Student Information

Full Name: Aytaç SEKMEN

Id Number: 2575983

Answer 1

Part (a)

	p	q	$\neg p$	$\neg q$	$p \wedge q$	$ \neg p \vee \neg q $	$\mid (p \land q) \iff (\neg p \lor \neg q) \mid$
	T	T	F	F	T	F	F
	T	F	F	T	F	T	F
İ	F	T	T	F	F	T	F
	F	F	T	T	F	T	F

Since it gives "False" for every possibile case the statement $(p \land q) \iff (\neg p \lor \neg q)$ is a contradiction.

Part (b)

So "p \rightarrow ((q $\vee \neg q$) \rightarrow (p \wedge q))" and " $\neg p \vee$ q" are logically equivalent.

Answer 2

- a) $\forall x \exists y W(x,y)$
- b) $\exists y \forall x \neg F(x,y)$
- c) $\forall x (W(x,P) \rightarrow A(Ali,P))$
- d) $\exists x (W(B\ddot{u}qx,x) \land F(TUBITAK,x))$
- e) $\exists z \exists y \exists x (S(x,y) \land S(x,z) \land (y \neq z))$
- f) $\forall x \forall y \forall z ((W(x,z) \land W(y,z)) \rightarrow (x=y))$
- $g) \quad \exists x \exists y \exists z \forall t ((W(x,z) \land W(y,z) \land (x \neq y)) \land (W(t,z) \rightarrow ((t=x) \lor (t=y))))$

Answer 3

1	$\mathbf{p} \rightarrow \mathbf{q}$	premise
2	$(q \land \neg r) \to s$	premise
3	$\neg s$	premise
4	$(q \land \neg r)$	assumed
5	\mathbf{S}	\rightarrow e 2,4
6	\perp	$\neg e 3,5$
7	$\neg (q \land \neg r)$	¬i 4-6
8	p	assumed
8	p q	assumed \rightarrow e 1,8
_	-	
9	q	→e 1,8
9 10	q ¬r	\rightarrow e 1,8 assumed
9 10 11	q ¬r	$\begin{array}{c} \rightarrow \text{e } 1.8\\ \hline \text{assumed}\\ \land \text{i } 9.10 \end{array}$

Answer 4

Ayşe: p

Barış: $s \rightarrow \neg q$ Can: $p \rightarrow (q \land r)$ Duygu: $r \rightarrow s$

1	p	premise
2	$r\rightarrow s$	premise
3	$p \rightarrow (q \land r)$	premise
4	$(q \land r)$	\rightarrow e 1,3
5	q	$\wedge e 4$
6	r	$\wedge e 4$
7	\mathbf{S}	\rightarrow e 2
8	$s \rightarrow \neg q$	assumed
9	$\neg q$	\rightarrow e 8,7
10	\perp	$\neg e 5,9$
11	$\neg(s \rightarrow \neg q)$	¬i 8-10

Since I showed that $\neg(s \rightarrow \neg q)$ is true, this means that Barış is lying.

Answer 5

1	$\forall x (P(x) \rightarrow (Q(x) \rightarrow R(x)))$	premise
2	$\exists x (P(x))$	premise
3	$\forall (\neg R(x))$	premise
4	P(c)	assumed
5	$\neg R(c)$	$\forall e \ 3$
6	$P(c) \rightarrow (Q(c) \rightarrow R(c))$	$\forall e 1$
7	$Q(c) \rightarrow R(c)$	→e 4,6
8	Q(c)	assumed
9	R(c)	\rightarrow e 7,8
_10		¬e 5,9
11	$\neg Q(c)$	¬i 8,10
	· & (<i>C</i>)	10,10
12	$\exists x (\neg Q(x))$	$\exists x \text{ i } 11$