svm cnn analysis

December 12, 2024

```
[1]: # Install basic modules and make sure they are available with the latest pipule version.

# Always updating PIP could be either good or bad, you just have to choose one base on the situation around.

# I use --quiet and --no-warn-script-location to hide the output of myule directory paths import systemport os

! {sys.executable} -m pip install --upgrade pip matplotlib numpyule tensorflow-macos tensorflow-metal scikit-learn --quietule --no-warn-script-location

[2]: from tensorflow.keras import layers from tensorflow.keras import Model from tensorflow.keras.optimizers import RMSprop from tensorflow.keras.models import Model
```

```
[2]: from tensorflow.keras import layers
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.models import Model
from tensorflow.keras.utils import to_categorical
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report
import numpy as np
import os
from PIL import Image
import glob
```

```
[3]: # Load all images and labels
dataset_path = os.path.join(os.getcwd().replace("investigation",

□ "kaggledataset"), 'garbage_classification')

image_data = []
labels = []
class_names = sorted(os.listdir(dataset_path))
print(f"Classes: {class_names}")

for class_idx, class_name in enumerate(class_names):
```

```
class_folder = os.path.join(dataset_path, class_name)
         if os.path.isdir(class_folder):
             for img file in glob.glob(os.path.join(class_folder, "*.jpg")):
                     # Open the image, resize, and normalize
                     img = Image.open(img_file).convert("RGB").resize((256, 256))
                     image_data.append(np.array(img) / 255.0) # Normalize to 0-1
      \hookrightarrow range
                     labels.append(class_idx)
                 except Exception as e:
                     print(f"Error loading image {img_file}: {e}")
     # Convert to NumPy arrays
     image_data = np.array(image_data, dtype="float32")
     labels = np.array(labels)
     # One-hot encode the labels for CNN training
     labels_one_hot = to_categorical(labels, num_classes=len(class_names))
     # Split data into train/test sets
     train data, test data, train labels, test labels = train test split(
         image_data, labels_one_hot, test_size=0.2, random_state=42, stratify=labels
    Classes: ['battery', 'biological', 'brown-glass', 'cardboard', 'clothes',
    'green-glass', 'metal', 'paper', 'plastic', 'shoes', 'trash', 'white-glass']
[4]: img_input = layers.Input(shape=(256, 256, 3))
     # CNN architecture
     x = layers.Conv2D(32, 3, activation=None)(img_input)
     x = layers.BatchNormalization()(x)
     x = layers.ReLU()(x)
     x = layers.MaxPooling2D(2)(x)
     x = layers.Conv2D(64, 3, activation=None)(x)
     x = layers.BatchNormalization()(x)
     x = layers.ReLU()(x)
     x = layers.MaxPooling2D(2)(x)
     x = layers.Conv2D(128, 3, activation=None)(x)
     x = layers.BatchNormalization()(x)
     x = layers.ReLU()(x)
     x = layers.MaxPooling2D(2)(x)
     x = layers.Flatten()(x)
     x = layers.Dense(512, activation=None)(x)
```

```
x = layers.BatchNormalization()(x)
x = lavers.ReLU()(x)
output = layers.Dense(len(class_names), activation='softmax')(x)
cnn_model = Model(img_input, output)
cnn_model.compile(
    loss='categorical_crossentropy',
    optimizer=RMSprop(learning_rate=0.0001),
    metrics=['acc']
)
# Train CNN
cnn_model.fit(
    train_data,
    train_labels,
    epochs=30, # Reduced for demonstration
    batch_size=32,
    validation_data=(test_data, test_labels)
)
2024-12-12 15:39:42.586247: I metal_plugin/src/device/metal_device.cc:1154]
Metal device set to: Apple M3 Max
2024-12-12 15:39:42.586272: I metal_plugin/src/device/metal_device.cc:296]
systemMemory: 48.00 GB
2024-12-12 15:39:42.586281: I metal_plugin/src/device/metal_device.cc:313]
maxCacheSize: 18.00 GB
2024-12-12 15:39:42.586294: I
tensorflow/core/common runtime/pluggable_device/pluggable_device factory.cc:305]
Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel
may not have been built with NUMA support.
2024-12-12 15:39:42.586305: I
tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:271]
Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0
MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id:
<undefined>)
Epoch 1/30
2024-12-12 15:39:50.303138: I
tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:117]
Plugin optimizer for device_type GPU is enabled.
388/388
                   44s 108ms/step -
acc: 0.6094 - loss: 1.2758 - val_acc: 0.5450 - val_loss: 1.4117
Epoch 2/30
388/388
                   40s 102ms/step -
acc: 0.8611 - loss: 0.4477 - val_acc: 0.7390 - val_loss: 0.8195
Epoch 3/30
```

```
388/388
                    40s 104ms/step -
acc: 0.9510 - loss: 0.1778 - val_acc: 0.7396 - val_loss: 0.8717
Epoch 4/30
388/388
                    40s 102ms/step -
acc: 0.9841 - loss: 0.0731 - val_acc: 0.7325 - val_loss: 0.9369
Epoch 5/30
388/388
                    39s 102ms/step -
acc: 0.9913 - loss: 0.0417 - val_acc: 0.7535 - val_loss: 0.9677
Epoch 6/30
388/388
                    40s 102ms/step -
acc: 0.9966 - loss: 0.0240 - val_acc: 0.7042 - val_loss: 1.2862
Epoch 7/30
388/388
                    40s 102ms/step -
acc: 0.9970 - loss: 0.0161 - val_acc: 0.7580 - val_loss: 0.9367
Epoch 8/30
388/388
                    39s 101ms/step -
acc: 0.9993 - loss: 0.0075 - val_acc: 0.7470 - val_loss: 1.0077
Epoch 9/30
388/388
                    40s 102ms/step -
acc: 0.9986 - loss: 0.0085 - val_acc: 0.7564 - val_loss: 0.9552
Epoch 10/30
388/388
                    39s 100ms/step -
acc: 0.9996 - loss: 0.0056 - val_acc: 0.7341 - val_loss: 1.0580
Epoch 11/30
388/388
                    39s 100ms/step -
acc: 0.9993 - loss: 0.0046 - val_acc: 0.7609 - val_loss: 0.9937
Epoch 12/30
388/388
                    39s 101ms/step -
acc: 0.9995 - loss: 0.0040 - val_acc: 0.7441 - val_loss: 1.1035
Epoch 13/30
388/388
                    40s 102ms/step -
acc: 0.9994 - loss: 0.0040 - val_acc: 0.7473 - val_loss: 1.1447
Epoch 14/30
388/388
                    40s 102ms/step -
acc: 0.9990 - loss: 0.0049 - val acc: 0.7631 - val loss: 0.9834
Epoch 15/30
388/388
                    40s 103ms/step -
acc: 0.9995 - loss: 0.0037 - val_acc: 0.7651 - val_loss: 1.0743
Epoch 16/30
388/388
                    40s 102ms/step -
acc: 0.9997 - loss: 0.0026 - val_acc: 0.7618 - val_loss: 1.0169
Epoch 17/30
388/388
                    39s 101ms/step -
acc: 0.9997 - loss: 0.0025 - val_acc: 0.7586 - val_loss: 1.1095
Epoch 18/30
                    39s 101ms/step -
388/388
acc: 0.9992 - loss: 0.0039 - val_acc: 0.7538 - val_loss: 1.1540
Epoch 19/30
```

```
388/388
                        40s 102ms/step -
    acc: 0.9998 - loss: 0.0018 - val_acc: 0.7058 - val_loss: 1.3810
    Epoch 20/30
    388/388
                        39s 101ms/step -
    acc: 0.9994 - loss: 0.0028 - val_acc: 0.7596 - val_loss: 1.0664
    Epoch 21/30
    388/388
                        39s 101ms/step -
    acc: 0.9996 - loss: 0.0021 - val_acc: 0.7612 - val_loss: 1.0729
    Epoch 22/30
    388/388
                        39s 101ms/step -
    acc: 0.9998 - loss: 0.0012 - val_acc: 0.7618 - val_loss: 1.0754
    Epoch 23/30
    388/388
                        39s 101ms/step -
    acc: 0.9994 - loss: 0.0032 - val_acc: 0.7580 - val_loss: 1.0902
    Epoch 24/30
    388/388
                        39s 102ms/step -
    acc: 0.9982 - loss: 0.0075 - val_acc: 0.7689 - val_loss: 1.0264
    Epoch 25/30
    388/388
                        40s 102ms/step -
    acc: 0.9997 - loss: 0.0015 - val_acc: 0.7651 - val_loss: 1.1445
    Epoch 26/30
    388/388
                        39s 101ms/step -
    acc: 0.9992 - loss: 0.0039 - val_acc: 0.7612 - val_loss: 1.0925
    Epoch 27/30
    388/388
                        39s 100ms/step -
    acc: 0.9993 - loss: 0.0031 - val_acc: 0.7583 - val_loss: 1.1288
    Epoch 28/30
    388/388
                        39s 100ms/step -
    acc: 0.9999 - loss: 0.0011 - val_acc: 0.7573 - val_loss: 1.2308
    Epoch 29/30
    388/388
                        39s 101ms/step -
    acc: 0.9997 - loss: 0.0012 - val_acc: 0.7506 - val_loss: 1.1876
    Epoch 30/30
    388/388
                        39s 101ms/step -
    acc: 0.9994 - loss: 0.0040 - val_acc: 0.7676 - val_loss: 1.1025
[4]: <keras.src.callbacks.history.History at 0x36a351a50>
[]: # Extract features using CNN
     feature_extractor = Model(inputs=cnn_model.input, outputs=cnn_model.layers[-2].
      ⇔output)
     train_features = feature_extractor.predict(train_data)
     test_features = feature_extractor.predict(test_data)
     # Train an SVM on the extracted features
     svm_model = SVC(kernel='linear', class_weight='balanced', probability=True)
```

388/388 9s 22ms/step 97/97 2s 16ms/step Accuracy: 0.7757009345794392

v	precision	recall	f1-score	support
battery	0.76	0.69	0.72	189
biological	0.74	0.73	0.73	197
brown-glass	0.75	0.66	0.70	122
cardboard	0.78	0.78	0.78	178
clothes	0.87	0.96	0.91	1065
green-glass	0.84	0.86	0.85	126
metal	0.64	0.49	0.56	154
paper	0.80	0.77	0.78	210
plastic	0.55	0.47	0.51	173
shoes	0.72	0.70	0.71	395
trash	0.69	0.73	0.71	139
white-glass	0.59	0.59	0.59	155
accuracy			0.78	3103
macro avg	0.73	0.70	0.71	3103
weighted avg	0.77	0.78	0.77	3103

```
AttributeError Traceback (most recent call last)

Cell In[7], line 16
    13 print(f"Accuracy: {accuracy_score(np.argmax(test_labels, axis=1), use y_pred)}")
    14 print(classification_report(np.argmax(test_labels, axis=1), y_pred, use target_names=class_names))
---> 16 svm_model.summary()

AttributeError: 'SVC' object has no attribute 'summary'
```

```
[8]: import matplotlib.pyplot as plt
import numpy as np

# Use feature extractor to get features from the test data
```

```
test_features = feature_extractor.predict(test_data)
# Get predictions for the test features
predicted_classes = svm_model.predict(test_features)
# Convert true labels from one-hot encoding to class indices
true_classes = np.argmax(test_labels, axis=1)
# Calculate overall accuracy
overall_accuracy = np.sum(predicted_classes == true_classes) / len(true_classes)
print(f"Overall Test Accuracy: {overall accuracy:.2f}")
# Calculate per-class accuracy
num_classes = len(class_names)
class_accuracies = []
for class_index in range(num_classes):
    indices = np.where(true_classes == class_index)[0]
    class_correct = np.sum(predicted_classes[indices] == true_classes[indices])
    class_accuracy = class_correct / len(indices) if len(indices) > 0 else 0
    class_accuracies.append(class_accuracy)
# Plot per-class accuracy
plt.figure(figsize=(10, 6))
plt.bar(class names, class accuracies)
plt.title("Per-Class Accuracy")
plt.xlabel("Class")
plt.ylabel("Accuracy")
plt.ylim(0, 1)
plt.xticks(rotation=45)
plt.grid(axis="y")
plt.show()
```

97/97 2s 15ms/step Overall Test Accuracy: 0.78

[]: