Semaine n° 27 : du 29 avril au 3 mai

Lundi 29 avril

- Cours à préparer : Chapitre XXV Probabilités sur un univers fini
 - Partie 2.7: Espérance; variable aléatoire centrée; linéarité, positivité, croissance de l'espérance; espérance d'une variable aléatoire constante, d'une variable aléatoire suivant une loi uniforme, une loi de Bernoulli, une loi binomiale; formule de transfert; espérance d'un produit de deux variables aléatoires réelles indépendantes; inégalité de Markov.
- Exercices à traiter en TD
 - Feuille d'exercices n° 25 : exercices 1, 2, 3, 4, 5, 6, 7, 10.

Mardi 30 avril

- Cours à préparer : Chapitre XXV Probabilités sur un univers fini
 - Partie 2.8 : Variance, écart-type; variable aléatoire réduite; formule de König-Huygens; variance d'une variable aléatoire constante, d'une variable aléatoire suivant une loi uniforme, une loi de Bernoulli, une loi binomiale; inégalité de Bienaymé-Tchebychev; covariance de deux variables aléatoires réelles; couple de variables aléatoires décorrélées; variance d'une somme de variables aléatoires réelles.
- Exercices à corriger en classe
 - Feuille d'exercices n° 25 : exercices 8, 9.

Jeudi 2 mai

- Cours à préparer : Chapitre XXVI Matrices et applications linéaires
 - Partie 1 : Espace vectoriel $\mathcal{M}_{n,p}(\mathbb{K})$; application linéaire canoniquement associée à une matrice; noyau et image d'une matrice.
 - Partie 2.1 : Matrice d'une famille de vecteurs dans une base.
 - Partie 2.2 : Matrice d'une application linéaire relativement à un couple de bases ; isomorphisme $u \mapsto \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u)$; matrice dans la base \mathcal{C} de l'image d'un vecteur x par u ; matrice d'une composée.
- Exercices à corriger en classe
 - Feuille d'exercices n° 25 : exercices 16, 17.

Vendredi 3 mai

- Cours à préparer : Chapitre XXVI Matrices et applications linéaires
 - Partie 2.3 : Caractérisation des isomorphismes par leur matrice dans un couple de bases, matrice de la réciproque d'un isomorphisme; caractérisation des bases par leur matrice dans une base.
 - Partie 2.4: Matrice de passage; formules de changement de bases.

Semaine n° 28 : du 6 mai au 10 mai

Lundi 6 mai

- Cours à préparer : Chapitre XXVI Matrices et applications linéaires
 - Partie 3 : Matrices triangulaires supérieures, triangulaires inférieures; matrices diagonales; matrices symétriques, matrices antisymétriques.
- Exercices à traiter en TD
 - Feuille d'exercices n° 25 : exercices 11, 12, 13, 14, 15, 18.
 - Feuille d'exercices n° 26 : exercices 1, 3, 4, 5, 6, 7.

Échauffements

Mardi 30 avril

asso	ther toutes les assertions vraies : Soit $\mathscr E$ une expérience aléatoire et Ω l'univers qui lui a été ocié. Soient A et B deux événements de probabilités respectives 0.5 et 0.6. A est inclus dans B car $\mathbb P(A)\leqslant \mathbb P(B)$.	
	A et B ne peuvent pas être incompatibles car $\mathbb{P}(A) + \mathbb{P}(B) = 1.1 > 1$. Il est impossible que A et B soient indépendants si A implique B.	
	Ω est indépendant de tout autre événement. Deux événements quelconques (mais non impossibles) ne peuvent être simultanément incompatibles et indépendants.	
\$	Supposons maintenant que $\mathbb{P}(A \cup B) = 4/5$. A et B sont-ils indépendants? Oui.	
	Non.	
	On ne peut pas se prononcer car on ne dispose pas de $\mathbb{P}(A \cap B)$.	
	On ne peut pas se prononcer car on ne dispose pas de détails sur l'expérience, sur Ω , A et B .	
Jeudi 2 mai		
• <i>Coc</i>	her toutes les assertions vraies :	
;	Soit X une variable aléatoire à valeurs dans $\{0,1,2\}$ et de loi donnée par	
	$\mathbb{P}(X = 0) = \mathbb{P}(X = 2) = a \text{ et } \mathbb{P}(X = 1) = 1 - 2a$	
où a	a est une constante réelle.	
	Quelles valeurs la constante a a-t-elle le droit de prendre?	
	Toutes les valeurs de $]0,1[$ car $\mathbb{P}(X=0)+\mathbb{P}(X=1)+\mathbb{P}(X=2)=1.$	
	Seulement la valeur $a = 1/4$.	
	Toutes les valeurs de $]0, 1/2[$.	
	Une autre réponse que les précédentes.	
	Que valent l'espérance et la variance de X ?	
	$\mathbb{E}(X) = 1$ et $\operatorname{Var}(X) = 1 + 2a$. $\mathbb{E}(X) = 2a$ et $\operatorname{Var}(X) = 4a^2$	
	$\mathbb{E}(X) = 2a \text{ et } Var(X) = 4a^2.$ $\mathbb{E}(X) = 1 \text{ et } Var(X) = 2a.$	
	On pose $Y = 4 - 2X$. Sans déterminer la loi de Y, peut-on calculer l'espérance et l'écart-type	
de Y		
	Oui, ils valent respectivement 2 et $\sqrt{8a}$.	
	Oui, ils valent respectivement 2 et $\sqrt{4(1-a)}$.	
	Oui, ils valent respectivement $4(1-a)$ et $4a$.	
	Oui, mais aucune des propositions précédentes n'est correcte.	
	Non, il nous faut nécessairement la loi pour calculer ces caractéristiques de Y .	
Vendredi 3 mai		
• <i>Coc</i>	ther toutes les assertions vraies : Une urne contient n boules numérotées de 1 à n . Nous les	
extr	rayons successivement sans remise. On dit qu'il y a rencontre au i-ème tirage si la i-ème boule	
tirée	e porte le numéro i .	
	La probabilité qu'il y ait rencontre au i-ème tirage est $\frac{1}{n}$	
	La probabilité qu'il y ait rencontre au i-ème tirage est $\frac{1}{n-1}$	
	Le nombre moyen de rencontres est 2.	
	Le nombre moyen de rencontres est 3.	

Lundi 29 avril

• Cocher toutes les phrases correctes : Pour tout $n \in \mathbb{N}$, on pose $v_n = (n, n^2, n^3)$. On considère l'application

$$f: \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^3 \\ (x,y,z) & \mapsto & (x+2y-3z, x+4y-5z, x+8y-9z) \end{array}$$

	$\square \operatorname{Vect}(v_1, v_2, v_3) = \mathbb{R}^3.$
	$\square \ \operatorname{Vect}(v_1, v_2, v_3, v_4) = \mathbb{R}^3.$
	$\square \operatorname{rg}(v_1, v_2, v_3, v_4) = \dim \mathbb{R}^3.$
	$\square \operatorname{rg}(v_1, v_2, v_3) = \dim \mathbb{R}^3.$
	$\square \text{ Vect}(v_1, v_2, v_3, v_4) = \mathbb{R}^3 \text{ et } \dim(\text{Vect}(v_1, v_2, v_3, v_4)) = \dim \mathbb{R}^3 \text{ donc } (v_1, v_2, v_3, v_4) \text{ est une base}$
	$ m de \ \mathbb{R}^3$.
	\square Vect $(v_1, v_2, v_3) = \mathbb{R}^3$ et dim $(\text{Vect}(v_1, v_2, v_3)) = \text{dim } \mathbb{R}^3$ donc (v_1, v_2, v_3) est une base de \mathbb{R}^3 .
	\square La famille $(v_n)_{n\in\mathbb{N}}$ est une famille génératrice de \mathbb{R}^3 .
	\square La famille $(v_n)_{n\in\mathbb{N}}$ est une famille génératrice de \mathbb{R}^3 et dim $\mathbb{R}^3=3$ donc (v_0,v_1,v_2) est une
	base de \mathbb{R}^3 .
	\square La famille $(v_n)_{n\in\mathbb{N}}$ est une famille génératrice de \mathbb{R}^3 et dim $\mathbb{R}^3=3$ donc (v_1,v_2,v_3) est une
	base de \mathbb{R}^3 .
	\Box f est un endomorphisme de \mathbb{R}^3 .
	\square Une base de Ker f est Vect (v_1) .
	$\square \operatorname{rg}(f) = 2.$
	\square La famille (v_2, v_3) est libre et comporte deux vecteurs, or $\dim(\operatorname{Im} f) = 2$ donc (v_2, v_3) est une
	base de $\text{Im} f$.
	\square Im $f = \text{Vect}(v_1, v_2)$ et dim $(v_1, v_2) = \text{dim}(\text{Im} f)$ donc (v_1, v_2) est une base de Im f .
•	Cocher toutes les phrases correctes : Soit la fonction $g: x \mapsto x^2 \ln x$, définie sur $]0, +\infty[$.
	\Box g est définie sur $]0, +\infty[$ car x^2 et $\ln x$ sont définies sur $]0, +\infty[$.
	$\Box g \in \mathcal{C}^{\infty}$.
	\Box g est de classe \mathcal{C}^{∞} sur $]0,+\infty[$.
	$\square g \in \mathcal{C}^{\infty}(]0, +\infty[).$
	\Box g est de classe $\mathcal{C}^{\infty}(]0,+\infty[)$.
	$\square \ g \in \mathcal{C}^{\infty}(]0, +\infty[, \mathbb{R}).$
	\Box g est de classe $\mathcal{C}^{\infty}(]0, +\infty[, \mathbb{R}).$
	\Box g se prolonge par continuité en 0 en une fonction h continue sur $[0, +\infty[$.
	\square L'intégrale $\int_0^1 h$ est bien définie.
	$\int_0^{\infty} \int_0^{\infty} dt$
	\square Pour calculer $\int_0^1 h$, on peut réaliser une intégration par parties avec les fonctions $u: x \mapsto \frac{x^3}{3}$
	$ \begin{array}{c} J_0 \\ \text{et } v: x \mapsto \ln x. \end{array} $
•	Cocher toutes les phrases correctes : Soit $\varphi : x \mapsto \int_0^x (x-t)e^{t^2} dt$.
	$\square \varphi$ est définie sur \mathbb{R} car la fonction $t \mapsto (x-t)e^{t^2}$ est continue sur \mathbb{R} .
	$\Box \varphi$ est une primitive de la fonction $t \mapsto (x-t)e^{t^2}$.
	$\Box \varphi$ est dérivable sur \mathbb{R} .
_	Cocher toutes les phrases correctes : Soit $\psi: x \mapsto \int_0^x \mathbb{1}_{\mathbb{Q}}(x) e^{t^2} dt$.
•	
	\square Pour tout réel x , la fonction $t \mapsto \mathbb{1}_{\mathbb{Q}}(x)e^{t^2}$ est continue sur \mathbb{R} .
	$\square \ \psi$ est définie sur \mathbb{R} .
	\square Pour tout $x \in \mathbb{Q}$, $ \psi(x) \geqslant x $.
	\square ψ est continue sur \mathbb{R} .