[2025 春夏] 线性代数 II(H) 期中卷 2 份及其部分溯源

0.1 期中 1-吴志祥, 20250421

考试时间: 120 分钟 第 1-8 题每题 10 分, 第 9 题 20 分

1.【题目溯源:《大学数学·代数与几何》6.3 课后练习18】

判断下列两条直线

$$L_1: \begin{cases} x = 2t \\ y = -3 + 3t, \\ z = 4t \end{cases} L_2: \frac{x-1}{1} = \frac{y+2}{1} = \frac{z-2}{2}$$

是否共面?是否相交?如果相交求其交点.

2. 【题目溯源: LADR 3.E 习题 16】

设 $U \neq V$ 的子空间使得 $\dim V/U = 1$. 证明:存在 $\varphi \in \mathcal{L}(V,F)$ 使得 $\operatorname{null} \varphi = U$.

- 3. 【题目溯源: LADR 3.B 习题 29 3.F 习题 31】 下列 V' 表示线性空间 V(F) 的对偶空间.
 - (1) 设 $\varphi \in V'$, 设 $u \in V$ 不属于 $\text{null } \varphi$. 证明: $V = \text{null } \varphi \oplus \{au : a \in \mathbb{F}\}$.
 - (2) 设 V 是有限维的, $\varphi_1, \varphi_2, \cdots, \varphi_n$ 是 V' 的基. 证明:存在 V 的基使得其对偶基为 $\varphi_1, \varphi_2, \cdots, \varphi_n$.

4.【题目溯源: Bézout's Lemma 多项式形式】

设 $p,q\in \mathcal{P}(\mathbb{C})$ 为两个无公共零点的非常数多项式,记 $m=\deg p, n=\deg q$. 证明: $\exists r\in \mathcal{P}_{n-1}(\mathbb{C}), s\in \mathcal{P}_{m-1}(\mathbb{C})$,使得 rp+sq=1.

5. 【题目溯源: LADR 5.B 习题 23】

设 V 是有限维的且 $S,T \in \mathcal{L}(V)$. 证明: ST 和 TS 有相同的本征值.

6. 【题目溯源: LADR 5.B 习题 11】

设 V 是有限维的, $T \in \mathcal{L}(V), p \in \mathcal{P}(\mathbb{C})$ 是非常数多项式, $\alpha \in \mathbb{C}$. 证明: α 是 p(T) 的本征值当且仅 当 T 有一个本征值 λ 使得 $\alpha = p(\lambda)$.

7. 【题目溯源: LADR 6.A 习题 34】

设 $S \in \mathcal{L}(V)$ 是 V 上的一个单的算子,定义 $\langle \cdot, \cdot \rangle_1$ 如下: 对 $u, v \in V$ 有 $\langle u, v \rangle_1 = \langle Su, Sv \rangle$. 证明: $\langle \cdot, \cdot \rangle_1$ 是 V 上的一个内积.

8. 【题目溯源: LADR 6.B 习题 4 Bessel's Inequality】

设 n 是正整数, $f \in C_{[-\pi,\pi]}$,这里 $C_{[-\pi,\pi]}$ 表示 $[-\pi,\pi]$ 上的实值连续函数构成的向量空间.

(1) 证明

$$\frac{1}{\sqrt{2\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\cos 2x}{\sqrt{\pi}}, \dots, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{\pi}}, \dots, \frac{\sin nx}{\sqrt{\pi}}$$

是 $C_{[-\pi,\pi]}$ 的规范正交组,其上的内积为

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) \, \mathrm{d}x.$$

(2) 对每个非负整数 k,定义

$$a_k = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \cos(kx) dx, \quad b_k = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \sin(kx) dx.$$

证明

$$\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) \le \int_{-\pi}^{\pi} f^2(x) \mathrm{d}x.$$

- 9. 【题目溯源: LADR 3.F 习题 1 & 3.E 习题 20 & 6.A 习题 17 & 6.B 习题 15 】 判断:
 - (1) 设 $\varphi \in \mathcal{L}(V, \mathbb{F})$, 则 φ 或者是满射, 或者是零映射.
 - (2) 设 U 是 V 的子空间. $\Gamma: \mathcal{L}(V/U,W) \to \mathcal{L}(V,W)$ 定义为 $\Gamma(S) = S \circ \pi$,则 range $\Gamma = \{T \in \mathcal{L}(V,W): \forall u \in U, Tu = 0\}$.
 - (3) \mathbb{R}^2 上存在内积使得该内积确定的范数为: $\forall (x,y) \in \mathbb{R}^2$ 有 $\|(x,y)\| = \max\{|x|,|y|\}$.
 - (4) 设 φ 是 $C_{[-1,1]}$ 上由 $\varphi(f)=f(0)$ 定义的线性泛函,则存在 $g\in C_{[-1,1]}$ 使得对每个 $f\in C_{[-1,1]}$ 均 有 $\varphi(f)=\langle f,g\rangle$,其中 $C_{[-1,1]}$ 上的内积定义为:

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \, \mathrm{d}x.$$

0.2 期中 2-吴志祥, 20250423

考试时间: 120 分钟 第 1-8 题每题 10 分, 第 9 题 20 分

1. 求过点 (1,0,-2),与平面 3x-y+2z+2=0 平行,且与直线 $\frac{x-1}{4}=\frac{y-3}{-2}=\frac{z}{1}$ 相交的直线方程.

2. V 为有限维线性空间, $T \in V$ 到 V 的线性映射. 若 $T^2 - 3T + 2I = 0$, 证明:

$$V = \text{null}(T - I) \oplus \text{range}(T - I).$$

3. 【题目溯源: LADR 3.F 习题 9】

设 v_1, \dots, v_n 为有限维线性空间 V 中的一组基. $\varphi_1, \dots, \varphi_n$ 为其对偶基. 对 $\forall \psi \in V'$, 证明:

$$\psi = \psi(v_1)\varphi_1 + \cdots + \psi(v_n)\varphi_n.$$

4. 【题目溯源: LADR 4 习题 11】

设 $p \in \mathscr{P}(\mathbb{C}), p \neq 0.$ 令 $U = \{pq : q \in \mathscr{P}(\mathbb{C})\}.$

- (1) 证明 $\dim \mathscr{P}(\mathbb{C})/U = \deg p$.
- (2) 求 $\mathcal{P}(\mathbb{C})/U$ 的一个基.

5. 设 V 为有限维线性空间. 称 $S,T \in \mathcal{L}(V)$. 称 S,T 可同时对角化,若存在 V 的一组基,使 S,T 在这 组基下的矩阵表示均为对角矩阵。

若 S,T 可对角化,证明:它们可同时对角化当且仅当 ST = TS.

6. A 为 n 阶实方阵. 视 $A: \mathbb{R}^n \to \mathbb{R}^n, v \mapsto Av$. 记 A^T 为 A 的转置. 证明:

$$\dim E(\lambda, A) = \dim E(\lambda, A^T).$$

7. W₁, W₂ 为有限维内积空间的子空间. 证明:

$$(W_1+W_2)^\perp = W_1^\perp \cap W_2^\perp; \quad (W_1\cap W_2)^\perp = W_1^\perp + W_2^\perp.$$

8. 【题目溯源: 机器学习的 PCA 算法】

考虑 \mathbb{R}^n 上的标准内积. 设列向量 $x_1,...,x_p \in \mathbb{R}^n$, $\sum_{i=1}^p x_i = 0$. 记 $X = (x_1,...,x_p)$. 假设 XX^T 有 n 个不同的正特征值.

给定 $k \in \mathbb{N}^+, k < n$. 考虑如下 PCA 算法:

- 1. $C = XX^T$;
- 2. 取 $\lambda_1 \geq \cdots \geq \lambda_k$ 为 C 最大的 k 个特征值, 对应单位特征向量 ν_1, \dots, ν_k ;
- 3. $V = \text{span}\{v_1,...,v_k\}, U = (v_1,...,v_k), P_V = UU^T;$
- 4. $y_i = P_V x_i, i = 1, 2, ..., n$.

证明:

- 1. $\{v_1,...,v_k\}$ 为 V 的规范正交基, 且 P_V 为 $ℝ^n$ 到 V 的正交投影.
- 2. PCA 算法最小化投影误差. 即 $\forall W$ 为 \mathbb{R}^n 的 k 维子空间, P_W 为正交投影, $\sum_{i=1}^p \|x_i y_i\|^2 \le \sum_{i=1}^p \|x_i P_W x_i\|^2$.

9. 判断:

- (1) 任意空间向量 \mathbf{a} , \mathbf{b} , \mathbf{c} 满足 $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$.
- (2) 每个非常数的复系数多项式都有零点.
- (3) 设 $T \in \mathcal{L}(V)$, 存在 V 的一组基 $\{v_1,...,v_n\}$, 使得 T 关于这组基的矩阵是对角矩阵.
- (4) 设 V = C([0,1]) (即 V 为 [0,1] 区间上连续函数全体构成的线性空间), $\langle f,g \rangle = \int_0^{\frac{1}{2}} f(t)g(t)dt$ 为 V 上内积.