0.1 DEFINITIONS, LEMMAS AND COROLLARIES

The objective of this appendix is to present the definitions and lemmas used throughout the text.

Lemma 0.1 (Marginal Cost). The Lagrangian multiplier Λ_t is the nominal marginal cost of the intermediate-good firm:

$$MC_t := \frac{\partial TC_t}{\partial Y_t} = \Lambda_t$$

Proof. Simon and Blume (1994, p.449).

Lemma 0.2 (Steady State Inflation). *In steady state, prices are stable* $P_t = P_{t-1} = P$ *and the gross inflation rate is one.*

Proof. Equation ??.

Corollary 0.2.1. In steady state, all firms have the same level of production Y and therefore demand the same amount of factors, capital K and labor L.

$$P_t = P_{t-1} = P \implies (Y_j \quad K_j \quad L_j) = (Y \quad K \quad L)$$

Definition 0.1 (Uhlig's Rules). The Uhlig's rules are a set of approximations used to log-linearize equations (SOLIS-GARCIA, 2022, Lecture 6, p.2).

Lemma 0.3 (Rule 1: Percentage Deviation from Steady State).

$$\hat{x}_t := \frac{x_t - x}{x} \iff x_t = x(1 + \hat{x}_t)$$

Corollary 0.3.1 (Rule 2: Product).

$$x_t y_t \approx x y (1 + \hat{x}_t + \hat{y}_t)$$

Proof. Apply lemma 0.3 to both variables and notice that $\hat{x}_t \hat{y}_t \approx 0$:

$$x_t y_t = x(1+\hat{x}_t)y(1+\hat{y}_t)$$

$$= xy(1+\hat{x}_t+\hat{y}_t+\hat{x}_t\hat{y}_t)$$

$$\approx xy(1+\hat{x}_t+\hat{y}_t)$$

Corollary 0.3.2 (Rule 3: Exponential).

$$x_t^a \approx x^a (1 + a\hat{x}_t)$$
 ; $a > 1$

Proof. Apply corollary 0.3.1 (a-1) times.

Corollary 0.3.3 (Logarithm Rule).

$$\ln x_t \approx \ln x + \hat{x}_t$$

Proof. Apply corollary 0.3 and notice that $\ln(1+x) \approx x$ when $u \to 0_+$.

Definition 0.2 (Uhlig's Rules for Level Deviations). Uhlig's rules can be applied to level deviations (when $0 < u_t < 1$) in order to log-linearize equations (SOLIS-GARCIA, 2022, Lecture 9, p.9).

Lemma 0.4 (Level Deviation from Steady State when $0 \le u \le 1$).

$$\widetilde{u}_t := u_t - u$$

Corollary 0.4.1 (Level Deviation from Steady State when 0 < u < 1).

$$u_t = u\left(1 + \frac{\widetilde{u}_t}{u}\right)$$

Lemma 0.5 (Level Deviation of the Present Value Discount Factor). *The level deviation of the present value discount factor is equivalent to (SOLIS-GARCIA, 2022, Lecture 13, p.6):*

$$\prod_{k=0}^{s-1} (1 + R_{t+k}) = (1+R)^s \left(1 + \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right)$$

Proof. Substitute the interest rate by the gross interest rate $GR_t = 1 + R_t$ and apply corollary 0.4.1:

$$\prod_{k=0}^{s-1} (1 + R_{t+k}) = \prod_{k=0}^{s-1} (GR_{t+k}) \qquad \Longrightarrow
GR \times \dots \times GR \left(1 + \frac{1}{GR} \widetilde{GR}_t + \frac{1}{GR} \widetilde{GR}_{t+1} + \dots + \frac{1}{GR} \widetilde{GR}_{t+s-1} \right) \qquad \Longrightarrow
GR^s \left(1 + \frac{1}{GR} \sum_{k=0}^{s-1} \widetilde{GR}_{t+k} \right) \qquad \Longrightarrow
(1 + R)^s \left(1 + \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right)$$

Definition 0.3 (Geometric Series). A geometric series S_{∞} is the sum of the terms of a geometric sequence.

$$S_{\infty} = \sum_{i=0}^{\infty} ar^i \implies S_{\infty} = \frac{a}{1-r}$$
, $|r| < 1$

Definition 0.4 (Lag Operator). The lag operator \mathbb{L} is a mathematical operator that represents the backshift or lag of a time series (SOLIS-GARCIA, 2022, Lecture 13, p.9):

$$\mathbb{L}x_{t} = x_{t-1}$$
$$(1 + a\mathbb{L})y_{t+2} = y_{t+2} + ay_{t+1}$$

Corollary 0.5.1 (Lead Operator). *Analogously, the lead operator* \mathbb{L}^{-1} (or inverse lag operator) yields a variable's lead (SOLIS-GARCIA, 2022, Lecture 13, p.9):

$$\mathbb{L}^{-1}x_t = x_{t+1}$$
$$(1 + a\mathbb{L}^{-1})y_{t+2} = y_{t+2} + ay_{t+3}$$