Der Linearzeit MST Algorithmus

Der schnellste Algorithmus für das MST/ MSF Problem

Max Springenberg

Proseminar: Randomisierte Algorithmen, TU Dortmund

MST in gewichteten Graphen

Definition MST

Ein Teilgraph T ist genau dann ein minimaler Spannbaum von G, wenn er ein Spannbaum in G ist und die Summe seiner Kantengewichte $\sum_{e \in E_T} w(e)$ minimal ist.

1

Definition MST

Ein Teilgraph T ist genau dann ein minimaler Spannbaum von G, wenn er ein Spannbaum in G ist und die Summe seiner Kantengewichte $\sum_{e \in E_T} w(e) \text{ minimal ist.}$

Bäume vs. Wälder

MSF

Ist ein Graph nicht zusammenhängend, so kann auch ein MSF den MST ersetzen. Der MSF ist ein Teilgraph aus disjunkten MSTs.

3

Borůvka Phasen

Ablauf

- 1. Kontraktierende Kanten markieren
- 2. Verbundene Komponenten bestimmen
- 3. Verbundene Komponenten durch einzelne Knoten ersetzen
- 4. Selbstschleifen entfernen

Was bedeutes das für den reduzierten Graphen?

 \Rightarrow Knoten werden auf maximal n/2, n = |V| reduziert!

4

1. Kontraktierende Kanten markieren

2. Verbundene Komponenten bestimmen

3. Verbundene Komponenten durch einzelne Knoten ersetzen

4. Selbstschleifen entfernen

F-schwere/ -leichte Kanten

Definition

Sei $P(e = \{u, v\})$ der Pfad, der die Knoten u, v im MSF verbindet (in Kanten)

Sei $w : E \to \mathbb{R}$, die Gewichtsfunktion von G Sei ferner definiert $w(E) = \{w(e_1), \dots, w(e_m)\}$

Eine Kante ist F-schwer, wenn gilt:

$$w(e) > w_F(e)$$

, wobei:

$$w_F(e = (u, v)) = \begin{cases} \infty, u \text{ und } v \text{ sind in verschiedenen Komponenten} \\ \max\{w(P(e))\}, sonst \end{cases}$$

9

Randomiserte Stichprobem

Quelle: https://melbournechapter.net/explore/coin-flip-clipart/

Wirf eine Münze!

Kanten 'würfeln'

MST vs. MSF

$MSF_{G(0,5)}$:

Erkenntnis

Eliminierung von unnützen Kanten

Idee

- 1. Nutze Borůvka-Phasen, um die Anzahl von Knoten zu reduzieren
- 2. Nutze Stichproben, um die Anzahl von Kanten zu reduzieren
- 3. Entferne alle F-schweren Kanten
- 4. Rekursion

Teaser

- Wie fassen wir die Erkenntnis geschickt in einen Algorithmus?
- Wie erhalten wir trotz rekursiven Aufrufen eine erwartete lineare Laufzeit?