Infinite Series Practice

Definitions and Theory

- 1. What does it mean for a series $\sum_{n=1}^{\infty} a_n$ to converge?
- 2. Give an example of an infinite series that converges to 7.
- 3. If possible, give an example of a series $\sum_{n=1}^{\infty} a_n$ that diverges and $\lim_{n\to\infty} a_n = 0$. If it's not possible, explain why.
- 4. If possible, give an example of a series $\sum_{n=1}^{\infty} a_n$ that converges and $\lim_{n\to\infty} a_n = 0$. If it's not possible, explain why.
- 5. If possible, give an example of a series $\sum_{n=1}^{\infty} a_n$ that diverges and $\lim_{n\to\infty} a_n = 0$. If it's not possible, explain why.
- 6. If possible, give an example of a series $\sum_{n=1}^{\infty} a_n$ that converges and $\lim_{n\to\infty} a_n \neq 0$. If it's not possible, explain why.

7. Give the argument for why $\sum_{n=1}^{\infty} ar^{n-1}$ converges when |r| < 1.

Series Convergence

8. Use the tools we looked at in class to determine the convergence or divergence of each of the following series. If a series converges, find its sum.

(a)
$$\sum_{n=1}^{\infty} 2 \left(-\frac{1}{3} \right)^{n-1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{3^{n-1}}$$

(c)
$$\sum_{n=1}^{\infty} 3(-2)^{n-1}$$

(d)
$$\sum_{n=2}^{\infty} 7 \left(-\frac{1}{2}\right)^{n+3}$$

(e)
$$\sum_{n=1}^{\infty} \frac{2}{5^n}$$

(f)
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{9^{n-1}}$$