$ is a solution.
 - d) Let A be a 4 x 3 matrix with columns $\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}$, and suppose **b** is a vector in \mathbb{R}^4 such that $\{\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}, \mathbf{b}\}$ is linearly dependent. Then $A\mathbf{x} = \mathbf{b}$ has a solution.
 - e) Let A be a 4 x 3 matrix with columns $\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}$. If **b** is a vector in \mathbb{R}^4 such that $A\mathbf{x} = \mathbf{b}$ has a solution, then $\{\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}, \mathbf{b}\}$ is linearly dependent.
 - f) If $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $\{\mathbf{v_1}, \mathbf{v_2}\}$ spans \mathbb{R}^2 , then $\{T(\mathbf{v_1}), T(\mathbf{v_2})\}$ also spans \mathbb{R}^2 .