Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy

PLACÓWKA AKREDYTOWANA

KOD			PESEL											

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 18 stron (zadania 1-34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego próbny egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1-25) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26-34) może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Na karcie odpowiedzi wpisz swój numer PESEL.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Marzec 2018

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1 pkt)

Narty w styczniu kosztowały 640 zł. W lutym obniżono ich cenę o 25%, a w marcu jeszcze o 10%. Cena nart po drugiej obniżce jest równa:

A. 416 zł

B. 432 zł

C. 605 zł

D. 553,50 zł

Zadanie 2. (0-1 pkt)

Wykres funkcji liniowej f(x) = -22x + 120 przechodzi przez ćwiartki układu współrzędnych

A. I, II, III

B. I, II, IV

C. I, III, IV

D. II, III, IV

Zadanie 3. (0-1 pkt)

Funkcja, której wykres przedstawiono na rysunku, jest rosnąca w przedziałach:

A. $\langle -2, 1 \rangle$ oraz $\langle 5, 8 \rangle$

B. $\langle -2, 1 \rangle \cup \langle 5, 8 \rangle$

 \mathbb{C} . $\langle -5, -2 \rangle$ or $az \langle 1, 5 \rangle$

D. $\langle -5, -2 \rangle \cup \langle 1, 5 \rangle$

Zadanie 4. (0-1 pkt)

Ciąg (a_n) jest określony wzorem $a_n = (-2)^n \cdot (4 - n^2)$, dla $n \ge 1$. Wtedy

A. $a_3 = 40$

B. $a_3 = -8$ **C**. $a_3 = -40$ **D** . $a_3 = -30$

Zadanie 5. (0-1 pkt)

Cosinus kąta ostrego jest równy $\frac{\sqrt{7}}{3}$. Tangens tego kąta jest równy:

A. $\frac{\sqrt{2}}{3}$

B. $\frac{\sqrt{14}}{2}$ C. $\frac{2\sqrt{7}}{7}$ D. $\frac{\sqrt{14}}{7}$

Zadanie 6. (0-1 pkt)

Funkcja kwadratowa, której fragment wykresu przedstawiono na rysunku, ma wzór:

A.
$$f(x) = -\frac{1}{2}x^2 + x + \frac{3}{2}$$

$$f(x) = -\frac{1}{2}x^2 + x + \frac{3}{2}$$

$$f(x) = -\frac{1}{2}x^2 + x - \frac{3}{2}$$

$$f(x) = -\frac{1}{2}x^2 - x - \frac{3}{2}$$

$$D. \qquad f(x) = -\frac{1}{2}x^2 - x + \frac{3}{2}$$

C.
$$f(x) = -\frac{1}{2}x^2 - x - \frac{3}{2}$$

$$f(x) = -\frac{1}{2}x^2 - x + \frac{3}{2}$$

Zadanie 7. (0-1 pkt)

 $\frac{4 \cdot 5^{0.75} + 5^{0.75}}{0.125^{\frac{-2}{3}} + 5^{0}} \quad \text{jest równa:}$ Wartość wyrażenia

A.
$$5^{0.75}$$

B.
$$5^{1,5}$$

C.
$$2 \cdot 5^{0.75}$$

D.
$$5 \cdot 5^{0,75}$$

Zadanie 8. (0-1 pkt)

Ilustracja graficzna układu równań $\begin{cases} 2x - y = 4 \\ x + 2y = 7 \end{cases}$ jest przedstawiona na rysunku:

A.

C.

Zadanie 9. (0-1 pkt)

Iloczyn wszystkich rozwiązań równania $(x^2 + 4)(x^2 - 1)(4x + 1) = 0$ jest równy

B.
$$-\frac{1}{4}$$
 C. $\frac{1}{4}$ **D.** 1

C.
$$\frac{1}{4}$$

Zadanie 10. (0-1 pkt)

Kasia w pierwszym semestrze otrzymała następujące oceny z matematyki: z prac klasowych 3,4,4,2, z kartkówek 5,4,4,3,5, z zadań domowych 3,4,5. Oceny z prac klasowych mają wagę 5, z kartkówek 3, z zadania domowego 2. Średnia ważona (zaokrąglona do dwóch miejsc po przecinku) ocen z matematyki Kasi w pierwszym semestrze jest równa:

Zadanie 11. (0-1 pkt)

Kąt wpisany oparty na łuku równym $\frac{5}{9}$ długości okręgu ma miarę:

Zadanie 12. (0-1 pkt)

Proste o równaniach k: 3x + 4y - 2 = 0 oraz $l: y = \frac{2m+7}{3}x + 2$ są równoległe, gdy

A.
$$m = \frac{5}{2}$$

B.
$$m = 1$$

C.
$$m = -\frac{3}{2}$$

A.
$$m = \frac{5}{2}$$
 B. $m = 1$ **C.** $m = -\frac{3}{2}$ **D.** $m = -\frac{37}{8}$

Zadanie 13. (0-1 pkt)

Liczba $\log_5 \frac{125}{2} + \log_5 \frac{2}{25} - \log_4 \frac{1}{64}$ jest równa:

Zadanie 14. (0-1 pkt)

Obrazem odcinka \overline{AB} o końcach w punktach A(-5, -3), B(4,1), w symetrii względem osi OX, jest odcinek $\overline{A_1B_1}$ o końcach w punktach:

A.
$$A_1(4;1)$$
, $B_1(-5;-3)$

B.
$$A_1(5; -3)$$
, $B_1(-4; 1)$

C.
$$A_1(-5;3)$$
, $B_1(4;-1)$

D.
$$A_1(5,3)$$
, $B_1(-4;-1)$

Zadanie 15. (0-1 pkt)

Wartość wyrażenia $\frac{\sqrt[3]{-800}}{\sqrt[3]{100}}$ jest równa:

$$A_{\bullet}-2$$

$$A. -2$$
 $B. -0.2$

Zadanie 16. (0-1 pkt)

Wszystkimi rozwiązaniami równania wymiernego $\frac{x^2-x-2}{x^2-2x}=0$ są:

A.
$$x \in \{-1\}$$

B.
$$x \in \{0; 2\}$$

C.
$$x \in \{-1, 2\}$$

B.
$$x \in \{0; 2\}$$
 C. $x \in \{-1; 2\}$ **D.** $x \in \{-1; 0; 2\}$

Zadanie 17. (0-1 pkt)

Tworząca stożka jest nachylona do płaszczyzny podstawy pod kątem 35°. Miara kąta rozwarcia stożka jest równa:

A.
$$110^{0}$$

B.
$$55^{\circ}$$

$$C. 120^{0}$$

D.
$$130^{0}$$

Zadanie 18. (0-1 pkt)

Funkcja liniowa przyjmuje wartości dodatnie dla $x \in (-\infty; 2)$, a jej wykres przecina oś OY w punkcie (0; 4), zatem jej wzór ma postać:

A.
$$y = -\frac{1}{2}x + 2$$
 B. $y = -2x + 4$ **C.** $y = 2x - 4$ **D.** $y = 2x + 4$

B.
$$y = -2x + 4$$

$$\mathbf{C.}\ y = 2x - 4$$

D.
$$y = 2x + 4$$

Zadanie 19. (0-1 pkt)

W ciągu arytmetycznym $a_1=2\sqrt{2}$ i $a_2=2\sqrt{2}+2$. Suma wyrazów od dziesiątego do czterdziestego włącznie jest równa:

A.
$$20\sqrt{2} + 90$$

B.
$$60\sqrt{2} + 1470$$

C.
$$80\sqrt{2} + 1560$$

B.
$$60\sqrt{2} + 1470$$
 C. $80\sqrt{2} + 1560$ **D.** $62\sqrt{2} + 1488$

Zadanie 20. (0-1 pkt)

Punkt P = (-4,3) leży na końcowym ramieniu kąta α . Cosinus kąta α jest równy:

A.
$$\frac{4}{5}$$

B.
$$-\frac{4}{5}$$
 C. $\frac{3}{5}$ **D.** $-\frac{3}{5}$

C.
$$\frac{3}{5}$$

D.
$$-\frac{3}{5}$$

Zadanie 21. (0-1 pkt)

Liczb naturalnych sześciocyfrowych podzielnych przez 5, których cyfra setek należy do zbioru {3,4,7,9} i wszystkie cyfry są różne jest:

A.
$$8 \cdot 7 \cdot 6 \cdot 4 \cdot 5 \cdot 2$$

B.
$$8 \cdot 7 \cdot 6 \cdot 4 \cdot 5 \cdot 1 + 7 \cdot 7 \cdot 6 \cdot 4 \cdot 5 \cdot 1$$

$$\mathbf{C.} \ \ 9 \cdot 10 \cdot 10 \cdot 4 \cdot 10 \cdot 2$$

D.
$$8 \cdot 8 \cdot 7 \cdot 4 \cdot 6 \cdot 1 + 9 \cdot 8 \cdot 7 \cdot 4 \cdot 6 \cdot 1$$

Zadanie 22. (0-1 pkt)

Wykres funkcji $f(x) = \left(\frac{1}{2}\right)^{x-3}$ jest przedstawiony na rysunku:

A.

B.

C.

Zadanie 23. (0-1 pkt)

Wartość wyrażenia $(2-3\sqrt{2})^2$ jest równa

B.
$$22 - 12\sqrt{2}$$

C.
$$4 + 24\sqrt{2}$$

B.
$$22 - 12\sqrt{2}$$
 C. $4 + 24\sqrt{2}$ **D.** $22 + 12\sqrt{2}$

Zadanie 24. (0-1 pkt)

Miara kata między bokiem AB równoległoboku ABCD, a przekatną AC jest równa 30°.

Długość przekątnej AC jest równa 5, a długość boku AB wynosi 4, zatem pole równoległoboku jest równe:

A.
$$P = 12$$

B.
$$P = 10\sqrt{3}$$
 C. $P = 20$ **D.** $P = 10$

$$C. P = 20$$

D.
$$P = 10$$

Zadanie 25. (0-1 pkt)

Największą wartością funkcji kwadratowej $f(x) = -\frac{1}{3}x^2 + 4x + 1$ w przedziale $\langle -1; 5 \rangle$ jest

B.
$$\frac{11}{3}$$

C.
$$\frac{38}{3}$$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 34. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (0-2 pkt)

Rozwiąż nierówność $(x+5)(3-x)+2x-6 \ge 0$.

Odpowiedź:

Zadanie 27. (0-2 pkt)

W trójkącie równobocznym ABC połączono środki wysokości otrzymując trójkąt PQR. Wykaż, że stosunek pola trójkąta PQR do pola trójkąta ABC jest równy $\frac{1}{16}$.

Zadanie 28. (0-2 pkt)

Wyznacz wzór ogólny ciągu geometrycznego wiedząc, że $a_5 = \frac{3}{16}$ oraz $q^4 = -\frac{2}{3}a_6$.

Odpowiedź:

Zadanie 29. (0-2 pkt)

Udowodnij, że jeżeli przy dzieleniu przez 5 liczba całkowita x daje resztę 2, a liczba całkowita y daje resztę 3, to iloczyn liczb x i y przy dzieleniu przez 5 daje resztę 1.

Zadanie 30. (0-2 pkt)

Wyznacz równanie symetralnej odcinka AB, gdzie A = (-3, 4), B = (2, -1).

Odpowiedź:

Zadanie 31. (0-2 pkt)

Ze zbioru liczb {1,2,3,4,5,6,7} losujemy kolejno dwa razy po jednej liczbie bez zwracania. Oblicz prawdopodobieństwo zdarzenia *A* polegającego na tym, że pierwsza z wylosowanych liczb jest nieparzysta, a ich iloczyn jest większy od 10.

Odpowiedź:

Zadanie 32. (0-4 pkt)

Dane dwa okręgi o środkach B i C są styczne zewnętrznie i jednocześnie są styczne wewnętrznie do okręgu o środku w punkcie A. Wiedząc, że |BC|=|AC| oraz promień okręgu o środku C ma długość $r_c=3$ oblicz długość odcinka AB.

Odpowiedź:

Zadanie 33. (0-5 pkt)

Czworokąt ABCD jest trapezem równoramiennym, który nie jest równoległobokiem. Wiedząc, że podstawami trapezu są odcinki AB oraz CD, przy czym A=(-2;-4), B=(7;5) i D=(-1;2), oblicz pole oraz obwód tego trapezu.

Odpowiedź:

Zadanie 34. (0-4 pkt)

Podstawą ostrosłupa jest prostokąt, którego stosunek długości boków wynosi 2:3. Pole podstawy ostrosłupa jest równe $24~cm^2$. Każda krawędź boczna jest nachylona do płaszczyzny podstawy pod kątem $\alpha=30^{\circ}$. Oblicz pole powierzchni bocznej tego ostrosłupa.

Odpowiedź:

