Numerical Relativity 2023-2024

(bruno.giacomazzo@unimib.it)

Homework 2 (May 15 2024)

1 Sod Shock Tube Problem [max 2 pages]

Use the Einstein Toolkit to solve the Sod Riemann problem using three different resolutions. Compare with the exact solution (at least for the restmass density ρ) and discuss your results.

The parameter file is notebooks/Einstein_Toolkit_Tutorials/Sod_1d.par.

2 TOV Evolution [max 2 pages]

Use the Einstein Toolkit to study the evolution of the maximum of the restmass density ρ of a stable TOV solution. You can do one of the following studies:

- 1. use 3 different resolutions;
- 2. introduce a perturbation in pressure and then evolve the system with 3 different resolutions:
- 3. change the grid setup (domain size and/or number of refinement levels).

The parameter file is notebooks/Einstein_Toolkit_Tutorials/TOV_example.par. In all cases discuss your results, focusing in particular on the evolution of the maximum of the rest-mass density.

3 Einstein Toolkit Parameters [max 4 pages]

Explain the meaning of these parameters:

```
1. MoL::ODE_Method = "rk4"
2. GRHydro::recon_method = "ppm"
3. GRHydro::riemann_solver = "Marquina"
```

Explain also the meaning of this block of parameters:

```
\begin{array}{lll} \text{ML\_BSSN::harmonicN} &=& 1 & \# \text{ 1+log} \\ \text{ML\_BSSN::harmonicF} &=& 2.0 & \# \text{ 1+log} \\ \text{ML\_BSSN::ShiftGammaCoeff} &=& 0.75 & \# \text{this is } 3/4 \\ \text{ML\_BSSN::BetaDriver} &=& 2.66 & \# \text{common choices are } 1/\text{M or } 1/2\text{M} \end{array}
```

Figures do not count toward the maximum number of page limit. Use an A4 page format and a font size of at least 11.

Note: in order to get admitted to the oral exam you are requested to submit the answers to all these questions as a single pdf document via email at least two weeks before the oral exam.