DeepRebirth: Accelerating Deep Neural Network Execution on Mobile Devices

Dawei Li,¹ Xiaolong Wang,¹ Deguang Kong

¹Samsung Research America, Mountain View, CA {xiaolong.w, dawei.l}@samsung.com, {doogkong}@gmail.com

AAAI 2018

Presenter: Youngeun Kim young.ryan.36524@gmail.com

Contents

- 1) Motivation
- 2) Method
- 3) Experiments
- 4) Conclusion

Motivation

Current model compression method still cannot satisfy real-time processing.

The major obstacle is the excessive execution time of non-tensor layers

Tensor layer vs. Non-tensor layer

Convolutional Layer
Fully connected Layer

Batch Norm

Non-tensor layer
Pooling Layer
Batch Norm

high-order tensor-type weight parameters

Table 2: Percentage of Forwarding Time on Non-tensor Layers

Motivation

Time analysis on Tensor and Non-Tensor layers

Network	Intel x86	Arm	Titan X
AlexNet	32.08%	25.08%	22.37%
GoogLeNet	62.03%	37.81%	26.14%
ResNet-50	55.66%	36.61%	47.87%
ResNet-152	49.77%	N/A	44.49%
Average	49.89%	33.17%	35.22%

Figure 2: Time Decomposition for each layer. Non-tensor layers (e.g., dropout, ReLU, LRN, softmax, pooling, etc) shown in red color while tensor layers (e.g., convolution, inner-product) shown in black color.

Motivation

Two types of slimming methods

- (a) branch slimming
- (b) streamline slimming

Contribution

 Existing works are designed to reduce the model with handling tensor-type layers, however, handling non-tensor layer has not been discussed so far.

 In this paper, we emphasize and validate experimentally that the proposed method is orthogonal to compression techniques on tensor-type layers.

Pooling Layer

- Remove the pooling layer
- Set the stride value of the new convolution layer

None Pooling Layer

Prune those layers from the original DNN

Figure 3: Streamline Slimming: The GoogLeNet example and the running time is measured using bvlc_googlenet model in Caffe on a Samsung Galaxy S5. Left panel: convolution (in green), LRN (in red), pooling (in red). Right Panel: single convolution layer. The three layers in the left panel are merged and regenerated as a convolution layer (i.e., slim layer) in the right panel.

Theoretical Analysis

$$X^{i} \xrightarrow{f_{\text{conv}}} Y_{\text{cv}}^{i} \xrightarrow{f_{\text{bn}}} Y_{\text{cv+bn}}^{i} \xrightarrow{f_{\text{sl}}} Y_{\text{cv+bn+sl}}^{i}$$

$$\xrightarrow{f_{\text{pooling}}} Y_{\text{cv+bn+sl+pl}}^{i} \xrightarrow{\cdot} \dots := Y_{\text{CNN}}^{i}$$

$$\begin{cases} f_{\text{conv}} : \mathbf{W}_{\text{conv}}, \mathbf{B}_{\text{conv}}; \\ f_{\text{bn}} : m, \ \mu, \ \sigma^{2}; \\ f_{\text{sl}} : \gamma, \ \beta; \\ f_{\text{pooling}} : p; \\ f_{\text{LRN}} : \kappa, \ \rho \ \alpha. \\ \dots \end{cases}$$

Idea is to find a new mapping function

$$\tilde{f}(\tilde{\mathbf{W}}, \tilde{\mathbf{B}}): X^i \to Y_{\mathrm{CNN}}^i$$

$$(\tilde{\mathbf{W}}^*, \tilde{\mathbf{B}}^*) = argmin_{\mathbf{W}, \mathbf{B}} \sum_i \|Y_{\mathrm{CNN}}^i - \tilde{f}(\mathbf{W}, \mathbf{B}; X^i)\|_F^2.$$

Theoretical Analysis: how to get closed form solution for the new Conv layer?

Lemma 2. Let W_j , B_j , μ_j , σ_j^2 , γ_j and b_j be the corresponding j-th dimension in the reshaped weight vector or bias vector in Eq.(3), and \tilde{W}_j , \tilde{B}_j be the learned new convolution layer parameter in Eq.(5). Then, if Y_{CNN}^i is obtained after the three layers of f_{conv} , f_{bn} , f_{sl} in the sequence order, i.e., $Y_{CNN}^i := Y_{cv+bn+sl}^i$, we have closed form solution for the parameters in the new convolution layer:

$$\tilde{W}_{j} = \eta_{j} W_{j},
\tilde{B}_{j} = \eta_{j} B_{j} + \beta_{j} - \eta_{j} \frac{\mu_{j}}{m},
\eta_{j} = \frac{\gamma_{j}}{\sqrt{\frac{\sigma_{j}^{2}}{m}}}.$$
(6)

Theoretical Analysis: how to get closed form solution for the new Conv layer?

Lemma 2. Let W_j , B_j , μ_j , σ_j^2 , γ_j and b_j be the corresponding j-th dimension in the reshaped weight vector or bias vector in Eq.(3), and \tilde{W}_j , \tilde{B}_j be the learned new convolution layer parameter in Eq.(5). Then, if Y_{CNN}^i is obtained after the three layers of f_{conv} , f_{bn} , f_{sl} in the sequence order, i.e., $Y_{CNN}^i := Y_{cv+bn+sl}^i$, we have closed form solution for the parameters in the new convolution layer:

$$\tilde{W}_{j} = \eta_{j} W_{j},
\tilde{B}_{j} = \eta_{j} B_{j} + \beta_{j} - \eta_{j} \frac{\mu_{j}}{m},
\eta_{j} = \frac{\gamma_{j}}{\sqrt{\frac{\sigma_{j}^{2}}{m}}}.$$
(6)

$$Y_{j} = \gamma_{j} \left(f_{\text{bn}} \cdot f_{\text{conv}}(X) \right)_{j} + \beta_{j}, \quad \triangleright \text{Scaling}$$

$$= \gamma_{j} \left(\frac{f_{\text{conv}}(X)_{j} - \mu_{j}}{\sqrt{\sigma_{j}^{2}}} \right) + \beta_{j}, \quad \triangleright \text{BN}$$

$$= \gamma_{j} \left(\frac{(W * X)_{j} + B_{j} - \frac{\mu_{j}}{m}}{\sqrt{\frac{\sigma_{j}^{2}}{m}}} \right) + \beta_{j}. \quad \triangleright \text{ Convolution}$$
(8)

Let $\eta_j = \frac{\gamma_j}{\sqrt{\frac{\sigma_j^2}{m}}}$, then Eq.(8) is equivalent to:

$$Y_{j} = \underbrace{\eta_{j}(W * X)_{j}}_{weight} + \underbrace{\left(\eta_{j}B_{j} - \frac{\eta_{j}\mu_{j}}{m} + \beta_{j}\right)}_{pias}.$$
 (9)

Compared to Eq.(7), we have $\tilde{W}_j = \eta_j W_j$ and $\tilde{B}_j = \eta_j B_j + \beta_j - \eta_j \frac{\mu_j}{m}$. This completes the proof.

Method - Branch Slimming

Combining small size kernel with large kernel

Method - Branch Slimming

Branch reducing: for greater speed-up, we further reduce the number of feature maps generated by the 1×1 "reducer"

Tensor-Branch Slimming: A convolution branch with a smaller kernel size can be absorbed to a convolution branch with a larger kernel size

Method - Finetuning

 In DeepRebirth, we leverage Xavier (Glorot and Bengio 2010) initialization to initialize the parameters in the new layer while keeping the weights of other layers unchanged

 Generally, the proposed optimization scheme is applied from the bottom layer to the top layer

3) Alternative is to learn multiple slim layers at the same time

Experiments

Setting: caffe's GoogLeNet implementation (i.e.,bvlc_googlenet)

Compare with:

- 1) GoogLeNet
- 2) GoogLeNet-Slim
- 3) GoogLeNet-Tucker
- 4) GoogLeNet-Slim-Tucker
- 5) SqueezeNet

^{*}Tucker decomposition approach (Kim et al. 2015)

Experiments

Table 4: Layer breakdown of GoogLeNet forwarding time cost

Layer	GoogLeNet	GoogLeNet -Tucker	GoogLeNet -Slim (ours)	GoogLeNet -Slim-Tucker (ours)
conv1	94.92 ms	87.85 ms	8.424 ms	6.038 ms
conv2	153.8 ms	179.4 ms	16.62 ms	9.259 ms
inception_3a	55.23 ms	85.62 ms	21.17 ms	9.459 ms
inception_3b	98.41 ms	66.51 ms	25.94 ms	11.74 ms
inception_4a	30.53 ms	36.91 ms	16.80 ms	8.966 ms
inception_4b	32.60 ms	41.82 ms	20.29 ms	11.65 ms
inception_4c	46.96 ms	30.46 ms	18.71 ms	9.102 ms
inception_4d	36.88 ms	21.05 ms	24.67 ms	10.05 ms
inception_4e	48.24 ms	32.19 ms	28.08 ms	14.08 ms
inception_5a	24.64 ms	14.43 ms	10.69 ms	5.36 ms
inception_5b	24.92 ms	15.87 ms	14.58 ms	6.65 ms
loss3	3.014 ms	2.81 ms	2.97 ms	2.902 ms
Total	651.4 ms	614.9 ms (1.06x)	210.6 ms (3.09x)	106.3 ms (6.13x)

Table 5: Execution time using different methods (including SqueezeNet) on different processors

Device	GoogLeNet	GoogLeNet -Tucker	GoogLeNet -Slim	GoogLeNet -Slim-Tucker	SqueezeNet
Moto E	1168.8 ms	897.9 ms	406.7 ms	213.3 ms	291.4 ms
Samsung Galaxy S5	651.4 ms	614.9 ms	210.6 ms	106.3 ms	136.3 ms
Samsung Galaxy S6	424.7 ms	342.5 ms	107.7 ms	65.34 ms	75.34 ms
Macbook Pro (CPU)	91.77 ms	78.22 ms	23.69 ms	15.18 ms	17.63 ms
Titan X	10.17 ms	10.74 ms	6.57 ms	7.68 ms	3.29 ms

Table 6: Storage, Energy and Runtime-Memory Comparison

Model	Energy	Storage	Memory	Max Batch Size on Titan X
GoogLeNet GoogLeNet-Tucker GoogLeNet-Slim GoogLeNet-Slim-Tucker SqueezeNet	984 mJ	26.72 MB	33.2 MB	350
	902 mJ	14.38 MB	35.8 MB	323
	447 mJ (2.2x)	23.77 MB	13.2 MB	882 (2.52x)
	226 mJ (4.4x)	11.99 MB	14.8 MB	785 (2.24x)
	288 mJ	4.72 MB	36.5 MB	321

Conclusion

 Re-generating new tensor layers from optimizing non-tensor layers and their neighborhood units

 DeepRebirth is also compatible with slimming approaches that aims to reduce tensor layers