FORMULARIO/FORMULARI

TEMA 1: EFECTOS ELÉCTRICOS DE CARGAS PUNTUALES

Fuerza eléctrica sobre carga q_0 por cargas puntuales q_i : $\vec{F} = \sum_{i=1}^n \vec{F}_i = K \cdot q_0 \cdot \sum_{i=1}^n \frac{q_i}{r_i \cdot \vec{u}_i}$

Campo eléctrico creado por varias cargas puntuales: $\vec{E} = \sum_{i=1}^{n} \vec{E}_i = K \cdot \sum_{i=1}^{n} \frac{q_i}{r_i^2} \cdot \vec{u}_i$

Potencial eléctrico creado por varias cargas puntuales: $V = K \cdot \sum_{i=1}^{n} \frac{q_i}{r_i}$

Relación entre vector campo eléctrico y potencial: $\vec{E} = -\nabla V$; $V_b - V_a = -\int_a^b \vec{E} \cdot d\vec{l}$

Trabajo para llevar q_0 desde punto 1 hasta 2 y relación con potencial y energía potencial:

$$W = \int_{1}^{2} \vec{F} \cdot d\vec{r} = q_{0}(V_{1} - V_{2}) = -\Delta U$$

Momento dipolar de un dipolo eléctrico: $\vec{p} = q \cdot \vec{d}$

Momento (par de fuerzas) sobre un dipolo \vec{p} inmerso en un campo eléctrico: $\vec{\tau} = \vec{p} \times \vec{E}$

Energía potencial de un dipolo \vec{p} inmerso en un campo eléctrico: $U=-\vec{p}\cdot\vec{E}$

Aceleración de una partícula cargada en un campo eléctrico: $\vec{a} = q \cdot \vec{E}/m$

Energía de una partícula cargada moviéndose en campo eléctrico $E=E_C+U=\frac{1}{2}\cdot m\cdot v^2+q\cdot V$

TEMA 2: DISTRIBUCIONES DE CARGA. CAPACIDAD Y ENERGÍA ELECTROSTÁTICA

Densidad lineal, superficial y volumétrica de carga: $\lambda = \frac{dq}{dl}$; $\sigma = \frac{dq}{ds}$; $\rho = \frac{dq}{dv}$

Flujo eléctrico a través de una superficie abierta: $\varphi_E = \int_S \vec{E} \cdot d\vec{S}$

Ley de Gauss (flujo eléctrico a través de una superficie cerrada): $\int_{SC} \vec{E} \cdot d\vec{S} = \frac{Q_{encerrada}}{S_{c}}$

Campo eléctrico creado por una línea cargada con λ : $E=rac{\lambda}{2\pi \varepsilon_0 r}$

Campo eléctrico en proximidades de plano indefinido $E = \frac{\sigma}{2s}$

Campo eléctrico en proximidades de superficie conductor $E = \frac{\sigma}{\varepsilon_0}$

Capacidad de un condensador: $C = \frac{Q}{V}$ Condensador plano-paralelo: $C = \frac{\varepsilon_0 \cdot S}{d}$ Condensador cilíndrico ($R_b > R_a$): $C = \frac{2\pi\varepsilon_0 \cdot L}{ln(R_b/R_a)}$ Diferencia potencial: $V = E \cdot d$

en serie: $\frac{1}{c_T} = \sum_i \frac{1}{c_i}$; y paralelo: $C_T = \sum_i C_i$; Asociación de condensadores:

Condensador con dieléctrico: $C=k\cdot C_0;\ V=rac{V_0}{k};\ E=rac{E_0}{k};\ \varepsilon_r=rac{\varepsilon}{\varepsilon_0}=k$

Energía almacenada en un condensador: $U = \frac{1}{2}Q \cdot V = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}C \cdot V^2$

Densidad de energía y energía total del campo eléctrico: $u_E=rac{1}{2}\cdot arepsilon_0\cdot E^2$; $U=\int_V u_E\cdot dV$

TEMA 3: CORRIENTES ELÉCTRICAS

Intensidad de corriente: $I=\frac{dQ}{dt}$ $I=nqSv_a$ Densidad de corriente: $\vec{J}=\frac{dI}{dS_N}\vec{u}$ \Rightarrow $I=\int_S \vec{J}\cdot d\vec{S}$ j uniforme: $\vec{J}=nq\vec{v}_a$

Ley de Ohm: $V = R \cdot I$;

Resistencia: $R = \rho \cdot \frac{L}{c}$

Conductividad: $\sigma = \frac{1}{a}$

Fundamentos Físicos de la Informática Fonaments Físics de la Informàtica

FORMULARIO FORMULARI

Asociación de resistencias en serie: $R_e = \sum_i R_i$ y en paralelo: $\frac{1}{R_e} = \sum_i \frac{1}{R_i}$

Ley de Ohm vectorial: $\vec{j} = \sigma \cdot \vec{E}$;

Potencia aportada a un tramo de circuito recorrido por I: $P = I \cdot V$

Potencia disipada en resistencia: $P = I^2 R = \frac{V^2}{R'}$

Corriente en un diodo en relación con la tensión V aplicada: $I = I_0 \left[exp \left({^V/_{V_T}} \right) - 1 \right]$

Siendo $V_T \cong 25.85 \text{ mV}$ a 300° K , e $I_0 \cong 10^{-12} \text{ A}$

TEMA 4: FUNDAMENTOS DE MAGNETISMO

Fuerza magnética carga q con velocidad \vec{v} en \vec{B} : $\vec{F}_m = q \cdot \left(\vec{v} \times \vec{B} \right)$

Fuerza de Lorentz: $\vec{F} = q \cdot (\vec{E} + \vec{v} \times \vec{B})$

Partícula cargada en interior de campo magnético uniforme, siendo \vec{v} perpendicular a \vec{B} :

Movimiento circular uniforme de radio: $r = \frac{m \cdot v}{q \cdot B}$ $w = \frac{v}{r} = \frac{q}{m} \cdot B$ $w = 2\pi f$ $f = \frac{1}{T}$

Fuerza sobre un tramo recto de corriente: $\ \vec{F} = I \cdot \vec{l} \times \vec{B}$

Fuerza sobre un tramo cualquiera de corriente: $\ \vec{F} = I \cdot \int_{L} \ d\vec{l} \times \vec{B}$

Fuerza por unidad de longitud entre corrientes rectilíneas: $f = \frac{F}{l} = \frac{\mu_{_0} \, I_{_1} \cdot I_{_2}}{2 \, \pi \, d}$

Momento dipolar magnético: $\vec{m} = I \cdot \vec{S}$;

Espira de momento dipolar \overrightarrow{m} inmersa en un campo magnético:

Momento: $\vec{\tau} = \vec{m} \times \vec{B}$ y energía potencial: $U = -\vec{m} \cdot \vec{B}$;

Ley de Biot-Savart: $\vec{B} = \frac{\mu_0}{4\pi} \int \frac{Id\vec{l} \times \vec{u}_r}{r^2}$

Campo magnético en el centro de una espira circular de radio R: $B=\frac{\mu_0 \cdot I}{2R}$

Flujo de campo magnético : $\varphi_B = \int_S \vec{B} \cdot d\vec{S}$; Ley de Gauss para campo magnético : $\varphi_B = \oint_{SC} \vec{B} \cdot d\vec{S} = 0$ Ley de Ampère : $\oint_L \vec{B} \cdot d\vec{l} = \mu_0 \cdot I_e$

Campo magnético corriente rectilínea: $B=\frac{\mu_0\cdot I}{2\pi r}$ y en el interior de solenoide: $B=\mu_0\cdot n\cdot I$

TEMA 5: INDUCCIÓN ELECTROMAGNÉTICA

F.e.m. inducida: $\mathcal{E} = -\frac{d\phi}{dt}$ $\mathcal{E} = \oint_{l} \vec{E} \cdot d\vec{l}$ \Rightarrow $\oint_{l} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \left(\int_{S} \vec{B} \cdot d\vec{S} \right)$

Flujo magnético a través de N espiras que giran con $\it w$ constante en $\it B$ uniforme: $\it \phi = NBS \cos \it wt$

Siendo: $w = \frac{2\pi}{T}$; $T = \frac{1}{f}$; $w = 2\pi f$

Autoinducción $L=rac{\phi_{\scriptscriptstyle B}}{I}$ \Rightarrow $arepsilon=-Lrac{dI}{dt}$

Autoinducción en un solenoide: $L = \frac{\phi_{\scriptscriptstyle B}}{I} = \mu_{\scriptscriptstyle 0} \, \frac{N^2 S}{l} = \mu_{\scriptscriptstyle 0} \, n^2 \, S \, l$

Asociación de autoinducciones: en serie: $L_e = \sum_i L_i$ y en paralelo: $\frac{1}{L_e} = \sum_i \frac{1}{L_i}$

Energía almacenada en autoinducción: $U=rac{1}{2}L\cdot I^2$

Fundamentos Físicos de la Informática Fonaments Físics de la Informàtica

FORMULARIO FORMULARI

Densidad de energía y energía magnética: $u_B = \frac{1}{2} \cdot \frac{B^2}{\mu_0}$ $U_B = \int_V u_B dV$

Campo en un material: $\vec{B}=\mu_0(\vec{H}+\vec{M})=\mu H=\mu_r \vec{B}_{ext}$

TEMA 6: ONDAS ELECTROMAGNÉTICAS

Ecuaciones de Maxwell

$$\oint \vec{E} \bullet d\vec{S} = \frac{q_i}{\varepsilon_0}$$

$$\oint \vec{B} \bullet d\vec{S} = 0$$

$$\oint \vec{E} \bullet d\vec{l} = -\frac{d}{dt} \int \vec{B} \bullet d\vec{S}$$

$$\oint \vec{B} \bullet d\vec{l} = \mu_0 I + \mu_0 \varepsilon_0 \frac{d}{dt} \int \vec{E} \bullet d\vec{S}$$

$$E_Z(y,t) = E_0 \sin(\omega t - ky)$$

$$B_X(y,t) = B_0 \sin(\omega t - ky)$$

Velocidad de la onda: v= $\frac{1}{\sqrt{\mu \varepsilon}}$; $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 2.995 \cdot 10^8 m/s$

Vector de Poynting: $\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0} [W/m^2]$

Intensidad media: $I_m = S_m = \frac{1}{2\mu_0} E_0 B_0 = \frac{1}{2} \varepsilon_0 E_0^2 c = \frac{c B_0^2}{2\mu_0} \text{ [W/m}^2\text{]}$

Densidad de energía electromagnética: $u=u_E+u_B=\frac{1}{2}\varepsilon_0E^2+\frac{B^2}{2\mu_0}=\varepsilon_0E^2=B^2/\mu_0$

Índice de refracción: $n = \sqrt{\varepsilon_r \mu_r} = \frac{c}{v}$

TEMA 7: CIRCUITOS DE CORRIENTE CONTINUA

Generador real: $V_+ - V_- = \varepsilon - I \cdot r$; Motor real: $V_+ - V_- = \varepsilon' + I \cdot r'$

Intensidad para una sola malla: $I=rac{\sum_l arepsilon_l}{R_T}$; Más de una malla: métodos de resolución de circuitos

Diferencia de potencial: $V_A - V_B = \sum_i I_i \cdot R_i - \sum_j \varepsilon_j$

Generador real, potencia aportada: $P_{AP} = \varepsilon I - I^2 \cdot r$

Receptor real, potencia consumida: $P_C = \varepsilon I + I^2 \cdot r$

TEMA 8: CORRIENTE ALTERNA

Corriente y voltaje alternos: $I = I_0 \cdot sen(wt + \alpha)$; $\varepsilon = \varepsilon_0 \cdot sen(wt + \theta)$; $\varepsilon_0 = NBSw$

Representación fasorial: $\bar{\varepsilon}=arepsilon_{e}\ \underline{| heta}$ $\bar{I}=I_{e}\ \underline{|lpha|}$

Valores eficaces: $I_e = \frac{I_0}{\sqrt{2}}$ $\varepsilon_e = \frac{\varepsilon_0}{\sqrt{2}}$

Resistencia: $\bar{R}=rac{ar{V}}{ar{I}}=rac{V_{e}\;|\phi}{I_{e}\;|\phi}=R\;\;\underline{|0^{\,\varrho}}$

Reactancia inductiva: $\bar{X}_L = \frac{\bar{V}}{\bar{I}} = \frac{V_e | \underline{\phi}}{I_e | \underline{\phi} - 90^{\varrho}} = X_L | \underline{90^{\varrho}} = jX_L$ siendo: $X_L = Lw$

Reactancia capacitiva: $\bar{X}_C = \frac{\bar{V}}{\bar{I}} = \frac{\bar{V}_e | \phi}{I_e | \phi + 90^{\circ}} = X_L | -90^{\circ} = -jX_C$ siendo: $X_C = I/Cw$

Impedancia: $\bar{Z} = \frac{\bar{V}}{\bar{I}} = \frac{V \mid \theta}{I \mid \alpha} = Z \mid \underline{\phi}$

Siendo: $Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{R^2 + (Lw - 1/Cw)^2}$ $y \phi = arctg \frac{X_L - X_C}{R}$

Asociación de impedancias: Serie: $\overline{Z}_T = \sum_i \overline{Z}_i$; Paralelo: $\frac{1}{\overline{Z}_T} = \sum_i \frac{1}{\overline{Z}_i}$

Potencia compleja: $\bar{S}=S \; \left| \underline{\phi} \right| = \bar{V} \cdot \bar{I}^* = \; V_e I_e \; \left| \underline{\phi} \right| = P + j Q$