Parkinson's disease

Mahsa Raeiati Banadkooki 8/14/2021

Test Code

This code just was written to analyze the Parkinson's disease as a sample code. It was used some visualization analysis. Also the decision tree and support vector machine were used for classifying the dataset.

The Data

https://wiki.socr.umich.edu/index.php/SOCR_Data_PD_BiomedBigMetadata (https://wiki.socr.umich.edu/index.php/SOCR_Data_PD_BiomedBigMetadata)

This case-study uses simulation to examine associations between clinical, demographic, imaging and genetics variables for Parkinson's disease. This is an example of Big Data for investigating important neurodegenerative disorders.

The dataset contains:

ID: Case subject identifier

Imaging Biomarkers: ComputeArea = surface area of 3D brain region of interest, Volume= the 3D volume/size of the region of interest, region name is encoded in morphometry measure name (e.g., L_putamen_ComputeArea represents the left putamen surface area):

 $L_caudate_ComputeArea, L_caudate_Volume, R_caudate_ComputeArea, R_caudate_Volume, L_putamen_ComputeArea, L_putamen_Volume, R_caudate_Volume, R_caudate_Vol$

 $R_putamen_ComputeArea, R_putamen_Volume, L_hippocampus_ComputeArea, L_hippocampus_Volume, R_hippocampus_ComputeArea, R_putamen_Volume, R$

R_hippocampus_Volume, cerebellum_ComputeArea, cerebellum_Volume, L_lingual_gyrus_ComputeArea, L_lingual_gyrus_Volume,

R lingual gyrus ComputeArea, R lingual gyrus Volume, L fusiform gyrus ComputeArea, L fusiform gyrus Volume,

R_fusiform_gyrus_ComputeArea, R_fusiform_gyrus_Volume

Demographics variables: Sex, Weight, Age

Diagnosis: Dx, PD=Parkinson's, HC=Healthy Control, SWEDD = (tremor associated clinical parkinsonism features) scans without evidence of dopaminergic deficit

Genetics: chr12 rs34637584 GT, chr17 rs11868035 GT

Clinical: UPDRS_part_I, UPDRS_part_II, UPDRS_part_III (Movement Disorder Society-Sponsored Revision of the Unified. Parkinson's Disease Rating Scale (MDS-UPDRS)), (Normal=0)

Time: VisitTime: four time-points (baseline (0), 6, 12, and 18 month follow-ups).

```
library(xml2)
library(rvest)
url_data <- read_html("http://wiki.socr.umich.edu/index.php/SOCR_Data_PD_BiomedBigMetadata")
data <- html_table(html_nodes(url_data, "table")[[1]])
data <- data[, -c(1,33)] # Remove the ID and Time
library(psych)
describe(data)</pre>
```

##	vars	n	mean	sd	median	trimmed	mad
## L_caudate_ComputeArea	1	1128	600.39	26.42	600.0	600.63	27.43
## L_caudate_Volume	2	1128	800.33	27.12	800.0	800.50	26.69
## R_caudate_ComputeArea	3	1128	894.54	29.95	897.0	895.57	29.65
## R_caudate_Volume	4	1128	1001.16	32.56	998.0	1000.77	32.62
## L_putamen_ComputeArea	5	1128	898.93	31.05	897.5	898.40	31.13
## L_putamen_Volume	6	1128	1400.40	37.78	1400.0	1400.89	38.55
## R_putamen_ComputeArea	7	1128	1299.71	32.41	1302.0	1299.68	31.88
## R_putamen_Volume	8	1128	3000.30	58.14	3000.5	2999.92	58.56
## L_hippocampus_ComputeArea	9	1128	1302.09	37.49	1300.0	1300.78	35.58
## L_hippocampus_Volume	10	1128	3198.50	53.32	3199.5	3197.70	47.44
## R_hippocampus_ComputeArea	11	1128	1504.35	36.16	1504.5	1504.28	37.81
## R_hippocampus_Volume	12	1128	3799.29	62.61	3801.5	3798.86	54.11
## cerebellum_ComputeArea	13	1128	16699.60	126.68	16699.0	16699.51	126.02
## cerebellum_Volume	14	1128	14001.61	117.94	13995.5	14001.79	108.23
<pre>## L_lingual_gyrus_ComputeArea</pre>	15	1128	3300.20	57.70	3299.0	3299.29	51.89
## L_lingual_gyrus_Volume	16	1128	11010.39	111.11	11007.0	11008.59	99.33
<pre>## R_lingual_gyrus_ComputeArea</pre>	17	1128	3296.32	58.91	3294.0	3296.30	56.34
<pre>## R_lingual_gyrus_Volume</pre>	18	1128	12007.65	106.05	12001.0	12007.35	105.26
<pre>## L_fusiform_gyrus_ComputeArea</pre>	19	1128	3598.07	57.92	3594.5	3596.92	60.79
## L_fusiform_gyrus_Volume	20	1128	11011.18	110.89	11016.0	11013.34	104.52
## R_fusiform_gyrus_ComputeArea	21	1128	3298.63	58.05	3296.0	3298.44	53.37
## R_fusiform_gyrus_Volume	22	1128	9995.76	93.55	9993.5	9994.24	96.37
## Sex	23	1128	0.59	0.49	1.0	0.61	0.00
## Weight	24	1128	78.45	10.20	78.5	78.12	9.64
## Age	25	1128	60.64	10.14	61.0	60.66	10.38
## Dx*	26	1128	1.94	0.80	2.0	1.92	1.48
## chr12_rs34637584_GT	27	1128	0.54	0.50	1.0	0.55	0.00
## chr17_rs11868035_GT	28	1128	0.42	0.49	0.0	0.40	0.00
## UPDRS_part_I	29	1128	0.77	0.73	1.0	0.72	1.48
## UPDRS_part_II	30	1128	8.88	5.09	9.0	8.67	5.93
## UPDRS_part_III	31	1128	13.02	7.80	13.0	12.74	8.90
##	mir	n ma	ax range	skew k	urtosis	se	
## L_caudate_ComputeArea	525	5 60	67 142	-0.09	-0.31	0.79	
## L_caudate_Volume	719	9 89	90 171	0.01	0.22	0.81	
## R_caudate_ComputeArea	795	5 9	77 182	-0.32	0.18	0.89	
## R_caudate_Volume	916	5 109	94 178	0.10	-0.30	0.97	
## L_putamen_ComputeArea	815	5 100	03 188	0.19	0.19	0.92	
## L_putamen_Volume	1298	8 150	07 209	-0.14	-0.19	1.12	

	R_putamen_ComputeArea	1198	1392		-0.04	-0.06 0.96
	R_putamen_Volume	2846	3148	302	0.03	-0.38 1.73
##	L_hippocampus_ComputeArea	1203	1422	219	0.35	0.15 1.12
##	L_hippocampus_Volume	3036	3381	345	0.11	0.49 1.59
##	R_hippocampus_ComputeArea	1414	1602	188	0.04	-0.31 1.08
##	R_hippocampus_Volume	3634	4013	379	0.20	0.68 1.86
##	cerebellum_ComputeArea	16378	17096	718	0.04	-0.16 3.77
##	cerebellum_Volume	13680	14370	690	0.02	0.01 3.51
##	L_lingual_gyrus_ComputeArea	3136	3469	333	0.14	0.16 1.72
##	L_lingual_gyrus_Volume	10709	11488	779	0.27	0.66 3.31
##	R_lingual_gyrus_ComputeArea	3135	3490	355	0.06	0.29 1.75
##	R_lingual_gyrus_Volume	11679	12324	645	0.01	-0.11 3.16
##	L_fusiform_gyrus_ComputeArea	3446	3763	317	0.15	-0.25 1.72
##	L_fusiform_gyrus_Volume	10682	11394	712	-0.10	0.25 3.30
##	R_fusiform_gyrus_ComputeArea	3094	3443	349	-0.09	0.30 1.73
##	R_fusiform_gyrus_Volume	9736	10235	499	0.11	-0.16 2.79
##	Sex	0	1	1	-0.35	-1.88 0.01
##	Weight	51	109	58	0.22	-0.04 0.30
##	Age	31	87	56	-0.04	-0.35 0.30
##	Dx*	1	3	2	0.12	-1.43 0.02
##	chr12_rs34637584_GT	0	1	1	-0.16	-1.98 0.01
##	chr17 rs11868035 GT	0	1	1	0.33	-1.89 0.01
##	UPDRS_part_I	0	2	2	0.38	-1.07 0.02
	UPDRS_part_II	1	20	19	0.21	-0.89 0.15
	UPDRS part III	1	30	29	0.23	-0.86 0.23
	<u>-</u>	_	- •			

Load the libraries

```
library(ggplot2)
library(reshape2)
library(viridis)
library(GGally)
library(rpart.plot)
library(rpart)
library(e1071)
set.seed(1234)
```

Data Visualization

Create the sample boxplot for "weight" variable on two different grouping variables; "Age" on x-axis and "Sex" as fill color (legend variable).

Correlation plot for dataset

It can be seen from the result that there is no relation between features. They are completely uncorrelated.

```
cormat <- round(cor(as.matrix(data[, -26])),2) # Remove the Dx, it is categorical data
melted_cor_data <- melt(cormat)
ggplot(data = melted_cor_data, aes(x=Var1, y=Var2, fill=value)) +
    geom_tile(color="white", size=0.1)+
    scale_fill_viridis(discrete=FALSE)</pre>
```


Decision Tree

Support Vector Machine

SVM was used for classifying the data into three different groups with 69% of accuracy.

```
# Normalized the Data
set.seed(299)
normalize <- function(x) { return ((x - min(x)) / (max(x) - min(x)))}
data_norm <- as.data.frame(lapply(data[, -26], normalize))
data_norm <- data.frame(data_norm, "Dx" = data$Dx)

# Seprate the 70 % of data for Train data and 30% of data for Test
sub_sample <- sample(nrow(data_norm), floor(nrow(data_norm)*0.70))
data_train <- data_norm[sub_sample, ]
data_test <- data_norm[-sub_sample, ]

# Support vector Machine for classify data into three class
svm_model <- svm(Dx~., data = data_train, kernel="linear")
table(data_test$Dx, predict(svm_model, data_test))</pre>
```

```
##
## HC PD SWEDD
## HC 84 18 17
## PD 8 99 13
## SWEDD 24 25 51
```

```
result <- predict(svm_model, data_test)==data_test$Dx
prop.table(table(result))</pre>
```

```
## result
## FALSE TRUE
## 0.3097345 0.6902655
```