

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Segundo Semestre de 2018

Tarea 6

Teoría de Números - MAT 2225

Fecha de Entrega: 2018/10/11

Integrantes del grupo: Nicholas Mc-Donnell, Camilo Sánchez Felipe Guzmán, Fernanda Cares

Problema 1 (5 pts.). Considere el número real $\alpha = [0, 1, \overline{4, 8}]$. Muestre que es algebraico y calcule su polinomio minimal.

Solución problema 1:

Problema 2 (5 pts.). Sea $b_1, b_2, ...$ una secuencia (infinita) de enteros $b_j \geq 1$ para cada $j \geq 2$. Considere el número real $\alpha = [b_1, b_2, ...]$. Muestre que $DFC(\alpha) = (b_1, b_2, ...)$.

Solución problema 2: Sea $DFC(\alpha) = (a_1, a_2, ...)$. Lo que queremos demostrar es $a_n = b_n \forall n \in \mathbb{N}$.

Por inducción:

n = 1

$$\alpha = b_1 + \frac{1}{[b_2, \dots]}$$

Como $[b_2, \ldots] > 1$, entonces $\frac{1}{[b_2, \ldots]} < 1$

$$a_1 = \lfloor \alpha \rfloor = \left\lfloor b_1 + \frac{1}{\lfloor b_2, \ldots \rfloor} \right\rfloor = b_1$$

Supongamos que $a_k = b_k \forall k \leq n$, tenemos que demostrar que $b_{n+1} = a_{n+1}$. Sabemos que $DFC(\alpha) = (b_1, b_2, ..., b_n, a_{n+1}, ...)$. Como $\alpha = [DFC(\alpha)_n, \alpha_{n+1}] = [b_1, b_2, ..., b_n, \alpha_{n+1}]$

$$\implies \alpha_{n+1} = [b_{n+1}, b_{n+2}, \dots]$$

= $b_{n+1} + \frac{1}{[b_{n+2}, \dots]}$

Como $[b_{n+2},...] > 1$ entonces $\frac{1}{[b_{n+2}]} < 1$

$$a_{n+1} = \lfloor \alpha_{n+1} \rfloor = b_{n+1}$$

Problema 3 (5 pts.). Sea $\alpha \in \mathbb{R}$ irracional. Muestre que para todo $s \geq 2$, los convergentes γ_s cumplen

$$|\alpha - \gamma_s| < \frac{1}{a_{s+1} \cdot Q_s^2}$$

Solución problema 3:

Problema 4 (5 pts.). Sea $\alpha \in \mathbb{R}$. Suponga que α no es de la forma $x + \sqrt{5}y$ con $x, y \in \mathbb{Q}$. Muestre que existen infinitos racionales $p/q \in \mathbb{Q}$ con $\gcd(p,q) = 1$ y $q \ge 1$ que cumplen

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{2q^2}$$