Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Курс: системы и средства параллельного программирования.

Отчёт № 3.

Параллельный алгоритм поиска простых чисел в заданном диапазоне с помощью "решета Эратосфена".

Работу выполнил **Шахворостов Д. О.**

Постановка задачи и формат данных.

Задача: Реализовать параллельный алгоритм поиска простых чисел в заданном диапазоне с помощью "решета Эратосфена". Оценить: суммарное время выполнения для всех процессов и максимальное время выполнения среди всех процессов в зависимости от числа процессов. Во время выполнения не включать время ввода/вывода.

Формат командной строки: <первое число из диапазона> <последнее число из диапазона> <имя выходного файла для хранения списка простых чисел в текстовом виде через пробелы>.

Результаты выполнения.

Оценить: суммарное время выполнения для всех процессов и максимальное время выполнения среди всех процессов в зависимости от числа процессов. Во время выполнения не включать время ввода/вывода.

Проводились тесты по замеру суммарного времени для всех процессов и максимального времени выполнения среди всех процессов в зависимости от числа процессов.

Результаты:

MPI

Кол-во процессов	1	2	4	8	16	32	64
Суммарное время вы- полнения для всех процессов	1.18851 сек	1.24976 сек	1.08316 сек	1.63356 сек	2.97211 сек	2.65588 сек	2.35614 сек
Максимальное время выполнения среди всех процессов	1.18851 сек	0.625858 сек	0.27332 сек	0.205932 сек	0.22399 сек	0.175519 сек	0.082933 сек

PTHREAD

Кол-во тре- дов	1	2	4	8	16	32	64
Суммарное время вы- полнения для всех тредов	0.789191 сек	0.690905 сек	0.887161 сек	0.793091 сек	0.996735 сек	1.17433 сек	1.51371 сек
Максимальное время выполнения среди всех тредов	0.789191 сек	0.347425 сек	0.222751 сек	0.11411 сек	0.0752028 сек	0.0418749 сек	0.0328593

Основные выводы

Исследования показывают, что при большем количестве процессов/тредов скорость работы одного процесса повышается, но скорость работы программы остается примерно на одном уровне или растёт из-за накладных расходов и проблем на суперкомпьютере Polus.