

Concours d'accès à l'Ecole Doctorale de Recherche Opérationnelle

Pôles USTHB et USDB

Epreuve de : Mathématiques non déterministes (Probabilités et Statistique)

Année 2008 - 2009 Date: 12 - 10 - 2008 Durée: 02 heures

PROBLEME

Soient $X_1, X_2, ..., X_n$ n variables aléatoires (v.a.) indépendantes et identiquement distribuées (i.i.d.) de même loi qu'une v.a. X dont la densité de probabilité, $f_X(.,\theta)$, est donnée par

$$f_X(x; \mu, \sigma^2) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right), \quad x \in \mathbb{R},$$

(i.e. X suit une loi normale $N(\mu, \sigma^2)$ de paramètres $\mu \in \mathbb{R}$ et $\sigma^2 > 0$). On pose $S_1 = \sum_{i=1}^n iX_i$,

$$S_2 = \sum_{i=1}^{n} (n-i+1)X_i \text{ et } S_3 = \frac{1}{n+1}(S_1 + S_2).$$

Partie I (5 points)

1- (1.5 points). En rappelant que la fonction génératrice des moments d'une loi normale $X \sim N\left(\mu, \sigma^2\right)$ est donnée par $M_X(t) = \exp\left(\mu t + \frac{\sigma^2}{2}t^2\right)$, déterminer la fonction génératrice des moments puis en déduire la loi de probabilité de chacune des v.a. S_1 , S_2 et S_3 (On pourra utiliser les identités $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ et $\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$).

2- (1.5 points). Montrer que la loi de probabilité de S_3 peut s'écrire sous la forme

$$f_{S_3}(s; \mu, \sigma^2) = a(s)b(\mu, \sigma^2) \exp(c_1(s)d_1(\mu, \sigma^2) + c_2(s)d_2(\mu, \sigma^2)),$$

où $a(.), b(.), c_i(.)$ et $d_i(.)$ sont des fonctions réelles. En déduire sans faire de calculs qu'il en est de même pour S_1 et S_2 . Que peut-on conclure ?

3- (**1 point**). Soit $T_n=T(X_1,X_2,...,X_n)$ une v.a. fonction de $X_1,X_2,...,X_n$, telle que $E(T_n)=\mu$ et $var(T_n)\to 0$ quand $n\to\infty$. Montrer en utilisant l'inégalité de Tchebychev que $(T_n)_{n\in\mathbb{N}}$ converge en probabilité vers μ .

4- (1 point). Trouver une v.a. $U = U(S_3, n, \mu, \sigma^2)$, fonction de S_3 , n, μ et σ^2 , telle que sa loi de probabilité est indépendante de μ et σ^2 .

Partie II (10 points)

On suppose que $\sigma^2 = 1$, et on admet dans la suite que $X_1, X_2, ..., X_n$ est un échantillon aléatoire simple, issu d'une population régie par X, et à travers lequel on veut faire des inférences concernant μ .

- 1- (2 points). Rappeler rigoureusement le concept d'exhaustivité, exposer le théorème de factorisation de Neyman-Fisher et l'utiliser pour trouver une statistique exhaustive pour μ .
- 2- (1 point). Donner la définition d'une statistique complète et expliquer son rôle dans l'estimation statistique, puis montrer que les statistiques S_1 , S_2 et S_3 sont complètes.
- 3- (2 points). On pose $T_1 = \frac{2}{n(n+1)}S_1$, $T_2 = \frac{2}{n(n+1)}S_2$ et $T_3 = \frac{1}{2}(T_1 + T_2)$. Montrer que les estimateurs T_1, T_2 et T_3 sont sans biais pour θ . Sont-ils convergents (en probabilité)?
- 4- (2 points). Vérifier que $\forall n > 1$, $var(T_3) < \min(var(T_1), var(T_2))$. Peut-on trouver un estimateur sans biais de variance plus petite que celle de T_3 ? En déduire que les statistiques S_1 , S_2 ne peuvent être exhaustives.
- 5- (2 points). Expliquer brièvement l'intuition derrière le principe du maximum de vraisemblance. Calculer l'estimateur du maximum de vraisemblance pour μ . Est-il efficace?
- 6- (1 point). Trouver un intervalle de confiance bilatéral pour μ au seuil 1- α ($\alpha \in]0,1[$).

Partie III (5 points)

On suppose maintenant que $\mu = \theta$ et $\sigma^2 = \theta^2$ $(\theta > 0)$.

1- (1 point). Montrer que la statistique
$$S = \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2\right)$$
 est exhaustive pour θ .

$$2-$$
 (1 **point**). Calculer $E\left[2\left(\sum_{i=1}^{n}X_{i}\right)^{2}-(n+1)\sum_{i=1}^{n}X_{i}^{2}\right]$ puis en déduire que la statistique S n'est pas complète.

- 3- (2 points). Trouver par la méthode des moments deux estimateurs différents pour θ .
- 4- (1 point). Déterminer l'estimateur du maximum de vraisemblance pour θ .

Concours d'accès à l'Ecole Doctorale de Recherche Opérationnelle

Pôles USTHB et USDB

Epreuve de : Mathématiques non déterministes (Probabilités et Statistique)

Année 2008 - 2009 Date: 12 - 10 - 2008 Durée: 02 heures

Corrigé de l'épreuve

Partie I (5 points)

1- (1.5 points). Soit à déterminer la fonction génératrice des moments et la loi de probabilité de chacune des v.a. S_1 , S_2 et S_3 .

On note $M_{S_i}(t)$ la fonction génératrice des moments de la v.a. S_i $(i = \overline{1,3})$. Alors en exploitant les propriétés de la fonction exponentielle, la propriété i.i.d. des $X_1, X_2, ..., X_n$ et l'expression de la fonction génératrice des moments d'une loi normale $N(\mu, \sigma^2)$ qui est donnée par, $M_X(t) = \exp\left(\mu t + \sigma^2 \frac{t^2}{2}\right)$, on trouve:

$$M_{S_1}(t) = E\left(\exp\left(t\sum_{i=1}^n iX_i\right)\right) = \prod_{i=1}^n E\left(\exp\left(tiX_i\right)\right)$$

$$= \prod_{i=1}^n M_{X_i}(it) = \prod_{i=1}^n \exp\left(\mu t i + \frac{\sigma^2}{2} i^2 t^2\right)$$

$$= \exp\left(\sum_{i=1}^n \mu t i + \sum_{i=1}^n \frac{\sigma^2}{2} i^2 t^2\right) = \exp\left(\frac{n(n+1)\mu}{2} t + \frac{n(n+1)(2n+1)\sigma^2}{6} \frac{t^2}{2}\right).$$

Ainsi on reconnaît la fonction génératrice des moments d'une loi normale de moyenne $\frac{n(n+1)\mu}{2}$ et de variance $\frac{n(n+1)(2n+1)\sigma^2}{6}$. D'où par unicité de la fonction génératrice $S_1 \sim N\left(\frac{n(n+1)\mu}{2}, \frac{n(n+1)(2n+1)\sigma^2}{6}\right)$ De même,

$$M_{S_2}(t) = E\left(\exp\left(t\sum_{i=1}^n (n-i+1)X_i\right)\right) = \prod_{i=1}^n M_{X_i}((n-i+1)t)$$

$$= \exp\left(\sum_{i=1}^n \mu t(n-i+1) + \frac{\sigma^2}{2}(n-i+1)^2 t^2\right)$$

$$= \exp\left(\frac{n(n+1)\mu}{2}t + \frac{n(n+1)(2n+1)\sigma^2}{6}\frac{t^2}{2}\right),$$

montrant que S_2 est de même loi que S_1 , i.e. $S_2 \sim N\left(\frac{n(n+1)\mu}{2}, \frac{n(n+1)(2n+1)\sigma^2}{6}\right)$.

En fin, de manière similaire, et remarquant que $S_3 = \frac{1}{n+1}(S_1 + S_2) = \sum_{i=1}^n X_i$, on trouve

$$M_{S_3}(t) = E\left(\exp\left(t\sum_{i=1}^n X_i\right)\right) = \exp\left(n\mu t + \frac{\sigma^2}{2}nt^2\right).$$

D'où $S_3 \sim N(n\mu, n\sigma^2)$.

2- (1.5 points). Soit à montrer que la loi de probabilité de S_3 peut se factoriser comme produit d'une fonction exponentielle de la variable et une fonction exponentielle du paramètre, à un facteur de produit séparable près.

 S_3 suivant une loi normale, on a

$$f_{S_3}(s) = \frac{1}{\sqrt{2\pi n\sigma}} \exp\left(-\frac{1}{2n\sigma^2}(s-n\mu)^2\right)$$

$$= \frac{1}{\sqrt{2\pi n\sigma}} \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(-\frac{1}{2n\sigma^2}s^2 + \frac{\mu}{\sigma^2}s\right)$$

$$= a(s)b(\mu, \sigma^2) \exp\left(c_1(s)d_1(\mu, \sigma^2) + c_2(s)d_2(\mu, \sigma^2)\right),$$

avec a(s)=1, $b(\mu,\sigma^2)=\frac{1}{\sqrt{2\pi n}\sigma}\exp\left(-\frac{\mu^2}{2\sigma^2}\right)$, $c_1(s)=s^2$, $d_1(\mu,\sigma^2)=-\frac{1}{2n\sigma^2}$, $c_2(s)=s$ et $d_2(\mu,\sigma^2)=\frac{\mu}{\sigma^2}$. Il en est de même pour S_1 et S_2 puisqu'elles suivent également une loi normale. Ainsi, on conclue que les lois de S_1 , S_2 et S_3 appartiennent à la famille de lois exponentielles.

3- (1 point). Soit à montrer que sous les hypothèses mentionnées $(T_n)_{n\in\mathbb{N}}$ converge en probabilité vers μ .

Puisque la v.a. T_n est de variance finie, elle vérifie donc l'inégalité de Tchebychev qui s'énonce comme suit

$$\forall \varepsilon > 0, \quad P(|T_n - E(T_n)| \ge \varepsilon) \le \frac{var(T_n)}{\varepsilon^2}.$$

Donc par remplacement de la valeur de $E(T_n)$ dans cette dernière inégalité et tout en exploitant la positivité de la probabilité on trouve pour tout $n \in \mathbb{N}$,

$$\forall \varepsilon > 0, \quad 0 \le P(|T_n - \mu| \ge \varepsilon) \le \frac{var(T_n)}{\varepsilon^2},$$

En passant à la limite lorsque $n \to \infty$, alors

$$\forall \varepsilon > 0, \quad 0 \le \lim_{n \to \infty} P(|T_n - \mu| \ge \varepsilon) \le \lim_{n \to \infty} \frac{var(T_n)}{\varepsilon^2} = 0.$$

D'où

$$\forall \varepsilon > 0, \quad \lim_{n \to \infty} P(|T_n - \mu| \ge \varepsilon) = 0,$$

signifiant que $T_n \stackrel{p}{\to} \mu$ quand $n \to \infty$.

4- (1 point). Soit à trouver une v.a. $U = U(S_3, n, \mu, \sigma^2)$, fonction de S_3 , n, μ et σ^2 , telle que sa loi de probabilité soit indépendante de μ et σ^2 .

D'après I-1), on a $S_3 \sim N(n\mu, n\sigma^2)$. Donc,

$$\frac{S_3 - n\mu}{\sqrt{n}\sigma} \sim N\left(0, 1\right)$$

Ainsi $U = \frac{S_3 - n\mu}{\sqrt{n}\sigma}$.

Partie II (10 points)

On suppose que $\sigma^2 = 1$, et on admet dans la suite que $X_1, X_2, ..., X_n$ est un échantillon aléatoire simple issue d'une population régie par X.

1- (2 points). Soit à rappeler le concept d'exhaustivité, à exposer le théorème de factorisation de Neyman-Fisher et à l'utiliser pour trouver une statistique exhaustive pour μ .

Soit $\underline{X} = (X_1, X_2, ..., X_n)$ un échantillon aléatoire simple de même loi que X, où X est une v.a. de distribution de probabilité connue, fonction d'un paramètre inconnu θ et soit $S(\underline{X})$ une fonction de

l'échantillon dont l'expression est indépendante de θ . Alors formellement, la statistique $S(\underline{X})$ est dite exhaustive pour le paramètre θ si la distribution de probabilité conjointe de l'échantillon \underline{X} conditionnée par cette statistique est indépendante de θ . Intuitivement parlant, une statistique exhaustive pour un paramètre est un résumé de l'échantillon apportant toute l'information concernant le paramètre et contenue dans l'échantillon.

Le théorème de factorisation de Neyman-Fisher donne un moyen simple pour rechercher une statistique S ou pour montrer qu'une statistique donnée soit exhaustive. En effet, une condition nécessaire et suffisante pour qu'une statistique S soit exhaustive pour θ est que la loi de l'échantillon,

$$f_{\underline{X}}(\underline{x},\theta) = \prod_{i=1}^{n} f_{X_i}(x_i,\theta)$$
, peut s'écrire comme suit

$$\prod_{i=1}^{n} f_{X_i}(x_i, \theta) = h(\underline{x}) g(\theta, S(\underline{x})),$$

où $h(\underline{x})$ est une fonction ne dépendant pas de θ et où g(.,.) est une fonction qui ne dépend de l'échantillon qu'à travers S.

Pour $\sigma^2 = 1$, la loi de l'échantillon s'écrit

$$\prod_{i=1}^{n} f_{X_i}(x_i, \theta) = \left(\sqrt{2\pi}\right)^{-n} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2\right)$$

$$= \left(\sqrt{2\pi}\right)^{-n} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} x_i^2\right) \exp\left(-\frac{1}{2} \mu^2 + \mu \sum_{i=1}^{n} x_i\right)$$

$$= h\left(\underline{x}\right) g\left(\mu, S_3\left(\underline{x}\right)\right),$$

Par conséquent, d'après le théorème le théorème de factorisation de Neyman-Fisher, S_3 est exhaustive pour μ .

- 2- (1 point). Soit à donner la définition d'une statistique complète et expliquer son rôle dans l'estimation statistique, puis à montrer que les statistiques S_1 , S_2 et S_3 sont complètes.
- Une statistique S est dite complète si sa famille de lois $f_S(.;\theta)$ est complète. Une famille de lois $f_S(.;\theta)$ est dite complète si pour toute fonction h(S) mesurable, telle que $E(h(S)) = 0 \ \forall \theta \in \Theta$, on a $h \equiv 0$ presque sûrement.
- La propriété de complétion est très importante pour l'inférence statistique, notamment pour la recherche de l'estimateur sans biais de variance minimum.
- Comme les lois de S_1 , S_2 , et S_3 appartiennent à la famille de lois exponentielles (voir question I-2)) il s'ensuit, par le théorème qui stipule que toute statistique dont la famille de lois appartient à la famille de lois exponentielle est complète, que les statistiques S_1 , S_2 et S_3 sont complètes.
- à la famille de lois exponentielle est complète, que les statistiques S_1 , S_2 et S_3 sont complètes. 3- (2 points). Soit à montrer que les estimateurs $T_1 = \frac{2}{n(n+1)}S_1$, $T_2 = \frac{2}{n(n+1)}S_2$ et $T_3 = \frac{1}{2}(T_1 + T_2)$ sont sans biais (ESB) pour θ .
- Par un calcul direct on trouve que $E(T_1) = E(T_2) = \frac{2}{n(n+1)} \sum_{i=1}^{n} i\mu = \mu$. D'autre part, $T_3 =$

$$\frac{1}{2}(T_1 + T_2)$$
 n'est rien d'autre que $\frac{1}{n}\sum_{i=1}^n X_i = \overline{X}$ qui est un ESB pour μ .

- Puisque T_1, T_2 et T_3 sont ESB pour θ , pour montrer qu'ils sont convergents, il suffit de montrer que leur variances convergent vers 0, lorsque $n \to \infty$ (cf, question I-3). Un calcul simple montre que

$$var(T_1) = var(T_2) = \frac{4}{n^2(n+1)^2} \sum_{i=1}^n i^2 = \frac{4}{n^2(n+1)^2} \frac{n(n+1)(2n+1)}{6} \to 0.$$
 De même, $var(T_3) = \frac{1}{n^2} \stackrel{n \to \infty}{\to} 0.$

D'où les estimateurs donnés sont convergents.

4- (2 points). Soit à vérifier que $\forall n > 1 \ var(T_3) < \min(var(T_1), var(T_2))$.

- Comme on a vu plus haut (cf. question II- 3)) $var(T_1) = var(T_2) = \frac{4}{n^2(n+1)^2} \frac{n(n+1)(2n+1)}{6} = \frac{2}{3} \frac{(2n+1)}{n(n+1)}$ et $var(T_3) = \frac{1}{n^2}$ On vérifie aisément que dès que n > 1 on a $\frac{2}{3} \frac{(2n+1)}{(n+1)} > \frac{1}{n}$, c'est à dire que $var(T_3) < var(T_1) = var(T_2)$ pour tout n > 1.
- Puisque $T_3 = \overline{X} = \frac{1}{n}S_3$ est sans biais pour μ et fonction d'une statistique, S_3 , exhaustive (par II-1) et complète (par II-2), d'après le théorème de Lehman-Sheffe, il est donc l'unique ESBVM, et on ne peut trouver d'ESB de variance plus petite.
- Si les statistiques S_2 et S_3 étaient exhaustives, alors puisqu'on a montré qu'elles sont complètes (cf, II-2), les ESB T_2 et T_3 fonctions de S_2 et S_3 , respectivement, seraient par le théorème de Lehman-Sheffé des estimateurs sont biais de variance minimum. Comme on vient de voir qu'ils ne le sont pas $(var(T_3) < var(T_1) = var(T_2))$, les statistiques S_2 et S_3 ne peuvent donc être exhaustives.
- 5- (2 points). Soit à expliquer l'intuition derrière le principe du maximum de vraisemblance et à calculer l'estimateur du maximum de vraisemblance (EMV) pour μ .
- Dans un problème d'estimation paramétrique, le principe du maximum de vraisemblance consiste à trouver par rapport à quelle valeur du paramètre θ l'observation $X_1, ..., X_n$, dont on dispose, est la plus probable. Autrement dit, quelle est la valeur du paramètre θ la plus plausible, la plus vraisemblable à travers laquelle l'observation dont on dispose a été générée.
- Puisque la fonction de vraisemblance $L(\mu; X_1, ..., X_n) = f_{\underline{X}}(\underline{x}; \mu)$ est différentiable par rapport à μ sur \mathbb{R} , l'EMV est solution de l'équation normale

$$\frac{\partial \log L(\theta; X_1, ..., X_n)}{\partial \mu} = 0,$$

soit.

$$\sum_{i=1}^{n} (X_i - \mu) = 0,$$

qu'on résout par rapport à μ dans l'ensemble des statistiques. Donc l'EMV de μ est égal $\overline{X} = T_3$. 6- (1 point). Soit à trouver un intervalle de confiance bilatéral pour μ au seuil $1 - \alpha$ ($\alpha \in]0,1[$). Trouvons d'abord une fonction pivotale pour μ . Puisque d'après I)-4 la loi de $U = \frac{S_3 - n\mu}{\sqrt{n}}$ est indépendante de μ , la fonction U étant monotone en μ et dont la loi ne dépend pas de μ définit une fonction pivotale. Ainsi il suffit de trouver un réel strictement positifs x tel que

$$P(-x \le \frac{S_3 - n\mu}{\sqrt{n}} \le x) = 1 - \alpha,$$

soit,

$$P\left(T_3 - \frac{1}{\sqrt{n}}x \le \mu \le T_3 + \frac{1}{\sqrt{n}}x\right) = 1 - \alpha.$$

D'où $\left[\overline{X} - \frac{1}{\sqrt{n}}x, \overline{X} + \frac{1}{\sqrt{n}}x\right]$ est un intervalle de confiance bilatéral pour μ au seuil $1 - \alpha$.

Partie III (5 points)

On suppose que $\mu = \theta$ et $\sigma^2 = \theta^2$ $(\theta > 0)$.

1- (1 point). Soit à montrer que la statistique $S = \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2\right)$ est exhaustive pour θ .

$$f_{\underline{X}}(\underline{x};\mu,\sigma^2) = \prod_{i=1}^n f_{X_i}(x_i;\mu,\sigma^2)$$

$$= (2\pi\theta^2)^{-n/2} \exp\left(-\frac{1}{2\theta^2} \sum_{i=1}^n (x_i - \theta)^2\right)$$

$$= (2\pi\theta^2)^{-n/2} \exp\left(-n/2\right) \exp\left(-\frac{1}{2\theta^2} \sum_{i=1}^n x_i^2\right) \exp\left(\frac{1}{\theta} \sum_{i=1}^n x_i\right)$$

$$= h(\underline{x})g(S(\underline{x}),\theta)$$

où $S(\underline{x}) = \left(\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} x_i^2\right)$. D'après le théorème de factorisation de Neyman-Fisher, la statistique $S(\underline{X}) = \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2\right)$ est exhaustive pour θ .

2- (1 **point**). Soit à calculer $E\left[2\left(\sum_{i=1}^{n}X_{i}\right)^{2}-(n+1)\sum_{i=1}^{n}X_{i}^{2}\right]$ puis à en déduire que la statistique

S n'est pas complète.

i)
$$E\left[2\left(\sum_{i=1}^{n}X_{i}\right)^{2}-(n+1)\sum_{i=1}^{n}X_{i}^{2}\right]=$$

$$2E\left(\left(\sum_{i=1}^{n}X_{i}\right)^{2}\right)-(n+1)\sum_{i=1}^{n}E\left(X_{i}^{2}\right)$$

$$=2var\left(\sum_{i=1}^{n}X_{i}\right)+2\left(E\left(\sum_{i=1}^{n}X_{i}\right)\right)^{2}-(n+1)\sum_{i=1}^{n}\left(var\left(X_{i}\right)+\left(E\left(X_{i}\right)\right)^{2}\right)$$

$$=2\sum_{i=1}^{n}var\left(X_{i}\right)+2\left(\sum_{i=1}^{n}E\left(X_{i}\right)\right)^{2}-(n+1)\sum_{i=1}^{n}\left(\theta^{2}+\theta^{2}\right)$$

$$=2\left(n\theta^{2}+n^{2}\theta^{2}\right)-2n(n+1)\theta^{2}$$

$$=0. \text{ pour tout }\theta>0.$$

ii) Prenons la fonction à deux variables $h(S_1, S_2) = 2(S_1)^2 - (n+1)S_2$. Alors d'après i) $E(h(S(\underline{X}))) = 0 \ \forall \theta > 0$ sans que h(.) ne soit une fonction identiquement nulle presque surement. D'où la statistique S n'est pas complète.

3- (2 points). Soit à trouver par la méthode des moments deux estimateurs différents pour θ .

i) Un estimateur des moments $\widehat{\theta}_M$ de θ , basé sur $X_1, X_2, ..., X_n$, est solution de l'équation

$$E\left(X\right) =\overline{X},$$

qu'on résout par rapport à θ dans l'ensemble des statistiques fonctions du moment empirique d'ordre 1, où $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Or, puisque $X \sim \mathcal{N}\left(\theta, \theta^2\right)$ et donc $E(X) = \theta$, la dernière équation s'écrit tout simplement

$$\theta = \overline{X}$$

D'où

$$\widehat{\theta}_M = \overline{X}.$$

ii) Un autre estimateur des moments de θ peut être obtenu, en raison de la dépendance entre la moyenne θ et la variance θ^2 , comme solution de l'équation du second moment

$$E(X^2) = \frac{1}{n} \sum_{i=1}^{n} X_i^2,$$

ou encore

$$var(X) + E(X)^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}.$$

D'où il suffit de résoudre l'équation au second degré suivante

$$\theta^2 + \theta^2 - \frac{1}{n} \sum_{i=1}^n X_i^2 = 0,$$

dont la solution est

$$\widehat{\theta}_M = \sqrt{\frac{1}{2n} \sum_{i=1}^n X_i^2}.$$

(l'autre solution négative ne sera pas retenue puisque $\theta > 0$.

4- (1 point). Soit à déterminer l'estimateur du maximum de vraisemblance $\widehat{\theta}_{MV}$ pour θ . La fonction de vraisemblance $L(\theta; x_1, ..., x_n)$ s'écrit avec $\mu = \theta$ et $\sigma^2 = \theta^2$ comme suit

$$L(\theta; x_1, ..., x_n) = (2\pi\theta^2)^{-n/2} \exp\left(-\frac{1}{2\theta^2} \sum_{i=1}^n (x_i - \theta)^2\right), \quad \theta > 0.$$

Cette fonction est différentiable sur $]0, +\infty[$, et donc l'EMV sera la solution de l'équation normale

$$\frac{\partial \log L(\theta; X_1, ..., X_n)}{\partial \theta} = 0,$$

soit

$$\frac{-n}{\theta} + \frac{1}{\theta^3} \sum_{i=1}^n (X_i - \theta)^2 + \frac{1}{\theta^2} \sum_{i=1}^n (X_i - \theta) = 0,$$

qui se réduit à l'équation du second degré suivante

$$-n\theta^2 - \sum_{i=1}^n X_i \theta + \sum_{i=1}^n X_i^2 = 0,$$

dont l'unique solution positive, $\widehat{\theta}_{MV}$, (l'autre elle est négative et ne sera pas retenue) est donnée par

$$\widehat{\theta}_{MV} = \frac{\sqrt{\sum_{i=1}^{n} X_i + 4n \sum_{i=1}^{n} X_i^2} - \sum_{i=1}^{n} X_i}{2n}.$$