2 Square Roots and Cube Roots

A square root of a is a number b such that $b^2 = a$. A cube root of a is a number b such that $b^3 = a$.

Examples:

$$\sqrt{25} = \dots, \qquad \sqrt[3]{-27} = \dots$$

Evaluate:

$$\sqrt{49}$$
, $\sqrt[3]{125}$, $\sqrt[3]{-8}$

3 Simplifying Radicals

Factor the radicand into perfect squares/cubes. Example: $\sqrt{50} = ---$

Simplify:

$$\sqrt{72}$$
, $\sqrt[3]{54}$, $\sqrt{18x^2}$

4 Exponential Notation

Radicals can be written as fractional exponents:

$$\sqrt[n]{a} = a^{1/n}$$

Examples:

$$\sqrt{a} = a^{1/2}, \qquad \sqrt[3]{a^2} = a^{2/3}$$

$$a^m \cdot a^n = a^{m+n}, \quad (a^m)^n = a^{mn}$$

Write in exponential form:

$$\sqrt[4]{x^3}$$
, $\sqrt{y^5}$

5 Rational vs Irrational Numbers

Rational: can be written as $\frac{p}{q}$ with $q \neq 0$. Irrational: cannot be expressed as a fraction.

Proof that $\sqrt{2}$ is irrational: (Students complete outline of contradiction proof.)

Classify:

$$\sqrt{9}$$
, $\sqrt{7}$, 0.333..., π

6 Imaginary Numbers

Define $i = \sqrt{-1}$. Then $i^2 = -1$.

Examples:

$$\sqrt{-9} = \dots, \qquad i^3 = \dots, \qquad i^4 = \dots$$

Simplify:

$$\sqrt{-25}, i^3, i^4$$

7 Number Systems

- N: natural numbers
- Z: integers
- \mathbb{Q} : rationals

- Irrationals
- \mathbb{R} : reals
- \bullet \mathbb{C} : complex numbers

Diagram: (Students draw a Venn diagram of number systems.)