Discrete Mathematics-Honors

Neo Wang Lecturer: Isil Dilig

Last Updated: August 30, 2022

1 Chapter 1

1.1 Predicate Logic

1.1.1 Lecture 1-August 23, 2022

There are three basic logical connectives: **and**, **or**, **not** which are denoted by \land , \lor , and \neg respectively. The negation of a proposition p, written $\neg p$, is true if p is false and false if p is true.

Example

"Less than 80 students are enrolled in CS311H" is a proposition. The negation of this is at least 80 students are in CS311H

Conjunction of two propositions p and q is written $p \wedge q$

2 Example

The conjunction of p = "It is Tuesday" and q = "it is morning" is $p \land q$ = "It is Tuesday and it is morning"

- Disjunction is written $p \lor q$ and the disjunction between $p \lor q$ for p = "It is Tuesday" and q = "it is morning" is $p \lor q =$ "It is Tuesday or it is morning"
- If your formula has n variables then your truth table has n + 1 columns because you have n variables and one column for the truth value of the formula.
- The number of rows is given by the formula 2^n
- Other connectives: exclusive or \oplus , implication \rightarrow , biconditional \leftrightarrow

1.1.2 Lecture 2-August 25, 2022

Let p = ``I major in CS'', q = ``I will find a good job'', r = ``I can program''

- "I will not find a good job unless I major in CS or I can program": $(\neg p \land \neg r) \rightarrow \neg q$
- "I will not find a good job unless I major in CS and I can program": $(\neg p \lor \neg r) \to \neg q$
- The inverse of an implication p → q is ¬p → ¬q. Therefore, "If I'm a CS major then I can program" has an inverse of "If I am not a CS Major then I'm not able to program."
- The **converse** of an implication $p \to q$ is $q \to p$.

Definition (Contrapositive)

The contrapositive of an implication of $p \to q$ is $\neg q \to \neg p$

The contrapositive of "if CS major then I can program" is "if I can't program, then I'm not a CS major"

p	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$
T	T	T	T
T	F	F	F
F	Т	T	T
F	F	T	T
	T F	T T T F T T	T T T T T T F F T T

A converse and it's inverse are always the same.

4 **Definition** (Biconditionals)

$$p \leftrightarrow q = p \rightarrow q \land q \rightarrow p = \neg(p \oplus q)$$

Example (Operator precedence)

Given a formula $p \land q \lor r$ do we parse this as $(p \land q) \lor r$ or $p \land (q \lor r)$?

- 1. Negation ¬ has the highest precedence
- 2. Conjunction (\wedge) has the next highest precedence
- 3. Disjunction (V) has the next highest precedence
- 4. Implication (\rightarrow) has the next highest precedence
- 5. Biconditional (\leftrightarrow) has the lowest precedence
- 6. Make sure to explicitly use parentheses for \oplus

1.2 Validity and Satisfiability

Validity and satisfiability

- The truth value depends on truth assigments to variables
- Example: $\neg p$ evaluates to true under the assignment p = F and to false under p = T
- Some formulas evaluate to true for all assignments—these are called **tautologies** or **valid formulas**
- Some formulas evaluate to false for all assignments-these are called **contradictions** or **unsatisfiable formulas**

6 **Definition** (Interpretation)

An interpretation I for a formula F is a mapping from each propositional value to exactly one truth value.

$$I: \{p \mapsto \text{true}, q \mapsto \text{false}, \dots, \}$$

Each interpretation corresponds to one row in the truth table so there are 2^n interpretations for a formula with n variables.

If the formula is true under interpretation *I* then we write $I \models F$ and if the formula is false then we write $I \not\models F$.

Theorem: $I \models F$ if and only if $I \not\models \neg F$.

7 Example

Consider the formula $F: p \land q \rightarrow \neg p \land \neg q$

Let I_1 be the interpretation such that $[p \mapsto \text{true}, q \mapsto \text{true}]$

What does F evaluate to under I_1 ? Answer: true

Example

Let F_1 and F_2 be two propositional formulas. Suppose F_1 is true under I. Then, $F_2 \neg F_1$ evaluates to false under I (the "and" shortcuts and forces the whole equation to be false).

Satisfiability, Validy

- *F* is **satisfiable** iff there exists interpretation $I|I \models F$
- *F* is **valid** iff for all interpretations $I, I \models F$
- *F* is **unsatisfiable** iff for all interpretations $I, I \not\models F$
- *F* is **contingent** if it is satisfiable, but not valid.

Example (Are the following statements true of false?)

- If a formula is valid, then it is also satisfiable? True. All interpretations are satisfiable.
- If a formula is satisfiable, then its negation is unsatisfiable. False.
- If F_1 and F_2 are satisfiable, then $F_1 \wedge F_2$ is also satisfiable. False.
- If F_1 and F_2 are satisfiable, then $F_1 \vee F_2$ is also satisfiable. True.

Theorem (Duality Between Validity and Unsatisfiability)

F is valid iff $\neg F$ is unsatisfiable.

Proof. Definition: F is valid iff for all interpretations $I, I \models F$

Theorem: $I \models F \leftrightarrow I \not\models \neg F$

This is very easy to prove: just map all outputs of F to true.

Question: How can we prove that a propositional formula is a tautology is true?

Answer: We can use the **truth table method** and prove that the formula is true for all possible truth assignments.

Example (Tautology)

 $(p \to q) \leftrightarrow (\neg q \to \neg p)$ is a tautology.

 $(p \land q) \lor \neg p$ is not a tautology.

1.2.1 Lecture-August 30, 2022

Implication: Formula F_1 implies F_2 (written $F_1 \implies F_2$) iff $\forall I, I \models F_1 \rightarrow F_2$

12 Example (Implication Removal)

Is $(p \land q) \rightarrow p$ true? False. Let p = F, q = T

p	q	$p \rightarrow q$	$\neg p \lor q$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T

Definition (Implication Removal)

13

 $p \to q$ is equivalent to $\neg p \lor q$

Important equivalences

• Law of double negation: $\neg \neg p \equiv p$

• Identity laws:
$$p \wedge T \equiv p, p \vee F \equiv F$$

• Domination Laws: $p \lor T \equiv T, p \land F \equiv p$

• Idempotent Laws:
$$p \land p \equiv p, p \lor p \equiv p$$

• Negation Laws: $p \land \neg p \equiv F, p \lor \neg p \equiv T$

Note (Commutativity and Distributivity Laws)

• Commutative Laws: $p \lor q \equiv q \lor p$, $p \land q \equiv q \land p$

• Distributivity Law 1:
$$(p \lor (q \land r)) \equiv ((p \lor q) \land (p \lor r))$$

• Distributivity Law 2: $(p \land (q \lor r)) \equiv ((p \land q) \lor (p \land r))$

· Associativity Laws:

$$p \vee (q \vee r) \equiv (p \vee q) \vee r$$

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

• Absorption 1: $p \land (p \lor q) \equiv p$

• Absorption 2: $p \lor (p \land q) \equiv p$

Definition (De Morgan's Laws)

Let a = "John took CS311" and b = "John took CS312". What does $\neg(a \land b)$ mean? It means "John did not take both CS311 and CS312". Therefore, John didn't take either CS311 or CS312.

$$\neg(a \land b) \equiv \neg a \lor \neg b$$

Example (Prove
$$\neg (p \land (\neg p \land q)) \equiv \neg p \land \neg q)$$

p	$\neg p$	q	$p \wedge (\neg p \wedge q)$	$\neg(p \land (\neg p \land q))$
T	F	T	T	F
T	F	F	F	T
F	T	T	F	T
F	T	F	F	T

Example

17

15

If Jill carries an umbrella, it is raining. Jill is not carrying an umbrella. Therefore, it is not raining.

$$((u \to r) \land (\neg u)) \to \neg r$$

This can be counter-modeled with r = true, u = false.

1.3 First Order Logic

- The building blocks of propositional logic were propositions
- In first-ordre logic there are three kinds of basic building blocks: constants, variables, predicates.
- · Constants: refer to specific objects
- Examples: George, 6, Austin, CS311, ...
- If a universe of discourse is cities in Texas, x can represent Houston, Houston, etc.

- **Predicates** describe properties of objects or relationships between objects.
- A predicate P(c) is true or false depending on whether property P holds for c.
- The truth value of even(2) = true
- Another example: Suppose Q(x, y) denotes x = y + 3 what is the value of Q(3, 0)? true