Automi e Linguaggi Formali

a.a. 2016/2017

LT in Informatica 20 Marzo 2017

Esercizio 1 del 17 Marzo

Considerare il seguente NFA con ε -transizioni

	ε	а	Ь	С
$\rightarrow p$	$\{q,r\}$	Ø	{ q }	
q	Ø	{ <i>p</i> }	{ <i>r</i> }	$\{p,q\}$
* <i>r</i>	Ø	Ø	Ø	Ø

Calcolare la ε -chiusura di ogni stato e trasformare l'automa in un NFA senza ε -transizioni

Esercizio 1 del 17 Marzo: soluzione

 ε -chiusura degli stati:

$$ECLOSE(p) = \{p, q, r\}$$

 $ECLOSE(q) = \{q\}$
 $ECLOSE(r) = \{r\}$

Tabella di transizione dell'automa senza ε -transizioni:

	а	Ь	С
o *p	{ <i>p</i> }	$\{q,r\}$	$\{p,q,r\}$
q	{ <i>p</i> }	{ <i>r</i> }	$\{p,q\}$
* <i>r</i>	Ø	Ø	Ø

Esercizio 2 del 17 Marzo

Scrivere un'espressione regolare che definisce il linguaggio di tutti i numeri telefono. Un numero di telefono è una stringa con le seguenti caratteristiche:

- può iniziare con un prefisso internazionale opzionale rappresentato dal "+" seguito da due cifre decimali (+39, +49, +01)
- seguito da un prefisso di 3 o 4 cifre decimali (obbligatorio)
- e da un numero di telefono composto da almeno una cifra decimale (e lungo a piacere)

Ogni componente del numero di telefono è separata da uno spazio. Nella descrizione dell'espressione regolare, utilizzare "+" per rappresentare il carattere + e " " per rappresentare lo spazio.

Esercizio 2 del 17 Marzo: soluzione

$$T = (\varepsilon + I"")P""N$$
 $I = " + "DD$
 $P = (DDD + DDDD)$
 $N = DD^*$
 $D = (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)$

Esercizio 3 del 17 Marzo

Costruire un ε -NFA equivalente all'espressione $\mathbf{0}^* + \mathbf{1}^* + (\mathbf{01})^*$ Soluzione:

Theorem (Pumping Lemma per Linguaggi Regolari)

Sia L un linguaggio regolare. Allora

- \blacksquare esiste una lunghezza $n \ge 0$ tale che
- lacktriangle ogni parola $w \in L$ di lunghezza $|w| \geq n$
- **p**uo essere spezzata in w=xyz tale che:
 - **1** $y \neq \varepsilon$ (il secondo pezzo è non vuoto)
 - $|xy| \le n$ (i primi due pezzi sono lunghi al max n)
 - **3** $\forall k \geq 0$, $xy^kz \in L$ (possiamo "pompare" y rimanendo in L)

Il Pumping Lemma come Gioco

- L'avversario sceglie la lunghezza k
- Noi scegliamo una parola w
- L'avversario spezza w in xyz
- Noi scegliamo i tale che xyⁱz ∉ L
- allora abbiamo vinto

Pumping Lemma: esercizi

I Sia L_{ab} il linguaggio delle stringhe sull'alfabeto $\{a, b\}$ con un numero di b maggiore del numero di a. L_{ab} è regolare?

No, Lab non è regolare:

- supponiamo per assurdo che lo sia
- sia *n* la lunghezza data dal Pumping Lemma
- \blacksquare consideriamo la parola $w = a^n b^{n+1}$
- prendiamo un qualsiasi split w = xyz tale che $y \neq \varepsilon$ e $|xy| \leq n$:

$$w = \underbrace{aaa...}_{x} \underbrace{abbb...bb}_{z}$$

■ per il Pumping lemma, anche $xy^2z \in L_{ab}$, ma contiene più a che $b \Rightarrow$ assurdo

Pumping Lemma: esercizi

2 II linguaggio $L_{rev} = \{ww^R : w \in \{a, b\}^*\}$ è regolare?

No, L_{rev} non è regolare:

- supponiamo per assurdo che lo sia
- sia *n* la lunghezza data dal Pumping Lemma
- \blacksquare consideriamo la parola $w = a^n bba^n$
- prendiamo un qualsiasi split w = xyz tale che $y \neq \varepsilon$ e $|xy| \leq n$:

$$w = \underbrace{aaa \dots aaa}_{x} \underbrace{abbaaa \dots aaa}_{z}$$

■ per il Pumping lemma, anche $xy^0z = xz \in L_{rev}$, ma non la posso spezzare in $ww^R \Rightarrow$ assurdo

Pumping Lemma: esercizi

Il linguaggio $L_{nk} = \{a^n b^k : n \text{ è dispari oppure } k \text{ è pari}\}$ è regolare?

Si, L_{nk} è regolare:

- lacktriangle è rappresentato dall'espressione regolare $a(aa)^*b^* + a^*(bb)^*$
- e riconosciuto dall'automa

