1 Cela števila

- 1. Osnovni izrek o deljenju celih števil
 - Načelo dobre urejenosti v $\mathbb{N}.$
 - Načeli dobre urejenosti v \mathbb{Z} .
 - Izrek. Osnovni izrek o deljenju celih števil. Ostanek.
- 2. Največji skupni delitelj
 - **Definicija.** Kadar pravimo, da celo število $k \neq 0$ deli celo število m? Zapis.
 - **Definicija.** Delitelj. Število m deljivo s številom k.
 - Definicija. Skupni delitelj. Največji skupni delitelj.
 - Izrek. Obstoj največjega skupnega delitelja. Kako lahko ga zapišemo?
 - **Definicija.** Tuji števili.
 - Posledica. Kadar sta števili m in n tuji?
- 3. Osnovni izrek aritmetike
 - **Definicija.** Praštevila.
 - Lema. Evklidova lema.
 - Izrek. Osnovni izrek aritmetike.
 - **Izrek.** Ali je praštevil neskončno?

2 Uvodni pojmi algebre

- 1. Binarne operacije
 - **Definicija.** Binarna operacija na množice S.
 - Primer. Najpomembnejše operacije: seštevanje, množenje in komponiranje. Množica preslikav iz X vase.
 - *Primer*. Navedi primeri in protiprimeri binarnih operacij.
 - Definicija. Kadar pravimo, da množica zaprta za operacijo? Notranja operacija.
 - *Primer*. Navedi primeri in protiprimeri množic zaprtih za operacijo.
 - Definicija. Zunanja binarna operacija.
 - *Primer*. Navedi primer zunanji operaciji.
 - **Definicija.** Asociativna operacija.
 - **Definicija.** Kadar pravimo, da sta elementa x in y komutirata? Komutativna operacija.
 - *Primer*. Navedi primeri in protiprimeri asociativnih in komutativnih operacij.
 - **Definicija.** Nevtralni element.
 - Primer. Navedi primeri nevtralnih elementov za različne operacije na različnih množicah.
 - Trditev. Enoličnost nevtralnega elementa.
 - **Definicija.** Levi nevtralni element. Desni nevtralni element.
 - Opomba. Kako sta povazana levi in desni nevtralna elementa?
 - *Primer*. Ali lahko obstaja več levih nevtralnih elementov?

2. Polgrupe

- Kaj je algebrska struktura?
- **Definicija.** Polgrupa (S, \star) .
- *Primer*. Navedi primeri in protiprimeri polgrup.
- Trditev. Ali lahko oklepaje v polgrupe vedno odpravimo?
- **Definicija.** Potenca elementa $x \in S$.
- Primer. Kakšne formule veljajo za potence v polgrupi?

3. Monoidi

- **Definicija.** Monoid (S, \star) .
- *Primer*. Navedi primeri in protiprimeri monoidov.
- **Definicija.** Levi inverz. Desni inverz. Inverz. Obrnljiv element.
- Trditev. Kadar lahko krajšamo v monoidu?
- *Primer*. Koliko obrnljivih elementov ima vsak monoid?
- *Primer.* Naštej obrnljive elemente v $(\mathbb{N}_0, +)$, (\mathbb{Z}, \cdot) , (\mathbb{Q}, \cdot) , (\mathbb{R}, \cdot) , (\mathbb{C}, \cdot) .
- *Primer*. Naj bo $\mathcal{F}(X)$ množica vseh funkcij iz X vase.
 - Kadar $f \in \mathcal{F}(X)$ ima levi inverz? Kadar jih ima več?
 - Kadar $f \in \mathcal{F}(X)$ ima desni inverz? Kadar jih ima več?
 - Kadar $f \in \mathcal{F}(X)$ ima inverz?
- **Trditev.** Ali so levi in desni inverzi elementa $x \in S$ sovpadata?
- Posledica. Kaj velja, če je element $x \in S$ obrnjiv in yx = 1?
- Posledica. Koliko lahko inverzov ima obrnjiv element monoida?
- Trditev. Ali je produkt obrnjivih elementov monoida obrnjiv? Kako dobimo inverz produkta?
- Opomba. Kako lahko definiramo potenco obrnjivega elementa monoida za vsa cela števila?

3 Uvod v teorijo grup

1. Grupe

- Definicija. Grupa. Abelova grupa.
- Opomba. Zapiši definicijo grupe preko aksiomov. Enota. Inverz elementa.
- Opomba. Koliko so enot v grupi? Koliko inverzov ima vsak element? Računanje s potenci.
- *Opomba*. Multiplikativni in aditivni zapis. Dogovor o aditivni grupi.
- Trditev. Pravila krajšanja v grupi.
- Definicija. Končna grupa. Red grupe.
- Trditev. Kako iz monoida dobimo grupo? Množica obrnljivih elementov monoida.

2. Primeri grup

- Navedi primeri in protiprimeri številskih grup za seštevanje in množenje.
- Kaj je trvialna grupa?
- Kaj je $(\mathcal{F}(X))^*$? Permutacija. **Simetrična grupa** $\operatorname{Sim}(X)$ množie S. Ali je komutativna?
- Grupa permutacij S_n končne množice [n]:
 - Ali je vsaka permutacija produkt disjunktnih ciklov?
 - Ali je vsaka permutacija produkt transpozicij?
 - Sode in lihe permutacije. Predznak permutacije. Čemu je enak predznak produkta permutacij?
 - Čemu je enak red grupe S_n ?
- Množica vseh realnih $n \times n$ matrik $M_n(\mathbb{R})$:
 - Ali je Abelova grupa za seštevanje?
 - Kaj pa za množenje? **Splošna linearna grupa** $\mathrm{GL}_n(\mathbb{R})$. Ali je Abelova?
 - Ali lahko \mathbb{R} zamenjamo z poljubnim poljem?
- Opiši simetrije kvadrata. **Diedrska grupa** D_8 .
 - S čim je enolično določena simetrija?
 - Ali je D_8 Abelova?
- Diedrska grupa D_{2n} . Opiši elementi D_{2n} .
- **Diedrska grupa** D_4 simetrij pravokotnika, ki ne kvadrat.
- Direktni produkt grup G_1, G_2, \ldots, G_n . Direktna vsota grup.

3. Podgrupe

- **Definicija.** Podgrupa.
- Opomba. Vsaj koliko podgrup ima vsaka grupa? Trvialna podgrupa. Prava podgrupa.
- Opomba. Naj bo $H \leq G$. Ali je enota grupe G vsebovana v H?
- **Trditev.** 3 ekvivalantne trditve o podgrupe H grupe G.
- *Opomba*. Kako karakterizacije podgrupe zgledajo v aditivnem zapisu?
- **Posledica.** Kadar je končna podmnožica H grupe G podgrupa?
- Opomba. Kakšne oblike inverz vsakega elementa $x \in G$, če je G končna grupa?
- **Trditev.** Opiši podgrupe grupe $(\mathbb{Z}, +)$.
- Trditev. Ali je poljuben presek podgrup podgrupa?
- **Definicija.** Produkt podgrup H in K grupe G.
- *Opomba*. Ali je produkt podgrup nujno podgrupa.
- Trditev. Zadosten pogoj, da bi bil produkt podgrup podgrupa.
- *Opomba*. Kaj velja, če je G Abelova?

- 4. Primeri podgrup
 - Določi osnovne podgrupe v $(\mathbb{C},\cdot)^*.$ Ali so podgrupe tudi:
 - $\mathbb{Q}^+ = \{ x \in \mathbb{Q} \mid x > 0 \}.$
 - $\mathbb{R}^+ = \{ x \in \mathbb{R} \mid x > 0 \}.$
 - $-\mathbb{T}=\{z\in\mathbb{C}\mid |z|=1\}$. Krožna grupa \mathbb{T} .
 - $-\mathbb{U}_n = \{z \in \mathbb{C} \mid z^n = 1\}.$ n-to koreni enote \mathbb{U}_n .
 - Alternirajoča grupa A_n .
 - Ali je diedrska grupa D_{2n} podgrupa v S_n ?
 - Pokaži da so podgrupe grupe $GL_n(F)$:
 - $-\operatorname{SL}_n(F) = \{A \in M_n(F) \mid \det(A) = 1\}$). Specialna linearna grupa SL_n .
 - $-O_n = \{A \in M_n(\mathbb{R}) \mid AA^T = I\}$. Ortogonalna grupa O_n . Specialna ortogonalna grupa SO_n .
 - $-U_n = \{A \in M_n(\mathbb{C}) \mid AA^H = I\}$. Unitarna grupa U_n . Specialna unitarna grupa SU_n .
 - Trditev. Konjugirana podgrupa podgrupe H.
 - Trditev. Center Z(G) grupe G.
 - Trditev. Centralizator $C_G(a)$ elementa $a \vee G$.
- 5. Odseki in Lagrangeev izrek

Naj bo G grupa in $H \leq G$. Definiramo relacijo na G s predpisom

$$\forall a, b \in G . a \sim b :\Leftrightarrow a^{-1}b \in H$$

- Trditev. Relacija \sim je ekvialenčna.
- **Definicija.** Ekvivalenčni razred elementa $a \in G$. Levi odsek grupe G po podgrupi H.
- Opomba. Kadar aH = H?
- Opomba. Kako pišemo odseke, če je G Abelova?
- *Primer*. Kaj so odseke, če:
 - $-G = (\mathbb{R}^2, +), H$ abscisna os.
 - $-G=\mathbb{C}^*, H=\mathbb{T}.$
 - $-G = S_n, H = A_n.$
- Opomba. S kakšno relacijo dobimo desni odseki?
- *Opomba*. Ali je grupa G disjunktna unija odsekov?
- **Definicija.** Faktorska (oz. kvocientna) množica.
- Opomba. Ali je G/H nujno grupa?
- Lema. Kadar sta dva odseka enaka?
- **Definicija.** Indeks podgrupe H v grupi G.
- **Izrek.** Lagrangeev izrek.
- Posledica. Kaj lahko povemo o moči vsake podgrupe končne grupe?
- 6. Grupa ostankov
 - Opomba. Naj bo G Abelova. Kako lahko definiramo seštevanje na G/H?
 - **Trditev.** Ali je (G/H, +) Abelova?
 - Naj bo $n \in \mathbb{N}$. Kadar pravimo da sta $a, b \in \mathbb{Z}$ kongruentni po modulu n?
 - Karakteriziruj kongruentnost z ostanki.
 - Opiši kongruentnost kot relacijo na \mathbb{Z} .
 - *Primer.* Grupa ostankov \mathbb{Z}_n po modulu n.
 - Opomba. Ali za vsak $n \in \mathbb{N}$ obstaja vsaj ena grupa moči n?

7. Ciklične grupe

- Naj bo G grupa, $a \in G$. Kaj je $\langle a \rangle$? Ali je to podgrupa grupe G? Ali je Abelova?
- **Definicija.** Ciklična podgrupa. Ciklična grupa. Generator grupe.
- *Primer*. Ali so ciklične:
 - $-\mathbb{Z},\mathbb{Z}_n.$
 - $-\mathbb{U}_n$.
 - $-D_{4}$.
- **Definicija.** Naj bo G grupa. Naj bo $a \in G$. Red elementa a.
- *Primer*. Katere elemente v grupe G imajo red 1?
- *Primer*. Določi red:
 - -1 v \mathbb{Z} , 1 v \mathbb{Z}_n .
 - $-e^{\frac{2\pi i}{n}}$ v \mathbb{U}_n .
 - Transpozicij v S_n .
 - Simetrij v D_4 .
- **Trditev.** Karakterizacija reda elementa (kadar je enak $n \in \mathbb{N}$)?
- Posledica. Kadar je končna grupa ciklična?
- **Posledica.** Naj bo G končna grupa:
 - Kako so povezani redi elementov $a \in G$ in moč G?
 - Naj bo $a \in G$. Čemu je enako $a^{|G|}$?
 - Kaj če je |G| praštevilo?

8. Generatorji grup

- **Definicija.** Podgrupa generirana z množico X.
- *Opomba*. Zakaj je definicija smiselna?
- **Trditev.** Kako izgledajo elementi $\langle X \rangle$?
- Opomba. Kaj če je G Abelova?
- **Definicija.** Kadar pravimo, da je grupa G generirana z X? Generatorji grupe G.
- *Primer*. Obravnavaj primera:
 - S čim je generirana vsaka podgrupa grupe \mathbb{Z} ?
 - Naj bo $X \subseteq \mathbb{Z}$. Kaj je $\langle X \rangle$?
 - S čim je generirana grupa \mathbb{Q}^+ ?
 - S čim je generirana grupa D_{2n} ?
 - S čim je generirana grupa S_n ?
 - S čim je generirana grupa A_n , $n \geq 3$?
- **Definicija.** Končno generirana grupa.
- *Primer*. Ali je $(\mathbb{Z}, +)$ končno generirana?
- *Primer.* Pokaži, da $\mathbb Q$ ni končno generirana.