Course No: 01 Course Title: Introduction to Computer Programming

Course Code: CSE 1101

Credit: 3.00

Pre-Requisites: Nil
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

To become a successful computer professional, one must have in-depth knowledge on computer programming. This course will establish the foundation of programming among the students.

- 1. Receive a basic knowledge of programming and the ability of reading with understanding programs.
- 2. Able to solve basic programming problems using a variety of skills and strategies.
- 3. Examine working programs to identify their structures and apply appropriate techniques to create entry-level programs

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Learn how to begin journey into programming	Programming, Programming Language, Compiler, IDE	Lecture	Quiz
a.	Learn C Programming Basics	Header File C Printf and Scanf Functions Keywords Variables Data Types Constants Comments Operators	Lecture Exercise Demonstration	Quiz Assignment Practical Exam
a.	Verify control statements	If Statement in C If Else Statement in C	Lecture Exercise	Quiz Assignment Practical
b.	Apply control structures	If and Else If Ladder Statement Switch Statement	Demonstration	Exam
a.	Explain functions			
b.	Apply functions and recursion	Function In C Introduction with Example Function: Example with	Lecture Assig Exercise Pra	Quiz
c.	Explain scope rules and storage classes	Parameters Function: Example with Parameters Function: Call by Value		Assignment Practical
d.	Distinguish between local and global variables	Function : Call by Reference Recursion in C		Exam
a.	Implement loops	For loop While loop do-while loop	Lecture Exercise Demonstration	Quiz Assignment Practical Exam
a.	Apply arrays, strings and pointers Differentiate among	Array in C Array example (Input and Output in an Array) 2D Array example	Lecture Exercise Demonstration	Quiz Assignment Practical Exam

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
b.	arrays, strings and pointers	Passing array to function Pointer to Pointer Pointer Arithmetic Dynamic Memory Allocation Malloc String in C C Gets and Puts Method C String Function C Math Function		
a.	Explain user defined data types	User defined data type: structures, unions, enumeration;	Lecture Exercise Demonstration	Quiz Assignment Practical Exam
a.	Explain input-output	Input and output: standard input and output, formatted input and output	Lecture Exercise Demonstration	Quiz Assignment Practical Exam
a.	Apply file I/O	File Handling Write Data to File File Handling Read Data to File C Pre Processor Directive with Example	Lecture Exercise Demonstration	Quiz Assignment Practical Exam
a.	Explain and apply argument list	Variable length argument list; Command line parameters	Lecture Exercise Demonstration	Quiz Assignment Practical Exam

	Authors	Book Name
1.	Reema Thareja	Computer fundamentals and programming
2.	Peter Prinz	C in a Nutshell: The Definitive Reference
3.	Y. Kanitkar	Let Us C
4.	H. Schildt	Teach yourself C
5.	H. Schildt	C: The Complete Reference
6.	Griffiths David	Head First C
7.	Kernighan & Ritchie	The C programming language
8.	Peter Van Der Linden	Expert C programming
C	N. 02	

Course No: 02 Course Title: Introduction to Computer Programming Lab

Course Code: CSE 1102

Credit: 1.5

Pre-Requisites: Nil
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Lab Final Exam: 60 Marks **Viva:** 30 Marks **Class Attendance:** 10 Marks

11.1 Rationale:

To become a successful computer professional, one must have in-depth knowledge on computer programming. This course will establish the foundation of programming among the students.

- 1. Receive a basic knowledge of programming and the ability of reading with understanding programs.
- 2. Able to solve basic programming problems using a variety of skills and strategies.
- 3. Examine working programs to identify their structures and apply appropriate techniques to create entry-level programs

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Learn how to begin journey into programming	Programming, Programming Language, Compiler, IDE	Lecture	Quiz
a.	Learn C Programming Basics	Header File C Printf and Scanf Functions Keywords Variables Data Types Constants Comments Operators	Lecture Exercise Demonstration	Quiz Assignment Practical Exam
a.	Verify control statements	If Statement in C If Else Statement in C If and Else If Ladder Statement	Lecture Exercise Demonstration	Quiz Assignment Practical
b.	Apply control structures	Switch Statement	Bemonstration	Exam
b. c.	Explain functions Apply functions and recursion Explain scope rules and storage classes	Function In C Introduction with Example Function: Example with Parameters Function: Call by Value	Lecture Exercise Demonstration	Quiz Assignment Practical Exam
d.	Distinguish between local and global variables	Function : Call by Reference Recursion in C		Exam
a.	Implement loops	For loop While loop do-while loop	Lecture Exercise Demonstration	Quiz Assignment Practical Exam
a.	Apply arrays, strings and pointers	Array in C Array example (Input and		
b.	Differentiate among arrays, strings and pointers	Output in an Array) 2D Array example Passing array to function Pointer to Pointer Pointer Arithmetic Dynamic Memory Allocation Malloc String in C C Gets and Puts Method C String Function C Math Function	Lecture Exercise Demonstration	Quiz Assignment Practical Exam
a.	Explain user defined data types	User defined data type: structures, unions, enumeration;	Lecture Exercise Demonstration	Quiz Assignment Practical Exam
a.	Explain input-output	Input and output: standard	Lecture	Quiz

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
		input and output, formatted input and output	Exercise Demonstration	Assignment Practical Exam
a.	Apply file I/O	File Handling Write Data to File File Handling Read Data to File C Pre Processor Directive with Example	Lecture Exercise Demonstration	Quiz Assignment Practical Exam
a.	Explain and apply argument list	Variable length argument list; Command line parameters	Lecture Exercise Demonstration	Quiz Assignment Practical Exam

11000					
	Authors	Book Name			
1.	Reema Thareja	Computer fundamentals and programming			
2.	Peter Prinz	C in a Nutshell: The Definitive Reference			
3.	Y. Kanitkar	Let Us C			
4.	H. Schildt	Teach yourself C			
5.	H. Schildt	C: The Complete Reference			
6.	Griffiths David	Head First C			
7.	Kernighan & Ritchie	The C programming language			
8.	Peter Van Der Linden	Expert C programming			
Com	and No. 02	Yannaa Titlaa Diganata Mathamatica			

Course No: 03 **Course Title: Discrete Mathematics**

Course Code: CSE-1103 Pre-Requisites: Nil

Credit: 3.00

Total Marks: 100 Contact Hours: 3 Hours/Week

Mark Distribution:

Class Attendance: 08 Marks **Semester Final Exam:** 72 Marks Class Test: 20 Marks

11.1 Rationale:

To be a computer professional, one needs to have solid background on mathematical logic, number theory, functions and relations, graphs, trees.

- 1. Explain mathematical logic and set theory deeply.
- 2. Be able to apply number theory, functions and relations.
- 3. Have in depth understanding of and be able to construct graphs and trees.

	11.3	11.4		11.5	11.6
	Learning Outcomes	Course Cont	tent	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Describe logic	Mathematical	Logic:	Lecture	Quiz
b.	Apply logical operations	Statements and Connectives:	Notation. Negation,	Exercise Demonstration	Short Answer Assignment

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
c.	State and prove Normal Forms, Ordering Quantifiers, Predicates formulas	Conjunction, Disjunction, Statement Formulas and Truth Tables. Conditional and Biconditional. Tautologies. Equivalence of Formulas. Duality Law. Tautological Implications. Normal Forms, Ordering and Uniqueness of Normal Forms. Rules of Inference. Methods of Proof. Predicate Calculus: Predicates, Statement Function, Variables, and Quantifiers, Predicate Formulas, Free and Bound Variables, The Universe of Discourse. Rules of Inference: Universal Specification & Generalization, Existential Specification & Generalization, Mathematical Induction		
a.	Apply and Analyse Modular Arithmetic and the Euclidean Algorithm	Elements of Number Theory: Modular Arithmetic, and The Euclidean Algorithm	Lecture Exercise Demonstration	Quiz Short Answer Exercise
a. b.	Describe Relation of function Apply Properties of binary Relation Composition of binary relation, relation matrix Determine celling function and Hashing function	Relations and Functions: Properties of Binary Relations, Composition of Binary Relations, Relation matrix and Graph of a Relation. Functions: Characteristic function, Floor function, Ceiling function and Hashing functions.	Lecture Exercise Demonstration	Quiz Short Answer Assignment
a.	Define Graph	Graphs: Introduction, definition and terminology, graph		
b.	Construct graph Apply graph traversal techniques	representations, traversals, connected components and spanning trees, shortest path and transitive closure, activity networks, topological sort and critical paths, enumerating all paths	Lecture Exercise Demonstration	Short Answer Exercise
a.	Identify Tree	Trees: Basic terminology,		
b.	Construct Tree	Binary trees, binary tree representations, binary tree		
c.	Analyse Tree	traversal; Binary search tree, tree search, Insert into a search tree, tree sort algorithm, deletion from a search tree, Building a binary search tree, Inserting a node, AVL trees, Forming a heap	Lecture Exercise Demonstration	Short Answer Exercise
a.	Identify groups	Elements of Group Theory: Semi groups, Isomorphism and Homomorphism of Semi groups,	Lecture Exercise Demonstration	Short Answer Exercise

11.3	11.4	11.5	11.6
Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
	Groups, Group Homomorphism.		

	Authors	Book Name
1.	SeymorLipschutz and, Marc Lipson	Schaum's Outline of Discrete Mathematics
2.	K. H.Rosen	Discrete Mathematics and its Applications
3.	Koleman& Busby	Discrete Mathematical Structures for Computer Science
4.	Trembley&Manohar	Discrete Mathematical Structures with Applications to Computer Science

Course No: 04 Course Title: Fundamentals of Electrical and Electronics

Course Code: EEE 1101

Credit: 3.00

Contact Hours: 3 Hours/Week

Pre-Requisites: Nil Total Marks: 100

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

To be a computer engineer, one needs to study and apply electricity and electromagnetism in different electrical applications.

- 1. To understand about concept of current, voltage and power.
- 2. To learn and study of DC network theorems and solve circuits.
- 3. To know about magnetic circuits and different magnetic theorem.
- 4. To know about ac fundamentals and solve different ac circuits.

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Define and discuss Electric current.	Fundamental electrical concepts: Different measuring units	Lecture, Exercise	Short Answer, Essay, Assignment
a.	Define different electrical parameters.	DC voltage, current, resistance and power; Series, networks	Lecture,	
b.	State and explain different electric network circuits.	definitions, mesh and node circuit analysis, reduction of a complicated network,	Exercise, Assignment, Group	Short Answer, Essay, Assignment, Exercise
c.	Calculate circuit's parameters.	conversion between T and π section.	Discussion	
a.	State and explain different network theorem and laws	Networks transformations: Equivalent circuit, Superposition theorem, the	Lecture, Exercise,	Assignment, Short Answer,
b.	Analyze different network theorem and	reciprocity theorem, Thevenin's theorem, Norton's theorem, Maximum power	Assignment	Exercise

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
	laws.	transfer theorem.		
a.	State and explain magnetic laws.	Introduction to magnetic Circuit: Transformer working	Lactuma	Assignment
b.	Calculate self and mutual inductance of electric circuits.	principle, construction, and maintenance, transformer's e.m.f equations, transformer regulation and efficiency, different types of transformer.	Lecture, Exercise, Assignment	Assignment, Short Answer, Exercise
a.	State and explain magnetic laws.	Electromagnetic Field: Maxwell's Equation,		
b.	Solve different magnetic networks.	Electromagnetic wave equation and propagation, Pointing vector, Faraday's laws of electromagnetic induction, Lenz's Law, Motional e.m.f, Eddy current. Self and Mutual Inductance.	Lecture, Exercise, Assignment	Short Answer, Essay, Assignment
a. b.	Summarize the properties of Capacitor. Define and explain different types of capacitor.	Capacitor and Capacitance: Capacitance, Parallel plate capacitor, cylindrical capacitor, spherical capacitor, capacitors in series & parallel,	Lecture, Reading, Assignment	Short Answer, Essay, Assignment,
c.	Draw and describe capacitorcircuits.	energy stored in a capacitor, transformers.		Exercise
a.	Define and explain ac network terms.			
b.	Derive AC values.	A.C Circuits: Instantaneous and r.m.s. values of current,	Lecture,	G1 A
c.	Design and solve series and parallel AC circuits.	voltage and average power, Use of complex quantities in	Reading, Assignment,	Short Answer, Essay, Assignment,
d.	Compare dc and ac networks.	AC circuits, resonant circuits, Q value and band width, frequency response.	Group Discussion	Exercise
b.	Define and explain different types of filters.	Azenej response.		

	Authors	Book Name
1.	B.L. Theraja	A text book of Electrical Technology, Volume: I.
2.	V. K. Mehta	Principles of Electrical Engineering and Electronics.
3.	G. F. Corcoran	Alternating Current Circuits.
4.	Corson and Lorrain	Introduction to Electromagnetic Field and Waves

Course No: 05 Course Title: Fundamentals of Electrical and Electronics Lab

Course Code: EEE 1102 Pre-Requisites: Nil Credit: 1.50 Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Lab Final Exam: 60 Marks Viva: 30 Marks **Class Attendance:** 10 Marks

11.1 Rationale:

To be a computer engineer, one needs to practically apply electricity and electromagnetism in different electrical applications.

11.2 Objectives:

- 1. To familiarize with different electrical components and measuring instruments.
- 2. To verify different laws and theorems in basic circuits.

11.3		11.4	11.5	11.6
Learning Outcomes		Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a. b.	Identify resistor, capacitor, and inductor. Identify measuring instruments.	Familiarization with different electrical components and measuring instruments.	Lecture, Demonstration	Assignment, Practical Exam, Viva, Reports
a.	Perform ohm's and kirchhoff's law.	Ohm's law, kirchhoff's law.	Lecture, Demonstration	Assignment, Practical Exam, Viva, Reports
a.	Design of series, parallel and series-parallel circuit.	Series circuit, Parallel circuit and series parallel circuit.	Lecture, Demonstration	Assignment, Practical Exam, Viva, Reports
a.	Perform different theorem in practical circuits.	Thevenin's theorem, Norton's theorem, superposition theorem, Reciprocity theorem, Maximum power transfer theorem	Lecture, Exercise, Assignment	Assignment, Practical Exam, Viva, Reports

Recommended Books And Periodicals

	Authors	Book Name
1.	B. L. Theraja	A text book of Electrical Technology, Volume: I.
2.	V. K. Mehta	Principles of Electrical Engineering and Electronics.
3.	G. F. Corcoran	Alternating Current Circuits.
4.	Corson and Lorrain	Introduction to Electromagnetic Field and Waves

Course No: 06 Course Title: Integral Calculus and Geometry

Course Code: MATH 1101
Credit: 3.00
Contact Hours: 3 Hours/Week

Pre-Requisites: Nil
Total Marks: 100

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

To be a computer Engineer one has to have sound knowledge about function, limit, Derivatives, applications of differentiation, integrals and application of integration

- 1. To Learn about various limit problems algebraically and graphically.
- 2. To Examine and Apply the continuity and differentiability of various types of function.
- 3. To gain knowledge about Integration and application of Integration.

11.3		11.4	11.5	11.6
Le	earning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
1.	Know the Mathematical Models and Commonly used Functions	Functions: Graphing Functions, Mathematical Models and Commonly		
2.	Learn Graphing Functions	used Functions (Linear, Polynomial, Power), Mathematical Models and Commonly Used Functions (Algebraic,	T	Assignment Essay
3.	Learn about Inverse of Functions and Growth of Functions.	Trigonometric, Exponential, and Logarithmic Functions), Transformations (Scaling, Reflection, Composition), Inverse of Functions, Growth of Functions.	Lecture Exercise	Exercise Short Answer
1.	Define limit and continuity.	Limits: Concepts, One Sided Limits,		
2.	Learn the Limit Laws and Sandwich Theorem	Infinite limits, Limit Laws, Sandwich Theorem, Formal Definition of Limits and Continuity of Functions, Intermediate Value Theorem and Its Application,	Lecture Exercise	Assignment Essay Exercise Short Answer
3.	Learn the Intermediate Value Theorem and its application	Limits at Infinity and the Horizontal Asymptotes.		
1.	Learn about Derivatives and Rate of Change	Derivatives: Derivatives and Rate of Change, Derivatives as Functions, Differentiability of Functions, Rules and	Lecture Exercise	Assignment Essay Exercise Short Answer
2.	Rules and Techniques of Differentiation	Techniques of Differentiation.		
1.	Know about Rates of Change, Exponential Growth and Decay	Applications of Differentiation: Rates		
2.	Learn about Linear Approximation and Differentials	of Change in Natural and Social Sciences, Exponential Growth and Decay, Linear Approximation and Differentials, Finding Minimum and Maximum Value of Functions and the first and Second Derivative Tests,	Lecture Exercise	Assignment Essay Exercise Short
3.	Determine the maximum and minimum value of Function	Indeterminate Forms and L'Hospital's Rule, Curve Sketching.		Answer
4.	Learn Forms and L'Hospital's Rule			
1.	Learn the Riemann Sum and Definite Integrals	Integrals: Riemann Sum and Definite Integrals, Properties of Integrals, Fundamental Theorem of Calculus, Anti-	Lecture Exercise	Assignment Essay Exercise
2.	Know the	Derivative and Indefinite Integral, Net		Short

11.3		11.4	11.5	11.6
Learning Outcomes		Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
	properties of Integrals	Change Theorem, Substitution Rule.		Answer
3.	Learn the Fundamental Theorem of Calculus			
4.	Learn the Net Change Theorem and Substitution Rule			
1.	Finding Area between Curves	Application of Integration: Finding		Assignment
2.	Find the Average Value of a Function	Area between Curves, Volumes, Volumes by Cylindrical Shells, Average Value of a Function, Mean Value Theorem for	Lecture Exercise	Essay Exercise Short
3.	Learn Mean Value Theorem for Integrals	Integrals.		Answer

Keco	mmended Books And Periodicals	
	Authors	Book Name
1.	Howard Anton	Calculus
2.	Thomas Finney	Calculus and Analytical Geometry
3.	E.R. Swokowski	Calculus with Analytic Geometry
4.	M.R. Spiegel	Advanced Calculus
5.	S.P. Gordon	Calculus and the Computer.

Course No: 07 Course Title: Chemistry for Computer Engineers

Course Code: CHEM-1101 Pre-Requisites: Nil Credit: 2.00 Total Marks: 100

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

A computer scientist or engineer may choose to be expert in cheminformatics or computational chemistry. Therefore, he or she should have a sound knowledge and deep understanding of chemistry.

- 1. Know the crystal symmetry.
- 2. Understand the characteristics of solution.
- 3. Explain chemical equilibrium.
- 4. Learn basics of nuclear chemistry.

11.3		11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Explain crystal symmetry	Lecture, Assignment	Short Answer, Essay, Assignment	
a.	Identify and explain solution	Type of solutions, Units of concentration. Solution of gas in liquid, Henry's law. Solution of solid in liquid, solubility curve. Distribution law and its application. Solvent extraction, Colligative properties of dilute solution.	Short Answer, Essay	
a.	Explain chemical equilibrium	Law of mass-action, Chemical equilibrium and Equilibrium Constants, Application of law of mass-action to Homogeneous and Heterogeneous Equilibrium, Le-Chatelier Principle, Applications of principle of mobile equilibrium to reaction of industrial importance.		Short Answer, Essay
a. Learn nuclear chemistry		Radioactivity, Patterns of Nuclear Stability, Nuclear Transmutations, Rates of Radioactive Decay, Detection of Radioactivity, Energy Changes in Nuclear Reactions, Nuclear Fission, Nuclear Fusion, Isotopes, Isobar, Isomers, Methods of Separation of Isotopes, Applications of Radioisotopes, Biological Effects of Radiation.	Lecture, Assignment	Short Answer, Essay

Authors	Book Name
G.M. Barrow	Physical Chemistry
M.M. Haque and M.A.Nawab	Principles of Physical Chemistry
B. S. Bhal and G. D. Tuli	Essential of Physical Chemistry
S. Z. Haider	Introduction to Modern Inorganic Chemistry
R.D. Madan	Modern Inorganic Chemistry
S. Gilreath	Fundamental Concepts of Inorganic Chemistry
R. M. Felder and R. W. Rousseau	Elementary Principles of Chemical Engineering

Course No: 08 Course Title: Bangladesh Studies

Course Code: HUM 1101 Pre-Requisites: Nil Credit: 2.00 Total Marks: 100

Contact Hours: 2 Hours/Week

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

Each and every individual of a country should have adequate knowledge about the history, culture, economical and sociological aspects of his own country. Bangladesh Studies will provide students an overall view of the Land and People, Emergence of Sovereign State, Political Culture and Administration, Natural Resources, Economy and Sociology of Bangladesh.

- 1. Acquire knowledge about economy and sociology of Bangladesh.
- 2. Understand the history and culture of Bangladesh.
- 3. Gather clear concept about political culture and administration of Bangladesh

11.3		11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Knowledge about Land and People of Bangladesh	Land and People: A brief history, Culture, Language and Religion of the land; Population, Ethnological origin and Occupation/Profession of the people.	Lecture	Short Answer, Essay
b.	Knowledge about Emergence of Sovereign State of Bangladesh	Emergence of Sovereign State: Economic factors; Political factors: Language movement (1952), Six Point Movement (1966), Mass upsurge (1969); Bangabandhu and Independence of Bangladesh (1971).	Lecture	Short Answer, Essay
c.	Knowledge about Political Culture and Administration of Bangladesh	Political Administration:Culture Introductiontothe BangladeshConstitution;FormsofGovernment independence;SysteminAdministrativeSysteminBangladesh.	Lecture	Short Answer, Essay
d.	Knowledge about Economy of Bangladesh	Economy: Introduction to Bangladesh economy, Major economic Sectors: Agriculture, Industry and Services; Role of Women in national economy. Economics of development and planning, basic conceptsaving, investment, GNP, NNP. Fiscal policy, monetary policy and trade policy, some planning tools-capital output ratio, input analysis.	Lecture	Short Answer, Essay
e.	Knowledge about Sociology of Bangladesh	Sociology: Scope, Social evolution and techniques of production, Culture and	Lecture	Short Answer, Essay

11.3		11.4	11.5	11.6
Learning Outcomes		Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
		civilization, Social structure of		
		Bangladesh. Population and		
		world resources. Oriental and		
		Occidental societies, Industrial		
		revolution. Family -		
		Urbanization and		
		industrialization, Urban		
		Ecology, Co-operative and		
		socialist movements, rural		
		sociology.		

	Authors Book Name		
1.	S. Islam	Banglapedia. National Encyclopedia, Asiatic Society of Bangladesh, Dhaka	
2.	S. A.Kibria	Bangladesh at the Crossroads. University Press Ltd	
3.	A.Riaz	Bangladesh: A Political History since Independence. London: IB Taurus	

Course No: 09 Course Title: English Language Skill Lab

Course Code: ENG-1102 Pre-Requisites: Nil Credit: 1.00 Total Marks: 100

Lab Final Exam: 60 Marks Viva: 30 Marks Class Attendance: 10 Marks

11.1 Rationale:

Mark Distribution:

To be a global IT expert, a student must have the communication skill in an international language and English is the most and widely used language. Therefore, learning Communicative English is a must for a CSE student.

- 1. Talk about themselves, their families and their weekly schedules.
- 2. Memorize and use various set phrases for use in all of their classes.
- 3. Ask questions of other members of the class in English to help carry on a conversation and to expand on a topic.
- 4. Identify various parts of an English newspaper and predict the topic of the article based on the headline.
- 5. Make a video of themselves and reflect on their improvement over the course of the semester.
- 6. Understand the importance of their learning portfolio and demonstrate their knowhow on how to make one for their courses.

11.3		11.4		11.5	11.6
Learning Outcomes		Course Content		Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Recognizing the importance of four communication skills(Reading, Writing,	Reading vocabulary précis/summa development	Comprehension, building, arizing, of writing skill,	Lecture, Demonstration, Exercise, Group Study,	Exercise, Assignment, Short Answer, Report

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
	Listening, and Speaking	paragraph development, report	Case Study	Writing
b.	Learning new words from newspapers and articles	writing, letter writing (formal/informal), newspaperarticle writing. Parts of Speech, Subject-Verb		
c.	Identify parts of speech	agreement, Articles, Tense		
d.	Differentiate tenses, phrases and clauses	form, Phrase & Clause, Making Questions, Gerund and Participle, Appropriate		
e.	Locate words in the dictionary	preposition, Word formation processes, Verbs & adjectives,		
f.	Explain Sentence structures	Using dictionary, Real life word associated with science		
g.	Classify sentences	& technology, Places, clothes, foods, shopping, family,		
h.	Converse in English	hobbies, health, entertainment, transport and education.		

Iteeoi	initellaca Books illia	Circuit
	Authors	Book Name
1.	Wren & Martin	High school English Grammar" S. Chand & Company
2.	Raymond Murphy	Intermediate English Grammar
3.	Jones Leo	Communicative Grammar Practice
4.	John Eastwood	Oxford Practice Grammar
5.	Sadruddin Ahmed	Learning English The Easy Way.

Course No: 10 Course Title: Data Structure

Course Code: CSE-1201
Credit: 3.00
Contact Hours: 3 Hours/Week
Pre-Requisites: Nil
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

To become a successful computer professional, one needs to have in depth knowledge of data structures to apply them in problem solving and algorithms to analyze different solutions to problems.

- 1. Apply different data structures to problem solving
- 2. Explain different algorithms of solutions to problems.
- 3. Analyze different problem solutions

11.3		11.4	11.5	11.6
Learning Outcomes		Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Apply stacks, queues and recursion	Stacks, Queues and Recursion:	Demonstration	Assignment Practical
b.	Differentiate between stacks and queues	Fundamentals, Different types of stacks and queues: Circular,	Exercise	Exam

	11.3	11.4	11.5	11.6
]	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
c.	Evaluate expressions using stacks	dequeues etc.; evaluation of expressions, multiple stacks and		
d.	Analyze recursive functions	queues; Recursion: Direct and indirect recursion, depth of recursion; Simulation of Recursion: Removal of Recursion; Towers of Hanoi.		
a.	Construct graphs and trees	Elements of Graphs and Trees: Graph Terminology,		
b.	Differentiate between graphs and trees	Paths and Circuits, Connectedness, Matrix Representation of Graph and Isomorphism of graphs. Trees, Rooted trees, Path Lengths in Rooted Trees.	Demonstration Exercise	Assignment Practical Exam
a.	Construct linked lists	Linked Lists: Single linked lists, Linked stacks and		
b.	Apply linked lists to stacks and queues	queues, the storage pool, polynomial addition,		Assignment
c.	Analyze memory allocation	equivalence relations, sparse matrices, doubly linked lists and dynamic storage management, generalized lists, garbage collection and compaction.	Demonstration Exercise	Practical Exam
a.	Construct and apply extended binary trees	Extended binary trees: 2- trees, internal and external path lengths, Huffman codes/algorithm; Threaded binary trees, binary tree representation of trees; Application of Trees: Set representation, decision trees, game trees; Counting binary trees.	Demonstration Exercise	Assignment Practical Exam
a.	Apply sorting algorithms	Sorting: Searching, bubble sort, shell sort, insertion sort,		
b.	Distinguish among sorting algorithms	selection sort, quick sort, heap sort, 2-way merge sort, sorting on several keys, practical considerations of internal sorting.searching, hash techniques.	Demonstration Exercise	Assignment Practical Exam
a.	Apply algorithmic techniques Analyze algorithms	Algorithms: Techniques for analysis of algorithms; Algorithmic Techniques: divide-and-conquer, greedy method, dynamic programming, backtracking, branch and bound; Flow algorithms. Topological sorting; Connected components; spanning trees; Shortest paths; Algebraic simplification and transformations; Lower bound	Demonstration Exercise	Assignment Practical Exam

11.3	11.4	11.5	11.6
Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
	theory; NP-completeness; NP-hard and NP-complete problems; Approximation Algorithms; Introduction to parallel algorithms.		

Recommend	led 1	Book	ks A	nd P	eriod	icals	

	Authors	Book Name
1.	S. Lipschutz	Theory and Problem of Data Structures
2.	E. Horowitz	Data Structure
3.	D. E. Knuth	The Art of Computer Programming, Vol. 1, Fundamental Algorithms
4.	D. E. Knuth	The Art of Computer Programming, Vol. 2, Semi-numerical Algorithms
5.	D. E. Knuth	The Art of Computer Programming, Vol. 3, Sorting and Searching
6.	Goodman	Introduction to Design and Analysis of Algorithms
7.	Robert Sedgewick	Algorithms
8.	Ellis Horowitz &SartajSahni	Fundamentals of Computer Algorithms

Course No: 11 Course Title: Data Structure Lab

Course Code: CSE-1202 Pre-Requisites: Nil
Credit: 1.5
Total Marks: 100

Contact Hours: 2 Hours/Week

Mark Distribution:

Lab Final Exam:60 MarksViva:30 MarksClass Attendance:10 Marks

11.1 Rationale:

To become a successful computer professional, one needs to have in depth knowledge of data structures to apply them in problem solving and algorithms to analyze different solutions to problems.

- 1. Apply different data structures to problem solving
- 2. Explain different algorithms of solutions to problems.
- 3. Analyze different problem solutions

11.3		11.4	11.5	11.6
Learning Outcomes		Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
opera b. Ca	oply and perform ations on arrays alculate memory rements	Elementary data structures, arrays	Exercise	Practice And Coding
a. b.	Apply stacks, queues and recursion Differentiate between	Stacks, Queues and Recursion: Fundamentals, Different types of stacks and	Exercise	Practice And
c.	stacks and queues Evaluate expressions using stacks	queues: Circular, dequeues etc.; evaluation of expressions, multiple stacks and queues;		Coding

	11.3	11.4	11.5	11.6
L	earning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
d.	Analyze recursive functions	Recursion: Direct and indirect recursion, depth of recursion; Simulation of Recursion: Removal of Recursion; Towers of Hanoi.		
a.	Construct graphs and trees	Elements of Graphs and Trees: Graph Terminology,		
b.	Differentiate between graphs and trees	Paths and Circuits, Connectedness, Matrix Representation of Graph and Isomorphism of graphs. Trees, Rooted trees, Path Lengths in Rooted Trees.	Exercise	Practice And Coding
a.	Construct linked lists	Linked Lists: Single linked		
b.	Apply linked lists to stacks and queues	lists, Linked stacks and queues, the storage pool, polynomial addition,		
c.	Analyze memory allocation	equivalence relations, sparse matrices, doubly linked lists and dynamic storage management, generalized lists, garbage collection and compaction	Exercise	Practice And Coding
a.	Construct and apply extended binary trees	Extended binary trees: 2- trees, internal and external path lengths, Huffman codes/algorithm; Threaded binary trees, binary tree representation of trees; Application of Trees: Set representation, decision trees, game trees; Counting binary trees	Exercise	Practice And Coding
a.	Apply sorting algorithms	Sorting: Searching, bubble sort, shell sort, insertion sort,		
b.	Distinguish among sorting algorithms	selection sort, quick sort, heap sort, 2-way merge sort, sorting on several keys, practical	Exercise	Practice And Coding
b.	Analyze sorting algorithms	considerations of internal sorting. searching, hash techniques		County

Recom	Recommended Books And Periodicals				
	Authors	Book Name			
1.	S. Lipschutz	Theory and Problem of Data Structures			
2.	E. Horowitz	Data Structure"			
3.	D. E. Knuth	The Art of Computer Programming, Vol. 1, Fundamental Algorithms			
4.	D. E. Knuth	The Art of Computer Programming, Vol. 2, Semi-numerical Algorithms			
5.	D. E. Knuth	The Art of Computer Programming, Vol. 3, Sorting and Searching			

Course No: 12 Course Title: Digital Logic Design

Course Code: CSE 1203 Pre-Requisites: Nil Credit: 3.00 Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

A computer engineer needs to know about number system, logic design and the basic building blocks used in digital systems, in particular digital computers.

- 1. To learn about basic concept on number system, universal gates and truth tables.
- 2. To know about Boolean function and De-Morgan, canonical forms and minimization techniques
- 3. To learn about combinational and sequential circuits and basic flip flops
- 4. To know about synchronous and asynchronous counters

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a)	Explain number systems	Number systems and codes.	Lecture	Short Question
a) b)	Apply De-Morgan law for the Boolean function State and explain De-	Digital logic: Boolean algebra, De-Morgan's law, Logic gates and their truth tables.	Lecture Exercise	Spot Test Short Question
a) b)	Morgan Evaluate canonical forms Apply minimization techniques	Canonical forms, combinational logic circuits, minimization techniques.	Lecture Exercise Assignment	Spot Test Quiz Short Question
c)	Explain combinational logic circuits	minimization techniques.	Assignment	Assignment
a) b) c)	Determine decoder and encoder function Differentiate MUX and DEMUX Draw data handling logic circuit	Arithmetic and data handling logic circuit, decoders and encoders, Multiplexers and De-multiplexers.	Lecture Exercise Assignment	Spot Test Quiz Short Question
a)	Explain flip flops and race problems	Combinational Circuit design, Flip-flops, race around problems.	Lecture Exercise Assignment	Spot Test Quiz Short Question
a)	Design synchronous and asynchronous circuits	Counters: Asynchronous and Synchronous counters and their applications.	Lecture Exercise Assignment	Spot Test Quiz Short Question Assignment
a)	Apply state diagram for logic circuits State and explain	Synchronous and asynchronous logic design:	Lecture Exercise	Spot Test Quiz
b)	Mealy and Moore machine	state diagram, Mealy and Moore machine.	Assignment	Short Question

	11.3	11.4	11.5	11.6
Learning Outcomes		Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a)	Explain state minimization and assignments Demonstrate pulse	State minimization and assignments. Pulse mode logic, Fundamental mode logic	Lecture Exercise Assignment	Spot Test Quiz Short Question
b)	mode logic and mode logic design	design.	1 isoigimient	Assignment

Authors Book Name

1. M. Morris Mano Digital logic and Computer Design

2. Tocci Digital System Analysis

Course No: 13 Course Title: Digital Logic Design Lab

Course Code: CSE-1204 Pre-Requisites: Nil
Credit: 1.50
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Lab Final Exam: 60 Marks **Viva:** 30 Marks **Class Attendance:** 10 Marks

11.1 Rationale:

As a Computer engineer, one needs to apply logic gates and flip-flop in adder, subtractor, encoder, decoder and memory unit.

11.2 Objectives:

1. To familiarize with different logic gates and flip-flops.

2. To design combinational and sequential circuits using gate and flip-flops.

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a. b.	Identify and demonstrate logic gates. Identify and demonstrate flip-flops.	Familiarization with different logic gates and flip-flops.	Lecture, Demonstration	Short Answer, Assignment, Viva, Reports
a.	Design and analysis different combinational circuits.	Half adder, Full adder, Half Subtractor, Full subtractor, Decoder, Encoder, MUX, DEMUX,	Lecture, Demonstration, Group Discussion	Short Answer, Assignment, Viva, Reports
a.	Design and analysis of different sequential circuits.	Flip-flops, Sequential circuit, Counter, Combinational Circuit.	Lecture, Demonstration, Group Discussion	Short Answer, Assignment, Viva, Reports

Recommended Books And Periodicals

A	uthors		Book Name

1. V.K. Mehta Principles of Electronic

2. R.L. Boylestad Electronic Devices and Circuit Theory

3. Millman&Halkias Data Communication

Course No: 14 Course Title: Engineering Drawing

Course Code: CSE-1206 Pre-Requisites: Nil
Credit: 1.00 Total Marks: 100

Contact Hours: 2 Hours/Week

Mark Distribution:

Lab Final Exam: 60 Marks Viva: 30 Marks Class Attendance: 10 Marks

11.1 Rationale:

Capability of computer aided design and drawing is essential for an engineer in order to be able to design objects using some drawing software.

11.2 Objectives:

1. Understand scaling of drawing different objects.

- 2. Recognize objects from different views.
- 3. Design structures using drawing software

	11.3	11.4	11.5	11.6
]	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Apply scales	Familiarization with different logic gates and flip-flops.	Lecture, Demonstration	Practical Exam,
b.	Identify views			Assignment, Viva, Reports
a.	Find out missing lines.	Missing line Auxiliary view	Lecture, Demonstration	Practical Exam,
b.	Apply auxiliary view and assembly drawing	Missing line, Auxiliary view, Detail and assembly drawing.		Assignment, Viva, Reports
a.	Design objects using CAD.	Flip-flops, Sequential circuit, Counter, Combinational Circuit.	Lecture, Demonstration	Practical Exam, Assignment, Viva, Reports

Recommended Books And Periodicals

	Authors	Book Name
1.	Wiley	Mastering AutoCAD 2008 and AutoCAD LT 2008
2.	M. Groover and E. Zimmers	Computer Aided Design and manufacturing
3.	S. Narayanan	CAD/CAM Robotics and Factories of the Future
4.	TienChien Chang	Computer Aided Manufacturing
5.		www.blender.org

Course No: 15 Course Title: Electronic Devices and Circuits

Course Code: EEE 1201 Pre-Requisites: EEE 1101

Credit: 3.00
Contact House 2 House Week
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

Computer engineers need to learnthe concepts, characteristics and working principles of basic electronic devices and their applications in electronic circuits.

11.2 Objectives:

1. To learn basic concepts about semiconductor physics.

- 2. To know about formation of semiconductor diodes, transistors, field effect transistors, Oscillators and their working principle.
- 3. To know about power electronics devices and its operation.

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Define and discuss semiconductor physics and semiconductors.	Theory of Semiconductors: Electronic structure of the elements, crystalline and amorphous solids, different types of crystal, band theory of solids, structure of silicon and germanium. Intrinsic and Extrinsic Semiconductors: N and P type semiconductor, carrier densities, generation and recombination of excess carriers, carrier life time, continuity equation.	Lecture, Reading, Assignment, Brainstromi ng	Short Answer, Essay, Assignment
a.	Define and explain semiconductor diodes.		Lecture, Exercise, Assignment	Short Answer, Essay, Assignment, Exercise
b.	Derive equations for diode circuits.	Diode circuits: The PN junction, biasing and V-I characteristics of diodes,		
c.	Draw and describe diode clipping and clamping circuits.	rectifier concept, half wave and full wave rectifiers, Zener diode and voltage regulators.		
d.	Define and explain Zener diode.			
a.	Define and discuss Transistor.	Bipolar transistor: Junction		
b.	Classify Transistor circuits.	transistors, principles of operation, biasing, characteristics in different		Short Answer,
c.	Describe different transistor circuits.	characteristics in different configurations (CE, CB & CC), DC and AC load line, transistor equivalent circuits. Gain and impedance, Analysis	Lecture, Reading,	Essay, Assignment,
d.	Describe different transistor models.		Assignment	Exercise
e.	Explain frequency response of different transistor circuits.	of small signal low frequency transistor amplifier by using h -parameters.		

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
f.	Design and solve different transistors circuits.			
a.	Define and explain Field Effect Transistors.	Field effect transistor:		
b.	Classify Field Effect Transistors.	Construction of JFET, its parameters, biasing, characteristics and principles	Lecture, Reading,	Short Answer, Essay,
c.	Draw and Describe different FET circuits.	of operation, different types of MOSFET and its operation and	Assignment	Assignment, Exercise
d.	Design and solve different FET circuits.	characteristics.		
a.	Define and explain Amplifiers.	Amplifier: Voltage and	Lecture, Reading, Assignment	Short Answer, Essay, Assignment
b.	Design and explain Amplifiers circuits.	current amplifiers of different configurations, RC coupled amplifier, operational		
c.	Define and explain Operational Amplifiers.	amplifiers (OPAMPS), linear applications of OPAMPS,		
d.	Describe frequency response of OPAMP circuits.	gain, input and output impedance.		
a.	Define and explain Oscillators.			
b.	Classify Oscillators.	Capacitor and Capacitance:		
c.	Classify power electronics devices.	Capacitance, Parallel plate capacitor, cylindrical capacitor, spherical capacitor,	Lecture, Reading, Assignment	Short Answer, Essay, Assignment, Exercise
d.	Explain characteristics of power electronics devices.	capacitors in series & parallel, energy stored in a capacitor, transformers.		
e.	Solve Oscillatory circuits.			

Authors	Book Name

1. B. L. Theraja Basic Electronics (Solid State).

2. Boylestad and Electronic Devices and Circuit Theory. Nashelsky

3. Gupta and Kumar Hand Book of Electronics.

4. Millman and Helkias Electronic Devices and Circuits.

Course No: 16 Course Title: Electronic Devices and Circuits Lab

Course Code: EEE 1202 Pre-Requisites: EEE 1102

Credit: 1.50

Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Lab Final Exam: 60 Marks Viva: 30 Marks Class Attendance: 10 Marks

11.1 Rationale:

Computer engineer needs to apply basics of electronics in electronic applications.

11.2 Objectives:

1. To familiarize with different electronic components and measuring instruments.

2. To design and performance analysis of different electronic circuits.

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Identify electronic components. Demonstration of measuring instruments.	Familiarization with different electronic devices and measuring instruments.	Lecture, Demonstration	Assignment, Practical Exam, Viva, Reports
per	sign and analyze formance of electronic cuits.	Diode, Transistor, UJT, SCR, DIAC, TRAIC, Zener diode, LED	Lecture, Exercise, Assignment	Assignment, Practical Exam, Viva, Reports

Recommended Books And Periodicals

Authors Book Name

1. B. L. Theraja Basic Electronics (Solid State).

2. Boylestad and Electronic Devices and Circuit Theory. Nashelsky

3. Gupta and Kumar Hand Book of Electronics.

4. Millman and Helkias Electronic Devices and Circuits.

Differential Calculus and Differential Equations Course No: 17 Course Title:

Course Code: MATH-1201

Pre-Requisites: Nil Credit: 3.00 Total Marks: 100 Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks **Class Attendance:** 08 Marks

Rationale:

To be a computer Engineer one has to have sound knowledge about techniques of differential calculus, differential equations and sequence and infinite series

11.2 **Objectives:**

1. To gain knowledge about Methods of Integration

- 2. Learn a collection of methods and techniques used to find solutions to several types of differential equations
- 3. To gain knowledge about Series.

	11.3	11.4	11.5	11.6
L	earning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
1.	Find indefinite and definite integrals using integration by parts	Tarkaina		
2.	Find indefinite and definite integrals using trigonometric substitution	Techniques of Integration: Integration by Parts, Trigonometric Substitution, Partial Fractions, Computer Algebra Systems (e.g., Mathematica, Sage), Approximate	Lecture Exercise	Assignment Essay Exercise
3.	Find indefinite and definite integrals of partial fractions	Integration - Simpson's Rule, Improper Integrals.		Short Answer
4.	Learn about Computer Algebra Systems, Simpson's Rule, and Improper Integrals.			
1.	Find the length of an arc using integrals	Application of Integration: Arc Length, Area of a Surface of	Lecture	Assignment Essay
2.	Find the area of a Surface of Revolution	Revolution.	Exercise	Exercise Short Answer
1.	Solving First Order Differential Equations	Differential Equations: Modeling with Differential Equations, Solving First Order Differential Equations,	Lecture	Assignment Essay
2.	Know about direction fields and Euler's Method	Direction Fields and Euler's Method, Methods for Separable Equations and Linear Equations.	Exercise	Exercise Short Answer

	11.3	11.4	11.5	11.6
I	earning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
3.	Learn Methods for Separable Equations and Linear Equations			
1.	Learn about the Curves defined by Parametric Equations and Calculus with Parametric Curves	Parametric Equations and Polar Coordinates: Curves Defined by Parametric Equations, Calculus with Parametric Curves, Polar Coordinates, Area and Length in Polar Coordinates,	Lecture Exercise	Assignment Essay Exercise Short
2.	Learn the Polar Coordinates	Conic Sections in Polar Coordinates.		Answer
1.	Learn the Convergence of Sequences			
2.	Learn the Infinite Series and its Convergence	Sequence and Infinite Series: Sequence and Convergence of Sequences, Infinite Series and Its Convergence, Convergence Tests,		Assignment
3.	Learn about Alternating Series, Power Series and Its Convergence	Alternating Series, Power Series and Its Convergence, Representing Functions as Power Series, Taylor and McClaurin Series, Applications of Taylor	Lecture Exercise	Essay Exercise Short Answer
4.	Know the applications of Taylor Polynomials and Approximating Functions by Polynomials.	Polynomials, Approximating Functions by Polynomials.		

Recommended Books And Periodicals
Authors

Book Name

1.	S.P. Gordon	Calculus and the Computer.
2.	Dr. Konrad Knopp	Infinite Sequences and Series
3.	J.F. Hurley	Calculus
4.	Willard, Stephen	Calculus and its Application
5.	J. Stewart	Calculus.

Course No: 18 Course Title: Physics for Computer Engineers

Course Code: PHY-1201 Pre-Requisites: Nil Credit: 2.00 Total Marks: 100

Contact Hours: 2 Hours/Week

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

Someone wants to develop his/her career as a computer engineer needs to know the basic theories and principles of physics to generate problem solving, analytical, mathematical and solution finding skills; this course will equip him/her with the concepts of Kinetic Theory of Gases, Heat and Thermodynamics, Simple Harmonic Motion, Wave Motion, Sound Waves, Acoustics and Electrostatics.

- 1. Apply the concepts, ideas and methods of Physics required to solve problems in engineering studies.
- 2. Acquire knowledge about different laws and models of Physics, which will develop analytical capabilities among them.
- 3. Apply the laws and skills in higher studies or research areas.
- 4. Understand the origins in thermodynamics, electronics and Acoustics.
- 5. Explain everyday things happening around us.

11.3		11.4	11.5	11.6
Learning Outcomes		Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Deduce gas law	Kinetic theory of gases: Deduction of gas law,		
b.	Describe equipartition of energy	Deduction of gas law, Principle of equipartition of energy, Equation of state –		Short Answer
c.	Define critical constants	Andrew's Experiment, Vander	Lecture	Essay Practical
d.	Differentiate among different types of transmission of heat	Waals equation, Critical Constants, Transmission of heat – conduction, convection and radiation.		Exam
a.	Demonstrate 1 st and 2 nd law of Thermodynamics	Heat and Thermodynamics: 1 st law of Thermodynamics,		
b.	Explain work done by expanding gas	Internal energy, Specific heats of gases, Work done by		
c.	Apply Carnot's cycle to find out engine efficiency	expanding gas, Elasticity of a perfect gas, 2 nd law of thermodynamics, Carnot's	Lecture, Exercise	Short Answer Essay Practical
d.	Analyze/ Prove Maxwell's thermodynamic relation	cycle, Efficiency of heat engines, Absolute scale of temperature, Entropy and its physical concepts, Maxwell's thermodynamic relations, Statistical Mechanics	Exercise	Exam
a.	Describe Simple Harmonic Motion	Simple Harmonic Motion: Simple harmonic motion,		
b.	Draw the mismatch between Damped Oscillation and Forced Oscillation	Combination of S.H.M. and Lissajous figures, Damped Oscillations, Forced oscillations, Resonance,	Lecture Assignment Exercise	Short Answer Drawing Practical Exam
c.	Define "Resonance"	Vibrations of membranes and columns.		
a.	Illustrate Superposition, Interference and diffraction of waves with figures	Wave motion: Travelling		
b.	List the types of velocity play role in wave motion and interpret each with respective example	waves, Principle of superposition, wave velocity, Group velocity, Phase velocity, Power and intensity in wave	Lecture Demonstration Exercise	Short Answer Essay Practical
c.	Describe an experiment forming standing wave on a string; compare between Nodes and Anti Nodes	motion, Interference, diffraction and transmission of waves, Standing Waves.		Exam
a.	Define and Categorize Ultrasonic, Audible, Infrasonic and Supersonic waves on the	Sound waves: Audible, Ultrasonic, Infrasonic and Supersonic waves, Propagation and speed of longitudinal	Lecture Demonstration Exercise	Short Answer Essay Practical Exam

11.3		11.4	11.5	11.6
Learning Outcomes		Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
	basis of frequency	waves, Travelling longitudinal		
b.	Analyze the formation of harmonics in case of standing longitudinal waves	waves, Standing longitudinal waves, Vibrating systems and sources of sound, Beats, The Doppler's effect		
c.	State and explain Doppler's effect with example			
d.	Summarize how "Beats" are formed and explain the significance of "Beats" on musical notes?			
a.	Demonstrate Revibration	Acoustics: Re-vibration, Noise insulation and reduction,	Lecture	Clarat Amazza
b.	Interpret necessity of noise insulation with practical life example.	Compound absorption, sound distribution, Room acoustics, Recording. Demonstration Assignment		Short Answer Essay
a.	State coulomb's law/ gauss's law.	Electrostatics		Short Answer Essay Practical Exam
b.	Differentiate between Ohmic and Non Ohmic material	Charge and matter, Coulomb's Law, The electric field, Gauss's Law, Electrical	Lecture Assignment	
c.	Interpret the varying characteristic of resistance with temperature	potential, Capacitance and Resistance, Ohmic and Non ohmic material, Variation of resistance with temperature.	Assignment	

Authors		Book Name	
1	C I Adkins	Fauilibrium Thermodynamics	

1.	C. J. Adkins	Equilibrium Thermodynamics
2.	M. W. Zemansky	Heat and Thermodynamics
3.	Brijlal	Waves and Oscillation
4.	Puri	Waves and Vibrations
5.	Halliday and Resnick	Fundamentals of Physics

Course No: 19 Course Title: Viva Voce

Course Code: CSE 1200 Pre-Requisites: Nil
Credit: 1.00
Contact Hours: 1 Hour/Week
Total Marks: 100

Contact Hours: 1 Hour/Week

Mark Distribution:

Viva voce 100 Marks