Exercice 1 (3 points). Parmi les fonctions définies sur \mathbb{Z} figurant ci-dessous, lesquelles sont des fonctions d'autocovariance de processus stationnaires?

- 1. $\gamma(0) = 1$, $\gamma(1) = \gamma(-1) = 0.6$ et $\gamma(h) = 0$ pour $|h| \ge 2$.
- 2. $\gamma(h) = (-1)^{|h|}$.
- 3. $\gamma(h) = 1 + \cos(\pi h/2) + \cos(\pi h/4)$.

Exercice 2 (3 points). Soit (X_t) un processus autorégressif

$$X_t = \phi X_{t-2} + Z_t \tag{1}$$

où (Z_t) est un bruit blanc de moyenne nulle et de variance σ^2 .

- 1. Sous quelle condition sur ϕ l'équation (1) admet elle une solution stationnaire causale?
- 2. On suppose que la solution de (1) existe et est causale. Calculer les coefficients de la représentation $X_t = \sum_{k=0}^{\infty} \psi_k Z_{t-k}$.
- 3. Calculer la fonction d'autocovariance de (X_t) .

Exercice 3 (11 points). On considère un processus autorégressif d'ordre 1 (X_t)

$$X_{t+1} = \phi X_t + Z_t \quad \text{pour } t \in \mathbb{Z}$$
 (2)

où $(Z_t)_{t\geq 0}$ est un bruit blanc centré de variance σ^2 connue et ϕ une constante connue, $|\phi|<1$. On ne peut observer directement $(X_t)_{t\geq 0}$ mais pour $t\geq 0$, on observe :

$$Y_t = X_t + V_t \tag{3}$$

où $(V_t)_{t\geq 1}$ est un bruit blanc, centré, de variance η^2 connue, décorrélé de $(X_t)_{t\in\mathbb{Z}}$.

On se propose de résoudre le problème dit de filtrage, c'est-à-dire de calculer de façon récursive $\hat{X}_{t|t} = p_{H_t^Y}(X_t)$ la projection orthogonale de X_t sur l'espace $H_Y^t = \text{Vect}\{Y_0, \dots, Y_t\}$.

On note $P_{t|t} = \mathbb{E}\left[(X_t - \hat{X}_{t|t})^2\right]$ la variance de l'erreur de prédiction associée. De façon similaire, nous notons $\hat{X}_{t+1|t} = p_{H_Y^t}(X_{t+1})$ la projection orthogonale de X_{t+1} sur H_Y^t et $P_{t+1|t} = \mathbb{E}\left[(X_{t+1} - \hat{X}_{t+1|t})^2\right]$ la variance de l'erreur de prédiction associée.

1. Calculer $E[X_0^2]$.

Réponse : le processus X_t est un AR-1 qui s'exprime causalement en fonction de Z_t puisque $|\phi| < 1$. Ceci s'écrit $X_t = Z_{t-1} + \psi_1 Z_{t-2} + \cdots$.

Ceci implique que Z_t est orthogonal à X_t , X_{t-1} , etc.

De plus on a vu que X_t a pour covariance $\gamma_X(h) = \sigma^2 \phi^{|h|}/(1-\phi^2)$. Par conséquent $E[X_0^2] = \gamma_X(0) = \sigma^2/(1-\phi^2)$.

2. Déterminer $\hat{X}_{0|0}$ et $P_{0|0}$.

Réponse : $\hat{X}_{0|0} = \mu Y_0$ avec $\mu = \frac{(X_0, Y_0)}{(Y_0, Y_0)}$. En utilisant l'équation (11), il vient $(X_0, Y_0) = (X_0, X_0) + 0$ puisque, par hypothèse, $(X_0, V_0) = 0$. De même $(Y_0, Y_0) = (X_0, X_0) + (V_0, V_0)$. Par conséquent

$$\mu = \frac{\gamma_X(0)}{\gamma_X(0) + \eta^2}$$

Pour le calcul de l'écart quadratique $P_{0|0}$, on a

$$P_{0|0} = (X_0 - \hat{X}_{0|0}, X_0 - \hat{X}_{0|0}) = (X_0, X_0 - \hat{X}_{0|0}) = \gamma_X(0) - \mu(X_0, Y_0)$$
$$= \frac{\gamma_X(0)\eta^2}{\gamma_X(0) + \eta^2}$$

3. Interpréter les résultats (on s'intéressera en particulier aux comportements de $P_{0|0}$ quand $\eta^2 \to 0$ et quand $\eta^2 \to \infty$).

Réponse : quand $\eta=0$, il n'y a pas de bruit d'observation et donc l'erreur d'estimation de X_0 à partir de Y_0 est nulle. D'un autre côté, si $\eta=+\infty$ l'erreur d'estimation est égale à la valeur a priori $\gamma_X(0)$: l'observation de Y_t est très bruitée et ne permet pas de réduire l'erreur qu'on ferait en estimant X_0 par 0.

On suppose qu'au temps t > 0, $\hat{X}_{t|t}$ et $P_{t|t}$ sont disponibles.

4. En utilisant, l'équation d'évolution (10), montrer que

$$\hat{X}_{t+1|t} = \phi \hat{X}_{t|t}$$
 et $P_{t+1|t} = \phi^2 P_{t|t} + \sigma^2$.

Réponse : $p_{H_t^Y}(X_{t+1}) = p_{H_t^Y}(X_t) + p_{H_t^Y}(Z_t)$. Mais Z_t est orthogonale à X_t, X_{t-1}, \cdots . Rappelons que, par hypothèse, V_t est orthogonal à $X_{t'}$ pour tout couple (t,t') et donc orthogonal à Z_t puisque $Z_t = X_{t+1} - \phi X_t$. Il s''ensuit que Z_t est orthogonale à Y_t, Y_{t-1}, \cdots et donc $p_{H_t^Y}(Z_t) = 0$. Par conséquent

$$\hat{X}_{t+1|t} = \phi \hat{X}_{t|t} \tag{4}$$

On a aussi $X_{t+1} - \hat{X}_{t+1|t} = \phi(X_t - \hat{X}_{t|t}) + Z_t$. On en déduit (en utilisant l'orthogonalité de Z_t par rapport à X_t et à Y_t, Y_{t-1}, \cdots que

$$P_{t+1|t} = \phi^2 P_{t|t} + \sigma^2 \tag{5}$$

5. On définit l'innovation par $I_{t+1} = Y_{t+1} - p_{H_t^Y}(Y_{t+1})$. Montrer en utilisant l'équation d'observation (11) que $I_{t+1} = Y_{t+1} - \hat{X}_{t+1|t}$.

Réponse : d'après (11), $p_{H_t^Y}(Y_{t+1}) = p_{H_t^Y}(X_{t+1}) + p_{H_t^Y}(V_{t+1}) = \hat{X}_{t+1|t} + 0$ et donc

$$I_{t+1} = Y_{t+1} - \hat{X}_{t+1|t} \tag{6}$$

6. Montrer que $E[I_{t+1}^2] = P_{t+1|t} + \eta^2$.

Réponse : $I_{t+1} = Y_{t+1} - \hat{X}_{t+1|t} = X_{t+1} - \hat{X}_{t+1|t} + V_{t+1}$. En élevant au carré et en notant que $X_{t+1} - \hat{X}_{t+1|t}$ est orthogonal à V_{t+1} , on a $\mathrm{E}[I_{t+1}^2] = P_{t+1|t} + \eta^2$.

7. Montrer que

$$\hat{X}_{t+1|t+1} = \hat{X}_{t+1|t} + k_{t+1}I_{t+1}$$

où
$$k_{t+1} = \mathrm{E}[X_{t+1}I_{t+1}]/\,\mathrm{E}[I_{t+1}^2].$$

Réponse : on a successivement

$$p_{H_{t+1}^{Y}}(X_{t+1}) = p_{H_{t}^{Y} \oplus sp(Y_{t+1})}(X_{t+1})$$

$$= p_{H_{t}^{Y} \oplus sp(I_{t+1})}(X_{t+1})$$

$$= p_{H_{t}^{Y}}(X_{t+1}) + p_{sp(I_{t+1})}(X_{t+1})$$

$$= \hat{X}_{t+1|t} + k_{t+1}I_{t+1}$$

avec $k_{t+1} = (X_{t+1}, I_{t+1})/(I_{t+1}, I_{t+1})$. On a donc

$$\hat{X}_{t+1|t+1} = \hat{X}_{t+1|t} + k_{t+1}I_{t+1} \tag{7}$$

8. Montrer en utilisant l'expression de I_{t+1} que $E[X_{t+1}I_{t+1}] = P_{t+1|t}$.

Réponse : $I_{t+1} = Y_{t+1} - \hat{X}_{t+1|t} = X_{t+1} - \hat{X}_{t+1|t} + V_{t+1}$. On en déduit que $(I_{t+1}, X_{t+1}) = (X_{t+1} - \hat{X}_{t+1|t}, X_{t+1}) + (V_{t+1}, X_{t+1}) = (X_{t+1} - \hat{X}_{t+1|t}, X_{t+1} - \hat{X}_{t+1|t}) + 0 = P_{t+1|t}$ puisque $\hat{X}_{t+1|t}$ est orthogonal à $(X_{t+1} - \hat{X}_{t+1|t})$.

Par conséquent, en utilisant le résultat de la question 6, on a

$$k_{t+1} = (P_{t+1|t} + \eta^2)^{-1} P_{t+1|t}$$
(8)

9. Montrer que

$$P_{t+1|t+1} = P_{t+1|t} - E\left[(k_{t+1}I_{t+1})^2 \right]$$

et en déduire que $P_{t+1|t+1} = (1 - k_{t+1})P_{t+1|t}$.

Réponse : d'après (7), $P_{t+1|t+1} = ||X_{t+1} - \hat{X}_{t+1|t+1}||^2 = ||(X_{t+1} - \hat{X}_{t+1|t}) - k_{t+1}I_{t+1}||^2 = P_{t+1|t} + k_{t+1}^2 ||I_{t+1}||^2 - 2k_{t+1}(X_{t+1} - \hat{X}_{t+1|t}, I_{t+1}).$

Mais $(X_{t+1} - \hat{X}_{t+1|t}, I_{t+1}) = (X_{t+1}, I_{t+1})$ puisque I_{t+1} est orthogonal à $\hat{X}_{t+1|t}$. D'après la définition de k_{t+1} , $(X_{t+1}, I_{t+1}) = k_{t+1} \|I_{t+1}\|^2$. Par conséquent $P_{t+1|t+1} = P_{t+1|t} - k_{t+1}^2 \|I_{t+1}\|^2 = P_{t+1|t} - k_{t+1} \|I_{t+1}\|^2$.

Or par définition $k_{t+1}||I_{t+1}||^2 = (I_{t+1}, X_{t+1})$. Mais on a vu question 8 que $(I_{t+1}, X_{t+1}) = P_{t+1|t}$ et donc $k_{t+1}||I_{t+1}||^2 = P_{t+1|t}$. On en déduit que

$$P_{t+1|t+1} = (1 - k_{t+1})P_{t+1|t} \tag{9}$$

10. En déduire le procédé itératif complet permettant de calculer $\hat{X}_{t|t}$, $\hat{X}_{t+1|t}$, $P_{t|t}$, $P_{t+1|t}$ pour tout $t \ge 1$.

Réponse : en regroupant les équations (4), (6), (8), (7), (5) et (9), on obtient l'algorithme 1.

11. Comment se comporte $P_{t|t}$ quand $t \to \infty$?

Réponse : on pose $\rho^2 = \sigma^2/\eta^2$ et $Q_{t|t} = P_{t|t}/\eta^2$. Un calcul simple donne

$$Q_{t+1|t+1} = \frac{\phi^2 Q_{t|t} + \rho^2}{\phi^2 Q_{t|t} + 1 + \rho^2}$$

Algorithm 1 Algorithme récursif

Conditions initales : $X_{0|0} = \frac{\gamma_X(0)}{\gamma_X(0) + \eta^2} Y_0$, $P_{0|0} = \frac{\gamma_X(0)\eta^2}{\gamma_X(0) + \eta^2}$, Pour $t \ge 1$, faire :

$$-\hat{X}_{t+1|t} = \phi \hat{X}_{t|t}, \text{ (prédiction)}$$

-
$$I_{t+1} = Y_{t+1} - \hat{X}_{t+1|t}$$
, (innovation)

–
$$k_{t+1} = (P_{t+1|t} + \eta^2)^{-1} P_{t+1|t}$$
, (gain de Kalman)

$$- \hat{X}_{t+1|t+1} = \hat{X}_{t+1|t} + k_{t+1}I_{t+1}, \text{ (correction)}$$

–
$$P_{t+1|t} = \phi^2 P_{t|t} + \sigma^2$$
, (covariance de la prédiction)

–
$$P_{t+1|t+1} = (1 - k_{t+1})P_{t+1|t}$$
, (covariance de l'erreur d'estimation)

On voit que $Q_{t|t}$ est décroissante et minorée par 0. Elle converge donc et la limite Qvérifie:

$$\phi^2 Q^2 + (1 + \rho^2 - \phi^2)Q - \rho^2 = 0$$

on prend la racine positive.