MLDS 490 Lab 4

Fall 2023 Shuyang Wang

Agenda

Assignment 1 Part 1 is due today at 10pm:

Checklist:

- 1. Submit: code, report (plots & instruction to run the code).
- 2. Upload to your private GitHub repo, add me as collaborator, due at 10pm.
- Assignment 1 Part 2 is due on Oct 24 (Tuesday) at 10pm:
 - Grading is based on the performance
- Baselines

Baselines

Recall that REINFORCE computes:
$$\nabla_{\theta}J(\theta) = \mathbb{E}\Big[\sum_{t=1}^{T} \left[\nabla \log \pi(a_{t}|s_{t}) \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'}\right]\Big]$$

At each step, a discounted future return is used: $G_t = \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'}$

Episode rewards can be of high variance due to the sampling noise.

Use **a baseline** to reduce the variance:

$$\nabla_{\theta} J(\theta) = \mathbb{E} \Big[\sum_{t} \big[\nabla \log \pi(a_{t}|s_{t}) G_{t} \big] \Big]$$
 REINFORCE
$$\nabla_{\theta} J(\theta) = \mathbb{E} \Big[\sum_{t} \big[\nabla \log \pi(a_{t}|s_{t}) (G_{t} - b(s_{t})) \big] \Big]$$
 REINFORCE with baselines

Baselines

Candidates

- Constant baseline
 - Average of episode reward
 - Shown to be unbiased
- Non-constant baseline should be used for assignment 1 part 2
 - Should be based on the current state
 - o (Policy) value function is a good candidate

$$b(s_t) = V^{\pi_{\theta}}(s_t) = \mathbb{E}_{\pi_{\theta}} \Big[\sum_{t'=t}^{T} \gamma^{t'-t} r_{t'}(a_{t'}, s_{t'}) \Big| s_t \Big]$$

Policy Gradient with Baselines

$$\nabla_{\theta} J(\theta) = \mathbb{E} \Big[\sum_{t} \big[\nabla \log \pi(a_{t}|s_{t}) G_{t} \big] \Big]$$
 REINFORCE
$$\nabla_{\theta} J(\theta) = \mathbb{E} \Big[\sum_{t} \big[\nabla \log \pi(a_{t}|s_{t}) (G_{t} - V(s_{t})) \big] \Big]$$
 REINFORCE with value function baseline
$$= \mathbb{E} \Big[\sum_{t=1}^{T} \nabla \log \pi(a_{t}|s_{t}) A_{t} \Big]$$

$$A_t = G_t - V(s_t) = (\sum_{t'=t}^T \gamma^{t'-t} r_{t'}) - (\mathbb{E}_{\pi_\theta} \sum_{t'=t}^T \gamma^{t'-t} r_{t'})$$

approximates the advantage

Policy network: $NN_{\theta}(s_t) = [p_0, p_1]$ or logits

Update the policy network:
$$\nabla_{\theta}J(\theta) = \frac{1}{N} \sum_{NEpisodes} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi(a_t|s_t) (G_t - V_w^{\pi_{\theta}}(s_t)) \right]$$
$$\theta_{k+1} = \theta_k + \alpha \nabla_{\theta}J(\theta_k)$$

Value network, outputs 1 value: $NN_w(s_t) = v \in \mathbb{R}$

Update the value network by Mean Squared Error:

NN outputs: $[NN_w(s_1),...,NN_w(s_T)]$

Targets: the discounted future returns $[G_1,...,G_T]$

$$w_{k+1} = w_k - \eta \nabla_w MSE(NN_{w_k}(s_t), G_t)$$

Policy Gradient with Baseline

Algorithm 1 Policy Gradient with Baseline

Require: Policy network π_{θ} , value network V_w , learning rates $\alpha_{\theta} > 0$, $\alpha_w > 0$ Initialize policy and value networks while not converged do Sample a batch of episodes, collect states, actions, rewards histories. for each episode and t = 1, ..., T do (use vectorization in implementation instead of for-loop)

Compute discounted future returns $G_t = \sum_{t'-t}^{T} \gamma^{t'-t} r_{t'}$

Forward pass of policy network to compute log probabilities $\log \pi_{\theta}(a_t|s_t)$ of selected actions

Forward pass of value network to compute state values $V_t = V_w(s_t)$

Compute advantage vector $A_t = G_t - V_t$ Comment: normalization or rewards or advantages may still apply

end for

Update θ using loss $-\frac{1}{N} \sum_{NEpisodes} \left[\sum_{t=1}^{T} \log \pi_{\theta}(a_t|s_t) A_t \right]$ with $\ln \alpha_{\theta}$

Update w using mean squared error loss $MSE(V_t, G_t)$ with $\ln \alpha_w$

end while

