Reconnaissance faciale par Eigenfaces

Bouarah Romain

Langdorph Matthieu Ketels Lucas Nathan Souffan

6 mai 2020

 \sqsubseteq Travail dans $\mathbb{R}^{N \times N}$

Représentation matricielle des images

Définition

Une image de taille $N \times N$ est représentée par une matrice $N \times N$. Chaque coefficient représente un niveau de gris d'un pixel.

Transformation en un vecteur de $\mathbb{R}^{N \times N}$

On juxtapose simplement les colonnes de la matrice l'une en dessous de l'autre.

$$\begin{pmatrix} p_{1,1} & p_{1,2} & \cdots & p_{1,N} \\ p_{2,1} & p_{2,2} & \cdots & p_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ p_{N,1} & p_{N,2} & \cdots & p_{N,N} \end{pmatrix} \rightarrow \begin{pmatrix} p_{1,1} \\ p_{2,1} \\ \vdots \\ p_{N,1} \\ \vdots \\ p_{1,N} \\ \vdots \\ p_{N,N} \end{pmatrix}$$

Matrice de covariance

Observation sur les images des visages

Question

Que dire de la position de nos images de visages dans l'espace $\mathbb{R}^{N\times N}$?

└ Matrice de covariance

Observation sur les images des visages

Question

Que dire de la position de nos images de visages dans l'espace $\mathbb{R}^{N\times N}$?

Réponse

Nos images de visages ne sont pas si éloignées les unes des autres.

Définition de la Matrice de Covariance

Définition

La matrice de covariance d'un vecteur de p variables aléatoires

$$\overrightarrow{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_p \end{pmatrix}$$
 dont chacune possède une variance, est la matrice

carrée dont le terme générique est donné par $a_{i,j} = \text{Cov}(X_i, X_j)$.

Encodons cette dispersion

Définition (Estimation de la Matrice de Covariance)

En partant d'un échantillon de réalisations indépendantes d'un vecteur aléatoire, une estimation de la matrice de covariance est donné par :

$$\mathsf{Var}(\overrightarrow{X}) = \frac{1}{n} \sum_{i=1}^{n} (\overrightarrow{X}_i - \overrightarrow{\mu}) (\overrightarrow{X}_i - \overrightarrow{\mu})^{\mathsf{T}}$$

où $\overrightarrow{\mu} = \frac{1}{n} \sum_{i=1}^{n} \overrightarrow{X}_{i}$ est le vecteur des moyennes empiriques.

Matrice de covariance

Application à notre cas

Application à notre cas

1. On calcule le visage moyen
$$\Psi = \frac{1}{M} \sum_{i=1}^{M} I_i$$
.

Application à notre cas

- 1. On calcule le visage moyen $\Psi = \frac{1}{M} \sum_{i=1}^{M} I_i$.
- 2. Chaque visage différe donc de la moyenne par le vecteur $\Phi_i = I_i \Psi$.

Application à notre cas

- 1. On calcule le visage moyen $\Psi = \frac{1}{M} \sum_{i=1}^{M} I_i$.
- 2. Chaque visage différe donc de la moyenne par le vecteur $\Phi_i = I_i \Psi$.
- 3. On calcule la matrice de covariance

$$C = \frac{1}{M} \sum_{i=1}^{M} \Phi_i \Phi_i^T = \frac{1}{M} A A^T$$

où
$$A = [\Phi_1, \Phi_2, \dots, \Phi_M]$$
.

Matrice de covariance

Observations sur la Matrice de Covariance

La matrice de covariance C est :

└ Matrice de covariance

Observations sur la Matrice de Covariance

La matrice de covariance C est :

> symétrique réelle.

∟ Matrice de covariance

Observations sur la Matrice de Covariance

La matrice de covariance C est :

- > symétrique réelle.
- définie semi-positive.

Analyse en composantes principales

Introduction à l'Analyse en Composantes Principales

Principe

Trouver des axes décrivant au mieux notre nuage de points.

Analyse en composantes principales

Introduction à l'Analyse en Composantes Principales

Principe

Trouver des axes décrivant au mieux notre nuage de points.

Définition (Eigenfaces)

La méthode développéee par Turk et Pentland définit les *eigenfaces* comme les axes principaux de l'ACP.

Illustration en 2 Dimensions

Illustration en 2 Dim<u>ensions</u>

Lien avec la Matrice de Covariance

$$C = \begin{pmatrix} 0.55 & 0.07 \\ 0.07 & 0.12 \end{pmatrix}$$

Lien avec la Matrice de Covariance

$$C = \begin{pmatrix} 0.55 & 0.07 \\ 0.07 & 0.12 \end{pmatrix}$$
$$= P \begin{pmatrix} 0.55 & 0 \\ 0 & 0.11 \end{pmatrix} P^{T}$$

avec

$$P = \begin{pmatrix} 0.99 & -0.16 \\ 0.16 & 0.99 \end{pmatrix}$$

Analyse en composantes principales

Limite de la Méthode

Question

Quels sont les problèmes de la méthode?

- Calcul des eigenfaces
 - Analyse en composantes principales

Limite de la Méthode

Question

Quels sont les problèmes de la méthode?

Réponse

▶ La matrice de covariance est de taille $N^2 \times N^2$.

- Calcul des eigenfaces
 - Analyse en composantes principales

Limite de la Méthode

Question

Quels sont les problèmes de la méthode?

Réponse

- ▶ La matrice de covariance est de taille $N^2 \times N^2$.
- ► La diagonaliser est infaisable informatiquement.

Énoncé de la Décomposition en Valeurs Singulières

Théorème

Soit M une matrice $m \times n$, alors il existe une décomposition de la forme

$$M = U\Sigma V^t$$

avec U et V des matrices orthonormales de taille respectives $m \times m$ et $n \times n$.

Proposition

- les colonnes de V sont les vecteurs propres de M^T M
- ▶ les colonnes de U sont les vecteurs propres de MM^T

Projection d'un visage

Soit Γ une nouvelle image de visage, on la projette dans l'espace des visages par :

$$\omega_k = u_k^T (\Gamma - \Psi)$$

Projection d'un visage

Soit Γ une nouvelle image de visage, on la projette dans l'espace des visages par :

$$\omega_k = u_k^T (\Gamma - \Psi)$$

Pour $k \in \{1, \dots, M'\}$, on a alors :

$$W = \begin{pmatrix} \omega_1 \\ \vdots \\ \omega_{M'} \end{pmatrix}$$

∟Analyse de la projection

	proche d'une classe de visage	éloigné d'une classe de visage
proche de l'espace des visages		
éloigné de l'espace des visages		

∟Analyse de la projection

	proche d'une classe de visage	éloigné d'une classe de visage
proche de l'espace des visages	visage connu	
éloigné de l'espace des visages		

Analyse de la projection

	proche d'une classe de visage	éloigné d'une classe de visage
proche de l'espace des visages	visage connu	visage inconnu
éloigné de l'espace des visages		

∟Analyse de la projection

	proche d'une classe de visage	éloigné d'une classe de visage
proche de l'espace des visages	visage connu	visage inconnu
éloigné de l'espace des visages	faux positif	

Analyse de la projection

	proche d'une classe de visage	éloigné d'une classe de visage
proche de l'espace des visages	visage connu	visage inconnu
éloigné de l'espace des visages	faux positif	pas un visage

Reconnaissance faciale par Eigenfaces
Conclusion
Références