Total No. of Printed Pages:3

B.E (Computer) Semester-VII (Revised Course 2016-17) EXAMINATION AUGUST-2020 Data Mining

[Duration: Two Hours] [Total Marks:60] **Instructions:** 1) Attempt THREE FULL Question at least ONE question from EACH Part. 2) Assume suitable data if necessary. PART- A Q.1 a) Draw a neat labeled diagram and explain the process of knowledge discovery in databases (KDD) b) Given a list of coordinates 'cords' and a point T. Find the item in the list that is closest 4 to the point T. Cords=[(455,12), (188,90),(74,366), (10,10)] T=(18,448)c) Define binning. Perform data smoothing by bin means, bin boundaries and bin median 7 for the following sorted data of Age attribute. 4,8,9,15,21,21,24,25,26,28,29,34 with bins of depth =4 d) Find mode, median, mean and variance for the following data series: 4 5,10,13,35,50,50,99 Q.2 a) What is attribute oriented induction (AOI)? Explain with a suitable example. 5 b) Define Data Cube. Explain with neat diagram different types of OLAP Schemas. "The 9 snowflake schema saves storage space compared to the star schema. "Justify. c) Compute Cosine Similarity and Extended Jaccard coefficient for following two 4 document vectors: A=(3,6,0,3,6) and B=(1,2,0,1,2)d) State the general characteristics of Data Sets that have significant impact on data 2 mining techniques. a) Explain principal component analysis and state the significance of the same in data Q.3 7 preprocessing b) Suppose the given data is: 300,440,700,990,1100 8 Use Z-score normalization to transform values 440,700 and 990 Use Min- Max normalization to transform all given values into range of ii) [0.0, 1.0]c) Discuss whether or not each of the following activity is Data Mining task 2 Dividing the customers of a company according to their gender i) ii) Monitoring seismic waves for earthquake activities d) Using following set of stock prices: 3 40,50,70,80,90,100,120,120,140,150,180,200

Find 20th Percentile and 50th Percentile.

PART-B

Q.4 a) Write K- Nearest Neighbor Classifier Algorithm

6

b) Draw Decision Tree for following Data set. Explain Steps.

12

TID	Home	Marital	Annual	Class: Loan
	Owner	Status	Income	Defaulter
1.	Y	S	125	No Cons
2.	N	M	100	NEWSON
3.	N	S	70	No. To Sold
4.	Y	M	120	Nosition
5.	N	D	95	Yandayan
6.	N	M	60	Nessa
7.	Y	D SOF	220	NOSSES
8.	N	S	85	Y
9.	N	M	75 2 2 2	N S S P S S
10.	N	Service	90	TO SECOND TO

c) Define Rule based Classifier

2

Q.5 a) Consider the data set shown below:

8

Transaction	Items Bought	
T1 75	Pasta, Lemon, Bread, Orange	
T2	Pasta, Lemon	
T3	Pasta, Orange, Cake	
T40.00000000000000000000000000000000000	Pasta, Lemon, Orange, Cake	

Generate Association Rules using Apriori Algorithm. Consider values of support= 60 % and Confidence =80%

b) Explain with neat figures k- means and different types of clusters

6

c) Generate FP Tree for the following transaction dataset (Consider Support count =3)

TID	ITEM SET	
90,80	Fan, Axe, Cake, Doll, Gun, Mat, Pan	
2	Axe, Bat, Cake, Fan, Lock, Mat, Oven	
34200	Bat, Fan, Hat, Oven	
4 7 30	Bat, Key, Cake, Pan	
5,800	Axe, Fan, Cake, Lock, Pan, Mat, Net	

Q.6 a) Differentiate between supervised and Unsupervised Learning

5

b) Using Agglomerative Hierarchical Clustering Algorithm, Generate dendrogram for the 10 following Proximity Matrix given below.

	A	В	С	D	E	F
A	0					
В	0.12	0			(1) (B) (C)	1 2 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
С	0.51	0.25	0			
D	0.84	0.16	0.14	0		
Е	0.28	0.77	0.70	0.45		70000
F	0.34	0.61	0.93	0.20	0.67	$\hat{\boldsymbol{\theta}}$

c) Explain in brief Rule Ordering Schemes.

PART- C

- Q.7 a) Explain Challenges that motivated development of Data Mining.
 - 5 b) Suppose that a data warehouse consist of the 4- Dimensions i.e. date, spectator, 8 location and game & the measures were count and charge (where charge is the fare that spectator pays when he/ she is watching a game on given date). Spectators may be students, adults or seniors with each category having its own charge rate. Draw a STAR Schema diagram for the data warehouse.
 - c) Explain Feature Subset Selection process with a flowchart.

5 2

- d) What is the difference between Predictive and Descriptive Data Mining Tasks?
- Q.8 a) Apply KNN(K-Nearest Neighbor) Classification Algorithm on following data –set & 6 Predict the class for testing data: X(I1=3,I2=7). (Consider k=3)

Sr. No	3 12 5 S	Class
	7.6° 67.8° 57.5	False
	3 (4,00)	False
\$ 230 0 0 0 3 0 8	4	True
	4,00	True

- b) Define Outlier. Explain the Issues faced by Statistical Approach to Outlier detection.
- c) Consider the following data of eight objects for clustering

10

Objects		Y
Al	25	ිරු [©] 10
A2		5
A3	8000	4
A4 0 5 0 8	120°0587006	8
A5		5
A6	6.0	4
A7	J. S. L. J. A.	2
A8	9 9 9 4	9

Use the k-means Algorithm to cluster the above data into three clusters