

Prof. Dr. Florian Künzner

CA 4 – Technical realisation

The lecture is based on the work and the documents of Prof. Dr. Theodor Tempelmeier

Computer Science

Goal

Goal

Computer Science

Goal

CA::Technical realisation

- Development of integrated circuits
- Circuit families
- Programmable Logic Devices

Logical functionality

...and it's technical realisation

Computer Science

Development of integrated circuits (ICs)

Development of integrated circuits (ICs)

Description with "(HDL) hardware description language" (simulation)

$$y = a * b$$

Computer Science

Development of integrated circuits (ICs)

Description with "(HDL) hardware description language" (simulation)

$$y = a * b$$

Logic (CAD, simulation)

Computer Science

Development of integrated circuits (ICs)

Description with "(HDL) hardware description language" (simulation)

$$y = a * b$$

Logic (CAD, simulation)

Technical – principle (CAD, simulation)

Computer Science

Development of integrated circuits (ICs)

Description with "(HDL) hardware description language" (simulation)

$$y = a * b$$

Logic (CAD, simulation)

Technical – principle (CAD, simulation)

Technical – layout and layers on a chip (CAD, simulation)

Circuit families

Bipolar

Transistor transistor logic (TTL) Emitter coupled logic (ECL)

- + fast
- high power dissipation (Verlustleistung)
- low integration density

Unipolar

Metal oxide semiconductor (MOS) Field effect transistor (FET)

- not that fast
- + low power dissipation
- + high integration density

Use in microprocessors and memory devices

Circuit families

Bipolar

Transistor transistor logic (TTL) Emitter coupled logic (ECL)

- + fast
 - high power dissipation (Verlustleistung)
- low integration density

Unipolar

Metal oxide semiconductor (MOS) Field effect transistor (FET)

- not that fast
- + low power dissipation
- + high integration density

Use in microprocessors and memory devices

Computer Science

Bipolar

Transistor transistor logic (TTL) Emitter coupled logic (ECL)

- + fast
- high power dissipation (Verlustleistung)

Technische Hochschule Rosenheim Technical University of Applied Sciences

Circuit families

Bipolar

Transistor transistor logic (TTL) Emitter coupled logic (ECL)

- + fast
- high power dissipation (Verlustleistung)
- low integration density

Unipolar

Metal oxide semiconductor (MOS) Field effect transistor (FET)

- not that fast
- + low power dissipation
- + high integration density

Use in microprocessors and memory devices.

Circuit families

Bipolar

Transistor transistor logic (TTL)
Emitter coupled logic (ECL)

- + fast
- high power dissipation (Verlustleistung)
- low integration density

Unipolar

Metal oxide semiconductor (MOS) Field effect transistor (FET)

- not that fast
- + low power dissipation
- + high integration density

Use in microprocessors and memory devices

Technical University of Applied Sciences

Circuit families

Bipolar

Transistor transistor logic (TTL)
Emitter coupled logic (ECL)

- + fast
- high power dissipation (Verlustleistung)
- low integration density

Unipolar

Metal oxide semiconductor (MOS) Field effect transistor (FET)

- not that fast
- + low power dissipation
- high integration density

Use in microprocessors and memory devices

Computer Science

Bipolar

Transistor transistor logic (TTL)
Emitter coupled logic (ECL)

- + fast
- high power dissipation (Verlustleistung)
- low integration density

Unipolar

Metal oxide semiconductor (MOS) Field effect transistor (FET)

- not that fast
- + low power dissipation
- + high integration density

Use in microprocessors and memory devices.

Circuit families

Bipolar

Transistor transistor logic (TTL)
Emitter coupled logic (ECL)

- + fast
- high power dissipation (Verlustleistung)
- low integration density

Unipolar

Metal oxide semiconductor (MOS) Field effect transistor (FET)

- not that fast
- + low power dissipation
- + high integration density

Use in microprocessors and memory devices

Technical University of Applied Sciences

Circuit families

Bipolar

Transistor transistor logic (TTL)
Emitter coupled logic (ECL)

- + fast
- high power dissipation (Verlustleistung)
- low integration density

Unipolar

Metal oxide semiconductor (MOS) Field effect transistor (FET)

- not that fast
- + low power dissipation
- + high integration density

Use in microprocessors and memory devices.

Computer Science

Programmable logic devices

Types of IC's (integrated circuits):

- 1 Standard IC (the whole logic is predefined)
- 2 Full custom IC

Chip with customer logic (may be expensive and time consuming until production finished)

- 3 Gate arrays
 - Chip with a lot of logic elements (1. production step is the same for everyone)
 - Connection of the gates according to customer specifications (2. production step with mask according to customer specifications)
- Field programmable logic modules (PLA, FPLA, PAL, EPLD, EEPLD, GAL, ..., FPGA)
 - "On site" with PC and programming device or even in soldered in state "programmable" Programming means put user-specific logic into the IC.

Terminology

The ICs under the numbers 2 and 3 (sometimes also 4) are called ASICs.

Computer Science

Programmable logic devices

Types of IC's (integrated circuits):

- Standard IC (the whole logic is predefined)
- 2 Full custom IC

Chip with customer logic (may be expensive and time consuming until production finished)

- Gate arrays
 - Chip with a lot of logic elements (1. production step is the same for everyone)
 - Connection of the gates according to customer specifications (2. production step with mask according to customer specifications)
- Field programmable logic modules (PLA, FPLA, PAL, EPLD, EEPLD, GAL, ..., FPGA)
 - "On site" with PC and programming device or even in soldered in state "programmable" Programming means put user-specific logic into the IC.

Terminology

The ICs under the numbers 2 and 3 (sometimes also 4) are called ASICs

Computer Science

Programmable logic devices

Types of IC's (integrated circuits):

- Standard IC (the whole logic is predefined)
- 2 Full custom IC
 - Chip with customer logic (may be expensive and time consuming until production finished)
 - Gate arrays
 - Chip with a lot of logic elements (1. production step is the same for everyone)
 - Connection of the gates according to customer specifications (2. production step with mask according to customer specifications)
 - Field programmable logic modules (PLA, FPLA, PAL, EPLD, EEPLD, GAL, ..., FPGA)
 - "On site" with PC and programming device or even in soldered in state "programmable" Programming means put user-specific logic into the IC.

Terminology:

The ICs under the numbers 2 and 3 (sometimes also 4) are called ASICs.

Computer Science

Programmable logic devices

Types of IC's (integrated circuits):

- Standard IC (the whole logic is predefined)
- 2 Full custom IC
 Chip with customer logic (may be expensive and time consuming until production finished)
- Gate arrays
 - Chip with a lot of logic elements (1. production step is the same for everyone)
 - Connection of the gates according to customer specifications (2. production step with mask according to customer specifications)
- Field programmable logic modules (PLA, FPLA, PAL, EPLD, EEPLD, GAL, ..., FPGA)
 - "On site" with PC and programming device or even in soldered in state "programmable" Programming means put user-specific logic into the IC.

Terminology

The ICs under the numbers 2 and 3 (sometimes also 4) are called ASICs

Programmable logic devices

Types of IC's (integrated circuits):

- Standard IC (the whole logic is predefined)
- Full custom IC Chip with customer logic (may be expensive and time consuming until production finished)
- 3 Gate arrays
 - Chip with a lot of logic elements (1. production step is the same for everyone)
 - Connection of the gates according to customer specifications (2. production step with mask according to customer specifications)
- 4 Field programmable logic modules (PLA, FPLA, PAL, EPLD, EEPLD, GAL, ..., FPGA)
 - "On site" with PC and programming device or even in soldered in state "programmable" -Programming means put user-specific logic into the IC.

Computer Science

Programmable logic devices

Types of IC's (integrated circuits):

- 1 Standard IC (the whole logic is predefined)
- 2 Full custom IC Chip with customer logic (may be expensive and time consuming until production finished)
- Gate arrays
 - Chip with a lot of logic elements (1. production step is the same for everyone)
 - Connection of the gates according to customer specifications (2. production step with mask according to customer specifications)
- Field programmable logic modules (PLA, FPLA, PAL, EPLD, EEPLD, GAL, ..., FPGA)
 - "On site" with PC and programming device or even in soldered in state "programmable" Programming means put user-specific logic into the IC.

Terminology:

The ICs under the numbers 2 and 3 (sometimes also 4) are called ASICs.

Example: Field programmable logic modules

Programmable array logic PAL

GAL Generic array logic

FPGA Field programmable gate array

[Image sources: wikipedia.org]

Computer Science

Example: GAL (generic array logic)

- Type: GAL16V8
- Company: Lattice
- Programmable AND array
- 20 year data retention

CAMPUS Rosenheim **Computer Science**

Technische Hochschule Rosenheim Technical University of Applied Sciences

Questions?

All right? \Rightarrow

Question? \Rightarrow

and use chat

speak after I ask you to

Computer Science

Example: GAL logic diagram (GAL16V8)

1 N P 4 T S

OUTPATO

Computer Science

Questions?

All right? \Rightarrow

Question? \Rightarrow

and use chat

speak after I ask you to

Tango-PLD

A language to describe the logic.

- The Tango-PLD compiler automatically creates the contact pattern (JEDEC file, zeros and ones)
- JEDEC file (Joint Electron Device Engineering Council):
 File format between data preperation system and PLD programmer
- Tango-PLD is outdated, because it's too simple for modern FPGAs.

Computer Science

Tango-PLD

A language to describe the logic.

- The Tango-PLD compiler automatically creates the contact pattern (JEDEC file, zeros and ones)
- JEDEC file (Joint Electron Device Engineering Council): File format between data preperation system and PLD programmer
- Tango-PLD is outdated, because it's too simple for modern FPGAs.

Computer Science

Tango-PLD

A language to describe the logic.

- The Tango-PLD compiler automatically creates the contact pattern (JEDEC file, zeros and ones)
- JEDEC file (Joint Electron Device Engineering Council): File format between data preperation system and PLD programmer
- Tango-PLD is outdated, because it's too simple for modern FPGAs.

Tango-PLD

Technische Hochschule Rosenheim Technical University of Applied Sciences

A language to describe the logic.

```
Logic(in AO, A1, A2, A3, B; out Q){
    Q = !A3 \& A2 \& !A1 \& A0 | B;
    putpart("g16v8", "Logic",
             -, AO, A1, A2, A3, B, -, -, -, GND,
             -,-,-,-,-,-,Q,VCC);
```

- The Tango-PLD compiler automatically creates the contact pattern (JEDEC file, zeros and ones)
- JEDEC file (Joint Electron Device Engineering Council): File format between data preperation system and PLD programmer
- Tango-PLD is outdated, because it's too simple for modern FPGAs.

Computer Science

Hardware description languages

- ⇒ Programming of FPGAs!
 - A precise, formal description of an electronic circuit
 - Allows automated analysis and simulation of an electronic circuit
 - HDL! = Programming language (HDL explicitly consider the notion of time and is therefore more complex)
 - The syntax of VHDL is very similar to the programming language Ada.

Hardware description languages

- **⇒** Programming of FPGAs!
 - A precise, formal description of an electronic circuit
 - Allows automated analysis and simulation of an electronic circuit
 - HDL! = Programming language (HDL explicitly consider the notion of time and is therefore more complex)
 - The syntax of VHDL is very similar to the programming language Ada.

Hardware description languages

- ⇒ Programming of FPGAs!
 - A precise, formal description of an electronic circuit
 - Allows automated analysis and simulation of an electronic circuit
 - HDL! = Programming language (HDL explicitly consider the notion of time and is therefore more complex)
 - The syntax of VHDL is very similar to the programming language Ada.

Hardware description languages

- ⇒ Programming of FPGAs!
 - A precise, formal description of an electronic circuit
 - Allows automated analysis and simulation of an electronic circuit
 - HDL ! = Programming language (HDL explicitly consider the notion of time and is therefore more complex)
 - The syntax of VHDL is very similar to the programming language Ada.

Computer Science

Hardware description languages

- ⇒ Programming of FPGAs!
 - A precise, formal description of an electronic circuit
 - Allows automated analysis and simulation of an electronic circuit
 - HDL! = Programming language (HDL explicitly consider the notion of time and is therefore more complex)
 - The syntax of VHDL is very similar to the programming language Ada.

Computer Science

Questions?

All right? \Rightarrow

> <

Question? \Rightarrow

*

and use chat

speak after I ask you to

Computer Science

Summary and outlook

Summary

- Development of integrated circuits
- Circuit families
- Programmable Logic Devices

Outlook

Processor architecture

Computer Science

Summary

- Development of integrated circuits
- Circuit families
- Programmable Logic Devices

Outlook

Processor architecture

