PENERAPAN K-MEANS DAN ALGORITMA GENETIKA UNTUK MENYELESAIKAN MTSP

(Studi Kasus Pada Perjalanan Menuju Seluruh SMA di Kabupaten Probolinggo)

Muhammad Faiz Nailun Ni'am

Pendidikan Matematika Universitas Nurul Jadid

27 Juli 2022

Muhammad Faiz Nailun Ni'am (PMAT UNUJA)

Multiple Travelling Salesman Problem

27 Juli 2022

1 / 1/

Daftar Isi

- Latar Belakang
- 2 Tujuan Penelitian
- 3 Batasan Masalah
- Metode Penelitian
- 5 Alur K-means dan Algoritma Genetika
- 6 Hasil

Pendahuluan

Muhammad Faiz Nailun Ni'am (PMAT UNUJA)

Multiple Travelling Salesman Problem

27 Juli 2022

3 / 14

Tujuan Penelitian

Tujuan Penelitian

- Mengetahui cara menemukan solusi *Multiple Travelling Salesman Problem* menggunakan algoritma genetika dan k-means.
- Menemukan solusi pembagian klaster dan urutan jalur terdekat menuju seluruh SMA di Kabupaten Probolinggo.

Batasan Masalah

Batasan Masalah

- Menggunakan 1 titik asal dan setiap salesman akan berangkat dan kembali pada titik kota yang sama.
- 2 Titik-titik tujuan adalah koordinat lokasi 75 SMA di Kabupaten Probolinggo baik negeri maupun swasta.
- 3 Tidak ada prioritas sekolah mana saja yang dilalui terlebih dahulu.

Asumsi

- Setiap titik tujuan diasumsikan selalu terhubung dan berjalan lurus.
- 2 Titik kumpul menggunakan koordinat rata-rata dari semua
- 3 Jarak yang digunakan adalah jarak Euclidean distance (Jarak garis lurus antara 2 titik)

Muhammad Faiz Nailun Ni'am (PMAT UNUJA)

Multiple Travelling Salesman Problem

27 Juli 2022

5/14

Penelitian Terdahulu

Applying K-means and Genetic Algorithm for Solving MTSP

Membahas tentang persilangan jalur antara tiap salesman yang dapat dihindari dengan menggunakan algoritma genetika dan k-means yang dapat meminimalisir terjadinya tabrakan antara salesman.

Optimasi Multiple Travelling Salesman Problem (M-TSP) pada Penentuan Rute Optimal Penjemputan Penumpang Travel Menggunakan Algoritme Genetika

Membahas permasalahan *salesman* yang akan berangkat dari kantor *travel* menuju ke alamat penjemputan masing-masing penumpang. Pada permasalahan tersebut menggunakan representasi permutasi, proses reproduksi *crossover*, mutasi, dan seleksi.

Penyelesaian Multitraveling Salesman Problem dengan Algoritma Genetika

Membahas kinerja algoritma genetika berdasarkan jarak minimum dan waktu pemrosesan yang diperlukan untuk 10 kali pengulangan untuk setiap kombinasi kota penjual.

Metode Penelitian

Data Penelitian

Dalam penelitian ini data yang digunakan adalah nama dan koordinat lokasi dari seluruh SMA di Kabupaten Probolinggo yang dikumpulkan dari:

- 1 https://referensi.data.kemdikbud.go.id/
- 1 https://earth.google.com/.

Muhammad Faiz Nailun Ni'am (PMAT UNUJA)

Multiple Travelling Salesman Problem

27 Juli 2022

7 / 14

SMA di Kabupaten Probolinggo

Gambar: 75 SMA Negeri dan Swasta di Kabupaten Probolinggo

Euclidean distance

Definisi

Euclidean distance adalah jarak garis lurus antara dua titik.

Persamaan Euclidean distance

$$d_{ij} = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2}$$
 (1)

Keterangan:

- ullet d_{ij} adalah nilai jarak pada titik i ke titik j
- ullet x_i dan y_i adalah nilai koordinat x dan y pada titik i
- x_i dan y_i adalah nilai koordinat x dan y pada titik j

Muhammad Faiz Nailun Ni'am (PMAT UNUJA)

Multiple Travelling Salesman Problem

27 Juli 2022

9 / 14

Alur K-means dan Algoritma Genetika

Alur K-means dan Algoritma Genetika

Muhammad Faiz Nailun Ni'am (PMAT UNUJA)

Multiple Travelling Salesman Problem

27 Juli 2022

11 / 14

Hasil algoritma genetika dengan banyak klaster berbeda

Total jarak dari tiap pembagian klaster

Banyak Klaster	Total Jarak	Peringkat	Titik Asal	
			Latitude (X)	Longitude (Y)
1	10,0503	10	-7,8221841	113,3570412
2	6,858777	9	-7,8241236	113,3236903
3	5,599878	8	-7,8219762	113,3512877
4	5,010994	7	-7,8215022	113,3644199
5	4,805015	6	-7,828521	113,3744846
6	4,43132	3	-7,8265701	113,3475373
7	4,353295	1	-7,8331118	113,3721289
8	4,398984	2	-7,8358502	113,3704048
9	4,48243	4	-7,8321462	113,356253
10	4,780413	5	-7,8406976	113,3665328

Hasil algoritma genetika dengan banyak klaster berbeda

Kesimpulan dan Saran

Kesimpulan

- Jalur terpendek menuju seluruh SMA di Kabupaten Probolinggo dapat menggunakan algoritma genetika dan k-means dengan pembagian 7 klaster.
- 2 Jarak yang dihasilkan dengan pembagian klaster tersebut adalah 4,353294644 satuan koordinat dengan urutan perjalanan sebagaimana tertera pada naskah skripsi.

Saran

- Mencoba algoritma lain untuk mengetahui metode yang lebih efektif dan untuk mengurangi persilangan antar tiap salesman.
- Menambahkan variabel waktu tempuh, karena dalam penelitian ini hanya variabel jarak saja.
- 3 Jarak dapat menggunakan jarak asli bukan dengan Euclidean distance