February 1, 2013

Recap

Prepositions and Formulas of Prepositions (Compound

Prepositions)

- Formula example, (P||Q)&R
- There 16 binary connectors (4 or 5 are mostly used)and 1 unary connector

Precedence Order

Number	Name	Symbol
1.	Not	٦
2.	Or	V
3.	And	٨
4	Implied	\rightarrow
5	Double implication	\leftrightarrow

- Tautology always true
- Contradiction always false

Equivalence

• Two formulas, $F1 \equiv F2$ if their truth values are equivalent

De Morgan's Rule

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

$$P \to Q \equiv \neg P \lor Q$$

66

This is the same because if P is false, then !P is true, then Q could be either true or false, it does not matter. Only one or the other matters as it is an OR statement. If !P is false, Q could still be true.

Identities of Equivalence

D	١,	\boldsymbol{L}	_	\boldsymbol{L}
Ρ	V	H	=	\boldsymbol{r}

$$P \lor T \equiv T$$

$$P \wedge F \equiv F$$

$$P \wedge T \equiv P$$

$$P \lor Q \equiv Q \lor P$$

$$P \wedge Q \equiv Q \wedge P$$

$$P1 \land P2 \lor P3 \ldots \lor PK$$

- Any order can be used because of distrubution

$$P \wedge !P \equiv F$$

$$P \land \neg P \equiv T$$

$$(P \rightarrow Q) \equiv \neg Q \rightarrow \neg P$$

$$((P \land Q) \rightarrow R) \equiv P \rightarrow (Q \rightarrow R)$$

Left Side

1. $\neg (P \land Q) \lor R$

2. $\neg P \lor \neg Q \lor R$

Right Side

1. $P \to (\neg Q \lor R)$

2. $\neg P \lor \neg Q \lor R$

$$\neg (P_1 \lor P_2) \equiv \neg P_1 \land \neg P_2$$

Suppose we have 3

$$\neg (P_1 \lor P_2 \lor P_3) \equiv \neg P_1 \land \neg P_2 \land P_3$$

What if we have any number?

$$\neg (P_1 \lor P_2 \ldots \lor P_m) \equiv \neg P_1 \land \neg P_2 \ldots \land P_m$$

Functional Completeness

• **Functional Complete** - Set of operators is functionally complete if every formula can be expressable

$$\wedge, \vee, \neg$$

- Lemma every formula can be expressed as a disjunction of conjunctions
 - This is called **disjunctive normal form** (DNF)

$$(P_1 \land \neg P_2 \land P_3) \lor (\neg P_1 \land P_3) \land (P_1 \land \neg P_3) \land (\dots)$$

$$F \equiv (Q_1 \vee Q_2) \to \neg Q_3$$

Q_1	Q_2	Q_3	F	Expression
0	0	0	1	$\neg Q_1 \wedge \neg Q_2 \wedge \neg Q_3$
0	0	1	1	$\neg Q_1 \wedge \neg Q_2 \wedge Q_3$
0	1	0	1	$\neg Q_1 \land Q_2 \land Q_3$
0	1	1	0	Nothing
1	0	0	1	$Q_1 \wedge \neg Q_2 \wedge \neg Q_3$
1	0	1	0	Nothing
1	1	0	1	$Q_1 \wedge Q_2 \wedge \neg Q_3$
1	1	1	0	Nothing

Compute DNF of

 $P \to Q$

	P	Q	$P \rightarrow$	Q	Expression
	1	1	1		$(P \land Q) \lor (\neg P \land Q) \lor (\neg P \lor \neg Q)$
	1	0	0		Nothing
	0	1	1		Nothing
_	0 0 1			Nothing	
Гур	Typesetting math: 100%				