1

Matrix theory Assignment 13

Shivangi Parashar

Abstract—This document contains the concept of linear transformations.

Download all python codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/tree/master/Assignment13/ Codes

Download latex-tikz codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/blob/master/Assignment13/ Assignment 13.tex

1 Problem

Let **T** and **U** be the linear operators on \mathbb{R}^2 defined by $\mathbf{T}(x_1, x_2) = (x_2, x_1)$ and $\mathbf{U}(x_1, x_2) = (x_1, 0)$.

Give rules like the ones defining **T** and **U** for each of the transformations $\mathbf{U} + \mathbf{T}$, \mathbf{UT} , \mathbf{TU} , \mathbf{T}^2 , \mathbf{U}^2 . \mathbb{R}^2 into \mathbb{R}^2 is linear transformation?

2 Solution

Let T and U defined by matrices A and B such that ,

$$T(x) = Ax;$$
 $U(x) = Bx$ (2.0.1)

Where,

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \quad \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \tag{2.0.2}$$

Table 0 lists the summary of each Transformations.

Transformations	Summary
U + T	$(\mathbf{U} + \mathbf{T}) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{U} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \mathbf{T} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_1 \end{pmatrix}$
UT	$\mathbf{UT} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{U} \left(\mathbf{T} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}$
TU	$\mathbf{TU}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{T}\left(\mathbf{U}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ x_1 \end{pmatrix}$
T^2	$\mathbf{T}^{2} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \mathbf{T} \left(\mathbf{T} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \right) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \right) = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$
\mathbf{U}^2	$\mathbf{U}^{2} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \mathbf{U} \begin{pmatrix} \mathbf{U} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} x_{1} \\ 0 \end{pmatrix}$

TABLE 0: Summary