

ReScience C

Topalidou and Rougier 2015

[Re] Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study

Meropi Topalidou^{1,2,3,†, ID} and Nicolas P. Rougier^{1,2,3,†, ID}

¹INRIA Bordeaux Sud-Ouest, Bordeaux, France

²LaBRI, Université de Bordeaux, Institut Polytechnique de Bordeaux, Centre National de la Recherche Scientifique, UMR 5800, Talence, France

³Institut des Maladies Neurodégénératives, Université de Bordeaux, Centre National de la Recherche Scientifique, UMR 5293, Bordeaux, France

[†]These autors contributed equally to this work

Abstract. We propose a reference implementation of "Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study", M. Guthrie, A Leblois, A. Garenne, and T. Boraud, Journal of Neurophysiology, 109(12), 2013 that introduces an action selection mechanism in cortico-basal ganglia loops based on a competition between the positive feed-back, direct pathway through the striatum and the negative feedback, hyperdirect pathway through the subthalamic nucleus. The original implementation was made in Delphi (Object Pascal) whose sources are available on request to any of the author of the original article We have used these sources to disambiguate ambiguous and missing information in the original article. The reference implementation we propose has been coded in Python for ease of reading and Cython for performances because the main result includes a batch of 250 experiments over 120 trials that would be too slow for regular Python scripts.

Keywords: python, computational neuroscience

A replication of M. Guthrie, A. Leblois, A. Garenne, and T. Boraud. Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study. In: Journal of Neurophysiology 109.12 (2013)

Cite as: [Re] Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study, M. Topalidou and N.P. Rougier. In: ReScience C 1(#1), 2015. DOI 10.5072/zenodo.217655.

Code repository at github.com/rougier/model-code – DOI 10.5281/zenodo.27944 Data repository at github.com/rougier/model-data – DOI 10.5281/zenodo.27944.

Edited by Tiziano Zito ^{ID} – Reviewed by Benoît Girard ^{ID} & Mehdi Khamassi ^{ID} – Open Review Received o9 June 2015 – Accepted 12 August 2015 – Published 14 August 2015 Copyright © 2015 M. Topalidou and N.P. Rougier Published under a Creative Commons Attribution 4.0 International (@①) license

Corresponding author: Nicolas P. Rougier (Nicolas.Rougier@inria.fr)

Competing Interests: The authors have declared that no competing interests exist

Introduction

We propose a reference implementation of [1] that introduces an action selection mechanism in cortico-basal ganglia loops based on a competition between the positive feedback, direct pathway through the striatum and the negative feedback, hyperdirect pathway through the subthalamic nucleus. The original implementation was made in Delphi (Object Pascal) whose sources are available on request to any of the author of the original article. We have used these sources to disambiguate ambiguous and missing information in the original article. The reference implementation we propose has been coded in Python for ease of reading and Cython for performances because the main result includes a batch of 250 experiments over 120 trials that would be too slow for regular Python scripts.

Methods

We used the description of the model in the original article as well as the sources of the model (requested from author) that are made of hundred files and 6,000 lines of Delphi for the main source. We've been unable to compile this original implementation but we're able to run the provided Windows executable. We found some factual errors in the original article that have been corrected in this implementation. We provide below the formal description of the model according to the proposition of [2] for reproducible descriptions of neuronal network models.

Table	Description		
Populations	Cortex (motor, associative & cognitive),		
	Striatum (motor, associative & cognitive),		
	GPi (motor & cognitive),		
	STN (motor & cognitive),		
	Thalamus (motor & cognitive)		
Topology	-		
Connectivity	One to one, one to many (divergent), many to one (convergent)		
Neuron model	Dynamic rate model		
Channel model	_		
Synapse model	Linear synapse		
Plasticity	Reinforcement learning rule		
Input	External current in cortical areas (motor, associative & cognitive)		
Recordings	Firing rate & performances		

Table 1. Model description following [2] prescription.

Name	Elements	Size	Threshold	Noise	Initial state
Cortex motor	Linear neuron	1×4	-3	1.0%	0.0
Cortex cognitive	Linear neuron	4×1	-3	1.0%	0.0
Cortex associative	Linear neuron	4 imes 4	-3	1.0%	0.0
Striatum motor	Sigmoidal neuron	1×4	0	0.1%	0.0
Striatum cognitive	Sigmoidal neuron	4×1	0	0.1%	0.0
Striatum associative	Sigmoidal neuron	4 imes 4	0	0.1%	0.0
GPi motor	Linear neuron	1×4	+10	3.0%	0.0
GPi cognitive	Linear neuron	4×1	+10	3.0%	0.0
STN motor	Linear neuron	1×4	-10	0.1%	0.0
STN cognitive	Linear neuron	4×1	-10	0.1%	0.0
Thalamus motor	Linear neuron	1×4	-40	0.1%	0.0
Thalamus cognitive	Linear neuron	4×1	-40	0.1%	0.0
Values (V_i)	Scalar	4	-	-	0.5

Table 2. Populations

Source	Target	Pattern	Weight	Gain	Plastic
Cortex motor	Thalamus motor	$(1,i) \rightarrow (1,i)$	1.0	0.4	No
Cortex cognitive	Thalamus cognitive	$(i,1) \rightarrow (i,1)$	1.0	0.4	No
Cortex motor	STN motor	$(1,i) \rightarrow (1,i)$	1.0	1.0	No
Cortex cognitive	STN cognitive	$(i,1) \rightarrow (i,1)$	1.0	1.0	No
Cortex motor	Striatum motor	$(1,i) \rightarrow (1,i)$	0.5	1.0	No
Cortex cognitive	Striatum cognitive	$(i,1) \rightarrow (i,1)$	0.5	1.0	Yes
Cortex motor	Striatum associative	$(1,i) \rightarrow (.,i)$	0.5	0.2	No
Cortex cognitive	Striatum associative	$(i,1) \rightarrow (i,.)$	0.5	0.2	No
Cortex associative	Striatum associative	$(i,j) \rightarrow (i,j)$	0.5	1.0	No
Thalamus motor	Cortex motor	$(1,i) \rightarrow (1,i)$	1.0	1.0	No
Thalamus cognitive	Cortex cognitive	$(i,1) \rightarrow (i,1)$	1.0	1.0	No
GPi motor	Thalamus motor	$(1,i) \rightarrow (1,i)$	1.0	-0.5	No
GPi cognitive	Thalamus cognitive	$(i,1) \rightarrow (i,1)$	1.0	-0.5	No
STN motor	GPi motor	$(1,i) \rightarrow (1,i)$	1.0	1.0	No
STN cognitive	GPi cognitive	$(i,1) \rightarrow (i,1)$	1.0	1.0	No
Striatum cognitive	GPi cognitive	$(i,1) \rightarrow (i,1)$	1.0	-2.0	No
Striatum motor	GPi motor	$(i,1) \rightarrow (i,1)$	1.0	-2.0	No
Striatum associative	GPi motor	$(.,i) \rightarrow (1,i)$	1.0	-2.0	No
Striatum associative	GPi cognitive	$(i,.) \rightarrow (i,1)$	1.0	-2.0	No

Table 3. Connectivity

Linear neuron

Туре	Rate model
Membrane Potential	$\tau dV/dt = -V + I_{syn} + I_{ext} - h$
	U = max(V, 0)

Table 4. Neuron Model (1)

Sigmoidal neuron

Type Membrane Potential	Rate model $\tau dV/dt = -V + I_{syn} + I_{ext} - h$
	$U = V_{min} - (V_{max} - V_{min}) / \left(1 + e^{\frac{V_h - V}{V_c}}\right)$

Table 5. Neuron Model (2)

Linear synapse

Туре	Weighted sum
Output	$I_{syn}^{B} = \sum_{A \in sources} (G_{A \to B} W_{A \to B} U_{A})$

Table 6. Synapse

Reinforcement learning

Туре	Delta rule
Delta	$\Delta W_{A \to B} = \alpha \times PE \times U_B \times S$
	$S = (W_{A \to B} - W_{min})(W_{max} - W_{A \to B})$
	$PE = Reward - V_i$
	$\alpha = 0.02$ if $PE < 0$ (LTD), $\alpha = 0.04$ if $PE > 0$ (LTP)

Table 7. Plasticity

Type	Description
Cortical input	A trial is preceded by a settling period (500ms) and followed by a
	reset period. At time $t = 0$, two shapes are presented in cortical
	cognitive area ($I_{ext} = 7$ at $\{i_1, i_2\}$) at two different
	locations in cortical motor area ($I_{ext} = 7$ at $\{j_1, j_2\}$)
	and the cortical associate area is updated accordingly ($I_{ext} = 7$
	at $\{i_1, i_2\} \times \{j_1, j_2\}$)

Table 8. Input

		Resources	Version
Site	Type	OS	OSX 10.10 (yosemite)
Cognitive cortex	Firing rate	Language	Python 2.7.6 (brew installation)
Motor cortex	Firing rate	Libraries	Numpy 1.8.1 (pip installation)
Cortico-striatal projections	Weights		Matplotlib 1.3.0 (pip installation)
	-		Cython 0.22 (pip installation)

Table 9. Recordings

Table 10. Environment

Results

We did not reproduce all analysis of the original article but concentrate our efforts on the main results which are illustrated on figures 4 & 5 in the original article [1]. We first reproduced the activity in the cortical populations during a single trial, prior to learning. Noise has a great influence on the overall dynamic and it is not possible to exactly reproduce figure 4 in the original article without precise information on the underlying random generator (seed). Consequently, we can only report a qualitatively equivalent figure where the most critical feature is the bifurcation in cognitive and motor activities after stimulus onset. Since no learning has occured yet, it is also possible to have the motor decision to occur before the cognitive decision. Figure 1 shows an example of a decision dynamic with an oscillatory regime between time t=0 and time t=500ms that is characteristic of the model. We also test learning

Figure 1. Activity in the cortical population during a single trial of action selection. This is the reproduction of figure 4 of the original article.

capacity of the model by reproducing the same procedure as in the original article (250 experiments, 120 trials) but we used a modified and simpler learning rule (see Plasiticity table) since the original learning rule used a sigmodial transfer function but no actual details were given on how to enforce it.

Conclusion

We were able to reproduce original results, confirming the correctness of the original implementation of the model.

References

 M. Guthrie, A. Leblois, A. Garenne, and T. Boraud. "Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study." In: *Journal of Neurophysiology* 109.12 (June 2013), pp. 3025–3040.

Figure 2. Learning time course over 120 trials, averaged over 250 simulations. The blue filled area indicates the variance of the mean performance.

 E. Nordlie, M.-O. Gewaltig, and H. E. Plesser. "Towards Reproducible Descriptions of Neuronal Network Models." In: PLoS Computa-

tional Biology 5.8 (Aug. 2009). Ed. by K. J. Friston, e1000456.