Spirallikeness, strong starlikeness and quasiconformal extension of harmonic univalent functions

Xiushuang Ma B9ID1002

Mathematical Structures II, Computer and Mathematical Sciences, Graduate School of Information Sciences

Dec. 16, 2021

Outline

- Introduction
 - Analytic univalent functions
 - Some subclasses
 - Quasiconformal mappings
 - Harmonic univalent functions
- 2 Harmonic spirallike functions and harmonic strongly starlike functions
 - Definitions and analytic characterizations
 - Uniform boundedness of strong starlikeness
 - An equivalent condition of harmonic spirallikeness
- Quasiconformal extension
 - Quasiconformal extension of strongly starlike functions
 - Harmonic univalent functions of the exterior unit disk
- 4 Future work

Outline for section 1

- Introduction
 - Analytic univalent functions
 - Some subclasses
 - Quasiconformal mappings
 - Harmonic univalent functions
- Harmonic spirallike functions and harmonic strongly starlike functions
 - Definitions and analytic characterizations
 - Uniform boundedness of strong starlikeness
 - An equivalent condition of harmonic spirallikeness
- Quasiconformal extension
 - Quasiconformal extension of strongly starlike functions
 - Harmonic univalent functions of the exterior unit disk
- 4 Future work

Analytic univalent functions¹²

Let $\mathbb C$ be the complex plane. A single-valued function f is said to be univalent in a domain $\Omega\subset\mathbb C$ if f is injective in Ω . f is called locally univalent at a point z if it is univalent in some neighborhood of $z\in\Omega$. For analytic function f, the local univalence at z is equivalent to that $f'(z)\neq 0$. An analytic univalent function is called a conformal mapping.

Let $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$ be the unit disk and \mathcal{A} denote all analytic functions of \mathbb{D} . Consider the following classes of analytic functions: $\mathcal{A}_1:=\{f\in\mathcal{A}:f(0)=f'(0)-1=0\}$; let \mathcal{S} denote the univalent functions in \mathcal{A}_1 .

For $f \in \mathcal{A}_1$, it has the expansion

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in \mathbb{D}.$$

¹C. Pommerenke. "Univalent functions". In: Vandenhoeck and Ruprecht (1975).

²P. Duren. Univalent Functions. Vol. 259. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York, 1983.

Bieberbach conjecture

For any $f \in \mathcal{S}$, with the series

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in \mathbb{D},$$

the coefficients of f satisfy

$$|a_n| \le n, \quad n \ge 2.$$

This conjecture was presented by Bieberbach in 1916, and finally proved by de Branges 3 in 1985. The equality holds for

$$k_{\alpha}(z) = \frac{z}{(1 - \alpha z)^2} = \sum_{n=1}^{\infty} n\alpha^{n-1} z^n,$$

where $|\alpha| = 1$.

³L. de Branges. "A proof of the Bieberbach conjecture". In: Acta Math. 154.1 (1985), pp. 137-152.

Koebe function

Koebe function:

$$k(z) = \frac{z}{(1-z)^2} = \sum_{n=1}^{\infty} nz^n.$$

With a modified form

$$k(z) = \frac{1}{4} \left(\frac{1+z}{1-z} \right)^2 - \frac{1}{4},$$

it maps the unit disk onto a slit domain $\mathbb{C}\setminus(-\infty,-1/4]$.

Koebe one-quarter theorem states that the range of each function $f \in \mathcal{S}$ contains a disk $\{w: |w| < 1/4\}$ and the constant is sharp. This theorem was conjectured by Koebe in 1907, and proved by Bieberbach in 1916.

Starlike and convex functions

A domain Ω is said to be starlike (with respect to the origin) if the line segment joining the origin and any point in Ω lies entirely in Ω . If Ω is starlike with respect to each point in the domain, then Ω is called a convex domain.

A function $f \in \mathcal{A}_1$ is starlike/convex if f maps the unit disk $\mathbb D$ univalently onto a starlike/convex domain. We denote the class of starlike and convex functions by \mathcal{S}^* and \mathcal{K} , respectively. The inclusions $\mathcal{K} \subset \mathcal{S}^* \subset \mathcal{S}$ hold.

Starlike and convex functions

Suppose that $f \in \mathcal{A}_1$. Then

(1) $f \in \mathcal{S}^*$ if and only if

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0, \quad z \in \mathbb{D}.$$

(2) $f \in \mathcal{K}$ if and only if

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > 0, \quad z \in \mathbb{D}.$$

(3) $f \in \mathcal{K}$ if and only if $zf'(z) \in \mathcal{S}^*$.

The condition (3) is called Alexander theorem, proved by Alexander⁴ in 1915.

⁴J. W. Alexander. "Functions which map the interior of the unit circle upon simple regions". In: *Ann. of Math.* 17.1 (1915), pp. 12–22.

Strongly starlike functions

Let α be a real number with $0 < \alpha \le 1$.

A function f in \mathcal{A}_1 is called strongly starlike of order α if f satisfies

$$\left|\arg \frac{zf'(z)}{f(z)}\right| \le \frac{\pi\alpha}{2}, \quad z \in \mathbb{D}.$$

This notion was first introduced by Stankiewicz⁵ and Brannan and Kirwan⁶, independently. We denote the class of strongly starlike functions of order α by $\mathcal{SS}(\alpha)$. Clearly, $\mathcal{SS}(1) = \mathcal{S}^*$.

A domain Ω containing the origin is called a strongly starlike domain of order α if $f \in \mathcal{SS}(\alpha)$ maps the unit disk onto Ω .

 $^{^5}$ J. Stankiewicz. "Quelques problèmes extrèmaux dans les classes des fonctions α -angulairement ètoilèes". In: *Ann. Univ. Mariae Curie-Sklodowska. Sect. A* 20 (1966), pp. 59–75.

 $^{^6}$ D. A. Brannan and W. E. Kirwan. "On some classes of bounded univalent functions". In: *J. London Math. Soc.* 2.1 (1969), pp. 431–443.

Let λ be a real number with $|\lambda| < \pi/2$.

A plane curve of the form

$$w = w_0 \exp(te^{i\lambda}), \ t \in \mathbb{R},$$

for some $w_0 \in \mathbb{C} \setminus \{0\}$ is called a λ -spiral (about the origin). A λ -spiral segment is formed by

$$[0, w_0]_{\lambda} := \{ w_0 \exp(te^{i\lambda}) : t \le 0 \} \cup \{0\}.$$

Then a domain Ω is called a λ -spirallike domain (with respect to the origin), if for any point $w \in \Omega$, the λ -spiral segment $[0,w]_{\lambda}$ is contained in Ω . The spiral segment reduces to a line segment if $\lambda=0$. A 0-spirallike domain is thus a starlike domain.

A function $f\in\mathcal{A}_1$ is called a λ -spirallike function if f maps $\mathbb D$ univalently onto a λ -spirallike domain.

The notion of spirallike functions was introduced by Špaček⁷. We denote the class of λ -spirallike functions by $\mathcal{SP}(\lambda)$. The class $\mathcal{SP}(0)$ is the class of starlike functions.

Let $f \in \mathcal{A}_1$. Then $f \in \mathcal{SP}(\lambda)$ if and only if

$$\operatorname{Re}\left\{e^{-i\lambda}\frac{zf'(z)}{f(z)}\right\} > 0, \quad z \in \mathbb{D}.$$

Together with the inequality, it shows a relation between spirallikeness and strong starlikeness. Let w=zf'/f and let H_λ be a slanted half-plane $\{w\in\mathbb{C}:\,\operatorname{Re}\,\{e^{-i\lambda}w\}>0\}.$ Then we obtain

$$\{w : |\arg w| \le \pi\alpha/2\} = H_{\lambda} \cap H_{-\lambda}$$

if $\lambda = \pi(1-\alpha)/2$ holds for $0 < \alpha \le 1$. Then

$$\mathcal{SS}(\alpha) = \mathcal{SP}\left(\frac{\pi(1-\alpha)}{2}\right) \cap \mathcal{SP}\left(-\frac{\pi(1-\alpha)}{2}\right).$$

⁷L. Špaček. "Příspěvek k teorii funkcí prostých". In: Časopis pro pěstování matematiky a fysiky 62.2 (1933), pp. 12–19.

An example of λ -spirallike functions is given by Duren⁸ of the form

$$f(z) = z(1-z)^{-2e^{i\lambda}\cos\lambda},$$

which is a generalized form of the Koebe function. It maps the unit disk onto the complement of an arc of an λ -sprial.

When $\lambda = -\pi/3$, we plot the figure of the function

$$f(z) = z(1-z)^{-\frac{1}{2} + \frac{\sqrt{3}}{2}i}$$

for $|z| \le 0.99$.

⁸P. Duren. *Univalent Functions*. Vol. 259. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York, 1983.

Images of f(|z| = r)

 $\left(-\frac{\pi}{3}\right)$ -spirallike domain

Quasiconformal mappings

Let w=f(z) be a C^1 homeomorphism of Ω , where w=u+iv, z=x+iy. Then $dw=du+idv=f_zdz+f_{\bar{z}}d\bar{z}$, where

$$f_z=rac{1}{2}(f_x-if_y), \quad ext{and} \quad f_{ar{z}}=rac{1}{2}(f_x+if_y).$$

The Jacobian of f is given by

$$J_f(z) = |f_z(z)|^2 - |f_{\bar{z}}(z)|^2.$$

If $J_f(z) > 0$ for $z \in \Omega$, then f is said to be orientation-preserving.

Quasiconformal mappings were first introduced by Grötzsch⁹ in 1928, and named by Ahlfors¹⁰ in 1935.

⁹H. Grötzsch. "Über einige Extremalprobleme der konformen Abbildung". In: Ber. Verh. sächs. Akad. Wiss. Leipzig, Math.-phys. Kl 80 (1928), pp. 367–376.

¹⁰L. V. Ahlfors. "Zur theorie der überlagerungsflächen". In: Acta Math. 65.1 (1935), pp. 157–194.

Quasiconformal mappings

An orientation-preserving homeomorphism $f:\Omega\to\Omega'$ is called a K-quasiconformal mapping if $f\in W^{1,2}_{\mathrm{loc}}(\Omega)$ and satisfies

$$\frac{|f_z|+|f_{\bar{z}}|}{|f_z|-|f_{\bar{z}}|} \le K,$$

for almost every $z \in \Omega$ and some constant $K \ge 1$. A function in C^1 is conformal if and only if it is 1-quasiconformal.

Write $\mu_f(z) = f_{\bar{z}}(z)/f_z(z)$. The above inequality is equivalent to

$$|\mu_f(z)| \le \frac{K-1}{K+1} = k$$

for some constant k < 1.

Harmonic functions

A real-valued function $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x},\boldsymbol{y})$ is harmonic if \boldsymbol{u} satisfies Laplace's equation

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

A complex-valued continuous function f=u+iv is harmonic in a domain Ω if u and v are both real harmonic in Ω . A harmonic function f has the representation $f=h+\bar{g}$, where h and g are analytic functions in Ω . The Jacobian of f is given by

$$J_f(z) = |h'(z)|^2 - |g'(z)|^2.$$

A theorem due to Lewy¹¹ asserts that f is locally univalent in Ω if and only if $J_f(z) \neq 0$ for any $z \in \Omega$.

¹¹H. Lewy. "On the non-vanishing of the Jacobian in certain one-to-one mappings". In: Bull. Amer. Math. Soc. 42.10 (1936), pp. 689–692.

Harmonic univalent functions

Let $\mathcal H$ denote the class of all complex-valued harmonic functions defined in $\mathbb D$ and $\mathcal H_0$ the subclass of $\mathcal H$, normalized by $f(0)=f_z(0)-1=0$. Each function $f=h+\bar g\in\mathcal H_0$ has the power series expansions for h and g by

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
, $g(z) = \sum_{n=1}^{\infty} b_n z^n$, $z \in \mathbb{D}$.

Let \mathcal{S}_H be the class of orientation-preserving harmonic univalent functions in \mathcal{H}_0 and \mathcal{S}_H^0 the subclass of \mathcal{S}_H with $g'(0)=b_1=0$.

Consider some subclasses of functions in \mathcal{S}_H and \mathcal{S}_H^0 , which map $\mathbb D$ onto a convex domain and starlike domain, denoted by \mathcal{K}_H , \mathcal{S}_H^* and \mathcal{K}_H^{0} , \mathcal{S}_H^{*0} , respectively. The inclusions $\mathcal{K}_H \subset \mathcal{S}_H^* \subset \mathcal{S}_H$ and $\mathcal{K}_H^{0} \subset \mathcal{S}_H^{*0} \subset \mathcal{S}_H^{0}$ hold.

Harmonic Koebe function

Consider the harmonic Koebe function $K(z)=h(z)+\overline{g(z)}$, with

$$h(z) = \frac{z - \frac{1}{2}z^2 + \frac{1}{6}z^3}{(1 - z)^3}, \quad g(z) = \frac{\frac{1}{2}z^2 + \frac{1}{6}z^3}{(1 - z)^3}.$$

The function K maps the unit disk onto a slit domain $\mathbb{C}\setminus(-\infty,-1/6]$.

Figure: Image domain of K(z)

Harmonic analogue of the Bieberbach conjecture

Let $f \in \mathcal{S}^0_{\mathrm{H}}$. Then

$$||a_n| - |b_n|| \le n$$

and

$$|a_n| \le \frac{1}{6}(n+1)(2n+1), \quad |b_n| \le \frac{1}{6}(n-1)(2n-1),$$

where $n \geq 2$.

This conjecture was proposed by Clunie and Sheil-Small¹². Sheil-Small¹³ proved it for starlike functions in $\mathcal{S}_{\mathrm{H}}^{*\,0}$. The equality holds if f is the harmonic Koebe function K(z).

We still cannot prove it for all harmonic functions in \mathcal{S}^0_H .

¹² J. Clunie and T. Sheil-Small. "Harmonic univalent functions". In: Ann. Acad. Sci. Fenn. Ser. A I Math. 9.1 (1984), pp. 3–25.

¹³T. Sheil-Small. "Constants for planar harmonic mappings". In: *J. London Math. Soc.* 2.2 (1990), pp. 237–248.

Outline for section 2

- Introduction
 - Analytic univalent functions
 - Some subclasses
 - Quasiconformal mappings
 - Harmonic univalent functions
- Harmonic spirallike functions and harmonic strongly starlike functions
 - Definitions and analytic characterizations
 - Uniform boundedness of strong starlikeness
 - An equivalent condition of harmonic spirallikeness
- Quasiconformal extension
 - Quasiconformal extension of strongly starlike functions
 - Harmonic univalent functions of the exterior unit disk
- 4 Future work

Al-Amiri and Mocanu's theorem

For $f \in C^1(\mathbb{D})$, we introduce a differential operator D by

$$Df(z) = zf_z(z) - \bar{z}f_{\bar{z}}(z).$$

Al-Amiri and Mocanu¹⁴ gave a sufficient condition for a function of the class C^1 to be univalent and λ -spirallike in the unit disk \mathbb{D} . Let $\mathbb{D}_r := \{z \in \mathbb{C} : |z| < r\}$ denote the subdisk of \mathbb{D} for each 0 < r < 1. We complete the following theorem.

Theorem

Let λ be a real number with $|\lambda| < \pi/2$. Suppose that a function $f \in C^1(\mathbb{D})$ satisfies that f(z) = 0 if and only if z = 0, and that $J_f = |f_z|^2 - |f_{\overline{z}}|^2 > 0$ on \mathbb{D} . Then f is univalent in \mathbb{D} and $f(\mathbb{D}_r)$ is λ -spirallike for each 0 < r < 1 if and only if

Re
$$\left\{ e^{-i\lambda} \frac{Df(z)}{f(z)} \right\} > 0, \quad z \in \mathbb{D} \setminus \{0\}.$$

¹⁴H. Al-Amiri and P. T. Mocanu. "Spirallike nonanalytic functions". In: Proc. Amer. Math. Soc. 82.1 (1981), pp. 61–65.

Hereditary property

If a function f maps the unit disk $\mathbb D$ onto a convex domain, then f maps each subdisk $\mathbb D_r$ onto a convex domain. Such a property is called a hereditary property. That is, if an analytic function $f \in \mathcal K$, then $f_r(z) = f(rz)/r$ belongs to $\mathcal K$ for each 0 < r < 1.

Duren¹⁵ mentioned that convexity is not a hereditary property for harmonic univalent functions. Moreover, starlikeness does not remain a hereditary property under harmonic univalent functions.

¹⁵P. Duren. Harmonic Mappings in the Plane. Vol. 156. Cambridge Tracts in Mathematics. Cambridge university press, 2004.

Definitions

Definition

Let $-\pi/2 < \lambda < \pi/2$. A harmonic function f in \mathcal{H}_0 is called hereditarily λ -spirallike if f is orientation-preserving and univalent on \mathbb{D} and $f(\mathbb{D}_r)$ is λ -spirallike for each 0 < r < 1. The class of such functions will be denoted by $\mathcal{SP}_{\mathrm{H}}(\lambda)$.

Definition

Let $0 < \alpha \le 1$. A harmonic function $f \in \mathcal{H}_0$ is called hereditarily strongly starlike of order α if it is orientation-preserving and univalent on $\mathbb D$ and $f(\mathbb D_r)$ is a strongly starlike domain of order α for each 0 < r < 1. We denote by $\mathcal{SS}_{\mathrm{H}}(\alpha)$ the class of such functions.

Analytic characterizations

Corollary

Let $-\pi/2 < \lambda < \pi/2$ and $0 < \alpha \le 1$. Suppose that a function $f \in \mathcal{H}_0$ satisfies that $f(z) \ne 0$ for 0 < |z| < 1 and that $J_f = |f_z|^2 - |f_{\bar{z}}|^2 > 0$ on \mathbb{D} . Then we have

(i) $f \in \mathcal{SP}_H(\lambda)$ if and only if

Re
$$\left\{ e^{-i\lambda} \frac{Df(z)}{f(z)} \right\} > 0, \quad z \in \mathbb{D} \setminus \{0\};$$

(ii) $f \in \mathcal{SS}_{\mathrm{H}}(\alpha)$ if and only if

$$\left|\arg \frac{Df(z)}{f(z)}\right| < \frac{\pi\alpha}{2}, \quad z \in \mathbb{D}\setminus\{0\}.$$

(iii)
$$SS_H(\alpha) = SP_H(\lambda) \cap SP_H(-\lambda)$$
, where $\lambda = \pi(1-\alpha)/2$.

Back

Uniform boundedness of strong starlikeness

Let $0<\alpha<1$. A result given by Brannan and Kirwan¹⁶ shows that each function $f\in\mathcal{SS}(\alpha)$, satisfies

$$|f(z)|<|z|\exp\left\{2\alpha\sum_{k=0}^{\infty}\frac{1}{(2k+1)(2k+1-\alpha)}\right\}=|z|M(\alpha)< M(\alpha)$$

for $0<\vert z\vert<1.$ We show the uniform boundedness of harmonic strongly starlike functions.

Theorem

If $f \in \mathcal{SS}_{H}(\alpha)$ with $0 < \alpha < 1$, then

$$|f(z)| \le \frac{\pi}{2} \exp\left\{\pi \tan\left(\frac{\pi\alpha}{2}\right)\right\} = N(\alpha), \quad z \in \mathbb{D}.$$

¹⁶D. A. Brannan and W. E. Kirwan. "On some classes of bounded univalent functions". In: J. London Math. Soc. 2.1 (1969), pp. 431–443.

Uniform boundedness of strong starlikeness

We plot the following figure and obtain that

$$N(\alpha) \le 2\pi M(\alpha)$$

for $0 < \alpha < 1$ after some computations.

Figure: Graph of $\log M(\alpha)$ and $\log N(\alpha)$

Sufficient conditions for strong starlikeness

Let $f=h+\bar{g}\in\mathcal{H}_0$. Silverman¹⁷ and Jahangiri¹⁸ proved, if f satisfies $\sum_{n=2}^{\infty}n|a_n|+\sum_{n=1}^{\infty}n|b_n|\leq 1$, then $f\in\mathcal{S}_{\mathrm{H}}^*$. For $0<\alpha\leq 1$, we introduce two quantities for integers $n\geq 1$:

$$A_n(\alpha) = n - 1 + |n - e^{-i\pi\alpha}| \quad \text{and} \quad B_n(\alpha) = n + 1 + |n + e^{i\pi\alpha}|.$$

Theorem

Suppose that $f = h + \bar{g} \in \mathcal{H}_0$ satisfies

$$\sum_{n=2}^{\infty} A_n(\alpha)|a_n| + \sum_{n=1}^{\infty} B_n(\alpha)|b_n| \le 2\sin\frac{\pi\alpha}{2}.$$

Then $f \in \mathcal{SS}_{\mathrm{H}}(\alpha)$.

Back

¹⁷H. Silverman. "Harmonic univalent functions with negative coefficients". In: J. Math. Anal. Appl. 220.1 (1998), pp. 283–289.

¹⁸J. M. Jahangiri. "Harmonic functions starlike in the unit disk". In: J. Math. Anal. Appl. 235.2 (1999), pp. 470–477.

Harmonic convolution

Let $f=h+\bar{g}$ and $F=H+\bar{G}$ be two harmonic functions on $\mathbb D$ of the forms

$$f(z) = \sum_{n=0}^{\infty} a_n z^n + \overline{\sum_{n=1}^{\infty} b_n z^n} \quad \text{and} \quad F(z) = \sum_{n=0}^{\infty} A_n z^n + \overline{\sum_{n=1}^{\infty} B_n z^n}.$$

Then the harmonic convolution of f and F is defined as

$$(f * F)(z) = f(z) * F(z)$$

$$= h(z) * H(z) + \overline{g(z) * G(z)}$$

$$= \sum_{n=0}^{\infty} a_n A_n z^n + \sum_{n=1}^{\infty} b_n B_n z^n.$$

An equivalent condition of harmonic spirallikeness

Let $\mathbb T$ denote the unit circle $\partial \mathbb D=\{z\in\mathbb C:|z|=1\}.$

Theorem

Let $-\pi/2 < \lambda < \pi/2$. Suppose that an orientation-preserving $f = h + \overline{g} \in \mathcal{H}_0$ satisfies $f(z) \neq 0$ for 0 < |z| < 1. Then $f \in \mathcal{SP}_H(\lambda)$ if and only if

$$(f*\varphi_{\lambda,\zeta})(z)\neq 0\quad \text{for }z\in\mathbb{D}\backslash\{0\},\ \zeta\in\mathbb{T}\backslash\{-1\},$$

and

$$\varphi_{\lambda,\zeta}(z) = \frac{(1 + e^{2i\lambda})z + (\zeta - e^{2i\lambda})z^2}{(1 - z)^2} + \frac{(-1 + e^{2i\lambda} - 2\zeta)\bar{z} + (\zeta - e^{2i\lambda})\bar{z}^2}{(1 - \bar{z})^2}.$$

An equivalent condition of harmonic spirallikeness

Taking $\pm \pi (1-\alpha)/2$ as λ , we obtain the following result.

Corollary

Let f be an orientation-preserving harmonic function in \mathcal{H}_0 satisfying the condition $f(z) \neq 0$ for 0 < |z| < 1. For $0 < \alpha \leq 1$, $f \in \mathcal{SS}_H(\alpha)$ if and only if

$$\left(f*\varphi_{\frac{\pi(1-\alpha)}{2},\zeta}\right)(z)\neq 0\quad and\quad \left(f*\varphi_{-\frac{\pi(1-\alpha)}{2},\zeta}\right)(z)\neq 0$$

for all $z \in \mathbb{D} \setminus \{0\}$ and $\zeta \in \mathbb{T} \setminus \{-1\}$.

A special example

Consider the harmonic function $f_{b,n}$ of the special form

$$f_{b,n}(z) = z + b\overline{z}^n$$

for $b \in \mathbb{C}$ and $n = 1, 2, 3, \ldots$

Proposition

Let $0 < \alpha \le 1$ and set $\lambda = \pi(1 - \alpha)/2$. Then the following are equivalent:

- (i) $f_{b,n} \in \mathcal{SS}_{\mathrm{H}}(\alpha)$;
- (ii) $f_{b,n} \in \mathcal{SP}_{\mathrm{H}}(\lambda)$;
- (iii) $|b| \leq C_n(\alpha)$, where $C_n(\alpha) = \frac{2\sin(\pi\alpha/2)}{n+1+|n+e^{i\pi\alpha}|}$.

A special example

Consider the function $f_{b,n}(z)=z+b\overline{z}^n$ with $b=C_n(1/3)$, where $n\geq 1$.

Outline for section 3

- Introduction
 - Analytic univalent functions
 - Some subclasses
 - Quasiconformal mappings
 - Harmonic univalent functions
- 2 Harmonic spirallike functions and harmonic strongly starlike functions
 - Definitions and analytic characterizations
 - Uniform boundedness of strong starlikeness
 - An equivalent condition of harmonic spirallikeness
- Quasiconformal extension
 - Quasiconformal extension of strongly starlike functions
 - Harmonic univalent functions of the exterior unit disk
- 4 Future work

Quasiconformal extension of strongly starlike functions

A well-known result given by Fait, Krzyż and Zygmunt¹⁹ shows that any strongly starlike function of order α ($0<\alpha<1$) has a k-quasiconformal extension to the whole plane. The extension function can be expressed in the form

$$F(z) = \begin{cases} f(z), & |z| \le 1, \\ \left| f\left(\frac{z}{|z|}\right) \right|^2 / \overline{f\left(\frac{1}{z}\right)}, & |z| \ge 1. \end{cases}$$

Moreover, the dilatation μ_F satisfies

$$|\mu_F(z)| \le k = \sin \frac{\pi \alpha}{2} \ a.e.$$

¹⁹ M. Fait, J.G. Krzyż, and J. Zygmunt. "Explicit quasiconformal extensions for some classes of univalent functions". In: Comment. Math. Helv. 51.1 (1976), pp. 279–285.

Quasiconformal extension of strongly starlike functions

Theorem (Continued)

Let $0 < \alpha < 1$. Suppose that a function $f \in \mathcal{H}_0$ satisfies <u>the condition</u>. Then f belongs to $\mathcal{SS}_{\mathrm{H}}(\alpha)$ and has a quasiconformal extension F to the whole complex plane, of the form

$$F(z) = \begin{cases} f(z), & |z| \le 1, \\ z + \sum_{n=2}^{\infty} a_n \overline{z}^{-n} + \sum_{n=1}^{\infty} \overline{b_n} z^{-n}, & |z| \le 1, \end{cases}$$

with the dilatation

$$|\mu_F(z)| \le \frac{\sin(\pi\alpha/2)}{1 + \cos(\pi\alpha/2)}$$

for $z \in \mathbb{D}$, and $|\mu_F(z)| \leq \sin(\pi \alpha/2)$ for $z \in \mathbb{C} \setminus \overline{\mathbb{D}}$. Finally, f is a $\sin(\pi \alpha/2)$ -quasiconformal mapping of the whole plane.

Quasiconformal extension of strongly starlike functions

Example

For a given α with $0<\alpha<1$, we consider the strongly starlike function $f_{b,n}(z)=z+b\overline{z}^n\ (n\geq 2)$, where

$$|b| \le C_n(\alpha) = \frac{2\sin(\pi\alpha/2)}{(n+1) + |n + e^{i\pi\alpha}|}.$$

Then $f_{b,n}$ can be extended to \mathbb{C} , and the mapping of the form

$$F_{b,n}(z) = \begin{cases} z + b\overline{z}^n, & |z| \le 1, \\ z + bz^{-n}, & |z| \ge 1, \end{cases}$$

is a quasiconformal extension of $f_{b,n}$, with the dilatation

$$|\mu_{F_{b,n}}(z)| \le \frac{2n\sin(\pi\alpha/2)}{n+1+|n+e^{i\pi\alpha}|}$$

Harmonic univalent functions of the exterior unit disk

Let $\Delta:=\{z\in\mathbb{C}:|z|>1\}$ denote the exterior unit disk. Hengartner and Schober²⁰ considered a class of orientation-preserving harmonic univalent functions defined on $\Delta,$ which map ∞ to ∞ . Such functions have the representation

$$f(z) = \alpha z + \beta \overline{z} + \sum_{n=0}^{\infty} a_n z^{-n} + \sum_{n=1}^{\infty} b_n z^{-n} + A \log |z|, \quad z \in \Delta,$$

where $0 \leq |\beta| < |\alpha|$ and $A \in \mathbb{C}$, denoted by Σ_H .

Let $\Sigma_{\mathrm{H}}(k)$ (0 < k < 1) be the class of functions $f \in \Sigma_{\mathrm{H}}$, which satisfy

$$|\beta| + |A| + \sum_{n=1}^{\infty} n(|a_n| + |b_n|) \le k|\alpha|.$$

²⁰W. Hengartner and G. Schober. "Univalent harmonic functions". In: Trans. of the Amer. Math. Soc. 299.1 (1987), pp. 1–31.

Quasiconformal extension of the exterior unit disk

Theorem

Let f be in the class $\Sigma_H(k)$ for some $k \in (0,1)$. Then f has a homeomorphic extension to the unit circle. Moreover, the mapping

$$F(z) = \begin{cases} f(z), & |z| \ge 1, \\ \alpha z + \beta \overline{z} + \sum_{n=0}^{\infty} a_n \overline{z}^n + \sum_{n=1}^{\infty} \overline{b_n} z^n, & |z| \le 1, \end{cases}$$

is a quasiconformal extension of f with the dilatation $|\mu_F(z)| \leq k$ for $z \in \mathbb{C}$.

An example

Example

Consider a function $f \in \Sigma_{\mathrm{H}}$ of the form

$$f(z) = z - \frac{i}{6}\overline{z} + \frac{i}{4}\log|z| - \frac{i}{8}z^{-4}.$$

Then f has a homeomorphic extension to the unit circle, and the mapping

$$F(z) = \begin{cases} z - \frac{i}{6}\overline{z} + \frac{i}{4}\log|z| - \frac{i}{8}z^{-4}, & |z| \ge 1, \\ z - \frac{i}{6}\overline{z} - \frac{i}{8}\overline{z}^{4}, & |z| \le 1, \end{cases}$$

is a k-quasiconformal extension of f with k = 7/9.

An example

We plot the graph of F(z).

Figure: Image domain of F(z)

A convolution theorem

A result of Ruscheweyh and Sheil-Small²¹ shows, if $f, g \in \mathcal{K}$, then $f * g \in \mathcal{K}$.

Let Σ_k (0 < k < 1) be a class of orientation-preserving homeomorphisms h of the plane $\mathbb C$ onto itself, with $h(z) = z + \sum_{n=0}^\infty a_n z^{-n}$ analytic univalent in Δ and k-quasiconformal in $\mathbb C$. Krzyż²² proved, for $f_1 \in \Sigma_{k_1}$ and $f_2 \in \Sigma_{k_2}$, the convolution function $f_1 * f_2 \in \Sigma_{k_1 k_2}$.

Theorem

Let $k_1, k_2 \in (0, 1)$. If $f_1 \in \Sigma_H(k_1)$ and $f_2 \in \Sigma_H(k_2)$, then $f_1 * f_2 \in \Sigma_H(\sqrt{k_1 k_2})$.

²¹S. Ruscheweyh and T Sheil-Small. "Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture". In: Comment. Math. Helv. 48.1 (1973), pp. 119–135.

²²J. G. Krzyż. "Convolution and quasiconformal extension". In: Comment. Math. Helv. 51.1 (1976), pp. 99–104.

Outline for section 4

- Introduction
 - Analytic univalent functions
 - Some subclasses
 - Quasiconformal mappings
 - Harmonic univalent functions
- Harmonic spirallike functions and harmonic strongly starlike functions
 - Definitions and analytic characterizations
 - Uniform boundedness of strong starlikeness
 - An equivalent condition of harmonic spirallikeness
- Quasiconformal extension
 - Quasiconformal extension of strongly starlike functions
 - Harmonic univalent functions of the exterior unit disk
- 4 Future work

Future work

Analytic characterization of harmonic spirallikeness

Question

- 1. How to construct a hereditarily spirallike function, which is not strongly starlike?
- 2. How to verify the hereditary spirallikeness in a rigorous way?

THANKS SO MUCH FOR YOUR ATTENTION! $(\bullet > \omega < \bullet)$