LECTURE

7

*C*Y11001 Spring 2018

- Entropy and Spontaneity
- Carnot Engine

Statistical View of Entropy

The equilibrium thermodynamic state of an isolated system is the most probable state.

$$S = k_B \ln W$$

 $k_{\rm B}$ is Boltzmann's constant W is number of different ways in which the energy of the system can be arranged (number of microstates)

As $T \rightarrow 0$, $W \rightarrow 1$ and $S \rightarrow 0$ (Nernst Heat Theorem/Third Law of TD)

$$W = 21 \times 20 \times 19 = 7,980$$

$$W = 63 \times 62 \times 61 = 2,38,266$$

The Clausius Inequality:

$$dS = dq_{rev} / T$$

$$dS_{surr} = - dq / T_{surr}$$

$$\Delta S = \int_{1}^{2} \frac{dq_{rev}}{T}$$

$$\Delta S_{surr} = \frac{-q}{T_{surr}}$$

For expansion/compression work, $dw - dw_{rev} \ge 0$

Since
$$dU = dq + dw = dq_{rev} + dw_{rev}$$

$$dq_{\rm rev} \ge dq$$

 $dq_{\rm rev}/T \ge dq/T$

For a closed system,

$$dq = dU - dw$$

$$TdS \ge dU - dw$$

$$dU - TdS - dw \le 0$$

 $dS \ge dq/T$

 $TdS - dq \ge 0$

The Clausius Inequality

Entropy can not decrease when a spontaneous change occurs in an isolated system (dq = 0)

Entropy and Reversibility

• Reversible process:

Reversible heat transfer between system and surrounding must occur with no finite temperature difference.

$$T_{syst} = T_{surr} \Rightarrow dS_{univ} = dS_{syst} + dS_{surr} = \frac{dq_{rev}}{T_{syst}} - \frac{dq}{T_{surr}} = 0$$

• Irreversible process (spontaneous):

The system + surrounding = universe, can be considered an isolated system. For any isolated system, $dS_{\rm univ} = dS_{\rm syst} + dS_{\rm surr} > 0$

$$\Delta S_{univ} \ge 0$$

Entropy and Equilibrium

• For an isolated system, spontaneous changes will occur until the entropy is maximized. This leads to equilibrium.

• For a closed system (heat and work exchange with surrounding is allowed), spontaneous changes will occur until the entropy of system plus surrounding, is maximized. This leads to equilibrium.

$$dS_{total} = dS_{sys} + dS_{surr} > 0$$
 Spontaneous process $dS_{total} = dS_{sys} + dS_{surr} = 0$ Equilibrium process $dS_{total} = dS_{sys} + dS_{surr} < 0$ Impossible process

For any process
$$dS_{sys} + dS_{surr} \ge 0$$
 "=" for reversible, equilibrium ">" spontaneous (irreversible) (real)

For a closed system at constant T and V, the state function A = U-TS decreases during the spontaneous irreversible process

Conditions for Spontaneity

At constant temperature and pressure, chemical reactions are spontaneous in the direction of decreasing Gibbs energy.

Criteria for spontaneity

$$dS_{\text{sys}} + dS_{\text{surr}} > 0$$

For a closed system, no non p-V (additional) work

$$dU_{S,V} \le 0 \qquad dH_{S,p} \le 0 \qquad dA_{V,T} \le 0$$
$$dS_{U,V} \ge 0 \qquad dS_{H,p} \ge 0 \qquad dG_{p,T} \le 0$$

Reversible processes carry equal sign.

Heat Engine

An engine is a device (system) that converts energy to work.

A heat engine draws heat from a hot reservoir, converts some heat to work, and releases some heat to a cold reservoir.

The engine itself is a system that undergoes a cyclical process

Experiments suggested:

(Clausius) An engine does not exist whose sole effect is to transfer heat from a cold body to a hot body. (Kelvin) An engine does not exist that operates in a cycle and performs work by exchanging heat with only one reservoir!

Fig. 3.7 Suppose an energy q_h (for example, 20 kJ) is supplied to the engine and q_c is lost from the engine (for example, $q_c = -15$ kJ) and discarded into the cold reservoir. The work done by the engine is equal to $q_h + q_c$ (for example, 20 kJ + (-15 kJ) = 5 kJ). The efficiency is the work done divided by the energy supplied as heat from the hot source.

Carnot Engine (1825, Sadi Carnot)

Ideal gas is used and all steps are reversible

$$TV^{\gamma-1} = \text{const.};$$

$$T_h V_B^{\gamma-1} = T_C V_C^{\gamma-1}$$

$$T_h V_A^{\gamma - 1} = T_C V_D^{\gamma - 1}$$

$$\left(\frac{V_B}{V_A}\right)^{\gamma-1} = \left(\frac{V_C}{V_D}\right)^{\gamma-1} \quad \left(\frac{V_B}{V_A}\right) = \left(\frac{V_C}{V_D}\right)$$

$$\ln \left(V_D / V_C \right) = -\ln \left(V_B / V_A \right)$$

			0 (0 : 5)	4 (D to A)	
	1 (A to B)	2 (B to C)	3 (C to D)	4 (D to A)	Total (A to A)
W	$-nRT_{\rm h} \ln(V_{\rm B}/V_{\rm A})$	$C_V(T_c-T_h)$	$-nRT_{\rm c} \ln(V_{\rm D}/V_{\rm C})$	$C_V(T_h-T_c)$	$-nR(T_h-T_c) \ln(V_B/V_A)$
q	$nRT_{\rm h} \ln(V_{\rm B}/V_{\rm A})$	0	$nRT_{\rm c} \ln(V_{\rm D}/V_{\rm C})$	0	$nR(T_{\rm h}-T_{\rm c}) \ln(V_{\rm B}/V_{\rm A})$
Δυ	0	$C_V(T_c-T_h)$	0	$C_V(T_h-T_c)$	0
(q _{rev} / T)	nR In(V _B /V _A)	0	$nR \ln(V_{\rm D}/V_{\rm C})$	0	0

Efficiency of Carnot cycle

$$\eta = \frac{\text{work performed}}{\text{heat absorbed from source}}$$

$$\eta = \frac{-w_{\text{tot}}}{q} = \frac{nR(T_h - T_c) \ln(V_B / V_A)}{nRT_h \ln(V_B / V_A)}$$

$$= \frac{T_h - T_c}{T_h} = 1 - \frac{T_c}{T_h} < 1$$

$$\eta = 1 - \frac{T_c}{T_h} = 1 + \frac{q_c}{q_h}$$

All reversible engines have same efficiency regardless of their construction

The total change in q_{rev}/T during a Carnot cycle:

$$\frac{q_{rev}}{T} = \frac{q_h}{T_h} + \frac{q_c}{T_c} = 0$$

Change in q_{rev}/T around any closed path is **0**.

It is a state function.

भारतीय प्रौद्योगिकी संस्थान खडगपुर Indian Institute of Technology Kharagpur