Section 2.2

- $3. \log_3 81 = 4$
- 5. $\log_3 \frac{1}{9} = -2$
- 11. $10^5 = 100,000$
- 12. $10^{-3} = 0.001$
- 16. We seek $r = \log_3 27$. In exponential form this equation becomes $3^r = 27$. Since $27 = 3^3$ we seek r such that $3^r = 3^3$ and it follows that r = 3. Therefore, $\log_3 27 = 3$.
- 19. We seek $r = \log_2 \sqrt[3]{\frac{1}{4}}$. In exponential form this equation becomes $2^r = \sqrt[3]{\frac{1}{4}}$. Since $2^{-2} = \frac{1}{4}$ we have $\sqrt[3]{\frac{1}{4}} = \left(\frac{1}{4}\right)^{1/3} = (2^{-2})^{1/3} = 2^{-2/3}$ and our equation becomes $2^r = 2^{-2/3}$ from which it follows that r = -2/3. Therefore, $\log_2 \sqrt[3]{\frac{1}{4}} = -2/3$.
- 34. $\log_b 18 = \log_b (2 \cdot 3^2) = \log_b 2 + \log_b 3^2 = \log_b 2 + 2\log_b 3 = a + 2c$
- 36. $\log_b (9b^2) = \log_b (3^2b^2) = 2\log_b 3 + 2\log_b b = 2c + 2$
- 41. $\log_x 36 = -2 \Rightarrow x^{-2} = \frac{1}{x^2} = 36 \Rightarrow x^2 = \frac{1}{36} \Rightarrow x = \pm \frac{1}{6} \Rightarrow x = \frac{1}{6}$ (The last equality is due to the fact that the base of a logarithm must be positive.)
- 42. The equation $\log_9 27 = m$ has exponential form $9^m = 27$. Since $9^m = (3^2)^m = 3^{2m}$ and $27 = 3^3$ our equation becomes $3^{2m} = 3^3$ from which it follows that 2m = 3 and m = 3/2.
- 43. The equation $\log_8 16 = z$ has exponential form $8^z = 16$. Since $8^z = (2^3)^z = 2^{3z}$ and $16 = 2^4$ our equation becomes $2^{3z} = 2^4$ from which it follows that 3z = 4 and z = 4/3.
- 44. $\log_y 8 = \frac{3}{4} \Rightarrow y^{3/4} = 8 \Rightarrow y = (y^{3/4})^{4/3} = 8^{4/3} = 16$