Раздел 7. Функции нескольких переменных Вариант 1

- 1. Найти частные производные функций: a) $z = 3x^2 + xy y^2 + 1$; б) $z = \sqrt{2x + 3y}$.
- 2. Найти частные производные, частные дифференциалы и полный дифференциал функции $z = x^4 cos^2 y y^4 sin^3 x^5$.
- 3. Исследовать функцию на экстремум: $u = x^2 + xy + y^2 2x 3y + 5$,6.
- 4. Используя метод наименьших квадратов, вывести формулу y = ax + b, если:

\bar{x}	1	3	5	7
\overline{y}	-2	0	1	2

5. Вычислить приближённо: a) $2,02^5 \cdot 0,97^3$; б) $arctg \frac{1,02}{0.95}$.

Раздел 7. Функции нескольких переменных Вариант 2

- 1. Найти частные производные функции: a) $z = 4x^2 xy + y^2 + 1$; б) $z = y \ln x$.
- 2. Найти частные производные, частные дифференциалы и полный дифференциал функции $z = x^5 cos^3 y y^4 sin^2 x^3$.
- 3. Исследовать функцию на экстремум: $u = x^2 10y^2x + 10x + 1$.
- 4. Используя метод наименьших квадратов, вывести формулу y = ax + b, если:

\boldsymbol{x}	1	2	4	6
у	-1	1	2	4

5. Вычислить приближённо: a) $e^{0.2} \cdot 1.03^2$; б) $arctg \frac{2.02}{0.94}$.

Раздел 7. Функции нескольких переменных Вариант 3

- 1. Найти частные производные функции: a) $z = 5x^2 2xy + y^2 + 3$; б) $z = \cos(x y)$.
- 2. Найти частные производные, частные дифференциалы и полный дифференциал функции $z = x^6 cos^2 y y^3 sin^3 x^2$.
- 3. Исследовать функцию на экстремум: $u = 4x^2y + 24xy + y^2 + 32y 6$.
- 4. Используя метод наименьших квадратов, вывести формулу y = ax + b, если:

x	1	2	3	4
y	-2	-1	2	4

5. Вычислить приближённо: a) $\sqrt{1,99^3 + e^{0.02}}$; б) $arcctg \frac{3.01}{1.94}$.

Раздел 7. Функции нескольких переменных Вариант 4

- 1. Найти частные производные функции: a) $z = 3x^2 + xy y^2 + 1$; б) $z = x \sin y^2$.
- 2. Найти частные производные, частные дифференциалы и полный дифференциал функции $z = x^6 cos^4 y y^2 sin^5 x^6$.
- 3. Исследовать функцию на экстремум: $u = x^2 xy + 2y^2 + 3x + 2y + 1$.
- 4. Используя метод наименьших квадратов, вывести формулу y = ax + b, если:

x	-1	0	1	2	3	5
у	-2	1	2	4	5	6

5. Вычислить приближённо: a) $\sqrt{5} \cdot \sqrt[4]{17}$; б) $arcctg \frac{3.98}{0.23}$.

Раздел 7. Функции нескольких переменных Вариант 5

- 1. Найти частные производные функции: a) $z = 3x^3 2xy 4xy^2 + 6$; б) $z = \ln(x 2y)$.
- 2. Найти частные производные, частные дифференциалы и полный дифференциал функции $z = x^7 cos^2 y y^3 sin^5 x^2$.
- 3. Исследовать функцию на экстремум: $u = -x^2 + xy y^2 9x + 3y 20$.
- 4. Используя метод наименьших квадратов, вывести формулу y = ax + b, если:

х	1	2	3	5
y	3	4	2,5	0,5

5. Вычислить приближённо: a) $e^{0.6} \cdot 1.04^3$; б) $arctg \frac{4.02}{1.97}$.