终端控制器 Toolkits 调试协议

文件状态:	项目名称:						
[] 草稿	项目编号:						
[√] 正式发布	文件标识:	终端控制器 Toolkits 调试协	终端控制器 Toolkits 调试协议				
[] 正在修改	当前版本:	V1.0					
	编制:		2021-03-26				
	标准化:		日期:				
	审 核:		日期:				
	批 准:		日期:				

版本历史

版本/状态	作者	参与者	起止日期	备注
V1.0				1、满足对接 toolkits 软件的通用控制器协议;
V 1.0				2、满足华为红线管理要求。

目录

版本历史	2
目录	3
1.协议介绍	1
2. 协议说明	
2.1 传输说明	
2.2 字节格式	
2.3 R 码表	
2.4 校验码算法	
3. 数据帧格式	
4. 保密信息密文	. 7
4.1 授权	7
4.2 修改用户秘钥	. 7
4.3 寄存器操作	. 8
4.3.1 服务器对设备寄存器读操作	
4.3.2 服务器对设备寄存器写操作	
4.4 文件操作	. 9
4.4.1 获取文件列表	. 9
4.4.2 发送下载文件信息	. 9
4.4.3 下载文件数据	10
4.4.4 查询上传文件信息	11
4.4.5 获取上传文件数据	
附录一 通用寄存器对照表	
附录二 LC502 专用寄存器对照表	

一、协议介绍

本协议适应于上海三思生产的控制器和调试软件 Toolkits 之间的通信,协议兼容各类通信接口。

二、协议说明

2.1 传输说明

除非另有说明,否则协议帧中所有数据均以16进制表示,在多字节传输时遵循高字节在前,低字节在后的顺序进行通讯传输。

2.2 字节格式

除非另有说明,否则协议帧中所有字节都是无符号的。

2.3 R 码表

编码	描述
0x00	操作成功
0x01	操作失败
0x02	无效命令码
0x03	操作超时
0x04	无效参数

2.4 校验码算法

```
16 位 CRC 检验算法的 C 语言实现
unsigned short gen_crc(const unsigned char *buffer, int buffer_length)
        unsigned char c, treat, bcrc;
        unsigned short wcrc = 0;
        int i, j;
        for (i = 0; i < buffer_length; i++)
                c = buffer[i];
                for (j = 0; j < 8; j++)
                         treat = c \& 0x80;
                         c <<= 1;
                         bcrc = (wcrc >> 8) & 0x80;
                         wcrc <<= 1;
                         if (treat != bcrc)
                                 wcrc ^= 0x1021;
                }
        }
        return wcrc;
}
```

三、数据帧格式

帧主要由三部分组成: 帧头、帧数据和帧尾。每帧由帧起始符、有效长度、加密参数、保密信息密文、校验码及帧结束符等 6 个部分组成。

帧起始符	有效长度	加密参数	保密信息密文	校验码	结束符
1Byte	2Byte	19Byte	NByte	2Byte	1Byte
0xA5	XX XX	XX·····XX	XX·····XX	XX	0x5A

- 帧起始符:表示一帧数据的开始,其值为 0xA5。
- 有效长度:有效长度=加密参数字节数+保密信息密文字节数。
- 加密参数: 加密模式(1 字节)+有效明文长度(2 字节)+IV(16 字节)。 加密模式分为固定加密模式(0x00)和用户加密模式(0x01)。

固定加密模式:采用固定秘钥对数据进行加密,且此模式仅对授权命令有效;

用户加密模式:采用指用户秘钥对数据进行加密。

- 保密信息密文:保密信息密文解密后,得到信息由"有效明文+填充数据"组成。对于 AES256 加密算法,加密参数字段中的"有效明文长度"指明了"有效明文"的长度。
- 校验码: 采用 CRC16 的校验方式对从帧起始符到数据域内的所有数据的校验,算法见校检码章节。
- 结束符: 结束符为 0x5A。

四、保密信息密文

保密信息密文是指有效明文加填充字节加密后的数据。加密前数据组成如下:

		填充数据			
命令码	应答码	有效参数	填充数据		
1Byte	1Byte	NByte	NByte		

- 命令码: 同一种命令码,回复命令码是请求命令码与 0x80 相或运算后获得。例如授权请求命令码为 0x01,则授权请求回复命令码为 0x01 | 0x80;
- 应答码:设备对操作命令的确认,范围在 0~0xFE。0xFF 表示该帧是个操作帧,具体见"R 码表"
- 数据参数:根据具体的命令码有所不同。具体可参照如下各命令码详解;
- 为满足 AES256 加密,长度必须为 16 的整数倍,即命令码+响应码+数据参数不足 16 的倍数,以 0 补全;

4.1 授权

功能: 服务器请求设备端授权

发送: 服务器->设备

命令码	应答码	数据参数
0x01	0xFF	用户秘钥(32Byte)

回复:设备->服务器

., ., .		
命令码	应答码	数据参数
0x81	R	无

4.2 修改用户秘钥

功能:服务器发送修改用户秘钥指令码给设备,用以修改用户秘钥。

发送:服务器->设备

命令码	应答码	数据参数
0x03	0xFF	新用户秘钥(32Byte)

回复:设备->服务器

命令码	应答码	数据参数
0x83	R	无

说明:

● 用户秘钥修改后需重新获取授权。

4.3 寄存器操作

4.3.1 服务器对设备寄存器读操作

发送:服务器->设备

命令码	应答码	数据参数					
0x04	0xFF	寄存器1地址	寄存器 2 地址		寄存器N地址		
		2Byte 2Byte		2Byte*N	2Byte		

回复:设备->服务器

命令码	应答码	数据参	数据参数								
0x84	R	寄存器	数据 1			寄存器	寄存器数据 N				
						数据 N-1					
		地址	地址 状态码 长度 数据				地址	状态码	长度	数据	
		2Byte	1Byte	1Byte	N Byte		2Byte	1Byte	1Byte	N Byte	

说明:

- 状态码字段: 0表示操作成功, 1表示操作失败, 长度字段为 0, 数据为空;
- 多寄存器读操作时,需考虑设备传输数据长度的能力,可参考附录一通用寄存器"帧数据容量"数值;

4.3.2 服务器对设备寄存器写操作

发送:服务器->设备

命令码	应答码	数据参数						
0x05	0xFF	寄存器 1			寄存器 2	寄存器 N		
		地址	长度	数据		地址	长度	数据
		2Byte	1Byte	N Byte		2Byte	1Byte	N Byte

回复:设备->服务器

命令码	应答码	数据参数					
0x85	R	寄存器 1		寄存器 2		寄存器 3	
		地址	状态码	地址	状态码	地址	状态码

说明:

- 状态码字段: 0表示操作成功, 1表示操作失败, 2表示寄存器不支持;
- 多寄存器写操作时,需考虑设备传输数据长度的能力,可参考附录一通用寄存器"帧数据容量"数值;

4.4 文件操作

4.4.1 获取文件列表

返送:服务器->设备

命令码	应答码	数据参数	
0x06	0xFF	序列号	

回复:设备->服务器

命令码	应答码	数据参数	
0x86	R	序列号	n 条文件列表信息(分包传输,≤64Bytes)

每条文件列表信息格式如下:

文件 ID	文件名称长度	文件名称	文件最大长度	文件操作类型	保留
1Byte	1Byte	不定长 ASCII	4Bytes	1Byte	1Byte
		码(≤32Bytes)			

说明:

- 文件 ID: 文件的唯一标识符;
- 文件操作类型字段: 0表示只读文件, 1表示只写文件(如升级文件和配置文件等), 2表示可读写文件;
- 序列号从 0 开始递增,每包序号加 1,当传输内容小于 64Byte 时,表示传输结束;

4.4.2 发送下载文件信息

返送: 服务器->设备

命令码	应答码	数据参数		
0x07	0xFF	文件 ID	唯一码	文件长度
		1 Byte	2 Byte	4 Byte

回复:设备->服务器

命令码	应答码	数据参数	数据参数		
0x87	R	文件 ID	唯一码	帧数据容量	
		1 Byte	2 Byte	2 Byte	

说明:

- 文件 ID: 文件的唯一标识符;
- 唯一码: 整个升级文件 CRC16 校验码;
- 文件长度:整个文件的长度;
- 帧数据容量,设备每包传输数据长度的上限,可参考附录一通用寄存器"帧数据容量"数值;

4.4.3 下载文件数据

返送:服务器->设备

命令码	应答码	数据参数
0x08	0xFF	文件 ID(1 Byte) + 文件地址偏移(4 Byte) + 数据包内容

说明:

- 文件 ID: 文件的唯一标识符;
- 文件地址偏移: 传输文件的偏移地址;
- 数据包内容:不定长,可根据整包长度计算出数据内容长度;

回复:设备->服务器

命令码	应答码	数据参数
0x88	R	文件 ID(1 Byte) + 文件地址偏移(4 Byte) + 数据包长度(2 Byte)

说明:

- 文件 ID: 文件的唯一标识符;
- 文件地址偏移: 传输文件的偏移地址;
- ▶ 数据包长度:返回数据包长度,可用于验证数据传输的可靠性;

注:

下载升级文件时,当某包<u>文件地址偏移+数据包长度大于等于文件长度</u>时,则设备认为传输结束,设备端回复后可能会自动重启。

4.4.4 查询上传文件信息

发送:服务器->设备

命令码	应答码	数据参数
0x09	0xFF	文件 ID(1 Byte)

回复:设备->服务器

命令码	应答码	数据参数				
0x89	R	文件 ID	唯一码	文件长度	帧数据容量	
		1 Byte	2 Byte	4 Byte	2 Byte	

说明:

- 文件 ID: 文件的唯一标识符;
- 唯一码: 整个升级文件 CRC16 校验码;
- 文件件长度:整个文件的长度;
- 帧数据容量,设备每包传输数据长度的上限,可参考附录一通用寄存器"帧数据容量"数值;

4.4.5 获取上传文件数据

发送: 服务器->设备

命令码	应答码	数据参数
0x0a	0xFF	文件 ID(1 Byte) + 文件地址偏移(4 Byte) + 数据包长度(2 Byte)

说明:

- 文件 ID: 文件的唯一标识符;
- 文件地址偏移: 传输文件的偏移地址;
- 数据包长度:返回数据包长度,可用于验证数据传输的可靠性;

回复:设备->服务器

命令码	应答码	数据参数
0x8a	R	文件 ID(1 Byte) + 文件地址偏移(4 Byte) + 数据包内容

说明:

- 文件 ID: 文件的唯一标识符;
- 文件地址偏移: 传输文件的偏移地址;
- 数据包内容:不定长,可根据整包长度计算出数据内容长度;

注:上传升级文件时,当某包文件地址偏移+数据包长度大于等于文件长度时,则认为传输结束。

附录一 通用寄存器对照表

寄存器地址	名称	长度	单位	操作类型	数据说明
0x0000	设备名称	不定长		只读	
		≤32Byte			
0x0001	设备类型	2Byte		只读	LC600: 0x0001
					LC1000: 0x0002
					XES220: 0x0003
					LC502: 0x0004
0x0002	设备厂商信息	不定长		只读	
	\ -	≤32Byte			
0x0003	设备 MAC	8Byte		只读	
0x0004	产品序列号	不定长		只读	
0.0005	-TUIC+0	≤32Byte	-T/U C-L-D		
0x0005	硬件版本号	4Byte	硬件版本号	只读	高位在前,低位在后,
					如: 0x10000001 表示为 1.0.0.1
		4Pv do			高位在前,低位在后,
		4Byte	纵件拟本亏		一 简位任前,瓜位任后, 如:0x10000001 表示为
					1.0.0.1
0x0006		1Byte			0x00: 正常
OXCCCC	及田小心	l			0x01: 运行异常
0x0007	系统时间-年月日时分秒	6Byte	系统时间-年月	读写	控制器本地时间, 格式为年月
		,	日时分秒		日时分秒,数据为 BCD 码;
					其中年份是基于 2000 年的偏
					移,如字段年为 0x20,表示
					为 2020 年;
0x0008	复位操作寄存器	1Byte		读写	0x00 表示复位, 0x01 表示复
					位设备
0x0009	复位信息寄存器	1Byte		只读	0x01: 软件复位
					0x02: 硬件复位
					0x03: 异常复位
0x000A	恢复出厂设置寄	1Byte		读写	0x00 表示无需操作, 0x01 表
					示清除统计数据
0x000B	清除统计数据	1Byte		读写	0x00 表示无需操作, 0x01 表
					示清除统计数据
0x000C	帧数据容量 	1Byte		只读	设备每包传输数据长度的上
0.0000		4D. t.			限
0x000D	上电后运行时间	4Byte		只读	上电之后的设备运行时间
0,0555	总工作时间	4Byte		只读	设备总工作时间
0x0FFF				保留	

附录二 LC502 专用寄存器对照表

寄存器地址	名称	长度	单位	操作类型	数据说明
0x1000	本机 IP 地址	4Byte		可读写	高字节在前,低字节在后,
					如 0xC0A80102 表示为
					192.168.1.2
0x1001	本机掩码地址	4Byte		可读写	同 IP 地址格式
0x1002	本机网关地址	4Byte		可读写	同 IP 地址格式
0x1003	本机 UDP 端口号	2Byte		可读写	17222
0x1004	X9 TCP 端口号	2Byte		可读写	4080
0x1005	AR502H 服务器地址	4Byte		可读写	同 IP 地址格式
0x1006	AR502H UDP 端口号	2Byte		可读写	17222
0x1007	Toolkits UDP 端口号	2Byte		可读写	3434
0x1008	RS485_1 波特率	2Byte		可读写	
0x1009	RS485_2 波特率	2Byte		可读写	
0x100a	RS485_3 波特率	2Byte		可读写	
0x100b	HPLC 波特率	2Byte		可读写	
0x100c	设备状态寄存器	4Byte		只读	0x01 表示 PLC 上线, 0x02
					表示 UDP 上线, 0x03 表示未
0.1001	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.5 .			知上线,0x04 表示离线
0x100d	通道1调光寄存器	2Byte		可读写	高字节 0x01 开灯, 0x00 关灯
0x100e	深洋 1 中次	2D. 40	0.1ma		, 低字节表示亮度值(0~100)
	通道1电流	2Byte		只读	
0x100f	通道 1 电压	2Byte	10mv	只读	
0x1010	通道 1 功率因数	2Byte	0.001	只读	有效值为 0~1000,单位为
					0.001,对应实际功率因数为
	<u> </u>				0~1.000
0x1011	通道1电压频率	2Byte	0.01Hz	只读	电压频率有效值为
					4000~7000, 单位为
					0.01Hz, 对应实际电压频率为 40.00~70.00Hz, FFFFH 为
					70.00~70.00Hz, FFFFH 为 不支持
0x1012		2Byte	0.01W		1,5714
0x1013		4Byte	0.01度	只读	│ │ 单位是 0.01 度, 0xFFFFFFFF
0,1013		тоукс 	0.01 皮	八英	表示不支持
0x1014	通道 1 总亮灯时间	4Byte	Min	只读	单位是分钟,最大支持 8171
					年的亮灯总时间记录,
					0xFFFFFFFF 表示不支持。
0x1015	通道1漏电流	2Byte	0.1ma	只读	
0x1016		8Byte		只读	以 Bit 为单位,1 表示属于这
		_			个组,0表示不属于,故设备
					最多可同时属于 64 个组
0x1017				保留	
0x1018				保留	
0x1019				保留	
0x101a	通道 2 调光寄存器	2Byte		可读写	高字节 0x01 开灯, 0x00 关灯
					,低字节表示亮度值(0~100)
0x101b	通道2电流	2Byte	0.1ma	只读	

0x101c	通道2电压	2Byte	10mv	只读	
0x101d	通道 2 功率因数	2Byte	0.001	只读	有效值为 0~1000,单位为 0.001,对应实际功率因数为 0~1.000
0x101f	通道 2 电压频率	2Byte	0.01Hz	只读	电压频率有效值为 4000~7000,单位为 0.01Hz,对应实际电压频率为 40.00~70.00Hz,FFFFH为 不支持
0x1020	通道 2 有功功率	2Byte	0.01W	只读	
0x1021	通道 2 总消耗电量	4Byte	0.01 度	只读	单位是 0.01 度,0xFFFFFFFF 表示不支持
0x1022	通道 2 总亮灯时间	4Byte	分钟 	只读	单位是分钟,最大支持 8171 年的亮灯总时间记录, 0xFFFFFFFF 表示不支持。
0x1023	通道2漏电流	2Byte	0.1ma	只读	
0x1024	通道 2 组号	8Byte		只读	以 Bit 为单位,1 表示属于这个组,0 表示不属于,故设备最多可同时属于 64 个组
0x1025				保留	
0x1026				保留	
0x1027				保留	
0x1028	4 路 DI 寄存器	1Byte		只读	从 bit[0-3]依次表示 DI1-DI4,1 表示开, 0 表示关
0x1029	2 路 DO 寄存器	1Byte		可读写	从 bit[0-1]依次表示 DO1-DO2,
0x102a	RDM 状态寄存器	1Byte		只读	1 表示 LINKON,0 表示 LINKOFF
0x102b	RDM 温度传感器	2Byte	0.1℃	只读	最高位为 0 表示正温;为 1 表示负温,需进行补码运算,单位为 0.1℃
0x102c	RDM 湿度传感器	2Byte	0.1%Rh	只读	范围为 0-99.9%,单位为 0.1%Rh
0x102d	PM2.5 寄存器	2Byte		只读	范围为 0-1000,单位为 1
0x102e	气压	2Byte	1hPa	只读	大气压值,范围为 300-1100hPa,单位为 1hPa
0x102f	噪音	2Byte	0.1dB	只读	噪声值,范围为 30~130dB,单 位为 0.1dB
0x1030	风速传感器	2Byte	0.1 米/秒	只读	风速值,范围为 0-600,单位为 0.1 米/秒
0x1031	风向传感器	2Byte		只读	风向值,范围为 0-3600,单位 为 0.1°
0x1032	RS-WS 温湿度状态	2Byte		只读	1 表示 LINKON,0 表示 LINKOFF
0x1033	RS-WS 温度传感器	2Byte	0.1℃	只读	最高位为 0 表示正温;为 1 表示负温,需进行补码运算,单位为 0.1℃
0x1034	RS-WS 湿度传感器	2Byte	0.1%Rh	只读	湿度值,范围为 0-99.9%,单位 为 0.1%Rh
0x1035	红外传感器状态	1Byte		只读	1 表示 LINKON,0 表示 LINKOFF

0x1036	红外传感器触发	2Byte	只读	触发: FFFFH; 未触发: 0000H; 上电前 30s 热稳定时间, 00A5H
			保留	
0x10ff	保留		保留	