MW 23.01.10

Schemat metody syntezy naonoruruek węglowych metodą elektrołukową w zeszycie

Metody otrzymywania nanorurek węglowych

• W łuku elektrycznym miedzy elektrodami węglowymi Typowe warunki: 50-100 A, 20-25V, ciśnienie helu ok. 50 kPa. Temperatura ~4000 K - odparowanie materiału elektrody dodatniej (anody), na katodzie osadzają się wiązki nanorurek zamkniętych o długości ~1 μm i średnicy wewnętrznej 1-3 nm a zewnętrznej 2-25 nm. Jednościenne nanorurki - gdy rdzeń elektrody dodatniej wypełniony

metalem (Fe, Co).

Podczas elektrołukowego odparowania grafitu na katodzie osadzają się nanorurki (zanieczyszczenia węgiel turbostratyczny i węgiel amorficzny)

MWCNT $d_{wew} = 1 - 3nm, \; d_{zew} < 25nm$ SWCNT katalizator Fe,Co

Na kolokwium zwrócić uwagę na

- tabelka charakterystyki rurek węglowych i włókien węglowych
- kształt izoterm
- schematy aktywacji
- model materiału węglowego o strukturze turbostratycznej
- struktura grafitu z wartościami

Odparowanie laserowe grafitu (laser ablation) w obecności katalizatorów. Metoda preferowana dla SWCN.

Odparowanie w atmosferze obojętnej laserowe kompozytowej elektrody 1,2% Co lub Ni w graficie w piecu ogrzanym do 1200°C pozwala otrzymać zamknięte SWCNT z wydajnością 70-90% odparowanego grafitu.

MWCNT otrzymywane przez odparowanie grafitu bez katalizatora są znacznie krótsze niż w metodzie łukowej.

Proces w piecu pod argonem (do schematu dorysować strzałki argonu tam gdzie wchodzi wiązka lasera). Na elemencie chłodzącym osadzają się nanorurki

Metoda CCVD - catalytic chemical vapour deposition

Prekursor węgla: benzen, toluen, acetylen, etylen, metan, propan w gazie obojętnym lub w wodorze

Katalizator: Fe, Co, ${f Ni}$, Mo na Al_2O_3 , SiO_2 , MgO, Ni-Cu, Ni-Fe, folie metalowe

Temperatura syntezy 400-1000 ^{o}C

Etapy procesu syntezy nanorurek i nanowłókien węglowych w procesie CVD

- Preparatyka katalizatora w formie nanocząstek osadzonych nośniku
 - dyspersja katalizatora (współstrącanie, impregnacja sucha lub mokra)
 - obróbka termiczna katalizatora w atmosferze inertnej: N₂, He
 - redukcja katalizatora obróbka termiczna w atmosferze H₂
 Zastosowanie folii z odpowiedniego metalu
- Proces katalitycznego chemicznego osadzania warstw grafenowych z fazy gazowej
- Oczyszczanie nanorurek/nanowłókien węglowych
- · Funkcjonalizacja nanorurek/nanowłókien

(redukcja katalizatora - świeży katalizator jest w formie tlenkowej, trzeba go zredukować do formy metalicznej)

Mechanizm syntezy CNF metodą CCVD

- dysocjacja prekursora węgla na powierzchni katalizatora $C_2H_2
 ightarrow 2C + H_2$
- atomy węgla dyfundują przez cząstki metalu
- proces osadzania warstw grafenowych syntezy z fazy gazowej prekursora węglowego

Mechanizm wzrostu CNF dla struktury ościowej w zeszycie

Czynniki wpływające na strukturę i morfologię nanowłókien węglowych:

- katalizator
 - metal aktywny
 - nośnik
- prekursor węgla
- gaz nośny
- obecność wodoru
- szybkość przepływu gazów
- temperatura
- czas syntezy

Wpływ temperatury syntezy na strukturę nanowłókien węglowych

CNFs zsyntezowanych metodą CVD na katalizatorze Ni/Y-zeolit w temperaturze : a) 450° C, b) 550° C, c) 650° C (SEM).

Amaya Romero et al., Applied Catalysis A: General 319 (2007) 246-258

Metody oczyszczania nanorurek węglowych

- usunięcie katalizatora i nośnika
 - ekstrakcja kwasami i zasadami (HCL, HF, NaOH)
- usunięcie węgla amorficznego, sadzy i fulerenów
 - obróbka termiczna pod obniżonym ciśnieniem
 - kontrolowane zgazowanie powietrzem
 - hydrozgazowanie (obróbka termiczna w wodorze)

Handlowe MWCNT

(Hyperion Catalyst International Inc., Cambridge, USA)

Katalizator Fe(NO₃)₃ na Al₂O₃ w ceramicznej łódce jest ogrzewany w wodorze do 900°C. Po osiągnięciu tej temperatury wprowadzana mieszanina benzen/wodór 1:9 przez 2 h.

Po ochłodzeniu w łódce splątane nanorurki bez produktów ubocznych.

- > φ10-20 nm, długość 10-12 μm
- przeciętnie 10 warstw w rurce, pusty środek φ3 nm
- powierzchnia wewnętrzna BET 250 m²/g
- gęstość rzeczywista 2,0 g/cm³
- gęstość pozorna 0,1 g/cm³

Inne właściwości Moduł Younga 4000-5500 MPa Odkształcenie przy zerwaniu ~40%

Metoda HiPCO (high-pressure carbon monoxide)

Polega na reakcji CO na powierzchni tworzącego się in-situ katalizatora metalicznego w wyniku termicznego rozkładu związków metaloorganicznych

$$2CO-^{Fe}
ightarrow CO_2+C$$

Prekursor katalizatora pentakarbonylek żelaza Fe(C0)5 temperatura syntezy 800-1200 ^{o}C proces ciągły SWCT d=1.0-1.4 nm, długość 1um

Właściwości teoretyczne grafenu

parametr	wartość
powierzchnia właściwa m^2g^{-1}	2630
ruchliwość ładunku $cm^2V^{-1}s^{-1}$	2e5
moduł Younga GPa	1000
wytrzymałość na rozerwanie GPa	130
przewodnictwo cieplne $Wm^{-1}K^{-1}$	5000
przezroczystość %	97.7

Metody otrzymywania grafenu:

- · eksfoliacja grafitu
 - fizyczno-mechaniczna
 - chemiczna (po utlenieniu)
 - rozpuszczalnikowa dyspersja pyłowego grafitu w DMF lub NMP przy zastosowaniu wysokiej intensywności ultradźwięków

- katalityczny in situ wzrost grafenu na podłożu (osadzenie z fazy gazowej [CVD])
- powierzchniowy rozkład węglika krzemu (grafen epitaksjalny)
- rozszczepienie nanorurek, metoda elektrochemiczne, chemiczne lub fizyczne
- bezpośrednia synteza grafenu z prekursorów organicznych