Lista 7

LPO, termos, fórmulas e árvores de análise

Alfabeto

O alfabeto da LPO é constituído por:

- Símbolos de pontuação: ()
- Símbolos de verdade: 1, 0
- Um conjunto de símbolos para variáveis: $x, y, z, w, x_1, y_1, z_1, \dots$
- Um conjunto de símbolos para funções: $f, g, h, f_1, h_1, g_1, \dots$
- Um conjunto de símbolos para predicados: P,Q,R,\dots
- Conectivos: $\neg, \land, \lor, \rightarrow, \forall, \exists$

Cada símbolo para função ou predicado possui uma aridade, geralmente representada por n-ária, com n >= 0. Quando n = 0, tem-se um predicado ou função θ -ária ou sem argumentos. As funções sem argumentos representam as constantes. Da mesma forma, os predicados sem argumentos representam as proposições.

Termo

Os termos da LPO são construídos segundo as regras:

- As variáveis são termos.
- Se t_1, t_2, \ldots, t_n são termos e f é um símbolo para função n-ária, então $f(t_1, t_2, \ldots, t_n)$ é um termo.
- As constantes, que são funções θ -árias são termos.

Fórmula

As fórmulas da LPO são definidos como segue:

- Se P é um símbolo predicado n-ário com $n \ge 1$ e se t_1, t_2, \ldots, t_n são termos, então $P(t_1, t_2, \ldots, t_n)$ é uma fórmula.
- Se A é uma fórmula, então $(\neg A)$ também é.
- Se A e B são fórmulas, então e $(A \wedge B)$, $(A \vee B)$ e $(A \to B)$ também são.
- Se A é uma fórmula e x é uma variável, então $\forall xA$ e $\exists xA$ também são.

- 1. Quais das cadeias a seguir são fórmulas na lógica de primeira ordem? Justifique as que não são fórmulas e desenhe a árvore de análise para as cadeias que são.
 - a) Seja m uma constante, f um símbolo funcional unário e S e B dois símbolos predicados binários.

```
i. S(m, x)
ii. B(m, f(m))
```

iii.
$$f(m)$$

iv. B(B(m, x), y)

v.
$$S(B(m), z)$$

vi.
$$(B(x,y) \to (\exists z S(z,y)))$$

vii.
$$(S(x,y) \to S(y, f(f(x))))$$

viii.
$$(B(x) \to B(B(x)))$$

b) Sejam c e d constantes, f um símbolo funcional unário, g um símbolo funcional binário e h um símbolo funcional ternário. Além disso, sejam P e Q símbolos predicados ternários:

```
i. \forall x P(f(d), h(g(c, x), d, y))
```

ii.
$$\forall x P(f(d), h(P(x, y), d, y))$$

iii.
$$\forall x Q(g(h(x, f(d), x), g(x, x)), h(x, x, x), c)$$

iv.
$$\exists z (Q(z,z,z) \to P(z))$$

v.
$$\forall x \forall y (g(x,y) \rightarrow P(x,y,x))$$

vi.
$$Q(c, d, c)$$

- 2. Seja ϕ a fórmula $\exists x (P(y,z) \land (\forall y (\neg Q(y,x) \lor P(y,z))))$, onde P e Q são símbolos predicados binários.
 - a) Desenhe a árvore de análise de ϕ
 - b) Identifique todas as folhas em ϕ que são variáveis livres ou presas.
 - c) Existe alguma variável em ϕ que ocorre livre e presa?
 - d) Considere os termos w, onde w é uma variável, f(x) e g(y, z), onde f e g são símbolos funcionais unário e binário, respectivamente.
 - i. Faça as substituições (quando possível) separadamente para $\phi[w/x]$, $\phi[w/y]$, $\phi[f(x)/y]$ e $\phi[g(y,z)/z]$.
 - e) Qual o escopo de $\exists x \text{ em } \phi$?
 - f) Suponha que modificamos ϕ para $\exists x (P(y,z) \land (\forall x (\neg Q(x,x) \lor P(x,z))))$. Qual o escopo de $\exists x$ agora?