Master thesis presentation

Thorvald M. Ballestad 03. June 2022

Background

Conformal anomaly in massless QED

The massless Dirac equation

$$\bar{\psi}i\partial \psi = 0. \tag{1}$$

Conformal anomaly in small perturbation limit

$$g^{\mu\nu} = \eta^{\mu\nu} + \delta g^{\mu\nu}. \tag{2}$$

The Dirac cone Hamiltonian

$$H_D = v_F s \boldsymbol{\rho} \boldsymbol{\sigma}. \tag{3}$$

Our work

Linear response and Luttinger's method

Temperature pertupation $abla \mathcal{T}$ and gravitational potential ψ

$$\nabla \psi + \frac{\nabla T}{T} = 0. {(4)}$$

Linear response (Kubo)

$$\langle J \rangle (t, \mathbf{r}) = i v_F \int dt' d\mathbf{r}' \int_{-\infty}^{t'} dt'' \Theta(t - t') \times \langle \left[\mathbf{J}^i(t, \mathbf{r}) \right], T^{j0}(t'', \mathbf{r}') \right] \rangle \frac{\partial_j' T(t', \mathbf{r}')}{T(t', \mathbf{r}')}$$
(5)

Type-I and Type-II

Landau levels

Type-I and Type-II

Proposition

The modulus of the \it{tilt} vector \it{t} separates Type-I from Type-II, with Type-II having $\it{t}>1$.

Collapse of LLs for perpendicular tilt.

Result

tilt parameter t.

The response can be directly tuned by the

Perpendicular tilt

Parallel tilt

Thank you!