МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ" ФІЗИКО-ТЕХНІЧНИЙ ІНСТИТУТ

Кафедра математичних методів захисту інформації

Дипломний проект

освітньо-кваліфікаційного рівня «бакалавр»

з напряму підготовки 6.040301 «Прикладна математика»
на тему: «Розробка автоматизованого тестуючого комплексу
що враховує психологічні особливості студентів»
Виконав: студент 4 курсу групи ФІ-13
Кригін Валерій Михайлович
Керівник: Доктор фізико-математичних наук, професор
Дороговцев Андрій Анатолійович
Рецензент Кандидат технічних наук, доцент
Головенкін Володимир Павлович

3MICT

1 Вст _.	уп	3
1.1 O	обтрунтування та актуальність роботи	3
1.2 M	Гета та завдання	3
2 Осн	овна частина	2
2.1 T	еоретичні відомості	2
2.1.1	Метод головних компонент	4
2.1.2	Гістограма	7
2.1.3	Критерій узгодженості Пірсона χ^2	8
2.1.4	Типи вищої нервової діяльності	14
2.1.5	Теппінг-тест	15
Переп	ік посилань	18

1 ВСТУП

1.1 Обгрунтування та актуальність роботи

Існуючі на даний момент системи тестування недостатньо гнучкі: вони аналізують лише відповіді на запитання, відносячи їх до вірних або невірних, а на цій базі роблять кінцевий висновок щодо знань студента. Стрімкий розвиток комп'ютерної техніки й інформаційних технологій надає можливість визначати ритм складання тесту, а також індивідуальні особливості людини. Дані психологічних досліджень допоможуть правильно трактувати отримані значення, а добре вивчені та перевірені часом математичні методи надають великі можливості для систематизації та обробки результатів вимірювання.

1.2 Мета та завдання

Завдання наступні:

- 1) Вивчити математичні методи та розділи психології, що дозволять розв'язати поставлену задачу, пояснити та обґрунтувати отримані результати
- 2) Ознайомитися з правилами побудови тестових завдань для найбільш ефективної та об'єктивної процедури оцінки знань студентів
- 3) Розробити програмний комплекс тестування й обробки результатів
- 4) Моделювання

За мету поставлено збільшення об'єктивності тестування, а також покращення якості навчання за допомогою порад студентам і викладачам практичних занять.

2 ОСНОВНА ЧАСТИНА

2.1 Теоретичні відомості

2.1.1 Метод головних компонент

Метод головних компонент (Principal component analysis) — метод, що дозволяє зменшити розмірність досліджуваної вибірки з мінімальними втратами інформації. [1]

Маємо m об'єктів, з яких треба зняти по n певних властивостей. На вході в нас є виборки \vec{X}_k , кожна з яких відповідає сукупності властивостей k-го об'єкту

$$\vec{X}_k = \begin{bmatrix} x_k^1 \\ x_k^2 \\ \vdots \\ x_k^n \end{bmatrix}, \qquad k = \overline{1,m}$$

Згрупуємо всі вимірювання в одну матрицю X

$$X = \begin{bmatrix} x_1^1 & x_2^1 & \dots & x_m^1 \\ x_1^2 & x_2^2 & \dots & x_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^n & x_2^n & \dots & x_m^n \end{bmatrix}$$

Спочатку нам знадобиться знайти вибіркові середні значення для кожної властивості

$$a_i = \frac{1}{m} \cdot \sum_{k=1}^{m} x_k^i, \qquad i = \overline{1,n}$$

Маємо вектор вибіркових середніх значень

$$\vec{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

Центруємо отримані дані, що містяться в матриці X, віднявши від кожного стовбця вектор вибіркових середніх \vec{a}

$$\tilde{X} = \begin{bmatrix} \tilde{x}_1^1 & \tilde{x}_2^1 & \dots & \tilde{x}_m^1 \\ \tilde{x}_1^2 & \tilde{x}_2^2 & \dots & \tilde{x}_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{x}_1^n & \tilde{x}_2^n & \dots & \tilde{x}_m^n \end{bmatrix} = \begin{bmatrix} x_1^1 - a_1 & x_2^1 - a_1 & \dots & x_m^1 - a_1 \\ x_1^2 - a_2 & x_2^2 - a_2 & \dots & x_m^2 - a_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^n - a_n & x_2^n - a_n & \dots & x_m^n - a_n \end{bmatrix}$$

Обчислюємо вибіркову коваріаційну матрицю властивостей. Вибіркову коваріацію i та j властивості рахуємо за формулою

$$\sigma_i^j = \frac{1}{m} \cdot \sum_{k=1}^m \tilde{x}_k^i \cdot \tilde{x}_k^j = \frac{1}{m} \cdot \sum_{k=1}^m \left[\left(x_k^i - a_i \right) \cdot \left(x_k^j - a_j \right) \right], \qquad i, j = \overline{1, n}$$

Маємо вибіркову коваріаційну матрицю

$$K = \begin{bmatrix} \sigma_1^1 & \sigma_2^1 & \dots & \sigma_n^1 \\ \sigma_1^2 & \sigma_2^2 & \dots & \sigma_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_1^n & \sigma_2^n & \dots & \sigma_n^n \end{bmatrix}$$

Щоб отримувати лише потрібну інформацію, ми хочемо знайти таке ортогональне лінійне перетворення L вхідної матриці \tilde{X} , щоб отримати матрицю

 $Y=L\cdot \tilde{X}$, яка має діагональну вибіркову ковариаційну матрицю K' з незростаючими зверху вниз значеннями. Діагональна вибіркова коваріаційна матриця гарантує той факт, що отримані значення Y будуть некорельованими. Рангування значень діагональних елементів матриці K' за величиною дасть більш наглядне представлення про будову досліджуваних об'єктів, адже діагональні елементи — вибіркові дисперсії; а чим більше дисперсія, тим більше відповідна властивість змінюється від об'єкту до об'єкту і тим більше корисної інформації вона нам надає.

Вибіркова коваріаційна матриця K' для $Y = L \cdot \tilde{X}$ має вигляд

$$K' = L \cdot K \cdot L^* = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

З лінійної алгебри відомо, що матриця L складається з координат власних векторів матриці K, а елементи λ_k — її власні числа, які існують і є невід'ємними через невід'ємну означеність матриці K. Вважаємо що числа $\lambda_1,\ldots,\lambda_n$ впорядковані від більшого до меншого для зручності подальших дій. Позначимо власний вектор матриці K, що відповідає власному числу λ_k , як \vec{l}_k . Тоді

$$\vec{l}_k = \left[l_k^1, l_k^2, \dots, l_k^n \right], \qquad k = \overline{1,n}$$

Матриця L має вигляд

$$L = \begin{bmatrix} l_1^1 & l_1^2 & \dots & l_1^n \\ l_2^1 & l_2^2 & \dots & l_2^n \\ \vdots & \vdots & \ddots & \vdots \\ l_n^1 & l_n^2 & \dots & l_n^n \end{bmatrix}$$

Треба зменшити розмірність простору досліджуваних параметрів системи з n до p < n, але при цьому втратити якомога менше відомостей про досліджувані об'єкти. Введемо міру інформації, що залишається при зменшенні кількості компонент, що розглядаються

$$I = \frac{\lambda_1 + \dots + \lambda_p}{\lambda_1 + \dots + \lambda_n}$$

Будемо вважати, що діємо продуктивно, тому починаємо обирати з перших компонент, адже саме вони є найбільш інформативними. Також бачимо, що інформативність змінюється в межах від 0 (нічого не дізнаємось) до 1 (зберегли усю інформацію).

Надалі буде розглядатися матриця головних компонент Y

$$Y = \begin{bmatrix} y_1^1 & y_2^1 & \dots & y_m^1 \\ y_1^2 & y_2^2 & \dots & y_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ y_1^p & y_2^p & \dots & y_m^p \end{bmatrix}$$

2.1.2 Гістограма

Для подальшого аналізу потрібно здобути щільність розподілу головних компонент. Оскільки маємо справу з вибіркою і вибірковими характеристиками, потрібно побудувати гістограму, адже це і є вибіркова характеристика, що відповідає щільності.

Побудуємо j-й стовбець гістограми для виборки з k-ї строки матриці Y

$$h_j^k = \frac{1}{m} \cdot \sum_{i=1}^m \mathbb{1}(y_i^k \in I_j^k), \qquad j = \overline{1, N}, \qquad k = \overline{1, p}$$

де I^k — набір напівінтервалів, що розбиває відрізок $\left[\min_{i=\overline{1,m}}y_i^k;\max_{i=\overline{1,m}}y_i^k\right]$ на N

рівних частин. Для вибору N можна скористатися досить відомою формулою Стьорджеса (Sturges' formula) [2]

$$N = |\log_2 m| + 1$$

Маємо матрицю гістограм

$$H = \begin{bmatrix} h_1^1 & h_2^1 & \dots & h_N^1 \\ h_1^2 & h_2^2 & \dots & h_N^2 \\ \vdots & \vdots & \ddots & \vdots \\ h_1^p & h_2^p & \dots & h_N^p \end{bmatrix}$$

і напівінтервалів, що відповідають кожному стовбчику кожної гістограми

$$I = \begin{bmatrix} I_1^1 & I_2^1 & \dots & I_N^1 \\ I_1^2 & I_2^2 & \dots & I_N^2 \\ \vdots & \vdots & \ddots & \vdots \\ I_1^p & I_2^p & \dots & I_N^p \end{bmatrix}$$

2.1.3 Критерій узгодженості Пірсона χ^2

Гістограма може використовуватися не тільки для графічної інтерпретації отриманих даних, але й для віднесення вибірки до якогось відомого розподілу. Відповідь на питання "Чи дійсно вибірка y_1^k, \ldots, y_m^k має розподіл F^k ?" може надати критерій узгодженості Пірсона.

Розглянемо вектор

$$\eta^k = \left[rac{
u_1^k - m \cdot
ho_1^k}{\sqrt{m \cdot
ho_1^k}}, \dots, rac{
u_N^k - m \cdot
ho_N^k}{\sqrt{m \cdot
ho_N^k}}
ight]$$

Знайдемо його характеристичну функцію

$$\varphi_{\eta^k}(\lambda) = M e^{i \cdot (\lambda, \eta^k)}, \quad \lambda \in \mathbb{R}^N$$

Для зручності перепозначимо індикатор

$$\mathfrak{I}_{i,j}^k = \mathbb{1}\big\{y_i^k \in I_j^k\big\}$$

Подивимось, чому дорівнює скалярний добуток в експоненті

$$\begin{split} \left(\lambda, \eta^k\right) &= \sum_{j=1}^N \lambda_j \cdot \frac{\nu_j^k - m \cdot \rho_j^k}{\sqrt{m \cdot \rho_j^k}} = \sum_{j=1}^N \frac{\lambda_j}{\sqrt{m \cdot \rho_j^k}} \cdot \sum_{i=1}^m \left(\mathfrak{I}_{i,j}^k - \rho_j^k\right) = \\ &= \sum_{j=1}^N \sum_{i=1}^m \frac{\lambda_j}{\sqrt{m \cdot \rho_j^k}} \cdot \left(\mathfrak{I}_{i,j}^k - \rho_j^k\right) = \sum_{i=1}^m \sum_{j=1}^N \lambda_j \cdot \frac{\mathfrak{I}_{i,j}^k - \rho_j^k}{\sqrt{m \cdot \rho_j^k}} \end{split}$$

Бачимо суму m незалежних однаково розподілених випадкових величин. Введемо позначення

$$\mathfrak{I}_{j}^{k} = \mathbb{1}\left\{y_{1}^{k} \in I_{j}^{k}\right\}$$

А також позначимо новий випадковий вектор

$$\zeta^k = \left[rac{\mathfrak{I}_1^k -
ho_1^k}{\sqrt{m \cdot
ho_1^k}}, \ldots rac{\mathfrak{I}_N^k -
ho_N^k}{\sqrt{m \cdot
ho_N^k}}
ight]$$

Тоді скалярний добуток прийме вигляд

$$(\lambda, \eta^k) = \sum_{i=1}^m \sum_{j=1}^N \lambda_j \cdot \zeta_j^k = \sum_{i=1}^m (\lambda, \zeta^k) = m \cdot (\lambda, \zeta^k)$$

За рахунок незалежності випадкових величин ζ_j^k маємо

$$\varphi_{\eta^k}(\lambda) = M e^{i \cdot (\lambda, \eta^k)} = M e^{m \cdot i \cdot (\lambda, \zeta^k)} = \left(M e^{i \cdot (\lambda, \zeta^k)} \right)^m$$
 (2.1)

Розглянемо характеристичну функцію випадкового вектора ζ^k

$$\varphi_{\zeta^k}(\lambda) = M \left[\exp \left\{ i \cdot \sum_{j=1}^N \lambda_j \cdot \zeta_j^k \right\} \right]$$
(2.2)

Легко побачити, що

$$(\lambda, \zeta^k) = \sum_{j=1}^N \lambda_j \cdot \zeta_j^k = \sum_{j=1}^N \lambda_j \cdot \frac{\mathfrak{I}_j^k - \rho_j^k}{\sqrt{m \cdot \rho_j^k}} = \sum_{j=1}^N \left(\frac{\lambda_j}{\sqrt{m \cdot \rho_j^k}} \cdot \mathfrak{I}_j^k - \frac{\sqrt{\rho_j^k} \cdot \lambda_j}{\sqrt{m}} \right) =$$

$$= \sum_{j=1}^N \mathfrak{I}_j^k \cdot \left(\frac{\lambda_j}{\sqrt{m \cdot \rho_j^k}} - \sum_{l=1}^N \frac{\sqrt{\rho_l^k} \cdot \lambda_l}{\sqrt{m}} \right)$$

Тобто характеристична функція (2.2) приймає вигляд

$$\varphi_{\zeta^{k}}(\lambda) = \mathbf{M}\left[\sum_{j=1}^{N} \mathfrak{I}_{j}^{k} \cdot \exp\left\{\frac{i}{\sqrt{m}} \left(\frac{\lambda_{j}}{\sqrt{\rho_{j}^{k}}} - \sum_{l=1}^{N} \sqrt{\rho_{l}^{k}} \cdot \lambda_{l}\right)\right\}\right]$$

Перепозначимо вираз в круглих дужках

$$\mathfrak{z}^k = rac{\lambda_j}{\sqrt{
ho_j^k}} - \sum_{l=1}^N \sqrt{
ho_l^k} \cdot \lambda_l$$

Математичне очікування індикатора — ймовірність події, яку він перевіряє. Отже

$$\varphi_{\zeta^{k}}(\lambda) = \sum_{j=1}^{N} \rho_{j}^{k} \cdot \exp\left\{\frac{i \cdot \mathfrak{z}^{k}}{\sqrt{m}}\right\}$$

Якщо розмір вибірки m буде зростати, то характеристична функція η^k (2.1) буде поводитись наступним чином

$$\lim_{m \to \infty} \varphi_{\eta^k} (\lambda) = \lim_{m \to \infty} \left(1 + \sum_{k=1}^N p_k \cdot \left[\exp\left\{ \frac{i \cdot \mathfrak{z}^k}{\sqrt{m}} \right\} - 1 \right] \cdot \frac{m}{m} \right)^m =$$

$$= \lim_{m \to \infty} \exp\left\{ m \cdot \sum_{k=1}^N p_k \cdot \left[\exp\left\{ \frac{i \cdot \mathfrak{z}^k}{\sqrt{m}} \right\} - 1 \right] \right\}$$

Для $\exp\left\{\frac{i\cdot \mathfrak{z}^k}{\sqrt{m}}\right\}$ використаємо співвідношення

$$e^{\alpha} - 1 \approx \alpha + \frac{\alpha^2}{2}, \qquad \alpha \ll 1$$

Маємо

$$\sum_{j=1}^{N} \rho_{j}^{k} \cdot \frac{i \cdot \mathfrak{z}^{k}}{\sqrt{m}} = \sum_{j=1}^{N} \rho_{j}^{k} \cdot \frac{i}{\sqrt{m}} \cdot \left(\frac{\lambda_{j}}{\sqrt{\rho_{j}^{k}}} - \sum_{l=1}^{N} \sqrt{\rho_{l}^{k}} \cdot \lambda_{l}\right) =$$

$$= \frac{i}{\sqrt{m}} \cdot \left(\sum_{j=1}^{N} \sqrt{\rho_{j}^{k}} \cdot \lambda_{j} - \sum_{l=1}^{N} \sqrt{\rho_{l}^{k}} \cdot \lambda_{l}\right) = 0,$$

$$\sum_{j=1}^{N} \rho_{j}^{k} \cdot \left(\frac{i \cdot \mathfrak{z}^{k}}{\sqrt{m}}\right)^{2} = -\sum_{j=1}^{N} \frac{\rho_{j}^{k}}{m} \cdot \left(\frac{\lambda_{j}}{\sqrt{\rho_{j}^{k}}} - \sum_{l=1}^{N} \sqrt{\rho_{l}^{k}} \cdot \lambda_{l}\right)^{2} =$$

$$= -\frac{1}{m} \cdot \left[\sum_{j=1}^{N} \lambda_{j} - \left(\sum_{l=1}^{N} \sqrt{\rho_{l}^{k}} \cdot \lambda_{l}\right)^{2}\right]$$

Тому

$$\lim_{m \to \infty} \varphi_{\eta^k} (\lambda) = \lim_{m \to \infty} \exp \left\{ -\frac{m}{m \cdot 2} \cdot \left[\sum_{j=1}^N \lambda_j - \left(\sum_{l=1}^N \sqrt{\rho_l^k} \cdot \lambda_l \right)^2 \right] \right\} = \exp \left\{ -\frac{1}{2} \cdot \left[\sum_{j=1}^N \lambda_j - \left(\sum_{l=1}^N \sqrt{\rho_l^k} \cdot \lambda_l \right)^2 \right] \right\} = e^{-\frac{1}{2} \cdot \left(A^k \lambda, \lambda \right)}$$

Матриця A^k побудована наступним чиином

$$A^{k} = \left\| \delta_{ij} - \sqrt{\rho_{i}^{k}} \cdot \sqrt{\rho_{j}^{k}} \right\|_{i=1}^{n}$$

Симетричність мариці очевидна, тому треба довести її невід'ємну визначеність, щоб стверджувати, що вона ϵ коваріаційною. Для цього візьмемо вектор

$$e^k = \left[\sqrt{\rho_1^k}, \dots, \sqrt{\rho_N^k}\right], \qquad \left\|e^k\right\| = 1$$

Тоді бачимо, що

$$(A^k \lambda, \lambda) = \|\lambda\|^2 - (\lambda, e^k)^2 \tag{2.3}$$

З нерівності Коші маємо

$$\|(\lambda, e^k)\| \le \|\lambda\| \cdot \|e^k\| = \|\lambda\|$$

Тобто матриця ϵ дійсно невід'ємно визначеною і вектор η^k розподілений за нормальним законом з нульовим середнім і коваріаційною матрицею A^k .

Для подальших розрахунків розглянемо стандартний гаусівський вектор як суму випадкових нормально розподілених випадкових величин в стандартному базисі \mathbb{R}^N , який позначимо $[e_1,\ldots,e_N]$

$$\xi = \sum_{j=1}^{N} \xi_j \cdot e_j \sim N\left(\vec{0}, I\right)$$

Згадуємо, що ортогональні перетворення U зберігають відстані, а також справедливо наступне

$$U\xi \sim N\left(0, UIU^{-1}\right) \sim N\left(\vec{0}, I\right)$$

Також ортонормований базис залишається ортонормованим базисом після ортогонального перетворення U. Оберемо такий оператор U, щоб набір $[e_1,\ldots,e_N]$ під його дією перетворився на $[f_1,\ldots,f_N]$, де

$$f_1 = e^k = \left[\sqrt{\rho_1^k}, \dots, \sqrt{\rho_N^k}\right]$$

Тоді маємо вектор

$$U\xi = \hat{\xi} = \sum_{j=1}^{N} \hat{\xi}_j \cdot f_j \sim N\left(\vec{0}, I\right)$$

Подивимось, який розподіл має наступний вектор

$$\Upsilon = \sum_{j=2}^{N} \hat{\xi}_j \cdot f_j = \hat{\xi} - \hat{\xi}_1 \cdot e^k$$

Для цього розглянемо квадратичну форму

$$M(\Upsilon, \lambda)^{2} = \sum_{j=2}^{N} (\lambda, f_{j})^{2} = \sum_{j=1}^{N} (\lambda, f_{j})^{2} - (\lambda, f_{1})^{2} = \|\lambda\|^{2} - (\lambda, e^{k})^{2} = (A^{k}\lambda, \lambda)$$

3 рівності (2.3) бачимо, що випадкові вектори η^k і Υ мають однаковий розподіл. Отже, розподіли їх норм теж співпадають. Оскільки сума N-1 квадратів незалежних стандартних гаусових випадкових величин має розподіл Пірсона з N-1

ступенями вільності

$$\|\Upsilon\|^2 = \sum_{j=2}^N \xi_j^2 \sim \chi_{N-1}^2$$

Маємо

$$\|\eta^k\| = \sum_{j=1}^N \frac{\left(\nu_j^k - m \cdot \rho_j^k\right)^2}{m \cdot \rho_j^k} = m \cdot \sum_{j=1}^N \frac{\left(h_j^k - \rho_j^k\right)^2}{\rho_j^k} \sim \chi_{N-1}^2$$

Останнє співвідношення дає змогу перевіряти належність виборки y_1^k,\dots,y_m^k до розподілу F^k . Перевірка виглядає наступним чином.

Розглянемо випадкову величину

$$R^{k} = m \cdot \sum_{j=1}^{N} \frac{\left(h_{j}^{k} - \rho_{j}^{k}\right)^{2}}{\rho_{j}^{k}}$$
 (2.4)

Обираємо рівень значущості α для функції розподілу χ^2_{N-1} і шукаємо відповідне до кількості ступенів вільності r_{α} . Рівень значущості — ймовірність помилки першого роду, тобто ймовірність того, що буде відкинуто вірну гіпотезу

$$\mathbb{P}\left(\chi_{N-1}^2 \ge r_\alpha\right) = \alpha$$

Якщо $R^k \leq r_{\alpha}$, то гіпотеза про те, що вибірка Y^k дійсно має розподіл F^k , приймається.

Розглянемо той випадок, коли ймовірність ρ_i^k відгадана невірно. Повернемося до формули (2.4)

$$R^{k} = \sum_{j=1}^{N} \frac{\left(\nu_{j}^{k} - m \cdot \rho_{j}^{k}\right)^{2}}{m \cdot \rho_{j}^{k}}$$

Всі члени суми є невід'ємними. Якщо хоча б один елемент буде завеликим, то великою буде вся сума. Маємо випадкову величину η

$$\eta = \nu_i^k - m \cdot \rho_i^k = \sum_{j=1}^m (\xi_j - \rho_i^k), \qquad \mathbb{1}(y_j^k \in I_i^k) = \xi_j$$

Якщо ρ_i^k вгадано невірно, то воно не дорівнює математичному очікуванню індикатора. Додамо та віднімемо справжнє математичне очікування

$$\eta = \sum_{j=1}^{m} (\xi_j - M \xi_1 + M \xi_1 - \rho_i^k) = \sum_{j=1}^{m} (\xi_j - M \xi_1) + \sum_{j=1}^{m} (M \xi_1 - \rho_i^k)$$

Останній доданок ϵ просто різницею, помноженою на m

$$\eta = \sum_{j=1}^{m} (\xi_j - M \xi_1) + m \cdot (M \xi_1 - \rho_i^k)$$

Поділимо на \sqrt{m} , щоб скористатися центральною граничною теоремою

$$\frac{\eta}{\sqrt{m}} = \frac{1}{\sqrt{m}} \cdot \sum_{j=1}^{m} (\xi_j - M \xi_1) + \frac{1}{\sqrt{m}} \cdot m \cdot (M \xi_1 - \rho_i^k)$$

Перший доданок має розподіл $N\left(0,\sigma^2\right)$, де σ^2 — дисперсія випадкової величини ξ_1 для достатньо великих m. Отже, вся сума зростає пропорційно \sqrt{m}

$$\frac{\eta}{\sqrt{m}} = \frac{1}{\sqrt{m}} \cdot \sum_{j=1}^{m} (\xi_j - M \xi_1) + \sqrt{m} \cdot (M \xi_1 - \rho_i^k) \sim \sqrt{m} \cdot (M \xi_1 - \rho_i^k)$$

Тобто зараз R^k буде зростати пропорційно до величини m, і буде великим у порівнянні з r_{α} , що призведе до відхилення невірної гіпотези.

2.1.4 Типи вищої нервової діяльності

Для визначення того, які показники вимірювати і яким чином, скористуємось відомою класифікацією типпів вищої нервової діяльності.

Почнемо з типів вищої нервової діяльності. Згідно з Павловим [3] ці типи характеризуються трьома показниками — сила нервової системи (сильна або слабка), врівноваженість (врівноважена або неврівноважена) та рухливість (рухлива або інетртна). Павлов розглядає 4 комбінації цих показників з 8 можливих:

1) Слабка

- 2) Сильна та неврівноважена
- 3) Сильна, врівноважена та інертна
- 4) Сильна, врівноважена та рухлива

Далі ці класи (комбінації) будуть називатися відповідно слабкий, неврівноважений, інертний та рухливий. Щоб віднести людину до того чи іншого класу, існує тест Айзенка. Складність полягає в тому, що не дуже часто зустрічаються чисті типи— зазвичай вони змішані.

2.1.5 Теппінг-тест

Існують відомі залежності між типом вищої нервової діяльності та зміною максимального темпу рухів кистю руки з часом. Протягом 30 секунд людина намагається притримуватися максимально можливого для себе темпу. Показники темпу фіксуються через кожні 5 секунд, а далі по 6 отриманим точкам будується крива темпа руху. [4]

Для тесту можна використовувати ручку (олівець) і папір, або телеграф. Сучасні технології дозволяють проводити тест за допомогою клавіатури комп'ютера або екрану планшета.

3 олівцем і папіром тест поводиться наступним чином:

- 1) На папері кресляться 6 квадратів
- Людина починає ставити якомога більше точок в першому квадраті впродовж перших 5 секунд
- 3) Коли проходить 5 секунд, потрібно перейти до наступного квадрату і ставити точки там
- 4) Процедура повторюється до тих пір, доки не пройде 30 секунд в кінці буде заповнено всі 6 квадратів

Далі підраховується кількість точок в кожному квадраті та малюється ламана — горизонтальна вісь відповідає номеру часового проміжку (номеру квадрата), а вертикальна відповідає кількості точок в квадраті.

Трактуються отримані дані наступним чином:

- 1) Спадна ламана відповідає слабкому типу (рис. 2.1г). Вона спадає після перших 5 секунд тесту і не повертається до початкового рівня
- 2) Проміжна між рівною та опуклою ламана відповідає неврівноваженому типу (рис. 2.1б). Така ламана зростає в перші 10.3 секунд, а потім спадає
- 3) Ввігнута ламана відповідає інертному типу (рис. 2.1д). Вона спочатку спадає, а на 25-30 секундах може зрости до початкового темпу
- 4) Опукла ламана відповідає рухливому типу (рис. 2.1а). Це така ламана, що зростає в перші 10.3 секунд тесту, а до 25-30 секунд може впасти нижче початкового темпу

Також темп може залишатися приблизно на одному рівні протягом усього тесту (рис. 2.1в).

Рисунок 2.1 — Загальний вигляд залежностей кількості поставлених точок від часу. Пунктирна лінія — початковий темп роботи в перші 5 секунд

ПЕРЕЛІК ПОСИЛАНЬ

- 1. *Айвазян, С.А.* Прикладная статистика: Классификация и снижение размерности : Справочное издание / С.А. Айвазян. No. т. 3. Финансы и статистика, 1989.
- 2. Sturges, Herbert A. The Choice of a Class Interval / Herbert A. Sturges // j-J-AM-STAT-ASSOC. 1926. March. Vol. 21, no. 153. Pp. 65–66.
- 3. *Павлов, И.П.* Двадцатилетний опыт объективного изучения высшей деятельности (поведения) животных / И.П. Павлов. Государственное издательство Москва-Петроград, 1923.
- 4. *Ильин, Е.П.* Дифференциальная психофизиология / Е.П. Ильин. Серия Учебник нового века. Питер, 2001.