Sistemas Computacionais Distribuídos

Prof. Marcos José Santana SSC-ICMC-USP

Grupo de Sistemas Distribuídos e Programação Concorrente

Departamento de Sistemas de Computação - SSC

Sistemas Computacionais Distribuídos

14a. Aula

Escalonamento de Processos em Sistemas Distribuídos

Conteúdo

- Introdução
- Classificação dos Métodos de Escalonamento
 - Classificação Hierárquica
 - Classificação Plana
- Migração de Processos
 - Mecanismos e Políticas
 - Transparência, Custo e Arquiteturas Heterogêneas

Conteúdo

- Índices de Carga
- Algoritmos de Balanceamento de Carga
 - Classificação de Shivaratri
 - Classificação de Lüling
- Exemplos de Sistemas
 - Sprite, Condor e Charlotte
- Conclusões

Introdução

Balanceamento de Carga

Classificação Hierárquica

- Escalonamento Local
 - Distribuir processos em um único processador (time-slice)
- Escalonamento Global
 - Ambiente multiprocessado
 - Decidir em qual Elemento de Processamento (EP) um processo deve ser executado
 - Decisão centralizada
 - Decisão distribuída

- Escalonamento Global (cont.)
 - Escalonamento Estático
 - Decisão de escalonamento em tempo de compilação
 - Vantagem
 - Minimiza o tempo na execução do programa e os atrasos na comunicação
 - Desvantagens
 - Estimar, durante a compilação, os tempos de execução de uma tarefa e os atrasos na comunicação
 - Os métodos ignoram a distribuição dos dados
 - Dificuldade em obter o perfil de execução de um programa em uma dada arquitetura

- Escalonamento Global (cont.)
 - Escalonamento Dinâmico
 (Balanceamento de Carga Dinâmico)
 - Decisão de escalonamento em tempo de execução
 - Vantagem
 - Flexibilidade de adaptação às mudanças de carga
 - Desvantagem
 - Custo adicional de processamento
 - Escolha do processo e processador
 - Atrasos de comunicação na realocação da tarefa
 - Decisão de Balanceamento
 - Escalonamento Fisicamente Distribuído
 - Escalonamento Fisicamente Não-Distribuído

- Classificação Plana
 - Sistemas Adaptativos
 - Algoritmos adaptam-se dinamicamente
 - Sistemas Não-Adaptativos
 - Mesmo comportamento

- Sistemas Preemptivos (Migração de Processos)
 - Tarefas podem ser realocadas após terem iniciado sua execução
 - Difíceis de serem implementados
 - Suspender a tarefa
 - Reunir e transferir as informações sobre o estado da tarefa
 - Reiniciar a execução da tarefa no EP destino
- Sistemas Não-Preemptivos
 - Tarefas não podem ser realocadas após iniciarem sua execução

"Migração de Processos é a habilidade de mover a execução de um processo em qualquer momento, de uma determinada máquina (origem) para outra (destino)" [Chen96]

"Migração de Processos é a realocação de um programa em execução de uma máquina para outra" [Coulouris94]

Objetivos

- Melhorar o compartilhamento e a utilização dos recursos em sistemas distribuídos
- Facilitar a configuração e tolerância a falhas
- Reduzir o tráfego na rede

- A migração de processos deve considerar
 - Para onde e quando migrar quais processos
 - Como transferir o estado do processo
 - Definir tolerância a falhas
 - Fornecer transparência e confiabilidade
- Sistemas distribuídos fracamente acoplados
 - Estações de trabalho/servidor
 - Pool de processadores (multiprocessadores)

- Mecanismos de Migração
 - Podem estar implementados no kernel ou fora dele
 - Definem como a migração será efetuada
 - Coleta de informações sobre os processadores
 - Transferência de processos
 - Passos da migração
 - Suspender o processo
 - Transferir o estado do processo para o EP destino
 - Reiniciar a execução do processo no EP destino

- Transferência de Memória Virtual
 - Transferência Total da Memória Virtual
 - Problemas
 - Processo não executa durante a transferência
 - Nem todas as regiões de memória são utilizadas
 - Transferência com Pré-Cópia
 - Processo continua executando na máquina origem à medida que as informações vão sendo transmitidas para a máquina destino
 - Problemas
 - Páginas "sujas"
 - Não impede a transferência desnecessária de informações

- Transferência com Cópia por Referência
 - Processo e estados são transferidos
 - Páginas da memória virtual são transferidas à medida que são referenciadas
 - Problemas
 - Torna a execução do processo na máquina destino mais lenta.
 - Falta de páginas de memória
 - Dependências residuais
 - Problemas na máquina origem afetam a execução do processo

- Transferência com Cópia por Referência Melhorada
 - Versão melhorada da cópia por referência
 - Páginas da memória virtual são transferidas para o servidor de arquivos
 - Problema
 - Páginas de memória precisam ser copiadas duas vezes: servidor e máquina destino

- Políticas de Migração
 - Determinam como a migração é conduzida
 - Qual processo deve ser migrado
 - Para onde mover o processo
 - Quando mover o processo
 - Quem é responsável pelas decisões
 - Política de Transferência
 - Determina se um EP é um transmissor ou um receptor
 - Decisão tomada em função de valores-limites
 - \triangleright carga superior a um determinado limite \Rightarrow transmissor
 - \triangleright carga inferior a um determinado limite \Rightarrow receptor

- Política de Seleção
 - Responsável por selecionar as tarefas que devem migrar
 - Fatores a serem considerados
 - Sobrecarga causada na transferência deve ser mínima
 - Tempo de processamento deve compensar a sobrecarga de transferência
 - Número de chamadas do sistema dependentes da localização deve ser mínimo

- Política de Localização
 - Responsável por identificar para qual EP a tarefa deve migrar
 - Baseada em duas políticas gerais
 - Carga mínima: menor carga corrente
 - Carga baixa: carga abaixo de um valor limite
 - Descentralizada
 - Base aleatória, histórica ou vizinhos mais próximos
 - Centralizada
 - EP coordenador

- Política de Informação
 - Responsável por decidir
 - Quando coletar as informações
 - A partir de onde coletá-las
 - Quais informações coletar
 - Pode ser de três tipos
 - Dirigida por demanda
 - Periódica
 - Dirigida pela mudança de estado

- Transparência de Migração
 - Distribuir as tarefas sem afetar as operações dos usuários nem as demais aplicações
- Custo da Migração
 - Custo de selecionar EP destino + custo de transferir o estado do processo + custo de atualizar o ambiente no EP destino
 - Varia em função das características do sistema operacional distribuído

- Arquiteturas Heterogêneas
 - Processos devem reiniciar a partir do ponto em que foram interrompidos
 - Impõem custos adicionais à migração
 - Estados dos processos são diferentes
 - Requer a conversão dos dados
 - Theimer
 - Método por Recompilação
 - Programa de migração independente da máquina

Índices de Carga

- Quantificar o conceito de carga
- Principais características
 - Além das necessidades de CPU, considerar operações de E/S e memória dos processos
 - Deve refletir quantitativamente as estimativas qualitativas da carga no host
 - Deve ser capaz de prever a carga dos hosts em um futuro próximo
 - Deve ser relativamente estável
 - Deve haver um relacionamento entre o índice de carga e a performance do sistema

Índices de Carga

- Possíveis índices de carga
 - Tamanho da fila da CPU
 - Utilização da CPU
 - Tempo de resposta ou tempo de processamento das tarefas
 - Funções agregadas
- Ferrari
 - Estudo comparativo dos índices de carga
 - Melhores índices são os que se baseiam no tamanho da fila da CPU

- Classificação de Shivaratri
 - Algoritmos baseados nas políticas
 - Transferência, Seleção, Localização e Informação
 - Algoritmos Estáveis
 - Teoria das Filas
 - Instabilidade quando a taxa de chegada de tarefas é maior que a taxa de conclusão
 - Algoritmos de Distribuição
 - Instabilidade quando o algoritmo realiza operações improdutivas indefinidamente
 - Algoritmos Eficientes

- Algoritmos Iniciados pelo Transmissor
 - Política de Transferência
 - Baseada no tamanho da fila da CPU
 - Política de Seleção
 - Somente tarefas recentes
 - Política de Localização
 - Aleatória, Limite, Menor Limite
 - Política de Informação
 - Orientada à demanda
- Instáveis em altas cargas

Algoritmo Iniciado pelo Transmissor

- Algoritmos Iniciados pelo Receptor
 - Política de Transferência
 - Baseada no tamanho da fila da CPU
 - Política de Seleção
 - Considera todas as tarefas
 - Política de Localização
 - EP selecionado aleatoriamente e inspecionado
 - Política de Informação
 - Orientada à demanda

Algoritmo Iniciado pelo Receptor

- Algoritmos Iniciados Simetricamente
 - Cargas baixas
 - Transmissor procura um receptor
 - Cargas altas
 - Receptor procura por um transmissor
 - Herda as vantagens e desvantagens de ambas as estratégias

- Classificação de Lüling
 - Balanceamento em duas fases
 - Decisão
 - Local (vizinhos mais próximos)
 - Global (EPs de toda a rede)
 - Migração
 - Local (processadores vizinhos)
 - Global (qualquer processador)
 - Algoritmos iniciados pelo transmissor, receptor ou simétricos

Sprite

- Ambiente de estações de trabalho
 - Disponibilidade de recursos para seus donos
- Política de informação centralizada e dirigida pela mudança de estado
- Política de localização centralizada
- Política de seleção basicamente manual
 - O usuário escolhe as tarefas para serem executadas remotamente
- Política de transferência semi-automática
 - Tarefas externas transferidas automaticamente

Condor

- Ambiente de estações de trabalho
 - Disponibilidade de recursos para seus donos
- Política de seleção e transferência similares às do Sprite
 - Transferências iniciadas manualmente pelo usuário
- Política de informação periódica
- Política de localização centralizada

Charlotte

- Política de migração determinada por um processo iniciador (starter)
 - Coleta de informações
 - Transferência de processos
- Iniciador controla um subconjunto de EPs
 - Migração de processos
 - Atualização de informações de carga
- Fases da transferência de processos
 - Negociação
 - Transferência
 - Estabelecimento do processo migrado

AMIGO: dynAMical flexIble schedulin(EnvirOnment (AMIGO)

- Se baseia em um escalonador mestre e vários processos daemons(2 camadas)
- Aplicações paralelas/distribuídas não precisam ser modificadas ou adaptadas
- Opera conjuntamente com PVM, MPI ou CORBA

Conclusões

- Escalonamento e Balanceamento de Carga
 - Caros e difíceis de serem implementados
 - Ferramentas eficientes e capazes de tornar o balanceamento fácil e adaptável às diversas plataformas
- Migração de Processos
 - Melhorar o desempenho
 - Tolerância a falhas
 - Compartilhamento de recursos

Conclusões

- Tendências
 - Definir medidas efetivas de índices de carga
 - Estabelecer uma organização hierárquica de sistemas
 - Distribuição de carga local
 - Políticas de balanceamento de carga local
 - Incorporar ferramentas aos sistemas distribuídos
 - Diferentes políticas de balanceamento
 - Adaptáveis a