By omitting pairs (j,k) of $I \times I$ satisfying $j+k=\ell$, Lemma 3.4 gives that

$$N - \varphi(\ell)(q+1) = \sum_{\substack{d | \ell \\ (t, \frac{\ell}{d}) = 1}} \sum_{\substack{1 \le t \le \frac{\ell}{d}, \ (j,k) \in S'(d,t)}} \chi(-1)^{j+k} J(\chi^j, \chi^k) c_{\ell}(2j+k).$$

For $(j,k) \in S'(d,t)$, one has $(2j+k,\ell) = d$ and then $c_{\ell}(2j+k) = c_{\ell}(d)$ by Corollary 3.3. Thus,

$$N - \varphi(\ell)(q+1) = \sum_{d|\ell} c_{\ell}(d)f(d)$$

where

$$f(d) = \sum_{\substack{1 \le t \le \frac{\ell}{d}, \ (j,k) \in S'(d,t) \\ (t,\frac{\ell}{d})=1}} \sum_{\substack{1 \le t \le \frac{\ell}{d}, \ (j,k) \in S'(d,t)}} \chi(-1)^{j+k} J(\chi^j,\chi^k).$$

We need to estimate |f(d)|.

By definition, every pair (j,k) of S'(d,t) satisfies $j+k \not\equiv 0 \pmod{\ell}$ and thus $|J(\chi^j,\chi^k)| = \sqrt{q}$ by (v) of Lemma 2.2. Since $|\chi(-1)| = 1$, it follows that

$$|f(d)| \le \sum_{\substack{1 \le t \le \frac{\ell}{d}, \\ (t, \frac{\ell}{d}) = 1}} |S'(d, t)| \sqrt{q}.$$

Now, we compute |S'(d,t)|. Observe that every pair (j,k) in S'(d,t) is determined by $j \in I$ with the proviso that $j+k \neq \ell$. Thus, for $(j,k) \in I \times I$ satisfying the congruence $2j+k \equiv td \pmod{\ell}$ we have to exclude the pair (j,k) with $j \equiv td \pmod{\ell}$. Note that $td \leq \ell$ while $j \leq \ell-1$, this congruence can occur only when $d \not\subseteq \ell$ and j = td. Moreover, as $k \neq 0$, we also need to exclude the case where $2j \equiv td \pmod{\ell}$. This depends on the parity of ℓ . We discuss in the next paragraph to steer clear of confusing.

Suppose that ℓ is odd. Let $s \in I$ be such that $2s \equiv 1 \pmod{\ell}$. Then, we need to exclude $j \in I$ such that $j \equiv std \pmod{\ell}$. If $d = \ell$, then there is no such j because $j \not\equiv 0 \pmod{\ell}$. When $d \not\subseteq \ell$, there is exactly one $j_0 \in I$ satisfying $j_0 \equiv std \pmod{\ell}$. Remember that we also have to exclude the case where j = td. As a consequence, if ℓ is odd, then

$$|S'(d,t)| =$$

$$\begin{cases} |I| & \text{if } d = \ell; \\ |I| - 2 & \text{if } d \neq \ell. \end{cases}$$

Now we assume that ℓ is even. There are three cases to consider: (i) td is odd, (ii) td is even and $d \nleq \ell$ and (iii) $t = 1, d = \ell$. For case (i), since td is odd, there is no j such that $2j \equiv td \pmod{\ell}$. Only the case where j = td has to be excluded. For (ii) and (iii), we have that td is even and then there is some $j_1 \in I$ such that $2j_1 \equiv td \pmod{\ell}$. In fact, we have $j_1 \equiv \frac{td}{2} \pmod{\frac{\ell}{2}}$. If $d \nleq \ell$, then either $j_1 = \frac{td}{2}$ or $j_1 = \frac{td}{2} + \frac{\ell}{2}$ and in particular, $j_1 \neq td$ in this case. If $d = \ell$, then t = 1 and $j_1 = \frac{\ell}{2}$. We conclude that

$$|S'(d,t)| = \begin{cases} |I|-1 & \text{if } d = \ell; \\ |I|-1 & \text{if } d \neq \ell \text{ and } td \text{ is odd;} \\ |I|-3 & \text{otherwise.} \end{cases}$$