

Resum 2n Parcial

Anàlisis i Disseny d'Algorismes (Universitat Autònoma de Barcelona)

ADA Resum 2na Avaluació

Tema 4 - Branch & Bound

Algorisme:

Selecció: Cada instant tenim llista de nodes vius -Node: Node inicial, camí fins a ell i node destí -Seleccionem el que sembli més prometedor

-Presa de decisions: Decideix una heurística on fer cerca

-Poda: s'eliminen següencies de decisions

B&B: Treballa amb vàries solucions parcials a les que afegeix elements per completar-les

- Nodes vius: node de l'espai de solucions del qual no s'han generat tots els seus fills
- Nodes morts: node del qual no es generaràn més fills
 - No n'hi ha més
 - No és completable
 - No pot generar millor solució que la que està en curs
- Node en curs: del qual s'estàn generant els fills

Backtracking	Branch & Bound
-Quan es genera un fill aquest passa a ser en curs -Recorregut a cegues	-Es generen tots els fills del node en curs abans que qualsevol altre node viu passi a ser el noi node en curs -Recorregut "informat"

La llista = Cua de prioritat (quant prometedor és un node)

-Heurística: Cost + Estimació

Observacions

- o Taula auxiliar de pares de nodes: Escriure camí de l0arrel a la solució quan afegim un node a la cua
- Finalització de l'algorisme: si l'espés finitai d'estats
- Espai d'estats infinit:
 - Si hi ha solució = garanteix finalització
 - No hi ha solució = algorisme no acaba mai
 - Es pot restringir la cerca de nodes

Optimització i poda

Es poden tots els nodes vius de cost estimat més gran que U.

Valor inicial: heurística (informació extra sobre el problema)

Funció de cost: és mínima per tots els nodes que respresenten una solució òptima.

Punts claus Branch & Bound

- -Trobar bon orde de recorregut o ramificació de nodes: Funció de prioritat per trobar la solució bona ràpid
- -Trobar una bona funció de poda

ADA Resum 2na Avaluació

Tema 5 - Programació dinàmica

- Divide and conquer
 - o Descomposra el problema en subproblemes petits
 - Resoldre independentment
 - Combinar resultats obtinguts
 - -No solapament
 - -No calcular subtasques més d'una vegada
- Principi d'optimalitat de Bellman
 - o Reslodre problemesd'optimització
 - Següència de decisions
 - Cada subseqüència ha de ser òptima
- Propietats
 - o Subproblemes simples:

Hem de poder dividir el problema original en subproblemes més petits amb la mateixa estructura

- Subestructura òptima dels problemes (Bellman):
 La solució al problema ha de ser la composició de les solucions als subproblemes
- Subproblemes dependents:
 L'espai de solucions dels diferents subproblemes no és disjunt
- Estrategies
 - o Top-Down
 - -Aplicació directa de la formulació recursiva de tots els problemes
 - -Si la solució és recursiva i els problemes es solapen

Desem resultats de subproblemes en una taula

- -Quan volem resoldre un subproblema consultem si l'hem result anteriorment
- Distàncies d'edició de cadenes
 - La longitud de la <u>subseqüència comuna més llarga:</u>
 Només inserció i supressió
 - o La distànciade Damerau-Levenshtein:

Inserció, supressió, substitució i transposició de dos caràcters adjacents.

o La distànciade Hamming:

Només substitució (només s'aplica a les cadenes de caràcters de la mateixa longitud).

ADA Resum 2na Avaluació

Tema 6 - Probabilístics

Substituir un algorisme que dóna sempre la solució correcta/òptima per un altre que de vegades l'encerta però és més ràpid.

A més recursos dedicats, millors resultats

- -Més temps d'execució
- -Més memòria
- -Millors resultats (més probabilitat d'encertar el resultat)

Deterministes	Probabilístics	
-Sempre ha d'acabar	-Probabilitat petita es permet -Solucions diferents amb les mateixes dades	Finalització
-Sempre troba la mateixa	-Solucions diferents amb les mateixes dades	Solucions trobades
-No solucions incorrectes	-Pot equivocar-se en prob. petita -Pot repetir l'execució amb mateixes dades	Correcció Resultat
-Anàlisi difícil	-Anàlisi molt difícil	Eficiència

- Algorismes que no garanteixen la correcció de la solució
 - Algorismes Numèrics:
 - -Solució aproximada
 - -Major temps d'execució = millor aproximació
 - Algorismes de Monte Carlo:
 - -Resposta exactaamb altra probabilitat
 - -A vegades la resposta és incorrecta
 - -No podem saber si la resposta és correcta
 - -Es redueix la probabilitat d'error = més temps d'execució
- Algorismes que mai donen una solució incorrecte
 - Algorismes de Las Vegas:
 - -Decisions a l'atzar
 - -Si no trobem la solució correcta ho admetem
 - -És possible intentar amb les mateixes dades fins trobar la solució correcta
 - Algorismes de Sherwood:
 - -Determinista més ràpid que el pitjor dels casos
 - -Uniformitzem temps d'execucció en mitjana
 - -Els més costosos = es resolen més ràpid
 - -Els més eficients = menys eficients

Amplificació de l'avantatge estocàstica: més repeticions i augmentem la confiança de la resposta correcte

- Transformació Geomètrica
 - o Punts clau en 2 imatges i es posen en correspondència:
 - Variació de colors

ADA Resum 2na Avaluació

- Detector corner de Harris = Tensor estructural
- Translació, rotació i escalat
- o Transformació: Proximitat entre punts claus transformats
 - Original vs transformada
- Algorismes de Correspondència:
 - Determinista
 - Correspondre punts imatge A amb B
 - Las Vegas
 - Seleccionem aleatòriament 2 punts clau de A i B
 - Repetir la transformació fins trobar la correcta
 - No hi ha guany
 - Algorisme Ransac (Random Sample Consensus)
 - Repetir n vegades
 - -Subconjunt aleatori de dades d'entrada
 - -Trobar solució
 - -Aplicar a totes les dades

Tema 7 - Assercions

Fiable:

- -Correcte: comportar-se d'acord amb l'especificiació
- -Robust: capacitat de respondre davant de casos no inclosos en l'especificació
- Especificacions per contracte
 - o Precondicions: han de complir-ho les dades d'entrada de l'algorisme
 - o Postcondicions: s'han de calcular després d'executar l'algorisme
- Implementació: Fa el que diu l'algorisme considerant les restriccions que pugui suposar l'ordinador
 - Assercions: Són condicions que sempre s'han de complir
 - -Quan no es compleixen = Generen un missatge
 - Excepcions: es dóna quan una asserció no es compleix per un mal ús de l'implementació
- Assercions
 - Precondicions
 - Postcondicions
 - Invariants de bucle: s'han de complir en cada iteració
 - o Invariants de classe: ho ha de complir tot objecte de la classe
- Robustesa: Donar missatge i avortar execució / Llençar una excepció
 - Detecta els trencaments de contracte de la seva especificació i reacciona controladament
 - Detecta errors o situacions inesperades i reacciona controladament