Mathematisches Seminar Prof. Dr. Mathias Vetter Ole Martin, Adrian Theopold

Sheet 04

Computational Finance

Exercises for participants of the programme 'Quantative Finance'

C-Exercise 11 (Greeks of a European option in the Black-Scholes model)

On the OLAT you find a scilab function

which computes the price of a European option with payoff g(S(T)) at maturity T > 0 in a Black-Scholes model with initial stock price S(0) > 0, interest rate r > 0 and volatility $\sigma > 0$. The first order greeks for a European option in the Black-Scholes model are given by the first order derivatives

$$\Delta(r, \sigma, S(0), T, g) = \frac{\partial}{\partial S(0)} V_{BS}(r, \sigma, S(0), T, g),$$

$$v(r, \sigma, S(0), T, g) = \frac{\partial}{\partial \sigma} V_{BS}(r, \sigma, S(0), T, g),$$

$$\rho(r, \sigma, S(0), T, g) = \frac{\partial}{\partial r} V_{BS}(r, \sigma, S(0), T, g),$$

$$\Theta(r, \sigma, S(0), T, g) = -\frac{\partial}{\partial T} V_{BS}(r, \sigma, S(0), T, g),$$

where $V_{BS}(r, \sigma, S(0), T, g)$ denotes the Black-Scholes price of the European option.

a) Write a scilab function

that computes the greeks described above numerically using the function BS_Price_Int and the approximation

$$\frac{\partial}{\partial x} f(x,y) \approx \frac{f(x + \varepsilon x, y) - f(x,y)}{\varepsilon x}.$$

b) Plot $\Delta(r, \sigma, S(0), T, g)$ for the European put with payoff function $g(x) = (100 - x)^+$ and parameters r = 0.05, $\sigma = 0.2$, T = 1 for $S(0) \in [60, 140]$. Use $\varepsilon = 0.001$.

Useful scilab command: exec

C-Exercise 12 (Barrier option in the CRR model)

In the binomial model from Section 2.1 with parameters S(0), r, σ , T > 0 and $M \in \mathbb{N}$, we denote by V the fair price process of an *up-and-out put option* on the stock S with strike K > 0 and barrier B > K. I.e., its payoff is given by

$$V(T) = 1_{\{S(t_i) < B \text{ for all } i=0,...,M\}} (K - S(T))^+.$$

- (a) Explain which line in the algorithm from C-Exercise 06 has to be changed and why.
- (b) Implement the change and write a scilab function

that computes and returns the fair value at time $t_0 = 0$ of the up-and-out put option. Test your function with

$$S(0) = 100, r = 0.05, \sigma = 0.2, T = 1, K = 100, B = 110, M = 1000.$$

T-Exercise 13

For $\mu \in R$ and $\sigma, r > 0$ we consider the Black-Scholes market with bond B and stock price process S which evolve according to

$$dB_t = rB_t dt,$$
 $B_0 = 1,$
 $dS_t = \mu S_t dt + \sigma S_t dW_t,$ $S_0 > 0.$

- (a) Calculate the Itô process representation of the logarithmic stock process $X_t := \log(S_t)$ and the associated quadratic variation process $[X,X]_t$.
- (b) Consider a self-financing portfolio $\varphi = (\varphi_t^0, \varphi_t^1)_{t \ge 0}$ with initial value $V_0(\varphi) = 1$ that always invests half of the wealth into the stock, i.e. $\varphi_t^1 = \frac{V_t(\varphi)}{2S_t}$. Show that the value process $V_t(\varphi)$ is a geometric Brownian motion.

Please save your solution of each C-Exercise in a file named Exercise_##.sce, where ## denotes the number of the exercise. Please include your name(s) as comment in the beginning of the file.

Submit until: Fri, 19.05.2017, 10:00

Discussion: 22./24.05.2017,