Appendix E

Verilog Quick Reference Guide

Category	Definition	Example
Identifer Names	Can contain any letter, digit, underscore, or \$	q0
lacitilei Names	Can not begin with a digit or be a keyword	Prime number
	Case sensitive	lteflq
Signal Values	0 = logic value 0	100119
Signal values		
	1 = logic value 1	
	z or Z = high impedance	
Nicosale	x or X = unknown value	25 (1.5. 1. 1. 1. 1. 1.
Numbers	d = decimal	35 (default decimal)
	b = binary	4 b1001
	h = hexadecimal	8'a5 = 8'b10100101
	o = octal	
Parameters	Associates an identifer name with a value that	#(parameter N = 8)
	can be overridden with the defparam statement	
Local parameters	Associates an identifer name with a constant that	localparam [1:0] s0 = 2'b00,
	cannot be directly overridden	s1 = 2'b01, s2 = 2'b10;
Nets and Variables	wire (used to connect one logic element to	wire [3:0] d;
Types	another)	wire led;
71	reg (variables assigned values in always block)	reg [7:0] q;
	integer (useful for loop control variables)	integer k;
Module	module module name	module register
Module	[#(parameter port list)]	#(parameter N = 8)
		(input wire load ,
	(port_dir_type_name, { port_dir_type_name }	input wire clk ,
);	<pre>input wire clr , input wire [N-1:0] d ,</pre>
	[wire declarations]	output reg [N-1:0] q
	[reg declarations]);
	[assign assignments]	
	[always blocks]	<pre>always @(posedge clk or posedge clr) if(clr == 1)</pre>
	endmodule	<pre>q <= 0; else if(load)</pre>
		q <= d;
		endmodule
Logic operators	~ (NOT)	<pre>assign z = ~y;</pre>
	& (AND)	<pre>assign c = a & b;</pre>
		assign z = x y;
	~(&) (NAND)	assign $w = \sim (u \& v);$
	~() (NOR)	$assign r = \sim (s t);$
	^ (XOR)	assign z = x ^ y;
	~^`(XNÓR	assign d = a ~ b;
Reduction operators	& (AND)	assign c = &a
Troudener operators	(OR)	assign $z = y $
	~& (NAND)	assign $W = \sim \&V$
	~[(NOR)	assign r = ~ t;
	^ (XOR)	assign z = ^y;
	~^ (XNOR	
A with we satisfy	,	assign d = ~^b;
Arithmetic operators	+ (addition)	count <= count + 1;
	- (subtraction)	q <= q - 1;
	* (multiplication)	
	/ (division)	
	% (mod)	

Verilog Quick Reference Guide (cont.)

	Verilog Quick Reference Guide (con	
Relational operators	==,!=,>,<,>=,===,!==	<pre>assign lteflg = (a <= b);</pre>
		<pre>assign eq = (a == b);</pre>
		if (clr == 1)
Shift operators	<< (shift left)	c = a << 3;
	>> (shift right)	c = a >> 4;
always block	always @(<sensitivity list="">)</sensitivity>	always @(*)
-	always @(*)	begin
		s = a ^ b;
		c = a & b;
		end
if statement	if(expression1)	if (s == 0)
	begin	y = a;
	statement;	else
	end	y = b;
	else if (expression2)	
	begin	
	statement;	
	end	
	else	
	begin	
	statement;	
	end	
case statement	case(expression)	case(s)
	alternative1: begin	0: y = a;
	statement;	1: $y = b;$
	end	2: y = c;
	alternative2: begin	3: y = d;
	statement;	default: y = a;
	end	endcase
	[default: begin	
	statement;	
	end	
	endcase	
for loop	<pre>for(initial_index; terminal_index; increment)</pre>	for (i=2; i<=4; i=i+1)
	begin	z = z & x[i];
	statement;	
	end	
Assignment operator	= (blocking)	z = z & x[i];
	<= (non-blocking)	count <= count + 1;
Module instantiation	Module_name instance_name(.port_name(expr)	hex7seg d7R(.d(y),
	{,.port_name([expr])});	.a_to_g(a_to_g)
);
Parameter override	defparam instance_name.parameter_name = val;	<pre>defparam Reg.N = 16;</pre>