CPSC 540: Machine Learning Mixture Models, Expectation Maximization

Mark Schmidt

University of British Columbia

Winter 2017

Admin

- Assignment 2:
 - Due tonight.
 - 1 late day to hand it in Wednesday.
 - 2 late days to hand it in next Wednesday.
- Class cancelled Wednesday:
 - So you can go to the TensorFlow lecture at the same time (check website for location).
- Assignment 3:
 - Out later this week.

Last Time: Density Estimation

- Last time we started discussing unsupervised task of density estimation.
 - Given data X, estimate probability density $p(\hat{x}^i)$.

- What is the probability of having $\hat{x}^i = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$ in test data?
- A "master" ML problem that lets you solve many other problems...

Supervised Learning with Density Estimation

- Density estimation can be used for supervised learning:
 - 340 discussed generative models that model joint probability of x^i and y^i ,

$$p(y^{i}|x^{i}) \propto p(x^{i}, y^{i})$$
$$= p(x^{i}|y^{i})p(y^{i}).$$

Supervised Learning with Density Estimation

- Density estimation can be used for supervised learning:
 - 340 discussed generative models that model joint probability of x^i and y^i ,

$$p(y^{i}|x^{i}) \propto p(x^{i}, y^{i})$$
$$= p(x^{i}|y^{i})p(y^{i}).$$

- Estimating $p(x^i, y^i)$ is a density estimation problem.
 - Naive Bayes models $p(x^i|y^i)$ as product of independent distributions.
 - Linear discriminant analysis (LDA) models $p(x^i|y^i)$ as a multivariate Gaussian.

Supervised Learning with Density Estimation

- Density estimation can be used for supervised learning:
 - 340 discussed generative models that model joint probability of x^i and y^i ,

$$p(y^{i}|x^{i}) \propto p(x^{i}, y^{i})$$
$$= p(x^{i}|y^{i})p(y^{i}).$$

- Estimating $p(x^i, y^i)$ is a density estimation problem.
 - Naive Bayes models $p(x^i|y^i)$ as product of independent distributions.
 - Linear discriminant analysis (LDA) models $p(x^i|y^i)$ as a multivariate Gaussian.
- Generative models have been unpopular for a while, but are coming back:
 - Naive Bayes regression is being used for CRISPR gene editing.
 - Generative adversarial networks and variational autoencoders (deep learning).
 - We believe that most human learning is unsupervised.

Last Time: Multivariate Gaussian

• The multivariate normal distribution models PDF of vector x as

$$p(x|\mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

where $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ and $\Sigma \succ 0$.

Last Time: Multivariate Gaussian

• The multivariate normal distribution models PDF of vector x as

$$p(x|\mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

where $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ and $\Sigma \succ 0$.

Closed-form MLE:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x^{i}, \quad \Sigma = \frac{1}{n} \sum_{i=1}^{N} \underbrace{(x^{i} - \mu)(x^{i} - \mu)^{T}}_{d \times d}.$$

- Closed under several operations: products of PDFs, marginalization, conditioning.
- Light-tailed: assumes all data is close to mean.
 - Not robust to outliers or data far away from mean.

Outline

- Mixture Models
- 2 Learning with Hidden Values
- 3 Expectation Maximization

1 Gaussian for Multi-Modal Data

- Major drawback of Gaussian is that it's uni-modal.
 - It gives a terrible fit to data like this:

• If Gaussians are all we know, how can we fit this data?

2 Gaussians for Multi-Modal Data

• We can fit this data by using two Gaussians

- Instead of assuming data comes from one Gaussian, we assume:
 - Half the time it comes from Gaussian 1.
 - Half the time it comes from Gaussian 2.

• Our probability density in the previous example is given by

$$p(x \mid \mu_1, \mu_2, \Sigma_1, \Sigma_2) = \frac{1}{2} \underbrace{p(x \mid \mu_1, \Sigma_1)}_{\text{Gaussian 1}} + \frac{1}{2} \underbrace{p(x \mid \mu_2, \Sigma_2)}_{\text{Gaussian 2}},$$

where $p(x|\mu_c, \Sigma_c)$ is the PDF of a Gaussian.

• Our probability density in the previous example is given by

$$p(x \mid \mu_1, \mu_2, \Sigma_1, \Sigma_2) = \frac{1}{2} \underbrace{p(x \mid \mu_1, \Sigma_1)}_{\text{Gaussian 1}} + \frac{1}{2} \underbrace{p(x \mid \mu_2, \Sigma_2)}_{\text{Gaussian 2}},$$

where $p(x|\mu_c, \Sigma_c)$ is the PDF of a Gaussian.

• If data comes from one Gaussian more often than the other, we could use

$$p(x \mid \mu_1, \mu_2, \Sigma_1, \Sigma_2, \pi_1, \pi_2) = \pi_1 \underbrace{p(x \mid \mu_1, \Sigma_1)}_{\text{Gaussian 1}} + \pi_2 \underbrace{p(x \mid \mu_2, \Sigma_2)}_{\text{Gaussian 2}},$$

where $\pi_1 + \pi_2 = 1$ and both are non-negative.

• If instead of 2 Gaussians we need k Gaussians, our PDF would be

$$p(x \mid \mu, \Sigma, \pi) = \sum_{c=1}^{k} \pi_c p(x \mid \mu_c, \Sigma_c),$$

where (μ_c, Σ_c) are the parameters mixture/cluster c.

ullet If instead of 2 Gaussians we need k Gaussians, our PDF would be

$$p(x \mid \mu, \Sigma, \pi) = \sum_{c=1}^{k} \pi_c p(x \mid \mu_c, \Sigma_c),$$

where (μ_c, Σ_c) are the parameters mixture/cluster c.

- \bullet To make the π_c probabilities we need that $\pi_c \geq 0$ and $\sum_{c=1}^k \pi_c = 1.$
- This is called a mixture of Gaussians model.
 - We can use it to model complicated densities with Gaussians (like RBFs).

• Gaussian vs. Mixture of 4 Gaussians for 2D multi-modal data:

• Gaussian vs. Mixture of 5 Gaussians for 2D multi-modal data:

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - 2 Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - 2 Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - ② Sample example x based on mean μ_c and covariance Σ_c .

Mixture of Gaussians

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - 2 Sample example x based on mean μ_c and covariance Σ_c .

Mixture of Gaussians

- How a mixture of Gaussian "generates" data:
 - **1** Sample cluster c based on prior probabilities π_c (categorical distribution).
 - **2** Sample example x based on mean μ_c and covariance Σ_c .

- We usually fit these models with expectation maximization (EM):
 - EM is a general method for fitting models with hidden variables.
 - For mixture of Gaussians: we treat cluster c as a hidden variable.

Last Time: Independent vs. General Discrete Distributions

• We also considered density estimation with discrete variables,

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},$$

and considered two extreme approaches:

Last Time: Independent vs. General Discrete Distributions

• We also considered density estimation with discrete variables,

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},$$

and considered two extreme approaches:

• Product of independent Bernoullis:

$$p(x|\theta) = \prod_{j=1}^{d} p(x_j|\theta_j).$$

Easy to fit but strong independence assumption:

• Knowing x_i tells you nothing about x_k .

Last Time: Independent vs. General Discrete Distributions

• We also considered density estimation with discrete variables,

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},$$

and considered two extreme approaches:

• Product of independent Bernoullis:

$$p(x|\theta) = \prod_{j=1}^{d} p(x_j|\theta_j).$$

Easy to fit but strong independence assumption:

- Knowing x_i tells you nothing about x_k .
- General discrete distribution:

$$p(x|\theta) = \theta_x$$
.

No assumptions but hard to fit:

• Parameter vector θ_x for each possible x.

• Consider handwritten images of digits:

so each row of X contains all pixels from one image of a 0, 1, 2, ..., 9.

• Previously we had labels and wanted to recognize that this is a 4.

• Consider handwritten images of digits:

so each row of X contains all pixels from one image of a 0, 1, 2, ..., 9.

- Previously we had labels and wanted to recognize that this is a 4.
- In density estimation we want probability distribution over images of digits.
- Given an image, what is the probability that it's a digit?
- Sampling from the density should generate images of digits.

• We can visualize probabilities in independent Bernoulli model as an image:

• We can visualize probabilities in independent Bernoulli model as an image:

• Samples generated from independent Bernoulli model:

• This is clearly a terrible model: misses dependencies between pixels.

• Here is a sample from the MLE with a general discrete distribution:

• Here is a sample from the MLE with a general discrete distribution:

• Here is an image with a probability of 0:

- This model memorized training images and doesn't generalize.
 - ullet MLE puts probability at least 1/n on training images, and 0 on non-training images.

• Here is a sample from the MLE with a general discrete distribution:

• Here is an image with a probability of 0:

- This model memorized training images and doesn't generalize.
 - MLE puts probability at least 1/n on training images, and 0 on non-training images.
- A model lying between these extremes is the mixture of Bernoullis.

Mixture of Bernoullis

- Consider a coin flipping scenario where we have two coins:
 - Coin 1 has $\theta_1=0.5$ (fair) and coin 2 has $\theta_2=1$ (biased).

Mixture of Bernoullis

- Consider a coin flipping scenario where we have two coins:
 - Coin 1 has $\theta_1=0.5$ (fair) and coin 2 has $\theta_2=1$ (biased).
- Half the time we flip coin 1, and otherwise we flip coin 2:

$$p(x = 1|\theta_1, \theta_2) = \pi_1 p(x = 1|\theta_1) + \pi_2 p(x = 1|\theta_2)$$
$$= \frac{1}{2}\theta_1 + \frac{1}{2}\theta_2.$$

Mixture of Bernoullis

- Consider a coin flipping scenario where we have two coins:
 - Coin 1 has $\theta_1=0.5$ (fair) and coin 2 has $\theta_2=1$ (biased).
- Half the time we flip coin 1, and otherwise we flip coin 2:

$$p(x = 1|\theta_1, \theta_2) = \pi_1 p(x = 1|\theta_1) + \pi_2 p(x = 1|\theta_2)$$
$$= \frac{1}{2}\theta_1 + \frac{1}{2}\theta_2.$$

- This mixture model is not very interesting:
 - It's equivalent to flipping one coin with $\theta = 0.75$.
- But this gets more interesting with multiple variables...

• Consider a mixture of independent Bernoullis:

$$p(x \mid \theta_1, \theta_2) = \frac{1}{2} \underbrace{\prod_{j=1}^d p(x_j | \theta_{1j})}_{\text{first set of Bernoullis}} + \frac{1}{2} \underbrace{\prod_{j=1}^d p(x_j | \theta_{2j})}_{\text{second set of Bernoulli}}.$$

- Conceptually, we now have two sets of coins:
 - Half the time we throw the first set, half the time we throw the second set.

• Consider a mixture of independent Bernoullis:

$$p(x \mid \theta_1, \theta_2) = \frac{1}{2} \underbrace{\prod_{j=1}^d p(x_j | \theta_{1j})}_{\text{first set of Bernoullis}} + \frac{1}{2} \underbrace{\prod_{j=1}^d p(x_j | \theta_{2j})}_{\text{second set of Bernoulli}}.$$

- Conceptually, we now have two sets of coins:
 - Half the time we throw the first set, half the time we throw the second set.
- With d=4 we could have $\theta_1=\begin{bmatrix}0&0.7&1&1\end{bmatrix}$ and $\theta_2=\begin{bmatrix}1&0.7&0.8&0\end{bmatrix}$.
- Have we gained anything?

• Consider a mixture of independent Bernoullis:

$$p(x \mid \theta_1, \theta_2) = \frac{1}{2} \underbrace{\prod_{j=1}^d p(x_j | \theta_{1j})}_{\text{first set of Bernoullis}} + \frac{1}{2} \underbrace{\prod_{j=1}^d p(x_j | \theta_{2j})}_{\text{second set of Bernoullis}}$$

- Conceptually, we now have two sets of coins:
 - Half the time we throw the first set, half the time we throw the second set.
- With d=4 we could have $\theta_1=\begin{bmatrix}0&0.7&1&1\end{bmatrix}$ and $\theta_2=\begin{bmatrix}1&0.7&0.8&0\end{bmatrix}$.
- Have we gained anything?
 - In the mixture of Bernoullis the variables are not independent:
 - In this example knowing $x_1 = 1$ gives you the cluster, which gives you $x_4 = 0$.
 - So we have dependencies: $\underbrace{p(x_4=1|x_1=1)}_{0} \neq \underbrace{p(x_4=1)}_{0.5}$.

• General mixture of independent Bernoullis:

$$p(x|\Theta) = \sum_{c=1}^{k} \pi_c p(x|\theta_c),$$

where Θ contains all the model parameters.

• Mixture of Bernoullis can model dependencies between variables

General mixture of independent Bernoullis:

$$p(x|\Theta) = \sum_{c=1}^{k} \pi_c p(x|\theta_c),$$

where Θ contains all the model parameters.

- Mixture of Bernoullis can model dependencies between variables
 - Individual Bernoullis act like clusters of the binary data.
 - Knowing cluster of one variable gives information about other variables.
- ullet With k large enough, mixtures are sufficient to model any discrete distribution.
 - Possibly with $k << 2^d$.

• Plotting parameters θ_c with 10 mixtures trained on MNIST:digits.

(hand-written images of the the numbers 0 through 9)

http:

ullet Plotting parameters $heta_c$ with 10 mixtures trained on MNIST:digits.

(hand-written images of the the numbers 0 through 9)

http:

//pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html

- Remember this is unsupervised: it hasn't been told there are ten digits.
 - Density estimation tries to figure out how the world works.

ullet Plotting parameters $heta_c$ with 10 mixtures trained on MNIST:digits.

(hand-written images of the the numbers 0 through 9)

http:

//pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html

- You could use this model to "fill in" missing parts of an image:
 - By finding likely cluster/mixture, you find likely values for the missing parts.

Outline

- Mixture Models
- 2 Learning with Hidden Values
- Expectation Maximization

Learning with Hidden Values

- We often want to learn with unobserved/missing/hidden/latent values.
- For example, we could have a dataset like this:

$$X = \begin{bmatrix} N & 33 & 5 \\ F & 10 & 1 \\ F & ? & 2 \\ M & 22 & 0 \end{bmatrix}, y = \begin{bmatrix} -1 \\ +1 \\ -1 \\ ? \end{bmatrix}.$$

Learning with Hidden Values

- We often want to learn with unobserved/missing/hidden/latent values.
- For example, we could have a dataset like this:

$$X = \begin{bmatrix} N & 33 & 5 \\ F & 10 & 1 \\ F & ? & 2 \\ M & 22 & 0 \end{bmatrix}, y = \begin{bmatrix} -1 \\ +1 \\ -1 \\ ? \end{bmatrix}.$$

- Missing values are very common in real datasets.
- An important issue to consider: why is data missing?

- We'll focus on data that is missing at random (MAR):
 - The assumption that ? is missing does not depend on the missing value.

- We'll focus on data that is missing at random (MAR):
 - The assumption that ? is missing does not depend on the missing value.
 - This definition doesn't agree with intuitive notion of "random":
 - A variable that is always missing would be "missing at random".
 - The intuitive/stronger version is missing completely at random (MCAR).

- We'll focus on data that is missing at random (MAR):
 - The assumption that ? is missing does not depend on the missing value.
 - This definition doesn't agree with intuitive notion of "random":
 - A variable that is always missing would be "missing at random".
 - The intuitive/stronger version is missing completely at random (MCAR).
- Examples of MCAR and MAR for digit data:
 - Missing random pixels/labels: MCAR.

- We'll focus on data that is missing at random (MAR):
 - The assumption that ? is missing does not depend on the missing value.
 - This definition doesn't agree with intuitive notion of "random":
 - A variable that is always missing would be "missing at random".
 - The intuitive/stronger version is missing completely at random (MCAR).
- Examples of MCAR and MAR for digit data:
 - Missing random pixels/labels: MCAR.
 - Hide the top half of every digit: MAR.

- We'll focus on data that is missing at random (MAR):
 - The assumption that ? is missing does not depend on the missing value.
 - This definition doesn't agree with intuitive notion of "random":
 - A variable that is always missing would be "missing at random".
 - The intuitive/stronger version is missing completely at random (MCAR).
- Examples of MCAR and MAR for digit data:
 - Missing random pixels/labels: MCAR.
 - Hide the top half of every digit: MAR.
 - Hide the labels of all the "2" examples: not MAR.
- We'll consider MAR, because otherwise you need to model why data is missing.

$$X = \begin{bmatrix} N & 33 & 5 \\ F & 10 & 1 \\ F & ? & 2 \\ M & 22 & 0 \end{bmatrix}, y = \begin{bmatrix} -1 \\ +1 \\ -1 \\ ? \end{bmatrix}.$$

$$X = \begin{bmatrix} N & 33 & 5 \\ F & 10 & 1 \\ F & ? & 2 \\ M & 22 & 0 \end{bmatrix}, y = \begin{bmatrix} -1 \\ +1 \\ -1 \\ ? \end{bmatrix}.$$

- Imputation method is one of the first things we might try:
 - Initialization: find parameters of a density model (often using "complete" examples).

$$X = \begin{bmatrix} N & 33 & 5 \\ F & 10 & 1 \\ F & ? & 2 \\ M & 22 & 0 \end{bmatrix}, y = \begin{bmatrix} -1 \\ +1 \\ -1 \\ ? \end{bmatrix}.$$

- Imputation method is one of the first things we might try:
 - Initialization: find parameters of a density model (often using "complete" examples).
 - Imputation: replace each ? with the most likely value.

$$X = \begin{bmatrix} N & 33 & 5 \\ F & 10 & 1 \\ F & ? & 2 \\ M & 22 & 0 \end{bmatrix}, y = \begin{bmatrix} -1 \\ +1 \\ -1 \\ ? \end{bmatrix}.$$

- Imputation method is one of the first things we might try:
 - Initialization: find parameters of a density model (often using "complete" examples).
 - 1 Imputation: replace each ? with the most likely value.
 - 2 Estimation: fit model with these imputed values.

$$X = \begin{bmatrix} N & 33 & 5 \\ F & 10 & 1 \\ F & ? & 2 \\ M & 22 & 0 \end{bmatrix}, y = \begin{bmatrix} -1 \\ +1 \\ -1 \\ ? \end{bmatrix}.$$

- Imputation method is one of the first things we might try:
 - Initialization: find parameters of a density model (often using "complete" examples).
 - Imputation: replace each? with the most likely value.
 - 2 Estimation: fit model with these imputed values.
- You could also alternate between imputation and estimation.

Semi-Supervised Learning

• Important special case of MAR is semi-supervised learning.

$$X = \left[\begin{array}{cc} & \end{array}\right], \quad y = \left[\begin{array}{cc} ? \\ ? \\ ? \\ ? \end{array}\right]$$

Semi-Supervised Learning

• Important special case of MAR is semi-supervised learning.

- Motivation for training on labeled data (X, y) and unlabeled data \tilde{X} :
 - Getting labeled data is usually expensive, but unlabeled data is usually cheap.

Semi-Supervised Learning

• Important special case of MAR is semi-supervised learning.

$$X = \left[\begin{array}{cc} \end{array}\right], \quad y = \left[\begin{array}{cc} \end{array}\right],$$
 $\tilde{X} = \left[\begin{array}{cc} \end{array}\right], \quad \tilde{Y} = \left[\begin{array}{cc} ? \\ ? \\ ? \\ ? \\ ? \end{array}\right],$

- Imputation approach is called self-taught learning:
 - Alternate between guessing \hat{y} and fitting the model with these values.

• To fit mixture models we often introduce n MAR variables z^i .

Why???

- To fit mixture models we often introduce n MAR variables z^i .
- Why???
- Consider mixture of Gaussians, and let z^i be the cluster number of example i:
 - Given the z^i it's easy to optimize the means and variances (μ_c, Σ_c) :
 - Fit a Gaussian to examples in cluster i.

- To fit mixture models we often introduce n MAR variables z^i .
- Why???
- Consider mixture of Gaussians, and let z^i be the cluster number of example i:
 - Given the z^i it's easy to optimize the means and variances (μ_c, Σ_c) :
 - Fit a Gaussian to examples in cluster i.
 - Given the (μ_c, Σ_c) it's easy to optimize the clusters z^i :
 - Find the cluster with highest $p(x^i|\mu_c, \Sigma_c)$.

- To fit mixture models we often introduce n MAR variables z^i .
- Why???
- Consider mixture of Gaussians, and let z^i be the cluster number of example i:
 - Given the z^i it's easy to optimize the means and variances (μ_c, Σ_c) :
 - Fit a Gaussian to examples in cluster i.
 - Given the (μ_c, Σ_c) it's easy to optimize the clusters z^i :
 - Find the cluster with highest $p(x^i|\mu_c, \Sigma_c)$.
- If all clusters have the same covariance $\Sigma_c = \Sigma$, this is k-means clustering.
 - μ_c is the mean of cluster c and z^i is the nearest mean.

Outline

- Mixture Models
- 2 Learning with Hidden Values
- Section Maximization

Drawbacks of Imputationa Approach

- The imputation approach to MAR variables is simple:
 - Use density estimator to "fill in" the missing values.
 - Now fit the "complete data" using a standard method.

Drawbacks of Imputationa Approach

- The imputation approach to MAR variables is simple:
 - Use density estimator to "fill in" the missing values.
 - Now fit the "complete data" using a standard method.
- But "hard" assignments of missing values lead to propagation of errors.
 - What if cluster is ambiguous in k-means clustering?
 - What if label is ambiguous in "self-taught" learning?

Drawbacks of Imputationa Approach

- The imputation approach to MAR variables is simple:
 - Use density estimator to "fill in" the missing values.
 - Now fit the "complete data" using a standard method.
- But "hard" assignments of missing values lead to propagation of errors.
 - What if cluster is ambiguous in k-means clustering?
 - What if label is ambiguous in "self-taught" learning?
- Ideally, we should use probabilities of different assignments ("soft" assignments):
 - If the MAR values are obvious, this will act like the imputation approach.
 - For ambiguous examples, takes into account probability of different assignments.

Expectation Maximization Notation

- Expectation maximization (EM) is an optimization algorithm for MAR values:
 - ullet Applies to problems that are easy to solve with "complete" data (i.e., you knew H).
 - Allows probabilistic or "soft" assignments to MAR values.
- EM is the most cited paper in statistics?

Expectation Maximization Notation

- Expectation maximization (EM) is an optimization algorithm for MAR values:
 - Applies to problems that are easy to solve with "complete" data (i.e., you knew H).
 - Allows probabilistic or "soft" assignments to MAR values.
- EM is the most cited paper in statistics?
- EM notation: we use O as observed variables and H as hidden variables.
 - Mixture models: observe data $O = \{X\}$ but don't observe clusters $H = \{z^i\}_{i=1}^n$.
 - Semi-supervised learning: observe $O = \{X, y, \hat{X}\}$ but don't observe $H = \{\hat{y}\}.$

Expectation Maximization Notation

- Expectation maximization (EM) is an optimization algorithm for MAR values:
 - Applies to problems that are easy to solve with "complete" data (i.e., you knew H).
 - Allows probabilistic or "soft" assignments to MAR values.
- EM is the most cited paper in statistics?
- EM notation: we use O as observed variables and H as hidden variables.
 - Mixture models: observe data $O = \{X\}$ but don't observe clusters $H = \{z^i\}_{i=1}^n$.
 - $\bullet \ \, \text{Semi-supervised learning: observe} \,\, O = \{X,y,\hat{X}\} \,\, \text{but don't observe} \,\, H = \{\hat{y}\}.$
- ullet When we choose one H by imputation it's called "hard" EM.
- We use Θ as parameters we want to optimize.

- Assume observing H makes "complete" likelihood $p(O, H|\Theta)$ "nice".
 - It has a closed-form MLE for Bernoulli or Gaussians, NLL convex for logistic, etc.

- Assume observing H makes "complete" likelihood $p(O, H|\Theta)$ "nice".
 - It has a closed-form MLE for Bernoulli or Gaussians, NLL convex for logistic, etc.
- From marginalization rule, likelihood of O in terms of "complete" likelihood is

$$p(O|\Theta) = \sum_{H_1} \sum_{H_2} \cdots \sum_{H_m} p(O, H|\Theta) = \sum_{H} p(O, H|\Theta).$$

where we sum (or integrate) over all H (the "marginal likelihood" of O).

- Assume observing H makes "complete" likelihood $p(O, H|\Theta)$ "nice".
 - It has a closed-form MLE for Bernoulli or Gaussians, NLL convex for logistic, etc.
- From marginalization rule, likelihood of O in terms of "complete" likelihood is

$$p(O|\Theta) = \sum_{H_1} \sum_{H_2} \cdots \sum_{H_m} p(O, H|\Theta) = \sum_{H} p(O, H|\Theta).$$

where we sum (or integrate) over all H (the "marginal likelihood" of O).

• The marginal log-likelihood thus has the form

$$-\log p(O|\Theta) = -\log \left(\sum_{H} p(O, H|\Theta)\right),\,$$

- Assume observing H makes "complete" likelihood $p(O, H|\Theta)$ "nice".
 - It has a closed-form MLE for Bernoulli or Gaussians, NLL convex for logistic, etc.
- From marginalization rule, likelihood of O in terms of "complete" likelihood is

$$p(O|\Theta) = \sum_{H_1} \sum_{H_2} \cdots \sum_{H_m} p(O, H|\Theta) = \sum_{H} p(O, H|\Theta).$$

where we sum (or integrate) over all H (the "marginal likelihood" of O).

• The marginal log-likelihood thus has the form

$$-\log p(O|\Theta) = -\log \left(\sum_{H} p(O, H|\Theta)\right),\,$$

- which has a sum inside the log.
 - This does not preserve convexity: minimizing it is usually NP-hard.

Expectation Maximization Bound

• To compute Θ^{t+1} , the approximation used by EM and hard-EM is

$$-\log p(O|\Theta) = -\log \left(\sum_{H} p(O, H|\Theta)\right) \approx -\sum_{H} \alpha_{H}^{t} \log p(O, H|\Theta),$$

where α_H^t is a weight for the assignment H to the hidden variables.

Expectation Maximization Bound

• To compute Θ^{t+1} , the approximation used by EM and hard-EM is

$$-\log p(O|\Theta) = -\log \left(\sum_{H} p(O, H|\Theta)\right) \approx -\sum_{H} \alpha_{H}^{t} \log p(O, H|\Theta),$$

where α_H^t is a weight for the assignment H to the hidden variables.

- In hard-EM we set $\alpha_H^t=1$ for the most likely H given Θ^t (all other $\alpha_H^t=0$).
- In soft-EM we set $\alpha_H^t = p(H|O,\Theta^t)$, weighting H by probability given Θ^t .

Expectation Maximization Bound

 \bullet To compute Θ^{t+1} , the approximation used by EM and hard-EM is

$$-\log p(O|\Theta) = -\log \left(\sum_{H} p(O, H|\Theta)\right) \approx -\sum_{H} \alpha_{H}^{t} \log p(O, H|\Theta),$$

where α_H^t is a weight for the assignment H to the hidden variables.

- In hard-EM we set $\alpha_H^t=1$ for the most likely H given Θ^t (all other $\alpha_H^t=0$).
- In soft-EM we set $\alpha_H^t = p(H|O,\Theta^t)$, weighting H by probability given Θ^t .
- We'll show the EM approximation minimizes an upper bound,

$$-\log p(O|\Theta) \leq -\underbrace{\sum_{H} p(H|O,\Theta^t) \log p(O,H|\Theta)}_{Q(\Theta|\Theta^t)} + \text{const.},$$

- Expectation maximization is a bound-optimization method:
 - At each iteration we optimize a bound on the function.

- Expectation maximization is a bound-optimization method:
 - At each iteration we optimize a bound on the function.

- Expectation maximization is a bound-optimization method:
 - At each iteration we optimize a bound on the function.

• In gradient descent, our bound came from Lipschitz-continuity of the gradient.

- Expectation maximization is a bound-optimization method:
 - At each iteration we optimize a bound on the function.

- In gradient descent, our bound came from Lipschitz-continuity of the gradient.
- In EM, our bound comes from expectation over hidden variables (non-quadratic).

• So EM starts with Θ^0 and sets Θ^{t+1} to maximize $Q(\Theta|\Theta^t)$.

- So EM starts with Θ^0 and sets Θ^{t+1} to maximize $Q(\Theta|\Theta^t)$.
- This is typically written as two steps:
 - **1** E-step: Define expectation of complete log-likelihood given Θ^t ,

$$Q(\Theta|\Theta^t) = \sum_{H} \underbrace{p(H|O,\Theta^t)}_{\text{fixed weight}} \underbrace{\log p(O,H|\Theta)}_{\text{nice term}}$$

- So EM starts with Θ^0 and sets Θ^{t+1} to maximize $Q(\Theta|\Theta^t)$.
- This is typically written as two steps:
 - **1** E-step: Define expectation of complete log-likelihood given Θ^t ,

$$\begin{split} Q(\Theta|\Theta^t) &= \sum_{H} \underbrace{p(H|O,\Theta^t)}_{\text{fixed weight}} \underbrace{\log p(O,H|\Theta)}_{\text{nice term}} \\ &= \mathbb{E}_{H|O,\Theta^t}[\log p(O,H|\Theta)], \end{split}$$

which is a weighted version of the "nice" $\log p(O, H)$ values.

- So EM starts with Θ^0 and sets Θ^{t+1} to maximize $Q(\Theta|\Theta^t)$.
- This is typically written as two steps:
 - **1** E-step: Define expectation of complete log-likelihood given Θ^t ,

$$\begin{split} Q(\Theta|\Theta^t) &= \sum_{H} \underbrace{p(H|O,\Theta^t)}_{\text{fixed weight}} \underbrace{\log p(O,H|\Theta)}_{\text{nice term}} \\ &= \mathbb{E}_{H|O,\Theta^t}[\log p(O,H|\Theta)], \end{split}$$

which is a weighted version of the "nice" $\log p(O, H)$ values.

M-step: Maximize this expectation,

$$\Theta^{t+1} = \operatorname*{argmax}_{\Theta} Q(\Theta|\Theta^t).$$

Convergence Properties of Expectation Maximization

We'll show that

$$\log p(O|\Theta^{t+1}) - \log p(O|\Theta^t) \ge Q(\Theta^{t+1}|\Theta^t) - Q(\Theta^t|\Theta^t),$$

that guaranteed progress is at least as large as difference in $\mathcal{Q}.$

Does this imply convergence?

Convergence Properties of Expectation Maximization

We'll show that

$$\log p(O|\Theta^{t+1}) - \log p(O|\Theta^t) \geq Q(\Theta^{t+1}|\Theta^t) - Q(\Theta^t|\Theta^t),$$

that guaranteed progress is at least as large as difference in Q.

- Does this imply convergence?
 - Yes, if likelihood is bounded above.
- Does this imply convergence to a stationary point?

Convergence Properties of Expectation Maximization

We'll show that

$$\log p(O|\Theta^{t+1}) - \log p(O|\Theta^t) \ge Q(\Theta^{t+1}|\Theta^t) - Q(\Theta^t|\Theta^t),$$

that guaranteed progress is at least as large as difference in Q.

- Does this imply convergence?
 - Yes, if likelihood is bounded above.
- Does this imply convergence to a stationary point?
 - No, although many papers say that it does.
 - Could have maximum of 3 and objective values of $1, 1 + 1/2, 1 + 1/2 + 1/4, \ldots$
- Almost nothing is known about rate of convergence.

Summary

- Mixture models write probability as convex combination of probabilities.
 - Model dependencies between variables even if components are independent.
 - Probability of belonging to mixtures is a soft-clustering of examples.

Summary

- Mixture models write probability as convex combination of probabilities.
 - Model dependencies between variables even if components are independent.
 - Probability of belonging to mixtures is a soft-clustering of examples.
- Missing at random: fact that variable is missing does not depend on its value.
- Semi-supervised learning: learning with labeled and unlabeled data.

Summary

- Mixture models write probability as convex combination of probabilities.
 - Model dependencies between variables even if components are independent.
 - Probability of belonging to mixtures is a soft-clustering of examples.
- Missing at random: fact that variable is missing does not depend on its value.
- Semi-supervised learning: learning with labeled and unlabeled data.
- Expectation maximization:
 - Optimization with MAR variables, when knowing MAR variables make problem easy.
- Next time: what "parts" make up your personality? (Beyond PCA)