REPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE 11) N° de publication :

2 430 950

(A n'utiliser que pour les commandes de reproduction).

PARIS

A1

DEMANDE DE BREVET D'INVENTION

₂₀ N° 78 20521

- Nouveaux dérivés hétérocycliques de la benzimidazole, leur procédé de préparation et leur application en thérapeutique.
- (a) Classification internationale. (Int. Cl 3) C 07 D 498/04; A 61 K 31/395; C 07 D 471/04; C 07 D 513/04.
- 22 Date de dépôt 10 juillet 1978, à 15 h 34 mn.
- (33) (32) (33) Priorité revendiquée :

 - 71 Déposant : DELALANDE S.A., résidant en France.
 - (72) Invention de : J. F. Ancher, P. Dostert et P. Guerret.
 - 73 Titulaire : Idem 71
 - Mandataire: Cabinet Malémont, 42, avenue du Président-Wilson, 75116 Paris.

La présente invention a pour objet de nouveaux dérivés hétérocycliques de la benzimidazole, leur procédé de préparation et leur application en thérapeutique.

Ces nouveaux dérivés répondent plus précisément à la formule générale

5 suivante:

10

20

25

30

15 dans laquelle :

- le groupement N R R R prend l'une quelconque des valeurs suivantes :
 - groupe monoalkylamino dont le radical alkyle comporte de 1 à 4 atomes de carbone,
 - groupe cycloalkylamino dont le radical cycloalkyle comporte de 3 à 6 atomes de carbone,
 - . groupe benzylamino, allylamino ou diméthyl-2 propargylamino,
 - . groupe dialkylamino dont les radicaux alkyle comportent chacun de 1 à 3 atomes de carbone,
 - radical hétérocyclique choisi parmi les suivants : pyrrolidino, pipéridino, morpholino, méthyl-4 pipérazino, (hydroxy-2 éthyl)-4 pipérazino, phényl-4 pipérazino ; et
- l'ensemble (R₃, X, Y, m) prend l'une quelconque des significations suivantes :
 - (H. CH₂, oxygène, 1), (CH₃, oxygène, oxygène, 1), (CH₃, oxygène, soufre, 1), od C₆H₅, oxygène, oxygène, 1) n étant alors égal à 2 ou 3; (C₆H₅, oxygène, oxygène, 2), (C₆H₅, soufre, soufre, 1) ou (C₆H₅, oxygène, soufre, 1), n étant alors égal à 3;
- . (C₆H₅, oxygène, CH₂, 1), n étant alors égal à 1 ou 2.

 15 Les composés de formule (I) dans laquelle X et Y représentent chacun un atome d'oxygène, sont obtenus en cordensant une amine de formule :

$$H-N \stackrel{R_1}{\longleftarrow} R_2$$
 (II)

 40 dans laquelle N R $_1$ R $_2$ a la même signification que ci-dessus dans la formule (I),

avec les composés de formule :

5

10 dans laquelle le couple (m, R'3) prend l'une quelconque des valeurs suivantes :

. (1, CH_3) ou (1, $\text{C}_6^{\text{H}_5}$) auxquels cas n' est égal à 2 ou 3,

. (2, C_6H_5) auquel cas n' est égal à 3.

Cette condensation est de préférence effectuée en milieu toluénique ou aqueux ou encore sans solvant, à température ambiante ou è reflux du solvant.

Les composés de formule (III), eux aussi nouveaux, résultent de la 15 cyclisation déshydratante des composés de formule :

25 dans laquelle m et R'_3 ont la même signification que dans la formule (III), en présence d'un alcool bromé de formule :

$$HO - (CH_2)_{n}$$
 Br (V)

30 où n' est égal à 2 ou 3, et notamment de tamis moléculaire et d'acide para toluène sulfonique anhydre.

Les composés de formule (IV) sont obtenus par hydrolyse des composés de formule :

où le couple (m, R'3) a la même signification que dans la formule (III).

Cette hydrolyse est de préférence réalisée en milieu acide chlorhydrique.

Les composés de formule (VI) sont obtenus par alkylation de l'acétyl-2

(ou benzoyl-2) benzimidazole, par les bromo alkoxypyrannes de formule :

$$Br-CH_{2}-(CH_{2})_{m}-O-O$$
(VII)

dans laquelle m prend la valeur 1 ou 2.

5

30

Les composés de formule (I) dans laquelle le couple (X,Y) prend la 10 valeur (oxygène, soufre), (soufre, soufre), (oxygène, CH₂) ou (CH₂, oxygène), sont obtenus en condensant une amine de formule (II) sur les composés de formule :

15
$$(CH_2)_{\overline{n}} OSO_2 - CH_3$$
 (VIII)

dans laquelle X, Y, n et R₃ ont la même signification que précédemment dans la 20 formule (I) à l'exception des cas où le couple (X, Y) prend la valeur (oxygène, oxygène).

Cette condensation se fait de préférence en milieu toluénique ou aqueux ou encore sans solvant, à température ambiante ou à reflux du solvant.

Les composés de formule (VIII), nouveaux, résultent de l'action du 25 chlorure de mésyle sur les composés de formule :

$$(CH_2)_{n} \longrightarrow OH$$

dans laquelle R₃, X, Y et n ont la même signification que dans la formule (VIII).

Cette réaction est avantageusement réalisée en présence d'un solvant

35 organique comme par exemple le benzène, ainsi que d'une base telle que la

triéthylamine.

Les composés de formule (IX), eux aussi nouveaux, et dans laquelle :
a) l'ensemble (R3, X, Y, n) prend la valeur (CH3, oxygène, soufre, 2),
sont obtenus par cyclisation des composés de formule (IV) dans laquelle le couple
40 (R'3, m) prend la valeur (CH3, 1), par le mercapto éthanol, cette réaction se

faisant de préférence en présence de tamis moléculaire et d'acide para toluène sulfonique;

b) l'ensemble (R₃, X, Y, n) prend l'une quelconque des valeurs suivantes : (CH₃, oxygène, soufre, 2), (CH₃, oxygène, soufre, 3), (C₆H₅, oxygène, 5 soufre, 3), (C₆H₅, soufre, soufre, 3), sont obtenus par réduction des composés de formule :

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

dans laquelle l'ensemble (R'3, X', p) prend l'une des valeurs suivantes :

15 (CH3, oxygène, 1), (CH3, oxygène, 2), (C6H5, oxygène, 2), (C6H5, soufre, 2),
cette réduction étant de préférence réalisée par le diboranne obtenu par exemple
à partir de borohydrure de sodium et de trifluoroéthérate de bore.

Il est à noter que les composés nouveaux de formule (X) dans laquelle p = 2, sont obtenus par cyclisation déshydratante avec l'acide β-mercapto propio-20 nique, soit des composés de formule (IV) dans laquelle m = 1, soit du composé de formule :

$$\begin{array}{c|c}
 & \text{CH}_{2\text{CH}_{2}} & \text{SH} \\
\hline
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

cette réaction étant de préférence effectuée en présence de tamis moléculaire et d'acide para toluène sulfonique anhydre, et le composé de formule (IVa) étant obtenu par action du thioacétate de potassium sur le composé de formule :

$$\begin{array}{c}
\text{CH}_2 & \text{OSO}_2 - \text{CH}_3 \\
\text{OSO}_2 & \text{CH}_3
\end{array}$$

40

10

ce dernier étant lui-même obtenu par action du chlorure de mésyle sur le composé de formule (IV) dans laquelle R'3 représente un noyau phényle et m est égal à 1.

Il est à noter en outre que le composé nouveau de formule (X) dans laquelle l'ensemble (R'3, X', p) est égal à (CH3, Oxygène, 1), est obtenu 5 par saponification du composé de formule :

15

ce dernier résultant de la cyclisation déshydradante du composé de formule (IV) dans laquelle R'3 représente un groupe méthyle et m est égal à 1, par l'ester 20 méthylique de l'acide mercaptoacétique;

c) l'ensemble (R_3, X, Y, n) prend la valeur $(C_6H_5, oxygène, CH_2, 1)$ ou $(C_6H_5, oxygène, CH_2, 2)$, sont obtenus par réduction des composés de formule :

25
$$(CH_2)_p - COOH$$

dans laquelle p' prend les valeurs 0 ou 1, cette réduction se faisant de préfé-30 rence par le diboranne obtenu par exemple à partir de borohydrure de sodium et de trifluoroéthérate de bore.

Le composé de formule (XIII) dans laquelle p' = 0, est obtenu par une synthèse en trois étapes qui consiste à condenser l'acétate de tertiobutyle, en milieu ammoniacal, en présence de lithium, sur le composé de formule (VI) dans 35 laquelle m est égal à 1 et R' représente un groupe phényle, puis à hydrolyser le composé ainsi obtenu de formule :

$$\begin{array}{c} CH_2 \\ CH_2 \\ CH_2 \\ CH_5 \\ COO \end{array}$$

10 par exemple par l'acide chlorhydrique, ce qui donne le composé de formule :

15
$$CH_{2} CH_{2} O-H$$

$$CCH_{2} COOH$$

$$CCH_{2} COOH$$

$$CCH_{2} COOH$$

20

5

qui est ensuite cyclisé, par exemple par l'action d'un acide qui est de préférence l'acide sulfurique.

Le composé de formule (XIII) dans laquelle p' = 1, est obtenu par hydrolyse en milieu acide du composé de formule :

$$\begin{array}{c|c}
 & C_{H_2} & C_{6^{H_5}} \\
 & C_{H_2} & C_{N}
\end{array}$$

30

25

ce dernier étant obtenu par condensation, en présence de triton B, de l'acryloni-35 trile sur le composé de formule :

lui-même obtenu par une synthèse en deux étapes qui consiste à condenser l'acide mandélique et l'ortho amino anilino-2 éthanol, puis à cycliser le composé obtenu de formule :

10

par exemple dans un solvant organique tel que le diméthylformamide et en présence de chlorure de thionyle;

d) l'ensemble (R₃, X, Y, n) prend la valeur (H, CH₂, oxygène, 2) ou 15 (H, CH₂, oxygène, 3), sont obtenus par condensation du composé de formule :

25

avec les diols de formule :

$$HO \longrightarrow (CH_2)_{\mathbf{n}^{\mathsf{T}}}$$
 OH (XX)

30 où n' = 2 ou 3, cette condensation se faisant de préférence en présence d'une base telle que la triéthylamine, et le composé de formule (XIX) résultant de l'action du chlorure de thionyle sur l'hydroxy-4 tétrahydro-1,2,3,4 pyrido [4,3-a] benzimidazole de formule:

35

Il convient de remarquer que les composés de formule (I) dans laquelle le couple (X, Y) prend la valeur (Oxygène, Soufre), peuvent également être obtenus en réduisant, par exemple par l'hydrure double de lithium et d'aluminium, les composés de formule :

15 dans laquelle:

10

25

- p est égal à 1 ou 2,

- R'3 représente un groupe méthyle ou phényle, et

- N R_1 R_2 a la même signification que dans la formule (I).

Les nouveaux composés de formule (XXI) résultent de la condensation, 20 selon la méthode des anhydrides mixtes, des amines de formule (II) avec les

o selon la methode des annydrides mixtes, des amines de formule (II) avec les composés de formule (X) dans laquelle X' représente un atome d'oxygène.

Les préparations suivantes sont données à titre d'exemples pour illustrer l'invention.

Exemple 1: phényl-1 (pyrrolidino-2 éthoxy)-1 dihydro-3,4 1-H oxazino [1,4][4,3-a] benzimidazole

Numéro de code : 760 161 (I)

Stade 1 : [(tétrahydropyranyl-2 oxy éthyl)-1 benzimidazolyl-2]
phénylcétone

Numéro de code : 750 735 (VI)

A une solution de 0,05 mole de benzimidazoly1-2 phénylcétone dans 100 ml de diméthylformamide anhydre, on ajoute 0,05 mole d'hydrure de sodium en 15 minutes. On laisse en agitation 30 minutes. Puis, on chauffe à 60° C et on introduit une solution de 0,055 mole de bromo-2 éthoxy-2 tétrahydropyranne. On maintient à 60° C pendant 5 heures.La solution est alors versée sur de la glace et extraite à l'éther. La phase éthérée et lavée jusqu'à neutralité, séchée et concentrée. Le produit est cristallisé dans l'éther isopropylique.

Rendement : 80 %
Point de fusion : 80° C

40 Les spectres RMN et IR confirment la structure.

Par le même procédé, mais à partir des réactifs correspondants, on obtient le composé de formule (VI) et de numéro de code 760 345 (tétrahydropyranyl-2)-3 oxy propy] -1 benzimidazolyl -2 phénylcétone, utilisé brut pour la synthèse du composé de formule (IV) de numéro de code 760 346 décrit au 5 stade 2 suivant.

Stade 2: (hydroxy-2 éthyl)-1 benzimidazolyl-2 phénylcétone (IV)
Numéro de code : 750 737

A une solution de 100 ml d'acide chlorhydrique 3N, on ajoute 0,04 mole du composé de numéro de code 750 736 obtenu au stade précédent. Après dissolution, on laisse en contact 30 minutes. Puis, le pH est ajusté à 10 par addition d'ammoniaque. Le précipité formé est filtré, lavé à l'eau. Le produit est recristallisé dans l'alcool isopropylique.

Rendement

: 77 %

Point de fusion

: 124° C

15

10

Analyse élémentaire pour C16H14N2O2

	С	н	N
Calculé (%)	72,16	5,30	10,52
Trouvé (%)	72,10	5,39	10,22

20

Par le même procédé, mais à partir des réactifs correspondants, on prépare le composé de formule (IV) portant le numéro de code 760 346 : (hydroxy-3 propyl)-1 benzimidazolyl-2 phénylcétone.

Rendement .

: 46 %

25

Point de fusion

: 91° C

Analyse élémentaire pour C17H16N2O2

	С	Н	N
Calculé (%)	72,84	5 ,7 5	9,99
Trouvé (%)	73,05	5,72	9,71

30

Stade 3: phényl-1 (bromo-3 éthoxy)-1 dihydro-3,4-1-H oxazino-[1,4]
[4,3-a] benzimidazole (III)

Numéro de code: 750 915

35

A 350 ml de bromoéthanol, on ajoute 0,123 mole de paratoluène sulfonate du composé de numéro de code 750 737 obtenu au stade précédent, préparé par action de l'acide para toluène sulfonique anhydre sur le composé de numéro de code 750 737 (base) à température ambiante. On ajoute ensuite 70 g de tamis moléculaire (alumine). On maintient la température à 60° C pendant 48 heures. Après concentration, le résidu est repris

dans l'éthanol. La solution est filtrée et concentrée. Le résidu est versé sur de l'eau carbonatée. La phase aqueuse est extraite à l'acétate d'éthyle, séchée, concentrée et recristallisée dans l'éther isopropylique.

Rendement

5

: 70 %

Point de fusion

: 116° C

Analyse élémentaire pour C₁₈H₁₇BrN₂O₂

		C	н	N
10	Calculé (%)	57,92	4,59	7,51
	Trouvé (%)	57,77	4,36	7,49

Par le même procédé, mais à partir des réactifs correspondants, on prépare les composés de formule (III) portant les numéros de code : 760 438, 760 223, 760 671, et 760 576 et répertoriés dans le tableau (I).

Stade 4 : Phényl-1 (pyrrolidino-2 éthoxy)-1 dihydro-3,4 1-H oxazino [1,4] [4,3-a] benzimidazole (I)

Numéro de code : 760 161

A 150 ml de pyrrolidine, on ajoute 3,2.10⁻² mole du composé de numéro de code 750 916 (obtenu au stade précédent) et on chauffe au reflux 3 heures. Après concentration, le résidu est repris par un mélange eau-acétate d'éthyle. La phase organique est lavée à l'eau jusqu'à neutralité, séchée et concentrée. Le produit est recristallisé dans l'acétate d'éthyle.

25

30

20

Rendement

: 80 %

Point de fusion

: 142° C

Analyse élémentaire pour C22H25N3O2

ſ		С	H	39
Ì	Calculé (%)	72,76	6,93	11,56
	Trouvé (%)	72,61	7,15	11,83

Par le même procédé, mais à partir des réactifs correspondants, on prépare les composés de formule (I), rassemblés dans le tableau II et portant les numéros de code 760 475, 760 531, 760 611, 760 439, 760 469, 760 470, 760 239, 750 916, 760 187, 760 028, 760 103, 760 102, 760 222, 760 853, 760 790, 760 832, 760 787, 760 837, 760 835, 760 981, 760 968, 760 817, 770 051, 760 833, 760 836, 760 831, 760 343, 760 823, 760 764, 760 765, 760 735, 760 238, 760 766, 760 736, 760 848, 760 855, 760 856, 760 719, 760 987, 760 720, 760 773, 40 770 591, 760 657.

```
Exemple 2 : méthyl-1 (pipéridino-3 propylthio) 1-dihydro-3,4 1-H oxazino[1, 4]
                [4, 3-a] benzimidazole, dichlorhydrate
                 Numéro de code : 770 469 (I)
               Stade 1 : méthyl-1 (méthyl sylfonyloxypropylthio)-1 dihydro-3,4
               1-4 oxazino [1,4] [4,3-a] benzimidazole (VIII)
   5
               Numéro de code : 770 088.
               A une solution de 0,06 mole de méthyl-1 (hydroxy-3 propyl-thio)-1
               dihydro-3,4 1-H oxazino [1,4] [4, 3-a] benzimidazole [(IX), numéro
               de code 770 089, obtenu à l'exemple 8] dans 300 ml de benzène et
               0,24 mole de triéthylamine, on ajoute 0,1 mole de chlorure de mésyle
 10
               en 20 minutes. Après 90 minutes sous agitation, on évapore le solvant,
               reprend le résidu dans un mélange d'eau et d'acétate d'éthyle, décante
               et évapore la phase organique. Le produit est utilisé brut dans la
               synthèse du composé de formule (I) décrit à l'étape suivante;
              Par le même procédé, mais à partir des réactifs correspondants, on
 15
    obtient les composés de formule (VIII), employés bruts dans la synthèse des
    composés de formule (I) correspondants, et portant les numéros de code suivants :
              770 395 : phényl-1 (méthylsulfonyl oxypropyl-thio)-1 dihydro-3,4
              1-H oxazino [1,4] [4,3-a] benzimidazole.
              760 965 : méthyl-1 (méthyl sulfonyloxyéthylthio)-1 dihydro-3,-4 1-R
20
              oxazino [1,4] [4,3-a] benzimidazole.
              770 490: phényl-1 (méthyl sulfonyloxypropyl thio)-1 dihydro-3,4
              1-H thiazino [1,4] [4,3-a] benzimidazole.
              760 800 : phényl-1 (méthylsulfonyloxyéthyl)-1 dihydro-3,4 1-H oxazino
              [1,4] [4,3-a] benzimidazole.
25
              770 392: phényl-1 (méthyl sulfonyl oxypropyl)-1 dihydro-3,4, 1-H
              oxazino [1,4] [4, 3-a] benzimidazole.
              770 774: tétrahydro-1,2,3,4 (méthylsulfonyloxy-3)propoxy-4 pyrido
              1,2-a benzimidazole
              770 181 : tétrahydro -1,2,3,4 (méthyl sulfonyloxy-2) éthoxy-4 pyrido
30
              [1,2-a] benzimidazole.
             Stade 2: méthyl-1 (pipéridino-3 propyl-thio)-1 dihydro-3,4 1-H
             oxazino \begin{bmatrix} 1,4 \end{bmatrix} \begin{bmatrix} 4,3-a \end{bmatrix} benzimidazole, dichlorhydrate (I),
             Numéro de code : 770 469
             A 120 ml de pipéridine, on ajoute 0,04 mole du composé de numéro de
35
             code 770 088 décrit à l'étape précédente et on laisse en agitation
             15 heures à température ambiante. Après concentration, le résidu est
             repris par un mélange eau-chloroforme. La phase chloroformique est
             lavée à l'eau, séchée, concentrée.
40
             La base ainsi obtenue est diluée dans 100 ml d'éthanol absolu et on
```

ajoute 14,3 ml d'alcool chlorhydrique 7%. Le précipité qui se forme est cristallisé dans l'éthanol.

Rendement

: 48 %

Point de fusion

: 204° C

Analyse élémentaire pour $C_{19}H_{29}N_3OS$, 2HCl, $\frac{3}{h}H_2O$

	C	Н	Ň
Calculé (%)	52,83	7,12	3,13
Trouvé (%)	53,05	6,72	3,31

10

5

Par le même procédé, mais à partir des réactifs correspondants, on prépare les composés de formule (I) rassemblés dans le tableau II et portant les numéros de code 760 967, 770 026, 770 091, 770 171, 770 090, 770 092, 770 115, 760 966, 770 172, 770 257, 770 116, 770 258, 770 174, 770 259, 770 313, 770 314, 15 770 393, 770 469, 770 272, 770 271, 770 592, 770 470, 770 593, 770 594, 770 437, 770 435, 770 436, 770 471, 770 315, 770 396, 770 397, 770 398, 770 491, 770 724, 760 799, 770 448, 770 517, 770 679, 770 440, 770 516, 770 604, 770 676, 770 449, 770 370, 770 419, 770 651, 770 670, 770 671, 770 604, 770 678, 770 178, 770 371, 770 579, 770 596, 770 595, 770 771, 770 770, 770 772.

20 Exemple 3: méthyl-1 (pyrrolidino-3 propyl-thio)-1 dihydro-3,4 1-H oxazino [1,4]
[4,3-a] benzimidazole, chlorhydrate (I)

Numéro de code: 770 174

Stade 1: méthyl-1 (pyrrolidino carbonyl-2 éthylthio)-1 dihydro 3,4,
1-H oxazino [1,4] [4,3-a] benzimidazole (XXI)

25

30

Numéro de code: 770 175

A une solution chloroformique de 0,033 mole d'acide méthyl-1 dihydro-3,4 1-H oxazino [1,4] [4,3-a] benzimidazole-yl-1 thio-3' propionique [(X), numéro de code 760 962, préparé à l'exemple 4], on ajoute 50 ml de diméthylformamide et 0.03? mole de triéthylamine. On refroidit à-10° C, on ajoute 0,04 mole de chloroformiate d'éthyle. Après 1 heure d'agitation on ajoute 0,05 mole de pyrrolidine. Après concentration, le résidu est repris par un mélange eau-acétate d'éthyle. La phase organique est lavée à l'eau, séchée et concentrée.

Rendement

: 55 %

35

40

Point de fusion

: 127° C

Analyse élémentaire pour $C_{18}H_{23}NO_2S$

	·		
	С	В	N
Calculé (%)	62,58	6,71	12,16
Trouvé (%)	62,63	6,66	12,33

Par le même procédé, mais à partir du réactif correspondant, on prépare le composé de numéro de code 770 316 (XXI); phényl-1 (pyrrolidino carbonyl-2 éthylthio)-1dihydro-3,4 1-H oxazino [1,4] [4,3-a] benzimidazole:

Rendement

65 %

5

Point de fusion

: 191° C

Analyse élémentaire pour $C_{23}H_{25}N_3O_2S$

	С	Н	N
Calculé (%)	67,78	6,18	10,31
Trouvé (%)	67,91	6,23	10,25

Stade 2: methyl-1 (pyrrolidino-3 propylthio)-1 dihydro-3,4 1-H oxazino [1,4] [4,3-a] benzimidazole, chlorhydrate (I)
Numero de code: 770 174

15

20

35

40

10

A une suspension de 4.10⁻³ mole d'hydrure double d'aluminium et de lithium dans 5 ml de solvant, on ajoute goutte à goutte à -10° C une solution de 2.10⁻³ mole du composé de numéro de code 770 175 obtenu au stade précédent dans 5 ml de tétrahydrofuranne. On laisse en agitation pendant 30 minutes et le milieu réactionnel et hydrolysé par 0,3 ml d'eau et 0,05 ml de soude à 20 %. Après filtration, la solution est concentrée. Le résidu est repris par de l'eau et de l'acétate d'éthyle. La phase organique est séchée et concentrée. Le produit possède les mêmes caractéristiques (spectres IR et RMN) que celui obtenu à l'exemple 2.

Par le même procédé, mais à partir des réactifs correspondants, on prépare les composés de formule (I) rassemblés dans le tableau II et portant les numéros de code : 760 967, 770 026, 770 091, 770 171, 770 090, 770 092, 770 115, 760 966, 770 172, 770 257, 770 116, 770 258, 770 174, 770 259, 770 313, 770 314, 770 393, 770 469, 770 272, 770 271, 770 592, 770 470, 770 595, 770 594, 30 770 437, 770 435, 770 436, 770 471, 770 315, 770 396, 770 397, 770 398, 770 491.

Exemple 4: Acide méthyl-1 dihydro-3,4 1-H oxazino [1,4] [4,3-a] benzimidazole-yl-1 thio-3' propionique (X)

Numéro de code: 760 962

A 200 ml d'acide mercapto-3 propionique, on ajoute 0,294 mole d'(hydro-2-éthyl)-1 benzimidazol-yl-2 méthyl cétone décrit dans le brevet français 2 140 347, 100 g de tamis moléculaire anhydre et 0,3 mole d'acide paratoluène sulfonique anhydre. On chauffe pendant 1 heure à 100°C. Après filtration, la solution est concentrée à sec. Le résidu est versé sur 250 ml de soude 5N, puis on ajuste le pH à 5 par de l'acide acétique. Le précipité formé est filtré et séché.

Rendement

: 80 %

Point de fusion

: 180° C

Analyse élémentaire pour C₁₄H₁₆N₂O₃S:

5

ı cı	Н	N
57,51	5,52	9,58
57,62	5,63	9,68
	57,51 57,62	

Par le même procédé, mais à partir des réactifs correspondants, on 10 prépare les composés de formule (X) portant les numéros de code : 770 173 et 770 420.

nº 770 173 : acide phényl-1 dihydro-3,4 1-H oxazino [1,4] [4,3-a] benzimidazolyl-1 thio-3' propionique:

Rendement

: 80 %

: 193° C

Point de fusion 15

Analyse élémentaire pour $^{\rm C}_{19}{}^{\rm H}_{18}{}^{\rm N}_2{}^{\rm O}_3{}^{\rm S}$:

20

25

	С	H	N
Calculé (%) Trouvé (%)	64,38	5,12	7,90
	64,19	5,15	7,78

nº 770 420 : acide phényl-1 dihydro-3,4 1-H thiazino [1,4] [4,3-a] benzimidazoly1-1 thio-3' propionique;

Rendement

: 57 %

Point de fusion

: 202° C

Les spectres IR, RMN confirment les structures.

Exemple 5 : (mercapto-2 éthyl)-1 benzimidazolyl -2 phénylcétone (IVa)

numéro de code : 770 403

Stade 1 : (méthyl sulfonyloxy éthyl)-1 benzimidazolyl-2 phénylcétone (XI) 30

Numéro de code : 770 400

A une solution de 0,545 mole du composé de numéro de code 750 737 [(IV), préparé au stade 2 de l'exemple 1] dans 2,5 1 de benzène, on ajoute 2,18 moles de triéthylamine. Puis, on introduit en 1h30 à température inférieure à 15° C, 1,09 mole de chlorure de mésyle. Après concentration, on reprend le résidu par un mélange eau-chloroforme. La phase organique est séchée et concentrée.

Rendement

: 91 %

Point de fusion

; 118° C

40

35

Les spectres IR et RMN confirment la structure.

Stade 2 : (mercapto-2 éthyl)-1 benzimidazolyl-2 phénylcétone (IVa) Numéro de code : 770 403

A une solution de 0,105 mole du composé obtenu au stade précédent dans le méthanol sous azote, on ajoute 0,21 mole de thioacétate de pctassium. On chauffe à reflux 5 heures et on concentre. Le résidu est repris par un mélange eau-chloroforme. La solution organique est lavée, séchée et concentrée.

Rendement

: 75 %

Point de fusion

: 110° C

10

5

Analyse élémentaire pour $^{\rm C}_{16}{}^{\rm H}_{14}{}^{\rm N}_2{}^{\rm OS}$:

	С	Н	N
Calculé (%)	68,06	5,00	9,92
Trouvé (%)	68,46	4,90	10,04

15

Ce composé est employé pour la synthèse du composé de formule (X) portant le numéro de code 770 420 et décrit à l'exemple 4 précédent.

Exemple 6: acide méthyl-1 dihydro-3,4 1-H oxazino[1,4][4,3-a] benzimidazolyl-1 thio-2' acétique (X)

20

25

30

Numéro de code: 760 824

Stade 1: méthyl-1 dihydro-3,4 1-H oxazino [1,4][4,3-a]benzimidazolyl-1 tio-2' acétate d'éthyle (XII)

Numéro de code: 760 825

A 250 ml de thioglycolate d'éthyle, on ajoute 0,3 mole d'acide paratoluène sulfonique et 150 g de tamis moléculaire ainsi que 0,3 mole d'(hydroxy-2 éthyl)-1 benzimidazolyl-2 méthylcétone (décrit dans le brevet français n° 2 140 347).

On chauffe à 90° C pendant 2h30. Puis, on filtre la solution. Celle-ci est ensuite versée dans 1,00 ml de soule 5N. Après extraction au chloroforme, la phase organique est lavée, séchée et concentrée. Le produit est purifié par chromatographie sur colonne de silice (éluant : chloroforme). Le produit est recristallisé dans l'éther isopropylique.

Rendement

: 63 %

Point de fusion

: 76° C

35

40

Analyse élémentaire pour $^{\rm C}_{15}{}^{\rm H}_{18}{}^{\rm N}_{2}{}^{\rm O}_{3}{}^{\rm S}$:

	С	Н	N
Calculé (%)	58,80	5,92	9,14
Trouvé (%)	58,70	5,98	9,27

Stade 2 : acide méthyl-1 dihydro-3,4 1-H oxazino [1,4] [4,3-a]

benzimidazolyl-1 thio-2' acétique (X)

Numéro de code: 760 824

A 100 ml d'éthanol on ajoute 0,1 mole de potasse en pastille et 0,0385 mole du composé obtenu au stade précédent. On chauffe au reflux 4 heures. On concentre et le résidu est dissous dans 50 ml d'eau et lavé à l'acétate d'éthyle. Après neutralisation par l'acide acétique, le précipité est recritallisé dans 150 ml de méthanol,

Rendement

: 70 %

Point de fusion

: 213° C

Analyse élémentaire pour $^{\mathrm{C}}_{13}^{\mathrm{H}}_{14}^{\mathrm{N}}_{2}^{\mathrm{O}}_{3}^{\mathrm{S}}$:

· ·	С	H	N
Calculé (%)	56,10	5,07	10,07
Trouvé (%)	55,90	4,91	10,19

Exemple 7: méthyl-1 (hydroxy-2 éthyl thio)-1 dihydro-3,4 1-H oxazino [1,4][4,3-a] benzimidazole (IX)

20 Numéro de code : 760 849

A 300 ml de mercapto éthanol on ajoute 0,25 mole d'(hydroxy-2 éthyl)-1 benzimidazolyl-2 méthylcétone, 0,25 mole d'acide paratoluène sulfonique et 150 g de tamis moléculaire. On chauffe à 90° C pendant 1h30. On filtre l'alumine que l'on rince au chloroforme. La phase organique est versée dans 400 ml de soude 5N. Après lavage à l'eau, la phase organique est séchée et concentrée. Le produit est recristallisé dans 100 ml d'acétate d'éthyle.

Rendement

: 68 %

Point de fusion

: 117° C

30

35

25

5

10

15

Analyse élémentaire pour C₁₃H₁₆N₂OS :

	С	Н	N
Calculé (%)	59,06	6,10	10,60
Trouvé (%)	59,24	6,16	10,83

Exemple 8: méthyl-1 (hydroxy-3 propyl thio)-1 dihydro-3,4 1-H oxazino [1,4]
[4, 3-a]benzimidazole (IX)

Numéro de code : 770 089

A une solution de 0,394 mole de 760 962 (décrit à l'exemple 4), dans 40 1,7 l de tétrahydrofuranne anhydre on ajoute 0,51 mole de borohydrure de sodium.

Puis à 15°C on ajoute, goutte à goutte, 0,68 mole de trifluoroéthérate de bore. Après 15 heures d'agitation à température ambiante, le milieu est hydrolysé par 500 ml d'acide chlorhydrique 2N. Puis, on neutralise par de la soude 4N. La phase organique est décantée et concentrée. Le résidu est repris par un 5 mélange eau-chloroforme. La phase chloroformique est séchée et concentrée.

Rendement

: 47 % -

Point de fusion

: 111° C

Analyse élémentaire pour C₁₄H₁₈N₂OS:

10	<u> </u>	с	H	N
	Calculé (%) Trouvé (%)	60,40 60,34	6,52 6,53	10,06 10,14
		, , ,	, ,,,,	10,14

Par le même procédé, mais à partir des réactifs correspondants, on 15 prépare les composés de formule (IX) répertoriés dans le tableau III.

Exemple 9: tétrahydro-1,2,3,4 (hydroxy-3) propoxy-4 pyrido [1, 2-a]benzimidazole (IX)

Numéro de code: 770 652

Stade 1: tétrahydro-1,2,3,4 chloro-4 pyrido [1,2-a] benzimidazole (XIX)

20 Numéro de code : 770 176

A une solution de 0,2 mole de tétrahydro-1,2,3,4 hydroxy-4 pyrido [1,2-a] benzimidazole (J. Chem. Soc. C, p.72, 1969) dans 400 ml de chloroforme, on ajoute 0,2 mole de triéthylamine. On introduit en 2 heures à température inférieure à 5° C, une solution de 0,4 mole de chlorure de thionyle dans 100 ml de chloroforme. Après agitation à température ambiante durant 24 heures, on verse la solution sur de l'eau. Le pH est ajusté à 7 par addition de carbonate de sodium. La solution chloroformique est lavée à l'eau, séchée et concentrée.

Pendement

: 76 %

30 Point de fusion

: 155° C

Analyse élémentaire pour C₁₁H₁₁Cl N₂

	С	. Н	N
Calculé (%)	63,92	5,37	13,56
Trouvé (%)	64,20	5,33	13,71

Stade 2: tétrahydro-1,2,3,4 (hydroxy-3) propoxy-4 pyrido [1,2-a] benzimidazole (IX)

Numéro de code: 770 652

A une solution de 1 l de propanediol-1,3 et 43 ml de triéthylamine,

35

on ajoute 0, 3 mole du composé préparé au stade précédent. On chauffe en agitant à 65° C pendant 24 heures. Le milieu réactionnel est alors versé dans 3 1 d'eau et la solution aqueuse est extraite au chloroforme. La phase organique est lavée à l'eau, séchée et concentrée. Le produit est recristallisé dans l'acétate d'éthyle.

Rendement

: 76 %

Point de fusion

: 80° C

Les spectres IR et RMN confirment la structure du composé attendu. Analyse élémentaire pour $c_{1\downarrow}^{H}_{18}^{N}_{2}^{O}_{2}$, $\frac{5}{5}^{H}_{2}^{O}$:

10

25

30

40

5

	С	Н	N
Calculé (%)	64,34	7,59	10,72
Trouvé (%)	64,04	7,66	10,64

Par le même procédé, mais à partir du réactif correspondant, on prépare 15 le composé de formule (IX) portant le numéro de code 770 177 : tétrahydro-1,2, 3,4 (hydroxy-2) éthoxy-4 pyrido [1,2-a] benzimidazole.

Rendement

Point de fusion

: 94° C

Les spectres IR et RMN confirment la structure. 20

Exemple 10 : acide phényl-1 dihydro-3,4 1-H oxazino [1,4] [4,3-a] benzimidazolyl-1 acétique (XIII)

Numéro de code : 760 589

Stade 1 : [(tétrahydropyranyl-2 oxyéthyl)-1 benzimidazolyl-2] -3

hydroxy-3 phényl-3 propionate de tertiobutyle (XIV)

Numéro de code: 760 384

A 400 ml d'ammoniac, on ajoute 0,2 atome grammede lithium avec quelques cristaux de nitrate ferrique, puis 0,2 mole du composé de numéro de code 750 736 [(VI), obtenu su stade de l'exemple 1], 0,2 mole d'acétate de tertiobutyle et 200 ml d'éther. On laisse en agitation 1 heure et on ajoute du chlorure d'ammonium et de l'eau. La phase organique est lavée à l'eau, séchée et concentrée.

Rendement

: 87 %

Point de fusion

: 143° C

Les spectres IR et RMN confirment la structure du composé attendu. 35 Stade 2: acide (hydroxy-2 éthyl-2 benzimidazolyl-2)-3 hydroxy-3 phényl-3 propionique (XV)

Numéro de code : 760 383

A 31 d'acide chlorhydrique à 65 %, on ajoute 1,28 mole du composé obtenu au stade précédent en maintenant la température à 25° C, en 20 minutes.

Puis, on neutralise la solution par de la soude. On ajoute de l'acétate d'éthyle et de l'acide acétique. Le précipité formé est filtré et lavé à l'éther isopropylique.

Rendement

: 88 % : 150° c

5

Point de fusion

Les spectres IR et RMN confirment la structure du composé attendu.

Analyse élémentaire pour C₁₈H₁₃N₂O₄;

	С	H	N
Calculé (%)	66,24	5,56	8,58
Trouvé (%)	65,92	5,64	8,54

Stade 3: acide phényl-1 dihydro-3,4 1-H oxazino [1,4][4,3-a]

15

10

benzimidazolyl-1 acétique (XIII)

Numéro de code : 760 589

A 800 ml d'acide sulfurique à 60 %, on ajoute 0,15 mole du composé obtenu au stade précédent. On agite 4 heures à température ambiante. Puis, on introduit 500 ml de lessive de soude. On filtre et on lave à l'eau. Le précipité est solubilisé dans l'eau carbonaté. La phase aqueuse est lavée à l'acétate d'éthyle et acidifiée. Le précipité est filtré et recristallisé dans le dioxanne.

Rendement

: 57 %

Point de fusion

: 216° C

25

20

Les spectres IR et RMN confirment la structure.

Analyse élémentaire pour C₁₈H₁₆N₂O₃

	C	H	N
Calculé (%)	70,11	5,23	9,09
Trouvé (%)	69,99	5,45	9,12

30

35

40.

Exemple 11: acide phényl-1 dihydro-3,4 1-H oxazino [1,4] [4,3-a] benzimidazolyl-1 propionique (XIII)

Numéro de code : 770 243

Stade 1: (hydroxy-2 éthyl)-1 (<-hydroxy) benzyl-2 benzimidazole (XVIII)

Numéro de code 760 657

A une solution de 0,13 mole de N-hydroxyorthophénylène diamine (J. Org. Chem. 24, p. 1042, 1959) dans 200 ml d'acide chlorhydrique 4N, on ajoute 0,26 mole d'acide mandélique. On chauffe au reflux 8 heures.

On ajoute 200 ml d'eau et on ajuste le pH à 8-9 par addition d'armoniaque 6N. On extrait à l'acétate d'éthyle. La phase organique est lavée à l'eau, séchée et concentrée. Le produit obtenu est recristallisé dans la méthyléthylcétone.

Rendement

5

10

15

20

25

30

35

40

: 65 %

Point de fusion

: 150° C

Analyse élémentaire pour $^{\rm C}_{16}{}^{\rm H}_{16}{}^{\rm N}_{2}{}^{\rm O}_{2}$:

	С	H-	N
Calculé (%) Trouvé (%)	71,62	6,01 6,01	10,44 10,29
1	71,72	6,01	

Stade 2: phényl-1 dihydro-3,4 1-H oxazino [1,4][4,3-a] benzimidazole (XVII)

Numéro de code: 760 060

A une solution de 0,093 mole du composé obtenu au stade précédent dans 150 ml de diméthylformamide, on ajoute goutte à goutte 0,1 mole de chlorure de thionyle et on chauffe à 60° C pendant 4 heures. On ajoute 15 ml de pyridine. La solution est versée sur un mélange glace-eau et on ajuste le pH à 8-9 par addition de carbonate de sodium. La solution est extraite à l'acétate d'éthyle. La phase organique est lavée à l'eau, séchée et concentrée. Le produit est recristallisé dans l'alcool isopropylique.

Rendement

: 40,5 %

Point de fusion

: 161° C

Analyse élémentaire pour $C_{16}^{H}_{14}^{N}_{2}^{O}$:

	C	H	N
Calculé (%)	76,78	5,64	11,20
Trouvé (%)	76,70	5,52	11,53

Stade 3: phényl-1 dihydro-3,4 1-H oxazino [1,4] [4,3-a] benzimidazolyl-1 propionitrile (XVI)

Numéro de code: 760 918

A un litre de dioxanne on ajoute 1 mole du composé obtenu au stade précédent et 270 ml d'acrylonitrile, puis progressivement du triton B. On laisse en agitation 2 heures et après concentration le résidu est repris par un mélange eau-acétate d'éthyle. La phase organique est

lavée à l'eau, séchée, concentrée.

Rendement

: 59 %

Point de fusion

: 137° C

Les spectres IR et RMN confirment la structure,

Stade 4: acide phényl-1 dihydro-3,4 1-H oxazino [1,4][4,3-a]

benzimidazolyl-1 propionique (XIII)

Numéro de code: 770 243

A 150 ml d'acide chlorhydrique concentré, on ajoute 0,11 mole du composé obtenu au stade précédent. On chauffe à reflux pendant 2 heures. On ajuste le pH à 10 par de la soude concentrée. La phase aqueuse est lavée à l'acétate d'éthyle, puis acidifiée par l'acide acétique. Le précipité est filtré et séché.

Rendement

. : 85 %

Point de fusion

: 216° C

15

Les spectres IR et RMN confirment la structure.

Analyse élémentaire pour C₁₉H₁₈N₂O₃:

	С	H	N
Calculé (%)	70,79	5,63	8,69
Trouvé (%)	70,99	5,73	8,76

20

TABLEAU I			·	CH ₂), Br								
					Poids	Point	Rende-	ANAL	ANALYSIS BLISMENTATRIS	4 ENTALE	~	
numero de Code	Ħ	r E	ັພ ້ພ	Formule brute	laire	fusion	96	96	υ		z	
								cal.	50,17	h,86	9,00	
760438	-	CI	CH ₃	C ₁₃ H ₁₅ BrN ₂ O ₂	311,175	151	11	Tr.	50,42	4,90	9,30	
			·		,			Cal.	58,92	, 36,4	7,23	<i>د</i> د
760223	-	m	C _H ₅	C ₁₉ H ₁₉ BrN ₂ O ₂	387,267	8		Tr.	58,77	5,01	7,44	
							69	Cal.	51,70	5,27	8,61	
750671	· ·	m	CH ₃	C14H17BrN2O2	325,201	2	<u></u>	Tr.	51,76	5,33	8,85	
					3	5	بر	Cal.	50,86	5,27	80°9	
760576	CJ.	м	5, 4, 5	C20 H21 BrN2 02	401, 104 202, 104		}	Pr.	59,80	5,26	7,10	

(cH₂)_m (III)

	1					·	,		243	0950
	\IRE	z			9,52	9,33			11,22	11,62
·	EMENTA	Ħ			5,25	5,33			94,9	6,24
	ANALYSE ELEMENTAIRE	υ		·	48,98	48,67			54,53	54,82
		88	Cal.	Tr.	Cal.	Tr.	Cal,		Cal.	Tr.
	Rende- ment	3 5				82		 	17	
<u>.</u>	Point	uoisn,				163		•	163	•
	Poids Molé-	curaire	261,316			444,386	275,342		365,378	
R (I)	Formule Brute		C ₁₄ H ₁₉ N ₃ O ₂		, ;	ັ18"23"3 [°] 10	C15H21N3O2		C,7H2,3N,O2	D C
CH ₂) _n (CH ₂) _m (CH ₂) _m (CH ₂) _m × × × × × × × × × × × × × × × × × × ×	Forme		Вазе		0,40 0,40		Ваѕе	-	Oxalate	
	R R	V	NH-CH ₃		e		NH-Et		-	
	Ħ		-				:		-	
	я		. N		*		£		:	
	В3		CH ₃		*		=		=	
	×		0		*		:		=	
비	×		. 0		-		:		=	
TABLEAU II	Numéro de Code		760 475				760 531		: .	

ABLEAU II (SUITE

						C+				£43U7			
Æ	Z			7,95	8,19	16,96	17,23	13,24	13,20	15,26	15,56		
MENTAI	×			5,72	5,84	7,93	7,84	7,30	7,50	7,69	7,75		
ANALYSE ELEMENTAIRE	υ			50,00	50,08	65,43	65,72	64,33	64,03	65,43	65,41		
ANAL	88	Cal.	Tr.	cal.	Tr.	Cal.	Tr.	cal.	Tr.	Cal.	Tr.		
Rende	26			69			. 59	38	}	75	5		
1	Fusion (°C)			. 11			143	87		89			
Poids	4)	100	303,234	528, 1181			330,120	317 37B	2	0,16 370	3 t C (C) A		
Formule		; ;	617 ^H 25 ^N 3 ^O 2	C 2	21.29.3.10		c ₁₈ H ₂₆ N ₄ O ₂		c18 ^H 26 ^N 1,02		C p	ر 15 ⁴² 21 ⁴³ 3	
E C THE		ſ	58.5 - -	0 + 0 [0 > 0			Ваѕе	=	•				
R	RRS	, I	N L Et	=	=		=		-N N-CH ₃	ָ <u></u>) i.	, k	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			-	=				-		-			
			a	:			<u></u>	<u> </u>					
,	en K		СН 3	=			:			:			
	≻		0	-			E			<u> </u>	: 		
	×		0				=		:				
Numéro	de Code		760 611	:	·		760 439		760.469		760 470		

TABLEAU II (SUITE)

1				, · · · · · · · · · · · · · · · · · · ·	<u> </u>	- J				24309	
LIRE	×	12,46	12,19	11,50	11,60	11,56	11,83			10,16	10 , 04
EMENT	н	6,87	6,98	7,45	7.71	6,93	7,15			5,61	5,77
ANALYSE ELEMENTAIRE	D	71,19	71,10	72,30	72,56	72,76	72,61			61,00	61,13
ANA	BR	Cal.	Tr.	cal.	īr.	Cal.	Tr.	Cel.	Tr.	Cal.	Tr.
Rende- ment	9€	89	:	29		C	3			53	·
Point	Fusion (°C)	105		102		Ç	v +			190	
	culaire	337_h08	22.6	365.460				323,382		413,418	
Formule Brute		O-N-H-D	20 23 3 2	C.H.B.O.	22 27 3 2	c #	~22"25"3~2	C.H.N.O.	2 E 13 9 E	ColHogN2O6	
Forme		88 88 88 88			-	F	·	Вая		Oxalate	
N N	cu i	\ 2 1	<i>(</i> .	-N Et	益/	(_E	7	-NH-CH		2	
É						ŧ		-		=	
g		م	1	=		=		C)		. F ,.	
З		H H U	5.9	H/S	o '	=		E E	. 0	ŧ	
Ж		C		=				Ó		=	
×		C)	=		ء د		0		=	
Numéro	e goo	986 094	}	750 916		760 161	}	760 162		=	

TABLEAU II (SUITE)

Numero X X R R R R R R R R									6	m;	3	ي	0
X X R R R R R R R R		SE SE	2	10,67	प्तं ।।	11,07	11,25	14,28	14,30	12,3	12,5		
X		ENTAI	H		1	5,64	6,87	7,19	7,20	6,65	1.4*9	7,16	7,34
X		E CLEM	υ							73,98	73,71	68,22	42 , 89
X		ANALYS	P46										Pr.
x x x R_3 n m $N < R_1$ Forme Formule Roise Cultaire Rusion $(\circ C_1)$ $(\circ C_2)$ $(\circ C_1)$ $(\circ C_2)$ $(\circ C_1)$ $(\circ C_2)$ $(\circ C_1)$ $(\circ C_2)$ $(\circ C_2)$ $(\circ C_2)$ $(\circ C_2)$ $(\circ C_2)$ $(\circ C_1)$ $(\circ C_2)$ $(\circ$	-	ide-	<u> </u>	<u> </u>	<u>.</u>				1	74	!		Q
x x x R ₃ n m N <r<sub>1 Forme Formute Poids Poids</r<sub>		Ren	8<	· ·	Ϋ́								
X Y R ₃ n m N \(\begin{array}{c c c c c c c c c c c c c c c c c c c		Point de	(oc)		134	5 (1	<u>}</u>		155	Į.	- -	 	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					393,518	19 OZC	**** 6 K I C		392,486	(i	566,464 566,464		422 , 512
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-			-		 		1					, o ₃
X Y		Formule	3		24 ^H 31 ^{N3} 02		322 ^H 25 ^N 3 ^U		ເ ₂₃ ^H 28 ^N ^L (C28 ^H 30 ^N 1		C21, H30 ^N 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ļ			-	0			 					
28 " " " " " " " " " " " " " " " " " " "		Formas			Вазе	:	:		: .		:		=
28 " " " " " " " " " " " " " " " " " " "	+				0 0	-			ı.κ.		()		HO
X X Y B3 n m 28 28 " " " " " " " " " " " " " " " " "		π / z	R		C3H711		رڃ		() ()				
X X X R3 D			=======================================	-		1	=				=		:
252 " " " X X 0 0 X X			======================================		0		E		E		:		-
X 0 " " X X 102 " 105	•				c ₆ H ₅		Ξ.		:		: .		:
x 0 " " " " " " 3252.							:		=		:		
222	٠.					+	=		F	·	:		
		ıméro					760 028		760 103		760 102		760 222

SUITE)	
TABLEAU II (

,		,		·		27				24309	50
IRE	×			9,85	10,22	14,08	14,15	9,90	9,54		
EMENTA	Ħ			6,15	6,27	8,11	7,87	6,17	6,15		
ANALYSE ELEMENTAIRE	Ö			66,33	65,99	04,49	92,49	53,76	53,36		
ANAI	96	Cal.	Ţ.	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.
Rende- ment	. 96	L		57		r.	`		-		·· · · · · · · · · · · · · · · · · · ·
Point de	(0°)			90		4 - : : : :		130			
Poids Molé-		275,342		126,437		298.376		टटप, पटप		303,394	
Formule Brute		C15H21N302		C20H26N307	.1/3 H ₂ 0	C, CH, JN, O,	+ 1/2 H ₂ 0	C ₁₀ H ₂ C _{N2} O _R		C ₁₇ H _{2E} N ₂ O ₂	S C C .
Forme		Ваѕе		Maléate		Base		Oxalate		Base	
N L		-NH-CH ₃		:		V _N I				-WH-C3H7n	1
ឥ		-		:		=	·	=	·	=	
g		m		F		=				=	
R ₃	-	CH ₃		F .		=				*	
×		0		=		=		=		=	
×		.0		:	·	:		=		=	
Numéro de Code		760 853			-	760 790		=		760 832	

% c	Cal. 57,47 Tr. 57,20 Tr. 77,20 Tr.	Cal. 57,47 (Tr. 57,20 Tr. Cal. Tr. 51,03 Tr. 51,32	Cal. 57,47 6, Tr. 57,20 7, Tr. 51,03 6 Tr. 51,32 6 Tr. 51,32 6 Tr. 71,32 6
Cal.	Cal.	Cal. Tr. Tr. Tr. Tr.	Cal. Cal.
124 57.5			
<u>:</u>	303,394	303,394	
	1/5 H ₂ 0		
+ 1/5 H ₂ 0	Base C.	alate H ₂ 0	(t)
+	→ NH~		+ H ₀ H ₁
	=	<u> </u>	
	:	= =	= = =
·	:	E 11	= = =
	=	= =	
	1	•	760 787

$\overline{}$	
SULTE.	
141	
۲il	
티	
м	
-	
rn!	
V-1	
$\overline{}$	
비	
: ::	
- 1	
_ 1	
-	
1	
~,1	
r-n i	
71	
ыı	
TABLEAU	
-ч	
-C.I	
-31	
5 1	
- •	

***				<u> </u>		29 				24309	5 0
IRE	N			79,6	9,70			8,18	8,11		·
EMENTA	Н			96,9	7,03			5,82	5,52		
ANALYSE ELEMENTAIRE	ວ			56,67	56,73			53,79	53,90		
ANA	₽€.	Cal.	Tr.	cal.	Tr.	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.
Rende- ment	28			7,12				39			
Point	Fusion (°C)			66		· -		136	:		
	culaire	317.120		434, 469		307 1.11		513,491			301,378
Formule Brute		C E	16 27 3 2	1,25 oxelate Co.Ho.N.O.	+ 1/4 H ₂ 0	C M H	19-25-372	C23 ^H 29 ^{N3O} 10	+ 1/3 H ₂ 0		C ₁₇ H23 ^{N3} ^O 2
Forme		. 84 88		1,25 oxelat	+ 1/4 H ₂ 0	ე გ	-	· w	+ 1/3 H20	-	Ваве
N N	چ. ،	+	-	=		HD=D HN	×				D HN
E			•	=				=			
ជ		د)	z		=		:			=
, R		CH	m	ž				=			:
H		Ċ)	-		=					=
×		C		=		=					=
Numéro de	Code	260 835				760.081		F			760 968

TABLEAU II (SUITE)

				·					8	0		
	æ	z	9,53	9,55	12,24	12,55			8,18	8,39		
	ENTAI	Œ	90,9	6,12	8,51	8,52			5,90	5,88		
	ANALYSE ELEMENTAIRE	ນ	54,48 (54,62	ղ6, 69	69,93			53,33	53,41		
	ANALYS				cal. 6	Tr. 6	Cal.	Tr.	Cal.	ır.	Cal.	Ţr.
		86	Cal.	Tr.	ర	E		E			ļ	
	Rende- ment	₽€.		5	C u	₹			ę	ç 		
	Point de	Fusion (°C)		14th	, i	2 .			. !		·	
\vdash			 	***)	343,456		512,404	ì	495,476	-	329,430
	Poids Molé-	culaire		986 ° 0††	-	74 74 74	7	<u> </u>	ļ	76.7	-	35
	υ .			808		°5 2		30 0 8		3010		N 302
	Formule			С ₂₀ Н26 ^{N308 1/4 н₂0}		°20 ^H 29 ^{N3} °2	,	C ₁₈ H25 ^{N3} ^O 2		C22 ^H 29 ^{N3O} 10	-	C ₁₉ H27 ^{N3} ^O 2
			 			ניש :	-	0	 		+	
	Forme		1.5 oxalate	E C	a)			ψ.		2 Oxalate		Base
	FO.	•	5	+ 1/4 H ₂ 0		. Base		Вазе		Ö		Ba
1	μ <u>.</u>	R ₂				0				•=		\wedge
	>	:		> EN		T E				·	<u> </u>	N
t		=======================================		_		=		<u> </u>		: ·		-
t	5		1	·m		=		ŧ		=		<u></u>
		ξ.		сн3		•		=		ī .		-
		>		0		=		=		: ·		
		×	-	0	-	=		=		:		-
	méro	de		760 968		760 817		770 051		=		760 833
	1 3	ິ	1	ř.	1	<u>-</u>		(-				

副
SULT
비
EAU
ABL
-1

 	89 05 N			γ		31				24309	50
LIRE	z	9,05	8,89			99,6	դդ ՝ 6		·	10,08	6,93
EMENT	呂	6,51	7,25			01,9	£η,			6,29	6,12
ANALYSE ELEMENTAIRE	Ö	56,88	57,23			55,50	55,62			50,58	११,03
	96	Cal.	Ţŗ.	Cal.	Tr.	Ca1.	Tr.	Cal.	Tr.	Cal.	īr.
Rende- ment	86	Ċ				37.5	\ <u>-</u>			29	
Point de	rusion (°C)	. 0	134			140				188	
	culaire	366 736	001.00+	331,404		846.484		944,446		576,742	
Formule Brute		C #	22°30°3°8 + 1/8 H ₂ 0	C18H25N3O3		_O_N_H_C	+ 1/4 H ₂ 0	C, HoaM, O	4 4	C24 H33 N4 012	+ 2/5 H ₂ 0
Forme		Oxalate	+ 1/8 H ₂ 0	Ваѕе		1,1 oxalate CorHonlo	+ 1/4 H ₂ 0	Вазе		2,5 Oxalate	+ 2/5 H ₂ 0
N N	V	Ç)	ON-	·	*		N N-CH	•	:	
E				:		=		=		=	
g		m		=		:		=		=	
я. З.		CH	n	:		=		=		=	
×	× 0					=		= .		=	
×		0	-	. =		=		=		=	
Numéro de Code		760 833		760 836		=	•	760 831		E	

_
間
ᇙ
رين
~
ы
H
5
闰
烘
끠

							.						
E E	1	z	12,45	12,53	11,96	12,05			9,52	6,45			
MENTAT	MENTAL	H	6,87	6,80	7,17	7,28			6,16	6,14	-		
ANALYSE TIEMENTAIRE	विवास संद	0	71,19	71,02	71,17	77,71			62,57	62,17			;
VIONA	AWALI	86	Cal.	13.	cal.	Tr.	cal.	Tr.	Cal.	Tr.	Cal.	Tr.	
	Rende-	86	11		F				ę	` .			
		(0°)	2	2	٤6	1 .		<u> </u>		ì			
ļ	Poids Molé-		901	331,400	351 և և և և և			351,434	1.1.4	· · · · · · · · · · · · · · · · · · ·		365,460	
		າວ		,				ص د د د		30,0		30°E	
TABLEAU II (SULTE)	Formule Brute		:	^C 20 ^H 23 ^N 3 ^U 2	# 5	~21"25"3~2 · ·		c ₂₁ H25 ^{N3} 02		⁵²³ 427 ³³ 6		c ₂₂ H27 ^{N3} ⁰ 2	
TABLEAU	Forme	!		Base	. =			Base		Охадате		Ваѕе	
,		χ. O				VA-		THE HE				-NH-C ₃ H _{7n} E	
	×			HN-	ļ			H Z				HN-	-
	s s	<u></u>		-	-	: 	-	:	<u> </u>	· 	-	м -	
-	g		-	3	<u> </u>	:	 	<u> </u>	 		 	c ₆ H ₅	1
	, E) 		C6H5	<u> </u>			- 				ပ ိ	
	×		-	0		: :	-	=	+	:	+	0	
	Numero			760 343 (760 823		192 092		=		760 765	

TABLEAU II (SUITE)

1											
ANALYSE ELEMENTAIRE	×	9,23	8,98	05,11	11,22	11,07	11,06			8,95	8,85
	H.	२५,७	44,9	7,45	7,79	7,70	7,91			99*9	6,88
YSE EL	၁	63,28	63,07	72,30	72,28	72,79	73,05			63,95	63,98
ANA	<i>5</i> 0 .	Cal.	Tr.	Cal.	T	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.
Rende- ment		7.7		59 .		75				† ₈	
Point de	rusion (°C)	100		101		65				. 105	
Poids Moié-	culaire	455,496		365,460		379,486		379,486		469,592	
Formule Brute		°24 ^H 29 ^N 3°6		C ₂₂ H27 ^N 3 ^O 2		23 ^{س39} 2 ع		°23 ^H 29 ^N 3°2		°25 ^H 31 ^N 3°6	
Ротпе		Oxalate		Ваѕе		=		Ваѕе		Oxalate	i
N \ R ₁		-NH-C3H7n		Y HN-		-N	超/	NH-Ċ, H	7 7		
E		.		-		E		Ξ		=	
E		m		m		ε		¥		:	
R ₃		с ^{ен} 5		=		F		: :		=	
¥	н о					=		=		F	
×	× 0		=		=		=		=		
Numéro de	00 9	760 765		760 735		760 238		992.092		ε	

ABLEAU II (SUITE

							<u> </u>		6	œ	~	#
EE.		z	11,07	10,82	11,56	11,86	10,16	06.6	10,79	10,78	11,13	11,34
	ENTAI	н	7,70	7,86	6,93	7,2կ	6,58	6,71	66,9	7,29	7,21	7,34
ANALYSE ELEMENTAIRE		υ	72,79	72,49	72,70	72,81	75,52	75,22	74,01	73,76	73,18	72,84
	ANALYS	86	Cal. 77	Tr. 7:	Cal. 7	F.	Cal.	Pr.	cal.	먉.	Cal.	Pr.
-	9 ;									89		
	Rende- ment			62		62		7.2		æ		
	Point de Fusion (°C)			124		80		68		9		6
	Poids Molé- culaire F			379,486		963, հևև		413,500		389,480		377,410
-	# 2 g		-							,		a
	Formule Brute			C23 ^H 29 ^{N3} O2		C22 ^H 25 ^{N3} 02		C26 ^H 27 ^{N3} O2		2 ₀ 5 ₄ 427 ع		c ₂₃ 427 ^{N3} 02
-				υ ^ν .	1-	<u>6</u>		0				
	Forme		 - -	Вазе		: .		=		=		=
<u> </u>	- cu							6		-инХс≘сн		
	N R1			HN-		NH ·		₩-		X HN-		F
+	E		-	-		:		E		-		:
t	g g			٣				=		=		<u></u>
	£ 33			c _H 2		=		=		Ε		
			0 =			=		=				
	×			0		F		=		=		-
	Numëro de Code			760 736		760 848		760 855		760.856		760 719

TABLEAU II (SUITE)

				35					2430950			
IRE	×	10,73	10,53	10,21	10,07	13,78	13,89	7,75	7,83	13,14	13,21	
 EMENT	Ħ	7,47	7,53	7,10	6,81	1°, 4	7,45	5,95	η0°9	7,72	7,57	
ANALYSE ELEMENTAIRE	ຍ	73,63	73,86	67,13	67,25	70,91	70,82	59,77	59,61	70,39	70,03	
ANA	34	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.	Cal.	Ir.	
Rende- ment		. 89		88		. 19		69		59		
Point	rusion (°C)	11		101		134		183		.75		
	culaire	391,496		411,486		406,512						
Formule Brute		°54 ^H 29 ^{N3} °2		⁶ 23 ^H 27 ^N 3 ^O 3 ^{+H} 2 ^O 411,486		с ₂₄ н ₃₀ й ₄ 0 ₂		c _{27^H32^N3^O9}		^C 25 ^H 32, ^N 4 ^O 2 →		
Forme		Base		ŧ		=		Oxalate		Base		
N R N	V	Ç		°°		-N\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		O N-		-N_N-CH3		
· E ·		-		•		=		, a		=		
¤		м		E		=		=		E		
æ B		ce ^H 5		:				£		=		
×	ж о			:		:		=		=		
×	×		0		= .			=		=		
Numéro de Code		de Code 760 987		760 T20		760 773		770 591		760 657		

TABLEAU II (SUITE)

						30			2. [
	E	z			11,14	11,31			12,82	12,57		
	ENTAI	æ			5,76	5,41			6,76	6,72		
	ANALYSE ELEMENTAIRE	υ	·		52,30	52,49			54,96	55,17		
	ANALYS	86	Cal.	Tr.	cal. 5	Tr. 5	Cal.	į. Į	Cal.	Tr.	Cal.	Tr.
_	- T			E1 .		1						
	Rende-	86				75			19) 		
	Point de	Fusion (°C)				187		,	, C,7,0)		
-	Poids Molé-	۵.		277,382		367,418			0.1	501,013	100	305,434
	8 8 8	됞		277		367	 					<u> </u>
	Formule) 3		c ₁₄ H ₁₉ N ₃ os		c ₁₆ H21N3O5S	:	C ₁₅ H21N3OS		C ₁₅ H22C4N3US		C ₁ 6 ^H 23 ^{N3} 08
	F.	•		C ₁ tH		C ₁₆ H	_	C ₁₅		27.	-	5
	Forme			e m		Oxalate		Ваѕе		нсл		Ваѕе
		·		Вазе		Ö	_	8 8		Ĭ		Д
	æ Z	, R		-NH-CH ₃		±		-NH-Et		:		Y HM-
-			-	<u> </u>	-			=		:		:
+			1	N	1	:		=		:		<u>.</u>
+		ж Э	1	снз		=		=		=		÷.
ŀ		→		ro		:		=		:		
		×	+	0		=		:		:		
	Numero	de Code		760 967		E		770 026		÷.		770 091

_
빔
Ы
9
描
图
뙭

1						37				24309	5 0
IRE	N	12,29	12,52			10,26	10,25			12,58	12,46
EMENTA	н	7,08	6,83			6,65	6,65			6,8 ¹ 4	6,51
ANALYSE ELEMENTAIRE	ဎ	56,20	56,23	-		55,72	55,84			53,96	53,39
ANAL	₽€	Cal.	.4E	Cal.	Пr.	cal,	Tr.	Cal.	Tr.	Cal.	. A
Rende- ment	86	63	:		<u></u> :	£.	<u>1</u>			7.8	<u> </u>
Point	Fusion (°C)	.223	:	-		187			-	103	<u>.</u>
	culaire	341,999		319.460	-	409,491		291,408		333,878	
Formule Brute		SO'NTO''OH''S	S +4 0-	SO'N-CH-'S	1	SONTH		SO'N' H'S		SO NED H	15-22-3-1 1/3 H ₂ 0
Forme		нсл		Ваѕе		Oxalate		Разе		HCl	/3 H ₂ 0
N N	z	→ HN-	-	+ HN-	-	· · · · · · · · · · · · · · · · · · ·		V N-		ŧ	
E		5		:		:		=		=	
g -	÷	=		=		F				. =	
E E		11								=	
×		5						=		F	
×		-		=		=		=		=	
Numéro	ode	770 091		770 171	· ·	=		060 .042		=	

TABLEAU II (SUITE)

									T		c:	w)		- 1	1	
	3	z				11,87	12,0 ⁴				11,42	11,43		_		
i	ENTAI	Ħ				48,9	6,71				7,12	68,7				
	E ELEM	Ü		+		69,75	57,79				58,75	5,8,63		·		
	ANALYSE ELEMENTAIRE		Cal.	+	Tr.	cal. 5	Tr.	. E		Tr.	Cal.	Tr.		Cal.	Tr.	
		96	3		<u> </u>	- 5	H	-				1	-			
	Rende- ment	₽€.		•				ļ				22	-			
		Fusion (°C)					232					228				
-			-	t,			60		935			935		4	333,440	
	Poids	culaire		317,444			353,909		331,935			367,935	_	9	333	+
							308		SS	•		N 30S		(3058	
	Formule	27 17 17 17 17 17 17 17 17 17 17 17 17 17		C, H, N OS	2		c ₁₇ H24c1N ₃ 0S		C, oH, NoS	()		c ₁₈ H ₂ 6 ^{C1N} 3 ^{OS}			C ₁₇ ^H 23 ^N 3 ^O 2 ^S	
	Ä.	· .		C, H	<u> </u>		C17.		υ C	<u></u>	-	5	\dashv		ວ້ :	+
	g	2			·										a n	
	9 Hand	2		Д 8.8.6.			HC1		Д В В В В В В В В В В В В В В В В В В В			HCI			Base	$\frac{1}{2}$
<u> </u>	æ.	E.C.							_				١		°)	
	,	/ z		\[\begin{align*}	<u> </u>				(° ()	_
-		<u> </u>	-	ن		1	£		=			:		<u></u>	<u> </u>	
+		я			(1)		:		:						:	
ļ		в3	_		CH ₃		=		:			:		-نىيى-	=	
				<u></u>	σı.		=		:			E			=	
٠,		х ×			0	_		_		=		ε	,		-	
			_					\dashv		21.5		:			996 094	
	\ \	Numero de Code			770 092					770 115					760	

	IRE	Z	09,6	9,82	·		12,81	12,83			11,64	11,64
	EMENTA	H	6,12	5495			6,91	24,9			6,28	6,43
	ANALYSE ELEMENTAIRE	ပ	52,11	51,95	-		z4 . 64	1,9,73			57,37	57,66
		84	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.
	Rende- ment	₽€		96			917				95	
	Point de	Fusion (°C)	· ·	000			207				219	
• .	Poids Molé-	culaire	20	437,692	346,486		437.432		408,552		181,482	
TABLEAU II (SUITE)	Formule Brute	-		⁶ 19 ^{425⁸³06⁸ / 4/5 H₂0}	C18H2KN1,0S		C, BH, CL, N, OS, 437, 432	10 50 5 4 7	C ₂₂ H ₂ RM, OS	t 5. 1	so 'N° to °CH° C'O	
TABLEAU	Forme		,	0	Base		2 HC1	+ H ₂ 0	Вазе		2 HC1	
	N R	CVI	Ç		-N. N-CH)	:)	E	-
	E			-	<u> </u>	-	=		· · · ·		- 	
	a		0	ı	=		=		<u> </u>		=	
\ _	. H		Ë	3	. =		=		=		=	
	×	:	T.	0	2		=		E			
	×		. c	·	· =		=		=		£	
	Numero de	2	760 066	8	770 172		:		770 257		:	

Patent provided by Sughrue Mion, PLLC - http://www.sughrue.com

.

SULTE)	
U II (
TABLEA	

						40)			2	24309	50	
	RE	z			11,53	11,149			11,11	10,79	11,10	11,33	
	MENTAI	н			6,36	44, 9	,		99'9	6,62	7,24	7,16	
	ANALYSE ELEMENTAIRE	D		`	49,45	27, 64			50,79	50,60	57,08	57,39	
	ANALY	96	Cal.	Tr.	Cal.	Tr.	Cal.	Į.	Cel.	Tr.	cal.	řr.	
	Rende- ment	86			62				50		7	p D	
		Fusion (°C)			207			,	215		U V	551	<u>.</u>
	Poids Molé-		201):08	001	36h 33B		305 Jah		378.364		c t	3.69.74	
TABLERO II (SOIIE)	Formule Brute			C15 ^H 21 ^M 3 ^{US}		75"23~"23"	, p	~16 ⁴² 3 ⁴³	N 13 H	1625~23~		c ₁₈ H ₂₆ CIN ₃ OS + 3/5 H ₂ O	
TABLEAU	Forme			888e	·	א זוכד		ស ស ស ស ស	. Lon ca	701		HCl	
	ra N	, R ₂	į	-NE-CH ₃	-			-NH-Et	=		τ	N-	
	E			-			-	:	=	· .	 		-
	g		 	m	<u>.</u>	: 		<u> </u>			-	m	1
	æ	'n		СH 3	:	-		: 	-			=	1
	>	4		ത		:		· · · · · ·	:			တ	
	>	<		0		: 		:		: 	1 '	0	1
	Numero	Code		770 116				70 258	1	5		770 174	•

TABLEAU II (SUITE)

+											· · · · · · · · · · · · · · · · · · ·
IRE	N			10,71	10,95			9,85	9,74		
EMENTA	ж			46 , 9	7,03			7,61	7,43		
ANALYSE ELEMENTAIRE	ບ			52,03	52,26			49,69	50,08		
ANAL	80	Cal.	Tr.	Cal.	Tr.	cal.	Tr.	Cel.	Tr.	Cal.	Tr.
Rende- ment	₽€.		•	52				63)		
Point	Fusion (°C)			233				160			
Poids Molé-		319,460	-	392,390		333,486		431,638		317.144	
Formule Brute		C ₁₇ H ₂₅ N ₃ 0S		SO N TO THE S	****	so _r n, center os	- -	C.oH.CL.N.OS 431,638	16 29 2 3 7 7/5 н ₂ 0	SO N H D	·
Forme		Ваѕе		2 HCl		Base		2 HCl	+ 7/5 H ₂ 0	Base	
N N	n P	Y HN		£				=) HN-	
E		-		±		=		=		=	
s		3				F		=		=	
ж 33		снз	ו	, <u>1</u>	· .	=				=	
×		ຜ	-	=		ε		=		=	
×		0	···········	=		=				=	
Numéro de	Code	770 259		=		770 313		F		770 314	

TABLEAU II (SUITE)

Numéro x x x x x x x x x x x x x x x x x x x									\C			I									
X X R ₃ n m M K _{R2} Forme Frutte Culaire Point Rende AMLISE ELEMENTAL CULAIR Rende Culaire Proint Rende Culaire Proint Rende Culair Re		E.	Z	10,44	10,2			11,17	11,2			9,73	9,81								
X X R ₃ n m N K ^{R1} Forme Formule Poids Point Rendered Envise Proids Rendered Envise Point Rendered Envise Proids Rendered Envise Rendered Envised Rendered Envised Rendered Envised Rendered Envised Rendered Envised Rendered Envise Rendered Envised Rendered Render		ENTAI	н					99*9	6,70			7,12									
X X R ₃ n m N K ^{R1} Forme Formule Poids Point Rendered Envise Proids Rendered Envise Point Rendered Envise Proids Rendered Envise Rendered Envised Rendered Envised Rendered Envised Rendered Envised Rendered Envised Rendered Envise Rendered Envised Rendered Render		SE BLEN	υ					62,09	50,67		·	52,83	53,05								
X X R ₃ n m N K ^{R1} Forme Framile Rola Point Rendered Rola Rola Rola Rola Rola Rola Rola Rola		ANALYS	7-0			al.	بز			Cal.	Tr.		Tr.								
x Y R ₃ n n N \(\begin{array}{c c c c c c c c c c c c c c c c c c c				<u> </u>	터	0				 											
X Y R ₃ n m N < R ₁ Porme Fromute Poids Gulaire (°C) 0 S CH ₃ 3 1 -NH- 2 HC1 C 1,H25C12N3G, h11,393 (°C) 1		Rende- ment	ક્લ	. 89	!			h.	·			877									
X Y R3 n m N <r1 -nh-<="" 1="" 3="" ch3="" culaire="" forme="" formule="" male="" poids="" td=""><td></td><td></td><td></td><td>165</td><td>}</td><td></td><td></td><td>107</td><td></td><td></td><td></td><td>107</td><td></td></r1>				165	}			107				107									
X Y R_3 n m $N < R_1$ Forme of R_2 R_3 n m R_2 R_3 R_4 R_5	-							-			9	a a	2								
X Y R ₃ n m N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Poids Molé-	ulair	30.	֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	305.43		940 940	000		345,46	6	¢. C†								
X Y R ₃ n m N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\vdash		•	ij	3						-	5	308,								
X Y R ₃ n m N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		wle te			H ₂ 0	0	<u></u>		2 T S		305 N		9C ¹ 2''9								
X Y R ₃ n m N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Form		,	17 [#] 25 [°] 1/6	=	16"23		16 ^H 25		319 ^H 2'	:	C19 ^H 2								
X Y R ₃ n m N K _R 1 1 -NH K _R 2 1 1 -NH K _R 2 1 1 -NH K _R 3 1 1 1 -NH K _R 3 1 1 -NH K _R 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L)			1	<u> </u>										
X Y R ₃ n m N K _R 1 1 -NH K _R 2 1 1 -NH K _R 2 1 1 -NH K _R 3 1 1 1 -NH K _R 3 1 1 -NH K _R 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		rme			т 6 н ₂ с		25		ij		o.		тст + + н ₂ о								
R R R R R R R R R R R R R R R R R R R		F2			2 HC + 1/	P	20 20 20 20 20 20 20 20 20 20 20 20 20 2		Ē N		Bas		3/1								
R R R R R R R R R R R R R R R R R R R		æ	3 2																		
H		×		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Y Hu	}	/ Ni		=												
E	t	F		1					=		=		-								
E		۰ ۶	:		m						-		=		F				:	_	:
× ° : : : : : : : : : : : : : : : : : :			<u></u>		CH ₃		:	}			E		:								
× ° = = = =									:		:		E								
				-			=		:		=		: 								
Numés de Code Code (Code				+		-	393	-	-		691		•								
		Numér	đe Cođé		770 3		770				770		-								

TABLEAU II (SUITE)

	1	T	1		,	,			·		E4307	
	AIRE	2			10,00	10,30	15,54	15,82			84,6	9,54
	CEMENT	Ħ			6,47	6,77	7,83	8,13			5,68	5,29
	ANALYSE ELEMENTAIRE	ບ	,		51,42	51,46	63,30	63,58			59,57	59,27
	ANA	89	Cal.	īr.	Cal.	报.	Cal.	Tr.	Cal.	Pr.	Cal.	Tr.
	Rende- ment	8€		•	19		7/2			· · · · ·	50	
	Point de	rusion (°C)			210		93	 			143	
-	Poids Molé-		347.470		००५ °०८५		360,512		353,474	-	443,510	
	Formule Brute		S.O.MHo.D	18 25 3 2	C _{18 H27} C1 ₂ N3O ₂ S 420,400		$c_{10} H_{20} N_{ m L} 0{ m S}$	÷	SO _F N _{FC} HOC		C ₂₀ H ₂₅ N ₂ 0 ₅ S	
	Forme		Ваве		2 HC1				Base		Oxalate C	
	N N N	N	Ç,)	=		-N N - CH3 Base		-NH-CH ₃		-	ε .
	ឥុ				=				÷			: :
	ជ		ო		ŧ	-	=		=			=
	^m C		CH.	,	:		ŧ		C,H5.	<u>.</u>		=
	ы		ໝ		=		=		= .			
	×		0		:				=		-	=
	Numéro de Code		770 272	·	=		770 271		770 592			· <u>:</u>

				 ,							9	#
	RE	z			9,18	84.6			8,89	8,82	10,36	10,34
	ŒNTAI	н			5,95	00,9			5,83	5,53	6,71	6,77
	ANALYSE ELEMENTAIRE	Ď			60,37	εη, 09			61,00	60,83	71,07	71,02
	ANALY	pe	Cal.	H	Cal.	į	Ca1.	Tr.	Cel.	Tr.	Cal.	Tr.
	Rende- ment	96		<u>.</u>	5,	<u> </u>			1.2	- -	Ĺ	
		Fusion (°C)			7,0	2			, ,	Î		200-
-	Poids F	6 3	1	367,5	752	*220	379.510		л С.	4 6 , 7 4 7		405,541
-	A Z	 		<u>~</u>			· ·	1	 			
	Formule Brute			c ₂₁ ^H 25 ^N 3 ^{OS}		c23 ^H 27 ^N 3 ^U 5 ^B	E S	C22.25.3		^C 24 ^H 27 ^N 3 ^U 5 / 1/6 H ₂ 0		C ₂₄ H ₂₇ N ₃ OS
	Forme			Base		Oxalate		Base		0xalate + 1/6 H ₂ 0		Ваѕе
	N N	, Z		-NH-Et		=		No.		=		-NH X C≘CH
+	Б	-	-	-		:		:		5		:
1	<u> </u>	}		м		=		:		=		:
	ρ	m		c ₆ H ₅		=	-	=		=		:
		×		ω		:		=	<u> </u>	:	_	=
		×		0		:		=		<u> </u>		:
	Numero	de Code		770 470		:		770 593		.		770 594

TABLEAU II (suite)

	ź		1	7.	55	Γ	i	<u>ت</u>	5.		l
AIRE				8,91	9,05		<u> </u>	8,95	8,95		
EMENT	Ħ			6,20	6,18			5,80	5,73		
ANALYSE ELEMENTAIRE	υ			61,12	61,39			61,39	61,24		
·	86	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.
Rende- ment	38			79			···	62			
Point de	(20)			220				220			
Poids Molé-		381,526		471,562	-	379.510		471,568		773 001	000,634
Formule Brute		C, H ₂₇ N ₂ OS		Col.HoaMaOs		SOTUTE		C _{2),} H ₂₀ N ₂ O _E S			26.27.3
Forme		Вазе		Oxalate		Ваѕе		Oxalate		e	
N KR1	N	→ HN-		F		→HN-	,	2		N-HN-	
ន		-		=		=		Ė		-	
្ផ		6	1	=		=		=		m	1
.в.з		H,D	9	· :		E		=	·	C/H,	۰ د
X		Ω.		=		.		Ε		യ	
×		0		=		:		=		0	
Numéro de Code	3	770 437	-	:	-	770 435				770 436	

sarte/	
/ ゴヿ ー	
TABLEAU	

										1															
RE	M	8,09	8 , 20			9,18	9,48	10,68	10,81	, 10,31	10,48														
MENTAI	н	5,63	5,54			5,95	00,9	26,9	7,09	7,17	7,28														
ANALYSE ELEMENTAIRE	Ö	68,72	64,52			76,09	60,43	70,19	70,35	77,07	70,75														
ANAL	28	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.	cal.	Tr.														
Rende- ment	26	89				43	<u>u</u>	ς.		ទី	ς .														
	Fusion (°C)	233				a c	÷	0		ď	ò														
Poids Molé-		19,602	519,602 233		6,602		209,60		209,61		209,61		19,602		19,602		19,602			700 20	451,730	303 53K		0/1	401,506.
Formule Brute		5 S-0CMCCHOCO			21.25.13		C23 ^H 27 ^{N3} U5 ^S		23.27.3		254 429 N3 US														
Forme		Oxalate	<u> </u>		บ กับ กับ		Oxalate	F	ម ស ស ស ស ស	:															
N R1			<u></u>					ζ	7) _{II} -														
E		-		-			=	-	· .		·														
F		~)		:		=	:	: 		: 														
α.	က	## C	592	:			:				: 														
;)	U							· 																
	×	-	>	,	-		=		:	1	-														
Numero	de Code	1	0.7		770 471		:		770 315		770 396														

TABLEAU II (suite)

1		1		}		1				· · · · · · · · · · · · · · · · · · ·	
AIRE	×	10,26	10,01	13,26	13,33			8,41	8,31	12,10	12,4
EMENT	×	6,65	6,38	7,16	7,11			5,85	5,97	7,25	7,23
ANALYSE ELEMENTAIRE	ບ	67,45	67,31	68,21	68,38			60,09	59,95	76,05	75,92
ANA	36	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.
Rende- ment	36	77		Og		·		7.8)	7.09	3
Point							 	198		76	
F	culaire	985 - 604		422,578		100 Ans	100	499,638		347.444	
Formule Brute		S_O_HN_O_S	63 67 3 8	Col, Hoon, OS	t -	M	23 27 3 2	C,2H,CN,S,O,	43 63 8 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	COHOLNO	
Рогае		Ваве		e		Вазе		Oxalate		Ваѕе	
H. H.	N	°		N-CH3)	N-		=		z	
ន		-		E		=		:			
¤		<u>ო</u>	1							-	
ж 3		E C	۲ و	: =		. #				:	
. >-		Ø		=				=		CH ₂	
×		0		=	-	ល		=		0	
Numéro de Code		770 397		770 398	-	770 491				770 724	

TABLEAU II (suite)

								1		<u>-</u> -T			
	38	Z			9,27	9,34	12,53	12,55			9,65	9,77	
	ENTAI	H			6,00,9	6,25	7,51	7,57			6,95	6,63	
	ANALYSE ELEMENTAIRE	υ			63,56 6	63,27 (6	75,19	74,98		-	57,93	58,13	
	ANALYS	86	Cal.	Tr.	Cal. 63	Tr. 6	Cal.	Tr. 7	Cal.	Tr.	Cal.	Tr.	
\vdash	e .					L							
	Rende- ment	26				58		59				& <u>Q</u>	
	Point de	Fusion (°C)			666	<u> </u>	Ç	<u></u>				150 (décomp)	
	Poids Molé-	43	ነቀስ (598		1,53 1,80	20167		335,434	(c.) acc			435,388	
	Formule Brute			c _{22^H25^N3⁰2 363,444}		⁶ 24 ⁴ 27 ⁴ 3 ⁶		C21H25N3O	:	C21 ^H 25 ^{N3} C		с ₂₁ не7 ^{С1} 2 ^{N3} 02' 1/5 н ₂ 0	
	124			C 22	<u> </u>	ر رو ا	-	ບ	<u> </u>	ა ^ო			
	Forme		·	Base	-	Охвдате		Base	,	Base		2 HC1 + 1/5 H ₂ 0	
+	N N	E _C		°				-NH-CH ₃		✓ N-		F	
+	F			·	-	· ·	1			*		:	
ł						E		α		=		:	
İ	ρ	<u>ب</u>				C6H5			=	Ξ			:
ŀ		>		CH2.		:		: 		:		<u> </u>	
·	<u>, , , , , , , , , , , , , , , , , , , </u>	×				<u> </u>	=		: 				
	Numéro	de		760 799		:		770 448		770 517		= ·	

ite)	
II (sui	
TABLEAU	

7		1	1	·	,	1		,			
\IRE	И			00,6	8,90			94,6	9,70		
EMENT.	н			91,9	6,75			7,13	9,95		
ANALYSE ELEMENTAIRE	υ.			65,06	06* 19		-	59,51	85,65		
	24	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.	cal.	Tr.
Rende- ment	8-8	·	•	53.5				84.5			
Point de	(°C)			175				140			
Poids Molé-		363.486		984,194		-	349,460	600. ሰ44		397,500	
Formule Brute	-	C.N.C.H.C.O	63 69 3	C ₂₃ H _{2G} N ₂ O,	1,15 (C ₂ H ₂ O ₁)	-	c ₂₂ H ₂₇ N ₃ O	C, H, CIN, O,	· · · · · · · · · · · · · · · · · · ·	C _P (H ₂₇ N ₃ O)
Forme		Ваве		1,15 oxalate CosHonNoO,			двзе	2 HC1 +	_	Base	
N KR1	u	-N	B f) HM-	2	-	€ HN-	>
g				=			J	=		+-	
u		α	-	- =				=		N	
В		C, H,	ر د	:	-	E			:		
×		E	N.	=		:		- 5		CH ₂	
×		0		F		=			·	0	
Numéro de Code	-	770 679		· •		011 022	2	:		770 516	

01,0 9,61 11,28 8,54 11,25 8,57 z ANALYSE ELEMENTAIRE 65,40 6,26 6,25 6,03 90,9 7,40 6.1 62,89 77,05 77,18 68,80 68,55 ບ Cal. Cal. Cal. Tr. Cal. Tr. Cal. ŀ. Tr. Fr. ъе 41,5 Rende-ment ક્લ 7 £4 Point de Fusion (°C) 194 117 225 437,480 373,480 347, 444 Poids Molé-culaire 490,539 C28H29N3O5 / $c_{2\mu}^{H} + 2T^{N} + 305$ $c_{23}^{H}27^{N}3^{O}2$ c_{22}^{H} $c_{2}^{\mathrm{H}} c_{1}^{\mathrm{N}} c_{2}^{\mathrm{O}}$ 1/6 H₂0 Formule Brute + 1/6 H₂0 Oxalate Forme Oxalate Base -NHXCECH Base -NH YHN-. = = = Ħ = = = = ¤ Q = $c_{\rm H}^{\rm H}$ = ж Э Ξ = = = × 0 = = × 770 449 770 676 170 60th 770 516 Numéro de Code

TABLEAU II (suite)

1			T		, 	,	`		·																	
	AIRE	z	7,15	7,06			7,00	7,00			00,6	8,82														
	EMENT	, # #	5,48	5,36			5,71	5,66	-		6,15	00*9														
	ANALYSE ELEMENTAIRE	Ö	56,36	65°95		·	57,99	60,83			61,72	61,50														
	ANA	36	Cal.	Tr.	Cal.	Ir.	Cal.	17r.	Cal.	Tr.	Cal.	Tr.														
	Rende- ment	96	59,5	•			70				, v															
	Foint de	(0°)	170						170				·		166				8.7.	}						
	Poids Molé-		588,156 170		588,156		588,156		588,156		588,156				375,496	-	600,586		390,512		959.626					
(F)	Formule		^C 23 ^H 27 ^N 3 ^O 2 + 2,3(C ₂ H2 ^O 1 ₁) + 0,2 H2O		C24H29N3O	•	c ₂₉ H ₃₄ N ₃ O ₁₁		C, H, N, O	24, 30 4	C.H.O.N.O.	36 30 4 9														
	Forme		2,3 oxalate (+ 1/5 H ₂ 0		Ваяе		2,5 oxalate				2 maléate															
œ	N L	-	o O Ni-	-	Q _N -		2		-N N-CH, Base		E .															
	Ħ		-		=		ŧ		=		- :															
	ជ		α.		α.		α.		α.		α.		α.		α.		α.		5		=		=		=	
	æ [©]		c ₆ H ₅		c ₆ H ₅		c ₆ H ₅		c ₆ H ₅		=		Ε						-							
	×		CH ₂		=		=		÷		=															
	×		0		=		= .		=		:															
Numéro	de Code		770 449		770 370		=		7.70 419		-	·														

		 1	 -7						~		
CRE	z			9,88	9,73			9,27	9,22		
MENTA	Н			5,45	5,52			6,00	5,92		
ANALYSE ELEMENTAIRE	υ			50,82	50,92			52,97	52,68		
ANAL	86	Cal.		Cal.	Tr.	cal.	1 <u>7</u> .	Cal.	Tr.	Cal.	Tr.
Rende- ment	26	Ca.		79				80			
L	Fusion (°C)				`				6.		
	0	245,316		105 388		273.368		0,1,00 m	470	, 071 252	511,376
Formule Brute		O'N'H'	د ور ۱۲ د	C	. 18"23"379	0 2	c16n23.3	; ;	620H27M309	3	^C 16 ^H 21 ^N 3 ^O
Forme		9 9 9 9			Naiste C		Dasse		2 oxalate		Base
R N	R ₂	HO-HN-	-NH-CH ₃				YHN-	•	· .		Y _{HN} -
F		,	-	1					=		-
¤		,	u				: 	=			N
6	m	Þ	4		: ·		<u>:</u>		-		H
>		(o .		:				=		0
>	<		e E E				F .		=		CH ₂
Numéro	Code		1.60 077				770 670		E		770 671

11,25 9,31 8,73 8,86 9,31 11,28 ANALYSE ELEMENTAIRE 5,70 5,65 04,7 5,58 5,50 7,29 52,39 52,49 53,16 77,05 53,21 Cal. Cal. Cal. Cal. Cal. īr. īr. Ŗ. Tr. Ħ. ઝલ Rende-ment 68 17 62 Point de Fusion (°C) 188 138 481,450 373,480 Poids Molé-culaire 301,378 451,424 259,342 C21H27N3O10 Formule Brute C20H25N3O9 $c_{17}^{\rm H} c_{3}^{\rm N} s_{0}^{\rm 2}$ $c_{15}H_{21}N_{3}O$ TABLEAU II (suite) 2 oxalate 2 oxalate Forme Base -MIXCECH Base YHN-YN-= . ດເ Ħ = 0 = 770 678 770 178 770 671 770 60th Numéro de Code

CABLEAU II (SUITE)

				1	T			g		14,04	13,89			
	IRE	Z	9,56	9,83				7,00	6,97					
	(ENTA	н	5,73	5,76				5,71	5,51	8, h.	8,12			
	ANALYSE ELEMENTAIRE	ပ	51,93	51,80				57,99	58,04	72,20	72,21			
	ANALYS	84	Cal. 5	Tr. 5	-	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.	Cal.	Fr.	
-	Rende- ment	26		6	+		<u> </u>	0	<u>.</u>	95	L			
				.— 	+			-						
	Point de	Fusion (°C)		145				74		19				-
	Poids Molé-	d)		439,414 145		375, 496		782 00)	000,000	101 00c			5115. V.S.	
-				439,414			, <u>, , , , , , , , , , , , , , , , , , ,</u>		2.) ()		30	
	Formule Dw:+e	Part .		C ₁₉ H _{25^N3} O ₉ 439,414		C14 H23 N3O		1	c ₁₉ મ8મ ⁿ 3	:	C ₁₈ 425 ⁴³		C ₁₅ H25 ^{N3} O	
	9 m. C. A.			2 oxalate (Base		2,5 oxalete C ₁₉ H3µ ^N 3 ^U 11		Base		Ваѕе	
	È	4		OI.			ф В		ณ์		eg M		ğ	1
	æ \	IN R2		>n-					:	() N		-NH-Et	
+			-				<u> </u>			_	:		=	
-		s		Q			:	-	<u></u>		=		:	
		-							:	1	:		=	
		ж Э		Ħ								-		1
		×		0			<u></u>		<u> </u>	_	<u></u>		=	-
		×		CH ₂			:		=		50		96	
	Sum's and	de		770 178 СН2			770 371		:		770 579		770 596	

TABLEAU II (suite)

		1	7		 _			<u> </u>		·								
z					7,59	7,43			9,27	9,52								
H					5,64	5,35			00,9	6,13								
၁	51,93	52,01			60,75	60,65			·	52,84								
34	Cal.	T'r.	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.	Cal.	Tr.								
86	81	-			61,5				57.5									
(°C)	261				192		192		192				160			· .		
cutaire	139,414		321,408		553,552	-	73,368		 									
	C ₁₉ H ₂₅ N ₃ O ₉		c ₂₀ H23N30	÷	728 ^H 31 ^{N3} 09													
	2 oxalate				2 oxalate (Base											
	-NH-Et		© HN-		ŧ		> N-											
	-							=		-		=						
	α		=		= .		ო		=									
·	щ		:		=		# # .		=									
	0	=			=		0		. =									
	GH 2				=	1	CH ₂		=									
	770 596		770 595		E		770 771											
	H O % (Oo)	CH ₂ O H 2 1 -NH-Et 2 oxalate C ₁₉ H ₂₅ N ₃ O ₉ h ₃ 9,414 192 81 Cal. 51,93 5,73 9,	CH ₂ O H 2 1 -NH-Et 2 oxalate C ₁₉ H ₂₅ N ₃ O ₉ h ₃₉ , h ₁ h ₄ 192 81 Cal. 51,93 5,73	CH ₂ O H 2 1 -NH-Et 2 oxalate C ₁₉ H ₂₅ N ₃ O ₉ h ₃₉ , h ₁ h ₄ 192 81 Cal. 51,93 5,73	CH2 O H 2 I -NH-Et 2 oxalate C ₁₉ H ₂₅ N ₃ O ₉ h ₃₉ , h ₁₄ h ₁₉₂ 81 Cal. 51,93 5,73	GH2 GH2 GH3 GH3 GH3 GH3 GH3 GH3	CH ₂ o H 2 1 -NH-Et 2 oxalate C ₁₉ H ₂ N ₃ O ₉ h ₃ 9, h ₁ h 192 81 Cal. 51,93 5,73 " " " " " " " " -NH-🏋 Base C ₂₀ H ₂ N ₃ O ₉ 553,552 160 61,5 Cal. 60,65 5,35 7	5 CH ₂ O H 2 1 -MH-Et 2 oxalate C ₁₉ H ₂₅ M ₃ O ₉ h ₃₉ h ₁₁ h 192 81 Cal. 51,93 5,73 "" " " " " " " " -NH-C) Base C ₂₀ H ₃₁ M ₃ O ₉ 573,552 160 61,5 Cal. 60,65 5,35 1 CH ₂ O H 3 1 -NC Base C ₄ H ₃₁ M ₃ O ₉ 273,368 Cal. Cal. Cal. Cal. Cal. Cal. Cal. Cal.	CH2 0 H 2 1 -MH-Et 2 oxalate $C_{19}H_{25}M_{3}O_{9}$ $h39,h14$ 192 81 Cal. 51,93 5,73 """"""""""""""""""""""""""""""""""""	CH2 C H S T -NH-Et S oxalate C 19Hz9M3O								

	ANALYSE ELEMENTAIRE	н			7 6,33 8,52	6 6,21 8,57	_		6,10 8,76	3 5,78 8,80
	LYSE I	υ			55,97	55,86			55 41	54,88
	ANA	₽€.	Cal.	Tr.	Cal.	ਸੂ. - ਸੂ	Cal.	Ŧ.	ਜ਼ੋ	E
	Rende-	88			19				71	
	Point	Fusion (°C)			155				130	
	Poids Molé-	culaire	313,430		103,502		404,865		924,674	
(suite)	<u> </u>		C,OHOTN3O		C 22		O, OHO, C	6 62 9	C22H20N2O	, , , , , , , , , , , , , , , , , , ,
TABLEAU II	Forme		Ваке		G e		Ваѕе		2 Oxalate	
		Ä,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	· .	=		, w)	F	·
	ĸ		-		=		=	·	:	
	ц		~)	=					
	R	1	<u> </u>	:			=		, =	
	>-		C)	:		ŧ		:	
·	×		H	2	=		:		:	
	Numéro de	Code	770 770		=		277 077	-	=	

			,			,	·													
	E	z	8,23	8,32	7,86	8,06	60,6	9,11	IR ure.											
·	ENTAIR	Ħ	5,92	5.,96	5,66	5,65	t ₁ 5°9	09,6	NMN et struct											
	ANALYSE, ELEMENTAIRE	υ	67,03	67,18	64,01	63,91	74,000	74,09	ctres F	Ì										
	ANALX	24	Cal.	Tr.	Cal.	Tr.	ġ	El	les spectres RMW et IR confirment la structure.											
	Rende- ment	(%)	72		<i>29</i> .		.08		98											
(IX)	Point de fusion (°c)		153		129		ቲ †ι		120											
$ \begin{array}{c c} N & X \\ X & X \\ Y & X \\ CH_2)_{\mathbf{n}} - OH \end{array} $	Formule brute		B O N CHC, D	2 2 5 6 6 1	C ₁₉ H ₂₀ M ₂ OS ₂	i i	G, H, N, O,	א א א א א א א א א א א א א א א א א א א א	C18 ^H 18 ^N 2 ^O 2											
	п		m	. :	3		5		-											
	я3		CAH	ر د	=		н		=											
	Ж	≻ 1		Ж		×		. ¥		≽ı		>1					CH2	J	CH ₂	
비	×		×		0xygène		Scufre		Oxygène		Oxygène									
TABLEAU III	Numéro de	Code	770394		770421		770317		760801											

Les composés de formule (I) ont été étudiés chez l'animal de laboratoire et ont montré des activités dans le domaine cardiovasculaire (notamment comme antiarythmique et comme diurétique), et sur le système nerveux central, (notamment comme antidépresseur).

A/ L'activité antidisrythmique est mise en évidence :

- par la détermination des doses préventives des composés de formule (I) (administration par voie intrapéritonéale) de la fibrillation ventriculaire induite par inhalation de chloroforme, chez la souris;
- par la détermination des doses des composition (17)

 10 (administrés par voie introduce) rétablissant un rythme sinusal normal,

 après induction d'une tachycardie ventriculaire par l'onabaïne, chez le

 chien, selon le protocole décrit par B.R. CUCCHESI et H.H. HARDMAN (1961, J. PET,

 132, 372-381).
- B/ L'activité diurétique est mise en évidence en mesurant le pourcen-15 tage d'augmentation de l'élimination d'eau et des ions chlore, sodium et potassium 3 heures après administration d'une dose de 30 mg/kg des composés de formule (I), chez le rat normalement hypertendu, par voie orale.
- C/ L'activité antidépressive est mise en évidence par l'antagonisme vis-à-vis du ptosis observé une heure après une injection intraveineuse 20 (2 mg/kg) de réserpine chez la souris, selon le protocole décrit par GOURET C. et THOMAS J. dans J. Pharmacol. (Paris) (1973), 4, 401.
 - A titre d'exemple nous donnons, dans les tableaux IV, V et VI ci-après, quelques résultats obtenus avec les composés de formule (I) ainsi que ceux obtenus avec certaines substances de référence.

TABLEAU IV : Activité antiarythmique

Composés testés	Fibrillation au CHCl Tachycardie ventri- DE 50 (ip) mg/kg culaire à l'onabain		e ventri- l'onabaine	Toxicité (souris) DL 50 mg/kg	
		Dose en mg/kg/i.v. rétablissant rythme sinusal	.en	i.p.	p.o.
760 475 760 719 760 343 QUINIDINE	18 8 7	2,5 2,5 - 10	de 10 = 30 120 - 60(50%)	- 78 150 -	900 - 1150 540

TABLEAU V : Activité diurétique

Composés testés	% d'augmentation d'élimination à 3 heures chez le rat S.H.R.					Toxicité DL 50 souris mg/kg	
	dose (mg/kg/p.o.)	. н ₂ о	Cl	Na ⁺	K ⁺	i.p.	p.o.
760 968	30	114	87	74	0.7		
760 848	9				27	105	-
760 856	y1	307	237	124	- 18	117	-
760 855	1	313	444	523	34	-	_
	, "	363	319	259	52	74	_
760 790	n	117	105	100	0	74	_
TUROSEMIDE	12,5	100	85	70	53		

TABLEAU VI : Activité antidépressive

Composés testés	Test ptose réserpinique souris (mg/kg/po)	Toxicité DE 50 souris		
		i.p.	p.o.	
750 916	12	-	220	
760 103	15	_	380	
760 028	25	-	100	
760 469	25	_	900	
760 187	12	-	210	

Comme il ressort des tableaux précédents, l'écart entre les doses actives et les doses toxiques permet l'emploi des composés de formule (I) en thérapeutique.

Les composés selon l'invention sont indiqués dans le traitement de la dépression et des troubles cardiaques.

Ils seront administrés par voie orale sous forme de dragées, gélules ou comprimés contenant de 10 à 300 mg de principe actif (2 à 6 par jour), ou sous forme de soluté injectable contenant de 2 à 100 mg de principe actif (1 à 4 par jour).

REVENDICATIONS

1. A titre de produits industriels nouveaux, les composés de formule :

10

15

20

25

dans laquelle :

- le groupement N R_1 R_2 prend l'une quelconque des valeur suivantes :
 - . groupe monoalkylamino dont le radical alkyle comporte de 1 à 4 atomes de carbone,
 - groupe cycloalkylamino dont le radical cycloalkyle comporte de 3 à 6 atomes de carbone,
 - . groupe benzylamino, allylamino ou diméthyl-2 propargylamino,
 - groupe dialkylamino dont les radicaux alkyle comportent chacun de 1 à 3 atomes de carbone,
 - . radical hétérocyclique choisi parmi les suivants : pyrrolidino, pipéridino, morpholino, méthyl-4 pipérazino, (hydroxy-2 éthyl)-4 pipérazino, phényl-4 pipérazino; et
- l'ensemble (R3, X, Y, m) prend l'une quelconque des significations suivantes :
 - . (H, CH₂, Oxygène, 1), (CH₃, oxygène, oxygène, 1), (CH₃, oxygène, soufre, 1) ou(C₆H₅, oxygène, oxygène, 1), n étant alors égal à 3;
 - . (C_6H_5 , oxygène, oxygène, 2), (C_6H_5 , soufre, soufre, 1)ou (C_6H_5 , oxygène, soufre, 1), r étant alors égal à 3;
 - . $(C_6H_5$, oxygène, CH_2 , 1), n étant alors égal à 1 ou 2.
- 2. A titre de médicaments, les composés selon la revendication 1.
- 3. Procédé de préparation des composés de formule (I) dans laquelle X et Y représentent chacun un atome d'oxygène, caractérisé en ce qu'il consiste à condenser une amine de formule :

35

30

$$R_{2}$$
 (II)

dans laquelle N $\rm R_1$ $\rm R_2$ a la même signification que dans la revendication 1, avec les composés de formule :

dans laquelle le couple (m, R'3) prend l'une quelconque des valeurs suivantes : 10

. (1, CH_3) ou (1, C_6H_5) auxquels cas n' est égal à 2 ou 3, . (2, C_6H_5) auquel cas n' est égal à 3.

4. Procédé selon la revendication 3, caractérisé en ce que les composés 15 de formule (III) sont obtenus par cyclisation déshydratante des composés de formule:

$$(IV)$$

25 dans laquelle m et R'3 ont la même signification que dans la formule (III), en présence d'un alcool bromé de formule :

$$HO \longrightarrow (CH_2)_{\overline{n'}} Br$$
 (V)

où n' est égal à 2 ou 3.

5. Procédé de préparation des composés de formule (I) dans laquelle le couple (X, Y) prend la valeur (oxygène, soufre), (soufre, soufre), (oxygène, CH2) ou (CH2, oxygène), caractérisé en ce qu'il consiste à condenser un amine de formule (II) sur les composés de formule :

35
$$(VIII)$$

$$(CH2) = OSO2 CH3$$

40

dans laquelle X, Y, n et \mathbb{R}_3 ont la même signification que dans la revendication 1, à l'exception des cas où le couple (X, Y) prend la valeur (oxygène, oxygène).

6. Procédé selon la revendication 5, caractérisé en ce que les composés de formule (VIII) résultent de l'action du chlorure de mésyle sur les composés 5 de formule :

$$(CH_2)^{\frac{1}{N}} OH$$

15 dans laquelle R₃, X, Y et n ont la même signification que dans la formule (VIII).

10

30

40

7. Procédé selon la revendication 6, caractérisé en ce que les composés de formule (IX) dans laquelle l'ensemble (R3, X, Y, n) prend la valeur (CH3, oxygène, soufre, 2) sont obtenus par cyclisation des composés de formule (IV) dans laquelle le couple (R'3, m) prend la valeur (CH3, 1), par le mercapto éthanol.

8. Procédé selon la revendication 6, caractérisé en ce que les composés de formule (IX) dans laquelle l'ensemble (R₃, X, Y, n) prend l'une quelconque des valeurs suivantes : (CH₃, oxygène, soufre, 2), (CH₃, oxygène, soufre, 3), (C₆H₅, oxygène, soufre, 3), sont obtenus par réduction des composés de formule :

dans laquelle l'ensemble (R'3, X',p) prend l'une des valeurs suivantes : 35 (CH3, oxygène, 1), (CH3, oxygène, 2), (C6H5, oxygène, 2), (C6H5, soufre, 2).

9. Procédé selon la revendication 6, caractérisé en ce que les composés de formule (IX) dans laquelle l'ensemble (R₃, X, Y, n) prend la valeur (C₆H₅, oxygène, CH₂, 1) ou (C₆H₅, oxygène, CH₂, 2), sont obtenus par réduction des composés de formule :

5
$$(CH_2)_p$$
. COOH

10 dans laquelle p' prend les valeurs 0 ou 1.

10. Procédé selon la revendication 6, caractérisé en ce que les composés de formule (IX) dans laquelle l'ensemble (R₃, X, Y, n) prend la valeur (H, CH₂, oxygène, 2) ou (H, CH₂, oxygène, 3), sont obtenus par condensation du composé de formule :

15

20

avec les diols de formule :

25

$$HO \longrightarrow (CH_2)_{\overline{n^*}} \longrightarrow OH \tag{XX}$$

où n' = 2 ou 3.

11. Procédé de préparation des composés de formule (I) lans lequelle 30 le couple (X, Y) représente (oxygène, soufre), caractérisé en ce qu'il consiste à réduire les composés de formule :

(XXI)

35

dans laquelle :

- p est égal à 1 ou 2,
- R' représente un groupe méthyle ou phényle, et
- N R_1 R_2 a la même signification que dans la formule (I).
- 12. A titre d'intermédiaires nouveaux nécessaires à la préparation des composés de formule (I), les composés de formules (III), (VIII), (IX), (X), (XIII), (XVII), (XVII) et (XXI).