Devoir maison n°8: D'Hiver

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Exercice 1 - La couleur des nombres

Notons $x \sim y$ la relation d'équivalence sur \mathbb{Q}_+^* : « x et y sont de même couleur ». Les propriétés d'équivalence sont évidentes. On colore enfin en bleu les nombres bleus et en rouge les nombres rouges.

Les deux premières règles deviennent :

$$1 \tag{a}$$

$$x \sim \frac{1}{x}$$
 (b)

Enfin, comme il n'y a que deux couleurs, si x et y sont de couleurs différentes, alors x et y sont de couleurs opposées. La 3e règle devient donc :

$$x + 1 \nsim x$$
 (c)

1)

D'après (a), 1 est rouge et d'après (c), la couleur s'inverse à chaque ajout de 1. Par récurrence évidente, tous les nombres pairs sont donc bleus et tous les nombres impairs rouges.

Ainsi, comme 2016 est pair, 2016 est bleu.

2) Soit $x \in \mathbb{Q}_+^*$ et $k \in \mathbb{N}$. D'après (c) appliquée deux fois, $x+2 \sim x$. Par une récurrence évidente, $x+2k \sim x$.

Ainsi, si $n \in \mathbb{N}$ est pair, alors $x + n \sim x$, et si n est impair :

$$x + n \sim x + (n - 1) + 1$$

 $\sim x + 1$ par (b)
 $\sim x$ par (c)

Ainsi, selon la couleur de x, si n est pair, x+n aura la même couleur que x et si n est impair x+n sera de couleur opposée à x.

3)

$$\frac{2016}{2015} \sim 1 + \frac{1}{2015}$$
$$\sim 1 + 2015$$
$$\sim 2016$$

Donc $\frac{2016}{2015}$ est bleu.

D'autre part,

$$\frac{4}{13} \sim \frac{13}{4}$$

$$\sim 3 + \frac{1}{4}$$

$$\sim 3 + 4$$

$$\sim 7$$

Donc $\frac{4}{13}$ est rouge.

4)

TODO

5)

TODO

6)

7) Après implémentation de l'algorithme en typst, celui-ci donne :

$$\frac{1515}{1789}$$

Exercice 2 - Intercaler la somme

1)

$$E_4=(1,\,4,\,6,\,4,\,1)$$

$$E_5=(1,\,5,\,10,\,10,\,5,\,1)$$

(bien entendu généré automatiquement, le script est dans le DM sur Github)

2)

- **a)** 12
- **b)** 2048
- **c)** 462