

Capítulo 1: Datos e Internet de las cosas

Big Data & Analytics

Capítulo 1: Secciones y objetivos

- 1.1 Valor de los datos
 - Demuestre el valor de los datos.
- 1.2 Datos y datos masivos
 - Explique el concepto de datos masivos.
- 1.3 Administración de datos masivos
 - Demuestre el conocimiento de los enfoques de administración de datos en IdT.

1.1 El valor de los datos

El valor de los datos

Los datos en un mundo conectado

El valor de los datos

- La cantidad de datos que se guardan y analizan está ampliándose.
- La variedad de datos alcanzará nuevas áreas.
- La transformación digital repercutirá en tres elementos principales de nuestras vidas: lo empresarial, lo social y lo ambiental.

¿Qué son los datos?

- Los datos pueden ser muchas cosas.
 - Palabras en un libro, un artículo, o un blog
 - Contenido de una hoja de cálculo o de una base de datos
 - Imágenes o video
 - Un flujo de mediciones de un dispositivo
- Los datos útiles son información.
- Determine la cantidad de datos que deben recopilarse.
- No todos los datos pueden usarse como están.
- El análisis de datos proporciona información útil o tendencias.

Sensores de humedad

Sensores de luz solar

El valor de los datos

Los datos crecen exponencialmente

Cálculo de crecimiento exponencial

- Dos tipos: lineal y exponencial
- El crecimiento exponencial es más drástico.

Crecimiento de los datos

- Los datos actuales están creciendo exponencialmente.
- Crecimiento de los datos de ejemplo previsto para 2015 a 2020 de Visual Networking Index (VNI) de Cisco
 - El tráfico de datos móviles de los consumidores llegará a 26,1 exabytes por mes en el 2020.
 - El tráfico IP alcanzará 194,4 exabytes por mes en el 2020.
 - El 64 % de todo el tráfico de Internet global cruzará redes de distribución de contenido en el 2020.

El valor de los datos

El crecimiento de los datos nos cambia la vida

- Impacto del crecimiento de datos
 - Está impulsado por la proliferación de los dispositivos de IdC
 - Esto incluye sensores, terminales inalámbricos y redes móviles
- Ejemplo de negocio: Kaggle
 - Kaggle es una plataforma que conecta las empresas y otras organizaciones que tienen preguntas sobre sus datos con la persona que sabe encontrar las respuestas.
 - Kaggle ejecuta competencias en línea.
- Ejemplo social: DrivenData
 - Ofrece prácticas puntos en ciencia de datos y crowdsourcing a las personas y las organizaciones que estén dirigiendo estos desafíos
- Ejemplo ambiental: Cambio climático
 - Asociación entre NASA y Cisco Planetary Skin
 - Plataforma global de colaboración en línea de supervisión
 - Captura, recopila, analiza e informa datos en condiciones ambientales

Dé donde provienen los datos masivos

- Definición de datos masivos
 - Datos que son tan grandes, rápidos o complejos que se vuelve imposible guardarlos, procesarlos y analizarlos con aplicaciones tradicionales de almacenamiento y análisis de datos.
- Características de los datos masivos
 - Las cuatro grandes V de los datos masivos: volumen, velocidad, variedad y veracidad.
 - Volumen: cantidad de datos
 - Velocidad: tasa a la que se generan los datos
 - Variedad: tipo de datos
 - Veracidad: evitar que los datos imprecisos estropeen un conjunto de datos
- Qué cantidad de datos hace que se consideren datos masivos
 - Paul Zikopaulos de IBM estableció que se necesitan entre 200 y 600 terabytes para que los datos se consideren masivos

Datos abiertos y datos privados

Datos abiertos

La Open Knowledge Foundation describe los datos abiertos como "todo" contenido, información o dato que el público puede utilizar, reutilizar y redistribuir de forma gratuita y sin restricción legal, tecnológica ni social".

Datos privados

Datos relacionados con una expectativa de privacidad y regulados por un país o un gobierno determinados

Foro Económico Mundial, abril de 2014 ncial de Cisco

Datos estructurados y no estructurados

Datos estructurados

- Son los que se introducen y se mantienen en campos fijos dentro de un archivo o un registro.
- Se introducen, clasifican, consultan y analizan fácilmente
- Bases de datos u hojas de cálculo relacionales

Datos no estructurados

- Carecen de organización
- Datos sin procesar
- Contenido formado por fotos, audio, video, sitios web, blogs, libros, diarios, informes técnicos, presentaciones de PowerPoint, artículos, correo electrónico, wikis, documentos de procesador de textos y texto en general.

Datos almacenados y datos en movimiento

Datos almacenados

- Datos almacenados en una ubicación física, como una unidad de disco duro en un servidor o dentro de un centro de datos
- Siguen el flujo de análisis tradicional:
 Almacenar > Analizar > Notificar > Actuar

Datos en movimiento

- Son datos dinámicos que requieren procesamiento en tiempo real antes de que se transformen en irrelevantes u obsoletos
- El análisis y la acción se producen más temprano que tarde
- El flujo de análisis de los datos es: Analizar >
 Actuar > Notificar > Almacenar

1.3 La evolución hacia los datos masivos

Administración de datos masivos

La evolución hacia los datos masivos

Infraestructura tradicional a la de datos masivos

- Servidores de bases de datos y herramientas de procesamiento de datos tradicionales
- Sistemas de datos distribuidos en recursos independientes conectados horizontalmente, a fin de lograr la escalabilidad necesaria para el procesamiento eficiente de conjuntos de datos extensos
- Soluciones de computación in situ y en la nube

Sistema de administración de base de datos tradicional

Infraestructura de datos de gran tamaño

Administración de datos masivos

Tecnologías de administración de datos básicas

- Base de datos de archivo plano: almacena los registros en un solo archivo sin estructura jerárquica, como una hoja de cálculo
- Base de datos relacional: captura las relaciones entre diferentes conjuntos de datos, lo que crea información más útil

Administración de datos masivos

Tecnologías de administración de datos básicas

- El sistema de administración de bases de datos relacional es la tecnología de bases de datos predominante, imbatible durante más de 30 años
- El análisis de datos masivos se vuelve cada vez más difícil de administrar con un sistema de administración de bases de datos relacionales (RDBMS)
- Hadoop Distributed File System (HDFS) es un sistema de archivos distribuido con tolerancia a fallas que se creó para manejar grandes volúmenes de datos
- Estructura de base de datos NoSQL creada para acelerar y simplificar el diseño de bases de datos Satisface las demandas de las aplicaciones web
- SQLite: motor de bases de datos SQL simple y fácil de usar; es la base de datos más usada del mundo

resentation_ID ación confidencial de Cisco 23

1.4 Resumen

Resumen del capítulo

Resumen

- Los datos pueden ser palabras en un libro, el contenido de una hoja de cálculo, fotos, archivos o flujos de mediciones enviadas desde un dispositivo.
- El crecimiento de datos puede ser lineal y exponencial. El exponencial implica un incremento más drástico.
- Las cuatro V de los datos masivos son: volumen, velocidad, variedad y veracidad.
- Los datos estructurados son los que se introducen en campos fijos dentro de un archivo o un registro. Los datos no estructurados no tienen un esquema fijo que identifique el tipo de datos.
- Los datos almacenados son datos estáticos almacenados en una ubicación física.
- Los datos en movimiento analizan y extraen valor de los datos antes de almacenarse.
- Una base de datos de archivo plano es como una hoja de cálculo que almacena los registros en un solo archivo sin estructura jerárquica.
- Una base de datos relacional captura las relaciones entre distintos conjuntos de datos y puede proporcionar información más útil.

Resumen

- Hadoop se creó para manejar volúmenes de datos masivos.
- Una base de datos NoSQL almacena y accede a los datos de manera diferente que las bases de datos relacionales.
- SQLite es un motor de bases de datos SQL simple y fácil de usar; es la base de datos más usada del mundo.

. | | 1 . 1 | 1 . CISCO