Support Vector machine Linear Classification

Professor Abdellatif El Afia

Plan

- Support Vector Classification For linearly separable (Hard margin SVC)
- Linear C- Support Vector Classification(Soft margin SVC) (C SVC)
- Bounded C Support Vector Classification(BC SVC)
- Least Squares C Support Vector Classification(LSC SVC)
- Proximal C Support Vector Classification(PC SVC)
- v-Soft margin SVC(v SVC)

Support Vector Classification For linearly separable

Problem with two linearly separable classes

- Several separators exist to separate classes; which one to choose?
- To minimize sensitivity to noise, the Separator should be as far away from the data the relatives of each class

Hard margin SVC

- Separator Equation : $y = w^T x + b$ (Straight line in a two-dimensional space)
- If $\{(x_i, y_i)_{i=1}^n$ is the data set and $y_i \in \{1, -1\}$ is the class of each, one should have:

$$y_i(w^Tx_i + b) \ge 1 \quad \forall i$$

while having an optimal distance between x_i and the separator

Δ

Hard margin SVC

• Distance from one point to the Separator: $D(x) = \frac{|w^T x + b|}{\|w\|}$

$$D(x) = \frac{|w^T x + b|}{\|w\|}$$

Maximum margin before reaching the boundaries of both classes ($|w^Tx + b| = 1$): $m = \frac{1}{\|w\|}$

$$m = \frac{1}{\|w\|}$$

• To maximize m is to minimize ||w|| while preserving the classification power:

$$SVC: \begin{cases} Min & \frac{1}{2} ||w||^2 \\ s.t & y_i(w^T x_i + b) \ge 1 \ i = 1,...,n \\ & w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

Max m
$$\leftrightarrow$$
 Min $||w|| = \sqrt{w^T w}$; m = $\frac{1}{||w||}$

•
$$SVC$$
:
$$\begin{cases} Min & \frac{1}{2} ||w||^2 \\ s.t & y_i(w^Tx_i + b) \ge 1 \ i = 1,...,n \\ w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

•
$$(SVC)_1$$
:
$$\begin{cases} Min & ||w|| \\ s.t & y_i(w^Tx_i + b) \ge 1 \ i = 1,...,n \\ w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

Hard margin SVC

SVC:
$$\begin{cases} Min & \frac{1}{2} ||w||^2 \\ s.t & y_i(w^T x_i + b) \ge 1 \ i = 1,...,n \\ & w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

Theorem:

For a linearly seprable problem, there exists a solution unique (w^*, b^*) to optimization problem SVC and the solution satisfies:

- $w^* \neq 0$
- $\exists j \in \{i \in \{1, ..., n\} | y_i = 1\}$ such that $(w^*)^T x_j + b^* = 1$ $\exists k \in \{i \in \{1, ..., n\} | y_i = -1\}$ such that $(w^*)^T x_k + b^* = -1$

Hard margin SVC: Algorithm

- Input: training set : $\{(x_i, y_i)_{i=1}^n \text{ where } x_i \in \mathbb{R}^d, y_i \in \{1, -1\}$
- Contruct and solve the optimization problem SVC obtaining (w^*, b^*)

Primal SVC:
$$\begin{cases} Min & \frac{1}{2}||w||^2 \\ s.t & y_i(w^Tx_i + b) \ge 1 \ i = 1,...,n \\ & w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

• Contruit the separating hyperplane $(w^*)^T x + b^* = 0$ and the decision function is

$$h(x) = sign((w^*)^T x + b^*)$$

Comput the Loss function

The SVC approach uses Lagrange multipliers for a simpler solution

$$L_H(w, b, \lambda) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \lambda_i (y_i(w^T x_i + b) - 1)$$

According to chapter 1, the dual problem should have a form of

$$Dual\ SVC \begin{cases} Max & g(\lambda) = \inf_{w \in \mathbb{R}^d, b \in \mathbb{R}} L_H(w, b, \lambda) \\ s.t & \lambda_i \ge 0 \ i = 1, ..., n \end{cases}$$

As $L_H(w, b, \lambda)$ is strictly convex quadratic function of w, its minimal value is achieved at w satisfying $\nabla_{w,b}L_H(w,b,\lambda) = 0$, then

•
$$\nabla_w L_H(w, b, \lambda) = w - \sum_{i=1}^n \lambda_i y_i x_i = 0 \Longrightarrow w = \sum_{i=1}^n \lambda_i y_i x_i$$

•
$$\nabla_b L_H(w, b, \lambda) = \sum_{i=1}^n \lambda_i y_i = 0$$

•
$$(\lambda \ge 0)$$

•
$$g(\lambda) = \inf_{w \in \mathbb{R}^d, b \in \mathbb{R}} L_H(w, b, \lambda)$$

•
$$L_H(w,b,\lambda) = \frac{1}{2} ||w||^2 - \sum_{i=1}^n \lambda_i (y_i(w^T x_i + b) - 1)$$

•
$$w = \sum_{i=1}^{n} \lambda_i y_i x_i$$

•
$$\rightarrow L_H(w, b, \lambda) = \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_j \lambda_i y_j y_i (x_j^T x_i) - b \sum_{i=1}^n \lambda_i y_i$$

One has by substitution in $L_H(w, b, \lambda)$:

$$\bullet \implies \inf_{w \in \mathbb{R}^d, b \in \mathbb{R}} L_H(w, b, \lambda) = \begin{cases} \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_j \lambda_i y_j y_i (x_j^T x_i) & \text{if } \sum_{i=1}^n \lambda_i y_i = 0 \\ -\infty & \text{if } \sum_{i=1}^n \lambda_i y_i \neq 0 \end{cases}$$

$$D - SVC: \begin{cases} Max & g(\lambda) = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j \lambda_i y_j y_i (x_j^T x_i) \\ \sum_{i=1}^{n} \lambda_i y_i = 0 \\ \lambda_i \ge 0 \ i = 1, ..., n \end{cases}$$

Theorem:

For separable problems,

- The DC SVC poblem is a Convex Quadratic Programming and has a solution λ^*
- For any solution $\lambda^* = (\lambda_1^*, ..., \lambda_n^*)$, there must be a nonzero component λ_j^* and the unique solution to the primal SVC can be obtained in the following way

$$w^* = \sum_{i=1}^n \lambda_i^* y_i x_i \quad and \quad b^* = y_j - \sum_{i=1}^n \lambda_i^* y_i (x_j^T x_i)$$

Geometric interpretation

- Only the points closest to the separation surface affect its definition
- There are theoretical limits for the misclassification of new data
 - The larger the margin, the smaller the limit
 - The smaller the number of SVC, the smaller the limit

Hard margin SVC: Dual-Algorithm

- Input: training set : $S = \{(x_i, y_i)_{i=1}^n \text{ where } x_i \in \mathbb{R}^d, y_i \in \{1, -1\}$
- Contruct and solve the optimzation problem Dual $-\mathit{SVC}$ obtaining $\lambda^*=(\lambda_1^*,...,\lambda_n^*)$

$$D - SVC: \begin{cases} Max & L_H(\lambda) = \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_j \lambda_i y_j y_i (x_j^T x_i) \\ \sum_{i=1}^n \lambda_i y_i = 0 \\ \lambda_i \ge 0 \ i = 1, ..., n \end{cases}$$

• Choose a possitive component of λ^* , λ_i^* , and Compute

$$w^* = \sum_{i=1}^n \lambda_i^* y_i x_i$$
 and $b^* = y_i - \sum_{i=1}^n \lambda_i^* y_i (x_j^T x_i) \to h_{w^*,b^*}(x) = (w^*)^T x + b^*$

• Contruit the separating hyperplane $(w^*)^T x + b^*$ and the decision function is

$$h_S(x) = sign\left(h_{w^*,b^*}(x)\right) \to L_S(h_S) = \frac{1}{n} \sum_{i=1}^n 1_{\{h_{w^*,b^*}(x_i) \neq y_i\}}$$

Soft margin SVC(C - SVC)

- A margin of error can be introduced ξ_i for classification
- ξ_i are variables that give "soft" to optimal margins

$$\begin{cases} w^T x_i + b \ge 1 - \xi_i \operatorname{si} y_i = 1 \\ w^T x_i + b \le -1 + \xi_i \operatorname{si} y_i = -1 \\ \xi_i \ge 0 \ \forall i \end{cases}$$

• The optimization problem becomes

$$\begin{array}{c}
w^{T}x + b = 1 \\
& + b = -1
\end{array}$$

$$\begin{array}{c}
w^{T}x + b = 0 \\
+ b = -1
\end{array}$$

$$\begin{array}{c}
Min \\
C - SVC \\
s. t \\
y_{i}(w^{T}x_{i} + b) \ge 1 - \xi_{i}, i = 1, ..., n \\
\xi_{i} \ge 0, w \in \mathbb{R}^{d}, b \in \mathbb{R}
\end{array}$$

$$\oint Min \qquad f(w,\xi) = (f_1(w), f_2(\xi))
s.t \qquad y_i(w^T x_i + b) \ge 1 - \xi_i, i = 1,..., n
\xi_i \ge 0, w \in \mathbb{R}^d, b \in \mathbb{R}$$

$$\oint (w,\xi) \approx \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

•
$$f(w, \xi) \approx \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

$$\bullet \ C - SVC \begin{cases} Min & \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i \\ s. \ t & y_i(w^T x_i + b) \geq 1 - \xi_i, i = 1, ..., n \\ \xi_i \geq 0, w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

Soft margin SVC(C - SVC)

$$C - SVC \begin{cases} Min & \frac{1}{2} ||w||^2 + C \sum_{i=1}^{n} \xi_i \\ s.t & y_i(w^T x_i + b) \ge 1 - \xi_i, i = 1,..., n \\ & \xi_i \ge 0, w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

- There exists solutions to the C SVC problem w.r.t (w, b)
- The solution w^* of the C SVC problem w.r.t w is unique
- The solution set to the C SVC problem w.r.t b is a bounded close interval $[b_1, b_2]$ where $b_1 \le b_2$.

Soft margin SVC(C - SVC): Algorithm

- Input: training set : $\{(x_i, y_i)_{i=1}^n \text{ where } x_i \in \mathbb{R}^d, y_i \in \{1, -1\}$
- Choose an approriate penalty parameter C > 0
- Contruct and solve the optimization problem C SVC obtaining (w^*, b^*, ξ^*)

$$Primal: C - SVC \begin{cases} Min & \frac{1}{2} ||w||^2 + C \sum_{i=1}^{n} \xi_i \\ s.t & y_i(w^T x_i + b) \ge 1 - \xi_i, i = 1,..., n \\ \xi_i \ge 0, i = 1,..., n, w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

• Contruit the separating hyperplane $(w^*)^T x + b^*$ and the decision function is

$$h(x) = sign((w^*)^T x + b^*)$$

Multi objectif optimization problem

$$\bullet \ C - SVC \begin{cases} Min & f = (f_1, f_2) \\ s.t & y_i(w^T x_i + b) \ge 1 - \xi_i, i = 1, ..., n \\ \xi_i \ge 0, w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

•
$$f_1 = m, f_2 = noise = \sum_{i=1}^{n} \xi_i$$

- Agrregation approach: $f = p_1 f_1 + p_2 f_2$
- $\frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \to p_2 = C$

$$\bullet \ C - SVC \begin{cases} Min & f = (f_1, f_2) \\ s.t & y_i(w^Tx_i + b) \ge 1 - \xi_i, i = 1, ..., n \\ \xi_i \ge 0, w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

- $f_1 = marge = \frac{1}{2} ||w||^2$, $f_2 = noise = \sum_{i=1}^{n} \xi_i$
- Multiobjectif problem optimization
- Agregation approach: $f = C_1 f_1 + C_2 f_2$
- *In Soft-SVC*: $C_1 = 1$, $C_2 = C$

$$\bullet \ C - SVC \begin{cases} Min & \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i \\ s.t & y_i(w^T x_i + b) \ge 1 - \xi_i, i = 1, ..., n \\ \xi_i \ge 0, w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

Soft-margin C - SVC: Dual form

The C-SVC approach uses Lagrange multipliers for a simpler solution

$$L_{Soft}(w,\xi,b,\lambda,\mu) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \lambda_i (y_i(w^T x_i + b) - 1 + \xi_i) - \sum_{i=1}^n \mu_i \xi_i$$

$$= \frac{1}{2} ||w||^2 - \sum_{i=1}^n \lambda_i (y_i(w^T x_i + b) - 1)) - \sum_{i=1}^n (-C + \lambda_i + \mu_i) \xi_i$$

According to chapter 1, the dual problem should have a form of

$$Dual\ C - SVC \begin{cases} Max & g(\lambda, \mu) = \inf_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n, b \in \mathbb{R}} L_{Soft}(w, \xi, b, \lambda, \mu) \\ s.t & \lambda_i \ge 0, \mu_i \ge 0 \quad i = 1, ..., n \end{cases}$$

As $L_{Soft}(w, \xi, b, \lambda, \mu)$ is strictly convex quadratic function of w, its minimal value is achieved at w satisfying

$$\nabla_{w,\xi,b}L_{soft}(w,\xi,b,\lambda,\mu)=0$$

- $\inf_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n, b \in \mathbb{R}} L_{Soft}(w, \xi, b, \lambda, \mu)$
- $L_{Soft}(w, \xi, b, \lambda, \mu) = \frac{1}{2} ||w||^2 \sum_{i=1}^n \lambda_i (y_i(w^T x_i + b) 1)) \sum_{i=1}^n (-C + \lambda_i + \mu_i) \xi_i$
- $\nabla_w L_{Soft}(w, \xi, b, \lambda, \mu) = w \sum_{i=1}^n \lambda_i y_i x_i = 0 \Longrightarrow w = \sum_{i=1}^n \lambda_i y_i x_i$
- $\nabla_{\xi} L_{Soft}(w, \xi, b, \lambda, \mu) = C I_{n \times n} \lambda \mu = 0$
- $\nabla_b L_{Soft}(w, \xi, b, \lambda, \mu) = \sum_{i=1}^n \lambda_i y_i = 0$

$$L_{Soft}(w, \xi, b, \lambda, \mu) = \sum_{i=1}^{n} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{j} \lambda_{i} y_{j} y_{i} (x_{j}^{T} x_{i}) - \frac{b}{b} \sum_{i=1}^{n} \lambda_{i} y_{i} - \sum_{i=1}^{n} (-C + \lambda_{i} + \mu_{i}) \xi_{i}$$

Soft-margin C - SVC: Dual form

Then

•
$$\nabla_w L_{Soft}(w, \xi, b, \lambda, \mu) = w - \sum_{i=1}^n \lambda_i y_i x_i = 0 \Longrightarrow w = \sum_{i=1}^n \lambda_i y_i x_i$$

•
$$\nabla_{\xi} L_{Soft}(w, \xi, b, \lambda, \mu) = C I_{n \times n} - \lambda - \mu = 0$$

•
$$\nabla_b L_{Soft}(w, \xi, b, \lambda, \mu) = \sum_{i=1}^n \lambda_i y_i = 0$$

One has by substitution in $L_{Soft}(w, \xi, b, \lambda, \mu)$:

$$L_{Soft}(w, \xi, b, \lambda, \mu) = \sum_{i=1}^{n} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{j} \lambda_{i} y_{j} y_{i} (x_{j}^{T} x_{i}) - \frac{b}{b} \sum_{i=1}^{n} \lambda_{i} y_{i} - \sum_{i=1}^{n} (-C + \lambda_{i} + \mu_{i}) \xi_{i}$$

If $\sum_{i=1}^{n} \lambda_i y_i = 0$ and $CI_{n \times n} - \lambda - \mu = 0$ then

•
$$\inf_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n, b \in \mathbb{R}} L_{Soft}(w, \xi, b, \lambda, \mu) = \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_j \lambda_i y_j y_i (x_j^T x_i)$$

Else

• $\inf_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n, b \in \mathbb{R}} L_{Soft}(w, \xi, b, \lambda, \mu) = -\infty$

Soft-margin C - SVC: Dual form

$$Dual: C - SVC \begin{cases} Max & g(\lambda, \mu) = g(\lambda) = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j \lambda_i y_j y_i (x_j^T x_i) \\ & \sum_{i=1}^{n} \lambda_i y_i = 0 \\ & C - \lambda_i - \mu_i = 0, i = 1, \dots, n \\ & \mu_i \ge 0, \lambda_i \ge 0 \ i = 1, \dots, n \end{cases}$$
m:

- Dual C *SVC* poblem has a solution (λ^*, μ^*)
- Dual can simplified to a problem only for a single variable λ by eliminating the variable μ and then rewritten as a minimization problem Dual $(C SVC)_{\lambda}$

•
$$\forall i = 1, ..., n : C - \lambda_i - \mu_i = 0 \iff C - \lambda_i = \mu_i$$

•
$$\mu_i \ge 0 \iff C - \lambda_i \ge 0 \iff C \ge \lambda_i$$

•
$$\lambda_i \ge 0 \iff C \ge \lambda_i \ge 0$$

Soft-margin C - SVC: Dual $(C - SVC)_{\lambda}$ Form

$$Dual (C - SVC)_{\lambda}: \begin{cases} Max & L_{Soft}(\lambda) = \sum_{i=1}^{n} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{j} \lambda_{i} y_{j} y_{i} (x_{j}^{T} x_{i}) \\ \sum_{i=1}^{n} \lambda_{i} y_{i} = 0 \\ C \geq \lambda_{i} \geq 0 \ i = 1, ..., n \end{cases}$$

- The Dual $(C SVC)_{\lambda}$ poblem is a Convex Quadratic Programming and has a solution λ^*
- For any solution $\lambda^* = (\lambda_1^*, ..., \lambda_n^*)$, If there exists a component of λ^*, λ_j^* , such that $\lambda_j^* \in (0, C)$ then a solution (w^*, b^*) to the primal problem C SVC w.r.t (w, b) can be obtained in by

$$w^* = \sum_{i=1}^n \lambda_i^* y_i x_i$$
 and $b^* = y_j - \sum_{i=1}^n \lambda_i^* y_i (x_j^T x_i)$

Soft-margin C - SVC: Dual $(C - SVC)_{\lambda}$ Algorithm

- Input: training set : $\{(x_i, y_i)_{i=1}^n \text{ where } x_i \in \mathbb{R}^d, y_i \in \{1, -1\}$
- Choose an approriate penalty parameter C>0
- Contruct and solve the optimization problem Dual: $(C SVC)_{\lambda}$ obtaining $\lambda^* = (\lambda_1^*, ..., \lambda_n^*)$

$$Dual: (C - SVC)_{\lambda} \begin{cases} Max & g(\lambda) = \sum_{i=1}^{n} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{j} \lambda_{i} y_{j} y_{i} (x_{j}^{T} x_{i}) \\ \sum_{i=1}^{n} \lambda_{i} y_{i} = 0 \\ C \geq \lambda_{i} \geq 0 \ i = 1, ..., n \end{cases}$$

- Compute $w^* = \sum_{i=1}^n \lambda_i^* y_i x_i$
- Choose a possitive component of λ^* , $\lambda_j^* \in (0, C)$, and Compute $b^* = y_j \sum_{i=1}^n \lambda_i^* y_i (x_j^T x_i)$
- Contruit the separating hyperplane $(w^*)^T x + b^*$ and the decision function is

$$h(x) = sign((w^*)^T x + b^*)$$

Bounded C - SVC: BC - SVC

$$BC - SVC \begin{cases} Min & \frac{1}{2}(\|w\|^2 + b^2) + C\sum_{i=1}^{n} \xi_i \\ s.t & y_i(w^T x_i + b) \ge 1 - \xi_i, i = 1,..., n \\ & \xi_i \ge 0, w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

Theorem:

- The BC SVC problem is a Convex Quadratic Programming
- There exists a unique solution (w^*, b^*) to the BC SVC problem

Remarks:

The only difference between BC - SVC and C - SVC is that the term $\frac{1}{2} ||w||^2$ is replaced by $\frac{1}{2} (||w||^2 + b^2)$. This difference comes from the maximal principale in different spaces considered; in the objective, the term $\frac{1}{2} ||w||^2$ corresponds to X - space while the term $\frac{1}{2} (||w||^2 + b^2)$ to the $X \times \{1\} - space$

BC - SVC: Algorithm

- Input: training set : $\{(x_i, y_i)_{i=1}^n \text{ where } x_i \in \mathbb{R}^d, y_i \in \{1, -1\}$
- Choose an approriate penalty parameter C > 0
- Contruct and solve the optimization problem C-SVC obtaining (w^*,b^*,ξ^*)

$$BC - SVC \begin{cases} Min & \frac{1}{2}(\|w\|^2 + b^2) + C \sum_{i=1}^{n} \xi_i \\ s.t & y_i(w^T x_i + b) \ge 1 - \xi_i, i = 1,..., n \\ \xi_i \ge 0, w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

• Contruit the separating hyperplane $(w^*)^T x + b^*$ and the decision function is

$$h(x) = sign((w^*)^T x + b^*)$$

$$L_{BCSV}(w,\xi,b,\lambda,\mu) = \frac{1}{2}(\|w\|^2 + b^2) + C\sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \lambda_i (y_i(w^T x_i + b) - 1 + \xi_i) - \sum_{i=1}^{n} \mu_i \xi_i$$

$$L_{BCSV}(w,\xi,b,\lambda,\mu) = \frac{1}{2}(\|w\|^2 + b^2) - \sum_{i=1}^{n} \lambda_i (y_i(w^T x_i + b) - 1)) - \sum_{i=1}^{n} (-C + \lambda_i + \mu_i) \xi_i$$

- $\nabla_w L_{\text{BCSVC}}(w, \xi, b, \lambda, \mu) = w \sum_{i=1}^n \lambda_i y_i x_i = 0 \Longrightarrow w = \sum_{i=1}^n \lambda_i y_i x_i$
- $\nabla_{\xi} L_{\text{BCSVC}}(w, \xi, b, \lambda, \mu) = C I_{n \times n} \lambda \mu = 0$
- $\nabla_b L_{\text{BCSVC}}(w, \xi, b, \lambda, \mu) = b \sum_{i=1}^n \lambda_i y_i = 0 \Longrightarrow b = \sum_{i=1}^n \lambda_i y_i$

$$L_{BCSV}(w, \xi, b, \lambda, \mu) = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j \lambda_i y_j y_i \left((x_j^T x_i) + 1 \right) - \sum_{i=1}^{n} (-C + \lambda_i + \mu_i) \xi_i$$

BC - SVC: Dual form

The C-SVC approach uses Lagrange multipliers for a simpler solution

$$L_{BCSV}(w,\xi,b,\lambda,\mu) = \frac{1}{2}(\|w\|^2 + b^2) + C\sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \lambda_i (y_i(w^T x_i + b) - 1 + \xi_i) - \sum_{i=1}^{n} \mu_i \xi_i$$

$$= \frac{1}{2}(\|w\|^2 + b^2) - \sum_{i=1}^{n} \lambda_i (y_i(w^T x_i + b) - 1)) - \sum_{i=1}^{n} (-C + \lambda_i + \mu_i) \xi_i$$

According to chapter 1, the dual problem should have a form of

$$Dual\ C - SVC \begin{cases} Max & g(\lambda, \mu) = \inf_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n, b \in \mathbb{R}} L_{BCS} & (w, \xi, b, \lambda, \mu) \\ s.t & \lambda_i \ge 0, \mu_i \ge 0i = 1, ..., n \end{cases}$$

As $L_{BCSVC}(w, \xi, b, \lambda, \mu)$ is strictly convex quadratic function of w, its minimal value is achieved at w satisfying

$$\nabla_{w,\xi,b} L_{\text{BCSVC}}(w,\xi,b,\lambda,\mu) = 0$$

BC - SVC: Dual form

Then

•
$$\nabla_w L_{\text{BCSV}}$$
 $(w, \xi, b, \lambda, \mu) = w - \sum_{i=1}^n \lambda_i y_i x_i = 0 \Longrightarrow w = \sum_{i=1}^n \lambda_i y_i x_i$

•
$$\nabla_{\xi} L_{\text{BCSVC}}(w, \xi, b, \lambda, \mu) = C I_{n \times n} - \lambda - \mu = 0$$

•
$$\nabla_b L_{\text{BCSVC}}(w, \xi, b, \lambda, \mu) = b - \sum_{i=1}^n \lambda_i y_i = 0 \Longrightarrow b = \sum_{i=1}^n \lambda_i y_i$$

One has by substitution in $L_{BCSVC}(w, \xi, b, \lambda, \mu)$:

$$L_{\text{BCSVC}}(w, \xi, b, \lambda, \mu) = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j \lambda_i y_j y_i \left(\left(x_j^T x_i \right) + 1 \right) - \sum_{i=1}^{n} (-C + \lambda_i + \mu_i) \xi_i$$

If $CI_{n\times n} - \lambda - \mu = 0$ then

•
$$\inf_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n, b \in \mathbb{R}} L_{\text{BCSVC}}(w, \xi, b, \lambda, \mu) = \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_j \lambda_i y_j y_i \left(\left(x_j^T x_i \right) + 1 \right)$$

Else

• $\inf_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n, b \in \mathbb{R}} L_{\text{BCSVC}}(w, \xi, b, \lambda, \mu) = -\infty$

BC - SVC: Dual form

$$Dual: BC - SVC \begin{cases} Max & g(\lambda, \mu) = -\sum_{i=1}^{n} \lambda_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j \lambda_i y_j y_i \left((x_j^T x_i) + 1 \right) \\ S.t & C - \lambda_i - \mu_i = 0, i = 1, ..., n \\ \mu_i \ge 0, \lambda_i \ge 0 \ i = 1, ..., n \end{cases}$$

- Dual BC SVC poblem has a solution (λ^*, μ^*)
- Dual can simplified to a problem only for a single variable λ by eliminating the variable μ and then rewritten as a minimization problem Dual $(BC SVC)_{\lambda}$

BC - SVC: Dual $(C - SVC)_{\lambda}$ Form

$$Dual (BC - SVC)_{\lambda}: \begin{cases} Max & g(\lambda) = -\sum_{i=1}^{n} \lambda_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j \lambda_i y_j y_i \left(\left(x_j^T x_i \right) + 1 \right) \\ s. t & C \geq \lambda_i \geq 0 \ i = 1, \dots, n \end{cases}$$

- The Dual $(BC SVC)_{\lambda}$ poblem is a Convex Quadratic Programming and has a solution λ^*
- For any solution $\lambda^* = (\lambda_1^*, ..., \lambda_n^*)$, then a solution (w^*, b^*) to the primal problem $(BC SVC)_{\lambda}$ w.r.t (w, b) can be obtained in by

$$w^* = \sum_{i=1}^n \lambda_i^* y_i x_i$$
 and $b^* = \sum_{i=1}^n \lambda_i^* y_i$

BC - SVC: Dual $(BC - SVC)_{\lambda}$ Algorithm

- Input: training set : $\{(x_i, y_i)_{i=1}^n \text{ where } x_i \in \mathbb{R}^d, y_i \in \{1, -1\}$
- Choose an approriate penalty parameter C>0
- Contruct and solve the optimization problem Dual: $(C SVC)_{\lambda}$ obtaining $\lambda^* = (\lambda_1^*, ..., \lambda_n^*)$

$$Dual (BC - SVC)_{\lambda}: \begin{cases} Max & g(\lambda) = -\sum_{i=1}^{n} \lambda_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j \lambda_i y_j y_i \left(\left(x_j^T x_i \right) + 1 \right) \\ s. t & C \geq \lambda_i \geq 0 \ i = 1, \dots, n \end{cases}$$

- Compute $w^* = \sum_{i=1}^n \lambda_i^* y_i x_i$
- Compute $b^* = \sum_{i=1}^n \lambda_i^* y_i$
- Contruit the separating hyperplane $(w^*)^T x + b^*$ and the decision function is $h(x) = sign((w^*)^T x + b^*)$

Least Squares C - SVC(LSC - SVC)

$$LSC - SVC \begin{cases} Min & \frac{1}{2} \left(\|w\|^2 + C \sum_{i=1}^{n} (\xi_i)^2 \right) \\ s.t & y_i(w^T x_i + b) = 1 - \xi_i, i = 1, ..., n \\ & w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

- The LSC SVC problem is a Convex Quadratic Programming
- There exists solutions to the LSC SVC problem w.r.t (w, b)
- The solution w^* of the LSC SVC problem w.r.t w is unique

LSC - SVC: Algorithm

- Input: training set : $\{(x_i, y_i)_{i=1}^n \text{ where } x_i \in \mathbb{R}^d, y_i \in \{1, -1\}$
- Choose an approriate penalty parameter C > 0
- Contruct and solve the optimization problem C SVC obtaining (w^*, b^*, ξ_i^*)

$$LSC - SVC \begin{cases} Min & \frac{1}{2} \left(||w||^2 + C \sum_{i=1}^{n} (\xi_i)^2 \right) \\ s.t & y_i(w^T x_i + b) = 1 - \xi_i, i = 1,..., n \\ & w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

• Contruit the separating hyperplane $(w^*)^T x + b^*$ and the decision function is

$$h(x) = sign((w^*)^T x + b^*)$$

LSC - SVC: Dual form

The LSC-SVC approach uses Lagrange multipliers for a simpler solution

$$L_{LSCSVC}(w, \xi, b, \lambda) = \frac{1}{2} \|w\|^2 + \frac{C}{2} \sum_{i=1}^{n} (\xi_i)^2 + \sum_{i=1}^{n} \lambda_i (y_i(w^T x_i + b) - 1 + \xi_i)$$

According to chapter 1, the dual problem should have a form of

$$Dual\ C - SVC \begin{cases} Max & g(\mu) = \inf_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n, b \in \mathbb{R}} L_{LSCSVC}(w, \xi, b, \lambda) \\ s.t & \lambda \in \mathbb{R}^n \end{cases}$$

As $L_{LSCSVC}(w, \xi, b, \lambda)$ is strictly convex quadratic function of w, its minimal value is achieved at w satisfying

$$\nabla_{w,\xi,b} L_{\text{LSCSVC}}(w,\xi,b,\lambda) = 0$$

LSC - SVC: Dual form

Then

•
$$\nabla_w L_{\text{LSCSVC}}(w, \xi, b, \lambda) = w - \sum_{i=1}^n \lambda_i y_i x_i = 0 \Longrightarrow w = \sum_{i=1}^n \lambda_i y_i x_i$$

•
$$\nabla_{\xi} L_{\text{LSCSVC}}(w, \xi, b, \lambda) = C\xi - \lambda = 0 \Longrightarrow C\xi = \lambda$$

•
$$\nabla_b L_{\text{LSCSVC}}(w, \xi, b, \lambda) = \sum_{i=1}^n \lambda_i y_i = 0$$

One has by substitution in $L_{Soft}(w, \xi, b, \lambda)$:

$$L_{LSCSVC}(w,\xi,b,\lambda) = \frac{C}{2} \sum_{i=1}^{n} (\lambda_i)^2 - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j \lambda_i y_j y_i (x_j^T x_i) - b \sum_{i=1}^{n} \lambda_i y_i - \sum_{i=1}^{n} (-C) \xi_i$$

If $\sum_{i=1}^{n} \lambda_i y_i = 0$ and $C\xi - \lambda = 0$ then

•
$$\inf_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n, b \in \mathbb{R}} L_{Soft}(w, \xi, b, \lambda) = \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_j \lambda_i y_j y_i (x_j^T x_i)$$

Else

• $\inf_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n, b \in \mathbb{R}} L_{Soft}(w, \xi, b, \lambda) = -\infty$

LSC - SVC: Dual form

$$DLSC - SVC \begin{cases} Max & g(\lambda) = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j \lambda_i y_j y_i \left(\left(x_j^T x_i \right) + \frac{\delta_{ij}}{C} \right) \\ & \sum_{i=1}^{n} \lambda_i y_i = 0 \\ & \lambda \in \mathbb{R}^n \end{cases}$$

Theorem:

- DLSC SVC poblem has a solution λ^*

• then a solution
$$(w^*, b^*)$$
 to the primal problem $C - SVC$ w.r.t (w, b) can be obtained in by
$$w^* = \sum_{i=1}^n \lambda_i^* y_i x_i \quad and \quad b^* = y_j \left(1 - \frac{\lambda_j^*}{C}\right) - \sum_{i=1}^n \lambda_i^* y_i (x_j^T x_i)$$

DLSC - SVC Algorithm

- Input: training set : $\{(x_i, y_i)_{i=1}^n \text{ where } x_i \in \mathbb{R}^d, y_i \in \{1, -1\}$
- Choose an approriate penalty parameter C>0
- Contruct and solve the optimization problem Dual: DLSC-SVC obtaining $\lambda^*=(\lambda_1^*,...,\lambda_n^*)$

$$DLSC - SVC \begin{cases} Max & g(\lambda) = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j \lambda_i y_j y_i \left((x_j^T x_i) + \frac{\delta_{ij}}{C} \right) \\ \\ S.t & \sum_{i=1}^{n} \lambda_i y_i = 0 \\ \\ \lambda \in \mathbb{R}^n \end{cases}$$

- Compute $w^* = \sum_{i=1}^n \lambda_i^* y_i x_i$
- Choose a possitive component of λ^* , λ_j^* , and Compute $b^* = y_j \left(1 \frac{\lambda_j^*}{C}\right) \sum_{i=1}^n \lambda_i^* y_i \left(x_j^T x_i\right)$
- Contruit the separating hyperplane $(w^*)^T x + b^*$ and the decision function is $h(x) = sign((w^*)^T x + b^*)$

Proximal C - SVC(PC - SVC)

$$PC - SVC \begin{cases} Min & \frac{1}{2} \left(||w||^2 + b^2 + C \sum_{i=1}^{n} (\xi_i)^2 \right) \\ s.t & y_i(w^T x_i + b) = 1 - \xi_i, i = 1,..., n \\ & w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

Theorem:

- The PC SVC problem is a Convex Quadratic Programming
- There exists a unique solution to the PC SVC problem(w^*, b^*, ξ^*)

PC - SVC: Algorithm

- Input: training set : $\{(x_i, y_i)_{i=1}^n \text{ where } x_i \in \mathbb{R}^d, y_i \in \{1, -1\}$
- Choose an approriate penalty parameter C > 0
- Contruct and solve the optimization problem C SVC obtaining (w^*, b^*, ξ^*)

$$PC - SVC \begin{cases} Min & \frac{1}{2} \left(||w||^2 + b^2 + C \sum_{i=1}^{n} (\xi_i)^2 \right) \\ s.t & y_i(w^T x_i + b) = 1 - \xi_i, i = 1,..., n \\ & w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

• Contruit the separating hyperplane $(w^*)^T x + b^*$ and the decision function is

$$h(x) = sign((w^*)^T x + b^*)$$

PC - SVC: Dual form

$$DPC - SVC \begin{cases} Max & g(\lambda) = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j \lambda_i y_j y_i \left(\left(x_j^T x_i \right) + 1 \right) - \frac{1}{2C} \sum_{i=1}^{n} (\lambda_i)^2 \\ s. t & \lambda \in \mathbb{R}^n \end{cases}$$

Theorem:

- DPC SVC poblem has a solution λ^*
- then a solution (w^*, b^*, ξ^*) to the primal problem PC SVC can be obtained in by

•
$$w^* = \sum_{i=1}^n \lambda_i^* y_i x_i$$

•
$$b^* = \sum_{i=1}^n \lambda_i^* y_i$$

•
$$\xi^* = \frac{\lambda^*}{C}$$

DPC - SVC Algorithm

- Input: training set : $\{(x_i, y_i)_{i=1}^n \text{ where } x_i \in \mathbb{R}^d, y_i \in \{1, -1\}$
- Choose an approriate penalty parameter C>0
- Contruct and solve the optimization problem Dual: DPC SVC obtaining $\lambda^* = (\lambda_1^*, ..., \lambda_n^*)$

$$DPC - SVC \begin{cases} Max & g(\lambda) = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j \lambda_i y_j y_i \left(\left(x_j^T x_i \right) + 1 \right) - \frac{1}{2C} \sum_{i=1}^{n} (\lambda_i)^2 \\ s. t & \lambda \in \mathbb{R}^n \end{cases}$$

- Compute $w^* = \sum_{i=1}^n \lambda_i^* y_i x_i$
- Compute $b^* = \sum_{i=1}^n \lambda_i^* y_i$
- Contruit the separating hyperplane $(w^*)^Tx + b^*$ and the decision function is $h(x) = sign((w^*)^Tx + b^*)$

v-Soft margin SVC(v - SVC)

$$v - SVC \begin{cases} Min & \frac{1}{2} ||w||^2 - v\rho + \frac{1}{n} \sum_{i=1}^{n} \xi_i \\ s.t & y_i(w^T x_i + b) \ge \rho - \xi_i, i = 1,..., n \\ \xi_i \ge 0, \rho \ge 0, w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

Where $v \in [0,1]$ is a preselected parameter. Its dual is following

$$Dv - SVC \begin{cases} Max & g(\lambda) = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{j} \lambda_{i} y_{j} y_{i} (x_{j}^{T} x_{i}) \\ \sum_{i=1}^{n} \lambda_{i} y_{i} = 0 \\ \sum_{i=1}^{n} \lambda_{i} \geq v \\ \frac{1}{n} \geq \lambda_{i} \geq 0, \qquad i = 1, ..., n \end{cases}$$

v - SVC:

the primal problem v - SVC and the dual problem Dv - SVC are the convex quadratic programming

Theorem:

Suppose that $\lambda^* = (\lambda_1^*, ..., \lambda_n^*)$ is any solution to the dual problem Dv - SVC. If there exists two component of λ^* , λ_i^* and λ_k^* , such that :

•
$$\lambda_j^* \in \left]0, \frac{1}{n}\right[\text{and } y_j = 1 \right]$$

•
$$\lambda_k^* \in \left]0, \frac{1}{n}\right[\text{and } y_k = -1 \right]$$

Then a solution (w^*, b^*, ρ^*) to the primal problem v - SVC w.r.t. (w, b, ρ) can be obtained by

•
$$w^* = \sum_{i=1}^n \lambda_i^* y_i x_i$$

•
$$b^* = -\frac{1}{2} \sum_{i=1}^n \lambda_i^* y_i ((x_i)^T x_j + (x_i)^T x_k)$$

•
$$\rho^* = \sum_{i=1}^n \lambda_i^* y_i(x_i)^T x_j + b^* = -\sum_{i=1}^n \lambda_i^* y_i(x_i)^T x_k - b^*$$

Relationship v - SVC and C - SVC

Theorem:

There exists a non-increasing function φ : $]0, +\infty[\to]0,1]$ $v = \varphi(C)$ such that $\forall \bar{C} \in]0, +\infty[, \varphi(\bar{C}) = \bar{v} \in]0,1]$

The decision functions obtained by v - SVC with $v = \bar{v}$ and C - SVC with $C = \bar{C}$ are identical if they can be computed by both of them, i.e.

- For v SVC with $v = \bar{v}$, two component of λ^* , λ_i^* and λ_k^* , such that :
 - $\lambda_j^* \in \left]0, \frac{1}{n}\right[\text{and } y_j = 1$
 - $\lambda_k^* \in \left]0, \frac{1}{n}\right[\text{and } y_k = -1 \right]$
- For C SVC with $C = \bar{C}$, one component λ_j^* of λ^* can be chosen such that $\lambda_j^* \in]0, C[$

v-SVC: Significance of the parameter v

The significance of the parameter v is concerned with the terms of Support Vector and Training set with margin error.

Definition:

Suppose that $\lambda^* = (\lambda_1^*, ..., \lambda_n^*)$ is the solution to the Dv - SVC, and the corresponding solution to the v - SVC is $(w^*, b^*, \rho^*, \xi^*)$. The training set $\{(x_i, y_i)\}_{i=1}^n$ is called training set with margin error if $y_i((w^*)^Tx_i + b^*) < \rho^*$

Theorem

If $\rho^* > 0$ then

$$\frac{p}{n} \le v \le \frac{q}{n}$$

- p: the number of the training points with margin error
- q: the number of support vectors

Dv - SVC: Algorithm

- Input: training set : $\{(x_i, y_i)_{i=1}^n \text{ where } x_i \in \mathbb{R}^d, y_i \in \{1, -1\}$
- Choose an approriate penalty parameter $v \in]0,1]$
- Contruct and solve the convex quadratic programming Dv SVC obtaining $\lambda^* = (\lambda_1^*, ..., \lambda_n^*)$
- Compute b^* : Choose tow components of λ^* , λ_j^* and λ_k^* , such that :
 - $\lambda_j^* \in \left]0, \frac{1}{n}\right[\text{and } y_j = 1 \right]$
 - $\lambda_k^* \in \left[0, \frac{1}{n}\right]$ and $y_k = -1$
 - And compute $b^* = -\frac{1}{2} \sum_{i=1}^n \lambda_i^* y_i ((x_i)^T x_j + (x_i)^T x_k)$
- Compute $w^* = \sum_{i=1}^n \lambda_i^* y_i x_i$
- Contruit the separating hyperplane $(w^*)^Tx + b^*$ and the decision function is $h(x) = sign((w^*)^Tx + b^*)$