HEAP SORT-2

Instructor: Javeria Naz

Definitions of heap:

A heap is a data structure that stores a collection of objects (with keys), and has the following properties:

- Complete Binary tree
- Heap Order

The heap sort algorithm has two major steps:

- The first major step involves transforming the complete tree into a heap.
- The second major step is to perform the actual sort by extracting the largest or lowerst element from the root and transforming the remaining tree into a heap.

Types of heap

- Max Heap
- Min Heap

Max Heap Example

Min heap example

1-Max heap:

max-heap Definition:

is a complete binary tree in which the value in each internal node is greater than or equal to the values in the children of that node.

Max-heap property:

• The key of a node is ≥ than the keys of its children.

Max heap Operation

- A heap can be stored as an array A.
 - Root of tree is A[1]
 - Left child of A[i] = A[2i]
 - Right child of A[i] = A[2i + 1]
 - Parent of A[i] = A[\[i/2\]]

Build Max-heap Heapify() Example

A = 16 4 10 14 7 9 3 2 8 1

A = 16 14 10 4 7 9 3 2 8 1

A = 16 14 10 8 7 9 3 2 4 1

A = 16 4 10 14 7 9 3 2 8 1

A = 16 14 10 8 7 9 3 2 4 1

Heap-Sort

sorting strategy:

- Build Max Heap from unordered array;
- Find maximum element A[1];
- Swap elements A[n] and A[1]:
 now max element is at the end of the array!
- Discard node n from heap
 (by decrementing heap-size variable).
- New root may violate max heap property, but its children are max heaps. Run max_heapify to fix this.
- 6. Go to Step 2 unless heap is empty.

• A = {16, 14, 10, 8, 7, 9, 3, 2, 4, 1}

• $A = \{14, 8, 10, 4, 7, 9, 3, 2, 1, 16\}$

• A = {10, 8, 9, 4, 7, 1, 3, 2, 14, 16}

• A = {9, 8, 3, 4, 7, 1, 2, 10, 14, 16}

• A = {8, 7, 3, 4, 2, 1, 9, 10, 14, 16}

• A = {7, 4, 3, 1, 2, 8, 9, 10, 14, 16}

• A = {4, 2, 3, 1, 7, 8, 9, 10, 14, 16}

• A = {3, 2, 1, 4, 7, 8, 9, 10, 14, 16}

• A = {2, 1, 3, 4, 7, 8, 9, 10, 14, 16}

• A = {1, 2, 3, 4, 7, 8, 9, 10, 14, 16} >> orederd

2-Min heap:

min-heap Definition:

is a complete binary tree in which the value in each internal node is lower than or equal to the values in the children of that node.

Min-heap property:

 The key of a node is <= than the keys of its children.

Min heap Operation

- A heap can be stored as an array A.
 - Root of tree is A[0]
 - Left child of A[i] = A[2i+1]
 - Right child of A[i] = A[2i + 2]
 - Parent of A[i] = A[(i/2)-1]

Min Heap

Min heap final tree

1	4	7	12	16	19
---	---	---	----	----	----

Insertion

- Algorithm
 - Add the new element to the next available position at the lowest level
 - Restore the max-heap property if violated
 - General strategy is percolate up (or bubble up): if the parent of the element is smaller than the element, then interchange the parent and child.

OR

Restore the min-heap property if violated

 General strategy is percolate up (or bubble up): if the parent of the element is larger than the element, then interchange the parent and child.

The End