

PUCMM

Maestría en Economía Aplicada

Economía Matemática I

Septiembre - Diciembre, 2017

Introducción y Preliminares

MEA-611-T Economía Matemática I

- Cuatrimestre: Septiembre Diciembre 2017
- Facilitador: Oscar Iván Pascual
- Contactos:
 - M. 829.855.6631
 - Correos: <u>o.ivan.pascual@gmail.com</u> /<u>o.pascual@bancentral.gov.do</u>
- Evaluación:

Actividad	Valor
Evaluación(es) parcial(es)	40%
Ejercicios prácticos	30%
Evaluación final	30%
Total	100%

Reglas de juego

MEA-611-T Economía Matemática I

- Prácticas no entregables (salvo excepciones)
- 1 ó 2 pruebines sorpresa
- Carpeta compartida (Dropbox/Google)
- Móviles en silencio/vibrador
- Llamadas en el pasillo
- · Cena de fin de cuatrimestre

Economía Estática vs. Dinámica

Economía Estática:

Análisis en un punto del tiempo

Asume la existencia de equilibrios

Se buscan valores

Economía Dinámica

Análisis a lo largo de un período de tiempo

Analiza las trayectorias y convergencia

Se buscan funciones

Contenido

- Economía Matemática I [«Estática»]:
 - Unidad I: Preliminares y Modelos Económicos
 - Unidad II: Matrices y Determinantes
 - Modelos de Ingreso Nacional
 - Modelos I/O de Leontief
 - Procesos (cadenas) de Markov
 - Unidad III: Aplicaciones del Cálculo Diferencial
 - Estática Comparativa
 - Unidad IV: Optimización no restringida*
 - Unidad V: Optimización restringida*
 - Unidad VI: Programación Lineal

+ ...Y luego:

Economía Matemática II [«Dinámica»]:

- Parte I: Preliminares
 - Estática vs. Dinámica
 - Integración y Aplicaciones
- Parte II: Ecuaciones Diferenciales y en Diferencias
 - Ecuaciones Diferenciales de ler Orden
 - Ecuaciones Diferenciales de Orden Superior
 - Ecuaciones en Diferencias de ler Orden
 - Ecuaciones en Diferencias de Orden Superior
 - Sistemas de Ecuaciones
- Parte III: Teoría del Control Óptimo

+ Bibliografía

- Chiang, Alpha C. y Kevin Wainwright (2006). **Métodos**fundamentales de Economía Matemática. Ed. McGraw Hill,

 Madrid.
- Lomelí, Héctor y Beatriz Rumbos (2003). **Métodos Dinámicos en Economía. Otra búsqueda del tiempo perdido.** Ed. Thomson.
- Toumanoff, Peter y Nourzad, Farrokh (1994). A Mathematical

 Approach to Economic Analysis. West Publishing Company
- Afonso, Oscar y Vasconcelos, Paulo (2015). Computational Economics: A Concise Introduction, Routledge.

Preliminares

¿Qué se supone sabemos?

- ■Álgebra
 - Funciones
 - Ecuaciones (sistemas)
 - Factorización
- Geometría Cartesiana (Analítica)
 - Gráficas
- Pensar

¿Qué se supone sabemos?

- **Resuelva para 'x':** $4^{(x^2y+y)} = 32$
- ■¿Qué forma <u>algebraica</u> tiene la solución del sistema? $\begin{cases} y = x^2 5x + 5 \\ y = 2x 7 \end{cases}$ ¿Y geométrica?
- Muestre que los ceros no triviales de $\zeta(s)$ tienen parte real igual a $\frac{1}{2}$; donde $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$

¿Qué se supone sabemos?

■ Halle la pendiente de la recta con intercepto en y = 7 y que pasa por (5, -3)

■ Halle la inversa de:
$$\begin{pmatrix} 5 & 2 & 1 \\ -1 & 0 & 5 \\ 2 & 1 & 1 \end{pmatrix}$$

■ Sean y = 2x + 3 y $z = y^2 - 1$; halle z(x = 2)

- Lenguaje matemático:
 - Riguroso
 - Simple[?]
 - General
- Críticas: el comportamiento humano no es, por lo general, cuantificable

- Los Clásicos
- Precursores:
 - Cournot (Oligopolio)
 - Walras, Jevons, Menger, Fisher (Marginalismo, Teoría del Equilibrio General)
 - Edgeworth (Función de Utilidad, Curvas de indiferencia...)
- Aportes en <u>la aplicación de conceptos</u> Matemáticos a problemas Económicos

- S. XX y Actualidad
 - Cálculo Diferencial e Integral
 - Estática Comparativa
 - Eficiencia en el sentido de Pareto
 - Modelos Lineales
 - Modelos Insumo-Producto

- S. XX y Actualidad
 - Optimización
 - Programación Lineal
 - Programación No Lineal
 - Control Óptimo
 - Análisis Funcional

- S. XX y Actualidad
 - Teoría de Juegos
 - Teoría de la firma
 - Economía Computacional
 - Agent-based Computational Economics
 - ■Econometría [...]

Modelos Económicos

* Modelos

«Abstracción de la realidad en un marco teórico-analítico con el fin de comprender/estudiar fenómenos de elevada complejidad»

- Modelos Económicos:
 - Matemáticos
 - No Matemáticos

- Los Modelos Matemáticos por lo general se expresan en una o varias ecuaciones
 - Si se buscan uno o varios equilibrios, las ecuaciones deben ser «resueltas»
 - Si el problema es de optimización, se hallan los puntos que cumplen con ciertas condiciones de optimalidad

Modelos Matemáticos

Análisis de Equilibrio:

Micro

$$Q_{d1} - Q_{s1} = 0$$

$$Q_{d1} = a_0 + a_1 P_1 + a_2 P_2$$

$$Q_{s1} = b_0 + b_1 P_1 + b_2 P_2$$

$$Q_{d2} - Q_{s2} = 0$$

$$Q_{d2} = \alpha_0 + \alpha_1 P_1 + \alpha_2 P_2$$

$$Q_{s2} = \beta_0 + \beta_1 P_1 + \beta_2 P_2$$

Macro

$$Y = C + I_0 + G$$

$$C = a + b(Y - T)$$

$$T = d + tY$$

$$G = gY$$

Estática Comparativa: Análisis del comportamiento de los agentes económicos ante cambios en las posiciones de equilibrio (parámetros, variables exógenas...)

■Estática Comparativa

	Mercado de bienes	Determinación del Ingreso	Comportamiento del Consumidor	Teoría de la Firma
Variables Endógenas	P, Q	Y, C	$\mathbf{X}_1,\mathbf{X}_2$	Q, L, X_n
Variables Exógenas	Y, P ^S , P ^C	I_0, G_0	$\mathrm{Y,P}_{1}/\mathrm{P}_{2}$	P, P _{Xn}
Condición de Equilibrio	$Q_d = Q_s$	Y = E	$\mathbf{UMg}_1 = \mathbf{Umg}_2$	IMg = Cmg
Cambios en el Equilibrio	ၞΥ, P ^S , P ^C	$\updownarrow ext{I}_0$, $ extbf{G}_0$	\uparrow Y, P_1/P_2	↑P, P _{Xn}
Predicción	<u>;</u> ?	ز ځ	ز ؟	? ?

- Estática Comparativa: Los resultados obtenidos usando esta herramienta pueden expresarse de tres formas, cada una con sus ventajas y desventajas:
 - Narrativa Económica
 - Gráficamente
 - Matemáticamente

Ejemplo:

Considere el modelo de mercado gobernado por las expresiones

$$Q_d = a - bP + cY$$
; con Y = Ingreso $Q_S = dP - ew$; con w = salarios $Q_d = Q_s$; a, b, c, d, e > 0

- Halle las <u>ecuaciones en forma reducida</u> para Q* y P*
- ¿Qué efectos sobre Q* y P* tendrán cambios en Y y w?

Ejemplo:

Considere el modelo de mercado gobernado por las expresiones

$$Q_d = a - bP + cY$$
; con Y = Ingreso $Q_S = dP - ew$; con w = salarios $Q_d = Q_s$; a, b, c, d, e > 0

(a) Sustituya a=50, b=0.2, c=0.1, d=0.8, e=4, Y=4,400;
 w=5. Halle P* y Q*. (b) Suponga Y aumenta a 5,500.
 ¿Nuevos valores de P* y Q*? ¿Gráficamente?

Ejemplos/Ejercicios:

Considere el modelo de determinación del Ingreso Nacional dado por:

$$C = 300 + 0.75(Y - T)$$

 $Y = C + I + G$
 $T = 100; I = 475; G = 150$

- Halle los valores de equilibrio para las variables endógenas
- Suponga que los Gastos del gobierno aumentan en 50.
 Halle los nuevos valores de equilibrio

Modelos Matemáticos

Ejemplos/Ejercicios:

Considere el modelo de mercado gobernado por las expresiones

$$Q_d = a + bP$$

$$Q_S = \alpha + \beta(P - t); \text{con t} = \text{impuesto unitario a la producción}$$

$$Q_d = Q_s$$

- Halle las ecuaciones en forma reducida para Q* y P*
- ¿Qué efectos sobre Q* y P* tendrán cambios en t?

Modelos Matemáticos

Ejemplos/Ejercicios:

Considere el modelo de mercado gobernado por las expresiones

$$Q_d = a + b(P + t)$$
; con t = impuesto unitario al consumo
$$Q_S = \alpha + \beta P$$

$$Q_d = Q_s$$

- Halle las ecuaciones en forma reducida para Q* y P*
- ¿Qué efectos sobre Q* y P* tendrán cambios en t?

Modelos Matemáticos

Ejemplos/Ejercicios:

Considere el modelo de determinación del Ingreso Nacional dado por:

$$Y = C + I + G$$

$$C = C_0 + \beta Y_d$$

$$Y_d = (1-t)Y$$

- Halle las ecuaciones en forma reducida para Y* y C*
- Suponga $C_0 = 50$; $\beta = 0.8$; t = 0.25; I = 150 y G = 100 y Halle los valores de equilibrio
- Comente sobre el efecto de un cambio en la Inversión sobre el Ingreso de equilibrio

Modelos Matemáticos

Ejemplos/Ejercicios:

Considere el modelo de determinación del Ingreso Nacional dado por:

$$Y = C + I_0 + G_0$$
$$C = a + bY^{1/2}$$

- *Halle las ecuaciones en forma reducida para Y* y C*
- Suponga a = 25; b = 6; $I_0 = 16$ y $G_0 = 14$ y halle los valores de equilibrio

Funciones trascendentes

Funciones trascendentes

- Función exponencial:
 - Variable independiente aparece en el exponente

$$y = f(t) = b^t$$
; $b > 1$
¿Por qué?

$$y = f(t) = \left(\frac{1}{5}\right)^{t} = \left(\frac{1}{5^{t}}\right) = 5^{-t}$$

¿Qué pasa si b=1?

Funciones trascendentes

- Función exponencial:
 - Gráficamente:

¿De qué dependen la «inclinación» y la «altura» de esta función?

Coeficientes en la base y en el exponente

Funciones trascendentes

- Función exponencial:
 - De forma general:

$$y = f(t) = ab^{rt}$$

 \blacksquare Y si b = e = 2.71828...

$$y = f(t) = Ae^{rt}$$

• A-C: 10.1.1 y 10.1.2

Funciones trascendentes

- Función exponencial:
 - La base 'e' = 2.71828...

$$f(m) = \left(1 + \frac{1}{m}\right)^m$$

$$e \equiv \lim_{m \to \infty} f(m) = \lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^m$$

También
$$e = 1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...$$

Funciones trascendentes

- Función exponencial e interés continuo:
 - 1 peso a un 100% anual paga 2: 1(1+100%)= 2
 - Capitalizando semestral : 1(1+50%)(1+50%)= 2.25
 - En general, una enésima parte de la tasa, 'n' veces $\left(1+\frac{1}{n}\right)^n$

Principal	Tasa de Interés Nominal	Años de capitalización continua	Valor en libros al final del proceso
1	100%	1	е
1	100%	t	e ^t
A	100%	t	A e ^t
A	r	t	A e ^{rt}

Funciones trascendentes

- Crecimiento continuo y discreto:
 - Interés continuo es poco realista, pero...
 - La función exponencial es útil en crecimiento discreto:
 - Suponga A, A(1+i), $A(1+i)^2$, $A(1+i)^3$,..., con i = tasa de interés y el exponente el número de períodos.
 - Si (1+i) se considera la base 'b', entonces la secuencia sería Ab^t.
 - 1+i debe poder expresarse como e^r
 - Por tanto $A(1+i)^t = Ab^t = Ae^{rt}$, para algún 'r'. ¿Cuál?

A-C 10.2.3

Funciones trascendentes

Logaritmos y función logarítmica:

$$y = b^t \Leftrightarrow t = \log_b y$$

- Logaritmo base 10 [computacional]
- Logaritmo natural o neperiano [base 'e'=2.71828...]

$$\log_e y = \ln y$$

Reglas:

$$\ln(uv) = \ln(u) + \ln(v) \qquad \ln(u/v) = \ln(u) - \ln(v) \qquad \ln u^a = a \ln u$$

A-C: 10.3.2 y 10.3.4

Funciones trascendentes

Exponencial y logarítmica, gráficamente:

Software análisis numérico

Octave: https://www.gnu.org/software/octave/

PUCMM

Maestría en Economía Aplicada

Economía Matemática I

Septiembre - Diciembre, 2017

Introducción y Preliminares