MATH 3140 Homework 10

Exercises. 1 below plus Judson Ch 10. 1abe, 5, 10, 11, 13acd.

Due date: Friday, 11/09

- 1. Let $G = \langle G, \cdot, ^{-1}, e \rangle$ be a finite group of order n. Take the set G (the elements of G) and consider the group of all permutations of these elements. This group is sometimes denoted by $\operatorname{Sym}(G)$; note that it is isomorphic to the symmetric group S_n of permutations of an n-element set. Now fix an element $a \in G$ and recall that the function $\lambda_a : G \to G$, defined by $\lambda_a(g) = a \cdot g$, is a permutation of the set G. That is, λ_a belongs to the permutation group $\operatorname{Sym}(G)$.
 - (a) Prove that the function $\lambda: G \to \operatorname{Sym}(G)$ is a group homomorphism.
 - (b) What is the kernel of λ ?¹
 - (c) Let N denote the equivalence class of ker λ that contains the identity element e of G. Prove that N is a normal subgroup of G.
- **10.1** For each of the following groups G, determine whether H is a normal subgroup of G. If H is a normal subgroup, write out a Cayley table for the factor group G/H.
 - (a) $G = S_4$ and $H = A_4$
 - (b) $G = A_5$ and $H = \{(1), (123), (132)\}$
 - (e) $G = \mathbb{Z}$ and $H = 5\mathbb{Z}$
- 10.5. Show that the intersection of two normal subgroups is a normal subgroup.
- **10.10.** Let H be a subgroup of index 2 of a group G. Prove that H must be a normal subgroup of G. Conclude that S_n is not simple for $n \geq 3$.
- **10.11.** If a group G has exactly one subgroup H of order k, prove that H is normal in G.
- **10.13.** Recall that the **center** of a group G is the set

$$Z(G) = \{x \in G : xg = gx \text{ for all } g \in G \}.$$

- (a) Calculate the center of S_3 .
- (c) Show that the center of any group G is a normal subgroup of G.
- (d) If G/Z(G) is cyclic, show that G is abelian.²

$$\ker f = \{(x_1, x_2) : f(x_1) = f(x_2)\}.$$

As you have already proved, the kernel is an equivalence relation on X.

²Hint: Let Z := Z(G). If G/Z is cyclic then there exists $x \in G$ such that for each $a \in G$ there exists $m \in \mathbb{N}$ such that $aZ = x^m Z$. Fix $a, b \in G$ and show ab = ba using the fact that $aZ = x^m Z$ and $bZ = x^n Z$ for some m and n.

¹Recall that the kernel of a function $f: X \to Y$ is the subset of $X \times X$ defined by