Package 'RSmallTelescopes'

October 12, 2022

2 EstimatePower

Estimate Power

Description

Estimate statistical power of an effect size parameter by simulation using original sample size.

Usage

```
EstimatePower(data, n.original, B.power, analysis, n.rows, alpha)
```

Arguments

data	Dataset (matrix).
n.original	The sample size of the original analysis (scalar).
B.power	The number of samples to be simulated (scalar).
analysis	Function to produce a p value and an effect size estimate.
n.rows	The number of rows per subject in the dataset (scalar)
alpha	Set alpha level for analysis (scalar)

Value

Power estimate generated through simulation (scalar).

Examples

```
# create or import dataset
example.data <- matrix(rnorm(50), 25, 2)

# estimate statistical power
EstimatePower(
   data = example.data,
   n.original = 10,
   analysis = function(data) {
     corr <- cor.test(data[,1], data[,2])
     return(list(effect.size = corr$estimate, p.value = corr$p.value))
   },
   B.power = 100,
   n.rows = 1,
   alpha = 0.05)</pre>
```

SmallTelescopes 3

Description

Estimate statistical power for point estimate of effect size plus the lower and upper bounds of a confidence interval.

Usage

```
SmallTelescopes(
  data,
  analysis,
  n.original,
  B.CI = 10000,
  CI.level = 0.9,
  B.power = 10000,
  alpha = 0.05,
  n.rows = 1,
  seed = 1
)
```

Arguments

data	Dataset (matrix).
analysis	Function to produce a p value and an effect size estimate.
n.original	The sample size of the original analysis (scalar).
B.CI	The number of simulated samples used to construct CI (scalar); default = 10,000.
CI.level	The confidence level of the interval (scalar); default = .90.
B.power	The number of samples to be simulated (scalar); default = 10,000.
alpha	Set alpha level for analysis (scalar); default = 0.05.
n.rows	The number of rows per subject in the dataset (scalar); default = 1 .
seed	Allows randomly generated numbers to be reproducible (scalar); default = 1.

Value

Displays statistical power for point estimate of an effect size plus the lower and upper bounds of a confidence interval. List contains the following components:

n.replication	The sample size of the replication analysis.
n.original	The sample size of the original analysis.
B.CI	The number of simulated samples used to construct CI.
CI.level	The confidence level of the interval.
B.power	The number of samples simulated.

4 SmallTelescopes

```
p.value The p value calculated from the replication data
es.estimate Point estimate of effect size.
es.power Estimated power for the point estimate of effect size.
CI.lower.estimate Effect size estimate at the lower bound of the CI.
CI.lower.power Estimated power for the lower bound of the CI.
CI.upper.estimate Effect size estimate at the upper bound of the CI.
CI.upper.power Estimated power for the upper bound of the CI.
```

Examples

```
# create or import dataset
example.data <- matrix(rnorm(50), 25, 2)

# conduct empirical small telescopes analysis
SmallTelescopes(
   data = example.data,
   analysis = function(data) {
      corr <- cor.test(data[,1], data[,2])
      return(list(effect.size = corr$estimate, p.value = corr$p.value))
   },
   n.original = 10,
   B.CI = 100,
   B.power = 100)</pre>
```

Index

EstimatePower, 2

SmallTelescopes, 3