Estimation of flow trajectories in a multiple lines network

Case studies with transports publics de la région lausannoise (tl) data

Guillaume Guex Romain Loup François Bavaud

University of Lausanne

Table of contents

1. Introduction

2. The single line problem

Introduction

Context

The tl dataset, used by Romain Loup for his PhD:

- 1 year of data (2019).
- 115 millions of passengers.
- · 42 bus and subway lines.
- · 1361 stops and 497 "superstops".
- Every journey data: traveling time, waiting time, embarking and disembarking passengers at each stops, etc.

Context

```
stop id stop name line id direction order embarkment disembarkment
## 1 MALAD N Maladière
                                Α
                                         164558
                                                         0
## 2 MTOIE_E Montoie
                                       136236
                                                     12705
                               A 3 203045
## 3 BATEL_E Batelière 1
                                                   13409
                                     4 156015
## 4 RTCOU E Riant-Cour 1
                                                     24909
    stop_id stop_name line_id direction order embarkment disembarkment
##
## 42 RTCOU O Riant-Cour
                                R
                                     19
                                           23634
                                                      132201
## 43 BATEL O Batelière
                                     20
                                        13707 168884
                                R
## 44 MTOIE O Montoie
                                R.
                                     21
                                          4259
                                                   128255
## 45 MALAD N Maladière
                                     22
                                              0
                                                     146798
```


The multiple lines network

Having only lines data, we have a disconnected oriented graph.

In addition to line edges, it is possible to construct transfer edges to make the graph connected, by using, e.g.,

- · Superstops names,
- · Pedestrian time,
- · Distance.

This is what we call a multiple lines network.

The problematic

This dataset offers multiple axes of research. In this presentation, we will focus on one question:

Knowing (1) the network structure and (2) the number of passengers embarking and disembarking at each stop, can we deduce trajectories of the passengers in the network?

The problematic

Short answer: No.

Thank you for your attention! Questions?

The problematic

Exact trajectories are impossible to know, but with additional hypotheses, we can **estimate** them.

We will divide this problematic into two parts:

- The estimation of trajectories on a single line.
- The estimation of trajectories on the multiple lines network.

The single line problem

Formal problem definition

Let a line (in one direction), which have n stops. Let $\rho_{\text{in}} = (\rho_i^{\text{in}})$ and $\rho_{\text{out}} = (\rho_i^{\text{out}})$ be two vectors representing, respectively, the passengers entering and leaving the line at each stops.

References i