Cálculo II						
Curso	2012-2013					

Apellidos

D.N.I._

Convocatoria extraordinaria

 $1^{\rm o}$ de Matemáticas 25 de junio de 2013

y Nombre			

_Grupo _____

Justificar todas las respuestas.

1. Consideramos la función $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por

$$g(x,y) = \frac{x \sin^2 y}{x^2 + y^4}$$
, si $(x,y) \neq (0,0)$, $g(0,0) = 0$.

Demostrar que g no es continua en (0,0) y que, sin embargo, posee en dicho punto derivadas direccionales $D_{\vec{v}} g(0,0)$ en cualquier dirección \vec{v} .

- 2. Sea $f: \mathbb{R} \to \mathbb{R}$ una función de clase \mathcal{C}^1 . Demostrar que el plano tangente a la superficie $z = x f(y/x), x \neq 0$, en el punto (1, 4, f(4)) pasa por el origen (0, 0, 0).
- 3. Sea $f_a: \mathbb{R}^2 \to \mathbb{R}$ la función definida por $f_a(x,y) = x^4 + y^4 + a(2x^2 + y^2)$. Hallar sus máximos y mínimos relativos (locales) según los distintos valores del parámetro a.
- 4. Calcular el volumen del sólido limitado superiormente por la esfera $x^2 + y^2 + z^2 = 6$ e inferiormente por el paraboloide $x^2 + y^2 = z$.
- 5. Evaluar $\int_{\Gamma} (2x^3-y^3)\,dx + (x^3+y^3)\,dy$, donde Γ es la circunferencia unidad orientada en el sentido positivo.