1.2 Type de processeurs CISC, RISC, DSP

Organisation de la mémoire

Adresse	Case mémoire
7 = 111	
6 = 110	
5 = 101	
4 = 100	
3 = 011	
2 = 010	
1 = 001	
0 = 000	0001 1010

Questions

Taille du bus d'adresses ? =
Taille du bus de données ? =
Capacité mémoire ? =

Exercice sur les adresses mémoire

Exercice à préparer

Soit un microprocesseur caractérisé par un bus de données de 32 lignes et un bus d'adresses de 32 lignes. La RAM représente 3 GO de la mémoire centrale (adresses hautes), le reste de la mémoire centrale est occupé par la ROM.

- Calculer la taille de l'espace mémoire adressable
- Calculer les adresses de début et de fin de la RAM et de la ROM
- Les valeurs MIN et MAX véhiculées par chacun des bus

Organisation de la mémoire

Bus d'adresses : <u>3</u> lignes (unidirectionnel)

- \Rightarrow Pour l'adressage, il faut 3 bits d'adresses : $2^3 = 8$
- ⇒ Pour les données, il faut 8 bits (ou1 octet)

Questions

Taille du bus d'adresses ? = 3 (il y a 2³ adresses)

Taille du bus de données ? = 8 (il y a 1 octet de données)

Capacité mémoire ? = 23.8 bits = 64 bits ou 8 octets de mémoire

Capacité mémoire = nombre total de bits dans la mémoire (**≡ nbre de cases**)

Bus de données sur <u>8</u> lignes (bidirectionnel)

Exercice sur les adresses mémoire

Soit un microprocesseur caractérisé par un bus de données de 32 lignes et un bus d'adresses de 32 lignes. La RAM représente 3 GO de la mémoire centrale (adresses hautes), le reste de la mémoire centrale est occupé par la ROM.

• Calculer la taille de l'espace mémoire adressable = $\frac{16 \text{ GO}}{16 \text{ GO}} = 3 \text{ GO (RAM)} + 13 \text{ GO (ROM)}$

RAM (3 GO)

ROM (13 GO) Taille de l'espace mémoire adressable

$$= 2^{32}.32$$

$$= 2^{30}.2^{2}.2^{5}$$

$$= 2^{30}.2^7$$

$$2^{10} = 1024 = 1 \text{K}_{info}$$

$$2^{20} = 1 K_{info} * 1 K_{info} = 1 M_{info}$$

$$2^{30} = 1G_{info}$$

⇒ 4 octets de données

Bus de données sur <u>32</u> lignes (bidirectionnel)

Exercice sur les adresses mémoire

Soit un microprocesseur caractérisé par un bus de données de 32 lignes et un bus d'adresses de 32 lignes. La RAM représente 3 GO de la mémoire centrale (adresses hautes), le reste de la mémoire centrale est occupé par la ROM.

· Calculer les adresses de début et de fin de la RAM et de la ROM

Exercice sur les adresses mémoire

Soit un microprocesseur caractérisé par un bus de données de 32 lignes et un bus d'adresses de 32 lignes. La RAM représente 3 GO de la mémoire centrale (adresses hautes), le reste de la mémoire centrale est occupé par la ROM.

· Les valeurs MIN et MAX véhiculées par chacun des bus

