

Окружность

$$O$$
 — центр окружности

$$AB$$
 — диаметр

$$OA = OB = OC$$
 — радиус

Окружность — это множество всех точек, равноудаленных от центра окружности.

Диаметр — отрезок, соединяющий точки, лежащие на окружности и проходящий через центр окружности.

Радиус — отрезок, соединяющий центр окружности с любой точкой, лежащей на окружности.

Хорда — отрезок, соединяющий точки на окружности и не проходящий через ее центр.

Свойство хорд

Если две хорды окружности пересекаются, то произведения отрезков хорд — равны.

Углы в окружности

Центральный угол — это угол, вершина которого находится в центре окружности.

Свойства: центральный угол равен всей градусной мере дуги окружности, на которую он опирается.

$$\angle AOB$$
 — центральный $\angle AOB = \bigcup AB$

Вписанный угол

Вписанный угол — это угол, вершина которого лежит на окружности, а стороны пересекают эту окружность.

Свойство 1

Вписанный угол равен половине градусной мере дуги, на которую он опирается.

$$\angle ABC$$
 — вписанный $\angle ABC = \bigcup \frac{1}{2} AC$

Свойство 2

Вписанные углы, опирающиеся на одну дугу — равны.

$$\angle ABD = \angle ACD$$

Свойство 3

Если вписанный угол опирается на диаметр окружности — он прямой.

$$AB$$
 — диаметр $\angle ACB = 90^{\circ}$

Касательная

Свойство 1

Это прямая, имеющая с окружностью ровно одну общую точку.

OK — радиус a — касательная $OK \perp a$

Свойство 2

Отрезки касательных, проведенные из одной точки — равны и составляют равные углы с прямой, проходящей через эти точки и центр окружности.

Свойство 3

Угол, образованный касательной и хордой равен половине градусной меры дуги, заключенной между ними.

BC — хорда AB — касательная $\angle ABC = \frac{1}{2} \cup BC$

Свойство 4

Квадрат отрезка касательной равен произведению внешней части секущей на всю секущую.

AC — секущая AK — отрезок касательной $AK^2 = AB \cdot AC$

Вписанные четырехугольники

Это четырехугольник, все вершины которого лежат на окружности.

Признак вписанного четырехугольника:

Если четырехугольник вписан в окружность, то суммы противоположных углов равны 180° градусов.

$$\angle A + \angle C = 180^{\circ}$$

 $\angle B + \angle D = 180^{\circ}$

Описанные четырехугольники

Это четырехугольник, все стороны которого касаются одной окружности.

Признак описанного четырехугольника:

Если четырехугольник описан около окружности, то суммы его противоположных сторон — равны.

$$AB + CD = AD + BC$$

Описанная и вписанная окружности правильного треугольника

$$R = \frac{a\sqrt{3}}{3} \qquad S = \frac{a^2\sqrt{3}}{4}$$

$$r = \frac{a\sqrt{3}}{6} \qquad h = \frac{a\sqrt{3}}{2}$$

Формулы

$$S = \pi R^2$$
 — площадь круга

$$S_a = \frac{\pi R^2 \cdot \alpha}{360}$$
 — площадь сектора

$$C = 2\pi R$$
 — длина окружности