# IAJ Project 2 - Pathfinding

This report has been made in accordance to the guidelines provided for the IAJ's (Inteligência Artificial para Jogos) second project.

#### **Authors**

- Diogo Silva (98776)
- Carlos Marques (98639)
- Rui Melo (98823)

#### Index

- A\*
- A\* Algorithm
- Euclidean Heuristic
- Tie Breaking
- NodeArray A\*
  - Node Array and Map Preprocessing
  - NodeArray A\* Algorithm
- JPS+
  - Map Preprocessing
  - JPS+ Algorithm
- Settings
- Comparison and Analysis
- PathFollowing
  - Car Spawning
  - Arrive Movement
  - StraightLine Smoothing
  - · Behaviour Optimizations

#### **A**\*

#### A\* Algorithm

Starting off with the base A\* algorithm, we basically implemented it using as basis the code given by the professor for Lab 3. As such several support methods were already implemented.

We did, however, alter the **GetNeighbourList** method both to simplify, and attempt to improve its efficiency. Originally this method presented a plethora of *if* conditions and convoluted code that, despite working, could also be achieved with a single nested and a couple inline conditions:

```
int startX = currentNode.x == 0 ? 0 : -1;
int endX = currentNode.y == grid.getWidth() ? 0 : 1;
int startY = currentNode.y == 0 ? 0 : -1;
int endY = currentNode.y == grid.getHeight() ? 0 : 1;
for (int xx = startX; xx <= endX; xx++){
    for(int yy = startY; yy <= endY; yy++){
        if(xx == 0 && yy == 0){
            continue; // Dont add yourself as a neighbour
    }
        neighbourList.Add(GetNode(currentNode.x+xx, currentNode.y+yy));
}</pre>
```

As for the **Search** itself, it was implemented basically as presented in the theoretical slides, with the inclusion of the option to retrieve the *partial path*, and the processing of **15** nodes per frame. Other additions include the computation of debug and analysis values such as the max open list size.

For the closed list we utilized the **ClosedDictionary**, as specified in Lab 4, and for the open list we utilized the (rather unoptimal) **SimpleUnorderedList**, as it wasn't requested in any lab or guideline that we utilized any other more appropriate data structure (like a PriorityHeap). This could, however, be easily changed as the PriorityHeap is implemented and ready to be swapped into A\* if needed.

# **Euclidean Heuristic**

Initially we implemented the Euclidean Heuristic by simply computing the Euclidean Distance as such:

```
float x = (goalNode.x - node.x);
float y = (goalNode.y - node.y);
return Mathf.Sqrt(x * x + y * y);
```

This made it so the heuristic was admissable, since it would always output a value smaller than the actual cost of going from *node* to *goalNode*. There was a problem however. The given *x* and *y* coordinates passed to this heuristic were the coordinates post **quantization** (i.e, they're integer values ranging from 0 to width or height). This is valid, and again, makes the heuristic admissable, but it doesn't make it all too optimal due to the fact that for our pathfinding algorithms we normalize the costs of both straight and diagonal movements to a static **10** for straight jumps and **14** for diagonals (which is helpful since our grid cells have a varying size depending on how big of a map we're using).

To improve this heuristic we altered it by multiplying the linear distance between the x and y coordinates by the cost of moving in a straight direction, as such:

```
float x = (goalNode.x - node.x) * MOVE_STRAIGHT_COST;
float y = (goalNode.y - node.y) * MOVE_STRAIGHT_COST;
return Mathf.RoundToInt(Mathf.Sqrt(x * x + y * y));
```

This will output an Euclidian Heuristic that is "up to scale" with our defined cost values. Furthermore it is still admissable since it will always be smaller or equal to the actual cost of going from *node* to *goalNode*, and more optimal than the prior algorithm since the values are going to be more inline with the actual costs of reaching *goalNode* from *node* (with the movement costs being as defined). Note also that we do a *RoundToInt* before returning due to the fact that our defined diagonal cost movement is an integer number (14). As such, if we used the non-rounded value our heuristic would be over-estimating by a few decimals the actual cost, hence making it non-admissable.



From left to right, the fill using ZeroHeuristic, Euclidean Heuristic without the "cost scaling", Euclidean Heuristic with "cost scaling"

#### Tie Breaking

Our final improvement to the base A\* was making it so, in occasion that two nodes produce the same *fValue*, we pick the one with the lowest *hValue* (i.e, the one that is, according to our heuristic, closer to the goal node). We did this, simply by adding a new method to our open data structures (more specifically, in the case of A\*, to our *SimpleUnorderedNodeList*). Initially we had already been provided with a *PeekBest* method that used a LINQ query to get the node with the lowest *fValue*.

What we did was create a new method **PeekBestTieBreaking**, that gets the node with the lowest *fValue*, and in case of tie, gets the node with the lowest *fValue* AND lowest *hValue* instead. This was accomplished by adding some more conditions to the LINQ guery, as such:

NodeRecord best = this.NodeRecords.Aggregate((nodeRecord1, nodeRecord2) => (nodeRecord1.fCost < nodeRecord2.fCost ? nodeRecord1 : (nodeRecord1.fCost > nodeRecord2.fCost ? nodeRecord2 : (nodeRecord1.hCost < nodeRecord2.hCost ? nodeRecord2))));

# NodeArray A\*

### Node Array and Map Preprocessing

Before implementing the NodeArray A\* we had to first implement the **NodeRecordArray** data structure itself. The class "skeleton" had already been provided to us for Lab 4, but we still had to implement all of the actual methods.

Firstly we started by adding a new variable to our **NodeRecord** class - *NodeIndex* - aswell as a static variable - *next\_index* - which is initialized at 0 and increments every time a new node is created (meaning each node's index is automatically attributed upon creation).

The actual instantiation of the **NodeRecordArray** is handled by the **NodeArrayAStarPathfinding** class which posesses a method - *MapPreprocessing* - used to register and add all nodes to its NodeRecordArray

#### NodeArray A\* Algorithm

The NodeArray A\* Algorithm was implemented with efficiency in mind, both in terms of avoiding unecessary searches and processing, but also in terms of memory since all of our nodes have already been created and are stored in our NodeRecordArray, creating additional nodes would be a waste.

This class was implemented as a subclass of the AStarPathfinding class, which served as a super class for both this and for our JPSPathfinding.

The most notable difference between the **NodeArrayAStarPathfinding** and it's super class lies in the *ProcessChildNode* method. More specifically, in the fact that instead of iterating through our open and closed lists to check if the current neighbour node we're checking is in any of these, we simply get the node from our NodeRecordArray and check it's status (which is either set to Open, Closed or Unvisited).

```
var node = this.NodeRecords.GetNodeRecord(neighbourNode);
if (node.status == NodeStatus.Open){
    // Child is in open
    if (node.fCost > fCost){
        (...)
    }
    return;
}else if (node.status == NodeStatus.Closed){
    // Child is in closed
    if (node.fCost > fCost){
        (...)
    }
    return;
}
```

It should also be noted that inherently this algorithm also does a type of tie breaking, in the sense that the Open list, implemented using a Priority Heap, adds nodes to the list, firstly ranked by *fCost* and then by *hCost* in the case of ties. This happens because the *CompareTo* function in the **NodeRecord** class was altered to have this in mind.

#### JPS+

#### **Map Preprocessing**

JPS+ gets most of its efficiency during runtime from all of the preprocessing that has to be done to the map. More specifically, we need to **generate the primary jump** points, and **compute the distances** from each node to each jump point through sweeps.

Before this, however, we had to add two new variables to our NodeRecords - directions and distances.

The first is a boolean array with size 4 in which each index corresponds to the cardinal directions North, South, East, West (in this order). The index is set to True if this node is a primary jump point entering from the given direction. For example, in the image below, that specified Jump Point node would have it's **directions** array set to [True, True, False, True].



The latter, **distances**, is a String-Int Dictionary that maps each possible direction (North, South, East, West, NorthEast, SouthEast, NorthWest, SouthWest) to an integer value corresponding to node's distance to a jump point (or wall). Note that this could have also been implemented with just an integer array rather than a dictionary, but for the sake of prerving our sanities when debugging and implementing the JPS+ runtime algorithm, we chose to have it be a dictionary instead (and would've done the same for the **directions** variable aswel, if not for hubris).

The **directions** variable (i.e, marking nodes as jump points) is done on the *checkJumpPoint* method, meanwhile the **distances** are set on our *sweepLeftRight* (sweeps left to right and right to left), *sweepUpDown* (sweeps down to up and up to down), *sweepUpDiagonally* (sweeps down to up right and left) and *sweepDownDiagonally* (sweeps up to down right and left). All of these methods are called in the **JPSPlusPathfinding** class method *MapPreprocessing*.

All of these algorithms were basically implemented as specified in the GameAIPro2 book.

It should also be stated that our JPS+ implementation was done using the NodeRecordArray for both the Open and Closed sets.

### JPS+ Algorithm

After doing all the preprocessing, the JPS+ algorithm was implemented as specified in the GameAlPro2 book (with adaptations so that it would work with the NodeRecordArray and our other classe's structures). Several support functions had to be created such as *inGeneralDirection* and *inExactDirection* and so on. It should also be stated that, for Open and Closed lists we used our **NodeRecordArray** and, just like the NodeRecordArrayAStarPathfinding class, the **JPSPlusPathfinding** class also inherits from AStarPathfinding.

For our algorithm to work properly we had to add yet another variable to our node records - **travelingDirection**. Since JPS+ introduces the notion of removing redundant paths by considering which directions to move on depending on the direction the node was entered. As such, this variable holds the direction that the current node's parent was traveling to reach the current node (the exception to this is the starting node which has no traveling direction, since it has no nodes that traveled to it).

The **travelingDirection** variable is also important for our *CalculatePath* method which had to be altered for this class (I'd also like to remember that this class is in fact a subclass of AStarPathfinding). A property of JPS+ is that it only considers Jump Point Nodes (or Target Jump Points), and as such, when the algorithm finds the path, it will have just the disconnected nodes, as seen in the left image. With the travelingDirection, however, we can post-process our path to include all the intermediate nodes and achieve an output as specified in the image on the right.





Several other adaptations were made for the algorithm to work properly (such as using the aformentioned DIAGONAL\_JUMP\_COST and STRAIGHT\_JUMP\_COST to compute the givenCost) that are too extensive to include in this report.

# **Settings**

Before proceeding further, we should explain the available settings and variables of our Pathfinding Manager



- · Partial Path
  - · Check to make it so the partial path is returned
- Use Euclidian
  - o If checked the algorithms will use the Euclidean Heuristic. If its not, then they will be using the Zero Heuristic
- · Search Algorithm
  - Used to select which pathfinding algorithm should be used.
  - Valid values are A\*\*\*, \*\*NodeArrayA\*\*\* and \*\*JPS+.
- · Spawn Car
  - If checked, when the search algorithm finishes a car will be spawned and start following the created path
- Tie Breaking
  - If checked, A\* will use Tie Breaking via heuristic value checking
- Use Priority Movement
  - If checked, the car's movement will include priority movement and dynamic avoid obsticles, else, it just uses Arrive Movement.

# Comparison and Analysis

After all of our algorithms had been implemented and properly tested we proceeded to analyze their behaviours and compare them against each other. Bellow follow two pictures. The first has some results obtained from running Unity's Deep Profiler + Call Stack in order to analyze which functions each algorithm's search function was calling and where the time was being allocated. These republications are obtained running the search algorithms for 100 nodes on each frame.

| Method                  | Calls | Execution Time (ms) |
|-------------------------|-------|---------------------|
| Search                  | 1     | 394.2               |
| GetBestAndRemove        | 1     | 0.0                 |
| ProcessChildNode        | 5     | 2.4                 |
| GetNeighbourList        | 1     | 0.0                 |
| GenerateChildNodeRecord | 5     | 0.3                 |
| AddToOpen               | 0     |                     |
| SimpleUnorderedList.All | 5     |                     |
| Enumerator.MoveNext     | 3311  | 0.3                 |
| Enumerator.get_Current  | 3308  | 0.2                 |
| RemoveFromOpen          | 0     |                     |
| Replace                 | 0     |                     |
| AddToClosed             | 1     |                     |
| ClosedDictionary.All    | 3     | 0.6                 |
| RemoveFromClosed        | 0     |                     |
| CountOpen               | 1     |                     |

| Method                  | Calls | Execution Time (ms) |  |
|-------------------------|-------|---------------------|--|
| Search                  | 1     | 427.36              |  |
| GetBestAndRemove        | 1     | 0.1                 |  |
| ProcessChildNode        | 8     | 6.19                |  |
| GetNeighbourList        | 1     | 0.02                |  |
| GenerateChildNodeRecord | 8     | 0.54                |  |
| AddToOpen               | 1     | 0                   |  |
| SimpleUnorderedList.All | 8     | 0.02                |  |
| Enumerator.MoveNext     | 8578  | 0.85                |  |
| Enumerator.get_Current  | 8571  | 0.58                |  |
| RemoveFromOpen          | 0     | 0                   |  |
| Replace                 | 0     | 0                   |  |
| AddToClosed             | 1     | 0                   |  |
| ClosedDictionary.All    | 5     | 1.81                |  |
| RemoveFromClosed        | 0     | 0                   |  |
| CountOpen               | 1     | 0                   |  |

| Method                  | Calls | Execution Time (ms) |  |  |
|-------------------------|-------|---------------------|--|--|
| Search                  | 1     | 14.53               |  |  |
| GetBestAndRemove        | 1     | 0.85                |  |  |
| ProcessChildNode        | 3     | 0.88                |  |  |
| GetNeighbourList        | 1     | 0.07                |  |  |
| GenerateChildNodeRecord |       |                     |  |  |
| AddToOpen               | 3     | 0.35                |  |  |
| CalculateDistanceCost   | 3     | 0.19                |  |  |
| EuclideanDistance.H     | 3     | 0.02                |  |  |
| GetNodeRecord           | 9     | 0                   |  |  |
| RemoveFromOpen          | 1     | 0                   |  |  |
| Replace                 | 0     | 0                   |  |  |
| AddToClosed             | 1     | (                   |  |  |
| ClosedDictionary.All    |       |                     |  |  |
| RemoveFromClosed        | 0     | 0                   |  |  |
| CountOpen               | 1     | 0.2                 |  |  |

| JF3T                    |       |                     |  |  |  |
|-------------------------|-------|---------------------|--|--|--|
| Method                  | Calls | Execution Time (ms) |  |  |  |
| Search                  | 1     |                     |  |  |  |
| GetBestAndRemove        | 1     | 0.02                |  |  |  |
| ProcessSuccessorNode    | 2     | 0.32                |  |  |  |
| GetNeighbourList        |       |                     |  |  |  |
| GenerateChildNodeRecord |       |                     |  |  |  |
| AddToOpen               | 2     | 0.01                |  |  |  |
| CalculateFCost          | 2     | C                   |  |  |  |
| EuclideanDistance.H     | 2     |                     |  |  |  |
| GetNodeRecord           | 2     |                     |  |  |  |
| RemoveFromOpen          | 1     |                     |  |  |  |
| Replace                 | 0     | 0                   |  |  |  |
| AddToClosed             | 1     |                     |  |  |  |
| ClosedDictionary.All    |       |                     |  |  |  |
| RemoveFromClosed        | 0     | 0                   |  |  |  |
| CountOpen               | 1     |                     |  |  |  |
| DrawPath                | 1     | 0.67                |  |  |  |
| isCardinal              | 8     | 0.02                |  |  |  |
| inExactDirection        | 2     | C                   |  |  |  |
| inGeneralDirection      | 1     |                     |  |  |  |

Some conclusions could be taken, such as comparing the execution time of certain methods between algorithms and realizing that some algorithms call methods that others do and vice versa (for example the NodeArray A\* algorithm doesn't bother generating child node records, since it bases itself around not having to generate more nodes than the ones created during pre processing). We find that this isn't the optimal way to compare our algorithms however, as we had to randomly pick a frame from the profiler to analyze for each of the algorithms (aiming to never pick neither the one that peaked or valleyed in terms of CPU usage).

Following are results obtained by running each algorithm (maximum 25 nodes per frame) on the same paths and recording their debug values. More specifically we recorded the total number of nodes explored, the fill (by subtracting the number of nodes explored minus the nodes that were in the actual path), the maximum size of the open list, the total processing time until the search was complete, and the minimum, maximum and average time it took to process a node. All these paths were

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nadas 5 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r:II                                                                                                              | Man. Cian a / O !!!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Man Nada Dana ( )                                                                                                                                                                                              | Path 1                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ave Nede Person 1 TO 12                                                                                                                                                                                                          | Total Businessia, T ( )                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nodes Explored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                | Min. Node Processing Time (s)                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   | 5 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.003471851                                                                                                                                                                                                    | 5.24521E-06                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000302247                                                                                                                                                                                                                      | 0.052760                                                                                                                                                                                             |
| * (w/ Tie Breaking Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   | 5 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.004980564                                                                                                                                                                                                    | 9.53674E-06                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000420911                                                                                                                                                                                                                      | 0.052308                                                                                                                                                                                             |
| odeArray A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   | 5 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.001908302                                                                                                                                                                                                    | 5.72205E-06                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000198569                                                                                                                                                                                                                      | 0.0429165                                                                                                                                                                                            |
| PS+ (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00433588                                                                                                                                                                                                     | 2.38419E-05                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.001298547                                                                                                                                                                                                                      | 0.042068                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                | Path 2                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nodes Explored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fill                                                                                                              | Max. Size of Open List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max. Node Processing Time (s)                                                                                                                                                                                  | Min. Node Processing Time (s)                                                                                                                                                                                                                                                                                                                                                                                                           | Avg. Node Processing Time (s)                                                                                                                                                                                                    | Total Processing Time (s)                                                                                                                                                                            |
| * (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55:                                                                                                               | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.008930206                                                                                                                                                                                                    | 1.90735E-06                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000123566                                                                                                                                                                                                                      | 1.14546                                                                                                                                                                                              |
| * (w/ Tie Breaking Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55:                                                                                                               | 2 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.008104801                                                                                                                                                                                                    | 1.57356E-05                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000128651                                                                                                                                                                                                                      | 1.20933                                                                                                                                                                                              |
| odeArray A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                      | 602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 553                                                                                                               | 2 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.39233E-05                                                                                                                                                                                                    | 3.8147E-06                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.05515E-06                                                                                                                                                                                                                      | 0.9283757                                                                                                                                                                                            |
| PS+ (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000495911                                                                                                                                                                                                    | 3.8147E-06                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.91773E-05                                                                                                                                                                                                                      | 0.0816985                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                | Path 3                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>Nodes Explored</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                | Min. Node Processing Time (s)                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| * (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.009693146                                                                                                                                                                                                    | 1.38283E-05                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000134975                                                                                                                                                                                                                      | 1.04028                                                                                                                                                                                              |
| * (w/ Tie Breaking Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.008476257                                                                                                                                                                                                    | 1.43051E-05                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000124536                                                                                                                                                                                                                      | 1.06068                                                                                                                                                                                              |
| odeArray A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                      | 593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53                                                                                                                | 5 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.002294779                                                                                                                                                                                                    | 3.33786E-06                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.41966E-05                                                                                                                                                                                                                      | 0.878496                                                                                                                                                                                             |
| PS+ (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.002652407                                                                                                                                                                                                    | 2.86102E-06                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000143791                                                                                                                                                                                                                      | 0.100134                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                | Path 4                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nodes Explored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                | Min. Node Processing Time (s)                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| * (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.57764E-05                                                                                                                                                                                                    | 1.90735E-06                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.38419E-05                                                                                                                                                                                                                      | 0.043086                                                                                                                                                                                             |
| * (w/ Tie Breaking Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.57764E-05                                                                                                                                                                                                    | 3.8147E-06                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.47955E-05                                                                                                                                                                                                                      | 0.04225                                                                                                                                                                                              |
| odeArray A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.002557755                                                                                                                                                                                                    | 0.000454664                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.001506209                                                                                                                                                                                                                      | 0.047771                                                                                                                                                                                             |
| PS+ (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.004601955                                                                                                                                                                                                    | 0.000426292                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.002514124                                                                                                                                                                                                                      | 0.064492                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                | Path 5                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nodes Explored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fill                                                                                                              | Max. Size of Open List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max. Node Processing Time (s)                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         | Avg. Node Processing Time (s)                                                                                                                                                                                                    | Total Processing Time (s)                                                                                                                                                                            |
| A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   | 0 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| A* (w/ Tie Breaking Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   | 0 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| NodeArray A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   | 0 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| PS+ (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   | 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nodes Explored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fill                                                                                                              | Max. Size of Open List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max. Node Processing Time (s)                                                                                                                                                                                  | Lower Left Corner to Up Right Co<br>Min. Node Processing Time (s)                                                                                                                                                                                                                                                                                                                                                                       | orner Avg. Node Processing Time (s)                                                                                                                                                                                              | Total Processing Time (s)                                                                                                                                                                            |
| A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| A* (w/ Tie Breaking Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                  | 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| NodeArray A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| JPS+ (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   | 09 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nodes Explored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fill                                                                                                              | Max. Size of Open List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max. Node Processing Time (s)                                                                                                                                                                                  | Lower Right Corner to Up Left Co<br>Min. Node Processing Time (s)                                                                                                                                                                                                                                                                                                                                                                       | Avg. Node Processing Time (s)                                                                                                                                                                                                    | Total Processing Time (s)                                                                                                                                                                            |
| A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 42                                                                                                              | 51 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01591492                                                                                                                                                                                                     | 1.52588E-05                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000632998                                                                                                                                                                                                                      | 10.396                                                                                                                                                                                               |
| A* (w/ Tie Breaking Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                  | 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 42                                                                                                              | 55 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0142355                                                                                                                                                                                                      | 1.43051E-05                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000600179                                                                                                                                                                                                                      | 10.06                                                                                                                                                                                                |
| NodeArray A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 42                                                                                                              | 55 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000362396                                                                                                                                                                                                    | 3.8147E-06                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.619E-06                                                                                                                                                                                                                        | 6.4356                                                                                                                                                                                               |
| IPS+ (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 1                                                                                                               | 12 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.002026558                                                                                                                                                                                                    | 3 2.86102E-06                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 2.98458E-05                                                                                                                                                                                                                    | 0.29291                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                | Lower Left to Upper Left                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nodes Explored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         | Avg. Node Processing Time (s)                                                                                                                                                                                                    |                                                                                                                                                                                                      |
| • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 140                                                                                                             | 2 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01229858                                                                                                                                                                                                     | Min. Node Processing Time (s)<br>1.62125E-05                                                                                                                                                                                                                                                                                                                                                                                            | 0.000253119                                                                                                                                                                                                                      | 3.00361                                                                                                                                                                                              |
| A* (w/ Tie Breaking Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1510<br>1510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 140                                                                                                               | 2 155<br>6 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01229858<br>0.01620483                                                                                                                                                                                       | Min. Node Processing Time (s)<br>1.62125E-05                                                                                                                                                                                                                                                                                                                                                                                            | 0.000253119                                                                                                                                                                                                                      | 3.00361                                                                                                                                                                                              |
| A* (w/ Tie Breaking Euclidian Heuristic)<br>NodeArray A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                         | 1510<br>1510<br>1510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 140<br>139<br>139                                                                                                 | 2 155<br>6 157<br>6 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01229858<br>0.01620483<br>0.008345604                                                                                                                                                                        | Min. Node Processing Time (s)<br>1.62125E-05<br>7.6294E-06<br>3.8147E-06                                                                                                                                                                                                                                                                                                                                                                | 0.000253119<br>0.000246361<br>1.85367E-05                                                                                                                                                                                        | 3.00363<br>2.98705<br>2.56306                                                                                                                                                                        |
| A* (w/ Tie Breaking Euclidian Heuristic)<br>NodeArray A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                         | 1510<br>1510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 140<br>139<br>139                                                                                                 | 2 155<br>6 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01229858<br>0.01620483<br>0.008345604                                                                                                                                                                        | Min. Node Processing Time (s)<br>1.62125E-05<br>7.6294E-06<br>3.8147E-06                                                                                                                                                                                                                                                                                                                                                                | 0.000253119<br>0.000246361<br>1.85367E-05                                                                                                                                                                                        | 3.00361<br>2.98705<br>2.56306                                                                                                                                                                        |
| A* (w/ Tie Breaking Euclidian Heuristic)<br>NodeArray A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                                                         | 1510<br>1510<br>1510<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 140<br>0 139<br>0 139<br>5 5                                                                                    | 2 155<br>6 157<br>6 153<br>3 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01229858<br>0.01620483<br>0.008345604<br>0.002162933                                                                                                                                                         | Min. Node Processing Time (s) 1.62125E-05 7.6294E-06 3.8147E-06 5.24521E-06 Upper Right to Lower Right                                                                                                                                                                                                                                                                                                                                  | 0.000253119<br>0.000246361<br>1.85367E-05<br>7.22481E-05                                                                                                                                                                         | 3.00361<br>2.98705<br>2.56306<br>0.150965                                                                                                                                                            |
| * (w/ Tie Breaking Euclidian Heuristic)<br>lodeArray A* (w/ Euclidian Heuristic)<br>PS+ (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                                          | 1510<br>1510<br>1511<br>60<br>Nodes Explored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 140<br>0 139<br>0 139<br>5 5                                                                                    | 2 153 6 15; 6 15; 3 12  Max. Size of Open List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01229858<br>0.01620483<br>0.008345604<br>0.002162933<br>Max. Node Processing Time (s)                                                                                                                        | Min. Node Processing Time (s) 1.62125E-05 7.6294E-06 3.8147E-06 5.24521E-06  Upper Right to Lower Right Min. Node Processing Time (s)                                                                                                                                                                                                                                                                                                   | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s)                                                                                                                                                   | 3.00361<br>2.98705<br>2.56306<br>0.150969                                                                                                                                                            |
| * (w/ Tie Breaking Euclidian Heuristic) IodeArray A* (w/ Euclidian Heuristic) PS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                                                                                                   | 151(<br>151)<br>151(<br>60)<br>Nodes Explored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 140<br>0 139<br>0 139<br>5 5<br>Fill<br>8 7                                                                     | 2 153 6 153 6 155 3 12  Max. Size of Open List 3 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01229858<br>0.01620483<br>0.008345604<br>0.002162933<br>Max. Node Processing Time (s)                                                                                                                        | Min. Node Processing Time (s) 1.62125E-05 7.6294E-06 3.8147E-06 5.24521E-06  Upper Right to Lower Right Min. Node Processing Time (s) 3.8147E-06                                                                                                                                                                                                                                                                                        | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s) 0.0001533:                                                                                                                                        | 3.00361<br>2.98705<br>2.56306<br>0.150965<br>Total Processing Time (s)<br>3                                                                                                                          |
| * (w/ Tie Breaking Euclidian Heuristic) IodeArray A* (w/ Euclidian Heuristic) PS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic)                                                                                                                                                                                                                                                                                         | 1510<br>1511<br>1511<br>60<br>Nodes Explored<br>86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 140<br>5 139<br>5 5 5<br>Fill 8 7:                                                                              | 2 155 6 157 6 157 3 12  Max. Size of Open List 33 11 52 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01229858<br>0.01620483<br>0.008345604<br>0.002162933<br>Max. Node Processing Time (s)<br>0.01025005                                                                                                          | Min. Node Processing Time (s) 1.62125E-05 7.6294E-06 3.8147E-06 5.24521E-06  Upper Right to Lower Right Min. Node Processing Time (s) 3.8147E-06 7.6294E-06                                                                                                                                                                                                                                                                             | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s) 0.0001533:                                                                                                                                        | 3.0036;<br>2.9870;<br>2.55306;<br>0.15096;<br>Total Processing Time (s)<br>3 1.5785<br>1.6141                                                                                                        |
| * (w/ Tie Breaking Euclidian Heuristic) IodeArray A* (w/ Euclidian Heuristic) PS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                   | 151(<br>151)<br>151(<br>60)<br>Nodes Explored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 140<br>5 139<br>5 5 5<br>Fill 8 7:<br>7 7:                                                                      | 2 153 6 152 6 153 3 12  Max. Size of Open List 53 11 52 111 52 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01229858<br>0.01620483<br>0.008345604<br>0.002162933<br>Max. Node Processing Time (s)<br>0.01025005                                                                                                          | Min. Node Processing Time (s) 1.62125E-05 7.6294E-06 3.8147E-06 5.24521E-06  Upper Right to Lower Right Min. Node Processing Time (s) 3.8147E-06 7.6294E-06                                                                                                                                                                                                                                                                             | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s) 0.0001533:                                                                                                                                        | 3.0036;<br>2.9870;<br>2.55306;<br>0.15096;<br>Total Processing Time (s)<br>3 1.5785<br>1.6141                                                                                                        |
| A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic) IPS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  NodeArray A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                             | 1510<br>1511<br>1511<br>60<br>Nodes Explored<br>86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 140<br>5 139<br>5 5 5<br>Fill 8 75<br>7 75                                                                      | 2 155 6 157 6 157 3 12  Max. Size of Open List 33 11 52 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01229858<br>0.01620483<br>0.008345604<br>0.002162933<br>Max. Node Processing Time (s)<br>0.01025009<br>0.0116800<br>0.001675600                                                                              | Min. Node Processing Time (s) 1.62125E-05 7.6294E-06 3.8147E-06 5.24521E-06 Upper Right to Lower Right Min. Node Processing Time (s) 3.8147E-06 6.7.6294E-06 5.2.86102E-06                                                                                                                                                                                                                                                              | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s) 0.0001533: 0.0001700: 1.84118E-05                                                                                                                 | 3,00361<br>2,98705<br>2,56306<br>0,150965<br>Total Processing Time (s)<br>1,57855<br>1,61415                                                                                                         |
| A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic) PS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic) A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                   | 1510<br>1510<br>1511<br>60<br>Nodes Explored<br>86<br>86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 140<br>5 139<br>5 5 5<br>Fill 8 75<br>7 75                                                                      | 2 153 6 152 6 153 3 12  Max. Size of Open List 53 11 52 111 52 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01229858<br>0.01620483<br>0.008345604<br>0.002162933<br>Max. Node Processing Time (s)<br>0.01025009<br>0.0116800<br>0.001675600                                                                              | Min. Node Processing Time (s) 1.62125E-05 7.6294E-06 3.8147E-06 5.24521E-06 Upper Right to Lower Right Min. Node Processing Time (s) 3.8147E-06 6.7.6294E-06 5.2.86102E-06                                                                                                                                                                                                                                                              | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s) 0.0001533: 0.0001700: 1.84118E-05                                                                                                                 | 3.00361<br>2.98705<br>2.56306<br>0.150965<br>Total Processing Time (s)<br>1.5785<br>5 1.6141<br>1.2781                                                                                               |
| * (w/ Tie Breaking Euclidian Heuristic) IodeArray A* (w/ Euclidian Heuristic) PS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic)                                                                                                                                                                                                                                                   | 1510<br>1510<br>1511<br>60<br>Nodes Explored<br>86<br>86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 140<br>0 139<br>0 139<br>5 5<br>Fill 8 7:<br>7 7:<br>7 7:                                                       | 2 155 6 155 6 155 3 12    Max. Size of Open List 53 11 52 11 12 11 12 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01229858 0.01620483 0.008345604 0.002162933  Max. Node Processing Time (s) 0.01025005 0.0116806 0.001675606 0.002142906                                                                                      | Min. Node Processing Time (s) 1.62125E-05 7.6294E-06 3.8147E-06 5.24521E-06  Upper Right to Lower Right Min. Node Processing Time (s) 3.8147E-06 2.86102E-06 5.72205E-06  Middle to Lower Right Min. Node Processing Time (s)                                                                                                                                                                                                           | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s) 0.0001533: 0.0001700: 1.84118E-0: 0.00014609:                                                                                                     | 3.00361 2.98705 2.56306 0.150965  Total Processing Time (s) 3 1.57855 1.61411 0.0405045  Total Processing Time (s)                                                                                   |
| * (w/ Tie Breaking Euclidian Heuristic) IodeArray A* (w/ Euclidian Heuristic) PS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic) PS+ (w/ Euclidian Heuristic)                                                                                                                                                                                                                      | 1510<br>1511<br>1511<br>60<br>Nodes Explored<br>86<br>86<br>86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 1400<br>0 1390<br>0 1390<br>5 5<br>Fill<br>Fill                                                                 | 2 155 6 155 6 155 3 12    Max. Size of Open List 53 11 52 11 12 11 12 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01229858 0.01620483 0.008345604 0.002162933  Max. Node Processing Time (s) 0.01025005 0.0116806 0.002142906  Max. Node Processing Time (s)                                                                   | Min. Node Processing Time (s) 1.62125E-05 7.6294E-06 3.8147E-06 5.24521E-06  Upper Right to Lower Right Min. Node Processing Time (s) 3.8147E-06 2.86102E-06 5.72205E-06  Middle to Lower Right Min. Node Processing Time (s)                                                                                                                                                                                                           | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s) 0.0001533: 0.0001700: 1.84118E-0: 0.00014609:                                                                                                     | 3.00361 2.98705 2.56306 0.150965  Total Processing Time (s) 3 1.5785 1.6141 1.2781 0.040504                                                                                                          |
| A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic) PS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic) A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic) IPS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)                                                                                                                                                           | 1510<br>1511<br>1511<br>60<br>Nodes Explored<br>86<br>86<br>86<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 1400<br>0 1383<br>5 5 5<br>Fill<br>7 7 7:<br>7 7:<br>7 7:<br>7 7:<br>7 7:<br>8 8 7:<br>8 8 7:<br>7 7 7:<br>7 7: | 2 155 6 157 6 157 6 157 7 Max. Size of Open List 11 12 11 14 Max. Size of Open List 4 9 54 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01229858 0.01620483 0.008345604 0.002162933  Max. Node Processing Time (s) 0.01025006 0.001675606 0.002142906  Max. Node Processing Time (s) 0.009962082 0.01205444                                          | Min. Node Processing Time (s)  1.62125E-05  7.6294E-06  3.8147E-06  5.24521E-06  Upper Right to Lower Right Min. Node Processing Time (s)  7.6294E-06  Middle to Lower Right Min. Node Processing Time (s)  1.33514E-06                                                                                                                                                                                                                 | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s) 0.0001700 1.84118E-05 0.000146099                                                                                                                 | 3.00361 2.98705 2.56306 0.150965  Total Processing Time (s) 1.5785: 1.6141: 1.0.040504:  Total Processing Time (s) 1.98466                                                                           |
| A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic) IPS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic) IPS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic)                                                                         | 1510<br>1511<br>1511<br>60<br>Nodes Explored<br>86<br>86<br>86<br>2<br>Nodes Explored<br>102<br>Prodes 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 1400<br>0 1395<br>5 5 5 5 5 7 7 7 7 7 7 7 7 7 4 4 9 9 4 4 9 9 9 4 4 9 9 9 1                                     | 2 155 6 157 6 157 6 157 7 17 8 Max. Size of Open List 12 11 12 11 14 Max. Size of Open List 14 9 15 19 16 19 17 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 | 0.01229858 0.01620433 0.008345604 0.002162933  Max. Node Processing Time (s) 0.01025005 0.0116806 0.001675606 0.002142906  Max. Node Processing Time (s) 0.00962083                                            | Min. Node Processing Time (s) 1.62125E-05 7.6294E-06 3.8147E-06 5.24521E-06  Upper Right to Lower Right Min. Node Processing Time (s) 3.8147E-06 5.7.6294E-06 5.7.2205E-06  Middle to Lower Right Min. Node Processing Time (s) 1.33514E-05 1.23978E-06 3.8147E-06                                                                                                                                                                      | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s) 0.0001533: 0.0001700: 1.84118E-05 0.0001830: Avg. Node Processing Time (s) 0.00017145 1.00017324 1.0007734-05                                     | 3.00361 2.98705 2.56306 0.150965  Total Processing Time (s) 3 1.5785 1.6141 0.040504  Total Processing Time (s) 1.9846 1.7856 1.17856                                                                |
| A* (w/ Euclidian Heuristic) A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic) JPS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic) JPS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  JPS+ (w/ Euclidian Heuristic)  JPS+ (w/ Euclidian Heuristic)  JPS+ (w/ Euclidian Heuristic)  JPS+ (w/ Euclidian Heuristic) | 1510<br>1511<br>1511<br>60<br>Nodes Explored<br>86<br>86<br>86<br>2<br>Nodes Explored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 1400<br>0 1395<br>5 5 5 5 5 7 7 7 7 7 7 7 7 7 4 4 9 9 4 4 9 9 9 4 4 9 9 9 1                                     | 2 155 6 157 6 157 6 157 7 Max. Size of Open List 11 12 11 14 Max. Size of Open List 4 9 54 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01229858 0.01620433 0.008345604 0.002162933  Max. Node Processing Time (s) 0.01025005 0.0116806 0.001675606 0.002142906  Max. Node Processing Time (s) 0.00962083                                            | Min. Node Processing Time (s) 1.62125E-05 7.6294E-06 3.8147E-06 5.24521E-06  Upper Right to Lower Right Min. Node Processing Time (s) 3.8147E-06 5.7.6294E-06 5.7.2205E-06  Middle to Lower Right Min. Node Processing Time (s) 1.33514E-05 1.23978E-06 3.8147E-06                                                                                                                                                                      | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s) 0.0001533: 0.0001700: 1.84118E-05 0.0001830: Avg. Node Processing Time (s) 0.00017145 1.00017324 1.0007734-05                                     | 3.00361 2.98705 2.56306 0.150965  Total Processing Time (s) 3 1.5785 1.6141 0.040504  Total Processing Time (s) 1.9846 1.7856 1.17856                                                                |
| A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic) PS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic)  PS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic)  NodeArray A* (w/ Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic)                                                                | 1510<br>1511<br>1511<br>60<br>Nodes Explored<br>86<br>86<br>86<br>2<br>Nodes Explored<br>102<br>Prodes 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 1400<br>0 1395<br>5 5 5 5 5 7 7 7 7 7 7 7 7 7 4 4 9 9 4 4 9 9 9 4 4 9 9 9 1                                     | 2 155 6 157 6 157 6 157 7 Max. Size of Open List 53 11 52 11 52 11 52 11 54 9 64 9 64 9 65 9 66 9 67 9 68 9 68 9 69 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01229858 0.01620483 0.008345604 0.002162933  Max. Node Processing Time (s) 0.01025009 0.001675600 0.002142900  Max. Node Processing Time (s) 0.009962082 0.0120544 7.24793E-05 0.002197266                   | Min. Node Processing Time (s) 1.62125E-05 7.6294E-06 3.8147E-06 5.24521E-06  Upper Right to Lower Right Min. Node Processing Time (s) 3.8147E-06 5.7.6294E-06 5.7.2205E-06  Middle to Lower Right Min. Node Processing Time (s) 1.33514E-05 1.23978E-06 3.8147E-06                                                                                                                                                                      | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s) 0.0001533: 0.0001700: 1.84118E-05 0.0001830: Avg. Node Processing Time (s) 0.00017145 1.00017324 1.0007734-05                                     | 3.00361 2.98705 2.56306 0.150965  Total Processing Time (s) 3 1.5785 1.6141 0.040504  Total Processing Time (s) 1.9846 1.7856 1.17856                                                                |
| A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic) IPS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic)  JPS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  JPS+ (w/ Euclidian Heuristic)                                                               | 1516   1551   1551   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561 | 5 140 133 133 133 133 133 133 133 133 133 13                                                                      | 2 155 6 157 6 157 6 157 7 Max. Size of Open List 53 11 52 11 52 11 52 11 54 9 54 9 54 9 54 9 59 54 9 59 56 11 57 68 11 58 11 59 11 59 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 50 11 5 | 0.01229858 0.01620483 0.008345604 0.002162933  Max. Node Processing Time (s) 0.01025006 0.001675606 0.002142906  Max. Node Processing Time (s) 0.009962082 0.0120544 0.7.24793E-05 0.002197266                 | Min. Node Processing Time (s)  1.62125E-05  7.6294E-06  3.8147E-06  5.24521E-06  Upper Right to Lower Right Min. Node Processing Time (s)  2.86102E-06  Middle to Lower Right Min. Node Processing Time (s)  2.1.33514E-05  1.23978E-05  2.86102E-06  Middle to Upper Left Min. Node Processing Time (s)                                                                                                                                | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s) 0.0001700: 1.84118E-05  Avg. Node Processing Time (s) 0.0001704 0.0001738: 0.00017714 1.00173E-05 0.000121814  Avg. Node Processing Time (s)      | 3,00361 2,98705 2,56306 0,150965  Total Processing Time (s) 3 1,5785; 5 1,6141; 6 1,2781; 1 0,040504;  Total Processing Time (s) 5 1,9846; 6 1,7856; 6 1,5647; 4 0,03775;  Total Processing Time (s) |
| A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic) PS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic)  PS+ (w/ Euclidian Heuristic)  A* (w/ Tee Breaking Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic)  NodeArray A* (w/ Euclidian Heuristic)  JPS+ (w/ Euclidian Heuristic)  IPS+ (w/ Euclidian Heuristic)                           | Nodes Explored  Nodes Explored  Nodes Explored  Nodes Explored  102  Nodes Explored  102  Nodes Explored  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 140<br>138<br>0 138<br>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                    | 2 155 6 157 6 157 6 157 6 157 7 17 8 Max. Size of Open List 10 17 9 18 9 19 10 19 11 12 19 14 19 15 19 16 19 17 18 18 18 18 18 18 18 18 18 18 18 18 18 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01229858 0.01620433 0.008345604 0.002162933  Max. Node Processing Time (s) 0.01065005 0.0116806 0.001675606 0.002142906  Max. Node Processing Time (s) 0.0096208 0.0096208 0.0120544 7.24793E-05 0.002197266 | Min. Node Processing Time (s) 1.62125E-05 7.6294E-06 3.8147E-06 5.24521E-06  Upper Right to Lower Right Min. Node Processing Time (s) 7.6294E-06 5.72205E-06  Middle to Lower Right Min. Node Processing Time (s) 1.33514E-06 1.23978E-06 Middle to Lower Right Min. Node Processing Time (s) 1.23978E-06 Middle to Lower Right Min. Node Processing Time (s) 1.29978E-06 Middle to Upper Left Min. Node Processing Time (s) 7.6294E-06 | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s) 0.0001533: 0.0001700: 1.84118E-0: 0.0001838: 0.00017714 1.00173E-0: 0.00017714 1.00173E-0: 0.000121814  Avg. Node Processing Time (s) 0.000121814 | 3.00361 2.98705 2.56306 0.150965  Total Processing Time (s) 1.57852 1.61415 1.27816 1.0.0405045  Total Processing Time (s) 1.78565 1.56470 4.0.037757  Total Processing Time (s) 6.221352            |
| A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic) IPS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic) IPS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic)                                                                         | 1516   1551   1551   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561   1561 | 5 140<br>138<br>0 138<br>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                    | 2 155 6 157 6 157 6 157 6 157 7 17 8 Max. Size of Open List 10 17 9 18 9 19 10 19 11 12 19 14 19 15 19 16 19 17 18 18 18 18 18 18 18 18 18 18 18 18 18 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01229858 0.01620483 0.008345604 0.002162933  Max. Node Processing Time (s) 0.01025006 0.001675606 0.002142906  Max. Node Processing Time (s) 0.009962082 0.0120544 0.7.24793E-05 0.002197266                 | Min. Node Processing Time (s)  1.62125E-05  7.6294E-06  3.8147E-06  5.24521E-06  Upper Right to Lower Right Min. Node Processing Time (s)  2.86102E-06  Middle to Lower Right Min. Node Processing Time (s)  2.1.33514E-05  1.23978E-05  2.86102E-06  Middle to Upper Left Min. Node Processing Time (s)                                                                                                                                | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s) 0.0001700: 1.84118E-05  Avg. Node Processing Time (s) 0.0001704 0.0001738: 0.00017714 1.00173E-05 0.000121814  Avg. Node Processing Time (s)      | 3.00361 2.98705 2.56306 0.150965  Total Processing Time (s) 1.57855 1.61411 0.0405045  Total Processing Time (s) 1.98466 1.7856 1.56476 0.037755                                                     |
| A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic) PS+ (w/ Euclidian Heuristic)  A* (w/ Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic) NodeArray A* (w/ Euclidian Heuristic)  PS+ (w/ Euclidian Heuristic)  A* (w/ Tee Breaking Euclidian Heuristic)  A* (w/ Tie Breaking Euclidian Heuristic)  NodeArray A* (w/ Euclidian Heuristic)  JPS+ (w/ Euclidian Heuristic)  IPS+ (w/ Euclidian Heuristic)                           | Nodes Explored  Nodes Explored  Nodes Explored  Nodes Explored  102  Nodes Explored  102  Nodes Explored  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 1400 1330 5 5 5 5 Fill 4 99 4 4 99 6 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7                                      | 2 155 6 157 6 157 6 157 6 157 7 Max. Size of Open List 53 11 52 11 7 Max. Size of Open List 54 9 74 9 75 11 76 15 16 76 16 16 16 16 16 16 16 16 16 16 16 16 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01229858 0.01620433 0.008345604 0.002162933  Max. Node Processing Time (s) 0.01065005 0.0116806 0.001675606 0.002142906  Max. Node Processing Time (s) 0.0096208 0.0096208 0.0120544 7.24793E-05 0.002197266 | Min. Node Processing Time (s) 1.62125E-05 7.6294E-06 3.8147E-06 5.24521E-06  Upper Right to Lower Right Min. Node Processing Time (s) 7.6294E-06 5.72205E-06  Middle to Lower Right Min. Node Processing Time (s) 1.33514E-06 1.23978E-06 Middle to Lower Right Min. Node Processing Time (s) 1.23978E-06 Middle to Lower Right Min. Node Processing Time (s) 1.29978E-06 Middle to Upper Left Min. Node Processing Time (s) 7.6294E-06 | 0.000253119 0.000246361 1.85367E-05 7.22481E-05  Avg. Node Processing Time (s) 0.0001533: 0.0001700: 1.84118E-0: 0.0001838: 0.00017714 1.00173E-0: 0.00017714 1.00173E-0: 0.000121814  Avg. Node Processing Time (s) 0.000121814 | 3,00361 2,98705 2,56306 0,150965  Total Processing Time (s) 3 1,5785; 5 1,6141; 6 1,2781; 1 0,040504;  Total Processing Time (s) 5 1,9846; 6 1,7856; 6 1,5647; 4 0,03775;  Total Processing Time (s) |

As we can easily see, JPS+ absolutely demolishes all other algorithms in every front. It obtains processing times that are much smaller comparatively (except for paths that consisted of 2-8 nodes, at which point we could confidently say that the difference in processing time is due to margin of error). In terms of nodes explored, fill and max size of open list, no matter the path, JPS+ always obtained better results (i.e smaller ones).

This however, was to be expected. JPS+ is able to perform much faster at runtime due to all the preprocessing it does on the map. Only jump points are explored and added to the open list, unlike the other algorithms that indiscriminately allow for the exploration of any node (conditionally, obviously). We don't even need to generate or compute neighbours since all we need to do to check where we can go next is check the direction we entered the current node from and its distances variable.

All other results obtained were, aswell, consistently expectable. \*\*A\*\*\* was the node that performed the worst out of all the search algorithms, which wasn't surprising, as this was served as a base class for all other nodes and posessed no "tricks" like the JPS+ or "optimizations" like the NodeArrayA\*.

A\* with tie breaking performed very similarly to A\* in most occasions, but it did manage to shave off a few nodes out of both fill, total nodes explored, and sometimes even max nodes in the open list. In terms of time taken, however, there wasn't a large enough margin that would lead us to conclude A\* with tie breaking was significantly better than A\*. At least not the way we implemented it. It should be mentioned the way we did Tie Breaking was very simple. Perhaps another strategy such as slightly augmenting artificially the value of the hCost could produce better results, but then again, it could also make our heuristic non-admissable.

\*\*NodeArrayA\*\*\* managed to obtain the same fill, total nodes explored and max nodes in open list values as A\* with Tie Breaking. This was expected as, all in all, we're not really altering the way or order we process nodes (remember NodeArrayA\* also inherently does tie breaking due to the way it stores the nodes in the PriorityHeap). What this algorithm does, however, is make it so we don't have to constantly create new nodes and, perhaps more importantly, makes it so we don't have to iterate over an open and closed list in order to verify whether a node is or is not in the open or closed lists. The impact of this can even be seen in the first

image where the ProcessChildNode method was constantly recquiring less execution time than the ProcessChildNode methods in A\* and A\* with Tie Breaking. This then leads to the execution times being consistently smaller in all paths with a significant enough number of nodes (taking into account that the more nodes we have to explore, the better NodeArrayA\* will be over A\* and A\* with Tie Breaking, since it will cause more nodes to be in the closed/open lists, hence leading the latter algorithms to have to iterate over a much larger number of nodes.

All in all, no surprises were had.

As a side note, all of the created tables have also been exported to a csv file - P2\_Tables.csv - thats included in the project.

# **PathFollowing**

### Car Spawning

If the **Spawn Car** option is checked in the PathfindingManager then upon a search's completion one out of four possible cars will be spawned in the node in which the search started. It will immediately start following the computed path and upon reaching the goal node, stop. When clearing the grid, or after a new path is computed, the car will de-spawn and a new one will be generated. Our cars are controlled by our **MovementController** class which receives, not only the spawn location, but also an array with the real-world coordinates of each node in the path (except for the starting one, i.e, the one where the car should spawn and therefore, already is).

#### Movement

Our cars move using the **Dynamic Arrive** movement from the previous project.

One might easily realize that the Arrive movement won't really generate the most realistic of movements. And one would be right. If we simply set the car's target to be the next node in the path, what we'll witness is that the car accelerates briefly, and then immediately starts deaccelerating, since in our grid all of our path's nodes are next to each other. The car will basically be moving in "hiccups".

Initially, we solved this by also including the **Dynamic Seek** movement and setting our cars to move with this behaviour for each node except for the last one, at which point we swapped to Arrive. This, however, caused a lot of crashes courtesy of paths that included sharp (or even non-sharp...) turns. We then removed this movement and instead implemented **Straight Line Smoothing** which ended up solving our "hiccups" problem. There were still, however, situations in which after a sharp turn the car would skim against a wall, or pass over an obstacle.

It should also be stated that we added code into the **Pathfinding Manager** class in order to generate a Box Collider around the "wall" nodes. This was done initially for the StraightLine smoothing optimization, but also ended up being useful for the optional Priority Movement.

#### StraightLine Smoothing

The straight line smoothing was done as specified in the theoretical slides. We start at a node and check each node after it and the one after that and see if we can move directly from our current one to the farther, if so, we delete the middle one. We repeat this until we find a node we cannot remove, at which point we set our current node to be that one, and continue the algorithm. The way the deletion is done is by adding the nodes to be removed to a temporary array, and then removing the nodes in that array from the nodes in the movement's path. We couldn't easily remove the nodes directly from the path during the iterations of the algorithm since this could lead to problems (as we'd be altering the array we're iterating over). It should also be stated that we check whether or not we can move directly to a node by generating several intermediate points between the current node and the node we're checking, and at each point checking for any collisions using a central ray and two smaller whiskers.

This algorithm was implemented in our cullPath method, and managed to effectively remove the unecessary nodes from our path.

#### **Behaviour Optimizations**

For tweaking the values (which were adjusted to work optimally with the Giant Grid), we also had the idea to include a "dynamic" adjustment of the Arrive movement's slow radius that took into consideration the position of the target we just arrived at to the next target. This was based on the idea that, the farther the distance, the more we're going to be accelerating, henceforth, the faster we should start slowing down.

this.arriveMovement.SlowRadius = 6.5f + 0.015f \* totalDistance;

Besides this we also set the Arrive movements' *stop* radius to 0.0, since we don't actually want to fully stop, just slowdown between targets. We do, however, set the stop radius to 0 when dealing with our final target.

Other optimizations were attempted to avoid certain collisions, but in the end we ended up adding the option to activate **Priority Movement**, which uses both the Arrive Movement and a **Dynamic Avoid Obstacle** algorithm to attempt to avoid crashing into obstacles.