SUPPLEMENTARY MATERIAL FOR PAS: PROBABLY APPROXIMATE SAFETY VERIFICATION OF REINFORCEMENT LEARNING POLICY USING SCENARIO OPTIMIZATION

A PREPRINT

Appendix

1 Experimental Setup

We performed all of our experiments on a Linux system with Ubuntu OS version 2022, a 20-core CPU with 64 GB memory. The Algorithm1 in the main text is implemented in Python3. We implement the barrier certificate using a linear function as $\mathcal{B}_{\phi}(s) = \phi_w \cdot s + \phi_b$, where $\phi = \{\phi_w, \phi_b\}$. We use the linear layer module of Pytorch to implement the linear function. Regarding the training of unsafe and safe policies for all three RL domains, we use stable-baseline3[Raffin et al.(2021)] implementation of PPO[Schulman et al.(2017)] algorithm.

Parameters	Value	Description
δ	1e-2	Learning rate for gradient decent for barrier certificate parameter ϕ .
lr	1e-2	Learning rate used in PPO for training <i>unsafe</i> and <i>safe</i> policies.
$H^{\text{safe-nav}}$	100	Episode length of safe navigation environment.
$T_{ m unsafe}^{ m safe-nav}$	100k	Total number of training steps for unsafe policy in the safe navigation environment.
$T_{\mathrm{safe}}^{\mathrm{safe-nav}}$	500k	Total number of training steps for safe policy in the safe navigation environment.
$H^{\text{safe-mcar}}$	200	Episode length of safe mountain car environment.
$T_{\mathrm{unsafe}}^{\mathrm{safe-mcar}}$	1M	Total number of training steps for unsafe policy in the safe mountain car environment.
τ sate $-$ mcar	5M	Total number of training steps for safe policy in the safe mountain car environment.
$\overset{I}{H}^{\mathrm{safe}}_{\mathrm{cpole}}$	200	Episode length of safe cartpole environment.
$T_{\rm unsafe}^{\rm safe-cpole}$	300k	Total number of training steps for unsafe policy in the safe cartpole environment.
$T_{\mathrm{safe-cpole}}^{\mathrm{unsafe}}$	1M	Total number of training steps for safe policy in safe cartpole environment.
$m = \phi $	5	Number of parameters of barrier certificate for safe navigation environment.
$m = \phi $	2	Number of parameters of barrier certificate for safe mountain car environment.
$m = \phi $	2	Number of parameters of barrier certificate for safe cartpole environment.
γ	0.95	Discount factor used in training unsafe and safe policies.
M	300	Total number of iterations in Algorithm 1.

References

[Raffin et al.(2021)] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann. 2021. Stable-Baselines3: Reliable Reinforcement Learning Implementations. *Journal of Machine Learning Research* 22, 268 (2021), 1–8. http://jmlr.org/papers/v22/20-1364.html

[Schulman et al.(2017)] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization algorithms. *CoRR* abs/1707.06347 (2017).