Algorithms for the Online Time Dependant Freeze-Tag Problem

DAN HILL

Cameron University mail@danhill.us

Abstract

The abstract lives here.

I. Introduction

The Freeze-Tag Problem (FTP) [1] is a problem in the field of swarm robotics in which a strategy to awaken a swarm in the minimum makespan must be found. In the original problem as proposed in [1], robots have two states, sleeping and awake. Sleeping robots are awakened when touched by an awake robot. At the beginning of the problem we are given a set of sleeping robots and a single awake robot known as the *source robot*. The source robot then awakens sleeping robots which then help awaken the other robots.

In this paper we examine a variation of FTP [2] in which each robot has a release time associated with it. Awake robots do not become aware of a sleeping robot's existence until it's release time has been met. We call this variation the Online Time Dependant Freeze-Tag Problem (OTDFTP).

Related Work. Hammer et al. [2] found the Offline Time Dependant Freeze Tag Problem has a lower bound of $7/3 - \epsilon$, for any $\epsilon > 0$.

In [3], Sztainberg et al. have proven a lower bound for the FTP using the nearest neighbor heuristic in which robots do not claim targets is at least $4 - \epsilon$ times optimal for any $\epsilon > 0$ [3, Theorem]. The authors go on to find the strategy also has a tight approximation bound of $\Theta(\sqrt{\log n})$ for points on a plane and $\Theta((\log n)^{1-\frac{1}{d}})$ for points in d dimensions.

Preliminaries. Let $R = \{r_0, r_1, r_2, ..., r_n\} \subset M$ be the set of n robots in some continuous metric space M. M is a d-dimensional Euclidean space with distances measured according to an L_p metric.

Unless otherwise stated, the robot r_0 is the source robot and is the only robot that is not in sleep mode at the beginning of the problem. Each robot has 3 modes. In awake mode, a robot is fully functional and free to move. In sleep mode a robot is completely inactive and unable to be activated even if touched by an awake robot. Once the release time of a robot has been reached it enters wait mode and awake robots can now sense it's position. In wait mode a robot is available for activation.

In order to avoid robots from traveling in a single pack, awake robots can claim a target and no other robot will target a claimed robot. [3]

the OTDFTP can also be seen as a sequence of requests where $\sigma = (r, v)_1, (r, v)_2, \dots (r, v)_m$ is a set of locations of robots ordered by their release time and the makespan is the amount of time it takes for all requests in sigma to be served.

A solution to the OTDFTP is considered rational if:

- 1. Each robot with no target will immediately choose an unclaimed robot in wait mode and begin moving toward it.
- 2. A robot does not move other than to advance on it's target. If a robot has no target, it will not move.

This definition is similar to the one given in [1] with slight modification for release times.

Summary of Results. We find that the competitive ratio of the Nearest Neighbor heuristic is 5/2.

II. NEAREST NEIGHBOR ALGORITHM

The Nearest Neighbor Algorithm is a *rational* wake-up strategy for the OTDFTP. Each robot chooses the closest unclaimed robot in wait mode. Once a robot has chosen a target it will not choose another target until it has reached it's current target.

Algorithm 1 Returns the nearest unclaimed sleeping robot.

Precondition: A is the set of sleeping robots and t be the robot's current target.

```
function Nearest Neighbor(A, t)
    if t \neq \text{NULL then}
        return t
    if A.size = 0 then
        return NULL
    m \leftarrow \text{NULL}
    for robot in A do
        if ¬robot.claimed then
            if m = NULL then
                 m \leftarrow robot
            else
                 a \leftarrow \operatorname{dist}(self, robot)
                 b \leftarrow \operatorname{dist}(self, m)
                 if a < b then
                     m \leftarrow robot
    return m
```

Theorem 1. For any $\epsilon > 0$, there exists an instance of the OTDFTP for which the Nearest Neighbor Algorithm results in a makespan less than $\frac{5}{2} - \epsilon$ times optimal.

Figure 1

Proof. Let G = V, E be the graph in Figure 1. The source robot r_0 activates at vertex v_0 . At time t = 0 robot r_1 enters the sleeping state and is immediately awakened by r_0 . At $t = 3 r_2$ enters sleeping state at v_1 and r_3 enters sleeping state at v_2 . r_0 claims r_2 and begins moving down edge (v_0, v_1) . r_1 claims r_3 and begins moving down edge (v_0, v_2) . r_0 and r_1 arrive and awaken their respective targets at t = 6. At the same time r_4 enters sleeping state at v_3 and is claimed by r_0 . r_0 travels down (v_1, v_0) to v_0 then travels down (v_0, v_3) . r_0 arrives at v_0 at t = 15.

In the optimum solution, the source robot r_0 still starts at v_0 and awakens r_1 at t=0. r_0 immediately moves down (v_0, v_3) and r_1 moves down (v_0, v_1) . At t=3, r_1 arrives at v_1 as r_2 and r_3 are entering sleeping state. r_1 immediately claims and awakens r_2 then claims r_2 and begins moving down (v_1, v_2) . r_1 arrives at v_2 and awakens r_3 at t=4. At t=6 r_0 arrives at v_3 as r_4 is entering sleep mode and immediately awakens it.

This gives us a makespan of 15 for the Nearest Neighbor algorithm and a makespan of 6 for the optimal solution to Figure 1. This gives us a competitive ratio of $\frac{5}{2}$.

Figure 2: Illustration of the competitive ratio proof for the Nearest Neighbor algorithm.

 ${\bf Figure~3:~} \textit{Illustration~of~the~optimum~solution~for~the~problem~in~Theorem~1.}$

I. Empirical Analysis

I.1 Experiment Setup

The experiment is based on a Python 2.7.9 simulation of swarms of varying sizes where the robots are running an implementation of the Nearest Neighbor Algorithm. The simulations

were performed on a 64-bit PC running Ubuntu Linux.

Dataset. The simulations are run with 210 different datasets consisting of varying numbers of robots randomly placed on a 10000x10000 2D Euclidean plane. The release time of each robot is a random number between 0 and 5000 time

units.

Performance Measure The performance of the algorithm on the datasets is based solely on the makespan.

- II. Experiment Results
- III. Conclusion
- IV. Future Work

References

- [1] Esther M. Arkin, Michael a. Bender, Sandor P. Fekete, Joseph S B Mitchell, and Martin Skutella. The freeze-tag problem: How to wake up a swarm of robots. *Algorithmica (New York)*, 46(2):193–221, October 2006.
- [2] Mikael Hammar, Bengt J. Nilsson, and Mia Persson. The Online Freeze-Tag Problem.
- In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 3887 LNCS, pages 569–579. 2006.
- [3] Marcelo O. Sztainberg, Esther M. Arkin, Michael A. Bender, and Joseph S. B. Mitchell. Analysis of Heuristics for the Freeze-Tag Problem. In Algorithm Theory — {SWAT} 2002, pages 270–279. 2002.