Array - Carry forward & Subarrays

TABLE OF CONTENTS

- 1. Count 'a-g' pairs
- 2. Sub-arrays
- 3. Print a Subarray
- 4. Print all Subarrays

5. Mir	n-Max					M
-0	0	* *	jį	G G	-113	

Count 'a-g' pairs

< **Question** >: Given a string s of lowercase characters, return the count of pairs (i, j)

such that i < j and s[i] is 'a' and s[j] is 'g'.

_ 🥳 BF Idea

for $i \rightarrow 0$ to (N-1) {

for $j \rightarrow 0$ to (N-1) f

 $TC = O(N^2) \qquad SC = O(1)$

 $\rightarrow 0$ to (N-2) {

if (sli] == 'a') {

for j → i+1 to (N-1) { court # g'

ars += ert-g[i+1]

,, 0 1 2 3 4 5 6 7,

🛂 Idea

Carry Forward → <u>valculate & Use</u>

$$str \rightarrow b c a g g a a g$$

$$\downarrow q' \rightarrow crt \qquad 3 3 3 3 2 1 1 1$$

$$\downarrow a' \rightarrow ars = 0 + 1 + 1 + 3 = 5$$

ent = 0

ans = 0

for
$$i \rightarrow (N-1)$$
 to 0 {

if $(sli) == 'g'$ ent ++ || calculate

if $(sli) == 'a'$ are $+=$ ent || use

$$Tc = O(N)$$

$$i < j$$
 $s \downarrow i \rbrack = 'a'$ $s \downarrow j \rbrack = 'g'$
 $court \# 'a'$ from left to eight

 $crt = 0$ — i
 $ars = 0$

 $c \ a \ a \ g \times g$
 $ert = + 2$
 $for \ i \rightarrow 0$

 $to \ N-1 \ \{ \ ars = 2+2 = 4 \}$
 $if (s \downarrow i) = = 'a')$

 $ert + + \text{|| calculate|}$
 $if (s \downarrow i) = = 'g')$

 $ert + + \text{|| calculate|}$
 $ert + crt \text{|| use|}$
 $ert + crt \text{|| use|}$
 $ert + crt \text{|| use|}$
 $ert + crt \text{|| use|}$

Subarrays

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

single element v
complete array v

Example: $arr[] \rightarrow [2416-3784]$

- **a.** [1, 6, 8]
- **b.** [1, 4]
- **c.** [6, 1, 4, 2]
- **d.** [7, 8, 4,] \checkmark

Representation of a subarray

start & and

2) L (length) start & length

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 10 & 3 & 12 & -2 & 15 \end{bmatrix}$$

subserays starting from index 0 = N

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 10 & 3 & 12 & -2 & 15 \end{bmatrix}$$

Total number of subarrays

subarrays starting from + = +

0 N

N-1

2 N-3

:

(N-1) 1

N * (N+1) /2

< **Question** > : Given an array, si and ei. Print from si to ei. si ≤ ei

$$arr \rightarrow [4 \ 2 \ 10 \ 3 \ 12 \ -2 \ 15]$$
 $si = 2, ei = 5$

$$0/\rho \to 10 \ 3 \ 12 \ -2$$

void printSubarray(arr, si, ei) {

print 1 subarray \rightarrow T.C 0(N)

< **Question** >: Print all the possible sub-arrays of the given array.

[5, 7, 3, 2]	O/P - [5]
0 1 2 3	[5, 7]
	[5, 7, 3]
$\frac{N * (N+1)}{2} * N \rightarrow O(N^3)$	[5, 7, 3, 2]
	[7]
	[7, 3]
	[7, 3, 2]
8:30 AM	[3]
8 3 V H 17	[3, 2]
	[2]

Consider all the subarrays & print Subarray()

for
$$st \to 0$$
 to $(N-1)$ of

for end \to st to $(N-1)$ of

for $i \to st$ to end (

print $(A \downarrow i)$)

}

 $TC = O(N^3)$
 $SC = O(I)$

Min Max

< Question > : Given an array of N integers, return the length of smallest subarray which

contains both maximum and minimum elements of the array.

 $1 \le N \le 10^6$

$$arr[] \rightarrow [2 2 6 4 5 1 5 2 6 4 1]$$

$$0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10$$

$$Anc = 3$$

$$arr[] \rightarrow [1 2 3 1 3 4 6 4 6 3]$$

$$arr[] \rightarrow [8888888]$$

$$mesc = 8$$

Bruteforce → Fird mir & max of the array → O(N)

V subarrays, check if it contains

N*(N+1) mir & max and take smallest length

2

$$7C = O(N + N^3) = O(N^3)$$
 $SC = O(1)$

Observation

1. There must be exactly one occurrence of min & max element.

2. Min and max elements should be the end point of subarray.


```
</>
</>
Code
           minA = A[0] maxA = A[0]
          for i \rightarrow 1 to (N-1) &
            minA = min (minA, Ali])
            monA = mon (monA, Ali])
          for i → 0 to (N-1) of
              if (ALI] == min A) 2
            1_ min = i //calculating
                 if (l-more!=-1) f
                        ars = mir (ars, i-l-mox +1)
            if (A[i] == maxA) {
                 if (l-mir!=-1) {
                     are = min (are, i-L min +1)
                              TC = O(N) SC = O(I)
```