Recommender Systems lecture 1: introduction

Alexey Grishanov

Moscow Institute of Physics and Technology

Spring 2025

Historical note

«What is recommender system?» evolution:

In a typical recommender system people provide recommendations as inputs, which the system then aggregates and directs to appropriate recipients. In some cases the primary transformation is in the aggregation; in others the system's value lies in its ability to make good matches between the recommenders and those seeking recommendations.

Resnick, P. and Varian, H. R.: 1997, 'Recommender Systems', Communications of the ACM

More formally, the recommendation problem can be formulated as follows: Let C be the set of all users and let S be the set of all possible items that can be recommended. Let u be a utility function that measures the usefulness of item s to user c, that s, u: C $s \Rightarrow R$, where R is a totally ordered set (for example, nonnegative integers or real numbers within a certain range). Then, for each user $c \in C$, we want to choose such item $s' \in S$ that maximizes the user's utility.

Adomavicius, G., and Tuzhilin, A. 2005. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering

Leaderboard

Display top 20 | leaders.

Rank	Team Name	Best Score	5 Improvement	Last Submit Tim
1	The Ensemble	0.8553	10.10	2009-07-26 18:38:2
2	BellKor's Pragmatic Chaos	0.8554	10.09	2009-07-26 18:18:2
Grand	Prize - RMSE <= 0.8563			
3	Grand Prize Team	0.8571	9.91	2009-07-24 13:07:4
4	Opera Solutions and Vandelay United	0.8573	9.89	2009-07-25 20:05:5
5	Vandelay Industries !	0.8579	9.83	2009-07-26 02:49:5
6	PragmaticTheory	0.8582	9.80	2009-07-12 15:09:5
7	BellKor in BigChaos	0.8590	9.71	2009-07-26 12:57:2
8	Dage_	0.8603	9.58	2009-07-24 17:18:4
9	Opera Solutions	0.8611	9.49	2009-07-26 18:02:0
10	BelKor	0.8612	9.48	2009-07-26 17:19:1
11	BigChaos	0.8613	9.47	2009-06-23 23:06:5
12	Feeds2	0.8613	9.47	2009-07-24 20:06:4
Progra	oss Prize 2008 - RMSE = 0.8616 - Wi		ellKor in BigChaos	
13	xiangliang	0.8633	9.26	2009-07-21 02:04:4
14	Gravity	0.8634	9.25	2009-07-26 15:58:3
15	Ces	0.8642	9.17	2009-07-25 17:42:3
16	Invisible Ideas	0.8644	9.14	2009-07-20 03:26:1
17	Just a guy in a gerage	0.8660	9.08	2009-07-22 14:10:4
18	Craig Carmichael	0.8656	9.02	2009-07-25 16:00:5
19	J Dennis Su	0.8658	9.00	2009-03-11 09:41:5
20	acmehil	0.8659	8.99	2009-04-16 06:29:3
	ass Prize 2007 - RMSE = 0.8712 - Wi	salas Tasas V		

One of the first RecSys competitions (02.10.2006 - 26.06.2009)

netflixprize.com/leaderboard

Motivation: business value

Amazon

- 35% of sales estimated to be generated from recommendation system
- billions of dollars in revenue generated through personalized product recommendations

Netflix

- 80% of content watched on Netflix is a result of recommendation
- "the combined effect of personalization and recommendations save us more than \$1B per year".

 $[^]a https://www.businessinsider.com/netflix-recommendation-engine-worth-1-billion-per-year-2016-6\\$

Motivation: users value

- Better discovery & diversity of recommendations: broaden users' perspectives, encourage them to try new things, and create a more inclusive and diverse experience.
- Increased user engagement: provide personalized and relevant experience for users to help users find what they're looking for and engage with the service.
- Better use of data: provide insights into user behavior which helps businesses make more informed decisions.

connect listeners and creators in a unique and enriching way

Example mission (Spotify), from: https://www.youtube.com/watch?v=Ysh0CXUbXsU

Recommender Systems taxonomy

image credit: https://thingsolver.com/introduction-to-recommender-systems

Problem statement

Given:

- $U = \{u_j|, j \in 1, \dots n_{users}\}$ set of users
- $I = \{i_j | , j \in 1, \dots n_{items} \}$ set of items.
- $R = \|r_{ui}\|$ relation matrix of shape $n_{users} \times n_{items}$,

Possible tasks:

Rating prediction

ullet Predict unknown r_{ui} — regression or (multi-class) classification

Top-k ranking

- Rank top-k recommendations for items item2item
- Rank top-k recommendations for users item2user (course focus)

Evaluation metrics (item2user)

nDCG

$$DCG@k(u) = \sum_{j=1}^{k} \frac{2^{ruj} - 1}{\log_2(j+1)}$$

$$IDCG@k(u) = \max(DCG@k(u))$$

$$nDCG@k(u) = \frac{DCG@k(u)}{IDCG@k(u)}$$

$$nDCG@k = \sum_{u=1}^{n_{users}} nDCG@k(u)$$

$$n_{users}$$

Mean Average Precision

$$p@m(u) = \frac{\sum_{j=1}^{m} [r_{uj} > 0]}{m}$$

$$ap@k(u) = \frac{\sum_{j=1}^{k} [r_{uj} > 0] p@j(u)}{\min(k, |r_{u}|)}$$

$$MAP@k = \frac{\sum_{u=1}^{n_{users}} ap@k(u)}{n_{users}}$$

etc.

image credit:

Overall evaluation

Evaluation framework example

Literature

- 1 Charu C. Aggarwal. (2016). Recommender Systems: The Textbook.
- **9** F. Ricci, L. Rokach, B. Shapira. (2011). Recommender Systems Handbook.
- Adomavicius, G., Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749.
- Eva Zangerle, Christine Bauer (2022). Evaluating Recommender Systems: Survey and Framework. ACM Computing Surveys, Volume 55, Issue 8, Article No.: 170, pp 1–38