$$int A_1 = \{x \in \mathbb{R}^n : |x| < 1\}
ext A_1 = \{x \in \mathbb{R}^n : |x| > 1\}
bd A_1 = \{x \in \mathbb{R}^n : |x| = 1\}$$

Consider a point $x \in \text{int} A_1$. \exists open ball $B = \{x \in \mathbb{R}^n : |x| < 1\}$ of radius 1 centered at the origin where $x \in B \subset A_1$.

Consider a point $x \in \text{ext} A_1$. Choose an open ball B of radius $\frac{1}{2}(|x|-1)$ centered at x. For any $y \in B$, by triangle inequality, $|x| \le |x-y| + |y| \implies |y| \ge |x| - |x-y| = \frac{1}{2}|x| + \frac{1}{2}$. As |x| > 1, |y| > 1. Thus, $B \subset \text{ext} A_1 \subset A^C$.

Consider a point $x\in \mathrm{bd}A_1$ and any open ball B of radius 2r centered about the point. WLOG, take 2r<1. Then, the points a=(1-r)x and b=(1+r)x are contained in B as |a-x|=|(1-r)x-x|=r<2r, |b-x|=|(1+r)x-x|=r<2r. However, $a\in A_1$ as |a|=1-r but $b\in A_1^C$ as |b|=1+r. Thus, x is on the boundary of A_1 .

$$int A_2 = \emptyset$$

$$ext A_2 = \{x \in \mathbb{R}^n : |x| \neq 1\}$$

$$bd A_2 = \{x \in \mathbb{R}^n : |x| = 1\}$$

Take any open ball $B \subset \mathbb{R}^n$ of radius 2r centered at y. Then, let $d = \frac{r}{|y|}$. The points a = (1-d)y and b = (1+d)y are contained in B as |a-y| = |(1-d)y-y| = |d||y| = r and |b-y| = |(1+d)y-y| = |d||y| = r, but |a| = |y| - r, |b| = |y| + r. Thus, for any open there are points with different norms, so, there is no open ball that is contained in A_2 . Hence, $\mathrm{int}A_2$ is empty.

Finding the boundary of A_2 involves the same as the proof for the boundary of A_1 .

As $\operatorname{int} A_2 \cup \operatorname{bd} A_2 \cup \operatorname{ext} A_2 = \mathbb{R}^n$, $\operatorname{ext} A_2 = \mathbb{R}^n \setminus (\operatorname{int} A_2 \cup \operatorname{bd} A_2)$.

$$int A_3 = \emptyset
ext A_3 = \emptyset
bd A_3 = \mathbb{R}^n$$

Since \mathbb{Q}^n is dense in \mathbb{R}^n , any open rectangle in \mathbb{R}^n will contain points in A_3 and A_3^C . Thus, there are no points in the interior or exterior of A_3 , and the boundary of A_3 is the full set \mathbb{R}^n .