Caso Estudio

Descripción de la mortalidad diaria

ISCIII

1 Preambulo

1.1 Objetivo

A partir de los datos de mortalidad proporcionados por el sistema de monitorización de la mortalidad diaria por todas las causas (MoMo, ISCIII) (https://momo.isciii.es/panel_momo/), elaborar un informe para describir la tendencia y la distribución geográfica de la mortalidad durante la pandemia (2020-2022).

1.2 Importación de los datos

```
require(data.table)
require(ggplot2)
require(gtsummary)
require(sf)
# ruta.momo = "https://momo.isciii.es/public/momo/data"
# temp=fread(ruta.momo)
# grupos.edad=c("0-14","15-44","45-64","65-74","75-84","+85")
# momo=subset(temp,ambito=="provincia" & cod qedad %in% grupos.edad &
                nombre sexo=="todos" & year(fecha defuncion) %in% 2020:2022,
#
#
              select=1:11
#
              )
# momo[,cod_gedad:=factor(cod_gedad,levels=grupos.edad)]
# names(momo)<-sub("^defunctiones_","",names(momo))</pre>
# Momo=melt(momo, measure=10:11)
load("data/momo_caso_estudio.RData")
# A punto de caducar:
require(raster)
mapa=getData("GADM",country="Spain", level=2, type="sf")
# Alternativa
# require(qeodata)
# temp2<-gadm(country='ESP', level=2,path=getwd())</pre>
# mapa=st_as_sf(temp2)
#Simplificación del shape para reducir tiempos de cálculo
Mapa<-st_simplify(mapa, preserveTopology = TRUE, dTolerance = 1000)</pre>
```

2 Descriptivo

2.1 Resumen por grupos de edad y periodo

A partir de la base de datos Momo, crear una tabla de mortalidad (n^o de defunciones observadas y estimadas) por año (en columnas) y grupos de edad (en filas)

	2020		2021		2023	
	observada	estimada	observada	estimada	observada	estimada
0-14	1442	1484	1545	1477	1646	1494
15-44	8612	7848	8189	7701	8252	7945
45-64	55327	49887	53305	50072	52878	51323
65 - 74	67736	58376	64506	58795	64707	61509
75-84	128416	107073	113975	104647	113232	106460
+85	236510	197774	210517	196168	225867	199284

Dar un representación gráfica de la información dada en la tabla.

2.2 Tendencia del exceso de mortalidad según provincia

Representar la tendencia del exceso de mortalidad en mayores de 85 años por provincias. Se podrá utilizar la función de facetas del paquete geofacet (ver gráfico) o la estándar (facet_wrap).

2.3 Distribucioón geografica del exceso en mayores de 85 años

Dar una representación de la distribución geográfica (a nivel provincial) del exceso de mortalidad en mayores de 85 años por años. Se podrá omitir las islas canarias para conseguir una representación más equilibrada (ver gráfico).

3 Análisis de regresión

Analizar las variaciones anuales del exceso de mortalidad a nivel provincial por edad y año mediante regresión y presentar en una tabla el resultado de dicho análisis.

Characteristic	Beta	95% CI	p-value
Edad			
0-14		_	
15-44	0.04	-0.01, 0.10	0.15
45-64	0.02	-0.04, 0.08	0.5
65-74	0.09	0.03, 0.14	0.003
75-84	0.07	0.02, 0.13	0.010
+85	0.11	0.05, 0.17	< 0.001
Año			
2020			
2021	-0.06	-0.10, -0.02	0.003
2022	-0.04	-0.08, 0.00	0.055

¹ CI = Confidence Interval