선형회귀 #2 (Linear Regression)

한국공학대학교 전자공학부 채승호 교수

단항 선형회귀

- 단항 선형회귀
 - ▶ 입력속성이 한 개인 경우의 선형회귀
 - ▶ 1개의 입력 속성 & 1개의 출력 속성으로 이루어진 2차원 속성 공간
 - ▶ 1차 직선으로 모델링
 - 2개의 매개변수 최적화 문제 : $\hat{y} = w_0 x + w_1$

데이터번호	무게(g)	늘어난길이(cm)
1	5	11.66
2	6	13.10
3	7	13.79
4	8	16.71
5	9	17.74
6	10	18.70

- 다항 선형회귀
 - ▶ 입력 속성이 1개 이상인 경우의 선형회귀
 - ▶ 입력 속성의 증가로 다차원 속성공간 생성
 - ▶ 입력 속성이 M개인 훈련 데이터 집합의 표현

데이터 번호	입력	출력
0	$x_{0,0}, x_{1,0}, \dots, x_{m,0}, \dots, x_{M-1,0}$	y_0
1	$x_{0,1}, x_{1,1}, \dots, x_{m,1}, \dots, x_{M-1,1}$	y_1
:	i	:
n	$x_{0,n},x_{1,n},\dots,x_{m,n},\dots,x_{M-1,n}$	y_n
:	i	1
N - 1	$\boldsymbol{\chi}_{0,N-1},\boldsymbol{\chi}_{1,N-1},\dots,\boldsymbol{\chi}_{m,N-1},\dots,\boldsymbol{\chi}_{M-1,N-1}$	y_{N-1}

- ▶ 다항 선형모델
 - $\hat{y} = w_0 x_0 + w_1 x_1 + \dots + w_{M-1} x_{M-1} + w_M$
 - 학습을 통해 M + 1개의 최적 매개변수를 구함

- Cost Function
 - 단일 변수에 대한 평균제곱오차

$$\epsilon_{MSE} = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{y}_n - y_n)^2 = \frac{1}{N} \sum_{n=0}^{N-1} (w_0 x_n + w_1 - y_n)^2$$
단일변수(용수철무게)

• 다항 변수에 대한 평균제곱오차

$$\epsilon_{MSE}(w_0, w_1, \cdots, w_M) = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{y}_n - y_n)^2 = \frac{1}{N} \sum_{n=0}^{N-1} (w_0 x_{0,n} + w_1 x_{1,n} + \cdots + w_M - y_n)^2$$
속도 질량 거리

n: 측정한 데이터 수에 대한 index

M: 입력 데이터 Type 수 (데이터 차원 수)

- 다항 선형회귀 모델의 해석해를 위한 표현
 - ▶ 매개변수 벡터 $\mathbf{w} = [w_0 \ w_1 \ \cdots \ w_{M-1} \ w_M]^T$
 - ▶ 출력(라벨) 벡터 $\mathbf{y} = [y_0 \ y_1 \ \cdots \ y_{N-1}]^T$
 - ▶ 입력 데이터 행렬 $X(N \times M)$ 행렬)
 - M개의 입력 속성에 대해 N개의 데이터가 있음
 - 각 행은 개별 데이터를, 각 열은 개별 속성을 나타냄

데이터 번호	입력	출력	I				모두 1	
0	$x_{0,0}, x_{1,0}, \dots, x_{m,0}, \dots, x_{M-1,0}$	y_0	Γ χο	ο Υ 1 ο	•••	Υ _W 10	X _M O	v
1	$x_{0,1}, x_{1,1}, \dots, x_{m,1}, \dots, x_{M-1,1}$	y_1	$\begin{bmatrix} x_0 \\ x_0 \end{bmatrix}$	$\chi_{1,0}$ $\chi_{1,1}$	•••	$\begin{array}{c} x_{M-1,0} \\ x_{M-1,1} \\ \vdots \\ x_{M-1,N-1} \end{array}$	$x_{M,0}$	$egin{array}{c} \mathbf{x}_0 \\ \mathbf{x}_1 \end{array}$
:	ŧ	:	$X = \begin{bmatrix} X_0 \\ X_1 \end{bmatrix}$			•		*1
n	$x_{0,n},x_{1,n},\ldots,x_{m,n},\ldots,x_{M-1,n}$	\mathcal{Y}_n	$x_{0,N}$	$_{-1}$ $x_{1,N-1}$	• • •	$x_{M-1,N-1}$	$x_{M,N-1}$	\mathbf{x}_{N-1}
:	i	:				1		
N - 1	$x_{0,N-1}, x_{1,N-1}, \dots, x_{m,N-1}, \dots, x_{M-1,N-1}$	y_{N-1}						

- ▶ 선형회귀 모델
 - 기존 식

$$\hat{y} = w_0 x_0 + w_1 x_1 + \dots + w_{M-1} x_{M-1} + w_M$$

• 편의상 수정

$$\hat{y} = w_0 x_0 + w_1 x_1 + \dots + w_{M-1} x_{M-1} + w_M x_M, \quad \mathbf{x_M} = \mathbf{1}$$

$$\hat{y} = [w_0, w_1, \dots, w_{M-1}, w_M] \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{M-1} \\ x_M \end{bmatrix} = \mathbf{w}^T \mathbf{x}$$

▶ 비용함수(평균제곱오차)

$$\epsilon_{MSE} = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{y}_n - y_n)^2 = \frac{1}{N} \sum_{n=0}^{N-1} (\mathbf{w}^T \mathbf{x}_n - y_n)^2$$

$$\hat{y}_n = [w_0, w_1, \dots, w_{M-1}, w_M] \begin{bmatrix} x_{0,n} \\ x_{1,n} \\ \vdots \\ x_{M-1,n} \\ x_{M,n} \end{bmatrix} = \mathbf{w}^T \mathbf{x}_n \qquad \mathbf{x}_{M,n} = \mathbf{1}$$

다차원 입력데이터에 대한 Cost Function \rightarrow Cost Function이 최소가 되는 $\mathbf{w} = [w_0 \ w_1 \ w_2 \ \cdots \ w_M]$ 가 Optimal Solution

- 다항 선형회귀 모델의 해석해
 - ▶ 비용 함수를 최소화하는 *M* + 1개의 매개변수를 구함

$$\frac{\partial}{\partial w_m} \epsilon_{MSE} = 0, \qquad m = 0, 1, \cdots, M-1, M$$

$$\rightarrow \frac{\partial}{\partial w_m} \epsilon_{MSE} = \frac{2}{N} \sum_{n=0}^{N-1} (\mathbf{w}^T \mathbf{x}_n - y_n) x_{m,n} = 0$$
 이 되는 해

- m = 0 \subseteq \subseteq $\sum_{n=0}^{N-1} (\mathbf{w}^T \mathbf{x}_n y_n) x_{0,n} = 0$
- m = 1일 때, $\sum_{n=0}^{N-1} (\mathbf{w}^T \mathbf{x}_n y_n) x_{1,n} = 0$

• • •

• $m = M \supseteq \mathbb{H}, \ \sum_{n=0}^{N-1} (\mathbf{w}^T \mathbf{x}_n - y_n) x_{M,n} = 0$

$$\mathbf{x}_n^T = [x_{0,n}, x_{1,n}, \dots, x_{M-1,n}, x_{M,n}]$$

$$\sum_{n=0}^{N-1} (\mathbf{w}^T \mathbf{x}_n - y_n) \mathbf{x}_n^T = [0,0,...,0,0]$$

▶ 결과값

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

역행렬이 항상 존재한다는 것을 보장할 수 없음 즉, 수치적 접근을 통한 최적해를 구하는 것이 일반적

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- 다항 선형회귀 모델의 해석해 (예)
 - ▶ 키와 몸무게로 나이를 추정하는 데이터 집합
 - 입력속성: $\eta(x_0)$, 몸무게 (x_1) / 출력라벨: 나이(y)
 - ▶ 선형회귀 모델
 - $\hat{y} = w_0 x_0 + w_1 x_1 + w_2 x_2$, $x_2 = 1$
 - 3차원 공간에서의 평면의 방정식 (M=2)
 - ▶ 80개의 데이터 (N=80)

n	x0	x1	У												
1	152.6	44.7	11.5	21	64.4	5.5	0.3	41	72.2	8.3	0.8	60	119.9	21.2	7.3
2	160.4	39.9	15.8	22	67.5	7.7	0.6	42	124.6	29.4	8.2	61	160.1	55.3	14.9
3	112.2	21.1	6.6	23	70.7	8.6	0.8	43	134.5	27.8	8.3	62	131.9	27.6	8.2
4	159.3	46.4	15.6	24	162.1	49.4	14.8	44	171.3	53.6	18.8	63	103.7	15.5	4.5
5	150.9	46.6	11	25	167.3	55.6	16.2	45	162.1	49.4	14.8	64	131.9	27.6	8.2
6	91.7	13.1	2.8	26	155	35.8	16.9	46	155	35.8	16.9	65	111.1	21	5.5
7	74.8	8	0.8	27	70.7	8.6	0.8	47	76.7	9.7	1.4	66	86.2	11	2
8	111.1	16.1	4.3	28	74.8	8	0.8	48	159.6	71.5	13.6	67	152	48.8	13.7
9	162.9	43.8	12.8	29	130.5	26.5	8.7	49	150.9	46.6	11	68	103.4	14.2	3.5
10	131.3	27.6	9.6	30	91.7	13.1	2.8	50	159.4	42.9	15.9	69	105.9	14.8	3.6
11	105.3	19.2	4.9	31	108.6	23.4	6.6	51	138.2	30.7	8.3	70	162.1	49.4	14.8
12	177.8	61.7	18.4	32	160.1	40.6	17.9	52	86.2	11	2	71	160.4	39.9	15.8
13	101.8	16.8	4.4	33	94.7	15.1	3.3	53	94.7	15.1	3.3	72	103.7	15.5	4.5
14	151.5	49	12	34	95.3	13.2	2.2	54	154.7	48.1	12.9	73	111.1	21	5.5
15	86.2	11	2	35	162.7	46.9	16.3	55	174.7	74.9	18.4	74	119.9	21.2	7.3
16	137.8	23.7	10.2	36	131.6	35.1	9.2	56	131.3	27.6	9.6	75	164.7	55.5	16.3
17	160.1	40.6	17.9	37	154.7	61.4	16.5	57	113.5	15.3	5.7	76	100.2	14.1	3.3
18	119.9	21.2	7.3	38	64.4	5.5	0.3	58	119.9	21.2	7.3	77	170.1	52.1	18.1
19	156.4	65.9	12.8	39	159.6	71.5	13.6	59	102.6	17.1	3.9	78	152	48.8	13.7
20	154.7	48.1	12.9	40	115.6	24.2	6.8	60	103.4	14.2	3.5	79	114.1	18.6	5.2

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

▶ 80개의 데이터 (N=80)

 $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

- ▶ 80개의 데이터 (N=80, M=2)
 - 입력 행렬 **X**, 80 × 3

152.6	44.7	1
160.4	39.9	1
112.2	21.1	1
159.3	46.4	1
150.9	46.6	1
91.7	13.1	1
7/10	0	1

•

10 1.7	00.0		
100.2	14.1	1	
170.1	52.1	1	
152	48.8	1	
114.1	18.6	1	

• 출력 벡터 y, 80 × 1

11.5	
15.8	
6.6	
15.6	
11	
2.8	
0.0	

•

•

•

		10	
		3.	.3
		18	.1
		13.	.7
		5.	.2

 $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

- ▶ 80개의 데이터 (N=80, M=2)
 - 최적 매개변수

$$- w_0^* = 0.1625$$
, $w_1^* = 0.0198$, $w_2^* = -12.2758$

- 최적 선형모델
 - $\hat{y} = 0.1625x_0 + 0.0198x_1 12.2758$

경사하강법(Gradient Descent Method)

■ 위치 업데이트 규칙(다음 시점, *t* + 1)

$$\alpha \in [0,1]$$

$$w_0[t+1] = w_0[t] - \alpha \frac{\partial}{\partial w_0} \epsilon_{MSE}(w_0, w_1, w_2) \Big|_{w_0 = w_0[t], \ w_1 = w_1[t], \ w_2 = w_2[t]}$$

마
$$w_0 = w_0[t], w_1 = w_1[t] - \alpha \frac{\partial}{\partial w_1} \epsilon_{MSE}(w_0, w_1, w_2)$$
 미분 계수 (-) (양수방향으로 이동) $w_0 = w_0[t], w_1 = w_1[t], w_2 = w_2[t]$

$$w_2[t+1] = w_2[t] - \alpha \frac{\partial}{\partial w_2} \epsilon_{MSE}(w_0, w_1, w_2) \bigg|_{w_0 = w_0[t], \ w_1 = w_1[t], \ w_2 = w_2[t]}$$

$$w_0[t+1] = w_0[t] - \alpha \frac{2}{N} \sum_{n=0}^{N-1} x_{0,n} (w_0[t] x_{0,n} + w_1[t] x_{1,n} + w_2[t] - y_n)$$

$$w_1[t+1] = w_1[t] - \alpha \frac{2}{N} \sum_{n=0}^{N-1} x_{1,n} (w_0[t] x_{0,n} + w_1[t] x_{1,n} + w_2[t] - y_n)$$

Check 필요!!

$$w_2[t+1] = w_2[t] - \alpha \frac{2}{N} \sum_{n=0}^{N-1} \left(w_0[t] x_{0,n} + w_1[t] x_{1,n} + w_2[t] - y_n \right)$$

Non-Linear한 특성을 가지는 함수에 대한 표현을 선형함수의 조합으로 표현이 가능한가?

Non-Linear 함수들의 조합으로 표현하자!

- 대표적 기저함수 모델
 - ▶ Polynomial basis function (다항식 기저함수)

$$\phi_k(x) = x^k$$

Gaussian basis function (가우시안 기저함수)

$$\phi_k(x) = e^{-\frac{1}{2}\left(\frac{x-\mu_k}{\sigma}\right)^2}$$

가우시안 함수들의 조합으로 데이터의 특성 함수를 표현

- 선형기저함수 모델의 해석해
 - ▶ 입력이 K개인 선형회귀 모델과 동일한 방법 사용 가능

- ▶ 예측 출력: 기저함수들의 선형 조합
 - $\phi_K = 1$: 행렬 표현의 편의를 위해 추가한 변수

$$\hat{y} = [w_0, w_1, \dots, w_{K-1}, w_K] \begin{bmatrix} \phi_0(x) \\ \phi_1(x) \\ \vdots \\ \phi_{K-1}(x) \\ \phi_K(x) \end{bmatrix} = \mathbf{w}^T \boldsymbol{\phi}(x) \qquad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_{K-1} \\ w_K \end{bmatrix} \qquad \boldsymbol{\phi}(x) = \begin{bmatrix} \phi_0(x) \\ \phi_1(x) \\ \vdots \\ \phi_{K-1}(x) \\ \phi_K(x) \end{bmatrix}$$

- 선형기저함수 모델의 해석해
 - ▶ 비용함수: 평균제곱오차

$$\epsilon_{MSE} = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{y}_n - y_n)^2 = \frac{1}{N} \sum_{n=0}^{N-1} (\boldsymbol{\phi}(x_n) - y_n)^2 \qquad \boldsymbol{\phi}(x_n) = \begin{bmatrix} \phi_0(x_n) \\ \phi_1(x_n) \\ \vdots \\ \phi_{K-1}(x_n) \\ \phi_K(x_n) \end{bmatrix}$$

- ▶ N개 훈련 데이터 입력에 대한 행렬
 - (데이터 개수가 N개임, 각 개수마다 기저는 K개, 마지막 열은 모두 1 값임)

▶ N개 훈련 데이터 출력에 대한 벡터

$$\mathbf{y} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N-1} \end{bmatrix}$$

- 선형기저함수 모델의 해석해
 - ▶ 최적 매개변수

$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

▶ (cf.) 선형회귀 모델의 해석해

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- 기저함수 개수 *K*와 각 기저함수 파라미터 설정
 - ▶ k번째 가우스 함수의 평균

$$\mu_k = x_{\min} + \frac{x_{\max} - x_{\min}}{K - 1} k,$$
 $k = 0, 1, ..., K - 1$

▶ 모든 가우스 함수의 분산

$$\sigma = \frac{x_{\text{max}} - x_{\text{min}}}{K - 1}$$

• (예)

71 71 PL A	매개변수				
기저함수	μ_k	σ			
$\phi_0(x)$	5				
$\phi_1(x)$	10	5			
$\phi_2(x)$	15				

- 선형기저함수 회귀의 예
 - ▶ 최적 매개변수 및 회귀 모델, *K* = 3

$$\mathbf{w} = \begin{bmatrix} 27.02 \\ 3.46 \\ 39.08 \\ -23.82 \end{bmatrix}$$

$$\mathbf{w} = \begin{bmatrix} 27.02 \\ 3.46 \\ 39.08 \\ 22.02 \end{bmatrix} \qquad \hat{y} = 27.02e^{-\frac{1}{2}\left(\frac{x-5}{5}\right)^2} + 3.46e^{-\frac{1}{2}\left(\frac{x-10}{5}\right)^2} + 39.08e^{-\frac{1}{2}\left(\frac{x-15}{5}\right)^2} - 23.82$$

■ K값에 따른 성능 비교

K=8

MSE가 작다고 무조건 좋은 것일까?

- 실습데이터 (파일명: multiple_linear_regression_data.csv)
 - ▶ 데이터는 학생들의 키(cm)와 몸무게(kg)를 측정하고 나이를 표시한 것
 - ▶ 파일에서 첫번째 열은 키(cm), 두번째 열은 몸무게(kg), 세번째 열은 나이를 의미

■ 실습 #1

- ► 제공된 데이터 파일을 불러들여 x축은 키(cm), y축은 몸무게(kg), z축은 나이를 나타내는 3차원 공간에 각 데이터의 위치를 점으로 표시하시오.
- ▶ 결과물: 코드, 매개변수
- Hint) scatter 함수 사용

■ 실습 #2

- ▶ 해석해로 구한 선형모델과 데이터를 한 그래프에 표시하라.
- ▶ 필수요소: x축, y축, z축 이름, grid, legend
- ▶ 결과물: 그래프
- ► Hint) pseudo inverse matrix → numpy.linalg.pinv()

평면 생성: linspace()로 height, weight 데이터 임의 생성 → meshgrid() 사용 3D plot:

ax = fig.add.subplot(projection='3d'), ax.plot_surface()

■ 실습 #3

▶ 해석해로 구한 선형모델의 평균제곱오차를 구하라.

$$\epsilon_{MSE} = \frac{1}{N} \sum_{n=0}^{N-1} (\hat{y}_n - y_n)^2 = \frac{1}{N} \sum_{n=0}^{N-1} (\mathbf{w}^T \mathbf{x}_n - y_n)^2$$

▶ 결과물: 코드, 평균제곱오차

- 실습 #4
 - ▶ 경사하강법 프로그램을 이용해 최적 매개변수를 구하라.
 - 단, 경사하강법 외부 함수 사용 금지.
 - 단, 학습률, 초기값, 반복 회수는 임의로 정하여 사용하라.
 - ▶ 결과물: 코드
 - ▶ 결과물: 학습률, 초기값, 반복 횟수, 최종 평균제곱오차, 최적 매개변수

- 실습데이터 (파일명: lin_regression_data01.csv → 지난주 data)
 - ▶ 데이터는 유아들의 나이(개월)와 키(cm)를 측정한 것
 - ▶ 파일 형식은 쉼표로 구분된 데이터 파일
 - ▶ 파일에서 첫번째 열은 나이(개월), 두번째 열은 키(cm)를 의미

실습 #5

- 주어진 데이터에 대해 K개의 가우스 함수를 이용한 선형 기저함수 회귀모델의 최적 매개변수(해석해)를 자동 계산하는 프로그램을 작성하고, K가 3, 5, 8일 때의 매개변수를 구하라.
- ▶ 결과물: 코드, 매개변수

$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

■ 실습 #6

- ► K = 3, 5, 8, 10일 때, 훈련 데이터와 선형 기저함수 회귀 모델을 그래프에 표시하라.
- ▶ 필수요소: x축, y축 이름, grid, legend
- ▶ 결과물: 그래프

■ 실습 #7

- ▶ 실습 #6에서 각 K개에 대한 평균제곱오차를 구하고 x축은 K값, y축은 평균제 곱오차를 나타내는 2차원 그래프를 구하라.
- ▶ 필수요소: x축, y축 이름, grid, legend
- ▶ 결과물: 코드, 그래프

보고서 작성

- 각 주차에 해당하는 실습과제에 대해 **하나의 보고서로 작성**
 - ▶ 보고서 작성 형식은 hwp, word
 - ▶ <u>첫 페이지(표지)에 O주차, 실습과제 #O, 이름, 학번, 제출 날짜 기입</u>
 - ▶ 각 결과에 대한 해석은 **간단 명료**하게 서술
- 실행 Code는 보고서에 복사 붙여넣기 하여 넣기
 - ▶ <u>Code를 해석할 수 있는 주석 처리 필수</u>
- 결과는 해당 화면을 캡쳐하여 보고서에 포함
- 즉시 실행 가능한 .py 파일을 함께 업로드
 - ▶ (Run만 눌러도 오류없이 돌아가는 코드)
 - ▶ 파일명은 본인영문이니셜_학번.py로 할것

보고서 + .py파일 => 압축하여 학번_이름.zip으로 e-class에 제출