1

Multiple Choice Questions [This Topic was introduced in MHT-CET from May - 2013]

[MHT-CET 2022] (online shift)

- The number of values of x in the interval [0, 3π] satisfying $2\sin^2 x + 5\sin x 3 = 0$ is 1.

- The value of $\cos^{-1}\left(\tan\left(\frac{7\pi}{4}\right)\right)$ is 2.
 - a) $\frac{\pi}{2}$
- b) π
- d)

- $2\tan^{-1}\left(\frac{1}{3}\right) + \cos^{-1}\left(\frac{3}{5}\right) =$
- b) $\tan^{-1} \left(\frac{5}{4} \right)$ c) 0
- d)

With reference to the principal values 4.

If $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \frac{3\pi}{2}$, then $x^{100} + y^{100} + z^{100} = \dots$

d) 6

- The principal solutions of $tan3\theta = -1$ are 5.
 - a) $\left\{\frac{\pi}{4}, \frac{\pi}{12}\right\}$

- b) $\left(\frac{\pi}{4}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{5\pi}{4}, \frac{19\pi}{12}, \frac{23\pi}{12}\right)$
- c) $\left(\frac{\pi}{4}, \frac{\pi}{12}, \frac{13\pi}{12}, \frac{7\pi}{4}, \frac{19\pi}{4}, \frac{23\pi}{12}\right)$
- d) $\left(\frac{\pi}{4}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{\pi}{16}, \frac{19\pi}{4}, \frac{23\pi}{24}\right)$
- In a triangle ABC, with usual notations $\angle A = 60^{\circ}$. Then $\left(1 + \frac{a}{c} + \frac{b}{c}\right) \left(1 + \frac{c}{a} \frac{a}{b}\right) = ...$ 6.
 - a) $\frac{3}{2}$

- With usual notations in $\triangle ABC$, if $a^2 + b^2 c^2 = ab$, then measurement of angle C is 7.
 - a) $\frac{\pi}{6}$

- The value of $\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{8}\right)$ is 8.
- b) $\frac{4\pi}{3}$

- If the cartesian co-ordinates of a point are $\left(\frac{-5\sqrt{3}}{2}, \frac{5}{2}\right)$ then its polar co-ordinates are, 9. b) $\left(5, \frac{11\pi}{18}\right)$ c) $\left(5, \frac{2\pi}{3}\right)$

- d) $\left(5, \frac{5\pi}{6}\right)$

- The principal value of $\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$ is

[MHT-CET 2021] (online shift)

- With usual notations if the angles of a triangle are in the ratio 1:2:3 then their
 - a) 1:2:3
- b) $1: \sqrt{3}:3$
- c) $\sqrt{2}:\sqrt{3}:3$
- d) 1: J3:2
- If $4 \sin^{-1} x + 6 \cos^{-1} x = 3\pi$, where $-1 \le x \le 1$ then x = -1
 - a) $\frac{1}{2}$
- b) $\frac{1}{\sqrt{2}}$
- d) 0

- 13. $\sin^{-1} \left[\sin \left(-600^{\circ} \right) \right] + \cot^{-1} \left(-\sqrt{3} \right) =$
 - a) $\frac{\pi}{6}$
- b) $\frac{\pi}{4}$

- 14. $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) =$
 - a) $\cos^{-1}\left(\frac{24}{25}\right)$ b) $\cos^{-1}\left(\frac{33}{65}\right)$ c) $\cos^{-1}\left(\frac{5}{13}\right)$ d) $\cos^{-1}\left(\frac{3}{5}\right)$

- 15. The principal solutions of $\sqrt{3}$ secx + 2 = 0 are

- a) $\frac{\pi}{6}, \frac{5\pi}{6}$ b) $\frac{5\pi}{6}, \frac{7\pi}{6}$ c) $\frac{\pi}{3}, \frac{2\pi}{3}$ d) $\frac{2\pi}{3}, \frac{4\pi}{3}$
- 16. If $\tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}$, then the values of x are
 - a) $\pm \frac{3}{\sqrt{2}}$ b) $\pm \frac{1}{2}$
- d) $\pm \frac{\sqrt{3}}{2}$
- The number of solutions of $\cos 2\theta = \sin \theta$ in $(0, 2\pi)$ is
 - a) 3

- d) 1

- 18. If $\sin^{-1}\left(\frac{3}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \sin^{-1} \alpha$, then $\alpha = 1$

- With usual notations, perimeter of a triangle ABC is 6 times the arithmetic mean of single A =
- sines of its angles. If a = 1, then measure of angle A =
 - π^{C}
- c) $\frac{\pi^{C}}{4}$
- d) $\frac{\pi^{C}}{4}$

- In $\triangle ABC$, with usual notations $2ab \sin \frac{1}{2} (A + B C) = 0$ 20.
 - b) $a^2 + b^2 c^2$

d) $a^2 - b^2 + c^2$

- a) $a^2 b^2 c^2$

[MHT-CET 2020] (online shift) With usual notations, in $\triangle ABC$, if a = 2, b = 3, c = 5 and $\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{K+7}{30}$,

- 21.
 - then K = ?
 - a) 6

- b) 16
- c) 12
- d) 17
- If $3 \sin^2 x 8 \sin x + 4 = 0$, $x \in \left(\frac{\pi}{2}, \pi\right)$ then $\tan x = 1$ 22.
 - a) $\frac{-\sqrt{5}}{2}$
- b) $\frac{\sqrt{5}}{2}$ c) $\frac{2}{\sqrt{5}}$
- d) $\frac{-2}{\sqrt{5}}$

- The principal solutions of $\cos 2x = \frac{-1}{2}$ are 23.

- a) $x = \frac{\pi}{3}$, $x = \frac{7\pi}{6}$ b) $x = \frac{\pi}{3}$, $x = \frac{2\pi}{3}$ c) $x = \frac{-\pi}{3}$, $x = \frac{5\pi}{6}$ d) $x = \frac{-2\pi}{3}$, $x = \frac{4\pi}{3}$
- If $\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \frac{\pi}{2}$, x, y, z < 1, then the value of xy + yz + zx = 224.
 - a) 1

- b) xyz
- d) 0
- If A, B, C are the angles of $\triangle ABC$, then with usual notations, $\frac{c^2 a^2 + b^2}{a^2 b^2 + c^2} =$ 25.
 - a) $\frac{\sin B}{\sin A}$

- d) tan A
- If $2 \sin^2 x + 7\cos x = 5$, then permissible value of $\cos x$ is 26.
 - a) 0

b) 1

- With usual notation in $\triangle ABC$, if $b \cos^2 \frac{C}{2} + c \cos^2 \frac{B}{2} = \frac{3a}{2}$, then 27.
 - a) a, b, c are in A. P.
 - c) a, b, c are in G. P.

- b) b, a, c are in A. P.
- d) b, a, c are in G. P.
- With usual notation in $\triangle ABC$, if $C = 90^{\circ}$, then $\tan^{-1} \left(\frac{a}{b+c} \right) + \tan^{-1} \left(\frac{b}{c+a} \right) =$ 28.
 - a)
- c)

d) π

		(1)	
	The value of the expression $2\sec^{-1} 2 + \sin^{-1}$	2	is
39.	The value of the expression 2sec	(2)	20

- b) $\frac{\pi}{6}$
- c) 1

d)

40. The value of
$$\cos^{-1}\left(\frac{-1}{2}\right) + \cos^{-1}\left(\frac{1}{2}\right)$$
 is

a) 0

- b) $\frac{\pi}{3}$
- d) π

[MHT-CET 2018]

If A, B, C are the angles of $\triangle ABC$, then cot A. cot B + cot B. cot C + cot C. cot A = 41.

b) 1

d) - 1

In $\triangle ABC$, with usual notations, if a, b, c are in A. P. Then a $\cos^2\left(\frac{C}{2}\right) + c\cos^2\left(\frac{A}{2}\right) =$

The number of solutions of $\sin x + \sin 3x + \sin 5x = 0$ in the interval $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ is 43.

a) 2

- b) 3
- c) 4

d) 5

If $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$, then $x = \frac{\pi}{4}$

- a) 1
- b) $\frac{1}{3}$
- d) $\frac{1}{2}$

[MHT-CET 2017]

The number of principal solutions of $tan2\theta = 1$ is 45.

- a) one
- c) three

In $\triangle ABC$, if $\sin^2 A + \sin^2 B = \sin^2 C$ and l(AB) = 10, then the maximum value of the area 46.

a) 50

- b) $10\sqrt{2}$
- c) 25
- d) $25\sqrt{2}$

The value of $\cos^{-1}\left[\cos\left(\frac{\pi}{2}\right)\right] + \cos^{-1}\left[\sin\left(\frac{2\pi}{3}\right)\right]$ is 47.

- a)
- b) $\frac{n}{3}$
- c)
- d) π

[MHT-CET 2013]

- If $\frac{1}{6} \sin \theta$, $\cos \theta$, $\tan \theta$ are in G.P. then $\theta =$
 - a) $2 n\pi \pm \frac{\pi}{3}$ b) $2 n\pi \pm \frac{\pi}{6}$
- c) $n\pi + (-1)^n \frac{\pi}{3}$ d) $n\pi + \frac{\pi}{3}$

- If a = 16, b = 24, c = 20 then $\cos\left(\frac{B}{2}\right) =$
 - a) $\frac{3}{4}$ b) $\frac{1}{4}$
- c) $\frac{1}{2}$
- d) $\frac{1}{3}$

- The value of $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ =
 - a) $\frac{7\pi}{6}$
- b) $\frac{5\pi}{6}$
- d) $\frac{\pi}{6}$

[MHT-CET 2023]

- The solution set of $8\cos^2\theta + 14\cos\theta + 5 = 0$ in the interval $[0, 2\pi]$ is 61.
 - a) $\left\{\frac{\pi}{3}, \frac{2\pi}{3}\right\}$

- b) $\left\{\frac{\pi}{3}, \frac{4\pi}{3}\right\}$ c) $\left\{\frac{2\pi}{3}, \frac{4\pi}{3}\right\}$ d) $\left\{\frac{2\pi}{3}, \frac{5\pi}{3}\right\}$
- The solutions of $\sin x + \sin 5x = \sin 3x$ in $\left(0, \frac{\pi}{2}\right)$ are
 - a) $\frac{\pi}{6}$, $\frac{\pi}{3}$

- b) $\frac{\pi}{8}, \frac{\pi}{16}$ c) $\frac{\pi}{4}, \frac{\pi}{10}$ d) $\frac{\pi}{4}, \frac{\pi}{12}$
- The number of solutions in $[0, 2\pi]$ of the equation $16^{\sin^2 x} + 16^{\cos^2 x} = 10$ is 63.

b) 4

- If the general solution of the equation $\frac{\tan 3x 1}{\tan 3x + 1} = \sqrt{3}$ is $x = \frac{n\pi}{p} + \frac{7\pi}{q}$, $n, p, q \in \mathbb{Z}$, then $\frac{p}{q}$ 64.
 - a) 3

- b) 12
- c) 36
- d) $\frac{1}{12}$
- If the general solution of $\cos^2 x 2\sin x + \frac{1}{4} = 0$ is $x = \frac{n\pi}{p} + (-1)^n \frac{\pi}{q}$, $n, p, q \in \mathbb{Z}$, then p + q65.
- 66.

d) 7

- The general solution of $3 \sec^2 x = 2 \csc x$ is a) $n\pi + (-1)^n \frac{\pi}{6}$, $n \in \mathbb{Z}$
 - b) $n\pi + (-1)^n \frac{\pi}{3}$, $n \in \mathbb{Z}$

c) $2n\pi + (-1)^n \frac{\pi}{12}$, $n \in \mathbb{Z}$

d) $n\pi + \frac{\pi}{4}$, $n \in \mathbb{Z}$

Trigonometric Functions

The principal solution of $\sin^{-1}\left(\sin\left(\frac{3\pi}{4}\right)\right)$ is 80.

- a) $-\frac{\pi}{4}$
- 3π c) 4

 5π

81. $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right) =$

- b) $\frac{2\pi}{3}$
- c) $\frac{3\pi}{4}$

The value of $\sec^2(\tan^{-1} 2) + \csc^2(\cot^{-1} 3)$ is 82.

d) 15

The value of $\sin(\cot^{-1} x)$ is 83.

- a) $\sqrt{1+x^2}$

b) $x\sqrt{1+x^2}$ c) $\frac{1}{\sqrt{1+x^2}}$ d) $\frac{1}{\sqrt{1+x^2}}$

 $(\cot^{-1}(\sec(\sin^{-1}a))))$, $a \in [0, 1]$, then b) $x^2 + a^2 = 2$ c) $x^2 - a^2 = 3$ d) $x^2 + a^2 = 3$ If $x = \operatorname{cosec}(\tan^{-1}(\cos(\cot^{-1}(\sec(\sin^{-1}a)))))$, 84.

If $\alpha = 3\sin^{-1}\left(\frac{6}{11}\right)$ and $\beta = 3\cos^{-1}\left(\frac{4}{9}\right)$, where the inverse trigonometric functions take only the principal values, then

- a) $\cos \alpha > 0$
- b) $\cos (\alpha + \beta) < 0$ c) $\sin \beta > 0$
- d) $\cos(\alpha + \beta) > 0$

If $\cos^{-1} \sqrt{p} + \cos^{-1} \sqrt{1-p} + \cos^{-1} \sqrt{1-q} = \frac{3\pi}{4}$, then $q = \frac{3\pi}{4}$

a) 1

- b) $\frac{1}{2}$
- d) $\frac{1}{\sqrt{2}}$

If $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = 3\pi$, then $x^{2025} + y^{2026} + z^{2027} =$ a) -1 b) 0 c) 1

d) 3

88. If $\sin^{-1} x + \cos^{-1} y = \frac{3\pi}{10}$, then $\cos^{-1} x + \sin^{-1} y = \frac{3\pi}{10}$

- a) $\frac{\pi}{10}$ b) $\frac{3\pi}{10}$
- d)

If $(\tan^{-1} x)^2 + (\cot^{-1} x)^2 = \frac{5\pi^2}{8}$, then x =

90.

- If $\tan^{-1} a + \tan^{-1} b + \tan^{-1} c = \pi$, then which of the following is true ?] b) a+b+c=1
 - c) a+b+c=abc
- d) $a+b-c=\frac{ab}{a}$

91. If x > 0 and $\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\tan^{-1}x$, then x = 1

a) 3

b) 2

If $\sin(\cot^{-1} x) = \cos(\tan^{-1}(1+x))$, then x = 1a) 0

92.

- d)