UNIT 1

Theory questions and Numerical questions

THEORY QUESTIONS

SL NO	QUESTIONS	MARKS
1.	State and explain Kirchhoff's Laws. With example.	6
2.	With graphical representation state and explain Ohm's Law.	5
3.	State Ohm's law. Mention its limitation.	5
4.	With an example explain Current divider rule.	5
5.	With an example explain Voltage divider rule.	5
6.	State the characteristics of series and parallel circuits.	6
7.	Sketch the sinusoidal alternating waveform and define: Instantaneous value, waveform, Cycle, Frequency, Time period	6
8.	Define average value of an alternating quantity. Obtain the relation between average value and the maximum value.	6
9.	Define effective or R.M.S value of an alternating quantity. Obtain the relation between R.M.S value and the maximum value.	6
10.	Define Peak factor, Form factor, Power & Energy.	6
11.	Show that the rms value of current is equal to 0.707 times the maximum value.	8
12.	Derive an expression for the voltage and current and power for a pure Resistive or Inductive or Capacitive circuit when excited by sinusoidal voltage	8
13.	With phasor diagram obtain the voltage, current relations in pure capacitor (or) pure inductive circuit and also Show that average power consumed in capacitive circuit is zero.	8
14.	Derive an expression for the impedance of an ac circuit consisting of a resistance, inductance and capacitance(R-L-C)connected in series.	8
15.	What is meant by power factor in ac circuit? State its significance.	6
16.	Define 1) Active Power 2) Reactive power 3) Apparent power	6

NUMERICAL QUESTIONS

	For given network Shown in Fig (1). Find the Current in various the branches.	8
	↓ 100A	
	0.01Ω 0.02 Ω	
1.	80A 1 80A	
	0.01Ω 0.02Ω	
	120A 90A	
	0.02Ω 0.03Ω	
	150A	
	Fig(1).	
2.	A current of 20A flows through two ammeters A and B in series. The	6
	potential difference across A is 0.2V and across B is 0.3V.Find how	
	the same current will divide between A and B when they are in parallel.	
3.	A circuit consist of two parallel resistors having resistances of 20Ω	6
	and 30Ω respectively connected in series with a 15Ω resistor .If current through 15Ω resistor is 3A, Find(i).Current through the	
	branches. (ii)Voltages across whole circuit. (iii)Power consumed by	
	20 Ω and15 Ω resistors.	
4.	Find the potential difference between XY for the network shown in Fig	6
	(2).	
	3Ω 4ν	
	3v ⊥ 5Ω ≷ 4v √ ≷ 2Ω ≷ 3Ω	
	, , , , , , , , , , , , , , , , , , ,	
5.	Find F1 F2 and Luban the newer dissinated in the FO resistar is	8
J.	Find E1, E2 and I when the power dissipated in the 5Ω resistor is 125W (Ref. Fig.3)	O
	VE.	
	-1 3 <u>1</u> 1	
	15 20 251	
	1 2 21 2·5A	
	50	
6.	Fig.3	6
0.	Two 12V batteries with internal resistances 0.2Ω and 0.25Ω respectively are joined in parallel and a resistance of 1Ω is placed	0
	respectively are joined in parallel and a resistance of 112 is placed	

	across the terminals. Find the current supplied by each battery.	
7.	An Equation of an alternating current is given by i=42.42sin628t calculate the maximum value, Frequency, RMS value, Average value, Form factor & Peak factor.	6
	The equation for an AC voltage is given as $V = 0.04 \sin(200t + 60^{\circ})V$. Determine the frequency, the angular frequency. Instantaneous voltage when $t = 160 \mu sec$. What is the time represented by a 60° phase angle.	6
	Given V=200sin377 volts and I=8sin (377t-300) Amps for ac circuit, Evaluate power factor, True power, Apparent power and Reactive power indicate the unit of power calculated.	6
0.	For the current waveform shown in Fig. Find i) Peak current ii) Average value iii) Periodic time iv) Frequency v) Instantaneous value at t = 3ms.	6
1.	A series circuit with resistance of 10 ohms inductance of 0.2H and capacitance 40µF is supplied with a 100V supply at 50Hz. Find current, power and power factor.	8
12.	An inductor coil is connected to supply of 250v at 50 Hz and takes a current of 5amp. The coil dissipates 750watts calculate Power, power factor, resistance and inductance of coil.	8
13.	A series RLC circuit with 100Ω , $25\mu F$ and $0.15H$ is connected across 415V, 50Hz AC supply. Calculate i) impedance ii) current iii) power factor iv) voltage drop across inductor and capacitor.	8