Database Assignment 1

Name :- Rupali Barnwal

Roll:-1705163

1. Write a SQL statement to display all the information of all salesmen for the following table salesman.

salesman_id	name	city	commission
5001	James Hoog	New York	0.15
5002	Nail Knite	Paris	0.13
5005	Pit Alex	London	0.11
5006	Mc Lyon	Paris	0.14
5003	Lauson Hen		0.12
5007	Paul Adam	Rome	0.13

Ans:-SELECT * FROM salesman;

2. Write a SQL statement to display a string "This is SQL Exercise, Practice and Solution".

Ans:-SELECT "This is SQL Exercise, Practice and Solution";

3. Write a query to display the result of an arithmetic expression.

For example the result of expression 9*10+4

Ans:-SELECT 9*10+4;

4. Write a query to display ord_date, salesman_id, customer_id, order no, and purchase amount in the sequence from following orders table.

ord_no	purch_amt	ord_date	customer_id	salesman_id
70001	150.5	2012-10-05	3005	5002
70009	270.65	2012-09-10	3001	5005
70002	65.26	2012-10-05	3002	5001
70004	110.5	2012-08-17	3009	5003
70007	948.5	2012-09-10	3005	5002
70005	2400.6	2012-07-27	3007	5001
70008	5760	2012-09-10	3002	5001

Ans:-SELECT ord_date, salesman_id, ord_no, purch_amt FROM orders;

5. For the above table display salesman_id for all the salesman without repetitive value of the salesman_id.

Ans:-SELECT DISTINCT salesman_id FROM orders;

6. Write a SQL statement to display all the information for those customers with a grade of 200.

customer_id	cust_name	city	grade	salesman_id
3002	Nick Rimando	New York	100	5001
3005	Graham Zusi	California	200	5002
3001	Brad Guzan	London		5005
3004	Fabian Johns	Paris	300	5006
3007	Brad Davis	New York	200	5001
3009	Geoff Camero	Berlin	100	5003
3008	Julian Green	London	300	5002

Ans:-SELECT *FROM customer WHERE grade=200;

 List the number, name, credit limit, and balance for customers with credit limits that exceed their balances.
(Where table attributes are number, name, credit limit and balance). Ans:- SELECT number,name, credit_limit ,balance FROM Customer WHERE credit_limit>balance

8. Create a table which consists of attributes warehouse id, warehouse branch address, customers numbers and balance for each warehouse. Then List the description of all parts that are not in warehouse 3.

Ans:- CREATE TABLE warehouse(id INT PRIMARY KEY NOT NULL, branch_address VARCHAR(40),customer_number INT, balance FLOAT(30)); SELECT* FROM warehouse WHERE id <3 and id>3;

9. Explain the following terms briefly: attribute, domain, entity, relationship, entity set, relationship set, one-to-many relationship, many-to-many relationship, overlap constraint, and weak entity set.

Ans:- Attribute - a property or description of an entity. A toy department employee entity could have attributes describing the employee's name, salary, and years of service.

Domain - a set of possible values for an attribute.

Entity - an object in the real world that is distinguishable from other objects such as the green dragon toy. Relationship - an association among two or more entities.

Entity set - a collection of similar entities such as all of the toys in the

toy department.

Relationship set - a collection of similar relationships

One-to-many relationship - a key constraint that indicates that one entity can be associated with many of another entity.

Many-to-many relationship - a key constraint that indicates that many of one entity can be associated with many of another entity.

Overlap constraint - within an ISA hierarchy, an overlap constraint determines whether or not two subclasses can contain the same entity.

Weak entity set - an entity that cannot be identified uniquely without considering some primary key attributes of another identifying owner entity.

10. What is a foreign key constraint?

Ans:-

A foreign key is a column (or combination of columns) in a table whose values must match values of a column in some other table. FOREIGN KEY constraints enforce referential integrity, which essentially says that if column value A refers to column value B, then column value B must exist.

11. Answer each of the following questions briefly. The questions are based on the following relational schema:

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pcttime: integer)

Dept(did: integer, dname: string, budget: real, managerid: integer)

a. Give an example of a foreign key constraint that involves the Dept relation. What are the options for enforcing this constraint when a user attempts to delete a Dept tuple?

Ans:- CREATE TABLE Works (eid INTEGER NOT NULL, did INTEGER NOT NULL, pcttime INTEGER, PRIMARY KEY (eid, did), UNIQUE (eid), FOREIGN KEY (did) REFERENCES Dept)

b. Write the SQL statements required to create the preceding relations, including appropriate versions of all primary and foreign key integrity constraints.

Ans:-

CREATE TABLE Emp (eid INTEGER, ename CHAR(10), age INTEGER, salary REAL, PRIMARY KEY (eid))

CREATE TABLE Works (eid INTEGER, did INTEGER, pcttime INTEGER, PRIMARY KEY (eid, did), FOREIGN KEY (did) REFERENCES Dept, FOREIGN KEY (eid) REFERENCES Emp, ON DELETE CASCADE)

CREATE TABLE Dept (did INTEGER, budget REAL, managerid INTEGER, PRIMARY KEY (did), FOREIGN KEY (managerid) REFERENCES Emp, ON DELETE SET NULL)

c. Define the Dept relation in SQL so that every department is guaranteed to have a manager.

Ans:-

CREATE TABLE Dept (did INTEGER, budget REAL, managerid INTEGER NOT NULL, PRIMARY KEY (did), FOREIGN KEY (managerid) REFERENCES Emp)

d. Write an SQL statement to add John Doe as an employee with eid = 101, age = 32 and salary = 15, 000.

Ans:- INSERT INTO Emp (eid, ename, age, salary) VALUES (101, 'John Doe', 32, 15000)

e. Write an SQL statement to give every employee a 10 percent raise.

Ans:- UPDATE Emp E SET E.salary = E.salary * 1.10

f. Write an SQL statement to delete the Toy department.

Ans:- DELETE FROM Dept D WHERE D.dname = 'Toy'