Hoja 4. Intervalos de confianza Estadística. Grupo m3

- 1. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim N(\theta, \sigma^2 = \theta^2)$ para $\theta > 0$. Construir una cantidad pivotal y utilizarla para hallar un intervalo de cofianza para θ al nivel de confianza 1α .
- 2. Sean (X_1, X_2) una muestra aleatoria simple de $X \sim N(0, \sigma^2 = 1/\theta)$ y $T = \frac{X_1^2 + X_2^2}{2}$ un estadístico. Demostrar que $2T\theta$ es una cantidad pivotal y utilizarla para construir un intervalo de confianza para θ al nivel de confianza 1α .
- 3. Se han medido los siguientes valores de una determinada magnitud: 521, 742, 593, 635, 788, 717, 606, 639, 666, 624. Suponiendo que esta magnitud se distribuye según una normal y para un nivel de confianza del 95%, se pide:
 - (a) Hallar un intervalo de confianza para la media.
 - (b) Hallar un intervalo de confianza para la varianza.
- 4. El número diario de piezas fabricadas por una máquina A en 5 días ha sido: 50, 48, 53, 60, 37; mientras que, en esos mismos días, una máquina B ha fabricado: 40, 51, 62, 55, 64. Suponiendo independencia, se pide:
 - (a) Construir un intervalo de confianza al nivel de confianza $1-\alpha=0.95$ para la diferencia de medias.
 - (b) Construir un intervalo de confianza al nivel de confianza $1 \alpha = 0.90$ para el cociente de las varianzas.

Nota: Suponer que las dos poblaciones estudiadas, número de piezas fabricadas por las máquinas A y B, siguen una distribución normal no necesariamente con la misma varianza.

- 5. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim f_{\theta}(x) = \theta \exp\{-\theta x\}I_{(0,\infty)}(x)$, $\theta > 0$. Se pide:
 - (a) Construir un intervalo de confianza al nivel de confianza del 95% para la media de la población.
 - (b) Construir un intervalo de confianza al nivel de confianza del 95% para la varianza de la población.
 - (c) Construir un intervalo de confianza al nivel de confianza del 95% $exp\{-\theta\}$.
 - (d) Construir una cantidad pivotal basada en $Y = \min(X_1, X_2, ..., X_n)$ y utilizarla para hallar un intervalo de confianza al nivel de confianza 1α para θ .
- 6. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim f_{\theta}(x) = \frac{2}{\theta} e^{-2x/\theta} \quad \forall x \geq 0$. Se pide:
 - (a) Calcular un cantidad pivotal de la forma $c(\theta) \sum_{i=1}^{n} X_i$.
 - (b) Hallar el intervalo de confianza para θ al nivel de confianza 1α basado en dicha cantidad pivotal con probabilidades de colas iguales.

- 7. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim f_{\theta}(x) = (\theta + 1)x^{\theta}I_{(0,1)}(x)$. Construir un intervalo de confianza para θ al nivel de confianza 1α utilizando el método de la cantidad pivotal con probabilidades de colas iguales
- 8. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim f_{\theta}(x) = e^{-(x-\theta)}, x > \theta$. Encontrar el intervalo de confianza para θ al nivel de confianza 1α de amplitud mínima basado en un estadístico suficiente.
- 9. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim N(\theta, \sigma^2 = 100)$. Construir una región creible de probabilidad 0.95 para la media θ , si se supone que la distribución a priori para θ es $N(\mu = 100, \tau^2 = 225)$.
- 10. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim f_{\theta}(x) = \theta \exp\{-\theta x\}I_{(0,\infty)}(x)$, $\theta > 0$. Hallar un intervalo de confianza asintótico para θ al nivel de confianza 1α .