

Figure 1

BEST AVAILABLE COPY

Figure 1a**B**

	Protein name	Peptide matches	% sequence coverage	NCBI gi number
■	Hsp90	15/44	30%	20149594
▲	Flag-LKB1	14/46	35%	7106425
●	Cdc37	31/72	59%	5901922
◆	STRAD α	11/80	34%	12060855
*	MO25 α	17/37	47%	7706481

Figure 2

A

hMO25α	1	MIF-PFGKSHKSPADIVKNCRESKAKIERTOD-----	1	SDKKAAEKATEEVSKNIVVA
hMO25β	1	MPL-PSKSHKSPADIVKNCRESKAKIERTOD-----	1	DKKTEKASEEVSKSLOA
dMO25	1	MPL-FGKSHKSPADIVKNCRESKAKIERTOD-----	1	DKKTEKASEEVSKNIVS
cMO25α	1	WLKPLFGKSHKSPADIVKNCRESKAKIERTOD-----	1	TNTSEKVEKAIEETDKKAL
cMO25β	1	MPL-1FGKSHKSPADIVKNCRESKAKIERTOD-----	1	SDKKYKAKLBEVSKNIVAM
hMO25α	50	MKEETLYCIL-NEKEP-OTBAVAQLAQELYNSGELSTLADPOLIDFECKKDVAOIFNNRIL		
hMO25β	46	MKEETLYCIL-NEKEP-PTBAVAQLAQELYNSGELSTLADPOLIDFECKKDVAOIFNNRIL		
dMO25	46	MKEETLYCIL-SHAEPPADYVAQLAQELYNSGELSTLADPOLIDFECKKDVAOIFNNRIL		
cMO25α	53	AKTFREYGEDANEPNN--SOTOLAOEVYNVLPNLKHLHKEFEFECKKDVAOIFNNRIL		
cMO25β	60	TKSFITYGNDSAEPPSSEHVVQVAOLAQELYNSGELSTLADPOLIDFECKKDVAOIFNNRIL		
hMO25α	107	RRQIGTRSPPTVEYICTQONIPEMLLKGYH--SPEIAALCCEMLRECIRHEPLAKIILNS		
hMO25β	103	RRQIGTRSPPTVEYICTQONIPEMLLKGYH--APQIAALCCEMLRECIRHEPLAKIILNS		
dMO25	104	RRQIGTRSPPTVEYICTQONIPEMLLKGYH--EASYEDAHPEALNSCMLRECARYBALAKIILNS		
cMO25α	110	RRQIGTRSPPTVEYIAAPPEIILITLLGYS--QPHIAALCCEMLRECIRHEPLAKIILNS		
cMO25β	120	RRQIGTRSPPTVEYIAAPPEIILQGYS--VPHIAALCCEMLRESIRHPLAKIILNS		
hMO25α	165	QFDFFYYVEMSTFDIASDAFTFKDILLTRHKHISAEFLKHYDFF-SEVERLLSENY		
hMO25β	161	QFRDFFYYVEMSTFDIASDAFTFKDILLTRHKHISAEFLKHYDFF-EDVERLLSENY		
dMO25	164	EFDKPFYYVEMSTFDIASDAFTFKDILLTRHKHISAEFLDANYDKFSQHNOILNSENY		
cMO25α	168	YFDFYYVEMSTFDIASDAFTFKDILTRHKHISAEFLDANYDKFSQHNOILNSENY		
cMO25β	176	VFTYFFYVCSLEVDFIESDAFTFKDILTRHKHISAEFLDSMYDIFP-AQYONILMSKIJ		
hMO25α	224	VTKRQSLKLLGELLLDRHNFNTMTKYISKOPENLKLMMNLLRDKSRNQFEAFHVFVFVA		
hMO25β	220	VTKRQSLKLLGELLLDRHNFNTMTKYISKOPENLKLMMNLLRDKSRNQFEAFHVFVFVA		
dMO25	224	VTRRQSLKLLGELLLDRHNFNTMTKYISKOPENLKLMMNLLRDKSRNQFEAFHVFVFVA		
cMO25α	227	VTRRQSLKLLGELLLDRHNFNTMTKYISKOPENLKLMMNLLRDKSRNQFEAFHVFVFVA		
cMO25β	237	VTRRQSLKLLGELLLDRHNFNTMTKYISKOPENLKLMMNLLRDKSRNQFEAFHVFVFVA		
hMO25α	284	NPNKTOPIDILLRNQKLEELFLSKPQNDEKTYLKOIIRILKRPAAQEA--		
hMO25β	280	SPHKTOPIDILLRNQKLEELFLSKPQNDEKTYLKOIIRILKRPAAQEA--		
dMO25	284	NPNKPKPIDIILLRNQKLEELFLSKPQNDEKTYLKOIIRILKRPAAQEA--		
cMO25α	287	NPNKPKPIDIILLRNQKLEELFLSKPQNDEKTYLKOIIRILKRPAAQEA--		
cMO25β	297	NPNKPKPIDIILLRNQKLEELFLSKPQNDEKTYLKOIIRILKRPAAQEA--		
hMO25α		-----		
hMO25β		-----		
dMO25		-----		
cMO25α		-----		
cMO25β	357	KSKEDENQEPAGPSEGPTSTQ		

Figure 2a

Figure 2b

Figure 3

Figure 4

Figure 4a

C

Figure 5

	MO25α	STRADα	LKB1
MO25α	A	B	C
STRADα	D	E	F
MO25α + STRADα	G	H	I

Figure 5a

	J	K	L
LKB1			
STRADα + LKB1	M	N	O
MO25α + STRADα + LKB1	P	Q	R

Figure 6

Figure 6a

Figure 7

Figure 8**A****B**

Figure 9

Figure 10

Sequence alignment of hSTRADA α , hSTRAD β , hSPAK and hOSR1. The alignment shows the conserved regions and the mutations introduced in the hSTRADA α construct.

hSTRADAα	1 MSFLASKIERIRRIVVSEK IVE GERDLELFFE PPGDT RKTN ASSE IASF IK QEVMS
hSTRADβ	1 ----- MLIDC CT SETDVS LE PEK ----- QSE IS IEQYL V DEP IL WSRP STR AEV
hSPAK	1 ----- MAEP SG SPVH W OLPO DA AP Y TA AAA AA PA PA PA PA PA PA PA QAV
hOSR1	1 -----
hSTRADAα	61 SELPEGGCY E LT V IGK G FE DLM T V L A RY K PT G Y V T V R R IN I EA S NE P VT F LOG I H
hSTRADβ	50 LC ST N V S H Y E I Q V E I GR G FE N L T S V H A R H T T PT G L V T I IN L EN O NE E RL K A Q AV I
hSPAK	57 G M P I C R D A Y E I Q V I G S G ----- AT A V V Q A AL C K P Q R E V A I K R IN L E K C O T S E D E L L K -E I G
hOSR1	9 P W S I N R D D Y E I Q V I G S G ----- AT A V V Q A AY C A P K K E V A I K R IN L E K C O T S M D E L L K -E I G
hSTRADAα	121 VSKLPN R P N I V P Y R A T I AD N E L E M T S P M A Y G S A K D I C I H F M D G ----- Y N E L A T Y
hSTRADβ	110 LSHFF R P N I T T Y I T V F T V G S W I E M T S P M A Y G S A S Q L R T Y F P E G ----- M S E F H I R N
hSPAK	114 A M S Q C S H P N M V T Y T S F V V K D E L A I V M K L U S G G S M H D E I K Y I V N R G E H K N G V E E A L I A T
hOSR1	66 A M S Q C S H P N I V E Y T S F V V K D E L A I V M K L U S G G S V I D E I K H I V A K G E H K S E V E H E T I A T
hSTRADAα	175 I L Q G V I K N D Y I H M G Y V H E S V K A SH I I L S V D G K V I Y I S G L R S N L S M I S H C Q R Q R V V H D P -----
hSTRADβ	164 I L F G A V R G I N Y L H O G C I H R S T K A SH I I I L S G D G I V I L S G L S H S I V K H Q R H R A V Y D P -----
hSPAK	174 I L M B V L E G L D L H R N Q I I H R D I K A G N I I L G E D G S V Q I A D F G V S A F L A T G D V I T R ----- N K V R
hOSR1	126 I L I R E V L E G L E Y L H R N Q I I H R D V K A G N I I L G E D G S V Q I A D F G V S A F L A T G D I T R ----- N K V R
hSTRADAα	235 K Y S V K V L P E I S P E V I Q Q N O Y D A K S D I M S V G I T A C E L A N H V P E K D M A T O M I I E K L G N
hSTRADβ	224 Q Q F S T S V Q P W I S P E I A R D L H G Y I V K S D I M S V G I T A C L A S G Q V P H Q D M H R T O I I L Q K I K G N
hSPAK	232 K T F V G T C W MA P E V M Q -V R G Y D F K A D I I N S F G I T A E L A T G A P H H K Y P P M K V L M I T Q N
hOSR1	184 K T F V G T C W MA P E V M Q -V R G Y D F K A D I I N S F G I T A E L A T G A P H H K Y P P M K V L M I T Q N
hSTRADAα	295 ----- T M P ----- CLL ----- D T S T I P A E E L T M S P S R S V A N G L -SD S L -----
hSTRADβ	284 ----- P P Y S P ----- L ----- D I S I F O Q E S R M K N S Q G V D S G I G S V L -----
hSPAK	291 D P P T L E T G V E D K E M K K Y G K S F R K M I S L C L Q D P S K R P T A E L L I K C K E F O K A K N R -----
hOSR1	243 D P P S L E T G V E D K E M K K Y G K S F R K M I S L C L Q D P I E K R P T A E L L I R H K F O K A K N K -----
hSTRADAα	328 T T S T P R S N G D W P S E P Y H R T ----- F S P R F H H F V E Q C L Q R N P D A R P S A S T L L N H S F K Q I K R
hSTRADβ	318 V S S G T I F T V N S D R L H T P S S K T ----- F S P A F F S L V O L C L Q D P E K R P S A S S L L S H V F F K Q M K E E
hSPAK	350 E K L L T R T P I I A Q R A K V R R V P G S S G H L H K T E D G D W E W S D D E M E K S H E G K A A F S Q E K S R R
hOSR1	302 E K I L Q R A P T I S E R A K V R R V P G S S G P L H K T E D G G W E W S D D E F D E E S E G K A A I S Q L R S R -----
hSTRADAα	386 A S K ----- A I P R E I L R P ----- V T P I T N F -----
hSTRADβ	376 S Q D ----- G I L S L I P -----
hSPAK	410 V K E ----- E N P E A V S S -H I P B O H Q S ----- I S M H D S Q G P P N A N E D Y
hOSR1	362 V K E S I S N S E L F P I T D P V G T L Q V P B O I S A H L P Q P A Q I A T Q P T Q V S I P P T A E P A K T A Q L -----
hSTRADAα	404 E G S Q -S ----- Q D H S G I F G L V T N L E E L E V D D W E F -----
hSTRADβ	389 N K P S I S -L P P V L P W T E P C D F P D E K S D Y W E F -----
hSPAK	447 R E S S -S ----- C A V N L V L R L R N S E K E N D I R E F T P G R D T A E G V S Q E L F S A G L V D G I D U V I
hOSR1	422 S S G S S Q E T K I P E S L V L R R N S E K E N D I R E F T P G R D T A E G V S Q E L F S A G L V D G I D U V I
hSTRADAα	502 V A A N L O K I V D E P K A L K T I T F K L A S G C D G S E I P D E V K L I G F A Q L S M S
hSTRADβ	482 V A A N L O K I V E P Q S N R S V T F K L A S G V E G S D I P D D G K L I G F A Q L S M S

Figure 11

A**B**

Figure 12

Tos3	11	..LPRSSLLYNNASNSSRIKETRKVKLLYNPLTKR.....Q...	I	LNNFEILATLGNGQ
Pak1	94	..TPTTSSFCSSGSSKNKVKETNRISLTYPVSKR.....K...	V	LNTYEIIKELGHGQ
CaMKK β	121	CICPSLPYSPVSSPQSSPRLPRTVESHVSITGM.....QDCVQLNQYTLKDEIGKGS		
LKB1	7	QQLGMFTEGELMSVGMDTFIHRIDSTEVIYQP..RR.....KRAKLIGKYLMDLLGEGS		
Elm1	39	TSSFGSSFSQQKPTYSTIIGENIHTILDEIRPYVKKITVSDQDKKTINQYTLGVSAGSGQ		
consensus	121	p ss s s ss rik tv l y pltkr q ilnnny i 1G Gq		
Tos3	61	YGKVKLARDLGTGALVAIKILNRFKRS....GYSL.....QLKV.EN.....		
Pak1	144	HGKVKLARDILSKQLVIAKIVDRHEKKQRKFTFIK.....SSKISEN.....		
CaMKK β	176	YGVVKLAYNENDNTYYAMKVLSK..KKLIRQAGFPR.....RPPPRGTRPAPGGCIQP		
LKB1	60	YGKVKEVLDSETLCRRAVKILKK..KKLRR.....		I
Elm1	99	FGYVRKAYSSTLGKVVAVKIPKKPWNAQQYSVNQVMRQIQLWKSKGKITNMSGNEAMR		
consensus	181	yGkvkla d t lvAiKil k kk k y k		
Tos3	99	...PRVNQEIEVMKRCHHE.NVVELYEILNDPESTKVLVLEYCSRGPVKWCPENKMEI		
Pak1	187	...DIKIREIAIMKKCHHK.HVVKQVIEVLDLKSRSK1YLVLEYCSRGEVKWCPPDCMES		
CaMKK β	227	RGPIEQVYQEIAILKKLDHP.NVVKLVEVLDDPNEDHLYMVFELVNQGPV.....MEV		
LKB1	89	PNGEANVKKEIQLLRLRHK.NVIQLVDVLYNEEKQKMYMVMEYC.....VCGMQEM.L		
Elm1	159	LMNIEKCRWEIFAASRLRNNVHIVRLIECLDSPFSESIWIVTNWCSLGELOQWKRDDDEDI		
consensus	241	drvk EI vmkrlhh nvv LievLddp s kvylVleycs g v wc mei		
Tos3	154	.KAVGPSILTFQO...SRKVVLDDVSGLEYLHSQGITHRDIKPSNLLISSNGTV.KISD		
Pak1	242	.DAKGPSLLSFQE...TREILRGVVLGLEYLHYQGIIRDIKPSNLLISGDGTV.KISD		
CaMKK β	279	.PTLKP..LSEDQ...ARFYFQDLIKIEYLHYQKIIHRDIKPSNLLVGEDGHI.KIAD		
LKB1	141	.DSVPEKRFPVVCQ...AHGYFCQLIDGLEYLHSQGIVHKDIKPGNLLTTGGTL.KISD		
Elm1	219	LPQWKKIVISNCVSTFAKKILEDMTKGLLEYLHSQGCIHRDIKPSNILLDEEKVAKLSD		
consensus	301	v p ils q ar vv dvv GLEYLhsQgiiHrDIKPsNLLis dgtv KisD		
Tos3	208	FG..VAM.STATGSTNIQSSHEQLLKSRALGTPAFFAPELCSTEKEY.....		
Pak1	296	FG..VSIAASSTNNSDSSESLLDELELAKTVGTPAFFAPEMCLGEDAFTRYNLTKENLFRG		
CaMKK β	331	FG..V.....SNEFKGS..DALLSNTVGTPAFMAPESLS.....ETRKIFSG		
LKB1	195	LG..VAEALHPFAADDTCRTSQ.....GSPAFQPPEIANGLDTFS.....		
Elm1	279	FGSCIFTPQSLPFS DANFEDCFQRELNKIVGTPAFIAPELCHLGNSKRDFVTD.....		
consensus	361	fG v t s d s 1 r vGtPAF aPElc y		
Tos3	252	SC.SSAIDIWSLGVTIYCLLFGKLPFNANSGLELFDSIINKPLEFPSYEEMLNGATSGIT		
Pak1	354	SCISFMIDIWAVGVTLYCLLFGMLPFFSDFELKLFKEKIVNDPLKFPTFKEIQSNSKVKSV		
CaMKK β	369	K....ALDVWAMGVTLYCFVFGQCPFMDERIMCLHSKIKSQALEFPDOPDIA.....		
LKB1	233	...GFKVDIWSAGVTLYNITTGLYLPFEGDNIYKLHENIGKGSYAI.....		
Elm1	332	...GFKLDIWSLGVTLYCLLYNELPFFGENEFETYHKIEVSSLSSKINGNTLNDLVIKRL		
consensus	421	f iDiWslGVTLYc11fg 1PF ad 1 lfdkli 1 fp em		
Tos3	311	M.EEYT...DAKDLLKKLLQKDPDKRIKLAVIDKVPFMC.....HYGKSDAASVL...TN		
Pak1	414	CEEEYE...MAKDLLKLLEKNPQKRMTIPIAKKHPFVS.WDFDHVPENDEKLLS...SV		
CaMKK β	417E...DLKDLITRMLDKNPESRIVVPEIKLHPWVTRHGAEPLEPLSEDENCTLVEVTE		
LKB1	276	.GDCGP...PLS DLLKGMLYEPAKRSIIRQIQRHSWFRK...KHPPAEAPVPIPSSPDT		
Elm1	389	LEKDVTLRISIQLDVKVLSDQPIDSRNHSQISSSS.VNPVRNEGPVRRFFGRLLTKKKG		
consensus	481	ee . 1kDLLkkleknP kri 1 ik hpfv dh p d v1 t		
Tos3	359	LETFHELKVSP...SSCKRVELVSLPVNSSFASLDSSVYMFNFDHNNLRTGADRNS		
Pak1	467	LE..QKLRF.....QCNQTDQFE.PISISKHELKNAV.....SGVGKKIKESV		
CaMKK β	469	EEEVNSVKHIPS LATVILVKT MIRKRSFGNPFEGRSREERLSAPGNLLTKQGSEDNLQG		
LKB1	329	KDRWRSMTVVPYLEDLHGADEDDEDLF DIEDDIYQTQDFVPGQVPEEEASHNGQRRGLPK		
Elm1	448	KKTSGKGKDVKVLVSATSKVTPSIHIDEEPDKECFSTVLRSSPDSSDYCSSLGEAEIQVT		
consensus	541	e 1k p l rve pv s lks s lg		

Figure 13

Figure 14**A) Activity in supernatant****C) Activity in pellet****B) Immunoprecipitation of polypeptides****D) Immunoblotting of pellets**

Figure 15**A) Activation of AMPK α 1 catalytic domain by LKB1**

Figure 15a**B) Phosphorylation of AMPK α 1 catalytic domain by LKB1**

Figure 16

Figure 17

Figure 18

Figure 19

		-12	-11	-10-9	-5	-3 -2	P
PKA-C α	239	DFGFAKR..	V	KG.	RTWTLCGTPEYLAPE		
PKC α	539	DFGMCKEHMM.	DGV	TTRTFCGTPDYIAPE			
NuaK1	196	DFGLSNLYQKDK..	FLQ	TFCGSPLYASPE			
NuaK2	237	DFGLSNLYHQGK..	FLQ	TFCGSPLYASPE			
BrsK1	190	DFGMASLQVGDS..	LLE	TSCGSPHYACPE			
BrsK2	159	DFGMASLQVGDS..	LLE	TSCGSPHYACPE			
SIK	167	DFGFGNFYKSGE..	PLS	TWCGSPPYAAPE			
QIK	160	DFGFGNFFKSGE..	LLA	TWCGSPPYAAPE			
AtSnRK1- α 1	160	DFGLSNIMRDGH..	FLK	TSCGSPTYAAPE			
AtSnRK1- α 2	161	DFGLSNVMRDGH..	FLK	TSCGSPTYAAPE			
AMPK- α 1	159	DFGLSNMMSDGE..	FLR	TSCGSPTYAAPE			
AMPK- α 2	157	DFGLSNMMSDGE..	FLR	TSCGSPTYAAPE			
ScSnf1	195	DFGLSNIMTDGN..	FLK	TSCGSPTYAAPE			
QSK	206	DFGFSNLFTPQ..	LLK	TWCGSPPYAAPE			
MELK	150	DFGLCAKPKGNKDYH	LQ	TCCGSLAYAAPE			
consensus	243	DFGlsnl	g	fL	TsCGSp	YAAPE	

Figure 20

K_m: 1.80 ± 0.48

V_{max}: 23.43 ± 3.51 U/mg

Figure 21

AMPK1	159-	DFGLSNMMSDGE--FLRTSCGSPNYAAPE	*	*
AMPK2	157-	DFGLSNMMSDGE--FLRTSCGSPNYAAPE		
BRSK1	174-	DFGMASLQVGDS--LLETSCGSPHYACPE		
BRSK2	159-	DFGMASLQVGDS--LLETSCGSPHYACPE		
NUAK1	196-	DFGLSNLYQKDK--FLQTECGSPLYASPE		
NUAK2	193-	DFGLSNLYHQGK--FLQTECGSPLYASPE		
SIK	167-	DFGFGNFYKSGE--PLSTWCGSPPYAAPE		
QIK	160-	DFGFGNFFKSGE--ILLATWCGSPPYAAPE		
QSK	206-	DFGFSNLFTPQ--LLKTWCGSPPYAAPE		
MARK1	200-	DFGFSNEFTVGN--KLDTECGSPPYAAPE		
MARK2	160-	DFGFSNEFTVGN--KLDTECGSPPYAAPE		
MARK3	196-	DFGFSNEFTVGG--KLDTECGSPPYAAPE		
MARK4	198-	DFGFSNEFTLGS--KLDTECGSPPYAAPE		
MELK	150-	DFGLCAKPKGNKDYHLQTCCGSLAYAAPE		

Figure 21A

30/38
Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Kinase	Phosphopeptide	Mass observed	Theoretical mass
BRSK2 P ₁	IAAFGmASLQVGDSLLET(p)SCGSPHYACPEVIR	3268.7870	3628.6680
BRSK2 P ₂	SLQVGDSLLET(p)SCGSPHYACPEVIR	2951.4530	2951.3472
NUAK2 P ₃	FLQT(p)FCGSPLYASPEIVNGK	2356.1088	2356.1333
MARK4	LDT(p)FCGSPPYAAPELFQQK	2225.9983	2226.1497
MELK	GNKDYHLQT(p)CCGSLAYAAPELJQCK	2970.4421	2970.3648

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.