# Introduction to Causal Machine Learning

Anthony Strittmatter

#### Lecturer

### **Anthony Strittmatter**

**Research Interests:** Business, Labour, and Health Economics, Program Evaluation, Computational Data Analytics

#### **Positions:**

| Since 2023 | Full Professor for Applied Econometrics at UniDi-   |
|------------|-----------------------------------------------------|
|            | stance Suisse in Brig/Valais                        |
| 2022-2024  | Senior Economist at Amazon in London                |
| 2020-2023  | Institut Polytechnique/CREST in Paris               |
| 2014-2020  | University of St.Gallen, with research visits at UC |
|            | Berkeley, Stanford University, and LMU Munich       |
| 2009-2016  | Albert-Ludwig University of Freiburg                |

- ► Email: anthony.strittmatter@unidistance.ch
- ► Webpage: www.anthonystrittmatter.com

### **Causal ML Lectures**

- ► École Polytechnique Paris, France, 2024
- ▶ University of Basel, Switzerland 2024, 2022, 2021, 2020
- ► ENSAE Paris, France, 2024, 2023, 2022, 2021
- University of Lucerne, Switzerland, 2022, 2021
- ▶ Johannesburg University, South Africa, 2022
- Central Bank of Estonia, Tallin, 2021
- University of Würzburg, Germany, 2021
- University of Duisburg-Essen, Germany, 2021
- ► CESifo Munich, Germany, 2019
- University of Hohenheim, Germany, 2019
- **ZEW Mannheim**, Germany, 2020

### **Schedule**

|      | Lecture 1   | Lecture 2   | Lecture 3   | Lecture 4   |
|------|-------------|-------------|-------------|-------------|
| Date | Monday      | Tuesday     | Wednesday   | Thursday    |
|      | August 19   | August 20   | August 21   | August 22   |
| Time | 10:15-12:00 | 10:15-12:00 | 10:15-12:00 | 10:15-12:00 |
|      | 13:15-15:00 | 13:15-15:00 | 13:15-15:00 | 13:15-15:00 |
| Room | EC3:108     | EC3:108     | EC3:108     | EC3:108     |

### **Course Outline**

- Lecture 1: Introduction to Statistical Learning
  - Prediction vs. Causal Analysis
  - ▶ Regularized Regression: Lasso, Ridge, Elastic Net
- ► Lecture 2: Non-parametric Supervised Machine Learning
  - ► Trees and Random Forests
  - Deep Learning
- ► Lecture 3: High-Dimensional Confounding
  - Double Selection Procedure
  - Double Machine Learning
- ► Lecture 4: Effect Heterogeneity and Policy Learning
  - Causal Forest
  - Optimal Policy Learning
  - ► Bandit Algorithms

### **PC Labs**

- ▶ PC labs are an integral component of this course, providing hands-on experience with machine learning tools and techniques.
- All course materials are available on JupyterHub, accessible via your personalized link: http://54.196.158.125/user/<email address>
- Notebooks eliminate the need for software installation and ensure data is correctly organized for each session.
- ► For your own research projects, we recommend installing R and RStudio on your local PC.

# **Grading: Research Proposal**

- ► Individual Home Assignment
- ▶ Deadline for submission: September 29, 2024
- ► Grades: Pass/Fail

### **General**

- ► Feel free to interrupt me at any time with questions.
- Let me know if I'm too slow or too fast. Ask me to repeat material if something was not clear.
- ➤ You can also send me an email with questions: anthony.strittmatter@unidistance.ch
- ▶ Suggestions for course improvement are welcome.
- Please interact with your fellow students and build learning groups.

### References

- Mullainathan and Spiess (2017): "Machine Learning: An Applied Econometric Approach", Journal of Economic Perspectives, 31 (2), pp. 87-106, download.
- ► Athey (2017): "Beyond Prediction: Using Big Data for Policy Problems", Science, 355 (6324), pp. 483-485, download.

# What is Machine Learning (ML)?

- ▶ ML (or statistical learning) methods have existed for decades.
- Currently, "Machine Learning"s a buzzword with no clear definition.
- Most people think of ML as computationally intensive methods that make data-driven modeling decisions and/or can deal with large data amounts.
- ► However, relevant textbooks consider even OLS/Logit as statistical learning tools.

# **Purpose of Machine Learning**

Consider the structural model

$$Y = f(X) + \epsilon = X\beta + \epsilon,$$

with  $E[\epsilon] = 0$ .

- Causal analysis aims to estimate  $\hat{\beta}$ , with  $plim(\hat{\beta}) = \beta$ .
- Machine learning aims to predict Y.
- ► There is a clear link between causal analysis and machine learning, because

$$\hat{Y} = \hat{f}(X) = X\hat{\beta}$$

is a potential predictor for Y.

Parameter consistency does not have the highest priority when it comes to predictions.

# Potential Advantages and Disadvantages of ML

- ML methods can be very powerful in predicting Y, even when  $\hat{\beta}$  is biased.
- ► ML methods can incorporate many (or even high-dimensional) covariates X conveniently.
- ▶ ML methods can model  $\hat{f}(\cdot)$  flexibly and data-driven.
- ▶ Main disadvantage: ML is a black-box approach, and we lose the interpretability of  $\hat{f}(\cdot)$  or  $\hat{\beta}$ .

# **Prediction vs. Causality**



### Causal vs. Predictive Questions

#### **Predictive Questions:**

- ► How will the oil price change tomorrow (forecasting)?
- ► How high is the current unemployment rate (nowcasting)?
- Which adolescents have a high probability of becoming addicted to drugs (policy prediction)?

#### **Causal Questions:**

- What is the effect of a tweet by President Donald Trump on oil prices?
- How does inflation affect the unemployment rate?
- Can prevention programs reduce the probability of drug addiction among high-risk youths?

# **Assessing the Model Accuracy**

### **Causal Analysis:**

- ightharpoonup True  $\beta$  is unobservable.
- ► Assess the model with asymptotic properties

$$\sqrt{N}(\hat{\beta} - \beta) \stackrel{d}{\rightarrow} N(0, \sigma^2).$$

Finite sample biases are mostly neglected.

# **Assessing the Model Accuracy**

#### **Prediction:**

- ▶ We observe *Y* for each unit (e.g., individual).
- We can assess the model accuracy directly in the sample of our analysis, for example, using the mean-squared-error (MSE)

$$\frac{1}{N} \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2.$$

MSE accounts for finite sample biases.

### **Example: Prediction of Used Car Prices**

- ► We have access to web-scraped data from the online advertisement platform *myLemons*.
- We want to predict asking prices of used cars based on observable characteristics.
- ► We observe around 40 covariates about car brand, mileage, age, emissions, maintenance certificate, seller type, guarantee, etc. (including several non-linear and interaction terms)

# In-Sample MSE

- Partition data into training and test samples
- ▶ In the training sample, we estimate the empirical model

$$Y_{tr} = \hat{f}_{tr}(X_{tr}) + \hat{\epsilon}_{tr} = X_{tr}\hat{\beta}_{tr} + \hat{\epsilon}_{tr}$$

In the training sample, we predict the fitted values

$$\hat{Y}_{tr} = \hat{f}_{tr}(X_{tr}) = X_{tr}\hat{\beta}_{tr}$$

and calculate the MSE

$$\widehat{\mathit{MSE}}_{tr} = \frac{1}{\mathit{N}_{tr}} \sum_{i=1}^{\mathit{N}_{tr}} (Y_{i,tr} - \widehat{Y}_{i,tr})^2.$$

# **MSE** in Training Sample



# **Predicted Car Prices in Training Sample**



| Number of Covariates | 1      | 10    | 40    |
|----------------------|--------|-------|-------|
| MSE                  | 46.948 | 9.819 | 4.866 |

# **Out-of-Sample MSE**

In the training sample, we estimate the empirical model

$$Y_{tr} = \hat{f}_{tr}(X_{tr}) + \hat{\epsilon}_{tr} = X_{tr}\hat{\beta}_{tr} + \hat{\epsilon}_{tr}$$

▶ In the test sample, we predict the fitted values

$$\hat{Y}_{te} = \hat{f}_{tr}(X_{te}) = X_{te}\hat{\beta}_{tr}$$

and calculate the MSE

$$\widehat{MSE}_{te} = \frac{1}{N_{te}} \sum_{i=1}^{N_{te}} (Y_{i,te} - \widehat{Y}_{i,te})^2.$$

# **MSE** in Test Sample



# **Predicted Car Prices in Test Sample**



| Number of Covariates | 1      | 10    | 40     |
|----------------------|--------|-------|--------|
| MSE                  | 45.742 | 8.222 | 46.499 |

### **Bias-Variance Trade-Off**

When we assess the model for one randomly drawn individual from the test sample with fixed characteristics  $x_{te}$ , then we can decompose the MSE to

$$\begin{split} MSE_{te} = & E[(Y_{te} - \widehat{Y}_{te})^2] \\ = & E[(f(x_{te}) + \epsilon_{te} - \widehat{f}_{tr}(x_{te}))^2] \\ = & \underbrace{E[(f(x_{te}) - \widehat{f}_{tr}(x_{te}))^2] + Var(\epsilon_{te})}_{\text{Reducible}} \\ = & \underbrace{E[f(x_{te}) - \widehat{f}_{tr}(x_{te})]^2}_{\text{Squared-Bias}} + \underbrace{Var(\widehat{f}_{tr}(x_{te}))}_{\text{Variance}} + Var(\epsilon_{te}) \end{split}$$

▶ For i.i.d. data,  $\hat{f}_{tr}(\cdot)$  and  $\epsilon_{te}$  are independent of each other.

### Simulation of Bias-Variance Trade-Off



- Only the first ten covariates have an impact on car prices in the simulation.
- ▶ Horizontal dashed line is the simulated noise  $Var(\epsilon_{te})$ .

©Strittmatter Machine Learning Course 25/42

### Lasso Example

$$\arg\min_{\beta} \left\{ \sum_{i=1}^{N} \left( Y_i - \beta_0 - \sum_{j=1}^{p} X_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

|                  | OLS    | Lasso  |
|------------------|--------|--------|
| Intercept        | 21.246 | 22.776 |
| diesel           | 2.075  |        |
| other_car_owner  | 0.730  |        |
| pm_green         | 1.635  |        |
| private_seller   | 6.100  | 0.076  |
| guarantee        | -2.440 | -0.437 |
| inspection       | -0.813 |        |
| maintenance_cert | 1.481  |        |
| mileage          | -0.049 | -0.031 |
| age_car_years    | -1.291 | -1.012 |
| $R^2$ training   | 0.655  | 0.543  |
| $R^2$ test       | 0.606  | 0.611  |

# **Selection of Optimal Penalty Parameter**

#### Leave-One-Out Cross-Validation



Source: James et al. (2013), p. 179

# **Selection of Optimal Penalty Parameter**

### k-fold Cross-Validation (CV) Algorithm



Source: James et al. (2013), p. 181

### **Cross-Validated MSE**



# Stability of the Lasso Model

|                  | Lasso 1 | Lasso 2 | Lasso 3 | Lasso 4 | Lasso 5 |
|------------------|---------|---------|---------|---------|---------|
| Intercept        | 22.776  | 25.947  | 24.937  | 27.309  | 25.116  |
| diesel           |         |         | 2.387   |         | 0.886   |
| other_car_owner  |         | -1.257  | 0.393   |         |         |
| pm_green         |         | 2.871   |         |         |         |
| private_seller   | 0.076   | 5.094   | •       | -1.037  |         |
| guarantee        | -0.437  | 1.677   | 15.939  | •       | •       |
| inspection       | •       | -0.666  | -0.374  | •       | •       |
| maintenance_cert |         | -2.579  | -0.868  |         |         |
| mileage          | -0.031  | -0.037  | -0.041  | -0.069  | -0.062  |
| age_car_years    | -1.012  | -1.347  | -1.416  | -0.874  | -1.115  |

 $\rightarrow$  ML is a black-box approach

<sup>→</sup> We do not learn the "trueßtructural model from ML

### **Stability of the Lasso Predictions**

### Correlation of Predicted Car Prices in Test Sample:

|         | Lasso 1 | Lasso 2 | Lasso 3 | Lasso 4 |
|---------|---------|---------|---------|---------|
| Lasso 2 | 0.94    |         |         |         |
| Lasso 3 | 0.85    | 0.81    |         |         |
| Lasso 4 | 0.97    | 0.91    | 0.85    |         |
| Lasso 5 | 0.99    | 0.94    | 0.87    | 0.99    |
|         |         |         |         |         |

### When could Predictions be Useful?

### Tasks with a prediction purpose:

- ▶ Predict stock or commodity prices using Twitter data.
- Nowcasting unemployment rate or GDP using Google search queries.
- Pre-screening of job applications.
- Consumer demand (shipping before the order occurs).
- Movie recommendations on Netflix.
- ► Handwriting, image, face, or voice recognition.

### **Examples of Business and Economic Studies**

#### **Prediction Tasks:**

- ► Chandler, Levitt, and List (2011) predict shootings among high-risk youth to target mentoring interventions.
- Kleinberg, et al. (2018) predict the crime probability of defendants released from investigative custody to improve judge decisions.

### **Pre-Processing Unstructured Data:**

- ► Glaeser et al. (2016) use images from Google Street View to measure block-level income in New York City and Boston.
- ► Kang et al. (2013) use restaurant reviews on Yelp.com to predict the outcome of hygiene inspections.
- ► Kogan et al. (2009) predict volatility of firms from market-risk disclosure texts (annual 10-K forms).

### Predictions vs. Causal Inference

- Outcome (e.g., earnings): Y
- ▶ Binary Treatment (e.g., participation in training program):  $D \in \{0,1\}$
- Potential Outcome:
  - $\triangleright$  Y(1) potential earnings under participation
  - $\triangleright$  Y(0) potential earnings under non-participation
  - → Only one potential earnings can be observed
- ▶ Causal effect:  $\delta = Y(1) Y(0)$
- ightarrow Predictions have the observable estimation target  $\widehat{Y}$
- $\rightarrow$  Causal inference has the (partly) unobservable estimation target  $\widehat{\delta}$

### **Training of ML Algorithms**

Out-of-Sample Mean-Squared-Error (MSE):

$$MSE_{\hat{\delta}} = E\left[(\hat{\delta} - \delta)^2\right] = \underbrace{E\left[(\hat{\delta} - E[\hat{\delta}])^2\right]}_{\text{Variance}} + \underbrace{E[\hat{\delta} - \delta]^2}_{\text{Squared Bias}}$$

 $ightarrow \delta$  is unobservable

# Research Design



# Causal Machine Learning (CML) Designs



 $\Rightarrow$  Knaus, Lechner, Strittmatter (2018) provide a comparison of all designs.

# Potentials of Causal Machine Learning (CML)

### Four potential applications of CML:

- Account for (very) many instruments in IV or Heckit approach (prediction problem, issues with inference).
  References:
  - ▶ Belloni, Chen, Chernozhukov, and Hansen (2012)
  - Hansen and Kozbur (2014)
- 2. Account for confounders, e.g., in matching, IV, or difference-in-difference approaches:
  - ► ML enables the incorporation of (very) many covariates which can make the exclusion restriction more credible.
  - ► Some ML approaches make little functional form assumptions.

#### Reference:

► Chernozhukov et al. (2017)

# Potentials of Causal Machine Learning (CML)

### 3. Heterogeneous effects:

- Principled approach makes it less likely to overlook important heterogeneity.
- ▶ Problems: Issues with interpretability and works only for the low-dimensional case.

#### References:

- ► Wager and Athey (2018)
- Chernozhukov, Demirer, Duflo, and Fernéndez-Val (2018)
- 4. Optimal policy rules (e.g., Bandits):
  - Focus on the (discrete) treatment decision instead on the effect size.

#### Reference:

► Athey and Wager (2019)

# **Limitations of Causal Machine Learning (CML)**

- ML algorithms cannot distinguish between causation and correlation.
  - $\rightarrow\,$  CML will not select the relevant causal parameters automatically.
  - $\rightarrow$  We have to provide some structure to the CML algorithm.
- CML can estimate causal effects only for a few (usually only one) endogenous variables.
  - → We will not obtain the (complete) structural model.
- ► Identifying assumptions do not change, no matter if we use ML or conventional methods.
- We should resist the temptation to interpret prediction models in a causal way.

# **Applications of CML Methods**

- Knaus (2018) estimates the effects of musical practice on student's skills and selects confounders with ML methods.
- ▶ Davis and Heller (2017) investigate the effects of summer jobs on the probability of committing a violent crime.
- ► Taddy et al. (2016) investigate the heterogeneous effects of A/B-experiments in online-auctions (eBay) on customer responses (experimental study).
- Bertrand et al. (2017) and Knaus, Lechner, and Strittmatter (2020) estimate heterogeneous employment effects of training programmes for unemployed persons.
- Ascarza (2018) targets marketing campaigns.

# Supervised vs. Unsupervised Machine Learning

### **Supervised Machine Learning:**

- We observe data on Y and X and want to learn the mapping  $\widehat{Y} = \widehat{f}(X)$
- ▶ Classification when  $\hat{Y}$  is discrete, regression when  $\hat{Y}$  is continuous

### **Unsupervised Machine Learning:**

- ► We observe only data on *X* and want to learn something about its structure
- Clustering: Partition data into homogeneous groups based on X

