Ayesha Binte Mostofa 1800562

August 31, 2022

Introduction

2 Properties

3 A problem solved by dp

Introduction

- Algorithm technique that systematically records the answers to sub-problems and reuses them those recorded result
- A simple example:

Calculating the n-th Fibonacci number Fib(n) = Fib(n1) + Fib(n2)

• The method was developed by Richard Bellman in the 1950s

- The method was developed by Richard Bellman in the 1950s
- It breaks down a complicated problem into simpler sub-problems in a recursive manner.

- The method was developed by Richard Bellman in the 1950s
- It breaks down a complicated problem into simpler sub-problems in a recursive manner.
- If optimal solutions can be found recursively for the sub-problems, then it is said to have optimal substructure.

Properties

Properties of Dynamic Programming

Such problems exhibits following two properties:

- Optimal Substructure
- Overlapping sub-problems

Optimal Substructure

A problem is said to have optimal substructure if an optimal solution can be constructed from optimal solutions of its sub-problems. e.g. in Floyd-Warshall algorithm, travelling from node i to j using node k, $\operatorname{dist}[i][j] = \operatorname{dist}[i][k] + \operatorname{dist}[k][j]$

Overlapping sub-problem

A problem has overlapping sub-problems if finding its solution involves solving the same sub-problem multiple times.

Example: Calculating n-th Fibonacci number F(n)

Example of Overlapping sub-problems

Figure: Overlapping Sub-problems in determination of Fibonacci series

A problem solved by dp

Binomial Coefficient a.k.a C(n,r)

problem statement:ways to select r objects from n objects regardless of the ordering

Binomial Coefficient a.k.a C(n,r)

Naive approach : calculating $\frac{n!}{r!(nr)!}$

- Problem: overflow will be caused calculating factorials, unsigned long long wouldn't be enough. May be BigInteger would do but not efficient.
- Solution: using dynamic programming.

C(n,r) having dynamic programming properties

Optimal Substructure: C(n,r) can be recursively calculated using the formula,

$$C(n,r) = C(n1,r1) + C(n1,r)$$

with base cases, $C(n,0) = C(n,n) = 1$ and $C(n,1) = n$

1805062,1805082

C(n,r) having dynamic programming properties

Overlapping Sub-problems: let n=5, r=2

Algorithm List		
Algorithm name	Time Complexity	Space Complexity
BFS	O(V + E)	O (V)
DFS	O(V + E)	O (V)
Dijkstra	$O\left(V + E \log V \right)$	O(V + E)
Bellman Ford	O (V E)	O (V)
Floyd-Warshall	$O(V ^3)$	$O(V ^2)$
Edmonds-Karp	$O(V E ^2)$	O(V + E)