Math 206A Lecture 5 Notes

Daniel Raban

October 8, 2018

1 Catathèodory's Theorems and Weak Tverberg's Theorem

1.1 Geometric theorems of Catathèodory

Theorem 1.1 (Bárány). For every d, there exists a constant $\alpha_d > 0$ such that for every $Z = \{z_1, \ldots, x_n\} \subseteq \mathbb{R}^d$, there exists $x \in \mathbb{R}^d$ such that $x \in \text{Con}(Z_I)$, |I| = d + 1 for at least $\alpha_d \binom{n}{d+1}$ subsets I.

To prove this, we'll need some lemmas, all of which are interesting in their own right.

Theorem 1.2 (Carathèodory). Let $Z = \{z_1, \ldots, z_n\} \subseteq \mathbb{R}^d$ with $x \in \text{Conv}(Z)$. Then there exists $I \subseteq [n]$ with |I| = d + 1 such that $x \in \text{Conv}(Z_I)$.

Proof. By induction. Fix a vertex v, and use induction to triangulate all facets. Take cones over all simplices in the facets.

Here is a result which uses an analogue of infinite descent, but in geometry.

Theorem 1.3 (Galloi-Sylvester). For all $X = \{x_1, \ldots, x_n\}$ with the x_i not all on a line, there exist k, j such that the line $(x_i x_j)$ has no other x_r .

Proof. Let

$$\gamma := \min_{(r,i,j) \text{ distinct}} \operatorname{dist}(x_r, (x_i x_j)).$$

Proceed by contradiction.

Theorem 1.4 (colorful Carathèodory). Let $X_1, \ldots, X_{d+1} \subseteq \mathbb{R}^d$ be finite sets with $0 \in \text{Conv}(X_i)$ for all i. Then there exist $x_1 \in X_1, x_2 \in X_2, \ldots, x_{d+1} \in X_{d+1}$ such that $0 \in \text{Conv}(\{x_1, \ldots, x_{d+1}\})$.

Proof. By contradiction. Let γ be the minimum distance between a colorful simplex and the origin, where the colorful simplexes are the ones formed by x_i . Note that $\gamma > 0$. Let u minimize this distance. The hyperplane H which contains u contains all the x_i except x_1 (wlog). Then there exists $x' \in X_1$ on the other side of H from x_1 , otherwise we could

not have $0 \in \text{Conv}(X_1)$. Then the distance between 0 and x'_1 is smaller than γ , which is a contradiction.

If $u = x_2$ (instead of lying on a facet, it lies on a corner), then there exist $x_i', i \neq 2$ on the other side of the perpendicular hyperplane separating 0 and x_2 . Then the distance to the convex hull of $\{x_2\} \cup \{x_i': i \neq 2\}$ is smaller than γ , which is a contradiction.

1.2 Weak Tverberg's theorem

Theorem 1.5 (weak Tverberg). Let $r, d \in \mathbb{N}$. For every $n \geq (r-1)(d+1)^2 + 1$ and $x_1, \ldots, x_n \in \mathbb{R}^d$, there exist $I_1, \ldots, I_r \subseteq [n]$ with $I_i \cap I_j = \emptyset$ such that $\bigcap_{i=1}^r \operatorname{Conv}(X_{I_i}) \neq \emptyset$.

Proof. Let k := (r-1)(d+1) and s := n-k. Observe that every (d+1) subsets of size s have a common point; this is because k(d+1) < k(d+1) + 1 = n. By Helly's theorem, there exists $z \in \mathbb{R}^d$ such that $z \in \operatorname{Conv}(X_I)$ for all $|I| \ge s$. So $z \in \operatorname{Conv}(X)$, so by Carathèodory's theorem, there is some $Y_1 \subseteq X$ with $|Y_1| = d+1$ such that $z \in \operatorname{Conv}(Y_1)$. Then $z \in \operatorname{Conv}(X \setminus Y_1)$, so we can get $Y_2 \subseteq X \setminus Y_1$ such that $|Y_2| = d+1$ and $z \in \operatorname{Conv}(Y_2)$. Continue this to get $I_1 = Y_1, \ldots, I_r = Y_r$, which is what we wanted.

Remark 1.1. The actual Tverberg's theorem is the same but without the power of 2 on the d+1 term.