The Optimal design of Climate Agreements Inequality and incentives for carbon policy

WORK IN PROGRESS

Thomas Bourany
The University of Chicago

Capital theory

November 2023

▶ What is the optimal taxation of energy in the presence of climate externality and inequality?

- ▶ What is the optimal taxation of energy in the presence of climate externality and inequality?
- Fossil fuels taxation and climate policy redistribute across countries through
 (i) energy markets and (ii) change in temperature.

- ▶ What is the optimal taxation of energy in the presence of climate externality and inequality?
- ► Fossil fuels taxation and climate policy redistribute across countries through (i) energy markets and (ii) change in temperature.
- Countries have differing incentives to join
 e.g. cold countries or fossil-rich countries are better off outside "climate clubs"

- ▶ What is the optimal taxation of energy in the presence of climate externality and inequality?
- ► Fossil fuels taxation and climate policy redistribute across countries through (i) energy markets and (ii) change in temperature.
- Countries have differing incentives to join
 e.g. cold countries or fossil-rich countries are better off outside "climate clubs"
- ⇒ Designing a climate agreement entails to determine *jointly* the level of carbon tax and the club of participating countries

Introduction – this project

- ⇒ Designing a climate agreement entails to determine *jointly* the level of carbon tax and the club of participating countries
- ► Trade-off between intensive margins and extensive margin :
 - Climate club with a small number of countries with (i) a tax higher/closer to the *first-best*,
 (ii) large emissions reductions but (iii) potentially large carbon "leakage" effects
 - Extensive climate agreements with a large number of countries but lower optimal tax to accommodate participation constraints

Introduction – this project

- ⇒ Designing a climate agreement entails to determine *jointly* the level of carbon tax and the club of participating countries
- ► Trade-off between intensive margins and extensive margin :
 - Climate club with a small number of countries with (i) a tax higher/closer to the *first-best*,
 (ii) large emissions reductions but (iii) potentially large carbon "leakage" effects
 - Extensive climate agreements with a large number of countries but lower optimal tax to accommodate participation constraints
- ▶ Develop an Integrated Assessment Model (IAM) with heterogeneous countries to :
 - Evaluate the welfare costs of global warming
 - Solve optimal carbon policy of climate clubs
 - Analyze the strategic implications of joining climate agreements
 - Design to optimal size of the climate club

Literature

- Climate change & optimal carbon taxation
 - RA model: Nordhaus DICE (1996-), Weitzman (2014), Golosov et al (2014)
 - HA model: Krusell Smith (2022), Kotlikoff, Kubler, Polbin, Scheidegger (2021)
 - Spatial models : Cruz, Rossi-Hansberg (2022, 2023)
 - ⇒ Optimal and constrained policy with heterogeneous countries
- Unilateral vs. climate club policies :
 - Climate clubs: Nordhaus (2015), Non-cooperative taxation: Chari, Kehoe (1990), Suboptimal policy: Hassler, Krusell, Olovsson (2019)
 - Trade policy: Kortum, Weisbach (2023), Farrokhi, Lashkaripour (2021)
 - ⇒ Climate cooperation and optimal design of climate club
- Optimal policy in heterogeneous agents models
 - Policy with limited instruments: Diamond (1973), Davila, Walther (2022)
 - Bhandari et al (2021), Le Grand, Ragot (2022), Davila, Schaab (2022) ...
 - ⇒ Application to climate and carbon taxation policy

Model - Household

- Deterministic Neoclassical economy, in continuous time
 - countries $i \in \mathbb{I}$, heterogeneous in productivity z_i /wealth w_{it} , temperature τ_{it} , energy cost/reserves \mathcal{R}_{it}
 - In each country, 4 agents: (i) household, (ii) homogeneous good firm,
 (iii) fossil and (iv) renewable energy producers.
- Representative household problem in each country *i*:

$$\mathcal{V}_{i0} = \max_{\{c_{it},k_{it},b_{it}\}} \int_0^\infty e^{-\rho t} u(c_{it}) dt$$

▶ Dynamics of wealth of country i, $w_{it} = b_{it} + k_{it}$ More details

$$\dot{w}_{it} := \dot{k}_{it} + \dot{b}_{it} = w_{it}\ell_{it} + \pi_{it}^f + r_t b_{it} + (r_t - \delta)k_{it} - c_{it} + t_{it}^{ls}$$

• Labor income $w_{it}\ell_{it}$ from homogeneous good firm, profit π_{it}^f from fossil firm

5/26

Model – Representative Firm

Competitive homogeneous good producer in country *i*

$$\max_{k_{it},e_{it}^f,e_{it}^r} \mathcal{D}^{y}(\tau_{it}) z_i f(k_{it},e_{it}^f,e_{it}^r) - w_{it} \ell_{it} - r_t k_{it} - (q_t^f + t_{it}^f) e_{it}^f - (q_t^r + t_{it}^r) e_{it}^r$$

- Energy mix with fossil e_{it}^f emitting carbon subject to price q_t^f and tax/subsidy t_{it}^f . Similarly "clean" renewable e_t^r , at price q_{it}^r and tax t_{it}^r .
- Climate externality : effect of temperature on damage/TFP, $\mathcal{D}_i^y(\tau) \in (0,1)$

Model – Energy markets

- Competitive fossil fuels energy producer :
 - Extraction of fossil energy e_{it}^x depleting reserves $\mathcal{R}_{it} \Rightarrow$ Hotelling problem

$$egin{aligned} \pi_{it}^f &= \max_{e_{it}^x} q_t^f e_{it}^x - \mathcal{C}^f(e_{it}^x, \mathcal{R}_{it}) \ \dot{\mathcal{R}}_{it} &= -e_{it}^x \end{aligned}$$

Fossil energy traded in international markets :

$$\sum_{\mathbb{I}} e_{it}^f = \sum_{\mathbb{I}} e_{it}^x$$

- Unique fossil price q_t^f clearing the market More details

Model – Energy markets

- Competitive fossil fuels energy producer :
 - Extraction of fossil energy e_{it}^x depleting reserves $\mathcal{R}_{it} \Rightarrow$ Hotelling problem

$$\pi_{it}^f = \max_{e_{it}^x} q_t^f e_{it}^x - \mathcal{C}^f(e_{it}^x, \mathcal{R}_{it})$$
 $\dot{\mathcal{R}}_{it} = -e_{it}^x$
 $\mathcal{R}_{i0} = \bar{\mathcal{R}}_i$

Fossil energy traded in international markets :

$$\sum_{\mathbb{I}} e_{it}^f = \sum_{\mathbb{I}} e_{it}^x$$

- Unique fossil price q_t^f clearing the market More details
- \triangleright Renewable energy in each country *i* with exogenous price q_{it}^r

Climate system

Fossil energy input e_t^f causes climate externality

$$\mathcal{E}_t = \sum_{\mathbb{I}} \; oldsymbol{e}_{it}^f$$

 \triangleright Cumulative GHG in atmosphere S_t increases temperature

$$\dot{\mathcal{S}}_t = \mathcal{E}_t - \delta_s \mathcal{S}_t$$

► Country's local temperature :

$$\tau_{it} = \bar{\tau}_{i0} + \Delta_i \, \mathcal{S}_t$$

• Linear model : Climate sensitivity/pattern scaling factor Δ_i , Carbon exit from atmosphere δ_s

Model – Solution

- ▶ Step 0 : Competitive equilibrium / Business as usual : No policy $t_{it} = 0$
- ▶ Step 1 : First Best, All instruments available $\{t_{it}^f, t_{it}^r, t_{it}^{ls}\}_{it}$ including transfers across countries
- ▶ Step 2 : Second best, Optimal (Ramsey) policy for a given climate club J
- ▶ Step 3 : Countries decide whether to join the climate club : participation constraints
- ▶ Step 4 : Optimal design of size \mathbb{J} and countries $j \in \mathbb{J}$ in the climate agreement

Model – Equilibrium

► Equilibrium

- Given, initial conditions $\{w_{i0}, \tau_{i0}, \mathcal{R}_{i0}, \mathcal{S}_{i0}\}$ and country-specific policies $\{t_{it}^f, t_{it}^r, t_{it}^s\}$, a **competitive equilibrium** is a continuous of sequences of states $\{\mathbf{x}\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}, \mathcal{S}_t\}_{it}$, controls $\{\mathbf{c}\} = \{c_{it}, b_{it}, k_{it}, e_{it}^f, e_{it}^r, e_{it}^x\}_{it}$ and price sequences $\{\mathbf{q}\} = \{r_t^*, q_t^f, q_t^r\}$ such that:
- Households choose policies $\{c_{it}, b_{it}\}_{it}$ to max utility s.t. budget constraint, giving \dot{w}_{it}
- Firm choose policies $\{k_{it}, e_{it}^f, e_{it}^r\}_{it}$ to max profit
- Fossil and renewables firms extract/produce $\{e_{it}^x, \bar{e}_{it}^r\}_{it}$ to max static profit, yielding $\dot{\mathcal{R}}_t$
- Emissions \mathcal{E}_t affects climate $\{\mathcal{S}_t\}_t$, & $\{\tau_{it}\}_{it}$.
- Prices $\{r_t^{\star}, q_t^f, q_{it}^r\}$ adjust to clear the markets : $\sum_{\mathbb{I}} e_{it}^x = \sum_{\mathbb{I}} e_{it}^f$ and $e_{it}^r = \overline{e}_{it}^r$, and $\sum_{\mathbb{I}} b_{it} = 0$, with bonds $b_{it} = w_{it} k_{it}$
- Pontryagin Max. Principle : costates $\{\psi\} = \{\lambda_{it}^w, \psi_{it}^\tau, \psi_{it}^s\} \Rightarrow$ system of coupled ODEs

Step 0 : Competitive equilibrium

- **New Objects**:
 - Marginal value of wealth $\lambda_{it}^w = u'(c_{it})$
 - Marginal value of carbon ψ_{it}^S for country i
 - "Local social cost of carbon" (LCC) for region *i*:

$$LCC_{it} := -rac{\partial \mathcal{V}_{it}/\partial \mathcal{S}_t}{\partial \mathcal{V}_{it}/\partial c_{it}} = -rac{\psi^{\mathcal{S}}_{it}}{\lambda^{\mathcal{W}}_{it}}$$

- Stationary equilibrium closed-form formula, analogous to GHKT (2014) Here

Step 1 : First-Best, Optimal policy with transfers

First-Best, Maximizing welfare of the Social Planner:

$$\mathcal{W}_0 = \max_{\{m{t},m{x},m{c},m{q}\}_{it}} \sum_{\mathbb{T}} \int_0^\infty \!\! e^{-
ho t} \; \omega_i \; u(c_{it}) \; dt = \sum_{\mathbb{T}} \mathcal{W}_{i0}$$

• Full set of instruments $\mathbf{t} = \{t_{it}^f, t_{it}^r, t_{it}^{ls}\}$, including transfers *across countries*

First-best

Step 1 : First-Best, Optimal policy with transfers

First-Best, Maximizing welfare of the Social Planner:

$$\mathcal{W}_0 = \max_{\{\mathbf{t}, \mathbf{x}, \mathbf{c}, \mathbf{q}\}_{it}} \sum_{\mathbb{T}} \int_0^\infty e^{-\rho t} \omega_i \ u(c_{it}) \ dt = \sum_{\mathbb{T}} \mathcal{W}_{i0}$$

- Full set of instruments $\mathbf{t} = \{t_{it}^f, t_{ir}^r, t_{it}^{ts}\}$, including transfers across countries
- Key objects: Local vs. Global Social Cost of Carbon:

$$SCC_{t}^{fb} := -\frac{\partial \mathcal{W}_{t}/\partial \mathcal{S}_{t}}{\partial \mathcal{W}_{t}/\partial c_{t}} = -\frac{\psi_{t}^{S}}{\lambda_{t}^{w}} = -\frac{\sum_{\mathbb{I}} \psi_{it}^{S} di}{\frac{1}{I} \sum_{\mathbb{I}} \lambda_{it}^{w} di} \qquad \qquad LCC_{it} := -\frac{\partial \mathcal{W}_{it}/\partial \mathcal{S}_{t}}{\partial \mathcal{W}_{it}/\partial c_{it}} = -\frac{\psi_{it}^{S}}{\lambda_{it}^{w}}$$

First-best

Step 1 : First-Best, Optimal policy with transfers

▶ *Proposition 1* : Optimal carbon tax :

$$\mathbf{t}_t^S = SCC_t^{fb}$$

• Result as in Representative Agent economy, c.f. Nordhaus DICE (1996), GHKT (2014)

$$SCC_t^{fb} = -rac{\psi_t^S}{\lambda_t^w} = -{\sum_{\mathbb{I}}}rac{\psi_{it}^S}{\lambda_{it}^w} = {\sum_{\mathbb{I}}}LCC_{it}$$

Lump-sum transfers redistribute across countries, s.t.

$$\omega_i u'(c_{it}) = \lambda_{it}^w = \lambda_t^w = \lambda_{it}^w = \omega_i u'(c_{it}) \ \forall i, j \in \mathbb{I}$$

- Imply cross-countries lump-sum transfers $\exists i \ s.t. \ T_i \geq 0 \text{ or } \exists j \ s.t. \ T_i \leq 0$
- There exist Pareto weights $\{\omega_i\}$ shutting down redistribution $T_i = 0$, e.g. $\omega_i = 1/u'(c_{it})$

Thomas Bourany (UChicago) Design of a Climate Agreement November 2023

13 / 26

Step 2 : Ramsey policy with limited transfers

- Second best without access to lump-sum transfers: choice of a carbon tax $\{t_t^f, t_t^r\}$
 - Tax receipts redistributed lump-sum : $\mathbf{t}_{it}^{ls} = \mathbf{t}_{t}^{f} e_{it}^{f} + \mathbf{t}_{t}^{r} e_{it}^{r}$
 - Inequality across regions:

$$\widehat{\lambda}_{it}^{w} = \frac{\lambda_{it}^{w}}{\lambda_{t}^{w}} = \frac{\omega_{i}u'(c_{it})}{\frac{1}{I}\sum_{\mathbb{I}}\omega_{j}u'(c_{jt})} \leq 1$$

- \Rightarrow ceteris paribus, poorer countries have higher $\widehat{\lambda}_{it}^{w}$
- Social Cost of Carbon integrates these inequalities :

$$SCC_{t}^{sb} = \sum_{\mathbb{I}} \widehat{\lambda}_{it}^{w} LCC_{it}$$

$$SCC_{t}^{sb} = \sum_{\mathbb{I}} LCC_{it} + \mathbb{C}ov_{i}(\widehat{\lambda}_{it}^{w}, LCC_{it})$$

Step 2 : Ramsey Problem – Optimal Carbon & Energy Policy

- ► Taxing fossil energy has additional redistributive effects :
 - Lower eq. fossil fuels price benefit importers and hurt exporters
 - New measure : Social Cost of Fossil (SCF)

$$SCF_{t}^{sb} := \frac{\partial \mathcal{W}_{t}/\partial E_{t}^{f}}{\partial \mathcal{W}_{t}/\partial c_{t}} = \mathcal{C}_{EE}^{f} \mathbb{C}ov_{i} \left(\widehat{\lambda}_{it}^{w}, e_{it}^{f} - e_{it}^{x} \right) \qquad \qquad \mathcal{C}_{EE}^{f} = \left(\sum_{i \in \mathbb{I}} \left(\mathcal{C}_{i, e^{x} e^{x}}^{f} \right)^{-1} \right)^{-1}$$

– with \mathcal{C}_{EE}^f and $\mathcal{C}_{i,e^xe^x}^f \propto$ fossil energy supply elasticity

Step 2 : Ramsey Problem – Optimal Carbon & Energy Policy

- ► Taxing fossil energy has additional redistributive effects :
 - Lower eq. fossil fuels price benefit importers and hurt exporters
 - New measure : Social Cost of Fossil (SCF)

$$SCF_{t}^{sb} := \frac{\partial \mathcal{W}_{t}/\partial E_{t}^{f}}{\partial \mathcal{W}_{t}/\partial c_{t}} = \mathcal{C}_{EE}^{f} \mathbb{C}ov_{i} \left(\widehat{\lambda}_{it}^{w}, e_{it}^{f} - e_{it}^{x} \right) \qquad \qquad \mathcal{C}_{EE}^{f} = \left(\sum_{i \in \mathbb{I}} \left(\mathcal{C}_{i, e^{x} e^{x}}^{f} \right)^{-1} \right)^{-1}$$

- with C_{EE}^f and $C_{i,e^xe^x}^f \propto$ fossil energy supply elasticity
- ▶ *Proposition 2* : Optimal fossil energy tax :

$$\Rightarrow \quad \mathbf{t}_t^f = SCC_t^{sb} + \mathbf{SCF}_t^{sb}$$

- Social cost of carbon : $SCC_t^{sb} = \sum_{\pi} \hat{\lambda}_{it}^w LCC_{it}$
- Tax on enewable energy e_t^r , no externality + constant return to scale : $t_{it}^r = 0$

15/26

Step 3: Ramsey Problem with participation constraints

- ► Assume countries can exit climate agreements + lump-sum transfers prohibited
 - Participation constraint, with \bar{c}_i autarky consumption (no trade in energy/assets)

$$u(c_{it}) \geq u(\bar{c}_{it})$$
 $[\nu_{it}]$

Step 3 : Ramsey Problem with participation constraints

- ► Assume countries can exit climate agreements + lump-sum transfers prohibited
 - Participation constraint, with \bar{c}_i autarky consumption (no trade in energy/assets)

$$u(c_{it}) \geq u(\bar{c}_{it})$$
 $[\nu_{it}]$

- ▶ Proposition 3 : Second-Best without transfers & participation constraints
 - Participation incentive change our measure of inequality

$$\widetilde{\lambda}_{it}^{w} = rac{\omega_{i}u'(c_{it}) +
u_{it}u'(c_{it})}{rac{1}{I}\sum_{\mathbb{I}}(\omega_{j} +
u_{jt})u'(c_{jt})}
eq \widehat{\lambda}_{it}^{w}$$

Optimal fossil energy tax :

$$\Rightarrow \mathbf{t}_{t}^{f} = SCC_{t}^{pc} + SCF_{t}^{pc}$$

$$= \sum_{i \in \mathbb{I}} \widetilde{\lambda}_{it}^{w} LCC_{it} + C_{EE}^{f} \sum_{i \in \mathbb{I}} \widetilde{\lambda}_{it}^{w} (\mathbf{e}_{it}^{f} - \mathbf{e}_{it}^{x})$$

Climate Agreement planner maximizes :

$$\mathcal{W}_0(\mathbb{J}) = \max_{\{\mathbf{t},\dots\}_{it}} \frac{1}{\mathbb{J}} \sum_{\mathbb{J}} \int_0^\infty e^{-\rho t} \,\omega_i \, u(c_{it}) \, dt$$

$$s.t. \quad u(c_{it}) > u(\bar{c}_i) \qquad \forall t, i \in \mathbb{J}$$

- ▶ Choice of countries $\mathbb{J} \subset \mathbb{I}$ to maximize welfare
 - Other countries $\mathbb{I}\setminus\mathbb{J}$ in autarky : own bond $\tilde{r}/\text{energy }\tilde{q}^f$ market
 - Alternative : Optimal trade tax/tariffs ⇒ work in progress
- ightharpoonup Adding country *j* to \mathbb{J}
 - Changes the optimal tax :

$$\mathbf{t}_{t}^{f}(\mathbb{J}) = SCC_{t}^{ca}(\mathbb{J}) + \underbrace{SCF_{t}^{ca}(\mathbb{J})}_{t} = \sum_{i \in \mathbb{J}} \widetilde{\lambda}_{it}^{w} LCC_{it} + C_{EE}^{f} \sum_{i \in \mathbb{J}} \widetilde{\lambda}_{it}^{w} (\mathbf{e}_{it}^{f} - \mathbf{e}_{it}^{x})$$

• Change the equilibrium on energy markets:

price
$$q_t^f$$
 s.t.
$$\sum_{i \in \mathbb{J}} e_{it}^f = \sum_{i \in \mathbb{J}} e_{it}^f$$

- ► Tradeoff extensive/intensive margin
- ▶ Reduction in emissions $\mathcal{E} = \sum_{i \in \mathbb{I}} e_i^f$ depends both on :
 - The level of tax \mathfrak{t}^f , since high $\mathfrak{t}^f \Leftrightarrow$ large change in emissions $\Delta \mathcal{E}(\mathbb{J})$
 - The *number* of countries \mathbb{J} in a stable coalition

- Tradeoff extensive/intensive margin
- ▶ Reduction in emissions $\mathcal{E} = \sum_{i \in \mathbb{T}} e_i^f$ depends both on :
 - The level of tax t^f , since high $t^f \Leftrightarrow$ large change in emissions $\Delta \mathcal{E}(\mathbb{J})$
 - The *number* of countries \mathbb{J} in a stable coalition
- Naive approach:
 - Combinatorial problem : $\mathcal{P}(\mathbb{I})$ with $2^{|\mathbb{I}|}$ choices

$$\max_{\mathbb{J}\in\mathcal{P}(\mathbb{I})}\mathcal{W}_0(\mathbb{J})$$

Search for complementarity

$$\Delta W(\mathbb{J}',j) := W(\mathbb{J}' \cup j) - W(\mathbb{J}') > \Delta W(\mathbb{J},j)$$
 when $\mathbb{J}' \supset \mathbb{J}$ for all $j \in \mathbb{I}$

• Choice of countries \mathbb{J} yields optimal tax $t^f(\mathbb{J})$

- ► Tradeoff extensive/intensive margin
- ► Alternative approach :
 - From the level of the tax $\mathfrak{t}^f(\mathbb{J})$ imposed on club \mathbb{J} , we can deduce the number of countries $\widetilde{\mathbb{J}}$ with binding participation constraints

$$\widetilde{\mathbb{J}}$$
 s.t. $u(c_i) \geq u(\bar{c}_i) \quad \forall i \in \widetilde{\mathbb{J}}$

- Find a fixed point of function $\widetilde{\mathbb{J}} = f(\mathbb{J}, \mathfrak{t}^f)$
- Sequential approach :
 - Start from $\mathbb{J} = \mathbb{I}$
 - Search for t^f that yield $\mathbb{J} = f(\mathbb{J}, t^f)$
 - − If $Im(f(\mathbb{J}, \mathfrak{t}^f) \subseteq \mathbb{J}$ remove countries one-by-one.
 - Repeat (2-3) until convergence or unraveling

Quantification and numerical method

- Quantification More details
 - Production $\bar{y} = zf(k, e^f, e^r)$ with Nested CES capital/energy $\sigma_y < 0$ and fossil/renewable $\sigma_e > 1$. Calibrate parameters to match GDP / energy shares data.
 - Quadratic damage as in Nordhaus DICE $y = \mathcal{D}_i(\tau)\bar{y}$ with $\mathcal{D}_i(\tau) = e^{-\gamma(\tau-\tau_i)^2}$
 - Energy parameters to match production/reserves
- ► Numerical method More details
 - Sequential approach: rely on Pontryagin Maximum Principle
 - Can simulate models with an arbitrary number of dimensions of heterogeneity

Numerical Application – Competitive equilibrium

▶ Data : 24 countries, (G20+4 large countries)

Local Cost of Carbon & Carbon Tax – First and Second Best

▶ Difference $LCC_i = \frac{\psi_i^S}{\lambda_i^w}$ vs. $\widehat{\lambda}_i^w LCC_i = \frac{\psi_i^S}{\lambda^w}$ since $SCC = \sum_{\mathbb{I}} \widehat{\lambda}_i^w LCC_i$

Comparison - Value of wealth vs. Social Cost of Carbon

Social Cost of Carbon can be decomposed :

$$SCC_t := -\frac{\partial \mathcal{W}_t / \partial \mathcal{S}_t}{\partial \mathcal{W}_t / \partial c_t} = -\frac{\psi_t^S}{\lambda_t^W} = -\frac{\sum_{\mathbb{I}} \psi_{it}^S di}{\frac{1}{I} \sum_{\mathbb{I}} \lambda_{it}^W di}$$

► Here plot that decomposition :

$$\log(SCC_t) = \log(-\psi_t^S) - \log(\lambda_t^w)$$

Local Cost of Fossil and Terms of Trade Adjustment

Social Cost of Fossil Energy :

$$SCF_t = \mathcal{C}_{EE}^f \sum_{\mathbb{I}} \widehat{\lambda}_{it}^w \left(e_{it}^f - e_{it}^x \right) \qquad \mathcal{C}_{EE}^{f-1} = \sum_{\mathbb{I}} \mathcal{C}_{i,e^x e^x}^f$$

► Here plotting local cost of fossil :

$$LCF_{it} = \widehat{\lambda}_{it}^{w} (e_{it}^{f} - e_{it}^{x})$$

Climate club design and unraveling

- $\blacktriangleright \ \, \text{Plot of fct}\, f(\mathbb{J},t^f)=\widetilde{\mathbb{J}}: \text{for a club of size}\, \mathbb{J} \text{ and tax}\, t^f, \widetilde{\mathbb{J}} \text{ countries willing to participate}$
- Removing China (23 \rightarrow 22) and the US (20 \rightarrow 19) causes unraveling

Conclusion

- Climate change has redistributive effects & heterogeneous impacts
- Optimal carbon policy takes into account inequality and redistribution
 - Depends on the availability of transfer mechanisms
 - Pigouvian tax & Social Cost of Carbon change with inequality and terms-of-trade effects
- ► Climate agreement design accounts jointly for
 - The optimal choice of countries participating
 - The level of tax, chosen for correcting externality & respecting participation constraints

Appendices

More details – Capital market

In each countries, the agent can save in two assets, capital k_{it} and bonds b_{it} :

$$\begin{cases} \dot{k}_{it} &= \mathcal{D}_{i}^{y}(\tau_{it})z_{i}f(k_{it},e_{it}) - (\delta + n + \bar{g})k_{it} + \iota_{it} \\ \dot{b}_{it} &= r^{\star}b_{it} + \theta_{i}\pi_{t}^{f} + \pi_{it}^{r} - (q_{t}^{f} + t_{it}^{f})e_{it}^{f} - (q_{t}^{r} + t_{it}^{r})e_{it}^{r} - \iota_{it} - c_{it} + t_{it}^{ls} \\ b_{it} &\geq -\vartheta k_{it} \end{cases}$$

► Combining, substituting ι_{it} and defining wealth $w_{it} = k_{it} + b_{it}$, we obtain the main equation

$$\dot{w}_{it} = r^{\star}w_{it} + \mathcal{D}^{y}(au_{it})z_{it}f(k_{it},e_{it}) - (ar{\delta} + r_{t}^{\star})k_{it} + heta_{i}\pi_{t}^{f} + \pi_{it}^{r} - (q_{t}^{f} + t_{it}^{f})e_{it}^{f} - (q_{t}^{r} + t_{it}^{r})e_{it}^{r} - c_{it} + t_{it}^{f}$$
 $k_{it} \leq \frac{1}{1-c^{2}}w_{it}$

- ► Two polar cases :
 - $\vartheta \to 0$, full autarky (no trade), and $w_{it} = k_{it}$
 - $\vartheta \to 1$, full financial integration :

$$k_{it}$$
 s.t. $MPk_{it} - \bar{\delta} = \mathcal{D}_{i}^{y}(\tau_{it})z_{i}\partial_{k}f(k_{it}, e_{it}) - (\delta + n + \bar{g}) = r_{t}^{\star}$

Impact of increase in temperature

► Marginal values of the climate variables : λ_{it}^s and λ_{it}^{τ}

$$\dot{\lambda}_{it}^{\tau} = \lambda_{it}^{\tau}(\rho + \zeta) + \overbrace{\gamma_{i}(\tau_{it} - \tau_{i}^{\star})\mathcal{D}^{y}(\tau_{it})}^{-\partial_{\tau}\mathcal{D}^{y}(\tau_{it})} f(k_{it}, e_{it}) \lambda_{it}^{k} + \overbrace{\phi_{i}(\tau_{it} - \tau_{i}^{\star})\mathcal{D}^{u}(\tau_{it})^{1-\eta} c_{it}^{1-\eta}}^{\partial_{\tau}u(c,\tau)}$$

$$\dot{\lambda}_{it}^{S} = \lambda_{it}^{S}(\rho + \delta^{s}) - \zeta \chi \Delta_{i} \lambda_{it}^{\tau}$$

- Costate λ_{it}^S : marg. cost of 1Mt carbon in atmosphere, for country i. Increases with:
 - Temperature gaps $\tau_{it} \tau_i^*$ & damage sensitivity of TFP γ_i^y and utility γ_i^u
 - Development level $f(k_{it}, e_{it})$ and c_{it}
 - Climate params : χ climate sensitivity, Δ_i "catching up" of τ_i and ζ reaction speed
 - back

Cost of carbon / Marginal value of temperature

► Solving for the cost of carbon and temperature ⇔ solving ODE

$$\dot{\lambda}_{it}^{\tau} = \lambda_{t}^{\tau}(\widetilde{\rho} + \Delta\zeta) + \gamma(\tau - \tau^{\star})\mathcal{D}^{y}(\tau)f(k, e)\lambda_{t}^{k} + \phi(\tau - \tau^{\star})\mathcal{D}^{u}(\tau)u(c)
\dot{\lambda}_{t}^{S} = \lambda_{t}^{S}(\widetilde{\rho} + \delta^{s}) - \int_{\mathbb{I}} \Delta_{i}\zeta\chi\lambda_{it}^{\tau}$$

Solving for λ_t^{τ} and $\lambda_t^{\mathcal{S}}$, in stationary equilibrium $\dot{\lambda}_t^{\mathcal{S}} = \dot{\lambda}_t^{\tau} = 0$

$$\begin{split} &\lambda_{it}^{\tau} = -\int_{t}^{\infty} e^{-(\widetilde{\rho} + \zeta)u} (\tau_{u} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{u}) y_{\tau} \lambda_{u}^{k} + \phi \mathcal{D}^{u}(\tau_{u}) u(c_{u}) \Big) du \\ &\lambda_{it}^{\tau} = -\frac{1}{\widetilde{\rho} + \Delta \zeta} (\tau_{\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{\infty}) y_{\infty} \lambda_{\infty}^{k} + \phi \mathcal{D}^{u}(\tau_{\infty}) u(c_{\infty}) \Big) \\ &\lambda_{t}^{S} = -\int_{t}^{\infty} e^{-(\widetilde{\rho} + \delta^{S})u} \zeta \chi \int_{\mathbb{I}} \Delta_{j} \lambda_{j,u}^{\tau} dj du \\ &= \frac{1}{\widetilde{\rho} + \delta^{S}} \zeta \chi \int_{\mathbb{I}} \Delta_{j} \lambda_{j,\infty}^{\tau} \\ &= -\frac{\chi}{\widetilde{\rho} + \delta^{S}} \frac{\zeta}{\widetilde{\rho} + \zeta} \int_{\mathbb{I}} \Delta_{j} (\tau_{j,\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{j,\infty}) y_{\infty} \lambda_{j,\infty}^{k} + \phi \mathcal{D}^{u}(\tau_{j,\infty}) u(c_{j,\infty}) \Big) dj \\ &\lambda_{t}^{S} \xrightarrow{\zeta \to \infty} -\frac{\chi}{\widetilde{\rho} + \delta^{S}} \int_{\mathbb{I}} \Delta_{j} (\tau_{j,\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{j,\infty}) y_{j,\infty} \lambda_{j,\infty}^{k} + \mathcal{D}^{u}(\tau_{j,\infty}) u(c_{j,\infty}) \Big) dj \end{split}$$

Cost of carbon / Marginal value of temperature

► Proposition (Stationary LSCC) :

When $t \to \infty$ and for a BGP with $\mathcal{E}_t = \delta_s \mathcal{E}_t$ and $\tau_t \to \tau_\infty$, the LSCC is *proportional* to climate sensitivity χ , marg. damage γ_i^y , γ_i^u , temperature, and output, consumption.

$$LSCC_{it} \equiv \frac{\Delta_i \chi}{\rho - n + \bar{g}(\eta - 1) + \delta^s} (\tau_{\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^y(\tau_{\infty}) y_{\infty} + \phi \mathcal{D}^u(\tau_{\infty}) c_{\infty} \Big)$$

- Stationary equilibrium : $\dot{\lambda}_t^S = \dot{\lambda}_t^T = 0$
- Fast temperature adjustment $\zeta \to \infty$
- Back

Social cost of carbon & temperature

► Cost of carbon depends only on final temperatures and path of emissions :

$$\tau_T - \tau_{t_0} = \Delta \chi \xi \omega \int_{t_0}^T e^{(n+\bar{g})t - \delta_s(T-t)} q_t^{f-\sigma_e} \int_{j \in \mathbb{I}} \left(z_j z_{j,t}^e \mathcal{D}(\tau_{j,t}) \right)^{\sigma-1} y_{j,t} q_{j,t}^{\sigma_e-\sigma} dj dt$$

- Geographical factors determining warming Δ_i
- Climate sensitivity χ & carbon exit from atmosphere δ_s
- Growth of population n, aggregate productivity \bar{g}
- Deviation of output from trend y_i & relative TFP z_i
- Directed technical change z_t^e , elasticity of energy in output σ Fossil energy price q^{ef} and Hotelling rent $g^{ef} \approx \lambda_t^R/\lambda_t^R = \rho$
- Change in energy mix, renewable share ω , price q_t^r & elasticity of source σ_e
- Approximations at $T \equiv$ Generalized Kaya (or I = PAT) identity More details

$$rac{\dot{ au}_T}{ au_T} \propto \, n \, + \, ar{g}^{ ext{y}} - (1-\sigma)ig(g^{z^e} - \widetilde{\gamma}ig) + (\sigma_e - \sigma)(1-\omega)g^{q^r} - (\sigma_e(1-\omega) + \sigma\omega)g^{q^f}$$

Equilibrium – Mean Field Games

▶ Uniqueness : Lasry-Lions monotonicity on the function :

$$\int_{\mathbb{T}} [f(t, x, \mu', \alpha) - f(t, x, \mu, \alpha)] d(\mu' - \mu)(x) \ge 0 \qquad \mu, \mu' \in \mathcal{P}(\mathbb{X})$$

• Work in progress : checking such conditions along the transition

$$\sum_{i \in \mathbb{I}} \left(u(c^{\star}(w,\tau,p')) - u(c^{\star}(w,\tau,p)) \right) [p'(w,\tau) - p'(w,\tau)] \ge 0$$

with $p'(w,\tau)$ empirical distribution $p'(w,\tau) = \frac{1}{\mathbb{I}} \sum_{i \in \mathbb{I}} \delta_{\{x_i = (w,\tau)\}} \equiv \text{population}$ distribution!

- ► Mean Field approximation & Carmona Delarue (2013)
 - Mean-Field is an ε -equilibrium of the N-player game when $N \to \infty$
 - Require symmetry and invariance under permutation
 - Back

Sequential solution method

- ► Summary of the model :
 - ODEs for states $\{x\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}, \mathcal{S}_t\}_{it}$
 - Backward ODE for the costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_{it}^s\}_{it}$
 - Non-linear equations (FOCs) for household controls $\{c_1\} = \{c_{it}, b_{it}, k_{it}\}_{it}$ and static demands for energy/capital $\{c_2\} = \{e_{it}^f, e_{it}^r, k_{it}\}_{it}$ and static supplies $\{c_3\} = \{e_{it}^x, \overline{e}_{it}^r\}_{it}$.
 - Market clearing as equation for prices $\{q\} = \{q_t^f, r_t^*\}_t$
 - Existence and Uniqueness More details

Sequential solution method

- ► Summary of the model :
 - ODEs for states $\{x\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}, \mathcal{S}_t\}_{it}$
 - Backward ODE for the costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_{it}^s\}_{it}$
 - Non-linear equations (FOCs) for household controls $\{c_1\} = \{c_{it}, b_{it}, k_{it}\}_{it}$ and static demands for energy/capital $\{c_2\} = \{e_{it}^f, e_{it}^r, k_{it}\}_{it}$ and static supplies $\{c_3\} = \{e_{it}^x, \bar{e}_{it}^r\}_{it}$.
 - Market clearing as equation for prices $\{q\} = \{q_t^f, r_t^*\}_t$
 - Existence and Uniqueness More details
- Global Numerical solution :
 - Discretize agents (countries) space $i \in \mathbb{I}$ with M and time-space $t \in [t_0, t_T]$ with T periods
 - Express as a large vector $\mathbf{y} = \{x, \lambda, c, q\}$ in a large non-linear function

$$F(\mathbf{y}) = \mathbf{0}$$

• Solve for the large system with $N = (N_{ind,vars} \times M + N_{agg,vars}) \times T$ unknowns and N equations with gradient-descent – Newton-Raphson methods.

Sequential method: Pros and Cons

- ▶ Why use a sequential approach?
 - Global approach : Only need to follow the trajectories for i agents :
 - Arbitrary (!) number of dimension of *ex-ante* heterogeneity : Productivity z_i Population p_i , Temperature scaling Δ_i , Fossil energy cost $\bar{\nu}_i$, Energy mix ϵ_i , ω_i , z_i^r , Local damage γ_i^y , γ_i^u , τ_i^* , Directed Technical Change z_i^e
 - Potentially large dimensions of *ex-post* heterogeneity and aggregate state variables: For now: Wealth w_{it} , temperature τ_{it} , reserves \mathcal{R}_{it} , Carbon \mathcal{S}_t Extension with a large climate system as a proof of concept (e.g. Cai, Lontzek, Judd, 2013)
 - Newton method & Non-linear solvers very efficient
- ► Why not:
 - Numerical constraint to solve a large system of ODEs and non-linear equations :
 - \Rightarrow Constraint on $N = (N_{ind,vars} \times M + N_{agg,vars}) \times T$, so either M or T can't be too large
 - Relying on numerical solvers/structure of the problem can be opaque

Quantification – Firms

▶ Production function $y_i = \mathcal{D}_i^y(\tau_i)z_i f(k, \varepsilon(e^f, e^r))$

$$f_{i}(k,\varepsilon(e^{f},e^{r})) = \left[\left(1 - \epsilon_{i}\right)^{\frac{1}{\sigma_{y}}} k^{\alpha \frac{\sigma_{y}-1}{\sigma_{y}}} + \epsilon_{i}^{\frac{1}{\sigma_{y}}} \left(z_{i}^{e} \varepsilon_{i}(e^{f},e^{r})\right)^{\frac{\sigma_{y}-1}{\sigma_{y}}}\right]^{\frac{\sigma_{y}}{\sigma_{y}-1}}$$

$$\varepsilon(e^{f},e^{r}) = \left[\omega_{i}^{\frac{1}{\sigma_{e}}}(e^{f})^{\frac{\sigma_{e}-1}{\sigma_{e}}} + \left(1 - \omega_{i}\right)^{\frac{1}{\sigma_{e}}}(e^{r})^{\frac{\sigma_{e}-1}{\sigma_{e}}}\right]^{\frac{\sigma_{e}}{\sigma_{e}-1}}$$

- Calibrate TFP z_i to match $y_i = GDP_i$ per capita in 2011 (PPP).
- Today : $\omega_i = \bar{\omega} = 85\%$ and $\epsilon_i = \bar{\epsilon} = 12\%$ for all i
- Future : $(z_i^e, \omega_i, \epsilon_i)$ to match Energy/GDP $(e_i^f + e_i^r)/y_i$ and energy mix (e_i^f, e_i^r)
- Damage functions in production function y:

$$\mathcal{D}_i^{y}(\tau) = e^{-\gamma_i^{\pm,y}(\tau - \tau_i^{\star})^2}$$

- Asymmetry in damage to match empirics with $\gamma^y = \gamma^{+,y} \mathbb{1}_{\{\tau > \tau_i^*\}} + \gamma^{-,y} \mathbb{1}_{\{\tau < \tau_i^*\}}$
- Today $\gamma_i^{\pm,y} = \bar{\gamma}^{\pm,y} \& \tau_i^* = \bar{\alpha} \tau_{it_0} + (1 \bar{\alpha}) \tau^*$

Quantification – Energy markets

- ► Fossil production e_{it}^x and reserve \mathcal{R}_{it}
 - Cost $C_i(e^x, \mathcal{R}) = \frac{\bar{\nu}_i}{1+\nu_i} \left(\frac{e^x}{\mathcal{R}}\right)^{1+\nu_i} \mathcal{R}$
 - Now: $\bar{\nu}_i$ to match extraction data e_i^x , \mathcal{R}_{it} calibrated to *proven reserves* data from BP. $\nu_i = \nu = 1$ quadratic extraction cost.
 - Future : Choose $(\bar{\nu}_i, \nu_i, \mathcal{R}_i)$ to match marginal cost \mathcal{C}_e & extraction data e_i^x (BP, IEA)

Quantification – Energy markets

- ▶ Fossil production e_{it}^x and reserve \mathcal{R}_{it}
 - Cost $C_i(e^x, \mathcal{R}) = \frac{\bar{\nu}_i}{1+\nu_i} \left(\frac{e^x}{\mathcal{R}}\right)^{1+\nu_i} \mathcal{R}$
 - Now: $\bar{\nu}_i$ to match extraction data e_i^x , \mathcal{R}_{it} calibrated to *proven reserves* data from BP. $\nu_i = \nu = 1$ quadratic extraction cost.
 - Future : Choose $(\bar{\nu}_i, \nu_i, \mathcal{R}_i)$ to match marginal cost \mathcal{C}_e & extraction data e_i^x (BP, IEA)
- ▶ Renewable : Production \bar{e}_{it}^r and price q_{it}^r
 - Now : $q_{it}^r = z^r e^{-g_r t}$, with g_r growth rate in renewable energy price decreases.
 - Future : Choose z_i^r to match the energy mix (e_i^f, e_i^r)

back

Quantification – Future Extensions :

- Damage parameters :
 - $\gamma_i^{\pm,y}$ depends on daily temperature distribution $\tau \sim \mathcal{T}_i(\bar{T}, \sigma^T)$ following Rudik et al. (2022)
 - Use Climate Lab's (Greenstone et al) estimates for damage γ_i ?
- ► Fossil Energy markets :
 - Divide fossils e_{it}^f/e_{it}^x into oil/gas/coal
 - Match the production/cost/reserves data across countries
 - Use a dynamic model: extraction/exploration a la Hotelling
- Renewables Energy markets :
 - Make the problem dynamic with investment in capacity C_{it}^r
- ► Population dynamics
 - Match UN forecast for growth rate / fertility

Calibration

TABLE – Baseline calibration (\star = subject to future changes)

T	1 1 (
Teci	0.	& Energy markets	a 1 110
α	0.35	Capital share in $f(\cdot)$	Capital/Output ratio
ϵ	0.12	Energy share in $f(\cdot)$	Energy cost share (8.5%)
σ	0.3	Elasticity capital-labor vs. energy	Complementarity in production (c.f. Bourany 2020)
ω	0.8	Fossil energy share in $e(\cdot)$	Fossil/Energy ratio
σ_e	2.0	Elasticity fossil-renewable	Slight substitutability & Study by Stern
δ	0.06	Depreciation rate	Investment/Output ratio
\bar{g}	0.01^{\star}	Long run TFP growth	Conservative estimate for growth
g_e	0.01^{\star}	Long run energy directed technical chang	ge Conservative / Acemoglu et al (2012)
g_r	-0.01^{*}	Long run renewable price decrease	Conservative / Match price fall in R.E.
ν	2*	Extraction elasticity of fossil energy	Cubic extraction cost
Prej	ferences o	& Time horizon	
ρ	0.03	HH Discount factor	Long term interest rate & usual calib. in IAMs
η	2.5	Risk aversion	
'n	0.01^{*}	Long run population growth	Conservative estimate for growth
ω_i	1	Pareto weights	Uniforms / Utilitarian Social Planner
T	90	Time horizon	Horizon 2100 years since 2010
1	Γhomas Boura	ny (UChicago) Des	ign of a Climate Agreement November 2023 1

Calibration

 p_i

Population

Local Temperature

TFP

TABLE – Baseline calibration (\star = subject to future changes)

Climate parameters						
ξ	0.81	Emission factor	Conversion 1 $MTOE \Rightarrow 1 MT CO_2$			
ζ	0.3	Inverse climate persistence / inertia	Sluggishness of temperature $\sim 11-15$ years			
χ	2.1/1e6	Climate sensitivity	Pulse experiment : $100 GtC \equiv 0.21^{\circ} C$ medium-term warming			
δ_s	0.0014	Carbon exit from atmosphere	Pulse experiment : $100 GtC \equiv 0.16^{\circ} C$ long-term warming			
γ^\oplus	0.00234^{\star}	Damage sensitivity	Nordhaus' DICE			
γ^\ominus	$0.2 \times \gamma^{\oplus}$ *	Damage sensitivity	Nordhaus' DICE & Rudik et al (2022)			
α^{τ}	0.2^{\star}	Weight historical climate for optimal temp.	Marginal damage decorrelated with initial temp.			
$ au^\star$	15.5	Optimal yearly temperature	Average spring temperature / Developed economies			
Parameters calibrated to match data						

\mathcal{R}_i Local Fossil reserves To match data from BP Energy review

Data - World Bank 2011

To match GDP Data - World Bank 2011

To match temperature of largest city

Step 4: the Design of a Climate agreement

► Welfare effect : 1st order :

$$\delta(\mathbb{J},j) = \mathcal{W}_{t_0}(\mathbb{J} \cup \{j\}) - \mathcal{W}_{t_0}(\mathbb{J}) = \omega_j u(c_{jt}) + \sum_{i \in \mathbb{J}} \Delta \mathcal{W}_i$$

$$\Delta \mathcal{W}_i \approx d\mathcal{W}_i = \lambda_i^w (1 - \theta_i) \left(\underbrace{\epsilon_i^e + (1 - \epsilon_i^e) \alpha \sigma_i^{k/e}}_{\text{production } f(k,e)}\right) \left(\underbrace{-\omega_i^f \sigma_i^f + (1 - \omega_i^f) \sigma_i^{r/f}}_{\text{energy use } \varepsilon(e^f,e^r)}\right) \left(\underbrace{\frac{\mathfrak{t}^f}{q^f + \mathfrak{t}^f} \frac{d\mathfrak{t}^f}{\mathfrak{t}^f}}_{\text{tax change}} + \underbrace{\frac{q^f}{q^f + \mathfrak{t}^f} \frac{dq^f}{q^f}}_{\text{GE effect}}\right)$$

$$+ \lambda_i^w \underbrace{\theta_i (1 + \frac{1}{\nu_i})}_{\text{fossil rent/supply}} \underbrace{\frac{q^f}{q^f + \mathfrak{t}^f} \frac{dq^f}{q^f}}_{\text{T}_i \text{ damage}} + \underbrace{\frac{\chi}{i \text{ limate sensity}}}_{\text{climate sensity}} \underbrace{\left[\chi \sum_{j \in \mathbb{J}} \varepsilon_i \sigma_j^f\right] \left(\underbrace{\frac{\mathfrak{t}^f}{q^f + \mathfrak{t}^f} \frac{d\mathfrak{t}^f}{\mathfrak{t}^f}}_{\text{tf}} + \underbrace{\frac{q^f}{q^f + \mathfrak{t}^f} \frac{dq^f}{q^f}}_{\text{GE effect}}\right)$$

- Direct effect on energy use on production and substitutability with renewable cost-share ϵ_e , fossil-share ω_i , elasticity σ_i^f & capital-energy cross elast^{fy}. $\sigma_{k,e}$, fossil-renewable cross elast^{fy}. $\sigma_i^{r/f}$
- Indirect effect through energy market fossil rent θ_i , supply elasticity ν_i
- Indirect climate effect of a reduction in world emissions

GE effect

tax change