Semana 14 - Parte 1

CÁLCULO NUMÉRICO

Prof. Maria Clara Schuwartz Ferreira mclarascferreira@gmail.com

Conteúdo da Semana 14

- 1. Interpolação
- 2. Interpolação polinomial
- 3. Interpolação polinomial via Sistemas Lineares
- 4. Interpolação polinomial via Polinômios de Lagrange
- 5. Interpolação polinomial via Polinômios de Newton
- 6. Análise do erro

• A tabela abaixo relaciona calor específico da água à sua temperatura T

Temperatura (°C)	20	25	30	35	40	45	50
Calor específico (cal/mol°)	0.99907	0.99852	0.99826	0.99818	0.99828	0.99849	0.99878

Perguntas:

- Qual é o calor específico quando *T* é 32,5 °C?
- E quando *T* é 34 °C?
- E quando *T* é 39 °C?
- Qual a temperatura para a qual o calor específico é 0.99837?

Temperatura (°C)	30	35	40
Calor específico (cal/mol°)	0.99826	0.99818	0.99828

Quanto vale c quando T é 32.5°C?

Alternativa: Utilizar a média!

 $c \approx 0.99822$

• E para T = 34°C? Alternativa: Determinar a reta que passa pelos pontos dados!

Temperatura (°C)	30	35	40
Calor específico (cal/mol°)	0.99826	0.99818	0.99828

• Quanto vale c quando T é 39°C?

⇒ A reta que encontramos anteriormente não parece uma boa alternativa para essa estimativa.

Temperatura (°C)	30	35	40
Calor específico (cal/molº)	0.99826	0.99818	0.99828

Alternativa: Determinar a parábola que passa pelos 3 pontos dados!

⇒ conseguimos boas aproximações para qualquer temperatura entre 30°C e 40°C.

Temperatura (°C)	20	25	30	35	40	45	50
Calor específico (cal/molº)	0.99907	0.99852	0.99826	0.99818	0.99828	0.99849	0.99878

• Para estimar c para temperaturas **entre 20°C e 50°C**, podemos utilizar um polinômio de grau 6 (pois temos 7 dados).

• Interpolar uma função f (nem sempre conhecida) consiste em aproximar essa função por uma função g. Assim, os valores de f(x) podem ser estimados (com erro controlado) por g(x), se x está entre os valores observados fornecidos.

IMPORTANTE: g deve coincidir com os dados.

Consideraremos aqui que g(x) é um polinômio (interpolação polinomial).

Conteúdo da Semana 14

- Interpolação
- 2. Interpolação polinomial
- 3. Interpolação polinomial via Sistemas Lineares
- 4. Interpolação polinomial via Polinômios de Lagrange
- 5. Interpolação polinomial via Polinômios de Newton
- 6. Análise do erro

Instituto federal Interpolação polinomial

- Teorema: Dados os n+1 pontos distintos $(x_0, f(x_0))$, \cdots , $(x_n, f(x_n))$ existe um único polinômio $p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ (de grau menor ou igual a n), tal que $p_n(x_k) = f(x_k)$ para $k = 0,1,2,\dots,n$.
- \Rightarrow O polinômio de n-ésima ordem que passa por n+1 pontos **é único**.

Dem. do teorema: Das condições de interpolação $p_n(x_k) = f(x_k)$, temos:

$$\begin{cases} a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = f(x_0) \\ a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = f(x_1) \\ \dots \\ a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = f(x_n) \end{cases}$$

Instituto Federal Interpolação polinomial

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

A matriz dos coeficientes associada é conhecida como matriz de Vandermonde (linhas estão em PG).

É possível mostrar (por indução) que se x_0, x_1, \ldots, x_n são distintos, então o determinante desta matriz é não-nulo.

⇒ o sistema admite solução única.

Conclusão: Existem a_0 , a_1 , a_2 ,...., a_n únicos que satisfazem as condições de interpolação.

Interpolação polinomial

Há várias maneiras para obter $p_n(x)$.

Discutiremos três possibilidades:

- Resolução de Sistema Linear
- Forma de Lagrange
- Forma de Newton

• As três formas devem conduzir ao mesmo polinômio.

Conteúdo da Semana 14

- Interpolação
- 2. Interpolação polinomial
- 3. Interpolação polinomial via Sistemas Lineares
- 4. Interpolação polinomial via Polinômios de Lagrange
- 5. Interpolação polinomial via Polinômios de Newton
- 6. Análise do erro

Interpolação polinomial via Sistemas Lineares

• Exemplo: Encontrar o polinômio de grau menor ou igual a 2 que interpola os dados da

tabela:

X	-1	0	2
f(x)	4	1	-1

$$p_2(x) = a_0 + a_1 x + a_2 x^2$$

Resolução de Sistema Linear

$$\begin{cases} p_2(-1) = f(-1) = 4 & \Rightarrow a_0 - a_1 + a_2 = 4 \\ p_2(0) = f(0) = 1 & \Rightarrow a_0 = 1 \\ p_2(2) = f(2) = -1 & \Rightarrow a_0 + 2a_1 + 4a_2 = -1 \end{cases}$$

$$\Rightarrow$$
 $a_0 = 1$, $a_1 = -7/3$ e $a_2 = 2/3$

$$p_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$$
 polinômio que interpola $f(x)$ em x_0 , x_1 e x_2

Conteúdo da Semana 14

- Interpolação
- 2. Interpolação polinomial
- 3. Interpolação polinomial via Sistemas Lineares
- 4. Interpolação polinomial via Polinômios de Lagrange
- 5. Interpolação polinomial via Polinômios de Newton
- 6. Análise do erro

- Interpolação linear (grau 1)
- Dados os pontos (x_0, y_0) e (x_1, y_1) , a interpolação linear de Lagrange é o polinômio (de grau 1) $p_1(x) = y_0 L_0(x) + y_1 L_1(x)$ tal que:

$$p_1(x_0) = y_0$$
 e $p_1(x_1) = y_1$

• Como determinar os polinômios de Lagrange $L_0(x)$ e $L_1(x)$?

Forma simples para que as condições sejam satisfeitas:

$$L_0(x_0) = 1$$
, $L_1(x_0) = 0$, $L_0(x_1) = 0$, $L_1(x_1) = 1$

Podemos tomar $L_0(x)$ e $L_1(x)$ como:

$$L_0(x) = \frac{x - x_1}{x_0 - x_1} \qquad L_1(x) = \frac{x - x_0}{x_1 - x_0}$$

$$p_1(x) = f(x_0)L_0(x) + f(x_1)L_1(x)$$

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 $L_1(x) = \frac{x - x_0}{x_1 - x_0}$

$$p_2(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + f(x_2)L_2(x)$$

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

- Caso geral: (n+1) pontos distintos $(x_0, f(x_0)), \dots, (x_n, f(x_n))$
- A interpolação de f(x) usando Lagrange consiste em obter uma função $p_n(x) = y_0 L_0(x) + y_1 L_1(x) + \dots + y_n L_n(x)$ tal que $p_n(x_k) = y_k$, ou seja:

$$p_n(x_k) = y_0 L_0(x_k) + y_1 L_1(x_k) + \dots + y_n L_n(x_k) = y_k$$

• Como determinar os polinômios de Lagrange $L_k(x)$ (k = 0,1,...,n)? Forma simples para que as condições sejam satisfeitas:

$$L_k(x_k) = 1$$
, $L_k(x_i) = 0$, se $i \neq k$

Podemos tomar $L_k(x)$ como:

$$L_k(x) = \frac{(x - x_0)(x - x_1)\dots(x - x_{k-1})(x - x_{k+1})\dots(x - x_n)}{(x_k - x_0)(x_k - x_1)\dots(x_k - x_{k-1})(x_k - x_{k+1})\dots(x_k - x_n)}$$

• Exemplo: Encontrar o polinômio de grau menor ou igual a 2 que interpola os dados da tabela utilizando os polinômios de Lagrange:

$$p_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)$$

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{(x - 0)(x - 2)}{(-1 - 0)(-1 - 2)} = \frac{x^2 - 2x}{3}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = \frac{(x + 1)(x - 2)}{(0 + 1)(0 + 2)} = \frac{x^2 - x - 2}{-2}$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = \frac{(x + 1)(x - 0)}{(2 + 1)(2 - 0)} = \frac{x^2 + x}{6}$$

$$\Rightarrow p_2(x) = 4\left(\frac{x^2 - 2x}{3}\right) + 1\left(\frac{x^2 - x - 2}{-2}\right) + (-1)\left(\frac{x^2 + x}{6}\right) \qquad p_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$$

$$p_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$$

Parte 1 - Fim

CÁLCULO NUMÉRICO

Prof. Maria Clara Schuwartz Ferreira mclarascferreira@gmail.com

Semana 14 - Parte 2

CÁLCULO NUMÉRICO

Prof. Maria Clara Schuwartz Ferreira mclarascferreira@gmail.com

Conteúdo da Semana 14

- Interpolação
- 2. Interpolação polinomial
- 3. Interpolação polinomial via Sistemas Lineares
- 4. Interpolação polinomial via Polinômios de Lagrange
- 5. Interpolação polinomial via Polinômios de Newton
- 6. Análise do erro

• O polinômio de Newton $p_n(x)$, que interpola n+1 pontos distintos $(x_0,y_0),\cdots,(x_n,y_n)$ tem a seguinte expressão:

$$p_n(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + \dots + d_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

• Como determinar d_k ?

No Método de Newton, os valores de d_k são dados por diferenças divididas de ordem k (veremos definição formal mais a frente).

$$d_0 = ?$$
 $p_n(x_0) = d_0 = y_0$ $d_1 = ?$ $p_n(x_1) = d_0 + d_1(x_1 - x_0) = y_1$ $d_2 = ?$ $p_n(x_2) = d_0 + d_1(x_2 - x_0) + d_2(x_2 - x_0)(x_2 - x_1) = y_2$ \vdots \vdots

- Interpolação linear (grau 1)
- Dados os pontos (x_0, y_0) e (x_1, y_1) , a interpolação linear de Newton é o polinômio (de grau 1) $p_1(x) = d_0 + d_1(x x_0)$ tal que:

$$p_1(x_0) = y_0$$
 e $p_1(x_1) = y_1$

$$d_0, d_1 = ??$$

$$p_1(x_0) = d_0 = y_0$$

$$p_1(x_1) = d_0 + d_1(x_1 - x_0) = y_1 \rightarrow d_1 = \frac{y_1 - y_0}{x_1 - x_0}$$

$$p_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0)$$

- Interpolação de grau 2
- Dados (x_0,y_0) , (x_1,y_1) e (x_2,y_2) , o polinômio de interpolador de Newton de grau 2 é $p_2(x)=d_0+d_1(x-x_0)+d_2(x-x_0)(x-x_1)$

$$d_0$$
, d_1 , $d_2 = ??$

$$p_2(x_0) = y_0, \ p_2(x_1) = y_1 \rightarrow \text{Analogamente temos: } d_0 = y_0 \in d_1 = \frac{y_1 - y_0}{x_1 - x_0}$$

Para $p_2(x_2) = y_2$ temos:

$$p_2(x_2) = d_0 + d_1(x_2 - x_0) + d_2(x_2 - x_0)(x_2 - x_1) = y_2$$

$$\Rightarrow d_2 = \frac{y_2 - y_0 - \frac{y_1 - y_0}{x_1 - x_0}(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$\Rightarrow d_2 = \frac{y_2 + (-y_1 + y_1) - y_0 - \frac{y_1 - y_0}{x_1 - x_0} (x_2 + (-x_1 + x_1) - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$= \frac{y_2 - y_1}{x_2 - x_1} (x_2 - x_1) + y_1 - y_0 - \frac{(y_1 - y_0)(x_2 - x_1) + (y_1 - y_0)(x_1 - x_0)}{x_1 - x_0}$$
$$= \frac{(x_2 - x_1)(x_2 - x_1) + (y_1 - y_0)(x_2 - x_1) + (y_1 - y_0)(x_1 - x_0)}{(x_2 - x_1)}$$

$$= \frac{\frac{y_2 - y_1}{x_2 - x_1}(x_2 - x_1) - \frac{(y_1 - y_0)(x_2 - x_1)}{x_1 - x_0}}{(x_2 - x_0)(x_2 - x_1)}$$

$$\Rightarrow d_2 = \frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_1 - y_0}{x_1 - x_0}}{x_2 - x_0}$$

$$p_2(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) + \frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_1 - y_0}{x_1 - x_0}}{x_2 - x_0}(x - x_0)(x - x_1)$$

• O operador diferenças divididas é definido por:

$$f[x_k] = f(x_k) = y_k \longrightarrow \text{ ordem } 0$$

$$f[x_k, x_{k+1}] = \frac{f[x_{k+1}] - f[x_k]}{x_{k+1} - x_k} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k} \longrightarrow \text{ ordem 1}$$

$$f[x_k, x_{k+1}, x_{k+2}] = \frac{f[x_{k+1}, x_{k+2}] - f[x_k, x_{k+1}]}{x_{k+2} - x_k} = \frac{\frac{y_{k+2} - y_{k+1}}{x_{k+2} - x_{k+1}} - \frac{y_{k+1} - y_k}{x_{k+1} - x_k}}{x_{k+2} - x_k} \longrightarrow \text{ ordem 2}$$

:

OBS: No método de Newton, os valores de d_k são dados por $d_k = f[x_0, x_1, \cdots, x_k]$ (Cada $f[x_0, x_1, \cdots, x_k]$ é chamada diferença dividida de ordem k)

Por exemplo para o polinômio de grau 2:

$$p_2(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

• Tabela de diferenças divididas

х	Ordem 0	Ordem 1	Ordem 2	Ordem 3		Ordem n
x_0	$f[x_0] = y_0$					
		$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$				
x_1	$f[x_1] = y_1$		$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$			
		$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$		$f[x_0, x_1, x_2, x_3]$		
x_2	$f[x_2] = y_2$		$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$		··	$f[x_0,\ldots,x_n]$
		$f[x_2, x_3] = \cdots$:		.•	
:	:	:	·	$f[x_{n-3}, x_{n-2}, x_{n-1}, x_n]$		
•	•	•	$f[x_{n-2}, x_{n-1}, x_n]$			
		$f[x_{n-1}, x_n]$				
x_n	$f[x_n] = y_n$					

Por exemplo para o polinômio de grau 3:

$$p_3(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1) (x - x_2)$$

Polinômio de grau n:

$$p_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

• Exemplo: Encontrar o polinômio de grau menor ou igual a 2 que interpola os dados da tabela utilizando os polinômios de Newton:

$$p_2(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

X	-1	0	2
f(x)	4	1	-1

х	Ordem 0	Ordem 1	Ordem 2
-1	4		
		$\frac{1-4}{0-(-1)} = \boxed{-3}$	
0	1		$\frac{-1 - (-3)}{2 - (-1)} \neq \frac{2}{3}$
		$\frac{-1-1}{2-0} = -1$	
2	-1		

$$p_2(x) = y_0 + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$= 4 + (-3)(x - (-1)) + \frac{2}{3}(x - (-1))(x - 0) \qquad \Rightarrow \boxed{p_2(x) = \frac{2}{3}x^2 - \frac{7}{3}x + 1}$$

Conteúdo da Semana 14

- Interpolação
- 2. Interpolação polinomial
- 3. Interpolação polinomial via Sistemas Lineares
- 4. Interpolação polinomial via Polinômios de Lagrange
- 5. Interpolação polinomial via Polinômios de Newton
- 6. Análise do erro

INSTITUTO FEDERAL Análise do erro

• Medir a distância entre o polinômio $p_n(x)$ e a função f(x).

$$E_n(x) = f(x) - p_n(x)$$

• Utilizando um polinômio de **grau 0** para aproximar f(x):

$$p_0(x) = f[x_0]$$

$$p_0(x) = f[x_0]$$
 $E_0(x) = f(x) - p_0(x)$

Para um ponto qualquer x temos: $f[x_0, x] = \frac{f[x] - f[x_0]}{x - x_0}$

$$\Rightarrow f(x) = \underbrace{f(x_0)}_{p_o(x)} + \underbrace{(x - x_0)f[x_0, x]}_{E_0(x)}$$

$$\Rightarrow E_0(x) = (x - x_0) f[x_0, x]$$

• Utilizando um polinômio de **grau 1** para aproximar f(x):

$$p_1(x) = f[x_0] + f[x_0, x_1](x - x_0)$$

$$E_1(x) = f(x) - p_1(x)$$

$$E_1(x) = f(x) - p_1(x)$$

Para um ponto qualquer *x* temos:

$$f[x_0, x_1, x] = f[x_1, x_0, x] = \frac{f[x_0, x] - f[x_0, x_1]}{x - x_1} = \frac{\frac{f(x) - f(x_0)}{x - x_0} - f[x_0, x_1]}{x - x_1}$$

$$\Rightarrow f[x_0, x_1, x] = \frac{f(x) - f(x_0) - f[x_0, x_1](x - x_0)}{(x - x_0)(x - x_1)}$$

$$\Rightarrow f(x) = \underbrace{f(x_0) + f[x_0, x_1](x - x_0)}_{p_1(x)} + \underbrace{(x - x_0)(x - x_1)f[x_0, x_1, x]}_{E_1(x)}$$

$$\Rightarrow E_1(x) = (x - x_0)(x - x_1)f[x_0, x_1, x]$$

• É possível demonstrar (indução matemática) que para um polinômio interpolador de **grau n** para aproximar f(x), temos:

$$p_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

$$f(x) = p_n(x) + E_n(x)$$

Com erro associado dado por:

$$\Rightarrow E_n(x) = (x - x_0) \dots (x - x_n) f[x_0, \dots, x_n, x]$$

diferença dividida de ordem n+1 (com n+2 pontos)

INSTITUTO FEDERAL Análise do erro

• Teorema (Estimativa para o Erro) Considere n+1 pontos $x_0 < x_1 < \cdots < x_n$ e f uma função com derivadas até ordem n+1 contínuas no intervalo $[x_0, x_n]$. Se p_n é o polinômio que interpola f nos pontos x_0, \cdots, x_n , então para qualquer x no intervalo:

$$E_n(x) = f(x) - p_n(x) = (x - x_0) \dots (x - x_n) \frac{f^{(n+1)}(c)}{(n+1)!}$$
onde $c \in [x_0, x_n]$.

• Teorema (Estimativa para Diferença Dividida) Se $x \in [x_0, x_n]$ então existe $c \in [x_0, x_n]$ tal que:

$$c \in [x_0, x_n]$$
 tal que:

$$f[x_0, ..., x_n, x] = \frac{f^{(n+1)}(c)}{(n+1)!}$$

• Corolário: $|E_n(x)| = |f(x) - p_n(x)| \le |(x - x_0) \dots (x - x_n)| \frac{M}{(n+1)!}$

onde M =
$$\max_{x \in [x_0, x_n]} |f^{(n+1)}(x)|$$
 (*)

Estimativa para o erro:

Se a função f é dada na forma de tabela, não conseguimos utilizar (*). Neste caso, o valor absoluto do erro $|E_n(x)|$ só pode ser estimado.

Alternativa: ⇒ **precisamos de mais um ponto tabelado!**

$$\frac{M}{(n+1)!} \approx \max |f[x_0, \dots, x_n, x_{n+1}]|$$

$$\Rightarrow |E_n(x)| = |f(x) - p_n(x)| \leq |(x - x_0) \dots (x - x_n)| \max |f[x_0, x_1, \dots, x_n, x_{n+1}]|$$

$$com \ x \in (x_0, x_n).$$

• OBS: A análise do erro na interpolação polinomial é válida para as 3 formas (via sistemas lineares, Lagrange e Newton) uma vez que o polinômio interpolador é único.

• Exemplo: Seja f(x) dada na tabela:

X	0.2	0.34	0.4	0.52	0.6	0.72
f(x)	0.16	0.22	0.27	0.29	0.32	0.37

- a) Obter f(0.47) usando um polinômio de grau 2.
- b) Encontrar uma estimativa para o erro.

• Tabela de diferenças divididas:

X	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0.2	0.16			
		0.428		
0.34	0.22		2.0325	
		0.8333		-17.8963
$x_0 = 0.4$	0.27		-3.7033	
		0.1667		18.2494
$x_1 = 0.52$	0.29		1.0415	
		0.375		-2.6031
$x_2 = 0.6$	0.32		0.2085	
		0.4167		
0.72	0.37			

a) Escolhendo $x_0 = 0.4$, $x_1 = 0.52$, $x_2 = 0.6$

$$p_2(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2]$$
$$= 0.27 + 0.1667(x - 0.4) + 1.04115(x - 0.4)(x - 0.52)$$

$$\Rightarrow p(0.47) = 0.2780 \approx f(0.47)$$

b) Estimativa para o erro

$$\Rightarrow |E_2(x)| = |f(x) - p_2(x)| \leq (x - x_0)(x - x_n)(x - x_n) \max |f[x_0, x_1, x_2, x_3]|$$
$$|E(0.47)| \approx |(0.47 - 0.4)(0.47 - 0.52)(0.47 - 0.6)||18.2492|$$

$$|E(0.47)| \approx 8.303 \times 10^{-3}$$

- OBS: Os métodos de **interpolação** e análise de erros não são úteis para aproximar os valores da função fora do intervalo dado!
- ⇒ Não servem para **extrapolação**! É um processo diferente de ajustar os pontos a uma curva.

Parte 2 - Fim

CÁLCULO NUMÉRICO

Prof. Maria Clara Schuwartz Ferreira mclarascferreira@gmail.com

