Electromagnetism and Geometry

电磁与几何

(preliminary draft updated August 2023)

李思 (Si Li)

Tsinghua University

Thanks very much for your support of this book! It is greatly appreciated if you are willing to help improve it by sending your comments such as typo, mistake or suggestion at your tea time. You are welcome to submit your comment via either the website

https://www.wjx.cn/vm/eITIr9H.aspx

or the barcode below

You can also contact me at sili@mail.tsinghua.edu.cn. The draft will be updated on my homepage: https://sili-math.github.io/. Thank you.

Contents

Preface	reface				
Chapte	er 1 Introduction: Maxwell's Equations	7			
1.1	Hodge Star	8			
1.2	Maxwell's Equations	11			
1.3	Conservation Law of Charge				
1.4	Coulomb's Law				
1.5	Ampère's Law				
1.6	Biot-Savart Law				
1.7	Gauss's Linking Formula				
1.8	Faraday's Law				
1.9	Ampère-Maxwell Law	23			
1.10	Potential and Gauge	24			
Chapte	er 2 Static Electromagnetism	27			
2.1	Electric Field and Scalar Potential	27			
	2.1.1 Poisson's and Laplace's equation	27			
	2.1.2 Point Charge	28			
	2.1.3 Uniform Ball	29			
	2.1.4 Line Charges	30			
2.2	Interface Condition	33			
	2.2.1 Infinite Plane Charge	33			
	2.2.2 Spherical Shell	36			
	2.2.3 Interface Condition	37			
	2.2.4 Electric Conductor	38			
2.3	Boundary Value Problem	39			
	2.3.1 Uniqueness	40			
	2.3.2 Green's Function	41			
	2.3.3 Method of Image	43			
2.4	Electric Dipole and Dielectric Polarisation	45			
	2.4.1 Electric Multipole Expansion	45			
	2.4.2 The Electric Dipole	47			

	2.4.3 Dielectric Matter	48
2.5	Magnetic Field and Vector Potential	50
	2.5.1 Magnetic Field	51
	2.5.2 Interface Condition	55
2.6	Magnetic Moment and Magnetic Dipole	56
	2.6.1 Magnetic Moment	56
	2.6.2 Magnetic Dipole Layers	60
2.7	Linking and Magnetic Helicity	61
2.8	Dirac Monopole	63
Chapt	er 3 Electrodynamics	66
3.1	Force and Energy	66
	3.1.1 Lorentz Force	66
	3.1.2 Electromagnetic Energy	68
3.2	Electromagnetic Induction	71
	3.2.1 Electromotive Force and Flux Rule	71
	3.2.2 Mutual Inductance	
	3.2.3 Self Inductance	75
	3.2.4 Magnetostatic Energy	76
3.3	Electromagnetic Wave	77
	3.3.1 Wave Equation	77
	3.3.2 Plane Waves	78
	3.3.3 Polarization	79
	3.3.4 Wave Packets	81
3.4	Green's Functions	82
	3.4.1 Wave Equation with Source	82
	3.4.2 Green's Function for the Wave Equation	84
	3.4.3 Retarded and Advanced Solutions	85
3.5	Dipole Radiation	87
	3.5.1 Spherical Wave	87
	3.5.2 Electric Dipole Radiation	88
3.6	Moving Point Charge	92
3.7	Scattering	97
Chapt	er 4 $U(1)$ Gauge Theory	100
4.1	Fiber bundle	100
	4.1.1 Fiber Bundle	100
	4.1.2 Vector Bundle	106
	4.1.3 Principal Bundle	109
4.9	U(1) connection and Parallel Transport	111

	4.2.1	Vertical Vector Field	. 112
	4.2.2	Connection 1-form	. 113
	4.2.3	Horizontal Vector	. 114
	4.2.4	Parallel Transport	. 116
4.3	Curva	ture and Chern Class	. 118
	4.3.1	Curvature 2-form	. 118
	4.3.2	Holonomy and Curvature	. 120
	4.3.3	Chern Class	. 121
4.4	Local	Gauge and Transition	. 123
	4.4.1	Local Gauge 1-form via Trivialization	. 123
	4.4.2	Connection via Transition Functions	. 126
4.5	Gauge	Transformation	. 129
	4.5.1	Gauge Transformation	. 129
	4.5.2	Local v.s. Global Gauge Transformations	. 132
4.6	Maxwe	ell Theory as $U(1)$ -gauge Theory	. 134
	4.6.1	Potential as Gauge 1-form	. 134
	4.6.2	Electromagnetic Field as Curvature	. 134
	4.6.3	Maxwell Action	. 135
	4.6.4	Gauge Principle and Charge Conservation	. 136
	4.6.5	Magnetic Monopole	. 136
4.7	Associ	ated Bundle and Matter Field	. 138
	4.7.1	Associated Vector Bundle	. 138
	4.7.2	Hermitian Inner Product	. 139
	4.7.3	Covariant Derivative	. 140
	4.7.4	Matter Wave Function	. 141
Chapte	n K D	Electromagnetism and Special Relativity	143
5.1		tz Transformation	
0.1	5.1.1	Lorentz Group	
	5.1.2	Transformation of Tensor Fields	
	5.1.3	Invariance of Inner Contraction	
5.2		tz Invariance of Maxwell's Equations	
0.2	5.2.1	Transformation of Electromagnetic Fields	
	5.2.2	Transformation of Charge-Current Density	
	5.2.3	Transformation of Maxwell's Equations	
5.3		vistic Lorentz Force Law	
0.0	5.3.1	Non-relativistic Charged Particle	
	5.3.2	Relativistic Charged Particle	
	0.0.4	Teaminable Charged I arricle	. 100
Bibliog	raphy		157

Preface

In April 2021, Qiuzhen College (求真书院) was newly established at Tsinghua University under the leadership of Professor Shing-Tung Yau. It homes the distinguished elite mathematics program in China starting in 2021: the "Yau Mathematical Sciences Leaders Program" (丘成桐数学科学领军人才培养计划). This program puts strong emphasis on basic sciences related to mathematics in a broad sense. Though majored in mathematics, students in this program are required to study fundamental theoretical physics such as classical mechanics, electromagnetism, quantum mechanics, and statistical mechanics, in order to understand global perspectives of theoretical sciences. It is an exciting challenge both for students and for instructors.

This preliminary note is written for the course "Electrodynamics" that I lectured at Qiuzhen College in the spring semester of 2023. The lecture note consists of two parts. The first
part is to explain key physics ingredients of electromagnetism, such as Maxwell's equations,
electrostatics, magnetostatics, electromagnetic waves, radiation, scattering, etc. The second
part is of geometric nature, which explains Maxwell theory as U(1)-gauge theory in terms of
fiber bundle theory, as well as its consistency with special relativity. We emphasize on different
faces of concrete examples in order to understand the bridge between physics and mathematics.
This note is in succession to [10] in this series, and assumes basic knowledge on differential
forms and vector fields. Readers can consult [10] for preliminary geometric backgrounds.

I greatly appreciate the "Notes Taker Program" at Qiuzhen College, which has triggered and supported the production of this note. A preliminary version of this note was carefully typed by Yang Peng (杨鹏) all the way along the course, and I am extremely grateful to his great job for Notes Taker. I would also like to thank Zhou Jiawei (周嘉伟)、Dingxu Zhihan (丁徐祉晗)、Liu Jiuhe (刘九和) and Quan Hanwen (权翰文) for their help on proofreading of the first version of this note.

@ Jingzhai (静斋) June, 2023

This is a drawing by my daughter expressing herself with her brother. I found it interesting as it illustrates precisely the essence of electromagnetism on the coupling of electric and magnetic fields as well as the topological nature of Maxwell's equations.