第2章 逻辑函数及其化简

逻辑函数?

按一定逻辑规律进行运算的代数。

基本逻辑运算

- 与逻辑
- 或逻辑
- 非逻辑

逻辑表达式(逻辑函数) $Z_i = f_i(x_1, x_2, \dots x_n)$ $i = 1, 2, \dots, m$

逻辑变量

用大写或小写字母表示。取值:逻辑0、逻辑1。

(**注意**:这里逻辑0和逻辑1不代表<u>数值大小</u>,仅表示相互矛盾、相互对立的两种逻辑状态)

1. 与逻辑

只有决定某一事件的所有条件全部具备, 这一事件才能发生

与逻辑关系表

与逻辑真值表

开关A	开关B	灯F
断	断	灭
断	合	灭
合	断	灭
合	合	亮

A	В	F
0	0	0
0	1	0
1	0	0
1	1	1

与逻辑 运算符, 也有用 "×"、

" / "

"&"表

逻辑表达式

 $\mathbf{F} = \mathbf{A} \bullet \mathbf{B} = \mathbf{A}\mathbf{B}$

2. 或逻辑

只有决定某一事件的有一个或一个以上具备, 这一事件才能发生

或逻辑真值表

A	В	F
0	0	0
0	1	1
1	0	1
1	1	1

逻辑表达式

$$F = A + B$$

或逻辑运算符,也有用 "∨"、"∪"表示

3. 非逻辑

当决定某一事件的条件满足时,事件不发生;反之事件发生。

非逻辑真值表

A	F
0	1
1	0

逻辑表达式

4. 复合逻辑

与非逻辑

$$\mathbf{F}_1 = \overline{\mathbf{A}} \mathbf{B}$$

或非逻辑

$$A$$
 B
 F_2

$$\mathbf{F}_2 = \mathbf{A} + \mathbf{B}$$

与或非逻辑

$$F_3 = \overline{AB + CD}$$

5. 异或

逻辑表达式

A	В	F
0	0	0
0	1	1
$\boxed{}$ 1	0	1
1	1	0

$$F=A \oplus B = \overline{A}B + A\overline{B}$$

逻辑符号

6. 同或

A	В	F
0	0	1
0	1	0
1	0	0
1	1	1

逻辑表达式

逻辑函数的定义:

输出变量

用有限个与、或、非逻辑运算符,按某种逻辑关系将逻辑变量 $A \setminus B \setminus C \setminus \ldots$ 连接起来,所得的表达式 $F = f \in A \setminus B \setminus C \setminus \ldots$)称为逻辑函数。

输入变量

(逻辑变量的取值:逻辑0、逻辑1。逻辑0和逻辑1不代表<u>数值大小</u>, 仅表示相互矛盾、相互对立的<u>两种逻辑态)</u>

逻辑函数的表示方法

(1)真值表

	A	В	С	F
断"0	"	0	0	O O
	0	1	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
" ₁ "	ŏ	1	1	1
亮"1	" 1 1	$\begin{array}{c} 0 \\ 0 \end{array}$	<u>0</u> 1	0
灭"(" 1	1	$\overline{0}$	$\begin{bmatrix} \mathbf{\hat{0}} \end{bmatrix}$
	1	1	1	1

(输入变量不同 取值组合与函数 值间的对应关系 列成表格)

(2)逻辑函数式

$$F=(A+B)C$$

(3)逻辑图

(用逻辑符号 来表示函数式 的运算关系)

(4)波形图

(反映输入和输出波形变化的 图形又叫时序图)

逻辑代数(布尔代数)的基本运算

与:
$$0 \times 0 = 0,0 \times 1 = 0,1 \times 0 = 0,1 \times 1 = 1$$

$$\mathfrak{J}$$
: $0+0=0,0+1=1,1+0=1,1+1=1$

$$\#: \bar{0} = 1, \bar{1} = 0$$

\bar{x}	у	$z = x \cdot y$
0	0	0
0	1	0
1	0	0
_1	1	1

x	y	z = x + y
0	0	0
0	1	1
1	0	1
1	1	1

I	$z = \overline{x}$
0	1
1	0

布尔代数的基本公式

1	交换律	a+b=b+a	ab = ba
2	结合律	a+(b+c)=(a+b)+c	a(bc) = (ab)c
3	分配律	a+bc=(a+b)(a+c)	a(b+c) = ab + ac
4	0—1律1	0 + a = a	$1 \cdot a = a$
5	0—1 律2	1+a=1	$0 \cdot a = 0$
6	互补律	$a + \overline{a} = 1$	$a \cdot \overline{a} = 0$
7	吸收律1	a + ab = a	a(a+b)=a
8	吸收律2	$a + \overline{a}b = a + b$	$a(\overline{a}+b)=ab$
9	重叠律	a + a = a	$a \cdot a = a$
10	反演律	$\overline{a+b} = \overline{a}\overline{b}$	$\overline{ab} = \overline{a} + \overline{b}$
1	对合律	a = a	
12	包含律	$ab + \overline{a}c + bc = ab + \overline{a}c$	$(a+b)(\bar{a}+c)(b+c)=(a+b)(\bar{a}+c)$

公式的证明

$$a + ab = a \cdot 1 + ab = a(1+b) = a \cdot 1 = a$$

• 吸收律₂: a+ab=a+b

$$a + ab = a + ab + ab = a + b(a + a) = a + b \cdot 1 = a + b$$

$$ab + ac + bc = ab + ac + bc(a + a) = ab + ac + abc + abc$$

$$= ab(1+c) + ac(1+b) = ab + ac$$

|• 反演律:<u>a+b</u>=<u>a</u>·<u>b</u>

a	b	$\overline{a+b}$	$\bar{a} \cdot \bar{b}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

异或与同或

а	b	a⊕b	a⊙b	
0	0	0	1	
0	1	1	0	
1	0	1	0	
1	1	0	1	

$$a \oplus b = a\overline{b} + \overline{a}b$$

$$a \odot b = ab + ab$$

$$a \oplus b = a \odot b$$

$$a \odot b = a \oplus b$$

$$a \oplus b = b \oplus a$$

$$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$

$$a \cdot (b \oplus c) = ab \oplus ac$$

$$a \oplus 1 = \overline{a}$$

$$a \oplus 0 = a$$

$$a \oplus a = 0$$

$$a \oplus \overline{a} = 1$$

布尔代数的三个规则

- 代入规则
- 对偶规则
- 反演规则

1、代入规则

任何一个含有某变量的等式,如果等式中所有出现此变量的位置均代之以一个逻辑 函数式,则此等式依然成立。

BC替代B

利用反演律

例:
$$\overline{A \bullet B} = \overline{A} + \overline{B}$$

得 $\overline{ABC} = \overline{A} + \overline{BC} = \overline{A} + \overline{B} + \overline{C}$
由此反演律能推广到n个变量: $\overline{A_1 \bullet A_2 \bullet \dots \bullet A_n} = \overline{A_1 + A_2 + \dots + A_n}$
 $\overline{A_1 + A_2 + \dots + A_n} = \overline{A_1 \bullet A_2 \bullet \dots \bullet A_n}$

2、反演规则

设x原变量,称文为反变量

将一个逻辑函数 F 进行下列变换:

$$\cdot \rightarrow +$$
, $+ \rightarrow \cdot$;

$$0 \rightarrow 1$$
, $1 \rightarrow 0$

原变量 → 反变量, 反变量 → 原变量。

所得新函数表达式叫做F的反函数,用F表示。

例: 求 z = ab + abcd 的反函数。

 $z = ab + abcd = ab \cdot abcd$

$$= (a + b)(abc + d)$$

$$\overline{z} = (a+b)(a+\overline{b}+c+\overline{d})$$

$$= (a + b)(\overline{a}b\overline{c} + \overline{d})$$

注意: 用反演规则求反函数时,不能改变运算次序。

3、对偶规则

将一个逻辑函数 F进行下列变换:

$$\cdots + , + \rightarrow \cdots$$

$$0 \rightarrow 1$$
, $1 \rightarrow 0$

所得新函数表达式叫做F的对偶式,用 F_D表示。

$$a \cdot b + a \cdot c + b \cdot c = a \cdot b + a \cdot c$$

对偶
$$(a+b)(\overline{a}+c)(b+c) = (a+b)(\overline{a}+c)$$

例:
$$F = AB + \overline{AC} + 1 \cdot B$$

其对偶式

$$F_D = (A + B) \cdot (\overline{A} + C) \cdot (0 + B)$$

逻辑函数的化简

$$z_1 = abc + \overline{a} + \overline{b} = bc + \overline{a} + \overline{b} = c + \overline{a} + \overline{b}$$

$$z_{2} = ab\overline{c} + a\overline{b}c + \overline{a}bc + abc = ab\overline{c} + a\overline{b}c + (\overline{a} + a)bc$$

$$= ab\overline{c} + a\overline{b}c + bc = ab\overline{c} + (a\overline{b} + b)c$$

$$= ab\overline{c} + (a + b)c = ab\overline{c} + ac + bc$$

$$= ab + ac + bc$$

$$z_3 = ab + ac + bc = ab + (a+b)c = ab + abc = ab + c$$

$$F_{1} = \overline{AB} + AC + BC + \overline{BCD} + B\overline{CE} = \overline{AB} + (A+B)C + \overline{BCD} + B\overline{CE}$$

$$= \overline{AB} + \overline{ABC} + BCD + BCE = \overline{AB} + C + BCD + BCE$$

$$= \overline{AB} + C + \overline{BD} + BE$$

$$F_{2} = \overline{(A \oplus B)(B \oplus C)} = \overline{(A \oplus B)} + \overline{(B \oplus C)} = A \odot B + B \odot C$$

$$= AB + \overline{AB} + BC + \overline{BC} = AB + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{BC}$$

$$= AB + ABC + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} = AB + \overline{AC} + \overline{BC}$$

$$G = A(A+B)(\overline{A}+C)(B+D)(\overline{A}+C+E+F)(\overline{B}+E)(D+E+F)$$
 $G_D = A+AB+\overline{AC}+BD+\overline{ACEF}+\overline{BE}+DEF$
 $= A+\overline{AC}+BD+\overline{ACEF}+\overline{BE}+DEF$
 $= A+C+BD+\overline{ACEF}+\overline{BE}+DEF$
 $= A+C+BD+\overline{BE}+DEF$
 $= A+C+BD+\overline{BE}+\overline{BEF}+DEF$
 $= A+C+BD+\overline{BEF}+\overline{BEF}+DEF$
 $= A+C+BD+\overline{BEF}+\overline{BEF}+\overline{BEF}$
 $= A+C+BD+\overline{BEF}+\overline{BEF}$
 $= A+C+BD+\overline{BEF}+\overline{BEF}$
 $= A+C+BD+\overline{BEF}+\overline{BEF}$
 $= A+C+BD+\overline{BE}+\overline{BEF}+\overline{BEF}$
 $= A+C+BD+\overline{BE}+\overline{BEF}+\overline{BEF}$
 $= A+C+BD+\overline{BE}+\overline{BEF}+\overline{BEF}$
 $= A+C+BD+\overline{BE}+\overline{BEF}+\overline{BEF}$
 $= A+C+BD+\overline{BE}+\overline{BEF}+\overline{BEF}$
 $= A+C+BD+\overline{BE}+\overline{BEF}+\overline{BEF}+\overline{BEF}$
 $= A+C+BD+\overline{BE}+\overline{BEF}+\overline{BE$

G = AC(B+D)(B+E)

=AC(BE+BD)

 $= \overline{ACBE} + \overline{ACBD}$

 $=\overline{AC(BE+BD+DE)}$

公式法化简的缺点: 不直观,要求经验、 技巧较高,难以判断 是否最简。

应用实例

例1:三人表决电路

真值表

a	b	с	z	
0	0	0	0	
0	0 1		0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

规则:

- (1) a、b、c同意为1,不同意为0;
- (2) 议案通过z=1,不通过z=0;
- (3) 少数服从多数。

$$z = abc + abc + abc + abc$$

$$z = ab + ac + bc$$

$$z = (a+b+c)(\underline{a}+b+\overline{c})(a+\overline{b}+c)(\overline{a}+b+c)$$

结论: 相同逻辑的真值表是唯一的,但是可以用不同的逻辑表达式描述。

应用实例

例2: 保险箱防盗 报警电路

该报警电路接收w、x和y3个输入。信号w来自一个 控制开关,当开关闭合时,w=1,否则w=0;信号x由 放置保险箱的橱门的状态决定,若橱门是关闭的,则 x=0,否则x=1; y由保险箱上的敏感元件产生,若保险 箱打开,则y=1,否则y=0。在正常状态下,开关断开、 橱门及保险箱均关闭。保险箱的正确操作顺序是,闭 合控制开关→打开橱门→开启保险箱。此后,即关闭 保险箱→关闭橱门→断开控制开关,恢复正常状态。 如果未按上述正确顺序操作,则报警电路的输出z=1; 如果操作正确,则z保持为0。

分析:

保险箱的启动次序?

打开: 闭合控制开关→打开橱门→开启保险箱

关闭: 关闭保险箱→关闭橱门→断开控制开关

输入输出变量的二值设定:

w: 1——控制开关闭合, 0——控制开关断开

x: 1——橱门打开, 0——橱门关闭

y: 1——保险箱开启,0——保险箱关闭

z: 1——报警, 0——操作正常

真值表

w	\boldsymbol{x}	у	z
. 0	0	0	0
0	0	1, 1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

逻辑表达式:

$$z = wxy + wxy + wxy + wxy$$

$$z = (w + x + y)(\overline{w} + x + y)(\overline{w} + \overline{x} + y)(\overline{w} + \overline{x} + \overline{y})$$

例3: 一位二进制全加器

加数x_i、被加数y_i与前一位进位 ci_i彼此间进行异或运算

CI_i	x_i	y_i	CO_i	Σ_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

和

$$\Sigma_{i} = x_{i} \overline{y_{i}} \overline{ci_{i}} + \overline{x_{i}} y_{i} \overline{ci_{i}} + \overline{x_{i}} y_{i} ci_{i} + \overline{x_{i}} y_{i} ci_{i}$$

$$= x_{i} \oplus y_{i} \oplus ci_{i}$$

进位

$$\begin{aligned} co_i &= x_i y_i \overline{ci_i} + x_i \overline{y_i} ci_i + \overline{x_i} y_i ci_i + x_i y_i ci_i \\ &= x_i y_i + x_i ci_i + y_i ci_i \end{aligned}$$

加数 x_i 、被加数 y_i 与前一位进位 ci_i 彼此间两两之积,然后"或"