ТФКП, M3238-39

18 февраля 2019 г.

1 Комлексные числа

1.1 Решить уравнение $\bar{z} = z^{n-1}, (n \neq 2)$

1.2 Доказать, что оба значения $\sqrt{z^2-1}$ лежат на прямой, проходящей через начало координат и параллельной биссектрисе внутреннего угла треугольника с вершинами в точках -1,1 и z, проведённой из вершины z.

1.3 Доказать, что $(^n\sqrt{z})^m$ (n,m - целые числа, а (n,m) - наибольший общий делитель) имеет $\frac{n}{(n,m)}$ различных значений

1.4 Доказать $|1-\bar{z_1}z_2|^2-|z_1-z_2|^2=(1-|z_1|^2)(1-|z_2|^2)$

1.5 Доказать, что если $|z_1+z_2+z_3|=0$ и $|z_1|=|z_2|=|z_3|=1$, то точки z_1,z_2,z_3 являются вершинами правильного треугольника

1.6 Изобразить область или прямую:

- $|z-2|^2 |z+2|^2 > 3$;
- $log_{\frac{1}{2}} \frac{|z-1|+4}{3|z-1|-2} > 1;$
- $Im(\overline{z^2 z}) = 2 Imz;$
- |z| 3Imz = 6;

1.7 Определить семейство линий в z-плоскости $(-\infty < C < \infty)$, заданных уравнениями:

- $Re\frac{1}{z} = C$
- $Im\frac{1}{z} = C$
- $\frac{|z-z_1|}{|z-z_2|} = \lambda, (\lambda > 0)$

- 1.8 Доказать, что многочлен $f(x)=(\cos\alpha+x\sin\alpha)^n-\cos n\alpha-x\sin n\alpha$ делится на x^2+1 .
- 1.9 Найти наибольшее и наименьшее расстояния от начала координат до линии $|z+\frac{1}{z}|=a, (a>0)$
- 1.10 Первоначальное значение Argf(z) при z=2 принято равным 0. Точка z делает один оборот против часовой стрелки по окружности с центром в начале координат и возвращается в точку z=2. Считая, что Argf(z) меняется непрерывно при движении точки z, указать значение Argf(2) после указанного поворота, если:
 - $f(z) = \sqrt{z-1}$
 - $f(z) = \sqrt{z^2 + 2z 3}$
 - $f(z) = \sqrt{\frac{z-1}{z+1}}$

2 Отображения

- 2.1 Как действует отображение e^z на прямую x=y, прямую $(y=const,x\in R)$, полосу $y\in (\phi,\psi), x\in R$?
- 2.2 Какая функция отображает полуплоскость Imz>0 в окружность единичного радиуса с центром в начале координат, причём $z_0 \to (0;0)$?
- 2.3 Найти образы координатных осей ОХ и ОУ при преобразовании $w=\frac{z+1}{z-1}.$