

INTRODUÇÃO

AGENDA

Capítulo 1:

Construindo uma relação no banco de dados

• Capítulo 2:

Vamos Modelar um banco de dados

• Capítulo 3:

Normalização e Desnormalização

CAPÍTULO 1

CONSTRUINDO UMA RELAÇÃO NO BANCO DE DADOS

O QUE SÃO DADOS?

Dado é uma representação simbólica de uma entidade, como por exemplo uma letra do alfabeto,números, pontos, desenhos etc.

Dados podem ser fatos relacionados à qualquer objeto em consideração.

Ex. letras do alfabeto, números, pontos, desenhos, idade, altura, etc.

O QUE SÃO DADOS?

Sozinhos, os dados não têm valor semântico, isto é, **não fazem sentido**, portanto, não têm a capacidade de transmitir nenhuma mensagem nem muito menos de afetar seus receptores.

Se forem processados adequadamente, eles fornecem **informações** importantes e ajudam na tomada de decisões.

O QUE SÃO INFORMAÇÕES?

Informações são o conjunto de **dados organizados** para transmitir um significado. As informações estão constituídas por um grupo de dados supervisionados e ordenados, que ajuda a construir uma mensagem com base em certo assunto.

Elas favorecem a resolução de problemas, pois permitem uma tomada de decisões adequada.

TODO BANCO DE DADOS É DIGITAL?

DEFINIÇÃO NO NOSSO CONTEXTO

"Banco de dados" é uma coleção de dados inter-relacionados, representando informações sobre um domínio específico

- Korth, Henry

Como exemplos genéricos: Lista telefônica, prontuários médicos, planilhas de Excel, grafos de amizade de redes sociais.

MODELOS DE DADOS

Relacionais

- Modelo mais conhecido de bancos de dados, baseado no modelo relacional de Edgar Codd em 1970.
- Em geral aceitam a conhecida
 "linguagem de busca estruturada", ou SQL (Structured Query Language)
- Representam dados em tabelas, com linhas e colunas.

NoSQL

- "Not only SQL"
- Modelos de armazenamento de dados que não são correlatos com o modelo relacional, e portanto não tem a noção de tabelas/linhas/colunas.
- Flexibilidade no "schema" e localidade dos dados
- Operações de busca especializadas por caso de uso!

Lineares (row oriented)

- Dados são armazenados linha a linha
- Otimizados para escrita e leitura de linhas de dados
- Mantém todos os dados de uma mesma linha juntos na memória

Column oriented)

- Dados são armazenados coluna a coluna
- São otimizados para leitura de colunas, bem como de computações feitas sobre ela.
- Mantém todos os dados de uma mesma coluna juntos na memória

(Cristiano, Portugal, 36),

(Messi, Argentina, 33),

(Neymar, Brasil, 29),

(Gabigol, Brasil, 24),

(Coutinho, Brasil, 28),

(Bernardo, Portugal, 26)

NOME	PAÍS	ANO
Cristiano	Portugal	36
Messi	Argentina	33
Neymar	Brasil	29
Gabigol	Brasil	24
Coutinho	Brasil	28
Bernardo	Portugal	26

(Cristiano, Portugal, 36),

(Messi, Argentina, 33),

(Neymar, Brasil, 29),

(Gabigol, Brasil, 24),

(Coutinho, Brasil, 28),

(Bernardo, Portugal, 26)

NOME	PAÍS	ANO
Cristiano	Portugal	36
Messi	Argentina	33
Neymar	Brasil	29
Gabigol	Brasil	24
Coutinho	Brasil	28
Bernardo	Portugal	26
Lautaro	Argentina	23

(Cristiano, Portugal, 36),

(Messi, Argentina, 33),

(Neymar, Brasil, 29),

(Gabigol, Brasil, 24),

(Coutinho, Brasil, 28),

(Bernardo, Portugal, 26)

(Lautaro, Argentina, 23)

NOME	PAÍS	ANO
Cristiano	Portugal	36
Messi	Argentina	33
Neymar	Brasil	29
Gabigol	Brasil	24
Coutinho	Brasil	28
Bernardo	Portugal	26
Lautaro	Argentina	23

O QUE MODELAGEM DE BANCO DE DADOS?

Um modelo de dados é uma representação visual que descreve as conexões entre diferentes estruturas de dados e armazenadas em um sistema de informação.

Esse modelo determina como o dados são armazenados e como os sistemas irão acessar os dados dentro dessas estruturas.

PORQUE DEVEMOS MODELAR UM BANCO DE DADOS ?

MODELO CONCEITUAL

Podendo ser chamados de "modelos de domínios", são modelos conceituais se utilizam de altos níveis de abstração — foco nos aspectos essenciais ao cenário para utilização para níveis mais alto de abstração

servido para determinar e discriminar dentro do projeto de banco de dados quais informações podem estar presentes naquele determinado banco, de acordo com o tipo de entidade.

Exemplo: Se os dados armazenados são sobre jogadores, é possível imaginar quais campos terá na nossa tabela nome, gols, país, time e etc.

MODELO LÓGICO

O Modelo Lógico de Dados é a evolução do nosso modelo conceitual construído. Nele adicionamos informações de tipos de entidades, seus principais atributos e os relacionamentos entre elas.

MODELO FÍSICO

O modelo físico de banco de dados transporta a operação para o mundo real, demonstrando fisicamente os dados e o comportamento daquele projeto.

O modelo é rigoroso, seguindo normas e determinações técnicas que possibilitam que aquele projeto seja colocado em prática, e dali em diante ele costuma ser transposto para o banco de dados final do projeto.

MODELO CONCEITUAL

MODELO LÓGICO

MODELO FÍSICO

TABELA COM CARACTERÍSTICAS

CARACTERÍSTICA	CONCEITUAL	LÓGICO	FÍSICO
Nome de Entidade	\bigcirc	\bigcirc	
Relacionamentos de Entidade	②	②	
Atributos	Ø	Ø	
Chave Primária		Ø	©
Chave Estrangeira		②	•
Nome de Tabelas			Ø
Nome de Colunas			©
Tipo das Colunas			Ø

TIPOS DE RELACIONAMENTOS

TIPOS DE RELACIONAMENTO

1 pra 1

Quando uma entrada em uma entidade está relacionada com apenas uma entrada de outra entidade, e vice-e-versa. **Exemplo:** Uma casa só pode ter uma hipoteca, e uma hipoteca só se relaciona com uma casa. Usuários e CPFs, se guardados em tabelas separadas, também são um exemplo.

TIPOS DE RELACIONAMENTO

1 pra N

(ou "1 pra muitos")

Quando uma entrada em uma entidade A está relacionada a diversas entradas da entidade B, e entradas da entidade B estão relacionadas a apenas uma entrada da entidade A. **Exemplo:** Um cliente pode ter vários cartões, mas um cartão pertence a apenas um cliente

TIPOS DE RELACIONAMENTO

N pra N

(ou "muitos pra muitos")

Quando uma entrada em uma entidade A está relacionada a diversas entradas da entidade B, e entradas da entidade B estão relacionadas a diversas entradas da entidade A. **Exemplo:** Um estudante está matriculado em várias matérias, e cada matéria tem vários estudantes matriculados nela.

CHAVES PRIMÁRIAS E CHAVES ESTRANGEIRAS

A chave primária, ou Primary Key é o conceito que em toda tabela possuirá uma chave como identificador único da tabela.

A chave estrangeira, ou Foreign Key, não fala de uma tabela, mas sobre o relacionamento entre as tabelas. A chave estrangeira é uma referência a uma chave primária de outra tabela.

AS VANTAGENS DE MODELAGEM

- Otimiza espaço no armazenamento
- Mantém a integridade dos dados
- Facilita o acesso à informação

EVITA REDUNDÂNCIAS

(caso necessário)

- Otimiza espaço no armazenamento
- Mantém a integridade dos dados
- Facilita o acesso à informação

GARANTE QUE TODAS AS MUDANÇAS NOS DADOS SERÃO REFLETIDAS

- Otimiza espaço no armazenamento
- Mantém a integridade dos dados
- Facilita o acesso à informação

CRIA UMA ABSTRAÇÃO INTUITIVA PARA QUE SEJA CONSULTADO

PARA ISSO, PRECISAREMOS CONSIDERAR OS SEGUINTES PONTOS:

Ter claro qual é o propósito do banco de dados

Organizar o dado em tabelas

Definir as chaves primárias e relacionamentos

Normalizar os dados

PARA ISSO, PRECISAREMOS CONSIDERAR OS SEGUINTES PONTOS:

Ter claro qual é o propósito do banco de dados

Organizar o dado em

Definir as chaves primárias e relacionamentos

Normalizar os dados

O que estamos querendo modelar? O que queremos analisar?

PARA ISSO, PRECISAREMOS CONSIDERAR OS SEGUINTES PONTOS:

Ter claro qual é o propósito do banco de dados

Organizar o dado em tabelas

Definir as chaves primárias e relacionamentos

Normalizar os dados

Quais são minhas **entidades** principais? Serão os objetos para os quais criaremos a tabelas. E.g. **cliente, cartão de crédito, empresa** e etc.

PARA ISSO, PRECISAREMOS CONSIDERAR OS SEGUINTES PONTOS:

Ter claro qual é o propósito do banco de dados

Organizar o dado em

Definir as chaves primárias e relacionamentos

Normalizar os dados

Como minhas entidades se relacionam? E.g. como eu relaciono um cliente com um cartão de crédito?

Uma empresa com seus sócios? O que são valores que identificam unicamente minhas entidades?

O QUE APRENDEMOS NO CAPÍTULO 1

- Estrutura de dados;
- Porque devemos modelar;
- A vantagens de modelar;
- Tipos de relacionamento;

CAPÍTULO 2

VAMOS MODELAR
UM BANCO DE DADOS

FERRAMENTAS

QUAL SOFTWARE USAR?

MySQL Workbench Astah Professional Lucidchart DBDesigner 4

SQL Power Architect Draw.io Miro

VAMOS MODELAR UM BANCO!

COMO MODELAR OS DADOS DE UMA FINTECH?

Ter claro qual é o propósito do banco de dados

Organizar o dado em tabelas

Definir as chaves primárias

Normalizar os dados

Entender o propósito do nosso banco de dados vai nos ajudar a entender a melhor forma de estruturá-lo.

Quem são as personas de quem vai acessá-lo? Quais serão os casos de uso desses acessos?

Analistas, para analisar a saúde do negócio (volume de compras, ticket médio, principais clientes etc)!

COMO MODELAR OS DADOS DE UMA FINTECH?

Ter claro qual é o propósito do banco de dados

Organizar o dado em tabelas

Definir as chaves primárias e relacionamentos

Normalizar os dados

Quais são os dados (pessoas, objetos, coisas) que estarão presentes nesse banco de dados? O que são entidades, o que são atributos, e o que são instâncias dessas entidades?

Clientes, compras, faturas, cidades são exemplos de entidades.

Nome do cliente, expiração da fatura, população da cidade são exemplos de atributos dessas entidades.

COMO MODELAR OS DADOS DE UMA FINTECH?

Ter claro qual é o propósito do banco de dados

Organizar o dado em tabelas

Definir as chaves primárias e relacionamentos

Normalizar os dados

Quais são os valores que identificam inequivocamente minhas entidades? E como elas se relacionam?

Exemplos de chaves primárias são -> Clientes: CPF; Cartões de crédito: Número do cartão; Compras: número da nota fiscal

Clientes tem cartões. Clientes nasceram em cidades. Cartões efetuam compras. Compras pertencem à faturas.

CLIENTES

Nome, idade, CPF, cidade

CLIENTES

Nome, idade, CPF, cidade

CARTÕES

Número, CVV, inspiração

CLIENTES

Nome, idade, CPF, cidade

CARTÕES

Número, CVV, inspiração

COMPRAS

Valor, parcelas, loja

E quais são as relações entre essas entidades?

CLIENTES

Nome, idade, CPF, cidade

CARTÕES

Número, CVV, inspiração

COMPRAS

Valor, parcelas, loja

E quais são as relações entre essas entidades?

Considerando que cada compra será feita em um só cartão*

DINÂMICA

Pensando em um contexto que vamos criar um banco de dados para um sistema com o propósito para armazenar filmes para ser visto online. Vamos criar um modelo lógico que tenha quais são as entidades (e seus atributos) mais importantes, e como elas se relacionam.

CAPÍTULO 3

NORMALIZAÇÃO E DESNORMALIZAÇÃO

O QUE APRENDEMOS NO CAPÍTULO 2

- Ferramentas;
- A Modelagem de banco de dados;

NORMALIZAÇÃO

DEFINIÇÃO

Normalização é o processo de organizar os dados de forma a evitar redundâncias, evitando problemas na hora de atualizar, inserir e deletar dados.

Vamos considerar o seguinte cenário ...

CLIENTES

POSSUEM

EFETUAM

COMPRAS

Nome, idade, CPF, cidade

Número, CVV, inspiração

Valor, parcelas, loja

NOME	CPF	CIDADE	POPULAÇÃO_MILHOES	GENTÍLICO
Cássio Vaz Quadros	161.588.358-46	São Paulo	12.81	Paulista
Renan Freitas Lópes	216.252.098-27	São Paulo	12.81	Paulista
Osvaldo Bastos Gimenes	170.586.398-17	São Paulo	12.81	Paulista
Mateus Ximenes da Fonseca	355.026.868-84	São Paulo	12.81	Paulista
Teodoro Álves Pimentel	259.512.928-75	Santo André	0.71	Santo Andreense
Vinicius Fontes Vila	398.145.928-89	São Paulo	12.81	Paulista
Bruno Yamada Martins	504.256.398-94	Santo André	0.71	Santo Andreense
Alceu Simões Miranda	382.567.848-22	Santo André	0.71	Santo Andreense
Vicente Castilho Pires	913.079.818-36	São Paulo	12.81	Paulista
Gilson Azevedo Bosco	374.017.338-62	São Bernardo	0.82	São Bernardense

CLIENTES

POSSUEM

EFETUAM

COMPRAS

Nome, idade, CPF, cidade

Número, CVV, inspiração

Valor, parcelas, loja

NOME	CPF	CIDADE	POPULAÇÃO_MILHOES	GENTÍLICO
Cássio Vaz Quadros	161.588.358-46	São Paulo	12.81	Paulista
Renan Freitas Lópes 216.252.098-27		São Paulo	12.81	Paulista
Osvaldo Bastos Gimenes 170.586.398-17		São Paulo	12.81	Paulista
Mateus Ximenes da Fonseca 355.026.868-84		São Paulo	12.81	Paulista
Teodoro Álves Pimentel	259.512.928-75	Santo André	0.71	Santo Andreense
Vinicius Fontes Vila	398.145.928-89	São Paulo	12.81	Paulista
Bruno Yamada Martins 504.256.398-94		Santo André	0.71	Santo Andreense
Alceu Simões Miranda	382.567.848-22	Santo André	0.71	Santo Andreense
Vicente Castilho Pires	913.079.818-36	São Paulo	12.81	Paulista
Gilson Azevedo Bosco	374.017.338-62	São Bernardo	0.82	São Bernardense

NOME	CPF	CIDADE_ID
Cássio Vaz Quadros	161.588.358-46	1
Renan Freitas Lópes	216.252.098-27	1
Osvaldo Bastos Gimenes	170.586.398-17	1
Mateus Ximenes da Fonseca	355.026.868-84	1
Teodoro Álves Pimentel	259.512.928-75	2
Vinicius Fontes Vila	398.145.928-89	1
Bruno Yamada Martins	504.256.398-94	2
Alceu Simões Miranda	382.567.848-22	2
Vicente Castilho Pires	913.079.818-36	1
Gilson Azevedo Bosco	374.017.338-62	3

ID	CIDADE	POPULACAO_MILHOES	GENTÍLICO
1	São Paulo	12.81	Paulista
2	Santo André	0.71	Santo Andreense
3	São Bernardo	0.82	São Bernardense

DESNORMALIZAÇÃO

DEFINIÇÃO

Desnormalização é uma estratégia usada em bancos que eram normalizados, visando aumentar a performace dele. Ao disponibilizar os dados (de forma redundante) dentro das tabelas, evitamos a necessidade de joinsque podem "encarecer" nossas buscas.

COMPRAS

Valor_compra, parcelas, loja, Número_cartão, cvv, expiração, nome_cliente, cpf_cliente, população_cidade_cliente, gentílico_cidade_cliente

COMPRAS

Valor_compra, parcelas, loja, Número_cartão, cvv, expiração, nome_cliente, cpf_cliente, população_cidade_cliente, gentílico_cidade_cliente

Com isso conseguimos responder a maioria das perguntas que podemos fazer olhando para essas tabelas, sem precisar fazer grandes buscas/queries!

QUAL ESCOLHER?

DINÂMICA

Vamos pegar nosso exercício do banco de dados para uma locadora de videos onlines e desnormalizar esse modelo lógico.

CONCLUSÃO

O QUE APRENDEMOS NO CAPÍTULO 3

- Normalização;
- Desnormalização;
- Qual modelo escolher;