MATH 4720 / MSSC 5720

Instructor: Mehdi Maadooliat

Chapter 8 (Part A)

Department of Mathematical and Statistical Sciences

ANALYSIS OF VARIANCE (ANOVA)

 ANOVA is one of the most popular statistical tools of analyzing data.

Does Y (the response) depends on any of the factors?

ANOVA EXAMPLES

• Example 1: You are doing a research on mpg (miles per gallon) for a brand of automobiles.

Question: What effects mpg?

Does Y (the response) depends on any of the factors?

ANOVA EXAMPLESLE

- Example 2: (Australian Institute of Sport)
- Research Question: Does body weight (Wt) depend on
 - Sport
 - Gender

In R (Australian Institute of Sport)

EXAMPLE CONT'D

Australian Institue of Sport - Weight

CONCEPT

- These variation can be described by Sums of Squares $\sum (...)^2$
- SS(Wt) = SS(Gender) + SS(Sport) + SS(Error)
- $\bullet \qquad df_W = df_G + df_S + df_E$
- df is the degrees of freedom that represent the effective number of terms in the sums of squares
- In R: aov(Wt ~ sport + gender, data=ais2)

TEST STATISTICS

F-Statistics

• Gender: Test Statistics
$$F_1 = \frac{\frac{SS(Gender)}{df_G}}{\frac{SS(Error)}{df_E}} = \frac{MS_G}{MSE}$$

- If $F_1 > F_{\alpha}(df_G, df_E)$, then gender is a significant factor

• Sport: Test Statistic
$$F_2 = \frac{\frac{SS(Sport)}{df_S}}{\frac{SS(Error)}{df_E}} = \frac{MS_S}{MSE}$$

- If $F_2 > F_{\alpha}(df_S, df_E)$, then sport is a significant factor

BACK TO CONCEPT

- The sums of squares are not always easily available. For different factor-designs, there are different sums of squares.
- For One-Factor design, sums of squares are easy to compute.
- One Factor ANOVA:

	4	0	2		
	1	2	3.	• •	t
	y_{11}	y_{21}	y_{31}		y_{t1}
	y_{12}	y_{22}	y_{32}		y_{t2}
	•	•	•		•
	•				
	y_{1n_1}	y_{2n_2}	y_{3n_3}		y_{tn_t}
	====		======		
Mean	$\bar{y}_{1.}$	$\bar{y}_{2.}$	$\bar{y}_{3.}$		\bar{y}_t .
St.dev.	s_1	s_2	s_3		s_t

Treatment Levels

BACK TO CONCEPT

$$\bar{y}_{..} = \frac{n_1 \bar{y}_1 + n_2 \bar{y}_2 + \dots + n_t \bar{y}_t}{n_1 + n_2 + \dots + n_t}$$

• Total Variability:

$$\sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2$$

• Variability Between Samples:

$$\sum_{i=1}^{t} n_i (\bar{y}_{i} - \bar{y}_{i})^2$$

• Variability Within Samples:

$$\sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$$

•
$$\sum \sum (y_{ij} - \bar{y}_{..})^2 = \sum n_i (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum \sum (y_{ij} - \bar{y}_{i.})^2$$

$$SS(Total) = SSB + SSE$$

$$df's: \sum n_i - 1 \qquad t - 1 \qquad \sum n_i - t$$

$$df_{Total} \qquad df_B \qquad df_E$$

BACK TO CONCEPT

•
$$\sum \sum (y_{ij} - \bar{y}_{..})^2 = \sum n_i (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum \sum (y_{ij} - \bar{y}_{i.})^2$$

 $SS(Total) = SSB + SSE$
df's: $\sum n_i - 1$ $t - 1$ $\sum n_i - t$
 df_{Total} df_B df_E

- H_0 : There is no difference between the Treatments
- H_a : At least one of the treatment is different from the rest

• Test Statistics:
$$F = \frac{SS_B/df_B}{SS_E/df_E}$$

Decision Rule:

The Factor is significant if
$$F > F_{\alpha}(df_1 = df_B, df_2 = df_E)$$

Applet

FORMULATION IN TERMS OF HYPOTHESIS PROBLEM

One Factor ANOVA:

Treatment Levels

1	2	3				t
y_{11}	y_{21}	y_{31}	•		•	y_{t1}
y_{12}	y_{22}	y_{32}	•	٠		y_{t2}
•	•	•				•
	•					
y_{1n_1}	y_{2n_2}	y_{3n_3}	•			y_{tn_t}
======	=======	=====	==		==	=====
$N(\mu_1, \sigma_1^2)$	$N(\mu_2, \sigma_2^2)$	$N(\mu_3, \sigma$	$\binom{2}{3}$			$N(\mu_t, \sigma_t^2)$

- $H_0: \mu_1 = \mu_2 = \dots = \mu_t$
- H_a : $\mu_i \neq \mu_j$ for some pairs (i, j)

FORMULATION IN TERMS OF HYPOTHESIS PROBLEM CONT'D

- H_0 : $\mu_1 = \mu_2 = \cdots = \mu_t$
- H_a : $\mu_i \neq \mu_j$ for some pairs (i, j)
- Assumptions:

$$-\sigma_1 = \sigma_2 = \cdots = \sigma_t$$

Data is generated from normal distribution for each treatment.

• TS
$$F = \frac{SS_B/df_B}{SS_E/df_E}$$

- $SS_B = \sum n_i (\bar{y}_i - \bar{y}_i)^2$ $df_B = t - 1$
- $SS_E = \sum (n_i - 1)s_i^2$ $df_E = \sum n_i - t$

• Decision Rule: Reject H_0 in favor of H_a if

$$-F > F_{\alpha}(df_B, df_E)$$

Applet

ANOVA TABLE

Source of Variation	df	Sum of Squares	Mean Square	F	p-value
Group (Between)	t-1	$\sum n_i (\overline{y}_{i\bullet} - \overline{y}_{\bullet\bullet})^2 = SS_B$	$\frac{SS_B}{df_B} = MS_B$	$\frac{MS_{B}}{MS_{E}} = F_{\text{calc}}$	$Pr(F > F_{calc})$
Error (Within)	N-t	$\sum (n_i - 1)s_i^2 = SS_E$	$\frac{SS_E}{df_E} = MS_E$		
Total		$\sum (y_{ij} - \overline{y}_{\bullet \bullet})^2 = SS_T$			

• Here:

$$-N = \sum_{i}^{t} n_i$$

$$-SS_T = SS_B + SS_E$$

- MS_E is the pooled sample variance, an estimate for σ^2
- $R^2 = \frac{SS_B}{SS_T}$ is the proportion of the total variation explained by the groups.

BOOK EXAMPLE 8.1

 A hypothesis is that a nutrient "Isoflavones" varies among three types of food items: (1) Cereals and snacks, (2) energy bars, and (3) veggie burgers. A sample of five each is taken and the amount of isoflavones is measured.

EXAMPLE 8.1 CONT'D

- Cereal and snacks: $n_1 = 5$, $\bar{y}_1 = 9.20$, $s_1^2 = 33.7$
- Energy bars: $n_2 = 5$, $\bar{y}_2 = 10.00$, $s_2^2 = 29.0$
- Veggie burger: $n_3 = 5$, $\bar{y}_3 = 13.80$, $s_3^2 = 46.7$
- Is there a sufficient evidence to conclude that the amount of isoflavones varies among these food items? $\alpha=0.05$.
- H_0 : $\mu_1 = \mu_2 = \mu_3$
- H_a : $\mu_i \neq \mu_j$ for some pairs (i, j)
- Assumptions:
 - $\sigma_1 = \sigma_2 = \sigma_3$
 - Data is generated from normal distribution for each type of food.

EXAMPLE 8.1 ASSUMPTIONS

- H_0 : $\sigma_1 = \sigma_2 = \sigma_3$
- In R: car::leveneTest(exmp8.1\$isof, exmp8.1\$source)
- lawstat::levene.test(exmp8.1\$isof, exmp8.1\$source)

Test for Equal Variances: Isoflavones versus Source of Soy

95% Bonferroni confidence intervals for standard deviations

Source of Soy N Lower StDev Upper Cereal and snaks 5 2.87498 5.31977 20.4752 Energy bars 5 2.91032 5.38516 20.7269 Veggie burger 5 3.69318 6.83374 26.3023

Bartlett's Test (Normal Distribution) Test statistic = 0.30, p-value = 0.861

Levene's Test (Any Continuous Distribution)
Test statistic = 0.11, p-value = 0.896

• Levene's test p-value is 0.896. Fail to reject equality of the variances

• H_0 : Data is generated from normal distribution for each type of food.

• Large p-values. Fail to reject Normality assumption.

EXAMPLE 8.1 CONT'D

•
$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$

• H_a : $\mu_i \neq \mu_j$ for some pairs (i,j)

• TS
$$F = \frac{SS_B/df_B}{SS_E/df_E}$$

- $SS_B = \sum n_i (\bar{y}_i - \bar{y}_i)^2$ $df_B = t - 1$
- $SS_E = \sum (n_i - 1)s_i^2$ $df_E = \sum n_i - t$

•
$$\bar{y}_{..} = \frac{n_1 \bar{y}_{1.} + n_2 \bar{y}_{2.} + n_3 \bar{y}_{3.}}{n_1 + n_2 + n_3} = \frac{5 * 9.2 + 5 * 10.0 + 5 * 13.8}{5 + 5 + 5} = 11.0$$

•
$$df_B = (t-1) = 3-1 = 2$$

•
$$df_E = \sum n_i - t = (5 + 5 + 5) - 3 = 12$$

EXAMPLE 8.1 CONT'D

•
$$SS_B = \sum n_i (\bar{y}_{i.} - \bar{y}_{..})^2$$

= $5 * (9.2 - 11.0)^2 + 5 * (10.0 - 11.0)^2 + 5 * (13.8 - 11.0)^2$
= 60.40

•
$$SS_E = \sum (n_i - 1)s_i^2$$

= $(5 - 1) * 33.0 + (5 - 1) * 29.0 + (5 - 1) * 46.7$
= 437.60

• TS
$$F = \frac{SS_B/df_B}{SS_E/df_E} = \frac{60.40/2}{437.60/12} = 0.83$$

- $F_{\alpha}(df_1 = 2, df_2 = 12) = 3.89$
- Conclusion: Is F>3.89? No. Fail to reject H_0 . We cannot conclude that the amount of isoflavones vary among the food items.
- F Calculator

Source of Variation	df	Sum of Squares	Mean Square	F	p-value
Group (Between)	<i>t</i> – 1	$\sum n_i (\bar{y}_{i\bullet} - \bar{y}_{\bullet\bullet})^2 = SS_B$	$\frac{SS_B}{df_B} = MS_B$	$\frac{MS_B}{MS_E} = F_{\text{calc}}$	$\Pr(F > F_{\text{calc}})$
Error (Within)	N-t	$\sum (n_i - 1)s_i^2 = SS_E$	$\frac{SS_E}{df_E} = MS_E$		
Total		$\sum (y_{ij} - \overline{y}_{\bullet \bullet})^2 = SS_T$			

• In R

> summary(aov(isof ~ source, data=exmp8.1))

One-way ANOVA: Isoflavones versus Source of Soy

Source	DF	SS	MS	F	P
Source of Soy	2	60.4	30.2	0.83	0.460
Error	12	437.6	36.5		
Total	14	498.0			
S = 6.039 R	-Sq =	12.13%	R-S	q(adj)	= 0.00%

BOOK EXAMPLE 8.2

• A clinical psychologist compares three methods for reducing the hospitality levels in university students. HLT score is used to measure the degree of hospitality. Randomly they assigned 8 students to method 1, 7 students to method 2 and 9 students to method 3. Each student was given HLT test at the end of

semester

EXAMPLE 8.2 CONT'D

• Is there a sufficient evidence to conclude difference among mean scores? Use $\alpha = 0.05$.

•
$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$

• $H_a: \mu_i \neq \mu_j$ for some pairs (i, j)

• Assumptions:

-
$$\sigma_1 = \sigma_2 = \sigma_3$$

 Data is generated from normal distribution for each type of food.

EXAMPLE 8.2 ASSUMPTIONS

- H_0 : $\sigma_1 = \sigma_2 = \sigma_3$
- ► In R: car::leveneTest(exmp8.2\$HLT, exmp8.2\$method)
- lawstat::levene.test(exmp8.2\$HLT, exmp8.2\$method)

Test for Equal Variances: HLT score versus Method

95% Bonferroni confidence intervals for standard deviations

Method	N	Lower	StDev	Upper
1	8	3.41853	5.62520	13.7768
2	7	1.82797	3.10146	8.4154
3	9	2.29049	3.67423	8.3206

Bartlett's Test (Normal Distribution) Test statistic = 2.46, p-value = 0.292

Levene's Test (Any Continuous Distribution)
Test statistic = 1.68, p-value = 0.210

• Levene's test p-value is 0.210. Fail to reject equality of the variances

• H_0 : Data is generated from normal distribution for each type of food.

• Large p-values. Fail to reject Normality assumption.

EXAMPLE 8.2 CONT'D

- H_0 : $\mu_1 = \mu_2 = \mu_3$
- H_a : $\mu_i \neq \mu_j$ for some pairs (i, j)

One-way ANOVA: HLT score versus Method

In R: summary(aov(HLT ~ method, data=exmp8.2))

• TS
$$F = \frac{SS_B/df_B}{SS_E/df_E} = \frac{1090.6/2}{387.2/21} = 29.57$$

- $F_{\alpha}(df_1 = 2, df_2 = 21) = 3.47$
- Conclusion: Is F > 3.47? Yes. Reject H_0 .
- F Calculator

NORMALITY ASSUMPTION FAILS NON-PARAMETRIC METHOD

- In the ANOVA method, we assume that the sample from each treatment level is drawn from normal population. What if the distribution is non-normal.
- The Kruskal-Wallis Test
- H₀: All t distributions are identical
- H_a : Not all distributions are the same.
- TS:
 - 1. Rank all samples from the lowest to the highest.
 - 2. The test statistics H is similar to the F-statistic based on the ranks.
- Decision Rule: Reject H_0 if $H > \chi_{\alpha}^2 (df = t 1)$
- In R:
 - kruskal.test(x, g)

WHAT IF EQUALITY OF THE VARIANCES FAIL?

- The assumption that the sample are generated from normal distribution is not very important as long as the total sample size is large.
- Note that conceptually the test statistic $F = \frac{SS_B/df_B}{SS_E/df_E}$ still makes sense.
- The major problem is with the assumption $\sigma_1=\sigma_2=\cdots=\sigma_t$. If this cannot be assumed, F- test must not be used.
- If H_0 : $\sigma_1 = \sigma_2 = \cdots = \sigma_t$ is rejected, then one approach is to transform the data if the variances σ^2 is a function of the mean μ .

25