CS162 Operating Systems and Systems Programming Lecture 17

Performance Storage Devices, Queueing Theory

> May 31st, 2020 Prof. John Kubiatowicz http://cs162.eecs.Berkeley.edu

Recall: How the processor talks to the device

- Regardless of the complexity of the connections and buses, processor accesses registers in two ways:
 - I/O instructions: in/out instructions
 - » Example from the Intel architecture: out 0x21,AL
 - Memory mapped I/O: load/store instructions
 - » Registers/memory appear in physical address space
 - » I/O accomplished with load and store instructions

Kubiatowicz CS162 © UCB Fall 2020 Lec 17.2

Recall: Memory-Mapped Display Controller

- Memory-Mapped:
 - Hardware maps control registers and display memory into physical address space
 - » Addresses set by HW jumpers or at boot time
 - Simply writing to display memory (also called the "frame buffer") changes image on screen
 - » Addr: 0x8000F000 0x8000FFFF
 - Writing graphics description to cmd queue
 - » Say enter a set of triangles describing some scene
 - » Addr: 0x80010000 0x8001FFFF
 - Writing to the command register may cause on-board graphics hardware to do something
 - » Say render the above scene
 - » Addr: 0x0007F004

3/31/2020

Can protect with address translation

0x80010000 Display

Memory

0x8000F000

0x0007F004 0x0007F000 Command Status

Physical Address Space

Lec 17.3

Transferring Data To/From Controller

Programmed I/O:

3/31/2020

- Each byte transferred via processor in/out or load/store
- Pro: Simple hardware, easy to program
- Con: Consumes processor cycles proportional to data size
- Direct Memory Access:
 - Give controller access to memory bus
 - Ask it to transfer data blocks to/from memory directly
- Sample interaction with DMA controller (from OSC book):

3/31/2020

Kubiatowicz CS162 © UCB Fall 2020

CS162 © UCB Fall 2020

Transferring Data To/From Controller

- Programmed I/O:
 - Each byte transferred via processor in/out or load/store
 - Pro: Simple hardware, easy to program
 - Con: Consumes processor cycles proportional to data size
- Direct Memory Access:
 - Give controller access to memory bus
 - Ask it to transfer data blocks to/from memory directly
- Sample interaction with DMA controller (from OSC book):

3/31/2020

Device Drivers

- Device Driver: Device-specific code in the kernel that interacts directly with the device hardware
 - Supports a standard, internal interface
 - Same kernel I/O system can interact easily with different device drivers
 - Special device-specific configuration supported with the ioctl() system call
- Device Drivers typically divided into two pieces:
 - Top half: accessed in call path from system calls
 - » implements a set of standard, cross-device calls like open(),
 close(), read(), write(), ioctl(), strategy()
 - » This is the kernel's interface to the device driver
 - » Top half will start I/O to device, may put thread to sleep until finished
 - Bottom half: run as interrupt routine
 - » Gets input or transfers next block of output
 - » May wake sleeping threads if I/O now complete

I/O Device Notifying the OS

- The OS needs to know when:
 - The I/O device has completed an operation
 - The I/O operation has encountered an error
- I/O Interrupt:
 - Device generates an interrupt whenever it needs service
 - Pro: handles unpredictable events well
 - Con: interrupts relatively high overhead
- Polling:
 - -OS periodically checks a device-specific status register
 - » I/O device puts completion information in status register
 - Pro: low overhead
 - Con: may waste many cycles on polling if infrequent or unpredictable I/O operations
- Actual devices combine both polling and interrupts
 - For instance High-bandwidth network adapter:
 - » Interrupt for first incoming packet
 - » Poll for following packets until hardware queues are empty

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.6

Life Cycle of An I/O Request

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.7 3/31/2020 Kubiatowicz CS162 © UCB

Basic Performance Concepts

- Response Time or Latency: Time to perform an operation(s)
- Bandwidth or Throughput: Rate at which operations are performed (op/s)
 - Files: MB/s, Networks: Mb/s, Arithmetic: GFLOP/s
- Start up or "Overhead": time to initiate an operation
- Most I/O operations are roughly linear in b bytes
 - Latency(b) = Overhead + b/TransferCapacity

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.9

Example (Fast Network)

- Consider a 1 Gb/s link (BW = 125 MB/s)
 - With a startup cost S = 1 ms

- Half-power Bandwidth \Rightarrow BW/(BW*S/b + 1) = BW/2
- Half-power point occurs at b= S*BW = 125,000 bytes
 Kubiatowicz CS162 © UCB Fall 2020

Example (Fast Network)

- Consider a 1 Gb/s link (BW = 125 MB/s)
 - With a startup cost S = 1 ms

- Latency(b) = S + b/BW

- Bandwidth = $b/(S + b/BW) = BW \times b/(BW \times S + b) = BW/(BW \times S/b + 1)$ 3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.10

Example: at 10 ms startup (like Disk)

What Determines Peak BW for I/O?

- Bus Speed
 - PCI-X: 1064 MB/s = 133 MHz x 64 bit (per lane)
 - ULTRA WIDE SCSI: 40 MB/s
 - Serial ATA & IEEE 1394 (firewire): 1.6 Gb/s full duplex (200MB/s)
 - SAS-1: 3 Gb/s, SAS-2: 6 Gb/s, SAS-3: 12 Gb/s, SAS-4: 22.5 GB/s
 - USB 3.0 5 Gb/s
 - Thunderbolt 3 40 Gb/s
- Device Transfer Bandwidth
 - Rotational speed of disk
 - Write / Read rate of NAND flash
 - Signaling rate of network link
- Whatever is the bottleneck in the path...

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020

Lec 17.13

Storage Devices

- · Magnetic disks
 - Storage that rarely becomes corrupted
 - Large capacity at low cost
 - Block level random access (except for SMR later!)
 - Slow performance for random access
 - Better performance for sequential access
- Flash memory
 - Storage that rarely becomes corrupted
 - Capacity at intermediate cost (5-20x disk)
 - Block level random access
 - Good performance for reads; worse for random writes
 - Erasure requirement in large blocks
 - Wear patterns issue

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.14

Read/Write Head Side View

Hard Disk Drives (HDDs)

Western Digital Drive http://www.storagereview.com/guide/

IBM Personal Computer/AT (1986) 30 MB hard disk - \$500 30-40ms seek time 0.7-1 MB/s (est.)

Lec 17.15

The Amazing Magnetic Disk

- Unit of Transfer: Sector
 - Ring of sectors form a track
 - Stack of tracks form a cylinder
 - Heads position on cylinders

- Wavelength of light is ~ 0.5µm
- Resolution of human eye: 50µm
- 100K tracks on a typical 2.5" disk
- Separated by unused guard regions
 - Reduces likelihood neighboring tracks are corrupted during writes (still a small non-zero chance)

3/31/2020

The Amazing Magnetic Disk

- Track length varies across disk
 - Outside: More sectors per track, higher bandwidth
 - Disk is organized into regions of tracks with same # of sectors/track
 - Only outer half of radius is used
 - » Most of the disk area in the outer regions of the disk
- Disks so big that some companies (like Google) reportedly only use part of disk for active data
 - Rest is archival data

3/31/2020

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020

Lec 17.17

Track

Sector

Shingled Magnetic Recording (SMR)

Conventional Writes

- · Overlapping tracks yields greater density, capacity
- · Restrictions on writing, complex DSP for reading
- Examples: Seagate (8TB), Hitachi (10TB)

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.18

Review: Magnetic Disks

- Cylinders: all the tracks under the head at a given point on all surface
- Read/write data is a three-stage process:

 Platter

 Platt
 - Seek time: position the head/arm over the proper track
 - Rotational latency: wait for desired sector to rotate under r/w head
 - Transfer time: transfer a block of bits (sector) under r/w head

Seek time = 4-8ms One rotation = 8-16ms (3600-7200 RPM)

Kubiatowicz CS162 © UCB Fall 2020 Lec 17.19

Head

Review: Magnetic Disks

 Cylinders: all the tracks under the head at a given point on all surface

e Head Cylinder

Track

- Read/write data is a three-stage process:
 - Seek time: position the head/arm over the proper track
 - Rotational latency: wait for desired sector to rotate under r/w head
 - Transfer time: transfer a block of bits (sector) under r/w head

Typical Numbers for Magnetic Disk

Parameter	Info / Range
Space/Density	Space: 14TB (Seagate), 8 platters, in 3½ inch form factor! Areal Density: ≥ 1Terabit/square inch! (PMR, Helium,)
Average seek time	Typically 4-6 milliseconds. Depending on reference locality, actual cost may be 25-33% of this number.
Average rotational latency	Most laptop/desktop disks rotate at 3600-7200 RPM (16-8 ms/rotation). Server disks up to 15,000 RPM. Average latency is halfway around disk so 8-4 milliseconds
Controller time	Depends on controller hardware
Transfer time	Typically 50 to 250 MB/s. Depends on: • Transfer size (usually a sector): 512B – 1KB per sector • Rotation speed: 3600 RPM to 15000 RPM • Recording density: bits per inch on a track • Diameter: ranges from 1 in to 5.25 in
Cost	Used to drop by a factor of two every 1.5 years (or even faster); now slowing down

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.21

(Lots of) Intelligence in the Controller

- · Sectors contain sophisticated error correcting codes
 - Disk head magnet has a field wider than track
 - Hide corruptions due to neighboring track writes
- Sector sparing
 - Remap bad sectors transparently to spare sectors on the same surface
- Slip sparing
 - Remap all sectors (when there is a bad sector) to preserve sequential behavior
- Track skewing
 - Sector numbers offset from one track to the next, to allow for disk head movement for sequential ops

Lec 17.23

• ...

Disk Performance Example

- · Assumptions:
 - Ignoring queuing and controller times for now
 - Avg seek time of 5ms,
 - -7200RPM \Rightarrow Time for rotation: 60000 (ms/min) / 7200(rev/min) \sim = 8ms
 - − Transfer rate of 50MByte/s, block size of 4Kbyte \Rightarrow 4096 bytes/50×10⁶ (bytes/s) = 81.92 × 10⁻⁶ sec \cong 0.082 ms for 1 sector
- Read block from random place on disk:
 - Seek (5ms) + Rot. Delay (4ms) + Transfer (0.082ms) = 9.082ms
 - Approx 9ms to fetch/put data: 4096 bytes/9.082×10⁻³ s \cong 451KB/s
- Read block from random place in same cylinder:
 - Rot. Delay (4ms) + Transfer (0.082ms) = 4.082ms
 - Approx 4ms to fetch/put data: 4096 bytes/ 4.082×10^{-3} s $\cong 1.03$ MB/s
- Read next block on same track:
 - Transfer (0.082ms): 4096 bytes/0.082×10⁻³ s \cong 50MB/sec
- Key to using disk effectively (especially for file systems) is to minimize seek and rotational delays

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.22

Hard Drive Prices over Time

Example of Current HDDs

- Seagate Exos X14 (2018)
 - 14 TB hard disk
 - » 8 platters, 16 heads
 - » Helium filled: reduce friction and power
 - 4.16ms average seek time
 - 4096 byte physical sectors
 - 7200 RPMs
 - 6 Gbps SATA /12Gbps SAS interface
 - » 261MB/s MAX transfer rate
 - » Cache size: 256MB
 - Price: \$615 (< \$0.05/GB)

- 30 MB hard disk
- 30-40ms seek time
- 0.7-1 MB/s (est.)
- Price: \$500 (\$17K/GB, 340,000x more expensive !!)

3/31/2020

Kubiatowicz CS162 © UCB Fall 2020

Lec 17.25

Lec 17.27

EXOS

Exos™ X14

AMORE. R & .UR. 2 (0 0 0 0)

Solid State Disks (SSDs)

- 1995 Replace rotating magnetic media with non-volatile memory (battery backed DRAM)
- 2009 Use NAND Multi-Level Cell (2 or 3-bit/cell) flash memory
 - Sector (4 KB page) addressable, but stores 4-64 "pages" per memory block
 - Trapped electrons distinguish between 1 and 0
- No moving parts (no rotate/seek motors)
 - Eliminates seek and rotational delay (0.1-0.2ms access time)
 - Very low power and lightweight
 - Limited "write cycles"
- Rapid advances in capacity and cost ever since!

/31/2020 Kubiatowicz CS162 © UCB Fall 2020

Lec 17.26

SSD Architecture – Reads Flash Manage Host Memory SATA (software Controlle NANE Queue) **DRAM** NAND Read 4 KB Page: ~25 usec - No seek or rotational latency NAN - Transfer time: transfer a 4KB page

Latency = Queuing Time + Controller time + Xfer Time

- Highest Bandwidth: Sequential OR Random reads

» SATA: 300-600MB/s => $\sim 4 \times 10^3$ b $/ 400 \times 10^6$ bps => 10 us

SSD Architecture – Writes

- Writing data is complex! (~200µs 1.7ms)
 - -Can only write empty pages in a block
 - -Erasing a block takes ~1.5ms
 - Controller maintains pool of empty blocks by coalescing used pages (read, erase, write), also reserves some % of capacity
- Rule of thumb: writes 10x reads, erasure 10x writes

Typical NAND Flash Pages and Blocks

https://en.wikipedia.org/wiki/Solid-state drive

Some "Current" 3.5in SSDs

- Seagate Nytro SSD: 15TB (2017)
 - Dual 12Gb/s interface
 - Seq reads 860MB/s
 - Seg writes 920MB/s
 - Random Reads (IOPS): 102K
 - Random Writes (IOPS): 15K
 - Price (Amazon): \$6325 (\$0.41/GB)
- Nimbus SSD: 100TB (2019)
 - Dual port: 12Gb/s interface
 - Seq reads/writes: 500MB/s
 - Random Read Ops (IOPS): 100K
 - Unlimited writes for 5 years!
 - Price: ~ \$50K? (\$0.50/GB)

3/31/2020

Kubiatowicz CS162 © UCB Fall 2020

Lec 17.29

HDD vs SSD Comparison

SSD prices drop much faster than HDD

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.30

Amusing calculation: Is a full Kindle heavier than an empty one?

- · Actually, "Yes", but not by much
- Flash works by trapping electrons:
 - So, erased state lower energy than written state
- Assuming that:
 - Kindle has 4GB flash
 - $-\frac{1}{2}$ of all bits in full Kindle are in high-energy state
 - High-energy state about 10⁻¹⁵ joules higher
 - Then: Full Kindle is 1 attogram (10^{-18} gram) heavier (Using E = mc^2)
- Of course, this is less than most sensitive scale can measure (it can measure 10⁻⁹ grams)
- Of course, this weight difference overwhelmed by battery discharge, weight from getting warm,
- Source: John Kubiatowicz (New York Times, Oct 24, 2011)

SSD Summary

- · Pros (vs. hard disk drives):
 - Low latency, high throughput (eliminate seek/rotational delay)
 - No moving parts:
 - » Very light weight, low power, silent, very shock insensitive
 - Read at memory speeds (limited by controller and I/O bus)
- Cons
 - Small storage (0.1-0.5x disk), expensive (3-20x disk)
 - » Hybrid alternative: combine small SSD with large HDD

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.31 3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.32

SSD Summary

- Pros (vs. hard disk drives):
 - Low latency, high throughput (eliminate seek/rotational delay)
 - No moving parts:
 - » Very light weight, low power, silent, very shock insensitive
 - Read at memory speeds (limited by controller and I/O No
- Cons

longer

- Small storage (0.1-0.5x disk), expensive (3-zux uisk) true!
 - » Hybrid alternative: combine small SSD with large HDD
- Asymmetric block write performance: read pg/erase/write pg
 - » Controller garbage collection (GC) algorithms have major effect on performance
- Limited drive lifetime
 - » 1-10K writes/page for MLC NAND
 - » Avg failure rate is 6 years, life expectancy is 9–11 years
- These are changing rapidly!

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.33

Nano-Tube Memory (NANTERO)

Crosspoin

- · Yet another possibility: Nanotube memory
 - NanoTubes between two electrodes, slight conductivity difference between ones and zeros
 - No wearout!
- Better than DRAM?
 - Speed of DRAM, no wearout, non-volatile!
 - Nantero promises 512Gb/dice for 8Tb/chip! (with 16 die stacking)

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.34

I/O Performance

- Metrics: Response Time, Throughput

100% Throughput (Utilization) (% total BW)

- Effective BW per op = transfer size / response time

I/O Performance

Performance of I/O subsystem

100% Throughput (Utilization) - Metrics: Response Time, Throughput (% total BW)

Lec 17.36

– Effective BW per op = transfer size / response timè

- \Rightarrow EffBW(n) = n / (S + n/B) = B / (1 + SB/n)
- Contributing factors to latency:
 - » Software paths (can be loosely modeled by a queue)
 - » Hardware controller
 - » I/O device service time
- Queuing behavior:
 - Can lead to big increases of latency as utilization increases

3/31/202 Solutions? Kubiatowicz CS162 © UCB Fall 2020

3/31/2020

Kubiatowicz CS162 © UCB Fall 2020

Lec 17.35

A Simple Deterministic World

- Assume requests arrive at regular intervals, take a fixed time to process, with plenty of time between ...
- Service rate ($\mu = 1/T_s$) operations per second
- Arrival rate: $(\lambda = 1/T_A)$ requests per second
- Utilization: $U = \lambda/\mu$, where $\lambda < \mu$
- Average rate is the complete story

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.37

A Ideal Linear World

- What does the gueue wait time look like?
 - Grows unbounded at a rate ~ (T_s/T_A) till request rate subsides

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.38

A Bursty World

- Reguests arrive in a burst, must gueue up till served
- Same average arrival time, but almost all of the requests experience large queue delays

Kubiatowicz CS162 © UCB Fall 2020

· Even though average utilization is low

So how do we model the burstiness of arrival?

- Elegant mathematical framework if you start with exponential distribution
 - Probability density function of a continuous random variable with a mean of $1/\lambda$
 - $f(x) = \lambda e^{-\lambda x}$

- "Memoryless"

Likelihood of an event occurring is independent of how long we've been waiting

> Lots of short arrival intervals (i.e., high instantaneous rate)

Few long gaps (i.e., low instantaneous rate)

3/31/2020

Kubiatowicz CS162 © UCB Fall 2020

3/31/2020

Lec 17.39

Background: General Use of Random Distributions

- Server spends variable time (T) with customers
 - Mean (Average) m = $\Sigma p(T) \times T$
 - Variance (stddev²) $\sigma^2 = \Sigma p(T) \times (T-m)^2 = \Sigma p(T) \times T^2 m^2$
 - Squared coefficient of variance: $C = \sigma^2/m^2$ Aggregate description of the distribution

- · Important values of C:
 - No variance or deterministic ⇒ C=0
 - "Memoryless" or exponential \Rightarrow C=1
 - » Past tells nothing about future
 - » Poisson process *purely* or *completely* random process
 - » Many complex systems (or aggregates) are well described as memoryless
 - Disk response times C ≈ 1.5 (majority seeks < average)

mean Memoryless

3/31/2020

Kubiatowicz CS162 © UCB Fall 2020

Lec 17.41

Introduction to Queuing Theory

- What about queuing time??
 - Let's apply some queuing theory
 - Queuing Theory applies to long term, steady state behavior ⇒
 Arrival rate = Departure rate
- Arrivals characterized by some probabilistic distribution
- Departures characterized by some probabilistic distribution

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.42

Little's Law

- In any stable system
 - Average arrival rate = Average departure rate
- The average number of jobs/tasks in the system (N) is equal to arrival time / throughput (λ) times the response time (L)
 - $-N(jobs) = \lambda(jobs/s) \times L(s)$
- Regardless of structure, bursts of requests, variation in service
 - Instantaneous variations, but it washes out in the average
 - Overall, requests match departures

Example

A: $N = \lambda \times L$

• E.g., $N = \lambda x L = 5$

Little's Theorem: Proof Sketch

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.49

Little's Theorem: Proof Sketch

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.50

Little's Theorem: Proof Sketch

Kubiatowicz CS162 © UCB Fall 2020

Lec 17.51

3/31/2020

Little's Theorem: Proof Sketch

A Little Queuing Theory: Some Results

 Assumptions: Why does response/queueing System in equilibrium; No limit to the delay grow unboundedly even Time between successive arrivals though the utilization is < 1? Queue Response 300 Arrival Rate Time (ms) · Parameters that describe our system: 200 $-\lambda$: mean number of arriving of mean time to service a cu 100 – C: squared coefficient of vari service rate = 1/T_{ser} – u: server utilization $(0 \le u \le 1)$: 100% Parameters we wish to compute: Time spent in queue Throughput (Utilization) Length of queue = λ_{λ} (% total BW) Results: - Memoryless service distribution (= 1): (an "M/M/1 queue"): $T_{q} = T_{ser} \times u/(1 - u)$ - General service distribution (no restrictions), 1 server (an "M/G/1 queue"): $T_{g} = T_{ser} \times \frac{1}{2} (1+C) \times \frac{u}{(1-u)}$

Why unbounded response time?

- · Assume deterministic arrival process and service time
 - Possible to sustain utilization = 1 with bounded response time!

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.54

Why unbounded response time?

Kubiatowicz CS162 © UCB Fall 2020

3/31/2020

Response 300 Assume stochastic arrival process Time (ms) (and service time) 200 No longer possible to achieve utilization = 1 100 This wasted time can 0 100% never be reclaimed! Throughput (Utilization) So cannot achieve u = 1! (% total BW) time

A Little Queuing Theory: An Example

- Example Usage Statistics:
 - User requests 10 x 8KB disk I/Os per second
 - Requests & service exponentially distributed (C=1.0)
 - Avg. service = 20 ms (From controller+seek+rot+trans)
- Questions:

Lec 17.53

Lec 17.55

- How utilized is the disk?
 - » Ans: server utilization, $u = \lambda T_{ser}$
- What is the average time spent in the queue?
 » Ans: T_a
- What is the number of requests in the queue?
- » Ans. L_q– What is the avg response time for disk request?
- » Ans: T_{sys} = T_a + T_{ser}
- Computation:
 - λ (avg # arriving customers/s) = 10/s
 - T_{ser} (avg time to service customer) = 20 ms (0.02s)
 - (server utilization) = $\lambda \times T_{ser} = 10/s \times .02s = 0.2$ T_a (avg time/customer in queue) = $T_{ser} \times u/(1 - u)$
 - $= 20 \times 0.2/(1-0.2) = 20 \times 0.25 = 5 \text{ ms} (0.005\text{s})$
 - L_q (avg length of queue) = λ x T_q =10/s x .005s = 0.05 T_{svs} (avg time/customer in system) = T_q + T_{ser} = 25 ms

Queuing Theory Resources

- Resources page contains Queueing Theory Resources (under Readings):
 - Scanned pages from Patterson and Hennessy book that gives further discussion and simple proof for general equation: https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf
 - A complete website full of resources: http://web2.uwindsor.ca/math/hlynka/qonline.html
- Some previous midterms with queueing theory questions
- Assume that Queueing Theory is fair game for Midterm III!

Summary

- Disk Performance:
 - Queuing time + Controller + Seek + Rotational + Transfer
 - Rotational latency: on average ½ rotation
 - Transfer time: spec of disk depends on rotation speed and bit storage density
- Devices have complex interaction and performance characteristics
 - Response time (Latency) = Queue + Overhead + Transfer» Effective BW = BW * T/(S+T)
 - HDD: Queuing time + controller + seek + rotation + transfer
 - SDD: Queuing time + controller + transfer (erasure & wear)
- Systems (e.g., file system) designed to optimize performance and reliability
 - Relative to performance characteristics of underlying device
- Bursts & High Utilization introduce queuing delays
- Queuing Latency:
 - M/M/1 and M/G/1 queues: simplest to analyze
 - As utilization approaches 100%, latency $\rightarrow \infty$ $T_q = T_{ser} x \frac{1}{2}(1+C) x u/(1-u)$

3/31/2020 Kubiatowicz CS162 © UCB Fall 2020

Lec 17.57 3/31/2020

Kubiatowicz CS162 © UCB Fall 2020

Lec 17.58