

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 3

Arithmetic for Computers

Combinational vs. Sequential

- Combinational: output depends completely on the value of the inputs
 - time doesn't matter

- Sequential: output also depends on the state a little while ago
 - can depend on the value of the output some time in the past
 - we need a clock for synchronization/control

Memory

- Think about how you might design a combinational circuit that could be used as a single bit of *memory*
- Recall that the output of a gate can change whenever the inputs change

Gate Timing

Feedback

What happens when A changes from 1 to 0?

Set-Reset (S-R) latch

Two NOR gates

S-R latch Truth Table

If both S = 1 and R = 1, then Q's output is undefined

Q_{t}	$\mathtt{S}_{\mathtt{t}}$	R_t	Q_{t+1}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0?
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0?

S-R latch Timing s

Clocked S-R Latch

- Inside a computer we want the output of gates to change only at specific times
 - We can add some circuitry to make sure that changes occur only when a *clock* changes
 - i.e., when the clock changes from 0 to 1

Clocked S-R Latch

- Q only changes when the Clock is a 1
- If Clock is 0, neither S nor R are able to actually *reach* the NOR gates

What if S=R=1?

- The truth table earlier showed a question mark when S and R both equal 1
- The value of Q is nondeterministic
 - i.e., the circuit is not *stable*
- We need to make sure that S and R both do not equal 1 – but how?

What if S=R=1?

- The truth table earlier showed a question mark when S and R both equal 1
- The value of Q is nondeterministic
 - i.e., the circuit is not stable
- We need to make sure that S and R both do not equal 1 – but how?
 - Still use the clock
 - Combine S and R together

Avoiding S=R=1: D Flip-Flop

D Flip-Flop D Clock Q

- Now we have only one input: D
- If D is a 1 when the clock becomes 1, the circuit will *remember* the value 1 (Q=1)
- If D is a 0 when the clock becomes 1, the circuit will *remember* the value 0 (Q=0)

D Flip-Flop Timing

Pop Quiz

- Based on the diagrams we reviewed earlier, can you guess what the difference is between a latch and a flip-flop?
- A: A latch is level-triggered while a flip-flop is edge-triggered.
- B: A latch is edge-triggered while a flip-flop is level triggered.
- C: A latch might have non-deterministic states while a flip-flop is guaranteed to always be deterministic.
- D: None of the above.

8-Bit Memory

- We can use eight D Flip-Flops to create an 8-bit memory
- We have eight inputs that we want to store, all written at the same time
 - all eight flip-flops use the same clock
- Can use for registers

8-Bit Memory

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition

Example: 7 + 6

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)

<u>-6</u>: 1111 1111 ... 1111 1010

+1: 0000 0000 ... 0000 0001

- Overflow if result out of range
 - Subtracting two +ve or two -ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Dealing with Overflow

- Overflow occurs when the result of an operation cannot be represented in 32 bits
 - i.e., when the sign bit contains a value bit of the result and not the proper sign bit
 - When adding operands with different signs or when subtracting operands with the same sign, overflow can never occur

Operation	Operand A	Operand B	Result indicating overflow
X = A + B	A ≥ 0	B ≥ 0	X < 0
X = A + B	A < 0	B < 0	X ≥ 0
X = A - B	A ≥ 0	B < 0	X < 0
X = A - B	A < 0	B ≥ 0	X ≥ 0

Ignoring Overflow?

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

e.g., 0010 x 0011

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: 1 ⇒ Prod = Prod + Mcand	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	0000	0000 0100	0000 0010
2	1a: 1 ⇒ Prod = Prod + Mcand	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: 0 ⇒ No operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0 ⇒ No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
3: Shift right Multiplier		0000	0010 0000	0000 0110

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

e.g., 0111/0010

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	1: Rem = Rem - Div	0000	0010 0000	@110 0111
	2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
2	1: Rem = Rem - Div	0000	0001 0000	@111 0111
	2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
3	1: Rem = Rem - Div	0000	0000 1000	@111 1111
	2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
4	1: Rem = Rem - Div	0000	0000 0100	@000 0011
	2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
5	1: Rem = Rem - Div	0001	0000 0010	@000 0001
	2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT devision)
 generate multiple quotient bits per step
 - Still require multiple steps

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - \bullet ±1. $xxxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent - Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110⇒ actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $= \pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value

 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 x log₁₀2 ≈ 23 x 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 x log₁₀2 ≈ 52 x 0.3 ≈ 16 decimal digits of precision

Binary Refresher

When we look at a number like 10110₂, we're seeing it as:

$$1(2^4) + 0(2^3) + 1(2^2) + 1(2^1) + 0(2^0)$$

$$= 16 + 4 + 2 = 22_{10}$$

Binary Decimal Points

In decimal, 12.63 is the same as

$$1(10^{1}) + 2(10^{0}) + 6(10^{-1}) + 3(10^{-2})$$

In binary, 101.01₂ is the same as

$$1(2^2) + 0(2^1) + 1(2^0) + 0(2^{-1}) + 1(2^{-2})$$

$$= 4 + 1 + 0.25 = 5.25$$

Useful Exponent Identities

- $a^{b} * a^{c} = a^{b+c}$
 - Why memorize more than 2¹⁰ when we can just break them down?

$$2^{35} = 2^5 * 2^{30}$$

$$= 2^5 * 2^{10} * 2^{10} * 2^{10} = 32 \text{ GB}$$

- $a^{-b} = \frac{1}{a^b}$
 - When we have decimal terms, instead of seeing 2^{-1} , 2^{-2} , etc. use $\frac{1}{2^1}$, $\frac{1}{2^2}$, etc.

More Binary

- Dividing (shifting right) by 2₁₀ is the same as moving the decimal point one place to the left.
 - Same reasoning as when we divide by 10 in base 10
- Multiplying (shifting left) works the same way

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 10111111111101000...00

Floating-Point Example

 What number is represented by the singleprecision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Fxponent = $10000001_2 = 129$

$$x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

$$= (-1) \times 1.25 \times 2^{2}$$

$$= -5.0$$

IEEE 754-1985 Specials

- We reserve all 0s and all 1s in the exponent. This is why:
- $011111111110000...00 = +\infty$
- **■** 1111111110000...00 = -∞
- X11111111[non-zero] = NaN
 - e.g., square root of a negative number
- X000000000000...00 = 0
 - ...there's actually a positive zero and a negative zero

Denormal Numbers

Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^S \times (0 + Fraction) \times 2^{1-Bias}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{1-Bias} = \pm 0.0$$

Two representations of 0.0!

Pop Quiz

- What is the exact decimal value of 0x00000000 assuming IEEE 754 representation?
- A: 1.0
- B: 0.0
- C: -0.0
- D: +Infinity
- E: Infinity
- F: None of the above

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Addition

- Consider a 4-digit decimal example
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - \bullet 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - \bullet 9.999 × 10¹ + 0.016 × 10¹ = 10.015 × 10¹
- 3. Normalize result & check for over/underflow
 - \bullet 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002×10^2

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $-1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
 - \bullet 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021×10^6
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^6$

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.110_2 \Rightarrow 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve \times -ve \Rightarrow -ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually take several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 x 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c.xx.s, c.xx.d (xx is eq, 1t, 1e, ...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1  $f16, const5($gp)
    lwc1  $f18, const9($gp)
    div.s  $f16, $f16, $f18
    lwc1  $f18, const32($gp)
    sub.s  $f18, $f12, $f18
    mul.s  $f0, $f16, $f18
    jr  $ra
```

FP Example: Array Multiplication

- $X = X + Y \times Z$
 - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

Addresses of x, y, z in \$a0, \$a1, \$a2, and i, j, k in \$s0, \$s1, \$s2

FP Example: Array Multiplication

MIPS code:

```
li $t1, 32
                   # $t1 = 32 (row size/loop end)
   li $s0, 0
                   # i = 0; initialize 1st for loop
L1: li $s1, 0
                   # j = 0; restart 2nd for loop
L2: li \$s2, 0 # k = 0; restart 3rd for loop
   addu t2, t2, t2, t2 = i * size(row) + j
   sll $t2, $t2, 3 # $t2 = byte offset of [i][j]
   addu t2, a0, t2 \# t2 = byte address of <math>x[i][j]
   1.d f4, 0(t2) # f4 = 8 bytes of x[i][j]
L3: s11 $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
   addu t0, t0, s1 # t0 = k * size(row) + j
   sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
   addu t0, a2, t0 # t0 = byte address of <math>z[k][j]
   1.d f16, 0(t0) # f16 = 8 bytes of z[k][j]
```

...

FP Example: Array Multiplication

```
addu t0, t0, s2 # t0 = i*size(row) + k
sll $t0, $t0, 3 # $t0 = byte offset of [i][k]
addu t0, a1, t0 # t0 = byte address of y[i][k]
1.d f18, 0(t0) # f18 = 8 bytes of y[i][k]
mul.d f16, f18, f16 # f16 = y[i][k] * z[k][j]
add.d f4, f4, f4 # f4=x[i][j] + y[i][k]*z[k][j]
addiu $s2, $s2, 1 # $k k + 1
bne $s2, $t1, L3 # if (k != 32) go to L3
s.d f4, O(t2) # x[i][j] = f4
addiu $$1, $$1, 1 # $j = j + 1
bne $s1, $t1, L2 # if (j != 32) go to L2
                  # $i = i + 1
addiu $s0, $s0, 1
bne $s0, $t1, L1 # if (i != 32) go to L1
```

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Subword Parallellism

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - Sixteen 8-bit adds
 - Eight 16-bit adds
 - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 x 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from the top: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

Matrix Multiply

Unoptimized code:

```
1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
4.  for (int j = 0; j < n; ++j)
5.  {
6.  double cij = C[i+j*n]; /* cij = C[i][j] */
7.  for(int k = 0; k < n; k++)
8.  cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
9.  C[i+j*n] = cij; /* C[i][j] = cij */
10. }
11. }</pre>
```


Matrix Multiply

Optimized C code:

```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=8)
5.
  for (int j = 0; j < n; ++j)
6.
      {
7.
         m512d c0 = mm512 load pd(C+i+j*n); // c0 = C[i][j]
8.
            for ( int k = 0; k < n; k++ )
9.
              \{ // c0 += A[i][k]*B[k][i] \}
10.
                m512d bb = mm512 broadcastsd pd(mm load sd(B+j*n+k));
               c0 = mm512 \text{ fmadd pd (} mm512 \text{ load pd (} A+n*k+i), bb, c0);
11.
12.
13.
          mm512 store pd(C+i+j*n, c0); // C[i][j] = c0
14.
15.}
```

Matrix Multiply

Optimized x86 assembly code:

```
# Load 8 elements of C into %zmm1
vmovapd (%r11),%zmm1
                                 # register %rcx = %rbx
       %rbx,%rcx
mov
                                 # register %eax = 0
       %eax,%eax
xor
                                 # Make 8 copies of B element in %zmm0
vbroadcastsd (%rax, %r8,8), %zmm0
                                 # register %rax = %rax + 8
       $0x8,%rax
add
                                 # Parallel mul & add %zmm0, %zmm1
vfmadd231pd (%rcx),%zmm0,%zmm1
                                 # register %rcx = %rcx
add %r9,%rcx
                                 # compare %r10 to %rax
cmp %r10,%rax
jne 50 < dgemm + 0x50 >
                                 # jump if not %r10 != %rax
                                 # register % esi = % esi + 1
    $0x1, %esi
add
vmovapd %zmm1, (%r11)
                                 # Store %zmm1 into 8 C elements
```

Right Shift and Division

- Left shift by i places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - \blacksquare 11111011₂ >> 2 = 111111110₂ = -2
 - Rounds toward -∞
 - c.f. $11111011_2 >>> 2 = 001111110_2 = +62$

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
у	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

Pop Quiz

- Why doesn't associativity law seem to hold in the "Associativity" slide above?
- A: The result of y + z is outside of the range of values that can be represented.
- B: Associativity does not hold for any FP operations, regardless of specific values.
- C: Due to overflow.
- D: Due to underflow.
- E: The result of y + z cannot be represented exactly due to limited precision.
- F: None of the above.

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Improving Our ALU

Speed is important

- Using a ripple carry adder, the time required to perform addition is too long
 - each 1-bit ALU has two levels of gates
 - The input to the ith ALU includes an output from the (i-1)th ALU
 - For a 32-bit ALU, we face 64 gate delays before the addition is complete

Strategies for speeding things up

We could derive the truth table for each of the 32 result bits as a function of the 64 inputs

- We could build SOP expressions for each bit and implement our ALU using two levels of gates...
 - ...but that requires too much hardware

A more efficient approach

- The problem is the ripple
 - The last (MSB) carry-in takes a rather long time to compute
- We can try to compute the carry-in bits faster by using a technique called carry lookahead to create a carry-lookahead adder
 - It turns out we can easily compute the carry-in bits much faster
 - (but still not in constant time...)

Carry In Analysis

- CarryIn_i is input to the ith 1-bit adder
- CarryOut_{i-1} is connected to CarryIn_i for i>1
- We know how to compute the CarryOuts from the truth table

A	В	Carry	Carry	Sum
		In	Out	
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Computing the Carry Bits

- CarryIn₀ is an input to the adder
 - we don't compute this —— it's an input
- CarryIn₁ depends on A₀, B₀, and CarryIn₀:

CarryIn₁ =
$$(B_0 \cdot CarryIn_0) + (A_0 \cdot CarryIn_0) + (A_0 \cdot B_0)$$

SOP: Requires 2 levels of gates

CarryIn₂

CarryIn₂ =
$$(B_1 \cdot CarryIn_1) + (A_1 \cdot CarryIn_1) + (A_1 \cdot B_1)$$

We can then substitute for CarryIn₁ and obtain:

CarryIn₂ =
$$(B_1 \cdot B_0 \cdot CarryIn_0) + (B_1 \cdot A_0 \cdot CarryIn_0) + (B_1 \cdot A_0 \cdot B_0) + (A_1 \cdot B_0 \cdot CarryIn_0) + (A_1 \cdot A_0 \cdot CarryIn_0) + (A_1 \cdot A_0 \cdot CarryIn_0) + (A_1 \cdot A_0 \cdot B_0) + (A_1 \cdot B_1)$$

The length of these expressions gets way too big!

Another way to describe CarryIn?

$$C_{i+1} = (B_i \cdot C_i) + (A_i \cdot C_i) + (A_i \cdot B_i)$$

= ???

Pop Quiz

How can we further rearrange expression $(B_i \cdot C_i) + (A_i \cdot C_i) + (A_i \cdot B_i)$ to isolate C_i ?

- A: Apply distributive law and then commutative law twice.
- B: Apply DeMorgan's Theorem and then distributive law.
- C: Apply commutative law twice then distributive law.
- D: Apply associative law and then distributive law.
- E: None of the above.

Another way to describe CarryIn

$$C_{i+1} = (B_i \cdot C_i) + (A_i \cdot C_i) + (A_i \cdot B_i)$$

Commutative (twice)

$$= (A_i \cdot B_i) + (B_i \cdot C_i) + (A_i \cdot C_i)$$

$$= (A_i \cdot B_i) + (A_i \cdot C_i) + (B_i \cdot C_i)$$

Distributive (factoring out)

$$= (A_i \cdot B_i) + [(A_i + B_i) \cdot C_i]$$

Another way to describe CarryIn

$$C_{i+1} = (B_i \cdot C_i) + (A_i \cdot C_i) + (A_i \cdot B_i)$$

= $(A_i \cdot B_i) + (A_i + B_i) \cdot C_i$

A_i • B_i : Call this *Generate* (G_i)

A_i + B_i : Call this *Propagate* (P_i)

$$C_{i+1} = G_i + P_i \cdot C_i$$

Generate and Propagate

$$C_{i+1} = G_i + P_i \cdot C_i$$

 $G_i = A_i \cdot B_i$
 $P_i = A_i + B_i$

- Both A_i and B_i must be 1 for G_i to become 1
 - i.e., to generate a CarryOut
- If P_i is 1, then any CarryIn (C_i) is essentially propagated to CarryOut (C_{i+1})

Using G_i and P_i

$$C_1 = G_0 + P_0 \cdot C_0$$

$$C_2 = G_1 + P_1 \cdot C_1$$

= $G_1 + P_1 \cdot (G_0 + P_0 \cdot C_0)$
= $G_1 + P_1 \cdot G_0 + P_1 \cdot P_0 \cdot C_0$

$$C_3 = G_2 + P_2 \cdot G_1 + P_2 \cdot P_1 \cdot G_0 + P_2 \cdot P_1 \cdot P_0 \cdot C_0$$

$$C_4$$
 = etc. (try to write this out...)

Implementation

- Okay, so these expressions still get too big to handle (e.g., for 32 bits!)
- But we can minimize the time needed to compute all the Carryln bits for say a 4bit adder
- Then we can connect a bunch of 4-bit adders together and treat CarryIns to these adders in the same manner
 - i.e., use this 4-bit carry-lookahead adder as a single component to implement largerwidth adders

FIGURE B.6.3 Four 4-bit ALUs using carry lookahead to form a 16-bit adder. Note that the carries come from the carry-lookahead unit, not from the 4-bit ALUs.

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent