Basic Data Wrangling & Exploration, ft. Tidyverse

Kursus R: Pengenalan dan Praktikal

Mohd Azmi Bin Suliman

azmi.suliman@moh.gov.my

Pusat Penyelidikan Penyakit Tak Berjangkit, Institut Kesihatan Umum

Wednesday, 02 October 2024

Packages

- The strength of R is it's open-source philosophy
- When installing R, you get a basic set of packages
- Package in R is a collection of functions, data, and compiled code
- R allow for custom function, and even custom package
- The custom package can be shared with others, e.g., via CRAN
- These custom packages enriched the R ecosystem

Among common packages in R

Package	Description
tidyverse	collection of packages designed for data science
haven	import/export SPSS, Stata and SAS files
readxl	import/export excel files
lubridate	work with date and time
ggplot2	data visualisation
dplyr	data manipulation
stringr	string manipulation
forcats	factor manipulation

- Install once
 - → using install.packages("package_name")
 - → can also click on install button at Packages pane
- Load every time you use R
 - → using library(package_name)
 - → can also tick at respective library at Packages pane

• Lets try install tibble package using code

```
1 install.packages("tibble")
```

Then load the package using code

```
1 library(tibble)
```

Can you try install **tidyverse** package?

Data Wrangling

What is data wrangling?

Common data analysis look like this

source: r4ds.hadley.nz

What is data wrangling?

- real world data commonly messy!
- 80% of time taken spend on data cleaning
- improving data quality > improving the accuracy & efficiency
- data wrangling involving tidying and transforming data, from raw form to analysis-ready data.
- common data wrangling action
 - → label data
 - → recategorise categorical variable usually collapsing groups
 - → binning continuous variable

Lets try some data wrangling

Setup your project

- We will use
 - → current project R_Practical
 - → current Quarto document Sesi 1 Pengenalan
- Add new level 1 header
 - → Single # symbol
 - → Followed by the title Data Wrangling

Setup your project

- We will use the asthma_ds.sav dataset (SPSS file)
- Copy the dataset to the R_Practical project folder (working directory)
- Add new level 2 header
 - → Double ## symbol
 - → Followed by the title Import Dataset
- Insert new R code chunk

- We will use the read_sav haven package to import the dataset
- The dataset is stored in R object asthma_ds0

```
1 library(tidyverse)
2 library(haven)
3
4 asthma_ds0 <- read_sav("Dataset/asthma_ds.sav")</pre>
```

We can view the dataset by writing the object name

```
asthma ds0
# A tibble: 150 × 16
     id idR
                          Age WorkStatus
                                          Height Weight Pre PA HW Weight Post
              Gender
  <dbl> <chr> <dbl+lbl> <dbl> <dbl+lbl>
                                          <dbl>
                                                       <dbl> <dbl>
                                                                        <dbl>
      1 nXSw 2 [Female] 34 2 [Unemploy...
                                              179
                                                        84.2
                                                                         76.7
      2 yg2t 1 [Male] 31 2 [Unemploy... 169
                                                  81.8
                                                                         75.7
      3 QBW4 1 [Male] 25 1 [Employed]
                                             164 88.5 1
                                                                         84.1
                                                  53.2 4
71.3 2
87.3 0
48.8 5
49.1 2
      4 2x2S 2 [Female] 33 2 [Unemploy...
                                             136
                                                                         46.9
      5 mOnn 1 [Male] 28 2 [Unemploy...
                                             172
                                                                         63.3
      6 D3sl 1 [Male] 33 2 [Unemploy...
                                              178
                                                                        82.6
      7 le6j 2 [Female] 31 2 [Unemploy...
8 r3gC 2 [Female] 34 1 [Employed]
                                              140
                                                                         41.9
                                             140
                                                                       43.6
      9 3Tyt 1 [Male] 31 1 [Employed]
                                              171
                                                     60.1
                                                                         54.7
10
     10 cmKF 1 [Male]
                           28 1 [Employed]
                                              163
                                                                         86.2
                                                        93.1
# i 140 more rows
# i 7 more variables: Tx2 <dbl+lbl>, PEFR Pre <dbl>, PEFR Post <dbl>,
   SxWheeze Pre <dbl+lbl>, SxWheeze Post <dbl+lbl>, PS Pre <dbl>,
   PS Post <dbl>
```

We can also use View function (capital V)

```
1 View(asthma_ds0)
```

- In this dataset, we can notice that the Gender variable is coded as 1 and 2, with label Male and Female respectively.
- Similar to other factor (categorical) variables in this dataset.
- This is common in SPSS dataset, where the label is stored separately from the data.
- We can use as_factor function to convert the variable to factor, and apply the label to the factor.

```
1 asthma_ds <- as_factor(asthma_ds0)</pre>
```

1 head(asthma ds)

```
\# A tibble: 6 × 16
   id idR Gender Age WorkStatus Height Weight Pre PA HW Weight Post Tx2
 <dbl> <chr> <fct> <dbl> <fct>
                        1 nXSw Female 34 Unemployed 179
                                   84.2
                                               76.7 Drug B
  2 yg2t Male 31 Unemployed 169 81.8
                                           1 75.7 Place...
  3 QBW4 Male 25 Employed 164 88.5 1 84.1 Drug B
  4 2x2S Female 33 Unemployed 136 53.2 4 46.9 Drug A
  5 mOnn Male
                 28 Unemployed 172 71.3 2 63.3 Place...
                                             82.6 Drug A
    6 D3sl Male
                 33 Unemployed
                             178 87.3
# i 6 more variables: PEFR Pre <dbl>, PEFR Post <dbl>, SxWheeze Pre <fct>,
  SxWheeze Post <fct>, PS Pre <dbl>, PS Post <dbl>
```

Simple Data Wrangling

Select Variable/Column

- We can select variable/column using select function
- We can use: to select range of variable

```
asthma ds1 <- select(asthma ds, idR:Weight Post)
   head(asthma ds1)
\# A tibble: 6 \times 8
             Age WorkStatus Height Weight Pre PA HW Weight Post
 idR
      Gender
 <chr> <fct> <dbl> <fct>
                         <dbl>
                                  <dbl> <dbl>
                                                <dbl>
                           179
                                  84.2
                                                76.7
1 nXSw Female
             34 Unemployed
             31 Unemployed 169 81.8 1
2 yg2t Male
                                           75.7
3 QBW4 Male 25 Employed 164 88.5 1 84.1
4 2x2S Female 33 Unemployed 136 53.2 4 46.9
                                71.3 2
5 mOnn Male
                        172
                                             63.3
             28 Unemployed
                                  87.3 0
                                                82.6
             33 Unemployed
                          178
6 D3sl Male
```

Arithmetic Transformation

- We can perform arithmetic transformation using mutate function
 - → For example, we can calculate BMI using Weight_Pre and Height variable

```
asthma_ds2 <- asthma_ds1
    asthma ds2$Ht m <- asthma ds2$Height/100
    asthma ds2\$BMI Pre <- asthma ds2\$Weight Pre/(asthma ds2\$Ht m^2)
 4
    head(asthma ds2)
\# A tibble: 6 × 10
             Age WorkStatus Height Weight Pre PA HW Weight Post Ht m
 <chr> <fct> <dbl> <fct>
                          <dbl>
                                   <dbl> <dbl>
                                                  <dbl> <dbl>
1 nXSw Female
              34 Unemployed
                           179
                                    84.2
                                                  76.7 1.79
2 yg2t Male 31 Unemployed 169 81.8
                                             75.7 1.69
3 QBW4 Male 25 Employed
                       164
                               88.5 1 84.1 1.64
4 2x2S Female
              33 Unemployed 136 53.2 4 46.9 1.36
5 mOnn Male
              28 Unemployed
                           172
                                   71.3
                                             63.3 1.72
6 D3sl Male
              33 Unemployed
                            178
                                    87.3 0
                                                  82.6 1.78
# i 1 more variable: BMI Pre <dbl>
```

Binning Continuous Variable

- We can bin continuous variable using cut function
 - → For example, we can bin BMI_Pre variable into 4 categories

BMI Category	BMI Range	
Underweight	<= 18.49	
Normal	18.50 - 22.99	
Overweight	23.00 - 24.99	
Obese	>= 25.00	

Binning Continuous Variable

6 D3sl Male 33 Unemployed 178 87.3 0

i 2 more variables: BMI Pre <dbl>, BMI PreCat <fct>

For example, we can bin BMI_Pre variable into 4 categories

```
asthma ds3 <- asthma ds2
    asthma ds3$BMI PreCat <- cut(asthma ds3$BMI Pre,
                                  breaks = c(0, 18.49, 22.99, 24.99, 100),
 3
                                   labels = c("Underweight", "Normal",
 4
 5
                                              "Overweight", "Obese"))
 6
    head (asthma ds3)
\# A tibble: 6 \times 11
             Age WorkStatus Height Weight Pre PA HW Weight Post Ht m
 idR
      Gender
                          <chr> <fct> <dbl> <fct>
                                                 <dbl> <dbl>
1 nXSw Female 34 Unemployed 179 84.2
                                           5 76.7 1.79
2 yg2t Male 31 Unemployed 169 81.8 1 75.7 1.69
3 QBW4 Male 25 Employed 164 88.5 1 84.1 1.64 4 2x2S Female 33 Unemployed 136 53.2 4 46.9 1.36
5 mOnn Male 28 Unemployed 172 71.3 2 63.3 1.72
```

82.6 1.78

Tidyverse

What is Tidyverse?

- Tidyverse is a collection of packages designed for data science
- The strength of Tidyverse is the tidy data philosophy
- Pipe operator %>% is the main feature of Tidyverse
- The packages are:

Package	Description	Package	Description
ggplot2	data visualisation	tibble	data structure
dplyr	data manipulation	stringr	string manipulation
tidyr	data tidying	forcats	factor manipulation
readr	data import	broom	tidy statistical output
purrr	functional programming	modelr	modelling functions

How does tidyverse make code more readable?

- Tidyverse is designed to work together
- mutate function is used to create new variable
- While pipe operator %>% is used to chain multiple function
- These two were commonly used in Tidyverse

mutate function

6 D3sl Male

- mutate function is used to
 - → create new variable
 - → modify existing variable

33 Unemployed

178

```
asthma ds4 <- asthma ds1
    asthma ds4 <- mutate(asthma ds4, Ht m = Height/100)
    head (asthma ds4)
# A tibble: 6 \times 9
 idR
      Gender
              Age WorkStatus Height Weight Pre PA HW Weight Post Ht m
 <chr> <fct> <dbl> <fct>
                                     <dbl> <dbl>
                                                     <dbl> <dbl>
                            <dbl>
                                      84.2
1 nXSw Female
               34 Unemployed
                             179
                                                     76.7 1.79
2 yg2t Male
                                      81.8
               31 Unemployed
                           169
                                                     75.7 1.69
                                     88.5
                           164
3 QBW4 Male
               25 Employed
                                                     84.1 1.64
4 2x2S Female
               33 Unemployed
                           136
                                     53.2 4
                                                     46.9 1.36
5 mOnn Male
               28 Unemployed
                           172
                                      71.3
                                                     63.3 1.72
```

87.3

82.6 1.78

mutate function + Pipe Operator

We can use pipe operator %>% to chain multiple function

Example of Data Wrangling without Pipe Operator

```
1 asthma ds0 <- read sav("Dataset/asthma ds.sav")</pre>
   asthma ds1 <- as factor(asthma ds0)</pre>
    asthma ds2 <- select(asthma ds1, idR:Weight Post)
   asthma ds3 < asthma ds2
    asthma ds3$Ht m <- asthma ds3$Height/100
    asthma ds3\$BMI Pre <- asthma ds3\$Weight Pre/(asthma ds3\$Ht m^2)
    asthma ds3$BMI PreCat <- cut(asthma ds3$BMI Pre,
                                breaks = c(0, 18.49, 22.99, 24.99, 100),
 8
                                labels = c("Underweight", "Normal",
10
                                           "Overweight", "Obese"))
11 head(asthma ds3)
\# A tibble: 6 \times 11
            Age WorkStatus Height Weight Pre PA HW Weight Post Ht m
 idR
     Gender
 <chr> <fct> <dbl> <fct>
                        1 nXSw Female 34 Unemployed 179 84.2 5 76.7 1.79
2 yg2t Male 31 Unemployed 169 81.8 1 75.7 1.69
3 QBW4 Male 25 Employed 164 88.5 1 84.1 1.64
4 2x2S Female 33 Unemployed 136 53.2 4 46.9 1.36
5 mOnn Male 28 Unemployed 172 71.3 2
                                           63.3 1.72
6 D3sl Male 33 Unemployed 178 87.3 0
                                               82.6 1.78
# i 2 more variables: BMI Pre <dbl>, BMI PreCat <fct>
```

Example of Data Wrangling with Pipe Operator

```
asthma ds5 <- read sav("Dataset/asthma ds.sav") %>%
     as factor() %>%
     select(idR:Weight Post) %>%
     mutate(Ht m = Height/100,
 4
 5
            BMI Pre = Weight Pre/(Ht m^2),
            BMI PreCat = cut(BMI Pre, breaks = c(0, 18.49, 22.99, 24.99, 10)
 6
                             labels = c("Underweight", "Normal",
                                        "Overweight", "Obese")))
 9
   head(asthma ds5)
# A tibble: 6 \times 11
           Age WorkStatus Height Weight Pre PA HW Weight Post Ht m
 idR
     Gender
                                 <dbl> <dbl>
 <chr> <fct> <dbl> <fct>
                         <dbl>
                                              <dbl> <dbl>
1 nXSw Female 34 Unemployed 179 84.2
                                           76.7 1.79
2 yg2t Male 31 Unemployed 169 81.8 1 75.7 1.69
3 QBW4 Male 25 Employed 164 88.5 1 84.1 1.64
4 2x2S Female 33 Unemployed 136 53.2 4 46.9 1.36
5 mOnn Male 28 Unemployed 172 71.3 2 63.3 1.72
6 D3sl Male
             33 Unemployed 178
                             87.3
                                            82.6 1.78
# i 2 more variables: BMI Pre <dbl>, BMI PreCat <fct>
```

Data Exploration with Tidyverse

Data Exploration

- Data exploration is the first step in data analysis
- But data exploration also commonly use at various stage of data analysis

Summary Statistics with summarise function

- Tidyverse provide various function to get summary statistics
 - → **summarise** function

Summary Statistics with count function

 count function is used to count the frequency of each level of a factor variable

Summary Statistics with group_by function

group_by function is used to group the data by a factor variable

```
asthma ds5 %>%
      group by (Gender) %>%
      summarise(Mean Height = mean(Height),
                 SD Height = sd(Height),
 4
                 Min Height = min(Height),
 5
                 Max Height = max(Height))
\# A tibble: 2 \times 5
 Gender Mean Height SD Height Min Height Max Height
 <fct>
            <dbl>
                    <dbl>
                            <dbl>
                                      <dbl>
1 Male 174.
                     8.98
                               151
                                        195
                               129
2 Female
       150. 11.0
                                        179
```

Cross Tabulation with table function

table function is used for crosstabulation

Plot: Histogram

We can quickly plot histogram using base R function hist

```
1 hist(asthma ds5$Height)
```


Plot: Bar Chart

We can quickly plot bar chart using base R function barplot

```
1 barplot(table(asthma_ds5$Gender))
```


Finish! See you tomorrow~