Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 1

Consigna

Si $T:V\to V$ es una transformación lineal y $S\subset V$ es un subespacio de V, decimos que S es un **subespacio invariante bajo** T (o T-invariante) si $T(s)\in S$ para todo vector $s\in S$.

Probar que V, $\{0_V\},$ N(T) (núcleo) e Im(T) (imagen) son subespacios invariantes bajo T.

Resolución

V

Probar que V es T-invariante es fácil porque esto está dado por la definición de T, sabemos que T recibe un vector $v \in V$ y devuelve otro vector $T(v) \in V$ que es el espacio de llegada. Podemos decir que $T(V) \subseteq V$

$$\{0_V\}$$

Todas las transformaciones lineales satisfacen que $T(0_V)=0_V\in\{0_V\}$ por linealidad, por lo que entonces $\{0_V\}$ es T-invariante.

N(T)

El núcleo de T está definido por:

$$N(T)=\{v\in V: T(v)=\vec{0}\}$$

Veamos que en el núcleo de una transformación siempre está el $\vec{0}$ (porque su transformado será él mismo por lo visto anteriormente). Podemos decir que $T(v) = \vec{0} \quad \forall v \in N(T)$, y como $\vec{0} \in N(T)$ concluimos que N(T) es T-invariante.

Im(T)

Si $w \in Im(T)$, entonces existe $v \in T$ tal que w = T(v) (definición de imagen).

Aplicando T a ambos lados obtenemos que:

•
$$T(w) = T(T(v))$$

Pero $T(v) \in V$, entonces por definición de imagen $T(T(v)) \in Im(T)$.

Entonces demostramos que Im(T) es invariante ya que tomamos w,v cualquiera.