Traveling Tournament Problem

Patrick Marschik and Martin Schwengerer

Outline

- Approach
- Parameter Exploration
- Results

Representation

- i×j matrix G
- i ... round
- j... team l
- $g_{i,j} \in G$... team 2
- $sgn(g_{i,j})$... negative away, positive home

Approach

- Greedy Randomized Search Procedure (GRASP)
 - construct multiple initial solutions
 - multiple local searches
- Problem relaxation
 - soft / hard constraints + penalty

Construction

- Randomized (iterated local search)
- Randomized with heuristic (GRASP)
 - Random Greedy

GRASP Construction

- create "virtual schedule"
- real teams → virtual schedule (greedy)
 - count # of consecutive team-pairs
 - sort real teams by distance
 - assign closely located teams to high count

GRASP Construction

continued

- create set of candidate pairs
 - team-pair with smallest distance
 - team-pairs < threshold
- choose randomly

GRASP Construction

extended

- avoid known solutions
 - tabu list
- different virtual schedules
 - [AMHV06]
 - [GS07]

Tabu Search

- recency based memory
- complete schedules stored
- no aspiration criteria
- union of multiple neighborhoods

Neighborhoods

- Shift Round
- Swap Home-Visitor
- Swap Match Round
- Swap Matches
- 2-opt Swap Rounds
- 2-opt Swap Teams

Outline

- Approach
- Parameter Exploration
- Results

Parameter Exploration

- use baseline, vary one parameter
- length of tabu list: 0, 10 ... 50 ... 80
- iterations: 100, 200 ... **500**, 600
- # of searches: 10, 20 ... 40 ... 80
- neighborhoods: 2^{neighborhoods} Ø

Tabu List Length - Cost

Iterations - Cost

Searches - Cost

Neighborhoods - Cost

Outline

- Approach
- Parameter Exploration
- Results

NLx Parameters

- Method: GRASP
- Construction Heuristic: GRASP, threshold 0.4
- Tabu-List Length: 70
- # Iterations: 10,000
- # Searches: 40
- Neighborhoods: all

NLx Results

	min	max	avg	median
4	8,276	8,276	8,276.0	8,276.0
6	23,916	24,073	23,931.7	23,916.0
8	40,806	41,833	41,024.2	40,929.0
10	63,660	64,948	64,311.5	64,463.0
12	124,097	127,639	125,374.8	124,725.5

GRASP Run (NL12)

Tabu Search Run (NL12)

thanks for your attention

questions?

References

- [AMHV06] A. Anagnostopoulos, L. Michel, P.Van Hentenryck, and Y. Vergados. **A** simulated annealing approach to the traveling tournament problem. J. of Scheduling, 9:177–193, April 2006.
- [CKB07] P-C. Chen, G. Kendall, and G. Vanden Berghe. An ant based hyper-heuristic for the travelling tournament problem. In Proceedings of 2007 IEEE Symposium of Computational Intelligence in Scheduling (CISched 2007), pages 19–26. Hawaii, 2007.
- [GS07] Luca Di Gaspero and Andrea Schaerf. A composite-neighborhood tabu search approach to the travelling tournament problem. Journal of Heuristics, 13:189–207, 2007.
- [HV06] Pascal Van Hentenryck and Yannis Vergados. **Traveling tournament** scheduling: A systematic evaluation of simulated annealling. In CPAIOR, pages 228–243, 2006.
- [RBK08] F. Ryckbosch, G. Vanden Berghe, and G. Kendall. A heuristic approach for the travelling tournament problem using optimal travelling salesman tours. In PATAT 2008, 18-22 August 2008, Montreal, Canada 2008.
- [RU04] Celso C. Ribeiro and Sebastan Urrutia. **Heuristics for the mirrored traveling tournament problem**. European Journal of Operational Research, pages 323–342, 2004.