Categories with dependent and codependent arrows

Josif Petrakis

University of Verona

WG6 meeting Genova, 18.04.2025

What is the categorical analogue to dependent functions?

This question is different from finding categorical models for the whole of MLTT.

We want to model the \prod -type categorically

- as a fundamental notion,
- independent from a corresponding implementation of the Σ -type,
- and without requiring a strong background on MLTT.

How arrows generalise functions

They preserve some properties of functions

They forget some properties of functions

They add some properties that cannot be traced to functions

To C_1 we add family-arrows C_2 and dependent arrows C_3

Dependent Category Theory

Categories with family-arrows $\lambda \in \mathtt{fHom}(a)$

Constant family arrows

Family-arrows on a topos C (Pitts)

$$\mathtt{fHom}(a) := \bigcup_{b \in \mathit{C}_0} \mathrm{Hom}(a \times b, \Omega)$$

If $g: c \rightarrow a$, then

$$(b,e)\circ g:=\big(b,e\circ(g\times 1_b)\big)$$

Fam-arrows preserve/forget properties of families of types

If C has 1 and $\lambda \in \mathtt{fHom}(a)$, then $i = j \Rightarrow \lambda(i) = \lambda(j)$.

 ${\cal C}$ with 1 has the family-arrow-extensionality property $({\rm far} {\rm Ext}),$ if

$$\forall_{i \in a} (\lambda(i) = \mu(i)) \Rightarrow \lambda = \mu$$

If $\mathtt{fHom}(a) := a/\mathcal{C}$, the coslice of \mathcal{C} over a, and composition $\lambda \circ f$ the composition in \mathcal{C} , then \mathcal{C} has (\mathtt{farExt}) if and only if \mathcal{C} has (\mathtt{arExt}) .

Categories with family-arrows and Sigma-objects

$$\Sigma_{\mathcal{C}} := \left(\sum_{a} \lambda \in C_{0}, \ \operatorname{pr}_{1}^{a,\lambda} \colon \sum_{a} \lambda \to a \in C_{1}, \right.$$

$$\Sigma_{\lambda} f \colon \sum_{b} (\lambda \circ f) \to \sum_{a} \lambda \in C_{1} \right)_{a,b \in C_{0}, \lambda \in \operatorname{Hom}(a), f \in \operatorname{Hom}(b,a)}$$

$$\sum_{b} (\lambda \circ f) \xrightarrow{\sum_{a} f} \sum_{a} \lambda$$

$$\operatorname{pr}_{1}^{b,\lambda \circ f} \downarrow \qquad \operatorname{pr}_{1}^{a,\lambda}$$

$$b \xrightarrow{f} \lambda \circ f$$

$$\begin{array}{ccc} \sum_{a}(\lambda \circ 1_{a}) & \xrightarrow{\sum_{\lambda} 1_{a}} & \sum_{a} \lambda \\ \operatorname{pr}_{1}^{a,\lambda \circ 1_{a}} \downarrow & & \downarrow \operatorname{pr}_{1}^{a,\lambda} \\ a & \xrightarrow{1_{a}} & a \end{array}$$

 (fam, Σ) -categories with 1 are the type-categories of Pitts (or Cartmell's categories with attributes).

If $(R,+,0,\cdot,1)$ is a commutative ring, and if $\mathcal{C}(R,+,0)$ is the category of its additive, group-structure with objects a singleton $\{*\}$ and arrows the elements of R, then every commutative square

$$\begin{array}{ccc}
* & \xrightarrow{d} & * \\
d \downarrow & & \downarrow k \\
* & \xrightarrow{c} & *
\end{array}$$

is a pullback. Let $Fam(*) := R \times R$ and $(a,b) \circ c := (c+a,c+b)$. Let $\sum_* (a,b) := *$, $pr_1^{*,(a,b)} := a \cdot b$, $\sum_{(a,b)} c := c(1+c+b+a)$,

$$(c+a)\cdot(c+b) \downarrow \qquad \qquad \downarrow a \cdot b$$

$$* \longrightarrow *$$

 $\mathcal{C}(R,+,0)$ is a (fam, Σ)-category, which, in general, has no 1.

If C has binary products and $b \in fHom(a)$,

$$\sum_{a} b := a \times b \& \operatorname{pr}_{1}^{a,b} := \operatorname{pr}_{a} \colon a \times b \to a.$$

Sigma-objects on a topos (Pitts)

Categories with dep-arrows $\Phi \in dHom(a, \lambda), \lambda \in fHom(a)$

Dep-arrows preserve and forget properties of dep-functions

A dep-category $\mathcal C$ with 1 has the dependent-arrow-extensionality property (darExt) , if $\forall_{i \in \mathbf a}(\Phi(i) = \Psi(i)) \Rightarrow \Phi = \Psi$

Any category ${\mathcal C}$ is turned into a dep-category I

$$\texttt{fHom}(a) := C_0$$

$$\texttt{dHom}(a,b) := \mathrm{Hom}(a,b)$$

$$f \circ g \in \texttt{dHom}(c,b \circ g) := \texttt{dHom}(c,b) := \mathrm{Hom}(c,b)$$

Any category ${\mathcal C}$ is turned into a dep-category ${\sf II}$

$$\begin{split} \operatorname{fHom}(a) &:= S(a) := \{S_a \mid S_a \text{ is a sieve on } a\} \\ S_a \circ f &:= \{g \in \operatorname{Hom}(-,\operatorname{dom}(f)) \mid f \circ g \in S_a\} \\ \operatorname{dHom}(a,S_a) &:= \{G(a) \mid G \text{ is a Groth top on } \mathcal{C} \ \& \ S_a \in G(a)\} \\ G(a) \circ f &:= G(\operatorname{dom}(f)) \in \operatorname{dHom}(\operatorname{dom}(f),S_a \circ f) \end{split}$$

Any (fam, Σ) -category is turned into a dep-category

$$\mathtt{d}\mathtt{Hom}(\mathtt{a},\lambda) := \mathcal{D}_{\mathtt{a}}\lambda := \left\{\phi \in \mathtt{Hom}\left(\mathtt{a},\sum_{\mathtt{a}}\lambda
ight) \mid \mathtt{pr}_\mathtt{1}^{\mathtt{a},\lambda} \circ \phi = \mathtt{1}_{\mathtt{a}}
ight\}$$

The canonical dep-structure on a topos ${\mathcal C}$

Theorem (Ehrhardt)

If $a \in \mathcal{C}$ and $(b, e) \in \mathtt{fHom}(a)$ i.e., $e: a \times b \to \Omega$, then

$$\mathtt{d}\mathtt{Hom}(\mathtt{a},(\mathtt{b},\mathtt{e})) := \left\{ \phi \colon \in \mathtt{Hom}\bigg(\mathtt{a}, \sum_{\mathtt{a}}(\mathtt{b},\mathtt{e}))\bigg) \mid \mathtt{pr}_1^{(\mathtt{a},(\mathtt{b},\mathtt{e})} \circ \phi = 1_\mathtt{a} \right\}$$

is bijective to

$$\{f \in \operatorname{Hom}(a,b) \mid e \circ \langle 1_a, f \rangle = \top \circ !_a\}$$

There are dep-structures that are not induced by the corresponding (fam, Σ) -structures

The canonical dep-structure on a commutative ring is the singleton

$$dHom(*, (a, b)) := \{r \in R \mid ab + r = 0\},\$$

while one can define the following dep-structure

$$ext{dHom}'(*,(a,b)) := \{I \in ext{Ideal}(R) \mid a-b \in I\},$$

$$I \circ r := I, \quad r \in ext{Hom}(*,*).$$

We can find trivially R and $a, b \in R$ with many ideals containing a - b.

Categories with dependent arrows and Sigma-objects

$$\operatorname{pr}_1 \colon \left(\sum_{x \colon A} P(x)\right) \to A, \quad \operatorname{pr}_1(a,b) := a$$

$$\operatorname{Pr}_2 \colon \prod_{z \colon \sum_{x \colon A} P(x)} P(\operatorname{pr}_1(z)), \quad \operatorname{Pr}_2(a,b) := b$$

$$z = \left(\operatorname{pr}_1(z), \operatorname{Pr}_2(z)\right)$$

$$\xrightarrow{\operatorname{Pr}_2}$$

$$\sum_{x \colon A} P(x) \xrightarrow{\operatorname{pr}_1} A \xrightarrow{\operatorname{P}} \mathcal{U}$$

 $P \circ pr_1$

If C has binary products and $b \in fHom(a)$,

 \mathcal{C} is turned into a (dep, Σ) -category:

$$\Pr_2^{a,b} := \Pr_b \in dHom(a \times b, b \circ pr_a) := dHom(a \times b, b) := Hom(a \times b, b),$$

and by the definition of $f \times 1_b$ we get

$$\operatorname{Pr}_2^{a,b} \circ \Sigma_b f := \operatorname{pr}_b \circ (f \times 1_b) = \operatorname{pr}_b =: \operatorname{Pr}_2^{c,b} = \operatorname{Pr}_2^{c,b \circ f}.$$

Theorem

A (fam, Σ) -category C is turned into a (dep, Σ) -category:

$$\mathtt{Pr}_2^{ extstyle{a},\lambda} \in \mathcal{D}_{\sum_{ extstyle{a}}\lambda}ig(\lambda \circ \mathtt{pr}_1^{ extstyle{a},\lambda}ig) =$$

$$\left\{\phi\in\mathrm{Hom}\bigg(\sum_{\mathbf{a}}\lambda,\sum_{\sum_{\mathbf{a}}\lambda}(\lambda\circ\mathrm{pr}_{1}^{\mathbf{a},\lambda})\bigg)\mid\mathrm{pr}_{1}^{\sum_{\mathbf{a}}\lambda,\lambda\circ\mathrm{pr}_{1}^{\mathbf{a},\lambda}}\circ\mathrm{Pr}_{2}^{\mathbf{a},\lambda}=\mathbf{1}_{\sum_{\mathbf{a}}\lambda}\right\}$$

$$\sum_{a} \lambda \xrightarrow{\operatorname{Pr}_{2}^{a,\lambda}} \sum_{\sum_{a} \lambda} (\lambda \circ \operatorname{pr}_{1}^{a,\lambda}) \xrightarrow{\operatorname{pr}_{1}^{\sum_{a} \lambda, \lambda \circ \operatorname{pr}_{1}^{a,\lambda}}} \sum_{a} \lambda$$

Proof.

There are (dep, Σ) -structures that are not induced by the corresponding (fam, Σ) -structures

Let non-canonical dep-structure on a commutative ring

$$\texttt{dHom}'(*,(a,b)) := \{ \textit{I} \in \texttt{Ideal}(\textit{R}) \mid \textit{a} - \textit{b} \in \textit{I} \},$$

$$\textit{I} \circ \textit{r} := \textit{I}, \quad \textit{r} \in \text{Hom}(*,*).$$

We can define

$$\begin{aligned} &\Pr_2^{*,(a,b)} := \left\langle a - b \right\rangle \in \mathtt{dHom}'(*,(a,b) \circ ab) := \\ &\texttt{dHom}'(*,(ab+a,ab+b)) = \mathtt{dHom}'(*,(a,b)). \end{aligned}$$

What we add that is not traced to dependent functions

To C_1 we add cofamily-arrows coC_2 and codependent arrows coC_3

coDependent Category Theory

Categories with cofamily-arrows $\rho \in \text{cofHom}(a)$

Any category ${\mathcal C}$ is turned into a cofam-category

$$cofHom(a) := C_0$$

$$\cdot \xrightarrow{b} a \qquad \cdot \xrightarrow{b} a \xrightarrow{f} I$$

Cofamily-arrows on a topos ${\mathcal C}$

$$\mathtt{cofHom}(a) := \bigcup_{b \in C_0} \mathrm{Hom}(\Omega, a+b)$$

If $g: a \to c$, then $g \circ (b, \rho) := (b, (g + 1_b) \circ \rho)$.

If a cofam-category $\mathcal C$ has 0, then $u=w\Rightarrow \rho^{-1}(u)=\rho^{-1}(w)$, and $\mathcal C$ has the cofamily-arrow-extensionality property (cofarrExt), if

$$\forall_{u \in {}^{\mathrm{op}}b}(\rho^{-1}(u) = \sigma^{-1}(u)) \Rightarrow \rho = \sigma$$

 \mathcal{C} becomes a cofam-category by taking the slices as cofamily-arrows, and then \mathcal{C} has $(\operatorname{cofarrExt})$ if and only if \mathcal{C} has $(\operatorname{arcoExt})$.

Categories with cofamily arrows and coSigma-objects

$$\mathcal{Q}_{\mathcal{C}} := \left(\mathcal{Q}_{a} \rho \in \mathcal{C}_{0}, \ \operatorname{in}_{1}^{a, \rho} \colon a \to \mathcal{Q}_{a} \lambda \in \mathcal{C}_{1}, \right.$$

$$\mathcal{Q}_{\rho}f\colon \mathcal{Q}_{a}\rho \to \mathcal{Q}_{b}(f\circ \rho) \in C_{1}\bigg)_{a,b \in C_{0}, \rho \in \mathrm{cofHom}(a), f \in \mathrm{Hom}(a,b)}$$

In **Set**, if $\rho: X \to A$ in cofHom(A), let

$$Q_{A}\rho := \{\rho^{-1}(a) \mid a \in A\}$$

$$\operatorname{in}_{A,\rho}^{1} \colon A \to Q_{A}\rho, \quad a \mapsto \rho^{-1}(a)$$

$$[Q_{\rho}f](\rho^{-1}(a)) := (f \circ \rho)^{-1}(f(a))$$

In **Ring** with arrows $f: R \to S$ ring-epimorphisms, if $cofHom(R) := \mathcal{I}(R)$, the ideals of R, with $f \circ I := f(I)$, then

$$\mathcal{Q}_R I := R/I$$

$$\operatorname{in}_{A,\rho}^1 \colon A \to \mathcal{Q}_{A\rho}, \quad r \mapsto r + I$$

$$\mathcal{Q}_I f \colon R/I \to S/I, \quad [\mathcal{Q}_I f](r+I) := f(r) + f(I)$$

If C has binary coproducts and $b \in \text{cofHom}(a)$,

$$Q_ab:=a+b \& \operatorname{in}_1^{a,b}:=\operatorname{in}_a\colon a\to a+b.$$

coSigma-objects on a topos

Cats with codep-arrows $\chi \in \text{codHom}(a, \rho), \rho \in \text{cofHom}(a)$

A (cofam, \mathcal{Q})-category is a codep-category

If C is a (cofam, Q)-category, let for every $a \in C$ and $\rho \in codHom(a)$

$$\mathcal{C}_{\mathsf{a}}\rho := \big\{\psi \in \mathrm{Hom}\big(\mathcal{Q}_{\mathsf{a}}\rho, \mathsf{a}\big) \mid \psi \circ \mathtt{in}_{\mathsf{a},\rho}^1 = 1_{\mathsf{a}}\big\}$$

$$a \xrightarrow{\operatorname{in}_{a,\rho}^{1}} \mathcal{Q}_{a\rho} \xrightarrow{\psi} a$$

be the codependent objects of ρ . If $codHom(\rho, a) := C_a\rho$, then C becomes a codep-category.

Proof:

If we write $f(\psi)$, instead of the used in the proof composition $f\circ\psi$, we get the required arrow by the universal property of pushouts.

Second injection $In_2^{a,\rho}$

The dual to the dependent arrow $\Pr_2^{a,\lambda}$ is the codependent arrow $\operatorname{In}_2^{a,\rho}\in\operatorname{codHom}(\operatorname{in}_1^{a,\rho}\circ\rho,\mathcal{Q}_a\rho)$

such that, for every $b \in C$ and $f \in \text{Hom}(a, b)$ we have that

$$\operatorname{In}_2^{b,f\circ
ho} = \mathcal{Q}_{
ho} f \circ \operatorname{In}_2^{a,
ho}.$$

A (cofam, \mathcal{Q})-category is a (codep, \mathcal{Q})-category

To C_1 we add C_2 , C_3 and coC_2 , coC_3

Dependent and coDependent Category Theory

The category of small types ${\cal U}$

$$\begin{split} A\colon \mathcal{U}, & \operatorname{cofam}(A) := A, & \operatorname{codHom}(A,a) := \Omega(A,a) := a =_A a, \\ f\circ p := f(p)\colon \operatorname{codHom}(B,f(a)) := \Omega(B,f(a)) := f(a) =_B f(a). \end{split}$$

This codep-structure on $\mathcal U$ is not induced by the following $\mathcal Q$ -structure on $\mathcal U$.

$$\begin{split} Q_A a := A \times \bigg(\sum_{x \colon A} (x =_A a) \bigg), \\ \operatorname{in}_1^{A,a} \colon A \to A \times \bigg(\sum_{x \colon A} (x =_A a) \bigg), \qquad a' \mapsto \big(a', (a, \operatorname{refl}_a)\big), \\ \operatorname{In}_2^{A,a} := \operatorname{refl}_{(a,(a,\operatorname{refl}_a))} \colon \operatorname{codHom}\big(\operatorname{in}_1^{A,a} \circ a, Q_A a\big). \end{split}$$

The interplay between the dependent and codependent features of $\mathcal U$ is expected to lead to a good notion of type-category.

Small types form a 2-fam-category

$$\operatorname{Hom}(P,Q) := \prod_{x \in \Lambda} (P(x) \to Q(x))$$

A topos is a 2-fam-category

If (b, e) and (c, f) are in fHom(a), then

$$\operatorname{Hom} \bigl((b,e), (c,f) \bigr) := \{ g \in \operatorname{Hom} (b,c) \mid f \circ (1_a \times g) = e \}$$

Toposes are also 2-(fam, Σ)-categories, 2-dep-categories, and 2-(dep, Σ)-categories (see [9]).

Higher dep-categories

If $a \in C_0$, $\lambda \in \mathtt{fHom}(a)$, and $\Phi \in \mathtt{dHom}(a,\lambda)$, then one can define $\mathtt{dHom}^{(2)}\big(a,\lambda,\Phi\big),$

such that if $\Phi^{(2)} \in d\mathrm{Hom}^{(2)} ig(a, \lambda, \Phi ig)$ and $f \in \mathrm{Hom}(b, a)$, then

$$\Phi^{(2)} \circ f \in dHom^{(2)}(b, \lambda \circ f, \Phi \circ f),$$

together with the obvious compatibility conditions.

In the case of $\mathrm{Type}(\mathcal{U})$ a natural canidate for $\mathrm{dHom}^{(2)}(A,P,\Phi)$, where $A\colon \mathcal{U},P\colon A\to \mathcal{U}$, and $\Phi\colon \prod_{x\colon A} P(x)$ is the type of the dependent application ap_Φ of Φ i.e.,

$$\mathtt{d} \mathtt{Hom}^{(2)} \big(A, P, \Phi \big) := \prod_{x,y \colon A} \prod_{P \colon x =_A y} p_*^P \big(\Phi_x \big) =_{P(y)} \Phi_y.$$

The corresponding higher Σ -objects are expected to be defined, and to behave as the dependent Σ -objects.

If n > 2, and $\Phi \in d\mathrm{Hom}(a, \lambda), \Phi^{(2)} \in d\mathrm{Hom}^{(2)}(a, \lambda, \Phi), \ldots, \Phi^{(n)} \in d\mathrm{Hom}^{(n)}(a, \lambda, \Phi, \ldots, \Phi^{(n-1)})$, then we can define

$$\mathtt{dHom}^{(n+1)}(a,\lambda,\Phi,\Phi^{(2)},\ldots,\Phi^{(n)})$$

satisfying the obvious compatibility conditions with the dependent arrow-structures of lower degree. We hope to elaborate these higher dependent arrow-structures, together with their dual higher codependent arrow-structures

$$\operatorname{codHom}^{(n+1)}(a, \rho, \mathcal{A}, \mathcal{A}^{(2)}, \dots, \mathcal{A}^{(n)}),$$

in future-work.

- P. Aczel, M. Rathjen: *Constructive Set Theory*, book draft, 2010.
- S. Awodey: Category Theory, Oxford University Press, 2010.
- M. Barr, C. Wells: Category Theory for Computing Science, Reprints in Theory and Applications in Category Theory, Center de Recherche Mathématique, Université de Montréal, 2012.
- J. Bénabou: Fibered categories and the foundations of naive category theory, The Journal of Symbolic Logic, Volume 50, Number 1, 1985, 10–37.
- E. Bishop: Foundations of Constructive Analysis, McGraw-Hill, 1967.
- E. Bishop and D. S. Bridges: *Constructive Analysis*, Grundlehren der Math. Wissenschaften 279, Springer-Verlag, Heidelberg-Berlin-New York, 1985.
- J. Cartmell: Generalised algebraic theories and contextual categories, Annals of Pure and Applied Logic, 32, 1986, 209–243.

- T. Ehrhard: A Categorical Semantics of Constructions, LICS 1988, IEEE Computer Society Press, 1988, 264–273.
- Y. Ehrhardt: 2-(dep)-Categories, Bachelor Thesis, LMU, 2024.
- S. Feferman: Constructive theories of functions and classes, in Boffa et al. (Eds.) *Logic Colloquium 78*, North-Holland, 1979, 159–224.
- M. Hofmann, T. Streicher: The groupoid interpretation of type theory, in [29], 1998, 83-111.
- B. Jacobs: Categorical Logic and Type Theory, Elsevier, 1999.
- P. T. Johnstone, R. Paré (Eds): *Indexed Categories and Their Applications*, Springer-Verlag, 1978.
- J. Lambek, P. J. Scott: *Introduction to higher order categorical logic*, Cambridge University Press, 1986.
- P. Martin-Löf: An intuitionistic theory of types: predicative part, in H. E. Rose and J. C. Shepherdson (Eds.) *Logic Colloquium'73*, pp.73-118, North-Holland, 1975.

- P. Martin-Löf: Intuitionistic type theory: Notes by Giovanni Sambin on a series of lectures given in Padua, June 1980, Napoli: Bibliopolis, 1984.
- P. Martin-Löf: An intuitionistic theory of types, in [29], 127–172.
- R. Mines, F. Richman, W. Ruitenburg: A course in constructive algebra, Springer Science+Business Media New York, 1988.
- J. Myhill: Constructive Set Theory, J. Symbolic Logic 40, 1975, 347-382.
- E. Palmgren: Proof-relevance of families of setoids and identity in type theory, Arch. Math. Logic, 51, 2012, 35-47.
- I. Petrakis: Dependent Sums and Dependent Products in Bishop's Set Theory, in P. Dybjer et. al. (Eds) TYPES 2018, LIPIcs, Vol. 130, Article No. 3, 2019.
- I. Petrakis: Families of Sets in Bishop Set Theory, Habilitation Thesis, LMU, 2020.

- I. Petrakis: From the Sigma-type to the Grothendieck construction, arXiv:2109.04239v1, 2021.
- I. Petrakis: Chu representations of categories related to constructive mathematics, arXiv:2106.01878v1, 2021.
- I. Petrakis: Proof-relevance in Bishop-style constructive mathematics, Mathematical Structures in Computer Science, Volume 32, Issue 1, 1–43.
- I. Petrakis: Categories with dependent arrows, arXiv:2303.14754v1, 2023.
- I. Petrakis, Y. Ehrhardt: Categories with dependent and codependent arrows, preprint, 2024.
- A. M. Pitts: Categorical logic, in S. Abramsky, D. M. Gabbay, T. S. E. Maibaum (Eds.) *Handbook of Logic in Computer Science*, Vol. 5, Clarendon Press, Oxford, 2000, 39–128.
- G. Sambin, J. M. Smith (Eds.): Twenty-five years of constructive type theory, Oxford University Press, 1998.

- R. A. G. Seely: Locally cartesian closed categories and type theories, Mathematical Proceedings of the Cambridge Philosophical Society, 95, 1984, 33–48.
- The Univalent Foundations Program: Homotopy Type Theory: Univalent Foundations of Mathematics, Institute for Advanced Study, Princeton, 2013.