

# UK Patent Application

(19) GB (11) 2 240 905 (13) A

(43) Date of A publication 14.08.1991

|                                                                                                                                                        |                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| (21) Application No 9102098.2                                                                                                                          | (51) INT CL <sup>5</sup><br>H04Q 1/30, H04J 3/12                                                               |
| (22) Date of filing 31.01.1991                                                                                                                         | (52) UK CL (Edition K)<br>H4K KAC KTA                                                                          |
| (30) Priority data<br>(31) 2009034      (32) 31.10.1990      (33) CA                                                                                   | (56) Documents cited<br><b>None</b>                                                                            |
| (71) Applicant<br><b>Mitel Corporation</b><br><br>(Incorporated in Canada - Ontario)<br><br>PO Box 13089, Kanata, Ontario, K2K 1X3,<br>Canada          | (58) Field of search<br>UK CL (Edition K) H4K KAB KAC KAM KAV KMC<br>KMX KTA<br>INT CL <sup>5</sup> H04J, H04Q |
| (72) Inventors<br><b>Michael J Gertman</b><br><b>Ross M MacGillivray</b>                                                                               |                                                                                                                |
| (74) Agent and/or Address for Service<br><b>John Orchard &amp; Co</b><br>Staple Inn Buildings North, High Holborn, London,<br>WC1V 7PZ, United Kingdom |                                                                                                                |

## (54) Telephone or data switching system with variable protocol inter-office communication

(57) A method of producing interoffice signalling comprising storing program blocks for commanding generation, in a plurality of signalling protocols, of signalling signals in a communication switching system, storing correlations of particular ones of the program blocks with a particular protocol for signalling functions related to the process of a call to or from the communication switching system, enabling operation of the particular ones of the program blocks when a particular signalling signal is to be generated in the processing of a telephone call to or from the communication switching system, to match the particular protocol, whereby the communication switching system is enabled to process calls restricted to the particular protocol out of the plurality of protocols for a particular call.

Best Available Copy

GB 2 240 905 A



FIG. I



FIG. 2



FIG. 3

| R2 SIGNAL STATE ASSIGNMENT            |                    |                  |            |                     |
|---------------------------------------|--------------------|------------------|------------|---------------------|
| REMARKS:<br>TYPE (INCOMING/OUTGOING): |                    |                  |            |                     |
| SIGNAL RECEIVED                       | RESPONSE TO SIGNAL |                  | NEXT STATE |                     |
|                                       | FIRST PROCEDURE    | SECOND PROCEDURE | NO.        | REMARKS             |
| 1                                     |                    |                  |            | / / / / / / / / / / |
| 2                                     |                    |                  |            | / / / / / / / / / / |
| 3                                     |                    |                  |            | / / / / / / / / / / |
| 4                                     |                    |                  |            | / / / / / / / / / / |
| 5                                     |                    |                  |            | / / / / / / / / / / |
| 6                                     |                    |                  |            | / / / / / / / / / / |
| 7                                     |                    |                  |            | / / / / / / / / / / |
| 8                                     |                    |                  |            | / / / / / / / / / / |
| 9                                     |                    |                  |            | / / / / / / / / / / |
| 10                                    |                    |                  |            | / / / / / / / / / / |
| 11                                    |                    |                  |            | / / / / / / / / / / |
| 12                                    |                    |                  |            | / / / / / / / / / / |
| 13                                    |                    |                  |            | / / / / / / / / / / |
| 14                                    |                    |                  |            | / / / / / / / / / / |
| 15                                    |                    |                  |            | / / / / / / / / / / |

FIG. 4

## R2 VARIANT ASSIGNMENT

## OUTGOING REGISTER PARAMETERS

Initial outgoing procedure : send\_first\_digit  
 Initial outgoing state . . . : Remarks : //////////////

## Calling Party Category Signals (1-15)

Coin collecting box. . . . .:  
 Data transmission. . . . .:  
 Operator trunk . . . . .:  
 Ordinary subscriber. . . . .:  
 Subscriber with priority . . . .:  
 Test equipment . . . . .:

## Exception Handling

|                                   |              |                          |
|-----------------------------------|--------------|--------------------------|
| CLI not available (1-15) . . . :  | Next state : | Remarks : ////////////// |
| No more CLI digits (1-15) . . . : | Next state : | Remarks : ////////////// |
| No more digits (1-15) . . . . .:  | Next state : | Remarks : ////////////// |

Outgoing Tone-On Timeout (1-60 seconds) . . . : 15  
 Outgoing Tone-Off Timeout (1-60 seconds). . . : 30

## INCOMING REGISTER PARAMETERS

Initial incoming state : Remarks : //////////////

## Digit Processing Request Signals (1-15)

Send next digit. . . . .:  
 Send first digit . . . . .:  
 Send last digit. . . . .:  
 Send last but 1. . . . .:  
 Send last but 2. . . . .:  
 Send last but 3. . . . .:

## Digit Processing Complete Handling

Called party status transfer mechanism  
 (CCITT, Immediate, None) : CCITT  
 Charge/setup speech (1-15) :  
 Congestion/no switch (1-15) :  
 Get caller category (1-15) : Next state : Remarks : //////////////

## Called Party Status Signals (1-15)

Access violation . . . . .:  
 Busy . . . . . . . . .:  
 Congestion . . . . . . . .:  
 DID trunk congestion . . . .:  
 DN in a parked state . . . .:  
 DN out of service. . . . .:  
 Free, charge . . . . .:  
 Free, no charge. . . . .:  
 Routed to intercept or RAD :  
Unassigned number. . . . .  
 User-defined exception 1 . . .:  
 User-defined exception 2 . . .:  
 User-defined exception 3 . . .:

Delay before starting pulsed signal (60-240 ms, 30 ms steps) . . . : 150  
 Pulsed signal duration (90-900 ms, 30 ms steps) . . . . . : 150  
 Pulsed signal receiver reconnect delay (90-900 ms, 30 ms steps) : 300  
 Pulsed return signal for first/inter-signal timer expiry (1-15) :

Figure 5

-1-

TELEPHONE OR DATA SWITCHING SYSTEM WITH VARIABLE PROTOCOL  
INTER-OFFICE COMMUNICATION

01  
02                 This invention relates to a telephone or  
03 data signal switching system and particularly to one  
04 which contains an adaptable protocol facility to  
05 provide different variants of an inter-office  
06 signalling protocol, such as R2 signalling, and to a  
07 method of providing the protocol.

08                 R2 signalling is a form of inter-switching  
09 office signalling which has been standardized by  
10 CCITT. This type of signalling uses dual tone  
11 multi-frequency (MF) signals, and is referred to as  
12 "compelled". In R2 signalling, an outgoing register  
13 of an originating switching office sends a first  
14 forward MF inter-register signal which is detected and  
15 recognized at a receiving office, which can be at the  
16 far end of a sequence of tandem switching offices.  
17 Upon recognizing the first forward inter-register  
18 signal, the receiving office sends a backward  
19 inter-register MF signal to the originating office,  
20 which has its own meaning and at the same time serves  
21 as an acknowledgment. This backward inter-register  
22 signal is detected and recognized at the originating  
23 office whereupon it sends the next forward  
24 inter-register signal to the receiving office. Again  
25 the receiving office sends a next backward  
26 inter-register signal to the originating office, and  
27 the back and forth communication continues until the  
28 last inter-register signal has been sent. The  
29 communication between switching offices is conducted  
30 between an outgoing register of the originating  
31 central office, via a trunk, to a similar incoming  
32 register at the receiving central office.

33                 The system of communication is referred to  
34 as "compelled" because the originating switching  
35 office transmits signals in response to backward  
36 signals provided by the receiving switching office.  
37 The compelled nature of the protocol gives the R2 form  
38 of signalling significant flexibility. This includes

01

- 2 -

02 not only the ability to transmit a variety of  
03 information, such as address signals, congestion  
04 signals, calling and called party status signals,  
05 etc., but also the ability to work end-to-end.  
06 End-to-end signalling is the ability to communicate  
07 directly with a far end incoming register, even if  
08 several intervening central offices have been used to  
09 route the call.

10 While the CCITT standard is usually used  
11 between international switching exchanges, numerous  
12 variants have been created for national use. Some of  
13 those variants have little in common with the CCITT R2  
14 protocol except for the signalling frequencies used.

15 The fact that various variants of the  
16 standard have been implemented by various countries  
17 has resulted in local national switching offices that  
18 must be provided uniquely programmed to implement the  
19 local national protocol. Since most modern switching  
20 offices are program controlled, should changes be  
21 required to the switching office due to a change in  
22 national protocol or due to the switch being moved,  
23 etc., new switching office computer programs are  
24 required to be resident in the switching office.  
25 Typically, these programs are supplied on EPROM,  
26 floppy disk or magnetic tape and are supplied in each  
27 instance by the switching system supplier which is  
28 totally familiar with the programming requirements of  
29 its switching system product.

30 Changing or updating of a switching office  
31 due to a change in the inter-office communications  
32 protocol requires, however, significant programming  
33 effort on at least a country by country and switching  
34 system by switching system basis, which is costly to  
35 the customer and time consuming for the supplier.

36 In addition, with the expansion of world  
37 trade in switching systems, it is desirable for a  
38 switching system supplier to be able to provide a

01

- 3 -

02 single switching system that can be easily adapted to  
03 provide and receive a large variety of inter-office  
04 signalling protocols or all variants of a standard  
05 signalling protocol at minimum cost. Until the  
06 present invention, this has not been achievable at a  
07 significantly low cost and with as much ease as is  
08 possible using the present invention.

09 In an embodiment to be described there is stored  
10 at each switching office a plurality of program  
11 procedures, referred to herein as program building  
12 blocks, for implementing different portions of a  
13 variety of signalling protocols for a signalling  
14 standard that is to be used, such as R2. In other  
15 words, small specialized control programs for  
16 controlling the signalling signal to be transmitted,  
17 which can be used to control the form of every  
18 different possible signal that is to be transmitted,  
19 are stored at the switching office. After  
20 installation of the switching office, the customer, by  
21 means of an user interface which is easy to use (e.g.  
22 by means of a form displayed on a terminal screen),  
23 selects the form of signal for each kind of signal to  
24 be transmitted using the local national protocol. The  
25 switching office personnel (or customer) thereby  
26 designate the corresponding program building blocks.  
27 The designating codes are downloaded to the control  
28 memories of the portions of the switching office that  
29 are to control the signalling protocol. Once  
30 downloaded and resident, the switching office uses  
31 corresponding building block control procedures  
32 designated by the designating codes in the control  
33 memories to control the form of the signalling into  
34 the designated protocol.

35 A similar function is provided for  
36 controlling the reception of, and interpretation of  
37 signals received from the distant office in the same  
38 protocol, from the trunk.

01

- 4 -

02 As a result the switching office  
03 manufacturer is no longer obliged to customize the  
04 switching system inter-office signalling for each  
05 national market. The customer himself designates the  
06 from signalling signals required to implement the  
07 protocol, and the resulting corresponding program  
08 procedures which are already resident in the machine  
09 automatically modify the switching office to cause the  
10 signalling protocol to be implemented. This provides  
11 great flexibility and saves considerable time and  
12 money on the part of the customer upon initial  
13 installation of the switching system and with a  
14 requirement to change the signalling protocol.

15 The result is a more easy to install and  
16 implement switching office which provides reduced cost  
17 to the customer, increased flexibility, a saving in  
18 manpower for the switching system supplier, and an  
19 universal switching office that can be sold for use in  
20 all markets which use variants of the same standard  
21 signalling protocol: in the case of CCITT R2  
22 signalling, this includes most countries of the world.

23 One embodiment of the invention is a  
24 method of producing interoffice signalling comprising  
25 storing program blocks for commanding generation, in a  
26 plurality of signalling protocols of signalling  
27 signals in a communication switching system, storing  
28 correlations of particular ones of the program blocks  
29 with a particular protocol for signalling functions  
30 related to the process of a call to or from the  
31 communication switching system, enabling operation of  
32 the particular ones of the program blocks when a  
33 particular signalling signal is to be generated in the  
34 processing of a telephone call to or from the  
35 communication switching system, to match the  
36 particular protocol, whereby the communication  
37 switching system is enabled to process calls  
38 restricted to the particular protocol out of the

01

- 5 -

02 plurality of protocols for a particular call.

03 Another embodiment of the invention is a  
04 communication switching system comprising signal  
05 generating apparatus for generating interoffice  
06 signalling signals, at least one trunk for  
07 transmitting the signalling signals, apparatus for  
08 connecting the signal generating apparatus to the  
09 trunk, apparatus for storing a plurality of program  
10 blocks for commanding generation of the signalling  
11 signals according to a plurality of protocols,  
12 apparatus for storing designations of particular ones  
13 of the program blocks to command operation of the  
14 signal generating apparatus in accordance with a  
15 particular predetermined protocol, apparatus for  
16 enabling the particular ones of the program blocks  
17 during the processing of a call to or from another  
18 switching office, whereby communication therewith in  
19 accordance with the particular predetermined protocol  
20 is mandated.

21 While reference to the invention being  
22 implemented on a switching office is made throughout  
23 this specification, it should be noted that the  
24 invention can be implemented on suitable PABXs, and  
25 therefore reference to switching offices (switching  
26 systems) throughout this specification should be  
27 construed to include such PABXs. The invention can be  
28 used equally in analog and digital systems, and in  
29 types used to transmit analog voice, digital (PCM)  
30 voice, or data signals.

31 A better understanding of the invention  
32 will be obtained by reference to the detailed  
33 description below, with reference to the following  
34 drawings, in which:

35 Figure 1 is a block diagram of a switching  
36 system utilizing the present invention,

37 Figure 2 is a block diagram of a signal  
38 processor peripheral interface circuit used as part of

01

- 6 -

02 the invention,

03                   Figure 3 is a block diagram of a digital  
04 signal processor module used in the signal processor  
05 of the invention,

06                   Figure 4 is a first terminal screen form  
07 used in an embodiment of the invention, and

08                   Figure 5 is a second terminal screen form  
09 used in an embodiment of the invention.

10                   Refer now to Figure 1, which illustrates a  
11 basic block diagram of a switching system such as one  
12 sold by Mitel Corporation under the trade mark  
13 GX5000™ implementing the present invention.

14                   The switching system is formed of a main  
15 controller 1 to which memory 2 is connected, and a  
16 main parallel bus 3 to which the main controller is  
17 connected. A circuit switch 4 controlled by a  
18 controller 5 which is connected to the bus 3, switches  
19 pulse code modulated (PCM) signals via lines 6 to  
20 inputs of peripheral switches 7A-7N, to which  
21 peripherals such as line circuits and trunk circuits 8  
22 are connected. The controllers 1, 5 and 10 can be  
23 implemented in a single controller. Peripheral  
24 switches 7A-7N are controlled by peripheral  
25 controllers 8A-8N. Control signals from main  
26 controller 1 are switched to controllers 8A-8N by  
27 means of a message switch 9 which is controlled by  
28 controller 10, connected to bus 3 for receiving  
29 control messages from main controller 1. The switches  
30 are combination time and space division switches, as  
31 described in U.S. Patent 4,510,597 issued  
32 April 9th, 1985 assigned to Mitel Corporation and  
33 entitled "TIME DIVISION SWITCHING MATRIX".

34                   Programs to control operation of this  
35 system are stored in memory 2, and are accessed by  
36 main controller 1.

37                   In order to effect R2 inter-office  
38 signalling, input-output (I/O) circuits such as

- 7 -

02       circuit 11 are connected to peripheral switch 7N.  
03       Each I/O circuit 11 is connected to an I/O bus 12,  
04       which is connected to peripheral switch 7N. I/O  
05       circuit 11 is formed of a transmitter 13 and a  
06       receiver 14 for respectively transmitting and  
07       receiving signalling signals respectively to and from  
08       an inter-office trunk 15. The transmitter and  
09       receiver are controlled by control logic 15A.

Another I/O bus 16 is connected to peripheral switch 7N. Communications may be made between different peripherals via peripheral switch 7N, and via switch 7N, switch 4, switch 7A and between peripherals connected to the various peripheral switches 7A-7N. It should also be noted that message (control) signals may be applied to any peripheral from controllers 8A-8N due to their connection to peripheral switches 7A-7N internally. Thus, for example, a message may be transmitted from main controller 1 through bus 3, controller 10, message switch 9 to peripheral controller 8N. Controller 8N in response can control control logic 15 through switch 7N, for controlling either or both of transmitter 13 and receiver 14 connected to trunk 15.

25                   A system similar to that described above  
26        is described in more detail in the following patents:  
27        U.S. Patent 4,510,597 issued April 9th, 1985 entitled  
28        "Time Division Switching Matrix"; U.S. Patent  
29        4,615,028 issued September 30th, 1986 entitled  
30        "Switching System with Separate Supervisory Links" and  
31        U.S. Patent 4,685,102 issued August 4th, 1987 entitled  
32        "Switching System Loopback Test Circuit". The content  
33        of the aforementioned three patents is incorporated herein  
34        by reference.

As this form of switching system is under stored program control, diagnostic and communication with the system by a technician is made via a computer terminal 17 which is connected to a bus interface 18

01

- 8 -

02 of conventional form, which itself is connected to the  
03 main parallel bus 3.

04 In accordance with the present embodiment a  
05 digital signal processor peripheral interface circuit  
06 (SP PIC) 19 is connected to bus 16. Each SP PIC  
07 occupies, in a successful prototype, one slot in a  
08 peripheral switch rack-mounted shelf, and contains  
09 eight signal processing modules 21, referenced DSP  
10 module #0 - DSP module #7 in Figure 1. Each DSP  
11 module is connected to the output of a multiplexer 22,  
12 which interfaces the I/O bus 16 and to a  
13 serial/interrupt controller 23. Controller 23 and the  
14 DSP modules can be connected together and combined  
15 with MUX 22 by connecting the DSP modules 21 and  
16 controller 23 to bus 16 via a switching matrix as  
17 described in the aforenoted patents.

18 Figure 2 illustrates a more detailed block  
19 diagram of the signal processor PIC. The peripheral  
20 bus 16 is connected to the input of multiplexer 22.  
21 The output of multiplexer 22 is a serial PCM line PCS  
22 IN which is connected to the input of serial/interrupt  
23 controller 23. A serial message line DATA IN is  
24 connected from the output of multiplexer 22 to  
25 serial/interrupt controller 23. In addition clock and  
26 frame pulse signals are applied from the output of  
27 multiplexer 22 to the input of controller 23. The  
28 latter are also applied to corresponding inputs of  
29 illustrated DSP module #0, 21.

30 \* Serial input lines SI0 and SI1 are  
31 connected from controller 23 to corresponding inputs  
32 of DSP module 21, with control in CTRIN and clear  
33 interrupt CLRINTR lines. Output serial lines from DSP  
34 module 21 SO0, SO1 and SO2 are connected to controller  
35 23, along with a TMSINTR line.

36 Output lines from controller 23 are serial  
37 SPSC OUT and MPSC OUT, and serial data lines SDTA OUT  
38 and MDTA OUT which are connected to bus 16, and thus

01

- 9 -

02 to peripheral switch 7N. SPSC IN and SPSC OUT are the  
03 same plane PCM paths (i.e. they are connected to the  
04 peripheral controller/matrix residing in the same  
05 shelf). MPSC IN and MPSC OUT are connected to the  
06 mate plane controller. SDATA OUT and MDATA OUT carry  
07 message information via bus 16 to peripheral switch 7N.

08 The data in, C244, FP and clock lines are  
09 connected to data bus 25 (see Figure 1). That bus is  
10 connected to another serial/interrupt controller.  
11 associated with DSP module #1. In this manner,  
12 several DSP modules can be connected with an  
13 associated controller to the serial output of  
14 multiplexer 22.

15 Figure 3 illustrates a preferred form of  
16 the DSP module. The module is controlled by a  
17 controller 28, which preferably is formed of a  
18 microprocessor such as Texas Instruments type  
19 TMS32010. Connected to the controller 28 is a random  
20 access memory RAM 29 having 16K bytes. An ASIC 30 is  
21 connected to RAM 29 and controller 28.

22 The structure of the ASIC should perform  
23 the following functions: It should allow the  
24 microprocessor 28 to be controlled via a serial bus  
25 link. It should support a host interface bound  
26 interrupt from the controller 28. It should provide  
27 an interface between the controller parallel bus and  
28 the serial bus. It should support a host interface  
29 controlled interrupt sequence for the controller 28.  
30 This interrupt sequence should be synchronized to the  
31 serial bus. It should contain a boot strap program  
32 required to download applications program code from  
33 the peripheral switch controller 8N into the memory  
34 29. Finally, it should control the memory 29 page  
35 address bit.

36 The CTRLIN signal to the ASIC is a serial  
37 link signal. Each channel on the link should contain  
38 a command byte which is decoded and executed by the

02 DSP module. The ASIC executes the command byte during  
03 the channel time which follows the channel on which  
04 the command byte is received.

05 The serial/interrupt controller 23 is  
06 implemented using an array of time division/space  
07 division switches, such as described in U.S. Patent  
08 4,510,597. Each of those devices provides a serial  
09 control for a pair of DSP modules.

10 The system in general operates as  
11 follows. Memories associated with controllers 8A-8N  
12 each contain all building block program procedures for  
13 implementing different portions of a variety of  
14 inter-office trunk protocols for each possible signal  
15 to be transmitted. Memory 2 is partitioned to contain  
16 in partitioned portion 32 a program of well known form  
17 which allows data input charts to be displayed on the  
18 screen of computer terminal 17, correlating received  
19 signals versus functions to be performed.

20 Each of the DSP modules contain a  
21 functionally simple non-customizable program which  
22 transmits and receives the MF-R2 signals, the  
23 frequencies and levels of the tones thereof having  
24 been specified in the CCITT standard.

25 After installation of the main switching  
26 system and loading of the DSP modules, the customer  
27 technician (operator) accesses main controller 1 by  
28 terminal 17 through interface 18 and bus 3, which  
29 brings from memory 32 a first chart on the screen of  
30 the terminal such as the one shown in Figure 4.

31 The operator defines the various  
32 functional aspects using a predetermined set of user  
33 codewords for each signal. Once all the aspects have  
34 been defined, the main controller 1 downloads the user  
35 defined codewords to peripheral controller 8N  
36 designating the particular program building blocks to  
37 be used, for particular signals, where the correlation  
38 is stored. The user defined codewords are downloaded

01

- 11 -

02 by controller 1 through controller 10 and message  
03 switch 9 to the peripheral switch controller 8N, where  
04 the full complement of program building blocks are  
05 stored, and resident in the control memories of  
06 peripheral switches 7A-7N. The selected building  
07 blocks then control the various switches and modules  
08 to control the form of the signals output on the  
09 various inter-office trunks, in accordance with the  
10 local variant of the R2 protocol.

11 In operation, controller 8N commands using  
12 the designated correlated command that e.g. DSP module  
13 21 should transmit a signal, by writing into channels  
14 on the message link on bus 16 via peripheral switch  
15 7N. A link is set up via switch 7N to a trunk 15.  
16 From bus 16, the command is routed along the SDATAIN  
17 or MDATAIN leads through MUX 22 and serial/interrupt  
18 controller 23 into the DSP module on lead S10 where it  
19 is read by the DSP program which is running there. A  
20 resulting tone signal in PCM is generated which is  
21 passed via bus 16 through switch 7N to bus 12 and is  
22 transmitted via transmitter 13 to trunk 15.

23 Controller 8N is notified that a response  
24 tone has been detected or received, by the DSP module  
25 writing into channels on the SOO lead which are via  
26 serial/interrupt controller 23 to the SDATAOUT and  
27 MDATAOUT leads on bus 16.

28 It should be noted that once the PCM  
29 connection is set up between the trunk 15 and a DSP  
30 module via a switch 7N, MF-R2 signalling takes place  
31 in-band. That is, the trunk control logic 15 does not  
32 interact with the R2 protocol. At this point, the  
33 trunk card is just carrying what it considers to be  
34 speech (MF-R2 signals) and so the transmitter 13 and  
35 receiver 14 just perform normal digital-to-analog and  
36 analog-to-digital conversions.

37 As an example, consider an outgoing trunk  
38 call using MF-R2 signalling. A seize message is sent

01

- 12 -

02 from main controller 1, via message switch 9 to  
03 peripheral controller 8N requesting it to cause  
04 control logic 15 to seize trunk 15. Similarly, a  
05 seize message is sent from main controller 1 to  
06 peripheral controller 8N requesting it to schedule the  
07 R2 register control program which is resident in its  
08 memory. A PCM connection is set up from the DSP  
09 module 21 to the trunk's transmitter 13 via peripheral  
10 switch 7N, circuit switch 4 and peripheral switch 7N.  
11 Similarly a connection is set up via the same  
12 switching matrices between the trunk's receiver 14 and  
13 the DSP module 21.

14 The R2 register control program running on  
15 peripheral controller 8N now causes DSP module 21 to  
16 transmit the first forward signal as specified by the  
17 downloaded codewords. It does this by sending a  
18 message via bus 16 to DSP module 21 (as described  
19 above).

20 When a response signal is received from  
21 the far end trunk by DSP module 21, it notifies the R2  
22 register control program resident at peripheral  
23 controller 8N by sending a message via bus 16. Upon  
24 receiving this message, the R2 register control  
25 program determines a signal to send in response using  
26 the downloaded codewords and the sequence described  
27 above is repeated.

28 This process continues until the protocol  
29 is completed. At this time, the PCM connections to  
30 the DSP module are broken and MF-R2 signalling is  
31 complete.

32 Figure 4 illustrates a form that can be  
33 used on the terminal 17 as an aid for the customer  
34 technician to characterize the signalling for one  
35 category of signals used in the protocol. In the  
36 left-hand column are numbers of the fifteen different  
37 signals, put up on the terminal 17 screen by  
38 the controller 1, and in the second and third columns, the

01

- 13 -

02 action to be performed is entered by a technician  
03 using predefined terms. Successive ones of the data  
04 entry form are used for each category of signals in  
05 the protocol. This form is definable only at the  
06 installer level, i.e. the highest access authorization  
07 level.

08 In the second and third columns, up to two  
09 action responses can be entered. If both are  
10 specified, the first is executed before the second.  
11 Of course the two procedures cannot be the same. The  
12 system action responses can be selected from building  
13 block procedures described below.

14 At the top of the form, it is entered  
15 whether the form is being used for incoming or  
16 outgoing signals.

17 In the list of program building blocks  
18 listed below, each action is defined by a first word  
19 forming the language, followed by the function to be  
20 implemented by the system in response.

**Outgoing State Building Blocks**

Procedures which can be executed in the context of an outgoing R2 register are listed below. If the procedure might be executed in response to a standard CCITT signal, that signal is listed beside the procedure.

| CCITT Standard | Name of Procedure / Description                                                                                                     |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| ---            | <b>connect</b><br>Release the MF-R2 transceiver and connect the speech path. Set up the appropriate charging mechanism if required. |
| A-4, 15<br>B-4 | <b>excep_congestion</b><br>Set the R2 exception to congestion.                                                                      |
| B-8            | <b>excep_dn_out_of_serv</b><br>Set the R2 exception to DN out of service.                                                           |
| ---            | <b>excep_invalid_signal</b><br>Set the R2 exception to invalid signal.                                                              |
| ---            | <b>excep_none</b><br>Set the R2 exception to none (default).                                                                        |
| B-3            | <b>excep_sub_busy</b><br>Set the R2 exception to busy.                                                                              |
| B-5            | <b>excep_unassigned_num</b><br>Set the R2 exception to unassigned number.                                                           |
| ---            | <b>excep_user_1</b><br>Set the R2 exception to user-defined exception number 1.                                                     |
| ---            | <b>excep_user_2</b><br>Set the R2 exception to user-defined exception number 2.                                                     |
| ---            | <b>excep_user_3</b><br>Set the R2 exception to user-defined exception number 3.                                                     |
| ---            | <b>reroute</b><br>Terminate the current call and attempt alternative rerouting.                                                     |

| CCITT Standard | Name of Procedure / Description                                                                                                                                                     |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ---            | <b>reset_CLI_index</b><br>Set the next CLI digit index to the beginning of the CLI number.                                                                                          |
| ---            | <b>reset_digit_index</b><br>Set the next digit index to the beginning of the number.                                                                                                |
| A-3<br>A-5     | <b>send_category</b><br>Send category of calling party. This procedure sends the category programmed in the class of service, using the mapping given in the R2 Variant Assignment. |
| ---            | <b>send_first_CLI_digit</b><br>Send the first calling line identification digit. If no CLI is available, the exception handling specified in the R2 Variant Assignment is used.     |
| ---            | <b>send_first_digit</b><br>Restart.                                                                                                                                                 |
| A-2            | <b>send_last_but_1</b><br>Send digit (n-1).                                                                                                                                         |
| A-7            | <b>send_last_but_2</b><br>Send digit (n-2).                                                                                                                                         |
| A-8            | <b>send_last_but_3</b><br>Send digit (n-3).                                                                                                                                         |
| ---            | <b>send_last_digit</b><br>Repeat last digit sent (n).                                                                                                                               |
| ---            | <b>send_next_CLI_digit</b><br>Send the next CLI digit. If no more CLI digits are available, the exception handling specified in the R2 Variant Assignment is used.                  |
| A-1            | <b>send_next_digit</b><br>Send digit (n+1).                                                                                                                                         |

01  
02

- 16 -

| CCITT Standard | Name of Procedure / Description                                                                                                                                     |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ---            | <b>set_called_control</b><br>Mark the call as being under called party control.                                                                                     |
| ---            | <b>set_calling_control</b><br>Mark the call as being under calling party control.                                                                                   |
| A-6<br>B-6     | <b>set_chargeable</b><br>Mark that the call is chargeable. This is the default condition for every new call.                                                        |
| ---            | <b>set_first_control</b><br>Mark the call as being under first party control.                                                                                       |
| ---            | <b>set_joint_control</b><br>Mark the call as being under joint party control.                                                                                       |
| B-7            | <b>set_not_chargeable</b><br>Mark that the call is not chargeable.                                                                                                  |
| ---            | <b>terminate</b><br>Release the MF-R2 transceiver and terminate the current call with exception handling specified by the current R2 exception.                     |
| ---            | <b>send_1, send_2, send_3, send_4, send_5, send_6, send_7, send_8, send_9, send_10, send_11, send_12, send_13, send_14, send_15</b><br>Send the nth forward signal. |

## Incoming State Building Blocks

| CCITT Standard | Name of Procedure / Description                                                                                                                                                          |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ---            | <b>category_ccb</b><br>Mark the caller as a coin collecting box.                                                                                                                         |
| II-6           | <b>category_data</b><br>Mark the caller as a data transmission.                                                                                                                          |
| II-5           | <b>category_operator</b><br>Mark the caller as an operator.                                                                                                                              |
| II-1           | <b>category_ordinary</b><br>Mark the caller as an ordinary subscriber.                                                                                                                   |
| II-2           | <b>category_priority</b><br>Mark the caller as a subscriber with priority.                                                                                                               |
| II-3           | <b>category_test</b><br>Mark the caller as test equipment.                                                                                                                               |
| ---            | <b>excep_invalid_signal</b>                                                                                                                                                              |
| ---            | <b>excep_none</b><br>See outgoing state building blocks.                                                                                                                                 |
| I-10           | <b>process_digit_0</b>                                                                                                                                                                   |
| I-11           | <b>process_digit_1</b>                                                                                                                                                                   |
| I-12           | <b>process_digit_2</b>                                                                                                                                                                   |
| I-13           | <b>process_digit_3</b>                                                                                                                                                                   |
| I-14           | <b>process_digit_4</b>                                                                                                                                                                   |
| I-15           | <b>process_digit_5</b>                                                                                                                                                                   |
| I-16           | <b>process_digit_6</b>                                                                                                                                                                   |
| I-17           | <b>process_digit_7</b>                                                                                                                                                                   |
| I-18           | <b>process_digit_8</b>                                                                                                                                                                   |
| I-19           | <b>process_digit_9</b>                                                                                                                                                                   |
| I-15           | <b>process_digit_timeout</b><br>Use the specified digit, the digit tree and the information in the R2 Variant Assignment to attempt to route the call.                                   |
| ---            | <b>send_status_and_end</b><br>Send the called party status. When the signalling cycle is complete, either clear down the call or connect the speech path.                                |
| ---            | <b>terminate</b><br>See outgoing state building blocks.                                                                                                                                  |
| ---            | <b>send_1, send_2, send_3, send_4, send_5,</b><br><b>send_6, send_7, send_8, send_9, send_10,</b><br><b>send_11, send_12, send_13, send_14, send_15</b><br>Send the nth backward signal. |

01

- 18 -

02 It should be noted that the particular  
03 procedures specified are all procedures that are  
04 normally implemented in a switching office.  
05 Consequently the particular program listings are not  
06 given herein, as they will be different for each form  
07 of switching office and are known to persons skilled  
08 in the art.

09 A representative second form which is  
10 preferred to be used to define variants, that is, to  
11 specify the initial procedures and conditions and time  
12 outs, as well as parameters for the program building  
13 block procedures, such as the mapping of logical  
14 conditions to physical signals, is shown in Figure 5.

15 A list and description of each of the  
16 fields to be identified follows:

### Field Descriptions

#### 1. Initial outgoing procedure

The initial outgoing procedure is the R2 building block procedure which should be executed when outgoing R2 signalling is initiated. This procedure is generally send\_first\_digit, but in some cases the explicit signal procedures (send1, send2 etc.) may also be useful.

#### 2. Initial outgoing state

The initial outgoing state is the state to enter after executing the initial outgoing procedure. The register stays in this state until it either receives a backward signal from the incoming register or the forward tone timeout period expires. When this form is committed, the remark programmed against the requested state is displayed in a protected field.

#### 3. Calling party category

The data in this section are used to map the calling party category (as defined in the class of service) to a physical R2 signal to transmit when the calling party category is requested.

#### 4. Exception handling

The signals in this section are used to respond to backward signalled requests which the outgoing R2 register cannot comply with.

##### (a) CLI not available

This defines the signal to return if a request for calling line identification digits has been received, but none are available (for example, on a tandem call when the incoming link does not transmit the calling party's number). If no signal is specified, none is returned. If no next state is specified, execution continues in the same state.

When this form is committed, the remark programmed against the requested state is displayed in a protected field.

This exception handling is invoked by the send\_first\_CLI\_digit procedure.

(b) No more CLI digits

This defines the signal to return if a request for more CLI digits (not including the first) has been received, but none are available. If no signal is specified, none is returned. If no next state is specified, execution continues in the same state.

When this form is committed, the remark programmed against the requested state is displayed in a protected field.

This exception handling is invoked by the send\_next\_CLI\_digit procedure.

(c) No more digits

This defines the signal to return if a request for more digits (not including CLI digits) has been received, but none are available. If no signal is specified, none is returned. If no next state is specified, execution continues in the same state.

When this form is committed, the remark programmed against the requested state is displayed in a protected field.

This handling is invoked by the send\_next\_digit procedure when call processing determines that the entire called number has been entered and the terminating register requests another digit. The entire called number is considered entered when critical timing has been completed or the last digit in the digits to follow programmed against the route has been received.

5. Forward tone timeout

The forward tone timeout is the maximum period for which the outgoing register will continue to transmit a forward signal in the absence of an acknowledging backward signal. It is also the maximum period for which the outgoing register will wait for a pulsed backward signal when no forward signal is being sent. If this timeout occurs, the call will be terminated. CCITT Q.476 recommends a period of 15 +/- 3 seconds.

6. No-tone timeout

The no-tone timeout is the maximum period for which the outgoing register will wait for a backward signal

to be removed after the time that the forward signal is removed. If this timeout occurs, the call will be terminated.

#### 7. Initial incoming state

The initial incoming state is the state which the incoming register enters when it is first seized. When this form is committed, the remark programmed against the requested state is displayed in a protected field.

#### 8. Called party status signals

The data in this section are used by the incoming register to map the called party status (as determined by call processing) to a physical R2 signal to send when the called party status is to be transmitted. More than one status may be mapped to the same physical signal. For example, if special information tone is available, access violations might be mapped to the signal to request it. If it is not available, access violations might be mapped to the same signal as directory number out of service.

#### 9. Digit processing action table

This table maps the digit processing actions which might be required to route a call to the physical R2 signals to transmit in order to request these actions. For example, if the digit tree indicates that another digit is required, the 'Send next digit' signal is sent.

If no signal is programmed against an action, call processing will use the rules specified in Section 2.1 under Digit Processing Action Table.

At least one of the two 'address done' conditions must be programmed. When this form is committed with a next state programmed for the 'address complete, get category' field, the remark programmed against that state is displayed in a protected field.

#### 10. Delay before starting pulsed signal

This delay is inserted between the end of transmission of the last signal of the compelled cycle and the start of transmission of the pulsed signal. It must be specified in increments of 30 ms. CCITT Q.442 recommends a minimum delay of 100 ms.

01

- 22 -

02

11. Pulsed signal duration

This field specifies the duration of signals sent as pulsed signals. It must be specified in increments of 30 ms. CCITT Q.442 recommends a pulsed signal duration of 150 ms.

12. Pulsed signal receiver reconnect delay

This field specifies the time, after the completion of the pulsed backward signal, before the incoming receiver can be reconnected. It is ignored in cases where the R2 register signalling is terminated after sending the pulsed signal. This delay must be specified in increments of 30 ms. CCITT Q.442 recommends a delay of 300 +/- 100 ms.

13. Pulsed return signal for first/inter-digit timer expiry

If the first digit or interdigit timers, as programmed on a trunk's class of service, expire, this field defines the signal which should be returned, in pulsed form, before the call is terminated. If no signal is specified, none is sent.

01

- 23 -

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

The following illustrate filled in action identifying forms for six separate signalling conditions, in which the first represents a state of sending outgoing digits, the second of sending outgoing CLI, the third of handling the receipt of the called party status after confirmation the outgoing category has been sent, the fourth of receiving incoming digits, the fifth of terminating signalling after sending signal BJ, and the sixth of handling the receipt of the calling party category and terminating signalling after sending the called party status. The assignment noted has been created to cause performance of the R2 signalling variations of Kenya, for a switching system manufactured by Mitel Corporation designated by the trade mark GX5000. The various signal functions identified above are noted in the headnote of each form. The procedures listed correspond to the building block functions described earlier in this disclosure.

01  
02

- 24 -

R2 Signal State Assignment

R2 Variant : 1    R2 State : 1    Remarks : A\_Send\_Dgts  
Type (Incoming/Outgoing) : Outgoing

| Signal Received | First procedure  | Response to Signal<br>Second procedure | No. | Next State Remarks |
|-----------------|------------------|----------------------------------------|-----|--------------------|
| ////1///        | send_next_digit  |                                        |     | //////////         |
| ////2///        | send_last_but_1  |                                        |     | //////////         |
| ////3///        | send_category    |                                        |     | //////////         |
| ////4///        | excep_congestion |                                        |     | //////////         |
| ////5///        | send_category    |                                        |     | //////////         |
| ////6///        | set_chargeable   |                                        |     | //////////         |
| ////7///        | send_last_but_2  |                                        |     | //////////         |
| ////8///        | send_last_but_3  |                                        |     | //////////         |
| ////9///        | send_first_digit |                                        |     | //////////         |
| ////10///       | set_chargeable   |                                        |     | //////////         |
| ////11///       | set_chargeable   |                                        |     | //////////         |
| ////12///       | set_chargeable   |                                        |     | //////////         |
| ////13///       | set_chargeable   |                                        |     | //////////         |
| ////14///       | set_chargeable   |                                        |     | //////////         |
| ////15///       | set_chargeable   |                                        |     | //////////         |

01  
02

- 25 -

### R2 Signal State Assignment

R2 Variant : 1    R2 State : 2    Remarks : A\_Send\_CLI  
Type (Incoming/Outgoing) : Outgoing

| Signal Received | Response to Signal<br>First procedure | Second procedure | No. | Next State<br>Remarks |
|-----------------|---------------------------------------|------------------|-----|-----------------------|
| ////1///        | excep_unassigned_num                  | terminate        |     | /                     |
| ////2///        | excep_unassigned_num                  | terminate        |     | /                     |
| ////3///        | excep_unassigned_num                  | terminate        |     | /                     |
| ////4///        | excep_congestion                      | reroute          |     | /                     |
| ////5///        | send_next_CLI_digit                   |                  |     | /                     |
| ////6///        | excep_unassigned_num                  | terminate        |     | /                     |
| ////7///        | excep_unassigned_num                  | terminate        |     | /                     |
| ////8///        | excep_unassigned_num                  | terminate        |     | /                     |
| ////9///        | excep_unassigned_num                  | terminate        |     | /                     |
| ////10///       | excep_unassigned_num                  | terminate        |     | /                     |
| ////11///       | excep_unassigned_num                  | terminate        |     | /                     |
| ////12///       | excep_unassigned_num                  | terminate        |     | /                     |
| ////13///       | excep_unassigned_num                  | terminate        |     | /                     |
| ////14///       | excep_unassigned_num                  | terminate        |     | /                     |
| ////15///       | excep_unassigned_num                  | terminate        |     | /                     |

### R2 Signal State Assignment

R2 Variant : 1    R2 State : 3    Remarks : B\_Sent\_Catgy  
Type (Incoming/Outgoing) : Outgoing

| Signal Received | Response to Signal<br>First procedure | Second procedure | No. | Next State<br>Remarks |
|-----------------|---------------------------------------|------------------|-----|-----------------------|
| ////1///        | excep_unassigned_num                  | terminate        |     | /                     |
| ////2///        | excep_unassigned_num                  | terminate        |     | /                     |
| ////3///        | excep_sub_busy                        | terminate        |     | /                     |
| ////4///        | excep_congestion                      | reroute          |     | /                     |
| ////5///        | excep_unassigned_num                  | terminate        |     | /                     |
| ////6///        | set_chargeable                        | connect          |     | /                     |
| ////7///        | excep_unassigned_num                  | terminate        |     | /                     |
| ////8///        | excep_unassigned_num                  | terminate        |     | /                     |
| ////9///        | excep_unassigned_num                  | terminate        |     | /                     |
| ////10///       | excep_unassigned_num                  | terminate        |     | /                     |
| ////11///       | excep_unassigned_num                  | terminate        |     | /                     |
| ////12///       | excep_unassigned_num                  | terminate        |     | /                     |
| ////13///       | excep_unassigned_num                  | terminate        |     | /                     |
| ////14///       | excep_unassigned_num                  | terminate        |     | /                     |
| ////15///       | excep_unassigned_num                  | terminate        |     | /                     |

01  
02

- 26 -

| R2 STATE ASSIGNMENT |                 |                                                               |                |            |
|---------------------|-----------------|---------------------------------------------------------------|----------------|------------|
| R2 Variant : 1      | R2 State : 4    | Remarks : I_Rcv_Digits<br>Type (Incoming/Outgoing) : Incoming |                |            |
| Signal Received     | First procedure | Response to Signal<br>Second procedure                        | Next State No. | Remarks    |
| ////1///            | process_digit   |                                                               |                |            |
| ////2///            | process_digit   |                                                               |                |            |
| ////3///            | process_digit   |                                                               |                |            |
| ////4///            | process_digit   |                                                               |                |            |
| ////5///            | process_digit   |                                                               |                |            |
| ////6///            | process_digit   |                                                               |                |            |
| ////7///            | process_digit   |                                                               |                |            |
| ////8///            | process_digit   |                                                               |                |            |
| ////9///            | process_digit   |                                                               |                |            |
| ////10///           | process_digit   |                                                               |                |            |
| ////11///           | send3           |                                                               | 5              | /B5_Next// |
| ////12///           | send3           |                                                               | 5              | /B5_Next// |
| ////13///           | send3           |                                                               | 5              | /B5_Next// |
| ////14///           | send3           |                                                               | 5              | /B5_Next// |
| ////15///           | send3           |                                                               | 5              | /B5_Next// |

| R2 STATE ASSIGNMENT |                 |                                                          |                |         |
|---------------------|-----------------|----------------------------------------------------------|----------------|---------|
| R2 Variant : 1      | R2 State : 5    | Remarks : B5_Next<br>Type (Incoming/Outgoing) : Incoming |                |         |
| Signal Received     | First procedure | Response to Signal<br>Second procedure                   | Next State No. | Remarks |
| ////1///            | send5           | terminate                                                |                |         |
| ////2///            | send5           | terminate                                                |                |         |
| ////3///            | send5           | terminate                                                |                |         |
| ////4///            | send5           | terminate                                                |                |         |
| ////5///            | send5           | terminate                                                |                |         |
| ////6///            | send5           | terminate                                                |                |         |
| ////7///            | send5           | terminate                                                |                |         |
| ////8///            | send5           | terminate                                                |                |         |
| ////9///            | send5           | terminate                                                |                |         |
| ////10///           | send5           | terminate                                                |                |         |
| ////11///           | send5           | terminate                                                |                |         |
| ////12///           | send5           | terminate                                                |                |         |
| ////13///           | send5           | terminate                                                |                |         |
| ////14///           | send5           | terminate                                                |                |         |
| ////15///           | send5           | terminate                                                |                |         |

01

- 27 -

02

03

04

## R2 STATE ASSIGNMENT

05

06

R2 Variant : 1    R2 State : 6    Remarks : II\_Catgy\_Nxt  
 Type (Incoming/Outgoing) : Incoming

07

08

09

10

11

12

13

14

15

16

17

| Signal Received | First procedure   | Response to Signal<br>Second procedure | Next State No. | Remarks    |
|-----------------|-------------------|----------------------------------------|----------------|------------|
| ////1///        | category_ordinary | connect_reply_status                   |                | ////////// |
| ////2///        | category_ordinary | connect_reply_status                   |                | ////////// |
| ////3///        | category_ordinary | connect_reply_status                   |                | ////////// |
| ////4///        | category_ordinary | connect_reply_status                   |                | ////////// |
| ////5///        | category_ordinary | connect_reply_status                   |                | ////////// |
| ////6///        | category_ordinary | connect_reply_status                   |                | ////////// |
| ////7///        | category_ordinary | connect_reply_status                   |                | ////////// |
| ////8///        | category_ordinary | connect_reply_status                   |                | ////////// |
| ////9///        | category_ordinary | connect_reply_status                   |                | ////////// |
| ////10///       | category_ordinary | connect_reply_status                   |                | ////////// |
| ////11///       | category_ordinary | connect_reply_status                   |                | ////////// |
| ////12///       | category_ordinary | connect_reply_status                   |                | ////////// |
| ////13///       | category_ordinary | connect_reply_status                   |                | ////////// |
| ////14///       | category_ordinary | connect_reply_status                   |                | ////////// |
| ////15///       | category_ordinary | connect_reply_status                   |                | ////////// |

18

19

20

21

22

The associated variant assignment is shown

below.

## R2 VARIANT ASSIGNMENT

R2 Variant : 1

## OUTGOING REGISTER PARAMETERS

Initial outgoing procedure : send\_first\_digit  
 Initial outgoing state . . . : 1 Remarks : A\_Send\_Dgts/

Calling Party Category Signals (1-15)  
 Coin collecting box . . . . . : 1  
 Data transmission . . . . . : 1  
 Operator trunk . . . . . : 1  
 Ordinary subscriber . . . . . : 1  
 Subscriber with priority . . . . : 1  
 Test equipment . . . . . : 1

Exception Handling  
 CLI not available (1-15) . . . : 15 Next state : 1 Remarks : A\_Send\_Dgts/  
 No more CLI digits (1-15) . . . : 15 Next state : 1 Remarks : A\_Send\_Dgts/  
 No more digits (1-15) . . . : Next state : Remarks : ////////////////

Outgoing Tone-On Timeout (1-60 seconds) . . . : 15  
 Outgoing Tone-Off Timeout (1-60 seconds) . . . : 30

## INCOMING REGISTER PARAMETERS

Initial incoming state : 4 Remarks : I\_Rcv\_Digits

Digit Processing Request Signals (1-15)  
 Send next digit . . . . . : 1  
 Send first digit . . . . . : 9  
 Send last digit . . . . . :  
 Send last but 1 . . . . . : 2  
 Send last but 2 . . . . . : 7  
 Send last but 3 . . . . . : 8

Digit Processing Complete Handling  
 Called party status transfer mechanism  
 (CCITT, Immediate, None) : CCITT  
 Charge/setup speech (1-15) : 6  
 Congestion/no switch (1-15) : 4  
 Get caller category (1-15) : 3 Next state : 6 Remarks : II\_Catgy\_Nxt

Called Party Status Signals (1-15)  
 Access violation . . . . . : 5  
 Busy . . . . . : 3  
 Congestion . . . . . : 4  
 DID trunk congestion . . . . . : 3  
 DN in a parked state . . . . . : 3  
 DN out of service . . . . . : 5  
 Free, charge . . . . . : 6  
 Free, no charge . . . . . : 6  
 Routed to Intercept or RAD : 6  
 Unassigned number . . . . . : 5  
 User-defined exception 1 . . . . . : 4  
 User-defined exception 2 . . . . . : 4  
 User-defined exception 3 . . . . . : 4

Delay before starting pulsed signal (60-240 ms, 30 ms steps) . . . : 150  
 Pulsed signal duration (90-900 ms, 30 ms steps) . . . . . : 150  
 Pulsed signal receiver reconnect delay (90-900 ms, 30 ms steps) : 300  
 Pulsed return signal for first/inter-signal timer expiry (1-15) : 4

01

- 29 -

02            It may thus be seen that with the  
03 embodiment described above the customer can cause the  
04 switching office to identify the building block  
05 programs from the large number of available programs  
06 stored in the peripheral controller memories. The  
07 result is that controlling programs selected out of a  
08 large number of available programs cause the system to  
09 self configure so as to process inter-office  
10 signalling according to the particular local variant.  
11 This is done without requiring special attention by  
12 the system manufacturer, and can be changed at will by  
13 the customer to accommodate a change in location of  
14 the switching office, to update the protocol and upon  
15 installation.

16            While the embodiments described refer to  
17 R2 signalling, the principles of this invention are  
18 not limited for use with R2 signalling, or indeed to  
19 inter-office signalling, and may be applied for  
20 self-configuration of the switching system in order to  
21 adapt it to any other local conditions desired.

22            A person skilled in the art understanding  
23 the present invention may now conceive of variations  
24 or other embodiments using the concepts described  
25 herein. All are considered to be within the sphere  
26 and scope of the invention as defined in the claims  
27 appended hereto.

CLAIMS

1. A method of producing interoffice signalling comprising:

(a) storing program blocks for commanding generation, in a plurality of signalling protocols, of signalling signals in a communication switching system,

(b) storing correlations of particular ones of said program blocks with a particular protocol for signalling functions related to the process of a call to or from said communication switching system,

(c) enabling operation of said particular ones of said program blocks when a particular signalling signal is to be generated in the processing of a telephone call to or from the communication switching system, to match said particular protocol, whereby the communication switching system is enabled to process calls restricted to said particular protocol out of said plurality of protocols for a particular call.

2. A method as defined in claim 1, including generating the signalling signals in a universal signalling generator which is adapted to receive commands from the program blocks and to generate signalling signals in response thereto.

3. A method as defined in claim 1, including connecting the universal signalling generator to a trunk through a switch, and transmitting the signalling signals to the trunk via the switch for transmission to a remote communication switching office.

4. A method as defined in claim 3,  
including transmitting the signalling signals in a  
voiceband to the remote telephone switching office.

5. A method of interoffice signalling of  
a communication switching system comprising:

(a) storing program blocks for commanding  
operation, in a plurality of signalling protocols, of  
a signalling signal generator and signalling signal  
receiver;

(b) storing designation of particular ones  
of said program blocks which relate to a particular  
signalling protocol to be used by said system,

(c) enabling operation of only said  
particular ones of said program blocks during the  
processing of a call to or from said system, to  
command the signal generator to generate particular  
signals to be generated or to detect the receipt of  
particular signals received by said receiver,

whereby the communication switching system  
is enabled to process calls restricted to said  
particular protocol out of said plurality of  
protocols.

6. A method as defined in claim 5,  
including the steps of displaying a chart of  
signalling functions, receiving command data from an  
operator relating to particular signalling operations  
to be used by the system corresponding to said  
functions, and processing the command data to form  
said program block designations.

7. A method as defined in claim 6  
including providing a signal generator and signal  
receiver which can respectively transmit and receive  
signalling signals in forms corresponding to all said

plurality of signalling signals, the signalling generator operating in response to said commands to generate signals only in accordance with said particular protocol.

8. A method as defined in claim 7 including connecting the signal generator and signal receiver to a trunk for transmitting and receiving signals via said trunk.

9. A method as defined in claim 8 in which the signalling signals are transmitted and received in voiceband via said trunk.

10. A method as defined in claim 9 in which said signals are pulse code modulated.

11. A communication switching system comprising:

(a) signal generating means for generating interoffice signalling signals,

(b) at least one trunk for transmitting the signalling signals,

(c) means for connecting the signal generating means to the trunk,

(d) means for storing a plurality of program blocks for commanding generation of the signalling signals according to a plurality of protocols,

(e) means for storing designations of particular ones of the program blocks to command operation of the signal generating means in accordance with a particular predetermined protocol,

(f) means for enabling said particular ones of the program blocks during the processing of a call to or from another switching office,

whereby communication therewith in accordance with said particular predetermined protocol is mandated.

12. A system as defined in claim 11, in which the means for storing said blocks and means for storing said designations is a peripheral processor memory adapted to transmit said particular ones of the program blocks to the signal generating means.

13. A system as defined in claim 12, in which the means for connecting the signal generating means to the trunk is a switch controlled by the peripheral processor.

14. A system as defined in claim 11 in which the signal generating means is comprised of a controller for receiving said particular ones of the program blocks and a signal generator controlled by the controller for generating said signals.

15. A system as defined in claim 14 in which said signal generating means includes a receiver for receiving signals from said another switching office, controlled by the controller.

16. A system as defined in claim 15 in which the means for connecting the generating means to the trunk is a time and/or space division switching matrix.

17. A system as defined in claim 16, in which the means for storing said blocks and means for storing said designations is a peripheral processor memory adapted to transmit said particular ones of the program blocks to the signal generating means.

18. A system as defined in claim 17 in which the switching matrix is controlled by the peripheral processor.

19. A system as defined in one of claims 11-14 including a system processor for controlling operation of said system and for generating a display, means for receiving data relating to signalling functions for predetermining said protocol in response to said display, means for generating said designations of particular ones of the program blocks, and for providing said designations to said means for storing said designations.

20. A system as defined in one of claims 11-14 including an operator input-output console, a system processor controlling operation of said system and console, means for generating a display on said console relating to signalling functions, means for receiving data input on the console relating to particular signals for predetermining said protocol in response to said display, the system processor including means for generating designations of particular ones of the program blocks corresponding to said data, and for providing said designations to said means for storing said designations.

21. A method of producing interoffice signalling as claimed in claim 1 substantially as described herein with reference to Figs. 1 to 3 and either Fig. 4 or Fig. 5 of the accompanying drawings.

22. A system as claimed in claim 11 including an arrangement substantially as described herein with reference to any one of the accompanying drawings.

This Page Blank (uspto)

**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

**BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**

This Page Blank (uspto)