MATH 104-06: INTRODUCTION TO ANALYSIS

REVIEW OF IMPORTANT CONCEPTS AND THEOREMS

Short Version

Chapter 0: Sets and functions.

- Sets: subsets, intersection, union, difference, product, equivalence relation.
- Functions: injection, surjection, bijection, inverse function, composition of functions.
- Induction.

Chapter 1: Real numbers.

- Real numbers: axioms of ordered fields, absolute value.
- Completeness Axiom: upper bound and lower bound, **supremum** and **infimum**, **completeness Axiom**.
- Symbols of $+\infty$ and $-\infty$.

Chapter 2: Sequences.

- Limits of sequences: ϵN definition.
- Limit theorems of sequences: limit of sum, difference, product, quotient of two convergent sequences, limit to infinity.
- Monotone sequences always have limits.
- Definition of **limsup** and **liminf**, use $\limsup s_n = \liminf s_n$ to show convergence, Cauchy sequence.
- Subsequences: **Bolzano–Weierstrass theorem**, set of subsequential limits S.
- Series: Cauchy criterion of series, absolutely convergence, comparison test, ratio test, root test, alternating series, integral test.

Chapter 3: Continuity.

- Continuity: definition by sequences and by $\epsilon \delta$. Sum, difference, product, quotient, composition of continuous functions are continuous.
- Properties of continuous functions: supremum and infimum on closed intervals are realized, intermediate value theorem.
- Uniformly continuous. Definition, continuous functions on closed intervals are uniformly continuous.
- Limit of functions: definition by sequences, and by ϵ - δ or ϵ -N.

Chapter 4: Sequence and series of functions.

- Power series: radius of convergence $R = \frac{1}{\beta}$ with $\beta = \limsup |a_n|^{\frac{1}{n}}$.
- Pointwise convergence: definition, pointwise limit of continuous functions may not be continuous.
- Uniform convergence: definition, uniform limit of continuous functions is continuous.

- Uniformly Cauchy for sequences, Weierstrass M-test, limit of the integration of uniformly convergent sequences of function.
- Power series uniformly converges in $[-R_1, R_1]$ for any $0 < R_1 < R$, so we can compute the integration and derivative by taking integration and derivative for each term.

Chapter 5: Differentiation.

- Differentiable (derivative): $f'(a) = \lim_{x\to a} \frac{f(x)-f(a)}{x-a}$. Derivative of sum, difference, product, quotient, composition of functions.
- Mean value theorem: $f'(x_0) = \frac{f(b) f(a)}{b a}$ for some $x_0 \in (a, b)$. Intermediate value theorem for derivatives.
- L'Hospital's Rule: compute $\lim_{x\to s} \frac{f(x)}{g(x)}$ by computing $\lim_{x\to s} \frac{f'(x)}{g'(x)}$.
- Taylor's series: estimate the remainder $R_n(x) = f(x) \sum_{k=0}^{n-1} \frac{f^{(k)}(c)}{k!} (x-c)^k$, $R_n(x) = f^{(n)}(c)$ $\frac{f^{(n)}(y)}{n!}(x-c)^n$ for some y lies between x and c.

Chapter 6: Integration.

- Definition of integration: upper Darboux sum and lower Darboux sum for a partition, upper Darboux integral U(f) and lower Darboux integral L(f). f is integrable on [a,b] if U(f)=L(f), then $\int_a^b f=U(f)=L(f)$. • **Theorem**: f is integrable on [a,b] if and only if for any $\epsilon>0$, there exists a
- partition P of [a, b], such that $U(f, P) L(f, P) < \epsilon$.
- Properties of Riemann integral.
 - Monotone functions, continuous functions, are integrable.
 - Sum, product, absolute value of integrable functions are integrable.
 - Intermediate value theorem for integration.
- Fundamental theorem for calculus: integration of derivatives and derivative of integrations.
- Improper integral.

Chapter 7: Metric spaces (Section 13, 21, 22)

- Metric space: definition for a metric (distance function).
- Convergence of sequences and Cauchy sequences in metric spaces, completeness for metric spaces.
- Open sets, closed sets in metric spaces; interior, closure; Cantor set; compactness.
- Continuous functions between metric spaces: $\epsilon \delta$ definition and definition by open sets. Continuous functions on compact spaces are uniformly continuous, and the images are compact.
- Baire category theorem: Intersection of open dense sets in a complete metric space is still dense.
- Connectedness and path-connectedness of metric spaces: disjoint open decomposition versus connection by paths. Intervals are connected, path-connected spaces are connected (the reverse is not true).

Full Version

Chapter 0: Sets and functions.

- Sets: subsets, intersection, union, difference, product, equivalence relation. To show two sets A and B are equal: show $A \subseteq B$ and $B \subseteq A$.
- Functions: injection, surjection, bijection, inverse function, composition of functions.
- Induction.

Chapter 1: Real numbers.

- Real numbers: Dedekind cuts (not required), axioms of ordered fields, absolute value.
- Completeness Axiom: upper bound and lower bound, **supremum** (smallest upper bound) and **infimum** (greatest lower bound), Archimedean property, denseness of \mathbb{Q} (so does $\mathbb{R} \setminus \mathbb{Q}$).

Completeness Axiom: for every nonempty subset of \mathbb{R} , if it is bounded above, then the supremum exists.

To show that $M \ge \sup S$, need only to show that $M \ge s$ for any $s \in S$, i.e. M is an upper bound of S.

• Symbols of $+\infty$ and $-\infty$.

Chapter 2: Sequences.

- Limits of sequences: $\lim_{n\to\infty} s_n = s$: for any $\epsilon > 0$, there exists N, such that for any n > N, $|s_n s| < \epsilon$.
 - $\lim_{n\to\infty} s_n \neq s$: there exists $\epsilon > 0$, such that for any N, there exists n > N, such that $|s_n s| \geq \epsilon$.
- Limit theorems of sequences: limit of sum, difference, product, quotient of two convergent sequences, basic examples of limit of sequences (Theorem 9.7), limit to infinity.
- Monotone sequences: monotone sequences always have limits, bounded monotone sequences always converge.
- **limsup** and **liminf**: $\limsup s_n = \lim_{N \to \infty} \sup \{s_n \mid n > N\}$. $\lim_{n \to \infty} s_n = s$ if and only if $\limsup s_n = \liminf s_n = s$.
- Cauchy sequence: for any $\epsilon > 0$, there exists N, such that for any m, n > N, $|s_m s_n| < \epsilon$. (s_n) is Cauchy if and only if (s_n) converges.
- ullet Subsequences: criterion of subsequential limit (Theorem 11.2), set of subsequential limits S.

Bolzano–Weierstrass theorem: every bounded sequence has a convergent subsequence.

- $\sup S = \lim \sup_{n \to \infty} s_n$, inf $S = \lim \inf_{n \to \infty} s_n$, S is a closed set.
- Series: series as limit of partial sums, Cauchy criterion of series, absolutely convergence, comparison test, ratio test, root test, alternating series, integral test.

Chapter 3: Continuity.

• Continuity: $f: dom(f) \to \mathbb{R}$ is continuous at $x_0 \in dom(f)$ if for any sequence (x_n) in dom(f), $\lim_{n\to\infty} x_n = x_0$ implies $\lim_{n\to\infty} f(x_n) = f(x_0)$. Equivalent definition of continuity at $x_0 \in dom(f)$: for any $\epsilon > 0$, there exists $\delta > 0$ such that for any $x \in dom(f)$ with $|x - x_0| < \delta$, $|f(x) - f(x_0)| < \epsilon$ holds. Sum, difference, product, quotient, composition of continuous functions are continuous.

- Properties of continuous functions:
 - Continuous functions on closed intervals realize the supremum and infimum.
 - Intermediate value theorem.
 - Inversions of continuous strictly increasing functions are continuous.
- Uniformly continuous: for any $\epsilon > 0$, there exists $\delta > 0$ such that for any $x, y \in dom(f)$ with $|x - y| < \delta$, $|f(x) - f(y)| < \epsilon$ holds.

Theorem: Continuous functions on closed intervals are uniformly continuous. Uniformly functions map Cauchy sequences to Cauchy sequences.

• Limit of functions: $\lim_{x\to a^S}$, $\lim_{x\to a}$, $\lim_{x\to a^-}$, $\lim_{x\to a^+}$, $\lim_{x\to -\infty}$, $\lim_{x\to +\infty}$, definition by sequences, and by ϵ - δ or ϵ -N (possibly $a \notin dom(f)$). $\lim_{x\to a} f(x)$ exists if and only if both $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ exist and equal; f is continuous at a if and only if $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = f(a)$.

Chapter 4: Sequence and series of functions.

- Power series: For $\sum a_n x^n$, the radius of convergence $R = \frac{1}{\beta}$ with $\beta = \limsup |a_n|^{\frac{1}{n}}$, the power series converges for |x| < R and diverges for |x| > R.
- Pointwise convergence: (f_n) converges pointwise to f on S if for any $x \in S$, $\lim f_n(x) = f(x)$ (fix $x \in S$, for any $\epsilon > 0$, there exists N, such that for any $n>N, |f_n(x)-f(x)|<\epsilon$). Pointwise limit of continuous functions may not be continuous.
- Uniform convergence: (f_n) converges uniformy to f on S if for any $\epsilon > 0$, there exists N, such that for any n > N, $|f_n(x) - f(x)| < \epsilon$ for any $x \in S$.

Theorem: Uniform limit of continuous functions is continuous.

- Uniform limit must be the pointwise limit. If the pointwise limit f is known, calculus might be applied to determine whether (f_n) converges to f uniformly.
- Uniformly Cauchy for sequences (useful for series of functions), Weierstrass M-test. For a sequences of continuous functions which uniformly converges, the integrations of this sequence also converge to the integration of the limit function.
- We can compute the integration and derivative of a power series by taking integration and derivative for each term (in (-R, R)). Power series uniformly converges in $[-R_1, R_1]$ for any $0 < R_1 < R$, and uniformly converges in [0, R] if it converges at x = R.

Chapter 5: Differentiation.

- Differentiable (derivative): f is differentiable at $a \in dom(f)$ if dom(f) contains an open interval containing a, and $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists. Derivative of sum, difference, product, quotient, composition (chain rule) of functions. Differentiable implies continuous.
- The mean value theorem.
 - f take maximum at $x_0 \in (a, b)$ and also differentiable at x_0 , then $f'(x_0) = 0$.
 - Rolle's theorem: f continuous on [a,b], differentiable on (a,b), if f(a)=f(b), then there exists $x_0 \in (a, b)$ such that $f'(x_0) = 0$.
 - Mean value theorem: f continuous on [a,b], differentiable on (a,b), then there exists $x_0 \in (a, b)$ such that $f'(x_0) = \frac{f(b) - f(a)}{b - a}$. $-f' = 0, \ge 0$ or > 0 implies f is constant, increasing, or strictly increasing.

 - Intermediate value theorem for derivatives.

- L'Hospital's Rule: If $\lim_{x\to s} f(x) = \lim_{x\to s} g(x) = 0$ or $\lim_{x\to s} |g(x)| = +\infty$, and $\lim_{x\to s} \frac{f'(x)}{g'(x)} = L$, then $\lim_{x\to s} \frac{f(x)}{g(x)} = L$. (Tricks for changing the expressions.) Generalized mean value theorem.
- Taylor's series: estimate the remainder $R_n(x) = f(x) \sum_{k=0}^{n-1} \frac{f^{(k)}(c)}{k!} (x-c)^k$, the Taylor's series converges to f(x) at x if and only if $\lim_{n\to\infty} R_n(x) = 0$.
 - $R_n(x) = \frac{f^{(n)}(y)}{n!}(x-c)^n$ for some y lies between x and c (which shows the Taylor's series of a few functions converge to the original functions). $R_n(x) = \int_c^x \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt = (x-c) \cdot \frac{(x-y)^{n-1}}{(n-1)!} \cdot f^{(n)}(y)$ for some y lies between x
- Newton's method and secant method for numerical computation of roots of functions.

Chapter 6: Integration.

- Definition of integration: $f:[a,b]\to\mathbb{R}$ bounded, $P=\{a=t_0< t_1<\cdots<$ $t_n = b$ partition of [a, b]; for any $S \subseteq [a, b]$, $M(f, S) = \sup\{f(x) \mid x \in S\}$ and $m(f,S) = \inf \{ f(x) \mid x \in S \}.$

 - Upper Darboux sum: $U(f,P) = \sum_{k=1}^{n} M(f,[t_{k-1},t_k]) \cdot (t_k t_{k-1}).$ Lower Darboux sum: $L(f,P) = \sum_{k=1}^{n} m(f,[t_{k-1},t_k]) \cdot (t_k t_{k-1}).$ Upper Darboux integral: $U(f) = \sup \{U(f,P) \mid P \text{ is any partition of } [a,b]\}.$
 - Lower Darboux integral: $L(f) = \inf \{ L(f, P) \mid P \text{ is any partition of } [a, b] \}.$

- f is integrable on [a,b] if U(f)=L(f), then $\int_a^b f=\int_a^b f(x)\mathrm{d}x=U(f)=L(f)$. For any two partitions P,Q of [a,b], $L(f,P)\leq L(f,P\cup Q)\leq U(f,P\cup Q)\leq U(f,Q)$, so $L(f) \leq U(f)$, and $L(f, P) \leq L(f) \leq U(f) \leq U(f, P)$.
 - **Theorem:** f is integrable on [a,b] if and only if for any $\epsilon > 0$, there exists a partition P of [a, b], such that $U(f, P) - L(f, P) < \epsilon$.
- Properties of Riemann integral.
 - Monotone functions, continuous functions, piecewise bounded monotone functions, piecewise continuous functions are integrable.
 - Sum, product, absolute value of integrable functions are integrable.
 - Continuous nonnegative functions have positive integral, except the functions is the constant function that equals 0.
 - Intermediate value theorem for integration.
- Fundamental theorem for calculus: integration of derivatives and derivative of integrations. Application: integration by parts, change of variables.
- Improper integral.

Chapter 7: Metric spaces (Section 13, 21, 22)

- Metric space For a set $S, d: S \times S \to \mathbb{R}$ is a metric if
 - $-d(x,y) \ge 0$ and d(x,y) = 0 if and only if x = y.
 - d(x,y) = d(y,x).
 - $d(x,z) \le d(x,y) + d(y,z).$

Then (S, d) is a metric space.

- Convergence of sequences in metric spaces, Cauchy sequences in metric spaces, completeness for metric spaces. (Sequences in \mathbb{R}^n , completeness of \mathbb{R}^n .)
- Open sets, closed sets in metric spaces; interior, closure; Cantor set. Compactness (equivalent with closed and bounded for subsets of \mathbb{R}^n).

- Continuous functions between metric spaces: replace absolute values by metrics in the real-valued function case, equivalent definition by only using open sets. Continuous functions on a compact space is uniformly continuous, and the image is compact, such real-valued functions reach the supremum and infimum.
- Baire category theorem: Intersection of open dense sets in a complete metric space is still dense, and a few equivalent statements.
- Connectedness and path—connectedness of metric spaces: disjoint open decomposition versus connection by paths. Intervals are connected, path—connected spaces are connected (the reverse is not true).