ζ Ophiuchi as a test bed for modeling accretors

M. Renzo^{1, 2} and \blacksquare

¹ Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
² Department of Physics, Columbia University, New York, NY 10027, USA

ABSTRACT

■ [write abstract] **■**

Keywords: stars: individual: ζ Ophiuchi – stars: massive – stars: binaries

- 1. INTRODUCTION
- **■** [In the intro:
 - runaway nature
- association with pulsar and SNe polluting Earth
- debate on parent association
- weak wind problem

Methods:

- self-consistent modeling of the evolution (see also ?)
- depends on many free parameters governing the intricate and coupled physics of mass transfer, mixing, rotation

Aim:

 since observations are not always agreeing with each other, we aim at finding a model in the right ballpark and explore how physical variations move such model around • in this way we find a set of recommended parameters for the evolution of massive binary system going through stable mass transfer

]

The nearest O-type star to Earth is ζ Ophiuchi, classified as O9.5IVnn type star (e.g., ?) and with a parallax of 5-8 milliarcsec (e.g., ?, and references therein). This star has been the target of many observations and underpins many open puzzles.

 $Software: \quad \texttt{mesaPlot} \quad (?), \quad \texttt{mesaSDK} \quad (?), \\ \texttt{ipython/jupyter} \quad (?), \quad \texttt{matplotlib} \quad (?), \quad \texttt{NumPy} \quad (?), \\ \texttt{MESA}(?????)$

- 2. MODELING MASS TRANSFER WITH MESA
 - 3. INITIAL GRID OF MODELS
 - 3.1. Favorite model
 - 4. PHYSICAL VARIATIONS
 - 5. DISCUSSION
 - 6. CONCLUSIONS

ACKNOWLEDGEMENTS

APPENDIX

A. MESA SETUP

■ [possibly move to methods] ■ We use MESA version 15140 to compute our models. The MESA equation of state (EOS) is a blend of the OPAL?, SCVH?, PTEH?, HELM?, and PC? EOSes. ■ [update EOS] ■

Radiative opacities are primarily from OPAL (??), with low-temperature data from ? and the high-temperature, Compton-scattering dominated regime by ?. Electron conduction opacities are from ?.

Nuclear reaction rates are a combination of rates from NACRE (?), JINA REACLIB (?), plus additional tabu-

lated weak reaction rates $\ref{eq:condition}$?? Screening is included via the prescription of $\ref{eq:condition}$?. Thermal neutrino loss rates are from $\ref{eq:condition}$. We compute the pre-merger evolution using an 8-isotope α -chain nuclear reaction network and switch to a 22-isotope nuclear network for the post-merger evolution.

We evolve our models from the pre-main sequence to the terminal age main sequence of the most massive $58\,M_{\odot}$ star, defined as the time when the central hydrogen abundance $X(^{1}H) \leq 10^{-4}$. We treat convection using the Ledoux criterion, and include thermohaline mixing (until the central temperature $\log_{10}(T_c/[K]) > 9.45$, ?) and semiconvection, both with an efficiency factor of 1. We assume $\alpha_{\text{MLT}} = 2.0$ and use ? overshooting for the convective core burning. We have tested that varying core overshooting does not impact significantly the post-merger evolution, however, when including shell overshooting and/or undershooting we were unable to find solutions to the stellar structure equations. Moreover, we employ the MLT++ artificial enhancement of the convective flux (e.g., ??). Stellar winds are included using the algorithms from ? with an efficiency factor of 1.

To compute through the very late phases, we reduce the core resolution and increase the numerical solver tolerance when the central temperature increases above $\log_{10}(T_c/[\mathrm{K}]) > 9.45$. We define the onset of core-collapse when the iron-core infall velocity exceeds $1000\,\mathrm{km\ s^{-1}}$ (e.g., ?).

The inlists, processing scripts, and model output will be made available at link.