

Übung 10 - Numerisches Programmieren

Michael Obersteiner

Technische Universität München

Fakultät für Informatik

Lehrstuhl für Wissenschaftliches Rechnen

BigBlueButton, 27. Januar 2021

Recap – Gewöhnliche Differentialgleichungen

- Beschreiben Zusammenhang der Ableitung(en) zur Funktion
- Dient zur Beschreibung dynamischer Systeme (zum Beispiel in der Physik)
- Allgemein mit potenziell weiteren Ableitungen: $\dot{y}(t) = f(y(t), t, ...)$
- Bei uns Beschränkung auf 1. Ableitung: $\dot{y}(t) = f(y(t), t)$
- Eindeutig lösbar mit Anfangswert
- Beispiel: $\dot{y}(t) = y(t)$

Recap – Gewöhnliche Differentialgleichungen

- Beschreiben Zusammenhang der Ableitung(en) zur Funktion
- Dient zur Beschreibung dynamischer Systeme (zum Beispiel in der Physik)
- Allgemein mit potenziell weiteren Ableitungen: $\dot{y}(t) = f(y(t), t, ...)$
- Bei uns Beschränkung auf 1. Ableitung: $\dot{y}(t) = f(y(t), t)$
- Eindeutig lösbar mit Anfangswert
- Beispiel: $\dot{y}(t) = y(t)$
- Lösung: Separation der Variablen

$$\dot{y}(t) = y(t)$$

$$\frac{dy}{dt} = y \qquad \qquad \text{Umforming}$$

$$\frac{1}{y}dy = 1dt \qquad \text{Separation der Variablen}$$

$$\int_{y_0}^{y} \frac{1}{y}dy = \int_{t_0}^{t} 1dt \qquad \qquad \text{Integration}$$

$$ln(|y|) - ln(|y_0|) = t - t_0$$

$$ln(\left|\frac{y}{y_0}\right|) = t - t_0$$

$$\left|\frac{y}{y_0}\right| = e^{t - t_0}$$

$$y = \pm y_0 e^{t - t_0}$$

$$y(t) = y_0 e^{t - t_0} \qquad \text{da } y(t_0) = y_0$$

Recap – Numerik von ODEs: explizite Verfahren

Euler Methode: Folge den Richtungungsfeld für bestimmtes x-Intervall

 \rightarrow Iteration: $y_{k+1} = y_k + \delta_t f(y_k, t_k)$ $y_0 = y(t_0)$

Recap – Numerik von ODEs: explizite Verfahren

- Heun Methode: Verwende Ableitung nach Euler Schritt und mittle mit aktueller Suchrichtung
- Analogie: Vorausschauendes Fahren
- Iteration: $y_{k+1} = y_k + \delta_t \frac{f(y_k, t_k) + f(y_k + \delta_t f(y_k, t_k), t_{k+1})}{2}$ $y_0 = y(t_0)$

Recap – Numerik von ODEs: implizite Verfahren

Euler Methode: Gehe Richtung des Punktes an dem man ankommt!

→ Iteration: $y_{k+1} = y_k + \delta_t f(y_{k+1}, t_{k+1})$ $y_0 = y(t_0)$

Bearbeitung Aufgabe 1
<u>Definitionen</u> : Lokaler Diskretisierungsfehler:
Globaler Diskretisierungsfehler:
Stabilität:
Konsistenz:
Konvergenz:

Steifheit:

Bearbeitung Aufgabe 1
<u>Definitionen</u> : Lokaler Diskretisierungsfehler:
Globaler Diskretisierungsfehler:
Stabilität:
Konsistenz:
Konvergenz:

Steifheit:

• Lokaler Diskretisierungsfehler: Fehler durch einen Schritt

$$l(\delta t) = |y(t_{k+1}) - y_{k+1}|; \quad y(t_k) = y_k$$

• Globaler Diskretisierungsfehler: Fehler am Ende zur analytischen Lösung

$$e(\delta t, n) = |y(t_n) - y_n|; \quad y(t_0) = y_0$$

Konsistenz: kleine Zeitschritte → kleiner lok. Fehler

$$\lim_{\delta t \to 0} l(\delta t) = 0$$

Konvergenz: kleine Zeitschritte → kleiner glob. Fehler

$$\lim_{\delta t \to 0, n \to \infty} e(\delta t, n) = 0$$

- Stabilität: kein Verstärken kleiner lokaler Fehler
- Steifheit: ODE benötigt sehr kleine Zeitschritte
- Konsistenz + Stabilität → Konvergenz

Analogie: ODE und Quadratur

$$y(t_{k+1}) - y(t_k) = \int_{t_k}^{t_{k+1}} \dot{y}(t)dt = \int_{t_k}^{t_{k+1}} f(t, y(t))dt$$

$$\Rightarrow y_{k+1} - y_k = Q(f)$$

- Beliebige Quadraturformel für Q(f) möglich.
- Oft weitere Modifikationen nötig (z.B. einsetzen von explizitem Euler bei Heun)

Bearbeitung Aufgabe 2

a) expliziter Euler mit Rechtecksregel

b) Heun mit Trapezregel + zusätzliche Approximation

Analogie: ODE und Quadratur

$$y(t_{k+1}) - y(t_k) = \int_{t_k}^{t_{k+1}} \dot{y}(t)dt = \int_{t_k}^{t_{k+1}} f(t, y(t))dt$$
$$\Rightarrow y_{k+1} - y_k = Q(f)$$

- Beliebige Quadraturformel für Q(f) möglich.
- Oft weitere Modifikationen nötig (z.B. einsetzen von explizitem Euler bei Heun)
- "Dumme Rechtecksregel": Q(f) = f(a) (b-a)

$$y_{k+1} - y_k = \delta t \cdot f(t_k, y_k) \to y_{k+1} = y_k + \delta t \cdot f(t_k, y_k)$$

- → expliziter Euler
- Trapezregel: Q(f) = 0.5(b-a)(f(a) + f(b))

$$y_{k+1} - y_k = 0.5\delta t \cdot (f(t_k, y_k) + f(t_{k+1}, y_{k+1}))$$

$$\to y_{k+1} = y_k + 0.5\delta t \cdot (f(t_k, y_k) + f(t_{k+1}, y_{k+1}))$$

- → impliziter Heun
- \rightarrow expliziter Heun durch Substituieren mit explizitem Euler für y_{k+1}

Bearbeitung Aufgabe 3

Bankverzinsung

- a) jährliche Verzinsung mit explizitem Euler
- b) Formulierung der ODE
- c) analytische Lösung
- d) vierteljährliche Verzinsung mit explizitem Euler
- e) Vergleich

- Verwenden auch von älteren Schritten und nicht nur dem vorherigen
- Beispiel Mittelpunktregel (instabil):

$$y_{k+1} = y_{k-1} + 2\delta t f(t_k, y_k)$$

- Mehrere Startwerte müssen gegeben sein oder durch andere Verfahren berechnet werden!
- Stabilität nötig für Konvergenz auch wenn Konsistenz erfüllt!

Bearbeitung Aufgabe 4

a) analytische Lösung

b) Mittelpunktsregel

c) Mittelpunktsregel mit halber Schrittweite

