PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4: (11) International Publication Number: WO 88/ 00967 A1 C12N 5/00, 5/02, 15/00 (43) International Publication Date: 11 February 1988 (11.02.88)

PCT/AU87/00248 (21) International Application Number:

(22) International Filing Date: 4 August 1987 (04.08.87)

(31) Priority Application Number: PH 7266

(32) Priority Date: 4 August 1986 (04.08.86)

(33) Priority Country: AU

(71) Applicants (for all designated States except US): THE ÛNIVERŠITY OF NĚW SOUTH WALES [AÚ/AU]; 221-227 Anzac Parade, Kensington, NSW 2033 (AU). GARVAN INSTITUTE OF MEDICAL RESEARCH [AU/AU]; 384 Victoria Street, Darlinghurst, NSW 2010 (AŬ).

(72) Inventors; and (75) Inventors/Applicants (for US only): GRAY, Peter, Philip [AU/AU]; 74 Cameron Street, Edgecliff, NSW 2027 (AU). LAZARUS, Leslie [AU/AU]; 5 Woodward Place, St. Ives, NSW 2075 (AU). MARSDEN, Warwick, Lloyd [AU/AU]; 109 Alsion Road, Randwick,

NSW 2031 (AU).

(74) Agent: F. B. RICE & CO.; 28A Montague Street, Balmain, NSW 2041 (AU).

(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent), US.

Published

With international search report With amended claims.

Date of publication of the amended claims:

10 March 1988 (10.03.88)

(54) Title: SERUM FREE TISSUE CULTURE MEDIUM CONTAINING POLYMERIC CELL-PROTECTIVE **AGENT**

(57) Abstract

An essentially serum-free tissue culture medium characterised in that it includes in solution a polymer which acts as cell protective agent by reducing film drainage around cells. Preferred polymers are polyethylene glycol, polyvinyl pyrollidone and polymers containing one or more alkylene oxide. This tissue culture medium is of particular use in the cultivation of cells requiring attachment under aeration. Methods of cultivation of such cells are also claimed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France		Mali
ΑŬ	Australia	GA	Gabon	MR	Mauritania
BB	Barbados	GB	United Kingdom	MW	Malawi
BE	Belgium	HU	Hungary	NL	Netherlands
BG	Bulgaria	II	Italy	NO	Norway
BJ	Benin	ĴР	Japan .	RO	Romania
BR	Brazil	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic	I.L.	of Korea	SE	Sweden
		KR	Republic of Korea	SN	Senegal
CG	Congo	LI	Liechtenstein	SU	Soviet Union
CH	Switzerland				
CM	Cameroon	LK	Sri Lanka	TD	Chad
DE	Germany, Federal Republic of	LU	Luxembourg	TG	Togo
DK	Denmark	MC	Модасо	US	United States of America
FI	Finland	MG	Madagascar		
	* minne				

AMENDED CLAIMS

[received by the International Bureau on 29 January 1988 (29.01.88); original claims 1-24 replaced by new claims 1-21 (3 pages)]

- 1. A method of culturing mammalian cells which require attachment comprising the following steps:
 - 1. Culturing the mammalian cells in a serum containing medium in a reaction vessel provided with a support medium to which the cells will attach until the cells have attached thereto and grown to the desired cell concentration;
 - Decanting the serum containing medium;
 - 3. Replacing the decanted medium with an essentially serum-free medium which includes in solution a non-toxic polymer which is capable of acting as a cell protective agent by reducing film drainage around the cells and the support medium; and
 - 4. Aerating the culture.
- 2. A method as claimed in claim 1 in which the non-toxic polymer present in the serum-free medium is selected from the group comprising polyethylene glycol and polyvinyl pyrollidone.
- 3. A method as claimed in claim 1 in which the non-toxic polymer present in the serum-free medium is a polymer which contains one or more alkylene oxides.
- 4. A method as claimed in claim 3 in which the alkylene oxide contains 2 or 3 carbon atoms.
- 5. A method as claimed in claim 3 or claim 4 in which the polymer is a copolymer of propylene oxide and ethylene oxide.
- 6. A method as claimed in any one of claims 3 to 5 in which the polymer of alkylene oxides is present in the medium in a concentration of 0.1 to 1.0% by weight.
- 7. A method as claimed in claim 1 in which the reaction vessel is divided into a culture region and a cell-free region, the culture region being separated from the cell-free region by means of a filter through which

culture medium but not cells may pass.

- 8. A method as claimed in Claim 7 in which the aeration of the culture is conducted by bubbling a gas into the cell-free region of the reaction vessel.
- 9. A method as claimed in Claim 8 in which the aeration of the culture is achieved by aerating essentially serum-free medium free of cells in an aeration chamber remote from the reaction vessel, the aerated medium then being transferred into the reaction vessel.
- 10. A method as claimed in claim 9 in which the essentially serum-free medium free of cells which is subjected to aeration is, at least in part, medium taken from the cell-free region of the reaction tank.
- 11. A method as claimed in any one of claims 1 to 7 in which the aeration is carried out by means of a gas lift present within the reaction vessel.
- 12. A method as claimed in any one of claims 1 to 11 in which the mammalian cell is genetically engineered to contain DNA encoding a polypeptide, such that growth of the cells results in production of the polypeptide.
- 13. A method as claimed in claim 12 in which the polypeptide is recovered and purified from culture medium taken from the cell-free region of the reaction vessel.
- 14. A method as claimed in claim 12 or claim 13 in which the DNA coding for the polypeptide is under the control of an inducible promoter, the promoter being induced by a component of the essentially serum-free medium.
- 15. A method as claimed in any one of claims 12 to 14 in which the mammalian cells are a continuous cell line.
- 16. A method as claimed in claim 15 in which the continuous cell line is Chinese hamster ovary cell line.
- 17. A method as claimed in any one of claims 12 to 16 in which the polypeptide is human growth hormone.
- 18. A method as claimed in any one of claims 1 to 17 in which the essentially serum-free medium is also

.· .

1

ess ntially protein-fr e.

- 19. A method as claimed in any one of claims 1 to 18 in which the culture is agitated in a manner such that shear forces generated are low.
- 20. A method as claimed in any one of claims 12 to 19 in which the polypeptide is recovered from culture medium continuously removed from the reaction vessel, and fresh essentially serum-free medium is continuously added to the reaction vessel.
- 21. A method of culturing a mammalian cell which require attachment substantially as hereinbefore described with reference to Example 1 or 2.
- 22. A method of culturing mammalian cells which require attachment comprising the following steps:
 - culturing the mammalian cellsin a serum containing medium in a reaction vessel provided with a support medium to which the cells will attach until the cells have attached thereto and grown to the desired cell concentration;
 - decanting the serum containing medium;
 - 3. replacing the decanted medium with an essentially serum-free medium; and
 - 4. aerating the culture in a manner such that the mammalian cells are not directly exposed to the aeration.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:		(11) Internati nal Publication Number:	WO 88/ 00967
C12N 5/00, 5/02, 15/00	A1	(43) International Publication Date: 11 Febr	ruary 1988 (11.02.88)

C1211 3/00, 3/02, 13/00	(4	43) International Publication Date: 11 February 1988 (11.02.88)
(21) International Application Number: PCT/AU (22) International Filing Date: 4 August 1987	J87/00248 (04.08.87)	main, NSW 2041 (AU).
(31) Priority Application Number: (32) Priority Date: 4 August 1986 (33) Priority Country:	PH 7266 (04.08.86) AU	pean patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent),
(71) Applicants (for all designated States except UNIVERSITY OF NEW SOUTH WALES [221-227 Anzac Parade, Kensington, NSW 20 GARVAN INSTITUTE OF MEDICAL RES [AU/AU]; 384 Victoria Street, Darlinghur 2010 (AU).	AÚ/AU]; 33 (AU). EARCH	Published With international search report.
(72) Inventors; and (75) Inventors/Applicants (for US only): GRAY, Pet [AU/AU]; 74 Cameron Street, Edgecliff, N. (AU). LAZARUS, Leslie [AU/AU]; 5 W Place, St. Ives, NSW 2075 (AU). MARSDE wick, Lloyd [AU/AU]; 109 Alsion Road, R. NSW 2031 (AU).	SW 2027 oodward N, War-	

(54) Title: SERUM FREE TISSUE CULTURE MEDIUM CONTAINING POLYMERIC CELL-PROTECTIVE AGENT

(57) Abstract

An essentially serum-free tissue culture medium characterised in that it includes in solution a polymer which acts as cell protective agent by reducing film drainage around cells. Preferred polymers are polyethylene glycol, polyvinyl pyrollidone and polymers containing one or more alkylene oxide. This tissue culture medium is of particular use in the cultivation of cells requiring attachment under aeration. Methods of cultivation of such cells are also claimed.

FOR THE PURPOSES OF INFORMATION ONLY

 $Codes \, used \, to \, identify \, States \, party \, to \, the \, PCT \, on \, the \, front \, pages \, of \, pamphlets \, publishing \, international \, applications \, under \, the \, PCT.$

AT	Austria	FR	France	ML	Mali
AU	Australia	GA	Gabon	MR	Mauritania
BB	Barbados	GB	United Kingdom	MW	Malawi
BE	Belgium.	HU	Hungary	NL	Netherlands
BG	Bulgaria	IT	Italy	NO	Norway
BJ	Benin	JP	Japan	RO	Romania
BR	Brazil	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	· SE	Sweden
CG	Congo	KR	Republic of Korea	SN	Senegal
CH	Switzerland	LI	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad.
DE	Germany, Federal Republic of	LU	Luxembourg	TG	Togo
DK	Denmark	MC	Моласо	US	United States of America
FI	Finland	MG	Madagascar	US	Cinica states of America

SERUM FREE TISSUE CULTURE MEDIUM CONTAINING POLYMERIC CELL-PROTECTIVE AGENT

The present invention relates to an improved culture medium for use in culturing mammalian cells requiring attachment, under aeration.

The present invention further relates to a method for producing polypeptides from mammalian cell lines into which DNA coding for the desired polypeptide has been inserted.

Developments in recombinant DNA technology have made it possible to insert DNA coding for a desired polypeptide 10 into the genome of continuous mammalian cell lines. These cell lines have certain advantages over the use of prokaryotic hosts such as E. coli. These advantages include the ability to secrete and glycosylate proteins, and the ability to process genetic material in an 15 identical fashion to that occurring in cells in the body. To be weighed against these advantages is the fact that the use of recombinant mammalian cells for the production of proteins involves large scale tissue culture, mostly in antibiotic free medium. Tissue culture requires more 20 precise environmental control and more rigorous design and operation of equipment to avoid contamination than does prokaryotic cell culture. A further disadvantage in the use of mammalian cells is that the medium used in the cultivation of these cells typically contains serum. The 25 presence of serum greatly adds to the complexity of isolation and purification of the desired polypeptide product from the culture media.

BACKGROUND ART

It is possible to place cells used in tissue culture
in two broad categories: (1) Those which grow free in
suspension culture, such as hybridoma cells, and (2) those
which grow attached to surfaces. The former cells can be
grown in suspension culture providing consideration is
taken of the fact that the cells do not possess cell walls
and are hence sensitive to shear forces. Cells in the

second category require increased surface area of cell growth in order to scale-up production. Various devic s have been described in the literature to provide this increased surface area, including devices providing glass honeycomb surfaces, surfaces wrapped as sheets and glass spheres of several mm diameter. A full review of the various approaches described in the literature appears in the paper by Glacken et al (1983) (1).

Another approach is to use smaller diameter spherical 10 particles which can be constructed from a range of materials including cross linked dextran, polystyrene or glass. The advantage of these particles, sometimes referred to as microcarriers, is that it is possible to achieve very high surface areas per unit mass of beads 15 (5000 cm²/gm) with particles with diameters of the order of 100-200 um. An extension of this approach is the use of porous microcarriers which allow the cells to grow inside the beads as well as on the outer surface. Another possibility is to use even smaller diameter latex beads 20 (of the order of 1 um diameter) to act as nucleation sites for the attachment of cells to these beads and to each other. Under certain conditions it may be possible to induce the cells to attach to each other to form agglomerates of cells or flocs. Once cells are attached to 25 either microcarriers or beads or flocs, it is possible to grow the cells in suspension culture. Equipment for growing cells in suspension culture is in routine use and the use of this equipment avoids the problem of developing technology using different equipment such as membrane 30 devices. One of the difficulties encountered, however, with cells grown on microcarriers is that at the cell densities achieved oxygen limitation may occur. While such a limitation may be overcome using known aeration techniques such aeration may cause the cells to be 35 disassociated from the support medium, when the culture

medium is serum-free.

DISCLOSURE OF THE INVENTION

The present inventors have developed a novel tissue culture medium, which enables the aeration of cultures of cells attached to a support medium, without the consequent detachment of the cells in the absence of serum. In addition, the present inventors have developed novel methods for the cultivation of cells requiring attachment.

In a first aspect the present invention consists in
an essentially serum-free tissue culture medium
characterized in that the culture medium includes in
solution a polymer which acts as a cell protective agent
by reducing film drainage around the cells.

Without wishing to be bound by scientific theory it
is believed that the polymer which acts as a cell
protective agent prevents the disassociation of the cells
from the support medium and lysis of the cells, when the
cells are exposed to direct aeration in the absence of
serum, by forming a protective film around the
cell/support agglomerate. It is believed that this
protective film around the cell/support agglomerate
prevents the film of culture medium which surrounds the
cells from draining away when the cell/support agglomerate
comes into contact with air bubbles. This draining of
culture medium is referred to as film drainage. It is
also believed that this film may provide a barrier which
protects the cells from physical damage caused by the air
bubbles.

It is preferred that the polymer is non-ionic and low 30 foaming.

In a preferred embodiment of the present invention the polymer is either polyethylene glycol, polyvinyl pyrollidone or a polymer containing one or more alkylene oxides. It is preferred that the alkylene oxides contain two or three carbon atoms. It is particularly preferred

15

30

that the polymer is a copolymer of propylene oxide and ethylene oxide.

In a further preferred embodiment of the present invention the polymer of alkylene oxides is present in a 5 concentration of 0.1 to 1.0%.

In another preferred embodiment of the present invention the tissue culture medium is essentially protein-free.

In a second aspect, the present invention consists in a method of culturing a mammalian cell which require 10 attachment comprising the following steps:

- Culturing the mammalian cells in a serum containing. 1. medium in a reaction vessel provided with a support medium to which the cells will attach until the cells have attached thereto;
- Decanting the serum containing medium; 2.
- Replacing the decanted medium with an essentially 3. serum-free medium; and
- Aerating the culture in a manner such that the 4. mammalian cells are not directly exposed to the 20 aeration, or directly aerating the culture containing the mammalian cells wherein when the aeration is direct the essentially serum-free medium includes in solution a polymer which acts as a cell protective agent by reducing film drainage around the cells. 25

In a preferred embodiment of this aspect of the present invention the reaction vessel is divided into a culture region and a cell-free region by means of a filter through which culture medium but not cells can pass.

Indirect aeration of the culture medium is carried out by bubbling gas into the essentially serum-free culture medium in an aeration chamber remote from the reaction vessel. The aerated medium is then transferred back into the reaction vessel. Alternatively, gas is 35 bubbled into a cell-free region of the reaction vessel.

- 5 -

When the serum-free culture medium includes the polym r which acts as a cell protective agent by reducing film drainage around the cells and the aeration is direct, it is preferred that aeration is conducted using an air 5 lift positioned within the reaction vessel.

In preferred embodiments of this aspect of the present invention the mammalian cells are a continuous cell line, particularly Chinese hamster ovary cell line, into which DNA coding for a desired polypeptide, 10 particularly human growth hormone (hGH), has been inserted.

Preferably the DNA coding the desired polypeptide is under the control of an inducible promoter, which is induced by a component of the essentially serum-free medium. Further, in a preferred embodiment the essentially serum-free medium is essentially protein-free.

The agitation of the culture may be achieved using an impellor such as an anchor type impellor at a rate at which shear forces generated are low. Obviously other impellor configurations can be used providing the shear 20 forces generated are low.

In a further preferred embodiment the essentially serum-free medium is added continuously and the desired polypeptide recovered continuously.

In order that the nature of the invention may be better understood preferred forms thereof are hereinafter described by way of example, with reference to the accompanying drawings, in which:-

Figures 1, 2 and 3 are representations of reactor systems used in preferred embodiments of the invention 30 illustrating various means of aerating the cultures.

Figs. 1 and 2 show indirect aeration of the culture medium whilst Fig. 3 shows direct aeration using an air lift positioned within the reaction vessel.

Example 1

15

25

35 A Chinese hamster ovary (CHO) cell line was 5

transfected with DNA coding for human growth hormone linked to a strong regulatable promoter/enhancer sequence. Further details of the genetic construction are given in WO 86/04920.

Cells were stored in liquid nitrogen ampoules, then reconstituted by growing in either Roux flasks or roller bottles. Cells were harvested using EDTA, washed in PBS and contacted with pretreated microcarriers. The microcarriers were either dextran based (Cytodex 1 and 2, Pharmacia or polystyrene based, Biosilan, Nunc). Seeding densities of 6-10 cells per carrier were found suitable and resulted in the cells attaching and growing with minimum lag and doubling times of approximately 18 hrs. The medium was a synthetic medium containing 5 or 10% 15 FCS. To build up the number of cells needed to inoculate larger scale vessels, it was possible to add fresh microcarriers to populations of confluent microcarriers and colonisation of the fresh carriers would occur. desired inoculum of microcarriers was transferred to the 20 configuration of the fermentor shown in Fig. 1.

Cells were grown in a serum containing medium until the microcarriers were confluent. The growth media was then removed, the beads being retained in the reactor by the 100 micron stainless steel screen shown in Fig. 1.

25 This screen, designated 10, divides the reaction vessel into a culture region 11 and cell-free region 12. The cells and beads were washed in 1 volume of phosphate buffered saline (PBS) and induction medium for hGH production added. This essentially serum-free medium

30 consisted of: APPENDIX 1

	INORGANIC SALTS	mg/1
	CaCl ₂ (anhyd.)	162.15
	CuSO ₄ .5H ₂ O	0.0013
35	$Fe(NO_3)_3.9H_20$	0.05

	FeSO ₄ .7H ₂ O	0.417
	KC1	352.5
	KH ₂ PO ₄	30.62
	MgCl ₂ (anhyd.)	23.33 ·
5	MgSO4 (anhyd.)	61.48
	NaCl	6958.5
	NaHCO ₃	1338
	$NaH_2 PO_4 (H_2 O)$	62.5
	ZnSO ₄ .7H ₂ O	0.432
10	Na ₂ HPO ₄ .7H ₂ O	125
	AMINO ACIDS	
	L-Alanine	9.0
	L-Asparagine.H ₂ O	15.0
	L-Arginine.HCl	253.0
15	L-Aspartic acid	13.0
	L-Cysteine HC1.H2O	35.13
	L-Cystine.2HC1	31.29
	L-Glutamic acid	15.00
•	L-Glutamine	438.0
20	Glycine	23.0
	L-histidine HCl.H2O	42.0
	L-Isoleucine	56.4
	L-Leucine	65.6
	L-Lysine HC1	109.5
25	L-Methionine	19.5
	L-Phenylalanine	38.0
	L-Proline	35.0
	L-Serine	31.5
	L-Threonine	59.4
30	L-Tryptophan	10.0
	L-Tyrosine (disodium salt)	59.83
	L-Valine	58.7
	VITAMINS	
	Ascorbic acid	7.5
35	Biotin	0.0037

	D-Ca pantothenate	2.119
	Choline chloride	8.98
	Folic acid	2.66
	i-Inositol	12.61
5	Nicotinamide	2.02
	Pyridoxal HC1	2.03
	Riboflavin	0.22
	Thiamine HC1	2.169
	Vitamin B ₁₂	0.68
10	OTHER COMPONENTS	
	D-Glucose	3151
	HEPES	3570
	Sodium pyruvate	110
	Hypoxanthine (disodium salt)	2.7
15	Linoleic acid	0.045
	Putrecine 2HC1	0.081
	Thioctic acid (Lipoic)	0.103
	Thymidine	0.35

Once the desired level of hGH had been reached, 20 continuous flow of fresh sterile medium was started, and product minus microcarriers retained by the stainless steel mesh removed at the same rate. With a cell count of 5×10^6 it was possible to maintain at dilution rate of .125 hr⁻¹ with an hGH concentration of 60mg/1. 25 impellor shown was of the anchor type, obviously other configurations of impellor could be used providing the shear forces were low and did not create too much shear and lyse the cells. Shear generated is a function both of the design of impellor and rotational speed. In the 30 configuration shown in Fig. 1, mass transfer of oxygen and CO2 has to occur across the surface of the culture. Thus it is possible to accurately determine the interfacial area for mass transfer. Most mammalian cell lines have oxygen requirements of the order of 0.1-1.0 35 millimoles $0_2/10^6$ cells/hr. This means that if

surface aeration alone is relied on for oxygen mass transfer, at a cell density of 10^6 cells/ml, oxygen limitation is likely to occur if the ratio of surface area for transfer to liquid volume is less than $0.15~\rm cm^{-1}$.

In order to maximise product concentrations and productivities of recombinant proteins it is necessary to operate at as high a concentration of cells as possible. In order to avoid oxygen limitation at higher cell densities it may be necessary to bubble a gas phase, 10 oxygen enriched if necessary, into the vessel. instance the gas is bubbled into the collection region of the reaction vessel. Another solution is to separate the production and mass transfer functions. This is shown in Fig. 2. Cells are grown in reactor 1. Medium from this 15 reactor, filtered to remove cells, is pumped into the aeration chamber 13 where CO, is removed and oxygen transferred to the medium. Oxygenated medium is then pumped back to the production vessel. The rate of circulation of medium and relative volumes of the two 20 reactors are functions of the cell concentration and the specific oxygen rates of the cells in reactor 1. It is possible to feed fresh sterile medium to the system and collect product on either a batch or continuous basis

using the addition and removal point shown in Figure 2.

25 For CHO cells at a density of 5 x 10⁶ cells/ml it is necessary to circulate the medium at a rate which replaces the volume of reactor 1 to 7 times per hour. With a kla value in the second reactor of 40 hr⁻¹, the oxygenation reactor may be as small as 1/10 the value of the

30 production reactor. By incorporating a second compartment inside reactor 1, consisting of a mesh which excludes the beads and cells, it is possible to oxygenate the medium within the compartment which is then mixed back with the bulk medium by the mixing action within the reactor providing oxygenated medium to cells throughout the

reactor. In this example cells attached to microcarriers have been described. Obviously the system could be operated where the cells had been immobilised by other methods, such as flocs, porous supports, micro encapsulation etc.

Example 2

This example makes use of the air lift principle, whereby a gas phase is used to promote low shear mixing as well as providing the gas phase for mass transfer. A gas 10 phase is bubbled into the bottom of one section of the reactor, (the riser section), which is connected at the top of the reactor to the downcomer section. introduction of the gas phase into the riser section lowers the density in this section, resulting in the 15 de-aerated higher density culture in the downcomer displacing the lower density culture hence promoting gentle mixing in the reactor. It is possible to join the downcomer and riser sections in several reactor configurations. One configuration, having the riser as a 20 concentric tube 14 inside a cylindrical reaction vessel 15 is shown in Fig. 3. This configuration has been used previously for the growth of hybridoma cells. It has been shown that it is possible to use the configuration for growth and product formation by CHO cells attached to microcarriers with gas rates as low as 0.02 VVM. phase used is basically air, which can be supplemented using the usual control methods with carbon dioxide or ammonia, to maintain culture pH. If necessary, oxygen can also be added to the gas phase to maintain the desired 30 level of dissolved oxygen without using excessively high gassing rates. At the low gassing rates used in this work, foaming problems are minimal; however if foaming occurs in the initial stages, e.g. when the cells are growing on serum containing medium, it is possible to 35 control it with the metered addition (using a conductivity sensor or timed addition) of a silicone based antifoam
e.g. antifoam C, or other antifoams if they do not
interfere with cell growth or product formation. Once the
growth stage has occurred and the microcarrier beads are
confluent, the cells are washed in 1 volume of PBS, using
a stainless steel mesh to maintain the microcarriers. The
reactor is then filled with essentially serum-free medium
containing a copolymer of propylene oxide and ethylene
oxide (Pluriol PE 6800) for the production of hGH. This
medium consisted of the following:

APPENDIX 2

Appendix 2

	nggera a	
	INORGANIC SALTS	mg/1
	CaCl ₂ (anhyd.)	162.15
15	CuSO ₄ .5H ₂ O	0.0013
	$Fe(NO_3)_3.9H_20$	0.05
	FeSO ₄ .7H ₂ O	0.417
	KC1	352.5
	KH ₂ PO ₄	30.62
20	MgCl ₂ (anhyd.)	23.33
	MgSO4 (anhyd.)	61.48
	NaC1	6958.5
	NaHCO ₃	1338
	$NaH_2PO_4(H_2O)$	62.5
25	ZnSO ₄ .7H ₂ O	0.432
	Na ₂ HPO ₄ .7H ₂ O	125
	AMINO ACIDS	
	L-Alanine	9.0
	L-Asparagine.H2O	15.0
30	L-Arginine.HCl	253.0
	L-Aspartic acid	13.0
	L-Cysteine HC1.H2O	35.13
	L-Cystine.2HC1	31.29
	L-Glutamic acid	15.00
35	L-Glutamine	438.0

	•	
	Glycine	23.0
	L-histidine HC1.H ₂ O	42.0
	L-Isoleucine	56.4
	L-Leucine	65.6
5	L-Lysine HCl	109.5
	L-Methionine	19.5
	L-Phenylalanine	38.0
	L-Proline	35.0
	L-Serine	31.5
10	L-Threonine	59.4
	L-Tryptophan	10.0
	L-Tyrosine (disodium salt)	59.83
	L-Valine	58.7
	VITAMINS	
15	Ascorbic acid	7.5
	Biotin	0.0037
	D-Ca pantothenate	2.119
	Choline chloride	8.98
	Folic acid	2.66
20	i-Inositol	12.61
	Nicotinamide	2.02
	Pyridoxal HC1	2.03
	Riboflavin	0.22
	Thiamine HC1	2.169
25	Vitamin B ₁₂	0.68
	OTHER COMPONENTS	
	D-Glucose	3151
	HEPES	3570
	Sodium pyruvate	110
30	Hypoxanthine (disodium salt)	2.7
	Linoleic acid	0.045
	Putrecine 2HC1	0.081
	Thioctic acid (Lipoic)	0.103
	Thymidine	0.35
35	Pluriol PE 6800	2000

WO 88/00967 PCT/AU87/00248

- 13 -

With a cell concentration of 10⁷ cells/ml, it was possible to run the reactor in a continuous fashion and produce a product stream at a dilution rate of 0.15 hr⁻¹ and an hGH concentration of 80 mg/l. The reactor could slso be run in the fed batch or repeated batch mode, where part or all of the contents could be removed from the reactor via the stainless steel mesh, and fresh media replaced either in a batch or continuous fashion. Using this technique, it was possible to obtain product stream with hGH concentrations up to 250 mg/litre.

In this example it is possible to bubble a gas directly in the culture medium as the medium contains the non-toxic, low-foaming, non-ionic compound Pluriol PE 6800. This compound is obtained by the copolymerization of propylene oxide and ethylene oxide. The presence of this compound in the culture medium enables aeration without causing the cells to disassociate from the support medium.

CLAIMS:

- 1. An essentially serum-free tissue culture medium characterized in that the culture medium includes in solution a non-toxic polymer which acts as a cell protective agent by reducing film drainage around the cells.
- 2. An essential serum-free tissue culture medium as claimed in claim 1 in which the polymer is either polyethylene glycol or polyvinyl pyrollidone.
- 3. An essential serum-free tissue culture medium as claimed in claim 1 in which the polymer is a polymer which contains one or more alkylene oxides.
- 4. An essentially serum-free tissue culture medium as claimed in claim 3 in which the alkylene oxides contain 2 or 3 carbon atoms.
- 5. An essentially serum-free tissue culture medium as claimed in claim 3 or claim 4 in which the polymer is a copolymer of propylene oxide and ethylene oxide.
- 6. An essentially serum-free tissue culture medium as claimed in any one of claims 3 to 5 in which the polymer of alkylene oxides is present in a concentration of 0.1 to 1.0%.
- 7. An essentially serum-free tissue culture medium as claimed in any one of claims 1 to 6 in which the tissue culture medium is essentially protein-free.
- 8. A method of culturing a mammalian cell which requires attachment comprising the following steps:
 - 1. Culturing the mammalian cells in a serum containing medium in a reaction vessel provided with a support medium to which the cells will attach until the cells have attached thereto;
 - 2. Decanting the serum containing medium;
 - 3. Replacing the decanted medium with an essentially serum-free medium; and
 - 4. Aerating the culture in a manner such that the

mammalian cells are not directly exposed to the aeration, or directly aerating the culture containing the mammalian cells wherein when the aeration is direct the essentially serum-free medium is as claimed in any one of claims 1 to 7.

- 9. A method as claimed in claim 8 in which the reaction vessel is divided into a culture region and a cell-free region, the culture region being separated from the cell-free region by means of a filter through which culture medium but not cells may pass.
- 10. A method as claimed in claim 8 or claim 9 in which the aeration of the culture is conducted by bubbling a gas into the cell-free region of the reaction vessel.
- 11. A method as claimed in claim 8 or claim 9 in which the aeration of the culture is achieved by aerating essentially serum-free medium free of cells in an aeration chamber remote from the reaction vessel, the aerated medium then being transferred into the reaction vessel.
- 12. A method as claimed in claim 11 in which the essentially serum-free medium free of cells which is subjected to aeration is, at least in part, medium taken from the cell-free region of the reaction tank.
- 13. A method as claimed in claim 8 or claim 9 in which the aeration is carried by means of a lift present within the reaction vessel.
- 14. A method as claimed in any one of claims 8 to 13 in which the mammalian cell is genetically engineered to contain DNA encoding a polypeptide, such that growth of the cells results in production of the polypeptide.
- 15. A method as claimed in claim 14 in which the polypeptide is recovered and purified from culture medium taken from the cell-free region of the reaction vessel.
- 16. A method as claimed in claim 14 or claim 15 in which the DNA coding for the polypeptide is under the control of an inducible promoter, the promoter being induced by a

component of the essentially serum-free medium.

- 17. A method as claimed in any one of claims 14 to 16 in which the mammalian cells are a continuous cell line.
- 18. A method as claimed in claim 17 in which the continuous cell line is Chinese hamster ovary cell line.
- 19. A method as claimed in any one of claims 14 to 18 in which the polypeptide is human growth hormone.
- 20. A method as claimed in any one of claims 8 to 19 in which the essentially serum-free medium is also essentially protein-free.
- 21. A method as claimed in any one of claims 8 to 20 in which the culture is agitated in a manner such that shear forces generated are low.
- 22. A method as claimed in any one of claims 14 to 21 in which the polypeptide is recovered from culture medium continuously removed from the reaction vessel, and fresh essentially serum-free medium is continuously added to the reaction vessel.
- 23. An essentially serum-free tissue culture medium substantially as hereinbefore described with reference to Example 2.
- 24. A method of culturing a mammalian cell which require attachment substantially as hereinbefore described with reference to Example 1 or 2.

```
AMENDED CLAIMS

AMENDED CLAIMS

AMENDED CLAIMS

[1988 (29,01,88);

AMENDED CLAIMS

[1988 (20,01,88);

AMENDED CLAIMS

[19
                                                                                                                                                     A nethod of culturing mammalian cells which require
                                                                                                                                                                                                                                      CULTURING THE Memmelian Cells in a serum
                                                                                                                                                                                                                              Culturing the nammalian colle in a serum
                                                                                                                     a merene or contributed the following states
                                                                                                                                                                                                                                                  with a support modium to which the colls will
                                                                                                                                                                                                                                                             With 8 Support medium to which the cells have stached thereto and attach until the cells have
WO 88/00967
                                                                                                                                                                                                                                                                       grown to the destrad cell concentration;
                                                                                                                                                                                                                                                                                 Decenting the serum containing medium)
                                                                                                                                                                                                                                                                                                   Replacing the decembed medium which is comen to a
                                                                                                                                                                                                                                                                                          Replacing the decembed medium with an
                                                                                                                                                                                                                                                                                                           essentially secum-tree medium which is capable of solution a non-toxic polymer which is capable of solution a non-toxic polymer which is capable of solution a non-toxic polymer which is capable of solution as a coll non-toxic polymer which is capable of solution as a coll non-toxic polymer which is capable of solution as a coll non-toxic polymer which is capable of solution as a coll non-toxic polymer which is capable of solution as a coll non-toxic polymer which is capable of solution as a coll non-toxic polymer which is capable of solution as a coll non-toxic polymer which is capable of solution as a coll non-toxic polymer which is capable of solution as a coll non-toxic polymer which is capable of toxic polymer which is capable of the coll non-toxic polymer which is capable of the 
                                                                                                                                                                                                                                                                                                                       BOLUELON & NOUNECOXIC POLYMER WALCH IS CAPACIE!
                                                                                                                                                                                                                                                                                                                                acting as a coll protective agent by requesting film drainage around the cells and the support
                                                                                                                                                                                                                                                                                                          A Rethod as Claimed in the serim from modium is selected from
                                                                                                                                                                                                                                                                     2. A method as claimed in claim 1 in which the non-towic from polymer present in the serum-free medium is selected from polymer present in the nolverhylene given and colverhylene from the group comprising polymerhylene given and colverhylene given the group comprising polymerhylene 
                                                                                                                                                                                                                                          2.
                                                                                                                                                                                                                                                  3.
                                                                                                                                                                                                                                                                              bolyker breeser in the serim-tree medium is selected tre
                                                                                                                                                                                                                                                                                                                                               A method as claimed in claim 1 in which the non-toxic
                                                                                                                                                                                                                                                                                                           3. A method as claimed in claim is a polymer

Polymer present in the serimetree medium is a polymer

which contains one or more alreadens out des
                                                                                                                                                                                                                                                                                                                                                                           n contains one or more alkylene oxides, the alkylene
A method as claimed in claim 3 in which the alkylene
A method as claimed in a men a m
                                                                                                                                                                                                                                                                                                                       Which contains one or note sixteen manner of morning to the contains of the contains of the contains the cont
                                                                                                                                                                                                                                                                                                                                                                                                E CONTAINS 2 OF 3 CARBON STORM, 3 OF CLAIM 4 IN Which
                                                                                                                                                                                                                                                                                                                                                            5. A method as claimed in claim 3 or claim 4 in which the polymer is a copolymer of propylene oxide and ethylene oxide.
                                                                                                                                                                                                                                                                                              Pyrollidone,
                                                                                                                                                                                                                                                                                                                                          oxide contains 2 or 3 carbon arons.
                                                                                                                                                                                                                                                                                                                                                                                                                               A mathod as claimed in any one of claims 3 to 5 in
                                                                                                                                                                                                                                                                                                                                                                                           6. Which the Polymer of alkylene oxides the madium is a comment was in any one or claims 3 to 5 in the which the Polymer of alkylene oxides the madium is a comment was in a not one or claims 3 to 5 in the which the Polymer of alkylene oxides the madium is a comment was in a not one or claims 3 to 5 in the which the Polymer of a not one or claims 3 to 5 in the which the polymer of alkylene oxides the madium of the present in the madium of the polymer of
                                                                                                                                                                                                                                                                                                                                                                                                                                                         um in a concentration of 0.2 to 1.0% by weight reaction in claim worken and a religion and a rel
                                                                                                                                                                                                                                                                                                                                                                                                   which the polymer or alkylene oxides is present in the medium in a concentration of 0.1 to 1.00 by weight.
                                                                                                                                                                                                                                                                                                                                                                                                                      T. A method as claimed in claim region and a cell-free

Typesel is divided into a culture region had a cell-free

Typesel is divided into a culture region.
                                                                                                                                                                                                                                                                                                                                                                                                                                Tegion; the culture region being separated from which
                                                                                                                                                                                                                                                                                                                                                                                                                                         region, the culture region being separated frough which
```

culture medium but not cells may pass.

- 8. A method as claimed in Claim 7 in which the aeration of the culture is conducted by bubbling a gas into the cell-free region of the reaction vessel.
- 9. A method as claimed in Claim 8 in which the agration of the culture is achieved by agrating essentially serum-free medium free of cells in an agration chamber remote from the reaction vessel, the agrated medium then being transferred into the reaction vessel.
- 10. A method as claimed in claim 9 in which the essentially serum-free medium free of cells which is subjected to aeration is, at least in part, medium taken from the cell-free region of the reaction tank.
- 11. A method as claimed in any one of claims 1 to 7 in which the aeration is carried out by means of a gas lift present within the reaction vessel.
- 12. A method as claimed in any one of claims 1 to 11 in which the mammalian cell is genetically engineered to contain DNA encoding a polypeptide, such that growth of the cells results in production of the polypeptide.
- 13. A method as claimed in claim 12 in which the polypeptide is recovered and purified from culture medium taken from the cell-free region of the reaction vessel.
- 14. A method as claimed in claim 12 or claim 13 in which the DNA coding for the polypeptide is under the control of an inducible promoter, the promoter being induced by a component of the essentially serum-free medium.
- 15. A method as claimed in any one of claims 12 to 14 in which the mammalian cells are a continuous cell line.
- 16. A method as claimed in claim 15 in which the continuous cell line is Chinese hamster overy cell line.
- 17. A method as claimed in any one of claims 12 to 16 in which the polypeptide is human growth hormone.
- 18. A method as claimed in any one of claims 1 to 17 in which the assentially serum-free medium is also

WO 88/00967 19 PCT/AU87/00248

ess ntially protein-free.

- 19. A method as claim d in any one of claims 1 to 18 in which the culture is agitated in a manner such that shear forces generated are low.
- 20. A method as claimed in any one of claims 12 to 19 in which the polypeptide is recovered from culture medium continuously removed from the reaction vessel, and fresh essentially serum-free medium is continuously added to the reaction vessel.
- 21. A method of culturing a mammalian cell which require attachment substantially as hereinbefore described with reference to Example 1 or 2.
- 22. A method of culturing mammalian cells which require attachment comprising the following steps:
 - culturing the mammalian cells in a serum containing medium in a reaction vessel provided with a support medium to which the cells will attach until the cells have attached thereto and grown to the desired cell concentration;
 - decanting the serum containing medium;
 - 3. replacing the decanted medium with an essentially serum-free medium; and
 - 4. aerating the culture in a manner such that the mammalian cells are not directly exposed to the aeration.

113

WO 88/00967 Figure 1.

Figure 2.

Reactor 1

Reactor 2

Figure 3.

INTERNATIONAL SEARCH REPORT

International Application No PCT/AU 87/00248

1 444	SEISIFATION OF SHEIF OF THE PARTY		.,, 3,,00240
	SSIFICATION OF SUBJECT MATTER (1 several a ling to International Patent Classification (IPC) or to Doth		
ł			
		/UU 	
11. 7126	DS SEARCHED	umentation Searched ?	
Classifica	ation System	Classification Sympols	
	IPC C12N 5/00, 5/02 US C1. 435/41		
		ner then Minimum Documentation ents are Included in the Fields Searched *	
A	U : IPC as above		
III. DOC	UMENTS CONSIDERED TO BE RELEVANT	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	
Category .	Citation of Occument, 12 with indication, where a	ppropriets, of the relevant passages 12	Relevant to Claim No. 13
X	AU,B, 54456/80 (542303) (NAT DEVELOPMENT CORPORATION) 17 See page 6, lines 4-10	IONAL RESEARCH July 1980 (17.07.80)	. (1-2)
Ρ,Χ	Derwent Abstract Accession no Class BO4, JP,A, 2074284 (TEX (06.04.87)	o. 87-133257/19, IJIN KK) 6 April 1987	(1-2)
Х,Ү	Developments in Biological St 1983, published 1984 by Karge 'Oxygen in Human Lymphoblasto and Effect of Polymers in Agi Cultures', pages 93-102, espe	er (Basel) A. Mizraĥi pid Cell line Cultures itated and Aerated	(1-24)
ŗ	US,A, 4390623 (FRABRICIUS et (28.06.83) See claim 1	al) 28 June 1983	(8)
Α	AU,A, 38571/85 (DAMON BIOTECH (22.08.85)	, INC.) 22 August 1985	
Α	AU,A, 22326/83 (BIO-RESPONSE, (21.06.84)	INC.) 21 June 1984	
A _.	AU,B, 75269/81 (546555) (CHLO 22 April 1982 (22.04.82)	RELLA INDUSTRY CO. LTD)	
"A" doct cont filing "L" doct which citat "O" doct othe "P" doct its its its its its its its its its it	i categores of cited documents: 19 ument defining the general state of the art which is not sidered to be of particular relevance or document but published on or after the international graph which may throw doubts on priority claim(s) or th is cited to establish the publication date of another tion or other special reason (as specified) ument referring to an oral disclosure, use, eshibition or traeans ument published prior to the international filing date but than the priority date claimed	"T" later document published after the removing date and not in conflicted to understand the principle invention. "X" document of particular relevant cannot be considered novel or involve at inventive state. "Y" document of particular relevant cannot be considered to involve a document at combined with one ments, such combination being on the art. "A" document member of the same p	ct with the application out in theory underlying the set, the claimed invention cannot be considered to e; the claimed invention in inventive step when the er more other such didustries to a person shilled stent family
Date of the	Actual Completion of the International Search	Date of Mailing of this International Sec	
17 No	vember 1987 (17.11,87)	i C	EMBER 1987
	n Searching Authority Pralian Patent Office	Signature of Authorized Officer	D.J. SHEPHERD

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL APPLICATION NO. PCT/AU 87 / 00248

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report	Patent Family Members	
AU 54456/80	EP 14519 JP 55113722 US 4350683	
US 4390623	EP 49611 JP 58029714	
AU 38571/85	DE 3504748 FR 2559500 GB 2154246 JP 60199380	
AU 22326/83	EP 112155 JP 59175877	
AU 75269/81	EP 49632 JP 57065179 US 4431738	

END OF ANNEX