SEG4630 2009-2010

Tutorial 2 – Frequent Pattern Mining

Frequent Patterns

- □ Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
 - itemset: A set of one or more items
 - k-itemset: $X = \{x_1, ..., x_k\}$
 - Mining algorithms
 - Apriori
 - FP-growth

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Beer

Support & Confidence

Support

- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is frequent if X's support is no less than a minsup threshold
- \square Confidence (association rule: $X \rightarrow Y$)
 - $\sup(X \cup Y)/\sup(x)$ (conditional prob.: $\Pr(Y|X) = \Pr(X \cap Y)/\Pr(X)$)
 - confidence, c, conditional probability that a transaction having X also contains Y
 - Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - $□ sup(X \cup Y) ≥ minsup$
 - □ sup(X \cup Y)/sup(X) \ge minconf

Apriori Principle

If an itemset is frequent, then all of its subsets must also be

frequent $(X \rightarrow Y)$ If an itemset is infrequent, then all of its supersets must be infrequent too $(\neg Y \rightarrow \neg X)$ frequent С Ε D frequent infrequent AC AB вс DE BD CD CE BE infrequent (ABC) ACE ABD ABE ACD ADE BCE CDE BCD **BDE** ACDE BCDE **ABCD ABCE ABDE**

ABCDE

Apriori: A Candidate Generation & Test Approach

- Initially, scan DB once to get frequent 1itemset
- Loop
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

Generate candidate itemsets

Example

Frequent 3-itemsets:

Candidate 4-itemset:

```
{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}
```

Which need not to be counted?

$$\{1, 2, 4, 5\} \& \{1, 3, 4, 5\} \& \{2, 3, 4, 5\}$$

Maximal vs Closed Frequent Itemsets

■ An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X

■ An itemset X is closed if X is frequent and there exists no super-pattern Y > X, with the same

support as X

Closed Frequent Itemsets are Lossless: the support for any frequent itemset can be deduced from the closed frequent itemsets

Maximal vs Closed Frequent Itemsets

Algorithms to find frequent pattern

- Apriori: uses a generate-and-test approach generates candidate itemsets and tests if they are frequent
 - Generation of candidate itemsets is expensive (in both space and time)
 - Support counting is expensive
 - Subset checking (computationally expensive)
 - Multiple Database scans (I/O)
- **FP-Growth**: allows frequent itemset discovery without candidate generation. Two step:
 - 1.Build a compact data structure called the FP-tree
 - 2 passes over the database
 - 2.extracts frequent itemsets directly from the FP-tree
 - Traverse through FP-tree

Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

The FP-Growth Approach

- Depth-first search (Apriori: Breadth-first search)
- Avoid explicit candidate generation

FP-Growth approach:

- For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
- Repeat the process on each newly created conditional FP-tree
- Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Fp-tree construatioin:

- Scan DB once, find frequent 1-itemset (single item pattern)
- Sort frequent items in frequency descending order, f-list
- Scan DB again, construct FPtree

FP-tree Size

- The size of an FPtree is typically smaller than the size of the uncompressed data because many transactions often share a few items in common
 - Bestcase scenario: All transactions have the same set of items, and the FPtree contains only a single branch of nodes.
 - Worstcase scenario: Every transaction has a unique set of items. As none of the transactions have any items in common, the size of the FPtree is effectively the same as the size of the original data.
- The size of an FPtree also depends on how the items are ordered

Example

FP-tree with item descending ordering

Transaction Data Set

TID	Items	
1	{a,b}	
2	{b,c,d}	
3	{a,c,d,e}	
4	{a,d,e}	
5	{a,b,c}	
6	{a,b,c,d}	
7	{a}	
8	{a,b,c}	
9	9 {a,b,d}	
10	{b,c,e}	

FP-tree with item ascending ordering

Find Patterns Having p From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p's conditional pattern base

Conditional pattern bases

<u>item</u>	cond. pattern base
\boldsymbol{c}	<i>f</i> :3
a	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

FP-Growth

FP-Growth

(1)

1 f, c, a, n	n, p
2 f, c, a, b	, m
3 f, b	III ,
4 <i>c, b, p</i>	
5 f. c. a. n	n. p

2	f, c, a	
3	f	+ <i>b</i>
4	С	
	(3)	•

(5)

(2)

(4)

(6)

