重庆大学《数值计算》课程期中测验试卷

2018 — 2019 学年第二学期

开课学院: 计算机学院 课程号: CST21301 考试日期: 2019.03

考试方式: ① 开卷 〇 闭卷 〇 其他

考试时间: 100 分钟

题号	_	11	三	四	五	六	七	八	九	+	总分
得分											

一、(15分)下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们各有几位有效数字:

$$x_1 = 1.00102$$
, $x_2 = 0.031$, $x_3 = 63.5$, $x_4 = 0.002$, $x_5 = 6 \times 1.0$ (6为精确数)

XII的位

kz: 7位

X3. 3/12

X4: 112

Ke: 2/1

二、(15) 计算园面积 $S = \pi R^2$ 时,要求相对误差限为 2%,问度 量半径 R 时,R 允许的相对误差限是多少?

$$\Sigma_{r_5} = \frac{|S-S^*|}{|S|} = \frac{|R^2-R^{*2}|}{|R^2|} = |I-(\frac{R^*}{R})^2| \leq 2^{1/2}$$

三、(15 分) 为求方程 $x^2 - e^x + 2 = 0$ 在 $x_0 = 1.3$ 附近的一个根,设将方程改写成下列等价形式,并建立相应的迭代公式。

1)
$$x = \ln(2 + x^2)$$
, 迭代公式 $x_{k+1} = \ln(2 + x_k^2)$;

2)
$$x = \sqrt{e^x - 2}$$
, 迭代公式 $x_{k+1} = \sqrt{e^{x_k} - 2}$;

3)
$$x = \frac{e^x - 2}{x}$$
, 迭代公式 $x_{k+1} = \frac{e^{x_k} - 2}{x_k}$ 。

试分析每种迭代公式的收敛性,并构造原方程的 Newton 求根公式。

1)
$$U'(x) = \frac{2x}{2+x^2} \le \frac{\sqrt{2}}{2}$$

2)
$$Q'(x) = \frac{e^x}{2\sqrt{e^2-2}}$$
 $Q'(2) = \frac{e^2}{2\sqrt{e^2-2}} > 1$ &\Right\

3)
$$y'(x) = \frac{e^{y(y-1)+2}}{x^{2}}$$
 $y'(z) = \frac{e^{z+2}}{4} > 1$ 发散

$$+ t \sqrt{x^2 - e^{xx}}$$
 $\times x + 1 = x + - \frac{x^2 - e^{xx} + 2}{2x + e^{xx}}$

四、(15 分)已知型值点(-1,3)、(0,1)、(1,4),试写出 Lagrange 插值多项式 L(x),并计算 L(0.5)。

$$\int_{0} (X) = \frac{2}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x(x - 1)}{2}$$

$$\int_{0} (X) = \frac{2}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{(x + 1)(x - 1)}{2}$$

$$\int_{0} (X) = \frac{2}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{(x + 1)(x - 1)}{-1}$$

$$\int_{0} (X) = \frac{2}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{(x + 1)(x - 1)}{-1}$$

$$\int_{0} (X) = \frac{2}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{(x + 1)(x - 1)}{-1}$$

$$\int_{0} (X) = \frac{2}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x(x - 1)}{-1}$$

$$\int_{0} (X) = \frac{2}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x(x - 1)}{-1}$$

$$\int_{0} (X) = \frac{2}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x(x - 1)}{-1}$$

$$\int_{0} (X) = \frac{2}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x(x - 1)}{-1}$$

$$\int_{0} (X) = \frac{2}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x(x - 1)}{-1}$$

$$\int_{0} (X) = \frac{2}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x(x - 1)}{-1}$$

$$\int_{0} (X) = \frac{2}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x(x - 1)}{-1}$$

$$\int_{0} (X) = \frac{2}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x(x - 1)}{-1}$$

$$\int_{0} (X) = \frac{2}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x(x - 1)}{-1}$$

$$\int_{0} (X) = \frac{x}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x(x - 1)}{-1}$$

$$\int_{0} (X) = \frac{x}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x - x_{j}}{-1}$$

$$\int_{0} (X) = \frac{x}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x - x_{j}}{-1}$$

$$\int_{0} (X) = \frac{x}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x - x_{j}}{-1}$$

$$\int_{0} (X) = \frac{x}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x - x_{j}}{-1}$$

$$\int_{0} (X) = \frac{x}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x - x_{j}}{-1}$$

$$\int_{0} (X) = \frac{x}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x - x_{j}}{-1}$$

$$\int_{0} (X) = \frac{x}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x - x_{j}}{-1}$$

$$\int_{0} (X) = \frac{x}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x - x_{j}}{-1}$$

$$\int_{0} (X) = \frac{x}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x - x_{j}}{-1}$$

$$\int_{0} (X) = \frac{x}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x - x_{j}}{x_{0} - x_{j}}$$

$$\int_{0} (X) = \frac{x}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x - x_{j}}{x_{0} - x_{j}}$$

$$\int_{0} (X) = \frac{x}{|I|} \frac{x - x_{j}}{x_{0} - x_{j}} = \frac{x - x_{j}}{x_{0} - x_{j}}$$

五、(20分)已知节点数据:

时间 t (秒)	0	1.0	2.0	3.0
距离 ⁸ (米)	0	1	5	10

试求其 Newton 插值公式.

六、(20 分) 试求[0,1]上的插值函数 p(x),使得

$$p(0) = f(0), p(1) = f(1), p'(0) = m_1, p''(0) = m_2$$

其中 f(0), f(1), m_1 , m_2 为已知量。

$$\int_{a}^{+} - \frac{1}{2} \int_{a}^{-} (x-1) \int_{a}^{+} (x) + \frac{1}{2} \int_{a}^{+} (x-1) \int_{a}^{+} (x-1) + \frac{1}{2} \int_{a}^{+} (x-1) \int_{a}^{+} (x-1) \int_{a}^{+} (x) dx = -(x-1) \int_{a}^{+} (x) + \frac{1}{2} \int_{a}^{+} (x-1) \int_{$$

基本开3式: $\frac{x-b}{a-b}$ $f(a) + \frac{a-x}{a-b}$ $f(b) + k_1(x-a)(x-b) + k_2(x-a)^2(x-b)$ 保证 f', f'' ... (根据传统件个数确线数个

$$-(x-1)f(0) + (x)f(0)$$