Enviroment

Environment/ variables

Script/files

History/
list of commnads

files

Console/ typing commands

setwd("E:/clases2021_2/ECD/code")

console

operations

Data/objects

Print objects

```
Console Terminal × Jobs ×

R 4.1.1 · E:/clases2021_2/ECD/code/ →

Tutorial: ex-data-basics

> var2=10

> var2

[1] 10

> print (var2)

[1] 10

>
```

Sequence of numbers

```
Console Terminal × Jobs ×

    R 4.1.1 · E:/clases2021_2/ECD/code/ →

Tutorial: ex-data-basics

> 1:10
[1] 1 2 3 4 5 6 7 8 9 10
> 5:30
[1] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
> |
```

Data in R Basic type

numeric

integer

logical

character

complex

Other objects

vectors

factors

list

matrix

Data frames

numeric

1, 3.5, 2345.23, 12

character

"a" "hola" "casado" "nissan"

integer

1L 23L

logical

TRUE FALSE T F

complex

4+ 3i

Others objects

vectors

matrix

list

factors

Data frames

vectors

array

memory

Programa

vectors

atomic vector-Sequence of elements of the same data type

```
Console Terminal × Jobs ×

R 4.1.1 · E:/clases2021_2/ECD/code/ →

Tutorial: ex-data-basics

> var1=5

> nums=1:10

> is.vector(var1)

[1] TRUE

> is.vector(nums)

[1] TRUE

>
```

```
Environment History Connections Tutorial

Import Dataset v 213 MiB v

R v Global Environment v

Values

nums int [1:10] 1 2 3 4 5 6 7 8 9 10

var1 5

var2 10
```


Specifying the data type

logical(8)

vector("character", length = 5)

character(5)

numeric(10)

```
Console Terminal × Jobs ×

R 4.1.1 · E:/clases2021_2/ECD/code/ →

Tutorial: ex-data-basics

> character(5)
[1] "" "" "" ""

> numeric(10)
[1] 0 0 0 0 0 0 0 0 0 0

> logical(8)
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE

>
```

vectors

Specifying the content

c combine

x < -c(1, 2, 3)

nombres <- c("Juan", "Pedro", "luis")

var1 <- c(1L, 2L, 3L)

Combine

Combine values in a vector

Default data type is Double

typeof()

```
Console Terminal × Jobs ×

R 4.1.1 · E:/clases2021_2/ECD/code/ 

Tutorial: ex-data-basics

> typeof(num1)
[1] "integer"

> letras=character(5)

> typeof(letras)
[1] "character"

> bandera= logical(4)

> typeof(bandera)
[1] "logical"

>
```


Display the data type of the object/variable

Adding element in the begin and end

nombres <- c("Juan", "Pedro", "luis")

```
Console Terminal × Jobs ×

R 4.1.1 · E:/clases2021_2/ECD/code/ →

Tutorial: ex-data-basics

> nombres <- c("Juan", "Pedro", "luis")

> |
```


nombres <- c("Ana",nombres)</pre>

nombres <- c(nombres, "Carlos")

```
Console Terminal × Jobs ×

R 4.1.1 · E:/clases2021_2/ECD/code/ →

Tutorial: ex-data-basics

> nombres <- c("Juan", "Pedro", "luis")

> nombres

[1] "Juan" "Pedro" "luis"

> nombres <- c("Ana", nombres)

> nombres

[1] "Ana" "Juan" "Pedro" "luis"

> nombres <- c(nombres, "Carlos")

> nombres

[1] "Ana" "Juan" "Pedro" "luis" "Carlos"

> |
```

exercise

[1, 1, 0, 0, 1,1, 0,0,1,1,0,0, 1,1,0,0, 1,1,0,0]

series

misnum <- 1:10

sequences

misnum <- seq(10)

seq(from = 1, to = 10, by = 0.1)

```
Console Terminal × Jobs ×

R 4.1.1 · E/clases2021_2/ECD/code/ →

Tutorial: ex-data-basics 2:

> help("seq")

> seq(from = 1, to = 10, by = 0.1)

[1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6

[18] 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3

[35] 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0

[52] 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7

[69] 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4

[86] 9.5 9.6 9.7 9.8 9.9 10.0

> |
```

```
Console Terminal × Jobs ×

R 4.1.1 · E/clases2021_2/ECD/code/ 

Tutorial: ex-data-basics

> help("seq")
> seq(from = 1, to = 10, by = 0.1)

[1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 [18] 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 [35] 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 [52] 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 [69] 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 [86] 9.5 9.6 9.7 9.8 9.9 10.0

> mynums=seq(from = 1, to = 10, by = 0.1)
> length(mynums)

[1] 91
> |
```

seq(from = 1, to = 1, by = ((to - from)/(length.out - 1)),

length.out = NULL, along.with = NULL, ...)

seq.int(from, to, by, length.out, along.with, ...)

Usage

seq(...)

Default S3 method:

seq_along(along.with)
seq len(length.out)

length

longuitud

seq(1,30)

```
> seq(1,30)
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
[29] 29 30
>
```

```
seq(-5, 5, by=.2) -> s3
```

```
> seq(-5, 5, by=.2) -> s3
> s3
[1] -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8
[18] -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
[35] 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
> |
```

s4 <- seq(length=51, from=-5, by=.2)

Secuencia con 200 elementos multiplos de 3

assign("x", c(10.4, 5.6, 3.1, 6.4, 21.7))

```
> assign("x", c(10.4, 5.6, 3.1, 6.4, 21.7))
> 
> x
[1] 10.4 5.6 3.1 6.4 21.7
> |
```

 $c(10.4, 5.6, 3.1, 6.4, 21.7) \rightarrow x$

y < -c(x, 0, x)

```
Console Terminal × Jobs ×

R 4.1.1 · E:/clases2021_2/ECD/code/ →

Tutorial: ex-data-basics

> names=c("hola", "buenos ", "dias ", 5)

> names
[1] "hola" "buenos " "dias " "5"

>
```

If one element is character, the vector is data type character


```
Console Terminal × Jobs ×

R 4.1.1 · E:/clases2021_2/ECD/code/ →

Tutorial: ex-data-basics

> banderas=c(FALSE, F,T, TRUE, FALSE, T,T,F)

> banderas

[1] FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE

>
```

Be careful with upper-case letters

```
> banderas=c(FALSE, F,T, TRUE, FALSE, 1,1,F)
> banderas
[1] 0 0 1 1 0 1 1 0
> |
```

If one element is number, the vector is data type numeric

Vector operations element-wise

```
> vec1=c(5,10,15,20)
> vec2=c(8,16,24,32)
> vec1
[1]  5 10 15 20
> vec2
[1]  8 16 24 32
> |
```

$$\boldsymbol{a} \circ \boldsymbol{b} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_3 \end{bmatrix} \circ \begin{bmatrix} b_2 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix} = \begin{bmatrix} a_1b_1 \\ a_2b_2 \\ a_3b_3 \\ a_4b_4 \\ a_3b_5 \end{bmatrix}_{(\alpha \times 1)}$$

Element wise Product

```
> vec1+vec2
[1] 13 26 39 52
> |
```

```
> vec1-vec2
[1] -3 -6 -9 -12
```

```
> vec1*vec2
[1] 40 160 360 640
```

```
> vec1/vec2
[1] 0.625 0.625 0.625 0.625
>
```

mean

median

sd

sum

prod

min

max

Useful functions

```
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
                               6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4
             8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4
     9.5 9.6 9.7 9.8 9.9 10.0
> mean(mynums)
[1] 5.5
> median(mynums)
[1] 5.5
> sd(mynums)
[1] 2.641338
> sum(mynums)
[1] 500.5
> prod(mynums)
[1] 2.57182e+61
> min(mynums)
[1] 1
> max(mynums)
[1] 10
```

Recycling

1 2 3

y

y

exercise

```
[1] -5.0 0.0 0.0 -4.4 0.0 0.0 -3.8 0.0 0.0 -3.2 0.0 0.0 -2.6 0.0 0.0 -2.0 0.0 [18] 0.0 -1.4 0.0 0.0 -0.8 0.0 0.0 -0.2 0.0 0.0 0.4 0.0 0.0 1.0 0.0 0.0 1.6 [35] 0.0 0.0 2.2 0.0 0.0 2.8 0.0 0.0 3.4 0.0 0.0 4.0 0.0 0.0 4.6 0.0 0.0
```

```
> s=seq(-5,5,0.2)
> s
[1] -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8
[18] -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
[35] 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
> cell=c(T,F,F)
> res=s*cell
> res
[1] -5.0 0.0 0.0 -4.4 0.0 0.0 -3.8 0.0 0.0 -3.2 0.0 0.0 -2.6 0.0 0.0 -2.0 0.0
[18] 0.0 -1.4 0.0 0.0 -0.8 0.0 0.0 -0.2 0.0 0.0 0.4 0.0 0.0 1.0 0.0 0.0 1.6
[35] 0.0 0.0 2.2 0.0 0.0 2.8 0.0 0.0 3.4 0.0 0.0 4.0 0.0 0.0 4.6 0.0 0.0
> |
```

Attributes

names

dimensions

classes

attributes(object)

```
Console Terminal × Jobs ×

R 4.1.1 · E:/clases2021_2/ECD/code/ →

Tutorial: ex-data-basics

> calif=c(8,9,7,9)

> calif
[1] 8 9 7 9

> attributes(calif)

NULL

> |
```

Naming objects

```
> calif=c(8,9,7,9)
> calif
[1] 8 9 7 9
```

```
> names(calif)
NULL
> nameCali=c("Juan","Pedro","Ana", "Yesenia")
> names(calif)=nameCali
> calif
   Juan Pedro Ana Yesenia
   8 9 7 9
> |
```

```
> names(calif)=NULL
>
> attributes(calif)
NULL
>
> calif
[1] 8 9 7 9
```

Eliminate names

Create vector with names
Assign names to the first vector

Display elements of a vector

Display vector elements, using index

```
> calif
[1] 8 9 7 9
> calif[2]
[1] 9
> calif[-3]
[1] 8 9 9
> calif[c(1,3)]
[1] 8 7
```

vectorName [index]

vectorName [-index]

vectorName [c(list index)]

Display elements of a vector, using names

```
> calif
  Juan Pedro Ana Yesenia
    8    9    7    9
> calif["Pedro"]
Pedro
    9
>
```

Select several elements of a vector

```
> 5
[1] -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8
[18] -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
[35] 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

> 5[1:10]
[1] -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2
```

vectorName [indIni: indEnd]

```
> s[-(18:34)]
[1] -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8
[18] 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
>
```

vectorName [-(indIni: indEnd)]

Select elements of a vector, using a condition

```
> s=seq(-5,5,0.2)
> s

[1] -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.
[18] -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.
[35] 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.
```

vectorName [condition]

```
> s[s>0]
[1] 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2
[22] 4.4 4.6 4.8 5.0
>
```

Change the dimension of a vector

```
> a=seq(from =10, by=5,length.out=15)
> a
[1] 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
>
```

dim(vectorName) = c(d1,d2)


```
> dim(a)=c(3,5)
> a
     [,1] [,2] [,3] [,4] [,5]
[1,] 10 25 40 55 70
[2,] 15 30 45 60 75
[3,] 20 35 50 65 80
> |
```

```
Fill
columns
first
```

```
> dim(a)=c(5,3)
> a
       [,1] [,2] [,3]
[1,] 10 35 60
[2,] 15 40 65
[3,] 20 45 70
[4,] 25 50 75
[5,] 30 55 80
> |
```

Other objects

vectors

matrix

list

factors

Data frames

Analizando vectores

class()

Despliega la clase del objeto

typeof()

Despliega el tipo de dato

length()

La longitud del objeto

str()

La estructura del objeto


```
f1 <- factor(c("a", "a", NA, NA, "b", NA, "a", "c", "a", "c", "b"))
str(f1)
 Factor w/ 3 levels "a", "b", "c": 1 1 NA NA 2 NA 1 3 1 3 ...
levels(f1) <- c(levels(f1), "No Answer")</pre>
f1[is.na(f1)] <- "No Answer"
str(f1)
 Factor w/ 4 levels "a", "b", "c", "No Answer": 1 1 4 4 2 4 1 3 1 3 ...
```

```
f <- factor(c(3.4, 1.2, 5))
as.numeric(f)
```

levels(f)[f]

```
f2<- levels(f)[f]
f3 <- as.numeric(f2)
```

```
f <- factor(c(3.4, 1.2, 5))
f[4]<-3.4
f[5]<-2.4
```

mdat[,3, drop=FALSE]

Analizando vectores

class()

Despliega la clase del objeto

typeof()

Despliega el tipo de dato

length()

La longitud del objeto

str()

La estructura del objeto

Basic functions

class()

Tipo de objeto

typeof()

Tipo de dato del objeto

length

longuitud

as

Aplica una coerción a un objeto para convertirse a una determinada clase as(x,"numeric") as.numeric(x)