Machine Learning Foundation

What is Machine Learning?

 Machine Learning is a field of study that gives computers the ability to learn without being explicitly programmed.

How is it different from traditional programming?

Result

How a software developer creates a

How is it different from traditional programming?

How a ML Engineer develops a model

How is it different from traditional programming?

What are different types of ML Algorithms?

What are different types of ML?

Supervised Learning

Supervised Learning - Classification

Supervised Learning - Regression

Unsupervised Learning - Clustering

Reinforcement Learning

Reinforcement Learning

Use cases of Supervised Learning

- Spam Classification
- Face Detection
- University Admission Prediction
- House Price Prediction

Use cases of Unsupervised Learning

- Customer Segmentation
- Market Basket Analysis
- Recommender Systems
- Anomaly Detection

Typical Machine Learning Flow

Supervised Learning - Classification Terminology

- Classifier: An algorithm that maps the input data to a specific category.
- Classification model: A classification model tries to draw some conclusion from the input values given for training. It will predict the class labels/categories for the new data.
- Feature: A feature is an individual measurable property of a phenomenon being observed.
- Binary Classification: Classification task with two possible outcomes. Eg: Gender classification (Male / Female)
- Multi class classification: Classification with more than two classes. In multi class classification each sample is assigned to one and only one target label. Eg: An animal can be cat or dog but not both at the same time.

Supervised Learning - Classification Terminology

- Multi label classification: Classification task where each sample is mapped to a set of target labels (more than one class). Eg: A news article can be about sports, a person, and location at the same time.
- The following are the steps involved in building a classification model:
 - o Initialize the classifier to be used.
 - Train the classifier: All classifiers in scikit-learn uses a fit(X, y) method to fit the model(training) for the given train data X and train label y.
- **Predict the target:** Given an unlabeled observation X, the predict(X) returns the predicted label y.
- Evaluate the classifier model

Generative vs Discriminative Models

	Discriminative model	Generative model
Goal	Directly estimate $P(y x)$	Estimate $P(\boldsymbol{x} \boldsymbol{y})$ to then deduce $P(\boldsymbol{y} \boldsymbol{x})$
What's learned	Decision boundary	Probability distributions of the data
Illustration		
Examples	Regressions, SVMs	GDA, Naive Bayes

Generative vs Discriminative Models

- Generative classifiers
 - \circ Assume some functional form for P(Y), P(X|Y)
 - Estimate parameters of P(X|Y), P(Y) directly from training data
 - Use Bayes rule to calculate P(Y | X)
- Discriminative Classifiers
 - Assume some functional form for P(Y|X)
 - Estimate parameters of P(Y|X) directly from training data.

Generative vs Discriminative Models

Generative:

- probabilistic "model" of each class
- decision boundary:
 - where one model becomes more likely
- natural use of unlabeled data

Discriminative:

- focus on the decision boundary
- more powerful with lots of examples
- not designed to use unlabeled data
- only supervised tasks

Generative and Discriminative Classifiers - Examples

- Generative classifiers
 - Naïve Bayes
 - Bayesian networks
 - Markov random fields
 - Hidden Markov Models (HMM)
- Discriminative Classifiers
 - Logistic regression
 - Support Vector Machine
 - Traditional neural networks
 - Nearest neighbour
 - Conditional Random Fields (CRF)s