NAVAL POSTGRADUATE SCHOOL

Monterey, California

19951208 078

NOTE ON AN ALTERNATIVE MECHANISM FOR LOGISTIC GROWTH

D. P. Gaver

P. A. Jacobs

R. L. Carpenter

November 1995

Approved for public release; distribution is unlimited.

Prepared for:

NPS Direct Funded Research Program

Naval Medical Research Institute/Toxicology Detachment Wright-Patterson Air Force Base, Ohio

U.S. Army Biomedical Research & Development Laboratory Ft. Detrick, MD 21702-5010

TORRICO COTAL PROPERTY CONTRACTOR

NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943-5000

Rear Admiral M. J. Evans Superintendent

Richard Elster **Provost**

This report was prepared in conjunction with research funded by the Naval Medical Research Institute/Toxicology Detachment, Wright-Patterson Air Force Base, Ohio; the U.S. Army Biomedical Research & Development Laboratory, Ft. Detrick, MD 21702-5010; and the Naval Postgraduate School Direct Funded Research Program.

Reproduction of all or part of this report is authorized.

This report was prepared by:

		ana	V -			
DON	ALD	P. GA	VER, J	Ř.		•
Profes	sor	of Oper	ations	Rese	earc	h

Variald P Gaves

NMRI, Wright Patterson AFB, OH

Professor of Operations Research

Accesion For
NTIS CRA&I M DTIC TAB Unannounced
Justification
By
Availability Codes
Dist Avail and or

Special

Reviewed by:

Acting Chairman

Department of Operations Research

Released by:

Dean of Research

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

			OMD 140. 0704-0100	ı
gathering and maintaining the data needed, and o collection of information, including suggestions for	completing and reviewing the collection of i reducing this burden, to Washington Head	nformation. Send comments reg quarters Services, Directorate fo	viewing instructions, searching existing data sources, garding this burden estimate or any other aspect of this or Information Operations and Reports, 1215 Jefferson tion Project (0704-0188), Washington, DC 20503.	
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE November 1995	3. REPORT TYPE AND DA Technical	ATES COVERED	

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Note on An Alternative Mechanism for Logistic Growth 6. AUTHOR(S) Donald P. Gaver, Patricia A. Jacobs, and Robert L. Carpenter 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Naval Postgraduate School Monterey, CA 93943 NPS-OR-95-013 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY REPORT NUMBER NPS Direct Funded Research Program Naval Medical Research Institute/Toxicology Detachment Wright-Patterson Air Force Base, OH 45433-6503 U.S. Army Biomedical Research & Development Laboratory Ft. Detrick, MD 21702-5010 11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

Populations of cells that make up organ tissue grow and contract. A traditional approach to modeling organ size restriction to an observed "normal" level is to postulate a physical carrying capacity: effectively a limit on the physical region that can be occupied by the organ. The purpose of this note is to provide a very simple model for a cell population that grows under the control of positive and negative growth factors. It will be seen that such a model can result in logistic growth without the necessity of postulating a physical carrying capacity.

14. SUBJECT TERMS			15. NUMBER OF PAGES
			19
Logistic growth curves, growth factors		16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
OF REPORT	Of THIS PAGE	OF ADSTRACT	
Unclassified	Unclassified	Unclassified	UL

Note on An Alternative Mechanism for Logistic Growth

Donald P. Gaver Patricia A. Jacobs

Department of Operations Research Naval Postgraduate School Monterey, CA 93943

Robert L. Carpenter

Naval Medical Research Institute Wright Patterson AFB, OH 45433

ABSTRACT

Populations of cells that make up organ tissue grow and contract. A traditional approach to modeling organ size restriction to an observed "normal" level is to postulate a physical carrying capacity: effectively a limit on the physical region that can be occupied by the organ. The purpose of this note is to provide a very simple model for a cell population that grows under the control of positive and negative growth factors. It will be seen that such a model can result in logistic growth without the necessity of postulating a physical carrying capacity.

Key Words: Logistic growth curves, growth factors

Note on An Alternative Mechanism for Logistic Growth

Donald P. Gaver Patricia A. Jacobs

Department of Operations Research Naval Postgraduate School Monterey, CA 93943

Robert L. Carpenter

Naval Medical Research Institute Wright Patterson AFB, OH 45433

1. Introduction

Populations of cells that make up organ tissue grow and contract in a manner that is roughly analogous to the fluctuations of other natural populations. Since organs are of bounded size their growth is not entirely uncontrolled and exponential overall, or otherwise a human or rat liver would either assume a totally outlandishly large size, or else shrink to zero. Neither such alternative is seen in nature, although organ sizes do vary among otherwise comparable members of the same species. And organs of mature hosts can change in size as a result of disease, toxic insult, or an operation such as partial hepatectomy, from which a liver can recover again to normal size and function.

A traditional approach to modeling population (= organ) size restriction to an observed "normal" level is to postulate a *carrying capacity*: effectively a limit on the physical region that can be occupied by the population. This formulation apparently goes back to Verhulst (1836); see Murray (1989) for recent discussion. In the organ situation this might correspond to a space of approximately pre-ordained dimension that, say, liver cells in liver tissue cannot exceed in the body of a mature human male. The space can be taken as given, introduced into other models as a parameter, and in particular cases estimated from data. It would be the maximum size of the liver compartment in a PB-PK model, for example.

There is another alternative to the above approach that depends upon recognition and measurement of the presence of various biological agents called *growth factors*. There are a number of such factors that both stimulate (positively) and inhibit (negatively) cell population growth. Growth factors are discussed by Alberts *et al.* (1994). Aaronson (1991) provides an overview of growth factors in cancer; see also Rubin, Bottaro, and Aaronson (1993). The purpose of this note is to provide a very simple model for a cell population that grows under the control of positive and negative growth factors. It will be seen that such a model can result in logistic growth without the necessity of postulating a *physical* carrying capacity. An *effective carrying capacity* appears as a result of presumed growth factor interaction with cells.

2. Model for a Cell Population Under Growth Factor Control

Suppose a population of cells is of size C(t) at time t. Its individual cell growth or birth rate is λ_0 , and its death rate is μ_0 , so its net growth rate, $\lambda_0 - \mu_0$, governs the manner and rate of growth. Starting with C(0) members, and left alone, the population would grow roughly like $C(t) \sim C(0)e^{(\lambda_0 - \mu_0)t}$, which means either to

a large size $(\lambda_0 - \mu_0 > 0)$, or to zero $(\lambda_0 - \mu_0 < 0)$. Clearly such unrestricted behavior is inappropriate for describing a population of cells that constitutes an entire organ, although essentially such a model has been used to describe growth of tumors within an organ; see Tan (1991) for an overview; in particular the work of Moolgavkar and co-authors, cited in Tan (1991), is relevant.

Now introduce a quantity $\alpha(t)$ of a positive growth factor into the vicinity of the cell population. The amount present, $\alpha(t)$, changes cell birth rate to $\lambda_0 + \lambda_1 \alpha(t)$, where we take $\lambda_1 > 0$. Also introduce a quantity $\beta(t)$ of negative growth factor; it changes cell death rate to $\mu_0 + \mu_1 \beta(t)$, $\mu_1 > 0$. Then changing levels of $\alpha(t)$ and $\beta(t)$ can certainly alter the properties of the cell population, from net growth to net decline, depending upon values of $\alpha(t)$ and $\beta(t)$.

Assume that the productions of both $\alpha(t)$ and $\beta(t)$ are regulated by cell activity in such a way that

$$\frac{d\alpha}{dt} = \rho_{\alpha}C(t) - \delta_{\alpha}\alpha(t) \tag{2.1}$$

and

$$\frac{d\beta}{dt} = \rho_{\beta} C(t) - \delta_{\beta} \beta(t). \tag{2.2}$$

That is, both are stimulated to increase by the number of cells present, and to diminish in proportion to their own concentration, possibly being removed from the cell site (organ) by blood flow or metabolism or other biological processes. Of course the above equations are prime candidates for replacement by others that more accurately depict the true interactions.

In the presence of α and β -factors the cells in the organ grow and decline according to

$$\frac{dC(t)}{dt} = \left[\lambda_0 + \lambda_1 \alpha(t)\right] C(t) - \left[\mu_0 + \mu_1 \beta(t)\right] C(t). \tag{2.3}$$

So (2.1), (2.2), (2.3) form a system of three non-linear differential equations. No explicit solution seems immediately available, *unless* we make the quasi-static or quasi-steady-state assumption (QSSA); see Strogatz (1994) for its invocation so as to solve a non-linear dynamics problem along with some historical references, and Segel and Slemrod (1989) for a careful discussion of this approximation. Namely assume that $\alpha(t)$ and $\beta(t)$ are able to adapt very quickly to any current value of C(t) to always reach a "temporary steady state":

$$\frac{d\alpha}{dt} = 0 = \rho_{\alpha}C(t) - \delta_{\alpha}\alpha(t)$$
 (2.4)

$$\frac{d\beta}{dt} = 0 = \rho_{\beta}C(t) - \delta_{\beta}\beta(t). \tag{2.5}$$

Adopt the approximation as true, so solve (2.4) and (2.5) for $\alpha(t)$ and $\beta(t)$:

$$\alpha(t) = (\rho_{\alpha}/\delta_{\alpha})C(t) \tag{2.6}$$

and

$$\beta(t) = \left(\rho_{\beta}/\delta_{\beta}\right)C(t). \tag{2.7}$$

Let us call $(\rho_{\alpha}/\delta_{\alpha})$ and $(\rho_{\beta}/\delta_{\beta})$ the *prevalences* of the α and β factors respectively. Insert these into (2.3) and for convenience, put $\lambda_1' = \lambda_1(\rho_{\alpha}/\delta_{\alpha})$, $\mu_1' = \mu_1(\rho_{\beta}/\delta_{\beta})$, to obtain

$$\frac{dC(t)}{dt} = \left[\lambda_0 + \lambda_1'C(t)\right]C(t) - \left[\mu_0 + \mu_1'C(t)\right]C(t)
= (\lambda_0 - \mu_0)C(t) - (\mu_1' - \lambda_1')C^2(t)
= (\lambda_0 - \mu_0)C(t)\left[1 - \frac{\mu_1' - \lambda_1'}{\lambda_0 - \mu_0}C(t)\right].$$
(2.8)

This conforms exactly to the original logistic equation *if* the ordinary net growth rate, $\Delta = \lambda_0 - \mu_0$, is *positive*, as is the effective carrying capacity

$$K = \frac{\lambda_0 - \mu_0}{\mu_1' - \lambda_1'}. (2.9)$$

Under the above conditions and starting from C(0) > 0, the population attains the long-run steady-state value

$$C(\infty) = K = \frac{\lambda_0 - \mu_0}{\mu_1(\rho_\beta/\delta_\beta) - \lambda_1(\rho_\alpha/\delta_\alpha)}.$$
 (2.10)

The above version of carrying capacity makes intuitive sense in that

- (a) it increases with net population growth rate, $\lambda_0 \mu_0$;
- (b) it *decreases* with *increased* prevalence of negative growth factor, $(\rho_{\beta}/\delta_{\beta})$, and with *decreased* prevalence of positive growth factor, $(\rho_{\alpha}/\delta_{\alpha})$;
- (c) the inhibition effect of negative growth factor, $\mu_1' = \mu_1(\rho_\beta/\delta_\beta)$, must exceed the stimulative effect of the positive growth factor, $\lambda_1' = \lambda_1(\rho_\alpha/\delta_\alpha)$.

If any of the above conditions are violated the population development becomes radically different, but can also be interesting.

The time-dependent population size is seen to be of the familiar logistic growth form

$$C(t) = \frac{KC(0)e^{\Delta t}}{K - C(0) + C(0)e^{\Delta t}}$$
 (2.11)

with *K* as in (2.10), $\Delta = \lambda_0 - \mu_0 > 0$, and 0 < C(0) < K.

Note that the formula has biological meaning even if C(0) > K, and also if K < 0: suppose that $\Delta = \lambda_0 - \mu_0 > 0$ but $\lambda_1' > \mu_1'$; then write K' = -K > 0 to get

$$\frac{dC(t)}{dt} = \Delta C(t)[1 + C(t)/K'], \qquad (2.12)$$

the solution to which is

$$C(t) = \frac{K'C(0)e^{\Delta t}}{K' + C(0) - C(0)e^{\Delta t}}$$
(2.13)

if
$$t < \frac{1}{\Delta} \ln \left(1 + \frac{K'}{C(0)} \right)$$
; it explodes when $t = \frac{1}{\Delta} \ln \left(1 + \frac{K'}{C(0)} \right)$; this might plausibly

model an especially malignant tumor growth. Finally when $\Delta = \lambda_0 - \mu_0 < 0$ and K' = -K > 0 we simply get (2.11) with $-\Delta$ replacing Δ , once again a logistic model, but now one that decreases as t increases.

3. Stochastic Models

The above model can be "made stochastic" in various ways. One is to re-state the growth factor and cell-growth equations as a system of three non-linear Ito-type stochastic differential equations. Analytical solutions are not likely to be available, but some asymptotics might well produce explicit results.

Another approach is to *assume* that a stochastic version of C(t), namely C(t), is a birth-and-death process with transition rates copied from the right-hand side of (2.8). For example, C(t) evolves over state space (0, 1, 2, ...) according to

$$P\{C(t+dt) = C(t) + 1 | C(t) = i\} = (\lambda_0 - \mu_0)idt + o(dt)$$
(3.1,a)

$$P\{C(t+dt) = C(t) - 1|C(t) = i\} = (\mu'_1 - \lambda'_1)i^2dt + o(dt);$$
(3.1,b)

these holding when $\Delta = \lambda_0 - \mu_0 > 0$, $\mu_1' - \lambda_1' > 0$; otherwise modification is needed. Although $E[C(t)|C(0) = C(0)] \neq C(t)$ because of the non-linearity in the generator, (3.1), it can be of interest to study the above stochastic version's transient properties, such as first-passage times from low states (population size) to high, or the reverse, e.g. to $C(t^{\#}) = 0$ when the population dies out.

The described approach essentially minimizes attention to the stochastics of the growth factors and ignores non-linearity, hence is a prime candidate for an upgraded treatment. Nevertheless it is appealing for its simplicity and easy availability, and is offered as an interim approach.

4. Summary

It is shown that classical logistic growth can be induced in a non-traditional manner by hypothesized action of growth factors, rather than by action of a physical carrying capacity (although the latter may operate as well). Modification of the effective carrying capacity to be negative has biological interpretability. The resulting models may perhaps find a use in cell proliferation and cancer modeling.

References

- Aaronson, S.A. (1991). Growth factors and cancer. Science, 25, pp. 1146-1153.
- Alberts, B., Bray, D., Lewis, J., Ratt, M., Roberts, K., and Watson, J.D. (1994). *Molecular Biology of the Cell*. Garland Publishing Co., New York.
- Murray, J.D. (1989). Mathematical Biology. Springer-Verlag.
- Rubin, J.S., Bottaro, D.P., and Aaronson, S.A. (1993). Hepatocyte growth-factor scatter factor and its receptor, the C-met protooncogene product. *Biochimica et Biophysica Acta*, **1155**, No. 3, pp. 357-371.
- Segel, L.A. and Slemrod, M. (1989). The quasi-steady-state assumption: a case study in perturbation. *SIAM Review*, **31**, No. 3, pp. 446-477.
- Strogatz, S.H. (1994). *Nonlinear Dynamics and Chaos*. Addison-Wesley Publishing Co.
- Tan, W-Y. (1991). Stochastic Models of Carcinogenesis. Marcel Dekker, Inc. New York.
- Verhulst, P.F. (1836). Notice sur la loi que la population suit dans son accroisement. *Corr. Math. et Phys.* **10**, pp. 113-121.

DISTRIBUTION LIST

1.	Research Office (Code 08)
2.	Dudley Knox Library (Code 52)
3.	Defense Technical Information Center
4.	Department of Operations Research
5.	Prof. Donald P. Gaver (Code OR/Gv)
6.	Prof. Patricia A. Jacobs (Code OR/Jc)
7.	Dr. J. Abrahams
8.	Dr. John Bailar
9.	Prof. D. R. Barr
10.	Dr. Frederic Bois

11.	Dr. David Brillinger Statistics Dept.
	University of California
	Berkeley, CA 94720
12.	Dr. James G. Burkhart
	MDC4-07
	Environmental Toxicology Program NIEHS
	Research Triangle Park, NC 27709
13.	Prof. Brad Carlin1
	School of Public Health
	University of Minnesota
	Mayo Bldg. A460
	Minneapolis, MN 55455
14.	Dr. Robert Carpenter
	NAMRI/Navy Toxicology Detachment
	Bldg. 433, Area B Wright-Patterson AFB, OH 45433-6503
	Wright-Latterson Arb, Ort 43433-6303
15.	Center for Naval Analyses1
	4401 Ford Avenue
	Alexandria, VA 22302-0268
16.	Prof. H. Chernoff1
	Department of Statistics
	Harvard University
	1 Oxford Street
	Cambridge, MA 02138
17.	Mr. Harvey Clewell, III1
	ICF Kaiser Engineer
	ICF Kaiser International Inc.
	1201 Gaines Ave.
	Ruston, LA 71270-3107
18.	Dr. Edward G. Coffman, Jr
	AT&T Bell Telephone Laboratories
	600 Mountain Avenue
	Murray Hill, NJ 07974
19.	Prof. John Copas1
	Dept. of Statistics
	University of Warwick
	Coventry CV47AL, ENGLAND
20.	Prof. Sir David Cox1
	Nuffield College
	Oxford OXI INF, ENGLAND

21.	Dr. Kenny S. Crump
	Vice President, Environment Energy Group
	ICF Kaiser Engineer
	ICF Kaiser International Inc.
	1201 Gaines Ave.
	Ruston, LA 71270-3107
22.	Prof. H. G. Daellenbach
22.	
	Dept. of Operations Research
	University of Canterbury
	Christchurch, NEW ZEALAND
23.	Dr. D. F. Daley
	Statistics Dept. (I.A.S.)
	Australian National University
	Canberra, A.C.T 2606, AUSTRALIA
24.	Dr. Naihua Duan1
	RAND Corporation
	Santa Monica, CA 90406
	Suna Monea, Ch. 70400
25	Purch Paradian Efrance
25.	Prof. Bradley Efron
	Statistics Dept.
	Sequoia Hall
	Stanford University
	Stanford, CA 94305
	Statustary Crain 9 1000
26.	Dr. Guy Fayolle1
20.	
	I.N.R.I.A.
	Dom de Voluceau-Rocquencourt
	78150 Le Chesnay Cedex, FRANCE
27.	Prof. George S. Fishman
	Curr. in OR & Systems Analysis
	University of North Carolina
	Chapel Hill, NC 20742
28.	Henry S. Gardner1
	U.S. Army Biological Research & Development Laboratory
	Ft. Detrick, MD 21702-5010
	21.02.001
29.	Dr. Andrew Gelman1
29.	
	Statistics Dept.
	University of California
	Berkeley, CA 94720
30.	Dr. Neil Gerr1
50.	Office of Naval Research
	Arlington, VA 22217

31.	Prof. Peter Glynn
	Dept. of Operations Research
	Stanford University
	Stanford, CA 94305
32.	Prof. Linda V. Green
	Graduate School of Business
	Columbia University
	New York, NY 10027
	11CW 101R, 111 10027
33.	Prof. J. Michael Harrison
55.	Graduate School of Business
	Stanford University
	Stanford, CA 94305-5015
0.4	
34.	Dr. D. C. Hoaglin
	Department of Statistics
	Harvard University
	1 Oxford Street
	Cambridge, MA 02138
35.	Dr. David G. Hoel
	Professor of Biometry and Epidemiology
	Medical University of South Carolina
	171 Ashley Ave.
	Charleston, SC 29425-0002
36.	Prof. D. L. Iglehart1
	Dept. of Operations Research
	Stanford University
	Stanford, CA 94305-5015
37.	Institute for Defense Analysis
	1800 North Beauregard
	Alexandria, VA 22311
38.	Dr. Robert C. Jackson
	Vice President, Research and Development
	Agouron Pharmaceuticals, Inc.
	3565 General Atomics Court
	San Diego, CA 92121-1121
39.	Prof I.R. Kadana
39.	Prof. J. B. Kadane
	Dept. of Statistics
	Carnegie-Mellon University
	Pittsburgh, PA 15213
40	Dr E D Voller
40.	Dr. F. P. Kelly
	Statistics Laboratory
	16 Mill Lane
	Cambridge, ENGLAND

41.	Dr. Jon Kettenring
	Bellcore
	445 South Street
	Morris Township, NJ 07962-1910
	Worts Township, 14) 0/302-1310
42.	Dr. Ralph Kodell
12.	Chief, Biometry Branch
	Biometry and Risk Assessment
	National Center for Toxicology Research
	3900 NCTR Drive
	Jefferson, AR 72079
43.	Mr. Koh Peng Kong1
	OA Branch, DSO
	Ministry of Defense
	Blk 29 Middlesex Road
	SINGAPORE 1024
44.	Prof. Guy Latouche1
	University Libre Bruxelles
	C.P. 212, Blvd. De Triomphe
	Bruxelles B-1050, BELGIUM
4 5.	Dr. A. J. Lawrance
	Dept. of Mathematics
	University of Birmingham
	P.O. Box 363
	Birmingham B15 2TT, ENGLAND
46.	Prof. M. Leadbetter
	Department of Statistics
	University of North Carolina
	Chapel Hill, NC 27514
	Chapter 1 mily 116 27 511
47.	Prof. J. Lehoczky
	Department of Statistics
	Carnegie-Mellon University
	Pittsburgh, PA 15213
	1110041511,111 10210
48.	Dr. Georg Luebeck
	Fred Hutchinson Cancer Research Center
	1124 Columbia
	MP-665
	Seattle, WA 98014
49.	Dr. Colin Mallows1
17.	AT&T Bell Telephone Laboratories
	600 Mountain Avenue
	Murray Hill, NJ 07974

50.	Prof. R. Douglas Martin
	Department of Statistics, GN-22
	University of Washington
	Seattle, WA 98195
51.	Dr. Sati Mazumdar
01.	
	Biostatistics Dept.
	University of Pittsburgh
	Graduate School of Public Health
	Pittsburgh, PA 15261
52.	Du James McVerre
32.	Dr. James McKenna
	Bell Communications Research
	445 South Street
	Morristown, NJ 07960-1910
	mentate myrty or see 1510
53.	Du Barrit Mahr Crassman
55.	Dr. Ramit Mehr-Grossman
	Theoretical Biology and Biophysics
	Theoretical Division
	Mail Stop K710
	•
	Los Alamos National Laboratory
	Los Alamos, NM 87545
54.	Prof. Carl N. Morris
	Statistics Department
	Harvard University
	1 Oxford Street
	Cambridge, MA 02138
55.	Dr. John A. Morrison
	AT&T Bell Telephone Laboratories
	600 Mountain Avenue
	Murray Hill, NJ 07974
56.	Prof. F. W. Mosteller
	Department of Statistics
	Harvard University
	1 Oxford Street
	Cambridge, MA 02138
57.	Dr. John Orav
	Biostatistics Department
	Harvard School of Public Health
	677 Huntington Avenue
	Boston, MA 02115
58.	Dr. Alan Perelson
	Theoretical Biology and Biophysics
	Theoretical Division
	Mail Stop K710
	Los Alamos National Laboratory
	Los Alamos, NM 87545

59.	Dr. Jim Petty
	National Biological Survey
	4200 New Haven Road
	Columbia, MO 65201
	Columbia, W.O 03201
60.	Dr. Lorenz Rhomberg
00.	Harvard Center for Risk Analysis
	•
	Harvard University
	Cambridge, MA 02138
61.	Dr. Rhonda Righter
0	Dept. of Decision & Info. Sciences
	Santa Clara University
	Santa Clara, CA 95118
	Salita Ciara, CA 95116
62.	Dr. John E. Rolph
	Information and Operations Management
	Univ. of Southern California
	School of Business Administration
	Los Angeles, CA 90089-1421
	105 Aligeles, CA 70007 1421
63.	Prof. M. Rosenblatt
	Department of Mathematics
	University of California, San Diego
	La Jolla, CA 92093
	24 young 612 72070
64.	Prof. Frank Samaniego1
	Statistics Department
	University of California
	Davis, CA 95616
65.	Prof. G. A. F. Seber
	Dept. of Statistics
	Univ. of Auckland
	Private Bag 92019
	Auckland, NEW ZEALAND
66.	Prof. G. Shantikumar
	The Management Science Group
	School of Business Administration
	University of California
	Berkeley, CA 94720
67.	Prof. N. D. Singpurwalla
	George Washington University
	Washington, DC 20052
. (0	Duel II Colomon
68.	Prof. H. Solomon
	Department of Statistics
	Sequoia Hall
	Stanford University
	Stanford, CA 94305

69.	Dr. Andrew Solow
	Woods Hole Oceanographic Institute
	Woods Hole, MA 02543
70.	Prof. W. Stuetzle
	Department of Statistics
	University of Washington
	Seattle, WA 98195
71.	Prof. J. R. Thompson
	Dept. of Mathematical Science
	Rice University
	Houston, TX 77001
	110401011, 177 77001
72.	Prof. Steven K. Thompson
	Statistics Dept.
	Pennsylvania State Univ.
	326 Classroom Bldg.
	University Park, PA 16802-2111
	Oniversity 1 ark, 1 A 10002-2111
73.	Prof I W Tukov
15.	Prof. J. W. Tukey
	Statistics Dept., Fine Hall
	Princeton University
	Princeton, NJ 08540
74.	Dr. D. Vere-Jones
, 1.	Dept. of Math
	Victoria Univ. of Wellington
	P.O. Box 196
	Wellington, NEW ZEALAND
	Wellington, NEW ZEALAND
<i>7</i> 5.	Prof. David L. Wallace
	Statistics Dept.
	University of Chicago
	5734 S. University Ave.
	Chicago, IL 60637
	Citicago, IL 60007
76.	Dr. Ed Wagman
, 0.	Dr. Ed Wegman1 George Mason University
	Fairfax, VA 22030
	Talliax, VA 22000
77.	Dr. L. Wein1
	Operations Research Center, Rm E40-164
	Massachusetts Institute of Technology
	Cambridge, MA 02139
	Camonage, MA 02137
78.	Dr. Alan Weiss1
	Rm 2C-118
	AT&T Bell Laboratories
	600 Mountain Avenue
	Murray Hill, NJ 07974-2040

79.	Prof. Roy Welsch
80.	Dr. Raymond S.H. Yang
	Dept. of Environmental Health Fort Collins, CO 80523