Net 1D: 5;735 Machine-Learning Assig" 1 [Uniform Estimators] Assuming Here ô=1 We have, $MSE = E[(\vartheta - \theta)^2]$ 0 = L = E[ô-200+02] $= E[\hat{\theta}^2] - 20E[\hat{\theta}] + \theta^2$ $= E[\hat{\theta}^2] + \theta^2 - 2\theta E[\hat{\theta}] + E[\hat{\theta}]^2 - E[\hat{\theta}]^2$ $= \left(E[\hat{\theta}] - E[\hat{\theta}]^2 \right) + \left(\theta - E[\hat{\theta}] \right)^2$, We Know that Given, Bias $(\hat{\theta}) = \theta - E[\hat{\theta}]$ Var (ê) = E[ê] - E[ê] $MSE = Bias(\hat{\theta})^2 + Var(\hat{\theta})$

3) Colculate Variance: * Îmie: Max X; First we need to calculate attacky CDF, Y: P(Y=n) = P(max. X: 5n) = P(X, 5n, X25n, - Xn 5n) Since these are iid $P(Y \leq n) = P(X_1 \leq n) \cdot P(X_2 \leq n) - \dots \cdot P(X_n \leq n)$ = P(X = m)" - () X is uniform distribution, : density = 1 over the interval [0,1] : above probability is simply (2) : P(Y = n) = (x) - 3 Taking derivative of @ . we will get density of CDF $f(n) = n \cdot \left(\frac{n}{L}\right)^{n-1}$ Hence $f(n) = \begin{cases} 0 & \text{if } n \leq 0 \text{ or } n \geq t \\ \frac{n}{L} \left(\frac{n}{L} \right)^{n-1} & \text{if } 0 < n < t \end{cases}$

We can now compute man & variance of MEE

for convision:

$$\hat{L} = \hat{\theta}$$

$$\hat{L} = \hat{L} = \hat{L}$$

$$\hat{L} = \hat{L}$$

$$\hat{L}$$

Scanned with CamScanner

Continuing our observations, which were calculated in solution 3 We are going to calculate bias for I mom LÎMLE [Given Imam = ? Xn] bias (mom) = L - E[îmom] = L - E[2Xn] = L- RE[Xn] $= L - 2\left(\frac{L}{2}\right) = 0$: Îmon is unbiased → bias (Îmie) = L - E[Îmie] = L- nL = nl + l - nl = L-: Îmre is unbiased Since, the factor (Inti) is coming while calculating the bias for Emile It consistantly underestimates L _____ H.P.

Mean Square Error, MSE is given by

$$mSE = Bias(\hat{L})^2 + var(\hat{L})$$

$$= \left(\frac{L}{n+1}\right)^2 + \frac{nL^2}{(n+2)(n+1)^2}$$

$$= \frac{2L^2}{(n+2)(n+1)}$$
And
$$mSE_{mom} = \left[\frac{Bias(\hat{L}_{mom})}{3n}\right]^2 + var(\hat{L}_{mom})$$

$$= 0 + \frac{L^2}{3n}$$

$$= \frac{L^2}{3n}$$

MLE has a higher bias, however its variance is significantly lower than the variance of MME (of order $O(\frac{1}{h^2})$ against $O(\frac{1}{h})$.)

Then the variance of MME (of order $O(\frac{1}{h^2})$ against $O(\frac{1}{h})$.)

Then the variance of MME (of order $O(\frac{1}{h^2})$ against $O(\frac{1}{h})$.)

Then the variance of MME (of order $O(\frac{1}{h^2})$ against $O(\frac{1}{h})$.)

Then the variance of MME (of order $O(\frac{1}{h^2})$ against $O(\frac{1}{h})$.)

The from $O(\frac{1}{h})$ to $O(\frac{1}{h^2})$: by doing is little bit of trade-off

- We have already calculated the
Theoritical MSE's of both MLE & MOM

ine
$$MSE_{MLE} = \frac{2L^2}{(n+2)(n+1)}$$
 & $MSE_{mom} = \frac{L^2}{3n}$

$$MSE_{MLE} = \frac{2(10)^{2}}{102 \times 101} & & MSE_{mom} = \frac{(10)^{2}}{3 * 100}$$

$$= \frac{200}{102 \times 101}$$

$$= \frac{100}{300}$$

.: We can make a conclusion that MSE me is less than MSE mon theoritically, which is what we observed while calculating it programitality.

Scanned with CamScanner

(6.)

While calculating the value of MSE for \widehat{L}_{MLE} , we have seen that

MLE has a higher bias, however its variance is Significantly lower than the variance of MOM.

Significantly lower than the variance of MOM.

1.e Vor MLE = $O(\frac{1}{h})$ Vor MOM = $O(\frac{1}{h})$

Although, the bias for mom is zero while the bias (\hat{c}_{mle}) is $O(\frac{1}{n})$ For higher values of n, the MSE for \hat{c}_{mle} is

consistently lower than MSE for I mom.
i.e.

1.10 bit of trade-off with "bios"

By doing a little bit of trade-off with "bios", we greatly decreased the MSE for MLE

(7)

We are here trying to find
$$P(\hat{l}_{MLE} < L - G)$$
 as a function of L , E , n and , we know that,

Also.
$$P(y \in n) = \left(\frac{n}{L}\right)^n$$

$$P(\widehat{l}_{ml} \in L - \epsilon) = P(\max_{i=1...n} X_i \in L - \epsilon)$$

$$= \left(\frac{L - \epsilon}{L}\right)^n$$

$$P(limle < l-\epsilon) = (1-\frac{\epsilon}{l})^n - 0$$

from O & Q

$$P(L-l_{MLE} > \epsilon) < f-S$$

$$\left(\frac{L-\epsilon}{L}\right)^n < 1-S$$

From the previous solutions, we have calculated the E[MIE] = nL i.e E(max. X;) = n L _____ Now, Let multiply the eq (by (n+1) we will get $E[\hat{L}_{n}] = E[\frac{n+1}{n} \cdot \max X_i]$ $= \frac{n+1}{n} \times \frac{n+1}{n+1}$ $\therefore \operatorname{Bios}(\widehat{\mathcal{L}}) = L - \operatorname{E}[\widehat{\mathcal{L}}]$ $= L - L = Q_{\epsilon}$: Los is an unbiased estimator. Since, the bias (1) is zero. and i MSE(î) = (Bias) + Var(î)

: $MSE(\hat{l})$ will be of order of $O(\frac{1}{n})$ which is a smaller

MSE Still.