191220154 AsMath

- 1. False. Let $f = \lambda x \in \mathbf{N}$. x + 1, $\emptyset \in \mathcal{P}(f)$ and $\{(0,1)\} \in \mathcal{P}(f)$. If there exists $(A \subseteq \mathbf{N})$ and $(B \subseteq \mathbf{N})$ that satisfy $\mathcal{P}(f) \subseteq A \to B$, there must be $\emptyset \in A \to B$ and $\{(0,1)\} \in A \to B$. Consider $A \to B$ represent the set of all *total* functions from A to B, $dom(A \to B) = A$, $A = \emptyset$ and $A = \{0\}$ cannot both be true, thus such A, B do not exist. In fact, for any $f \neq \emptyset$, such A and B cannot be found.
- 2. False. Suppose for f there is f(0)=42, for h there is h(1)=42, and for g, there exists no such y so that g(y)=42, so for f and g, $\forall x,y$. $(f(x)=42) \land (g(y)=42) \Longrightarrow (x=y)$, thus $f\bowtie g$, for g and h, $\forall x,y$. $(g(x)=42) \land (h(y)=42) \Longrightarrow (x=y)$, thus $g\bowtie h$, but for f and h, there exists f(0)=42 and h(1)=42, let x=0 and y=1, $x\neq y$, thus $f\bowtie h$ is not true.
- 3. False. Consider H being the set of all functions from S to $\textbf{\textit{N}}$ where S is a finite subset of $\textbf{\textit{N}}$, let $h_1=\{(0,0)\}$ and $h_2=\{(0,1)\}$, so that $(h_1\in H)$ and $(h_2\in H)$, however $(h_1\cup h_2)=\{(0,0),(0,1)\}$ is not even a function, thus $(h_1\cup h_2)\not\in H$.
- 4. True. Consider any $h \in H$, for any x, $hclosed(h(x \leadsto 42))$ implies $closed(dom(h) \cup \{x\}, h(x \leadsto 42),$ that is to say, $\forall l, l'. \ (l \in dom(h) \cup \{x\}) \land (l' = h\{x \leadsto 42\}(l)) \Longrightarrow l' \in dom(h) \cup \{x\}.$ If hclosed(h) is not true, there exist h_0, l_0, l'_0 so that $l_0 \in dom(h_0), l'_0 = h_0(l_0)$ and $l'_0 \not\in dom(h_0).$ Suppose this $l'_0 = 42$, that is to say, $42 \not\in dom(h_0)$, let l = x and $l' = h_0\{x \leadsto 42\}(x) = 42, \ l' \in dom(h_0) \cup \{x\}$ is not true for any x but only when x = 42. Suppose this $l'_0 \ne 42$, let $l = l_0$ and $l' = h\{x \leadsto 42\}(x) = l'_0, \ l' \in dom(h) \cup \{x\}$ is only true when $x = l'_0$. Either ways such h_0, l_0, l'_0 do not exist, so hclosed(h).