應用電子學 MOSFET 與繼電器實驗 實驗日期: 12/22

組員:鄭子嘉 B08502058 程鏡丞 B08502097 吳陳佑 B08502013

實驗目的 Objective

本實驗將會利用 MOSFET 當作訊號放大器以及訊號切換器以此了解其特性;最 後還會用到繼電器,探討其當作切換器時的功能。

實驗原理 Principle

一、MOSFET(以下將用 n-channel MOSFET 來說明):

圖一為 n-channel MOSFET 的腳位對照圖,以及電路圖圖示。

▲圖一

n-channel MOSFET 為一種在類比訊號中常常使用的電路元件,結構如圖二所示,包含汲極(Drain)、源極(Source)以及連接兩者的 N 型區塊;而圖中上方兩塊薄片上層為閘極(Gate),下層為 SiO_2 用來阻隔電流流進閘極;最後將 N 型區塊用 P 型基座包覆住形成基極(Body)。當施加電壓後,一個 N 型通道便會產生在 D 與 S 之間,提供電子通過。

一個 MOSFET 會有三種工作區間:截止區(Cut-off)、線性區(Triode)以及飽和區(saturation),以下會分別介紹三種工作區的特性:

(1) 截止區(Cut-off region)

在此工作區間的條件為 $v_{GS} < V_t$,此時 Drain 與 Source 之間就不會有電流通過,也就是說 MOSFET 正處在「截止」狀態、「斷路」狀態。

(2) 線性區(Triode region)

在此工作區間的條件為 $v_{GS} > V_t$ 且 $v_{GS} - v_{DS} > V_t$,在此區間內 $D \setminus S$ 之間流經的電流可用下方之方程式來表示:

$$i_D = k_n' \frac{W}{L} [(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2]$$

其中 k'_n 取決於 MOSFET 的製作過程,W 是感應通道的寬度,L 是長度;在此工作區間,MOSFET 是呈現通路狀態。

(3) 飽和區(Saturation region)

在此工作區間的條件為 $v_{GS} > V_t \perp v_{GS} - v_{DS} \leq V_t$,此區間內 D、S 之間的電流只會被 v_{GS} 影響,可用下方之方程式表示:

$$i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_t)^2$$

此工作區間內的 MOSFET 大多被當作放大器使用,圖三為 n-channel MOSFET 的工作區間圖。

二、MOSFET 放大器:

MOSFET 被當成放大器使用時必須處在 saturation region,(圖四)為電流與電壓關係圖,假設 $v_{GS} = V_{GS} + v_{gs}$,其中 V_{GS} 是決定 MOSFET 工作點的 DC 偏壓而 v_{gs} 是要被放大的小訊號。從圖中可以清楚看到輸入訊號 $V_{GS} + v_{gs}$ 及對應產生之電流 $I_D + i_a$,在作用點 Q 附近之 v_{as} 和 i_a 的關係便可用斜率表示。

圖五為小訊號放大器之迴路圖,圖中可輕易看出:

$$v_D = V_{DD} - R_D(I_D + i_d)$$

$$i_d = k_n' \frac{w}{L} (V_{GS} - V_t) v_{gS}$$
,而 v_D 可用 $V_D - R_D i_d$,因此 $v_d = -i_d R_D = -g_m R_D v_{gS}$

放大器增益為 $\frac{v_d}{v_{gs}} = -g_m R_D$;圖六為小訊號放大器之輸入與輸出。

三、繼電器(Relay):

繼電器是用小電流/電壓來開關大電流/電壓的電路裝置。圖七為一單刀/雙 擲繼電器,單刀及為公共端數量,雙擲是可能與公共端連接的兩端子,此實 驗及為 $A \times B$;而 $V_1 \times V_2$ 是施加到繼電器中電磁鐵的電壓,當沒有電壓時, Pin C 會連接到"normally closed"(NC) Pin A,當有電壓時 Pin C 會連接到 "normally open"(NO) Pin B。圖八為雙刀/雙擲的繼電器,其中1跟16為電磁鐵兩端;此狀況下繼電器有兩個公共端,當線圈通電時,6跟11就會接到4跟13。

實驗步驟 Procedures

一、小訊號放大器

- (1) 連接一小訊號放大器電路,如圖九所示。
- (2) 提供 $10 \mathrm{kHz}$, $50 \mathrm{m} V_{p-p}$ 的 \sin 波 (v_{gs}) ,並加上偏置電壓 (V_{GS}) 當作輸入信號。
- (3) 調整 DC offset 來設定 V_{GS} ,分別記錄從 $3V\sim3.6V$ 所對應的 Gain 值為何。

偏置電壓V _{GS} (V)	$v_{GS}(V_{P-P})$	$v_{out}(V_{P-P})$	Gain(dB)
3.0	50 mV	28 mV	-2.76
3.1	50 mV	55 mV	0.29
3.2	50 mV	128 mV	4.08
3.3	50 mV	336 mV	8.33
3.4	50 mV	802 mV	12.05
3.5	50 mV	2.10 V	16.35
3.6	50 mV	1.71 V	15.42

(4) 將 V_{GS} 固定為 3.4V、 \sin 波振幅為 30 m V_{p-p} ,量測並繪製放大器從 $100\sim500$ Hz 的頻率響應,繪製時要用 \log scale。

輸入頻率(kHz)	$v_{GS}(V_{P-P})$	$v_{out}(V_{P-P})$	Gain(dB)
0.1	30 mV	539 mV	12.54
0.2	30 mV	539 mV	12.54
0.5	30 mV	536 mV	12.51
1	30 mV	536 mV	12.51
2	30 mV	535 mV	12.51
5	30 mV	525 mV	12.44
10	30 mV	519 mV	12.38
20	30 mV	470 mV	11.98
50	30 mV	345 mV	10.57
100	30 mV	206 mV	8.35
200	30 mV	119 mV	5.74
500	30 mV	52 mV	2.06

Q:截止頻率為何?

A: gain = 12.54-3.01 = 9.53 時:

由 $\log f = \log 50 + \frac{9.53 - 10.57}{8.35 - 10.57} (\log 100 - \log 50)$ 可得截止頻率 f = 69.18 kHz。

- (5) 將 V_{GS} 固定為 3.4V,提供 $50mV_{p-p}$ 的三角波,並觀察及比對 1kHz、10kHz、50kHz 情況下三角波的輸出線性狀態。
- (a) f = 1kHz 的波形如圖十所示。大致上成線性關係,但在水平軸上下區域的斜率有些微不同(上比下還小)。

▲圖十

(b) f = 10kHz 的波形如圖十一所示。近乎線性,但是在極值附近斜率之絕對值 有變小至零,再從零變大的趨勢(意即在極值附近已逐漸平滑)。

▲圖十一

(c) f = 50kHz 的波形如圖十二所示。原本的三角波形已變成類似正弦波形。線性關係幾乎只能適用於水平軸上下小範圍以內(正負 100mV 左右)了。

▲圖十二

Q:輸出訊號在不同頻率的輸入訊號下有何變化?成因為何?

A:隨著輸入頻率越來越大,輸出訊號波形與三角波之波形越來越不同,反倒越來越像正弦波。此現象是因為 MOSFET 反應速度並非無限大,需要一段時間才能將輸入訊號轉為輸出訊號之故。

- (6) 將 V_{GS} 固定為 3.4V,提供 1kHz、40m V_{p-p} 的三角波當作 v_{gs} ,以每40m V_{p-p} 為 區間增加 v_{gs} 至160 m V_{p-p} ,觀察輸出訊號是否扭曲。
- (a) $v_{GS}=40\mathrm{mV}$ 的波形如圖十三所示。還未出現明顯扭曲。

▲圖十三

(b) $v_{GS} = 80 \text{mV}$ 的波形如圖十四所示。已出現一些扭曲但還不是很嚴重,處於不好判斷是否扭曲的階段。

▲圖十四

(c) $v_{GS} = 120 \text{mV}$ 的波形如圖十五所示。已出現明顯扭曲。

▲圖十五

(d) $v_{GS} = 160 \mathrm{mV}$ 的波形如圖十六所示。已出現明顯扭曲。

▲圖十六

Q:輸出訊號在不同振幅的輸入訊號下有何變化?成因為何?

A:隨著振幅變大,輸出訊號與波形的扭曲程度也都越大。因為線性關係只能

在 v_{GS} 不大的前提下近似得到。所以當 v_{GS} 越來越大後,輸出極值與線性近似偏離程度也會越來越大而造成波形扭曲。

二、光控開關線路

(1) 完成(圖十)所示光感控壓線路,並使用示波器測量 v_{out} ,當手遮住光敏電阻時電壓應會下降,若順利則加入可變電阻如(圖十一)所示,並將輸出電壓設定為 5V (實際設定值為 5.02V)。

(2) 將電路中再加入一運算放大器如圖十二所示,使用示波器測量放大器輸出,當用手遮住光敏電阻時輸出值應會切換。

(3) 連接線路如圖十三,調整 POT 降低輸出電壓到 4V,觀察對電路有何影響。 Q:對電路有何影響?

A:因為輸出電壓比擁有光敏電阻的電路電壓還低,造成比較器 V_{out} 為負,使得 $|V_{GS}|>|V_T|$ (cut-off 狀態),馬達不轉動。若用手遮住光敏電阻,則比較器會輸出正電壓,造成 $|V_{GS}|<|V_T|$ (非 cut-off 狀態),故馬達會轉動。

(4) 再調整 POT 增加輸出電壓到 5.5V, 觀察對電路有何影響。

Q:對電路有何影響?

A: 因為輸出電壓比擁有光敏電阻的電路電壓還高,造成比較器 V_{out} 為正,造成 $|V_{GS}| < |V_T|$ (非 cut-off 狀態),故馬達會轉動。

- (5) 將 MOSFET 移除,以繼電器取代,建立如圖十四所示電路。
- (6) 用手遮住光敏電阻馬達應會啟動(應會聽到繼電器切換聲音),當把手抬得夠高使電路在切換點時,會發現繼電器開始不正常切換直到你把手放下,思考為何會發生這件事以及如何預防。
- Q:為什麼會發生這件事?如何防止這件事發生?

(提示:試著回想前幾次的實驗所用過的電路)

A:因為手掌造成的光亮變化剛好在光敏電阻造成電壓變化的臨界點,所以微 微的上下起伏便會導致比較器輸出電壓隨之變化,最後就會造成繼電器不正常 的切換。

▲圖十四