W-04 (ANSYS)

Формулировка задачи:

Дано: E, I_z , l.

Сжимаемая консоль.

E — модуль упругости материала;

 I_Z – изгибный момент инерции.

 $\it Haйmu: 1)$ Критическую силу первой формы потери устойчивости $\it P_{\kappa p}$;

2) Коэффициент приведения длины μ .

Аналитический расчёт (см. W-04) даёт следующе решение:

Первая форма потери устойчивости:

$$\mu = 2$$

$$P_{\kappa p} = \frac{\pi^2 \cdot E \cdot I_z}{\mu^2 \cdot l^2} = \frac{\pi^2 \cdot E \cdot I_z}{2^2 \cdot l^2} = 2,4674 \cdot \frac{E \cdot I_z}{l^2}$$

Puc. 1.

Задача данного примера: при помощи ANSYS Multyphisics получить эти же результаты методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

В окно С_Р вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый следующими действиями:

U_M > PlotCtrls > Style > Colors > Reverse Video

B меню оставить только пункты, относящиеся к прочностным расчётам:

M_M > Preferences > Отметить "Structural" > ОК

При построениях полезно видеть номера точек и линий твердотельной модели:

```
U_M > PlotCtrls > Numbering >
Отметить KP, LINE ;
Установить Elem на "No numbering";
Установить [/NUM] на "Colors & numbers"> ОК
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22»> ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22»> ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

http://www.tychina.pro/библиотека-задач-1/

Решение задачи:

Приравняв E, I_z , P и l к единице, результаты получим в виде чисел, обозначенных на puc. l. синим цветом.

№	Действие	Результат
1	Задаём параметры расчёта — базовые величины задачи: U_M > Parameters > Scalar Parameters > E=1 > Accept > A=1e6 > Accept > Iz=1 > Accept > l=1 > Accept > P=1 > Accept > nu=0.3 > Accept > > Close	Scalar Parameters
2	Первая строчка в таблице конечных элементов — плоский балочный тип BEAM3: M_M > Preprocessor C_P > ET,1,BEAM3 > Enter Посмотрим таблицу конечных элементов: M_M > Preprocessor > Element Type > Add/Edit/Delete > Close	Close Colore Add. Ciptions Delete Close Melp
3	Первая строчка в таблице параметров («реальных констант») выбранного типа конечного элемента: площадь поперечного сечения = A ; момент инерции = Iz ; высота поперечного сечения = $l/100$. С_P > R,1,A,Iz,L/100 > Enter Посмотрим таблицу реальных констант: M_M > Preprocessor > Real Constants > Add/Edit/Delete > Close	Defined Real Constant Sets Set 1 Add Edit Delete Close Help

№	Действие	Результат
4	Cooйcmsa материала стержня — модуль упругости и коэффициент Пуассона: M_M > Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > B окошке EX пишем "E", в окошке PRXY пишем "nu" > ОК Закрываем окно «Deine Material Model Behavior».	Add Temperature Delder Temperature Graph Add Temperature Delder Temperature Graph
	Твердотельное моделирование	
5	Ключевые точки — границы участков: $A \to 1$, $B \to 2$: M_M> Preprocessor> Modeling> Create> Keypoints> In Active CS> NPT пишем 1 X,Y,Z пишем $0,l,0$ > Apply > NPT пишем 2 X,Y,Z пишем $0,0,0$ > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	POINTS .1
6	Один участок — одна линия:M_M > Preprocessor > Modeling > Create > Lines > Lines >Straight Line >Левой кнопкой мыши последовательно нажать на ключевые точки:1 и 2> ОКПрорисовываем всё, что есть: U_M > Plot > Multi-Plots	1 L-K .1 L1 Y Z.X

№	Действие	Результат
7	Заделка: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 2 ключевую точку > OK > Lab2 установить "All DOF" > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	L1
8	Скрываем оси системы координат: U_M > PlotCtrls > Window Controls > Window Options > [/Triad] установить "Not Shown" > OK	1 1 L1
9	Cuna: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On Keypoints > Левой кнопкой мыши нажать на 1 ключевую точку > OK > Lab установить "FY" VALUE установить "-P" > OK	1 L1

No	Действие	Результат
	Конечноэлементная модель	
10	Указываем материал, реальные константы и тип элементов: M_M > Preprocessor > Meshing > Mesh Attributes > All Lines > MAT установить "1" REAL установить "1" TYPE установить "1 BEAM3" > OK	BATT Assign Attributes to All Selected Lines BATT Assign Attributes to All Selected Lines MAT Material number
11	Размер конечного элемента (должен быть небольшим):M_M > Preprocessor > Meshing > Size Cntrls > ManualSize >Lines > All Lines >Левой кнопкой мыши кликаем на линию L1> ОКSize пишем l/50> ОКОбновляем изображение: U_M > Plot > Multi-Plots	
12	Указываем, что именно нужно теперь прорисовывать по команде Multi-Plots: U_M > PlotCtrls > Multi-Plot Controls > Появляется первое окно Multi-Plotting > OK > Появляется второе окно Multi-Plotting > Оставляем в нём отметки только напротив Nodes и Elements > OK	A Multi-Plotting

No	Действие	Результат
13	Рабиваем линии на элементы:M_M > Preprocessor > Meshing > Mesh > Lines > Pick AllОбновляем изображение:U_M > Plot > Multi-PlotsБирюзовым цветом изображены балочные элементы. Чёрные точки- это их узлы.	1 E-N
14	Переносим на конечноэлементную модель нагрузки и закрепления с модели твердотельной: M_M > Loads > Define Loads > Operate > Transfer to FE > All Solid Lds > OK Обновляем изображение: U_M > Plot > Multi-Plots	
	Статический расчёт предварительного напряжён	иного состояния:
15	Onции статического расчёта: M_M > Solution > Analysis Type > Sol'n Controls > Отмечаем галочкой "Calculate prestress effects" > OK	Basic Transient Sofn Options Nonlinear Advanced NL. Analysis Options Small Displacement Static P Catculate prestress effects Time Control Time a tend of loadstep O Automatic time stepping Prog Chosen P " Time Increment Number of substeps O Max no of substeps O Min no. of substeps O

No	Действие	Результат
	Просмотр результатов	
20	3начение критической силы:	Available Data Sets: Set Frequency Load Step Substep Cumulative 1 2.4674 1 1 1 Read Read Help
21	Коэффициент приведения длины: $P_{\kappa p} = \frac{\pi^2 \cdot E \cdot I_z}{\mu^2 \cdot l^2} \implies \mu = \pi \cdot \sqrt{\frac{E \cdot I_z}{P_{\kappa p} \cdot l^2}} = \pi \cdot \sqrt{\frac{1 \cdot l}{2,4674 \cdot l^2}} = \frac{\pi}{\sqrt{2,4674}} = 2 ;$ Тот же результат, что и на $puc.~l$.	
22	<pre>M_B > General Postproc > Read Results > First Set M_M > General Postproc > Plot Results > Deformed Shape > KUND установить Def + undeformed > OK Macштаб отклонений выбирается автоматически. Можно его увеличить: U_M > PlotCtrls > Style > Displacement Scaling > DMULT устанавливаем "User specified" User specified factor увеличиваем, например, до 0.5 > OK</pre>	

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

 $U_M > File > Exit > Quit - No Save! > OK$

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.