Physic formulary

School

2022.02.16

School	Physic formulary	2022.02.16
Contents		

1	Constants	1	
2	Other physical interrelationships	2	
3	Energy	3	
4	Motion	3	
5	Momentum	3	
6	Electricity	4	
7	Fields 7.1 Newtonian gravitation	5 5 5	
8	Units	7	
Index		Ш	
Bil	Bibliography		

1 Constants[1]

 $a_0 = \frac{4\pi\varepsilon_0\hbar^2}{m_{\rm e}e^2} = \frac{\varepsilon_0h^2}{\pi m_{\rm e}e^2} = \frac{\hbar}{m_{\rm e}c\alpha} = 5.291\,772\,109\,03 \times 10^{-11}\,{\rm m}$ Bohr radius

Velocity of light: $c_0 = 299792458 \frac{m}{s}$

 $e = 1.602176634 \times 10^{-19} \,\mathrm{C}$ Elementary charge: $\varepsilon_0 = 8.8541878128 \times 10^{-12} \frac{F}{m}$ Vacuum permittivity:

Permittivity of air: $\varepsilon_{\mathtt{r}} = 1.00059$

 $F = 96485.3321233\frac{\text{C}}{\text{mol}}$ Faraday constant

Acceleration due to gravity: $g = 9.80665 \frac{\text{m}}{\text{s}^2}$

 $G = 6.67430 \times 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$ Gravitational constant: $h = 6.626\,070\,15 \times 10^{-34}\,\frac{\text{J}}{\text{Hz}}$ Planck constant: $k = 1.280649 \times 10^{-23} \frac{\text{J}}{\text{K}}$ Boltzmann constant:

 $m_{\rm e} = 9.1093837015 \times 10^{-31} \, {\rm kg}$ Electron mass:

 $m_{\rm e}~=~0.510\,998\,950\,00\,{{\rm MeV}\over{{\rm c_0}^2}}$

 $m_{\mu} = 1.883531627 \times 10^{-28} \,\mathrm{kg}$

 $m_{\mu} = 105.6583755 \frac{\text{MeV}}{\text{c}_0^2}$ Muon mass:

 $m_{\mu} = 0.1134289259 \,\mathrm{Da}$

 $m_{\rm n} = 1.674\,927\,498\,04\times10^{-27}\,{\rm kg}$ Neutron mass:

 $m_{\rm n} = 939.56542052 \frac{\rm MeV}{{\rm c_0}^2}$

 $m_{\rm p} = 1.67262192369 \times 10^{-27} \,\mathrm{kg}$ Proton mass:

 $m_{\rm p} = 938.272\,088\,16\,\frac{\rm MeV}{{\rm co}^2}$

 $\mu_0 = 1.25663706212 \times 10^{-6} \frac{H}{m}$ Vacuum permeability:

Permeability of air: $\mu_{\rm r} = 1.000\,000\,37$

2 Other physical interrelationships

Visible spectrum: $380\,\mathrm{nm}$ to $750\,\mathrm{nm}$

Speed of sound under standart conditions: $343\,\frac{m}{s}$

Dalton Da / unified atomic mass unit $\mathrm{u}\colon \ \mathrm{Da/u} =$

 $1.660\,539\,066\,60\times10^{-27}\,\mathrm{kg}$

Hydrogen mass: $m_{
m H} = 1.007\,84\,{
m Da}$

to 1.00811Da

Atomic mass of helium ${}^4\mathrm{He}$ $m_{\mathtt{He}} = 4.002\,603\,254\,\mathrm{Da}$

Kilowatt-hour: $kWh = 3.6 \times 10^6 J$

Kilowatt-hour: $eV = 1.602176634 \times 10^{-19} \,\mathrm{J}$

Pressure: $1\,{\rm Pa} = 1\,\frac{\rm N}{\rm m^2}$ Pressure: $1\,{\rm bar} = 10^5\,{\rm Pa}$ Absolute zero: $-273.15\,{\rm ^\circ C} = 0\,{\rm K}$

2

3 Energy

Kinetic Energy

$$E_{\mathbf{k}} = \frac{1}{2}mv^2$$

Potential Energy

 $\begin{array}{ll} U = mgh & \text{(gravitational)} \\ U = \frac{1}{2} \cdot k \cdot x^2 & \text{(elastic)} \\ U = \frac{1}{2} \cdot C \cdot V^2 & \text{(electric)} \\ U = -mB & \text{(magnetic)} \\ U = \int F(r) \, \partial r & \text{(general)} \end{array}$

4 Motion

uniform linear motion

$$s(t) = vt \ (+s_0)$$

$$v(t) = const.$$

$$a(t) = 0$$

non-uniform linear motion

$$s(t) = \frac{1}{2}at^2 \left(+v_0 t + s_0 \right)$$

$$v(t) = at \, (+v_0)$$

$$a(t) = const.$$

circular motion

$$F_{
m Z}=rac{mv^2}{r}=m\,\omega^2 r$$
 $\omega=rac{v}{r}=rac{2\pi}{T}=rac{\Deltaarphi}{\Delta t}$ $arphi$ in rad $f=rac{1}{T}$

5 Momentum

momentum itself

$$ec{p}=mec{v}$$

$$ec{p}=rac{\hbar}{\lambda} \hspace{1cm} ext{photons}$$

$$ec{p}=\sqrt{m_0^2{c_0}^2+rac{E^2}{{c_0}^2}} \hspace{1cm} ext{general}$$

relations to momentum

$$\sum_i m_i\,u_i = \sum_i m_i\,v_i$$
 conservation of momentum
$$\Delta p = F\Delta t$$

$$E_{\bf k} = \int p\,\partial v$$

6 Electricity

General				
$I = \frac{\Delta Q}{\Delta t} = \frac{\partial Q}{\partial t} = \dot{Q}$	in A			
$R = \frac{U}{I} = \rho \frac{l}{A}$	in Ω			
$E = U \cdot Q$				
$P = \frac{\Delta E}{\Delta t} = UI$	in W Energy flow / "Power"			

7 Fields

7.1 Newtonian gravitation

Homogeneous field

$$\begin{split} E &= mgh \\ \vec{F}_g &= m\vec{g} \\ \vec{g} &= \frac{\vec{F}_g}{m} \\ \Delta\varphi &= \frac{E}{m} = gh \end{split}$$

Radial symmetric field

$$\begin{split} U &= GMm \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \\ U &= -GMm \frac{1}{r} & \text{for } r_1 \to \infty \\ \vec{F_g} &= -G\frac{Mm}{r^2} \hat{r} \\ \vec{g} &= \frac{\vec{F_g}}{m} = -G\frac{M}{r_2} \hat{r} \\ \Delta \varphi &= \frac{E}{m} = \gamma M \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \end{split}$$

7.2 Electromagnetism

homogenous field

$$E = q\vec{\mathbf{E}}d$$

$$\vec{F} = q\vec{\mathbf{E}}$$

$$\vec{\mathbf{E}} = \frac{\vec{F}}{q}$$

$$\mathbf{E} = \frac{V}{d}$$

$$V = \frac{E}{q} = \vec{\mathbf{E}}d$$

Radial symetric field

$$\begin{split} U &= -\frac{1}{4\pi\varepsilon_0\varepsilon_r}Qq\left(\frac{1}{r_1} - \frac{1}{r_2}\right) \\ U &= \frac{Qq}{4\pi\varepsilon_0}\frac{1}{r} & \text{for } r_1 \to \infty \\ \vec{F} &= \frac{1}{4\pi\varepsilon_0\varepsilon_r}\frac{Qq}{r^2}\hat{r} \\ \mathbf{E} &= \frac{\vec{F}}{q} = \frac{1}{4\pi\varepsilon_0\varepsilon_r}\frac{Q}{r^2}\hat{r} \\ \varepsilon_0 &= \frac{\sigma}{\varepsilon_r\mathbf{E}} & \text{const.} \end{split}$$

Capacitor

$$C = \frac{Q}{V} = \varepsilon_0 \varepsilon_r \frac{A}{d}$$

$$E = \frac{1}{2}CU^2$$

$$E = \frac{1}{2}\varepsilon_0 \varepsilon_r V \vec{E}^2$$

$$Q(t) = Q_0 e^{-\frac{1}{RC}t}$$

$$I(t) = -\frac{Q}{RC} e^{-\frac{1}{RC}t}$$

$$V(t) = \frac{Q}{C} e^{-\frac{1}{RC}t}$$

$$V(t) = \frac{Q}{V} e^{-\frac{1}{RC}t}$$

$$V(t) = V_0 e^{-\frac{R}{L}t}$$

$$V(t) = V_0 e^{-\frac{R}$$

8 Units[2]

Derived quantity	Name	In terms of other SI units	Dimensions
electric charge, quantity of electricity	coulomb	C = s A	TI
capacitance	farad	$F = \frac{s^4 A^2}{m^2 kg}$	$T^4 L^{-2} M^{-1} I^2$
inductance	henry	$H = \frac{m^2 kg}{s^2 A^2}$	$T^{-2}\;L^2\;M\;I^{-1}$
frequency	hertz	$Hz = \frac{1}{s}$	T ⁻¹
energy, work, quantity of heat	joule	$J = \frac{m^2 kg}{s^2}$	$T^{-2}L^2M$
force	newton	$N = \frac{m kg}{s^2}$	$T^{-2} \; L\; M$
electric resistance	ohm	$\Omega = \frac{\mathrm{m}^2 \mathrm{kg} \mathrm{A}^2}{\mathrm{s}^3}$	$T^{-3} L^2 M I^{-2}$
pressure, stress	pascal	$Pa = \frac{N}{m} = \frac{kg}{s^2 m}$	$T^{-2}\;L^{-1}\;M$
plane angle	radian	$rad = \frac{m}{m}$	
magnetic flux	weber	$Wb = Vs = \frac{m^2 kg}{s^2 A}$	T ⁻² L ² M I
magnetic flux density	tesla	$T = \frac{Wb}{m^2} = \frac{kg}{s^2 A}$	$T^{-2}\;M\;I^{-1}$
electric potential difference, electromotive force	volt	$V = \frac{W}{A} = \frac{kg m^2}{s^3 A}$	$T^{-3}L^2MI^{-1}$
power, radiant flux	watt	$W = \frac{J}{s} = \frac{m^2 kg}{s^3}$	$T^{-3}\;L^2\;M$

Index

В	L
Bohr radius1	Light1
Boltzmann constant1	М
E	Momentum 3
Electromagnetism	motion
magnetism coil6	Plank constant1
Electron 1	U
Elemtary particle	Unit
Leptons	tesla7
Muon1	Units7
Energy3	coulomb7
Kinetic Energy3	farad7
Potential Energy3	henry7
	hertz7
F	joule7
Faraday constant	newton
G	pascal7
Gravitation5	radian7
Gravitational constant1	volt7
Homogeneous Field5	watt7
Radial symmetric field5	weber7

Bibliography

- 1. CODATA Internationally recommended 2018 values of the Fundamental Physical Constants. May 2019. https://physics.nist.gov/cuu/Constants/index.html (2022).
- 2. <u>International System of Units (SI)</u>. https://physics.nist.gov/cuu/Units/units.html (2022).