Introduction to Deep Learning for Computer Vision

Adhyayan '23 - ACA Summer School Department of Computer Science and Engineering Indian Institute of Technology Kanpur

Lecture 6

Unsupervised Learning: Learning without Labels!

• **Definition**: Learning from *unlabeled data*, where the goal is to *discover* patterns, structure, or representations without explicit labels or supervision.

- **Definition**: Learning from *unlabeled data*, where the goal is to *discover* patterns, structure, or representations without explicit labels or supervision.
- Advantages:

- **Definition**: Learning from *unlabeled data*, where the goal is to *discover* patterns, structure, or representations without explicit labels or supervision.
- Advantages:
 - Utilizing Unlabeled Data

- **Definition**: Learning from *unlabeled data*, where the goal is to *discover* patterns, structure, or representations without explicit labels or supervision.
- Advantages:
 - Utilizing Unlabeled Data
 - Discovery of Hidden Patterns

- **Definition**: Learning from *unlabeled data*, where the goal is to *discover* patterns, structure, or representations without explicit labels or supervision.
- Advantages:
 - Utilizing Unlabeled Data
 - Discovery of Hidden Patterns
 - Handling Unlabeled or Scarce Labeled Data

Applications: Clustering

Applications: Dimensionality Reduction

Applications: Anomaly Detection

Applications: Generative Modelling

Unsupervised Deep Learning!

Autoencoders

Autoencoders

Autoencoders

Denoising Autoencoder

Image: https://lilianweng.github.io/posts/2018-08-12-vae/

• Latent Space: The latent space is a lower-dimensional representation that captures the underlying structure of the input data. It allows for continuous interpolation and exploration of the data distribution.

- Latent Space: The latent space is a lower-dimensional representation that captures the underlying structure of the input data. It allows for continuous interpolation and exploration of the data distribution.
- **Key Idea**: Instead of mapping the input into a *fixed vector*, we want to map it into a *distribution*.

- Latent Space: The latent space is a lower-dimensional representation that captures the underlying structure of the input data. It allows for continuous interpolation and exploration of the data distribution.
- **Key Idea**: Instead of mapping the input into a *fixed vector*, we want to map it into a *distribution*.
- Notations:
 - Data: x

- Latent Space: The latent space is a lower-dimensional representation that captures the underlying structure of the input data. It allows for continuous interpolation and exploration of the data distribution.
- **Key Idea**: Instead of mapping the input into a *fixed vector*, we want to map it into a *distribution*.
- Notations:
 - Data: x
 - Latent Space: z

- Latent Space: The latent space is a lower-dimensional representation that captures the underlying structure of the input data. It allows for continuous interpolation and exploration of the data distribution.
- **Key Idea**: Instead of mapping the input into a *fixed vector*, we want to map it into a *distribution*.

Notations:

- Data: x
- Latent Space: z
- Prior Distribution: $p_{\theta}(\mathbf{z})$

- Latent Space: The latent space is a lower-dimensional representation that captures the underlying structure of the input data. It allows for continuous interpolation and exploration of the data distribution.
- Key Idea: Instead of mapping the input into a fixed vector, we want to map it into a distribution.

Notations:

- Data: x
- Latent Space: z
- o Prior Distribution: $p_{\theta}(\mathbf{z})$
- Likelihood: $p_{\theta}(\mathbf{x}|\mathbf{z})$

- Latent Space: The latent space is a lower-dimensional representation that captures the underlying structure of the input data. It allows for continuous interpolation and exploration of the data distribution.
- **Key Idea**: Instead of mapping the input into a *fixed vector*, we want to map it into a *distribution*.

• Notations:

- Data: x
- Latent Space: z
- Prior Distribution: $p_{\theta}(\mathbf{z})$
- \circ Likelihood: $p_{\theta}(\mathbf{x}|\mathbf{z})$
- \circ Posterior: $p_{\theta}(\mathbf{z}|\mathbf{x})$

VAEs are Generative Models.

- VAEs are Generative Models.
- We should be able to sample new data from a VAE. How?

- VAEs are Generative Models.
- We should be able to sample new data from a VAE. How?
 - \circ Sample $\mathbf{z}^{(i)}$ from the prior distribution $p_{ heta^*}(\mathbf{z})$

- VAEs are Generative Models.
- We should be able to sample new data from a VAE. How?
 - \circ Sample $\mathbf{z}^{(i)}$ from the prior distribution $p_{ heta^*}(\mathbf{z})$
 - $\circ \quad \mathbf{x}^{(i)}$ is generated from a conditional distribution $p_{ heta^*}(\mathbf{x}|\mathbf{z}=\mathbf{z}^{(i)})$

- VAEs are Generative Models.
- We should be able to sample new data from a VAE. How?
 - \circ Sample $\mathbf{z}^{(i)}$ from the prior distribution $p_{ heta^*}(\mathbf{z})$
 - \circ $\mathbf{x}^{(i)}$ is generated from a conditional distribution $p_{\theta^*}(\mathbf{x}|\mathbf{z}=\mathbf{z}^{(i)})$
- Optimal Parameter θ^* is the one that maximizes the probability of generating real data samples: $\theta^* = \arg \max_{\theta} \prod_{i=1}^n p_{\theta}(\mathbf{x}^{(i)})$

- VAEs are Generative Models.
- We should be able to sample new data from a VAE. How?
 - \circ Sample $\mathbf{z}^{(i)}$ from the prior distribution $p_{ heta^*}(\mathbf{z})$
 - \circ $\mathbf{x}^{(i)}$ is generated from a conditional distribution $p_{\theta^*}(\mathbf{x}|\mathbf{z}=\mathbf{z}^{(i)})$
- Optimal Parameter θ^* is the one that maximizes the probability of generating real data samples: $\theta^* = \arg \max_{\theta} \prod_{i=1}^n p_{\theta}(\mathbf{x}^{(i)})$
- Commonly we use the log probabilities to convert the product on RHS to a sum: $\theta^* = \arg \max_{\theta} \sum_{i=1}^n \log p_{\theta}(\mathbf{x}^{(i)})$

- VAEs are Generative Models.
- We should be able to sample new data from a VAE. How?
 - \circ Sample $\mathbf{z}^{(i)}$ from the prior distribution $p_{ heta^*}(\mathbf{z})$
 - \circ $\mathbf{x}^{(i)}$ is generated from a conditional distribution $p_{\theta^*}(\mathbf{x}|\mathbf{z}=\mathbf{z}^{(i)})$
- Optimal Parameter θ^* is the one that maximizes the probability of generating real data samples: $\theta^* = \arg \max_{\theta} \prod_{i=1}^n p_{\theta}(\mathbf{x}^{(i)})$
- Commonly we use the log probabilities to convert the product on RHS to a sum: $\theta^* = \arg \max_{\theta} \sum_{i=1}^n \log p_{\theta}(\mathbf{x}^{(i)})$
- Let's expand on the probability of generating real samples:

$$p_{\theta}(\mathbf{x}^{(i)}) = \int p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z})p_{\theta}(\mathbf{z})d\mathbf{z}$$

- VAEs are Generative Models.
- We should be able to sample new data from a VAE. How?
 - \circ Sample $\mathbf{z}^{(i)}$ from the prior distribution $p_{ heta^*}(\mathbf{z})$
 - \circ $\mathbf{x}^{(i)}$ is generated from a conditional distribution $p_{\theta^*}(\mathbf{x}|\mathbf{z}=\mathbf{z}^{(i)})$
- Optimal Parameter θ^* is the one that maximizes the probability of generating real data samples: $\theta^* = \arg \max_{\theta} \prod_{i=1}^n p_{\theta}(\mathbf{x}^{(i)})$
- Commonly we use the log probabilities to convert the product on RHS to a sum: $\theta^* = \arg \max_{\theta} \sum_{i=1}^n \log p_{\theta}(\mathbf{x}^{(i)})$
- Let's expand on the probability of generating real samples:

$$p_{\theta}(\mathbf{x}^{(i)}) = \int p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z})p_{\theta}(\mathbf{z})d\mathbf{z}$$

Not easy to compute. Need to approximate!

- Unfortunately it is not easy to compute $p_{\theta}(\mathbf{x}^{(i)})$
- Better Idea: Introduce a new approximation function to output what is a likely code given an input, \mathbf{X} $q_{\phi}(\mathbf{z}|\mathbf{x})$, parameterized by ϕ
- Now the structure resembles an Autoencoder:
 - $\circ p_{\theta}(\mathbf{x}|\mathbf{z})$ is similar to the decoder $f_{\theta}(\mathbf{x}|\mathbf{z})$. Also known as *probabilistic decoder*.
 - $\circ q_{\phi}(\mathbf{z}|\mathbf{x})$ is similar to the encoder $g_{\phi}(\mathbf{z}|\mathbf{x})$. Also known as *probabilistic encoder*.

Image: https://lilianweng.github.io/posts/2018-08-12-vae/

• Target: Estimated Posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$ should be very close to the real one $p_{\theta}(\mathbf{z}|\mathbf{x})$

- ullet Target: Estimated Posterior $q_\phi(\mathbf{z}|\mathbf{x})$ should be very close to the real one $p_ heta(\mathbf{z}|\mathbf{x})$
- How do we quantify closeness of distributions?

- ullet Target: Estimated Posterior $q_\phi(\mathbf{z}|\mathbf{x})$ should be very close to the real one $p_ heta(\mathbf{z}|\mathbf{x})$
- How do we quantify closeness of distributions? Ans: KL Divergence!

$$D_{\mathrm{KL}}(P|Q) = \mathbb{E}_{z \sim P(z)} \log \frac{P(z)}{Q(z)}$$

- Target: Estimated Posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$ should be very close to the real one $p_{\theta}(\mathbf{z}|\mathbf{x})$
- How do we quantify closeness of distributions? Ans: KL Divergence!

$$D_{\mathrm{KL}}(P|Q) = \mathbb{E}_{z \sim P(z)} \log \frac{P(z)}{Q(z)}$$

• $D_{\mathrm{KL}}(X|Y)$ measures how much information is lost if the distribution Y is used to represent X.

- Target: Estimated Posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$ should be very close to the real one $p_{\theta}(\mathbf{z}|\mathbf{x})$
- How do we quantify closeness of distributions? Ans: KL Divergence!

$$D_{\mathrm{KL}}(P|Q) = \mathbb{E}_{z \sim P(z)} \log \frac{P(z)}{Q(z)}$$

- $D_{\mathrm{KL}}(X|Y)$ measures how much information is lost if the distribution Y is used to represent X.
- We want to minimize $D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})|p_{\theta}(\mathbf{z}|\mathbf{x}))$ with respect to $\boldsymbol{\Phi}$.

- Target: Estimated Posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$ should be very close to the real one $p_{\theta}(\mathbf{z}|\mathbf{x})$
- How do we quantify closeness of distributions? Ans: KL Divergence!

$$D_{KL}(P||Q) = \int_z P(z) \log \frac{P(z)}{Q(z)} dz$$

- $D_{\mathrm{KL}}(X|Y)$ measures how much information is lost if the distribution Y is used to represent X.
- We want to minimize $D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})|p_{\theta}(\mathbf{z}|\mathbf{x}))$ with respect to $\boldsymbol{\Phi}$.
- Why use $D_{\rm KL}(q_\phi|p_\theta)$ (reverse KL) instead of $D_{\rm KL}(p_\theta|q_\phi)$ (forward KL)? Ans: https://blog.evjang.com/2016/08/variational-bayes.html

Loss Function: ELBO

$$L_{\text{VAE}}(\theta, \phi) = -\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z}) + D_{\text{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}))$$

$$\theta^*, \phi^* = \arg \min_{\theta, \phi} L_{\text{VAE}}$$
Reconstruction Loss Regularization

Reparameterization Trick

- The expectation term in the loss function invokes generating samples from $\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$
- Sampling is a stochastic process. Backpropagation is not possible.
- To make it trainable, the reparameterization trick is introduced:
 - o It is often possible to express the random variable z as a deterministic variable $\mathbf{z} = \mathcal{T}_{\phi}(\mathbf{x}, \boldsymbol{\epsilon})$ where is an auxiliary independent random variable, and the transformation function \mathcal{T}_{ϕ} parameterized by $\boldsymbol{\Phi}$ converts $\boldsymbol{\epsilon}$ to \mathbf{z} .

$$\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}^{(i)}, \boldsymbol{\sigma}^{2(i)}\boldsymbol{I})$$

 $\mathbf{z} = \boldsymbol{\mu} + \boldsymbol{\sigma} \odot \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \boldsymbol{I})$; Reparameterization trick.

Reparameterization Trick

Original form

Reparameterised form

: Deterministic node

: Random node

[Kingma, 2013] [Bengio, 2013] [Kingma and Welling 2014] [Rezende et al 2014]

Sample Generation using VAE

β -VAE : Regularizing the Regularizer!

$$L_{\text{BETA}}(\phi, \beta) = -\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z}) + \beta D_{\text{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}))$$

Next Lecture: GANs, Diffusion Models!

Expanding the KL Divergence

$$D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x}))$$

$$= \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z}|\mathbf{x})} d\mathbf{z}$$

$$= \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})p_{\theta}(\mathbf{x})}{p_{\theta}(\mathbf{z},\mathbf{x})} d\mathbf{z} \qquad ; \text{Because } p(z|x) = p(z,x)/p(x)$$

$$= \int q_{\phi}(\mathbf{z}|\mathbf{x}) \left(\log p_{\theta}(\mathbf{x}) + \log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z},\mathbf{x})} \right) d\mathbf{z}$$

$$= \log p_{\theta}(\mathbf{x}) + \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z},\mathbf{x})} d\mathbf{z} \qquad ; \text{Because } f(z|x) dz = 1$$

$$= \log p_{\theta}(\mathbf{x}) + \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})} d\mathbf{z} \qquad ; \text{Because } p(z,x) = p(x|z)p(z)$$

$$= \log p_{\theta}(\mathbf{x}) + \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} [\log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z})} - \log p_{\theta}(\mathbf{x}|\mathbf{z})]$$

$$= \log p_{\theta}(\mathbf{x}) + D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z})) - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z})$$

Deriving the Evidence Lower Bound

$$D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x})) = \log p_{\theta}(\mathbf{x}) + D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z})) - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z})$$

$$\log p_{\theta}(\mathbf{x}) - D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x})) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z}) - D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}))$$

$$L_{\mathrm{VAE}}(\theta, \phi) = -\log p_{\theta}(\mathbf{x}) + D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x}))$$

$$= -\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z}) + D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}))$$

$$\theta^*, \phi^* = \arg \min_{\theta, \phi} L_{\mathrm{VAE}}$$

$$-L_{\mathrm{VAE}} = \log p_{\theta}(\mathbf{x}) - D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x})) \leq \log p_{\theta}(\mathbf{x})$$