Effects of Dielectric Particles on Non-Oxidative Coupling of Methane in a Dielectric Barrier Discharge Plasma Reactor

 $Juchan\ Kim^{l}$, $Jaekwon\ Jeoung^{l}$, $Jonghyun\ Jeon^{l}$, $Jip\ Kim^{l}$, $Young\ Sun\ Mok^{2}$, $Kyoung\ Sun\ Ma^{*,l}$

¹ Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeomro, Mapo-gu, Seoul 04107, Republic of Korea

² Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea

Corresponding Author

*To whom all correspondence should be addressed. Tel.: (+82)-2-3274-4892, Fax: (+82)-2-711-0439, E-mail: philoseus@sogang.ac.kr

List of Contents

Table S1. The molar balances on hydrogen and carbon in each test.

Table S2. Various non-oxidative methane coupling reaction performances in a DBD plasma reactor.

Table S3. Maximum experimental errors in packed bed tests with various packing materials

Table S4. Physisorption result of each sample.

Figure S1. Schematic diagram of packed bed DBD plasma system.

Figure S2. N₂ physisorption results; (a) Isotherms (b) BJH pore size distribution curves of the fresh KIT-6 samples.

Figure S3. Small-angle X-ray scattering patterns of (a-b) fresh & spent KIT-6 (S), (c-d) fresh & spent KIT-6 (M), and (e-f) fresh & spent KIT-6 (L).

Figure S4. Q-V Lissajous plots of (a) α -Al₂O₃ samples, (b) sea sand samples, and (c) KIT-6 samples. (S), (M), and (L) denote the size of each sample.

Figure S5 Voltage-current profiles in the blank DBD reactor.

Figure S6. Reaction performances when no particles (blank), α -Al₂O₃, sea sand, and KIT-6 were used at TOS 380 min; (a) CH₄ conversion and product selectivity (b) CH₄ conversion and product yield.

Figure S7. SEM image of (a) spent α -Al₂O₃ (S), (b) spent α -Al₂O₃ (M), (c) spent α -Al₂O₃ (L), (d) spent sea sand (S), (e) spent sea sand. (M), (f) spent sea sand (L), (g) spent KIT-6 (S), (h) spent KIT-6 (M), and (i) spent KIT-6 (L).

Figure S8. TEM imaging analyses with EDS of (a) spent α -Al₂O₃, (b) spent sea sand, and (c) spent KIT-6.

 $\label{eq:control_state} \textbf{Table S1}$ The molar balances on hydrogen and carbon in each test.

Sample	Blank		α-Al ₂ O ₃			sea sand			KIT-6	
Size	-	S	M	L	S	M	L	S	M	L
				TO	OS 60 min					
CB (%) a	94.22	98.18	82.70	86.68	79.97	75.02	81.10	96.84	75.86	85.72
HB (%) b	97.01	98.57	93.51	93.65	95.46	95.09	92.41	99.77	92.03	94.47
				ТО	S 300 min					
CB (%) a	93.50	94.00	95.44	95.89	99.12	98.09	90.61	98.71	97.49	94.12
HB (%) b	96.09	93.33	95.11	97.19	100.00	99.79	97.43	99.06	98.77	97.14

^a Carbon Balance (CB) (%) = $\frac{\text{Moles of CH}_4 \text{ not converted} + \sum(x \times \text{Moles of C}_x \text{H}_y \text{ produced})}{\text{Moles of CH}_4 \text{ in the feed}} \times 100$

 $^{^{}b} \text{ Hydrogen Balance (HB) (\%)} = \frac{4 \times Moles \text{ of } CH_{4} \text{ not converted} + 2 \times Moles \text{ of } H_{2} \text{ produced} + \sum (y \times Moles \text{ of } C_{x}H_{y} \text{ produced})}{4 \times Moles \text{ of } CH_{4} \text{ in the feed}} \times 100$

 $\label{eq:continuous} \textbf{Table S2}$ Various non-oxidative methane coupling reaction performances in a DBD plasma reactor.

:	Voltage/Fr CH4 equency/Po conversion wer (%)	s	<u>~</u>	Product selectivity (%)	5 .		Referenc e
		C2H2	C2H4	C_2H_6	C3	2	ı
15 kV / 1 kHz / 36.1 – 19, 44.1 W	19.9 – 58.4	4 11.2 – 46.5	4.70 – 12.7	9.56 – 21.8	6.43 – 10.7	3.86–25.2	This study
7.2 kV / 2 kHz / 9.6 W	9.7	Not included	3.3	24.6	8.3	2.6	Ξ
6 kV/3 kHz/3.2 – 9 3.5 W	9.5 – 23	10.5 - 28	18.6 – 30.3	27.4 – 48.1	8.7 – 23.7	0.3 - 0.7	[2]
20 kV / 60 W	13.8	1.23	3.26	14.8	6.74	ĸ	[3]

Table S3

Maximum experimental errors in packed bed tests with various packing materials

Packing			Max	imum error ((%) a		
material	CH ₄ conv.	C ₂ H ₂ sel.	C ₂ H ₄ sel.	C ₂ H ₆ sel.	C2 HC sel.	C3 HC sel.	C4 HC sel.
KIT-6	0.15	5.69	2.43	11.92	5.59	8.45	4.25
α-Al ₂ O ₃	1.22	7.67	6.87	1.90	6.31	3.19	0.86
γ-Al ₂ O ₃	0.17	10.35	12.00	3.16	8.58	5.17	3.33

^a Maximum error (%) = $\max(|\frac{\text{experimental value-mean experimental value}}{\text{mean experimental value}}|) \times 100 (%)$

Table S4Physisorption result of each sample.

Sample	BET Surface Area (m²/g)
α-Al ₂ O ₃ (S)	22.8
α-Al ₂ O ₃ (M)	18.0
α-Al ₂ O ₃ (L)	12.9
sea sand (S)	n.d.
sea sand (M)	n.d.
sea sand (L)	n.d.
KIT-6 (S)	898
KIT-6 (M)	892
KIT-6 (L)	777

Figure S1. Schematic diagram of packed bed DBD plasma system.

Figure S2. N₂ physisorption results; (a) Isotherms (b) BJH pore size distribution curves of the fresh KIT-6 samples.

Figure S3. Small-angle X-ray scattering patterns of (a-b) fresh & spent KIT-6 (S), (c-d) fresh & spent KIT-6 (M), and (e-f) fresh & spent KIT-6 (L).

Figure S4. Q-V Lissajous plots of (a) α -Al₂O₃ samples, (b) sea sand samples, and (c) KIT-6 samples. (S), (M), and (L) denote the size of each sample.

Figure S5. Voltage-current profiles in the blank DBD reactor.

Figure S6. Reaction performances when no particles (blank), α -Al₂O₃, sea sand, and KIT-6 were used at TOS 380 min; (a) CH₄ conversion and product selectivity (b) CH₄ conversion and product yield.

Figure S7. SEM image of (a) spent α -Al₂O₃ (S), (b) spent α -Al₂O₃ (M), (c) spent α -Al₂O₃ (L), (d) spent sea sand (S), (e) spent sea sand. (M), (f) spent sea sand (L), (g) spent KIT-6 (S), (h) spent KIT-6 (M), and (i) spent KIT-6 (L).

Figure S8. TEM imaging analyses with EDS of (a) spent α -Al₂O₃, (b) spent sea sand, and (c) spent KIT-6.

References for Supplementary Information

- [1] S. Kudryashov, A. Ryabov, G. Shchyogoleva, A new approach to the non-oxidative conversion of gaseous alkanes in a barrier discharge and features of the reaction mechanism, Journal of Physics D: Applied Physics 49 (2015) 025205.
- [2] P. Kasinathan, S. Park, W.C. Choi, Y.K. Hwang, J.-S. Chang, Y.-K. Park, Plasma-Enhanced Methane Direct Conversion over Particle-Size Adjusted MO x/Al 2 O 3 (M= Ti and Mg) Catalysts, Plasma Chemistry and Plasma Processing 34 (2014) 1317-1330.
- [3] A. Indarto, N. Coowanitwong, J.-W. Choi, H. Lee, H.K. Song, Kinetic modeling of plasma methane conversion in a dielectric barrier discharge, Fuel Processing Technology 89 (2008) 214-219.