

SF1624 Algebra och geometri Tentamen torsdag, 8 juni 2017

Skrivtid: 08:00-11:00 Tillåtna hjälpmedel: inga Examinator: Tilman Bauer

Tentamen består av sex uppgifter som vardera ger maximalt sex poäng.

Del A på tentamen utgörs av de två första uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng. Poängsumman på del A kan dock som högst bli 12 poäng. Bonuspoängen beräknas automatiskt. Antal bonuspoäng framgår från resultatsidan.

De två följande uppgifterna utgör del B och de två sista uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	A	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst tre poäng.

DEL A

1. Låt $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ vara avbildningen

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 3x + 2y \\ x + y + 2z \\ 4x + 3y + 2z \end{bmatrix}.$$

(a) Bestäm standardmatrisen till avbildningen T. (1 \mathbf{p})

(b) Bestäm en bas för nollrummet till
$$T$$
. (3 \mathbf{p})

(c) Bestäm dimensionen av bildrummet till T. (2 p)

2. Vi har matrisen

$$A = \begin{bmatrix} 1 & 6 \\ 3 & -2 \end{bmatrix}.$$

(a) Hitta alla egenvärden och motsvarande egenvektorer till A. (3 \mathbf{p})

(b) Bestäm en matris
$$U$$
 och en diagonal matris D sådant att $A = UDU^{-1}$. (1 p)

(c) Beräkna
$$A^{123} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
. (2 p)

- **3.** Betrakta två linjer i \mathbb{R}^3 : L_1 som ges av $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$ och L_2 som går genom punkterna (-1, -1, 2) och (1, b, 1), där b är ett konstant tal.
 - (a) Bestäm alla värden på b sådana att L_1 och L_2 skär varandra. (3 **p**)
 - (b) Bestäm en ekvation av planet som innehåller L_1 och L_2 för b=1. (3 p)
- **4.** Den kvadratiska formen Q ges av $Q\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = x^2 xy + y^2$.
 - (a) Ange den symmetriska matris som tillhör Q. (1 p)
 - (b) Låt $\mathcal{B} = \left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$. Ange den matris som tillhör Q i bas \mathcal{B} . (3 **p**)
 - (c) Avgör karaktären av Q: positivt/negativt (semi)definit eller indefinit? (2 p)

DEL C

- **5.** Låt $L \colon \mathbb{R}^2 \to \mathbb{R}^3$ en godtycklig, men inte specifierad linjär avbildning.
 - (a) Varför är dimensionen av bildrummet Im(L) av L högst 2? (1 **p**)
 - (b) Låt \vec{b} vara en vektor i \mathbb{R}^3 som ligger utanför bildrummet $\mathrm{Im}(L)$. Beskriv hur man bestämmer de vektorer \vec{x} som minimerar $\|L(\vec{x}) \vec{b}\|$. (2 p)
 - (c) Tillämpa b) för att hitta minsta värdet av $||L(\vec{x}) \vec{b}||$, då $L(\vec{x}) = (x_1, -x_2, x_1 + x_2)$, och $\vec{b} = (1, 2, 3)$.
- **6.** Låt A vara en symmetrisk $n \times n$ -matris.
 - (a) Bevisa att kolonnerna av A är ortonormala om och endast om A uppfyller ekvation $A^2 = I$. (Med I menas identitetsmatrisen). (2 p)
 - (b) Bevisa att om $A^{1246} = I$, så är $A^2 = I$. (4 **p**)