

Case Study: Speech data and CNN

M.Tech. Artificial Intelligence, Second Year, NMIMS

Ву,

Bilal Hungund, Data Scientist, Halliburton

Convolution & operation

414

A Padding filter $4x4 \xrightarrow{padding} 6x6$

4×4

Stride = 2 (Recommended) for Pooling)

Ī	25	48	
T	192	10	

			n 1.
_ (11	58	Pooling
>	20	110) =>0

19	31
23	47

Max Pooling

	$\overline{}$
192	110
50	47

69	50
22	28

Average Pooling

Convolution Neural Network (CNN) for Classification

- 1) Convolution: Filters to generate feature maps
- 2) Non-linearity: Often velu
- 3) Backpropagation 4) Pooling: Downsampling feature maps

tf keras layers Conv2

tf keras activations

tf keras layers MaxPool2

MFCC (Mel-frequency Ceptral Coefficients) Mel Spectrogram -> Spectrogram converted to Mel Scale -> Widely used in deep karning -> Powerful tool to extract the feature from speech -> Process in cludes: Fourier Townshorm, discrete cosine transforms and overlapping windows -> It helps for classification problems such as genre classification, disease detection related to speach

CNN in Speech Data -> Create features using MFCCs & Mel Spectrogram -> Average of matrix (851, n) Reshaping Conv2D Max pool 2D Audio Features (MFCC) Convolution / Pooling (Mel Spectrogram)