- В папке C:\Xilinx_trn\HLS2022\lab2_z1 создать папку source
- Создать на языке Си функцию (lab2 z1.c) поиска факториала (без рекурсии) ниже пример псевдо кода.
 - Сохранить ее в папку C:\Xilinx_trn\HLS2022\lab2_z1\source
 - Имя функции lab2_z1
 - Обязательно наличие lab2_z1.h файла с заданием типов данных (Сохранить в папку C:\Xilinx_trn\HLS2022\lab2_z1\source).
 - Базовый тип данных: n short; возвращаемое значение int

Факториал		Рекурсия	без рекурсии
		<pre>int Fact(n:short)</pre>	<pre>int Fact(n: short)</pre>
	n! = n * (n-1)!, при	begin	var F, i : short;
	n>0	if n=0	begin
\sqcup \prec		then Fact:=1	F:=1;
	1, n=0	else	for i:=1 to n do
	,	Fact:=n*Fact(n-1)	F:=F*i;
		end;	Fact:=F
			end;

- Создать на языке Си тест (lab2_z1_test.c) для проверки работы функции сохранить в папку C:\Xilinx_trn\HLS2022\lab2_z1\source. Тест должен обеспечивать
 - о Чтение типов данных из lab2 z1.h файла
 - о запуск функции 3 раза,
 - \circ задание n случайным значением (новое значение для каждого запуска функции), распределенным от 5 до 19 (например так: n = (rand() %15) + 5)),
 - проверку правильности вычисленного результата (для проверки использовать алгоритм с рекурсией) и формирование признака успешного/неуспешного выполнения для каждого запуска функции,
- Отладить функцию и тест (при неправильном результате в любом из запусков функции должен сообщать об ошибке).
- Создать скрипт (сохранить в папку C:\Xilinx trn\HLS2022\lab2 z1) автоматизирующий процесс:
 - о Создания проекта lab2 z1,
 - Подключения файла lab2 z1.c (папка source),
 - Подключения файла lab2_z1_test.c (папка source),
 - о Создания базового решения (ex_sol1), для которого
 - задается микросхема: xa7a12tcsg325-1q,
 - задается clock period 4; clock_uncertainty 1,
 - выполняется Си моделирование.
 - О Исследования в объеме 3-х решений ex sol[4:2]
 - Для всех решений задается микросхема: xa7a12tcsg325-1q
 - Для каждого решения отдельное требование к периоду тактового сигнала
 - Для ex sol2 задается clock period 8; clock uncertainty 1
 - Для ex_sol3 задается clock period 12; clock_uncertainty 1
 - Для ex sol4 задается clock period 40; clock uncertainty 1
 - Для каждого решения осуществить синтез.
 - Для каждого решения осуществить моделирование cosim.
- Отладить и проверить работу созданного скрипта.
- открыть GUI
- убедиться, что созданы все решения

- используя средства HLS сравнить полученные решения.
- Составить электронную таблицу для сравнения решений (перенести в нее данные из HLS) и построить график, в котором должны быть отражены: Iteration Interval (ns) подсчитывается путем умножения Latency (cycles) на период тактового сигнала Estimated; использованные ресурсы (если значения какоголибо ресурса остаются неизменными для всех решений, то такой ресурс не следует отображать на временной диаграмме)
- Посмотреть, привести в отчете и сравнить временные диаграммы для решения ex_sol1 и ex_sol4
- Оформить отчет, который должен включать
 - о Задание
 - о Раздел с описанием исходного кода функции
 - Раздел с описанием теста
 - о Раздел с описание созданного командного файла
 - Раздел с описанием результатов сравнения решений (со снимком экрана из vitis HLS)
 - Раздел с анализом результатов (со снимком экрана **с заполненной таблицей** и **полученным графиком**)
 - Анализ и выбор оптимального (критерий максимальная производительность) решения
 - Анализ и выбор оптимального (критерий минимальные аппаратные затраты) решения
 - Анализ и выбор оптимального (критерий максимальная производительность и минимальные аппаратные затраты) решения
 - о Выводы
- Архив должен включать всю папку C:\Xilinx_trn\HLS2022\lab2_z1, (в папке ./doc должны быть: отчет и файл с электронной таблицей).