5c. Square Quantum Well

• **sqw.cpp**: write a program to find the energy levels of the asymmetric finite potential well in quantum mechanics. These are the roots of the trascendental equation

$$\sqrt{E} = s\pi - \sin^{-1}\left(\sqrt{\frac{E}{V_1}}\right) - \sin^{-1}\left(\sqrt{\frac{E}{V_2}}\right)$$

- Here E (already normalized to $\hbar^2/(mL^2)$) is the energy of the particle in the well while s = 1,2, 3, ... is the quantum energy number. V_1 and V_2 are the potentials on the left and on the right, respectively,
- Choose $V_1 = 250$ and $V_2 = 80$ and obtain the first three energy levels using bisection and secant method, with a tolerance of 10^{-8} . Write at least the 6 decimal digits.
- As a rule of thumb, your initial search interval should not exceed the domain of the function. For the secant method to succeed, you may have to improve it a little bit.
- Upload you code with i) the output inserted in the comments at the beginning of the file, ii) the required library function at the end, e.g.

```
// Name: <your name>
// Date: <date>
// Code output:
// *******************************
// Bisection, results:
// s = 1; Root: ??; ntry = ??
// s = 2; Root: ??; ntry = ??
// s = 3; Root: ??; ntry = ??
// Secant, results:
// s = 1; Root: ??; ntry = ??
// s = 2; Root: ??; ntry = ??
// s = 3; Root: ??; ntry = ??
#include ...
int main()
  // code here
void Bisection(...){
}
void Secant(..){
}
```