

Мета:

домогтися засвоєння учнями означення квадратного тричлена та його коренів, а також формулу розкладання квадратного тричлена на лінійні множники; сформувати вміння відтворювати вивчені означення і формули та використовувати їх для розв'язування завдань на знаходження коренів квадратного тричлена, розкладання квадратного тричлена на лінійні множники.

Означення: Квадратним тричленом

називають многочлен виду $ax^2 + bx + c$, де x-змінна, а, в і с — деякі числа, причому $a\neq 0$.

Приклади

$$2x^{2} - 3x + 5;$$

 $x^{2} + 7x;$
 $x^{2} - 5;$
 $3x^{2}.$

Означення: Коренем квадратного

тричлена називають значення змінної, при якому значення квадратного тричлена дорівнює нулю.

Приклад:

Число 2 ϵ коренем $x^2 - 6x + 8$

$$ax^2 + bx + c$$

$$D=b^2-4ac$$

D<0 коренів не має

D=0 має один корінь

D>0 має два корені

Приклад: розкласти на множники многочлен $x^2 - 3x + 2$

$$x^{2} - 3x + 2 = x^{2} - x - 2x + 2$$

$$= x(x - 1) - 2(x - 1)$$

$$= (x - 1)(x - 2)$$

 $x^2 - 3x + 2$ розклали на лінійні множники: x-1 і x-2

Теорема (про розкладання квадратного тричлена на лінійні множники)

Якщо дискримінант квадратного тричлена $ax^2 + bx + c$ додатний, то даний тричлен можна розкласти на лінійні множники:

$$ax^2 + bx + c = a(x - x_1)(x - x_2),$$
 де x_1 і x_2 - корені квадратного тричлена

Якщо D=0

$$x_1 = x_2$$

$$ax^2 + bx + c = a(x - x_1)^2$$

Теорема

Якщо дискримінант квадратного тричлена від'ємний, то даний тричлен не можна розкласти на лінійні множники

$$ax^{2} + bx + c = 0$$

Існують такі числа: k , m i n $ax^{2} + bx + c = k(x - m)(x - n)$.
m і n – корені даного квадратного тричлена.

Приклад: Розкладіть на множники квадратний тричлен $x^2 - 14x - 32$

Розв'язання: $x^2 - 14x - 32 = 0$

$$x_1 = -2$$
, $x_2 = 16$.

Отже,
$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

$$x^2 - 14x - 32 = (x+2)(x-16)$$

Приклад: Скоротіть дріб

$$\frac{6a^2-a-1}{9a^2-1}$$

$$6a^2 - a - 1 = 0$$

Отримуємо:
$$a_1 = -\frac{1}{3}$$
, $a_2 = \frac{1}{2}$.

$$6a^2 - a - 1 = 6\left(a + \frac{1}{3}\right)\left(a - \frac{1}{2}\right) =$$

$$3\left(a + \frac{1}{3}\right) \cdot 2\left(a - \frac{1}{2}\right) = (3a + 1)(2a - 1).$$

Тоді отримуємо:

$$\frac{6a^2 - a - 1}{9a^2 - 1} = \frac{(3a + 1)(2a - 1)}{(3a + 1)(3a - 1)} = \frac{2a - 1}{3a - 1}.$$

Відповідь:
$$\frac{2a-1}{3a-1}$$

Домашне завдання

- Опрацювати параграф 24
- Виконати № 915, 918(1-3)
- Переглянь відео: https://www.youtube.com/watch?v=vAQ5SvTBxV4

915. Знайдіть корені квадратного тричлена:

- 1) $x^2 7x + 12$; 2) $x^2 x 20$;

- 3) $6x^2 7x + 1$; 4) $-3x^2 + 6x 3$.

918. Розкладіть квадратний тричлен на множники:

1)
$$x^2 - 8x + 7$$
; 2) $x^2 + 8x - 9$;

2)
$$x^2 + 8x - 9$$
;

3)
$$2x^2 - 7x + 3$$
;