Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Συστήματα Μικροϋπολογιστών

Σειρά Ασκήσεων 4	Θανάσουλας Γρηγόριος ΑΜ: 03114131
	Μόνου Σταματίνα ΑΜ: 03114077

Άσκηση 1

IN 10H

MVI A,0CH

SIM EI

CALL INIT

START: CALL LIGHTS OFF ; Απενεργοποίηση LEDS

JMP START

INTR ROUTINE: ; Ρουτίνα διακοπής, επαναφέρει στο 60

MVI B,06H ; Δεκάδες B = 6 MVI C,00H ; Μονάδες C = 0

ΕI

CALL LIGHTS_ON CALL COUNT

RET

ΙΝΙΤ: ; Αρχικοποίηση καταχωρητών και μνήμης

MVI A,00H LXI B,0000H LXI D,0A00H

LXI H,0A00H ; Αρχική διεύθυνση segments MVI M,10H ; Κενό σύμβολο στο segment

INX H MVI M,10H INX H MVI M,10H INX H MVI M,10H INX H

MVI M,10H

INX H

MVI M,10H

RET

LIGHTS OFF: MVI A,FFH

; Ρουτίνα απενεργοποίησης LEDS

STA 3000H

RET

LIGHTS_ON: MVI A,00H

STA 3000H

RET

DELAY 1S: ; Καθυστέρηση 1000*1ms = 1 sec

PUSH PSW PUSH B

LXI B,03E7H; B = 999

DELAY_1mS: ; Καθυστέρηση 1ms

CALL DELA ; Σταθερή χρονοκαθυστέρηση 1ms

CALL DCD ; Εμφάνιση μέτρησης

DCX B MOV A,B

CPI 00H ; B == 0?

JNZ DELAY 1mS

MOV A,C

CPI 00H ; C == 0?

JNZ DELAY 1mS

ΡΟΡ Β ; Αποκατάσταση καταχωρητών

POP PSW RET

DISPLAY: LXI D,0A00H

LXI H,0A04H MOV M,C INX H MOV M,B

PUSH PSW PUSH B PUSH H PUSH D

CALL STDM ; Μετακίνηση συμβόλων στη θέση μνήμης των segments

POP D POP H POP B POP PSW RET

COUNT: ; Μέτρηση απο 60 έως 00

REDUCE_B: CALL DISPLAY

CALL DELAY 1S

DCR Β ; Μείωση δεκάδων

MVI C,09H ; C = 9

REDUCE_C: CALL DISPLAY

CALL DELAY_1S

DCR C ; Μείωση μονάδων

MOV A,C

CPI 00H ; C = 0

JNZ REDUCE_C ; Αν C != 0, συνέχιστε τη μείωση του

MOV A,B

CPI 00H ; B = 0?

JNZ REDUCE B

CALL DISPLAY ; Εμφάνιση τελικού 00

CALL DELAY_1S JMP START

END

Άσκηση 2

IN 10H

MVI A,0CH

SIM

ΕI

CALL INIT

EQU LIM_B,0FH EQU LIM_C,43H

START: LXI D,0A00H

CALL STDM

CALL DCD

JMP START

INTR ROUTINE:

FΙ

CALL DISPLAY JMP START

DISPLAY:

MVI B,LIM B ; Φόρτωση ορίων σταθερών

MVI C,LIM C

CALL KIND ; Διάβασμα input

MOV E.A

LXI H,0A00H ; Τοποθέτηση περιεχομένου 2ου 7Segment

MOV M,A CALL KIND

LXI H,0A01H ; Τοποθέτηση περιεχομένου 1ου 7Segment

MOV M,A

RLC ; Μετακίνηση 4 θέσεις αριστερά

RLC RLC RLC

ADD E ; Ενοποίηση αριιθμών

MOV E,A

PUSH D ; Εμφάνιση αριθμών

LXI D,0A00H **PUSH PSW PUSH D PUSH B PUSH H CALL STDM** POP H POP B

POP D **POP PSW** CALL DCD POP D

MOV A,E INR B CMP B

JC INTERVAL 1 ; A < B + 1 <=> A <= B

INR C CMP C

JC INTERVAL 2 ; A < C + 1 <=> A <= C

INTERVAL_3: MVI A,FEH ; Ενεργοποίηση 1ου LED απο δεξιά

> STA 3000H JMP START

INTERVAL 2: MVI A,FDH ; Ενεργοποίηση 2ου LED απο δεξιά

STA 3000H JMP START

INTERVAL 1: MVI A, FBH ; Ενεργοποίηση 3ου LED απο δεξιά

STA 3000H JMP START

ΙΝΙΤ: ; Αρχικοποίηση καταχωρητών και μνήμης

MVI A,00H LXI B,0000H LXI D,0A00H

LXI H,0A00H ; Αρχική διεύθυνση segments MVI M,10H ; Κενό σύμβολο στο segment

INX H
MVI M,10H
INX H
MVI M,10H
INX H
MVI M,10H
INX H
MVI M,10H
INX H

MVI M,10H

RET

END

Άσκηση 3

Η διακοπή RST 5.5 συμβαίνει στο μέσο της CALL 3000H, επομένως θα ολοκληρωθεί πρώτα και ο τελευταίος κύκλος της εντολής και στη συνέχεια θα μεταβούμε στη ρουτίνα της διακοπής, ενώ επίσης θα απενεργοποιηθούν και οι διακοπές. Έπειτα, θα γίνει push στη στοίβα ο μετρητής προγράματος.

Μόλις θα έχει ολοκληρωθεί η CALL 3000H, θα έχει προστεθεί στη στοίβα η θέση επιστροφής μετά το τέλος της ρουτίνας, δηλαδή 2000H (Ο PC=2000H δείχνει στην επόμενη διεύθυνση μετά την CALL).

Κατα την εκτέλεση της ρουτίνας εξυπηρέτησης πρέπει να σωθεί η πλήρης κατάσταση του μικροεπεξεργαστή, δηλαδή οι τιμές των καταχωρητών του και των σημαιών. Κατα την ολοκλήρωση της ρουτίνας εξυπηρέτησης, πρέπει να γίνουν POP από τη στοίβα τα δεδομένα που είχαν γίνει προηγουμένως POP, πραφανώς με αντίστροφη σειρά από αυτή της εισαγωγής στη στοίβα.

Τέλος, αφού ενεργοποιηθούν ξανά οι διακοπές, επιστρέφεται ο έλεγχος στο πρόγραμμα που διακόπηκε.

Άσκηση 4

MVI A,0DH ; A = 0000 1101

SIM

MVI D,00H ; D=0, άρτια επανάληψη αλλιώς D=1 περιττή επανάληψη

MVI E,40H ; E = 64, πλήθος 4-bit λέξεων

LXI H,0000H; HL = 0

ΕI

WAIT: LOOP WAIT

 $INT_5.5$: MOVA,E; A = E

CPI 01H

JZ DISABLE INTR

CONT: MOV A,D

CPI 00H ; Αν CPI != 0 τότε διαβασε τα MSB ψηφία

JNZ READ_MSB

READ_LSB: IN PORT_IN

AND 0F ; Απομόνωση 4 LSB

ΜΟΥ C,Α ; Αποθήκευση στον ΒC

MVI B,00H

DCR Ε ; Μείωση μετρητή

MOV A,01H

XRA D ; Αναστροφή σημαίας

MOV D,A JMP SUM

READ_MSB: IN PORT_IN

AND 0F ; Απομόνωση 4 LSB της πόρτας

RLC ; Μετακίνηση στη θέση των MSB

RLC RLC RLC

MOV C,A ; Αποθήκευση στον BC

MVI B,00H

DCR E ; Μείωση μετρητή

MOV A,01H

XRA D ; Αναστροφή σημαίας

MOV D,A

SUM: DAD B ; HL += BC

MOV A,E CPI 00H

JZ AVERAGE ; Αν έχει τελείωσει η είσοδος 64 δεδομένων

RET

AVERAGE: DAD Η ; Μετακίνηση συνολικά 3 θέσεις αριστερά

DAD H DAD H HLT

DISABLE INTR:

DI ; Απενεργοποίηση των διακοπών

JMP CONT