

TMA4140 Diskret matematikk

Eksamen 11. desember 2008

Løsningsforslag.

Oppgave 1

For n=0 ser vi at (*) er riktig. Anta (*) er riktig for n=k. For n=k+1 blir venstresiden: $1+3+5+\cdots+(2k+1)+(2k+3)=(k+1)^2+2k+3=k^2+4k+4$, der vi har brukt induksjonsantagelsen. Setter vi inn n=k+1 i høyresiden av (*) får vi: $(k+1+1)^2=k^2+4k+4$. Altså er (*) riktig for n=k+1, og ifølge induksjonsteoremet er (*) riktig for alle n.

Oppgave 2

Siden 3, 5 og 7 er parvis relativt primiske kan (*) løses ved å bruke det kinesiske restteoremet. La $m=3\cdot 5\cdot 7=105,\ M_1=\frac{m}{3}=35,\ M_2=\frac{m}{5}=21,\ M_3=\frac{m}{7}=15.$ Må finne y_1,y_2 og y_3 slik at

$$M_1y_1 \equiv 1 \pmod{3}$$

 $M_2y_2 \equiv 1 \pmod{5}$
 $M_3y_3 \equiv 1 \pmod{7}$

Ser lett direkte (man kan også bruke den euklidske algoritmen) at man kan velge $y_1 = 2$, $y_2 = 1$, $y_3 = 1$. Får da at den generelle løsningen til (*) er:

$$2 \cdot M_1 y_1 + 3 \cdot M_2 y_2 + 2 \cdot M_3 y_3 + m \mathbf{Z} = 233 + 105 \mathbf{Z} = \{233 + 105 k | k \in \mathbf{Z}\} = \{23 + 105 k | k \in \mathbf{Z}\}.$$

Oppgave 3

- a) En Euler krets er en lukket vei som gjennomløper alle kantene i grafen en og kun en gang. En Hamilton krets er en lukket vei som går gjennom hver node en og kun en gang.
- b) Grafen har en Euler krets siden hver node har like grad.

Oppgave 4

abejkfglmcdhniop

Oppgave 5

a) $\{10^*\} \cup \{10^*10^*\}$ (eventuelt kan man skrive $10^* \cup 10^*10^*$)

b)

c) Kleene's teorem: En mengde (eller et språk) er regulær hvis og bare hvis det gjenkjennes av en endelig tilstandsautomat.

SVARKUPONG

Kryss av det du mener er riktige svar, inntil 12 kryss. Et riktig satt kryss gir 1 poeng, og hvert kryss mer enn 12 gir -3 poeng. Merk denne siden med studentnummer, og lever den.

Studentnummer:	

	Alt 1	Alt 2	Alt 3	Alt 4
Deloppgave 1		X	X	
Deloppgave 2		X		
Deloppgave 3				×
Deloppgave 4	×			×
Deloppgave 5				×
Deloppgave 6			X	
Deloppgave 7			×	
Deloppgave 8	×			
Deloppgave 9		×		×