Hotstuff Evaluation

Birju Patel

Project Goal

- Evaluate the performance of Hotstuff under attack
- Determine if a Hotstuff based BFT system was suitable for the SCADA application

Implementation

- I selected a BFT system that implemented the Hotstuff consensus protocol and used a mempool to disseminate transactions across the network
- https://github.com/asonnino/hotstuff

Chained Hotstuff

- Three phase commit
- Linear view change
- View change after each phase
- Blockchain based

Chained Hotstuff

Mempool

- In traditional BFT systems, the transaction that the system is trying to reach consensus on is included in consensus messages
- The mempool separates BFT into two layers
 - Consensus Deals with ordering blocks of transactions
 - Mempool Deals with disseminating blocks of transactions across the network

Mempool

- The mempool layer takes transactions from clients and packages them in blocks
- It then broadcasts those blocks in an unordered manner across the network
- A unique hash is created for each block
- This hash is then sent to the consensus layer, and the hash is included on consensus messages

Testing Setup

Testing Setup

Potential Threats

- Crash failures
- Network attacks
- Byzantine attacks

Test Scenarios

- Control No interference
- Kill 1 Kill and restart a single replica
- Site Isolation Drop all communication to and from a single site, then reconnect the site
- Site Isolation + Kill 2 Isolate a site and simultaneously kill 2 replicas, then reconnect the site and restart the replicas
- Delay Attack A byzantine replica injects 500ms of delay when it becomes leader
- Fork Attack A byzantine replica sends conflicting proposals when it becomes leader

Results

Control

Control, Anomaly

Kill 1

Site Isolation

Site Isolation + Kill 2

Delay Attack

Fork Attack

