Глава 8

Модулярна аритметика

8.1 Извличане на квадратен корен по модул p^k , p нечетно просто.

Да разгледаме първо случая k=1, т.е. решаването на сравнението

$$x^2 \equiv a \pmod{p}, \quad (a, p) = 1. \tag{8.1}$$

(Случаят (a, p) = p е тривиален.)

Това сравнение може да има само прости корени и следователно всяко от двете му решения се повдига с описания в \$ 3.3 метод (Hensel lifting) по единствен начин до корен по модул p^k . Следователно съществената част е решаването на сравнение (8.1), което ще опишем по-долу.

Съгласно критерия на Ойлер е необходимото и достатъчно условие (8.1) да има решение е

$$a^{\frac{p-1}{2}} \equiv 1 \pmod{p}. \tag{8.2}$$

Затова считаме, че (8.2) е изпълнено.

Твърдение 8.1.1 *Ако* $p \equiv 3$ *или* $p \equiv 7$ *по модул 8, то*

$$x \equiv \pm a^{\frac{p+1}{4}} \pmod{p}$$

са двете решения на (1.1).

Доказателство. Използвайки (1.2) получаваме

$$x^2 = a^{\frac{p+1}{2}} = a^{\frac{p-1}{2}} \cdot a \equiv a \pmod{p}.$$

Твърдение 8.1.2 $A \kappa o \ p \equiv 5 \pmod{8}, \ mo$

$$x \equiv \begin{cases} \pm a^{\frac{p+3}{8}}, & \text{при } a^{\frac{p-1}{4}} \equiv 1 \pmod{p} \\ \pm 2^{\frac{p-1}{4}} a^{\frac{p+3}{8}}, & \text{при } a^{\frac{p-1}{4}} \equiv -1 \pmod{p} \end{cases}$$

са двете решения на (1.1).

Доказателство. В първия случай имаме

$$x^2 = a^{\frac{p+3}{4}} = a \cdot a^{\frac{p-1}{4}} \equiv a \pmod{p}.$$

Във втория случай тъй като $\left(\frac{2}{p}\right)=-1$ за разглежданите стойности на p, то $2^{\frac{p-1}{2}} \equiv -1 \pmod{p}$. (Това показва, че 2 е примитивен корен по модул p и $2^{\frac{p-1}{4}} \equiv \sqrt{-1} \pmod{p}$.) Следователно

$$x^2 = 2^{\frac{p-1}{2}} a^{\frac{p-1}{4}} . a \equiv (-1)(-1)a \equiv a \pmod{p}.$$

Пример 8.1.1 Да се реши сравнението $x^2 \equiv 3 \pmod{37}$. p = 37 = 8.4 + 5 Тогава

$$3^{\frac{p+3}{4}} = 3^{10} \equiv -3 \not\equiv 1 \pmod{37}.$$

Следователно

$$x \equiv \pm 2^9.3^5 \equiv \pm 15 \pmod{37}.$$

Упражнение 8.1.1 Да се реши сравнението $x^2 \equiv 6 \pmod{53}$.

Случаят $p \equiv 1 \pmod{8}$

В този случай не може да дадем формула за решението, но ще опишем алгоритъма на Tonelli и Shanks.

Нека $p-1=2^em$, където m=2t+1 е нечетно. Алгоритъмът се базира на факта, че Силовата подгрупа G_2 , $|G_2|=2^e$ има нечетен индекс $m=(\mathbb{Z}_p^*:G_2)$ и най-често е малка (e не е голямо).

1. Намираме пораждащ z на $G_2 = \langle z \rangle$, т. е. $o(z) = 2^e$: Избираме $\gamma \in \mathbb{Z}_p^*$, което е к вадратичен неостатък, т. е. $\gamma^{\frac{p-1}{2}} \equiv -1 \pmod p$. Вероятността произволен елемент да е квадратичен неостатък е 1/2, така че много бързо се намира подходящото γ . Тъй като

$$(\gamma^m)^{2^{e-1}} = \gamma^{2^{e-1}m} = \gamma^{\frac{p-1}{2}} \equiv -1 \pmod{p},$$

то $o(\gamma^m) = 2^e$. Следователно може да положим

$$z = \gamma^m$$
.

2. Намираме n, такова че $a^m = z^{2n}$. Тъй като $(a^m)^{2^{e-1}}=a^{\frac{p-1}{2}}\equiv 1\pmod p$, то редът $o(a^m)$ е делител на 2^{e-1} . Следователно $a^m\in G_2^2=< z^2>$, т. е. $a^m=z^{2n}$. Ако e е малко, то най-бързо е да намерим предварително $< z^2>$ и сравнявайки да определим n. В общия случай всеки алгоритъм за намиране на дискретен логаритъм върши работа.

3. Полагаме $x = z^n a^{-t}$ Наистина

$$x^2 = z^{2n}a^{-2t} \equiv a^m a^{-2t} = a \pmod{p}.$$

Пример 8.1.2 Да се реши сравнението $x^2 \equiv 2 \pmod{41}$.

p=41=8.5+1 т.е. $m=5,\ t=2,\ e=3.$ Сравнението има решение, тъй като 2 е квадратичен остатък: $\left(\frac{2}{41}\right) = 1$. От $3^4 \equiv -1 \pmod{41}$ получаваме че $3^{20} \equiv -1 \pmod{41}$, т.е. 3 е квадратичен неостатък и полагаме $z=3^5\equiv -3\pmod{41}$. Следователно

$$G_2^2 = \langle z^2 \rangle = \{\pm 1, \pm 9\}.$$

Намираме $2^5 = 32 \equiv z^6 \pmod{41}$, откъдето $y = z^3 \equiv 14 \pmod{41}$. Следователно $x = \pm ua^{-2} = \pm 14.2^{-2} = \pm 7.21 \equiv \pm 7.2^{-1} \equiv \pm 24 \pmod{41}$.

Ето и един вариант на алгоритъма, който съдържа частта за намиране на дискретния логаритъм.

Алгоритъм

- 1. $u := z, b := a^m, x := a^{\frac{m+1}{2}}, k := e.$
- 2. Намери минималното естествено $0 \le \nu < k$, така че $b^{2^{\nu}} \equiv 1 \pmod{p}$.
- 3. while $\nu > 0$ do $c := u^{2^{k-\nu-1}}, \ u := c^2, \ x := xc, \ b := bu,$ $k := \nu$ and go to 2.
- 4. stop and return x.

При инициализирането $x^2 \equiv ba \pmod{p}$. След всяка стъпка това сравнение остава в сила за новите x и b, но редът на b намалява.

Пример 8.1.3 Да се реши сравнението $x^2 \equiv 2 \pmod{113}$.

 $113=2^4.7+1$, т. е. $m=7,\ e=4$. Тъй като $\left(\frac{2}{p}\right)=(-1)^{\frac{p^2-1}{8}}=1$, то 2 е квадратичен остатък, т. е. $2^{56} \equiv 1 \pmod{113}$.

Намираме квадратичен неостатък по модул 113:

$$\left(\frac{3}{113}\right) = (-1)^{56.1} \left(\frac{113}{3}\right) = \left(\frac{-1}{3}\right) = -1.$$

Полагаме $\gamma = 3$ и $z = 3^7 \equiv 40 \pmod{113}$

- 1. $u := 40, b := 2^7 \equiv 15 \pmod{113}, x := 2^4 = 16, k := e = 4.$
- 1. u:=40, b:=2=13 (mod 113), x:=2=16, $\kappa:=0=4$. 2. $b^2=225\equiv-1$, i.e. $b^{2^2}\equiv 1\pmod{113}$. Следователно $\nu=2$. 3. $\nu=2>0$ и следователно $c:=u^{2^{4-2-1}}=u^2=40^2\equiv 18\pmod{113}$.

$$x := xc = 16.18 \equiv 62 \pmod{113}$$

 $u := c^2 = 18^2 \equiv -15 \pmod{113}$
 $b := bu = 15(-15) = -225 \equiv 1 \pmod{113}$.

2'. $b \equiv 1$, r.e. $\nu = 0$. go to 4.

4. Търсеното решение е $x \equiv \pm 62 \pmod{113}$

Упражнение 8.1.2 Да се реши сравнението $x^2 \equiv 5 \pmod{40961}$.

(
$$p=2^{13}.5+1, \quad m=5, \ e=13, \ \gamma=3, \ z=243.$$
)

8.1.1 Представяне на числата във вида $x^2 + dy^2$.

Твърдение 8.1.3 Ако $p=x^2+dy^2,\ mo-d\ e\ \kappa вадратичен остатък по модул <math>p,\ m.\ e.$ $\left(\frac{-d}{p}\right)=1.$

Доказателството е очевидно: $(xy^{-1})^2 \equiv -d \pmod{p}$.

Алгоритъм 1 (Cornacchia)

- 1. Проверяваме дали $\left(\frac{-d}{p}\right) = 1$. Ако не е изпълнено: отказ.
- 2. Решаваме $z^2 \equiv -d \pmod{p}$. От двете решения $\pm z$ което е > p/2 го означаваме с a, другото (което е < p/2) с b. Докато $b > \sqrt{p}$ прилагаме алгоритъма на Евклид за двойката (a,b), т. е. $(a,b) := (b, a \pmod{b})$.
- 3. Ако $p-b^2=dt^2$, то полагаме $x:=b,\quad y=t$. В противния случай: отказ (представянето е невъзможно).

Пример 8.1.4 Да се представи p=31 във вида x^2+3y^2 . Със свойствата на символа на Льожандър и квадратичния закон за реципрочност се проверява, че -3 е квадратичен остатък по модул 31. $(\pm 11)^2 \equiv -3 \pmod{31}$. Тъй като $-11 \equiv 20 \pmod{31}$ последователно получаваме двойките (20,9), (9,2). Числото $2 < \sqrt{31}$. Сега намираме $31-2^2=27=3.3^2$, което дава $31=2^2+3.3^2$.

Пример 8.1.5 Да се представи p=43 във вида x^2+5y^2 . Със свойствата на символа на Льожандър и квадратичния закон за реципрочност се проверява, че -5 е квадрат по модул 43. Лесно се намира и решението $(\pm 9)^2 \equiv -5 \pmod{43}$. Тъй като $-9 \equiv 34 \pmod{43}$ последователно получаваме двойките (34,9), (9,7), (7,2). Числото $2 < \sqrt{43}$. $43-2^2=39$, което не се дели на 5. Следователно представянето е невъзможно.

8.2 Метод на Монгомери за умножение и повдигане в степен.

Методът на Монгомери е метод за аритметика по голям нечетен модул m, (m,2) = 1. Нужда от такива изчисления възниква при реализацията на редица криптографски протоколи.

При реализацията на метода на Монгомери числата се считат за записани в B-ична бройна система, където $B=2^k$, където k най-често е дължината на използваната дума в компютъра. Едно число се превръща от двоичен запис в B-ичен като битовете му се групират по k, т.е. $A=a_{n-1}B^{n-1}+a_{n-2}B^{n-2}+\cdots+a_1B+a_0,\ 0\leq a_i\leq 2^k-1$ е запис в B-ична бройна система, а всяка "цифра" a_i се определя с k бита запис. Като двоично числото A има дължина kn бита. Следователно, ако искаме простия модул p да е с дължина L=1024 бита, то трябва да обработваме B-ични числа с дължина n=64 и да съхранявяме евентуално с дължина 128, т.е. 256 байта. Описаният по-долу метод на Монтгомери позволява умножението и повдигането в степен да се извършват чрез

умножение на едноразрядно число с многоразрядно, т.е. оперира се с n+1 разрядни числа (а не с 2n).

Умножението и делението на числото A с B представляват преместване на двоичния му запис на k позиции, съответно, на ляво и на дясно. При преместване на дясно "изпадналите" k бита задават остатъка от делението, а полученото число е частното.

Функция $\mathbf{msm}(a,x)$: Умножава едноцифрено с многоцифрено B-ично число, т.е. $0 \le a \le B-1, \ X=x_{n-1}B^{n-1}+x_{n-2}B^{n-2}+\cdots+x_1B+x_0=(x_{n-1}x_{n-2}\dots x_1x_0)_B < B^n.$ INPUT: a, x.

Variable: $A = (A_1 A_0)_B$ двуцифрено B-ично число, т.е. 32 бита

OUTPUT: $y = ax = (y_n y_{n-1} \dots y_0)_B$

- 1. A := 0
- 2. For i from 0 to n-1 do

$$A := ax_i + A_1, \quad y_i := A_0$$

3. $y_n := A_1$.

Изпълнението на функцията изисква n умножения (базисни умножения) на едноцифрени (B-ични) числа и още толкова събирания с евентуален пренос.

Сега да пристъпим към описанието на метода. Нека $R=B^n,\ m< R$ и $\gcd(m,R)=1$. (Числото n обикновено е и избрано да е в сила и $B^{n-1}< m$.) Да означим с $m_1\equiv -m^{-1}\pmod B,\ m_1< B$.

Функция mng(x,y): Дава в резултат произведението $XYR^{-1} \pmod{m}$, наричано произведение на Монтгомери, където $X < m, \ Y < m$.

INPUT: $X = (x_{n-1}x_{n-2} \dots x_1x_0)_B, Y = (y_{n-1} \dots y_0)_B.$

Variable: $A = (a_n \dots a_1 a_0)_B - n + 1$ -цифрено B-ично число,

OUTPUT: $XYR^{-1} \pmod{m}$.

- 1. A := 0
- 2. For i from 0 to n-1 do

 $u := \mathbf{msm}(a_0 + x_i y_0, m_1) \pmod{B}$

 $A := A + \mathbf{msm}(x_i, Y) + \mathbf{msm}(u, m)$

A:=A/B, т.е. преместваме A с k бита надясно. (изпадащите k бита трябва да са нули)

- 3. Ако A > m, то A := A m.
- 4. mng(x, y) := A.

Изпълнението на функцията изисква 2n базисни умножения, 2n изпълнения на функцията \mathbf{msn} и 2n(n+1)+n събирания. Като вземем предвид казаното по-горе следва, че \mathbf{mng} изисква $2n^2+2n$ базисни умножения и $4n^2+3n$ базисни събирания.

Да отбележим, че на всяка стъпка A < 2m-1. Наистина началната стойност е 0 < 2m-1. Предполагаме, че на i-1-та стъпка неравенството остава в сила. Тогава за i-тата стъпка имаме

$$A < [(2m-1) + (B-1)(m-1) + (B-1)m]/B = (2mB - B + 1)/B < 2m - 1.$$

Следователно A наистина е n+1-значно B-ично число.

Пример 8.2.1 Нека $m=63=333_4$ и B=4. Да изберем $R=4^3=64$, т. е. n=3. Нека $X=26_{10}=122_4$; $Y=31_{10}=133_4$. За произведението им по Монгомери получаваме

$$\mathbf{mng}(X, Y) = 26.31.64^{-1} \equiv 26.31.1 \equiv 50_{10} = 302_4 \pmod{63}.$$

Сега да проверим, че същият резултат се получава и с алторитъма.

$$-m^{-1} = 63^{-1} \equiv -1(-1)^{-1} = 1 \pmod{4}$$
, r. e. $m_1 = 1$.

1. Полагаме A=0.

2. a)
$$i=0, \quad a_0=0. \quad u=(0+2.3).1=6=12_4=2 \pmod 4.$$

$$A=0+2.133_4+2.333_4=2330_4, \quad A=A/4=233_4.$$
 6) $i=1, \quad a_0=3. \quad u=(3+2.3).1=9=21_4=1 \pmod 4.$
$$A=233_4+2.133_4+1.333_4=233_4+332_4+333_4=2230_4, \quad A=A/4=223_4.$$

B) i = 2, $a_0 = 3$. $u = (3 + 1.3).1 = 12_4 = 2 \pmod{4}$.

 $A = 223_4 + 1.133_4 + 2.333_4 = 233_4 + 133_4 + 1332_4 = 3020_4$, $A = A/4 = 302_4$. $\mathbf{mng}(X, Y) = 302_4 = 50_{10}$

Функция $\exp(X,e)$: Пресмята X^e по модул m. Ползва като фиксирани параметри $R \pmod m$ и $R_1 = R^2 \pmod m < m$

INPUT: $X = (x_{n-1}x_{n-2} \dots x_1x_0)_B, \ e = (e_te_{t-1} \dots e_0)_B.$

Variable: A, n+1-цифрено B-ично число,

OUTPUT: $X^e \pmod{m}$.

- $1. A := R \pmod{m}$
- 2. $X_1 := \mathbf{mng}(X, R_1),$

(което е равно на $XR \pmod{m}$)

3. For i from t down to 0 do

$$A := mng(A, A)$$
 $(= A^2R^{-1} \pmod{m})$ axo $e_i = 1$, to $A := mng(A, X_1)$ $(= AX \pmod{m})$ $(= AR^{-1})$

5. $\exp(X, e) := A$

Изпълнението на функцията изисква най-много 2t+2 изпълнения на \mathbf{mng} , което влече 4n(n+1)(t+1) базисни умножения и (t+1)n(4n+3) базисни събирания.

Пример 8.2.2 Да пресметнем 13^5 по модул m = 61.

Избираме $R=64\equiv 3\pmod{61}$ и B=4. Изчисляваме $R^2\equiv R_1=9\pmod{61}$. Полагаме $X=13_{10}=31_4,\quad e=5_{10}=101_2,$ т.е. $e_2=1,\ e_1=0,\ e_0=1.$

- 1. $A := R \equiv 3 \pmod{61}$.
- 2. $X_1 := \mathbf{mng}(13, 9) = 13.9.3^{-1} \equiv 39 \pmod{61}$.
- 3. i = 2

$$A := mng(3,3) = 3.3.3^{-1} \equiv 3 \pmod{61}$$

$$e_2 = 1 \implies A := mng(3,39) = 3.39.3^{-1} \equiv 39 \pmod{61}$$

$$i = 1$$

$$A := mng(39,39) = 39.39.3^{-1} \equiv 19 \pmod{61}$$

$$e_1 = 0 \implies A = 19$$

$$i = 0$$

$$A := mng(19,19) = 19.19.3^{-1} \equiv 39 \pmod{61}$$

$$e_0 = 1 \implies A := mng(39,39) = 39.39.3^{-1} \equiv 19 \pmod{61}$$

$$4. A :== mng(19,1) = 19.1.3^{-1} \equiv 47 \pmod{61}.$$

Следователно $13^5 \equiv 47 \pmod{61}$.