

Norwegian University of Science and Technology Institutt for matematiske fag

MA0301 Elementary discrete mathematics Spring 2017

Exercise set 9

1 Homework Set 9

- 1 Find the number of distinct permutations of the sequence of letter:
 - a) THOSE, b) UNUSUAL, c) SOCIOLOGICAL,
 - d) S A N N S Y N L I G H E T S T E T T H E T S F U N K S J O N E N E
- 2 Consider the two permutations:

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 4 & 5 & 1 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 5 & 3 & 1 \end{pmatrix}$$

Calculate the permutations i) $a \circ b$, ii) $b \circ a$ and iii) find the inverses a^{-1} and b^{-1} .

Grimaldi's book (5. ed., Exercises 6.1, page 317): solve Ex. 1

Let $\Sigma=\{a,b,c,d,e\}$. (a) What is $|\Sigma^2|$? (b) How many strings in Σ^* have length at most 5?

4 Grimaldi's book (5. ed., Exercises 6.1, page 318): solve Ex. 5

Let $\Sigma = \{v, w, x, y, z\}$ and $A = \bigcup_{n=1}^{6} \Sigma^{n}$. How many strings in A have xy as a proper prefix?

5 Grimaldi's book (5. ed., Exercises 6.1, page 318): solve Ex. 18

Provide the proofs for the remaining parts of Theorems 1 and 2.

6 Grimaldi's book (5. ed., Exercises 6.2, page 324): solve Ex. 3

Let $M = (S, \mathcal{I}, \mathcal{O}, \nu, \omega)$ be a finite state machine where $S = \{s_0, s_1, s_2, s_3\}$, $\mathcal{I} = \{a, b, c\}$, $\mathcal{O} = \{0, 1\}$, and ν , ω are determined by the table below.

		ν			ω	
	a	b	$^{\mathrm{c}}$	a	b	\mathbf{c}
s_0	s_0	s_3	s_2	0	1	1
s_1	s_1	s_1	s_3	0	0	1
s_2	s_1	s_1	s_3	1	1	0
s_3	s_2	s_3	s_0	1	0	1

- a) Starting at s_0 , what is the output for the input string abbccc?
- **b)** Draw the state diagram for this finite state machine.
- 7 Grimaldi's book (5. ed., Exercises 6.3, page 332): solve Ex. 8

Determine a transfer sequence from state s_2 to state s_5 in finite state machine (c) of Exercise 7 (given by the table below). Is your sequence unique?

		ν		ω
	0	1	0	1
s_0	s_1	s_2	0	1
s_1	s_0	s_2	1	1
s_2	s_2	s_3	1	1
s_3	s_6	s_4	0	0
s_4	s_5	s_5	1	0
s_5	s_3	s_4	1	0
s_6	s_6	s_6	0	0