从线性代数到张量计算

陈新宇(蒙特利尔大学)&赵熙乐(电子科技大学)

2022年12月

目录

第一章	代数结构	7
1.1	向量与矩阵	7
1.2	张量	7
1.3	特殊代数结构	7
1.4	实际应用: 时空数据中的代数结构	7

前言

在过去的数十年间,随着信号处理、机器学习与数值计算等领域的快速发展,张量计算已 从以线性代数为支撑的矩阵计算中逐步拓展开来,相关研究贯穿信号处理、机器学习等众多 领域。随着大量张量计算算法涌现出来,我们不难发现:这些算法大多建立在张量分解的基础 上。本着以张量计算这一概念为中心,本文将从线性代数出发,讲述张量计算相关的一系列内 容。为了提高读者的阅读体验,笔者进行了以下尝试:

- **化繁为简**。将线性代数以及张量计算的范畴限定在实空间中。另外,严格来说,向量和 矩阵属于低阶张量,为区分概念,我们默认常提到的张量特指高阶张量(阶数大于或等 于 3)。
- **由浅入深**。从基本的线性代数内容展开,通过循序渐进的方式引出一系列矩阵分解与张量分解技术,使读者体会到线性代数的巨大价值。
- **熟能生巧**。本文在撰写过程中尽可能考虑初学者的学习历程,在全文中设计一系列难度 适中的例题让读者更直观理解一系列理论,并通过练习熟练掌握相应内容。

笔者深感自身才疏学浅,对于线性代数和张量计算的认识具有一定的局限性,请广大读者批评指正。另外,全文内容设置的合理性也有待考究,需要等待读者的检验。尽管如此,笔者愿竭心力,在后续版本中逐步更新与完善本文,如有建议或疑问,请在 GitHub 开源项目https://github.com/xinychen/tensor-book的问答区与笔者进行互动交流。

作者声明:

- 撰写本文的初衷在于传播知识,为感兴趣的读者提供参考素材。
- 禁止将本文放在其他网站上供人下载,唯一下载网站为https://xinychen.github.io/books/tensor-book.pdf。
- 禁止将本文用于任何形式的商业活动。

6 目录

第一章 代数结构

长期以来,线性代数一直作为机器学习中最为重要的数学工具之一,被人们广泛用于开发各类机器学习算法。线性代数本质上是以向量与矩阵为基本代数结构,本书要讨论的张量分解等模型则主要以张量为基本代数结构。在过去的数十年间,借助线性代数这一基本数学工具,机器学习中涌现出了很多经典的代数模型,这其中不乏矩阵分解、主成分分析,而张量分解在某种程度上可看作是矩阵分解的一种衍生物。

近年来,张量分解在机器学习的众多问题中得到了很好的应用,但关于张量的一些计算与我们所熟悉的线性代数却大相径庭,同时,张量计算相比以矩阵计算为主导的线性代数更为抽象,这使得很多与张量分解相关的内容看起来晦涩难懂。实际上,向量与矩阵都是张量的特例,可以被定义为低阶张量。一般而言,向量是第 1 阶张量,英文表述为 first-order tensor;矩阵是第 2 阶张量,英文表述为 second-order tensor;第 3 阶或者更高阶数的张量被称为高阶张量,英文表述为 higher-order tensor。在各类文献中,通常提到的张量都是特指高阶张量,当然,这在本书的叙述中也不例外。需要注意的是,在各类程序语言中,人们更愿意将张量称为多维数组。

在一个矩阵中,某一元素的位置可以说是"第i7、第j7列",即要描述某一元素的位置需用到行和列索引构成的组合 (i,j)。类似地,在一个第37阶张量中,描述某一元素的位置需用到三个索引构成的组合,例如 (i,j,k)。在处理稀疏矩阵或稀疏张量时,用索引来标记元素的位置会节省下一些不必要的存储开支。

1.1 向量与矩阵

1.2 张量

1.3 特殊代数结构

1.4 实际应用:时空数据中的代数结构