Relational Reasoning (Relational ræsonnement)

Mathias Pedersen, 201808137

Bachelor Report (15 ECTS) in Computer Science

Advisor: Amin Timany

Department of Computer Science, Aarhus University

September 2021

Abstract

▶in English... ◀

Mathias Pedersen, Aarhus, September 2021.

Contents

Abstract		iii
1	Introduction	1
2	Definition of Language	3
3	Contextual Equivalence	5
4	Logical Relations for Contextual Equivalence	7
5	Examples of Application of Contextual Equivalence	9
6	Comparison to Other Work and Ideas for Future Work	11
7	Conclusion	13
Acknowledgments		15
Bibliography		17
A	The Technical Details	19

Introduction

```
▶motivate and explain the problem to be addressed ◀
     ▶example of a citation: [1] ◀ ▶get your bibtex entries from https://dblp.
org/◄
```

Definition of Language

▶create draft**∢**

Syntax

```
e := () |
                                                                                                                                                                   (unit value)
                                                                                                                                                                     (variables)
          \overline{n} \mid e + e \mid e - e \mid e \le e \mid e < e \mid e = e \mid
                                                                                                                                                 (natural??? numbers)
          true | false | if e then e else e |
                                                                                                                                                                     (booleans)
          (e,e) \mid \mathsf{fst} \ e \mid \mathsf{snd} \ e \mid
                                                                                                                                                     (products/pairs???)
          inj_1 e \mid inj_2 e \mid match e \text{ with } inj_1 x \Rightarrow e \mid inj_2 x \Rightarrow e \text{ end } \mid
                                                                                                                                                                           (sums)
          (recursive functions)
          \Lambda e \mid e_{\perp}
                                                                                                                                                          (polymorphism)
 x := () \mid \overline{n} \mid \mathsf{true} \mid \mathsf{false} \mid (v, v) \mid \mathsf{inj}_1 v \mid \mathsf{inj}_2 v \mid \mathsf{rec} f(x) := e \mid \Lambda e
                                                                                                                                                                         (values)
 \tau ::= \mathsf{Unit} \mid \mathbb{N} \mid \mathbb{B} \mid \tau \times \tau \mid \tau + \tau \mid \tau \to \tau \mid \forall X. \ \tau
                                                                                                                                                                           (types)
K ::= [] | K + e | v + K | K - e | v - K | K \le e | v \le K | K < e | v < K |
                                                                                                                                                    (evaluation context)
          K = e \mid v = K \mid \text{if } K \text{ then } e \text{ else } e \mid (K, e) \mid (v, K) \mid \text{fst } K \mid \text{snd } K \mid
          \operatorname{inj}_1 K \mid \operatorname{inj}_2 K \mid \operatorname{match} K \text{ with } \operatorname{inj}_1 x \Rightarrow e \mid \operatorname{inj}_2 x \Rightarrow e \text{ end } \mid K e \mid v K \mid K
```

Typing rules

▶finish typing rules**◄**

▶write in dynamics (step rules)**◄**

Contextual Equivalence

▶draft∢

Logical Relations for Contextual Equivalence

▶draft◀

Examples of Application of Contextual Equivalence

▶draft◀

Comparison to Other Work and Ideas for Future Work

▶draft◀

Conclusion

 \blacktriangleright conclude on the problem statement from the introduction \blacktriangleleft

Acknowledgments

▶…∢

Bibliography

[1] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise analysis of string expressions. In Radhia Cousot, editor, *Static Analysis*, *10th International Symposium*, *SAS 2003*, *San Diego*, *CA*, *USA*, *June 11-13*, *2003*, *Proceedings*, volume 2694 of *Lecture Notes in Computer Science*, pages 1–18. Springer, 2003.

Appendix A

The Technical Details

▶....◀