CALCUL VECTORIEL

Résumé

Il a été vu en secondes diverses opérations entre vecteurs du plan : la somme et le produit par un scalaire. Nous aimerions naturellement pouvoir définir un produit entre deux vecteurs et en tirer des applications en géométrie.

A Attention

Dans toute la suite, nous nous placerons dans un repère orthonormé du plan $(0; \vec{\imath}, \vec{\jmath})$.

1 Produit scalaire dans le plan

Définition | Produit scalaire

Soit $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs du plan.

On définit $\overrightarrow{u} \cdot \overrightarrow{v}$, le **produit scalaire** de \overrightarrow{u} et \overrightarrow{v} , le nombre réel :

$$\overrightarrow{u} \cdot \overrightarrow{v} = xx' + vv'$$
.

Exemple Le produit scalaire de $\overrightarrow{u} \begin{pmatrix} 4 \\ -1 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ est :

$$\vec{u} \cdot \vec{v} = 4 \times 3 + (-1) \times 5 = 12 - 5 = 7.$$

Remarque On note aussi parfois le produit scalaire $\langle \vec{u}, \vec{v} \rangle$.

Propriétés

Soit $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ un vecteur du plan. On a :

- $\overrightarrow{u} \cdot \overrightarrow{u} = \|\overrightarrow{u}\|^2$ où $\|\overrightarrow{u}\| = \sqrt{x^2 + y^2}$ est la norme de \overrightarrow{u}
- $\overrightarrow{u} \cdot \overrightarrow{0} = 0$
- $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$ pour tout vecteur \overrightarrow{v} .

Démonstration. C'est direct par définition du produit scalaire.

Propriété | Bilinéarité du produit scalaire

Pour tout \vec{u} , \vec{v} et \vec{w} vecteurs du plans, λ et μ réels, on a :

$$\overrightarrow{u} \cdot (\lambda \overrightarrow{v} + \mu \overrightarrow{w}) = \lambda (\overrightarrow{u} \cdot \overrightarrow{v}) + \mu (\overrightarrow{u} \cdot \overrightarrow{w})$$

et

$$(\lambda \vec{u} + \mu \vec{v}) \cdot \vec{w} = \lambda (\vec{u} \cdot \vec{w}) + \mu (\vec{v} \cdot \vec{w}).$$

Démonstration. Claire en écrivant les coordonnées de tous les vecteurs en jeu.

Exemples Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs du plans.

- $\bullet \text{ On a } \overrightarrow{u} \cdot (2\overrightarrow{v} \overrightarrow{w}) = 2(\overrightarrow{u} \cdot \overrightarrow{v}) (\overrightarrow{u} \cdot \overrightarrow{w}).$
- ► On a aussi:

$$(\vec{u} + 2\vec{v}) \cdot (3\vec{v} - 2\vec{u}) = 3(\vec{u} + 2\vec{v}) \cdot \vec{v} - 2(\vec{u} + 2\vec{v}) \cdot \vec{u}$$

$$= 3\vec{u} \cdot \vec{v} + 6\vec{v} \cdot \vec{v} - 2\vec{u} \cdot \vec{u} - 4\vec{v} \cdot \vec{u}$$

$$= -2 ||\vec{u}||^2 - \vec{u} \cdot \vec{v} + 6 ||\vec{v}||^2.$$

Théorème | Développement de la norme

Soient \vec{u} et \vec{v} deux vecteurs du plan. On a :

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left(\left\| \overrightarrow{u} + \overrightarrow{v} \right\|^2 - \left\| \overrightarrow{u} \right\|^2 - \left\| \overrightarrow{v} \right\|^2 \right)$$

et

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left(\left\| \overrightarrow{u} \right\|^2 + \left\| \overrightarrow{v} \right\|^2 - \left\| \overrightarrow{u} - \overrightarrow{v} \right\|^2 \right).$$

Démonstration. ⊳

$$\begin{aligned} \| \overrightarrow{u} + \overrightarrow{v} \|^2 &= (\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} + \overrightarrow{v}) \\ &= \overrightarrow{u} \cdot \overrightarrow{u} + \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{u} + \overrightarrow{v} \cdot \overrightarrow{v} \\ &= \| \overrightarrow{u} \|^2 + 2 \overrightarrow{u} \cdot \overrightarrow{v} + \| \overrightarrow{v} \|^2 \end{aligned}$$

Ainsi, on a la première égalité en isolant $\overrightarrow{u} \cdot \overrightarrow{v}$.

 \triangleright

$$\begin{aligned} \| \overrightarrow{u} - \overrightarrow{v} \|^2 &= (\overrightarrow{u} - \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v}) \\ &= \overrightarrow{u} \cdot \overrightarrow{u} - \overrightarrow{u} \cdot \overrightarrow{v} - \overrightarrow{v} \cdot \overrightarrow{u} + \overrightarrow{v} \cdot \overrightarrow{v} \\ &= \| \overrightarrow{u} \|^2 - 2 \overrightarrow{u} \cdot \overrightarrow{v} + \| \overrightarrow{v} \|^2 \end{aligned}$$

De même, on a la seconde égalité en isolant $\vec{u} \cdot \vec{v}$.

2 Produit scalaire et géométrie

1 ère spécialité - 2025 / 2026

Propriété | Définition géométrique du produit scalaire

Soit \vec{u} et \vec{v} deux vecteurs non nuls.

Pour A, B et C tels que $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$, on note θ l'angle non orienté \widehat{BAC} et on a :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos \widehat{BAC}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos \theta$$

Définition | Orthogonalité

En reprenant les notations précédentes, \vec{u} et \vec{v} sont dits **orthogonaux** si $\theta = \frac{\pi}{2}$. On notera $\vec{u} \perp \vec{v}$.

Théorème | Critère d'orthogonalité

$$\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0$$

Démonstration. Comme $\theta \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right], \theta = \frac{\pi}{2} \Leftrightarrow \cos \theta = 0.$

Remarque L'orthogonalité de deux vecteurs $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ est caractérisée par :

$$\overrightarrow{u} \perp \overrightarrow{v} \Leftrightarrow xx' + yy' = 0.$$

Corollaire

Pour tout \vec{u} vecteur du plan, $\vec{u} \perp \vec{0}$.

Exemples $\overrightarrow{u} \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ sont orthogonaux car $\overrightarrow{u} \cdot \overrightarrow{v} = 2 \times 4 + 4 \times (-2) = 0$.

▶ $\vec{u} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 5 \\ 5 \end{pmatrix}$ ne sont pas orthogonaux car $\vec{u} \cdot \vec{v} = 3 \times 5 + (-1) \times 5 = 10 \neq 0$.

Théorème | Al-Kashi

Soit ABC un triangle.

$$BC^2 = AB^2 + AC^2 - 2AB \times AC \times \cos \widehat{BAC}$$

Démonstration. Par Chasles,

$$BC^{2} = \|\overrightarrow{BC}\|^{2} = \|\overrightarrow{BA} + \overrightarrow{AC}\|^{2} = (\overrightarrow{BA} + \overrightarrow{AC}) \cdot (\overrightarrow{BA} + \overrightarrow{AC})$$

$$= \|\overrightarrow{BA}\|^{2} + 2\overrightarrow{BA} \cdot \overrightarrow{AC} + \|\overrightarrow{AC}\|^{2}$$

$$= BA^{2} - 2\overrightarrow{AB} \cdot \overrightarrow{AC} + AC^{2}$$

$$= AB^{2} + AC^{2} - 2AB \times AC \times \cos \widehat{BAC}.$$

Exemples ► On peut déterminer un angle dans un triangle connaissant ses trois longueurs.

Ici, cherchons l'angle \widehat{ACB} .

Par le théorème d'Al-Kashi, $AB^2 = AC^2 + BC^2 - 2AC \times BC \times \cos \widehat{ACB}$. Ainsi,

$$\cos \widehat{ACB} = \frac{AB^2 - AC^2 - BC^2}{-2AC \times BC}$$
$$= \frac{5^2 - 2^2 - 4^2}{-2 \times 2 \times 4}$$
$$= \frac{5}{-16}.$$

On peut avoir une valeur approchée de \widehat{ACB} puisque \widehat{ACB} = $\arccos \frac{5}{16} \simeq -1.88$ rad.

► On peut aussi déterminer une longueur connaissant les deux autres ainsi qu'un des angles.

$$BC^{2} = AB^{2} + AC^{2} - 2AB \times AC \times \cos \widehat{AC}$$

$$= 4^{2} + 2^{2} - 2 \times 2 \times 4 \cos \frac{\pi}{3}$$

$$= 16 + 4 - 16 \times \frac{1}{2}$$

$$= 12$$

Nous avons $BC = \sqrt{12} = 2\sqrt{3}$.

3.2 Équations de droites

Définition | Vecteur normal

Soit \overrightarrow{n} un vecteur non nul du plan orthogonal à un vecteur \overrightarrow{u} directeur d'une droite d.

 \overrightarrow{n} est dit vecteur normal à d.

Propriété | Équation cartésienne d'une droite

Soit *d* une droite d'équation ax + by + c = 0.

Le vecteur $\overrightarrow{n} \begin{pmatrix} a \\ b \end{pmatrix}$ est un vecteur normal à d.

Démonstration. $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ est un vecteur directeur de d.

$$\overrightarrow{u} \cdot \overrightarrow{n} = a \times (-b) + b \times a = 0 \Leftrightarrow \overrightarrow{u} \perp \overrightarrow{n}$$

3.3 Équations de cercles

Définition | Cercle

On appelle **cercle** de **centre** C(a; b) de **rayon** r > 0 l'ensemble des points M(x; y) tels que :

$$(x-a)^2 + (y-b)^2 = r^2$$
.

Propriété | Caractérisation d'un cercle

Soient deux points distincts A et B du plan et I le milieu du segment [AB]. L'ensemble des points M du plan tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ est le cercle de centre I et de rayon $\frac{AB}{2}$.

Démonstration. Sans perdre de généralités, plaçons nous dans un repère orthonormé de centre I et de premier vecteur \overrightarrow{IB} non nul. Dans ce repère, A(-1;0), I(0;0) et B(1;0). Soit M(x;y).

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = (-1 - x)(1 - x) + (-y)(-y)$$

= $x^2 - 1^2 + y^2$

Ainsi,

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = 0 \Leftrightarrow x^2 - 1^2 + y^2 = 0 \Leftrightarrow x^2 + y^2 = 1^2$$
.

Remarque On peut déterminer l'équation cartésienne d'un cercle à l'aide de la propriété précédente.

Si le diamètre du cercle est [AB] avec $A(x_A; y_A)$ et $B(x_B; y_B)$, alors l'équation cartésienne de cercle est donnée par :

$$(x - x_A)(x - x_B) + (y - y_A)(y - y_B) = 0.$$