benrbray.com
(more on my website!)

Benjamin R. Bray

benrbray@gmail.com
github.com/benrbray

Education

Georgia Institute of Technology, M.S. Computer Science University of Michigan, B.S. Honors Applied Mathematics (Atlanta, GA) 2017 – 2019 (Ann Arbor, MI) 2013 – 2017

Work Experience

Research Engineer, Hasuo Lab @ National Institute of Informatics

(Tokyo, Japan) Feb 2023 – Now

- » Collaborated with researchers to translate their academic work into proof-of-concept software tools designed to improve **formal verification** workflows for engineers at Japanese automotive companies.
 - \rightarrow A **model checker** for a simple imperative probabilistic programming language.
 - → A domain-specific language called tempo-lang which compiles to signal temporal logic expressions, along with a language server and a web app for creating, documenting, and exemplifying specifications.
- » Technologies
 - \rightarrow Haskell for implementing parsers, interpreters, type inference algorithms, and a language server.
 - → **TypeScript** (React, Vite, CodeMirror) for a web app to edit and visualize tempo-lang specifications.
 - ightarrow **Z3** (the SAT/SMT solver) for generating examples and counterexamples to signal temporal logic specs.
- » Presented our work at the IAA Mobility 2023 automotive trade show in Munich, Germany.

Backend Engineer, Smartpay K.K.

(Tokyo, Japan) March 2022 – Feb 2023

- » Led the design, implementation, testing, and release of a programmatic disbursements backend service which integrates with bank APIs to automatically issue merchant payouts and consumer refunds.
- » Code review, API design, and sprint planning for a backend powering mobile & web apps for a pay-later service.
- » Technologies: Scala with cats-effect. GCP, Pub/Sub, Terraform, GraphQL.

Computer Vision Engineer, EmbodyMe

(Tokyo, Japan) May 2020 – Feb 2022

- » Trained deep learning models to transfer facial expressions from input video onto a target image in real time.
- » Implemented graphics post-processing effects on rendered face meshes to enhance realism.
- » <u>Technologies:</u> Python, PyTorch, ONNX, MediaPipe, GANs, NeRF, attention, transformers

Software Engineering Intern, Microsoft

(Seattle, WA) Summer 2016

» Built a multiplatform mobile app (C# / Xamarin) to display Windows telemetry statistics to developers.

Projects

Noteworthy, a Markdown editor tailored for notes making heavy use of math, diagrams, and citations.

2020

- » My prosemirror-math NPM package adds interactive WYSIWYG math editing support to ProseMirror.
- » My remark-cite NPM package adds pandoc-style citation syntax to the remark markdown parser.
- » Technologies: TypeScript, SolidJS, ProseMirror, CodeMirror, Vite, PNPM, Electron.

Additional Projects (see my website for details!)

- » (rust) An implementation of the sequential impulse algorithm for rigid body physics.
- » (C++/CUDA) Simulation of incompressible fluid flow using parallel Jacobi solver, based on "Stable Fluids".
- » (Haskell) yagi-lang, a toy language for learning about dependent type theory & language implementation.
- » (Haskell) borscht, a command line tool to fill in missing music metadata by querying Discogs.

Academics & Research

Research Assistant, University of Michigan, advised by Dr. Peter McIsaac (Ann Arbor, MI) 2013 – 2015

- » Built a flask web app for humanities researchers to visualize topic models on 19th-century German periodicals.
- » Corrected noisy digital scans using a Hidden Markov Model over word fragments. Trained on a synthetic dataset of eroded digital scans with known text. Segmented words based on letter-successor-variety.
- » Implemented online variational inference for LDA and HDP from scratch in Python.

Research Intern, Approximate Bayesian Inference Team, RIKEN AIP

Tokyo, Japan) Summer 2019

» Studied training dynamics of variational autoencoders (VAEs) and the amortization gap.

Teaching Assistant, CSE 7640, Computational Data Analysis (GaTech)

S20

Teaching Assistant, CS 4540, Advanced Algorithms for Machine Learning (GaTech)

F18, F19

Teaching Assistant, EECS 545/445, Machine Learning (UMich)

S16, F17, S17

» Gave lectures on numerical methods, convex geometry, linear programming, statistical inference.

- [1] Peter McIsaac, Sugih Jamin, Ines Ibanez, Oskar Singer, and **Benjamin Bray**. Die Geowissenschaftliche Analyse von großen Mengen historischer Texte: Die Visualisierung geographischer Verhältnisse in deutschen Familienzeitschriften. In Elisabeth Burr and Patrick Helling, editors, 3. Tagung des Verbands Digital Humanities im deutschsprachigen Raum, DHd 2016, Leipzig, Germany, March 7 12, 2016, 2016.
- [2] Jesse Reimann, Nico Mansion, James Haydon, **Benjamin Bray**, Agnishom Chattopadhyay, Sota Sato, Masaki Waga, Étienne André, Ichiro Hasuo, Naoki Ueda, and Yosuke Yokoyama. Temporal Logic Formalisation of ISO 34502 Critical Scenarios: Modular Construction with the RSS Safety Distance. *CoRR*, 2024.

Relevant Coursework	(*au	dited)
Cs 6241, Advanced Compiler Optimizations » For projects, wrote LLVM transform passes to perform optimizations discussed in class. » Reaching definitions; available expressions; partial redundancy elimination; infeasible paths » Data/loop/control dependencies; loop parallelism, reordering, unrolling, and vectorization	(GT)	S19
Cs 6290, Advanced Computer Architecture	(GT)	S19
 » Pipelining; instruction-level parallelism; superscalar processors; VLIW; Tomasulo/ROB/RAT » Memory hierarchies; multiprocessors; shared memory vs. message passing; cache coherency/con 	sistency	
Cse 6220, High-Performance Parallel Computing	(GT)	S19
 » Parallel runtime analysis; efficiency; interconnection networks & embeddings; MPI programmin » Prefix sum; bitonic sort; sample sort; Cannon's algorithm; parallel FFT 	g	
Math 7244, Stochastic Calculus	(GT)	F18
» Brownian motion; mean-square calculus; continuous-time martingales; stochastic integration ISYE 7687, Discrete Optimization for Machine Learning	(GT)	S18
» Boosting and online learning; bandits and reinforcement learning; away-step conditional gradients. Completed a final report surveying algorithms for online submodular maximization.	nt	
Stats 700, Bayesian Nonparametrics Seminar (U	JM) $F1$	4/S16
 Existence and construction of Dirichlet processes; stick-breaking and Chinese restaurant proces Indian Buffet Processes; Hierarchical Dirichlet Processes; online variational inference and natur Likelihood and sufficiency principles; Bayesian vs. frequentist statistics Exponential families and conjugacy; Gibbs sampling; variational inference Cs 7545, Statistical Learning Theory 		F17
 PAC-learning and VC-dimension; margin learning and kernel methods; boosting Online convex optimization; convex-concave games; exponential weights; mirror descent 	, ,	
Cs 6550, Design & Analysis of Algorithms	(GT)	S18
 Matroids and greedy algorithms; graph connectivity and shortest paths; matchings; linear progressions Gradient and mirror descent; ellipsoid method; Johnson-Lindenstrauss and random projections Completed a final report on random matrix theory and algorithms for sampling random matrix 		
Math 6455, Differential Geometry* » Smooth manifolds; vector fields; geodesics; Riemannian metrics; Levi-Civita connection » Submanifolds; differential forms; Lie groups; integral curves and flows	(GT)	S18
Math 571, Numerical Linear Algebra	(UM)	F15
MATH 671, Fast Numerical Methods	(UM)	S17
Cse 8803, Advanced Scientific Computing » Stationary iterative methods; conjugate gradient and Krylov subspaces; Chebychev polynomials » Nonuniform FFT and butterfly algorithms; Ewald summation; multigrid; fast multipole method » Finite element analysis; molecular simulation with hydrodynamic interactions		S18
MATH 597, Measure Theory & Real Analysis	(UM)	S16
Math 525, Probability Theory Math 420, Advanced Linear Algebra	(UM) (UM)	F16 $F15$
min 120, navanou mica nigora	(OWI)	1 10