Subset Sum and 3-Color

Getting a truth-value assignment

What did we see last time?

- ▶ 3-Color is in \mathcal{NP} .
- ▶ We can use a solution to 3-Color to assign T/F values:

Subset Sum and 3-Color

Getting a SATISFYING truth-value assignment

Amend the $3\text{-}\mathrm{COLOR}$ usage to get a satisfying truth value assignment on n variables

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 釣۹@

Y1 V X2 V X3

Subset Sum and 3-Color

Getting a SATISFYING truth-value assignment

Putting it together...

Could this produce *false negatives*?

That is, could there be an instance of 3-SAT that has a satisfying assignment, but with the corresponding 3-Color (that we create) causing a "false"?

No: color 1st slide w/ TVA

each "clause widget"

is colorable

(as at least one var > true)

Subset Sum and 3-Color

Getting a SATISFYING truth-value assignment

Putting it together...

Could that create false positives?

That is, if 3-Color returns true, do we really know that the corresponding 3-SAT instance has a satisfying assignment?

Fa clasure not fryfr and no var is neutral So we have a working TVA

└─Subset Sum and 3-Color

In-Class Exercises

Prove that MIN-Cost Fast Path is \mathcal{NP} -complete

MIN-COST FAST PATH is in \mathcal{NP} :

- ► Certificate: path
- Verifier:
- 1. If path not path s >> t, reject 2. add total time, cost on path if either > bound, reject
 - 3. accept

Subset Sum and 3-Color

In-Class Exercises

Subset Sum and 3-Color

In-Class Exercises

Prove that Clustering is \mathcal{NP} -complete

element Clustering is in \mathcal{NP} : ► Certificate: Partitioning (K Sets, membership) rifier:

1. If any elt not in any set, reject

2. If any elt in 2t reject

3. for each set

if any pair has s.p. > 1,

reject

reject Verifier: 4 accept

◆□▶◆□▶◆≣▶◆≣▶ ■ りQ@

T=1?

Subset Sum and 3-Color

In-Class Exercises

Prove that Clustering is \mathcal{NP} -complete

If
$$(u_1v) \notin E_1$$
 dist $(u_1v) \supset T$

If $else$ dist $(u_1v) \preceq T$
 $3-color (6)$
 $6'=6.v$ plus All poss. edges $elges$ $elges$

Туре	Examples
Packing	Ind Set Str. Ind Set
Covering	Vert. Cover Set Cover
Partitioning	3-color
Sequencing/Permutation	Ham. Path/Gale TSP

└ In Popular Culture

Integers

A 1 B, C, N;

N ≥ 3

A N + B N ≠ C N

$$ightharpoonup 1782^{12} + 1841^{12} = 1922^{12}$$

PSNP

Coping with Complexity

Exact Algorithms

Vertex Cover

- ▶ We don't expect to find a correct and efficient algorithm
- How efficient can we get and still be correct?
- ▶ There are $\binom{n}{k}$ subsets
- ► Each could be a certificate of size k
- ▶ Each could be verified in O(nk).
- ▶ This gives us a running time of $O(nk\binom{n}{k}) = O(kn^{k+1})$.
- ▶ $n = 1000, k = 10, \approx 10^{24}$ seconds to run.
 - Is this a reasonable running time?

Coping with Complexity

Exact Algorithms

We could do better...

$$\begin{aligned} &\text{VertexCover}(\texttt{G=}(\texttt{V},\texttt{E})\,,\,\,\texttt{k})\\ &\text{if}\,\,|E| = 0\,\,\text{then}\\ &\text{return}\,\,\,\text{true}\\ &\text{if}\,\,|E| > k\cdot |V|\,\,\text{then}\\ &\text{return}\,\,\,\text{false}\\ &e = (u,v) \leftarrow \text{arbitrary edge from}\,\,E\\ &\text{return}\,\,\,\,\text{VertexCover}(G-\{u\},k-1)\,\,\text{OR}\\ &\text{VertexCover}(G-\{v\},k-1) \end{aligned}$$

Coping with Complexity

LSpecial Cases

Vertex Cover in a tree

Greedy Algorithm:

lgnore all leaf
take all parent of leaf
remove all edges incident to chosen
repeat / recurse on smaller subtrees

Coping with Complexity

Special Cases

Vertex Cover in a weighted tree

- Dynamic Programming
- ► Simple outline?

Complement of hal, Q3

CSCI 570 Summer 2016

L-Coping with Complexity
L-Special Cases

Vertex Cover, unweighted bipartite graph

Cell of the control of the control

Approximation Algorithms

Vertex Cover

Simple Greedy Algorithm

Approximate-Vertex-Cover(G=(V,E), k) $C \leftarrow \emptyset$ F' = G.Ewhile $E' \neq \emptyset$ do $e = (u, v) \leftarrow \text{arbitrary edge from } E$ $C = C \cup \{u, v\}$ Remove from E' every edge incident on u or vreturn C

Does this get a valid Vertex Cover?

yes, after iter, E' is uncovered edges. None uncovered at end

L Approximation Algorithms

Vertex Cover

Simple Greedy Algorithm

Approximate-Vertex-Cover(G=(V,E), k) $C \leftarrow \emptyset / A \leftarrow \emptyset$ E' = G.E while $E' \neq \emptyset$ do $e = (u, v) \leftarrow$ arbitrary edge from E $C = C \cup \{u, v\}$ $A = A \cup \{e\}$ Remove from E' every edge incident on u or v return C

▶ Does this get the minimum Vertex Cover?

☐ Approximation Algorithms

└Vertex Cover

How bad can it be?

- ▶ Let C be the cover returned
- ▶ Let *C** be optimal cover
- ▶ Let A be the set of edges chosen by algorithm

for each edge chosen (by us)

at least one endpt in OPT

$$|A| \leq |C|$$

$$|C| = 2|A| \leq 2|C^*|$$
So our cover $\leq 2 \cdot OPT$

$$2 - approximation$$