TEMA 9. OTROS MODELOS EN RECUPERACIÓN DE INFORMACIÓN

Contenidos

- 1. Modelo probabilístico
 - 1.1 Introducción
 - 1.2 Modelo probabilístico
- 2. Representación de las palabras
 - 2.1. Las palabras y su contexto
 - 2.2. Similitud entre palabras
- 3. Representaciones vectoriales de las palabras
 - 3.1 Vectores dispersos
 - 3.2 Vectores densos
- 4. Modelos neuronales para Recuperación de Información (RI)

Bibliografía

A Introduction to Information Retrieval:

Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze. Cambridge University Press, **2009**. Capítulo 11

Speech and Language Processing

Daniel Jurafsky, James H. Martin.

Third Edition draft https://web.stanford.edu/~jurafsky/slp3/
2018. Capítulo 6

Neural Text Embeddings for Information Retrieval

Bhaskar Mitra, Nick Craswell

Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, 2017

1. MODELO PROBABILÍSTICO

- 1.1. Introducción
- 1.2. Modelo probabilístico

1.1 Introducción:¿por qué probabilidades en RI?

- En sistemas tradicionales de RI, el matching entre cada documento y la consulta se realiza en el espacio semántico impreciso de los términos.
- La teoría de la probabilidad proporciona una base de principios para el razonamiento incierto.
- ¿Podemos usar probabilidades para cuantificar nuestras incertidumbres?

1.1 Introducción: el problema del puntuación de documentos

- Dada una colección de documentos y una consulta del usuario, el sistema debe devolver una lista de documentos.
- Los métodos de puntuación son el núcleo de un Sistema de RI.
- Idea:
 - Utilizar la probabilidad de relevancia de cada documento con respecto a la necesidad de información.
 - P(R=1|document, query)

1.2 Modelo probabilístico

- Los resultados de recuperación de un modelo probabilístico dependen de la estimación de probabilidades.
- La primera asunción es que los términos están distribuidos de formas diferentes en los documentos relevantes y en los no relevantes.
- Un modelo probabilístico puntúa y ordena los documentos en orden decreciente de probabilidad de relevancia para la información requerida por el usuario, una vez las probabilidades han sido calculadas.
- En la fase de recuperación a cada documento se le asigna un valor que corresponde a la suma de probabilidades a partir de los términos comunes entre el documento y la consulta.

1.2 Modelo probabilístico:

Binary Independence Model: Se asume que cada término ocurre en cada documento de forma independiente.

De forma similar al modelo vectorial, se crea un vector que refleja la importancia de cada término.

Sea p_i la probabilidad de que un documento que contiene un término i sea relevante para una consulta.

Sea s_i la probabilidad de que un documento que contiene el término i sea no relevante para la consulta.

La puntuación se calcula como:

$$\sum_{i:d_i=1} \log \frac{p_i(1-s_i)}{s_i(1-p_i)}$$

 p_i = número de documentos relevantes que contienen el término i / número total de documentos relevantes s_i = número de documentos no relevantes que contienen el término i / número total de documentos no relevantes

1.2 Modelo probabilístico

Sean:

- n_i = número de documentos que contienen el término i
- r_i= número de documentos relevantes que contienen el término i
- N = número total de documentos
- R = número de documentos relevantes

Podemos expresar p_i y s_i como:

	Relevant	Non-relevant	Total
$d_i = 1$	r_i	$n_i - r_i$	n_i
$d_i = 0$	$R-r_i$	$N-n_i-R+r_i$	$N-r_i$
Total	R	N-R	N

1.2 Modelo probabilístico

La función de puntuación queda como:

$$\sum_{i:d_i=q_i=1} \log \frac{(r_i+0.5)/(R-r_i+0.5)}{(n_i-r_i+0.5)/(N-n_i-R+r_i+0.5)}$$

Se añade un factor 0,5 a cada componente para evitar los ceros en el denominador.

1.2 Modelo probabilístico: (Okapi) BM25

Popular y efectivo algoritmo de puntuación que incorpora la frecuencia de los términos en documento (2º factor) y consulta (3r factor).

$$\sum\nolimits_{i \in Q} \log \frac{(r_i + 0.5)/(R - r_i + 0.5)}{(n_i - r_i + 0.5)/(N - n_i - R + r_i + 0.5)} \cdot \frac{(k_1 + 1)f_i}{K + f_i} \cdot \frac{(k_2 + 1)qf_i}{k_2 + qf_i}$$

 f_i y qf_i son las frecuencias del término en documento y consulta respect. k_1 , k_2 y K son parámetros que se fijan empíricamente TREC: $k_1 = 1.2$, k_2 varía de 0 a 1000, b = 0.75

$$K = k_1((1-b) + b \cdot \frac{dl}{avdl})$$

para controlar el efecto de las diferentes longitudes de los documentos

dl es la longitud del documento avdl la longitud media de los documentos de la colección

2. REPRESENTACIÓN DE LAS PALABRAS

- 2.1. Las palabras y su contexto
- 2.2. Similitud entre palabras

2.1 Las palabras y su contexto

- Las palabras que aparecen en contextos similares tienden a tener significados similares.
- Este vínculo entre la similitud en la forma en que se distribuyen las palabras en los textos y la similitud en lo que significan se llama hipótesis distribucional.

2.1 Las palabras y su contexto

Hipótesis distribucional:

Zellig Harris (1954):

- Las palabras "oculista" y "oftalmólogo" ... suelen ocurrir en los mismos contextos
- Si A y B aparecen con frecuencia en los mismos contextos decimos que son sinónimos

Firth (1957):

"You shall know a word by the company it keeps!"

2.1 Las palabras y su contexto

Ejemplo:

A bottle of **tesgüino** is on the table Everybody likes **tesgüino Tesgüino** makes you drunk

We make **tesgüino** out of corn.

Por las palabras del contexto los humanos podemos conjeturar que el significado de *tesgüino* es una bebida alcohólica como la cerveza.

2.2 Similitud entre palabras

- Tradicionalmente en el procesamiento del lenguaje natural una palabra se ha representado como un elemento de un conjunto (un índice en un diccionario).
- Sin embargo, para múltiples aplicaciones, por ejemplo, el cálculo de la similitud semántica de textos, se hace necesario establecer distancias o similitudes entre palabras.

2.2 Similitud entre palabras

"fast" es similar a "rapid"

"tall" es similar a "height"

Question answering:

Q: "How tall is Mt. Everest?"

Candidate A: "The official **height** of Mount Everest is 29029 feet"

2.2 Similitud entre palabras

Idea: representar las palabras en un espacio vectorial de forma que cada palabra tendrá asociado un vector, y por tanto, un punto en ese espacio.

- Se modela el significado de una palabra embebiéndolo en un espacio vectorial.
- El 'significado' de una palabra es un vector de números Algunas representaciones vectoriales de las palabras suelen llamarse "embeddings".

Matriz término-documento

- En cada celda se guarda el contador de ocurrencias del término t en el documento d, (f_{t,d}).
- Cada documento se representa por un vector en $\mathbb{N}^{|V|}$, una columna de la matriz. Donde $V = n^0$ de términos diferentes de la colección

As You Like It		Twelfth Night	Julius Caesar	Henry V	
battle		1	1	8	15
soldier		2	2	12	36
fool	3	37	58	1	5
clown		6	117	0	0

Matriz término-documento

Dos documentos son similares si sus vectores lo son.

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0

Las palabras en la matriz término-documento

Cada palabra es un vector en N |N|, una fila de la matriz.

Donde N = número de documentos.

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0

Las palabras en la matriz término-documento

Dos palabras son similares si sus vectores lo son.

	As You Lil	ke It	Twelfth Night	Julius Caesar	Henry V
battle		1	1	8	15
soldier	_	2	2	12	36
fool		37	58	1	5
clown		6	117	0	0

La matriz término-contexto

- En lugar de documentos completos se usan contextos más pequeños:
 - Párrafos
 - Ventanas de ± n palabras
- Una palabra se representa con un vector calculado con los contadores de las palabras.
- Se pasa de vectores de dimensión N (talla de la colección) a |V| (talla del diccionario).
- La matriz palabra-palabra es |V|x|V|.

La matriz término-contexto para la similitud entre palabras

Una palabra se representa como un vector de esta matriz.

Dos palabras son similares en su significado si sus vectores de contexto lo son.

	aardvark	computer	data	pinch	result	sugar	•••
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	

La matriz término-contexto

- Se muestra únicamente una pequeña parte de la matriz palabra-palabra: 4x6, de 50,000 x 50,000
 - Es muy dispersa
 - La mayor parte de los componentes son 0.
- La talla de la ventana depende del objetivo:
 - Tallas menores captan representaciones sintácticas (1-3 muy sintácticas)
 - Tallas mayores captan representaciones semánticas (4-10 más semánticas)

3. REPRESENTACIONES VECTORIALES DE LAS PALABRAS

- 3.1 Vectores dispersos
- 3.2 Vectores densos

Representaciones vectoriales de las palabras

Representación one-hot (representación local):

Cada término de un vocabulario V es representado como un vector binario:

$$\vec{v} \in \{0,1\}^{|V|}$$

Donde uno de los valores del vector es 1 y el resto 0.

Cada posición en el vector tiene asociado un término.

Representaciones vectoriales de las palabras

Representación distribuida

 Cada término de un vocabulario V es representado como un vector de reales de dimensión d:

$$\vec{v} \in \mathbb{R}^d$$

Criterio para la representación vectorial de las palabras:

Dos palabras son similares si aparecen en contextos similares

- Representaciones vectoriales de las palabras:
 - Vectores dispersos (matriz palabra-palabra)
 - Vectores densos (embeddings)

3.1. Vectores dispersos

- Las simples frecuencias de ocurrencia en unos textos de referencia no representan una buena medida para la asociación de palabras.
- Se necesita una medida que represente mejor si una palabra de contexto es particularmente informativa sobre la palabra objetivo:

Positive Pointwise Mutual Information (PPMI)

3.1. Vectores dispersos

Positive Pointwise Mutual Information (PPMI)

Una medida de cuánto más coocurren dos palabras comparado con lo esperado si fueran independientes

$$PMI(X, Y) = \log_2 \frac{P(x, y)}{P(x)P(y)}$$

PMI entre dos palabras:

$$PMI(word_1, word_2) = \log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}$$

Es una medida muy útil cuando se requiere encontrar palabras que están fuertemente relacionadas.

Vectores densos versus dispersos

- ¿Por qué vectores densos?
- Vectores de menor dimensión pueden ser usados más fácilmente como características en herramientas de machine learning (menos parámetros a ajustar)
- Son capaces de generalizar mejor que los contadores explícitos.
- Suelen captar mejor la sinonímia:

Vectores densos versus dispersos

- Los vectores PPMI son:
 - ✓ grandes (longitudes 20,000-50,000)
 - √ dispersos (la mayor parte de los componentes son cero)
- Alternativa: estimar vectores que sean:
 - ✓ pequeños (longitudes 200-1000)
 - √ densos (la mayor parte de los componentes son distintos de cero)

3.2. Vectores densos

Tres métodos para obtener vectores densos:

- Singular Value Decomposition (SVD)
 un caso particular es el conocido Latent Semantic Analysis (LSA)
- Neural Language Model
 basado en modelos predictivos skip-grams and CBOW
- Brown clustering

3.2. Vectores densos: word2vec

- Skip-gram (Mikolov et al. 2013a) CBOW (Mikolov et al. 2013b)
- Se aprenden embeddings como parte del proceso de predicción de palabras.
- Se entrena una red neuronal para la predicción de palabras vecinas
 - Inspirado en modelos de lenguaje neuronales.
 - En el proceso, se aprenden embeddings densos para las palabras del corpus de entrenamiento.

3.2. Vectores densos

3.2. Vectores densos

Ventajas:

- Entrenamiento más rápido que en otras aproximaciones
- Herramientas disponibles (word2vec, fastText, GloVe, entre otros)
- Disponibles conjuntos de embeddings preentrenados!
- Entrenamiento no supervisado

3.2. Vectores densos: word2vec

Propiedades: capturan relaciones semánticas

vector('king') - vector('man') + vector('woman') \approx vector('queen') vector('Paris') - vector('France') + vector('Italy') \approx vector('Rome')

Embeddings en Rec. de Información

Los embeddings de términos pueden ser incorporados a las aproximaciones que hemos visto de Recuperación de Información de dos formas principalmente:

- La consulta y el documento son comparados directamente en el espacio de embeddings
- Se usan los embeddings para generar una expansión de la consulta a otros términos del vocabulario, y se lleva a cabo la búsqueda en el sistema de RI a partir de la consulta expandida.

4. MODELOS NEURONALES PARA RECUPERACIÓN DE INFORMACIÓN (RI)

Modelos neuronales para RI

Modelos neuronales para RI

Los modelos neuronales pueden usarse para:

- Estimar la relevancia
- Generar buenas representaciones vectoriales de consultas y documentos
- Ambos

Modelos neuronales para RI: estimar la relevancia

Modelos neuronales para RI: estimar la relevancia

En estos modelos:

- Se calcula una representación de la consulta y del documento usando un conjunto de características definidas manualmente
- La red neuronal, cuyos parámetros son estimados en una fase de entrenamiento, es usada para el cálculo de la relevancia.

Modelos neuronales para RI: representaciones de consulta y documento

Modelos neuronales para RI: representaciones de consulta y documento

- Otros modelos neuronales para RI participan en la estimación de las representaciones vectoriales (embeddings) del texto de la consulta y el documento.
- Se usan dentro de los modelos RI tradicionales con métricas de similitud simples (por ejemplo, similitud de coseno).
- Estos modelos pueden aprender embeddings especializados para tareas de RI, o embeddings genéricos de forma no supervisada en base a textos independientes.

Modelos neuronales para RI: expansión de la consulta

Modelos neuronales para RI: expansión de la consulta

Los modelos neuronales pueden ser usados también para expandir la consulta antes de aplicar técnicas tradicionales de RI:

Se trata de encontrar buenas expansiones de los términos basada en la cercanía en el espacio de embeddings.

Modelos neuronales para RI: embeddings de textos a partir de sus términos

Una estrategia popular para usar embeddings en RI implica derivar una representación vectorial densa para la consulta y el documento a partir de los embeddings de los términos individuales en los textos correspondientes.

Los embeddings de los términos pueden ser agregados de diferentes formas:

- Average Word (or term) Embeddings (AWE).
- Combinaciones no lineales de los vectores de términos, como Fisher Kernel Framework.