7077-04-71

My presentation title is here. This talk is about my on-going journey into the world of graph theory and neural networks. This is a description of the learning process as well as the project and presenting some results.

Detroine time

What is Drop Learning, Emethy?

The demonstratory

No. Now. What?

Sources and Chilines

This first section is an Introduction to me and my project

About Me

- I am a Security Consultant at Palo Alto Networks, cloud and automation for past 2+ years
- Did Data Eng/DevSecOps at Salesforce for 5 years.
- Been going to security conferences for a while.

-Introduction

- Here is a picture of me, but modified by a popular local artist.
- In my current role I get to work with the major cloud providers.
- In the past I was not a Data Scientist, but did some time on the Security Data Engineering team at Salesforce. This gave me a bit of a head start with data pipelines, directed acyclic graphs, and a few other things.

The Project

- Realized that Terraform can output directed graphs.
- Had done a lot of work at Salesforce with directed graphs, data pipeline orchestration with AirFlow, etc. so I was somewhat familiar with the output I was seeing.
- The first question I had was, what can I do with these directed graphs
- My hunch was I could "do some processing and analysis" of all this security infrastructure graph data and hoped that could lead to... predictions?

—Introduction

- Realized that Terraform can output directed graphs.
 Had done a lot of work at Salesforce with directed graphs, data pipeline orchestration with AirFlow, etc., so I was somewhat familiar with the output.
- . The first question I had was, what can I do with these directed graphs:
- My hunch was I could "do some processing and analysis" of all this securit
 infrastructure graph data and hoped that could lead to... predictions?

- In case you are not familiar, Terraform is software that allows you to declare resources like network elements in public cloud providers.
- Had and still have this vague notion that if I had enough data I could find "outliers". Maybe like a modernized version of a Pareto analysis?

What's a DiGraph?

- The big takeaway here is the idea of "edges" and "nodes"
- Source: Algorithms, 4th Edition, by Robert Sedgewick and Kevin Wayne
- Wrath of Math!

What is Deep Learning, Exactly?

What is Deep Learning, Exactly?
The Journey
Viscolite atoms
So Now. What?

The Rise of Deep Learning

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then

deep learning, a subset of machine learning – have created ever larger disruptions.

What is Deep Learning, Exactly?

- GPUs have made it possible to expand accessibility to DL
- the CUDA toolkit from Nvidia has made things easier for researchers.

Quick Intro to a Giant Topic

What is Deep Learning, Exactly?

- image source/credit
- ML feature extraction can be a huge undertaking, up to 80% of a project.
- DL attempts to automatically learn features that are most useful for a task from raw data.
- The nodes in a digraph are "neurons" or "units" in the DL/graph theory context.
- The neurons perform two steps. They calculate a "weighted sum" and pass the result through an "activation function" such as a rectifier activation function.
- These neurons or units that go through the rectifier function are called "RelUs" for short. Lot's of descriptive info in this one term!
- Depth of the GNN is measured by the number of connected layers.
- DL needs very large data sets for accurate feature determination. Data sets with lots of features are known as "high density".
- We humans interpret the features and output based on what we are trying to model.

What is Deep Learning, Exactly?

- Google Deep Learning Container Images
- Continuous Machine Learning (CML) Project
- Kaggle and shared Jupyter Notebooks

The Journey

n
top Learning, Emethy?

y
ton
tal?
I Citations

- This is an example of a list.
- Important business information.

The Journey

This is an example of a list.
Important business information.

Yak Shaving, Side Quests, Endless Rabbit Holes

- Makefiles and GNU Autotools
- NVIDA Jetson Nano as cluster nodes
- SLURM cluster scheduler
- OpenMPI for parallel builds
- Docker and Containers
- k8s and Rancher k3s
- Data Version Control dvc.org
- Storing/accessing data in GCP buckets
- Continuous Machine Learning cml.dev
- Internal Pypi and Debian/Raspbian mirror (used too much bandwidth on home connection)

- Makefiles and GNU Autotools
- N VID 1. Jetson Namo na cluster medea
- SLURM cluster scheduler
- OpenMPI for parallel builds
 Docker and Containers
- kf s and Rancher kl s
- Data Version Control dyc are
- . Storing accessing data in GCP bucks to
- Storing accessing data in GCP bucket
 Continuous Machine Leaming emission
- Internal Pypi and Debian/Rambian mirror [used too much bandwidth on home connection]

Dot Data Collection

A big barrier to entry was removed by the ability to output a Directed Graph from Terraform. Click for video

Generate a PNG from Terraform
terraform graph | dot -Tpng > graph.png

Generate vector graphic from Terraform
terraform graph | dot -Tsvg -o graph.svg

The Journey

 λ big barrier to entry was removed by the ability to output a Directed Graph from Terraform; Click for video

otnerset i ##o frim Terrifirm
terracism graph | dit -tpog > graph.pog
otnerset vector graphic frim Terrifirm
terracism graph | dit -tive -t graph.sve

Python Data Collection

This became the basis for collection via Python. Click for video

The Journey

This became the basis for collection via Python.

Data Processing

The Journey

Data Storage - Google Cloud

Data storage with GCP because it's (relatively) easy.

The Journey

Data storage with GCP because it's [relatively] easy.

The Journey

Date design and tagging using DVC

The Journey

Data storage and tagging using DVC

Data Pipeline

- The Data Pipeline is a set of processes that move and transform data from various sources to a destination where new value can be derived.
- THe DP is the foundation of analytics, reporting, and machine learning capabilities.

The Journey

- The Dat Popular is a of a processed that more and transform that how without more that more and transform that how without more that a directly a directly and transform that how without more than a directly and transform that how the directly and transform that the directly and transform that the directly and transform that the directly as a directly as a directly and transform that the directly as a dir

Data Collection

Data Validation

Data Cleaning

Data Processing

• Source: Data Pipelines pocket reference p1-2

Visualizations

Visualizations

Graphviz/Dot output

[root] 🔐 ជ្រែក្សៀ var.gke_password [root] var.gke_num_nod [root] var.serviceaccount_terraform [root] google [continues [examples froot] meta sound the property of the first wersions.gk var.gke username [root] provider["registry,terraform.io/hashicorp/goo [root] google compute Network gcp-tagging-test-ypt t] var.secondary_subnet_name/ [root] var.secondary_ip_range [root] outpl/toot] ivar.node_machine_type [root] van region

- This is the first thing I saw when I started converting the data.
- Was excited here since I was able to change the color of the nodes.
- Obviously this is not yet a usable result.

So Now What?

What is D on Learning, Emethy?
The James y
Visualizations
So Now What?
Sources and Citations

Useful Intermediate Results

- Standardizing my data collection on JSON.
- Made some super cool functions for parsing nested JSON.
- Importing JSON to Pandas dataframes.

□So Now What?

· Standardizine my data collection on JSON Importing ISON to Panda dataframes

- Tabular data in Pandas can be output in all kinds of formats.
- Pandas data frames can be the input for other Machine Learning tools and frameworks.

- Most of this work is relegated to my "free" time.
- Have to spend my days helping people with the cloud.

• Dreams and stretch goals.

So Now What?

Deceme and stretch male

- this is the "dreams and stretch goals" slide.
- Most of this work is relegated to my "free" time.
- Have to spend my days helping people with the cloud.

Sources and Citations

What is Deep Learning, Emethy?
The Journey
Visualizations
So Now What?
Sources and Citations

- This is an example of a list.
- Important business information.

└─Sources and Citations

2022-04-27

- point 1
- point 2

This is an example of a list.
 Important business information.