Twierdzenie 1 Niech $f: U \subset \mathbb{R}^n \to \mathbb{R}^1, f \in \mathcal{C}^2(U), G: U_2 \subset \mathbb{R}^n \to \mathbb{R}^m, G \in \mathcal{C}^2(U_2), \exists G(x_0) = 0, G'(x_0)$ - ma rząd maksymalny (m) oraz

$$\exists \Lambda = [\lambda_1, \dots, \lambda_m], \lambda_i \in \mathbb{R}, f'(x_0) - \Lambda G'(x_0) = 0.$$

to jeżeli

$$(f''(x_0) - \Lambda G''(x_0))(h_{\parallel}, h_{\parallel}) > 0, h_{\parallel} \stackrel{def}{=} \{G'(x_0)h_{\parallel} = 0\}.$$

to f posiada w x_0 minimum lokalne (< 0, to maksimum lokalne) na zbiorze $M = \{x \in \mathbb{R}^n, G(x) = 0\}$

Twierdzenie 2 Niech $[a,b] \subset \mathbb{R}$, $\mathcal{O} \subset \mathbb{R}^n$, \mathcal{O} - domknięty i $f:[a,b] \times \mathcal{O} \to \mathcal{O}$ takie, że f - ciągła na $[a,b] \times \mathcal{O}$ oraz f spełnia warunek Lipschitza na \mathcal{O} , to znaczy:

$$\exists \ \ \forall \ \forall \ \forall \ \exists \ \ x, x' \in \mathcal{O} \| f(t, x) - f(t, x') \| \leqslant L \| x - x' \|.$$

W'owczas

$$\underset{t_0 \in [a,b]}{\forall} . \ \underset{x_0 \in \mathcal{O}}{\forall} . \ \exists, \ \dot{z}e \ dla \ t \in]t_0 - \varepsilon, t_0 + \varepsilon[$$

równanie ma jednoznaczne rozwiązania, które są ciągłe ze względu na x_0

$$\begin{cases} \frac{dx}{dt} = f(t, x) \\ x(t_0) = x_0 \end{cases} \tag{1}$$

Twierdzenie 3 Jeżeli odwzorowania

$$t \in [a, b] \to A(t)$$

 $t \in [a, b] \to b(t)$.

Gdzie $A(t) \in L(x,x), b(t) : \mathbb{R}^1 \to X$ są ciągłe, to równanie

$$\frac{d}{dt}x(t) = A(t)x(t) + b(t), \quad x(t_0) = x_0.$$

Ma dla dowolnych $t_0 \in [a,b], x_0 \in X$ jednoznacznie określone rozwiązanie na $t \in]a,b[$ Czym to się różni od twierdzenia o jednoznaczności warunku Cauchy? Nie ma tutaj mowy o żadnej lipszycowalności. Zawężono za to klasę funkcji występującej w równaniu. Zamiast $]t_0 - \varepsilon, t_0 + \varepsilon[\times \mathcal{O}, mamy]a,b[\times X]$

Twierdzenie 4 (Liouville)

 $Je\dot{z}eli\ R(t,t_0)$ - $rezolwenta\ dla\ problemu$

$$\frac{dx}{dt} = A(x)x(t)$$
$$x(t_0) = x_0.$$

 $i \ x \in \mathbb{R}^n$, to $w(t) = w(t_0)e^{\int_{t_0}^t tr(A(s))ds}$, $gdzie \ w(t) = \det R(t,t_0) \ i \ w(t)$ nazywamy wrońskianem.

Twierdzenie 5 (Lebesque) Niech P - zbiór nieciągłości funkcji $f: D \to \mathbb{R}$, f - ograniczona na D, D - . . . jest zbiorem miary Lebesque'a zera \iff f - całkowalna na D.

Stwierdzenie 1 $(X - domknięty, ograniczony) \iff (X - zbiór zwarty)$

Twierdzenie 6 (Lebesgue'a) niech D - kostka, $D \subset \mathbb{R}^n$, $f: D \to \mathbb{R}$, f - ograniczona. Wówczas f - (całkowalna na D) \iff (zbiór nieciągłości funkcji f jest miary Lebesgue'a zero)

Twierdzenie 7 (Fubiniego)

Niech $f: A \times B \to \mathbb{R}$. $A \subset \mathbb{R}^l, B \subset \mathbb{R}^k, A \times B \subset \mathbb{R}^n$, f - ograniczona i całkowalna na $A \times B$. Oznaczmy $x^l \in A, y^k \in B$, A, B - kostki.

Niech

$$\varphi(x) = \overline{\int_B} f(x^l, y^k) dy^k, \psi(x) = \underline{\int_B} f(x^l, y^k) dy^k.$$

W'owczas

$$\int_{A\times B} f = \int_A \varphi = \int_A \psi.$$

 ${\it Uwaga~1}~{\it calkowalnośc}~{\it na}~{\it A} \times {\it B}~{\it nie}~{\it oznacza}~{\it calkowalności}~{\it na}~{\it np.}~{\it B}.$

Twierdzenie 8 (O zamianie zmiennych)

Niech Θ, Ω - zbiory otwarte $w \mathbb{R}^n$ i $\xi : \Omega \to \Theta$, $f : \Theta \to \mathbb{R}$, f - ograniczona i całkowalna. ξ - klasy \mathcal{C}^1 na Ω , ξ^{-1} klasy \mathcal{C}^1 na Θ . Wtedy

$$\int_{\Omega} f(x)dx = \int_{\Omega} f(\xi(t))|\det \xi'(t)|dt.$$
 (2)

 $x = (x^1, \dots, x^n) \in \Theta, t = (t^1, \dots, t^n) \in \Omega$

Twierdzenie 9 Jeżeli f - różniczkowalna w $x_0 \in U$, to dla dowolnego $e \in U$,

$$\nabla_e f(x_0) = f'(x_0)e$$

Twierdzenie 10 Niech $O \subset \mathbb{R}^n, O$ - otwarty. $f: O \to Y, x_0 \in O$. Jeżeli istnieją pochodne cząstkowe $\frac{\partial}{\partial x_i} f, i = 1, \ldots, n$ i są ciągłe w x_0 , wtedy $\bigvee_{h \in \mathbb{R}^n} f(x_0 + h) - f(x_0) = \sum_{i=1}^n \frac{\partial f}{\partial x_i} h^i + r(x_0, h),$ gdzie $\frac{r(x_0, h)}{||h||} \to 0$

Twierdzenie 11 Niech $G:U\to Y, U\subset X, U$ - otwarte , X - przestrzeń wektorowa unormowana, $F:G(U)\to Z, G(U)\subset V$

G - różniczkowalna w $x_0 \in U$, F - różniczkowalna w $G(x_0) \in U$.

$$G(x_0 + h_1) - G(x_0) = G'(x_0)h_1 + r_1(x_0, h_1), \ gdy \ \frac{r(x_0, h_1)}{||h_1||_x} \to 0$$

$$F(y_0 + h_2) - F(y_0) = F'(y_0)h_2 + r_2(y_0, h_2), \ gdy \ \frac{r(y_0, h_2)}{||h_2||_y} \to 0$$

Wówczas:
$$(F \circ G)$$
 - różniczkowalna w x_0
oraz $(F \circ G)'(x_0) = F'(x)|_{x=G(x_0)} G'(x_0)$

Twierdzenie 12 Niech $f: \mathcal{O} \to \mathbb{R}, \mathcal{O} \subset \mathbb{R}^n$, otwarty i $f \in \mathcal{C}^2(\mathcal{O})$, wówczas

$$\frac{\partial^2 f}{\partial x^i \partial x^j} = \frac{\partial^2 f}{\partial x^j \partial x^i}; i,j=1,\ldots,n$$

Stwierdzenie 2 jeżeli $f: \mathcal{O} \to \mathbb{R}, \mathcal{O}$ - otwarty, $x_0 \in \mathcal{O}, f$ - posiada w x_0 minimum lub maksimum lokalne, to

$$\frac{\partial f}{\partial x^i}(x_0) = 0, i = 1, \dots, n$$

(działa tylko w prawo, bo możliwe punkty przegięcia ((siodła)))

Twierdzenie 13 Niech $f: \mathcal{O} \to \mathbb{R}$, $\mathcal{O} \subset \mathbb{R}^n$, $x_0 \in \mathcal{O}$, \mathcal{O} - otwarty, a f - klasy $C^{2p}(\mathcal{O})$ oraz $f'(x_0) = 0, f''(x_0) = 0, \ldots, f^{(2p-1)}(x_0) = 0i$

$$\exists_{c>0} \exists_{n>0} \exists_{h \in K(x_0, \eta)} : \sum_{i_1=1}^{n} \frac{\partial^{(2p)} f}{\partial x^{i_1} \dots \partial x^{i_{2p}}} (x_0) h^{i_1} \dots h^{i_{2p}} \geqslant c ||h||^{2p} (\leqslant c ||h||^{2p})$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

to f ma $w x_0$ minimum (maksimum) lokalne.

Twierdzenie 14 Twierdzenie (L - ograniczone) \iff (L - ciągle)

Stwierdzenie 3 Niech $f: U \subset \mathbb{R}^m \to \mathbb{R}^n, U$ - otwarte, $wypukly\exists.\ \forall ||f'(x)|| \leqslant M$, to $\forall ||f(b) - f(a)||_n \leqslant M||b - a||_m$ (jakiekolwiek skojarzenia z Twierdzeniem Lagrange zupelnie przypadkowe *wink* *wink*)

Twierdzenie 15 Jeżeli ciąg $\{x_0, P(x_0), \dots\}$ - zbieżny i P - ciągle, to jest on zbieżny do punktu stalego.

Twierdzenie 16 (Zasada Banacha o lustrach)

 $\textit{Jeżeli}\ P: X \to X, P$ - $\textit{zwężające},\ to$

1.
$$\forall \{x_0, P(x_0), P(P(x_0)), \dots\}$$
 - Zbieżny do punktu stalego \tilde{x} (3)

2. Istnieje tylko jedno
$$\tilde{x}$$
 (4)

3.
$$\forall d(x_m, \tilde{x}) < \frac{q^m}{1 - q} d(x_1, x_0)$$
 (5)

Twierdzenie 17 (o lokalnej odwracalności)

Niech $f: E \to E, E$ - otwarty, $E \subset \mathbb{R}^N, f$ - różniczkowalna w sposób ciągły na $E.(f - klasy \mathcal{C}^1(E))$ $\exists a.b \in E$: $f(a) = b \wedge f'(a)$ - odwracalna $(det(f'(a)) \neq 0)$, to:

1.
$$\exists \bigcup_{U,V \subset E}, \exists \bigcup_{a \in U, b \in V}, U, V$$
 - otwarte, f - bijekcja między U, V

2.
$$\exists \ _{g:V \rightarrow U}. \ \forall _{x \in V}, f(g(x)) = x, g$$
- ciągła i różniczkowalna na V

Twierdzenie 18 (o funkcji uwikłanej)

Niech $H: E \subset \mathbb{R}^{n+m} \to \mathbb{R}^m, H \in \mathcal{C}^1$ na E. $(x_0, y_0) \in E, H(x_0, y_0) = 0, (x_0, y_0) = (x_0^1, \dots, x_0^n, y_0^1, \dots, y_0^m), H$ $\hbox{-} \ odwracalna.$

Wốwczas istnieje $U \subset E$ takie, że $(x_0, y_0) \in U$, $\underset{W \subset \mathbb{R}^n}{\exists}$, że $x_0 \in W$, $\underset{x \in W}{\forall} \underset{y}{\exists}! H(x, y) = 0, (x, y) \in U$. Jeżeli $y = \varphi(x)$, to $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ i $\varphi \in \mathcal{C}^1$ na W. $\varphi'(x) = -(H'_y)^{-1} H'_x$