A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 3ED

Bookmark

Show all steps: ON

Problem

Let G be a group. By an *automorphism* of G we mean an isomorphism $f: G \to G$.

Prove that, for arbitrary $a, b \in G$.

$$\phi_a \circ \phi_b = \phi_{ab}$$
 and $(\phi_a)^{-1} = \phi_{a-1}$

Step-by-step solution

Step 1 of 4

Suppose that G is a group. Consider an inner automorphism of G as the function $\phi_a:G\to G$ of the following form:

for every $x \in G$, $\phi_a(x) = axa^{-1}$.

Objective is to prove that, for arbitrary $a, b \in G$,

$$\phi_a \quad \phi_b = \phi_{ab},$$

$$(\phi_a)^{-1} = \phi_{a^{-1}}$$
.

Comment

Step 2 of 4

Let $a, b \in G$. Then by the above definition of inner automorphism,

$$\phi_a(x) = axa^{-1}, \phi_b(x) = bxb^{-1}$$

Now, to show that ϕ_a $\phi_b = \phi_{ab}$ consider the left hand side and solve in the following manner:

$$\phi_a \quad \phi_b(x) = \phi_a(\phi_b(x))$$

$$= \phi_a(bxb^{-1})$$

$$= a(bxb^{-1})a^{-1}$$

$$= (ab)x(b^{-1}a^{-1})$$

Since
$$(ab)^{-1} = b^{-1}a^{-1}$$
, so

$$\phi_a \quad \phi_b(x) = (ab)x(ab)^{-1}$$
$$= \phi_{ab}.$$

Comment

Step 3 of 4

Next, to show that $(\phi_a)^{-1} = \phi_{a^{-1}}$ there is a need to show that $\phi_a = \phi_e$, where ϕ_e is identity element given by

$$\phi_e(x) = exe^{-1}$$

$$= x$$

So solve the left side of ϕ_a $\phi_{a^{-1}} = \phi_e$ as:

$$\phi_{a} \quad \phi_{a^{-1}}(x) = \phi_{a}(\phi_{a^{-1}}(x))$$

$$= \phi_{a}(a^{-1}x(a^{-1})^{-1})$$

$$= \phi_{a}(a^{-1}xa)$$

$$= a(a^{-1}xa)a^{-1}$$

Use the fact that $aa^{-1} = e$ and get,

$$\phi_a \quad \phi_{a^{-1}}(x) = aa^{-1}xaa^{-1}$$

$$= exe$$

$$= x$$

$$= \phi_e.$$

Comment

Step 4 of 4

Thus,
$$\phi_a \quad \phi_b = \phi_{ab}$$
, $(\phi_a)^{-1} = \phi_{a^{-1}}$.

Comment