

Alpha Rockets System 2.0

Equipe:

Jarelio Gomes da Silva Filho

Jéssica Xavier de Sousa

Levi Azevedo Castelo Branco

Luan Carvalho de Araújo Coelho

Paulo Sergio Gomes Alves Filho

Introdução:

Em um foguete espacial, ao entrar na atmosfera, possui deslocamentos de várias de suas partes que são dados pela solução do sistema de equações lineares Ad = f. Caso o deslocamento de umas dessas partes passe dos 2 cm em módulo (o deslocamento pode ser negativo [para dentro] ou positivo [para fora]) esse foguete irá explodir, causando sérios danos e um prejuízo gigantesco.

A:	Matriz	das	Propriedades
d:	Vetor	das	incógnitas

v: Vetor constante (termos independentes)

Metodologia

- Estudo dos métodos para encontrar as soluções do sistema via LU e LU Modificado (A como uma matriz não singular e A = LU dessa forma A pode ser reescrita como A=LDP onde L é a mesma matriz triangular inferior do método convencional, D é a matriz diagonal e P matriz triangular superior com diagonal unitária).
- Implementação dos métodos em C++
- Analisar os resultados e determinar se alguma parte do foguete tem um deslocamento maior que 2 cm, o parâmetro adotado para dizer se o foguete explode ou não.

Implementar algoritmos para calcular os valores de {d} pelos métodos de LU e LU modificado.

LU - > Seja A uma matriz não singular, tal que:

$$Ax=b$$
 $Ux = y$

$$LUx=b$$
 $Lu=b$

LU modificado -> Seja A uma matriz não singular, tal que:

$$LDPx = b$$
 $Ds = i$

$$Px = s$$
 $Lj = b$

Para resolvermos temos que usar substituições retroativas

Implementação Orientada a Objeto

LU

+ vetorY : float

+ LU piv(): void

Matriz de Calibragem

	3	-2	1
A =	1	-3	4
	9	4	-5

Método	Vetor X
LU	(1.83333,-1.16667,0.166667)
LU Modificado	(1.61111,-4.05556,-1.94444)

Comparação dos quadros respostas do métodos.

Método	Valor do vetor X
LU	(0,1,1)
LU Modificado	(5.96046e-008,1,1)

Conclusão

Neste trabalho abordamos a utilização de matrizes e as soluções de seus sistemas para determinar o deslocamento de N partes de um foguete e assim descobrirmos se alguma destas partes tem o deslocamento maior que 2 cm em módulo, o que faz com que o foguete exploda, com os diversos resultados podemos concluir que o sistema atende as expectativas e executa corretamente os métodos pedidos.

Obrigado pela Atenção. Dúvidas?