Bellwork 9/6

Find the slope of the tangent line to $f(x) = x^2$ at (-2,4) by approximating with secant lines.

Bellwork 9/6 - Solutions

$$P = (-2, 4), \ Q = (x, x^2)$$

$$m_{PQ} = \frac{x^2 - 4}{x - (-2)}$$

 \implies The slope of the tangent line to f at (-2,4) is $\boxed{-4}$.

Exercise 1

If a rock is thrown upward on the planet Mars with a velocity of $10 \frac{m}{s}$, its height in meters t seconds later is given by $y = 10t - 1.86t^2$.

- Find the average velocity over the given time intervals:
 - **1** [1, 1.1]

2 [1, 1.01]

- **3** [1, 1.001]
- ② Estimate the instantaneous velocity when t = 1.

Exercise 1 - Solutions

 $0.2614 \frac{m}{s}$

3 $6.27814 \frac{m}{s}$

Exercise 2

The table below shows the position of a motorcyclist after accelerating from rest.

t (seconds)	0	1	2	3	4	5	6
s (feet)	0	4.9	20.6	46.5	79.2	124.8	176.7

- Find the average velocity for each time period:

 - **1** [2,4] **2** [3,4] **3** [4,5]

- **4** [4, 6]
- ② Use the graph of s as a function of t to estimate the instantaneous velocity when t = 3.

Exercise 2 - Solutions

- **1 29**.3 $\frac{ft}{s}$
- 2 $32.7\frac{ft}{s}$
- 3 45.6 $\frac{ft}{s}$
- 48.75 $\frac{ft}{s}$

29.68 $\frac{ft}{s}$