Write your name here Surname	Oth	er names
Pearson Edexcel GCE	Centre Number	Candidate Number
Chemistry Advanced Subsidiary Unit 1: The Core Principles of Chemistry		
Friday 23 May 2014 – M Time: 1 hour 30 minute	•	Paper Reference 6CH01/01
Time: Thou so timilate		

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 2 9 7 0 A 0 1 2 4

Turn over ▶

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \bowtie . If you change your mind, put a line through the box 🔀 and then mark your new answer with a cross \boxtimes .

1	The correct sec	uence for the pro	ocesses that occur	in a mass s	pectrometer is

- \times A vaporization, ionization, acceleration, deflection and detection.
- \bowtie B vaporization, acceleration, ionization, deflection and detection.
- ionization, vaporization, acceleration, deflection and detection. ⊠ C
- ionization, vaporization, deflection, acceleration and detection. \times D

(Total for Question = 1 mark)

- **2** Which of the following ions would be deflected **most** in a mass spectrometer?
 - \times A 35**C**|+
 - \mathbb{X} B ³⁷Cl⁺
 - ³⁷C|²⁺ \times C
 - (35CI —37CI)+ \times D

(Total for Question 2 = 1 mark)

- **3** A particle with a **single** positive charge and with the electronic configuration $1s^2 2s^2 2p^6$ is
 - X A a sodium ion.
 - \mathbb{Z} B a fluoride ion.
 - \times C an oxide ion.
 - **D** a potassium ion.

(Total for Question 3 = 1 mark)

4	In whi unpair	ch of the following electronic configurations are only two of the electrons ed?
	⊠ A	1s ² 2s ²
	⊠ B	1s ² 2s ² 2p ³
	⊠ C	1s ² 2s ² 2p ⁴
	⊠ D	1s ² 2s ² 2p ⁵
		(Total for Question 4 = 1 mark)
5	Which	of the following contains a dative covalent bond?
	⊠ A	N_2
	⊠ B	NH ₃
	⋈ C	NH ₂ -
	⊠ D	NH_4^+
		(Total for Question 5 = 1 mark)
_	\ \ /\b:ab	of the fallowing ions has the largest ionic yeding?
6		of the following ions has the largest ionic radius?
	⊠ A	
	⊠ B	Mg^{2+}
	⊠ C	Na ⁺
	⊠ D	O^{2-}
		(Total for Question 6 = 1 mark)
7		of the following observations provides the best evidence for the presence of onding in an unknown substance?
	The su	bstance conducts electricity
	⊠ A	in the solid state.
	⊠ B	in the solid state and in aqueous solution.
	⊠ C	in the solid state and when molten.
	⊠ D	when molten but not in the solid state.
		(Total for Question 7 = 1 mark)

- **8** Which of the following can be determined, for an unknown alkene, using **only** percentage composition by mass data?
 - **A** Molecular formula
 - ☑ B Empirical (simplest) formula
 - C Both the molecular formula and the empirical (simplest) formula
 - ☑ D Structural formula

(Total for Question 8 = 1 mark)

9 1.12 g of iron reacts with oxygen to form 1.60 g of an oxide of iron. Use relative atomic masses: Fe = 56, O = 16.

What is the formula of this oxide of iron?

- A FeO₅
- \square **B** Fe₂O₁₀
- \boxtimes **C** Fe₃O₂
- \square **D** Fe₂O₃

(Total for Question 9 = 1 mark)

10 In an experiment, 1.226 g of potassium chlorate(V), $KCIO_3$, was heated. A mass of 0.320 g of oxygen gas, O_2 , was collected.

$$2KCIO_3(s) \rightarrow 2KCI(s) + 3O_2(g)$$

Use the molar mass of $KCIO_3 = 122.6 \text{ g mol}^{-1}$ and relative atomic mass O = 16.

The percentage yield of oxygen in this experiment is

- **△ A** 17.4%
- **B** 26.1%
- **C** 66.7%
- **D** 100%

(Total for Question 10 = 1 mark)

11 Oxygen gas, O₂, can be converted into ozone, O₃, by passing it through an electric discharge.

$$3O_{2}(g) \rightarrow 2O_{3}(g)$$

In an experiment, a volume of 300 cm³ of oxygen was used but only 10% of the oxygen was converted into ozone. All volumes were measured at the same temperature and pressure.

The **total** volume of gas present at the end of the experiment, in cm³, was

- A 200
- ☑ B 210
- ☑ D 300

(Total for Question 11 = 1 mark)

12 1.40 g of an alkene gave 3.77 g of a dichloroalkane on reaction with chlorine.

What is the molecular formula of the alkene?

- \square A C_2H_4
- B C₃H₀
- \square **D** C_6H_{12}

(Total for Question 12 = 1 mark)

13 The standard enthalpy change for the combustion of graphite is -393.5 kJ mol⁻¹ and that of diamond is -395.4 kJ mol⁻¹.

What is the standard enthalpy change for the reaction below, in kJ mol⁻¹?

 $C(s, graphite) \rightarrow C(s, diamond)$

- **△ A** −1.9
- **B** +1.9
- **☑ C** -788.9
- **■ D** +788.9

(Total for Question 13 = 1 mark)

- **14** The standard enthalpy change of neutralization when an acid reacts with an alkali is the number of kilojoules released by the
 - **A** formation of one mole of salt.
 - **B** formation of one mole of water.
 - C neutralization of one mole of acid.
 - **D** neutralization of one mole of alkali.

(Total for Question 14 = 1 mark)

15 Consider the following bond enthalpy values.

Bond	Bond enthalpy / kJ mol ⁻¹
0—0	+146
О—Н	+463
0=0	+496

For the reaction

$$H - O - O - H(g) \rightarrow H - O - H(g) + \frac{1}{2}O = O(g)$$

the enthalpy change, in kJ mol⁻¹, is

- **B** +102
- **∠ C** +350
- **■ D** +394

(Total for Question 15 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

16 Using the data in the table below, calculate the standard enthalpy change, in kJ mol⁻¹, for the reaction between carbon disulfide, CS₂, and oxygen shown in the following equation.

$$CS_2(g) + 3O_2(g) \rightarrow CO_2(g) + 2SO_2(g)$$

Substance	Standard enthalpy change of formation, $\Delta H_{\rm f}^{\oplus}$ / kJ mol ⁻¹
CS ₂ (g)	+110
CO ₂ (g)	-390
SO ₂ (g)	-290

- **B** -790
- **☑ C** -860

(Total for Question 16 = 1 mark)

17 (a) Which of the following represents a step in the mechanism during the reaction between ethene and hydrogen bromide?

(1)

- $\begin{tabular}{lll} \hline \blacksquare & A & C_2^{}H_4^{} & + & Br^+ & \rightarrow & C_2^{}H_4^{}Br^+ \\ \hline \end{tabular}$
- $\begin{tabular}{ll} \hline \blacksquare & C_2H_4 + HBr $\rightarrow $C_2H_5^+$ + Br^-$ \\ \hline \end{tabular}$
- \square **C** C_2H_4 + HBr \rightarrow $C_2H_5^{\bullet}$ + Br $^{\bullet}$
- \square **D** $C_2H_4 + HBr \rightarrow C_2H_4Br^- + H^+$
- (b) The mechanism of the reaction between ethene and hydrogen bromide is

(1)

- **A** electrophilic addition.
- ☑ C nucleophilic addition.
- ☑ D nucleophilic substitution.

(Total for Question 17 = 2 marks)

18 Which of the following pairs are *cis-trans* isomers?

$$C = C$$

CI C=C

C = C

CI C=C H

- B 1 and 4

(Total for Question 18 = 1 mark)

19 What is the systematic name for the hydrocarbon shown below?

- ☑ A 1,4-dimethylbutane
- ☑ B 2,3-dimethylbutane
- ☑ C 2,3-dimethylhexane
- D 1,1,2,2-tetramethylethane

(Total for Question 19 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

BLANK PAGE

SECTION B

Answer ALL the questions. Write your answers in the spaces provided. 20 Crude oil is composed mainly of alkanes, which are saturated hydrocarbons.		
(a) (i) Define the term hydrocarbon .	(1)	
(ii) State what is meant by the term saturated , as applied to a hydrocarbon.	(1)	
(b) Crude oil can be separated into fractions. (i) What property allows crude oil to be separated by fractional distillation?	(1)	
 (ii) Many chemists are of the opinion that we should use fuels such as biodiesel rather than petrol and diesel. Suggest one reason to support this opinion. 		

 (c) A molecule of a hydrocarbon, X, can be cracked to form one molecule of pentane C₅H₁₂, and two molecules of ethene only. (i) Deduce the molecular formula of X. 	(1)
(ii) Give one reason why cracking reactions are carried out in industry and suggest why high temperatures are used in this process other than to speed up the reaction.	(2)
 (d) Butane, C₄H₁₀, is a hydrocarbon which is used as a fuel. It is a gas under standard conditions. (i) Explain what is meant by the term fuel. 	(1)
(ii) Write an equation for the complete combustion of butane under standard conditions. Include state symbols in your answer.	(2)

(iii)	Write an equation for the incomplete combustion of butane to form car	bor
	monoxide and water only. State symbols are not required.	

(1)

(1)

(e) Butane can react with bromine, in the presence of ultraviolet radiation, according to the following equation.

$$C_4H_{10} + Br_2 \rightarrow C_4H_9Br + HBr$$

(i) Calculate the atom economy by mass for the formation of $\rm C_4H_9Br.$ Use the expression

$$atom\ economy = \frac{molar\ mass\ of\ the\ desired\ product}{sum\ of\ the\ molar\ masses\ of\ all\ products} \times 100\ \%$$

Use the Periodic Table as a source of data.

(2)

Final answer.....%

*(ii) Describe the mechanism of the reaction between butane and bromine that forms the products given in the equation below.

$$C_4H_{10} + Br_2 \rightarrow C_4H_9Br + HBr$$

In your answer you should include

- equations for each step of the mechanism (curly arrows are **not** required)
- the name of each step occurring in the mechanism.

(7)

(Total for Question 20 = 21 marks)

21 Lattice energies can be calculated from experimental data using Born-Haber cycles.

In the table below are the enthalpy changes needed to calculate the lattice energy of sodium oxide, Na₂O.

Letter	Enthalpy change	Value / kJ mol ⁻¹
А	1st electron affinity of oxygen	-141
В	2nd electron affinity of oxygen	+790
С	1st ionization energy of sodium	+496
D	enthalpy change of atomization of sodium	+108
Е	enthalpy change of atomization of oxygen, $\frac{1}{2}O_{2}(g)$	+249
F	enthalpy change of formation of sodium oxide	-414
G	lattice energy of sodium oxide	

(a) Define the term lattice energy .	(2)

(3)

(b) (i) Write the correct letters from the table of data to label the Born-Haber cycle below.

 $2Na^{+}(g) + O^{2-}(g)$ $2Na^{+}(g) + O(g) + 2e^{-}$ 2Na(g) + O(g) $2Na(g) + V_{2}O_{2}(g)$ $2Na(s) + V_{2}O_{2}(g)$ $Na_{2}O(s)$

(ii) Calculate the lattice energy of sodium oxide, enthalpy change $\bf G$, in kJ mol $^{-1}$.

Answer = $k I mol^{-1}$

Justify your answer in terr	ns of the sizes and the cha	rges of the ions involves	
Justily your allswer in terr	is of the sizes and the cha	inges of the lons involved	. (4)
	Τ)	otal for Question 21 = 1	1 marks)
	Т)	otal for Question 21 = '	1 marks)
	Т)	otal for Question 21 = 1	1 marks)
	(T	otal for Question 21 = '	1 marks)
	Т)	otal for Question 21 = 1	1 marks)
	Т)	otal for Question 21 = '	1 marks)
	(1	otal for Question 21 = 1	1 marks)
	(1	otal for Question 21 = 1	1 marks)
	(1	otal for Question 21 = '	1 marks)
	(1	otal for Question 21 = '	1 marks)
	(1	otal for Question 21 = '	1 marks)

- 22 Nickel is an element in the d-block of the Periodic Table.
 - (a) Complete the electronic configuration of a nickel atom using the s, p, d notation.

(1)

1s²

(b) A sample of nickel is made up of three isotopes. The percentage abundances are shown in the table below.

Isotope	Percentage abundance
⁵⁸ Ni	69.02
⁶⁰ Ni	27.32
⁶² Ni	3.66

Calculate the relative atomic mass of nickel. Give your answer to **two** decimal places.

(2)

(c) Nickel reacts with carbon monoxide, CO, to give the compound nickel carbonyl, $Ni(CO)_4$.

$$Ni(s) + 4CO(g) \rightarrow Ni(CO)_{A}(g)$$

(i) Calculate the volume of carbon monoxide, in dm³, measured at room temperature and pressure, that is required to react completely with 5.87 g of nickel.

[Relative atomic mass: Ni = 58.7 Molar volume of a gas = 24 dm³ mol⁻¹ at room temperature and pressure.]

(3)

(ii) Calculate the **number** of carbon monoxide molecules present in the volume of gas you have calculated in (c)(i).

[The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$]

(1)

(d) Nickel(II) nitrate, Ni(NO₃)₂, can be made by several different methods.

Method 1

Nickel(II) oxide, NiO, was reacted with dilute nitric acid according to the equation

$$NiO(s) + 2HNO_3(aq) \rightarrow Ni(NO_3)_2(aq) + H_2O(I)$$

(i) Calculate the volume of 2.00 mol dm⁻³ dilute nitric acid, in cm³, that was required to exactly neutralize 1.494 g of nickel(II) oxide.

Use the relative atomic masses: Ni = 58.7, O = 16.0

(3)

Method 2

A volume of 25.0 cm 3 of 2.00 mol dm $^{-3}$ nitric acid, HNO $_3$, was transferred to a beaker. Solid nickel(II) carbonate, NiCO $_3$, was added until it was in excess.

(11)	Why was excess nickel(II) carbonate used?	
		1

(iii) Why must the beaker be **much** larger than the volume of acid used?

(1)

(iv) Write a balanced equation for the reaction between nickel(II) carbonate and dilute nitric acid, including state symbols.	(2)
*(v) For Method 2 , describe the practical steps that you would take to obtain pure dry crystals of hydrated nickel(II) nitrate, Ni(NO ₃) ₂ .6H ₂ O, from a mixture of nickel(II) nitrate solution and unreacted solid nickel(II) carbonate.	(4)
(Total for Question 22 = 18 ma	arks)

Thi								
	s question concern	s the Periodic Table.						
(a) An atom of argon has mass number 40. Complete the table below showing the numbers of sub-atomic particles in this atom of argon. Use the Periodic Table as a source of data.								
		Sub-atomic particles present in one atom of ⁴⁰ Ar	Number		(1)			
		protons						
		electrons						
		neutrons						
(b)		ium has mass number 39. Explain v	why argon is pla	iced before				
	potassium in the i	nodern Periodic Table.			(1)			
(c)	In the context of t periodicity .	he Periodic Table, explain what is m	eant by the terr	n				
	,				(2)			

(d) The graph shows the variation in melting temperatures of the elements across Period 3 (Na to Ar) of the Periodic Table.

(i) Name **one** of the elements above that is composed of **simple molecules** at room temperature and pressure.

(1)

(ii) Silicon has a giant atomic structure. Explain how this structure results in the high melting temperature shown on the graph.

(2)

(iii) Explain why the melting temperature of magr sodium.	magnesium is higher than that of	
35 31 31 11	(3)	
	(Total for Question 23 = 10 marks)	
	OTAL EOR SECTION R – 60 MARKS	

TOTAL FOR PAPER = 80 MARKS

P 4 2 9 7 0 A 0 2 3 2 4

Y	3
Ċ	
0	ر
2	=
ā	5
П	í
4	_
C	5
Q	ļ
7	5
Tahle	3
٠,)
	_
-	-
	ξ
100	
Dario	
Dario	
Dario	

0 (8)	(18) 4.0 He hetium 2	20.2 Ne neon 10	39.9 Ar argon 18	83.8	Krypton 36	131.3	Xe xenon 54	[222]	Rn radon 86	ted								
7	(17)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9	br bromine 35	126.9	lodine 53	[210]	At astatine 85	been repor	175 Lu lutetium 71	law [
9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0	selenium 34	127.6	Te tellurium 52	[506]	Po polonium 84	116 have I	173 Yb ytterbium 70	No nobelium 102						
22	(15)	14.0 N nitrogen 7	31.0 P	74.9	AS arsenic 33	121.8	Sb antimony 51	209.0	Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated	169 Tm thulium 69	Md mendelevium 101						
4	(14)	12.0 C carbon 6	28.1 Si silicon 14	72.6	Ge germanium 32	118.7	Sn tin 50	207.2	Pb lead 82	atomic nu but not f	167 Er erbium 68	[253] Fm fermium 100						
ъ	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7	gallium 31	114.8	In indium 49	204.4	Th thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated	ents with	ents with	ents with	nents with	nents with	nents with	nents with 165 Ho holmium 67	Cf Es Californium einsteinium 98 99
			(12)	65.4	zinc 30	112.4	Cd cadmium 48	200.6	Hg mercury 80		163 Dy dysprosium 66	Cf Cf californium 98						
			(11)	63.5	copper 29	107.9	Ag silver 47	197.0	Au gold 79	Rg roentgenium 111	159 Tb terbium 65	[245] BK berkelium 97						
			(10)	58.7	nickel 28	106.4	Pd palladium 46	195.1	Pt platinum 78	Ds damstadtium 110	157 Gd gadolinium 64	(247) Cm curium 96						
			(6)	58.9	Co cobalt 27	102.9	Rh rhodium 45	192.2	r iridium 77	[268] Mt meitnerium 109	152 Eu europium 63	a a						
	1.0 H hydrogen		(8)	55.8	Fe iron 26	101.1	Ru ruthenium 44	190.2	Os osmium 76	[277] Hs hassium 108	150 Sm samarium 62							
			6	54.9	Mn manganese 25	[86]	Tc technetium 43	186.2	Re rhenium 75	[264] Bh bohrium 107	141 144 [147] Pr	Np neptunium p						
		mass bol number	(9)	52.0	chromium r	95.9	Mo molybdenum 42	183.8	W tungsten 74	Sg seaborgium 106	144 Nd neodymium 60	ء ا						
	Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9	V vanadium 23	92.9	Nb niobium 41	180.9	Ta tantalum 73	[262] Db dubnium 105	Pr Praseodymium 59	[231] Pa protactinium 91						
		relati ato	(4)	47.9	11 titanium 22	91.2	Zr zirconium 40	178.5	Hf hafnium 72	Rf rutherfordium 104	140 Ce cerium 58	232 Th thorium 90						
			(3)	45.0	Scandium 21	88.9	Y yttrium 39	138.9	La* lanthanum 57	[227] Ac* actinium 89	sa							
2	(2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	40.1	calcium 20	97.8	Sr strontium 38	137.3	Ba barium 56	[226] Ra radium 88	* Lanthanide series * Actinide series							
-	(1)	6.9 Li lithium	23.0 Na sodium 11	39.1	K potassium 19	85.5	Rb rubidium 37	132.9	Cs caesium 55	[223] Fr francium 87	* Lanth							

P 4 2 9 7 0 A 0 2 4 2 4