Review of Lecture 16

Nearest Neighbor Classifier

Assign ${f x}$ to same label as closest training point ${f x}_i$

Review of Lecture 16

Nearest Neighbor Classifier

Assign ${\bf x}$ to same label as closest training point ${\bf x}_i$

K-Nearest Neighbor Classifier

Assign label of x by taking majority vote over K nearest neighbors

Given enough data, K-NN classifier will perform as well as any classifier Catch

Huge amount of data, especially if feature space is high-dimensional K-NN has slow inference vs. (most other classifiers) slow training

Review of Lecture 16

Nearest Neighbor Classifier

Assign ${\bf x}$ to same label as closest training point ${\bf x}_i$

K-Nearest Neighbor Classifier

Assign label of x by taking majority vote over K nearest neighbors

Given enough data, K-NN classifier will perform as well as any classifier Catch

Huge amount of data, especially if feature space is high-dimensional K-NN has slow inference vs. (most other classifiers) slow training

Perceptron Learning Algorithm

Given

- training data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- a guess for $oldsymbol{ heta}^0$

Pick any observations and update one sample at a time

$$\theta^{j+1} = \begin{cases} \theta^j + y_i \widetilde{\mathbf{x}}_i & \text{if } y_i \neq \text{sign}((\theta^j)^T \widetilde{\mathbf{x}}_i) \\ \theta^j & \text{otherwise} \end{cases}$$

Linearly Separable

there exists $\mathbf{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $y_i = \text{sign}(\mathbf{w}^T\mathbf{x}_i + b)$ $\forall i = 1, \dots, n$

Maximum Margin separating plane

$$\rho(\mathbf{w}, b) = \min_{i} \frac{|\mathbf{w}^{T}\mathbf{x}_{i} + b|}{\|\mathbf{w}\|_{2}}$$
$$(\mathbf{w}^{*}, b^{*}) = \arg\max_{\mathbf{w}, b} \rho(\mathbf{w}, b)$$

Where are we with SVMs

Introduced the concept of linear separability and margins

Deep dive into SVMs (today)

The kernel trick and Soft-Margin SVMs (next lecture)

ECE 6254 Statistical Machine Learning

Professor: Amirali Aghazadeh

Office: Coda S1209

Georgia Institute of Technology

Lecture 17: Support Vector Machines

SVMs - Outline

Maximizing the margin

The solution

Nonlinear transforms

Are all separating hyperplanes equal?

Are all separating hyperplanes equal?

Remember the growth function?

All dichotomies with any line in 2D (PLA)

Remember the growth function?

Fat margins imply fewer dichotomies

Finding w with largest margin

 \mathbf{x}_i is nearest point to hyperplane $\mathbf{w}^T\mathbf{x} + \mathbf{b} = 0$ and $|\mathbf{w}^Tx_i + b| = 1$

What is the distance?

Review:

• The vector \mathbf{w} is \perp to the hyperplane:

Take $\mathbf{x}^{'}$ and $\mathbf{x}^{''}$ on the plane

$$\mathbf{w}^T \mathbf{x}' + b = 0$$
 and $\mathbf{w}^T \mathbf{x}'' + b = 0$

$$\longrightarrow \mathbf{w}^{T}(\mathbf{x}' - \mathbf{x}'') = 0$$

Larger margin better generalization to new data

Finding w with largest margin

 \mathbf{x}_i is nearest point to hyperplane $\mathbf{w}^T\mathbf{x} + \mathbf{b} = 0$ and $|\mathbf{w}^Tx_i + b| = 1$

What is the distance?

$$|\delta| = \frac{|\mathbf{w}^T \mathbf{x}_i + b|}{\|\mathbf{w}\|_2} = \frac{1}{\|\mathbf{w}\|_2}$$

• The vector \mathbf{w} is \perp to the hyperplane:

Take $\mathbf{x}^{'}$ and $\mathbf{x}^{''}$ on the plane

$$\mathbf{w}^T \mathbf{x}' + \mathbf{b} = 0$$
 and $\mathbf{w}^T \mathbf{x}'' + \mathbf{b} = 0$

$$\longrightarrow \mathbf{w}^{T}(\mathbf{x}' - \mathbf{x}'') = 0$$

Larger margin better generalization to new data

The optimization problem

Maximize
$$\frac{1}{\|\mathbf{w}\|_2}$$
 canonical form subject to $\min_{n=1,2,\dots,N} |\mathbf{w}^T\mathbf{x}_n + b| = 1$

Notice:
$$|\mathbf{w}^T \mathbf{x}_n + b| = \mathbf{y}_n(\mathbf{w}^T \mathbf{x}_n + b)$$

The optimization problem

Maximize
$$\frac{1}{\|\mathbf{w}\|_2}$$
 canonical form subject to $\min_{n=1,2,\dots,N} |\mathbf{w}^T\mathbf{x}_n + b| = 1$

Notice:
$$|\mathbf{w}^T \mathbf{x}_n + b| = \mathbf{y}_n(\mathbf{w}^T \mathbf{x}_n + b)$$

Minimize
$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to
$$\mathbf{y}_n(\mathbf{w}^T\mathbf{x}_n+b)\geq 1$$
 for $n=1,2,\ldots,N$

SVMs - Outline

Maximizing the margin

The solution

Nonlinear transforms

Constrained optimization

$$Minimize = \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

subject to
$$\mathbf{y}_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$$
 for $n = 1, 2, ..., N$

$$\mathbf{w} \in \mathbb{R}^d$$
 , $b \in \mathbb{R}$

We saw this before

Remember regularization?

Minimize
$$\|\mathbf{y} - A\mathbf{w}\|$$
 subject to: $\mathbf{w}^T\mathbf{w} \leq C$

$$A = \begin{bmatrix} 1 & x_1(1) & \cdots & x_1(d) \\ 1 & x_2(1) & \cdots & x_2(d) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n(1) & \cdots & x_n(d) \end{bmatrix}$$

optimize constraint

Regularization: \widehat{R}_n $\mathbf{w}^T\mathbf{w}$

SVM: $\mathbf{w}^T\mathbf{w}$ \widehat{R}_{r}

Minimize

$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$

$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 $y_n(\mathbf{w}^T\mathbf{x}_n+b)\geq 1$

Minimize

$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$

$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 $y_n(\mathbf{w}^T\mathbf{x}_n+b)-1$

Minimize $\frac{1}{2}\mathbf{w}^T\mathbf{w}$ $\alpha_n(y_n(\mathbf{w}^T\mathbf{x}_n+b)-1)$

Minimize $\frac{1}{2}\mathbf{w}^T\mathbf{w}$

$$\frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum_{n=1}^N \alpha_n(y_n(\mathbf{w}^T\mathbf{x}_n + b) - 1)$$

Minimize
$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum_{n=1}^N \alpha_n(y_n(\mathbf{w}^T\mathbf{x}_n + b) - 1)$$

w.r.t. w and b and maximize w.r.t. each $\alpha_n \geq 0$

$$\nabla_{\mathbf{w}} \mathcal{L} = \mathbf{w} - \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n = 0$$

$$\frac{\partial \mathcal{L}}{\partial b} = -\sum_{n=1}^{N} \alpha_n y_n = 0$$

Substituting...

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n \quad \text{and} \quad \sum_{n=1}^{N} \alpha_n y_n = 0$$

in the Lagrangian
$$\mathcal{L}(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum_{n=1}^N \alpha_n(y_n(\mathbf{w}^T\mathbf{x}_n+b)-1)$$

we get
$$\sum_{n=1}^{N} \alpha_n$$

Substituting...

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n \quad \text{and} \quad \sum_{n=1}^{N} \alpha_n y_n = 0$$

in the Lagrangian
$$\mathcal{L}(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum_{n=1}^N \alpha_n(y_n(\mathbf{w}^T\mathbf{x}_n+b)-1)$$

we get
$$\sum_{n=1}^N \alpha_n - \tfrac{1}{2} \sum_{n=1}^N \sum_{m=1}^N y_n y_m \alpha_n \alpha_m \mathbf{x_n}^T \mathbf{x_m}$$

Substituting...

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n \quad \text{and} \quad \sum_{n=1}^{N} \alpha_n y_n = 0$$

in the Lagrangian
$$\mathcal{L}(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum_{n=1}^N \alpha_n(y_n(\mathbf{w}^T\mathbf{x}_n + b) - 1)$$

we get
$$\mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m \mathbf{x_n}^T \mathbf{x_m}$$

Maximize w.r.t. to
$$\alpha$$
 subject to $\alpha_n \geq 0$ for $n=1,\ldots,N$ and $\sum\limits_{n=1}^N \alpha_n y_n = 0$

The solution

$$\min_{\alpha} \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m \mathbf{x_n}^T \mathbf{x_m} - \sum_{n=1}^{N} \alpha_n$$

$$\min_{\alpha} \ \ \frac{1}{2} \alpha^T \begin{bmatrix} y_1 y_1 \mathbf{x_1}^T \mathbf{x_1} & y_1 y_2 \mathbf{x_1}^T \mathbf{x_2} & \cdots & y_1 y_N \mathbf{x_1}^T \mathbf{x_N} \\ y_2 y_1 \mathbf{x_2}^T \mathbf{x_1} & y_2 y_2 \mathbf{x_2}^T \mathbf{x_2} & \cdots & y_2 y_N \mathbf{x_2}^T \mathbf{x_N} \\ \vdots & \vdots & \ddots & \vdots \\ y_N y_1 \mathbf{x_N}^T \mathbf{x_1} & y_N y_2 \mathbf{x_N}^T \mathbf{x_2} & \cdots & y_N y_N \mathbf{x_N}^T \mathbf{x_N} \end{bmatrix} \alpha + (-\mathbf{1}^T) \alpha$$

$$\mathbf{quadratic coefficients}$$

subject to
$$\mathbf{y}^T \boldsymbol{\alpha} = \mathbf{0}$$
 linear constraint

$$0 \leq \alpha \leq \infty$$
 lower upper bounds bounds

$$\min_{\alpha} \frac{1}{2} \alpha^T Q \alpha - \mathbf{1}^T \alpha$$
 subject to $\mathbf{y}^T \alpha = 0$; $\alpha \geq 0$

Solution: $\alpha = \alpha_1, \dots, \alpha_N$

$$\longrightarrow \mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$

KKT condition: For n = 1, ..., N

$$\alpha_n(y_n(\mathbf{w}^T\mathbf{x}_n+b)-1)=0$$

Solution: $\alpha = \alpha_1, \dots, \alpha_N$

$$\longrightarrow \mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$

KKT condition: For n = 1, ..., N

$$\alpha_n(y_n(\mathbf{w}^T\mathbf{x}_n+b)-1)=0$$

We saw this before!

$$A = \begin{bmatrix} 1 & x_1(1) & \cdots & x_1(d) \\ 1 & x_2(1) & \cdots & x_2(d) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n(1) & \cdots & x_n(d) \end{bmatrix}$$

Solution: $\alpha = \alpha_1, \dots, \alpha_N$

$$\longrightarrow \mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$

KKT condition: For n = 1, ..., N

$$\alpha_n(y_n(\mathbf{w}^T\mathbf{x}_n+b)-1)=0$$

We saw this before!

$$A = \begin{bmatrix} 1 & x_1(1) & \cdots & x_1(d) \\ 1 & x_2(1) & \cdots & x_2(d) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n(1) & \cdots & x_n(d) \end{bmatrix}$$

Solution: $\alpha = \alpha_1, \dots, \alpha_N$

$$\longrightarrow \mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$

KKT condition: For n = 1, ..., N

$$\alpha_n(y_n(\mathbf{w}^T\mathbf{x}_n+b)-1)=0$$

$$A = \begin{bmatrix} 1 & x_1(1) & \cdots & x_1(d) \\ 1 & x_2(1) & \cdots & x_2(d) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n(1) & \cdots & x_n(d) \end{bmatrix}$$

We saw this before!

 $\alpha_n > 0 \longrightarrow \mathbf{x}_n$ is a support vector

Support vectors

Closest \mathbf{x}_n 's to the plane: achieve the margin

$$\longrightarrow y_n(\mathbf{w}^T\mathbf{x}_n + b) = 1$$

$$\mathbf{w} = \sum_{\mathbf{x}_n \text{ is SV}} \alpha_n y_n \mathbf{x}_n$$

Solve for b using any SV:

$$y_n(\mathbf{w}^T\mathbf{x}_n + b) = 1$$

z instead of x

$$\mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m \mathbf{z_n}^T \mathbf{z_m}$$

"Support vectors" in X Space

Support vectors live in the \mathcal{Z} space

In χ space, "pre-images" of support vectors

The margin is maintained in \mathcal{Z} space

Generalization result

$$\mathbb{E}\left[R(h)\right] \leq \frac{\mathbb{E}\left[\left|\text{support vectors}\right|\right]}{N-1}$$

$$R(h) \leq \frac{|\text{support vectors}|}{N-1}$$

