5.5. EL POLINOMIO CARACTERÍSTICO Y EL POLINOMIO MÍNIMO.

Sea
$$P \in P[x]$$
 un polinomio no nulu, A

$$P(x) = a_0 + a_1 x + ... + a_n x^d = \sum_{j=0}^n a_j x^j.$$

Para
$$A \in M_{n=n}(lk)$$
 se define

$$P(A) = a_0 I_n + a_1 A + ... + a_n A^d = \sum_{J=0}^{d} a_J A^J$$

En 1858, Arthur Cayley afirms que la AEM_{DKN}(IK)

Y P_A(X)=|A-XII es su polinomio caractoristico, P_A(A)=0.

A. Cayley demostro este resultado para AEM_{ZKZ}(IK); para

N>2 el resultado lo probo William Rowan Hamilton:

Lema 5,5.1

Sea $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ una matriz de orden n con elementos en \mathbb{K} y $p(x) \in P_{\mathbb{K}}[x]$ un polinomio de grado n con coeficientes en \mathbb{K} . Si $p(x)I_n = (A - xI)Q(x)$ con

$$Q(x) = Q_0 + Q_1 x + \cdots + Q_{n-1} x^{n-1},$$

donde $Q_i \in \mathcal{M}_{n \times n}(\mathbb{K})$ para j = 0, 1, ..., n - 1, entonces

$$p(A)=0.$$

Demostración. Sea $p(x) = a_0 + a_1 x + \cdots + a_n x^n$. La igualdad $p(x)I_n = (A - xI_n)Q(x)$ se transforma en

$$p(x)I_n = a_0I_n + a_1I_nx + \dots + a_nI_nx^n = (A - xI_n)Q(x)$$

= $AQ_0 + (AQ_1 - Q_0)x + \dots + (AQ_{n-1} - Q_{n-2})x^{n-1} - Q_{n-1}x^n$.

Igualando los términos de igual grado obtenemos

$$a_0I_n = AQ_0$$

 $a_1I_n = AQ_1 - Q_0$
 \vdots
 $a_{n-1}I_n = AQ_{n-1} - Q_{n-2}$
 $a_nI_n = -Q_{n-1}$.

Multiplicar la segunda igualdad por A, la tercera por A^2 , ..., y la última por A^n . Si sumamos la parte izquierda de todas las igualdades se obtiene

$$a_0I_n + a_1A + \cdots + a_{n-1}A^{n-1} + a_nA^n = p(A),$$

mientras que al sumar la parte derecha de todas las igualdades se obtiene

$$AQ_0 + A(AQ_1 - Q_0) + \cdots + A^{n-1}(AQ_{n-1} - Q_{n-2}) - A^nQ_{n-1} = 0,$$

de donde se deduce el resultado.

Teorema 5.5.2 (Teorema de Cayley-Hamilton)

Si $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ y $p_A(\lambda) = |A - \lambda I_n|$ es su polinomio característico, se tiene que $p_A(A) = 0$.

D/ La mabu'z $A-xI_n$ es una matriz $n\times n$ cuyas elementos son polinomios de grado ≤ 1 . Sea $\Delta(x)$ la matriz de cofactores de $A-xI_n$. Como la matriz de cofactores se hace con los menares de orden n-1, los elementos de $\Delta(x)$ son polinomios de gredo $\leq n-1$. Por tanto

 $\Delta(x) = \Delta_0 + \Delta_1 x + \dots + \Delta_{n-1} x^{n-1}$

60n Sj & M_{n×n}(k), j=0,1,-, n-1. Pero sabemos (Teorema 4.1 del Tema 4) que

 $(A - \times I_n)[\Delta(x)] = (A - \times I_n | I_n = P_A(x) I_n$. Por el lema 5,5.1 fon $(\Delta(x) = [\Delta(x)]^t$ se doedure que $P_A(A) = 0$.

5/ M(x) no es el polinomio curactoristivo de f, pero M(x) divide a PA(x). Para prober que \$10(f)=0, basta prober que M(A)=0 scendo A ula matriz de f.

Dada AGMmin (IK) sea

I_A = {p(x) ε P_{IK} [x]: p no nulo y p(A)=0}

Por el Teorema de Cayley-Hamilton, p(x) ε I_A, por lo
que I_A ≠ φ. Llamamos POU'NOMIO MÍNIMO de A, y
escubimos m_A(x), al polinomio mónico de menar grado
entre los elementos de I_A.

Lema 5.5.3

Sea $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ y $m_A(x)$ su polinomio mínimo. Las siguientes condiciones son equivalentes:

1) $p(x) \in I_A$

2) $m_A(x)$ divide a p(x)

 $D/1) \Rightarrow 2)$ Al dividire p(x) entre $M_A(x)$ is tendral $p(x) = C(x) M_A(x) + r(x)$ con r(x) = 0 of $grado(r(x)) \ge 0$ grado($m_A(x)$). Como $p(x) \in I_A$, tenemos p(A) = 0; como $m_A(A) = 0$ se trene $0 = p(A) = C(A) M_A(A) + r(A) = r(A)$. Por tento $r(A) \in I_A$. Como M_A trene grado mínimo en I_A deducimos r(x) = 0 y por tanto $p(x) = C(x) M_A(x)$.

2) => 1) Como $M_{\Delta}(x)$ divide a p(x) se trene p(x) = $= C(x) M_{\Delta}(x)$. Como $M_{\Delta}(\Delta) = 0$, deducimos $p(\Delta) = C(\Delta) \cdot M_{\Delta}(\Delta) = 0$.

NOTA: Del lema 5.5.3 se deduce que mp (x) es sinico. Ej 5.5.2. Halla el polinomio mínimo de la matrià

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}.$$

5/ MA(x)=(x-1)(x+1).

Va sabemos que un endomarfismo es diegonalizable si y solo si se puede encontrar una base de autouectores (Beoposición 5.2.4. Daremos ahora otro cuitorio barado en su polinomio marractoristico y en la dimensión de sus autorparios.

Lema 5.5. 4

Sea A: $V \to V$ una aplicación lineal en un espacio vectorial V de dimensión n. Sea λ un valor propio de A. Si s es la multiplicidad de λ como raíz del polinomio $p_A(x) = |A - xI_n|$, entonces.

$$\dim (\operatorname{Ker}(A - \lambda I)) \leq s$$
.

Demostración. Sea $r = \dim (\text{Ker}(A - \lambda I))$ y $\{\vec{v}_1, ..., \vec{v}_r\}$ una base de $\text{Ker}(A - \lambda I)$. Tomemos $v_{r+1}, ..., v_n$ en V tales que $B = \{v_1, ..., v_r, v_{r+1}, ..., v_n\}$ sea una base de V (un algoritmo para obtener esta base lo proporciona el Teorema de Steiniz, Teorema 4.5.1). En la base B la aplicación lineal A tiene como matriz

$$M = \begin{pmatrix} \lambda I_r & T \\ 0 & N \end{pmatrix}$$

donde N es una matriz de tamaño $(n-r) \times (n-r)$. Como el polinomio característico no depende de la base elegida en V,

$$p_A(x) = p_M(x) = (-1)^r (x - \lambda)^r p_N(x),$$

y como $p_N(x)$ puede tener $(x - \lambda)$ como factor, la multiplicidad de λ como raíz del polinomio $p_A(x)$ es al menos r.

Teorema 5.5.5 (Teorema de diagonalización)

Sea $A: V \rightarrow V$ una aplicación lineal en un espacio vectorial V de dimensión n sobre un cuerpo \mathbb{K} . Son equivalentes:

- a) A es diagonalizable.
- b) El polinomio característico de A se descompone en $P_{K}[x]$ en factores lineales,

$$p_A(x) = c \prod_{i=1}^r (x - \lambda_i)^{n_i}, \ \lambda_i \neq \lambda_j, \ \text{y además dim} \left(\text{Ker} \left(A - \lambda_i I \right) \right) = n_i, \ i = 1, 2, ..., r.$$

Demostración. a) \Rightarrow b). Supongamos que A es diagonalizable. Por la Proposición 5.2, 4 existe una base B formada por vectores propios de A con respecto a la cual la matriz de A es diagonal. Sea

$$D = \begin{pmatrix} \frac{\lambda_1 I_{n_i}}{1} & 0 \\ 0 & \frac{1}{\lambda_r I_{n_r}} \end{pmatrix}, \quad \lambda_i \neq \lambda_j, \ \lambda_i \in \mathbb{K},$$

esta matriz diagonal, en donde hemos reordenado la base B para poder escribir D de esta manera. Observar que $n = n_1 + \cdots + n_r$. Escribamos

$$B = B_1 \cup B_2 \cup \cdots \cup B_r$$

con $B_i = \{\vec{u}_{i1}, \vec{u}_{i2}, ..., \vec{u}_{in_i}\}$, i = 1, 2, ..., r, donde $A\vec{u}_{ij} = \lambda_i \vec{u}_{ij}$, $j = 1, ..., n_i$. Por tanto, $B_i \subset \text{Ker}(A - \lambda_i I)$. Como B_i es parte de una base de V, B_i es un conjunto de vectores linealmente independientes. Luego

$$n_i \leq \dim(\text{Ker}(A - \lambda_i I)), \qquad i = 1, 2, ..., r.$$
 (5.5)

Como el polinomio característico no depende de la base elegida en V,

$$p_A(x) = p_D(x) = \prod_{j=1}^r (\lambda_i - x)^{n_i}, \quad \lambda_i \neq \lambda_j, \, \lambda_i \in \mathbb{K},$$

por lo que $p_A(x)$ se descompone en $P_{\mathbb{K}}[x]$ en factores lineales. Además, la multiplicidad de λ_i es n_i . Por el Lema \mathcal{S}_{∞} 5. 4

$$\dim(\text{Ker}(A - \lambda_i I)) \le n_i, \quad i = 1, 2, ..., r.$$
 (5.6)

De (5.5) y (5.6) se deduce dim $(\text{Ker}(A - \lambda_i I)) = n_i$, i = 1, 2, ..., r.

b) \Rightarrow a). Como dim (Ker $(A - \lambda_i I)$) = n_i , elijamos

$$B_i = {\vec{u}_{i1}, ..., \vec{u}_{in_i}}, \qquad i = 1, 2, ..., r,$$

una base de Ker $(A - \lambda_i I)$. Sea

$$B = B_1 \cup B_2 \cup \cdots \cup B_r.$$

Como $n_1 + n_2 + \cdots + n_r = n$ porque $p_A(x) = c \prod_{i=1}^r (x - \lambda_i)^{n_i}$ y $p_A(x)$ es un polinomio de grado n, basta probar que B es un conjunto de vectores linealmente independiente, ya que entonces B es base de V formada por vectores propios. Por la Proposición f(x) = f(x) A será diagonalizable.

Probaremos que B es linealmente independiente por inducciónh en r. Si r = 1, el resultado es cierto porque B_1 es base de Ker $(A - \lambda_1 I)$.

Supongamos que $B_1 \cup B_2 \cup \cdots \cup B_{t-1}$, $2 < t \le r$ es linealmente independiente. Sea

$$\sum_{i=1}^{t} \sum_{j=1}^{n_i} \alpha_{ij} \vec{u}_{ij} = \vec{0}$$
 (5.7)

una combinación lineal de los elementos de $B_1 \cup \cdots \cup B_r$. Aplicando A a (5.7) se deduce

$$\sum_{i=1}^{t} \sum_{i=1}^{n_i} \alpha_{ij} \lambda_i \vec{u}_{ij} = \vec{0}$$
 (5.8)

y multiplicando (5.7) por λ , obtenemos

$$\sum_{i=1}^{t} \sum_{j=1}^{n_i} \alpha_{ij} \lambda_i \vec{u}_{ij} = \vec{0}.$$
 (5.9)

Restando (5.8) y (5.9) podemos escribir

$$\sum_{i=1}^{t-1}\sum_{i=1}^{n_i}\alpha_{ij}(\lambda_i-\lambda_t)\vec{u}_{ij}=\vec{0}.$$

Como $B_1 \cup \cdots \cup B_{t-1}$ es linealmente independiente por la hipótesis de inducción, de esta igualdad se deduce $\alpha_{ij}(\lambda_i - \lambda_t) = 0$. Puesto que $\lambda_i \neq \lambda_t$, $1 \leq i < t$, obtenemos $\alpha_{ij} = 0$, $i = 1, ..., t-1, j = 1, ..., n_i$. Sustituyendo en (5.7) obtenemos

$$\sum_{i=1}^{n_t} \alpha_{tj} \vec{u}_{tj} = \vec{0},$$

de donde deducimos que $\alpha_{ij} = 0$, $j = 1, ..., n_i$, puesto que B_i es base de Ker $(A - \lambda_i I)$.

 $\xi' 5.5.3$. Sea $f: C^4 \rightarrow C^4$ el en domonfismo de do por $f(z_1, z_2, z_3, z_4) = (z_1, z_2, z_3 + z_4, -z_3 + z_4)$

(ver g' 5.5.1). Usa el teorema 5.5.5 para prober que fes diagonalizable sobre C, pero no somo endomorfismo de \mathbb{R}^4 .

5/ Mp=A= $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$ y $P_{A}(x) = (1-x)^{2}[(1-x)^{2}+1]$ = $(1-x)^{2}[x^{2}-2x+2]=0$

 $x^{2}-2x+2=0 \Rightarrow x = \frac{2\pm\sqrt{4-8}}{2} = 1\pm i\hat{L}$

Como Ps (x) no se descempone en factores simples en IR, por el Teor. 5.5.5 no es diagonalizable sobre IR.

Sobre (

PA(X) = (1-X)2 (X-(1+C)) (X-(1-C))

si se idescompone en factores simples. Hay que comprobas que se comple la condición sobre la dimensión de los autrespacios.

 $[\lambda_2=1+i,\lambda_3=1-i]$ Siempse Chini $(E_1(1i)) \ge 1$, C=1, Z [P,q]. $E_1(1i) \ne 0$. Por otro lado, por el lema 5.5.4, $[A_1(1i)] \ge 1$ (1 es rue multiplicadud). Por tanto

din $(5_1(2i))=1=$ multiplieudad de 2i, i=1-2. Por el Teorema 5.5.5, f es diagonalizable sobre I.