DFT grid options in PSI4

Why change grid defaults?

exceptional accuracy, e.g. benchmarking, highly accurate functionals.
 (typically basis and functional error > grid error)

wobbles and bumps in potential curves scans

unstable SCF

boss wants results this afternoon! (speed-accuracy tradeoff)

new grid options in v1.4 - pruning

```
grid weights screening: set DFT_WEIGHTS_TOLERANCE 1e-15 (default)
PR #1581
           grid pruning: set DFT_PRUNING_SCHEME ROBUST (default)
           PR #1591
                            set DFT PRUNING_SCHEME TREUTLER ( used in turbomole)
         TREUTLER = sphere into thirds
                                                                  ROBUST = sphere into quarters
                                                Bragg-Slater radius
                        N=7
                                                 (updated in 1.4)
                        26 p
                                                                              N=nominal-6
                      N=11 50 p
                                                                              N=nominal
                                                                              N=nominal
                     N=nominal
                                        (sorry for the imperfect ratios)
```

weights screening errors

set DFT_PRUNING_SCHEME NONE
set DFT_WEIGHTS_TOLERANCE N

water dimer

PBE/aug-cc-pVTZ (590/99)

tolerance	abs. e. error	#points	
off	0.0	350460	
1E-30	1.36E-12	349417	
1E-25	1.65E-12	348670	
1E-20	1.65E-12	346918	
1E-18	1.68E-12	345747	
1E-16	1.63E-11	340646	
1E-15	2.74E-11	339647	
1E-14	5.73E-09	335089	
1E-13	3.65E-08	331285	
1E-12	3.18E-07	326462	

C60 (C2 sum)

PBE/aug-cc-pVDZ (590/99)

tolerance	abs. e. error	#points	
off	0.0	1359000	
1E-30	3.17E-10	1229846	
1E-25	-5.34E-10	1209622	
1E-20	5.94E-10	1183674	
1E-18	5.41E-10	1171102	
1E-16	-6.25E-10	1156776	
1E-15	2.48E-09	1131228	
1E-14	3.54E-09	1123018	
1E-13	1.25E-07	1110668	
1E-12	1.07E-06	1085824	

weights screening errors

set DFT_PRUNING_SCHEME NONE
set DFT_WEIGHTS_TOLERANCE N

water dimer

PBE/aug-cc-pVTZ (590/99)

tolerance	abs. e. error	#points	
off	0.0	350460	
1E-30	1.36E-12	349417	
1E-25	1.65E-12	348670	
1E-20	1.65E-12	346918	
1E-18	1.68E-12	345747	
1E-16	1.63E-11	340646	
1E-15	2.74E-11	339647	
1E-14	5.73E-09	335089	
1E-13	3.65E-08	331285	
1E-12	3.18E-07	326462	

C60 (C2 sum)

PBE/aug-cc-pVDZ (590/99)

tolerance	abs. e. error	#points	
off	0.0	1359000	
1E-30	3.17E-10	1229846	
1E-25	-5.34E-10	1209622	
1E-20	5.94E-10	1183674	
1E-18	5.41E-10	1171102	
1E-16	-6.25E-10	1156776	
1E-15	2.48E-09	1131228	
1E-14	3.54E-09	1123018	
1E-13	1.25E-07	1110668	
1E-12	1.07E-06	1085824	

grid pruning errors

S22: non-covalent interaction of 22 bio-dimers (psi4's db command)

set DFT_PRUNING_SCHEME ROBUST

grid point reduction [%] and errors [kcal/mol]

MO6-2X/def2-TZVP

590/99 'ultrafine' grid

'grid sensitive functional'

100% gau2grid cache

Psi4 1.4a3.dev1 (conda)

S22 time without pruning: 18 min

(16 threads @ 3.20GHz E5-2667v4)

weights screening	reduction [%]	speed-up	error E int	error E abs
none	30.1	27.5	0.0	2.8E-07
1E-15	35.0	31.6	0.0	2.8E-07
1E-14	35.4	31.5	0.0	2.8E-07

set DFT_PRUNING_SCHEME TREUTLER

weights screening	reduction [%]	speed-up	error E int	error E abs
none	47.0	43.8	0.214	4.1E-04
1E-15	51.9	47.4	0.214	4.1E-04
1E-14	52.3	47.6	0.214	4.1E-04

new grid options in v1.4 - density screening

density screening: set DFT_DENSITY_TOLERANCE -1.0 (default=off, typical value 1e-10) PR #1860

Overwrites density thresholds defaults in LibXC (LibXC has own defaults)

new output:

```
=> LibXC Density Thresholds <==
XC_MGGA_C_M06_2X: 1.00E-23
XC_HYB_MGGA_X_M06_2X: 1.00E-20</pre>
```

not a 'speed' option!

'Tough' case

```
molecule hatom {
0 2
H 0.0 0.0 0.0
}
set {
reference uks
DFT_DENSITY_TOLERANCE 1e-10
}
energy('tpss/sto-3g')
```

new grid options in v1.4 - new nuclear scheme

set DFT_NUCLEAR_SCHEME SBECKE (smooth Becke)

PR #1591

An improved molecular partitioning scheme for numerical quadratures in density functional theory

J. Chem. Phys. 149, 204111 (2018); https://doi.org/10.1063/1.5049435

Henryk Laqua, (D) Jörg Kussmann, and (D) Christian Ochsenfelda)

302/75 grid; unpruned
set DFT_NUCLEAR_SCHEME SBECKE
set DFT_NUCLEAR_SCHEME STRATMANN
set DFT_NUCLEAR_SCHEME BECKE
set DFT_NUCLEAR_SCHEME TREUTLER

good for long-range interactions (i.e. including big systems)

Ar dimer dissociation

new grid options in v1.4 - overview

additional nuclear scheme:

```
set DFT_NUCLEAR_SCHEME SBECKE (smooth Becke, default is TREUTLER)
```

density screening:

```
An improved molecular partitioning scheme for numerical quadratures in density functional theory

J. Chem. Phys. 149, 204111 (2018); https://doi.org/10.1063/1.5049435

Henryk Laqua, D Jörg Kussmann, and Christian Ochsenfelda)
```

```
set DFT_DENSITY_TOLERANCE -1.0 (default=off, typical value 1e-10)
```

(LibXC has own defaults for screening small densities)

good-to-know grid options

```
grid construction: set DFT_SPHERICAL_POINTS 302 (default, Lebedev points)
                    set DFT RADIAL POINTS 75 (default)
dealing with issues:
                    set DFT NUCLEAR SCHEME SBECKE (wobbles in PES, weak interactions)
                    set DFT DENSITY TOLERANCE 1e-10 (if functional is unstable)
                    set DFT_BS_RADIUS_ALPHA 1.1 (default 1.0, scales BS radii,
                                        e.g. for very diffuse basis sets.
                                        indicator is slow density convergence.
==> Post-Iterations <==
 Electrons on quadrature grid:
   Ntotal = 49.9999869979; deviation = -1.300e-05
 Orbital Energies [Eh]
```

ast slide

- standard DFT application (some hybrid + TZ basis):
 - basis and functional error > grid error!
- PSI4 has very conservative cutoffs compared to other programs.
- Don't be afraid to tune cutoffs for low-accuracy high-throughput work.
- future idea and wish: "PSI4 grids"
 - period specific radial grids (light vs heavy elements)
 - cutoffs adapted to overall accuracy

•