# **HeartDiseasePrediction**

February 14, 2025

# 1 Final Project: Heart Disease Prediction

### 1.1 Introduction

Heart disease is a major cause of mortality worldwide, and early diagnosis can help improve treatment and patient outcomes. This project aims to build a **predictive model** that can classify whether a patient has heart disease based on various health indicators.

### 1.2 1. Research Question

Can we develop a predictive model to classify whether a patient has heart disease based on their health indicators?

To answer this, we will: - Perform **exploratory data analysis (EDA)** to understand the dataset. - Apply **feature selection** techniques to identify key predictors. - Train **machine learning models** to classify patients. - Evaluate model performance using **ROC-AUC**, **accuracy**, **precision**, **and recall**.

```
[219]: # Import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
[221]: # Import the data from Kaggle using the API
import kaggle
kaggle.api.dataset_download_files("johnsmith88/heart-disease-dataset", path=".

→", unzip=True)
```

Dataset URL: https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset

## 2 Heart Disease Dataset - Attribute Reference

| Attribute | Description          |  |  |
|-----------|----------------------|--|--|
| Age       | Age in years         |  |  |
| Sex       | 1 = Male, 0 = Female |  |  |

| Attribute                                      | Description             |
|------------------------------------------------|-------------------------|
| Chest Pain Type                                | (1 = Typical angina,    |
|                                                | 2 = Atypical angina,    |
|                                                | 3 = Non-anginal         |
|                                                | pain, $4 =$             |
|                                                | Asymptomatic)           |
| Resting Blood Pressure                         | Blood pressure in mm    |
|                                                | $_{ m Hg}$              |
| Serum Cholesterol (mg/dl)                      | Cholesterol level in    |
|                                                | m mg/dl                 |
| Fasting Blood Sugar                            | 1 = Fasting blood       |
|                                                | sugar > 120  mg/dl, 0   |
|                                                | = Otherwise             |
| Resting ECG Results                            | (0 = Normal, 1 =        |
|                                                | ST-T wave               |
|                                                | abnormality, $2 = Left$ |
|                                                | ventricular             |
|                                                | hypertrophy)            |
| Maximum Heart Rate Achieved                    | Highest heart rate      |
|                                                | during exercise         |
| Exercise Induced Angina                        | 1 = Yes, 0 = No         |
| Oldpeak (ST Depression)                        | ST depression           |
| - , ,                                          | induced by exercise     |
|                                                | relative to rest        |
| Slope of Peak Exercise ST Segment              | (1 = Upsloping, 2 =     |
| •                                              | Flat, $3 =$             |
|                                                | Downsloping)            |
| Number of Major Vessels Colored by Fluoroscopy | (0-3)                   |
| Thalassemia (Thal)                             | 0 = Normal, 1 =         |
| ,                                              | Fixed defect, $2 =$     |
|                                                | Reversible defect       |

# 2.1 Exploratory Analysis

Before building our predictive model, we analyze the dataset to understand its structure, detect missing values, and identify key patterns.

```
[132]: # Loading the dataset
       data = pd.read_csv('./heart.csv')
       data.head()
[132]:
           age
                sex
                      ср
                          trestbps
                                      chol
                                             fbs
                                                  restecg
                                                            thalach
                                                                       exang
                                                                              oldpeak
                                                                                         slope
            52
                       0
                                125
                                       212
                                               0
                                                         1
                                                                 168
                                                                           0
                                                                                   1.0
                                                                                             2
       0
                   1
            53
                       0
                                                         0
                                                                           1
                                                                                   3.1
                                                                                             0
       1
                   1
                                140
                                       203
                                               1
                                                                 155
       2
                                                                                             0
            70
                   1
                       0
                                145
                                       174
                                               0
                                                         1
                                                                 125
                                                                           1
                                                                                   2.6
                                                                                             2
       3
                       0
                                               0
                                                         1
                                                                           0
            61
                                148
                                       203
                                                                                   0.0
                   1
                                                                 161
                       0
                                               1
                                                         1
                                                                                             1
            62
                   0
                                138
                                       294
                                                                 106
                                                                           0
                                                                                   1.9
```

```
target
      thal
   ca
   2
          3
          3
                   0
1
    0
2
    0
          3
                   0
                   0
3
    1
          3
    3
          2
                   0
```

## [122]: data.describe().round(1)

| [122]: |       | age    | sex     | ср     | trestbps | chol   | fbs    | restecg | thalach | \ |
|--------|-------|--------|---------|--------|----------|--------|--------|---------|---------|---|
| С      | count | 1025.0 | 1025.0  | 1025.0 | 1025.0   | 1025.0 | 1025.0 | 1025.0  | 1025.0  |   |
| m      | nean  | 54.4   | 0.7     | 0.9    | 131.6    | 246.0  | 0.1    | 0.5     | 149.1   |   |
| S      | std   | 9.1    | 0.5     | 1.0    | 17.5     | 51.6   | 0.4    | 0.5     | 23.0    |   |
| m      | nin   | 29.0   | 0.0     | 0.0    | 94.0     | 126.0  | 0.0    | 0.0     | 71.0    |   |
| 2      | 25%   | 48.0   | 0.0     | 0.0    | 120.0    | 211.0  | 0.0    | 0.0     | 132.0   |   |
| 5      | 50%   | 56.0   | 1.0     | 1.0    | 130.0    | 240.0  | 0.0    | 1.0     | 152.0   |   |
| 7      | '5%   | 61.0   | 1.0     | 2.0    | 140.0    | 275.0  | 0.0    | 1.0     | 166.0   |   |
| m      | nax   | 77.0   | 1.0     | 3.0    | 200.0    | 564.0  | 1.0    | 2.0     | 202.0   |   |
|        |       |        |         |        |          |        |        |         |         |   |
|        |       | exang  | oldpeak | slope  | ca       | thal   | target |         |         |   |
| С      | count | 1025.0 | 1025.0  | 1025.0 | 1025.0   | 1025.0 | 1025.0 |         |         |   |
| m      | nean  | 0.3    | 1.1     | 1.4    | 0.8      | 2.3    | 0.5    |         |         |   |
| S      | std   | 0.5    | 1.2     | 0.6    | 1.0      | 0.6    | 0.5    |         |         |   |
| m      | nin   | 0.0    | 0.0     | 0.0    | 0.0      | 0.0    | 0.0    |         |         |   |
| 2      | 25%   | 0.0    | 0.0     | 1.0    | 0.0      | 2.0    | 0.0    |         |         |   |
| 5      | 50%   | 0.0    | 0.8     | 1.0    | 0.0      | 2.0    | 1.0    |         |         |   |
| 7      | '5%   | 1.0    | 1.8     | 2.0    | 1.0      | 3.0    | 1.0    |         |         |   |
| m      | nax   | 1.0    | 6.2     | 2.0    | 4.0      | 3.0    | 1.0    |         |         |   |

[153]: data.info()
 data.isnull().sum()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):

|   | •        | · · · · · · · · · · · · · · · · · · · |
|---|----------|---------------------------------------|
| # | Column   | Non-Null Count Dtype                  |
|   |          |                                       |
| 0 | age      | 1025 non-null int64                   |
| 1 | sex      | 1025 non-null int64                   |
| 2 | ср       | 1025 non-null int64                   |
| 3 | trestbps | 1025 non-null int64                   |
| 4 | chol     | 1025 non-null int64                   |
| 5 | fbs      | 1025 non-null int64                   |
| 6 | restecg  | 1025 non-null int64                   |
| 7 | thalach  | 1025 non-null int64                   |
| 8 | exang    | 1025 non-null int64                   |
| 9 | oldpeak  | 1025 non-null float64                 |

```
slope
                       1025 non-null
                                         int64
        10
                       1025 non-null
                                         int64
        11
            ca
        12
            thal
                       1025 non-null
                                         int64
        13 target
                       1025 non-null
                                         int64
      dtypes: float64(1), int64(13)
      memory usage: 112.2 KB
[153]: age
                    0
                    0
       sex
                    0
       ср
       trestbps
                    0
                    0
       chol
                    0
       fbs
       restecg
                    0
       thalach
                    0
                    0
       exang
       oldpeak
                    0
                    0
       slope
       ca
                    0
                    0
       thal
       target
       dtype: int64
```

## 2.2 Research Question

Can we develop a predictive model to classify whether a patient has heart disease based on their health indicators?

#### 2.2.1 Approach:

1

53

1

0

- 2. Select important features using statistical methods and machine learning techniques.
- 3. Train and evaluate classification models to predict heart disease.
- 4. Compare model performance using accuracy, precision, recall, and ROC-AUC.
- 5. Visualize results to interpret model effectiveness and key risk factors.

## 2.2.2 Expected Outcome:

- Identify which health indicators most strongly correlate with heart disease.
- Develop a machine learning model that can assist in early diagnosis.

203

• Assess the model's ability to generalize to unseen data.

140

```
[160]: | data['age_group'] = pd.cut(data['age'], bins = [0, 21, 40, 55, 80],
         ⇔labels=['Young', 'Adults', 'Middle-aged', 'Senior'])
[162]:
       data
[162]:
              age
                   sex
                        ср
                            trestbps
                                       chol
                                              fbs
                                                   restecg
                                                             thalach
                                                                       exang
                                                                              oldpeak
                     1
                                                0
                                                                                   1.0
       0
              52
                         0
                                  125
                                        212
                                                          1
                                                                 168
                                                                           0
```

0

155

1

3.1

1

```
70
                                                                               2.6
2
                   0
                            145
                                   174
                                           0
                                                     1
                                                             125
              1
                                                                       1
                                                                               0.0
3
        61
              1
                   0
                            148
                                   203
                                           0
                                                     1
                                                             161
                                                                       0
4
                                                             106
                                                                               1.9
        62
              0
                   0
                            138
                                   294
                                           1
                                                     1
                                                                       0
                                                                               0.0
1020
       59
              1
                   1
                            140
                                   221
                                           0
                                                     1
                                                             164
                                                                       1
1021
       60
              1
                   0
                            125
                                   258
                                           0
                                                     0
                                                             141
                                                                       1
                                                                               2.8
1022
                   0
                            110
                                   275
                                           0
                                                     0
                                                             118
                                                                       1
                                                                               1.0
       47
              1
1023
        50
              0
                   0
                            110
                                   254
                                           0
                                                     0
                                                             159
                                                                       0
                                                                               0.0
1024
       54
                   0
                            120
                                   188
                                           0
                                                     1
                                                             113
                                                                       0
                                                                               1.4
              1
```

|      | sl  | ope | ca | thal | target | age_group   |
|------|-----|-----|----|------|--------|-------------|
| 0    |     | 2   | 2  | 3    | 0      | Middle-aged |
| 1    |     | 0   | 0  | 3    | 0      | Middle-aged |
| 2    |     | 0   | 0  | 3    | 0      | Senior      |
| 3    |     | 2   | 1  | 3    | 0      | Senior      |
| 4    |     | 1   | 3  | 2    | 0      | Senior      |
| •••  | ••• |     |    | •••  |        | •••         |
| 1020 |     | 2   | 0  | 2    | 1      | Senior      |
| 1021 |     | 1   | 1  | 3    | 0      | Senior      |
| 1022 |     | 1   | 1  | 2    | 0      | Middle-aged |
| 1023 |     | 2   | 0  | 2    | 1      | Middle-aged |
| 1024 |     | 1   | 1  | 3    | 0      | Middle-aged |
|      |     |     |    |      |        |             |

[1025 rows x 15 columns]

## 2.2.3 Correlation Matrix Heatmap



## 2.3 Feature Selection using SelectKBest

To improve model efficiency, we select the **top 8 most relevant features** using **ANOVA F-test** (**f\_classif**).

```
[187]: from sklearn.feature_selection import SelectKBest, f_classif
X = numeric_data.drop('target', axis=1)
y = numeric_data['target']
selector = SelectKBest(f_classif, k=8) # select top 8 features
selector.fit(X, y)
selected_features = X.columns[selector.get_support()]
print("Selected_features:", selected_features)
```

Selected features: Index(['sex', 'cp', 'thalach', 'exang', 'oldpeak', 'slope',
'ca', 'thal'], dtype='object')

## 2.4 Feature Selection using Recursive Feature Elimination (RFE)

To refine our model, we use Recursive Feature Elimination (RFE) with Logistic Regression to select the top 8 most significant features.

## 2.4.1 Methodology:

- 1. Standardize Features:
  - We apply **StandardScaler** to normalize the feature values, improving model convergence.
- 2. Use RFE for Feature Selection:
  - Train a Logistic Regression model.
  - Iteratively remove the least important features until only 8 key features remain.
- 3. Retrieve Selected Features:
  - Extract and display the most relevant predictors.

```
[191]: from sklearn.feature_selection import RFE
       from sklearn.linear_model import LogisticRegression
       from sklearn.preprocessing import StandardScaler
       # Scale the features
       scaler = StandardScaler()
       X_scaled = scaler.fit_transform(X)
       # Choose a solver that might converge better if needed
       model = LogisticRegression(max iter=2000, solver='lbfgs')
       # Perform RFE to select top 8 features
       rfe = RFE(model, n_features_to_select=8)
       rfe.fit(X_scaled, y)
       selected_rfe = X.columns[rfe.support_]
       print("RFE Selected features:", selected_rfe)
      RFE Selected features: Index(['sex', 'cp', 'trestbps', 'thalach', 'exang',
      'oldpeak', 'ca', 'thal'], dtype='object')
[193]: from sklearn.model_selection import train_test_split
       # Select features based on RFE results
       X selected = X[selected rfe]
       # Split data into training and test sets
       X_train, X_test, y_train, y_test = train_test_split(X_selected, y, test_size=0.
        \rightarrow 3, random state=42)
       # Train the model
       model.fit(X_train, y_train)
```

[193]: LogisticRegression(max\_iter=2000)

#### 2.5 Model Evaluation

We assess the model's performance using key classification metrics.

#### 2.5.1 Metrics Used:

- Accuracy: Overall correctness of predictions.
- Classification Report: Precision, recall, and F1-score for each class.
- Confusion Matrix: Breakdown of correct vs. incorrect predictions.
- ROC-AUC Score: Measures the model's ability to distinguish between classes.

Accuracy: 0.8344155844155844

Classification Report:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.91      | 0.75   | 0.82     | 159     |
| 1            | 0.78      | 0.92   | 0.84     | 149     |
| accuracy     |           |        | 0.83     | 308     |
| macro avg    | 0.84      | 0.84   | 0.83     | 308     |
| weighted avg | 0.85      | 0.83   | 0.83     | 308     |

Confusion Matrix:

[[120 39] [ 12 137]]

ROC-AUC: 0.9031277700392555

# 2.6 Hyperparameter Tuning with GridSearchCV

To improve model performance, we tune hyperparameters using **GridSearchCV**.

## 2.6.1 Why Grid Search?

- Tests multiple hyperparameter values.
- Uses **cross-validation** to ensure generalization.
- Selects the best combination automatically.

```
[197]: from sklearn.model_selection import GridSearchCV

param_grid = {'C': [0.01, 0.1, 1, 10, 100]}
```

```
Best parameters: {'C': 10}
Best cross-validation score: 0.841006216006216
```

#### 2.7 Data Visualization

To assess model performance and gain insights into feature importance, we visualize key metrics.

#### 2.7.1 1. ROC Curve

- Displays the model's ability to distinguish between classes.
- Higher AUC (Area Under Curve) values indicate better performance.

#### 2.7.2 2. Confusion Matrix

- Shows correct and incorrect predictions.
- Helps analyze model misclassifications.

#### 2.7.3 3. Feature Importance

- Highlights the most influential features in predictions.
- Useful for understanding which health indicators matter most.

#### 2.7.4 4. Age Distribution

- Visualizes the spread of patient ages in the dataset.
- Identifies trends in the population.

```
axs[0, 0].set_xlabel('False Positive Rate')
axs[0, 0].set_ylabel('True Positive Rate')
axs[0, 0].legend(loc='lower right')
# 2. Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt="d", cmap='Blues', ax=axs[0, 1],
            xticklabels=[0,1], yticklabels=[0,1])
axs[0, 1].set title('Confusion Matrix')
axs[0, 1].set_xlabel('Predicted Label')
axs[0, 1].set_ylabel('True Label')
# 3. Feature Importance (example using RandomForest or model coefficients)
\# For illustration: assume importances is a pandas Series with feature names as \sqcup
importances = pd.Series([0.25, 0.20, 0.15, 0.10, 0.10, 0.08, 0.07, 0.05], u
→index=selected_features)
importances.sort_values().plot(kind='barh', ax=axs[1, 0])
axs[1, 0].set_title('Feature Importance')
# 4. Distribution Plot of a Key Feature (e.g., Age)
sns.histplot(data['age'], kde=True, ax=axs[1, 1])
axs[1, 1].set_title('Age Distribution')
axs[1, 1].set_xlabel('Age')
plt.tight_layout()
plt.show()
```

