Изучение дифракции

Валиуллин Айрат, Нугуманов Динар

Вопрос по выбору

Московский физико-технический институт Долгопрудный, 2021 **Цель работы:** изучить дифракцию в зоне Фраунгофера, экспериментальным путем определить длину волны лазера.

Оборудование и материалы: CD-диск, DVD-диск, красный и зеленый лазеры, рулетка измерительная, фольга, подставка, лист бумаги A4.

1 Дифракция на компакт-дисках: получение длин волн различных лазеров

1.1 Теоретические сведения

Рассмотрим дифракционную решетку, на которую падает свет под прямым углом.

Рис. 1. Дифракционная решетка

Воспользуемся интегралом Френеля, чтобы найти поле:

$$E(\theta) = \int_{-\infty}^{+\infty} E(x)e^{ikx\sin(\theta)}dx = \int_{0}^{D} E(x)e^{ikx\sin(\theta)}dx = \sum_{j=0}^{N-1} \int_{jd}^{(j+1)d} E(x)e^{ikx\sin(\theta)}dx \quad (1)$$

В интеграле делаем замену $\tilde{x} = x - jd$. $E(\tilde{x} + jd) = E(\tilde{x})$, так как jd — это период. Выносим из под интеграла $e^{ikjdsin(\theta)}$, а сам интеграл выносим из-под суммирования. Получаем:

$$E(\theta) = \int_0^d E(\tilde{x})e^{ik\tilde{x}\sin(\theta)}d\tilde{x}\sum_{j=0}^{N-1} e^{ikjd\sin(\theta)}$$
(2)

Используя формулу для геометрической прогрессии, найдем сумму:

$$E(\theta) = e^{i\psi} \int_0^d E(\tilde{x}) e^{ik\tilde{x}\sin(\theta)} d\tilde{x} \frac{\sin(\frac{Nkd}{2}\sin(\theta))}{\sin(\frac{kd}{2}\sin(\theta))}$$
(3)

Интергируем от 0 до a, где a — это ширина отверстия:

$$E(\theta) = e^{i\delta} E_0 a sinc\left(\frac{ka sin(\theta)}{2}\right) \frac{sin(\frac{Nkd}{2} sin(\theta))}{sin(\frac{kd}{2} sin(\theta))}$$
(4)

Отсюда находим интенсивность:

$$I(\theta) = E_0^2 a^2 sinc^2 \left(\frac{kasin(\theta)}{2}\right) \frac{sin^2(\frac{Nkd}{2}sin(\theta))}{sin^2(\frac{kd}{2}sin(\theta))}$$
 (5)

Выражение в знаменателе отвечает за максимумы. Когда знаменатель равен нулю, числитель также обнуляется, однако дифференцированием можно доказать, что при обнулении знаменателя получаем максимум интенсивности:

$$\frac{kd}{2}sin(\theta) = \pi m \Rightarrow dsin(\theta) = m\lambda \tag{6}$$

Из прямогульного треугольника имеем:

$$sin(\theta) = \frac{l_1}{\sqrt{l^2 + l_1^2}} \tag{7}$$

где l — расстояние от дифракционной решетки до экрана, d — период решетки, l_1 — расстояние от m=0 до $m=1, \theta$ — угол между направлениями на нулевой и первый максимумы.

Получаем выражение для длины волны λ (m=1):

$$\lambda = \frac{l_1 d}{\sqrt{l^2 + l_1^2}} \tag{8}$$

1.2 Строение компакт-дисков

Роль дифракционной решетки в нашем случае играют CD и DVD диски. Информация на них записывается в виде спиральной дорожки из питов — углублений, выдавленных в поликарбонатной основе (рис 2). Каждый из них имеет примерно 100 нм в глубину и 500 нм в ширину, а длина варьируется от 850 нм до 3,5 мкм. Промежутки между ними называются лендом. Шаг дорожек в спирали CD-диска составляет 1,6 мкм, а DVD-диска — 0,74 мкм. Питы рассеивают или поглощают падающий на них свет, а подложка — отражает, поэтому записанный диск — пример отражательной дифракционной решётки с соответствующим периодом.

Рис. 2. Спи-ральные до-рожки из питов

1.3 Проведение экспериментов

В рамках эксперимента воспользуемся тем фактом, что диск с хорошей преемственностью является отражательной дифракционной решеткой. В нашем распоряжении имеется два диска: CD и DVD с шагами дорожек 1,6 и 0,74 мкм соответственно, а также два лазера: красный и зеленый. Нахождение длин волн последних — цель данной части настоящей работы. Для каждой пары "лазер-диск" с целью увеличения точности снимем зависимости l_1 (расстояния между центральным и первым максимумами) от l (расстояния между плоскостями диска и экрана). Эти зависимости априори линейны, поскольку измеряемые величины являются и

Рис. 3. Оптическая схема

сти априори линейны, поскольку измеряемые величины являются катетами прямоугольного треугольника (рис 3). Также прикрепим фотографии примеров работы собранной экспериментальной установки (рис. 4).

Рис. 4. Экспериментальная установка с использованием: (a) CD диска; (b) DVD диска.

Итак, закрепим CD-диск на подставке и снимем последовательность пар значений (l, l_1) для красного лазера; запишем их в таблицу 1. Аналогичные измерения проведем для зеленого лазера, выбирая расстояния l так, чтобы обеспечить разумные погрешности; данные запишем в таблицу 2. Зависимости отразим на рисунке 5.

Таблица 1. Значения измеренных l и l_1 для пары "CD-зеленый"

l, cm	l_1 , cm	Δ , cm
20	8,1	0,3
25	9,8	0,3
30	11,6	0,3
35	13,4	0,3
40	15,2	0,3
45	17,0	0,3

Таблица 2. Значения измеренных l и l_1 для пары "CD-красный"

l, cm	l_1 , cm	Δ , cm
20	10,2	0,2
25	12,6	0,2
30	14,0	0,2
35	16,8	0,2
40	19,5	0,2
45	21,5	0,2

При установлении погрешности отдельного измерения учитывается факт того, что максимумы дифракционной картины— не точки.

Рис. 5. Графики зависимости расстояния между максимумами от расстояния между дифракционной решеткой и экраном для: (а) зеленого лазера; (b) красного лазера.

Полученные коэффициенты наклона используем для вычисления длин волн. Для этого преобразуем формулу (8). Результат укажем в таблице 3.

$$\lambda = \frac{kd}{\sqrt{1+k^2}} \tag{9}$$

где k — коэффициент наклона соответствующих прямых.

Таблица 3. Значения k и λ для CD-диска

	k	λ , hm
Красный	$0,46 \pm 0,02$	665 ± 22
Зеленый	0.357 ± 0.002	538 ± 2

Проведем аналогичный эксперимент с использованием DVD-диска. Закрепим диск на подставке и снимем последовательность пар значений (l, l_1) для красного и зеленого лазеров; запишем данные в таблицу 4 и в таблицу 5. Зависимости отразим на рисунке 6.

Таблица 4. Значения измеренных l и l_1 для пары "DVD-зеленый"

l, cm	l_1 , cm	Δ , cm
17,0	18,3	0,5
20,5	22,6	0,7
24,5	26,8	0,7
27,3	30,6	0,9
30,5	34,2	1,2
34,5	38,0	1,2
38,2	41,7	1,6
41,0	43,9	2,0
44,4	47,8	2,2
47,8	52,3	2,2
51,2	56,9	2,4
54,7	62,0	2,5

Таблица 5. Значения измеренных l и l_1 для пары "DVD-красный"

l, cm	l_1 , cm	Δ , cm
13,5	24,1	0,7
17,3	29,8	0,9
21,0	37,0	1,2
24,5	42,9	1,2
28,0	51,0	1,8
31,3	57,0	2,2
34,5	63,4	2,7
37,8	72,0	3,2
41,1	79,3	3,2

Рис. 6. Графики зависимости расстояния между максимумами от расстояния между дифракционной решеткой и экраном для: (а) зеленого лазера; (b) красного лазера.

Полученные коэффициенты наклона используем для вычисления длин волн. Для этого воспользуемся формулой (9). Результат укажем в таблице 6.

Таблица 6

	k	$\lambda,_{ m HM}$
Красный	$1,90 \pm 0,05$	654 ± 4
Зеленый	$1,12 \pm 0,02$	551 ± 3

1.4 Промежуточный вывод

Подводя итоги, стоит отметить, что компакт-диски, в связи с их строением и информационной структурой, обладают оптическими свойствами отражательных дифракционных решеток и позволяют по известному "периоду"с хорошей точностью определить длину волны источника света, близкого к монохроматическому, коим в настоящей работе являются лазерные указки. Наши измерения показали достоверные результаты (таблица 7): почти все полученные длины волн располагаются в пределах, указанных в паспорте лазеров.

Таблица 7. Результаты вычисления длин волн

	Красный	Зеленый
$^{\mathrm{CD}}$	665 ± 22	538 ± 2
DVD	654 ± 4	551 ± 3
Паспорт	660 ± 10	532 ± 10

Для следующей части данного исследования возьмем значения с меньшими погрешностями.

2 Дифракция на круглом отверстии и на системе круглых отверстий

2.1 Теоретические сведения

Рассмотрим дифракцию на щели. На щель падает волна с длиной волны λ , ширина щели — D, угол между горизонтальной осью z и падающим лучем — θ . Запишем интеграл Френеля:

$$E(\theta) = \int_{-\infty}^{+\infty} E(x)e^{ikx\sin(\theta)}dx \tag{10}$$

Интегрируем от $\frac{-D}{2}$ до $\frac{D}{2}$:

$$E(\theta) = \int_{-D/2}^{D/2} E(x)e^{ikx\sin(\theta)}dx = DE_0 sinc\left(\frac{kD}{2}sin(\theta)\right)$$
(11)

Получаем выражение для интенсивности:

$$I(\theta) = I_0 sinc^2 \left(\frac{kD}{2} sin(\theta)\right)$$
(12)

Рис. 7. График зависимости $I(\theta)$

Найдем θ дифракционное (угол, допускающий минимум интенсивности), учитывая то, что θ очень мал $\Rightarrow \sin(\theta) \approx \theta$:

$$\frac{KD}{2}\theta = \pi \Rightarrow \theta = \frac{\lambda}{D} \tag{13}$$

В нашем случае проиходит дифракция на круглом отверстии, распределение будет описываться функцией Бесселя. В выражении для θ дифракционное появится множитель 1,22:

$$\theta = \frac{1,22\lambda}{D} \tag{14}$$

2.2 Проведение опыта: дифракция на круглом отверстии

На неизвестного диаметра круглое отверстие, проделанное в фольге, светим красным и зеленым лазерами. Наблюдаем дифракционные картины, указанные на рисунках 8 и 9:

Рис. 8. Эксперимент с зеленым лазером: (а) дифракционная картина; (b) отверстие.

Рис. 9. Эксперимент с красным лазером: (а) дифракционная картина; (b) отверстие.

Из формулы (14) получим выражение для вычисления диаметра отверстия D. А также с помощью миллиметровки измерим диаметры данных отверстий D'. Результаты сведем в таблице 8.

$$\theta = \frac{r}{L} \Rightarrow D = \frac{1,22\lambda L}{r}$$
 (15)

где L — расстояние от плоскости отверстия до плоскости экрана, r — радиус пятна.

Таблица 8. Результаты вычисления диаметров отверстий

	Зеленый	Красный
L, mm	$2070,00 \pm 0,05$	$1780,00 \pm 0,05$
r, MM	$4,75 \pm 0,05$	$6,00 \pm 0,05$
λ , HM	538 ± 2	654 ± 4
D, mm	$0,\!29\pm0,\!03$	$0,\!24\pm0,\!03$
D', MM	0,34	0,25

Это дифракция Фраунгофера, так как экран расположен дальше, чем z_d (дифракционное):

$$z_d=\frac{r^2}{\lambda}=\frac{D^2}{4\lambda}$$
 $z_d=3,9$ см; $L=207$ см — для эксперимента с зеленым лазером, $z_d=2,3$ см; $L=178$ см — для эксперимента с красным лазером, $L>>z_d$

2.3 Дифракция на системе круглых отверстий

Проведя этот же эксперимент, но не с одним отверстием, а с системой отверстий, мы получаем "рябь", так как происходит наложение волн от каждого отверстия:

Рис. 10. Эксперимент с красным лазером: (a) дифракционная картина; (b) система отверстий 3х3.

Рис. 11. Эксперимент с зеленым лазером: (a) дифракционная картина (1); (b) дифракционная картина (2); (c) система отверстий 1x2

Рис. 12. Эксперимент с зеленым лазером: (a) дифракционная картина (1); (b) дифракционная картина (2); (c) система отверстий 4x4

2.4 Промежуточный вывод

В ходе эксперимента "дифракция на круглом отверстии" нам удалось найти диаметры проделанных отверстий. Посчитав эти диаметр с помощью миллиметровки, мы убедились, что значения соответствуют тем, что были получены в рамках опыта.

Наблюдая за центральным максимумом дифракционной картины при перемещении экрана, мы убедились, что эксперимент проводится в зоне Фраунгофера; мы подтвердили это, посчитав дифракционную длину z_d .

3 Заключение

В рамках настоящей работы с качественно различных точек зрения было изучено явление дифракции. В первой части эмпирическим путем были установлены длины волн зеленого и красного лазеров с помощью изучения дифракции на CD-и DVD-дисках. При этом использовалась их физическая эквивалентность отражательным дифракционным решеткам. Результаты первой части сведены в таблицу 7. Целью второй части стояло определение диаметров проделанных в фольге отверстий. Исследование дифракции Фраунгофера на последних позволило проделать это

с хорошей точностью. Значения размеров отверстий были сравнены со значениями, вычисленными путем подсчета пикселей на фотографиях отверстий. Результаты второй части указаны в таблице 8.