| Name of Student  | <u>Li Xianzhe</u> | Score |
|------------------|-------------------|-------|
|                  |                   |       |
| Student Number _ | <u>2022214880</u> | Date  |

# EE 188L Lab 4: Node-Voltage & Mesh-Current Analysis EE 188L Electrical Engineering I

NAU + CQUPT (Fall 2021)

#### **Summary**

The purpose of this lab is first to show with measurements that **Kirchhoff's Current Law** (**KCL**) and **Kirchhoff's Voltage Law** (**KVL**) can be used to analyze a circuit by writing **Nodal & Mesh Equations**. The measurements of currents **leaving** each node will add to **zero** as required by **KCL**. The student will then treat the measured voltages (with respect to the reference node) as unknowns, and solve for those voltages by Node-Voltage or (Nodal Analysis) Method. Measured and calculated voltages will be compared.

Also, mesh-current equations will be written around the 3 meshes in the circuit using the measured resistances. The simultaneous equations formed will be solved in **Excel or Matlab** to derive individual mesh currents. These will then be compared to actual measured branch currents.

#### I. Test bench equipment

#### **Dual DC Power Supply:**

The **Dual DC PS** has **two independent** ideal voltage sources that can provide voltages at the same time: 0 to+15VDC and 0 to -15VDC. For this experiment, **both** power supplies are used at the same time. The method to produce a **+5VDC** will be explained by the **Instructor**.

**Digital Multimeter (DMM):** The DMM is capable of **measuring resistances**, **voltages** and **currents**. The **DMM** measurement procedures will be discussed by the **Instructor**.

#### II. Measuring Resistance

Locate 5 resistors with the values given below; **measure** the <u>actual resistance</u> with the **DMM** in **Resistance mode**. Record the actual values to 2 decimal places (for example if R<sub>2</sub> measures=> 2.7132k, use 2.71k):

| $R_1 = 3.9k \Rightarrow 3.85$ | $\underline{68k\Omega}$ (measured) |
|-------------------------------|------------------------------------|
| $R_2 = 6.8k => 6.78$          | $88k\Omega$ (measured)             |
| $R_3 = 1.3k => 1.30$          | <u>(measured)</u>                  |
| $R_4 = 2.7k => $ 2.70         | $0.01 \text{k}\Omega$ (measured)   |
| $R_5 = 1.8k => 1.77$          | $\sqrt{8k\Omega}$ (measured)       |

#### III. Circuit

On the **BB** put resistors **R**<sub>1</sub>, **R**<sub>2</sub>, **R**<sub>3</sub>, **R**<sub>4</sub>, **R**<sub>5</sub> and the **two Power Supplies** (**PS**) as shown in the schematic below. <u>Note</u>: Make the two **PS** <u>independent</u> as explained by the Instructor.



Adjust the PS voltage,  $V_1$ , of the PS to  $V_1 = +12V$  with respect to its own reference.  $\rightarrow$  Measure with the DMM to be sure!

Adjust the PS voltage,  $V_2$ , of the PS to  $V_2 = +5V$  with respect to its own reversed reference, by using the black as the + reference and the red as the - reference.  $\rightarrow$  Measure with the DMM to be sure!

### IV. KCL and Node-Voltage Analysis

Choose <u>node C</u> for nodal voltages' reference zero.

| Measure and record voltages $V_A$ (at node A) and $V_B$ (at node B) $\underline{w}$ | vith |
|-------------------------------------------------------------------------------------|------|
| respect to reference zero at node C.                                                |      |

$$V_A = \underline{\qquad \qquad 5.292V} \qquad \qquad \text{(measured)}$$
 $V_B = \underline{\qquad \qquad 4.038V} \qquad \qquad \text{(measured)}$ 

At node A measure and record the currents <u>leaving the node</u>.

→ Listen to the Instructor's explanation on how to connect the DMM in series in a circuit to measure current.

```
\begin{split} I_{LeftA} &= \underline{\hspace{0.5cm}} -1.740 \underline{mA} \\ I_{RightA} &= \underline{\hspace{0.5cm}} 0.960 \underline{mA} \\ I_{DownA} &= \underline{\hspace{0.5cm}} 0.780 \underline{mA} \\ I_{TotalNodeA} &= I_{Left} + I_{Right} + I_{Down} = \underline{\hspace{0.5cm}} \underline{\hspace{0.5cm}} 0\underline{mA} \\ \end{split} \tag{Should be close to 0)}
```

At node B measure and record the currents <u>leaving the node</u>.

```
\begin{split} I_{LeftB} &= \underline{\quad \quad -0.959mA} \\ I_{RightB} &= \underline{\quad \quad -0.535mA} \\ I_{DownB} &= \underline{\quad \quad 1.495mA} \\ I_{TotalNodeB} &= I_{Left} + I_{Right} + I_{Down} = \underline{\quad \quad 0.001mA} \quad \text{(Should be close to 0)} \end{split}
```

## **Nodal Analysis:**

Set-up the **Nodal Equations** by treating  $V_A$ ,  $V_B$  as <u>unknowns</u> and applying KCL at **nodes** A, B.

Node-voltage equations:

Node A

 $(12-V_A)/R_1=V_A/R_2+(V_A-V_B)/R_3$ 

 $(12-V_A)/3858 = V_A/6788 + (V_A-V_B)/1304$ 

(1/6788+1/1304+1/3858)VA-1/1304VB=12/3858

#### 0.001173392VA-0.000766871VB=0.00311042

#### Node B

 $\frac{(V_A-V_B)/R_3=(V_B-5)/R_5+V_B/R_4}{(V_A-V_B)/1304=(V_B-5)/1778+V_B/2701}$   $\frac{1/1304VA-(1/1304+1/1778+1/2701)VB=-5/1778}{0.000766871VA-0.001699534VB=-0.002812148}$ 

<u>NOTE</u>: Use the <u>measured</u> values of  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_4$ ,  $R_5$ , <u>NOT</u> the listed values when setting up the equations!

$$V_A = \underline{\hspace{1cm}}$$
 (calculated)  $V_B = \underline{\hspace{1cm}}$  (calculated)

<u>Compare</u> the <u>calculated values</u> to the <u>measured values</u>. (They should be pretty close!)

- V. Questions and Mesh-current analysis
  - **A. Node-Voltage analysis** is a very powerful method to analyze circuits by generating **independent** equations. The **measured currents** leaving each node must add up to zero. **Why?**

Due to KCL, the current flowing into the node is the same as the current flowing out of the node.

**B.** We also have learned in class how to solve circuits with **Mesh Current analysis** by generating **independent** equations using **KVL**.

Next, solve this circuit by **mesh analysis**.

- $\rightarrow$  First, Form 3 meshes & generate equations for  $i_1$ ,  $i_2$ , &  $i_3$ .
- → NOTE: Use the measured values of  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_4$ ,  $R_5$  NOT the listed values when setting up the equations!



# Mesh-current equations:

#### Mesh 1:

 $12=R_1i_1+R_2(i_1-i_2)$ 

 $12 = 3858i_1 + 6788(i_1 - i_2)$ 

10646i1-6788i2=12

#### Mesh 2:

 $\underline{R_2(i_1\text{-}i_2)} \! = \! \underline{R_3i_2} \! + \! \underline{R_4(i_2\text{-}i_3)}$ 

 $\underline{6788(i_1-i_2)}=1304i_2+2701(i_2-i_3)$ 

6788i1-10793i2+2701i3=0

#### Mesh 3:

$$\frac{(i_2-i_3)R_4=R_5i_3+5}{(i_2-i_3)2701=1778i_3+5}$$

$$2701i2-4479i3=5$$

- $\rightarrow$  Solve for  $i_1$ ,  $i_2$ , &  $i_3$  using Excel or Matlab
- → Use Excel's MMULT & MINVERSE formulas, or Matlab, to solve the simultaneous equations.
- → Attach your Excel or Matlab printout!

→ Write 
$$i_1 = 0.001738$$
A  $i_2 = 0.000959$   $i_3 = -0.000538$ 

→ Does 
$$(i_1 - i_2) * \mathbf{R}_2 = \underline{5.289 \mathbf{V}} = \mathbf{V}_A$$
 from the Nodal Analysis? Yes.

→ Does 
$$(i_2 - i_3)$$
 \*R<sub>4</sub> =  $4.043$ V = V<sub>B</sub> from the Nodal Analysis? Yes.



# Important: Get the lab instructor's signature & date below, no signature means no marks!

| Signature of instructor | Date: |
|-------------------------|-------|
|                         | _     |
| Name of student         | Date: |

|                            |       | 1      |
|----------------------------|-------|--------|
| Name of Student / Xianhe   | Score | clu 23 |
| Student Number WYVU 880.   | Date  | /      |
| EE 188L Lab 4: Node-Voltag |       | alysis |
|                            |       |        |