Confident Learning applied to MNIST Label Error

David Szczecina

Confident Learning and Cleanlab

- 1. Estimate the joint distribution of given, noisy labels and latent (unknown) uncorrupted labels to fully characterize class-conditional label noise.
- Find and prune noisy examples with label issues.
- 3. Train with errors removed, re-weighting examples by the estimated latent prior.

https://arxiv.org/pdf/1911.00068.pdf

Confident Learning and Cleanlab

Out of sample Predictions

Labels (can contain label errors)

0 1 2 3 4
5 6 7 8 9

https://cleanlab.ai/

MNSIT Example

plot_examples([59915])

id: 59915 label: 4

$$\begin{split} & \boldsymbol{C}_{\tilde{\boldsymbol{y}},\boldsymbol{y}^*}[i][j] := \mid \!\! \hat{\boldsymbol{X}}_{\tilde{\boldsymbol{y}}=i,\boldsymbol{y}^*=j} \mid & \text{where} \\ & \hat{\boldsymbol{X}}_{\tilde{\boldsymbol{y}}=i,\boldsymbol{y}^*=j} := \left\{ \boldsymbol{x} \in \boldsymbol{X}_{\tilde{\boldsymbol{y}}=i} : \hat{p}(\tilde{\boldsymbol{y}}=j;\boldsymbol{x},\boldsymbol{\theta}) \geq t_j, \; j = \underset{l \in [m]: \hat{\boldsymbol{p}}(\tilde{\boldsymbol{y}}=l;\boldsymbol{x},\boldsymbol{\theta}) \geq t_l}{\text{p}} \hat{p}(\tilde{\boldsymbol{y}}=l;\boldsymbol{x},\boldsymbol{\theta}) \right\} \end{split}$$

$$t_j = \frac{1}{|\boldsymbol{X}_{\tilde{y}=j}|} \sum_{\boldsymbol{x} \in \boldsymbol{X}_{\tilde{y}=j}} \hat{p}(\tilde{y} = j; \boldsymbol{x}, \boldsymbol{\theta})$$

Normalized Probability Score

Noise Distribution

Actual

	[6837,		0,	5,	8,	7,	17,	8,	3,	17,	1]
abel	[1,	7817,	19,	3,	2,	6,	0,	5,	24,	0]
	[1,	21,	6749,	27,	35,	11,	18,	46,	73,	9]
	[1,	5,	69,	6880,	1,	83,	5,	16,	50,	31]
	[2,	8,	15,	2,	6698,	3,	19,	4,	18,	55]
	[21,	7,	15,	76,	20,	6077,	23,	4,	48,	22]
	[11,	5,	13,	0,	17,	32,	6787,	2,	9,	0]
	[2,	5,	28,	7,	22,	5,	1,	7178,	4,	41]
	[11,	14,	25,	48,	7,	58,	18,	5,	6618,	21]
	[12,	3,	6,	20,	38,	15,	1,	38,	11,	6814]

Actual

```
Joint Label Noise Distribution Matrix P(given_label, true_label) of shape (10, 10)
 p(s,y) y=0
                 y=1
                          y=2
                                   y=3
                                            y=4
                                                     v=5
                                                             y=6
                                                                      y=7
                                                                               v=8
                                                                                        y=9
s=0
         0.1
                 0.0
                          0.0
                                   0.0
                                            0.0
                                                     0.0
                                                              0.0
                                                                      0.0
                                                                               0.0
                                                                                        0.0
s=1
         0.0
                 0.11
                          0.0
                                   0.0
                                            0.0
                                                     0.0
                                                              0.0
                                                                      0.0
                                                                               0.0
                                                                                        0.0
                                            0.0
                                                                      0.0
                                                                               0.0
                                                                                        0.0
         0.0
                 0.0
                          0.1
                                   0.0
                                                     0.0
                                                              0.0
s=3
         0.0
                 0.0
                          0.0
                                   0.1
                                            0.0
                                                     0.0
                                                              0.0
                                                                      0.0
                                                                               0.0
                                                                                        0.0
                                                     0.0
                                                                               0.0
s=4
         0.0
                 0.0
                          0.0
                                   0.0
                                            0.1
                                                              0.0
                                                                      0.0
                                                                                        0.0
s=5
         0.0
                 0.0
                          0.0
                                   0.0
                                            0.0
                                                     0.09
                                                              0.0
                                                                      0.0
                                                                               0.0
                                                                                        0.0
s=6
                 0.0
                                            0.0
                                                                      0.0
                                                                                        0.0
         0.0
                          0.0
                                   0.0
                                                     0.0
                                                              0.1
                                                                               0.0
s=7
         0.0
                 0.0
                          0.0
                                   0.0
                                            0.0
                                                     0.0
                                                              0.0
                                                                      0.1
                                                                               0.0
                                                                                        0.0
s=8
         0.0
                 0.0
                          0.0
                                   0.0
                                            0.0
                                                     0.0
                                                              0.0
                                                                      0.0
                                                                               0.09
                                                                                        0.0
s=9
                 0.0
                          0.0
                                   0.0
                                            0.0
                                                              0.0
                                                                      0.0
                                                                               0.0
                                                                                        0.1
                                                     0.0
```

Trace(matrix) = 0.98

Results

143 out of 70000 labels identified as bad.

Many are mislabeled or questionable, some are correct and false positives.

label: 5

id: 24798

label: 4

Next Steps

- Increase cross validation from 3 folds to 10
- See difference in model accuracy without bad labeled data
- See how well it works with data that has uneven class distribution