Codage de l'information

Rakotoarimalala Tsinjo Tony

Cours 5 IT University - 2023

CODES À LONGUEUR FIXE

On dit d'un code qu'il est de *longueur fixe* lorsque tous les mots qu'il contient ont la même longueur. Autrement dit $C \subset \mathcal{A}^*$ est un code de longueur fixe s'il existe un entier non nul n tel que

$$C \subset \mathcal{A}^n$$

Codes à longueur fixe

On dit d'un code qu'il est de *longueur fixe* lorsque tous les mots qu'il contient ont la même longueur. Autrement dit $C \subset \mathcal{A}^*$ est un code de longueur fixe s'il existe un entier non nul n tel que

$$C \subset \mathcal{A}^n$$

Exemple

- Les 128 mots (octets) utilisé pour le codage ASCII forment un code de longueur fixe.
- Le code associé à l'un quelconque des codages ISO-8859 est un code de longueur fixe.

CODES À VIRGULE

Les CODES À VIRGULE sont des codes pour lesquels un symbole (ou un groupe de symboles) de $\mathcal A$ est réservé pour marquer le début ou la fin des mots du code.

Ce symbole particulier est appelé *une virgule*. Il permet de factoriser un message codé avec ce code

Exemple

• Le Morse est un codage à virgule

Codes préfixes

Un langage préfixe est un langage dans lequel aucun mot n'est le préfixe d'un autre mot du langage. Dit autrement, $L\subset \mathcal{A}^*$ est préfixe si pour tous mots $u,v\in L$, on a

 $u \notin Pref(v)$ et $v \notin Pref(u)$.

Codes préfixes

Un langage préfixe est un langage dans lequel aucun mot n'est le préfixe d'un autre mot du langage. Dit autrement, $L\subset \mathcal{A}^*$ est préfixe si pour tous mots $u,v\in L$, on a

$$u \notin Pref(v)$$
 et $v \notin Pref(u)$.

Exemple

- Le langage $L = \{00, 010, 10, 110, 111\}$ est préfixe
- Les langages de longueur fixe sont des langages préfixes.

Codes préfixes

Un langage préfixe est un langage dans lequel aucun mot n'est le préfixe d'un autre mot du langage. Dit autrement, $L\subset \mathcal{A}^*$ est préfixe si pour tous mots $u,v\in L$, on a

$$u \notin Pref(v)$$
 et $v \notin Pref(u)$.

Exemple

- Le langage $L = \{00, 010, 10, 110, 111\}$ est préfixe
- Les langages de longueur fixe sont des langages préfixes.

Théorème

Tout langage préfixe autre que $\{\epsilon\}$ est un code.

Démos: À faire comme exercice

RÉSIDUEL D'UN LANGAGE

LE RÉSIDUEL À GAUCHE d'un langage $L\subset \mathcal{A}^*$ par un mot $u\in \mathcal{A}^*$ est le langage que l'on obtient en ne gardant des mots de L que ceux admettant u comme préfixe, et en supprimant ce préfixe de ces mots. En notant $u^{-1}.L$ ce résiduel, on a

$$u^{-1}.L = \{v \in \mathcal{A}^* | u.v \in L\}$$

(on peut définir le résiduel à droite de manière équivalente mais on n'utilisera pas cette notion dans le cours).

RÉSIDUEL D'UN LANGAGE

LE RÉSIDUEL À GAUCHE d'un langage $L\subset \mathcal{A}^*$ par un mot $u\in \mathcal{A}^*$ est le langage que l'on obtient en ne gardant des mots de L que ceux admettant u comme préfixe, et en supprimant ce préfixe de ces mots. En notant $u^{-1}.L$ ce résiduel, on a

$$u^{-1}.L = \{v \in \mathcal{A}^* | u.v \in L\}$$

(on peut définir le résiduel à droite de manière équivalente mais on n'utilisera pas cette notion dans le cours).

Exemple

Avec le langage $L = \{00, 01, 110, 001\}$

- si $u_1 = 10$ alors $u_1^{-1}.L = \emptyset$
- $si \ u_2 = 1 \ alors \ u_2^{-1}.L = \{10\}$
- $si \ u_3 = 00 \ alors \ u_3^{-1}.L = \{\epsilon, 1\}$

QUOTIENT D'UN LANGAGE

Le QUOTIENT À GAUCHE D'UN LANGAGE $L\subset \mathcal{A}^*$ par un langage $M\subset \mathcal{A}^*$ est le langage obtenu en ne gardant que les mots de L ayant un préfixe dans M et en supprimant ce préfixe des mots gardés. En notant $M^{-1}.L$ ce quotient, on a

$$M^{-1}.L = \{ v \in \mathcal{A}^* | \exists u \in M \text{ tel que } u.v \in L \}$$

Autrement dit

$$M^{-1}.L = \bigcup_{u \in M} u^{-1}.L$$

QUOTIENT D'UN LANGAGE

Le QUOTIENT À GAUCHE D'UN LANGAGE $L\subset \mathcal{A}^*$ par un langage $M\subset \mathcal{A}^*$ est le langage obtenu en ne gardant que les mots de L ayant un préfixe dans M et en supprimant ce préfixe des mots gardés. En notant $M^{-1}.L$ ce quotient, on a

$$M^{-1}.L = \{v \in \mathcal{A}^* | \exists u \in M \text{ tel que } u.v \in L\}$$

Autrement dit

$$M^{-1}.L = \bigcup_{u \in M} u^{-1}.L$$

Exemple

En reprenant l'exemple ci-dessus, et en posant $M = \{u_1, u_2, u_3\}$ alors

$$M^{-1}.L = \{\epsilon, 1, 10\}$$

ALGORITHME DE SARDINAS ET PATTERSON

Soit $L \subset \mathcal{A}^*$ un langage. On définit à partir de L une suite (L_n) de langage en posant

$$L_0 = L \tag{1}$$

$$L_1 = L^{-1}.L - \{\epsilon\} \tag{2}$$

$$L_{n+1} = L^{-1}.L_n \cup L_n^{-1}.L$$
 pour tout $n \ge 1$ (3)

Algorithme de Sardinas et Patterson

Soit $L \subset \mathcal{A}^*$ un langage. On définit à partir de L une suite (L_n) de langage en posant

$$L_0 = L \tag{1}$$

$$L_1 = L^{-1}.L - \{\epsilon\} \tag{2}$$

$$L_{n+1} = L^{-1}.L_n \cup L_n^{-1}.L$$
 pour tout $n \ge 1$ (3)

Théorème

Un langage $L \subset \mathcal{A}^*$ est un code si et seulement si le mot vide n'appartient à aucun des langages L_n de la suite définie ci-dessus.

Demos: à admettre

APPLICATIONS

• Lorsque L est un langage de longueur fixe (non nulle), alors $L_1 = L^{-1}.L - \{\epsilon\} = \emptyset$, et par conséquent, pour tout entier $n \geqslant 2$, $L_n = \emptyset$. Le mot vide n'est dans aucun langage L_n , et L est bien évidemment un code.

APPLICATIONS

- Lorsque L est un langage de longueur fixe (non nulle), alors $L_1=L^{-1}.L-\{\epsilon\}=\emptyset$, et par conséquent, pour tout entier $n\geqslant 2$, $L_n=\emptyset$. Le mot vide n'est dans aucun langage L_n , et L est bien évidemment un code.
- ② Lorsque L est un langage préfixe (autre que le langage réduit au seul mot vide), $L_1 = \emptyset$ et il en est de même pour tous les langages L_n avec $n \ge 2$. Et tout langage préfixe est un code.

Pour le langage $L = \{1,00,01,10\}$,

Pour le langage $L=\{1,00,01,10\}$, on a

$$L_1 = \{0\}$$

 $L_2 = \{0, 1\}$
 $L_3 = \{0, 1, \epsilon\}$

Puisque $\epsilon \in L_3$ donc L n'est pas un code.

En effet on a bien une double factorisation du mot 1001 avec des mots de L :

$$1001 = \underbrace{10} \quad . \quad \underbrace{01} = \underbrace{1} \quad . \quad \underbrace{00} \quad . \quad \underbrace{1}$$

Enfin pour le langage $L = \{000, 010, 011, 01001\}$,

Enfin pour le langage $L=\{000,010,011,01001\}$, on a

$$L_1 = \{01\}$$

$$L_2 = \{0, 1, 001\}$$

$$L_3 = \{00, 10, 11, 1001\}$$

$$L_4 = \{0\}$$

$$L_5 = \{00, 10, 11, 1001\}$$

Comme $L_3=L_5$, on en déduit que tout indice pair de la suite L_n vaut L_4 et les impairs vaut L_3 . Donc ϵ n'apparaît dans aucun de tous les L_i . Donc L est un code.

Écrire un programme en python (ou n'importe quel langage) qui décide si un langage donné en argument est un code ou pas.