

IFT2015 A17 :: Examen intra¹

L'EXAMEN vaut 100 points, et vous pouvez avoir jusqu'à 10 points de boni additionnels.

- * Aucune documentation n'est permise.
- * Décrivez vos algorithmes en pseudocode ou en Java(-esque).
- * Répondez à toutes les questions dans les cahiers d'examen.

FO Votre nom (1 point)

▶ Mettez votre nom et code permanent sur tous les cahiers soumis.

F1 Ordres de croissance (14 points)

▶Donnez une caractérisation asymptotique sur l'échelle standard (n^a , $\log_a n$, a^n et leurs produits) des fonctions ci-bas. (Utilisez Θ , O ou une expansion asymptotique avec \sim). $\lg = \log_2$. Chaque réponse vaut 2 points, et il n'est pas nécessaire de les justifier.

$$\mathbf{a} \quad f(n) = \sum_{i=0}^{n-1} \lfloor i/2 \rfloor$$

$$\mathbf{b} \quad f(n) = \ln(n!)$$

$$\mathbf{c} \quad f(n) = \sum_{i=1}^{n} n/i$$

$$\mathbf{d} \quad f(n) = \begin{cases} 1 & \{n=0\} \\ f(n-1) + 2n - 1 & \{n>0\} \end{cases}$$

$$\mathbf{e} \quad f(n) = \begin{cases} n & \{n=0,1\} \\ (f(n-1))^2 & \{n>1\} \end{cases}$$

$$\mathbf{f} \quad f(n) = \begin{cases} 0 & \{n=0\} \\ f(n-1) + \lg(n) & \{n>0\} \end{cases}$$

F2 Types abstraits (15 points)

i. Œufs de coucou (3 points) ► Identifiez les trois types abstraits sur la liste suivante :

dictionnaire, liste chaînée, Willem de Kooning, pile, queue (file FIFO), tableau.

ii. Interface (12 points) ► Spécifiez et décrivez² les opérations principales pour les trois types abstraits identifiés.

FIG. 1: Le peintre De Kooning dans son studio [1950].

 $^{^{\}rm 2}$ sans entrer dans les détails d'une implémentation quelconque !

Chemins dans un DAG (20 points)

On a un graphe orienté acyclique, representé par listes d'adjacence.

▶Donner un algorithme³ qui compte le nombre de chemins entre deux nœuds s, t fournis à l'entrée, en un temps linéaire.

Indice: Modifiez le tri topologique.

F4 Renverser une liste chaînée (30+10 points)

- a. (10 points) Donner un algorithme récursif appellé deleteLast qui supprime et retourne le dernier nœud sur une liste simplement chaînée. L'algorithme prend le nœud à la tête comme entrée.
- b. (10 points) ▶ Donner un algorirhme récursif appellée reverse pour renverser une liste chaînée selon la récurrence : enlever le dernier nœud u, renverser la liste restante, l'ajouter après u et retourner u (la nouvelle tête de la liste).
- c. (10 points) Analyser le temps de calcul et usage de mémoire de la solution en b.
- d. (10 points boni) Donner un algorithme qui renverse la liste simplement chaînée en un temps linéaire⁴.

F5 Quadtree (20 points)

On a un arbre quaternaire avec n nœuds internes dont chacun possède 4 enfants.

- ▶ Quel est le nombre de nœuds externes ? Justifiez la réponse.
- ▶ Donner une borne inférieure sur la hauteur de l'arbre, avec preuve⁵.

FIG. 2: Suppression du dernier nœud.

Indice: On peut renverser les liens en un seul parcours. Ou bien, il est possible de renverser la liste par récursion : couper à la moitié (sous-listes L_1, L_2), et employer la récurrence reverse $(L_1 \rightarrow L_2) =$ $reverse(L_2) \rightarrow reverse(L_1)$. (On peut identifier le nœud au centre à l'aide de deux curseurs en parcourant la liste : un pointeur avance par un nœud à la fois, l'autre avance par deux - si ce dernier arrive à la fin, alors le premier est au milieu.)

Indice: Écrivez n_d pour le nombre de nœuds internes à profondeur d, et cherchez une borne sur le nombre des nœuds internes $n = \sum_d n_d$. Notez qu'il ne suffit pas de juste montrer un arbre complet sans démontrer qu'il est un cas extreme.

Mid-term examination

THE EXAMEN is worth 100 points, and you can collect up to 10 additional bonus points.

- * No documentation is allowed.
- * Write your algorithms in (Java-style) pseudocode.
- * You may write your answers in English or in French.
- * Answer each question in the exam booklet.

E0 Your name (1 point)

▶ Write your name and *code permanent* on each booklet that you submit.

.....

E1 Growth orders (14 points)

► Characterize then growth order of the following functions on the standard scale (n^a , $\log_a n$, a^n and their products). (Use Θ , O or an asymptotic expansion with \sim). $\lg = \log_2$. Every answer is worth 2 points. No justification is necessary.

$$\mathbf{a} \quad f(n) = \sum_{i=0}^{n-1} \lfloor i/2 \rfloor$$

$$\mathbf{b} \quad f(n) = \ln(n!)$$

$$\mathbf{c} \quad f(n) = \sum_{i=1}^{n} n/i$$

$$\mathbf{d} \quad f(n) = \begin{cases} 1 & \{n=0\} \\ f(n-1) + 2n - 1 & \{n>0\} \end{cases}$$

$$\mathbf{e} \quad f(n) = \begin{cases} n & \{n=0,1\} \\ (f(n-1))^2 & \{n>1\} \end{cases}$$

$$\mathbf{f} \quad f(n) = \begin{cases} 0 & \{n=0\} \\ f(n-1) + \lg(n) & \{n>0\} \end{cases}$$

$$\mathbf{g} \quad f(n) = \lg(1 + 2n + 3n^3)$$

E2 Abstract types (15 points)

i. Cuckoo's egg (3 points) There are three abstract data types in the following list: ▶ identify which ones.

dictionary, linked list, Willem de Kooning, stack, queue, array.

ii. Interface (12 points) ► Specify and describe⁶ the elementary operations for the three abstract data types you identified.

Exercise	points	bonus
E0	1	
E1	$7 \times 2 = 14$	
E2	3 + 12 = 15	
E3	20	
E4	10 + 10 + 10 = 30	10
E5	20	
Σ	100	10
a lama filmate publish and electric. That is from multide alfaction connection extrem him say the control bear control Allamons establish Demakin, with a grow bitunce on the relation of c		

FIG. 3: The painter De Kooning in his studio [1950].

⁶ without entering into the details of a particular implementation!

E3 Paths in a DAG (20 points)

We have a directed acyclic graph represented by lists of adjacence. \blacktriangleright Give an algorithm⁷ that counts the number of paths between two nodes s, t given as input, in linear time.

.....

E4 Inverting a linked list (30+10 points)

- **a.** (10 points) ▶ Give a recursive algorithm called deleteLast that deletes and returns the last node on a single-linked list. The algorithm's input is the head node.
- **b.** (10 points) ► Give a recursive algorithm called reverse that reverses a linked list by using the following recursion: delete the last node *u*, reverse the remaining list, append it after *u*, and return *u* (the new head node).
- **c.** (10 **points**) ► Analyze the running time and memory usage of the algorithm in **b.**
- **d.** (10 bonus points) ► Give an algorithm that reverses a single-linked list in linear time⁸.

E5 Quadtree (20 points)

We have a quaternary tree with n internal nodes, each of them with 4 children.

- ▶ What is the number of external nodes? Justify your answer.
- ► Give a lower bound on the tree height, with proof⁹.

KEEP
CALM

AND
CARRY
ON

Hint: Modify topological sort.

FIG. 4: Deletion of the last node.

Hint: It is possible to invert the linkes in a single list traversal. Or it is possible to employ divide-and-conquer: cut into half lists in the middle (sublists L_1, L_2), and use the recursion $\mathsf{reverse}(L_1 \to L_2) = \mathsf{reverse}(L_2) \to \mathsf{reverse}(L_1)$. (You can identify the middle by using two cursors in a traversal: one pointer advances by one node, the other advances by two nodes at a time — when this latter arrives to the end, the first one is in the middle.)

Indice: Write n_d for the number of internal nodes at level d, and infer a bound on the number of internal nodes $n = \sum_d n_d$. Note that it is not enough to just show an extremal tree without proving that it is indeed an extreme case.