Term 1 &2 EDA Project

Wine Quality Dataset

Presented by Clifer Fernandez – April 2020 cohort

Agenda

- Introduction
- Executive Summary
- Data Profiling
- Data Analysis
- Conclusions
- Recommendations

Introduction

- Dataset Properties of Wine
 - 11 physiochemical properties
 - 1 Sensory property : 'Quality' based on taste

The Challenge!

 Can we predict the quality of a wine based on these 12 properties?

Executive Summary

- Original data set 6497 records
- Analysis indicates
 - No clear combination of properties
 - High quality wines
 - higher alcohol levels
 - lower residual sugar, chlorides and volatile acidity
- Further actions
 - Additional data collection eg: Red / White / Rosé
 - Current analysis and data select / develop Machine Learning Models that may be able to predict

Data Profiling

- Data set
 - Import data
 - View records
 - Basic stats
 - Profiling

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
count	6497.000	6497.000	6497.000	6497.000	6497.000	6497.000	6497.000	6497.000	6497.000	6497.000	6497.000	6497.000
mean	7.215	0.340	0.319	5.443	0.056	30.525	115.745	0.995	3.219	0.531	10.492	5.818
std	1.296	0.165	0.145	4.758	0.035	17.749	56.522	0.003	0.161	0.149	1.193	0.873
min	3.800	0.080	0.000	0.600	0.009	1.000	6.000	0.987	2.720	0.220	8.000	3.000
25%	6.400	0.230	0.250	1.800	0.038	17.000	77.000	0.992	3.110	0.430	9.500	5.000
50%	7.000	0.290	0.310	3.000	0.047	29.000	118.000	0.995	3.210	0.510	10.300	6.000
75%	7.700	0.400	0.390	8.100	0.065	41.000	156.000	0.997	3.320	0.600	11.300	6.000
max	15.900	1.580	1.660	65.800	0.611	289.000	440.000	1.039	4.010	2.000	14.900	9.000

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

Dataset statistics		Variable types	
Number of variables	12	NUM	12
Number of observations	6497		
Missing cells	0		
Missing cells (%)	0.0%		
Duplicate rows	1179		
Duplicate rows (%)	18.1%		

Dataset has 1179 (18.1%) duplicate rows

citric acid has 151 (2.3%) zeros

Data Profiling - Pre-processing

- Pre-processing
 - Remove duplicates
 - Set reduced to 5318 records
 - Check data distribution

Data Profiling – feature eng.

- Pre-processing
 - Deal with outliers
 - z score 4 to +4
 - Removed 155 records
 - Final dataset has 5163 records

Quality Rating	Count
3	20
4	193
5	1690
6	2264
7	845
8	146
9	5

- Add feature
 - Wine grade
 - Wine body
 - <u>Link</u>
 - Dryness / sweet
 - <u>Link</u>

Quality Rating	Group
3,4	Low
5,6	Medium
7,8,9	High

Alcohol %	Body
<12.5	Light
12.5 - 13.5	Medium
>13.5	Full

Residual Sugar Content	Dry / Sweet Rating
<1	Bone-dry
1 - 10	Dry
10 - 35	Off-Dry
35 - 120	Sweet
120 - 220	Very Sweet

Data Profiling – Post Profiling

- Post Profiling
 - Rerun stats
 - profiling

Dataset statistics				
Number of variables	15			
Number of observations	5163			
Missing cells	0			
Missing cells (%)	0.0%			
Duplicate rows	0			
Duplicate rows (%)	0.0%			

Variable types						
NUM	12					
CAT	3					

Data Analysis

Data spread – new categories

- Quality grade
 - Low 213
 - Medium 3954
 - High 996
- Wine Body
 - Light 4721
 - Medium 395
 - Full 47
- Dryness / Sweetness
 - − Bone-dry − 72
 - Dry 4264
 - Off-dry 827
- Medium grade, Light bodied, Dry wines

full

Data Analysis

Correlation of the variables

- Quality
 - Alcohol content
 - Density
 - Chlorides (salts)
 - Volatile acidity (acetic acid levels)

- 06

- 0.4

- 0.2

- 0.0

- -0.2

Variables correlating with Quality

- vs Alcohol content
 - Higher the quality grade higher the alcohol level
- vs Density
 - Higher the quality grade lower the density

Variables correlating with Quality

- vs Chloride levels
 - Higher the quality grade lower the chloride levels
- vs Volatile acidity
 - Higher the quality grade lower the volatile acidity

Variables correlating with Quality

Reiterates what we seen

- Note -
 - Chloride and Volatile acidity grouping irrespective of quality grade
 - How much do they really affect the quality rating?

Higher quality wines have higher alcohol content

Sweeter wines have higher density

Lighter wines have higher density

Data Analysis – Alcohol content

Variables correlating with Alcohol content

- vs Density
 - Higher the alcohol content lower the density
- vs Chlorides
 - Low correlation, data is spread out
 - Generally higher the alcohol content lower the chlorides
- Vs Residual sugar
 - Higher the alcohol content lower the residual sugar

Data Analysis – Alcohol content

The cross plot of residual sugar Vs chlorides

- An obvious 'V' shaped spread
- Could indicate 2 distinct families of wines

Higher residual sugars and higher density are seen in light wines ie: lower alcohol wines

Data Analysis – Density

Variables correlating with Density

- vs Fixed acidity
 - Higher the density higher the fixed acidity

Data Analysis – Density

Variables correlating with Density

Data Analysis – Chlorides

Variables correlating with Chlorides

- Data is quiet spread out with weak relationships
- Generally higher grade wines have lower chloride content

Data Analysis – Volatile Acidity

Variables correlating with Volatile Acidity

- Higher quality wines tend to have lower levels of volatile acidity
- Also tend to have lower levels of the ingredients that correlate with Volatile Acidity

Conclusions

- Dataset concentrated on Medium graded, light bodied, dry wines
- Broadly speaking higher the quality of wine
 - Higher : alcohol content (human factor?)
 - Lower: density, residual sugar, chlorides and volatile acidity

Conclusions

 No clear combination of physicochemical properties can be summarised by EDA

Recommendations

- Data collection
 - Wine type ie: Red, White or Rosé
 - Variety of grape
 - Origin of wine ie: local, region, country etc.
- Current dataset
 - Select / build Machine Learning models to predict quality rating based on the physicochemical properties
 - Additional data from the above collection can be used to improve selected model or select a more appropriate model as necessary

Thank You!

Santé!

