

Web Scraping tool for extracting the abstracts from Research Papers available on Google Scholar and PubMed

Group 16 Suraj Kumar Jha - 2021209 Rajat jaiswal - 2021184 Tarun Bansal - 2021210

## Various ML/DL models reported in the literature for the property: Permeability Prediction and Blood Barrier Permeability

- Title
- Author
- Year of publication
- Dataset size
- Available for download or not
- Which machine learning or deep learning model
- In the case of multiple models which is the one top performing
- Source reference and URL

Aim: To analyze scientific literature from PubMed for machine learning and deep learning models used in permeability prediction and other properties. The significance of permeability prediction and the need for web scraping.

#### Methodology

- Web scraping PubMed and Google Scholar
- Extracting information: Title, Year, Authors, Dataset size, Models Used, Download availability, Top performing Model
- Code snippet explanation
- Data preparation for analysis

#### Approach

- Utilizing Python with Selenium and Beautiful Soup libraries
- Model keywords for identification
- Iterating through search results
- Navigating to article pages
- Organizing data by year

The code snippet scrapes PubMed for articles on permeability prediction from 2010 to 2023, extracting data for machine learning and deep learning model mentions. It iterates through search results, simulates scrolling, and parses the HTML for analysis.

```
# Loop through each year from 2010 to 2023
for year in range(2010, 2024):
   year data = []
   # Inside the loop for each page
   for page in range(1, 5): # Extract data from the first 10 pages
        # Open PubMed
        driver.get(f"https://pubmed.ncbi.nlm.nih.gov/?term={search query}&filter=years.{year}-{year}&page={page}
        # Wait for the results to load
        time.sleep(5)
        # Scroll down to load more results (you can adjust the number of scrolls)
        for in range(3):
            driver.execute script("window.scrollTo(0, document.body.scrollHeight);")
            time.sleep(2)
        # Get the page source and parse it with BeautifulSoup
        page source = driver.page source
        soup = BeautifulSoup(page source, 'html.parser')
```

The code segment extracts article details and searches for downloadable articles. It checks if specific machine learning models are mentioned in the abstract or text, facilitating model identification in PubMed articles.

```
for result in results:
   title = result.find("a", {"class": "docsum-title"}).text
   authors = result.find("span", {"class": "docsum-authors"}).text
   link = "https://pubmed.ncbi.nlm.nih.gov" + result.find("a", {"class": "docsum-title"})["href"]
   pmid = result.find("span", {"class": "docsum-pmid"}).text
   # Open the link to the article
   driver.get(link)
   time.sleep(5) # Wait for the article page to load
   # Get the article page source and parse it with BeautifulSoup
   article page source = driver.page source
   article soup = BeautifulSoup(article page source, 'html.parser')
   # Check if the "Save" button element is present inside the article
   save_button = article_soup.find("button", {"id": "save-results-panel-trigger"})
   downloadability = "Yes" if save button else "No"
   abstract = result.find("div", {"class": "abstract-content"}).text
   # Extract the entire text content of the article page
   article_text = article_soup.get_text()
   article_upper = article_text.upper()
   abstract upper = abstract.upper()
   models mentioned = []
```

### Function to Find the dataset used

```
def find data size(text):
    # Split the text into lines
   lines = text.split('. ')
   max value = None
    line with max value = None
    for line in lines:
       # Use regular expressions to find all numeric values in the line
       numeric_values = re.findall(r'\d+(?:\.\d+)?', line)
       if numeric values:
            # Convert the numeric values to float and find the maximum
            line max value = max(float(value) for value in numeric values)
            if max value is None or line max value > max value:
                max value = line max value
                line with max value = line
    return line with max value
```





# Permeability Prediction Results (Extracted to Excel File)

| 1     | Title                                                                          | Year | Authors                         | Link                                      | Model                                                                  | Downloadability |
|-------|--------------------------------------------------------------------------------|------|---------------------------------|-------------------------------------------|------------------------------------------------------------------------|-----------------|
| 2     | Reliable Prediction of Caco-2 Permeability by Supervised Recu                  | 2022 | Falcón-Cano G, Molina C, Ca     | https://pubmed.ncbi.nlm.nih.gov/36297432/ | Random Forest, KNIME, CLIP, ROS, Random Forest                         | Yes             |
| 3     | DeePred-BBB: A Blood Brain Barrier Permeability Prediction M                   | 2022 | Kumar R, Sharma A, Alexiou A    | https://pubmed.ncbi.nlm.nih.gov/35592264/ | DeePred-BBB, CNN, Convolutional Neural Network, Recurrent Neural N     | Yes             |
| 4     | DeepBBBP: High Accuracy Blood-brain-barrier Permeability Pro                   | 2022 | Cherian Parakkal S, Datta R, I  | https://pubmed.ncbi.nlm.nih.gov/35393777/ | Mol2vec, MLP, Convolutional Neural Network, Perceptron, CLIP, PPO, R   | Yes             |
| 5     | Chloride Permeability Coefficient Prediction of Rubber Concre                  | 2022 | Huang X, Wang S, Lu T, Li H, V  | https://pubmed.ncbi.nlm.nih.gov/36679189/ | Random Forest, Linear Regression, Decision Tree, Extreme Learning Ma   | Yes             |
| 6     | Binary classification model of machine learning detected alter                 | 2022 | Rahman Z, Pasam T, Rishab, I    | https://pubmed.ncbi.nlm.nih.gov/35758006/ | SVM, VGG, CLIP, SAC, PPO, ROS, Cortex                                  | Yes             |
| 7     | A merged molecular representation deep learning method for                     | 2022 | Tang Q, Nie F, Zhao Q, Chen Y   | https://pubmed.ncbi.nlm.nih.gov/36002937/ | DeePred-BBB, Support Vector Machine, LightGBM, CLIP, PPO, ROS, Light   | (Yes            |
| 8     | Trivariate Linear Regression and Machine Learning Prediction                   | 2022 | Shimizu M, Hayasaka R, Kami     | https://pubmed.ncbi.nlm.nih.gov/35644566/ | Linear Regression, Gradient Boosting, LightGBM, CLIP, ROS, LightGBM, G | r Yes           |
| 9     | Ensemble modeling with machine learning and deep learning to                   | 2022 | Yu TH, Su BH, Battalora LC, L   | https://pubmed.ncbi.nlm.nih.gov/34530437/ | SVM, Support Vector Machine, Orange, CLIP, PPO, ROS                    | Yes             |
| 10    | Quantifying face mask comfort.                                                 | 2022 | Koh E, Ambatipudi M, Boone      | https://pubmed.ncbi.nlm.nih.gov/34747682/ | Linear Regression, CLIP, SAC, ROS                                      | Yes             |
| 11    | Revolutionizing Membrane Design Using Machine Learning-Ba                      | 2022 | Gao H, Zhong S, Zhang W, Igo    | https://pubmed.ncbi.nlm.nih.gov/34968041/ | Gradient Boosting, LIME, CLIP, PPO, ROS, Gradient Boosting, LIME       | Yes             |
| 12    | In Silico Prediction of Skin Permeability Using a Two-QSAR App                 | 2022 | Wu YW, Ta GH, Lung YC, Wer      | https://pubmed.ncbi.nlm.nih.gov/35631545/ | BERT, SVR, Support Vector Regression, Bert, CLIP, PPO                  | Yes             |
| 13    | Ensemble learning for predicting ex vivo human placental barri                 | 2022 | Chou CY, Lin P, Kim J, Wang S   | https://pubmed.ncbi.nlm.nih.gov/36138350/ | Random Forest, Linear Regression, CLIP, PPO, ROS, Random Forest        | Yes             |
| 14    | Biological Membrane-Penetrating Peptides: Computational Pro-                   | 2022 | de Oliveira ECL, da Costa KS,   | https://pubmed.ncbi.nlm.nih.gov/35402305/ | Support Vector Machine, CLIP, PPO, ROS                                 | Yes             |
| 15 N  | Machine learning-based models for predicting gas breakthrough pressure of po   | 2022 | Gao C, Lu PH, Ye WM, Liu ZR,    | https://pubmed.ncbi.nlm.nih.gov/36538229/ | BERT, Random Forest, Bert, SHAP, CLIP, ROS, Random Forest, SHAP        | Yes             |
| 16 P  | rediction of organic contaminant rejection by nanofiltration and reverse osm   | 2022 | Zhu T, Zhang Y, Tao C, Chen V   | https://pubmed.ncbi.nlm.nih.gov/36228787/ | SVM, XGBoost, LightGBM, CLIP, LightGBM, XGBoost                        | Yes             |
| 17    | Blood-brain barrier penetration prediction enhanced by uncer-                  | 2022 | Tong X, Wang D, Ding X, Tan 1   | https://pubmed.ncbi.nlm.nih.gov/35799215/ | MLP, CLIP                                                              | Yes             |
| 18    | Membrane Permeating Macrocycles: Design Guidelines from N                      | 2022 | Williams-Noonan BJ, Speer N     | https://pubmed.ncbi.nlm.nih.gov/36178379/ | Random Forest, Linear Regression, CLIP, PPO, ROS, Random Forest        | Yes             |
| 19    | Implications of Additivity and Nonadditivity for Machine Learn                 | 2022 | Kwapien K, Nittinger E, He J, I | https://pubmed.ncbi.nlm.nih.gov/35936431/ | Orange, CLIP, PPO                                                      | Yes             |
| 20    | Physics-informed machine learning with differentiable progran                  | 2022 | Pachalieva A, O'Malley D, Ha    | https://pubmed.ncbi.nlm.nih.gov/36333378/ | Convolutional Neural Network, BERT, Bert, CLIP, PPO                    | Yes             |
| 21    | The Role of Different Retinal Imaging Modalities in Predicting I               | 2022 | Elsharkawy M, Elrazzaz M, Sh    | https://pubmed.ncbi.nlm.nih.gov/35591182/ | Transformer, CLIP, ROS                                                 | Yes             |
| 22 N  | Machine learning enables interpretable discovery of innovative polymers for ge | 2022 | Yang J, Tao L, He J, McCutche   | https://pubmed.ncbi.nlm.nih.gov/35857839/ | SHAP, CLIP, SHAP                                                       | Yes             |
| 23    | Using in vitro ADME data for lead compound selection: An em                    | 2022 | Williams J, Siramshetty V, Ng   | https://pubmed.ncbi.nlm.nih.gov/35030421/ | CNN, Convolutional Neural Network, Random Forest, Decision Tree, Gra   | Yes             |
| 24    | Decoding river pollution trends and their landscape determina                  | 2022 | Xu G, Fan H, Oliver DM, Dai Y   | https://pubmed.ncbi.nlm.nih.gov/35931190/ | Random Forest, XGBoost, Gradient Boosting, SHAP, CLIP, PPO, XGBoost,   | Yes             |
| 25    | A general optimization protocol for molecular property predic                  | 2022 | Chen JH, Tseng YJ.              | https://pubmed.ncbi.nlm.nih.gov/34498673/ | CNN, Convolutional Neural Network, RNN, LSTM, CLIP, PPO                | Yes             |
| 26 P  | rediction of irrigation groundwater quality parameters using ANN, LSTM, and    | 2022 | Kouadri S, Pande CB, Pannee     | https://pubmed.ncbi.nlm.nih.gov/34748181/ | LSTM, Long Short-Term Memory, Linear Regression, CLIP                  | Yes             |
| 27    | Better Performance with Transformer: CPPFormer in the Preci                    | 2022 | Xue Y, Ye X, Wei L, Zhang X, S  | https://pubmed.ncbi.nlm.nih.gov/34544332/ | Decision Tree, Transformer, CLIP                                       | Yes             |
| 28 N  | Machine Learning-Based Accelerated Approaches to Infer Breakdown Pressure      | 2022 | Tariq Z, Yan B, Sun S, Gudala   | https://pubmed.ncbi.nlm.nih.gov/36406508/ | Random Forest, Decision Tree, CLIP, ROS, Random Forest                 | Yes             |
| 29    | Conformational Effects on the Passive Membrane Permeability                    | 2022 | Rzepiela AA, Viarengo-Baker     | https://pubmed.ncbi.nlm.nih.gov/35861996/ | CLIP, SAC, ROS                                                         | Yes             |
| 4     | 2014   2015   2016   2017   2018   2019   2020   2021                          | 2022 | 2023   +                        | : 1                                       |                                                                        | •               |
| Ready | (+> Accessibility: Good to go                                                  |      |                                 |                                           |                                                                        | + 100%          |

# Blood Barrier Permeability Results (Year wise Data Extracted to Excel File)

| 4  | A                                                     | В        | С         | D            | Е                               | F                                                     | G               | Н                                                 | 1 1                  |
|----|-------------------------------------------------------|----------|-----------|--------------|---------------------------------|-------------------------------------------------------|-----------------|---------------------------------------------------|----------------------|
| 1  | Title                                                 | PMID     | Year      | Authors      | Link                            | Model                                                 | Downloadability | Abstract                                          | Dataset Siz          |
| 2  | Machine learning based dynamic consen                 | 37137267 | 2022      | Mazumda      | https://pubmed.ncbi.nlm.nih.gov | Random Forest, XGBoost, XGBoost, Random Forest        | Yes             | The blood-brain barrier (BBB) is an important d   | efence A dataset     |
| 3  | A machine learning-based quantitative n               | 37713469 | 2022      | Shaker B,    | https://pubmed.ncbi.nlm.nih.gov | No Model Found                                        | Yes             | Motivation: Efficient assessment of the           | ne bloo The mode     |
| 4  | DeepBBBP: High Accuracy (                             | 35393777 | 2022      | Cherian Pa   | https://pubmed.ncbi.nlm.nih.gov | Mol2vec, MLP, Convolutional Neural Network, Perceptro | Yes             | Blood-brain-barrier permeability (BBBP) is an ir  | mportal In this wo   |
| 5  | DeePred-BBB: A Blood Brai                             | 35592264 | 2022      | Kumar R, S   | https://pubmed.ncbi.nlm.nih.gov | DeePred-BBB, Convolutional Neural Network             | Yes             | The blood-brain barrier (BBB) is a selective and  | semipe Each com      |
| 6  | A merged molecular repres                             |          | 2022      | Tang Q, Ni   | https://pubmed.ncbi.nlm.nih.gov | ROS                                                   | Yes             | The ability of a compound to permeate across      | the blo To compl     |
| 7  | Blood-brain barrier penetration prediction $\epsilon$ | 35799215 | 2022      | Tong X, W    | https://pubmed.ncbi.nlm.nih.gov | No Model Found                                        | Yes             | Blood-brain barrier is a pivotal factor to be cor | nsiderec In particu  |
| 8  | Biological Membrane-Pene                              | 35402305 | 2022      | de Oliveira  | https://pubmed.ncbi.nlm.nih.gov | ROS                                                   | Yes             | Peptides comprise a versatile class of biomolec   | ules th Cell-pene    |
| 9  | Alvascience: A New Softwa                             |          | 2022      | Mauri A, B   | https://pubmed.ncbi.nlm.nih.gov | No Model Found                                        | Yes             | Quantitative structure-activity relationship (QS  | AR) and The result   |
| 10 | Relational graph convolution                          | 35561199 | 2022      | Ding Y, Jia  | https://pubmed.ncbi.nlm.nih.gov | LightGBM, LightGBM                                    | Yes             | Motivation: Evaluating the blood-brai             | in barric Our mode   |
| 11 | Proteomic biomarkers of K                             |          | 2022      | Hédou J, C   | https://pubmed.ncbi.nlm.nih.gov | ROS                                                   | Yes             | Study objectives: Kleine-Levin syndror            | me (KLS We quant     |
| 12 | Ensemble modeling with m                              | 34530437 | 2022      | Yu TH, Su I  | https://pubmed.ncbi.nlm.nih.gov | Support Vector Machine, PPO                           | Yes             | The trade-off between a machine learning (ML)     | ) and de A data se   |
| 13 | MORPHIOUS: an unsupervi                               | 35093113 | 2022      | Silburt J, A | https://pubmed.ncbi.nlm.nih.gov | Support Vector Machine, DBSCAN, PPO                   | Yes             | Background: In conditions of brain inj            | ury and MORPHIC      |
| 14 | Machine learning based dynamic consen                 | 37137267 | 2022      | Mazumda      | https://pubmed.ncbi.nlm.nih.gov | Random Forest, XGBoost, XGBoost, Random Forest        | Yes             | The blood-brain barrier (BBB) is an important d   | efence A dataset     |
| 15 | A machine learning-based quantitative n               | 37713469 | 2022      | Shaker B,    | https://pubmed.ncbi.nlm.nih.gov | No Model Found                                        | Yes             | Motivation: Efficient assessment of the           | ne bloo The mode     |
| 16 | A general optimization prot                           | 34498673 | 2022      | Chen JH, T   | https://pubmed.ncbi.nlm.nih.gov | CNN                                                   | Yes             | The key to generating the best deep learning m    | odel for predictin   |
| 17 | deepGraphh: AI-driven web                             | 35868454 | 2022      | Gautam V     | https://pubmed.ncbi.nlm.nih.gov | PPO, ROS                                              | Yes             | Artificial intelligence (AI)-based computational  | techniques allow     |
| 18 | Implication of type 4 NADP                            | 34922273 | 2022      | Luengo E,    | https://pubmed.ncbi.nlm.nih.gov | ROS                                                   | Yes             | Aggregates of the microtubule-associated prot     | ein tau Our result   |
| 19 | Comparison of Descriptor-                             | 35755260 | 2022      | Orosz Á, H   | https://pubmed.ncbi.nlm.nih.gov | MLP, XGBoost, XGBoost                                 | Yes             | The screening of compounds for ADME-Tox tar       | gets pla In this stu |
| 20 |                                                       |          |           |              |                                 |                                                       |                 |                                                   |                      |
| 21 |                                                       |          |           |              |                                 |                                                       |                 |                                                   |                      |
| 22 |                                                       |          |           |              |                                 |                                                       |                 |                                                   |                      |
| 23 |                                                       |          |           |              |                                 |                                                       |                 |                                                   |                      |
| 24 |                                                       |          |           |              |                                 |                                                       |                 |                                                   |                      |
| 25 |                                                       |          |           |              |                                 |                                                       |                 |                                                   |                      |
| 26 |                                                       |          |           |              |                                 |                                                       |                 |                                                   |                      |
| 27 |                                                       |          |           |              |                                 |                                                       |                 |                                                   |                      |
| 28 |                                                       |          |           |              |                                 |                                                       |                 |                                                   |                      |
| 29 |                                                       |          |           |              |                                 |                                                       |                 |                                                   | T.                   |
| 4  | 2009   2010   2011   2012                             | 2013     | 2014   20 | 15   201     | 6   2017   2018   2019   20     | 020   2021   <b>2022</b>   2023   + + +               |                 |                                                   | , i                  |

### Observation

Web scraping revealed insights about permeability prediction models, highlighting:

- Dataset size information, extracted through careful reading of abstract.
- All Articles are not downloadable.
- Diverse ML and DL models, some more popular with some of them are best performing.
- Year-wise data on articles, authors, models, and download status.

### Conclusion

Our web scraping and analysis have provided valuable insights into the utilization of machine learning and deep learning models for permeability prediction in scientific literature. While dataset sizes were not directly available, but managed to extract data from reading abstract. we observed variable article download availability and a diverse array of models mentioned. Some models were more prevalent than others. The report's year-wise breakdown offers a comprehensive overview. Future studies could further explore top-performing models, investigate dataset sizes' impact, and extend the analysis to properties beyond permeability, expanding our understanding of model applications in pharmaceutical research.

### THANK YOU

**GROUP 16** 

SURAJ KUMAR JHA - suraj21209@iiitd.ac.in

RAJAT JAISWAL - rajat21184@iiitd.ac.in

TARUN BANSAL - tarun21210@iiitd.ac.in