Lattice QCD data analysis in Julia

Alessandro Conigli

IFT UAM-CSIC

December 13th -17th Tor Vergata

Motivations

The usual workflow in Lattice QCD simulations is summarised by

In practice, we face several challenges in data analysis

Systematic uncertainties

Motivations

- These challenges are greatly simplified by the ADerrors.jl package [A. Ramos]
 - Determination of statistical uncertainties using the Γ-method
 - Automatic Differentiation (AD) techniques for error propagation
 - Error propagation in iterative algorithms
- On top of that, we present the juobs.jl package for higher-level analysis [AC, J. Ugarrio]
 - Direct computation of Lattice QCD observables
 - Implementation of the GEVP variational method
 - Advance fitting routines

Outline

- Introduction to Julia
 - Why Julia?
 - Getting started
 - Julia is fast!

- 2 The ADerrors.jl package
 - The Γ-method and AD
 - ADerrors.jl tutorial
- 3 The juobs.jl package
 - Main features and Lattice QCD observables
 - ADerrors.jl tutorial

Resources

Useful links

- Julia official <u>website</u>
- ADerrors gitlab

- Julia free courses
- <u>Juobs</u> gitlab

References

[1] U. Wolf, "Monte Carlo errors with less errors", arXiv:0303017

[2] A. Ramos, "Automatic differentiation for error analysis of Monte Carlo data", arXiv:1809.01289

[3] A. Ramos, "Automatic differentiation for error analysis", arXiv:2012.11183