(1)
$$p = 0.15$$
, $n = 100$, $x = 20$
Binomial distribution

$$P(x = x) = \sum_{i=0}^{N} (x p^{X} (1-p)^{N-X})$$

$$P(x = 20) = \sum_{i=0}^{100} (x p^{X} (0.15)^{20} \times (0.85)^{100-20}$$

$$P(x = 20) = \sum_{i=0}^{100} (x p^{X} (0.15)^{20} \times (0.85)^{100-20}$$

$$= (4.1.)$$

(a)
$$p=0.75$$
, $n=50$, $\chi=35$
 $p(\chi < 35) = 0.163$

(3)
$$p=0.2$$
, $n=500$, $x_1=90$, $x_2=110$
 $p(90$

(a)
$$p = 0.7$$
, $nz 200$, $x = 140$
 $p(x > 140) = 0.4734$

(5)
$$p=0.05$$
, $n=200$, $\chi=10$

$$p(\chi<10) = 0.4547$$

Bemanlli distribution
$$\rho=0.7$$

$$\rho(x=1) = \rho^{x} (1-p)^{1-k}$$

$$= (0.7)^{x} (1-0.7)^{x-1}$$

$$= 0.7$$
Bemanlli distribution
$$(x=1) \rightarrow \text{prefer chocolate ice cream i$$

$$(7)$$
 $P=0.02$, $n=10000$, $n=250$
 $P(n \ge 250) = 0.00032$

(8)
$$M_y = 69.2$$
, $\sigma_X = 2.9$
 \times -aug height of adult men aged ≥ 20 years in the US

 $n = 50$
 $P(\pi > 70) = ?$
 \overline{X} - aug height of 50 males

 $\overline{X} \sim N(69.2, \frac{3.9}{\sqrt{50}}) \Rightarrow \overline{X} \sim N(69.2, 0.41)$ (By CLT)

(a)
$$x - \text{ong}$$
 salary of employees
 $M_X = 75000$,
 $\sigma_X = 10000$

$$P(\bar{x} < 72500) = ?$$
By CLT, $\bar{X} \sim NC75000, 10000$

$$\Rightarrow \overline{X} \sim N(75000, 1000)$$

where,
$$x - mean of aug salary of 100 employees$$

(10)
$$\times$$
 - wait time for a table $u_{\times} = 15$, $\sigma_{\times} = 3$ $\times \sim N(15,3)$ $N = 60$, $P(\pi > 16) = ?$

By CLT,
$$\bar{X} \sim N (15, \frac{3}{160}) \Rightarrow \bar{X} \sim N (15, 0.3873)$$

