CH 107 End Semester Examination

November 10, 2016 Time: 2.5 hours Full Marks: 24

<u>Answer all the parts of the same question **together**</u>. Answers should be brief and to the point. Use **only Pen** to write your answers (**including sketches**). Provide arguments to earn full credit.

 $h = 6.63 \times 10^{-34} \text{Js}; c = 3 \times 10^8 \text{ ms}^{-1}; m_e = 9.1 \times 10^{-31} \text{kg}; e = 6 \times 10^{-19} \text{C}; k_B = 1.31 \times 10^{-23} \text{ JK}^{-1}$

	Question 1	
(a)	What is orbital approximation?	1 mark
(b)	In the same graph (with same axes), qualitatively plot the <i>Radial Distribution Functions</i> for and orbitals of the same hydrogenic atom (identify each curve).	1 mark
(c)	Given the angular part of an orbital is , what are the values of \boldsymbol{l} and \boldsymbol{m}_{l} ?	1 mark
(d).	For which value of is the probability of finding an electron the greatest for the following orbital? Where N is a constant.	2 marks
(e)	Using the <i>negative</i> linear combination of two 1s orbitals of H-atom (normalization constant), evaluate (<i>derive</i>) the <i>average energy</i> of the <i>anti-bonding</i> molecular orbital in terms of the overlap (S), Coulomb (J) and Exchange (K) integrals, and the internuclear separation, R .	3 marks
Question 2		
(a)	Plot the overlap integral (S) as a function of internuclear distance (R) for <i>bonding</i> situation, between two $3d_{xz}$ atomic orbitals where the two atoms approach (i) along z -direction and (ii) along y -direction.	2 marks
(b)	For a homonuclear diatomic molecule, qualitatively sketch the contours of <i>bonding</i> molecular orbitals (MOs) generated by linear combinations of (i) $3p_x$ and $3p_x$ and (ii) $3p_y$ atomic orbitals (AOs). Consider the y -axis to be the internuclear axis in both cases. Show three contours lines and signs of MOs for full credit.	2 marks
(c)	(i) Write the expressions for the delocalized <i>bonding</i> MOs of as linear combinations of valence atomic orbitals of appropriate symmetry. <i>Do not invoke s-p mixing</i> . Consider z-axis to be internuclear axis.	2+1+0.5 0.5 =
	(ii) Assign gerade (g) and ungerade (u) symmetries to the MOs, if applicable.	4 marks
	(iii) How many spectral bands (or lines) do you expect to see in the <i>entire</i> photoelectron (PE) spectrum?	1 marks
	(iv) If there is more than one band in the <i>entire</i> PE spectrum, what will be the ratio of their intensities?	
	Question 3	
(a)	Carefully sketch the <i>contours</i> of the hybrid orbital: . For full credit, define axis, assign signs, show nuclear position and identify the node(s).	2 marks
(b)	The expressions for the wavefunctions for two rotational levels with quantum numbers and for a rigid rotor are and . Considering the electric field of microwave radiation to be along <i>z</i> -axis, evaluate the transition dipole moment integral for a spectroscopic transition involving these two wavefunctions and hence comment if is allowed or not. (<i>Hint:</i> Use only the <i>z</i> -component of the dipole moment).	3 marks
(c)	The equilibrium vibration frequency of a diatomic molecule is 500 cm ⁻¹ and the anharmonicity constant is 0.05. At 300 K, what is the relative intensity of the hot band ($v = 1$ to $v = 2$) transition compared to that of the fundamental ($v = 0$ to $v = 1$) transition? The energies of an anharmonic oscillator are cm ⁻¹ .	2 marks
(d)	The high-resolution infrared spectrum of HCl can provide information about bond strength and two other properties of the molecule. What are these two additional properties?	1 mark