Programmering 1

Laboration 6: Funktioner

Denna laboration är tänkt att både utföras och **redovisas** under de schemalagda timmar som finns anslagna för ändamålet. Ifall du inte har möjlighet att delta i laborationstillfällena, eller inte hinner slutföra laborationen under den schemalagda tiden måste du redovisa dina resultat i en **skriftlig laborationsrapport** som skickas in via Moodle. Ett obligatoriskt delkrav för att kunna bli godkänd i kursen är att **alla laborationer är godkända**.

Obs: Vissa uppgifter (markerade med en asterisk) kommer att gås igenom gemensamt under laborationstillfällena. Dessa uppgifter godkänns alltså automatiskt om du deltar i laborationstillfället.

1. Funktioner och funktionsparametrar 1

Att göra: Skriv en funktion print_stars som skriver ut så många stjärnor som anges. T.ex. skall anropet print stars (6) skall alltså ge upphov till utskriften ******

2. Funktioner och funktionsparametrar 2

Att göra: Skriv en funktion print_chars som skriver ut ett valfritt tecken så många gånger som anges.

T.ex. skall anropet print chars (4, 'X') skall alltså ge upphov till utskriften XXXX

3. Funktioner och returvärden

Att göra: Som vi redan vet kan vindens kyleffekt beräknas enligt formeln

$$T_{eff} = 13.12 + 0.6215 \cdot T_a - 13.956 \cdot v^{0.16} + 0.48669 \cdot T_a \cdot v^{0.16}$$

där T_{eff} är den upplevda temperaturen,

 T_a är den uppmätta temperaturen angiven i Celcius, och

v är vindhastigheten angiven i meter per sekund.

Skriv en funktion **coolingEffect** som beräknar och returnerar kyleffekten, givet en uppmätt temperatur och vindhastighet.

Använd sedan funktionen för att skriva ut en tabell motsvarande den som finns på SMHI:s hemsida: http://www.smhi.se/kunskapsbanken/meteorologi/vindens-kyleffekt-1.259

4. (*) Funktioner och räckor

Skriv ett program med en funktion **array_max** som returnerar det största av heltalen i en räcka. Som parametrar till funktionen ges räckan och antalet element.

5. (*) Ekvationslösare för andragradsekvationer

Skriv ett program för att lösa kvadratiska andragradsekvationer som kan uttryckas i formen $a \cdot x^2 + b \cdot x + c = 0$ och lösas med avseende på x.

För t.ex. en ekvation $4 \cdot x^2 - 17 \cdot x - 15 = 0$ är alltså a = 4, b = -17 och c = -15.

Dessa ekvationer har lösningar som kan beräknas med formeln $x = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$

Om ekvationens determinant $b^2-4 \cdot a \cdot c < 0$ har ekvationen inga reella lösningar.

Om $b^2-4 \cdot a \cdot c=0$ har ekvationen **endast en reell lösning** (vilket också framgår av ekvationerna ovan eftersom $\sqrt{0}=0$)

Om $b^2-4 \cdot a \cdot c > 0$ har ekvationen **två reella lösningar** vilka bestäms enligt

$$x_1 = \frac{-b + \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$
 och $x_2 = \frac{-b - \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$

Skriv en funktion **solveQuadratic** som löser andragradsekvationer med hjälp av ovanstående ekvationer.

Ekvationen skall ta fyra **argument**: Heltalen **a**, **b** och **c** samt en räcka med plats för två **double**-värden.

Funktions **returvärde** skall vara ett heltal 0, 1 eller 2. En nolla innebär att ekvationen inte hade några rella lösningar. En etta innebär att ekvationen hade endast en reell lösning, och att denna lösning har lagrats i **double**-räckans första element. En tvåa innebär att ekvationen hade två reella lösningar, och att båda dessa lösningar har lagrats i **double**-räckan.

Skriv därefter ett program som använder sig av **solveQuadratic** för att lösa andragradsekvationer. Låt användaren mata in värden för a, b och c och skriv ut resultaten, t.ex. enligt modellen på nästa sida.

Enter values for a, b and c: 4 -17 -15

Roots are 5.000 and -0.750

Enter values for a, b and c: 4 - 20 25

Only one root: 2.500

Enter values for a, b and c: 1 1 2

No real roots!