HW1: Linear System Theory (ECE532)

Instructor: Jun Moon

Due Date: March 7 at the beginning of the class.

Reading Assignment: Read Chapters 1 and 2 of the textbook.

Note: You must use LATEX to write your homework.

The following problems are related to mathematical analysis and linear algebra:

Problem 1

A sequence (s_n) (or $\{s_n\}$) of real numbers, where n is a natural number, i.e., $n \in \mathbb{N}$, is said to *converge* to the real number $s \in \mathbb{R}$, provided that

for each $\epsilon > 0$, there exists a number N such that n > N implies $|s_n - s| < \epsilon$.

If (s_n) converges to s, we write $\lim_{n\to\infty} s_n = s$ or $s_n\to s$. The number s is called the limit of the sequence (s_n) . A sequence that does not converge to some real number is said to diverge. A sequence (s_n) of real numbers is called nondecreasing (resp. nonincreasing) if $s_n \leq s_{n+1}$ (resp. $s_n \geq s_{n+1}$) for all n. A sequence that is nondecreasing or nonincreasing will be called a monotonic sequence. A sequence (s_n) is bounded if there exists a real number M such that $|s_n| \leq M$ for all n.

- By using the definition, prove that $\lim_{n\to\infty} \frac{4n^3+3n}{n^3-6} = 4$ and $s_n = (-1)^n$ does not converge.
- Show that all convergent sequences are bounded.
- Show that all bounded monotonic sequences converge.
- Let $s_1 = 1$ and $s_{n+1} = \frac{1}{3}(s_n + 1)$ for $n \le 1$.
 - Find s_2, s_3 and s_4
 - Use induction to show that $s_n \geq \frac{1}{2}$ for all n
 - Show that (s_n) is a nondecreasing sequence
 - Show that the limit exists and find its limit.

Problem 2

Let f be a real-value function whose domain is a subset of the set of real numbers, \mathbb{R} , that is, $f: \text{dom}(f) \to \mathbb{R}$ where $\text{dom}(f) \subset \mathbb{R}$. The function f is continuous at $x_0 \in \text{dom}(f)$ if for every sequence $(x_n) \in \text{dom}(f)$ converging to x_0 , $(\lim_{n\to\infty} x_n = x_0)$, we have $\lim_{n\to\infty} f(x_n) = f(x_0)$. The function is said to be continuous if it is continuous on every points in dom(f).

• Show that f is continuous at $x_0 \in \text{dom}(f)$ if and only if

for each
$$\epsilon > 0$$
, there exists $\delta > 0$ such that $x \in \text{dom}(f) \& |x - x_0| < \delta \text{ imply } |f(x) - f(x_0)| < \epsilon.$

- Is $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and f(0) = 0 continuous at 0?
- Is $f(x) = \frac{1}{x}\sin(\frac{1}{x^2})$ for $x \neq 0$ and f(0) = 0 continuous at 0?
- Let f be a continuous real-valued function whose domain is $[a,b] \subset \mathbb{R}$, where [a,b] is a closed interval. Show that there exist $x_0, y_0 \in [a,b]$, such that $f(x_0) \leq f(x) \leq f(y_0)$ for all $x \in [a,b]$.

Problem 3

Let A be an $n \times n$ real-valued square matrix. Let $\det(A)$ be determinant of A, and $\operatorname{trace}(A)$ be trace of A. A square symmetric matrix A is positive definite if $x^{\top}Ax > 0$ for all $x \in \mathbb{R}^n$.

- A is nonsingular if $det(A) \neq 0$. Show that A is invertible if and only if A is nonsingular.
- Show that Ax = b has a unique solution for each $b \in \mathbb{R}^n$ if and only if A is nonsingular.
- Show that $det(A) = \prod \lambda_i$ where λ_i is an eigenvalue of A
- Show that $\operatorname{trace}(A) = \sum \lambda_i$ where λ_i is an eigenvalue of A.
- Show that if A is positive definite, then each eigenvalue is a positive real number.

The following problems are related to undergraduate control theory. You need to use MAT-LAB to solve the problem.

Problem 4

Figure 1: Block diagram of a standard feedback control system, where D_c is the compensator.

A DC motor with negligible armature inductance is to be used in a position control system. Its open-loop transfer function is given by

$$G(x) = \frac{50}{s(s/5+1)}$$

Use Bode plot to design a compensator for the feedback motor control system satisfies the following specifications:

- The steady state error to a unit-RAMP input is less than 1/200
- \bullet The unit-STEP response has an overshoot of less than 20%
- The bandwidth of the compensated feedback system is no less than that of the uncompensated open-loop system.

Verify your design using MATLAB. You must provide the time response plots.

Problem 5

Consider the feedback system in Figure 1 with the following system:

$$G(s) = \frac{2500K}{s(s+25)}.$$

- Design a lead compensator so that the phase margin of the system is more than 45°; the steady state error due to a unit RAMP should be less than or equal to 0.01. Verify your answer with the Bode plot and the time response via the Simulink.
- Using the plant transfer function from part (a), design a lead compensator so that the overshoot is less than 25% and the 2% settling time less than 0.1 sec. Verify your answer with the unit STEP response (MATLAB).