

BIK-TZP.21 – Technologické základy počítačů

ZS 2021/22 2. sobota

doc. Ing. Kateřina Hyniová,CSc.

hyniova@fit.cvut.cz

Katedra číslicového návrhu, FIT ČVUT v Praze

kancelář A:1033

Přednáška 2B- Tranzistory

- 1. Úvod
- 2. Bipolární tranzistory
- 3. Analýza obvodu s tranzistorem
- 4. Výkonová ztráta v obvodech s bipolárními tranzistory
- 5. Unipolární MOS FET tranzistory
- 6. Výkonová ztráta v obvodech s unipolárními tranzistory

1. Úvod

- □Tranzistory jsou
 polovodičové součástky se
 3 vývody používané
 zejména k zesilování a
 spínání signálů.
- □ Jako spínače mohou zaujímat 2 stavy on a off. Tato binární funkcionalita tranzistorů je důvodem, proč se tranzistor stal klíčovou součástkou v moderních počítačích. Umožňuje totiž pracovat s binární logikou (0 a 1).

Tranzistory Unipolární

Jako proudové zdroje a spínače jsou **řízeny el. proudem** Jako proudové zdroje a spínače jsou **řízeny el. napětím**

- □Transistor vynalezen v 1947 v Bellových laboratořích, USA
- Bardeen, Brattain, and Shockley obdrželi za vynález Nobelovu cenu v roce 1950

https://www.ipwatchdog.com/2017/04/03/transistor-shockley-bardeen-brattain-modern-electronics/id=79427/

- Původní tranzistor germaniový
- Dnešní tranzistory převážně vyráběny z dopovaného křemíku.

Bipolární tranzistor

Malý el. proud tekoucí do báze B řídí velký proud tekoucí z kolektoru C do emitoru E a určuje, zda bude tranzistor pracovat jako spínač nebo jako zesilovač.

Aktivní elektronický prvek

Se 3 vývody:

B... báze

C... kolektor

E....emitor

Schematické symboly

NPN tranzistor

(zapojení se společným emitorem)

V NPN tranzistoru je napětí +V připojeno ke kolektoru a kolektorový proud I_C teče od kolektoru k emitoru. Napětí V_B>V_F otevírá tranzistor a určuje, zda bude tranzistor v režimu "zesilovač" nebo "spínač". V_C>V_B.

PNP tranzistor

NPN a PNP jsou funkčně podobné, liší se ale opačnou polaritou: tam, kde u NPN teče proud jedním směrem, teče u PNP opačným. V následujících příkladech budeme používat NPN tranzistor, ve všech těchto zapojeních ale jde použít i PNP tranzistor, když obrátíme orientaci všech proudů i napětí v obvodu včetně polarity napájecích zdrojů.

V PNP tranzistoru je napětí +V připojeno k emitoru a proud I_E teče od emitoru ke kolektoru. Proud I_B vytéká ven z báze.

Malý proud tekoucí bází (tj. z báze do emitoru v NPN) řídí relativně velký proud I_C z C do E. **Zapojení se společným emitorem - zdroje napětí** U₁ a U₂ a emitor mají společnou zem.

Zesilovač se společným emitorem

K nastavení pracovního bodu tranzistoru se zapojují do báze B resp. kolektoru C odpory R_B resp. R_C . R_B , aby protékal malý proud rezistorem do báze R_C . Omezuje proud I_C , když je tranzistor sepnutý.

$$I_E = I_C + I_B$$

Tranzistor NPN jako zesilovač zapojení se společným emitorem (analýza obvodu)

3. Analýza obvodu s tranzistorem

Příklad #1:

Analyzujte obvod s tranzistorem NPN-zapojení se společným emitorem. Obvod pracuje v zesilovacím režimu.

 U_1 =5V, U_2 =5V, R_B =50kΩ, R_C =200Ω, β =100

 U_1 =5V, U_2 =5V, R_B =50kΩ, R_C =200Ω, β=100

 R_B

přechod báze-emitor se chová jako dioda v otevřeném směru: má úbytek napětí 0,7 V. Pokud bází protéká proud, je na ní vždy potenciál o 0,7 V vyšší než na emitoru.

 U_1 =5V, U_2 =5V, R_B =50kΩ, R_C =200Ω, β =100

 U_1 =5V, U_2 =5V, R_B =50kΩ, R_C =200Ω, β =100

- lacksquare U_{BE} =0,7 $V \Rightarrow lacksquare$ U_{RB} = U_1 - U_{BE} =4,3lacksquare
- $I_B = U_{RB}/R_B = 4,3/50000 = 86 \mu A$

Známe napětí U_{RB} a odpor R_B. El. proud do báze l_B vypočítáme podle Ohmova zákona.

Nyní již známe hodnoty všech el. veličin v bázové smyčce. Pokračujeme výpočtem veličin v kolektorové smyčce.

 $U_1=5V, U_2=5V,$ $R_B=50k\Omega$, $R_C=200\Omega$, $\beta = 100$

- $U_{BF}=0.7V \Rightarrow U_{RB}=U_1-U_{BF}=4.3V$
- $I_B = U_{RB}/R_B = 4,3/50000 = 86 \mu A$
- $I_C = \beta \times I_B = 8,6 \text{mA}$

V zesilovacím režimu platí:

 U_1 =5V, U_2 =5V, R_B =50kΩ, R_C =200Ω, β =100

- $U_{BE}=0.7V \Rightarrow U_{RB}=U_1-U_{BE}=4.3V$
- $I_B = U_{RB}/R_B = 4,3/50000 = 86 \mu A$
- $I_C = \beta \times I_B = 8.6 \text{mA}$
- $U_{RC} = R_C \times I_C = 200 \times 0,0086 = 1,72V$

Známe el. I_C a odpor R_C . El. napětí U_{RC} vypočítáme podle Ohmova zákona.

$$U_1$$
=5V, U_2 =5V,
 R_B =50kΩ, R_C =200Ω,
 β =100

 $U_{BF}=0.7V \Rightarrow U_{RB}=U_1-U_{RF}=4.3V$ ■ $I_B = U_{RB}/R_B = 4,3/50000 = 86\mu$ A ■ $I_C = \beta \times I_B = 8.6 \text{mA}$ ■ $U_{RC} = R_C \times I_C = 200 \times 0,0086 = 1,72V$ ■ U_{CE}=U₂-U_{RC}=5-1,72=3,28V

Kolektorová smyčka:

Známe napětí U₂ a U_{RC}, napětí U_{CE} mezi kolektorem a emitorem vypočítáme podle Kirchhoffova napěťového zákona.

 U_1 =5V, U_2 =10V, R_B =**25k**Ω, R_C =200Ω, β=100

 U_1 =5V, U_2 =10V, R_B =10kΩ, R_C =200Ω, β =100

■ U_{BE} =0,7 $V \Rightarrow U_{RB}$ = U_1 - U_{BE} =4,3V $I_B = U_{RB}/R_B = 4.3/10000 = 430 \mu A$ ■ $I_C = \beta \times I_B = 43 \text{mA}$ ■ $U_{RC} = R_C \times I_C = 200 \times 0,043 = 8,6V$ ■ U_{CE}=U₂-U_{RC}=10-8,6=1,4V

 U_1 =5V, U_2 =10V, R_B = $\frac{5k\Omega}{R_C}$, R_C =200Ω, β =100

 U_1 =5V, U_2 =10V, R_B = $\frac{5k\Omega}{R_C}$, R_C =200Ω, β =100

V režimu saturace neplatí: $I_c = \beta \times I_B$ Musíme postupovat jinak.

 U_1 =5V, U_2 =10V, R_B = $\frac{5k\Omega}{R_C}$, R_C =200Ω, β =100

Bipolární tranzistor - stavy

- Tranzistor zavřený (OFF)

 Chová se jako rozepnutý spínač.
 Neprotéká proud mezi C a E.
- •Aktivní (zesilovací mód) -- El. proud mezi C a E je přímo úměrný el. proudu I_B tekoucímu do báze (NPN): $I_C = \beta \times I_B$
- •Tranzistor zcela otevřen- On (v saturací) I ranzistor se chová jako sepnutý spínač. Od C k E teče volně el. proud. Zvyšování I_B již nezvyšuje I_C . Již neplatí: $I_C = \beta \times I_B$

Tranzistor zavřený

$$\square I_B = 0$$

Tranzistor v

zesilovacím režimu

$$\square I_B > 0$$
, $I_C = \beta \times I_B$

Tranzistor plně otevřený (v saturaci)

$$\square I_B >> 0$$

4. Výkonové ztráty v obvodu s bipolárním tranzistorem

 $P_{RC} = U_{RC}I_{C}$ Výkonová ztráta na odporu R_{C}

5. Unipolární tranzistor

Elektronická součástky se 3 vývody

G... gate (báze)

D... drain (kolektor)

S....source (emitor)

NMOS

PMOS

Konstrukce unipolárního tranzistoru

Jsou to moderní tranzistory, používané nejvíce v integrovaných obvodech. Pojem *unipolární* znamená, že pro vedení elektrického proudu se využívá pouze jeden druh nosičů náboje, a to buď elektrony (NMOS), nebo díry (PMOS).

K řízení velikosti proudu mezi source – **S** a drain – **D** se využívá **elektrostatické pole**, přiložené k vývodu **G** (gate), kterým se mění vodivost tzv. *kanálu* mezi **S** a **D**.

Nejčastěji se využívá unipolární tranzistor typu MOS-FET Metal Oxide Semiconductor – Field Effect Transistor

NMOS

Základ tvoří polovodičový křemíkový substrát s vodivostí P (nosiče díry),

V substrátu jsou vytvořeny dvě oblasti s vodivostí typu N (nosiče elektrony). Ty tvoří source **S** a drain **D**.

Ovládací prvek (gate) tvoří kovový kontakt **G** (gate, hradlo), který je od substrátu odizolovaný vrstvou SiO₂.

Pokud mezi drain D a source S připojíme napětí U_{DS} , budou za předpokladu, že $U_G = 0V$ (na gate není připojené napětí), přitahovány díry ze substrátu k zápornému source S. Od drain D jsou naopak díry odpuzovány, protože je k němu připojeno kladné napětí zdroje U_{DS} .

Proud nemůže ve směru drain D – source S procházet.

Pokud **Gate** připojíme kladné napětí **U**_{GS,} bude odpuzovat díry pod elektrodou **G** a umožní vytvoření vodivého kanálu mezi source **S** a drain **D**.

Tím se otevře průchod elektrickému proudu I_D mezi D a S. Čím bude U_G větší, tím větší proud bude mezi S a D protékat. Otevírání tranzistoru je děje pouze přiloženým napětím, Obvodem terminálu G neprotéká proud.

Unipolární tranzistor MOS FET

 velikost napětí U_{GS} řídí velikost proudu I_D

$$U_{GS} = U_1 \cdot \frac{R_2}{R_1 + R_2}$$

Unipolární tranzistor jako zesilovač

napětím řízený zdroj proudu

$$I_D = \frac{K(U_{GS} - U_{th})^2}{2}$$

U_{th}.....prahové napětí

K..... zesilovací činitel [mA·V-2]

POZOR!!! Díky jednotce zesilovacího činitele I_D vypočítáme v mA.

Unipolární tranzistor MOS FETdokončení analýzy obvodu

1. Zbývá určit **U**_{RD} --- Použijeme Ohmův zákon

Nyní známe v drainové smyčce U₂
 a U_{RD}. Zbývá určit U_{DS}. K tomu
 využijeme Kirchhoffův napěťový
 zákon.

Unipolární tranzistor NMOS - stavy

 Tranzistor je zcela zavřen (chová se jako rozepnutý spínač)

$$\square U_{GS} < U_{th}$$

 Tranzistor jako napětím řízený zdroj proudu

$$U_{GS} > U_{th}, I_D = \frac{K(U_{GS} - U_{th})^2}{2}$$

Tranzistor v saturaci je zcela otevřen
 (chová se jako sepnutý spínač)
 U_{GS} >> U_{TH}

Unipolární tranzistor jako spínač řízený napětím U_{GS}

NMOS

Je-li napětí U_{GS} kladné ve směru šipky a vyšší než prahové napětí U_{th}, pak je tranzistor otevřený (=sepnutý)

N spínače (NMOS tranzistory) (normálně otevřené spínače)

FF)UGS

U_{GS}=0 → spínač rozepnutý (OFF)

$$R \to \infty$$

NMOS

U_{GS}= 1→spínač sepnutý (ON)

P spínače (PMOS tranzistory) (normálně zavřené spínače)

U_{GS} S

U_{GS}= 0→spínač sepnutý (ON)

$$0 \to \begin{cases} \\ \\ \\ \end{cases} \qquad R \to 0$$

U_{GS}= 1 → spínač rozepnutý (OFF)

$$1 \rightarrow \bigwedge_{\text{SS}} \qquad R \rightarrow \infty$$

Výkonové ztráty v obvodu s unipolárním tranzistorem

$$P_{CELK} = I_D U_{RD} + U_{DS} I_D = I_D^2 R_D + U_{DS} I_D$$