Aprendizado de Máquina

Prof^o Ms Gustavo Molina

Prof. Ms Gustavo Molina

https://www.linkedin.com/in/gustavo-molina-a2798418/

http://lattes.cnpq.br/8512452850609937

msc.gustavo.unip@gmail.com

https://www.researchgate.net/profile/Gustavo Molina Figueiredo

Introdução

- Computadores realmente s\u00e3o capazes de aprender?
- Infelizmente ainda não sabemos exatamente como fazer computadores aprenderem de uma maneira similar a maneira como os humanos aprendem.
- Entretanto, existem algoritmos que são eficientes em certos tipos de tarefas de aprendizagem.

O que é Aprendizagem de Máquina?

O que é Aprendizagem de Máquina?

- Aprender significa "mudar para fazer melhor" (de acordo com um dado critério) quando uma situação similar acontecer.
- Aprendizagem, não é memorizar. Qualquer computador pode memorizar, a dificuldade está em generalizar um comportamento para uma nova situação.

Importância do Aprendizado

- Por que é importante para um agente aprender?
- Os programadores não podem antecipar todas as situações que o agente pode encontrar.
- Exemplo: Um robô programado para andar em um único labirinto pode não saber andarem outros.
- Os programadores não podem antecipar todas as mudanças que podem acontecer com o passar do tempo.
- Exemplo: Agente programado para prever as melhores opção de bolsa para investir precisa se adapta quando o ambiente muda.
- Os programadores nem sempre sabem encontrar a solução dos problemas diretamente.
- Exemplo: Programar um sistema para reconhecer faces não é algo trivial.

Como Aprender Algo?

- Exemplos:
- Considerando um agente treinando para se tornar um motorista de táxi. Toda vez que o instrutor grita "freio!" o agente pode aprender uma condição de quando ele deve frear.
- Ao ver várias imagens que contêm ônibus, o
- O agente pode aprender a reconhecê-los.
- Ao tentar ações e observar os resultados. Por exemplo, ao frear forte em uma estrada molhada pode-se aprender que isso não tem um efeito bom.

Formas de Aprendizado

- Aprendizado Supervisionado
- Aprendizado Não Supervisionado
- Aprendizado Por Reforço

- Exemplo:
- Considerando um agente treinando para se tornar um motorista de táxi.
 Toda vez que o instrutor grita "freio!" o agente pode aprender uma condição de quando ele deve frear.
- A entrada é formada pelos dados percebidos pelo agente através de sensores. A saída é dada pelo instrutor que diz quando se deve frear, virar a direita, virar a esquerda, etc.

- O agente reconhece padrões nos dados de entrada, mesmo sem nenhum feedback de saída.
- Por exemplo, um agente aprendendo a dirigir pode gradualmente desenvolver um conceito de dias de bom tráfego e dias de tráfego congestionado mesmo sem nunca ter recebido exemplos rotulados por um professor.

Aprendizado Por Reforço

- O agente recebe uma série de reforços, recompensas ou punições.
- Por exemplo, a falta de uma gorjeta no final do percurso dá ao agente taxista uma indicação de que ele fez algo errado.
- Cabe ao agente reconhecer qual das ações antes do reforço foram as maiores responsáveis por isso.
- Não damos a "resposta correta" para o sistema. O sistema faz uma hipótese e determina se essa hipótese foi boa ou ruim.

Fases da Aprendizagem

- Treinamento
- Apresenta-se exemplos ao sistema.
- O sistema "aprende" a partir dos exemplos.
- O sistema modifica gradualmente os seus parâmetros para que a saída se aproxime da saída desejada.
- Utilização
- Novos exemplos jamais vistos são apresentados ao sistema.
- O sistema deve generalizar e reconhecê-los.

Exemplos de Treinamento (Aprendizado Supervisionado)

	Atributos						
Exemplo	Atrib ₁	Atrib ₂	Atrib ₃	Atrib ₄	Atrib _s	Atrib ₆	Classe
X	0.24829	0.49713	0.00692	-0.020360	0.429731	-0.2935	1
X ₂	0.24816	0.49729	0.00672	0.0065762	0.431444	-0.29384	1
X ₃	0.24884	0.49924	0.01047	-0.002901	0.423145	-0.28956	3
X ₄	0.24802	0.50013	0.01172	0.001992	0.422416	-0.29092	2
X _s	0.24775	0.49343	0.01729	-0.014341	0.420937	-0.29244	2

Classificação de Exemplos Desconhecidos

	Atributos							
Exemplo	Atrib ₁	Atrib,	Atrib ₃	Atrib ₄	Atrib _s	Atrib ₆	Classe	
X ₁	0.22829	0.48713	0.00592	-0.010360	0.419731	-0.2845	?	
X ₂	0.21816	0.48729	0.00572	0.0045762	0.421444	-0.28484	?	
X ₃	0.23884	0.49824	0.01447	-0.003901	0.433145	-0.24956	?	
X ₄	0.23002	0.49013	0.02172	0.002992	0.412416	-0.28092	?	
X _s	0.24575	0.49243	0.01029	-0.015341	0.430937	-0.28244	?	

Espaço de Características

Tipos de Problemas

- Classificação:
- -Responde se uma determinada "entrada" pertence a uma certa classe.
- -Dada a imagem de uma face: de quem é esta face (dentre um número finito).
 - Regressão:
- -Faz uma predição a partir de exemplos.
- -Predizer o valor da bolsa amanhã, dados os valores de dias e meses anteriores.
 - Estimação de Densidade:
- -Estima quais são as N categorias presente nos dados.

 Dado uma quantidade finita de dados para o treinamento, temos que derivar uma função h que se aproxima da verdadeira função f(x) (a qual gerou os dados e é desconhecida).

 Dado uma quantidade finita de dados para o treinamento, temos que derivar uma função h que se aproxima da verdadeira função f(x) (a qual gerou os dados e é desconhecida).

 Dado uma quantidade finita de dados para o treinamento, temos que derivar uma função h que se aproxima da verdadeira função f(x) (a qual gerou os dados e é desconhecida).

 Dado uma quantidade finita de dados para o treinamento, temos que derivar uma função h que se aproxima da verdadeira função f(x) (a qual gerou os dados e é desconhecida).

 Dado uma quantidade finita de dados para o treinamento, temos que derivar uma função h que se aproxima da verdadeira função f(x) (a qual gerou os dados e é desconhecida).

Generalizar é Difícil

- Não queremos aprender por memorização
- -Boa resposta sobre os exemplos de treinamento somente.
- -Fácil para um computador.
- -Difícil para os humanos.
 - Aprender visando generalizar
- -Mais interessante.
- -Fundamentalmente mais difícil: diversas maneiras de generalizar.
- -Devemos extrair a essência, a estrutura dos dados e não somente aprender a boa resposta para alguns casos.

Exemplo

Função-alvo (melhor resposta possível).

Exemplo - Overfitting

• Erro baixo sobre os exemplos de aprendizagem. Mais elevado para os de teste.

Exemplo - Underfitting

• Escolhemos um modelo muito simples (linear): erro elevado na aprendizagem.

Exemplo - Um Bom Modelo

O modelo é suficientemente flexível para capturar a forma curva da função f mas não é suficiente para ser exatamente igual a função f.

Teoria de Aprendizado Computacional

- Como sabemos se a hipótese h está próxima da função-alvo f, se não conhecemos o que é f?
- Este é um aspecto de uma questão mais abrangente: como saber se um algoritmo de aprendizado produziu uma teoria que preverá corretamente o futuro?
- Qualquer hipótese que é consistente com um conjunto suficientemente grande de exemplos é pouco provável de estar seriamente errada.

Algoritmos

- Aprendizado Supervisionado
- 1. Árvores de Decisão
- 2.KNN
- 3.SVM7
- 4. Redes Neurais
- Aprendizado Não Supervisionado
- 1. Clusterização Sequencial
- 2. Clusterização Hierárquica
- 3.K-Means
- Aprendizado Por Reforço
- 1.Q-Learning

Leitura Complementar

 Russell, S. and Norvig, P. Artificial Intelligence: a Modern Approach,
 3nd Edition, Prentice-Hall, 2013.

 Capítulo 18: Aprendendo a Partir de Exemplos

