Combo 9

2 de julio de 2024

1. Lema 19: Lema de división por casos para funciones recursivas

1.1. Enunciado

Supongamos $f_i: D_{f_i} \subseteq \omega^n \times \Sigma^{*m} \to O, i = 1,...,k$, son funciones Σ -recursivas tales que $D_{f_i} \cap D_{f_j} = \emptyset$ para $i \neq j$. Entonces la funcion $f_1 \cup ... \cup f_k$ es Σ -recursiva.

Nota: haga el caso $k=2, n=m=1, O=\omega$

1.2. Demostración

Probaremos el caso k=2 y $O=\omega$. Ademas supondremos que n=m=1. Sean \mathcal{P}_1 y \mathcal{P}_2 programas que computen las funciones f_1 y f_2 , respectivamente. Para i=1,2, definamos

$$H_i = \lambda t x_1 \alpha_1 \left[Halt^{1,1}(t, x_1, \alpha_1, \mathcal{P}_i) \right]$$

Notar que $D_{H_i} = \omega^2 \times \Sigma^*$ y que H_i es Σ -mixta. Ademas sabemos que la funcion $Halt^{1,1}$ es $(\Sigma \cup \Sigma_p)$ -p.r. por lo cual resulta facilmente que H_i es $(\Sigma \cup \Sigma_p)$ -p.r.. Por el Teorema de Independencia del Alfabeto tenemos que H_i es Σ -p.r.. Entonces H_i es Σ -computable por lo cual tenemos que hay un macro:

[IF
$$H_i(V1, V2, W1)$$
 GOTO A1]

Para hacer mas intuitivo el uso de este macro lo escribiremos de la siguiente manera

[IF
$$Halt^{1,1}(V1, V2, W1, \mathcal{P}_i)$$
 GOTO A1]

Ya que cada f_i es Σ -recursiva, hay macros

$$[V2 \leftarrow f_1(V1, W1)]$$

$$[V2 \leftarrow f_2(V1, W1)]$$

Sea \mathcal{P} el siguiente programa:

```
L1 N20 \leftarrow N20 + 1

[IF Halt^{1,1}(N20, N1, P1, \mathcal{P}_1) GOTO L2]

[IF Halt^{1,1}(N20, N1, P1, \mathcal{P}_2) GOTO L3]

GOTO L1

L2 [N1 \leftarrow f_1(N1, P1)]

GOTO L4

L3 [N1 \leftarrow f_2(N1, P1)]

L4 SKIP
```

Luego, debemos demostrar que \mathcal{P} computa la función $f_1 \cup f_2$. Para ello, hay que probar que $f_1 \cup f_2 = \Psi_{\mathcal{P}}^{1,1,\#}$, por lo que vemos que:

- $D_{f_1 \cup f_2} = D_{\Psi_{\mathcal{P}}^{1,1,\#}}$: Es fácil de ver que $D_{f_1 \cup f_2} = D_{f_1} \cup D_{f_2} = D_{\Psi_{\mathcal{P}}^{1,1,\#}}$, porque \mathcal{P} solo se detiene si \mathcal{P}_1 o \mathcal{P}_2 se detienen en una cantidad finita de pasos partiendo del mismo estado inicial que \mathcal{P} .
- $\forall (x,\alpha) \in D_{f_1 \cup f_2}, (f_1 \cup f_2)(x,\alpha) = \Psi_{\mathcal{P}}^{1,1,\#}(x,\alpha)$: Notemos que \mathcal{P} se detiene cuando \mathcal{P}_1 o \mathcal{P}_2 se detienen en una cantidad finita de pasos partiendo del mismo estado inicial que \mathcal{P} (la cantidad de pasos está dada por el valor contenido en N20). Luego, como $D_{f_1} \cap D_{f_2} = \emptyset$, solo se puede detener uno de ellos, por lo que el valor que contiene N1 al detenerse \mathcal{P} es $(f_1 \cup f_2)(x,\alpha)$ si \mathcal{P} arranca con el estado inicial $||x,\alpha||$.

Finalmente, se cumple que \mathcal{P} computa a $f_1 \cup f_2$, por lo que $f_1 \cup f_2$ es Σ -computable. Luego, por Teorema tenemos que es Σ -recursiva, por lo que se demuestra.

2. Lema 20

2.1. Enunciado

$$Halt^{n,m}$$
 es $(\Sigma \cup \Sigma_p)$ -p.r.

2.2. Demostración

Notar que $Halt^{n,m} = \lambda xy[x=y] \circ \left[i^{n,m}, \lambda \mathcal{P}[n(\mathcal{P})+1] \circ p_{1+n+m+1}^{1+n,m+1}\right]$. Como por lema sabemos que $\lambda \mathcal{P}[n(\mathcal{P})]$ es $(\Sigma \cup \Sigma_p)$ -p.r., entonces como se obtiene por composiciones de funciones $(\Sigma \cup \Sigma_p)$ -p.r., $Halt^{n,m}$ es $(\Sigma \cup \Sigma_p)$ -p.r..

3. Proposición 21

3.1. Enunciado

$$T^{n,m}$$
 es $(\Sigma \cup \Sigma_n)$ -recursiva

3.2. Demostración

El Lema de minimización nos dice que: Sean $n,m\geq 0$. Sea $P:D_P\subseteq\omega\times\omega^n\times\Sigma^{*m}\to\omega$ un predicado Σ -p.r.. Entonces

- (a) M(P) es Σ -recursiva.
- (b) Si hay una funcion Σ -p.r. $f:\omega^n\times\Sigma^{*m}\to\omega$ tal que

$$M(P)(\vec{x},\vec{\alpha}) = \min_t P(t,\vec{x},\vec{\alpha}) \leq f(\vec{x},\vec{\alpha}), \, \text{para cada } (\vec{x},\vec{\alpha}) \in D_{M(P)},$$

entonces M(P) es Σ -p.r..

Luego, como $T^{n,m}=M(Halt^{n,m})$, por lo anterior tenemos que $T^{n,m}$ es $(\Sigma \cup \Sigma_p)$ -recursiva.