Programme n°23

MECANIQUE

M5 Mouvement d'une particule chargée dans un champ électrique ou magnétique

Cours et exercices

M6 Moment cinétique

Cours et exercices

M7 Mouvement d'un solide en rotation autour d'un axe fixe (Cours et exercices)

- Energie d'un solide en rotation autour d'un axe fixe
- Energie cinétique d'un solide
- Puissance d'une force appliquée à un solide en rotation
- Théorème de l'énergie cinétique d'un solide indéformable
- Le pendule pesant Position u problème, Cas de faibles amplitudes, Etude énergétique et Portrait de phase

Loi scalaire du moment cinétique appliquée au solide en rotation autour d'un axe fixe orienté dans un référentiel galiléen.	
Pendule pesant.	Établir l'équation du mouvement.
	Expliquer l'analogie avec l'équation de l'oscillateur harmonique. Établir une intégrale première du mouvement.
	Lire et interpréter le portrait de phase : bifurcation entre un mouvement pendulaire et un mouvement révolutif.
Énergie cinétique d'un solide en rotation.	Utiliser la relation $E_c = \frac{1}{2}J_{\perp}\omega^2$, l'expression de J_{\perp} étant fournie.
Loi de l'énergie cinétique pour un solide.	Etablir l'équivalence dans ce cas entre la loi scalaire
	du moment cinétique et celle de l'énergie cinétique.

M8 Mouvement dans un champ de force centrale (Cours uniquement)

- Forces centrales conservatives
- Définition
- Energie potentielle associée
- Exemples : Interaction de gravitation et Interaction électrostatique
- · Lois générales de conservation
- Le moment cinétique : Conservation, Le mouvement est plan et Loi des Aires
- L'énergie mécanique
- Cas du champ Newtonien
- Etude du mouvement circulaire
- La vitesse
- L'énergie
- La période
- Le mouvement des planètes
- Les satellites de la Terre
- Hypothèses
- Les vitesses cosmiques
- Le satellite géostationnaire

5. Mouvements dans un champ de force centrale conservatif	
Point matériel soumis à un seul champ de force centrale.	Déduire de la loi du moment cinétique la conservation du moment cinétique.
	Connaître les conséquences de la conservation du moment cinétique : mouvement plan, loi des aires.
Énergie potentielle effective. État lié et état de diffusion.	Exprimer la conservation de l'énergie mécanique et construire une énergie potentielle effective.
	Décrire qualitativement le mouvement radial à l'aide de l'énergie potentielle effective. Relier le caractère borné à la valeur de l'énergie mécanique.
	1

Champ newtonien. Lois de Kepler.	Énoncer les lois de Kepler pour les planètes et les transposer au cas des satellites terrestres.
Cas particulier du mouvement circulaire : satellite, planète.	Montrer que le mouvement est uniforme et savoir calculer sa période.
	Établir la troisième loi de Kepler dans le cas particulier de la trajectoire circulaire. Exploiter sans
	démonstration sa généralisation au cas d'une trajectoire elliptique.
Satellite géostationnaire.	Calculer l'altitude du satellite et justifier sa localisation dans le plan équatorial.
Énergie mécanique dans le cas du mouvement circulaire puis dans le cas du mouvement elliptique.	Exprimer l'énergie mécanique pour le mouvement circulaire.
	Exprimer l'énergie mécanique pour le mouvement elliptique en fonction du demi-grand axe.
Vitesses cosmiques : vitesse en orbite basse et vitesse de libération.	Exprimer ces vitesses et connaître leur ordre de grandeur en dynamique terrestre.

INTRODUCTION A LA MECANIQUE QUANTIQUE (Cours et exercices)

- Dualité onde-particule de la lumière
- Le photon
- Quanta d'énergie
- L'effet photoélectrique
- Caractéristique du photon
- Optique géométrique
- Quelques expériences avec un ou des photons : La lame semi réfléchissante et Franges d'interférences et photons
- Dualité onde-particule de la matière La relation de Louis De Broglie

 - Interférences de particule
 - Fonctions d'one et probabilité : Mise en évidence Notion de fonction d'onde
- Quantification de l'énergie d'une particule confinée
- Notion de quantification, équation de Schrödinger
- Particule dans un puits de potentiel infini
- Analogie avec les modes propres d'une corde vibrante

	,
4. Introduction au monde quantique	
Dualité onde-particule pour la lumière et la matière.	Évaluer des ordres de grandeurs typiques
Relations de Planck-Einstein et de Louis de Broglie.	intervenant dans des phénomènes quantiques.
	Approche documentaire : décrire un exemple d'expérience mettant en évidence la nécessité de la
	notion de photon.
	Approche documentaire : décrire un exemple
	d'expérience illustrant la notion d'ondes de matière.
Interprétation probabiliste associée à la fonction	Interpréter une expérience d'interférences (matière
d'onde : approche qualitati∨e.	ou lumière) « particule par particule » en termes probabilistes.
Quantification de l'énergie d'une particule libre	Obtenir les niveaux d'énergie par analogie avec les
confinée 1D.	modes propres d'une corde vibrante.
	Établir le lien qualitatif entre confinement spatial et quantification.

SOLUTIONS AQUEUSES

AQ2 Réactions de dissolution ou de précipitation

Cours et exercices

AQ3 L'oxydoréduction (Cours uniquement)

- Concept oxydant-réducteur
- Echanges électroniques Normalité
- Le nombre d'oxydation
- Conventions
- Nombres d'oxydations extrêmes et classification périodique
- Nombre d'oxydation et couple redox
- Dismutation, amphotérisation
- Application à l'écriture des réactions