

# TD1: Suites de fonctions

#### 1. CVU par études de fonctions (tableau de variations)

**Exercice 1:** Étudier la convergence simple et uniforme des suites de fonctions  $(f_n)_{n\in\mathbb{N}}$  suivantes.

a) 
$$f_n: x \in \mathbb{R}_+ \mapsto \frac{x}{n(1+x^n)}$$
.

b) 
$$f_n: x \in \mathbb{R} \mapsto \frac{nx}{1 + n^2x^2}$$
.

c) 
$$f_n: x \in \mathbb{R} \mapsto \frac{nx^3}{1+nx^2}$$
.

$$d) f_n : x \in \mathbb{R}_+ \mapsto nx^2 e^{-nx}$$

Exercice 2 : Étudier la convergence simple et uniforme de la suite de fonctions  $(f_n)$  suivante :

$$\forall n \in \mathbb{N}^*, \ f_n : x \in \mathbb{R}_+ \mapsto n^{\alpha} x e^{-nx}, \ \alpha \in \mathbb{R}_+.$$

#### 2. Utilisation de suites dans le domaine et majorations

**Exercice 3 :** Étudier la convergence simple et uniforme sur les domaines proposés des suites de fonctions  $(f_n)_{n\in\mathbb{N}}$  suivantes :

- e)  $f_n(x) = e^{-nx} \sin(nx) \operatorname{sur} \mathbb{R}_+$ , puis  $\operatorname{sur} [a, +\infty[$  où a > 0.
- $f(x) = n |\ln x|^n \text{ sur } \mathbb{R}_+^*$ , puis sur tout segment [a, b] où 1/e < a < b < e.

$$g) \ f_n(x) = \begin{cases} 0 & \text{si } x < 0 \\ nx & \text{si } x \in [0, 1/n] \\ 1 & \text{si } x > 1/n. \end{cases} \quad \text{sur } \mathbb{R}, \text{ puis sur } [a, +\infty[ \text{ où } a > 0.$$

$$h) f_n(x) = \begin{cases} x^2 \sin\left(\frac{1}{nx}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases} \quad \text{sur } \mathbb{R}, \text{ puis sur } [0, a] \text{ où } a > 0.$$

**Exercice 4:** Pour  $x \in \mathbb{R}$ , on pose  $f_n(x) = 1 + x + \cdots + x^{n-1}$ .

- 1. Étudier la convergence simple de la suite de fonctions  $(f_n)_{n\in\mathbb{N}^*}$ . On note f(x) la limite de la suite  $(f_n(x))_{n\in\mathbb{N}^*}$  lorsque cette limite existe.
- 2. On pose, pour  $x \in ]-1,1[, \varphi_n(x)=f(x)-f_n(x).$  Vérifier que

$$\varphi_n(x) = \frac{x^n}{1 - x}.$$

Quelle est la limite de  $\varphi_n$  en 1? En déduire que la convergence n'est pas uniforme sur ] – 1,1[.

3. Soit  $a \in ]0,1[$ . Démontrer que  $(f_n)$  converge uniformément vers f sur [-a,a].

**Exercice 5**: On considère la suite de fonctions  $(f_n)_{n\in\mathbb{N}^*}$  définie sur  $\mathbb{R}_+$  par l'expression :

$$f_n(x) = \sin \sqrt{x + 4\pi^2 n^2} - \frac{x}{4n\pi}.$$

- 1. Pour  $x \in \mathbb{R}_+$  fixé, montrer que  $\sqrt{x + 4\pi^2 n^2} = 2\pi n + \frac{x}{4\pi n} + o\left(\frac{1}{n}\right)$ .
- 2. En déduire que la suite  $(f_n)_{n\in\mathbb{N}^*}$  converge simplement, et donner la fonction limite.
- 3. La convergence, est-elle uniforme sur  $\mathbb{R}_+$ ?

**Exercice 6 :** Soit  $(f_n)_{n\in\mathbb{N}^*}$  une suite de fonctions de  $\mathbb{R}_+$  dans  $\mathbb{R}$  définie par

$$f_n(x) = \left(1 + \frac{x}{n}\right)^{-n}$$

1. Étudier la limite simple de  $(f_n)_{n\in\mathbb{N}^*}$  et montrer que  $\forall n\geq 1$  et  $\forall x\in\mathbb{R}^+$ ,

$$f_n(x) \ge \lim_{n \to \infty} f_n(x)$$
.

2. En partant de l'encadrement suivant valable pour tout  $t \in \mathbb{R}_+$ ,

$$t - \frac{t^2}{2} \le \ln(1+t) \le t,$$

justifier que la suite  $(f_n)_{n\in\mathbb{N}^*}$  converge uniformément sur tout intervalle [0,a] (a>0).

3. Question ++. Établir qu'en fait, la suite de fonctions  $(f_n)_{n\in\mathbb{N}^*}$  converge uniformément sur  $\mathbb{R}_+$ .

## 3. Utilisation des théorèmes d'interversions

**Exercice 7 :** Soit  $(f_n)_{n\in\mathbb{N}}$  une suite de fonctions définie sur  $\mathbb{R}_+$  par  $f_n(x) = \frac{1}{(1+x^2)^n}$ .

- 1. Déterminer la limite simple de la suite  $(f_n)_{n\in\mathbb{N}}$ .
- 2. En déduire, en utilisant un théorème du cours, qu'il n'y a pas convergence uniforme sur  $\mathbb{R}_+$ .
- 3. Démontrer la convergence uniforme sur  $[a, +\infty[$  avec a > 0.

**Exercice 8:** (CC1 - 2022) Pour tout  $n \in \mathbb{N}^*$  et tout  $x \in [0, 1]$ , on pose

$$f_n(x) = \frac{n^2 e^{-x}}{n^2 + 1 - x}.$$

- 1. Montrer que la suite de fonctions  $(f_n)_{n\in\mathbb{N}^*}$  converge simplement sur [0,1] vers une fonction f à préciser.
- 2. Montrer qu'il y a convergence uniforme sur [0,1].
- 3. Déterminer  $\lim_{n \to +\infty} \int_0^1 f_n(x) dx$ .

**Exercice 9 :** Soit la suite de fonctions  $(f_n)_{n\in\mathbb{N}}$  définie sur  $[0,\pi]$  par :

$$f_n(x) = \begin{cases} \frac{\sin x}{x(1+nx)} & \text{si } x \neq 0\\ 1 & \text{si } x = 0. \end{cases}$$

- 1. Étudier la convergence simple de la suite  $(f_n)_{n\in\mathbb{N}}$  sur  $[0,\pi]$ .
- 2. En déduire qu'il ne peut y avoir convergence uniforme sur  $[0, \pi]$ .
- 3. Démontrer qu'il y a en revanche convergence uniforme sur  $[a,\pi]$  où a>0.

**Exercice 10 :** Soit la suite de fonctions  $(f_n)_{n\in\mathbb{N}}$  définie sur [0,1] par la relation  $f_n(x) = \frac{2^n x}{1 + n2^n x^2}$ .

- 1. Étudier la convergence simple de cette suite de fonctions.
- 2. Calculer  $I_n = \int_0^1 f_n(t) dt$  et  $\lim_{n \to +\infty} I_n$ . En déduire que la suite  $(f_n)_{n \in \mathbb{N}}$  n'est pas uniformément convergente sur [0, 1].
- 3. Donner une démonstration directe du fait que  $(f_n)_{n\in\mathbb{N}}$  ne converge pas uniformément sur [0,1].

**Exercice 11:** (CC1 - 2022) Pour tout  $n \in \mathbb{N}$  et tout  $x \in [0, \pi/2]$ , on pose

$$f_n(x) = (n+1) \left(\sin(x)\right)^n \cos(x).$$

- 1. Déterminer  $\lim_{n\to+\infty}\int_0^{\pi/2} f_n(x)dx$ .
- 2. Montrer que la suite de fonctions  $(f_n)_{n\in\mathbb{N}}$  converge simplement sur  $[0,\pi/2]$ .
- 3. Étudier la convergence uniforme de la suite de fonctions sur  $[0, \pi/2]$ .

#### 4. Autour des hypothèses du théorème de dérivation

**Exercice 12 :** On définit une suite de fonction  $(f_n)_{n\in\mathbb{N}}$  sur [0,1] par  $f_n(x) = \frac{x}{1+n^2x^2}$ . Montrer que :

- $(f_n)$  converge uniformément sur [0,1] vers une fonction dérivable f;
- $(f'_n)$  converge simplement sur [0,1] vers une fonction g telle que  $f' \neq g$ .

**Exercice 13**: (partiel 2020) On considère la suite de fonctions  $f_n: ]0,1] \to \mathbb{R}$  définies par  $f_n(x) = x^n \ln x$ .

- 1. Montrer que la suite  $(f_n)_{n\in\mathbb{N}}$  converge simplement sur ]0,1] vers une fonction f à préciser.
- 2. La suite de fonctions  $(f_n)_{n\in\mathbb{N}}$  converge-t-elle uniformément sur ]0,1]?
- 3. Calculer  $f'_n$ . La suite  $(f'_n)_{n\in\mathbb{N}}$  converge-t-elle simplement sur [0,1]? Uniformément sur [0,1]?

**Exercice 14 :** On considère sur  $\mathbb{R}$  la suite de fonctions  $(f_n)_{n\in\mathbb{N}^*}$ , où pour tout  $n\in\mathbb{N}^*$ :

$$f_n(x) = \sqrt{x^2 + \frac{1}{n}}.$$

- 1. Montrer que pour tout  $n \in \mathbb{N}^*$ ,  $f_n$  est de classe  $\mathcal{C}^1$  sur  $\mathbb{R}$ .
- 2. Montrer que la suite de fonctions  $(f_n)_{n\in\mathbb{N}^*}$  converge uniformément sur  $\mathbb{R}$ . La limite uniforme est-elle de classe  $\mathcal{C}^1$ ?

### 5. Exercices théoriques

Exercice 15 : Soit I un intervalle de  $\mathbb{R}$ . Soit  $(f_n)_{n\in\mathbb{N}}$  une suite de fonctions qui converge uniformément sur I. Montrer que si chaque  $f_n$  est uniformément continue sur I, la limite uniforme est uniformément continue sur I.

**Exercice 16 :** Soit E une partie quelconque de  $\mathbb{R}$ . Soit  $(f_n)_{n\in\mathbb{N}}$  une suite de fonctions. On suppose que chaque fonction  $f_n$  est définie et bornée sur E et que la suite  $(f_n)_{n\in\mathbb{N}}$  converge vers f uniformément sur E. Montrer alors que f est bornée sur E et que

$$m_n := \inf_{x \in E} f_n(x) \xrightarrow[n \to +\infty]{} m := \inf_{x \in E} f(x)$$
 et  $M_n := \sup_{x \in E} f_n(x) \xrightarrow[n \to +\infty]{} M := \sup_{x \in E} f(x)$ .

**Exercice 17 :** Soit un ensemble non vide  $X \subset \mathbb{R}$  et  $(f_n)_{n \in \mathbb{N}}$  une suite de fonctions convergeant uniformément sur X. Montrer que si

$$\forall n \in \mathbb{N}, \ \forall x \in X, \ f_n(x) \in \{0, 1\},$$

alors  $(f_n)_{n\in\mathbb{N}}$  est stationnaire.

**Exercice 18**: (CC1 - 2022) Soit  $(f_n)_{n \in \mathbb{N}}$  une suites de fonctions sur  $\mathcal{X} \subset \mathbb{R}$ , telles que il existe c > 0 telle que

$$\forall n \in \mathbb{N}, \forall x \in \mathcal{X}, \qquad f_n(x) > c.$$

Montrer que si  $(f_n)_{n\in\mathbb{N}}$  converge uniformément vers f sur  $\mathcal{X}$  alors la suite  $(1/f_n)_{n\in\mathbb{N}}$  converge uniformément vers 1/f sur  $\mathcal{X}$ .

**Exercice 19 :** Soit f une fonction de  $\mathbb{R}$  dans  $\mathbb{R}$ . On considère sur  $\mathbb{R}$  la suite de fonctions  $(f_n)_{n\in\mathbb{N}^*}$ , où pour tout  $n\in\mathbb{N}^*$ 

$$f_n(x) = \frac{(f(x))^2}{\sqrt{(f(x))^2 + \frac{1}{n}}}.$$

Montrer que la suite de fonctions  $(f_n)_{n\in\mathbb{N}^*}$  converge uniformément vers |f| sur  $\mathbb{R}$ .

#### Exercice 20:

- 1. Soient  $(f_n)$  et  $(g_n)$  deux suites de fonctions convergeant uniformément sur  $\mathbb{R}$  vers des fonctions bornées f et g. Montrer que la suite de fonctions  $(f_ng_n)$  converge uniformément vers fg sur  $\mathbb{R}$ .
- 2. On suppose qu'une suite de fonctions  $(f_n)$  de [a,b] vers  $\mathbb{R}$  converge uniformément vers une fonction continue  $f:[a,b] \to \mathbb{R}$ . On considère une suite  $(x_n)$  d'éléments de [a,b] convergeant vers un un réel  $x \in [a,b]$ . Montrer que  $f_n(x_n) \xrightarrow[n \to +\infty]{} f(x)$ .

**Exercice 21 :** Soit  $f : \mathbb{R} \to \mathbb{R}$  une fonction deux fois dérivables sur  $\mathbb{R}$ , de dérivée seconde bornée sur  $\mathbb{R}$ . Montrer que la suite de fonctions  $(f_n)_{n \in \mathbb{N}^*}$ , où pour tout  $n \in \mathbb{N}^*$ 

$$f_n(x) = n\left(f\left(x + \frac{1}{n}\right) - f(x)\right),$$

converge uniformément vers f'.

**Exercice 22 :** (CC1 - 2023) Soit  $g : \mathbb{R} \to \mathbb{R}$  une fonction de classe  $C^2$  sur  $\mathbb{R}$ . Soit  $(h_n)_{n \in \mathbb{N}^*}$  la suite de fonctions définies par

$$h_n(t) = n g\left(\frac{t^2}{n}\right) - ng(0), \qquad t \in \mathbb{R}.$$

- 1. Montrer que la suite  $(h_n)_{n\in\mathbb{N}^*}$  converge simplement sur  $\mathbb{R}$  vers une fonction h à déterminer.
- 2. Soit A > 0. Montrer que  $(h_n)_{n \in \mathbb{N}^*}$  converge uniformément vers h sur [-A, A].

# 6. Approximation polynomiale

**Exercice 23:** Pour tout  $n \in \mathbb{N}$  et tout  $x \in \mathbb{R}$ , on note  $P_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$ . En utilisant une formule de Taylor, montrer que  $(P_n)_{n \in \mathbb{N}}$  converge uniformément vers  $f : x \mapsto e^x$  sur tout segment [a, b] de  $\mathbb{R}$ .

**Exercice 24 :** Sur [0,1], on considère la fonction  $f: x \mapsto \sqrt{x}$ . Soit  $(P_n)_{n \in \mathbb{N}}$  une suite de polynômes définis sur [0,1] par

$$P_0 = 0$$
,  $\forall n \in \mathbb{N}, \forall x \in [0, 1], P_{n+1}(x) = P_n(x) + \frac{1}{2} \left( x - (P_n(x))^2 \right)$ .

- 1. Montrer que pour tout  $n \in \mathbb{N}$  et tout  $x \in [0,1]$ ,  $0 \leqslant P_n(x) \leqslant f(x)$ .
- 2. Montrer que la suite de fonctions  $(P_n)_{n\in\mathbb{N}}$  est croissante.
- 3. En déduire que la suite  $(P_n)_{n\in\mathbb{N}}$  converge uniformément vers f sur [0,1].

**Exercice 25**: On se propose de montrer que la fonction  $f: ]0,1] \to \mathbb{R}$ ,  $x \mapsto \sin \frac{1}{x}$  n'est pas limite uniforme sur ]0,1] d'une suite d'applications polynomiales.

1. Supposons qu'il existe une telle suite  $(P_n)_{n\in\mathbb{N}}$ . Prouver qu'il existe  $N\in\mathbb{N}$  tel que pour tout  $k\in\mathbb{N}^*$ 

$$\left| P_N \left( \frac{1}{2k\pi - \frac{\pi}{2}} \right) + 1 \right| \leqslant \frac{1}{2}, \quad \left| P_N \left( \frac{1}{2k\pi + \frac{\pi}{2}} \right) - 1 \right| \leqslant \frac{1}{2}.$$

2. En déduire que

$$P_N\left(\frac{1}{2k\pi - \frac{\pi}{2}}\right) \leqslant -\frac{1}{2} < 0 < \frac{1}{2} \leqslant P_N\left(\frac{1}{2k\pi + \frac{\pi}{2}}\right).$$

3. Montrer que pour tout  $k \in \mathbb{N}^*$ , il existe  $\alpha_k$  vérifiant

$$\alpha_k \in \left] \frac{1}{2k\pi + \frac{\pi}{2}}, \frac{1}{2k\pi - \frac{\pi}{2}} \right[$$

et tel que  $P_N(\alpha_k) = 0$ .

4. Conclure.