

REMARKS

Applicants respectfully request reconsideration and allowance of subject application. Claims 34-35 are canceled. Claims 1, 4, 6, 10, 11, 15, 23, and 27-31 are amended. Claims 1-33 are pending.

Applicants thank the Examiner for the detailed analysis presented in this Office Action.

Claim Rejections under 35 U.S.C. § 103

Claims 1-5, 10-12, 14-19, 22, 29, and 31-33 were rejected under 35 U.S.C. § 103 as being unpatentable over U.S. Patent No. 6,529,995 B1 to Shepherd (hereinafter “Shepherd”) in view of U.S. Patent No. 5,689,688 to Strong et al. (hereinafter “Strong”). Claims 6 and 30 were rejected under 35 U.S.C. § 103 as being unpatentable over Shepherd in view of Strong and further in view of U.S. Patent No. 5,958,019 to Hagersten et al. Claims 7 and 20 were rejected under 35 U.S.C. § 103 as being unpatentable over Shepherd in view of Strong and further in view of U.S. Patent No. 5,923,855 to Yamazaki (hereinafter “Yamazaki”). Claims 8-9 and 21 were rejected under 35 U.S.C. § 103 as being unpatentable over Shepherd in view of Strong and further in view of U.S. Patent No. 5,796,946 to Sakon (hereinafter “Sakon”). Claim 13 was rejected under 35 U.S.C. § 103 as being unpatentable over Shepherd in view of Strong and further in view of U.S. Patent No. 5,774,660 to Brendel. Finally, Claims 23-28 were rejected under 35 U.S.C. § 103 as being unpatentable over Shepherd in view of Strong and further in view of Yamazaki in further view of Sakon. Applicants respectfully traverse the rejections.

1 The subject application is directed to challenges facing, for example, a
2 situation in which a variety of internet-based server applications require access to
3 certain data. In situations where multiple servers are executing multiple instances
4 of a particular server application, all instances of the server application require
5 access to the same set of data. For example, a commerce-related server
6 application requires access to a set of data containing information regarding
7 product (or service) prices, shipping charges, and promotions or other discounts.
8 If multiple servers are executing the same commerce-related server application,
9 each instance of the application must access the same set of data to accurately and
10 consistently calculate the price of a customer's order. If different instances of the
11 commerce-related server application access different sets of data, different
12 instances of the application may calculate different prices for the same order. To
13 avoid this problem, it is important that all instances of a particular application
14 access the same set of data or access different sets of synchronized data.

15 In the internet server application discussed above, all web servers in the
16 web farm must access the same set of data regarding pricing, shipping, and
17 discounts. If different web servers apply different sets of data, then the price of
18 the customer's order may change with each new web page access. For example, a
19 simple "web page refresh" command will cause the browser to retrieve the
20 "refreshed" web page from the web server associated with the next IP address in
21 the list. If the new web server applies a different set of data to determine pricing,
22 shipping costs, and discounts, then the price displayed to the customer may change
23 after the page is refreshed, even though the actual order has not changed. This
24 situation is undesirable and may cause the customer to abandon the web site,

1 thereby resulting in lost revenue (and possibly a lost customer) for the operator of
2 the site.

3 To ensure that all web servers access the same set of data, some existing
4 systems use a two-tier approach in which multiple web servers access data stored
5 in a database through a cache server. However, although such a system ensures
6 that each web server accesses a common set of data, the use of a single cache
7 server also introduces a single point of failure. Additionally, if network traffic is
8 heavy, the time required to retrieve data a network may significantly delay the
9 generation of a web page by a web server. If data retrieval speed is important,
10 then the delays associated with a system in which the web servers access data
11 stored in a database through a cache server may prevent acceptable operation.

12

13 Rejections of Claims 1-5, 10-12, 14-19, 22, 29, and 31-33

14 Respectfully, the combination of Shepherd and Strong, even if one of
15 ordinary skill in the art would have thought to create such a combination, neither
16 teaches nor suggests the methods and system recited in independent claims 1, 15,
17 and 29, and claims depending from them. Claims 1, 15, and 29, as amended, are
18 reproduced below for convenience:

19 1. (Currently Amended) A method of synchronizing
20 activation of scheduled update data among a plurality of web
21 servers, wherein each of the plurality of web servers is coupled to a
22 common data server, the method comprising:

23 receiving a scheduled activation time from the data server;

1 prior to the scheduled activation time, receiving the scheduled
2 update updated-data into staging caches in the plurality of web
3 servers; and

4 at the scheduled activation time, activating the scheduled
5 update data by causing the scheduled update updated-data from the
6 staging caches within each of the plurality of web servers to be
7 accessible from an active cache within each of the plurality of web
8 servers.

9
10 15. (Currently Amended) A system of synchronizing
11 activation of scheduled update data comprising:

12 a plurality of web servers coupled to a common data server,
13 wherein each of the plurality of web servers comprises:

14 a staging cache;

15 an active data cache coupled to the staging cache;

16 wherein the web server is configured to retrieve receive a
17 scheduled activation time from the data server, and further
18 configured to receive the scheduled update data from the data server
19 into the staging cache prior to the scheduled activation time; and

20 wherein the web server is configured to cause the scheduled
21 update data from the staging cache to be accessible from the active
22 data cache at the scheduled activation time.

23
24 29. (Currently Amended) A method of synchronizing
25 activation of scheduled update data among a plurality of web

1 servers, wherein each of the plurality of web servers is coupled to a
2 common data server, the method comprising:

3 providing a scheduled activation time from the data server to
4 each of the plurality of web servers;

5 communicating the scheduled update updated data into a
6 staging cache in each of the plurality of web servers prior to the
7 scheduled activation time; and

8 causing the scheduled update data from the staging cache in
9 each of the plurality of the web servers to be accessible from an
10 active cache in each of the plurality of the web servers at the
11 scheduled activation time.

12 As described below, amendments to claims 1, 15, and 29 serve to clarify
13 patentable distinctions between references cited and any other prior art.

14 Shepherd fails to teach or suggest the elements recited in claims 1, 15, and
15 29 and claims depending from them. In general, Shepherd discloses an
16 appropriately titled “METHOD AND APPARATUS FOR **MAINTAINING AND**
17 **RESTORING** MAPPING TABLE ENTRIES AND DATA IN A **RAID**
18 **SYSTEM**” (emphasis added). Expressly, in the first section describing the
19 problem it seeks to solve, Shepherd’s focus on maintaining and restoring old data:
20 “It is a problem in the field of computer systems to restore data that has been
21 accidentally or intentionally modified or deleted” (Shepherd, Column 1, Lines 29-
22 31). In addition, from the first paragraph of its detailed description, Shepherd
23 teaches a process for preserving superseded data to facilitate error recovery:

24 The present invention provides for **maintaining** a set of
25 unexpired **modified or deleted data** which can be used to **recover**
data to a previous point in time, with the unexpired data being

1 intelligently aged (i.e., made expired) and collected by a background
2 free space collection process. This capability is especially important
3 for disaster recovery, and for less intrusive mistakes such as those
4 caused by user or program error where data is wrongly modified or
5 deleted. *The present invention preserves the unexpired data based*
6 *on one or more methods (e.g., time, available space) until it*
7 *becomes expired and so becomes available for storage of new data.*

8 (Shepherd, Column 3, Line 60, through Column 4, Line 4; emphasis added).
9 Furthermore, Shepherd teaches maintaining modified or deleted data in a RAID
10 (Redundant Array of Independent Disks) system to provide data recovery between
11 independent disks within a single computing system. In short, Shepherd's object
12 is to preserve old data to facilitate restoration of old data to facilitate recovery
13 from disasters or errors within a single computing system.

14 In its focus in preserving modified or deleted data, Shepherd, if anything,
15 teaches away from the recitations of the claims 1, 15, 29, and claims depending
16 from these claims. Applicants have amended claims 1, 15, and 29 to further
17 clarify distinctions between Shepherd and any other prior art. Specifically, for
18 example, claim 1 as amended recites "receiving scheduled update data into staging
19 caches in the plurality of web servers" and "at the scheduled activation time,
20 activating the scheduled update data." As previously described, Shepherd's focus
21 is retrospective; Shepherd targets maintaining previously modified data for
22 purposes of retroactively restoring that data to an earlier state in the event of
23 subsequent data loss. Shepherd does not concern update data, let alone activating
24 such data at a scheduled activation time. Respectfully, therefore, Shepherd neither
25 teaches nor suggests what is recited by claims 1, 15, and 29 as amended.

26 The failure of Shepherd to teach or suggest what is recited in claims 1, 15,
27 29 is highlighted by considering specific passages cited in the Office Action as
28 applied to elements of the claims. First, the Office Action cites two passages of

1 Shepherd as disclosing "receiving updated data into the staging caches in the
2 plurality of web servers" as previously recited in claim 1. The first cited passage
3 clearly describes the recovery of old, superseded data:

4 The above-described problems are solved and a technical
5 advance is achieved in the field of computer systems by the
6 *temporary preservation of physical space occupied by previously*
modified or deleted data stored in the data storage subsystem . . .

7 (Shepherd, Column 2, Lines 9-12; emphasis added). In addition, the second
8 passage cited concerns the transfer of a data record that may have been staged into
9 cache memory (*see* Shepherd, Column 10, Lines 4-6 and 10-12). However, the
10 second passage of Shepherd is extracted from a description of Figure 3 of
11 Shepherd, which details the steps "to read data from a data *redundancy group in*
12 *the disk drive subsets*" in a RAID system (Shepherd, Column 9, Lines 64-65;
13 reference numbers omitted; emphasis added). Respectfully, neither temporarily
14 preserving space occupied by previously modified or deleted data nor reading data
15 from a redundancy group in disk drive subsets teaches or suggests "receiving
16 scheduled update data into staging caches in the plurality of web servers" as
17 recited in claim 1. Thus, applicants submit that the cited passages of Shepherd
18 neither teach nor suggest "receiving scheduled update data" as recited in claim 1.

19 Second, the Office Action cites two additional passages of Shepherd as
20 disclosing "copying data from the staging cache of each web server to an active
21 cache of each web server to an active cache of each server." Applicants wish to
22 note that "copying data" previously was amended to read "causing updated from a
23 staging ached to become accessible from an active cache." Moreover, the
24 passages cited in the Office Action, particularly when read together, do not
25

1 disclose causing scheduled update data from a staging cache to become accessible
2 from an active cache as recited in claim 1 as amended:

3 Therefore in order to perform a write operation, the virtual track that
4 contains the data record to be rewritten is staged from the logical
5 layer into the cache memory.

6 * * *

7 When data in cache memory is modified, it cannot be written
8 back to its previous location on a disk drive in disk drive subsets
9 since that would invalidate the redundancy information on that
10 logical track for the redundancy group. Therefore, once a virtual
11 track has been updated, that track must be written to a new location
12 in the data storage subsystem and the data in the previous location
13 must be marked as free space.

14 (Shepherd, Column 11, Lines 12-17, and Column 14, Lines 24-30; reference
15 numbers omitted). Again, the focus of Shepherd is on writing changed data
16 records to different locations on one or more disks in a RAID system to preserve
17 the superseded data for possible error recovery. Although Shepherd does describe
18 data being "staged" into a "cache memory," this data is being staged to a memory
19 to facilitate the new data being rewritten to a different disk location. Shepherd
20 does not disclose, nor does it suggest, using an active cache in addition to the
21 staging cache, or scheduled update data stored in the staging cache becoming
22 accessible from the active cache. Therefore, applicants submit that these cited
23 passages of Shepherd also fail to teach or suggest what is recited in claim 1 as
24 amended.

25 In addition, applicants submit that no person of ordinary skill in the art at
the time the invention was made would have been motivated to modify the
teachings of Shepherd with the teachings of Strong. Shepherd discloses a RAID
system in which multiple, independent storage disks are accessed within a single

1 system. By contrast, Strong teaches a process by network nodes are synchronized
2 to a master node via an exchange of broadcast messages as recited in passages
3 cited in the Office Action. (Strong, Column 2, Lines 7-15, and Column 9, Lines
4 51-53). In a single system with a redundant array of disks as described by
5 Shepherd, there is no need or desirability to synchronize a system clock with
6 another clock. Shepherd describes an error recovery process operating within a
7 single computing system with a single system clock. Accordingly, applicants
8 submit that it is improper to combine Strong with Shepherd.

9 However, for the sake of argument, even if one of ordinary skill in the art at
10 the time the invention was made might have combined Shepherd and Strong, their
11 combination still does not disclose what is recited in claims 1, 15, and 29. At
12 most, Strong might be used to synchronize system clocks in a network where, as
13 recited in claim 1, a "plurality of web servers is coupled to a common data server."
14 Nonetheless, however, Strong fails to teach or suggest "receiving a scheduled
15 activation time" to facilitate "at the scheduled activation time, activating the
16 scheduled update data by causing the scheduled update data from the staging
17 caches within each of the plurality of web servers to be accessible from an active
18 cache within each of the plurality of web servers." In short, Strong may describe
19 synchronizing clocks, but fails to disclose how times generated by the
20 synchronized clocks may be used as recited in claim 1.

21 In sum, Shepherd describes a system for maintaining modified and deleted
22 data to facilitate error recovery by allowing data to be restored to a former state
23 and, therefore, teaches away from a system for causing updated information to be
24 made available as recited in claims 1, 15, and 29. There would not have been
25 motivation at the time the invention was made to combine Shepherd with Strong's

1 clock synchronization system because Shepherd concerns data redundancy in a
2 single computing system where there are not multiple clocks to synchronize.
3 Further, even if Shepherd and Strong were to be combined, neither teaches
4 receiving a scheduled activation time and activating scheduled update data at the
5 scheduled activation time as recited in claims 1, 15, and 29.

6 Accordingly, applicants respectfully submit that claims 1, 15, and 29 are
7 patentable over the references cited, and request that the rejection under 35 U.S.C.
8 § 103 be withdrawn as to claims 1, 15, and 29. In addition, because claims 2-14,
9 16-22, and 30-33 depend from and apply additional limitations to claims 1, 15, and
10 29, respectively, applicants respectfully request that the rejection under 35 U.S.C.
11 § 103 also be withdrawn as to claims 2-14, 16-22, and 30-33.

12

13 Rejections of Claims 23-28

14 Respectfully, the combination of Shepherd, Strong, Yamazaki, and Sakon,
15 even if one of ordinary skill in the art would have thought to create such
16 combination, neither teaches nor suggests the methods and system recited in claim
17 23 as amended:

18 23. (Currently Amended) One or more computer-
19 readable media having stored thereon a computer program that when
20 executed performs a method comprising the following steps:

21 retrieving receiving a scheduled activation time from a data
22 server;

23 prior to the scheduled activation time, receiving scheduled
24 update updated-data into a staging cache in a server;

1 at the scheduled activation time, causing the scheduled update
2 data from the staging cache in the server to be accessible from an
3 active cache in the server; and

4 after the scheduled activation time, updating data caches in
5 the data server and calculating a next scheduled activation time.

6 As described below, amendments to claim 23 serve to clarify patentable
7 distinctions between references cited and any other prior art.

8 Not even a combination of all four references combined in the Office
9 Action – if it would have been obvious or logical for one skilled in the art at the
10 time of the invention to combine all four references – teaches or suggests what is
11 claimed in claim 23. First, if anything, Shepherd teaches away from what is
12 recited in claim 23. As previously described, Shepherd discloses an error recovery
13 process for use in a RAID system that, while including multiple independent disks,
14 uses a single processor. The error recovery process preserves previously modified
15 and deleted data allowing a RAID system to be restored to previously existing
16 state. Claim 23, by contrast, recites “causing scheduled update data from the
17 staging cache in the server to be accessible from an active cache in the server.”
18 Thus, instead of making scheduled update data available, Shepherd makes old data
19 available, working backwards in time and, thus, teaching away from what is
20 recited in claim 21.

21 Second, as also described above, even if for the sake of argument it would
22 have been obvious to combine Strong with Shepherd, such a combination fails to
23 disclose what is recited by claim 23. Strong describes synchronizing system
24 clocks of nodes in a network to a system node. Strong does not discuss receiving
25 an activation time upon which scheduled update data from the staging cache is

1 made accessible from an active cache. Therefore, Strong does not make up for the
2 shortcomings of Shepherd with regard to what is recited in claim 23. Although the
3 Office Action's inclusion of Yamazaki and Sakon concedes that a hypothetical
4 combination of Shepherd and Strong fails to disclose what is recited by claim 23,
5 applicants wish to emphasize that Shepherd and/or Strong do not provide a basis
6 over which claim 23 might be considered unpatentable in combination with the
7 other references cited or any other prior art.

8 Third, applicants submit that Yamazaki fails to make up for shortcomings
9 of the other references cited. The Office Action acknowledges that Shepherd in
10 view of Strong fails to disclose "after the scheduled activation time, updating data
11 caches in the data server," but claims that Yamazaki teaches "the use and
12 advantage of updating caches in the data server after the scheduled activation
13 time." However, while Yamazaki does address consistent updating of a cache
14 memory, Yamazaki does not describe updating a cache memory after a scheduled
15 activation time. In a passage relied upon in the Office Action, it is clear that
16 Yamazaki updates cache memories upon receipt of an update instruction:

17 Referring to FIG. 7, it is assumed that "0" is substituted for
18 the variable "X" and the cache state is under the "CE" state in the
19 processing unit #1. *After a synchronization instruction is executed*
20 *under this state*, when the processing unit #2 refers to the variable
21 "X", the entry containing the variable "X" is loaded into the cache
memory of the processing unit #2, so that the cache state thereto
becomes the "CS" state. At the same time, the cache state of the
entry containing the variable "X" of the cache memory of the
processing unit #1 also becomes the "CS" state.

22 (Yamazaki, Column 5, Lines 48-57; emphasis added). Thus, Yamazaki
23 synchronizes cache memories when a synchronization instruction is received, not
24 after a scheduled activation time as recited in claim 23. Thus, Yamazaki does not

1 make up for the shortcomings of the other references cited in teaching or
2 suggesting what is recited in claim 23.

3 Finally, applicants submit that Sakon also fails to make up for the
4 shortcomings of the other references cited. The Office Action acknowledges that
5 Strong and Yamazaki fail to disclose "calculating the next scheduled activation
6 time," but claims based on Sakon that "the use and advantage for scheduling the
7 next activation time is well known to one skilled in the relevant art at the time the
8 invention was made." Respectfully, however, Sakon discloses nothing about
9 calculating a next activation time. In claim 1 of Sakon cited in the Office Action
10 for disclosing scheduling the next activation time, Sakon describes calculating not
11 a time, but a barrier value:

12 1. A barrier synchronizer of a multi-processor system having a
13 plurality of processors and a shared region shared by each of said
processors, each processor comprising:
14 a lock means for exclusively locking the shared region;
a read means for reading a value of the shared region locked
by the lock means;
15 an adding means for adding a predetermined value to said value to
generate an added value;
16 a write means for writing the added value to the shared region;
17 *a calculation means for calculating a next barrier value
based on the added value, the next barrier value
representing a value of the shared region at a time when all
the processors will have reached a synchronized condition;*
18

19 * * *

20 3. The barrier synchronizer of a multi-processor system
according to claim 2, wherein each processor further comprises a
21 local region, and *wherein said calculation means calculates the
next barrier value based on a value stored in the local region.*
22

23 (Sakon, Column 8, Lines 25-40 and 54-58; emphasis added). From these
24 passages, it is clear that Sakon concerns calculation of a barrier value, not an
activation time. Barrier value is defined by Sakon as "a value of the shared region
25

1 at the time that all the processors reach synchronized condition in accordance with
2 the calculated value of the adding means." (Sakon, Column 2, Lines 2-4). In both
3 the passages cited in the Office Action and in the definition of "barrier value,"
4 Sakon assumes that a time or point when all the processors have reached a
5 synchronization value is known, for nothing in Sakon addresses how it is
6 determined "when all the processors will have reached the synchronization
7 condition," and discloses nothing as to how an activation time is calculated. In
8 sum, Yamazaki fails to make up for the shortcomings of Shepherd, Strong, or
9 Yamazaki.

10 In sum, Shepherd describes a system for maintaining modified and deleted
11 data to facilitate error recovery by allowing data to be restored to a former state
12 and, therefore, teaches away from a system for causing updated information to be
13 made available as recited in claims 1, 15, and 29. There would not have been
14 motivation at the time the invention was made to combine Shepherd with Strong's
15 clock synchronization system because Shepherd concerns data redundancy in a
16 single computing system where there are not multiple clocks to synchronize.
17 Further, even if Shepherd and Strong were to be combined, neither these
18 references nor Yamazaki or Sakon teach "updating data caches in the data server
19 and calculating a next scheduled activation time" as recited in claim 23.

20 Accordingly, applicants respectfully submit that claim is patentable over
21 the references cited, and request that the rejection under 35 U.S.C. § 103 be
22 withdrawn as to claim 23. In addition, because claims 24-28 depend from and
23 apply additional limitations to claim 23, applicants respectfully request that the
24 rejection under 35 U.S.C. § 103 also be withdrawn as to claims 24-28.

1 Applicants' decision not to discuss the differences between the cited art and
2 each dependent claim with regard to rejections under 35 U.S.C. § 103 should not
3 be considered as an admission that applicants concur with the Office Action's
4 conclusion that these dependent claims are not patentable over the cited
5 references. Similarly, applicants' decision not to discuss differences between the
6 prior art and every claim element, or every comment in the Office Action, should
7 not be considered as an admission that applicants concur with interpretations and
8 assertions regarding those claims in the Office Action.

9
10 Conclusion

11 Claims 1-33 are in condition for allowance. Applicants respectfully
12 requests reconsideration and prompt allowance of the subject application. If any
13 issue remains unresolved that would prevent allowance of this case, the Examiner
14 is requested to urgently contact the undersigned attorney to resolve the issue.

15
16 Respectfully Submitted,

17 Date: September 6, 2005

18 By: Frank J. Bozzo

19 Frank J. Bozzo
Lee & Hayes, PLLC
Reg. No. 36,756
(206) 315-4001 ext. 103