

Eletrônica Digital II

- Aula 3 -

Professora: Ma. Luciana Menezes Xavier de Souza e-mail: luciana.xavier@ifsc.edu.br

Objetivos

- Identificar e caracterizar registradores.
- Projetar e montar circuitos.

Bibliografia

IDOETA, Ivan V.; CAPUANO, Francisco Gabriel. **Elementos de eletrônica digital**. Editora Erica, 2007.

MALVINO, Albert Paul. **Eletrônica digital**. Ed. 1. McGraw-Hill, 1987.

TOCCI, R. J.; WIDMER, N. S. Sistemas Digitais: Princípios e Aplicações . Ed. 8. LTC, 2003.

Informações Gerais

- A comunicação com a professora:
 - Por e-mail:

e-mail da instituição

luciana.xavier@ifsc.edu.br

Conteúdo

- Introdução;
- Registradores;
- Exemplos.

Registradores

- O uso mais comum de flip-flops é no armazenamento de dados binários.
- Esses dados são geralmente armazenados em grupos de flip-flops denominados registradores.
- Basicamente, um registrador consiste em um grupo de FF tipo D que atuam no armazenamento de dados binários, pois um FF tem a capacidade de armazenar somente um bit, e de realizar a transferência dele.

O que são REGISTRADORES?

- •O dado binário dentro de um registrador pode ser movido de um flip-flop para outro. Os registradores que permitem tal transferência são denominados de registradores de deslocamento (shift-register).
- Há 4 modos de operação básicos de um registrador:
- Registrador série/série
- Registrador série/paralelo
- Registrador paralelo/paralelo
- Registrador paralelo/série

Registrador série/série

Registrador série/paralelo

Registrador paralelo/paralelo

Registrador paralelo/série

Registradores

- FF tipo D no armazenamento de um dado de um bit:

- O valor lógico que está atualmente presente em A é transferido para o FF B na transição negativa (descida) do pulso transfer. Portanto, após esta transição, a saída B terá o mesmo valor de A.
- O grupo de FF é organizado de modo que os números binários a serem armazenados sejam deslocados de um FF para o FF seguinte, a cada pulso de clock.

Consiste em **inserir dados na entrada** do registrador, respeitando o número de bits, e efetuar o número de pulsos de clock necessários para que todo o **dado seja inserido no registrador**.

• Quando ocorrer uma transição (disparo na borda de descida), cada FF assumirá o valor armazenado anteriormente pelo FF que está à sua esquerda.

Exemplo:

Possuindo o dado 110₂, escreva a tabela verdade da transferência de dados para o registrador da figura abaixo, considerando que inicialmente ele foi limpo.

1) Inicialmente:

CLK	Dl	D2	D3	Q1 (LSB)	Q2	Q3 (MSB)
	1	0	0	0	0	0

2) 1° descida do Clock:

CLK	Dl	D2	D3	Q1 (LSB)	Q2	Q3 (MSB)
	1	1	0	1	0	0

Luciana MXS

15

1) 2° descida do Clock:

2) 3° descida do Clock:

CLK	Dl	D2	D3	Q1 (LSB)	Q2	Q3 (MSB)
	X	0	1	0	1	1

Exemplo:

CLK	D1	D2	D3	Q1 (LSB)	Q2	Q3 (MSB)
Water State Control State Cont	1	0	0	0	0	0
	1	1	0	1	0	0
	0	1	1	1	1	0
	X	0	1	0	1	1

Transferência Registrador Registrador

Dois registradores de deslocamento de três bits conectados de tal modo que o conteúdo do registrador X seja transferido serialmente (deslocado) para o registrador Y.

Portanto, quando os pulsos de deslocamento são aplicados, a transferência de informação ocorre da seguinte forma: $X_2 \square X_1 \square X_2 \square X_3 \square X_4 \square X_5 \square X_6 \square X_9 \square X_9$

Transferência Registrador Registrador

Supondo que inicialmente temos o dado 101₂ armazenado no registrador X e que o registrador Y foi limpo, temos a seguinte tabela verdade abaixo:

Luciana was

Transferência Registrador Registrador

A partir dessa tabela podemos concluir que:

- ☐ A cada descida do pulso de clock, cada FF assume o valor que foi armazenado no FF à sua esquerda, antes da ocorrência do pulso.
- □ Após 3 pulsos, todo o conteúdo presente no registrador X está presente no registrador Y.
- ☐ Portanto, a **transferência completa de 3 bits** necessita de **3 pulsos** de deslocamento.

Transferência Paralela de Dados

O grupo de FF é organizado de maneira que o dado binário a ser armazenado seja transferido simultaneamente para todos os FF, com a aplicação de apenas 1 pulso de transferência ou clock.

Transferência Dados □ **Registrador**

Consiste em inserir o dado a ser armazenado diretamente na entrada do registrador, efetuando-se 1 pulso de transferência.

Transferência Paralela de Dados

Transferência Registrador □ Registrador

Dois registradores, X e Y, interligados para executar uma transferência paralela de dados, ou seja, após a aplicação de 1 pulso de transferência, temos todo o conteúdo de X armazenado também em Y.

A transferência paralela de dados entre registradores não altera o conteúdo da fonte, enquanto na transferência serial altera o gradativamente o valor do registrador que atua como fonte de dados.

Transferência Serial x Paralela de Dados

A escolha de um tipo particular de transferência, serial ou paralela, depende da aplicação e das especificações fornecidas.

PARALELA	SERIAL				
60 OF 01 NO NE HORS VENEZIONE	1) A transferência completa de N bits, necessita de N pulsos de clock → MENOR VELOCIDADE.				
 Requer um maior número de conexões entre TX e RX → MAIOR CUSTO. 	 Necessita de apenas uma conexão entre TX en RX → MENOR CUSTO. 				

Registrador de Deslocamento Conversor

O Registrador de Deslocamento pode ser utilizado para **converter uma informação série em paralela**, ou seja, funciona como Conversor Série Paralelo.

Conversor Série - Paralelo

Exemplo: Vamos aplicar a informação série $I=1010 (I_3 I_2 I_1 I_0)$ à entrada série do registrador e analisar as saídas Q_0 , Q_1 , Q_2 e Q_3 , após os pulsos de clock.

Conversor Série - Paralelo

Entraremos com a informação (1010) como mostrado na figura abaixo.

Supondo que inicialmente as saídas Q_3 , Q_2 , Q_1 e Q_0 do registrador estejam em nível 0.

Conversor Série - Paralelo

Ao injetarmos na entrada o 1°bit de informação (I_0 =0) e houver a descida do pulso de clock, o flip-flop 3 irá apresentar a saída 0 (D_3 = 0 \square Q_3 = 0).

Após este pulso de clock, aparecerá na entrada, o bit seguinte de informação (I_1 =1) e na descida do 2° pulso de clock, teremos a passagem de I_0 para o flip-flop 2 (D_2 = 0 \square Q_2 = 0) e Q_3 assumirá o valor do bit de informação I_1 (entrada série = D_3 = 1 \square Q_3 = 1).

Conversor Série - Paralelo

Após a descida do 3° pulso de clock, ficaremos com a seguinte situação:

$$\square Q_1 = 0 (D_1 = Q_2 = 0 \square Q_1 = 0),$$

$$\square Q_2 = 1 (D_2 = Q_3 = 1 \square Q_2 = 1) e$$

$$\square Q_3 = 0 (D_3 = I_2 = 0 \square Q_3 = 0),$$

Após a descida do 4° pulso de clock, teremos a seguinte situação:

$$\Box \ \ Q_0 = 0 \ (D_0 = Q_1 = 0 \ \Box \ Q_0 = 0),$$

$$\square Q_1 = 1 (D_1 = Q_2 = 1 \square Q_1 = 1),$$

$$\square \ Q_2 = 0 \ (D_2 = Q_3 = 0 \ \square \ Q_2 = 0) \ e$$

$$\Box \ Q_3 = 1 \ (D_3 = I_3 = 1 \ \Box \ Q_3 = 1),$$

Conversor Série - Paralelo

Após o **4ºpulso de clock**, a informação I estará armazenada no registrador de deslocamento e aparecerá nas saídas Q_3 , Q_2 , Q_1 e Q_0 como sendo uma informação paralela.

Sequência sob a forma da tabela da verdade:

Informação	Descida de clock	Q_3	Q ₂	Q ₁	Q ₀
$I_0 = 0$ $I_1 = 1$ $I_2 = 0$ $I_3 = 1$	12 22 3a 4a	0 1 0 1	0/0/1/0	0 0 0 0 0 1	0000

Por deslocar a informação a cada pulso de clock

Registrador de Deslocamento.

Para entrarmos com uma informação paralela, precisamos de um registrador que apresente entradas *Preset* e *Clear*, pois é através destas que fazemos com que o registrador armazene a informação paralela.

Quando a entrada **Enable** estiver em 0, as entradas Preset (PRE) dos flip-flops assumirão, respectivamente, níveis 1, fazendo com que o registrador atue normalmente.

Quando a entrada **Enable** estiver em 1, as entradas Preset (PRE) dos flip-flops assumirão os valores complementares das entradas PRE, logo os flip-flops irão assumir os valores que estiverem, respectivamente, em cada entrada PRE.

Para um melhor entendimento vamos analisar uma célula do registrador:

- Para que esse conversor funcione, é necessário inicialmente um pulso de nível 0 na entrada CLEAR dos FF.
- Com ENABLE = 0, a entrada PRE assumirá nível 1 e o FF irá funcionar como um registrador de deslocamento comum.
- Com ENABLE = 1 e Din= 0, PRE assumirá nível 1, logo, a saída Q manterá seu estado anterior (que era 0).
- Com ENABLE = 1 e Din= 1, PRE assumirá nível 0, logo a saída Q assumirá valor 1.

Após essa análise, concluímos que:

- Se zerarmos o registrador e logo após introduzirmos a informação paralela, as saídas Q dos FF assumirão os valores inseridos respectivamente nessas entradas.
- Depois de inserida paralelamente essa informação, basta colocarmos ENABLE = 0 novamente e prosseguir como um registrador de deslocamento comum.
- Com esse conjunto obtivemos um registrador com Entrada Paralela e Saída Serial (EPSS).

Exercício

A partir dos sinais aplicados às entradas, esboce as formas de onda das saídas para o Registrador de Deslocamento de bits, visto abaixo.

Resposta

Registrador de Deslocamento

Aplicações

Captura de Imagens

Comunicaçã o de Periféricos

Exercícios

Registrador Série-Paralelo: Encontre as formas de onda de Q3, Q2, Q1 e Q0

Registrador Série-Paralelo: Encontre as formas de onda de Q3, Q2, Q1 e Q0

Registrador Paralelo-Paralelo: Encontre as formas de onda de Q3, Q2, Q1 e Q0

Enable = 0 – Habilita entrada Série

Enable = 1 – Habilita as entradas Paralelas

Registrador Paralelo-Paralelo: Encontre as formas de onda de Q3, Q2, Q1 e Q0

Enable = 0 – Habilita entrada Série

Enable = 1 – Habilita as entradas Paralelas