Homework 6

Due date: Dec.9th, 2021

Turn in your homework in class

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.
- If needed, round the number to the nearest hundredths, i.e., rounding it to 2 decimal places.

- 1. The circuit below is in steady state and $V_s = 40\sin(5t+15^\circ)V$ in time domain
- a) Calculate $i_x(t)$ in S.S.
- b) Calculate the apparent power on the 10mF capacitor.
- c) Calculate the **complex power** absorbed by the **controlled source**.

- 2. Consider the following circuit with three elements S_1 S_2 and S_3 . The voltages on the S_1 and S_2 are given. The complex power absorbed by S_1 S_2 and S_3 are $S_1 = (10 + j2.5)kVA$, $S_2 = (12.5 + j5)kVA$, $S_3 = 4kVA$, respectively
- a) Find V_{g1} (rms) and V_{g2} (rms).
- b) Calculate the complex power developed by the voltage sources V_{g1} and V_{g2} .
- c) Prove that the total power dissipated by S_1 S_2 and S_3 and the resistors is equal to the total power developed by the voltage sources.

- 3. Consider the following three-phase circuit. R=20 Ω , X_L=5, V_p=50 (*rms*). Line impedance Z=1+j0.5 Ω .
- a) Calculate the line current Io.
- b) Calculate the voltage U shown in the circuit.
- c) Calculate the total complex power of all the loads.

4. The following circuit includes a mutual inductance M=600mH, and is in steady state. Given $i_s = 4\sin(600t)A$, $v_s = 100\cos(300t + 60^\circ)V$, calculate $i_x(t)$ in **S.S**.

