# TrenchHV<sup>™</sup> Power MOSFET

## **IXTH160N15T**

 $V_{DSS} = 150 V$   $I_{D25} = 160 A$   $R_{DS(on)} \le 9.6 m\Omega$ 

N-Channel Enhancement Mode Avalanche Rated



| Symbol                                                | Test Conditions                                                                                                           | Maximum Ratings             |                |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|--|
| V <sub>DSS</sub><br>V <sub>DGR</sub>                  | $T_J = 25$ °C to 175°C<br>$T_J = 25$ °C to 175°C; $R_{GS} = 1$ M $\Omega$                                                 | 150<br>150                  | V              |  |
| V <sub>GSM</sub>                                      | Transient                                                                                                                 | ± 30                        | V              |  |
| I <sub>D25</sub> I <sub>LRMS</sub> I <sub>DM</sub>    | $T_{c} = 25^{\circ}\text{C}$<br>Lead Current Limit, RMS<br>$T_{c} = 25^{\circ}\text{C}$ , pulse width limited by $T_{JM}$ | 160<br>75<br>430            | A<br>A<br>A    |  |
| I <sub>A</sub><br>E <sub>AS</sub>                     | $T_{c} = 25$ °C<br>$T_{c} = 25$ °C                                                                                        | 5<br>1.0                    | A<br>J         |  |
| dv/dt                                                 | $I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 175^{\circ}C$                                             | 10                          | V/ns           |  |
| P <sub>d</sub>                                        | T <sub>C</sub> = 25°C                                                                                                     | 830                         | W              |  |
| T <sub>J</sub><br>T <sub>JM</sub><br>T <sub>stg</sub> |                                                                                                                           | -55 +175<br>175<br>-55 +175 | °C<br>°C<br>°C |  |
| T <sub>L</sub><br>T <sub>SOLD</sub>                   | 1.6 mm (0.062 in.) from case for 10s<br>Plastic body for 10 seconds                                                       | 300<br>260                  | °C<br>°C       |  |
| M <sub>d</sub>                                        | Mounting torque                                                                                                           | 1.13 / 10                   | Nm/lb.in.      |  |
| Weight                                                |                                                                                                                           | 6                           | g              |  |



| G = Gate   | D = Drain   |
|------------|-------------|
| S = Source | TAB = Drain |

#### Symbol **Test Conditions Characteristic Values** (T<sub>1</sub> = 25°C unless otherwise specified) Min. | Typ. Max. $\mathbf{BV}_{\mathrm{DSS}}$ $V_{_{GS}}$ = 0 V, $I_{_{D}}$ = 250 $\mu A$ ٧ 150 $V_{DS} = V_{GS}, I_{D} = 1 \text{ mA}$ $\boldsymbol{V}_{\text{GS(th)}}$ 2.5 5.0 ٧ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ ± 200 nΑ I<sub>GSS</sub> $V_{DS} = V_{DSS}$ $V_{GS} = 0 V$ 25 μΑ $\mathbf{I}_{\mathrm{DSS}}$ T<sub>1</sub> = 150°C 300 μΑ 8.0 $V_{GS} = 10 \text{ V}, I_D = 0.5 \bullet I_{D25}, \text{ Note 1}$ 9.6 $\mathsf{m}\Omega$ $R_{DS(on)}$

### **Features**

- Unclamped Inductive Switching (UIS) rated
- Low package inductanceeasy to drive and to protect
- 175 °C Operating Temperature

#### **Advantages**

- Easy to mount
- Space savings
- High power density



| Symbol                                                   | Test Conditions                                                   | Cha  | Characteristic Values |           |  |
|----------------------------------------------------------|-------------------------------------------------------------------|------|-----------------------|-----------|--|
| $(T_J = 25^{\circ}C \text{ unless otherwise specified})$ |                                                                   | Min. | Тур.                  | Max.      |  |
| g <sub>fs</sub>                                          | $V_{DS} = 10V; I_{D} = 0.5 \cdot I_{D25}, Note 1$                 | 65   | 105                   | S         |  |
| C <sub>iss</sub>                                         |                                                                   |      | 8800                  | pF        |  |
| C <sub>oss</sub>                                         | $V_{GS} = 0V, V_{DS} = 25V, f = 1 MHz$                            |      | 1170                  | pF        |  |
| C <sub>rss</sub>                                         |                                                                   |      | 150                   | pF        |  |
| t <sub>d(on)</sub>                                       | Resistive Switching Times                                         |      | 21                    | ns        |  |
| t,                                                       | $V_{GS} = 15V, V_{DS} = 0.5 \bullet V_{DSS}, I_{D} = 0.5 I_{D25}$ |      | 21                    | ns        |  |
| t <sub>d(off)</sub>                                      | $R_{\rm G} = 2.0\Omega$ (External)                                |      | 60                    | ns        |  |
| t <sub>f</sub>                                           |                                                                   |      | 31                    | ns        |  |
| $Q_{g(on)}$                                              |                                                                   |      | 160                   | nC        |  |
| Q <sub>gs</sub>                                          | $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 25A$           |      | 43                    | nC        |  |
| $Q_{gd}$                                                 |                                                                   |      | 46                    | nC        |  |
| R <sub>thJC</sub>                                        |                                                                   |      |                       | 0.18 °C/W |  |
| R <sub>thCS</sub>                                        |                                                                   |      | 0.21                  | °C/W      |  |

#### Source-Drain Diode

| Symbol                   | Test Conditions                                | C<br>Min. | Characteristic Values |        |    |
|--------------------------|------------------------------------------------|-----------|-----------------------|--------|----|
| 1 <sub>J</sub> = 25 C ui | nless otherwise specified)                     | IVIIII.   | Тур.                  | IVIAX. |    |
| I <sub>s</sub>           | $V_{GS} = 0V$                                  |           |                       | 160    | Α  |
| I <sub>SM</sub>          | Pulse width limited by T <sub>JM</sub>         |           |                       | 430    | Α  |
| V <sub>SD</sub>          | $I_{\rm F} = 50$ A, $V_{\rm GS} = 0$ V, Note 1 |           |                       | 1.2    | V  |
| t <sub>rr</sub>          | $I_F = 80A$ , -di/dt = 200A/ $\mu$ s           |           | 115                   |        | ns |
|                          | $V_R = 75V$ , $V_{GS} = 0V$                    |           |                       |        |    |

Notes: 1. Pulse test,  $t \le 300$  ms, duty cycle,  $d \le 2$  %

#### **TO-247AD Outline** Terminals: 1 - Gate 2 - Drain 3 - Source Tab - Drain Millimeter Inches Min. Max. Min. Max. 4.7 5.3 .185 .209 2.2 2.54 .087 .102 2.2 2.6 .059 .098 1.0 .055 1 4 040 h .084 2.13 .065 $b_1$ 1.65 .123 2.87 3.12 .113 С .016 .031 .8 D 20.80 21.46 .819 .845 Е 15.75 16.26 .610 .640 5.20 5.72 0.205 0.225 19.81 20.32 .780 .800 L1 4.50 .177

ÆF

Q

R

3 55

5.89

4.32

6.15 BSC

3.65

6.40

5.49

140

.170

242 BSC

144 0.232 0.252

.216

## PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.



Fig. 1. Output Characteristics @ 25°C



Fig. 2. Extended Output Characteristics @ 25°C



Fig. 3. Output Characteristics



Fig. 4.  $R_{DS(on)}$  Normalized to  $I_D$  = 80A Value vs. Junction Temperature



Fig. 5. R<sub>DS(on)</sub> Normalized to I<sub>D</sub> = 80A Value vs. Drain Current



Fig. 6. Drain Current vs. Case Temperature

















 $\ensuremath{\mathsf{IXYS}}$  reserves the right to change limits, test conditions, and dimensions.



Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature



Fig. 15. Resistive Turn-on



Fig. 17. Resistive Turn-off Switching Times vs. Drain Current



Fig. 14. Resistive Turn-on Rise Time vs. Drain Current



Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature



Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance



