Суммарную энергию системы в этот период запишем в виде

$$W_{1}^{\prime}=W_{B}^{\prime}+E_{1A}^{\prime}+U_{1A}^{\prime}+E_{13}^{\prime}$$

(для аналогии мы записали слагаемое E_{1A} , хотя $E_{1A}^{'}=0$). Машина А изменила свою скорость в этой системе на величину v. При этом скорость Земли стала $v_{3}^{'}$. Из закона сохранения импульса

$$Mv_3'+mv = -Mv$$

найдем

$$|v_3^{'}| = (1 + \frac{m}{M})|v|$$

Полная энергия системы в этот период равна

$$W_2^{\prime} = W_B^{\prime} + E_{2A}^{\prime} + (U_{1A}^{\prime} - \Delta U^{\prime}) + E_{23}^{\prime}$$

Запишем закон сохранения энергии:

$$W_{2}^{'}-W_{1}^{'}=E_{2A}^{'}-E_{1A}^{'}-% -\frac{1}{2}E_{2A}^{'}-\frac$$

$$-\Delta U' + E'_{23} - E'_{13} = 0$$

или
$$\tfrac{mv^2}{2} + \tfrac{M}{2}[(1+\tfrac{m}{M})v]^2 -$$

$$-\frac{Mv^2}{2} - \Delta U^{'} = 0$$

Таким образом,

$$\Delta U' = \Delta E' = \frac{3m}{2}v^2 + \frac{m^2}{2M}v^2 = \Delta U.$$

Масса сгоревшего топлива в обеих системах одна ита же, изменение внут. ренней энергии, а следовательно, и коли- чество теплоты, выдёлившейся при сгорании, тоже одно и то же. Значит, удельная теплота сгорания топлива одна и та же для наблюдателей, находящихся в двух рассмотренных нами системах.

Итак, никакого парадокса нет. Работа, совершаемая за счет энергии, выделяющейся при сгорании топлива, идет' на увеличение механической энергин системы в целом. Таким образом, сделанный в условии задачи вывод 0б изменении энергии неверен.

Ошибка заключается в том, что в условии системы не замкнуты, а вывод сделан на основании закона сохранения энергии в той форме, в какой он применим для замкнутых систем.

Говоря об изменении скорости Земли, мы подходим к решению задачи «математи" чески». Разумеется, изменение нипульса Зем ли пренебрежимо мало. Часть энергии «уносится» в результате нагрева Земли под холесами, вылетающими из-под колес ка мешками, песком ит. т.

При проверке задач теоретического тура был проведен своеобразный «эксперимент». Прежде чем приступить к проверке, члены жюри по своему усмотрению «расценили» зада- чи, поставив каждой балл «за труд- ность». Оценки были расставлены сле- дующим образом: $N_1 N_2$ задач 8 кл. 9 кл. 10 кл

№ ₁ № ₂ задач	8 кл.	9 кл.	10 кл
1	8.5	5.5	6.3
2	7.1	4.5	6
3	2.9	7.7	5.6
4	11.1	6.3	7.2
5	-	7	4.8

Это «усредненные» баллы; мнения членов жюри не всегда совпадали.

После того, как все работы были проверены, по результатам проверки, по тому, сколько участников справи: лось с той или иной задачей, была проведена новая «расценка». И оказалось, что мнения жюри и ребят о трудности задач не совсем совпадают. Новая «таблица» выглядела следующим образом:

№1№2 задач	8 кл.	9 кл.	10 кл
1	10	4	6
2	8	4	8
3	4	6	5
4	8	8	7
5	_	10	4

(Разумеется, имеет смысл сравиивать не «абсолютные» баллы, а распределение их по задачам внутри каждого класса.) Члены жюри были удивлены тем, что задачей № 1 для 8 класса 'и с задачей № 5 для 9 класса не справился ни один участ- ник.

Мы думаем, что тем нашим читателям, которые самостоятельно решали задачи олимпиады, опубликованные в «Задачнике «Кванта», будет интересно сравнить свои заключения об их сложности с мнением жюри и «олимпийцев».

Эксперементальный тур

На эсперементальном туре все участники по классам выполняли одинаковые работы

8 класс Колебание грузов на пружине

1. Период колебаний Т груза на пружине зависит от массы груза (рис.9). Изучите эту зависимость, используя пружину, секундомер и набор грузов с известными массами. По результату опытов постройте график. Постарайтесь подобрать формулу, описывающую полученную зависимость Т от m

