Examenul de bacalaureat național 2017 Proba E. c)

Matematică M_mate-info

Clasa a XII-a

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{2+i}{2-i} + \frac{2-i}{2+i} = \frac{(2+i)^2 + (2-i)^2}{(2-i)(2+i)} =$	2p
	$=\frac{4+4i+i^2+4-4i+i^2}{2^2-i^2}=\frac{6}{5}$	3р
2.	$x_1 + x_2 = 2m + 3$, $x_1 x_2 = m^2 + 3m + 2$	2p
	$(x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1x_2 = 4m^2 + 12m + 9 - 4m^2 - 12m - 8 = 1$, pentru orice număr real	3 p
3.		3p
	x = 7, care nu verifică ecuația, sau $x = 4$, care verifică ecuația	2p
4.	Cifra sutelor se poate alege în 4 moduri, cifra zecilor se poate alege în câte 4 moduri	2p
	Cifra unităților se poate alege, pentru fiecare mod de alegere a primelor două cifre, în câte 3 moduri, deci se pot forma $4 \cdot 4 \cdot 3 = 48$ de numere	3p
5.	$MP \parallel BC$, $NP \parallel AB$	2p
	$BNPM$ paralelogram, deci $\overrightarrow{BM} + \overrightarrow{BN} = \overrightarrow{BP}$	3p
6.	$2\sin x \cos x = \cos x \Leftrightarrow \cos x (2\sin x - 1) = 0 \Leftrightarrow \cos x = 0 \text{ sau } \sin x = \frac{1}{2}$	3p
	Cum $x \in \left[\frac{\pi}{2}, \pi\right]$, obținem $x = \frac{\pi}{2}$ sau $x = \frac{5\pi}{6}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(A(a)) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & a & 3 \\ 1 & 3 & a \end{vmatrix} = a^2 + 3 + 3 - a - 9 - a =$	3 p
	$=a^2-2a-3=(a+1)(a-3)$, pentru orice număr real a	2 p
b)	$A(m)A(2-m) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & m & 3 \\ 1 & 3 & m \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2-m & 3 \\ 1 & 3 & 2-m \end{pmatrix} = \begin{pmatrix} 3 & 6-m & 6-m \\ m+4 & -m^2+2m+10 & 7 \\ m+4 & 7 & -m^2+2m+10 \end{pmatrix}$	2p
	$A(2-m)A(m) = \begin{pmatrix} 3 & m+4 & m+4 \\ 6-m & -m^2 + 2m + 10 & 7 \\ 6-m & 7 & -m^2 + 2m + 10 \end{pmatrix}, \text{ de unde obținem } m=1$	3 p

c)	Sistemul are soluție unică, deci $a \neq -1$ și $a \neq 3$; pentru fiecare număr întreg a , $a \neq -1$ și $a \neq 3$, soluția sistemului este de forma $\left(\frac{a-1}{a+1}, \frac{1}{a+1}, \frac{1}{a+1}\right)$	3р
	Cum $a \in \mathbb{Z}$, obținem $\frac{a-1}{a+1}$, $\frac{1}{a+1} \in \mathbb{Z} \Leftrightarrow a+1$ este divizor al lui 1, deci $a=-2$ sau $a=0$	2p
2.a)	x * y = -5xy + 10x + 10y - 20 + 2 =	2 p
	=-5x(y-2)+10(y-2)+2=2-5(x-2)(y-2), pentru orice numere reale x şi y	3 p
b)	$n*n = 2-5(n-2)^2$, $(n*n)*n = 2+25(n-2)^3$	3 p
	$2 + 25(n-2)^3 = n \Leftrightarrow (n-2)(25(n-2)^2 - 1) = 0 \text{si, cum } n \text{ este număr natural, obținem}$ $n = 2$	2p
<u>c)</u>		1
	$a*a=b \Leftrightarrow b-2=-5(a-2)^2$	1p
	$b*b = a \Leftrightarrow a-2 = -5(b-2)^2$, deci $a-2 = -125(a-2)^4$	2 p
	$a-2=0$, de unde $a=b=2$ sau $a-2=-\frac{1}{5}$, de unde $a=b=\frac{9}{5}$	2p

SUBIECTUL al III-lea

(30 de puncte)

осы	DIECT CE al III-lea (30 de punco		
1.a)	$f'(x) = \frac{x+2}{(x^2+2x+2)\sqrt{x^2+2x+2}}, \ x \in \mathbb{R}$	3p	
	$x \in (-\infty, -2] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(-\infty, -2]$	1p	
	$x \in [-2, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[-2, +\infty)$	1p	
b)	$\lim_{x \to +\infty} f(x) = 1$	1p	
	$\lim_{x \to +\infty} (f(x))^{2x} = \lim_{x \to +\infty} \left(\frac{x^2}{x^2 + 2x + 2} \right)^x = \lim_{x \to +\infty} \left(\left(1 + \frac{-2x - 2}{x^2 + 2x + 2} \right)^{\frac{x^2 + 2x + 2}{-2x - 2}} \right)^{\frac{-2x - 2}{x^2 + 2x + 2}} = $	2p	
	$= e^{\lim_{x \to +\infty} \frac{-2x^2 - 2x}{x^2 + 2x + 2}} = \frac{1}{e^2}$	2p	
c)	$g: \mathbb{R} \to \mathbb{R}$, $g(x) = f(x) - a$ este continuă și derivabilă pe \mathbb{R} și $g'(x) = f'(x)$, pentru orice $x \in \mathbb{R}$, deci g este strict descrescătoare pe $(-\infty, -2)$ și strict crescătoare pe $(-2, +\infty)$	2p	
	Cum $\lim_{x \to -\infty} g(x) = -1 - a > 0$, $g(-2) = -\sqrt{2} - a < 0$ și $\lim_{x \to +\infty} g(x) = 1 - a > 0$, pentru orice $a \in (-\sqrt{2}, -1)$, ecuația $f(x) = a$ are exact două soluții reale distincte	3р	
2.a)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{1}{\sqrt{x+1}} dx = 2\sqrt{x+1} \Big _{0}^{1} =$	3р	
	$=2\sqrt{2}-2=2(\sqrt{2}-1)$	2p	
b)	$x \in [0,1] \Rightarrow \frac{1}{\sqrt{x+1}} \le 1$ și $x^n \ge 0$, deci $\frac{x^n}{\sqrt{x+1}} \le x^n$, pentru orice număr natural nenul n	2p	
	$I_n = \int_0^1 \frac{x^n}{\sqrt{x+1}} dx \le \int_0^1 x^n dx = \frac{x^{n+1}}{n+1} \Big _0^1 = \frac{1}{n+1}, \text{ pentru orice număr natural nenul } n$	3р	

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare