Algorithm 4 Even-Paz algorithm

Input: a cake (initially[0,1]), num of *child* n and their value density function f_i

Output: an allocation $I: \int_{I_i} f_i(x) dx \ge \frac{1}{n} \int_0^1 f_i(x) dx$ suggest the current cake is [a, b]

if n=1 then

Give the cake to this *child*

end if

for each $child_i$ do

calculate the half-half point
$$x_i$$
:

 $\int_{0}^{x_{i}} f_{i}(x)dx = \frac{1}{2} \left| \frac{n}{2} \right| \cdot \int_{0}^{1} f_{i}(x)dx$

$$J_0$$
 $J_i(x)ax = \frac{1}{n} \left[\frac{\pi}{2}\right] \cdot J_0$ $J_i(x)ax$
use medium algorithm to find the medium $x_i^* \triangleright O(n)$

 $\triangleright O(n)$

end for

select the $\frac{n}{2}th x_i$ to divide the cake into two parts apply this algorithm: the former $\frac{n}{2}$ children shares the cake $[a, x_i^*]$

▶ recursion apply this algorithm: the children left shares the rest of the cake ▶ recursion