

Department of Physics, Shandong University

Compressed EWK study(ISRC1N2)

Chengxin Liao

liaocx@ihep.ac.cn

Wed, Jan 22, 2024

Outline

- 1. Hyperparameters optimization
- 2. Performance of Model

Chengxin Liao IHEP SUSY Meeting

Task-list

- Machine learning for HH channel
 - check more Variable and select significance var for ML(DONE)
 - BDTG hyperparameters optimization/ Setup a Grid Search framework (DONE)
- Preliminary study on multibody quantum mechanics (In Progress)
 QFT Lecture (Peskin part I)
- BSc thesis: https://www.overleaf.com/project/674e7119837a2580151a0868
- CS61A (python): https://cs61a.vercel.app/index.html

Hyperparameters optimization

Input(HH-Channel):

Sample:

Sig: ISRC1N2(mass_C1 = 100GeV, mass_N2 = 70GeV)->12180 entries

Bkg: 513850 entries

All input data(C1N2_100_70 and Bkg) already passed pre-selection

Strategy:

method: BDTG

Separate sig(bkg) into five folders, one for test, the other three for train, and last one for validation set, then traverse all possibilities.

Pre-Selection

```
had-had channel: nTaus \ge 2, nLeps = 0
pass \ MET \ trigger; \ MET \ge 200
1 \le nBaseJet \le 8
b - Veto
OS
```

Hyperparameters optimization

Variables:

Obj kinematics

pt_lep
pt_tau
mt_tau
e lep(energy of tau2)

Angular correlations

dPhit1x dRt1x dRtt dPhitt **Event kinematics**

MII(Invariant Mass of tau1 and tau2)

METsig MT2 50

Mwh(Invariant Mass of tau1 and MET)

Mwl(Invariant Mass of tau2 and MET)

MCT(Transverse Mass Squared)

Proj_j(Projection of pt jet on zeta)

Proj_tt(Projection of tau1+tau2 on zeta)

mt_quad_sum

mt_sum

frac_MET_tau1
frac_MET_tau2

frac_MET_sqrtHT_40

frac_jet_tau1
frac_jet_tau2
frac_jet_tt

Note:

zeta is bisector direction of tau1 and tau2[PhyUtils::bisector(tau1, tau2)]

Hyperparameters optimization

Grid Search:

Ntrees: 200, 300, 400

Max Depth: 6, 8, 10, 12

MinNodeSize: 1%, 2%, 3%

Learning Rate: 0.01, 0.05, 0.1

Show top Zn Show top binned significance

	21	now top zn		Snow top binned significance							
	Model Name	Binned Significance	Max Zn	Max Zn Bin		Model Name	Binned Significance	Max Zn	Max Zn Bin		
137	100_8_3_005	12.1380	3.27179	48	43	200_8_2_01	13.2400	3.04952	50		
128	$10\overline{0}_{-}\overline{6}_{-}\overline{1}_{-}01$	12.9663	3.24539	49	105	200_10_1_01	13.1608	3.19603	50		
15	100_12_3_005	12.1254	3.22901	48	131	300_8_2_01			50		
85	100_10_3_005	12.1150	3.20722	48	122	200_10_2_01	13.0536	2.99067	50		
105	200_10_1_01	13.1608	3.19603	50	47	400_10_1_005	13.0323	2.98703	50		
104	100_8_1_01	12.8853	3.18398	50	90	200_12_3_01	13.0177	2.94662	50		
63	200_6_1_005	12.7673	3.17520	49	10	400_8_2_01	12.9907	2.99914	50		
2	200_6_1_01		3.17138	50	36	300_10_1_01	12.9906	3.05755	50		
38	100_6_2_01		3.16297	49	133	400_10_1_01	12.9846	3.06413	50		
131	300_8_2_01	13.1256	3.16255	50	93	300_6_1_005	12.9703		50		
93	300_6_1_005	12.9703		50	128	100_6_1_01	12.9663	3.24539	49		
73	100_6_1_005		3.14142	48	65	400_12_3_01		3.01186	50		
69	400_6_1_01	12.9285	3.14074	50	130	400_10_3_01	12.9586	2.95314	50		
54	200_8_3_01	12.8685	3.13397	50	51	400_10_2_005	12.9529	3.01081	50		
12	200_6_2_005	12.7035	3.12582	49	138	300_12_2_01	12.9479	3.02381	50		
33	100_6_2_005	12.2453	3.11746	48	48	400_12_2_01	12.9393	3.09236	50		
66 45	400_6_1_005	12.9369	3.10400	50 49	66	400_6_1_005	12.9369	3.10400	50		
7	100_10_3_01 100 12 3 01	12.7388 12.6318	3.10074 3.10071	49 49	9	400_8_3_01	12.9337	3.06226	50		
48	400 12 2 01	12.9393	3.09236	50	59	300_10_1_005	12.9324	2.92715	50		
72	400_12_2_01	12.9393	3.06882	50 50	135	400_12_1_005	12.9313	2.99309	50		
62	300 6 1 01	12.8501	3.06869	50 50	69	400_6_1_01	12.9285	3.14074	50		
133	400 10 1 01	12.9846	3.06413	50	24	400_10_2_01	12.9241	2.90401	50		
91	100_6_3_01	12.6291		49	72	400_12_2_005	12.9179	3.06882	50		
9	400_8_3_01	12.9337	3.06226	50	120	300_10_2_01	12.9143	3.02559	50		
58	300 10 3 005	12.8854	3.05992	49	123	400_8_2_005	12.9119	3.01028	50		
36	300 10 1 01	12.9906	3.05755	50	2	200_6_1_01	12.9052	3.17138	50		
89	100_10_2_01	12.8406	3.05210	49	71	200_8_1_005		2.98534	50		
43	200_8_2_01	13.2400	3.04952	50	40	400_10_3_005	12.8961	2.94119	50		
19	400_6_2_005	12.8263	3.04206	50	103	300_12_3_01	12.8872	2.91552	50		

300_8_2_01 300_6_1_005

Model

hyper parameter: NTrees=300, learning rate=0.1, max depth=8, MinNodeSize=2%(default)

ROC Curve

sig eff from test(train)

 $@B = 0.01 \ 0.308(0.363)$

 $@B = 0.10 \ 0.834(0.866)$

 $@B = 0.30 \ 0.988(0.992)$

AUC: 0.954 sig eff from test(train) $@B = 0.01 \ 0.345(0.350)$

 $@B = 0.10 \ 0.863(0.863)$

 $@B = 0.30 \ 0.989(0.990)$

AUC: 0.957 sig eff from test(train)

MVA_fivefold_BDT3_300_8_2_01_Others

AUC: 0.954

$$@B = 0.01 \ 0.321(0.343)$$

$$@B = 0.10 \ 0.871(0.858) @B = 0.10 \ 0.866(0.873)$$

$$@B = 0.30 \ 0.992(0.989) @B = 0.30 \ 0.994(0.994)$$

AUC: 0.956

$$@B = 0.01 \ 0.382(0.341)$$

$$@B = 0.10 \ 0.864(0.855)$$

$$@B = 0.30 \ 0.989(0.989)$$

Confusion: seems no overtraining in 300 8 2 01

Model

hyper parameter: NTrees=300, learning rate=0.05, max depth=6, MinNodeSize=1%(default)

ROC Curve

AUC: 0.949 sig eff from test(train) @B = 0.01 0.305(0.349)

 $@B = 0.10 \ 0.834(0.861)$

 $@B = 0.30 \ 0.988(0.992)$

AUC: 0.953 sig eff from test(train) @B = 0.01 0.341(0.343) @B = 0.10 0.852(0.851) @B = 0.30 0.990(0.991) AUC: 0.956 AUC: 0.954 sig eff from test(train) sig eff from test(train) @B = $0.01 \ 0.358(0.349)$ @B = $0.01 \ 0.867(0.855)$ @B = $0.10 \ 0.865(0.871)$

 $@B = 0.30 \ 0.992(0.990) @B = 0.30 \ 0.992(0.992)$

sig eff from test(train) @B = 0.01 0.376(0.337) @B = 0.10 0.870(0.860) @B = 0.30 0.990(0.989)

AUC: 0.957

Conlusion: seems no overtraining in 300_6_1_005

BDT distribution

bin	max Zn	C1N2ISR (100,70)	bkg	Higgs	OtherTop	SingleTop	TopPair	VV	Wjets	Zlljets	Zttjets
48	2.31643	47.944+- 1.326	76.74+- 11.617(15%)	0.057+- 0.017	0.069+- 0.035	1.816+- 0.518	8.389+- 1.142	8.144+- 0.547	50.716+- 7.999	0.180+- 0.055	7.371+- 0.929
49	2.75157	52.649+- 1.922	59.26+- 8.262(14%)	0.083+- 0.040	0.028+- 0.045	0.883+- 0.591	5.847+- 1.486	6.432+- 0.646	44.437+- 9.834	0.116+- 0.084	1.430+- 1.767
50	3.16255	44.891+- 2.313	21.25+- 5.661(26%)	0.008+- 0.040	0.057+- 0.052	0.388+- 0.632	2.996+- 1.632	2.826+- 0.682	14.443+- 11.326	0.132+- 0.139	0.402+- 1.770

BDT distribution

Apply BDT score cut > 0.90

bin	max Zn	C1N2ISR (100,70)	bkg	Higgs	OtherTop	SingleTop	TopPair	VV	Wjets	ZIIjets	Zttjets
49	2.9951	40.056+- 1.219	34.064+- 5.980 (17%)	0.035+- 0.017	0.014+- 0.018	0.406+- 0.228	4.206+- 0.797	3.740+- 0.251	24.850+- 5.017	0.075+- 0.054	0.740+- 0.135
50	3.142	29.295+- 1.601	14.341+- 3.133(21%)	0.001+- 0.017	0.051+- 0.027	0.306+- 0.314	1.284+- 0.919	1.500+- 0.297	10.859+- 5.890	0.128+- 0.123	0.213+- 0.155

TODO

- 1. Optimize ML model and try other method
- 2. Completing the theoretical section of the my thesis

Chengxin Liao