

软件分析

常见抽象域和符号抽象

熊英飞 北京大学 **2018**

关系抽象

- •区间分析将每个变量的可能取值抽象成一个区间,不考虑变量之间的关系。
- 这类不考虑变量之间关系的抽象称为非关系抽象。

• 考虑变量之间关系的抽象称为关系抽象。

关系抽象举例: 八边形

假设程序中只有x和y两个变量

区间抽象形成一个矩形

加上4条45度的线来形成八边形

关系抽象举例: 八边形

假设程序中只有x和y两个变量

加上4条45度的线来形成八边形

x的上界 a_1 : $x \le a_1$

x的下界 a_2 : $x \ge a_2$

y的上界 a_3 : y $\leq a_3$

y的下界 a_4 : y ≥ a_4

x+y的上界 a_5 : $x + y \le a_5$

x+y的下界 a_6 : $x+y \ge a_6$

x-y的上界 a_7 : $x-y \leq a_7$

x-y的下界 a_8 : $x - y ≥ a_8$

关系抽象举例: 八边形

x的上界 a_1 : $x \leq a_1$

x的下界 a_2 : $x \ge a_2$

y的上界 a_3 : y $\leq a_3$

y的下界 a_4 : y ≥ a_4

x+y的上界 a_5 : $x+y \leq a_5$

x+y的下界 a_6 : $x+y \ge a_6$

x-y的上界 a_7 : $x-y \leq a_7$

x-y的下界 a_8 : $x - y \ge a_8$

x的上界 $\frac{1}{2}a_1$: + $x + x \le a_1$

x的下界- $\frac{1}{2}a_2$: $-x - x \le a_2$

y的上界 $\frac{1}{2}a_3$: +y + y \le a_3

y的下界 $-\frac{1}{2}a_4$: $-y - y \le a_4$

x+y的上界 a_5 : $+x + y \le a_5$

x+y的下界- a_6 : $-x-y \le a_6$

x-y的上界 a_7 : + $x - y \le a_7$

x-y的下界 $-a_8$: $-x + y \le a_8$

对多个变量进行抽象

- 对任意两个变量记录八边形
- 即 $\pm v_1 \pm v_2 \le a$,其中 v_1, v_2 为程序上的任意变量
- 可用矩阵表示

	+x	- X	+y	-у
+x	10	-	-	-
-X	-	0	-	-
+y	10	5	20	-
-у	-2	5	-	-10

2个变量的矩阵。更多变量需要更大的矩阵。

八边形上的计算

- x = x + 1
 - 将x有关的八边形沿x轴移动1个单位
- $z = x \cup y$
 - 对于任意变量v, 令<z,v>的八边形为包住<x,v>和<y,v>的最小八边形
- $z = x \cap y$
 - 对于任意变量v, 令<z,v>的八边形为包住<x,v>和<y,v>公共部分的最小八边形
- 更多计算方法参考原始论文:
 - Miné A. The octagon abstract domain[J]. Higher-Order and Symbolic Computation, 2006, 19(1):31-100.

八边形计算举例

八边形计算举例

区间计算结果

八边形计算结果

其他数值常用抽象

Collecting semantics: partial traces

Octagons:

$$\pm x \pm y \leqslant a$$

Intervals.

$$\mathbf{x} \in [a,b]$$

Ellipses.

$$\pm \mathbf{x} \pm \mathbf{y} \leqslant a$$
 $\mathbf{x}^2 + b\mathbf{y}^2 - a\mathbf{x}\mathbf{y} \leqslant d$ $-a^{bt} \leqslant \mathbf{y}(t) \leqslant a^{bt}$

Simple congruences:

$$x \equiv a[b]$$

Exponentials:

$$-a^{bt} \leqslant y(t) \leqslant a^{bt}$$

谓词抽象

- 用一系列布尔表达式的值作为抽象域
- 其他很多抽象形式可以看做谓词抽象的一种

- 需要针对谓词设计转换函数
- 如,符号分析可以用谓词抽象表达
 - 对任意变量x,有如下谓词
 - x > 0, x < 0, x = 0

在线抽象解释工具

- 示例: Interproc
 - http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
 - 开源工具
 - 用于展示开源抽象域库APRON的静态分析工具
 - 支持整型、浮点型等运算的分析
 - 支持过程间分析(包括递归函数)
 - 不支持数组、结构体等复杂数据结构、也不支持动态内存分配等

抽象解释是非组合式的

- 程序设计语言的语义通常用组合的方式定义
 - $\mu(x * y + y) = \mu(x * y) + \mu(y) = \mu(x) * \mu(y) + \mu(y)$
- 抽象解释的组合会丢失精度
 - $\sigma(x x) = \sigma(x) \sigma(x)$
- 假设x为1,则
 - $\sigma(1) = \mathbb{I}$
 - 正 正 =槑
- 但实际上执行x-x的结果恒为0

将表达式作为整体抽象

- 我们希望得到表达式整体最精确的抽象
- $\sigma(x-x)=$
- 如何得到这样的整体抽象?
 - 可能的表达式种类无限,无法一一定义

符号抽象Symbolic Abstraction

• 2004年由Tom Reps等人提出

• 利用SMT Solver的求解能力,自动找到函数的整体精确抽象

抽象域计算问题

给定程序和抽象域上的输入,求抽象域上最精确的输出

- •如,给定
 - x=负
 - 求x-x在抽象域上的计算结果
- 答案: 零

逻辑与集合

- 任何逻辑表达式定义了一个集合:满足该表达式的值的集合
 - φ : x > 0
 - 定义了
 - $[\![\varphi]\!]: \{x \mid x > 0\}$
- γ可以写成从抽象值到逻辑表达式的映射
- 子集关系也就对应了逻辑蕴含关系
 - $\llbracket \varphi_1 \rrbracket \subseteq \llbracket \varphi_2 \rrbracket \Leftrightarrow \varphi_1 \to \varphi_2$

- Tom Reps等人2004年的论文提出RSY算法
- 假设抽象域和具体域上定义了如下操作和特殊值
 - · γ从抽象值到SMT表达式的映射
 - i从程序到SMT表达式的映射
 - β从具体值到最小抽象值的映射,即以下式子成立
 - $x \in \gamma(\beta(x)) \land \forall \exists \exists (x \in \gamma(\exists)) \rightarrow (\gamma(\beta(x)) \subseteq \gamma(\exists))$
 - β 为 α 的特例: $\beta(x) = \alpha(\{x\})$
 - 甲□乙: 抽象值的并,即以下式子成立
 - $\gamma(\mathbb{P}) \subseteq \gamma(\mathbb{P} \sqcup \mathbb{Z})$
 - $\gamma(Z) \subseteq \gamma(\Box Z)$
 - \forall 丙: $(\gamma(\mathbb{P}) \subseteq \gamma(\overline{\mathbb{P}}) \land \gamma(\mathbb{Z}) \subseteq \gamma(\overline{\mathbb{P}})) \rightarrow (\gamma(\mathbb{P} \sqcup \mathbb{Z}) \subseteq \gamma(\overline{\mathbb{P}}))$
 - 最小抽象值」使得γ(」) = Ø
- 注意以上操作都是计算机可表示的

- 定理: 假设对具体值的任意集合都存在最小抽象。 给定具体值的集合S,该集合的最小抽象 $\hat{\alpha}(S)$ 满足
 - $\hat{\alpha}(S) = \sqcup \{\beta(x) \mid x \in S\}$
- 证明:
 - ・ 容易证明 $S \subseteq \gamma(\sqcup \{\beta(x) \mid x \in S\})$
 - 接下来用反证法证明 \cup { $\beta(x)$ | $x \in S$ }是最小抽象
 - 假设存在另一个抽象值甲,满足 $S \subseteq \gamma(\mathbb{P})$,且 $\gamma(\mathbb{P}) \subset \gamma(\mathbb{P})$ { $\beta(x) \mid x \in S$ })
 - 那么一定存在 $x \in S$,使得¬ $(\beta(x) \subseteq \gamma(\mathbb{P}))$
 - 即 $\beta(x)$ 不是x的最小抽象,形成矛盾

- 抽象域计算问题:
 - 给定程序p和抽象域上的输入甲,求抽象域上最精确的输出
 - 即: 寻找在输入集合γ(甲)下, p的输出集合的最小抽象
- $\hat{\alpha}(S) = \sqcup \{\beta(x) \mid x \in S\}$
- 基本原理:不断调用SMT Solver寻找S中的元素x,然后将 $\beta(x)$ 并入集合

• 输入: 程序p

• 输入: p的抽象输入 甲

```
result =\bot
While(sat(\dot{\mu}(p) \land \dot{\gamma}(甲) \land \neg \dot{\gamma}(result)))
y=get-model()
result=result \sqcup \beta(y)
return result
```

示例

•程序: x-x

• 输入: x=正

•运行过程:

• result = \bot , $r = x - x \land x > 0 \land \neg (false)$ 可满足,r=0

• result=零, $r = x - x \land x > 0 \land \neg (r = 0)$ 不可满足

•程序结束,返回零

示例

•程序: x+y

• 输入: x=正, y=负

•运行过程:

- result = \bot , $r = x + y \land x > 0 \land y < 0 \land \neg \text{(false)}$ 可满足,r=0
- result=零, $r = x + y \land x > 0 \land y < 0 \land \neg (r = 0)$ 可满足,r=1
- result=槑, $r = x + y \land x > 0 \land y < 0 \land \neg(true)$ 不可 满足
- •程序结束,返回槑

从值的抽象到程序的抽象

- RSY算法可以解决抽象域计算问题
- 如何得到程序的整体精确抽象?
 - 方案1: 在每次需要在抽象域上根据给定输入执行程序的时候,调用RSY算法
 - 需要反复多次调用SMT求解器,开销较大
 - 方案2: 直接采用RSY算法计算程序的抽象

程序的抽象

- 一段程序是从输入到输出的函数
 - 即由输入、输出对组成的集合
- •程序的抽象的记录:可直接记录所有输入对应的输出

f(x)=x+5

f ^虚	输入	输出
	Т	Τ
	正	正
	负	槑
	零	正
27	槑	槑

F	x.v)=x*y
٠.	~,,,,	, ,, ,

f虚		正	负	零	槑	T
	正	正				
	负	负	正			
	零	零	零	零		
	槑	槑	槑	槑	槑	
	Т	Т	Т	Т	Т	Т

程序(函数)抽象的语义

• γ(f^虚)为f^虚上所有输入输出对在具体域上对应的二元组的集合

输入	输出
Т	Т
正	正
负	槑
零	正
槑	槑

$$\gamma(f^{\overline{k}}) =$$
 $\gamma(\bot) \times \gamma(\bot) \cup$
 $\gamma(\Xi) \times \gamma(\Xi) \cup$
 $\gamma(\Phi) \times \gamma(\Xi) \cup$
 $\gamma(\Psi) \times \gamma(\Xi) \cup$
 $\gamma(\Psi) \times \gamma(\Xi) \cup$
 $\gamma(\Psi) \times \gamma(\Psi) \cup$

定义RSY算法需要的操作

- 函数抽象合并
 - $\left(f_1^{\overset{l}{\underline{L}}} \sqcup f_2^{\overset{l}{\underline{L}}}\right)(\mathbb{P}) = f_1^{\overset{l}{\underline{L}}}(\mathbb{P}) \sqcup f_2^{\overset{l}{\underline{L}}}(\mathbb{P})$
 - 即合并对应输入上的输出
- 最小函数抽象
 - f₁虚(_) =1
- β 在函数上的扩展

•
$$\beta([x,y])(\mathbb{H}) = \begin{cases} \bot, & \neg(x \in \gamma(\mathbb{H})) \\ \beta(y), & x \in \gamma(\mathbb{H}) \end{cases}$$

- γ在函数上的扩展:
 - 依次翻译输入输出对
 - [正,负],... 翻译为
 - $x > 0 \rightarrow r < 0 \land \cdots$

用RSY算法抽象程序

• 输入: 程序p

```
result = f_{\perp}^{\not E}

While(sat(\dot{\mu}(p) \land \neg \dot{\gamma}(result)))

y=get-model()

result=result \sqcup \beta(y)

return result
```

示例

- •程序: x-x
- •运行过程:
 - result = $f_{\perp}^{$ \pounds , $r = x x \land \neg(x > 0 \rightarrow false \land \cdots)$ 可满足,[x,r]=[1, 0]
 - result ={[正, 零], [负, \bot], [零, \bot], [槑, 零]}, $r = x x \land \neg(x > 0 \rightarrow r = 0 \land (true \rightarrow r = 0) ...)$ 可满足,[x,r]=[-1, 0]
 - result ={[正, 零], [负, 零], [零, \bot], [槑, 零]}, $r = x x \land \neg(...)$ 可满足,[x,r]=[0, 0]
 - result ={[正,零],[负,零],[零,零],[槑,零]}, $r = x x \land \neg(...)$ 不可满足

符号抽象问题

抽象域计算问题和程序抽象问题可以统一成如下符号抽象问题

- 给定逻辑公式 φ ,抽象域**虚**,寻找抽象域中关于 公式 φ 的最精确抽象甲,即满足
 - $\llbracket \varphi \rrbracket \subseteq \gamma(\mathbb{P}) \land$
 - $\forall Z$: $\llbracket \varphi \rrbracket \subseteq \gamma(Z) \rightarrow \gamma(\Xi) \subseteq \gamma(Z)$

参考资料

- Miné A. The octagon abstract domain[J]. Higher-Order and Symbolic Computation, 2006, 19(1):31-100.
- Thomas W. Reps, Aditya V. Thakur: Automating Abstract Interpretation. VMCAI 2016. 3-40
- MIT抽象解释课程: http://web.mit.edu/afs/athena.mit.edu/course/16/ 16.399/www