Unique BIT's.

Inlays to Decode

Flip Array

Interleaving Strings.

(i)

Given an integer A, how many structurally unique BST's (binary search trees) exist that can store values 1...A?

$$(1*19) + (1*5) + (2*2) + (5*1) + (14*1) = (42)$$

A=6.

code =

$$\begin{cases} ov(i=2; i \leq A; i+r) \neq \\ for(j=0; j < i; j+r) \neq \\ dp[i] += dp[j] * dp[i-j-1]; \end{cases}$$

return ap(A);

T.C
$$\rightarrow$$
 $O(A^2)$
S.C \rightarrow $O(A)$

$$A' \rightarrow 1$$

$$B' \rightarrow 2$$

$$C' \rightarrow 2$$

$$C' \rightarrow 2.6$$

Given an encoded message denoted by string A containing digits, determine the total number of ways to decode it modulo 109 + 7.

-		1,	2 2	3	2	D 5	4		
1	1	2	3	5	2	5	5		
D	1	2	3	4	2	6	7		
	"A"	"AA" "K"	AAB KB AM	AABC KBC AMC AAW KW		B KO B A	AABCT KBCT AMCT AAWT KWT		

```
A code -
```

```
int ap[N+1];
 op (0) = 1;
for ( i= 1; i = N; i++) of
       char cc = str[i-1];
       if (cc!=0) {
       [ ap(i) += ap(i-1);
       if ( i > 1 ) {
            char pc = Str (i-27;
inf num = pc = 10 + cc;
             if (pc!=0 kl num \( \preceq 26) \)
           [ dp[i] += dp[i-2];
                                               T.C -> O(N)
S.C -> O(N)
 return ap(NT;
```


Given an array A of positive elements, you have to flip the sign of some of its elements such that the resultant sum of the elements of array should be minimum non-negative(as close to zero as possible).

Return the minimum number of elements whose sign needs to be flipped such that the resultant sum is minimum non-negative.

$$A \rightarrow \begin{bmatrix} 15, 10, 6 \end{bmatrix}$$
 $Ons = 1$
 $A \rightarrow \begin{bmatrix} 14, 10, 4 \end{bmatrix}$ $Ons = 1$
 $IS \downarrow 10 \downarrow 6$
 IS

H code -

```
int are = N; //value/flips
Int minJum = Earrin; 11 wto telement.
      min flips ( au (7, i, sum, flips) {
         ¥(1×0){
               if (sum <0) } return }
      M(sum e minsum) {
minsum = sum;
ans = flips;
return;
minflips (aut7, i-1, sum + arr(i), flips);
       minflips ( aut7, i-1, sum + (-1 + arr[i7), flips+1);
  3
```

=0 Sum of all flipped nos should not exceed (sum/2;

d (SUM/2)

		O	ı	2	3	u	5	6	7	K	9)0	JI	12	B	14	15
			· ·	R	ہر [4	1	R	Л	x	X	X	K	ge	p	10	x
-	0	×	,														(N)
	1	,	_	-	•	-	-	-	_	_	-	-	_	-			<i>Z</i>
15	•																
	ე	£	_	_	_	_	_	_	_	_	_	(510)	(1/10)	(1/10)	(1) (01,10)	110	12.0
10	7												_				
	3	K	,	ſ	J	~	l	(1,6)	(1,6)	(1/6)	هرا	(1)	(J, la)	(I)	(h)0	(وأرا	1,15)
6										•							

Cap

1,3 1,10 2,13.

Interleaving strings

1-1-1.

7
17

```
boolean op(N+1)(m+1)
aproproj: tru;
for ( g = 1; j = m; j ++) +
       if (B[j-1] = C[j-1]) \{ \partial p[0][j] = \partial p[0][j-1] \}
else \partial p[0][j] = false;
 for ( i = 1; i ≤ N; i++) f
         if ( A[i-i) == ([i-i]) { op[i][o] = op[i-i](o]}
else dp[i](o] = folse;
 for (1:1; i = N; i++)f
      for (j-1; j = m; j++) {
             if (A[i-1] = = C[i+j-1] le dp[i-1](j) = = boue) ]]
           return dp (N7[m])
```