ASSIGNMENT -3

Date	10 October 2022
Team ID	PNT2022TMID38667
Project Name	Project - Early Detection of Chronic Kidney Disease using Machine Learning
Maximum Marks	2 Marks

1. Download the dataset

	А	В	С	D	E	F	G	н	1
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	M	0.455	0.365	0.095	0.514	0.2245	0.101	0.15	1:
	M	0.35	0.265	0.09	0.2255	0.0995	0.0485	0.07	,
	F	0.53	0.42	0.135	0.677	0.2565	0.1415	0.21	
	М	0.44	0.365	0.125	0.516	0.2155	0.114	0.155	1
	<u> </u>	0.33	0.255	0.08	0.205	0.0895	0.0395	0.055	'
	<u> </u>	0.425	0.3	0.095	0.3515	0.141	0.0775	0.12	
	F	0.53	0.415	0.15	0.7775	0.237	0.1415	0.33	2
9	F	0.545	0.425	0.125	0.768	0.294	0.1495	0.26	1
10	М	0.475	0.37	0.125	0.5095	0.2165	0.1125	0.165	
	F	0.55	0.44	0.15	0.8945	0.3145	0.151	0.32	1
12	F	0.525	0.38	0.14	0.6065	0.194	0.1475	0.21	1
13	М	0.43	0.35	0.11	0.406	0.1675	0.081	0.135	1
14	М	0.49	0.38	0.135	0.5415	0.2175	0.095	0.19	1
	F	0.535	0.405	0.145	0.6845	0.2725	0.171	0.205	1
16	F	0.47	0.355	0.1	0.4755	0.1675	0.0805	0.185	1
17	М	0.5	0.4	0.13	0.6645	0.258	0.133	0.24	1
18	1	0.355	0.28	0.085	0.2905	0.095	0.0395	0.115	
	F	0.44	0.34	0.1	0.451	0.188	0.087	0.13	1
20	М	0.365	0.295	0.08	0.2555	0.097	0.043	0.1	
21	М	0.45	0.32	0.1	0.381	0.1705	0.075	0.115	
22	М	0.355	0.28	0.095	0.2455	0.0955	0.062	0.075	1
23	ı	0.38	0.275	0.1	0.2255	0.08	0.049	0.085	1
24	F	0.565	0.44	0.155	0.9395	0.4275	0.214	0.27	1
25	F	0.55	0.415	0.135	0.7635	0.318	0.21	0.2	
26	F	0.615	0.48	0.165	1.1615	0.513	0.301	0.305	1
	F	0.56	0.44	0.14	0.9285	0.3825	0.188	0.3	1
28	F	0.58	0.45	0.185	0.9955	0.3945	0.272	0.285	1
29	М	0.59	0.445	0.14	0.931	0.356	0.234	0.28	1
30	М	0.605	0.475	0.18	0.9365	0.394	0.219	0.295	1
31	М	0.575	0.425	0.14	0.8635	0.393	0.227	0.2	1
32	М	0.58	0.47	0.165	0.9975	0.3935	0.242	0.33	1
33	F	0.68	0.56	0.165	1.639	0.6055	0.2805	0.46	1
34	М	0.665	0.525	0.165	1.338	0.5515	0.3575	0.35	1
35	F	0.68	0.55	0.175	1.798	0.815	0.3925	0.455	1
36	F	0.705	0.55	0.2	1.7095	0.633	0.4115	0.49	1
	М	0.465	0.355	0.105	0.4795	0.227	0.124	0.125	
38	F	0.54	0.475	0.155	1.217	0.5305	0.3075	0.34	1
39	F	0.45	0.355	0.105	0.5225	0.237	0.1165	0.145	
40	F	0.575	0.445	0.135	0.883	0.381	0.2035	0.26	1
41	M	0.355	0.29	0.09	0.3275	0.134	0.086	0.09	
42	F	0.45	0.335	0.105	0.425	0.1865	0.091	0.115	

2.Load the dataset

```
In [3]: ##import required libraries
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         warnings.filterwarnings("ignore")
In [6]: ## 2.load the dataset
         data = pd.read_csv('abalone.csv')
         data.head()
Out[6]:
             Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings
                   0.455
                            0.365
                                                                            0.1010
                                                                                         0.150
                                                                                                  15
              М
                                   0.095
                                               0.5140
                                                              0.2245
                                                                                                   7
                   0.350
                            0.265
                                   0.090
                                               0.2255
                                                              0.0995
                                                                            0.0485
                                                                                         0.070
              М
                   0.530
                                                              0.2565
                                                                                         0.210
                                                                                                   9
                            0.420
                                   0.135
                                               0.6770
                                                                            0.1415
                   0.440
                            0.365
                                   0.125
                                               0.5160
                                                              0.2155
                                                                            0.1140
                                                                                         0.155
                                                                                                  10
                   0.330
                            0.255
                                   0.080
                                               0.2050
                                                              0.0895
                                                                            0.0395
                                                                                         0.055
                                                                                                   7
```

3. Perform Below Visualization

• Univariate Analysis

```
In [7]: ##3i.univariate analysis

df=pd.read_csv('abalone.csv')
 df.head()
 sns.displot(df.Length)
```

Out[7]: <seaborn.axisgrid.FacetGrid at 0x25d097d4700>

• Bi - Variate Analysis

• Multi - Variate Analysis

4. Perform descriptive statistics on the dataset

	data.d	lescribe()							
Out[11]:		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
	mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
	std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
	min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
	25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
	50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
	75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
	max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

5. Handle the missing values

```
In [12]: ## 5.missing values
data.isnull().any()

Out[12]: Sex False
Length False
Diameter False
Height False
Whole weight False
Shucked weight False
Viscera weight False
Shell weight False
Shell weight False
Rings False
dtype: bool
```

6. Find the outliers and replace the outliers

```
In [13]: ## 6.find the outlier
           df=pd.read_csv('abalone.csv')
           df.head()
           Q1=df.Length.quantile(0.25)
           Q3=df.Length.quantile(0.75)
           Q1,Q3
Out[13]: (0.45, 0.615)
In [14]: ## 6.replace the outlier
           df=pd.read_csv('abalone.csv')
           df.head()
Q1=df.Length.quantile(0.25)
           Q3=df.Length.quantile(0.75)
           Q1,Q3
           IQR=Q3-Q1
          lower_limit = Q1-1.5*IQR
upper_limit = Q3+1.5*IQR
lower_limit,upper_limit
df_no_outlier = df[(df.Length>lower_limit)&(df.Length<upper_limit)]
df_no_outlier</pre>
Out[14]:
               Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings
           0 M 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.1500 15
              1 M 0.350 0.265 0.090 0.2255
                                                                     0.0995
                                                                                     0.0485
                                                                                                   0.0700

        2
        F
        0.530
        0.420
        0.135
        0.6770
        0.2565
        0.1415
        0.2100

        3
        M
        0.440
        0.365
        0.125
        0.5160
        0.2155
        0.1140
        0.1550

        4
        I
        0.330
        0.255
        0.080
        0.2050
        0.0895
        0.0395
        0.0550

                                                                                                            9
                                                                                                              10
                                                                                                  0.0550 7
            4172 F 0.565 0.450 0.165 0.8870 0.3700 0.2390
                                                                                                  0.2490 11
            4173 M 0.590 0.440 0.135 0.9660 0.4390 0.2145
                                                                                                   0.2605
            4174 M 0.600 0.475 0.205 1.1760 0.5255 0.2875
                                                                                                  0.3080 9
            4175 F 0.625 0.485 0.150 1.0945 0.5310 0.2610
                                                                                                  0.2960 10
            4176 M 0.710 0.555 0.195 1.9485 0.9455 0.3765 0.4950 12
           4128 rows x 9 columns
```

7. Check for categorical columns and perform encoding

```
In [16]: ## 7.categorical columns encoding
       from sklearn.preprocessing import LabelEncoder
       data=pd.read_csv('abalone.csv')
       le=LabelEncoder()
       data.Gender=le.fit_transform(df.Length)
       data.Geographyr=le.fit_transform(df.Diameter)
      data.head()
       Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings
       1 M 0.350 0.265 0.090
                               0.2255
                                        0.0995
                                                   0.0485
                                                            0.070
       2 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 9
       3 M 0.440 0.365 0.125 0.5160 0.2155
                                                   0.1140 0.155 10
       4 I 0.330 0.255 0.080 0.2050 0.0895 0.0395 0.055 7
```

8. Split the data into dependent and independent variables

```
In [17]: ## 8.independent variable-x
x = data.drop("Rings",axis = 1)
         y = data["Rings"]
Out[17]:
           Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight
          0 M 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.1500
            1 M 0.350 0.265 0.090 0.2255
                                                          0.0995
                                                                       0.0485
                                                                                    0.0700
                                                                                   0.2100
            2 F 0.530 0.420 0.135 0.6770 0.2565 0.1415

        3
        M
        0.440
        0.365
        0.125
        0.5160
        0.2155
        0.1140
        0.1550

        4
        I
        0.330
        0.255
        0.080
        0.2050
        0.0895
        0.0395
        0.0395
        0.0550

          4172 F 0.565 0.450 0.165 0.8870 0.3700 0.2390 0.2490
          4173 M 0.590 0.440 0.135 0.9660 0.4390 0.2145 0.2605
          4174 M 0.600 0.475 0.205 1.1760 0.5255 0.2875 0.3080
          4175 F 0.625 0.485 0.150 1.0945 0.5310 0.2610
                                                                                    0.2960
          4176 M 0.710 0.555 0.195 1.9485 0.9455 0.3765 0.4950
         4177 rows × 8 columns
```

9. Scale the independent variables

10. Split the data into training and testing

- 11.Build the model
- 12. Train the model
- 13.Test the model

Build the model

```
In [61]: logreg = LogisticRegression()
```

Train and Test the model

```
In [53]: y_pred = logreg.predict(X_test)
print('Accuracy of logistic regression classifier on test set: {:.3f}'. format(logreg.score (X_test, y_test)))
```

Accuracy of logistic regression classifier on test set: 0.261

Measure the performance using metrics

14. Measure the performance

```
In [55]: from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
4	0.00	0.00	0.00	9
5	0.22	0.09	0.12	23
6	0.23	0.20	0.21	46
7	0.27	0.43	0.33	74
8	0.30	0.37	0.33	115
9	0.32	0.49	0.39	143
10	0.23	0.39	0.29	119
11	0.16	0.17	0.16	90
12	0.00	0.00	0.00	62
13	0.00	0.00	0.00	49
14	0.00	0.00	0.00	32
15	0.00	0.00	0.00	14
16	0.00	0.00	0.00	14
17	0.00	0.00	0.00	12
18	0.00	0.00	0.00	9
19	0.00	0.00	0.00	9
20	0.00	0.00	0.00	5
21	0.00	0.00	0.00	4
22	0.00	0.00	0.00	1
23	0.00	0.00	0.00	4
26	0.00	0.00	0.00	1
27	0.00	0.00	0.00	1
accuracy			0.26	836
macro avg	0.08	0.10	0.08	836
weighted avg	0.19	0.26	0.21	836