

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 07-097234
(43)Date of publication of application : 11.04.1995

(51)Int.CI. C03C 3/16

(21)Application number : 05-262993 (71)Applicant : HOYA CORP
(22)Date of filing : 27.09.1993 (72)Inventor : SATO KOICHI

(54) LOW-MELTING OPTICAL GLASS

(57)Abstract:

PURPOSE: To obtain the subject glass having high refractive index and high dispersion characteristics, enabling itself to be press molded at relatively low temperatures by specifying the amounts of the respective components in P₂O₅- Na₂O-Nb₂O₅-W_O₃-based or P₂O₅-B₂O₃-Li₂O-Na₂O-Nb₂O₅-based phosphate glass.

CONSTITUTION: The 1st embodiment: a glass feedstock composition comprising 2-29wt.% of P₂O₅, 2-25wt.% of Na₂O, 4-22wt.% of Nb₂O₅, 20-52wt.% of W_O₃ and a specified weight range of any other desired component is melted by heating at 1000-1200° C, clarified, homogenized by agitation, cast and then annealed, thus gives the objective optical glass having the following characteristics such as refractive index of 1.70-1.86, dispersive power of 35-21 and glass yield point of ≤570° C. The 2nd embodiment: a glass feedstock composition comprising 12-32wt.% of P₂O₅, 0.5-16wt.% of B₂O₃, 0.3-6wt.% of Li₂O, 2-22wt.% of Na₂O, 8-52wt.% of Nb₂O₅ and a specified weight range of any other desired component is subjected to the same processes as those mentioned above to obtain the objective optical glass having the following characteristics such as refractive index of 1.69-1.83, dispersive power of 32-21 and glass yield point of ≤570° C.

LEGAL STATUS

[Date of request for examination] 22.09.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-97234

(43)公開日 平成7年(1995)4月11日

(51)Int.Cl.⁶

C 0 3 C 3/16

識別記号

府内整理番号

F I

技術表示箇所

審査請求 未請求 請求項の数4 FD (全11頁)

(21)出願番号 特願平5-262993

(22)出願日 平成5年(1993)9月27日

(71)出願人 000113263

ホーヤ株式会社

東京都新宿区中落合2丁目7番5号

(72)発明者 佐藤 浩一

東京都新宿区中落合2丁目7番5号 ホーヤ株式会社内

(74)代理人 弁理士 塩澤 寿夫

(54)【発明の名称】 低融点光学ガラス

(57)【要約】

【目的】 より高屈折率及び高分散特性を有するとともに、低い温度でガラスが失透せずに軟化してプレス成形することが可能であり、かつ液相温度が低く安定性に優れた光学ガラスの提供。

【構成】 重量%で表示して、P₂O₅を2~29%、Na₂Oを2~25%、Nb₂O₅を4%以上22%未満、WO₃を20~52%含むことを特徴とする低融点光学ガラス。このガラスは、屈折率が1.70~1.86、分散率が21~35、ガラス屈伏点が570℃以下である。重量%で表示して、P₂O₅を12~32%、B₂O₃を0.5~1.6%、Li₂Oを0.3~6%、Na₂Oを2~22%、Nb₂O₅を8~52%含むことを特徴とする低融点光学ガラス。このガラスは、屈折率が1.69~1.83、分散率が21~32、ガラス屈伏点が570℃以下である。

【特許請求の範囲】

【請求項1】 重量%で表示して、 P_2O_5 を2~29%、 Na_2O を2~25%、 Nb_2O_5 を4%以上22%未満、 WO_3 を20~52%含むことを特徴とする低融点光学ガラス。

【請求項2】 屈折率 n_d が1.70~1.86の範囲であり、分散率 ν_d が35~21の範囲であり、かつガラス屈伏点(T_s)が570℃以下である請求項1に記載の低融点光学ガラス。

【請求項3】 重量%で表示して、 P_2O_5 を12~32%、 B_2O_3 を0.5~16%、 Li_2O を0.3~6%、 Na_2O を2~22%、 Nb_2O_5 を8~52%含むことを特徴とする低融点光学ガラス。

【請求項4】 屈折率 n_d が1.69~1.83の範囲であり、分散率 ν_d が32~21の範囲であり、かつガラス屈伏点 T_s が570℃以下である請求項3に記載の低融点光学ガラス。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、低温度でプレスすることができ、非球面精密プレス用として有用な低融点光学ガラスに関する。

【0002】

【従来の技術】 従来の高屈折率、高分散を示す光学ガラスとしては、例えば $P_2O_5-Nb_2O_5$ -アルカリ金属酸化物系ガラス(特公昭56-40094号公報)がある。さらに、 $SiO_2-TiO_2-Nb_2O_5$ -アルカリ金属酸化物系ガラス(特開昭63-265840号公報)も高屈折率、高分散を示す光学ガラスである。しかし、これらのガラスの屈伏温度(T_s)は600℃以上と高い。通常、精密プレス成形は、屈伏温度(T_s)より30℃~50℃高い温度で行なわれる。よって、上記のガラスを精密プレス成形する場合、プレス温度は650℃~700℃の範囲となる。ところが、このような高温でプレスを繰り返し行なうと、型材の劣化が著しく、プレス開始後、比較的短時間の内に精密なガラス面が得られなくなってしまう。そこで、精密なガラス面を得るために型の交換を頻繁に行なう必要があるが、それでは精密レンズを量産することは非常に困難である。

【0003】 このような観点から、精密プレスレンズ製造における型の寿命を延長するための1つの策として、屈伏温度(T_s)の低いガラスを用いることが挙げられる。例えば、特開平1-308843号公報には、高屈折率、高分散を示す低融点光学ガラスである SiO_2-PbO -アルカリ金属酸化物系のガラスが開示されている。さらに、特開平5-51233号公報には、高屈折率、高分散を示す低融点光学ガラスである $SiO_2-GeO_2-TiO_2-Nb_2O_5$ -アルカリ金属酸化物系のガラスが開示されている。

【0004】

【発明が解決しようとする課題】 しかしながら、これらの特許公報に記載のガラスにはいくつかの問題点があった。例えば、特開平1-308843号記載のガラスは多量の酸化鉛を含んでいる。一方、ガラスのプレスは、通常、型の酸化を防ぐために還元性雰囲気で行われる。そのため、上記酸化鉛含有ガラスの場合、ガラス中の酸化鉛が還元性雰囲気中で還元されて金属鉛が表面に折出する。析出した金属鉛は、型表面に付着して、ガラスをプレスする際にガラス表面に凸凹をつくり、面精度が悪くなってしまう。それに対して特開平5-51233号に記載のガラスは、ガラス成分中に PbO を含まない低融点光学ガラスである。しかし、このガラスは液相温度が高く、軟化温度付近での失透傾向も強い。そのため、ガラスプリフォームを昇温して軟化させ、精密プレス成形をすることは困難であり、プレスレンズの製造には適さない。

【0005】 そこで本発明の目的は、高屈折率及び高分散特性を有するとともに、低い温度でガラスが失透せずに軟化してプレス成形することが可能であり、かつ液相温度が低く安定性に優れた光学ガラスを提供することにある。

【0006】

【課題を解決するための手段】 本発明の第1の態様の光学ガラスは、重量%で表示して、 P_2O_5 を2~29%、 Na_2O を2~25%、 Nb_2O_5 を4以上22%未満、 WO_3 を20~52%含むことを特徴とする低融点光学ガラスに関する。

【0007】 本発明の第2の態様の光学ガラスは、重量%で表示して、 P_2O_5 を12~32%、 B_2O_3 を0.5~16%、 Li_2O を0.3~6%、 Na_2O を2~22%、 Nb_2O_5 を8~52%含むことを特徴とする低融点光学ガラスに関する。

【0008】 以下、まず、本発明の第1の態様の光学ガラスについて、各成分およびその含量の限定理由を説明する。 P_2O_5 は磷酸塩ガラスにおいてガラス形成成分として欠かせない成分である。磷酸塩ガラスは珪酸塩ガラスと比べて低い温度でガラスを溶融することができ、可視域の透過率が高いという特徴をもつ。また同じガラス形成酸化物成分である SiO_2 や B_2O_3 に比べて P_2O_5 は高分散側に位置する成分のため、アッペ数35以下の光学特性を得るには、 P_2O_5 は少なくとも2%は必要である。逆に29%を越えると失透性が強くなり、安定なガラスが得られなくなる。そのため、 P_2O_5 の含量は2~29%に限定される。好ましい P_2O_5 の含量は4~26%の範囲である。

【0009】 Na_2O はガラスの屈伏温度(T_s)を下げ、液相温度を下げる成分として欠かせない成分である。またガラスの粘性を下げることができるので低温で溶解が可能となり、白金るつぼの浸食による着色を抑えることができる。 Na_2O が2%未満では失透性が強く

上記の効果が得られない。また25%を越えると、耐失透性、化学的耐久性が悪くなる。従ってNa₂Oの含量は2~25%に限定され、好ましくは4~22%である。

【0010】Nb₂O₅は、目的とする高屈折率・高分散特性を得るために不可欠な成分であり、また耐久性を上げる効果のある成分でもある。Nb₂O₅が4%未満であると目的とする高屈折率・高分散特性が得られなくなり、22%以上では耐失透性が悪くなり、ガラスの屈伏点(Ts)が上昇する。このためNb₂O₅は4%以上22%未満に限定される。好ましいNb₂O₅の含量は6~21.5%である。

【0011】WO₃は目的とする高屈折率・高分散特性を得るために不可欠な成分であり、またガラスの屈伏点(Ts)を下げるのに非常に有効な成分である。WO₃が20%未満であると目的とする高屈折率・高分散特性が得られなくなり、ガラスの屈伏点も上昇する。また52%を越えると耐失透性が悪くなり、かつガラスが強く着色することになる。このためWO₃は20~52%に限定される。好ましいWO₃の含量は23~49%である。

【0012】本発明の第1の態様の低融点光学ガラスは、後述の実施例からも明らかなように高屈折率で高分散特性を有し、かつ低融点特性を有している。例えば屈折率は1.70~1.86の範囲にあり、アッペ数は3.5~2.1の範囲でガラス屈伏点(Ts)は570℃以下の範囲である。また液相温度(L·T)を下げることができ、かつガラス塊をプレスする際のガラス軟化点での失透性も従来品よりも優れている。

【0013】本発明の第1の態様の低融点光学ガラスは、前記成分以外に任意成分として更に、B₂O₃、GeO₂、Li₂O、K₂O、Cs₂O、MgO、CaO、SrO、BaO、ZnO、TiO₂、Ta₂O₅、As₂O₃、Sb₂O₃等の成分を含むことができる。これら任意成分の含量は、重量%で表示して、B₂O₃が0~15%、GeO₂が0~27%、Li₂Oが0~4%、K₂Oが0~15%、Cs₂Oが0~5%、MgOが0~5%、CaOが0~5%、SrOが0~5%、BaOが0~15%、ZnOが0~7%、TiO₂が0~16%、Ta₂O₅が0~7%、As₂O₃が0~2%、Sb₂O₃が0~2%の範囲である。以下にその理由を説明する。

【0014】B₂O₃及びGeO₂は、ガラスの安定性を上げる効果が非常に大きな成分である。しかし、B₂O₃は15%を越え、GeO₂は27%を越えると、目的とする高屈折率・高分散特性が得られなくなり、またガラスの屈伏点も上昇する。そのためB₂O₃の含量は0~15%の範囲に、GeO₂は0~27%の範囲に限定される。好ましくは、B₂O₃は0~13%の範囲であり、GeO₂は0~25%の範囲である。

【0015】Li₂O、K₂O及びCs₂Oは、ガラスの屈伏温度(Ts)を下げる効果が非常に大きな成分である。しかし、Li₂Oは4%を越え、K₂Oは15%を越え、Cs₂Oは5%を越えると、それぞれ耐失透性、化学的耐久性が悪化する。そのためLi₂Oは0~4%の範囲、K₂Oは0~15%の範囲、Cs₂Oは0~5%の範囲に限定される。好ましくは、Li₂Oは0~2%の範囲、K₂Oは0~13%の範囲、Cs₂Oは0~3%の範囲である。

【0016】アルカリ土類金属酸化物であるMgO、CaO、SrO及びBaOはガラスの液相温度を下げ、安定性を増す効果が大きな成分である。しかし、MgOは5%を越え、CaOは5%を越え、SrOは5%を越え、BaOは15%を越えると、目的とする高屈折率・高分散特性が得られず、かつ耐失透性が悪くなる。そのためMgO、CaO及びSrOの含量は、それぞれ0~5%の範囲に限定され、BaOは0~15%の範囲に限定される。好ましくは、MgO、CaO及びSrOはそれぞれ0~3%の範囲であり、BaOは0~13%の範囲である。

【0017】TiO₂は高屈折率・高分散特性を得る効果が大きい成分である。しかし、16%を越えると耐失透性が悪くなり、ガラスの屈伏点が上昇し、強く着色することがある。そのため、TiO₂の含量は、0~16%の範囲である。

【0018】ZnO及びTa₂O₅は、耐失透性を損なわずに少量添加により屈折率の調整をすることが可能である。しかし、それぞれ7%を越えると耐失透性が悪くなる。そのため、ZnO及びTa₂O₅の含量は、いずれも0~7%の範囲に限定され、好ましくは0~5%の範囲である。

【0019】As₂O₃及びSb₂O₃は消色剤および清澄剤として有効である。しかし、いずれも2%を越えて添加すると耐失透性を悪くする。そのため、As₂O₃及びSb₂O₃の含量は、それぞれ0~2%の範囲に限定される。尚、本発明の第1の態様の光学ガラスは、本発明の目的を損なわない範囲で、上記の成分以外の成分を含有することもできる。

【0020】次に、本発明の第2の態様の光学ガラスについて、各成分およびその含量の限定理由を説明する。P₂O₅は燐酸塩ガラスにおいて、ガラス形成成分として欠かせない成分である。燐酸塩ガラスは珪酸塩ガラスと比べて低い温度でガラスを溶融することができ、可視域の透過率が高いという特徴をもつ。また同じガラス形成酸化物成分である、SiO₂やB₂O₃に比べてP₂O₅は高分散側に位置する成分のためアッペ数3.2以下の光学特性を得るにはP₂O₅は少なくとも1.2%は必要である。逆に3.2%を越えると失透性が強くなり、安定なガラスが得られなくなるためP₂O₅の含量は1.2~3.2%の範囲に限定される。好ましいP₂O₅の含量

は14～30%の範囲である。

【0021】 B_2O_3 は燐酸塩ガラスにおいて適量添加により耐失透性が極めて良くなり、かつ、 P_2O_5 、 SiO_2 といった他のガラス形成酸化物成分に比べてガラス屈伏点(T_s)を下げる効果が大きい。そのため、本発明には欠かせない成分である。 B_2O_3 が0.5%未満であると上記のごとく耐失透性が悪くなり、ガラスの屈伏点(T_s)が上昇し、16%を越えると目的とする高屈折率・高分散特性が得られなくなる。このため B_2O_3 は0.5～16%の範囲に限定される。好ましい B_2O_3 の含量は1～14%の範囲である。

【0022】 Li_2O は、目的とするガラス屈伏点(T_s)が570℃以下の低融点特性を得るために不可欠な成分である。 Li_2O が0.3%未満であると目的とする低融点特性が得られなくなり、6%を越えると耐失透性が悪くなる。このため Li_2O は0.3～6%の範囲に限定される。好ましい Li_2O の含量は0.3～4%の範囲である。

【0023】 Na_2O はガラスの屈伏温度(T_s)を下げ、液相温度を下げる成分として欠かせない成分である。またガラスの粘性を下げるができるので低温で溶解が可能となり、白金るつぼの浸食による着色を抑えることができる。 Na_2O が2%未満では失透性が強く上記の効果が得られない。また22%を越えると、耐失透性、化学的耐久性が悪くなる。従って Na_2O の含量は2～22%の範囲に限定され、好ましくは4～20%の範囲である。

【0024】 Nb_2O_5 は、目的とする高屈折率・高分散特性を得るために不可欠な成分であり、また耐久性を上げる効果のある成分である。 Nb_2O_5 が8%未満であると目的とする高屈折率・高分散特性が得られなくなり、52%を越えると耐失透性が悪くなり、かつガラスの屈伏点(T_s)が上昇する。このため Nb_2O_5 は8～52%の範囲に限定される。好ましい Nb_2O_5 の含量は10～50%の範囲である。

【0025】本発明の第2の態様の低融点光学ガラスは、後記の実施例からも明らかなように高屈折率で高分散特性を有し、かつ低融点特性を有している。例えば、屈折率は1.69～1.83の範囲にあり、アッペ数は32～21の範囲でガラス屈伏点(T_s)は570℃以下の範囲である。また、液相温度($L \cdot T$)を下げることができ、かつガラス塊をプレスする際のガラス軟化点での失透性も従来品よりも優れている。

【0026】本発明の第2の態様の低融点光学ガラスは、前記成分以外に任意成分として更に、 SiO_2 、 GeO_2 、 K_2O 、 MgO 、 CaO 、 SrO 、 BaO 、 ZnO 、 Al_2O_3 、 TiO_2 、 Ta_2O_5 、 WO_3 、 As_2O_3 、 Sb_2O_3 等の成分を含むことができる。これら任意成分の含量は、重量%で表示して、 SiO_2 が0%～5%、 GeO_2 が0～12%、 K_2O が0～12%

%、 K_2O が0～12%、 MgO が0～5%、 CaO が0～5%、 SrO が0～5%、 BaO が0～12%、 ZnO が0～5%、 Al_2O_3 が0～5%、 TiO_2 が0～12%、 Ta_2O_5 が0～5%、 WO_3 が0%以上20%未満、 As_2O_3 が0～2%、 Sb_2O_3 が0～2%である。

【0027】 SiO_2 及び GeO_2 は、ガラスの安定性を上げる効果が非常に大きな成分である。しかし、 SiO_2 が5%を越え、 GeO_2 が12%を越えると目的とする高屈折率・高分散特性が得られなくなり、またガラスの屈伏点も上昇する。このため SiO_2 の含量は0%～5%、 GeO_2 は0～12%の範囲に限定される。好ましくは、 SiO_2 は0～4.5%の範囲、 GeO_2 は0～10%の範囲である。

【0028】 K_2O はガラスの屈伏点(T_s)を下げる効果が非常に大きな成分である。しかし、 K_2O が12%を越えると耐失透性、化学的耐久性が悪化する。そのため K_2O は0～12%の範囲に限定される。好ましくは、 K_2O の含量は0～10%の範囲である。

【0029】アルカリ土類金属酸化物である MgO 、 CaO 、 SrO 及び BaO はガラスの液相温度を下げ安定性を増す効果が大きな成分である。しかし、 MgO は5%を越え、 CaO は5%を越え、 SrO は5%を越え、 BaO は12%を越えると、目的とする高屈折率・高分散特性が得られず、かつ耐失透性が悪くなる。このため MgO 、 CaO 及び SrO の含量は、いずれも0～5%の範囲に限定され、 BaO は0～12%の範囲に限定される。好ましくは、 MgO 、 CaO 及び SrO はそれぞれ0～3%の範囲であり、 BaO は0～10%の範囲である。

【0030】 TiO_2 及び WO_3 は高屈折率・高分散特性を得る効果が大きい成分である。しかし、 TiO_2 は12%を越え、 WO_3 は20%以上になると、耐失透性が悪くなり、ガラスの屈伏点が上昇し、強く着色するようになる。このため TiO_2 は0～12%の範囲に限定され、 WO_3 は0%以上20%未満に限定される。好ましくは、 TiO_2 は0～10%の範囲で、 WO_3 は0～19.5%範囲である。

【0031】 ZnO 、 Ta_2O_5 及び Al_2O_3 は、耐失透性を損なわずに少量添加により、屈折率の調整をすることが可能な成分である。しかし、それぞれ5%を越えると耐失透性が悪くなる。そのため、それぞれの含量は0～5%の範囲に限定され、好ましくは0～3%の範囲である。

【0032】 As_2O_3 及び Sb_2O_3 は、消色剤および清澄剤として有効である。しかし、2%を越える量の添加は耐失透性を悪くする。そのため、 As_2O_3 及び Sb_2O_3 の含量はそれぞれ0～2%の範囲に限定される。尚、本発明の第2の態様の光学ガラスは、本発明の目的を損なわない範囲で、上記の成分以外の成分を含有

することもできる。

【0033】本発明の低融点光学ガラスは、第1の態様及び第2の態様いずれの場合も、原料として、 P_2O_5 は正磷酸 (H_3PO_4) 、メタリン酸塩、五酸化二磷等、他の成分については炭酸塩、硝酸塩、酸化物等を適宜用いることが可能である。これらの原料を所望の割合に秤取し、混合して調合原料とし、これを1000℃～1200℃に加熱した熔解炉に投入し、熔解、清澄後、攪拌し、均一化してから鋳型に鋳込み徐冷することにより、本発明の低融点光学ガラスを得ることができる。

【0034】

【実施例】以下、実施例によりさらに本発明について説明する。

実施例1～14

本発明の低融点光学ガラス（第1の態様）の調合組成（重量%）及び光学的性能を表1及び2に示す。各ガラスの原料は、 P_2O_5 の場合 H_3PO_4 であり、 Na_2O の場合 Na_2CO_3 であり、 K_2O の場合 KNO_3 であり、 Li_2O の場合 Li_2CO_3 であり、 Cs_2O の場合 Cs_2CO_3 であり、 MgO の場合 $MgCO_3$ であ

り、 CaO の場合 $CaCO_3$ であり、 SrO の場合 $Sr(NO_3)_2$ であり、 BaO の場合 $BaCO_3$ であり、 B_2O_3 の場合 H_3BO_3 であり、その他の成分については、表1及び2に示した酸化物をそのまま使用した。表1及び2の実施例1～14に示した各ガラスは、定められた組成に調合した後、白金坩堝を用いて1000℃～1200℃で熔解した。30～40分熔解し均質化した後、金型に鋳込み徐冷することによりガラスを得た。

【0035】表中の屈折率 (n_d) 、アッペ数 (v_d) は徐冷降温速度—30℃/hrにした場合の結果である。ガラス転移点 T_g 、ガラス屈伏点 (T_s) は熱膨張測定機を用いて8℃/minで昇温した場合の測定結果である。液相温度 ($L \cdot T$) は400℃～1050℃の温度勾配のついた失透試験炉に30分保持し、倍率80倍の顕微鏡により結晶の有無を観察し、軟化点付近の失透性も液相温度測定の際同時に目視により観察した結果である。

【0036】

【表1】

	実施例						
	1	2	3	4	5	6	7
P ₂ O ₅	4.4	24.4	17.4	14.4	18.4	19.4	15.4
B ₂ O ₃	2.5	2.5	12.5	—	1.0	2.5	5.5
GeO ₂	24.0	8.0	8.0	8.0	—	4.0	4.0
Na ₂ O	7.8	10.0	10.0	10.0	5.0	20.0	10.0
K ₂ O	—	3.8	0.8	—	7.8	2.8	12.8
BaO	5.0	5.0	5.0	11.8	—	3.0	3.0
TiO ₂	5.0	2.0	5.0	4.5	—	6.0	6.0
Nb ₂ O ₅	12.6	9.1	7.6	10.6	21.1	16.6	12.6
WO ₃	38.7	35.2	33.7	38.7	46.7	25.7	30.7
Li ₂ O				2.0			
As ₂ O ₃					0.2		
Sb ₂ O ₃						0.2	
Cs ₂ O							
MgO							
CaO							
SrO							
ZnO							
Ta ₂ O ₅							
n _d	1.85225	1.70266	1.72277	1.77908	1.80025	1.72361	1.70035
v _d	21.8	32.3	26.5	26.4	23.33	34.5	29.13
T _g	502	494	479	442	539	453	404
T _s	534	533	529	475	568	489	444
L・T	940	認めず	850	800	900	830	730
軟化点 失透性	透明						

【0037】

【表2】

	実施例						
	8	9	10	11	12	13	14
P ₂ O ₅	18.4	13.4	17.4	13.4	17.4	16.4	18.4
B ₂ O ₃	2.5	1.0	2.5	1.0	3.5	2.5	—
GeO ₂	4.0	8.0	4.0	8.0	4.0	8.0	—
Na ₂ O	17.0	10.0	10.0	10.8	10.0	10.0	10.0
K ₂ O	2.8	0.8	2.8	—	2.8	0.8	2.8
BaO	3.0	8.0	6.0	8.0	—	5.0	—
TiO ₂	6.0	4.5	6.0	4.5	6.0	13.0	3.0
Nb ₂ O ₅	12.6	12.6	12.6	12.6	12.6	10.6	16.1
WO ₃	30.7	38.7	35.7	38.7	39.7	33.7	45.7
Li ₂ O							
As ₂ O ₃							
Sb ₂ O ₃							
Cs ₂ O	3.0						
MgO		3.0					
CaO			3.0				
SrO				3.0			
ZnO					4.0		
Ta ₂ O ₅							4.0
n _d	1.70815	1.79671	1.79909	1.80215	1.79765	1.84190	1.82682
v _a	31.3	26.49	24.56	24.76	23.74	22.7	22.27
Tg	411	489	515	487	494	532	511
Ts	448	515	547	515	527	568	549
L·T	800	890	750	780	793	950	850
軟化点 失透性	透明						

【0038】比較例1～11

特公昭56-40094号公報に記載の実施例7と14のガラスを比較用ガラスとして、その屈折率、アッペ数、液相温度、ガラス屈伏点(Ts)を測定した。結果を表3(比較例1、比較例2)に示す。この比較ガラスはNb₂O₅を多く含んでいるため、耐失透性が悪くガラス屈伏点も600℃以上と精密プレス成形用ガラスとしては実用的でないことがわかる。比較例3のガラスは、特開昭63-265840号公報に記載の実施例4のガラスの屈折率、アッペ数、液相温度(L·T)、ガラス屈伏点(Ts)を測定した結果である(表3)。このガラスもガラス屈伏点が622℃と高く、軟化点付近で30分間保持するとガラスが失透してしまうため、実用的でないことがわかる。比較例4のガラスは、特開平

1-308843号公報に記載の実施例29のガラスの屈折率、アッペ数、ガラス屈伏点(Ts)を測定した結果である(表3)。このガラスはガラス屈伏点が428℃と非常に低いが、PbOを多量に含むため還元性雰囲気でガラスをプレスするとPbOが還元され型に付着し、その後精密プレスが不可能となり実用的でないことがわかる。

【0039】比較例5～11(表3及び4)のガラスは、特開平5-51233号公報に記載の実施例1、2、3、4、5、6、8のガラスの屈折率、アッペ数、ガラス屈伏点(Ts)を測定した結果である。これらのガラスはガラス熔解中にガラスが失透したり、熔解後キャストしてガラスになったものでも液相温度は1000℃以上と高く、軟化点付近で30分間保持するとガラス

が失透してしまうため、いずれも実用的でないことが分かる。

【0040】

【表3】

11-12
合計

	比 較 例					
	1	2	3	4	5	6
P ₂ O ₅	31.3	19.4	3.5			
B ₂ O ₃			1.5	15.0	5.0	
GeO ₂					7.0	15.0
SiO ₂			22.0	15.0	12.0	10.0
Li ₂ O				4.0	1.3	
Na ₂ O					10.7	15.0
K ₂ O	16.2	12.8	20.0		7.5	3.0
Cs ₂ O					8.5	10.0
ZnO	4.8		0.5	4.0		
PbO				57.0		
BaO					3.3	
TiO ₂	24.8		23.0		25.7	20.0
Nb ₂ O ₅	22.9	22.1	29.0		19.0	27.0
WO ₃		45.7				
La ₂ O ₃				0.5		
ZrO ₂				0.2		
CaO				4.0		
Sb ₂ O ₃				0.3		
As ₂ O ₃			0.5			
n _d	1.8178	1.7874	1.7982	1.774	1.8055	1.81491
v _d	21.8	24.1	23.1	29.9	25.2	24.6
T _g	—	577	596	392		
T _s	—	608	622	428	520	546
L·T	熔解中 失透	950	1050 <		1050 <	熔解中 失透
軟化点 失透性		透明	失透		失透	

【0041】

【表4】

	比較例				
	7	8	9	10	11
P ₂ O ₅					
B ₂ O ₃					
GeO ₂	9.0	10.0	5.0	3.5	9.0
SiO ₂	13.0	15.0	19.0	19.0	15.0
Li ₂ O		2.0	1.0		1.3
Na ₂ O	16.0	10.0	10.0	12.0	9.0
K ₂ O	10.0			9.0	9.2
Cs ₂ O		15.0	19.0	8.5	8.5
ZnO					
PbO					
BaO		5.0			3.3
TiO ₂	27.0	25.0	25.0	26.5	25.7
Nb ₂ O ₅	25.0	18.0	21.0	21.5	19.0
WO ₃					
La ₂ O ₃					
ZrO ₂					
CaO					
Sb ₂ O ₃					
As ₂ O ₃					
n _d	1.80516	1.82633	1.79850	1.78946	1.80832
v _d	24.5	24.8	25.2	25.0	25.2
Tg					
Ts	520	537	543	550	542
L・T	熔解中 失透	熔解中 失透	1010	1025	1050 <
軟化点 失透性			失透	失透	失透

【0042】比較例の各ガラスと比較して、表1及び2に示すように、実施例1～14の本発明のガラスは、高屈折率かつ高分散の低融点ガラスである。さらに、実施例1～14の本発明のガラスは、ガラス屈伏点(Ts)が570℃以下で、ガラスの液相温度(L・T)はすべて950℃以下であり、軟化点付近でガラスを30分間保持してもガラスは失透することがなかった。従って、いずれのガラスも精密プレスによるレンズを大量に生産することが可能な安定性を有することが分かる。

【0043】実施例21～30

本発明の低融点光学ガラス(第2の態様)の調合組成(重量%)及び光学的性能を表5及び6に示す。各ガラ

スの原料は、P₂O₅の場合H₃PO₄であり、Na₂Oの場合Na₂CO₃であり、K₂Oの場合KNO₃であり、Li₂Oの場合Li₂CO₃であり、Al₂O₃の場合Al(OH)₃であり、MgOの場合MgCO₃であり、CaOの場合CaCO₃であり、SrOの場合Sr(NO₃)₂であり、BaOの場合BaCO₃であり、B₂O₃の場合H₃BO₃である。その他の成分については、表5及び6に示した酸化物をそのまま使用した。表5及び6の実施例21～30に示した各ガラスは、定められた組成によって調合した後、白金坩堝を用いて1000℃～1200℃で熔解した。30～40分熔解し均質化した後、金型に鋳込み徐冷することにより

ガラスを得た。

【0044】表中の屈折率 (n_d) 、アッペ数 (ν_d) は徐冷降温速度—30°C/hにした場合の結果である。ガラス転移点 (T_g) 、ガラス屈伏点 (T_s) 热膨張測定機を用いて8°C/minで昇温した場合の結果である。又、液相温度 ($L \cdot T$) は400°C~1050°C

の温度勾配のついた失透試験炉に30分保持し、倍率80倍の顕微鏡により結晶の有無を観察し、軟化点付近の失透性も液相温度測定の際同時に目視により観察した結果である。

【0045】

【表5】

	実 施 例				
	21	22	23	24	25
P ₂ O ₅	23.4	28.0	21.4	21.4	21.4
B ₂ O ₃	3.0	1.1	8.8	5.6	5.6
SiO ₂	—	4.4	4.5	4.5	4.5
GeO ₂	10.0	—	—	—	—
Li ₂ O	0.5	1.0	0.5	1.0	3.0
Na ₂ O	13.5	18.5	5.0	9.5	7.5
K ₂ O	2.8	2.0	8.8	7.0	7.0
TiO ₂	6.0	9.2	—	9.2	9.2
Nb ₂ O ₅	12.6	35.6	48.0	38.8	38.8
WO ₃	19.5				
BaO	8.7				
Sb ₂ O ₃		0.2			
Al ₂ O ₃			3.0		
MgO				3.0	
CaO					3.0
n_d	1.69121	1.74812	1.75431	1.77520	1.77820
ν_d	30.5	25.7	25.1	26.2	26.1
T_s	565	551	562	560	550
$L \cdot T$	930	930	930	920	910
軟化点 失透性	透明	透明	透明	透明	透明

【0046】

【表6】

	実 施 例				
	2 6	2 7	2 8	2 9	3 0
P ₂ O ₅	21.4	24.4	24.4	21.4	15.4
B ₂ O ₃	5.6	4.1	4.1	4.6	12.5
SiO ₂	4.5	4.0	4.0	4.5	—
GeO ₂	—	—	—	—	8.0
Li ₂ O	1.0	1.0	1.0	1.0	0.5
Na ₂ O	9.5	16.5	16.5	9.5	10.3
K ₂ O	7.0	4.0	4.0	7.0	—
TiO ₂	9.2	9.2	9.2	9.2	5.0
Nb ₂ O ₅	38.8	33.8	33.8	42.6	37.7
SrO	3.0				
ZnO		3.0			
Ta ₂ O ₅			3.0		
As ₂ O ₃				0.2	
WO ₃					5.6
BaO					5.0
n _d	1.77745	1.74713	1.75138	1.81509	1.76371
v _d	26.3	26.1	26.5	22.66	25.1
T _s	558	520	542	568	555
L・T	890	880	920	930	890
軟化点 失透性	透明	透明	透明	透明	透明

【0047】前記表3の比較例1、2の特公昭56-40094号公報に記載の比較ガラスはガラス形成酸化物として、P₂O₅だけを用いているため耐失透性が悪く、ガラス屈伏点(T_s)も高い。またガラスの屈伏点を下げるのに最も効果の高いアルカリ金属酸化物としてK₂Oのみを用いているためガラス屈伏点が高く、精密プレス成形用ガラスとしては実用的でない。さらに表3及び4の比較例3～11のガラスは前記のようにそれぞれ問題点がある。

【0048】それに対して実施例21～30の本発明のガラスは、高屈折率・高分散の低融点ガラスであり、ガラス屈伏点(T_s)が570℃以下で、ガラスの液相温

度(L・T)はすべて950℃以下である。実施例21～30のガラスは、軟化点付近でガラスを30分間保持してもガラスは失透することがなかった。従って、いずれのガラスも精密プレスによるレンズを大量に生産することが可能な安定性を有することが分かる。

【0049】

【発明の効果】本発明によれば、高屈折率・高分散特性を有するとともに、ガラス屈伏点が570℃以下で耐失透性を有し安定であり、かつ、成形性にすぐれた低融点光学ガラスを提供することができる。本発明の低融点光学ガラスを用いることにより、精密プレス用の成形型の寿命を延ばしてレンズを生産することが可能である。

	1	2	3	4	5	6	7
Composition	wt%	wt%	wt%	wt%	wt%	wt%	wt%
SiO ₂							
B ₂ O ₃	2.5	2.5	12.5	0	1	2.5	5.5
Al ₂ O ₃							
P ₂ O ₅	4.4	24.4	17.4	14.4	18.4	19.4	15.4
Li ₂ O	0	0	0	2	0	0	0
Na ₂ O	7.8	10	10	10	5	20	10
K ₂ O	0	3.8	0.8	0	7.8	2.8	12.8
Cs ₂ O	0	0	0	0	0	0	0
MgO							
CaO							
SrO							
BaO	5	5	5	11.8	0	3	3
ZnO							
TiO ₂	5	2	5	4.5	0	6	6
Nb ₂ O ₅	12.6	9.1	7.6	10.6	21.1	16.6	12.6
Ta ₂ O ₅							
W ₂ O ₃	38.7	35.2	33.7	38.7	46.7	25.7	30.7
Sb ₂ O ₃	0	0	0	0	0	0.2	0
As ₂ O ₃	0	0	0	0	0.2	0	0
GeO ₂	24	8	8	8	0	4	4
合計	100	100	100	100	100.2	100.2	100

	1	2	3	4	5	6	7
Composition	mol%						
SiO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00
B ₂ O ₃	4.91	4.92	21.97	0.00	2.44	4.32	9.91
Al ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P ₂ O ₅	4.24	23.55	14.99	13.59	22.00	16.43	13.60
Li ₂ O	0.00	0.00	0.00	8.99	0.00	0.00	0.00
Na ₂ O	17.20	22.11	19.73	21.61	13.69	38.79	20.23
K ₂ O	0.00	5.53	1.04	0.00	14.06	3.57	17.04
Cs ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MgO	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SrO	0.00	0.00	0.00	0.00	0.00	0.00	0.00
BaO	4.47	4.48	4.00	10.33	0.00	2.36	2.46
ZnO	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TiO ₂	8.55	3.43	7.65	7.55	0.00	9.03	9.42
Nb ₂ O ₅	6.48	4.69	3.50	5.34	13.48	7.51	5.95
Ta ₂ O ₅	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W ₂ O ₃	22.80	20.80	17.77	22.35	34.17	13.32	16.60
Sb ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.08	0.00
As ₂ O ₃	0.00	0.00	0.00	0.00	0.17	0.00	0.00
GeO ₂	31.36	10.48	9.36	10.25	0.00	4.60	4.80
合計	100.00	100.00	100.00	100.00	100.00	100.00	100.00

	Emdobiment						
	8	9	10	11	12	13	14
Composition	wt%	wt%	wt%	wt%	wt%	wt%	wt%
SiO ₂							
B ₂ O ₃	2.5	1	2.5	1	3.5	2.5	0
Al ₂ O ₃							
P ₂ O ₅	18.4	13.4	17.4	13.4	17.4	16.4	18.4
Li ₂ O	0	0	0	0	0	0	0
Na ₂ O	17	10	10	10.8	10	10	10
K ₂ O	2.8	0.8	2.8	0	2.8	0.8	2.8
Cs ₂ O	3	0	0	0	0	0	0
MgO		3					
CaO			3				
SrO				3			
BaO	3	8	6	8	0	5	0
ZnO					4		
TiO ₂	6	4.5	6	4.5	6	13	3
Nb ₂ O ₅	12.6	12.6	12.6	12.6	12.6	10.6	16.1
Ta ₂ O ₅							4
WO ₃	30.7	38.7	35.7	38.7	39.7	33.7	45.7
Sb ₂ O ₃	0	0	0	0	0	0	0
As ₂ O ₃	0	0	0	0	0	0	0
GeO ₂	4	8	4	8	4	8	0
合計	100	100	100	100	100	100	100

	Emdobiment						
	8	9	10	11	12	13	14
Composition	mol%	mol%	mol%	mol%	mol%	mol%	mol%
SiO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00
B ₂ O ₃	4.53	1.91	4.75	2.02	6.75	4.62	0.00
Al ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P ₂ O ₅	16.35	12.54	16.19	13.27	16.45	14.84	20.74
Li ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na ₂ O	34.59	21.44	21.31	24.49	21.65	20.73	25.82
K ₂ O	3.75	1.13	3.93	0.00	3.99	1.09	4.76
Cs ₂ O	1.34	0.00	0.00	0.00	0.00	0.00	0.00
MgO	0.00	9.90	0.00	0.00	0.00	0.00	0.00
CaO	0.00	0.00	7.07	0.00	0.00	0.00	0.00
SrO	0.00	0.00	0.00	4.07	0.00	0.00	0.00
BaO	2.47	6.95	5.18	7.35	0.00	4.20	0.00
ZnO	0.00	0.00	0.00	0.00	6.60	0.00	0.00
TiO ₂	9.47	7.49	9.92	7.92	10.08	20.91	6.01
Nb ₂ O ₅	5.98	6.30	6.26	6.67	6.36	5.12	9.70
Ta ₂ O ₅	0.00	0.00	0.00	0.00	0.00	0.00	1.45
WO ₃	16.69	22.17	20.33	23.46	22.97	18.67	31.53
Sb ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00
As ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00
GeO ₂	4.82	10.17	5.05	10.75	5.13	9.83	0.00
合計	100.00	100.00	100.00	100.00	100.00	100.00	100.00

	21	22	23	24	25	26	27
Composition	wt%						
SiO ₂	0	4.4	4.5	4.5	4.5	4.5	4
B ₂ O ₃	3	1.1	8.8	5.6	5.6	5.6	4.1
Al ₂ O ₃	0	0	3	0	0	0	0
P ₂ O ₅	23.4	28	21.4	21.4	21.4	21.4	24.4
Li ₂ O	0.5	1	0.5	1	3	1	1
Na ₂ O	13.5	18.5	5	9.5	7.5	9.5	16.5
K ₂ O	2.8	2	8.8	7	7	7	4
Cs ₂ O							
MgO	0	0	0	3	0	0	0
CaO	0	0	0	0	3	0	0
SrO	0	0	0	0	0	3	0
BaO	8.7	0	0	0	0	0	0
ZnO							3
TiO ₂	6	9.2	0	9.2	9.2	9.2	9.2
Nb ₂ O ₅	12.6	35.6	48	38.8	38.8	38.8	33.8
Ta ₂ O ₅							
W ₂ O ₃	19.5	0	0	0	0	0	0
Sb ₂ O ₃	0	0.2	0	0	0	0	0
As ₂ O ₃							
GeO ₂	10	0	0	0	0	0	0
合計	100	100	100	100	100	100	100

	21	22	23	24	25	26	27
Composition	mol%						
SiO ₂	0.00	8.23	9.95	8.29	8.17	8.73	7.25
B ₂ O ₃	5.19	1.78	16.79	8.91	8.78	9.39	6.41
Al ₂ O ₃	0.00	0.00	3.91	0.00	0.00	0.00	0.00
P ₂ O ₅	19.83	22.18	20.02	16.69	16.44	17.58	18.71
Li ₂ O	2.02	3.77	2.23	3.72	10.98	3.91	3.65
Na ₂ O	26.20	33.56	10.71	16.97	13.20	17.87	28.97
K ₂ O	3.58	2.39	12.41	8.23	8.11	8.67	4.62
Cs ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MgO	0.00	0.00	0.00	8.25	0.00	0.00	0.00
CaO	0.00	0.00	0.00	0.00	5.83	0.00	0.00
SrO	0.00	0.00	0.00	0.00	0.00	3.38	0.00
BaO	6.84	0.00	0.00	0.00	0.00	0.00	0.00
ZnO	0.00	0.00	0.00	0.00	0.00	0.00	4.01
TiO ₂	9.03	12.95	0.00	12.76	12.56	13.43	12.53
Nb ₂ O ₅	5.70	15.06	23.99	16.17	15.93	17.03	13.84
Ta ₂ O ₅	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W ₂ O ₃	10.11	0.00	0.00	0.00	0.00	0.00	0.00
Sb ₂ O ₃	0.00	0.08	0.00	0.00	0.00	0.00	0.00
As ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00
GeO ₂	11.50	0.00	0.00	0.00	0.00	0.00	0.00
合計	100.00	100.00	100.00	100.00	100.00	100.00	100.00

				Comparative Example		
	28	29	30	1	2	3
Composition	wt%	wt%	wt%	wt%	wt%	wt%
SiO ₂	4	4.5	0			22
B ₂ O ₃	4.1	4.6	12.5			1.5
Al ₂ O ₃	0	0	0			
P ₂ O ₅	24.4	21.4	15.4	31.3	19.4	3.5
Li ₂ O	1	1	0.5			
Na ₂ O	16.5	9.5	10.3			
K ₂ O	4	7	0	16.2	12.8	20
Cs ₂ O						
MgO	0	0	0			
CaO	0	0	0			
SrO	0	0	0			
BaO	0	0	5			
ZnO				4.8		0.5
TiO ₂	9.2	9.2	5	24.8		23
Nb ₂ O ₅	33.8	42.6	37.7	22.9	22.1	29
Ta ₂ O ₅	3					
WO ₃	0	0	5.6		45.7	
Sb ₂ O ₃	0	0	0			
As ₂ O ₃		0.2				0.5
GeO ₂	0	0	8			
合計	100	100	100	100	100	100

				Comparative Example		
	28	29	30	1	2	3
Composition	mol%	mol%	mol%	mol%	mol%	mol%
SiO ₂	7.49	9.03	0.00	0.00	0.00	35.53
B ₂ O ₃	6.63	7.97	22.21	0.00	0.00	2.09
Al ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00
P ₂ O ₅	19.34	18.17	13.41	26.00	24.72	2.39
Li ₂ O	3.78	4.05	2.07	0.00	0.00	0.00
Na ₂ O	29.95	18.48	20.54	0.00	0.00	0.00
K ₂ O	4.78	8.96	0.00	20.28	24.59	20.61
Cs ₂ O	0.00	0.00	0.00	0.00	0.00	0.00
MgO	0.00	0.00	0.00	0.00	0.00	0.00
CaO	0.00	0.00	0.00	0.00	0.00	0.00
SrO	0.00	0.00	0.00	0.00	0.00	0.00
BaO	0.00	0.00	4.04	0.00	0.00	0.00
ZnO	0.00	0.00	0.00	6.95	0.00	0.60
TiO ₂	12.96	13.89	7.74	36.61	0.00	27.94
Nb ₂ O ₅	14.31	19.33	17.54	10.16	15.05	10.59
Ta ₂ O ₅	0.76	0.00	0.00	0.00	0.00	0.00
WO ₃	0.00	0.00	2.98	0.00	35.64	0.00
Sb ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00
As ₂ O ₃	0.00	0.12	0.00	0.00	0.00	0.25
GeO ₂	0.00	0.00	9.46	0.00	0.00	0.00
合計	100.00	100.00	100.00	100.00	100.00	100.00