CYBER ATTACK ANALYSIS: SYN FLOOD ATTACK

Network Traffic Threat Intelligence Project

Yovel Hadari

Hakeriot - Mentoriot

ABOUT

Analysis of a dataset comprising network traffic logs and packets to enhance hunting and detection capabilities using Python.

- Identifying anomalies and correlations between vectors and characteristics during an APT attack, specifically targeting DoS (Denial of Service) incidents.
- DoS/DDoS attacks can be integrated into APT
 (Advanced Persistent Threat) campaigns to: Distract security teams while executing a deeper intrusion.

DDoS Protection

Type Threat Detection

D3FEND Tactic Network Traffic Analysis (D3-NTA)

TLDR Shields networks from attacks that overwhelm services with traffic.

Description deasures and techniques designed to protect a network or server from distributed denial-of-service attacks, which aim to make a service unavailable by overwhelming it with traffic.

Techniques

https://threats.wiz.io/defenses/ddos-protection
https://threats.wiz.io/all-actors

TCP Handshake Mechanism

SYN Flood Attack:

- SYN Flood exploits the TCP handshake process
- Attacker sends multiple SYN requests but never completes the handshake
- Server resources remain allocated, leading to exhaustion

SYN Flood Attack Analysis - Objective of this Report:

attack_type	Dst IP	CountSrc_uniq	DateTime
SYN_Flood	206.207.50.50	1 19/07/201 1 15:15	19/07/2019
	200.207.30.30		15:15

- Identify key attack characteristics
- Propose possible mitigation strategies

ABOUT the CODE

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import scipy.stats as stats
```

```
df['group_DosDetect_id'] = df.groupby(['Dst IP', pd.Grouper(freq='Smin')]).ngroup()

# - 'grouped_summary': Contains aggregate statistics (e.g., counts, averages) per Dst IP and time interval.
grouped_summary = df.groupby(['group_DosDetect_id', 'Dst IP', pd.Grouper(freq='Smin')]).agg(
    # Aggregate summarized statistics per group
    CountRequests=('Src IP', 'count'),
    CountSrc_uniq=('Src IP', 'nunique'), # Count unique source IPs
    Flow_Packets_s_avg=('Flow Packets/s', 'mean'),
    Flow_Bytes_s_avg=('Flow Bytes/s', 'mean'),
    SYN_count_sum=('SYN Flag Count', 'sum'),
    ACK_count_sum=('ACK Flag Count', 'sum'),
    Bwd_sum=('Total Bwd packets', 'sum'),
    Fwd_sum=('Total Fwd Packet', 'sum'),
    Fwd_sum=('Total Fwd Packet', 'sum'),
    Preset_index()

# Calculating ratios separately to avoid referencing within the aggregation function
grouped_summary['SYN_ACK_Ratio'] = grouped_summary['SYN_count_sum'] /((grouped_summary['ACK_count_sum']) + 1)
grouped_summary['ACK_SYN_Ratio'] = grouped_summary['ACK_count_sum'] / (grouped_summary['SYN_count_sum'] + 1)
grouped_summary['Bwd_Fwd_Ratio'] = grouped_summary['Bwd_sum'] / (grouped_summary['Fwd_sum'] + 1)
```

Data Processing & Aggregation

- Data Grouping: DST and slats of 5 min
- Unique Key Assignment: Added a key (group_DosDetect_id) for linking further aggregations of Src details.
- Detected Attack: Identified DoS attack - 3 if's
- FP/FN/TP/TN

Threshold

Protocols

```
# Global dictionary for protocol
mappings
PROTOCOL_MAPPING = {
    1: 'ICMP', # Internet Control
Message Protocol
    6: 'TCP', # Transmission Control
Protocol
    17: 'UDP', # User Datagram
Protocol
    50: 'ESP', # Encapsulating
Security Payload
    51: 'AH', # Authentication Header
    8: 'EGP', # Exterior Gateway
Protocol
    # Add other protocol mappings as
needed
}
```

Ports

```
def categorize_ports(port):
    """

    Categorize ports into Well-Known Ports,
Registered Ports, and Dynamic/Private Ports.

- Well-Known Ports: 0-1023
- Registered Ports: 1024-49151
- Dynamic/Private Ports: 49152-65535
    """

if port < 1024:
    return 'Well-Known Ports'
elif 1024 <= port <= 49151:
    return 'Registered Ports'
else:
    return 'Dynamic/Private Ports'

# Define protocol categories</pre>
```

Dict of DoS Attacks

if attack_type != 'Normal':
 dict dos attacks[key] = {

```
"Attack id": f"{key}-{row.group DosDetect id}",
"group DosDetect id": row.group DosDetect id,
"Source dfName": df filename.
"attack type": attack type,
f"{column}": Ratio,
"Dst IP": row['Dst IP'].
"CountRequests": row['CountRequests'],
"CountSrc uniq": row['CountSrc uniq'], # Count unique source IPs
"Datetime": row['Datetime'].
"Hour Time": row['Hour Time'],
# Calculate statistics for SYN Flag Count
"SYN_count_sum": row.SYN_count_sum,
# Calculate statistics for ACK Flag Count
"ACK count sum": row.ACK count sum,
# Calculate statistics for Fwd Packet Flag Count
"Fwd sum": row.Fwd sum,
# Calculate statistics for Bwd Packet Flag Count
"Bwd sum": row.Bwd sum,
# Avg Flow Packets/ Bytes
"Flow Packets s avg": row.Flow Packets s avg.
"Flow_Bytes_s_avg": row.Flow_Bytes_s_avg,
"Src Details": row['Src Details'],
"SrcIP_uniq": row['SrcIP_uniq'],
"SrcPort_uniq": row.SrcPort_uniq,
"SrcPort_categorical": row.SrcPort_categorical,
"Protocol_uniq": row.Protocol_uniq,
"Protocol_categorical": row.Protocol_categorical,
'Well Known Port Count': row.Well Known Port Count,
'Registered_Port_Count': row.Registered_Port_Count,
'Dynamic_Private_Port_Count': row.Dynamic_Private_Port_Count,
'Protocol_TCP_Count': row.Protocol_TCP_Count,
'Protocol_UDP_Count': row.Protocol_UDP_Count,
'Protocol_ICMP_Count': row.Protocol_TCP_Count,
'Other Protocol Count': row.Other Protocol Count
```

SYN Count Over Time

- Key Observations:
 - Unusual spike detected in SYN packet count at 15:15
 - Compared with normal traffic data
 - SYN count above 1200 sum, significantly deviating from normal levels

Anomalous SYN/ACK Ratio

Findings:

- High SYN to ACK ratio, indicating an incomplete handshake pattern
- Normal traffic exhibits balanced SYN-ACK pairs
- Attack traffic shows unmatched
 SYN packets

CountRequests	Syn_count_sum	ACK_count_sum	SYN_ACK_Ratio
1261	1260	1	630

Anomalous Packets/Bytes (Payload)

Findings:

 High Packet to Byte flow, indicating a lot of Syn Packets but no Payloa

Flow Packets	Flow Bytes		
5411	0		

A pre-attack spike

may indicate reconnaissance or probing activity.

Decay Pattern

Network Anomaly Detection by Using a Time-Decay Closed Frequent Patterns

Normal Data

Comparison with Normal Traffic:

- Mean, std, Quarters, and max:Bytes > Packets
- Attack scenario shows sudden bursts followed by system slowdowns
- Ports and Protocols

Normal Data

	Flow_Packets_s_avg	Flow_Bytes_s_avg
count	589	589
mean	1,625.344004	45,330.44
std	6,368.88894	742,403.20
min	0.025	0.00
25%	0.198407	0.00
50%	0.747536	36.68
75%	2.207692	187.92
max	131,166.0729	14,484,450.00

Compared Data

Protocol_TCP	Protocol_UDP	Protocol_ICMP	Other_Protocol
Count	Count	Count	Count
1261	0	1261	0

Well_Known_Port Count	Registered_Port Count	Dynamic_Private _Port Count
1	1261	0

Compared Data

CountRequests	Syn_count_sum	ACK_count_sum	SYN_ACK_Ratio	Flow_Packets_s_avg	Flow_Bytes_s_avg	Protocol	Src Port
1261	1260	1	630	5411.156741	0	TCP, Other	[Registered Ports, Well- Known Ports]

Conclusions and what's next

Project Objectives:

- Detect network anomalies and potential threats.
- Identify cyberattack behavioral patterns.
- Extract insights and correlations for threat intelligence.
- Improve detection accuracy using:
 - customer
 - Al services.

Key Takeaways:

- SYN Flood exploits the TCP handshake process.
- Analysis detected significant anomalies in SYN packet behavior.
- Proactive security measures are essential for network resilience.

Future Work:

- Improving response strategies for customer service and incident handling.
- Enhancing detection using AI-based anomaly detection techniques and unsupervized Data Science methods.

Bibliografy

- 1. https://www.splunk.com/en_us/blog/learn/ttp-tactics-techniques-procedures.html
- 2. https://purplesec.us/learn/prevent-syn-flood-attack/
- 3. https://www.paloaltonetworks.com/blog/security-operations/6-questions-you-must-ask-for-a-successful-incident-response/
- 4. . Microsoft SecurityDocumentation
- 5. Documents from BSc Information Systems and Cybersecurity
- 6. https://www.codecademy.com/article/visualizing-time-series-data-with-python
- 7. https://www.netscout.com/what-is-ddos/ssl-tls-exhaustion
- 8. https://www.mdpi.com/2078-2489/10/8/262?utm source=chatgpt.com
- 9. https://www.konfidas.com/cybersecurity-briefs/cybersecuritybrief05012023
- **10.** https://developers.cloudflare.com/fundamentals/basic-tasks/protect-your-origin-server/
- 11. OWASP DDoS Prevention Cheat Sheet OWASP
- 12. Palo Alto Networks Understanding DDoS and Proxy Attacks Palo Alto Networks
- 13. https://purplesec.us/learn/prevent-syn-flood-attack/
- 14. https://www.kaggle.com/datasets/sowmyamyneni/dapt2020

