- 1. Let NS(A) denote the null space of matrix A and CS(A) denote the column space of matrix A. If A is an $m \times n$ matrix and B is an $n \times l$ matrix, prove
- (a) $NS(B) \subseteq NS(AB)$ (5%)
- (b) $CS(AB) \subseteq CS(A)$ (5%)
- 2. Let V and W be vector spaces, and let $T:V\to W$ be a linear transformation. If U is a subspace of V and $T(U)=\{T(x)|x\in U\}$ prove that T(U) is a subspace of W. (10%)
- 3. If $\{v_1, \dots, v_k\}$ is linearly independent and v_{k+1} is not in the span of $\{v_1, \dots, v_k\}$ prove that $\{v_1, \dots, v_k, v_{k+1}\}$ is still linear independent. (10%)
- 4. Let V be the vector space of all 2×2 matrices, and W_1 and W_2 be the subspace of V defined by

$$W_1 = \left\{ \begin{bmatrix} a & -a \\ b & c \end{bmatrix} | a, b, c \in R \right\} \qquad W_2 = \left\{ \begin{bmatrix} x & y \\ -x & z \end{bmatrix} | x, y, z \in R \right\}$$

Find dim $(W_1 \cap W_2)$ and dim $(W_1 + W_2)$. (10%)

5. Let

$$A = \begin{bmatrix} 1 & 2 & -5 & 11 & -3 \\ 2 & 4 & -5 & 15 & 2 \\ 1 & 2 & 0 & 4 & 5 \\ 3 & 6 & -5 & 19 & -2 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 0 & 4 & 5 \\ 0 & 0 & 5 & -7 & 8 \\ 0 & 0 & 0 & 0 & -9 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

If we know that A is row equivalent to B, find bases for NS(A) and CS(A). (10%)

6. Let $\{e_1, e_2, e_3, e_4\}$ be the standard basis for \mathbb{R}^4 . If $T: \mathbb{R}^4 \to \mathbb{R}^3$ is a linear transformation for which

$$T(e_1) = (1, 2, 1),$$
 $T(e_2) = (0, 1, 0),$
 $T(e_3) = (1, 3, 0),$ $T(e_4) = (1, 1, 1)$

(a) Find the rank of T. (5%) (b) Find the nullity of T. (5%)

- 7. Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3\}$ be bases for a vector space V, and suppose that $a_1 = 4b_1 b_2$, $a_2 = -b_1 + b_2 + b_3$, and $a_3 = b_2 2b_3$.
- (a) Find the change-of-coordinates (or transition) matrix from A to B. (5%)
- (b) Find $[x]_B$ for $x = 3a_1 + 4a_2 + a_3$. (5%)
- 8. Determine whether the function F is a linear transformation. (10%)
- (a) $F: \mathbb{R}^2 \to \mathbb{R}^2$ $F(x,y) = (x^2, y)$
- (b) $F: \mathbb{R}^3 \to \mathbb{R}^2$ F(x, y, z) = (3x 4y + 1, 2x 5z + 2)
- (c) $F: R^2 \to R^2$ $F(x,y) = (\cos(x) + \sin(y), \sin(x) \cos(y))$
- (d) $F: P_2 \to P_2$ $F(a_0 + a_1x + a_2x^2) = (a_0 + 1) + (a_1 + 1)x + (a_2 + 1)x^2$
- (e) $F: M_{22} \to R$

$$F(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = 3a - 4b + c - d$$

- 9. Let V be a nonzero finite-dimensional vector space, and v_1, \dots, v_p are vectors in V. Mark each statement true or false. (10%)
- (a) If there exists a set $\{v_1, \dots, v_p\}$ that spans V, then dim $V \leq p$.
- (b) If there exist a linearly independent set $\{v_1, \dots, v_p\}$ in V, then dim $V \geq p$.
- (c) If dim V = p, then there exist a spanning set of p + 1 vectors in V.
- (d) If there exist a linearly dependent set $\{v_1, \dots, v_p\}$ in V, then dim $V \leq p$.
- (e) If $p \ge 2$ and dim V = p, then every set of p 1 nonzero vectors is linearly independent.

10.

- (a) Find a basis for the set of vectors in the plane x + 2y + z = 0. (5%)
- (b) Show that the vector space of all continuous functions defined on the entire real line is infinite-dimensional. (5%)