Notations

Notation:

$$\Rightarrow$$
 est noté \rightarrow (->)

Parenthésage:

$$A \rightarrow (B \rightarrow C)$$
 est simplement noté $A \rightarrow B \rightarrow C$.

But courant:

un séquent
$$A_1,\ldots,A_n \vdash A$$
 s'affiche $Hn:An$

L'environnement de travail

Deux fenêtres : le fichier courant + les réponses de Coq.

L'évaluation du fichier se fait linéairement.

Utilisez les raccourcis Ctrl+flèches pour faire avancer/reculer la zone d'évaluation.

Règle intro⇒

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \text{ intro} \Rightarrow$$

В

A - 1

Commande: intros H.

Remarques

- ▶ on peut enchainer plusieurs introductions : intros H1 H2.
- on peut laisser le système nommer les hypothèses : intros.

Règle élim⇒

$$\frac{\Gamma \vdash A \Rightarrow B \qquad \Gamma \vdash A}{\Gamma \vdash B} \text{ \'elim}_{\Rightarrow}$$

Commande: apply н.

Remarques

- ► contrairement à élim \Rightarrow , il y un seul sous arbre de preuve : il faut avoir déjà une preuve de $A \Rightarrow B$ dans son contexte
- pour forcer Coq à générer un sous-but pour A ⇒ B, on peut taper assert (A→B).

Règle Ax

$$\overline{\Gamma,A \vdash A}$$
 Ax

Commande: apply н.

Remarque

▶ on peut éviter de nommer l'hypothèse en utilisant la commande assumption.

Règle intro∧

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} \text{ intro}_{\land}$$

H0: B

Commande: split.

Règle élim∧

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \text{ \'elim}^1_{\land}$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \text{ \'elim}^1_{\land} \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \text{ \'elim}^2_{\land}$$

Commande: destruct H.

Remarque

 on peut nommer les hypothèses introduites avec la syntaxe destruct H as [H H0].

Règle intro_V

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \text{ intro}_{\lor}^{1} \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \text{ intro}_{\lor}^{2}$$

A ∨ B

Commande: left.

Remarque

• $intro^2_{\lor}$ correspond à la commande right.

Règle élim \vee

$$\frac{\Gamma \vdash A \lor B \qquad \Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma \vdash C} \text{ \'elim}_{\lor}$$

Commande: destruct H.

Règle élim⊥

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash A} \text{ \'elim}^1_\bot$$

Commande: elim H.

Remarque

▶ elim H peut aussi s'utiliser quand $H:A1 \rightarrow ... \rightarrow An \rightarrow False$ (mais il faut alors décharger n sous-buts)

Règle intro-

$$\frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A}$$
 intro-

False

Commande: intros H.

Remarque

- ▶ ¬ A est en fait du sucre syntaxique pour A \rightarrow False.
- ▶ intros. ne marche pas ici.

Règle élim_

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash \neg A}{\Gamma \vdash \bot} \text{ \'elim}_{\neg}$$

A

Commande: absurd A.

Remarque

▶ la commande est utile même quand B n'est pas égal à False.

Logique du premier ordre en Coq

Notations:

- ▶ ∀ se note forall,
- ▶ ∃ se note exists

Règle intro \forall

$$\frac{\Gamma \vdash A}{\Gamma \vdash \forall x \, A} \text{ intro}_{\forall}$$

Commande: intros a.

Règle élim_∀

$$\frac{\Gamma \vdash \forall x \, A}{\Gamma \vdash A[t/x]} \, \text{\'elim}_{\forall}$$

Commande: apply н.

Remarque

▶ si H est de la forme \forall x y, Q y \rightarrow P x, il faut aider un peu Coq en donnant les substitutions à utiliser : apply (H a b) (ici x=a et y=b).

Règle intro∃

$$\frac{\Gamma \vdash A[t/x]}{\Gamma \vdash \exists x \, A} \text{ intro}_{\exists}$$

Commande: exists a.

Règle élim∃

$$\frac{\Gamma \vdash \exists x \, A \qquad \Gamma, A \vdash B}{\Gamma \vdash B} \text{ \'elim}_{\exists}$$

Commande: destruct H.

Remarque

▶ destruct H as [a H]. permet de nommer les objets générés.