Отчет за работата през първата година от докторантурата (2012)

Марко Колаксъзов редовен докторант към катедра Физиология на растенията

Индивидуален план за 2012г.

• Експериментална работа по култивиране и третиране на А. alpina с ниски температури; морфологични и физиологични анализи в условия на нискотемпературен стрес (фотосинтетичната активност, съдържание на пигменти, биосинтеза на общ белтък и РНК)

Влиянието на НТС върху растенията

- Увреждане на клетъчните мембрани
 - Дехидратация изтичане на вода и соли
 - Натрупване на токсични съединения
- Денатурация на белтъците
 - Нарушение в транспортната функция на мембраните
 - Нарушение на фотосинтеничните и дихателни вериги
- Образуване на ледени кристали
 - Изтегляне на вода извън клетката
 - Излагането на по-ниски температури води и до разкъсване на клетъчните повърхности
- Едновременното въздействие на НТС и слънчева светлина води до фотоувреждане на клетката

Моделното растение Arabis alpina L. за изследване на адаптацията към HTC

- Многогодишно планинско растение от сем. Brassicaceae
- Растящо от 500 m до 3200 m надморска височина (в зависимост от географската ширина)
- Среща се в повечето европейски страни, на Канарските острови, северна и източна Африка, Етиопия, Арабския полуостров и централна Азия
- Геномния размер е около 375 Mb (n = 8 хромозоми)
- Самооплождащ се диплоид
- Толерантността към ниски минусови температури се определя от гени, белтъци и метаболити в толерантните (Т) за разлика от нетолерантните (NT) генотипи от A. alpina.

Отглеждане на растенията

В култивационно помещение при 22C – 25C, 16/8h фотопериод, в продължение на 2 1/2 месеца

GAL "E" (tolerant) F005

F109 (non-tolerant) (short hypocotyl)

Експериментална схема

- T (tolerant) и NT (non tolerant) и SH (short hypocotyl) (нискостъблени) растения се култивират при 22°С за 4 дни 220 µmol светлина
- Аклиматизация при 4°C за 4 дни (chilling stress)
- Стрес след замразяване при -7°С (12 часа, на тъмно) (freezing stress).
- Последователно възстановяване при 4°C за 4 дни и при 22°C за 4 дни

Измерване на физиологични показатели

- фотосинтетична активност чрез:
 - Отчитане на асимилацията на CO₂ с апарат LiCor pro+
 - Флуоресценция на хлорофил измерена с апарат PEA Hansatech
- Екстракция и спектрофотометричен анализ на растителни пигменти
- Ендогенно съдържание
 на фитохормони (HPLS-MS анализ)

РЕЗУЛТАТИ

Определяне на фотосинтетичната активност (net photosynthesis) посредством асимилацията на CO_2 (CO_2 uptake)

$$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$$

 C_i – Количество на CO_2 в камерата

 C_i — Количество на CO_2 във въздушните пространства на мезофилната тъкан

• Отчитани параметри:

- A поглъщането на CO₂
 от листта
- Е транспирация
- gs устична проводимост
- с_i количество на СО₂ в мезофилните пространства на листта

Нетна фотосинтетична активност

Нетна фотосинтетична активност

Е – транспирация

gs – устична проводимост

Път на светлинната енергия след поглъщането й от молекулите на хлорофила

- Абсорбираната енергия от хлорофилната молекула може да има следната съдба:
 - Участие във фотохимична реакция
 - Разсейване под формата на топлина
 - Трансфер на друга молекула хлорофил
 - Излъчване под формата на флуоресценция
- Тези 4 процеса са конкурентни и при блокирането или активирането на един от тях се повлияват всички останали

Флуоресценция на хлорофила

Флуоресценция на хлорофила. Резултати

Variant	Fo	Fm	(Fo - Fm)/Fm
T1 (7d at 5oC)	549	1782	0.691919192
T2 (7d at 5oC)	480	2236	0.785330948
NT1 (7d at 5oC)	597	2116	0.717863894
NT2 (7d at 5oC)	573	1709	0.664716208
Short1 (7d at 5oC)	504	1996	0.74749499
Short2 (7d at 5oC)	516	1452	0.644628099
T1 (15h at -7oC)	481	2377	0.797644089
T2 (15h at -7oC)	458	2436	0.811986864
NT1 (15h at -7oC)	488	2163	0.774387425
NT2 (15h at -7oC)	488	1920	0.745833333
Short1 (15h at -7oC)	454	2358	0.807463953
Short2 (15h at -7oC)	486	2495	0.805210421

Биологично активни цитокинини

Съотношение cis / trans CKs

Съдържание на жасмонати

Основни задачи за учебната 2013г.

- Изследване на фотосинтетична активност посредством флуоресценция на ФС II (продължение) и ФС I
- Изследване транскрипцията на хлоропласт-кодирани (*rbcL, psbA, psbB*) и ядрени (RBCS, LHCIIb) фотосинтетични гени (Northen blotting) в условия на ниско температурен стрес
- Изследване експресията на ключови гени от метаболизма и сигналния път на ABA (NCED 9-цис епоксикаротеноид диоксигеназа ABA алдехид оксидаза, СҮР707А –СР450 оксигеназа), СК (IPT изопентенил аденин трансфераза, СКХ цитокинин оксидаза/дехидрогеназа, ARR1-7), ЈА (LOX липоксигеназа, AOS ален оксид синтаза) посредством qRT-PCR анализ.

- Участие в младежка научна конференция "Климентови дни" постерно съобщение
- Статия в Bulgarian Journal of Agricultural
 Sciences приета за печат
- Взет изпит по английски език

Благодаря за вниманието!