

Identifying Network Users Using Flow-Based Behavioral Fingerprinting

Barsamian, Berk, Murphy Presented to FloCon 2013

What Is A User Fingerprint?

- Users settle into unique patterns of behavior according to their tasks and interests
- If a particular behavior seems to be unique to one user...
 ... and that behavior is observed...
 - ... can we assume that the original user was observed?
- Affected by population size, organization mission, and the people themselves

Why Fingerprint?

- Basic Research
- Policy Violations and Advanced Security Warning
- Automated Census and Classification

Why Fingerprint?

- Basic Research
 - Change Detection
 - Population Analysis
- Policy Violations and Advance Warning
 - Preliminary heads-up of botnet activity
 - Identify misuse of credentials
- Automated Census and Classification
 - Passive network inventory
 - User count estimation (despite multiple devices)
 - Determination of roles

Background

- Passive and active static fingerprints
 - Operating system identification
 - p0f/NetworkMiner, Nmap
 - Signature-based detection of worms and intrusions
- Dynamic fingerprints
 - Hardware identification
 - Unauthorized device detection¹
 - Browser fingerprinting²
- Increasingly important part of security systems³
 - Reinforcing authentication
 - Identifying policy violations

¹ Bratus, et al "Active Behavioral Fingerprinting of Wireless Devices", 2008

² http://panopticlick.eff.org

³ François, et al "Enforcing Security with Behavioral Fingerprinting", 2011

But...

- Difficult to implement, requiring significant expertise not available to many IT departments
- Require unusual or unavailable data
 - Data collection incurs overhead; easier to justify if data is useful for multiple purposes
 - No unitaskers in my shop!
 - Protocol analysis needed
 - Computationally expensive
 - Impinges user privacy
 - Increasingly defeated by encrypted channels and tunnels

Challenge

Make active, adaptive fingerprinting available to the widest possible set of network administrators

- Data requirements
 - Common data source, common data fields
- Processing requirements
 - Can't require major computing resources to create and handle
- Ease of implementation
 - Not just technology, but policy
 - Could search emails and web forms for personallyidentifying statistically improbable phrases, but would never fly at most institutions

Why NetFlow Fingerprints?

- NetFlow has very attractive properties to an analyst...
 - Privacy
 - Unintrusive to end users
 - Not affected by encrypted channels
 - Speed
 - Easily-parsed datagrams with fixed fields
 - Bulk of processing taken care of by specialty equipment
 - Scalability
 - Less affected by volume than protocol analyzers
- ... but is it up to the task?
 - (Spoiler alert: yes)

Methodology

After multiple revisions, arrived at the following:

- 1. Define your parameters
- Get a list of all the outgoing sessions from that subnet
 - List of sessions for which client IP is in CIDR block of interest
 - 2. From that list, extract the destination addresses
- 3. For each of those destination addresses, do a 'ip-pair' query: (CLNIP==classC && SRVIP=dest).
 - 1. Count the unique local addresses for each destination
- 4. Eliminate all of the external addresses that get contacted by more than 1 local address
- 5. Result is a set of external addresses that are only contacted by ONE client

(CLNIP==classC)

(CLNIP==classC && SRVIP=dest)

Example Fingerprints

- Individual fingerprints for a user (when that user has one) contain a list of IP addresses that user (and only that user) contacted within the time period
 - One-time connections not included here
- Using the Class C block for the server would compress fingerprints like User B's
 - In this case, would still be unique

User A	8475 total sessions
aaa.93.185.143	38
bbb.175.78.11	44
ccc.22.176.46	42
ddd.28.187.143	37

User B	661 total sessions
eee.87.169.51	93
eee.87.160.30	34
eee.87.169.50	37

Parameters

- Definition of local network
 - Select the smallest network of interest
 - May be worth fingerprinting wired and wireless networks separately, to account for users with both desktops and wireless devices
- Time frame
 - Shorter-term profiles faster to create
 - Longer-term profiles less transitory
- Destination subnet
 - When filtering on each destination, using a slightly wider subnet can reduce the computing impact of content distribution networks
- Top N vs. All
 - Cutting off the list of servers with very few sessions improves scalability
 - Potential reduced fingerprint list

Data Source Characterization

- Knowing your source helps determine optimal parameters
- Educational environment with a mix of wireless and wired infrastructure
- Inherent "life spans" to fingerprints
 - Large turnover each year
 - "Mission" changes every term
 - Gaps in data (scheduled breaks) confound ability to detect gradual change

Select Outbound Requests

- Get a list of top servers by destination
- How do you define "outbound" and why?
 - Anything outside examined subnet? Outside organization?
 - Presumption that use of internal resources not identifying?
 - Mostly true, but what about private servers?

Select Pairs

- For each server in Top N list, get the list of clients that contacted it
- Filter to reduce computation?
 - Select only ports of interest (HTTP)
 - Avoiding BitTorrent makes for stronger profiles
 - Filter out known-common networks (Akamai, Google)
 - Include only servers with more than some minimum number of sessions

Compile Fingerprints

- At this stage we have a list of those servers that have only been contacted by one client
 - Potentially pre-filtered for significance (e.g. minimum number of sessions, removed trivial connects such as BitTorrent, etc)
- Create for each client a list of servers
 - Optionally: ranked by percent of client's total traffic (requires second query for each client, increasing total fingerprint time, but providing context and significance measure)
- Each list is a basic but functional fingerprint of that client
 - Sessions to one of those servers in future traffic indicates likely link to that fingerprinted user
 - Primary: that user generated that traffic (on the original device or not)
 - Secondary: that user is connected directly to the user who generated that traffic

 Q FLOWTRAQ

Initial Results

- Of ~250 users, profiles could be created representing
 - 38% of users
 - 53% of total traffic
- Breakdown by profile length (# servers in profile):
 - 1. 51 users (55.4% of profiles)
 - 2. 20 users (21.7%)
 - 3. 7 users (7.6%)
 - 4. 9 users (9.8%)
 - 5. 2 users (2.2%)
 - 6. 1 users (1.1%)
 - 7. 1 users (1.1%)
 - 8. 1 users (1.1%)

(i.e. 51 users each contacted 1 host unique to them, and one user contacted 8 hosts that nobody else did)

Uniqueness Levels

- By relaxing uniqueness requirement, more users can be fingerprinted
 - Tradeoff: Certainty vs. breadth
- Nomenclature
 - The more clients that share a host, the higher the U number
- What is lost in ability to pinpoint users, is gained in insight into shared task/interest
- Some profiles non-unique
 - Same user at different IP addresses?

U1-U4 Profile Lists

10 non-unique users

10 non-unique users

Variance Over Time

- Variability from month to month is observed
- Month 1

Uniqueness	% of users	% of traffic
U1	38%	53%
U2	60%	78%
U3	75%	89%
U4	83%	93%

• Month 2

Uniqueness	% of users	% of traffic
U1	46%	80%
U2	60%	92%
U3	69%	96%
U4	75%	98%

Results and Lessons Learned

- This represents a first step toward making simple flexible fingerprinting widely available
 - NetFlow is an ideal data source
- Able to fingerprint users comprising majority of network traffic in relatively unrestricted environment
- Uniqueness Levels
 - U1 profiles are more significant
 - U4 profiles cover far more of the population
 - Keeping track of them in parallel allows us the best of both worlds

Take-Home

- NetFlow, with its benefits to privacy, ease, and scalability, can be used to produce simple user fingerprints
 - Several types are possible; we went with the simplest plausible type
- Unique site accesses represent one such fingerprint type
 - Intuitive and easy to grasp
 - Adjustable to the level of desired uniqueness
- More sophisticated fingerprints are expected to be more useful still

Next Steps, Short-Term

- Room to grow within NetFlow collection regime:
 - Refine by port/protocol
 - Aggregate content distribution networks
- Make better use of ground truth
 - Newer version of software allows searching on MAC address, to quickly check when fingerprint appears to change or duplicate
 - Determine whether there are substantive differences between wireless and wired networks
 - Number of individuals with identifiable fingerprints
 - Fingerprint stability

Next Steps, Long-Term

- Learning Period Estimation
 - What constitutes a baseline?
- Long-Term Stability
 - How much do these fingerprints change over time?
 - What can be learned from those changes?
 - How are fingerprint lives distributed?

- Autonomous Operation
 - Can fingerprint creation and tuning be automated?... to the point of using them for auto-remediation?

For Additional Information...

- For a copy of these slides and the whitepaper, or to evaluate the fingerprinting tool, visit us at:
 - http://www.flowtraq.com/research/FloCon2012.html
- We would be happy to address any questions or comments
 - abarsam@flowtraq.com
 - vberk@flowtraq.com
 - jmurphy@flowtraq.com

