

ARCH MEMORANDUM

PRELIMINARY INTERNAL PERFORMANCE DATA FOR A

ARIABLE-EJECTOR ASSEMBLY ON THE XJ79-GE-1

TURBOJET ENGINE

I - NONAFTERBURNING CONFIGURATIONS

By William K. Greathouse and Harry E. Bloomer

Lewis Flight Propulsion Laboratory

Claveland, Ohio

LIBRARY COPY

LANGLEY AERONAUTICAL LABORATORY LIBRARY, NACA ANGLEY FILLD, VIRGINIA

Restriction/Classification Cancelled Restriction/Classification Cancelled

approval of N

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

AUG 30 1956

E56E23

~7

NACA RM E56E23

3 1176 01436 1290

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

PRELIMINARY INTERNAL PERFORMANCE DATA FOR A VARIABLE-

EJECTOR ASSEMBLY ON THE XJ79-GE-1 TURBOJET ENGINE

I - NONAFTERBURNING CONFIGURATIONS

By William K. Greathouse and Harry E. Bloomer

SUMMARY

Internal performance of an XJ79-GE-1 variable ejector was experimentally determined with the primary nozzle in a representative non-afterburning position. Jet-thrust and air-handling data were obtained in quiescent air for 11 selected ejector configurations over a wide range of operation. Additional data, at specific operating conditions, were obtained which indicate the ejector diameter ratio for peak jet-thrust performance. The experimental ejector data are presented in both graphical and tabulated form.

INTRODUCTION

An experimental performance investigation of the XJ79-GE-1 variable-ejector assembly was made in an NACA altitude test chamber. The ejector assembly utilized independent control of the ejector nozzle diameter, the primary exhaust-nozzle diameter, and the spacing between the two nozzles. In this investigation the internal ejector performance was determined over a range of ejector geometry and operating conditions with the variable primary nozzle in a representative nonafterburning position.

Jet-thrust and air-handling data were obtained (1) while varying the ejector operating conditions for 11 selected ejector configurations and (2) while varying the ejector geometry for various ejector operating conditions. By both methods a range of ejector diameter ratios from 1.01 to 1.70 (with spacing ratios between 0.77 and 0.97) were investigated. Primary pressure ratio ranged from 2 to 9, and weight-flow ratio ranged from 0.03 to about 0.20. Throughout the investigation engine exhaust-gas temperature was maintained at about 1410° R (950° F) and secondary air was supplied at 500° R (40° F).

2997

CY-1

Conventional internal performance maps of jet-thrust ratio and total-pressure ratio are presented herein for the ll ejector configurations investigated. Performance curves, obtained with the ejector geometry variable, are also shown to indicate the diameter ratio for peak jet-thrust performance. In addition, all ejector data from the investigation are presented in tabulated form.

APPARATUS

Installation

The XJ79-GE-1 ejector installation in the altitude test chamber is shown by photograph in figure 1 and schematically in figure 2. In this investigation the engine was used as a gas generator for the ejector and was operated below rated conditions to produce an exhaust-gas flow of about 80 pounds per second. Secondary air entered the test setup at an angle of 90° to the engine axis so as not to impose an extraneous axial force. The entire assembly was mounted on a bedplate supported by flexure plates, as indicated in figure 2. Jet thrust was obtained from a calibrated null-type thrust cell after accounting for forces due to a pressure differential acting across the front bulkhead labyrinth seal. The over-all thrust system is accurate to within $\pm 1\frac{1}{2}$ percent for the operating conditions of this investigation.

Ejector System

The variable-geometry ejector assembly is schematically represented in figure 3. Separate sets of actuators permitted independent control of primary-nozzle diameter, secondary-nozzle diameter, and axial spacing between the two nozzles. These dimensions were transmitted to the control room by a calibrated electromechanical system with an accuracy of ±0.15 inch. Secondary air entered the plenum chamber from a single 8-inch pipe, and a perforated sheet-metal baffle (shown in fig. 2) served to equalize the flow around the ejector annulus. A photograph is shown of the primary nozzle in figure 4 and of the ejector shroud in figure 5. A rear view of the assembly is given in figure 6.

Instrumentation

Basic ejector instrumentation is indicated in figure 7. Total pressure P_p and total temperature T_p in the primary stream (station p) were computed as arithmetic averages, since the probes were located

in equal annular flow areas. (Symbols are defined in the appendix.) Arithmetic averages were also used for $P_{\rm S}$ and $T_{\rm B}$ of the secondary stream, because there were essentially no radial or circumferential profiles at station s. Engine air flow and secondary air flow were determined from conventional pressure and temperature surveys at the engine inlet and in the secondary supply line as indicated in figure 2. Primary gas flow was taken as engine-inlet air plus fuel flow minus leakage air. Secondary air was taken as that entering the plenum chamber, since very little leakage was found to occur between the plenum and station s. Ambient exhaust pressure was measured by four trailing static probes equally spaced around and 1 inch away from the ejector exit.

PROCEDURE

Throughout the investigation the engine was operated at a speed of about 6770 rpm, an inlet pressure of 1145 pounds per square foot absolute, and an inlet temperature of 500° R (40° F). Primary-nozzle diameter was held at about 21.5 inches, which produced an exhaust-gas temperature of approximately 1410° R (950° F). At these conditions the primary gas flow was approximately 80 pounds per second.

Ejector weight-flow ratios were set by changing only the secondary flow, which was supplied at a constant temperature of about 500° R (40° F). Secondary flow was maintained almost constant for a desired number of data points by operating so as to choke both the secondary labyrinth seal leakage and a supply valve upstream of the labyrinth seal. Primary pressure ratio was varied by changing only ambient exhaust pressure.

Data for conventional performance maps were obtained by setting a certain ejector geometry and operating over a range of primary pressure ratios (2 to about 9) at several constant weight-flow ratios (0.03 to about 0.20). The ll ejector configurations investigated in this manner are listed in table I along with the range of operation for each.

Additional data were obtained over a range of ejector diameter ratios by varying the shroud diameter while maintaining certain combinations of primary pressure ratio (2.2 to 6) and weight-flow ratio (0.043 to 0.176). Spacing ratio varied systematically with diameter ratio as described later.

RESULTS

Performance Data

Performance maps of 11 specific ejector configurations are presented in figures 8 to 18, and tabulated data are given in table II. The performance maps exhibit typical ejector characteristics.

Jet-thrust ratio F_{ej}/F_{ip} peaked within the range of primary pressure ratios investigated for the smaller diameter ratio ejectors (figs. 8 to 14), indicating that the combined flow was fully expanded with respect to exhaust pressure. For the large diameter ratio ejectors (figs. 15 to 18) peak jet thrust was, of course, not reached within the range of pressure ratios investigated. Minimum jet-thrust ratio (as can be noted on each large-ejector thrust curve) represents an operating region in which internal overexpansion losses were greatest with respect to ambient exhaust pressure.

The pumping curves for each ejector configuration indicate the usual "choking" of the secondary stream within the ejector shroud for high primary pressure ratios. "Choking" means essentially that the secondary stream has been accelerated to at least sonic velocity, and thus its total pressure (at station s) is no longer influenced by downstream conditions. Such a condition is indicated on the ejector performance maps when ejector total-pressure ratio becomes almost independent of primary pressure ratio. As should be expected, "choking" was indicated at lower primary pressure ratios for (1) smaller diameter ratios and (2) higher weight-flow ratios.

Performance data obtained by varying the ejector shroud geometry are presented in figures 19 to 23 grouped in order of increasing weight-flow ratio. Tabulated data are given in table III. The spacing ratio increased slightly for these data as diameter ratio was increased and is described by figure 24.

Jet-thrust curves (parts (a)) indicate the diameter ratio for peak jet thrust at all primary pressure ratios investigated above about 4. As should be expected, the peaks occurred at larger diameter ratios as either primary pressure ratio or weight-flow ratio were increased. At primary pressure ratios less than 4, the jet thrust did not maximize, but continued to increase with decreasing diameter ratio.

Pumping curves (parts (b)) indicate the operating requirements for the existing ejector configuration to handle a specific weightflow ratio at various primary pressure ratios.

Temperature rise of the secondary air shown in figure 25 can be used to evaluate ejector temperature ratio T_p/T_s for all ejector configurations and operating conditions investigated. Since primary weight flow, primary temperature, and secondary air-supply temperature were almost constant throughout the investigation, the secondary temperature rise was directly related only to the amount of secondary air for this particular test installation.

A calibration of the primary nozzle with the ejector shroud removed is shown in figure 26 to indicate nozzle thrust performance and effective flow area. It should be noted, however, that the flow coefficient of the primary nozzle is somewhat different when operating within the ejector assembly. Primary flow coefficient is influenced by the velocity of the secondary stream, as shown in figure 27, which is representative of all the ejectors investigated for primary pressure ratios above 3. Figure 27 indicates that primary flow coefficient is changed by the speed $(\mathbf{C}_{\mathrm{D},\mathrm{ej}}$ varies with $\mathbf{W}_{\mathrm{s}}/\mathbf{W}_{\mathrm{p}})$ and the direction $(\mathbf{C}_{\mathrm{D},\mathrm{ej}}$ varies with $\mathbf{D}_{\mathrm{e}}/\mathbf{D}_{\mathrm{p}})$ of the secondary flow entering the ejector. At primary pressure ratios below 2.5 the effect of secondary flow on primary flow coefficient is somewhat greater than shown here.

Application of Data

All data contained in this report apply directly to only specific ejector configurations operating at specific primary and secondary supply temperatures. However, the data can be interpolated for systematic variations in geometry, weight-flow ratio, and pressure ratio.

To apply these data to the same ejector system operating at other primary gas temperatures (nonafterburning) up to about 1700° R, the conventional corrected weight-flow parameter $\frac{W_B}{W_D}\sqrt{\frac{T_B}{T_D}}$ should be used.

This parameter should also be used to account for different secondaryair temperatures. The assumptions involved by this method are that

$$\left(\frac{\mathbf{W_s}}{\mathbf{W_p}} \sqrt{\frac{\mathbf{T_s}}{\mathbf{T_p}}} \right)_{\texttt{test}} = \left(\frac{\mathbf{W_s}}{\mathbf{W_p}} \sqrt{\frac{\mathbf{T_s}}{\mathbf{T_p}}} \right)_{\texttt{flight}} \text{ and } \left(\frac{\mathbf{F_{ej}}}{\mathbf{F_{ip}}} \right)_{\texttt{test}} = \left(\frac{\mathbf{F_{ej}}}{\mathbf{F_{ip}}} \right)_{\texttt{flight}}$$

These assumptions, however, are not sufficiently accurate to permit extrapolation of the data herein to afterburning gas temperatures.

Ejector jet-thrust values herein are based on internal jet thrust of the ejector system in quiescent air. Internal net thrust may be

found by simply subtracting the inlet momentum of the primary and secondary mass flow chargeable to the propulsion system. The data do not include any effect of base drag nor any effect of the free stream on internal ejector performance. It can be noted that ejector base drag is influenced by the fuselage or nacelle configuration preceding an ejector installation. The effect of the free stream on internal ejector performance should be negligible when the ejector is operating at "choked" conditions.

The data herein is, in general, quite consistent and can be used to predict which ejector configuration would be best for specific operating conditions. However, care should be exercised in predicting the absolute performance of a specific ejector installation.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, May 25, 1956

- A_{eff} effective flow area, $A_p \times \frac{W_p}{(W_p)_{cr}}$, sq ft
- An measured flow area of primary nozzle, sq ft
- C_D flow coefficient for primary nozzle; $C_D = \frac{W_P}{(W_p)_{cr}} = \frac{A_{eff}}{A_p}$
- flow coefficient for choked primary nozzle in ejector assembly, $\frac{w_p}{(w_p)_{cr}}$.
- De measured diameter of ejector exit, in.
- D measured diameter of primary-nozzle exit, in.
- Fei measured jet thrust of ejector system, 1b
- $F_{\rm ep}$ effective jet thrust ideally available from primary flow, $\frac{W_{\rm f}}{g} \, V_{\rm eff}, \, {\rm lb}$
- F jet thrust ideally available from complete isentropic expansion of primary flow, $\frac{W_p}{g}$ V jp, 1b
- F measured jet thrust of primary nozzle, lb
- g acceleration due to gravity, 32.17 ft/sec²
- L spacing, distance between primary- and secondary-nozzle exits, in.
- P_p average total pressure of primary stream at station p, lb/sq ft abs
- P average total pressure of secondary stream at station s, lb/sq ft abs
- p ambient exhaust pressure, lb/sq ft abs

$^{\mathrm{T}}\mathbf{c}$	total temperature of secondary air entering plenum chamber, OR
⁺ c	obotal compositions of incommittee and office and offic
T _p	average total temperature of primary stream at station p, OR
Ts	average total temperature of secondary stream at station s, OR
${\tt v}_{\tt eff}$	effective velocity of ideal convergent nozzle, ft/sec
v_{ip}	ideal velocity of complete isentropic expansion from P_p and T_p to p_0 , ft/sec
$\mathbf{w}_{\mathbf{p}}$	measured primary gas flow, lb/sec
(W _p) _{cr}	critical one-dimensional primary flow, computed from $A_p^{},P_p^{},T_p^{},$ and $\gamma_p^{},$ lb/sec
Ws	measured secondary air flow, lb/sec
αp	half-cone angle of primary nozzle, $\sin^{-1}\left(1.79 - \frac{D_p}{17.2}\right)$ -3, deg
α_{g}	half-cone angle of ejector shroud, $\sin^{-1}\left(1.29 - \frac{D_g}{26.8}\right) + 5$, deg
r_{p}	ratio of specific heats for primary stream, 1.34
Υ _в	ratio of specific heats for secondary stream, 1.40

[Primary-nozzle-exit diameter D_p , 21.5 in.; primary-nozzle half-cone angle α_p , 30°; primary-stream average total temperature at station p T_p , 1410° R; total temperature of secondary air entering plenum chamber T_c , 500° R; measured primary gas flow W_p , 80 lb/sec.]

Ejector configuration	Diameter ratio, De/Dp	Spacing ratio, L/D _p	Secondary half-cone angle, α _g , deg	Range of primary pressure ratio, P_p/p_0	Range of weight-flow ratio, W _g /W _p	Data in figure -
1	1.02	0.77	33	2 to 7	0.043 to 0.111	8
2	1.02	.8 4	33	2 to 7	.059 to .179	9
3	1.09	.82	30	2 to 8	.035 to .179	10
4	1.09	.95	30	2 to 8	.036 to .145	11
5	1.16	.85	26	2 to 8	.035 to .143	12
6	1.16	.96	26	2 to 8	.032 to .137	13
7	1.23	.86	23	2 to 6	.047 to .126	14
8	1.43	.87	13	2 to 8	.034 to .139	15
9	1.42	.97	14	2 to 8	.037 to .128	16
10	1.62	.84	4	2 to 7	.030 to .139	17
11	1.70	.85	1	2 to 9	.039 to .212	18

TABLE II. - DATA FOR VARIOUS XJ-79-GE-1 EJECTOR CONFIGURATIONS

(a) Configuration 1. Diameter ratio $D_{\rm e}/D_{\rm p}$, 1.02; spacing ratio $L/D_{\rm p}$, 0.77; primary-nozzle-exit diameter $D_{\rm p}$, 21.5 inches

Run	T	Perform	nce parar	neters		We	eight flo	OM.		Pressure		Te	emperatu	re	Messured
i	Ejector weight- flow ratio, W _s /W _p	Primary pressure ratio, Pp po	Rjector total- pressure ratio, P P P	Ejector jet- thrust ratio, Fej Fip	Primary to second- ary temper- ature ratio, T/T	Wa Va		Second- ary eir flow, W _S , lb/sec	Primary total pressure, Pp, 1b sq ft abs	Secondary total pressure, Ps, lb	Ambient exhaust pressure, po, 1b sq ft abs	Primary total temper- ature, Tp, oR	Second- ary total temper- ature, T ₅ , o _R	Ejector supply air temper- ature, T, oR	ejector jet thrust, Fej, 1b
1 2 3 4 5 6 7	0.043 .045 .042 .041 .042 .031	2.25 2.43 2.98 5.85 4.68 5.75 6.94	0.469 .447 .425 .414 .411 .411	0.930 .922 .921 .957 .941 .952	2.45 2.43 2.39 2.37 2.37 2.37 2.37	0.027 .029 .027 .026 .027 .026	82.93 82.63 82.65 82.80 82.86 82.86 82.78	3.57 3.79 3.52 3.42 3.48 3.39 3.45	2462 2439 2428 2418 2422 2422 2422 2417	1157 1092 1032 1003 997 996 983	1104 1103 813 628 517 421 348	1453 1446 1441 1439 1440 1442 1441	592 594 603 605 607 608 608	497 497 497 497 497 497 497	4506 4709 5281 5727 6090 6345 6540
8 9 10 11 12 13	.056 .056 .035 .054 .055	2.21 2.97 3.85 4.74 5.73 8.65	.490 .443 .431 .426 .423 .421	.926 .948 .945 .943 .937	2.50 2.45 2.43 2.43 2.44 2.44	.035 .036 .035 .035 .035	82.27 82.52 82.58 82.77 82.46 82.26	4.63 4.67 4.56 4.54 4.54 4.52	2457 2385 2413 2413 2418 2417	1206 1057 1040 1029 1024 1018	1111 802 626 509 422 363	1460 1445 1441 1442 1443 1445	582 589 593 593 591 592	497 497 497 497 497 497	4492 5275 5764 6121 6355 6533
14 15 16 17 18 19	.074 .074 .074 .073 .072	2.23 5.02 3.87 4.75 5.75 6.42	.513 .464 .452 .446 .446 .447	.935 .949 .954 .951 .947 .936	2.59 2.54 2.54 2.53 2.53 2.53	.046 .046 .046 .046 .045	82.34 82.52 82.57 82.67 82.77 82.48	6.18 6.12 6.13 6.06 5.99 5.97	2483 2447 2444 2439 2436 2436	1274 1136 1106 1090 1088 1089	1113 810 630 513 425 379	1467 1450 1450 1448 1450 1450	566 569 570 571 571 572	497 496 496 496 496 496	4567 5830 5913 6183 6461 6524
20 21 22 23 24	.091 .091 .090 .090	3.02 3.91 4.76 5.72 6.66	.497 .481 .477 .475	.957 .957 .961 .954 .949	2.60 2.59 2.59 2.59 2.59	.056 .056 .056 .056	82.33 82.38 82.54 82.52 82.21	7.52 7.52 7.49 7.45 7.43	2485 2455 2450 2450 2446	1225 1185 1172 1164 1157	815 627 515 428 367	1458 1453 1453 1453 1455	560 561 560 560 560	496 496 496 496 496	5378 5882 6254 6487 6649
25 26 27 28 29	.111 .110 .110 .110	3.09 3.98 4.79 5.78 6.70	.522 .513 .511 .509 .503	.968 .975 .971 .963 .957	2.66 2.65 2.65 2.65 2.65	.068 .068 .068 .067	82.26 82.20 82.32 82.02 82.59	9.20 9.18 9.12 9.07 9.05	2494 2484 2481 2482 2482	1502 1275 1270 1264 1250	805 623 517 429 370	1469 1466 1466 1467 1468	552 552 552 563 563	495 495 495 495 495	5499 6053 6541 6565 6776

TABLE II. - Continued. DATA FOR VARIOUS XJ-79-GE-1 EJECTOR CONFIGURATIONS

(b) Configuration 2. Diameter ratio D_{ϕ}/D_{p} , 1.02; spacing ratio L/D_{p} , 0.84; primary-nozzle-exit diameter D_{p} , 21.5 inches

Run		Perform	nce para	neters		We	ight fl	ON		Pressure		ፓ (emperatu	re	Measured ejector
	Ejector weight- flow ratio, Wa/Wp	Primary pressure ratio, F _p /p ₀	Bjector total- pressure ratio, P _B /P _p	Ejector jet- thrust ratio, Fej Fip	Primary to second- ary temper- ature ratio, T T	$\overline{\mathbf{v}_{\mathbf{p}}}$ $\sqrt{\overline{\mathbf{r}_{\mathbf{p}}}}$	Primary gas flow, Wp, lb/sec	Second- ary air flow, y _B , lb/sec	Primary total pressure, Pp, 1b sq ft abs	Secondary total pressure, Pg, 1b	Ambient exhaust pressure, po, lb sq ft abs	Primary total temper- ature, Tp, oR	Second- ary total temper- ature, Ts, oR	Ejector supply air temper- ature, To, oR	jet tor jet thrust, Fej,
1 2 3 4 5	0.060 .058 .060 .058	2.23 3.19 4.57 5.83 6.65	0.496 .440 .426 .423 .424	0.951 .945 .942 .941 .928	2.51 2.46 2.39 2.43 2.45	0.038 .037 .039 .037	82.83 82.53 82.74 82.52 82.38	5.01 4.83 5.00 4.84 4.83	2480 2434 2429 2425 2422	1231 1071 1035 1028 1029	1111 761 531 416 364	1465 1445 1444 1445 1446	581 587 604 594 589	497 497 497 497 497	4564 5413 6059 6412 6516
8 7 8 9	.087 .087 .087 .088	3.19 3.72 4.56 5.75 6.97	.493 .485 .479 .474	.959 .959 .961 .957 .943	2.55 2.58 2.59 2.58 2.58	.054 .054 .054 .053	82.48 82.40 82.44 82.35 82.78	7.21 7.20 7.22 7.14 7.13	2466 2461 2459 2467 2457	1218 1194 1179 1171 1158	772 661 539 4 29 352	1460 1455 1458 1458 1459	571 563 563 564 565	496 496 496 496 496	5509 5795 6180 6516 6731
11 12 13 14 15	.092 .091 .091 .092	3.04 3.85 4.78 5.72 6.72	.505 .492 .490 .487 .488	.963 .960 .961 .958 .950	2.60 2.59 2.60 2.60	.057 .057 .056 .057 .057	82.16 81.98 82.27 82.22 82.22	7.57 7.53 7.54 7.62 7.59	2464 2465 2456 2482 2462	1241 1215 1205 1199 1202	810 640 513 430 366	1461 1458 1459 1460 1461	561 561 563 583 561	496 496 496 498 498	5419 5849 6254 6509 6679
16 17 18 19 20	.111 .111 .111 .110 .108	3.13 3.95 4.92 5.76 6.72	.526 .521 .517 .516 .512	.975 .969 .970 .986 .981	2.66 2.65 2.65 2.66 2.65	.068 .068 .068 .067 .066	82.42 82.31 82.26 82.31 82.44	9.19 9.17 9.14 9.10 8.98	2509 2493 2491 2490 2482	1322 1301 1290 1287 1272	801 630 508 432 369	1472 1469 1469 1470 1470	561 552 553 552 553	496 496 496 496 495	5586 5998 6380 6603 6805

TABLE II. - Continued. DATA FOR VARIOUS XJ-79-GE-1 EJECTOR CONFIGURATIONS

(c) Configuration 3. Diameter ratio $D_{\rm e}/D_{\rm p}$, 1.09; spacing ratio $L/D_{\rm p}$, 0.82; primary-nozzle-exit diameter $D_{\rm p}$, 21.5 inches

Run	<u> </u>	Perform	ance parar	neters	-	We	eight fl	OW	<u> </u>	Pressure		T	emperatu	re	Measured
		Primary pressure ratio, P _p /p ₀	Ejector total- pressure ratio, P _B /P _p	Ejector jet- thrust ratio, Fej. Fip	Primary to second- ary temper- ature ratio, T, T,	$\frac{W_B}{W_D}$ $\sqrt{\frac{T_B}{T_D}}$	Primary gas flow, Wp, lb/sec	Second- ary air flow, W _B , lb/sec	Primary total pressure, Pp, 1b sq ft abs	Secondary total pressure, Ps; 1b sq ft abs	Ambient exhaust pressure, Po, 1b sq ft abs	Primary total temper- ature, T _p , o _R	Second- ary total temper- ature, Tg, oR	Ejector supply air temper- ature, T o	ejector jet thrust, Fej, 1b
1 2 5 4 5 6	0.036 .034 .035 .035 .034 .032	2.17 3.09 4.58 5.84 7.36 8.76	0.424 .346 .329 .329 .528 .327	0.920 .943 .943 .944 .935	2.26 2.24 3.09 2.16 2.12 2.13	0.024 .023 .018 .024 .023	81.61 81.59 81.76 81.60 81.88 81.82	2.99 2.85 2.72 2.86 2.79 2.89	2401 2366 2367 2367 2366 2367	1018 819 779 779 777 778	1102 465 516 405 321 270	1430 1416 1416 1418 1420 1421	631 630 457 655 667 667	504 504 504 504 502 802	4348 5222 5942 6305 6582 6766
7 8 9 10 11	.053 .051 .050 .051 .049	2.15 3.07 4.60 5.88 7.99	.445 .359 .343 .340 .339	.935 .948 .949 .950 .942	2.42 2.38 2.37 2.36 2.36	.034 .033 .032 .033 .032	81.62 81.95 81.77 81.59 81.87	4.58 3.52 2.80 1.96 2.82	2398 2359 2372 2368 2374	1068 847 815 807 806	1115 768 516 402 297	1454 1417 1417 1418 1421	591 594 598 600 601	503 503 503 503 501	4395 5262 5990 6355 6739
12 13 14 15 16	.085 .082 .082 .082 .082	2.14 3.10 4.67 3.94 7.63	.468 .384 .369 .369 .367	.958 .961 .966 .962 .955	2.53 2.50 2.54 2.50 2.50	.053 .062 .051 .052 .052	81.69 81.78 81.73 81.65 81.73	6.40 5.72 5.65 5.60 5.61	2427 2387 2384 2380 2384	1136 917 880 880 876	1131 770 510 400 512	1449 1428 1425 1425 1425	571 570 560 570 570	501 501 501 501 500	4427 5359 6131 6468 6766
17 18 19 20 21	.110 .110 .110	2.18 5.16 4.60 8.09 7.61	.489 .403 .395 .388	.961 .972 .975 .976 .964	2.49 2.56 2.55 2.53	.071 .069 .069 .069 .089	81.47 81.65 81.60 81.60 51.51	9.30 6.41 7.98 8.22 7.92	2438 2397 2385 2389 2390	1193 968 942 929 928	1117 758 518 395 314	1452 1430 1430 1416 1431	559 557 558 558	500 499 499 499 499	4576 5464 6168 6562 6807
22 23 24 25 26	.147 .148 .145 .145 .145	2.24 3.12 4.68 5.99 7.80	.508 .457 .422 .416 .413	.980 .993 .990 .982 .971	2.65 2.62 2.62 2.62	.090 .090 .089 .089	81.28 81.51 81.62 81.87 81.79	11.17 11.01 10.82 10.75 10.48	2488 2405 2403 2403 2411	1254 1051 1014 1001 996	1101 769 513 401 309	1463 1439 1457 1438 1437	551 548 546 548 548	500 499 499 499 499	4743 5580 6305 6663 6944
27 28 29 30	.179 .179 .178 .179	5.22 4.78 5.87 7.40	.463 .450 .448 .448	1.007 1.006 .997 .987	2.65 2.66 2.66 2.66	.110 .109 .109 .109	81.51 81.41 81.52 81.79	13.50 13.35 13.31 13.29	2417 2414 2420 2421	1121 1088 1085 1082	749 505 412 321	1446 1444 1443 1444	543 542 542 541	499 499 498 408	5706 6443 6721 7002

TABLE II. - Continued. DATA FOR VARIOUS XJ-79-GR-1 EJECTOR CONFIGURATIONS

(d) Configuration 4. Diameter ratio $D_{\rm e}/D_{\rm p}$, 1.09; spacing ratio $L/D_{\rm p}$, 0.95; primary-nozzle-exit diameter $D_{\rm p}$, 21.5 inches

Run		Perform	ance pare	neters		W	eight fl	OW		Pressure		Te	mperatu	re	Measured
	Rjector weight- flow ratio, W _B /W _P	Primary pressure ratio, Pp P0	Ejector total- pressure ratio, P P P	Ejector jet- thrust ratio, Fej F1p	Primary to second- ary temper- ature ratio, Tp/Ts	W _B √T _B T _p		Second- ary air flow, Wg, lb/sec	Primary total pressure, Pp, 1b aq ft abs	Secondary total pressure, Pg, lb sq ft abs	Ambient exhaust pressure, Po' lb sq ft abs	Primary total temper- ature, T _p , o _R	Second- ary total temper- ature, T _s , OR	Mjeotor supply air temper- atura, To, oR	ejector jet thrust, Pej' lb
1 2 3 4 5 6	0.038 .036 .036 .035 .035	2.17 3.04 4.43 5.78 7.57 8.60	0.423 .344 .329 .328 .324 .325	0.915 .932 .933 .937 .932	2.34 2.33 2.30 2.30 2.30 2.30	0.024 .023 .023 .023 .023 .025	81.55 81.74 81.88 81.85 81.89 81.79	3.11 2.97 2.25 2.92 2.92 2.90	2401 2351 2350 2355 2364 2358	1015 810 774 772 768 788	1102 772 550 407 312 274	1437 1419 1413 1418 1417 1420	613 608 612 615 615 614	505 505 504 504 502 502	4330 5145 5827 6259 8574 8683
7 8 9 10 11	.056 .055 .054 .053 .063	2.16 3.10 4.57 8.06 7.70	.446 .355 .341 .386 .356	.927 .939 .946 .942 .935	2.45 2.41 2.40 2.40 2.40	.035 .038 .034 .034	81.54 81.87 81.55 81.79 81.74	4.57 4.50 4.40 4.38 4.37	2389 2364 2363 2366 2366	1071 841 807 798 797	1109 761 517 390 307	1440 1422 1423 1424 1424	592 590 592 592 593	504 504 504 504 504	4377 5223 5953 6377 6622
12 13 14 15 16	.085 .084 .083 .081 .082	2.15 3.07 4.58 5.94 7.92	.471 .380 .362 .561 .360	.940 .953 .958 .949 .944	2.52 2.49 2.49 2.49 2.49	.053 .053 .052 .051 .052	81.40 81.84 81.48 81.42 81.84	6.84 6.88 6.79 6.67	2408 2367 2367 2366 2370	1135 901 857 855 854	1120 770 518 398 299	1445 1424 1424 1425 1426	573 571 571 571 572	504 502 502 502 502	4418 5285 6035 6361 8728
17 18 19 20 21 22	.113 .113 .112 .110 .110	2.18 3.12 4.67 5.81 7.77 8.33	.488 .404 .385 .388 .384	.956 .968 .978 .962 .955	2,61 2.56 2.56 2.55 2.55 2.55	.070 .070 .070 .069 .068	81.50 81.71 81.85 81.85 81.73 81.73	9.28 9.24 9.24 9.04 9.01 9.16	2427 2381 2382 2388 2377 2383	1185 984 919 927 915 913	1112 762 509 411 306 286	1451 1431 1429 1430 1426 1430	554 558 558 559 558 559	502 502 502 501 501	4549 5419 6228 6469 6790 6891
23 24 25 26 27	.146 .145 .145 .143 .144	2.20 3.11 4.62 5.99 8.13	.511 .439 .417 .416 .412	.986 .986 .987 .978 .961	2.64 2.61 2.60 2.61 2.58	.090 .090 .089 .088	81.46 81.71 81.60 81.52 81.64	11.95 11.91 11.83 11.68 11.78	2453 2398 2400 2398 2393	1254 1054 1002 999 988	1112 771 519 400 294	1456 1434 1432 1434 1433	551 548 549 549 558	501 501 500 501 500	4631 6516 6247 6602 6904

TABLE II. - Continued. DATA FOR VARIOUS XJ-79-GE-1 EJECTOR CONFIGURATIONS (e) Configuration 5. Diameter ratio $D_{\mathbf{e}}/D_{\mathbf{p}}$, 1.16; spacing ratio $L/D_{\mathbf{p}}$, 0.85; primary-nozzle-exit diameter $D_{\mathbf{p}}$, 21.5 inches

Run		Perform	ance para	neters		We	eight fl	DW		Pressure		Te	empera tu	re	Measured
		Primary pressure ratio, Pp/Po	Ejector total- pressure ratio, Ps/Pp	Rjector jet- thrust ratio, Fej Fip	Primary temperature ratio, T	Wa Tp		Second- ary air flow, W _B , lb/sec	Primary total pressure, Pp, 1b sq ft abs	Secondary total pressure, Ps, lb	Ambient axhaust pressure, pos lb sq ft abs	Primary total temper- ature, Tp,	Second- ary total temper- ature, Tg,	Ejector supply air temper- ature, Tc, cR	ejector jet thrust, Fej, lb
1 2 3 4	0.035 .034 .032 .034	2.12 3.01 4.56 6.25	0.436 .312 .275 .263	0.919 .934 .946	2.20 2.20 2.20 2.20	0.023 .025 .022 .022	81.27 81.13 81.35 81.20	2.86 2.81 2.68 2.76	2368 2312 2311 2513	1035 723 636 510	1117 768 508 570	1419 1398 1398 1401	643 633 634 635	508 505 504 504	4240 5064 5883 6390
5 6 7 8 9	.055 .054 .053 .056 .055	2.14 3.05 4.66 4.84 8.43 6.17	.439 .323 .285 .287 .276 .282	.942 .944 .956 .959 .957	2.39 2.57 2.38 2.38 2.43 2.38	.035 .035 .034 .036 .035	80.95 81.03 61.56 81.23 81.40 81.51	4.48 4.44 4.40 4.57 4.52 4.55	2373 2328 2329 2327 2330 2328	1043 754 664 670 643 657	1105 781 499 501 276 377	1408 1408 1408 1405 1410 1400	589 593 590 590 579 587	504 503 503 503 503 502 503	4342 5155 6014 5993 6840 6472
11 12 13 14 15	.088 .085 .087 .086 .086	2.13 2.54 2.99 4.09 5.10 6.02	.458 .386 .344 .318 .312 .309	.935 .952 .957 .968 .974 .977	2.51 2.49 2.47 2.48 2.47 2.47	.055 .054 .055 .055 .055	80.75 80.77 80.66 80.67 80.52 80.28	7.11 6.89 7.04 7.01 6.99 6.97	2562 2535 2303 2305 2501 2288	1083 903 794 735 719 709	1108 917 789 563 451 380	1431 1412 1407 1409 1408 1409	568 567 568 567 568 569	504 502 503 503 504 505	4321 4783 5155 5805 6198 6444
17 18 19 20 21 22	.118 .117 .116 .115 .116 .116	2.16 3.11 4.69 7.73 5.95 9.18	.462 .350 .335 .324 .326 .321	.948 .968 .983 .977 .982 .975	2.58 2.55 2.54 2.55 2.55 2.55	.075 .073 .073 .072 .072	81.16 81.14 81.33 81.42 81.15 81.23	9.65 9.55 9.51 9.43 9.45 9.57	2427 2367 2566 2586 2585 2389	1122 829 793 768 773 762	1122 759 504 306 397 258	1448 1424 1420 1423 1423	560 558 557 557 556 5 57	501 501 501 501 501 501	4486 5381 6207 6911 6583 7092
23 24 25 28 27	.145 .143 .143 .142 .142	2.18 3.11 4.69 6.12 7.42	.474 .370 .356 .344 .343	.954 .979 .989 .987 .979	2.62 2.59 2.60 2.60 2.60	.089 .089 .085 .088	81.60 81.88 81.69 81.74 81.53	11.86 11.76 11.70 11.65 11.60	2426 2372 2583 2564 2377	1150 878 849 622 816	1123 762 507 389 320	1445 1425 1427 1427 1427	550 548 548 548	500 500 499 499 499	4512 5464 6291 6700 6688

TABLE II. - Continued. DATA FOR VARIOUS XJ-79-GE-1 EJECTOR CONFIGURATIONS

(f) Configuration 6. Diameter ratio $D_{\rm g}/D_{\rm p}$, 1.16; spacing ratio $L/D_{\rm p}$, 0.96; primary-nozzle-exit diameter $D_{\rm p}$, 21.5 inches

Run		Perform	ance para	meters		l	Weight fl	ON		Pressure	· · · · · · · · · · · · · · · · · · ·	Te	emperatu	re	Measured e.jector
	Ejector weight- flow ratio, W M p	Primary pressure ratio, Pp/PQ	Ejector total- pressure ratio, Ps/Pp	Ejector jet- thrust ratio, Fej Fip	Primary to second- ary temper- ature ratio, Tp/Ts	W _B W _p √T	Primary gas flow, wp, lb/sec	Second- ary air flow, Wg, lb/sec	Primary total pressure, Pp, 1b sq ft abs	Secondary total pressure, Ps, 1b sq ft abs	Ambient exhaust pressure, po, lb sq ft abs	Primary total temper- ature, Tp, oR	Second- ary total temper- ature, T _S , o _R	Ejector supply air temper- ature, To, oR	
1 2 3 4 5 6	0.033 .032 .030 .031 .030	2.12 3.00 4.02 4.96 5.98 8.05	0.425 .308 .285 .278 .273 .269	0.909 .923 .928 .941 .947	2.22 2.25 2.21 2.19 2.18 2.26	0.022 .021 .020 .021 .020	81.57 81.79 81.78 81.75 81.40 81.58	2.69 2.63 2.48 2.58 2.48 2.55	2382 2348 2337 2341 2344 2329	1014 724 544 651 642 527	1121 782 580 472 393 289	1432 1414 1411 1412 1412 1415	643 826 637 642 845 624	494 489 496 496 490 494	4240 5058 5624 6043 8325 6729
7 8 9 10 11 12	.050 .050 .050 .048 .050 .049	2,12 2.98 4.07 5.11 6.01 8.29	.433 .320 .295 .286 .284 .280	.916 .930 .946 .956 .955	2.40 2.38 2.38 2.40 2.39 2.40	.032 .032 .032 .031 .032	80.94 80.86 80.91 80.97 80.75 80.47	4.10 4.08 4.05 3.95 4.04 3.99	2361 2309 2357 2347 2338 2332	1024 739 694 672 668 654	1111 774 578 459 389 281	1455 1407 1404 1422 1422 1424	595 590 588 591 595 593	501 496 500 498 495 500	4239 5016 5683 6150 6366 6723
13 14 15 16 17 18	.078 .077 .077 .076 .075	2.13 2.96 3.97 4.99 5.96 8.09	.447 .338 .309 .301 .297 .294	.933 .941 .958 .963 .970	2.48 2.57 2.70 2.58 2.48 2.53	.049 .048 .047 .047 .047	80.85 81.51 81.00 80.82 80.80 80.49	6.34 6.28 6.25 6.19 6.11 6.14	2373 2328 2313 2301 2309 2307	1061 787 715 694 687 679	784 582 461 387 285	1431 1415 1410 1407 1406 1418	576 550 565 560	496 495 495 493 495 496	4320 5123 5723 6113 6422 6768
19 20 21 22 23 24	.111 .110 .109 .110 .109	2.17 3.01 4.13 5.01 8.04 8.56	.462 .348 .350 .321 .317 .311	.949 .958 .972 .974 .983	2.67 2.72 2.64 2.55 2.62 2.61	.068 .067 .067 .068 .067	81.45 81.51 81.12 81.42 81.06 81.25	9.08 9.02 8.90 8.87 8.84 8.87	2596 2543 2525 2532 2532 2332	1107 816 789 750 741 728	1102 776 562 465 386 273	1439 1412 1414 1410 1411 1404	539 534 551 538 540	489 494 495 493 492 491	4486 5236 5892 6239 6550 6988
25 26 27 28 29 30	.137 .138 .135 .135 .137 .136	2.18 3.03 4.16 5.19 6.46 8.36	.472 .361 .344 .334 .331 .328	.949 .968 .981 .985 .993	2.79 2.84 2.59 2.84 2.70 2.70	.082 .081 .084 .080 .083	81.55 81.37 81.15 81.43 81.07 81.45	11.21 11.23 11.02 11.05 11.14 11.10	2418 2361 2358 2353 2361 2367	1143 854 813 788 782 777	1108 778 566 453 365 283	1443 1422 1419 1418 1419 1415	546 	492 497 492 495	4510 5318 5975 6389 6738 7078

TABLE II. - Continued. DATA FOR VARIOUS XJ-78-GE-1 EJECTOR CONFIGURATIONS

(g) Configuration 7. Diameter ratio $D_{\rm e}/D_{\rm p}$, 1.23; spacing ratio $L/D_{\rm p}$, 0.86; primary-nozzle-exit diameter $D_{\rm p}$, 21.5 inches

Run		Perform	nce para	eters		W	eight fl	OW		Pressure		T	emperatu	69	Measured ejector
	Ejector weight- flow ratio, Wa/Mp	Primary pressure ratio, Pp/p0	Bjector total- pressure ratio, Pp	Ejector jet- thrust ratio, Fej Fip	Primary to second- ary temper- ature ratio, TyTs	$\frac{W_{S}}{W_{D}}$ $\sqrt{\frac{T_{S}}{T_{D}}}$	Primary gas flow, Wp, lb/sec	Second- ary air flow, W _B , lb/sec	Primary total pressure, Pp, lb sq ft abs	Secondary total pressure, ps, lb aq ft abs	Ambient exhaust pressure, p _O , 1b sq ft abs	Primary total temper- ature, Tp, oR	Second- ary total temper- ature, Ts, oR	Ejector supply air temper- ature, To, oR	jet thrust, Fej, 1b
1 2 3 4 5 6 7	0.048 .047 .048 .047 .047 .047	2.07 2.55 3.05 4.04 5.18 5.98 6.60	0.455 .357 .297 .256 .242 .239 .238	0.937 .943 .944 .951 .958 .953	2.25 2.26 2.30 2.30 2.31 2.32 2.32	0.032 .031 .031 .031 .031	80.79 80.87 80.89 80.92 80.94 80.63 80.25	3.92 3.82 3.89 3.87 3.84 3.83 3.76	2286 2297 2279 2279 2272 2264 2253	1041 821 678 584 550 541 537	\$1100 898 745 563 438 578 341	1404 1406 1403 1398 1398 1399 1381	624 620 608 606 604 602 601	504 505 505 505 505 505 505	4222 4762 5137 5673 6118 6267 6346
8 9 10 11 12 13	.070 .070 .071 .070 .071	2.12 2.55 3.08 4.10 5.07 6.17	.454 .374 .309 .265 .253 .248	.938 .947 .959 .965 .971	2.44 2.44 2.43 2.42 2.41 2.40	.045 .044 .045 .045 .045	80.18 79.87 79.56 79.53 79.57 79.72	5.68 5.59 5.70 5.61 5.67 5.68	2324 2289 2279 22 54 2264 2265	1057 856 705 600 574 562	1095 903 743 552 446 367	1415 1406 1400 1397 1398 1397	578 575 574 577 578 580	504 504 505 505 505	4267 4690 5133 5671 6059 6360
14 15 16 17 18 19	.097 .097 .097 .095 .096 .095	2.05 2.48 3.00 4.08 5.01 6.01	.476 .382 .331 .286 .273 .270	.959 .958 .967 .975 .985	2.45 2.42 2.45 2.43 2.43	.062 .062 .062 .061 .061	80.28 80.48 80.47 80.44 80.40 80.43	7.85 7.82 7.84 7.70 7.74 7.84	2277 2242 2227 2217 2224 2219	1086 880 739 634 609	1107 901 741 548 444 369	1405 1385 1379 1379 1379 1379	571 571 569 567 567 566	505 505 505 506 505 505	4265 4716 5156 5750 6180 6389
20 21 22 24 25	.126 .126 .128 .125 .125	2.05 2.48 2.99 4.04 4.91 5.60	.487 .405 .348 .306 .295	.984 .980 .971 .981 .995	2.50 2.49 2.49 2.49 2.48 2.48	.080 .079 .079 .079 .079 .079	80.35 80.90 81.01 81.01 80.78 80.79	10.19 10.20 10.19 10.13 10.14 10.15	2275 2237 2215 2214 2212 2214	1108 908 772 878 654 847	1107 901 739 547 450 395	1402 1588 1378 1375 1376 1378	559 555 552 551 552 553	504 502 502 502 500 502	4283 4745 5195 5857 6203 6449

CY-3

TABLE II. - Continued. DATA FOR VARIOUS XJ-78-GE-1 EJECTOR CONFIGURATIONS

(h) Configuration 8. Diameter ratio $D_{\mathbf{e}}/D_{\mathbf{p}}$, 1.43; spacing ratio $L/D_{\mathbf{p}}$, 0.87; primary-nozzle-exit diameter $D_{\mathbf{p}}$, 21.5 inches

Run		Perform	ance para	meters		W	eight fl	OW	Ī	Pressure		T	emperatu	re	Measured
	Ejector weight- flow ratio, w _s /W _p	Primary pressure ratio, P _p /P ₀	Ejector total- pressure ratio, Pp/Pp	Fjector jet- thrust ratio, Fej Fip	Primary to second- ary temper- ature ratio, T/Ts	W _B √T _B T _D	Primary gas flow, Wp, lb/sec	Second- ary flow, W _B , lb/sec	Frimary total pressure, Pp, 1b sq ft abs	P _B ,	Ambient exhaust pressure, Po, 1b sq ft abs	Primary total temper- ature, Tp, oR	Second- ary total temper- ature, T _B , o _R	Ejector supply air temper- ature, To, OR	ejector jet thrust, Fej, lb
1 2 3 4 5 6	0.035 .034 .033 .033 .033	2.16 2.86 3.83 4.95 5.86 7.17	0.461 .344 .232 .175 .162 .154	0.822 .920 .907 .915 .925	2.18 2.23 2.29 2.31 2.30 2.30	0.025 .023 .022 .022 .021	80.81 80.83 80.96 81.12 80.97 81.29	2.65 2.77 2.74 2.75 2.70 2.60	2589 2550 2544 2540 2346 2346	1102 803 544 410 382 362	1104 814 612 472 400 329	1446 1422 1418 1421 1420 1419	661 635 617 614 615 617	502 502 502 502 502 503	4525 4888 5367 5838 6137 6465
7 8 9 10 11 12	.048 .048 .047 .048 .047	2.18 2.97 3.88 4.94 5.93 7.77	.456 .334 .243 .186 .171 .161	.934 .947 .924 .931 .938	2.42 2.39 2.38 2.37 2.36 2.36	.031 .031 .031 .030 .030	80.66 80.48 80.23 80.64 80.41 80.21	3.94 3.88 3.84 3.74 3.80 3.80	2405 2349 2533 2330 2525 2517	1097 785 567 435 399 375	1099 790 600 471 392 298	1442 1417 1414 1414 1418 1414	594 591 594 595 600 598	503 505 506 510 508	4387 5085 5437 5891 6197 6615
13 14 15 16 17 18 19	.079 .079 .077 .076 .076 .077	2.16 2.19 3.00 3.98 4.96 5.93 7.89	.462 .456 .834 .248 .202 .183	.945 .945 .947 .947 .948 .950	2.50 2.51 2.48 2.48 2.46 2.48 2.48	.050 .050 .048 .048 .048 .049	80.27 80.73 81.01 80.60 80.98 60.32 80.43	6.39 6.40 6.24 6.19 6.17 6.22 6.10	2400 2414 2358 2347 2336 2322 2322	1111 1101 788 584 473 428 408	1109 1098 785 589 471 391 294	1432 1438 1419 1412 1410 1413 1411	572 571 571 569 571 569 889	501 501 501 504 502 503 502	4375 4458 5157 5635 6031 6257 8743
20 21 22 23 24 25	.112 .110 .111 .110 .109 .109	2.17 2.99 3,94 4.85 5.99 7.84	.464 .339 .261 .220 .201	.941 .949 .949 .964 .968	2.60 2.53 2.55 2.54 2.55 2.55	.089 .069 .069 .069 .068	80.23 80.37 80.24 80.24 80.14 79.99	8.90 8.92 8.87 8.80 8.78	2390 2349 2321 2323 2301 2299	1110 797 606 513 464 446	1100 784 589 478 584 293	1438 1418 1410 1407 1403 1405	552 560 553 554 549 550	502 502 500 502 500 501	4375 5122 5803 8036 6347 6746
28 27 28 29 30 31	.139 .139 .138 .138 .137	2.18 2.98 3.87 4.99 6.08 7.78	.465 .348 .273 .250 .217 .212	.959 .961 .952 .969 .982 .994	2.65 2.61 2.62 2.64 2.64 2.66	.085 .088 .085 .085 .084 .084	81.54 80.87 80.86 81.16 80.66 80.72	11.34 11.26 11.22 11.22 11.12 11.08	2396 2360 2355 2360 2343 2361	1116 817 643 546 510 500	1099 792 608 473 385 302	1448 1429 1424 1427 1425 1425	548 547 543 540 538 534	499 501 502 500 502 501	4412 5220 5859 6216 6549 6973

TABLE II. - Continued. DATA FOR VARIOUS XJ-79-GE-1 EJECTOR CONFIGURATIONS

(i) Configuration 9. Diameter ratio $D_{\rm e}/D_{\rm p}$, 1.42; spacing ratio $L/D_{\rm p}$, 0.97; primary-nozzle-exit diameter $D_{\rm p}$, 21.5 inches

Run	T	Perform	ance para	neters		W	eight fl	OW		Pressure		To	emperatu	re	Measured
	Fjector weight- flow ratio, Wg/Wp	Primary pressure ratio, Pp P0	Ejector total- pressure ratio, P P P	Ejector jet- thrust ratio, Fej F _{1p}	Primary too second- ary temper- ature ratio, T/T p s	W _B $\sqrt{\frac{T_B}{T_D}}$	Primary gas flow, Wp, lb/sec	Second- ary flow, W _B , lb/sec	P _p ,	Secondary total pressure, Ps, lb sq ft abs	Ambient exhaust pressure, po, 1b sq ft abs	Primary total temper- ature, Tp, oR	Second- ary total temper- ature, Ts, OR	Ejector supply air temper- ature, To, oR	ejector jet thrust, Fej, 1b
1 2 3 4 5 6	0.036 .034 .036 .039 .040	2.11 2.93 3.97 4.97 5.89 7.96	0.468 .335 .210 .176 .167 .158	0.932 .945 .893 .899 .913	2.27 2.26 2.26 2.27 2.29 2.29	0.023 .023 .024 .026 .026	80.93 81.15 81.22 81.42 81.54 81.33	2.91 2.83 3.00 3.24 3.32 2.80	2379 2315 2314 2312 2316 2311	1115 777 486 409 387	1123 789 582 465 393 290	1436 1410 1405 1408 1408 1409	630 622 621 618 614 615	501 501 500 500 496 493	4302 5081 5339 5447 6080 6573
7 8 9 10 11	.050 .048 .048 .046 .049	2.13 2.91 3.96 4.89 5.97 8.05	.467 .359 .222 .187 .173	.935 .927 .908 .904 .924 .939	2.48 2.42 2.39 2.40 2.40 2.39	.032 .031 .031 .031 .031	81.18 82.10 81.67 81.49 81.41 82.04	4.09 5.96 3.99 3.98 5.99 3.98	2396 2329 2329 2329 2322 2345	1121 791 519 437 402 389	1124 800 587 476 389 291	1446 1418 1414 1415 1412 1414	585 586 591 588 588 591	501 501 501 500 495 494	4365 5046 5471 5970 6173 6714
13 14 15 16 17 18	.084 .083 .082 .082 .082	2.10 2.90 3.91 4.90 5.75 7.48	.477 .345 .248 .205 .193	.940 .950 .940 .929 .941 .959	2.53 2.49 2.54 2.54 2.51 2.51	.030 .052 .051 .051 .062 .051	80.66 80.72 81.19 81.07 81.13 81.09	6.82 6.70 6.70 6.71 8.89 6.57	2596 2522 2320 2521 2323 2320	1142 802 577 476 450	1138 800 592 473 404 310	1439 1405 1403 1407 1407 1403	567 563 552 559 559 559	496 495 498 496 498	4312 5058 5590 5684 6905 6664
19 20 21 23 24 25 26	.102 .103 .102 .102 .101 .103 .105 .105	2.15 2.96 3.95 4.82 5.63 5.71 8.97 7.60	.467 .342 .254 .216 .203 .205 .202 .194	.947 .961 .947 .938 .949 .956 .964	2.54 2.83 2.54 2.56 2.57 2.49 2.49 2.57	.064 .064 .064 .063 .065 .066	80.91 80.87 80.60 80.59 80.71 78.54 78.03	8.31 8.35 8.27 8.26 8.21 8.15 8.22 8.18	2408 2545 2521 2525 2520 2210 2198 2518	1126 802 591 503 473 454 444 452	1118 790 587 481 412 367 515	1442 1415 1411 1412 1418 1386 1387 1419	567 559 555 551 550 555 556 556	500 500 500 500 500 505 508 600	4429 8185 5626 5893 6223 6042 6325 6758
27 28 29 30 31 32	.125 .126 .128 .128 .128 .128	2.12 2.91 3.88 4.78 5.60 7.28	.478 .352 .268 .250 .218	.957 .964 .958 .941 .960	2.61 2.57 2.60 2.61 2.61	.076 .079 .079 .079 .079	81.07 80.86 80.97 81.42 81.16 80.95	9.98 10.36 10.40 10.45 10.40 10.84	2406 2338 2325 2344 2344 2353	1150 825 625 541 51.3 501	1135 803 598 490 418 320	1440 1410 1412 1410 1412 1409	550 547 542 541 540 539	499 497 496 498 498	4435 5155 5685 6018 6305 6829

(j) Configuration 10. Diameter ratio D_e/D_p, 1.62; spacing ratio L/D_p, 0.84; primary-nozzle-exit diameter D_p, 21.5 inches

Run	Γ	Perform	noe para	meters			₩e	ight flo	JW .		Pressure		T	emperatu	re	Measured ejector
	Ejector weight- flow ratio, Wg/Wp	Primary pressure ratio, P _p /p ₀	Kjector total- pressure ratio, Ps/Pp	Ejector jet- thrust ratio, Fej Fip	Primary to second- ary temper- ature ratio,	W _B	T _p	Frimary gas flow, Wp, lb/sec	Second- ary flow, W _B , lb/sec	Primary total pressure, Pp, lb sq ft abs	Secondary total pressure, Ps, lb sq ft abs	Ambient exhaust pressure, po, lb sq ft abs	Primary total temper- ature, Tp, oR	Second- ary total temper- ature, T _s , OR	Ejector supply air temper- ature, To, oR	jet thrust, Pej, 1b
1 2 3 4 5 6 7	0.030 .031 .029 .029 .030 .029	2.07 2.87 3.82 4.69 5.61 7.29 10.01	0.481 .346 .280 .209 .160 .122 .107	0.923 .895 .887 .896	2.15 2.12 2.10 2.19 2.20 2.20 2.25	.0	20 21 20 19 20 19 20	80.46 81.27 81.49 81.43 81.35 81.60 81.69	2.46 2.53 2.40 2.40 2.50 2.38 2.35	2538 . 2282 2284 2287 2295 2297 2293	1126 791 596 478 367 281 246	1129 794 598 487 409 315 229	1418 1392 1389 1394 1393 1394 1398	659 654 660 636 632 633 618	493 494 496 495 498 496 495	5782 5856 6156 6589
8 9 10 11 12 13	.051 .050 .049 .049 .048 .049	2.09 2.91 3.81 4.71 5.52 6.95	.478 .345 .262 .212 .175 .137	.932 .931 .907	2.32 2.35 2.36 2.36 2.37 2.38 2.44	.0	32	80.72 81.01 81.41 81.51 81.54 81.38 81.58	4.16 4.00 4.01 5.99 4.04 4.02	2347 2300 2298 2303 2304 2302 2304	1122 791 604 488 404 317 251	789 602 489 417 331 220	1597 1401 1400 1400 1401 1400 1401	602 594 593 593 590 588 572	498 495 498 498 496 497 496	5863 6096 6227 8786
15: 16: 17: 18: 19: 20:	.079 .077 .077 .077 .076	2.10 2.90 3.90 4.78 6.97 9.67	.477 .347 .260 .215 .155	.943 .923 .930	2.53 2.50 2.49 2.52 2.58 2.59	.00.00	49 49 48 47	80.97 61.42 61.75 81.58 62.12 62.50	6.44 6.32 6.33 6.28 6.27 6.36	2367 2323 2325 2325 2326 2336 2340	1129 807 805 498 358 315	1125 801 596 487 335 242	1430 1409 1410 1411 1415 1419	564 562 565 559 547 548	495 496 495 498 499 495	5984 6436 6920
21 22 23 24 25 26	.110 .109 .109 .107 .108	2.13 2.92 3.83 4.68 5.64 6.83	.475 .348 .270 .225 .191 .157	.950 .942 .942	2.71 2.87 2.81 2.64 2.66 2.64	.00	67 67 68 66 65	81.75 81.86 81.89 82.27 82.16 82.38	9.07 8.99 8.94 8.88 8.88	2411 2357 2352 2547 2357 2356	1142 821 636 529 451 393	1132 805 613 501 418 345	1443 1422 1418 1421 1421 1418	532 631 542 537 534 536	495 495 496 491 494	5070 6294 6544
27 28 29 30 31 32	.140 .138 .140 .137 .139	2.15 2.93 3.85 4.80 5.64 6.99	.471 .352 .274 .228 .202 .183	.962 .951 .958	2.69 2.64 2.63 2.65 2.65 2.69	00. 00. 00. 00.	84 86 84 85	82.10 82.32 82.28 82.52 82.31 82.28	11.49 11.37 11.34 11.31 11.22 11.22	2412 2358 2360 2360 2359 2364	1138 831 648 538 478 433	1118 803 812 491 418 538	1443 1422 1420 1416 1422 1422	536 537 538 534 536 528	492 495 494 495 495	6189 6366 6701

TABLE II. - Concluded. DATA FOR VARIOUS XJ-79-GE-1 EJECTOR CONFIGURATIONS

(k) Configuration 11. Diameter ratio $D_{\rm e}/D_{\rm p}$, 1.70; spacing ratio $L/D_{\rm p}$, 0.85; primary-nozzle-exit diameter $D_{\rm p}$, 21.5 inches

Run		Perform	ance para	meters			Weight	flow	T		Pressure		T	emperatu	re	Measured ejector
	Ejector weight- flow ratio, W _s /W _p	Primary pressure ratio, Pp/Po	Ejector total- pressure ratio, P _B /P _p	Ejector jet- thrust ratio, Fej Fip	Primary to second- ary temper- ature ratio, Tp/Ts	W _B	T _B Pris ge flo w lb/s	s ar	y w, ec	Primary total pressure, P, lb sq ft abs	Secondary total pressure, P, a 1b sq ft abs	Ambient exhaust pressure, po, lb sq ft abs	Primary total temper- ature, Tp, oR	Second- ary total temper- ature, T _s , oR	Ejector supply air temper- ature, To, OR	jet thrust, Fej,
1 2 3 4 5	0.040 .039 .039 .038	2.13 3.80 5.54 7.40 8.99	0.466 .261 .177 .122 .104	0.957 .953 .906 .881 .883	2.41 2.35 2.35 2.56 2.42	0.02 .02 .02	25 82. 25 82. 25 81.	37 3. 15 3. 89 3.	22 20 18	2414 2366 2361 2363 2365	1127 618 419 290 247	1130 622 426 319 263	1446 1424 1429 1429 1432	600 606 608 605 591	498 498 497 499 499	4414 5817 6041 6225 6478
6 7 8 9	.061 .060 .059 .058 .057	2.17 3.73 5.64 8.27 9.15	.460 .268 .178 .120 .117	.942 .954 .912 .897 .894	2.50 2.48 2.48 2.48 2.48	.03 .03 .03	58 82. 57 82. 57 82.	43 4. 60 4. 62 4.	97 89 86	2428 2376 2383 2375 2380	1117 637 425 285 279	1119 636 422 287 260	1449 1425 1426 1427 1429	579 574 575 574 572	498 496 495 498 495	4500 5598 6133 6527 6636
11 12 13 14 15	.089 .088 .088 .087	2.16 3.83 5.72 7.31 8.58	.463 .264 .182 .149 .134	.940 .935 .916 .908 .911	2.57 2.53 2.60 2.59 2.59	.05 .05 .05	55 82. 54 82. 54 82.	40 7.5 59 7.5 59 7.5	26 29 19	2425 2376 2382 2389 2378	1123 629 435 353 320	1119 619 416 324 277	1447 1424 1425 1425 1425	562 561 548 549	495 495 494 494 494	4493 5650 6185 6445 6854
16 17 18 19 20	.150 .129 .129 .129 .129	2.94 4.12 5.52 7.59 8.88	.348 .256 .201 .163 .157	.947 .935 .930 .918 .928	2.63 2.64 2.65 2.87 2.68	-08 -07 -07 -07	9 82. 9 82. 9 82.	44 10. 56 10. 43 10.	71 70 68	2389 2385 2382 2386 2882	832 612 479 390 376	810 578 431 314 268	1450 1426 1428 1428 1430	543 540 638 534 532	494 493 493 493 493	5245 5783 6227 6565 6830
21 22 23 24 25	.169 .170 .171 .171 .171	2.88 4.17 5.50 7.15 8.22	.384 .265 .219 .195 .187	.946 .953 .938 .935	2.68 2.68 2.70 2.71 2.72	.10 .10 .10	4 82. 4 82. 5 82.	75 14. 59 14. 25 14.	11 12 17 17 17 17 17 17	2375 2373 2371 2369 2368	866 630 520 459 443	525 569 431 351 288	1427 1425 1427 1426 1427	539 530 527 525 524	493 493 494 • 493 493	5195 59 5 2 62 62 657 6 68 46
26 27 28 29 30	.212 .211 .211 .210 .210	2.92 4.22 5.72 7.03 8.09	.368 .276 .233 .220 .216	.963 .961 .949 .948 .958	2.75 2.74 2.74 2.75 2.74	.12 .12 .12 .12	7 82. 7 82. 8 82.	36 17.5 38 17.5 36 17.6	50 54 10	2392 2390 2385 2385 2387	882 661 558 528 517	819 586 417 339 295	1428 1427 1428 1429 1428	525 520 520 519 521	493 492 492 492 492	5304 8016 8431 8693 6933

TABLE III. - DATA FOR XJ-79-GE-1 VARIABLE EJECTOR

(a) Nominal weight-flow ratio W_8/W_p , 0.043

Run	Nominal primary	E.jeci	tor game	try.		Perfor	eance par	L meters		¥	eight fl	OW		Pressure		Tr	6	Measured elector	
i .		Diameter ratio, De Dp	Spacing ratio, L. Dp	Primary nozzle- exit dism- eter, Dp. in.	Ejector weight- flow ratio, W _S W _p	Primary pres- sure ratio, Pp Po	Ejector total- pressure ratio, Ps Pp	to second- ary temper-	Ejector jet- thrust ratio, Pej	Primary gas weight flow, Wp, lb/sec		Wa Ta	Pp,	P _B ,	Ambient exhaust pressure, 90, 1b sq_ft abs	Primary total temper- ature, Tp, OR	Second- ary total temper- ature, Ts'	Ejector supply air temper- ature, To	
1 2 3 4 5	2.16	1.011 1.032 1.057 1.091 1.191	0.63 .84 .84 .85	21.54	0.045 .044 .043 .043	2.20 2.16 2.15 2.17 2.18	0,512 .477 .460 .431 .483	2.36	0.941 ,934 ,929 ,925 ,919	81.49 81.52 81.43 81.28 81.54	3.74 5.66 3.53 5.83 3.44	0.029 .029 .028 .028	2444 2418 2406 2395 2387	1252 1154 1107 1034 1011	1110 1108 1116 1099 1095	1458	817 	494 	4510 4458 4398 4383 4384
5 7 8 9	2.96	1.045 1.054 1.088 1.148 1.214	.84 .85 .86 .86	21.52	.043 .043 .043 .043	2.85 2.85 2.85 2.85 2.86	.401 .379 .380 .329 .300	2.52	.948 .941 .945 .934 .929	81.47 81.55 81.58 81.73 81.58	3.58 3.59 3.57 3.57 3.49	.028 .028 .028 .028	2364 2366 2363 2342 2343	948 894 848 772 705	790 798 801 792 786	1424	813 	490	5193 5128 5131 5108 5061
11 12 13 14 15	4.01	1.085 1.116 1.147 1.182 1.262	.85 .86 .85 .87	21.50	.045 .045 .043 .044	4.01 4.02 4.00 4.00 3.89	.345 .318 .294 .271 .245	2.31	.952 .954 .951 .945 .937	81.65 61.74 61.79 61.80 61.62	3.43 3.55 5.35 5.84 5.66	,028 .028 .028 .029 .029	2369 2352 2345 2345 2343	614 749 691 636 574	587 584 586 585 587	1415	611	492	5762 5763 5765 5739 5672
16 17 18 19 20 21	5.08	1.055 1.115 1,146 1.163 1.218 1.291	.84 .86 .88 .87 .87 .89	21.59	.041 .043 .042 .042 .042 .041 .042	5.01 5.07 5.08 5.01 5.01 5.12 5.02	.370 .315 .288 .265 .243 .211	2.31	.944 .948 .950 .945 .945 .932	81.84 61.68 82.15 81.96 82.15 82.00 82.00	5.41 5.52 5.52 5.52 5.52 5.42 5.42	.027 .028 .028 .029 .028 .027	2367 2348 2360 2345 2345 2344 2344	872 737 673 617 571 496 448	470 453 484 468 488 457 467	1419	613	496	61,00 6144 6174 6111 6112 6070 6958
25 24 25 26 27 28 29	6.05	1.092 1.137 1.182 1.235 1.291 1.351 1.414	.85 .86 .87 .88 .89 .89	21,52 21,48	,042 .043 .043 .043 .045 .042 .044	6.11 6.11 6.06 6.07 5.98 6.02 5.96	.528 .295 .262 .232 .208 .165 ,171	2.52	.981 .955 .953 .954 .947 .935	81.87 81.74 81.89 81.74 82.07 82.12 81.83	5.61 5.62 5.62 5.52 5.53 5.83 5.80	.026 .026 .028 .028 .028 .028	2541 2542 2343 2544 2540 2547 2559	770 693 814 844 488 436 401	383 383 386 386 390 391 391	1415	809	493	6429 6447 6458 6451 6396 6318 6238

TABLE III. - Continued. DATA FOR XJ-79-GE-1 VARIABLE EJECTOR

(b) Nominal weight-flow ratio $W_{\rm g}/W_{\rm p}$, 0.078

Run	Mominal	Eject	or geom	etry		Perfor	unce pare	meters		W	eight fl	OW.		Presure		Te	Measured		
		Diameter ratio, Do	Specing ratio, L Dp	Primary noszle- exit diam- eter, Dp, in.		Primary pres- sure ratio, Pp Po	Ejector total- pressure ratio, Ps Pp	to second- ary temper-	Ejector jet- thrust ratio, Fej	Primary gas weight flow, wp, lb/sec	Second- ary air flow, Wm, lb/sec	¥. √	Primary total pressure, Pp, 1b sq ft abs	Smoondary total pressure, Ps, lb sq ft abs	ambient exheust pressure, po, 1b eq ft abs	Primary total temper- ature, Tp,	Second- ary total temper- ature, T _B , oR	Ijector supply air temper- ature, To,	ejector jet thrust, Pej, 1b
1 2 3	2.16	1.045 1.059 1.066	0.83 .84 .85	21.56	0.078 .077 .078	2.18 2.17 2.13	0.503 .475 .465	2.48	0.956 .946 .941	79.48 79.85 80.10	6,22 6,21 6,28	0.049 .049 .049	2597 2385 2389	1206 1134 1111	1098 1098 1121	1436	577	504	4417 4375 4317
4 5 5 7	3.08	1.057 1.075 1.095 1.122	.84 .85 .65 .86	21,54	.078 .077 .077	3.06 3.03 3.08 3.08	.400 .346 .367 .351	2.45	.970 .968 .975 .970	79.24 79.89 79.81 79.50	6.20 6.14 6.14 6.09	.049 .049 .049 .048	231.7 2306 2306 2295	929 892 847 807	758 780 747 750	1408	57 4	505 	5187 5184 5241 5199
8 9 10 11 12	4.15	1.064 1.097 1.143 1.189 1.254	.84 .85 .61 .82 .83	21,55	.077 .077 .077 .077 .077	4.15 4.14 4.14 4.13 4.09	.583 .558 .516 .291 .285	2.44	.980 .979 .975 .970	78.91 79.70 78.58 79.58 79.71	6.18 6.15 6.14 6.14 6.18	.049 .049 .049 .049	2526 253.2 2295 2295 2297	891 817 732 869 805	560 558 558 883 867	1406	574 	508	5841 5818 5769 5748 8700
15 14 15 18 17 18	5.15	1.099 1.158 1.173 1.285 1.268 1.357	.85 .86 .87 .87 .83	21.53 21.54	.077 .078 .077 .077 .077	5.11 5.25 6.17 5.11 6.16 5.15	.352 .318 .296 .289 .243 .212	2.43	.975 .975 .977 .972 .971	78.99 78.94 78.88 78.24 78.07 79.35	6.11 6.18 6.11 6.11 6.11	.049 .050 .049 .049 .049	2260 2271 2276 2279 2281 2277	805 724 675 613 656 484	444 444 444 443	1401	575	507	6056 6090 6077 6080 6059 5870
19 20 21 22 24 26 26	6.23	1.125 1.156 1.191 1.252 1.266 1.575 1.445 1.625	.88 .85 .67 .87 .88 .89 .89	21.52	.078 .079 .077 .077 .076 .077 .077	5.29 8.19 6.31 6.15 6.36 6.05 6.23 8.06	.551 .309 .261 .286 .232 .202 .176	2.45	.962 .967 .971 .964 .961 .949 .928	78.89 79.00 78.84 78.82 78.58 78.05 79.97 79.48	6.16 6.25 6.10 6.10 6.10 6.10 6.18 8.06	.050 .050 .049 .049 .049 .049	2266 9265 9261, 9259 2265 2265 2301, 2270	752 701 636 800 526 458 410 390	360 368 368 358 374 369 376	1418	579	8111111	6283 6304 6343 6249 6356 6159 6137 6981

TABLE III. - Continued. DATA FOR XJ-79-GE-1 VARIABLE EJECTOR

(c) Nominal weight-flow ratio $W_{\rm g}/W_{\rm p}$, 0.116

Run	Nominal	Ejec	tor geome	try		Performance parameters						OM.		Pressure		7	Measured.		
	ratio,	Diameter ratio, D _e D _p		Primary nozzle- exit diam- eter, np, in.	Ejector weight- flow ratio, Ws Wp	Primary pressure sure ratio, P.P. Po	Ejector total- pressure retio, Ps p	Primary to smoond- ary temper- ature ratio, Tp.	Ejector jet- thrust ratio, Fej Fip	Primary gns weight flow, p' lb/sec	Second- ary air flow, W _B , lb/sec	'	Primary total pressure, Pp, 1b	Secondary total pressure, Ps, 1b	Ambient exhaust pressure, po, lb sq ft abs	Primary total temper- ature, Tp, oR	Second- ary total temper- ature, T _B , o _R	Kjestor supply air temper- ature, To	ejector jet thrust, ************************************
1 2 3 4 5	2.24	1.011 1.031 1.056 1.090 1.127	0.83 84 84 85 86	21,58	0.118 .117 .117 .117 .117	2.32 2.27 2.25 2.20 2.21	0,585 .545 .510 .485 .459	2.57	0.976 .955 .951 .956 .931	81.20 81.40 81.35 81.57 81.75	9.608 9.564 9.573 9.584 9.567	0.072 .071 .071 .071	2557 2509 2482 2480 2439	1493 1363 1257 1189 1121	1102 1105 1092 1109 1102	1498	559	492	4858 4722 4673 4559 4555
8 8 8	2.99	1.030 1.084 1.142 1.208	.84 .85 .86 .67	21.58 21.59	.117 .116 .117 .116	5.07 2.98 2.94 2.94	.521 .416 .371 .547	2.62	.969 .948 .940 .933	61.30 61.71 81.87 61.72	9.541 9.555 9.590 9.539	.072 .072 .072 .072	2475 2404 2384 2379	1289 1001 585 828	804 808 809 807	1466	559	495	5842 5342 5278 5231
10 11 12 13 14	4.02	1.056 1.114 1.145 1.179 1.250	.85 .86 .87 .87	21.56 27.54 21.54 21.53 21.53	.115 .115 .114 .115	4.05 4.03 4.02 4.02 5.98	.446 .369 .344 .315 .284	2,68	.976 .975 .971 .969	81.88 81.74 81.96 81.87 82.00	8.415 9.412 9.421 9.418 9.454	.071 .071 .071 .071	2419 2395 2390 2390 2393	1080 884 823 755 878	599 594 594 594 601	1437	555	485	5986 5989 5951 5927 5841
15 16 17 18 19 20	5.05	1.070 1.117 1.146 1.179 1.214 1.288	.85 .89 .87 .87 .89	21.55 21.53	.115 .115 .118 .118 .114	5.09 5.06 5.08 6.06 5.01 4.98	.414 .385 .340 .310 .299	2.59	.972 .978 .975 .972 .973	81.70 81.66 81.70 81.70 81.75 81.75	9.406 9.422 9.450 9.406 9.371 9.462	.071 .071 .071 .071 .071	2397 2385 2385 2380 2378 2379	994 872 812 758 588 608	470 471 489 470 474 477	1432	552	493	6326 6538 6334 6314 6308 6226
21 22 23 24 25 26 27	B.91 ·	1.114 1.150 1.191 1.214 1.251 1.289 1.369	.85 .87 .87 .88 .85 .89	21.55	.114 .113 .115 .113 .115 .114 .114	6.14 6.08 6.00 5.98 5.77 5.75 5.71	.364 .335 .307 .267 .268 .261	2.58	.977 .982 .980 .981 .980 .976	82.06 81.93 81.66 81.93 81.68 81.91 81.85	9.355 9.316 9.391 9.391 9.357 9.385	.071 .070 .071 .070 .071 .071	2369 2365 2377 2368 2372 2370 2373	871 800 780 681 636 596 533	369 392 396 400 411 412 415	1427	553 	492	6560 6563 8614 8627 6560 8549 8447

TABLE III. - Continued. DATA FOR XJ-79-GE-1 VARIABLE EJECTOR

(d) Nominal weight-flow ratio $W_{\rm g}/W_{\rm p}$, 0.149

Run	Nominal primary	Rjec1	or geom	try		Perfor	nance pare	metera		¥	eight fl	OW	Γ	Pressure		T	Measured		
	pressure ratio, Pp Po	Diameter ratio, D _e D _p	Spacing ratio,	Primary nossle- exit diam- eter, Dp, in.	Ejector weight- flow ratio, ws wp	Primary pres- sure ratio, Pp Po	Ejector total- pressure ratio, Ps Pp	to second- ary temper-	Ejector jet- thrust retio, Pej Fip	Primary gas weight flow, wp, lb/sec	Second- ery nir flow, Wa, lb/sec	₩ <u>•</u> √ <u>T•</u>	Pg'	Secondary total pressure, Ps, 1b aq ft abs	Ambient exhaust pressure, Po, 1b sq ft abs	Primary total temper- ature, Tp, OR	Second- ary total temper- ature, T _S , o _R	Ejector supply air temper- ature, T _q , o _R	ejector jet thrust, Pej, 1b
1 2 5	2.2	1.129 1.156 1.227	0.86 .86 .87	21.59 21.71 21.52	0.150 .151 .150	2.17 2.15 2.14	0.478 .479 .471	2.66	0.951 ,941 ,941	82.57 82.54 82.57	12.17 12.20 12.17	0.092	2455 2455 2455	1154 1150 1149	1118 1130 1133	1442	541	493	4555 4478 4477
4 5 8 7 8 9	3.0	1.068 1.091 1.143 1.148 1.148 1.206	.65 .88 .86 .87 .87	\$1.66 \$1.59	.148 .149 .149 .143 .151	5.10 5.06 2.98 3.04 5.04 5.04	.491 .432 .592 .581 .386	2.55	.990 .984 .969 .975 .974	81.98 82.08 81.97 82.45 82.39 87.37	12.21 12.27 12.28 11.79 12.48 12.45	.091 .091 .091 .087 .092	2429 2389 2531 2370 2377 2589	1193 1034 915 906 919 880	782 781 787 778 781 785	1442	541	493	5586 8503 5351 5469 5457 5385
10 11 12 13 14 15 16 17 18 19 20 21	4.9	1.167 1.213 1.252 1.269 1.366 1.094 1.121 1.150 1.182 1.213 1.267	- 87 - 89 - 89 - 80 - 86 - 86 - 87 - 87 - 87 - 88 - 87 - 87 - 88	स्य .58 स्य .55 स्य .55 स्य .55	.148 .150 .149 .149 .149 .149 .150 .149 .150 .149	5.04 5.13 4.95 4.92 4.86 5.29 4.97 4.97 4.97 4.91 4.88	.547 .515 .298 .279 .279 .254 .417 .544 .358 .358 .318	2.62	.995 1.008 .999 .997 .981 1.006 1.005 1.005 1.005 1.001 .991	61.68 81.99 92.40 92.07 81.91 51.79 81.70 81.92 82.18 81.95 62.01 82.21	19.15 19.32 19.30 19.27 19.27 19.35 19.36 19.38	.091 280 280 280 280 280 280 280 280 280 280	2546 2551 2550 2550 2547 2545 2578 2572 2566 2566 2580 2357	814 741 897 856 598 983 992 913 848 798 788 788	485 458 474 477 482 450 478 477 475 481 480 485	1416	539	495	848Q 8551 8473 8418 8291 8585 6483 8498 8518 8477 8457
57 52 53	5,5	1.290 1.338 1.389	.89 .89 .90		.149 .147 .147	5.64 5.49 5.45	.280 .259 .241	2.52	.995 .991 .955	82.21 82.54 82.57	12.26 12.15 12.16	.091 .091 .060	2554 2550 256	661 610 570	417 428 432	1422	541	497	5715 6598 6560
26 26 27	•,°	1.166 1.198 1.239	.87 .88 .88		.148 .148 .148	6.02 5.96 6.00	.345 .322 .298	2.62	1.008 1.005 1.005	82.05 81.91 82.10	12.14 12.18 12.17	.091 .091 .091	2387 2367 2360	815 761 704	391 595 595	1482	541	497	8825 8780 6806

TABLE III. - Concluded. DATA FOR XJ-79-GE-1 VARIABLE EJECTOR

(e) Nominal weight-flow ratio W_s/W_p , 0.176

															<u> </u>				
Rum	Modinal	Ljeet	or geom	-try		Perfor	ance par	meters		W	eight fl	OM		Pressure		T	Measured		
	pressure ratio, PP PO	Diameter ratio, D _e D _p	Spacing ratio, L Dp		Ejector weight- flow ratio, W _B	Primary pres- sure ratio, p	Ejector total- pressure ratio, Ps Pp	Primary to second- ary tamper- ature ratio,	Rjeator jet- thrust retio, Fej	Primary gas weight flow, N, 1b/sec	Becond- ary air flow, W, lb/ssc	N P	Primary total pressure, Pp, 1b sq ft abs	P _B ,	Ambient exhaust pressure, Po: 1b sq ft abs	Primary total temper- ature, Tp,	Second- ary total temper- ature, T _s ,	Ejector supply air temper- ature, o	ejector jet thrust, Pej' 1b
1 2	2.26 2.26	1.074	0.85 .86	21.55 21.55	0.180 ,180	2.28	0.555 .482	2.735	0.991	81.11 81.20	14.67 14.66	0.109	2495 2432	1332 1173	1093 1098	1477	540	498	4855 4832
3 4 5 6	3.04	1.059 1.099 1.146 1.216	.85 .85 .86 .68	21.55 21.50 21.49 21.48	.178 .178 .175 .177	5.15 5.05 5.00 2.99	.525 .455 .402 .389	2.717	1,012 ,993 ,985 ,986	81.23 61.49 81.63 81.36	14.46 14.38 14.34 14.43	.108 .107 .106 .107	2478 2425 2599 2592	1297 1103 966 883	782 798 798 601	1467	540	490	5698 5540 5480 5353
7 8 9 10 11 12 13	4.05	1.056 1.089 1.117 1.149 1.183 1.218 1.295	.85 .85 .86 .87 .87 .88	21.48 21.48 21.48 21.47 21.45 21.45 21.45	.175 .176 .174 .178 .174 .173 .173	4.23 4.18 4.10 4.00 4.05 5.97 5.94	.515 .442 .408 .380 .351 .355	2.709	1.018 1.000 .996 .994 .992 .982	81.15 81.22 81.48 81.50 81.51 81.82 81.80	14.27 14.29 14.19 14.26 14.18 14.23 14.14	.106 .105 .105 .105 .105 .105	3475 2427 2409 2393 2390 2387 2380	1278 1076 984 911 859 797 724	565 580 588 598 593 602 604	1463	540 	492	\$281 \$195 \$151 8098 \$098 \$095 \$057 \$935
14 15 16 17 18	4)81	1.102 1.143 1.187 1.243 1.292 1.572	.86 .87 .87 .88 .89	21.49	.178 .174 .172 .173 .174	5.11 4.95 4.94 4.89 4.75 4.81	.420 .381 .344 .313 .290 .265	2,676	1.005 1.000 1.000 .892 .986	81.58 81.75 81.85 81.82 81.84 81.58	14.19 14.22 14.13 14.19 14.31 14.25	.108 .108 .105 .108 .105	2416 2385 2383 2383 2379 2361	1015 913 825 748 891 631	478 484 484 487 501 495	1457	537	482	6531 6466 6474 6389 6320 6263
20 21 22 25 24 25	5,70	1.148 1.187 1.236 1.295 1.341 1.394	.87 .68 .89 .89	21.48	.174 .178 .173 .173 .173 .173	6.04 6.01 5.74 5.41 5.51 5.51	.570 .541 .511 .298 .268 .253	2.667	1.005 1.007 1.005 1.005 .889 .979	81.59 81.79 81.95 82.02 81.71 81.90	14.24 14.15 14.18 14.19 14.19 14.19	.108 .105 .105 .105 .106 .108	8402 2400 2595 2591 2390 2390	891 819 748 890 842 605	398 599 417 431 434 434	1452	537	495	6801 6815 6746 6654 6585 6506

(a) Side view.

Figure 1. - Photographs of XJ79-CE-1 engine ejector installation.

(b) Three-quarter view.

Figure 1. - Concluded. Photographs of XJ79-GE-1 engine ejector installation.

NACA BM E56E23

Figure 2. - Schematic drawing of test installation for XJ79-CE-1 engine installation.

Figure 3. - Schematic diagram of XJ79-CE-1 variable-ejector assembly. (Dimensions are approximate and in inches.)

Figure 4. - Photograph of XJ79-GE-1 variable primary nozzle.

(a) Inside view.

Figure 5. - Photograph of XJ79-GE-1 variable-ejector shroud.

(b) Outside view.

Figure 5. - Concluded. Photograph of IJ79-0%-1 variable-ejector shroud.

Figure 6. - Photograph of XJ79-GE-1 variable-ejector assembly, rear view.

Figure 7. - Schematic diagram of basic ejector instrumentation, looking downstream.

Figure 8. - Thrust and air handling performance data for ejector configuration 1; D_0/D_p = 1.02, and L/D_p = .77.

Figure 9. - Thrust and air handling performance data for ejector configuration 2; D_e/D_p = 1.02, and L/D_p = .84.

Primary pressure ratio, P_p/P_0 Figure 10. - Thrust and air handling performance data for ejector configuration 3; $D_p/D_p=1.09$, and $L/D_p=.82$.

Figure 11. - Thrust and air handling performance data for ejector configuration 4; D_e/D_p = 1.09, and L/D_p = .95.

مند حداثات المناب

Figure 12. - Thrust and air handling performance data for ejector configuration 5; $D_{\rm e}/D_{\rm p}$ = 1.16, and $L/D_{\rm p}$ = .85.

Figure 13. - Thrust and air handling performance data for ejector configuration 6; $\rm D_e/\rm D_p$ = 1.16, and $\rm L/\rm D_p$ = .96.

بوني بالاستوالية

Figure 14. - Thrust and air handling performance data for ejector configuration 7; D_e/D_p = 1.23, and L/D_p = .86.

Figure 15. - Thrust and air handling performance data for ejector configuration 8; $D_e/D_p=1.43$, and $L/D_p=.87$.

عند المستون المستون

Figure 16. - Thrust and air handling performance data for ejector configuration 9; D_e/D_p = 1.42, and L/D_p = .97.

Figure 17. - Thrust and air handling performance data for ejector configuration 10; $D_e/D_p=1.62$, and $L/D_p=.84$.

Figure 18. - Thrust and air handling performance data for ejector configuration 11; $D_e/D_p=1.70$, and $L/D_p=.85$.

Ejector diameter ratio, $D_{\rm e}/D_{\rm p}$

(a) Thrust data.

Figure 19. - Performance with variable ejector diameter at a weight-flow ratio of .043.

Ejector diameter ratio, D_e/D_p

Figure 19. - Concluded. Performance with variable ejector diameter ratio at a weight-flow ratio of .043.

Figure 20. - Performance with variable ejector diameter at a weight-flow ratio of .078.

Ejector diameter ratio, $D_{\text{e}}/D_{\text{p}}$

Figure 20. - Concluded. Performance with variable ejector diameter ratio at a weight-flow ratio of .078.

Ejector diameter ratio, $D_{\Theta}/D_{\mathbf{p}}$

(a) Thrust data.

Figure 21. - Performance with variable ejector diameter at a weight-flow ratio of .116.

خونه کالمحتودات

Ejector diameter ratio, De/Dp

Figure 21. - Concluded. Performance with variable ejector diameter ratio at a weight-flow ratio of .116.

Ejector diameter ratio, D_e/D_p (a) Thrust data.

Figure 22. - Performance with variable ejector-diameter at a weight-flow ratio of .149.

Ejector diameter ratio, De/Dp

Figure 22. - Concluded. Performance with variable ejector-diameter ratio at a weight-flow ratio of .149.

Ejector-diameter ratio, $D_{\Theta}/D_{\mbox{\scriptsize p}}$

(a) Thrust data.

Figure 23. - Performance with variable ejector diameter at a weight-flow ratio of .176.

Ejector diameter ratio, D_e/D_p

Figure 23. - Concluded. Performance with variable ejector diameter ratio at a weight-flow ratio of .176.

Figure 24. - Relationship between spacing ratio, L/Dp, and diameter ratio, $D_{\rm e}/D_{\rm p}$, for variable shroud tests.

Figure 25. - Relationship between secondary temperature-rise and air-flow.

Lecc

Figure 27. - Effect of weight-flow ratio and diameter ratio on primary-nozzle flow coefficient for XJ-79-GE-1 ejector assembly. For primary pressure ratios, P_p/p_0 , above 3; $D_p=21.5$ inches.

PRELIMINARY INTERNAL PERFORMANCE DATA FOR A VARIABLE-

EJECTOR ASSEMBLY ON THE XJ79-GE-1 TURBOJET ENGINE

I - NONAFTERBURNING CONFIGURATIONS

William K.

William K. Greathouse Aeronautical Research Scientist

Propulsion Systems

Harry E. Bloomer Aeronautical Research Scientist Propulsion Systems

Approved:

E. William Conrad Aeronautical Research Scientist

Propulsion Systems

Chief

Engine Research Division

Flow, Compressible	1.1.2
Flow, Jet Mixing	1.1.3.3
Aerodynamics with Heat	1.1.4
Heat Transfer, Aerodynamics	1.1.4.2
Bodies - Shape Variables	1.3.2
Nozzles	1.4.2.2
Pumps, Jet and Thrust Augmentors	1.4.4
Engines, Turbojet	3.1.3
Cooling - Gas Turbine Systems	3.10.2
Greathouse, William K., and Bloomer, Harry E.	

Abstract

Internal performance of an XJ79-GE-1 variable ejector was experimentally determined with the primary nozzle in a representative non-afterburning position. Jet-thrust and air-handling data were obtained in quiescent air for 11 selected ejector configurations over a wide range of operation. Additional data, at specific operating conditions, were obtained which indicate the ejector diameter ratio for peak jet-thrust performance. The experimental ejector data are presented in both graphical and tabulated form.

· ·

1