

Please type a plus sign (+) inside this box →

Approved for use through 09/30/2000. OMB 0651-0031

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.**TRANSMITTAL
FORM**

(to be used for all correspondence after initial filing)

Total Number of Pages in This Submission

Application Number	10/308,895
Filing Date	December 24, 2001
First Named Inventor	Kulp et al.
Group Art Unit	1623
Examiner Name	Unknown
Attorney Docket Number	3379.1

ENCLOSURES (check all that apply)

- Fee Transmittal Form
 - Fee Attached
- Amendment / Response
 - After Final
- Affidavits/declaration(s)
- Extension of Time Request
- Express Abandonment Request
- Information Disclosure Statement
- Certified Copy of Priority Document(s)
- Response to Missing Parts/ Incomplete Application
 - Response to Missing Parts under 37 CFR 1.52 or 1.53

<input type="checkbox"/> Assignment Papers	<input type="checkbox"/> After Allowance Communication to
3/19/03	
<p>Dear Sir/ Madam:</p> <p>The circled serial number is incorrect and the correct number has been typed in. An original filing of the attached was mailed today 3/19/03. Please accept this copy with the correct serial number. If you have any questions, please contact me at 408/731-5886. Thank you.</p> <p>Sylvia Rogers Patent Assistant</p>	
<p>Communication to Board of Appeals and Interferences</p> <p>Communication to Group Notice, Brief, Reply Brief</p> <p>any Information</p> <p>Letter</p> <p>Final Enclosure(s) identify below):</p> <p>turn Receipt Postcard;</p> <p>Transmittal for Substitute Sequence Listing & Preliminary Amendment;</p> <p>Diskette;</p> <p>Sequence Listing, 27 pp;</p> <p>art 2, Copy of Notice to Comply.</p>	
Remarks	

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT

Firm or Individual name	Leticia R. Block, Reg. No.: 50,167	
Signature	<i>Leticia R. Block</i>	
Date	03-18-2003	

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Assistant Commissioner for Patents, Washington, D.C. 20231 on this date:

Typed or printed name	Sylvia Rogers	
Signature	<i>Sylvia Rogers</i>	Date <input type="text" value="3/19/03"/>

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be send to the Chief Information Officer, Patent and Trademark Office,

RECEIVED

APR 25 2003

PATENT
Atty. Docket No. 3379.1

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Kulp et. al.

Examiner: Unknown

Serial No: 10/038,895

Group Art Unit: 1623

Filing Date: October 24, 2001

Title: NUCLEIC ACIDS ENCODING
G PROTEINS COUPLED RECEPTORS

TECH CENTER 1600/2900

APR 25 2003

RECEIVED

TRANSMITTAL OF SUBSTITUTE SEQUENCE LISTING AND PRELIMINARY
AMENDMENT

Commissioner for Patents
Washington, D.C. 20231

Sir:

This Substitute Sequence Listing is submitted in response to the Notice to Comply with Sequence Requirements mailed on March 10, 2003.

Transmitted herewith is a copy of a Substitute "Sequence Listing" (27 sheets) in paper form for the above-identified patent application as required by 37 C.F.R. 1.825(a) and 1.821(c). A copy of the "Sequence Listing" in computer readable form as required by 37 C.F.R. 1.825(b) and 1.821(e) is enclosed herewith.

As required by 37 C.F.R. 1.825(b), Applicant's representative hereby states that the content of the "Sequence Listing" in paper form and the computer readable form of the "Sequence Listing" are the same and, as required by 37 C.F.R. 1.825(a), also states that the submission includes no new matter.

Atty. Docket No. 3379.1

Please amend the above-identified application as follows:

In the Specification:

Please replace the "Sequence Listing" filed on February 19, 2003 with the attached
Substitute "Sequence Listing" comprising SEQ ID NOs: 1-20.

REMARKS

The "organism" in SEQ ID NO: 1 has been renamed from "synthetic" to "artificial sequence" in order to comply with the rules.

Applicants believe that no fee is required. However if a fee is required, the Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account 01-0431.

Dated: 03-18-03

Respectfully submitted,

Leticia R. Block

Leticia R. Block
Reg. No. 50,167

Affymetrix, Inc.
3380 Central Expressway
Santa Clara, CA 95051
Tel: 408-731-5000
Fax: 408-731-5392

3379.1.ST25.txt
SEQUENCE LISTING

<110> Kulp, David C.
Siani-Rose, Michael A.
Williams, Alan J.
Harmon, Cyrus L.

<120> Nucleic Acids Encoding G Proteins Coupled Receptors

<130> 3379.1

<140> 10/038,895
<141> 2001-10-24

<150> US 60/244,082
<151> 2000-10-26

<160> 20

<170> PatentIn version 3.2

<210> 1
<211> 274
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic Organism

<220>
<221> misc_feature
<222> (126)..(126)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> misc_feature
<222> (146)..(146)
<223> Xaa can be any naturally occurring amino acid

<400> 1

Leu Leu Ala Pro Thr Gly Ser Leu Phe Arg Asn Cys Thr Gln Asp Gly
1 5 10 15

Trp Ser Glu Thr Phe Pro Arg Pro Asn Leu Ala Cys Gly Val Asn Val
20 25 30

Asn Asp Ser Ser Asn Glu Lys Arg Ser Tyr Leu Leu Lys Leu Lys Val
35 40 45

Met Tyr Thr Val Gly Tyr Ser Ser Ser Leu Val Met Leu Leu Val Ala
50 55 60

Leu Gly Ile Leu Cys Ala Phe Arg Arg Leu His Cys Thr Arg Asn Tyr
65 70 75 80

Ile His Met His Leu Phe Val Ser Phe Ile Leu Arg Ala Leu Ser Asn
Page 1

TECH CENTER 1600/2900

RECEIVED
APR 25 2003

85

3379.1.ST25.txt

90

95

Phe Ile Lys Asp Ala Val Leu Phe Ser Ser Asp Asp Val Thr Tyr Cys
100 105 110

Asp Ala His Arg Gly Cys Lys Leu Val Met Val Leu Phe Xaa Tyr Cys
115 120 125

Ile Met Ala Asn Tyr Ser Trp Leu Leu Val Glu Gly Ser Thr Phe Thr
130 135 140

His Xaa Leu Ala Ile Ser Phe Phe Ser Glu Arg Lys Tyr Leu Gln Gly
145 150 155 160

Phe Val Ala Phe Gly Trp Gly Ser Pro Ala Ile Phe Val Ala Leu Trp
165 170 175

Ala Ile Ala Arg His Phe Leu Glu Asp Val Gly Cys Trp Asp Ile Asn
180 185 190

Ala Asn Ala Ser Ile Trp Trp Ile Ile Arg Gly Pro Val Ile Leu Ser
195 200 205

Ile Leu Asn Phe Ile Leu Phe Ile Asn Ile Leu Arg Ile Leu Met Arg
210 215 220

Lys Leu Arg Thr Gln Glu Thr Arg Gly Asn Glu Val Ser His Tyr Lys
225 230 235 240

Arg Leu Ala Arg Ser Thr Leu Leu Leu Ile Pro Leu Phe Gly Ile His
245 250 255

Tyr Ile Val Phe Ala Phe Ser Pro Glu Asp Ala Met Glu Ile Gln Leu
260 265 270

Phe Phe

<210> 2
<211> 381
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Organism

<400> 2
ctcttggcac ccacaggttc ctgtttccga aactgcacac aggatggctg gtcagaaaacc 60
ttccccaggc ctaatctggc ctgtggcggtt aatgtgaacg actcttccaa cgagaagcgg 120
Page 2

3379.1.ST25.txt

cactcctacc	tgctgaagct	gaaagtcatg	tacaccgtgg	gctacagctc	ctccctggtc	180
atgctcctgg	tcgccttgg	catcctctgt	gctttccgga	ggctccactg	cactcgcaac	240
tacatccaca	tgcacctgtt	cgtgtccttc	atccttcgtg	ccctgtccaa	cttcatcaag	300
gacgccgtgc	tcttctcctc	agatgatgtc	acctactgctg	atgcccacag	ggcgggctgc	360
aagctggtca	tggtgctgtt	c				381

<210> 3
<211> 447
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Organism

<220>
<221> misc_feature
<222> (58)..(58)
<223> n is a, c, g, or t

<400> 3	tactgcatca	tggccaacta	ctcctggctg	ctggtggaag	gctctacatt	cacacatntc	60
	ctcgccatct	ccttcttctc	tgaaagaaag	tacctccagg	gatttgtggc	attcggatgg	120
	ggttctccag	ccatffffgt	tgctttgtgg	gctattgcca	gacactttct	ggaagatgtt	180
	gggtgctggg	acatcaatgc	caacgcattcc	atctggtgg	tcattcgtgg	tcctgtgatc	240
	ctctccatcc	tgattaattt	catccttttc	ataaacattc	taagaatcct	gatgagaaaa	300
	cttagaaccc	aagaaaacaag	aggaaatgaa	gtcagccatt	ataagcgcct	ggccagggtcc	360
	actctccctgc	tgatccccct	ctttggcatc	cactacatcg	tcttcgcctt	ctccccagag	420
	gacgctatgg	agatccagct	gtttttt				447

<210> 4
<211> 828
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Organism

<220>
<221> misc_feature
<222> (439)..(439)
<223> n is a, c, g, or t

<400> 4	ctcttggcac	ccacaggttc	cttggccga	aactgcacac	aggatggctg	gtcagaaaacc	60
	ttccccaggc	ctaatctggc	ctgtggcggt	aatgtgaacg	actcttccaa	cgagaagcgg	120

3379.1.ST25.txt

cactcctacc	tgctgaagct	gaaagtcatg	tacaccgtgg	gctacagctc	ctccctggtc	180
atgctcctgg	tcgccttgg	catcctctgt	gctttccgga	ggctccactg	cactcgcaac	240
tacatccaca	tgcacctgtt	cgtgtccttc	atccttcgtg	ccctgtccaa	cttcatcaag	300
gacgccgtgc	tcttctcctc	agatgatgtc	acctactgctg	atgcccacag	ggcgggctgc	360
aagctggta	tttgtctgtt	ctactgcattc	atggccaact	actcctggct	gctggtgaa	420
ggctctacct	tcacacatnt	cctcgccatc	tccttcttct	ctgaaaagaaa	gtacctccag	480
ggatttgtgg	cattcggatg	gggttctcca	gccatttttg	ttgctttgtg	ggctattgcc	540
agacactttc	tggaagatgt	tgggtctgg	gacatcaatg	ccaacgcattc	catctggtgg	600
atcattcgtg	gtcctgtgat	cctctccatc	ctgattaatt	tcatcctttt	cataaacatt	660
ctaagaatcc	tgatgagaaa	acttagaacc	caagaaacaa	gaggaaatga	agttagccat	720
tataagcgc	tggccaggtc	cacttcctg	ctgatcccc	tctttggcat	ccactacatc	780
gtcttcgcct	tctccccaga	ggacgctatg	gagatccagc	tgaaaaaa		828

<210> 5
<211> 320
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic organism

<400> 5

Pro Thr Phe Ile Leu Phe Ser Phe Gln Pro Gly Asp Lys Arg Thr Lys
1 5 10 15

His Ile Cys Val Tyr Trp Glu Gly Ser Glu Gly Gly His Trp Ser Thr
20 25 30

Glu Gly Cys Ser His Val His Ser Asn Gly Ser Tyr Thr Lys Cys Lys
35 40 45

Cys Phe His Leu Ser Ser Phe Ala Val Leu Val Ala Leu Ala Pro Lys
50 55 60

Asp Pro Val Leu Thr Val Ile Thr Gln Val Gly Leu Thr Ile Ser Leu
65 70 75 80

Leu Cys Leu Phe Leu Ala Ile Leu Thr Phe Leu Leu Cys Arg Pro Ile
85 90 95

Gln Asn Thr Ser Thr Ser Leu His Leu Glu Leu Ser Leu Cys Leu Phe
100 105 110

3379.1.ST25.txt

Leu Ala His Leu Leu Phe Leu Thr Gly Ile Asn Arg Thr Glu Pro Glu
115 120 125

Leu Cys Ser Ile Ile Ala Gly Leu Leu His Phe Leu Tyr Leu Ala Cys
130 135 140

Phe Thr Trp Met Leu Leu Glu Gly Leu His Leu Phe Leu Thr Val Arg
145 150 155 160

Asn Leu Lys Val Ala Asn Tyr Thr Ser Thr Gly Arg Phe Lys Lys Arg
165 170 175

Phe Met Tyr Pro Val Gly Tyr Gly Ile Pro Ala Val Ile Ile Ala Val
180 185 190

Ser Ala Ile Val Gly Pro Gln Asn Tyr Gly Thr Phe Thr His Cys Trp
195 200 205

Leu Lys Leu Asp Lys Gly Phe Ile Trp Ser Phe Met Gly Pro Val Ala
210 215 220

Val Ile Ile Leu Asn Leu Val Phe Tyr Phe Gln Val Leu Trp Ile Leu
225 230 235 240

Arg Ser Lys Leu Ser Ser Leu Asn Lys Glu Val Ser Thr Ile Gln Asp
245 250 255

Thr Arg Val Met Thr Phe Lys Ala Ile Ser Gln Leu Phe Ile Leu Gly
260 265 270

Cys Ser Trp Gly Leu Gly Phe Phe Met Val Glu Glu Val Gly Lys Thr
275 280 285

Ile Gly Ser Ile Ile Ala Tyr Ser Phe Thr Ile Ile Asn Thr Leu Gln
290 295 300

Gly Val Leu Leu Phe Val Val His Cys Leu Leu Asn Arg Gln Val Arg
305 310 315 320

<210> 6
<211> 969
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic organism

<400> 6
cccactttca tactattctc tttccagcct ggtgacaaga gaacaaaaca tatctgtgtc 60

3379.1.ST25.txt

tactggagg gatcagaggg aggccactgg tccacggagg gctgctcta tgtgcacagc	120
aacggttctt acaccaaatg caagtgcctc catctgtcca gcttgccgt cctcggtgc	180
cttgccccca aggaggaccc tgtgtgacc gtgatcaccc aggtgggct gaccatctc	240
ctgctgtgcc tcttcctggc catcctcacc ttccctcgt gcccggccat ccagaacacc	300
agcacccccc tccatctaga gctctccctc tgcctttcc tggcccacct cctgttcctg	360
acgggcatca acagaactga gcctgaggtg ctgtgctcca tcattgcagg gctgctgcac	420
ttcctctacc tggcttgctt cacctggatg ctcccttcc ggctgcacct cttcctcacc	480
gtcaggaacc tcaaggtggc caactacacc agcacggca gattcaagaa gaggttcatg	540
taccctgttag gctacggat cccagctgtg attattgctg tgtagcaat agttggaccc	600
cagaattatg gaacatttac tcactgttgg ctcaagcttg ataaaggatt catctggagc	660
ttcatgggc cagtagcagt cattatcttgg ataaaccttgg tggttctactt ccaagttctg	720
tggattttga gaagcaaact ttccctccctc aataaagaag tttccaccat tcaggacacc	780
agagtcatga catttaaagc catttcttag ctatttatcc tgggtgttc ttggggcctt	840
ggtttttta tgggtgaaga agtaggaaag acgattggat caatcattgc atactcattc	900
accatcatca acacccttca gggagtgttgc ctctttgttgc tacactgtct ccttaatcgc	960
caggtaagg	969

<210> 7
<211> 217
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Organism

<400> 7

Gln His Ser Asp Ala Val His Asp Leu Leu Leu Asp Val Ile Thr Trp
1 5 10 15

Val Gly Ile Leu Leu Ser Leu Val Cys Leu Leu Ile Cys Ile Phe Thr
20 25 30

Phe Cys Phe Phe Arg Gly Leu Gln Ser Asp Arg Asn Thr Ile His Lys
35 40 45

Asn Leu Cys Ile Ser Leu Phe Val Ala Glu Leu Leu Phe Leu Ile Gly
50 55 60

Ile Asn Arg Thr Asp Gln Pro Ala Cys Ala Val Phe Ala Ala Leu Leu
65 70 75 80

3379.1.ST25.txt

His Phe Phe Phe Leu Ala Ala Phe Thr Trp Met Phe Leu Glu Gly Val
 85 90 95

Gln Leu Tyr Ile Met Leu Val Glu Val Phe Glu Ser Glu His Ser Arg
 100 105 110

Arg Lys Tyr Phe Tyr Leu Val Gly Tyr Gly Met Pro Ala Leu Ile Val
 115 120 125

Ala Val Ser Ala Ala Val Asp Tyr Arg Ser Tyr Gly Thr Asp Lys Val
 130 135 140

Cys Trp Leu Arg Leu Asp Thr Tyr Phe Ile Trp Ser Phe Ile Gly Pro
 145 150 155 160

Ala Thr Leu Ile Ile Met Asn Val Ile Phe Leu Gly Ile Ala Leu Tyr
 165 170 175

Lys Met Phe His His Thr Ala Ile Leu Lys Pro Glu Ser Gly Cys Leu
 180 185 190

Asp Asn Ile Lys Leu Lys Ile Asn Ile Pro Ile Ile Lys Ser Ile Tyr
 195 200 205

Ile Tyr Met Tyr Ile Cys Met Cys Val
 210 215

<210> 8

<211> 657

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic organism

<400> 8

cagcacagtg atgcggtcca tgacccctt ctggatgtga tcacgtgggt tggaaatttg	60
ctgtcccttg tttgtctcct gattgcattc ttcacatttt gcttttccg ggggctccag	120
agtgaccgta acaccatcca caagaacctc tgcattcgtc tctttgttagc agagctgctc	180
ttcctgattt gatatcaaccg aactgaccaa ccaattgcct gtgctgtttt cgctgccctg	240
ttacattttt tcttcttggc tgccttcacc tggatgttcc tggagggggt gcagctttat	300
atcatgctgg tggaggtttt tgagagtcaa cattcacgta ggaaataactt ttatctggtc	360
ggctatggaa tgcctgcact cattgtggct gtgtcagctg cagtagacta caggagttat	420
ggaacagata aagtatgttg gctccgactt gacacctact tcatttggag ttttatagga	480
ccagcaactt tgataattat gcttaatgta atcttccttg ggattgcttt atataaaaatg	540

3379.1.ST25.txt

tttcatcata ctgctatact	gaaacctgaa tcaggctgtc	ttgataacat caagttaaaa	600
attaatattc caattataaa	atctatTTT atctatatGT	atATATGcat gtgtgtg	657

<210> 9
<211> 304
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Organism

<400> 9

Gly Asn Val Ala Val Ala Phe Val Tyr Tyr Lys Ser Ile Gly Pro Leu
1 5 10 15

Leu Ser Ser Ser Asp Asn Phe Leu Leu Lys Pro Gln Asn Tyr Asp Asn
20 25 30

Ser Glu Glu Glu Glu Arg Val Ile Ser Ser Val Ile Ser Val Ser Met
35 40 45

Ser Ser Asn Pro Pro Thr Leu Tyr Glu Leu Glu Lys Ile Thr Phe Thr
50 55 60

Leu Ser His Arg Lys Thr Asp Arg Tyr Arg Ser Leu Cys Ala Phe Trp
65 70 75 80

Asn Tyr Ser Pro Asp Thr Met Asn Gly Ser Trp Ser Ser Glu Gly Cys
85 90 95

Glu Leu Thr Tyr Ser Asn Glu Thr His Thr Ser Cys Arg Cys Asn His
100 105 110

Leu Thr His Phe Ala Ile Leu Met Ser Ser Gly Pro Ser Ile Ile Lys
115 120 125

Asp Tyr Asn Ile Leu Thr Arg Ile Thr Gln Leu Gly Ile Ile Ile Ser
130 135 140

Leu Ile Cys Leu Ala Ile Cys Ile Phe Thr Phe Trp Phe Ser Glu
145 150 155 160

Ile Gln Ser Thr Arg Thr Thr Ile His Lys Asn Leu Cys Cys Ser Leu
165 170 175

Phe Leu Ala Glu Leu Val Phe Leu Val Gly Ile Asn Thr Asn Thr Asn
180 185 190

3379.1.ST25.txt

Lys Phe Cys Ser Ile Ile Ala Gly Leu Leu His Tyr Phe Phe Leu Ala
195 200 205

Ala Phe Ala Trp Met Cys Ile Glu Gly Ile His Leu Tyr Leu Ile Val
210 215 220

Val Gly Val Ile Tyr Asn Lys Gly Phe Leu His Lys Asn Phe Tyr Ile
225 230 235 240

Phe Gly Tyr Leu Ser Pro Ala Val Val Val Gly Phe Ser Ala Ala Leu
245 250 255

Gly Tyr Arg Tyr Tyr Gly Thr Thr Lys Val Cys Trp Leu Ser Thr Glu
260 265 270

Asn Asn Phe Ile Trp Ser Phe Ile Gly Pro Ala Cys Leu Ile Ile Leu
275 280 285

Val Cys Ile Tyr Lys Ile Val Ile Thr Ile Gln Lys Ser Asp Asp His
290 295 300

<210> 10
<211> 921
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic organism

<400> 10 ggcaatgttg cagttgcatt tgttatattat aagagtattg gtccttgct ttcatcatct 60
gacaacttct tattgaaacc tcaaattat gataattctg aagaggagga aagagtcata 120
tcttcagtaa tttcagtctc aatgagctca aacccaccca cattatatga acttgaaaaa 180
ataacattna cattaagtca tcgaaaggc acagataggat ataggagtct atgtgcattt 240
tggaaattact cacctgatac catgaatggc agctggctt cagaggctg tgagctgaca 300
tactcaaatg agacccacac ctcatgccgc tgtaatcacc tgacacattt tgcaattttg 360
atgtccctcg gtccttccat tggtaattaaa gattataata ttcttacaag gatcactcaa 420
cttagaataa ttatcact gatttgtctt gccatatgca ttttacctt ctggttcttc 480
agtgaaattc aaagcaccag gacaacaatt cacaaaaatc tttgctgttag cctatttctt 540
gctgaacttg ttttcttgt tggatcaat acaaatacta ataagctctt ctgttcaatc 600
attgccggac tgctacacta cttctttta gctgctttg catggatgtg cattgaaggc 660
atacatctct atctcattgt tgtgggtgtc atctacaaca agggatttt gcacaagaat 720
ttttatatct ttggctatct aagcccagcc gtggtagttg gatttcggc agcactagga 780

3379.1.ST25.txt

tacagatatt atggcacaac caaagtatgt tggcttagca ccgaaaacaa ctttatttg	840
agtttatag gaccagcatg cctaattcatt ctgtatgtatataaaat tgttattaca	900
attcaaaaaa gtgatgatca t	921
<210> 11	
<211> 203	
<212> PRT	
<213> Artificial Sequence	
<220>	
<223> Synthetic organism	
<400> 11	
Gly Ala Trp Ala Thr Thr Gly Cys Ser Val Ala Ala Leu Tyr Leu Asp	
1 5 10 15	
Ser Thr Ala Cys Phe Cys Asn His Ser Thr Ser Phe Ala Ile Leu Leu	
20 25 30	
Gln Ile Tyr Glu Val Gln Gly Pro Glu Glu Glu Ser Leu Leu Arg Thr	
35 40 45	
Leu Ser Phe Val Gly Cys Gly Val Ser Phe Cys Ala Leu Thr Thr Thr	
50 55 60	
Phe Leu Leu Phe Leu Val Ala Gly Val Pro Lys Ser Glu Arg Thr Thr	
65 70 75 80	
Val His Lys Asn Leu Thr Phe Ser Leu Ala Ser Ala Glu Gly Phe Leu	
85 90 95	
Met Thr Ser Glu Trp Ala Lys Ala Asn Glu Ala Cys Val Ala Val Thr	
100 105 110	
Val Ala Met His Phe Leu Phe Leu Val Ala Phe Ser Trp Met Leu Val	
115 120 125	
Glu Gly Leu Leu Leu Trp Arg Lys Val Val Ala Val Ser Met His Pro	
130 135 140	
Gly Pro Gly Met Arg Leu Tyr His Ala Thr Gly Trp Gly Val Pro Val	
145 150 155 160	
Gly Ile Val Ala Val Thr Leu Ala Met Leu Pro His Asp Tyr Val Ala	
165 170 175	
Pro Gly His Cys Trp Leu Asn Val His Thr Asn Ala Ile Trp Ala Phe	
180 185 190	

3379.1.ST25.txt

Val Gly Pro Val Leu Phe Val Leu Thr Val Ser
195 200

<210> 12
<211> 615
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic organism

<400> 12
ggtgccctggg ccaccacagg ctgcgtccgtg gctgcctgtt acctggactc caccgcctgc 60
ttctgcacc accacgaccatc ctttgccatc ctgctgcaaa tctatgaagt acagagaggc 120
cctgaggagg agtcgctgtc gaggactctg tcatttggg gctgtggcgt gtcccttcgc 180
gccctcacca ccacccctt gctcttcctg gtggccgggg tcccccaagtc agagcgaacc 240
acagtccaca agaacctcac cttctccctg gcctctgccc agggcttcct catgaccagc 300
gagtgggcca aggccaatga ggtggcatgt gtggctgtca cagtcgcaat gcacttcctc 360
tttctgggtgg cattctccctg gatgctgggtg gaggggctgc tgctgtggag gaaggtggta 420
gctgtgagca tgcacccggg cccaggcatg cggctctacc acgcccacagg ctggggcggt 480
cctgtgggca tcgtggcggt caccctggcc atgctcccccc atgactacgt ggccccccgga 540
cattgctggc tcaatgtgca cacaatgcc atctgggcct tcgtggggcc tgtgctttc 600
gtgctgactg tgagc 615

<210> 13
<211> 1339
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic organism

<400> 13

Met Lys Ser Pro Arg Arg Thr Thr Leu Cys Leu Met Phe Ile Val Ile
1 5 10 15

Tyr Ser Ser Lys Ala Ala Leu Asn Trp Asn Tyr Glu Ser Thr Ile His
20 25 30

Pro Leu Leu His Glu His Glu Pro Ala Gly Glu Glu Ala Leu Arg Gln
35 40 45

Lys Arg Ala Val Ala Thr Lys Ser Pro Thr Ala Glu Glu Tyr Thr Val
50 55 60

3379.1.ST25.txt

Asn Ile Glu Ile Ser Phe Glu Asn Ala Ser Phe Leu Asp Pro Ile Lys
65 70 75 80

Ala Tyr Leu Asn Ser Leu Ser Phe Pro Ile His Gly Asn Asn Thr Asp
85 90 95

Gln Ile Thr Asp Ile Leu Ser Ile Asn Val Thr Thr Val Cys Arg Pro
100 105 110

Ala Gly Asn Glu Ile Trp Cys Ser Cys Glu Thr Gly Tyr Gly Trp Pro
115 120 125

Arg Glu Arg Cys Leu His Asn Leu Ile Cys Gln Glu Arg Asp Val Phe
130 135 140

Leu Pro Gly His His Cys Ser Cys Leu Lys Glu Leu Pro Pro Asn Gly
145 150 155 160

Pro Phe Cys Leu Leu Gln Glu Asp Val Thr Leu Asn Met Arg Val Arg
165 170 175

Leu Asn Val Gly Phe Gln Glu Asp Leu Met Asn Thr Ser Ser Ala Leu
180 185 190

Tyr Arg Ser Tyr Lys Thr Asp Leu Glu Thr Ala Arg Lys Gly Tyr Gly
195 200 205

Ile Leu Pro Gly Phe Lys Gly Val Thr Val Thr Gly Phe Lys Ser Gly
210 215 220

Ser Val Val Val Thr Tyr Glu Val Lys Thr Thr Pro Pro Ser Leu Glu
225 230 235 240

Leu Ile His Lys Ala Asn Glu Gln Val Val Gln Ser Leu Asn Gln Thr
245 250 255

Tyr Lys Met Asp Tyr Asn Ser Phe Gln Ala Val Thr Ile Asn Glu Ser
260 265 270

Asn Phe Phe Val Thr Pro Glu Ile Ile Phe Glu Gly Asp Thr Val Ser
275 280 285

Leu Val Cys Glu Lys Glu Val Leu Ser Ser Asn Val Ser Trp Arg Tyr
290 295 300

Glu Glu Gln Gln Leu Glu Ile Gln Asn Ser Ser Arg Phe Ser Ile Tyr
305 310 315 320

3379.1.ST25.txt

Thr Ala Leu Phe Asn Asn Met Thr Ser Val Ser Lys Leu Thr Ile His
325 330 335

Asn Ile Thr Pro Gly Asp Ala Gly Glu Tyr Val Cys Lys Leu Ile Leu
340 345 350

Asp Ile Phe Glu Tyr Glu Cys Lys Lys Ile Asp Val Met Pro Ile
355 360 365

Gln Ile Leu Ala Asn Glu Glu Met Lys Val Met Cys Asp Asn Asn Pro
370 375 380

Val Ser Leu Asn Cys Cys Ser Gln Gly Asn Val Asn Trp Ser Lys Val
385 390 395 400

Glu Trp Lys Gln Glu Gly Lys Ile Asn Ile Pro Gly Thr Pro Glu Thr
405 410 415

Asp Ile Asp Ser Ser Cys Ser Arg Tyr Thr Leu Lys Ala Asp Gly Thr
420 425 430

Gln Cys Pro Ser Gly Ser Ser Gly Thr Thr Val Ile Tyr Thr Cys Glu
435 440 445

Phe Ile Ser Ala Tyr Gly Ala Arg Gly Ser Ala Asn Ile Lys Val Thr
450 455 460

Phe Ile Ser Val Ala Asn Leu Thr Ile Thr Pro Asp Pro Ile Ser Val
465 470 475 480

Ser Glu Gly Gln Asn Phe Ser Ile Lys Cys Ile Ser Asp Val Ser Asn
485 490 495

Tyr Asp Glu Val Tyr Trp Asn Thr Ser Ala Gly Ile Lys Ile Tyr Gln
500 505 510

Arg Phe Tyr Thr Thr Arg Arg Tyr Leu Asp Gly Ala Glu Ser Val Leu
515 520 525

Thr Val Lys Thr Ser Thr Arg Glu Trp Asn Gly Thr Tyr His Cys Ile
530 535 540

Phe Arg Tyr Lys Asn Ser Tyr Ser Ile Ala Thr Lys Asp Val Ile Val
545 550 555 560

His Pro Leu Pro Leu Lys Leu Asn Ile Met Val Asp Pro Leu Glu Ala
Page 13

Thr Val Ser Cys Ser Gly Ser His His Ile Lys Cys Cys Ile Glu Glu
 580 585 590

Asp Gly Asp Tyr Lys Val Thr Phe His Thr Gly Ser Ser Ser Leu Pro
 595 600 605

Ala Ala Lys Glu Val Asn Lys Lys Gln Val Cys Tyr Lys His Asn Phe
 610 615 620

Asn Ala Ser Ser Val Ser Trp Cys Ser Lys Thr Val Asp Val Cys Cys
 625 630 635 640

His Phe Thr Asn Ala Ala Asn Asn Ser Val Trp Ser Pro Ser Met Lys
 645 650 655

Leu Asn Leu Val Pro Gly Glu Asn Ile Thr Cys Gln Asp Pro Val Ile
 660 665 670

Gly Val Gly Glu Pro Gly Lys Val Ile Gln Lys Leu Cys Arg Phe Ser
 675 680 685

Asn Val Pro Ser Ser Pro Glu Ser Pro Ile Gly Gly Thr Ile Thr Tyr
 690 695 700

Lys Cys Val Gly Ser Gln Trp Glu Glu Lys Arg Asn Asp Cys Ile Ser
 705 710 715 720

Ala Pro Ile Asn Ser Leu Leu Gln Met Ala Lys Leu Ile Lys Ser Pro
 725 730 735

Ser Gln Asp Glu Met Leu Pro Thr Tyr Leu Lys Asp Leu Ser Ile Ser
 740 745 750

Ile Asp Lys Ala Glu His Glu Ile Ser Ser Ser Pro Gly Ser Leu Gly
 755 760 765

Ala Ile Ile Asn Ile Leu Asp Leu Leu Ser Thr Val Pro Thr Gln Val
 770 775 780

Asn Ser Glu Met Met Thr Val Leu Ser Thr Val Asn Val Ile Leu Gly
 785 790 795 800

Lys Pro Val Leu Asn Thr Trp Lys Val Leu Gln Gln Gln Trp Thr Asn
 805 810 815

3379.1.ST25.txt

Gln Ser Ser Gln Leu Leu His Ser Val Glu Arg Phe Ser Gln Ala Leu
820 825 830

Gln Ser Gly Asp Ser Pro Pro Leu Ser Phe Ser Gln Thr Asn Val Gln
835 840 845

Met Ser Ser Met Val Ile Lys Ser Ser His Pro Glu Thr Tyr Gln Gln
850 855 860

Arg Phe Val Phe Pro Tyr Phe Asp Leu Trp Gly Asn Val Val Ile Asp
865 870 875 880

Lys Ser Tyr Leu Glu Asn Leu Gln Ser Asp Ser Ser Ile Val Thr Met
885 890 895

Ala Phe Pro Thr Leu Gln Ala Ile Leu Ala Gln Asp Ile Gln Glu Asn
900 905 910

Asn Phe Ala Glu Ser Leu Val Met Thr Thr Thr Val Ser His Asn Thr
915 920 925

Thr Met Pro Phe Arg Ile Ser Met Thr Phe Lys Asn Asn Ser Pro Ser
930 935 940

Gly Gly Glu Thr Lys Cys Val Phe Trp Asn Phe Arg Leu Ala Asn Asn
945 950 955 960

Thr Gly Gly Trp Asp Ser Ser Gly Cys Tyr Val Glu Glu Gly Asp Gly
965 970 975

Asp Asn Val Thr Cys Ile Cys Asp His Leu Thr Ser Phe Ser Ile Leu
980 985 990

Met Ser Pro Asp Ser Pro Asp Pro Ser Ser Leu Leu Gly Ile Leu Leu
995 1000 1005

Asp Ile Ile Ser Tyr Val Gly Val Gly Phe Ser Ile Leu Ser Leu
1010 1015 1020

Ala Ala Cys Leu Val Val Glu Ala Val Val Trp Lys Ser Val Thr
1025 1030 1035

Lys Asn Arg Thr Ser Tyr Met Arg His Thr Cys Ile Val Asn Ile
1040 1045 1050

Ala Ala Ser Leu Leu Val Ala Asn Thr Trp Phe Ile Val Val Ala
1055 1060 1065

3379.1.ST25.txt

Ala Ile Gln Asp Asn Arg Tyr Ile Leu Cys Lys Thr Ala Cys Val
1070 1075 1080

Ala Ala Thr Phe Phe Ile His Phe Phe Tyr Leu Ser Val Phe Phe
1085 1090 1095

Trp Met Leu Thr Leu Gly Leu Met Leu Phe Tyr Arg Leu Val Phe
1100 1105 1110

Ile Leu His Glu Thr Ser Arg Ser Thr Gln Lys Ala Ile Ala Phe
1115 1120 1125

Cys Leu Gly Tyr Gly Cys Pro Leu Ala Ile Ser Val Ile Thr Leu
1130 1135 1140

Gly Ala Thr Gln Pro Arg Glu Val Tyr Thr Arg Lys Asn Val Cys
1145 1150 1155

Trp Leu Asn Trp Glu Asp Thr Lys Ala Leu Leu Ala Phe Ala Ile
1160 1165 1170

Pro Ala Leu Ile Ile Val Val Val Asn Ile Thr Ile Thr Ile Val
1175 1180 1185

Val Ile Thr Lys Ile Leu Arg Pro Ser Ile Gly Asp Lys Pro Cys
1190 1195 1200

Lys Gln Glu Lys Ser Ser Leu Phe Gln Ile Ser Lys Ser Ile Gly
1205 1210 1215

Val Leu Thr Pro Leu Leu Gly Leu Thr Trp Gly Phe Gly Leu Thr
1220 1225 1230

Thr Val Phe Pro Gly Thr Asn Leu Val Phe His Ile Ile Phe Ala
1235 1240 1245

Ile Leu Asn Val Phe Gln Leu Phe Ile Leu Leu Phe Gly Cys Leu
1250 1255 1260

Trp Asp Leu Lys Gln Glu Ala Leu Leu Asn Lys Phe Ser Leu Ser
1265 1270 1275

Arg Trp Ser Ser Gln His Ser Lys Thr Ser Leu Gly Ser Ser Thr
1280 1285 1290

Pro Val Phe Ser Met Ser Ser Pro Ile Ser Arg Arg Phe Asn Asn
1295 1300 1305

3379.1.ST25.txt

Leu Phe Gly Lys Thr Gly Thr Tyr Asn Val Ser Thr Pro Glu Ala
1310 1315 1320

Thr Ser Ser Ser Leu Glu Asn Ser Ser Ser Ala Ser Ser Leu Leu
1325 1330 1335

Asn

<210> 14
<211> 4038
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Organism

<400> 14
atgaaatccc caaggagaac cactttgtgc ctcatgttta ttgtgattta ttcttccaaa 60
gctgcactga actggaatta cgagtctact attcatcctt tgagtcttca tgaacatgaa 120
ccagctggtg aagaggcact gaggcaaaaa cgagccgttg ccacaaaaag tcctacggct 180
gaagaataca ctgttaatat tgagatcagt tttgaaaatg catccttcct ggatcctatc 240
aaagcctact tgaacagcct cagtttcca attcatggta ataacactga ccaaattacc 300
gacatttga gcataaaatgt gacaacagtc tgcagacctg ctggaaatga aatctggtc 360
tcctgcgaga caggttatgg gtggcctcgg gaaagggtgc ttcacaatct catttgtcaa 420
gagcgtgacg tcttcctccc agggcaccat tgcagttgcc ttaaagaact gcctccaat 480
ggaccttttt gcctgcttca ggaagatgtt accctgaaca tgagagtcag actaaatgt 540
ggcttcaag aagacctcat gaacacttcc tccgcctct ataggtccta caagaccgac 600
ttggaaacag cgttccggaa gggttacgga attttaccag gcttcaaggg cgtgactgtg 660
acagggttca agtctggaag tgtggttgtg acatatgaag tcaagactac accaccatca 720
cttgagttaa tacataaagc caatgaacaa gttgtacaga gcctcaatca gacctacaaa 780
atggactaca actcctttca agcagttact atcaatgaaa gcaatttctt tgtcacacca 840
gaaatcatct ttgaaggggc cacagtcaatgt ctgggtgttg aaaaggaagt tttgtcctcc 900
aatgtgtctt ggcgctatga agaacagcag ttggaaatcc agaacagcag cagattctcg 960
atttacaccg cactttcaa caacatgact tgggtgtcca agctcaccat ccacaacatc 1020
actccaggtg atgcaggtga atatgttgc aaactgatat tagacatttt tgaatatgag 1080
tgcaagaaga aaatagatgt tatgccccatc caaatttgg caaatgaaga aatgaaggtg 1140
atgtgcgaca acaatcctgt atcttgaac tgctgcagtc agggtaatgt taattggagc 1200

3379.1.ST25.txt

aaagtagaat	ggaagcagga	aggaaaaata	aatattccag	gaaccctga	gacagacata	1260
gattctagct	gcagcagata	caccctcaag	gctgatggaa	cccagtgcc	aagcgggtcg	1320
tctggaacaa	cagtcatcta	cacttgtgag	ttcatcagt	cctatggagc	cagagggcagt	1380
gcaaacataa	aagtgacatt	catctctgt	gccaatctaa	caataacccc	ggacccaatt	1440
tctgttctg	agggacaaaaa	cttttctata	aatgcatca	gtgatgtgag	taactatgat	1500
gaggtttatt	ggaacacttc	tgctggaatt	aaaatatacc	aaagattta	taccacgagg	1560
aggtatctt	atggagcaga	atcagtactg	acagtcaaga	cctcgaccag	ggagtggaat	1620
ggaacctatc	actgcatatt	tagatataag	aattcataca	gtattgcaac	caaagacgtc	1680
attgttcacc	cgctgcctct	aaagctgaac	atcatggtt	atccttgga	agctactgtt	1740
tcatgcagt	gttcccatca	catcaagtgc	tgcatagagg	aggatggaga	ctacaaagtt	1800
actttccata	cgggttcctc	atcccttcct	gctgaaaag	aagttacaa	aaaacaagt	1860
tgctacaaac	acaatttcaa	tgcaagctca	gtttcctggt	gttcaaaaac	tgttgatgt	1920
tgttgcact	ttaccaatgc	tgctaataat	tcagtctgga	gcccatctat	gaagctgaat	1980
ctggttcctg	gggaaaacat	cacatgccag	gatcccgtaa	taggtgtcgg	agagccgggg	2040
aaagtcatcc	agaagctatg	ccgggtctca	aacgttccc	gcagccctga	gagtcccatt	2100
ggcgggacca	tcacttacaa	atgttaggc	tcccagtggg	aggagaagag	aatgactgc	2160
atctctgccc	caataaacag	tctgctccag	atggctaagg	ctttgatcaa	gagccctct	2220
caggatgaga	tgctccctac	atacctgaag	gatctttcta	ttagcataga	caaagcggaa	2280
catgaaatca	gctttctcc	tgggagtctg	ggagccatta	ttaacatct	tgtatctgctc	2340
tcaacagt	caacccaagt	aaattcagaa	atgatgacgc	acgtgctctc	tacggtaat	2400
gtcatccctg	gcaagccgt	cttgaacacc	tggaaagg	tacaacagca	atggaccaat	2460
cagagttcac	agctactaca	ttcagtggaa	agatttccc	aagcattaca	gtcgggagat	2520
agccctccct	tgtccttctc	ccaaactaat	gtcagatga	gcagcatggt	aatcaagtcc	2580
agccacccag	aaacctatca	acagagg	ttttccat	actttgac	ctggggcaat	2640
gtggtcatt	acaagagcta	tctagaaaac	ttcagtcgg	attcgtctat	tgtcaccat	2700
gctttcccaa	ctctccaagc	catccttgcc	caggatatcc	aggaaaataa	ctttgcagag	2760
agcttagtga	tgacaaccac	tgtcagccac	aatacaacta	tgccattcag	gatttcaat	2820
acttttaaga	acaatagccc	ttcaggcggc	gaaacgaagt	gtgtcttctg	gaacttcagg	2880
cttgccaaca	acacaggggg	gtgggacagc	agtgggtgct	atgtagaaga	aggtgatggg	2940
gacaatgtca	cctgtatctg	tgaccaccta	acatcattct	ccatcctcat	gtccctgac	3000
tccccagatc	ctagttctct	cctggata	ctcctggata	ttatttctta	tgttggggtg	3060
ggctttcca	tcttgagctt	ggcagcctgt	ctagttgtgg	aagctgtggt	gtggaaatcg	3120

3379.1.ST25.txt

gtgaccaaga accggacttc ttatatgcgc cacacctgca tagtgaatat cgctgcctcc	3180
cttctggtcg ccaacacctg gttcattgtg gtcgctgcc a tccaggacaa tcgctacata	3240
ctctgcaaga cagcctgtgt ggctgccacc ttcttcatcc acttcttcta cctcagcgtc	3300
ttcttctgga tgctgacact gggcctcatg ctgttctatc gcctggttt cattctgcat	3360
gaaacaagca ggtccactca gaaagccatt gcctctgtc ttggctatgg ctgcccactt	3420
gccatctcgg tcatcacgct gggagccacc cagccccggg aagtctatac gaggaagaat	3480
gtctgttggc tcaactggga ggacaccaag gccctgctgg ctttcgccat cccagcactg	3540
atcattgtgg tggtaacat aaccatcaact attgtggta tcaccaagat cctgaggcct	3600
tccattggag acaagccatg caagcaggag aagagcagcc tgtttcagat cagcaagagc	3660
attggggtcc tcacaccact cttggccctc acttggggtt ttggctctcac cactgtgttc	3720
ccagggacca accttgtgtt ccatatcata tttgccatcc tcaatgtctt ccagggatta	3780
ttcattttac tctttggatg cctctggat ctgaaggtac aggaagctt gctgaataag	3840
ttttcattgt cgagatggc ttacagcac tcaaagtcaa catccctggg ttcatccaca	3900
cctgtgtttt ctatgagttc tccaatatca aggagattt acaatttgtt tggtaaaaaca	3960
ggaacgtata atgtttccac cccagaagca accagctcat ccctggaaaa ctcatccagt	4020
gcttcttcgt tgctcaac	4038

<210> 15
<211> 460
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Organism

<400> 15

Ile Leu Asn Ser Lys Ser Ile Ser Asn Trp Thr Phe Ile Arg Asp Arg
1 5 10 15

Asn Ser Ser Tyr Ile Leu Leu His Ser Val Asn Ser Phe Ala Arg Arg
20 25 30

Leu Phe Ile Asp Asn Ile Pro Val Asp Ile Ser Asp Val Phe Ile His
35 40 45

Thr Met Gly Thr Thr Ile Ser Gly Asp Asn Ile Gly Lys Asn Phe Thr
50 55 60

Phe Ser Met Arg Ile Asn Asp Thr Ser Asn Glu Val Thr Gly Arg Val
65 70 75 80

3379.1.ST25.txt

Leu Ile Ser Arg Asp Glu Leu Arg Lys Val Pro Ser Pro Ser Gln Val
85 90 95

Ile Ser Ile Ala Phe Pro Thr Ile Gly Ala Ile Leu Glu Ala Ser Leu
100 105 110

Leu Glu Asn Val Thr Val Asn Gly Leu Val Leu Ser Ala Ile Leu Pro
115 120 125

Lys Glu Leu Lys Arg Ile Ser Leu Ile Phe Glu Lys Ile Ser Lys Ser
130 135 140

Glu Glu Arg Arg Thr Gln Cys Val Gly Trp His Ser Val Glu Asn Arg
145 150 155 160

Trp Asp Gln Gln Ala Cys Lys Met Ile Gln Glu Asn Ser Gln Gln Ala
165 170 175

Val Cys Lys Cys Arg Pro Ser Lys Leu Phe Thr Ser Phe Ser Ile Leu
180 185 190

Met Ser Pro His Ile Leu Glu Ser Leu Ile Leu Thr Tyr Ile Thr Tyr
195 200 205

Val Gly Leu Gly Ile Ser Ile Cys Ser Leu Ile Leu Cys Leu Ser Ile
210 215 220

Glu Val Leu Val Trp Ser Gln Val Thr Lys Thr Glu Ile Thr Tyr Leu
225 230 235 240

Arg His Val Cys Ile Val Asn Ile Ala Ala Thr Leu Leu Met Ala Asp
245 250 255

Val Trp Phe Ile Val Ala Ser Phe Leu Ser Gly Pro Ile Thr His His
260 265 270

Lys Gly Cys Val Ala Ala Thr Phe Phe Val His Phe Phe Tyr Leu Ser
275 280 285

Val Phe Phe Trp Met Leu Ala Lys Ala Leu Leu Ile Leu Tyr Gly Ile
290 295 300

Met Ile Val Phe His Thr Leu Pro Lys Ser Val Leu Val Ala Ser Leu
305 310 315 320

Phe Ser Val Gly Tyr Gly Cys Pro Leu Ala Ile Ala Ala Ile Thr Val
325 330 335

3379.1.ST25.txt

Ala Ala Thr Glu Pro Gly Lys Gly Tyr Leu Arg Pro Glu Ile Cys Trp
 340 345 350

Leu Asn Trp Asp Met Thr Lys Ala Leu Leu Ala Phe Val Ile Pro Ala
 355 360 365

Leu Ala Ile Val Val Val Asn Leu Ile Thr Val Thr Leu Val Ile Val
 370 375 380

Lys Thr Gln Arg Ala Ala Ile Gly Asn Ser Met Phe Gln Glu Val Arg
 385 390 395 400

Ala Ile Val Arg Ile Ser Lys Asn Ile Ala Ile Leu Thr Pro Leu Leu
 405 410 415

Gly Leu Thr Trp Gly Phe Gly Val Ala Thr Val Ile Asp Asp Arg Ser
 420 425 430

Leu Ala Phe His Ile Ile Phe Ser Leu Leu Asn Ala Phe Gln Phe Phe
 435 440 445

Ile Leu Val Phe Gly Thr Ile Leu Asp Pro Lys Val
 450 455 460

<210> 16

<211> 1383

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Organism

<400> 16

attcttaaca	gcaaaagcat	ctccaactgg	actttcattc	gtgacagaaaa	cagcagctat	60
atcctgctac	attcagtcaa	ctcccttgca	agaaggctat	tcatagataa	catccctgtt	120
gacatatcg	atgtcttcat	tcatactatg	ggcaccacca	tatctggaga	taacattgga	180
aaaaatttca	ctttttctat	gagaattaat	gacaccagca	atgaagtcac	tgggagagtg	240
ttgatcagca	gagatgaact	tcggaaggtg	ccttccccctt	ctcaggtcat	cagcattgca	300
tttccaacta	ttggggctat	tttggaaagcc	agtcttttgg	aaaatgttac	tgtaaatggg	360
cttgcctgt	ctgccatttt	gcccaaggaa	ctaaaagaa	tctcactgat	tttgaaaag	420
atcagcaagt	cagaggagag	gaggacacag	tgtgttgct	ggcactctgt	ggagaacaga	480
tgggaccagc	aggcctgcaa	aatgattcaa	gaaaactccc	agcaagctgt	ttgcaaatgt	540
aggccaagca	aattgtttac	ctcttctca	attcttatgt	cacccacat	cttagagagt	600

3379.1.ST25.txt

ctgattctga	cttacatcac	atatgttagc	ctgggcattt	ctatggcag	cctgatcctt	660
tgcttgtcca	ttgaggtcct	agtctggagc	caagtgacaa	agacagagat	cacctattta	720
cgcctatgtgt	gcattgttaa	cattgcagcc	actttgctga	tggcagatgt	gtggttcatt	780
gtggcttcct	ttcttagtgg	cccaataaca	caccacaagg	gatgtgtggc	agccacattt	840
tttgcatt	tctttacct	ttctgtattt	ttctggatgc	ttgccaaggc	actccttatac	900
ctctatggaa	tcatgattgt	tttcataacc	ttgcccaga	cagtcctgg	ggcatctctg	960
ttttcagtgg	gctatggatg	cccttggcc	attgctgcca	tcactgttgc	tgccactgaa	1020
cctggcaaag	gctatctacg	acctgagatc	tgctggctca	actgggacat	gaccaaagcc	1080
ctcctggcct	tcgtgatccc	agcttggcc	atcggttag	taaacctgat	cacagtacaa	1140
ctgggtattg	tcaagaccca	gcgagctgcc	attggcaatt	ccatgttcca	ggaagtgaga	1200
gccattgtga	gaatcagcaa	gaacatcgcc	atcctcacac	cacttctgg	actgacctgg	1260
ggatttggag	tagccactgt	catcgatgac	agatccctgg	ccttccacat	tatcttctcc	1320
ctgctcaatg	cattccaggg	tttcttcatac	ctagtgtttg	gaaccatcct	ggatccaaag	1380
gta						1383

<210> 17

<211> 299

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Organism

<400> 17

Gly Thr Thr Gly Asp Trp Ser Ser Glu Gly Cys Ser Thr Glu Val Arg
1 5 10 15

Pro Glu Gly Thr Val Cys Cys Asp His Leu Thr Phe Phe Ala Leu
20 25 30

Leu Leu Pro Thr Leu Asp Gln Ser Thr Val His Ile Leu Thr Arg Ile
35 40 45

Ser Gln Ala Gly Cys Gly Val Ser Met Ile Phe Leu Ala Phe Thr Ile
50 55 60

Ile Leu Tyr Ala Phe Leu Arg Leu Ser Arg Glu Arg Phe Lys Ser Glu
65 70 75 80

Asp Ala Pro Lys Ile His Val Ala Leu Gly Gly Ser Leu Phe Leu Leu
85 90 95

3379.1.ST25.txt
Asn Leu Ala Phe Leu Val Asn Val Gly Ser Gly Ser Lys Gly Ser Asp
100 105 110

Ala Ala Cys Trp Ala Arg Gly Ala Val Phe His Tyr Phe Leu Leu Cys
115 120 125

Ala Phe Thr Trp Met Gly Leu Glu Ala Phe His Leu Tyr Leu Leu Ala
130 135 140

Val Arg Val Phe Asn Thr Tyr Phe Gly His Tyr Phe Leu Lys Leu Ser
145 150 155 160

Leu Val Gly Trp Gly Leu Pro Ala Leu Met Val Ile Gly Thr Gly Ser
165 170 175

Ala Asn Ser Tyr Gly Leu Tyr Thr Ile Arg Asp Arg Glu Asn Arg Thr
180 185 190

Ser Leu Glu Leu Cys Trp Phe Arg Glu Gly Thr Thr Met Tyr Ala Leu
195 200 205

Tyr Ile Thr Val His Gly Tyr Phe Leu Ile Thr Phe Leu Phe Gly Met
210 215 220

Val Val Leu Ala Leu Val Val Trp Lys Ile Phe Thr Leu Ser Arg Ala
225 230 235 240

Thr Ala Val Lys Glu Arg Gly Lys Asn Arg Lys Lys Val Leu Thr Leu
245 250 255

Leu Gly Leu Ser Ser Leu Val Gly Val Thr Trp Gly Leu Ala Ile Phe
260 265 270

Thr Pro Leu Gly Leu Ser Thr Val Tyr Ile Phe Ala Leu Phe Asn Ser
275 280 285

Leu Gln Val Asp Phe Tyr Ile Leu Ile Phe Tyr
290 295

<210> 18
<211> 900
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Organism

<400> 18
gggaccactg gagactggtc ttctgagggc tgctccacgg aggtcagacc tgaggggacc

60

3379.1.ST25.txt

gtgtgctgct	gtgaccacct	gacccTTTTC	gccCTGCTCC	ttagACCCAC	CTTGGACCAG	120
tccacgggtgc	atATCCTCAC	ACGCATCTCC	CAGGCGGGCT	GTGGGGTCTC	CATGATCTTC	180
CTGGCCTTCA	CCATTATTCT	TTATGCCTT	CTGAGGCTT	CCCAGGAGAG	GTTCAAGTCA	240
gaagatGCC	caaAGATCCA	CGTGGCCCTG	GGTGGCAGCC	TGTTCCCTCCT	GAATCTGGCC	300
ttCTTGGTCA	ATGTGGGAG	TGGCTCAAAG	GGGTCTGATG	CTGCCTGCTG	GGCCCAGGGG	360
gCTGTCTTCC	ACTACTCCT	GCTCTGTGCC	TTCACCTGGA	TGGCCCTGGA	AGCCTTCCAC	420
CTCTACCTGC	TCGCTGTCAAG	GGTCTTCAAC	ACCTACTTCG	GGCACTACTT	CCTGAAGCTG	480
AGCCTGGTGG	GCTGGGGCCT	GCCCCCCTG	ATGGTCATCG	GCACTGGGAG	TGCCAACAGC	540
TACGGCCTCT	ACACCATCCG	TGATAGGGAG	AACCGCACCT	CTCTGGAGCT	ATGCTGGTTC	600
C GTGAAGGGA	CAACCATGTA	C G C C T C T A T	ATCACCGTCC	ACGGCTACTT	CCTCATCACC	660
TTCCCTTTG	G CATGGTGGT	CCTGGCCCTG	GTGGTCTGGA	AGATCTTCAC	CCTGTCCC GT	720
GCTACAGCGG	TCAAGGAGCG	GGGAAGAAC	C G G A A G A A G G	TGCTCACCCCT	GCTGGGCCTC	780
T CGAGCCTGG	TGGGTGTGAC	ATGGGGGTTG	GCCATCTCA	CCCCGTTGGG	CCTCTCCACC	840
GTCTACATCT	TTGCACCTTT	CAACTCCTG	CAAGTTGATT	TTTACATATT	GATCTTCTAT	900

<210> 19
<211> 468
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Organism

<220>
<221> misc_feature
<222> (370)..(370)
<223> Xaa can be any naturally occurring amino acid

<400> 19

Asn His Ile Leu Asp Thr Ala Ala Ile Ser Asn Trp Ala Phe Ile Pro
1 5 10 15

Asn Lys Asn Ala Ser Ser Asp Leu Leu Gln Ser Val Asn Leu Phe Ala
20 25 30

Arg Gln Leu His Ile His Asn Asn Ser Glu Asn Ile Val Asn Glu Leu
35 40 45

Phe Ile Gln Thr Lys Gly Phe His Ile Asn His Asn Thr Ser Glu Lys
50 55 60

Ser Leu Asn Phe Ser Met Ser Met Asn Asn Thr Thr Glu Asp Ile Leu
65 70 75 80

3379.1.ST25.txt

Gly Met Val Gln Ile Pro Arg Gln Glu Leu Arg Lys Leu Trp Pro Asn
85 90 95

Ala Ser Gln Ala Ile Ser Ile Ala Phe Pro Thr Leu Gly Ala Ile Leu
100 105 110

Arg Glu Ala His Leu Gln Asn Val Ser Leu Pro Arg Gln Val Asn Gly
115 120 125

Leu Val Leu Ser Val Val Leu Pro Glu Arg Leu Gln Glu Ile Ile Leu
130 135 140

Thr Phe Glu Lys Ile Asn Lys Thr Arg Asn Ala Arg Ala Gln Cys Val
145 150 155 160

Gly Trp His Ser Lys Lys Arg Arg Trp Asp Glu Lys Ala Cys Gln Met
165 170 175

Met Leu Asp Ile Arg Asn Glu Val Lys Cys Arg Cys Asn Tyr Thr Ser
180 185 190

Val Val Met Ser Phe Ser Ile Leu Met Ser Ser Lys Ser Met Thr Asp
195 200 205

Lys Val Leu Asp Tyr Ile Thr Cys Ile Gly Leu Ser Val Ser Ile Leu
210 215 220

Ser Leu Val Leu Cys Leu Ile Ile Glu Ala Thr Val Trp Ser Arg Val
225 230 235 240

Val Val Thr Glu Ile Ser Tyr Met Arg His Val Cys Ile Val Asn Ile
245 250 255

Ala Val Ser Leu Leu Thr Ala Asn Val Trp Phe Ile Ile Gly Ser His
260 265 270

Phe Asn Ile Lys Ala Gln Asp Tyr Asn Met Cys Val Ala Val Thr Phe
275 280 285

Phe Ser His Phe Phe Tyr Leu Ser Leu Phe Phe Trp Met Leu Phe Lys
290 295 300

Ala Leu Leu Ile Ile Tyr Gly Ile Leu Val Ile Phe Arg Arg Met Met
305 310 315 320

Lys Ser Arg Met Met Val Ile Gly Phe Ala Ile Gly Tyr Gly Cys Pro

Leu Ile Ile Ala Val Thr Thr Val Ala Ile Thr Glu Pro Glu Lys Gly
 340 345 350

Tyr Ile Arg Pro Glu Ala Cys Trp Leu Asn Trp Asp Asn Thr Lys Ala
 355 360 365

Leu Xaa Ala Phe Ala Ile Pro Ala Phe Val Ile Val Ala Val Asn Leu
 370 375 380

Ile Val Val Leu Val Val Ala Val Asn Thr Gln Arg Pro Ser Ile Gly
 385 390 395 400

Ser Ser Lys Ser Gln Asp Val Val Ile Ile Met Arg Ile Ser Lys Asn
 405 410 415

Val Ala Ile Leu Thr Pro Leu Leu Gly Leu Thr Trp Gly Phe Gly Ile
 420 425 430

Ala Thr Leu Ile Glu Gly Thr Ser Leu Thr Phe His Ile Ile Phe Ala
 435 440 445

Leu Leu Asn Ala Phe Gln Phe Phe Ile Leu Leu Phe Gly Thr Ile Met
 450 455 460

Asp His Lys Val
 465

<210> 20
 <211> 1407

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic organism

<400> 20

aaccacatcc tcgacacacgc agccatttca aactgggctt tcattcccaa caaaaatgcc 60

agctcggttt tggtgcagtc agtgaatttg tttgccagac aactccacat ccacaataat 120

tctgagaaca ttgtgaatga actcttcatt cagacaaaag ggttcacat caaccataat 180

acctcagaga aaagcctcaa tttctccatg agcatgaaca ataccacaga agatatctta 240

ggaatggtagt agattcccag gcaagagcta aggaagctgt ggccaaatgc atcccaagcc 300

attagcatag ct当地ccaaac cttgggggct atcctgagag aagcccactt gcaaaatgtg 360

agtcttccca gacaggtaaa tggctggtg ctatcagtgg ttttaccaga aaggttgcaa 420

gaaatcatac tcacccatcgaa aaagatcaat aaaacccgca atgccagagc ccagtgtgtt 480

3379.1.ST25.txt

ggctggcact ccaagaaaaag gagatgggat gagaaagcgt gccaaatgtat gttggatatc	540
aggaacgaag taaaatgccg ctgtaactac accagtgtgg tggatgtcttt ttccattctc	600
atgtcctcca aatcgatgac cgacaaagtt ctggactaca tcacctgcat tgggctcagc	660
gtctcaatcc taagcttggt tcttgccctg atcattgaag ccacagtgtg gtcccgggtg	720
gttgtacgg agatatcata catcgacac gtgtgcacatg tgaatatagc agtgtccctt	780
ctgactgcca atgtgtggtt ttcataggc tctcaactta acattaaggc ccaggactac	840
aacatgtgtg ttgcagtgc acatccatcactt acctctctt gttttctgg	900
atgctttca aagcattgct catcatat ggaatattgg tcattttccg taggatgatg	960
aagtcccgaa tgatggtcat tggcttgcc attggctatg ggtgccatt gatcattgct	1020
gtcactacag ttgcttatcac agagccagag aaaggctaca taagacctga ggcctgtgg	1080
cttaactggg acaataccaa agcccttaa gcatttgcca tcccgccgtt cgtcattgtg	1140
gctgttaatc tgattgtgg tttgggtt gctgtcaaca ctcagaggcc ctctattggc	1200
agttccaagt ctcaggatgt ggtcataatt atgaggatca gaaaaatgt tgccatcctc	1260
actccactgc tggactgac ctggggttt ggaatagcca ctctcataga aggcaattcc	1320
ttgacgttcc atataatttt tgccttgctc aatgcttcc agggttttt catcctgctg	1380
tttggAACCA ttatggatca caaggta	1407

Commissioner for Patents
Washington, DC 20231
www.uspto.gov

APPLICATION NUMBER	FILING/RECEIPT DATE	FIRST NAMED APPLICANT	ATTORNEY DOCKET NUMBER
10/038,895	10/24/2001	David C. Kulp	3379.1

22886
AFFYMETRIX, INC
 ATTN: CHIEF IP COUNSEL, LEGAL DEPT.
 3380 CENTRAL EXPRESSWAY
 SANTA CLARA, CA 95051

CONFIRMATION NO. 8861
FORMALITIES LETTER

OC00000009622435

Date Mailed: 03/10/2003

**NOTICE TO COMPLY WITH REQUIREMENTS FOR PATENT APPLICATIONS
 CONTAINING NUCLEOTIDE SEQUENCE AND/OR AMINO ACID SEQUENCE
 DISCLOSURES**

Filing Date Granted

Applicant is given **TWO MONTHS FROM THE DATE OF THIS NOTICE** within which to file the items indicated below to avoid abandonment. Extensions of time may be obtained under the provisions of 37 CFR 1.136(a).

- A copy of the "Sequence Listing" in computer readable form has been submitted. However, the content of the computer readable form does not comply with the requirements of 37 C.F.R. 1.822 and/or 1.823, as indicated on the attached copy of the marked -up "Raw Sequence Listing." Applicant must provide a substitute computer readable form (CRF) copy of the "Sequence Listing" and a statement that the content of the sequence listing information recorded in computer readable form is identical to the written (on paper or compact disc) sequence listing and, where applicable, includes no new matter, as required by 37 CFR 1.821(e), 1.821(f), 1.821(g), 1.825(b), or 1.825(d).

For questions regarding compliance to these requirements, please contact:

- For Rules Interpretation, call (703) 308-4216
- To Purchase PatentIn Software, call (703) 306-2600
- For PatentIn Software Program Help, call (703) 306-4119 or e-mail at patin21help@uspto.gov or patin3help@uspto.gov

A copy of this notice MUST be returned with the reply.

W. Karp
 Customer Service Center

Initial Patent Examination Division (703) 308-1202

PART 2 - COPY TO BE RETURNED WITH RESPONSE

DOCKET NO.: 3379.1

SERIAL NO.: 10/038,895 DATE FILED: 10/24/01 DOCKET NO.: 3379
TITLE: Nucleic Acid Encoding G Proteins Coupled to Adenylyl Cyclase
APPLICANT: Kulp et al. DATE MAILED/HAND DELIVERED: 3/18/03

CERTIFICATE OF MAILING EXPRESS MAIL LABEL NO.: _____

THE U.S. PATENT & TRADEMARK OFFICE ACKNOWLEDGES RECEIPT OF:

<input type="checkbox"/> PROV. <input checked="" type="checkbox"/> NON-PROV.	<input type="checkbox"/> CPA	<input type="checkbox"/> CIP	<input type="checkbox"/> CONT.	<input type="checkbox"/> DIV.
<input type="checkbox"/> pp.Spec. <input type="checkbox"/> pp. Claims <input type="checkbox"/> pp. Abstract		<input type="checkbox"/> Amendment / Response pp. _____		
<input checked="" type="checkbox"/> Transmittal Letter copies	<input type="checkbox"/> Fee Transmittal	<input type="checkbox"/> Req. for Extension of Time _____		
<input type="checkbox"/> Response Missing Parts pp.		<input type="checkbox"/> Sequence Listing pp. _____		
<input type="checkbox"/> Declaration Signed Unsigned		<input type="checkbox"/> Petition _____		
<input type="checkbox"/> Assignment (w/cover letter) pages				
<input type="checkbox"/> Power of Attorney <input type="checkbox"/> Appointment of Agent		<input type="checkbox"/> Issue Fee Transmittal Form		
<input type="checkbox"/> Informal Drawings sheets		<input type="checkbox"/> Declaration / Affidavit _____		
<input type="checkbox"/> Formal Drawings sheets		<input type="checkbox"/> Notice of Appeal <input type="checkbox"/> Appeal Brief (plus 2 copies)		
<input type="checkbox"/> Information Disclosure Statement pages		<input type="checkbox"/> Req. for Corrected Filing Receipt		
<input type="checkbox"/> Modified Form 1449 pp. <input type="checkbox"/> Refs.				

Transmittal for Substitute Sequence listing and Drawing Amendm't,
Sequence listing, 27 pages; CD Diskette; Part 2 Copy
of Notice to Comply