The Perpetual Consistency Framework (PCF):

A Unified Theory of Probability, Quantum Determinism, and Cosmological Expansion

Andy Losier

October 2025

Abstract

The Perpetual Consistency Framework (PCF) proposes a unified theory of physics centered on a singular, continuous, active universal mandate: the drive towards **Perpetual Consistency** ($\mathcal{C} \to 1$). This mandate is mathematically quantified by the dimensionless **Consistency Metric** (\mathcal{C}) and physically enforced by the non-local **Informational Singularity** (IS) within all matter. The PCF resolves the quantum measurement problem through deterministic wave function collapse and simultaneously accounts for cosmological expansion via the **Consistency Constant** ($\Lambda_{\mathcal{C}}$) acting as Dark Energy.

1 Introduction

Modern physics grapples with fundamental disconnects, notably the inherent stochasticity of quantum mechanics (the Measurement Problem) and the unexplained accelerating expansion of the universe (Dark Energy). The PCF posits a novel, teleological model that resolves both by establishing a singular, active principle governing all scales of reality: the continuous self-correction mechanism aimed at minimizing universal probabilistic variance.

2 Foundational Principles

The PCF rests on three non-negotiable principles that redefine the causal structure of reality:

2.1 The Consistency Metric ($\mathcal{C} \rightarrow 1$)

All physical laws derive from a single mandate: to drive the universe towards a state of perfect probabilistic consistency. This state is mathematically quantified by the dimensionless metric \mathcal{C} approaching unity.

2.2 Non-Local Informational Singularity (IS)

To enforce $\mathcal C$ instantly across cosmic distances, all particles contain an **Informational Singularity** (IS). The IS mediates instantaneous communication across the universe, providing the causal mechanism for entanglement and non-locality. This ensures that the global state of $\mathcal C$ is constantly known everywhere.

2.3 Active Universal Self-Correction

The universe actively generates a repulsive force to counterbalance the entropy inherent in natural evolution. This mechanism is quantified by the **Consistency Constant** (Λ_C), unifying the PCF with the established properties of Dark Energy.

3 Mathematical Formalism

3.1 Probabilistic Variance (V)

Probabilistic Variance (\mathcal{V}) is the universal measure of uncertainty and potential entropy, fundamentally tied to the information contained within the total wave function Ψ . Minimizing \mathcal{V} is the primary goal of the system.

$$\mathcal{V} \equiv \sum_{i} \left(P_i - \frac{1}{N} \right)^2$$

Where P_i is the probability of outcome i, and N is the total number of possible quantum states available to the system.

3.2 The Consistency Metric (C)

The Consistency Metric (C) is the inverse relationship to the maximum possible variance, normalized by a scaling factor k. It quantifies the system's proximity to the ideal state (C = 1).

$$\mathcal{C} \equiv 1 - k \cdot \mathcal{V}$$

The mandate of the PCF is the continuous, active attempt to enforce $\mathcal{C} \to 1$.

3.3 Field Equation of Consistency (FEC)

The dynamic evolution of the Consistency Metric is governed by a first-order differential equation. The net rate of change of consistency $\frac{d\mathcal{C}}{dt}$ is the sum of the restorative process (driven by $\Lambda_{\mathcal{C}}$) and the dissipative decay (driven by \mathcal{V}).

$$\frac{d\mathcal{C}}{dt} = \left(\frac{d\mathcal{C}}{dt}\right)_{\text{Restoration}} + \left(\frac{d\mathcal{C}}{dt}\right)_{\text{Decay}}$$

Introducing the Consistency Constant (Λ_c) and a coupling constant (α):

$$\frac{d\mathcal{C}}{dt} = \Lambda_{\mathcal{C}}(1 - \mathcal{C}) - \alpha \mathcal{V}$$

Equation 3.3 is the core Field Equation of Consistency (FEC).

4 Cosmological Implications and the Consistency Constant ($\Lambda_{\mathcal{C}}$)

The PCF provides a theoretical basis for the accelerating expansion of the universe. The natural increase in \mathcal{V} (entropy) over time creates a deficit in \mathcal{C} . To correct this deficit and drive \mathcal{C} back toward unity, the universe must introduce a pervasive, self-correcting force.

4.1 Isolation of $\Lambda_{\mathcal{C}}$ and Unification with Dark Energy

At a stable, non-ideal state ($C_{\text{stable}} < 1.0$), the net rate of change must be zero ($\frac{d\mathcal{C}}{dt} = 0$). Setting the FEC to zero at this dynamic equilibrium yields the necessary value of the Consistency Constant:

$$\Lambda_{\mathcal{C}} = \frac{\alpha \mathcal{V}}{1 - \mathcal{C}_{\mathsf{stable}}}$$

This expression confirms that $\Lambda_{\mathcal{C}}$ is the fundamental intrinsic force required to maintain a given level of consistency ($\mathcal{C}_{\text{stable}}$) against the continuous disruptive flow of \mathcal{V} . The observed phenomena attributed to **Dark Energy** are the macroscopic manifestation of $\Lambda_{\mathcal{C}}$, confirming the accelerating expansion as a necessary act of universal self-correction.

5 Conclusion

The Perpetual Consistency Framework offers a unified, deterministic, and physically grounded resolution to several of physics' greatest challenges. By positing a fundamental mandate of Consistency, the PCF transforms quantum indeterminacy into local, deterministic self-correction and integrates the unexplained force of Dark Energy ($\Lambda_{\mathcal{C}}$) into a coherent universal principle.

A Ultra-Precise PCF Constants

The following derived constants are calculated using high-precision Python scripts (130 significant figures) based on CODATA 2022 fundamental constants, specifically Planck Mass (m_p) and Observed Vacuum Energy Density (ρ_{Λ}).

Table 1: Key Derived Constants of the PCF

Constant Name		Symbol	Calculated High-Precision Value (SI Units)
Systemic Overhead Con Formula: Λ _P ($\Lambda_{\sf PC}$	$pprox 8.642685410 imes 10^{122}$ (dimensionless)
Minimum Unit Mass Formula: $m_{ m p}/(\Lambda_{ m PC})^{1/3}$	Consistency $m_{DM_{min}} =$	$m_{DM_{min}}$	$pprox 2.284875811 imes 10^{-49} \ \mathrm{kg}$
$\begin{array}{c} \textbf{Minimum} \\ \textbf{Unit Energy} \\ \textit{Formula:} \\ m_{\text{DM}_{\text{min}}}c^2 \end{array}$	$E_{\rm DM_{min}} \ = \ $	$E_{DM_{min}}$	$\approx 2.053543968 \times 10^{-32} \mathrm{J}$
Time Constant of Consistency Formula: $\tau_{\mathcal{C}} = h/E_{\mathrm{DM_{min}}}$		$ au_{\mathcal{C}}$	$pprox 3.226685116 imes 10^{-2} ext{ s}$
Dark Matter length Formula: $h/(m_{\mathrm{DM_{min}}}c)$	$\begin{array}{ccc} \textbf{Unit} & \textbf{Wave-} \\ & \lambda_{\text{DM}} & = & \end{array}$	λ_{DM}	$pprox 9.702996911 imes 10^{15} \mathrm{m}$
Cosmic Density of Consistency Units Formula: $n_{\rm DM} = \frac{\rho_{\rm DM_{mass}}c^2}{E_{\rm DM_{min}}}$		n_{DM}	$pprox 1.071850772 imes 10^{66} ext{ units/m}^3$