Growth Comparison with VBGM

Dr. Derek H. Ogle

Northland College

Wisconsin Age & Growth Workshop Stevens Point, WI 14&15 January 2014

Motivation

Motivation

2 Model Comparisons

- Motivation
- 2 Model Comparisons
- Presenting Results

- Motivation
- 2 Model Comparisons
- Presenting Results
- 4 An Extension I

- Motivation
- 2 Model Comparisons
- Presenting Results
- 4 An Extension I
- 5 An Extension II

- Motivation
- 2 Model Comparisons
- 3 Presenting Results
- 4 An Extension I
- 5 An Extension II

Motivation

• Compare "growth" (i.e., compare VBGM parameters) among groups.

Motivation

- Compare "growth" (i.e., compare VBGM parameters) among groups.
- Examples
 - Compare between sexes.
 - 2 Compare between "locations" (e.g., water bodies, habitats).
 - Compare between years.
 - Ompare between management periods.

- Motivation
- 2 Model Comparisons
- 3 Presenting Results
- 4 An Extension I
- 5 An Extension II

Example Background

• Atlantic Croaker (Micropogonias undulatus)

• 318 observations of length, age, and sex.

Example Background

• Atlantic Croaker (Micropogonias undulatus)

- 318 observations of length, age, and sex.
- Objectives
 - Generally, does growth differ between male and female Atlantic Croakers?
 - ② Specifically, does "early" or "mature" growth differ between sexes (i.e., does ω or L_{∞} differ)?

Review Mooij Parameterization

- ω is representative of the instantaneous growth rate near t_0 .
- L_{∞} is the asymptotic average length.
- L_0 is the mean length at time zero (i.e., birth).

Most General Model

• The model where each parameter differs for each sex.

Most General Model

• The model where each parameter differs for each sex.

$$E[L|t] = \begin{cases} L_{\infty}[1] - (L_{\infty}[1] - L_0[1]) e^{-\frac{\omega[1]}{L_{\infty}[1]}t} & \text{if "female"} \\ L_{\infty}[2] - (L_{\infty}[2] - L_0[2]) e^{-\frac{\omega[2]}{L_{\infty}[2]}t} & \text{if "male"} \end{cases}$$

Most General Model

The model where each parameter differs for each sex.

$$E[L|t] = \begin{cases} L_{\infty}[1] - (L_{\infty}[1] - L_{0}[1]) e^{-\frac{\omega[1]}{L_{\infty}[1]}t} & \text{if "female"} \\ L_{\infty}[2] - (L_{\infty}[2] - L_{0}[2]) e^{-\frac{\omega[2]}{L_{\infty}[2]}t} & \text{if "male"} \end{cases}$$

which can be written in shorthand as

$$E[L|t] = L_{\infty}[sex] - (L_{\infty}[sex] - L_0[sex]) e^{-\frac{\omega[sex]}{L_{\infty}[sex]}t}$$

where sex = 1 if female and sex = 2 if male.

• L_{∞} in common.

$$E[L|t] = L_{\infty} - (L_{\infty} - L_0[sex]) e^{-\frac{\omega[sex]}{L_{\infty}}t}$$

• L_{∞} in common.

$$E[L|t] = L_{\infty} - (L_{\infty} - L_0[sex]) e^{-\frac{\omega[sex]}{L_{\infty}}t}$$

• *L*₀ in common.

$$E[L|t] = L_{\infty}[sex] - (L_{\infty}[sex] - L_0) e^{-\frac{\omega[sex]}{L_{\infty}[sex]}t}$$

• L_{∞} in common.

$$E[L|t] = L_{\infty} - (L_{\infty} - L_0[sex]) e^{-\frac{\omega[sex]}{L_{\infty}}t}$$

• L₀ in common.

$$E[L|t] = L_{\infty}[sex] - (L_{\infty}[sex] - L_0) e^{-\frac{\omega[sex]}{L_{\infty}[sex]}t}$$

 \bullet ω in common.

$$E[L|t] = L_{\infty}[sex] - (L_{\infty}[sex] - L_0[sex]) e^{-\frac{\omega}{L_{\infty}[sex]}t}$$

Model	RSS	р	AIC
General	541854	-	3282.6
common Linf	546067	0.12037	3283.1
common L0	542172	0.66924	3280.8
common omega	542077	0.72043	3280.7

Compare each model against the most general model.

Model	RSS	р	AIC
General	541854	-	3282.6
common Linf	546067	0.12037	3283.1
common L0	542172	0.66924	3280.8
common omega	542077	0.72043	3280.7

• If all are significant (p< α), all parameters differ between groups.

Model	RSS	р	AIC
General	541854	-	3282.6
common Linf	546067	0.12037	3283.1
common L0	542172	0.66924	3280.8
common omega	542077	0.72043	3280.7

- If all are significant (p< α), all parameters differ between groups.
- If not significant (p> α), parameter does not differ between groups.

Model	RSS	р	AIC
General	541854	-	3282.6
common Linf	546067	0.12037	3283.1
common L0	542172	0.66924	3280.8
common omega	542077	0.72043	3280.7

- If all are significant (p< α), all parameters differ between groups.
- If not significant (p> α), parameter does not differ between groups.
- If at least two not signficant, continue with lowest RSS model.

Model	RSS	р	AIC
General	541854	-	3282.6
common Linf	546067	0.12037	3283.1
common L0	542172	0.66924	3280.8
common omega	542077	0.72043	3280.7

- If all are significant (p< α), all parameters differ between groups.
- If not significant (p> α), parameter does not differ between groups.
- If at least two not signficant, continue with lowest RSS model.

• L_{∞} and L_0 in common.

$$E[L|t] = L_{\infty} - (L_{\infty} - L_0) e^{-\frac{\omega[sex]}{L_{\infty}}t}$$

• L_{∞} and L_0 in common.

$$E[L|t] = L_{\infty} - (L_{\infty} - L_0) e^{-\frac{\omega[\text{sex}]}{L_{\infty}}t}$$

• L_{∞} and ω in common.

$$E[L|t] = L_{\infty} - (L_{\infty} - L_0[sex]) e^{-\frac{\omega}{L_{\infty}}t}$$

• L_{∞} and L_0 in common.

$$E[L|t] = L_{\infty} - (L_{\infty} - L_0) e^{-\frac{\omega[\text{sex}]}{L_{\infty}}t}$$

• L_{∞} and ω in common.

$$E[L|t] = L_{\infty} - (L_{\infty} - L_0[sex]) e^{-\frac{\omega}{L_{\infty}}t}$$

• L_0 and ω in common.

$$E[L|t] = L_{\infty}[sex] - (L_{\infty}[sex] - L_0) e^{-\frac{\omega}{L_{\infty}[sex]}t}$$

• Compare against lowest RSS model from previous step.

- Compare against lowest RSS model from previous step.
- Only compare subset models (i.e., must have same parameter in common as from previous step).

- Compare against lowest RSS model from previous step.
- Only compare subset models (i.e., must have same parameter in common as from previous step).

Model	RSS	р	AIC
common omega	542077	-	3280.7
common omega and Linf	570957	0.00006	3295.2
common omega and L0	542188	0.80039	3278.8

- Compare against lowest RSS model from previous step.
- Only compare subset models (i.e., must have same parameter in common as from previous step).

Model	RSS	р	AIC
common omega	542077	-	3280.7
common omega and Linf	570957	0.00006	3295.2
common omega and L0	542188	0.80039	3278.8

• If all significant (p< α), both parameters differ between groups.

- Compare against lowest RSS model from previous step.
- Only compare subset models (i.e., must have same parameter in common as from previous step).

Model	RSS	р	AIC
common omega	542077	-	3280.7
common omega and Linf	570957	0.00006	3295.2
common omega and L0	542188	0.80039	3278.8

- If all significant (p< α), both parameters differ between groups.
- If not significant (p> α), parameter does not differ between groups.
- If at least two not signficant, continue with lowest RSS model.

- Compare against lowest RSS model from previous step.
- Only compare subset models (i.e., must have same parameter in common as from previous step).

Model	RSS	р	AIC
common omega	542077	-	3280.7
common omega and Linf	570957	0.00006	3295.2
common omega and L0	542188	0.80039	3278.8

- If all significant (p< α), both parameters differ between groups.
- If not significant (p> α), parameter does not differ between groups.
- If at least two not signficant, continue with lowest RSS model.

This is the usual model fit to one group.

$$E[L|t] = L_{\infty} - (L_{\infty} - L_0) e^{-\frac{\omega}{L_{\infty}}t}$$

This is the usual model fit to one group.

$$E[L|t] = L_{\infty} - (L_{\infty} - L_0) e^{-\frac{\omega}{L_{\infty}}t}$$

• Compare against lowest RSS model from previous step.

This is the usual model fit to one group.

$$E[L|t] = L_{\infty} - (L_{\infty} - L_0) e^{-\frac{\omega}{L_{\infty}}t}$$

Compare against lowest RSS model from previous step.

Model	RSS	р	AIC
common omega and L0	542188	-	3278.8
all common	647329	0.00000	3333.1

All Parameters in Common Models

This is the usual model fit to one group.

$$E[L|t] = L_{\infty} - (L_{\infty} - L_0) e^{-\frac{\omega}{L_{\infty}}t}$$

Compare against lowest RSS model from previous step.

Model	RSS	р	AIC
common omega and L0	542188	-	3278.8
all common	647329	0.00000	3333.1

- If significant (p< α), remaining parameter differs between groups.
- If not significant (p> α), all parameters do not differ between groups.

All Parameters in Common Models

This is the usual model fit to one group.

$$E[L|t] = L_{\infty} - (L_{\infty} - L_0) e^{-\frac{\omega}{L_{\infty}}t}$$

Compare against lowest RSS model from previous step.

Model	RSS	р	AIC
common omega and L0	542188	-	3278.8
all common	647329	0.00000	3333.1

- If significant (p< α), remaining parameter differs between groups.
- ullet If not significant (p> lpha), all parameters do not differ between groups.

Conclusion for Atlantic Croaker Example

• L_{∞} , but not L_0 or ω , differs between the sexes.

Conclusion for Atlantic Croaker Example

- L_{∞} , but not L_0 or ω , differs between the sexes.
- Thus, the asymptotic average length differs between the sexes, but the growth rate very early in life does not.

Objectives

- Motivation
- 2 Model Comparisons
- 3 Presenting Results
- 4 An Extension I
- 6 An Extension II

Coefficients Table

Females

	Estimate	95% LCI	95% UCI
Linf	442.3	407.5	564.1
L0	176.8	105.3	229.8
omega	97.9	50.6	144.5

Males

	Estimate	95% LCI	95% UCI
Linf	366.4	346.4	437.7
L0	152.8	55.5	208.4
omega	115.3	55.3	183.1

Coefficients Plot

Fitted Models Plot

Objectives

- Motivation
- 2 Model Comparisons
- 3 Presenting Results
- 4 An Extension I
- 5 An Extension II

- Set parameter ages at 1 and 10 (and, thus, 5.5).
- Parameters are mean lengths at these ages.

- Set parameter ages at 1 and 10 (and, thus, 5.5).
- Parameters are mean lengths at these ages.
- Compare all one parameter in common models to general model.

Model	RSS	р	AIC
General	541854	-	3282.6
common L1	542744	0.47461	3281.1
common L2	592740	0.00000	3309.1
common L3	564900	0.00032	3293.8

- Set parameter ages at 1 and 10 (and, thus, 5.5).
- Parameters are mean lengths at these ages.

② Compare two parameter in common models to L_1 in common model.

Model	RSS	р	AIC
common L1	542744	-	3281.1
common L1 and L2	612541	0.00000	3317.6
common L1 and L3	567658	0.00015	3293.4

- Set parameter ages at 1 and 10 (and, thus, 5.5).
- Parameters are mean lengths at these ages.
- Oraw conclusions.
 - Mean length-at-age 1 does not differ between sexes.
 - Mean lengths-at-ages 5.5 and 10 do differ between sexes.

Objectives

- Motivation
- 2 Model Comparisons
- 3 Presenting Results
- 4 An Extension I
- 5 An Extension II

 Mooij et al. (1999) showed that the derivative of the VBGM is a measure of the instantaneous growth rate at each age.

$$\frac{dL}{dt} = \frac{\omega(L_{\infty} - L_0)}{L_{\infty}} e^{-\frac{\omega}{L_{\infty}}}$$
age

• Mooij *et al.* (1999) showed that the derivative of the VBGM is a measure of the instantaneous growth rate at each age.

$$rac{dL}{dt} = rac{\omega(L_{\infty} - L_0)}{L_{\infty}} e^{-rac{\omega}{L_{\infty}} age}$$

 Mooij et al. (1999) showed that the derivative of the VBGM is a measure of the instantaneous growth rate at each age.

$$\frac{dL}{dt} = \frac{\omega(L_{\infty} - L_0)}{L_{\infty}} e^{-\frac{\omega}{L_{\infty}} age}$$

- Predict growth rates and length at each age and group from each bootstrapped sample.
- Plot predicted growth rates vs. length for each age and group.

• Mean length (L) likely does not differ for ages 1 and 2, definitely differs after age 4.

- Mean length (L) likely does not differ for ages 1 and 2, definitely differs after age 4.
- Mean growth rate (GR) likely does not differ for ages 1-3, likely marginally differs for ages 4-6, and likely does not differ for ages 7-10.

- Mean length (L) likely does not differ for ages 1 and 2, definitely differs after age 4.
- Mean growth rate (GR) likely does not differ for ages 1-3, likely marginally differs for ages 4-6, and likely does not differ for ages 7-10.
- ✓ GR is initially the same between sexes.

- Mean length (L) likely does not differ for ages 1 and 2, definitely differs after age 4.
- Mean growth rate (GR) likely does not differ for ages 1-3, likely marginally differs for ages 4-6, and likely does not differ for ages 7-10.
- ✓ GR is initially the same between sexes.
- ✓ GR begins to differ at age-4 such that the mean L differs.

- Mean length (L) likely does not differ for ages 1 and 2, definitely differs after age 4.
- Mean growth rate (GR) likely does not differ for ages 1-3, likely marginally differs for ages 4-6, and likely does not differ for ages 7-10.
- ✓ GR is initially the same between sexes.
- ✓ GR begins to differ at age-4 such that the mean L differs.
- ✓ GR is similar after age-6 such that the difference in mean L is maintained.