Section 1-4 Midterm Review

1. Function

(1) Exponential Function $(e \cong 2.7183, f(x) = e^x, f'(0) = e^0 = 1)$

i.
$$b^{x+y} = b^x b^y$$

ii.
$$b^{x-y} = b^x b^y$$

iii.
$$(b^x)^y = b^{xy}$$

i.
$$b^{x+y}=b^xb^y$$
 ii. $b^{x-y}=b^xb^y$ iii. $(b^x)^y=b^{xy}$ iv. $(ab)^x=a^xb^x$

(2) Logarithmic Function $(ln(x) \equiv log_e(x))$. Caution: Should be written as ln not In. (Lowercase LN!)

i.
$$\ln(xy) = \ln x + \ln y$$
 ii. $\ln(\frac{x}{y}) = \ln x - \ln y$ iii. $\ln(x^r) = r \ln x$ iv. $\ln(e^x) = x$

ii.
$$\ln(\frac{x}{x}) = \ln x - \ln y$$

iii.
$$\ln(x^r) = r \ln x$$

iv.
$$\ln(e^x) = x$$

(3) Inverse Function $(f(x) = y \Leftrightarrow f^{-1}(y) = x)$

Step 1. Write y = f(x).

Step 2. Solve the equation of x in terms of y, then we can get $f^{-1}(y) = x$

Step 3. Express the f^{-1} as a function of x. (As Required)

(4) Inverse Trigonometric Function

$$y = \sin^{-1}(x) =$$

$$y = sin^{-1}(x) \Rightarrow$$
 Domain: $-1 \le x \le 1$, Range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

$$y=cos^{-1}(x)\Rightarrow$$

 $y = \cos^{-1}(x) \Rightarrow$ Domain: $-1 \le x \le 1$,

Range: $0 \le y \le \pi$

$$y = tan^{-1}(x) \Rightarrow$$
 Domain: $x \in \mathbb{R}$,

Range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

2. Limit

(1) One-side Limit and Existence

If $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x)$, then we can say $\lim_{x\to a} f(x)$ exist.

(2) Asymptotes

i. Vertical Asymptotes: Find the x in the domain of f(x) such that y approach $\pm \infty$.

ii. Horizontal Asymptotes: Check if f(x) approach constant as x approaches $\pm \infty$.

iii. Slant Asymptotes: Factorize the fraction and check if f(x) approach a specific linear function g(x)as x approach $\pm \infty$.

(3) Calculation

i. Direct Substitutions: The most intuitive way, just substitute x into the approaching value.

ii. Fractional Reduction: Factorize or Reduce the fraction then use the substitution.

iii. Absolute & Peicewise Function:

E.g.: Guassian Floor or Ceiling Function, Heaviside Unit Step Function.

Discuss different interval using one-side limit.

iv. Squeeze Theorem:

If
$$g(x) \le f(x) \le h(x)$$
 and $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} f(x) = L$

Hint: Think of the Squeeze theorem while dealing with the limit of trigonometric Function.

1

v. L'Hospital Rule: Using to deal with the limit of undeterminate form.

Suppose
$$\begin{cases} \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0} \text{ or } & \lim_{x \to a} \frac{f(x)}{g(x)} \left(\stackrel{\circ}{,} \stackrel{\circ}{0} \right) & \stackrel{L.H.}{=} & \lim_{x \to a} \frac{f'(x)}{g'(x)} \\ \lim_{x \to a} \frac{f(x)}{g(x)} = \pm \frac{\infty}{\infty} & \lim_{x \to a} \frac{f(x)}{g(x)} \left(\stackrel{\circ}{,} \stackrel{\circ}{\infty} \right) & \stackrel{L.H.}{=} & \lim_{x \to a} \frac{f'(x)}{g'(x)} \end{cases}$$

Type of undeterminate form:

- (1) Fraction: $\frac{0}{0}$, $\frac{\infty}{\infty}$ (Use L'Hospital Rule directly)
- (2) Product: $0 \cdot \infty$ (Move 0 or ∞ to the denominator to form $\frac{0}{0}$ or $\frac{\infty}{\infty}$)
- (3) Power: 0^0 , 1^∞ , ∞^0 (Try to use Natural Log (ln) to form $\frac{0}{0}$ or $\frac{\infty}{\infty}$)
- (4) Subtraction: $\infty \infty$ (Reduce or Factorize the Square root or Fraction to form $\frac{0}{0}$ or $\frac{\infty}{\infty}$)

3. Continuity

(1) Definition

i. $\lim_{x \to a} f(x)$ exist.

ii. f(a) is defined.

iii. $\lim_{x \to a} f(x) = f(a)$

(2) Type of Discontinuity

i. Hole

ii. Infinity

iii. Break

iv. Oscillation

4. Derivative

(1) Definition

If
$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^-} \frac{f(x) - f(a)}{x - a}$$
, then $f'(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

(2) Common Derivative

i.
$$\frac{d}{dx}$$
 (Constant) = 0

iv.
$$\frac{d}{dx} (\log_n x) = \frac{1}{x \ln n}$$

vii.
$$\frac{d}{dx}(\cos x) = -\sin x$$

ii.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

v.
$$\frac{d}{dx} (\ln x) = \frac{1}{x}$$

viii.
$$\frac{d}{dx}(tanx) = sec^2x$$

iii.
$$\frac{d}{dx}(e^x) = e^x$$

vi.
$$\frac{d}{dx} (sinx) = cosx$$

i.
$$\frac{d}{dx} \left(Constant \right) = 0$$
 iv. $\frac{d}{dx} \left(\log_n x \right) = \frac{1}{x \ln n}$ vii. $\frac{d}{dx} \left(cosx \right) = -sinx$ ii. $\frac{d}{dx} \left(x^n \right) = nx^{n-1}$ v. $\frac{d}{dx} \left(\ln x \right) = \frac{1}{x}$ viii. $\frac{d}{dx} \left(tanx \right) = sec^2 x$ iii. $\frac{d}{dx} \left(e^x \right) = e^x$ vi. $\frac{d}{dx} \left(sinx \right) = cosx$ ix. $\frac{d}{dx} \left(secx \right) = secx \cdot tanx$

- (3) Product Rule and Quotient Rule
 - i. Product Rule: $\frac{d}{dx}[f(x)\cdot g(x)] = f'(x)g(x) + f(x)g'(x)$
 - ii. Quotient Rule: $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) f(x)g'(x)}{[g(x)]^2}$
- (4) Chain Rule: Treat the function as a composite function and differentiate layer by layer.

$$\frac{d}{dx} f(g(h(x))) = f'(g(h(x))) \cdot g'(h(x)) \cdot h'(x)$$

- (5) Differentiation in graphics
 - i. First derivatie $f'(x) \Rightarrow$ Slope of tangent \equiv Rate of change. (= 0 \Rightarrow Critical Point)
 - ii. First derivatie $f'(x) \Rightarrow$ Concavity of the function. (= 0 \Rightarrow Inflection Point)

(6) Implicit Differentiation

Process: Derivative the equation, rearrange the equation into the form $y'(x) = \cdots$

(7) Mean Value Theorem

If f(x) is continuous on [a,b] and differentiable on (a,b), then there exist c, s.t. $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- (8) Application
 - i. Rate of Change: Tangent Slope, $f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$
 - ii. Linear Approximation: $f(x) \cong f(a) + f'(a)(x a)$
 - iii. Related Error: $\frac{\Delta y}{y} \cong \frac{dy}{y}$
 - iv. Maximum, Minimum and Optimization

$$\begin{cases} \text{Local Maximum (L.M.)} \\ \text{Local Minimum (L.m.)} \end{cases} \Rightarrow \text{Occur while } f'(x) = 0 \text{ or D.N.E.} \\ \begin{cases} \text{Absolute Maximum (A.M.)} \\ \text{Absolute Minimum (A.m.)} \end{cases} \Rightarrow \text{Occur at Local } \begin{pmatrix} \text{Maximum} \\ \text{Minimum} \end{pmatrix} \text{ or End points} \end{cases}$$

Procedure of Optimization:

- [1] Comprehend the question
- [2] List the equation
- [3] Find the A.M. or A.m. (Check 1st Derivative and the End Points.)