机器学习 Machine learning

第九章 概率图模型 Probabilistic Graphical Model

授课人: 周晓飞 zhouxiaofei@iie.ac.cn 2020-12-12

第九章 概率图模型

- 9.1 有向图模型: 贝叶斯网络
- 9.2 无向图模型:马尔可夫随机场
- 9.3 学习与推断
- 9.4 近似推断
- 9.5 实例模型

实例模型

急马尔可夫模型条件随机场

HMM 模型定义

隐马尔可夫模型是关于时序的概率模型,是最简单的动态贝叶斯网络模型。

状态变量 $\{y_1, y_2, ..., y_n\}$, $y_t \in Y$ 表示第 t 时刻的系统状态,

HMM 模型定义

隐马尔可夫模型是关于时序的概率模型,是最简单的动态贝叶斯网络模型。

状态变量 $\{y_1, y_2, ..., y_n\}$, $y_t \in Y$ 表示第 t 时刻的系统状态,

观测变量 $\{x_1, x_2, ..., x_n\}$, $x_t \in X$ 表示第 t 时刻的观测值。

HMM 模型定义

隐马尔可夫模型是关于时序的概率模型,是最简单的动态贝叶斯网络模型。

状态变量 $\{y_1, y_2, ..., y_n\}$, $y_t \in Y$ 表示第 t 时刻的系统状态,

观测变量 $\{x_1, x_2, ..., x_n\}$, $x_t \in X$ 表示第 t 时刻的观测值。

观测变量仅依赖于当前时刻的状态变量,当前状态仅依赖于前一时刻的状态。

状态集合 $Y = \{s_1, s_2, ..., s_N\}$, 观测值集合 $X = \{o_1, o_2, ..., o_M\}$ 。

HMM 模型定义

联合概率

$$P(x_1, y_1, ..., x_n, y_n) = P(y_1)P(x_1 \mid y_1) \prod_{t=2}^{n} P(x_t \mid y_t) P(y_t \mid y_{t-1})$$

HMM 模型参数

状态转移矩阵 A=[aij]N×N

$$a_{ij} = P(y_{t+1} = s_j | y_t = s_i)$$
 $1 \le i, j \le N$

表示 t 时刻处于状态 s_i 的条件下,t+1 时刻转移到状态 s_j 的概率。

HMM 模型参数

观测概率矩阵 $B=[b_{ij}]_{N\times M}$

$$b_{ij} = P(x_t = o_j | y_t = s_i)$$
 $1 \le i \le N, 1 \le j \le M$

表示 t 时刻处于状态 s_i 的条件下观测到 o_j 的概率。

HMM 模型参数

初始状态概率向量 $\pi=(\pi_1,\pi_2,...,\pi_N)$

$$\pi_i = P(y_1 = s_i) \qquad 1 \le i \le N$$

表示系统初始状态为si概率。

HMM 模型参数

初始状态概率向量 $\pi = (\pi_1, \pi_2, ..., \pi_N)$

$$\pi_i = P(y_1 = s_i) \qquad 1 \le i \le N$$

表示系统初始状态为si概率。

隐马尔可夫模型由 A, B, π 唯一确定, A, B, π 称为隐马尔可夫模型的三要素。

生成过程

生成过程

给定 A, B, π , 生成观测序列 $\{x_1, x_2, ..., x_n\}$ 。

(1)设置 t=1,并根据初始状态概率 π 生成初始状态 y_1 。

生成过程

- (1)设置 t=1,并根据初始状态概率 π 生成初始状态 y_1 。
- (2)根据 yt和观测概率矩阵 B 生成 Xt。

生成过程

- (1)设置 t=1,并根据初始状态概率 π 生成初始状态 y_1 。
- (2)根据 yt和观测概率矩阵 B 生成 Xt。
- (3)根据 yt和状态转移矩阵 A 生成 yt+1。

生成过程

- (1)设置 t=1,并根据初始状态概率 π 生成初始状态 y_1 。
- (2) 根据 yt和观测概率矩阵 B 生成 xt。
- (3) 根据 yt和状态转移矩阵 A 生成 yt+1。
- (4) 若 t<n,则设置 t=t+1,并转到第(2)步;否则,停止。

三个基本问题

概率计算问题:给定模型 $\lambda = (A, B, \pi)$ 和观测序列 $\mathbf{x} = \{x_1, ..., x_n\}$ 计算在模型 λ 下观测到 \mathbf{x}

的概率 $P(\mathbf{x}|\lambda)$ 。(评估模型与观测序列之间的匹配程度)

三个基本问题

概率计算问题:给定模型 $\lambda = (A, B, \pi)$ 和观测序列 $\mathbf{x} = \{x_1, ..., x_n\}$ 计算在模型 λ 下观测到 \mathbf{x}

的概率 $P(\mathbf{x}|\lambda)$ 。(评估模型与观测序列之间的匹配程度)

预测问题:给定模型 $\lambda = (A, B, \pi)$ 和观测序列 $\mathbf{x} = \{x_1, ..., x_n\}$,求使得条件概率 $P(\mathbf{y} \mid \mathbf{x}, \lambda)$ 最

大的状态观测序列 $\mathbf{y} = \{y_1, ..., y_n\}$ 。(根据观测序列推测状态序列)

三个基本问题

概率计算问题:给定模型 $\lambda=(A,B,\pi)$ 和观测序列 $\mathbf{x}=\{x_1,...,x_n\}$ 计算在模型 λ 下观测到 \mathbf{x}

的概率 $P(\mathbf{x}|\lambda)$ 。(评估模型与观测序列之间的匹配程度)

预测问题:给定模型 $\lambda=(A,B,\pi)$ 和观测序列 $\mathbf{x}=\{x_1,...,x_n\}$,求使得条件概率 $P(\mathbf{y}\mid\mathbf{x},\lambda)$ 最

大的状态观测序列 $\mathbf{y} = \{y_1, ..., y_n\}$ 。(根据观测序列推测状态序列)

学习问题:给定观测序列 $\mathbf{x}=\{x_1,...,x_n\}$,调整模型 $\lambda=(A,B,\pi)$ 参数,使得该序列出现的

概率 $P(\mathbf{x}|\lambda)$ 最大。(训练模型使其更好地描述观测序列)

概率计算问题

给定模型 $^{\lambda=(A,B,\pi)}$ 和观测序列 $^{\mathbf{x}=\{x_1,...,x_n\}}$ 计算在模型 $^{\lambda}$ 下观测到 \mathbf{x} 的概率 $^{P(\mathbf{x}\mid\lambda)}$ 。

(评估模型与观测序列之间的匹配程度)

直接计算法

$$\Pr(\mathbf{x}|\lambda) = \sum_{\mathbf{y}} \Pr(\mathbf{x}, \mathbf{y}|\lambda) = \sum_{\mathbf{y}} \Pr(\mathbf{x}|\mathbf{y}, \lambda) \Pr(\mathbf{y}|\lambda)$$

前向后向算法

直接计算法

(1) 列举所有可能的长度为 n 的状态序列 $\mathbf{y} = \{y_1, ..., y_n\}$

$$\Pr(\mathbf{y}|\lambda) = \pi_{y_1} a_{y_1 y_2} a_{y_2 y_3} \cdots a_{y_{n-1} y_n}$$

(2) 求各状态序列 y 与观测序列 x 的联合概率 $P(\mathbf{x},\mathbf{y}|\lambda)$ 。

$$\Pr(\mathbf{x}|\mathbf{y},\lambda) = b_{y_1}(x_1)b_{y_2}(x_2)\cdots b_{y_n}(x_n)$$

$$\Pr(\mathbf{x},\mathbf{y}|\lambda) = \Pr(\mathbf{x}|\mathbf{y},\lambda)\Pr(\mathbf{y}|\lambda) = \pi_{y_1}b_{y_1}(x_1)a_{y_1y_2}b_{y_2}(x_2)\cdots a_{y_{n-1}y_n}b_{y_n}(x_n)$$

(3) 对所有的状态序列 $\mathbf{y} = \{y_1, ..., y_n\}$ 求和,得到 $P(\mathbf{x} \mid \lambda)$ 。

$$\Pr(\mathbf{x}|\lambda) = \sum_{\mathbf{y}} \Pr(\mathbf{x}, \mathbf{y}|\lambda) = \sum_{y_1, y_2, \dots, y_n} \pi_{y_1} b_{y_1}(x_1) a_{y_1 y_2} b_{y_2}(x_2) \cdots a_{y_{n-1} y_n} b_{y_n}(x_n)$$

计算复杂度 O(nNn)(每条路经有 2n 个乘法操作, 共 N n 个路径)

前向算法

前向概率: 给定隐马尔可夫模型 $\lambda = (A, B, \pi)$, 定义到时间 t 的部分观测序列为 $x_1, x_2, ...$

 x_i 并且状态为 s_i 的概率为前向概率 , 记作

$$\alpha_t(i) = \Pr(x_1, x_2, ..., x_t, y_t = s_i \mid \lambda)$$

前向算法

前向概率递推公式:

前向算法

前向概率递推公式:

$$\alpha_{t+1}(i) = b_i(x_{t+1}) \sum_j \Pr(x_1, x_2, \dots, x_t, y_t = s_j | \lambda) \Pr(y_{t+1} = s_i | y_t = s_j, \lambda)$$

$$= b_i(x_{t+1}) \sum_j \alpha_t(j) a_{ji}, \quad i = 1, 2, \dots, N.$$

前向算法

Algorithm 1 观测序列概率的前向算法

Input: 隐马尔可夫模型 $\lambda = [\mathbf{A}, \mathbf{B}, \pi]$, 观测序列 $\mathbf{x} = \{x_1, x_2, \dots, x_n\}$

- 1: 初始化前向概率 $\alpha_1(i) = \pi_i b_i(x_1), \quad i = 1, 2, \dots, N$
- 2: **for** t = 1 : (n-1) **do**
- 3: 递推计算前向概率 $\alpha_{t+1}(i) = b_i(x_{t+1}) \sum_{j=1}^N \alpha_t(j) a_{ji}, \quad i = 1, 2, \dots, N$
- 4: end for

Output: 观测序列概率 $\Pr(\mathbf{x}|\lambda) = \sum_{i=1}^{N} \Pr(\mathbf{x}, y_n = s_i | \lambda) = \sum_{i=1}^{N} \alpha_n(i)$

计算复杂度 O(nN^2) (每层有 $N^2 + N$ 个乘操作,共 n 层)

后向算法

后向概率: 给定隐马尔可夫模型 $\lambda = (A, B, \pi)$, 定义时间 t 状态为 s_i 的条件下 , 从 t+1

时刻到 n 时刻的部分观测序列为 $x_{t+1}, x_{t+2}, ..., x_n$ 的概率为后向概率,记作

$$\beta_t(i) = \Pr(x_{t+1}, x_{t+2}, ..., x_n \mid y_t = s_i, \lambda)$$

后向算法

后向概率递推公式:

后向算法

后向算法

Algorithm 2 观测序列概率的后向算法

Input: 隐马尔可夫模型 $\lambda = [\mathbf{A}, \mathbf{B}, \pi]$, 观测序列 $\mathbf{x} = \{x_1, x_2, \cdots, x_n\}$

- 1: 初始化后向概率 $\beta_n(i) = 1, i = 1, 2, \dots, N$
- 2: **for** t = (n-1): 1 **do**
- 3: 递推计算后向概率 $\beta_t(i) = \sum_{j=1}^N a_{ij} b_j(x_{t+1}) \beta_{t+1}(j)$, $i = 1, 2, \dots, N$
- 4: end for

Output: 观测序列概率 $\Pr(\mathbf{x}|\lambda) = \sum_{i=1}^{N} \pi_i b_i(x_1) \beta_1(i)$

计算复杂度 O(nN²) (每层有 $N^2 + N$ 个乘操作,共 n 层)

前向-后向算法

利用前向和后向概率,可以将观测概率统一写成

$$\Pr(\mathbf{x} \mid \lambda) = \sum_{i=1}^{N} \alpha_{t}(i) \beta_{t}(i), \quad t = 1, 2, ..., n$$

$$\alpha_{t}(i) \beta_{t}(i) = \Pr(x_{1}, x_{2}, ..., x_{t}, y_{t} = s_{i} | \lambda) \Pr(x_{t+1}, x_{t+2}, ..., x_{n} | y_{t} = s_{i}, \lambda)$$

$$= \Pr(x_{1}, x_{2}, ..., x_{t}, y_{t} = s_{i} | \lambda) \Pr(x_{t+1}, x_{t+2}, ..., x_{n} | y_{t} = s_{i}, x_{1}, x_{2}, ..., x_{t}, \lambda)$$

$$= \Pr(x_{1}, x_{2}, ..., x_{t}, x_{t+1}, x_{t+2}, ..., x_{n}, y_{t} = s_{i} | \lambda)$$

$$\Longrightarrow x_{t+1}, ..., x_{n} \neq \emptyset$$

前向-后向算法

利用前向和后向概率,也可以将观测概率统一写成

$$\Pr(\mathbf{x} \mid \lambda) = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{t}(i) a_{ij} b_{j}(x_{t+1}) \beta_{t+1}(i), \quad t = 1, 2, ..., n-1$$

相关概率和期望的计算

给定隐马尔可夫模型 $\lambda = (A, B, \pi)$ 和观测序列 x, 在时刻 t 处于状态 s_i 的概率:

$$\gamma_t(i) = \Pr(y_t = s_i | \mathbf{x}, \lambda) = \frac{\Pr(y_t = s_i, \mathbf{x} | \lambda)}{\Pr(\mathbf{x} | \lambda)} = \frac{\alpha_t(i)\beta_t(i)}{\sum_{j=1}^{N} \alpha_t(j)\beta_t(j)}$$

相关概率和期望的计算

给定隐马尔可夫模型 $\lambda = (A, B, \pi)$ 和观测序列 \mathbf{x} ,在时刻 \mathbf{t} 处于状态 s_i 并且在时刻 $\mathbf{t}+1$ 处于状态 s_i 的概率:

$$\xi_{t}(i,j) = \Pr(y_{t} = s_{i}, y_{t+1} = s_{j} | \mathbf{x}, \lambda) = \frac{\Pr(y_{t} = s_{i}, y_{t+1} = s_{j}, \mathbf{x} | \lambda)}{\Pr(\mathbf{x} | \lambda)}$$
$$= \frac{\alpha_{t}(i)a_{ij}b_{j}(x_{t+1})\beta_{t+1}(j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{t}(i)a_{ij}b_{j}(x_{t+1})\beta_{t+1}(j)}.$$

相关概率和期望的计算

在观测 x 下状态 s_i 出现的期望值 (所有时刻 i 出现上的期望和):

$$\sum_{t=1}^{n} \gamma_t(i)$$

在观测 x 下由状态 s_i 转移的期望值 (所有时刻 i 移出的期望和):

$$\sum_{t=1}^{n-1} \gamma_t(i)$$

在观测 x 下由状态 s_i 转移到状态 s_j 的期望值 (所有时刻 i 转移 j 的期望和):

$$\sum_{t=1}^{n-1} \xi_t(i,j)$$

预测问题

给定模型 $\lambda = (A, B, \pi)$ 和观测序列 $\mathbf{x} = \{x_1, ..., x_n\}$,求使得条件概率 $P(\mathbf{y} \mid \mathbf{x}, \lambda)$ 最大的状态观

测序列 $\mathbf{y} = \{y_1, ..., y_n\}$,即根据观测序列推测状态序列。

贪婪算法 (精确算法): 找最大值路径

比较每条 y 路径的 $\Pr(\mathbf{x}, \mathbf{y} | \lambda)$

近似算法

维特比算法(精确算法)

近似算法

思路:在每个时刻 t 选择最有可能出现的状态 y_t^* ,得到一个状态序列 $y_t^* = \{y_1^*, y_2^*, ..., y_n^*\}$, 将这作为预测结果。

$$y_t^* = \arg \max_{1 \le i \le N} \Pr(y_t = s_i | \mathbf{x}, \lambda)$$

$$= \arg \max_{1 \le i \le N} \gamma_t(i) = \arg \max_{1 \le i \le N} \frac{\alpha_t(i)\beta_t(i)}{\sum_{j=1}^N \alpha_t(j)\beta_t(j)}, \quad t = 1, 2, \dots, n$$

优点:计算简单,但不能保证预测结果是合法的(aij=0)。

维特比算法

思路:利用动态规划求解概率最大路径,这里一条路径对应着一个状态序列。

如果最优路径 \mathbf{y}^* 在 t 时刻通过结点 \mathbf{y}_t^* ,那么这条路径从起始结点到结点 \mathbf{y}_t^* 的路径中,局部路径 $\mathbf{y}_{1:t}^*$ ($\mathbf{y}_1^* \sim \mathbf{y}_t^*$)一定是最优的。

假定从起始时刻到 t 时刻上各个状态的最优路径已经找到,那么在计算从起始时刻到 t+1 时刻上的某个状态 s_i 的最优路径时,只需要考虑从起始时刻到上一时刻所有 N 个状态 s_i 的最优路径,以及从 s_i 到 s_j 的"距离"。

维特比算法

维特比变量:在时刻 t, 隐马尔可夫模型沿着一条路径到达状态 S_i , 并输出观测序列

 $\mathbf{x} = \{x_1, ..., x_n\}$ 的最大概率。

$$\delta_t(i) = \max_{y_1, y_2, \dots, y_{t-1}} \Pr(y_t = s_i, y_{t-1}, \dots, y_1, x_t, x_{t-1}, \dots, x_1 | \lambda)$$

$$\delta_1(i) = \pi_i b_i(x_1)$$
 $\delta_t(i) = \max_{1 \le j \le N} \delta_{t-1}(j) a_{ji} b_i(x_t), \ t = 2, 3, \dots, n$

路径变量:记录该路径上状态 S_i 的前一个状态。

$$\phi_t(i) = \arg\max_{1 \le i \le N} \delta_{t-1}(j) a_{ji} b_i(x_t), \ t = 2, 3, \dots, n$$

维特比算法

Algorithm 3 维特比算法

```
Input: 隐马尔可夫模型 \lambda = [\mathbf{A}, \mathbf{B}, \pi], 观测序列 \mathbf{x} = \{x_1, x_2, \cdots, x_n\}
```

- 1: 初始化: $\delta_1(i) = \pi_i b_i(x_1), \ \phi_1(i) = 0, \ i = 1, 2, \dots, N$
- 2: for t = 2 : n do
- 3: 递推计算: $\delta_t(i) = \max_{1 \le i \le N} \delta_{t-1}(j) a_{ji} b_i(x_t), \quad i = 1, 2, \dots, N$
- 4: 记忆路径: $\phi_t(i) = \underset{1 \leq j \leq N}{\operatorname{arg}} \max_{1 \leq j \leq N} \delta_{t-1}(j) a_{ji} b_i(x_t), \quad i = 1, 2, \dots, N$
- 5: end for
- 6: 终结: $P^* = \max_{1 \le i \le N} \delta_n(i), \ y_n^* = \arg\max_{1 \le i \le N} \delta_n(i)$
- 7: for t = (n-1):1 do
- 8: 回溯最优路径: $y_t^* = \phi_{t+1}(y_{t+1}^*)$
- 9: end for

Output: 最优状态序列 $y^* = \{y_1^*, y_2^*, \dots, y_n^*\}$

计算复杂度 O(nN²) (每层都是 N^2+N 个乘法, 共 n 层)

学习问题

给定观测序列 $\mathbf{x} = \{x_1, ..., x_n\}$,调整模型 $\lambda = (A, B, \pi)$ 参数,使得该序列出现的概率 $P(\mathbf{x} \mid \lambda)$

最大,即训练模型使其更好地描述观测序列。

监督学习方法

非监督学习方法 (Baum-Welch 算法)

监督学习方法

训练数据包含S个长度相同的观测序列和对应的状态序列 $\{(x_1, y_1), (x_2, y_2), ..., (x_s, y_s)\}$,

利用极大似然法估计隐马尔可夫模型的参数。 (P(X,Y)最大似然估计)

状态转移概率: $\hat{a}_{ij} = \frac{A_{ij}}{\sum_{j=1}^{N} A_{ij}}$, A_{ij} 是由状态 s_i 转移到 s_j 的频数。

输出观测概率: $\hat{b}_{ik} = \frac{B_{ik}}{\sum_{k=1}^{M} B_{ik}}$, B_{ik} 是由状态 s_i 观测到 o_k 的频数。

初始状态概率: $\hat{\pi}_i$ 为所有S个样本中初始状态为 S_i 的频率。

非监督学习方法

训练数据只包含S个长度相同的观测序列 $\{x_1, x_2, ..., x_S\}$ 而没有对应的状态序列。

将观测序列看作观测数据X,状态序列看作不可观测的隐数据Y,隐马尔可夫模型等价

于含有隐变量的概率模型。

$$P(\mathcal{X}|\lambda) = \sum_{y} P(\mathcal{X}|y,\lambda)P(y|\lambda)$$

相应的参数学习可以由EM算法实现。(《统计学习方法》李航,P 181页)

示例:信封问题

- (1) 开始等概率选择一个信封,并从中随机抽取出一个球,记录其颜色然后放回。
- (2) 再次选择一个信封,其规则是如果上次选择的是第一个信封,则本次选第二个信封;否则等概率随机选择。
- (3) 确定信封后,从中随机抽取出一个球,记录其颜色然后放回。
- (4) 重复上述过程 5次得到观测序列{红,黑,黑,黑,红}。

示例:信封问题

状态变量:信封序列{E₁, E₂, E₃, E₄, E₅}(不可观测)

观测变量:球的颜色序列 $\{B_1=红, B_2=黑, B_3=黑, B_4=黑, B_5=红\}$

状态集合{0,1},观测集合{红,黑}

$$\pi = (0.5, 0.5)$$
 $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0.5 & 0.5 \end{bmatrix}$ $\mathbf{B} = \begin{bmatrix} 0.5 & 0.5 \\ 0 & 1 \end{bmatrix}$

实例模型

- 隐马尔可夫模型 - 条件随机场

CRF 模型定义

条件随机场(Conditional Random Field) 是给定随机变量x的条件下,随机变量y的马尔可夫随机场。G(V,E)是y中的随机变量构成的无向图,图中每个变量在给定x的条件下都满足马尔可夫性:

$$P(y_{\nu}|\mathbf{x},\mathbf{y}_{V\setminus\{\nu\}}) = P(y_{\nu}|\mathbf{x},\mathbf{y}_{MB(\nu)})$$

y_{MB(v)}是y_v的邻接变量.

线性链条件随机场

线性链条件随机场(linear-chain CRF) 是随机变量y为线性链时的条件随机场。

 $\mathbf{x} = \{x_1, x_2, \dots, x_n\}$ 是观测序列。 $\mathbf{x} = \{y_1, y_2, \dots, y_n\}$ 是标记序列(或称状态序列)。

在给定x的条件下,y的条件分布P(y|x)构成条件随机场。

$$P(y_i|\mathbf{x}, y_1, \dots, y_{i-1}, y_{i+1}, \dots, y_n) = P(y_i|\mathbf{x}, y_{i-1}, y_{i+1})$$

线性链条件随机场

线性链条件随机场(linear-chain CRF) 是随机变量y为线性链时的条件随机场。

$$P(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z} \exp \left(\sum_{i,j} \lambda_j t_j(y_{i+1}, y_i, \mathbf{x}, i) + \sum_{i,k} \mu_k s_k(y_i, \mathbf{x}, i) \right)$$

转移特征函数: $t_j(y_i, y_{i+1}, \mathbf{x}, i)$ 团 $\{y_i, y_{i+1}\}$ 上的势函数: $\Sigma_j \lambda_j t_j(y_i, y_{i+1}, \mathbf{x}, i)$

状态特征函数: $S_k(y_i, \mathbf{x}, i)$ 团 $\{y_i\}$ 上的势函数: $\Sigma_k \mu_k S_k(y_i, \mathbf{x}, i)$

三个基本问题

概率计算问题:给定条件随机场、观测序列 $\mathbf{x}=x_1,\cdots,x_n$ 和状态序列 $\mathbf{y}=y_1,\cdots,y_n$,计算条件概率 $P(y_i|\mathbf{x})$, $P(y_i,y_{i+1}|\mathbf{x})$ 以及相应的数学期望。

预测问题: 给定条件随机场和观测序列 $\mathbf{x}=x_1,\cdots,x_n$,求使得条件概率 $P(\mathbf{y}|\mathbf{x})$ 最大的状态序列 $\mathbf{y}=y_1,\cdots,y_n$,即根据观测序列推断出隐藏的模型状态(词性标注、语音识别)。

学习问题:给定训练数据 $\{(\mathbf{x}_1,\mathbf{y}_1),(\mathbf{x}_2,\mathbf{y}_2),\cdots,(\mathbf{x}_S,\mathbf{y}_S)\}$,估计条件随机场的模型参数使得条件概率 $P(y|\mathcal{X})$ 最大(训练模型使其能最好地描述训练数据)

自学《统计学习方法》李航, P207

示例:词性标注

利用隐马尔可夫模型进行词性标注:求解argmax P(y | x)

[D] [N] [V] [P] [D] [N]

The boy knocked at the door.

每个词的词性仅和自身有关,和文本中其他所有词均无关。建模联合概率 $P(\mathbf{x},\mathbf{y})$ 。

事实上,观测到"at"对判断"knocked"的词性有帮助。

示例:词性标注

利用线性链条件随机场进行词性标注:

[D] [N] [V] [P] [D] [N]
The boy knocked at the door.

直接建模条件概率P(y|x),通过定义适当的特征函数,当前词的词性可以和其他词相

关。当下一个观测词是"at"时,当前词对应的词性标记很可能是[V]。

$$s_k(y_i, \mathbf{x}, i) = \begin{cases} 1, & \text{if } y_i = [V] \text{ and } x_{i+1} = \text{``at"} \\ 0, & \text{otherwise} \end{cases}$$

小结

1. 概率图模型

两类: 贝叶斯网络(有向图)、马尔可夫随机场(无向图)。

掌握: 概率分布分解形式、条件独立性。

2. 学习与推断

学习:结构学习、参数学习(最大似然估计、EM 算法)。

推断: 精确推断(了解变量消去、信念传播)。

近似推断(了解前向采样、吉布斯采样)。

小结

3. 隐马尔可夫模型

三要素: A、B、π。

概率计算问题: 掌握前向、后向算法。

预测问题:掌握维特比算法。

学习问题: 了解最大似然估计和 EM 算法。

本讲参考文献

1. 《统计机器学习--第九章: 概率图模型》课件, 王泉, 国科大网络安全学院, 2017。

致谢王泉副研究员!感谢王泉提供了《概率图模型》课件供本章教学参考!