МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Алгоритмической математики

ОТЧЕТ

по лабораторной работе 4

по дисциплине «Статистический анализ»

Тема: Вычисление мощности критериев согласия.

Студент гр. 8374	 Пихтовников К.С
Преподаватель	 Чирина А.В.

Санкт-Петербург 2020

Цель работы:

Научиться вычислять мощности критериев согласия.

Задание:

За основную гипотезу принимается распределение Лапласа L(a,u);

Рассматриваются следующие альтернативы:

Альтернатива сдвига:

$$F(x) = F_0(x)$$

Рассмотреть варианты:

$$\theta = \beta$$
 , $\theta = \beta/3$ " $\theta = \beta/10$, где β -

является дисперсией при нулевой гипотезе

Вариант 15:

1. Равномерное распределение

2. Распределение Лапласа

Уровень значимости = 0.95

Выполнение работы:

1. Пример генерации выборок.

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	9.6684	7.5776	2.0570	13.1484	1.8422	5.3584	3.7472	4.0408	6.6325	-6.6017	-3.5025	2.6165	-0.29
2	2.7600	10.6175	-8.8816	-5.3811	0.1756	2.2057	1.9912	-2.1487	2.7500	-4.1347	8.1675	-6.8699	7.12
3	-4.7263	4.0872	6.7378	1.1485	5.6722	2.5169	5.4044	2.6306	16.5532	1.6561	7.5556	-1.6810	-16.07
4	5.5022	3.0256	4.9042	-4.2705	4.0915	4.9902	4.9034	-2.6388	4.8904	3.6368	2.3647	7.3129	12.75
5	4.7618	6.4469	6.4313	-4.7768	1.8772	-4.7239	6.7338	13.1821	8.3911	7.6897	4.8690	-2.4850	5.75
5	1.9577	0.9518	7.2180	2.4300	5.0934	6.1436	3.3553	6.9732	-1.9471	-0.8175	1.8672	3.2197	8.18
7	-1.8034	2.7331	7.2023	2.5686	15.5504	11.7775	20.9506	-3.4320	2.5536	1.1265	-1.9344	9.2967	-4.02
3	21.3394	9.3877	0.8162	0.2152	5.4843	0.3346	-3.4569	7.0932	2.7892	13.7115	5.9543	5.1680	0.19
٥ <	9 5460	6 5732	3 9275	3 9274	Q 43QQ	1 0432	-0.2693	2 5688	-0 4454	-13 2766	6 5804	-6 6399	1 50

	Х													
ш	1000:	x1000 double												
		169	170	171	172	173	174	175	176	177	178	179	180	181
1	32	1.9309	1.4471	6.4119	8.0367	-3.9493	5.7314	-2.4725	-1.1154	1.3282	9.7224	3.7896	5.8470	1.7
2	85	12.2166	-5.5658	9.3061	-11.3347	1.8465	10.8203	0.3469	5.6729	8.5015	2.4663	1.4737	3.5063	5.9
3	41	3.6038	6.6672	-4.6640	4.5585	5.4699	-3.4571	11.2509	6.0282	8.1614	-0.0731	1.5235	0.3517	-2.0
4	10	3.8615	3.3633	7.9055	20.9448	-2.4854	13.5929	0.6149	3.0148	7.9682	1.6480	-1.5395	-3.8429	9.4
5	45	3.4610	17.0888	3.8639	-2.3272	-1.4047	-3.6791	2.4301	6.8292	3.2068	6.3104	1.3165	6.9994	5.5
6	14	4.4370	-12.8326	0.9508	-4.8057	-1.6483	5.1595	4.7956	-1.8555	-3.7455	2.1489	1.0389	14.0916	2.5
7	31	-10.0502	3.0633	-7.8913	1.1519	-4.2903	1.8925	6.6560	3.0566	-0.1779	4.7399	-2.4892	8.3390	8.3
8	06	8.5562	-4.3151	3.2380	0.8463	-8.6571	10.3281	2.7902	9.8650	15.3110	11.7550	0.2581	16.7719	3.2
a	n7 <	-7 7889	3 1948	10 4760	-0 1862	8 5847	13 4466	4 4469	-19 2763	3 0534	9 8132	7 3252	11 8211	12.0 \

- 1) $\Theta=2/u^2$
- 2) $\Theta = 2/3 u^2$
- 3) $\Theta = 2/10u^2$
- 4) $\Theta=0$
- 2. Вычисление статистики критерия.

Алгоритм вычисления критерия Колмогорова-Смирнова:

- 1. Сортируем выборку.
- 2. Вычисляем теоретические значения распределения Лапласа.
- 3. Вычисляем статистику критерия с помощью следующей формулы:

$$\sqrt{n} \max_{i=1,...,n} \max(\left|\frac{i}{n} - F_0(X_{(i)})\right|, \left|\frac{i-1}{n} - F_0(X_{(i)})\right|)$$

4. Сравниваем полученное значение с квантилью распределения Колмогорова уровня 0.95 (K=1.36).

Алгоритм вычисления критерия Хи-квадрат:

- 1. Сортируем выборку.
- 2. По формуле Стерджесса разбиваем выборку на п групп и k элементов:

$$n = 1 + 3,322 \cdot \lg N$$

$$K = \frac{X \max - X \min}{1 + 3,2 * \lg n},$$

- 3. Рассчитываем вероятности попадания в интервалы
- 4. Вычисляем статистику критерия по формуле (здесь n=r):

$$\sum_{i=1}^{r} \frac{(n_i - np_i)^2}{np_i}$$

- 5. Сравниваем полученное значение с квантилью распределения хиквадрат уровня 0.95 и числом степеней свободы r-1 (n-1).
- 3. Процент выборок, для которых нулевая гипотеза была отвергнута.

Критерий Колмогорова-Смирнова:

```
k = 0;
for i=1:m
    criterion_statistics_kolmogorov = sqrt(n) * maximum(i);
    if criterion_statistics_kolmogorov > 1.36
        k = k + 1;
    end
end
```

Критерий Хи-квадрат:

```
Pirs = zeros(1,m);
for i=1:m
    for j=1:r
        Pirs(1,i) = Pirs(1,i) + ((nh(j,i) - n * P(j,i))^2 / (n * P(j,i)));
    end
end
Pirs;
k = 0;
```

```
for i=1:m
   if Pirs(1,i) > chi2inv(0.95, r - 1)
        k = k + 1;
   end
end
```

4. Мощность критерия в зависимости от альтернативы.

Мощность критерия Колмогорова (α=1- γ=0.05)

	Θ=2/16	Θ=2/48	Θ=2/160	0
n=10	0.078000	0.062000	0.057000	0.054000
n=100	0.395000	0.304000	0.299000	0.237
n=1000	1.000000	1.000000	1.000000	1.000000

Мощность критерия Хи-квадрат (α=1- γ=0.05)

	Θ=2/16	Θ=2/48	Θ=2/160	0
n=10	0.377000	0.372000	0.361000	0.234
n=100	0.709000	0.705000	0.677000	0.627000
n=1000	1.000000	1.000000	1.000000	1.000000

5. Вывод.

При большем увеличении сдвига и объеме выборки, вероятность принятия гипотез критериев Колмогорова-Смирнова и Хи-квадрат уменьшаются, соответственно увеличивается вероятность отвержения гипотез. Также критерий Хи-квадрат является более мощным по сравнению с критерием Колмогорова.

Значение мощности данных критериев совпадает с уровнем значимости при нулевом сдвиге.