AMENDMENTS TO THE SPECIFICATION

Please replace paragraph beginning on line 3 of page 3 with the following amended paragraph:

It is known to further modulate the ranging codes using a sub-carrier, that is, a further signal is convolved with the P codes and/or CA codes to create Binary Offset Carrier (BOC) modulation as is known within the art see, for example, J. W. Betz, "Binary Offset Carrier Modulation for Radionavigation", Navigation, Vol. 48, pp227-246, Winter 2001-2002. Standard BOC modulation 200 is illustrated in figure 2. Figure 2 illustrates the combination of a portion of a CA code 202 with a subcarrier signal to produce the BOC signal 204 used to modulate a carrier such as, for example, L1. It can be appreciated that the BOC signal is a rectangular square wave and can be represented as, for example, $c_i(t)$ *sign(sin($2\pi f_s t$)), where f_s is the frequency of the subcarrier. One skilled in the art understands that $BOC(f_s, f_c)$ denotes Binary Offset Carrier modulation with a subcarrier frequency of f_s and a code rate (or chipping rate) of f_c . Using binary offset carriers results in the following signal descriptions of the signals emitted from the satellite:

 $S_{L1i}(t) = A_{mS}c_{im}(t)m_i(t)d_i(t)\cos(\omega_1t) + A_{cS}c_{ig}(t)g_i(t)d_i(t)\sin(\omega_1t) = I_{SL1i}(t) + Q_{SL1i}(t), \text{ and}$

 $S_{L2i}(t) = B_{mSCim}(t)m_i(t)d_i(t)\cos(\omega_2 t)$

where

 A_m , A_c and B_m are amplitudes;

m(t) is an m-code BOC(10,5) signal;

 $g_i(t)$ is a Galileo open service range code;

 $sc_{mc}(t)$ represents the sub-carrier signal for $m_i(t)$;

 $sc_{ig}(t)$ represents a subcarrier for $[[c_i(t)]]$ $g_i(t)$; and

 ω_1 and ω_2 are the L1 and L2 carrier frequencies;