2023 AICS

智能计算系统课程

Artificial Intelligence Computing Systems

实训手册

目录

01 实训简介

02 实训要求

03 实训内容

04 实训日程

05 考核标准

06 实训资料

07 实训彩蛋

整个软硬件技术栈的系统性课程。课程以 "全栈贯通,应用驱动"的理念为基准,以 一个图像风格迁移的驱动范例带动,重点围 绕智能计算系统的设计理论、方法、关键技术等展开讨论,从基本概念开始,由浅入深 帮助学生建立智能计算系统设计及应用的知识体系,培养智能时代急需的芯片设计、软件开发、算法研发等各个层次的人才。

过去3年多,《智能计算系统》在中国科学技术大学、北京大学、北京航空航天大学、天津大学、武汉大学等将近百所高校陆续开设,涉及人工智能学院、软件学院、计算机科学与技术学院、信息与电子学院等近多个相关专业,获得老师与学生的广泛欢迎。

此次与四川大学合作开展实训,课程基于 学生的学科基础与教学培养方案目标,灵活 调整实训方案,从而能够针对性地在实训周 期内提升学生的全栈系统思维,并能将所学 知识软硬贯通结合起来。

(一) **实训周期**:本次实训6月14日开展,持续1个月(21-22个工作日)。

(二) 实训要求:

- 学生需按规定学时学完理论课程及实验课程 并顺利通过考核,考核方式为实验+实验过 程管理+实训报告;
- 学生需每日完成考勤打卡,否则视为旷课, 旷课1次扣1分;
- 为保证实训效果,学生最好具备线性代数、 概率论与数理统计、计算机组成原理等相关 课程基础。

(三) 环境要求:

学生实验在云平台完成,只需要一台能够联网 且网络环境较好的电脑即可。

(四)分组形式:本次实训,学生的章节实验作业为个人单独完成并按照考核比例计分,最终答辩所需的实训报告需组队完成,以小组为单位汇报并计分,组员分数与小组分数相同。5人一组,可自由组队,实训期间由组长负责组员考勤监察及作业提交督促。

(五) 实训开展模式:

实训主要以线上模式开展,统一观看B站 MOOC课程,实验答疑在微信群中进行。老师会提前将章节实验布置在希冀评测平台上,实验在云平台完成,由希冀自动评测平台出分,按照参考考核比例汇总最终分数。

03 实训内容 - 教学大纲

章节	主要内容	配套实训实验
第一章:人工智能概述-A Driving Example	1.1 人工智能1.2 智能计算系统1.3 驱动范例	无
第四章: 编程框架使用	4.1 为什么需要编程框架 4.2 编程框架概述 4.3 TensorFlow编程模型及基本用 法 4.4 基于TensorFlow实现深度学习 预测 4.5 基于TensorFlow实现深度学习 训练	无深度学习基础的同学,可以通过MOOC视频自学第二、三章的内容。 (链接: https://www.bilibili.com/video/BV1d7411y7bh?spm_id_from=333.999.0.0)
第五章: 编程框架机理	5.1 TensorFlow的设计原则5.2 TensorFlow计算图机制5.3 TensorFlow系统实现5.4 编程框架对比	
第八章:智能编程语言	 8.1 为什么需要智能编程语言 8.2 智能计算系统抽象架构 8.3 智能编程模型 8.4 智能编程语言基础 8.5 智能应用编程接口 8.6 智能应用功能调试 8.7 智能应用性能调优 8.8 基于智能编程语言的系统开发 	智能编程语言实验 实验1: 智能编程语言算子开 发与集成实验 实验2: 智能编程语言性能优 化实验
综合实验	目标检测-YOLOv3 文本识别OCR-EAST 自然语言处理BERT*	

03 实训内容 - 实验说明

为了帮助学生更深入更全面地理解智能计算系统的整个软硬件栈,实验以风格迁移为例,基于智能处理器和智能编程语言方面的章节实验,以不同应用领域的综合实验将软硬件栈的知识点都贯穿起来。

- 1.智能编程语言实验:介绍如何与智能编程框架结合,以及如何转化为智能计算硬件可识别的指令的过程。该部分的第一个实验是,将第5章中实现的基于CPU的TensorFlow实例中的大量算子,替换为基于深度学习处理器加速的高性能库(CNML),并分析二者的性能差异;第二个实验是将第5章实现的CPU算子,采用智能编程语言来实现并集成到框架中,然后分析三种版本的性能差异。
- 2.综合实验:介绍目标检测、文本识别的人工智能应用如何在智能处理器上进行开发和优化。目标检测实验是基于YOLOv3网络模型来实现的,文本识别实验是基于 EAST 网络模型来实现的,实验都要借助 TensorFlow 框架及视频流处理框架在智能处理器上进行部署。
- 3.选做实验: 自然语言处理BERT实验,本实验为选做实验, 完成的同学最高可获得附加分(25%)。

》 04 实训日程

周次	时间	J	实训内容	上课地址	实验作业
	6.14 周三	下午	 开班仪式 讲座:人工智能行业与芯 片应用 	开班仪式在教室 (讲座在腾讯会议开展)	
	6.15	上午	第一章:人工智能概述	教室 (李威 中科院计算所)	
_	周四	下午	 实验评测系统讲解 实验云平台环境讲解 	MOOC讲解	
	6.16 周五	上午	第四章:编程框架使用	MOOC讲解	
		司五 下午 第五章:编程框架机理	第五章: 编程框架机理	WIGOCOT)	
	6.17	上午	第八章:智能编程语言8.1-8.5	MOOC讲解	
	周六	下午	第八章:智能编程语言8.6-8.9		
			实验1:智能编程语言算子开发与集成	MOOC讲解 实验在云平台完成	6.22提交 实验1评测
	6.25 周三、周 日(端午	全天实验	实验2:智能编程语言性能优化实验&实验答疑	MOOC讲解 实验在云平台完成	6.30提交 实验1评测

04 实 训 日 程

周次	时间	实训内容	在线上课地址	实验作业
	6.26-27 周一-二	实验3:智能编程语言算子开发实验&实验答疑	MOOC讲解 实验在云平台完成	6.30 提交实验 3评测
=	6.28 周三	中期答疑	中期答疑(微信群+腾讯会议)	
三	6.29-7.1 周四-六	实验4:目标检测-YOLOv3		7.5提交实验4 评测
四	7.3-7.8 周一-六	实验5:文本识别OCR-EAST 选做实验:自然语言处理- BERT	MOOC讲解 实验在云平台完成	7.11 提交实验 5评测和选做 实验评测
	7.10 周一	分组准备实训报告		
五	7.11 周二	期末答辩(腾讯会议)		

- 实训时间:每日上午9-12点,下午14-17点
- 如遇腾讯会议讲解,腾讯会议号与会议时间会在课程前2天在课程微信群中发出,学生须在规定时间进入会议室;
- MOOC课程由班级导师统一时间播放,学生需在规定时间进入教室听讲。

)5 考 核 标 准

实训以**100%实验项目**考核算分,学生需在规 定时间内在实验平台按要求提交各章节实验。

项目	实验内容	分数占比
实验1	智能编程语言算子开 发与集成	10%
实验2	智能变成语言性能优 化	10%
实验3	智能编程语言算子开 发实验	15%
实验4	目标检测-YOLOv3	25%
实验5	文本识别OCR-EAST	20%
实验6(选做)	自然语言处理-BERT	25%(附加分)
实验过程管理		10%
Ş	10%	

实训课程总分检验标准		
90~100(含90)	优秀	
80~89(含80)	良好	
60~79(含60)	及格	
59及以下	不及格	

05考核标准

(一) 实训报告要求:

学生在完成章节实验后,需分为5人一组,以组为单位准备PPT格式的实验报告,实训报告PPT需包含:

- 组员信息
- 实验代码实现思路(附运行结果截图)
- 遇到的问题以及解决方案
- 对实验/课程的优化建议
- 实训心得

(二) 实验过程管理要求:

学生需要在做实验的过程中在希冀Gitlab上完成实验项目记录:对每一章节的实验至少提问1次,并记录汇总问题及答案,共5个章节实验,每章节完成项目记录计2分,满分10分

- (三)期末答辩:以腾讯会议形式线上开展,小组轮流讲解各组实训报告PPT,任课教师根据综合情况打分,满分10分
- (四)实训文档:实训结束后,学生需按照学院 模板要求,以个人为单位提交word形式的实训文 档。

06

实训资料

1. 课程教材

实训建议教材为《智能计算系统》与《智能计算系统实验教程》,章节内容与全套课程大纲——对应,辅以章节习题测验,配套实验讲解,全面提升智能系统能力,感兴趣的同学可以扫描下方二维码购买。

2. 实训文件下载

网盘下载链接:

https://pan.baidu.com/s/1QZxM2mGCZLMfSWNleuY

TAg 提取码: 665j

文件夹包含:

- 智能计算系统1-8章课件PDF
- 实验云平台用户手册
- 章节实验手册
- 实验插件

06

实训资

料

3. 在线公开课

本次实训理论课程仅讲解人工智能概述、编程框架与智能编程语言部分。为了更好地消化掌握课程内容,建议 无深度学习基础的学生通过B站在线自学。

B站账号:智能计算系统AICS

时长:预计20学时

点击链接

https://space.bilibili.com/494117284

或扫描右侧二维码

4. 课程官方公众号

了解课程相关资讯与动态 扫描右侧二维码关注

5. 答疑论坛:

http://forum.cambricon.com/list-7-1.html

6. 荣誉证书:

对于顺利通过实训培训的学生,可以获得中科院计算所 盖章的结业证书/优秀学生证书以及寒武纪盖章的开发者 认证证书【证书制作周期约为2个月】

一实训彩蛋

1. 实验新尝试

为了提升学习热情,课程团队开发了一款与章节实验深度结合的教学游戏化手游——《太空开发者》,游戏搭载在微信小程序上,玩家需从0开始一步步建立繁荣自己的太空空间站,NPC雇佣、建筑解锁及升级、道具购买等均需要关键货币"科技点",科技点的获取对应各章节实验分数。

游戏中需解锁的关卡与课程全套实验章节——对应,学生可以在玩游戏的过程中亲身体会自己对知识的掌握程度;实验账号与游戏账号绑定,科技点的获取与实验成绩即时共联,实验做的越好,获得的科技点越多,游戏玩得越好。

*游戏供感兴趣的学有余力的同学体验,非强制,且不涉及考核评分。

微信扫码体验

彩

蛋

2. 学习新动力

本次实训过程中,欢迎同学在微信群及实训报告中积极 分享实验过程中遇到的新思考、新发现、对课程的建议 等,参与话题分享的同学,以及在最终期末答辩中实训 报告分数取得 TOP2 的优秀小组(含所有成员),能够 获得智能计算系统课题组准备的定制礼包作为奖励。

期待与大家共度 收获满满的实训学期

