Egzamin z Rachunku Prawdopodobieństwa II grupa I, 5 lutego 2014

Część zadaniowa

Spośród poniższych zadań należy **wybrać pięć** i napisać ich pełne rozwiązania na osobnych kartkach podpisanych imieniem, nazwiskiem, numerem indeksu, numerem grupy (grupa I) i zadania. Każde zadanie będzie oceniane w skali 0-7 pkt. Można (i należy) wykorzystywać fakty udowodnione na wykładzie i ćwiczeniach.

- 1. Niech S_n będzie symetrycznym błądzeniem losowym startującym z 1.
 - i) Znajdź liczbę a>0 taką, że $M_n=a^n\left(e^{2S_n}+e^{-2S_n}\right),\ n=0,1,2,\ldots$ jest martyngałem względem filtracji generowanej przez S_n .
 - ii) Dla wartości a z punktu i) oblicz $\mathbb{E}a^{\tau}$, gdzie $\tau := \inf\{n: |S_n| = 5\}$.
- 2. Zmienne X_1,Y_1,X_2,Y_2,\ldots są niezależne, przy czym $\mathbb{P}(X_n=\pm 2)=\frac{1}{2},$ zaś Y_n ma rozkład wykładniczy ze średnią $n^{-1/2}$. Dla liczby rzeczywistej t oblicz

$$\lim_{n \to \infty} \mathbb{P}\left(\sum_{i=1}^{n} X_i \sqrt{Y_i} \geqslant t n^{1/4}\right).$$

 $Uwaga. \lim_{n\to\infty} n^{-1/2} \sum_{k=1}^{n} k^{-1/2} = 2.$

- 3. Dla ustalonej liczby $p \in (0,1)$ rozpatrzmy łańcuch Markowa $(X_n)_{n \ge 0}$ o przestrzeni stanów $E = \mathbb{Z}$ i macierzy przejścia takiej, że $p_{0,1} = p_{0,-1} = \frac{1}{2}$ oraz $p_{k,k+1} = p_{-k,-k-1} = p$, $p_{k,k-1} = p_{-k,-k+1} = 1 - p$ dla $k = 1, 2, \ldots$ Niech $M_n = (\frac{1-p}{p})^{|X_n|}$ oraz $\mathcal{F}_n = \sigma(X_0, \ldots, X_n)$.
 - a) Wykaż, że (M_n, \mathcal{F}_n) jest nadmartyngałem dla $p \geqslant \frac{1}{2}$ i podmartyngałem dla $p \leqslant \frac{1}{2}$. b) Wykaż, że M_n jest zbieżny prawie na pewno dla $p > \frac{1}{2}$. Ile wynosi jego granica?
- 4. Po wierzchołkach czworościanu ABCD porusza się pionek, w każdym ruchu z prawdopodobieństwem $\frac{1}{3}$ przeskakując do jednego z sąsiadów. W chwili 0 pionek znajduje się w punkcie A. Oblicz
 - i) prawdopodobieństwo tego, że pionek wróci do punktu A przed dotarciem do punktu D,
 - ii) średni czas oczekiwania na powrót pionka do punktu A,
 - iii) przybliżone prawdopodobieństwo tego, że po 1000 krokach pionek będzie w punkcie A.
- 5. Zmienne losowe X_1, X_2, \ldots są niezależne, symetryczne i mają wariancję 2. Określmy $M_n =$ $\prod_{i=1}^{n} \left(1 + \frac{X_i}{i}\right).$
 - i) Znajdź filtrację dla której M_n jest martyngałem.
 - ii) Czy z założeń wynika zbieżność M_n w L^2 ?
 - iii) Czy z założeń wynika zbieżność M_n prawie na pewno?
- 6. Znajdź wszystkie zmienne losowe X takie, że jeśli Y jest zmienną $\mathcal{N}(0,1)$ niezależną od X, to X + Y ma ten sam rozkład, co $\frac{1}{2}X + 3Y + 1$.

Obróć kartkę, by wypełnić część testową egzaminu!

Część testowa

- 1. (2pkt) Co to znaczy, że wektor losowy $X=(X_1,\ldots,X_n)$ ma rozkład gaussowski (podaj jedną z definicji)?
- 2. (2pkt) Podaj kryterium powracalności (w języku macierzy przejścia) jednorodnego, nieprzywiedlnego łańcucha Markowa.
- 3. (4pkt) Zmienne X i Y są niezależne i mają rozkład Poissona z parametrem 2. Oblicz warunkową wartość oczekiwaną $\mathbb{E}((X-3Y)^2|X)=$ funkcję charakterystyczną $\varphi_{X-3Y}(t)=$
- 4. (2pkt) Podaj definicję jednostajnej całkowalności ciągu zmiennych losowych $(X_n)_{n\geqslant 1}$.
- 5. (3pkt) Zmienne losowe X_n spełniają warunek $\lim_{n\to\infty} \mathbb{E} e^{itX_n}=\frac{5}{5-it}$ dla wszystkich t. Oblicz $\lim_{n\to\infty} \mathbb{P}(1\leqslant X_n\leqslant 3)=$
- 6. (3pkt) Niech X będzie zmienną losową. Wówczas rodzina zmiennych losowych $(e^{tX})_{t\geqslant 0}$ jest ciasna wtedy i tylko wtedy, gdy
- 7. (3pkt) Uzupełnij sformułowania nierówności maksymalnych Dooba dla martyngału $(M_n)_{n\geqslant 1}$.

 i) Dla t>0, $t\mathbb{P}(\max_n |M_n|\geqslant t) \leqslant$
 - ii) Dla p > 1, $\mathbb{E} \max_n |M_n|^p \leqslant$
- 8. (3pkt) Zmienna losowa X ma skończone wszystkie momenty. Wyraź za pomocą funkcji charakterystycznej X następujące wielkości:

$$\mathbb{E}X =$$

$$Var(X) =$$

$$Var(X^2) =$$

9. (3pkt) Niech $S_n = X_1 + X_2 + \ldots + X_n$, gdzie niezależne zmienne X_n mają rozkład jednostajny na [0,4]. Wówczas zmienne losowe $S_n - f(n)$, $(S_n - g(n))^2 - h(n)$ są martyngałami względem filtracji generowanej przez X_n , jeśli $f(n) = \ldots, g(n) = \ldots$ oraz $h(n) = \ldots$

Egzamin z Rachunku Prawdopodobieństwa II grupa II, 5 lutego 2014

Część zadaniowa

Spośród poniższych zadań należy **wybrać pięć** i napisać ich pełne rozwiązania na osobnych kartkach podpisanych imieniem, nazwiskiem, numerem indeksu, numerem grupy (grupa II) i zadania. Każde zadanie będzie oceniane w skali 0-7 pkt. Można (i należy) wykorzystywać fakty udowodnione na wykładzie i ćwiczeniach.

- 1. Niech S_n będzie symetrycznym błądzeniem losowym startującym z 2.
 - i) Znajdź liczbę a>0 taką, że $M_n=a^n\Big(e^{3S_n}+e^{-3S_n}\Big),\, n=0,1,2,\ldots$ jest martyngałem względem filtracji generowanej przez S_n .
 - ii) Dla wartości a z punktu i) oblicz $\mathbb{E}a^{\tau}$, gdzie $\tau := \inf\{n: |S_n| = 4\}$.
- 2. Zmienne X_1,Y_1,X_2,Y_2,\ldots są niezależne, przy czym $\mathbb{P}(X_n=\pm 3)=\frac{1}{2},$ zaś Y_n ma rozkład wykładniczy ze średnią $n^{-1/2}$. Dla liczby rzeczywistej t oblicz

$$\lim_{n \to \infty} \mathbb{P}\left(\sum_{i=1}^{n} X_i \sqrt{Y_i} \geqslant t n^{1/4}\right).$$

 $Uwaga. \lim_{n\to\infty} n^{-1/2} \sum_{k=1}^{n} k^{-1/2} = 2.$

- 3. Dla ustalonej liczby $p \in (0,1)$ rozpatrzmy łańcuch Markowa $(X_n)_{n \ge 0}$ o przestrzeni stanów $E = \mathbb{Z}$ i macierzy przejścia takiej, że $p_{0,1} = p_{0,-1} = \frac{1}{2}$ oraz $p_{k,k+1} = p_{-k,-k-1} = p$, $p_{k,k-1} = p_{-k,-k+1} = 1 - p$ dla $k = 1, 2, \ldots$ Niech $M_n = (\frac{1-p}{p})^{|X_n|}$ oraz $\mathcal{F}_n = \sigma(X_0, \ldots, X_n)$.
 - a) Wykaż, że (M_n, \mathcal{F}_n) jest nadmartyngałem dla $p \geqslant \frac{1}{2}$ i podmartyngałem dla $p \leqslant \frac{1}{2}$. b) Wykaż, że M_n jest zbieżny prawie na pewno dla $p > \frac{1}{2}$. Ile wynosi jego granica?
- 4. Po wierzchołkach czworościanu ABCD porusza się pionek, w każdym ruchu z prawdopodobieństwem $\frac{1}{3}$ przeskakując do jednego z sąsiadów. W chwili 0 pionek znajduje się w punkcie A. Oblicz
 - i) prawdopodobieństwo tego, że pionek wróci do punktu A przed dotarciem do punktu C,
 - ii) średni czas oczekiwania na powrót pionka do punktu A,
 - iii) przybliżone prawdopodobieństwo tego, że po 1000 krokach pionek będzie w punkcie A.
- 5. Zmienne losowe X_1, X_2, \ldots są niezależne, symetryczne i mają wariancję 3. Określmy $M_n =$ $\prod_{i=1}^{n} \left(1 + \frac{X_i}{i}\right).$
 - i) Znajdź filtrację dla której M_n jest martyngałem.
 - ii) Czy z założeń wynika zbieżność M_n w L^2 ?
 - iii) Czy z założeń wynika zbieżność M_n prawie na pewno?
- 6. Znajdź wszystkie zmienne losowe X takie, że jeśli Y jest zmienną $\mathcal{N}(0,1)$ niezależną od X, to X + Y ma ten sam rozkład, co $\frac{1}{3}X + 2Y - 1$.

Obróć kartkę, by wypełnić część testową egzaminu!

Część testowa

- 1. (3pkt) Niech $S_n = X_1 + X_2 + \ldots + X_n$, gdzie niezależne zmienne X_n mają rozkład jednostajny na [0,2]. Wówczas zmienne losowe $S_n f(n)$, $(S_n g(n))^2 h(n)$ są martyngałami względem filtracji generowanej przez X_n , jeśli $f(n) = \ldots, g(n) = \ldots$ oraz $h(n) = \ldots$
- 2. (2pkt) Podaj kryterium powracalności (w terminach macierzy przejścia) jednorodnego, nieprzywiedlnego łańcucha Markowa.
- 3. (3pkt) Zmienna losowa X ma skończone wszystkie momenty. Wyraź za pomocą funkcji charakterystycznej X następujące wielkości:

$$\mathbb{E}X =$$

$$Var(X) =$$

$$Var(X^2) =$$

- 4. (2pkt) Podaj definicję jednostajnej całkowalności ciągu zmiennych losowych $(X_n)_{n\geqslant 1}$.
- 5. (3pkt) Niech X będzie zmienną losową. Wówczas rodzina zmiennych losowych $(e^{tX})_{t\geqslant 0}$ jest ciasna wtedy i tylko wtedy, gdy
- 6. (4pkt) Zmienne X i Y są niezależne i mają rozkład Poissona z parametrem 3. Oblicz warunkową wartość oczekiwaną $\mathbb{E}((X+2Y)^2|X)=$ funkcję charakterystyczną $\varphi_{X+2Y}(t)=$
- 7. (3pkt) Zmienne losowe X_n spełniają warunek $\lim_{n\to\infty} \mathbb{E} e^{itX_n}=\frac{3}{3-it}$ dla wszystkich t. Oblicz $\lim_{n\to\infty} \mathbb{P}(1\leqslant X_n\leqslant 5)=$
- 8. (3pkt) Uzupełnij sformułowania nierówności maksymalnych Dooba dla martyngału $(M_n)_{n\geqslant 1}$.
 i) Dla t>0, $t\mathbb{P}(\max_n |M_n|\geqslant t)\leqslant$ ii) Dla p>1, $\mathbb{E}\max_n |M_n|^p\leqslant$
- 9. (2pkt) Co to znaczy, że wektor losowy $X=(X_1,\ldots,X_n)$ ma rozkład gaussowski (podaj jedną z definicji)?