Dans l'ensemble $\mathcal{M}_3(\mathbb{R})$ des matrices carrées d'ordre 3 à coefficients réels, on considère le sous-ensemble E des matrices M(a,b) définies par :

$$M(a,b) = \left(\begin{array}{ccc} b & a & b \\ a & b & b \\ b & b & a \end{array}\right).$$

Ainsi:

$$E = \{ M(a, b) \quad a, b \in \mathbb{R} \}.$$

On note $f_{a,b}$ l'endomorphisme de \mathbb{R}^3 représenté par la matrice M(a,b) dans la base canonique $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 .

1. Structure de E

- (a) Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- (b) Donner une base de E, ainsi que sa dimension.
- 2. Étude d'un cas particulier.

On pose A = M(1, 0).

- (a) Calculer A^2 . En déduire que A est une matrice inversible et exprimer A^{-1} en fonction de A.
- (b) Déterminer les valeurs propres de A.
- (c) Trouver une base de \mathbb{R}^3 dans laquelle la matrice de $f_{1,0}$ est :

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

3. Diagonalisation des éléments de E et application.

On considère les vecteurs de \mathbb{R}^3 suivants :

$$\vec{u} = (1, 1, 1), \quad \vec{v} = (1, -1, 0), \quad \vec{w} = (1, 1, -2).$$

- (a) Justifier que les matrices de l'ensemble E sont diagonalisables.
- (b) Montrer que $C = (\vec{u}, \vec{v}, \vec{w})$ est une base de \mathbb{R}^3 .
- (c) On note P la matrice de passage de la base \mathcal{B} à la base \mathcal{C} . Écrire P.
- (d) Déterminer P^{-1} .
- (e) Exprimer les vecteurs $f_{a,b}(\vec{u})$, $f_{a,b}(\vec{v})$, $f_{a,b}(\vec{w})$ en fonction de \vec{u} , \vec{v} , \vec{w} .
- (f) En déduire l'expression de la matrice $D_{a,b}$ de $f_{a,b}$ dans la base \mathcal{C} .
- (g) Justifier l'égalité :

$$P^{-1}M_{a,b}P = D_{a,b}.$$

- (h) Donner une condition nécessaire et suffisante portant sur a et b pour que $D_{a,b}$ soit inversible.
- (i) Cette condition étant réalisée, déterminer la matrice inverse de $D_{a,b}$.
- (j) Donner une condition nécessaire et suffisante portant sur a et b pour que $M_{a,b}$ soit inversible.