Monte-Carlo RL

Younghoon Kim nongaussian@hanyang.ac.kr

Keywords

- Monte-Carlo policy evaluation ★★
- Monte-Carlo policy learning ★★★★
- Epsilon-greedy policy ★★★★★
- On-policy learning vs. off-policy learning ★★★★★
- Behavior policy vs. estimation policy ★★★★

Today's Practice: Blackjack

Rules

 Randomly retrieve poker cards to make the sum of scores be closer to 21, without going over 21

<Player>

MDPs

Known MDP	Unknown MDP
전체 환경이 알려져 있음	Unknown
모든 상태에 대한 상태 전환 (state transition) 및 보상 (reward)가 알려져 있어야	실험 혹은 시뮬레이션(환경과의 상호작용으로 인한 일련의 상태, 행동 및 보상을 하나씩 관측가능)이 필요
Model dependent	Model free

Monte-Carlo Policy Evaluation

- ullet Learn the value function v_π from episodes under a given policy π
- Return
 - The sum of discounted rewards in the future

• i.e.,
$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{t+T-1} R_T$$

- Value function
 - The expected return
 - i.e., $v_{\pi}(s_i) \neq E[G_t | S_t = s_i]$

리턴의 기대값을 계산하기 위해 Monte-Carlo 추정법을 사용

Monte-Carlo Estimation

- Goal
 - 주어진 분포 p(x)에서 샘플링하기
 - 기대값 $\sum_{x \in S} p(x) f(x)$ 을 근사 추정하기
- How to compute
 - 확률 분포 p(x)를 따르는 샘플 x 을 뽑을 수 있다면,

$$\frac{1}{N} \sum_{i=1 \land x^{(i)} \in S}^{N} f(x^{(i)}) \stackrel{a.s}{\to} \sum_{x \in S} p(x) f(x)$$

An Example: Region Estimate

Suppose

- Uniformly throw arrows on the dart board
- How can you estimate the expected (mean) score?
 - That is, (sum of scores) / (# of throws)

Analytically,

- $\sum_{x \in S} p(x) f(x)$
- = $10 \cdot Pr(yellow) + 5 \cdot Pr(green) + 0 \cdot Pr(white)$

• =
$$10 \cdot \frac{0.25\pi}{4} + 5 \cdot \frac{(1-0.25)\pi}{4} + 0 \cdot \frac{4-\pi}{4}$$

The probability that an arrow hits the yellow circle

• = 1.5625π

An Example: Region Estimate

Empirically,

•
$$\frac{1}{N} \sum_{i=1 \land x^{(i)} \in S}^{N} f(x^{(i)})$$

$$\bullet = \frac{1}{15}(6 \cdot 10 + 7 \cdot 5 + 2 \cdot 0)$$

- $\bullet = 6.33$
- $\approx 1.5625\pi$

As increasing N, the estimated expectation will get close to 1.5625π

Monte-Carlo Policy Evaluation

 Our goal of using Monte Carlo estimation is to compute the expected returns

$$E_{\pi}[G_t|S_t=s_i]$$

$$\simeq \frac{1}{N(s_i)} \sum_{s=(\ell)}^{N(s_i)} G_t$$
The return at t when $S_t=s_i$
The return G_t is added from a sample episode

The sample $S_t^{(\ell)} = s_i$ is drawn by the probability of $\Pr(A_t, S_{t+1}, ..., S_T | S_t = s_i)$ in the episode

 A_t, S_{t+1}, \dots, S_T

Monte-Carlo Policy Evaluation

- 상태 s에서의 기대 리턴을 평가하려면,
- 한 에피소드에서 상태 s에 처음 방문한 시간: t
- 카운터 증가: N(s_t) ← N(s_t) + 1
- 총 리턴 증가: S(s) ← S(s) + G_t
- 리턴의 평균을 추정: V(s) = S(s) / N(s)

Monte Carlo ES (Exploring Starts) Policy Learning

- Given a discount γ and a policy π as inputs
 - Randomly initialize $q(s_i, a_k), \forall s_i \in S, \forall a_k \in A$
- Repeat
 - Choose S_0 and A_0 randomly
 - Generate an episode starting from S_0 and A_0 following π
 - G ← 0
 - For each t from T-1 to 0

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{t+T-1} R_T$$

- $G \leftarrow \gamma G + R_{t+1}$
- If (S_t, A_t) does not appear in $(S_0, A_0), \dots, (S_{t-1}, A_{t-1})$
 - $N(S_t, A_t) \leftarrow N(S_t, A_t) + 1, SUM(S_t, A_t) \leftarrow SUM(S_t, A_t) + G$
 - $q(S_t, A_t) = \frac{SUM(S_t)}{N(S_t)}$
- $\forall s_i \in S, \pi(s_i) = \arg \max_{a \in A} q(s_i, a)$

에피소드에서 처음 나오는 샘플 (St, At)만을 통계 값에 사용하기 때문에, *exploring starts* 라고 부름

Monte Carlo ES With ϵ -soft Policy (ϵ -greedy)

- Given a discount γ and a policy π as inputs
 - Randomly initialize $q(s_i, a_k), \forall s_i \in S, \forall a_k \in A$
- Repeat
 - Choose S_0 and A_0 randomly and generate an episode starting from S_0 and A_0 following π
 - G ← 0
 - For each t from T-1 to 0
 - $G \leftarrow \gamma G + R_{t+1}$
 - If (S_t, A_t) does not appear in $(S_0, A_0), ..., (S_{t-1}, A_{t-1})$
 - $N(S_t, A_t) \leftarrow N(S_t, A_t) + 1, SUM(S_t, A_t) \leftarrow SUM(S_t, A_t) + G$
 - $q(S_t, A_t) = \frac{SUM(S_t)}{N(S_t)}$
 - For all $s_i \in S$

•
$$\pi(a, s_i) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|A(s_i)|} & \text{if } a = \arg\max_{a \in A} q(s_i, a) \\ \frac{\epsilon}{|A(s_i)|} & \text{otherwise} \end{cases}$$

 ϵ 의 확률로 액션 들 중 하나를 동일 확률로 랜덤하게 선택하기도 함

- Object of game
 - 무작위로 포커 카드를 가져와 점수의 합이 21을 넘지 않고 21에 가까워지도록 (카드 추가 요청 가능)
- Card scores
 - 2~10: 카드 액면 그대로
 - All face cards (J, Q, K): 10으로 친다 (called ten-cards)
 - Ace: 1 또는 11로 계산 가능 (유리하게 선택)

Rules

• 1) 게임은 딜러와 플레이어 모두에게 두 장의 카드를 주는 것으로 시작됩니다. 딜러의 카드 한 장은 앞면이 위로 향하게 하고 다른 한 장은 뒷면이 아래로 향하게 합니다.

<Player>

- Rules
 - 2) 플레이어가 21을 가지고 있다면, 딜러의 패를 열어 플레이어가 이기는지 확인합니다.
 - 3) 그렇지 않은 경우, 플레이어는 추가 카드를 요청할 수 있습니다 ('hit'라고 부름).

<Player>

- 2) 플레이어가 추가 카드로 21을 얻으면 블랙잭!
- 3) 그렇지 않은 경우 플레이어는 추가 카드를 다시 요청할 수 있습니다.
 - 합이 21보다 크면 플레이어는 딜러의 패 확인없이 즉시 패배 (버스트).
 - 플레이어는 더 이상 카드를 받고 싶지 않다면 'stay'라고 말합니다.

- 4) 플레이어가 'stay'하면 딜러의 차례입니다.
 - 앞면이 아래로 향한 카드를 열고,
 - 딜러는 합이 17 이상이 될 때까지 카드를 추가해야 합니다.
 - 딜러는 플레이어를 이기기 위해 'hit'하거나 'stay'할 선택권이 없습니다.

<Player>

- 5) If the dealer bust, the player wins
 - If both do not exceed 21, the one closer to 21 wins

Represent As A Finite MDP

- Each game of blackjack is an episode
 - $S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{T-1}, A_{T-1}, R_T$
 - S_i: state (how to define a state?)
 - A_i: an action in {Hit, Stay}
 - R_i: reward
 - +1: winning
 - -1: losing
 - 0: tie or within a game

Do not allow split, double and surrender

가정: 카드는 무한한 카드덱에서 샘플링된다고 가정하면 과거 공개된 카드는 아무 상관이 없으며(즉, 카운팅 불가), 따라서 상태를 정의하기에는 현재 점수 합계만 중요합니다.

- State
 - 처음에 플레이어의 점수가 최대 11 점이면 딜러를 이길 방법이 없다!
 - 딜러의 초기 점수도 11이면 딜러는 카드를 한 장 더 요청하여 확실히 승리
 - 따라서 플레이어의 가능한 점수는 최소 12점 이상 21점 이하
 - 딜러가 보여주는 카드 한 장의 점수: 에이스부터 10까지
 - 플레이어가 사용 가능한 에이스를 보유하고 있는지 여부
 - → 200가지 상태

Optimal Policy With The Basic Rule

Dlayer hand	Dealer's face-up card											
Player hand	2	3	4	5	6	7	8	9	10	Α		
Hard totals (excluding pairs)												
18–21	S	S	S	S	S	S	S	S	S	S		
17	S	S	S	S	S	S	S	S	S	Us		
16	S	S	S	S	S	Н	Н	Uh	Uh	Uh		
15	S	S	S	S	S	Н	н	Н	Uh	Uh		
13–14	S	S	S	S	S	Н	н	Н	Н	Н		
12	Н	Н	S	S	S	Н	Н	Н	Н	Н		

	Usp = Surrender (if not allowed, then split)										
	2	3	4	5	6	7	8/	9	10	Α	
A,9	S	S	S	S	S	S	S	S	S	S	
A,8	S	S	S	S	Ds	S	S	S	S	S	
A ,7	Ds	Ds	Ds	Ds	Ds	S	S	Н	Н	Н	
A ,6	Н	Dh	Dh	Dh	Dh	Н	Н	Н	Н	Н	
A,4-A,5	Н	Н	Dh	Dh	Dh	Н	Н	Н	Н	Н	
A,2-A,3	Н	Н	Н	Dh	Dh	Н	Н	Н	Н	Н	

S = Stand H = Hit

SP = Split

Dh = Double (if not allowed, then hit)

Ds = Double (if not allowed, then stand)

Uh = Surrender (if not allowed, then hit)Us = Surrender (if not allowed, then stand)

Optimal Policy Found By Monte-Carlo ES

<Without Ace>

Dealer Player	2	3	4	5	6	7	8	9	10	Α
21	1	1	1	1	1	1	1	1	1	1
20	1	1	1	1	1	1	1	1	1	1
19	1	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1	1
17	1	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1	0
15	1	1	1	1	1	1	1	1	1	0
14	1	1	1	1	1	0	0	0	1	0
13	1	1	1	1	1	0	0	0	0	0
12	1	1	1	1	1	0	0	0	0	0

<With Ace>

Dealer Player	2	3	4	5	6	7	8	9	10	A
21	1	1	1	1	1	1	1	1	1	1
20	1	1	1	1	1	1	1	1	1	1
19	1	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1	1
17	0	1	0	1	1	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0

MC Learning For Blackjack: Setting

```
import numpy as np import random import itertools
```

blackjack

```
    Observation is represented by three integers
```

Action is 0 (hit) or 1 (stay)

```
# observation (=state):
# triple ( integer, integer, integer )
# 1. integer: the player's score (12 ~ 21)
# 2. integer: the dealer's card score of upside (1 ~ 10)
# 3. integer: 1 if the player has at least an ace, and 0 otherwise
# action
# 0: hit
# 1: stay
# doesn't allow double down, surrender and split
```

```
# step types
STEPTYPE_FIRST = 0
STEPTYPE_MID = 1
```

```
# 3. integer: 1 if the player has at least an ace, and 0 otherwise
# action
# 0: hit
# 1: stay
# doesn't allow double down, surrender and split
 # step types
                                                     Three types of steps (1<sup>st</sup>, mid, last)
 STEPTYPE FIRST = 0
STEPTYPE MID = 1
STEPTYPE LAST = 2
 cardset = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10]
 deck = None
 def shuffle_deck():
      global deck
      # card deck (we don't care the suite, but, for gui game in future) - 3 sets
      deck = \
       list(itertools.product(range(4), cardset)) \
       + list(itertools.product(range(4), cardset)) \
       + list(itertools.product(range(4), cardset))
   random.shuffle(deck)
                                                                                           Shuffle with three sets of 52 cards
 shuffle_deck()
```

MC Learning For Blackjack: Algorithm

```
# monte-carlo policy learning
                                                                       Values for MC estimation, which are the tensors
maxiter = 1000000
                                                                       shaped by (10, 10, 2, 2)
gamma = 1
epsilon = 0.4
N = np.zeros((10, 10, 2, 2), dtype='float32')
SUM = np.zeros((10, 10, 2, 2), dtype='float32')
Q = np.random.uniform(size=(10, 10, 2, 2))
for in range(maxiter): —
     episode = generate episode()
                                                      Generate an episode (we'll see in the next slides)
     G = 0.
     last step = episode[0].pop()
     while len(episode[0]) > 0:
          G = gamma * G + last step['reward']
           last step = episode[0].pop()
          last_action = episode[1].pop()
          # exploring-start estimation: if the state appears for the first time
          # in the episode, update Q value
          observ = last step['observation']
```

```
# monte-carlo policy learning
maxiter = 1000000
gamma = 1
epsilon = 0.4
N = np.zeros((10, 10, 2, 2), dtype='float32')
SUM = np.zeros((10, 10, 2, 2), dtype='float32')
Q = np.random.uniform(size=(10, 10, 2, 2))
for in range(maxiter):
     episode = generate episode()
     G = 0.
     last step = episode[0].pop()
     while len(episode[0]) > 0:
           G = gamma * G + last step['reward']
           last_step = episode[0].pop()
           last action = episode[1].pop()
           # exploring-start estimation: if the state appears for the first time
           # in the episode, update Q value
           observ = last step['observation']
           idx = (observ[0] - 12, observ[1] - 1, observ[2], last action)
           if not in episode(episode, observ, last action):
                N[idx] += 1.
                SUM[idx] += G
                Q[idx] = SUM[idx] / N[idx]
```

Eploring-start (ES) 전략에 따라 상태와 행동의 쌍이 에피소드에서 처음 나타나면 통계를 업데이트

Environment: Generating An Episode

```
# environment parameters
dealer = None # dealer's hands
player = None # player's hands
# reset the environment
def generate start step():
     global dealer, player
     shuffle deck()
     dealer = [ deck.pop(), deck.pop() ]
     player = [ deck.pop(), deck.pop() ]
     dealer_score = dealer[0][1]
     if player[0][1] == 1 and player[1][1] == 1:
          # if player gets double ace, the second one is counted as 1
          player_score = 12
          has ace = 1
     elif player[0][1] == 1:
          player_score = 11 + player[1][1]
          has ace = 1
```

Github 홈페이지에서 다운로드: example-mc-black-env.ipynb

Reset the env and return the first step

Initialize the card deck

```
dealer = [ deck.pop(), deck.pop() ]
player = [ deck.pop(), deck.pop() ]
                                                                                     When at least a card is ace,
dealer_score = dealer[0][1]
if player[0][1] == 1 and player[1][1] == 1:
    # if player gets double ace, the second one is counted as 1
     player score = 12
     has ace = 1
elif player[0][1] == 1:
    player_score = 11 + player[1][1]
     has ace = 1
elif player[1][1] == 1:
     player score = 11 + player[0][1]
     has ace = 1
                                                                                     If the score is under 12, draw
                                                                                     cards until getting at least 12
     player_score = player[0][1] + player[1][1]
    while player_score < 12:
          player.append(deck.pop())
          player score += player[-1][1]
     has ace = 0
# 1st step
return { 'observation': (player_score, dealer_score, has_ace),
     'reward': 0., 'step_type': STEPTYPE_FIRST }
```

Environment: Generating An Episode

Given the current step and the action chosen, return the next step

```
# returns a step, which is a dictionary { 'observation', 'reward', 'step type' }
def generate_next_step(step, action):
      global player, dealer
      player score, dealer open, has ace = step['observation']
      # has ace is used to check if the player has
      # the option to count an ace as 1
                                                                                                                  With action 0 (=hit), take an
      game stop = False
                                                                                                                 additional card
      busted = False
      # with hit, get a card
      if action == 0:
            # hit - take an additional card
            player.append(deck.pop())
            # note that an additional ace should be counted as 1
             player_score += player[-1][1]
            # if blackjack or bust, the game stops
```

```
# if blackjack or bust, the game stops
if player_score == 21:
        game_stop = True
elif player_score > 21:
        # if busted but has an ace, the ace is counted as 1
        # and has_ace becomes false since already used
```

```
# with fift, get a card
if action == 0:
     # hit - take an additional card
      player.append(deck.pop())
      # note that an additional ace should be counted as 1
                                                                                             With the score sum,
      player_score += player[-1][1]
                                                                                             determine if game is done
      # if blackjack or bust, the game stops
     if player score == 21:
           game_stop = True
     elif player score > 21:
           # if busted but has an ace, the ace is counted as 1
           # and has ace becomes false since already used
           if has ace == 1:
                  player score -= 10
                                                If the player has ace, it can be counted as 1 if
                  has ace = 0
           else:
                                                busted
                  game_stop = True
                  busted = True
# with stay, game_stop
else:
      game stop = True
if busted:
     return { 'observation': (player score, dealer open, has ace),
          'reward': -1., 'step_type': STEPTYPE_LAST }
                                                                                         If busted, return the last step
# now, if game_stop, it's dealer's turn & game stop
                                                                                         with reward -1 without
if game_stop:
     dealer has ace = False
                                                                                         checking the dealer's hand
     dealer busted = False
```

```
# now, if game_stop, it's dealer's turn & game stop
if game stop:
      dealer has ace = False
      dealer busted = False
                                                                                               Compute the dealer's score
      if dealer[0][1] == 1 and dealer[1][1] == 1:
            dealer score = 12.
            dealer has ace = True
      elif dealer[0][1] == 1:
            dealer score = 11. + dealer[1][1]
            dealer has ace = True
      elif dealer[1][1] == 1:
            dealer_score = 11. + dealer[0][1]
            dealer has ace = True
      else:
            dealer_score = dealer[0][1] + dealer[1][1]
            dealer has ace = False
                                                                             Dealers have no choice but to get cards until
      # the dealer takes cards until the score is at least
                                                                             score sum is at least 17
      while dealer_score < 17:
            dealer.append(deck.pop())
            dealer_score += dealer[-1][1]
            # if busted but has an ace, the ace is counted as 1
            if dealer score > 21:
                  if dealer has ace:
                        dealer score -= 10
                        dealer_has_ace = False
                  else:
                        dealer busted = True
```

```
if dealer score > 21:
                  if dealer_has_ace:
                        dealer_score -= 10
                        dealer has ace = False
                  else:
                                                                                                     Compute the reward &
                        dealer busted = True
                                                                                                    return the last step
      # compute the reward
      if dealer_busted:
            reward = 1.
      else:
            if player_score > dealer_score:
                  reward = 1.
            elif player_score < dealer_score:</pre>
                  reward = -1.
            else:
                  reward = 0.
      return { 'observation': (player_score, dealer_score, has_ace),
           'reward': reward, 'step_type': STEPTYPE_LAST }
# continue (i.e., not game stop)
else:
      return { 'observation': (player_score, dealer_open, has_ace),
           'reward': 0., 'step_type': STEPTYPE_MID }
                                                                                                       Return the step for
                                                                                                       continuing the game
```

if busted but has an ace, the ace is counted as 1

∈-Soft Greedy Policy

```
import random
epsilon = 0.01
def get eps soft action(step):
    assert(step['observation'][0] >= 12 and step['observation'][0] <= 21)
    observ = step['observation']
    idx = (observ[0] - 12, observ[1] - 1, observ[2])
    # epsilon-soft greedy policy
    if random.random() < epsilon:</pre>
        return 1 if Q[idx][0] > Q[idx][1] else 0
    else:
        return 1 if Q[idx][0] < Q[idx][1] else 0
```

Generating An Episode

```
def generate_episode():
    episode = list()
    actions = list()
    step = generate_start_step()
     episode.append(step)
    while step['step_type'] != STEPTYPE_LAST:
         action = get_eps_soft_action(step)
         step = generate_next_step(step, action)
         episode.append(step)
         actions.append(action)
    return episode, actions
```

Misc

```
# return true if (observ, action) exists in epi
def in_episode(epi, observ, action):
    for s, a in zip(*epi):
        if s['observation'] == observ and a == action:
            return True
    return False
```

Recall The MC Prediction Algorithm

```
maxiter = 1000000
gamma = 1
epsilon = 0.4
N = np.zeros((10, 10, 2, 2), dtype='float32')
SUM = np.zeros((10, 10, 2, 2), dtype='float32')
Q = np.random.uniform(size=(10, 10, 2, 2))
for in range(maxiter):
      episode = generate episode()
      G = 0.
      last_step = episode[0].pop()
      while len(episode[0]) > 0:
            G = gamma * G + last step['reward']
             last_step = episode[0].pop()
            last action = episode[1].pop()
            # exploring-start estimation: if the state appears for the first time
            # in the episode, update Q value
            observ = last step['observation']
            idx = (observ[0] - 12, observ[1] - 1, observ[2], last action)
            if not in episode(episode, observ, last action):
                   N[idx] += 1.
                   SUM[idx] += G
                   Q[idx] = SUM[idx] / N[idx]
```

Print Out The Policy

Optimal Policy Found By Monte-Carlo ES

<Without Ace>

Dealer Player	2	3	4	5	6	7	8	9	10	Α
21	1	1	1	1	1	1	1	1	1	1
20	1	1	1	1	1	1	1	1	1	1
19	1	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1	1
17	1	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1	0
15	1	1	1	1	1	1	1	1	1	0
14	1	1	1	1	1	0	0	0	1	0
13	1	1	1	1	1	0	0	0	0	0
12	1	1	1	1	1	0	0	0	0	0

<With Ace>

Dealer Player	2	3	4	5	6	7	8	9	10	A
21	1	1	1	1	1	1	1	1	1	1
20	1	1	1	1	1	1	1	1	1	1
19	1	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1	1
17	0	1	0	1	1	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0

On-Policy and Off-Policy

On-Policy Methods

 Evaluate and improve the policy that is used to make decisions

Off-Policy Methods

 Evaluate and improve a policy different from that used to generate the data

On-Policy vs. Off-Policy

- On-policy
 - Learning fast
 - But may miss the best policy in a long run

On-Policy vs. Off-Policy

- Off-policy
 - Learning slow
 - Explore diverse actions for finding the best policy

Off-Policy Learning

- Behavior policy
 - 환경을 통해 에피소드를 생성할 때 사용하는 policy distribution
- Estimation policy
 - The policy we want to learn
- Most of off-policy learning uses important sampling

Example: $E[x^2]$ Following Laplace Distribution

Revisit: On-Policy Prediction

- Note that
 - Our goal of using Monte Carlo estimation is to compute the expected returns

$$E_{\pi}[G_t|S_t = s_i]$$

$$\simeq \frac{1}{N(s_i)} \sum_{i=1}^{N(s_i)} G_t$$

The return at t when $S_t = S_i$

Recall that the return G_t is added from a sample episode $A_t, S_{t+1}, ..., S_T$

What if we sample an episode $S_0, A_0, S_1, ..., S_t, A_t, S_{t+1}, ..., S_T$ following different policy?

The sample $S_t^{(\ell)} = s_i$ which results in G_t is drawn by the probability of $\Pr(A_t, S_{t+1}, ..., S_T | S_t = s_i)$ in the episode

Off-Policy Prediction Using Importance Sampling

- Note that
 - Our goal of using Monte Carlo estimation is to compute the expected returns

$$E_{\pi}[G_t|S_t = s_i]$$
 The probability we get the (future) return G_t when $S_t = s_i$ in an episode $S_t, A_t, S_{t+1}, \dots, S_T$ generated using a policy π
$$\simeq \sum_{\langle S_t, \dots, S_T \rangle^{(\ell)} \in E \land S_t^{(\ell)} = s_i}^{N(s_i)} \frac{Pr_{\pi}\left(S_t^{(\ell)} = s_i\right)}{Pr_b\left(S_t^{(\ell)} = s_i\right)} G_t$$

Among all possible episodes, with the ℓ -th sample episode episode $\langle S_t, A_t, S_{t+1}, \dots, S_T \rangle^{(\ell)}$

The probability we get the (future) return G_t when $S_t = s_i$ in an episode $S_t, A_t, S_{t+1}, \dots, S_T$ generated using a policy b

Off-Policy Prediction Using Importance Sampling

- Let
 - π be a greedy policy and b be a soft policy
- Consider t from T to 0
 - The ratio of probabilities to have the final state $S_T = s_i$

$$\frac{Pr_{\pi}(S_T = s_i)}{Pr_b(S_T = s_i)} = 1$$

• At T-1, it is

$$\frac{Pr_{\pi}(S_{T-1} = s_i)}{Pr_b(S_{T-1} = s_i)} = \frac{1}{b(A_{T-1}, S_{T-1})}$$

• At t, it is

$$\frac{Pr_{\pi}(S_t = s_i)}{Pr_b(S_t = s_i)} = \frac{1}{\prod_{\ell=t}^{T-1} b(A_{\ell}, S_{\ell})}$$

 π is greedy and thus the chance to select the action A_T with $S_{T-1} = S_i$ is simply 1

Off-Policy Prediction Using Importance Sampling

Off-Policy Markov Carlo Control

Repeat

- b ← an arbitrary soft policy
- Choose S_0 and A_0 randomly and generate an episode starting from S_0 and A_0 following b
- $G \leftarrow 0, W \leftarrow 1$
- For each t from T-1 to 0

Weighted average

•
$$G \leftarrow \gamma G + R_{t+1}$$

• If (S_t, A_t) does not appear in $(S_0, A_0), \dots, (S_{t-1}, A_{t-1})$

•
$$N(S_t) \leftarrow N(S_t) + W, SUM(S_t) \leftarrow SUM(S_t) + W \cdot G$$

•
$$q(S_t, A_t) = \frac{SUM(S_t)}{N(S_t)}$$

• If $A_t \neq \pi(S_t)$ then, exit the For each loop

•
$$W \leftarrow W \cdot \frac{1}{b(A_t,S_t)}$$

• For all $s_i \in S$

•
$$\pi(s_i) = \arg\max_{a \in A} q(s_i, a)$$

두 정책이 같은 상태, 행동의 열 $S_t, A_t, S_{t+1}, ..., S_T$ 을 만드는 동안에만 유효

Play Blackjack With Off-Policy Learning

Define the behavior policy function: simply choose hit (=0) with probability 0.6 for all states

Play Blackjack With Off-Policy Learning

```
def get_greedy_action(step):
    observ = step['observation']
    idx = (observ[0] - 12, observ[1] - 1, observ[2])
    return 0 if Q[idx][0] > Q[idx][1] else 1
```

Greedy policy function that answers $\arg\max_{a\in A}Q(s_i,a)$, $\forall s_i\in S$

Environment- Generating An Episode

Modify *generate_episode* function

```
def generate_episode(policy_func=get_eps_soft_action):
    episode = list()
    actions = list()
    step = generate_start_step()
    episode.append(step)
    while step['step_type'] != STEPTYPE_LAST:
        action = policy_func(step)
        step = generate_next_step(step, action)
        episode.append(step)
        actions.append(action)
    return episode, actions
```

The same as the previously defined one except it takes the policy function as an input

Blackjack By Off-Policy Learning- Algorithm

```
# monte-carlo off-policy learning
maxiter = 1000000
gamma = 1
N = np.zeros((10, 10, 2, 2), dtype='float32')
SUM = np.zeros((10, 10, 2, 2), dtype='float32')
Q = np.random.uniform(size=(10, 10, 2, 2))
for in range(maxiter):
     steps, actions = generate episode(policy func=get random action)
     G = 0.
     W = 1.
      last_step = steps.pop()
     while len(steps) > 0:
           G = gamma * G + last_step['reward']
           last step = steps.pop()
           last_action = actions.pop()
           # exploring-start estimation
           obsery = last_step['observation']
```

애피소드를 생성할 때는 랜덤 액션 선택 정책을 사용함

```
\overline{W} = 1.
last_step = steps.pop()
while len(steps) > 0:
     G = gamma * G + last step['reward']
     last step = steps.pop()
      last_action = actions.pop()
     # exploring-start estimation
     observ = last step['observation']
     idx = (observ[0] - 12, observ[1] - 1, observ[2], last_action)
     if not in episode((steps, actions), observ, last action):
           N[idx] += W
           SUM[idx] += W * G
           Q[idx] = SUM[idx] / N[idx]
                                                                                               리턴 가중 평균
     if last action != get greedy action(last step):
           break
     if last action == 0:
           W = W / behavior_prob_hit
     else:
           W = W / (1. - behavior prob hit)
                                                                                                     W \leftarrow W \cdot \frac{1}{b(A_t, S_t)}
```

Practice

• Monte-Carlo Off-Policy Learning를 이용해 블랙잭 게임을 학습하고 최적의 policy matrix를 출력하세요.

	1	2	3	4	5	6	7	8	9	10
21	1	1	1	1	1	1	1	1	1	1
20	1	1	1	1	1	1	1	1	1	1
19	1	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1	1
17	1	1	1	1	1	1	1	1	1	1
16	0	1	1	1	1	1	0	0	0	0
15	0	1	1	1	1	1	0	0	0	0
14	0	1	1	1	1	1	0	0	0	0
13	0	1	0	1	1	1	0	0	0	0
12	0	0	1	1	1	0	0	0	0	0

	1	2	3	4	5	6	7	8	9	10
21	1	1	1	1	1	1	1	1	1	1
20	1	1	1	1	1	1	1	1	1	1
19	1	1	1	1	1	1	1	1	1	1
18	1	1	0	0	1	0	1	1	1	0
17	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0

Policy By Monte-Carlo Off-Policy Learning

<Without Ace>

Dealer Player	2	2	3	4	5	6	7	8	9	10	Α
2	1	1	1	1	1	1	1	1	1	1	1
20)	1	1	1	1	1	1	1	1	1	1
19	9	1	1	1	1	1	1	1	1	1	1
18	3	1	1	1	1	1	1	1	1	1	1
1	7	1	1	1	1	1	1	1	1	1	1
10	5	1	1	1	1	1	0	0	1	0	0
1.	5	1	1	1	1	1	0	0	0	0	0
1.	4	1	1	1	1	1	0	0	0	0	0
1.	3	1	1	1	1	1	0	0	0	0	0
1:	2	1	1	1	1	0	0	0	0	0	0

<With Ace>

Dealer Player	2	3	4	5	6	7	8	9	10	Α
21	1	1	1	1	1	1	1	1	1	1
20	1	1	1	1	1	1	1	1	1	1
19	1	1	1	1	1	1	1	1	1	1
18	1	1	1	0	1	1	1	1	1	1
17	0	0	0	0	0	1	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0