考试类别[学生填写](□正考 □补考 □重修 □补修 □缓考 □其它)

《高等数学 A2》试卷(A卷)

(机电、电气、计算机、软件、建环、IEC 等学院各专业 21 年级适用)

一、单项选择题(6小题,每小题3分,共18分)

- 1. 下列微分方程的阶数是二阶的是-
- (A) $xy''' + 2y'' + x^2y = 0$;

(B) $\frac{dy}{dx} = x^2 + y^2$;

(C) $\frac{d\rho}{d\theta} + \rho = \sin^2 \theta$;

- (D) $t^3 \frac{d^2 u}{dt^2} + \frac{dt}{du} = 0$.
- 2. 微分方程 $y'' y' = xe^x$ 的特解形式可设为------
 - (A) $x(ax+b)e^x$;

(B) $(ax+b)e^x$:

(C) xe^x ;

- (D) $(ax^2 + bx + c)e^x$.
- 3. 设函数 f(x, y) 在点 (x_0, y_0) 处可微,则下列说法**不正确**的是-----(
 - (A) 函数 f(x, y) 在点 (x_0, y_0) 处连续;
 - (B) 函数 f(x, y) 在点 (x_0, y_0) 处极限存在;
 - (C) 函数 f(x, y) 在点 (x_0, y_0) 处存在偏导数;
- (D) 函数 f(x,y) 在点 (x_0,y_0) 处存在连续的偏导数.
- 4. 交换积分次序 $\int_0^2 dy \int_{y^2}^{2y} f(x, y) dx = --$
 - (A) $\int_0^2 dx \int_{x^2}^{2x} f(x, y) dy$;
- (B) $\int_0^4 dx \int_{\frac{x}{-}}^{\sqrt{x}} f(x, y) dy;$

- (C) $\int_0^2 dx \int_{x^2}^{2y} f(x, y) dy$;
- (D) $\int_0^4 dx \int_{-\sqrt{x}}^{\frac{x}{2}} f(x, y) dy$.
- 5. L 为连接 A(1,0) 到 B(-1,2) 两点的直线段, 曲线积分 $\int_{L} (x+y) ds = ($
 - (A) $\sqrt{2}$;
- (B) $2\sqrt{2}$;
- (C) 2;
- (D) 0.
- 6. 级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$ 的敛散性为-----
 - (A) 不确定;

(B) 条件收敛;

(C) 绝对收敛;

- (D) 发散.
- 二、填空题(6小题,每小题3分,共18分)
- 7. $= \pm \sqrt{\frac{\ln(x + e^y)}{\sqrt{x^2 + y^2}}} = \underline{\qquad}$
- 8. 己知 $f(x, y, z) = \ln(xy + z)$,则 d f(1, 2, 0) =______
- 9. 设函数 z = f(x, y) 由方程 $\sin x + 2y z = e^z$ 所确定,则 $\frac{\partial z}{\partial x} = \underline{\qquad}$
- 10. 设区域 Ω : $0 \le x \le 2, 0 \le y \le 1, 0 \le z \le 1$, 则 ∭(x + y) dv =______.
- 11. 函数 $f(x) = \frac{1}{2+x^2}$ 的关于 x 的幂级数展开式为______.
- 12. 设 f(x) 是以 2π 为周期的周期函数,它在[$-\pi$, π)上的表达式为

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x < \pi. \end{cases}$$
 则其傅里叶级数在点 $x = 0$ 处收敛于______.

三、解答题(8小题,共49分)

- 13. (本题 6 分) 已知一条曲线通过点(0,1), 并且它在点(x,y)处的切线斜率为x(1-2y), 求此曲线方程.
- 14. **(本题 6 分)** 求曲面 $e^x x + 2yz 5 = 0$ 在点 P(0,1,2) 处的切平面方程及 法线方程.
- 15. (本题 6 分) 设函数 $u = xy^2 + z^3 xyz$, 求函数 u 在点 P(1,1,1) 处
 - (1) 沿从点P(1,1,1)到点Q(2,2,0)方向的方向导数;
 - (2) 使方向导数取最大值的方向和方向导数的最大值.
- 16. **(本题 5 分)** 设 D 为圆周 $x^2 + y^2 = 1$ 所围成的闭区域,求二重积分 $\iint_D e^{x^2 + y^2} d\sigma$ 的值.
- 17. (本题 6 分) 求曲面 z=xy 被圆柱面 $x^2+y^2=2$ 所截出的有限部分的面积.
- 18. **(本题 6 分)** 利用格林公式计算曲线积分 $\oint_L (3x^2y + \cos x^2) dx + (2xy + x^3) dy , 其中 <math>L$ 是由抛物线 $y = x^2$ 和 $x = y^2$ 所围成的区域的正向边界曲线.
- 19. **(本题 6 分)** 利用高斯公式计算曲面积分 $\bigoplus_{\Sigma} \sin y dy dz + \cos z dz dx + (z^2 e^{xy}) dx dy , 其中 <math>\Sigma$ 是由锥面 $z = \sqrt{x^2 + y^2}$ 及平面 z=1 所围成的立体 Ω 的整个表面的外侧.

20. **(本题 8 分)** 求幂级数 $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n}$ 的收敛域及和函数.

四、证明题(本题7分)

21. 证明曲线积分 $\int_{(0,0)}^{(1,1)} (e^x - y) dx - (x + \cos^2 y) dy$ 在整个 xOy 平面内与路径无关,并计算积分值.

五、应用题(本题8分)

22. 某单位靠厂房的后墙修建一座容积为 256 m³形状为长方体的仓库,已 知仓库地面每单位面积造价为 1 万元. 仓库的屋顶和墙壁每单位面积的 造价分别为地面每单位面积造价的 2 倍和 1.5 倍,厂房后墙长和高的尺寸足够大,因而这一面墙壁的造价不计. 利用拉格朗日乘数法分析:长、宽、高各为多少米能使仓库的造价最低?

第2页/共2页节约用纸 两面书写