

Projet HPC: Batch merge and merge path sort

Astrid Legay - Marco Naguib - MAIN5

Sommaire

Tri de tableaux

APPLICATIONS

Base de données Traitement d'image Théorie des graphes

ALGORITHMES

Tri à bulle Quicksort Mergesort

MERGESORT

Très parallélisable Grâce à la méthode diviser pour régner

Pour $|A| + |B| \le 1024$, écrire un kernel mergeSmall_k qui fusionne A et B avec un block et plusieurs threads.

Logique

Résultats

Comparaison de mémoire globale et shared

Pour toutes tailles |A|+|B| = d, plus petite que la taille de mémoire globale, écrivez deux kernel qui fusionnent et trient A et B en utilisant plusieurs blocks: le 1er kernel pathBig_k qui trouve le chemin et le 2nd mergeBig_k qui fusionne A et B.

Utilisation des fenêtres glissantes

Utilisation des fenêtres glissantes

Logique du code

Code qui lance Code qui lance Reprises des Code qui trouve les les fenêtre de fonctions points d'intersection les fenêtres de Tests et mesures tri en utiles de la entre les diagonales et tri 1 par 1 parallèle question 1 le chemin 04 03 05

Résultats des mesures : Durée globale

En bouclant sur les appels appropriés de pathBig_k et de mergeBig_k, écrivez une fonction qui trie tout tableau M de taille d suffisamment plus petite que la mémoire globale. Donnez le temps d'exécution par rapport à d.

Merge Sort

Logique du code

Résultats des mesures

Expliquer pourquoi les indices

- int tidx = threadIdx.x%d;
- int Qt = (threadIdx.x-tidx)/d;
- int gbx = Qt +
 blockIdx.x*(blockDim.x/d);

Sont importants dans la définition de mergeSmallBatch k.

Question 4

Écrivez le noyau mergeSmallBatch k qui fusionne deux par deux $\{Ai\}1 \le i \le N$ et $\{Bi\}1 \le i \le N$

Donnez le temps d'exécution par rapport à d = 4, 8,..., 1024.

Logique

Résultats des mesures

Fusion d'entreprise

Traitements images : dans l'art

- Reconnaitre la palette de couleur
- Reconnaître le peintre
- Classer par couleurs
- Reconnaître le mouvement artistique
- Reconnaître la période de l'artiste

Traitements images : dans la médecine

- Comptage de cellules cancéreuses
- Repérage de cellules cancéreuses

D'un point de vue _"technique"

Compression de graphes

Merge Sort avec MergeSmallBatch

COMPARAISONS

Résultats des mesures

Conclusion

GPU

Découvrir le monde du GPU en pratique

Cuda - Parallélisme

Découvrir un autre moyen de mettre en place du parallélisme

Difficultées

- Milieu
- Boucle infinie
- Gestion des restes

Réfléchir à différentes applications possibles

Merci

Avez-vous des questions ?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Stories

