TEORÍA DE LA COMPUTACIÓN

LICENCIATURA EN INFORMÁTICA CON ORIENTACIÓN EN DESARROLLO DE SOFTWARE UNIVERSIDAD NACIONAL DE QUILMES

Práctica 1 Repaso

Ejercicio 1. Demostrar por inducción en n:

1.
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

2.
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

3.
$$n < 2^n$$

Ejercicio 2.

- 1. Sean $w_1, w_2 \in \Sigma^*$ palabras. Por inducción en $|w_1|$ demostrar que $(w_1 \cdot w_2)^r = w_2^r \cdot w_1^r$.
- 2. Sea $w \in \Sigma^*$ una palabra. Por inducción en |w| demostrar que $(w^r)^r = w$.

Ejercicio 3. En un grafo no dirigido G sea n el número de vértices y m el número de aristas. Demostrar que $m \leq \frac{n(n-1)}{2}$.

Ejercicio 4. Sea Σ un alfabeto y sean $L_1, L_2, L_3 \subseteq \Sigma^*$ lenguajes. Demostrar:

1.
$$L_1 \cdot (L_2 \cup L_3) = (L_1 \cdot L_2) \cup (L_1 \cdot L_3)$$

2.
$$L_1^* \cdot L_1^* = L_1^*$$

3.
$$(L_1^*)^* = L_1^*$$

Ejercicio 5. Sean $f: A \to B$ y $g: B \to C$ funciones y sea $g \circ f: A \to C$ la composición.

- 1. Demostrar que si f y g son inyectivas, entonces $g \circ f$ es inyectiva.
- 2. Demostrar que si f y g son survectivas, entonces $g \circ f$ es survectiva.
- 3. Demostrar que si f y g son biyectivas, entonces $g \circ f$ es biyectiva.

Ejercicio 6. Escribimos $A \approx B$ si existe una función biyectiva $f: A \to B$. Demostrar:

- 1. $A \approx A$
- 2. $A \approx B \implies B \approx A$
- 3. $A \approx B \wedge B \approx C \implies A \approx C$
- 4. $\mathbb{N} \approx \mathbb{N} \setminus \{10\}$
- 5. $\mathbb{N} \approx \mathbb{N} \times \mathbb{N}$
- 6. $\mathbb{N} \approx \Sigma^*$ para cualquier alfabeto Σ finito y no vacío
- 7. $\mathbb{N} \not\approx \mathbb{N}^{\mathbb{N}}$ donde $\mathbb{N}^{\mathbb{N}}$ denota el conjunto de funciones $\mathbb{N} \to \mathbb{N}$

Máquinas de Turing

Ejercicio 7. Recordemos que una máquina de Turing decide un lenguaje $L \subseteq \Sigma^*$ si acepta a las palabras que están en L y rechaza a las palabras que no están en L.

- 1. Definir una máquina de Turing sobre $\Sigma = \{a, b\}$ que decida el lenguaje $\{w \in \Sigma^* \mid w \text{ tiene un número par de } as\}$.
- 2. Definir una máquina de Turing sobre $\Sigma = \{a, b, \#\}$ que decida el lenguaje $\{w \# w \in \Sigma^* \mid w \text{ no tiene ocurrencias de } \#\}$.