RL aula 1

Introdução e fundamentos

Plano de hoje

- 1. Por que aprendizado por reforço?
- 2. Definições básicas
- 3. Taxonomia dos algoritmos
- 4. Recursos úteis para estudo
- 5. Como tirar o máximo do curso

Por que aprendizado por reforço?

- Em certo sentido mais próximo a IA do que o Deep Learning
 - Agentes que lidam com ambientes
- Resultados muito legais atualmente
 - AlphaGo, OpenAI 5, AlphaStar
- Investimento legal e crescente de empresas
 - DeepMind
 - ء .
 - 🖯 💮 Google Brain 💗
 - OpenAl
 - o FAIR...
- Muito divertido
- Cientificamente interessante e com um potencial imenso
 - Ir além de automatizar o comportamento humano

Amount of Search per Decision

Aplicações

- Robótica
- Jogos
- Geração procedural
- Interação com usuário
- Neurociência
- Sistemas de recomendação
- Investimento

Divertido ver seu agente

DeepMind Breakout

Simulated Robot Walking

Mar/IO

OpenAl Hide and Seek

Os que vamos aprender a treinar

Interação com outras áreas do conhecimento

Definições básicas

- Dois significados
 - Técnica de modelagem de problemas
 - Método de resolução de problemas
- Diferenças do resto de ML
- Agente, ambiente, observações e ações
- História e Estado
- Tipos de estado
- Value functions, policy e retorno
- Taxonomia dos agentes
- Exploration vs Exploitation

Dois significados

- Técnica de modelagem de problemas
 - Qualquer problema que possa ser modelado como um agente interagindo com um ambiente
- Método de resolução de problemas baseado em MDPs
 - DP, Monte-Carlo Control, DeepQ-learning, Policy gradients...

Diferenças do resto de ML

- Dados sequenciais e não i.i.d
- Não existe supervisor, só um reward
- Feedback não é instantâneo
- As ações de um agente afetam as observações que ele vai receber

Agente, Ambiente, observações e ações

• Em cada instante t:

- O agente:
 - Recebe observação O, e Reward R,
 - Toma ação A,
- O ambiente
 - Recebe ação A₊
 - Comunica observação O_{t+1} e Reward R_{t+1}
- Rewards
 - Escalares
 - O feedback do ambiente
 - o Indica o quão bem o agente está indo
 - O agente quer maximizar o reward cumulativo
 - Reward Hypothesis: Todo objetivo pode ser formulado como a maximização da esperança do reward cumulativo

História e Estado

 História é tudo que o agente experienciou até agora, ações, observações e rewards

$$H_{t} = O_{1}, R_{1}, A_{1}, ..., A_{t-1}, O_{t}, R_{t}$$

- O estado é a informação necessária para decidir o que vai ocorrer a seguir
 - Uma função da história

$$f(H_t) = S_t$$

- O estado do ambiente é usado para determinar a próxima observação e reward (não precisa ser determinístico)
- O estado do agente é usado para determinar a próxima ação (também não precisa ser determinística)

Estado do Ambiente vs Estado do Agente

- Estado do ambiente S^e_t é a representação privada do ambiente
 - Em geral não é visível para o agente
 - o Pode conter informação irrelevante
- Estado do agente S^a_t é a representação interna do agente
 - É a informação usada por algoritmos de RL
- Um estado é dito Markov se possui a propriedade Markoviana
 - $\circ \qquad P[S_{t+1} \mid S_{t}] = P[S_{t+1} \mid S_{1}, ..., S_{t}]$
 - "O futuro é independente do passado dado o presente"
 - Basicamente dado o estado não precisamos nos preocupar com a história
- O estado do ambiente é markov
- A história é markov
- MDPs: S^e = S^a
- POMDPs: S^e ≠ S^a

Taxonomia dos algoritmos

- Model Based
- Value Functions
- Policy based

Value Functions, Policy e Retorno

- A policy determina como o agente deve agir, mapeando de estados para ações
 - o Pode ser determinística ou probabilística
- Retorno: O reward cumulativo
 - $\circ \qquad \mathsf{G}_{\mathsf{t}} = \sum \mathsf{R}_{\mathsf{t}+1+\mathsf{i}}$
 - Reward Hypothesis
- Funções de valor
 - A função de valor de estado representa o quanto de retorno o agente espera receber do estado

$$V_{\pi}(s) = E_{\pi}[G_{t}|S_{t} = s]$$

- A função de valor da ação representa o quanto de retorno o agente espera receber ao tomar a ação a no estado s estado
 - $q_{\pi}(s, a) = E_{\pi}[G_t|A_t = a, S_t = s]$

Policy-Based

- Aprende uma policy
- Vantagens:
 - É exatamente o nosso objetivo
 - Facilmente extensível para muitas dimensões
 - Consegue aprender policies n\u00e3o determin\u00e9sticas facilmente
- Desvantagens:
 - Ignora informação aprendível

Value-Based

- Usam funções de valores para guiar suas decisões
- Vantagens:
 - Próxima do objetivo real
 - Relativamente bem entendida
- Desvantagens
 - Não é o objetivo real, pode gastar poder computacional em pontos irrelevantes
 - Para usar v precisamos de um modelo, para usar q precisamos computar um argmax

Model-Based

- O agente recebe um modelo ou tem que aprendê-lo
- Um modelo é:
 - Como o agente acredita que o mundo funciona
 - Composto das transições $P(S_{t+1} = s' | a_t, s_t)$
 - o e dos rewards: $P(R_t = r \mid a_t, s_t)$
- Vantagens:
 - Aprender um modelo é 'fácil'
 - Usa os dados ao máximo, o que o torna em geral mais sample efficient
- Desvantagens
 - O objetivo envolve informações irrelevantes
 - Existe um custo computacional a mais para aprender o modelo
 - Planejamento (computar uma policy a partir de um modelo) é não trivial e computacionalmente custoso

Exploration vs Exploitation

- As decisões do agente afetam com que partes do ambiente ele interage
- Idealmente o agente deve descobrir uma boa policy a partir de sua experiência do ambiente, sem perder muito reward para isso
- Exploration descobre mais sobre o ambiente
- Exploitation usa o que você sabe para maximizar o retorno
- Ambas são extremamente importantes
- É não trivial achar um equilíbrio
 - epsilon-greedy
 - Stochastic policies
 - o Bandits...

Recursos úteis

- Environments
- Bibliotecas
- Misc
 - o Documentário AlphaGo na wikipedia
 - Blog da DeepMind
 - Blog da OpenAl
 - o Blog do David Ha
 - How Smart Machines Think
 - Artificial Intelligence: A Guide for Thinking Humans

Environments

- OpenAl Gym
 - Most famous, standard in academia and industry
 - Unified API for many different envs
 - Implements ALE
 - Has both discrete and continuous tasks
 - Extensible
 - Maxine's minigrid
 - Maxine's miniworld
 - Little fighter
- Deepmind OpenSpiel
 - Classical mulitplayer games
 - Go
 - Chess
 - Hanabi
 - Backgammon
- Bsuite
 - Analisa os comportamentos do agente

Gridworlds

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

1	2	3	4
5 🕇 🛑	6	7	8 † •
9 🕇 💍	10	11 • ↑	¹² ,
131	¹⁴ →	¹⁵ →	16

Bibliotecas

- Dopamine
 - o Focada em implementar o Rainbow
- TF-agents
 - Focado em deployment
- RLlib
 - Escalável
- RLax
 - o Baseada em JAX/Haiku
 - Trocadilho muito bom

Como tirar o máximo do curso

- Vir às aulas
- Fazer perguntas
- Implementar os algoritmos
 - Spinning Up Deep Reinforcement Learning
- David Silver Course
- Deep RL bootcamp
- Berkeley Course
- Sutton & Barto

Programa

- 1. Introdução, terminologia e environments
- 2. Exploration vs Exploitation: Bandits
- Bellman Equations, backup diagrams, Exhaustive Search, DP, Value iteration and Policy Iteration
- 4. Monte Carlo, TD, SARSA, Q-learning
- 5. Function Approximation: DQN and Policy Gradient
- 6. Value-based Agents
- 7. Policy-based Agents
- 8. Model-based Agents
- 9. Classic games
- 10. Evolution Strategies, NEAT