Using Container-native Load Balancing on Kubernetes

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Introducing Container-native load balancing

Creating VPC-native cluster

Instantiating deployment, service and ingress

Verifying ingress

A Quick Overview of Kubernetes

Kubernetes

Orchestration technology for containers - convert isolated containers running on different hardware into a cluster

Compute Choices

hybrid, multi-cloud

Container Clusters

Kubernetes

Kubernetes as Orchestrator

Fault-tolerance

Autohealing

Isolation

Scaling

Autoscaling

Load balancing

All of these are possible in a Kubernetes cluster using higher level abstractions

Kubernetes: Cluster Orchestration

Node 1 Node 2 Node N Docker Docker Docker Container Container Container Docker Docker Docker Container Container Container Engine Engine Engine Infra Infra Infra **Kubernetes Master (Control plane)**

Kubernetes: Cluster Orchestration

Node 1 Node 2 Node N

Docker Container

> Docker Container Engine

> > Infra

Docker Container

Docker Container Engine

Infra

Docker Container

Container
Engine

Infra

Kubernetes Master (Control plane)

Kubernetes: Containers Run Within Pods

Node 1 Node 2 Node N

Kubernetes Master (Control plane)

Kubernetes: Cluster Orchestration

Node 1 Node 2 Node N Pod Pod Pod Docker Docker Docker Container Container Container Docker Docker Docker Container Container Container Engine Engine Engine Infra Infra Infra **Kubernetes Master (Control plane)**

Pods as Atomic Units

Container deployment

All containers in pod are deployed, or none are

Node association

Entire pod is hosted on the same node

Pod is atomic unit of deployment in Kubernetes

The ReplicaSet Object

Multiple identical pods which are replicas of each other

ReplicaSet

Self healing and autoscaling for our pods

The Deployment Object

Adds on deployment and rollback functionality

Deployment

Support for versions, and production-level operations such as rollbacks

Services provide stable IP addresses for external connections and load balancing

Service

A GKE Cluster

Made up of nodes, arranged in node pools, running container optimized node images

Kubernetes Clusters

Users interact with the master node

Nodes

Node Pools

A subset of node instances which have the same configuration are called node pools

Ingress Object

Kubernetes object defining a collection of rules that allow inbound connections to reach cluster services. On GKE, a single ingress object can control access to multiple services A single service can expose an IP address for access

Ingress

With multiple services it makes sense to have rules defined using an ingress object

Allows Google Cloud Load Balancers to target Kubernetes Pods directly to evenly distribute traffic between Pods

Allows Google Cloud Load Balancers to target Kubernetes Pods directly to evenly distribute traffic between Pods

Default Load Balancing Behavior

Load Balancer Sends Traffic to Instance Group

Kubernetes Uses iptables for Routing

Uses Network Endpoint Groups (NEGs)

Collections of network endpoints represented by IP-port pairs

Network Endpoint Groups

Zonal resources which represent a collection of IP address and port combinations. Can be used as a backend for HTTP(S), TCP proxy and SSL proxy load balancing

Network Endpoint Groups

Zonal resources which represent a collection of IP address and port combinations. Can be used as a backend for HTTP(S), TCP proxy and SSL proxy load balancing

Traffic Distributed Directly to Pods

Pods are first-class citizens for load balancing

Network endpoint groups target IP-port pairs

Improved network performance by eliminating iptables hop

Makes troubleshooting easier

Requirements

Google Kubernetes Engine version 1.10
VPC-native clusters with alias IPs

Demo

Implement container-native load balancing for an application running on a Kubernetes cluster

Summary

Introducing Container-native load balancing

Creating VPC-native cluster

Instantiating deployment, service and ingress

Verifying ingress

Delete Resources

Cloud storage buckets

Load balancers

DNS managed zones

Kubernetes clusters

Related Courses

Leveraging Architectural Design Patterns on the Google Cloud

Azure Kubernetes Service (AKS) - The Big Picture