Computer Systems

CS107

Cynthia Lee

Today's Topics

LECTURE:

- > Floating point!
- (if we have time)
 - Preview of Friday's assembly language lecture

Real Numbers and Approximation

MATH TIME!

Some preliminary observations on approximation

- We know that some non-integer numbers can be represented precisely by a finite-length decimal value
 - $1/5_{10} = 0.2_{10}$
- ...and some can't (in base 10)
 - **>** Π

$$1/3_{10} = .333333333_{10}$$

- But this isn't consistent across different bases
 - $1/3_{10} = 0.1_3$
 - $1/5_{10} = 0.012012\overline{012}_3$
- Uncountably many real numbers we could represent!
- And of course even with int(countable) we needed to make choices about which integers make the cut and which don't, when we have only a limited storage space

Real number types: float, double

- If you're deciding how to divide up a large number of possible bit patterns into numbers they can represent, there are any number of ways you cold do this
 - What are your priorities?
 - Do you want to leave space for very big ones? Or very small ones?
 - Do you prefer positive or negative?

Thought experiment: how we could represent real numbers

- 1. Take our integer representation
- 2. Decide how much granularity we want to represent
- 3. Move the decimal point (binary point?) over a corresponding number of places
- For example: let's say we want to be able to measure in units of 1/64th
 - > 32-bit binary number example (10 and 1/64th):
 - 0000 0000 0000 0000 0000 0010 10.00 0001

MUCH RANGE

SODICITS

Real number types: float, double

- float is 4 bytes = 32 bits
 - $2^{32} = 4,294,967,296$ possible values
 - (note: obviously same number of possible values as 32-bit int)
- double is 8 bytes = 64 bits
 - $2^{64} = 18,446,744,073,709,551,616$ possible

- > But floating point range goes much higher than max int:
- Max 32-bit int: $2^{31} 1 = 2,147,483,647 \approx 2.1 \times 10^{9}$
- Max 32-bit float: $(2 2^{-23}) \times 2^{127}$ ≈ 3.4 × 10³⁸

The "mini-float"

NOT A REAL TYPE IN C, BUT WILL SHOW US THE PRINCIPLES THAT WILL SCALE UP TO THE ACTUAL BIT SIZES FLOAT AND DOUBLE

IEEE format, squished down to example-size "mini-float"

Sign	Exponent	Mantissa

- Sign bit is 1 for negative, 0 for positive
 - > Operates completely independently, *unlike* 2's complement int
- The rest of the number is in something like scientific notation:
 -) (+/-) M * 2^{Exp}
 - Mantissa provides the significant digits of the number
 - Note: also called the coefficient or the significand
 - <u>Exp</u>onent is used to scale the number up or down to very large or very small values
 - Both exponent and mantissa are binary numbers, 4 bits and 3 bits, respectively
 - but <u>not</u> in normal 2's complement form!

IEEE format, squished down to example-size "mini-float"

Sign	Exponent	Mantissa

Compare to the bit distribution for 32-bit float:

Creative Commons license attribution to user Fresheneesz at https://en.wikipedia.org/wiki/Single-precision_floating-point_format#/media/File:Float_example.svg

"Mini-float": the mantissa

- A 3-bit binary number representing a number <u>after an implicit 1.</u>
 - > What??
- Yes, it looks like this: 1.[mantissa digits]
- Examples:
 - > Mantissa = 100_2 → 1.100_2

• = 1 +
$$\frac{1}{2}$$
 = 1.5₁₀

 \rightarrow Mantissa = $110_2 \rightarrow 1.110_2$

• = 1 +
$$\frac{1}{2}$$
 + $\frac{1}{4}$ = 1.75₁₀

Sign	Exponent	Mantissa

"Mini-float": the exponent

A 4-bit binary number representing the exponent:

```
> 0000
           > reserved
> 0001
           > -6
> 0010
      > -5
> 0011
      > -4
> 0100
      > -3
      > -2
> 0101
> 0110
      > -1
> 0111
           > 0
> 1000
> 1001
> 1010
> 1011
      > 4
> 1100
           > 5
> 1101
        > 6
> 1110
> 1111
           > reserved
```

Lets do an example!

Sign		Expo	nent	N	lantiss	a	
0	0	0	0	1	0	1	0

- This number is:
 - A. Greater than 0
 - B. Less than 0
 - C. Help!
 - Extra credit: > 1 or < -1 or in between?</p>

Lets do an example!

+/-	Exponent			Mantissa			Value	
0	0	0	0	1	0	1	0	10/8 * 2-6 = 10/512
0	0	0	0	1	0	1	1	11/8 * 2 ⁻⁶ = 11/512
0	0	0	0	1	1	0	0	12/8 * 2-6 = 12/512
0	0	0	0	1	1	0	1	13/8 * 2 ⁻⁶ = 13/512
0	0	0	0	1	1	1	0	14/8 * 2-6 = 14/512
0	0	0	0	1	1	1	1	15/8 * 2 ⁻⁶ = 15/512
0	0	0	1	0	0	0	0	1 * 2 ⁻⁵ = 16/512
0	0	0	1	0	0	0	1	9/8 * 2 ⁻⁶ = 18/512

Lets do an example!

+/-	Exponent			Mantissa			Value	
0	0	0	1	0	0	0	0	1 * 2 ⁻⁵ = 16/512
0	0	0	1	0	0	0	1	9/8 * 2 ⁻⁶ = 18/512
0	1	1	1	0	0	1	0	$10/8 * 2^7 = 160$
0	1	1	1	0	0	1	1	$11/8 * 2^7 = 176$
0	1	1	1	0	1	0	0	12/8 * 2 ⁷ = 192
0	1	1	1	0	1	0	1	$13/8 * 2^7 = 208$
0	1	1	1	0	1	1	0	$14/8 * 2^7 = 224$
0	1	1	1	0	1	1	1	$15/8 * 2^7 = 240$

About those reserved exponents...

DENORMALIZED AND SPECIAL CASES

Reserved exponent values: 0000 and 1111

0000 exponent:

> If the mantissa is all zeros:

Sign		Exp	onent		Mantissa	a	
any	0	0	0	0	0	0	0

> If the mantissa is nonzero:

denormalized floats

Sign		Expo	Mantissa		
any	0	0	0	0	any nonzero

1111 exponent:

> If the mantissa is all zeros:

Sign		Exp	onent		Mantiss	a	
any	1	1	1	1	0	0	0

If the mantissa is nonzero:

NaN (not a number)

Sign		Expo	nent	Mantissa	
any	1	1	1	1	any nonzero

MORE about: the mantissa

- A 3-bit binary number representing a number <u>after an implicit 1.</u>
 - > What??
- Yes, it looks like this: 1.[mantissa digits]
- Examples:
 - > Mantissa = 100_2 → 1.100_2
 - = 1 + $\frac{1}{2}$ = 1.5₁₀
 - > Mantissa = 110_2 → 1.110_2
 - = 1 + $\frac{1}{2}$ + $\frac{1}{4}$ = 1.75₁₀
- If the exponent is all zeros, then there is no implicit leading 1
 - > The exponent is implicitly smallest possible exponent (2-6 for mini-float)
 - This allows us to eke out a few numbers that are even (closer to zero) than would otherwise be possible
 - Called "denormalized" or "denorm" floats

Sign	Exponent	Mantissa

Comparing float and int

ADVANTAGES AND DISADVANTAGES

Comparing float and int

- 32-bit integer (type int):
 - > -2,147,483,648 to 2147483647
 - Every integer in that range can be represented
- 64-bit integer (type **long**):
 - > -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
 - (Even Psy will have a hard time overflowing this!)
- 32-bit floating point (type float):
 - \rightarrow ~1.7 x10⁻³⁸ to ~3.4 x10³⁸
 - Not all numbers in the range can be represented (obviously—uncountable)
 - Not even all integers in the range can be represented!
 - Gaps can get quite large!! (larger the exponent, larger the gap between successive mantissa values)
- 64-bit floating point (type double):
 - \rightarrow ~9 x10⁻³⁰⁷ to ~2 x10³⁰⁸

Doing arithmetic in float

FUN TIMES

Adding two mini-floats

- Your bank account balance on your 12th birthday was \$128.00
- Your bank stores this amount as a mini-float:

Sign	Exponent	Mantissa

 Each week of your childhood, starting at age 12, you deposited your weekly allowance of \$8:

Sign	Exponent	Mantissa		

- What was your account balance on the day you turned 18?
 - A. About \$10000
 - B. About \$5000
 - C. About \$2500
 - D. About \$100
 - E. Other

Doing arithmetic in float

FUN TIMES

Adding two mini-floats

- Your bank account balance on your 12th birthday was \$128.00
- Your bank stores this amount as a mini-float:

Sign	Exponent			Mantissa			

Each week, starting at age 12, you deposited your weekly allowance of \$14:

Sign	Exponent	Mantissa		

- What was your account balance on the day you turned 18?
 - A. About \$10000
 - B. About \$5000
 - C. About \$2500
 - D. About \$100
 - E. Other

Instruction Set Architectures

SOME CONTEXT AND TERMINOLOGY

Instruction Set Architecture

The ISA defines:

- Operations that the processor can execute
- > Data transfer operations + how to access data
- Control mechanisms like branch, jump (think loops and if-else)
- Contract between programmer/compiler and hardware

Layer of abstraction:

- > Above:
 - Programmer/compiler can write code for the ISA
 - New programming languages can be built on top of the ISA as long as the compiler will do the translation
- > Below:
 - New hardware can implement the ISA
 - Can have even potentially radical changes in hardware implementation
 - Have to "do" the same thing from programmer point of view

ISAs have incredible inertia!

Legacy support is a huge issue for x86-64

Two major categories of Instruction Set Architectures

CISC:

- > Complex instruction set computers
 - e.g., x86 (CS107 studies this)
- Have special instructions for each thing you might want to do
- Can write code with fewer instructions, because each instruction is very expressive

RISC:

- > Reduced instruction set computers
 - e.g., MIPS
- Have only a very tiny number of instructions, optimize the heck out of them in the hardware
- Code may need to be longer because you have to go roundabout ways of achieving what you wanted

