Computer Graphics Sergey Kosov

Lecture 10:

Anti-Aliasing and Super-Sampling

Contents

- 1. Aliasing
- 2. Pre-filtering
- 3. Super-Sampling

Aliasing

In Fourier space

Motivation: Aliasing

(a) Simulation of a perfect line

(c) Simulation of a jagged line

(b) Fourier transform of (a)

(d) Fourier transform of (c)

Sampling Artifacts

Spatial aliasing:

• Stair cases, Moiré patterns, etc.

Solutions:

- Increasing the sampling rate
 - Ok, but infinite frequencies at sharp edges
- Post-filtering (after reconstruction)
 - Does not work only leads to blurred stair cases
- Pre-filtering (Blurring) of sharp geometry features
 - Slowly make geometry transparent at the edges
 - Correct solution in principal
 - Analytic low-pass filtering hard to implement
 - Super-sampling

Sampling Artifacts

Temporal Aliasing:

• Car wheels, ...

Solutions

- Increasing the frame rate
 - OK
- Pre-filtering (Motion Blur)
 - Yes, possible for simple geometry (e.g., Cartoons)
 - Problems with texture, etc.
- Post-filtering (Averaging several frames)
 - Does not work only multiple detail

Important

• Distinction between aliasing errors and reconstruction errors

Aliasing

It all comes from sampling at discrete points

- Multiplied with comb function, no smoothly weighted filters
- Comb function: repeats frequency spectrum

Or, from using non band limited primitives

• Hard edges ⇒ infinitely high frequencies

In reality, integration over finite region necessary

• E.g., finite CCD pixel size

Computer: Analytic integration often not possible

No analytic description of radiance or visible geometry available

Only way: numerical integration

- Estimate integral by taking multiple point samples, average
 - Leads to aliasing
- Computationally expensive
- Approximate

Sources of High Frequencies

Geometry

- Edges, vertices, sharp boundaries
- Silhouettes (view dependent)
- ...

Texture

• E.g., checkerboard pattern, other discontinuities, ...

Illumination

• Shadows, lighting effects, projections, ...

⇒ Analytic filtering almost impossible

• Even with the most simple filters

Comparison

Analytic low-pass filtering

- Ideally eliminates aliasing completely
- Hard to implement
 - Only works for polygon edges with constant color
 - Weighted or unweighted area sampling
 - Compute distance from pixel to a line
 - Filter values can be stored in look-up tables
 - Possibly taking into account slope
 - Distance correction
 - Non rotationally symmetric filters
 - Does not work for corners

Over-/Super-sampling

- Very easy to implement
- Does not eliminate aliasing completely
 - Sharp edges contain infinitely high frequencies

Antialiasing by Pre-Filtering

Filtering before sampling

- Band-limiting signal
- Analog / analytic or
- Reduce Nyquist frequency for chosen sampling-rate

Ideal reconstruction

• Convolution with *sinc*

Practical reconstruction

- Convolution with
 - Box filter, Bartlett (Tent)

⇒ Reconstruction error

Re-Sampling Pipeline

Assumption

- Energy in high frequencies decreases quickly
- Reduced aliasing by intermediate sampling with higher frequencies

Algorithm

- Super-sampling
 - Sample continuous signal with boundary frequency f₁
 - Aliasing with energy beyond f_1 (assumed to be small)
- Reconstruction of signal
 - Filtering with $g_1(x)$: e.g. convolution with $sinc(f_1)$
- Analytic low-pass filtering of signal
 - Filtering with filter $g_2(x)$ with $f_2 \ll f_1$
 - Signal is now band limited w.r.t. f₂
- Re-sampling with a sampling frequency that is compatible with f₂
 - No additional aliasing
- Filters $g_1(x)$ and $g_2(x)$ can be combined
- Hardware support (OpenGL multisampling extension)

Super-Sampling in Practice

Regular super-sampling

- Averaging of *N* samples per pixel on a grid
- *N*:
 - 4 quite good
 - 16 almost always sufficient
- Samples
 - Rays, z-buffer, reflection, motion, ...
- Averaging
 - Box filter
 - Others: Pyramid (Bartlett), B-spline, Hexagonal, ...
- Regular super-sampling
 - Nyquist frequency for aliasing only shifted
 - ⇒ Irregular sampling patterns

Super-Sampling Caveats

Popular mistake

- Sampling at the corners of every pixel
- Pixel color by averaging
- Free super-sampling ???

Problem

- Wrong reconstruction filter!!!
- Same sampling frequency, but post-filtering with a hat function
- Blurring: Loss of information

Post-Reconstruction Blur

1x1 Sampling, 7x7 Blur

⇒ "Super-sampling" does not come for free

Adaptive Super-Sampling

Adaptive super-sampling

- Idea: locally adapt sampling density
 - Slowly varying signal:

low sampling rate

• Strong changes:

high sampling rate

- Decide sampling density locally
- Decision criterion needed
 - Differences of pixel values
 - Contrast (relative difference)

$$\bullet \quad |A-B| / |A| + |B|$$

Adaptive Super-Sampling

Algorithm

- Sampling at corners and mid points
- Recursive subdivision of each quadrant
- Decision criterion
 - Differences, contrast, object-IDs, ray trees, ...
- Filtering with weighted averaging
 - ¼ from each quadrant
 - Quadrant: ½ (midpoint + corner)
 - Recursion

$$\frac{1}{1} \left(\frac{A+E}{2} + \frac{D+E}{2} + \frac{1}{4} \left[\frac{F+G}{2} + \frac{B+G}{2} + \frac{H+G}{2} + \frac{1}{4} \left\{ \frac{J+K}{2} + \frac{G+K}{2} + \frac{L+K}{2} + \frac{E+K}{2} \right\} \right] + \frac{1}{4} \left[\frac{E+M}{2} + \frac{H+M}{2} + \frac{N+M}{2} + \frac{1}{4} \left\{ \frac{M+Q}{2} + \frac{P+Q}{2} + \frac{C+Q}{2} + \frac{R+Q}{2} \right\} \right] \right)$$

Extension

Jittering of sample points

Super-Sampling in Practice

Problems with regular super-sampling

Expensive: 4-fold to 16-fold effort

Non-adaptive: Same effort everywhere

• Too regular: Reduced number of levels

Introduce irregular sampling pattern

$$0 \to 4/16 \to 8/16 \to 12/16 \to 16/16$$

Better, but noisy

Stochastic super-sampling

• Or analytic computation of pixel coverage and pixel mask

Stochastic Sampling

Requirements

- Even distribution
- Little correlation between samples
- Incremental generation

Generation of samples

- Poisson-disk sampling
 - Fixes a minimum distance between samples
 - Random generation of samples
 - Rejection, if too close to other samples
- Jittered sampling
 - Random perturbation from regular positions
- Stratified Sampling
 - Subdivision into areas with one random sample each
- Quasi-random numbers (Quasi-Monte Carlo)
 - E.g. Halton Sequence
 - Advanced feature

Poisson-Disk Sample Distribution

Motivation

• Distribution of the optical receptors on the retina (here: ape)

HVS: Poisson Disk Experiment

Human perception

- Very sensitive to regular structures
- Insensitive against (high frequency) noise

Stochastic Sampling

Stochastic Sampling

• Transforms energy in high frequency bands into noise

Examples

Triangle comb

(Width: 1.01 pix, Heigth: 50 pix):

- 1 sample, no jittering
- 1 sample, jittering
- 16 samples, no jittering
- 16 samples, jittering

(ь)	0	0	Nº	0	۸°	0	۸ ۰
	0	O		0	10	0	0
	0	Ö		0		0/	6
	0	٥		0		0/	
	٥	0		0		0	
	0	0/		0		9	

Motion Blur:

- 1 sample, no jittering
- 1 sample, jittering
- 16 samples, no jittering
- 16 samples, jittering

Comparison

Regular, 1x1

Regular 3x3

Regular, 7x7

Jittered, 3x3

Jittered, 7x7

Assignment 3 (Theoretical part)

Submission deadline: Friday, 18. October 2019 9:45 (before the lecture)

Written solutions have to be submitted in the lecture room before the lecture. Every assignment sheets counts 100 points (theory and practice)

3.* Ray Quadric Intersection (30 Points) (voluntary / bonus points)

Given a ray $\vec{r}(t) = \vec{o} + t \cdot \vec{d}$ and quadric $ax^2 + by^2 + cz^2 + dxy + exz + fyz + gx + hy + iz + j = 0$.

- a) Compute the values t for which the ray intersects the quadric.
- b) Derive the ray-sphere intersection formula from it, as a special case.

This is a pure theoretical exercise which has not to be implemented, but you can of course if you like.