Локальная кластеризация временных рядов

Грабовой Андрей

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Научный руководитель д.ф.-м.н. В. В. Стрижов

Москва, 2019г

Цель работы

Исследуется

Исследуется задача распознавания характерных периодических сигналов внутри временного ряда.

Требуется

Требуется предложить признаковое описание моментов времени ряда, для дальнейшей кластеризации точек данного ряда.

Проблемы

Построение адекватного локального признакового описания временного ряда.

Список литературы

- И. П. Ивкин, М. П. Кузнецов Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию. // Машинное обучение и анализ данных, 2015.
- V. V. Strijov, A. M. Katrutsa Stresstes procedures for features selection algorithms. // Schemometrics and Intelligent Laboratory System, 2015.
- T. Kanungo, D. M. Mount et al An Efficient k-Means Clustering Algorithm: Analysis and Implementation. 2000.
- I. Borg, P. J. F. Groenen Modern Multidimensional Scaling. New York: Springer, 2005. 540 p.
- Д. Л. Данилова, А. А. Жигловский Главные компоненты временных рядов: метод "Гусеница". СПбУ, 1997.

Постановка задачи

Задан временной ряд:

$$X \in \mathbb{R}^{N \times 1}, \quad X = [v_1, v_2, \cdots, v_M], \quad v_i \in \mathcal{V},$$

где ${\mathcal V}$ некоторое множество возможных сигналов.

Предположения:

- $|\mathcal{V}| = K$,
- $\bullet \ \forall \mathbf{v} \in \mathcal{V} \ |\mathbf{v}| \leq T$,
- ullet $\forall i$ выполняется $oldsymbol{\mathsf{v}}_i = oldsymbol{\mathsf{v}}_{i-1}$ или $oldsymbol{\mathsf{v}}_i = oldsymbol{\mathsf{v}}_{i+1}$,

где $|\mathcal{V}|$ мощность множества сигналов, а $|\mathbf{v}|$ длина сигнала.

Постановка задачи

Рассмотрим отображение:

$$a: x \to \{1, \cdots, K\}$$

где $x \in X$ некоторая точка временного ряда.

Отображение должно удовлетворять следующим свойствам:

$$\left\{egin{aligned} a\left(x_{1}
ight)=a\left(x_{2}
ight), & ext{если } \exists \mathbf{v}\in\mathcal{V}:x_{1},x_{2}\in v \ a\left(x_{1}
ight)
eq a\left(x_{2}
ight), & ext{если }
eta\mathbf{v}\in\mathcal{V}:x_{1},x_{2}\in v \end{aligned}
ight.$$

Кластеризация точек

Фазовая траектория ряда Х:

$$\mathcal{H} = \{\mathbf{h}_t | \mathbf{h}_t = [x_{t-T}, x_{t-T+1}, \cdots, x_t], \ \mathsf{T} \le t \le \mathsf{N}\}.$$

Фазовые подпространства:

$$\mathcal{S} = \{ \mathbf{s}_t | \mathbf{s}_t = [h_{t-2T}, h_{t-2T+1}, \cdots, h_t], \ 2\mathsf{T} \le t \le \mathsf{N} \}.$$

Пространство базисов:

$$\mathcal{W} = \{ \mathbf{W}_t | \mathbf{W}_t = [\mathbf{w}_t^1, \mathbf{w}_t^2] \}, \quad \mathcal{L} = \{ \boldsymbol{\lambda}_t | \boldsymbol{\lambda}_t = [\boldsymbol{\lambda}_t^1, \boldsymbol{\lambda}_t^2] \},$$

где $[\mathbf{w}_t^1, \mathbf{w}_t^2]$ и $[\lambda_t^1, \lambda_t^2]$ это базисные векторы и сингулярные числа метода главных компонент для подпространства s_t .

Кластеризация точек

Расстояние между элементами \mathcal{W} : $ho\left(\mathbf{W}_1,\mathbf{W}_2\right) = \max_{\{\mathbf{a},\mathbf{b},\mathbf{c}\}\subset\mathbf{W}_1\cup\mathbf{W}_2}V\left(\mathbf{a},\mathbf{b},\mathbf{c}\right),$ где $V\left(\mathbf{a},\mathbf{b},\mathbf{c}\right)$ объем паралелепипеда на $\mathbf{a},\mathbf{b},\mathbf{c}$.

Расстояние между элементами \mathcal{L} :

$$\rho\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}\right) = \sqrt{\left(\boldsymbol{\lambda}_{1} - \boldsymbol{\lambda}_{2}\right)^{\mathsf{T}}\left(\boldsymbol{\lambda}_{1} - \boldsymbol{\lambda}_{2}\right)}.$$

Расстояние между точками временного ряда:

$$\rho(t_1, t_2) = \rho(\mathbf{W}_1, \mathbf{W}_2) + \rho(\lambda_1, \lambda_2).$$

Матрица попарных растояний:

$$\mathbf{M} = [0,1]^{N \times N}.$$

Эксперимент

Таблица: Описание выборок

Выборка	N	K	Т
Real			
Synthetic 1	2000	2	20
Synthetic 2	2000	3	20

Рис.: Пример синтетически построенных временных рядов

Рис.: Матрица попарных расстояний ${\bf M}$ между точками временного ряда

Рис.: Проекция точек временного на плоскость при помощи матрицы попарных расстояний ${\bf M}$

Рис.: Кластеризация точек временного ряда

Публикации по теме

Заключение

- Был предложен алгоритм поиска характерных сигналов, который основывается на методе главных компонент для локального снижения размерности.
- Была предложена функция расстояния между локальными базисами в каждый момент времени, которые интерпретировались как признакового описание точки временного ряда.
- Предложенный алгоритм хорошо разделяет точки которые принадлежат разным классам сигналов, что хорошо для кластеризации точек временного ряда.