Collaborative Filtering

					ſ	a
Movie	Alice	Bob	Carol	Dave	1,	K2
Love at last	5	5	D	0	?	?
Romance forever	5	?	?	0	?	S
Cute puppies of love	?	4	0	?.	?	?
Nonstop car chases	0	0	5	4	7	?
Swords us karate	0	0	5	?	?	?
						(.)

We know

$$\theta^{(1)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix} \quad \theta^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \quad \theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} \quad \theta^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$$
Comance 1\frac{1}{3}

action 1\frac{1}{3}

Love at last' & Alicel Bob of A, Carol & Dave of F43

Optimization algorithm: users' preferences

Given $\theta^{(i)}$... $\theta^{(n_w)}$ to learn $\chi^{(i)}$:

$$\min_{\chi(i)} \frac{1}{2} \sum_{j: r(i,j)=1}^{n} \left((\theta^{(5)})^T \chi^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^{n} \left(\chi_k^{(i)} \right)^2$$

to learn x", ..., x (nm):

$$\min_{\mathbf{x}^{(i)}, \mathbf{x}^{(mn)}} \frac{1}{2} \sum_{i=1}^{n} \sum_{j: r(i,j)=1}^{n} \left((\theta^{(5)})^{T} \boldsymbol{\chi}^{(i)} - \boldsymbol{y}^{(i,j)} \right)^{2} + \frac{\lambda}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} \left(\boldsymbol{\chi}_{k}^{(i)} \right)^{2}$$

Given $\chi^{(n_m)}$, can estimate $\theta^{(n_m)}$ Given $\theta^{(n_m)}$, can estimate $\chi^{(n_m)}$

Guess $\theta \to \chi \to \theta \to \chi \to \theta \to \chi \cdots$

Collaborative Filtering Algorithm

Minimizing $\chi^{(i)}$,..., $\chi^{(n_m)}$ and $\theta^{(i)}$,..., $\theta^{(n_m)}$ simultaneously $\int (\chi^{(i)},...,\chi^{(n_m)},\theta^{(i)},...,\theta^{(n_m)})$

$$= \frac{1}{2} \sum_{(i,j): \ r(i,j)=1}^{n} \left((\theta^{(5)})^T \chi^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i:i}^{n} \sum_{k=1}^{n} \left(\chi^{(i)}_k \right)^2$$

$$+\frac{\lambda}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}\left(\theta_{k}^{(i)}\right)^{2}$$

1. Initialize $\chi^{(i)}$, , $\chi^{(n_m)}$, $\theta^{(i)}$, ..., $\theta^{(n_m)}$ to random values (NN), $\theta^{(i)}$)

2. Minimize cost function using gradient descent

3. For a user with parameters θ and a movie with features α , predict a star rating of $\theta^T \alpha$.