We claim:

5

10

15

25

- 1. A method of depositing an optical quality silica film by PECVD (Plasma Enhanced Chemical Vapor Deposition), comprising:
 - a) independently setting a predetermined flow rate for a raw material gas;
 - b) independently setting a predetermined flow rate for an oxidation gas;
 - c) independently setting a predetermined flow rate for a carrier gas;
 - d) independently setting a predetermined total deposition pressure; and
- e) applying a post deposition heat treatment to the deposited film at a temperature selected to optimize the mechanical properties without affecting the optical properties determined in steps a to d.
- 2. A method as claimed in claim 1, further comprising independently setting a predetermined flow rate for a dopant gas.
- 3. A method as claimed in claim 2, wherein the observed FTIR characteristics of the deposited film are monitored to determine the optimum post deposition heat treatment temperature.
- 4. A method as claimed in claim 1, wherein the post deposition heat treatment temperature lies in the range 600 to 900°C.
- 5. A method as claimed in claim 4, wherein the deposition is carried out at a temperature in the range 100 to 650°C.
- 20 6. A method as claimed in claim 5, wherein the deposition is carried out at a temperature of about 400°C.
 - 7. A method as claimed in claim 1, wherein the raw material gas is selected from the group consisting: silane, SiH₄; silicon tetra-chloride, SiCl₄; silicon tetra-fluoride, SiF₄; disilane, Si₂H₆; dichloro-silane, SiH₂Cl₂; chloro-fluoro-silane SiCl₂F₂; difluoro-silane, SiH₂F₂; and any other silicon containing gas containing hydrogen, H, chlorine, Cl, fluorine, F, bromine, Br, or iodine, I.
 - 8. A method as claimed in claim 7, wherein the oxidation gas is selected from the group consisting of: nitrous oxide, N_2O ; O_2 , nitric oxide, NO_2 ; water, H_2O ; hydrogen peroxide, H_2O_2 ; carbon monoxide, CO; and carbon dioxide, CO_2

10

15

- 9. A method as claimed in claim 8, wherein the carried gas is selected from the group consisting of nitrogen, N₂, helium, He; neon, Ne; argon, Ar; or krypton, Kr.
- 10. A method as claimed in claim 2, wherein the dopant gas is selected from the group consisting of phosphene, PH₃; diborane, B₂H₆; Arsine (AsH₃); Titanium hydride, TiH₄; germane, GeH₄; Silicon Tetrafluoride, SiF₄; and carbon tetrafluoride, CF₄.
- 11. A method as claimed in claim 2, wherein the raw material gas is SiH₄, the
 - 11. A method as claimed in claim 2, wherein the raw material gas is SiH_4 , the oxidation gas is N_2O , the carrier gas is N_2 , and the dopant gas is PH_3 .
 - 12. A method as claimed in claim 11, wherein the SIH₄ gas flow is set at about 0.2 std liters/min., the N₂O gas flow is set at about 6.00 std liters/min., the N2 flow is set at about 3.15 liters/min., and the PH₃ is set at about 0.50 std liters/min.
 - 13. A method of depositing an optical quality silica film by PECVD (Plasma Enhanced Chemical Vapor Deposition), comprising:
 - a) independently setting a flow rate for SiH₄ at about 0.2 std liters/min.;
 - b) independently setting a flow rate for N2O at about 6.00 .2 std liters/min.;
 - c) independently setting a flow rate for a carrier gas;
 - d) independently setting a predetermined total deposition pressure; and
 - e) applying a post deposition heat treatment to the deposited film at a temperature between 600° and 900° C selected to optimize the mechanical properties without affecting the optical properties determined in steps a to d.
- 20 14. A method as claimed in claim 13, wherein the carrier gas is N₂ and the flow rate is set at about 3.15 2 std liters/min.
 - 15. A method as claimed in claim 14, further comprising independently setting a predetermined flow rate for a dopant gas.
- 16. A method as claimed in claim 15, wherein the dopant gas is PH₃ and the flow rate is set at about 0.50 std liters/min.
 - 17..., A method as claimed in claim 15, wherein the total deposition pressure is set at about 2.6 Torr.

5

- 18. A method as claimed in claim 13, wherein the observed FTIR characteristics of the deposited film are monitored to determine the optimum post deposition heat treatment temperature.
- 19. A method as claimed in claim 13, wherein said deposited film forms a buffer, core or cladding of an optical component.
 - 20. A method as claimed in claim 19, wherein said optical component is a multiplexer or demultiplexer.