Exercice 1:

Calculer:

- Le carbone total;
- L'hydrogène total;
- Le pouvoir comburivore;
- Le pouvoir fumigène ;
- Le pouvoir calorifique.

Du fioul domestique de composition :

- C = 86 %
- H = 13.5 %
- S = 0.5 %

Pour 100 kg FOD.

Solution:

(A):
$$\begin{bmatrix} 12 \ g \rightarrow 22.4 \times 10^{-3} \ m^{3} \ volume \\ 86 \times 10^{3} \rightarrow V_{o2} \\ (B): \begin{bmatrix} 4 \ g \rightarrow 22.4 \times 10^{-3} \ m^{3} \ volume \\ 13.5 \times 10^{3} \rightarrow V_{o2} \\ (C): \begin{bmatrix} 35 \ g \rightarrow 22.4 \times 10^{-3} \ m^{3} \ volume \\ 0.5 \times 10^{3} \rightarrow V_{o2} \end{bmatrix}$$

	02	N_2	CO_2	H_2O	SO ₂
$C + O_2 \rightarrow CO_2$	$\frac{86}{12} \times 22,4 = 160,53$	$N_2 = x(O_2)$	160,53	-	-
$4H + O_2 \rightarrow 2H_2O$	$\frac{13,5}{4} \times 22,4 = 75,6$	= 3,76 ×236,48 = 889,16	-	2 × 75,6 = 151,12	-
$S + O_2 \rightarrow SO_2$	$\frac{0.5}{35} \times 22.4 = 0.35$	= 007,10	-	-	0,35
$total\left(m^3/100\ kg\right)$	236,48	889,16	160,53	151,12	0,35
$total\left(m^3/kg\right)$	2,3648	8,8916	1,6053	1,5112	0,0035

$$\begin{split} V_{CO2} &= 1{,}6053 \ m^3 \ de \ CO_2/kg \ FOD \\ V_{H2O} &= 1{,}5112 \ m^3 \ de \ H_2O/kg \ FOD \\ V_a &= \frac{100}{\tau_{O2}}(O_2) = \frac{100}{20{,}9}(2{,}3648) = 11{,}31 \ m^3 \ d'air/kg \ FOD \\ V_{f0} &= CO_2 + N_2 + SO_2 \\ \Rightarrow V_{f0} &= 1{,}6053 + 8{,}8916 + 0{,}0035 = 10{,}5 \ m^3 \ de \ f. \ sèche/kg \ FOD \\ V'_{f0} &= CO_2 + N_2 + SO_2 + H_2O \\ \Rightarrow V'_{f0} &= 1{,}6053 + 8{,}8916 + 0{,}0035 + 1{,}5112 = 12{,}04 \ m^3 \ de \ f. \ humide/kg \ FOD \\ \end{split}$$

Exercice 2 : Cas d'un combustible gazeux

Calculer:

- Le carbone total;
- L'hydrogène total;
- Le pouvoir comburivore;
- Le pouvoir fumigène ;

De l'air propané de composition :

Composition du gaz en %							
C_2H_4	C_2H_6	C_3H_6	C_3H_8	$C_4 H_{10}$	02	N ₂	
0,3	1,1	17,2	37,6	1,1	9	33,7	

Pour 100 m³ (100mol)

Solution:

$$C_n H_m + \left(n + \frac{m}{4}\right)(O_2 + 3,76N_2) \rightarrow nCO_2 + \frac{m}{2}H_2O + 3,76(n+1)$$

	02	N_2	CO ₂	H_2O
C_2H_4	$\left(2 + \frac{4}{4}\right) \times 0.3 = 0.9$		2× 0,3 = 0,6	$\frac{4}{2} \times 0.3 = 0.6$
C_2H_6	$\left(2 + \frac{6}{4}\right) \times 1, 1 = 3,85$		2× 1,1 = 2,2	$\frac{6}{2} \times 1,1 = 3,3$
C_3H_6	$\left(3 + \frac{6}{4}\right) \times 17,2 = 77,4$	[(277,3 – 9) × 3,76 + 33,7]	51,6	51,6
C_3H_8	188		118,8	150,4
C_4H_{10}	7,15		4,4	5,5
total (100 m³)	277,3	1042,508	171,6	211,4
total (1 m ³)	$\frac{(277,3-9)}{100} = 2,683$	10,42508	1,716	2,114

$$\begin{split} V_{CO2} &= 1{,}716 \ m^3 \ de \ CO_2/m^3 \ d'air \ propan\'e \\ V_{H2O} &= 2{,}114 \ m^3 \ de \ H_2O/m^3 \ d'air \ propan\'e \\ V_a &= \frac{100}{\tau_{O2}}(O_2) = \frac{100}{20{,}9}(2{,}683) = 12{,}83 \ m^3 \ d'air/m^3 \ d'air \ propan\'e \\ V_{f0} &= CO_2 + N_2 \\ \Rightarrow V_{f0} &= 1{,}716 + 10{,}42 = 12{,}13 \ m^3 \ de \ f. \ s\`eche/m^3 \ d'air \ propan\'e \\ V'_{f0} &= CO_2 + N_2 + H_2O \\ \Rightarrow V'_{f0} &= 10{,}42 + 1{,}716 + 2{,}114 = 14{,}25 \ m^3 \ de \ f. \ humide/m^3 \ d'air \ propan\'e \end{split}$$