(a) $\{(x, mx) | x \in \mathbb{R}\}$ and $\{(x, -\frac{1}{m}x) | x \in \mathbb{R}\}$. $y = -\frac{1}{m}x$ is orthogonal to y = mx, so any reflection across the latter of any element in $y = -\frac{1}{m}$ would still lie on the same line. (b)

Proof. By earlier proof, T is an isomorphism, so $N(T) = \{0_{\mathbb{R}^3}\}$. Then T(N(T)) = N(T)by linearity, so N(T) is T-invariant. Since T is isomorphic,

$$\operatorname{rank} T = \dim T = \dim(\operatorname{im} T) = n \implies \operatorname{im} T = \mathbb{R}^3 \subseteq \mathbb{R}^3$$