CVSD HW6 101403021 郭鈞哲

Basic

1.

下方圖片是 CLE_DC.sdc 的內容

```
# You can only modify clock period
 3
    set cycle 10
                       ;#clock period defined by designer
 4
    #don't modify the following part
 5
    create_clock -period $cycle [get_ports_clk]
                           k [all_clocks]
[all_clocks]
    set_dont_touch_network
 8
    set_fix_hold
    set_clock_uncertainty 0.1 [all_clocks]
                         0.5 [all_clocks]
10
    set_clock_latency
11
    set_ideal_network
                             [get_ports clk]
12
13
    #Don't touch the basic env setting as below
                         -clock clk [remove_from_collection [all_inputs] [get_ports clk]]
14
    set_input_delay 1
    set_output_delay 1
set_load 1
15
                          -clock clk [all_outputs]
                       [all_outputs]
16
17
    set_drive
                   1
                       [all_inputs]
18
19
    set_operating_conditions -max_library slow -max slow
20
    set_wire_load_model -name tsmc13_wl10 -library slow
21
22
23
    set_max_fanout 6 [all_inputs]
24
25
```

我的 clock cycle 設定為 10 ns

2.

Area before Dft insertion	Area after Dft insertion
From CLE_syn.area_rpt	From CLE_syn.timing_rpt
Number of ports: 157 Number of nets: 28419 Number of cells: 28189 Number of combinational cells: 25468 Number of sequential cells: 2713 Number of macros/black boxes: 1 Number of buf/inv: 3910 Number of references: 179 Combinational area: 229238.965358 Buf/Inv area: 28616.466352 Noncombinational area: 92869.844521 Macro/Black Box area: 69557.296875 Net Interconnect area: 4445395.778900 Total cell area: 391666.106754 Total area: 4837061.885654 1	Number of ports: 214 Number of nets: 31085 Number of cells: 28194 Number of combinational cells: 25473 Number of sequential cells: 2713 Number of macros/black boxes: 1 Number of buf/inv: 3915 Number of references: 185 Combinational area: 231136.658407 Buf/Inv area: 29869.147595 Noncombinational area: 115986.733829 Macro/Black Box area: 69557.296875 Net Interconnect area: 4699963.965973 Total cell area: 416680.689111 Total area: 5116644.655084 1

Timing before Dft insertion	Timing after Dft insertion
From CLE_syn_dft.area_rpt	From CLE_syn_dft.timing_rpt
clock clk (rise edge)	clock clk (rise edge)
data required time 10.24 data arrival time -10.24	data required time 10.07 data arrival time -10.07
slack (MET) 0.00	slack (MET) 0.00

可以看到插完 $\,$ scan chain 之後 $\,$ area 變大, $\,$ timing $\,$ 也不同

3. Final chip layout figure

Chip size

```
Die Area(um^2) : 6701258.38

Core Area(um^2) : 3748979.48

Chip Density (Counting Std Cells and MACROs and IOs): 89.869%

Core Density (Counting Std Cells and MACROs): 99.150%

Average utilization : 100.000%

Number of instance(s) : 102873

Number of Macro(s) : 1

Number of IO Pin(s) : 45

Number of Power Domain(s) : 0
```

4. 10.3~10.5 都沒有 violation

Verify Geometry

```
VG: elapsed time: 26.00
Begin Summary ...
  Cells
             : 0
  SameNet
             : 0
  Wiring
             : 0
  Antenna
              : 0
  Short
              : 0
 Overlap
              : 0
End Summary
  Verification Complete : 0 Viols. 0 Wrngs.
********End: VERIFY GEOMETRY*******
 *** verify geometry (CPU: 0:00:25.8 MEM: 155.9M)
```

Verify Antenna

```
innovus 12>
****** START VERIFY ANTENNA ******
Report File: CHIP.antenna.rpt
LEF Macro File: CHIP.antenna.lef
5000 nets processed: 0 violations
10000 nets processed: 0 violations
15000 nets processed: 0 violations
20000 nets processed: 0 violations
25000 nets processed: 0 violations
Verification Complete: 0 Violations
****** DONE VERIFY ANTENNA *******
(CPU Time: 0:00:04.0 MEM: 0.453M)
```

Verify Connectivity

```
****** Start: VERIFY CONNECTIVITY ******
Start Time: Sun Dec 23 22:14:32 2018
Design Name: CHIP
Database Units: 2000
Design Boundary: (0.0000, 0.0000) (2591.0800, 2586.2800)
Error Limit = 1000; Warning Limit = 50
Check all nets
**** 22:14:33 **** Processed 5000 nets.
**** 22:14:33 **** Processed 10000 nets.
**** 22:14:33 **** Processed 15000 nets.
**** 22:14:34 **** Processed 20000 nets.
**** 22:14:34 **** Processed 25000 nets.
Begin Summary
 Found no problems or warnings.
End Summary
End Time: Sun Dec 23 22:14:35 2018
Time Elapsed: 0:00:03.0
****** End: VERIFY CONNECTIVITY ******
  Verification Complete : 0 Viols. 0 Wrngs.
  (CPU Time: 0:00:03.3 MEM: 62.012M)
```

5.

Pre-layout

testfixture_a

```
Simulation Summary

Congratulations! All data have been generated successfully!

------PASS-----

err= 0
Simulation complete via $finish(1) at time 11861236 PS + 0
./testfixture_a.v:201 #(`CYCLE/2); $finish;
```

testfixture_b

```
Simulation Summary

Congratulations! All data have been generated successfully!

------PASS-----

err= 0
Simulation complete via $finish(1) at time 11861236 PS + 0
./testfixture_b.v:201 #(`CYCLE/2); $finish;
```

testfixture c

Post-layout

testfixture_a

testfixture b

testfixture c

pre-sim 和 post-sim 只有些微的差異,我想這可能是因為 wire load model 的 delay 和實際拉出來的線不一樣,而如果萃取出寄生電容和寄生電阻的話,應 該結果會差更多

6. 這是整體的 power plan 圖,下方會——做說明

在 Core 跟 I/O pad 之間,有很多 VDD、VSS 交錯,這就是 Power ring ,這是為了讓晶片內部供應電壓均勻,避免 IR drop

圖中有四條 Power pad (右上和右下的綠色處)接到 Power ring ,這是為了讓 Core pin 接到 VDD 、 VSS

Power-stripe

這是為了讓 core 內部的供電電壓均勻

如同中縱向橘色的那幾條

7.

VSS 做好放在 clk 和 reset 旁邊,這樣可以做 noise shielding 同一組的 input 最好放在一起,這樣大家的 noise 會比較接近 四個角落的 PAD 是為了要對稱,以及讓外圍 PAD 可以連起來 PAD 是為了要穩壓,而 PAD 也要吃電壓,所以也需要一組或多組 VDD 和 VSS

8.

由於為了繞線方便, core utilization 的條件設很寬鬆,所以可以看到繞線其實有很多空間是被浪費掉的,下次或許會盡力找到可以繞線以及不浪費空間的平衡點,我想這是可以改進的地方,另外由於 gate-synthesis 的面積過大,在繞線時花了很久的時間,下次在設計 gate-level 的時候,會在 area 這邊多留意,盡量把面積往下壓

