• Propiedades de la transpuesta

Si todas las sumas y productos están definidos y A es invertible, entonces

$$(A^{\mathsf{T}})^{\mathsf{T}} = A \qquad (AB)^{\mathsf{T}} = B^{\mathsf{T}} A^{\mathsf{T}} \qquad (A+B)^{\mathsf{T}} = A^{\mathsf{T}} + B^{\mathsf{T}}.$$

- si A es invertible, entonces $(A^{-1})^{\top} = (A^{-1})^{\top}$
- Una matriz cuadrada A es simétrica si $A^{\top} = A$.
- El producto interno ente dos vectores columna a y b se puede escribir como

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^{\mathsf{T}} \mathbf{b}$$

donde \mathbf{a}^{T} es un vector renglón, y ahora la operación $\mathbf{a}^{\mathsf{T}}\mathbf{b}$ es una multiplicación entre matrices.

AUTOEVALUACIÓN 2.5

I) Si una matriz A es de 3×4 , entonces A^{\top} es una matriz de ____

a)
$$4 \times 3$$

$$c)$$
 3 \times 3

$$d)$$
 4 \times 4

- II) Falso-verdadero: A^{\top} está definida sólo si A es una matriz cuadrada.
- III) Falso-verdadero: Si A es una matriz de $n \times n$, entonces la diagonal principal de A^{\top} es la misma que la diagonal principal de A.
- **IV)** Falso-verdadero: $[(A^{\top})^{\top}]^{\top} = A^{\top}$
- V) La transpuesta de $\begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 0 \end{pmatrix}$ es _____.

$$a) \begin{pmatrix} -1 & 1 \\ 2 & 0 \\ 3 & 0 \end{pmatrix}$$

$$\begin{array}{c} \boldsymbol{b} \boldsymbol{)} \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 3 & 0 \end{pmatrix}$$

$$\begin{array}{c} \textbf{c} \\ \textbf{c} \\ \end{array} \begin{pmatrix} 1 & 0 \\ -1 & 3 \\ 2 & 0 \\ \end{pmatrix}$$

a)
$$\begin{pmatrix} -1 & 1 \\ 2 & 0 \\ 3 & 0 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 3 & 0 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 \\ -1 & 3 \\ 2 & 0 \end{pmatrix}$

Respuestas a la autoevaluación

- **I)** *a*)
- **II)** *F*)
- **III)** *V*)
- **IV)** *V*)
- **V)** *b*)

PROBLEMAS 2.5

En los problemas 1 a 16 encuentre la transpuesta de la matriz dada.

1.
$$\begin{pmatrix} 4 & 8 \\ 7 & 5 \end{pmatrix}$$

2.
$$\begin{pmatrix} 3 & 5 \\ 6 & 10 \end{pmatrix}$$

3.
$$\begin{pmatrix} -2 & 5 \\ 7 & 4 \end{pmatrix}$$

1.
$$\begin{pmatrix} 4 & 8 \\ 7 & 5 \end{pmatrix}$$
 2. $\begin{pmatrix} 3 & 5 \\ 6 & 10 \end{pmatrix}$ 3. $\begin{pmatrix} -2 & 5 \\ 7 & 4 \end{pmatrix}$ 4. $\begin{pmatrix} 3 & 5 \\ 2 & -1 \end{pmatrix}$