Quantitative Methods in Finance

Tutorial, Part 6:

Model diagnostics. Normality of the disturbances and multicollinearity.

Example 1: For a given country we collected data for a period of 15 years on personal consumption (PC), wages (WAGE), social benefits (SOB), earnings from abroad (ABR), and special budgetary income (SBI). We estimated the following function of personal consumption:

$$\widehat{PC} = 0.46 + 0.78WAGE + 0.22SOB + 0.02ABR - 0.16SBI$$

t: (4.5) (1.2) (0.4) (1.0) (-0.2)

We also estimated the regression model among the explanatory variables and found that 95 percent of the variability of wages is explained by the variation of social benefits, earnings from abroad, and special budgetary income.

- a) Consider the issue of multicollinearity in case of the estimated consumption function.
- b) What kind of consumption function would you estimate to at least somewhat alleviate the problems caused by multicollinearity?

Example 2: The agricultural institute estimated the wine harvest per hectare of vineyard (HPV) for the past thirty years, depending on age of the vineyard (AGE), the number of sunny days per year (SD), the amount of precipitation (PRE), and the average temperature in the third quarter of the year (T3):

$$HPV_t = \beta_1 + \beta_2 PRE_t + \beta_3 AGE_t + \beta_4 SD_t + \beta_5 T3_t + u_t$$

Since all the estimated partial regression coefficients of the model above were statistically insignificant and the determination coefficient extremely high (0.9885), they decided to estimate the regression model between the explanatory variables:

$$PRE_{t} = \beta_{1} + \beta_{2}AGE_{t} + \beta_{3}SD_{t} + \beta_{4}T3_{t} + u_{t}.$$

They found that the sum of squares of the observed amount of precipitation, $\sum PRE_t^2$, equals 528, the sum of squared residuals is 14.5, and the average annual amount of precipitation equals 2.

Explain what they wanted to verify on the basis of the regression model among the explanatory variables, and what was the obtained conclusion. Based on this conclusion, what should they do in order to get reliable estimates of the effect of individual factors on the wine harvest per hectare?

Example 3: Based on data for 27 houses in a U.S. district, which were sold in 1977 (file housing1.dta), we want to estimate how the price of a house (*PRICE*; in 1,000 USD) is affected by its size (*SIZE*; in 1,000 square feet), age (*AGE*; in years), the number of rooms (*ROOMS*), and the number of bedrooms (*BEDROOM*).

Analyze the problem of multicollinearity. What kind of a regression model would you be estimating to overcome the problems caused by multicollinearity?

For the proposed function of the house price, verify if the assumption of a normal distribution of the disturbances u is fulfilled.

Computer printout of the results in Stata:

. regress price size age rooms bedrooms

Source	SS	df		MS		Number of obs	=	27
 	·					F(4, 22)	=	42.74
Model	4716.28866	4	1179	9.07216		Prob > F	=	0.0000
Residual	606.914165	22	27.	5870075		R-squared	=	0.8860
 +	+					Adj R-squared	=	0.8653
Total	5323.20282	26	20	4.73857		Root MSE	=	5.2523
 price	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
size	.0223931	.0037	252	6.01	0.000	.0146674		0301188
age	1488602	.0816	217	-1.82	0.082	3181331		0204128
rooms	1.42822	2.637	175	0.54	0.594	-4.040945	6	.897386
bedrooms	-1.735464	3.911	259	-0.44	0.662	-9.84692	6	.375991
_cons	6.21797	7.723	8658	0.81	0.429	-9.799916	2	2.23586

. pwcorr size age rooms bedrooms, sig

	size	age	rooms	bedrooms
size	1.0000			
age	-0.1781 0.3742	1.0000		
rooms	0.8457 0.0000	0.0043 0.9829	1.0000	
bedrooms	0.7934	0.1026 0.6105	0.9244	1.0000

. collin size age rooms bedrooms, corr (obs=27)

Collinearity Diagnostics

		SQRT		R-
Variable	VIF	VIF	Tolerance	Squared
size	4.08	2.02	0.2453	0.7547
age	1.24	1.11	0.8064	0.1936

rooms	8.98	3.00	0.1113	0.8887
bedrooms	7.56	2.75	0.1323	0.8677

Mean VIF 5.46

	Eigenval	Cond Index
1 2 3 4	2.7110 1.0483 0.1729 0.0678	1.0000 1.6081 3.9598 6.3235

Condition Number 6.3235

Eigenvalues & Cond Index computed from deviation sscp (no intercept) $Det(correlation\ matrix)$ 0.0333

. regress price size age

Source	SS	df	MS		Number of obs	
Model Residual Total	4708.12215 615.080677 5323.20282	24 25.6	.06107 283615 		F(2, 24) Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.8845
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
size age _cons	.0231243 1523485 9.093323	.0018073 .0717955 4.222131	12.79 -2.12 2.15	0.000 0.044 0.042	.0193942 3005271 .3792732	.0268544 0041699 17.80737

. collin size age, corr (obs=27)

Collinearity Diagnostics

Variable	VIF	SQRT VIF	Tolerance	R- Squared
size age	1.03	1.02	0.9683 0.9683	0.0317 0.0317

Mean VIF 1.03

	Eigenval	Cond Index
1 2	1.1781 0.8219	1.0000 1.1972

Condition Number 1.1972

Eigenvalues & Cond Index computed from deviation sscp (no intercept) Det(correlation matrix) 0.9683

. predict eprice, resid

. histogram eprice, normal

(bin=5, start=-10.017778, width=3.7491447)

. sum eprice, detail

Residuals

	Percentiles	Smallest		
1%	-10.01778	-10.01778		
5%	-8.911816	-8.911816		
10%	-6.921759	-6.921759	Obs	27
25%	-3.455669	-6.515256	Sum of Wgt.	27
50%	.9022909		Mean	-1.88e-08
50%	.9022909	Largest	Mean Std. Dev.	-1.88e-08 4.863841
50% 75%	.9022909 3.624211	Largest 5.456469		
		_		
75%	3.624211	5.456469	Std. Dev.	4.863841
75% 90%	3.624211 6.491363	5.456469 6.491363	Std. Dev. Variance	4.863841

. return list

scalars:

r(N) = 27 $r(sum_w) = 27$ r(mean) = -1.87644252071e-08r(Var) = 23.65694875107343 r(sd) = 4.863840946317368ewness) = -.3191895093658222 r(skewness) = r(kurtosis) = 2.349854454971561r(sum) = -5.06639480591e-07-10.01777839660645 r(min) =8.727945327758789 r(max) =r(p1) =-10.01777839660645 r(p5) = -8.911815643310547r(p10) = -6.921758651733398r(p25) = -3.455668926239014.9022908806800842 r(p50) =r(p75) =3.624211072921753 r(p90) = 6.491362571716309r(p95) = 6.566591739654541r(p99) = 8.727945327758789

```
. scalar obs=r(N)
. scalar sk=r(skewness)
. scalar ku=r(kurtosis)

. scalar jb=obs*(sk^2/6 + (ku-3)^2/24)
. display jb
.93399413

. display chi2tail(2,jb)
.62688193

. jb6 eprice
Jarque-Bera normality test: .934 Chi(2) .6269
Jarque-Bera test for Ho: normality: (eprice)
```