ÜBUNGEN ZUR VORLESUNG GRUNDBEGRIFFE DER THEORETISCHEN INFORMATIK

THOMAS SCHWENTICK

JONAS SCHMIDT, JENNIFER TODTENHOEFER ERIK VAN DEN AKKER

SoSe 2024 PRÄSENZBLATT 6 21.-22.05.

Präsenzaufgabe 6.1 [Kellerautomaten interpretieren]

Sei \mathcal{A} der folgende mit leerem Keller akzeptierende PDA über dem Eingabealphabet $\Sigma = \{a, b\}$ und dem Kelleralphabet $\Gamma = \{A, B, \#\}$ mit dem initialen Kellersymbol #.

- a) Geben Sie eine akzeptierende Berechnung von \mathcal{A} bei Eingabe bbbababa an.
- b) Geben Sie die Sprache an, die vom Automaten \mathcal{A} entschieden wird. Begründen Sie Ihre Wahl, indem Sie für jeden Zustand seine intuitive Bedeutung im Zusammenspiel mit den möglichen Kellerinhalten angeben und insgesamt die Funktionsweise des Automaten kurz beschreiben.

Präsenzaufgabe 6.2 [Kellerautomaten konstruieren]

Sei die L die folgende kontextfreie Sprache.

$$L = \{a^i b^j c^k \mid i, j, k \in \mathbb{N}, \text{ mit } i = j \text{ oder } j = k\}$$

Konstruieren Sie einen PDA, der bei leerem Keller akzeptiert und die Sprache L entscheidet.

Präsenzaufgabe 6.3 [Verbindung zwischen PDAs und kontextfreien Grammatiken]

a) Es sei die kontextfreie Grammatik G durch die folgenden Regeln gegeben.

$$\begin{array}{ll} S \; \to \; A \\ A \; \to \; aAB \mid bA \mid cA \mid \varepsilon \\ B \; \to \; a \end{array}$$

Bestimmen Sie einen zu G äquivalenten PDA (Kellerautomaten), der bei leerem Keller akzeptiert. Folgen Sie dabei der Konstruktion aus der Beweisidee zu Satz 9.2 aus der Vorlesung.

Begründen Sie die Äquivalenz, indem Sie die von G erzeugte Sprache angeben und argumentieren, warum der von Ihnen konstruierte PDA diese Sprache entscheidet.

b) Es sei der PDA \mathcal{A} , der bei leerem Keller akzeptiert, wie folgt gegeben.

Bestimmen Sie eine zu \mathcal{A} äquivalente kontextfreie Grammatik. Folgen Sie dabei der Konstruktion aus der Beweisidee zu Satz 9.3 aus der Vorlesung.

Hinweis

Die Transitionen $(1, a, \gamma, 1, a\gamma)$ für $\gamma \in \{\#, a, b\}$ führen zu den Regeln

$$\begin{array}{rcl} X_{1,\#,1} & \rightarrow & aX_{1,a,1}X_{1,\#,1} \mid aX_{1,a,2}X_{2,\#,1} \\ X_{1,\#,2} & \rightarrow & aX_{1,a,1}X_{1,\#,2} \mid aX_{1,a,2}X_{2,\#,2} \\ X_{1,a,1} & \rightarrow & aX_{1,a,1}X_{1,a,1} \mid aX_{1,a,2}X_{2,a,1} \\ X_{1,a,2} & \rightarrow & aX_{1,a,1}X_{1,a,2} \mid aX_{1,a,2}X_{2,a,2} \\ X_{1,b,1} & \rightarrow & aX_{1,a,1}X_{1,b,1} \mid aX_{1,a,2}X_{2,b,1} \\ X_{1,b,2} & \rightarrow & aX_{1,a,1}X_{1,b,2} \mid aX_{1,a,2}X_{2,b,2} \end{array}$$

Diese Regeln sind Teil der gesuchten kontextfreien Grammatik und müssen nicht erneut angegeben werden.

Präsenzaufgabe 6.4 [Pumping-Lemma für kontextfreie Sprachen]

Wie im Folgenden beschrieben, sollen Sie als Team die Rolle eines Spielers in dem für Grammatiken angepassten Pumping-Lemma-Spiel zu einer Sprache L übernehmen:

- Spieler 1 wählt n,
- Spieler 2 wählt ein $z \in L$ mit $|z| \ge n$,
- Spieler 1 wählt u, v, w, x, y mit $z = uvwxy, vx \neq \varepsilon$ und $|vwx| \leq n$,
- Spieler 2 wählt k,
- Falls $uv^kwx^ky \notin L$, hat Spieler 2 gewonnen, andernfalls Spieler 1.

Ihr Team erhält eine der folgenden Sprachen:

- $L_1 = \{a^{\ell}b^m c^p d^q \mid \ell, m, p, q \in \mathbb{N}_0, \ell$
- $L_2 = \{ww^R w \mid w \in \{a, b\}^*\}$, wobei w^R für das Spiegelwort von w steht.
- a) Vorbereitungen im Team

- 1. Simulieren Sie in Ihrem Team das Pumping-Lemma Spiel aus der Vorlesung für diese Sprache mehrmals für verschiedene Entscheidungen von Spieler 1 und Spieler 2.
- 2. Entscheiden Sie sich, ob Sie als Team im Wettbewerb als Spieler 1 oder Spieler 2 antreten möchten.
- 3. Überlegen Sie sich eine Gewinnstrategie für Ihren Spieler.

b) Sparring

- 1. Ein Team wählt als Herausforderer den Spieler, für den es antritt.
- 2. Ein zweites Team tritt als der Gegenspieler an, wobei es sich in Phase a) nicht unbedingt für diesen Spieler vorbereitet haben muss.
- 3. Die Teams treffen abwechselnd ihre Entscheidung für ihren jeweiligen Spieler.