Cheatsheet for YAGS 0.0.2

Graph definitions

Adjacency list

g:=GraphByAdjacencies([[],[4],[1,2],[]])

Adjacency matrix

M:=[[false, true, false], [true, false, true], [false, true, false]]; g:=GraphByAdjMatrix(M);

List of edges

g:=GraphByEdges([[1,2],[2,3],[3,4]]);

Complete cover

g:=GraphByCompleteCover([[1,2,3,4],[4,5,6]]);

By relation

f:=function(x,y) return Intersection(x,y)<>[]; end;;
g:=GraphByRelation([[1,2,3],[3,4,5],[5,6,7]],f);

Bv walks

g:=GraphByWalks([1,2,3,4,1],[1,5,6]);

g:=GraphByWalks([1,[2,3,4],5],[5,6]);

As intersection graph

g:=IntersectionGraph([[1,2,3],[3,4,5],[5,6,7]]);

As a copy

h:=CopyGraph(g)

As an induced subgraph

h:=InducedSubgraph(g,[3,4,6]);

Graph families (with parameters)

- g:=DiscreteGraph(n)
- g:=CompleteGraph(n)
- g:=PathGraph(n) n vertices.
- g:=CycleGraph(n)
- g:=CubeGraph(n)
- g:=OctahedralGraph(n)
- g:=JohnsonGraph(n,r) Vertices are subsets of $\{1,2,\ldots,n\}$ with r elements, edges between subsets with intersection of r-1 elements.

- g:=Circulant(n,J) Second paramenter is a list of jumps
- g:=CompleteBipartiteGraph(n,m)
- g:=CompleteMultipartiteGraph(n1,n2[, n3 ...])
- g:=TorusGraph(n,m)
- g:=TreeGraph(L) L is a list. Vertices at depth k have L[k] children.
- g:=TreeGraph(n,k) Same as TreeGraph([n,n,..,n]) (the list has length k)
- g:=WheelGraph(n)
- g:=WheelGraph(7,2) Second optional parameter is the radius of the wheel.
- g:=FanGraph(4);
- g:=SunGraph(6);
- g:=SpikyGraph(4);
- · Examples: Wheel, Fan, Sun, Spiky:

Named graphs

Platonic

Tetrahedron, Octahedron, Cube, Dodecahedron, Icosahedron.

Other

TrivialGraph, DiamondGraph, ClawGraph, HouseGraph, BullGraph, AntennaGraph, KiteGraph, AGraph, ChairGraph, DartGraph, DominoGraph, FishGraph, GemGraph, HouseGraph, ParachuteGraph, ParapluieGraph, PawGraph, PetersenGraph, RGraph, SnubDisphenoid.

Random graphs

- g:=RandomGraph(n)
- g:=RandomGraph(n,p) Graph with n vertices, each edge with probability p to appear.

New graphs from old

- h:=RemoveVertices(g,[1,3]);
- h:=AddEdges(g,[[1,2]]);
- h:=RemoveEdges(g,[[1,2],[3,4]]);

Parameters

- Order(g)
- Size(g)
- CliqueNumber(g)
- VertexDegree(g,v)
- MaxDegree(g)
- MinDegree(g)
- Girth(g)
- NumberOfCliques(g)
- NumberOfConnectedComponents(g)

Boolean tests

- IsCompleteGraph(g)
- IsCliqueHelly(g)
- IsDiamondFree(g)
- IsEdge(g,x,y) Or IsEdge(g,[x,y])
- IsIsomorphicGraph(g,h)
- IsCompactSurface(g)
- IsSurface(g)
- IsLocallyConstant(g)
- IsLocallyH(g,h)
- IsLoopless(g)

Products

- p=BoxProduct(g,h)
- p=TimesProduct(g,h)
- p=BoxTimesProduct(g,h)
- p=DisjointUnion(g,h)
- p=Join(g,h)
- p=GraphSum(g,1) l is a list of graphs. Suppose that g has n vertices. In the disjoint union of the first n graphs of l (using TrivialGraphs if needed to fill n slots), add all edges between graphs corresponding to adjacent vertices in g.
- p=Composition(g,h) is the same as GraphSum(g,1), where l is a list of length the order of g, with all components equal to h.

Operators

- h:=CliqueGraph(g)
- h:=CliqueGraph(g,m) Stops when a maximum of m cliques have been found.
- h:=LineGraph(g)
- h:=ComplementGraph(g)
- h:=Cone(g)
- h:=Suspension(g)
- h:=ParedGraph(g)
- h:=CompletelyParedGraph(g)
- h:=QuotientGraph(g,p) p is a partition of vertices. The vertices of h are the parts of p, with two vertices adjacent if there are two vertices adjacent in g in the corresponding parts. Singletons in p may be omitted.
- h:=QuotientGraph(g,11,12) l1,l2 are lists of vertices of the same length, with repetitions allowed. In h, each vertex of the first list is identified with the corresponding vertex in the second list.
- h:=Link(g,x) The subgraph of g induced by the neighbors of x.
- h:=SpanningForest(g)

Lists

- VertexNames(g)
- Cliques(g)
- $\operatorname{Cliques}(\mathsf{g},\mathsf{m})$ Stops if a maximum of m cliques have been found.
- Basement(kng,kmg,x) $n \le m$
- AdjMatrix(g)
- Adjaceny(g,v)