TOPOLOGI - 1

Sverre Stikbakke

HVORDAN LAGE TOPOLOGI?

STANDARDISERING

ISO-TC211

Referansemodell

Terminologi

Spatial Schema

Simple Features

• • •

EGENHOFER-TOPOLOGI

VI SKAL KUNNE BESVARE SPØRSMÅL SOM

Hva er en geografisk database?

Hvordan lage en geografisk database? (for simple features-geometri)

Hvordan beskrive geografiske relasjoner? (uten topologimodell)

Hvordan utføre geografiske spørringer med SQL? (uten topologimodell)

Hvordan sikrer vi at vi har integritet (at kvalitetskrav oppfylles) i en geodatabase (uten topologimodell)

VI TRENGER IKKE TOPOLOGI FOR Å LAGE KART ..

men ..

TOPOLOGI ER GRUNNLAG FOR

Naboskapsanalyse

Ruteberegninger

Arealkonflikt-analyser

Arealberegninger

..med mere

TOPOLOGIEN KAN BESVARE SPØRSMÅL OM ..

Adjacency

hva ligger ved siden av/ grenser inntil?

Connectivity

hva henger sammen med hva?

Containment

hva ligger innenfor hva?

Coincidence

hva ligger på samme sted?

HVA ER TOPOLOGI?

Definisjoner:

- En gren av matematikk opptatt av egenskaper til geometrier som er uavhengige av avstandsmål og er uforandret ved deformasjoner som ikke bretter eller river sund overflater (etter Chrisman s 47)
- En gren av den moderne geometrien som behandler de egenskaper hos legemer som har å gjøre med hvordan et legeme "henger sammen" og ikke dets form eller størrelse. (Kunnskapsforlagets matematikkleksikon)

To typer:

- Algebraisk topologi/graf-topologi/kombinatorisk topologi
- Point-set topologi / Egenhofer-topologi

KILDER FOR DYPERE INNSIKT

Wolfgang Kainz, Department of Geography and Regional Research, Wien:

- 5th Nordic Summer School in GlScience, 2010 (Gävle, Sweden)
 - The mathematics of GIS
 - Theory and Methods of Geographic Information Science

Peter Saveliev, professor of mathematics at Marshall University, Huntington WV, USA

Topology Illustrated

FRA «TOPOLOGY ILLUSTRATED»

Topology is the science of spatial properties that don't involve measuring

1 Topological features of objects

At the very beginning of our study of Topology we are interested in the following *visible* features of everyday objects:

- cuts/gaps,
- holes/tunnels, and
- voids/bubbles.

Let's try to describe these features mathematically.

Figure 2.13: Rubber sheet transformation: The space is transformed, yet many relationships between the constituents remain unchanged.

Fra:
Principles of geographic information systems: an introductory textbook

By O. Huisman (editor) and R.A. de By (editor) Fourth edition, Enschede, ITC, 2009

LEONARD EULER OG BRUENE I KØNIGSBERG

Königsbergs bruer Et berømt problem som man regner som starten på en ny matematisk disiplin, **grafteori**.

Problemet er følgende. Byen Königsberg (nåværende Kaliningrad i Russland) ligger på begge sider av elva Pregolja, og i elva ligger to øyer. Syv bruer forbinder de to øyene og fastlandet.

For byens innbyggere var det forvirrende at det syntes umulig å foreta en spasertur som ble innledet på et sted og bestod i en sammenhengende vei slik at hver bru ble passert en og bare en gang, og turen til slutt endte der den startet. L. Euler viste i 1736 hvorfor en slik vei ikke eksisterer ved å assosiere geografien med en graf av følgende utseende:

På denne grafen er fastlandspartiene a og b angitt som noder, mens bruene 1, 2, 3, 4, 5, 6 og 7 angis som kurvestykker. Grafen gir den strukturen som viser at det ikke finnes noen løsning på det aktuelle problemet. Eulers løsning, se **grafteori**.

Kilde: Kunnskapsforlaget: Matematikkleksikon

GRAF-TOPOLOGI (HEYWOOD)

Lenker: A-P

Knutepunkt: 1-12

Flater: 101-105

Eksempel fra Heywood s. 86

GRAF-TOPOLOGI (KNUTEPUNKTTABELL)

e file	geli
X	Υ
0	, 0
0	, 10
, 0	, 20
de lo	abas
, 14	, 10
	X , 0 , 0 , 0

GRAF-TOPOLOGI (LENKE-TOPOLOGI)

Lenke-liste med egenskaper (hvilke?)

Ch	ain/Segment	file you 191	k No mat		ris Tarai
ID	Start-node	End-node	Left-poly	Right-poly	Length
Α	pology, (t	, 2 ,	Outside	, 101 ,	10
В	2 2	, 3 ,	Outside	, 102 ,	10
C	, 3	, 4,	Outside	, 102 ,	10
•		No.	•		1 22 11
	e chaftenge	grant and	e of vecto	gaions o	idums at
Р	, 12	, 9,	104	, 105 ,	4

GRAF-TOPOLOGI (POLYGON-TOPOLOGI)

Polygonliste – polygonene er nå definert av

Poly	gon structure file
ID	Chain/Segment list
101	A,I,M,L,H
102	B,C,J,N,I
103	D, E, K, O, J
104	F,G,L,P,K
105	M,N,O,P
	Access to the second

GRAF-TOPOLOGI

Egenskapstabellen – inneholder den informasjon om geometri?

Polyg	on attribute file	produce the
ID \	/AR 1 (Name)	VAR 2 (Area)
101	Cars	96
102	Cars	96
103	Staff	96
104	Buses	96
105	Info kiosk	. 511 16 112 E

Figure 3.15 Topological structuring of complex areas

GRUPPEOPGAVE - TOPOLOGI

- se utdelt ark

GRAF-TOPOLOGI II (BERNHARDSEN)

Legg merke til forskjell i KNUTEPUNKT og LENKE KOORDINATER

LENKE '	TOPOLOGI	No	L/	
Lenke	Start knutepunkt	Slutt knutepunkt	Venstre polygon	Høyre polygon
L1	K1	K2	E	Α
L2	K2	K3	E	В
L3	K3	K1	E	В
L4	K3	K4	В	В
L5	K2	K1	В	A
L6	K5	K5	A	C
L7	K6	K6	A	A

Lenke	Koordinater			
L1	4,10	4,4	11,4	11,9
L2	11,9	11,16	8,16	
L3	8,16	4,16	4,10	
L4	8,16	9,15	9,13	
L5	11,9	8,11	6,11	4,10
L6	10,7	7,8	7,5	10,7
L7	5,5		12 12	

ENVE KOODDINATED

Fig. 4.12. Topologimodellen baseres på at de geometriske objektene kan representeres med knutepunkter og lenker. Ved å lagre knutepunkter og lenker i tre tabeller, polygon-topologi-tabell, knutepunkt-topologi-tabell og lenke-topologi-tabell kan en beskrive objektenes logiske oppbygging. I tillegg må en ha en tabell med koordinater som knytter objektene til geografien.

Kilde: Bernhardsen 3.utg side 66

03.09.2008 HIG/GIB - ERLING ONSTEIN 24

SPAGETTI-MODELL, V. 1 — HELEID

Hvert punkt er lagret uten egenskaper

Startpunkt og sluttpunkt er identisk og punktene avgrenser dermed en flate

Flateobjektet har heleid geometri

Eksempel fra Heywood s. 86

SPAGETTI-MODELL, V. 2 — DELT

Punktene har en ID

Polygon-tabell definerer polygonene ved hjelp av ID'er

Felles grense mellom polygoner lagres bare en gang, - de har delt geometri.

Eksempel fra Heywood s. 86

EN TOPOLOGISK MODELL KAN LAGES UT FRA SPAGETTI-DATA

Demo med SOSI og Fysak

enkleste form for overføring av data

Dette er den enkleste form en kan overføre data på i SOSI.

Her er det bare tillatt med en egenskapsopplysning pr. geometritype (ikke FLATE eller TRASE), og det er ikke lov med punktinformasjon.

(Etter de kodeprinsipper som er brukt i SOSI Del 3 er denne metoden nærmest ubrukbar selv til vanlige kart.)

(Fra SOSI Standard v. 4.5 – del 1)

fullstendig koding men 'spagetti'

Dette nivået dekker alt som har med koding av data å gjøre.

I dette nivå finner en multiple egenskaper samt punktinformasjon.

Nivået dekker ikke bruk av knutepunkt og definering av geometritypene FLATE eller TRASE

fullstendig koding med knutepunkt Dekker nivå 2, men i tillegg er knutepunkt implementert.

Data på SOSI-NIVÅ 3 indikerer altså at data er renset i krysningspunkter, og at krysningspunktene er etablert som ...KP.

fullstendig koding, sammenknytning samt flater

Dekker nivå 3.

I tillegg er det på dette nivå mulig å overføre geometritypene FLATE og TRASE

I nivå 4 er bruk av serienummer/referansenummer innført.

SOSI-HODE

- .HODE
- ..TEGNSETT ANSI
- ..TRANSPAR
- ...KOORDSYS 22
- ...ORIGO-NØ 0 0
- ...ENHET 0.01
- ..OMRÅDE
- ...MIN-NØ 6740244 591739
- ...MAX-NØ 6740290 591784
- ..SOSI-VERSJON 4.0
- ..SOSI-NIVÅ 2

SPAGETTI-LINJER

```
.KURVE 1:
..OBJTYPE Teiggrense
..NØ
674027693 59178282
674024481 59176935
.KURVE 2:
..OBJTYPE Teiggrense
..NØ
674025686 59174027
674028909 59175384
```

REPRESENTASJONSPUNKT

- .PUNKT 5:
- ..OBJTYPE DekTeig
- ..ETABLERINGSDATO 19510616
- ..HOVEDTEIG JA
- ..MATRIKKELNUMMER 0502 xx yy
- ..NØH

674026722 59176170 0

.SLUTT

SOSI NIVÅ 3 - KNUTEPUNKT

Nivå 2

```
.KURVE 1:
..OBJTYPE Teiggrense
..NØ
674027693 59178282
674024481 59176935
```

Nivå 3

```
.KURVE 1:
..OBJTYPE Teiggrense
..NØ
674027693 59178282 ...KP 1
..NØ
674024481 59176935 ...KP 1
```

SOSI NIVÅ 4 - FLATER

Nivå 2 og 3

.PUNKT 5:

- ..OBJTYPE DekTeig
- ..ETABLERINGSDATO 19510616
- ..HOVEDTEIG JA
- ..MATRIKKELNUMMER 0502 xx yy
- ..NØH

674026722 59176170 0

Nivå 4

.FLATE 5:

- ..OBJTYPE DekTeig
- ..ETABLERINGSDATO 19510616
- ..HOVEDTEIG JA
- ..MATRIKKELNUMMER 0502 xx yy
- ..REF :-2 :-4 :-1 :-3
- ..NØH

674026722 59176170 0

VERKTØY FOR Å BYGGE TOPOLOGI

ArcGIS:

Points to line:

Features to polygon:

FORDELER MED TOPOLOGIMODELL

Unngår redundant lagring

Modellen muliggjør oppslag på topologisk informasjon:

- Hvilke polygoner er nabo-polygoner
 - (hvordan finner man dette?)
- Hvilke lenker henger sammen, og hvor henger de sammen?

Lettere å få til flatedannende kartlag uten små hull mellom polygoner.

(På engelsk: Contiguity og Connectivity)

BRUKER ALLE GIS-SYSTEMER EN TOPOLOLOGISK DATAMODELL?

ArcGIS help:

- What is a shapefile?
- "A shapefile is a simple, nontopological format for storing the geometric location and attribute information of geographic features"

Det må være noen grunner til at shapefiler ikke bruker den topologiske modellen?

Fortsettelse f
ølger neste uke.