Laser Beam Parameters

Hersh Samdani (EP22B027)

Aim:

To determine the various parameters of a laser beam such as the divergence of the beam (θ_0) , the size of the spot and the location of the radius of the beam.

Theory:

Power distribution within the beam can be studied by various methods, such as photographic, scanning, etc. In this experiment,we measure power past a knife edge which is slowly inserted in the beam. We base this on the assumption that the laser is oscillating in the TEM_{00} mode so that the spatial distribution of the beam is Gaussian. If P_0 is the total power of the beam and its spot size is $2\omega_0$, then the irradiance distribution I(x, y) is given by:

$$I(x,y) = \frac{2P_0}{\pi\omega_0} \exp\left[-\frac{2(x^2+y^2)}{{w_0}^2}\right]$$

The power P transmitted past a knife-edge blocking off all points for which $x \leq a$ is given by:

$$P = \frac{P_0}{2} \mathbf{erfc}(\frac{a_0 \sqrt{2}}{\omega_0})$$

Where a is depth of knife-edge in the beam and $\mathbf{erfc}(x)$ is the complementary error function.

Observations:

10 cm		20 cm		30 cm	
x	V	x	V	x	V
8.12 mm	0.505	8.28 mm	0.505	8.16 mm	0.505
$8.34~\mathrm{mm}$	0.500	8.41 mm	0.500	$8.39~\mathrm{mm}$	0.500
$8.43~\mathrm{mm}$	0.495	$8.63~\mathrm{mm}$	0.480	$8.61~\mathrm{mm}$	0.480
$8.56~\mathrm{mm}$	0.480	8.74 mm	0.460	$8.72~\mathrm{mm}$	0.460
$8.64~\mathrm{mm}$	0.465	8.82 mm	0.440	8.80 mm	0.440
$8.70~\mathrm{mm}$	0.450	8.88 mm	0.420	$8.87~\mathrm{mm}$	0.420
$8.75~\mathrm{mm}$	0.435	8.94 mm	0.400	$8.93~\mathrm{mm}$	0.400
8.80 mm	0.420	9.01 mm	0.380	$8.99~\mathrm{mm}$	0.380
$8.85~\mathrm{mm}$	0.405	$9.06~\mathrm{mm}$	0.360	$9.04~\mathrm{mm}$	0.360
$8.90~\mathrm{mm}$	0.390	$9.12~\mathrm{mm}$	0.340	$9.10 \mathrm{\ mm}$	0.340
$8.94~\mathrm{mm}$	0.375	9.18 mm	0.320	$9.17 \mathrm{\ mm}$	0.320
$8.98~\mathrm{mm}$	0.360	$9.27~\mathrm{mm}$	0.300	$9.25~\mathrm{mm}$	0.300
$9.03~\mathrm{mm}$	0.345	$9.36~\mathrm{mm}$	0.280		
$9.08~\mathrm{mm}$	0.330	$9.53 \mathrm{mm}$	0.270		
$9.12~\mathrm{mm}$	0.315				
$9.17~\mathrm{mm}$	0.300				
$9.22~\mathrm{mm}$	0.285				
$9.30~\mathrm{mm}$	0.270				
9.38 mm	0.266				

Table 1: Measurements of x and V at 10 cm, 20 cm, and 30 cm

Calculations:

Figure 1: Plots of Voltage/Power vs knife edge position for $x=10,20,30\mathrm{cm}$

The positions are:

- 10cm:
 - 25%: 9.09mm
 - 75%: 8.72mm
- 20cm:
 - 25%: 9.15mm
 - -75%:8.80mm
- 30cm:
 - 25%: 9.07mm
 - -75%:8.75mm

Since

$$\omega' = \frac{x_{25\%} - x_{75\%}}{2 * 0.6745}$$

- 10cm:
 - $-~\omega^{'}:0.278\mathrm{mm}$
 - Spot size $2\omega_1 = 1.113$ mm
- 20cm:

 $-~\omega^{'}:0.266\mathrm{mm}$

– Spot size $2\omega_2 = 1.064$ mm

• 30cm:

 $-\ \omega^{'}:0.238\mathrm{mm}$

– Spot size $2\omega_3 = 0.953$ mm

$$\theta_0 = \frac{1}{\sqrt{2}D}\sqrt{\left|w_3^2 - 2w_2^2 + w_1^2\right|}, \quad D = 10 \text{ cm}.$$

$$\theta_0 = \frac{1}{\sqrt{2} \times 10} \sqrt{\left| 0.04762^2 - 2(0.05319)^2 + 0.05569^2 \right|} = 0.0012045 \text{ rad.}$$

$$\omega_0 = \frac{\lambda}{\pi \, \theta_0}, \quad \lambda = 633 \times 10^{-7} \text{ cm.} = 633 \text{nm}$$

$$\omega_0 = \frac{633 \times 10^{-7}}{\pi \times 0.0012045} = 0.01673 \text{ cm} = 0.1673 \text{ mm}.$$

$$z_0 = \frac{\sqrt{w_1^2 - \omega_0^2}}{\theta_0},$$

$$z_0 = \frac{\sqrt{0.05569^2 - 0.01673^2}}{0.0012045} = 44.08 \text{ cm}.$$

Error Analysis

Starting from the exact beam-radius formula,

$$w^2(z) = w_0^2 \left[1 + \frac{\lambda^2 z^2}{\pi^2 w_0^4} \right],$$

take logarithms:

$$\ln(w^2) = \ln(w_0^2) + \ln(1 + \frac{\lambda^2 z^2}{\pi^2 w_0^4}).$$

Small–error propagation for w gives

$$\frac{\Delta w}{w} = \frac{1}{2} \frac{\Delta \left(w^2\right)}{w^2} \,, \qquad \frac{\Delta w}{w_0} = \frac{\Delta \left(w_0^2\right)}{2 \, w_0^2} \,. \label{eq:deltaw}$$

To find the uncertainty in z, invert the relation

$$w^2 - w_0^2 = \frac{\lambda^2}{\pi^2 w_0^4} z^2 \implies z = \frac{\pi w_0^2}{\lambda} \sqrt{w^2 - w_0^2},$$

$$\Delta z = \sqrt{\left(\frac{\partial z}{\partial w} \, \Delta w\right)^2 + \left(\frac{\partial z}{\partial w_0} \, \Delta w_0\right)^2} \,.$$

Since

$$\frac{\partial z}{\partial w} = \frac{\pi w_0^2}{\lambda} \frac{w}{\sqrt{w^2 - w_0^2}}, \qquad \frac{\partial z}{\partial w_0} = \frac{2\pi w_0}{\lambda} \sqrt{w^2 - w_0^2} - \frac{\pi w_0^2}{\lambda} \frac{w_0}{\sqrt{w^2 - w_0^2}},$$

We obtain:

$$\frac{\Delta z}{z} = \sqrt{\left(\frac{2\,\lambda\,z}{\pi\,w_0^2}\,\frac{\Delta w}{z}\right)^2 + \left(-\frac{4\,\lambda\,z^2}{\pi\,w_0^3}\,\frac{\Delta w_0}{z}\right)^2}\,.$$

$$\frac{\Delta z}{z} = \sqrt{\left(\frac{2 (633 \, \mathrm{nm}) (10 \, \mathrm{cm})}{\pi (0.1673 \, \mathrm{mm})^2} \, \frac{\Delta w}{10 \, \mathrm{cm}}\right)^2 + \left(-\frac{4 (633 \, \mathrm{nm}) (10 \, \mathrm{cm})^2}{\pi (0.1673 \, \mathrm{mm})^3} \, \frac{\Delta w_0}{0.1673 \, \mathrm{mm}}\right)^2}.$$

Assuming least counts as:

$$\Delta w = 0.01 \,\text{mm} = 0.001 \,\text{cm}, \qquad \Delta w_0 = 0.01 \,\text{mm} = 0.001 \,\text{cm}.$$

Plugging in,

$$\frac{\Delta z}{z} = \sqrt{\left(\frac{2 \left(633 \times 10^{-7}\right) \left(0.001\right)}{\pi \left(0.01673\right)^2}\right)^2 + \left(\frac{4 \left(633 \times 10^{-7}\right) \left(10\right) \left(0.001\right)}{\pi \left(0.01673\right)^3}\right)^2} \approx 0.172 \,.$$

Hence

$$\Delta z = z \times 0.172 = 10 \,\mathrm{cm} \times 0.172 = 1.72 \,\mathrm{cm}.$$

Therefore, our final beam-waist location is

$$z_0 = 44.08 \pm 1.72 \text{ cm}$$

Results:

- $z_0 = 44.08 \pm 1.72 \text{ cm}$
- $\omega_0 = 0.1673 \text{ mm}.$
- $\theta_0 = 1.2045 \text{ mrad}$

Precautions and Discussion

- Don't look directly into the laser.
- Don't touch the knife edge.
- We need to take readings on the sharp side of the knife edge as on the other side we get diffused reading, the laser cut-off is not sharp.
- The laser is never exactly in the TEM_{00} mode so our beam parameter values will not be exactly right.