Problem Set 6

Ekkapot Charoenwanit Efficient Algorithms

Problem 6.1. Fibonacci numbers

1) The pseudocode given in Algorithm 1 implements a function computing the Fibonacci numbers in a top-down manner with the help of memoization.

Algorithm 1 computes the Fibonacci numbers with memoization.

```
1: procedure FIB(n, F[1...n])
2: if n \le 1 then
3: return n
4: else
5: if F[n] > 0 then
6: return F[n]
7: F[n] = FIB(n-1, F) + FIB(n-2, F)
8: return F[n]
```

What is the recursion depth and what is the space complexity of FIB(n)?

2) Optimize the bottom-up implementation given in Algorithm 2 such that it uses $\Theta(1)$ space.

Algorithm 2 computes the Fibonacci numbers bottom-up.

```
1: procedure FIB(n)
2: F = \text{NEW TABLE}[0...n]
3: F[0] = 0
4: F[1] = 1
5: for i = 2 \rightarrow n do
6: F[i] = F[i-1] + F[i-2]
7: return F[n]
```

Problem 6.2. Matrix Chain Multiplication

- 1) Find an optimal parenthesization for the chain product of 5 matrices with dimensions 6×7 , 7×8 , 8×3 , 3×10 and 10×6 in a bottom-up approach.
- 2) Show that the number of ways of parenthesization C(n) is $\Omega(2^n)$, where n is the matrix chain length. You may use induction to show that $C(n) \ge c \cdot 2^n$ for some $c \in \mathbb{R}^+$ and $n_0 \in \mathbb{Z}^+$ for all $n \ge n_0$.
- 3) Calculate the exact number of distinct subproblems for a matrix chain of length n.
- 4) Does the maximum matrix chain problem also exhibit optimal substructure? If it is the case, prove your claim using a cut-and-paste argument.

Problem 6.3. Longest Common Subsequence

- 1) Give a memoized version of LCS-LENGTH that runs in $\mathcal{O}(mn)$ time.
- 2) What is the maximum recursion depth of LCS?