Введение в дисциплину «Анализ и прогнозирование временных рядов методами искусственного интеллекта»*

Невольно изречешь: **o tempora, o mores!** — Когда поразглядишь, какая в жизни горесть.

Н.А. Некрасов

© М.Л. Цымблер 30.08.2023

^{*} При подготовке слайдов лекций курса использованы материалы статей и докладов профессора Имонна Кеога, Калифорнийский университет в Риверсайде, США (Eamonn Keogh, University of California Riverside, USA), см. https://www.cs.ucr.edu/~eamonn/

Содержание

- Временные ряды в различных предметных областях
- Основные задачи анализа временных рядов
- Определения и нотация

Люди измеряют всевозможные вещи, изменяющиеся во времени

- ЭКГ, пульс, давление, калории
- Рождаемость
- Температура и влажность воздуха
- Расход электричества и воды
- Рейтинг популярности политиков
- Спортивная статистика
- Клики веб-страниц
- Курсы валют и акций
- ВВП и госдолг

Временные ряды всегда...

Временные ряды, показывающие наклоны планетных орбит, X в. (возможно, наиболее старое изображение временных рядов)

Tufte E. The Visual Display of Quantitative Information. Graphics Press, 2001. 200 p.

Временные ряды везде...

Tufte E. The Visual Display of Quantitative Information. Graphics Press, 2001. 200 p.

Прикладные научные исследования в области национальной экономик

Прикладные научные исследования в области общегосударственных вопросов

Фундаментальные исследования

Временные ряды всюду...

Умное производство, предиктивное **ТО**

Интернет вещей

Предсказание природных катаклизмов

Прогноз погоды, моделирование климата

Персональная медицина

Сельское хоз-во, животноводство

Борьба с преступностью

Био- и хемоинформатика

Экономика, бизнес, финансы

Системы электронного обучения

Изображение как временной ряд

Keogh E. et al. LB_Keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures. VLDB 2006. pp. 882-893. URL

Видео как временной ряд

Рукописный текст как временной ряд

George Washington manuscript

George Washington 1732-1799

Содержание

- Временные ряды в различных предметных областях
- Основные задачи анализа временных рядов
- Определения и нотация

Почему временные ряды анализировать сложнее, чем другие данные

- Большая длина
- Субъективность схожести рядов (подпоследовательностей)
- Пропущенные значения
- Различные форматы данных и частоты снятия показаний, шумы

Большие временные ряды

Оборуждование AEMO (Australian Energy Market Operator) регистрирует выработку солнечной энергии (МВт) в Австралии с 2019 г. https://zenodo.org/record/4656027 каждые 4 с

Размер NASA Space Shuttle Earth Observations Database — 40 Пб* (2020 г.), ожидаемый далее ежегодный прирост 50 Пб https://www.nasa.gov/feature/goddard/2020/nasa-funds-projects-to-make-geosciences-data-more-accessible

^{* 1} Петабайт= 10^{15} (квадриллион) байт $10^{15} \approx$ к-во синапсов в головном мозге человека

Большие временные ряды

Океанографическая станция MAREL Carnot с 2004 г. регистрирует каждые 20 мин. более чем 15 химических и биологических характеристик воды в проливе Ла-Манш Ben Ismail D.K. *et al.* Statistical properties and time-frequency analysis of temperature, salinity and turbidity measured by the MAREL Carnot station in the coastal waters of Boulogne-sur-Mer (France). Journal of Marine Systems. 2016. Vol. 162. P. 137-153. https://doi.org/10.1016/j.jmarsys.2016.03.010

Набор данных DEBS challenge: сенсоры пространственного позиционирования закреплены на бутсах игроков и перчатках вратаря (200 Гц), а также на мяче (2000 Гц), всего 15К событий в секунду

Mutschler C. *et al.* The DEBS 2013 grand challenge. DEBS'13: Proc. of the 7th ACM international conference on Distributed event-based systems. 2013. P. 289–294. https://doi.org/10.1145/2488222.2488283

Большие временные ряды

Laña I. *et al.* On the imputation of missing data for road traffic forecasting: New insights and novel techniques. Transportation Research Part C: Emerging Technologies. 2018. Vol. 90. Pages 18-33. ttps://doi.org/10.1016/j.trc.2018.02.021

На CVC-системе стана холодной прокатки Магнитогорского металлургического комбината установлено более 100 датчиков, снимающих показания 1 раз в секунду.

Краева Я.А. Поиск аномалий в сенсорных данных цифровой индустрии с помощью параллельных вычислений. Вестник ЮУрГУ. Серия: Вычислительная математика и информатика. 2023. Т. 12, № 2. С. 47–61. https://doi.org/10.14529/cmse230202

Схожесть рядов определяется задачей и предметной областью

^{*} van Wijk J.J., van Selow R.R. Cluster and calendar based visualization of time series data. INFOVIS 1999: 4-9. DOI: 10.1109/INFVIS.1999.801851

Схожесть рядов определяется задачей и предметной областью

Пропущенные значения временных рядов

Доля провинций Китая, **не** предоставившие данные *по одному атрибуту* для гос. стат. отчета*

- а) 2002: менее 15%
- b) 2011: более 85%

^{*}Song C. *et al.* Estimating missing values in China's official socioeconomic statistics using progressive spatiotemporal Bayesian hierarchical modeling. Sci. Rep. 2018. Vol. 8, article 10055. DOI: 10.1038/s41598-018-28322-z

Базовые задачи анализа временных рядов

- Поиск по образцу
- Поиск аномалий
- Поиск шаблонов
- Восстановление пропущенных значений
- Прогноз
- Классификация
- Кластеризация

Поиск по образцу: случай нескольких временных рядов (whole matching)

30.08.2023

Поиск по образцу: случай подпоследовательностей временного ряда (subsequence matching)

В заданном ряде $T = \{C_1, ..., C_n\}$ найти подпоследовательность $C_{\text{bestmatch}}$, наиболее похожую на заданный запрос Q:

$$\forall T_{i,m} \in S_T^m \ \mathrm{Dist}(C_{\mathrm{bestmatch}}, Q) \leq \mathrm{Dist}(C, Q)$$

Поиск аномалий временного ряда

В заданном временном ряде найти подпоследовательность, наиболее непохожую на все остальные подпоследовательности ряда

Введение в дисциплину

Поиск аномалий

Поиск аномалий

*Zhou H. et al. Informer: beyond efficient transformer for long sequence time-series forecasting. AAAI 2021: 11106-11115. DOI: 10.1609/aaai.v35i12.17325.

Поиск шаблонов: мотивы (motifs)

Пара непересекающихся подпоследовательностей ряда равной длины, наиболее похожих друг на друга:

$$\forall C_i, C_j \ \operatorname{Dist}(M_{\text{left}}, M_{\text{right}}) \leq \operatorname{Dist}(C_i, C_j)$$

Поиск шаблонов: мотивы (motifs)

*Zhou H. et al. Informer: beyond efficient transformer for long sequence time-series forecasting. AAAI 2021: 11106-11115. DOI: 10.1609/aaai.v35i12.17325.

Поиск шаблонов: ассоциативные правила (association rules)

IF работает стиральная машина

THEN не более чем через 20 мин. *работает сушильная машина*

Поиск шаблонов: сниппеты (snippets)

Множество подпоследовательностей ряда, выражающих типичные активности субъекта

^{*} Public (anonymized) road traffic prediction datasets from Huawei Munich Research Center. URL: https://zenodo.org/record/3653880#.Y0zZi3ZBxPa

Поиск шаблонов: сниппеты

Показания носимого акселерометра

Активность	Precision	Recall	F1
Прыжки	1	0.87	0.93
Ходьба	0.98	0.97	0.97
Бег	0.77	1	0.87

^{*}Reiss A., Stricker D. Introducing a new benchmarked dataset for activity monitoring. ISWC 2012, Newcastle, UK, June 18-22, 2012. 108–109. IEEE (2012). doi: 10.1109/ISWC.2012.13

Поиск шаблонов: цепочки (chains)

Запись датчика с левой икры спортсмена, когда он начал бег трусцой на беговой дорожке

Цепочка подпоследовательностей ряда, звенья которой отражают эволюцию некоего процесса

Поиск шаблонов: цепочки (chains)

- Рост важности Киберпонедельника (понедельник после Дня благодарения): за 10 лет выпуклость меняется от плавной и занимающей больший период между Днем благодарения и Рождеством к резкой и сосредоточенной на Дне благодарения
- Термин введен в пресс-релизе "Киберпонедельник становится одним из крупнейших дней онлайн-покупок в году" 28 ноября 2005 г., дата которого совпадает с первым проблеском острого пика в цепочке

Восстановление пропущенных значений ряда (imputation/recovery)

Синтез отсутствующих значений ряда

31

Прогнозирование временного ряда (forecast)

Исходный ряд (периодическая структура, поддающаяся прогнозу)

Прогноз точек данных в пределах окна прогнозирования

Долгосрочный прогноз: использование более ранних прогнозных значений в качестве входных данных прогноза

Синтез будущих значений ряда

Классификация и кластеризация временных рядов

- При небольшой длине рядов можно использовать стандартные алгоритмы машинного обучения и адекватные функции для вычисления схожести (например, Dynamic Time Warping)
- Для длинных временных рядов нужны специализированные функции для вычисления схожести

DTW

PRCIS
(Pattern Representation Comparison in Series)*

^{*} Der A. et al. Matrix Profile XXVII: A Novel Distance Measure for Comparing Long Time Series. ICKG 2022. P. 40-47. https://doi.org/10.1109/ICKG55886.2022.00013

Классификация подпоследовательностей ряда возможна, но их кластеризация БЕССМЫСЛЕННА*

- Подпоследовательности одного временного ряда обычно сильно коррелируют между собой, что делает их неинформативными для кластеризации
- Подпоследовательности разных временных рядов обычно имеют различные характеристики и паттерны, что позволяет выделить более информативные признаки и получить осмысленный результат кластеризации
- Пример: мониторинг температуры в помещении
 - Если температура в помещении измеряется каждые 5 мин., то подпоследовательности измерений за последний час будут сильно коррелировать между собой, так как температура в помещении обычно меняется медленно и плавно
 - Кластеризация подпоследовательностей измерений за последний час не будет иметь смысла, так как они будут очень похожи друг на друга и не будут содержать достаточно информации для кластеризации
 - Для кластеризации нужно использовать подпоследовательности измерений за разные периоды времени (за последние сутки, неделю, месяц и др.)

^{*} Keogh E., Lin J. Clustering of time-series subsequences is meaningless: implications for previous and future research. Knowl. Inf. Syst. 8(2). 2005. 154-177. DOI: 10.1007/s10115-004-0172-7

Содержание

- Временные ряды в различных предметных областях
- Основные задачи анализа временных рядов
- Определения и нотация

(Одномерный) временной ряд (univariate time series)

• Конечная последовательность хронологически упорядоченных вещественных значений

$$T = (t_1, \dots, t_n), \qquad t_i \in \mathbb{R}$$

• n — длина ряда, |T| = n

Многомерный временной ряд (multivariate time series)

• Состоит из логически связанных одномерных временных рядов

(координат), синхронизированных по времени
$$m{T} = \begin{bmatrix} T^{(1)}, ..., T^{(d)} \end{bmatrix}^{\mathrm{T}}, \qquad d > 1, \ T^{(i)} = \begin{pmatrix} t_1^{(i)}, ..., t_n^{(i)} \end{pmatrix}, \qquad t_k^{(i)} \in \mathbb{R}$$

Потоковый временной ряд (streaming time series)

• Бесконечная упорядоченная последовательность вещественных значений, которые поступают непрерывно одно за другим в режиме реального времени

$$T = (t_1, \dots, t_n, \dots), t_i \in \mathbb{R}$$

• Режим реального времени предполагает конечный период времени обработки данных, заданный для конкретной предметной области: реальное время ≠ «очень быстро»

Подпоследовательность (subsequence)

• Непрерывный промежуток временного ряда фиксированной длины

$$T_{i,m} = (t_i, \dots, t_{i+m-1}), \qquad m \ll n, \qquad 1 \le i \le n-m+1$$

• Множество всех подпоследовательностей ряда, имеющих заданную длину

$$|S_T^m| = n - m + 1$$

Литература

- 1. Esling P., Agon C. Time-series Data Mining. ACM Comput. Surv. 2012. Vol. 45, No. 1. P. 12:1–12:34. https://doi.org/10.1145/2379776.2379788.
- 2. Fu T.C. A review on time series data mining. Eng. Appl. of AI. 2011. Vol. 24, No. 1. P. 164–181. https://doi.org/10.1016/j.engappai.2010.09.007.