A BRIEF ATTMEPT AT REFORMULATING THE SETUP IN TERMS OF ALGEBRAIC GROUPS

JUSTIN KATZ

- 1. Arithmetic of indefinite quaternion algebras (following shimura)
- 1.1. Indefinite quaternion algebras. Let F be a totally real field, with finite degree t over \mathbb{Q} . A quaternion algebra D over F is a central simple algebra over F such that |D:F|=4. Write R for the ring of integers of F. For a prime ideal \mathfrak{p} of R, we let $R_{\mathfrak{p}}$, $F_{\mathfrak{p}}$, and $D_{\mathfrak{p}}$ denote the \mathfrak{p} -adic completions of R, F, and D respectively. We enumerate the t infinite places of F and denote them by $\mathfrak{p}_{\infty,1}, \cdots \mathfrak{p}_{\infty,t}$. For $i \leq t$ we write D^i for the completion of D at $\mathfrak{p}_{\infty,i}$ so that

$$D \otimes_{\mathbb{O}} \mathbb{R} \approx D^1 \times \cdots \times D^t$$

There are exactly two quaternion algebras over \mathbb{R} : the split algebra $M_2(\mathbb{R})$, and the nonsplit algebra \mathcal{H} . After reindexing, we may assume that for $i \leq r$, we have $D^i \approx M_2(\mathbb{R})$, and for $r < i \leq t$, we have $D^i \approx \mathcal{H}$. We say that D is **indefinite** if r > 0, and henceforth will assume that this is the case.

For an element $a \in D$, we write its image in D^i by a^i . Thus, for each $i \leq r$ we have $a^i \in M_2(\mathbb{R})$ and $a^i \in \mathcal{H}$ for $r < i \leq t$. Note that the restrictions of the maps $(\cdot)^i$ to the central copy of F in D yield all of the embeddings of F into \mathbb{R} . We write F^i for that image.

The algebras D (resp $D_{\mathfrak{p}}, D^i$) are each equipped with an involution $a \mapsto a'$ characterized by the condition that $F[a] \approx F[x]/((X-a)(X-a'))$ (resp. $F_{\mathfrak{p}}[a], \mathbb{R}[a]$). Set, for each $a \in D$ (resp, in $D_{\mathfrak{p}}, D^i$)

$$N(a) = aa'$$
 $\operatorname{tr}(a) = a + a'$.

For those $i \leq r$, under the identification $D^i \approx M_2(\mathbb{R})$, the maps N and tr coincide with det and tr of matrices.

Letting $N_{F/\mathbb{Q}}$ and $\operatorname{tr}_{F/\mathbb{Q}}$ denote the absolute norm and trace maps on F, we define absolute maps for $a \in D$:

$$N_{D/\mathbb{Q}}(a) = N_{F/\mathbb{Q}}(N(a))$$
 $\operatorname{tr}_{D/\mathbb{Q}}(a) = \operatorname{tr}_{F/\mathbb{Q}}(\operatorname{tr}(a))$

1.2. **Ideal theory in** D. An R (resp. $R_{\mathfrak{p}}$) lattice in D (resp. $D_{\mathfrak{p}}$) is a finitely generated R-module (resp. $R_{\mathfrak{p}}$ -module) M in D (resp. $D_{\mathfrak{p}}$) such that FM = D (resp. $F_{\mathfrak{p}}M = D_{\mathfrak{p}}$).

Date: June 3, 2023.

1.2.1. consider introducing the set $\mathcal{L}(D)$ of lattices in D, as well as its local counterparts. A subring of D containg R is an **order** if it is also an R lattice. An order is maximal if its not properly contained in any other order. Maximal orders exist, and any order is contained in a maximal one.

For an order \mathfrak{o} , a lattice M in D is a right (resp. left) \mathfrak{o} -ideal if $M\mathfrak{o} \subset M$ (resp. $\mathfrak{o}M \subset M$). We say M is a two-sided \mathfrak{o} ideal if it is both a left and a right \mathfrak{o} -ideal.

1.3. The local theory, split case: In this section F is a finite extension of \mathbb{Q}_p with ring of integers R, π a uniformizer, ord the normalized valuation. For an element $y \in \mathrm{GL}(2,F)$ write \bar{y} for its image in $\mathrm{PGL}(2,F)$. Say y (or \bar{y}) is $\underline{\mathrm{even}}$ if $\mathrm{ord}(\det(y))$ is so, and odd otherwise. Write $F \times F$ as rwo vectors, and $\overline{\mathrm{let}}\ M(2,F)$ act on it from the right.

A maximal R order \mathcal{O} of M(2,F) takes the form

$$\mathcal{O} = \operatorname{End}_R(\Lambda) = \{ x \in M(2, F) : \Lambda x \subset \lambda \}$$

for some R lattice $\Lambda \subset F \times F$, uniquely determined by \mathcal{O} up to homothety. Conversely, for any such lattice Λ , the ring $\operatorname{End}_R(\Lambda)$ is a maximal order.

Given two maximal orders \mathcal{O}_1 and \mathcal{O}_2 , pick a lattice $\Lambda_1 = Rf + Rg$ so that $\mathcal{O}_1 = \operatorname{End}_R(\Lambda_1)$. Then there is a lattice Λ_2 such that $\mathcal{O}_2 = \operatorname{End}_R(\Lambda_2)$ and $\Lambda_2 = Rf + \pi^n Rg \leq \Lambda_1$. The integer $n = d(\mathcal{O}_1, \mathcal{O}_2)$ is uniquely determined by \mathcal{O}_1 and \mathcal{O}_2 .