

IK2215 Advanced Internetworking

Lecture 4—Multicast Markus Hidell

Contents

Kurose & Ross: not covered in 7th edition, not much covered in 6th edition

IP Multicast Applications

Unicast is point-to-point

But many applications relay the same information to many receivers

Examples:

- Video conferenceing
- Internet radio, tv distribution
- Distribution of control information
- Distributed games

IP Multicast: Abstraction of HW Multicast

The Internet abstraction of hardware multicasting

Prime architect: Steve Deering

Group addresses (class D)

Exploits multicast-capable networking hardware if available

Best-effort delivery semantics

Receiver-based multicast:

- Senders send to any group
- Receivers join groups

Dynamic group membership

Hosts leave and join groups dynamically

IP Multicast Service Model

2. Host-to router protocol:

- 1. Hardware/Link-level Multicast
 - Ethernet

- 3. Multicast Routing Protocols
- PIM, CBT, DVMRP, MOSPF, MBGP,...

IP Multicast Addresses

IP-multicast addresses, class D addresses (binary prefix: 1110)

224.0.0.0 - 239.255.255.255

28 bit multicast group id

Selected addresses reserved by IANA for special purposes:

Address	Description
224.0.0.0 - 224.0.0.255	Local Network Control Block (dont forward)
224.0.0.1	All Systems on this subnet
224.0.0.2	All Routers on this subnet
224.0.0.4	DVMRP Routers
224.0.0.9	RIP Routers
224.0.1.0 - 238.255.255.255	Global Scope
239.0.0.0-239.255.255.255	Limited Scope
239.253.0.0/16	Scope restricted to one site
239.192.0.0/16	Scope restricted to one organization

6

Link-level/Hardware Multicast

Ethernet—good example of hardware multicast

- Most Ethernet NICs support multicast
 - NIC: Network Interface Card

Ethernet multicast addresses:

The low order bit of the high order byte is 1:

```
*1:**:**:**:**
```

Many NICs on the same network may listen to the same Ethernet multicast address

Other Link-level layers may not support multicast

- E.g., ATM, Frame Relay, X25
- But multicast can still be implemented over these

Mapping IP Multicast to Ethernet

To use HW multicast on a LAN, the *IP multicast address* is translated to an *Ethernet multicast address*.

How is this done?

The 23 low order bits of the IP multicast address placed in the 23 low order bits of the Ethernet MAC address:

```
01:00:5E:00:00:00
```

Example, IP multicast address 227.141.54.33 (0xE38D3621):

```
0xD3621 into 01:00:5E:00:00:00 \rightarrow 01:00:5E:0D:36:21
```

IP to Ethernet multicast address mapping is *not unique!*

- 32:1 overlap
- IP may receive multicast despite the lack of receiving process
- IP-layer must be able to do filtering (based on IP multicast address)

IGMP—Internet Group Management Protocol

Group membership communication between hosts and multicast routers

- Not for routing of multicast packets
 IGMP enables routers to maintain group members to each router interface
- Without IGMP, routers would have to broadcast all multicast packets
 Internet Group Management Protocol RFC 1112
- version 1 RFC 1112 (Historic)
 - Query from router and response from host
- version 2 RFC 2236
 - Leave group by host
- version 3 RFC 3376 (not very common)
 - Source filtering

Position of IGMP in TCP/IP

©The McGraw-Hill Companies, Inc., 2000

Part of the network layer

- Encapsulated in IP (like ICMP)
- IGMP messages always addressed to a multicast address
- often all systems (224.0.0.1), all routers (224.0.0.2)
- or to a specific multicast group

IGMPv2 Messages

General membership query

- Sent regularly by routers to query all membership
 Specific membership query
- Sent by routers to query specific group membership Membership report
- Sent by hosts to report joined groups
 Leave group
- Sent by hosts to leave groups

Host Behaviour

A process joins a multicast group on a given interface

- Host sends IGMP report to group address when first process joins a group.
 - Host keeps a table of all groups which have a reference count > 0
- Host sends IGMP Leave to 224.0.0.2 when last process leaves group
 - In IGMPv1 hosts did not send explicit leaves
- Router sends IGMP queries to 224.0.0.1 at regular intervals.
 - general query: group = 0.0.0.0
 - specific group query: group = multicast address of the group
- Host responds to IGMP query by sending IGMP report to group address
 - Hosts snoop for other hosts' reports
 - Set random timer → Suppress if other host on same segment sends it

Dynamics of IGMP Messages

IGMPv3

Allows selection of senders—not only groups

- Enables: Source specific multicast
 A host can join a group and specific sender:
- (S, G) not only (*, G)

This may allow for pruning of certain senders IGMPv3 is not commonly deployed

Multicast Router

Listens to all multicast traffic and forwards if necessary. Multicast router listens to *all* multicast addresses.

- Ethernet: 2²³ link layer multicast addresses
- Listens promiscuously to all LAN multicast traffic
 Communicates with directly connected hosts via IGMP
 Communicates with other multicast routers with multicast routing protocols

Multicast Routing

A packet received on a router is forwarded on multiple interfaces
The *network* replicates the packets—not the hosts
Build a delivery tree through a network

Multicast vs Multiple Unicast

©The McGraw-Hill Companies, Inc., 2000

Delivery Trees

Source Based Trees

- Each router needs to have one shortest path tree for each group
- Notation: (S, G)
- Uses more memory (O(S*G)), but can give optimal paths and delay
 Group Shared Trees
- One router (center core or renedevous router) is responsible for distributing multicast traffic
- Other routers encapsulates multicast packets in unicast packets and send them to the rendevous point for multicast distribution
- Notation: (*, G)
- Uses less memory (O(G)) but suboptimal paths and delays

Multicast Routing Protocols

©The McGraw-Hill Companies, Inc., 2000

DVMRP

Distance-Vector Multicast Routing Protocol

- Based on unicast distance vector (e.g., RIP)
- Routers do not know network topology apart from closest neighbour
- Create multicast routing table by using information from the unicast distance vector tables
- Extend (Destination, Cost, Nexthop) → (Group, Cost, Nexthops)

DVMRP is data-driven and uses source-based trees DVMRP uses *Reverse Path Multicasting (RPM)*

RPM is best understood by looking at

Reverse Path Forwarding

Reverse Path Forwarding (RPF)

Forward a multicast datagram only if it arrives on the interface that would be used to send unicast to the source

- Send out on all other interfaces
- Flooding!

Make a lookup of the source address in the FIB!

Reverse Path Forwarding

Reverse Path Multicasting (RPM)

RPF leads to duplicates and flooding

RPM refines RPF as follows

Only designated parent router may forward multicast packets from a source to a link

Removes duplicates

Flooding (Build the tree)

First packet broadcast to every network

Pruning (Cut the tree)

- Prune networks that do not have members
- IGMP leave (or timeout)
- Propagate prune messages up the shortest path tree.

Grafting (Add a branch to the tree)

- Add a network with a listener
- IGMP join
- Propagate graft messages up the shortest path tree.

RPM Pruning Example

Link-State Multicast: MOSPF

Add multicast to a given link-state routing protocol

MOSPF

Uses the multiprotocol facility in OSPF to carry multicast information

Extend LSAs with group-membership LSA

Only containing members of a group

Uses the link-state database in OSPF to build delivery trees

- Every router knows the topology of the complete network
- Least-cost source-based trees using metrics
- One tree for all (S,G) pairs with S as source

Expensive to keep all this information

- Cache active (S,G) pairs
- MOSPF is Data-driven: computes Dijkstra when datagram arrives

Link-State Multicast Example: Shortest Path Delivery Trees

Member

Core Based Tree—CBT

CBT—Core Based Trees
Group shared multicast trees—(*, G)
Demand-driven

Routers send join messages when hosts join groups
 Divide the Internet into regions where each region has a core router

When a host joins a multicast group the nearest multicast router attaches to the forwarding tree by sending a join request towards its core router

Multicast datagrams to the core router are encapsulated in unicast datagrams

Shared Multicast Tree

Protocol Independent Multicasting—PIM

PIM-DM (dense mode)

- For dense multicast environment, like a LAN
- Uses RPF and pruning/grafting strategies—similar to DVMRP
 - Source-based tree
- Does not depend on a specific unicast protocol
- Relies on (any) correct unicast routing tables PIM-SM (sparse mode)
- For non-broadcast environment (routers involved)
- Demand driven similar to CBT
 - uses rendezvous points (RPs) instead of core routers
- Extends CBT in that a router may know of more than one rendez-vous point
- Can build both shared and source distribution trees.

MSDP

Multicast Source Discovery Protocol Interconnects multiple PIM-SM domains

- Enables rendevous-point (RP) redundancy
- Enables inter-domain multicasting

Tunnels can be configured between RPs in various domains

- RPs speak MSDP to each other
- Enough tunnels so that we have connectivity even when an RP fails

Drawbacks:

- Scaling problem—many (S,G) pairs can be active in the Internet
 - Info must be passed about all these pairs
- Configuration-intensive (many tunnels needed)

MBGP

Solves part of the inter-domain problem Standard BGP configuration facilities

- Extends the BGP multiprotocol attributes
- Exchange multicast routing information
- Policies, capabilities,

Must still use, for example, PIM to build distribution trees and forward multicast traffic

Tunneling

All routers need not be multicast enabled - does this mean that we cannot reach all hosts that want to join a multicast group on the Internet?

- No, because we can use tunneling over non-multicast enabled sub-nets
- cf VPN, IPv6

This is the way the MBONE – the Multicast BackBONE is constructed

Islands of multicast enabled routers interconnected by tunnels

Deployment

Multicast routing is in general *not* deployed in current networks

Some sites (e.g., metroplitan area networks) have deployed local multicast delivery

Cable TV distribution

IP multicast is slowly gaining acceptance

Summary: IP Multicast

Multicast routing uses network resources more efficiently than unicast emulation

IP multicast

- Receiver-based
- Best effort delivery

Multicast routing protocols

DVMRP, MOSPF. CBT, PIM, MBGP

Source-based trees vs shared group trees

Demand-driven vs Data-driven trees

Reverse Path Forwarding (RPF)

Reverse Path Multicasting (RPM)