Quiz-5

Chapter- Ordinary Differential Equation

 ${f Note}:$ Attempt all questions. Each question carries 2 marks. Choose the correct/most suitable answer.

- 1. What is the order and degree of a differential equation $cos(\frac{d^2y}{dx^2}) e^x = 0, x \in [-1, 0]$?
 - a. Order not defined, First Degree
 - b. Second order, Degree not defined
 - c. Second order, First Degree
 - d. Both order and degree not defined.
- 2. The displacement x(t) of a particle is governed by differential equation $\frac{d^2x}{dt^2} + \frac{dx}{dt} + bx = c\frac{dx}{dt}$, b > 0. For what values of b and c the motion of the particle is oscillatory?

a.
$$(1 - 2\sqrt{b}) > c$$

b.
$$(1 - 2\sqrt{b}) \ge c$$

c.
$$(1 - 2\sqrt{b}) < c < (1 + 2\sqrt{b})$$

d.
$$(1 + 2\sqrt{b}) \le c$$

- 3. Let $y_1=e^{3t}$ and $y_2=te^{3t}$. Which of the following statements is true about $W(y_1,y_2)$, the Wronskian of y_1 and y_2 ?
 - a. $W(y_1, y_2) = e^{6t}$, therefore y_1 and y_2 are linearly independent
 - b. $W(y_1, y_2) = e^{6t}$, therefore y_1 and y_2 are linearly dependent
 - c. $W(y_1, y_2) = 0$, therefore y_1 and y_2 are linearly dependent
 - d. $W(y_1, y_2) = 0$, therefore y_1 and y_2 are linearly independent
- 4. The Particular integral of the differential equation $\frac{d^2y}{dx^2} + 2y = \sin\sqrt{2}x$ is

a.
$$-\frac{x}{2\sqrt{2}}\cos\sqrt{2}x$$

b.
$$\frac{\cos\sqrt{2}x}{2\sqrt{2}}$$

c.
$$\frac{x}{2\sqrt{2}}cos\sqrt{2}x$$

d.
$$\frac{x}{2\sqrt{2}}sin\sqrt{2}x$$

5. Consider the 2nd-order non-homogeneous differential equation $y'' - 4y' + 3y = e^{-4t} + t^2$, what is the correct form for a particular integral y_p ?.

1

a.
$$y_p = Ae^{-4t} + Bt^2$$

b.
$$y_p = Ate^{-4t} + Bt^2 + Ct + D$$

c.
$$y_p = Ae^{-4t} + Bt^2 + Ct + D$$

d.
$$y_p = At^2e^{-4t} + Bt^2 + Ct + D$$

- 6. The order and degree of the differential equation $y''' + tan^{-1}(1+y'') + y = 0$ are
 - a. 3, 1
 - b. 3, not defined
 - c. Both order and degree are not defined.
 - d. Can't say anything.
- 7. The particular integral y_p of the equation $F(D)y=e^{2x}$, where $F(D)=(D-2)^2(D+3)$, is
 - a. $y_p = \frac{x^2}{10}e^{2x}$
 - b. $y_p = \frac{x^2}{2}e^{2x}$
 - c. $y_p = \frac{x^2}{5}e^{2x}$
 - d. $y_p = \frac{3}{10}e^{2x}$
- 8. The Solution of $(1+y^2)dx = (tan^{-1}y x)dy$ is
 - a. $x = tan^{-1}y 1 + Ce^{-tan^{-1}y}$
 - b. $y = tan^{-1}x 1 + Ce^{-tan^{-1}x}$
 - c. $x = tan^{-1}y + Ce^{-tan^{-1}y}$
 - d. $y = tan^{-1}x + Ce^{-tan^{-1}x}$
- 9. Particular integral y_p of the non-homogeneous equation $y'' 2y' + y = xe^x \sin x$ is
 - a. $y_p = e^x(2\cos x + x\sin x)$
 - b. $y_p = -e^x(2\cos x + x\sin x)$
 - c. $y_p = e^x(x\cos x + 2\sin x)$
 - d. $y_p = -e^x(\cos x + x\sin x)$
- 10. For the IVP y' = f(x, y), IC: $y(x_0) = y_0$, which statement is true
 - a. IVP has a solution then f(x,y) is continuous and bounded in a closed rectangular region R containing (x_0,y_0)
 - b. IVP has a solution if the function f(x,y) is continuous and bounded in a closed rectangular region R containing (x_0, y_0)
 - c. IVP has a solution if and only if the function f(x,y) is continuous and bounded in a closed rectangular region R containing (x_0, y_0)
 - d. IVP has a unique solution if the function f(x,y) is continuous and bounded in a closed rectangular region R containing (x_0, y_0)