Small Satellite Passive Magnetic Attitude Control

by

David T. Gerhardt

B.S., Virginia Polytechnic Institute and State University, 2008M.S., University of Colorado, 2011

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Aerospace Engineering Sciences

2014

This thesis entitled: Small Satellite Passive Magnetic Attitude Control written by David T. Gerhardt has been approved for the Department of Aerospace Engineering Sciences

Professor Scott Palo	
Professor Hanspeter Schaub	
	Date

The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline.

Gerhardt, David T. (Ph.D., Aerospace Engineering Sciences)

Small Satellite Passive Magnetic Attitude Control

Thesis directed by Professor Scott Palo

Passive Magnetic Attitude Control (PMAC) is capable of aligning a satellite within 5 degrees of the local magnetic field at low resource cost, making it ideal for a small satellite. However, simulation attempts to date have not been able to predict the attitude dynamics at a level sufficient for mission design. Also, some satellites have suffered from degraded performance due to an incomplete understanding of PMAC system design. This dissertation alleviates these issues by discussing the design, inputs, and validation of PMAC systems for small satellites.

Design rules for a PMAC system are defined using the Colorado Student Space Weather Experiment (CSSWE) CubeSat as an example. A Multiplicative Extended Kalman Filter (MEKF) is defined for the attitude determination of a PMAC satellite without a rate gyro. After on-orbit calibration of the off-the-shelf magnetometer and photodiodes and an on-orbit fit to the satellite magnetic moment, the MEKF regularly achieves a three sigma attitude uncertainty of 4 degrees or less. CSSWE is found to settle to the magnetic field in seven days, verifying its attitude design requirement.

A Helmholtz cage is constructed and used to characterize the CSSWE bar magnet and hysteresis rods both individually and in the flight configuration. Fitted parameters which govern the magnetic material behavior are used as input to a PMAC dynamics simulation. All components of this simulation are described and defined. Simulation-based dynamics analysis shows that certain initial conditions result in abnormally decreased settling times; these cases may be identified by their dynamic response. The simulation output is compared to the MEKF output; the true dynamics are well modeled and the predicted settling time is found to possess a 20 percent error, a significant improvement over prior simulation.

Acknowledgements

Thank you to my advisor, Scott Palo. You have been a continual source of encouragement and guidance when it was sorely needed (which was always). Thank you Xinlin Li for always believing in my abilities (even when I didn't have them yet). Thank you Hanspeter Schaub for continuing to teach me attitude dynamics from Blacksburg to Boulder. Thanks as well to Albin Gasiewski, Paul Graf, and Delores Knipp for your guidance.

Thank you CSSWE team. I will never forget the time we spent working together to produce an operational(!) satellite. I enjoyed every minute of serving as your system engineer. I know our friendship will continue long after the beacons cease. Thank you Therese Jorgensen and the National Science Foundation for funding the little box that could.

Thank you to my parents, who set the bar high with their own example. You instilled the curiosity that prompts me to open the black box, as messy as the process may be.

Finally, the greatest thanks goes to my wife Alana. We did it. How it happened I'll never know, but we did it together. I can't wait to see where we end up next.

Contents

Chapter

1	Intro	oductio	n	1
2	Basi	c Theo	$\mathbf{r}\mathbf{y}$	5
	2.1	Euler'	s Rotational Equation of Motion	5
	2.2	Magne	etic Theory	6
		2.2.1	Magnetizing Field H vs. Magnetic Flux Density B	6
		2.2.2	Hysteresis Loops	8
		2.2.3	Magnetic Property Dependencies	10
		2.2.4	Demagnetizing Fields	11
		2.2.5	Magnetic Torques	16
		2.2.6	Hysteresis Rods	17
3	Back	kground	l	19
	3.1	Missio	on History	19
		3.1.1	Early History of Passive Magnetic Attitude Control	20
		3.1.2	Modern Use of Passive Magnetic Attitude Control	22
		3.1.3	CubeSats using Passive Magnetic Attitude Control	26
	3.2	Analy	tical Models	29
		3.2.1	Fischell Analytical Model (1961)	29
		3.2.2	Mesch et al. Analytical Model (1966)	32

			vii
		3.2.3 Kammüller Analytical Model (1971)	32
	3.3	Numerical Simulations	33
		3.3.1 Chen (1965)	34
		3.3.2 Ovchinnikov & Penkov (2002) - Munin	34
		3.3.3 CUBESIM (2004) and SNAP (2009)	35
		3.3.4 Park et al. (2010) & Lee et al. (2011) - RAX	36
	3.4	Hysteresis Measurement to Date	36
4	The	Colorado Student Space Weather Experiment	38
	4.1	Science Mission Success	38
	4.2	Coordinate System	40
	4.3	Sensors and Telemetry	43
		4.3.1 Housekeeping	43
		4.3.2 Attitude	43
	4.4	Latch-up Anomaly	52
5	Con	trol System Design	55
	5.1	Maximum Expected Environmental Torques	55
	5.2	Bar Magnet Design	56
	5.3	Hysteresis Rod Design	57
6	Atti	tude Determination	61
	6.1	Filter Design	61
	6.2	Filter Tuning	67
		6.2.1 Simulation-based Filter Tuning	67
		6.2.2 Empirical Filter Tuning	70
	6.3	CSSWE Attitude Determination	75

				viii
		6.3.2	Attitude Determination Validation	. 89
7	Mag	netic M	Ieasurement	98
	7.1	Helmh	noltz Cage	. 98
		7.1.1	Theory	. 99
		7.1.2	Design	101
		7.1.3	Assembly	104
		7.1.4	Characterization	108
	7.2	Bar M	Iagnet Measurement	. 110
	7.3	Hyster	resis Measurement	112
		7.3.1	Theory	. 112
		7.3.2	Setup	115
		7.3.3	Method	. 119
		7.3.4	Results	121
8	Sim	ulation		134
	8.1	Comp	onents	
		8.1.1	Frames	135
		8.1.2	Attitude Parameters	136
		8.1.3	Equations of Motion	138
		8.1.4	Orbit Propagation	138
		8.1.5	Inertial Vector Models	139
		8.1.6	External Torque Estimation	143
		8.1.7	Numeric Integrators	151
	8.2	Consid	derations	155
		8.2.1	Torque-Free Rigid Body Motion	155
		8.2.2	3D Pendulum Comparison	156

1	v
	А.

		8.3.1	Description	. 159
		8.3.2	Energy Conservation Analysis	. 160
		8.3.3	Angular Error Analysis	. 161
		8.3.4	Settling Time Analysis	. 163
		8.3.5	Summary	. 171
	8.4	Result	s	. 174
		8.4.1	Nominal Input	. 174
		8.4.2	Nominal Output	. 176
		8.4.3	High-Order Integrator Comparison	. 183
		8.4.4	On-Orbit Data Comparison	. 183
9	Con	clusion		192
	9.1	Summ	ary	. 192
	9.2	Recom	nmendations	. 194
В	Bibliography 196			
A	.ppeı	ndix		
\mathbf{A}	Nota	ation		202
В	Exp	licit Ru	nge-Kutta Integrator Definitions	203

Tables

Table

4.1	CSSWE Housekeeping Sensors
5.1	Expected 3U CubeSat Environmental Torques
7.1	Helmholtz Cage Hardware
7.2	HyMu-80 Hysteresis Parameters
8.1	Simplified Simulation Input Sets
8.2	PMAC Simulation Inputs
B.1	General Butcher Tableau
B.2	RK2: Midpoint Method
B.3	RK3: Kutta Method
B.4	RK4: Runge-Kutta Method
B.5	RK5: Dormand-Prince Method
B.6	RK6: Hammund Scheme
B.7	RK7: Fehlburg Method

Figures

Figure

2.1	Magnetic Domains	7
2.2	Example B vs. H Hysteresis Loop	9
2.3	Effect of Magnetization Cycle Magnitude	12
2.4	Effect of Magnetization Cycle Magnitude	13
2.5	Hysteresis Loop Frequency Variation	14
2.6	Bar magnet ${\bf H}$ and ${\bf B}$ with no applied field	15
3.1	Transit 1B Satellite	21
3.2	Injun 3 Satellite	22
3.3	Azur Satellite	23
3.4	Munin Satellite	25
3.5	UNISAT-4 Satellite	25
3.6	QuakeSat CubeSat	27
3.7	RAX-1 CubeSat	28
4.1	CSSWE CubeSat & P-POD	39
4.2	REPTile Instrument	41
4.3	CSSWE Coordinate System	42
4.4	Magnetometer Position	46
4.5	Magnetometer Error	48

		xii
4.6	Photodiode Illumination	49
4.7	Photodiode Degradation and Scale Factor Correction	51
4.8	Investigation of TLE Position Error	53
4.9	ADC1 Latch-up Bit Damage	54
5.1	B-Field Error Angle	59
5.2	CSSWE PMAC Design	60
6.1	MEKF Simulation EA123 Error	68
6.2	MEKF Simulation Angular Velocity Error	69
6.3	MEKF Simulation Magnetometer Residuals	71
6.4	MEKF Simulation Photodiode Residuals	72
6.5	MEKF Simulation Error Angles	73
6.6	Magnetometer Position and Orientation	76
6.7	MEKF Empirical Magnetometer Residuals	77
6.8	MEKF Empirical Photodiode Residuals	78
6.9	MEKF Empirical Error Angles	79
6.10	First Month: Angular Velocity	81
6.11	First Month: Beta Angle	82
6.12	First Month: Energy	83
6.13	First Month: Histogram	84
6.14	First Month: Error Angle Magnitude	87
6.15	First Month: C&DH Temperature	88
6.16	Pre-settling Orbit: Beta	90
6.17	Pre-settling Orbit: Angular Velocity	91
6.18	Post-settling Orbit: Beta	92
6.19	Post-settling Orbit: Angular Velocity	93
6.20	Post-settling Orbit: Sun and Error Angles	94

6.21	Antenna Deployment Event
6.22	Solar Panel Temperature Distribution
7.1	Helmholtz Geometry
7.2	Helmholtz Coil Spacing Analysis
7.3	As-Built Theoretical Helmholtz Performance
7.4	Finished Helmholtz Cage
7.5	Helmholtz Support Hardware Chain
7.6	XY Plane Test
7.7	Bar Magnet Measurement Fit
7.8	Integrator Circuit for Magnetic Measurement
7.9	Hysteresis Measurement Setup Block Diagram
7.10	Hysteresis Measurement Sense Coil
7.11	Hysteresis Measurement Analysis Block Diagram
7.12	Fitted $\pm 100 \text{A/m}$ Hysteresis Loop
7.13	Isolated Rod Performance
7.14	On-Orbit Hysteresis Rod Magnetizing Field Component
7.15	Simulated Loops from ± 100 A/m Measure
7.16	Simulated Loops from $\pm 10 \text{A/m}$ Measure
7.17	System Hysteresis Rod Measurement
7.18	System Rod Performance
7.19	Bar Magnet Offset at Each Hysteresis Rod
8.1	ECI & ECEF Coordinate Frames
8.2	Global IGRF Magnitude
8.3	Hysteresis Model Output at ± 8 and ± 3 A/m
8.4	Energy Ellipse and Momentum Sphere
8.5	Integrator Energy Conservation

8.6	Integrator Beta Angle Error
8.7	Integrator Euler Angle Error Breach Time
8.8	Settling Time Convergence
8.9	"Truth" Settling Time for Bar-Magnet-and-Hysteresis Case
8.10	"Truth" Settling Time for All-Torques Case
8.11	"Truth" Angular Velocity Response for Bar-Magnet-and-Hysteresis Case 172
8.12	"Truth" Angular Velocity Response for All-Torques Case
8.13	Nominal Output: Angular Velocity
8.14	Nominal Output: Energy
8.15	Nominal Output: Beta Angle
8.16	Nominal Output: External Torques
8.17	Nominal Output: Hysteresis Loops
8.18	RK4/7 Comparison: Angular Velocity
8.19	RK4/7 Comparison: Energy
8.20	RK4/7 Comparison: Beta
8.21	Orbital Data Comparison: Angular Velocity
8.22	Orbital Data Comparison: Energy
8.23	Orbital Data Comparison: Beta