Documentation for Course Schedule Problem Solution

Problem Overview:

The problem is to determine whether it is possible to finish all courses given a list of
prerequisites. The courses are labeled from 0 to numCourses - 1. The prerequisites are
represented as pairs, where each pair indicates a dependency, meaning one course must be
completed before another.

Input:

- numCourses (int): The total number of courses, represented by integers ranging from 0 to numCourses 1.
- prerequisites (List[List[int]]): A list of pairs of courses where the first course in the pair depends on the second. Each pair [a_i, b_i] indicates that course bi must be completed before course a_i.

Output:

• **bool:** Return True if all courses can be finished, i.e., there are no cyclic dependencies. Otherwise, return False.

Approach to Solve the Problem:

• This problem can be visualized as a graph problem where each course is a node and a directed edge exists from course bi to course ai if course bi is a prerequisite for course ai. The task is to determine if this directed graph contains any cycles. If a cycle exists, it implies that it's impossible to complete all courses due to the cyclic dependency. Otherwise, it is possible to complete all courses.

Key Concepts Used:

1. Graph Representation:

- Courses are treated as nodes in a directed graph.
- The dependencies (prerequisites) are treated as directed edges between the nodes.
- For example, a pair [1, 0] represents an edge from course 0 to course 1, meaning you must complete course 0 before taking course 1.

2. Cycle Detection:

- The core challenge is detecting whether a cycle exists in the directed graph formed by the courses and prerequisites.
- If there is no cycle, all courses can be completed in a certain order.
- If there is a cycle, at least two courses depend on each other in a way that creates a circular dependency, making it impossible to finish all courses.

Graph Representation:

- The graph is represented using an adjacency list.
 - Each node (course) points to other nodes (courses that depend on it).
 - This is built by iterating through the prerequisites list and adding the dependencies to the adjacency list.

Cycle Detection Using DFS (Depth-First Search):

To solve the problem, DFS is used to traverse the graph and detect cycles.

• Visited State:

- To track the state of each course during the traversal, a visited array is used with three states:
 - ✓ 0: Unvisited (the course has not been visited yet).
 - ✓ 1: Visiting (the course is currently being visited in the DFS traversal).
 - ✓ 2: Visited (the course has been completely processed with no cycles found).
- ➤ If during DFS traversal we encounter a node that is already in the "Visiting" state (1), it means there is a back edge, which indicates the presence of a cycle.

Detailed Steps:

1. Graph Construction:

• First, build an adjacency list where each course points to the courses that depend on it. This allows us to quickly access all courses that have the current course as a prerequisite.

2. DFS for Cycle Detection:

- *Implement a DFS function to traverse the graph and check for cycles:*
 - ➤ If a course is found to be currently in the visiting state during the DFS, it indicates that a cycle exists, and we return False.
 - ➤ If all courses are visited without detecting a cycle, return True as it is possible to finish all courses.

3. Cycle Check Process:

- For each course from 0 to numCourses 1, perform a DFS traversal.
- If any DFS traversal detects a cycle, immediately return False.
- If no cycles are detected in any DFS traversal, return True.

4. Handling Dependencies:

• The algorithm checks dependencies using DFS recursively. If a course depends on another course that is part of a cycle, the DFS will detect it and terminate early.

Example 1:

- **Input:** numCourses = 2, prerequisites = [[1, 0]]
- Graph: Course 0 is a prerequisite for course 1.
- Explanation: There are 2 courses, and to take course 1, course 0 must be completed first. There is no cycle, so it's possible to complete all courses.
- Output: True

Example 2:

- **Input:** numCourses = 2, prerequisites = [[1, 0], [0, 1]]
- Graph: Course 0 is a prerequisite for course 1, and course 1 is also a prerequisite for course 0.
- Explanation: There is a cycle between course 0 and course 1, meaning it's impossible to complete either course.
- Output: False

Edge Cases:

1. No prerequisites:

• If the prerequisites list is empty, it means there are no dependencies between courses, so all courses can be completed. The output will be True in this case.

2. Self-dependency:

• If a course is a prerequisite for itself, it forms an immediate cycle, and the output will be False.

3. Disconnected graph:

• If the graph contains multiple independent components (i.e., sets of courses that are not connected to each other via prerequisites), each component must be processed separately to check for cycles.

Time and Space Complexity:

Time Complexity:

- Constructing the graph requires processing all prerequisites, which takes O(prerequisites.length).
- Each DFS traversal runs in O(numCourses + prerequisites.length) because it visits each node (course) and its neighbors (prerequisites).
- Overall, the time complexity is O(numCourses + prerequisites.length).

Space Complexity:

- The space required for the adjacency list is O(numCourses + prerequisites.length).
- The visited array takes O(numCourses) space.
- The recursive call stack for DFS can take up to O(numCourses) space.
- Therefore, the total space complexity is O(numCourses + prerequisites.length).

Conclusion:

• The solution efficiently determines whether all courses can be completed by detecting cycles in a directed graph. Using a combination of graph representation and DFS traversal with cycle detection, we can solve the problem in O(numCourses + prerequisites.length) time. The approach ensures that all courses are either part of a valid course schedule or a cycle, providing a clear True or False result.