Прыжки в джунглях

В тропических джунглях Суматры находятся N деревьев в ряд, пронумерованных от 0 до N-1 слева направо. У всех деревьев **различные высоты**, дерево с номером i имеет высоту H[i].

Пак Денгклек тренирует орангутана прыгать с дерева на дерево. За один прыжок орангутан может перепрыгнуть с верхушки дерева на верхушку ближайшего слева или справа дерева, высота которого выше, чем высота дерева, с которого осуществляется прыжок. Формально, если орагнутан находится на дереве x, он может перепрыгнуть на дерево y, если и только если выполнено одно из двух условий:

- ullet y является максимальным неотрицательным целым числом, меньшим x, таким что H[y] > H[x]; или
- ullet y является минимальным целым числом, большим x, таким что H[y]>H[x].

Пак Денгклек подготовил Q планов прыжков, каждый из которых задается четырьмя целыми числами A, B, C и D ($A \leq B < C \leq D$). Для каждого плана Пак Денгклек хочет выяснить, можно ли начать на каком-либо дереве s ($A \leq s \leq B$) и закончить на каком-либо дереве e ($C \leq e \leq D$), используя прыжки по описанным правилам для перемещения между деревьями. Если это возможно, Пак Денгклек хочет узнать, какое минимальное число прыжков потребуется орангутану для этого плана.

Детали реализации

Вам необходимо реализовать следующие функции:

```
void init(int N, int[] H)
```

- N: число деревьев.
- ullet H: массив длины N, где H[i] это высота дерева с номером i.
- Эта функция будет вызвана ровно один раз, до вызовов функции minimum_jumps.

```
int minimum_jumps(int A, int B, int C, int D)
```

• A, B: задают диапазон номеров деревьев, на котором орангутан может начать прыжки.

- ullet C, D: задают диапазон номеров деревьев, на котором орангутан может закончить прыжки.
- ullet Эта функция должна вернуть минимальное число прыжков, которое необходимо совершить орангутану, чтобы выполнить план, или -1, если выполнить план невозможно.
- Эта функция будет вызывана ровно Q раз.

Пример

Рассмотрим следующий вызов:

```
init(7, [3, 2, 1, 6, 4, 5, 7])
```

После выполнения инициализации, рассмотрим следующий вызов:

```
minimum_jumps(4, 4, 6, 6)
```

Он означает, что орангутан должен начать прыжки на дереве 4 (высота 4) и завершить прыжки на дереве 6 (высота 7). Один способ это сделать - прыгнуть на дерево 3 (высота 6), а затем на дерево 6. Другой способ - прыгнуть на дерево 5 (высота 5), а затем на дерево 6. Таким образом, функция minimum_jumps должна вернуть 2.

Рассмотрим еще один возможный вызов:

```
minimum_jumps(1, 3, 5, 6)
```

Это означает, что орангутан должен начать на одном из деревьев с номерами 1 (высота 2), 2 (высота 1) или 3 (высота 6) и закончить на одном из деревьев с номерами 5 (высота 5) или 6 (высота 7). Единственный способ это сделать за минимальное число прыжков - начать с дерева 3 и за один прыжок перепрыгнуть на дерево 6. Поэтому функция minimum_jumps должна вернуть 1.

Рассмотрим еще один возможный вызов:

```
minimum_jumps(0, 1, 2, 2)
```

Это означает, что орангутан должен начать на дереве 0 (высота 3) или дереве 1 (высота 2) и закончить на дереве 2 (высота 1). Поскольку высота дерева 2 меньше чем у обоих возможных начальных деревьев, невозможно выполнить план. Поэтому функция minimum_jumps должна вернуть -1.

Ограничения

- $2 \le N \le 200\,000$
- $1 \le Q \le 100000$
- $1 \leq H[i] \leq N$ (для всех $0 \leq i \leq N-1$)
- ullet H[i]
 eq H[j] (для всех $0 \le i < j \le N-1$)
- 0 < A < B < C < D < N-1

Подзадачи

- 1. (4 балла) H[i] = i+1 (для всех $0 \leq i \leq N-1$)
- 2. (8 баллов) $N \leq 200$, $Q \leq 200$
- 3. (13 баллов) $N \leq 2000$, $Q \leq 2000$
- 4. (12 баллов) $Q \leq 5$
- 5. (23 балла) A=B, C=D
- 6. (21 балл) C = D
- 7. (19 баллов) Нет дополнительных ограничений.

Грейдер участника

Грейдер участника читает ввод в следующем формате:

- ullet строка $1{:}\,N\;Q$
- строка $2: H[0] \ H[1] \ \dots \ H[N-1]$
- ullet строка 3+i ($0\leq i\leq Q-1$): $A\mathrel{B}C\mathrel{D}$ для i-го вызова функции <code>minimum_jumps</code>

Грейдер участника выводит полученные результаты в следующем формате

ullet строка 1+i ($0\leq i\leq Q-1$): возвращенное значение i-го вызова minimum_j umps