Computer Vision: Incisor Segmentation

Thierry Deruyttere & Armin Halilovic

Overview

- 1. Preprocessing
- 2. Fitting models to images
 - a. Initialization active shape model
 - b. Multi resolution active shape model
- 3. Evaluation
- 4. Results
- 5. Neural Networks

Preprocessing

Goal: Make teeth more visible than mouth tissue

How:

- First, apply a Contrast Limited Adaptive Histogram Equalization (CLAHE) filter
- Then, apply bilateral filtering to filter noise created by CLAHE
- Apply both filters once again in the same order

Preprocessing: CLAHE filter

- Part of "Adaptive Histogram Equalization" (AHE) algorithm family
 - => Different from normal histogram equalization algorithms as they compute multiple histograms for an image instead of 1
- AHE tends to overamplify noise in homogenous regions
 - => Solution: CLAHE
- CLAHE puts a threshold on the histogram. The part of the histogram that goes over this threshold will be evenly distributed over the whole histogram

Preprocessing

CLAHE + Bilateral

CLAHE + Bilateral

Preprocessing

Gaussian pyramid for multi resolution active shape model Store each radiograph at multiple resolution levels

Level 4

Level 0 Level 1 Level 2 Level 3

Fitting models to images

Two approaches:

- Separate active shape models for jaws for initialization + individual tooth models for fitting
- 2. Multi resolution active shape model handles both initialization and fitting

Both approaches rely on finding a line that splits the jaws first

Fitting models to images: jaw split line

To split jaws, we look for the darkest line that goes from one side of the mouth to the other

Jaw split lines are found by Viterbi

- Create statistical (initialization) models for upper and lower incisors
- Place them both on the center of the mouth found by Viterbi
- Use the ASM algorithm to improve them iteratively until convergence or 10 iterations
- Then, initialize individual tooth models at the correct locations in the converged model
- E.g. the individual tooth model of the first upper incisor will be placed at the center of the first incisor in the upper initialization model

- Multi resolution active shape model is trained for all eight teeth at once
- Grey level models are built for each Gaussian pyramid level
- Search starts at the highest pyramid level (= lowest resolution image)
- The initial model position is determined using the jaw split line
 - \circ x = middle of image in x dimension, y = mean of jaw split line
- The model is improved iteratively at each pyramid level until convergence or 20 iterations
- Whenever the model converges at a level, it is scaled up and placed on the level below it
- When the model converges at the lowest pyramid level, the search has finished

Initial model placed on pyramid level 4

Location determined after Viterbi search

Converged model on pyramid level 4

Upscaled model placed on pyramid level 3

Converged model on pyramid level 3

Upscaled model placed on pyramid level 2

Converged model on pyramid level 0

Evaluation

Accuracy, precision, and recall are calculated using tp, fp, tn, fn:

- True Positive: The model correctly predicts that a pixel is part of the incisors.
- False Positive: The model incorrectly predicts that a pixel is part of the incisors.
- True Negative: The model correctly predicts that a pixel is not part of the incisors.
- False Negative: The model incorrectly predicts that a pixel is not part of the incisors.

Evaluation

$$accuracy = rac{TP + TN}{TP + TN + FP + FN}$$
 $precision = rac{TP}{TP + FP}$ $recall = rac{TP}{TP + FN}$

Results

	Initialization model			Multi resolution model		
	Accuracy	Precision	Recall	Accuracy	Precision	Recall
Average	98.92%	83.77%	73.57%	98.19%	63.11%	76.97%

Table 1: The results of the experiments for search approaches

Results: 8.tif

Initialization model

Accuracy: 98.42% Precision: 54.02% Recall: 74.42%

Multi resolution model

Accuracy: 98.12% Precision: 48.16% Recall: 77.10%

Results: 14.tif

Initialization model

Accuracy: 98.66% Precision: 94.61% Recall: 63.51%

Multi resolution model

Accuracy: 98.61% Precision: 82.71% Recall: 74.16%

Neural networks

Neural networks were tried as well:

- YOLO
 - Didn't really give any results
- Mask-RCNN
 - Gave interesting results even with the limited training data

Neural networks

Neural networks

