Towards Robust and Reliable Algorithmic Recourse

Sohini Upadhyay, Shalmali Joshi, Hima!

Motivation

Algorithmic Recourse

- ML models are deployed in high stakes scenarios
- If you receive an unfavorable outcome as a result of a prediction, how can you reverse it?
- Ex: A bank might tell you to increase your salary by \$10,000

Model Updates

- In practice, data collectors are (hopefully) frequently updating their datasets
- Models are updated to reflect dataset changes
- Current algorithms to generate counterfactuals assume models are static

Motivation: An Example

Model trained on data₁

Original suggested recourse for the datapoint no longer crosses the decision boundary when the model is updated/retrained

Summary of Contributions

- Outline model + data shifts that people should consider
 - Temporal shift
 - Geospatial shift
 - Data correction shift
- Propose a method for finding RObust Algorithmic Recourse (ROAR)
 - Introduces a novel minimax objective that can be used to construct robust actionable recourses while minimizing the recourse costs
- Theoretical analysis
 - How bad are regular counterfactuals under model shifts?
 - How much does the proposed method increase the cost of recourses when compared to normal CFs?
- Experimental analysis

Related work

Algorithmic recourse

- [Can i still trust you?: Understanding the

from different kinds of dataset shifts

Adversarial Training

- Optimizes a minimax objective that captures the worst-case loss over a given set of perturbations to the input data
- At each gradient step, computes the gradient at worst-case perturbation
- Recent work explores the construction of other kinds of explanations (feature attribution and rule based explanations) that are robust to dataset shifts

Background: Recourse/Counterfactuals

Optimal CF:

$$x' = \operatorname*{arg\,min}_{x' \in \mathcal{A}} c(x, x')$$
 s.t $\mathcal{M}(x') = 1$

Unconstrained and differentiable relaxation:

$$x' = \operatorname*{arg\,min}_{x' \in \mathcal{A}} \ell(\mathcal{M}(x'), 1) + \lambda \ c(x, x')$$

Notation Notes:

- *x*: specific data point
- *x*': counterfactual
- M: model (or linear approximation of model around point x)
- *C*: cost function (how hard is it to achieve the counterfactual)
- A: actionable/possible counterfactuals

A Primer?

Approach (Intuition)

Adversarial Training

Robust Actional Recourse (ROAR)

Approach (Intuition)

Approach (Details)

$$x'' = \underset{x'' \in \mathcal{A}}{\arg \min} \max_{\delta \in \Delta} \ell(f_{w+\delta}(x''), 1) + \lambda c(x, x'')$$

Algorithm 1 Our Optimization Procedure

Input: x s.t. $f_w(x) = 0, f_w, \lambda > 0, \Delta$, learning rate $\alpha > 0$.

Initialize x'' = x, g = 0

repeat

$$\hat{\delta} = \arg\max_{\delta \in \Delta} \ell(f_{w+\delta}(x''), 1)$$

$$g = \nabla \left[\ell(f_{w+\hat{\delta}}(x''), 1) + \lambda c(x'', x) \right]$$

$$x'' -= \alpha g$$

until convergence

Return x''

Proofs

$$\Omega = \{ x' : w^T x' > 0 \cap (w + \delta)^T x' \le 0 \}$$

... integrating over Ω

 $P(x' \text{ is invalidated}) \ge$

$$\frac{1}{2}\sqrt{\frac{2e}{\pi}}\frac{\sqrt{\beta-1}}{\beta}\exp^{-\beta\frac{(w^T\mu)^2}{2\|\sqrt{D}Uw\|^2}}$$

Assumptions

$$x \sim \mathcal{N}(\mu, \Sigma)$$

$$x' \sim \mathcal{N}(\mu, \Sigma)$$

$$\Sigma = UDU^{T}$$

$$\beta \ge 1$$

Proofs

Theorem 2

w.h.p.
$$(1 - \eta')$$

$$c(x'', x) \le c(x', x) +$$

$$\frac{1}{\lambda \|w + \delta\|} \alpha (w + \delta)^T \mu + \sqrt{\frac{D^2}{2} \log\left(\frac{1}{\eta'}\right)}$$

Assumptions

- Log-loss + simple model
- Optimal solution for x "
- D is a bound for the "diameter" of dataset (I2)

Experimental results

- Real World Datasets
 - German Credit
 - Data Correction Shift
 - Small Business Administration
 - Temporal Shifts
 - Portuguese Student Performance
 - Geospatial Shift
- Synthetic Datasets
 - 2 Gaussians
 - Mean Shift
 - Variance Shift
 - Mean & Variance Shift

- Models
 - LR
 - SVM
 - 3 Layer Deep NN
- Cost (Distance) Functions
 - L1
 - Pairwise Feature Comparison (PFC)
 - Bradley Terry Comparison to parametrize p(i,j) = probability that feature i is less actionable than feature j
- Metrics:
 - Cost
 - How close is our counterfactual?
 - Validity
 - When undertaking recourse, (after a model shift) does it actually work?

Experimental Results: Logistic Regression

			~ . ~					
			_ .	Tomas and Chife				
Model	Cost	Recourse	+	Geospatial Shift				
LR	L1	CFE	+	Avg Cost	\mathcal{M}_1 Validity	\mathcal{M}_2 Validity		
		AR		8.44 ± 0.30	1.00 ± 0.00	0.23 ± 0.04		
		ROAR		5.24 ± 0.21	1.00 ± 0.00	0.35 ± 0.11		
				11.07 ± 0.48	1.00 ± 0.00	$\textbf{0.68} \pm \textbf{0.05}$		
		CR	_	NA	NA	NA		
	PFC	CFE	T	0.34 ± 0.03	1.00 ± 0.00	0.18 ± 0.04		
		AR		0.32 ± 0.02	1.00 ± 0.00	0.23 ± 0.04		
		ROAR		1.13 ± 0.03	1.00 ± 0.00	0.88 ± 0.06		
		CR		NA	NA	NA		
		~	-+-	1				

$$\underset{x'' \in \mathcal{A}}{\arg\min} \max_{\delta \in \Delta} \ell(\mathcal{M}_{\delta}(x''), 1) + \lambda c(x, x'') \quad \arg\min_{x'} \max_{\lambda} \lambda (f_w(x') - y')^2 + d(x_i, x')$$

Experimental Results: Deep NN

			Avg Cost	\mathcal{M}_1 Validity	\mathcal{M}_2 Validity
NN	L1	CFE	10 CO 1 0 0 C	1 00 1 0 00	0.40 0.05
		AR-LIME	$ 9.50 \pm 0.50$	1.00 ± 0.00	0.46 ± 0.05
		ROAR-LIME	$ 6.99 \pm 0.29$	0.60 ± 0.05	0.76 ± 0.08
		CR	$ 18.65 \pm 2.07$	0.997 ± 0.00	3 0.98 ± 0.01
	PFC	CFE	- NA	NA	NA
		AR-LIME	0.44 ± 0.04	1.00 ± 0.00	0.36 ± 0.09
		ROAR-LIME	0.60 ± 0.09	0.57 ± 0.06	0.53 ± 0.05
			1.59 ± 0.15	1.00 ± 0.00	$\textbf{0.96} \pm \textbf{0.01}$
		CR	⊥∐ NA	NA	NA

Takeaways

- Cost increases with robust recourse in general
 - The authors bound this!
- Linear approximations to complex models harms M1 validity
 - o Robustness can actually helps!
- We can optimize for M1 validity by making our loss function more complex

$$\arg\min_{x''}\max_{\delta}\max_{\lambda}\lambda\ell(M(x''),1)+c(x,x'')$$

Experimental Results: Shift and Validity

Conclusions

- Novel minimax objective and optimization strategy

- Bounds on error for non-robust counterfactuals under data shifts

- Bounds on cost of robust optimization

- Empirical results in both real world and synthetic scenarios validating method

Questions/Discussion

- 1. Do you think this problem should be worked on more from the CS/ML side or more from the policy side?
- 2. Do you think other types of explanations (that are not recourse motivated) need to be similarly robust?
- 3. What happens if model architecture/training dynamics change?
- 4. What incentive is there for companies/data controllers to implement this?