

MapleT.A. 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

Welcome Rasmus Veiergang Prentow [My Profile]

View Details View Grade Help **Quit & Save**

Feedback: Details Report

[PRINT]

2010 Matematik 2A hold 4, Prøveeksamen juni 2010 Rasmus Veiergang Prentow, 5/31/10 at 8:38 AM

Question 1: Score 10/10

Der er givet en lineær afbildning fra \mathbb{R}^{n} , n=2, til \mathbb{R}^{m} , m=4 ved

$$T(\mathbf{x}) = \begin{pmatrix} -2 x_1 \\ -x_1 - 2 x_2 \\ -2 x_1 \\ 2 x_2 \end{pmatrix}$$

(i) Bestem standardmatricen for denne lineære afbildning. Svaret skal gives under brug af Maple syntax. En 3×4 matrix

indtastes som

Matrix([[1,2,3,4],[5,6,7,8],[9,10,11,12]])

Your Answer: Matrix([[-2,0],[-1,-2],[-2,0],[0,2]])

Comment:
$$\begin{pmatrix} -2 & 0 \\ -1 & -2 \\ -2 & 0 \\ 0 & 2 \end{pmatrix}$$

(ii) Afgør, om den lineære afbildning T ovenfor er injektiv (på engelsk 'one-to-one'). Hvis T er injektiv, skriv ja i svarfeltet nedenfor. Hvis $\,T\,$ ikke er injektiv, skriv ${\tt nej}\,$ i svarfeltet.

Bemærk, at svaret skal skrives som enten ja eller nej , altså små bogstaver. Svar som Ja og JA og jA vil være forkerte.

Your Answer: ja

Comment: No feedback provided with this question

(iii) Afgør, om den lineære afbildning T ovenfor er surjektiv (på engelsk 'onto'). Hvis T er surjektiv, skriv ja i svarfeltet nedenfor. Hvis $\,T\,$ ikke er surjektiv, skriv ${\tt nej}$ i svarfeltet. Bemærk, at svaret skal skrives som enten ja eller nej , altså små bogstaver. Svar som Ja og JA og jA vil være

CORRECT

forkerte. Your Answer: nej

Comment: No feedback provided with this question

Comments:

Den reducerede echelonform af standardmatricen for $\ T$ er

Question 2: Score 0/15

Der er givet en $n \times n$ matrix A med den egenskab, at søjlerne i A udspænder R^n . Markér alle sande udsagn nedenfor.

Choice	Selected		Points
A er diagonaliserbar.	Yes	X	-1
Nul er ikke en egenværdi for A_{\cdot}	No	X	
Ligningssystemet $Ax = 0$ har en ikke-triviel løsning.	No		
A er invertibel.	Yes		+1

Number of available correct choices: 2

Partial Grading Explained

Question 3: Score 10/10

Der er givet en matrix A ved

$$A = \left(\begin{array}{cccc} 2 & -2 & 0 & 0 \\ 1 & -2 & 0 & 0 \\ 2 & 0 & 1 & 1 \end{array}\right)$$

og to elementære matricer E_{1} og E_{2} ved

Matricen B fremkommer ved at anvende først rækkeoperationen givet ved E_1 og dernæst rækkeoperationen givet ved E_2 .

Markér matricen $\,B\,$ nedenfor.

Your Answer:

$$\left(\begin{array}{ccccc}
2 & -2 & 0 & 0 \\
2 & 0 & 1 & 1 \\
9 & -10 & 0 & 0
\end{array}\right)$$

Question 4: Score 15/15

Der er givet en 3 $\, imes\,$ 4 matrix $\,A$. Besvar følgende to spørgsmål.

(a)

Angiv den største værdi, som dimensionen af søjlerummet for A, $dim\ Col\ A$, kan antage. Skriv svaret som et tal nedenfor, for eksempel $_3$

Your Answer: 3

Comment: Svaret er 3.

(b) Angiv den mindste værdi, som dimensionen af nulrummet for A, $\dim NulA$, kan antage. Skriv svaret som et tal nedenfor, for eksempel $_3$

Your Answer: 1

Comment: Svaret er 1.

Question 5: Score 15/15

Der er givet et sæt $S = \{a, b, c, d\}$ af vektorer i R^3 , hvor

$$\mathbf{a} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix}, \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \mathbf{d} = \begin{pmatrix} -1 \\ -2 \\ 2 \end{pmatrix}$$

Besvar følgende to spørgsmål

(a)

Er vektorerne i S lineært uafhængige?

Your Answer: Nei

(b)

Bestem dimensionen af $~^{\mbox{Span}\mathcal{S}}.$ Skriv svaret som et tal nedenfor, for eksempel 2

Your Answer: 2

Comment: Dimensionen er 2

Question 6: Score 15/15

Der er givet et underrum

$$H = \operatorname{Span} \left[\begin{pmatrix} -1 \\ 0 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \\ 1 \end{pmatrix} \right].$$

Besvar følgende to spørgsmål.

(i)

Bestem en basis for H.

Svaret skal angives i Maple syntax som en komma-separeret liste af vektorer, for eksempel som Vector([1,0,0]), Vector([2,3,0])

Your Answer: Vector([-1, 1, 1, 0]), Vector([0, -1, 1, 1]), Vector([0, 0, 0, -1]), Vector([-1, 0, 1, 1])

Et muligt valg af basis er

Comment:

Der er mange andre baser.

(ii)

Find dimensionen af $\,H\,.\,$ Skriv svaret som et tal nedenfor.

Your Answer: 4

Comment: Dimensionen er 4.

Question 7: Score 10/10

Der er givet en matrix

$$A = \begin{pmatrix} -1 & -2 & -1 \\ 2 & -1 & 0 \\ -3 & -1 & -1 \end{pmatrix}$$

Besvar følgende tre spørgsmål.

Your Answer:

$$\left(
 \begin{array}{cccc}
 1 & 0 & \frac{1}{5} \\
 0 & 1 & \frac{2}{5} \\
 0 & 0 & 0
 \end{array}
\right)$$

(ii)

Find dimensionen af søjlerummet ColA. Skriv svaret som et tal nedenfor.

Your Answer: 2

Comment: Dimensionen er 2.

(iii)

Find dimensionen af nulrummet NulA. Skriv svaret som et tal nedenfor.

Your Answer: 1

Comment: Dimensionen er 1.

Question 8: Score 10/10

Der er givet følgende lineære ligningssystem, bestående af tre ligninger i fire variable.

$$2 x_1 + x_2 + x_3 = -1$$

$$x_1 - 2 x_2 + 2 x_3 - x_4 = -1$$

$$-2 x_1 - x_2 + 2 x_4 = -4$$

Find den udvidede koefficientmatrix (totalmatricen) for dette system.

Svaret skal gives i Maple syntax for en matrix. Et eksempel er

Matrix([[1,2,3,4],[5,6,7,8],[9,10,11,12]])

Question 9: Score 15/15

Der er givet to invertible $\exists \times \exists$ matricer A og B ved

$$A = \begin{pmatrix} 1 & 3 & 3 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{pmatrix} \text{ og } B = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

Opgaven går ud på at bestemme den $\exists \times \exists$ matrix X, som opfylder ligningen

$$AX^{-1}=B.$$

Besvar følgende to spørgsmål.

(a)

Markér den korrekte formel for $\, X \, . \,$

Your Answer:
$$X = B^{-1}A$$

(b) Bestem løsningen X.

Svaret skal gives i Maple syntax. En 3x3 matrix

indtastes som

Matrix([[1,2,3],[0,4,0],[5,0,6]])

Your Answer: Matrix([[1, 3, 3], [1, 4, 0], [1, 3, 4]])

Løsningen er

Comment:

$$X = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 0 \\ 1 & 3 & 4 \end{pmatrix}$$

Question 10: Score 15/15

Der er givet en diagonaliserbar 3×3 matrix

$$A = \left(\begin{array}{rrr} -2 & -6 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{array} \right)$$

Besvar nedenstående to spørgsmål.

(i) Bestem egenværdierne for A.

Svaret skal gives som tal adskilt af komma. Hvis egenværdierne er $\,1\,$, $\,-\,1\,$, og $\,2\,$, skal svaret gives som $_1$, $_{-\,1}$, $_2$

Hvis $\,1\,$ er egenværdi med multiplicitet $\,2\,$, og den tredje egenværdi er -4 skal svaret gives som -4 , 1 , 1

altså gentagelse svarende til multiplicitet. Rækkefølgen betyder ikke noget.

Your Answer: 1,2,-2

Comment: Egenværdierne er -2, 1 og 2.

Sorter de fundne egenværdier efter størrelse, og lad D betegne den 3×3 diagonalmatrix, der har den mindste egenværdi som indgang D_{11} og den største som indgang D_{33} .

Bestem en 3×3 invertibel matrix P , således at $A = PDP^{-1}$.

Svaret skal gives i Maple syntax for en matrix, for eksempel indtastes matricen

CORRECT

som

Matrix([[1,2,3],[0,4,5],[0,0,6]])

Pas på, at du ikke bytter om på rækker og søjler. Brug preview funktionen til at se, at du har indtastet det, du mente at indtaste.

Your Answer: Matrix([[1, -2, 2], [0, 1, -1], [0, 0, 1]])

Et muligt korrekt svar er

Comment: P

$$P = \begin{pmatrix} 1 & -2 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

Der er mange andre korrekte svar.

$$A = \left(\begin{array}{cccc} a+1 & -1 & -1 \\ -1-a & a & 1 \\ -1 & 0 & 1 \end{array}\right)$$

Her er \mathcal{Q} et vilkårligt reelt tal. Besvar følgende to spørgsmål.

(a) Beregn determinanten af A, $\det A$.

Svaret skal givet i Maple syntax. Et udtryk som $2a-4\,$ indtastes som

og et udtryk som $2a^2 - 3a + 7$ indtastes som $2*a^2 - 3*a + 7$

Your Answer: a^2-a

Comment: Determinanten er lig med $a^2 - a$.

(b) Bestem den eller de værdier af \mathcal{Q} , for hvilke matricen A *ikke* er invertibel (*ikke* er regulær).

Svaret skal gives i Maple syntax. Hvis svaret er for eksempel a=4, skal tallet indtastes. Hvis svaret er for eksempel a=4 og a=-2, skal de to tal indtastes, separeret af et komma, som i

4,-2

Rækkefølgen betyder ikke noget.

Your Answer: 0,1

Comment:

A er ikke invertibel for værdierne

a = 0 og a = 1

Der er givet et lineært ligningssystem bestående af to ligninger med fire ubekendte.

$$-x_1 + x_2 - 2x_3 - x_4 = 0$$

$$-x_1 + x_2 - 2 x_3 + x_4 = 6$$

Besvar følgende to spørgsmål.

(i) Bestem en l\u00edssning til dette inhomogene ligningssystem. Svaret skal gives i Maple syntax, som en vektor, hvor alle indgange er tal. En vektor

indtastes som
Vector([1,2,3])

Your Answer: Vector([-3,0,0,3])

Et korrekt svar er

Comment:

3
2
-2
3

Der kan være mange andre korrekte svar.

(ii) Bestem den fuldstændige løsning til det tilsvarende *homogene* ligningssystem. Svaret skal gives på parametriseret vektorform.

Hvis svaret for eksempel er $c_1 a + c_2 b$, skal de to vektorer indtastes i Maple syntax, adskilt af et komma. For eksempel

Koefficienterne c_1 og c_2 skal ikke indtastes. Hvis den eneste løsning er nulvektoren, skal en nulvektor med det rigtige antal komponenter indtastes som svar.

Your Answer: Vector([1,1,0,0]), Vector([-2,0,1,0])

Et korrekt svar er alle linearkombinationer af vektorerne i mængden

Comment:
$$\begin{bmatrix} \begin{pmatrix} -2 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Der kan være mange andre korrekte svar.