Appunti del corso: Teoria delle Rappresentazioni Dott. Rocco Chirivì

Stefano Maggiolo http://poisson.phc.unipi.it/~maggiolo/ maggiolo@mail.dm.unipi.it

2006-2007

Indice

1	Rappresentazioni e moduli	3
2	Caratteri	6
3	$\mathbb{C}[G] ext{-}\mathbf{moduli}$	15
4	Rappresentazioni indotte	18
5	Rappresentazioni di $\mathrm{GL}_2(\mathbb{F}_{p^n})$	25
6	Rappresentazioni di S_n mediante $\mathbb{C}[S_n]$	31

1 Rappresentazioni e moduli

3.10.2006

Definizione 1.1. Sia G un gruppo, V uno spazio vettoriale di dimensione finita (su un campo che si potrà pensare essere \mathbb{C}); una rappresentazione di G in V è un morfismo $\rho \colon G \to \operatorname{GL}(V)$. La dimensione di V è il grado della rappresentazione; una rappresentazione è fedele se ρ è iniettiva.

Esempio 1.2. Sia $G = \mathbb{Z}_3$, $V = \mathbb{C}$; G è generato da 1, elemento di ordine 3, quindi $\rho(1)$ deve avere ordine che divide 3: le uniche possibilità sono $\rho^{(k)}(1) = e^{2\pi i k/3}$ con $k \in \{0, 1, 2\}$; $\rho^{(0)}$ è l'applicazione costante 1 e non è fedele; $\rho^{(1)}$ e $\rho^{(2)}$ sono fedeli.

Definizione 1.3. Sia G un gruppo; uno spazio vettoriale V è un G-modulo se dotato di un'azione $G \times V \to V$ (cioè tale che ev = v e (gh)v = g(hv)) per cui g(u+v) = gu + gv e $g(\lambda v) = \lambda(gv)$.

Osservazione 1.4. Rappresentazioni e G-moduli sono lo stesso concetto: se ρ è una rappresentazione, l'azione $gv=\rho_g(v)$ è lineare e definisce un G-modulo e viceversa.

Definizione 1.5. Due G-moduli U e V si dicono isomorfi se esiste un isomorfismo di spazi vettoriali $f: U \to V$ tale che per ogni $g \in G$ si abbia

$$V \xrightarrow{g} V ,$$

$$f \downarrow \qquad \circlearrowleft \qquad \downarrow f$$

$$U \xrightarrow{g} U$$

dove con g si intende la moltiplicazione per l'elemento all'interno del G-modulo corrispondente.

Esempio 1.6. Nell'esempio precedente, ovviamente $\rho^{(0)}$ non è isomorfa a $\rho^{(1)}$ o $\rho^{(2)}$, ma nemmeno $\rho^{(1)} \cong \rho^{(2)}$: infatti dovrebbe esistere $f \in GL(\mathbb{C}) \cong \mathbb{C}^*$ tale che

$$\rho_g^{(2)} = f \rho_g^{(1)} f^{-1} = f f^{-1} \rho_g^{(1)} = \rho_g^{(1)},$$

cosa che non può verificarsi. Si può estendere questo esempio notando che ciò accade perché \mathbb{C}^* è abeliano, quindi rappresentazioni di grado 1 sono isomorfe se e solo se coincidono.

Osservazione 1.7. Sia G un gruppo, $[G,G]=\langle ghg^{-1}h^{-1}\mid g,h\in G\rangle$ il sottogruppo dei commutatori di G; l'abelianizzato di G è $^G/[G,G]$. Se $\rho\colon G\to\mathbb{C}^\star$ è una rappresentazione (di grado 1), allora $\rho_{ghg^{-1}h^{-1}}=\rho_g\rho_h\rho_{g^{-1}}\rho_{h^{-1}}=1$, quindi $[G,G]\subseteq\ker(\rho)$. Ciò significa che le rappresentazioni di grado 1 sono sostanzialmente identiche per un gruppo e per il suo abelianizzato.

Esempio 1.8. Se $G = \mathbb{Z}_n$, ricalcando l'esempio precedente, le rappresentazioni sono completamente determinate da ρ_1 , che deve essere un elemento di \mathbb{C}^* di ordine che divide n; in definitiva, esistono n rappresentazioni determinate da $\rho_1^{(k)} = e^{2\pi i k/n}$: sono tutte diverse quindi lo sono anche modulo isomorfismo.

Definizione 1.9. Sia $\rho: G \to \operatorname{GL}(V)$ una rappresentazione, un G-sottomodulo di V (o sottospazio G-invariante) è un sottospazio $U \leq V$ tale che $\rho_g(U) \subseteq U$ per ogni $g \in G$. In questo caso si scrive $U \leq_G V$.

Definizione 1.10. Un *G*-modulo V è *irriducibile* se $U \leq_G V$ implica $U \in \{0, V\}$.

Definizione 1.11. Se U e V sono G-moduli, anche $U \oplus_G V$ lo è con g(u, v) := (gu, gv).

Esempio 1.12. Sia $V = \langle e_1, \dots, e_n \rangle_{\mathbb{C}}$, $G = S_n$. Si può fissare $\rho_{\sigma}(e_i) = e_{\sigma(i)}$ e ottenere una rappresentazione fedele di S_n , dove ρ_{σ} è una matrice di permutazione. Se $v = \sum_{i=1}^n e_i$, $\rho_{\sigma}(v) = v$, in quanto vengono solo permutati gli indici della base, quindi il sottospazio $\mathbb{C}v$ è G-invariante. Perciò V non è irriducibile, ma U, essendo di dimensione 1, lo è. Risulta $V = U \oplus_G W$ con

$$W = \{ w \in V \mid w \cdot v = 0 \} = \left\{ \sum_{i=1}^{n} a_i e_i \mid \sum_{i=1}^{n} a_i = 0 \right\}$$

e W è un altro G-sottomodulo di V.

Esempio 1.13. Sia $G = \mathbb{Z}$, $V = \mathbb{C}^2$, $\rho_n = \left(\begin{smallmatrix} 1 & n \\ 0 & 1 \end{smallmatrix} \right)$; ρ è una rappresentazione e $\rho_n(e_1) = e_1$ per ogni $n \in \mathbb{Z}$, quindi $\mathbb{C}e_1 \leq_G V$ e V non è irriducibile. Tuttavia, V non è somma diretta di G-moduli: se fosse $V = U \oplus_G W$, W sarà un sottospazio di dimensione 1, perciò $W = \mathbb{C}w$, ma w dovrebbe essere un autovettore comune a tutte le matrici ρ_n .

Definizione 1.14. Un'applicazione $\pi: V \to V$ è una *proiezione* di V su W se $\pi(V) \subseteq W$ e $\pi_{|W} = \operatorname{Id}_{W}$.

Teorema 1.15. Sia G un gruppo finito, W un G-sottomodulo di V, allora esiste un altro G-sottomodulo W' complementare di W.

Dimostrazione. Sia W' il complementare di W in V (si prenda una proiezione π di V in W e sia $W' = \ker \pi$); si consideri $\bar{\pi} = 1/|G| \sum_{g \in G} g\pi g^{-1}$, applicazione di $\mathrm{GL}(V)$; $\bar{\pi}$ è ancora una proiezione:

- $\bar{\pi}(v) = 1/|G| \sum_{g \in G} g\pi(g^{-1}v) \in W$, in quanto $\pi(g^{-1}v) \in W$ e W è stabile per G;
- $\bar{\pi}(w) = 1/|G| \sum_{g \in G} g\pi(g^{-1}w) = 1/|G| \sum_{g \in G} gg^{-1}w = w$.

Sia ora $W_0 = \ker \bar{\pi}$; se $h \in G$, allora

$$h\bar{\pi}h^{-1} = \frac{1}{|G|} \sum_{g \in G} hg\bar{\pi}g^{-1}h^{-1} = \frac{1}{|G|} \sum_{g \in G} g\bar{\pi}g^{-1} = \bar{\pi};$$

cioè $h\bar{\pi} = \bar{\pi}h$. Se $w \in W_0$, $\bar{\pi}h(w) = h\bar{\pi}(w) = 0$, cioè $hw \in W_0$. Si è ottenuto che W_0 è stabile per G, quindi è un G-sottomodulo.

Teorema 1.16. Sia G un gruppo di ordine finito, $\operatorname{ch} K=0$, V un K-spazio vettoriale e G-modulo di grado finito, allora V è isomorfo come G-modulo a una somma diretta di G-moduli irriducibili.

Osservazione 1.17. La decomposizione in G-moduli irriducibili non è unica, ad esempio se $V=K^n$ è la rappresentazione banale (che mappa ogni elemento del gruppo nell'identità di V), allora per ogni base (e_1,\ldots,e_n) di V, si decompone come $Ke_1\oplus\cdots\oplus Ke_n$.

6.10.2006

Esempio 1.18. Si vogliono trovare le rappresentazioni di $\mathbb{Z}/n\mathbb{Z}$ su \mathbb{C} . Quelle di grado uno devono mandare 1 in un elemento con ordine che divide n, quindi si hanno n possibili rappresentazioni determinate da $\rho_k(1) = e^{2\pi i k/n}$.

In generale per un gruppo finito G, la matrice ρ_g è tale che $\rho_g^m = I$, dove $m = \operatorname{ord} g$; se si scrive ρ_g in forma di Jordan, deve risultare che tutti gli autovalori sono radici dell'unità e non ci possono essere 1 sulla sopradiagonale. In particolare, $\mathbb{Z}/n\mathbb{Z}$ si rappresenta mandando 1 in un automorfismo diagonale con autovalori radici n-esime dell'unità e quindi queste rappresentazioni si spezzano in rappresentazioni di grado uno. Lo stesso vale per i gruppi abeliani in generale.

Se invece si considera $G=\mathbb{Z}$, la rappresentazione è completamente determinata dalla matrice ρ_1 ; due rappresentazioni sono isomorfe se esiste una matrice invertibile T tale che $\sigma_1=T^{-1}\rho_1T$; inoltre la rappresentazione è indecomponibile se e solo se la matrice ρ_1 ha un unico blocco di Jordan.

10.10.2006

Esempio 1.19. Si vogliono trovare tutti i possibili S_3 -moduli (S_3 è isomorfo al gruppo diedrale D_3). Quelle finora esibite sono:

- la rappresentazione banale, di grado 1: $\rho_q = 1 \in \mathbb{C}^*$;
- la rappresentazione alterna, di grado 1: $\rho_g = (-1)^g$;
- la riflessione: se ρ è la rappresentazione $\rho_{\sigma}(e_i) = e_{\sigma(i)}$, si è visto che $\mathbb{C}^3 = \mathbb{C}(e_1 + e_2 + e_3) \oplus_G V$, dove

$$V = \{ a_1e_1 + a_2e_2 + a_3e_3 \mid a_1 + a_2 + a_3 = 0 \};$$

posti $\omega=e^{2\pi i/3}$, $\varepsilon_1=(1,\omega,\omega^2)$, $\varepsilon_2=(\omega,1,\omega^2)$, $\sigma=(1,2)$, $\tau=(1,2,3)$, si ha $V=\langle \varepsilon_1,\varepsilon_2\rangle$ e su questa base

$$\rho_{\sigma} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \rho_{\tau} = \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix};$$

se V fosse riducibile, si scomporrebbe in G-moduli di grado 1 e questo può succedere solo se esistono autovettori comuni a tutte le matrici, ma questo non è chiaramente possibile; si ottiene quindi una rappresentazione di grado 2.

Teorema 1.20. Un S_3 -modulo irriducibile V, allora V può essere solo la rappresentazione banale, l'alterna o la riflessione.

Dimostrazione. Si vede $S_3 = D_3 = \langle \sigma, \rho \rangle$; $\mathbb{Z}_3 \leq S_3$ è un sottomodulo abeliano massimale; data una rappresentazione irriducibile $\psi \colon S_3 \to \operatorname{GL}(V)$, esiste una rappresentazione $\bar{\psi} \colon \mathbb{Z}_3 \to \operatorname{GL}(V)$, la restrizione di ψ a \mathbb{Z}_3 . Poiché \mathbb{Z}_3 è abeliano, $V = \mathbb{C}v_1 \oplus \cdots \oplus \mathbb{C}v_n$ come \mathbb{Z}_3 modulo, con $n = \dim V$; inoltre i v_j sono autovettori per ψ_ρ : $\psi_\rho(v_j) = \omega^{\alpha_j}v_j$, con $\omega = e^{2\pi i/3}$ e $\alpha_j \in \{-1,0,1\}$; inoltre $\psi_\rho(\psi_\sigma v_j) = \psi_\sigma \psi_\rho^2 v_j = \psi_\sigma \omega^{2\alpha_j} v_j = \omega^{2\alpha_j} \psi_\sigma v_j$, cioè anche $\psi_\sigma v_j$ è un autovettore per ψ_ρ , ma non necessariamente con lo stesso autovalore.

Sia $U = \langle v_j, \psi_{\sigma} v_j \rangle$; U è stabile per ψ_{σ} e per ψ_{ρ} che generano S_3 , quindi è un S_3 -sottomodulo di V, ma si era supposto che V fosse irriducibile e poiché $U \neq 0$, U = V. A questo punto:

• se $\alpha \neq 0$ e v è un autovettore per ψ_{ρ} di autovalore ω^{α} , $\psi_{\sigma}v$ è un autovettore per ψ_{ρ} di autovalore $\omega^{-\alpha} \neq \omega^{\alpha}$: v e $\psi_{\sigma}v$ hanno autovalori distinti quindi

sono linearmente indipendenti e formano una base; su questa, si ha

$$\psi_{\rho} = \begin{pmatrix} \omega^{\alpha} & 0 \\ 0 & \omega^{-\alpha} \end{pmatrix} \qquad e \qquad \psi_{\sigma} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

cioè V è la riflessione;

• se $\alpha=0$ e $(v,\psi_{\sigma}v)$ è una base, sono autovettori di ψ_{ρ} di autovalore 1, cioè

$$\psi_{\rho} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad e \qquad \psi_{\sigma} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

ma prendendo come base $(v + \psi_{\sigma}v, v - \psi_{\sigma}v)$, le matrici diventano

$$\psi_{\rho} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad e \qquad \psi_{\sigma} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

che è impossibile in quanto l'autovettore $v+\psi_\sigma v$ è comune alle due matrici e quindi V si decomporrebbe;

• se $\alpha = 0$ e (v) è una base di U, si ha $\psi_{\rho}v = v$, $\psi_{\sigma}v = \pm v$; a seconda del segno si ha la rappresentazione alterna o la banale.

Osservazione 1.21. Dato un G-modulo V con la rappresentazione ρ , anche V^* è un G-modulo con $\rho^* : G \to \mathrm{GL}(V^*)$ definita da $(\rho_q^*(\varphi))(v) := \varphi(\rho_{q^{-1}}(v))$.

Dati due G-moduli V e W, con le rappresentazioni ρ e σ , anche $\operatorname{Hom}(V,W)$ è un G-modulo con $\tau \colon G \to \operatorname{GL}(\operatorname{Hom}(V,W))$ definita da $(\tau_g(F))(v) \coloneqq \sigma_g F \rho_{g^{-1}}(v)$.

Infine, $V \otimes W$ è un G-modulo con $\psi_g(v \otimes w) = gv \otimes gw$.

Questi G-moduli sono ben definiti: si deve dimostrare che $\rho_a^{\star}\rho_h^{\star}=\rho_{ah}^{\star}$, ma:

$$\begin{split} (\rho_g^{\star}\rho_h^{\star}(\varphi))(v) &= (\rho_g^{\star}(\rho_h^{\star}(\varphi)))(v) = \\ &= \rho_h^{\star}(\varphi)(\rho_{g^{-1}}(v)) = \varphi(\rho_{h^{-1}}\rho_{g^{-1}}(v)) = \\ &= \varphi(\rho_{h^{-1}g^{-1}}) = \varphi(\rho_{(gh)^{-1}}) = (\rho_{gh}^{\star}(\varphi))(v); \end{split}$$

le altre verifiche sono analoghe.

2 Caratteri

Definizione 2.1. Data una rappresentazione $\rho: G \to GL(V)$, il *carattere* di ρ è $\chi_{\rho}: G \to \mathbb{C}$ con $\chi_{\rho}(g) = \text{Tr}(\rho_g)$.

Proposizione 2.2. Alcune proprietà del carattere:

- 1. se $V \cong_G W$, $\chi_V = \chi_W$;
- 2. $\chi_V(e) = \dim V$;
- 3. $\chi_V(g^{-1}) = \overline{\chi_V(g)};$
- 4. $\chi_{V \oplus W} = \chi_V + \chi_W$;
- 5. $\chi_V(hgh^{-1}) = \chi_V(g)$ (il carattere è una funzione di classe);

13.10.2006

6. $\chi_{V \otimes W} = \chi_V \chi_W$.

Dimostrazione. 1. Per ipotesi esiste un morfismo di G-moduli f, cioè tale che $f\rho_g = \sigma_g f$, quindi $\text{Tr}(\sigma_g) = \text{Tr}(f\rho_g f^{-1}) = \text{Tr}(\rho_g)$ poiché la traccia è un'applicazione di classe;

- 2. $\chi_V(e) = \text{Tr}(\rho_e) = \text{Tr}(\text{Id}) = \dim V;$
- 3. g ha ordine finito, perciò esiste una base di V in cui $\rho_g = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, da cui $\chi_V(g) = \sum_{i=1}^n \lambda_i$ e $\rho_{g^{-1}} = \operatorname{diag}(\lambda_1^{-1}, \dots, \lambda_n^{-1})$, ma $\lambda_i^{-1} = \bar{\lambda_i}$, quindi $\chi_V(g) = \overline{\chi_V(g^{-1})}$;
- 4. evidente per com'è costruita la matrice della rappresentazione di somma diretta:
- 5. $\chi_V(ghg^{-1}) = \text{Tr}(\rho_{qhq^{-1}}) = \text{Tr}(\rho_q\rho_h\rho_{q^{-1}}) = \text{Tr}(\rho_h) = \chi_V(h);$
- 6. siano (e_1, \ldots, e_n) e $(\varepsilon_1, \ldots, \varepsilon_n)$ basi di V e di W che diagonalizzano ρ_g e σ_g con autovalori λ_i e μ_i , allora $(e_i \otimes \varepsilon_j)$ è una base di $V \otimes W$ e $\rho_g(e_i \otimes \varepsilon_j) = ge_i \otimes g\varepsilon_j = \lambda_i e_i \otimes \mu_j \varepsilon_j = \lambda_i \mu_j e_i \otimes \varepsilon_j$, quindi questa base diagonalizza $(\rho \otimes \sigma)_g$ e $\chi_{V \otimes W}(g) = \sum_{i,j} \lambda_i \mu_j = (\sum_i \lambda_i)(\sum_j \mu_j) = \chi_V(g)\chi_W(g)$. \square

Definizione 2.3. Lo spazio delle applicazioni di classe da G a $\mathbb C$ si denota

$$X_G := \{ f : G \to \mathbb{C} \mid (\forall g, h \in G) f(ghg^{-1}) = f(h) \}.$$

Osservazione 2.4. Lo spazio X_G è uno spazio vettoriale su \mathbb{C} ; se $C_1, \ldots C_r$ sono le classi di coniugio di G, X_G è generato dalle applicazioni δ_h che valgono 1 sugli elementi di C_h e 0 altrove.

Definizione 2.5. Date $f, h \in X_G$, si definisce $\langle f, h \rangle := 1/|G| \sum_{g \in G} f(g) \overline{h(g)}$

Osservazione 2.6. L'applicazione $(f,h)\mapsto \langle f,h\rangle$ è un prodotto scalare hermitiano, cioè è non degenere, lineare nella prima variabile, antilineare nella seconda.

Proposizione 2.7. Per ogni rappresentazione V, si ha $\chi_{V^*} = \overline{\chi_V}$.

Dimostrazione. Per ogni elemento $g \in G$, esiste una base (e_1, \ldots, e_n) per cui $\rho_q = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$; sia $(\varphi_1, \ldots, \varphi_n)$ la base duale, allora

$$\rho_{q}^{\star}(\varphi_{i})(e_{j}) = \varphi_{i}(\rho_{q^{-1}}(e_{j})) = \varphi_{i}(\lambda_{i}^{-1}e_{j}) = \lambda_{i}^{-1}\delta_{i,j} = \lambda_{i}^{-1}\delta_{i,j} = \lambda_{i}^{-1}\varphi_{i}(e_{j});$$

poiché questo vale per ogni e_j , si ha che $\rho_q^*(\varphi_i) = \lambda_i^{-1} \varphi_i = \bar{\lambda_i} \varphi_i$, quindi

$$\chi_{V^{\star}}(g) = \operatorname{Tr}(\rho_g^{\star}) = \sum_{i=1}^n \bar{\lambda}_i = \overline{\operatorname{Tr}(\rho_g)} = \overline{\chi_V(g)}.$$

Definizione 2.8. Dato un G-modulo V, si definiscono l'algebra simmetrica del secondo ordine e l'algebra alternante del secondo ordine rispettivamente come

$$\begin{split} S^2(V) &\coloneqq \frac{V \otimes V}{\langle v \otimes w - w \otimes v \rangle_{v,w \in V}}, \\ \Lambda^2(V) &\coloneqq \frac{V \otimes V}{\langle v \otimes w + w \otimes v \rangle_{v,w \in V}}. \end{split}$$

In $S^2(V)$ si indica il prodotto (commutativo) con ·; in $\Lambda^2(V)$ si indica il prodotto (anticommutativo) con \wedge .

Osservazione 2.9. Le algebre $S^2(V)$ e $\Lambda^2(V)$ ereditano in modo naturale la struttura di G-modulo da $V \otimes V$: $g(v \cdot w) := gv \cdot gw$ e $g(v \wedge w) := gv \wedge gw$.

Definizione 2.10. Dati due G-moduli $V \in W$, $f: V \to W$ è un morfismo di G-moduli (o è G-equivariante) se è un'applicazione lineare tale che f(gv) = gf(v); l'insieme dei morfismi di G-moduli si denota con $\text{Hom}_G(V,W)$.

Osservazione 2.11. Si ha $\operatorname{Hom}_G(V,W) = \operatorname{Hom}(V,W)^G$, l'insieme degli elementi fissati da G nel G-modulo $\operatorname{Hom}(V,W)$. Infatti, se $f \in \operatorname{Hom}(V,W)^G$, si ha $f(v) = (g^{-1}f)(v) = g^{-1}f(gv)$, cioè gf(v) = f(gv) e viceversa.

Lemma 2.12 (Schur). Siano V e W due G-moduli irriducibili, $f: V \to W$ un morfismo di G-moduli, allora, se $V \ncong_G W$, $f \equiv 0$, altrimenti se $V \cong_G W$, $f = \frac{\operatorname{Tr} f}{\dim V} \operatorname{Id}_V$.

Dimostrazione. Sia $v \in \ker f$, allora f(gv) = gf(v) = 0, quindi $gv \in \ker f$, cioè $\ker f$ è un G-sottomodulo di V; se w = f(v), gw = gf(v) = f(gv), quindi anche Im f è un G-sottomodulo di W. Poiché V e W sono irriducibili, ci sono solo due possibilità:

- se ker f=0, Im f non può essere 0 ma deve essere W, cioè f è un isomorfismo di G-moduli; in questo caso si può supporre V=W e f un automorfismo di V; per questo motivo esiste un autovalore λ di f, cioè $\ker(f-\lambda\operatorname{Id}_V)\neq 0$, ma ancora perché V è irriducibile, $f=\lambda\operatorname{Id}_V$, e λ è la media degli autovalori di f, perciò $\lambda=\frac{\operatorname{Tr} f}{\dim V}$;
- se ker f = V, chiaramente Im f = 0 e $f \equiv 0$.

Osservazione 2.13. Se f e h sono entrambi morfismi non nulli di G-moduli irriducibili differiscono per una costante moltiplicativa: $f = \lambda h$. Il lemma di Schur si può enunciare anche come dim $\operatorname{Hom}_G(V,W) = \delta_{V,W}$, dove $\delta_{V,W} = 1$ se $V \cong_G W$, 0 altrimenti. Se V è irriducibile, $\operatorname{End}_G(V) \to \mathbb{C}^*$ che associa a f il numero $\frac{\operatorname{Tr} f}{\dim V}$ è un isomorfismo.

Teorema 2.14 (ortonormalità dei caratteri di rappresentazioni irriducibili). Siano V e W G-moduli irriducibili, allora $\langle \chi_V, \chi_W \rangle = \delta_{V,W}$.

Dimostrazione. Per ogni G-modulo $U, \pi: U \to U$ con $\pi(u) = 1/|G| \sum_{g \in G} gu$ è una proiezione da U su $U^G = \{ u \in U \mid (\forall g \in G) gu = u \}$: infatti

$$h\pi(u) = \frac{1}{|G|} \sum_{g \in G} hgu = \pi(u)$$

cambiando indice da g a hg, e se $u \in U$ è invariante,

$$\pi(u) = \frac{1}{|G|} \sum_{g \in G} gu = \frac{1}{|G|} \sum_{g \in G} u = u.$$

Quindi si ha

$$\dim U^G = \operatorname{Tr}(\pi) = \frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}(g) = \frac{1}{|G|} \sum_{g \in G} \chi_U(g).$$

Se si prende U = Hom(W, V), si ottiene

$$\dim U^G = \frac{1}{|G|} \sum_{g \in G} \chi_U(g) = \frac{1}{|G|} \sum_{g \in G} \overline{\chi_W(g)} \chi_V(g) = \langle \chi_V, \chi_W \rangle,$$

ma per il lemma di Schur dim $U^G = \dim \operatorname{Hom}_G(V, W) = \delta_{V,W}$.

Proposizione 2.15. Sia V un G-modulo, V_i G-moduli irriducibili tali che $V \cong_G V_1 \oplus \cdots \oplus V_r$; sia $\mu_U(V) := |\{V_i \mid V_i \cong_G U\}|$; questa quantità è intrinseca e vale $\langle \chi_U, \chi_V \rangle$.

Dimostrazione. Si ha

$$\langle \chi_{U}, \chi_{V} \rangle = \langle \chi_{U}, \chi_{V_{1} \oplus \cdots \oplus V_{r}} \rangle = \left\langle \chi_{U}, \sum_{i=1}^{r} \chi_{V_{i}} \right\rangle =$$

$$= \sum_{i=1}^{r} \langle \chi_{U}, \chi_{V_{i}} \rangle = \sum_{i=1}^{r} \delta_{U, V_{i}} = \mu_{U}(V).$$

Corollario 2.16. L'applicazione χ dai G-moduli modulo isomorfismo a X_G è iniettiva.

17.10.2006

Dimostrazione alternativa per l'ortonormalità dei caratteri. Siano $\rho\colon G\to \mathrm{GL}(V),\ \sigma\colon G\to \mathrm{GL}(W)$ due rappresentazioni irriducibili. Se $F\colon V\to W$ è un'applicazione lineare, sia

$$\tilde{F} = \frac{1}{|G|} \sum_{g \in G} \sigma_g F \rho_{g^{-1}} = \frac{1}{|G|} \sum_{g \in G} gF;$$

 \tilde{F} è invariante, cioè $h\tilde{F} = \tilde{F}$, quindi \tilde{F} è un morfismo di G-moduli.

Siano (e_1,\ldots,e_n) e (f_1,\ldots,f_m) basi di V e W; si definisce $F_{i,j}\colon V\to W$ con $F_{i,j}(e_s)\coloneqq\delta_{i,s}f_j$. In generale vale

$$\begin{split} |G|\,\tilde{F_{i,j}}(e_t) &= \sum_{g \in G} \sigma_g F_{i,j} \rho_{g^{-1}}(e_t) = \sum_{g \in G} \sigma_g F_{i,j} \sum_{s=1}^n \left(\rho_{g^{-1}}\right)_{s,t} e_s = \\ &= \sum_{g \in G} \sigma_g (\rho_{g^{-1}})_{i,t} f_j = \sum_{g \in G} \sum_{h=1}^m \left(\sigma_g\right)_{h,j} (\rho_{g^{-1}})_{i,t} f_h. \end{split}$$

Se $V \ncong_G W$, $\tilde{F_{i,j}} = 0$ e per ogni $h \in \{1,\ldots,m\}$ deve essere $\sum_{g \in G} (\sigma_g)_{h,j} (\rho_{g^{-1}})_{i,t} = 0$. Per l'arbitrarietà di i,j,t, quella quantità deve annullarsi per ogni i,j,h,t.

Allora si ha

$$\begin{split} \left\langle \chi_W, \chi_V \right\rangle &= \frac{1}{|G|} \sum_{g \in G} \chi_W(g) \overline{\chi_V(g)} = \\ &= \frac{1}{|G|} \sum_{g \in G} \left(\sum_{i=1}^m \left(\sigma_g \right)_{i,i} \right) \left(\sum_{j=1}^n \left(\bar{\rho_g} \right)_{j,j} \right) = \\ &= \frac{1}{|G|} \sum_{g \in G} \left(\sum_{i=1}^m \left(\sigma_g \right)_{i,i} \right) \left(\sum_{j=1}^n \left(\rho_{g^{-1}} \right)_{j,j} \right) = \\ &= \sum_{i,j} \frac{1}{|G|} \left(\sum_{g \in G} \left(\sigma_g \right)_{i,i} \left(\rho_{g^{-1}} \right)_{j,j} \right) = 0. \end{split}$$

Se invece $V\cong_G W$, risulta $\chi_V=\chi_W$; per Schur, $\tilde{F_{i,j}}=\frac{\operatorname{Tr} \tilde{F_{i,j}}}{\dim V}\operatorname{Id}_V$ e

$$\operatorname{Tr} \tilde{F_{i,j}} = \frac{1}{|G|} \sum_{g \in G} \operatorname{Tr} \left(\rho_g F_{i,j} \rho_{g^{-1}} \right) = \frac{1}{|G|} \sum_{g \in G} \operatorname{Tr} F_{i,j} = \operatorname{Tr} F_{i,j} = \delta_{i,j},$$

quindi $\tilde{F}_{i,j} = \delta_{i,j}/n \operatorname{Id}_V$. Si ha

$$|G| \frac{\delta_{i,j}}{n} e_t = |G| \tilde{F}_{i,j}(e_t) = \sum_{g \in G} \sum_{h=1}^n (\rho_g)_{h,j} (\rho_{g^{-1}})_{h,j} e_h$$

e perciò $^1\!/|_{G|}\sum_{g\in G}\left(\rho_g\right)_{h,j}\left(\rho_{g^{-1}}\right)_{i,t}=\frac{\delta_{i,j}\delta_{h,t}}{n}$ e infine

$$\langle \chi_V, \chi_V \rangle = \sum_{i,j} \frac{1}{|G|} \sum_{g \in G} (\rho_g)_{i,i} \left(\rho_{g^{-1}} \right)_{j,j} e_h = \sum_{i,j} \frac{\delta_{i,j} \delta_{j,i}}{n} = 1.$$

Osservazione 2.17. Con questa dimostrazione si ha che, definite $\rho_{i,j}\colon G\to\mathbb{C}$ con $\rho_{i,j}(g)\coloneqq \rho_{g_{i,j}},\ (\rho_{g^{-1}})_{i,j}=(\rho_g^{-1})_{i,j}=(\bar{\rho_g}^t)_{i,j}=(\bar{\rho_g}^t)_{i,j}$ poiché si può prendere una base che diagonalizza ρ_g . Si ottiene quindi $\langle \rho_{h,j},\sigma_{t,i}\rangle=1/|G|\sum_{g\in G}(\rho_g)_{h,j}(\bar{\sigma_g})_{t,i}=0$ se $V\ncong_GW$ e $\langle \rho_{h,j},\rho_{t,i}\rangle=\frac{\delta_{i,j}\delta_{h,t}}{n}$.

Corollario 2.18. Dato un G-modulo V, $\langle \chi_V, \chi_V \rangle$ è un intero positivo ed è 1 se e solo se V è irriducibile.

Dimostrazione. Si suppone di poter scrivere $V \cong_G Z_1^{\mu_1} \oplus \cdots \oplus Z_r^{\mu_r}$, allora $\langle \chi_V, \chi_V \rangle = \sum_{i,j} \mu_i \mu_j \langle \chi_{Z_i}, \chi_{Z_j} \rangle = \sum_i \mu_i^2 \in \mathbb{N} \setminus \{0\}$. Inoltre l'unico modo in cui una somma di quadrati può dare 1 è che r=1 e $\mu_1=1$; viceversa, se V è irriducibile, r=1 e $\mu_1=1$.

Esercizio 2.19. Sia Ω un insieme finito su cui agisce un gruppo G e sia $V=\langle e_{\omega}\mid \omega\in\Omega\rangle_{\mathbb{C}};$ se s è il numero di orbite di G in Ω allora V contiene s copie della rappresentazione banale.

Soluzione. Siano Ω_1,\ldots,Ω_s le orbite, allora $v_i=\sum_{\omega\in\Omega_i}e_\omega$ è stabile: $gv_i=\sum_{\omega\in\Omega_i}ge_\omega=\sum_{\omega\in\Omega_i}e_{g\omega}=\sum_{\omega\in\Omega_i}e_\omega=v_i$, quindi V contiene almeno s copie della rappresentazione banale. Se ora $v=gv\in V$ per ogni $g\in G$,

20.10.2006

 $v=\sum_{\omega\in\Omega}a_{\omega}e_{\omega}$ e $gv=\sum_{\omega\in\Omega}a_{\omega}e_{g\omega}$, quindi $a_{\omega}=a_{g\omega}$ per ogni g, cioè a è funzione di classe; allora $v=\sum_{i=1}^sa_{\omega_i}v_i$ con $\omega_i\in\Omega_i$ qualsiasi: v è combinazione lineare di v_1,\ldots,v_n , perciò V contiene solo s copie della banale.

Oppure, usando i caratteri, si calcola

$$\begin{split} \langle \chi_V, \chi_B \rangle &= \frac{1}{|G|} \sum_{g \in G} \chi_V(g) = \frac{1}{|G|} \sum_{g \in G} \mathrm{Tr}(g) = \\ &= \frac{1}{|G|} \sum_{g \in G} |\mathrm{Fix}(g)| = \frac{1}{|G|} \left| \left\{ (g, \omega) \mid g\omega = \omega \right\} \right| = \\ &= \frac{1}{|G|} \sum_{\omega \in \Omega} |\mathrm{Stab}(\omega)| = \frac{1}{|G|} \sum_{\omega \in \Omega} \frac{|G|}{|O(\omega)|} = \\ &= \sum_{\omega \in \Omega} \frac{1}{|O(\omega)|} = s. \end{split}$$

Esercizio 2.20. Data un'azione doppiamente transitiva di G su Ω (cioè tale che per ogni (x,y) e (x',y') con $x \neq y$ e $x' \neq y'$, esista $g \in G$ con gx = x' e gy = y'), sia $W = \langle e_{(x,y)} \mid (x,y) \in \Omega^2 \rangle_{\mathbb{C}}$, allora $\chi_W = \chi_V^2$; $V \cong_G B \oplus U$ con U irriducibile; la riflessione per S_n è irriducibile.

Soluzione. Si ha $\chi_W(g) = |\operatorname{Fix}_{\Omega^2}(g)| = |\{(x,y) \in \Omega^2 \mid gx = x, gy = y\}| = |\{x \in \Omega \mid gx = x\}|^2 = \chi_V(g)^2.$

Poiché W si divide in due orbite (la diagonale e il resto), $\langle \chi_W, \chi_B \rangle = 2 = \langle \chi_V^2, \chi_B \rangle = ^1/|G| \sum_{g \in G} \chi_V(g)^2 = ^1/|G| \sum_{g \in G} \chi_V(g) \overline{\chi_V(g)} = \langle \chi_V, \chi_V \rangle$. Quindi se V si scompone in $\bigoplus_{i=1}^r Z_i^{\mu_i}$, deve essere che $2 = \sum_{i=1}^r \mu_i^2$, e l'unica possibilità è che si scomponga in due rappresentazioni irriducibili. Poiché ha una sola orbita, si ha $V = B \oplus U$ con U irriducibile e non banale.

In particolare, S_n agisce n-transitivamente su $\{1, \ldots, n\}$, quindi la rappresentazione di permutazione si scompone in $B \oplus R$ dove R è la rappresentazione di riflessione che di conseguenza è irriducibile.

Lemma 2.21. Sia $\varphi \colon G \to \mathbb{C}$; dato un G-modulo V, si definisce $f_{\varphi,V} \colon V \to V$ con $f_{\varphi,V}(v) \coloneqq \sum_{g \in G} \varphi(g)gv$; allora $f_{\varphi,V}$ è un morfismo di G-moduli per ogni V se e solo se φ è una funzione di classe.

 $Dimostrazione. \Leftarrow Se \varphi$ è funzione di classe.

$$hf_{\varphi,V}h^{-1}(v) = h\sum_{g \in G} \varphi(g)gh^{-1}(v),$$

che grazie a un cambiamento di variabile è uguale a

$$\sum_{g \in G} \varphi(h^{-1}gh)gv = \sum_{g \in G} \varphi(g)gv = f_{\varphi,V}(v),$$

cioè $f_{\varphi,V}$ è G-equivariante.

 $\Rightarrow \text{ Se } f_{\varphi,V} \text{ è G-equivariante per ogni V, lo è in particolare per la rappresentazione regolare $V = P := \langle e_g \mid g \in G \rangle_{\mathbb{C}}$, allora si ha $hf_{\varphi,V}h^{-1}(e_e) = f_{\varphi,V}(e_e)$ per ogni $h \in G$; ma $f_{\varphi,V}(e_e) = \sum_{g \in G} \varphi(g)e_g$ e$

$$hf_{\varphi,V}h^{-1}(e_e)=h\sum_{g\in G}\varphi(g)gh^{-1}e_e=\sum_{g\in G}\varphi(g)hgh^{-1}e_e=\sum_{g\in G}\varphi(h^{-1}gh)e_g,$$

quindi
$$\varphi(h^{-1}gh) = \varphi(g)$$
 per ogni $g, h \in G$.

Teorema 2.22. L'insieme $\{\chi_V \mid V \text{ irriducibile}\}\$ è una base ortonormale di X_G . In particolare, il numero dei G-moduli irriducibili distinti è pari al numero di classi di coniugio di G.

Dimostrazione. Si è già dimostrato che la famiglia $\{\chi_V\}$ è ortonormale, si deve solo provare che generano tutto X_G . Sia quindi $\varphi \in X_G$ tale che $\langle \varphi, \chi_V \rangle = 0$ per ogni V irriducibile, si deve dimostrare che $\varphi = 0$, cioè che l'ortogonale è il vettore nullo. Se V è irriducibile, per il lemma di Schur $f_{\varphi,V} = {}^{\text{Tr}} f_{\varphi,V} / \dim V \operatorname{Id}_V$; si ha

$$\operatorname{Tr} f_{\varphi,V} = \sum_{g \in G} \varphi(g) \operatorname{Tr} g = \sum_{g \in G} \varphi(g) \chi_V(g) = \sum_{g \in G} \varphi(g) \overline{\chi_{V^\star}(g)} = |G| \left\langle \varphi, \chi_{V^\star} \right\rangle.$$

Ma V^* è ancora irriducibile, perché si mostra facilmente che V e V^* hanno la stessa norma quadra, quindi ${\rm Tr}\, f_{\varphi,V}=0$ e $f_{\varphi,V}=0$.

Siano ora V, W due G-moduli irriducibili;

$$f_{\varphi,V\oplus W}(v,w) = \sum_{g\in G} \varphi(g)g(v,w) = \sum_{g\in G} \varphi(g)(gv,gw) =$$
$$= (f_{\varphi,V}(g), f_{\varphi,W}(g)) = (0,0).$$

Allora $f_{\varphi,V}=0$ per qualsiasi G-modulo V (non soltanto per gli irriducibili) e in particolare è vero per V=P: si ha $0=f_{\varphi,P}(e_e)=\sum_{g\in G}\varphi(g)e_g$, da cui $\varphi(g)=0$ per ogni $g\in G$.

Osservazione 2.23. La rappresentazione regolare si scompone come P = $\bigoplus_{V \text{ irriducibili}} V^{\dim V}$. Infatti P è una rappresentazione di permutazione, quindi $\chi_{\mathrm{P}}(g) = |\mathrm{Fix}(g)| = \delta_{g,e} |G|$, cioè $\chi_{\mathrm{P}} = |G| \, \delta_e$. Allora

$$\mu_{\mathcal{P}}(V) = \langle \chi_{\mathcal{P}}, \chi_{V} \rangle = \frac{1}{|G|} \sum_{g \in G} |G| \, \delta_{e}(g) \overline{\chi_{V}(g)} = \overline{\chi_{V}(e)} = \overline{\operatorname{Tr} \operatorname{Id}_{V}} = \dim V.$$

Corollario 2.24. Si ha $\sum_{V \ irriducibile} \dim V \chi_V(g) = |G| \delta_{e,g}, \dim P = |G| = \sum_{V \ irriducibile} (\dim V)^2$, e se V è irriducibile, $\dim V \leq \sqrt{|G|}$.

Esempio 2.25. Si costruirà la tavola dei caratteri di S_3 , cioè una matrice $n \times n$ con n il numero di classi di coniugio o, equivalentemente, di rappresentazioni irriducibili. Per S_3 , queste sono la rappresentazione banale, quella alterna e quella di riflessione, mentre le classi di coniugio sono di rappresentanti e, (12), (123) e hanno rispettivamente cardinalità 1, 3, 2.

$$\begin{array}{cccc}
 & 1 & 3 & 2 \\
 & e & (12) & (123) \\
 & 1 & 1 & 1 \\
 & A & 1 & -1 & 1 \\
 & R & 2 & 0 & -1
\end{array}$$

Infatti, le prime due righe sono banali; per calcolare la terza si può usare la formula $\sum_{V \text{ irriducibile}} \dim V \chi_V(g) = |G| \, \delta_{e,g}$, oppure si può notare che la rappresentazione di permutazione T, per cui vale $\chi_T(g) = |\operatorname{Fix}(g)|$, si decompone in $B \oplus R$, quindi $\chi_R(g) = \chi_T(g) - \chi_B(g)$. Il fatto che risultino tutti numeri interi non è una regola generale, ma è vero in particolare per le tavole dei caratteri di S_n . Per la proposizione precedente, $P \cong B \oplus A \oplus R^2$.

Proposizione 2.26. Sia $(\chi_{V_i}(g_j))_{i,j}$ con $g_j \in C_j$ (la j-esima classe di coniugio di G) la tavola dei caratteri di un gruppo G e sia $a_{i,j} = \sqrt{\frac{|C_j|}{|G|}\chi_{V_i}(g_j)} = \frac{1}{\sqrt{|Z(g_j)|}\chi_{V_i}(g_j)}$; allora le righe della matrice A sono ortonormali. In particolare, le colonne della tavola dei caratteri sono ortogonali.

Dimostrazione. Si ha

$$\begin{split} \delta_{h,k} &= \langle \chi_{V_h}, \chi_{V_k} \rangle = \frac{1}{|G|} \sum_{g \in G} \chi_{V_h}(g) \overline{\chi_{V_k}(g)} = \\ &= \frac{1}{|G|} \sum_{j=1}^s |C_j| \, \chi_{V_h}(g_j) \overline{\chi_{V_k}(g_j)} = \\ &= \sum_{j=1}^s \sqrt{\frac{|C_j|}{|G|}} \chi_{V_h}(g_j) \sqrt{\frac{|C_j|}{|G|}} \overline{\chi_{V_k}(g_j)} = \sum_{j=1}^s a_{h,j} \overline{a_{j,k}}, \end{split}$$

quindi le righe di A sono ortonormali, ma questo implica che lo sono anche le colonne.

Esempio 2.27. Si costruirà la tavola dei caratteri di S_4 : si cercano cinque rappresentazioni irriducibili, ma già si conoscono completamente la rappresentazione banale, l'alterna e quella di riflessione; per la quarta, si osserva che data una rappresentazione irriducibile V di S_n , anche $A \otimes V$ è irriducibile:

$$\begin{split} \langle \chi_{A\otimes V}, \chi_{A\otimes V} \rangle &= \frac{1}{n!} \sum_{\sigma \in S_n} \chi_A(\sigma) \chi_V(\sigma) \overline{\chi_A(\sigma) \chi_V(\sigma)} = \\ &= \frac{1}{n!} \sum_{\sigma \in S_n} \left(-1 \right)^{\sigma} (-1)^{\sigma} \chi_V(\sigma) \overline{\chi_V(\sigma)} = \langle \chi_V, \chi_V \rangle = 1, \end{split}$$

che è condizione sufficiente e necessaria perché $A\otimes V$ sia irriducibile. L'ultima rappresentazione si ottiene grazie alla condizione di ortogonalità delle colonne.

24.10.2006

Esempio 2.28. Per S_5 , si hanno quattro rappresentazioni note, B, A, R, $A \otimes R$; ne mancano tre. La prima si ottiene con l'algebra alternante di secondo ordine su R, $\Lambda^2 R$, e il suo carattere dalla formula $\chi_{\Lambda^2 R}(g) = \frac{1}{2}(\chi_R^2(g) - \chi_R(g^2))$; il residuo delle dimensioni al quadrato è $50 = 120 - 1^2 - 1^2 - 4^2 - 4^2 - 6^2$, quindi possono mancare rappresentazioni di grado 1 e 7 o due di grado 5; si mostra che non esistono altre rappresentazioni di grado 1.

Sia $\rho \colon S_5 \to \operatorname{GL}(\mathbb{C}) \cong \mathbb{C}^*$ una rappresentazione; $\ker \rho$ è un sottogruppo normale di S_5 , perciò deve essere $\ker \rho \in \{\{1\}, A_n, S_n\}$. Il nucleo non può essere $\{1\}$, perché ρ sarebbe un morfismo iniettivo da un gruppo non abeliano a uno abeliano. Se $\ker \rho = S_n$, chiaramente ρ è la rappresentazione banale; infine, se $\ker \rho = A_n$, $S_n/\ker \rho \cong \mathbb{Z}_2$ e l'immagine di $1 + 2\mathbb{Z}$ ha ordine 2, quindi può andare solo in $-1 \in \mathbb{C}^*$ e ρ è la rappresentazione alterna.

Di conseguenza le rappresentazioni rimanenti W_1 e W_2 hanno entrambe grado 5; si può ipotizzare che $W_2 = A \otimes W_1$. Se così non fosse, $\chi_{W_i}(\sigma) = 0$ per ogni σ di ordine dispari, in quanto dovrebbe essere $A \otimes W_i \cong W_i$ (W_1 e W_2 sono le uniche rappresentazioni di grado 5). D'altra parte, si conosce la norma quadra delle colonne della tavola dei caratteri: è $|G|/|C_j|$ e in particolare per la classe di coniugio di (12) si ha $^{120}/_{10} = 1^1 + (-1)^2 + 2^2 + (-2)^2 + 0^2 + \chi_{W_1}((12))^2 + \chi_{W_2}((12))^2$, assurdo perché i caratteri rimanenti non possono essere nulli come era stato trovato. Quindi $\chi_{W_1}((12)) = -\chi_{W_2}((12))$ e la somma dei loro quadrati è 2: sono $1 \in -1$, in un qualche ordine. Per la terza colonna, la somma dei quadrati deve risultare $^{120}/_{15} = 8$ e si trova che i caratteri di W_1 e W_2 devono essere entrambi 1 o entrambi -1; per decidere il segno, si sfrutta l'ortogonalità con la seconda colonna. Procedendo in questo modo si completa la tabella.

Al contrario di $\Lambda^2 R$, $S^2 R$ è riducibile: calcolando il suo carattere, si mostra che è lo stesso della rappresentazione $B \oplus R \oplus W$. Questo può servire per scoprire nei dettagli W, localizzando dentro $S^2 R$ la rappresentazione banale e quella di riflessione e prendendo l'ortogonale a queste due.

Esempio 2.29. Trovare la tavola dei caratteri di A_4 .

Soluzione. Innanzitutto bisogna trovare le classi di coniugio di A_4 : la classe di S_4 con rappresentante $\sigma = \sigma_1 \cdots \sigma_r$ si decompone in due classi di A_4 se i σ_i sono tutti distinti e dispari, altrimenti è anche una classe di A_4 ; quindi le classi sono quattro e hanno come rappresentanti e, (12)(34), (123) e (132). Si cercano quindi quattro rappresentazioni irriducibili. Si osserva che posto K il sottogruppo normale generato dai 2-cicli, $A_4/K \cong \mathbb{Z}_3$ e da \mathbb{Z}_3 si hanno tre rappresentazioni irriducibili di grado 1. Riportandole a rappresentazioni di A_4 , saranno rappresentazioni di grado 1 che mandano i 2-cicli nell'identità, mentre le due classi di coniugio dei 3-cicli verranno mandate in altre radici terze dell'unità.

Rimane un'unica rappresentazione, che si mostra con le formule essere di grado 3, e avere lo stesso carattere della rappresentazione di riflessione di S_4 composta con l'iniezione di A_4 in S_4 , quindi l'ultima rappresentazione è proprio quella di riflessione.

Esercizio 2.30. Per ogni tavola dei caratteri T vista come matrice $n \times n$, si ha det $T \in \mathbb{R} \cup i\mathbb{R}$ e $|\det T|^2 = \prod_{j=1}^s |Z(g_j)|$ con g_j rappresentante della classe di coniugio C_j .

27.10.2006

Soluzione. Si ha che $\det T \in \mathbb{R} \cup i\mathbb{R}$ è equivalente a $\overline{\det T} = \pm \det T$, ma $\overline{\det T} = \det \overline{T}$; inoltre $\chi_V = \chi_{V^*}$ e V^* è irriducibile se V è irriducibile. Quindi la tavola coniugata è uguale alla tavola le cui righe sono state permutate, perciò il determinante è uguale a meno del segno.

Infine, le colonne sono ortogonali, perciò
$$|\det T|^2 = \det(T^t \bar{T}) = \det^2(\operatorname{diag}(\lambda_1, \ldots, \lambda_s))$$
 con $\lambda_i = |G|/|C_i| = |Z(g_i)|$.

3 $\mathbb{C}[G]$ -moduli

Definizione 3.1. Dati un G-modulo V e un H-modulo W, si definisce $V \boxtimes W$ insiemisticamente come $V \otimes W$, ma con la struttura di $G \times H$ -modulo data da $(g,h)v \boxtimes w := gv \boxtimes hw$.

27.11.2006

Osservazione 3.2. Se V è un G-modulo irriducibile e W è un H-modulo irriducibile, allora $V \boxtimes W$ è un $G \times H$ -modulo irriducibile; viceversa, ogni $G \times H$ -modulo irriducibile è prodotto di un G-modulo irriducibile e un H-modulo irriducibile.

Infatti si ha $\chi_{V\boxtimes W}(g,h)=\operatorname{Tr}\rho_g\otimes\sigma_h=\operatorname{Tr}\rho_g\operatorname{Tr}\sigma_h=\chi_V(g)\chi_W(h)$ e come conseguenza immediata $\|\chi_{V\boxtimes W}\|^2=\|\chi_V\|^2\|\chi_W\|^2$.

Se $V \boxtimes W \cong_{G \times H} V' \boxtimes W'$ sono due rappresentazioni irriducibili con V, V', W, W' irriducibili, allora $V \cong_G V'$ e $W \cong_H W'$. Infatti, $\chi_{V \boxtimes W} = \chi_{V' \boxtimes W'}$, che calcolato in (g,e) dà dim $W\chi_V(g) = \dim W'\chi_{V'}(g)$, ma se $V \ncong_G V'$ i due caratteri sarebbero ortogonali, quindi le due rappresentazioni devono essere isomorfe e allo stesso modo W e W'.

Si sono trovate quindi tante rappresentazioni irriducibili per $G \times H$ quante il prodotto tra il numero delle classi di coniugio di G e il numero delle classi di coniugio di H, cioè tante quante le classi di coniugio di $G \times H$; questo significa che non ci sono altre rappresentazioni irriducibili.

Definizione 3.3. Si definisce l'algebra $\mathbb{C}[G] := \langle g \mid g \in G \rangle_{\mathbb{C}}$, con $g \cdot h := gh$; un $\mathbb{C}[G]$ -modulo è (V, ρ) con $\rho \colon \mathbb{C}[G] \to \mathrm{End}(V)^1$.

Osservazione 3.4. Dato un G-modulo $\rho \colon G \to \operatorname{GL}(V)$, si ha un $\mathbb{C}[G]$ -modulo con $\hat{\rho} \colon \mathbb{C}[G] \to \operatorname{End}(V)$ definito da $\hat{\rho}(\sum_{g \in G} a_g g) \coloneqq \sum_{g \in G} a_g \rho_g$. L'applicazione così definita è non solo lineare, ma anche un morfismo di algebre, in quanto $\hat{\rho}(g \cdot h) = \hat{\rho}(g)\hat{\rho}(h)$ e $\hat{\rho}(e) = \operatorname{Id}_V$.

Viceversa, dato $\varphi \colon \mathbb{C}[G] \to \operatorname{End}(V)$, si ha che $\varphi_{|G}$ è un G-modulo e ovviamente $\widehat{\varphi_{|G}} = \varphi$ e $\widehat{\rho}_{|G} = \rho$. Da questa corrispondenza biunivoca si deducono le seguenti:

- ρ è un G-modulo irriducibile se e solo se $\hat{\rho}$ è un $\mathbb{C}[G]$ -modulo irriducibile, in quanto un sottospazio invariante per ρ ne induce uno per $\hat{\rho}$ e viceversa;
- $\mathbb{C}[G]$ è un $\mathbb{C}[G]$ -modulo con la moltiplicazione a sinistra, quindi per restrizione è un G-modulo: la rappresentazione regolare; i $\mathbb{C}[G]$ -sottomoduli sono gli ideali sinistri (cioè gli insiemi stabili per la moltiplicazione a sinistra) e quelli irriducibili sono gli ideali minimali (cioè quelli che non contengono propriamente altri ideali non nulli);

 $^{^1}$ Poiché gli elementi di $\mathbb{C}[G]$ non sono tutti invertibili, il codominio non può essere solo $\mathrm{GL}(V).$

• se $\mathbb{C}[G]$ è completamente riducibile, quindi per ogni suo ideale I esiste un ideale J tale che $\mathbb{C}[G] \cong_{\mathbb{C}[G]} I \oplus J$; in questo caso si dice che $\mathbb{C}[G]$ è semisemplice.

Proposizione 3.5. Siano Z_1, \ldots, Z_s le rappresentazioni irriducibili di G, con dimensioni n_1, \ldots, n_s , allora esiste un isomorfismo di algebre $\mathbb{C}[G] \to E := \bigoplus_{i=1}^s \operatorname{End}(Z_i) \cong_{\mathbb{C}[G]} \bigoplus_{i=1}^s \mathscr{M}(n_i \times n_i, \mathbb{C}).$

Dimostrazione. Siano $\rho_i \colon G \to \operatorname{GL}(Z_i)$ e $\hat{\rho} = \hat{\rho_1} \oplus \cdots \oplus \hat{\rho_s}$; per come è definito, ρ è un morfismo di algebre. Inoltre, dim $\mathbb{C}[G] = |G| = \sum_{i=1}^s n_i^2 = \sum_{i=1}^s \dim \operatorname{End}(Z_i) = \dim E$, perciò basta dimostrare che ρ è suriettiva. Sia $H \coloneqq \operatorname{Im} \rho \leq E$; se $H \neq E$, esiste $f \colon E \to \mathbb{C}$ tale che $f(H) = \{0\}$ ma $f \not\equiv 0$; si prendono delle basi ortonormali di Z_i tali che le matrici siano unitarie, allora le funzioni $\rho_{j,k}^i$ sono ortogonali. Si ha $\rho(g) = (\rho_1(g), \dots, \rho_s(g)) = \sum_{i,j,k} \rho_{j,k}^i(g) e_{j,k}^i$, dove $e_{j,k}^i$ è l'elemento con tutti 0 tranne nell'entrata (j,k) dell'i-esima matrice. Siano $a_{j,k}^i \coloneqq f(e_{j,k}^i)$; si ha $0 = f\rho(g) = \sum_{i,j,k} a_{j,k}^i \rho_{j,k}^i(g)$, con gli $a_{j,k}^i$ non tutti nulli, ma questo è assurdo perché $\rho_{j,k}^i$ sono ortogonali e in particolare indipendenti.

Esercizio 3.6. Dato $\mathbb{C}[G]$, il centro $Z(\mathbb{C}[G])$ si scrive come Z[G]. Si ha $Z[G] = \langle e_{C_1}, \dots, e_{C_s} \rangle$ con C_i le classi di coniugio di G e $e_{C_i} = \sum_{g \in C_i} g$.

Soluzione. Sia $x=\sum_{g\in G}a_gg\in Z[G],$ allora per ogni $h\in G,$

$$\sum_{g\in G}a_ggh=\sum_{g\in G}a_ghg=\sum_{g\in G}a_{h^{-1}gh}gh,$$

cambiando la variabile della sommatoria, da cui $a_{h^{-1}gh}=a_g$: a è funzione di classe, perciò $x\in \langle e_{C_1},\dots,e_{C_s}\rangle$. Viceversa, allo stesso modo, $he_{C_i}=\sum_{g\in C_i}hg=\sum_{g\in C_i}gh$, cioè $e_{C_i}\in Z[G]$.

Osservazione 3.7. Una rappresentazione irriducibile $\rho_i : G \to GL(Z_i)$ di G di dimensione n_i si può estendere a $\hat{\rho_i} : \mathbb{C}[G] \to End(Z_i)$; inoltre:

- $\hat{\rho}_i(Z) \subseteq \mathbb{C} \operatorname{Id}_{Z_i}$, con Z := Z[G];
- se $\omega_i \colon Z \to \mathbb{C}$ tale che $\hat{\rho_i}_{|Z}(x) = \omega_i(x) \operatorname{Id}_{Z_i}$, allora se $x = \sum a_g g$, $\omega_i(x) = \frac{1}{n_i} \sum a_g \chi_i(g)$.

Infatti se gx = xg per ogni $g \in G$, $\hat{\rho_i}(g)\hat{\rho_i}(x) = \hat{\rho_i}(x)\hat{\rho_i}(g)$, quindi $\rho_i(g)\hat{\rho_i}(x) = \hat{\rho_i}(x)\rho_i(g)$. Allora $\hat{\rho_i}(x)$ è un morfismo di moduli da Z_i in Z_i , ma Z_i è irriducibile, allora per il lemma di Schur è un multiplo dell'identità. Ora,

$$\hat{\rho_i}(x) = \frac{\operatorname{Tr}(\hat{\rho_i}(x))}{n_i}\operatorname{Id}_{Z_i} = \frac{\operatorname{Tr}\left(\sum_{g \in G} a_g \rho_i(g)\right)}{n_i}\operatorname{Id}_{Z_i} = \frac{\sum_{g \in G} a_g \operatorname{Tr}(\rho_i(g))}{n_i}\operatorname{Id}_{Z_i}.$$

Proposizione 3.8. La mappa $\omega \colon Z \to \mathbb{C}^s$ che associa a x la s-upla $(\omega_1(x), \ldots, \omega_s(x))$ è isomorfismo di algebre.

Dimostrazione. Si è dimostrato che la mappa $\hat{\rho} \colon \mathbb{C}[G] \to \bigoplus_{i=1}^s \operatorname{End}(Z_i)$ è isomorfismo di algebre, e il centro viene mandato in $\bigoplus_{i=1}^s Z(\operatorname{End}(Z_i)) \cong \bigoplus_{i=1}^s \mathbb{C}$ (il centro di un'algebra su \mathbb{C} è \mathbb{C}) e la composizione è ω .

7.11.2006

Definizione 3.9. Un elemento $x \in R$ è *intero* su \mathbb{Z} se esistono $a_1, \ldots, a_n \in \mathbb{Z}$ tali che $x^n + a_1 x^{n-1} + \cdots + a_n = 0$. Se $R = \mathbb{C}$, x si dice intero algebrico.

Si dimostra che gli interi su $\mathbb Q$ sono gli elementi di $\mathbb Z$ e che le radici dell'unità sono interi algebrici.

Proposizione 3.10. Sono equivalenti:

- $x \in R$ è intero su \mathbb{Z} ;
- $\mathbb{Z}[x]$ è uno \mathbb{Z} -modulo finitamente generato;
- esiste uno \mathbb{Z} -sottomodulo M di R che contiene $\mathbb{Z}[x]$ ed è finitamente generato.

Corollario 3.11. Se R è finitamente generato come \mathbb{Z} -modulo, ogni $x \in R$ è intero (si può prendere R stesso come M).

Gli elementi interi di R sono un sottoanello.

Proposizione 3.12. Sia V un G-modulo, allora $\chi_V(g)$ è intero algebrico.

Dimostrazione. Sia ρ_g la matrice dell'azione di g su V; poiché G ha ordine finito, si può trovare una base in cui $\rho_g = \text{diag}(x_1, \dots, x_r)$ e $x_i^n = 1$ se n = |G|. Quindi gli autovalori sono interi algebrici, ma allora la traccia che è somma degli autovalori, è un intero algebrico perché somma di interi algebrici.

Proposizione 3.13. Sia $x = \sum_{g \in G} a_g g \in Z$ con a_g intero algebrico per ogni $g \in G$, allora x è intero (il centro è un anello commutativo).

Dimostrazione. Siano C_1,\ldots,C_s le classi coniugate, $e_i=\sum_{g\in C_i}g$; si è visto che $\langle e_1,\ldots,e_s\rangle=Z$ e siano $g_i\in C_i$. Poiché $x\in Z,\,x=\sum_{i=1}^sa_{g_i}e_i$ (perché gli a_g non variano all'interno della stessa classe di coniugio). Se gli e_i sono interi, si ha la tesi perché x è combinazione di elementi interi.

Si considera $e_i e_j = \sum_{k=1}^s a_{i,j}^k e_k$, perché $e_i e_j \in Z$. Ora, $e_i e_j \in \langle g \mid g \in G \rangle_{\mathbb{Z}}$, ma appartiene anche a $\langle e_1, \dots, e_s \rangle_{\mathbb{C}}$; l'intersezione di questi fa $A := \langle e_1, \dots, e_s \rangle_{\mathbb{Z}}$, quindi $a_{i,j}^k$ sono interi. Di conseguenze, lo \mathbb{Z} -modulo A è anche un sottoanello di R, quindi tutti i suoi elementi sono interi e in particolare lo sono gli e_i . \square

Corollario 3.14. Sia ρ una rappresentazione irriducibile di grado n e χ il suo carattere. Se $x = \sum_{g \in G} a_g g \in Z$ è tale che a_g è intero per ogni $g \in G$, allora $1/n \sum_{g \in G} a_g \chi(g)$ è intero algebrico.

Dimostrazione. Il numero $1/n \sum_{g \in G} a_g \chi(g)$ è $\omega(x)$; poiché x è intero, anche la sua immagine mediante ω lo è.

Corollario 3.15. Sia V un G-modulo irriducibile, allora $n = \dim V \mid |G|$.

Dimostrazione. Sia $x = \sum_{g \in G} \chi_V(g^{-1})g \in \mathbb{C}[G]$; $x \in Z$ perché χ_V è un'applicazione di classe, allora $1/n \sum_{g \in G} \chi_V(g^{-1})\chi_V(g)$ è un intero algebrico, il che significa che $1/n \sum_{g \in G} \overline{\chi_V(g)}\chi_V(g) = 1/n |G| \|\chi_V\|^2 = |G|/n$, che essendo intero algebrico e appartenente a \mathbb{Q} , deve essere intero, quindi $n \mid |G|$.

10.11.2006

Esercizio 3.16. Sia V un G-modulo irriducibile, allora dim V||G|/|Z(G)|.

Soluzione. Da $\rho \colon G \to \operatorname{GL}(V)$, si scrive la rappresentazione irriducibile $G^m \to \operatorname{GL}(V^{\boxtimes m})$ per un m qualsiasi. Si sa che un elemento del centro agisce su V come un multiplo dell'identità. Si può considerare un sottogruppo H del centro di G^m (quindi normale), cioè $H = \{(z_1, \ldots, z_m) \in Z(G)^m \mid z_1 \cdots z_m = e\}$. La rappresentazione $\rho^{\boxtimes m}$ passa al quoziente ad una rappresentazione $\bar{\rho}$. Si è in questa situazione:

e le norme sono in relazione:

$$\|\chi_{\bar{\rho}}\|^{2} = \frac{|H|}{|G^{m}|} \sum_{(g_{1}, \dots, g_{m}) \in \frac{G^{m}}{H}} \chi_{\bar{\rho}}(g_{1}, \dots, g_{m}) \overline{\chi_{\bar{\rho}}(g_{1}, \dots, g_{m})} =$$

$$= \frac{1}{|G|^{m}} \sum_{(g_{1}, \dots, g_{m}) \in G^{m}} \chi_{\bar{\rho}}((g_{1}, \dots, g_{m})H) \overline{\chi_{\bar{\rho}}((g_{1}, \dots, g_{m})H)} =$$

$$= \frac{1}{|G|^{m}} \sum_{g_{1}, \dots, g_{m} \in G} \prod_{i=1}^{m} \chi_{\rho}(g_{i}) \overline{\chi_{\rho}(g_{i})} =$$

$$= \frac{1}{|G|^{m}} \left(\sum_{g \in G} \chi_{\rho}(g) \overline{\chi_{\rho}(g)} \right)^{m} = \|\chi_{\rho}\|^{2m}.$$

Quindi anche $\bar{\rho}$ è irriducibile. Ora,

$$H = \left\{ (z_1, \dots, z_{m-1}, (z_1 \dots z_{m-1})^{-1}) \mid (z_1, \dots, z_{m-1}) \in Z(G)^{m-1} \right\},\,$$

quindi $|H|=|Z(G)|^{m-1}$ e questo è vero per ogni m. Si ha la relazione sulla dimensione di $V\colon n^m\coloneqq \dim V^{\boxtimes m}|t^m/c^{m-1}$, dove $t\coloneqq |G|$ e $c\coloneqq |Z(G)|$. Quindi $\frac{t^m}{c^{m-1}n^m}\in\mathbb{Z}$, allora $(t/cn)^m\in 1/c\mathbb{Z}$ per ogni m e $\mathbb{Z}[t/cn]\subseteq 1/c\mathbb{Z}$, quindi $\mathbb{Z}[t/cn]$ è contenuto in uno \mathbb{Z} -modulo finitamente generato, perciò è intero.

4 Rappresentazioni indotte

Sia H un sottogruppo di G; si prende un sistema di rappresentanti R, cioè un insieme tale che se $g \in G$, esiste un unico $r \in R$ e $t \in H$ tale che g = rt.

Data una rappresentazione $\rho \colon G \to \operatorname{GL}(V)$, anche H agisce su V con la rappresentazione $\rho_{|H}$ (generalmente si chiamerà questa restrizione ϑ). Dato un H-sottomodulo W di V, si indicherà con ϑ anche la mappa $\rho_{|H}^{|\operatorname{GL}(W)}$.

Preso $\sigma \in G/H$, si può definire $W_{\sigma} := \rho_s W \leq V$ dove $s \in \sigma$. Questa definizione è ben posta perché W_{σ} non dipende da s: se $s' \in \sigma$, esiste $t \in H$ tale che s' = st, allora $\rho_{s'}W = \rho_{st}W = \rho_s \rho_t W = \rho_s W$.

Si considera ora $\{W_{\sigma} \mid \sigma \in {}^{G}/H\}$; G agisce su questo insieme come una permutazione: se $s \in \sigma$, $g \in G$, $\rho_{g}W_{\sigma} = \rho_{g}\rho_{s}W = \rho_{gs}W = W_{\tau}$ con $\tau = gsH$.

Definizione 4.1. Sia V un G-modulo, $H \leq G$, W sottospazio di V H-invariante; si dice che V è indotto da H se $V = \bigoplus_{\sigma \in G/H} W_{\sigma}$ o equivalentemente se ogni $v \in V$ si può scrivere in maniera unica come $\sum_{\sigma \in G/H} v_{\sigma}$ con $v_{\sigma} \in W_{\sigma}$.

Osservazione 4.2. Sia ha dim V=|G|/|H| dim W. Questo perché i traslati hanno la stessa dimensione di W.

Esempio 4.3. Si considera la rappresentazione regolare di G, $P = \langle e_g \mid g \in G \rangle = V$ e si considera $W = \langle e_h \mid h \in H \rangle = P_H$. Se $\sigma \in G/H$,

$$W_{\sigma} = \rho_s W = \langle \rho_s e_h \mid h \in H \rangle = \langle e_{sh} \mid h \in H \rangle =$$
$$= \langle e_q \mid g \in sH \rangle = \langle e_q \mid g \in \sigma \rangle.$$

Si ha facilmente che $V=\bigoplus_{\sigma\in G/H}W_\sigma$: la rappresentazione regolare di G è indotta dalla rappresentazione regolare di H.

Esempio 4.4. Sia $V = \langle e_{\sigma} \mid \sigma \in {}^{G}/H \rangle$ e sia $\rho_{g}e_{\sigma} = e_{g\sigma}$ (si tratta della rappresentazione di permutazione associata all'azione di G su ${}^{G}/H$). Se si pone $W = \langle e_{H} \rangle$, W è fissato dagli elementi di H e $W_{\sigma} = \rho_{s}W = \langle \rho_{s}e_{H} \rangle = \langle e_{sH} \rangle$: i traslati sono gli elementi associati alle altre classi laterali, allora $V = \bigoplus_{\sigma \in {}^{G}/H} W_{\sigma}$: la rappresentazione banale su H induce la rappresentazione di permutazione su V.

Esempio 4.5. Se V_1 è indotta da W_1 e V_2 è indotta da W_2 , allora $V_1 \oplus V_2$ è indotta da $W_1 \oplus W_2$: si ha $V_i = \bigoplus_{r \in R} rW_i$, allora

$$V_1 \oplus V_2 = \left(\bigoplus_{r \in R} rW_1\right) \oplus \left(\bigoplus_{r \in R} rW_2\right) = \bigoplus_{r \in R} r(W_1 \oplus W_2).$$

Esempio 4.6. Se (V, ρ) è indotta da (W, ϑ) , e W_1 è un sottospazio H-invariante di W, si definisce $V_1 := \sum_{r \in R} \rho_r W_1 \leq V$. Allora V_1 è G-invariante:

$$\rho_g V_1 = \sum_{r \in R} \rho_g \rho_r W_1 = \sum_{r \in R} \rho_{gr} W_1 = \sum_{r \in R} \rho_r W_1,$$

perché $\{gr \mid r \in R\}$ è un sistema di rappresentanti e si ha che V_1 è un G-sottomodulo. Inoltre V_1 è indotto da W_1 , cioè la somma è in realtà una somma diretta. Si suppone che $\sum_{r \in R} v_r = 0$ con $v_r \in \rho_r W_1$; ma $\rho_r W_1 \subseteq \rho_r W$, cioè ogni v_r sta in un traslato di W diverso, allora $v_r = 0$ per ogni $r \in R$.

Esempio 4.7. Sia (V, ρ) indotto da (W, ϑ) e sia (Z, ρ') un G-modulo. Allora $V \otimes Z$ è indotto da $W \otimes \operatorname{Res}_H^G Z$ dove $\operatorname{Res}_H^G Z$ è la restrizione della rappresentazione a H. Si sa che $V = \bigoplus_{r \in R} \rho_r W$ e

$$V \otimes Z = \left(\bigoplus_{r \in R} \rho_r W\right) \otimes Z = \bigoplus_{r \in R} (\rho_r W \otimes Z) = \bigoplus_{r \in R} (\rho_r W \otimes \rho_r' Z)$$

perché $\rho_r'Z=Z$, quindi $V\otimes Z=\bigoplus_{r\in R}(\rho_r\otimes\rho_r')(W\otimes Z)$ e Z si può vedere come Res_H^GZ .

Teorema 4.8 (Proprietà universale dell'induzione). Sia (V, ρ) indotto da (W, ϑ) , allora per ogni $\rho' : G \to \operatorname{GL}(V')$ e per ogni $f : W \to V'$ H-equivariante² esiste una unica $F : V \to V'$ G-equivariante tale che $F_{|W} = f$:

²Cioè tale che $f(\vartheta_t w) = \rho_t f(w)$ per ogni $t \in H, w \in W$.

Dimostrazione. Unicità. Sia $F\colon V\to V'$ con questa proprietà e sia $x\in\rho_sW$ allora $\rho_s^{-1}x\in W$ e

$$F(x) = F(\rho_s \rho_s^{-1} x) = \rho_s' F(\rho_s^{-1} x) = \rho_s' f(\rho_s^{-1} x).$$

Quindi F è completamente determinata in funzione dei dati iniziali.

Esistenza. Sia $F(x) := \rho'_s f(\rho_s^{-1} x)$; se s' = st con $t \in H$,

$$\begin{split} \rho_{st}'f(\rho_{st}^{-1}x) &= \rho_s'\rho_t'f(\rho_t^{-1}\rho_s^{-1}x) = \rho_s'\rho_t'f(\vartheta_t^{-1}\rho_s^{-1}x) = \\ &= \rho_s'\rho_t'{\rho_t'}^{-1}f(\rho_s^{-1}x) = \rho_s'f(\rho_s^{-1}x). \end{split}$$

Definita per $x \in \rho_s W = W_{\sigma}$, si può estendere senza problemi per linearità alla somma diretta. Si deve dimostrare che F è G-equivariante: sia $x \in W_{\sigma} = \rho_s W$, $g \in G$, allora $\rho_q x \in \rho_q W_{\sigma} = \rho_{qs} W$ e

$$F(\rho_g x) = \rho'_{qs} f(\rho_{qs}^{-1}(\rho_g x)) = \rho'_{q} \rho'_{s} f(\rho_s^{-1} \rho_q^{-1} \rho_g x) = \rho'_{q} (\rho'_{s} f(\rho_s^{-1} x)) = \rho'_{q} F(x).$$

Poiché V è una somma diretta, questo rimane vero anche per le combinazioni lineari. $\hfill\Box$

Teorema 4.9. Sia (W, ϑ) un H-modulo con $H \leq G$, allora esiste un unico G-modulo (a meno di isomorfismi) V indotto da W (si scrive $V = \operatorname{Ind}_H^G W$).

Dimostrazione. Esistenza. Si può scrivere $W\cong\bigoplus_{i=1}^u W_i$ con W_i irriducibile e basta dimostrare che ogni irriducibile induce una rappresentazione, passando poi al caso generico grazie alla somma diretta. Sia quindi W irriducibile, allora $W\leq P_H$, che induce la rappresentazione regolare di G. Quindi W è un sottospazio H-invariante di una rappresentazione che induce P_G e si è visto che $\sum_{r\in R} \rho_r W$ è un G-sottomodulo della rappresentazione regolare per G ed è indotta da W.

Unicità. Se V e V' sono indotti da (W, ϑ) , si hanno le inclusioni $i: W \to V$ e $i': W \to V'$ e per la proprietà universale esiste $F: V \to V'$ G-equivariante. Per la formula delle dimensioni, V e V' hanno la stessa dimensione. Siano $W_{\sigma} = \rho_s W$ e $W'_{\sigma} = \rho'_s W$; si ha

$$FW_{\sigma} = F\rho_s W = \rho'_s FW = \rho'_s W = W'_{\sigma}.$$

Se (V, ρ) è indotta da (W, ϑ) , per calcolare il carattere di ρ a partire da quello di ϑ si può usare la formula

$$\chi_V(g) = \sum_{\substack{r \in R \\ r^{-1}gr \in H}} \chi_W(r^{-1}gr);$$

questo perché la matrice di ρ_g si può dividere in blocchi quadrati grazie al fatto che $V = \bigoplus_{r \in R} \rho_r W$; inoltre g agisce sulle traslazioni come una permutazione, quindi su ogni riga e colonna c'è un solo blocco non nullo che è sulla diagonale se e solo se gr = r o equivalentemente se $r^{-1}gr \in H$. Per ognuno di questi blocchi, la traccia è la traccia di $\bar{\rho_g} : \rho_r W \to \rho_r W$, la restrizione di ρ_g , e il diagramma

$$W \xrightarrow{\vartheta_{r-1}_{gr}} W$$

$$\downarrow^{\rho_r} \downarrow^{\rho_r}$$

$$\downarrow^{\rho_r}$$

$$\rho_r W \xrightarrow{-\overline{\rho_g}} \rho_r W$$

14.11.2006

è commutativo: $\bar{\rho_g}\rho_r w = \rho_{gr} w$ e $\rho_r \vartheta_{r^{-1}gr} w = \rho_r \rho_{r^{-1}gr} w = \rho_{gr} w$, quindi Tr $\bar{\rho_g} = \text{Tr} \vartheta_{r^{-1}gr} = \chi_W(r^{-1}gr)$.

Si può scrivere la formula anche come

$$\chi_V(g) = \frac{1}{|H|} \sum_{\substack{s \in G \\ s^{-1}gs \in H}} \chi_W(s^{-1}gs) = \frac{|Z(g)|}{|H|} \sum_{u \in H \cap C_g} \chi_W(u).$$

La prima è vera perché se $s=rt\in G$ con $r\in R$ e $t\in H$, $s^{-1}gs\in H$ se e solo se $r^{-1}gr\in H$, inoltre $\chi_W(s^{-1}gs)=\chi_W(t^{-1}r^{-1}grt)=\chi_W(r^{-1}gr)$ perché χ_W è una funzione di classe di H. La seconda si ottiene con un cambiamento di variabile: $u=s^{-1}gs$ con ogni elemento che viene contato |Z(g)| volte.

Osservazione 4.10. Con un altro linguaggio, se W è un H-modulo, allora $\mathbb{C}[G]$ è un H-modulo; allora la rappresentazione indotta soddisfa

$$\operatorname{Ind}_H^G W \cong \mathbb{C}[G] \otimes_{\mathbb{C}[H]} W.$$

Se W è un \mathbb{R} -spazio vettoriale, in $\mathbb{C} \otimes_{\mathbb{R}} W$ si può moltiplicare per gli scalari di \mathbb{C} e non solo di \mathbb{R} (estensione degli scalari); l'induzione funziona esattamente allo stesso modo, cioè estende gli scalari da H a $\mathbb{C}[G]$.

Siano E un G-modulo, V indotto da W; la proprietà universale dice che se $f\colon W\to E$ è H-equivariante, allora esiste $F\colon V\to E$ tale che il diagramma commuta. Questo si può riformulare dicendo che se $f\colon W\to \operatorname{Res}_H^G E$ è una mappa H-equivariante, allora esiste unica $F\colon V\to E$ mappa G-equivariante, dove $E=\operatorname{Res}_H^G E$ come spazi. Si ha una mappa I che realizza $f\mapsto F$ da $\operatorname{Hom}_H(W,\operatorname{Res}_H^G E)$ a $\operatorname{Hom}_G(V,E)$; I è un'applicazione lineare (per l'unicità, $\lambda_1 I(f_1) + \lambda_2 I(f_2)$ fa commutare il diagramma, quindi è $I(\lambda_1 f_1 + \lambda_2 f_2)$), inoltre si ha l'inversa: $f=F_{|W}$. In particolare, dim $\operatorname{Hom}_H(W,\operatorname{Res}_H^G E)=\dim \operatorname{Hom}_G(\operatorname{Ind}_H^G W,E)$.

Definizione 4.11. Data $f \in X_H$, si definisce Ind f con

$$(\operatorname{Ind} f)(s) \coloneqq \frac{1}{|H|} \sum_{\substack{t \in G \\ t^{-1}st \in H}} f(t^{-1}st) \in \mathbb{C}.$$

Proposizione 4.12. Si ha $\operatorname{Ind} \chi_W = \chi_{\operatorname{Ind} W}$; inoltre se $f \in X_H$, $\operatorname{Ind} f \in X_G$.

Dimostrazione. La prima proprietà segue dalla formula già ricavata per il carattere dell'applicazione indotta. Per dimostrare che Ind f è funzione di classe, basta dimostrare che Ind χ_W è funzione di classe per ogni H-modulo irriducibile W, perché questi caratteri formano una base per X_H , ma si è dimostrato prima che Ind $\chi_W = \chi_{\mathrm{Ind}\,W}$, che è una funzione di classe.

Definizione 4.13. Dati V_1, V_2 *G*-moduli, si definisce $\langle V_1, V_2 \rangle_G := \dim \operatorname{Hom}_G(V_1, V_2)$.

Proposizione 4.14. Si ha $\langle V_1, V_2 \rangle_G = \langle \chi_{V_1}, \chi_{V_2} \rangle_G$.

Dimostrazione. Si considera $V_1' \oplus V_1'' \to V_2$: la dimensione di queste applicazioni è la somma delle dimensioni delle applicazioni del tipo $V_1' \to V_2$ e $V_1'' \to V_2$. Ancora, la dimensione delle applicazioni del tipo $V_1 \to V_2' \oplus V_2''$ è la somma delle dimensioni di quelle del tipo $V_1 \to V_2'$ e di quelle del tipo $V_1 \to V_2''$. Per questo motivo, basta dimostrare la formula per V_1 e V_2 irriducibili, ma per il lemma di Schur, dim $\text{Hom}_G(V_1, V_2) = \delta_{V_1, V_2} = \langle \chi_{V_1}, \chi_{V_2} \rangle_G$.

Osservazione 4.15. Se $\varphi \in X_G$ e si considera $\operatorname{Res}_H^G \varphi := \varphi_{|H}$, questa è ancora una funzione di classe per H; inoltre, $\chi_{\operatorname{Res}_H^G V} = \operatorname{Res}_H^G \chi_V$.

Teorema 4.16 (reciprocità di Frobenius). Se $\psi \in X_H$ e $\varphi \in X_G$, allora $\langle \psi, \operatorname{Res}_H^G \varphi \rangle_H = \langle \operatorname{Ind}_H^G \psi, \varphi \rangle_G$; in qualche senso, restrizione e induzione sono una l'aggiunta dell'altra.

Dimostrazione. Per linearità, si può supporre $\psi=\chi_W$ con W un H-modulo irriducibile e $\varphi=\chi_E$ con E un G-modulo irriducibile. Sia inoltre $V=\operatorname{Ind}_H^GW$. Allora:

$$\begin{split} \left\langle \psi, \operatorname{Res}_{H}^{G} \varphi \right\rangle_{H} &= \left\langle \chi_{W}, \operatorname{Res}_{H}^{G} \chi_{E} \right\rangle_{H} = \left\langle \chi_{W}, \chi_{\operatorname{Res}_{H}^{G} E} \right\rangle_{H} = \\ &= \left\langle W, \operatorname{Res}_{H}^{G} E \right\rangle_{H} = \operatorname{dim} \operatorname{Hom}_{H}(W, \operatorname{Res}_{H}^{G} E) = \\ &= \operatorname{dim} \operatorname{Hom}_{G}(\operatorname{Ind}_{H}^{G} W, E) = \left\langle \operatorname{Ind}_{H}^{G} W, E \right\rangle_{G} = \\ &= \left\langle \chi_{\operatorname{Ind}_{H}^{G} W}, \chi_{E} \right\rangle_{G} = \left\langle \operatorname{Ind}_{H}^{G} \psi, \varphi \right\rangle_{G}. \end{split}$$

Corollario 4.17. Siano W irriducibile per H e E irriducibile per G, allora $\mu_W(\operatorname{Res}_H^G E) = \mu_E(\operatorname{Ind}_H^G W)$.

Sia W un H-modulo realizzato da ρ , si vuole studiare $\operatorname{Res}_K^G\operatorname{Ind}_H^GW$ come K-modulo. Si considerano le classi di equivalenza doppie $\frac{G}{K,H}$ (dove le classi sono date per moltiplicazione a sinistra per elementi di K e a destra per elementi di H); si ha $G = \bigcup_{s \in S} KsH$, dove S è un sistema di rappresentanti per le classi doppie. Dato $s \in S$, si definisce $H_s := sHs^{-1} \cap K \leq K$ e si può pensare a W come ad un H_s -modulo grazie a $\rho_s : H_s \to \operatorname{GL}(W)$ con $\rho_s(x) = \rho(s^{-1}xs)$ (si scriverà W_s al posto di W per distinguerli).

Proposizione 4.18. $Vale \operatorname{Res}_K^G \operatorname{Ind}_H^G W = \bigoplus_{s \in S} \operatorname{Ind}_{H_s}^K (W_s)$ (come K-modulo).

Dimostrazione. Sia $V(s) \coloneqq \langle xW \mid x \in KsH \rangle \leq V$; si dimostra per prima cosa $V \coloneqq \operatorname{Ind}_H^G W \cong \bigoplus_{s \in S} V(s)$. Sia R un sistema di rappresentanti delle classi di G/H, allora $KsH = \bigcup_{r \in KsH \cap R} rH$, infatti essendo saturo per H a destra deve essere unione disgiunta di classi destre di H. Ora,

$$V(s) = \sum_{x \in KsH} xW = \sum_{\substack{x \in rH \\ r \in KsH \cap R}} xW = \sum_{r \in KsH \cap R} rW$$

perché hW=W per ogni $h\in H$ e da $V=\bigoplus_{r\in R}rW$, si ha $V(s)=\bigoplus_{r\in KsH\cap R}rW$, in quanto è una somma parziale di una somma diretta (l'induzione). Allora

$$V = \bigoplus_{r \in R} rW = \bigoplus_{\substack{r \in KsH \\ s \in S}} rW = \bigoplus_{s \in S} V(s).$$

Ognuno dei V(s) è un K-modulo, perché K-stabile: moltiplicando per $k \in K$ si cambia sistema di rappresentanti ma non si esce da V(s). Perciò, $\operatorname{Res}_K^G V = \bigoplus_{s \in S} V(s)$ come K-moduli e rimane da dimostrare $V(s) \cong_K \operatorname{Ind}_{H_s}^K(W_s)$. Si

21.11.2006

farà in due passi: prima si mostrerà che $V(s) \cong_K \operatorname{Ind}_{H_s}^K(sW)$ e poi si mostrerà l'isomorfismo $sW \cong_{H_s} W_s$.

Sia $x \in K$, allora x(sW) = sW se e solo se $s^{-1}xsW = W$ se e solo se $s^{-1}xs \in H$ se e solo se $x \in sHs^{-1} \cap K = H_s$. Si ha $V(s) = \sum_{k \in K} ksW = \sum_{\sigma \in K/H_s} k_{\sigma}(sW)$ (si è preso un elemento k_{σ} di K per ogni classe σ rispetto a H_s); in realtà è una somma diretta: $V(s) = \bigoplus_{\sigma \in K/H_s} k_{\sigma}(sW) = \operatorname{Ind}_{H_s}^K sW$ con la struttura di H_s -modulo su sW che proviene dal fatto che $H_s \leq G$.

Infine, $sW \cong W_s$ come H_s -modulo: sia $w \in W_s$; questo viene mandato da $f \colon W_s \to sW$ in $sw \in sW$: per prima cosa f è isomorfismo di spazi vettoriali (sW è definito in quel modo), ma è anche isomorfismo di H_s -moduli, cioè che $f(\rho_s(x)w) = xf(w)$ per ogni $w \in W_s$ e $x \in H_s$ (la struttura su W_s è quella di H_s -modulo, non quella di G); ma $x = shs^{-1}$ con $h \in H$, quindi

$$f(\rho_s(x)w) = f(s^{-1}xsw) = f(s^{-1}shs^{-1}sw) = f(hw) =$$

= $shw = shs^{-1}sw = x(sw) = xf(w)$.

Corollario 4.19 (criterio di Mackey). Sia K = H, allora $H_s = sHs^{-1} \cap H \le H$, $\rho \colon H \to \operatorname{GL}(W)$, $\rho_s \colon H_s \to \operatorname{GL}(W)$, $\rho_s(x) = \rho(s^{-1}xs)$, $W_s = W$ come H_s modulo. Allora se $V = \operatorname{Ind}_H^G W$, V è irriducibile come G-modulo se e solo se W è irriducibile come H-modulo e per ogni $s \notin H$, ρ_s e $\operatorname{Res}_{H_s}^H(\rho)$ sono disgiunte come rappresentazioni di H_s (cioè non c'è una rappresentazione irriducibile che compare in entrambe o equivalentemente sono ortogonali).

Dimostrazione. La rappresentazione V è irriducibile se e solo se $\langle V,V\rangle_G=1,$ ma $\langle V,V\rangle_G=\left\langle W,\operatorname{Res}_H^GV\right\rangle_H$ per la reciprocità di Frobenius. Ancora, per la proposizione

$$\langle V, V \rangle_G = \sum_{s \in S} \left\langle W, \operatorname{Ind}_{H_s}^H(W_s) \right\rangle_H = \sum_{s \in S} \left\langle \operatorname{Res}_{H_s}^H(\rho), \rho_s \right\rangle_{H_s}$$

per Frobenius. Ora, tra le classi laterali doppie HH c'è anche H, quindi si può porre s=e: il suo contributo nella somma è $\langle \rho,\rho\rangle_H\geq 1$. La somma fa 1 e questo accade se e solo se ρ è irriducibile e ρ_s e $\mathrm{Res}_{H_s}^H(\rho)$ sono ortogonali per $s\notin H$ (in particolare basta per un sistema di rappresentanti delle classi doppie tranne l'identità).

Esempio 4.20. Si considera $G = \operatorname{SL}_2(\mathbb{F}_q)$ e H il sottogruppo di Borel: $H = \left\{ \left(\begin{smallmatrix} a & b \\ 0 & d \end{smallmatrix} \right) \mid d = a^{-1} \right\}$. Si fissa un morfismo di gruppi $\omega \colon \mathbb{F}_q^\star \to \mathbb{C}^\star$ e si prende una rappresentazione di grado 1 di H: $\chi_\omega\left(\left(\begin{smallmatrix} a & b \\ 0 & d \end{smallmatrix} \right) \right) = \omega(a)$. Si mostrerà che la rappresentazione indotta di χ_ω è irriducibile se e solo se $\omega^2 \neq 1$.

24.11.2006

Esercizio 4.21. Siano $G = D_n = \langle \sigma, \tau \rangle$, $H = \langle \tau \rangle \cong \mathbb{Z}_n$, $\omega_h \colon H \to \mathbb{C}^*$ con $\omega_h(\tau) = e^{2\pi i h/n}$ e $V_h = \operatorname{Ind}_H^{D_n} \omega_h$; si chiede quando V_h è irriducibile.

Soluzione. Come classi laterali doppie (che per come è fatto il gruppo coincidono con le classi laterali) si possono prendere quelle rappresentate da e e da σ . Siano $H_{\sigma} = \sigma H \sigma^{-1} \cap H$, $\operatorname{Res}_{\sigma} \omega_h \colon H_{\sigma} \to \mathbb{C}^{\star}$ e $\omega_{h,\sigma} \colon H_{\sigma} \to \mathbb{C}^{\star}$, allora V_h è irriducibile se e solo se $\operatorname{Res}_{\sigma} \omega_h$ e $\omega_{h,\sigma}$ sono disgiunte e in particolare se e solo se sono distinte (in quanto ω_h è irriducibile, perché di grado 1). Ora, $H_{\sigma} = \sigma H \sigma^{-1} \cap H = \sigma \sigma^{-1} H^{-1} \cap H = H$, quindi $\operatorname{Res}_{\sigma} \omega_h = \omega_h$; d'altra parte, $\omega_{h,\sigma} \colon H \to \mathbb{C}^{\star} \colon \tau^r \mapsto \omega_h(\sigma^{-1}\tau^r\sigma) = \omega_h\tau^{-r} = \omega_{-h}\tau^r$. Di conseguenza V_h è irriducibile se e solo se $\omega_h \neq \omega_{-h}$ se e solo se $e^{2\pi i h/n} \neq e^{-2\pi i h/n}$ se e solo se $e^{4\pi i h/n} \neq 1$ se e solo se $e^{2\pi i h/n} \neq 0$ o $e^{2\pi i$

Osservazione 4.22. Queste rappresentazioni hanno grado 2, perché l'indice di H in G è 2 e il grado di ω_h è 1. Si calcola il carattere di V_h su τ^r con $r \notin \{0, n/2\}$, tenendo presente che le classi di coniugio di τ^r sono τ^r e τ^{-r} :

$$\chi_{V_h}(\tau^r) = \frac{|Z(\tau^r)|}{|H|} \sum_{g \in H \cap C_s} \chi_{\omega_h}(g) = \frac{|H|}{|H|} (\omega_h(\tau^r) + \omega_h(\tau^{-r})) =$$

$$= e^{\frac{2\pi i}{n}hr} + e^{-\frac{2\pi i}{n}hr} = 2\cos\frac{2\pi}{n}hr.$$

Nel caso che $h={}^n\!/2$, $\chi_{V_h}(\tau^r)=2e^{2\pi i/n}h^{n/2}=2e^{\pi ih}=2(-1)^h=2\cos{}^{2\pi}/nh^n/2$. Ora, V_h è la rappresentazione indotta, quindi $V_h=\mathbb{C}\oplus\sigma\mathbb{C}$; come sistema di rappresentanti si possono prendere e e $\sigma\tau^r$; l'identità lascia fisse le due parti, quindi $\sigma\tau^r$ non può lasciarle fisse (altrimenti V_h sarebbe decomponibile). Quindi la matrice di $\rho_{\sigma\tau^r}$ rispetto alla base data da quella decomposizione è del tipo $\binom{0}{\star}$ e si ha $\chi_{V_h}(\sigma\tau^r)=0$. Quindi le rappresentazioni irriducibili del tipo V_h sono quelle per 0< h< n/2.

Se n è dispari, rimangono due rappresentazioni di grado 1: si manda τ in 1 e σ in ± 1 ; se n è pari, rimangono quattro rappresentazioni di grado 1.

Esempio 4.23. Si vogliono indurre allo stesso modo le rappresentazioni di $G = \operatorname{SL}_2(k)$ con $K = \mathbb{F}_q$, $q = p^n$ a partire da quelle di $H = \left\{ \left(\begin{smallmatrix} a & b \\ 0 & a^{-1} \end{smallmatrix} \right) \mid a \in K^\star, b \in K \right\}$. Sia $\omega \colon K^\star \to \mathbb{C}^\star$ un morfismo di gruppi, allora $\omega \colon H \to \mathbb{C}^\star$ con $\omega \left(\left(\begin{smallmatrix} a & b \\ 0 & a^{-1} \end{smallmatrix} \right) \right) = \omega(a)$; si vuole trovare $V = \operatorname{Ind}_H^G \omega$.

Il gruppo G è il nucleo dell'applicazione determinante da $\mathrm{GL}_2(k)$ a $K^\star,$ quindi

$$|G| = \frac{|\mathrm{GL}_2(k)|}{|K^\star|} = \frac{(q^2-1)(q^2-q)}{q-1} = q(q^2-1);$$

invece, |H| = q(q-1), quindi |G/H| = q+1; si mostrerà che $G/H \cong \mathbb{P}^1$.

Si indicheranno gli elementi di \mathbb{P}^1 con $\begin{bmatrix} a \\ b \end{bmatrix}$ (assumento che $\infty = p_{\infty} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$); $u = p_u \begin{bmatrix} 1 \\ u \end{bmatrix}$ e $0 = p = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$); $\mathrm{SL}_2(k)$ agisce su \mathbb{P}^1 in modo transitivo (a partire da p, avendo $s \neq \infty$, si ottiene $X_s p = p_s$ e $X_{\infty} p = p_{\infty}$, con $X_s \coloneqq \begin{pmatrix} 1 & 0 \\ s & 1 \end{pmatrix}$) e $X_{\infty} \coloneqq \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$).

Quindi $S \coloneqq \{X_s \mid s \in \mathbb{P}^1\}$ è un sistema di rappresentanti di G/H. Si hanno $H_s \coloneqq X_s H X_s^{-1} \cap H$, $\psi_s \coloneqq \operatorname{Res}_{H_s}^H \omega = \omega_{|H_s}$ e $\varphi_s \colon H_s \to \mathbb{C}^\star$ che manda Y in $\omega(X_s^{-1}YX_s)$; si deve verificare che queste due rappresentazioni sono distinte (in quanto ancora sono di grado 1).

Ora,

$$H_s = \left\{ \begin{pmatrix} a & \frac{a^{-1} - a}{s} \\ 0 & a^{-1} \end{pmatrix} \mid a \in K^* \right\}, \qquad H_\infty = \left\{ \begin{pmatrix} a^{-1} & 0 \\ 0 & a \end{pmatrix} \mid a \in K^* \right\}.$$

La mappa ψ_s è $\omega_{|H_s}$, quindi

$$\psi_s \colon H_s \to \mathbb{C}^* \qquad \psi_\infty \colon H_\infty \to \mathbb{C}^* \begin{pmatrix} a & \frac{a^{-1} - a}{s} \\ 0 & a^{-1} \end{pmatrix} \mapsto \omega(a) , \qquad \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \mapsto \omega(a) ;$$

invece,

$$\varphi_s \colon \qquad H_s \qquad \to \qquad \mathbb{C}^*$$

$$Y \coloneqq \begin{pmatrix} a & \frac{a^{-1} - a}{s} \\ 0 & a^{-1} \end{pmatrix} \quad \mapsto \quad \omega(X_s^{-1} Y X_s) = \omega(a^{-1}) \quad ,$$

$$\varphi_{\infty} : H_{\infty} \to \mathbb{C}^{\star}$$

$$\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \mapsto \omega(a^{-1}) .$$

Si ha che $\varphi_s \neq \psi_s$ per ogni $s \in K^* \cup \{\infty\}$ se e solo se $\omega^2 \neq 1$, come nell'esercizio precedente.

Esercizio 4.24. Sia $\rho: G \to \operatorname{GL}(V)$ una rappresentazione irriducibile, allora $|\chi_V(s)| \le n = \dim V$, con l'uguaglianza se e solo se $\rho(s)$ è un'omotetia. Inoltre, $\rho_s = \operatorname{Id}_V$ se e solo se $\chi_V(s) = n$.

Soluzione. Si può prendere una base in cui $\rho_s = \operatorname{diag}(x_1, \ldots, x_n)$; ma x_i sono radici dell'unità, quindi $|\chi_V(s)| \leq \sum_{i=1}^n |x_i| \leq n$; l'uguaglianza vale se e solo se tutti gli autovalori hanno lo stesso valore, cioè se $\rho_s = \lambda \operatorname{Id}_V$.

Se $\chi_V(s)=n$, per il punto precedente, $\rho_s=\lambda\operatorname{Id}_V$ e quindi $\chi_V(s)=n\lambda=n$, cioè $\lambda=1$.

5 Rappresentazioni di $\operatorname{GL}_2(\mathbb{F}_{p^n})$

28.11.2006

Teorema 5.1. Sia $2 \nmid q$; un sistema di rappresentanti delle classi coniugate di $G = GL_2(\mathbb{F}_q)$ è dato da:

- $a_x = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$ (matrici centrali, q-1 classi da un elemento);
- $b_x = \begin{pmatrix} x & 1 \\ 0 & x \end{pmatrix}$ (unipotenti, q 1 classi da $q^2 1$ elementi);
- $c_{x,y} = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$ (split, con $x \neq y$ entrambi non nulli, $\frac{(q-1)(q-2)}{2}$ classi da $q^2 + q$ elementi);
- $d_{x,y} = \begin{pmatrix} x & y \\ \varepsilon y & x \end{pmatrix}$ (non split semisemplici, con $x \neq y$, $\frac{q(q-1)}{2}$ classi da $q^2 q$ elementi).

Dimostrazione. Le quattro classi di matrici non possono essere coniugate tra loro perché hanno polinomi caratteristici distinti, e all'interno delle classi non sono coniugate perché hanno radici distinte.

Presa una matrice A, il polinomio caratteristico di A, $p_A \in \mathbb{F}_q[t]$; poiché è di grado 2, le sue radici stanno di sicuro in \mathbb{F}_{q^2} ; il numero ε è un generatore del gruppo, quindi $\sqrt{\varepsilon} \notin \mathbb{F}^q$, altrimenti ogni elemento sarebbe un quadrato $(a \in \mathbb{F}_q^* \text{ implica } a = (\sqrt{\varepsilon})^{2h})$, ma questo è impossibile perché i quadrati sono esattamente la metà degli elementi. Per ottenere \mathbb{F}_{q^2} si estende quindi \mathbb{F}_q con $\sqrt{\varepsilon}$: sia $\tau \colon \mathbb{F}_{q^2} \to \mathbb{F}_{q^2} \colon a + b\sqrt{\varepsilon} \mapsto a - b\sqrt{\varepsilon}$ un generatore del gruppo di Galois di $\mathbb{F}_{q^2}/\mathbb{F}_q$. Allora se $p_A(a+b\sqrt{\varepsilon})=0$, anche $p_A(\tau(a+b\sqrt{\varepsilon}))=0$, quindi i possibili casi sono: p_A ha due radici distinte in \mathbb{F}_q , ne ha due coincidenti, ne ha zero.

Se p_A ha due radici distinte x e y, allora $\det(A-xI)=0$, perciò esiste $v\in\mathbb{F}_q^2\setminus\{0\}$ tale che Av=xv; per lo stesso motivo, esiste w tale che Aw=yw; allora (v,w) è una base per \mathbb{F}_q^2 in cui $A=\begin{pmatrix}x&0\\0&y\end{pmatrix}$: A è split; l'ordine non è importante quindi ci sono $\frac{(q-1)(q-2)}{2}$ possibilità per scegliere x e y.

Se p_A ha una radice doppia, $p_A(t) = (t-x)^2$ con $x \neq 0$ (altrimenti A non sarebbe invertibile). In particolare, dim $\ker(A - xI) \geq 1$. Se la dimensione è 2, A = xI e A è centrale. Se la dimensione è 1, esiste $v \in \mathbb{F}_q^2 \setminus \{0\}$ tale che Av = xv sia w un vettore che forma una base con v; secondo questa base, $A = \begin{pmatrix} x & a \\ 0 & b \end{pmatrix}$, ma dalla forma di p_A si sa che il determinante di A è x^2 , perciò b = x; inoltre

 $a \neq 0$ altrimenti la dimensione del kernel sarebbe 2. Si pone w' = w/a, così che $A = \begin{pmatrix} x & 1 \\ 0 & x \end{pmatrix}$: A è unipotente.

Se p_A non ha radici in \mathbb{F}_q , siano $x+y\sqrt{\varepsilon}$, $x-y\sqrt{\varepsilon}$ le radici di p_A , con $y\neq 0$. Si estendono gli scalari: sia $V=\mathbb{F}_q^2$; si pone $\bar{V}=\mathbb{F}_q(\sqrt{\varepsilon})^2$; un suo elemento è $z=\binom{\alpha+\beta\sqrt{\varepsilon}}{\gamma+\delta\sqrt{\varepsilon}}=\binom{\alpha}{\gamma}+\sqrt{\varepsilon}\binom{\beta}{\delta}=u+\sqrt{\varepsilon}v$ con u e v univocamente determinati. Sia $\bar{A}\colon \bar{V}\to \bar{V}\colon u+\sqrt{\varepsilon}v\mapsto Au+\sqrt{\varepsilon}Av$; questa è un'applicazione $\mathbb{F}_q(\sqrt{\varepsilon})$ -lineare. I vettori $\binom{0}{1}$ e $\binom{0}{1}$ sono una base di V su \mathbb{F}_q e anche una base per \bar{V} su $\mathbb{F}_q(\sqrt{\varepsilon})$; su questa base, la matrice di A e quella di A coincidono e in particolare $p_A=p_{\bar{A}}$. Allora $p_{\bar{A}}$ ha due radici distinte in $\mathbb{F}_q(\sqrt{\varepsilon})$; esiste $v_1+\sqrt{\varepsilon}v_2\in\mathbb{F}_q(\sqrt{\varepsilon})^2$, cioè $v_1,v_2\in V$, autovettore di autovalore $x+\sqrt{\varepsilon}y$. Quindi $Av_1+\sqrt{\varepsilon}Av_2=\bar{A}(v_1+\sqrt{\varepsilon}v_2)=(x+\sqrt{\varepsilon}y)(v_1+\sqrt{\varepsilon}v_2)=xv_1+\varepsilon yv_2+\sqrt{\varepsilon}(yv_1+xv_2)$, da cui $Av_1=xv_1+\varepsilon yv_2$ e $Av_2=yv_1+xv_2$ per l'unicità della decomposizione. Si deve mostrare che questi vettori sono linearmente indipendenti: se non lo fossero, $v_1=av_2$ e $(ax+\varepsilon y)v_2=xv_1+\varepsilon yv_2=Av_1=Aav_2=aAv_2=ayv_1+axv_2=(a^2y+ax)v_2$, perciò $ax+\varepsilon y=a^2y+ax$ e $(\varepsilon-a^2)y=0$, da cui $\varepsilon=a^2$ con $a\in\mathbb{F}_q$, assurdo. Quindi v_1 e v_2 formano una base in cui $A=\binom{x}{\varepsilon y}\frac{y}{x}$: A è non split semisemplice; se ne possono avere tante quante le possibili scelte di x e di y distinti ma y è determinato a meno del segno, quindi si hanno $\frac{q(q-1)}{2}$.

In particolare il numero totale di classi di coniugio è q^2-1 , quindi si dovranno trovare q^2-1 rappresentazioni irriducibili.

Per calcolare la cardinalità delle classi coniugate si calcola quella del centralizzatore per poi usare |C(A)| = |G|/|Z(A)|. Per le centrali, $Z(a_x) = G$, quindi $|C(a_x)| = 1$. Per le unipotenti, $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $b_x = b_x \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ se e solo se c = 0, $a = d \neq 0$, quindi $|Z(b_x)| = q(q-1)$ e $|C(b_x)| = q^2 - 1$. Per le split, $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $c_{x,y} = c_{x,y} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ se e solo se bx = by e cx = cy se e solo se b = c = 0, quindi $|Z(g)| = (q-1)^2$ e $|C(c_{x,y})| = q^2 + q$.

Per le nonsplit semisemplici si considera $K = \{ \begin{pmatrix} x & y \\ \varepsilon y & x \end{pmatrix} \mid (x,y) \neq (0,0) \}$; questo è un sottogruppo isomorfo a $\mathbb{F}_{q^2}^*$ tramite l'isomorfismo $f(\begin{pmatrix} x & y \\ \varepsilon y & x \end{pmatrix}) = x + \sqrt{\varepsilon}y$. Infatti, la condizione $(x,y) \neq (0,0)$ equivale a det $\begin{pmatrix} x & y \\ \varepsilon y & x \end{pmatrix} \neq 0$ (se $x^2 - \varepsilon y^2 = 0$ e $y \neq 0$ allora $(x/y)^2 = \varepsilon$, assurdo) e si verifica che il prodotto di due matrici di K ha ancora la stessa forma; infine, essendo un gruppo finito non è necessario verificare che l'inverso appartenga ancora a K. Si ha che f è un morfismo di gruppi chiaramente suriettivo e la cardinalità è in entrambi $q^2 - 1$. Poiché $\mathbb{F}_{q^2}^*$ è ciclico (è un sottogruppo finito della parte moltiplicativa di un campo), anche K è ciclico e $K = \langle D \rangle$. Ora, se $A \in Z(D)$, AD = DA, vale anche $AD^n = D^nA$, quindi $A \in Z(d_{x,y})$ per ogni $y \neq 0$; ma $K \leq Z(D) \leq Z(d_{x,y})$ per ogni $y \neq 0$, allora $|\varphi(d_{x,y})| \leq |G|/|K| = q^2 - q$. D'altra parte, $|G| = (q^2 - 1)(q^2 - q) = \sum_C |C| \leq (q-1)1 + (q-1)(q^2-1) + 1/2(q-1)(q-2)(q^2+q) + 1/2q(q-1)(q^2-q) = (q^2-1)(q^2-q)$.

Si vogliono trovare ora le rappresentazioni irriducibili. Per quelle di grado 1 si può considerare det: $G \to \mathbb{F}_q^{\star}$ e mandare \mathbb{F}_q^{\star} in \mathbb{C}^{\star} . Siano U_{α} le composizioni $\alpha \circ \det$; il grado di U_{α} è irriducibile perché di dimensione 1 e sono tutte distinte perché il determinante è suriettivo; essendo di dimensione 1 sono anche non isomorfe. Inoltre, $\mathrm{GL}_2(\mathbb{F}_q)$ agisce anche su $\mathbb{P}^1\mathbb{F}_q$ e in modo doppiamente transitivo (si può mandare sempre una base di \mathbb{F}_q^2 in un'altra), quindi la rappresentazione associata alla permutazione delle rette di $\mathbb{P}^1\mathbb{F}_q$ ha dimensione q+1 (come le rette proiettive) e si scompone come $\bar{V}=B\oplus V$ con V irriducibile e di grado q.

1.12.2006

Il carattere di V è il carattere di \bar{V} meno uno, cioè il numero di punti fissi meno uno, che equivale al numero di autovettori meno uno: per le a_x sono tutte (q+1), per le b_x sono 1, per le $c_{x,y}$ sono 2, per le $d_{x,y}$ nessuno. Si pone $V_\alpha = V \otimes U_\alpha$, ma si deve mostrare che queste sono irriducibili:

$$\|\chi_{V_{\alpha}}\|^{2} = \frac{1}{|G|} \left(\sum_{x \neq 0} q^{2} \left| \alpha(x)^{2} \right|^{2} + 0 + (q^{2} + q) \sum_{\substack{x \neq y \\ xy \neq 0}} |\alpha(x)\alpha(y)|^{2} + \right) + (q^{2} - q) \sum_{x,y \neq 0} |\alpha(x^{2} - \varepsilon y^{2})|^{2},$$

ma spostando il fattore q dalla prima somma alla seconda risulta che è uguale a $\|\chi_{U_{\alpha}}\|^2 = 1$. Inoltre V_{α} e V_{β} sono distinte: calcolate su $c_{x,1}$ con $x \neq 1$, i caratteri sono rispettivamente $\alpha(x)$ e $\beta(x)$.

Sia $B = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid ac \neq 0 \} \leq G$ il sottogruppo di Borel; |B| = q(q-1) e si può considerare l'applicazione $\varphi_{\alpha,\beta}$ data da:

$$B \longrightarrow (\mathbb{F}_q^{\star})^2 \xrightarrow{(\alpha,\beta)} (\mathbb{C}^{\star})^2 \xrightarrow{\mu} \mathbb{C}^{\star}$$

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \longrightarrow (a, c) \longrightarrow (\alpha(a), \beta(c)) \longrightarrow \alpha(a) - \beta(c)$$

e sia $\mathbb{C}_{\alpha,\beta}$ \mathbb{C} come *B*-modulo dato da $\varphi_{\alpha,\beta}$; il suo grado è 1 e sia $W_{\alpha,\beta} := \operatorname{Ind}_B^G \mathbb{C}_{\alpha,\beta}$. Il grado di $W_{\alpha,\beta}$ è $C_G(B) = q + 1$.

Lemma 5.2. La decomposizione in classi laterali doppie di G rispetto a B è $G = B \cup BXB$ con $X = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Dimostrazione. La tesi è vera se e solo se $BXB = G \setminus B; BXB = \begin{pmatrix} bd & be-af \\ cd & ce \end{pmatrix}$. Innanzitutto $BXB \subseteq G \setminus B$: se questo non fosse vero, cd = 0 e sia che c = 0 o che d = 0, è assurdo. Viceversa, sia $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in G \setminus B$ (equivale a dire $\gamma \neq 0$); siano a = c = 1, allora se per assurdo $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} bd & be-f \\ d & e \end{pmatrix}$, si avrebbe $d = \gamma$, $e = \delta, b = \alpha/\gamma, f = \beta - \delta - \alpha\delta/\gamma$ e si arriva ancora all'assurdo.

 $\begin{array}{lll} \textit{Osservazione} \ 5.3. \ \textit{Siano} \ \alpha \neq \beta \ \text{e} \ \gamma \neq \delta; \ \textit{allora} \ W_{\alpha,\beta} \ \text{è irriducibile} \ \text{e} \ W_{\alpha,\beta} \cong W_{\gamma,\delta} \\ \textit{se e solo se} \ \alpha \ = \ \gamma, \ \beta \ = \ \delta. \ \textit{Infatti} \ \left\langle W_{\alpha,\beta}, W_{\gamma,\delta} \right\rangle \ = \ \left\langle \operatorname{Ind}_B^G \mathbb{C}_{\alpha,\beta}, W_{\alpha,\beta} \right\rangle \ = \\ \left\langle \mathbb{C}_{\alpha,\beta}, \operatorname{Res}_B^G \operatorname{Ind}_B^G \mathbb{C}_{\gamma,\delta} \right\rangle. \ \textit{Per il lemma}, \ \operatorname{Res}_B^G \operatorname{Ind}_B^G \mathbb{C}_{\alpha,\beta} \ = \ \oplus s \in S \operatorname{Ind}_{B_s}^B \varphi_{\alpha,\beta}^s \ ; \\ \textit{per } s \ = \ I, \ B_s \ = \ B \ \text{e} \ \varphi_{\alpha,\beta}^s \ = \ \varphi_{\alpha,\beta}, \ \textit{quindi} \ \operatorname{Res}_{B_s} \varphi_{\alpha,\beta} \ = \ \varphi_{\alpha,\beta}; \ \textit{per } s \ = \\ X, \ B_X \ = \ XBX^{-1} \cap B \ = \ \left\{ \left(\begin{smallmatrix} c & 0 \\ 0 & a \end{smallmatrix} \right) \ | \ = \right\} D \ \cong \ (\mathbb{F}_q^\star)^2. \ \textit{Si ha} \ \varphi_{\alpha,\beta}^X \left(\left(\begin{smallmatrix} a & 0 \\ 0 & c \end{smallmatrix} \right) \right) \ = \\ \varphi_{\alpha,\beta} \left(X \left(\begin{smallmatrix} a & 0 \\ 0 & c \end{smallmatrix} \right) X^{-1} \right) \ = \ \varphi_{\alpha,\beta} \left(\left(\begin{smallmatrix} c & 0 \\ 0 & a \end{smallmatrix} \right) \right). \ \textit{Di conseguenza} \ \operatorname{Res}_X \varphi_{\alpha,\beta} \left(\left(\begin{smallmatrix} a & 0 \\ 0 & c \end{smallmatrix} \right) \right) \ = \\ \alpha(a)\beta(c). \ \textit{Quindi} \ \left\langle W_{\alpha,\beta}, W_{\gamma,\delta} \right\rangle \ = \ \left\langle \mathbb{C}_{\alpha,\beta}, \operatorname{Res}_B^G \operatorname{Ind}_B^G \mathbb{C}_{\gamma,\delta} \right\rangle_B \ = \ \left\langle \mathbb{C}_{\alpha,\beta}, \mathbb{C}_{\gamma,\delta}^1 \right\rangle_B \ + \\ \left\langle \mathbb{C}_{\alpha,\beta}, \operatorname{Ind}_D^B \mathbb{C}_{\gamma,\delta}^X \right\rangle_B \ = \ \delta_{\alpha,\gamma}\delta_{\beta,\delta} \ + \ \delta_{\alpha,\delta}\partial_{\beta,\gamma}. \ \textit{In definitiva si ha che} \ \|W_{\alpha,\beta}\|^2 \ = \ 1 \ \text{e} \\ \left\langle W_{\alpha,\beta}, W_{\gamma,\delta} \right\rangle \ = \ 1 \ \text{se coincidono o 0 se sono distinte.} \end{array}$

5.11.2006

Si deve calcolare il carattere di
$$W_{\alpha,\beta}$$
:
$$\chi_{W_{\alpha,\beta}}(A) = \sum_{\substack{X \in R \\ X^{-1}AX \in B}} \chi_{\mathbb{C}_{\alpha,\beta}}(X^{-1}AX).$$

- Per $A = a_x$, la seconda condizione della somma è sempre soddisfatta perché a_x è una matrice centrale e commuta con tutto; in particolare si ha $\chi_{W_{\alpha,\beta}}(a_x) = (q+1)\alpha(x)\beta(x)$, perché $X^{-1}a_xX = a_x$.
- Per b_x , $X_r^{-1}b_xX_r = \begin{pmatrix} x+r & 1 \\ -r^2 & x+r \end{pmatrix} \in B$ se e solo se r=0; all'infinito $X_{\infty}^{-1}b_xX_{\infty} = \begin{pmatrix} x & 0 \\ -1 & x \end{pmatrix} \notin B$; di conseguenza $\chi_{W_{\alpha,\beta}}(b_x) = \alpha(x)\beta(x)$.
- Per $c_{x,y}$, $X_r^{-1}c_{x,y}X_r = \begin{pmatrix} x & 0 \\ r(x-y) & y \end{pmatrix} \in B$ se e solo se r=0 (perché $x \neq y$); all'infinito, $X_{\infty}^{-1}c_{x,y}X_{\infty} = \begin{pmatrix} y & 0 \\ 0 & x \end{pmatrix}$, quindi $\chi_{W_{\alpha,\beta}}(c_{x,y}) = \alpha(x)\beta(y) + \alpha(y)\beta(x)$.
- Per $d_{x,y}, X_r^{-1}d_{x,y}X_r = \begin{pmatrix} x+\varepsilon y & y \\ y(\varepsilon-r^2) & x-\varepsilon y \end{pmatrix} \notin B$ perché ε non è un quadrato e $y \neq 0$. All'infinito $X_{\infty}^{-1}d_{x,y}X_{\infty} = \begin{pmatrix} x & -\varepsilon y \\ -y & x \end{pmatrix} \notin B$; perciò $\chi_{W_{\alpha,\beta}}(d_{x,y}) = 0$.

Le rappresentazioni $W_{\alpha,\beta}$ irriducibili e distinte sono tante quante le coppie (α,β) con $\alpha \neq \beta$ non nulli e a meno dell'ordine; si era visto inoltre che $\|W_{\alpha,\alpha}\|^2=2$, quindi $W_{\alpha,\alpha}$ si scompone come due rappresentazioni irriducibili. Ma si osserva che $\chi_{W_{\alpha,\alpha}}=\chi_{V_{\alpha}}+\chi_{U_{\alpha}}$, quindi si ha la decomposizione $W_{\alpha,\alpha}\cong V_{\alpha}\oplus U_{\alpha}$. Inoltre si osserva che $W_{\alpha,\beta}$ è isomorfa a $W_{\beta,\alpha}$.

Finora si sono trovate 2(q-1)+1/2(q-1)(q-2)=1/2(q-1)(q+2). Ne rimangono da trocare 1/2q(q-1). Si riprende il sottogruppo ciclico $K\cong \mathbb{F}_{q^2}^*$ con $\binom{x}{\varepsilon y} \stackrel{y}{x} \mapsto x+\sqrt{\varepsilon}y$. Si considera $K^+:=K\cup\{0\}\cong \mathbb{F}_{q^2}$. Sia φ una rappresentazione di grado 1 di $\mathbb{F}_{q^2}^*$; allora Ind $\varphi:=\operatorname{Ind}_K^{\mathbb{F}_{q^2}^*}\varphi$ ha dimensione $\frac{(q^2-1)(q^2-q)}{q^2-1}=q(q-1)$ e si ha $\chi_{\operatorname{Ind}\varphi}(a)=1/|K|\sum_{x^{-1}ax\in K}\varphi(x^{-1}ax)$:

- Per a_x si ha $\chi_{\operatorname{Ind}\varphi}(a_x) = q(q-1)\varphi(a_x)$ perché a_x è centrale.
- Per b_x , per semplificare i conti si osserva che se $A \in K$, $\lambda A \in eK$, quindi si può assumere che il determinante di X sia 1; si ha

$$X^{-1}b_xX = \begin{pmatrix} cdx + cd - bcx & d^2 \\ -c^2 & -cdx - cd + adx \end{pmatrix} \in K$$

se e solo se cd = 0 e $-c^2 = \varepsilon d^2$ se e solo se c = d = 0, ma questo non avviene mai perché X non sarebbe invertibile, quindi $\chi_{\operatorname{Ind} \varphi}(b_x) = 0$.

• Per $c_{x,y}$,

$$X^{-1}c_{x,y}X = \begin{pmatrix} xcd - ybc & bd(x - y) \\ ac(y - x) & ycd - xbc \end{pmatrix} \in K$$

se e solo se bc+ad=0 e $\varepsilon bd+ac=0$, considerando che $x\neq y$. Moltiplicando la prima per a e la seconda per b si ottiene, eventualmente aggiungendo soluzioni, che $(\varepsilon b^2-a^2)d=0$; questo si verifica se e solo se d=0, perché ε non è un quadrato. Ritornando al sistema precedente, o b=0 o c=0: in entrambi i casi X non sarebbe invertibile, perciò $\chi_{\operatorname{Ind}\varphi}(c_{x,y})=0$.

• Per $d_{x,y}$ non si usa il calcolo diretto perché troppo complicato; si considera K^+ ; questo è uno spazio vettoriale su \mathbb{F}_q di dimensione 2, quindi le matrici (2,2) su \mathbb{F}_q , che sono uno spazio vettoriale di dimensione 4 su \mathbb{F}_q , hanno dimensione 2 su K^+ . In particolare si dimostra direttamente con il calcolo che, per ogni $X \in \mathrm{GL}_2(\mathbb{F}_q)$, esistono uniche $A, B \in K^+$ tali che X = A + JB, dove $J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Se $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $XJ = \begin{pmatrix} a & -b \\ c & -d \end{pmatrix}$, mentre $JX = \begin{pmatrix} a & b \\ -c & -d \end{pmatrix}$, quindi $XJ = J\bar{X}$, dove $\bar{X} = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$. Se X è invertibile, X = A + JB e $\Delta = \det X$, si ha $\Delta X^{-1} = \begin{pmatrix} a & -b \\ -c & a \end{pmatrix}$ e ripercorrendo il sistema si trova che $\Delta X^{-1} = \bar{A} - JB$. Se $X \in K^+$, per l'unicità di $A \in B$, B = 0; ora, $D := d_{x,y} \in K^+$, quindi

12.12.2006

$$\chi_{\operatorname{Ind}\varphi}(d_{x,y}) = \frac{1}{|K|} \sum_{\substack{X \in \operatorname{GL}_2(\mathbb{F}_q) \\ X^{-1}DX \in K}} \varphi(X^{-1}DX);$$

 $X^{-1}DX \in K$ se e solo se $(\bar{A} - JB)D(A + JB) \in K$; ma A, B, D commutano e J commuta con la regola vista, quindi

$$(\bar{A} - JB)D(A + JB) = \bar{A}DA - JBDA + \bar{A}DJB - JBDJB =$$

$$= \bar{A}DA - \bar{D}\bar{B}B + J(-BDA + A\bar{D}B) =$$

$$= \bar{A}DA - \bar{D}\bar{B}B + JAB(\bar{D} - D),$$

che appartiene a K se e solo se $AB(\bar{D}-D)=0$. Ma questi sono elementi di un campo; $\bar{D}=D$ implica y=0, che è impossibile; se $A=0,\,X\in K,$ mentre se $B=0,\,X\in JK.$ Di conseguenza

$$\chi_{\operatorname{Ind}(\varphi)}(D) = \frac{1}{|K|} \sum_{X \in K} (\varphi(X^{-1}DX) + \varphi(X^{-1}JDJX)) =$$

$$= \frac{1}{|K|} \sum_{X \in K} (\varphi(D) + \varphi(\bar{D})) =$$

$$= \varphi(x + \sqrt{\varepsilon}y) + \varphi(x - \sqrt{\varepsilon}y).$$

Ora, $(x+\sqrt{\varepsilon}y)^q=x^q+\sqrt{\varepsilon}^qy^q=x+\sqrt{\varepsilon}^qy; (\sqrt{\varepsilon}^q)^2=\varepsilon$, quindi $\sqrt{\varepsilon}^q=\pm\sqrt{\varepsilon}$, ma non può essere col segno positivo perché altrimenti $\sqrt{\varepsilon}\in\mathbb{F}_q$. Quindi $\chi_{\mathrm{Ind}(\varphi)}(\zeta)=(\varphi+\varphi^q)(\zeta)$.

Se si prende al posto di φ , φ^q , le rappresentazioni indotte sono isomorfe, infatti $\varphi^q(x) = \varphi(x^q) = \varphi(x)$ e $(\varphi^q + \varphi^{q^2})(x + \sqrt{\varepsilon}y) = (\varphi^q + \varphi)(x + \sqrt{\varepsilon}y)$. Viceversa, se Ind φ = Ind τ , allora $\varphi(\gamma) = \omega \in \mathbb{C}^\star$ e $\tau(\gamma) = \eta \in \mathbb{C}^\star$, con γ un generatore di $\mathbb{F}_{q^2}^\star$, ω e η radici $(q^2 - 1)$ -esime dell'unità. Allora se il carattere, facendo il sistema si ottiene $\varphi = \tau^q$, che è equivalente a $\tau = \varphi^q$.

Se $\varphi=\varphi^q$ e $\varphi(\gamma)=\omega$, allora $\omega=\omega^q$, cioè $\omega^{q-1}=q$, quindi ci sono $(q-1)+\frac{1}{2}(q^2-1-(q-1))=(q-1)+\frac{1}{2}q(q-1)$, ma si vedrà che non sono irriducibili.

15.12.2006

Definizione 5.4. Sia G un gruppo finito, V_i le sue rappresentazioni irriducibili, allora $\chi = \sum_i c_i \chi_{V_i}$ con $c_i \in \mathbb{Z}$ si dice *carattere virtuale*.

Esercizio 5.5. Se $\|\chi\|=1$ e $\chi(e)>0$, allora χ è il carattere di una rappresentazione irriducibile.

Soluzione. Se la norma è 1 allora i coefficienti sono tutti nulli tranne uno che può essere ± 1 ; se $\chi(e) > 0$ può essere solo 1.

Si definisce il carattere virtuale $\chi_{\varphi} = \chi_{V_1 \otimes W_{\alpha,1}} - \chi_{W_{\alpha,1}} - \chi_{\operatorname{Ind} \varphi} \operatorname{con} \alpha = \varphi_{|\mathbb{F}_q^*}$. Si calcola il carattere e si ottiene

$$\|\chi_{\varphi}\| = \frac{1}{|G|} \left(\sum_{x \in \mathbb{F}_q^*} (q-1)^2 + \sum_{x \in \mathbb{F}_q^*} (q^2-1) + \sum_{\substack{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q^* \\ y \sim -y}} \left| \varphi(x+\sqrt{\varepsilon}y) + \varphi(x-\sqrt{\varepsilon}y) \right|^2 (q^2-q) \right) = \frac{1}{|G|} \left((q-1)^3 + (q-1)(q^2-1) + \frac{q^2-q}{2} \sum_{\substack{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q^* \\ (x,y) \in \mathbb{F}_q \times \mathbb{F}_q^*}} \left| \varphi(x+\sqrt{\varepsilon}y) + \varphi(x-\sqrt{\varepsilon}y) \right|^2 \right);$$

se l'ultima somma si indica con S, si ha

$$\begin{split} S &= \sum_{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q^{\star}} \left(\left| \varphi(x + \sqrt{\varepsilon}y) \right|^2 + \left| \varphi - \sqrt{\varepsilon}y \right|^2 + \varphi(x + \sqrt{\varepsilon}y) \overline{\varphi(x - \sqrt{\varepsilon}y)} + \right. \\ &\quad + \varphi(x - \sqrt{\varepsilon}y) \overline{\varphi(x + \sqrt{\varepsilon}y)} \omega \bigg) = \\ &= \sum_{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q^{\star}} \left(1 + 1 + \varphi(x + \sqrt{\varepsilon}y) \overline{\varphi(x - \sqrt{\varepsilon}y)} \right) = \\ &= 2q(q-1) + \sum_{\alpha \in \mathbb{F}_{q^2}^{\star} \setminus \mathbb{F}_q^{\star}} \varphi(\alpha) \overline{\varphi(\alpha^q)} = \\ &= 2q(q-1) - 2 \sum_{\alpha \in \mathbb{F}_q^{\star}} \left| \varphi(\alpha) \right|^2 + 2 \sum_{\alpha \in \mathbb{F}_{2,2}^{\star}} \varphi(\alpha) \overline{\varphi(\alpha^q)}; \end{split}$$

ancora, l'ultima somma si denota con S_0 e vale

$$S_0 = \sum_{h=0}^{q^2 - 2} \varphi(\gamma^h) \overline{\varphi(\gamma^{q+h})} = \sum_{h=0}^{q^2 - 2} \omega^h \omega^{-q-h} = \sum_{h=0}^{q^2 - 2} (\omega^{1-q})^h.$$

Si è già detto che se $\varphi \neq \varphi^q$, ω è una radice q^2-1 -esima dell'unità e non è una radice q-1-esima. Quindi $S=2q(q-1)-2(q-1)=2(q-1)^2$ e

$$\left|\chi_{\varphi}\right|^{2} = \frac{1}{|G|} \left((q-1)^{2} + (q-1)^{2} (q+1) + \frac{q(q-1)}{2} 2(q-1)^{2} \right) =$$

$$= \frac{(q-1)^{2}}{|G|} (q-1+q+1+q^{2}-q) = \frac{(q-1)^{2} q(q+1)}{|G|} = 1$$

Infine, non ci sono ripetizioni con le vecchie rappresentazioni perché è diverso il grado, inoltre non sono uguali tra loro perché in particolare se lo fossero, su \mathbb{F}_q farebbero entrambe α , allora sarebbero uguali anche le indotte.

$$(q-1)\times U_{\alpha} \\ (q-1)\times U_{\alpha} \\ (q-1)\times V_{\alpha} \\ (q-1)\times V_{\alpha} \\ (q-1)\times V_{\alpha} \\ (q-1)\times V_{\alpha} \\ V_{\varphi} \\ (q-1)\alpha(x) \\ (q$$

6 Rappresentazioni di S_n mediante $\mathbb{C}[S_n]$

Si sa che $\mathbb{C}[G]\cong \bigoplus_{V \text{ irriducibile}} V^{\dim V}$ e che in $\mathbb{C}[G]$ le rappresentazioni irriducibili corrispondono agli ideali minimali sinistri.

Data una tabella di Young con n posti, un riempimento è scrivere in ogni casella un numero da 1 a n; se T è una tabella riempita, $R_T \leq S_n$ è il sottogruppo che mantiene le righe e si dice gruppo delle permutazioni orizzontali. Allo stesso modo, il gruppo delle permutazioni verticali è C_T . Si definisce ancora $s_T \coloneqq \sum_{\sigma \in R_T} \sigma$ il simmetrizzatore delle righe e $a_T \coloneqq \sum_{\sigma \in C_T} (-1)^{\sigma} \sigma$ l'antisimmetrizzatore delle colonne e infine il simmetrizzatore di Young $y_t \coloneqq s_T a_T$. Sono tutti elementi dell'algebra gruppo $\mathbb{C}[S_n]$. Si definisce la rappresentazione V_{λ} come $\mathbb{C}[S_n]y_T$; si vedrà che se la tabella è la stessa, riempimenti diversi danno rappresentazioni isomorfe.

Ad esempio, per S_n , se la tabella è del tipo (n), $R_T = S_n$ e $C_T = \{e\}$, quindi $s_T = \sum_{\sigma \in S_n} \sigma$ e $a_T = 1$, da cui $y_T = \sum_{\sigma \in S_n} \sigma$. Questa è la rappresentazione banale: indatti se $\tau \in S_n$, $\tau y_T = \tau \sum_{\sigma \in S_n} \sigma = \sum_{\sigma \in S_n} \tau \sigma = \sum_{\eta \in S_n} \eta = y_T$; si ha perciò $V_{(4)} = \mathbb{C}[S_n]y_T = \mathbb{C}y_T$, rappresentazione di grado 1 che agisce come la rappresentazione banale. Per una tabella del tipo $(1, \ldots, 1)$ procedendo allo stesso modo si ha la rappresentazione alterna.

Data un tipo di tabella, si ha una formula che dà il grado della rappresentazione associata: dim $V_{\lambda}=\frac{n!}{\prod_{c\in T}h(c)}$, dove c è una casella e h è la funzione "hook": il numero di caselle che si incontrano andando a destra o in basso.

Definizione 6.1. Dato un anello semisemplice con unità $A, u \in A$ è *idempotente* se $u^2 = u$.

Lemma 6.2. Dato A anello semisemplice con unità, $I \leq A$ ideale sinistro, allora esiste $u \in A$ idempotente tale che I = Au.

Dimostrazione. Da $I \leq A$ si sa che esiste $J \leq A$ ideale sinistro tale che $A = I \oplus J$, quindi esistono unici $u \in I$, $v \in J$ tali che 1 = u + v. Chiaramente $Au \subseteq I$, d'altra parte se $a \in I$, a = a1 = a(u + v) = au + av, cioè $a - au = av \in J \cap I$, allora $a = au \in Au$. Ancora, $u = u1 = u^2 + uv$ e allo stesso modo si mostra che $u = u^2$; u si chiama unità u generatrice $u = u^2$ calculate.

Corollario 6.3. Dato A anello semisemplice con unità, $A = I \oplus J$, allora I = Au, J = Av con u e v idempotenti e Iv = Ju = 0.

Proposizione 6.4. Sia A un anello semisemplice con unità, $A = I_1 \oplus \cdots \oplus I_k$ ideali sinistri allora esistono u_1, \ldots, u_k unità generatrici per I_1, \ldots, I_k tali che $I_i u_j = 0$ per $i \neq j$.

19.12.2006

Dimostrazione. Si scrive $A = I_1 \oplus J$ con $J = I_2 \oplus \cdots \oplus I_k$ e si usa il corollario; si vorrebbe fare la stessa cosa con J, ma non è detto che si possa; allora $J = I_2 \oplus L$ con $L = I_3 \oplus \cdots \oplus I_k$ e si ripete il procedimento usando u, l'unità generatrice di J, invece che I_1 .

Definizione 6.5. Un idempotente u si dice *primitivo* se non esistono $u_1 \neq 0$ e $u_2 \neq 0$ idempotenti tali che $u = u_1 + u_2$ e $u_1u_2 = u_2u_1 = 0$.

Lemma 6.6. Siano A semisemplice con unità, u idempotente, allora u è primitivo se e solo se Au è un ideale minimale.

Proposizione 6.7. Siano A una K-algebra semisemplice, u idempotente. Se $\dim_K uAu = 1$ allora $u \ \dot{e}$ primitivo.

Dimostrazione. Per assurdo, se $u = u_1 + u_2$ e $u_1u_2 = u_2u_1 = 0$ e $u_i^2 = u_i$, allora $uu_1u = (u_1 + u_2)u_1(u_1 + u_2) = u_1 = \lambda u$. Inoltre $u \neq 0$ implica che $uAu \neq 0$. Allora $\lambda^2u^2 = \lambda^2u = u_1^2 = \lambda u$, perciò $\lambda(\lambda - 1)u = 0$, allora se $\lambda = 0$, $u_1 = 0$, assurdo; se $\lambda = 1$, $u_1 = u$ e $u_2 = 0$, assurdo.

Osservazione 6.8. Se $g \in S_n$, allora $R_{gT} = gR_Tg^{-1}$, $C_{gT} = gC_Tg^{-1}$, $s_{gT} = gs_Tg^{-1}$, $a_{gT} = ga_Tg^{-1}$, $y_{gT} = gy_Tg^{-1}$; inoltre $s_T = \sum_{\sigma \in R_T} \sigma$, $a_T = \sum_{\sigma \in C_T} (-1)^{\sigma} \sigma$ e $y_T = s_Ta_T$.

Lemma 6.9. Siano $p \in R_T$ e $q \in C_T$; se i e j stanno sulla stessa riga di T, allora i e j non stanno sulla stessa colonna di pqT; viceversa, se $g \in S_n$ è tale che vale la proprietà precedente con gT, allora esistono $p \in R_T$ e $q \in C_T$ tali che g = pq.

Lemma 6.10. Si ha $py_T(-1)^q q = y_T$ per ogni $p \in R_T$ e $q \in C_T$, e y_T è l'unico che soddisfa questa proprietà a meno di scalari.

Lemma 6.11. Si ha $y_T A y_T \subseteq \mathbb{C} y_T$.

Dimostrazione. Sia $a \in A$, $x = y_T a y_T$, allora $px(-1)^q q = py_T a y_T(-1)^q q = ps_T a_T a s_T a_T (-1)^q q = s_T a_T a s_T a_T = y_T a y_T = x$.

Lemma 6.12. Sia $f: \mathbb{C}[S_n] \to \mathbb{C}[S_n]: a \to ay_T$; allora $\operatorname{Tr} f = n!$.

Dimostrazione. Si indica con V_T l'immagine di f, cioè $\mathbb{C}[S_n]y_T$. Si ha $f = \sum_{\substack{p \in R_T \ q \in C_T}} (-1)^q \mu_{pq}$, dove μ è la moltiplicazione a destra; è sufficiente quindi calcolare μ_{pq} , ma questa è una traccia di una moltiplicazione a destra che è sempre nulla a meno che $pq = \mathrm{Id}$, cioè $p = q^{-1}$ e p di conseguenza stabilizzerebbe sia le righe che le colonne, cioè $p = q = \mathrm{Id}$ e $\mathrm{Tr} f = \mathrm{Tr} \mathrm{Id} = n!$.

Ora, $y_T = \lambda_T y_T$ e $f_{|V_T} = \lambda_T \operatorname{Id}_{V_T}$, perciò $n! = \operatorname{Tr} f = \lambda_T \dim V_T$, da cui $\lambda_T \neq 0$. Sia $u_T \coloneqq \lambda_T^{-1} y_T$, e $u_T^2 = u_T$: è idempotente e dim $u_T A u_T = 1$ quindi è primitivo, da cui si ha V_T rappresentazione irriducibile.