國立中央大學

資訊工程學系 碩士論文

一種以卷積神經網路為基礎的具可解釋性的深度 學習模型

A CNN-based Interpretable Deep Learning Model

研究生:涂建名

指導教授:蘇木春 博士

中華民國一百一十三年六月

一種以卷積神經網路為基礎的具可解釋性的深度 學習模型

摘要

關鍵字:可解釋的人工智慧,深度學習,視覺皮質,自我組織特徵映射,影像分類

A CNN-based Interpretable Deep Learning Model

Abstract

Keywords: Explainable Artificial Intelligence, Deep Learning, Visual Cortex, Self-Organizing Maps, Image Classification

誌謝

目錄

		頁	次				
摘	摘要						
Abstract 誌謝							
誌謝							
目錄							
_	•	緒論	1				
	1.1	研究動機	1				
	1.2	研究目的	1				
	1.3	論文架構	1				
二	•	背景知識以及文獻回顧	2				
	2.1	卷積神經網路	2				
	2.2	可解釋性人工智慧	2				
	2.3	以卷積神經網路為基礎的具可解釋性的深度學習模型	2				
三	•	研究方法	3				
	3.1	對以卷積神經網路為基礎的具可解釋性的深度學習模型之					
	改進		3				
		3.1.1 優化模型流程與新增平行處理	3				
		3.1.2 優化空間位置保留機制之設計	3				
		3.1.3 優化放射狀基底函數	3				

		3.1.4	量化推論成果之方法	3
	3.2	以卷積	神經網路為基礎的 RGB 三通道可解釋性模型	3
		3.2.1	模型架構	3
		3.2.2	模型參數	3
		3.2.3	RGB 三通道卷積模組設計與實現	3
		3.2.4	模型流程	3
四	•	實驗設	計與結果	4
	4.1	灰階優	化模型與以卷積神經網路為基礎的具可解釋性的深	
	度學	習模型.	之比較	4
		4.1.1	資料集介紹	4
		4.1.2	實驗設計	4
		4.1.3	實驗結果	4
	4.2	模型保	留空間位置特徵之臉部驗證實驗	4
		4.2.1	實驗背景與目的	4
		4.2.2	資料集介紹	4
		4.2.3	模型架構與參數	4
		4.2.4	實驗結果	4
	4.3	以卷積	神經網路為基礎的 RGB 三通道可解釋性模型之效	
	果驗	證		5
		4.3.1	資料集介紹	5
		4.3.2	實驗設計	5
		4.3.3	實驗結果	5
五	•	總結		6
	5.1	結論		6
	5.2	未來展	望	6

圖目錄

頁次

表目錄

頁次

一、 緒論

- 1.1 研究動機
- 1.2 研究目的
- 1.3 論文架構

二、背景知識以及文獻回顧

- 2.1 卷積神經網路
- 2.2 可解釋性人工智慧
- 2.3 以卷積神經網路為基礎的具可解釋性的深度 學習模型

三、 研究方法

- 3.1 對以卷積神經網路為基礎的具可解釋性的深 度學習模型之改進
- 3.1.1 優化模型流程與新增平行處理
- 3.1.2 優化空間位置保留機制之設計
- 3.1.3 優化放射狀基底函數
- 3.1.4 量化推論成果之方法
- 3.2 以卷積神經網路為基礎的 RGB 三通道可解釋 性模型
- 3.2.1 模型架構
- 3.2.2 模型參數
- 3.2.3 RGB 三通道卷積模組設計與實現
- 3.2.4 模型流程

四、 實驗設計與結果

- 4.1 灰階優化模型與以卷積神經網路為基礎的具 可解釋性的深度學習模型之比較
- 4.1.1 資料集介紹
- 4.1.2 實驗設計
- 4.1.3 實驗結果
- 4.2 模型保留空間位置特徵之臉部驗證實驗
- 4.2.1 實驗背景與目的
- 4.2.2 資料集介紹
- 4.2.3 模型架構與參數
- 4.2.4 實驗結果

- 4.3 以卷積神經網路為基礎的 RGB 三通道可解釋 性模型之效果驗證
- 4.3.1 資料集介紹
- 4.3.2 實驗設計
- 4.3.3 實驗結果

五、總結

- 5.1 結論
- 5.2 未來展望