Follow the set of instructions to execute the code successfully.

- All the essential inputs are to be saved in an excel file and the file should be in the same working directory of the code.
- Enter no of elements same as that of provided in excel file.

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N
1	Elements	Length	E	Area	Angle	L1	L2	L3	L4	Boundary Nodes	Value	S Variable	S Value	
2	3	230.5124	30000000	15	51.34	1	2	3	4	1	0	4	-20000	
3		360	30000000	20	0	1	2	5	6	2	0	5	0	
4		281.169	30000000	15	-39.8	3	4	5	6	6	0			
5														
6														

For example in the above image each line represents information about an element.

- Enter no of nodes and the code takes the variables of each node accordingly.
- For new file creation follow the same template given for each question.
- Physical units are not taken care of in the code. If it is Metric units give all the values in the metric system only. Same for imperial units.
- For each instance 2 problems were solved and verified with hand solved solutions.
 - 1. 1D Bar

Q425.xlsx --- Question no 4.25 of JN Reddy textbook.

Q434.xlsx --- Question no 4.34 of JN Reddy textbook.

2. Truss

Q439.xlsx --- Question no 4.39 of JN Reddy textbook

Q440.xlsx --- Question no 4.40 of JN Reddy textbook

3. Beam

Q507.xlsx --- Question no 5.07 of JN Reddy textbook

Q511.xlsx --- Question no 5.11 of JN Reddy textbook

4. Frames

QA410.xlsx --- Example problem 4.10 of Asghar Bhatti textbook

- Modules used for coding are:
 - 1. Numpy
 - 2. Matplotlib
 - 3. Sympy
 - 4. Pandas
- 1D bar and truss can be solved with the same code, so there won't be any difference of input file between 1D bar and truss.
- For quick extraction of variables
 - 1. Assembled stiffness matrix python variable is "K"
 - 2. Primary variable vector is "U"
 - 3. Secondary variable vector is "Q"
 - 4. Internal force term is "IF"
 - 5. Connectivity matrix is "B"

Follow the set of instructions to understand the input file format.

Truss:

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N
1	Elements	Length	E	Area	Angle	L1	L2	L3	L4	Boundary Nodes	Value	S Variable	S Value	
2	3	230.5124	30000000	15	51.34	1	2	3	4	1	0	4	-20000	
3		360	30000000	20	0	1	2	5	6	2	0	5	0	
4		281.169	30000000	15	-39.8	3	4	5	6	6	0			
5														
6														

1. **Angle**: Angle of each truss member is taken from the horizontal.

Figure P4.39

- 2. **L1,L2,L3,L4:** These are the columns of the connectivity matrix. Here in the above example no of nodes is 3, and each node has 2 variables. So node 1(1,2) similarly for node 2(3,4) etc.
- 3. Boundary Nodes: Here we need to enter the Dirichlet boundary Nodes.
- **4. Value:** Here we need to enter the corresponding values of dirichlet boundary nodes.
- **5. S Variable:** Enter the Neumann boundary nodes.
- **6. S Value:** Enter the corresponding values of Neumann boundary nodes.

Note: Same code is used for 1D bar problems so the input file format won't change. Give all angles as 0 and connectivity matrix similar to that of truss.

Uniform Load: This is for beams. Here give the uniformly distributed load value for the corresponding element.

EA: Product of young's modulus and area of the cross section.

EI: Product of young's modulus and area moment of inertia.

THE END