

Wybrane wzory matematyczne

Zestaw wzorów matematycznych został przygotowany dla potrzeb egzaminu maturalnego z matematyki obowiązującej od roku 2010. Zawiera wzory przydatne do rozwiązania zadań z wszystkich działów matematyki, dlatego może służyć zdającym nie tylko podczas egzaminu, ale i w czasie przygotowań do matury.

Zestaw ten został opracowany w Centralnej Komisji Egzaminacyjnej we współpracy z pracownikami wyższych uczelni oraz w konsultacji z ekspertami z okręgowych komisji egzaminacyjnych.

Mamy nadzieję, że zestaw, który przygotowaliśmy maturzystom, spełni swoje zadanie i przyczyni się do egzaminacyjnych sukcesów.

Publikacja współfinansowana przez UE w ramach Europejskiego Funduszu Społecznego.

Publikacja jest dystrybuowana bezpłatnie.

SPIS TREŚCI

1.	Wartość bezwzględna liczby	1
2.	Potęgi i pierwiastki	1
3.	Logarytmy	2
4.	Silnia. Współczynnik dwumianowy	2
5.	Wzór dwumianowy Newtona	2
6.	Wzory skróconego mnożenia	3
7.	Ciągi	3
8.	Funkcja kwadratowa	4
9.	Geometria analityczna.	4
10.	Planimetria	6
11.	Stereometria	12
12.	Trygonometria	14
13.	Kombinatoryka	15
14.	Rachunek prawdopodobieństwa	15
15.	Parametry danych statystycznych	16
16.	Tablica wartości funkcji trygonometrycznych	17

1. WARTOŚĆ BEZWZGLĘDNA LICZBY

Wartość bezwzględną liczby rzeczywistej x definiujemy wzorem:

$$|x| = \begin{cases} x & \text{dla } x \ge 0 \\ -x & \text{dla } x < 0 \end{cases}$$

Liczba |x| jest to odległość na osi liczbowej punktu x od punktu 0. W szczególności:

$$|x| \ge 0 \qquad \qquad |-x| = |x|$$

Dla dowolnych liczb *x*, *y* mamy:

$$|x + y| \le |x| + |y|$$
 $|x - y| \le |x| + |y|$ $|x \cdot y| = |x| \cdot |y|$

Ponadto, jeśli
$$y \neq 0$$
, to $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$

Dla dowolnych liczb a oraz $r \ge 0$ mamy warunki równoważne:

$$|x-a| \le r \iff a-r \le x \le a+r$$

 $|x-a| \ge r \iff x \le a-r \text{ lub } x \ge a+r$

2. POTĘGI I PIERWIASTKI

Niech n będzie liczbą całkowitą dodatnią. Dla dowolnej liczby a definiujemy jej n—tą potęgę:

$$a^n = \underbrace{a \cdot \dots \cdot a}_{n \text{ razy}}$$

Pierwiastkiem arytmetycznym $\sqrt[n]{a}$ stopnia n z liczby $a \ge 0$ nazywamy liczbę $b \ge 0$ taką, że $b^n = a$.

W szczególności, dla dowolnej liczby a zachodzi równość: $\sqrt{a^2} = |a|$.

Jeżeli a < 0 oraz liczba n jest nieparzysta, to $\sqrt[n]{a}$ oznacza liczbę b < 0 taką, że $b^n = a$. Pierwiastki stopni parzystych z liczb ujemnych nie istnieją.

Niech m, n beda liczbami całkowitymi dodatnimi. Definiujemy:

- dla
$$a \neq 0$$
:
$$a^{-n} = \frac{1}{a^n} \quad \text{oraz} \quad a^0 = 1$$
- dla $a \geq 0$:
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
- dla $a > 0$:
$$a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}}$$

Niech r, s będą dowolnymi liczbami rzeczywistymi. Jeśli a > 0 i b > 0, to zachodzą równości:

$$a^r \cdot a^s = a^{r+s}$$

$$\left(a^r\right)^s = a^{r \cdot s}$$

$$\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

$$\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

Jeżeli wykładniki r, s są liczbami całkowitymi, to powyższe wzory obowiązują dla wszystkich liczb $a \neq 0$ i $b \neq 0$.

3. Logarytmy

Niech a > 0 i $a \ne 1$. Logarytmem $\log_a c$ liczby c > 0 przy podstawie a nazywamy wykładnik b potęgi, do której należy podnieść podstawę a, aby otrzymać liczbę c:

$$b = \log_a c \Leftrightarrow a^b = c$$

Równoważnie:

$$a^{\log_a c} = c$$

Dla dowolnych liczb x > 0, y > 0 oraz r zachodza wzory:

$$\log_a(x \cdot y) = \log_a x + \log_a y$$

$$\log_a x^r = r \cdot \log_a x$$

$$\log_a x^r = r \cdot \log_a x \qquad \qquad \log_a \frac{x}{y} = \log_a x - \log_a y$$

Wzór na zamianę podstawy logarytmu:

jeżeli a > 0, $a \ne 1$, b > 0, $b \ne 1$ oraz c > 0, to

$$\log_b c = \frac{\log_a c}{\log_a b}$$

 $\log x$ oznacza $\log_{10} x$.

4. SILNIA. WSPÓŁCZYNNIK DWUMIANOWY

Silnią liczby całkowitej dodatniej n nazywamy iloczyn kolejnych liczb całkowitych od 1 do n włacznie:

$$n! = 1 \cdot 2 \cdot ... \cdot n$$

Ponadto przyjmujemy umowę, że 0!=1.

Dla dowolnej liczby całkowitej $n \ge 0$ zachodzi związek:

$$(n+1)! = n! \cdot (n+1)$$

Dla liczb całkowitych n, k spełniających warunki $0 \le k \le n$ definiujemy współczynnik

dwumianowy $\binom{n}{k}$ (symbol Newtona):

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Zachodza równości:

$$\binom{n}{k} = \frac{n(n-1)(n-2) \cdot \dots \cdot (n-k+1)}{1 \cdot 2 \cdot 3 \cdot \dots \cdot k}$$

$$\binom{n}{k} = \binom{n}{n-k} \qquad \binom{n}{0} = 1 \qquad \binom{n}{n} = 1$$

5. Wzór dwumianowy Newtona

Dla dowolnej liczby całkowitej dodatniej n oraz dla dowolnych liczb a, b mamy:

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}b^n$$

6. WZORY SKRÓCONEGO MNOŻENIA

Z dwumianu Newtona dla n = 2 oraz n = 3 otrzymujemy wzory dla dowolnych liczb a, b:

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

Dla dowolnej liczby całkowitej dodatniej n oraz dowolnych liczb a, b zachodzi wzór:

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + a^{n-k}b^{k-1} + \dots + ab^{n-2} + b^{n-1})$$
$$(a^{n} - 1) = (a - 1)(1 + a + \dots + a^{n-1})$$

W szczególności:

$$a^{2}-b^{2} = (a-b)(a+b)$$

$$a^{2}-1 = (a-1)(a+1)$$

$$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$$

$$a^{3}-1 = (a-1)(a^{2}+a+1)$$

$$a^{3}+b^{3} = (a+b)(a^{2}-ab+b^{2})$$

$$a^{3}+1 = (a+1)(a^{2}-a+1)$$

7. CIAGI

• <u>Ciag arytmetyczny</u>

Wzór na n-ty wyraz ciągu arytmetycznego (a_n) o pierwszym wyrazie a_1 i różnicy r:

$$a_n = a_1 + (n-1)r$$

Wzór na sumę $S_n = a_1 + a_2 + ... + a_n$ początkowych n wyrazów ciągu arytmetycznego:

$$S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)r}{2} \cdot n$$

Między sąsiednimi wyrazami ciągu arytmetycznego zachodzi związek:

$$a_n = \frac{a_{n-1} + a_{n+1}}{2} \quad \text{dla} \quad n \ge 2$$

• Ciag geometryczny

Wzór na n-ty wyraz ciągu geometrycznego (a_n) o pierwszym wyrazie a_1 i ilorazie q:

$$a_n = a_1 \cdot q^{n-1}$$
 dla $n \ge 2$

Wzór na sumę $S_n = a_1 + a_2 + ... + a_n$ początkowych n wyrazów ciągu geometrycznego:

$$S_n = \begin{cases} a_1 \cdot \frac{1 - q^n}{1 - q} & \text{dla} \quad q \neq 1 \\ n \cdot a_1 & \text{dla} \quad q = 1 \end{cases}$$

Między sąsiednimi wyrazami ciągu geometrycznego zachodzi związek:

$$a_n^2 = a_{n-1} \cdot a_{n+1}$$
 dla $n \ge 2$

Procent składany

Jeżeli kapitał początkowy K złożymy na n lat w banku, w którym oprocentowanie lokat wynosi p% w skali rocznej, to kapitał końcowy K_n wyraża się wzorem:

$$K_n = K \cdot \left(1 + \frac{p}{100}\right)^n$$

8. Funkcja kwadratowa

Postać ogólna funkcji kwadratowej: $f(x) = ax^2 + bx + c$, $a \ne 0$, $x \in R$.

Wzór każdej funkcji kwadratowej można doprowadzić do postaci kanonicznej:

$$f(x) = a(x-p)^2 + q$$
, gdzie $p = -\frac{b}{2a}$, $q = -\frac{\Delta}{4a}$, $\Delta = b^2 - 4ac$

Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie o współrzędnych (p,q). Ramiona paraboli skierowane są do góry, gdy a > 0, do dołu, gdy a < 0.

Liczba miejsc zerowych funkcji kwadratowej $f(x) = ax^2 + bx + c$ (liczba pierwiastków trójmianu kwadratowego, liczba rzeczywistych rozwiązań równania $ax^2 + bx + c = 0$), zależy od wyróżnika $\Delta = b^2 - 4ac$:

- jeżeli $\Delta < 0$, to funkcja kwadratowa nie ma miejsc zerowych (trójmian kwadratowy nie ma pierwiastków rzeczywistych, równanie kwadratowe nie ma rozwiązań rzeczywistych),
- jeżeli $\Delta = 0$, to funkcja kwadratowa ma dokładnie jedno miejsce zerowe (trójmian kwadratowy ma jeden pierwiastek podwójny, równanie kwadratowe ma dokładnie jedno rozwiązanie rzeczywiste): $x_1 = x_2 = -\frac{b}{2a}$
- jeżeli Δ > 0, to funkcja kwadratowa ma dwa miejsca zerowe (trójmian kwadratowy ma dwa różne pierwiastki rzeczywiste, równanie kwadratowe ma dwa rozwiązania rzeczywiste):

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} \qquad x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

Jeśli $\Delta \ge 0$, to wzór funkcji kwadratowej można doprowadzić do postaci iloczynowej:

$$f(x) = a(x - x_1)(x - x_2)$$

Wzory Viéte'a:

$$x_1 + x_2 = \frac{-b}{a} \qquad x_1 \cdot x_2 = \frac{c}{a}$$

9. GEOMETRIA ANALITYCZNA

Odcinek

Długość odcinka o końcach w punktach $A = (x_A, y_A)$, $B = (x_B, y_B)$ dana jest wzorem:

$$|AB| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Współrzędne środka odcinka AB:

$$\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right)$$

• Wektory

Współrzędne wektora \overrightarrow{AB} :

$$\overrightarrow{AB} = \left[x_B - x_A, y_B - y_A \right]$$

Jeżeli $\vec{u} = [u_1, u_2]$, $\vec{v} = [v_1, v_2]$ są wektorami, zaś a jest liczbą, to

$$\vec{u} + \vec{v} = [u_1 + v_1, u_2 + v_2]$$

$$\vec{a \cdot u} = [\vec{a} \cdot u_1, \vec{a} \cdot u_2]$$

• Prosta

Równanie ogólne prostej:

$$Ax + By + C = 0,$$

gdzie $A^2 + B^2 \neq 0$ (tj. współczynniki A, B nie są równocześnie równe 0).

Jeżeli A = 0, to prosta jest równoległa do osi Ox; jeżeli B = 0, to prosta jest równoległa do osi Oy; jeżeli C = 0, to prosta przechodzi przez początek układu współrzędnych.

Jeżeli prosta nie jest równoległa do osi *Oy*, to ma ona równanie kierunkowe:

$$y = ax + b$$

Liczba a to współczynnik kierunkowy prostej:

$$a = \operatorname{tg} \alpha$$

Współczynnik *b* wyznacza na osi *Oy* punkt, w którym dana prosta ją przecina.

Równanie kierunkowe prostej o współczynniku kierunkowym a, która przechodzi przez punkt $P = (x_0, y_0)$:

$$y = a(x - x_0) + y_0$$

Równanie prostej, która przechodzi przez dwa dane punkty $A = (x_A, y_A)$, $B = (x_B, y_B)$:

$$(y-y_A)(x_B-x_A)-(y_B-y_A)(x-x_A)=0$$

• Prosta i punkt

Odległość punktu $P = (x_0, y_0)$ od prostej o równaniu Ax + By + C = 0 jest dana wzorem:

5

$$\frac{\left|Ax_0 + By_0 + C\right|}{\sqrt{A^2 + B^2}}$$

Para prostych

Dwie proste o równaniach kierunkowych

$$y = a_1 x + b_1 \qquad \qquad y = a_2 x + b_2$$

spełniają jeden z następujących warunków:

- są równoległe, gdy $a_1 = a_2$,
- są prostopadłe, gdy $a_1 a_2 = -1$,
- tworzą kąt ostry φ i $tg\varphi = \left| \frac{a_1 a_2}{1 + a_1 a_2} \right|$

Dane są proste *k* i *l* o równaniach:

$$k: A_1x + B_1y + C_1 = 0$$
 $l: A_2x + B_2y + C_2 = 0$

- jeśli k jest równoległa do l, to $A_1B_2 A_2B_1 = 0$,
- jeśli k jest prostopadła do l, to $A_1A_2 + B_1B_2 = 0$,
- jeśli k i l tworzą kat ostry φ , to $tg\varphi = \left| \frac{A_1 B_2 A_2 B_1}{A_1 A_2 + B_1 B_2} \right|$

• <u>Trójkat</u>

Pole trójkąta ABC o wierzchołkach $A = (x_A, y_A)$, $B = (x_B, y_B)$, $C = (x_C, y_C)$, jest dane wzorem:

$$P_{\Delta ABC} = \frac{1}{2} | (x_B - x_A) (y_C - y_A) - (y_B - y_A) (x_C - x_A) |$$

Środek ciężkości trójkąta ABC, czyli punkt przecięcia jego środkowych, ma współrzędne:

$$\left(\frac{x_A + x_B + x_C}{3}, \frac{y_A + y_B + y_C}{3}\right)$$

• Przekształcenia geometryczne

- przesunięcie o wektor $\vec{u} = [a,b]$ przekształca punkt A = (x,y) na punkt A' = (x+a,y+b);
- symetria względem osi Ox przekształca punkt A = (x, y) na punkt A' = (x, -y);
- symetria względem osi *Oy* przekształca punkt A = (x, y) na punkt A' = (-x, y);
- symetria względem punktu (a,b) przekształca punkt A = (x,y) na punkt A' = (2a x, 2b y);
- jednokładność o środku w punkcie (0,0) i skali $s \neq 0$ przekształca punkt A = (x, y) na punkt A' = (sx, sy).

Równanie okręgu

Równanie okręgu o środku w punkcie S = (a,b) i promieniu r > 0:

$$(x-a)^2 + (y-b)^2 = r^2$$

$$x^{2} + y^{2} - 2ax - 2by + c = 0$$
 gdy $r^{2} = a^{2} + b^{2} - c > 0$

10. PLANIMETRIA

lub

• Cechy przystawania trójkątów

To, że dwa trójkąty ABC i DEF są przystające ($\Delta ABC \equiv \Delta DEF$), możemy stwierdzić na podstawie każdej z następujących **cech przystawania trójkątów**:

- cecha przystawania "bok bok": odpowiadające sobie boki obu trójkątów mają te same długości: |AB| = |DE|, |AC| = |DF|, |BC| = |EF|;
- cecha przystawania "bok kąt bok": dwa boki jednego trójkąta są równe odpowiadającym im bokom drugiego trójkąta oraz kąt zawarty między tymi bokami jednego trójkąta ma taką samą miarę jak odpowiadający mu kąt drugiego trójkąta, np. |AB| = |DE|, |AC| = |DF|, | ∠BAC | = | ∠EDF |;
- cecha przystawania "kąt bok kąt": jeden bok jednego trójkąta ma tę samą długość, co odpowiadający mu bok drugiego trójkąta oraz miary odpowiadających sobie kątów obu trójkątów, przyległych do boku, są równe, np. |AB| = |DE|, $| \lt BAC| = | \lt EDF|$, $| \lt ABC| = | \lt DEF|$.

• Cechy podobieństwa trójkątów

To, że dwa trójkąty ABC i DEF są podobne ($\Delta ABC \sim \Delta DEF$), możemy stwierdzić na podstawie każdej z następujących **cech podobieństwa trójkątów**:

- cecha podobieństwa "bok bok bok": długości boków jednego trójkąta są proporcjonalne do odpowiednich długości boków drugiego trójkąta, np. $\frac{|AB|}{|DE|} = \frac{|AC|}{|DF|} = \frac{|BC|}{|EF|};$
- cecha podobieństwa "bok kąt bok": długości dwóch boków jednego trójkąta są proporcjonalne do odpowiednich długości dwóch boków drugiego trójkąta i kąty między tymi parami boków są przystające, np. $\frac{|AB|}{|DE|} = \frac{|AC|}{|DF|}$, |≼BAC| = |∢EDF|;
- cecha podobieństwa "kąt kąt kąt": dwa kąty jednego trójkąta są przystające do odpowiednich dwóch kątów drugiego trójkąta (więc też i trzecie kąty obu trójkątów są przystające): $| \ll BAC | = | \ll EDF |$, $| \ll ABC | = | \ll DEF |$, $| \ll ACB | = | \ll DFE |$.

7

Oznaczenia:

a, *b*, *c* – długości boków, leżących odpowiednio naprzeciwko wierzchołków *A*, *B*, *C*;

$$2p = a + b + c$$
 – obwód trójkąta;

$$\alpha$$
, β , γ – miary kątów przy wierzchołkach A , B , C ;

$$h_a$$
, h_b , h_c – wysokości opuszczone
z wierzchołków A , B , C ;

R, r – promienie okręgów opisanego i wpisanego.

• Twierdzenie Pitagorasa (wraz z twierdzeniem odwrotnym do niego)

W trójkącie ABC kąt γ jest prosty wtedy i tylko wtedy, gdy $a^2 + b^2 = c^2$.

• Związki miarowe w trójkącie prostokątnym

Załóżmy, że kąt γ jest prosty. Wówczas:

$$h_c^2 = |AD| \cdot |DB|$$

$$h_c = \frac{ab}{c}$$

$$a = c \cdot \sin \alpha = c \cdot \cos \beta$$

$$a = b \cdot \lg \alpha = b \cdot \frac{1}{\lg \beta}$$

$$R = \frac{1}{2}c \qquad r = \frac{a+b-c}{2} = p-c$$

• Twierdzenie sinusów

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

• Twierdzenie cosinusów

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$
$$b^{2} = a^{2} + c^{2} - 2ac \cos \beta$$
$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$

• Wzory na pole trójkata

$$\begin{split} P_{\Delta ABC} &= \frac{1}{2} \cdot a \cdot h_a = \frac{1}{2} \cdot b \cdot h_b = \frac{1}{2} \cdot c \cdot h_c \\ P_{\Delta ABC} &= \frac{1}{2} a \cdot b \cdot \sin \gamma \\ P_{\Delta ABC} &= \frac{1}{2} a^2 \frac{\sin \beta \cdot \sin \gamma}{\sin \alpha} = 2R^2 \cdot \sin \alpha \cdot \sin \beta \cdot \sin \gamma \\ P_{\Delta ABC} &= \frac{abc}{4R} = rp = \sqrt{p(p-a)(p-b)(p-c)} \end{split}$$

Trójkat równoboczny

$$h = \frac{a\sqrt{3}}{2}$$

$$P_{\Delta} = \frac{a^2 \sqrt{3}}{4}$$

Twierdzenie Talesa

Jeżeli proste równoległe AA' i BB' przecinają dwie proste, które przecinają się w punkcie O,

$$\frac{|OA|}{|OA'|} = \frac{|OB|}{|OB'|}$$

Twierdzenie odwrotne do twierdzenia Talesa

Jeżeli proste AA' i BB' przecinają dwie proste, które przecinają się w punkcie O oraz $=\frac{|OB|}{|OB'|}$, to proste AA' i BB' są równoległe.

Czworokaty

Trapez

Czworokat, który ma co najmniej jedną parę boków równoległych.

Wzór na pole trapezu:

$$P = \frac{a+b}{2} \cdot h$$

Równoległobok

Czworokat, który ma dwie pary boków równoległych.

Wzory na pole równoległoboku:

$$P = ah = a \cdot b \cdot \sin \alpha = \frac{1}{2} \cdot |AC| \cdot |BD| \cdot \sin \varphi$$

Romb

Czworokat, który ma dwie pary boków równoległych jednakowej długości. Wzory na pole rombu:

$$P = ah = a^{2} \cdot \sin \alpha = \frac{1}{2} \cdot |AC| \cdot |BD|$$

Deltoid

Czworokat, który ma oś symetrii, zawierającą jedną z przekątnych. Wzór na pole deltoidu:

$$P = \frac{1}{2} \cdot |AC| \cdot |BD|$$

• Koło

Wycinek koła

• Katy w okręgu

Wzór na pole koła o promieniu r:

$$P = \pi r^2$$

Obwód koła o promieniu *r*:

$$Ob = 2\pi r$$

Wzór na pole wycinka koła o promieniu r i kącie środkowym α wyrażonym w stopniach:

$$P = \pi r^2 \cdot \frac{\alpha}{360^{\circ}}$$

Długość łuku wycinka koła o promieniu r i kącie środkowym α wyrażonym

w stopniach:
$$l = 2\pi r \cdot \frac{\alpha}{360^{\circ}}$$

Miara kata wpisanego w okrąg jest równa połowie miary kata środkowego, opartego na tym samym łuku.

Miary kątów wpisanych w okrąg, opartych na tym samym łuku, są równe.

• Twierdzenie o kącie między styczną i cięciwą

Dany jest okrąg o środku w punkcie O i jego cięciwa AB. Prosta AC jest styczna do tego okręgu w punkcie A. Wtedy $| \not \subset AOB| = 2 \cdot | \not \subset CAB|$, przy czym wybieramy ten z kątów środkowych AOB, który jest oparty na łuku znajdującym się wewnątrz kąta CAB.

• Twierdzenie o odcinkach siecznej i stycznej

Dane są: prosta przecinająca okrąg w punktach A i B oraz prosta styczna do tego okręgu w punkcie C. Jeżeli proste te przecinają się w punkcie P, to

$$|PA| \cdot |PB| = |PC|^2$$

• Okrąg opisany na czworokącie

Na czworokącie można opisać okrąg wtedy i tylko wtedy, gdy sumy miar jego przeciwległych kątów wewnętrznych są równe 180°:

$$\alpha + \gamma = \beta + \delta = 180^{\circ}$$

• Okrąg wpisany w czworokąt

W czworokąt wypukły można wpisać okrąg wtedy i tylko wtedy, gdy sumy długości jego przeciwległych boków są równe:

$$a+c=b+d$$

11. STEREOMETRIA

• Twierdzenie o trzech prostych prostopadłych

Prosta k przebija płaszczyznę w punkcie P. Prosta l jest rzutem prostokątnym prostej k na tę płaszczyznę. Prosta m leży na tej płaszczyźnie i przechodzi przez punkt P. Wówczas prosta m jest prostopadła do prostej k wtedy i tylko wtedy, gdy jest prostopadła do prostej l.

• Oznaczenia

P – pole powierzchni całkowitej

 P_p – pole powierzchni podstawy

 P_b – pole powierzchni bocznej

V – objętość

• Prostopadłościan

$$P = 2(ab + bc + ac)$$

$$V = abc$$

gdzie *a*, *b*, *c* są długościami krawędzi prostopadłościanu.

• Graniastosłup prosty

$$P_b = 2p \cdot h$$

$$V = P_p \cdot h$$

gdzie 2p jest obwodem podstawy graniastosłupa.

• Ostrosłup

$$V = \frac{1}{3} P_p \cdot h$$
gdzie *h* jest wysokością ostrosłupa.

• Walec

$$P_b = 2\pi r h$$

 $P = 2\pi r (r + h)$
 $V = \pi r^2 h$
gdzie r jest promieniem podstawy,
 h wysokością walca.

• Stożek

$$P_b = \pi r l$$

$$P = \pi r (r + l)$$

$$V = \frac{1}{3} \pi r^2 h$$

gdzie r jest promieniem podstawy, h wysokością, l długością tworzącej stożka.

• <u>Kula</u>

$$P = 4\pi r^2$$

$$V = \frac{4}{3}\pi r^3$$

gdzie r jest promieniem kuli.

12. TRYGONOMETRIA

Definicje funkcji trygonometrycznych

$$\sin \alpha = \frac{y}{r}$$

$$\cos \alpha = \frac{x}{r}$$

$$tg\alpha = \frac{y}{x}, gdy \ x \neq 0$$

gdzie $r = \sqrt{x^2 + y^2} > 0$ jest promieniem wodzącym punktu M.

Wykresy funkcji trygonometrycznych

$$y = tg x$$

Związki między funkcjami tego samego kąta

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\tan \alpha = \sin \alpha$$

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha}$$

$$\alpha \neq \frac{\pi}{2} + k\pi$$
 k – całkowite

$$k$$
 – całkowite

Niektóre wartości funkcji trygonometrycznych

dla

	0 °	30°	45°	60°	90°
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{tg} \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	nie istnieje

• Funkcje sumy i różnicy katów

Dla dowolnych kątów α , β zachodzą równości:

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta \qquad \sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$$
$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta \qquad \cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

Ponadto mamy równości:

$$tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha \cdot tg\beta} \qquad tg(\alpha - \beta) = \frac{tg\alpha - tg\beta}{1 + tg\alpha \cdot tg\beta}$$

które zachodzą zawsze, gdy są określone i mianownik prawej strony nie jest zerem.

Funkcje podwojonego kata

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

13. KOMBINATORYKA

• Wariacje z powtórzeniami

Liczba sposobów, na które z n różnych elementów można utworzyć ciąg, składający się z k niekoniecznie różnych wyrazów, jest równa n^k .

• Wariacje bez powtórzeń

Liczba sposobów, na które z n różnych elementów można utworzyć ciąg, składający się z k ($1 \le k \le n$) różnych wyrazów, jest równa

$$n \cdot (n-1) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

Permutacje

Liczba sposobów, na które $n \ge 1$ różnych elementów można ustawić w ciąg, jest równa n!.

Kombinacje

Liczba sposobów, na które spośród n różnych elementów można wybrać k ($0 \le k \le n$) elementów, jest równa $\binom{n}{k}$.

14. RACHUNEK PRAWDOPODOBIEŃSTWA

Własności prawdopodobieństwa

$$0 \le P(A) \le 1$$
 dla każdego zdarzenia $A \subset \Omega$

$$P(\Omega) = 1$$
 Ω – zdarzenie pewne

$$P(\varnothing) = 0$$
 \varnothing – zdarzenie niemożliwe (pusty podzbiór Ω)

$$P(A) \le P(B)$$
 gdy $A \subset B \subset \Omega$

$$P(A') = 1 - P(A)$$
, gdzie A' oznacza zdarzenie przeciwne do zdarzenia A

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
, dla dowolnych zdarzeń $A, B \subset \Omega$,

zatem $P(A \cup B) \le P(A) + P(B)$, dla dowolnych zdarzeń $A, B \subset \Omega$.

• Twierdzenie: Klasyczna definicja prawdopodobieństwa

Niech Ω będzie skończonym zbiorem wszystkich zdarzeń elementarnych. Jeżeli wszystkie zdarzenia jednoelementowe są jednakowo prawdopodobne, to prawdopodobieństwo zdarzenia $A \subset \Omega$ jest równe

$$P(A) = \frac{|A|}{|\Omega|}$$

gdzie |A| oznacza liczbę elementów zbioru A, zaś $|\Omega|$ – liczbę elementów zbioru Ω .

15. PARAMETRY DANYCH STATYSTYCZNYCH

• Średnia arytmetyczna

Średnia arytmetyczna n liczb $a_1, a_2, ..., a_n$ jest równa:

$$\frac{a_1 + a_2 + \ldots + a_n}{n}$$

Średnia ważona

Średnia ważona n liczb $a_1, a_2, ..., a_n$, którym przypisano odpowiednio dodatnie wagi $w_1, w_2, ..., w_n$ jest równa:

$$\frac{w_1 \cdot a_1 + w_2 \cdot a_2 + \dots + w_n \cdot a_n}{w_1 + w_2 + \dots + w_n}$$

• <u>Średnia geometryczna</u>

Średnia geometryczna n nieujemnych liczb $a_1, a_2, ..., a_n$ jest równa:

$$\sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n}$$

• Mediana

Medianą uporządkowanego w kolejności niemalejącej ciągu n danych liczbowych $a_1 \le a_2 \le a_3 \le ... \le a_n$ jest:

- dla *n* nieparzystych: $a_{\frac{n+1}{2}}$ (środkowy wyraz ciągu),
- dla *n* parzystych: $\frac{1}{2} \left(a_{\frac{n}{2}} + a_{\frac{n}{2}+1} \right)$ (średnia arytmetyczna środkowych wyrazów ciągu).

Wariancja i odchylenie standardowe

Wariancją n danych liczbowych $a_1, a_2, ..., a_n$ o średniej arytmetycznej \overline{a} jest liczba:

$$\sigma^{2} = \frac{\left(a_{1} - \overline{a}\right)^{2} + \left(a_{2} - \overline{a}\right)^{2} + \dots + \left(a_{n} - \overline{a}\right)^{2}}{n} = \frac{a_{1}^{2} + a_{2}^{2} + \dots + a_{n}^{2}}{n} - \left(\overline{a}\right)^{2}$$

Odchylenie standardowe σ jest pierwiastkiem kwadratowym z wariancji.

16. TABLICA WARTOŚCI FUNKCJI TRYGONOMETRYCZNYCH

	$\sin \alpha$,	
α[°]	$\cos oldsymbol{eta}$	$\operatorname{tg} \alpha$	β [°]
0	0,0000	0,0000	90
1	0,0175	0,0175	89
2	0,0349	0,0349	88
3	0,0523	0,0524	87
4	0,0698	0,0699	86
5	0,0872	0,0875	85
6	0,1045	0,1051	84
7	0,1219	0,1228	83
8	0,1392	0,1405	82
9	0,1564	0,1584	81
10	0,1736	0,1763	80
11	0,1908	0,1944	79
12	0,2079	0,2126	78
13	0,2250	0,2309	77
14	0,2419	0,2493	76
15	0,2588	0,2679	75
16	0,2756	0,2867	74
17	0,2924	0,3057	73
18	0,3090	0,3249	72
19	0,3256	0,3443	71
20	0,3420	0,3640	70
21	0,3584	0,3839	69
22	0,3746	0,4040	68
23	0,3907	0,4245	67
24	0,4067	0,4452	66
25	0,4226	0,4663	65
26	0,4384	0,4877	64
27	0,4540	0,5095	63
28	0,4695	0,5317	62
29	0,4848	0,5543	61
30	0,5000	0,5774	60
31	0,5150	0,6009	59
32	0,5299	0,6249	58
33	0,5446	0,6494	57
34	0,5592	0,6745	56
35	0,5736	0,7002	55
36	0,5878	0,7265	54
37	0,6018	0,7536	53
38	0,6157	0,7813	52
39	0,6293	0,8098	51
40	0,6428	0,8391	50
41	0,6561	0,8693	49
42	0,6691	0,9004	48
43	0,6820	0,9325	47
44	0,6947	0,9657	46
45	0,7071	1,0000	45

503	$\sin \alpha$	4	0.503	
α [°]	$\cos \beta$	$\operatorname{tg} \alpha$	β [°]	
46	0,7193	1,0355	44	
47	0,7314	1,0724	43	
48	0,7431	1,1106	42	
49	0,7547	1,1504	41	
50	0,7660	1,1918	40	
51	0,7771	1,2349	39	
52	0,7880	1,2799	38	
53	0,7986	1,3270	37	
54	0,8090	1,3764	36	
55	0,8192	1,4281	35	
56	0,8290	1,4826	34	
57	0,8387	1,5399	33	
58	0,8480	1,6003	32	
59	0,8572	1,6643	31	
60	0,8660	1,7321	30	
61	0,8746	1,8040	29	
62	0,8829	1,8807	28	
63	0,8910	1,9626	27	
64	0,8988	2,0503	26	
65	0,9063	2,1445	25	
66	0,9135	2,2460	24	
67	0,9205	2,3559	23	
68	0,9272	2,4751	22	
69	0,9336	2,6051	21	
70	0,9397	2,7475	20	
71	0,9455	2,9042	19	
72	0,9511	3,0777	18	
73	0,9563	3,2709	17	
74	0,9613	3,4874	16	
75	0,9659	3,7321	15	
76	0,9703	4,0108	14	
77	0,9744	4,3315	13	
78	0,9781	4,7046	12	
79	0,9816	5,1446	11	
80	0,9848	5,6713	10	
81	0,9877	6,3138	9	
82	0,9903	7,1154	8	
83	0,9925	8,1443	7	
84	0,9945	9,5144	6	
85	0,9962	11,4301	5	
86	0,9976	14,3007	4	
87	0,9986	19,0811	3	
88	0,9994	28,6363	2	
89	0,9998	57,2900	1	
90	1,0000	_	0	

Zdajesz obowiązkowo matematykę? No problem!

Takiej książki Ci brakowało.

Jest to doskonałe kompendium wiedzy matematycznej, potrzebnej, by sprawnie i szybko przygotować się do matury, a potem zadziwić wszystkich (i siebie!) błyskotliwym i trafnym rozwiązaniem zadań egzaminacyjnych.

PRZYDATNE ADRESY

CENTRALNA KOMISJA EGZAMINACYJNA

www.cke.edu.pl, ckesekr@cke.edu.pl

OKREGOWE KOMISJE EGZAMINACYJNE

ul. Na Stoku 49, 80-874 Gdańsk tel. (58) 320 55 90, fax (58) 320 55 91 www.oke.gda.pl, komisja@oke.gda.pl

ul. Mickiewicza 4, 43-600 Jaworzno tel. (32) 616 33 99, fax (32) 616 33 99 w. 108 www.oke.jaw.pl, oke@oke.jaw.pl

ul. Focha 39, 30-119 Kraków tel. (12) 618 12 01, fax (12) 618 12 00 www.oke.krakow.pl, oke@oke.krakow.pl

ul. Nowa 2, 18-400 Łomża tel./fax (86) 216 44 95 www.oke.lomza.com, sekretariat@oke.lomza.com ul. Praussa 4, 94-203 Łódź tel. (42) 634 91 33, fax (42) 634 91 54 www.komisja.pl, komisja@komisja.pl

ul. Gronowa 22, 61-655 Poznań tel. (61) 852 13 07, fax (61) 852 14 41 www.oke.poznan.pl, sekretariat@oke.poznan.pl

ul. Grzybowska 77, 00-844 Warszawa tel. (22) 457 03 35, fax (22) 457 03 45 www.oke.waw.pl, info@oke.waw.pl

ul. Zielińskiego 57, 53-533 Wrocław tel. (71) 785 18 52, fax (71) 785 18 73 www.oke.wroc.pl, sekret@oke.wroc.pl

Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Publikacja jest dystrybuowana bezpłatnie.