Spectral Clustering

Graph Partitioning

• Undirected graph G(V, E):

- Bi-partitioning task:
 - Divide vertices into two disjoint groups A, B

- Questions:
 - How can we define a "good" partition of G?
 - How can we efficiently identify such a partition?

Graph Partitioning

- What makes a good partition?
 - Maximize the number of within-group connections
 - Minimize the number of between-group connections

Graph Cuts

- Express partitioning objectives as a function of the "edge cut" of the partition
- Cut: Set of edges with only one vertex in a group:
 Set of edges with only one vertex in a group:

group:
$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

Graph Cut Criterion

- Criterion: Minimum-cut
 - Minimize weight of connections between groups $\arg\min_{A,B} cut(A,B)$
- Degenerate case:

- Problem:
 - Only considers external cluster connections
 - Does not consider internal cluster connectivity

Graph Cut Criteria

- Criterion: Normalized-cut [Shi-Malik, '97]
 - Connectivity between groups relative to the density of each group

$$ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

vol(A): total weight of the edges with at least one endpoint in A: $vol(A) = \sum_{i \in A} k_i$

- Why use this criterion?
 - Produces more balanced partitions
- How do we efficiently find a good partition?
 - Problem: Computing optimal cut is NP-hard

Spectral Graph Partitioning

- A: adjacency matrix of undirected G
 - A_{ij} =1 if (i, j) is an edge, else 0
- x is a vector in \Re^n with components $(x_1, ..., x_n)$
 - Think of it as a label/value of each node of G
- What is the meaning of $A \cdot x$?

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$y_i = \sum_{j=1}^n A_{ij} x_j = \sum_{(i,j) \in E} x_j$$

• Entry y_i is a sum of labels x_j of neighbors of i

What is the meaning of Ax?

- of neighbors of *j*
- Jth coordinate of $A \cdot x$:

 Sum of the x-values

 $a_{n1} \quad \dots \quad a_{nn} \mid x_1 \mid \vdots \mid = \lambda \mid x_1 \mid \vdots \mid x_n \mid x$
 - Make this a new value at node j

$$A \cdot x = \lambda \cdot x$$

Spectral Graph Theory:

- Analyze the "spectrum" of matrix representing G
- Spectrum: Eigenvectors x_i of a graph, ordered by the magnitude (strength) of their corresponding eigenvalues λ_i : $\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_n\}$ $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$

Example: Graph on 2 components

What if G is not connected?

What are some eigenvectors?

- x = Put all 1s on A and 0s on B or vice versa

 - x' = (1, ..., 1, 0, ..., 0) then $A \cdot x' = (d, ..., d, 0, ..., 0)$ x'' = (0, ..., 0, 1, ..., 1) then $A \cdot x'' = (0, ..., 0, d, ..., d)$
 - And so in both cases the corresponding $\lambda = d$

A bit of intuition:

$$\lambda_n - \lambda_{n-1} \approx 0$$

2nd largest eigval. λ_{n-1} now has value very close to λ_n

More Intuition

More intuition:

 2^{nd} largest eigval. λ_{n-1} now has value very close to λ_n

- If the graph is connected (right example) then we already know that $x_n = (1, ... 1)$ is an eigenvector
- Since eigenvectors are orthogonal then the components of x_{n-1} sum to $\mathbf{0}$.
 - Why? Because $x_n \cdot x_{n-1} = \sum_i x_n[i] \cdot x_{n-1}[i]$
- So we can look at the eigenvector of the 2nd largest eigenvalue and declare nodes with positive label in A and negative label in B.
- But there is still lots to sort out.

Matrix Representations

- Adjacency matrix (A):
 - n×n matrix
 - $A = [a_{ij}], a_{ij} = 1$ if edge between node i and j

	1	2	3	4	5	6
1	0	1	1	0	1	0
2	1	0	1	0	0	0
3	1	1	0	1	0	0
4	0	0	1	0	1	1
5	1	0	0	1	0	1
6	0	0	0	1	1	0

- Important properties:
 - Symmetric matrix
 - Eigenvectors are real and orthogonal

Matrix Representations

- Degree matrix (D):
 - $n \times n$ diagonal matrix
 - $D=[d_{ii}], d_{ii}=$ degree of node i

	1	2	3	4	5	6
1	3	0	0	0	0	0
2	0	2	0	0	0	0
3	0	0	3	0	0	0
4	0	0	0	3	0	0
5	0	0	0	0	3	0
6	0	0	0	0	0	2

Matrix Representations

- Laplacian matrix (L):
 - $\blacksquare n \times n$ symmetric matrix

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

What is trivial eigenpair?

$$L = D - A$$

- x=(1,...,1) then $L\cdot x=0$ and so $\lambda=\lambda_1=0$
- Important properties:
 - Eigenvalues are non-negative real numbers
 - Eigenvectors are real and orthogonal

Facts about the Laplacian L

- (a) All eigenvalues are ≥ 0
- **(b)** $x^T L x = \sum_{ij} L_{ij} x_i x_j \ge 0$ for every x

(c)
$$L = N^T \cdot N$$

- That is, L is positive semi-definite
- Proof:
 - (c) \Rightarrow (b): $x^T L x = x^T N^T N x = (xN)^T (Nx) \ge 0$
 - As it is just the square of length of Nx
 - **(b)** \Rightarrow **(a)**: Let λ be an eigenvalue of L. Then by **(b)** $x^T L x \ge 0$ so $x^T L x = x^T \lambda x = \lambda x^T x \Rightarrow \lambda \ge 0$
 - (a) \Rightarrow (c): is also easy! Do it yourself.

λ₂ as optimization problem

Fact: For symmetric matrix M:

$$\lambda_2 = \min_{x} \frac{x^T M \ x}{x^T x}$$

• What is the meaning of min x^TLx on G?

•
$$x^{T}L x = \sum_{i,j=1}^{n} L_{ij} x_{i} x_{j} = \sum_{i,j=1}^{n} (D_{ij} - A_{ij}) x_{i} x_{j}$$

$$= \sum_{i} D_{ii} x_i^2 - \sum_{(i,j) \in E} 2x_i x_j$$

$$= \sum_{(i,j)\in E} (x_i^2 + x_i^2 - 2x_i x_j) = \sum_{(i,j)\in E} (x_i - x_j)^2$$

Node i has degree d_i . So, value x_i^2 needs to be summed up d_i times. But each edge (i,j) has two endpoints so we need $x_i^2 + x_i^2$

$$\lambda_2 = \min_{x} \frac{x^T M x}{x^T x}$$

- Write x in axes of eigenvecotrs $w_1, w_2, ..., w_n$ of **M**. So, $x = \sum_{i=1}^{n} \alpha_i w_i$
- Then we get: $Mx = \sum_i \alpha_i \underline{M} \underline{w_i} = \sum_i \alpha_i \lambda_i w_i$ $\lambda_i w_i$
- So, what is $x^T M x$?
 - $=\sum_{i} \alpha_{i} \lambda_{i} w_{i} w_{i} = \sum_{i} \lambda_{i} \alpha_{i}^{2}$
 - To minimize this over all unit vectors x orthogonal to: w = min over choices of $(\alpha_1, ... \alpha_n)$ so that: $\sum \alpha_i^2 = 1$ (unit length) $\sum \alpha_i = 0$ (orthogonal to w_1)
 - To minimize this, set $\alpha_2 = 1$ and so $\sum_i \lambda_i \alpha_i^2 = \lambda_2$

λ₂ as optimization problem

What else do we know about x?

- x is unit vector: $\sum_i x_i^2 = 1$
- x is orthogonal to 1^{st} eigenvector (1, ..., 1) thus:

$$\sum_{i} x_{i} \cdot \mathbf{1} = \sum_{i} x_{i} = \mathbf{0}$$

Remember:

$$\lambda_{2} = \min_{\substack{\text{All labelings} \\ \text{of nodes } i \text{ so} \\ \text{that } \sum x_{i} = 0}} \frac{\sum_{(i,j) \in E} (x_{i} - x_{j})^{2}}{\sum_{i} x_{i}^{2}}$$

We want to assign values x_i to nodes i such that few edges cross 0.

(we want x_i and x_j to subtract each other)

Balance to minimize

Find Optimal Cut [Fiedler'73]

- Back to finding the optimal cut
- Express partition (A,B) as a vector

$$y_i = \begin{cases} +1 & if \ i \in A \\ -1 & if \ i \in B \end{cases}$$

• We can minimize the cut of the partition by finding a non-trivial vector \underline{x} that minimizes:

$$\underset{y \in [-1,+1]^n}{\operatorname{argmin}} f(y) = \sum_{(i,j) \in E} (y_i - y_j)^2$$

Can't solve exactly. Let's relax y and allow it to take any real value.

Rayleigh Theorem

$$\min_{y \in \mathbb{R}^n} f(y) = \sum_{(i,j) \in E} (y_i - y_j)^2 = y^T L y$$

- $\lambda_2 = \min_y f(y)$: The minimum value of f(y) is given by the 2nd smallest eigenvalue λ_2 of the Laplacian matrix L
- $\mathbf{x} = \underset{\mathbf{y}}{\operatorname{arg\,min}} \mathbf{y} f(\mathbf{y})$: The optimal solution for \mathbf{y} is given by the corresponding eigenvector \mathbf{x} , referred as the Fiedler vector

Approx. Guarantee of Spectra Details!

- Suppose there is a partition of **G** into **A** and **B** where $|A| \le |B|$, s.t. $\alpha = \frac{(\# edges \ from \ A \ to \ B)}{|A|}$ then $2\alpha \ge \lambda_2$
 - This is the approximation guarantee of the spectral clustering. It says the cut spectral finds is at most $\mathbf{2}$ away from the optimal one of score $\boldsymbol{\alpha}$.
- Proof:
 - Let: a=|A|, b=|B| and e= # edges from A to B
 - lacksquare Enough to choose some x_i based on lacksquare and lacksquare such

that:
$$\lambda_2 \leq \frac{\sum (x_i - x_j)^2}{\sum_i x_i^2} \leq 2\alpha$$
 (while also $\sum_i x_i = 0$)

 λ_2 is only smaller

pprox. Guarantee of Spectra Details!

Proof (continued):

• 1) Let's set:
$$x_i = \begin{cases} -\frac{1}{a} & \text{if } i \in A \\ +\frac{1}{b} & \text{if } i \in B \end{cases}$$

• Let's quickly verify that $\sum_i x_i = 0$: $a\left(-\frac{1}{a}\right) + b\left(\frac{1}{b}\right) = \mathbf{0}$

■ 2) Then:
$$\frac{\sum (x_i - x_j)^2}{\sum_i x_i^2} = \frac{\sum_{i \in A, j \in B} \left(\frac{1}{b} + \frac{1}{a}\right)^2}{a\left(-\frac{1}{a}\right)^2 + b\left(\frac{1}{b}\right)^2} = \frac{e \cdot \left(\frac{1}{a} + \frac{1}{b}\right)^2}{\frac{1}{a} + \frac{1}{b}} = e\left(\frac{1}{a} + \frac{1}{b}\right) \le e\left(\frac{1}{a} + \frac{1}{a}\right) \le e\left(\frac{1}{a}\right) \le e\left(\frac{1}{$$

$$e\left(\frac{1}{a} + \frac{1}{b}\right) \le e\left(\frac{1}{a} + \frac{1}{a}\right) \le e^{\frac{2}{a}} = 2\alpha$$

than twice the OPT cost

e ... number of edges between A and B

Approx. Guarantee of Spectra Details!

Putting it all together:

$$2\alpha \geq \lambda_2 \geq \frac{\alpha^2}{2k_{max}}$$

- where k_{max} is the maximum node degree in the graph
 - Note we only provide the 1st part: $2\alpha \geq \lambda_2$
 - We did not prove $\lambda_2 \geq \frac{\alpha^2}{2k_{max}}$
- lacktriangle Overall this always certifies that λ_2 always gives a useful bound

So far...

- How to define a "good" partition of a graph?
 - Minimize a given graph cut criterion
 - How to efficiently identify such a partition?
 - Approximate using information provided by the eigenvalues and eigenvectors of a graph
 - Spectral Clustering

Spectral Clustering Algorithms

Three basic stages:

- 1) Pre-processing
 - Construct a matrix representation of the graph
- 2) Decomposition
 - Compute eigenvalues and eigenvectors of the matrix
 - Map each point to a lower-dimensional representation based on one or more eigenvectors
- 3) Grouping
 - Assign points to two or more clusters, based on the new representation

Spectral Partitioning Algorithm

1) Pre-processing:

 Build Laplacian matrix L of the graph

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

2) Decomposition:

0.0 1.0 3.0 3.0 4.0

X =	0.4	0.3	-0.5	-0.2	-0.4	-0.5
	0.4	0.6	0.4	-0.4	0.4	0.0
	0.4	0.3	0.1	0.6	-0.4	0.5
	0.4	-0.3	0.1	0.6	0.4	-0.5
	0.4	-0.3	-0.5	-0.2	0.4	0.5
	0.4	-0.6	0.4	-0.4	-0.4	0.0

Find eigenvalues A
and eigenvectors x
of the matrix $oldsymbol{L}$

	2
Map vertices to	3
corresponding	4
components of λ_2	5
1 2 2 2 2 2 2	6

1	0.3	
2	0.6	
3	0.3	
4	-0.3	
5	-0.3	
6	-0.6	

How do we now find the clusters?

Spectral Partitioning

- 3) Grouping:
 - Sort components of reduced 1-dimensional vector
 - Identify clusters by splitting the sorted vector in two
- How to choose a splitting point?
 - Naïve approaches:
 - Split at 0 or median value
 - More expensive approaches:
 - Attempt to minimize normalized cut in 1-dimension (sweep over ordering of nodes induced by the eigenvector)

1	0.3
2	0.6
3	0.3
4	-0.3
5	-0.3
6	-0.6

Split at 0:

Cluster A: Positive points

Cluster B: Negative points

1	0.3
2	0.6
3	0.3

4	-0.3
5	-0.3
6	-0.6

Example: Spectral Partitioning

Example: Spectral Partitioning

Example: Spectral partitioning

