Chapter 4: Limits and Continuity

Author: Meng-Gen Tsai Email: plover@gmail.com

Continuity of real-valued functions

Exercise 4.19. Let f be continuous on [a,b] and define g as follows: g(a) = f(a) and, for $a < x \le b$, let g(x) be the maximum value of f in the subinterval [a,x]. Show that g is continuous on [a,b].

Indeed, $g(x) = \max_{a < t < x} f(t)$ for $x \in [a, b]$.

Proof.

- (1) f is continuous on [a,b] at a point $p \iff$ Given any $\epsilon' > 0$, there exists $\delta' > 0$ such that $|f(x) f(p)| < \epsilon'$ whenever $|x p| < \delta'$ (and $x \in [a,b]$). We left ϵ' and δ' undecided temporarily.
- (2) To estimate g on

$$[p-\delta',p+\delta']\cap [a,b],$$

we need to study the behavior of f on $[a, p + \delta'] \cap [a, b]$ (by the definition of g(x)), and then use the continuity of f to establish the desired result.

- (3) Look at where f takes the maximum value over on $[a, p + \delta'] \cap [a, b]$ at. There are two possible cases (might overlapped):
 - (a) At a point in $[a, p \delta'] \cap [a, b]$. In this case g is constant on $[p \delta', p + \delta'] \cap [a, b]$, or |g(x) g(p)| = 0.
 - (b) At a point $q \in (p \delta', p + \delta'] \cap [a, b]$. For any $x \in [p \delta', p + \delta'] \cap [a, b]$,
 - (i) $f(p) \epsilon' < g(x)$ by the maximality of g on [a, x].
 - (ii) $g(x) \leq f(q) < f(p) + \epsilon'$ since g is an increasing function and f takes the maximum value over on $[a, p + \delta'] \cap [a, b]$ at $q \in (p \delta', p + \delta'] \cap [a, b]$.

By (i)(i),

$$f(p) - \epsilon' < g(x) < f(p) + \epsilon'$$

for any $x \in [p - \delta', p + \delta'] \cap [a, b]$ (especially x = p). Therefore,

$$|g(x) - g(p)| < 2\epsilon'$$
 whenever $|x - p| < \delta'$ (and $x \in [a, b]$).

By (a)(b), we have $|g(x)-g(p)|<2\epsilon'$ whenever $|x-p|<\delta'(\text{and }x\in[a,b])$ in any cases.

(4) Retake $\epsilon' = \frac{\epsilon}{2} > 0$ and $\delta = \delta' > 0$.

Continuity in metric spaces

In Exercise 4.29 through 4.33, we assume that $f: S \to T$ is a function from one metric space (S, d_S) to another (T, d_T) .

Exercise 4.29. Prove that f is continuous on S if and only if

$$f^{-1}(B^{\circ}) \subseteq (f^{-1}(B))^{\circ}$$
 for every subset B of T.

Denote the interior of any set S by S° .

Proof (On topological spaces).

 $(1) \iff$

$$\forall x \in f^{-1}(B^{\circ}) \Longrightarrow f(x) \in B^{\circ}$$

$$\Longrightarrow \exists \text{ open neighborhood } V \subseteq B^{\circ} \subseteq B \text{ containing } f(x)$$

$$\Longrightarrow x \in f^{-1}(V) \subseteq f^{-1}(B)$$

$$\Longrightarrow f^{-1}(V) \text{ is open in } S \text{ since } f \text{ is continuous}$$

$$\Longrightarrow f^{-1}(V) \text{ is open neighborhood } \subseteq f^{-1}(B) \text{ containing } x$$

$$\Longrightarrow x \in (f^{-1}(B))^{\circ}.$$

(2) (\Leftarrow) Given any open subset V of T, need to show $U = f^{-1}(V)$ is open in S.

$$f^{-1}(V) = f^{-1}(V^{\circ})$$
 (V is open)
 $\subseteq (f^{-1}(V))^{\circ}$ (Assumption)

So $U \subseteq U^{\circ}$ or $U = U^{\circ}$ is open.

Exercise 4.30. Prove that f is continuous on S if and only if

$$f(\overline{A}) \subseteq \overline{f(A)}$$
 for every subset A of S.

Denote the closure of any set S by \overline{S} .

Proof (On topological spaces).

(1) (\Longrightarrow) Since f is continuous and $\overline{f(A)}$ is closed, $f^{-1}(\overline{f(A)})$ is closed. Hence,

$$f^{-1}(\overline{f(A)}) \supseteq f^{-1}(f(A)) \qquad \qquad \text{(Monotonicity of } f^{-1})$$

$$\supseteq A, \qquad \qquad \text{(Exercise 2.7(a))}$$

$$\overline{A} \subseteq f^{-1}(\overline{f(A)}), \qquad \qquad \text{(Monotonicity of closure)}$$

$$f(\overline{A}) \subseteq f(f^{-1}(\overline{f(A)})) \qquad \qquad \text{(Monotonicity of } f)$$

$$\subseteq \overline{f(A)}. \qquad \qquad \text{(Exercise 2.7(b))}$$

(2) (\Leftarrow) Given any closed subset D of T, need to show $C = f^{-1}(D)$ is closed in S.

$$f(\overline{C}) \subseteq \overline{f(C)} \qquad \qquad \text{(Assumption)}$$

$$= \overline{f(f^{-1}(D))} \qquad \qquad (C = f^{-1}(D))$$

$$\subseteq \overline{D} \qquad \qquad \text{(Exercise 2.7(b))}$$

$$= D, \qquad \qquad (D \text{ is closed)}$$

$$f^{-1}(f(\overline{C})) \subseteq f^{-1}(D), \qquad \qquad \text{(Monotonicity of } f^{-1})$$

$$\overline{C} \subseteq f^{-1}(f(\overline{C})) \subseteq f^{-1}(D) = C. \qquad \qquad \text{(Exercise 2.7(a))}$$

So $C \supset \overline{C}$ or $C = \overline{C}$ is closed.

Supplement (Continuity). Let f be a map from a topological space on X to a topological space on Y. Then, the following statements are equivalent:

- (1) f is continuous: For each $x \in X$ and every neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subseteq V$.
- (2) For every open set O in Y, the inverse image $f^{-1}(O)$ is open in X.
- (3) For every closed set C in Y, the inverse image $f^{-1}(C)$ is closed in X.
- (4) $f(A)^{\circ} \subseteq f(A^{\circ})$ for every subset A of X.
- (5) $f^{-1}(B^{\circ}) \subset (f^{-1}(B))^{\circ}$ for every subset B of Y.
- (6) $f(\overline{A}) \subseteq \overline{f(A)}$ for every subset A of X.
- (7) $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$ for every subset B of Y.

Exercise 4.33. Give an example of a continuous f and a Cauchy sequence $\{x_n\}$ in some metric space S for which $\{f(x_n)\}$ is not a Cauchy sequence in T.

Compare with Exercise 4.54 to get some hints.

Proof. Let

$$S = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\} = \left\{\frac{1}{n} : n \in \mathbb{Z}^+\right\}.$$

Define $f: S \to \mathbb{R}$ by $f\left(\frac{1}{n}\right) = (-1)^n$. Then f is continuous (but not uniformly continuous). The sequence $\{x_n\} = \left\{\frac{1}{n}\right\}$ in S is a Cauchy sequence, but the sequence $\{f(x_n)\} = \{(-1)^n\}$ is not a Cauchy sequence in \mathbb{R} . \square

Uniform continuity

Exercise 4.50. Prove that a function which is uniformly continuous on S is also continuous on S.

Proof. The proof is straightforward.

- (1) Suppose $f: S \to T$ is uniformly continuous on S. Given any $\epsilon > 0$, there is $\delta > 0$ such that $d_T(f(x), f(y)) < \epsilon$ whenever $d_S(x, y) < \delta$.
- (2) Show that f is continuous at any point p in S. Set y = p in (1).

Exercise 4.51. If $f(x) = x^2$ for $x \in \mathbb{R}$, prove that f is not uniformly continuous on \mathbb{R} .

Proof. Prove by contradiction.

- (1) If f were uniformly continuous on \mathbb{R} , then for any $\epsilon > 0$, there is $\delta > 0$ such that $|f(x) f(y)| < \epsilon$ whenever $|x y| < \delta$. Here we pick $\epsilon = 1 > 0$.
- (2) So

$$|f(x) - f(y)| = |x^2 - y^2| = |x + y||x - y| < 1$$

for any $|x-y|<\delta$. In particular, we pick $x=\frac{1}{\delta}$ and $y=\frac{1}{\delta}+\frac{\delta}{2}$. Now $|x-y|=\frac{\delta}{2}<\delta$, and thus |f(x)-f(y)|=|x+y||x-y|<1 would be true. However,

$$|f(x) - f(y)| = |x + y||x - y| = \left(\frac{2}{\delta} + \frac{\delta}{2}\right)\left(\frac{\delta}{2}\right) > \frac{2}{\delta} \cdot \frac{\delta}{2} = 1,$$

contrary to |f(x) - f(y)| = |x + y||x - y| < 1.

Exercise 4.52. Assume that f is uniformly continuous on a bounded set S in \mathbb{R}^n . Prove that f must be bounded on S.

The conclusion is false if boundedness of S is omitted from the hypothesis. For example, f(x) = x on \mathbb{R} is uniformly continuous on \mathbb{R} but $f(\mathbb{R}) = \mathbb{R}$ is unbounded.

Proof (Brute-force).

- (1) Since $f: S \to T$ is uniformly continuous, given any $\epsilon > 0$, there is $\delta > 0$ such that $d_T(f(x), f(y)) < \epsilon$ whenever $d_S(x, y) < \delta$. In particular, pick $\epsilon = 1$.
- (2) By the boundedness of S, pick M > 0 such that ||x|| < M for all $x \in S$. In particular, each coordinate of $x \in \mathbb{R}^n$ is less than M.
- (3) For such $\delta > 0$, we construct a covering of $S \subseteq \mathbb{R}^n$. Construct a special collection \mathscr{C} of n-cells

$$I_{\mathbf{a}} = \left[\frac{\delta}{2\sqrt{n}}a_1, \frac{\delta}{2\sqrt{n}}(a_1+1)\right] \times \cdots \times \left[\frac{\delta}{2\sqrt{n}}a_n, \frac{\delta}{2\sqrt{n}}(a_n+1)\right]$$

where $\mathbf{a} = (a_1, ..., a_n) \in \mathbb{Z}^n$ satisfying

$$|a_i| < \frac{2\sqrt{n}M}{\delta} + 1 \ (1 \le i \le n).$$

By construction, \mathscr{C} is a finite covering of S.

- (4) For every n-cell $I_{\mathbf{a}}$ of the collection \mathscr{C} , pick a point $x_{\mathbf{a}} \in S \cap I_{\mathbf{a}}$ if possible. This process will terminate eventually since \mathscr{C} is a finite. Collect these representative points as $\mathscr{D} = \{x_{\mathbf{a}}\}$. Notice that \mathscr{D} is finite again.
- (5) Now for any point $x \in S$, x lies in some $I_{\mathbf{a}}$ containing $x_{\mathbf{a}}$. Both x and $x_{\mathbf{a}}$ are in the same cell and their distance satisfies

$$||x - x_{\mathbf{a}}|| \le \sqrt{\left(\frac{\delta}{2\sqrt{n}}\right)^2 + \dots + \left(\frac{\delta}{2\sqrt{n}}\right)^2} = \frac{\delta}{2} < \delta$$

and thus by (1)

$$||f(x) - f(x_{\mathbf{a}})|| < 1$$
, or $||f(x)|| < 1 + ||f(x_{\mathbf{a}})||$.

(6) Let

$$M = 1 + \max_{x_{\mathbf{a}} \in \mathscr{D}} ||f(x_{\mathbf{a}})||.$$

So given any $x \in S$, ||f(x)|| < M.

Proof (Heine-Borel Theorem). Heine-Borel theorem provides the finiteness property to construct the boundedness property of f.

(1) Let S be a bounded subset of a metric space X. Show that the closure of S in X is also bounded in X. S is bounded if $S \subseteq B_X(a;r)$ for some r > 0 and some $a \in X$. (The ball $B_X(a;r)$ is defined to the set of all $x \in X$ such that $d_X(x,a) < r$.) Take the closure on the both sides,

$$\overline{S} \subseteq \overline{B_X(a;r)} = \{x \in X : d_X(x,a) \le r\} \subseteq B_X(a;2r),$$

or \overline{S} is bounded.

- (2) Since $f: S \to T$ is uniformly continuous, given any $\epsilon > 0$, there is $\delta > 0$ such that $d_T(f(x), f(y)) < \epsilon$ whenever $d_S(x, y) < \delta$. In particular, pick $\epsilon = 1$.
- (3) For such $\delta > 0$, we construct an open covering of $\overline{S} \subseteq \mathbb{R}^n$. Pick a collection \mathscr{C} of open balls $B(a;\delta) \subseteq \mathbb{R}^n$ where a runs over all elements of S. \mathscr{C} covers \overline{S} (by the definition of accumulation points). Since \overline{S} is closed and bounded (by applying (1) on the boundedness of S), \overline{S} is compact (Heine-Borel theorem on \mathbb{R}^n). That is, there is a finite subcollection \mathscr{C}' of \mathscr{C} also covers \overline{S} , say

$$\mathscr{C}' = \{B(a_1; \delta)\}, B(a_2; \delta), ..., B(a_m; \delta)\}.$$

- (4) Given any $x \in S \subseteq \overline{S}$, there is some $a_i \in S$ $(1 \le i \le m)$ such that $x \in B(a_i; \delta)$. In such ball, $d_S(x, a_i) < \delta$. By (2), $||f(x) f(a_i)|| < 1$, or $||f(x)|| < 1 + ||f(a_i)||$. Almost done. Notice that a_i depends on x, and thus we might use finiteness of $\{a_1, a_2, ..., a_m\}$ to remove dependence of a_i .
- (5) Let

$$M = 1 + \max_{1 \le i \le m} ||f(a_i)||.$$

So given any $x \in S$, ||f(x)|| < M.

Supplement. Exercise about considering the closure. (Problem 3.5 in H. L. Royden, Real Analysis, 3rd Edition.) Let $A = \mathbb{Q} \cap [0,1]$, and let $\{I_n\}$ be a finite collection of open intervals covering A. Then $\sum l(I_n) \geq 1$.

Proof.

$$1 = m^*[0, 1] = m^* \overline{A} \le m^* \left(\overline{\bigcup I_n} \right) = m^* \left(\overline{\bigcup \overline{I_n}} \right)$$
$$\le \sum m^* (\overline{I_n}) = \sum l(\overline{I_n}) = \sum l(I_n).$$

Exercise 4.54. Assume $f: S \to T$ is uniformly continuous on S, where S and T are metric spaces. If $\{x_n\}$ is any Cauchy sequence in S, prove that $\{f(x_n)\}$ is a Cauchy sequence in T. (Compare with Exercise 4.33.)

Therefore, we need to find a continuous but not uniformly continuous function to solve Exercise 4.33: Give an example of a continuous f and a Cauchy sequence $\{x_n\}$ in some metric space S for which $\{f(x_n)\}$ is not a Cauchy sequence in T.

Proof. The proof is straightforward.

- (1) Since $f: S \to T$ is uniformly continuous on S, given any $\epsilon > 0$, there is $\delta > 0$ such that $d_T(f(x), f(y)) < \epsilon$ whenever $d_S(x, y) < \delta$.
- (2) Since $\{x_n\}$ is any Cauchy sequence in S, especially for such $\delta > 0$ in (1), there is an integer N such that $d_S(x_m, x_n) < \delta$ whenever $m \geq N$ and $n \geq N$. So as $m \geq N$ and $n \geq N$, we have $d_T(f(x_m), f(x_n)) < \epsilon$ by (1), or $\{f(x_n)\}$ itself is a Cauchy sequence in T.

7