

for eq.
$$\Delta le$$
 having 2 dimmiles plus

1 North pole

 $B = \frac{1}{4\pi}$
 $B = \frac{1}{4\pi}$

1) due to north pole only

 $B = \frac{1}{4\pi} \frac{m}{d^2}$

1) Be at certie of eq. Δle having identical poles

11) Be at $C = \frac{1}{4\pi} \frac{m}{d^2}$

11) Be at $C = \frac{1}{4\pi} \frac{m}{d^2}$

12) $C = \frac{1}{4\pi} \frac{m}{d^2}$

13) Be at $C = \frac{1}{4\pi} \frac{m}{d^2}$

14) Be $C = \frac{1}{4\pi} \frac{m}{d^2}$

15) Be at $C = \frac{1}{4\pi} \frac{m}{d^2}$

16) Be $C = \frac{1}{4\pi} \frac{m}{d^2}$

17) Be at $C = \frac{1}{4\pi} \frac{m}{d^2}$

18) Be $C = \frac{1}{4\pi} \frac{m}{d^2}$

-> Magnetic Held Induction

 $\vec{B} = \frac{10}{411} \frac{m}{d^2} N \rightarrow S$

ii) for house shoe magnet

-> Magnetic lines of force: Sinn Never intersect.

- panes through magnetic nethances, dosed weever

Magnetic flux for only non unitoun field (a): \$: B.A for bar magnet

i) axial $\Rightarrow Ba = \frac{10}{4\pi} \frac{2Md}{(d^2-l^2)^2}$, for (1222d) $Ba = \frac{10}{4\pi} \frac{2M}{d^3}$

ii) equitorial -> Be = 16 M (1/2d) Be = 10 M (1/2d) Be = 10 M d3 But any angle 0 $\frac{d^{9}}{4\pi} = \frac{10}{4\pi} \frac{M}{d^{3}} \sqrt{3\cos^{2}0+1}$

Hull points: (m, < m2) pole atrengths for $x = \frac{d}{\sqrt{\frac{m}{m_1}} \pm 1} \left(+ \text{ for like} \right) \text{ from } m_1$, from $m_2 = d \mp x \left(+ \text{ for white} \right)$

-> Couple (7) => $\overrightarrow{C} = \overrightarrow{M} \times \overrightarrow{B}$ $\overrightarrow{C} = \overrightarrow{M} \times \overrightarrow{B}$ if (M, < M2) magnetic moments. 2 = MBsino i) n uniform magnet field only couple ? no net force (only sectatory) (M2)3+1 11) resce veresa but both (couple & pole in non uniform field (Retational & translation)

-> Potential energy (U) = - M.B i) if M led to B R is min (stable eq.) ii) it M anti led to B PE is maxo. (umlable eq.) Work done (W) = MB(coro_1-coro_2) potential (magnetic) $V = u_0 \frac{Mono}{4\pi} \frac{Mono}{\gamma^2}$ Time period of orcillation T= 211 I where I = moment of marking. Thanges only if magnet is cut into 'n' Lar length pack 7'= 7/n Internity of magnetisation (I): $I = \frac{M}{\alpha} = \frac{m}{\alpha}$ Magnetic susceptibility (X): rationly I to magnetising field (H). $\chi = \frac{I}{H}$, $\beta = \mu_0(H+I)$, $\mu_{\gamma} = I+\chi$ Presancegnetism: italisence of external magnetic field en swented wandomly due to thermal agitation (H = magnetising field) Hatlow & BX 1/T satureated engion at high H ->B/T - Curile's laws X \times \frac{1}{\langle absolute)} X= T Above awie tem ferro -> para not applicable for ferenomagnetic materials para dia → Cuelle temp. for Ni - 358°C, Fe - 740°C, CO -1120°C Con culie cons. Cueile - wells law feevermagnetic materials Hysterens Loop: for fereignagnetic materials due to feithon, heat is produced, assea (A) of H loop is a measure of lon of RSON FRE > Rs; CSFE < CS; ASFE < AS (occurrently (c) electronagnes Permanent magnet low coelivary, and BBLA deentactuaty large rendividy, Lot of soft in