

Universidade de Brasília Instituto de Geociências - IG

Desenvolvimento de metodologia de tomografia sísmica para aplicações rasas

Danilo Portela de Oliveira

Orientador: Marcelo Peres Rocha

Coorientador: Giuliano Sant'Anna Marotta

Danilo Portela de Oliveira

Desenvolvimento de metodologia de tomografia sísmica para aplicações rasas

Monografia submetida ao curso de graduação em Geofísica da Universidade de Brasília como requisito para obtenção do Título de Bacharel em Geofísica.

Orientador: Marcelo Peres Rocha Coorientador: Giuliano Sant'Anna Marotta

Agradecimentos

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Resumo

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Palavras-chave:

. . .

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

...

Lista de Figuras

1	O tempo de percurso das ondas acústicas (linhas tracejadas) através das	
	linhas e colunas de uma matriz quadrada de tijolos é medido com a fonte	
	acústica ${f S}$ e o receptor ${f R}$ colocados nas bordas do quadrado. O problema	
	inverso é inferir as propriedades acústicas dos tijolos (que são assumidas	
	como homogêneas). Menke (1984)	15
2	(a) Problema Direto versus Problema Inverso. (b) O problema inverso	
	visto com duas etapas. Gabriela Félix Brião (2005)	19
3	Gráfico de materiais de acordo com a velocidade. Assim, com a solução	
	obtida pela tomografia de tempo de percurso, os geólogos e geofísicos po-	
	dem inferir que tipo de material existe no subsolo. Gabriela Félix Brião	
	$(2005). \dots \dots$	19
4	Modelos. Gabriela Félix Brião (2005)	20
5	Tempo de percurso para a i -ésima frente de onda, onde está sendo utilizado	
	o modelo discretizado com vagarosidade constante em cada pixel. Gabriela	
	Félix Brião (2005)	21
6	Diagrama de um experimento tomográfico. A matriz M geralmente é es-	
	parsa, pois existem células por onde não passam nenhum raio do experi-	
	mento. Gabriela Félix Brião (2005)	22
7	Traçado de raios. Discretização do espaço em 49 pixels. Cross-hole array.	
	Imhof e Calvo (2018)	23
8	Matriz de percurso dos raios e significado de cobertura espacial. Imhof e	
	Calvo (2018)	24
9	Gráficos de cobertura espacial para pixels. (a) 10×10 pixels, (b) 20×20	
	pixels. Imhof e Calvo (2018)	25
10	Gráficos de cobertura espacial Ipixel. (a) 10×10 ipixels, (b) 20×20 ipixels	
	(calculados a partir de uma matriz de cobertura espacial uniforme de base	
	de 100×100 pixels). Imhof e Calvo (2018)	25

Lista de Tabelas

Lista de Símbolos

Sumário

Lis	sta d	e Figuras	7
Lista de Tabelas Sumário			
2	Fun	damentação Teórica	12
	2.1	Formulando problemas inversos	12
		2.1.1 Forma linear implícita	13
		2.1.2 Forma explícita	13
		2.1.3 Forma linear explícita	13
		2.1.4 Exemplos de formulação de problemas inversos	13
	2.2	O Problema Linear Inverso	15
	2.3	Tomografia	15
		2.3.1 Tomografia sísmica por tempo de percurso	16
		2.3.2 Reconstrução na tomografia sísmica de tempo de percurso	17
		2.3.3 Problema Direto	18
		2.3.4 Problema Inverso	18
	2.4	Modelos (Representação da Estrutura)	20
	2.5	Matriz de percurso dos raios	22
	2.6	Matriz de cobertura espacial	22
	2.7	Condicionamento de uma matriz	26
	2.8	Regularização	26
3	Mat	ceriais e Métodos	28
	3.1	Àrea de Estudo	28
	3.2	Frente teórica-computacional	29
		3.2.1 Recursos computacionais	29
		3.2.2 Estrutura do Software	30
	3.3	Etapa experimental - Aquisição em local com alvo conhecido	30
4	Res	ultados e Discussão	32
	4.1	Dados sintéticos - Estudos de casos	32
	4.2	Dados de campo - Processamento e inversão dos dados sísmicos	33
5	Con	aclusões	34
Re	eferê	ncias Bibliográficas	35
\mathbf{A}	Cód	ligo do software	36

1 Introdução

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

2 Fundamentação Teórica

2.1 Formulando problemas inversos

O ponto de partida na maioria dos problemas inversos é uma descrição dos dados. Como na maioria dos problemas inversos os dados são simplesmente uma tabela de valores numéricos, um vetor fornece um meio conveniente de sua representação (Menke, 1984).

Se as medições N forem realizadas em um experimento específico, por exemplo, podese considerar esses números como os elementos de um vetor \mathbf{d} de comprimento N. Da mesma forma, os parâmetros do modelo podem ser representados como os elementos de um vetor \mathbf{m} , que é de comprimento M.

dados:
$$\mathbf{d} = [d_1, d_2, d_3, d_4, \dots, d_N]^T$$

parâmetros do modelo: $\mathbf{m} = [m_1, m_2, m_3, m_4, \dots, m_N]^T$ (1)

Aqui T significa a matriz transposta.

A afirmação básica de um problema inverso é que os parâmetros do modelo e os dados estão de alguma forma relacionados. Essa relação é chamada de *modelo*. Normalmente, o modelo assume a forma de uma ou mais fórmulas que os dados e os parâmetros do modelo devem seguir.

Se, por exemplo, alguém estivesse tentando determinar a densidade de um objeto medindo sua massa e volume, haveria dois dados - massa e volume (digamos, d_1 e d_2 , respectivamente) - e um parâmetro de modelo desconhecido, densidade (digamos, m_1). O modelo seria a afirmação de que densidade vezes volume é igual a massa, o que pode ser escrito de forma compacta pela equação vetorial $d_2m_1 = d_1$.

Em situações mais realistas, os dados e os parâmetros do modelo são relacionados de maneiras mais complicadas. Mais geralmente, os dados e os parâmetros do modelo podem estar relacionados por uma ou mais equações implícitas, como

$$f_{1}(\mathbf{d}, \mathbf{m}) = 0$$

$$f_{2}(\mathbf{d}, \mathbf{m}) = 0$$

$$\vdots$$

$$f_{L}(\mathbf{d}, \mathbf{m}) = 0$$
(2)

Onde L é o número de equações. As Equações em (2) da página 12 relativos à medição de densidade, L = 1 e $d_2m_1 = d_1$ constituiria a única equação da forma $f_1(\mathbf{d}, \mathbf{m}) = 0$. Essas equações implícitas, que podem ser escritas de forma compacta como a equação vetorial $\mathbf{f}(\mathbf{d}, \mathbf{m}) = 0$, resume o que se sabe sobre como os dados medidos e os parâmetros desconhecidos do modelo estão relacionados. O propósito da teoria inversa é resolver, ou "inverter", essas equações para os parâmetros do modelo, ou quaisquer tipos de respostas que possam ser possíveis ou desejáveis em qualquer situação.

Nenhuma afirmação é feita de que as equações $\mathbf{f(d, m)} = 0$ contenham informações suficientes para especificar os parâmetros do modelo de forma única ou que sejam consistentes. Um dos propósitos da teoria inversa é responder a esses tipos de perguntas e fornecer meios de lidar com os problemas que elas implicam. Em geral, $\mathbf{f(d, m)} = 0$ pode consistir em funções arbitrariamente complicadas (não lineares) dos dados e parâmetros do modelo. Em muitos problemas, no entanto, a equação assume uma das várias formas simples.

2.1.1 Forma linear implícita

A função \mathbf{f} é linear em ambos os parâmetros de dados e modelo e, portanto, pode ser escrita como a equação matricial (Equações em (2) da página (2)). O Problema Linear Inverso

$$\mathbf{f(d, m)} = 0 = \mathbf{F} \begin{bmatrix} \mathbf{d} \\ \mathbf{m} \end{bmatrix}$$
 (3)

onde **F** é uma matriz $L \times (M + N)$.

2.1.2 Forma explícita

Em muitos casos, é possível separar os dados dos parâmetros do modelo e, assim, formar L=N equações que são lineares nos dados (mas ainda não lineares nos parâmetros do modelo por meio de uma função vetorial \mathbf{g}).

$$f(d, m) = 0 = d - g(m)$$
(4)

2.1.3 Forma linear explícita

Na forma linear explícita, a função ${\bf g}$ também é linear, levando à equação matricial $N\times M$ (onde L=N)

$$f(d, m) = 0 = d - Gm$$
 (5)

Usar esta forma é equivalente a dizer que a matriz \mathbf{F} na Seção 2.1.1 é uma matriz diagonal.

$$\mathbf{F} = \begin{bmatrix} -\mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{G} \end{bmatrix} \tag{6}$$

2.1.4 Exemplos de formulação de problemas inversos

Exemplo 1 | Ajustando uma linha reta

Suponha que N medições de temperatura T_i sejam feitas em profundidades z_i na terra (Menke, 1984). Os dados então são, um vetor \mathbf{d} de N medições de temperatura, onde $\mathbf{d} = [T_1, T_2, T_3, \cdots, T_N]^T$. As profundidades z_i , não são, estritamente falando, dados. Em vez disso, eles fornecem algumas informações auxiliares que descrevem a geometria do experimento. Essa distinção será melhor esclarecida a seguir.

Suponha que assumimos um modelo no qual a temperatura é uma função linear da profundidade: T = a + bz. O coeficiente linear a e o coeficiente angular b formam então os dois parâmetros do modelo do problema, $\mathbf{m} = [a, b]^T$. De acordo com o modelo, cada observação de temperatura deve satisfazer T = a + bz:

$$T_{1} = a + bz_{1}$$

$$T_{2} = a + bz_{2}$$

$$\vdots$$

$$T_{N} = a + bz_{N}$$

$$(7)$$

Essas equações (7), página 13, podem ser organizadas como a equação matricial $\mathbf{Gm} = \mathbf{d}$:

$$\begin{bmatrix} T_1 \\ T_2 \\ \vdots \\ T_N \end{bmatrix} = \begin{bmatrix} 1 & z_1 \\ 1 & z_2 \\ \vdots & \vdots \\ 1 & z_N \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

$$(8)$$

Exemplo 2 | Tomografia acústica

Suponha que uma parede seja montada a partir de um arranjo retangular de tijolos (Figura 1, página 15) e que cada tijolo seja composto de um tipo diferente de argila (Menke, 1984). Se as velocidades acústicas das diferentes argilas diferem, pode-se tentar distinguir os diferentes tipos de tijolos medindo o tempo de viagem do som através das várias fileiras e colunas de tijolos na parede. Os dados deste problema são N=8 medições de tempo de percurso, $\mathbf{d}=[T_1,T_2,T_3,\cdots,T_8]^T$.

O modelo assume que cada tijolo é composto de um material uniforme e que o tempo de percurso do som através de cada tijolo é proporcional à largura e altura do tijolo. O fator de proporcionalidade é a lentidão (slowness) do tijolo s_i , dando assim M=16 parâmetros do modelo $\mathbf{m}=[s_1,s_2,s_3,\cdots,s_{16}]^T$, onde a ordenação está de acordo com o esquema de numeração da figura como

$$Linha1: T_{1} = hs_{1} + hs_{2} + hs_{3} + hs_{4}$$

$$Linha2: T_{2} = hs_{5} + hs_{6} + hs_{7} + hs_{8}$$

$$\vdots$$

$$Columa4: T_{8} = hs_{4} + hs_{8} + hs_{12} + hs_{16}$$
(9)

e a equação matricial é

Figura 1: O tempo de percurso das ondas acústicas (linhas tracejadas) através das linhas e colunas de uma matriz quadrada de tijolos é medido com a fonte acústica **S** e o receptor **R** colocados nas bordas do quadrado. O problema inverso é inferir as propriedades acústicas dos tijolos (que são assumidas como homogêneas). Menke (1984).

2.2 O Problema Linear Inverso

Os problemas inversos mais simples e mais bem compreendidos são aqueles que podem ser representados com a equação linear explícita $\mathbf{Gm} = \mathbf{d}$. Esta equação, portanto, forma a base do estudo da teoria inversa discreta. Muitos problemas inversos importantes que surgem nas ciências físicas envolvem precisamente essa equação. Outros, embora envolvam equações mais complicadas, muitas vezes podem ser resolvidos por meio de aproximações lineares.

A matriz **G** é chamada de data kernel, em analogia à teoria das equações integrais, na qual os análogos aos vetores de parâmetros de dados e modelos são duas funções contínuas d(x) e m(x), onde x é alguma variável independente. As duas funções estão relacionadas pela equação

$$d(x) = \int G(x,\xi)m(\xi)d\xi \tag{11}$$

onde a função $G(x,\xi)$ é o kernel, ou função de Green, da equação integral. A solução de problemas desse tipo está dentro do escopo da teoria inversa contínua.

2.3 Tomografia

O objetivo basal da Geofísica é obter informações a cerca dos parâmetros físicos das rochas que constituem o interior da Terra a partir de dados medidos em superfície, em poços ou em levantamentos aéreos (Reis Rodrigues e Bassrei, 2015). Na modelagem direta, aplicam-se as equações que descrevem as leis da física sobre um modelo previamente definido para a obtenção de dados de resposta referentes aos parâmetros físicos desse tal modelo. Em contra partida, no problema inverso, já se possui os dados de resposta, aqueles obtidos através de levantamentos, e, portanto, o objetivo agora é a estimativa de

um modelo que, quando aplicado a uma determinada relação físico-matemática, melhor se adéque aos dados medidos.

A tomografia sísmica é uma metodologia de inferência de parâmetros numéricos, usada na Geofísica, que extrai informações contidas em registros sísmicos para estimar modelos bidimensionais ou tridimensionais do interior da Terra (Rawlinson et al., 2010). Em geral, requer a solução de um problema inverso para se obter um modelo de velocidades sísmicas que seja consistente com as observações de campo. Desde que seja possível estabelecer um modelo aproximado $\mathbf{d} = g(\mathbf{m})$, entre o vetor de dados sísmicos \mathbf{d} e o vetor de parâmetros do modelo sísmico \mathbf{m} - de modo que, para um dado modelo \mathbf{m} , seja possível prever \mathbf{d} - procura-se, na tomografia sísmica, encontrar \mathbf{m} tal que $\mathbf{d}_{obs} = g(\mathbf{m})$, onde \mathbf{d}_{obs} é o vetor de dados observados.

As relações do tipo $\mathbf{d} = g(\mathbf{m})$, em sua grande maioria, são não-lineares e não solucionáveis analiticamente (Reis Rodrigues e Bassrei, 2015), por isso, busca-se a linearização dessas relações através de métodos numéricos. Com isso, devido a essa não-linearidade do problema inverso, a superfície da função-objetivo dos tempos de percurso pode não vir a ser simples, bem comportada ou com um único mínimo bem definido.

Devido, também, ao caráter discreto dos dados geofísicos, faz-se necessário o uso de uma formulação matricial para o tratamento desses dados (Reis Rodrigues e Bassrei, 2015). O objetivo agora, então, é criar uma aproximação linearizada $\mathbf{Gm} = \mathbf{d}$, onde \mathbf{d} é um vetor p-dimensional que carrega os dados medidos nos levantamentos, \mathbf{m} é um vetor n-dimensional que carrega os parâmetros do modelo o qual se quer estimar a partir das medidas, e \mathbf{G} é uma matriz de dimensões p por n que, se inversível, nos levaria facilmente a solução do problema através da relação $\mathbf{m} = \mathbf{G}^{-1}\mathbf{d}$. Todavia, na quase totalidade dos problemas geofísicos, os problemas são mal postos (Reis Rodrigues e Bassrei, 2015), ou seja, não obedecem aos critérios de existência, unicidade e estabilidade simultaneamente; e $\mathbf{Gm} = \mathbf{d}$ constitui-se num sistema sobredeterminado (m > n), onde \mathbf{G} não é, à rigor, inversível; e, portanto, se faz necessário o uso de métodos numéricos mais complexos e, também, a consulta de informações geológicas à priori que, de alguma forma, limite os graus de liberdade do problema.

A tomografia sísmica possui grande importância no processamento sísmico. Através dela, é possível extrair diversas informações dos registros sísmicos, os quais se incluem tempos de percurso, amplitudes, conteúdo de frequências ou, até mesmo, a forma total da onda. Ela pode ser considerada, por exemplo, um complemento natural para a migração sísmica, pois oferece um meio de estimar a velocidade e a profundidade de interfaces usando tempos de percurso e, com menos frequência, amplitudes de espalhamento geométrico e coeficientes de reflexão/transmissão (Reis Rodrigues e Bassrei, 2015).

2.3.1 Tomografia sísmica por tempo de percurso

A inversão sísmica de tempo de percurso para a estrutura de velocidades é um problema não linear, uma vez que os raios sísmicos, atuando como caminhos integrais em uma inversão tomográfica, dependem também da velocidade média (Worthington, 1984; Zhou e Greenhalgh, 2003). Em vez de determinar os caminhos de raios desconhecidos e a estrutura de velocidade desconhecida simultaneamente, muitas vezes usa-se uma solução linearizada de forma iterativa para resolver as perturbações do modelo, em vez dos parâmetros do modelo diretamente (Bording et al., 1987). As perturbações do modelo são consideradas pequenas o suficiente para que se possa considerar a relação entre as perturbações do modelo e os resíduos correspondentes como linear. Uma vez que as per-

turbações do modelo tenham sido encontradas, elas são adicionadas ao modelo atual para produzir o modelo para a iteração seguinte até que o resultado convirja.

Na prática, os dados sísmicos às vezes contêm uma quantidade considerável de ruído. Para dados de tempo de percurso, a precisão de leitura finita é a principal fonte de erros de dados. Para reduzir os erros, um método de pré-processamento é calcular a média dos dados de tempo de percurso de caminhos de raios semelhantes Röhm et al. (2000), mas esse método pode funcionar apenas em tomografia telessísmica, pois os erros são relativamente pequenos em comparação com os dados reais do tempo de percurso. Para mitigar os erros de dados, Wang et al. (2000) separaram os dados de tempo de percurso com ruído usando uma regressão ponderada localmente para se livrar dos valores discrepantes ou reduzir o peso dos grandes erros de separação. Para reduzir o efeito de erros de dados durante a inversão, Scales et al. (1988) usaram coeficientes de ponderação em função do tempo de percurso residual em um esquema de mínimos quadrados iterativamente reponderado. Esses pesos baseados em resíduos, no entanto, são subjetivos, uma vez que os erros de dados na prática podem ter uma distribuição não Gaussiana e, portanto, o resíduo de dados pode ser enviesado. Cao e Greenhalgh (1995) montaram um esquema de inversão não linear baseado em erro relativo para dados sísmicos de crosshole que tenta superar o viés dos métodos de mínimos quadrados que tendem a enfatizar raios com maiores tempos de percurso.

2.3.2 Reconstrução na tomografia sísmica de tempo de percurso

O problema de reconstruir imagens por projeções, isto é, reconstruir uma função através de suas integrais ao longo de retas surgiu independentemente em diversos ramos da ciência tais como na Geofísica, Astrofísica, Medicina e dentre outros.

Provavelmente os exemplos que causaram maior impacto na vida moderna foram em prospecção sísmica e na tomografia computadorizada voltada para diagnósticos clínicos.

O termo tomografia surge do prefixo grego "tomo" que quer dizer fatia, o que nos sugere uma reconstrução em 2-D. Mas a palavra já é utilizada rotineiramente para se referir a reconstrução de imagens em 3-D, sobretudo pelos sismólogos e radiólogos.

A tomografia sísmica tem como preocupação, a reconstrução de imagens de estruturas em subsuperfície. Dentre as técnicas existentes focalizaremos a que utiliza dados de tempo de percurso (Gabriela Félix Brião, 2005).

Iniciaremos com a descrição do Princípio de Fermat. Neste contexto, é natural introduzir a vagarosidade, ou seja, a inversa da velocidade.

Dada s uma distribuição contínua da vagarosidade s(x), o tempo de percurso de um sinal ao longo de um possível caminho que liga a fonte que o emitiu ao receptor é dado pela Equação (12) da página 17:

$$\tau^{p}(s) = \int_{P} s(x) dl^{P} = \int_{P} \frac{1}{v(x)} dl^{P}$$
 (12)

Onde dl^P denota o comprimento de arco ao longo do caminho P. Denotemos por τ o conjunto de todos os possíveis caminhos ligando a fonte ao receptor.

O Princípio de Fermat diz que o caminho físico percorrido por uma onda entre dois pontos é aquele que minimiza o tempo de percurso.

$$\tau^*(s) = \min_{P \in \{\tau\}} \tau^P(s) \tag{13}$$

O funcional $P \mapsto \tau^p(s)$ de tempo de percurso é estacionário com respeito a pequenas pertubações no caminho de Fermat $P^*(s)$ no sentido do cálculo das variações (Axelsson, 1994). Observe que a Equação (13) da página 17 depende de forma não linear em s, como consequência do processo de minimização.

Uma forma de obter dados na tomografia sísmica é feita aproveitando a existência de poços já perfurados. Isto é, colocando transmissores em um dos poços e receptores em outro de maneira que são emitidas ondas entre os poços. Tais ondas podem ser sísmicas ou eletromagnéticas. Através da utilização de receptores apropriados mede-se o tempo de chegada das mesmas.

Esses dados, apesar de imprecisos e ruidosos, podem ser utilizados para obtermos informações sobre a composição do subsolo e a presença de hidro-carbonetos.

2.3.3 Problema Direto

Dentro de uma aproximação aceitável para muitas finalidades em Geofísica, podemos modelar as ondas sísmicas como soluções da equação diferencial parcial:

$$\partial_t^2 \phi - c^2(x) \Delta \phi = g(x, t) \tag{14}$$

onde g(x,t) é a intensidade da pertubação num determinado ponto x e tempo t. Temos que $\phi(x,t)$ é a intensidade da onda no tempo t e posição x. Esta equação deve ser complementada com condições de contorno apropriadas.

O problema direto consiste em resolver a equação dado g, isto é, encontrar a solução ϕ . No caso da tomografia por tempo de percurso, a preocupação é determinar o tempo de percurso da frente de onda e o caminho percorrido pela mesma entre fonte e receptor. Para saber mais sobre as técnicas de resolução desse tipo de problema direto ver (Rawlinson e Sambridge, 2003).

2.3.4 Problema Inverso

Para o problema inverso (Figura 2a, página 19), queremos obter informações sobre os coeficientes da equação utilizando dados sobre suas soluções em regiões distintas. As técnicas de problemas inversos são de grande interesse na prospecção sísmica, pois têm por objetivo, determinar o interior da região em estudo somente com base em informação parcial dos dados no exterior da mesma. Assim, nos propomos a reconstruir os valores de c(x) com base na solução da equação da onda medida na fronteira que delimita a região de interesse. Com essas informações em mãos, os geólogos e geofísicos podem inferir que tipo de material existe no subsolo estudado fazendo uso de informações como por exemplo na Figura 3 (página 19).

Na inversão linear na tomografia por tempo de percurso, assumimos à priori que sabemos o traçado dos feixes que ligam fonte a receptor, o que é justificado por uma aproximação linear que ignora a dependência que os caminhos possuem da distribuição da vagarosidade (Princípio de Fermat).

Na Figura 2a (página 19) descrevemos simplificadamente uma comparação entre o problema direto e o problema inverso. O problema inverso é relativamente mais complicado, uma vez que, em problemas reais, fixados os dados, podemos construir infinitos modelos que se adéquam a estes mesmos dados. No problema inverso, muitas vezes não há essa unicidade levando dos dados ao modelo. Assim, chegamos a um esquema mais adequado à realidade na Figura 2b (página 19).

A não unicidade do problema inverso pode ser explicada pelo fato de possuirmos somente uma quantidade finita de dados coletados para obter um modelo que muitas vezes é uma função contínua de suas variáveis, o que significa, que o mesmo possui infinitos graus de liberdade. Por causa dessa limitação física da finitude dos dados, o modelo que alcançamos através dos dados coletados não é necessariamente o que modela a realidade.

São necessários dois passos na inversão para chegarmos a um modelo mais próximo da realidade. Isto é representado na Figura 2b (página 19). Vale salientar que em última análise o modelo verdadeiro não é sabido em problemas reais.

O primeiro passo seria então reconstruir um modelo m' utilizando os dados d. Uma vez feito isto, determinamos que propriedades o modelo m' preserva do modelo real m e que tipo de erros e ruídos estão associados a ele, ou seja, fazemos uma avaliação do modelo.

Figura 2: (a) Problema Direto versus Problema Inverso. (b) O problema inverso visto com duas etapas. Gabriela Félix Brião (2005).

Figura 3: Gráfico de materiais de acordo com a velocidade. Assim, com a solução obtida pela tomografia de tempo de percurso, os geólogos e geofísicos podem inferir que tipo de material existe no subsolo. Gabriela Félix Brião (2005).

2.4 Modelos (Representação da Estrutura)

Mostraremos duas maneiras de parametrizar a vagarosidade (Gabriela Félix Brião, 2005). O mais simples seria dividir a região em pequenos blocos (denominados pixels no caso 2-D e voxels no caso 3-D) e atribuir valores constantes à vagarosidade em cada bloco. Isto pode ser visto na Figura 4a (página 20).

Uma alternativa a este modelo é definir vagarosidade nos vértices da malha formada pela divisão da região em blocos (Figura 4b, página 20). Essa definição seria formulada em conjunto com uma função de interpolação. Um exemplo ilustrativo disto seria no contexto de tomografia local de terremotos, tal que para cada vértice (x, y, z) é utilizada uma interpolação trilinear (figura 4c, página 20):

Figura 4: Modelos. Gabriela Félix Brião (2005).

$$v(x,y,z) = \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} V(x_i, y_j, z_k) \left(1 - \left| \frac{x - x_i}{x_2 - x_1} \right| \right) \left(1 - \left| \frac{y - y_j}{y_2 - y_1} \right| \right) \left(1 - \left| \frac{z - z_k}{z_2 - z_1} \right| \right)$$
(15)

onde $V(x_i, y_j, z_k)$ são os valores da velocidade nos oito vértices que cercam o vértice (x, y, z).

Para este trabalho estamos interessados em entender o primeiro modelo acima (Figura 4a, página 20). Sendo assim, considere t_1, \dots, t_m conjunto de tempos de percurso entre fonte e receptor. Dado um modelo com n células, podemos escrever,

$$t_i = \sum_{j=1}^n l_{ij} s_j, \tag{16}$$

Figura 5: Tempo de percurso para a *i*-ésima frente de onda, onde está sendo utilizado o modelo discretizado com vagarosidade constante em cada pixel. Gabriela Félix Brião (2005).

Ou melhor, Ms = t. Onde M é a matriz formada pelo comprimento l_{ij} do i-ésimo raio que passa pela j-ésima célula e s é a vagarosidade (a nossa incógnita). Observe que

$$l_{ij} = \frac{\partial t_i}{\partial s_j} \tag{17}$$

e assim,

$$t_i = \frac{\partial t_i}{\partial s_1} s_1 + \frac{\partial t_i}{\partial s_2} s_2 + \dots + \frac{\partial t_i}{\partial s_n} s_n.$$
 (18)

Assim, discretizando o domínio da vagarosidade obtemos um sistema de equações lineares, onde a matriz do sistema é muito esparsa (A densidade de uma matriz é o número de elementos não nulos dividido pelo total de elementos da matriz. Se esse número for muito pequeno essa matriz é dita esparsa) porque cada raio intersecta somente uma pequena fração dos voxels da discretização (ver Figura 5, página 21). Então para os pixels em 2-D, cada raio intersecta algo da ordem de m*n pixels em uma malha $m \times n$. Isso torna o problema particularmente atrativo para a utilização de soluções iterativas.

A matriz M contém todas as informações físicas e matemáticas que escolhemos para o modelo no problema dado. Assim, no caso da tomografia por tempo de percurso, a matriz M terá como suas componentes os dados do comprimento das trajetórias.

Figura 6: Diagrama de um experimento tomográfico. A matriz M geralmente é esparsa, pois existem células por onde não passam nenhum raio do experimento. Gabriela Félix Brião (2005).

2.5 Matriz de percurso dos raios

As entradas em **S** (Figura 8, página 24) são calculadas identificando a interseção de forma individual do raio 'm' com os limites do pixel 'n' e computando o comprimento (relação de Pitágoras) 'd' dentro do elemento (Imhof e Calvo, 2018). Portanto, o tamanho de **S** crescerá com o incremento das medidas e/ou densidade de discretização.

Considerando a Figura 7 (página 23) e tendo ainda em mente a Figura 8 (página 24); o número de fontes e receptores é 7 e então o número total de raios é 49 (constante para esta matriz). Se o meio for dividido em $7 \times 7 = 49$ pixels, \mathbf{S} será de 49 linhas (M, número de raios) por 49 colunas (N, número de pixels, cujas lentidão (slowness) são desconhecidas). É relevante notar que o incremento da densidade de pixels (N), levará a considerar mais pixels no cálculo dos caminhos de viagem para cada receptor.

Este sistema de equações é aparentemente determinado (número de equações igual ao número de incógnitas). A palavra aparentemente significa que em alguns casos (especialmente em cross-hole, (ver Imhof, 2007) o sistema está mal condicionado e a classificação de $\mathbf{S} < N, M$. Isso dará um sistema subdeterminado levando a infinitas soluções. O mesmo ocorrerá, por exemplo, dividindo o meio em mais pixels para melhorar a resolução das imagens. (a limitação de dividir o meio com N = M é que a resolução é grosseira, pois o tamanho dos pixels é grande).

Incrementar o número de transdutores para melhorar a resolução não é prático e sempre possível; primeiro, devido à quantidade de esforço de levantamento necessário (custo) e, segundo, se os raios estão tão próximos, a condição de matriz S aumenta e não necessariamente adiciona informações ao sistema (Santamarina e Fratta, 1998; Fernandez, 2000).

2.6 Matriz de cobertura espacial

O tamanho de S (matriz de transformação) é M linhas (número de medições) por N colunas (número de lentidão - slowness - de pixel desconhecido). A soma de cada coluna individual de S traz o comprimento total percorrido pelos raios em um pixel (Figura 8, página 24). Aplicando esta soma em todas as colunas de S, obtém-se um vetor linha

 $1 \times N$ que rearranjado seguindo o padrão geométrico, traz a matriz de cobertura espacial de "s" pixels verticais por "t" horizontais onde N=s+t. Considerou-se aqui s=t (Imhof e Calvo, 2018).

Dois exemplos de matrizes de cobertura espacial de cross-hole são representados na Figura 9 (página 25) para 10 pares de fonte-receptor; (a) para 100 elementos e (b) 400 unidades. As zonas escuras indicam valores mais baixos de cobertura espacial. Isso significa que as informações coletadas para resolver a velocidade ou lentidão (slowness) do mesmo são menores do que em outras zonas mais claras. Em outras palavras, a precisão para a avaliação dos valores dos pixels não será uniforme. Em virtude de haver mais raios que atravessam um pixel, há mais informações nele (semelhante ao conceito CDP - Common Depth Point - em sísmica de reflexão), o setor mais claro no centro da matriz de cobertura espacial representa a resolução e precisão máximas para o pixel/s ali situado. Mas o que acontece quando uma inclusão que está sendo buscada está longe dessa posição? A resolução para localizá-lo será mais pobre (Santamarina e Fratta, 1998).

Uma forma alternativa de dividir o meio para melhorar a resolução nas zonas escuras é proposta: ao invés de separá-lo em pixels de mesmo tamanho e cobertura espacial diferente em cada um; ele será dividido em elementos de igual cobertura espacial e tamanhos individuais distintos e nomeados como ipixels. Devido a este fato, os elementos de S serão diferentes. A Figura 10 (página 25) mostra o domínio dividido em duas densidades de ipixels. Os mesmos tons de cor representam a mesma informação em cada elemento.

Qualquer tipo de discretização de elementos para o domínio físico é perfeitamente possível de realizar porque qualquer tipo dela é apenas geométrica e tem por finalidade fazer a matriz S e armar o sistema de equações tendo as distâncias percorridas pelos raios.

Figura 7: Traçado de raios. Discretização do espaço em 49 pixels. *Cross-hole array*. Imhof e Calvo (2018).

$$\mathbf{S} = \begin{pmatrix} S_{11} & \dots & S_{1n} & \dots & S_{N1} \\ \dots & \dots & \dots & \dots \\ S_{m1} & \dots & S_{mn} & \dots & S_{mN} \\ \dots & \dots & \dots & \dots \\ S_{M1} & \dots & S_{Mn} & \dots & S_{MN} \\ \end{pmatrix} \qquad \begin{array}{l} \mathbf{S}: \text{ raypath matrix} \\ S_{mn}: \text{ length travelled by ray 'm' in pixel 'n'} \\ sc_n: \text{ length travelled by all rays in pixel 'n'} \\ M: \text{ number of travel-time measurements} \\ N: \text{ number of pixels.} \\ \end{array}$$

Figura 8: Matriz de percurso dos raios e significado de cobertura espacial. Imhof e Calvo (2018).

Figura 9: Gráficos de cobertura espacial para pixels. (a) 10×10 pixels, (b) 20×20 pixels. Imhof e Calvo (2018).

Figura 10: Gráficos de cobertura espacial Ipixel. (a) 10×10 ipixels, (b) 20×20 ipixels (calculados a partir de uma matriz de cobertura espacial uniforme de base de 100×100 pixels). Imhof e Calvo (2018).

2.7 Condicionamento de uma matriz

Se houver um alto contraste entre os valores numéricos dos elementos dentro de uma matriz; é possível que a classificação calculada para ela tenha um número errôneo de linhas linearmente independente. Devido a isso, o número de condição k é uma escolha melhor para estudar o condicionamento de uma matriz (ou seja, quão próximo está de uma matriz de classificação mais baixa) do que sua classificação (Strang, 1980).

k é definido como a razão entre os valores singulares com os valores absolutos máximos e mínimos (Computations, 1989):

$$k = \frac{\max|\lambda_i|}{\min|\lambda_i|} \tag{19}$$

Uma matriz é dita mal condicionada se k for muito grande. Geometricamente, os valores máximo e mínimo representam os eixos de uma elipse (Branham, 1990). Se a razão tende à unidade, a correlação é nula (independente) e se for muito grande, é quase perfeita (dependente) e portanto mal condicionada. Em outras palavras, mau condicionamento significa que o número de linhas ou colunas linearmente dependentes da matriz tende a aumentar. Isso significa que o número de equações/medidas diminui em relação ao número de incógnitas.

Por fim, os valores singulares dão uma indicação relacionada à confiança e à relação entre as medidas dos fenômenos. Valores pequenos sugerem informações limitadas sobre o parâmetro.

2.8 Regularização

Problemas em tomografia geralmente são mal-postos, isto é, problemas que falham, seja na existência de soluções, na unicidade dessas soluções ou mesmo que a solução não depende continuamente dos dados (Gabriela Félix Brião, 2005). Sendo assim, são utilizadas frequentemente técnicas de regularização para dar estabilidade ao problema (Natterer e Wübbeling, 2001). Essas técnicas nos permitem solucionar não o problema original mas sim, um problema similar, porém mais robusto em relação a erros nos dados.

Considere o problema de resolver Ms = t. Do ponto de vista matemático, no caso de modelos lineares, esses problemas mal-postos se devem geralmente ao fato da matriz M possuir valores singulares nulos ou muito próximos de zero. Uma das formas de contornar isto seria acrescentar à matriz M^TM um múltiplo da matriz identidade de tal maneira que essa nova matriz possua somente valores singulares positivos, porém distantes do zero. De fato, considerando $B = M^TM + \gamma I$, temos que se $\gamma \neq 0$, os autovalores de B ficam diferentes de zero (positivos).

Feito isto, podemos definir a solução de mínimos quadrados amortecidos do sistema original por:

$$s' = (M^T M + \gamma I)^{-1} M^T t \tag{20}$$

A escolha de um bom parâmetro γ é fundamental nos problemas mal postos. O número γ é chamado de parâmetro de regularização.

A não existência ou a perda de unicidade das soluções se devem ao fato de $t \notin Im(M)$ ou a não injetividade da transformação M, respectivamente. Nesses casos, a utilização da pseudo-inversa M^{\dagger} é o mais conveniente. A técnica de regularização de Tikhonov

consiste em obter certas transformações dadas denotadas por $A_{\lambda}: \mathbb{R}^n \longrightarrow \mathbb{R}^m, \lambda > 0$, de tal forma,

$$\lim_{\lambda \to 0} A_{\lambda} t = M^{\dagger} t \tag{21}$$

onde M^{\dagger} é a pseudo-inversa da matriz M.

Seja $t_{\epsilon} \in \mathbb{R}^n$ tal que $||t - t_{\epsilon}|| \leq \epsilon$. E seja $\lambda(\epsilon)$ tal que, quando $\epsilon \to 0$

$$\lambda(\epsilon) \to 0$$
 (22)

е

$$||A_{\lambda(\epsilon)}||\epsilon \to 0$$
 (23)

assim,

$$||A_{\lambda(\epsilon)}t_{\epsilon} - M^{\dagger}t|| \leq ||A_{\lambda(\epsilon)}t_{\epsilon} - A_{\lambda(\epsilon)}t|| + ||A_{\lambda(\epsilon)}t - M^{\dagger}t|| \leq ||A_{\lambda(\epsilon)}|||t_{\epsilon} - t||| + ||A_{\lambda(\epsilon)}t - M^{\dagger}t|| \longrightarrow 0$$

$$(24)$$

Logo, se t_{ϵ} está próximo do tempo de percurso t então $A_{\lambda(\epsilon)}t_{\epsilon}$ está próximo da solução aproximada $M^{\dagger}t$.

Como exemplo desse método consideremos a parada em um processo iterativo (Gabriela Félix Brião, 2005). Seja então,

$$s^{(k+1)} = B_k s^{(k)} + C_k t (25)$$

um processo iterativo e assuma que $s^{(k)} \to M^{\dagger}t$. Para cada $\lambda > 0$, seja $k(\lambda)$ índice tal que $k(\lambda) \to \infty$ quando $\lambda \to 0$. Então afirmamos que $A_{\lambda}t = s^{(k(\lambda))}$ é uma regularização, pois

$$\lim_{\lambda \to 0} A_{\lambda} t = \lim_{\lambda \to 0} s^{(k(\lambda))} = M^{\dagger} t \tag{26}$$

por hipótese.

Frequentemente no caso da tomografia por tempo de percurso a matriz M (associada aos tempos de percurso dos raios sobre as células) tem posto deficiente ou é extremamente mal-condicionada. Isto leva naturalmente a necessidade de regularização.

3 Materiais e Métodos

3.1 Área de Estudo

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut portitior. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

3.2 Frente teórica-computacional

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut portitior. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

3.2.1 Recursos computacionais

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut portitior. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut portitior. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis.

Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

3.2.2 Estrutura do Software

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut portitior. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

3.3 Etapa experimental - Aquisição em local com alvo conhecido

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing

elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut portitior. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

4 Resultados e Discussão

4.1 Dados sintéticos - Estudos de casos

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut portitior. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

4.2 Dados de campo - Processamento e inversão dos dados sísmicos

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut portitior. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

5 Conclusões

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut portitior. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut portitior. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Referências Bibliográficas

- Axelsson, O., 1994, Iterative solution methods.: Cambridge University Press.
- Bording, R. P., A. Gersztenkorn, L. R. Lines, J. A. Scales, e S. Treitel, 1987, Applications of seismic travel-time tomography: Geophysical Journal International, 90, 285–303.
- Branham, R. L., 1990, Introduction to overdetermined systems, in Scientific Data Analysis: Springer, 67–83.
- Cao, S., e S. Greenhalgh, 1995, Relative-error-based non-linear inversion: Application to seismic traveltime tomography: Geophysical Journal International, 121, 684–694.
- Computations, M., 1989, Johns hopkins univ: Press, Baltimore, MD.
- Fernandez, A. L., 2000, Tomographic imaging the state of stress: Georgia Institute of Technology.
- Gabriela Félix Brião, P. D. J. P. Z., 2005, Tomografia sísmica por tempo de percurso: Modelagem, métodos numéricos e implementação.
- Imhof, A., 2007, Caracterización de arenas y gravas con ondas elásticas: Tomografía sísmica en cross hole: XIV First Prize Award Fundación Garcia Siñériz for the Best Doctoral Thesis in Pure or Applied Geophysics.
- Imhof, A. L., e C. A. Calvo, 2018, A variational formulation to image inclusions in 2d travel time cross hole tomography: Brazilian Journal of Geophysics, 21, 269–274.
- Menke, W., 1984, Geophysical data analysis: Discrete inverse theory: Academic press.
- Natterer, F., e F. Wübbeling, 2001, Mathematical methods in image reconstruction: SIAM.
- Rawlinson, N., S. Pozgay, e S. Fishwick, 2010, Seismic tomography: a window into deep earth: Physics of the Earth and Planetary Interiors, 178, 101–135.
- Rawlinson, N., e M. Sambridge, 2003, in Seismic traveltime tomography of the crust and lithosphere, 46, 81–198.
- Reis Rodrigues, V. H. S., e A. Bassrei, 2015, Aplicação da tomografia de tempos de trânsito a dados do campo de miranga, bacia do recôncavo: 14th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 3-6 August 2015, Brazilian Geophysical Society, 1185–1190.
- Röhm, A. H., H. Bijwaard, W. Spakman, e J. Trampert, 2000, Effects of arrival time errors on traveltime tomography: Geophysical Journal International, 142, 270–276.
- Santamarina, J. C., e D. Fratta, 1998, Introduction to discrete signals and inverse problems in civil engineering.
- Scales, J. A., A. Gersztenkorn, e S. Treitel, 1988, Fast ip solution of large, sparse, linear systems: Application to seismic travel time tomography: Journal of Computational Physics, **75**, 314–333.
- Strang, G., 1980, Linear algebra and its applications.
- Wang, Y., R. E. White, e R. G. Pratt, 2000, Seismic amplitude inversion for interface geometry: practical approach for application: Geophysical Journal International, 142, 162–172.
- Worthington, M., 1984, An introduction to geophysical tomography: First Break, 2.
- Zhou, B., e S. A. Greenhalgh, 2003, Crosshole seismic inversion with normalized full-waveform amplitude data: Geophysics, 68, 1320–1330.

A Código do software