世界知的所有権機関 国際事務局 特許協力がに基づいて公開された国際

(51) 国際特許分類7 C07K 1/14, 14/46, C12N 15/00

A1

(11) 国際公開番号

WO00/59926

(43) 国際公開日

2000年10月12日(12.10.00)

(21) 国際出願番号

PCT/JP00/02127

(22) 国際出願日

2000年3月31日(31.03.00)

(30) 優先権データ

特願平11/96073

1999年4月2日(01.04.99) JI 2 Oct OL 3(1) MRS

(71) 出願人 (米国を除くすべての指定国にあいて) 味の素株式会社(AJINOMOTO CO., INC.)[JP/JP] 〒104-0031 東京都中央区京橋一丁目15番1号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

福地直之(FUKUCHI, Naoyuki)[JP/JP]

影山俊輔(KAGEYAMA, Shunsuke)[JP/JP]

鬼頭守和(KITO, Morikazu)[JP/JP]

栢原孝志(KAYAHARA, Takashi)[JP/JP]

山本浩史(YAMAMOTO, Hiroshi)[JP/JP]

〒210-0801 神奈川県川崎市川崎区鈴木町1-1

味の素株式会社 医薬研究所内 Kanagawa, (JP)

(74) 代理人

遠山 勉,外(TOYAMA, Tsutomu et al.)

〒103-0004 東京都中央区東日本橋3丁目4番10号

ョコヤマビル6階 Tokyo, (JP)

(81) 指定国 AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

(54)Title: PROCESS FOR PRODUCING SUBUNIT PEPTIDE ORIGINTAING IN POLYMER PROTEIN

(54)発明の名称 多量体蛋白質に由来するサブユニットペプチドの製造法

a...PLATELET COUNT (x 10³/μ1)

(57) Abstract

A process for producing a subunit peptide originating in a polymer protein which has disulfide bonds in a subunit and between subunits. This process involves the following steps: (a) the step of denaturing the polymer protein or its subunit by using a protein denaturing agent in a solution, and then eliminating the denaturing agent from the solution in the presence of a polyoxyalkyl polyether having a functional group reacting with a thiol group, thereby unwinding the subunit; and (b) the step of separating the subunit, to which the polyoxyalkyl polyether has been bonded, from the solution.

サブユニット内及びサブユニット間のジスルフィド結合を有する多量体蛋白質 に由来するサブユニットペプチドを製造する方法を提供する。この方法は、以下 のステップにより、サブユニット内及びサブユニット間のジスルフィド結合を有 する多量体蛋白質に由来するサブユニットを製造することを含む。

- (a) 前記多量体蛋白質又はそのサプユニットを、蛋白質変性剤を用いて溶液中 で変性させ、チオール基と反応する官能基を有するポリオキシアルキルポリエー テルの存在下で、前記溶液から変性剤を除き、サブユニットの巻き戻しを行うス テップと、
- (b) 前記溶液からポリオキシアルキルポリエーテルが結合したサブユニットを 単離するステップ。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

アラブ首を国連邦 アンテイグア・バーブーダ アルバニア オーストリア オーストラリア オーストラリシャン ボズニア・ヘルツェゴビナ バルバドス ベルギー ドアルス・ ミニシェア カリア スペインラス フラガボワ ガボワ AM AT AU AZ BB F G G G G G G G G G H H I 英国 グレナダ ベルギー ブルギナ・ファソ ブルガリア ベナン グルジア ガーナ ガンピア ギニア BE BBBBCCCCCCCCCCCCDD ヘナン ブラジル ベラルーシ カナダ 中央アフリカ トルコ トリニダッド・トバゴ タンザニア ウクライナ 共和国マリ MN MR スイス コートジボアール ILNSTPEGP MXXZELOZLTO NNPPR カメルーン中国 中国 タ・リカ タ・バスユーロック・バスコーロック・バスコープ・アンマーク ノールウェー ニュー・ジーランド ポーランド ポルトガル KR

WO 00/59926 PCT/JP00/02127

明細書

多量体蛋白質に由来するサブユニットペプチドの製造法

技術分野

本発明は、サブユニット内及びサブユニット間のジスルフィド結合を有する多量体蛋白質に由来するサブユニットペプチドを製造する方法、並びに、その方法により製造され得るサブユニットペプチドに関する。

背景技術

生物の生命活動には種々の生理活性を持つ蛋白質が必要である。これら生理活性蛋白質の多くは分子内にジスルフィド結合を持ち、また多くは同種あるいは異種のペプチド鎖よりなる二量体等の多量体として存在し、ペプチド鎖間にジスルフィド結合を形成した状態に生合成される。多くの二量体として存在する生理活性蛋白質は、二量体であることが生物学的な活性発現に必須であるが、二量体であることを必ずしも必須としない蛋白質も知られている。

例えば、二量体であることが生理活性発現に必須なものの例としては、PDGF (Platelet Derived Growth Factor)等が挙げられ、その生理活性発現には二量体の各ペプチド鎖が、同様に二量体よりなる受容体の各ペプチド鎖に結合することが必要であり、実質的に二量体であることが必須である(C. H. Heldin et al., Cell. Regul., 1, 555-566, 1990)。

しかし、二量体の生理活性蛋白質の中には、一つのペプチド鎖(サブユニット)に受容体への結合活性、酵素活性等が存在し、他のペプチド鎖は、その蛋白質の安定性、溶解性、生合成過程等に重要であると考えられるものも知られており、実質的な生理活性発現には単一のサブユニットのみが必須であることがある。例えばアクチビン(activin)は、生体中では同種二量体(homodimer)あるいは異種二量体(heterodimer)として存在しているが、単量体(monomer)でもその受容体に対する結合活性が報告されており、生物学的な活性も数%程度は保持していることが報告されている(P. Husken-Hindi et al., J. Biol Chem., 269、

19380-19384, 1994)。また、昆虫に存在し、生理作用を果たしているPTTH (prothoracicotropic hormone)は、やはり生体内では同種二量体として存在しているが、その単量体にも約50%の生物学的な活性が保存されていることが報告されている (J. Ishibashi et al., Biochemistry, 33, 5912-5919, 1994)。また、イムノグロブリンG (IgG) も二量体であるが、単量体にしても抗原に対する結合性が保持されることが知られている (G. M. Edelman, Biochemistry, 7, 1950, 1968)。

以上述べたように、生体内で生理活性を示す二量体の蛋白質の単量体には、単量体においても生理活性を持つものがあり、また単量体では生理活性を示さない蛋白質の単量体でも、その受容体に結合するものもある。従って、二量体として存在する蛋白質を単量体として得た場合、その蛋白質を、生理作用を持つ蛋白質として、あるいは生理作用は持たないが受容体に結合し本来の生理活性蛋白質の結合を阻害することにより、本来の生理活性蛋白質の生理作用を阻害する蛋白質として利用できることが考えられる。

また、異なる動物種が生産する蛋白質が、他の動物種に対して生理活性を示す場合も数多く知られている。例えばヒル唾液より単離される蛋白質ヒルジン(hirudin)は、血中の凝固因子であるトロンビンに結合し、そのプロテアーゼ活性を阻害することが知られており、また蛇毒由来の蛋白質として血小板の受容体に結合し血小板凝集を阻害するディスインテグリン(disintegrin)、CHH-B等の蛋白質が知られている。この様な異種蛋白質のうち、CHH-Bは血小板膜上の糖蛋白質である糖タンパク質Ib(glycoprotein Ib(GPIb))に結合し、血小板凝集を阻害する蛋白質であるが、CHH-Bは異種二量体であり、その単量体にも異種二量体と同等のGPIbに対する結合活性及び血小板凝集阻害活性が保持されていることが報告されている(N. Fukuchi et al., W0 95/08573)。

すなわち、二量体として生合成される、上記に述べてきた様な生理活性蛋白質の単量体は、作用蛋白質 (agonist) /作用阻害蛋白質 (antagonist) として利用可能であり、種々の疾患の治療薬として有用であると考えられる。

しかし、本来二量体として生合成され生体内に存在する蛋白質を単量体として、 安定、かつ少なくとも生物活性を示す程度に立体構造を保った形で得ることにお いては、大きく2つの問題点が考えられる。

1点目は、単量体を調製することが難しい点である。本来二量体として存在する蛋白質を単量体として得る方法として大きく2つの方法が広く行われている。二量体蛋白質を部分的に還元してサブユニット間のジスルフィド結合のみを切断した後、新たに生じた遊離のチオール基をブロックする方法と、分子生物学的にサブユニット間のジスルフィド結合に関わるシステイン残基をアラニン残基あるいはセリン残基に置換した後、動物細胞などを用いた蛋白質系を用いて生産させる方法である。前者の方法は、前述した蛋白質の中ではPTTH、CHH-B及びIgGについて行われており、後者の方法はactivin及びCHH-Bについて行われている。前者の方法では蛋白質によってサブユニット間のジスルフィド結合のみを切断する条件設定が難しく、活性を保持した形で単量体を得た例は多くない。また、後者の方法では、サブユニット間のジスルフィド結合に関与するシステイン残基があらかじめ同定されていなければならず、さらに得られた遺伝子に点変異を入れなければならず、方法として繁雑である。

問題点の2点目は、抗原性の発現の可能性があることである。生体内で二量体として存在している蛋白質を単量体とした場合、本来分子の内側に存在していた領域が外側に露出するために異種蛋白質として認識され、抗原性を示す可能性が考えられる。前述した単量体の調製法の1つ目の方法である還元後にチオール基をブロッキングする方法では、このほかにブロッキングに用いた化合物が抗原性を示すことが考えられる。また、2つ目の変異を入れる方法では、変異したアミノ酸を含む部分構造による抗原性も考えられる。また、異なる動物種由来の蛋白質も一般的に抗原性を持ち、単量体にしたものについても同様の抗原性発現が問題となる。

一方、蛋白質の抗原性の低下は、ポリエチレングリコール化を行えば成しうることは広く知られており (バイオコンジュゲート医薬品、続医薬品の開発 臨時増刊、稲田、谷本編、廣川書店、1993、 A. Abuchowski et al., J. Biol. Chem., 252, 3578-3581, 1997)、特にポリエチレングリコールの蛋白質に対しての結合個数及び結合位置をより限定するために、システイン残基の遊離のチオール基に結合する官能基を有するポリエチレングリコールを用いる方法も数多く報告さ

れている (G. N. Cox et al., WO 98/32003、G. N. Cox et al., WO 94/12219、R. J. Goodson, USP 5,206,344, L. G. Armes WO 92/16221)。しかし、いずれも蛋白質の一部に人為的にシステイン残基を挿入あるいは置換する方法であり、本来二量体を形成するサブユニットに人為的なアミノ酸置換を行わずに遊離のチオール基にポリエチレングリコールを結合させることによって有用な蛋白質を得た報告はない。

発明の開示

本発明は上記観点からなされたものであり、二量体等の多量体として本来存在 する蛋白質のうち、生物学的活性をもつサブユニットを単量体として容易に得、 かつ、同時にその抗原性を低下させる方法を提供することを課題とする。

本発明者は、上記課題を解決するために鋭意研究を行った。その結果、多量体 蛋白質を構成するサブユニットを蛋白質変性剤を用いて変性させ、該変性剤を除 去することによってサブユニットの巻き戻しを行う際に、システイン残基に結合 する官能基を有するポリエチレングリコールの存在下で巻き戻しを行うと、サブ ユニット本来の活性を維持し、かつ、抗原性が低下した単量体ペプチドが得られ ることを見い出し、本発明を完成するに至った。

すなわち本発明は、以下のとおりである。

- (1) サブユニット内及びサブユニット間のジスルフィド結合を有する多量体蛋白質に由来するサブユニットペプチドを製造する方法であって、以下のステップを含む方法;
- (a) 前記多量体蛋白質又はそのサブユニットペプチドを、蛋白質変性剤を用いて溶液中で変性させ、チオール基と反応する官能基を有するポリオキシアルキルポリエーテルの存在下で、前記溶液から変性剤を除き、サブユニットペプチドの巻き戻しを行うステップと、
- (b) 前記溶液からポリオキシアルキルポリエーテルが結合したサブユニット ペプチドを単離するステップ。
- (2) ステップ(b) で単離されるサブユニットペプチドが抗原性が低下したものである前記(1) の方法。

- (3) 前記多量体蛋白質が二量体である(1) の方法。
- (4) 前記チオール基と反応する官能基を有するポリオキシアルキルポリエーテルが、マレイミド基を有するポリエチレングリコールである(1)の方法。
- (5) 前記多量体蛋白質に由来するサブユニットペプチドが、遺伝子組換え蛋白質である(1)の方法。
- (6)前記多量体蛋白質又はそのサブユニットペプチドを還元条件下で変性させることを特徴とする(1)の方法。
- (7) 多量体蛋白質の生理活性が、該多量体蛋白質を構成するサブユニットペプチドに依存し、かつ、ポリオキシアルキルポリエーテルが結合したサブユニットペプチドが前記生理活性を有する(1)の方法。
- (8) ポリオキシアルキルポリエーテルが結合したサブユニットペプチドが、多量体蛋白質の生理活性を阻害する活性を有する(1)の方法。
- (9) サブユニットペプチドのシステイン残基のうち、本来多量体蛋白質のサブユニット間のジスルフィド結合の形成に関与するシステイン残基にポリオキシアルキルポリエーテルが結合することを特徴とする(1)の方法。
- (10) ポリオキシアルキルポリエーテルが結合したサブユニットペプチドが、 多量体蛋白質中の同サブユニット内のジスルフィド結合と同一のジスルフィド結 合を有する前記(1)の方法。
- (11) サブユニット内及びサブユニット間のジスルフィド結合を有する多量体 ペプチドに由来するサブユニットペプチドであって、

サブユニットペプチドのシステイン残基のうち、本来多量体蛋白質のサブユニット間のジスルフィド結合の形成に関与するシステイン残基にポリオキシアルキルポリエーテルが結合し、抗原性が低下したサブユニットペプチド。

- (12)前記多量体蛋白質が、蛇毒に由来するフォンビルブラント因子の血小板 結合を阻害する活性を有する二量体ペプチドである(11)のサブユニットペプ チド。
- (13) 前記蛇毒がクロタルス・ホリダス・ホリダスの蛇毒である(12) のサブユニットペプチド。
- (14) 抗血栓活性を示す (12) のサブユニットペプチド。

(15)配列番号1に示すアミノ酸配列を有し、同アミノ酸配列においてアミノ酸番号81のシステイン残基にポリオキシアルキルポリエーテルが結合したペプチド又はその誘導体である(14)のサブユニットペプチド。

図面の簡単な説明

図1は、野生型AS1051 (AS1051-WT) を発現するベクターpTrcASWTの構築過程を示す図。

図2は、システイン残基がアラニン残基に置換された変異型AS1051(AS1051-Ala)を発現するベクターpTrcASAlaの構築過程を示す図。

図3は、巻き戻し後のAS1051-WT及びAS1051-Alaの透析前(a)及び透析後(b)の試料を逆相HPLCで分析した結果を示す図。横軸は時間を、縦軸は吸光度(216nm)、すなわち溶解蛋白質量を示す。

図4は、AS1051-Alaのモルモット反復投与後の血小板数を示す図。

図5は、AS1051-Alaのモルモット反復投与後の血漿中の抗AS1051-Ala抗体の検出結果を示す図。

図 6 は、ポリエチレングリコール化されたAS1051 (AS1051-PEG) のリジルエンドペプチダーゼ消化後の逆相液体クロマトグラム。

図7は、AS1051-Ala及びAS1051-PEGのリストセチン凝集阻害活性を示す図。

図8は、AS1051-Ala及びAS1051-PEGの固定化血小板-vWF結合阻害活性を示す図。

図 9 は、AS1051-Ala及びAS1051-PEGのモルモット反復投与後の血小板数を示す図。

発明を実施するための最良の形態

<1>本発明のサブユニットペプチドの製造法

本発明の方法は、サブユニット内及びサブユニット間のジスルフィド結合を有する多量体蛋白質に由来し、好ましくは抗原性が低下したサブユニットペプチド を製造する方法である。

本発明に用いられる多量体蛋白質は、2又はそれ以上のペプチドのサブユニッ

トからなり、少なくとも一つのサブユニットのペプチド鎖内にジスルフィド結合 を有し、かつ、サブユニット間にジスルフィド結合を有するものである。

また、前記多量体蛋白質としては、多量体蛋白質の生理活性が、該多量体蛋白質を構成するサブユニットペプチドに依存するものが挙げられる。また、前記多量体蛋白質は、その生理活性が、本発明の方法により得られるポリオキシアルキルポリエーテルが結合したサブユニットペプチドにより阻害されるものであってもよい。例えば、実施例に示した本発明のサブユニットペプチドの一例であるAS 1051-PEGは、同サブユニットペプチドが由来する蛇毒由来の二量体ペプチドであるCHH-Bと同様の抗血小板作用を有する。また、前記AS1051-PEGは、それが由来する二量体ペプチドであるCHH-Bと同様に血小板の糖タンパク質との結合活性を有し、CHH-Bの結合を阻害する。尚、AS1051では、CHH-Bが持つ血小板減少作用が著しく低下しているが、このように性質が変化するものであっても、目的とする生理活性を保持するものであれば差し支えない。

本発明の方法は、上記のような多量体蛋白質を構成するサブユニットペプチドのうち、ペプチド鎖内にジスルフィド結合を有するサブユニットペプチドであって、前記生理活性又は該生理活性を阻害する活性を有し、好ましくは抗原性が低下したサブユニットペプチドを得る方法である。

ここで、「抗原性が低下した」とは、本発明の方法により得られるサブユニットペプチドの抗原性が、従来の方法によって多量体蛋白質から得られるサブユニットペプチドが有する抗原性に比べて低下したことをいう。従来の方法とは、例えば、多量体蛋白質を還元剤を用いて還元した後に、遊離のチオール基をアルキル化剤を用いてアルキル化することにより単量体を得る方法、あるいは、サブユニット間のジスルフィド結合に関与するシステイン残基が他のアミノ酸残基に置換されたサブユニットペプチドを、組換えタンパク質として製造する方法などが挙げられる。

本発明を適用することができる多量体蛋白質としては、2又はそれ以上のペプチドのサブユニットからなり、少なくとも一つのサブユニットのペプチド鎖内にジスルフィド結合を有し、かつ、サブユニット間にジスルフィド結合を有するものであれば特に制限されないが、例えばクロタルス・ホリダス・ホリダス

(Crotalus horridus horridus)、セラステス・セラステス(Cerastes cerastes)、ビベラ・パレスチナ(Vipera palestinae)、エキス・カリナタス(Echis carinatus)、トリメレスラス・アルボラブリス(Trimeresurus albolabris)、トリメレスラス・フラボビリディス(Trimeresurus flaboviridis)、ナジャ・ハジェ(Naja haje)、ナジャ・ニベア(Naja nivea)、クロタルス・アドマンテウス(Crotarus admanteus)等の蛇毒に含まれる血小板膜上の糖タンパク質 I b結合活性を持つ多量体蛋白質、あるいは増殖因子、サイトカイン等の生理活性蛋白質(R. M. Scarborough, WO 92/08472)が挙げられる。

本発明の方法においては、蛇毒などの天然物から得られる多量体蛋白質をそのまま用いてもよいし、多量体蛋白質から分離されたサブユニットペプチドを用いることもできる。サブユニットペプチドとしては、多量体蛋白質を構成するサブユニットのうち、生理活性を担うサブユニットペプチドか、あるいは多量体蛋白質の生理活性を阻害する活性を有するサブユニットペプチドを用いる。本発明にいうサブユニットペプチドとは、特記しない限りこのようなサブユニットペプチドを意味する。さらに、サブユニットペプチドは、それをコードするDNAを用いて遺伝子組換え技術により製造した組換えタンパク質であってもよい。

目的のサブユニットペプチドをコードするDNAをクローニングにすることは、そのサブユニットペプチドのアミノ酸配列の全長あるいは一部が明らかであれば、通常の遺伝子クローニングと同様にして行うことができる。例えば、目的とする遺伝子は、既知の塩基配列に基づいて作製したプライマーを用いてPCR(polymerase chain reaction)法を用いて得ることもでき、同様にして作製したプローブを用いてcDNAライブラリーからハイブリダイゼーションを行うことにより取得することもできる。また、目的の遺伝子が寄託機関に寄託されている場合は、寄託されている遺伝子を入手することによっても可能である。また、遺伝子の全塩基配列が既知である場合、化学的に合成することも可能である。多量体を構成するサブユニットペプチドのうち、目的とするサブユニットペプチドが特定できない場合には、それぞれのサブユニットペプチドをコードする遺伝子をクローニングすればよい。

目的サブユニットペプチドをコードする遺伝子を用いて遺伝子組換え技術によ

り組換えタンパク質として製造することは、通常有用タンパク質の製造に用いられる方法と同様にして行うことができる。すなわち、目的サブユニットペプチドをコードする遺伝子を、適当なプロモーターを含むベクターに挿入し、得られる組換えベクターで大腸菌等の宿主を形質転換し、形質転換体を培養して前記遺伝子を発現させればよい。宿主としては、例えば大腸菌、枯草菌、酵母等が挙げられる。また、プロモーターは、用いる宿主で機能するものであればよく、例としては1ac、trp、tac、trc、recA、T7(新生化学実験講座1、タンパク質、VI合成及び発現、日本生化学会編、p166、安枝、松井、1992年、東京化学同人刊)、PG K、ADH1、GPD、MF α 1、SUC2、PH05、GAL1、GAL4(新生化学実験講座1、タンパク質、VI合成及び発現、日本生化学会編、p215、酒井ら、1992年、東京化学同人刊)等が挙げられる。

発現の形態は、直接目的サブユニットペプチドそのものを発現させても良く、他の蛋白質との融合蛋白質として発現させてもよい。また封入体として菌体内に蓄積させても良く、可溶型として菌体内に蓄積させてもよく、あるいは菌体外に分泌させてもよい。融合蛋白質としては、マルトース結合蛋白質 (Maltose Binding Protein)、グルタチオンSートランスフェラーゼ (Glutatione S-Tranferase)、ヒスチジンータグ (His-Tag) 等との融合蛋白質が挙げられる。

尚、本来多量体として存在する蛋白質のサブユニットペプチドは、サブユニット内のジスルフィド結合には関与しないシステイン残基を持ち、また本来他のサブユニットペプチドと結合している疎水性に富む部分構造を表面に有する可能性が高く、サブユニットペプチド単独では溶液での安定性や溶解性が悪い場合が多いと考えられる。サブユニット内のジスルフィド結合には関与しないシステイン残基が存在することによる安定性の悪さは、従来の方法のように、本来サブユニット間のジスルフィド結合に関与するシステイン残基をアラニン、セリン等のチオール基を持たない適当なアミノ酸残基に置換すれば回避できるが、そのためには本来サブユニット間のジスルフィド結合に関与するシステイン残基を特定する必要がある。また前記システイン残基が特定されている場合であっても、遺伝子にアミノ酸置換を起こす変異を導入する必要があり、その操作は繁雑である。

一方、本発明の方法によれば、サブユニットペプチドをコードする遺伝子をそ

のまま発現させればよく、サブユニットペプチド単独では溶解性や安定性が悪い 場合、該サブユニットペプチドを封入体又は不溶化蛋白質として得ても差し支え ない。

本発明においては、上記のような多量体蛋白質又はそのサブユニットペプチドから、前記(a)及び(b)のステップによりサブユニットペプチドを得る。以下、各ステップについて説明する。

(1) ステップ (a)

はじめに、多量体蛋白質又はそのサブユニットペプチドを、蛋白質変性剤を用いて溶液中で変性させる。続いて、チオール基と反応する官能基を有するポリオキシアルキルポリエーテルの存在下で、前記溶液から変性剤を除き、サブユニットペプチドの巻き戻しを行う。

溶液の溶媒は一般には水である。蛋白質変性剤としては、可逆的に蛋白質素を性することができるものであれば特に制限されないが、塩酸グアニジン、尿素等が挙げられる。蛋白質変性剤濃度は、該蛋白質が溶解すればいかなる濃度でも良いが、例えば1Mから飽和濃度の間などが用いることができ、好ましくは2Mから8Mの間が用いられる。溶液のpHはいかなる値でも可能であるが、好ましくはジスルフィド結合の掛かり換えと、後述するポリエチレングリコールのチオール基への結合が起こりやすい7から12の間が用いられる。また溶液の温度はいかなる温度でも構わないが、好ましくは0℃から40℃の間が用いられる。また反応時間は適宜選択される。変性は、還元条件下及び非還元条件下のいずれで行ってもよい。

多量体又はサブユニットペプチドのジスルフィド結合を、還元剤を用いてあらかじめ切断しておいても良いが、これは必須ではない。また、巻き戻し過程に先立ってグルタチオン等のシステイン残基を含む物質、ジチオスレイトール等の還元剤、蛋白質ジスルフィドイソメラーゼ (Protein Disulfide Isomerase) 等の酵素などを添加することも可能である。

多量体蛋白質又はそのサブユニットに、サブユニット間のジスルフィド結合が存在する場合や本来のものとは異なるサブユニット内のジスルフィド結合が存在する場合には、変性を還元条件下で行うことが好ましい。本発明において、還元条件とは、システイン残基を含む物質、還元剤、蛋白質ジスルフィドイソメラー

ゼ等の存在下のように、ジスルフィド結合の切断が促進される条件を意味する。 還元条件下にすることにより、ジスルフィド結合の切断が促進されることによっ て、巻き戻し過程における、チオール基と反応する官能基を有するポリオキシア ルキルポリエーテルとの反応が促進される。多量体蛋白質の変性の場合には、サ ブユニット間のジスルフィド結合の切断が促進されるため、還元条件下で行うこ とが特に好ましい。

次に、チオール基と反応する官能基を有するポリオキシアルキルポリエーテル の存在下で、変性したサブユニットペプチドを含む溶液から変性剤を除く。溶液 から変性剤を除くことは、例えば透析によって行うことができる。

チオール基と反応する官能基としては、代表的にはマレイミド(maleimide) 基 (R. J. Goodson et al., Bio/Technology, 8, 343, 1990)、オルトピリジルジスルフィド (orthopyridyl disulfide) 基 (M. Yokoyama et al., Biochem. Biophys. Res. Commun., 164, 1234, 1989)、ビニルスルフォン (vinylsulfone) 基 (Shearwater Polymers Inc. Item No. M-VS-5000)等が挙げられるが、優先的にチオール基と結合する官能基であれば良い。また、ポリオキシアルキルポリエーテルとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリヒドロキシエチルグリセロール、デキストラン、炭水化物ポリマー等が挙げられる。分子量はいかなる大きさでも構わないが、得られるサブユニットペプチドの溶解性向上、抗原性低下あるいはサブユニットペプチドとの反応性を考えると1000から100万の範囲が好ましく、2000~5万の範囲がより好ましい。

上記のようなポリオキシアルキルポリエーテルは、変性に先立って溶液中に加えてもよく、多量体蛋白質又はサブユニットペプチドを変性させた後に加えてもよく、変性剤を除く前に加えてもよい。通常は、多量体蛋白質又はサブユニットペプチドを変性剤で変性させた後に、前記ポリオキシアルキルポリエーテルを加えて一定時間反応させ、その後に変性剤を溶液から除くことが好ましい。ポリオキシアルキルポリエーテルの量としては、反応する蛋白質量に対して等モル比以上であることが好ましい。

変性中又は変性後にチオール基と反応する官能基を有するポリオキシアルキル ポリエーテルと反応させることによって、サブユニットペプチドのシステイン残 WO 00/59926

基にポリオキシアルキルポリエーテルが結合する。

上記のようにして溶液から変性剤を除くと、変性したサブユニットペプチドの 巻き戻しが起こり、サブユニットペプチドが由来する多量体蛋白質の生理活性と 同じ生理活性活性、又は同生理活性を阻害する活性を有するサブユニットペプチ ドが得られる。

変性したサブユニットペプチドを含む溶液から変性剤を除くステップの前に、 自然酸化(空気酸化)を行い、サブユニット内のジスルフィド結合を形成させ、 その後にチオール基と反応する官能基を有するポリオキシアルキルポリエーテル を添加することにより、ポリオキシアルキルポリエーテル基を、本来多量体蛋白 質のサブユニット間のジスルフィド結合の形成に関与するシステイン残基に、選 択的に結合させることを効率的に行うことができる。

(2) ステップ(b)

上記のようにして生成されるポリオキシアルキルポリエーテルが結合したサデュニットペプチドを、溶液から単離する。この操作は、通常の蛋白質の いられる操作、すなわちイオン交換、ゲル濾過、逆相等の一般的に用いるな。 ロマトグラフィー、電気泳動、塩析等の沈殿操作、脱塩操作、濃縮操作等を組み合わせて行うことができる。

上記操作により、目的とするサブユニットペプチドと、ポリオキシアルキルポリエーテルとを分離することができる。また、原料として多量体蛋白質を用いた場合は、目的とするサブユニットペプチドと他のサブユニットペプチドとを分離することができる。例えば、サブユニットペプチドのシステイン残基のうち、本来多量体蛋白質のサブユニット間のジスルフィド結合の形成に関与するシステイン残基にポリオキシアルキルポリエーテルが結合し、抗原性が低下したサブユニットペプチドと、他のサブユニットペプチドとを分離することができる。

サブユニットペプチドに結合するポリオキシアルキルポリエーテルの結合位置は、多量体蛋白質においてサブユニット間のジスルフィド結合を形成しているシステイン残基であることが望ましいが、該ジスルフィド結合の様式が決定されていない場合は、特定のチオール基に結合していて、目的とする活性を持ち、溶液中で安定に存在し、好ましくは抗原性が低下するものであればよい。また、サブ

ユニット内の他のジスルフィド結合は、本来の多量体中のサブユニット内のジスルフィド結合と同様であることが望ましいが、実質的に生理活性を持つ範囲であれば、異なっていてもよい。また、サブユニット内の本来のジスルフィド結合が決定されていない場合は、生理活性を持つ単一の分子として特定できる、溶液中で安定に存在するものであればよい。また、一分子あたりに結合するポリオキシアルキルポリエーテル分子数は、本来の二量体蛋白質においてサブユニット間のジスルフィド結合を形成しているシステイン残基の個数と同一であることが望ましいが、その個数が決定されていない場合は、得られた単量体ポリオキシアルキルポリエーテル化蛋白質が生理活性を持ち、単一の分子として特定でき、かつ、溶液中で安定に存在するような個数であればよい。

また、得られた単量体ポリオキシアルキルポリエーテル化サブユニットペプチドの抗原性の低下は、ポリオキシアルキルポリエーテル化していないサブユニットペプチド、あるいは本来の多量体蛋白質においてサブユニット間のジスルフィド結合を形成しているシステイン残基を他のチオール基を持たないアミノ酸に置換したサブユニットペプチドに比べ、実質的に抗原性が低下していればよい。上記のようなポリオキシアルキルポリエーテル化していないサブユニットペプチドの抗原性に関する知見が得られていない場合には、得られたポリオキシアルキルポリエーテル化サブユニットペプチドを、免疫に必要な最低限の回数動物に投与後、再投与した際に抗原抗体反応に起因する生物学的及び生化学的な反応が起こらないものであればよい。

さらに、本発明の方法により得られるポリオキシアルキルポリエーテル化サブ ユニットペプチドの血中安定性は、ポリオキシアルキルポリエーテル化を行わな い場合に比べ向上することが期待される。

後記実施例では、クロタルス・ホリダス・ホリダス由来の蛇毒に含まれる二量体ペプチドであるCHH-Bを構成するサブユニットペプチド(αサブユニット)について、本発明の方法を適用した例を示した。CHH-Bは、血小板膜糖蛋白質である糖タンパク質Ib(GPIb)に結合する。糖タンパク質Ibは、血中蛋白質フォンビルブラント因子(vWF)と結合することによって血栓形成に関与することが知られている(J. P. Cean et al., J. Lab. Clin. Med., 87, 586-596, 1976、K J.

Clemetson et al., Thromb. Haemost., 78, 266-270, 1997)。さらに、CHH-Bの α 鎖にGPIb結合部位が存在することが見出され、 α 鎖のみを取り出したAS1051に抗血栓活性が存在することが報告されている(N. Fukuchi et al., WO 95/08573)。N. Fukuchiら(WO 95/08573)は、AS1051の調製法として、CHH-Bからの部分的還元とグルタチオンによる遊離のチオール基の保護を含む方法を報告している。さらに、AS1051をコードする遺伝子をクローニングし、CHH-B中のサブユニット間のジスルフィド結合に関与するシステイン残基を特定し、そのシステイン残基がアラニン残基に置換された変異型AS1051(AS1051-Ala)を大腸菌で発現させる方法等を報告している。

しかし、前記特許明細書では、CHH-Bより部分還元により得たサブユニットペプチド、あるいは変異型AS1051を用いた活性のデータは報告されているが、大腸菌で生産された野生型AS1051の安定性については触れられておらず、サブユニット内のジスルフィド結合に関与しない余分なシステイン残基を持つこのサブユニットペプチドの安定性、及び、巻き戻し過程における効率は低いと考えられた。また、同明細書では動物を用いた抗血栓活性の評価は行っているが、その抗原性については触れられていない。そこでまず、大腸菌を用いて製造したAS1051の安定性と、安定であると考えられるアラニン置換体(AS1051-Ala)の動物投与における抗原性について検討を行った。

その結果、AS1051及びAS1051-Alaについて同様の条件で変性及び巻き戻しを行ったところ、AS1051の溶解性が非常に低いことが確認された。また、AS1051-Alaについて、モルモットを用いた反復投与を行ったところ、抗原性に基づくと考えられる血小板減少が確認された。一方、本発明の方法により得られたポリエチレングリコール化されたアミノ酸置換されていないAS1051は、溶解性が高く、血小板減少も観察されなかった。

<2>本発明のペプチド

本発明のペプチドは、サブユニット内及びサブユニット間のジスルフィド結合を有する多量体蛋白質に由来するサブユニットペプチドであって、サブユニットペプチドのシステイン残基のうち、本来多量体蛋白質のサブユニット間のジスルフィド結合の形成に関与するシステイン残基にポリオキシアルキルポリエーテル

が結合し、抗原性が低下したサブユニットペプチドである。このようなサブユニットペプチドは、例えば上記の本発明の方法により得られる。

本発明のサブユニットペプチドとして具体的には、前記多量体蛋白質が、クロタルス・ホリダス・ホリダスの蛇毒に由来する、フォンビルブラント因子の血小板への結合を阻害する活性を有する二量体ペプチドであるものが挙げられる。さらに具体的には、配列番号1に示すアミノ酸配列を有し、同アミノ酸配列においてアミノ酸番号81のシステイン残基にポリオキシアルキルポリエーテルが結合したペプチド又はその誘導体が挙げられる。前記誘導体としては、前記のアミノ酸番号81のシステイン残基以外の位置において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含み、かつ、抗血栓性を有するペプチドが挙げられる。

上記のようなペプチドは、本来の二量体蛋白質であるCHH-B、あるいはその α サブユニットの単量体ペプチドであるAS1051と同様の血小板凝集阻害活性を保持し、かつ緩衝液等の溶液における高い溶解性を有し、ポリエーテル化されていないAS1051が抗原性を示すのに対し、抗原性が非常に低いという優良な性質を有する。

<3>本発明のペプチドの用途

本発明の方法により得られたサブユニットペプチドのうち、実質的に本来の多量体蛋白質と同様の生物学的作用を持つものは、その作用のターゲットに対する作用物質として医薬品としての利用が可能である。また、本発明の方法により得られたサブユニットペプチドのうち、例えば本来の多量体蛋白質とその受容体との結合を阻害する等の機作により、多量体蛋白質の生物学的作用を阻害する生理活性を持つものも、その作用のターゲットに対する阻害物質として医薬品としての利用が可能である。

具体的には、前記のボリエチレングリコール化されたAS1051は、CHH-B及びAS1 051と同様の血小板凝集阻害活性を保持し、さらに動物投与における抗原性が見られないことから、抗血栓薬として利用することができる。

医薬組成物において、本発明のペプチドは、そのままの形態でも良く、薬学的 に許容される塩であっもよい。これらは1種または2種以上の混合物として使用 することもできる。また、他の有効成分を有していても良い。さらに、通常製剤 に用いるその他の材料、例えば血清アルブミン等の蛋白質、緩衝剤、浸透圧調整 のための塩、担体、賦型剤等の成分を配合しても良い。

剤型としては錠剤、カプセル剤、細粒剤、シロップ剤、坐剤、軟膏剤、注射剤、 点眼剤等を挙げることができる。これらのうちで注射剤が好ましい。また、投与 方法は静脈内投与、皮下投与、筋肉投与、経口投与、点眼投与、経腸投与等のい ずれの方法であっても良いがこれらのうちで静脈内投与、皮下投与、筋肉投与等 が好ましい。

動物あるいはヒトに投与する際の投与量は、例えばポリエチレングリコール化 AS1051の場合には、同ペプチドの量として、通常0.1μg/kg~100mg/kgの範囲で 所期の効果が期待でき、この範囲で最も優れた薬効が得られる量を選択できる。

実施例

以下、本発明を実施例によりさらに具体的に説明する。

実施例1 CHH-Bα鎖蛋白質の遺伝子クローニング

CHH-B α 鎖蛋白質の遺伝子クローニングは、N. Fukuchiらの方法 (WO 95/08573) にしたがって行った。詳細には、以下に示す手順で行った。

<1>クロタルス・ホリダス・ホリダスのcDNAライブラリーの作製

(1) クロタルス・ホリダス・ホリダスからのmRNAの抽出

クロタルス・ホリダス・ホリダスの毒腺を摘出し、直ちに液体窒素にて凍結し、使用時まで保存した。この毒腺1.7gをRNA抽出液(4M 塩酸グアニジウムイソチオシアネート、0.1Mトリス塩酸(pH7.5)、1% βーメルカプトエタノール、0.1%ラウリルザルコシルナトリウム塩)20ml中でポリトロンホモジナイザー(キネマティカ社製)を用い破砕した。この破砕液を10000×Gで10分間遠心分離し、不溶物を取り除いた後、上清を超遠心分離チューブ中の等量の密度平衡化緩衝液(4M塩化セシウム、10mMエチレンジアミン四酢酸ニナトリウム、pH7.5)に重層し、30000rpm、18時間、20℃で遠心分離し、全RNA600μgを分離した。全RNAからのmRNAの調製は、POLY(A)Quik mRNA抽出キット(ストラタジーン社製)を用い、キットのプロトコールに従って行った。即ち、取得された全

RNAのうち 500μ gをオリゴ d Tカラムに吸着させ、高塩緩衝液 200μ lで 2 回、低塩緩衝液 200μ lで 3 回カラムを洗浄後、65°C、 200μ lの溶出緩衝液を 4 回カラムを通過させることにより、mRNA(10μ g)を分離精製した。

(2) c D N A の合成

cDNAの合成は、TimeSavor DNA合成キット(ファルマシア社製)を用い、キットのプロトコールに従って行った。即ち、精製した $mRNA3\mu g$ に、ランダムヘキサマープライマー $0.3\mu g$ 、1mM ジチオスレイトール、逆転写酵素を含むファーストストランド反応液を混合し、37°Cで 1 時間反応させてファーストストランドを合成した。

この反応液を大腸菌RNaseH、大腸菌DNAポリメラーゼを含むセカンドストランド反応液に混合し、 12° Cで30分、 22° Cで1時間反応させて cDNAを合成した。さらに 65° Cで10分インキュベートした後、反応液をフェノール/クロロホルム処理し、酵素を失活させた。次にキット添付のゲル濾過スパンカラムを用い、400×Gで2分間遠心分離することにより未反応のプライマーを除去し、二本鎖 cDNA ($3\mu g$) を得た。

(3) c D N A ライブラリーの作製

上記で得られた二本鎖 c D N A の両端に、TimeSavor D N A キットに添付のEco RI / Not I アダプターを、キットのプロトコールに従って連結した。即ち、 c D N A 3 μ g、EcoRI / Not I アダプター3 μ l、ポリエチレングリコール緩衝液 30μ l、A T P 溶液 1μ l、T 4 D N A リガーゼ 1μ lを混合し、16 で 1 時間連結反応を行った。更に反応液を65 でで10分インキュベートして酵素活性を失活させた後、A T P 溶液 1.5μ l、T 4 ポリヌクレオチドキナーゼ 1μ lを加え、37 でで30分反応させ、アダプターの 5 、末端のリン酸化を行った。この後、反応液を65 で 10 分インキュベートし、さらにフェノール / クロロホルム処理を行って酵素活性を失活させた。次にキット添付のゲル濾過スピンカラムを用い、反応液を400 × 6 で 2 分遠心分離することにより未反応のアダプターを除去した。

アダプターを両末端に連結した c D N A を、ラムダファージベクター λ ZAP I I (ストラタジーン社製) のEcoR I 部位に連結して、組換えファージ D N A を作製した。即ち、アダプターを連結した c D N A 400 ng に対し、 λ ZAP I I λ EcoR I λ C I A

Pアーム 1 µg、連結緩衝液 (100mM トリス塩酸(pH7.6)、25mM 塩化マグネシウム、300mM 塩化ナトリウム) を添加し、さらにT4DNAリガーゼを含む酵素液 B液 (宝酒造 (株) 製 ライゲーションキット) を等量添加し、26℃で10分連結反応を行った。

上記のようにして得られた組換えファージDNAのパッケージングは、パッケージングキットGIGAPACKII GOLD (ストラタジーン社製)を用い、キットのプロトコールに従って行った。即ち、上記のcDNAを連結した λ ZAPIIアームDNA λ 3 μ gとキットのパッケージング抽出液を混合し、 λ 22°Cで 2 時間反応させることによりパッケージングを行った。この反応液に λ 50mM トリス塩酸 (pH7.5)、0.01% ゼラチン)を添加した。

得られた組換えファージのタイターをチェックした後、ファージのバッケージング反応液の半量を用い、受容菌として大腸菌E. coli XL-1 Blue (ストラタジーン社製)を用いてファージライブラリーを作製した。即ち、直径160元のファーン社製)を用いてファージライブラリーを作製した。即ち、直径160元のファーク形成培地 (バクトトリプトン1%、酵母エキス0.5%、塩化ナトリウム、硫酸マグネシウム1mM、マルトース0.2%) 10枚に、1プレート当たり20,000プラークになるように、ファージ希釈液で希釈したファージと受容菌をプレーティングし、37℃で12時間培養して、組換えファージのライブラリーを得た。

<2>目的遺伝子単離のためのプローブDNAの取得

(1) RT-PCR法による目的遺伝子部分断片の増幅

クロタルス・ホリダス・ホリダスからの全RNAを材料として、RT-PCR 法によりフォンビルブラント因子の血小板結合阻害ペプチドをコードするDNA 断片の増幅を行った。

配列番号1に記載のペプチドのアミノ酸配列 (N. Fukuchi et al.、前述)をもとに、コドンの縮重の少ない箇所をえらび、RT-PCR (逆転写ポリメラーゼ連鎖反応) 用のプライマーを作製した。プライマーはバイオロジカ社に依託して化学合成した。これらのプライマーの塩基配列を配列表配列番号2、3に示す。但し、配列番号2において、3番目及び6番目のヌクレオチドはA及びGの、12番目のヌクレオチドはT、C、A及びGの混合物である。また、配列番号3に

WO 00/59926

おいて、3番目のヌクレオチドはT、C、A及びGの、6番目及び15番目のヌクレオチドはT及びCの、9番目のヌクレオチドはA及びGの混合物である。

前記と同様にして調製したクロタルス・ホリダス・ホリダスの全RNAに対し、上記プライマーを用いてRTーPCRを行った。ファーストストランドの合成は全RNA5 μ gに対し、逆転写酵素SUPERSCRIPT II(GIBCO社製) 2.5 μ l、酵素液に添付のファーストストランド緩衝液20 μ l、0.1M ジチオスレイトール10 μ l、10 μ l、1 μ lを混合し、42 μ cで1時間反応させてファーストストランドを合成した。反応液を95 μ cで5 μ lを提合し、42 μ cで1時間反応させてファーストストランドを合成した。反応液を95 μ cで5 μ l、アクストランドを鋳型としてPCR反応を行った。即ちファーストストランド反応液 5 μ l、PCR反応緩衝液10 μ l、10 μ l、10 μ l、プライマー各800 μ l、Taqポリメラーゼ10 μ lを混合し、DNAサーマルサイクラー(パーキンエルマー社製)を用い、95 μ l、52 μ l、72 μ l を用い、95 μ l、72 μ l を用い、95 μ l を用い、95 μ l を見いて25 μ l を用い、95 μ l を見いて25 μ l を見いの反応を行った。

このPCR反応液を2%アガロースゲル電気泳動に供し、増幅DNAを解析した。その結果、約300塩基対の位置にDNAのバンドが観察された。

(2) 増幅断片の塩基配列決定

上記のようにして増幅されたDNA断片を、pCR-ScriptSK(+)クローニングキット(ストラタジーン社製)を用い、キットのプロトコールに従ってプラスミドにサブクローニングした。即ち、PCR反応液に、ライゲーション緩衝液、1 mM ATP、ベクターとしてpCRscript(ストラタジーン社製)10ng、制限酵素SrfIを5 units、及びT4DNAリガーゼを添加混合し、25℃で1時間連結反応を行った後、反応液を65℃で10分インキュベートしリガーゼを失活させた。この反応物を用いて、コンピテントセル法によりE. coli DH5 α を形質転換し、L-Apプレート(バクトトリプトン1%、酵母エキス0.5%、塩化ナトリウム0.5%、アンピシリンナトリウム100 μ g/ml)にプレーティングして37℃で18時間培養した。コロニーを形成した菌体をプレートから分離し、その一部を液体培養し、アルカリ法(モレキュラークローニング2版 Vol.1 Cold Spring Harbor Press編)によりプラスミドの調製を行った。このプラスミドをpCHAprobeと命名した。

pCHAprobeのクローニング断片の塩基配列を、DNAシーケンサーA373

(アプライドバイオシステムズ社製)を使用し、プライマーとしてM13M4あるいはM13reverse(宝酒造(株)製)を用い、同シーケンサーの使用法に従ってdye Terminator法により解析した。その結果、クローニングされたDNA断片は272塩基対からなり、配列番号4に示す塩基配列を有していた。この配列をアミノ酸に翻訳してみたところ、求めるペプチドの一部に相当し、得られたクローニング断片が目的ペプチドCHH-B α 鎖蛋白質のサブユニット(AS1051)をコードする遺伝子の一部であることが証明できた。

(3) プローブの標識

pCHAprobeを、クローニングされた挿入断片の両端に存在する制限酵素SacI、B amHIで切断し、2%アガロースゲル電気泳動により340塩基対の大きさのDNA 断片を分離し、DNA回収キット(タカラEASYTRAP:宝酒造社製)を用い、キットのプロトコールに従ってDNAを回収した。このDNA25ngを、[α - 32 P]dCTP及びランダムプライマーラベリングキット(宝酒造社製)を用い、ラジオアイソトープラベルした。ラベル反応液から、ゲル濾過Nickカラム(ファルマシア社製)を用いて未反応の[α - 32 P]dCTPを除去し、ラベル化プローブを得た。

<3>プラークハイブリダイゼーションによる目的遺伝子の取得

c D N A ファージライブラリーから AS1051ペプチドの全長をコードする遺伝子を、上記プローブを用いたプラークハイブリダイゼーションによりスクリーニングした。

前記のようにして λ ZAPII c D N A ファージライブラリーのプラークを形成させたプレートから、ナイロンフィルターハイボンドN (アマシャム社製) に、フィルター添付の説明書に従ってプラークを転写させた。このフィルターをアルカリ処理してファージを溶解した後、 80° で 2 時間ベーキングすることによりファージD N A をフィルターに固定した。

このフィルターを、 32 Pラベル化プローブ 1×10^6 cpm/mlと、 $5 \times S$ S P E 緩衝液($20 \times SSPC: 3.6$ M塩化ナトリウム、0.2Mリン酸ナトリウム緩衝液pH7.7、20m M EDTA二ナトリウム)、30%ホルムアミド、 $5 \times$ デンハルト溶液($100 \times$ デンハルト溶液:2 %ウシ血清アルブミン、2 %フィコール400、2 %ポリビニルピロ

リドン)、及び0.5%SDSを含む溶液中で、37℃で16時間ハイブリダイズさせた。この後、フィルターを 6 × S S C (20×SSC: 3M塩化ナトリウム、0.3Mクエン酸三ナトリウム)、0.1%SDS中で室温にて 2 回、さらに 2 × S S C、0.1%SDS中で50℃にて 2 回洗浄し、フィルターに非特異的に結合したプローブを除去した。このフィルターを X 線フィルム H P 20 (フジフィルム (株)製)に −80℃で24時間露光させた。ファージプレートから、フィルムの陽性スポットに相当する位置のクローンを単離し、一次スクリーニング陽性クローンとした。同様のスクリーニング作業を繰り返し、単一プラークを形成する陽性クローンを取得した。

得られた陽性クローンの λ ZAPII c D N A ファージに、ヘルパーファージExAss ist (ストラタジーン社製)を感染させ、非アンバーサプレッサー大腸菌である S O L R セル (ストラタジーン社製)に感染させることにより、 c D N A 断片が プラスミドpB luescript SK(-)(ストラタジーン社製)のEcoRI 部位に挿入された プラスミドを保持する大腸菌を得た。この菌体からアルカリS D S 法にてプラスミドを調製し、D N A シーケンサー A 3 7 3 (アプライドバイオシステムズ社製)を用い、挿入断片の塩基配列を決定した。

その結果、4つの陽性クローンが求めるペプチドをコードする塩基配列を有しており、それぞれを保持しているプラスミドをpCHA1、pCHA2、pCHA3及びpCHA4と命名した。なおpCHA1を保持するE. coli HB101/pCHA1 (E. coli AJ13023) は、平成6年8月12日より、通商産業省工業技術院生命工学工業技術研究所(郵便番号305-8566 日本国茨城県つくば市東一丁目1番3号)に、FERM BP-4781の受託番号のもとでブダベスト条約に基づき国際寄託されている。上記のようにしてクローニングされたAS1051ペプチドをコードする遺伝子の塩基配列を、配列表配列番号5に、この遺伝子によってコードされるペプチドのアミノ酸配列を配列番号6に示す。尚、この遺伝子は、翻訳開始アミノ酸であるメチオニン以下23アミノ酸からなる典型的な分泌シグナルを有している。

実施例2 CHH-Bα鎖蛋白質 (AS1051) の大腸菌による発現系の構築 <1>野生型CHH-Bα鎖蛋白質の発現系の構築

変異を入れない $CHII-B\alpha$ 鎖蛋白質 (AS1051-WT) の大腸菌による発現系の構築は、 実施例1で得られた遺伝子を用いて以下の通り行った。クローニングした遺伝子 を用い、大腸菌発現生産用ベクターを構築した。

AS1051ペプチドをコードする遺伝子(シグナルペプチドを除く)を発現ベクターに組み込むため、PCR法により増幅するためのDNAプライマーを合成した。その際、5 末端側のプライマーとしては、増幅断片の5 末端にNcoI部位を持たせるように、NcoI認識配列を含むプライマー(ASBN:配列番号 7)を用いた。また、このプライマーは5 末端側にAS1051ペプチドのN末端アミノ酸のアスパラギン酸のコドンの前に翻訳開始コドンである塩基配列ATG(配列番号 7においてヌクレオチド番号10~12)を有している。尚、この開始コドンは、NcoI認識配列(配列番号 7 においてヌクレオチド番号8~13)と重複している。一方、3 側のプライマーとしてはHindIII認識配列を含むプライマーを用いた(配列番号 8、HindIII認識配列はヌクレオチド番号4~9)。

上記プライマーを用いたPCR反応により、AS1051ペプチドをコードする遺伝子を増幅した。PCR反応は、94℃15秒、35℃1分、72℃2分を1サイクルとし、25サイクル繰り返した。PCR反応液をフェノール/クロロホルム処理してTagポリメラーゼを失活させ、増幅された400塩基対からなるDNA断片をエタノール沈殿法により精製した後、制限酵素BamHIとHindIIIで消化した。このDNA断片と、制限酵素BamHIとHindIIIで消化したプラスミドpUC18(宝酒造社製)をライゲーションキット(宝酒造社製)を用いて連結した。得られたプラスミドを用いてコンピテントセル法にてE.coli JM109を形質転換し、アンビシリン含有プレートにて37℃、16時間培養し形質転換体を得た。

生育した形質転換体からアルカリSDS法にてプラスミドを調製した。M13M4プライマーとM13RVプライマー (ともに宝酒造社製)を用い、377PRISM DNAシーケンサー (パーキンエルマー社製)を用いて塩基配列を決定することにより、目的のプラスミドが構築されていることを確認した。作製したプラスミドをpUCASB NHと命名した。pUCASBNHを制限酵素NcoIとHindIIIで消化し、アガロースゲル電気泳動にて400塩基対のDNAを分離精製した。このDNAを発現ベクターpTrcHisA (インビトロゲン社製)を制限酵素NcoIとHindIIIで消化したものとライゲーシ

ョンキットを用いて連結した。得られたプラスミドを用いてコンピテントセル法にてE.coli JM109を形質転換し、アンピシリン含有プレートにて37℃、16時間培養し形質転換体を得た。この様に作製した発現ベクターをpTrcASWTと命名した。以上のプラスミドの構築過程を図1に示す。

<2>変異型CHH-Bα鎖蛋白質の発現系の構築

81番目のシステイン残基をアラニン残基に変異した蛋白質(AS1051-Ala)の大腸菌による発現系の構築は、以下の通り行った。PCR protocols (Academic Press版)に記載の部位特異的塩基配列変異法により、AS1051ペプチドのジスルフィド結合に関与していないシステイン残基(配列番号1において第81番目のシステイン残基)をアラニンに置換するようにAS1051遺伝子に変異を導入した。pC HA1を鋳型にプライマーASBN(配列番号7)と新たに合成したプライマーASAlaR(配列番号9)を用い、あるいはプライマーASH(配列番号8)と新たに合成したASAlaF(配列番号10)を用いPCR反応を行った。それぞれの反応生成物をアガロースゲル電気泳動に供し、ゲルから増幅DNA断片を抽出した。これらのDNAを鋳型にプライマーASBNとASHを用い、2回目のPCR反応を行い、変異遺伝子を作製した。

PCR増幅DNAを制限酵素で消化し、アガロースゲル電気泳動に供し、ゲルから40 ObpのDNAを抽出した。このDNAを制限酵素BamHIとHindIIIで消化した。このDNA断片と、制限酵素BamHIとHindIIIで消化したプラスミドpUC18(宝酒造社製)をライゲーションキット(宝酒造社製)を用いて連結した。得られたプラスミドを用いてコンピテントセル法にてE.coli JM109を形質転換し、アンビシリン含有プレートにて37℃、16時間培養し形質転換体を得た。

生育した形質転換体からアルカリSDS法にてプラスミドを調製した。M13M4プライマーとM13RVプライマー(ともに宝酒造社製)を用い、377PRISM DNAシーケンサー(パーキンエルマー社製)を用いて塩基配列を決定することにより、目的のプラスミドが構築されていることを確認した。作製したプラスミドをpUCASAlaと命名した。pUCASAlaを制限酵素NcoIとHindIIIで消化し、アガロースゲル電気泳動にて400塩基対のDNAを分離精製した。このDNAを発現ベクターpTrcHisA(インビトロゲン社製)を制限酵素NcoIとHindIIIで消化したものとライゲーションキ

ットを用いて連結した。得られたプラスミドを用いてコンピテントセル法にてE. coli JM109を形質転換し、アンピシリン含有プレートにて37℃、16時間培養し形質転換体を得た。この様に作製した発現ベクターをpTrcASAlaと命名した。以上のプラスミドの構築過程を図2に示す。

実施例3 AS1051-WT及びAS1051-AlaのE.coliによる生産ならびにAS1051-WT及び AS1051-Alaの巻き戻しによる活性体の取得

< 1 > AS1051-WT及びAS1051-Alaの封入体の調製

AS1051-WT及びAS1051-Alaのそれぞれの発現ベクターpTrcASWT及びpTrcASAlaをそれぞれ保有する形質転換E.coli JM109を、坂口フラスコを用いてL-broth (バクトトリプトン1%、酵母エキス0.5%、塩化ナトリウム0.5%、アンピシリンナトリウム100μg/ml) 中、37℃にて培養し、濁度が0.5に達したときにIPTG (イソプロピルーβーチオガラクトピラノシド)を10mMになるように添加し、さらに37℃で4時間培養を行った。菌体を遠心分離により回収、洗浄後、0.5M EDTA溶液に菌体を懸濁しリゾチームを加えて室温で1時間静置した。菌体の懸濁液を超音波破砕機 (200W、5分)を用いて破砕し、破砕液を遠心分離することにより封入体(inclusion body)を沈殿として得た。

< 2 > AS1051-WT及びAS1051-Alaの巻き戻しによる活性体の取得

得られた封入体を、7M塩酸グアニジン及び10mM EDTAを含む0.5Mトリス塩酸緩衝液(pH8.5)に溶解した後、2.5倍量の蒸留水を加え、4 $^{\circ}$ で一晩静置した。溶液をSpectra Por1(Spectra社製)を用いた透析膜を用いて、0.9%食塩水に対して透析を行い、塩酸グアニジンを除いた。AS1051-WT及びAS1051-Alaそれぞれの透析前後の溶液を逆相カラム(Pegasil ODS300、センシュー科学社製)を用いて高速液体クロマトグラフィー(HPLC)により分画した結果を図3に示した。図3中、a)は透析前、b)は透析後である。AS1051-Alaは、塩酸グアニジンを除去しても安定であるが、AS1051-WTは透析による塩酸グアニジンの除去により、巻き戻しにより得られた蛋白質が不溶化することが分かった。

AS1051-Alaの透析後の溶液は、1/9 容の0.5M酢酸アンモニウム緩衝液 (pH4.5) を加えた後、CM-TOYOPEARL 650S (2.6x40cm) を用いたイオン交換カラムに吸

着させ、溶出液 A (50mM酢酸アンモニウム緩衝液 (pH4.5)) 及び溶出液 B (0.5 M酢酸アンモニウム緩衝液 (pH6.4)) を用いて溶出させた。溶出条件は、A:B=75:25の溶液で20分溶出させた後、A:B=75:25からA:B=50:50へのリニアグラジエント (30分) で溶出するというものであった。こうして、精製されたAS1051-Alaを含む溶出画分を得た。

実施例4 AS1051-Alaのモルモットに対する抗原性試験

81番目のシステイン残基をアラニン残基に変異したAS1051蛋白質 (AS1051-Ala) の、モルモットに対する抗原性を確認するための試験は以下のように行った。なお、タンパク質量の定量は、Bio-Rad Protein Assay (Bio-Rad社製) を用いたマイクロアッセイ法により、ウシ血清アルブミン (BSA) をスタンダードとして行った。

さらに採血した血液から、遠心分離(4° C、2700 $^{\circ}$ pm、10分)によって血漿を分離し、AS1051-Alaに対する抗体の存在をELISA (enzyme-linked immunocorbent assay) 法を用いて測定した。ELISA用96穴プレートの各ウェルにAS1051-Ala ($1\mu g/ml$) あるいは緩衝液のみを $50\mu l$ 加え、 4° Cで一晩放置し、コーティングを

行った後、0.05%Tween-20を含むPBS (phosphate-bufferd saline) で3回洗浄し、5%スキムミルクを溶かしたPBS (150μl) を加えてブロッキングを行った。さらに3回洗浄を行った後、採取したモルモット血漿50μlを加え、37℃で1時間放置後、3回洗浄し、アルカリフォスファターゼ標識ウサギ抗モルモットIgG(H+L) 抗体 (zymed社製) を希釈バッファー (0.05Mトリス塩酸 (pH8.1)、1mM MgCl₂、0.15M NaCl、0.05% Tween-20、0.02% NaN₃、1%ウシ血清アルブミン) で500倍に希釈した溶液を50μl加え、37℃で1時間放置した。各ウェルを3回洗浄後、1mg/mlの発色基質 (p-Nitrophenylphosphate) 溶液 (1Mジエタノールアミン(pH9.8)/0.5mM MgCl₂) を加え、適当時間反応後、405nmの吸光度を測定した。図5に、AS/saline群とsaline/saline群のAS1051-Alaコーティング (AS1051) 及び非コーティング (None) のウェルにおける吸光度を示した。その結果、AS/saline群では、AS1051-Alaに結合する抗体の存在が示された。

実施例 5 AS1051のポリエチレングリコール化蛋白質 (AS1051-PEG) の調製 (1)分子量5000のPEG化試薬を用いた方法

本発明のポリエチレングリコール化蛋白質 (AS1051-PEG) の調製は以下に示す方法により行った。実施例 3 と同様にしてE. coliを用いて調製したAS1051-WTの封入体を、7M塩酸グアニジン及び10mM EDTAを含む0.5Mトリス塩酸緩衝液 (pH8.5)に溶解した後、2.5倍量の蒸留水を加え、4 %で一晩静置した。

さらに、この溶液に0.2mg/mlの濃度になるようにマレイミド基を持つ分子量約5000のポリエチレングリコール化試薬 (Methoxy-PEG-mal, MW5000、Item No.: M-MAL-5000、Shearwater Polymers社製)を添加し、3時間室温で静置した。この溶液を、Spectra Por1 (Spectra社製)を用いた透析膜を用いて、蒸留水に対して透析を行い、塩酸グアニジンを除いた。透析後の溶液は1/9容の0.5M酢酸アンモニウム緩衝液 (pH4.5)を加えた後、CM-TOYOPEARL 650S (2.6×40cm)を用いたイオン交換カラムに吸着させ、溶出液A (50mM酢酸アンモニウム緩衝液 (pH4.5))及び溶出液B (0.5M酢酸アンモニウム緩衝液 (pH6.4))を用いて溶出させた。溶出条件は、A:B=80:20からA:B=70:30へのリニアグラジエント (20分)で溶出させた後、A:B=70:30からA:B=55:45へのリニアグラジエント (30分)で溶出

するというものであった。こうして、精製されたAS1051-PEGを含む溶出画分を得た。

(2) 分子量20000のPEG化試薬を用いた方法

本発明の分子量20000のポリエチレングリコール化試薬 (Methoxy-PEG-mal, MW2 0000、Item No.:M-MAL-20000、Shearwater Polymers社製)を用いたAS1051のポリエチレングリコール化蛋白質 (AS1051-PEG20000)の調製は以下のように行った。実施例3と同様にしてE. coliを用いて調製したAS1051-WTの封入体を、7M 塩酸グアニジン及び10mM EDTAを含む0.5M トリス塩酸緩衝液 (pH8.5)に溶解した後、2.5倍量の蒸留水を加え、4℃で一晩放置した。

さらに、この溶液に0.8mg/mlになるようにマレイミド基を持つ上述の分子量20 000のポリエチレングリコール化試薬を添加し、3時間室温で静置した。この溶液をSpectra Por 1 (Spectra社製)を用いた透析膜を用いて、生理食塩水に対して透析を行い、塩酸グアニジンを除いた後、TSK-gel CM-5PW (0.75×7.5cm)を用いたイオン交換カラムに吸着させ、溶出液A (50mM 酢酸アンモニウム緩衝液 (pH4.5))及び溶出液B (0.5M 酢酸アンモニウム緩衝液 (pH6.4))を用いて溶出させた。溶出条件はA:B=100:0からA:B=40:60へのリニアグラジエント (20分)で溶出させた後、A:B=40:60からA:B=0:100へのリニアグラジエント (5分)で溶出させた後、A:B=40:60からA:B=0:100へのリニアグラジエント (5分)で溶出するというものであった。こうして、精製されたAS1051-PEG20000を含む溶出画分を得た。

実施例 6 AS1051-PEGの構造

得られたAS1051-PEGの分子量は、SDS電気泳動によりポリエチレングリコール 化されていない前述のAS1051-Ala (15Kda) に比べ、約10Kda大きい25Kdaであっ た。ポリエチレングリコールはSDS電気泳動においては、水和により本来の分子 量の2倍の大きさとして観察されることから、1分子のAS1051-PEGに1分子のポ リエチレングリコール (分子量約5000) が結合していることが確かめられた。ま た、AS1051-PEG2000の分子量は、AS1051-Alaに比べ、約40Kda大きい55Kdaであ り、AS1051-PEGと同様に1分子のAS1051-PEG20000に1分子のポリエチレングリ コール (分子量約20000) が結合していることが確かめられた。 次に、AS1051-PEG中のポリエチレングリコールの結合位置とその他のシステイン残基のジスルフィド結合様式の決定を、以下のように行った。AS1051-PEG(100 μ g)を2mM EDTAを含む0.1Mトリス塩酸緩衝液(pH8.5)中でリジルエンドペプチダーゼ(5 μ g、和光純薬社製)によって37°Cで 5 時間消化を行い、逆相カラム(Vydac 218TP54、Vydac社製)を用いた高速液体クロマトグラフィーを用いて分取した。溶出は、0.1%トリフルオロ酢酸(trifluoroacetic acid、TFA)を含む水/アセトニトリルのリニアグラジエント(0→50%アセトニトリル/10分、50→100%アセトニトリル/5分)により行った。こうして、リジルエンドペプチダーゼで消化されたペプチド鎖をピーク1~6として分取した(図 6)。

各ペプチド鎖のアミノ酸配列分析は、プロテインシークエンサーmodel 476A(アプライドバイオシステムズ社製)を用いて行った。ピーク 3 は鎖内に 2 残基システイン残基を含むことから、両システイン残基同士がジスルフィド結合を形成していると結論した。また、ピーク 5 はシステイン残基を 1 残基含む 2 本のペプチド鎖と、システイン残基を 2 残基含む 1 本のペプチド鎖がジスルフィド結合によって結合した、合計 3 本のペプチド鎖より成るものであった。このピーク 5 のペプチド鎖を、さらに10mM炭酸アンモニウム緩衝液中でV8プロテアーゼ(5 μ g、和光純薬社製)によって25℃で24時間消化を行い、逆相カラム(Pegasil 0DS-II、センシュー科学社製)を用いた高速液体クロマトグラフィーを用いて分取した。溶出は、0.1%トリフルオロ酢酸(trifluoroacetic acid、 τ FA)を含む水/アセトニトリルのリニアグラジエント(τ 0→50%アセトニトリル/20分)により行った。こうしてV8プロテアーゼで消化されたペプチド鎖を分取し、アミノ酸配列分析を行った。

その結果、ポリエチレングリコール鎖は配列番号1のアミノ酸番号81番目に対応するシステイン残基に結合していること、及び、図6に示したようなジスルフィド結合をピーク5のペプチドが有することが判明した。以上の様に決定されたAS1051-PEGのジスルフィド結合様式は、報告されているAS1051 (N. Fukuchi e t al.、W0 95/08573)、あるいは他の類似の蛇毒由来蛋白質と同様であった。

実施例7 AS1051-PEGのインビトロにおける活性

<1>血小板凝集に対するAS1051-PEGの阻害活性の測定

実施例 5 で得られたAS1051-PEGの血小板凝集に対する阻害活性の測定は、以下の方法で行った。まず、静脈より採血したヒト血液に0.38%クエン酸ナトリウムを加えた後、1000rpm、15分間遠心分離を行い、多血小板血漿を得た。AS1051-PEG及びAS1051-Alaの血小板凝集阻害活性は、血小板凝集測定装置(HEMA TRACER 801、二光パイオサイエンス社製)によって測定した。100μ1の多血小板血漿にあらかじめ被験サンプルを加え、37℃で2分間撹拌、インキュベートした後、1/10容の10倍濃度の凝集惹起物質を加え、8分間血小板凝集の様子を観察した。凝集惹起物質として、リストセチン(1.2mg/ml、シグマ社製)、コラーゲン(10μg/ml、エムシーメディカル社製)、アデノシンニリン酸(10μM、エムシーメディカル社製)を用いた。図7に示した通り、AS1051-Alaに比べAS1051-PEGのリストセチン凝集阻害活性は若干強かった。また、AS1051-Ala及びAS1051-PEGはともにコラーゲンによる凝集及びアデノシンニリン酸による凝集を阻害しなかった。

AS1051-Ala及びAS1051-PEGの血小板とvWFとの結合に対する阻害を、固定化血 小板と 125 Iラベル化フォンビルブラント因子 (vWF) を用いて調べた。

¹²⁵Iラベル化vWFを、以下の方法により調製した。 ¹²⁵Iラベル化を行うチューブは、予めIodogen (Piearce社製、0.5mg/ml) のジクロロメタン溶液1.5mlを加えた後、窒素気流下で溶媒を除去し、Iodogenの固相化を行った。ゲル濾過により得た高分子量vWF (0.19mg/1.5ml) をIodogenを固相化したチューブに入れ、Na ¹²⁵I、18.5Mbqを加えて室温で 2 分間反応させた後、あらかじめウシ血清アルブミン (BSA) でブロッキングし洗浄したPD10 (Pharmacia Biotech社製) カラムにアプライし、TBS (20mM Tris-HC1 (pH7.4), 0.15M NaC1) で溶出を行った。溶出液は、0.5mlずつフラクション分取し、各フラクションの¹²⁵I比活性をガンマカウンターPackard Multi Prias 4を用いて測定した。 ¹²⁵I-vWFを多く含むフラクションを集め、数本に分割した後、使用まで-80℃で保存した。

ボトロセチンの精製は以下のように行った。ボトロプス・ジャララカ (Botrops jararaca) の粗毒凍結乾燥品 (Sigma社製、V-5625) 1gを20m1の0.9%

食塩水に溶解後、遠心分離により不溶物を除き、Sephadex G-75 (ϕ 5×90cm) カラムを用いたゲル濾過を行った(展開溶液:0.9%食塩水、流速:4ml/分)。15mlずつフラクション分取し、活性画分(フラクションNo.49~58、150ml)を集め、1M Tris-HCl (pH7.4) を1/10容加えた後、DEAE-TOYOPEARL 650M (ϕ 16×300mm) に吸着させ、NaClの濃度勾配 (0.15M/200分、0.15M→0.4M/400分、流速:0.5ml/分)で溶出した。活性画分(570~630分、30ml)を集め、精製ボトロセチンを得た。

固定化血小板の調製は以下の様に行った。1/10容の3.8%クエン酸ナトリウムを添加した、健常人より採血した新鮮血液を900rpmで15分間遠心して得たヒト多血小板血漿(platelet rich plasma: PRP)に、これと同容の、2%パラホルムアルデヒドを溶解した20mMリン酸緩衝液(pH7.4)を含む0.15M塩化ナトリウム水溶液を加え、4 $^{\circ}$ Cで一晩静置保存した。保存後、遠心分離により血小板を回収し、20mMリン酸緩衝液(pH7.4)を含む0.15M塩化ナトリウム水溶液で2回洗浄した。洗浄後、同溶液に固定化血小板を懸濁し、保存した。

アッセイを行う96ウェルフィルタープレート(Millipore Multiscreen HV、Millipore社製、 0.45μ M)は、予め1%BSA/TBS(100μ l)を各ウェルに加え、数時間静置することによりフィルターのブロッキングを行った。前述の固定化血小板懸濁液をTBSで10倍に希釈した懸濁液 20μ l、被験サンプルを 5μ l加え、さらに 0.8μ g/mlのボトロセチン(上記)、あるいは2.4mg/mlのリストセチン(Sigma社製)を含む 125 I-vWF溶液(約800,000cpm) 20μ lを加えて、30分静置した。吸引によりウェル中の溶液を濾過した後、0.05% Tween-20を含む TBS(100μ l)を加え、さらに吸引することにより洗浄を行った。上記洗浄後の96ウェルフィルタープレートからパンチ(Millipore社製、型番MAPK 896 0B)を用いてフィルターを離脱し、6ml容ポリスチレンチューブに分注して、Packard Multi Prias 4を用いて <math>125 Iの放射線量を測定した。

以上の結果、図8に示したように、AS1051-Alaに比べAS1051-PEGの固定化血小板に対するリストセチン及びボトロセチンにより惹起されるvWF結合阻害活性は若干弱いものの、ほぼ同等であることが確かめられた。また、AS1051-PEG20000も、いずれの方法においてもAS1051-PEGとほぼ同一の活性を有していた。

実施例8 AS1051-PEGのモルモットに対する抗原性試験

実施例 6 (1)に記載のポリエチレングリコール化蛋白質(AS1051-PEG、PEG 部分の分子量が5000のもの)とAS1051-Alaのモルモットに対する抗原性を比較するための試験は、実施例 4 に示した方法と同様にして行った。タンパク質量の定量はAS1051-Alaについては実施例 4 と同様に行い、AS1051-PEGについては逆相IIP LCによる280nmの溶出ピーク面積を、AS1051-Alaと比較することにより行い、同じ面積を同じタンパク質量とした。AS1051-Ala及びAS1051-PEGの投与量は、いずれの投与においても200 μ g/kgとし、AS-Ala群(AS1051-Alaの前投与3回、AS1051-Alaの最終投与)、AS-PEG群(AS1051-PEGの前投与3回、AS1051-PEGの最終投与)、及びsaline群(生理食塩水(saline)の前投与3回、生理食塩水の最終投与)の3群に分け、n=4(AS-PEG群はn=3)で実験を行った。その結果、図9に示したように、AS-PEG群はsaline群に比べて血小板数の差が見られず、AS-Ala群ではAS-PEG群及びsaline群に比べ有意に血小板の減少が認められた。この血小板減少は実施例 4 で示した様に、抗原性に由来するものと考えられることから、本結果はAS1051-PEGはAS1051-Alaに対して、明らかに抗原性が低下したことを示す。

産業上の利用の可能性

本発明により、多量体蛋白質に由来するペプチドを、従来の方法に比べて溶解性及び安定性に優れ、かつ抗原性が低下した形態で製造することができる。

請求の範囲

- 1. サブユニット内及びサブユニット間のジスルフィド結合を有する多量体蛋白質に由来するサブユニットペプチドを製造する方法であって、以下のステップを含む方法;
- (a) 前記多量体蛋白質又はそのサブユニットペプチドを、蛋白質変性剤を用いて溶液中で変性させ、チオール基と反応する官能基を有するポリオキシアルキルポリエーテルの存在下で、前記溶液から変性剤を除き、サブユニットペプチドの巻き戻しを行うステップと、
- (b) 前記溶液からポリオキシアルキルポリエーテルが結合したサブユニットペプチドを単離するステップ。
- 2. ステップ(b)で単離されるサブユニットペプチドが抗原性が低下したものである請求項1記載の方法。
 - 3. 前記多量体蛋白質が二量体である請求項1記載の方法。
- 4. 前記チオール基と反応する官能基を有するポリオキシアルキルポリエーテルが、マレイミド基を有するポリエチレングリコールである請求項1記載の方法。
- 5. 前記多量体蛋白質に由来するサブユニットペプチドが、遺伝子組換え 蛋白質である請求項1記載の方法。
- 6. 前記多量体蛋白質又はそのサブユニットペプチドを還元条件下で変性 させることを特徴とする請求項1記載の方法。
- 7. 多量体蛋白質の生理活性が、該多量体蛋白質を構成するサブユニットペプチドに依存し、かつ、ポリオキシアルキルポリエーテルが結合したサブユニットペプチドが前記生理活性を有する請求項1記載の方法。
- 8. ポリオキシアルキルポリエーテルが結合したサブユニットペプチドが、 多量体蛋白質の生理活性を阻害する活性を有する請求項1記載の方法。
- 9. サブユニットペプチドのシステイン残基のうち、本来多量体蛋白質の サブユニット間のジスルフィド結合の形成に関与するシステイン残基にポリオキ シアルキルポリエーテルが結合することを特徴とする請求項1記載の方法。
 - 10. ポリオキシアルキルポリエーテルが結合したサブユニットペプチド

が、多量体蛋白質中の同サブユニット内のジスルフィド結合と同一のジスルフィ ド結合を有する請求項1記載の方法。

11. サブユニット内及びサブユニット間のジスルフィド結合を有する多量体蛋白質に由来するサブユニットペプチドであって、

サブユニットペプチドのシステイン残基のうち、本来多量体蛋白質のサブユニット間のジスルフィド結合の形成に関与するシステイン残基にポリオキシアルキルポリエーテルが結合し、抗原性が低下したサブユニットペプチド。

- 12. 前記多量体蛋白質が、蛇毒に由来するフォンビルブラント因子の血小板結合を阻害する活性を有する二量体ペプチドである請求項11記載のサブユニットペプチド。
- 13. 前記蛇毒がクロタルス・ホリダス・ホリダスの蛇毒である請求項12記載のサブユニットペプチド。
 - 14. 抗血栓活性を示す請求項12記載のサブユニットペプチド。
- 15. 配列番号1に示すアミノ酸配列を有し、同アミノ酸配列においてアミノ酸番号81のシステイン残基にポリオキシアルキルポリエーテルが結合したペプチド又はその誘導体である請求項14記載のサブユニットペプチド。

		-
		•

図 1

		•
		·

		·

図3

	•
	•
	•
	·

図 5

		•

- 3 DLECPSGWSSYDRYCYK
- 4 EYLTRYIWIGLRVONK

QEMTWADAERFCSEQAK

5 VDÇEQQHSFICK

GOPXSSISYENLVDPFECFMVSRDTRLREWFK
X=Ala or Cys-PEG

6 GGHLLSVETALEASFVDNYLYANK

AS1051-Ala

AS1051-PEG

図 7

		•

7/8

リストセチン惹起vWF結合阻害

ボトロセチン惹起vWF結合阻害

図8

		•
		,
		•

WO 00/59926 PCT/JP00/02127

		•
		•
		•

配列表(SEQUENCE LISTING)

<110> 味の素株式会社 (Ajinomoto Co., Inc.)

<120> 多量体蛋白質に由来するサブユニットペプチドの製造法

<130> B-586AYOP964

<150> JP 11-96073

<151> 1999-04-02

<160> 10

<210> 1

<211> 126

<212> PRT

<213> Crotalus horridus horridus

<400> 1

Asp Leu Glu Cys Pro Ser Gly Trp Ser Ser Tyr Asp Arg Tyr Cys Tyr 1 5 10 15

Lys Pro Phe Lys Gln Glu Met Thr Trp Ala Asp Ala Glu Arg Phe Cys 20 25 30

Ser Glu Gln Ala Lys Gly Gly His Leu Leu Ser Val Glu Thr Ala Leu 35 40 45

Glu Ala Ser Phe Val Asp Asn Val Leu Tyr Ala Asn Lys Glu Tyr Leu
50 55 60

Thr Arg Tyr Ile Trp Ile Gly Leu Arg Val Gln Asn Lys Gly Gln Pro 65 70 75 80

Cys Ser Ser Ile Ser Tyr Glu Asn Leu Val Asp Pro Phe Glu Cys Phe 85 90 95

Met Val Ser Arg Asp Thr Arg Leu Arg Glu Trp Phe Lys Val Asp Cys 100 105 110

Glu Gln Gln His Ser Phe Ile Cys Lys Phe Thr Arg Pro Arg 115 120 125

<210> 2

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

		•
		7
		•

```
<220>
<221> misc_feature
<222> (12)
\langle 223 \rangle n=a, g, c or t
<400> 2
                                                                    17
cargaratga cntgggc
<210> 3
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<220>
<221> misc_feature
<222> (3)
<223> n=a, g, c or t
<400> 3
tcnacyttra accaytc
                                                                    17
<210> 4
<211> 272
<212> DNA
<213> Crotalus horridus horridus
<400> 4
caggagatga cttgggccga tgcagagagg ttctgctcgg agcaggcgaa gggcgggcat 60
ctcctctctg tcgaaaccgc cctagaagca tcctttgtgg acaatgtgct ctatgcgaac 120
aaagagtacc tcacacgtta tatctggatt ggactgaggg ttcaaaacaa aggacagcca 180
tgctccagca tcagttatga gaacctggtt gacccatttg aatgttttat ggtgagcaga 240
gacacaaggc ttcgtgagtg gttcaaagtc ga
                                                                    272
<210> 5
<211> 690
<212> DNA
<213> Crotalus horridus horridus
<220>
```

		1
		•
		,
		٥

<221> CDS <222> (96)..(512) <400> 5 ctgagcagac ttgctacctg tggaggccga ggaacagttc tctctgcagg gaaggaaaga 60 acgcc atg ggg cga ttc atc ttc gtg agc ttc aac ttg ctg gtc gtg ttc 110 Met Gly Arg Phe Ile Phe Val Ser Phe Asn Leu Leu Val Val Phe 1 10 15 ctc tcc cta agt gga act cta gct gat ttg gaa tgt ccc tcc ggt tgg 158 Leu Ser Leu Ser Gly Thr Leu Ala Asp Leu Glu Cys Pro Ser Gly Trp 20 25 30 206 tet tee tat gat egg tat tge tae aag eec tte aaa eaa gag atg ace Ser Ser Tyr Asp Arg Tyr Cys Tyr Lys Pro Phe Lys Gln Glu Met Thr 35 254 tgg gcc gat gca gag agg ttc tgc tcg gag cag gcg aag ggc ggg cat Trp Ala Asp Ala Glu Arg Phe Cys Ser Glu Gln Ala Lys Gly Gly His 55 302 ctc ctc tct gtc gaa acc gcc cta gaa gca tcc ttt gtg gac aat gtg Leu Leu Ser Val Glu Thr Ala Leu Glu Ala Ser Phe Val Asp Asn Val 70 350 ctc tat gcg aac aaa gag tac ctc aca cgt tat atc tgg att gga ctg Leu Tyr Ala Asn Lys Glu Tyr Leu Thr Arg Tyr Ile Trp Ile Gly Leu 80 85 90 agg gtt caa aac aaa gga cag cca tgc tcc agc atc agt tat gag aac 398 Arg Val Gln Asn Lys Gly Gln Pro Cys Ser Ser Ile Ser Tyr Glu Asn 100 105 110 446 ctg gtt gac cca ttt gaa tgt ttt atg gtg agc aga gac aca agg ctt Leu Val Asp Pro Phe Glu Cys Phe Met Val Ser Arg Asp Thr Arg Leu 115 120 125 494 cgt gag tgg ttt aaa gtt gac tgt gaa caa caa cat tct ttc ata tgc Arg Glu Trp Phe Lys Val Asp Cys Glu Gln Gln His Ser Phe Ile Cys 130 140 135 542 aag ttc acg cga cca cgt taagatccgg ctgtgtgaag tctggagaag Lys Phe Thr Arg Pro Arg 145 caaggaagcc ccccacctct ccccacccc caccttccgc aatctctgct cttccccctt 602 tgctcagtgg atgctctctg tagccggatc tgggttttct gctccagatg ggtcagaaga 662 tccaataaat tctgcctacc caaaaaaa 690

<210> 6

<211> 139

<212> PRT

<213> Crotalus horridus horridus

		•
		•
r		ı
		,
		,

<400> 6 Met Gly Arg Phe Ile Phe Val Ser Phe Asn Leu Leu Val Val Phe Leu 10 15 Ser Leu Ser Gly Thr Leu Ala Asp Leu Glu Cys Pro Ser Gly Trp Ser Ser Tyr Asp Arg Tyr Cys Tyr Lys Pro Phe Lys Gln Glu Met Thr Trp 35 40 45 Ala Asp Ala Glu Arg Phe Cys Ser Glu Gln Ala Lys Gly Gly His Leu 60 Leu Ser Val Glu Thr Ala Leu Glu Ala Ser Phe Val Asp Asn Val Leu 65 70 75 Tyr Ala Asn Lys Glu Tyr Leu Thr Arg Tyr Ile Trp Ile Gly Leu Arg 90 85 Val Gln Asn Lys Gly Gln Pro Cys Ser Ser Ile Ser Tyr Glu Asn Leu 105 100 110 Val Asp Pro Phe Glu Cys Phe Met Val Ser Arg Asp Thr Arg Leu Arg 115 120 125 Glu Trp Phe Lys Val Asp Cys Glu Gln Gln His Ser Phe Ile Cys Lys 135 140 130 Phe Thr Arg Pro Arg 145 <210> 7 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 7 30 attggatcca tggatttgga atgtccctcc <210> 8 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 8

			,
			•

5/5

aataagetta aegtggtege gtgaacttge 3	30
<210> 9 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 9 getgetgggg getggetgte etttgt	26
gatgctggag gctggctgtc ctttgt	20
<210> 10	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer	
<400> 10	
ggacagccag cctccagcat cagtta	26

			٤
			,
			•

INTERNATIONAL SEARCH REPORT

PCT/JP00/02127

A. CLASS	IFICATION OF SUBJECT MATTER C1 C07K1/14, C07K14/46, C12N1	5/00		
	INC.CI CO/RI/14, CO/RI4/40, CIZNIS/00			
	o International Patent Classification (IPC) or to both na	tional classification and IPC		
	S SEARCHED	hy also if astion graphala)		
	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07K1/14, C07K14/46, C12N15/00			
	ion searched other than minimum documentation to the			
	ata base consulted during the international search (name INE (STN), WPI (DIALOG), BIOSIS (DIALOG)		rch terms used)	
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap		Relevant to claim No.	
X A	JP, 1-279898, A (Behringwerke A 10 November, 1989 (10.11.89)		1-10 12-15	
A	JP, 64-66213, A (Behrringwerke 13 March, 1989 (13.03.89) (Fa	1-15		
PY	WO, 99/64460, A (CELLTECH THERA 16 December, 1999 (16.12.99) & AU, 9942783, A	1-15		
A	JP, 61-12630, A (Sanofi SA.), 21 January, 1986 (21.01.86) (1-15		
A	JP, 6-504765, A (Cor Therapeutics, Inc.), 02 June, 1994 (02.06.94) (Family: none)		12-15	
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.		
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date article document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "C" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family			he application but cited to lerlying the invention claimed invention cannot be cred to involve an inventive claimed invention cannot be claimed invention cannot be p when the document is a documents, such a skilled in the art family	
Date of the actual completion of the international search 27 June, 2000 (27.06.00) Date of mailing of the international search report 04 July, 2000 (04.07.00)				
	nailing address of the ISA/ anese Patent Office	Authorized officer		
Facsimile N	о.	Telephone No.		

			÷
			,

電話番号 03-3581-1101 内線 3488

国際調査報告 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl' C07K1/14, C07K14/46, C12N15/00 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl' C 0 7 K 1 / 1 4, C 0 7 K 1 4 / 4 6, C 1 2 N 1 5 / 0 0 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) MEDLINE (STN), WPI (DIALOG), BIOSIS (DIALOG) 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 JP, 1-279898, A (ベーリングヴェルケ・アクチエンゲゼルシャフト) X 1 - 1010.11月.1989(10.11.89) ファミリーなし A. 12 - 15IP. 64-66213. A (ベーリングヴェルケ・アクチエンゲゼルシャフト) Α 1 - 1513.3月.1989(13.03.89) ファミリーなし PY WO. 99/64460, A (CELLTECH THERAPEUTICS LTD) 1 - 1516. 12月. 1999(16. 12. 99) & AU, 9942783, A |×| C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの て出願と矛盾するものではなく、発明の原理又は理 「E」国際出願日前の出願または特許であるが、国際出願日 論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 27.06.00 0407.00 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 9839 日本国特許庁 (ISA/JP) 齋藤 真由美 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する請求の範囲の番号
A	JP, 61-12630, A (サノフイ) 21.1月.1986 (21.01.86) ファミリーなし	1-15
A	JP, 6-504765, A (コー セラビューティックス, インコーポレイテッド) 02.6月.1994 (02.06.94) ファミリーなし	12-15