$12a_{0146} (K12a_{0146})$

Ideals for irreducible components 2 of X_{par}

$$I_1^u = \langle u^{29} - u^{28} + \dots + b + 1, -u^{29} + u^{28} + \dots + a + 6u, u^{30} - 2u^{29} + \dots - 36u^3 - 1 \rangle$$

 $I_2^u = \langle b + 1, a, u^3 + u^2 - 2u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 33 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{29} - u^{28} + \dots + b + 1, \ -u^{29} + u^{28} + \dots + a + 6u, \ u^{30} - 2u^{29} + \dots - 36u^3 - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{29} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{29} - u^{28} + \dots - 8u^{2} - 6u \\ -u^{29} + u^{28} + \dots - 2u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} + 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{14} + 11u^{12} + \dots - 8u - 1 \\ -u^{29} + u^{28} + \dots - 2u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} + 4u^{3} - 3u \\ u^{7} - 5u^{5} + 6u^{3} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{29} + u^{28} + \dots - 6u - 1 \\ -u^{29} + u^{28} + \dots - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{6} + 5u^{4} - 6u^{2} + 1 \\ u^{8} - 6u^{6} + 10u^{4} - 4u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - 3u^{2} + 1 \\ -u^{6} + 4u^{4} - 3u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $-3u^{29} + 4u^{28} + 62u^{27} - 82u^{26} - 561u^{25} + 739u^{24} + 2918u^{23} - 3849u^{22} - 9630u^{21} + 12801u^{20} + 21006u^{19} - 28320u^{18} - 30675u^{17} + 42061u^{16} + 30044u^{15} - 41342u^{14} - 20264u^{13} + 26026u^{12} + 10788u^{11} - 10222u^{10} - 5598u^9 + 2750u^8 + 2538u^7 - 619u^6 - 778u^5 + 21u^4 + 168u^3 + 52u^2 - 25u + 7$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{30} + 12u^{29} + \dots + 97u + 1$
c_{2}, c_{4}	$u^{30} - 4u^{29} + \dots + 13u - 1$
c_3, c_9	$u^{30} - u^{29} + \dots - 28u + 8$
c_5, c_6, c_7 c_8, c_{10}, c_{11} c_{12}	$u^{30} + 2u^{29} + \dots + 36u^3 - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{30} + 16y^{29} + \dots - 7313y + 1$
c_{2}, c_{4}	$y^{30} - 12y^{29} + \dots - 97y + 1$
c_3, c_9	$y^{30} - 21y^{29} + \dots - 1104y + 64$
c_5, c_6, c_7 c_8, c_{10}, c_{11} c_{12}	$y^{30} - 46y^{29} + \dots + 40y^2 + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.900406 + 0.238240I		
a = -0.659304 - 0.413832I	5.67065 + 1.25696I	15.5737 - 1.7388I
b = 0.605232 + 0.768254I		
u = 0.900406 - 0.238240I		
a = -0.659304 + 0.413832I	5.67065 - 1.25696I	15.5737 + 1.7388I
b = 0.605232 - 0.768254I		
u = 0.814325 + 0.340165I		
a = 0.69999 + 1.77618I	4.42916 + 6.78890I	12.9792 - 7.4265I
b = 1.030380 - 0.688639I		
u = 0.814325 - 0.340165I		
a = 0.69999 - 1.77618I	4.42916 - 6.78890I	12.9792 + 7.4265I
b = 1.030380 + 0.688639I		
u = 1.18737		
a = 0.321529	5.59474	18.0870
b = 0.549343		
u = -0.736617 + 0.129687I		
a = 0.52614 + 2.05833I	0.97252 - 1.81198I	11.73549 + 4.66948I
b = -0.816371 - 0.432342I		
u = -0.736617 - 0.129687I		
a = 0.52614 - 2.05833I	0.97252 + 1.81198I	11.73549 - 4.66948I
b = -0.816371 + 0.432342I		
u = 0.654424		
a = -0.551259	-0.312115	16.4990
b = -1.18483		
u = -1.37237		
a = 0.0265788	6.56541	13.9410
b = -1.33306		
u = 1.393080 + 0.049142I		
a = 0.62086 - 1.75059I	8.15659 + 2.43505I	13.02410 - 2.90794I
b = -0.838747 + 0.622252I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.393080 - 0.049142I		
a = 0.62086 + 1.75059I	8.15659 - 2.43505I	13.02410 + 2.90794I
b = -0.838747 - 0.622252I		_
u = -1.41889 + 0.15784I		
a = 0.01368 - 1.73786I	11.8944 - 8.6308I	14.0718 + 5.7224I
b = 1.114240 + 0.728134I		
u = -1.41889 - 0.15784I		
a = 0.01368 + 1.73786I	11.8944 + 8.6308I	14.0718 - 5.7224I
b = 1.114240 - 0.728134I		
u = -0.348859 + 0.441668I		
a = 0.229073 - 0.720707I	1.73384 + 0.97008I	10.55280 + 0.95390I
b = 0.785869 - 0.632862I		
u = -0.348859 - 0.441668I		
a = 0.229073 + 0.720707I	1.73384 - 0.97008I	10.55280 - 0.95390I
b = 0.785869 + 0.632862I		<u> </u>
u = -1.45263 + 0.10165I		
a = -0.661962 + 1.037750I	13.61630 - 2.52281I	16.2553 + 0.I
b = 0.546899 - 0.940788I		
u = -1.45263 - 0.10165I	10.01.000 . 0.50001.1	10.0550
a = -0.661962 - 1.037750I	13.61630 + 2.52281I	16.2553 + 0.I
b = 0.546899 + 0.940788I $u = -0.206383 + 0.495565I$		
	1 00407 4 000447	0.41400 + 6.400047
a = 1.71927 - 0.54217I	1.28497 - 4.02644I	8.41488 + 6.42284I
b = 0.926515 + 0.641729I $u = -0.206383 - 0.495565I$		
a = -0.200383 - 0.493303I a = 1.71927 + 0.54217I	1.28497 + 4.02644I	8.41488 - 6.42284I
	1.20431 + 4.020441	0.41400 — 0.422041
b = 0.926515 - 0.641729I $u = -0.362782$		
a = 0.804898	0.561369	17.6530
a = 0.804698 $b = 0.108164$	0.001009	11.0000
0 = 0.108104		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.118463 + 0.232287I		
a = -1.31174 - 2.44567I	-1.60535 + 0.58110I	-1.83750 - 2.62782I
b = -0.912796 + 0.166074I		
u = 0.118463 - 0.232287I		
a = -1.31174 + 2.44567I	-1.60535 - 0.58110I	-1.83750 + 2.62782I
b = -0.912796 - 0.166074I		
u = -1.79109		
a = 0.214755	16.5830	0
b = 0.718711		
u = 1.83755		
a = 0.242340	18.6422	0
b = -1.40717		
u = -1.84184 + 0.01166I		
a = 0.64542 + 1.69046I	-19.1326 - 2.7360I	0
b = -0.867094 - 0.716132I		
u = -1.84184 - 0.01166I		
a = 0.64542 - 1.69046I	-19.1326 + 2.7360I	0
b = -0.867094 + 0.716132I		
u = 1.84728 + 0.04017I		
a = -0.22651 + 1.65159I	-15.2987 + 9.6434I	0
b = 1.166510 - 0.750722I		
u = 1.84728 - 0.04017I		
a = -0.22651 - 1.65159I	-15.2987 - 9.6434I	0
b = 1.166510 + 0.750722I		
u = 1.85511 + 0.02516I		
a = -0.624328 - 1.260080I	-13.33250 + 3.18487I	0
b = 0.533783 + 1.034720I		
u = 1.85511 - 0.02516I		
a = -0.624328 + 1.260080I	-13.33250 - 3.18487I	0
b = 0.533783 - 1.034720I		

II.
$$I_2^u = \langle b+1, \ a, \ u^3+u^2-2u-1 \rangle$$

(i) Arc colorings

a) Art colorings
$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^2 - u - 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u^2 + 1 \\ u^2 - u - 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^2 + u + 5$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3,c_9	u^3
c_4	$(u+1)^3$
c_5, c_6, c_7 c_8	$u^3 + u^2 - 2u - 1$
c_{10}, c_{11}, c_{12}	$u^3 - u^2 - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_9	y^3
c_5, c_6, c_7 c_8, c_{10}, c_{11} c_{12}	$y^3 - 5y^2 + 6y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.24698		
a = 0	4.69981	7.80190
b = -1.00000		
u = -0.445042		
a = 0	-0.939962	4.75300
b = -1.00000		
u = -1.80194		
a = 0	15.9794	6.44500
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^3)(u^{30}+12u^{29}+\cdots+97u+1)$
c_2	$((u-1)^3)(u^{30} - 4u^{29} + \dots + 13u - 1)$
c_3,c_9	$u^3(u^{30} - u^{29} + \dots - 28u + 8)$
C ₄	$((u+1)^3)(u^{30}-4u^{29}+\cdots+13u-1)$
c_5, c_6, c_7 c_8	$(u^3 + u^2 - 2u - 1)(u^{30} + 2u^{29} + \dots + 36u^3 - 1)$
c_{10}, c_{11}, c_{12}	$(u^3 - u^2 - 2u + 1)(u^{30} + 2u^{29} + \dots + 36u^3 - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^3)(y^{30} + 16y^{29} + \dots - 7313y + 1)$
c_2, c_4	$((y-1)^3)(y^{30} - 12y^{29} + \dots - 97y + 1)$
c_3,c_9	$y^3(y^{30} - 21y^{29} + \dots - 1104y + 64)$
c_5, c_6, c_7 c_8, c_{10}, c_{11} c_{12}	$(y^3 - 5y^2 + 6y - 1)(y^{30} - 46y^{29} + \dots + 40y^2 + 1)$