Physics 106a — Classical Mechanics

Michael Cross

California Institute of Technology

Fall Term, 2013

Lecture 16: Rigid Body Rotation with Torques

Outline

- Euler angles
- Angular momentum and kinetic energy in Euler angles
- Heavy symmetric top / precession of the equinoxes

Vector \vec{a} with components $(a_{x'}, a_{y'}, a_{z'})$

First rotation

Second rotation

$$\begin{bmatrix} a_{\xi'} \\ a_{\eta'} \\ a_{\zeta'} \end{bmatrix} = \tilde{U}_2 \begin{bmatrix} a_{\xi} \\ a_{\eta} \\ a_{\zeta} \end{bmatrix}$$

Third rotation

Third rotation

Angular velocities: $\dot{\phi}$

 $(\omega_x, \omega_y, \omega_z) = \dot{\phi}(\sin\theta\sin\psi, \sin\theta\cos\psi, \cos\theta)$

8 / 15

Angular velocities: $\dot{\theta}$

$$(\omega_x, \omega_y, \omega_z) = \dot{\theta}(\cos \psi, -\sin \psi, 0)$$

9/15

Angular velocities: $\dot{\psi}$

$$(\omega_x,\omega_y,\omega_z)=\dot{\psi}(0,0,1)$$

Angular velocity and Lagrangian

Angular velocity components with respect to principal axes

$$\omega_1 \equiv \omega_x = \dot{\phi} \sin \psi \sin \theta + \dot{\theta} \cos \psi$$

$$\omega_2 \equiv \omega_y = \dot{\phi} \cos \psi \sin \theta - \dot{\theta} \sin \psi$$

$$\omega_3 \equiv \omega_z = \dot{\psi} + \dot{\phi} \cos \theta$$

Kinetic energy

$$T = \frac{1}{2}(I_1\omega_1^2 + I_2\omega_2^2 + I_3\omega_3^2)$$

Kinetic energy for axially-symmetric body $I_1 = I_2 = I_{\perp}$

$$T = \frac{1}{2}I_{\perp}(\dot{\theta}^2 + \dot{\phi}^2\sin^2\theta) + \frac{1}{2}I_3(\dot{\psi} + \dot{\phi}\cos\theta)^2$$

Calculate Lagrangian etc....

Angular velocity and angular momentum

Angular velocity components with respect to principal axes

$$\omega_1 \equiv \omega_x = \dot{\phi} \sin \psi \sin \theta + \dot{\theta} \cos \psi$$

$$\omega_2 \equiv \omega_y = \dot{\phi} \cos \psi \sin \theta - \dot{\theta} \sin \psi$$

$$\omega_3 \equiv \omega_z = \dot{\psi} + \dot{\phi} \cos \theta$$

Angular momentum components with respect to principal axes

$$\vec{L} \equiv (I_1\omega_1, I_2\omega_2, I_3\omega_3)$$

Calculate

$$\left. \frac{d\vec{L}}{dt} \right|_{s} = \left. \frac{d\vec{L}}{dt} \right|_{b} + \vec{\omega} \times \vec{L} = \vec{N} \quad \text{with} \quad \left. \frac{d\vec{L}}{dt} \right|_{b} = (I_{1}\dot{\omega}_{1}, I_{2}\dot{\omega}_{2}, I_{3}\dot{\omega}_{3})$$

Angular velocity and behavior in space frame

Angular velocity components with respect to space (inertial) axes

$$\omega_{x'} = \dot{\psi} \sin \phi \sin \theta + \dot{\theta} \cos \phi$$

$$\omega_{y'} = -\dot{\psi} \cos \phi \sin \theta + \dot{\theta} \sin \phi$$

$$\omega_{z'} = \dot{\psi} \cos \theta + \dot{\phi}$$

Heavy symmetric top

Nutation of symmetric top

