Human Activity Recognition Using Smartphones Reconhecimento de Padrões 2016/2017

Gabriel Angel Amarista Rodrigues 2016211454

Maria José Mateus Branco 2013134952

<u>Introdução</u>

Atualmente, os smartphones são utilizados em diversas atividades do quotidiano, nomeadamente para monitorização da atividade humana. Assim, foi desenvolvido um trabalho com o objetivo de desenvolver classificadores para reconhecimento da atividade humana.

O projeto foi dividido em duas partes, na primeira é considerado apenas o caso binário (walking e not walking) e na segunda é estudado um caso com seis classes (walking, walking upstairs, walking downstairs, sitting, standing e laying).

Procedimento

Inicialmente, os dados foram carregados, estando divididos em dois conjuntos diferentes, um conjunto de treino e outro de teste. A cada um destes conjuntos corresponde uma matriz que contém todas as *features* (X_{train} e X_{test}) e um vetor com a classe correspondente a cada uma das instâncias (y_{train} e y_{test}). Após este passo, foi feito o *scaling* dos dados, de forma a que estes estejam todos contidos no intervalo de valores entre -1 e 1.

Uma vez que existem 561 features disponíveis para analisar, e que existe a possibilidade de algumas delas apresentarem informação insignificante para a classificação ou terem informação redundante, procedeu-se à redução da dimensionalidade dos dados, usando as técnicas de PCA e LDA, para além destas técnicas foi também testado o método de Kruskal Wallis para selecionar as features com maior importância na classificação. Ao longo desta primeira fase do projeto foram usadas 3 features para a realização de todos os testes. Todas as funções que foram usadas para redução de dimensionalidade, como PCA, Kruskal Wallis, encontram-se desenvolvidas no ficheiro FeatureProcess.m.

Antes de proceder à redução do número de *features*, verificou-se a existência de características muito correlacionadas e manteve-se apenas uma delas para proceder às análises seguintes.

Após a redução da dimensionalidade, foram testados apenas classificadores simples, o Fisher LDA, que é bastante usado em reconhecimento de padrões pois representa uma combinação linear de características originais que permitem realizar uma separação máxima entre duas populações, foram também usados dois classificadores baseados nas distâncias mínimas, sendo que é no conjunto de treino é definido um ponto médio que permite caracterizar cada classe, sendo que um novo ponto é classificado como a classe que apresenta o ponto mais próximo deste, as distâncias usadas foram a Euclidiana e a Mahalanobis. Assim, foram feitos diferentes testes para verificar qual a combinação que apresenta uma melhor performance no caso binário. No cenário *multiclass*, apenas foram desenvolvidos e testados classificadores baseados nas distâncias mínimas, uma vez que o não foi desenvolvido nenhum classificador do tipo Fisher LDA para distinguir as seis classes diferentes. As funções que permitem desenvolver estes classificadores, encontram-se no programa *Classifier.m.*

No desenvolvimento dos classificadores, foram feitos vários testes, dividindo o conjunto de treino em várias partes e fazendo validação cruzada, com o objetivo de avaliar a capacidade de generalização dos modelos, assim, para cada subconjunto foi obtida uma matriz de confusão, a soma destas permitiu obter uma matriz de confusão que permitiu verificar os classificadores com maior capacidade de generalização.

Após a escolha dos classificadores com melhor *performance*, estes foram aplicados ao conjunto de teste e analisados os resultados.

Para proceder à redução de dimensionalidade, criação e teste dos classificadores, as funções necessárias são chamadas no programa testing_script.m.

Resultados

Cenário Binário (Conjunto de Treino cross validation)

Kruskal Wallis + Fisher LDA

	Walking	Not Walking
Walking	3490	0
Not Walking	30	3840

Accuracy=0.996 Especificidade=0.992

Precisão=0.9915 Sensibilidade/Recall=1.000

Kruskal Wallis + Minimun Euclidean Distance

	Walking	Not Walking
Walking	3260	0
Not Walking	10	4090

Accuracy=0.999 Especificidade=0.998

Precisão=0.997 Sensibilidade/Recall=1.000

Kruskal Wallis + Minimun Mahalanobis Distance

	Walking	Not Walking
Walking	3390	0
Not Walking	20	3950

Accuracy=0.997 Especificidade=0.995

Precisão=0.994 Sensibilidade/Recall=1.000

PCA + Fisher LDA

	Walking	Not Walking
Walking	3540	0
Not Walking	0	3820

Accuracy=1.000 Especificidade=1.000

Precisão=1.000 Sensibilidade/Recall=1.000

PCA + Minimun Euclidean Distance

	Walking	Not Walking
Walking	3650	0
Not Walking	10	3700

Accuracy=0.999 Especificidade=0.997

Precisão=0.996 Sensibilidade/Recall=1.000

PCA + Minimun Mahalanobis Distance

	Walking	Not Walking
Walking	3310	0
Not Walking	10	4040

Accuracy=0.999 Especificidade=0.998

Precisão=0.997 Sensibilidade/Recall=1.000

LDA + Fisher LDA

	Walking	Not Walking
Walking	3300	0
Not Walking	0	4060

Accuracy=1.000 Especificidade=1.000

Precisão=1.000 Sensibilidade/Recall=1.000

LDA + Minimun Euclidean Distance

	Walking	Not Walking
Walking	1950	1310
Not Walking	50	4050

Accuracy=0.815 Especificidade=0.988

Precisão=0.975 Sensibilidade/Recall=0.598

LDA + Minimun Mahalanobis Distance

	Walking	Not Walking
Walking	1710	1500
Not Walking	500	3650

Accuracy=0.728

Especificidade=0.880

Precisão=0.774

Sensibilidade/Recall=0.533

Cenário Binário (Conjunto de Teste)

Após a verificação dos resultados obtidos aplicando os classificadores ao conjunto de treino foi possível escolher os classificadores desenvolvidos através das combinações PCA+Fisher LDA, PCA + Minimun Mahalanobis Distance e Kruskal Wallis + Minimun Euclidean Distance para proceder à sua aplicação ao conjunto de teste e assim verificar a sua *performance*, uma vez que foram os que apresentaram melhores resultados na fase de treino. Após a eliminação das *features* correlacionadas foram testados os classificadores para os dados de treino e foi obtido um classificados com uma *performance* superior aos selecionados anteriormente (classificador baseado na combinação LDA + Fisher LDA).

PCA+Fisher

Figura 1- Decison boundary

	Walking	Not Walking
Walking	1387	0
Not Walking	5	1555

Accuracy=0.998 Especificidade=0.997

Precisão=0.996 Sensibilidade/Recall=1.000

PCA + Minimun Mahalanobis Distance

	Walking	Not Walking
Walking	1387	0
Not Walking	9	1551

Accuracy=0.997 Especificidade=0.994

Precisão=0.994 Sensibilidade/Recall=1.000

Kruskal Wallis + Minimun Euclidean Distance

	Walking	Not Walking
Walking	1387	0
Not Walking	6	1554

Accuracy=0.998 Especificidade=0.996

Precisão=0.996 Sensibilidade/Recall=1.000

LDA + Fisher LDA

Figura 2- Decision boundary

	Walking	Not Walking
Walking	1387	0
Not Walking	0	1560

Accuracy=1.000 Especificidade=1.000

Precisão=1.000 Sensibilidade/Recall=1.000

Cenário com 6 classes (Conjunto de Treino cross validation)

Kruskal Wallis + Minimun Euclidean Distance

	Walking	Walking Upstairs	Walking Downstairs	Sitting	Standing	Laying
Walking	930	250	100	0	0	0
Walking Upstairs	200	780	150	0	0	0
Walking Downstairs	100	130	630	0	0	0
Sitting	0	0	0	1060	190	10
Standing	0	0	0	1030	310	10
Laying	0	10	0	1190	280	0

Accuracy=0.505

Kruskal Wallis + Minimun Mahalanobis Distance

	Walking	Walking Upstairs	Walking Downstairs	Sitting	Standing	Laying
Walking	510	350	270	0	0	0
Walking Upstairs	380	590	180	0	0	0
Walking Downstairs	120	80	1050	0	0	0
Sitting	0	0	0	1070	210	10
Standing	0	20	0	920	350	30
Laying	0	0	0	980	220	20

PCA + Minimun Euclidean Distance

	Walking	Walking Upstairs	Walking Downstairs	Sitting	Standing	Laying
Walking	580	270	280	0	0	0
Walking Upstairs	160	770	200	0	0	0
Walking Downstairs	240	100	750	0	0	0
Sitting	0	0	0	800	430	50
Standing	0	0	0	520	750	0
Laying	0	10	0	10	0	1440

Accuracy=0.692

PCA + Minimun Mahalanobis Distance

	Walking	Walking Upstairs	Walking Downstairs	Sitting	Standing	Laying
Walking	430	630	190	0	0	0
Walking Upstairs	190	620	170	0	0	0
Walking Downstairs	260	110	650	0	0	0
Sitting	0	0	0	820	440	100
Standing	0	0	0	840	640	0
Laying	0	30	0	10	130	1100

LDA + Minimun Euclidean Distance

	Walking	Walking Upstairs	Walking Downstairs	Sitting	Standing	Laying
Walking	490	350	260	0	0	0
Walking Upstairs	150	840	150	0	0	0
Walking Downstairs	70	140	630	0	0	0
Sitting	0	10	0	160	910	220
Standing	0	0	0	320	950	190
Laying	0	30	0	350	900	240

Accuracy=0.450

PCA + Minimun Mahalanobis Distance

	Walking	Walking Upstairs	Walking Downstairs	Sitting	Standing	Laying
Walking	550	540	290	0	0	0
Walking Upstairs	150	740	150	0	0	0
Walking Downstairs	170	60	650	0	0	0
Sitting	0	0	0	910	90	320
Standing	0	0	0	990	100	390
Laying	0	10	0	920	100	220

Cenário com 6 classes (Conjunto de Teste)

Após a verificação dos resultados obtidos aplicando os classificadores ao conjunto de treino foi possível escolher a combinação o classificador baseado na combinação PCA + Minimun Euclidean Distance e proceder à sua aplicação ao conjunto de teste e assim verificar a sua *performance*, uma vez que foi o que apresentoumelhores resultados na fase de treino.

PCA + Minimun Euclidean Distance

	Walking	Walking Upstairs	Walking Downstairs	Sitting	Standing	Laying
Walking	340	41	115	0	0	0
Walking Upstairs	51	392	28	0	0	0
Walking Downstairs	149	56	215	0	0	0
Sitting	0	6	0	259	223	3
Standing	0	9	0	140	383	0
Laying	0	2	0	15	0	520

Discussão

Depois de aplicadas as diferentes combinações entre as técnicas de redução de dimensionalidade e os diferentes tipos de classificadores, seguidas da validação cruzada, foi possível verificar que para o caso binário os que apresentaram uma maior capacidade de generalização foram as combinações PCA+Fisher LDA, PCA + Minimun Mahalanobis Distance e Kruskal Wallis + Minimun Euclidean Distance. No caso *multiclass*, o classificador que se destacou foi o que foi desenvolvido com base no PCA para redução da dimensionalidade e na distância euclidiana mínima para classificação dos dados.

De acordo com os resultados na fase de treino foram aplicados os classificadores desenvolvidos aos dados para teste. No cenário binário, os resultados foram muito satisfatórios uma vez que a *accuracy* observada nos primeiros três testes foi aproximadamente igual a 1, sendo que no último teste foi alcançada uma performance perfeita. Relativamente ao cenário onde se pretende fazer a distinção entre as seis classes, a *accuracy* obtida foi de 70%, o que permite verificar que existe uma relação entre as *features* existentes e o estado da pessoa (a caminhar, sentada, em pé,...), desta forma os resultados poderão ser melhorados aplicando classificadores mais complexos na fase posterior do trabalho.