Specyfikacja oprogramowania ACPYGMX

Spis treści

Streszczenie		
1. Wstęp	3	
1.1. Cel	3	
1.2. Definicje, skróty	3	
1.3. Referencje	4	
1.4. Krótki przegląd	4	
2. Opis ogólny		
2.1. Walory użytkowe i przydatność projektowanego oprogramowania	4	
2.2. Ogólne możliwości oprogramowania	4	
2.3. Ogólne ograniczenia	4	
2.4. Środowisko operacyjne	4	
2.5. Charakterystyka użytkowników	4	
3. Specyficzne wymagania	5	
3.1. Wymagania dotyczące funkcji programu	5	
3.1.1. Interfejs i jego opcje	5	
3.1.2. Funkcje	5	
3.2. Wymagania dotyczące wydajności systemu	6	
3.3. Wymagania dotyczące zewnętrznych interfejsów	6	
3.4. Wymagania dotyczące zasobów	6	
3.5. Wymagania dotyczące sposobów weryfikacji	6	
3.6. Wymagania dotyczące sposobów testowania	6	
3.7. Wymagania dotyczące dokumentacji	6	
3.8. Wymagania dotyczące ochrony	6	
3.9. Wymagania dotyczące przenośności	6	
3.10. Wymagania dotyczące jakości	6	
3.11. Wymagania dotyczące niezawodności	6	
3.12. Wymagania dotyczące pielęgnacyjności	6	
3.13. Wymagania dotyczące bezpieczeństwa	6	
4. Dodatki	7	
4.1. Harmonogram pracy nad oprogramowaniem		

Streszczenie

ACPYGMX (AnteChamber PYthon to GroMa(x)cs) to program pozwalający wygenerowanie topologii układu molekularnego zgodnej z polem siłowym Amber dla pakietu GROMACS. Topologia jest generowana na podstawie pliku wejściowego PDB. który jest popularnym formatem służącym do przechowywania struktury przestrzennej układów molekularnych, w szczególności białek. GROMACS to pakiet programów służący do modelowania molekularnego. Do przeprowadzania obliczeń potrzebuje plików współrzędne wejściowych zawierających przestrzenne pierwotnego środowiska molekularnego oraz jego topologię. O ile pakiet ten posiada automatyczną możliwość generowania topologii białek, kwasów nukleinowych, wody, jonów, to nie jest w stanie wygenerować jej, gdy środowisko zawiera jeszcze inne związki. Istnieją programy, np. ACPYPE (oprogramowanie było nim inspirowane), które są w stanie generować topologie innych związków, lecz dotyczy to jedynie pojedynczych związków, nie całego układu molekularnego. Program ACPYGMX jest w stanie generować topologie całych układów molekularnych zawierających różne rodzaje związków, zgodne z polem siłowym Amber.

1. Wstęp

1.1. Cel

Oprogramowanie ma cel naukowo-badawczy. Służy do generowania topologii układów molekularnych zgodnej z polem siłowym Amber dla pakietu GROMACS.

1.2. Definicje, skróty

Wytłumaczenie zawartych w programie definicji i skrótów:

- GROMACS (GROningen MAchine for Chemical Simulations) pakiet programów służący do modelowania układów molekularnych.
- Topologia plik z rozszerzeniem .top zawierający informacje o właściwościach molekularnych związków (ładunek grup chemicznych i atomów, ich masa, długości wiązań, rozmiar kątów) danego układu molekularnego. Topologia musi być zgodna z polem siłowym, które jest użyte do przeprowadzenia symulacji.
- Pole siłowe to zestaw funkcji i parametrów symulujących oddziaływania fizyczne na poziomie molekularnym, np. pole siłowe Amber.
- PDB (Protein Data Bank) format zapisu współrzędnych przestrzennych atomów układu molekularnego do pliku. Stworzony głównie do przechowywania danych przestrzennych białek.
- Koordynaty współrzędne przestrzenne.

1.3. Referencje

- [1] IEEE Std 830-1998 SRS outline
- [2] Abraham MJ, van der Spoel D, Lindahl E, Hess B: GROMACS User Manual version 2016.3,Uppsala, (2017)
- [3] da Silva AWS, Vranken WF: ACPYPE AnteChamber PYthon Parser interfacE, *BioMed Central Research Notes* 5, 367, (2012)

1.4. Krótki przegląd

Specyfikacja przedstawia ogólny opis programu, główne założenia, wymagania oraz opis występujących w nim funkcji. Przedstawiony został również harmonogram pracy nad programem.

2. Opis ogólny

2.1. Walory użytkowe i przydatność projektowanego oprogramowania

Program ma w założeniu być wykorzystywany do celów naukowo-badawczych. Pozwala na wygenerowanie w sposób prosty dla użytkownika topologii układu molekularnego zgodnej z polem siłowym Amber dla pakietu GROMACS. Jego zaletą jest łatwość obsługi oraz możliwość wygenerowania topologii dla całego układu molekularnego.

2.2. Ogólne możliwości oprogramowania

Interakcja użytkownika z programem następuje poprzez terminal systemu Linux. Na podstawie podanego na wejściu pliku PDF z koordynatami układu molekularnego program generuje na wyjściu plik topologii.

2.3. Ogólne ograniczenia

Oprogramowanie generuje topologie zgodne jedynie z polem siłowym Amber. Topologie mogą być wygenerowane tylko dla pakietu GROMACS.

2.4. Środowisko operacyjne

Oprogramowanie jest przeznaczone do pracy w trybie konsolowym pod kontrolą systemu operacyjnego Linux. Zostanie napisane w języku Python 3.

2.5. Charakterystyka użytkowników

Oprogramowanie jest skierowane do osób korzystających z pakietu GROMACS.

3. Specyficzne wymagania

3.1. Wymagania dotyczące funkcji programu

3.1.1. Interfejs i jego opcje

Interfejs programu ma charakter konsolowy. Użytkownik wpisuje do terminalu systemu Linux nazwę programu, podaje plik wejściowy (z opcją -f) oraz ewentualne inne opcje. Powinno to wyglądać to na komputerze użytkownika jako:

\$./acpygmx.py -f name.pdb -o topologia.top

Podczas pracy programu na ekranie terminala powinny wyświetlać się nazwy niestandardowych związków chemicznych wykrytych w pliku źródłowym przez program. Przy kończeniu swojej pracy program powinien wyświetlić nazwę pliku wyjściowego, do którego topologia została zapisana, w formie:

Topology is written to [nazwa pliku].

- Plik wejściowy powinien zawierać współrzędne przestrzenne układu molekularnego zapisane w formacie PDB z rozszerzeniem .pdb
- Pliki wyjściowe jest to główny plik topologii z rozszerzeniem .top oraz pliki topologii cząstkowych z rozszerzeniem .itp
- Opcje podawane na wejściu programu:
 - -f nazwa pliku wejściowego (.pdb), opcja konieczna do wykonania programu
 - -o nazwa pliku wyjściowego (.top), w przypadku braku opcji na wyjściu zostanie wygenerowany plik topol.top
 - -h wyświetlanie pomocy

3.1.2. Funkcje

Przedstawiono poniżej funkcje wewnętrzne programu, które umożliwiają wygenerowanie topologii. Są one ponumerowane zgodnie z kolejnością ich wykonywania:

- 1) rozpoznawanie opcji na wejściu
- 2) wczytywanie pliku wejściowego PDB
- 3) wyodrębnianie związków chemicznych występujących w pliku PDB
- 4) generowanie topologii poszczególnych rodzajów związków
- 5) scalanie topologii związków do głównego pliku topologii na wyjściu
- 6) zakończenie działania programu

3.2. Wymagania dotyczące wydajności systemu

Brak szczególnych wymagań.

3.3. Wymagania dotyczące zewnętrznych interfejsów

Zainstalowane pakiety GROMACS, OpenBabel, AmberTools, Acpype.

3.4. Wymagania dotyczące zasobów

Komputer posiadający system operacyjny Linux (Debian, pochodne).

Ze względu na brak testów sprzętowych, wymagania zostaną podane zgodnie z maszyna, na której jest tworzone oprogramowanie:

Procesor: Intel Core i7-4510U CPU @ 2.00GHz x 2

RAM: 8 GB

Karta graficzna: Intel Corporation Haswell-ULT Integrated Graphics Controller

3.5. Wymagania dotyczące sposobów weryfikacji

Brak wymagań

3.6. Wymagania dotyczące sposobów testowania

Testowanie będzie się odbywać poprzez tworzenie topologii dla układów molekularnych o różnych rozmiarach i z różnymi rodzajami związków chemicznych. Zostanie sprawdzona poprawność wygenerowanych topologii.

3.7. Wymagania dotyczące dokumentacji

Zmiany w kodzie oprogramowania będą zapisane w logach z opisem i datami.

3.8. Wymagania dotyczące ochrony

Nie dotyczy.

3.9. Wymagania dotyczące przenośności

Oprogramowanie powinno być proste w przenoszeniu pomiędzy dystrybucjami systemu Linux Debian i ich pochodnymi.

3.10. Wymagania dotyczące jakości

Program powinien być zoptymalizowany.

3.11. Wymagania dotyczące niezawodności

Oprogramowanie powinno być stabilne w działaniu.

3.12. Wymagania dotyczące pielęgnacyjności

Oprogramowanie powinno być testowane po zmianach w kodzie.

3.13. Wymagania dotyczące bezpieczeństwa

Program powinien być bezpieczny dla systemu.

4. Dodatki

4.1. Harmonogram pracy nad oprogramowaniem

Data	Cel
03.12.18.	Rozpoczęcie prac nad projektem, rozpoznawanie opcji wejściowych
10.12.18.	Wczytywanie zawartości pliku wejściowego PDB, wyodrębnianie rodzajów związków chemicznych z układu
17.12.18.	Generowanie topologii dla niestandardowych związków chemicznych w stanie wolnym
07.01.19.	Generowanie topologii dla niestandardowych związków chemicznych w stanie związanym
14.01.19.	Generowanie topologii dla całego układu molekularnego
21.01.19.	Kończenie pracy nad projektem