

Universidade do Minho Escola de Engenharia

Relatório Trabalho Prático

João Paulo Machado Abreu (a91755)

Ricardo Cardoso Sousa (a96141)

Rui Pedro Guise da Silva (a97133)

Índice

Intr	odução	1
Arqı	uitetura de classes	1
Esta	atísticas sobre o programa	3
1.	Qual a casa que gastou mais energia/ preço naquele período	3
2	. Qual o fornecedor com maior volume de faturação	3
3	Listar as faturas emitidas por um comercializador	3
4	. Ordenação de consumidores de energia num períodoperíodo	3
Auto	omatização da simulação	3
Inte	rface gráfica da aplicação	6
	Início da aplicação	
2	. Menu inicial	6
	2.1 Save state	7
	2.2 House Menu	7
	2.3) Provider Menu	14
	2.4) Avançar tempo	15
	2.5) Avançar para uma determinada data	16
	2.6) Casa que gastou mais dinheiro	16
	2.7) Casa que gastou mais energia	16
	2.8) Fornecedor de energia que mais faturou	17
	2.9) Faturas de um fornecedor de energia	17
	2.10) Maiores consumidores num período	18
	2.11) Simular comandos de um ficheiro	18
Րոո	clusão	19

Introdução

Este projeto foi desenvolvido no âmbito da Unidade Curricular Programação Orientada aos Objetos, tendo como objetivo, tal como refere o enunciado "que monitorize e registe a informação sobre o consumo energético das habitações de uma comunidade".

Arquitetura de classes

No que respeita à arquitetura de classes do nosso programa, em primeiro lugar, definimos uma classe abstrata "SmartDevice", que contêm um id e um booleano que indica se o SmartDevice está ligado ou não. De seguida, criamos três classes a partir desta superclasse: "SmartBulb", "SmartCamera" e "SmartSpeaker", sendo que cada uma representa e contêm informação sobre os dispositivos inteligentes indicados no enunciado. A classe "SmartBulb" é constituída por três atributos: "tone", do tipo Enum Tone, que representa a tonalidade de cada lâmpada (Warm, Cold ou Neutral), "dimension", correspondente ao tamanho da lâmpada e "fixedDailyIntake", correspondente ao consumo mínimo fixo de uma lâmpada quando está ligada. O consumo diário destas lâmpadas inteligentes, SmartBulb, é influenciado, pela sua tonalidade e pelo seu consumo mínimo fixe ("tone" e "fixedDailyIntake, respetivamente). A classe "SmartCamera" apresenta também três atributos: resolução horizontal ("resolution height"), resolução vertical ("resolution width") e o tamanho do ficheiro guardado pela câmara ("saveFileSize"), O consumo diário destas câmaras é influenciado pelos três atributos da classe em questão e, também, pela ordem de grandeza do tamanho do ficheiro guardado. Ainda, a classe "SmartSpeaker" também três atributos que guardam as seguintes informações: volume e estação rádio em que a coluna está a tocar ("volume" e "radio", respetivamente), e marca da coluna ("brand"). O consumo diário destas colunas é apenas influenciado pelo volume no qual estão a funcionar.

A estratégia de herança utilizada para os SmartDevices foi também seguida para os fornecedores de energia. Assim sendo, começamos por definir uma classe abstrata "EnergyProvider", que contêm informação sobre o valor base do custo diário do kWh de energia ("baseValue"), fator multiplicativo dos impostos ("tax") e, ainda, o volume de faturação do fornecedor de energia em questão ("factoringVolume"), inicializado a O e que será aumentado após o final de cada período de faturação. A partir desta classe, criamos cinco fornecedores de energia e, portanto, 5 classes que herdam a classe "EnergyProvider": "EDP", "Galp", "Iberdrola", "Endesa" e "MEDEnergia". Cada fornecedor de energia possui a sua forma de calcular o preço diário do kWh, indicado pelo método "dailyPricePerKw".

A classe "House" tem 6 atributos. Um inteiro que corresponde ao id da casa, duas Strings correspondentes ao nome do dono da casa e ao seu NIF. Para representar os dispositivos que a casa tem, criamos um mapa cuja chave é um inteiro (id do dispositivo) e o valor é um SmartDevice. Como no enunciado era sugerido que se dividisse a casa por divisões e se guardasse informação sobre quais os dispositivos nelas contidas, criamos outro mapa cuja chave é o nome da divisão e o valor é um set de inteiros (correspondentes aos ids dos dispositivos contidos nessa mesma divisão), por causa da sua multiplicidade poder ser maior que 1 e de não poder haver repetidos. Devido ao facto de todas as casas serem obrigadas a ter um contrato com um fornecedor de energia, o sexto atributo é, portanto, um fornecedor de energia.

A classe "Bill" tem também 6 atributos. Um inteiro correspondente ao id da casa que emitiu a fatura. Duas datas, correspondentes à data inicial e a data final (onde a fatura foi emitida). Tem dois doubles, "intake" e "price", correspondentes à quantidade de energia gasta naquele período e ao custo dessa energia, respetivamente. Guardamos, também, informação sobre qual era o fornecedor da casa na altura em que emitiu a fatura.

A classe "BillManager" é, como o próprio nome indica, um gestor de faturas. É utilizado para guardar as faturas que uma certa casa emitiu. Para satisfazer esse propósito, adicionamos, como atributo dessa classe, um mapa, cuja chave é um id de uma casa e o valor é uma lista de faturas emitidas por essa mesma casa.

A classe "Simulation" é a classe "fachada" do nosso programa, ou seja, é aquela com que o utilizador interage. Tem 6 atributos. Duas datas, correspondentes à data da última "paragem" na simulação e a data atual da simulação, sendo estas atualizadas sempre que o utilizador avança para uma nova data. Contém três mapas. Um chamado "houses", cuja chave é o valor do id da casa (Integer) e o valor é uma casa. Dutro chamado providers, cuja chave é uma string que representa o nome do Provider e o valor é um objeto da classe "Energy Provider". E um último chamado "lastPeriodBills" que, tal como o nome indica, tem nele guardadas todas as faturas emitidas no último período de faturação. Tem como chave um inteiro que corresponde ao id da casa que emitiu a fatura e o valor é um objeto da classe "Bill". A última variável de instância tem como nome "globalBills", é um objeto da classe "BillManager" e tem informação sobre todas as faturas emitidas desde o início da simulação. O objetivo de ter duas estruturas de dados que representam dados repetidos ("lastPeriodBills", "globalBills") é permitir ao utilizador ser mais rápido quando pretender obter informações sobre o último período de faturação, não precisando de percorrer a estrutura que guarda todas as faturas emitidas.

Na classe "Simulation" utilizamos uma estratégia de composição, sendo que nas restantes foi utilizada uma estratégia de agregação, devido ao facto de o utilizador apenas interagir com um objeto da classe "Simulation".

Estatísticas sobre o programa

1. Qual a casa que gastou mais energia/ preço naquele período

Uma vez que temos um mapa que guarda todas as faturas emitidas no último período, apenas temos de percorrer os seus valores para saber qual a casa que mais gastou. Para isso, utilizamos um Comparator organizado conforme o atributo que queremos comparar (preço / gasto), inicializamos um TreeSet com esse Comparator, adicionamos todas as faturas ao TreeSet, e devolvemos o último elemento, que corresponde ao maior.

2. Qual o fornecedor com maior volume de faturação

Como utilizamos nos fornecedores uma estratégia de agregação e temos neles contidos um atributo que corresponde ao seu volume de faturação, temos de percorrer os valores do mapa de fornecedores e fazer algo semelhante ao que fizemos na estatística anterior, com um Comparator e um TreeSet.

3. Listar as faturas emitidas por um comercializador

Para efetuar esta estatística, percorremos a estrutura de dados que tem todas as faturas emitidas desde o início do programa, e adicionamos a um ArrayList todas as faturas cujo fornecedor é o pedido.

4. Ordenação de consumidores de energia num período

De uma forma simples, para realizar esta estatística, na estrutura "globalBills", para cada casa faz-se um cáculo de quanto é que ela gastou no intervalo de tempo dado. De seguida, adicionamos as casas a um ArrayList e chamamos o método sort, baseado num Comparator, que ordena as casas conforme o que elas gastaram naquele período, de ordem decrescente.

Automatização da simulação

De modo a permitir automatizar uma simulação, foi implementada uma funcionalidade que permite a realização de ações através de comandos escritos num ficheiro de texto.

Todos os comandos aceites e reconhecidos pelo nosso programa devem apresentar os seus parâmetros separados por vírgulas e não são *case-sensitive*, isto é, tanto podem ser escritos

com maiúsculas ou minúsculas. Para além disso, todos os comandos existentes possuem a mesma estrutura para os seus dois primeiros parâmetros: deverão indicar, em primeiro lugar, a data na qual deverá ser executada a ação pretendida, no formato AAAA-MM-DD, e em segundo lugar deverão indicar qual a ação a executar. Os restantes parâmetros variam conforme o comando em questão. Nas tabelas abaixo são apresentados exemplos de utilização de cada comando existente e explicado o seu funcionamento. De notar que cada coluna das tabelas corresponde a um parâmetro do comando em questão e que estes parâmetros se encontram todos separados por vírgula e pela mesma ordem das tabelas abaixo no ficheiro de texto lido pelo nosso programa para automatizar a simulação. A coluna "Ação" das tabelas contêm o nome de cada comando.

 new House – Comando que permite a criação de uma nova casa. Apresenta a seguinte estrutura:

Data	Ação	Fornecedor de Energia	Dono da casa	NIF do dono
2022-06-18	new House	Endesa	Pedro Salvador	153895

new Division - Comando que permite a criação de uma nova divisão numa determinada casa.
 Apresenta a seguinte estrutura:

Data	Ação	ID da casa	Nova divisão
2022-06-20	new Division	201	Cave

new SmartBulb - Comando que permite a criação de um novo dispositivo SmartBulb.
 Apresenta a seguinte estrutura:

Data	Ação	ID da casa	Divisão da casa	Estado (On/Off)	Tonalidade	Dimensão	Consumo fixo
2022-06-22	new SmartBulb	201	Cave	On	Warm	8.5	2.34

new SmartCamera - Comando que permite a criação de um novo dispositivo SmartCamera.
 Apresenta a seguinte estrutura:

Data	Ação	ID da	Divisão	Estado	Resolução	Resolução	Tamanho
		casa	da casa	(On/Off)	horizontal	vertical	do ficheiro
2022-06-24	new SmartCamera	201	Cave	Off	3440	1440	32.76

new SmartSpeaker - Comando que permite a criação de um novo dispositivo SmartSpeaker.
 Apresenta a seguinte estrutura:

Data	Ação	ID da	Divisão da casa	Estado (On/Off)	Volume	Rádio	Marca
2022-06-26	new SmartSpeaker	201	Cave	On	77	TSF	JBL

 change Device – Comando que permite alterar um determinado valor de um dispositivo (SmartDevice) já existente. Apresenta a seguinte estrutura:

Data	Ação	ID da casa	ID do dispositivo	Valor a alterar	Novo valor
			•	On/Off	On
				Tone	Warm
	change Device	201		Dimension	12.5
			6556	Daily Intake	7.4
2022-06-28				Resolution Width	1920
2022-00-20				Resolution Height	1080
				File Size	21.6
				Volume	88
				Radio	TSF
				Brand	Bose

 change Energy Provider - Comando que permite alterar o fornecedor de energia de uma casa já existente. Apresenta a seguinte estrutura:

Data	Ação	ID da casa	Novo fornecedor de energia
2022-06-30	change Energy Provider	201	Galp Energia

 change Base Value - Comando que permite alterar o valor base do custo diário do kWh de energia de um determinado fornecedor. Apresenta a seguinte estrutura:

Data	Ação	Fornecedor	Novo valor base
2022-07-02	change Base Value	Iberdrola	0.17

 change Tax - Comando que permite alterar o valor fator multiplicativo dos impostos de um determinado fornecedor. Apresenta a seguinte estrutura:

Data	Ação	Fornecedor	Novo valor base
2022-07-04	change Tax	EDP Comercial	0.59

• Turn Devices On/Off – Comando que permite ligar ou desligar todos os dispositivos de uma determinada divisão de uma casa. Apresenta a seguinte estrutura:

Data	Ação	ID da casa	Divisão	Estado (On/Off)
2022-07-06	Turn Devices On/Off	EDP Comercial	Sala	Off

Interface gráfica da aplicação

1. Início da aplicação

Quando inicializamos a aplicação oferecemos ao utilizador a possibilidade de escolher se pretende carregar dados de um ficheiro já existente ou criar uma nova simulação de raiz.

Caso pretenda carregar um ficheiro basta apenas referir o nome do ficheiro a utilizar:

```
Load file (Y/N):

Y

File name:

Sim
```

Caso contrário é pedida a data em que a simulação deverá ser iniciar:

```
Load file (Y/N):

N
Insert date(yyyy-mm-dd):
2022-05-10
```

2. Menu inicial

Uma vez inicializada a aplicação somos redirecionados para um menu inicial no qual nos é apresentada a data atual da simulação e 11 funcionalidades.

```
------Main Menu------ 2022-05-10

1 - Save state

2 - House Menu

3 - Provider Menu

4 - Advance n days

5 - Advance to date

6 - House that spent the most

7 - House that consume the most

8 - Provider with the biggest bill

9 - Bills issued by provider

10 - Order the biggest consumer in a period

11 - Simulation commands from file

0 - Exit

Option:
```

2.1 Save state

A opção número 1 permite guardar o estado atual da simulação sendo pedido apenas o ficheiro onde queremos guardar o estado.

```
Option:

1
File name:
Sim
```

2.2 House Menu

Na opção número 2 somos redirecionados para um novo menu, sendo este um menu especializado para as casas:

```
Option:

2
-----House Menu-----

1 - Add house

2 - View/Edit house

3 - View all houses

0 - Return to main menu

Option:
```

1 - A primeira opção permite adicionar uma casa à simulação, onde é pedido o fornecedor da casa, o nome do dono e o seu NIF:

2 - Selecionando 2, são apresentadas todas as casas existentes na simulação de modo que o utilizador possa escolher qual das casas pretende visualizar/adicionar divisões/dispositivos da casa.

Uma vez escolhida a casa serão apresentadas 6 opções, sendo elas:

```
------View/Edit House------

1 - View house

2 - Add division

3 - Add device

4 - Modify device

5 - Turn all devices in a room on or off

6 - Change energy provider

0 - Return to house menu

Option:
```

• Visualizar as divisões e os seu dispositivos da casa:

• Adicionar uma divisão, sendo pedido o nome da divisão a acrescentar:

• Adicionar dispositivos, na qual podemos escolher entre 3 dispositivos:

```
------Device to add------

1 - SmartCamera

2 - SmartBulb

3 - SmartSpeaker

0 - Return
```

> SmartCamera:

```
Option:

1

----On or Off -----

1 - On

2 - Off

Option:

1

Resolution height:

120

Resolution width:

120

File size:

64

Division:

Sala
```

pretende adicionar a câmara ligada ou desligada, a resolução desta bem como o tamanho dos ficheiros gerados.

O utilizador deve introduzir se

Por fim deve decidir em que divisão pretende adicionar este dispositivo.

> SmartBulb:

```
Option:

Chose the tone:

1 - Warm

2 - Neutral

3 - Cold

Option:

1

----On or Off ----

1 - On

2 - Off

Option:

Dimension:

Dimension:

Solo
```

O utilizador deve escolher o tom da lâmpada que vai adicionar bem como se pretende que esta esteja ligada ou desligada.

É pedida ainda a dimensão da lâmpada e o seu consumo diário fixo.

Por fim deve decidir em que divisão pretende adicionar este dispositivo.

> SmartSpeaker:

```
-------Device to add-------

1 - SmartCamera

2 - SmartBulb

3 - SmartSpeaker

0 - Return

Option:

3
-----On or Off ------

1 - On

2 - Off

Option:

2

Volume:

30

Radio:

RR

Brand:

JBL

Division:

Quarto
```

O utilizador deve escolher se pretende ter a coluna ligada ou desligada, o seu volume, a radio e a marca.

Por fim deve decidir em que divisão pretende adicionar este dispositivo.

Modificar as características dos dispositivos, na qual é pedido o ID do dispositivo:

```
Option:
4
Device ID:
3
```

Consoante o dispositivo a que se refere o ID somos remetidos para diferentes menus:

> SmartCamera:

```
-----SmartCamera modification-----

1 - Change resolution height

2 - Change resolution width

3 - Change file size

4 - Turn on or off the device

0 - Return

Option:
```

> SmartBulb:

```
------SmartBulb modification------

1 - Change tone

2 - Change dimension

3 - Change fixed daily intake

4 - Turn on or off the device

0 - Return

Option:
```

> SmartSpeaker:

```
------SmartCamera modification------

1 - Change resolution height

2 - Change resolution width

3 - Change file size

4 - Turn on or off the device

0 - Return

Option:
```

• Ligar ou desligar todos os dispositivos de uma divisão

```
Option:
5
Division:
Sala
----On or Off -----
1 - On
2 - Off
Option:
2
```

Antes:

```
Division: Sala

Id: 1 On: true
Daily Intake: 0.64 kWh
Resolution: (120x120)
File size: 64.0

Id: 2 On: true
Daily Intake: 3.5 kWh
Tone: Warm Dimension: 25.0
```

Depois:

```
Td: 1 On: false
Daily Intake: 0.64 kWh
Resolution: (120x120)
File size: 64.0

Id: 2 On: false
Daily Intake: 3.5 kWh
Tone: Warm Dimension: 25.0
```

• Mudar o fornecedor da casa:

Antes:

```
TD: 1

Owner: Utilizador

Provider: Galp Energia
```

3 - Visualizar todas as casas:

0 - Retornar ao menu inicial

Depois:

```
-----All Houses-----
ID: 1
Owner: Utilizador
Provider: MEO Energia
```

2.3) Provider Menu

Selecionando a opção número 3 do menu inicial somos dirigido para um novo menu, sendo este um menu especializado para os fornecedores de energia:

• Através da opção 3 somos podemos consultar todos os fornecedores de energia bem como as suas taxas e valores bases do custo diário do kWh:

```
MEO Energia
Base Value: 0.1
Tax: 0.64

Galp Energia
Base Value: 0.1
Tax: 0.64

Endesa
Base Value: 0.1
Tax: 0.64

EDP Comercial
Base Value: 0.1
Tax: 0.64

Iberdrola
Base Value: 0.1
Tax: 0.64
```

 Através das opções 1 e 2 podemos alterar a taxa e o valor base, respetivamente, de um determinado fornecedor de energia:

Opção 1:

Antes:

MEO Energia Base Value: 0.1 Tax: 0.64

Opção 2:

Depois:

MEO Energia Base Value: 1.0 Tax: 2.0

2.4) Avançar tempo

Nesta opção o utilizador pode escolher quantos dias pretende que se avançar aa simulação.

A data é atualizada e pode ser verificada no menu inicial.

2.5) Avançar para uma determinada data

O utilizador pode avançar a simulação para uma data à sua escolha.

Tal como na opção 4 a data é atualizada e pode ser verificada no menu inicial.

2.6) Casa que gastou mais dinheiro

Nesta opção o utilizador é informado sobre a casa que pagou mais na fatura de energia correspondente ao último salto temporal.

```
Option:

House that spent the most: 1 (ID)
House owner: Utilizador
Owner NIF: 1234567890
Energy provider: MEO Energia
Money spent: 22.36 €

Press enter to continue...
```

2.7) Casa que gastou mais energia

Nesta opção o utilizador é informado a casa consumo no último salto temporal.

```
Option:

7

House that consume the most: 1 (ID)
House owner: Utilizador
Owner NIF: 1234567890
Energy provider: MEO Energia
Energy spent: 16.56 kWh

Press enter to continue...
```

2.8) Fornecedor de energia que mais faturou

Nesta opção o utilizador é informado sobre o fornecedor de energia que faturou mais.

```
Option:

8

The provider with biggest volume is: MEO Energia
```

2.9) Faturas de um fornecedor de energia

O utilizador pode escolher um fornecedor de energia para o qual deseja visualizar todas as faturas já emitidas por este.

```
Option:
Chose the provider:
1 - EDP Comercial
2 - Galp Energia
3 - Iberdrola
5 - MEO Energia
Option:
Initial Date: 2022-05-10 Final Date: 2022-05-14
House ID: 1 Provider: MEO Energia
Intake: 0.0 kWh Total Price: 0.0 €
Initial Date: 2022-05-14 Final Date: 2022-05-19
House ID: 1 Provider: MEO Energia
Intake: 0.0 kWh Total Price: 0.0 €
Initial Date: 2022-05-19
                        Final Date: 2022-05-23
House ID: 1
             Provider: MEO Energia
```

2.10) Maiores consumidores num período

O utilizador deve selecionar duas datas, uma inicial e uma final, na qual deseja saber ordenadamente os maiores consumidores desse período.

2.11) Simular comandos de um ficheiro

Carregar ficheiro de comandos que ira alterar a simulação.

```
Option:
11
File name:
command.txt
```

O ficheiro command.txt, neste exemplo, apresenta uma única linha com o comando "2022-06-10, new House, Endesa, Teste0003, 1234", que produz o seguinte efeito na simulação:

```
ID: 1

Owner: Utilizador

Provider: Galp Energia

ID: 2

Owner: Teste0003

Provider: Endesa
```

Conclusão

Em suma, de um modo geral tentamos desenvolver a nossa aplicação de modo a cumprir todos os requisitos pedidos no enunciado deste trabalho prático, implementando várias funcionalidades, desde as mais básicas, como criar casas e dispositivos, até algumas mais avançadas como o cálculo de estatísticas sobre o programa e a leitura automática de comandos a partir de ficheiros. Para além disso, tentamos respeitar as boas práticas do paradigma de Programação Orientada aos Objetos lecionadas ao longo do semestre no desenvolvimento desta aplicação.