School of Mathematics Thapar University, Patiala UMA003, Tutorial Sheet 09, Multiple integrals

1. Evaluate the following double integral.

(a)
$$\int_{1}^{10} \int_{0}^{1/y} y e^{xy} dx dy$$
 (b) $\int_{0}^{1} \int_{0}^{x^3} e^{y/x} dy dx$ (c) $\int_{0}^{1} \int_{0}^{2-\sqrt{y}} xy dx dy$ (d) $\int_{1}^{\ln 8 \ln y} \int_{0}^{\ln 8 \ln y} e^{x+y} dx dy$

(b)
$$\int_{0}^{1} \int_{0}^{x^3} e^{y/x} dy dx$$

(c)
$$\int_{0}^{1} \int_{\sqrt{y}}^{2-\sqrt{y}} xy \ dx \ dy$$

(d)
$$\int_{1}^{\ln 8} \int_{0}^{\ln y} e^{x+y} dx dy$$

2. Sketch the region of integration and evaluate the double integrals by reversing the order of integration.

(a)
$$\int_{0}^{4} \int_{-\sqrt{4-y}}^{(y-4)/2} dx \ dy$$
 (b) $\int_{0}^{1} \int_{x^{2}}^{x} \sqrt{x} \ dy \ dx$ (c) $\int_{0}^{1} \int_{1}^{e^{x}} dy \ dx$

(b)
$$\int_{0}^{1} \int_{x^{2}}^{x} \sqrt{x} dy dx$$

(c)
$$\int_{0}^{1} \int_{1}^{e^{x}} dy dx$$

3. Find the area of the region enclosed by the line y=2x+4 and the parabola $y=4-x^2$ in the xy-plane.

4. Find the area of the triangular region in the xy-plane that is bounded on the right by the parabola $y=x^2$, on the left by the line x+y=2 and above the line y=4.

5. Find the volume under the paraboloid $z = x^2 + y^2$ above the triangle enclosed by the lines y =x, x = 0 and x + y = 2 in the xy-plane.

6. Find the volume under the parabolic cylinder $z=x^2$ above the region enclosed by the parabola $y = 6 - x^2$ and the line x = y in the xy-plane.

7. Change the cartesian integral into an equivalent Polar integral. Then evaluate the following polar integrals:

(a)
$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy \ dx$$
 (b) $\int_{0}^{6} \int_{0}^{y} x \ dx dy$ (c) $\int_{0}^{\ln 2} \int_{0}^{\sqrt{(\ln 2)^2 - y^2}} e^{\sqrt{x^2 + y^2}} \ dx \ dy$ (d) $\int_{0}^{2} \int_{0}^{x} y \ dy \ dx$

8. Find the area of the region cut from the first quadrant by the cardioid $r = 1 + \sin \theta$.

9. Find the area of the region common to the interiors of the cardioids $r = 1 + \cos \theta$ and $r = 1 - \cos \theta$.

10. Evaluate the following triple integrals:

(a)
$$\int_{0}^{1} \int_{0}^{\pi} \int_{0}^{\pi} y \sin z \, dx \, dy \, dz$$
 (b) $\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} dz \, dy \, dx$

(b)
$$\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} dz \ dy \ dz$$

Answer:

1.
$$(a)$$
 $9e - 9$

(b)
$$(e-2)/2$$

1. (a)
$$9e - 9$$
 (b) $(e - 2)/2$ (c) $1/5$ (d) $8 \ln 8 - 16 + e$

(b)
$$4/35$$
 (c) $e-2$

$$(c)$$
 $e-2$

7. (a)
$$\pi$$

7. (a)
$$\pi/2$$
 (b) 36 (c) $\frac{\pi}{2}(2 \ln 2 - 1)$ (d) $4/3$

8.
$$\frac{3\pi}{8} + 1$$

9.
$$\frac{3\pi}{2} - 4$$

8.
$$\frac{3\pi}{8} + 1$$
 9. $\frac{3\pi}{2} - 4$ **10.** $(a) \frac{\pi^3}{2} (1 - \cos 1)$ $(b) \frac{7}{6}$

$$(b) \frac{7}{6}$$