M800 Roger Temam 4/22 Report

1 Levy-Khinchin Decomposition

Let W be a \mathcal{U} -valued Wiener process.

Proposition 1.1. W(t) is $\mathcal{L}^2(\mathbb{P}; \mathcal{U})$, for all, i.e. we have $\mathbb{E}||W(t)||_{\mathcal{U}}^2 < +\infty$. Source: M647 Lecture 2 (revised), Theorem 2.2.4 (i).

Outline of Proof. We shall proceed with a similar proof to that of Proposition 1.4 of the 4/15 Report, nothing that for every $n \ge 1$, we find by the mean-zero and independent increments conditions that

$$\mathbb{E}||W(t)||_{\mathcal{U}}^{2} = \text{Var}(W(t)) = \sum_{j=1}^{n} \text{Var}\left[W\left(\frac{jt}{n}\right) - W\left(\frac{(j-1)t}{n}\right)\right]$$

$$= \sum_{j=1}^{n} \text{Var}\mathbb{E}\left[\left|W\left(\frac{j\cdot t}{n}\right) - W\left(\frac{(j-1)t}{n}\right)\right|\right]_{\mathcal{U}}^{2}$$

$$= n\mathbb{E}\left[\left|W\left(\frac{t}{n}\right)\right|\right]_{\mathcal{U}}^{2}$$

giving us

$$\mathbb{E}||W(t)||_{\mathcal{U}}^2 = +\infty \Longrightarrow \forall n \geq 1 \left(\mathbb{E} \left| \left| W\left(\frac{t}{n}\right) \right| \right|_{\mathcal{U}}^2 = +\infty \right).$$

This will then lead to a similar contradiction of the stochastic continuity and W(0) = 0 conditions to the one given in the aforemented proof of *Proposition 1.4* of the 4/15 Report. \Box

Proposition 1.2. the random vector $(\langle W(t_1), u_1 \rangle_{\mathcal{U}}, \dots, \langle W(t_n), u_n \rangle_{\mathcal{U}})$ has the multivariate normal distribution on \mathbb{R}^n , with mean zero. That is, $\forall \Gamma \in \mathfrak{B}(\mathbb{R}^n)$

$$\mathbb{P}[(\langle W(t_1), u_1 \rangle_{\mathcal{U}}, \dots, \langle W(t_n), u_n \rangle_{\mathcal{U}}) \in \Gamma] = \frac{1}{\sqrt{(2\pi)^n \det(\Sigma)}} \int_{\Gamma} e^{-1/2y^T \Sigma^{-1} y} dy \quad (1.1)$$

Here Σ is the $n \times n$ covariance matrix given by:

$$\Sigma_{i,j} := \mathbb{E}[\langle W(t_i), u_i \rangle_{\mathcal{U}} \langle W(t_j), u_j \rangle_{\mathcal{U}}]$$
 (1.2)
Source: M647 Lecture 2 (revised), Theorem 2.2.4 (ii).

Outline of the proof. This result can be derived by applying the independent increments in time invariance property to each component $\langle W(t_i), u_i \rangle_{\mathcal{U}}$ to a uniform partition of increments for each $n \geq 1$, i.e.we get that

$$\langle W(t_i), u_i \rangle_{\mathcal{U}} = \sum_{k=1}^m \left\langle W\left(\frac{kt_i}{m}\right) - W\left(\frac{(k-1)t_i}{m}\right), u_i \right\rangle_{\mathcal{U}},$$

$$\left\langle W\left(\frac{kt_i}{m}\right) - W\left(\frac{(k-1)t_i}{m}\right), u_i \right\rangle_{\mathcal{U}} \sim \left\langle W\left(\frac{t_i}{m}\right), u_i \right\rangle_{\mathcal{U}}$$
 i.i.d.

We then take $m \to +\infty$ and find by the Central Limit Theorem that $(\langle W(t_1), u_1 \rangle_{\mathcal{U}}, \dots, \langle W(t_n), u_n \rangle_{\mathcal{U}})$ is component-wise normal, which we know from the properties of Gaussian (i.e. multivariate normal) distributions is equivalent to a Gaussian distribution. We moreover know that such a Gaussian distribution is uniquely determined by (1.1), with the covariance matrix specified in (1.2). \square

Definition 1.3. Let $Q: \mathcal{U} \to \mathcal{U}$ be a bounded, linear, symmetric, positive, operator and of trace class on \mathcal{U} , then $Q \in L_1^+(\mathcal{U})$.

(Trace class: \exists sequences (a_k) , $(b_k) \subset \mathcal{U}$ such that $Qu = \sum_k \langle a_k, u \rangle b_k$, $\forall u \in U$ and such

that
$$\sum_{k} ||a_k||_{\mathcal{U}} ||b_k||_{\mathcal{U}} < +\infty$$
).

Let $Q \in L_1^+(\mathfrak{U})$. Then \exists an orthonormal basis $(u_n)_{n=1}^{\infty}$ of U consisting of eigenvectors of Q with corresponding eigenvalues $\{\nu_n\}_{n=1}^{\infty}$. Let $\{\beta_n\}_{n=1}^{\infty}$ be a sequence of independent and identically distributed (i.i.d) real-valued Brownian motions. Define W

(1.3)
$$W(t) = \sum_{n=1}^{\infty} \sqrt{\nu_n} \beta_n(t) u_n.$$

Then, the sum in (1.3) converges in $L^2(\Omega; C([0,T],\mathcal{U})) \ \forall T \geq 0$. The process W in (1.3) is a Levy process and its sample paths are continuous a.s. (Wiener process) For any Wiener process W, $\exists Q \in L_1^+(\mathcal{U})$, some i.i.d Brownian motion $\{\beta_n\}_{n=1}^{\infty}$ such that (1.3) holds.

This Q is called the **covariance operator of** W. Source: M647 Lecture 2 (revised), Definition 2.2.5.

In a later draft of this report, we will show that this covariance operator is well-defined.

Proposition 1.4. Let P be a \mathcal{U} -valued CPP with intensity measure μ . If $\mathbb{E}||P(t)||_{\mathcal{U}} < +\infty$ $\forall t$ then

$$\mathbb{E}[P(t)] = t \int_{\mathcal{U}} y d\mu(y) \text{ holds } \forall t \geq 0.$$

We define,

$$\widehat{P}(t) := P(t) - \mathbb{E}[P(t)].$$

We call \widehat{P} a compensated compound Poisson process (CCPP).

Outline of Proof. To be done in a future draft.

□

• CCPP is a mean-zero Levy process, with jump-discontinuities.

Source: M647 Lecture 2 (revised), Definition 2.5.1.

Levy-Khinchin Decomposition: A Levy-process is a sum of a deterministic linear growth term, a Wiener process, a compound Poisson process and a series of compensated compound Poisson process.

Let L be a \mathcal{U} -valued Levy process. Let $A \in \mathcal{B}(\mathcal{U})$ such that $0 \in \overline{A}$. Define,

$$\pi_A(t) := \sum_{s \in (0,t]} \mathbb{1}_A(\Delta L(s)) = \#\{s \in (0,t] : \Delta L(s) \in A\}$$

Fact: π_A is a Poisson process.

Let $\nu(A)$ denote the intensity of π_A :

$$\nu(A) = \frac{1}{t} \mathbb{E}[\pi_A(t)] = \mathbb{E}[\pi_A(1)]$$

Definition 1.5. We call ν the **Levy measure of** L.

Source: M647 Lecture 2 (revised), Definition 2.5.3.

Lemma 1.6. Let L be a Levy process with Levy measure ν . Then, for $A \in \mathfrak{B}(\mathcal{U})$ with $0 \in \overline{A}$,

$$L_A(t) := \sum_{s \in (0,t]} \Delta L(s) \mathbb{1}_A(\Delta L(s))$$

is a compound Poisson process with Levy measure $\nu|_A$. Source: M647 Lecture 2 (revised), Lemma 2.5.4.

A Levy process is a sum of a deterministic linear growth term, a Wiener process, a compound

Poisson process and a series of compensated compound Poisson processes.

Theorem 1.7. Let L be a \mathcal{U} -valued Levy process with Levy measure ν . Given $\{r_n\}_{n=1}^{\infty}$ $r_n \downarrow 0$, define $A_0 := \{y \in \mathcal{U} : ||y||_{\mathcal{U}} \geq r_0\}$ and $A_n := \{y \in \mathcal{U} : r_{n+1} \leq ||y||_{\mathcal{U}} < r_n\}$. Then the following statements hold:

- (1) The CPP $\{L_{A_n}\}_{n=0}^{\infty}$ given by $L_{A_n}(t) = \sum_{s \in (0,t]} \Delta L(s) \mathbb{1}_{A_n}(\Delta L(s))$ are independent.
- (2) There $\exists a \in \mathcal{U}$ and a Wiener process W that is independent of $\{L_{A_n}\}_{n=0}^{\infty}$ such that

$$L(t) = at + W(t) + L_{A_0}(t) + \sum_{n=1}^{\infty} \widehat{L}_{A_n}(t)$$
 (1.4)

and, with probability 1, the series on the right hand side converges uniformly on compact subsets of $[0, +\infty)$.

Source: M647 Lecture 2 (revised), Definition 3.1.1. (NOTE: I will submit my revised notes containing this definition to supplement a future draft of this report)

Outline of Proof. To prove the claim that $\sum_{n=1}^{\infty} \widehat{L}_{A_n}(t)$ on compact subsets, we suppose towards

contradiction that $\sum_{n=1}^{\infty} \widehat{L}_{A_n}(t)$ goes not converge uniformly on compact subsets and get a contradiction of Stochastic continuity of L.

Next, to prove (1.4), we want to show that

$$\widetilde{W}(t) := L(t) - \left[L_{A_0}(t) + \sum_{n=1}^{\infty} \widehat{L}_{A_n}(t) \right] = at + W(t)$$

for some $a \in \mathcal{H}$ by taking $a := \mathbb{E} \left[\widetilde{W}(1) \right]$ and showing that $W(t) := \widetilde{W}(t) - at$ is a Wiener process. We do this as follows:

- (i) Noting by noting by *Proposition 1.4* of the 4/15 Report that W(t) is integrable.
- (ii) Using Theorem 1.3 of the 4/15 Report (i.e. that L(t) has a Cadlag modification $\widetilde{L}(t)$) and the deduction of jump discontinuities from L(t) to $\widetilde{W}(t)$ to show that $\widetilde{W}(t)$ has a.s. continuous paths,
- (iii) Prove in a later draft of this report that $\mathbb{E}[L(t)] = \mathbb{E}[L(1)]t$, giving us

$$\mathbb{E}\left[\widetilde{W}(t) - at\right] = \mathbb{E}\left[\widetilde{W}(t)\right] - at = 0. \quad \Box$$

Remark 1.1:

- (i) This decomposition helps identify the nump and quadratic variation which is needed to apply the Ito formula.
- (ii) Informally, $dL = adt + dW + d\pi + d\widehat{\pi}$, where π is a Poisson random measure (called the jump measure of L).

Sources:

Spring 2022-M647 Lecture 2-3

2 Ito's Lemma and Formula

I will add to my previous exposition of this section in a future draft.