

Global United Technology Service Co., Ltd.

Report No: GTSE10120039501

FCC REPORT

Applicant: Greentech International Ltd.

Address of Applicant: Unit 11, 8 Fl., Sing Win Factory Bldg., 15-17 Shing Yip Street,

Kwun Tong

Equipment Under Test (EUT)

Product Name: Brain Athlete

Model No.: BA-001

Trademark: Brain Athlete

FCC ID: VT3BA-001

Standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2009

Date of Receipt: 30 Dec. 2010

Date of Test: 30 Dec. 2010- 04 Jan. 2011

Date of Issue: 05 Jan. 2011

Test Result : PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS International Electrical Approvals or testing done by GTS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by GTS International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

2 Contents

			Page					
1	CC	OVER PAGE	1					
2	CC	ONTENTS	2					
3		TEST SUMMARY						
4	GE	ENERAL INFORMATION	4					
	4.1	CLIENT INFORMATION						
	4.2	GENERAL DESCRIPTION OF E.U.T.						
	4.3	TEST ENVIRONMENT AND MODE						
	4.4	TEST FACILITY						
	4.5	TEST LOCATION	<i>6</i>					
	4.6	OTHER INFORMATION REQUESTED BY THE CUSTOMER						
	4.7	TEST INSTRUMENTS LIST						
5	TE	ST RESULTS AND MEASUREMENT DATA	8					
	5.1	Antenna requirement:	S					
	5.2	CONDUCTED PEAK OUTPUT POWER.						
	5.3	20DB OCCUPY BANDWIDTH						
	5.4	CARRIER FREQUENCIES SEPARATION						
	5.5	HOPPING CHANNEL NUMBER.						
	5.6	DWELL TIME						
	5.7	BAND EDGE	35					
	5.8	RF ANTENNA CONDUCTED SPURIOUS EMISSIONS						
	5.9	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE						
	5.10	RADIATED EMISSION	50					
	5.1	10.1 Radiated emission below 1GHz						
	5.1	0.2 Transmitter emission above 1GHz	5.5					

Project No.: GTSE101200395TX

3 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	15.207	N/A
Conducted Peak Output Power	15.247 (b)(1)	PASS
20dB Occupied Bandwidth	15.247 (a)(1)	PASS
Carrier Frequencies Separation	15.247 (a)(1)	PASS
Hopping Channel Number	15.247 (a)(1)	PASS
Dwell Time	15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	PASS
Radiated Emission	15.205/15.209	PASS
Band Edge	15.247(d)	PASS

Remark:

- Passed: The EUT complies with the essential requirements in the standard.
- Failed: The EUT does not comply with the essential requirements in the standard.
- Tx: In this whole report Tx (or tx) means Transmitter.
- Rx: In this whole report Rx (or rx) means Receiver.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 3 of 55

4 General Information

4.1 Client Information

Applicant:	Greentech International Ltd.	
Address of Applicant:	Unit 11, 8 Fl., Sing Win Factory Bldg., 15-17 Shing Yip Street, Kwun Tong	
Manufacturer:	Greentech Ltd.	
Address of Manufacturer:	2 Floor, 68 WenZeng Road,Dong Cheng District, Dong Guan City	

4.2 General Description of E.U.T.

Product Name:	Brain Athlete
Model No.:	BA-001
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, Pi/4QPSK, 8DPSK
Antenna Type:	Integral
Antenna gain:	2dBi
Power supply:	DC 3.7V by battery

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 4 of 55

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 5 of 55

4.3 Test environment and mode

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	45 % RH	
Atmospheric Pressure:	1050 mbar	
Test mode:		
Transmitting mode	Keep the EUT in transmitting mode.	

4.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC —Registration No.: 600491

Global United Technology Service Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 600491, July 20, 2010.

● Industry Canada (IC)

The 3m Semi-anechoic chamber of Global United Technology Service Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-1.

4.5 Test Location

All tests were performed at:

Global United Technology Service Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

4.6 Other Information Requested by the Customer

None.

Global United Technology Service Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 6 of 55

4.7 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS201	Mar. 30 2010	Mar. 30 2011	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS202	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Sep. 10 2010	Sep. 10 2011	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS204	Sep. 10 2010	Sep. 10 2011	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS205	June 30 2010	June 30 2011	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Coaxial Cable	GTS	N/A	GTS400	Apr. 01 2010	Apr. 01 2011	
8	Coaxial Cable	GTS	N/A	GTS401	Apr. 01 2010	Apr. 01 2011	
9	Coaxial cable	GTS	N/A	GTS402	Apr. 01 2010	Apr. 01 2011	
10	Coaxial Cable	GTS	N/A	GTS407	Apr. 01 2010	Apr. 01 2011	
11	Coaxial Cable	GTS	N/A	GTS408	Apr. 01 2010	Apr. 01 2011	
12	Amplifier(10KHz- 5GHz)	Sonnoma Instrument	305-1052	GTS210	Aug. 03 2010	Aug. 03 2011	
13	Amplifier(2GHz- 20GHz)	HP	8349B	GTS231	Aug. 03 2010	Aug. 03 2011	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)	
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS206	Apr. 10 2010	Apr. 10 2011	
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS208	Sep. 14 2010	Sep. 14 2011	
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS209	Sep. 14 2010	Sep. 14 2011	
4	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS207	Apr. 14 2010	Apr. 14 2011	
5	Coaxial Cable	GTS	N/A	GTS406	Apr. 01 2010	Apr. 01 2011	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 Test results and Measurement Data

5.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.2 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Receiver setup:	RBW=3MHz, VBW=3MHz, Detector=Peak	
Limit:	21dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 7.5dB in the spectrum analyzer.	
Test Instruments:	Refer to section 4.7 for details	
Test mode:	Refer to section 4.3 for details	
Test results:	Passed	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 9 of 55

Measurement Data

GFSK mode					
Test channel	Test channel Peak Output Power (dBm)		Result		
Lowest	4.58	21.00	Pass		
Middle	5.16	21.00	Pass		
Highest	5.46	21.00	Pass		
	Pi/4QPSK m	ode			
Test channel	Test channel Peak Output Power (dBm)		Result		
Lowest	Lowest 3.74		Pass		
Middle	Middle 4.56		Pass		
Highest	Highest 4.31		Pass		
	8DPSK mod	de			
Test channel	Test channel Peak Output Power (dBm)		Result		
Lowest	Lowest 4.06		Pass		
Middle	4.89	21.00	Pass		
Highest 4.74		21.00	Pass		

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 10 of 55

Test mode: GFSK Test channel: Middle

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: Pi/4QPSK Test channel: Lowest

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE101200395TX

Page 12 of 55

Test mode: Pi/4QPSK Test channel: Highest

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 13 of 55

Project No.: GTSE101200395TX

Test mode: 8DPSK Test channel: Middle

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.3 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Receiver setup:	RBW=30KHz, VBW=100KHz,detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Test mode:	Refer to section 4.3 for details	
Test results:	Passed	

Measurement Data			
Test channel	20dB Occupy Bandwidth (KHz)		
	GFSK	Pi/4QPSK	8DPSK
Lowest	796	1200	1204
Middle	800	1216	1208
Highest	788	1216	1204

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 16 of 55

Test mode: GFSK Test channel: Middle

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: Pi/4QPSK Test channel: Lowest

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: Pi/4QPSK Test channel: Highest

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: 8DPSK Test channel: Middle

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.4 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Test mode:	Refer to section 4.3 for details	
Test results:	Passed	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 22 of 55

Project No.: GTSE101200395TX

Measurement Data				
	GFSK mode			
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result	
Lowest	1000	811	Pass	
Middle	1004	811	Pass	
Highest	1004	811	Pass	
	Pi/4QPSK m	ode		
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result	
Lowest	1000	811	Pass	
Middle	1004	811	Pass	
Highest	1004	811	Pass	
	8DPSK mode			
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result	
Lowest	1004	811	Pass	
Middle	1004	811	Pass	
Highest	1000	811	Pass	

Note: According to section 5.4,

Mode	20dB bandwidth (KHz) (worse case)	Limit (KHz) (Carrier Frequencies Separation)
GFSK	800	533
PI/4QPSK	1216	811
8DPSK	1208	805

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 23 of 55

Test mode: GFSK Test channel: Middle

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: Pi/4QPSK Test channel: Lowest

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: Pi/4QPSK Test channel: Highest

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: 8DPSK Test channel: Middle

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.5 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Receiver setup:	RBW=100KHz, VBW=300KHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	75channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Test mode:	Refer to section 4.3 for details	
Test results:	Passed	

Measurement Data		
Mode	Hopping channel numbers	Limit
GFSK	79	75
Pi/4QPSK	79	75
8DPSK	79	75

Test plot as follows

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 29 of 55

Test mode: Pi/4QPSK

Page 30 of 55

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.6 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak	
Limit:	0.4 Second	
Test mode:	Hopping transmitting with all kind of modulation.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Test mode:	Refer to section 4.3 for details	
Test results:	Passed	

Measurement Data			
Mode	Packet	Dwell time (second)	Limit (second)
	DH1	0.170	0.4
GFSK	DH3	0.288	0.4
	DH5	0.324	0.4
Pi/4QPSK	2-DH1	0.170	0.4
	2-DH3	0.288	0.4
	2-DH5	0.324	0.4
8DPSK	3-DH1	0.170	0.4
	3-DH3	0.288	0.4
	3-DH5	0.324	0.4

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as blow

DH1 time slot= Pulse time*(1600/ (2*79))*31.6

DH3 time slot= Pulse time*(1600/ (4*79))*31.6

DH5 time slot= Pulse time*(1600/ (6*79))*31.6

Global United Technology Service Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plot as follows

Test mode: GFSK/ Pi/4QPSK/8DPSK Test Packet: DH1/2-DH1/3-DH1

Test mode: GFSK/ Pi/4QPSK/8DPSK Test Packet: DH3/2-DH3/3-DH3

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.7 Band Edge

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Receiver setup:	RBW=100KHz, VBW=300KHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:		
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark:	
Test Instruments:	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Refer to section 4.7 for details	
	Refer to section 4.7 for details Refer to section 4.3 for details	
Test mode:		
Test results:	Passed	

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 35 of 55

Test mode: GFSK Test channel: Highest

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE101200395TX

Test mode: Pi/4QPSK Test channel: Highest

Test mode: 8DPSK Test channel: Highest

Project No.: GTSE101200395TX

Page 38 of 55

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.8 RF Antenna Conducted spurious emissions

Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.4:2003 and KDB DA00-705							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:								
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.							
Test Instruments:	Refer to section 4.7 for details							
Test mode:	Refer to section 4.3 for details							
Test results:	Passed							

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 39 of 55

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

1.5 GHz/

Start 10 GHz

Project No.: GTSE101200395TX

Stop 25 GHz

Test mode: Pi/4QPSK Test channel: Middle

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

1.5 GHz/

Start 10 GHz

Project No.: GTSE101200395TX

Stop 25 GHz

Test mode: 8DPSK Test channel: Lowest

1.5 GHz/

Start 10 GHz

Project No.: GTSE101200395TX

Stop 25 GHz

Project No.: GTSE101200395TX

5.9 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Global United Technology Service Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 49 of 55

Project No.: GTSE101200395TX

5.10 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.4: 2003									
Test Frequency Range:	30MHz to 25GHz									
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
Receiver setup:		7								
Receiver setup.	Frequency	Detector	RBW	VBW	Remark					
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value					
	Above 1CHz	Peak	1MHz	3MHz	Peak Value					
	Above 1GHz	Peak	1MHz	10Hz	Average Value					
Limit:										
	Freque		Limit (dBuV		Remark					
	30MHz-8	8MHz	40.0)	Quasi-peak Value					
	88MHz-21		43.		Quasi-peak Value					
	216MHz-9		46.0		Quasi-peak Value					
	960MHz-	1GHz	54.0		Quasi-peak Value					
	Above 1	GHz	54.0		Average Value					
Test Procedure:	a. The EUT w		74.0	-	Peak Value 0.8 meters above					
	rotated 360 radiation. b. The EUT was antenna, whatower. c. The antenna ground to depress and the measure degrees to see. The test-recession of the EUT have 10dB peak or aves sheet. g. The radiation	a height is varied etermine the moderatical polar ement. It is pected emission the rotable table find the maximulation level of the ecified, then teswould be reportant in the reportant of the ecified, then the ecified, then the ecified, then the ecified would be reportant in th	ermine the parameter away from the don the to the don the to the don the to the don th	the interference op of a varial meter to folue of the fiethe antennation heights fied from 0 decaded by the end of the emission one by one and then reparted in X, Y	ence-receiving able-height antenna ur meters above the ld strength. Both a are set to make ged to its worst rom 1 meter to 4 agrees to 360. Function and and the peak values asions that did not using peak, quasi-ported in a data.					

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 50 of 55

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

5.10.1 Radiated emission below 1GHz

		Antonno	Droomn	Read			Over	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit (dB)	polarization
36.020	0.63	9.37	25.74	52.09	36.35	40.00	-3.65	Vertical
54.047	0.68	10.94	25.71	36.14	22.05	40.00	-17.95	Vertical
90.586	1.07	12.03	25.67	34.27	21.70	43.50	-21.80	Vertical
261.126	1.98	10.30	25.60	38.01	24.69	43.50	-21.31	Vertical
269.941	2.00	11.80	25.59	38.08	26.29	46.00	-19.71	Vertical
36.020	0.63	12.64	25.74	34.31	21.84	40.00	-18.16	Horizontal
97.882	1.14	13.06	25.67	25.69	14.22	43.50	-29.28	Horizontal
214.754	1.84	14.05	25.61	25.68	15.96	43.50	-27.54	Horizontal
334.340	2.14	16.68	25.58	26.55	19.79	46.00	-26.21	Horizontal
509.123	2.43	21.72	25.55	25.37	23.97	46.00	-22.03	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 52 of 55

5.10.2 Transmitter emission above 1GHz

Worse case mode:		GFSK	Test c	hannel:	Lowest	Remark	(:	Peak				
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
2327.75	6.02	29.76	39.75	47.53	43.56	74.00	-30.44	Vertical				
2398.25	6.34	30.03	38.87	47.53	45.03	74.00	-28.97	Vertical				
2400.00	6.34	30.03	38.87	47.11	44.61	74.00	-29.39	Vertical				
4804.00	9.36	34.25	41.53	47.27	49.35	74.00	-24.65	Vertical				
7206.00	13.38	37.23	40.98	47.02	56.65	74.00	-17.35	Vertical				
9608.00	13.39	37.99	37.56	43.12	56.94	74.00	-17.06	Vertical				
12010.00	16.45	39.10	39.09	43.91	60.37	74.00	-13.63	Vertical				
2339.50	6.08	29.81	39.59	45.95	42.25	74.00	-31.75	Horizontal				
2398.25	6.34	30.03	38.87	46.63	44.13	74.00	-29.87	Horizontal				
2400.00	6.34	30.03	38.87	46.67	44.17	74.00	-29.83	Horizontal				
4804.00	9.36	34.25	41.53	47.98	50.06	74.00	-23.94	Horizontal				
7206.00	13.38	37.23	40.98	47.24	56.87	74.00	-17.13	Horizontal				
9608.00	13.39	37.99	37.56	42.54	56.36	74.00	-17.64	Horizontal				
12010.00	16.45	39.10	39.09	43.23	59.69	74.00	-14.31	Horizontal				

Worse case mode: GFSK		SK	Test c	hannel:	Lowest	Remark:		Average
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2327.75	6.02	29.76	39.75	37.51	33.54	54.00	-20.46	Vertical
2398.25	6.34	30.03	38.87	37.60	35.10	54.00	-18.90	Vertical
2400.00	6.34	30.03	38.87	37.20	34.70	54.00	-19.30	Vertical
4804.00	9.36	34.25	41.53	37.90	39.98	54.00	-14.02	Vertical
7206.00	13.38	37.23	40.98	37.10	46.73	54.00	-7.27	Vertical
9608.00	13.39	37.99	37.56	33.59	47.41	54.00	-6.59	Vertical
12010.00	16.45	39.10	39.09	33.10	49.56	54.00	-4.44	Vertical
2339.50	6.08	29.81	39.59	35.90	32.20	54.00	-21.80	Horizontal
2398.25	6.34	30.03	38.87	36.20	33.70	54.00	-20.30	Horizontal
2400.00	6.34	30.03	38.87	36.50	34.00	54.00	-20.00	Horizontal
4804.00	9.36	34.25	41.53	37.40	39.48	54.00	-14.52	Horizontal
7206.00	13.38	37.23	40.98	37.40	47.03	54.00	-6.97	Horizontal
9608.00	13.39	37.99	37.56	37.29	51.11	54.00	-2.89	Horizontal
12010.00	16.45	39.10	39.09	32.50	48.96	54.00	-5.04	Horizontal

Global United Technology Service Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE101200395TX

Page 54 of 55

Worse case	Worse case mode: GFSK		Test	channel:	Middle	Remar	k:	Peak
Frequency (MHz)	Cable Loss (di	Lactor	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2316.00	6.00	29.74	39.83	47.56	43.47	74.00	-30.53	Vertical
4882.00	10.57	34.35	40.33	51.61	56.20	74.00	-17.80	Vertical
7323.00	12.91	37.31	40.40	48.33	58.15	74.00	-15.85	Vertical
9764.00	13.89	38.03	37.94	42.82	56.80	74.00	-17.20	Vertical
12205.00	17.95	39.23	39.30	43.66	61.54	74.00	-12.46	Vertical
1117.50	3.97	25.72	39.31	56.80	47.18	74.00	-26.82	Horizontal
2327.75	6.02	29.76	39.75	47.91	43.94	74.00	-30.06	Horizontal
4882.00	10.57	34.35	40.33	52.00	56.59	74.00	-17.41	Horizontal
7323.00	12.91	37.31	40.40	49.11	58.93	74.00	-15.07	Horizontal
12205.00	17.95	39.23	39.30	44.38	62.26	74.00	-11.74	Horizontal

Worse case	mode:	GF	SK	T	Test o	channel:	Middle	Remark:		·k:	Average
Frequency (MHz)	Cable Loss (d		Antenna Factor (dB/m)	Prea Fact (dE	tor	Read Level (dBuV)	Level (dBuV/m)		Line V/m)	Over Limit (dB)	polarization
2316.00	6.00		29.74	39.8	83	37.49	33.40	54.	.00	-20.60	Vertical
4882.00	10.57	7	34.35	40.3	33	41.29	45.88	54.	.00	-8.12	Vertical
7323.00	12.9	1	37.31	40.4	40	38.50	48.32	54.	.00	-5.68	Vertical
9764.00	13.89	.89 38.03		37.9	94	32.50	46.48	54.	.00	-7.52	Vertical
12205.00	17.9	5	39.23	39.3	30	31.60	49.48	54.	.00	-4.52	Vertical
1117.50	3.97		25.72	39.3	31	46.50	36.88	54.	.00	-17.12	Horizontal
2327.75	6.02		29.76	39.7	75	37.61	33.64	54.	.00	-20.36	Horizontal
4882.00	10.57	7	34.35	40.3	33	42.49	47.08	54.	.00	-6.92	Horizontal
7323.00	12.9	1	37.31	40.4	40	37.30	47.12	54.	.00	-6.88	Horizontal
12205.00	17.9	5	39.23	39.3	30	31.80	49.68	54.	.00	-4.32	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Worse case	e case mode: GFSK		Test	channel:	Highest	Remar	k:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2363.00	6.20	29.91	39.27	49.92	46.76	74.00	-27.24	Vertical
3220.75	6.99	32.20	39.33	47.21	47.07	74.00	-26.93	Vertical
4960.00	10.43	34.45	41.03	53.40	57.25	74.00	-16.75	Vertical
7440.00	12.72	37.37	40.01	46.23	56.31	74.00	-17.69	Vertical
9920.00	14.24	38.08	37.78	42.93	57.47	74.00	-16.53	Vertical
12400.00	17.55	39.34	39.48	45.13	62.54	74.00	-11.46	Vertical
2351.25	6.14	29.86	39.43	48.44	45.01	74.00	-28.99	Horizontal
3608.50	8.34	32.67	40.82	48.89	49.08	74.00	-24.92	Horizontal
4960.00	10.43	34.45	41.03	54.59	58.44	74.00	-15.56	Horizontal
7440.00	12.72	37.37	40.01	46.73	56.81	74.00	-17.19	Horizontal
9920.00	14.24	38.08	37.78	43.44	57.98	74.00	-16.02	Horizontal
12400.00	17.55	39.34	39.48	45.79	63.20	74.00	-10.80	Horizontal

Worse case	mode: C	SFSK	Test	channel:	Highest	Remark:		Average					
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization					
2363.00	6.20	29.91	39.27	39.50	36.34	54.00	-17.66	Vertical					
3220.00	6.99	32.20	39.33	37.30	37.16	54.00	-16.84	Vertical					
4960.00	10.43	34.45	41.03	43.50	47.35	54.00	-6.65	Vertical					
7440.00	12.72	37.37	40.01	36.80	46.88	54.00	-7.12	Vertical					
9920.00	14.24	38.08	37.78	32.60	47.14	54.00	-6.86	Vertical					
12400.00	17.55	39.34	39.48	35.60	53.01	54.00	-0.99	Vertical					
2351.25	6.14	29.86	39.43	38.50	35.07	54.00	-18.93	Horizontal					
3608.50	8.34	32.67	40.82	38.49	38.68	54.00	-15.32	Horizontal					
4960.00	10.43	34.45	41.03	44.20	48.05	54.00	-5.95	Horizontal					
7440.00	12.72	37.37	40.01	36.40	46.48	54.00	-7.52	Horizontal					
9920.00	14.24	38.08	37.78	33.60	48.14	54.00	-5.86	Horizontal					
12400.00	17.55	39.34	39.48	35.70	53.11	54.00	-0.89	Horizontal					

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 55 of 55