David Infante Casas Pablo Rodríguez Vargas

Algorítmica – Práctica 1 – Ejercicio 1 - 2ºD

1.- Ordenación por Selección:

- Código Fuente:

- Hardware:

Procesador: Intel® CoreTM i5-3350P CPU @ 3.10GHz × 4 Memoria RAM: 8GB

- Sistema Operativo:

Ubuntu 14.04

- Compilador Utilizado:

$$g++-std=c++11$$

- a) Caso Mejor:
 - Eficiencia Teórica:

$$\begin{split} T_m(n) &= 3 + \Sigma^{n-2}_{i=0}(1+3) + (\Sigma^{n-1}_{j=i+1}(3+1+1)) + 7 \\ &= 5/2n^2 + 17/2n - 8 \\ f(x) &= (5/2)*x**2 + (17/2)*x - 8 \\ \text{plot } f(x) \end{split}$$

- Eficiencia empírica:

- Ajuste:

$$f(x) = a*x**2 + b*x - c$$

fit $f(x)$ "time_mejor.dat" via a, b, c
plot "time_mejor.dat", $f(x)$

b) Caso Peor:

- Eficiencia Teórica:

$$\begin{split} T_p(n) &= 3 + \Sigma^{n-2}{}_{i=0} \, 1 {+} 3 {+} \Sigma^{n-1}{}_{j=i+1} (3 {+} 1 {+} 1 {+} 1) \\ &= 3 n^2 + 8 n - 8 \end{split}$$

$$f(x) = 3*x**2 + 8*x - 8$$

plot $f(x)$

- Eficiencia empírica:

- Ajuste:

$$f(x) = a*x**2 + b*x - c$$

fit $f(x)$ "time_peor.dat" via a, b, c
plot "time_peor.dat", $f(x)$

c) Caso Promedio:

- Eficiencia Teórica:

$$\begin{split} T_{1/2}(n) &= 3 + \sum^{n-2}_{i=0} 1 + 3 + \sum^{n-1}_{j=i+1} (3 + 1 + 1 + 1/2) + 7 \\ &= 5/2n^2 + 39/4n + 8 \end{split}$$

$$f(x) = (5/2)*x**2 + (39/4)*x + 8$$

plot $f(x)$

- Eficiencia empírica:

plot "time_promedio.dat"

- Ajuste:

f(x) = a*x**2 + b*x + cfit f(x) "time_promedio.dat" via a, b, c plot "time_promedio.dat", f(x)

