Digital Design & Computer Arch.

Lab 3 Supplement:

Verilog for Combinational Circuits

(Presentation by Aaron Zeller)

Frank K. Gürkaynak

Seyyedmohammad Sadrosadati

ETH Zurich

Spring 2024

[19. March 2024]

What Will We Learn?

- In Lab 3, you will design more combinatorial circuits.
- Convert a binary number to 7-Segment display encoding.
- Implement a circuit to drive the 7-Segment display.
- Show the addition result on the 7-Segment display.

7-Segment Display

 A 7-segment display consists of seven separate LEDs in a single package.

Each of the seven segments is labeled using the letters a, b, c,
 d, e, f, g.

Representing Different Numbers

 We can represent different characters or digits by making particular segments glow at the same time.

Binary Number to 7-Segment Encoding

As a first step, you will complete the truth table for converting a
 4-bit number to a 7-segment encoding.

 Note: A segment glows when the corresponding output is set to logic-0.

Drive the 7-Segment Display

 Design a "decoder" that receives a 4-bit input and returns a 7-bit output signal, and converts a binary number to a 7-segment display encoding.

 Make sure to use behavioural modelling instead of explicit gatelevel modelling.

Show the Results of the Addition

- Show the result of our adder circuit from Lab 2 using the 7segment display. You need one overflow bit to be displayed on an LED.
- Attach an instance of the decoder to the output of the adder.

 Hint: Create a new "top" module that will create an instance of each module and make appropriate connections between them.

Decoder

You do not use gate-level implementation.

Instead of gates use behavioural modeling.

switch/case Statements

switch/case statements execute one of several statements depending on the conditions, as shown in the general format below.

Figure 2.64 2:4 decoder implementation

Gate-level implementation

Last Words

- In Lab 3, you will design more combinatorial circuits.
- Convert a binary number to 7-Segment display encoding.
- Implement a circuit to drive the 7-Segment display.
- Show the addition result on the 7-Segment display.
- In the report, you will learn how to display the addition result using only a single 7-segment display.

Report Deadline

[19. April 2024 23:59]

Digital Design & Computer Arch.

Lab 3 Supplement:

Verilog for Combinational Circuits

Frank K. Gürkaynak Seyyedmohammad Sadrosadati

ETH Zurich

Spring 2024

[27. Feb 2024]