

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Profesor: Giancarlo Urzúa – Ayudante: Benjamín Mateluna

Introducción a la Geometría - MAT1304 Ayudantía 13 29 de septiembre de 2025

Problema 1. Sea $\triangle ABC$ un triángulo con $\angle ACB = \frac{\pi}{4}$ y $\angle ABC = \frac{\pi}{3}$. Sea $D \in \overline{BC}$ tal que $3\overline{BD} = \overline{CD}$. Encuentre el valor de $\frac{sen(\angle BAD)}{sen(\angle CAD)}$

Problema 2. Sea $\triangle ABC$ y P en el segmento \overline{BC} tal que $\overline{AP} = p$, $\overline{BP} = m$ y $\overline{PC} = n$. Demostrar que $a(p^2 + mn) = b^2m + c^2n$.

Problema 3. Usando el Teorema del Coseno, demuestre que en $\triangle ABC$, la mediana m_a hacia el lado a satisface

$$m_a^2 = \frac{2b^2 + 2c^2 - a^2}{4}$$

Problema 4. Sea $\triangle ABC$ y $x \in \mathbb{R}$ positivo. Supongamos que a=2x, b=x+1, c=x+2 y que $\alpha=\frac{\pi}{3}$. Pruebe que β es constructible con regla y compás.

Problema 5. Considere $\triangle ADC$ rectángulo en C. Sea $B \in \overline{AC}$ y $2\angle DAC = \angle DBC$. Si $\overline{BC} = \frac{3}{5}\overline{AB}$. Calcule el área de $\triangle ADC$ en función de \overline{BC} .