The Jacobson radical of semicrossed products of the disk algebra

Anchalee Khemphet Justin Peters

Department of Mathematics, Iowa State University

April 14th, 2012

Outline

- Introduction
 - Semicrossed Products of the Disk Algebra
 - Previous Results
- Finite Blaschke Products
 - Complex Dynamics of Finite Blaschke Products
 - The Description of the Recurrent Set
- The Jacobson Radical and Quasinilpotent Elements
 - The Jacobson Radical
 - Quasinilpotent Elements
- 4 References

Disk Algebra

Introduction

What is the disk algebra?

- Let $\mathbb D$ be the open unit disc and $\mathbb T$ the unit circle.
- The disk algebra is an algebra

$$\mathcal{A}(\mathbb{D}) = \{f : f \text{ is analytic on } \mathbb{D} \text{ and continuous on } \overline{\mathbb{D}}\}.$$

Finite Blaschke Products

• A finite Blaschke product is a function φ of the form:

$$\varphi(z) = u \prod_{i=1}^{N} \frac{z - a_i}{1 - \bar{a}_i z},$$

where |u| = 1, and $a_i \in \mathbb{D}$, i = 1, 2, ..., N.

• Define an *endomorphism* α of $\mathcal{A}(\mathbb{D})$ by

$$\alpha(f)=f\circ\varphi,$$

where $f \in \mathcal{A}(\mathbb{D})$ and φ is a finite Blaschke product.

Semicrossed products

• Let \mathcal{P} be the algebra of formal polynomials

$$\sum U^k f_k$$

with $f_k \in \mathcal{A}(\mathbb{D})$ where U satisfies

$$fU = U\alpha(f)$$

for any $f \in \mathcal{A}(\mathbb{D})$.

• The semicrossed product $\mathcal{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$ is the completion of \mathcal{P} with respect to the following norm.

Semicrossed products

Consider a pair (A, T) of contractions satisfying

$$AT = T\varphi(A).$$

• There is a contractive representation ρ of $\mathcal{A}(\mathbb{D})$ given by

$$\rho(f)=f(A).$$

ullet Define a representation of ${\mathcal P}$

$$\rho \times T(\sum U^k f_k) = \sum T^k \rho(f_k).$$

ullet Then the norm on ${\mathcal P}$ is defined by

$$||\sum U^k f_k|| = \sup_{(\rho,T) \text{ covariant}} ||\sum T^k \rho(f_k)||.$$

Fourier Coefficients

• For $t \in [0, 1]$, define γ_t acting on \mathcal{P} by

$$\gamma_t(\sum U^k f_k) = \sum U^k e^{2\pi i k t} f_k$$

which extends to an automorphism of $\mathcal{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$.

• Define the k^{th} Fourier coefficient $\pi_k(F)$ of F by

$$U^k \pi_k(F) = \int_{\mathbb{T}} e^{-2\pi i k t} \gamma_t(F) dm(t)$$

where *dm* is normalized Lebesgue measure on the unit circle.

• If F is in the polynomial \mathcal{P} , then $\pi_k(F) = f_k$ and $||\pi_k(F)|| \leq ||F||$.

Introduction

Quasinilpotent Elements and Jacobson Radical

Definition

F is a quasinilpotent element if $\lim_{n\to\infty} ||F^n||^{\frac{1}{n}} = 0$.

Definition

The Jacobson radical of an operator algebra $\mathfrak A$ is the maximal left ideal of $\mathfrak A$ which is contained in the set of quasinilpotent elements, denoted by $Rad(\mathfrak A)$.

Introduction

Previous Results

- T. Hoover, J. Peters, and W. Wogen, Spectral properties of semicrossed products, Houston J. Math., 19 (1993), 649–660.
- A. P. Donsig, A. Katavolos, and A. Manoussos, The Jacobson radical for analytic crossed products, J. Funct. Anal., 187 (2001), 129–145.
- K. A. Davidson and E. Katsoulis, Semicrossed products of the disk algebra, preprint, arXiv:1104.1398v1, 2011.

Previous Results

Previous Results

Theorem (Donsig et al., 2001)

 $Rad(C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+)$ is the set $\{F \in C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+ : \pi_0(F) = 0, \text{ and } \}$ $\pi_k(F)$ vanishes on the recurrent set}.

The Jacobson Radical and Quasinilpotent Elements

Theorem (Davidson and Katsoulis, 2011)

Let φ be a finite Blaschke product, and let $\alpha(f) = f \circ \varphi$. Then $\mathcal{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$ is a subalgebra of $C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+$.

Complex Dynamics of Finite Blaschke Products

Classification of Finite Blaschke Products

Definition

Introduction

A finite Blaschke product φ is said to be

- elliptic if there exists a fixed point in D;
- **2** hyperbolic if there exists the Denjoy-Wolff point $z_0 \in \mathbb{T}$ such that $\varphi'(z_0) < 1$;
- **3** parabolic if there exists the Denjoy-Wolff point $z_0 \in \mathbb{T}$ such that $\varphi'(z_0) = 1$.

Complex Dynamics of Finite Blaschke Products

Julia Sets

Introduction

Definition

The Fatou set \mathcal{F} of φ is the set of points z in $\overline{\mathbb{C}}$ such that $\{\varphi^n\}$ is a normal family in some neighborhood of z. The Julia set is the complement of the Fatou set.

Remark

- The Julia set is the closure of the repelling periodic points.
- ② The Julia set of a finite Blaschke product is either $\mathbb T$ or a Cantor set of $\mathbb T$.

Complex Dynamics of Finite Blaschke Products

Hyperbolic Distance

Definition

The hyperbolic distance d in \mathbb{D} is defined by

$$d(z, w) = \log \frac{1 + \frac{|z-w|}{|1-\overline{z}w|}}{1 - \frac{|z-w|}{|1-\overline{z}w|}}$$

where $z, w \in \mathbb{D}$.

Definition

A finite Blaschke product φ is said to be

- of zero hyperbolic step if $\lim_{n\to\infty} d(\varphi^n(z), \varphi^{n+1}(z)) = 0$ for some $z \in \mathbb{D}$.
- 2 of positive hyperbolic step otherwise.

The Description of the Recurrent Set

Density of Recurrent Points

Theorem (Basallote et al., 2009, Contreras et al., 2007 and Hamilton, 1996)

 φ is of zero hyperbolic step if and only if its Julia set is $\mathbb T$ if and only if it is ergodic.

Remark

Here we assume φ is ergodic without assuming that φ is measure-preserving.

Hyperbolic Step

Theorem (Basallote et al., 2009)

Let φ be a finite Blaschke product.

- **1** If φ is elliptic, then it is of zero hyperbolic step.
- 2 If φ is hyperbolic, then it is of positive hyperbolic step.

Theorem (Contreras et al., 2007)

If φ is a parabolic finite Blaschke product with Denjoy-Wolff point 1, then φ is of zero hyperbolic step if and only if $\varphi''(1)=0$

if and only if $\sum_{i=1}^{N} \frac{1-|a_i|^2}{|1-a_i|^2} Im(a_i) = 0$ where a_i 's are as in (2).

The Description of the Recurrent Set

Introduction

Topological Transitivity

Lemma

If φ is elliptic or parabolic with zero hyperbolic step, then the recurrent points of φ are dense in \mathbb{T} .

Theorem

If φ is elliptic or parabolic with zero hyperbolic step, then φ is topologically transitive.

The Description of the Recurrent Set

Introduction

The Recurrent Set

Theorem (Contreras et al., 2007)

If φ is hyperbolic or parabolic with positive hyperbolic step, then $(\varphi^n(z))$ converges to the Denjoy-Wolff point of φ , for almost every $z \in \mathbb{T}$.

Theorem

If φ is hyperbolic or parabolic with positive hyperbolic step, then the closure of the set of recurrent points of φ is the union of the Julia set and the Denioy-Wolff point.

The Jacobson Radical

Quasinilpotent Elements

Lemma

- Let $F \in A(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$. If $\pi_0(F)$ is not identically zero or $\pi_k(F)$ does not vanish on the fixed point set of φ for some k > 0, then F is not quasinilpotent.
- **2** Let $f \in \mathcal{A}(\mathbb{D})$. If f does not vanish on the set of recurrent points of φ , then there is an $n \in \mathbb{N}$ such that $U^n f$ is not quasinilpotent.

The Jacobson Radical of the Semicrossed Product

Theorem

 $Rad(\mathcal{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+)$ is the set $\{F \in \mathcal{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+ : \pi_0(F) = 0, \text{ and } \pi_k(F) \text{ vanishes on the set of recurrent points of } \varphi, \text{ for } k > 0\}.$

Proof.

- From Donsig's result, if F is such that $\pi_0(F) = 0$ and $\pi_k(F)$ vanishes on the recurrent set for j > 0, then F is in $\operatorname{Rad}(C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+)$.
- $I = \mathsf{Rad}(C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+) \cap \mathcal{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$ is contained in $\mathsf{Rad}(\mathcal{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+)$.
- Let $F \in \text{Rad}(\mathcal{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+)$.
- Then $\pi_0(F) = 0$ and $\pi_k(F)(z_0) = 0 \ \forall k > 0$ where z_0 is the Denjoy-Wolff point.
- Suppose that not all f_i 's vanish on \mathcal{J} .

The Jacobson Radical

Proof (continue).

- Then $\exists k$ so that $f_k(x_0) \neq 0$ and f_i 's vanish on $\mathcal{J} \forall i < k$ for some x_0 where $\varphi^n(x_0) = x_0$ for some n.
- Choose j so that $U^{j}(U^{k}f_{k}) = U^{m}f_{k}$ where m is a multiple of n.
- For l>0.

$$||(U^{j}F)^{l}|| \geq ||\pi_{ml}((U^{j}F)^{l})||$$

$$\geq |\pi_{ml}((U^{j}F)^{l})(x_{0})|$$

$$= |f_{k}(x_{0})f_{k} \circ \varphi^{m}(x_{0}) \dots f_{k} \circ \varphi^{(l-1)m}(x_{0})|$$

$$= |f_{k}(x_{0})|^{l}.$$

- Thus, $U^{j}F$ is not quasinilpotent, a contradiction.
- f_i must vanish on \mathcal{J} for all i, and so $F \in I$.

00000000000

The Jacobson Radical and Quasinilpotent Elements

Introduction

Theorem

 $Rad(\mathcal{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+)$ is

- nonzero if φ is hyperbolic or parabolic with positive hyperbolic step;
- 2 zero if φ is elliptic or parabolic with zero hyperbolic step.

00000000000

The Jacobson Radical and Quasinilpotent Elements

The Jacobson Radical

Introduction

The Jacobson Radical of the Semicrossed Product

Corollary

 $\mathcal{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$ has nonzero quasinilpotent elements if φ is hyperbolic or parabolic with positive hyperbolic step.

Corollary

 $\mathcal{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$ is semi-simple if and only if the recurrent points are dense in \mathbb{T} .

Elliptic case

Lemma

If φ is elliptic with the Denjoy-Wolff point 0, then φ is measure-preserving.

Lemma

For any nonzero $f \in \mathcal{A}(\mathbb{D})$, if φ is elliptic with the Denjoy-Wolff point 0, then Uf is not a quasinilpotent element of $\mathcal{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$.

Introduction

Proof.

- Note that $||(Uf)^n||^{\frac{1}{n}} = \sup_{x \in \mathbb{T}} |f(x)f \circ \varphi(x) \dots f \circ \varphi^{n-1}(x)|^{\frac{1}{n}}$.
- $f \in \mathcal{A}(\mathbb{D}) \to \log |f|$ is integrable.
- \bullet Since φ is measure-preserving and the Ergodic Theorem,

$$\log |f(x)f \circ \varphi(x) \dots f \circ \varphi^{n-1}(x)|^{\frac{1}{n}}$$

$$= \frac{1}{n} \sum_{i=1}^{n-1} \log |f \circ \varphi^{k}(x)| \to \int_{\mathbb{T}} \log |f| dm \text{ a.e.}$$

Proof (continue).

• Let $x_0 \in \mathbb{T}$ be such that the above convergence holds. Then

$$\begin{split} &\lim_{n\to\infty}||(Uf)^n||^{\frac{1}{n}}\\ &\geq \lim_{n\to\infty}|f(x_0)f\circ\varphi(x_0)\dots f\circ\varphi^{n-1}(x_0)|^{\frac{1}{n}}\\ &=\exp\{\lim_{n\to\infty}\log|f(x_0)f\circ\varphi(x_0)\dots f\circ\varphi^{n-1}(x_0)|^{\frac{1}{n}}\}\\ &=\exp\{\int_{\mathbb{T}}\log|f|dm\}\\ &>0. \end{split}$$

Quasinilpotent Elements

Isomorphism of Semicrossed Products

Theorem

Let φ and ψ be non-trivial finite Blaschke products. If φ and ψ are conjugate, $\psi = \tau^{-1} \circ \varphi \circ \tau$ for some conformal mapping τ , then $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ is isomorphic to $\mathbb{Z}^+ \times_{\beta} \mathcal{A}(\mathbb{D})$, where $\alpha(f) = f \circ \varphi$ and $\beta(f) = f \circ \psi$, $f \in \mathcal{A}(\mathbb{D})$.

Theorem

If φ is elliptic, then $\mathcal{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$ has no nonzero quasinilpotent elements.

Proof.

- Any elliptic map is conjugate to an elliptic map fixes zero.
- Let F be a quasinilpotent element, and let $\pi_i(F) = f_i$.
- Then $f_0 = 0$ and suppose that $\exists k > 0, f_k \neq 0$ where $f_i = 0 \ \forall i < k$.

Quasinilpotent Elements

Proof (continue).

Then

$$||F^{n}||^{\frac{1}{n}} \geq ||\pi_{nk}(F^{n})||^{\frac{1}{n}}$$

$$= \sup_{x \in \mathbb{T}} |f_{k}(x)f_{k} \circ \varphi^{k}(x) \dots f_{k} \circ \varphi^{(n-1)k}(x)|^{\frac{1}{n}}$$

$$= ||(U_{\beta}f_{k})^{n}||^{\frac{1}{n}},$$

where $U_{\beta}f_{k} \in A(\mathbb{D}) \times_{\beta} \mathbb{Z}^{+}$ and $\beta(f) = f \circ \varphi^{k}$.

- Note φ^k is also elliptic the Denjoy-Wolff point 0.
- By previous lemma, $\lim_{n\to\infty}||F^n||^{\frac{1}{n}}\geq\lim_{n\to\infty}||(U_{\beta}f_k)^n||^{\frac{1}{n}}>0.$
- F is not quasinilpotent, a contradiction.
- Hence, F = 0.

- M. Basallote, M. D. Contreras, and C. Hernández-Mancera, Commuting finite Blaschke products with no fixed points in the unit disk, J. Math. Anal. Appl. 359(2009) no. 2, 547–555.
- D. Buske and J. Peters, Semicrossed products of the disk algebra; contractive representations and maximal ideals, Pacific J. Math. 185(1998), 97–113.
- L. Carleson and T. W. Gamelin, *Complex Dynamics*, Springer-Verlag, New York, 1993.

G. Siskakis, 2007, 63-91.

- M. D. Contreras, S. Díaz-Madrigal, and Ch. Pommerenke, *Iteration in the unit disk: the parabolic zoo*, Proceedings of the Conference "Complex and Harmonic Analysis" held in Thessaloniki, Greece in May of 2006, Destech Publications Inc. Editors: A. Carbery, P. L. Duren, D. Khavinson, and A.
- K. A. Davidson and E. Katsoulis, *Semicrossed products of the disk algebra* preprint, arXiv:1104.1398v1, 2011.
- R. L. Devaney, *An Introduction to Chaotic Dynamical Systems*, Benjamin/Cummings Publishing Company, CA, 1986.

- A. P. Donsig, A. Katavolos, and A. Manoussos, *The Jacobson radical for analytic crossed products,* J. Funct. Anal., *187* (2001), 129–145.
- R. E. Greene and S. G. Krantz, *Function Theory of One Complex Variable*, AMS, 2006.
- D. H. Hamilton, *Absolutely continuous conjugacies of Blaschke products*, Adv. Math., *121* (1996), 1–20.
- K. Hoffman, *Banach Spaces of Analytic Functions*, Prentice-Hall, Englewood Cliffs, NJ, 1962.

- T. Hoover, J. Peters, and W. Wogen, Spectral properties of semicrossed products, Houston J. Math., 19 (1993), 649–660.
- **■** E. T. A. Kakariadis, *Semicrossed products of C*-algebras and their C*-envelopes*, preprint, arXiv:1102.2252v2, 2011.
- T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Cambridge University Press, 1994.
- C. Pommerenke, *Boundary Behaviour of Conformal Maps*, Springer-Verlag, Berlin Heidelberg, 1992.

- J. H. Shapiro, *Composition Operators and Classical Function Theory*, Springer-Verlag, New York, 1993.
- B. Sz.-Nagy and C. Foias, *Harmonic Analysis of Operators on Hilbert Space*, North-Holland, Amsterdam, 1970.
- P. Walters, *An Introduction to Ergodic Theory*, Springer-Verlag, New York, 1982.

Thank you!!!