Ground rules: Open Class notes from website or notes in own handwriting or typed by one self. No other resources allowed. Individual work.

- 1. It is assumed that scores of those who took the SIS B.Math.(Hons.) entrance exam follow a Normal distribution with standard deviation is 6.4 and the mean of 25.
 - (a) If you choose one student at random what is the probability that the student's score is between 20 and 30?
 - (b) We sample 25 students. What is the sampling distribution of their average score \bar{X} ?
 - (c) What is the probability that the mean score of your sample is between 20 and 30?
- 2. The following R code simulates a random variable X

Find the distribution of X.

3. Gobarkanth collects $X_1, X_2, X_3, \ldots, X_n$ of i.i.d measurements of radiation from Canteen's Gobar Gas plant. He assumes that the observations follow a Rayleigh distribution with parameter α , with p.d.f. given by

$$f(x) = \begin{cases} \alpha x \exp(-\frac{1}{2}\alpha x^2) & \text{if } x \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

Find the maximum likelihood estimate for α , providing appropriate justification.

- 4. Using R write an R-code to perform the following:
 - (a) Using replicate generate 100 realisations of Y and Z as prescribed below:
 - (i) Generate 15 samples from Poisson (10) distribution

- (ii) Compute the sample mean $-\bar{X}$ and sample variance- S^2 of the generated sample.
- (iii) Compute $Y=\sqrt{15}\frac{\bar{X}-\mu}{\sigma}$ where μ and σ are the mean and variance of the Poisson(10) distribution.
- (iv) Compute $Z=\sqrt{15}\frac{\bar{X}-\mu}{S}$ where μ is the mean of the Poisson(10) distribution.
- (b) Using Q-Q plot decide if Y or Z is Normally distributed.