Computer Arithmetic

Vasily Arzhanov

Reactor Physics, KTH

Etimology

- 1613: First known use of the word "computer" in the book by Richard Braithwait, "The Yong Mans Gleanings":
- "I haue [sic] read the truest computer of Times, and the best Arithmetician that euer [sic] breathed, and he reduceth thy dayes into a short number".
- The first meaning is "human computer".
- 1833: Charles Babbage Analytical Engine; Ada Lovelace.
- 1897: The first usage meaning "calculating machine" of any type.
- 1937: Turing machine.
- By 1943, the most (human) computers were women.
- 1945: Computer = Programmable digital electronic computer.

Analytical Engine

- Arithmetic logic unit
- Control flow:
 - Conditional brunching
 - Loops
- Integrated memory

First general-pupose computer

Overview

- FP Number System
- Special Quantities
- Machine Epsilon
- Behaviour of Discretisation Error
- Rounding
- Loss of Significance

Sources of Error

- Physical Model
- Mathematical Model
- Initial Data
- Descrete Model
- Solution Method
- Data Representation in Computers
- Round off

Floating Point Numbers

Number range: $10^{100} \div 10^{-100}$

Nearly all computers use floating point numbers

Decimal numbers: $x = \pm 0.d_1d_2\cdots d_p \times 10^e$

Binary numbers: $x = \pm 0.d_1d_2\cdots d_p \times 2^e$

Generally: $x = \pm 0.d_1 d_2 \cdots d_p \times \beta^e$

 β = the number base;

e = the exponent;

p =the precision;

 $0.d_1d_2...d_p$ = the fraction (sometimes mantissa, discouraged!).

$$0 \le d_i \le \beta - 1$$

Terminology

123.45 can be represented in several standard forms:

- 0.12345×10^3 scientific;
- 1.2345×10² normalized (engineering);
- 12345×10^{-2} decimal.

$$0.12345 = \begin{cases} \text{Mantissa} & \leq 2005 \\ \text{Significand} & \text{nowadays} \end{cases}$$

Mantissa was commonly used until 2005.

Nowadays, this use of mantissa is discouraged by the IEEE floating point committee and by some professionals (W. Kahan, D. Knuth)

Floating Point System

It is also termed as the real number system.

$$F(\beta, p, L, U) = \begin{cases} x \in \mathbb{Q} \mid x = \pm \left(\frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \dots + \frac{d_p}{\beta^p}\right) \times \beta^e \\ 0 \le d_i < \beta; \quad L \le e \le U \end{cases}$$

If $\forall x \neq 0 \longrightarrow d_1 \neq 0$ The system is said to be normalized.

Example

$$\beta = 2$$
; $p = 4$; $L = -2$; $U = 3$.

$$|F| = 2(\beta - 1)\beta^{p-1}(U - L + 1) + 1 = 97$$

$$x_{\text{max}} = 0.1111_2 \times 2^3$$

$$x_{\text{max}} = \left(1 - \beta^{-p}\right) \beta^{U} = 7.5$$

$$x_1 = \beta^{L-1} = 0.125$$

$$\varepsilon_M = \beta^{1-p} = 0.125$$

Binary to Decimal

$$a = 101.101_2 = 101_2 + 0.101_2 = [a] + \{a\}$$

$$101.101_2 = 5.625$$

Decimal to Binary

$$a = 53.7_{10} = 53_{10} + 0.7_{10} = [a] + \{a\}$$

$$0.7_{10} = 0.1 \ 0110 \ 0110 \dots_{2}$$

$$0.7 \times 2 = 0.4 + 1$$

$$0.4 \times 2 = 0.8 + 0$$

$$0.8 \times 2 = 0.6 + 1$$

$$0.6 \times 2 = 0.2 + 1$$

$$0.2 \times 2 = 0.4 + 0$$

$$0.4 \times 2 = 0.8 + 0$$

•

$$53.7_{10} = 101011.1\overline{0110}_{2}$$

Old Computers

Computer	ß	p	L	U	\mathcal{E}_{M}
Univac 1108	2	27	-128	127	1.49×10 ⁻⁸
Honeywell 6000	2	27	-128	127	1.49×10 ⁻⁸
PDP-11	2	24	-128	127	1.19×10 ⁻⁷
Control Data 6600	2	48	-975	1070	7.11×10^{-15}
Cray-1	2	48	-16384	8191	7.11×10 ⁻¹⁵
Illiac-IV	2	48	-16384	16383	7.11×10^{-15}
SETUN	3	18	?	?	7.74×10 ⁻⁹
Burroughs B5500	8	13	-51	77	1.46×10 ⁻¹¹
HP-45	10	10	-98	100	1.00×10 ⁻⁹
TI SR-5x	10	12	-98	100	1.00×10 ⁻¹¹
IBM-360/370	16	6	-64	63	9.54×10 ⁻⁷
IBM-360/370	16	14	-64	63	2.22×10 ⁻¹⁶

Peculiarities

- $(A+1)-A \neq A+(1-A)$
- IBM/370: every bit pattern is a valid number
- VAX: reserves certain bits for special qu.
- CDC 6600: reserves INDEF and INF
- IBM/360: SQRT(-4) → error message
- IBM/370: SQRT(-4) = 2
- IEEE : SQRT(-4) = NaN

IEEE Standards

- IEEE 754-1985
- IEEE 854-1987
- IEEE 754-2008 (current version)

The Standard Defines:

- Arithmetic formats
 - Binary
 - Decimal
- Interchange formats
- Special numbers and values
 - Subnormal numbers
 - NaNs (qNaN, sNaN); ±0; ±∞
- Operations
- Rounding rules
- Exception handling

Formats

IEEE:
$$F(b, p, emin, emax) = \{x = (-1)^S \times d_1 d_2 \cdots d_p \times b^e \}$$

Name	Common Name	Base b	Digits p	emin	emax	Decimal p	Decimal emax
binary 16	Half precision	2	10+1	-14	+15	3.31	4.51
binary 32	Single precision	2	23+1	-126	+127	7.22	38.23
binary 64	Double precision	2	52+1	-1024	+1023	15.92	307.95
binary 128	Quadruple precision	2	112+1	-16382	+16383	34.02	4931.77
decimal 32	Single precision dec.	10	7	-95	+96	7	96
decimal 64	Double precision dec.	10	16	-383	+384	16	384
decimal 128	Quad. precision dec.	10	34	-6143	+6144	34	6144

31	30								23	22																					0
S	S Exponent						Significand (fraction, mantissa)																								

23

Special Numbers and Values

- > Subnormal numbers
- Signed Zeros
 - Plus zero, +0
 - Minus zero, -0
- Signed Infinities
 - Plus infinity, +∞
 - Minus infinity, -∞
- ➤ Not a Number, NaN
 - Quiet NaN, qNaN
 - Signaling NaN, sNaN

Underflow
$$\rightarrow \pm 0$$

Overflow $\rightarrow \pm \infty$

$$+\infty = \frac{1}{+0}$$

$$+0 = \frac{1}{1/+0} \quad \left(x = \frac{1}{1/x}\right)$$

$$NaN = \frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty$$

Operations

- Arithmetic, √, Fused mult-add, Remainder
- Conversions (between formats, strings)
- Scaling, quantizing
- Manipulating the sign
- Comparison
- Classification and testing for NaNs
- Miscellaneous

Rounding

The standard requires exact rounding!

- 1) Round to nearest, ties to even
- 2) Round to nearest, ties away from zero
- 3) Round toward zero (truncation)
- 4) Round toward +∞ (round up, ceiling)
- 5) Round toward -∞ (round down, floor)

Guard Digits

Example:
$$10.1 - 9.93 = 0.17$$
 in $F(b = 10, p = 3)$
 $fl(10.1) = 0.101 \times 10^2$
 $fl(9.93) = 0.993 \times 10^1$

- 1) Allignment: 0.101×10^2 0.099×10^2
- 2) Substraction: $0.002 \times 10^2 = 0.2$
- 1) Extra digit: 0.1010×10^2 0.0993×10^2
- 2) Substraction: $0.0017 \times 10^2 = 0.17$

Exact Rounding

IEEE requires:

- 1) Perform operation exactly;
- 2) Round-off.

Binary arithmetic: 2 guard digits are enough!

Double precision: 64 bits (memory)

Intel processors: 80 bits (ALU)

- : operation on floating-point numbers
- : infinite-precision operation

IEEE: $x \bullet y = \text{round}(x \circ y)$

Ties to Even

$$Round(1.25) = \begin{cases} 1.3 & \text{up} \\ 1.2 & \text{down} \end{cases}$$

0,1,2,3,4,5,6,7,8,9

Half the time up; another half down.

Least significant digit must be even:

$$Round(1.25) = 1.2$$

$$Round(1.35) = 1.4$$

Round up

$$(\beta = 10; p = 3)$$

Let
$$x_0 = 1.00$$
 and $y = 0.555$
 $x_0 + y = 1.555 = 1.56$
 $x_1 = 1.56 - 0.555 = 1.005 = 1.01$
 $x_1 + y = 1.01 + 0.555 = 1.565 = 1.57$
 $x_2 = 1.57 - 0.555 = 1.015 = 1.02$

Drifting upward!!

Theorem

Let *x* and *y* be FP numbers

$$x_0 = x;$$
 $x_1 = (x_0 + y) - y;$
 $x_2 = (x_1 + y) - y;$

$$x_n = (x_{n-1} + y) - y.$$

If addition and subtraction are exactly rounded using round to even then either $x_n = x_0$ or $x_n = x_1$.

Rounding Example

Defining Machine Epsilon

Widespread: **Definition I.** Machine epsilon is the smallest $\varepsilon_M = b^{1-p}$ positive number, ε_M , such that $1 + \varepsilon_M \neq 1$

Variant:

$$\varepsilon_M = b^{1-p}$$

Definition II. Machine epsilon is the distance between 1 and the next floating point number.

Scientific:

$$\varepsilon_M = b^{1-p}/2$$

$$\varepsilon_{\scriptscriptstyle M} = 2^{-p}$$

Definition III. Machine epsilon is the maximum relative error for the chosen rounding procedure.

Machine Epsilons

IEEE does not define the term machine epsilon.

Definition I and II. ISO C standard, C++, Ada, Mathematica, Matlab, Octave, Python.

Definition III. Prof. J. Demmel, LAPACK, Scilab.

Finding Machine Epsilon

Definition. Machine epsilon is the smallest positive number, ε_M , such that $1+\varepsilon_M\neq 1$

The quantity is also called **macheps** or **unit roundoff** and is denoted as Greek epsilon, ε , or bold Roman, **u**.

```
eps = 1;

while 1+eps/2 \sim= 1

eps = eps/2;

end

eps

2.220446e-16 2^{-52}
```

Deducing Machine Epsilon

$$1 + 2^{-53}$$

$$1 + 2^{-53} = 1$$
 $\epsilon_{M} = 2^{-52}$

Standard Machine Epsilons

IEEE-754	Common name	b	p	$\varepsilon_{\mathrm{M}} = \mathbf{b}^{1-\mathrm{p}}$
Binary 16	Half precision	2	11	$2^{-10} = 9.77 \times 10^{-4}$
Binary 32	Single precision	2	24	$2^{-23} = 1.19 \times 10^{-7}$
Binary 64	Double precision	2	53	$2^{-52} = 2.22 \times 10^{-16}$
Binary 80	Extended precision	2	64	$2^{-63} = 1.08 \times 10^{-19}$
Binary 128	Quadruple precision	2	113	$2^{-112} = 1.93 \times 10^{-34}$
Decimal 32	Single precision dec.	10	7	10-6
Decimal 64	Double precision dec.	10	16	10-15
Decimal 128	Quadruple precision d.	10	34	10-33

Representation Error

$$fl(x) = x(1+\delta)$$
 $|\delta| \le \begin{cases} b^{1-p}/2 = \frac{1}{2}\varepsilon_M & \text{rounding} \\ b^{1-p} = \varepsilon_M & \text{truncating} \end{cases}$

$$\left| \frac{fl(x) - x}{x} \right| \le \frac{1}{2} \varepsilon_M = \frac{1}{2} b^{1-p} = 2^{-p} \quad \text{(rounding in binary case)}$$

Numerical Differentiation

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx \frac{f(x+h) - f(x)}{h}$$

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + O(h^3)$$

$$f'(x) \approx \frac{f(x+h) - f(x)}{h} = f'(x) + \frac{1}{2}f''(x)h + O(h^2)$$

$$Err(x,h) = \frac{1}{2}f''(x)h + O(h^2) \xrightarrow{h \to 0} 0$$

More Accurate Analysis

$$f'(x) \approx \frac{f(x+h) - f(x)}{h} \longrightarrow f'(x) \approx \frac{f^M(x+h) - f^M(x)}{h}$$

$$f^{M}(x) = f(x) \cdot (1 + \delta(x));$$
 $|\delta(x)| \le \frac{1}{2} \varepsilon_{M} \ll 1$

$$\frac{f^{M}(x+h)-f^{M}(x)}{h} = \frac{f(x+h)-f(x)}{h} + \frac{f(x+h)\delta(x+h)-f(x)\delta(x)}{h}$$

Finite-Difference Error

$$Err(x,h) = \frac{1}{2}f''(x)h + O(h^2) + \frac{f(x+h)\delta(x+h) - f(x)\delta(x)}{h}$$

$$\left| Err(x,h) \right| \le \frac{1}{2} \left| f''(x) \right| h + O(h^2) + \frac{\varepsilon_M \max |f|}{h}$$

Round-off Errors

Representation Errors

Representation Error

 $0.1_{10} = 0.00011_2 = 0.0001100110011...$

fl(0.1) = 0.1000000000000000000555111512312578270211815834045410

```
>> format long
>> x = 9.4
x =
9.40000000000000
>> y = x-9
y =
0.40000000000000
>> z = y-0.4
z =
3.330669073875470e-16
>> 3*2^(-53)
ans =
3.330669073875470e-16
```

Coding Sums and Products

$$S_n = x_1 + x_2 + \ldots + x_n;$$

$$P_n = x_1 x_2 \cdots x_n$$

```
S=0;
for i=1:n
    S=S+x(i);
end
```

```
P=1;
for i=1:n
    P=P*x(i);
end
```

Computing Products

$$P_1 = x_1;$$
 $P_2 = fl(P_1x_2) = P_1x_2(1 + \delta_1) = x_1x_2(1 + \delta_1)$

$$P_3 = fl(P_2x_3) = P_2x_3(1+\delta_2) = x_1x_2x_3(1+\delta_1)(1+\delta_2)$$

$$P_n = fl(P_{n-1}x_n) = x_1 \cdots x_n (1 + \delta_1) \cdots (1 + \delta_{n-1})$$

$$\delta \equiv \frac{P_n - x_1 \cdots x_n}{x_1 \cdots x_n} = (1 + \delta_1) \cdots (1 + \delta_{n-1}) - 1$$

$$|\delta| \le (1 + \varepsilon_M/2)^{n-1} - 1 \approx n \varepsilon_M/2$$

Computing Sums

For positive machine numbers, x_1, x_2, \dots, x_n

$$S_1 = x_1;$$
 $S_2 = fl(S_1 + x_2) = (x_1 + x_2)(1 + \delta_1)$

$$S_3 = fl(S_2 + x_3) = [(x_1 + x_2)(1 + \delta_1) + x_3](1 + \delta_2)$$

$$S_n = fl(S_{n-1}x_n) = (x_1 + ... + x_n)(1 + \delta)$$

$$|\delta| \le (1 + \varepsilon_M/2)^{n-1} - 1 \approx n \varepsilon_M/2$$

Loss of Significance

In addition to round-off errors, there are other types of errors.

$$x = 0.3721478693$$
 $fl(x) = 0.37215$
 $y = 0.3720230572$ $fl(y) = 0.37202$
 $x - y = 0.0001248121$ $fl(x) - f(y) = 0.00013$

$$\left| \frac{x - y - [fl(x) - fl(y)]}{x - y} \right| = \left| \frac{0.0001248121 - 0.00013}{0.0001248121} \right| \approx 0.04$$

Theorem on Loss of Significance

Let x and y be positive normalized floating point machine numbers such that x > y and $2^{-q} \le 1 - y/x \le 2^{-p}$ then at most q and at least p significant binary bits are lost in the subtraction x - y.

Examples

$$y = \sqrt{x^2 + 1} - 1 \longrightarrow y = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

$$y = x - \sin x = x - \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots\right) \approx \frac{x^3}{6} \left\{1 - \frac{x^2}{20} \left[1 - \frac{x^2}{42} \left(1 - \frac{x^2}{72}\right)\right]\right\}$$

$$2^{-1} \le 1 - \frac{\sin x}{x} \xrightarrow{(\sin x > 0)} |x| \ge 1.9$$

Exponential Function

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$b = 10; \quad p = 5; \quad x = -5.5$$

Trigonometric Functions

$$E_1 = \frac{1 - \cos x}{\sin^2 x} \qquad E_2 = \frac{1}{1 + \cos x}$$

x	E_1	E_2
1.0000000000000000	0.64922320520476	0.64922320520476
0.100000000000000	0.50125208628858	0.50125208628857
0.010000000000000	0.50001250020848	0.50001250020834
0.001000000000000	0.50000012499219	0.50000012500002
0.000100000000000	0.49999999862793	0.50000000125000
0.00001000000000	0.50000004138685	0.50000000001250
0.00000100000000	0.50004445029134	0.500000000000013
0.00000010000000	0.49960036108132	0.500000000000000
0.00000001000000	0.000000000000000	0.500000000000000
0.00000000100000	0.000000000000000	0.500000000000000
0.00000000010000	0.000000000000000	0.500000000000000
0.00000000001000	0.000000000000000	0.500000000000000
0.000000000000100	0.000000000000000	0.500000000000000

Quadratic Equations

$$x_{1} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}$$

$$ax^{2} + bx + c = 0$$

$$x_{2} = \frac{-b - \sqrt{b^{2} - 4ac}}{2a}$$

b = 10, p = 8, emin = -50, emax = 50

$$a = 1$$
; $b = -10^5$; $c = 1$.

comp:
$$x_1 = 100000.0$$
; $x_2 = 0$

Quadratic Solver

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}) \longrightarrow c = ax_{1}x_{2}$$

$$x_1 = -\frac{b + \operatorname{sgn}(b)\sqrt{b^2 - 4ac}}{2a}$$

$$x_2 = \frac{c}{ax_1}$$

Overflow

$$\beta = 10$$
; $p = 3$; $emax = 98$.
 $x = 3 \times 10^{70}$; $y = 4 \times 10^{70}$;

$$\sqrt{x^2 + y^2} = 5 \times 10^{70}$$
 (exact)

$$x^{2} \rightarrow x^{2} = 9.99 \times 10^{98}$$

$$y^{2} \rightarrow y^{2} = 9.99 \times 10^{98}$$

$$x^{2} + y^{2} \rightarrow x^{2} + y^{2} = 9.99 \times 10^{98}$$

$$\sqrt{x^2 + y^2} = 3.16 \times 10^{49}$$

IEEE requires that $x^2 = +\infty$

$$\sqrt{x^2 + y^2} = |y| \sqrt{1 + (x/y)^2}$$

Important

- FP Number System
- Special Quantities
- Machine Epsilon
- Behaviour of Discretisation Error
- Rounding
- Loss of Significance

Approximation Error

$$\begin{array}{c} a \text{ true value} \\ \tilde{a} \text{ approximate value} \end{array} \} \longrightarrow a \approx \tilde{a}$$

Approximation Error
$$\Delta a \equiv \tilde{a} - a$$

Absolute Error is $|\Delta a|$

An upper bound is any (known) number Δ_a such that $\left| \Delta a \right| \leq \Delta_a$

$$\tilde{a} - \Delta_a \le a \le \tilde{a} + \Delta_a \longrightarrow a = \tilde{a} \pm \Delta_a$$