Lending Club Mini Project with Class and Kaggle Influence:) We used a different data set that included data from 2007 to 2017.

We used the Mini Project outline in Class along with a Kaggle resource and data set to complete this mini project.

```
In [66]: %matplotlib inline
          import os
          import pandas as pd
          from matplotlib import pyplot as plt
          import numpy as np
          import datetime
          import seaborn as sns
          import time
          import sklearn
          from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
          from sklearn.linear model import LogisticRegression
          from sklearn import metrics
          import joblib # Updated import
          from xgboost import XGBClassifier
In [67]:
         import os
          desktop path = os.path.expanduser("~/Desktop") # Assuming you're on a macOS of
          file name = "accepted 2007 to 2017.csv"
          file path = os.path.join(desktop path, file name)
In [72]: ROOT PATH = '.../'
          accepted = pd.read csv(ROOT PATH+'accepted 2007 to 2017.csv')
         /var/folders/n5/110z0lr57hdf108j5wcd1gcc0000gn/T/ipykernel 85555/1156468918.p
         y:2: DtypeWarning: Columns (0,18,48,58,117,128,129,130,133,134,135,138,144,14
         5,146) have mixed types. Specify dtype option on import or set low_memory=Fals
           accepted = pd.read csv(ROOT PATH+'accepted 2007 to 2017.csv')
In [73]: accepted.shape
Out[73]: (1646801, 150)
In [102... summary stats = accepted.describe(include='all')
          print(summary stats)
```

	loan_amnt	funded amnt	inv	term	int rate	instal	llment	grade
count	1,645,442		_	1645442	1,645,442		45,442	1645442
unique	NaN		NaN	2	NaN		NaN	7
top	NaN		NaN	36	NaN		NaN	С
freq	NaN		NaN	1181576	NaN		NaN	490304
mean	14,729	14	,698	NaN	13		439	NaN
min	500		0	NaN	5		5	NaN
25%	8,000		,000	NaN	10		252	NaN
50% 75%	12,600 20,000		,500 ,000	NaN NaN	13 16		377 580	NaN NaN
max	40,000		,000	Nan	31		1,720	NaN
std	8,801		,803	Nan	5		259	NaN
bca	0,001	Ö	,003	Itali	3		233	11011
	emp_title	emp_length h	ome_c	wnership	annual_ind		pct_tl_	_nvr_dlq
count	1645442	1,645,442		1645442	1,645,442	2	1,	,575,033
unique	373062	NaN		3	Nal	1		NaN
top	other	NaN		MORTGAGE	Nal	1		NaN
freq	101787	NaN		814342	Nal	· · · ·		NaN
mean	NaN	6		NaN	76,725			94
min	NaN	0		NaN	600			0
25%	NaN	3		NaN	46,176			91
50%	NaN	7		NaN	65,000			98
75%	NaN	10		NaN	92,000			100
max	NaN	10		NaN	1,000,000			100
std	NaN	4		NaN	50,938	3		9
		. 55	,					
~~·		_gt_75	c_ban				\	
count	1,3/	78,586		1,644,082		75,186	\	
unique top		NaN NaN		Nal Nal		NaN NaN		
freq		NaN		Nan		Nan		
mean		46		Nar		75,634		
min		0		(0		
25%		12		(50,327		
50%		50		(.3,577		
75%		75		(3,851		
max		100		12		9,999		
std		36		(7,635		
						,		
	total_bal_	_ex_mort tot	al_bc	_limit to	otal_il_high	_cred:	it_limit	5
count	1,	,595 , 431	1,5	95 , 431		1,	,575,186	5 \
unique		NaN		NaN			Nal	1
top		NaN		NaN			Nal	1
freq		NaN		NaN			Nal	
mean		50,746		21,939			42,989	
min		0		0			(
25%		21,416		7,900			15,000	
50%		38,029		15,400			32,315	
75%	_	63,841		28,600		_	57,700	
max	3,	408,095	1,1	.05,500		1,	,736,064	
std		48,464		21,725			43,844	1
	issue_yr	early cr yr	veri	fied				
count	1,645,442	1,645,417		5442				
unique	NaN	NaN		2				
top	NaN	NaN	Ŧ	alse				
freq	NaN	NaN		3284				
mean	2,015	1,999		NaN				
min	2,007	1,933		NaN				
25%	2,014	1,995		NaN				
	•	•						

50%

2,015

2,000

```
2,016
                                  2,004
                                              NaN
         75%
                     2,017
                                  2,014
                                              NaN
         max
                                      8
         std
                                              NaN
         [11 rows x 74 columns]
In [107... mean value = accepted['loan amnt'].mean()
         median_value = accepted['loan_amnt'].median()
         std deviation = accepted['loan amnt'].std()
         print(f"Mean: {mean value}")
         print(f"Median: {median value}")
         print(f"Standard Deviation: {std deviation}")
         Mean: 14728.875508829846
         Median: 12600.0
         Standard Deviation: 8800.74068683586
In [109... mean value = accepted['funded amnt inv'].mean()
         median value = accepted['funded amnt inv'].median()
          std_deviation = accepted['funded_amnt_inv'].std()
         print(f"Mean: {mean value}")
          print(f"Median: {median value}")
         print(f"Standard Deviation: {std deviation}")
         Mean: 14698.00438462712
         Median: 12500.0
         Standard Deviation: 8802.944876380638
In [111... mean value = df['int rate'].mean()
         median value = df['int rate'].median()
          std deviation = df['int rate'].std()
         print(f"Mean: {mean value}")
         print(f"Median: {median value}")
         print(f"Standard Deviation: {std deviation}")
         Mean: 13.218571489296068
         Median: 12.74
         Standard Deviation: 4.7042939790216876
In [112... mean value = df['installment'].mean()
         median value = df['installment'].median()
          std deviation = df['installment'].std()
         print(f"Mean: {mean value}")
         print(f"Median: {median value}")
         print(f"Standard Deviation: {std deviation}")
         Mean: 439.4122187629419
         Median: 377.04
         Standard Deviation: 259.22557031052946
```

Here I looked at the data size, shape and list out the summary statistics of the data. What the accepted shape tells me is that the data set includes ~1.66M observations with 150 different features. I am suspecting that the data set will have missing data. I will try to see what data is missing. Additionally, I also know from a Python coding message from earlier that I have different types of data. DtypeWarning: Columns

(0,18,48,58,117,128,129,130,133,134,135,138,144,145,146) have mixed types. Specify dtype option on import or set low_memory=False. interactivity=interactivity, compiler=compiler, result=result)

In [74]:	accepted							
Out[74]:		id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rat

:		id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rat
	0	38098114	NaN	15000.0	15000.0	15000.0	60 months	12.3
	1	36805548	NaN	10400.0	10400.0	10400.0	36 months	6.9
	2	37842129	NaN	21425.0	21425.0	21425.0	60 months	15.5°
	3	37612354	NaN	12800.0	12800.0	12800.0	60 months	17.1
	4	37662224	NaN	7650.0	7650.0	7650.0	36 months	13.6
	•••						•••	
	1646796	66141895	NaN	14400.0	14400.0	14400.0	60 months	13.1
	1646797	65673209	NaN	34050.0	34050.0	34050.0	36 months	15.4
	1646798	65744272	NaN	5000.0	5000.0	5000.0	36 months	11.2
	1646799	Total amount funded in policy code 1: 2087217200	NaN	NaN	NaN	NaN	NaN	Nal
	1646800	Total amount funded in policy code 2: 662815446	NaN	NaN	NaN	NaN	NaN	Nal

1646801 rows × 150 columns

```
In [75]: missing_data = accepted.isnull().sum().sort_values(ascending= False)
    drop_columns = list(missing_data[missing_data > accepted.shape[0] *0.1].index)
    accepted = accepted.drop(drop_columns, axis = 1)
    missing_data
```

```
1646801
         member id
Out[75]:
         orig projected additional accrued interest
                                                          1641979
         hardship end date
                                                          1641023
         hardship amount
                                                          1641023
         hardship type
                                                          1641023
         revol bal
                                                               23
         fico range high
                                                               23
         fico range low
                                                               23
                                                               23
         addr state
         id
                                                                 0
         Length: 150, dtype: int64
```

The histogram plot below shows that many loan portfolios have changed since 2012. The code helps transfomr the issue date of the loan so that I can use this data for more analysis.

```
In [76]:
         accepted.term = accepted.term.apply(str)
         accepted['term'] = accepted['term'].apply(lambda x: x.strip().split(" ")[0])
         accepted.issue d = pd.to datetime(accepted.issue d)
         accepted['issue yr'] = accepted.issue d.dt.year
         accepted['issue yr'].plot.hist()
         /var/folders/n5/110z01r57hdf108j5wcd1gcc0000gn/T/ipykernel 85555/758379839.py:
         4: UserWarning: Could not infer format, so each element will be parsed individ
         ually, falling back to `dateutil`. To ensure parsing is consistent and as-expe
         cted, please specify a format.
           accepted.issue d = pd.to datetime(accepted.issue d)
         <AxesSubplot:ylabel='Frequency'>
```


From the data set, my plan is to not use several columns because they show a linear combintion with others and/or do not contain enough information.

I would also like to transform a few variables into the date type for easier analysis later.

```
accepted.home ownership = accepted.home ownership.replace(['ANY', 'NONE', 'OTHER
In [78]:
         accepted['issue yr'] = accepted.issue d.dt.year
         accepted['earliest cr line'] = pd.to datetime(accepted.earliest cr line)
         accepted['early cr yr'] = accepted.earliest cr line.dt.year
         median_year = accepted.emp_length.value_counts(ascending = False).index[0]
         accepted.loc[:, 'emp length'] = accepted.loc[:, 'emp length'].fillna(median year
         accepted.emp length = accepted.emp length.replace(['10+ years'], '10 years')
         accepted.emp length = accepted.emp length.replace(['< 1 year'], '0 years')</pre>
         accepted.emp length = accepted.emp length.apply(lambda x: int(str(x).split(' '
         print(accepted.emp length.value counts())
         accepted.loc[:, 'emp title'] = accepted.loc[:, 'emp title'].fillna('other')
         accepted.emp title = accepted.emp title.apply(lambda x: x.lower())
         accepted.emp title = accepted.emp title.replace(['lpn','registered nurse', 'rn
         /var/folders/n5/l10z0lr57hdf108j5wcd1gcc0000gn/T/ipykernel 85555/1196701627.p
         y:4: UserWarning: Could not infer format, so each element will be parsed indiv
         idually, falling back to `dateutil`. To ensure parsing is consistent and as-ex
         pected, please specify a format.
           accepted['earliest cr line'] = pd.to datetime(accepted.earliest cr line)
         emp length
         10
               644759
         2
               148367
         0
               133332
         3
               130871
               107680
         1
         5
               101848
         4
                98103
         6
                75568
                72664
         7
                70395
                63214
         9
         Name: count, dtype: int64
```

Next, we want to explore changing rates through time. Each loan normally receives a grade from G through A. Starting in 2017, grade F and G were no longer used. These codes can also help plot average interest rates over time.

```
In [79]: rate = pd.pivot_table(accepted[accepted['term'] == '36'],index=["grade","issue_
    rate.shape # 77, 1
    rate = rate.reset_index()
```

```
In [80]: g = sns.FacetGrid(rate, col = 'grade', col_wrap = 4)
    g = g.map(sns.pointplot, "issue_yr", "int_rate")

labels = np.arange(2007, 2018, 1)
    labels = [str(i) for i in labels]
    g = g.set_xticklabels(labels, rotation=70)
    g = g.set_ylabels("3yr interest rate")

plt.subplots_adjust(top=0.9)
    g.fig.suptitle('Interest Rate over time and grade')

/opt/anaconda3/lib/python3.9/site-packages/seaborn/axisgrid.py:712: UserWarnin g: Using the pointplot function without specifying `order` is likely to produc e an incorrect plot.
    warnings.warn(warning)
```

Out[80]:

Text(0.5, 0.98, 'Interest Rate over time and grade')

The graphs above show that the interest rates for D,E,F,and G start increasing significantly after 2014. However, there are very few data points from 2007 to 2014, so the next thing we must do is look to see if the increase is due to an average rate and not due to a small number of observations.

```
In [81]: # Number of observations for each grade
    # to verify the variance of rates
    rate_count = pd.pivot_table(accepted[accepted['term'] == '36'],index=["grade",'
    rate_count = rate_count.unstack('grade')
    rate_count
```

Out [81]: int_rate

grade	Α	В	С	D	E	F	G
issue_yr							
2007.0	78	98	141	99	100	52	35
2008.0	318	594	580	419	285	111	86
2009.0	1203	1445	1348	817	308	105	55
2010.0	2567	2805	2070	1253	336	91	34
2011.0	5579	4722	2203	1261	272	54	10
2012.0	10753	16805	9902	5088	795	103	24
2013.0	17057	40313	24693	14505	3231	608	15
2014.0	35333	53460	44042	20510	7066	1980	179
2015.0	70132	91783	77457	32740	9450	1363	248
2016.0	66862	114783	92317	36707	9932	2364	530
2017.0	52191	81609	69093	24905	7884	1386	674

What this tells us is that it is resulting from the exponential increase in loans since 2007.

Why are people borrowing? Next, we will look at why (or the purpose) loans are being taken out. As you can see from the data below, the purpose of borrorwing includes debt consolidation, credit card debt, home improvement loans, major purchases, etc.). Debt consolidation was the leading reason for loans and education was the last on the list.

```
In [82]: accepted.purpose.value counts().sort values(ascending=False)
Out[82]: purpose
          debt consolidation
                                 955783
          credit_card
                                  363962
          home improvement
                                 109031
          other
                                  93576
          major_purchase
                                  35596
          medical
                                   18901
          small business
                                   18613
                                   17641
          car
          moving
                                   11388
          vacation
                                   11152
          house
                                    7268
          wedding
                                    2350
          renewable energy
                                    1094
          educational
                                     423
          Name: count, dtype: int64
In [83]: incomeVerified = accepted[accepted['verification status'] != 'Not Verified'].du
          incomeVerified = incomeVerified[['grade', 'annual inc']]
          quantile low = incomeVerified['annual inc'].min()
          quantile high = incomeVerified['annual inc'].quantile(0.95)
          filtered = incomeVerified[(incomeVerified['annual inc'] > quantile low) & (incomeVerified['annual inc'] > quantile low)
```

```
In [89]: grade_list = filtered['grade'].unique()
  plt.figure(figsize=(10, 10))
  for i in range(len(grade_list)):
        data = filtered[filtered['grade'] == grade_list[i]]['annual_inc'].values
        sns.histplot(data, bins=30)

plt.ylim(ymax=0.00002)
```

Out[89]: (0.0, 2e-05)


```
In [94]: grade_list = filtered['grade'].unique()
  plt.figure(figsize=(10,10))
  for i in range(len(grade_list)):
        data = filtered[filtered['grade'] == grade_list[i]]['annual_inc'].values
        sns.distplot(data, bins = 30)

plt.ylim(ymax = 0.00002)
```

```
/var/folders/n5/110z0lr57hdf108j5wcd1gcc0000gn/T/ipykernel 85555/2724925822.p
y:5: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
 sns.distplot(data, bins = 30)
/var/folders/n5/110z0lr57hdf108j5wcd1gcc0000gn/T/ipykernel 85555/2724925822.p
y:5: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a quide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
 sns.distplot(data, bins = 30)
/var/folders/n5/110z0lr57hdf108j5wcd1gcc0000gn/T/ipykernel 85555/2724925822.p
y:5: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(data, bins = 30)
/var/folders/n5/110z0lr57hdf108j5wcd1gcc0000gn/T/ipykernel 85555/2724925822.p
y:5: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(data, bins = 30)
/var/folders/n5/110z01r57hdf108j5wcd1qcc0000qn/T/ipykernel 85555/2724925822.p
y:5: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
 sns.distplot(data, bins = 30)
```

/var/folders/n5/110z0lr57hdf108j5wcd1qcc0000qn/T/ipykernel 85555/2724925822.p y:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(data, bins = 30)

/var/folders/n5/110z01r57hdf108j5wcd1gcc0000gn/T/ipykernel 85555/2724925822.p y:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(data, bins = 30)

Out[94]: (0.0, 2e-05)

Here we looked at loans where income had been verified. The data variable verification status included verified, source verified and not verified. The graph above shows that there are differences in income levels. Incomes greater thand

100khaveahigherdensitythandthoselessthan 100k. This graph also insinuates that the each grade has a different median income. The next line of code will dive deeper into this and see what the median income is for each grade.

```
In [95]: income_median = pd.pivot_table(filtered, values = 'annual_inc', index = 'grade
income_median
```

Out [95]: annual_inc

grade				
Α	75600.0			
В	65000.0			
С	62000.0			
D	60000.0			
E	60320.0			
F	62400.0			
G	65000.0			

Next, we would like to know more about what types of professionals are taking out loans. Becasue the data set is very large, this makes it difficult to build a reliable distribution of annual incomes. But we will do the following: -Filtering for loans where the reported income is less than 1 million USD -Filtering for loans where Debt-to-Income ratio is less than 100 percent. If it is greater -than or equal to 100, I wonder why we would have made such loans in the first place. I could have been more careful by capping dti value at 100. -Changing employment years into numeric -Filling unknown values for home-ownership as Rent - Standardizing the values of employment title (emp_title)

```
In [96]: leq1mil = accepted['annual_inc'] <= 1e6
   accepted = accepted[leq1mil]
   accepted = accepted[accepted.dti < 100.0]</pre>
```

Additionally, because people will most likely lie on their incomes when their income is low, we can filter out for data if:

Income is lower than 70,000buthas been verified by Lending Club Income is higher than 70,000 but lower than <math>120,000Income is higher than 120,000 but has been verified by Lending Club The choice of limit of 70,000and 120,000 is arbitrary to filter out loans where income levels seem unrealistic.

Out[98]:

	min	mean	median	max	count
emp_title					
other	3,000	53,822	48,000	920,000	69250
nurse	10,900	83,810	80,000	320,000	21692
teacher	9,000	74,160	75,000	367,500	16332
manager	10,000	84,635	82,000	1,000,000	16300
owner	5,000	92,850	85,000	1,000,000	9643
•••		•••	•••		
inspector	20,000	80,989	80,000	200,000	511
investigator	30,000	86,423	85,000	200,000	508
dental hygienist	22,600	76,496	75,000	150,000	506
sergeant	29,000	90,779	90,000	211,000	504
occupational therapist	30,000	85,929	85,000	220,000	500

145 rows × 5 columns

What is interesting about this data is the following: 1) The dataset does have a large diversity in the professions and income level of borrowers. Personally, what we found most interesting is that: a. A teacher and nurse, despite being regarded as respectable professions in some regions in the world, are the 2 most common professions on Lending Club. Their minimum salary is only around

12,000, which is lower than US' Poverty Level for individual. b. A police of ficer has a minimal policy of the p32,000 c. Many people with annual income higher than 400,000 and even1,000,000 still use Lending Club as a way to borrow cheaply. I can dive down into the purpose of the loans later, but that may not offer much benefit for data modeling. d. Some jobs traditionally associated with high income can have very low income levels, such as attorneys, directors, or engineers. All of these salaries were verified by Lending Club. It's likely that these salaries are missing information such as 0 or more in the salary.

```
accepted.boxplot(by = 'grade', column = 'fico range high')
In [99]:
         <AxesSubplot:title={'center':'fico range high'}, xlabel='grade'>
Out[99]:
```


Looking at FICO range and grade, the graph above we can see that income distribution accross loan grades is similar to the data we looked at prior, however grade A is showing as slightly higher in this box plot schematic. It would be interesting to show FICO score changes over time.

```
In [114... accepted.boxplot(by = 'term', column = 'fico_range_high')
Out[114]: <AxesSubplot:title={'center':'fico_range_high'}, xlabel='term'>
```


In [117... accepted.boxplot(by = 'loan_amnt', column = 'int_rate')
Out[117]: <AxesSubplot:title={'center':'int_rate'}, xlabel='loan_amnt'>

term

60

36

Boxplot grouped by loan_amnt int_rate

loan_amnt

In [118... accepted.boxplot(by = 'loan_amnt', column = 'fico_range_high')
Out[118]: <AxesSubplot:title={'center':'fico_range_high'}, xlabel='loan_amnt'>

Boxplot grouped by loan_amnt fico range high

loan_amnt

Out[100]: <AxesSubplot:xlabel='grade'>

If we assumed that Lending Club verifies a borrowers income only when it is high, this graph above shows that this is not true. The graph shows that the charge off rate changes almost linearly from grade A (the highest grade) through to grade G. The charge-off rate for grade F-G is approximately 25%.

In [119	accepted.loan_status.value_counts()					
Out[119]:	loan_status Current Fully Paid Charged Off Late (31-120 days) In Grace Period Late (16-30 days) Does not meet the credit policy. Status:Fully Paid Does not meet the credit policy. Status:Charged Off Default Name: count, dtype: int64	787907 646694 168043 23742 10461 5781 1983 761				
In []:	This completes the Mini project.					