# Multimodality Vision-Language models (CLIP)

Yong-Sheng Chen
Dept. Computer Science, NYCU

## What is modality

 Modality is the way in which information is expressed or perceived



## What is multimodal

Multimodal involves the study of heterogeneous and interconnected data

- Examples
  - Image Captioning
  - Visual question answering
  - ...



## Why multimodal

- Enhanced Information Completeness: Different modalities capture complementary aspects of the same scenario
- Improved Performance: Integrating multiple data sources often increases accuracy, robustness, and interpretability
- Real-world Alignment: Real environments involve diverse sensory inputs, making multimodal systems more practical

## Multimodal is hot right now

Multimodality stands at the forefront of the new wave of foundation model breakthroughs

## Language Is Not All You Need: Aligning Perception with Language Models

Shaohan Huang\*, Li Dong\*, Wenhui Wang\*, Yaru Hao\*, Saksham Singhal\*, Shuming Ma\*, Tengchao Lv, Lei Cui, Owais Khan Mohammed, Barun Patra, Qiang Liu, Kriti Aggarwal Zewen Chi, Johan Bjorck, Vishrav Chaudhary, Subhojit Som, Xia Song, Furu Wei†, Microsoft

https://github.com/microsoft/unilm

## Multimodal is hot right now



The number of publications on visual recognition Vision Language Models (VLMs) (from Google Scholar). The publications have grown exponentially since the pioneer study CLIP in 2021.

## Multimodal is hot right now



A timeline of representative Multimodal Large Language Models (MLLMs).

## CLIP: Contrastive Language-Image Pre-Training

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference on machine learning. PMLR, 2021.

## Language vs. vision



#### Language

- Self-supervised learning
- Zero-shot transfer
- Large dataset (from web)





#### Vision

- Supervised learning
- Large dataset?



## Language vs. vision



#### Language

- Self-supervised learning
- Zero-shot transfer
- Large dataset (from web)





#### Vision

- Supervised learning
- Large dataset?





#### CLIP: Alignment between language concept and vision concept

- Availability of large dataset
- Enable zero-shot transfer

## **Sufficiently Large Dataset**

#### WeblmageText (WIT) dataset

- Consists of 400M (image, text) pairs sourced from the Internet
- Filtered using 500,000 high-frequency words from web
- Capped at 20,000 pairs per keyword to maintain diversity

| Dataset    | Size        | Annotation  |
|------------|-------------|-------------|
| WIT (CLIP) | 400M pairs  | ×           |
| YFCC100M   | 100M images | ×           |
| ImageNet   | 1.4M images | <b>&gt;</b> |
| COCO       | 330K images | <b>/</b>    |
| JFT-300M   | 300M images | <b>/</b>    |

The WIT dataset has a similar total word count as the WebText dataset used to train GPT-2

## **Contrastive Pre-Training**

#### Transformer encoder



## **Contrastive Pre-Training**



## **Contrastive Pre-Training**



```
# image_encoder - ResNet or Vision Transformer
# text encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
                - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_{normalize(np.dot(T_f, W_t), axis=1)}
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e,T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss
       = (loss_i + loss_t)/2
```

## **Zero-Shot Prediction**



### **Zero-Shot Prediction Performance**

#### Zero-shot CLIP vs. Linear Probe on ResNet50



### **Zero-Shot Prediction Performance**

#### **Zero-shot CLIP vs. Few-shot Linear Probes**



#### **Zero-Shot Prediction Performance**

## Zero-shot CLIP vs. ImageNet model on natural distribution shifts

