Supplemental Figure 1. Frequency and length of 5' truncated SINEs (SoIS, AU, TS) detected in the data sets of potato, tomato and tobacco.

^a The 3' end of TS (102 bp upstream of the poly(GTT) tail) is highly similar to the 3' end of the SolRTE-I family (see Figure 6), and the differentiation beetween both retroelements is not possible. The detection of the very high number of 5' truncated copies which are shorter than 120 bp is most likely due to highly abundant SolRTE-I LINE sequences in tobacco.

Supplemental Data. Wenke et al. (2011). Plant Cell 10.1105/tpc.111.088682.

Supplemental Figure 2. Physical mapping of SolS SINE families by FISH.

SINEs of SolS-Ia (A), SolS-II (B), SolS-IIIa (C), SolS-IV (D), SolS-V (E), SolS-VI (F) and SolS-VII (G) were localized on potato metaphase chromosomes. Red and green signals are sites of hybridization while blue fluorescence shows DAPI stained DNA.

Supplemental Figure 3. Structure and amino acid alignments of SoIRTE-I sequences.

Α

The structure of the potato SolRTE-I_St1 LINE (above, drawn to scale). The grey rectangle represents the single ORF. UTR, APE and RT refer to the untranslated regions, apurinic/apyrimidinic endonuclease and reverse transcriptase, respectively. Black vertical lines and numbers show positions of conserved APE and RT domains. Triangles indicate target site duplications (TSD).

The schematic alignment of potato SolRTE-I sequences are arranged to the structure of SolRTE-I_St1 (below). Thick black bars indicate similar sequences, thin lines parts without similarity. Identity values are given for SolRTE-I_St1, St2 and St3 (highlighted as horizontal grey rectangle) and for SolRTE-I 3' end regions (highlighted as vertical grey rectangle). Asterisks indicate LINEs delimited by TSDs. SolRTE-I_St2 is interrupted in the 5' UTR by a L1-like LINE which is flanked by TSDs.

The amino acid alignments show the apurinic/apyrimidinic endonuclease (B) and reverse transcriptase (C) region of SoIRTE-I LINEs compared to LINEs of the RTE clade. Characteristic domains of the APE and RT are indicated according to Malik and Eickbush (1998) and Malik et al. (1999), respectively. Black boxes designate residues conserved in all and gray boxes designate residues conserved in four of six sequences depicted.

References

Malik, H.S. and Eickbush, T.H. (1998). The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs. Mol. Biol. Evol. **15:** 1123-1134.

Malik, H.S., Burke, W.D. and Eickbush, T.H. (1999). The age and evolution of non-LTR retrotransposable elements. Mol. Biol. Evol. **16**: 793-805.

Supplemental Figure 4. Assignment of the SolRTE-I family to the RTE clade of LINEs.

The dendrogram shows the grouping of potato and tobacco SolRTE-I to RTE1, BDDF and JAM1 of the RTE clade (Szemraj et al., 1995; Youngman et al., 1996; Warren et al., 1997; Malik and Eickbush, 1998). The Neighbor-Joining tree (substitution model: Poisson, bootstrap values: 1000 replicates) was constructed using the computational translated reverse transcriptase domains 1-7 (see Supplemental Figure 3) assigned to 14 different LINE clades. The following clades were included: R1 (R1, *Drosophila melanogaster*), LOA (LOA, *Drosophila silvestris*), Tad1 (Tad1, *Neurospora crassa*), Rex1 (Rex1, *Xiphophorus maculatus*), CR1 (CR1, *Gallus gallus*), L2 (L2, *Oryzias latipes*), Jockey (Jockey, *D. melanogaster*), I (I, *D. melanogaster*), R4 (R4, *Ascaris lumbricoides*), NeSL (NeSL, *Caenorhabditis elegans*), L1 (L1, *Homo sapiens*), R2 (R2, *D. melanogaster*), RTE (SolRTE-I_Nt, *Nicotiana tabacum*; SolRTE-I_St1, *Solanum tuberosum*; RTE1, *C. elegans*; BDDF, *Bos taurus*; JAM1, *Aedes aegypti*), CRE1 (CRE1, *Crithidia fasciculata*). EMBL accessions are indicated. SolRTE-I_Nt is a consensus of 1640 tobacco sequences (see Supplemental Data Set 6).

References

Szemraj, J., Plucienniczak, G., Jaworski, J. and Plucienniczak, A. (1995). Bovine Alu-like sequences mediate transposition of a new site-specific retroelement. Gene 152: 261-264.

Youngman, S., van Luenen, H.G. and Plasterk, R.H. (1996). Rte-1, a retrotransposon-like element in Caenorhabditis elegans. FEBS Lett. **380:** 1-7.

Warren, A.M., Hughes, M.A. and Crampton, J.M. (1997). Zebedee: a novel copia-Ty1 family of transposable elements in the genome of the medically important mosquito Aedes aegypti. Mol. Gen. Genet. **25**4: 505-513.

Malik, H.S. and Eickbush, T.H. (1998). The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs. Mol. Biol. Evol. 15: 1123-1134.

Supplemental Table 1. Number of SINEs in large sequence accessions of potato.

		SINE families (SoIS, AU)										
Sequence accession number (EMBL)	Length [bp]	la	lb	II	Illa	IIIb	IV	V	VI	VII	AU	Number of SINEs per sequence accession
AC233633	142953	2	1	2	1		2				1	9
AC233628	102676	1	2	3			2				1	9
AC236712	139508	2		1	2		1	1			2	9
AC233609	141570	2		2	1		2				1	8
EF514212	417445	2			2			2			1	7
AC233636	147623				1	1	1	1	1		2	7
AC213585	117020	3	1	2			1					7
AC206931	163599	1		2			1	2			1	7
AC231998	176590	1	1	2	2		1					7
AC233605	141262	2		2	1			1			1	7
AC215773	160546	1	2	1	1		1	1				7
AC233407	165359		1	1	1			1	1		1	6
AC235660	174813	1	2	1		1		1				6
AC235976	171039	1	1	1			1	1			1	6
AC235978	165818	1	1	2	1			1				6
AC233353	119301		1	1			2	1			1	6
AC233616	136335	1		1	2			1			1	6
AC206935	136627		1		1	1	1	1			1	6
AC233618	144807	1		3			1				1	6
AC232032	111567	1	1	2			1	1				6
AC232055	160074	1		3			1				1	6
AC234539	141772	1		1	2		1				1	6
AC209519	131657	1	1	1	1		1	1				6
AC233489	139205	1		2	1				1		1	6
AC231673	116204	1		2	1						2	6
	Total number	28	16	38	21	3	21	17	3	0	21	

Supplemental Table 2. Number of SINEs in large sequence accessions of tomato.

		SINE families (SoIS, AU)										
Sequence accession number (EMBL)	Length [bp]	la	lb	II	Illa	IIIb	IV	V	VI	VII	AU	Number of SINEs per sequence accession
AC215403	123184	2		1	2		1	1				7
AC215362	134651	1		1	2		1	1				6
AC232636	93617	1	1	2	1						1	6
AC212274	93265	1	1	1	2						1	6
AC217334	150975		1	2		1	1				1	6
EF647600	88227		2	2							2	6
AC216365	166562	1			2			1			2	6
AC238478	138572	1	1	1	2							5
AC212304	129165	3		2								5
EU180575	140448	1			1		1	1			1	5
AC211034	168476		1	2	1			1				5
AC234405	130648	1	1		1		1	1				5
AP010939	147816			2	1		1				1	5
AC209584	138883			1			1	1			2	5
AC211071	148371		1	1	1		1				1	5
EF647602	132378	1		1	1	1		1				5
AC205681	109367	2					1	2				5
AC234402	136545		2	1			1				1	5
EU124739	117727	1	1		1		1	1				5
AC196876	145193	1		1	1		1				1	5
AC216401	148650	2	1	1	1							5
AP009398	82278	1		1	2		1					5
AP009520	142029		1	2	2							5
AC212623	97158		1	1	1					1	1	5
AC215426	159752		1	1	1			1		1		5
	-											
	Total number	20	16	27	26	2	13	12	0	2	15	

Supplemental Table 3. Number of SINEs (SoIS, AU, TS) per sequence accession detected in the sequence data sets of potato, tomato and tobacco.

	Number o	ccessions			
Total number of SINEs per sequence accession	potato	tomato	tobacco		
9	3				
8	1				
7	7	1			
6	17	6			
5	30	21			
4	52	53			
3	64	133			
2	115	263	149		
1	1633	1604	9792		

Supplemental Table 4. Genome data sets analyzed in this study.

Analyzed species	URLs, Source				
		data			
		[Mbp]			
Arabidopsis lyrata	ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/v5.0/Alyrata/	210			
Arabidopsis thaliana	ftp://ftp.arabidopsis.org/Sequences/whole_chromosomes/	124			
Brachypodium distachyon	ftp://ftp.jgi-	275			
	psf.org/pub/JGI_data/phytozome/v5.0/Bdistachyon/assembly/sequences/				
Cucumis sativus	ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/v5.0/Csativus/assembly/	207			
Glycine max	ftp://ftp.jgi-	986			
	psf.org/pub/JGI_data/phytozome/v5.0/Gmax/assembly/sequences/				
Manihot esculenta	ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/v5.0/Mesculenta/	424			
Medicago truncatula	http://www.medicago.org/genome/downloads/Mt3/	313			
Mimulus guttatus	ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/v5.0/Mguttatus/assembly/	326			
Nicotiana tabacum	http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-page+srsq2+-noSession	1420			
Nuphar adveana (Nymphaeales)	http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-page+srsq2+-noSession	27			
Pinus taeda, Pinus sitchensis,	http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-page+srsq2+-noSession	843			
Picea glauca (Pinaceae)					
Populus trichocarpa	ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/v5.0/Ptrichocarpa/assembly/	422			
Solanum lycopersicum	http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-page+srsq2+-noSession	722			
Solanum tuberosum	http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-page+srsq2+-noSession	350			
Vitis vinifera	ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/v5.0/Vvinifera/assembly/	506			
Zea mays	http://zoneannfu.gdcb.iastate.edu/XGDB/phplib/download.php?GDB=Zm	2087			
Danio rerio	http://hgdownload.cse.ucsc.edu/goldenPath/danRer6/bigZips/	1543			

Supplemental Table 5. Primers used for the generation of SolS SINE probes for Southern blot and fluorescent *in situ* hybridization.

SINE family		Primer	Amplicon	Position within the SINE		
			[bp]			
SolS-la	for	AAATCCTGTTGGGAGCGCCAC	99	downstream of boxes A and B		
	rev	TTGGTTTCCACCCGGTGTC				
SolS-II	for	GTGATTTCTTCCCATCTGTC	122	downstream of boxes A and B		
	rev	ACCGTGGTGTCCGGGCCAGC				
SolS-IIIa	for	AAACCCCTTGCCAGCGAAAG	170	downstream of boxes A and B		
	rev	ATGACAAGGGAAACCCGCAG				
SolS-IIIb	for	AGTCGAGCCTGTCGCAT	148	downstream of boxes A and B		
	rev	AACCCGCAGCCGCTACA				
SolS-IV	for	AGCCCGGTATTTAAGTGGAG	103	downstream of boxes A and B		
	rev	CGAGAAATCCGTCTGTGAC				
SolS-V	for	ATGGTAAGCACCCCTCACTTC	90	complete SINE		
	rev	TTTACCCTCCCTAGGAGCTC				
SolS-VI	for	ACAATTTCTGAGGGCCATCG	123	downstream of boxes A and B		
	rev	GTGTCCGAGTCTCTTTGAG				
SolS-VII	for	CACTGGCATTACAAACC	106	downstream of boxes A and B		
	rev	GAACCCGACTAGCTGTAC				
SolRTE-I	for	AGATGAGGATGTTGAGGTGG	235	ORF 3' end		
	rev	TCTCCCCAATACTTCTTAGG				