```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
from sklearn import preprocessing
from sklearn.metrics import accuracy_score,confusion_matrix
```

In [2]: import warnings warnings.filterwarnings('ignore')

Out[3]:

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education
0	9.50	138	73	11	276	120	Bad	42	17
1	11.22	111	48	16	260	83	Good	65	10
2	10.06	113	35	10	269	80	Medium	59	12
3	7.40	117	100	4	466	97	Medium	55	14
4	4.15	141	64	3	340	128	Bad	38	13
395	12.57	138	108	17	203	128	Good	33	14
396	6.14	139	23	3	37	120	Medium	55	11
397	7.41	162	26	12	368	159	Medium	40	18
398	5.94	100	79	7	284	95	Bad	50	12
399	9.71	134	37	0	27	120	Good	49	16

400 rows × 11 columns

In [4]: company_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Sales	400 non-null	float64
1	CompPrice	400 non-null	int64
2	Income	400 non-null	int64
3	Advertising	400 non-null	int64
4	Population	400 non-null	int64
5	Price	400 non-null	int64
6	ShelveLoc	400 non-null	object
7	Age	400 non-null	int64
8	Education	400 non-null	int64
9	Urban	400 non-null	object
10	US	400 non-null	object
dtyp	es: float64(1), int64(7), ob	ject(3)

memory usage: 34.5+ KB

In [5]: company_data.describe()

Out [5]:

	Sales	CompPrice	Income	Advertising	Population	Price	Ag€
count	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000
mean	7.496325	124.975000	68.657500	6.635000	264.840000	115.795000	53.322500
std	2.824115	15.334512	27.986037	6.650364	147.376436	23.676664	16.200297
min	0.000000	77.000000	21.000000	0.000000	10.000000	24.000000	25.000000
25%	5.390000	115.000000	42.750000	0.000000	139.000000	100.000000	39.750000
50%	7.490000	125.000000	69.000000	5.000000	272.000000	117.000000	54.500000
75%	9.320000	135.000000	91.000000	12.000000	398.500000	131.000000	66.000000
max	16.270000	175.000000	120.000000	29.000000	509.000000	191.000000	80.000000

In [6]: # pairplot
import seaborn as sns
sns.pairplot(company_data)

Out[6]: <seaborn.axisgrid.PairGrid at 0x7faaff4437c0>

Out[7]:

	Sales	CompPrice	Income	Advertising	Population	Price	Age
Sales	1.000000	0.064079	0.151951	0.269507	0.050471	-0.444951	-0.231815
CompPrice	0.064079	1.000000	-0.080653	-0.024199	-0.094707	0.584848	-0.100239
Income	0.151951	-0.080653	1.000000	0.058995	-0.007877	-0.056698	-0.004670
Advertising	0.269507	-0.024199	0.058995	1.000000	0.265652	0.044537	-0.004557
Population	0.050471	-0.094707	-0.007877	0.265652	1.000000	-0.012144	-0.042663
Price	-0.444951	0.584848	-0.056698	0.044537	-0.012144	1.000000	-0.102177
Age	-0.231815	-0.100239	-0.004670	-0.004557	-0.042663	-0.102177	1.000000
Education	-0.051955	0.025197	-0.056855	-0.033594	-0.106378	0.011747	0.006488

In [8]: plt.figure(figsize=(10,6)) sns.heatmap(corr,annot=True) plt.show()


```
In [9]: #count plot
    sns.countplot(company_data['ShelveLoc'])
    plt.grid(True)
    plt.show()

    sns.countplot(company_data['Urban'])
    plt.grid(True)
    plt.show()
```

```
sns.countplot(company_data['US'])
plt.grid(True)
plt.show()
```



```
Out[10]: 0
                 Medium
                 Medium
          1
          2
                 Medium
          3
                 Medium
          4
                     Low
          395
                    High
                 Medium
          396
          397
                 Medium
          398
                     Low
          399
                 Medium
```

Name: Sales, Length: 400, dtype: category

Categories (3, object): ['Low' < 'Medium' < 'High']</pre>

```
In [11]: sns.countplot(company_data['Sales'])
   plt.grid(True)
   plt.show()
```



```
In [12]: company_data['Sales'].value_counts()
```

Out[12]: Medium 243 Low 130 High 27

Name: Sales, dtype: int64

In [13]: company_data.head()

Out[13]:

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education
0	Medium	138	73	11	276	120	Bad	42	17
1	Medium	111	48	16	260	83	Good	65	10
2	Medium	113	35	10	269	80	Medium	59	12
3	Medium	117	100	4	466	97	Medium	55	14
4	Low	141	64	3	340	128	Bad	38	13

In [14]: #encoding categorical company_data

label_encoder = preprocessing.LabelEncoder()

company_data['Sales'] = label_encoder.fit_transform(company_data['S
company_data['ShelveLoc'] = label_encoder.fit_transform(company_dat
company_data['Urban'] = label_encoder.fit_transform(company_data['U
company_data['US'] = label_encoder.fit_transform(company_data['US']

company_data

Out [14]:

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education
0	2	138	73	11	276	120	0	42	17
1	2	111	48	16	260	83	1	65	10
2	2	113	35	10	269	80	2	59	12
3	2	117	100	4	466	97	2	55	14
4	1	141	64	3	340	128	0	38	13
395	0	138	108	17	203	128	1	33	14
396	2	139	23	3	37	120	2	55	11
397	2	162	26	12	368	159	2	40	18
398	1	100	79	7	284	95	0	50	12
399	2	134	37	0	27	120	1	49	16

400 rows × 11 columns

```
In [15]: # Input and Output variables
```

X = company_data.drop('Sales', axis = 1)

y = company_data[['Sales']]

In [16]: y_test = train_test_split(X, y, test_size= 0.33, random_state= 42)

Grid SearchCv

```
In [20]: from sklearn.model_selection import GridSearchCV
         grid search = GridSearchCV(estimator = rf model,
                                     param_grid = {'criterion':['entropy','gi
                                                   'max_depth': [2,3,4,5,6,7,8
                                     cv=5)
         grid_search.fit(X,y)
         print(grid_search.best_params_)
         print(grid search.best score )
         {'criterion': 'gini', 'max_depth': 10}
         0.7425
In [21]: rf_best_model = RandomForestClassifier(criterion = 'gini', random_st
         rf best_model.fit(x_train, y_train)
Out [21]:
                          RandomForestClassifier
          RandomForestClassifier(max_depth=10, random_state=42)
In [22]: #prediction train data
         pred_train_y = rf_best_model.predict(x_train)
```

```
In [23]: pred_test_y = rf_best_model.predict(x_test)
         pred_test_y
2, 1,
               2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1,
         2, 2,
               2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1,
         2, 2,
               2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2,
         1, 2,
               1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
         2, 2,
               2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2,
         1, 2])
In [24]: |pd.Series(pred_test_y).value_counts()
Out[24]: 2
              99
         1
              33
         dtype: int64
In [25]: | accuracy_score(y_train,pred_train_y)
Out [25]: 0.996268656716418
In [26]: confusion_matrix(y_train,pred_train_y)
                            0],
Out[26]: array([[ 14,
                       0,
                            1],
                  0,
                      94,
                [
                  0,
                       0, 159]])
In [27]: ssification Report:\n',classification_report(y_train,pred_train_y))
        Classification Report:
                       precision
                                    recall
                                           f1-score
                                                      support
                           1.00
                                     1.00
                                               1.00
                                                          14
                   0
                   1
                           1.00
                                     0.99
                                               0.99
                                                          95
                   2
                                                         159
                           0.99
                                     1.00
                                               1.00
                                               1.00
                                                         268
            accuracy
                                               1.00
                                                         268
           macro avg
                           1.00
                                     1.00
        weighted avg
                                     1.00
                                               1.00
                                                         268
                           1.00
In [28]: | accuracy_score(y_test,pred_test_y)
Out [28]: 0.696969696969697
```

```
In [29]: |confusion_matrix(y_test,pred_test_y)
[ 0, 12, 72]])
In [30]: lassification Report:\n',classification_report(y_test,pred_test_y))
         Classification Report:
                                    recall
                                           f1-score
                       precision
                                                      support
                   0
                           0.00
                                     0.00
                                               0.00
                                                          13
                           0.61
                                     0.57
                                               0.59
                                                          35
                   1
                   2
                           0.73
                                     0.86
                                               0.79
                                                          84
                                               0.70
                                                         132
             accuracy
           macro avg
                           0.44
                                     0.48
                                               0.46
                                                         132
                                               0.66
                                                         132
         weighted avg
                           0.62
                                     0.70
 In [ ]:
```