Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

INF/UFG - LFA 2021/1 - H. Longo

Roteiro

Equivalência entre DFA's e NFA's (169 - 197 de 198)

Equivalência entre DFA's e NFA's

- Existe uma linguagem aceita por um NFA e que não é aceita por nenhum DFA?
 - Nao! Todo DFA é um NFA.
 - NFA é uma generalização do conceito de DFA.
- ▶ Dado um NFA qualquer, pode-se construir um DFA equivalente:
 - ▶ DFA que aceita a mesma linguagem que o NFA.

Equivalência entre DFA's e NFA's (170 - 197 de 198)

Relação entre classes de autômatos finitos

▶ Dado um NFA qualquer, pode-se construir um DFA equivalente:

INF/UFG - LFA 2021/1 - H. Longo

Fecho &

Definição 1.59

▶ O **Fecho** ε de um estado s_i , $\mathcal{F}_{\varepsilon}(s_i)$, é definido recursivamente como:

Base: $s_i \in \mathcal{F}_{\varepsilon}(s_i)$.

Recursão: Seja $s_i \in \mathcal{F}_{\varepsilon}(s_i)$. Se $s_k \in \delta(s_i, \varepsilon)$, então $s_k \in \mathcal{F}_{\varepsilon}(s_i)$.

Fecho: $s_i \in \mathcal{F}_{\varepsilon}(s_i)$ somente se pode ser obtido a partir de s_i com a aplicação

da recursão um número finito de vezes.

$$\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_2\}$$

$$\mathcal{F}_{\varepsilon}(s_1) = \{s_1\}$$

$$\mathcal{F}_{\varepsilon}(s_2) = \{s_0, s_2\}$$

INF/UFG - LFA 2021/1 - H. Longo

Função de transição na cadeia

- ightharpoonup A função δ de transição de estados em DFA's e NFA's "processa" os símbolos da cadeia de entrada.
- ightharpoonup A função au, em um NFA-arepsilon, relaciona as transições ao processamento da cadeia de entrada.
 - $ightharpoonup au(s_i,a)$: conjunto de estados alcançáveis, a partir de s_i , pelo processamento do símbolo a.
- Construção de $\tau(s_i, a)$ envolve três subconjuntos:
 - 1. estados alcançáveis, a partir de s_i , sem processar a;
 - 2. estados alcançáveis, a partir dos estados construídos no passo 1, ao processar a;
 - 3. estados alcançáveis, a partir dos estados construídos no passo 2, com transições vazias.

Equivalência entre DFA's e NFA's (172 - 197 de 198) INF/UFG - LFA 2021/1 - H. Longo Equivalência entre DFA's e NFA's (173 - 197 de 198

Função de transição na cadeia

Caminho	Símbolo	
s_{i_1}, s_{i_2}	a	
$s_{i_1}, s_{i_2}, s_{i_3}$	а	
S_{i_1} , S_{i_4}	ε	
$s_{i_1}, s_{i_4}, s_{i_5}$	a	
$s_{i_1}, s_{i_4}, s_{i_5}, s_{i_6}$	a	

- $\tau(s_{i_1}, a) = \{s_{i_2}, s_{i_3}, s_{i_5}, s_{i_6}\}.$
 - ightharpoonup O estado s_{i_1} não faz parte do conjunto porque a transição a partir de s_{i_1} não processa o símbolo a.

Função de transição na cadeia

Definição 1.60

A Função τ de Transição na Cadeia de um NFA- ε $N=\langle \Sigma, S, s_0, \delta, F \rangle$ é uma função de $S \times \Sigma$ em $\mathcal{P}(S)$, definida por:

$$\tau(s_i, a) = \bigcup_{s_j \in \mathcal{F}_{\varepsilon}(s_i)} \mathcal{F}_{\varepsilon}(\delta(s_j, a)).$$

- A função τ tem a mesma forma da função δ .
- A função τ é idêntica à função δ de um NFA sem transições ε .

Função de transição na cadeia

Exemplo 1.61

▶ NFA- ε N, tal que $\mathcal{L}(N) = a^+c^*b^*$:

	a	b	c	ε
s_0	$\{s_0, s_1, s_2\}$	Ø	Ø	Ø
s_1	Ø	$\{s_1\}$	Ø	Ø
s_2	$ \begin{cases} s_0, s_1, s_2 \\ \emptyset \\ \emptyset \end{cases} $	Ø	$\{s_2\}$	$\{s_1\}$

	a	b	c
s_0	$\{s_0, s_1, s_2\}$	Ø	Ø
s_1	Ø	$\{s_1\}$	Ø
s_2	$ \begin{cases} s_0, s_1, s_2 \\ \emptyset \\ \emptyset \end{cases} $	$\{s_1\}$	$\{s_1, s_2\}$

INF/UFG - LFA 2021/1 - H. Longo

Equivalência entre DFA's e NFA's (176 - 197 de 198)

Remoção de não determinismo

- A aceitação de uma cadeia por uma máquina não determinística depende da existência de um processamento que termina em um estado final.
- ightharpoonup Em um NFA- ε podem existir vários caminhos que representam o processamento de uma cadeia.
 - Em um DFA este caminho é único.
- Para remover o não determinismo, o DFA resultante deve simular a exploração de todos os possíveis caminhos em um NFA-ε.

INF/UFG - LFA 2021/1 - H. Longo

Equivalência entre DFA's e NFA's (177 - 197 de 198

Remoção de não determinismo

13 retorna (M);

Algoritmo 5: Constrói DFA equivalente a um NFA- ε

```
Entrada: NFA-\varepsilon N = \langle \Sigma, S, s_0, \delta, F \rangle e função \tau. Saída: DFA M = \langle \Sigma, S', s'_0, \delta', F' \rangle.

FIM \leftarrow F;

SY \leftarrow \mathcal{F}_{\varepsilon}(s_0);

repita

SE \exists X \in S' \ e \ a \in \Sigma \ e \ a \ arco \ rotulado \ a \ saindo \ de \ X \ então

SE \forall Y \leftarrow \bigcup_{s_i \in X'} \tau(s_i, a);

SE \forall Y \in S' \ então \ S' \leftarrow S' \cup \{Y\};

Adicione um arco de X a Y rotulado de X;

Senão

FIM \leftarrow Y;

até (FIM = V);

So \leftarrow \mathcal{F}_{\varepsilon}(s_0);

FY \leftarrow \{X \in S' \mid X \ contém \ um \ elemento \ s_i \in F\};
```

.

Remoção de não determinismo

- \blacktriangleright Vértices do DFA são conjuntos de vértices do NFA- ϵ .
 - ► S' é o conjunto de vértices do DFA.
 - Vértice inicial do DFA é o Fecho ε do vértice inicial do NFA- ε .
- ➤ Y é o conjunto de todos os estados alcançáveis pelo processamento de um símbolo a partir de qualquer estado no conjunto X.

Remoção de não determinismo

- Algoritmo adiciona arcos ao DFA repetidas vezes.
 - À medida que os arcos são inseridos, novos vértices podem ser criados e inseridos no diagrama de estados do DFA.
 - Procedimento termina quando todos os vértices são determinísticos.
- No máximo $|\mathcal{P}(S)|$ vértices são construídos, já que cada vértice é um subconjunto
 - ▶ O algoritmo sempre termina, um vez que $|\mathcal{P}(S)||\Sigma|$ é um limite superior para o número de iterações.

Equivalência entre DFA's e NFA's (180 - 197 de 198)

Remoção de não determinismo

Exemplo 1.62

τ		b	c
s ₀	$\{s_0, s_1, s_2\}$	Ø	Ø
s_1	Ø	$\{s_1\}$	Ø
s_2	$\{s_0, s_1, s_2\}\$ \emptyset	$\{s_1\}$	$\{s_1, s_2\}$

 $\mathcal{F}_{\varepsilon}(s_o) = \{s_0\}$

► Elementos do DFA:

- 1. Arco rotulado de a do vértice $\{s_0\}$ para o $\{s_0, s_1, s_2\}$.
 - Transição a partir de s_0 lendo a termina em s_0 , s_1 ou s_2 .
- 2. Vértice $\{s_0\}$ tem de ter arcos rotulados b e c saindo do mesmo.
- 3. Um arco saindo do vértice $\{s_0, s_1, s_2\}$ termina no vértice com todos os estados alcançáveis (pelo processamento de um símbolo a partir dos estados s_0 , s_1 ou s_2) no NFA- ε .

INF/UFG - LFA 2021/1 - H. Longo

INF/UFG - LFA 2021/1 - H. Longo

Equivalência entre DFA's e NFA's (181 - 197 de 198)

Remoção de não determinismo

Exemplo 1.62

Remoção de não determinismo

Exemplo 1.62

 $\mathcal{F}_{\varepsilon}(s_o) = \{s_0\}$

Equivalência entre DFA's e NFA's

Teorema 1.63

▶ Seja $N = \langle \Sigma, S, s_0, \delta, F \rangle$ um NFA- ε e $M = \langle \Sigma, S', s'_0, \delta', F' \rangle$ o DFA obtido a partir de N com o algoritmo 5. Seja, ainda, $w \in \Sigma^*$ e $S_w = \{s_{w_1}, s_{w_2}, \ldots, s_{w_j}\}$ o conjunto de vértices alcançados, no NFA- ε N, ao término do processamento de w. Portanto, o processamento de w no DFA M termina no estado S_w .

INF/UFG - LFA 2021/1 - H. Longo

Equivalência entre DFA's e NFA's (184 - 197 de 198)

Equivalência entre DFA's e NFA's

Demonstração.

► Indução no comprimento da cadeia w:

Base: Se |w| = 0, o processamento em N termina em um vértice em $\mathcal{F}_{\varepsilon}(s_0)$. Este é o vértice inicial em M.

INF/UFG - LFA 2021/1 - H. Longo

Equivalência entre DFA's e NFA's (185 - 197 de 198

Equivalência entre DFA's e NFA's

Demonstração.

► Indução no comprimento da cadeia w:

Hipótese: Suponha que o resultado é válido para todas as cadeias de comprimento $\it n$.

Equivalência entre DFA's e NFA's

Demonstração.

- ► Indução no comprimento da cadeia w:
- Passo:
- ightharpoonup Seja w = ua, tal que |w| = n + 1.
 - Seja $S_u = \{s_{u_1}, s_{u_2}, \dots, s_{u_k}\}$ o conjunto de vértices finais obtido pelo processamento da cadeia u.
 - Por hipótese de indução, o processamento de u em M termina no vértice S_u .

Equivalência entre DFA's e NFA's

Demonstração.

► Indução no comprimento da cadeia w:

- Passo: ightharpoonup Processamento de ua em M termina em estados (conjunto S_w) que podem ser alcançados, a partir de um estado em S_u , pelo processamento de a.
 - $ightharpoonup S_w$ é definido por $S_w = \bigcup_{i=1}^{\kappa} \tau(s_{u_i}, a)$.
 - Como S_w é o estado alcançado a partir de S_w , pelo processamento de a, no DFA M, a prova fica completa.

INF/UFG - LFA 2021/1 - H. Longo

Equivalência entre DFA's e NFA's (188 - 197 de 198)

Equivalência entre DFA's e NFA's

Corolário 1.64

• Se $M = \langle \Sigma, S', s'_0, \delta', F' \rangle$ é o DFA obtido a partir do NFA- ε $N = \langle \Sigma, S, s_0, \delta, F \rangle$ com o Algoritmo 5, então M e N são equivalentes.

INF/UFG - LFA 2021/1 - H. Longo

Equivalência entre DFA's e NFA's (189 - 197 de 198)

Remoção de não determinismo

Exemplo 1.65

$\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}$		
τ	а	b
s_0	$\{s_0, s_1\}$	Ø
s_1	Ø	$\{s_1, s_2$
s_2	Ø	Ø

Remoção de não determinismo

Exemplo 1.66 ($\mathcal{L}(N) = a^* \cup a(ba)^*$)

▶ NFA- ε original:

$$\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_1, s_3\} \qquad \begin{array}{c|ccc} \tau & a & b \\ \hline s_0 & \{s_2, s_3\} & \emptyset \\ s_1 & \{s_2\} & \emptyset \\ s_2 & \emptyset & \{s_1\} \\ s_3 & \{s_3\} & \emptyset \end{array}$$

Remoção de não determinismo

Exemplo 1.66 ($\mathcal{L}(N) = a^* \cup a(ba)^*$)

► DFA equivalente:

Equivalência entre DFA's e NFA's (192 - 197 de 198)

Equivalência entre DFA's e NFA's (194 - 197 de 198)

Remoção de não determinismo

Exemplo 1.67

$$\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_2\} \qquad \frac{\tau \quad a \quad b}{s_0 \quad \{s_0, s_2\} \quad \{s_1\}}$$

$$s_1 \quad \{s_1, s_2\} \quad \{s_2\}$$

$$s_2 \quad \{s_0, s_2\} \quad \varnothing$$

INF/UFG - LFA 2021/1 - H. Longo

Equivalência entre DFA's e NFA's (193 – 197 de 198)

Remoção de não determinismo

Remoção de não determinismo

INF/UFG - LFA 2021/1 - H. Longo

Remoção de não determinismo

INF/UFG - LFA 2021/1 - H. Longo

Equivalência entre DFA's e NFA's (196 - 197 de 198)

Remoção de não determinismo

Exemplo 1.67

INF/UFG - LFA 2021/1 - H. Longo

Equivalência entre DFA's e NFA's (197 – 197 de 198)

Livros texto

R. P. Grimaldi

Discrete and Combinatorial Mathematics - An Applied Introduction. Addison Wesley, 1994.

How To Prove It – A Structured Approach.

Cambridge University Press, 1996.

J. E. Hopcroft; J. Ullman. Introdução Ā Teoria de Autômatos, Linguagens e Computação. Ed. Campus.

Languages and Machines – An Introduction to the Theory of Computer Science.

Addison Wesley Longman, Inc. 1998.

Theory of Finite Automata – With an Introduction to Formal Languages.

H. R. Lewis; C. H. Papadimitriou Elementos de Teoria da Computação.

Introduction to the Theory of Computation.
PWS Publishing Company, 1997.

Bookman, 2000.

INF/UFG - LFA 2021/1 - H. Longo Bibliografia (198 - 198 de 198)