Power Method

And other related eigenvalue computing methods

Outline

- Basic ideas of power method
- The power method
- The inverse power method
- The shifted power method
- Rayleigh quotient
- Rayleigh quotient iteration method

Basic Ideas

• The target matrices: matrix A is symmetric and its eigenvalues can be ordered as

$$|\lambda_0| > |\lambda_1| \ge |\lambda_2 \ge \cdots \ge |\lambda_{n-2}| > |\lambda_{n-1}|.$$

The correspondent eigenvectors are

$$\{x_o, x_1, \dots, x_{n-1}\}.$$

- Basic ideas
 - The eigenvectors form a basis and any vector $y^{(0)}$ can be expressed as

$$y^{(0)} = c_0 x_0 + c_1 x_1 + \dots + c_{n-1} x_{n-1} = \sum c_i x_i.$$

Basic Ideas

• Multiplying $y^{(0)}$ by A, we have

$$Ay^{(0)} = \sum c_i \lambda_i x_i ,$$

- we should select $y^{(0)}$ with care such that $c_0 \neq 0$.
- Repeatedly, do we multiply $y^{(0)}$ with A,

$$y^{(k)} = A^k y^{(0)} = \sum c_i \lambda_i^k x_i$$
 //See the basic properties of eigenvalue.

• Factoring λ_0 from the equation,

$$y^{(k)} = \lambda_0^k \sum_i c_i \left(\frac{\lambda_i}{\lambda_0}\right)^k x_i.$$

$$|\lambda_0| > |\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_{n-2}| > |\lambda_{n-1}|.$$

$$k \to \infty, \left(\frac{\lambda_i}{\lambda_0}\right)^k \approx 0, i \ne 0.$$

$$y^{(k)} = c_0 \lambda_0^{\ k} x_0.$$

• Thus, we obtain the **eigenvector** x_0 .

Problems and Solutions

Two problems:

- We will encounter <u>overflow</u> or <u>underflow</u> in computing $y^{(k)}$ unless the eigenvalue is 1.

$$y^{(k)} = c_0 \lambda_0^{\ k} x_0.$$

- How to factor out λ_0 ?
- Solution 1: normalizing y after each iteration

$$y^{(k)} = \frac{Ay^{(k-1)}}{\|Ay^{(k-1)}\|}.$$

- In the next iteration::

$$y^{(k+1)} = Ay^{(k)},$$

 $||y^{(k+1)}|| \le ||A|| \cdot ||y^{(k)}|| = ||A|| \le |\lambda_0|.$

- As the computation converges, we treat $y^{(k)}$ as the eigenvector.
 - We will normalize it. (Why? See the following slides.)
- How can we compute the eigenvalue λ_0 ?

Problems and Solutions

• As the computation converges,

$$y^{(k+1)} = Ay^{(k)} = \lambda y^{(k)}.$$

- We normalized $y^{(k)}$ in the previous iteration.
- Solution 2: Before normalizing $y^{(k+1)}$, we perform the following computation:

$$< y^{(k)}, y^{(k+1)} > = < y^{(k)}, Ay^{(k)} >$$

= $< y^{(k)}, \lambda y^{(k)} > = \lambda < y^{(k)}, y^{(k)} > = \lambda.$

//as the computation is nearly converged.

• Thus, in each iteration, we improve not only the eigenvector but also the eigenvalue.

The Power Method

```
select y \neq 0;
x = A * y;
repeat{
   y = \frac{x}{\|x\|}; //Normalization y^{(k)}
   x = A * y; //Un-normalized y^{(k+1)}
   \lambda = \gamma^T x; //Approximation of the eigenvalue.
   r = \lambda * y - x; //r^{(k)} = \lambda^{(k)} y^{(k)} - A y^{(k)}
\{until(||r|| \leq \varepsilon);
```

Time Complexity

- In each iteration, we need $O(n^2)$ steps. //Matrix-vector multiplication
- If we can ignore the round-off errors, how many iterations are required?
 - It depends on the ratio of $t = \left| \frac{\lambda_1}{\lambda_0} \right| < 1$.

Assume that we need k iterations to ensure $t^k \leq \varepsilon$

Then
$$k \ge \frac{\log \frac{1}{\varepsilon}}{\log(|\frac{\lambda_0}{\lambda_1}|)} = \log_{|\frac{\lambda_0}{\lambda_1}|} \frac{1}{\varepsilon}$$
.

- It may be slow if $t \sim 1.0$.
- Conclusion: the convergence rate is linearly related to the base, $t = \lfloor \frac{\lambda_1}{\lambda_0} \rfloor$.

Inverse Power Method

- Matrix A is symmetric and its eigen pairs can be ordered as
 - Eigenvalues: $|\lambda_0| > |\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_{n-2}| > |\lambda_{n-1}|$.
 - Eigenvectors: $\{x_0, x_1, \dots, x_{n-1}\}$.
- Considering A^{-1} , its eigenvalues are:

$$\left|\frac{1}{\lambda_{n-1}}\right| > \left|\frac{1}{\lambda_{n-2}}\right| \ge \left|\frac{1}{\lambda_{n-3}} \ge \cdots \ge \left|\frac{1}{\lambda_1}\right| > \left|\frac{1}{\lambda_0}\right|.$$

- If we compute the largest eigenvalue of A^{-1} , then the minimum eigenvalue of A is computed too.
 - Just taking the reciprocal.

Basic Algorithm

• Naïve method:

- Compute $B = A^{-1}$;
- Calculate the largest eigenvalue of B by using the power method;
- Invert this eigenvalue;

Problem

- The matrix inverse **B** need $O(n^3)$ steps to obtain.
- The round-off errors cause loss-of-significant digits as n becomes larger. \rightarrow Incorrect B.

Improvement (1)

• Instead of computing the inverse matrix, the computation is replaced as follows.

Instead of computing $y^{(k+1)} = A^{-1} * y^{(k)}$, we solve $Ay^{(k+1)} = y^{(k)}$.

• Problem:

- Solving the linear system requires O(n³) steps in each iteration.
- Too slow.
- Too many round-off errors.

Improvement (2)

- Decomposing A into $A = L^*U$ by using an LU decomposition method.
 - Perform Doolittle's method on a very accurate computer.
- Replace the linear system $Ay^{(k+1)} = y^{(k)}$ by $L(Uy^{(k+1)}) = y^{(k)}$.
- Let $h = Uy^{(k+1)}$, take the following steps to compute $y^{(k+1)}$:
 - Solve $L * h = y^{(k)}$; //Forward substitution
 - Solve $U * y^{(k+1)} = h$; //Backward substitution

The Inverse Power Method

```
decompose A into L and U; //Doolittle's method
select y \neq 0; //Initial y^{(0)}
solve L * h = y; //Using forward substitution.
solve U * x = h; //Using backward substitution, un-normalized y^{(1)}.
repeat{
   y = \frac{x}{\|x\|}; //Normalization y^{(k)}
   solve L * h = y; //Using forward substitution.
   solve U * x = h; //Using backward substitution, un-normalized y^{(k+1)}
  \lambda = \frac{y^T x}{y^T y}; //Approximation of the eigenvalue.
  r = \lambda * v - x; //r^{(k)} = \lambda^{(k)}v^{(k)} - Av^{(k)}
\{until(||r|| \leq \varepsilon)\}
return \left(\frac{1}{4}\right);
```

Shift Inverse Power Method

- The inverse power method can be used to compute other eigenvalues.
- Theorem 1: $B = (A \mu I)$, then the eigenvalues of B are

$$\{(\lambda_0 - \mu), (\lambda_1 - \mu), \dots, (\lambda_{n-1} - \mu)\}$$

• Theorem 2: The eigenvectors of *A* and *B* are the same.

- Proof of Theorems 1 & 2:
 - Let x and λ be an eigenvalue and an eigenvector of A.
 - Then,

$$Bx = (A - \mu I)x = Ax - \mu Ix$$

= $\lambda x - \mu x = (\lambda - \mu)x$.

- By definition, x and $(\lambda - \mu)$ are an eigenvector and an eigenvalue of \boldsymbol{B} .

Shift Inverse Power Method

- Compute $\mathbf{B} = \mathbf{A} \mu \mathbf{I}$.
- Compute $C = B^{-1}$.
- If λ is an eigenvalue of A, then $\frac{1}{\lambda \mu}$ is an eigenvalue of C.
- If μ is very lose to λ , then $\left|\frac{1}{\lambda-\mu}\right|$ will be large, compared with other eigenvalues of C.
- If we have a good approximation of λ , say μ , then we can use this shifted inverse power method to compute λ .

$$t = \frac{1}{\lambda - \mu}$$
, $\lambda = \frac{1}{t} + \mu$.

 Principle of the shift inverse power method

$$\frac{1}{|\lambda - \mu|} \gg \frac{1}{|\lambda_i - \mu|}$$

Shift Inverse Power Method

```
B = A - \mu I; //\mu is given by the user.
decompose B into L and U; //Doolittle's method
select y \neq 0; //Initial y^{(0)}
solve L * h = y; //Using forward substitution.
solve U * x = h; //Using backward substitution, un-normalized y^{(1)}.
repeat{
   y = \frac{x}{\|x\|}; //Normalization y^{(k)}
   solve L * h = y; //Using forward substitution.
   solve U * x = h; //Using backward substitution, un-normalized y^{(k+1)}
   \rho = \frac{y^T x}{v^T y}; //Approximation of the eigenvalue.
   r = \rho * y - x; //r^{(k)} = \rho^{(k)}y^{(k)} - B^{-1}y^{(k)}
until(||r|| \leq \varepsilon);
return\left(\frac{1}{\rho} + \mu, y\right); //\rho = \frac{1}{\lambda - \mu}, \lambda = \frac{1}{\rho} + \mu
```

Rayleigh Quotient

• Definition: Assume *x* is a vector and *A* is a symmetric matrix, the Rayleigh quotient is defined as:

$$R(A,x) = \frac{x^T A x}{x^T x}.$$

[note] if x is a unit vector, then $R(A, x) = x^T A x$.

Rayleigh Quotient

• P1. $R(A, x) = \frac{x^T A x}{x^T x}$. $\lambda_{min} \le R(A, x) \le \lambda_{max}$. //A is symmetric.

Proof:

- Let $\{v_0, v_1, \dots, v_{n-1}\}$ and $\{\lambda_0, \lambda_1, \dots, \lambda_{n-1}\}$ be the eigenvectors and the eigenvalues of A.
- Assume the eigenvectors have been normalized.
- These eigenvectors form a basis in Rⁿ space. (They are mutual orthogonal.)

$$x = \sum c_i v_i$$
, $x^T x = \langle \sum c_i v_i, \sum c_i v_i \rangle = \sum c_i^2$, // Matrix A is symmetric, and $\vec{v}_i \perp \vec{v}_j$ $x^T A x = \langle \sum c_i v_i, \sum c_i \lambda_i v_i \rangle = \sum \lambda_i c_i^2$.

 $R(A,x) = \frac{\sum \lambda_i c_i^2}{\sum c_i^2}$, R(A,x) is a convex combination of the eigenvalues. $|\lambda|_{min} \le R(A,x) \le |\lambda|_{max}$.

Usage of Rayleigh Quotient

• Rayleigh quotient is a good selection of μ in the shift inverse power method.

Select
$$q$$
, $||q|| = 1$;

$$\mu = \frac{q^T A q}{q^T q} = q^T A q.$$

- Since $\lambda_{min} \leq R(A, x) \leq \lambda_{max}$, we can compute m Rayleigh quotients by using m random unit vectors and apply the shift inverse power method to compute other eigenvalues.
 - The max R(A, x) is used for computing λ_{max} .
 - The min R(A, x) is used for computing λ_{min} .
 - Using bisection method, after computing λ_{min} and λ_{max} .
- [Note] A must be symmetric.

Rayleigh Quotient Iteration

- Property: Rayleigh quotient is minimized at the eigenvector x_{n-1} .
 - Its associated eigenvalue is the minimum λ_i .
- Review: in the shift inverse power method
 - We replace the multiplication of inverse matrix

$$y^{(k+1)} = (A - \mu I)^{-1} y^{(k)}$$
 by $(A - \mu I) y^{(k+1)} = y^{(k)}$.

Select
$$q$$
, $||q|| = 1$;

$$\mu = \frac{q^T A q}{q^T q} = q^T A q.$$

Rayleigh Quotient Iteration

The shift inverse power method

$$(A - \mu I)y^{(k+1)} = y^{(k)}.$$
 Select $q, ||q|| = 1;$ $\mu = \frac{q^T A q}{q^T q} = q^T A q.$

- Modification of the shift inverse matrix method:
 - Using the Rayleigh quotient to obtain a new shift matrix in each iteration:

Different q vectors produce different μ values.

- Modifying the eigenvector using the shift matrix.

Rayleigh Quotient Iteration

```
select y \neq 0; //Initial y^{(0)}
solve (A - \mu I)x = y; // Using an initial \mu
\rho = \frac{y^T x}{v^T y}; //Rayleigh quotient, approximation of the eigenvalue
repeat{
   y = \frac{x}{\|x\|}; //Normalization y^{(k)}
    solve (A - \rho I)x = y; //un-normalized y^{(k+1)}, new linear system.
   \mu = \rho;
   \rho = \frac{y^T x}{v^T y}; // modifying the Rayleigh quotient
   r = \rho * v - x; //r^{(k)} = \rho^{(k)}v^{(k)} - Bv^{(k)}
until(||r|| \leq \varepsilon);
return \left(\frac{1}{\rho} + \mu, y\right); //\rho = \frac{1}{\lambda - \mu}, \lambda = \frac{1}{\rho} + \mu
```

Comparison: Shift Inverse Power Method

```
B = A - \mu I; //\mu is given by the user.
decompose B into L and U; //Doolittle's method
select y \neq 0; //Initial y^{(0)}
solve L * h = y; //Using forward substitution.
solve U * x = h; //Using backward substitution, un-normalized y^{(1)}.
repeat{
   y = \frac{x}{\|x\|}; //Normalization y^{(k)}
   solve L * h = y; //Using forward substitution.
   solve U * x = h; //Using backward substitution, un-normalized y^{(k+1)}
   \rho = \frac{y^T x}{v^T y}; //Approximation of the eigenvalue.
   r = \rho * y - x; //r^{(k)} = \rho^{(k)}y^{(k)} - B^{-1}y^{(k)}
until(||r|| \leq \varepsilon);
return\left(\frac{1}{\rho} + \mu, y\right); //\rho = \frac{1}{\lambda - \mu}, \lambda = \frac{1}{\rho} + \mu
```

Discussion

- In each iteration, the shift matrix is re-computed.
 - For comparison: The inverse shift matrix method uses a fixed shift matrix **B**.
- The linear system has to be solved by using $O(n^3)$ steps.
 - Each iteration needs $O(n^3)$ steps.
 - For comparison: The inverse shift matrix method needs $O(n^2)$ steps in each iteration.
- However, it had been proved that the Rayleigh quotient iteration enjoys a cubic convergence rate.

$$e_{k+1} = O(e_k^3)$$

- Thus very few iterations are required.

Deflection Method

• Theorem: A is SPD. If λ and x are an eigenvalue and the corresponding eigenvector of A, then the following matrix shares at least one eigenvalue with A.

$$B = A - \lambda x x^T$$

- Proof
 - Select a unit vector y.

$$B * y = (A - \lambda x x^T)y = Ay - \lambda x (x^T y).$$

- If y=x, $Bx = Ax \lambda x = 0$.
 - The eigenvalue of \mathbf{B} is 0 and the corresponding eigenvector is \mathbf{x} .
- If y is another eigenvector of A, $y \neq x$, we have $B * y = Ay = \lambda_i y$. $//(x \perp y, A \text{ is SPD.})$
- Thus we can use the power method to compute the max eigenvalue of B.
- The resultant eigenvalue is λ_1 .

Conclusion

- The power method computes the max eigenvalue.
- The inverse power method computes the min eigenvalue.
- The shift matrix method computes arbitrary eigenvalues.
- The Rayleigh quotient shows the range of the eigenvalues.
- The shift inverse matrix method speeds-up the shift matrix method.
- The Rayleigh quotient iteration needs higher time complexity to complete an iteration.
 - But, it needs less iterations.

Take Home Exercise

- Use Rayleigh quotients to estimate the condition number of a symmetric matrix.
 - Randomly select *k* unit vectors;
 - Compute the Rayleigh quotients of these vectors;
 - Find the max and min Rayleigh quotients;
 - Compute $cond(A) \approx \frac{\rho_{max}}{\rho_{min}}$.