

ASR6601

参考板测试指南

文档版本 1.2.0

发布日期 2021-03-04

版权所有 © 2021 翱捷科技

关于本文档

本文档主要介绍如何在 LoRa SoC 芯片 ASR6601 的参考板上进行测试,以方便 ASR6601 的开发 人员快速了解该芯片的各项性能指标。

读者对象

本文档主要适用于以下工程师:

- 单板硬件开发工程师
- 软件工程师
- 技术支持工程师

产品型号

与本文档相对应的产品型号如下:

型号	Flash	SRAM	内核	封装	频率
ASR6601SE	256 KB	64 KB	32-bit 48 MHz ARM Cortex-M4	QFN68, 8*8 mm	150 ~ 960 MHz
ASR6601CB	128 KB	16 KB	32-bit 48 MHz ARM Cortex-M4	QFN48, 6*6 mm	150 ~ 960 MHz

版权公告

版权归 © 2021 翱捷科技股份有限公司所有。保留一切权利。未经翱捷科技股份有限公司的书面 许可,不得以任何形式或手段复制、传播、转录、存储或翻译本文档的部分或所有内容。

商标声明

△5⊋ ASR、翱捷和其他翱捷商标均为翱捷科技股份有限公司的商标。

本文档提及的其他所有商标名称、商标和注册商标均属其各自所有人的财产,特此声明。

免责声明

翱捷科技股份有限公司对本文档内容不做任何形式的保证,并会对本文档内容或本文中介绍的产品进行不定期更新。

本文档仅作为使用指导,本文的所有内容不构成任何形式的担保。本文档中的信息如有变更,恕 不另行通知。

本文档不负任何责任,包括使用本文档中的信息所产生的侵犯任何专有权行为的责任。

翱捷科技股份有限公司

地址:上海市浦东新区科苑路399号张江创新园10号楼9楼 邮编:201203

官网: http://www.asrmicro.com/asrweb/

文档修订历史

日期	版本号	发布说明
2020.08	0.1.0	首次发布。
2020.09	0.2.0	更新图片。
2020.10	0.3.0	更新为 ASR6601SE demo board v2.0 的配图。
2021.01	1.1.0	删除第1章的概述,将其内容合并到前言"关于本文档"部分。
2021.03	1.2.0	更新第 1.3 节的内容。

目录

1.	准备.		1
	1.1	硬件	1
		1.1.1 ASR6601 Demo 板说明	1
		1.1.2 跳线连接	3
	1.2	软件	4
		1.2.1 开发环境	4
		1.2.2 测试代码	4
	1.3	烧录测试代码	4
2.	测试.		5
	2.1	功率测试	
	2.2	灵敏度测试	
	2.3	功耗测试	5
		2.3.1 TX 功耗测试	6
		2.3.2 RX 功耗测试	6
		2.3.3 DeepSleep 测试	6
3.	测试台	命令说明	7
	3.1	AT 命令一览	7
	3.2	AT 命令参数说明	8
		3.2.1 低功耗测试命令 +CSLEEP	8
		3.2.2 低功耗测试命令 +CSTDBY	
		3.2.3 测试命令 +CRXS	9
		3.2.4 测试命令 +CRX	
		3.2.5 测试命令 +CTX	
		3.2.6 测试命令 +CTXCW	. 12
Α.	附录.	- 相关资料	13

表格

表	1-1	ASR6601SE-EVAL v2.0 接口说明	. 2
表	1-2	跳线连接状态	. 3
		测试代码中支持的 AT 命令	

插图

冬	1-1	ASR6601SE-EVAL v2.0 正面	. 1
冬	1-2	ASR6601SE-EVAL v2.0 反面	2
冬	2-1	低功耗测试连接示例	. 5

1. 准备

1.1 硬件

必需硬件列表如下:

- (1) ASR6601 demo 板 1 个
- (2) 天线 1 根
- (3) USB 线 1 根
- (4) PC 机 1 台

1.1.1 ASR6601 Demo 板说明

开发板 ASR6601SE-EVAL v2.0 的正反面如图 1-1 和图 1-2 所示:

图 1-1 ASR6601SE-EVAL v2.0 正面

1. 准备 ASR6601 参考板测试指南

图 1-2 ASR6601SE-EVAL v2.0 反面

表 1-1 ASR6601SE-EVAL v2.0 接口说明

	** 1
接口	描述
USB-UART	USB 转串口
Power Switch	电源开关
Reset	Reset 按钮
SW3	Download 按钮,按下后,GPIO02 拉高
SW1	User 按钮,按下后,GPIO11 拉低
JP1	电源跳线
JP2	电源跳线
JP3	电源跳线
JP4	电源跳线,可测试板子总功耗
JP5	UART_TX 跳线,跳线连通选择 UARTO_TX,具体请参考原理图
JP6(仅存在于 ASR6601CB-EVAL)	UART_TX 跳线,跳线连通选择 LPUART_TX,具体请参考原理图
JP7	UART_RX 跳线,跳线连通选择 UART0_RX,具体请参考原理图
JP8	UART_RX 跳线,跳线连通选择 LPUART_RX,具体请参考原理图

1. 准备 ASR6601 参考板测试指南

1.1.2 跳线连接

在进行 ASR6601 Demo 板测试过程中,请保证下面跳线的状态正确。

表 1-2 跳线连接状态

跳线	连接状态
JP1	连通
JP2	连通
JP3	连通
JP4	连通
JP5	连通
JP6(仅存在于 ASR6601CB-EVAL)	断开
JP7	连通
JP8	断开

1. 准备 ASR6601 参考板测试指南

1.2 软件

1.2.1 开发环境

ASR6601 可以使用 KEIL 开发,也可以使用 Makefile 的方式进行编译烧录等,具体可参考文档 《ASR6601_程序开发快速入门指南》。

1.2.2 测试代码

测试代码位于 SDK 的 projects\\${DEMO_BOARD}\examples\lora\lora_test 目录下。

其中 \${DEMO_BOARD} 为对应的板子名称,如 ASR6601SE 对应为 ASR6601SE-EVAL, ASR6601CB 对应为 ASR6601CB-EVAL。

1.3 烧录测试代码

程序编译烧录相关操作请参考文档《ASR6601_程序开发快速入门指南》。

2. 测试

测试代码中内置了几个 AT 命令,可以用来进行部分功能的测试。

2.1 功率测试

● **测试命令**:使用串口工具,执行 *AT+CTXCW=490000000,22* 命令进行功率的测试,具体 命令参数可参见 *3.2.6* 节的参数说明部分。

● 参考结果: 21 dbm

2.2 灵敏度测试

● **测试命令**:使用串口工具,执行 *AT+CRXS=490000000,0,0,2,0* 命令进行测试,具体命令 参数可参见 3.2.3 节的参数说明部分。

● 参考结果:-138 dbm

2.3 功耗测试

功耗测试时,可以将底板上的 JP4 跳线去掉,两端连接万用表,即可进行功耗的测试。具体硬件连接情况如图 2-1 所示:

图 2-1 低功耗测试连接示例

2.3.1 TX 功耗测试

● 测试命令: AT+CTXCW=490000000,22

● 参考结果: 110 mA

2.3.2 RX 功耗测试

● 测试命令: AT+CRX=490000000,0,0,1

● 参考结果:8.9 mA

2.3.3 DeepSleep 测试

● 测试命令:AT+CSLEEP=0

● 参考结果: 1.8 uA

3.

测试命令说明

3.1 AT 命令一览

测试代码中支持的 AT 命令主要有:

表 3-1 测试代码中支持的 AT 命令

命令	说明
AT+CTXCW	发送一个持续波
AT+CTX	隔 1s 发送一个 lora 包
AT+CRXS	接收指令,可用于灵敏度测试
AT+CRX	接收指令,可用于距离测试
AT+CSLEEP	低功耗测试指令
AT+CSTDBY	Sx1262 Standby 模式测试指令

3.2 AT 命令参数说明

3.2.1 低功耗测试命令 +CSLEEP

执行命令	AT+CSLEEP= <sleep_mode></sleep_mode>	
	该命令执行进入 DeepSleep 状态的操作。	
参数说明	<sleep_mode>:主要是针对 sx1262 的设置。</sleep_mode>	
示例	AT+CSLEEP=0	
注意事项		

3.2.2 低功耗测试命令 +CSTDBY

执行命令	AT+CSTDBY= <standby_mode></standby_mode>		
参数说明	该命令使 SX1262 进入 standby mode, MCU 进入 Stop3 模式。 <standby_mode>:如下 ● 0:代表 STDBY_RC 模式 ● 1:代表 STDBY_XOSC 模式</standby_mode>		
示例	AT+CSTDBY=0		
注意事项			

3.2.3 测试命令 +CRXS

执行命令	AT+CRXS= <freq>,<data_rate>,<bandwidth>,<code_rate>,<ldo></ldo></code_rate></bandwidth></data_rate></freq>	
参数说明	该命令主要用于灵敏度测试。 freq: 15000000-960000000 data_rate: 共有8个级别,分别是 DR0~DR7,对应展频因子 SF12~SF5。 ● 0: SF12 ● 1: SF11 ● 2: SF10 ● 3: SF9 ● 4: SF8 ● 5: SF7 ● 6: SF6 ● 7: SF5 bandwidth: 0~9,其中对应关系如下: ● 0: 125 KHz ● 1: 250 KHz ● 1: 250 KHz ● 3: 62.5 KHz ● 4: 41.67 KHz ● 5: 31.25 KHz ● 6: 20.83 KHz ● 7: 15.63 KHz ● 8: 10.42 KHz ● 9: 7.81 KHz code_rate: 1~4,其中1对应4/5,2对应4/6,3对应4/7,4对应4/8。 Ido: 0或1,1对应开启低速率优化,0对应关闭低速率优化。	
示例	AT+CRXS=490000000,0,0,2,0 start to recv package (freq: 490000000, dr:0, bw: 0, cr: 2, ldo: 0)	
注意事项	键入 CRXS 测试命令,为保持测试,系统进入死循环,重启系统开启下一次测试。	

3.2.4 测试命令 +CRX

执行命令	AT+CRX= <freq>,<data_rate>,<bandwidth>,<code_rate></code_rate></bandwidth></data_rate></freq>
教说明	Al+CRX= <freq>,<data_rate>,<baseline="color: blue;="" color:="" color:<="" th=""></baseline="color:></data_rate></freq>
	code_rate: 1~4, 其中 1 对应 4/5, 2 对应 4/6, 3 对应 4/7, 4 对应 4/8。
示例	AT+CRX=490000000,0,0,1 start to recv package (freq: 490000000, dr:0, bw: 0, cr: 1)
注意事项	键入 CRX 测试命令,为保持测试,系统进入死循环,重启开启下一次测试。

3.2.5 测试命令 +CTX

执行命令	AT+CTX= <freq>,<data_rate>,<bandwidth>,<code_rate>,<pwr>[,tx_len]</pwr></code_rate></bandwidth></data_rate></freq>
参数说明	该命令执行进入定时 1s 循环发送模式。 freq: 150000000-960000000 data_rate: 共有 8 个级别,分别是 DR0~DR7,对应展频因子 SF12~SF5。
示例	AT+CTX=490000000,0,0,1,22 start to tx data(freq: 490000000, dr: 0, bw:0, cr: 1, power: 22): 1
注意事项	键入 CTX 测试命令,为保持测试,系统进入死循环,重启开启下一次测试。

3.2.6 测试命令 +CTXCW

执行命令	AT+CTXCW= <freq>,<pwr>[,opt]</pwr></freq>
参数说明	该命令执行进入 TX 持续发送模式。
	freq: 150000000-960000000
	pwr: SX1262 的发射功率,取值 0~22。
	opt:SX1262 的 PA Optimal setting,取值 0~3,默认值为 0。对应关系如下:
	• 0 : [0x04,0x07,0x00,0x01]
	• 1 : [0x03,0x05,0x00,0x01]
	• 2 : [0x02,0x03,0x00,0x01]
	• 3 : [0x02,0x02,0x00,0x01]
	关于 opt,具体可参考 <i>《SX1262 数据手册》</i> 的 PA Optimal Settings 章节。
示例	AT+CTXCW=490000000,22
	Start to txcw (freq: 490000000, power: 22db, opt: 0)
	AT+CTXCW=490000000,22,2
	Start to txcw (freq: 490000000, power: 22db, opt: 2)
注意事项	键入 CTXCW 测试命令,为保持测试,系统进入死循环,重启系统开启下一次测试。

A. 附录 - 相关资料 ASR6601 参考板测试指南

A

附录 - 相关资料

本文档中提到的参考信息总结如下:

- 1. ASR6601 可以使用 KEIL 开发,也可以使用 Makefile 的方式进行编译烧录等,具体可参考文档 《ASR6601_程序开发快速入门指南》。
- 2. 关于 opt, 具体可参考《SX1262 数据手册》的 PA Optimal Settings 章节。