

ARQUITETURA DE SOLUÇÕES EM NUVEM

Augusto Zadra

ARQUITETURAS PARA IMPLEMENTAÇÃO DE PROJETOS EM NUVEM

MINDSET CLOUD NA ENGENAHRIA DE SOFTWARE

MUDANÇA DE ARQUITETURA E MICROSSERVIÇOS

A MODERNIZAÇÃO CHEGOU NO CÓDIGO

- SERÁ QUE AS APLICAÇÕES ESTÃO PRONTAS PARA ESTE NOVO MODELO DE ARQUITETURA E FUNCIONAMENTO?
- A arquitetura multi cloud híbrida oferece um grande poder de decisão para as empresas, equilibrando velocidade, agilidade, custo-benefício e sazonalidade em ambientes e infraestruturas de cloud pública.
- Em paralelo, ao integrar as práticas de DEVOPS em uma arquitetura multi cloud, as organizações podem obter uma entrega mais rápida e consistente de aplicativos em várias nuvens, mantendo altos níveis de confiabilidade e segurança.

OBJETIVO DE SE ATUALIZAR A ARQUITETURA

- Na maior parte dos negócios inovadores os desenvolvedores criam aplicativos que abrangem funcionalmente o data center de uma organização, e adicionam a este projeto uma ou mais nuvens públicas.
- Isto permite a utilização de uma variedade de plataformas e modelos de implantação e originou-se uma variedade de arquiteturas e tecnologias que os desenvolvedores precisam usar e ferramentas que suportam seu uso.

OBJETIVO DE SE ATUALIZAR A ARQUITETURA

- A utilização do conceito de conteinerização permite que os aplicativos possam ser implantados praticamente em qualquer lugar.
- Sem uma abordagem de CI/CD suportada por padrões importantes como o Kubernetes, as equipes ficarão atoladas em complexidade.
- Estas tecnologias são OPEN em sua maioria e ajudam a melhorar o ambiente.

MICROSSERVIÇOS

- MICROSSERVIÇOS são uma maneira de projetar e desenvolver aplicativos de software como uma coleção de serviços pequenos, independentes e fracamente acoplados.
- A abordagem facilita o desenvolvimento de aplicativos grandes e complexos, além de cada serviço poder ser desenvolvido por uma equipe relativamente pequena de desenvolvedores — ou até mesmo um único desenvolvedor.
- O desenvolvimento paralelo traz na maioria das vezes o maior eficiência no processo e encurta o tempo de desenvolvimento.

MICROSSERVIÇOS

- Os MICROSSERVIÇOS são facilitadores de CI/CD e mudam as seguintes características:
 - ✓ Arquitetura modular descentralizada que caracteriza as implementações baseadas em nuvem que encoraja a adoção de contêineres.
 - ✓ Os contêineres fornecem um meio de empacotar aplicativos de forma que eles sejam abstraídos de seus ambientes de run-time.

MICROSSERVIÇOS

- ✓ No lado dos desenvolvedores gastase energia na criação da lógica e das dependências do aplicativo.
- ✓ No lado das operações concentra-se apenas em como e onde a lógica é implantada e como ela é gerenciada sem se preocupar com números de versão e problemas de configuração específicos do aplicativo.

MICROSERVIÇOS

- Vejam outros benefícios desta implementação:
 - ✓ Modularidade: os microsserviços são altamente modulares, o que significa que cada serviço pode ser desenvolvido, implantado e dimensionado independentemente dos outros serviços. Isso facilita a manutenção e atualização do aplicativo ao longo do tempo.

MICROSERVIÇOS

- ✓ Escalabilidade: dimensionar de foma independentemente, com esta regra as arquiteturas de microsserviços são altamente escaláveis e podem lidar com alto tráfego e cargas.
- ✓ Resiliência: proporcionam soluções mais resilientes do que as arquiteturas monolíticas, pois falhas em um único microsserviço não afetam todo o aplicativo.

MICROSERVIÇOS

- ✓ Agilidade: permitem que as organizações liberem novos recursos e atualizações com rapidez e frequência, pois cada microsserviço pode ser desenvolvido e implantado de forma independente.
- ✓ **Diversidade de tecnologia**: permitem a diversidade de tecnologia, pois cada microsserviço pode ser desenvolvido usando uma pilha de tecnologia diferente, se necessário.

EVOLUÇÃO COMPLETA

Arquiteturas de microsserviços também apresentam alguns desafios, como maior complexidade na comunicação entre os serviços, dificuldade de teste e monitoramento e a necessidade de uma cultura **DEVOPS** madura para gerenciar as muitas partes móveis da arquitetura.

DISCURSOS ADERENTES! CLOUD E MICROSSERVIÇOS. VAMOS FALAR SOBRE NATIVIDADE!

REFERÊNCIAS BIBLIOGRÁFICAS

DOCKER, 2022. Use containers to Build, Share and Run your applications. Disponível em: https://www.docker.com/resources/what-container/. Acesso em: 13 Ago. 2022.

KRESS, Jürgen et al. SOA and Cloud Computing 2014. Disponível em: https://www.oracle.com/technical-resources/articles/middleware/soa-ind-soa-cloud.html. Acesso em: 15 Ago. 2022.

TAURION, Cesar; Grid Computing: um novo paradigma computacional. Rio de Janeiro: BRASPORT, 2004.

VERAS, Manoel. Cloud Computing: nova arquitetura da Tl. 1ª ed. Rio de Janeiro: Brasport, 2012, 214 p.

VERAS, Manoel. Datacenter: Componente Central da Infraestrutura de TI, Brasport, 2009.

