

VE401 Probabilistic Methods in Eng. Solution Manual for RC 6

Chen Xiwen

April 16, 2020

Assignment 5.2

Let X_1, \ldots, X_n be i.i.d. exponential random variables with parameter β . Recall that $Y = X_1 + X_2 + \cdots + X_n$ follows a Gamma distribution with parameters $\alpha = n$ and β . Transform this expression further to yield a chi-squared random variable.

Let X be an exponential random variable with parameter β . Devise a test statistic for testing $H_0: \beta = \beta_0$ and $H_0: \beta \leq \beta_0$ in a Fisher test.

Solution. Since Y follows a Gamma distribution with parameters $\alpha = n$ and β , we have the density function

$$f_Y(y) = \frac{\beta^n}{\Gamma(n)} y^{n-1} e^{-\beta y}, \qquad y > 0$$

and $f_Y(y) = 0$ when $y \le 0$. Let $u = \varphi(y) = 2\beta y$, then

$$y = \varphi^{-1}(u) = \frac{u}{2\beta} \quad \Rightarrow \quad \frac{\mathrm{d}}{\mathrm{d}u}\varphi^{-1}(u) = \frac{1}{2\beta}.$$

Then using transformation of variable, we have

$$f_U(u) = f_Y \circ \varphi^{-1}(u) \cdot \left| \frac{\mathrm{d}}{\mathrm{d}u} \varphi^{-1}(u) \right|$$
$$= \frac{\beta^n}{\Gamma(n)} \frac{u^{n-1}}{(2\beta)^{n-1}} e^{-u/2} \cdot \frac{1}{2\beta}$$
$$= \frac{1}{2^n \Gamma(n)} u^{n-1} e^{-u/2} \qquad u > 0,$$

and $f_U(u) = 0$ when $u \leq 0$, which is a chi-squared distribution with 2n degrees of freedom. Therefore, we have the distribution

$$Y \sim \frac{1}{2\beta} \chi_{2n}^2.$$

Given samples X_1, \ldots, X_n with size n, we can use test statistic

$$\chi_{2n}^2 = 2\beta_0 \sum_{i=1}^n X_i = 2n\beta_0 \overline{X}.$$

With larger true parameter β , we would expect a smaller test statistic

• For one-tailed test $\beta \leq \beta_0$, "more extreme data" means smaller \overline{X} . Therefore, the p-value is given by

$$P$$
-value = $F_{\chi^2_{2n}} \left(2n\beta_0 \overline{X} \right)$,

where $F_{\chi^2_{2n}}$ is the cumulative distribution function of chi-squared distribution with 2n degrees of freedom.

• For two-tailed test $\beta = \beta_0$, the p-value is given by

$$P-\text{value} = 2\min\left(F_{\chi_{2n}^2}\left(2n\beta_0\overline{X}\right), 1 - F_{\chi_{2n}^2}\left(2n\beta_0\overline{X}\right)\right).$$

If we want to have a critical region for the tests, with the test statistic χ^2_{2n} defined above, we reject H_0 at significance level α

- $H_0: \beta = \beta_0 \text{ if } \chi^2_{2n} < \chi^2_{2n,1-\alpha/2} \text{ or } \chi^2_{2n} > \chi^2_{2n,\alpha/2},$
- $H_0: \beta \le \beta_0 \text{ if } \chi^2_{2n} < \chi^2_{2n,1-\alpha},$
- $H_0: \beta \ge \beta_0 \text{ if } \chi^2_{2n} > \chi^2_{2n,\alpha}$.