Wein-bridge oscillator

Vedala Sai Ashok*

For the Wein-bridge oscillator of Fig 0, use the expression for loop gain in (3.5) to find the poles of the closed-loop system. Give the expression for the pole, Q and use it to show that to locate the poles in the right half of s plane, $\frac{R_2}{R_1}$ must be selected to be greater than 2.

$$Z_p = \frac{R}{RSC + 1} \tag{2.3}$$

$$Z_s = \frac{RSC + 1}{SC} \tag{2.4}$$

Fig. 0

- 3. Give the expression for loop gain for Weinbridge oscillator.
 - **Solution:**

$$T(s) = A(s)\beta(s)$$
 (3.1)

$$T(s) = \frac{1 + \frac{R_2}{R_1}}{1 + Z_s Y_p}$$
 (3.2)

$$T(s) = \frac{1 + \frac{R_2}{R_1}}{1 + (\frac{sRC + 1}{sC})(\frac{sRC + 1}{R})}$$
(3.3)

$$T(s) = \frac{1 + \frac{R_2}{R_1}}{1 + \frac{s^2 R^2 C^2 + sRC + sRC + 1}{sRC}}$$
(3.4)

$$T(s) = \frac{1 + \frac{R_2}{R_1}}{3 + sCR + \frac{1}{sCR}}$$
(3.5)

4. Write the characteristic equation for Weinbridge oscillator.

1.

2. Compare the basic structure for a sinusoidal oscillator with Wein-bridge oscillator and give expressions for G and H.

Solution:

• Comparring Fig 0 and Fig 2, we get

$$G = 1 + \frac{R_2}{R_1} \tag{2.1}$$

$$H = \frac{Z_p}{Z_p + Z_s} \tag{2.2}$$

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India. All content in this manual is released under GNU GPL. Free and open source.

Solution:

$$1 - T(s) = 0 (4.1)$$

$$1 - \frac{1 + \frac{R_2}{R_1}}{3 + sCR + \frac{1}{sCR}} = 0 \tag{4.2}$$

$$3 + sRC + \frac{1}{sCR} = 1 + \frac{R_2}{R_1}$$
 (4.3)

$$3 - 1 + sRC + \frac{1}{sRC} - \frac{R_2}{R_1} = 0 \tag{4.4}$$

$$2s + s^2RC + \frac{1}{RC} - s\frac{R_2}{R_1} = 0 {(4.5)}$$

$$s^2RC + s(2 - \frac{R_2}{R_1}) + \frac{1}{RC} = 0 {(4.6)}$$

$$s^2 + s \frac{1}{RC} (2 - \frac{R_2}{R_1}) + \frac{1}{R^2 C^2} = 0$$
 (4.7)

5. Write the general expression for the characteristic equation.

Solution:

$$s^2 + s \frac{\omega_0}{O} + \omega_0^2 = 0 {(5.1)}$$

6. State the **Barkhausen criterion** for sustained oscillations with frequency ω_0 .

Solution:

$$T(j\omega_0) = G(j\omega_0)H(j\omega_0) = 1 \tag{6.1}$$

- That is, at ω_0 the phase of the loop gain should be zero and the magnitude of loop gain should be 1.
- Only for a ∞ gain, system will produce a finite output for zero input.
- 7. Give the definition of **Quality factor**(Q) and explain its significance.

Solution:

- It is a parameter of an oscillatory system expressing the relationship between stored energy and energy dissipation.
- The "purity" of output sine waves will be a function of the selectivity feedback network.
- That is, higher the value of Q for frequency selective network, the less the harmonic content of sine wave produced.
- 8. Compare the equations 4.7 and 5.1 and give expressions for Q and ω_0

Solution:

$$\omega_0^2 = \frac{1}{R^2 C^2} \tag{8.1}$$

$$\omega_0 = \frac{1}{RC} \tag{8.2}$$

$$\frac{\omega_0}{Q} = \frac{1}{RC}(2 - \frac{R_2}{R_1}) \tag{8.3}$$

$$Q = \frac{1}{(2 - \frac{R_2}{R})} \tag{8.4}$$

(8.5)

9. Using Eq 8.4 calculate the value of $\frac{R_2}{R_1}$ for which poles lie on right hand of s-plane.

Solution:

Poles lie on imaginary axis for $Q = \infty$

$$2 - \frac{R_2}{R_1} = 0 (9.1)$$

$$\frac{R_2}{R_1} = 2 (9.2)$$

... For poles to lie on right hand side of s-plane

$$\frac{R_2}{R_1} > 2$$
 (9.3)

10. Verify the above calculations using a Python code.

Solution:

codes/ee18btech11044_3_1.py

- This figure shows how the location of poles vary if $\frac{R_2}{R_1}$ is varied for a fixed ω_0 .
- I have varied $\frac{R_2}{R_1}$ from -10 to 10.

Fig. 10

11. Simulate the circuit shown in Fig 0 using spice simulators. Plot the output generated using python.

Solution:

You can find the netlist for the simulated circuit here:

spice/ee18btech11044/ee18btech11044.net

You can find the python script used to generate the output here:

codes/ee18btech11044/ee18btech11044_spice .py

Fig. 11

12. Tabulate the values of Resistors and Capacitors you have chosen for the simulation.

Solution:

Parameter	Value
R_1	$10k\Omega$
R_2	$20.3k\Omega$
R_p	$10k\Omega$
R_s	$10k\Omega$
C_s	16 <i>nF</i>
R_p	$10k\Omega$
C_p	16 <i>nF</i>

TABLE 12

Where, according to Fig 0

$$R_p = R_s = R \tag{12.1}$$

$$C_p = C_s = C \tag{12.2}$$

13. Calculate the frequency of sinusoidal generated for the combination of R and C chosen using Eq 8.2

Solution:

Frequency generated is given by

$$\omega_0 = \frac{1}{RC} \tag{13.1}$$

$$\omega_0 = 6250 rad/sec \tag{13.2}$$

$$f_0 = 995.22Hz. (13.3)$$

14. Calculate the frequency of sinusoidal wave using plot generated from simulation.

Solution:

- Consider a part of plot generated from simulation shown in the Fig 14.
- Calculating the Time-period of the sinusoidal wave generated using the two points marked in the Fig 14.

$$T_0 = 0.0856452 - 0.0846361 \tag{14.1}$$

$$f_0 = 1/T_0$$
 (14.2)

$$f_0 = 990.98Hz.$$
 (14.3)

 We get the frequencies calculated from the formulae and the plot to be approximately same.

Fig. 14