

Feedback & Stability

1927: Harold Black (Bell labs) - - ve feedback.

Advantages

- 1. Gain desensitization
- 2. Terminal impedance Modification

 Shunt FB + impedance

 Series FB + impedance
 - 3. Bandwidth Modification. (increase in BW)
 - 4. Nonlinearly reduction.

Disadvantages

- lo Gain Reduction
- 2. Potential Instability.

Negative feedback example

feedback network.

- assumed constant

$$\frac{Y(s)}{X(s)} = \frac{A(s)}{1 + BA(s)}$$

Cused loop gain.

T = loop gain = BA(s).

Closed loop gain goes to ∞ $|\beta A(s)| = 1$ When $\beta A(s) = -1$ $(\beta A(s)) = -180^{\circ}$

Barkhausen's criteria for

T.

STAEDTLER® Engineer's Computation Pad

Example On	e pôle amplifo	er
$A(s) = \frac{Ao}{\left(1 + \frac{s}{\omega_{\rho_1}}\right)}$	B Cons	ant
$\left(1+\frac{3}{\omega_{p_1}}\right)$	Loop Gas	n T(s) = BAO
P100 0 (-20 0 d		$\left(1+\frac{s}{\omega_{Pl}}\right)$
Crosed Coop goo	Ao	
$\frac{y(s)}{x(s)} = \frac{1}{(1+c)^{n-1}}$	<u>s</u> () =	Ao
1 +	$\frac{A_0 \beta}{\left(1 + \frac{S}{\omega_{P_1}}\right)}$	+ S + A = 3)
Y(s) _ Ao	/(+ A.B)	e used for
$\frac{\chi(s)}{\chi(s)} = \frac{1}{1+}$	S Wp. (1+ AB)	Used for Root locers.
\$ 20 log BAGO)		
	Unco	nditionally Stable
	f(log)	
	GMOODB	
-45	-PM 90°	4
		Root locus
		of Cloudloop
as BA	β=0 *	l'esponse.
$\omega_{P_{i}}$	(1+A,B) - WP,	6
		Always Stable