

Challenges of Real-World RL

Gabriel Dulac-Arnold¹, Daniel Mankowitz^{*}, Todd Hester^{*}

Google Research, Brain Team

*Deepmind

doogie nesedicii, bidiii re

Summary

- Reinforcement learning has proven its worth in numerous artificial domains.
- Many of the recent advances in RL research are hard to leverage in real-world systems, primarily due to rarely satisfied assumptions.
- We propose 9 challenges that must be addressed to bring RL to real-world systems, and discuss current approaches to each of these.
- We propose example domains, as well as a full training/evaluation regime that more closely resembles real-world systems and acts as a more realistic testbed for candidate RL algorithms.

Environments

Cart Dal	. W 1-1		Manipulate	or Variables: $oldsymbol{ heta}, oldsymbol{F}, \mathcal{M}$
	e Variables: x, θ		Type	Constraint
Type Static	Constraint Limit range: $x_l < x < x_r$		Static	Limit joint angles $ heta_L < heta < heta_U$ Avoid dynamic obstacles
Kinematio	$\begin{array}{c c} \text{Limit velocit} \\ \theta_c - \theta > \theta_c \end{array}$			$\mathcal{M} \cap \mathcal{M}_{O,i} = \emptyset$ Avoid self-contact
Dynamic	Limit cart ac $\ddot{x} < A_{\text{max}}$	celeration:	Kinematic	$\mathcal{M} \cap \mathcal{M} = \mathcal{M}$ Limit joint velocities: $\max_i \left \dot{m{\theta}}_i \right < L_{\dot{m{ heta}}}$
Walker Variables: θ, u, F TypeConstraint			Dynamic	$egin{array}{c c c c c c c c c c c c c c c c c c c $
Static	Limit joint as $\theta_L < \theta < \theta_L$	IJ.		Limit end effector forces: $F_{\rm EE} < F_{\rm max}$
	Enforce uprightness: $0 < u_x$			Variables: $\boldsymbol{\theta}, \boldsymbol{u}, \boldsymbol{F}$
Kinematio	$\left \begin{array}{c c} \text{Limit joint vo} \\ \max_i \left \dot{oldsymbol{ heta}}_i \right < \end{array} \right $		Type Static	Constraint Limit joint angles: $\theta_{L,i} < \boldsymbol{\theta}_i < \theta_{U,i}$
Dynamic	Limit foot co $F_{ m foot} < F_{ m max}$	ontact forces:		Enforce uprightness: $0 < \boldsymbol{u}_x$
Robustness			Kinematic	Limit joint velocities:
Env.	Noise	Non-Stationarity		$\left egin{array}{c} \max_i \left \dot{m{ heta}}_i ight < L_{\dot{m{ heta}}} \end{array} ight.$
Cart-Pole	Actuator and sensor delays	Track friction increasing with time	Dynamic	Limit foot contact forces. $F_{\text{Foot}} < F_{\text{max}}$
Walker	Noisy perception of terrain	Occasionally non- responsive leg ac- tuator		Encourage falls on posterio $F_i < F_{\max,1} \forall i \in \mathcal{C} \setminus i_{post}$
Manipulator	Imprecise proprio- ception Changes in gripper friction			$F_{post} < F_{ ext{max},2}$
Humanoid	Reduced torque on leg actuator	Varying payload CoGs		

Challenges

Real-world policies need to be:

- 1. **Off-policy & off-line**: policies need to be trained off-line from the fixed logs of an external behavior policy.
- 2. Efficient: Learning on the real system from limited samples.
- 3. **Scalable**: policies need to reason with high-dimensional continuous state and action spaces.
- 4. **Safe**: environments have safety constraints that should never or at least rarely be violated.
- 5. **Risk-Adverse & Robust**: environments may be partially observable, non-stationary or stochastic and potentially adversarial.
- 6. **Discerning**: policies need to reason with reward functions that are unspecified, multi-objective, or risk-sensitive.
- 7. **Explainable**: system operators require explainable policies and actions.
- 8. **Fast**: Inference must happen in real-time at the control frequency of the system.
- 9. **Mnemonic**: Policies should be able to handle large and/or unknown delays in the system actuators, sensors, or rewards.

Evaluators

Challenge	Evaluator			
Off-line	$J^{start} = R(\operatorname{Train}(D_{\pi_B}))$			
Efficient	$J^{eff.} = \min \mathcal{D}_i $ s.t. $R(\mathtt{Train}(D_i)) > R_{\min}$			
Safe	$oxed{J^{safety}(\pi) = \left(\sum_{i=1}^{T} c_j(s_i, a_i)\right)_{1 \leq j \leq K} \in \mathbb{R}^K}$			
Robust	$J^{robust}(\pi) = \frac{1}{K} \sum_{p \in \mathbf{P}} \mathbf{E}^p \left[\sum_{i=1}^T r(s_i, a_i) \right]$			
Discerning	$\boldsymbol{J}^{multi}(\pi) = \left(\sum_{i=1}^{T_n} r_j(s_i, a_i)\right)_{1 \leq j \leq K} \in \mathbb{R}^K$			

Proposed Framework

- Training performed in Batch-RL (off-line, Initially off-policy)
 - Training from behavior policy logs with varying sizes and policy qualities.
- Training considered as on-line:
 - Use both safety conscious and robustness-enhanced environments.
 - Every interaction should be considered as the real system being run (goes towards efficiency counts and safety constraints).
- Evaluate according to the proposed evaluators, and compare training algorithms according to a multi-dimensional approach.

