Math 395

Homework 4

Due: 10/8/2024

Name: Gianluca Crescenzo

Collaborators: Noah Smith, Carly Venenciano, Tim Rainone

Exercise 1. Let $T \in \text{Hom}_F(V, V)$. Prove that the intersection of any collection of T-invariant subspaces of V is T-invariant.

Proof. Let $\{W_i\}_{i\in I}$ be a collection of T-stable subspaces of V. Let $x\in T$ $(\bigcap_{i\in I}W_i)$. Then $x\in T(W_i)$ for all $i\in I$. So $x\in W_i$ for all $i\in I$, establishing $x\in \bigcap_{i\in I}W_i$. Thus T $(\bigcap_{i\in I}W_i)\subseteq \bigcap_{i\in I}W_i$.

Exercise 2. Let $T \in \operatorname{Hom}_F(V, V)$ and $v \in V$. Prove that if $T^j(v) \in W = \operatorname{span}_F(v_1, ..., v_n)$ and W is T-invariant, then $T^{j+t}(v) \in W$ for all $t \geq 0$.

Proof. We prove this by induction on t. Let t = 0 be the base case, then by assumption $T^{j}(v) \in W$. Assume our hypothesis to be true up to t - 1. Then:

$$T^{t}(T^{j}(v)) = T(T^{t-1}(T^{j}(v))).$$

Our induction hypothesis gives $T^{t-1}(T^j(v)) \in W$, and since $T(W) \subseteq W$, we have:

$$T^{j+t}(v) = T(T^{t-1}(T^j(v))) \in W.$$

Exercise 3. Let T satisfy $T^2 = T$. Prove that the only possible eigenvalues of T are 0 and 1.

Proof. Let $v \neq 0$ be an eigenvector of λ . Then $T^2 = T$ is equivalent to $T^2 - T = 0$. Then:

$$(T^{2} - T)(v) = T^{2}(v) - T(v)$$

$$= \lambda^{2}v - \lambda v$$

$$= (\lambda(1 - \lambda))(v)$$

$$= 0_{V}.$$

Since $v \neq 0$, we have that $\lambda(1-\lambda) = 0_V$, hence $\lambda = 0$ or 1.

Exercise 4. Let V be an \mathbb{R} -vector space. Let $T \in \operatorname{Hom}_{\mathbb{R}}(V,V)$ satisfy $T^2 + bT + c \operatorname{id}_V = 0_{\operatorname{Hom}_{\mathbb{R}}(V,V)}$ for some $b, c \in \mathbb{R}$. Prove that T has an eigenvalue if and only if $b^2 \geqslant 4c$.

Proof. Let $\lambda \in \mathbf{R}$ be an eigenvalue of T with $v \in E_{\lambda}^1$, $v \neq 0_V$. Then:

$$0_V = (T^2 + bT + c \operatorname{id}_V)(v)$$

$$= T^2(v) + bT(v) + cv$$

$$= (\lambda^2 + b\lambda + c)v$$

$$= \lambda^2 + b\lambda + c.$$

Then:

$$\lambda = \frac{-b \pm \sqrt{b^2 - 4c}}{2} \in \mathbf{R}.$$

It must be the case that $b^2 \ge 4c$, otherwise $\lambda \notin \mathbf{R}$, which is a contradiction.

Conversely, let $b^2 \geqslant 4c$. Then $T^2 + bT + c \operatorname{id}_V$ factors over \mathbf{R} ; i.e., $((T - \alpha \operatorname{id}_V) \circ (T - \beta \operatorname{id}_V)) = 0_{\operatorname{Hom}_{\mathbf{R}}(V,V)}$ for some $\alpha, \beta \in \mathbf{R}$. Let $v \in V$, $v \neq 0$. Then:

$$((T - \alpha \operatorname{id}_V) \circ (T - \beta \operatorname{id}_V))(v) = 0_V.$$

Write $w = (T - \beta id_V)(v)$. If $w \neq 0$, then:

$$0_V = (T - \alpha \operatorname{id}_V)(w)$$
$$= T(w) - \alpha w.$$

Hence $T(w) = \alpha w$. If w = 0, then:

$$0_V = (T - \beta \operatorname{id}_V)(v)$$
$$= T(v) - \beta v.$$

Hence $T(v) = \beta v$, establishing the proof.