#### Financial Mathematics

MATH 5870/6870<sup>1</sup> Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on August 6, 2021

Auburn University
Auburn AL

<sup>&</sup>lt;sup>1</sup>Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson. 2013.

# Chapter 3. Insurance, Collars, and Other Strategies

## Chapter 3. Insurance, Collars, and Other Strategies

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- $\S$  3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

## Chapter 3. Insurance, Collars, and Other Strategies

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

It is possible to mimic a long forward position on an asset by

buying a call + selling a put,

with each option having the same strike price and expiration time.

Ш

A synthetic forward

Example 3.2-1 Working with the S&R index. Suppose that

| 6-month interest rate                | 2%       |
|--------------------------------------|----------|
| premium for 1000-strike 6-month call | \$93.809 |
| premium for 1000-strike 6-month put  | \$74.201 |

Draw profit digram for the combined position of a purchased call with a written put, namely,



Solution.



#### A synthetic long forward contract

We pay the net option premium

We pay the strike price

The actual forward

We pay zero premium

We pay the forward price

### **Basic Assumption**

The net cost of buying the index using options

must equal

the net cost of buying the index using a forward contract.

#### **NO ARBITRAGE!**

#### The Put-Call parity equation

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}(F_{0,T} - K)$$

- ► K: strike price
- ightharpoonup T: expiration date
- ightharpoonup Call $(\cdot, \circ)$ : the premium for call.
- ightharpoonup Put( $\cdot$ ,  $\circ$ ): the premium for put.
- ▶  $F_{0,T}$ : the forward price at time T if one enters at time 0 into a long forward position.
- ightharpoonup PV(·): the present value function.

Example 3.2-2 Check Example 3.2-1 to see if the put-call parity equation is satisfied.

Solution. We need to check:

$$\$93.809 - \$74.201 \stackrel{?}{=} PV(\$1,000 \times 1.02 - \$1,000)$$

Clearly, LHS = \$19.61. On the other hand, the RHS is equal to

$$\begin{aligned} \text{PV}(\$1,000 \times 1.02 - \$1,000) &= \text{PV} (1,000 \times (1.02 - 1)) \\ &= \text{PV} (1,000 \times 0.02) \\ &= \frac{1,000 \times 0.02}{1.02} \\ &= \$19.61. \end{aligned}$$

Hence, the put-call parity equation is satisfied.

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T} - K)$$

$$\updownarrow$$

$$\operatorname{PV}(F_{0,T}) + \operatorname{Put}(K, T) = \operatorname{Call}(K, T) + \operatorname{PV}(K)$$

Buying the index and buying the put

generate the same payoff as

buying the call and buying a zero-coupon bond (i.e. lending)  $\mathrm{PV}(K)$ 

$$\begin{split} \operatorname{Call}(K,\mathcal{T}) - \operatorname{Put}(K,\mathcal{T}) &= \operatorname{PV}\left(F_{0,\mathcal{T}} - K\right) \\ & \updownarrow \\ \operatorname{PV}\left(F_{0,\mathcal{T}}\right) - \operatorname{Call}(K,\mathcal{T}) &= \operatorname{PV}\left(K\right) - \operatorname{Put}(K,\mathcal{T}) \end{split}$$

Writing a covered call has the same profit as lending PV(K) and selling a put