## $D\mathrm{-BIOL},\ D\mathrm{-CHAB}$

# Prüfung zur Vorlesung Mathematik I/II

### Bitte ausfüllen!

| Name:     |  |
|-----------|--|
| Vorname:  |  |
| Legi-Nr.: |  |

### Nicht ausfüllen!

| Aufgabe | Punkte | Kontrolle |
|---------|--------|-----------|
| 1       |        |           |
| 2       |        |           |
| 3       |        |           |
| 4       |        |           |
| 5       |        |           |
| 6       |        |           |
| Total   |        |           |

| Vollständigkeit |  |
|-----------------|--|
|-----------------|--|

### Hinweise zur Prüfung

Prüfungsdauer: 3 Stunden.

Hilfsmittel: Aufzeichnungen im Umfang von 20 Seiten A4.

#### Bitte beachten Sie folgende Punkte:

- Tragen Sie **jetzt** Ihren Namen in das Deckblatt ein und geben Sie es **am Ende** der Prüfung als vorderstes Blatt Ihrer Arbeit ab.
- Legen Sie Ihre Legi offen auf den Tisch.
- Beginnen Sie jede Aufgabe auf einem neuen Blatt.
- Begründen Sie Ihre Lösungen. Dabei können bekannte Formeln aus der Vorlesung und den Übungen ohne Herleitung verwendet werden.
- Schreiben Sie nicht mit Bleistift, rotem oder grünem Kugelschreiber.
- Die Reihenfolge der Bearbeitung der Aufgaben ist Ihnen freigestellt.
- Wir erwarten nicht, dass Sie alle Aufgaben lösen. Tun Sie einfach Ihr Bestes! Verweilen Sie nicht zu lange bei einer Aufgabe, die Ihnen Schwierigkeiten bereitet.

Viel Erfolg!

### Aufgaben

**1.** (10 Punkte)

Die Antworten in dieser Aufgabe müssen nicht begründet werden. Schreiben Sie die Antworten vollständig gekürzt und vereinfacht direkt auf das Aufgabenblatt.

a) Berechnen Sie

$$\lim_{x \to 0} \frac{\sin(2x)}{x} = \underline{\qquad}.$$

b) Berechnen Sie

$$\lim_{x \to \infty} \frac{(x+1)\log(x)}{x^2} = \underline{\hspace{1cm}}.$$

c) Das Taylorpolynom zweiter Ordnung (im Punkt  $x_0 = 0$ ) der Funktion

$$f(x) = \frac{e^x}{x+1},$$

ist gegeben durch \_\_\_\_\_

d) Die Lösung des Anfangwertproblems

$$\begin{cases} y''(x) = -4y(x), \\ y(0) = 1, \\ y'(0) = 0, \end{cases}$$

ist gegeben durch \_\_\_\_\_

e) Berechnen Sie das folgende bestimmte Integral

$$\int_0^2 |1-x| dx =$$
\_\_\_\_\_.

f) Betrachten Sie die Gleichung

$$x^3 + 3x + 1 = 0$$
.

und den Startwert  $x_0 = 0$ . Mit Hilfe des Tangentenverfahrens von Newton ist die approximative Lösung nach einer Iteration

$$x_1 = \underline{\hspace{1cm}},$$

und nach zwei Iterationen

$$x_2 =$$
\_\_\_\_\_.

Die Antworten in dieser Aufgabe müssen *nicht* begründet werden. Schreiben Sie die Antworten vollständig gekürzt und vereinfacht direkt auf das Aufgabenblatt.

a) Schreiben Sie die folgenden Zahlen in der Form  $a+ib, a, b \in \mathbb{R}$ : (Bemerkung:  $\overline{z}$  beschreibt die zu z konjugiert komplexe Zahl.)

$$\overline{2i\left(\frac{1}{2}-i\right)} = \underline{\qquad},$$

$$-8\sqrt{-27} = \underline{\hspace{1cm}},$$

$$\frac{2}{3+2i} - \frac{3}{3-2i} = \underline{\qquad}.$$

b) Es seien

$$z_1 = 2\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right) \text{ und } z_2 = 2e^{i\frac{\pi}{3}}.$$

Berechnen Sie das Argument und den Betrag von  $z = (z_1)^3 \cdot z_2$ .

$$arg(z) = \underline{\hspace{1cm}}, \qquad |z| = \underline{\hspace{1cm}}.$$

c) Für welches  $b \in \mathbb{R}$  ist z eine reelle Zahl?

$$z = 2e^{\frac{\pi}{6}i}(5\sqrt{3} + bi)$$

Geben Sie b und z an:

$$b = \underline{\hspace{1cm}}, \qquad z = \underline{\hspace{1cm}}.$$

d) Bestimmen Sie die Lösungen von

$$z^2 = 1 + \sqrt{3}i$$

in Polarkoordinaten

$$z_1 =$$
\_\_\_\_\_\_,  $z_2 =$ \_\_\_\_\_\_.

- a) Die Antworten in dieser Teilaufgabe müssen *nicht* begründet werden. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind und kreuzen Sie die entsprechende Antwort direkt auf dem Aufgabenblatt an.
  - Jedes lineare Gleichungssystem mit weniger Gleichungen als Unbekannten hat mindestens eine Lösung.

 $\Box$  richtig  $\Box$  falsch

• Die Vektoren

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix},$$

sind linear unabhängig.

- $\Box$  richtig  $\Box$  falsch
- Für beliebige reelle  $3 \times 3$ -Matrizen A, B gilt  $\det(A + B) = \det(A) + \det(B)$ .
  - $\square$  richtig  $\square$  falsch
- 0 kann nicht Eigenwert einer invertierbaren Diagonalmatrix sein.
  - $\Box$  richtig  $\Box$  falsch
- b) Sei

$$A = \begin{pmatrix} 2 & 0 & \mu \\ -1 & 2 & 1 \\ 1 & 0 & \mu + 1 \end{pmatrix}.$$

Finden Sie alle  $\mu \in \mathbb{R}$  so, dass das homogene Gleichungssystem

$$Ax = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

nur die triviale Lösung hat.

c) Seien

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & -1 & -2 \\ -1 & 0 & 1 \end{pmatrix}, \qquad b = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}.$$

Lösen Sie das lineare (inhomogene) System Ax=b mittels des Gauß'schen Eliminationsverfahrens.

d)  $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$  ist ein Eigenvektor der **inversen** Matrix von

$$\begin{pmatrix} 0 & -4 & -3 \\ 2 & 2 & 2 \\ 1 & 4 & 4 \end{pmatrix}.$$

Bestimmen Sie den zugehörigen Eigenwert.

a) Lösen Sie das Anfangswertproblem

$$y' - 2y = 0,$$
$$y(0) = 1.$$

b) Lösen Sie die homogene lineare Differentialgleichung 1. Ordnung

$$y' + xy = 0,$$

durch Trennung der Variablen.

c) Finden Sie nun die allgemeine Lösung der inhomogenen linearen Differentialgleichung 1. Ordnung

$$y' + xy = (x - 1)e^{-x},$$

durch Variation der Konstanten.

**Hinweis:** Für eine stetig differenzierbare Funktion  $f: \mathbb{R} \mapsto \mathbb{R}$  gilt

$$\int f'(x)e^{f(x)}dx = e^{f(x)} + C.$$

- **5.** (5 Punkte)
  - a) Bestimmen Sie die Gleichung der Tangentialebene an die Fläche

$$z = \ln(x^2 + y^2 + 1) - \ln(6),$$

im Flächenpunkt  $(1, 2, z_0 =?)$ .

b) Bestimmen Sie die kritischen Punkte der Funktion

$$f(x,y) = 3x^2 + 6xy + \frac{1}{6}y^3 + \frac{27}{2}y,$$

und geben Sie jeweils an, ob es sich um ein lokales Minimum, lokales Maximum oder um einen Sattelpunkt handelt.

Wir betrachten das Linienintegral  $\int_{\gamma} y \, dx + x^2 \, dy$ , wobei  $\gamma$  die Wege  $\gamma_1$ ,  $\gamma_2$  und  $\gamma_3$  durchläuft. Die Wege  $\gamma_1$ ,  $\gamma_2$  und  $\gamma_3$  sind in der untenstehenden Skizze gegeben. Der Weg  $\gamma_1$  verläuft entlang einer Parabel.



- a) Parametrisieren Sie die Wege  $\gamma_1$ ,  $\gamma_2$  und  $\gamma_3$ .
- b) Berechnen Sie folgende Linienintegrale mit Hilfe der parametrisierten Wege  $\gamma_1,\,\gamma_2$  und  $\gamma_3$

$$I_1 = \int_{\gamma_1} y \, dx + x^2 \, dy$$
$$I_2 = \int_{\gamma_2} y \, dx + x^2 \, dy$$
$$I_3 = \int_{\gamma_3} y \, dx + x^2 \, dy$$

und

$$I = \int_{\gamma} y \, dx + x^2 \, dy.$$

 ${\bf c})$ Berechnen Sie das Linienintegral Imit Hilfe des Satzes von Green.