

Lecture: Convolutional Neural Network (CNN) An Introduction

Dr. Goutam Chakraborty

SAS® Professor of Marketing Analytics

Director of MS in Business Analytics and Data Science* (http://analytics.okstate.edu/mban/)

Director of Graduate Certificate in Business Data Mining (http://analytics.okstate.edu/certificate/grad-data-mining/)

Director of Graduate Certificate in Marketing Analytics (http://analytics.okstate.edu/certificate/grad-marketing-analytics/)

- *Name change pending internal approval.
- Note some of these slides are copyrighted by SAS® and used with permission. Reuse or redistribution is prohibited.
- Some of the slides were developed by Mr. Sanjoy Dey, used with permission.

Outline

Typical applications of CNN

Motivations behind using CNN

2

Applications of CNN: Image Classification and Object Detection

Image Classification

"It's a bird! It's a plane! It's a frog!"

Object Detection

Natural Language Processing

"That was a funny joke.....not!"

Why Convolution? Input Output Hidden Layer In MNIST data set the images were 28 X Layer 28 pixels i.e., 784 input features Input #1 With a 100 unit hidden layer we need about 79,510 parameters in the the model Input #2 Output Input #3 In real life images could be 512 X 512 pixels i.e., > 250K input features which Input #4 means > 25m parameters

Output of Convolution (Contd.)

7

What is CNN?

- Convolutional neural networks (CNNs) are a type of neural network that is viewed to be **computationally and statistically efficient** (Goodfellow, Bengio, and Courville).
- A typical CNN consists of five types of layers: input, convolution, pooling, fully connected, and output.
 - > Each type of layer has its own specific properties and functionalities.
- *Convolution layers* require fewer parameters than a fully connected layer because the parameters are shared across columns thereby improving computation efficiency.
- *Pooling layers* themselves do not contain parameters, but instead they combine columns with an output summary.

8

Lecture: CNN Input and Convolutional Layers

Dr. Goutam Chakraborty

SAS® Professor of Marketing Analytics

Director of MS in Business Analytics and Data Science* (http://analytics.okstate.edu/mban/)

Director of Graduate Certificate in Business Data Mining (http://analytics.okstate.edu/certificate/grad-data-mining/)

Director of Graduate Certificate in Marketing Analytics (http://analytics.okstate.edu/certificate/grad-marketing-analytics/)

- *Name change pending internal approval.
- Note some of these slides are copyrighted by SAS® and used with permission. Reuse or redistribution is prohibited.
- Some of the slides were developed by Mr. Sanjoy Dey, used with permission.

c

Outline

Basic CNN Architecture

- Input layers for grayscale vs. color
- Convolutional layers
 - > Filters

10

Reference:

- Convolutional layers use *filters*, which do the following:
 - capture edges
 - include learnable parameters
 - introduce new hyperparameters: width, height, and stride
 - The number of filter channels equals the number of channels present in the incoming information
- Convolutional layers are equivariant to translation.
- The cross-correlation operation is applied to the incoming information and the kernel filter.

13

Filters

- A typical convolution layer can consist of many filters.
- The filters *slide across the input surface in parallel*, capturing meaningful characteristics.
 - Therefore, the parameters in each filter are shared by multiple columns in the data. Parameter sharing decreases the number of parameters needed to translate the input space.
- Each filter creates equivariant representations of the input, which means that changes in the input space are represented in the output.

1

Single Input Channel: 6 * 6

Filter: 3 * 3

1	1	1
0	0	0
-1	-1	-1

r: 3 * 3

Feature Map

Reference:

15

Convolutional Layers

Single Input Channel: 6 * 6

Filter: 3 * 3

٥.

Bias				
+	10	=		

Feature Map

Reference:

$$245 + 97 + 239 + 0 + 0 + 0 - 212 - 175 - 160 + 10 = 44$$

16

Single Input Channel: 6 * 6

245	97	239	187	195	254
185	207	11	77	93	246
212	175	160	11	27	2
33	2	0	0	0	0
140	0	0	0	4	2
226	152	49	18	193	247

Filter: 3 * 3

	1	1	1
*	0	0	0
	-1	-1	-1

Feature Map

44		

$$245 + 97 + 239 + 0 + 0 + 0 - 212 - 175 - 160 + 10 = 44$$

17

Convolutional Layers

Single Input Channel: 6 * 6

245	97	239	187	195	254
185	207	11	77	93	246
212	175	160	11	27	2
33	2	0	0	0	0
33		U			U
140	0	0	0	4	2
226	152	49	18	193	247

Stride = 1

Filter: 3 * 3

Reference:

Input Layer Convolution Layer

Feature Map

44	_	

$$97 + 239 + 187 + 0 + 0 + 0 - 175 - 160 - 11 + 10 = 187$$

Bias

+ 10 =

18

Single Input Channel: 6 * 6

Stride = 1

Filter: 3 * 3

	1	1	1	
*	0	0	0	
	-1	-1	-1	

Feature Map

Reference

$$97 + 239 + 187 + 0 + 0 + 0 - 175 - 160 - 11 + 10 = 187$$

Bias

+ 10 =

Convolutional Layers

Single Input Channel: 6 * 6

245	97	239	187	195	254
185	207	11	77	93	246
212	175	160	11	27	2
33	2	0	0	0	0
140	0	0	0	4	2
226	152	49	18	193	247

Stride = 1

Filter: 3 * 3

	1	1	1		Bias	
*	0	0	0	+	10	=
	-1	-1	-1			

Feature Map

Bias

Input Layer

Reference:

$$239 + 187 + 195 + 0 + 0 + 0 - 160 - 11 - 27 + 10 = 433$$

Single Input Channel: 6 * 6

245	97	239	187	195	254
185	207	11	77	93	246
212	175	160	11	27	2
33	2	0	0	0	0
140	0	0	0	4	2
226	152	49	18	193	247

Stride = 1

Filter: 3 * 3

1	1	1	Bias
0	0	0	+ 10 =
_1	_1	_1	

Reference:

Input Layer Convolution Layer

Feature Map

44	187	433	606
378	303	191	426
417	356	204	44
-382	-207	-250	-448

2

Convolutional Layers

Single Input Channel: 6 * 6

245	97	239	187	195	254
185	207	11	77	93	246
212	175	160	11	27	2
33	2	0	0	0	0
140	0	0	0	4	2
226	152	49	18	193	247

Stride = 1

Filter: 3 * 3

w1	w2	w3
w4	w5	w6
w7	w8	w9

Bias

Reference		
	Input Layer	Convolution Layer

Feature Map

44	187	433	606
378	303	191	426
417	356	204	44
		-250	

- 2

Outline

Padding in convolutional layer

- Pooling layer
- Fully connected layer
- Output layer

27

Padding

- Padding increases the relevance of pixels existing on the edge of an image.
- It retains information that would otherwise be disregarded.
- Padding is calculated with the goal of producing an output image in a size that will be "reasonable" based on the original input image size and filter size.
 - The key issues are whether the input image dimensions are even or odd, whether the filter dimensions are even or odd, and the value of the user-specified stride.

28

Reasonable Padding Rules

- The horizontal and vertical padding sizes are independent of each other. Changing the horizontal dimension of an image or filter has no effect on the vertical padding size.
- If the stride is 1, then the output image size is the same as the input image size. When discussing convolutions, this is sometimes referred to as same padding.
- If the stride is 2, then the output image size is about one half the input image size.
- Padding is first added to the right side of the image and then the left. So if padding is unequal, the right side will have more padding than the left.
- Images are padded with zeros.

Ssas

Padding

Single Input Channel: 6 * 6

245	97	239	187	195	254
185	207	11	77	93	246
212	175	160	11	27	2
33	2	0	0	0	0
140		0	0	4	2
140	<u> </u>	U	U		
226	152	49	18	193	247

Without Padding

Filter: 3 * 3

w1	w2	w3
w4	w5	w6
w7	w8	w9

Stride = 1

Feature Map:

4 * 4

n	n	n	n
n	n	n	n
n	n	n	n
n	n	n	n

3

Padding Single Input With Channel: 6 * 6 **Padding** Feature Map: 0 0 0 0 0 0 0 6 * 6 245 97 239 187 195 254 Filter: 3 * 3 n n 185 207 11 246 77 93 w1 w2 w3 n n n n n 212 175 160 11 27 2 0 w5 w6 w4 n n n n 2 0 0 0 0 0 33 w7 w8 w9 n n n n n 140 0 0 4 2 0 0 Stride = 1 226 152 49 18 193 247 0 n n 0 0

Pooling Layers

- increase invariance of a convolutional neural network
- are essential for handling inputs of varying sizes
- provide a localized summary
 - MAX, AVERAGE, MIN
- improve computational efficiency.

33

Fully Connected Layer

A fully connected layer

- uses conventional layer-wise connections to map features to outputs via matrix multiplication
- incorporates a large number of parameters and therefore is expensive to train.

41

Output Layer

- The output layer uses a softmax activation function.
- Cross or relative entropy resolves to the Bernoulli error function when the target is binary:

$$Q(\mathbf{w}) = -2\sum_{i=1}^{n} [\log(\hat{p}) + (1-y)\log(1-\hat{p})]$$

• Cross or relative entropy for more than two classes:

$$\sum_{i}^{n} \sum_{c}^{C} -y_{true}^{(c)} \log(\hat{p}_{predicted}^{(c)})$$

where c is the class label for observation i.

4.

Lecture: CNN

Skip Layers and Architectural Design Strategies

Dr. Goutam Chakraborty

SAS® Professor of Marketing Analytics

Director of MS in Business Analytics and Data Science* (http://analytics.okstate.edu/mban/)

Director of Graduate Certificate in Business Data Mining (http://analytics.okstate.edu/certificate/grad-data-mining/)

Director of Graduate Certificate in Marketing Analytics (http://analytics.okstate.edu/certificate/grad-marketing-analytics/)

- · *Name change pending internal approval.
- · Note some of these slides are copyrighted by SAS® and used with permission. Reuse or redistribution is prohibited.
- Some of the slides were developed by Mr. Sanjoy Dey, used with permission.

43

Outline

The end-to-end process of convolutional layers

- Skip Layers
 - Concatenation layer
 - Residual layer
- Architectural design strategies

44

Skip-Layer Connections

- Skip-layer connections help mitigate "forgotten/vanishing" gradients.
- They combine previously extracted feature with a current set of features.
- The concatenation layer and residual layer are used to create skip-layer connections.

Skip-Layer Connections

- · Concatenation Layer
 - The concatenation layer combines multiple inputs by concatenating them along an axis.
 - This results in a "fatter" network.
- Residual Layer
 - The residual layer sums information through identity mapping.
 - This results in a "thinner" network.

4

Spatial Exploration

- Use different-sized filters to explore varying levels of granularity.
- Use different stride values to impact the exploration scheme.
 - The width and high of output feature maps are reduced by larger stride values.

