Algoritmická složitost KIV/ADT – 2. přednáška

Miloslav Konopík

1. března 2024

Složitost algoritmů

- Motivace
- Algoritmická složitost
- Řád růstu funkce.
- Praktické příklady na složitost.

Motivace

Rychlost algoritmů

Proč měřit rychlost algoritmů:

- Jak velká data jsme schopni zpracovat?
- Který algoritmus je lepší?

Jak měřit rychlost algoritmů:

- Změřit dobu běhu (benchmark) měříme algoritmus, programovací jazyk, hardware,
- Najít formální metriku závislou pouze na algoritmu.

Příklad: Problém vyhledávání prvků v seřazeném poli.

- Sekvenční vyhledávání.
- Binární vyhledávání (půlení intervalů).

Příklad – sekvenční vyhledávání

```
def sequential_search(arr: List[int], target: int) -> int:
    for i in range(len(arr)):
        if arr[i] == target:
            return i
    return None
```

Příklad – binární vyhledávání

```
def binary_search(arr: List[int], target: int) -> int:
       left: int = 0
       right: int = len(arr) - 1
       while left <= right:
4
            mid: int = (left + right) // 2
            if arr[mid] == target:
                return mid
            elif arr[mid] < target:</pre>
                left = mid + 1
            else:
10
                right = mid - 1
11
       return None
```

12

Porovnání rychlostí

	Lineární vyhledávání			Binární vyhledávání	Poměr průměr VS nejhorší
Počet dat	nejlepší	průměrný	nejhorší		
5	1	3	5	3	1x
10	1	5	10	4	1×
500	1	250	500	9	28×
1000	1	500	1000	10	50×
5000	1	2500	5000	13	192×
10000	1	5000	10000	14	3 57×
50000	1	25000	50000	16	1 563×
100000	1	50000	100000	17	2 941×
500000	1	250000	500000	19	13 158x

Algoritmická složitost

Algoritmická složitost

- Vykonání algoritmů je různě náročné na zdroje počítače.
- Různé algoritmy, které řeší stejný problém, mohou mít různé nároky (různou složitost).
- Existují dvě přirozené míry pro porovnání:
 - Časová složitost: Doba výpočtu podle daného algoritmu potřebná pro zpracování daného množství dat.
 - Paměťová složitost: Maximum alokované paměti v průběhu výpočtu.
- Pro určení složitosti používáme abstraktní model počítače.
 - Časová složitost: Počítáme nejčastější operace, např. počet porovnání.
 - Paměťová složitost: Sčítáme alokace paměti, kdy základním datovým typům přiřadíme velikost 1.
- V praxi většinou důležité pro "velká" data.

Algoritmická složitost

- Vykonání algoritmů je různě náročné na zdroje počítače.
- Různé algoritmy, které řeší stejný problém, mohou mít různé nároky (různou složitost).
- Existují dvě přirozené míry pro porovnání:
 - Časová složitost: Doba výpočtu podle daného algoritmu potřebná pro zpracování daného množství dat.
 - Paměťová složitost: Maximum alokované paměti v průběhu výpočtu.
- Pro určení složitosti používáme abstraktní model počítače.
 - Časová složitost: Počítáme nejčastější operace, např. počet porovnání.
 - Paměťová složitost: Sčítáme alokace paměti, kdy základním datovým typům přiřadíme velikost 1.
- V praxi většinou důležité pro "velká" data.

Funkce T

- Určujeme funkci $T(n): \mathbb{N} \to \mathbb{R}_0^+$.
- *n* je velikost problému.
 - Délka (počet) vstupních dat
 - n může být vícerozměrné (více parametrů, například šířka, výška obrázku).
- Zajímá nás rychlost růstu funkce T(n) v závislosti na růstu parametru n.
- Porovnáním funkcí $T_1(n)$ a $T_2(n)$ pro dva různé algoritmy můžeme najít vhodné řešení daného problému.

Příklad řazení I

Graf pro příklad s řazením:

Příklad řazení II

Co když budeme počítat náročnost operací:

Příklad řazení III

Náročné operace s více daty:

Řád růstu funkce.

Asymptotická složitost

- Přesný vzorec T(n) je pro netriviální algoritmy obtížné určit.
- Rozdíly algoritmů se projeví až pro velká $n \to +\infty$.
- V těchto limitních stavech (nebo pro velká n) lze méně rostoucí komponenty T(n) zanedbat.
- ullet Užíváme pojem asymptotická složitost o asymptoticky se blíží k této hodnotě.

Příklad pro polynomy

 $T_1(n)=n^3$ a $T_2(n)=cn^2$, chceme ukázat, že $T_1(n)>T_2(n)$ pro $n\to\infty$ (c je konstanta). Ukážeme, že $\lim_{n\to\infty} \frac{T_1(n)}{T_2(n)}=\infty$.

$$\lim_{n\to\infty}\frac{T_1(n)}{T_2(n)}=\lim_{n\to\infty}\frac{n^3}{cn^2}=\lim_{n\to\infty}\frac{n}{c}=\infty$$

\mathcal{O} -notace I

Příklad pro polynomy

 $T_1(n)=n^3$ a $T_2(n)=cn^2$, chceme ukázat, že $T_1(n)>T_2(n)$ pro $n\to\infty$ (c je konstanta). Ukážeme, že $\lim_{n\to\infty} \frac{T_1(n)}{T_2(n)}=\infty$.

$$\lim_{n\to\infty}\frac{T_1(n)}{T_2(n)}=\lim_{n\to\infty}\frac{n^3}{cn^2}=\lim_{n\to\infty}\frac{n}{c}=\infty$$

Definice limity jdoucí do nekonečna nám říká, pro každé reálné číslo M>0 najdeme číslo N, tak že $\frac{T_1(n)}{T_2(n)}>M$ pro každné n>N. Vidíme, že vždy najdeme dostatečně velké N, aby platilo $T_1(n)>T_2(n)$.

Definice (\mathcal{O} -notace)

T(n) patří do $\mathcal{O}(g(n))$ pokud existují konstanty c>0 a $n_0>0$ takové, že $T(n)\leq cg(n)$ pro všechna $n\geq n_0$.

\mathcal{O} -notace

Definice (\mathcal{O} -notace)

T(n) patří do $\mathcal{O}(g(n))$ pokud existují konstanty c>0 a $n_0>0$ takové, že $T(n)\leq cg(n)$ pro všechna $n\geq n_0$.

- $\mathcal{O}(g(n))$ je asymptotická horní mez (horní odhad).
- Uvádíme nejlepší známý odhad.

Vizualizace \mathcal{O} -notace

$$T(n) = 2\log_2(n) + 5$$
, $g(n) = \log_2(n)$

Třídy složitostí

Běžné používané třídy složitosti:

- $\mathcal{O}(1)$ konstantní složitost
- $\mathcal{O}(\log n)$ logaritmická složitost
- $\mathcal{O}(n)$ lineární složitost
- $\mathcal{O}(n \log n)$ linearitmická složitost
- $\mathcal{O}(n^2)$ kvadratická složitost
- $\mathcal{O}(n^3)$ kubická složitost
- $\mathcal{O}(n^k)$ polynomiální složitost
- $\mathcal{O}(2^n)$ exponenciální složitost
- $\mathcal{O}(n!)$ faktoriální složitost

Poznámky:

- Můžeme používat i jiné funkce. Některé dávají smysl, jiné moc ne. Například:
- $\mathcal{O}(n^2 \log n)$, $\mathcal{O}(3^n)$ mohout být opodstatněné.
- $\mathcal{O}(3n^2 + 5)$ je nevhodná volba $(\mathcal{O}(3n^2 + 5) = \mathcal{O}(n^2))$.

Srovnání složitostí

Doba výpočtu

Modelový příklad pro ilustraci doby výpočtu v závislosti na složitosti algoritmu a velikosti vstupních dat. Předpokládáme trvání jedné operace 1 ns.

$\Theta(n)$	Velikost	vstupníc	h dat / Doba	výpočtu				
	10	20	50	100	1 000	1 000 000	$1 imes 10^9$	$1 imes 10^{20}$
1	1 ns	1 ns	1 ns	1 ns	1 ns	1 ns	1 ns	1 ns
$\log(n)$	4 ns	5 ns	6 ns	7 ns	10 ns	20 ns	30 ns	67 ns
n	10 ns	20 ns	50 ns	100 ns	$1~\mu s$	1 ms	1 s	3 171 let
$n\log(n)$	34 ns	87 ns	283 ns	665 ns	10 μs	20 ms	30 s	210 675 let
n^2	100 ns	400 ns	3 µs	10 μs	1 ms	17 min	32 let	$3 imes 10^{23}$ let
n^3	1 μs	8 µs	125 µs	1 ms	1 s	32 let		
2 ⁿ	1 μs	1 ms	13 dní	$4 imes10^{13}$ let				
n!	4 ms	77 let	$9 imes 10^{47}$ let					

Poznámka: stáří vesmíru je 1.37×10^{10} let.

Dominantní výraz

Při určování třídy složitosti z funkce T(n) odstraníme:

- všechny konstanty,
- sčítance nižších tříd.

Příklad

$$T(n) = \frac{n^2}{8} + 12\log(n)$$

$$T(n) \in \mathcal{O}(n^2)$$

Poznámka

Hledáme nejlepší třídu složitosti. Téměř vždy můžeme říci, že funkce má složitost $\mathcal{O}(n!)$ a bude to správně, ale pro praktické srovnání algoritmů nám to neposlouží.

Rozšiřující poznatky k \mathcal{O} -notaci

- O omezuje funkci shora. Existují další odhady:
 - Ω notace asymptotická dolní mez (dolní odhad).
 - Θ notace asymptotická těsná mez (\mathcal{O} a Θ zároveň).

Je nutné zvažovat, jak je T(n) stanovena:

- Nejhorší případ.
- Průměrný případ (očekávaná hodnota pro náhodnou proměnnou).
- Amortizovaná složitost (ignoruje lokální odchylky).

Vizualizace \mathcal{O} -notace

Ω -notace

Definice (Ω -notace)

T(n) patří do $\Omega(g(n))$ pokud existují konstanty c>0 a $n_0>0$ takové, že $T(n)\geq cg(n)$ pro všechna $n\geq n_0$.

- $\Omega(g(n))$ je asymptotická dolní mez.
- Opět uvádíme co nejbližší známý odhad (tedy funkci s největším růstem).

Vizualizace Ω -notace

Θ-notace

Definice (Θ-notace)

Pokud $T(n) \in \mathcal{O}(g(n))$ a zároveň $T(n) \in \Omega(g(n))$, pak $g(n) \in \Theta(g(n))$

- $\Theta(g(n))$ je asymptotická těsná mez.
- Asymptoticky omezuje funkci zároveň shora i zdola.
- Nemusí vždy existovat $(g_1 \neq g_2 \text{ pro } \mathcal{O}(g_1(n)) \text{ a } \Omega(g_2(n))).$
- V praxi se často používá *O*-notace ve smyslu Θ-notace.
- V přednáškách budeme užívat Θ-notaci vždy, když to bude možné.

Vizualizace Θ-notace

Praktické příklady na složitost.

T(n) funkce	Třída složitosti
$5n^2+3n+2$	
$3n\log(n) + 2n + 7$	
$2n + \log(n) + 1$	
$7n^3 + 4n^2\log(n) + 2n\log(n) + 3n + 1$	
100n + 5	
$2^n + 100n^2$	
$10n\log(n)+100n$	
$3n^2 + 10n\log(n) + 50n + 20$	

30/40

T(n) funkce	Třída složitosti
$5n^2+3n+2$	$\Theta(n^2)$
$3n\log(n) + 2n + 7$	
$2n + \log(n) + 1$	
$7n^3 + 4n^2\log(n) + 2n\log(n) + 3n + 1$	
100n + 5	
$2^n + 100n^2$	
$10n\log(n)+100n$	
$3n^2 + 10n\log(n) + 50n + 20$	

30/40

T(n) funkce	Třída složitosti
$5n^2 + 3n + 2$	$\Theta(n^2)$
$3n\log(n) + 2n + 7$	$\Theta(n\log(n))$
$2n + \log(n) + 1$	
$7n^3 + 4n^2\log(n) + 2n\log(n) + 3n + 1$	
100n + 5	
$2^n + 100n^2$	
$10n\log(n)+100n$	
$3n^2 + 10n\log(n) + 50n + 20$	

30/40

T(n) funkce	Třída složitosti
$5n^2+3n+2$	$\Theta(n^2)$
$3n\log(n) + 2n + 7$	$\Theta(n\log(n))$
$2n + \log(n) + 1$	$\Theta(n)$
$7n^3 + 4n^2\log(n) + 2n\log(n) + 3n + 1$	
100n + 5	
$2^n + 100n^2$	
$10n\log(n)+100n$	
$3n^2 + 10n\log(n) + 50n + 20$	

T(n) funkce	Třída složitosti
$5n^2+3n+2$	$\Theta(n^2)$
$3n\log(n)+2n+7$	$\Theta(n\log(n))$
$2n + \log(n) + 1$	$\Theta(n)$
$7n^3 + 4n^2\log(n) + 2n\log(n) + 3n + 1$	$\Theta(n^3)$
100n + 5	
$2^n + 100n^2$	
$10n\log(n)+100n$	
$3n^2 + 10n\log(n) + 50n + 20$	

Výrazy

T(n) funkce	Třída složitosti
$5n^2+3n+2$	$\Theta(n^2)$
$3n\log(n) + 2n + 7$	$\Theta(n\log(n))$
$2n + \log(n) + 1$	$\Theta(n)$
$7n^3 + 4n^2\log(n) + 2n\log(n) + 3n + 1$	$\Theta(n^3)$
100n + 5	$\Theta(n)$
$2^n + 100n^2$	
$10n\log(n)+100n$	
$3n^2 + 10n\log(n) + 50n + 20$	

Výrazy

T(n) funkce	Třída složitosti
$5n^2 + 3n + 2$	$\Theta(n^2)$
$3n\log(n) + 2n + 7$	$\Theta(n\log(n))$
$2n + \log(n) + 1$	$\Theta(n)$
$7n^3 + 4n^2\log(n) + 2n\log(n) + 3n + 1$	$\Theta(n^3)$
100n + 5	$\Theta(n)$
$2^n + 100n^2$	$\Theta(2^n)$
$10n\log(n)+100n$	$\Theta(n\log(n))$
$3n^2 + 10n\log(n) + 50n + 20$	$\Theta(n^2)$

30/40

Program I

Součet čísel od 1 do n.

```
def summation(n: int) -> int:
    result: int = 0
    for i in range(1, n+1):
        result += i
    return result
    summation(5)
```

Program I

```
Součet čísel od 1 do n.
```

```
def summation(n: int) -> int:
    result: int = 0
    for i in range(1, n+1):
        result += i
    return result
    summation(5)
```

Složitost: $\Theta(n)$

Program II

Součet čísel od 1 do *n* lépe.

```
def summation(n):
return n * (n + 1) // 2
summation(5)
```

Program II

```
Součet čísel od 1 do n lépe.
```

```
1  def summation(n):
2     return n * (n + 1) // 2
3  summation(5)
```

Složitost: $\Theta(1)$

Program III

Nalezení největšího prvku v seznamu.

```
def find max(arr: List[int]) -> int:
      max val: int = arr[0]
      for val in arr:
           if val > max_val:
               max_val = val
5
      return max_val
6
  array: List[int] = [2, 5, 1, 8, 4]
  max_val = find_max(array)
```

Program III

Nalezení největšího prvku v seznamu.

```
def find max(arr: List[int]) -> int:
      max val: int = arr[0]
      for val in arr:
          if val > max_val:
              max_val = val
5
      return max_val
  array: List[int] = [2, 5, 1, 8, 4]
 max_val = find_max(array)
```

Složitost: $\Theta(n)$

Program IV

Tisk trojúhleníků z hvězdiček.

```
def print_star_triangle(num_lines: int) -> None:
    for i in range(num_lines):
        for j in range(i+1):
            print('*', end='')
        print()

print_star_triangle(10)
```

Program IV

Tisk trojúhleníků z hvězdiček.

```
def print_star_triangle(num_lines: int) -> None:
    for i in range(num_lines):
        for j in range(i+1):
            print('*', end='')
        print()

print_star_triangle(10)
```

Složitost: $\Theta(n^2)$

Program V

Tisk obdélníku z hvězdiček.

```
def print_star_rectangle(height: int, width: int) -> None:
      for i in range(height):
           for j in range(width):
               if i == 0 or i == height - 1 or j == 0 or j == width - 1:
4
                   print('*', end='')
5
               else:
6
                   print(' ', end='')
           print()
  print_star_rectangle(10,5)
```

Program V

Tisk obdélníku z hvězdiček.

```
def print_star_rectangle(height: int, width: int) -> None:
      for i in range(height):
           for j in range(width):
               if i == 0 or i == height - 1 or j == 0 or j == width - 1:
4
                   print('*', end='')
5
               else:
6
                   print(' ', end='')
           print()
  print_star_rectangle(10,5)
```

Složitost: $\Theta(height \cdot width)$

Program V – Vizualizace

Program VI

Generování všech variací barev.

```
def generate_color_variations(colors: List[str], length: int = -1) ->

    List[List[str]]:

       if length == -1:
           length = len(colors)
       elif length == 0:
4
           return [[]]
5
       combinations = []
6
       for color in colors:
           for sub_combination in generate_color_variations(colors, length-1):
                combinations.append([color] + sub_combination)
9
       return combinations
10
```


Program VI – Složitost

Spuštění:

```
colors = ['červená', 'modrá', 'zelená']
```

combinations = generate_color_variations(colors)

Složitost generování všech variací barev:

$$\Theta(n^n)$$

Složitost v praxi

Praktická poznámka na závěr:

- "Potlačené" části T(n) (konstanty, slabší polynomy, etc.) hrají roli!
- Benchmarking je důležitý.
- Algoritmus $T_1 = n^2$ bude 10x rychlejší než $T_2 = 10n^2$