אלגוריתמים נומריים- תרגיל בית 2

5 שאלה

<u> 1 סעיף</u>

א. כדי לסווג בין הספרה 0 לבין כל הספרות האחרות, קבענו שבהנתן תוצאת המסווג:

- אם היא חיובית, קובעים שהתמונה היא של הספרה 0.
- אם היא שלילית, קובעים שהתמונה היא לא של הספרה 0.

לכן, ההתאמות שביצענו בקוד הן:

- 1. עבור כל ספרה מ-0 עד 9 לקחנו מ-training.images כ-N תמונות של הספרה (N=4000). שמרנו בנפרד את התמונות של כל ספרה.
 - 2. את המטריצה A_all בנינו כך שהשורה הראשונה היא תמונה של 0, השנייה תמונה של 1 וכך הלאה עד השורה העשירית שהיא תמונה של 9, ואז שוב השורה ה-11 היא תמונה של 0 וחוזר חלילה.
- 3. בהתאמה, בנינו את הוקטור b_all כך שבשורה המתאימה לתמונה של 0 ב-A_all שמנו 1 ואחרת שמנו 1- (כלומר בהתאמה לשורות בהן התמונה היא לא של 0).
 - 4. עשינו כך שהמטריצה A_train היא 5N השורות הראשונות של A_all, והוקטור A_all היא 5N השורות הראשונות של $A_{\rm all}$.
 - 5. עשינו כך שהמטריצה A_test היא 5N השורות האחרונות של A_all, והוקטור b_test הוא 5N השורות האחרונות של b_test. b_all.
 - ב. בקבוצת האימון: 299 תמונות סווגו לא נכון. בקבוצת המבדק: 318 תמונות סווגו לא נכון.

Train Error:
Accuracy=98.505% (299 wrong examples)
Test Error:
Accuracy=98.41% (318 wrong examples)

ג. 5 תמונות שסווגו לא נכון (מופיעות כפלט גם בקוד). ניתן לראות שתוצאת המסווג הייתה שלילית אך קרובה מאוד ל-0.

<u>2 סעיף</u>

בסעיף זה הרחבנו את הקוד של הסעיף הקודם (על מנת ליצור מסווג לכל ספרה) באופן הבא:

3. את כל וקטורי ה-x המסווגים שקיבלנו שמרנו כעמודות מטריצה.

ב- k הספרה (מ-0 עד 9) יצרנו וקטור b המתאים לסיווג שלה, כלומר יש בו 1 בשורות שמתאימות לתמונה של הספרה A_a ll ו-1- בשורות שמתאימות לתמונות שאינן של הספרה A_a ll ב- A_a ll את כל הווקטורים b האלה שמרנו כעמודות מטריצה. A_all ו-1- בשורות שמתאימות לתמונות שאינן של הספרה A_a ll A_a ll את בהרצאה: A_a ll A_a ll ווחות שבחל A_a ll (בחרנו שערכו יהיה 1) כפי שהוצג בהרצאה: A_a ll בהרצאה שהוצגה בהרצאה: A_a ll ווחות במסווג A_a ll המתאים לה על ידי שימוש בנוסחת פתרון ה- A_a ll עם הרגולרזציה שהוצגה בהרצאה: A_a ll ברגולריזציה שומוש ברגולריזציה הזו הביא לשיפור מינורי בדיוק אך הביא לשיפור משמעותי בזמן הריצה של התכנית (פי 13 יותר מהיר בהשוואה לאי שימוש ברגולרזיציה). השיפור נובע מכך שבלי רגולריזציה משתמשים ב-pinv שומוש ב-pinv (בלי פונקציה איטית, ולעומת זאת ברגולריזציה אפשר להשתמש בנוסחה עם חישוב המטריצה ההופכית ללא שימוש ב-pinv (בלי רגולריזציה צריך להשתמש ב-pinv ולא לחשב את המטריצה ההופכית A_a ll כי המטריצה ההופכית יוצאת כמעט סינגולרית ומטלאב מוציא על כך אזהרות, אבל עם הרגולריזציה המטריצה שהופכים לא קרובה לסינגולרית).

א.

	מס׳ התמונות שזוהו לא נכון בקבוצת האימון	מס׳ התמונות שזוהו לא נכון בקבוצת המבדק
זיהוי הספרה 0	300	304
זיהוי הספרה 1	326	362
זיהוי הספרה 2	751	812
זיהוי הספרה 3	826	902

766	654	זיהוי הספרה 4
1239	1078	זיהוי הספרה 5
517	414	זיהוי הספרה 6
675	608	זיהוי הספרה 7
1150	1022	זיהוי הספרה 8
1158	1057	זיהוי הספרה 9

digit: 0 digit: 0 Train Error: Test Error: Accuracy=98.5% (300 wrong examples) Accuracy=98.48% (304 wrong examples) digit: 1 digit: 1 Train Error: Test Error: Accuracy=98.37% (326 wrong examples) Accuracy=98.19% (362 wrong examples) digit: 2 digit: 2 Train Error: Test Error: Accuracy=96.245% (751 wrong examples) Accuracy=95.94% (812 wrong examples) digit: 3 digit: 3 Train Error: Test Error: Accuracy=95.87% (826 wrong examples) Accuracy=95.49% (902 wrong examples) digit: 4 digit: 4 Train Error: Test Error: Accuracy=96.73% (654 wrong examples) Accuracy=96.17% (766 wrong examples) digit: 5 digit: 5 Train Error: Test Error: Accuracy=94.61% (1078 wrong examples) Accuracy=93.805% (1239 wrong examples) digit: 6 digit: 6 Train Error: Test Error: Accuracy=97.93% (414 wrong examples) Accuracy=97.415% (517 wrong examples) digit: 7 digit: 7 Train Error: Test Error: Accuracy=96.96% (608 wrong examples) Accuracy=96.625% (675 wrong examples) digit: 8 digit: 8 Train Error: Test Error: Accuracy=94.89% (1022 wrong examples) Accuracy=94.25% (1150 wrong examples) digit: 9 digit: 9 Train Error: Test Error: Accuracy=94.715% (1057 wrong examples) Accuracy=94.21% (1158 wrong examples)

> ב. תמונה אחת שסווגה לא נכון על ידי כל אחד מהמסווגים: מסווג של הספרה 0:

מסווג של הספרה 1:

מסווג של הספרה 2:

מסווג של הספרה 3:

מסווג של הספרה 4:

מסווג של הספרה 5:

מסווג של הספרה 6:

מסווג של הספרה 7:

מסווג של הספרה 8:

מסווג של הספרה 9:

<u>3 סעיף</u>

בסעיף זה, על מנת לקבוע מהי הספרה בתמונה כלשהי על סמך המסווגים שיצרנו מקודם, חישבנו קודם את תוצאת הסיווג של התמונה על ידי כל אחד מהמסווגים, ואז אם רק <u>אחד מהמסווגים החזיר ״כן״</u> (כלומר תוצאה חיובית) קבענו שהספרה בתמונה היא הספרה המתאימה למסווג הזה (כלומר הספרה שאותה המסווג מנסה לזהות).

בפועל בקוד עשינו זאת על ידי הכפלת המטריצה A_new_test במטריצה שעמודותיה הן המסווגים (המטריצה שחישבנו בסעיף 2), את תוצאת ההכפלה שמרנו במשתנה res.

לאחר מכן עבור כל תמונה (כלומר עבור כל שורה ב-A_new_test) בדקנו את תוצאות המסווגים (כלומר השורה המתאימה במטריצה res- בשורה הזו האיבר הראשון היא תוצאת הסיווג של המסווג של הספרה 0, האיבר השני הוא תוצאת הסיווג של

המסווג של הספרה 1 וכו׳ עד האיבר האחרון בשורה שהוא תוצאת הסיווג של המסווג של הספרה 9). בשורה הנ״ל במטריצה res, <u>בדקנו כמה איברים יצאו חיוביים</u> (כלומר המסווגים המתאימים לאיברים האלה קבעו שהספרה בתמונה היא אכן הספרה שהמסווג מנסה לזהות). אם <u>התקבל איבר חיובי אחד בשורה</u>, זה אומר שהצלחנו <u>לזהות באופן חד משמעי את הספרה</u> (אחד מהמסווגים החזיר תשובה ״לן״ על הספרה שהוא מנסה לזהות ושאר המסווגים החזירו תשובה ״לא״ על הספרה שהם מנסים לזהות). לכן קבענו בוקטור pred שהספרה המופיעה בתמונה היא הספרה של המסווג שהחזיר תשובה ״כן״. אם בשורה התקבלו <u>יותר מאיבר חיובי אחד</u> (כמה מסווגים החזירו ״כן״) או ש<u>לא התקבלו איברים חיוביים כלל</u> (אף מסווג לא החזיר ״כן״) אז שלא הערך 1- ב-pred.

א. ישנן 2941 תמונות שלא קיבלנו עבורן תשובה חד משמעית (או שיותר מספרה אחת התאימה לתמונה או שאף ספרה לא התאימה לתמונה).

ניתן לטפל בהן בדרך אחרת בכך שאם עבור תמונה כלשהי כמה מסווגים החזירו ״כן״, נקבע שהספרה בתמונה היא הספרה שמתאימה למסווג בעל התוצאה החיובית המקסימלית (כלומר ההתאמה ״החזקה״ ביותר). אם עבור תמונה כלשהי כל המסווגים החזירו ״לא״ (כלומר מספרים שליליים), נקבע שהספרה בתמונה היא הספרה של המסווג בעל התוצאה השלילית הקרובה ביותר ל-0 (כלומר המקסימלית). כלומר בשני המקרים נקבע מהי הספרה בתמונה לפי המסווג שהחזיר את התוצאה המקסימלית, גם אם היה חיובית וגם אם היא שלילית.

ב. זיהינו לא נכון 3300 תמונות (2941 תמונות שלא הצלחנו לזהות באופן חד משמעי ו-369 תמונות שהסיווג עבורן היה לא נכון).

>> section_3
Accuracy=67% (3300 wrong examples)

ג. 5 תמונות שזיהינו לא נכון: (כולן תמונות שלא הצלחנו לזהות חד משמעית לכן ה-pred שלהן הוא 1-).

