

MONASH INFORMATION TECHNOLOGY

FIT9136 Semester 2 2020 Algorithms and programming foundations in Python

Unit Introduction

Shirin Ghaffarian Maghool

FIT9136 Overview

- What this unit is about?
 - To provide you with a foundation understanding of how to implement a solution for a computational problem by building a computer program.
- What are you going to learn?
 - To learn about the fundamental concepts of programming as well as the Python programming language.

FIT9136 Learning Outcomes

- Upon successful completion of this unit, you should be able to:
 - Design, construct, test and document computer programs using Python
 - Recognise the relationship between a problem description and a program design
 - Demonstrate how basic data structures and data types function
 - Investigate different strategies for algorithm development and evaluate them to select an appropriate solution to a given problem

FIT9136 Unit Schedule

- Week 1: Introduction to Programming and Algorithms Python Basic Data Types
- Week 2: Python Basic Elements
- Week 3: Control Structures
- Week 4: Built-in Data Structures
- Week 5: Classes and Variable Scope
- Week 6: Abstract Data Types
- Week 7: Binary Trees and Binary Search Trees
- Week 8: Testing, Exception Handling, and External Libraries
- Week 9: Complexity, Searching and Sorting Algorithms
- Week 10: Recursion and Divide-and-Conquer
- Week 11: Greed, Brute-force, Backtracking
- Week 12: Review of the Unit

Find overview on Moodle > <u>Unit Previews</u>

FIT9136 S1 2020 Assessments

In-Semester Assessments:

- 50% of the overall unit mark
- Two assignments:
 - Assignment 1 (15%) due on Week 6 (interviews in Week 7)
 - Assignment 2 (25%) due on Week 11 (interviews in Week 12)
- Pre-lecture quizzes (5%)
 - due weekly prior to the lecture (Weeks 2 to 11)
- Lab activities (5%)
 - due weekly (Weeks 3 to 12).
 - Monday 5pm of the following week.

• Examination:

- 50% of the overall unit mark
- 2-hour written exam
- 10 minutes of reading time

Find overview on Moodle > <u>Unit Previews</u>

FIT9136 Unit Hurdles

- To pass a unit, you must obtain:
 - 45% or more of the exam mark
 - 45% or more of the total mark for all the in-semester assessments
 - An overall unit mark of 50% or more
- If you do not pass any of these hurdles, and your overall unit mark is:
 - equal to or greater than 50%, then a mark of 49 N will be recorded
 - less than 50%, then the actual mark will be recorded

FIT9136 Teaching Staff

- Chief Examiner:
 - Dr. Chunyang Chen
- Lecturer:
 - Ms. Shirin Ghaffarian Maghool
- Head Tutors:
 - Ms. Xiaojia Du
 - Mr. Deep Mendha

FIT9136 Weekly Activities

- Lecture:
 - Weekly recording
 - Would be available on Mondays of week 1-12
- Labs: [start from week 2]
 - Tuesday, Wednesdays, Thursdays, Fridays
 - Check your timetable on Allocate+

You are highly encouraged to attend the practical classes each week.

FIT9136 Consultations

- By the lecturer:
 - By appointment via e-mail
 - Week 2 onwards
- By the tutors:
 - Week 2 onwards
 - Refer to Moodle for the available consultation times

Find on Moodle > Consultation Times

FIT9136 Learning Materials

Types of materials:

- Readings (available a week before lecture)
- Lecture notes & recording (available on Mondays of teaching weeks)
- Lab activities i.e., Programming Exercises (available Tuesday of teaching weeks)

FIT9136 Communication with the Teaching Team

- Ed Discussions class Q&A
 - For asking general questions regarding the subject matter or assignment.
- Email Your Tutor Directly
 - For asking private questions.
- Email Unit Admin Team: (FIT9136.Clayton-x@monash.edu)
 - For asking questions related to extensions, temporary lab changes, absences, or even complaints about tutors.

Please refrain from e-mailing CE or Lecturer directly.

Find details on Moodle > <u>Unit Information</u>

FIT9136 Prescribed Reading

- Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers (2012). How to Think like a Computer Scientist (RLE) (The Rhodes Local Edition).
- Brad Miller, David Ranum, Jeffrey Elkner, Peter Wentworth, Allen B.
 Downey, Chris Meyers and Dario Mitchell (2012). How to Think like a
 Computer Scientist: Interactive Edition
- Brad Miller and David Ranum (2014). <u>Problem Solving with</u> <u>Algorithms and Data Structures</u> (Interactive Edition).

FIT9136 Recommended Reading

- Bill Lubanovic (2014). Introducing Python. O'Reilly Media, Inc.
- Mark Lutz (2013). Learning Python. O'Reilly Media, Inc.
- John Guttag (2016). Introduction to Computation and Programming using Python: with Application to Understanding Data (2nd Edition).
 The MIT Press. (Noted: 1st Edition is applicable.)
- Rance D. Necaise (2011). Data structures and Algorithms using Python. Wiley.
- Michael T. Goodrich, Robert Tamassia, Michael H. Goldwasser (2013). Data Structures and Algorithms in Python. Wiley.
- Google Python Style Guide, http://google.github.io/styleguide/pyguide.html
- Zed Shaw (2013). Learn Python the Hard Way. O'Reilly Media, Inc.

Most of the texts are available as e-book via Monash library.

FIT9136 Technological Requirements

- Software required:
 - Python 3.6 (or higher)
 - Anaconda (Jupyter Notebook)
 - IDE for Python (IDLE, Pycharm)

Find details on Moodle > Week 0 (Software Requirment)

Plagiarism and Collusion

- Student responsibilities:
 - Undertake studies and research responsibly and with honesty and integrity
 - Ensure that academic work is in no way falsified
 - Seek permission to use the work of others, where required
 - Acknowledge appropriately the work of others
 - Take reasonable steps to ensure other students can't copy or misuse your work
- Student Academic Integrity Policy: [Please read this!!]
 - Academic integrity, plagiarism and collusion

MONASH DISABILITY SUPPORT SERVICES

SEEKING ASSISTANCE & DISABILITY SUPPORT SERVICES

Take the following relevant preventative measures as soon as possible, if you are falling behind in your studies:

- Study difficulties: Discuss any difficulties you are experiencing with your course leader, unit coordinator, lecturer or tutor.
 - These staff members can assist you in identifying your problem areas and explore the options available to you in your course.
- Language and learning online can help you with study methods, language skills and work presentation.
 - http://www.monash.edu.au/lls/llonline/
- Student life and support services can be found at:
 - http://monash.edu/students/support/
 - Include: Health services, support and services, clubs and sports, etc.

Disability Support Services

Do you have a disability, medical or mental health condition that may impact on your study?

Disability Support Services provides a range of services for registered students including:

- Note takers and Auslan interpreters
- Readings in alternative formats
- Adaptive equipment and software
- Alternative arrangements for exam and class tests

Disability Support Services also support students who are careers of a person with a disability, medical or mental health condition, or who is aged and frail.

For further information and details about how to register:

T: 03 9905 5704

E: <u>disabilitysupportservices@monash.edu</u>

monash.edu/disability

FIT9136 Disclaimer

- This unit is new (in its second offering).
- The teaching team is still striving to improve the unit.
- Please be patient with us and your feedback is high appreciated.

THANK YOU FOR YOUR UNDERSTANDING!

