Unit 2 - Mark scheme

Question number	Answer	Mark
1	D pentane	1

Question number	Answer	Mark
2	B YXZW	1

Question number	Answer	Mark
3	A all Group 1 hydroxides are soluble in water	1

Question number	Answer	Mark
4	C 2-chloro-2-methylpropane	1

Question number	Answer	Mark
5	D E-1-bromo-2-methylbut-1-ene	1

Question number	Answer	Mark
6	D nucleophilic substitution	1

Question number	Answer	Mark
7	CH ₃ CH ₃ —C—CH ₂ —O—H CH ₃	1

Question number	Answer	Mark
8	C The solubility of hydroxides increases	1

Question number	Answer	Mark
9	B NH ₄ Cl	1

Question number	Answer	Mark
10	D dilute nitric acid followed by silver nitrate solution gives a white precipitate	1

Question number	Answer	Mark
11	B lithium sulfate	1

Question number	Answer	Mark
12	C emission of visible light energy as electrons return to lower energy levels	1

Question	Answer	Mark
number		
13	B -1 and +5	1
Question number	Answer	Mark
14	C bromine, hydrogen bromide and sulfur dioxide only	1
Question number	Answer	Mark
15(a)	A 2.5℃	1
Question number	Answer	Mark
15(b)	C redox	1
Question number	Answer	Mark
16	A an increase in the volume of acid solution	1
Question number	Answer	Mark
17(a)	A peak position shifted left, peak height higher	1
Question number	Answer	Mark
17(b)	B area A decreases, area B increases	1
Question number	Answer	Mark
18	C the forward and reverse reactions have both stopped	1

Question number	Answer		Additional guidance	Mark
19(a)	KBr/potassium bromide and (50%) sulfuric acid	(1)	Both needed for M1 Ignore acid concentration Allow HBr (dry) PBr ₃ /Phosphorus(III) bromide PBr ₅ /Phosphorus(V) bromide	2
	(heat under) reflux	(1)	Do not allow just heat M2 conditional on correct or near correct M1	

Question number	Answer		Additional guidance	Mark
19(b)	C-Br dipole reversed	(1)	Allow in any order	3
	OH⁻ to C arrow reversed	(1)		
	• lone pair missing (from OH ⁻)	(1)		

Question number	Answer	Additional guidance	Mark
19(c)	KOH/potassium hydroxide	Allow NaOH/sodium hydroxide Ignore OH ⁻ / alkali	2
	• ethanol(ic)/alcohol(ic) and heat (under reflux) (1)	M2 dependent on M1	

Question number	Answer	Additional guidance	Mark
20(a)		Example of calculation:	2
	• calculation of number of moles (1)	$0.0500 \text{ cm}^3 (\times 1000 \div 1000) = 0.0500 \text{ (mol)}$	
	• evaluation to 2/3 SF (1)	$(0.0500 \times 90.0) = 4.50 (g)$	

Question number	Answer		Additional guidance	Mark
20(b)	An answer that make reference to the following points:		Example of calculation:	2
	moles of ethanedioic acid	(1)	Moles acid = $400 \times 0.0500 \div 1000 = 2.00 \times 10^{-2}$	
	 moles of potassium hydroxide and mass of potassium hydroxide. 	(1)	Moles KOH = $2.00 \times 10^{-2} \times 2 = 4.00 \times 10^{-2}$ mol $4.00 \times 10^{-2} \times 56.1 = 2.24(4)$ g	
			Correct answer with no working scores 2 Ignore SF except 1 SF	

Question number	Answer		Additional guidance	Mark
20(c)	logically structured answer with reasoning. Marks are awarded for indicative answer is structured and shows to indicative content. Number of indicative marking points seen in answer 6 5-4 3-2 1 0	e content and for how the lines of reasoning. The marks should be awarded for Number of marks awarded for indicative marking points 4 3 2 1 0 the marks should be awarded for	Guidance on how the mark scheme should be applied. The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning, scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). In general, it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 marks.	6
		for structure and sustained lines of reasoning	and 3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points	
	Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout.	2	would score zero marks for reasoning. If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded, do not deduct mark(s).	
	Answer is partially structured with some linkages and lines of reasoning.	1	Comment: Look for the indicative marking points first, then consider the mark for the	
	Answer has no linkages between points and is unstructured.	0	structure of the answer and sustained line of reasoning.	

Question number	Answer	Additional guidance	Mark
20(c) Cont.	 Indicative points: rinse glassware with appropriate solutions fill the burette with potassium hydroxide solution, ensuring there are no air bubbles use a pipette and pipette filler to transfer 25.0 cm³ / 10 cm³ of acid to a conical flask (add indicator to the acid in the conical flask and) carry out a range finder/rough titration add potassium hydroxide drop by drop near the end point repeat titrations until concordant/within ± 0.2 cm³. 	Do not award just 'rinse with distilled water'. Alternative IP 2 to 5 if acid (solution) used in burette: • fill the burette with (ethanedioic) acid solution, ensuring there are no air bubbles • use a pipette and pipette filler to transfer 25.0 cm³ of potassium hydroxide solution to a conical flask • (add indicator to the potassium hydroxide in the conical flask and) carry out a range finder/rough titration • add (ethanedioic) acid drop by drop near the end point.	

Question number	Answer	Additional guidance	Mark
21(a)	 hard to measure the temperature change when you're heating something or heat losses due to high temperatures involved or 	Allow it is difficult to measure the temperature of a solid	1
	 at 300 °C/high temperatures the water will be gaseous 		

Question number	Answer	Additional guidance	Mark
21(b)(i)	 An answer that makes reference to the following points: (the enthalpy change when) one mole of the substance (is formed) from its elements in their standard states (under standard conditions). 		2

Question number	Answer		Additional guidance	Mark
21(b)(ii)	 A diagram that includes: all species correct all state symbols correct and species balanced. 	(1) (1)	$2NaHCO_3(s)$ \longrightarrow $Na_2CO_3(s) + CO_2(g) + H_2O(l)$ $2Na(s) + H_2(g) + 2C(s, graphite) + 3O_2(g)$	2
			Do not penalise missing graphite	

Question number	Answer	Additional guidance	Mark
21(b)(iii)		Example of calculation:	4
	• correct application of Hess's law (1)	$\Delta_{r}H = -\Delta H_{1} + \Delta H_{2}$ or $\Delta_{f}H (Na_{2}CO_{3}) + \Delta_{f}H (CO_{2}) + \Delta_{f}H (H_{2}O) = 2\Delta_{f}H(NaHCO_{3}) + \Delta_{r}H$	
	• correct figures used (1)	$-1130.7 + (-285.8) + (-393.5) = 2 \times (-950.8) + \Delta_r H$	
		$\Delta_{\rm r}H=91.6$	
	• correct calculation (1)	$\Delta_{\rm r}H = +91.6 \text{ kJ mol}^{-1}$	
	• units and sign (1)	Correct answer with no working scores (4) TE from M1 TE from incorrect M2	

Question number	Answer	Additional guidance	Mark
21(b)(iv)	 products energy level above reactants and arrow label on vertical arrow and vertical axis label (1) 	$Na_2CO_3(s) + CO_2(g) + H_2O(l)$	2
		(Reaction profile or progress of reaction) Allow reactants/products in place of chemical formulae Horizontal axis label not required Direction of arrow and endothermic/exothermic diagram must agree with sign in 21b(iii) Allow a correct exothermic enthalpy level diagram for an exothermic answer in 21b(iii)	

Question number	Answer	Additional guidance	Mark
22(a)(i)	 peak in the range 3750 - 3200 cm⁻¹ and O-H (stretching) bond in alcohols 	Must identify the bond and give the wavenumber range	1
		Allow peak at ~3375 cm ⁻¹	

Question number	Answer	Additional guidance	Mark
22(a)(ii)	 not possible - All three contain the same bonds or possible - the fingerprint regions differ/by comparing the spectra to reference spectra 	No mark for unjustified answer	1

Question number	Answer	Additional guidance	Mark
22(b)(i)	• (all show) parent/molecular ion peak at 74	Allow peak furthest to the right/highest m/z peak at 74 Do not award just 'peak at 74'	1

Question	Answer	Additional guidance	Mark
number			
22(b)(ii)	• fragment ⁺ CH ₃ CHOH = 45 (1)		3
	• fragment ${}^{\dagger}CH_2OH = 31$ (1)		
	• fragment $^{+}(CH_3)_2COH = 59$ (1)	Ignore missing charge on fragments	

Question number	Answer			Additional guidance	Mark	
22(c)(i)	Organic compound used	Name of oxidation product	Structural formula of oxidation product		Allow displayed or skeletal formulae 1 mark for 2 correct names and 1 mark for each correct formula	3
	A	Butanone and	CH ₃ CH ₂ COCH ₃	(1)		
	В	Butanal (1)	CH ₃ CH ₂ CH ₂ CHO	(1)		

Question number	Answer		Additional guidance	Mark
22(c)(ii)	An answer that makes reference to the following points:			3
	• reagent: Benedict's/Fehling's	(1)	Allow Tollens' or iodine + alkali	
	(oxidation product of) compound A: no change	(1)	Todine + atkati	
	(oxidation product of) compound B: (Benedict's/Fehlings test) red precipitate.	(1)	(Tollens' reagent) silver mirror with (oxidation product of) B. No reaction with (oxidation product of) A	
			(iodine + alkali) yellow precipitate (iodoform) with (oxidation product of) A. No reaction with oxidation product of B	
			If (butanoic) acid in (c)(i), allow reagent: sodium carbonate/sodium hydrogencarbonate (solution)	
			Observations: (oxidation product of) compound B: bubbles/fizzes	

Question number	Answer	Additional guidance	Mark
23(a)	• balanced equation (1)	$I_2(s) + Cl_2(g) \rightarrow 2ICl(l)$	2
	• all states correct (1)	Accept multiples	

Question number	Answer	Additional guidance	Mark
23(b)	correct electronegativity values	Cl = 3.0 and I = 2.5	1
	and correct dipole diagram	δ+ Ι — Cl δ-	
		Do not award full charges	

Question number	Answer	Additional guidance	Mark
23(c)(i)	1 mark each correct formula	Allow 1 mark for 2 correct non-skeletal formulae	2

Question number	Answer		Additional guidance	Mark
23(c)(ii)	An explantion that makes reference to the following points:			3
	identification of correct isomer	(1)	2-chloro-1-iodopropane	
	• iodine is δ + and is attacked by the π electrons	(1)		
	more stable secondary carbocation formed.	(1)		

Question number	Answer		Additional guidance	Mark
23(d)(i)	An answer that makes reference to the following points:			2
	carry out in fume cupboard	(1)	Allow fume hood or similar description	
	chlorine is toxic.	(1)	Do not allow 'harmful'	

Question number	Answer	Additional guidance	Mark
23(d)(ii)	• I in ICl = +1 I in ICl ₃ = +3	Both needed for the mark	1

Question number	Answer	Additional guidance	Mark
23(d)(iii)	• +5 and -1 to -1 (and -1) (1)		2
	not disproportionation because the chlorine has not undergone both oxidation and reduction		

Question number	Answer	Additional guidance	Mark
23(e)(i)	• correct method (1)	$Cl_2 = 2 \times 35.5 = 71$ 71 ÷ 24000	2
	• answer with units (1)	= 0.0029583 g cm ⁻³ = 3 g dm ⁻³	

Question number	Answer	Additional guidance	Mark
23(e)(ii)	An explanation that makes reference to the following points:		3
	chlorine (gas) is more dense than air		
	chlorine (gas) removed (from the equilibrium)		
	 position of equilibrium moves to the LHS (more brown liquid/ICl). 		

Question number	Answer Additional guidance	Mark
23(f)	• calculation of mols of iodine and fluorine (1) Mols of iodine = 0.64 ÷ 126.9 = 9 Mols of fluorine = (1.31–0.64) ÷	
	• calculation of whole number ratio and formula (1) Ratio 1:7 therefore formula IF ₇	