19

$$= \frac{x+1}{x-1} \neq \pm f(x)$$

f(x) is neither even nor odd function.

(v)
$$f(x) = x^{2/3} + 6$$

 $f(-x) = (-x)^{2/3} + 6$
 $= [(-x)^2]^{1/3} + 6$
 $= (x^2)^{1/3} + 6$
 $= x^{2/3} + 6$
 $= f(x)$

f(x) is an even function.

(vi)
$$f(x) = \frac{x^3 - x}{x^2 + 1}$$

$$f(-x) = \frac{(-x)^3 - (-x)}{(-x)^2 + 1}$$

$$= \frac{-x^3 + x}{x^2 + 1}$$

$$= \frac{-(x^3 - x)}{x^2 + 1}$$

$$= -f(x)$$

f(x) is an odd function.

Composition of Functions:

Let f be a function from set X to set Y and g be a function from set Y to set Z. The composition of f and g is a function, denoted by gof, from X to Z and is defined by.

$$(gof)(x) = g(f(x)) = gf(x) \text{ for all } x \in X$$

Inverse of a Function:

Let f be one-one function from X onto Y. The inverse function of f, denoted by f⁻¹, is a function from Y onto X and is defined by.

$$x = f^{-1}(y)$$
, $\forall y \in Y \text{ if and only if } y = f(x), $\forall x \in X$$

EXERCISE 1.2

- The real valued functions f and g are defined below. Find Q.1
- fog(x) (b) gof(x) (c) fof(x)
- (d) gog (x)

(i)
$$f(x) = 2x + 1$$
; $g(x) = \frac{3}{x-1}$, $x \neq 1$

(ii)
$$f(x) = \sqrt{x+1}$$
; $g(x) = \frac{1}{x^2}$, $x \neq 0$

(iii)
$$f(x) = \frac{1}{\sqrt{x-1}}$$
; $x \neq 1$; $g(x) = (x^2+1)^2$

(iv)
$$f(x) = 3x^4 - 2x^2$$
; $g(x) = \frac{2}{\sqrt{x}}$, $x \neq 0$

Solution:

(i)
$$f(x) = 2x + 1$$
; $g(x) = \frac{3}{x-1}$, $x \neq 1$

(a) fog (x) = f(g(x))
=
$$f\left(\frac{3}{x-1}\right)$$

= $2\left(\frac{3}{x-1}\right)+1$
= $\frac{6}{x-1}+1$
= $\frac{6+x-1}{x-1}$
= $\frac{x+5}{x-1}$ Ans.

(b)
$$gof(x) = g(f(x))$$

= $g(2x + 1)$
= $\frac{3}{2x + 1 - 1} = \frac{3}{2x}$ Ans.

(c)
$$fof(x) = f(f(x))$$

= $f(2x + 1)$
= $2(2x + 1) + 1$
= $4x + 2 + 1$
= $4x + 3$ Ans.

(d)
$$gog(x) = g(g(x))$$

$$= g\left(\frac{3}{x-1}\right)$$

$$= \frac{3}{\frac{3}{x-1}-1}$$

$$= \frac{3}{\frac{3 - (x - 1)}{x - 1}}$$

$$= \frac{3(x - 1)}{3 - x + 1}$$

$$= \frac{3(x - 1)}{4 - x} \quad \text{Ans.}$$

(ii)
$$f(x) = \sqrt{x+1}$$
; $g(x) = \frac{1}{x^2}$, $x \neq 0$

(a)
$$fog(x) = f(g(x))$$

$$= f\left(\frac{1}{x^2}\right)$$

$$= \sqrt{\frac{1}{x^2} + 1}$$

$$= \sqrt{\frac{1 + x^2}{x^2}} = \frac{\sqrt{1 + x^2}}{x}$$
 Ans.

(b)
$$gof(x) = g(f(x))$$

$$= g(\sqrt{x+1})$$

$$= \frac{1}{(\sqrt{x+1})^2} = \frac{1}{x+1}$$
 Ans.

(c) fof(x) = f(f(x))
= f(
$$\sqrt{x+1}$$
)
= $\sqrt{\sqrt{x+1}+1}$ Ans.

(d)
$$gog(x) = g(g(x))$$
$$= g\left(\frac{1}{x^2}\right)$$
$$= \frac{1}{\left(\frac{1}{x^2}\right)^2} = \frac{1}{\frac{1}{x^4}} = x^4 \quad Ans.$$

(iii)
$$f(x) = \frac{1}{\sqrt{x-1}}$$
; $x \neq 1$; $g(x) = (x^2+1)^2$

(a)
$$fog(x) = f(g(x))$$

= $f((x^2 + 1)^2)$
= $\frac{1}{\sqrt{(x^2 + 1)^2 - 1}}$

$$= \frac{1}{\sqrt{x^4 + 1 + 2x^2 - 1}}$$

$$= \frac{1}{\sqrt{x^2(x^2 + 2)}} = \frac{1}{x\sqrt{x^2 + 2}}$$
 Ans.
(b) $gof(x) = g(f(x))$

(b)
$$\gcd(x) = \gcd(f(x))$$

$$= g\left(\frac{1}{\sqrt{x-1}}\right)$$

$$= \left[\left(\frac{1}{\sqrt{x-1}}\right)^2 + 1\right]^2$$

$$= \left(\frac{1}{x-1} + 1\right)^2 = \left(\frac{1+x-1}{x-1}\right)^2$$

$$= \left(\frac{x}{x-1}\right)^2 \quad \text{Ans.}$$

(c)
$$fof(x) = f(f(x))$$

$$= f\left(\frac{1}{\sqrt{x-1}}\right)$$

$$= \frac{1}{\sqrt{\frac{1}{\sqrt{x-1}}-1}}$$

$$= \frac{1}{\sqrt{\frac{1-\sqrt{x-1}}{\sqrt{x-1}}}} = \sqrt{\frac{\sqrt{x-1}}{1-\sqrt{x-1}}} \quad Ans.$$

(d)
$$gog(x) = g(g(x))$$

 $= g((x^2 + 1)^2)$
 $= [\{(x^2 + 1)^2\}^2 + 1]^2$
 $= [(x^2 + 1)^4 + 1]^2$ Ans.

(iv)
$$f(x) = 3x^4 - 2x^2$$
; $g(x) = \frac{2}{\sqrt{x}}$, $x \neq 0$

(a)
$$fog(x) = f(g(x))$$

$$= f\left(\frac{2}{\sqrt{x}}\right)$$

$$= 3\left(\frac{2}{\sqrt{x}}\right)^4 - 2\left(\frac{2}{\sqrt{x}}\right)^2$$

$$= 3\left(\frac{16}{x^2}\right) - 2\left(\frac{4}{x}\right)$$

$$= \frac{48}{x^2} - \frac{8}{x}$$

$$= \frac{48 - 8x}{x^2}$$

$$= \frac{8(6 - x)}{x^2}$$
 Ans.

(b)
$$gof(x) = g(f(x))$$

 $= g(3x^4 - 2x^2)$
 $= \frac{2}{\sqrt{3x^4 - 2x^2}}$
 $= \frac{2}{\sqrt{x^2(3x^2 - 2)}} = \frac{2}{x\sqrt{3x^2 - 2}}$ Ans.

(c)
$$fof(x) = f(f(x))$$

= $f(3x^4 - 2x^2)$
= $3(3x^4 - 2x^2)^4 - 2(3x^4 - 2x^2)^2$ Ans.

(d)
$$gog(x) = g(g(x))$$

 $= g\left(\frac{2}{\sqrt{x}}\right)$
 $= \frac{2}{\sqrt{2/\sqrt{x}}}$
 $= 2\sqrt{\frac{\sqrt{x}}{2}}$
 $= \sqrt{2} \times \sqrt{2} \frac{\sqrt{\sqrt{x}}}{\sqrt{2}}$
 $= \sqrt{2}\sqrt{x}$ Ans.

For the real valued function, f defined below, find: **Q.2**

$$(a) f^{-1}(x)$$

(b)
$$f^{-1}(-1)$$
 and verify $f(f^{-1}(x)) = f^{-1}(f(x)) = x$

(i)
$$f(x) = -2x + 8$$
 (Lahore Board 2007,2009)

(iii)
$$f(x) = (-x + 9)^3$$

(ii)
$$f(x) = 3x^3 + 7$$

(iv) $f(x) = \frac{2x+1}{2x+1}$

(iv)
$$f(x) = \frac{2x+1}{x-1}$$
, $x > 1$

(i)
$$f(x) = -2x + 8$$

(a) Since
$$y = f(x)$$

 $\Rightarrow x = f^{-1}(y)$

Now,

$$f(x) = -2x + 8$$

$$y = -2x + 8$$

$$2x = 8 - y$$

$$x = \frac{8 - y}{2}$$

24

$$f^{-1}(y) = \frac{8-y}{2}$$

Replacing y by x

$$f^{-1}(x) = \frac{8-x}{2}$$

Replacing y by x.

$$f^{-1}(x) = \frac{8-x}{2}$$

(b) Put,
$$x = -1$$

$$f^{-1}(-1) = \frac{8-(-1)}{2} = \frac{8+1}{2} = \frac{9}{2}$$

$$f(f^{-1}(x)) = f(\frac{8-x}{2})$$

$$= -2(\frac{8-x}{2}) + 8$$

$$= -8 + x + 8$$

$$f^{-1}(f(x)) = f^{-1}(-2x + 8)$$

$$= \frac{8 - (-2x + 8)}{2}$$

$$= \frac{8 + 2x - 8}{2}$$

$$= \frac{2x}{2} = x$$

$$f(f^{-1}(x)) = f^{-1}(f(x)) = x$$
 Hence proved.

(ii)
$$f(x) = 3x^3 + 7$$

(a) Since
$$y = f(x)$$

 $=> x = f^{-1}(y)$
Now
 $f(x) = 3x^3 + 7$
 $y = 3x^3 + 7$
 $3x^3 = y - 7$
 $x^3 = \frac{y - 7}{3}$
 $x = \left(\frac{y - 7}{3}\right)^{\frac{1}{3}}$

Replacing y by x

$$f^{-1}(x) = \left(\frac{x-7}{3}\right)^{\frac{1}{3}}$$
(b) Put $x = -1$

$$f^{-1}(-1) = \left(\frac{-1-7}{3}\right)^{\frac{1}{3}}$$

$$= \left(\frac{-8}{3}\right)^{\frac{1}{3}}$$

$$= \left[\left(\frac{x-7}{3}\right)^{\frac{1}{3}}\right]^{\frac{1}{3}}$$

$$= 3\left[\left(\frac{x-7}{3}\right)^{\frac{1}{3}}\right]^{\frac{1}{3}} + 7$$

$$= 3\left[\left(\frac{x-7}{3}\right)^{\frac{1}{3}}\right]^{\frac{1}{3}} + 7$$

$$= x-7+7 = x$$

$$= x-7+7 = x$$

$$= f^{-1}(f(x)) = f^{-1}(3x^3+7)$$

$$= \left(\frac{3x^3+7-7}{3}\right)^{\frac{1}{3}}$$

$$= \left(\frac{3x^{3}}{3}\right)^{\frac{1}{3}}$$

$$= (x^{3})^{\frac{1}{3}} = x$$

$$f\left(f^{-1}(x)\right) = f^{-1}\left(f(x)\right) = x \qquad \text{Hence proved.}$$
(iii) $f(x) = (-x+9)^{3}$
(a) Since $y = f(x)$

(a) Since
$$y = f(x)$$

 $x = f^{-1}(y)$
Now

f(x) =
$$(-x+9)^3$$

y = $(-x+9)^3$
 $y^{\frac{1}{3}}$ = $-x+9$
x = $9-y^{\frac{1}{3}}$

Replacing y by x

$$f^{-1}(x) = 9 - x^{\frac{1}{3}}$$

(b) Put
$$x = -1$$

$$f^{-1}(-1) = 9 - (-1)^{\frac{1}{3}}$$

$$f(f^{-1}(x)) = f(9 - x^{\frac{1}{3}})$$

$$= [-(9 - x^{\frac{1}{3}}) + 9]^{\frac{1}{3}}$$

$$= (-9 + x^{\frac{1}{3}} + 9)^{3}$$

$$= (x^{\frac{1}{3}})^{3} = x$$

$$f^{-1}(f(x)) = f^{-1}((-x + 9)^{3})$$

$$f^{-1}(f(x)) = f^{-1}((-x+9)^3)$$

= $9 - [(-x+9)^3]^{\frac{1}{3}}$
= $9 - (-x+9)$
= $9 + x - 9$
= x

$$f(f^{-1}(x)) = f^{-1}(f(x)) = x$$

Hence proved.

(iv)
$$f(x) = \frac{2x+1}{x-1}, x > 1$$

(a) Since
$$y = f(x)$$

 $x = f^{-1}(y)$

Now

$$f(x) = \frac{2x+1}{x-1}$$

$$y = \frac{2x+1}{x-1}$$

$$y(x-1) = 2x+1$$

$$yx-y = 2x+1$$

$$yx-2x = 1+y$$

$$x(y-2) = y+1$$

$$x = \frac{y+1}{y-2}$$

$$f^{-1}(y) = \frac{y+1}{y-2}$$

Replacing y by x

$$f^{-1}(x) = \frac{x+1}{x-2}$$

(b) Put
$$x = -1$$

$$f^{-1}(-1) = \frac{-1+1}{-1-2}$$

$$= \frac{0}{-3} = 0$$

$$f(f^{-1}(x)) = f(\frac{x+1}{x-2})$$

$$= \frac{2(\frac{x+1}{x-2})+1}{\frac{x+1}{x-2}-1}$$

$$= \frac{2(x+1)+(x-2)}{\frac{x-2}{x-2}}$$

$$= \frac{2x + 2 + x - 2}{x + 1 - x + 2}$$

$$= \frac{3x}{3} = x$$

$$= f^{-1} \left(f(x) \right)$$

$$= \frac{\frac{2x + 1}{x - 1}}{\frac{2x + 1}{x - 1}}$$

$$= \frac{\frac{2x + 1}{x - 1} + 1}{\frac{2x + 1}{x - 1}}$$

$$= \frac{\frac{2x + 1 + x - 1}{x - 1}}{\frac{2x + 1 + x - 1}{2x + 1 - 2(x - 1)}}$$

$$= \frac{3x}{2x + 1 - 2x + 2}$$

$$= \frac{3x}{3} = x$$

$$f(f^{-1}(x)) = f^{-1}(f(x)) = x$$
 Hence proved.

Q.3 Without finding the inverse, state the domain and range of f⁻¹.

(i)
$$f(x) = \sqrt{x+2}$$

(ii)
$$f(x) = \frac{x-1}{x-4}, x \neq 4$$

(i)
$$f(x) = \sqrt{x+2}$$

(iii) $f(x) = \frac{1}{x+3}, x \neq -3$

(iv)
$$f(x) = (x-5)^2, x \ge 5$$

Solution:

(i)
$$f(x) = \sqrt{x+2}$$

Domain of $f(x) = [-2, +\infty)$

Range of f(x) $= [0, +\infty)$

Domain of $f^{-1}(x)$ = Range of f(x) = $[0, +\infty)$

Range of $f^{-1}(x)$ = Domain of f(x) = $[-2, +\infty)$

(ii)
$$f(x) = \frac{x-1}{x-4}, x \neq 4$$

Domain of $f(x) = R - \{4\}$

Range of $f(x) = R - \{1\}$

Domain of $f^{-1}(x) = Range of f(x) = R - \{1\}$

Range of $f^{-1}(x)$ = Domain of f(x) = $R - \{4\}$

(iii)
$$f(x) = \frac{1}{x+3}, x \neq -3$$

Domain of $f(x) = R - \{-3\}$

Range of $f(x) = R - \{0\}$

Domain of $f^{-1}(x) = Range of f(x) = R - \{0\}$

Range of $f^{-1}(x)$ = Domain of f(x) = $R - \{-3\}$

(iv)
$$f(x) = (x-5)^2, x \ge 5$$
 (Gujranwala Board 2007)

Domain of $f(x) = [5, +\infty)$

Range of $f(x) = [0, +\infty)$

Domain of $f^{-1}(x) = Range of f(x) = [0, +\infty)$ Range of $f^{-1}(x) = Domain of f(x) = [5, +\infty)$

Limit of a Function:

Let a function f(x) be defined in an open interval near the number 'a' (need not at a) if, as x approaches 'a' from both left and right side of 'a', f(x) approaches a specific number 'L' then 'L', is called the limit of f(x) as x approaches a symbolically it is written as.

$$\lim_{x\to a} f(x) = L \text{ read as "Limit of } f(x) \text{ as } x \to a, \text{ is } L$$
"

Theorems on Limits of Functions:

Let f and g be two functions, for which Lim f(x) = L and Lim g(x) = M, then

Theorem 1: The limit of the sum of two functions is equal to the sum of their limits.

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$
$$= L + M$$

The limit of the difference of two functions is equal to the difference of Theorem 2: their limits.

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$
$$= L - M$$

Theorem 3: If K is any real numbers, then.

$$\lim_{x\to a} [kf(x)] = K \lim_{x\to a} f(x) = kL$$

Theorem 4: The limit of the product of the functions is equal to the product of their limits.

$$\lim_{x\to a} [f(x) \cdot g(x)] = [\lim_{x\to a} f(x)] [\lim_{x\to a} g(x)] = LM$$

Theorem 5: The limit of the quotient of the functions is equal to the quotient of their limits provided the limit of the denominator is non-zero.

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M} \quad , \quad g(x) \neq 0, M \neq 0$$

Theorem 6: Limit of $[f(x)]^n$, where n is an integer.

$$\underset{x \to a}{\text{Lim}} [f(x)]^n = [\underset{x \to a}{\text{Lim}} f(x)]^n = L^n$$

The Sandwitch Theorem:

Let f, g and h be functions such that $f(x) \le g(x) \le h(x)$ for all number x in some open interval containing "C", except possibly at C itself.

If,
$$\lim_{x\to c} f(x) = L$$
 and $\lim_{x\to c} h(x) = L$, then $\lim_{x\to c} g(x) = L$

Prove that

If θ is measured in radian, then

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Proof:

Take θ a positive acute central angle of a circle with radius r = 1. OAB represents the sector of the circle.

$$|OA| = |OC| = 1 \tag{1}$$

(radii of unit circle)

From right angle ΔODC

$$\sin\theta = \frac{|DC|}{|OC|} = |DC|$$
 (: $|OC| = 1$)

From right angle ΔOAB

$$Tan\theta = \frac{|AB|}{|OA|} = AB$$
 (: $|OA| = 1$)

In terms of θ , the areas are expressed as

Area of
$$\triangle OAC = \frac{1}{2} |OA| |CD| = \frac{1}{2} (1) \sin\theta = \frac{1}{2} \sin\theta$$

Area of sector OAC
$$= \frac{1}{2} r^2 \theta = \frac{1}{2} (1)(\theta) = \frac{1}{2} \theta$$

Area of
$$\triangle OAB = \frac{1}{2} |OA| |AB| = \frac{1}{2} (1) \tan\theta = \frac{1}{2} \tan\theta$$

From figure

Area of $\triangle OAB >$ Area of sector OAC > Area of $\triangle OAC$

$$\frac{1}{2}\tan\theta > \frac{1}{2}\theta > \frac{1}{2}\sin\theta$$

$$\frac{1}{2} \frac{\sin \theta}{\cos \theta} > \frac{\theta}{2} > \frac{\sin \theta}{2}$$

As $\sin\theta$ is positive, so on division by $\frac{1}{2}\sin\theta$, we get.

$$\frac{1}{\cos\theta} > \frac{\theta}{\sin\theta} > 1 \quad (0 < \theta < \pi/2)$$

i.e.

$$\cos\theta < \frac{\sin\theta}{\theta} < 1$$

When, $\theta \to 0$, $\cos \theta \to 1$

Since $\frac{\sin\theta}{\theta}$ is sandwitched between 1 and a quantity approaching 1 itself.

So by the sandwitch theorem it must also approach 1. i.e.

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Theorem: Prove that

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = \epsilon$$

Proof:

Taking

$$\left(1 + \frac{1}{n}\right)^n = 1 + n\left(\frac{1}{n}\right) + \frac{n(n-1)}{2!} \left(\frac{1}{n}\right)^2 + \frac{n(n-1)(n-2)}{3!} \left(\frac{1}{n}\right)^3 + \dots$$

$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots$$

Taking $\lim_{n \to +\infty}$ on both sides.

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots$$

$$= 1 + 1 + 0.5 + 0.166667 + 0.0416667 + \dots$$

32

As approximate value of e is = 2.718281

$$\therefore \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^2 = e$$

Deduction:

$$\lim_{x \to 0} (1+x)^{1/x} = e$$

We know that.

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e$$

Put
$$x = \frac{1}{n}$$
 then $\frac{1}{x} = n$

$$\text{As} \qquad n \to +\infty \qquad , \quad x \to 0$$

$$\therefore \lim_{n \to +\infty} (1+x)^{1/x} = e$$

Theorem:

Prove that:

$$\lim_{x \to a} \frac{a^x - 1}{x} = \log_e a$$

Proof:

Taking,

$$\lim_{x \to a} \frac{a^{x} - 1}{x}$$
Let $a^{x} - 1 = y$
 $a^{x} = 1 + y$
 $x = \log_{a} (1 + y)$

As, $x \to a$, $y \to 0$

$$\lim_{x \to a} \frac{a^{x} - 1}{x} = \lim_{y \to 0} \frac{y}{\log_{a}(1 + y)}$$

$$= \lim_{y \to 0} \frac{1}{\frac{1}{y} \log_{a}(1 + y)} = \lim_{y \to 0} \frac{1}{\log_{a}(1 + y)^{y}}$$

$$= \frac{1}{\log_{a}e} \qquad \qquad \therefore \lim_{y \to 0} (1 + y)^{1/y} = e$$

$$= \log_{c}a$$

$$\lim_{x \to 0} \left(\frac{e^x - 1}{x} \right) = \log_e e = 1$$

We know that

$$\lim_{x \to 0} \quad \left(\frac{a^x - 1}{x}\right) = log_e a$$

Put

$$\lim_{x \to 0} \left(\frac{e^x - 1}{x} \right) = \log_e e = 1$$

Important results to remember

(i)
$$\lim_{x \to +\infty} (e^x) = \infty$$
 (ii) $\lim_{x \to -\infty} (e^x) = \lim_{x \to -\infty} \left(\frac{1}{e^{-x}}\right) = 0$

(iii)
$$\lim_{x \to +\infty} \left(\frac{a}{x} \right) = 0$$
, where a is any real number.

EXERCISE 1.3

33

Q.1 Evaluate each limit by using theorems of limits.

(i)
$$\lim_{x \to 3} (2x + 4)$$

(ii)
$$\lim_{x\to 1} (3x^2 - 2x + 4)$$

(iii)
$$\lim_{x \to 3} \sqrt{x^2 + x + 4}$$

(iv)
$$\lim_{x\to 2} x\sqrt{x^2-4}$$

(iii)
$$\lim_{x \to 3} \sqrt{x^2 + x + 4}$$
 (iv) $\lim_{x \to 2} x \sqrt{x^2 - 4}$ (v) $\lim_{x \to 2} (\sqrt{x^3 + 1} - \sqrt{x^2 + 5})$ (iv) $\lim_{x \to 2} \frac{2x^3 + 5x}{3x - 2}$

Solution:

(i)
$$\lim_{x\to 3} (2x + 4) = \lim_{x\to 3} (2x) + \lim_{x\to 3} (4)$$

= $2 \lim_{x\to 3} x + 4$

$$= 2(3) + 4 = 6 + 4 = 10$$
 Ans.

(ii)
$$\lim_{x \to 1} (3x^2 - 2x + 4) = \lim_{x \to 1} (3x^2) - \lim_{x \to 1} (2x) + \lim_{x \to 1} (4)$$

 $= 3 \lim_{x \to 1} x^2 - 2 \lim_{x \to 1} x + 4$
 $= 3(1)^2 - 2(1) + 4$
 $= 3 - 2 + 4$

(iii)
$$\lim_{x\to 3} \sqrt{x^2 + x + 4} = \left[\lim_{x\to 3} (x^2 + x + 4) \right]^{1/2}$$