Homework 2

Due February 2, 2018

PHY 204B

Problem 19.2.16. Confirm the delta function nature of your Fourier series of exercise 19.2.15 by showing that for any f(x) that is finite in the interval $[-\pi, \pi]$ and continuous at x = 0,

$$\int_{-\pi}^{\pi} f(x) \left[\text{Fourier expansion of } \delta_{\infty}(x) \right] \mathrm{d}x = f(0).$$

Solution for exercise 19.2.15 from solution manual:

$$\delta_n(x) = \frac{1}{2\pi} + \frac{2n}{\pi} \sum_{m=1}^{\infty} \frac{\sin(m/2n)}{m} \cos mx$$

Problem 19.2.17.

(a) Show that the Dirac delta function $\delta(x-a)$, expanded in a Fourier sine series in the half-interval (0,L) (0 < a < L) is given by

$$\delta(x-a) = \frac{2}{L} \sum_{n=1}^{\infty} \sin\left(\frac{n\pi a}{L}\right) \sin\left(\frac{n\pi x}{L}\right).$$

Note that this series actually describes $-\delta(x+a) + \delta(x-a)$ in the interval (-L, L).

(b) By integrating both sides of the preceding equation from 0 to x, show that the cosine expansion of the square wave

$$f(x) = \begin{cases} 0, & 0 \le x < a \\ 1, & a < x < L, \end{cases}$$

is

$$f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi a}{L}\right) - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi a}{L}\right) \cos\left(\frac{n\pi x}{L}\right)$$

for $0 \le x < L$.

(c) Show that the term $\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi a}{L}\right)$ is the average of f(x) on (0, L).

Problem 11.2.3. Find the analytic function

$$w(z) = u(x, y) + iv(x, y)$$

- (a) if $u(x,y) = x^3 3xy^2$
- (b) if $v(x, y) = e^{-y} \sin x$

Problem 11.2.6. Show that given the Cauchy–Riemann equations, the derivative f'(z) has the same value for dz = adx + ibdy (with neither a nor b zero) as it has for dz = dx.

Problem 11.2.7. Using $f\left(re^{i\theta}\right)=R(r,\theta)e^{i\Theta(r,\theta)}$, in which $R(r,\theta)$ and $\Theta(r,\theta)$ are differentiable real functions of r and θ , show that the Cauchy–Riemann conditions in polar coordinates become

(a)
$$\frac{\partial R}{\partial r} = \frac{R}{r} \frac{\partial \Theta}{\partial \theta}$$

(b)
$$\frac{1}{r} \frac{\partial R}{\partial \theta} = -R \frac{\partial \Theta}{\partial r}$$

Hint. Set up the derivative first with δz radial and then with δz tangential.

Problem 11.2.11. Two-dimensional irrotational fluid flow is conveniently described by a complex potential f(z) = u(x, v) + iv(x, y). We label the real part, u(x, y), the velocity potential, and the imaginary part, v(x, y), the stream function. The fluid velocity **V** is given by $\mathbf{V} = \nabla u$. If f(z) is analytic:

- (a) Show that $df/dz = V_x iV_y$.
- (b) Show that $\nabla \cdot \mathbf{V} = 0$ (no sources or sinks).
- (c) Show that $\nabla \times \mathbf{V} = 0$ (irrotational, nonturbulent flow).

Problem 11.3.1. Show that $\int_{z_1}^{z_2} f(z) dz = -\int_{z_2}^{z_1} f(z) dz$.

Problem 11.3.3. Show that the integral

$$\int_{3+4i}^{4-3i} \left(4z^2 - 3iz\right) dz$$

has the same value on the two paths:

- (a) the straight line connecting the integration limits
- (b) an arc on the circle |z| = 5

Problem 11.3.6. Verify that

$$\int_0^{1+i} z^* \mathrm{d}z$$

depends on the path by evaluating the integral for the two paths shown in Fig. 11.7. Recall that $f(z) = z^*$ is not an analytic function of z and that Cauchy's integral theorem therefore does not apply.

Figure 1: Fig. 11.7 from book.