Every DFA is an NFA, but not vice versa But there is an equivalent DFA for every NFA

$$\int_{S} \int_{Q} \left(\frac{Q \times 2 \rightarrow Q}{\sqrt{2}} \right) = Q \times 2 \rightarrow 2^{Q}$$

NFA ~ DFA

L = { Set of all strings over (0,1) that starts with '0' }

NFA ~ DFA

L = { Set of all strings over (0,1) that starts with '0' }

$$\frac{2}{A} \xrightarrow{0} B$$

	0	- 1	
A	В	φ	
В	В	В	

DFA	<u>></u> (A)<	→B
	(c) 0,1	•

C - Dead State / Trap State

Subset construction method

Find the equivalent DFA for the NFA given by $M = [\{A,B,C\}, (a,b), \delta, A, \{C\}]$ where δ is given by:

AB

AB

130

where

 δ is given by:

	a	b
→A	AB	C
В	A	В
0	_	A,B

Given below is the NFA for a language

L = { Set of all strings over (0,1) that ends with '01' }. Construct its equivalent DFA

Design an NFA for a language that accepts all strings over {0,1} in which the second last symbol is always '1'. Then convert it to its equivalent DFA.

11010 1100

DFA

Given below is the NFA for a language

L = { Set of all strings over (0,1) that ends with '01' }. Construct its equivalent DFA

second last symbol is always 1. Then content in to its equivalent of the

Eg. 1010101