BEYOND MAPREDUCE - APACHE SPARK & GRAPH

CKME 134 – BIG DATA ANALYTICS TOOLS

RYERSON UNIVERSITY

SPRING 2015

Course Outline

- Intro to Big Data
- Distributed Computing and MapReduce
- 3. Hadoop Ecosystem
- 4. Programming Hive
- Advanced Hive
- 6. Mid-Term Review
- 7. Programming Pig
- 8. Advanced Pig

- Hadoop Use Cases
- Building Data Product & Next-Gen Hadoop (Spark)
- 11. Beyond Hadoop: Graph
 Analytics and Recommender
 Systems

Exam and Preparation

- □ Final Exam Preparation
 - □ Course Notes Session 1~Session 9
 - Hive Intro Lab Session 4 Lab
 - □ Pig Intro Lab 1 Session 7 Lab
- □ Hangout Session 2
 - Engineering Building (lower level)
 - ■Saturday, April 11
 - □1pm ~ 4pm

Lecture 10 - Outline

- Apache Spark Introduction
- Graph Processing
 - PageRank Algorithm

Lecture 11

- GraphLab
- Recommender System
- Spark Mllib
- Spark Streaming

Big Data History

New TeraSort World Record!

- The previous world record was 72 minutes, set by Yahoo using a Hadoop MapReduce cluster of 2100 nodes.
- New world record set by Spark using Spark on 206 EC2 nodes, basically with 3X faster using 10X fewer machines.

	Hadoop MR	Spark	Spark
	Record	Record	1 PB
Data Size	102.5 TB	100 TB	1000 TB
Elapsed Time	72 mins	23 mins	234 mins
# Nodes	2100	206	190
# Cores	50400 physical	6592 virtualized	6080 virtualized
Cluster disk	3150 GB/s (est.)	618 GB/s	570 GB/s
throughput			
Sort Benchmark	Yes	Yes	No
Daytona Rules			
Network	dedicated data	virtualized (EC2)	virtualized (EC2)
	center, 10Gbps	10Gbps network	10Gbps network
Sort rate	1.42 TB/min	4.27 TB/min	4.27 TB/min
Sort rate/node	0.67 GB/min	20.7 GB/min	22.5 GB/min

 ★ Star 3,411

♀ Fork 2,955

Spark Adoptions

- Yahoo! Personalization and ad analytics
- Conviva Real-time video stream optimization
- Ooyala Cross-device personalized video experience
- Groupon, Shopify, Alibaba, Taobao, etc...

Apache Spark History

- Spark was initially started by Matei Zaharia at UC
 Berkeley AMPLab in 2009
- Open sourced in 2010
- Donated to Apache Foundation in 2013
- Became an Apache Top-Level Project in Feb 2014

The Berkeley AMPLab

Governmental and industrial funding:

Goal: Next generation of open source data analytics stack for industry & academia: Berkeley Data Analytics Stack (BDAS)

Data Dricks

 Databricks is a company founded by the creators of Apache Spark, that aims to help clients with cloudbased big data processing using Spark

Alpha / Pre-alpha

The BDAS — Berkeley Data Analytics Stack

BDAS Stack (Feb, 2014)

Unified Data Platform

- A unified platform that supports many data processing needs including
 - Batch processing (Spark)
 - Stream processing (SparkX)
 - Interactive (Spark SQL)
 - Iterative (MLlib, GraphX)

Performance Benchmarks

Distributed Computing with Spark

Stream Processing

http://www.streamcrab.com

Unify Real-Time and Historical Analytics

- Spark allows one to write virtually the same batch and streaming codes
 - Easy to develop and maintain consistency

```
// count words from a file (batch)
val file = sc.textFile("hdfs://.../pagecounts-*.gz")

val words = file.flatMap(line => line.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()

// count words from a network stream, every 10s (streaming)
val ssc = new StreamingContext(args(0), "NetCount", Seconds(10), ..)
val lines = ssc.socketTextStream("loca/host", 3456)

val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
```

Spark v. Hadoop MapReduce

- Spark takes the concepts of MapReduce to the next level!
 - Higher-level API = faster, easier development
 - Low latency = near real-time processing
 - In-memory data storage = up to 100x performance improvement

```
120 110 90 Hadoop Spark

O Logistic Regression
```

```
sc.textFile(file) \
.flatMap(lambda s: s.split()) \
.map(lambda w: (w,1)) \
.reduceByKey(lambda v1,v2: v1+v2)
.saveAsTextFile(output)
```

```
public class WordCount {
  public static void main(String[] args) throw
  Job job = new Job();
    job.setJarByClass(WordCount.class);
    job.setJobName("Word Count");
    FileInputFormat.setInputPaths(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    job.setMapperClass(WordMapper.class);
    job.setReducerClass(SumReducer.class);
    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(IntWritable.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    boolean success = job.waitForCompletion(true);
    System.exit(success ? 0 : 1);
public class WordMapper extends Mapper<LongWritable, Text, Text,
IntWritable> {
public void map (LongWritable key, Text value,
Context context) throws IOException, InterruptedException {
    String line = value.toString();
    for (String word : line.split("\\W+")) {
     if (word.length() > 0)
        context.write(new Text(word), new IntWritable(1));
public class SumReducer extends Reducer<Text, IntWritable, Text,
IntWritable> {
  public void reduce(Text key, Iterable<IntWritable>
  values, Context context) throws IOException, InterruptedException {
    int wordCount = 0:
    for (IntWritable value : values) {
      wordCount += value.get();
    context.write(key, new IntWritable(wordCount));
```

What is Apache Spark

- Apache Spark is a fast and general engine for large-scale data processing
- Written in Scala
 - Functional programming language that runs in a JVM
- Spark Shell
 - Interactive for learning or data exploration
 - Python or Scala
- Spark Application
 - For large scale data processing
 - Python, Scala, or Java

Spark Shell

 The Spark Shell provides interactive data exploration

Python Shell: pyspark

Scala Shell: spark-shell

```
$ spark-shell
Welcome to
Using Scala version 2.10.3 (Java HotSpot(TM)
64-Bit Server VM, Java 1.7.0 51)
Created spark context..
Spark context available as sc.
scala>
```

REPL: Read/Evaluate/Print Loop

RDD (Resilient Distributed Dataset)

□ Resilient Distributed Datasets

- Collections of objects spread across a cluster, stored in RAM or on Disk
 - Analogous to HDFS but in memory
 - Still works efficiently on disks
- Resilient if data in memory is lost, it can be recreated
- Distributed stored in memory across the cluster
- Dataset initial data can come from a file or be created programmatically
- RDDs are the fundamental unit of data in Spark
- Most Spark programming consists of performing operations on RDDs
- Automatically rebuilt on failure

- □ Transformations → create new RDDs
 - □ (e.g. map, filter, groupBy)
- □ Actions → returns value
 - (e.g. count, collect, save)

RDD Operations: Transformations

New RDD

- Transformations create a new RDD from an existing one
- RDDs are immutable
 - Data in an RDD is never changed
 - Transform in sequence to modify the data as needed
- Some common transformations
 - map(function) creates a new RDD by performing a function on each record in the base RDD
 - filter(function) creates a new RDD by including or excluding each record in the base RDD according to a boolean function

- □ map
- filter
- groupBy
- sort
- union
- join
- leftOuterJoin
- rightOuterJoin

- reduce
- count
- fold
- reduceByKey
- groupByKey
- cogroup
- cross
- zip

- sample
- take
- first
- partitionBy
- mapWith
- pipe
- save .

RDD Operations Explained

Loading messages from a log into memory and search for various patterns

```
Base RDD
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR")) Transformed RDD
messages = errors.map(lambda s: s.split("\t")[2])
                                                                                        Cache 1
messages.cache()
                                                                                   Worker
                                                                        results
                                                    Action
messages.filter(lambda s: "mysql" in s).count()
                                                                            tasks
                                                                                    Block 1
                                                                 Driver
messages.filter(lambda s: "php" in s).count()
                                                                                       Cache 2
                                                                                  Worker
                                                               Cache 3
                                                                                   Block 2
                                                             Worker
                                                              Block 3
```

Creating RDDs

```
# Turn a Python collection into an RDD
> sc.parallelize([1, 2, 3])

# Load text file from local FS, HDFS, or S3
> sc.textFile("file.txt")
> sc.textFile("directory/*.txt")
> sc.textFile("hdfs://namenode:9000/path/file")

# Use existing Hadoop InputFormat (Java/Scala only)
> sc.hadoopFile(keyClass, valClass, inputFmt, conf)
```

Basic Transformations

```
nums = sc.parallelize([1, 2, 3])
# Pass each element through a function
                       squares = nums.map(\frac{1}{2} squares = nums.map(\frac{1}{2} squares = \frac{1}{2} squares
# Keep elements passing a predicate
                       even = squares.filter(lambda x: x \% 2 == 0) // {4}
# Map each element to zero or more others
                       nums.flatMap(lambda x: => range(x))
                           > # => {0, 0, 1, 0, 1, 2}
```

Basic Actions

```
nums = sc.parallelize([1, 2, 3])
# Retrieve RDD contents as a local collection
  nums.collect() # => [1, 2, 3]
# Return first K elements
  nums.take(2) # => [1, 2]
# Count number of elements
  nums.count() # => 3
# Merge elements with an associative function
  nums.reduce(lambda x, y: x + y) # => 6
# Write elements to a text file
  nums.saveAsTextFile("hdfs://file.txt")
```

File: purplecow.txt

I've never seen a purple cow.
I never hope to see one;
But I can tell you, anyhow,
I'd rather see than be one.

File: purplecow.txt

I've never seen a purple cow.
I never hope to see one;
But I can tell you, anyhow,
I'd rather see than be one.

mydata = sc.textFile("purplecow.txt")

File: purplecow.txt

I've never seen a purple cow.
I never hope to see one;
But I can tell you, anyhow,
I'd rather see than be one.

- mydata = sc.textFile("purplecow.txt")
- mydata_uc = mydata.map(lambda line: line.upper())

- mydata = sc.textFile("purplecow.txt")
- mydata_uc = mydata.map(lambda line: line.upper())
- mydata_filt = mydata_uc.filter(lambda line: line.startswith('I'))

- mydata = sc.textFile("purplecow.txt")
- mydata_uc = mydata.map(lambda line: line.upper())
- mydata_filt = mydata_uc.filter(lambda line: line.startswith('I'))
- > mydata filt.count()

Action

3

File: purplecow.txt

I've never seen a purple cow.
I never hope to see one;
But I can tell you, anyhow,
I'd rather see than be one.

RDD: mydata

I've never seen a purple cow.

I never hope to see one;

But I can tell you, anyhow,

I'd rather see than be one.

RDD: mydata_ud

I'VE NEVER SEEN A PURPLE COW.

I NEVER HOPE TO SEE ONE;

BUT I CAN TELL YOU, ANYHOW,

I'D RATHER SEE THAN BE ONE.

RDD: mydata_fit

I'VE NEVER SEEN A PURPLE COW.

I NEVER HOPE TO SEE ONE;

I'D RATHER SEE THAN BE ONE.

RDD Map/Reduce Operations

- MapReduce in Spark works on Pair RDDs
- Spark's "distributed reduce" transformations operate on RDDs of key-value pairs

Python:

```
pair = (a, b)
pair[o] # => a
pair[1] # => b
```

Creating Pair RDDs

- The first step in most workflows is to get the data into key/value form
 - What should the RDD be keyed on?
 - What is the value?
- Commonly used functions to create Pair RDDs
 - map
 - flatMap / flatMapValues
 - keyBy

Example: A Simple Pair RDD

```
friends = sc.textFile(file) \
    .map(lambda line: line.split('\t')) \
    .map(lambda fields: (fields[0], field[1]))
```


Example: Keying Friend Pairs by Friend ID

friends = sc.textFile(file) \
 .keyBy(lambda line: line.split('\t')[o])

Example: Pairs with Complex Values

```
USER1111 43.00589 -71.01320
USER2222 57.11234 -65.54698
USER3333 66.23324 -64.44612
USER4444 43.00123 -75.22257
```



```
(USER1111, (43.00589, -71.01320))
(USER2222, (57.11234, -65.54698))
(USER3333, (66.23324, -64.44612))
(USER4444, (43.00123, -75.22257))
```

Some Key-Value Operations

```
pets = sc.parallelize([("cat", 1), ("dog", 1), ("cat", 2)])
pets.reduceByKey(lambda x, y: x + y) # => {(cat, 3), (dog, 1)}
pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}
pets.sortByKey() # => {(cat, 1), (cat, 2), (dog, 1)}
```

reduceByKey also automatically implements combiners on the map side

the cat sat on the mat the aardvark sat on the sofa

aardvark	1	
cat	1	
mat	1	
on	2	
sat	2	
sofa	1	
the	4	

counts = sc.textFile(text)

the cat cat on the mat

the aardvark sat on the sofa

counts = sc.textFile(text)
.flatMap(lambda line: line.split())

the cat cat on the mat	the
the aardvark sat on the sofa	cat
	sat
	on
	the
	mat
	the
	aardvark
	sat
	on
	the
	sofa

counts = sc.textFile(text) .flatMap(lambda line: line.split()) key-value .map(lambda word: (word,1)) pairs the cat cat on the mat the (the, 1) the aardvark sat on the sofa (cat, 1) cat (sat, 1) sat (on, 1) on (the, 1) the (mat, 1) mat the (the, 1) aardvark (aardvark, 1) (sat, 1) sat (on, 1) on the (the, 1) (sofa, 1) sofa

counts = sc.textFile(text)

.flatMap(lambda line: line.split())

.map(lambda word: (word,1))

.reduceByKey(lambda v1,v2: v1+v2)

the cat cat on the mat the (the, 1) (aardvark, 1) the aardvark sat on the sofa (cat, 1) (cat, 1)cat (sat, 1) (mat, 1) sat (on, 1)(on, 2)on (the, 1) the (cat, 2)(mat, 1) (sofa, 1)mat the (the, 1) (the, 4) aardvark (aardvark, 1) (sat, 1) sat (on, 1)on the (the, 1) sofa (sofa, 1)

- ReduceByKey functions must be
 - Binary combines values from two keys
 - □ Commutative \rightarrow x+y = y+x

Graph Processing

The Graph phenomenon!

- Web Graph (Google)
- Social Graph (Facebook)
- Follower Graph (Twitter)
- Interest Graph (Pinterest!)
- Music/Location/Food Graphs

Graph Representation

48

	Friend				
User	Amy	Kevin	Jeff	Tracy	Leon
Amy		0.8	1.7		4
Kevin	0.8		1.3	1	
Jeff	1.7	1.3			2.2
Tracy		1			
Leon	4		2.2		

Matrix

Key	Value
Amy	(Kevin, 0.8), (Jeff, 1.7) (Leon, 4)
Kevin	(Amy,0.8), (Jeff,1.3), (Tracy,1)
Jeff	(Amy, 1.7), (Kevin, 1.3), (Leon, 2.2)
Tracy	(Kevin, 1)
Leon	(Amy,4), (Jeff,2.2)

Adjacency List

Graph (undirected)

PageRank Algorithm

- PageRank gives web pages a ranking score on links from other pages
 - Links from many pages → high rank
 - Link from a high-rank page → high rank

Graph (directed)

PageRank Explained – Initial State

Start each page at a rank of 1

- Start each page at a rank of 1
- On each iteration, have page p contribute $\frac{\text{contrib}_{p} = \text{rank}_{p} / \text{neighbors}_{p} }{\text{to its neighbors}}$

- Start each page at a rank of 1
- 2. On each iteration, have page p contribute $contrib_p = rank_p / neighbors_p$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times \text{contribs}$

- Start each page at a rank of 1
- 2. On each iteration, have page p contribute $contrib_p = rank_p / neighbors_p$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times \text{contribs}$ $rank = 0.15 + 0.85 \times (0.58 + 0.5 + 0.29)$ = 1.31 0.58 1.85 0.5 1.85 0.5 1.85 0.5 1.85 0.5 1.85 0.5 1.85 0.5 1.85 0.5 1.85 0.5 1.85 0.5 1.85 0.5 1.85 0.5 1.85 0.50.5

= 0.58

- Start each page at a rank of 1
- 2. On each iteration, have page p contribute contrib_p = $rank_p$ / $neighbors_p$ to its $neighbors_p$
- 3. Set each page's rank to $0.15 + 0.85 \times \text{contribs}$

PageRank Explained – Final State

- Start each page at a rank of 1
- On each iteration, have page p contribute contrib_p = rank_p / neighbors_p to its neighbors
- Set each page's rank to $0.15 + 0.85 \times \text{contribs}$

PageRank Implementation

- Page with Pig
 - Using PageRank to Detect Anomalies and Fraud in Healthcare (Hortonworks Blog Post)
 - (PART1) http://hortonworks.com/blog/using-pagerank-detect-anomalies-fraud-healthcare/
 - (PART2) http://hortonworks.com/blog/using-pagerank-to-detect-anomalies-and-fraud-in-healthcare-part2/
 - (PART3) http://hortonworks.com/blog/using-pagerank-to-detect-anomalies-and-fraud-in-healthcare-part3/
- Page with Spark
 - Next Lab

Getting Started with Spark

- Install Spark Standalone on Linux
- Cloudera/HDP Distributions
 - http://www.cloudera.com/content/cloudera/en/downl oads/quickstart vms/cdh-5-3-x.html

Spark Documentation

Spark 1.0.0 Documentation: http://spark.apache.org/docs/latest/

Spark Programming Guide (Scala,

Python): http://spark.apache.org/docs/latest/programming-guide.html#overview

Spark Cassandra Connector - DataStax (github)

Spark HBase - lighting Spark with HBase (link)

Spark MLlib Documentation (link)

Spark GraphX Documentation (<u>link</u>)

(Spark) Spark Cluster Mode Overview (<u>link</u>)

(Spark) Running Spark on EC2 (<u>link</u>)

(Cloudera) Pig is Flying: Apache Pig on Apache Spark (link)

So many new things to learn ©

- General Purpose Big Data Processing
 - Pig/Hive
 - Spark
- Specialized Tools
 - Graph: SparkX, Giraph, GraphLab
 - ML: Mahout, MLLib
 - Stream: Storm, Spark Streaming
 - NoSQL: Cassandra, Neo4j
 - Search: Solr, ElasticSearch

Big Data Landscape - Simplified

	Open Source	Commercial	Comments
Big Data Platform	Hadoop (MR, Pig, Hive etc.)	Cloudera, Hortonworks, MapR	Hadoop is going mainstream
	Spark	DataStax	Spark is HOT! considered as next-generation big data platform
		AWS	Elastic MapReduce (EMR) and EC2 from AWS is most popular among startups.
Machine Learning & Statistical Learning	Mahout		Mahout was one of the earliest ML libraries for MapReduce. It is being revamped to take advantage of Spark currently
	MLlib (Spark)		MLlib is Spark's machline learning library. It's written in Scala and also provides Python and Java API
	H2O		H2O is the latest buzzing big data machine learning tool, backed by Oxdata. It works with a Hadoop cluster but also works on Standalone cluster. It has an amazing lineup of algorithms and even supports Deep Learning. The GUI-based predictive analytics suites works like a charm
		SAS	SAS integration with Hadoop will be very powerful. Imaging writing your data steps that runs procedures on hadoop
		Revolution Analytics	Commercial version of open source R. Enterprise-class big data analytics capability
		Alpine	World's first code-free in-cluster web analytics platform to analyze big data and hadoop

Big Data Landscape - Simplified

	Open Source	Commercial	Comments
Graph Processing	Giraph		Graph processing framework on top of Hadoop. Used extensively at Facebook for large-scale graph algorithms
	GraphLab		Developed at CMU by Dr. Carlos and his team. Superior graph processing performance. Building the tools to make data scientists' lives easier. Great as a standalone graph processing and machine learning tool but won't fit well into the existing hadoop cluster
	GraphX (Spark)		Graph processing on Spark platform
Search	Solr		Open source search server based on Lucene Java library
	Elastic Search		Open source search and analytics engine
Stream Processing	Storm		Real-time stream processing framework developed at Twitter. Most popular streaming processing tool
	Spark Streaming		Streaming processing on Spark. Less mature than Storm at the moment but growing rapidly
Visualization	d3.js		Fantastic javascript library for visualization
		Tableu, Qlikview, Zoomdata	Popular visualization tools widely adopted
	Kibana		Log and time series data visualization tool from Elasticsearch

Choosing The Right "Big Data" Tools - Today

	Java	SAS	R	Python	Spark
Prototyping	Weka, Java	SAS Base, SAS EG	R	Python	Spark/R
Data Manipulation	Hadoop, Pig/Hive	SAS Connector for Hadoop	RHadoop	Hadoop Streaming Pig/Hive	Spark
Modeling	Weka, Mahout	Enterprise Miner, SAS Hadoop	RHadoop	Hadoop Streaming	Mllib, GraphX
Scoring	Hadoop, Mahout	Enterprise Miner, SAS Base, Hadoop PMML	RHadoop	Hadoop Streaming, Pig	Spark

Today's Lab

- Download Cloudera 5.3 Virtual Machine
 - http://www.cloudera.com/content/cloudera/en/downloads/qu ickstart_vms/cdh-5-3-x.html
- Read Hortonwork's Blog Post on PageRank with Pig
- Complete Hive/Pig Labs (if you haven't)
- Finish Pig Assignments