Mikroelektromechanikai rendszerek

Villamos motorok és alapvető motorvezérlések.

Email: kajdocsi.laszlo@sze.hu

Oktató: Tüű-Szabó Boldizsár

Iroda: Informatika Tanszék, B606/A

Email: tuu.szabo.boldizsar@sze.hu

Villamos motorok

A villamos motorok a villamos energiát mechanikai energiává alakítják.

A villamos motor lehetnek:

- Egyenáramú
- Váltakozó áramú:
 - Egyfázisú
 - Háromfázisú

Váltakozó áramú motorok

Kollektoros

Szinkron

Aszinkron

Egyenáramú motorok

Klasszikus kefés DC motor

Kétpólusú kommutátoros DC motor

Többpólusú kommutátoros DC motor

Legelső DC motor

Hogyan néz ki egy klasszikus DC motor?

DC motor a gyakorlatban

- Páratlan pólusú forgórész
- Vasmag nélküli forgórész (coreless)
- Működési vizsgálat:
 - A forgórész (rotor) szöghelyzete φ, az
 A-val jelölt tekercs szögeltérése
 - az egyik kommutációs pont 0 rotorállásnál található, ezt tekintjük az 1. fázis kezdőpontjának.
 - A forgórész egy teljes 360º-os körbefordulása 6 fázis alatt zajlik le.

Egy vasmag nélküli DC motor

Egy lapos vasmag nélküli DC motor

Egy enkóderes vasmag nélküli DC motor

Léptető motorok

- Szakaszosan érkező jelekkel táplálva meghatározott nagyságú szögelfordulásokat tesznek.
- Jellegzetesen az összes tekercselés a motor állórészén helyezkedik el.
- A mozgáshoz szükséges összes kommutációt a motor vezérlésének kell megoldania, ami nem része a motornak.
- Képesek mindkét irányba forogni.

Léptető motorok

Léptető motorok típusai vezérlés alapján

Unipoláris tekercselésű

Bipoláris tekercselésű

Léptetőmotorok vezérlései

- Hullámhajtás
- · Egészlépéses üzemmód
- Féllépéses üzemmód
- Mikrolépéses üzemmód

Szervomotorok

- Különböző vezérlő és szabályozó rendszerekben alkalmazzák pozicionálási célból.
- Léteznek egyenáramú és váltakozóáramú szervomotorok
- A szervo egy pozicionálható motor, amely ismeri az aktuális pozícióját, és a cél pozíciót. Feladata, hogy az aktuális pozícióból a kívántra álljon.
- A meghajtást valamilyen motor végzi (általában DC).

Szervomotorok

Motor irányítási alapfeladatok

- Vezérlés
- Fordulatszám-szabályozás
- Hajtás-szabályozás
- Szervo-szabályozás

Motor szabályozások

- Egy villamos paramétert szabályoznunk:
- gépnél kell
- alapvetően néhány feladatspecifikusan

- Fordulatszám
- Pozíció
- Nyomaték
- Attól függően, hogy milyen típusú gépről van szó, sokféle szabályozási technika létezik.

Motorszabályozási technikák

- Áramirányítós szabályzás
- Mezőorientált áramvektor-szabályozás
- Feszültséginverteres szabályozás
- Közvetlen nyomatékszabályozás
- Tirisztoros áraminverteres szabályozás
- Impulzusszélesség modulációs áraminverteres szabályozás

Szabályozáshoz szükséges elemek

- Mérőeszközök
- Szenzorok
- Szabályozó áramkörök
- Váltóáramkörök (pl. frekvenciaváltó)
- MOTOR

Mérőeszközök

Szögmérés:

- Abszolút és inkrementális jeladók
- Optikai jeladók
- Mágneses forgó jeladók
- Rezolverek
- Elektromos eszközök: potenciométerek

Fordulatszám (szögsebesség) jeladók:

- Mágneses elvű jeladók: tachogenerátor
- Időmérésen alapuló eszközök: optikai és mágneses impulzusszámlálók
- Inerciális elvű jeladók: giro-szenzorok (MEMS)

Nyomaték jeladók

Fordulatszámszabályozás

- A váltakozó áramú motorok fordulatszámának a változtatása a frekvencia változtatásával kivitelezhető a legjobban:
 - Frekvenciaváltó
- Az egyenáramú motorok fordulatszámának a változtatása az impulzusszélesség változtatásával kivitelezhető a legjobban:
 - Impulzus szélesség moduláció (PWM)

Frekvenciaváltók

- Olyan készülék, amibe bevezetjük az áramot és a kimenetére váltakozóáramú motort kapcsolunk.
- A frekvenciaváltó a motorra nem csak 50 Hz-es feszültséget, hanem egy tetszőlegesen változtatható frekvenciájú feszültséget tud adni.

PWM

Az impulzus vezérlés előnyei: az egész fordulatszám tartományban nagyobb nyomaték; nagyobb az indító nyomaték; a vezér<u>lő veszteségei ki</u>sebbek.

Pozíciószabályozás

- Leggyakrabban szervohajtásokban alkalmazzák
- Szabályozás fajtái:
 - Point-to-point szabályozás (PTP)
 - Continuous-path szabályozás (CP)

A pozíciószabályozó egyszerűsített hatásvázlata

 A pozíciószabályozó átviteli függvénye általános esetben PID típusú:

$$Y_{p} = K_{p} + \frac{1}{sT_{pd}} + sT_{pd}$$

 A PTP gyakorlatban P és PD pozíció szabályozókat alkalmaznak.

32

Köszönöm a figyelmet!