Estructuras Algebraicas Segundo examen parcial	1 ^{er} Apellido:	30 de mayo de 2014 Tiempo 2 h.
Departamento Matem. aplic. TIC ETS de Ingenieros Informáticos Universidad Politécnica de Madrid	Nombre: Número de matrícula:	Calificación:

Ejercicio 1 (2,5 puntos)

Indicar justificadamente cuáles son los elementos del anillo cociente $\mathbb{Z}[i]/\langle 4-i\rangle$ y calcular el cardinal del conjunto: $|\mathbb{Z}[i]/\langle 4-i\rangle|$

Ejercicio 2 (2,5 puntos)

Se considera el anillo $(\mathbb{R}, \oplus, \odot)$ donde las operaciones de suma y producto están definidas por $r \oplus s = r + s + 1$, $r \odot s = rs + r + s$. Estudiar si $(\mathbb{R}, \oplus, \odot)$ es isomorfo a $(\mathbb{R}, +, \cdot)$, siendo $+ y \cdot$ las operaciones usuales de suma y producto de números reales.

Ejercicio 3 (2,5 puntos)

Encontrar todos los homomorfismos de anillos $f: \mathbb{Z}_{12} \to \mathbb{Z}_6$. Para cada uno de ellos calcular su núcleo y su imagen.

Ejercicio 4 (2,5 puntos)

- 1. Determinar el polinomio mínimo de $\alpha = \sqrt{3 + \sqrt{3}}$ sobre $\mathbb Q$
- 2. Obtener una base y el grado de extensión de $\mathbb{Q}(\sqrt{3+\sqrt{3}})$ sobre \mathbb{Q}
- 3. Indicar justificadamente si existe una relación de igualdad o de contenido entre $\mathbb{Q}(\sqrt{3+\sqrt{3}})$ y $\mathbb{Q}(\sqrt{3})$

Soluciones

Ejercicio 1

 $n \in \mathbb{Z} \cap \langle 4-i \rangle \Leftrightarrow \text{existe } a+bi \in \mathbb{Z}[i] \text{ tal que } n=(a+bi)(4-i)=(4a+b)+(4b-a)i \in \mathbb{Z} \Leftrightarrow \text{existen } a,b \in \mathbb{Z} \text{ tales que } n=4a+b \text{ y } 4b-a=0 \Leftrightarrow \text{existe } b \in \mathbb{Z} \text{ tal que } n=17b. \text{ Es decir: } n \in \mathbb{Z} \cap \langle 4-i \rangle \Leftrightarrow n \in 17\mathbb{Z} \text{ Entonces, para todo } a+bi \in \mathbb{Z}[i] \text{ es } a+bi=b(4-i)+(a+4b), \text{ y por el algoritmo de la división en } \mathbb{Z}, \text{ existen } q,r \in \mathbb{Z} \text{ tales que } a+4b=17q+r \text{ con } 0 \leq r < 17, \text{ por tanto } a+bi=b(4-i)+(a+4b)=b(4-i)+17q+r \text{ de donde se deduce que } [a+bi]_{\langle 4-i \rangle}=[r]_{\langle 4-i \rangle} \text{ con } 0 \leq r < 17, \text{ por tanto } |\mathbb{Z}[i]/\langle 4-i \rangle|=17 \text{ y}$

$$\mathbb{Z}[i]/\langle 4-i\rangle = \{[r]_{\langle 4-i\rangle} : r \in \mathbb{Z} \text{ con } 0 \le r < 17\}$$

Ejercicio 2

Teniendo en cuenta que el elemento neutro de la suma en $(\mathbb{R}, \oplus, \odot)$ es $e_{\oplus} = -1$ y el elemento identidad es $1_{\odot} = 0$, se define $\varphi : (\mathbb{R}, \oplus, \odot) \to (\mathbb{R}, +, \cdot)$ como $\varphi(r) = r + 1$. Veamos que es isomorfismo de anillos:

- 1. $\varphi(r \oplus s) = \varphi(r+s+1) = r+s+2 = (r+1)+(s+1) = \varphi(r)+\varphi(s)$
- 2. $\varphi(r \odot s) = \varphi(rs + r + s) = rs + r + s + 1 = (r + 1) \cdot (s + 1) = \varphi(r) \cdot \varphi(s)$
- 3. $\ker(\varphi) = \{r \in \mathbb{R} : r+1=0\} = \{-1\} = \{e_{\oplus}\}$, por tanto φ es inyectiva
- 4. para todo $r \in \mathbb{R}$ existe $s = r 1 \in \mathbb{R}$ tal que $\varphi(s) = s + 1 = (r 1) + 1 = r$, por tanto φ es suprayectiva

Se deduce que $(\mathbb{R}, \oplus, \odot)$ y $(\mathbb{R}, +, \cdot)$ son anillos isomorfos.

Ejercicio 3

 $f([1]_{12}) \in \{[0]_6, [1]_6, [3]_6, [4]_6\}$

- 1. Si $f([1]_{12}) = [0]_6$ se tiene que $\ker(f) = \mathbb{Z}_{12}$ y $f(\mathbb{Z}_{12}) = \{[0]_6\}$
- 2. Si $f([1]_{12}) = [1]_6$ se tiene que $\ker(f) = \{[0]_{12}, [6]_{12}\}$ y $f(\mathbb{Z}_{12}) = \mathbb{Z}_6$
- 3. Si $f([1]_{12}) = [3]_6$ se tiene que $\ker(f) = \{[0]_{12}, [2]_{12}, [4]_{12}, [6]_{12}, [8]_{12}, [10]_{12}\}$ y $f(\mathbb{Z}_{12}) = \{[0]_6, [3]_6\}$
- 4. Si $f([1]_{12}) = [4]_6$ se tiene que $\ker(f) = \{[0]_{12}, [3]_{12}, [6]_{12}, [9]_{12}\}$ y $f(\mathbb{Z}_{12}) = \{[0]_6, [2]_6, [4]_6\}$

Ejercicio 4

- 1. Con manejo algebraico sobre α se obtiene el polinomio $x^4 6x^2 + 6 \in \mathbb{Q}[x]$, que es irreducible por el criterio de Eisenstein para p = 2, luego es el polinomio mínimo $\alpha = \sqrt{3 + \sqrt{3}}$ sobre \mathbb{Q}
- 2. Por el apartado anterior sabemos que $[\mathbb{Q}(\sqrt{3}+\sqrt{3}):\mathbb{Q}]=4$. Una base de $\mathbb{Q}(\sqrt{3}+\sqrt{3})$ sobre \mathbb{Q} es: $B_{\mathbb{Q}(\sqrt{3}+\sqrt{3})}=\{1,\sqrt{3},\sqrt{3}+\sqrt{3},\sqrt{9}+3\sqrt{3}\}$
- 3. Con manejo algebraico sobre $\beta=\sqrt{3}$ se obtiene el polinomio $x^2-3\in\mathbb{Q}[x]$, que es irreducible por el criterio de Eisenstein para p=3, por tanto es el polinomio mínimo de β sobre \mathbb{Q} , de donde se deduce que $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]=2$, por tanto $\mathbb{Q}(\sqrt{3}+\sqrt{3})\neq\mathbb{Q}(\sqrt{3})$. Una base de $\mathbb{Q}(\beta)$ sobre \mathbb{Q} es $B_{\mathbb{Q}(\sqrt{3})}=\{1,\sqrt{3}\}\subset\{1,\sqrt{3},\sqrt{3}+\sqrt{3},\sqrt{9}+3\sqrt{3}\}=B_{\mathbb{Q}(\sqrt{3}+\sqrt{3})}$ por tanto $\mathbb{Q}(\sqrt{3})\subset\mathbb{Q}(\sqrt{3}+\sqrt{3})$