Calc III: Workshop 10 Solutions, Fall 2017

Problem 1. Let $R = \{(x,y) : x^2 + y^2 \le a^2, y \ge 0\}$ be the upper half disk of radius a, with mass density $\delta(x,y) = x^2 + y^2$.

- (a) Compute the mass of R.
- (b) Compute the center of mass $(\overline{x}, \overline{y})$ of R.

Solution.

(a) The mass is given by $\iint_R \delta(x,y) dA$. It is easiest to parameterize R in polar coordinates, by $0 \le r \le a$ and $0 \le \theta \le \pi$. Then since $\delta(x,y) = x^2 + y^2 = r^2$, we have

$$M = \iint_{R} \delta(x, y) dA$$
$$= \int_{0}^{\pi} \int_{0}^{a} (r^{2}) r dr d\theta$$
$$= \frac{\pi a^{4}}{4}$$

(b) By symmetry of both R and δ with respect to reflection about the y axis, it follows that $\overline{x} = 0$. To compute \overline{y} , we have

$$\overline{y} = \frac{1}{M} \iint_{R} y \, \delta(x, y) \, dA$$

$$= \frac{1}{M} \int_{0}^{\pi} \int_{0}^{a} r \sin \theta(r^{2}) \, r \, dr \, d\theta$$

$$= \frac{1}{M} \int_{0}^{\pi} \sin \theta \, d\theta \int_{0}^{a} r^{4} \, dr$$

$$= \frac{1}{M} \frac{2a^{5}}{5}$$

$$= \frac{4}{\pi a^{4}} \frac{2a^{5}}{5} = \frac{8a}{5\pi}.$$

Problem 2. Use Green's Theorem to compute the line integral $\oint_C \mathbf{F} \cdot \mathbf{T} \, ds$, where $\mathbf{F}(x,y) = (x^2 + y^2)\mathbf{i} + (2xy + x)\mathbf{j}$ and C is the closed triangular path consisting of straight line segments from (0,0) to (1,1), then to (1,0) and back to (0,0).

Solution. Here $P(x,y) = x^2 + y^2$ and Q(x,y) = (2xy + x), so

$$Q_x - P_y = (2y + 1) - (2y) = 1.$$

The closed curve C traverses the boundary ∂R of the solid triangle, but in the opposite direction, i.e., $C = -\partial R$. Thus by Green's Theorem,

$$\oint_C \mathbf{F} \cdot \mathbf{T} \, ds = - \oint_{\partial R} \mathbf{F} \cdot \mathbf{T} \, ds = - \iint_R Q_x - P_y \, dA = - \iint_R \, dA = - \operatorname{Area}(R) = -\frac{1}{2}.$$

Problem 3. Compute the volume of the solid region between the surfaces $z = x^2 + y^2$ and $z = 8 - x^2 - y^2$

Solution. Cylindrical coordinates are best for this; then the surfaces have the form $z=r^2$ and $z=8-r^2$, respectively. The region is given by the limits $r^2 \le z \le 8-r^2$, $0 \le \theta \le 2\pi$ and $0 \le r \le 2$ (the upper limit in r is given by the intersection of the two paraboloids: set $z=r^2=8-r^2$ and solve for r=2). Thus the volume is

$$Vol = \iiint_E dV$$

$$= \int_0^{2\pi} \int_0^2 \int_{r^2}^{8-r^2} r \, dz \, dr \, d\theta$$

$$= 2\pi \int_0^2 r \left((8 - r^2) - (r^2) \right) dr$$

$$= 2\pi \int_0^2 8r - 2r^3 \, dr$$

$$= 2\pi \left(\frac{8(2^2)}{2} - \frac{2(2^4)}{4} \right)$$

$$= 16\pi.$$

Problem 4. Set up, but do not evaluate, the triple integral $\iiint_E xy \, dV$, where E is the region bounded below by the cone $z = \sqrt{3(x^2 + y^2)}$ and above by the sphere $x^2 + y^2 + z^2 = 4$, using:

- (a) Cartesian coordinates (x, y, z),
- (b) Cylindrical coordinates (z, r, θ) , and
- (c) Spherical coordinates (ρ, φ, θ) .

Solution. The two surfaces meet where $z = \sqrt{3(x^2 + y^2)} = \sqrt{4 - x^2 - y^2}$, which gives the circle $x^2 + y^2 = 1$ lying in the plane $z = \sqrt{3}$.

(a) In cartesian coordinates, if we do z first, the integral becomes

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{\sqrt{3(x^2+y^2)}}^{\sqrt{4-x^2-y^2}} xy \, dz \, dy \, dx$$

(b) In cylindrical coordinates, it becomes

$$\int_0^{2\pi} \int_0^1 \int_{\sqrt{3}r}^{\sqrt{4-r^2}} (r\cos\theta)(r\sin\theta) r \, dz \, dr \, d\theta.$$

(c) Finally, in spherical coordinates we note that the cone $z=\sqrt{3(x^2+y^2)}=(\sqrt{3})r$ is described by the constant angle $\varphi=\pi/6$ (there is a 30-60-90 triangle in z and r). The other limits are $0 \le \rho \le 2$ and $0 \le \theta \le 2\pi$, so we have

$$\int_0^{2\pi} \int_0^{\pi/6} \int_0^2 (\rho \sin \varphi \cos \theta) (\rho \sin \varphi \sin \theta) \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta$$

Problem 5.

- (a) Verify that the vector field $\mathbf{F}(x,y) = (2xy + ye^x)\mathbf{i} + (x^2 + e^x)\mathbf{j}$ is conservative, and find a potential function f(x,y).
- (b) Compute the line integral $\int_C \mathbf{F}(x,y) \cdot \mathbf{T} ds$, where C is the curve $y = 1 + x^2$ from (0,1) to (1,2).

Solution.

(a) We compute

$$Q_x - P_y = \frac{\partial}{\partial x}(x^2 + e^x) - \frac{\partial}{\partial y}(2xy + ye^x) = (2x + e^x) - (2x + e^x) = 0$$

which vanishes on all of \mathbb{R}^2 , so **F** must be conservative. To find a potential function we need to solve $\nabla f = \mathbf{F}$, or

$$f_x(x,y) = 2xy + ye^x$$

$$f_y(x,y) = x^2 + e^x.$$

Integrating the first equation with respect to x gives $f(x,y) = x^2y + ye^x + c(y)$, where c(y) is an unknown function of y. Plugging this into the second equation gives

$$f_y(x,y) = x^2 + e^x + c'(y) = x^2 + e^x$$

so c'(y) = 0 and therefore c(y) is a constant, which we can take to be 0. Thus a potential function is given by $f(x,y) = x^2y + ye^x$.

(b) By the fundamental theorem for line integrals,

$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_C \nabla f \cdot \mathbf{T} \, ds = f(1, 2) - f(0, 1) = (2 + 2e) - (0 + 1) = 1 + 2e.$$