Problem 1

🕨 === Cluster stati	=== Cluster statistics ===								
mp	g	displacement		horsepower		weight		acceleration	
mea	n va	r mean	var	mean	var	mean	var	mean	var
cluster									
0 27.36541	4 41.97630	9 131.934211	2828.083391	84.300061	369.143491	2459.511278	182632.099872	16.298120	5.718298
1 13.88906	2 3.35908	358.093750	2138.213294	167.046875	756.521577	4398.593750	74312.340278	13.025000	3.591429
2 17.51029	4 8.82989	2 278.985294	2882.492318	124.470588	713.088674	3624.838235	37775.809263	15.105882	10.556980
=== Origin statistics ===									
mpg		displacement		horsepower		weight		acceleration	
mear	var	mean	var	mean	var	mean	var	mean	var
origin									
1 20.083534	40.997026	245.901606	9702.612255	118.814769	1569.532304	3361.931727	631695.128385	15.033735	7.568615
2 27.891429	45.211230	109.142857	509.950311	81.241983	410.659789	2423.300000	240142.328986	16.787143	9.276209
3 30.450633	37.088685	102.708861	535.465433	79.835443	317.523856	2221.227848	102718.485881	16.172152	3.821779
=== Crosstab cluster vs origin ===									
origin 1 2									
cluster									
0 120 67	79								
1 64 0	0								
2 65 3	0								

The results of the analyses show that there is a degree of clarity in the relationship between cluster assignments and vehicle origin labelling, but not a perfect correspondence: Cluster 1 exclusively grouped American cars, characterized by the lowest mean MPG (13.89) and the highest mean displacement, horsepower, and weight. This clearly identifies a segment of typical American heavy-duty, high-consumption vehicles.

Cluster 2 also predominantly consisted of American cars (65 out of 68), exhibiting traits similar to Cluster 1 (e.g., low MPG of 17.51, high weight) but less extreme.

Cluster 0 was more diverse, containing all Japanese (79) and most European (67) cars, alongside a substantial number of American cars (120). This cluster represented vehicles with higher average MPG (27.37) and lower average weight and displacement, typical of more fuel-efficient models across all origins.

In summary, the hierarchical clustering successfully distinguished distinct groups of vehicles, particularly isolating segments of American cars based on their physical and performance characteristics. While not a perfect one-to-one mapping for all origins due to the mixed nature of one cluster, a clear relationship between cluster assignment and vehicle origin is evident, especially in identifying less fuel-efficient, heavier American vehicles.

```
Shape of data: (506, 13)
k=2 Silhouette=0.3601
k=3
    Silhouette=0.2575
k=4 Silhouette=0.2658
k=5 Silhouette=0.2878
k=6 Silhouette=0.2625
 Best k by silhouette: 2
=== Cluster mean (scaled features) ===
                 zn indus chas nox
                                                                                      b 1stat
         crim
                                                        dis
                                                               rad
                                                                     tax ptratio
                                            rm
                                                 age
cluster
       -0.390 0.262 -0.620 0.003 -0.585 0.243 -0.435 0.457 -0.584 -0.631
                                                                           -0.286 0.326 -0.446
0
        0.725 -0.488 1.153 -0.005 1.087 -0.452 0.809 -0.850 1.085 1.174
                                                                          0.531 -0.607 0.830
=== Centroid coordinates (scaled) ===
            zn indus chas
                                            age
                                                  dis
                                                         rad
                                                               tax ptratio
                                                                                 b lstat
 -0.390 0.262 -0.620 0.003 -0.585 0.243 -0.435 0.457 -0.584 -0.631
                                                                    -0.286 0.326 -0.446
  0.725 -0.488 1.153 -0.005 1.087 -0.452 0.809 -0.850 1.085 1.174
                                                                      0.531 -0.607 0.830
```

Among $k = 2 \cdots 6$, k = 2 yields the highest Silhouette score = 0.3601, clearly outperforming the other choices (> 0.07 margin). Therefore, k = 2 is selected as the optimal number of clusters.

Cluster	Key mean shifts (relative to 0)	Interpretation		
Cluster 0	crim ↓ indus ↓ nox ↓ tax ↓ rad ↓, zn ↑ rm ↑ dis ↑ b ↑	Low-crime, low-industry, cleaner air, larger rooms, farther from employment centres — neighbourhoods with generally higher living quality.		
Cluster 1	crim↑ indus↑ nox↑ tax↑ rad↑, zn↓ rm↓ dis↓ b↓	High-crime, high-industry more pollution, higher taxes, smaller rooms, close to main roads — areas with comparatively lower residential desirability.		

The printed Cluster Mean and Centroid Coordinates are identical for all 13 features (up to three decimals). This is expected, because after convergence, a k-means centroid is the arithmetic mean of all points assigned to that cluster.

Summary: Silhouette analysis indicates that k = 2 provides the best clustering structure for the Boston Housing data. Consistent cluster means and centroid coordinates confirm that the k-means algorithm has converged properly and that the centroids truly represent the central tendency of their respective clusters.

使用 load_wine() 载入数据数据维度: (178, 13)

Homogeneity Score : 0.8788 Completeness Score : 0.8730

Metric interpretation

Homogeneity measures cluster purity: a score of 1 means each cluster contains samples from only one true class.

Completeness measures class completeness: a score of 1 means all samples of a given class are assigned to the same cluster.

Result analysis

Both scores are above 0.87, indicating that K-Means with k = 3 recovers the underlying wine classes very well. Homogeneity is slightly higher than completeness, suggesting that clusters are highly pure, while a few classes are still split across clusters to a minor extent.

Overall, the clustering closely reproduces the true class structure, with only a small number of mis-assignments or class splits.