Coordination geometries and benchmark data[1-4]

C.N.	Polyhedral symbol [5]	Name [4]	Coordination polyhedron	Model	Angles (ideal)	Proteins, monuclear sites	Ideal coordinates [Z]
2	L-2	LIN	Linear[4, 5]	0-0-0	Planar 180°	171	$egin{array}{cccccccccccccccccccccccccccccccccccc$
2	A-2	TRV	Angular[5] Trigonal plane with a vacancy[4]		Planar 120° 60°	1859	$egin{array}{cccccccccccccccccccccccccccccccccccc$
3	TP-3	TRI	Trigonal plane[5]		Planar 60°	196	$egin{array}{cccccccccccccccccccccccccccccccccccc$
3	TPY-3	TEV	Trigonal pyramid[5] Tetrahedron with a vacancy[4]		$L\widehat{M}L \approx 109.5^{\circ}$ $\arccos\left(-\frac{1}{3}\right)$	963	Remove one (any) from tetrahedron

3	TS-3	SPV	T-shape[5] Square plane with a vacancy[4]		Planar 90° 180°	539	$egin{array}{cccccccccccccccccccccccccccccccccccc$
4	T-4	TET	Tetrahedron[4, 5]		$L\widehat{M}L = \arccos\left(-\frac{1}{3}\right)$ $\approx 109.4712^{\circ}$		$egin{array}{cccccccccccccccccccccccccccccccccccc$
4	SP-4	SPL	Square plane[5] [4]		Planar 180° 90°		$egin{array}{cccccccccccccccccccccccccccccccccccc$
4	SPY-4		Square pyramid[5]	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			$egin{array}{cccccccccccccccccccccccccccccccccccc$
4	SS-4		See-saw[5]	[A]	$L_{ax}\widehat{M}L_{ax} = 180^{\circ}$ $L_{ax}\widehat{M}L_{eq} = 90^{\circ}$ $L_{eq}\widehat{M}L_{eq} = 90^{\circ}$		$egin{array}{cccccccccccccccccccccccccccccccccccc$

5	ТВРҮ-5	Trigonal bipyramid		$L_{ax}\widehat{M}L_{ax} = 180^{\circ}$ $L_{ax}\widehat{M}L_{eq} = 90^{\circ}$ $L_{eq}\widehat{M}L_{eq} = 120^{\circ}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
5	SPY-5	Square pyramid		$L_{ax}\widehat{M}L_{eq} = 90^{\circ}$ $L_{eq}\widehat{M}L_{eq} = 90^{\circ}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
6	OC-6	Octahedron	8	$L_{ax}\widehat{M}L_{ax} = 180^{\circ}$ $L_{ax}\widehat{M}L_{eq} = 90^{\circ}$ $L_{eq}\widehat{M}L_{eq}$ $= 90^{\circ}, 180^{\circ}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
6	TPR-6	Trigonal prism	[B]		$egin{array}{cccccccccccccccccccccccccccccccccccc$

7	PBPY-7 [1/3 most frequente for CN 7]	PBP	pentagonal bipyramid		$L_{ax}\widehat{M}L_{ax} = 180^{\circ}$ $L_{ax}\widehat{M}L_{eq} = 90^{\circ}$ $L_{eq}\widehat{M}L_{eq}$ $= 72^{\circ}, 144^{\circ}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
7	OCF-7 [2/3 most frequente for CN 7]	COC	octahedron, face monocapped	[C] [K]		
7	TPRS-7 [3/3 most frequente for CN 7]	СТР	trigonal prism, square-face monocapped	[D] [L]		
7		HVA	Hexagonal bipyramid with a vacancy (axial) [hexagonal pyramid]		$L_{ax}\widehat{M}L_{eq} = 90^{\circ}$ $L_{eq}\widehat{M}L_{eq}$ $= 60^{\circ}, 120^{\circ}, 180^{\circ}$	Remove L_8 or L_7 from hexagonal bipyramid

7		HVP	Hexagonal bipyramid with a vacancy (equatorial)	$\begin{split} L_{ax}\widehat{M}L_{ax} &= 180^{\circ} \\ L_{ax}\widehat{M}L_{eq} &= 90^{\circ} \\ L_{eq}\widehat{M}L_{eq} &= 60^{\circ}, 120^{\circ}, 180^{\circ} \end{split}$	Remove one (any) from L_1 to L_6 from hexagonal bipyramid
7		CUV	Cube with a vacancy		Remove one (any) from cube
7		SAV	Square antiprism with a vacancy		Remove one (any) from square antiprism
8	CU-8	CUB	cube		$egin{array}{cccccccccccccccccccccccccccccccccccc$

8	SAPR-8	SQA	square antiprism	[E]		$egin{array}{cccccccccccccccccccccccccccccccccccc$
8	DD-8		dodecahedron	[F] [M]		
8	НВРҮ-8	НВР	hexagonal bipyramid		$L_{ax}\widehat{M}L_{ax} = 180^{\circ}$ $L_{ax}\widehat{M}L_{eq} = 90^{\circ}$ $L_{eq}\widehat{M}L_{eq}$ = 60°, 120°, 180°	$egin{array}{cccccccccccccccccccccccccccccccccccc$
8	OCT-8	ВОС	octahedron, trans-bicapped			

8	TPRT-8	ВТТ	trigonal prism, triangular-face bicapped	[G] [N]
8	TPRS-8	BTS	trigonal prism, square-face bicapped	[H]
9	TPRS-9	TTP (similar to CSA)	trigonal prism, square-face tricapped	[1] [0]

CSA (similar to TTP) Square antiprism, square-face monocapped [K] [P]

$$b = \frac{a}{2} \qquad c = a\frac{\sqrt{3}}{2} \qquad d = a\frac{\sqrt{2}}{2} \qquad e = a\frac{\sqrt{2}}{4}$$

$$f = a\frac{\sqrt{6}}{4} \qquad g = a\frac{\sqrt{3}}{3} \qquad i = a\cos\left(\frac{2\pi}{5}\right) = \frac{a(\sqrt{5} - 1)}{4} \quad j = a\sin\left(\frac{2\pi}{5}\right) = \frac{a\sqrt{2}(\sqrt{5} + 5)}{4}$$

$$k = a\cos\left(\frac{4\pi}{5}\right) = \frac{a(-\sqrt{5} - 1)}{4} \quad l = a\sin\left(\frac{4\pi}{5}\right) = \frac{a\sqrt{2}(-\sqrt{5} + 5)}{4} \qquad m = a\cos\frac{2\pi}{7} \qquad n = a\cos\frac{4\pi}{7}$$

$$p = a\cos\frac{6\pi}{7} \qquad q = a\sin\frac{2\pi}{7} \qquad r = a\sin\frac{4\pi}{7} \qquad s = a\sin\frac{6\pi}{7}$$

[K]

Capped octahedral molecular geometry, from the gyroelongated triangular pyramid

Ex.: CSD entry YIDBES Deposition number $1302541 - WF_7^-$

W2,5.117,1.893,2.108

F5,6.097,2.576,0.839

F6,4.739,1.217,3.889

F7,3.815,0.528,2.168

F8,3.78,2.198,0.923

F9,4.241,3.188,3.008

F10,6.569,2.669,3.134

F11,6.132,0.387,1.833

Orange was axial Violet was equatorial Green is new [L

Capped trigonal prismatic, from <u>augmented</u> triangular prism (Johsnon solid J49)

<u>Ideal</u>:

$$C \equiv 0; edge = 2$$

$$\pm 1 \quad -\frac{1}{\sqrt{3}} \quad \pm 1 \quad d = \frac{7}{3}$$

$$0 \quad \frac{2}{\sqrt{3}} \quad \pm 1 \quad d = \frac{7}{3}$$

$$0 \quad -\frac{1+\sqrt{6}}{\sqrt{3}} \quad 0 \quad d = \frac{2\sqrt{6}+7}{3}$$

[M]

(Trigonal) Dodecahedron, from <u>snub</u> <u>disphenoid</u> (Johnson solid J84)

Ideal:

$$C \equiv 0; edge = 2$$

$$0 \quad \sqrt{A} \quad \pm 1 \quad d = A + 1$$

$$\pm \sqrt{C} \quad \sqrt{B} \quad 0 \quad d = B + C$$

$$0 \quad -\sqrt{B} \quad \pm \sqrt{C} \quad d = B + C$$

$$+1 \quad -\sqrt{A} \quad 0 \quad d = A + 1$$

$$A \in [2,3]: 2A^3 - A^2 - 8A - 4 = 0$$

$$B \in [0,1]: 2B^3 + 11B^2 + 4B - 1 = 0$$

$$C \in [1,2]: C^3 - 17C^2 + 64C - 64 = 0$$

$$\sqrt{A} = 1.567861848465127$$

$$\sqrt{B} = 0.411123131706519$$

$$\sqrt{C} = 1.289168546448310$$

[N]

Bicapped trigonal prismatic, from <u>biaugmented</u> <u>triangular prism</u> (Johnson solid J50)

Ideal:

$$C \equiv 0; edge = 2$$

$$\pm 1 \qquad -\frac{1}{\sqrt{3}} \quad \pm 1 \qquad d = \frac{7}{3}$$

$$0 \qquad \frac{2}{\sqrt{3}} \quad \pm 1 \qquad d = \frac{7}{3}$$

$$\pm \frac{1+\sqrt{6}}{2} \quad \frac{1+\sqrt{6}}{2\sqrt{3}} \quad 0 \quad d = \frac{(1+\sqrt{6})^2}{3}$$

[O]

Tricapped trigonal prismatic, from <u>triaugmented</u> <u>triangular prism</u> (Johsnon solid J51)

$$C \equiv 0; edge = 2$$

$$\pm 1 \qquad -\frac{1}{\sqrt{3}} \qquad \pm 1 \qquad d = \frac{7}{3}$$

$$0 \qquad \frac{2}{\sqrt{3}} \qquad \pm 1 \qquad d = \frac{7}{3}$$

$$\pm \frac{1+\sqrt{6}}{2} \qquad \frac{1+\sqrt{6}}{2\sqrt{3}} \qquad 0 \qquad d = \frac{(1+\sqrt{6})^2}{3}$$

$$0 \qquad -\frac{1+\sqrt{6}}{\sqrt{3}} \qquad 0 \qquad d = \frac{(1+\sqrt{6})^2}{3}$$

[P]

Capped square antiprismatic, from gyroelongated square pyramid (Johnson solid J10)

$$c \equiv 0; edge = 2$$

$$0 \qquad 0 \qquad \sqrt{2} + \frac{1}{\sqrt[4]{2}} \quad d = 2 + \frac{1}{\sqrt{2}} + 2\sqrt[4]{2}$$

$$0 \qquad \pm \sqrt{2} \qquad \frac{1}{\sqrt[4]{2}} \qquad d = 2 + \frac{1}{\sqrt{2}}$$

$$\pm \sqrt{2} \qquad 0 \qquad \frac{1}{\sqrt[4]{2}} \qquad d = 2 + \frac{1}{\sqrt{2}}$$

$$+1 \qquad +1 \qquad -\frac{1}{\sqrt{2}} \qquad d = 2 + \frac{1}{\sqrt{2}}$$