STU22004 - Sample Questions 8

Q1. Using n=10 samples of (x_i,y_i) , we have $S_{xx}=\sum (x_i-4)^2=9$, $r_{XY}=-0.75$ and $S_{yy}=\sum (y_i-6)^2=16$. Find the equation for the linear regression model Y over X.

Q2. In situation similar to Q1, we have $\sum x_i = 10$, $\sum y_i = 90$, and $S_{xx} = \sum (x_i - \bar{x})^2 = 42$, and n = 10. If the estimated line for \hat{y} passes through the point (9,9), estimate β_1 .

Q3. In a SLR model, $\hat{y}=-2+2x$, and we $\bar{x}=3$ and $r_{XY}=0.5$. If we wish to develop the regression model $\hat{x}=\alpha_o+\alpha_1 y$, find $\hat{\alpha}_o$ and $\hat{\alpha}_1$.

Q4. In regression model $\hat{y} = \beta_1 x$ (regression from the origin, i.e. $\beta_0 = 0$), find the estimate for β_1 using the leas square method.

Q5. Determine the data transformation that converts the regression model

$$\hat{y} = \frac{x}{\beta_0 + \beta_1 x}$$

to an SLR model.

Q6. In an SLR model, if $\bar{x}=\bar{y}=10$, $S_{yy}=4S_{xx}$ and $r_{XY}=-0.8$, find the equation for the SLR model.