MAS350: Assignment 3

- 1. Determine if the following functions are Lebesgue integrable.
 - (a) $f:(0,\infty) \to \mathbb{R}$ by $f(x) = 1/x^2$.
 - (b) $g:(0,1)\to\mathbb{R}$ by $g(x)=\log x$
- 2. Let $f_n, f: [0,1] \to \mathbb{R}$. In each of the following cases, explain whether the Monotone and/or Dominated Convergence Theorems can be used to prove that $\int_0^1 f_n(x) dx \to \int_0^1 f(x) dx$.
 - (a) $f_n(x) = \cos(\frac{x}{n}) + \sin(\frac{x}{n})$ and f(x) = 1.
 - (b) $f_n(x) = \mathbb{1}_{\left[\frac{1}{n},1\right]}(x) x^{-1}$ and $f(x) = \mathbb{1}_{(0,1]}x^{-1}$.
 - (c) $f_n(x) = \mathbb{1}_{[0,\frac{1}{n}]}(x) n$ and f(x) = 0.
- 3. Consider the probability space ([0, 1], $\mathcal{B}([0, 1])$, λ) where λ denotes the restriction of Lebesgue measure to the Borel σ -field $\mathcal{B}([0, 1])$ on [0, 1].

Let
$$X_n(\omega) = \begin{cases} 1 & \text{if } \omega = 0\\ \omega n^{3/2} & \text{if } \omega \in (0, \frac{1}{n}]\\ 0 & \text{if } \omega \in (\frac{1}{n}, 1]. \end{cases}$$

Determine in which modes of convergence we have $X_n \to 0$.

- 4. (a) Let $(U_n)_{n\in\mathbb{N}}$ be a sequence of independent, identically distributed uniform random variables on (0,1). Prove that, $\mathbb{P}[U_n<1/n \text{ i.o.}]=1$ and $\mathbb{P}[U_n<1/n^2 \text{ i.o.}]=0$.
 - (b) Let $(X_n)_{n\in\mathbb{N}}$ be the sequence of results obtained from infinitely many rolls of a fair six sided dice. Prove that the (consecutive) pattern 123456 will occur infinitely often.