Interrogación 2

¿Cómo evaluamos un autómata no-determinista?

NFA on-the-fly:

Para un autómata no-determinista $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$:

- $2^Q = \{S \mid S \subseteq Q\}$ es el conjunto potencia de Q.
- $q_0^{det} = I$. $\delta^{det} \colon 2^Q \times \Sigma \to 2^Q$ tal que:

$$\delta^{det}(S, a) = \{ q \in Q \mid \exists p \in S. (p, a, q) \in \Delta \}$$

 $F^{det} = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}.$

Estrategia:

- Mantenemos un conjunto S de estados actuales.
- Por cada nueva letra a, calculamos el conjunto $\delta^{det}(S,a)$.

Function eval-NFA onthefly
$$(A, w)$$

return check $(S \cap F \neq \emptyset)$

$$S := I$$
 for $i = 1$ to n do $\Big| S_{\text{old}} := S \Big| S := \emptyset \Big|$ foreach $p \in S_{\text{old}}$ do $\Big| S := S \cup \{q \mid (p, a_i, q) \in \Delta\}$

Complejidad: $\mathcal{O}(|\mathcal{A}| \cdot |w|)$

ϵ -NFA on-the-fly:

```
Function eval-eNFAonthefly (A, w)
S := \epsilon\text{-closure}(\Delta, I)
for i = 1 to n do
S_{\text{old}} := S
S := \emptyset
foreach p \in S_{\text{old}} do
S := S \cup \{q \mid (p, a_i, q) \in \Delta\}
S := \epsilon\text{-closure}(\Delta, S)
return check (S \cap F \neq \emptyset)
```

Complejidad: $\mathcal{O}(|\mathcal{A}| \cdot |w|)$

Transductores

Un transductor (en inglés, transducer) es una tupla:

$$\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$$

- *Q* es un conjunto finito de estados.
- Σ es el alfabeto del input.
- Ω es el alfabeto del **output**.
- $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Omega \cup \{\epsilon\}) \times Q$ es la relación de transición.
- $I \subseteq Q$ es el conjunto de estados iniciales.
- $F \subseteq Q$ es el conjunto de estados finales.

"Intuitivamente, una configuración (q, au, vb) representa que T se encuentra en el estado q, procesando la palabra au y leyendo a, y hasta ahora grabó la palabra vb y el último símbolo impreso es b."

Definición

Se define la relación \vdash_T de siguiente-paso entre configuraciones de T:

$$(p_1, u_1, v_1) \vdash_T (q, u_2, v_2)$$

Si, y sólo si, existe $(p,a,b,q) \in \Delta$ tal que $u_1 = a \cdot u_2$ y $v_2 = v_1 \cdot b$

Definiciones

• \mathcal{T} entrega v con input u si existe una configuración inicial (q_0, u, ϵ) y una configuración final (q_f, ϵ, v) tal que:

$$(q_0, u, \epsilon) \vdash_{\mathcal{T}}^* (q_f, \epsilon, v)$$

• Se define la función $[\![\mathcal{T}]\!]: \Sigma^* \to 2^{\Omega^*}$:

 $\llbracket \mathcal{T} \rrbracket \to \mathsf{Sem\'{a}ntica}$

$$[\![\mathcal{T}]\!](u) = \{v \in \Omega^* \mid \mathcal{T} \text{ entrega } v \text{ con input } u\}$$

• Se dice que $f: \Sigma^* \to 2^{\Omega^*}$ es una función racional si existe un transductor \mathcal{T} tal que $f = [\![\mathcal{T}]\!]$.

Un transductor define una función de palabras a conjunto de palabras.

Definiciones

Para una relación $R \subseteq \Sigma^* \times \Omega^*$ se define:

- $\pi_1(R) = \{ u \in \Sigma^* \mid \exists v \in \Omega^*. (u, v) \in R \} \Longrightarrow$ "Dominio" de R.
- $\pi_2(R) = \{ v \in \Omega^* \mid \exists u \in \Sigma^*. (u, v) \in R \} \Longrightarrow$ "Recorrido" de R.

¿Cuál es el lenguaje definido por $\pi_1(\llbracket T \rrbracket)$ y $\pi_2(\llbracket T \rrbracket)$?

Dominio: Todas las palabras con 2 o más a's

Recorrido: c*

Teorema

Sea \mathcal{T}_1 y \mathcal{T}_2 dos transductores con Σ y Ω alfabetos de input y output. Las siguientes son relaciones racionales.

- 1. $[T_1] \cup [T_2] = \{(u, v) \in \Sigma^* \times \Omega^* \mid (u, v) \in [T_1] \lor (u, v) \in [T_2] \}.$
- 2. $[T_1] \cdot [T_2] = \{(u_1u_2, v_1v_2) \in \Sigma^* \times \Omega^* \mid (u_1, v_1) \in [T_1] \land (u_2, v_2) \in [T_2] \}$
- 3. $[\![\mathcal{T}_1]\!]^* = \bigcup_{k=0}^{\infty} [\![\mathcal{T}_1]\!]^k$

Teorema

Existen transductores \mathcal{T}_1 y \mathcal{T}_2 sobre Σ y Ω tal que:

$$[T_1] \cap [T_2] = \{(u, v) \in \Sigma^* \times \Omega^* \mid (u, v) \in [T_1] \land (u, v) \in [T_2] \}$$

NO es una relación racional.

Demostración

Considere los siguientes transductores:

$$[\![T_1]\!] = \{(a^n, b^n c^m) \mid n \ge 0, m \ge 0\}. \qquad [\![T_2]\!] = \{(a^n, b^m c^n) \mid n \ge 0, m \ge 0\}$$

Pero $[\![\mathcal{T}_1]\!] \cap [\![\mathcal{T}_2]\!] = \{(a^n, b^n c^n) | n \ge 0\}$, y, por lo tanto, $[\![\mathcal{T}_1]\!] \cap [\![\mathcal{T}_2]\!]$ no es racional. (El recorrido de la intersección es $\{b^n \cdot c^n\}$ el cual no es racional).

Definición

Decimos que un transductor \mathcal{T} define una función (parcial) si:

para todo
$$u \in \Sigma^*$$
 se tiene que $| [T](u) | \leq 1$.

Definición

Decimos que $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ es **determinista** si cumple que:

- 1. \mathcal{T} define una función $[\![\mathcal{T}]\!]: \Sigma^* \to \Omega^*$.
- 2. Para todo $(p,a_1,b_1,q_1)\in\Delta$ y $(p,a_2,b_2,q_2)\in\Delta$, si $a_1=a_2$, entonces $b_1=b_2$ y $q_1=q_2$, es decir, son la misma transición.
- 3. Si $(p, \epsilon, b, q) \in \Delta$, entonces para todo $(p, a', b', q') \in \Delta$, se tien que $(a', b', q') = (\epsilon, b, q)$. Es decir, si tengo alguna ϵ transición, esta debe ser la única transición que sale de ese estado.

Sintaxis y semántica de un lenguaje de programación

Definición

- 1. La sintaxis de un lenguaje es un conjunto de reglas que describen los programas válidos que tienen significado.
- 2. La semántica de un lenguaje define el significado de un programa correcto según la sintaxis.

Verificación de sintaxis

En este proceso se busca:

- Verificar la sintaxis de un programa.
- Entregar la estructura de un programa (árbol de parsing).

Consta de 3 etapas:

- 1. Análisis léxico (Lexer).
- 2. Análisis sintáctico (Parser).
- 3. Análisis semántico.

Análisis léxico (LEXER)

- El análisis léxico consta en dividir el programa en una secuencia de tokens.
- Un token (o lexema) es un substring (válido) dentro de un programa.
- Un token está compuesto por:
 - o Tipo
 - Valor (el valor mismo del substring).

Tipos usuales de **tokens** en lenguajes de programación:

- **number** (constante): 2, 235, 495, ...
- **string** (constante): "hello", "ilove TDA" ,...
- **keywords**: if, for, ...
- identificadores: pos, init, rate, ...
- delimitadores: "{", "}", "(", ")", ",", ...
- operadores: "=", "+", "<", "<=", ...

Tipo	Valor
id	pos
EQ	=
id	init
PLUS	+
id	rate
MULT	*
number	60

Generador de análisis léxico (Lex)

- Un generador de análisis léxico es un software que, a través de un programa fuente, crea el código necesario para hacer el análisis léxico.
- Lex es el analizador léxico estándar en Unix en el lenguaje C.

El formato de un programa en Lex es de la forma:

declaraciones %% reglas de traducción %% funciones auxiliares

Ejemplo declaraciones:

```
%{
#include "misconstantes.h" \* def de IF, ELSE, ID, NUMBER *\
%}
delim [\t\n]
ws {delim}+
%%
...
```

```
Ignacio Méndez Pérez
IIC2223 — 2022 - 2
```

Ejemplo funciones auxiliares:

```
...
%%
void printID(){printf("Id: %s\n", yytext);}
void printNumebr(){printf("Number: %s\n", yytext);}
```

Las reglas de traducción tienen la siguiente forma:

```
Patrón { Acción }
```

- Patrón está definido por una expresión regular.
- Acción es código C embebido.

Ejemplo: reglas de traducción:

Resolución de conflictos en Lex

Si varios prefijos del input satisfacen uno o más patrones:

- 1. Se prefiere el **prefijo más largo** por sobre el prefijo más corto.
- 2. Si el prefijo más corto satisface uno o más patrones, se prefiere el patrón listado primero en el programa lex.1.

¿Cómo evaluamos los patrones en lex.1?

```
Sea P_1, \dots, P_k los patrones y C_1, \dots, C_k las acciones en el programa "lex.1", respectivamente.
```

Primer paso

Para cada patrón P_i construimos un NFA $\mathcal{A}_i = \left(Q_i, \Sigma, \Delta_i, \left\{q_0^i\right\}, \left\{q_f^i\right\}\right)$ con un solo estado inicial q_0^i y un solo estado final q_f^i .

Supondremos las siguientes simplificaciones:

- 1. Cada lexema esta separado por un símbolo de espacio "_".
- 2. Documento termina con un símbolo especial EOF.
- 3. No hay conflictos entre patrones.

Ejemplo conflictos:

```
if { return(IF);}
else { return(ELSE);}
[A-Za-z]([A-Za-z0-9])* {printID(); return(ID);}
```

¿Cómo evaluamos los patrones en paralelo?

- $\mathcal{A}_i = (Q_i, \Sigma, \Delta_i, \{q_0^i\}, \{q_f^i\})$ el NFA para el patrón P_i y
- C_i la acción de P_i con $i \le k$.

Evaluamos el transductor determinista:

$$\mathcal{T} = (Q, \Sigma, \{C_i\}_{i \le k}, \Delta, \{q_0\}, F)$$

- $\bullet \quad Q = 2^{\{\bigcup_{i=1}^k Q_i\}}$
- $\bullet \quad q_0 = \{q_0^1, q_0^2, \dots, q_0^k\}$
- $(S, a, \epsilon, S') \in \Delta$ si, y solo si, $S' = \{q \mid \exists i. \exists p \in S. (p, a, q) \in \Delta_i\}$
- $(S,_{-},C_i,q_o), (S,EOF,C_i,q_0) \in \Delta \text{ si, y solo si, } q_f^i \in S.$
- $F = \{q_0\}$

Lexer on-the-fly (simplificado)

Sea $\mathcal{A}_i = (Q_i, \Sigma, \Delta_i, \{q_0^i\}, \{q_f^i\})$ el NFA para el patrón P_i y $w = a_1 \dots a_n$.

```
Function lexer-onthefly (\mathcal{A}_1, \ldots, \mathcal{A}_k, w)
S := \{q_0^1, q_0^2, \ldots, q_0^k\}
for j = 1 to n do
| \textbf{if } a_j \neq \_ \textbf{and } a_j \neq \textit{EOF then} 
| S_{\text{old}} := S
S := \varnothing
foreach i = 1 to k do
| \textbf{foreach } p \in S_{old} \cap Q_i \textbf{ do} 
| S := S \cup \{q \mid (p, a_i, q) \in \Delta_i\}
\dots
```

```
Function lexer-onthefly (\mathcal{A}_1, \ldots, \mathcal{A}_k, w)
S := \{q_0^1, q_0^2, \ldots, q_0^k\}
for j = 1 to n do
\vdots
else if a_j = \Box or a_j = EOF then
\exists f \ q_f^k \in S \text{ then}
\exists escute \ C_1
\vdots
else if q_f^k \in S \text{ then}
\exists escute \ C_k
else
\exists ERROR
S := \{q_0^1, q_0^2, \ldots, q_0^k\}
return
```

Tiempo análisis léxico

Si $|P_i|$ es el tamaño del patrón P_i :

$$\mathcal{O}((|P_1| + \cdots + |P_k|) \cdot |w|)$$

Algunas conclusiones/observaciones

- 1. El análisis léxico es equivalente a evaluar un **transductor** que simula los patrones en **paralelo**.
- 2. El análisis léxico también maneja conflictos entre reglas y otros detalles.

Algoritmo de Knuth-Morris-Prat

Problema

Dado un patrón $w=w_1\dots w_m$ y un documento $d=d_1\dots d_n$, encontrar todas las posiciones donde aparece w en d, o sea, enumerar:

$$\{(i,j)| w = d_i d_{i+1} \dots d_i\}$$

Autómata de un patrón

Ejemplo: palabra w = nano

Autómata determinizado:

Ignacio Méndez Pérez IIC2223 — 2022 - 2

Sea $w=w_1\dots w_m$ y $\mathcal{A}_w^{det}=(Q^{det},\Sigma,\delta^{det},\{0\},F^{det})$ la determinización de \mathcal{A}_w .

Teorema

Para todo $S \in Q^{det}$ y $i \in \{0,1,...,m\}$ se cumple que:

$$i \in S$$
 si, y solo si, $w_1 \dots w_i$ es un sufijo de $w_1 \dots w_{\max(S)}$.

Corolarios

- Para todo $S_1, S_2 \in Q^{det}$, si $\max(S_1) = \max(S_2)$ entonces $S_1 = S_2$.
- \mathcal{A}_w^{det} tiene |w|+1 estados y a lo más $\mathcal{O}(|w|^2)$ transiciones.

Por lo tanto, encontrar todos los substrings de w en d toma tiempo $O(|d| + |w|^2)$

Demostración Teorema

Sea $S \in Q^{det}$ un conjunto de estados cualquiera alcanzable desde $\{0\}$. Entonces existe una palabra $u = a_1 \dots a_k$ tal que $\hat{\delta}^{det}(\{0\}, u) = S$. Por la demostración que $\mathcal{L}(\mathcal{A}^{det}) = \mathcal{L}(\mathcal{A})$ para todo NFA \mathcal{A} , sabemos que $j \in S$ si, y sollo si, existe una ejecución de \mathcal{A}_w sobre u:

$$0 = q_0 \stackrel{a_1}{\rightarrow} q_1 \stackrel{a_2}{\rightarrow} \cdots \stackrel{a_k}{\rightarrow} q_k = j$$

Por la definición de \mathcal{A}_w esta ejecución es de la forma:

$$0 \xrightarrow{a_1} 0 \xrightarrow{a_2} \cdots \xrightarrow{a_{k-j}} 0 \xrightarrow{a_{k-j+1}} 1 \xrightarrow{a_{k-j+2}} 2 \xrightarrow{a_{k-j+3}} \cdots \xrightarrow{a_k} j$$

Por lo tanto, $w_1w_2 \dots w_i$ es sufijo de $a_1 \dots a_k$.

Propiedad

Para toda $u=a_1\dots a_k$ tal que $\hat{\delta}^{det}(\{0\},u)=S$, y para todo $j\leq m$:

$$j \in S$$
 si, y solo si, $w_1 \dots w_i$ es sufijo de $a_1 \dots a_k$

Demostración del teorema (⇒)

Como S es alcanzable dese $\{0\}$, entonces existe $u=a_1\dots a_k$ tal que $\hat{\delta}^{det}(\{0\},u)=S.$

Como $\max(S) \in S$, entonces $w_1 \dots w_{\max(S)}$ es sufijo de $a_1 \dots a_k$. Suponga que $i \in S$. Entonces $w_1 \dots w_i$ es sufijo de $a_1 \dots a_k$. Como $i \leq \max(S)$ entonces:

$$a_1 a_2 \dots a_{k-\max(S)} \overbrace{a_{k-\max(S)+1} \dots a_{k-i} \underbrace{a_{k-i+1} \dots a_k}_{w_1 \dots w_i}}$$

Por lo tanto, $w_1 \dots w_i$ es sufijo de $w_1 \dots w_{\max(S)}$.

Demostración del teorema (⇐)

Como S es alcanzable desde $\{0\}$, entonces existe $u = a_1 \dots a_k$ tal que $\hat{\delta}^{det}(\{0\}, u) = S$.

Como $\max(S) \in S$, entonces $w_1 \dots w_{\max(S)}$ es sufijo de $a_1 \dots a_k$. Suponga que $w_1 \dots w_i$ es sufijo de $w_1 \dots w_{\max(S)}$. Como $w_1 \dots w_i$ es sufijo de $w_1 \dots w_{\max(S)}$ y $w_1 \dots w_{\max(S)}$ es sufijo de u, entonces $w_1 \dots w_i$ es sufijo de $u = a_1 \dots a_k$.

Por la "Propiedad", concluimos que $i \in S$.

Autómata finito con k-lookahead

Sea Σ un alfabeto finito.

Definiciones

Se definen los siguientes conjuntos de palabra:

- $\Sigma_{\blacksquare} = \Sigma^* \times \Sigma^*$ $\Sigma_{\blacksquare}^k = \{(u, v) \in \Sigma_{\blacksquare} | |uv| = k \}$

Notación

En vez de $(u, v) \in \Sigma_{\blacksquare}$, escribiremos $u, v \in \Sigma_{\blacksquare}$.

Definición

Un autómata finito determinista con k-lookahead es:

$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$

- *Q* es un conjunto finito de estados.
- Σ es el alfabeto de input.
- q_0 es el estado inicial.
- $F \subseteq Q$ es el conjunto de estados finales.

+

• $\delta: Q \times (\Sigma \cup \{\$\})^k_{\blacksquare} \rightarrow Q$ es una función parcial, tal que:

\$ ≈ End Of String

Para todo $p \in Q$ y $w \in (\Sigma \cup \{\$\})^k : |\{u.v \mid \delta(p, u.v) = q \mid y \mid uv = w\}| \le 1$

Algunos ejemplos:

Sea $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ un DFA con k-lookahead.

Definiciones:

- Un par $(q, w) \in Q \times (\Sigma \cup \{\$\})^*$ es una configuración de \mathcal{A} .
- Una configuración (q_0, w^{k}) es inicial.
- Una configuración $(q, \$^k)$ es final si $q \in F$.

El sufijo \$\frac{k}{r}\$ nos sirve para marcar el final del input (y simplificar la definición de lookahead al leer el final de la palabra)

Definiciones

• Se define la relación $\vdash_{\mathcal{A}}$ de siguiente-paso entre configuraciones de \mathcal{A} :

$$(p_1, w_1) \vdash_{\mathcal{A}} (p_2, w_2)$$

si, y solo si, $\delta(p_1, u. v) = p_2$ y existe $w \in \Sigma^*$ tal que $w_1 = uvw$ y $w_2 = vw$.

• \mathcal{A} acepta w si existe una configuración inicial $(q_0, w\$^k)$ y una configuración final $(q_f, \$^k)$ tal que:

$$(q_0, w\$^k) \vdash_{\mathcal{A}}^* (q_f, \$^k)$$

• Llamaremos un lazy autómata a un DFA con 1-lookahead.

Algoritmo de Knuth-Morris-Prat

Sea $w=w_1...w_m$ y $\mathcal{A}_w^{det}=(Q^{det},\Sigma,\delta^{det},\{0\},F^{det})$ la determinización de \mathcal{A}_w .

Definición

Para $i \in [0, m]$, sea S_i el único estado en Q^{det} tal que $i = \max(S_i)$.

Propiedad 2

Para todo $a \in \{w_1, ..., w_m\}$ y $i \in [0, m-1]$:

- 1. $S_i \{i\} \in Q^{det}$.
- 2. $a = w_{i+1}$, entonces $\delta^{det}(S_i, a) = S_{i+1}$.
- 3. $a \neq w_{i+1}$, entonces $\delta^{det}(S_i, a) = \delta^{det}(S_i \{i\})$.

Construcción

Se define el lazy autómata $\mathcal{A}_{w}^{lazy} = (Q^{det}, \Sigma, \delta^{lazy}, \{0\}, F^{det})$ tal que:

- Para todo $a \neq w_1$: $\delta^{lazy}(\{0\}, a.) = \{0\}.$
- Para todo $a \in \{w_1, \dots, w_m\}$ y $i \in [0, m-1]$:
 - Si $a = w_{i+1}$, entonces $\delta^{lazy}(S_i, a_i) = S_{i+1}$.
 - Si $a \neq w_{i+1}$ y $i \neq 0$, entonces $\delta^{lazy}(S_i, a) = S_i \{i\}$.

¿Cuántos pasos toma \mathcal{A}_w^{lazy} sobre un documento d?

- $\begin{array}{ll} \bullet & \text{N\'umero de pasos que } \mathcal{A}_w^{lazy} \text{ } \mathbf{consume} \text{ letras} = |d| \\ \bullet & \text{N\'umero de pasos que } \mathcal{A}_w^{lazy} \text{ } \mathbf{retrocede} \leq d \\ \end{array}$
- Número de pasos totales de $\mathcal{A}_w^{lazy} \leq 2 \cdot |d|$

Gramáticas libres de contexto

Una gramática libre de contexto (CFG) es una tupla:

$$G = (V, \Sigma, P, S)$$

- *V* es un conjunto finito de variables o no-terminales.
- Σ es un alfabeto finito (o **terminales**) tal que $\Sigma \cap V = \emptyset$.
- $P \subseteq V \times (V \cup \Sigma)^*$ es un subconjunto finito de reglas o producciones.
- $S \in V$ es la variable inicial.

Ejemplo:

$$\begin{array}{cccc} \mathcal{G} \colon & A & \to & 0 \ A \ 1 \\ & A & \to & B \\ & B & \to & \# \end{array}$$

La gramática se define como $G = (V, \Sigma, P, S)$ tal que:

- $V = \{A, B\}$
- $\Sigma = \{ 0,1,\# \}$ → Letras en minus
- $P = \{ A \rightarrow 0A1, A \rightarrow B, B \rightarrow \# \}$ → Producciones • S = A

Notación:

• Para las variables en una gramática usaremos letras mayúsculas:

$$A, B, C, \dots$$

• Para los terminales en una gramática usaremos letras minúsculas.

$$a, b, c, \dots$$

• Para palabras en $(V \cup \Sigma)^*$ usaremos símbolos:

$$\alpha, \beta, \gamma, ...$$

• Para una producción $(A, \alpha) \in P$ la escribimos como:

$$A \rightarrow \alpha$$

→ Variables en mayus

Simplificación

Si tenemos un conjunto de reglas de la forma:

$$\begin{array}{ccc}
A & \rightarrow & \alpha_1 \\
A & \rightarrow & \alpha_2 \\
& \dots \\
A & \rightarrow & \alpha_3
\end{array}$$

entonces escribimos estas reglas sucintamente como:

$$A \to \alpha_1 \mid \alpha_2 \mid \alpha_n$$
 (recordar que: $\alpha_1, \alpha_2, ..., \alpha_n \in (\Sigma \cup V)^*$)

Ejemplo anterior:

$$G: A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Notación sucinta:

$$\begin{array}{ccc} \mathcal{G} \colon & A & \to & 0 \ A \ 1 \mid B \\ & B & \to & \# \end{array}$$

Producciones

Sea $G = (V, \Sigma, P, S)$ una CFG.

Definición:

Definimos la relación $\Rightarrow \subseteq (V \cup \Sigma)^* \times (V \cup \Sigma)^*$ de **producción** tal que:

$$\alpha \cdot A \cdot \beta \Rightarrow \alpha \cdot \gamma \cdot \beta$$
 si, y solo si, $(A \rightarrow \gamma) \in P$

para todo $A \in V$ y $\alpha, \beta, \gamma \in (V \cup \Sigma)^*$

Si $\alpha A\beta \Rightarrow \alpha \gamma \beta$ entonces decimos que:

- $\alpha A\beta$ produce $\alpha \gamma \beta$ o
- $\alpha \gamma \beta$ es producible desde $\alpha A \beta$.

 $\alpha A\beta \Rightarrow \alpha \gamma \beta$ es reemplazar γ en A en la palabra $\alpha A\beta$.

Ignacio Méndez Pérez IIC2223 — 2022 - 2

¿Cuál de las siguientes producciones son correctas?

$$\begin{array}{ccc} \mathcal{G} \colon & A & \to & 0 \ A \ 1 \mid B \\ & B & \to & \# \end{array}$$

- $A \Rightarrow B$
- $00A11 \Rightarrow 000A111$ SI
- $000B111 \Rightarrow 000A111$ NO
- $0A0A1B\underset{0A1}{\underbrace{A}} \Rightarrow 0A0A1B0A1$ SI

Definición

Dada dos palabras $\alpha, \beta \in (V \cup \Sigma)^*$ decimos que α deriva β :

$$\alpha \stackrel{*}{\Rightarrow} \beta$$

Si existe $\alpha_1, \alpha_2, ..., \alpha_n \in (V \cup \Sigma)^*$ tal que:

$$\alpha \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \cdots \Rightarrow \beta$$

 $con \stackrel{*}{\Rightarrow} es la clausura refleja y transitiva de <math>\Rightarrow$, esto es:

- 1. $\alpha \stackrel{*}{\Rightarrow} \alpha$
- 2. $\alpha \stackrel{*}{\Rightarrow} \beta$ si, y solo si, existe γ tal que $\alpha \stackrel{*}{\Rightarrow} \gamma$ y $\gamma \Rightarrow \beta$ para todo $\alpha, \beta \in (V \cup \Sigma)^*$.

Notar que \Rightarrow y $\stackrel{*}{\Rightarrow}$ son relaciones entre palabras en $(V \cup \Sigma)^*$

¿Cuál de las siguientes derivaciones son correctas?

$$\begin{array}{ccc} \mathcal{G} \colon & A & \to & 0 \ A \ 1 \mid B \\ & B & \to & \# \end{array}$$

- $A \stackrel{*}{\Rightarrow} 000A111$ S
- 00*A*11 ^{*} ⇒ 000*B*111 NO
- $00A11 \stackrel{*}{\Rightarrow} 000#111$ SI

Definición

El lenguaje de una gramática G se define como:

$$\mathcal{L}(\mathcal{G}) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}$$

 $\mathcal{L}(G)$ son todas las palabras en Σ^* que se pueden derivar desde S

¿Qué palabras están en $\mathcal{L}(\mathcal{G})$?

$$G: A \rightarrow 0A1 \mid B$$

$$B \rightarrow \#$$

- Como $A \Rightarrow 000 # 111$, entonces $000 # 111 \in \mathcal{L}(\mathcal{G})$.
- En general, uno puede demostrar por inducción que:

$$\mathcal{L}(G) = \{ 0^n # 1^n \mid n \ge 0 \}$$

¿Qué lenguaje define cada gramática libre de contexto?

1.
$$G: S \rightarrow AS \mid \epsilon$$

 $A \rightarrow aa \mid ab \mid ba \mid bb$

Palabras de largo par

2.
$$G: S \rightarrow S+S\mid S\times S\mid (S)\mid A$$

 $A \rightarrow 0\mid 1\mid ...\mid 9$

Todas las expresiones aritméticas válidas del 0 al 9

3. $G: S \rightarrow aSb|SS|\epsilon$

Si reemplazo a' y b' por a' y b' por a' y b' reespectivamente, el lenguaje corresponde al conjunto de paréntesis bien anidados (es decir, paréntesis puestos de manera correcta)

¿Cuál es una gramática para cada lenguaje?

uál es una gramática para cada lenguaje?

1.
$$L_1=\{\ 0^n1^n\mid n\geq 0\ \}\cup \{\ 1^n0^n\mid n\geq 0\ \}$$

2. $L_2=\{\ w\in \{a,b\}^*\mid w=w^{\mathrm{rev}}\ \}$

$$\begin{array}{c|c}
S \to A \mid B \\
A \to 0A1 \mid \epsilon \\
B \to 1B0 \mid \epsilon
\end{array}$$

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$$

Definición

Diremos que $L \subseteq \Sigma^*$ es un lenguaje libre de contexto ssi existe una gramática libre de contexto G tal que:

$$L = \mathcal{L}(\mathcal{G})$$

Ejemplos:

- $L = \{ 0^n # 1^n \mid n \ge 0 \}$
- $Par = \{ w \in \{a, b\}^* \mid w \text{ tiene largo par } \}$
- $Pal = \{ w \in \{a, b\}^* \mid w = w^{rev} \}$

Árboles ordenados y etiquetados

Definiciones

El conjunto de **árboles ordenados y etiquetados** (o solo **árboles**) sobre etiquetas Σ y V, se define recursivamente como:

- $t \coloneqq a$ es un árbol para todo $a \in \Sigma$.
- Si $t_1, ..., t_k$ son árboles, Entonces $t \coloneqq A(t_1, ..., t_k)$ es un árbol para todo $A \in V$.

Para un árbol $t := A(t_1, ..., t_k)$ cualquiera se define:

- raiz(t) = A
- hijos $(t) = t_1, \dots, t_k$

Si t = a, entonces decimos que t es una hoja, raiz(t) = a y hijos $(t) = \epsilon$.

Definiciones

Se define el conjunto de **árboles de derivación** recursivamente como:

- Si $a \in \Sigma$, entonces t = a es un árbol de derivación.
- Si $A \to A_1 \dots A_k \in P$ y t_1, \dots, t_k son árboles de derivación con $\mathrm{raiz}(t_i) = A_i$ para todo $i \le k$ entonces $t = A(t_1, \dots, t_k)$ es un árbol de derivación.

Decimos que t es un árbol de derivación de g si:

- 1. t es un árbol de derivación y
- 2. raiz(t) = S

Los árboles de derivación son todos los árboles que parten desde S

Ejemplo de árbol de derivación

$$G: E \rightarrow E + E \mid E * E \mid n$$

Algunos árboles de derivación para G:

Definiciones

Se define la función yield sobre árboles, recursivamente como:

- Si $t = a \in \Sigma$, entonces yield(t) = a.
- Si t no es una hoja e hijos $(t) = t_1 t_2 \dots t_k$ entonces:

$$yield(t) = yield(t_1) \cdot yield(t_2) \cdot ... \cdot yield(t_k)$$

Decimos que t es un árbol de derivación de G para w si:

- 1. t es un árbol de derivación de G y
- 2. yield(t) = w.

Las hojas de t forman la palabra w

Proposición

 $w \in \mathcal{L}(G)$ si, y solo si, existe un árbol de derivación de G para w.

Un árbol de derivación es la representación gráfica de una derivación

Ejemplo:

$$E \rightarrow E+E \mid E*E \mid n$$

$$E \Rightarrow E+E \mid E*E \mid n$$

$$E \Rightarrow E+E \Rightarrow E+E*E \Rightarrow n+E*E \Rightarrow n+n*E \Rightarrow n+n*n$$

$$E \Rightarrow E*E \Rightarrow E+E*E \Rightarrow E+n*E \Rightarrow E+n*n \Rightarrow n+n*n$$

$$E \Rightarrow E*E \Rightarrow E+E*E \Rightarrow E+n*E \Rightarrow E+n*n \Rightarrow n+n*n$$

$$E \Rightarrow E*E \Rightarrow E+E*E \Rightarrow E+E*n \Rightarrow E+n*n \Rightarrow n+n*n$$

$$E \Rightarrow E*E \Rightarrow E*E \Rightarrow E+E*E \Rightarrow E+n*n \Rightarrow n+n*n$$

$$E \Rightarrow E*E \Rightarrow E*E \Rightarrow E+E*n \Rightarrow E+E*n \Rightarrow n+E*n \Rightarrow n+n*n$$

$$E \Rightarrow E*E \Rightarrow E*E \Rightarrow E*E \Rightarrow E+E*n \Rightarrow E+E*n$$

Dado un árbol de derivación, ¿Con cuál nos quedamos?

Definición

• Definimos la derivación por la izquierda $\Rightarrow \subseteq (V \cup \Sigma)^* \times (V \cup \Sigma)^*$:

$$w \cdot A \cdot \beta \underset{\text{lm}}{\Rightarrow} w \cdot \gamma \cdot \beta$$
 si, y solo si, $A \rightarrow \gamma \in P$

para todo $A \in V$, $w \in \Sigma^*$ y β , $\gamma \in (V \cup \Sigma)^*$.

• Definimos la derivación por la derecha \Rightarrow $\subseteq (V \cup \Sigma)^* \times (V \cup \Sigma)^*$:

$$\alpha \cdot A \cdot w \underset{rm}{\Rightarrow} \alpha \cdot \gamma \cdot w$$
 si, y solo si, $A \rightarrow \gamma \in P$

para todo $A \in V$, $w \in \Sigma^*$ y $\alpha, \gamma \in (V \cup \Sigma)^*$.

Se define $\overset{*}{\underset{lm}{\Rightarrow}}$ y $\overset{*}{\underset{rm}{\Rightarrow}}$ como la clausura refleja y transitiva de $\underset{lm}{\Rightarrow}$ y $\overset{*}{\underset{rm}{\Rightarrow}}$, respectivamente.

 \Rightarrow y \Rightarrow solo reemplaza a la **izquierda** (leftmost) y **derecha** (rightmost)

Ejemplo anterior:

Derivación por la izquierda (Im)

$$E \underset{lm}{\Rightarrow} E * E \underset{lm}{\Rightarrow} E + E * E \underset{lm}{\Rightarrow} n + E * E \underset{lm}{\Rightarrow} n + n * E \underset{lm}{\Rightarrow} n + n * n$$

Derivación por la derecha (rm)

$$E \underset{rm}{\Rightarrow} E * E \underset{rm}{\Rightarrow} E * n \underset{rm}{\Rightarrow} E + E * n \underset{rm}{\Rightarrow} E + n * n \underset{rm}{\Rightarrow} n + n * n$$

¿Cuál es la relación entre el tipo de derivación y el recorrido del árbol?

Sabemos que...

- Por cada derivación, existe un único árbol de derivación.
- Por cada árbol de derivación existen múltiples posibles derivaciones.

Proposición

Por cada árbol de derivación, existe una **única** derivación por la izquierda y una **única** derivación por la derecha.

Simplificación de gramáticas

Variables inútiles

Sea $G = (V, \Sigma, P, S)$ una CFG.

Definición

Diremos que una variable $X \in V$ es útil si existe una derivación:

$$S \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} w$$

Al contrario, diremos que una variable *X* es **inútil** si NO es útil.

¿Qué variables son inútiles?

$$S \rightarrow aAa \mid aBC$$

$$A \rightarrow aS \mid bD$$

$$B \rightarrow aBa \mid b$$
.

$$C \rightarrow abb \mid DD$$
.

$$D \rightarrow aDa$$

D: Una vez obtengo una D, no puedo llegar a nada.

Definición

Para una variable $X \in V$:

1. Decimos que *X* es alcanzable si existe una derivación:

$$S \stackrel{*}{\Rightarrow} \alpha X \beta$$

2. Decimos que X es **generadora** si existe una derivación:

$$X \stackrel{*}{\Rightarrow} w$$

Ignacio Méndez Pérez IIC2223 — 2022 - 2

Propiedad

Para toda variable $X \in V$:

Existe una regla $X \to \alpha$ tal que todas las variables en α son generadoras si y solo si, X es generadora.

¿Cuáles variables son generadoras?

$$S \rightarrow aAa \mid aBD$$

$$A \rightarrow aB \mid bD$$

$$B \rightarrow aBa \mid b$$

$$C \rightarrow abb \mid DD$$

$$D \rightarrow aDCa$$

$$G_0 = \{B, C\}$$

$$G_1 = \{A\}$$

$$G_2 = \{S\}$$

$$G = \{A, B, C, S\}$$

Propiedad

Para toda variable $X \in V - \{S\}$:

Existe una producción $Y \to \alpha X \beta$ en P tal que $Y \in V$ es alcanzable si, y solo si, X es alcanzable.

input : Gramática $\mathcal{G} = (V, \Sigma, P, S)$ output: Conjunto C de variables alcanzables

Function alcanzables (\mathcal{G}) let $C_0 \coloneqq \{S\}$ let $C \coloneqq \emptyset$ while $C_0 \ne \emptyset$ do

take $Y \in C_0$ $C_0 \coloneqq C_0 - \{Y\}$ $C \coloneqq C \cup \{Y\}$ foreach $X \in V - C$ tal que existe una regla $(Y \to \alpha X \beta) \in P$ do

input: Gramática $\mathcal{G} = (V, \Sigma, P, S)$

Function Generadores (G)

let $G := \emptyset$

return G

 $C_0 \coloneqq C_0 \cup \{X\}$

return C

while $G_0 \neq G$ do

 $G := G_0$

output: Conjunto G de variables generadoras

let $G_0 := \{ X \in V \mid (X \to w) \in P \}$

foreach $(X \rightarrow \alpha) \in P$ do

 $G_0 \coloneqq G_0 \cup \{X\}$

if todas las variables en α estan en G then

¿Cuáles variables son alcanzables?

$$S \rightarrow aAa$$

$$A \rightarrow aB$$

$$B \rightarrow aBa \mid b$$

$$C \rightarrow abb$$

$$C \rightarrow abb$$

$$C \rightarrow abb$$

$$C \rightarrow aba$$

$$C_0 = \{S\}$$

$$C_0 = \{A\}$$

$$C = \{S\}$$

$$C = \{S\}$$

$$C = \{S, A, B\}$$

Teorema

Sea G'' una gramática creada a partir de G después de:

- Eliminar todas las variables y reglas **NO** generadoras.
- Eliminar todas las variables y reglas NO alcanzables.

Entonces, $\mathcal{L}(\mathcal{G}'') = \mathcal{L}(\mathcal{G})$ y \mathcal{G}'' no contiene variables inútiles.

Demostración

Sea $G = (V, \Sigma, P, S)$ una CFG.

Sea $G' = (V', \Sigma, P', S)$ al eliminar las variables no generadoras de G:

$$V' = \{ X \in V \mid \exists w. \ X \overset{*}{\underset{\mathcal{G}}{\Rightarrow}} \mathbf{w} \}$$

$$P' = \{ X \to \alpha \in P \mid X \in V' \land \alpha \in (V' \cup \Sigma)^* \}$$

Sea $G'' = (V'', \Sigma, P'', S)$ al eliminar las variables no alcanzables de G':

$$\begin{split} V^{\prime\prime} &= \{\, X \in V^\prime \mid \exists \alpha, \beta. \ S \underset{g^\prime}{\overset{*}{\Rightarrow}} \alpha X \beta \,\,\} \\ P^{\prime\prime} &= \{\, X \to \alpha \in P^\prime \mid X \in V^{\prime\prime} \land \alpha \in (V^{\prime\prime} \cup \Sigma)^* \,\} \end{split}$$

Considere las propiedades de G, G', G''.

- 1. Para todo $a \in (V \cup \Sigma)^*$, si $\alpha \underset{\mathcal{G}}{\overset{*}{\Rightarrow}} w$ entonces $\alpha \underset{\mathcal{G}'}{\overset{*}{\Rightarrow}} w$. 2. Para todo $a \in (V' \cup \Sigma)^*$, si $S \underset{\mathcal{G}'}{\overset{*}{\Rightarrow}} \alpha$ entonces $S \underset{\mathcal{G}''}{\overset{*}{\Rightarrow}} \alpha$.
- 3. Para todo $a \in (V'' \cup \Sigma)^*$, si $\alpha \underset{G'}{\Rightarrow} w$ entonces $\alpha \underset{G''}{\Rightarrow} w$.

Demostración

$$PD: \mathcal{L}(\mathcal{G}'') = \mathcal{L}(\mathcal{G}).$$

Como $V'' \subseteq V$ y $P'' \subseteq P$, entonces $\mathcal{L}(\mathcal{G}'') \subseteq \mathcal{L}(\mathcal{G})$.

$$\operatorname{PD}:\mathcal{L}(\mathcal{G})=\mathcal{L}(\mathcal{G}^{\prime\prime}).$$

Sea $w \in \mathcal{L}(\mathcal{G})$ tal que $S \stackrel{*}{\underset{G}{\Rightarrow}} w$.

- Por la propiedad 1. tenemos que $S \underset{G_f}{\overset{*}{\Rightarrow}} w$.
- Por la propiedad 2. tenemos que $S \underset{GII}{\overset{*}{\Rightarrow}} w$.

Por lo tanto $w \in \mathcal{L}(G'')$ y concluimos que $\mathcal{L}(G) \subseteq \mathcal{L}(G'')$.

Demostración

PD: Para todo $X \in V''$, X es útil en G''.

Como $X \in V''$, entonces $S \underset{G'}{\overset{*}{\Rightarrow}} \alpha X \beta$ para algún $\alpha, \beta \in (V' \cup \Sigma)^*$.

Por la propiedad 2. se tiene que $S \underset{G''}{\overset{*}{\Rightarrow}} \alpha X \beta$ y $\alpha, \beta \in (V'' \cup \Sigma)^*$.

Como $X \in V'$ y $\alpha, \beta \in (V' \cup \Sigma)^*$, entonces existen u, v, w tal que:

$$\alpha \stackrel{*}{\underset{G}{\Rightarrow}} u, \qquad X \stackrel{*}{\underset{G}{\Rightarrow}} v, \qquad \beta \stackrel{*}{\underset{G}{\Rightarrow}} w$$

Por la propiedad 1. se tiene que: $\alpha \underset{g_{\prime}}{\stackrel{*}{\Rightarrow}} u$, $X \underset{g_{\prime}}{\stackrel{*}{\Rightarrow}} v$, $\beta \underset{g_{\prime}}{\stackrel{*}{\Rightarrow}} w$.

Por la propiedad 3. se tiene que: $\alpha \overset{*}{\underset{\mathcal{G}''}{\Rightarrow}} u$, $X \overset{*}{\underset{\mathcal{G}''}{\Rightarrow}} v$, $\beta \overset{*}{\underset{\mathcal{G}''}{\Rightarrow}} w$.

Juntando todo $S \overset{*}{\underset{G''}{\Rightarrow}} \alpha X \beta \overset{*}{\underset{G''}{\Rightarrow}} uvw$ y X es útil en G''.

¿Qué falla al eliminar primero las no alcanzables y después las no generadoras?

<u>Ejemplo</u>:

$$G: S \rightarrow AB \mid b$$

$$A \rightarrow a$$

$$B \rightarrow B$$

Al eliminar variables no alcanzables en G:

$$G': S \rightarrow AB \mid b$$

$$A \rightarrow a$$

$$B \rightarrow B$$

Al eliminar variables no generadoras en \mathcal{G}' :

$$G''$$
: $S \rightarrow b$
 $A \rightarrow a$

(A es inútil)

Definición

- Decimos que una producción de la forma: $X \to \epsilon$ es en vacío.
- Decimos que una producción de la forma: $X \to Y$ es unitaria.

Deseamos eliminar este tipo de producciones.

Conclusión

Si $\epsilon \in \mathcal{L}(\mathcal{G})$, entonces

NO se pueden borrar las producciones en vacío sin alterar el lenguaje \mathcal{G} .

Desde ahora, supondremos que $\epsilon \notin \mathcal{L}(\mathcal{G})$.

Sea $G = (V, \Sigma, P, S)$ un CFG tal que $\epsilon \notin \mathcal{L}(G)$.

Observación

Suponga las reglas $X \to Y$ y $Y \to \gamma$ en P.

• Si
$$G' = (V, \Sigma, P \cup \{X \to \gamma\}, S)$$
 $\mathcal{L}(G') = \mathcal{L}(G)$? SI
• Si $G'' = (V, \Sigma, P \cup \{X \to \gamma\} - \{X \to Y\}, S)$ $\mathcal{L}(G'') = \mathcal{L}(G)$? NO

Suponga las reglas $X \to \epsilon$ y $Z \to \alpha X \beta$ en P.

Clausura de producciones unitarias y en vacío

Sea P^* el menor conjunto de producciones que contiene P y cerrado bajo las siguientes reglas:

- 1. Si $X \to Y \in P^*$ y $Y \to \gamma \in P^*$, entonces $X \to \gamma \in P^*$.
- 2. Si $X \to \epsilon \in P^*$ y $Z \to \alpha X \beta \in P^*$, entonces $Z \to \alpha \beta \in P^*$.

Defina $G^* = (V, \Sigma, P^*, S)$. Entonces:

- P^* es infinito.
- $\mathcal{L}(\mathcal{G}^*) = \mathcal{L}(\mathcal{G})$

¿Cómo eliminamos las producciones en vacío y unitarias?

Para cualquier palabra $w \in \mathcal{L}(\mathcal{G}^*)$, Sea T un árbol de derivación de w en G^* de tamaño mínimo.

Propiedad 1

El árbol de derivación T NO usa una **producción unitaria**.

Propiedad 2

El árbol de derivación \mathcal{T} NO usa una producción **en vacío**.

Por la **Propiedad 1** y **Propiedad 2** tenemos que:

Para todo $w \in \mathcal{L}(G^*)$, existe una derivación de w en G que NO usa producciones en vacío ni producciones unitarias.

Podemos eliminar las producciones en vacío y unitarias de \mathcal{G}^* !

Teorema

Para toda CFG \mathcal{G} tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$, sea:

- G* la clausura de producciones unitarias y en vacío.
 Gê el resultado de remover toda producción unitaria o en vacío de G*.

Entonces $\mathcal{L}(\hat{G}) = \mathcal{L}(G)$ y \hat{G} no tiene producciones unitarias o en vacío.

Para eliminar las producciones en vacío o unitarias de G:

- Construimos \mathcal{G}^* haciendo la clausura de producción unitarias y en vacío,
- Construimos $\hat{\mathcal{G}}$ removiendo todas las producciones unitarias o en vacío de \mathcal{G}^* .

Por el resultado anterior sabemos que $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\hat{\mathcal{G}})$.

Forma Normal de Chomsky

Definición

Una gramática G esta en la **forma normal de Chomsky** (CNF) si todas sus reglas son de la forma:

- $X \rightarrow YZ$
- $X \rightarrow a$

Toda gramática se puede convertir en CNF

Sea $G = (V, \Sigma, P, S)$ una CFG tal que $\epsilon \notin \mathcal{L}(G)$.

- Primero, suponga que G no contiene las reglas en vacío o unitarias.
- Por lo tanto, todas las reglas en *G* son de la forma:
 - o $X \rightarrow \gamma$ para $|\gamma| \ge 2$
 - $\circ X \to a$

Paso 1: Convertir todas las reglas a la forma:

- $X \rightarrow Y_1 Y_2 \dots Y_k$ para $k \ge 2$
- $X \rightarrow a$

¿Cómo?

- Para cada $a \in \Sigma$, agregar una nueva variable X_a y una regla $X_a \to a$.
- Reemplazar todas las ocurrencias antiguas de a por X_a .

Paso 2: Convertir todas las reglas a la forma:

- $\bullet \quad X \to YZ$
- $X \rightarrow a$

¿Cómo?

Para cada regla $p: X \to Y_1 Y_2 \dots Y_k$ con $k \ge 3$:

- Agregamos una **nueva** variable *Z*.
- Reemplazamos la regla p por dos reglas:

$$X \to Y_1 Z$$
 \wedge $Z \to Y_2 \dots Y_k$

Repetimos este paso.

Lema de Bombeo Para lenguajes libres de contexto

Sea $L \subseteq \Sigma^*$. Si L es **libre de contexto**, entonces:

Existe un N>0 tal que **Para toda** palabra $z\in L$ con $|z|\geq N$ **Existe** una descomposición z=uvwxy Con $vx\neq \epsilon$ y $|vwx|\leq N$ tal que **Para todo** $i\geq 0,\ u\cdot v^i\cdot w\cdot x^i\cdot y\in L$.

Contra-positivo:

Sea $L \subseteq \Sigma^*$. Si

Para todo N>0 tal que Existe una palabra $z\in L$ con $|z|\geq N$ Para toda descomposición z=uvwxy Con $vx\neq \epsilon$ y $|vwx|\leq N$ tal que Existe $i\geq 0,\ u\cdot v^i\cdot w\cdot x^i\cdot y\notin L$.

entonces L **NO** es libre de contexto.

"L NO es CFL"

El escoge un N > 0

Uno escoge $z \in L$ con $|z| \ge N$

El escoge $u \lor w \lor y = z$ con $\lor x \ne \epsilon$ y $|\lor wx| \le N$

Uno escoge $i \ge 0$

Uno gana si $u \cdot v^i \cdot w \cdot x^i \cdot y \notin L$ El gana si $u \cdot v^i \cdot w \cdot x^i \cdot y \in L$

Jugando contra un demonio (a^{n^2})

"a^{n²} NO es CFL"

Escoio N > 0

Yo escojo $a^{N^2} \in L$

Entonces escojo $\underbrace{a^{i}}_{n} \underbrace{a^{k}}_{n} \underbrace{a^{l}}_{n} \underbrace{a^{m}}_{n} \underbrace{a^{n}}_{n} = a^{N^{2}}$

con $k + m \neq 0$ **y** $k + l + m \leq N$

Yo escojo i = 2

Jugando contra un demonio $(a^n b^n c^n)$

"a"b"c" NO es CFL"

Escojo N > 0

Yo escojo $a^N b^N c^N \in L$

Entonces escojo $uvwxy = a^N b^N c^N$ con $vx \neq \epsilon$ y $|vwx| \leq N$

Yo escojo i = 2

Como $uvwxy = a^N b^N c^N$ con $vx \neq \epsilon$ y $|vwx| \leq N$, entonces:

$vwx \in \mathcal{L}(a^*b^*)$ o $vwx \in \mathcal{L}(b^*c^*)$

¿ por qué ?

- Si $vwx \in \mathcal{L}(a^+b^+)$, entonces:
 - $|u v^2 w x^2 y|_{a,b} > 2N$
 - $|uv^2wx^2y|_c = N$

por lo tanto $z' \notin L$.

- Si $vwx \in \mathcal{L}(b^+c^+)$, entonces:
 - $|u v^2 w x^2 y|_{b,c} > 2N$
 - $|uv^2wx^2y|_a = N$

por lo tanto $z' \notin L$.

En ambos casos, $uv^2wx^2y \notin L$