

Análisis Forense de un Sistema Windows

3ª Jornada Tecnológica inFORMANdo

Ismael Valenzuela Espejo

Information Security Specialist lsmael.valenzuela@isoftplc.com

Agenda

- Introducción al Análisis Forense
- Fases de una investigación
 - Verificación
 - Obtención
 - Análisis
 - Elaboración de informes y custodia de evidencias
- Obtención de evidencias en un sistema Windows
- Aspectos Legales
- Referencias

Acerca de mí

- Information Security Specialist en iSOFT, una compañía del Grupo IBA Health
 - Presente en 5 continentes
 - Más de 3.500 empleados
- Responsabilidades
 - Respuesta ante incidentes
 - Investigaciones forenses / Log Analysis
 - Auditorías de seguridad / Pentests
 - Diseño e implementación de políticas, arquitecturas de seguridad, implementación de ISO 27001, etc..
- Certified Information Systems Security Professional (CISSP)
- Certified Information Security manager (CISM)
- SANS GIAC Certified Intrusion Analyst (GCIA)
- SANS GIAC Certified Forensic Analyst (GCFA)
- IRCA accredited ISO 27001 Lead Auditor
- ITIL Certified
- Miembro del SANS GIAC Advisory Board
- Instructor de BSi en ISO 27001, ISO 20000 y BS 27999

Respuesta a Incidentes vs Análisis Forense

- Fases habituales de la Respuesta a Incidentes:
 - Planificar y preparar
 - Detección del Incidente
 - Contención y Respuesta
 - Recuperación
 - Análisis (post-mortem)

¿Qué es un Análisis Forense?

- En "dos palabras"...
- "Forensic Computing is the process of identifying, preserving, analyzing and presenting digital evidence in a manner that is legally acceptable" (Rodney McKemmish 1999)

- Se basa en el principio "de intercambio de Locard"
 - Edmun Locard (1877-1966), criminalista francés.

¿Qué es un Análisis Forense?

Principio de intercambio de LOCARD

 "siempre que dos objetos entran en contacto transfieren parte del material que incorporan al otro objeto"

¿Qué es un Análisis Forense?

Una investigación forense consta de:

- Identificación de la evidencia (verificación)
- Obtención de la evidencia
- Análisis y evaluación de evidencias
- Presentación y almacenamiento de evidencias

Incluye los siguientes aspectos:

- IDENTIFICAR, PRESERVAR, ANALIZAR y PRESENTAR la evidencia de manera adecuada.
- Debe realizarse siguiendo los estándares apropiados, especialmente <u>si los resultados tienen que poder admitirse en</u> <u>un juicio</u>.

¿Qué es un Análisis Forense?

Tipos de evidencias:

- Testimonio humano
- Tráfico de red
- Dispositivos de red
- Sistemas Operativos
- Bases de Datos
- Aplicaciones
- Periféricos
- Ficheros en discos internos, externos, USB, CD-ROM, etc...
- Teléfonos
- Impresoras
- ...¡TODO!

- Usuarios o personal de TI informan de un posible incidente
 - Cuentas bloqueadas, funcionamiento errático o incorrecto de aplicaciones, ficheros desaparecidos, etc.
- Alerta generada por los sistemas de gestión de sistemas
 - Disponibilidad de sistemas, espacio en disco, utilización CPU, intentos de logon, conexiones anómalas, etc.
- Alerta generada por los sistemas de gestión de la seguridad
 - Firewall, IDS, Antivirus, etc.
- Por aviso de terceros
 - Policía, prensa, competidores, etc.
- Por encargo directo

Verificación - ¿Tienes TODA la información?

Verificación del incidente

- Los fraudes internos pueden implicar diferentes elementos de un sistema:
 - Múltiples Aplicaciones
 - Sistemas relacionados
 - Infraestructura de red (DNS, DHCP, routers, switches, ...)
 - Sistemas de soporte (directorio, backup, monitorización)
 - Múltiples hosts
 - Clientes
 - Front-end
 - Middleware
 - Back-end, Bases de datos

- 1. Sistema "muerto"
 - Sin corriente eléctrica
 - Sistema ap
 - Disco Duro
 - Discos Extern CD-ROMs, disqueteras, etc...

2. Sister

MAQUINA?

- Accesos a disco
 - Dispositivos removibles en contínuo cambio

Obtención de la evidencia

Respuesta inicial es CRÍTICA

- Apagar el sistema a analizar puede destruir evidencia crítica (en Unix es posible recuperar información del espacio swap).
- Los atacantes pueden aprovechar las ventajas de la volatilidad de la memoria (hay malware que solo se ejecuta en memoria).
- El nivel de ocultación de datos dependerá del nivel de acceso conseguido y de la pericia del atacante.

- Recabar conexiones de red y desconectar de la red
- Adquirir procesos en ejecución y memoria del Sistema
- Adquirir imágenes de discos
- Fotografías de hw y lugares
- Continuar verificación del incidente
 - Logs, IDS, entrevistas, logs de SO, aplicaciones, correlación, etc...

- Información volátil importante:
 - Hora y fecha del sistema
 - Procesos en ejecución
 - Conexiones de red
 - Puertos abiertos y aplicaciones asociadas
 - Usuarios logados en el sistema
 - Contenidos de la memoria y ficheros swap o pagefile

- Nunca confíes en el sistema que se está analizando. El atacante puede haberlo comprometido.
- Las herramientas usadas para examinar un sistema en marcha deben
 - Ser copias "limpias" (en un CD)
 - Copias de comandos de sistema
 - Diferentes versiones de OS
 - En Unix/Linux, "statically linked"
 - Otras herramientas
 - Usar el mínimo de recursos del propio sistema
 - Alterar el sistema lo mínimo

- Imágenes de un sistema "vivo"
 - Uso de "dd" y "netcat" para enviar una copia bit-a-bit a un sistema remoto
 - Tanto Windows como Unix/Linux
 - Para Windows puede ser más cómodo usar HELIX
 - http://www.e-fense.com/helix/
 - Permite realizar imagen de la memoria física
 - Una vez realizada la imagen se computa un hash MD5 y SHA-1

- Imágenes de un sistema apagado
 - Extraer disco duro
 - Si el disco tiene un jumper para "read-only" se puede usar
 - si no, un "write blocker" por hardware es necesario (IDE/SATA/ SCSI/USB/Firewire/...)
 - Conecta el disco a la workstation de análisis forense
 - es recomendable que sea Linux (permite montar los discos manualmente y en modo "read-only")
 - Realiza copia con "dd"
 - la imagen se puede guardar en discos externos Firewire/USB, almacenamiento SAN, etc
 - Por supuesto, hashes MD5 y SHA-1 de original y copia para garantizar integridad

Obtención de la evidencia

Fraude interno / Espionaje industrial

- Periodo de verificación previo, sin alertar al culpable
- Información sobre conexiones se obtiene de firewalls, IDS, sniffers, etc
- Confiscación de hardware
- Obtención de imágenes de discos

Intrusión Externa

- Desconectar red
- Obtener información volátil (memoria, registro, conexiones, etc.)
- Verificar incidente (logs, IDS, firewalls, etc.)
- Obtención de imágenes de discos

- Se puede desconectar siempre la red o la alimentación en sistemas críticos?
 - Coste de downtime vs. coste del incidente
 - Coste de reinstalación y puesta en marcha
 - Coste de revalidación, recertificación
- Es factible siempre el hacer imágenes de todos los discos?
 - Almacenamiento en SAN/NAS
 - Configuraciones RAID
 - Volúmenes de >200GB comunes (incluso TB)
 - Distinción de disco físico y lógico cada vez menos clara

- ¿Cómo se preserva la evidencia original?
 - Si se puede parar el sistema y tenemos acceso físico
 - Se hacen dos copias de todos los discos (usando discos de idéntico modelo)
 - Se guardan los originales
 - Se arranca el sistema desde una de las copias
 - · Se investiga sobre otra copia
 - Si no tenemos acceso físico
 - Procedimiento de obtención de la imagen sencillo para que un técnico remoto pueda hacerlo
 - Si no se puede parar el sistema
 - Se realiza imagen online, que pasa a ser considerada "original"

Análisis de la evidencia

- El procedimiento de análisis dependerá del caso y tipo de incidente
- En general se trabaja con las imágenes de los sistemas de ficheros
 - Análisis de Secuencia Temporal ("timeline")
 - Búsqueda de contenido
 - Recuperación de binarios y documentos (borrados o corruptos)
 - Análisis de código (virus, troyanos, rootkits, etc.)

Análisis de la evidencia

- El objetivo es llegar al:
 - Qué
 - Cuándo (secuencia temporal de eventos)
 - Cómo (punto de entrada, vulnerabilidad explotada, etc...)
 - Quién (?)
 - Porqué (??)
- Análisis Inicial:
 - Buscar archivos ocultos o no usuales (slack space)
 - Buscar procesos no usuales y sockets abiertos
 - Buscar cuentas de usuario extrañas
 - Determinar el nivel de seguridad del sistema, posibles agujeros, etc...

Análisis de la evidencia

SleuthKit + Autopsy

Elaboración del informe

- Detalla TODO
 - Antecedentes
 - Procedimientos
 - Evidencias
 - Hashes, etc...
- Utiliza formatos prediseñados para no olvidar nada
- Debe ser <u>imparcial</u> y <u>objetiva</u> (no se puede SUPONER nada)
- Es probablemente la parte más importante junto con la defensa en un juicio

Table of Contents

Contents	
CONTENTS	_3
1 BACKGROUND TO THE CASE	_6
2 INITIAL EXAMINATION	_6
3 REGISTRY INFORMATION	_6
4 INITIAL IMAGE SCAN	_6
5 RESULTS OF VIRUS SCAN	_6
6 HASHLIBRARY	_6
7 SIGNATURE ANALYSIS	_6
8 ENCRYPTED OR PASSWORD PROTECTED FILES	_6
9 AL TERNATE DATA STREAMS (ADS)	_7
10 ESCRIPTS	_7
11 TEXT SEARCHES	_7
11.1 No search hits	_7
11.2 Search hit : 1 - 200	_7
11.3 Search hit : 200 - 500	_7
11.4 Search hits 500 - 1000	_7
11.5 Search hits above 1000	_7
12 ANSWERS TO SPECIFIC QUESTIONS ASKED BY CLIENT	7
13 FILES IDENTIFIED AND FOUND	
13.1 Deleted	_8
13.2 Desktop	_8
13.3 MYDOCUMENTS	_8
13.4 PROFILES	_8
13.5 RECENT	_8
© Wronsis Computing Ltd 2003 - 5 Copy 1 Pag	3
dl watson@bcrm.co.uk www.forensic-computing.ltd	
<classification></classification>	

Almacenamiento de informes y evidencias

- Calcula los hashes MD5 y SHA1 de todas las evidencias adquiridas, tan pronto como puedas.
- Apunta toda la información del hardware analizado (fabricante, modelo, número de serie, número de inventario, configuración de los jumpers, etc...)
- Toma fotos, y si es necesario graba en video!
- Si es posible, acompáñate de un notario o un abogado que presencie el proceso.

Almacenamiento de informes y evidencias

Cadena de custodia:

- Concepto jurídico sobre la manipulación de una evidencia y su integridad
- Documento en papel que registra la adquisición, custodia, control, transferencia, análisis y destrucción de la evidencia
- Las evidencias deben manipularse de forma escrupulosa para evitar cualquier acusación de negligencia
- Debe detallar dónde se encontraba la evidencia y quién tuvo acceso a ella desde el momento en que se recogió hasta el momento en el que se presenta a juicio

Almacenamiento de informes y evidencias

	Date		cident	Case#	
Consent Required Y/N		Signature of Consenting Person		Tag#	
Model#		Manufacturer#		Serial#	
Description of Form	1				
Person Receiving Evidence			Signature		
		Chain	of Custody		
From Location	Date		Reason	To Location	
From Location	Date		Reason	To Location	
From Location	Date		Reason	To Location	
From Location	Date		Reason	To Location	
From Location	Date		Reason	To Location	
Final Disposition of	Evidence		Date		

Kit de Adquisición de Datos

- Crea un CD-ROM con herramientas "de confianza"
 - Al menos incluye una versión "limpia" de CMD.EXE que corresponda al sistema operativo a analizar
 - netcat o cryptcat
 - Herramientas de sistema (ipconfig, netstat, date, time, net, arp ...) para las diferentes versiones de Windows y Service Pack
 - pstools, listdlls, filemon*, regmon*, autoruns...
 - hfind, fport, ntlast, ...
 - Windows resource kit tools
 - Un buen sniffer (wireshark, windump, ...)
 - md5sum / md5deep

Adquisición de Datos +Volátiles

- Conectar la estación forense a la red del equipo a analizar
- Configurar netcat o cryptcat en la estación forense para que escuche en un puerto local y vuelque en un fichero la evidencia recibida
- Montar el Kit de Adquisición de Datos en el sistema a analizar
- Abrir una consola confiable (cmd.exe)

Adquisición de Datos +Volátiles

• ¿Qué obtener?

- Fecha y hora del sistema
- Procesos en ejecución
- Conexiones de red
- Puertos abiertos
- Aplicaciones "escuchando" en puertos abiertos
- Usuarios logados
- Información almacenada en la memoria

Adquisición de Datos +Volátiles

date /t & time /t

fecha y hora

ipconfig /all

información tcp/ip

netstat -aon

conexiones abiertas y puertos en espera, con PID asociado

psinfo -shd

informacion del sistema (hardware, software, hotfixes, versiones, etc.)

pslist -t

lista de procesos

at

lista de tareas programadas (también mirar en %windir%\tasks\ folder)

Adquisición de Datos +Volátiles

psloggedon

usuarios logados y hora de logon

psloglist

volcado de log de eventos

psservice

información de servicios de sistema

net use, net accounts, net session, net share, net user

conexiones netbios/smb

listdlls

lista de DLLs cargadas en sistema

sigcheck -u -e c:\windows

lista de ficheros (.exe, .dll) no firmados

Adquisición de Datos +Volátiles

streams -s c:\

lista ficheros con alternate data streams (ads)

logonsessions -p

sesiones actuales y procesos por sesión

arp -a

muestra tabla de caché ARP

ntlast

muestra eventos de logon correctos y fallidos

route print

muestra tabla de rutado IP

Adquisición de Datos +Volátiles

autorunsc

muestra elementos de autoejecución

```
-w] [user]
              Include empty locations.
              Boot execute.
              Print output as CSV.
    -c -d -e -h -i -m -s -t
              Appinit DLLs.
               Explorer addons.
              Image hijacks.
              Internet Explorer addons.
              Logon startups (this is the default).
              Hide signed Microsoft entries.
              Winsock protocol providers.
              Autostart services.
Scheduled tasks.
              Verify digital signatures.
    -v
    -\omega
              Winlogon entries.
              Specifies the name of the user account for which
    user
```

hfind c:

ficheros ocultos

promiscdetect

detecta interfaces de red en modo "PROMISCUO"

Adquisición de Datos +Volátiles

volume_dump

muestra información sobre volumenes, mount points, filesystem, etc.

pwdump2

muestra hashes (nthash/lmhash) de cuentas locales

Isadump2

muestra LSA secrets (necesita SeDebugPrivilege)

strings

busca cadenas ASCII/Unicode en ficheros

Adquisición de Datos +Volátiles

Herramientas con interfaz gráfico:

rootkit revealer

detecta rootkits (usermode o kernelmode)

process explorer (procexp y procmon)

información útil sobre procesos, librerías que usan, recursos accedidos, conexiones de red, etc.

tcpview

muestra conexiones de red y aplicaciones asociadas

Adquisición de Datos +Volátiles

Nombres de Dispositivos en Windows:

\\. Local machine

• \\.\C: C: volume

• \\.\D: D: volume

\\.\PhysicalDrive0 First physical disk

\\.\PhysicalDrive1 Second physical disk

\\.\CdRom0
 First CD-Rom

\\.\Floppy0First floppy disk

\\.\PhysicalMemory Physical memory

Adquisición de Datos +Volátiles

Tipo de información almacenada en la memoria:

- Password en la cache
- Malware residente en memoria (Slammer)
- Fragmentos de ficheros y procesos abiertos
- Datos no cifrados (en claro)

Realizar imagen completa de la memoria (de un sistema "vivo") dd if=\\.\PhysicalMemory | nc -w 3 10.0.0.1 9000

Obtener los procesos en memoria (de un sistema "vivo")
Utilizar 'pmdump' para volcar a un fichero el espacio de
memoria de un proceso

Adquisición de Datos +Volátiles

- ¿Se puede obtener el fichero de paginación?
 - No se puede copiar 'pagefile.sys' en un sistema en marcha
 - Si se apaga el ordenador, se modifica el fichero de paginación (o opcionalmente se borra)
 - Si es necesario este fichero, quitar cable de alimentación y obtener imágenes del disco

Adquisición de Datos +Volátiles

```
C:\Local\Tools}pslist -e ftp
PsList 1.26 - Process Information Lister
Copyright (C) 1999-2004 Mark Russinovich
Sysinternals - www.sysinternals.com
Process information for RMAMWPDCE08Q:
                    Pid Pri Thd Hnd
                                       Priv
                                                   CPU Time
                                                                Elapsed Time
Name
                                                                0:19:10.879
                    408
                                                0:00:00.060
                                  29
                                        620
ftp
C:\Local\Tools\pmdump 408 ftpprocess.img
pmdump 1.2 - (c) 2002, Arne Vidstrom (arne.vidstrom@ntsecurity.nu)
           - http://ntsecurity.nu/toolbox/pmdump/
C:\Local\Tools\strings.exe ftpprocess.img | findstr /i PASS | more
wPASS secretpasswordd
 file - password.... - Mozilla Firefox
PASS zs@zs
PASS 2s
Usage: %1 username [password] [account]
Error reading password.
Password: %0.
530 Login or Password incorrect.
secretpasswordd
password
gSanTcpBypass
 assword (%1:%2):
```


Adquisición de Datos de Red

- Algunos fuentes importantes de información:
 - Logs de IDS/IPS
 - Logs de Firewall
 - Logs de VPN / Radius
 - Logs del servidor DHCP
 - Logs de otras aplicaciones que puedan estar relacionadas (ftp, www, base de datos, etc...)

Adquisición de Datos de Red

- En algunos casos es necesario recoger durante unos días la actividad de la red "sospechosa" para detectar posible actividad ilícita (malware o "asesino volviendo a la escena del crimen")
- Para registrar el tráfico desde/hacia el sistema analizado:
 - Utiliza un sniffer, a ser posible con un TAP
 - Si esto no es posible, utiliza haz un "mirror" del puerto del switch
 - Si no utiliza un hub o usa arp-spoofing para redirigir el tráfico hacia el sniffer (ethereal) **** OPCIÓN MENOS RECOMENDADA ***

Adquisición de Datos de Red

- En algunos casos es necesario recoger durante unos días la actividad de la red "sospechosa" para detectar posible actividad ilícita (malware o "asesino volviendo a la escena del crimen")
- Para registrar el tráfico desde/hacia el sistema analizado:
 - Utiliza un sniffer, a ser posible con un TAP
 - Si esto no es posible, utiliza haz un "mirror" del puerto del switch
 - Si no utiliza un hub o usa arp-spoofing para redirigir el tráfico hacia el sniffer (ethereal) **** OPCIÓN MENOS RECOMENDADA ***

Adquisición y Duplicado de Discos

- Los duplicados de disco son admisibles en un juicio si corresponden a alguno de estos dos tipos:
 - Duplicado forense ('dd'):
 - Contiene una imagen "cruda"
 - Copia bit a bit
 - No se añade ningún dato extra
 - Duplicado cualificado (Encase)
 - Se añaden metadatos (hashes, timestamps, etc...)
 - Compresión de bloques vacios.

Adquisición y Duplicado de Discos

- Adquisición física:
 - Apagar la máquina (desconectar cable)
 - Quitar el disco duro
 - Ponerlo en modo sólo lectura (jumper or IDE/SCSI block-writer)
 - Conectarlo a la estación forense y realizar una copia bit a bit con 'dd' a un disco externo (firewire/USB)
- Adquisición a través de la red (máquina apagada):
 - En la estación forense: nc -l -p 9000 > disk1.dd
 - Iniciar la máquina a analizar con una distribución LiveCD de Linux (p.ej. Helix) y ejecutar: dd if=/dev/sda | nc 10.0.0.1 9000

Adquisición y Duplicado de Discos

- Adquisición a través de la red (máquina encendida):
 - No es la opción más recomendable (el SO no es fiable y el sistema de ficheros está en un estado 'estable').
 - En la estación forense: nc -l -p 9000 > disk1.dd
 - En la máquina a analizar, ejecutar 'dd' para windows desde un CD limpio: dd if=\\.\PhysicalDrive0 bs=2k | nc -w 3 10.0.0.1 9000

Otras fuentes de información

Log de eventos (Application, System, Security, DNS)

IIS/webserver/FTP logs/URLScan

Windows Firewall log (%windir%\pfirewall.log)

Dr. Watson logs

contiene información sobre procesos que corrían cuando una aplicación falló

setupapi.log

información sobre instalación de aplicaciones y dispositivos

schedlgu.txt

información sobre tareas programadas

Antivirus / IDS / IAS / ISA Server / ... logs

Otras fuentes de información

CARPETA PREFETCH:

Usada por Windows para almacenar información sobre ejecutables, para optimizar el rendimiento

En WinXP se realiza prefetches al arrancar y al lanzar aplicaciones. Win2003 realiza el prefetch sólo al arrancar (por defecto)

Los ficheros .pf en %systemroot%/prefetch contienen información sobre el path de los ficheros

La fecha y hora (MAC) del fichero .pf nos da información sobre cuándo una aplicación ha sido ejecutada

Otras fuentes de información

LastWrite en claves de registro Se puede usar 'Isreg.pl' para extraer esta información

Key -> CurrentControlSet\Control\Windows\ShutdownTime
LastWrite : Tue Aug 2 12:06:56 2005
Value : ShutdownTime; REG BINARY; c4 96 a0 ad 5a 97 c5 01

Ficheros INFO2

Información sobre ficheros borrados Se puede usar 'rifiuti' para extraer información C:\Recycler\%USERSID%\INFO2

Documentos recientes

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\RunMRU

Directorios temporales

Caché navegador web

Se puede usar 'pasco' para analizar

Cache y cookies

Browser history

Aspectos Legales

- Diferentes modelos (Europa/USA)
- Tanto la empresa "víctima" como el Estado pueden solicitar una investigación forense (en todos los países de la EU no es necesaria "todavía" licencia de investigador)
- ¿Cuándo involucrar a la Policía? Depende de:
 - Tipo de delito
 - Política interna (ISO 27001)
 - Obligaciones legales (PCI, SOX, BASEL II, etc...)
 - Existencia de víctimas externas (empresas, clientes, usuarios, etc.)
 - LOPD
- Honeypots (area "gris") ¿inducción al delito? ¿contenido ilegal?

Aspectos Legales

Contactos:

Brigada de Investigación Tecnológica (Policía Nacional) http://www.mir.es/policia/bit/

Grupo de Delitos Telemáticos (Guardia Civil) http://www.guardiacivil.org/telematicos/

Referencias

 Algunas herramientas citadas en la presentación:

autorunsc	www.sysinternals.com
cryptcat	sourceforge.net/projects/cryptcat
dd for windows	users.erols.com/gmgarner/forensics/
encase	www.guidancesoftware.com
ethereal	www.ethereal.com
forensics browser	www.sleuthkit.org
ftimes	ftimes.sourceforge.net/FTimes
helix	www.e-fense.com/helix
hfind	www.foundstone.com
knoppix	www.knoppix.org
lepton crack	usuarios.lycos.es/reinob/
listdlls	www.sysinternals.com
logonsession	www.sysinternals.com
lophtcrack	www.atstake.com/products/lc
Isadump2	www.bindview.com/Services/RAZOR/Utilities/Windows/
Isreg.pl	www.windows-ir.com
md5deep	md5deep.sourceforge.net
netcat	www.vulnwatch.org/netcat
ntlast	www.foundstone.com
pasco	www.foundstone.com
pmdump	ntsecurity.nu
pref, prev_ver	www.windows-ir.com
process explorer	www.sysinternals.com
promiscdetect	ntsecurity.nu
pstools	www.sysinternals.com
pwdump2	www.bindview.com/Services/RAZOR/Utilities/Windows/
rifiuti	www.foundstone.com
rootkit revealer	www.sysinternals.com
sigcheck	www.sysinternals.com
streams	www.sysinternals.com
strings	www.sysinternals.com
tcpview	www.sysinternals.com
the sleuth kit	www.sleuthkit.org
volume_dump	users.erols.com/gmgarner/forensics/

Referencias

- Windows Incident Response Blog:
 - http://windowsir.blogspot.com/
- Windows Forensic Analysis, Harlan Carvey (2007, Syngress).
- http://www.jessland.net/KB/Forensics/
- http://computer.forensikblog.de/en/
- Parte del contenido de esta presentación está basado en el trabajo de Alfredo Reino (http:// www.areino.com)
- http://blog.ismaelvalenzuela.com

¡Gracias!

Ismael Valenzuela Espejo

Information Security Specialist ismael.valenzuela@isoftplc.com

Podrás descargar esta presentación de:

http://blog.ismaelvalenzuela.com/papers-presentations/

