1-5 重言式与蕴含式

P	¬P∨P	¬P∧P
F	T	F
T	T	F

¬P∨P为重言式(永真式);

¬P^P为矛盾式(永假式)。

重言式(矛盾式)定义:

给定一个命题公式,若无论对分量作怎样的指派,其对应的 真值永为T,则称该命题公式为<u>重言式或永真公式</u>。 给定一个命题公式,若无论对分量作怎样的指派,其对应的 真值永为F,则称该命题公式为矛盾式或永假公式。

若公式 $A \Leftrightarrow T$, 则 A 为重言式或永真式。 若公式 $A \Leftrightarrow F$, 则 A 为矛盾式或永假式。

定理 若A和B均为重言式,则A/B及A/B也为重言式。

定理 若A是一个重言式,则对A的同一个分量都用另外一个合式公式置换,所得公式仍为重言式。

例: $\neg(P \land Q) \leftrightarrow (\neg P \lor \neg Q)$ 是重言式(P14)

把P用R∧T替换,还是重言式。

例:证明 $(P \land (P \rightarrow Q)) \rightarrow Q$ 为重言式。

方法1: 列真值表

P	Q	P→Q	P∧(P→Q)	$(P \land (P \rightarrow Q)) \rightarrow Q$
F	F	Т	F	T
F	Т	Т	F	T
Т	F	F	F	T
Т	Т	T	T	T

永真公式真值表的最后一列全是"T"。

例:证明 $(P \land (P \rightarrow Q)) \rightarrow Q$ 为重言式。

方法2: 等价公式变换

$$(P \land (P \rightarrow Q)) \rightarrow Q$$

- $\Leftrightarrow (P \land (\neg P \lor Q)) \rightarrow Q$
- $\Leftrightarrow ((P \land \neg P) \lor (P \land Q)) \rightarrow Q$
- \Leftrightarrow (F \vee (P \wedge Q)) \rightarrow Q \Leftrightarrow (P \wedge Q) \rightarrow Q
- $\Leftrightarrow \neg (P \land Q) \lor Q \Leftrightarrow (\neg P \lor \neg Q) \lor Q$
- $\Leftrightarrow \neg P \lor (\neg Q \lor Q)$
- $\Leftrightarrow \neg P \lor T$
- $\Leftrightarrow \mathsf{T}$

定理 设A、B为两个命题公式,A⇔B当且 仅当A↔B是一个重言式。

证明:

若A⇔B,则不论对A、B做何种赋值,A与B的真值都相同,于是 A↔B⇔T,即 A↔B是一个重言式。

于是不论在何种赋值下,A与B的真值均相同,即 A⇔B。

蕴含式

定义: 当且仅当 A→B 是重言式,则称 A 蕴涵 B, 记作 A→B。

即: 当且仅当 $A \rightarrow B \Leftrightarrow T$,则 $A \Rightarrow B$ 。

考察A→B的真值 表,如果 A→B为永 真式,则前件A为 真,后件B为假的 情况就不会出现。

A	В	A→B
F	F	T
F	T	T
Т	F	F
T	T	T

所以只要证明前件为真,后件为假的情况不发生,A→B即为永真式。

第一种方法: 真值表法

例1 求证 P^(P→Q) ⇒Q

第二种方法: 假设前件 A 为真, 若在此假设下能推出后件 B

也为真,则 A⇒B 成立。

例1 求证 P^(P→Q) ⇒Q

证明:

假设 P^(P→Q)为T,

则P为T 并且(P→Q)为T,于是Q为T,

所以 P^(P→Q) ⇒Q 成立。

Α	В	A→B
F	F	T
F	T	T
T	F	F
T	Т	T

第二种方法:假设前件 A 为真,若在此假设下能推出后件 B 也为真,则 A⇒B 成立。

例2 求证:

 $((A \land B) \rightarrow C) \land \neg D \land (\neg C \lor D) \Rightarrow \neg A \lor \neg B$

证明: 设前件((A∧B)→C)∧¬D∧(¬C∨D) 为真。则 ((A∧B)→C)、¬D、(¬C∨D) 均为真。

¬D为T,则D为F,由¬C∨D为T,于是¬C为T,即C为F,再由((A∧B)→C为T,则(A∧B)为F,即¬(A∧B)为T,于是¬A∨¬B为T,因此((A∧B)→C)∧¬D∧(¬C∨D)⇒¬A∨¬B。

第三种方法:假设后件B为假,若在此假设下能推出前件A也

为假,则 A⇒B 成立。

例3: 求证 P⇒P∨Q,Q⇒P∨Q

证明:

假设 PVQ为F,

则P为F,Q为F,所以

P⇒P∨Q, Q⇒P∨Q 成立。

Α	В	A→B
F	F	T
F	T	T
T	F	F
T	T	T

第三种方法:假设后件B为假,若在此假设下能推出前件A也为假,则 A⇒B 成立。

例4 求证: ((A∧B)→C)∧¬D∧(¬C∨D) ⇒ ¬A∨¬B

证明: 假设后件¬A∨¬B为F,则A与B均为T。

- 1. 如 C 为 F,则 (A ^ B)→C 为 F, 所以前件 ((A ^ B)→C) ^¬D ^ (¬C ∨ D) 为 F
- 2. 如 C 为 T,则 (1) 若 D 为 T,则 ¬D 为 F,所以前件 ((A∧B)→C)∧¬D∧(¬C∨D) 为 F。
 (2) 若 D 为 F,则 ¬C∨D 为 F,所以前件 ((A∧B)→C)∧¬D∧(¬C∨D) 为 F。

综上 ((A^B)→C)^¬D^(¬C∨D)⇒¬A∨¬B 成立。

2023/2/20

14

基础的蕴含式

$$I_{1} P \land Q \Rightarrow P$$

$$I_{3} P \Rightarrow P \lor Q$$

$$I_{5} \neg P \Rightarrow P \Rightarrow Q$$

$$I_{7} \neg (P \Rightarrow Q) \Rightarrow P$$

$$I_{9} P, Q \Rightarrow P \land Q$$

$$I_{10} \neg P \land (P \lor Q) \Rightarrow Q$$

$$I_{11} P \land (P \Rightarrow Q) \Rightarrow Q$$

$$I_{12} \neg Q \land (P \Rightarrow Q) \Rightarrow \neg P$$

$$I_{13} (P \Rightarrow Q) \land (Q \Rightarrow R) \Rightarrow P \Rightarrow R$$

$$I_{14} A \Rightarrow B \Rightarrow (A \lor C) \Rightarrow (B \lor C)$$

$$I_{15} A \Rightarrow B \Rightarrow (A \land C) \Rightarrow (B \land C)$$

$$I_{2} P \land Q \Rightarrow Q$$

$$I_{4} Q \Rightarrow P \lor Q$$

$$I_{6} Q \Rightarrow P \rightarrow Q$$

$$I_{8} \neg (P \rightarrow Q) \Rightarrow \neg Q$$

蕴含的性质

- ❖ 蕴含 "⇒" 是关系符,不是运算符。
- * 蕴含的性质:
 - 1) 有自反性:对任何命题公式 A,有 A⇒A。
 - 2) 有传递性: 若 A⇒B 且 B⇒C, 则 A⇒C。
 - 3) 有反对称性: 若 A⇒B 且 B⇒A,则 A⇔B。
 - 4) 若 A⇒B 且 A⇒C, 则 A⇒B∧C。
 - 5) 若 A⇒B 且 C⇒B, 则 A∨C⇒B。

定理: 设 $A \setminus B$ 为任意两个命题公式, $A \Leftrightarrow B$ 的 充要条件是 $A \Rightarrow B$ 且 $B \Rightarrow A$ 。

于是 $A \rightarrow B \Leftrightarrow T$ 且 $B \rightarrow A \Leftrightarrow T$,即 $A \Rightarrow B$ 且 $B \Rightarrow A$ 成立。 于是 (A→B) ∧ (B→A) ⇔T。 \overline{m} (A \rightarrow B) \land (B \rightarrow A) \Leftrightarrow A \leftrightarrow B, 干是 A↔B⇔T 即知 A⇔B 成立。

思考

(1) 若 ¬A⇔¬B 是否有 A⇔B?

解: 若 $\neg A \Leftrightarrow \neg B \cup \neg A \leftrightarrow \neg B \Leftrightarrow T$ 而 $\neg A \leftrightarrow \neg B \Leftrightarrow (\neg A \rightarrow \neg B) \land (\neg B \rightarrow \neg A)$ $\Leftrightarrow (B \rightarrow A) \land (A \rightarrow B)$ $\Leftrightarrow A \leftrightarrow B$ 干是 $A \leftrightarrow B \Leftrightarrow T$, 即 $A \Leftrightarrow B$

(2) 若 ¬A⇒¬B 是否有 A⇒B?

解: 若 ¬A⇒¬B 则 ¬A→¬B⇔T 而¬A→¬B⇔B→A, 于是 B→A⇔T, 即 B⇒A 而不是 A⇒B

