

Faculté des Sciences Département de Mathématiques

Année: 2020-2021 Module: Analyse 1

Résumé: Limite des fonctions réelles

1. **INTRODUCTION**

Examinons le comportement de la fonction f définie par $f(x) = x^2 - x + 2$ pour des valeurs de x proches de 2. La table que voici reprend les valeurs de f(x) pour un certain nombre de valeurs de x proches de 2, mais différentes de 2.

x	f(x)	x	f(x)
1,0	2,000000	3,0	8,000000
1,5	2,750000	2,5	5,750000
1,8	3,440000	2,2	4,640000
1,9	3,710000	2,1	4,310000
1,95	3,852500	2,05	4,152500
1,99	3,970100	2,01	4,030100
1,995	3,985025	2,005	4,015025
1,999	3,997001	2,001	4,003001

Nous voyons que lorsque x est proche de 2 (de part et d'autre), les valeurs de f(x) sont proches de 4. En faite, il semble que nous puissions rendre les valeurs de f(x) arbitrairement proche de 4 en choisissant x suffisamment proche de 2. C'est le sens de l'expression " la limite de $f(x) = x^2 - x + 2$ quand x s'approche de 2 est 4". Cela s'écrit

$$\lim_{\substack{x \to 2 \\ x \neq 2}} (x^2 - x + 2) = 4.$$

2. **VOISINAGE D'UN POINT** $x_0 \in \mathbb{R} \cup \{\pm \infty\}$

Définition 2.1. Soit $x_0 \in \mathbb{R}$, on dit que $f: D_f \longrightarrow \mathbb{R}$ est définie au voisinage de x_0 sauf peut être en x_0 , s'il existe $\alpha > 0$ tel que:

 $]x_0 - \alpha; x_0 + \alpha[\subset D_f \text{ ou \'eventuellement }]x_0 - \alpha; x_0 + \alpha[\setminus \{x_0\} \subset D_f.$

Example 2.1. *Soit la fonction suivante:*

$$f: \mathbb{R} \setminus \{2\} \to \mathbb{R}$$
$$x \mapsto \frac{3x}{x-2}.$$

- (1) La fonction f est définie au voisinage de $x_0 = 4$ car: $\exists \alpha = 1 > 0$ tel que $]x_0 \alpha; x_0 + \alpha[=]4 1;4 + 1[=]3;5[$ un intervalle contenant 4 et $]3;5[\subset D_f]$.
- (2) La fonction f est définie au voisinage de $x_0 = 2$ car: $\exists \alpha = 2 > 0$ tel que $]x_0 \alpha; x_0 + \alpha[=]2 2; 2 + 2[=]0; 4[$ un intervalle contenant 2 et $]0; 4[\setminus \{2\} \subset D_f]$.

Définition 2.2. Soit $x_0 \in \mathbb{R} \cup \{\pm \infty\}$, on dit que $f : D_f \longrightarrow \mathbb{R}$ est définie au voisinage de $x_0 = +\infty$, s'il existe $\alpha \in \mathbb{R}$ tel que: $]\alpha; +\infty[\subset D_f.$

Example 2.2. *Soit la fonction suivante:*

$$f:]0; +\infty[\to \mathbb{R}$$

 $x \mapsto \ln x.$

La fonction f est définie au voisinage $de + \infty$ car: $\exists \alpha = 2 \in \mathbb{R}$ tel que: $]2; +\infty[\subset D_f]$.

Définition 2.3. Soit $x_0 \in \mathbb{R} \cup \{\pm \infty\}$, on dit que $f : D_f \longrightarrow \mathbb{R}$ est définie au voisinage de $x_0 = -\infty$, s'il existe $\lambda \in \mathbb{R}$: tel que $]-\infty; \lambda] \subset D_f$.

Example 2.3. *Soit la fonction suivante:*

$$f:]-\infty;1] \to \mathbb{R}_+$$

 $x \mapsto \sqrt{1-x}.$

La fonction f est définie au voisinage de $-\infty$ *car*: $\exists \alpha = -3 \in \mathbb{R}$ *tel que* $] + \infty; -3 [\subset D_f]$.

3. LIMITES FINIES EN x_0

Soit f est une fonction définie sur $I = [x_0 - x, x_0 + x]$ sauf peut être au point x_0 .

Définition 3.1. Le réel l est la limite de f(x) quand x tend vers x_0 si, à tout ε strictement positif on peut associer α strictement positif tel que $x \in \mathcal{D}$ et $|x - x_0| < \alpha$ implique $|f(x) - l| < \varepsilon$ c'est à dire:

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in \mathcal{D}, (|x - x_0| < \alpha \Rightarrow |f(x) - l| < \varepsilon)$$

On note: $\lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = \lim_{\substack{x \to x_0}} f(x) = l$.

Example 3.1. Montrer que $\lim_{x\to 3} \sqrt{x+1} = 2$.

Démonstration. *Soit* $\varepsilon > 0$; *on va chercher un réel* $\alpha > 0$ *vérifiant :*

$$|x-3| < \alpha \Rightarrow |f(x)-2| < \varepsilon$$
.

La fonction $f: x \mapsto \sqrt{x+1}$ est définie en x = 3. On a

$$f(x) - 2 = \sqrt{x+1} - 2 = \frac{x-3}{\sqrt{x+1} + 2}$$

donc

$$|f(x)-2| = \frac{|x-3|}{\sqrt{x+1}+2} < \frac{1}{2}|x-3|$$

 $car \sqrt{x+1} > 0$ pour tout $x \in \mathcal{D}$ tel que

$$|x-3| < 2\varepsilon \Rightarrow |f(x)-2| < \varepsilon.$$

Il suffit donc de choisir $\alpha = 2\varepsilon$. On a démontré que $\lim_{x \to 3} \sqrt{x+1} = 2$.

Example 3.2. Montrons que $\lim_{x \to 1} (x^3 + x) = 2$.

Démonstration. *Soit* $\varepsilon > 0$; *on va chercher un réel* $\alpha > 0$ *vérifiant :*

$$|x-1| < \alpha \Rightarrow |f(x)-2| < \varepsilon$$
.

On a $f(x) - 2 = x^3 + x - 2 = (x - 1)(x^2 + x + 2)$. Intuitivement on raisonne ainsi: pour rendre cette quantité $< \varepsilon$, on va jouer sur le facteur (x - 1). On cherche donc dans un premier temps à se débarrasser de $(x^2 + x + 2)$ par une majoration "grossière", en se plaçant dans un voisinage arbitraire de 1, par exmple $x \in]0,2[$.

Supposons $|x-1| < \alpha \le 1$. En particulier |x| < 2, et donc

$$|f(x)-2| \le |x-1| \cdot |x^2 + x + 2| \le |x-1| (|x^2| + |x| + 2)$$

 $\le (2^2 + 2 + 2) |x-1| = 8|x-1|.$

Et donc pour avoir $|f(x)-2| < \varepsilon$, il suffit d'avoir $|x-1| < \frac{\varepsilon}{8}$.

Finalement, on pose $\alpha = \min\left(1, \frac{\varepsilon}{8}\right)$ et on obtient le résultat souhaité.

Théorème 3.1. Si la fonction f de \mathcal{D} dans \mathbb{R} admet une limite en x_0 alors cette limite est unique.

4. LIMITE À DROITE, LIMITE À GAUCHE

l est limite de f(x) lorsque x tend vers x_0 par valeurs supérieurs se traduit par :

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in \mathcal{D}, (0 < x - x_0 < \alpha \Rightarrow |f(x) - l| < \varepsilon)$$

f est appelé " **limite à droite de** f **en** x_0 ". On note : $\lim_{x \to x_0^+} f(x) = l$.

On définit de la même façon la "**limite à gauche**" : $\lim_{x \to x_0^-} f(x) = l$.

Example 4.1. Soit $f: f(x) = \frac{|x|}{x}, x \in \mathbb{R}^*$

- $Si \ x > 0, f(x) = 1 : \lim_{x \to 0^+} f(x) = 1,$ $Si \ x < 0, f(x) = -1 : \lim_{x \to 0^-} f(x) = -1.$

Théorème 4.1. $\lim_{x \to x_0} f(x) = l$ si et seulement si $\lim_{x \to x_0^+} f(x) = l$ et $\lim_{x \to x_0^-} f(x) = l$

Example 4.2. E(x) n'a pas de limite lorsque x tend vers $n \in \mathbb{Z}$.

- $\lim_{x \to n^{-}} E(x) = n 1$,
- $\lim_{x\to n^+} E(x) = n$.

5. RELATION AVEC LES LIMITES DE SUITES

Le théorème suivant fait le lien entre les notions de limite pour une suite et pour une fonction.

Théorème 5.1. La fonction f de \mathcal{D} dans \mathbb{R} admet pour limite $l \in \mathbb{R}$ en x_0 si et seulement si pour toute suite réelle $(u_n)_n$ d'éléments de \mathcal{D} convergeant vers x_0 la suite de terme général $f(u_n)$ tend vers l.

Corollaire 5.1. Si on trouve une suite $(u_n)_n$ qui tend vers x_0 et pour laquelle la suite de terme général $f(u_n)$ diverge alors la fonction f n'a pas de limite en x_0 .

Remarque 5.1. On peut également prouver que la fonction f n'a pas de limite en x_0 en exhibant deux suites $(u_n)_n$ et $(v_n)_n$ convergeant toutes les deux vers x_0 mais pour lesquelles les suites de terme général $f(u_n)$ et $f(v_n)$ tendent vers deux réels distincts.

Example 5.1. La fonction $f(x) = \cos\left(\frac{1}{x}\right)$ n'a pas de limite en 0. En effet, on considère les deux suites:

$$u_n = \frac{1}{2n\pi} et \ v_n = \frac{1}{(2n+1)\pi}$$

On a bien:

$$\lim_{x \to +\infty} u_n = \lim_{x \to +\infty} v_n = 0.$$

Mais:

•
$$f(u_n) = \cos\left(\frac{1}{u_n}\right) = \cos(2n\pi) = 1$$
, $donc \lim_{x \to +\infty} f(u_n) = 1$, $c'est-\grave{a}-dire\left(f(u_n)\right)_n$ converge vers $+1$.

•
$$f(u_n) = \cos\left(\frac{1}{u_n}\right) = \cos(2n\pi) = 1$$
, $donc \lim_{x \to +\infty} f(u_n) = 1$, $c'est-\grave{a}$ - $dire\left(f(u_n)\right)_n$ converge $vers + 1$.
• $f(v_n) = \cos\left(\frac{1}{v_n}\right) = \cos((2n+1)\pi) = -1$, $donc \lim_{x \to +\infty} f(v_n) = -1$, $c'est-\grave{a}$ - $dire\left(f(u_n)\right)_n$ converge $vers -1$.

Donc:

$$\lim_{x \to +\infty} f(u_n) \neq \lim_{x \to +\infty} f(v_n).$$

Par conséquent:

$$\lim_{x \to 0} f(x) = \cos\left(\frac{1}{x}\right) \text{ n'existe pas.}$$

6. LIMITES INFINIES

Définition 6.1. On dit que f(x) tend vers $+\infty$ si x tend vers $x_0, x_0 \in \mathcal{D}$, si à tout nombre A > 0 donné on peut associer $\alpha > 0$ tel que : $x \in \mathcal{D}$ et $|x - x_0| < \alpha$ implique f(x) > A. En détaillant :

$$\forall A > 0, \exists \alpha > 0, \forall x \in \mathcal{D}, (|x - x_0| < \alpha \Longrightarrow f(x) > A)$$

On note: $\lim_{x \to x_0} f(x) = +\infty$.

De la même façon, si $x \in \mathcal{D}$ et $|x - x_0| < \alpha$ implique f(x) < -A on dit que f(x) tend vers $-\infty$ lorsque x tend *vers* x_0 *et on note* : $\lim_{x \to x_0} f(x) = -\infty$.

FIGURE 1. $\lim_{x \to a} f(x) = +\infty$.

Example 6.1. Montrer que si $\lim_{x \to x_0} f(x) = 0$ alors $\lim_{x \to x_0} \left| \frac{1}{f(x)} \right| = +\infty$.

Par hypothèse, si $x \in \mathcal{D} |x - x_0| < \alpha$ implique $|f(x)| < \varepsilon$ donc $\left| \frac{1}{f(x)} \right| > \frac{1}{\varepsilon}$. En choisissant $A = \frac{1}{\varepsilon}$ on en déduit que $\lim_{x \to x_0} \left| \frac{1}{f(x)} \right| = +\infty$

7. FORMES INDÉTERMINÉES

Il y a des situations où l'on ne peut rien dire sur les limites. Par exemple si $\lim_{x \to x_0} f(x) = +\infty$ et $\lim_{x \to x_0} g(x) = +\infty$ $-\infty$, alors on ne peut a priori rien dire sur la limite de f+g (cela dépend vraiment de f et de g). On raccourci cela en $(+\infty - \infty)$ est une forme indéterminée. Voici une liste de formes indéterminées:

$$-\infty + \infty$$
; $0 \times \infty$; $\frac{\infty}{\infty}$; $\frac{0}{0}$; 1^{∞} ; ∞^{0} ; ∞^{∞} .

Example 7.1. *On a*

(1) Pour déterminer la limite du rapport de deux polynômes en x pour $x \to \infty$ il avantageux de diviser le numérateur et le dénominateur par x^n , n étant le plus grand des degrés de ces deux polynômes

$$\lim_{x \to +\infty} \frac{x^2 - x^3}{x^2 - 3} = \lim_{x \to +\infty} \frac{x^3 \left(\frac{1}{x} - 1\right)}{x^2 \left(1 - \frac{3}{x^2}\right)} = -\infty.$$

On peut appliquer aux fractions contenant des quantités irrationnelles

$$\lim_{x \to +\infty} \frac{x^2}{1 + x\sqrt{x}} = \lim_{x \to +\infty} \frac{x^2}{x^{3/2} (\frac{1}{x^{3/2}} + 1)} = +\infty$$

(2) Si P(x) et Q(x) sont deux polynômes et P(a) = Q(a) = 0, il est recommandé de simplifier la fraction $\frac{P(x)}{Q(x)} par x - a \text{ autant de fois qu'il le faudra}$

$$\lim_{x \to 2} \frac{x^2 - 2x}{x^2 - 4x + 4} = \lim_{x \to 2} \frac{x(x - 2)}{(x - 2)^2} = \infty$$

(3) Les expressions qui contiennent des irrationnalité peuvent être ramenées dans des nombreux cas à des expressions rationnelles par l'introduction d'une nouvelle variable

$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{\sqrt[3]{1+x} - 1} = \lim_{x \to 0} \frac{(1+x)^{\frac{1}{m-2}} - 1}{(1+x)^{\frac{1}{n-3}} - 1}$$

posons $1 + x = y^{6 = ppcm(2,3)}$, alors $y = (1 + x)^{\frac{1}{6 = ppcm(2,3)}}$ lorsque $x \to 0$, $y \to 1$ donc

$$\lim_{x \to 0} \frac{(1+x)^{1/2} - 1}{(1+x)^{1/3} - 1} = \lim_{y \to 1} \frac{y^3 - 1}{y^2 - 1} = \lim_{y \to 1} \frac{(y-1)(y^2 + y + 1)}{(y-1)(y+1)} = \frac{3}{2}$$

(4) Forme indéterminée de la forme 1^{∞} :

Si f et g deux fonctions définies au voisinage $v(x_0)$ et $\lim_{x \to x_0} f(x)^{g(x)} = 1^{\infty}$. On écrit dans ce cas, $\lim_{x \to x_0} f(x)^{g(x)}$ sous la forme:

$$\lim_{x \to x_0} f(x)^{g(x)} = e^{\lim_{x \to x_0} g(x) \times (f(x) - 1)},$$

où x_0 fini ou infini.

$$\lim_{x \to +\infty} \left(1 + \frac{2}{x+1} \right)^{x+1} = 1^{\infty}.$$

Posons $f(x) = 1 + \frac{2}{x+1}$ et g(x) = x+1, alors

$$\lim_{x \to +\infty} f(x)^{g(x)} = e^{\lim_{x \to +\infty} g(x) \times (f(x) - 1)}$$

$$= e^{\lim_{x \to +\infty} (x+1) \times (1 + \frac{2}{x+1} - 1)}$$

$$= e^{2}.$$

* * * * * * * * * * * * * * * *