

## **Tutorium 1**





#### Warum Datenbanken?

- Daten müssen persistent gespeichert werden (auch nachdem der Computer ausgeschaltet wird)
- "Datenunabhängigkeit" ist bei Festplatten aber auch nicht gegeben
- Mehrere Benutzer müssen gleichzeitig auf die Daten zugreifen
- Daten müssen möglichst Redundanzfrei gespeichert werden
- Datenschutz
- Schutz bei Dateiverlust



#### **Aufbau eines Datenbanksystems**



Bestandteile einer Datenbank

-> Anwendungen kommunizieren mit dem Datenbanksystem

Datenbanksystem (DBS) umfasst:

- Datenbankmanagementsystem (DBMS)
- Datenbank (DB)

Aufgabe eines Datenbanksystems ist:

- Beschreibung, Speicherung, Pflege und Wiedergewinnung großer Datenmengen



### Aufgabe 1.1.a – Grundlegendes über Datenbanksysteme

a) Welche 9 zentralen Anforderungen an ein Datenbanksystem definierte Edgar Codd?

#### 1. Integration:

Einheitliche Verwaltung *aller* von Anwendungen benötigten Daten. Redundanzfreie Datenhaltung des gesamten Datenbestandes

#### 2. Operation:

Operationen zur Speicherung, zur Recherche und zur Manipulation der Daten müssen vorhanden sein

#### 3. Data Dictionary:

Ein Katalog erlaubt zugriffe auf die Beschreibung der Daten

#### 4. Benutzersichten:

Für unterschiedliche Anwendungen unterschiedliche Sicht auf den Bestand



## Aufgabe 1.1.a – Grundlegendes über Datenbanksysteme

#### 5. Konsistenzüberwachung:

Das DBMS überwacht die Korrektheit der Daten bei Änderungen

#### 6. Zugriffskontrolle:

Ausschluss unautorisierter Zugriffe

#### 7. Transaktionen:

Zusammenfassung einer Folge von Änderungsoperationen zu einer Einheit, deren Effekt bei einer Erfolg permanent gespeichert wird

#### 8. Synchronisation:

Ermöglicht das Arbeiten mehrerer Benutzer gleichzeitig mit der DB

#### 9. Datensicherung:

Wiederherstellung der DB zu dem Zustand nach der letzten Transaktion



#### Aufgabe 1.1.b – Was versteht man unter …?

#### **Externe Ebene**

- -> verschiedene Benutzersichten
- -> Benutzergruppen können nur auf freigegebenen Daten arbeiten

Kann ohne Änderung der externen Benutzersichten verändert werden

-> logische Datenunabhängigkeit

## Konzeptionelle Ebene

- -> Die Struktur der gesamten Datenbank wird unabhängig von der Benutzergruppe beschrieben
- -> Unabhängig von der physikalischen Speicherstruktur

#### Kann ohne Änderung der konzeptionellen/externen Ebene verändert werden

-> physischeDatenunabhängigkeit

#### Interne Ebene

-> Beschreibt Schema der physikalischen Speicherung (Indexierung usw.)



## Aufgabe 1.2 - Mengen, Relationen, Funktionen - Veranschaulichung

Betrachten wir die Mengen  $A = \{a, b, c\}$  und  $Z = \{1, 2, 3, 4\}$  und eine zweistellige Relation R dazwischen. Wenn zum Beispiel die Elemente  $a \in A$  und  $2 \in Z$  in der Relation R stehen, drückt man das mathematisch so aus: aR2 oder  $(a, 2) \in R$ . Graphisch kann man es so veranschaulichen, dass man die Elemente der beiden Mengen hinzeichnet und zwischen a und 2 eine Linie zieht:



Relation von A nach Z



Relation von R nach R



Relation von Flüssen nach Ländern durch die diese fließen



## Aufgabe 1.2.a – Das kartesische Produkt A X Z

Jedes Element in A ist ein Partner von jedem Element in Z (alles mit allem)





## Aufgabe 1.2.b – Eine totale Funktion von A nach Z

- 1. Jedes Element in A hat genau einen Partner in Z (nicht kein, nicht mehrere)
- 2. Elemente in **Z** dürfen keinen, einen oder mehrere Partner in **A** haben





# Aufgabe 1.2.c – Eine zweistellige Relation zwischen A und Z, die keine Funktion ist (weder von A nach Z noch von Z nach A)

1. Elemente aus A dürfen nur nicht mehrere Partner in Z haben (und umgekehrt







Finn Kapitza @campus.lmu.de,