Aide mémoire 2021

Léo Bernard

August 23, 2021

Contents

1	Analyse 5					
	1.1	Notion	s de bases			
		1.1.1	Introduction			
		1.1.2	Intervalle			
		1.1.3	Valeur absolue			
		1.1.4	Partie entière			
	1.2	Foncti	on réelle			
		1.2.1	Représentation graphique			
		1.2.2	Parité d'une fonction			
		1.2.3	Périodicité d'une fonction			
		1.2.4	Croissance et décroissance d'une fonction 8			
		1.2.5	Maximum et minimum d'une fonction			
		1.2.6	Opérations sur les fonctions			
		1.2.7	Injection, surjection, bijection			
		1.2.8	Fonction réciproque			
	1.3	Limite	s			
		1.3.1	Limite: définition			
		1.3.2	Limite à droite, limite à gauche			
		1.3.3	Propriétés des limites			
		1.3.4	Théorème des deux gendarmes			
		1.3.5	Critère de d'Alembert			
		1.3.6	Critère de Cauchy			
		1.3.7	Continuité			
		1.3.8	Limites de fonctions composées			
		1.3.9	Propriétés des fonctions continues			
		1.3.10	Limites infinies			
		1.3.11	Propriétés des limites infinies			
		1.3.12	Limites à l'infini			
		1.3.13	Asymptotes			
		1 3 14	Astuces de calcul			

4 CONTENTS

1.4	Dérivées				
	1.4.1	Tangeante (dérivée) en x_0	18		
	1.4.2	Nombre dérivé à gauche, à droite	18		
	1.4.3	Point anguleux, à tangeante verticale, de rebroussement	18		
	1.4.4	fonction dérivée	19		
	1.4.5	Dérivée d'ordre supérieur	21		
	1.4.6	Règle de Bernouilli-L'Hospital	21		
	1.4.7				
	1.4.8	Règles de dérivation			
1.5	Intégra	ales	24		
	1.5.1	Introduction	24		
	1.5.2	Primitives d'une fonction	25		
	1.5.3	Intégration par parties	25		
	1.5.4	Changement de variable			
	1.5.5	Règles d'intégration			
1.6	Applic	cations des dérivées			

Chapitre 1

Analyse

1.1 Notions de bases

1.1.1 Introduction

On désigne par \emptyset l'ensemble vide. $\mathbb N$ l'ensemble des entiers naturels, $\mathbb Z$ l'anneau des entiers relatifs, $\mathbb Q$ le corps des nombres rationnels, et $\mathbb R$ le corps des nombres réels. $\mathbb R\setminus\mathbb Q$ étant l'ensemble des Nombres irrationnels. On a donc les inclusions suivantes :

$$\varnothing \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$

Par définition, on ajoute * pour signifier que le zéro est non compris dans l'ensemble, + pour signifier que l'ensemble ne contient que des positifs, - pour signifier que l'ensemble ne contient que des négatifs.

1.1.2 Intervalle

Définition. Un sous ensemble $I \neq \emptyset$ de \mathbb{R} est appelé un **intervalle** si pour tout couple $(a,b) \in I \times I$ vérifiant $a \leq b$, la relation $a \leq x \leq b$ implique $x \in I$.

Il en découle une suite de notations :

Intervalles bornés

Intervalle ouvert : $]a; b[=x \in \mathbb{R} : a < x < b]$ Intervalle fermé : $[a; b] =x \in \mathbb{R} : a \le x \le b$

Intervalle semi-ouvert à gauche : $]a;b] = x \in \mathbb{R} : a < x \le b$ Intervalle semi-ouvert à droite : $[a;b] = x \in \mathbb{R} : a \le x < b$

Intervalles non bornés

Intervalle ouvert : $] - \infty; a[=x \in \mathbb{R} : x < a]$ Intervalle ouvert : $]a; +\infty[=x \in \mathbb{R} : x > a]$

Intervalle fermé : $]-\infty;a]=x\in\mathbb{R}:x\leq a$ Intervalle fermé : $[a;+\infty[=x\in\mathbb{R}:x\geq a$

1.1.3 Valeur absolue

Définition. A tout nombre réel x, on peut associer le nombre réel positif ou nul défini par :

$$|x| = \begin{cases} x & \text{si } x > 0 \\ -x & \text{si } x \le 0 \end{cases}$$

|x| est appelé la **valeur absolue** de x.

1.1.4 Partie entière

Définition. A tout nombre réel x, on peut associer un unique entier relatif [x] tel que :

$$[x] \le x < [x] + 1$$

[x] est appelé la **partie entière** de x, soit le plus grand entier relatif inférieur ou égal à x.

7

1.2 Fonction réelle

Soit A et B deux sous ensembles de \mathbb{R} . On appelle fonction réelle une relation qui lie un élément x de A à un élément y (f(x), la valeur de f en x) dans B.

Remarque. On appelle A l'ensemble de départ et B l'ensemble d'arrivée.

Remarque. x est aussi appelé la préimage de y par f.

Remarque. L'ensemble des valeurs de f est noté Im(f).

Remarque. Deux fonctions f(x) et g(x) sont dites égales si elles ont les mêmes ensembles d'arrivée et de départ, et si $f(x) = g(x) \ \forall x \in A$. On note alors f = g.

1.2.1 Représentation graphique

On représente une fonction en dessinant l'ensemble des points de coordonnées (a; f(a)). Ce dessin est appelé **graphe** de f.

Remarque. On appelle le nombre a zéro de f si f(a) = 0. son ensemble correspond à l'ensemble des points ou le graphe de f intersecte O_x

1.2.2 Parité d'une fonction

Si f(-x) = f(x) pour tout x de l'ensemble de définiton de f, on dit que f est une **fonction paire**.

Si f(-x) = -f(x) pour tout x de l'ensemble de définiton de f, on dit que f est une **fonction impaire**.

Remarque. Le graphe d'une fontion paire est symétrique à l'axe O_y , et Le graphe d'une fontion impaire est symétrique à l'origine.

1.2.3 Périodicité d'une fonction

Une fonction est dite de **période p** si il existe un nombre p > 0 tel que $f(x + kp) = f(x) \ \forall k \in \mathbb{Z}$

Remarque. Le graphe d'une fonction périodique est un motif qui se répète indéfiniment par translation horizontale (d'amplitude p).

1.2.4 Croissance et décroissance d'une fonction

Pour tout $x_1, x_2 \in I$ on dit que :

• Une fonction f est **croissante** sur un intervalle I si :

$$x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$$

 \bullet Une fonction f est **strictement croissante** sur un intervalle I si :

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

ullet Une fonction f est **décroissante** sur un intervalle I si :

$$x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$$

• Une fonction f est **strictement décroissante** sur un intervalle I si :

$$x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

9

1.2.5 Maximum et minimum d'une fonction

Soit $f:A\to\mathbb{R}$ une fonction réelle

• f(a) est un maximum local de f si il existe un intervalle ouvert I contenant a tel que :

$$\forall x \in I \cap A : f(x) \le f(a)$$

On dit aussi que f admet un maximum en a.

• f(a) est un **minimum local** de f si il existe un intervalle ouvert I contenant b tel que :

$$\forall x \in I \cap A : f(x) \ge f(b)$$

On dit aussi que f admet un minimum en b.

• f(a) est un **maximum absolu** de f si :

$$\forall x \in A : f(x) \le f(a)$$

• f(a) est un **minimum absolu** de f si :

$$\forall x \in A : f(x) \ge f(a)$$

Remarque. Le nom extremum peut être aussi utilisé à la place de maximum ou minimum.

1.2.6 Opérations sur les fonctions

Soit $f: A \to \mathbb{R}$ et $f: B \to \mathbb{R}$ deux fonctions réelles

• La **somme** des fonctions f et g est une nouvelle fonction notée f+g : $A\cap B\to \mathbb{R}$ définie par :

$$(f+g)(x) = f(x) + g(x)$$

• La **différence** des fonctions f et g est une nouvelle fonction notée $f - g : A \cap B \to \mathbb{R}$ définie par :

$$(f-g)(x) = f(x) - g(x)$$

• Le **produit** de la fonction f par un nombre réel c est une nouvelle fonction notée $c * f : A \to \mathbb{R}$ définie par :

$$(c * f)(x) = fc * (x)$$

• Le **produit** des fonctions f et g est une nouvelle fonction notée f*g : $A\cap B\to \mathbb{R}$ définie par :

$$(f * q)(x) = f(x) * q(x)$$

• Le **quotient** des fonctions f et g est une nouvelle fonction notée $\frac{f}{g}$: $A \cap B \cap x | g(x) \neq 0 \to \mathbb{R}$ définie par :

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

• La **composée** des fonctions f et g est une nouvelle fonction notée $g \circ f : x | x \in A$ et $f(x) \in B \to \mathbb{R}$ définie par :

$$(g \circ f)(x) = g(f(x))$$

11

1.2.7 Injection, surjection, bijection

Soit une fonction $f A \to B$.

- f est dite **surjective** si tout élément y de B est l'image par f d'au minimum un élément x de A (au minimum une précédence pour chaque objet de B).
- f est dite **injective** si tout élément y de B est l'image par f d'au maximum un élément x de A (au maximum une précédence pour chaque objet de B).
- f est dite **bijective** si elle est à la fois injective et surjective. Ainsi, chaque élément y de B est l'image par f d'un unique élément x de A.

1.2.8 Fonction réciproque

Soit une fonction $f A \to B$ bijective.

On appelle **réciproque** de f notée rf ou f^{-1} la fonction $f^{-1}:B\to A$ définie par :

$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$

Chaque fonction f bijective peut donc avoir une fonction réciproque f^{-1} tel que :

$$(f^{-1} \circ f)(x) = x \ \forall x \in A$$
$$(f \circ f^{-1})(y) = y \ \forall y \in B$$

1.3 Limites

1.3.1 Limite: définition

Soit f une fonction définie sur un intervalle ouvert contenant a sauf eventuellement en a.

Le nombre L est **limite de** f **en** a **si** f(x) est arbitrairement proche de L dès que x tend vers a, avec $x \neq a$. On note :

$$\lim_{x \to a} f(x) = L$$

On dit que f(x) tend vers L quand x tend vers a.

Remarque. On peut aussi utiliser les limites sur des suites plutôt que sur des fonctions.

1.3.2 Limite à droite, limite à gauche

Soit f une fonction définie sur un intervalle de la forme]a;d[. Le nombre L est **limite à droite de f en a** si $\lim_{x\to a_+} f(x) = L$ Soit f une fonction définie sur un intervalle de la forme]g;a[. Le nombre L est **limite à gauche de f en a** si $\lim_{x\to a_-} f(x) = L$

1.3.3 Propriétés des limites

Soit f et g deux fonctions admettant une limitent en a et soit $\lambda \in \mathbb{R}$

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [\lambda f(x)] = \lambda \lim_{x \to a} f(x)$$

$$\lim_{x \to a} [f(x) * g(x)] = \lim_{x \to a} f(x) * \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ si } \lim_{x \to a} g(x) \neq 0$$

1.3. LIMITES 13

1.3.4 Théorème des deux gendarmes

Soit f, g et h trois fonctions définies sur un intervalle ouvert I contenant a,

sauf éventuellement en a.

Si
$$f(x) \le h(x) \le g(x) \forall x \in I /\{a\}$$
 et si $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = L$

alors
$$\lim_{x\to a} h(x) = L$$

1.3.5 Critère de d'Alembert

1.3.6 Critère de Cauchy

1.3.7 Continuité

Une fonction f est **continue** en a si elle est définie sur une intervalle ouvert contenant a et si $\lim_{x\to a} f(x) = f(a)$

Une fonction f est **continue** en a si elle est continue en tout point de l'intervalle I.

Une fonction f est **continue sur un intervalle fermé** [a;b] si elle est continue en tout point de l'intervalle et si

$$\lim_{x\to a_+} f(x) = f(a)$$
 et $\lim_{x\to b_-} f(x) = f(b)$.

1.3.8 Limites de fonctions composées

Soit f et g deux fonctions.

Si $\lim_{x\to a} f(x) = L$ et si de plus g est continue en L, alors

$$\lim_{x\to a} g(f(x)) = g(\lim_{x\to a} f(x)) = g(L)$$

Si $\lim_{x\to a} f(x) = L$ et si de plus $f(x) \neq L$ sur un intervalle ouvert

contenant a, sauf éventuellement a, alors :

$$\lim_{x\to a} g(f(x)) = \lim_{t\to L} g(t)$$

1.3.9 Propriétés des fonctions continues

Continuité de la réciproque

Soit I un intervalle et $f:I\to J$ une fonction b bijective et continue.

Alors la réciproque rf est continue sur l'intervalle J.

Théorème de Bolzanno

Si f est continue sur l'intervalle [a;b] et si f(a) et f(b) sont de signes différents, alors la fonction f admet au moins un zéro dans

[a;b]

Théorème de la valeur intermédiaire

Si f est continue sur l'intervalle [a;b], alors pour tout nombre γ compris entre f(a) et f(b), il existe $c \in [a;b] \text{ tel que } f(c) = \gamma$

Théorème de Bolzanno-Weierstrass

L'image d'un intervalle fermé borné par une fonction continue est

un intervalle fermé borné

Corollaire

Une fonction continue sur un intervalle fermé [a;b] admet un maximum absolu et un minimum absolu sur cet intervalle.

1.3. LIMITES 15

1.3.10 Limites infinies

Soit f une fonction définie sur un intervalle ouvert contenant a, sauf éventuellement en a.

on écrit $\lim_{x\to a} f(x) = +\infty$ si f(x) est arbitrairement grand quand x tend vers a, avec $x \neq a$. on écrit $\lim_{x\to a} f(x) = -\infty$ si $\lim_{x\to a} (-f(x)) = +\infty$

1.3.11 Propriétés des limites infinies

$$\lim_{x\to a} f(x) = L \text{ et } \lim_{x\to a} g(x) = +\infty \Rightarrow \lim_{x\to a} [f(x) + g(x)] = +\infty$$

$$\lim_{x\to a} f(x) = L < 0 \text{ et } \lim_{x\to a} g(x) = +\infty \Rightarrow \lim_{x\to a} [f(x) * g(x)] = -\infty$$

$$\lim_{x\to a} f(x) = L \neq 0 \text{ et } \lim_{x\to a} g(x) = 0 \Rightarrow \lim_{x\to a} \left| \frac{f(x)}{g(x)} \right| = +\infty$$

$$\lim_{x\to a} f(x) = L \neq 0 \text{ et } \lim_{x\to a} g(x) = \pm\infty \Rightarrow \lim_{x\to a} \frac{f(x)}{g(x)} = 0$$

Remarque. $\frac{0}{0}$, $\frac{\infty}{\infty}$, $0 * \infty$ et $\infty - \infty$ sont des formes dites indéterminées.

1.3.12 Limites à l'infini

Soit f une fonction définie sur un intervalle de la forme $[a; +\infty[$. On écrit $\lim_{x\to\infty} f(x) = L$ si f(x) est arbitrairement proche de L quand x est suffisamment grand ou de manière équivalente, si $\lim_{t\to 0_+} f(\frac{1}{t}) = L$. Soit f une fonction définie sur un intervalle de la forme $]-\infty;a]$. On écrit $\lim_{x\to -\infty} f(x) = L$ si $\lim_{x\to +\infty} f(-x) = L$

1.3.13 Asymptotes

Définition. La droite d'équation x = a est une **asymptote verticale** de la fonction f si

$$\lim_{x \to a_+} |f(x)| = +\infty \text{ ou } si \lim_{x \to a_-} |f(x)| = +\infty$$

Définition. La droite d'équation $y = h_1$ est une **asymptote horizontale** de la fonction f vers $+\infty$ si $\lim_{x\to+\infty} f(x) = h_1$

Définition. La droite d'équation $y = h_2$ est une **asymptote horizontale** de la fonction f vers $-\infty$ si $\lim_{x\to -\infty} f(x) = h_2$

Définition. La droite d'équation $y = h_1$ est une **asymptote horizontale** de la fonction f vers $+\infty$ si $\lim_{x\to+\infty} f(x) = h_1$

Définition. La droite d'équation y = mx + h est une **asymptote oblique** de la fonction f vers $+\infty$ si

$$f(x) = mx + h + \delta(x)$$
 avec $\lim_{x \to +\infty} \delta(x) = 0$

Définition. La droite d'équation y = mx + h est une **asymptote oblique** de la fonction f vers $-\infty$ si

$$f(x) = mx + h + \delta(x)$$
 avec $\lim_{x \to -\infty} \delta(x) = 0$

1.3.14 Astuces de calcul

Division euclidienne

Soit f(x), g(x) deux fonctions rationnelles et $L = \lim_{x \to +b} \frac{f(x)}{g(x)} = 0$, avec $b \in \mathbb{R}$

On remarque dans cette situation que f(x) et g(x) sont divisibles par (x-b) (car quand x=b, f(x) et g(x) sont tous deux nuls.)

Ainsi, nous pouvons mettre en évidence (x-b) dans f(x) et g(x) grâce a une divison euclidienne (un schéma de Horner peut s'avérer pratique).

Remarque. Si le reste de la division euclidienne est de zéro, il peut être intéressant de remettre (x - b) en évidence dans la nouvelle limite obtenue.

Règle de Bernouilli-L'Hospital

Se réferer à la définition de la règle de Bernouilli L'Hospital. Rappel rapide :

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f(x)}{g(x)} = L$$

Avec g et g' non nuls, et f, g dérivables.

1.3. LIMITES 17

Limites remarquables

Fonctions Trigonométriques :	Fonctions Logarithmiques :
$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$
$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} (1 + \frac{a}{x})^x = e^a$
$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1$	$\lim_{x \to 0} \frac{\ln(1+ax)}{x} = a$
$\lim_{x \to 0} \frac{\tan(x)}{x} = 1$	$\lim_{x \to 0} (1 + ax)^{\frac{1}{x}} = e^a$

1.4 Dérivées

1.4.1 Tangeante (dérivée) en x_0

Soit deux points M et M_0 , définis par : $M_0(x_0; f(x_0))$ et M(x; f(x)). Quand x tend vers x_0 , alors M s'approche de M_0 et la droite (M_0M) tend vers une droite limite que l'on appelle **tangeante** à f(x) en M_0 . Cette tangeante en x_0 est nommée dérivée de f au point x_0 , et sa pente est donnée par la limite :

$$f'(x_0) := m = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

1.4.2 Nombre dérivé à gauche, à droite

La notion de limite a gauche (resp. à droite) permet de définir le nombre dérivé à gauche (resp. droite) d'une fonction en un point. Ceci nous permet de déterminer si la fonction est **dérivable en ce point** si les limites à gauche et à droite sont les mêmes.

Ainsi:

$$f'(x_0)$$
 existe si : $=\lim_{x\to x_{0-}} \frac{f(x)-f(x_0)}{x-x_0} = \lim_{x\to x_{0+}} \frac{f(x)-f(x_0)}{x-x_0}$

(notons ici que x_{0-} et x_{0+} représentent un nombre légèrement plus petit que x, et resp. un nombre légèrement plus grand que x.)

1.4.3 Point anguleux, à tangeante verticale, de rebroussement

• Le graphe d'une fonction f admet un **point anguleux en a** si f est continue en a et si :

$$\lim_{x \to a_{-}} f'(x) \neq \lim_{x \to a_{+}} f'(x)$$

(si la fonction f est continue en a mais non dérivable en a alors f admet un point anguleux en a.)

1.4. DÉRIVÉES

• Le graphe d'une fonction f admet une **tangeante verticale en a** si f est continue en a et si :

19

$$\lim_{x \to a_{-}} |f'(x)| = +\infty$$

ce point est un **point de rebroussement** si de plus la limite $\lim_{x\to a_-} f'(x)$ n'existe pas.

1.4.4 fonction dérivée

Définition. Une fonction f est **dérivable** sur une partie de A sur \mathbb{R} si elle est dérivable en tout points de A. On définit la fonction dérivée par :

$$f': A \to \mathbb{R}$$

 $x \to f'(x)$

Dérivées de fonction élémentaires

f(x)	f'(x)
c	0
x	1
$x^n n \in \mathbb{N}^*$	$n * x^{n-1}$
e^u	$u'e^u$
$\frac{1}{x}$	$-\frac{1}{x^2} x \neq 0$
\sqrt{x}	$\frac{1}{2\sqrt{x}} x > 0$
cos(x)	-sin(x)
x	$sgn(x) x \neq 0$

Dérivées de fonction particulières

f(x)	f'(x)
$x^q q \in \mathbb{Q}$	qx^{q-1}
tan(x)	$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$
cot(x)	$\frac{-1}{\sin^2(x)} = -1 - \cot^2(x)$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
arccos(x)	$\frac{-1}{\sqrt{1-x^2}}$
arctan(x)	$\frac{1}{1+x^2}$

1.4. DÉRIVÉES 21

1.4.5 Dérivée d'ordre supérieur

Définition. La **dérivée d'ordre n** de f est la fonction n fois dérivée $f^{(n)}$ définie par $f^{(n)}(x) = (f^{(n-1)})'(x)$

1.4.6 Règle de Bernouilli-L'Hospital

Définition. Soient des fonctions f, g telles que f, g:]a,b[$\rightarrow F$, dérivables telles que g, g' ne s'annulent pas sur]a,b[. De plus, on suppose que :

- $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \alpha \text{ avec } \alpha = 0, -\infty \text{ ou } +\infty;$
- $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$, $avec \ L \in \mathbb{R} \cup -\infty, +\infty$

Alors,

$$\lim_{x \to a} rac{f'(x)}{g'(x)} = L$$

Remarque. cette règle reste valable quand x tend vers b-, a+, $-\infty$ ou $+\infty$

1.4.7 Propriétés utiles

Toute fonction dérivable en a est continue en a

Si la fonction f est dérivable en a et admet un extremum en a, alors f'(a) = 0

Théorème de Rolle

Si f est une fonction continue sur l'intervalle [a;b], et dérivable sur

l'intervalle a; b et si f(a) = f(b) alors il existe au moins

un nombre c dans
$$a; b$$
 t.q. $f'(c) = 0$

(Il existe entre les points A et B de "même hauteur" un point ayant une tangeante horizontale.)

Théorème des accroisements finis (TAF)

Si f est une fonction continue sur l'intervalle [a;b], et dérivable

sur l'intervalle]a;b[alors il existe au moins un nombre c

dans]a; b[t.q.
$$f'(c) = \frac{f(b)-f(a)}{b-a}$$

(Il existe entre les points A et B un point ayant une tangeante parrallèle à la droite AB.)

1.4. DÉRIVÉES 23

1.4.8 Règles de dérivation

Soit f et g deux fonction dérivables en a. Soit $c \in \mathbb{R}$

$$(f+g)'(a) = f'(a) + g'(a)$$

$$(f-g)'(a) = f'(a) - g'(a)$$

$$(c*f)'(a) = c*f'(a)$$

$$(f*g)'(a) = f'(a)*g(a) + f(a)*g'(a)$$

$$(\frac{f}{g})'(a) = \frac{f'(a)*g(a) - f(a)g'(a)}{g^2(a)}$$

Si f est une fonction dérivable en a et g une fonction dérivable en f(a), alors $g \circ f$ est dérivable en a et :

$$(g \circ f)'(a) = g'(f(a)) * f'(a)$$

Exemple. On "dérive en boîtes":

$$\rightarrow sin^2(2x)' =$$

- ① Dériver le carré : 2sin(2x)
- (2) Dériver le sinus : cos(2x)
- (3) Dériver 2x:2
- (4) Multiplier chaque partie entre elles :2sin(2x)*cos(2x)*2 = 4sin(2x)cos(2x)

1.5 Intégrales

1.5.1 Introduction

Soient a < b deux éléments de \mathbb{R} . Le sous-ensemble fini et ordonné

$$\sigma = \{x_0 = a, x_1, \dots, x_{n-1}, x_n = b\} \text{ avec } a < x_1 < \dots < x_{n-1} < b\}$$

est appelé une **subdivision** de l'intégrale [a;b].

Somme de Riemann supérieure

Soit $\sigma = \{x_0, x_1, ..., x_n\}$ une subdivision de [a, b] et $f : [a, b] \to \mathbb{R}$ une fonction continue.

On nomme somme de Riemann Supérieure le nombre :

$$\bar{S}_{\sigma}(f) = \sum_{k=1}^{n} f(t_k)(x_k - x_{k-1})$$

avec
$$f(t_k) = \sup\{f(t), t_k \in [x_{k-1}, x_k]\}$$

Somme de Riemann inférieure

Soit $\sigma = \{x_0, x_1, ..., x_n\}$ une subdivision de [a, b] et $f : [a, b] \to \mathbb{R}$ une fonction continue.

On nomme somme de Riemann Inférieure le nombre :

$$\underline{S}_{\sigma}(f) = \sum_{k=1}^{n} f(t_k)(x_k - x_{k-1})$$

avec
$$f(t_k) = \inf\{f(t), t_k \in [x_{k-1}, x_k]\}$$

Intégrale Bornée

Soit $\underline{S}(f)$, $\bar{S}(f)$, deux nombres réels tels que :

$$\begin{split} \underline{\mathbf{S}}(f) &= \inf\{\underline{\mathbf{S}}_{\sigma}(f) : \sigma \text{ subdivision de } [a,b]\} \\ &\quad \text{et} \\ \bar{S}(f) &= \inf\{\bar{S}_{\sigma}(f) : \sigma \text{ subdivision de } [a,b]\} \end{split}$$

Soient a < b deux éléments de \mathbb{R} et $f:[a,b]\to\mathbb{R}$ une fonction continue. Par définition, le nombre réel $\underline{S}(f)=\bar{S}(f)$ est appelé l'**intégrale** de la fonction f sur [a,b] et on écrit :

$$\underline{S}_{\sigma}(f) = \bar{S}_{\sigma}(f) = \int_{a}^{b} f(x)dx$$

25

1.5.2 Primitives d'une fonction

Définition. Soit f une fonction définie sur un intervalle I (une partie de \mathbb{R}). Une fonction dérivable F est une **primitive** de f sur I si $F'(x) = f(x) \forall x \in I$.

On désigne généralement par $\int f(x)dx$ l'ensemble des primitives de f sur I. On l'appelle **intégrale indéfinie** de f.

Intégrer une fonction f sur un intervalle I c'est chercher toutes les primiteives de f sur I.

Si F est primitive de f sur I, alors toute primitive de f est de la forme $\mathbf{F}(\mathbf{x}) + \mathbf{c}$, avec $c \in \mathbb{R}$. On convient d'écrire :

$$\int f(x)dx = F(x) + c, \quad c \in \mathbb{R}$$

Théorème fondamental du calcul intégral

Soient a < b deux éléments de \mathbb{R} et $f:[a,b]\to\mathbb{R}$ une fonction continue. Alors, si $F:[a,b]\to\mathbb{R}$ est une primitive on écrit :

$$F(b) - F(a) = \int_a^b f(x)dx$$

on utilise aussi la notation:

$$\int_a^b f(x)dx = F(x)|_a^b$$

1.5.3 Intégration par parties

Soient I un intervalle ouvert, $a, b \in I$ et $f, g : I \to \mathbb{R}$ deux fonctions telles que f, g soient dérivables sur I, et f', g' sont continues sur I. Alors :

$$\int_a^b f(x)g'(x)dx = f(x)g(x)|_a^b - \int_a^b f'(x)g(x)dx$$

ou plus généralement :

$$\int u * v' = u * v - \int u' * v$$

1.5.4 Changement de variable

à remplir

Changements de variables communs / recommandés à remplir

1.5. INTÉGRALES

27

Primitives de fonctions élémentaires

f(x)	$\int f(x)dx$
a	$ax + c c \in \mathbb{R}$
$x^q q \in \mathbb{Q} \setminus \{-1\}$	$\frac{x^{q+1}}{q+1} + c c \in \mathbb{R}$
$\frac{1}{x}$	$ \ln x + c c \in \mathbb{R} $
e^x	$e^x + c c \in \mathbb{R}$
	$x(\ln x - 1) + c c \in \mathbb{R}$
cos(x)	$sin(x) + c c \in \mathbb{R}$
sin(x)	$-cos(x) + c c \in \mathbb{R}$

Primitives de fonctions particulières

f(x)	$\int f(x)dx$
$\frac{1}{a^2 + x^2} a \neq 0$	$\frac{1}{a}Arctg(\frac{x}{a}) + c c \in \mathbb{R}$
$a^x a \neq 1, a > 0$	$\frac{a^x}{\ln(a)} + c c \in \mathbb{R}$
$\log_a x a \neq 1, a > 0, x > 0$	$x(log_a x - log_a e) + c c \in \mathbb{R}$

1.5.5 Règles d'intégration

Soit f et g deux fonctions admettant une primitive sur un intervalle I

$$\int \lambda f(x) dx = \lambda \int f(x) dx \quad \lambda \in \mathbb{R}$$

$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

$$\int (f(x) - g(x)) dx = \int f(x) dx - \int g(x) dx$$

$$\int g(f(x)) * f'(x) dx = G(f(x)) + c \quad c \in \mathbb{R}$$
 Où G est une primitive de g .

1.6 Applications des dérivées