Misura della permeabilità magnetica relativa con circuito RLC risonante^a

Francesco Polleri^{1, b} e Mattia Sotgia^{1, c} (Gruppo A1)

¹ Dipartimento di Fisica,
Università degli Studi di Genova,
Italia

(Dated: presa dati 9 novembre 2021, consegnata in data 19 novembre 2021)

INTRODUZIONE

Si vuole misurare il valore della permeabilità magnetica di alcuni materiali dati, di cui non conosciamo esatta composizione chimico-fisica ma che possiamo ipotizzare omogenei, lineari e isotropi (LHI) fino al primo grado di approssimazione, avendo a disposizione un rocchetto plastico su cui sono avvolte N spire di rame, nel quale può essere inserito il volume di materiale creato in modo da riempire quasi completamente il rocchetto. Variando il materiale ci aspettiamo di poter misurare i differenti valori della permeabilità magnetica μ_R .

Poiché i tipi di misure più precisi che siamo capaci a effettuare sono misure di tempo (in termini di periodo e di frequenza) sfruttiamo il circuito risonante RLC per determinare il valore della frequenza di taglio (ν_0), che risulta legata al valore dell'induttanza e della capacità del condensatore. Cambiando il nucleo all'interno del solenoide modifichiamo il valore di L e di conseguenza troveremo un valore differente di ν_0 . Dalla misura della frequenza troviamo il valore di L, essendo noti i valori delle altre componenti circuitali, e confrontando i diversi valori possiamo trovare μ_R per ogni materiale.

METODI

Caratterizzazione del circuito RLC— Il circuito RLC è definito da tre parametri: la frequenza di taglio ν_0 , il fattore di qualità Q e il parametro A. Analizzando il circuito troviamo infatti che il valore della funzione di trasferimento è dato da

$$\left| H[\nu] \right| = \frac{1}{\sqrt{1 + \left(\frac{\omega L}{R} - \frac{1}{\omega RC}\right)^2}},$$

per cui osserviamo che il suo valore massimo (cioè 1), si ottenga per $\omega=\omega_0=\frac{1}{\sqrt{LC}}$ che è il valore di quella che abbiamo chiamato frequenza di taglio (ω_0 oppure ν_0). Per valori più bassi e più alti di pulsazione e quindi di frequenza, il valore della funzione di trasferimento diminuisce, per cui il circuito si comporta come un filtro passa banda intorno al valore della frequenza di taglio che a seconda dei valori di L e di C del circuito può essere modificata. Allo stesso modo l'equazione della funzione di trasferimento può essere riscritta come

$$\left|H[\nu]\right| = \frac{1}{\sqrt{1 + Q_{id}^2 \left(\frac{\nu}{\nu_0} - \frac{\nu_0}{\nu}\right)^2}}$$

dove Q è $Q_{id} = \frac{1}{R} \sqrt{\frac{L}{C}}$ (e abbiamo sostituito ω con $v = \omega/2\pi$ dove v = 1/T), per cui notiamo che il filtro diventa tanto più selettivo, tanto più diventa grande Q, che viene definito quindi fattore di qualità. Inoltre dobbiamo anche considerare che l'induttanza si comporta in realtà anche come una resistenza, per cui dobbiamo

riconsiderare il valore della funzione di trasferimento inserendo questo ulteriore parametro A uguale $A=\left(1+\frac{R_L}{R}\right)^2$ da cui

$$\left| H[\nu] \right| = \frac{1}{\sqrt{A + Q_{id}^2 \left(\frac{\nu}{\nu_n} - \frac{\nu_0}{\nu}\right)^2}}.$$
 (1a)

Perciò in base ai valori di resistenza, capacità e induttanza che inseriamo all'interno del circuito possiamo modificare i valori di tali parametri.

Analogamente a quanto avviene per il modulo della funzione di trasferimento (in eq. 1a), possiamo individuare la fase come

$$\varphi[\nu] = -\arctan\left(\frac{Q}{\sqrt{A}}\left(\frac{\nu}{\nu_0} - \frac{\nu_0}{\nu}\right)\right) \tag{1b}$$

Caratterizzazione dell'induttanza— La bobina su cui andiamo a eseguire le misure di L è composta da un rocchetto cilindrico di plastica dura cavo, attorno al quale viene avvolto un filo di rame smaltato, a comporre 900 spire. L'apparato così creato si comporta come un solenoide caratterizzato da

$$L = \frac{\Phi_B}{I} = \mu_0 \frac{N^2}{\ell} S \tag{2}$$

con $\Phi_B=B\cdot NS$ il flusso del campo magnetico di un solenoide in cui scorre corrente I, dove consideriamo $n=N/\ell$ ottenendo che il solenoide è caratterizzato da

$$L = \mu_0 n^2 \ell S. \tag{3}$$

Consideriamo, in primo ordine di approssimazione che il rocchetto di plastica abbia permeabilità magnetica pari a 1, valore che non si discosta molto dalla realtà sperimentale.

Inserendo un materiale all'interno del rocchetto ci aspettiamo una variazione del valore di L, dal quale vogliamo ricavare il valore di μ_R corrispondente al materiale. I materiali risultano avere dimensioni $(a \times a \times h)$ uguali a $11.90 \times 11.90 \times 68.00$ mm (dimensioni del materiale A) e $12.10 \times 12.10 \times 68.00$ mm (secondo materiale, B). (Le misure sono riportate in Tab. I) Una volta inseriti nella cavità del solenoide non riescono però a riempirne completamente la superficie. Coprono invece tutta la lunghezza del solenoide, eccedendo rispetto al rocchetto, lungo 60.00 mm, di pochi millimetri, per cui ci riserviamo di non considerare effetti di bordo che richiederebbero calcoli non eseguibili sulla base dei dati raccolti.

Figura 1 Circuito utilizzato per il filtro passa-banda progettato nell'esperienza, i valori di R, L e C sono i valori nominali riportati sul componente. La resistenza R_L è la resistenza interna all'induttanza, che verifichiamo non essere nulla.

^a Esperienza n. 3

b s5025011@studenti.unige.it

c s4942225@studenti.unige.it

RELAZIONE DI LABORATORIO N. 1 (2021)

Tabella I Caratteristiche fisiche solenoide e materiali.

Caratteristica	
Altezza solenoide (mm) ^a	60.0 ± 0.1
Diametro solenoide (mm)	24.0 ± 0.1
Numero di spire	900
Lato nucleo Fe (materiale A) (mm)	12.10 ± 0.05
Altezza nucleo Fe (mm)	68.00 ± 0.05
Lato nucleo Al (materiale B) (mm)	11.90 ± 0.05
Altezza nucleo Al (mm)	68.00 ± 0.05

a Valore ℓ della lunghezza degli avvolgimenti; il rocchetto di plastica è più lungo per contenere il nucleo del materiale magnetico.

Dall'equazione (2) abbiamo che $L \cdot I = \Phi_B$. Quando inseriamo il materiale il flusso Φ_B si può ottenere come somma del flusso interno al materiale ed esterno (nello spazio tra il materiale e la bobina). Otteniamo quindi che

$$L_{eq} = \frac{\Phi_B^{\rm int} + \Phi_B^{\rm ext}}{I} = \mu_0 n^2 \ell \left(a^2 \mu_R + \left(S - a^2 \right) \right) = \mu_0 n^2 \ell \left(S + a^2 \left(\mu_R - 1 \right) \right) \quad (4a)$$

dove a^2 indica la superficie di base del materiale considerato, con il fattore

$$\frac{\Phi_B^{\text{int}}}{I} = \mu_0 \mu_R n^2 \ell a^2 \tag{4b}$$

che tiene conto della permeabilità magnetica relativa del materiale e il fattore

$$\frac{\Phi_B^{\text{ext}}}{I} = \mu_0 n^2 \ell \left(S - a^2 \right) \tag{4c}$$

che invece è il flusso fuori dal materiale.

Da queste considerazioni otteniamo che quindi possiamo ricavare il valore della permeabilità magnetica μ_R come

$$\mu_R = \frac{L_{eq} - \mu_0 n^2 \ell S}{\mu_0 n^2 \ell a^2} + 1 \tag{5}$$

Scelta dei componenti del circuito— Vogliamo costruire un circuito la cui frequenza di taglio sia circa 3kHz in modo che intorno a questo valore di frequenza il segnale all'interno del circuito non sia disturbato da possibili rumori presenti a frequenze nell'ordine dei 100Hz o da altre interferenze presenti invece quando arriviamo a oltre 20KHz. Un'altra condizione che imponiamo è che il fattore di qualità sia almeno maggiore di 4 in modo che la banda che filtriamo attraverso il circuito sia sufficientemente stretta. Nello stesso momento vogliamo che questo fattore non sia troppo elevato perché ciò renderebbe invece la banda troppo stretta, rendendo potenzialmente più difficile eseguire un fit dei dati. Inoltre il fattore di qualità, per come è stato definito, è legato ai valori di R, L e C, ma questi, per le condizioni in cui operiamo in laboratorio, cioè alle determinate frequenze descritte sopra, non permettono valori di Q elevati.

Dunque per il nostro progetto necessitiamo di particolari valori di R, C ed L. Quest'ultimo è già determinato, in quanto è legato alle caratteristiche fisiche del rocchetto di filo che appunto utilizziamo come induttanza. Quindi partendo da tale valore, che possiamo determinare in modo diretto usando il tester a nostra disposizione, ricaviamo anche quelli di R e C imponendo le condizioni sulla frequenza di risonanza e sul fattore di qualità. Se quindi vogliamo che $\nu_0=\frac{1}{\sqrt{LC}}\frac{1}{2\pi}$ sia pari a 3kHz, con L misurato grazie al tester che vale 10.03mH, allora $C = \frac{1}{L4\pi^2 v_0^2}$ deve assumere un valore prossimo a 220nF. Prima di procedere a misurare R, attraverso la condizione su Q, misuriamo anche il valore della resistenza dell'induttanza, usando anche in questo caso il tester e otteniamo che R_L è pari 3.70hm. Imponiamo che il valore di Q sia 6 e in base alla relazione $Q=\frac{1}{R}\sqrt{\frac{L}{C}}$ troviamo che $R=\frac{1}{Q}\sqrt{\frac{L}{C}}$, valore a cui però devo sottrarre quello di R_L in quanto la R_{eq} che ottengo dall'equazione precedente deriva in realtà dalla serie di R e R_L . Troviamo quindi che $R = \frac{1}{Q} \sqrt{\frac{L}{C}} - R_L$, cioè circa 380hm. In base ai valori trovati di R e C, cerchiamo tra i dispositivi presenti in laboratorio quelli che hanno valore nominale che più si avvicina a questi. Prendiamo quindi una capacità da 220nF e una resistenza da 380hm e misuriamo questi valori con il tester, per ottenere il loro effettivo valore. Quindi $C = (220 \pm 2)nF$, $R = (38.0 \pm 0.3)Ohm$ e $L = (10.0 \pm 0.5)mH$.

Presa dati—Utilizziamo l'oscilloscopio come generatore di segnale in alternata che forniamo come input al nostro circuito. La frequenza di tale segnale è modificabile e il segnale di output del filtro cambia in base a tale frequenza.

Per individuare la frequenza di taglio del circuito misuriamo, sempre utilizzando l'oscilloscopio, la tensione in ingresso v_{in} , la tensione in uscita v_{out} , il periodo del segnale T (uguale per entrambi i segnali in quanto sono isofrequenziali) e il ritardo tra i due segnali dt, con i rispettivi fondo-scala necessari per ricavare l'errore.

La prima cosa che facciamo è far variare la frequenza di v_{in} per individuare il punto in cui il ritardo tra i due segnali è nullo, trovando quindi quella che dovrebbe

essere v_0 . A questo punto consideriamo un range di frequenze compreso tra una decade prima e una decade dopo il valore della frequenza di taglio e per ogni decade prendiamo tre misure di v_{in} , v_{out} , T e dt (ad esempio a 1kHz, 2kHz, 5kHz). Insieme a questi valori ne raccogliamo di ulteriori intorno a v_0 .

Ripetiamo questo procedimento tre volte, prima senza inserire alcun materiale all'interno dell'induttanza e poi aggiungendo uno per volta i due materiali che abbiamo a disposizione.

I valori che abbiamo acquisito sono riportati nelle tabelle S-6, S-7 e S-8.

ANALISI DATI

Utilizziamo i dati raccolti per creare i grafici dei diagrammi di Bode della funzione di trasferimento e della fase. Per fare ciò calcoliamo |H[v]| come rapporto tra v_{in} e v_{out} e la fase φ come $2\pi \frac{dt}{T}$. Di conseguenza l'errore su |H[v]| è dato da

$$\varepsilon_{|H|} = \sqrt{\left(\frac{\varepsilon_{v_{out}}}{v_{in}}\right)^2 + \left(\frac{\varepsilon_{v_{in}}v_{out}}{v_{in}^2}\right)^2}$$

mentre l'errore su φ è pari a

$$\varepsilon_{\varphi} = 2\pi \sqrt{\left(\frac{\varepsilon_{dt}}{T}\right)^2 + \left(\frac{dt \cdot \varepsilon_T}{T^2}\right)^2}$$

Gli errori statistici di v_{in} , v_{out} , T e dt sono pari agli errori assoluti divisi per $\sqrt{3}$. Per trovare il valore degli errori assoluti cerchiamo sul data-sheet dell'oscilloscopio come calcolarli.

Creiamo quindi delle tabelle in cui riportiamo i valori di |H[v]|, φ e v con i rispettivi errori. Da tali tabelle costruiamo i grafici dei diagrammi di Bode per la funzione di trasferimento e per la fase.

Per realizzare il fit di |H[v]| utilizziamo l'equazione (1a) impostando come parametri A, Q^2 e v_0 , mentre per la fase φ utilizziamo l'equazione (1b) impostando come parametri $\frac{Q}{\sqrt{A}}$ e v_0 . Quindi, una volta che gli abbiamo ricavati, possiamo verificare la compatibilità per $\frac{Q}{\sqrt{A}}$ (dal primo fit ricaviamo separatamente Q^2 e A, però da questi possiamo comunque calcolare $\frac{Q}{\sqrt{A}}$) e v_0 . Se questi si rivelano compatibili, ricaviamo la miglior stima e in particolare dalla relazione

$$v_0 = \frac{1}{2\pi\sqrt{LC}}$$

considerando noto il valore assunto da C, possiamo trovare il valore di L. Se invece non otteniamo la compatibilità, allora calcoliamo due diversi valori di L. Quindi, nei casi in cui abbiamo inserito il materiale dentro al rocchetto, in base all'equazione (5) troviamo μ_R del relativo metallo. Inoltre in quest'ultima relazione troviamo che in realtà $\mu_0 n^2 lS$ è proprio il valore dell'induttanza quando non vi sono materiali dentro al solenoide (la chiamiamo L_0). Perciò dal primo caso ci possiamo ricavare il valore di L_0 per poi utilizzarla successivamente.

Nel primo caso(induttanza senza materiali al suo interno) il fit di $|H[\nu]|$ e quello di φ ci restituiscono rispettivamente questi valori dei parametri: inserire valori Inserendo invece il materiale A i valori dei parametri sono: inserire valori Infine per il materiale B troviamo i valori ricavati sono: inserire valori lori

Figura 2 Diagrammi di Bode per il filtro circuito RLC utilizzato. Gli assi sono allineati per evidenziare lo spostamento della frequenza di risonanza (picco della funzione di trasferimento) verso frequenze più basse per il materiale 1, e invece la quasi identità tra il caso libero e il secondo materiale, che possiamo quindi presupporre essere scarsamente magnetico, ovvero diamagnetico o paramagnetico (la distinzione richiede analisi più dettagliata del risultato in termini quantitativi).

MODELLO DI FIT SU PARAMETRI CIRCUITALI

Il modello prima usato sfruttava i parametri A, Q^2 e v_0 per la funzione di trasferimento e $\frac{Q}{\sqrt{A}}$ e v_0 per la fase, che sono però effettivamente derivati dai valori di R, R_L, L e C, secondo

le relazioni

$$A = \left(1\frac{R_L}{R}\right)^2 \tag{6}$$

$$Q^2 = \frac{1}{R^2} \frac{L}{C} \tag{7}$$

$$v_0 = \frac{1}{2\pi\sqrt{IC}}\tag{8}$$

RELAZIONE DI LABORATORIO N. 1 (2021)

La funzione di trasferimento e la funzione della fase trovate in (1a) e (1b) sono perciò effettivamente funzioni di R, R_L , L e C definite come

$$|H[v]| = \frac{1}{\sqrt{\left(1 + \frac{R_L}{R}\right)^2 + \frac{1}{R^2} \left(2\pi v L - \frac{1}{2\pi v C}\right)^2}}$$
 (9a)

la fase e

$$\varphi[\nu] = -\arctan\left(\frac{2\pi\nu L - \frac{1}{2\pi\nu C}}{R + R_L}\right)$$
 (9b)

CONSIDERAZIONI SU ERRORI A BASSE E ALTE FREQUENZE

Quando operiamo con valori di ν attorno a frequenze nell'ordine del 100Hz osserviamo visualmente sull'oscilloscopio che il segnale di ν_{out} è molto disturbato, per cui per misurare il suo valore ci affidiamo a una media operata dall'oscilloscopio. Nel fare questo passaggio dobbiamo quindi tenere conto che l'errore su queste misure è diverso da quanto ricaviamo per gli altri punti. Possiamo scegliere di procedere in due modi. Da una parte possiamo decidere di sovrastimare l'errore facendo misure *a occhio* e quindi dare meno peso a questi punti nel fit. D'altra parte potremmo procedere invece con l'esclusione dal fit di tali punti. Scegliamo di procedere con quest'ultima opzione in quanto la prima non fornisce un risultato quantitativamente preciso e ci porta a fare un'alterazione dei dati raccolti, mentre la seconda lasca inalterati i valori numerici dei dati ed è in grado di fornirci un risultato più preciso.

Un problema analogo si verifica quando i segnali oscillano ad alte frequenze (superiori a 50kHz, nell'ordine dei 100kHz). Il circuito viene realizzato su una base di lavoro (*breadboard*) che presenta tante superfici conduttrici (necessarie per connettere i pin delle diverse componenti) che si possono comportare come capacità. Quando operiamo a basse frequenze il filtro, che si comporta come un passa alto, non risente dell'effetto di questi condensatori (che possiamo definire *virtuali* all'opposto del condensatore *reale*), mentre ad alte frequenze l'effetto può essere influente.

Nel caso del solenoide libero il fit è ristretto da 800Hz fino a 35kHz, eliminando quindi due punti alle code. Nel caso del materiale A (nucleo di Fe) le problematiche descritte sopra sono evidenziabili sotto i 700Hz e sopra i 10kHz, per cui utilizziamo un range più ristretto per eseguire il fit. Nel caso del terzo materiale (nucleo di Al) non riscontriamo gli stessi effetti e quindi consideriamo tutti i punti raccolti.

CONSIDERAZIONI SULL'ERRORE LEGATO AL RITARDO

Osseviamo che i grafici relativi alla fase presentano un errore associato molto piccolo. Potremmo procedere considerando diversi metodi per compensare questa sottostima, eseguendo un processo di *error scaling* oppure procedendo a ragionamenti legati agli errori nei valori alle code e nella condizione di risonanza.

Per ottenere valori però sensati avremmo dovuto procedere già in sede di presa dati ad una considerazione di tipo statistico del ritardo e quindi ottenere relativamente a ogni frequenza

un valor medio di dt e deviazione standard. Questo processo sarebbe dovuto però essere in qualche modo previsto già in fase di progettazione e attuato nella presa dati considerando di automatizzare la presa dati e ottenere un set di dati più strutturato.

Osservando quanto otteniamo dal valore del fit, non riteniamo opportuno però procedere neanche ad un ragionamento relativo allo scaling dell'errore, in quanto non osserviamo un moglioramento legato al cambio si fattore di scala. Gli errori quindi benchè sottostimati, sono tutti ricavati come in (??).

OSSERVAZIONI SUL COMPORTAMENTO DEL MATERIALE A (NUCLEO DI Fe)

Dai grafici in Figura 2 possiamo osservare che la fase del nucleo di Fe ha un comportamento differente dagli altri due casi. Infatti senza aver bisogno di analizzare il fit possiamo notare che i valori ad alte frequenze tendono a una fase maggiore di $-\frac{\pi}{2}$, valore atteso dal modello utilizzato. Questo mostra come in realtà per questo caso il modello non sia corretto e giustifica il fatto che la funzione non riesca a eseguire il fit, e si ottenga un valore di χ^2/ndf elevato.

Un'altra conseguenza è legata al fatto che i parametri dai due fit non vengano compatibili, ed entrambi non portano a un risultato corretto. Scegliamo però comunque di portare a termine i calcoli per ottenere un valore di μ_R , su cui possiamo fare ulteriori osservazioni.

CONCLUSIONI

Dal fit eseguito otteniamo i valori dei parametri A, Q e ν_0 con i relativi errori. Otteniamo però due valori per ogni caso, uno dalla fase e una dalla funzione di trasferimento.

Per il caso del solenoide libero troviamo la compatibilità tra i valori dei parametri entro 3σ , quindi, considerando i set di dati essenzialmente scorrelati tra di loro (l'unica correlazione è legata al tempo, che però presenta errori molto piccoli, trascurabili quasi rispetto agli errori legati agli altri fattori) possiamo procedere a ricavare la miglior stima dei parametri, ottenendo quindi dalle relazioni di definizione di A, Q e ν_0 i valori di R, L e C. Analizzando questi ultimi dati osserviamo, senza aver necessariamente bisogno di un calcolo rigoroso, che non risultano compatibili con quelli misurati in modo diretto usando il tester. Infatti i valori ottenuti sono

$$R = 21.8 \pm 1.5\Omega$$

 $L = 2.8 \pm 0.2$ mH
 $C = 0.80 \pm 0.07 \mu$ F

Osserviamo che comunque il fit ci restituisce ugualmente un rapporto costante di L e C che rispecchia il fatto che ν_0 sia effettivamente simile al valore trovato direttamente quando abbiamo impostato che dt fosse nullo.

In particolar modo definiamo L_0 il valore di L ottenuto per questo caso: questo valore sarà necessario per calcolare il valore di μ_R relativo ai casi dove è presente il materiale nel nucleo, in quanto rappresenta il valore calcolato del modello privato di nucleo magnetizzabile.

RELAZIONE DI LABORATORIO **N. 1** (2021)

Tabella II Valori riferiti al grafico per il solenoide libero

Ampiezza (a. u.)	Fase (rad)	Frequenza (Hz)
$ H[v] \pm \varepsilon_{ H }$	$arphi[u]\pmarepsilon_{arphi}$	$ u \pm \varepsilon_{ u}$
0.352876±0.0115384	1.16867±0.00920978	2000±2.88213
0.452609±0.0149932	-1.03673±0.00941222	5000±7.39008
0.157246±0.00490569	-1.35717±0.00890702	10000±13.8564
0.0733422±0.00229198	-1.42 ± 0.00904482	20000±28.0823
0.0322483±0.00106978	-1.44513±0.00893355	50000±69.282
0.0641943±0.00201382	1.50168±0.00924982	500±0.715914
0.13772±0.0043302	1.4244±0.00928424	1000±1.44107
0.360591±0.0115479	1.16239±0.00920813	2000±2.88213
0.582477±0.0197895	0.879646±0.00908418	2500±3.57957
0.764433±0.0276268	0.598231±0.00914317	2800.34±4.05665
0.850223±0.0277893	0.12442±0.0095797	3300.33±5.03088
0.776263 ± 0.0252258	-0.407118±0.0108873	3599.71±6.22441

Tabella III Valori riferiti al grafico per il solenoide con il materiale A nel nucleo

Ampiezza (a. u.)	Fase (rad)	Frequenza (Hz)
$ H[v] \pm \varepsilon_{ H }$	$arphi[u]\pmarepsilon_{arphi}$	$v \pm \varepsilon_v$
0.0406824±0.00135005	1.50796±0.00955036	500±0.739008
0.0969498±0.00323737	1.37602±0.00998208	1000±1.55192
0.18823±0.00627942	1.10846±0.00954889	1500.15±2.24519
0.318803±0.0103277	-0.25604±0.0101657	2500±4.04145
0.34233±0.0109366	-0.00580835±0.00938967	2311.07±3.45369
0.233532±0.0084336	-0.65226±0.0105047	3000.3±4.9893
0.180211±0.00587559	-0.835705±0.011067	3500.18±6.11129
0.0904712±0.00311543	-1.08552±0.0106001	5998.8±9.97262
0.27243±0.0148448	0.806319±0.0103217	1799.86±2.93265
0.126146±0.0047248	1.28936±0.00967016	1200.05±1.80924
0.110348±0.00412999	-1.03673±0.00970635	5000±7.62102
0.0556128±0.00210705	-1.15611±0.00967861	10000±15.1497

Tabella IV Valori riferiti al grafico per il solenoide con il materiale B nel nucleo

Ampiezza (a. u.)	Fase (rad)	Frequenza (Hz)
$ H[v] \pm \varepsilon_{ H }$	$\varphi[v] \pm \varepsilon_{\varphi}$	$v \pm \varepsilon_v$
0.0380522±0.0014051	1.53121±0.0101558	500±0.785196
0.0814664±0.00318576	1.47027±0.0104913	1000±1.62582
0.209412 ± 0.00780371	1.29434±0.011378	2000±3.54724
0.341641±0.0129267	-1.06814±0.00971426	5000±7.62102
0.108025±0.0039811	-1.36973±0.00998	10000±15.5192
0.541039 ± 0.0205774	0.772909±0.00982547	3000.3±4.65668
0.336275±0.0126533	1.12312±0.0100235	2500±3.92598
0.75513 ± 0.0287252	0.087969±0.0105651	3500.18±5.88494
0.619261±0.0234809	-0.573027±0.0104908	4000±6.65108
0.445531±0.0170819	-0.904869 ± 0.0102924	4500.45±7.29686
0.273393±0.0103695	-1.1647±0.0107151	5500.55±9.22328
0.23±0.00891459	-1.22121±0.0102862	5998.8±9.6402

Nel caso del materiale A, per i motivi descritti in precedenza, troviamo, come ci aspettavamo dei valori non compatibili tra i parametri trovati attraverso il fit della funzione di trasferimento e quello della fase. Quindi, non potendo fare la miglior stima, procediamo ricavando i valori di R, L e C in entrambi i

casi e troviamo i valori riportati in Tabella V. Da questi valori troviamo due valori di μ_R che sono

$$\mu_R^H = 0.65 \pm 0.07$$

 $\mu_R^{\varphi} = 3.0 \pm 0.6$

Da questi valori ancora di più possiamo stabilire la non riuscita dell'esperienza, in aggiunta a osservare che il modello utilizzato non si adatta al comportamento del Fe.

Nel caso del materiale B invece i valori dei paramatri risultano compatibili e dopo aver calcolato la miglior stima

Tabella V Valori di R, L e C ottenuti per il materiale A (Fe).

Caso	Resistenza $R \pm \varepsilon_R (\Omega)$	Induttanza $L \pm \varepsilon_L \text{ (mH)}$	Capacità $R \pm \varepsilon_R \text{ (nF)}$
Risultati da H	1.87 ± 0.14	1.99 ± 0.05	$(2.4 \pm 0.6) \times 10^3$
Risultati dalla fase	62 ± 4	8 ± 5	$(6 \pm 4) \times 10^2$

troviamo che i valori di R, L e C sono

$$R = 11.2 \pm 0.8\Omega$$

 $L = 2.50 \pm 0.01$ mH
 $C = 0.79 \pm 0.07\mu$ F

In questo modo possiamo, dal valore di L, ricavare il valore di μ_R . Dalla equazione (5) otteniamo una relazione che lega μ_R con L_{eq} , ma possiamo osservare che $\mu_0 n^2 \ell S$ è proprio il valore del coefficiente di autoinduzione del circuito (in particolare del solenoide utilizzato) che però possiamo ottenere dal fit nel caso libero.

Per capire meglio quale possa essere il problema proviamo a ripetere l'analisi dati modificando però le funzioni di fit: inserire equazioni del secondo fit in cui inseriamo direttamente come parametri i valori di R, L e C aggiungendo in più anche R_L . Notiamo che in questo caso

Dati completi e codice sorgente

Tutti i dati completi a supporto dei grafici, e il relativo codice, sono visualizzabili su https://github.com/mattiasotgia/Lab2. L'analisi dati viene eseguita su un programma sviluppato in C++ basandosi su framework pubblici: ROOT, per la realizzazione dei grafici e il fit dei modelli (https://root.cern/).

Tabella S-6 Dati grezzi (induttanza libera)

Tensio	one ingresso (mV)	Tens	sione uscita (mV)	Periodo (ms)		Ritardo (ms)	
v_{in}	$range_{v_{in}}$	v_{out}	$range_{v_{out}}$	T	$range_T$	dt	$range_{dt}$
992.3	132	63.7	9	2	0.310	0.478	0.310
981.7	132	135.2	19	1	0.156	0.2267	0.156
907.4	132	320.2	45	0.5	0.078	0.093	0.078
907.4	132	327.2	44	0.5	0.078	0.0925	0.078
817.2	132	476.0	64	0.4	0.062	0.056	0.062
753.5	132	576.0	80	0.3571	0.056	0.034	0.056
559.5	80	475.7	68	0.303	0.050	0.006	0.050
601.6	86	467.0	66	0.2778	0.052	-0.018	0.052
868.3	132	393.0	54	0.2	0.032	-0.033	0.032
973.0	132	153.0	21	0.1	0.015	-0.0216	0.015
981.7	132	72.0	10	0.05	0.0076	-0.0113	0.0076
992.3	132	32.0	5	0.02	0.0030	-0.0046	0.0030

Tabella S-7 Dati grezzi (materiale A)

Tensi	one ingresso (mV)	Tensione uscita (mV)		Periodo (ms)		Ritar	rdo (ms)
v_{in}	$range_{v_{in}}$	v_{out}	$range_{v_{out}}$	T	$range_T$	dt	$range_{dt}$
990.6	140	40.3	6	2	0.320	0.480	0.320
973.7	140	94.4	14	1	0.168	0.219	0.168
960.0	156	121.1	20	0.8333	0.136	0.171	0.136
907.4	132	170.8	25	0.6666	0.108	0.1176	0.108
827	196	225.3	54	0.5556	0.098	0.0713	0.098
748.4	104	256.2	36	0.4327	0.070	-0.0004	0.070
768.5	108	245.0	35	0.4	0.070	-0.0163	0.070
838.0	132	195.7	31	0.3333	0.060	-0.0346	0.060
882.3	124	159.0	23	0.2857	0.054	-0.038	0.054
947.0	156	104.5	17	0.200	0.033	-0.033	0.033
955.0	144	86.4	13	0.1667	0.030	-0.0288	0.030
971.0	160	54.0	9	0.1	0.0164	-0.0184	0.0164

Tabella S-8 Dati grezzi (materiale B)

Tensione ingresso (mV) Tensione uscita		sione uscita (mV)	nV) Periodo (ms)			Ritardo (ms)	
v_{in}	$range_{v_{in}}$	v_{out}	$range_{v_{out}}$	T	$range_T$	dt	$range_{dt}$
996.0	164	37.9	6	2	0.340	0.4874	0.340
982.0	164	80.0	14	1	0.176	0.234	0.176
935.0	152	195.8	32	0.5	0.096	0.103	0.096
849.9	140	285.8	47	0.4	0.068	0.0715	0.068
704.2	116	381	64	0.3333	0.056	0.041	0.056
575.0	96	434.2	72	0.2857	0.052	0.004	0.052
646.9	108	400.6	66	0.250	0.045	-0.0228	0.045
756.4	128	337	56	0.2222	0.039	-0.032	0.039
838.6	140	286.5	47	0.2	0.033	-0.034	0.033
887	148	242.5	40	0.1818	0.033	-0.0337	0.033
910	152	209.3	36	0.1667	0.029	-0.0324	0.029
972.0	156	105	17	0.1	0.0168	-0.0218	0.0168