1a. Lista de Exercícios -não é para entregar

- 1) Mostre que 0.1 na base 10 é representado por 0.0001100110011... na base 2.
- 2) Some 10000 vezes no computador o valor 0.0001 e imprima o resultado com sete decimais (precisão simples).
- 3) Calcule no computador o maior n! até causar overflow (precisão simples e dupla). Imprima n e n! .
- 4) Calcule com uma calculadora não programável a raiz positiva de $x^2-5=0$ usando o método de bissecção, até o intervalo ser ≤ 0.001 .
- 5) A eq. $x^2 3x + 2 = 0$ pode ser escrita como x = G(x) de diversas formas diferentes para aplicação do método de substituições sucessivas. Faça estudos analítico e numérico da região de convergência para as raízes x = 1, 2 e construa os gráficos de convergência y = G(x) superposto à reta y = x para os seguintes casos:

a)
$$x_{n+1} = (x_n^2 + 2)/3$$

b) $x_{n+1} = \sqrt{(3x_n - 2)}$

6) Com uma calculadora não programável, encontre a raiz positiva de $\sin(x)=x/2$ usando os métodos de Newton-Raphson e secantes, com erro $\epsilon < 10^{-4}$.

Dúvidas c/ Monitores