# AIRLINE WARKET ANALYSIS

ALY 6110: DATA MANAGEMENT AND BIG DATA CRN: 81984

**Submitted By: Group Beta** 

Ashwini Kumar Pathak [pathak.as@husky.neu.edu]

Ayush Jain [jain.ayush@husky.neu.edu]

Megha Ravi [ravi.m@husky.neu.edu]

Ashishkumar Bidap [bidap.a@husky.neu.edu]



#### DATASET UTILIZED

Airline Dataset

Source: Bureau of Transport Statistics(BTS)

Duration: Jan'2000 – Feb'2020

Data size: 27 Gb

Total files: 244 files

Number of Rows: 128 Million

Total Attributes: 54



### ABOUT DATASET

- Time period (Year, Month, DayofMonth, DayofWeek, FlightDate)
- Airline (Flight number, Unique Carrier number)
- Origin and Destination details,
  Departure and Arrival performances showcasing delays
- Cancellations, Cause of delays (Carrier delay, weather delay, National air system delay (in minutes), security delay, aircraft





## PROBLEM STATEMENT:

- Exploratory Data Analysis
- Identify the Impact of global recession(2008) on US Flight industry.
- Fraud detection
- How Covid-19 impacted US Airline industry.





#### WHY BIG DATA?

- High Volume of data
- Fast retrieval
- Cost Saving
- Help in understanding market condition.
- Ability of tools to visualize insights.



## OUR BIG DATA ARCHITECTURE



DATABRICKS SPARK CLUSTER



#### Databricks Workspace

Collaborative Notebooks, Production Jobs

#### Databricks Runtime









#### **Databricks Cloud Service**













## CHALLENGES



Storage Space



CPU Compute Power.



Multiple Node Cluster



# PERFORMANCE OPTIMIZATION OF APACHE SPARK QUERIES

- Repartitioning the data frame partitions
- Speeding up Shuffle.partitions
- Pulling data sets into a cluster-wide in-memory cache



### AMAZON S3:

- Low Cost(0.023\$/Gb)
- Proven Availability of 99.99%
- Pay As you Go Model
- Owner & Bucket accessibility
- In & Out using Access key
- Scalable





### APACHE SPARK

- Data integration and ETL
- Interactive analytics
- Machine learning
- Advanced analytics
- Real-time data processing
- In-Memory computation
- Fault Tolerance





# APACHE PARQUET

- Efficient columnar storage format compared to row-based storage files like that of csv or json.
- Flexible compression options
- Provides an efficient encoding system.
- Open source file format
- Available to any Hadoop file system.





### DATABRICKS

- Free community edition
- Platform Connectivity
- Data Exploration
- Data Preparation
- Data Modeling
- Model Deployment
- Highly reliable
- Performant data pipelines









#### US Map displaying states mostly visited

- Highest bookings: California(15,425,336)
- Lowest bookings: Utah(2,413,319)

#### Monthly travel(Seasonal Influence)

- Most Travels: Summer [June and July]
- University move-in during September being next.





#### Factors influencing Delays

- Highest Delay: Aircraft delays with over 450Million
- Least Delay: Due to Security negligible records.





#### Count of Flights by Airline Carrier.



#### Month-wise analysis of the Global recession period.

November 2008 and Jan 2009 observed a major fall in the number of flights.

State wise frequency of the flights journeys. (2007-2009)



#### Identifying the trends in the Frequency of Flights for the Airline Carriers from 2007-2009.

#### Dip in the flights in 2008-09



#### Fall in flights Journeys in the big states of US.

- 1.California
- 2.Texas
- 3.Illinois
- 4.Florida
- 5.New York















States of California, Texas, Illinois, New York and Arizona are the major states with maximum number of cases with risk of fraudulent activities

#### Identify user characteristics to anticipate chances of fraud





## CONCLUSION

- AWS S3 provides a high-performance platform data lakes storage to handle 128 millions data entries
- AWS S3 not only has "Pay as You Go" model, but also has high security feature that which user can access its data
- Integration between Apache Spark and AWS S3 can be achieved using Databricks Community Edition by using Databricks File System, instead of HDFS
- Spark enables a user to optimize the existing queries using repartitioning





### REFERENCES

EckersonFebruary, W. (n.d.). Which Big Data Platform Is Right For You? Retrieved from <a href="https://tdwi.org/articles/2016/02/05/which-big-data-platform.aspx">https://tdwi.org/articles/2016/02/05/which-big-data-platform.aspx</a>

Top 5 Reasons for Choosing S3 over HDFS - The Databricks Blog. (2020, April 29). Retrieved from <a href="https://databricks.com/blog/2017/05/31/top-5-reasons-for-choosing-s3-over-hdfs.html">https://databricks.com/blog/2017/05/31/top-5-reasons-for-choosing-s3-over-hdfs.html</a>

Understanding Amazon S3. (2019, May 22). Retrieved from <a href="https://www.edureka.co/blog/understanding-amazon-s3/">https://www.edureka.co/blog/understanding-amazon-s3/</a>

Author, V. (2020, May 14). 5 Benefits of using Amazon S3 vs your own server for hosting images/videos. Retrieved from <a href="https://www.vizteck.com/post/5-benefits-of-using-amazon-s3-vs-your-own-server-for-hosting-imagesvideos">https://www.vizteck.com/post/5-benefits-of-using-amazon-s3-vs-your-own-server-for-hosting-imagesvideos</a>

Comparing Databricks to Apache Spark. (n.d.). Retrieved from <a href="https://databricks.com/spark/comparing-databricks-to-apache-spark">https://databricks.com/spark/comparing-databricks-to-apache-spark</a>

Big Data - Definition, Importance, Examples & Tools. (2019, September 5). Retrieved from <a href="https://www.rd-alliance.org/group/big-data-ig-data-development-ig/wiki/big-data-definition-importance-examples-tools">https://www.rd-alliance.org/group/big-data-ig-data-development-ig/wiki/big-data-definition-importance-examples-tools</a>

Unified Data Analytics. (n.d.). Retrieved from <a href="https://databricks.com/">https://databricks.com/</a>





# THANK YOU

