Домашнее задание 3

- $(1) \ \ u \cup v = w : nullable(w) = nullable(u) \ or \ nullable(v); firstpos(w) = firstpos(u) \cup firstpos(v); lastpos(w) = lastpos(u) \cup lastpos(v); \\ w = u^* : nullable(w) = true; firstpos(w) = firstpos(u); lastpos(w) = lastpos(u); \\ w = u \cdot v : nullable(w) = nullable(u) \ and \ nullable(v); if \ nullable(u) == True : firstpos(w) = firstpos(v) \cup firstpos(u); else : firstpos(w) = firstpos(u); if \ nullable(v) : lastpos(w) = lastpos(u) \cup lastpos(v); else : lastpos(w) = lastpos(v).$
- (2) Построим НКА для РВ ab(aab|b)*b:

Далее составим таблицу переходов:

		a	b
$\rightarrow A$	1	В	
В	2		С
С	3,4,9,8	D	Е
D	5	F	
E	10,11,8,3,4,9	D	Е
F	6		Н
Н	7,8,3,4,9	D	E

Исходя из таблицы видно, что состояние A - стартовое состояние, а со-

стояние E - финальное, причем единственное. Используя таблицу, постороим ДКА:

(3) $a_1b_2(a_3a_4b_5|b_6)^*b_7\#_8$

Построим дерево синтаксического разбора для данного выражения:

 Посчитаем значение функции followpos для каждого символа:

1	2
2	3,6,7
3	4
4	5
5	3,6,7
6	6,7
7	8

Теперь по данному дереву построим таблицу переходов:

		a	b
$\rightarrow A$	firstpos(root) = 1	В	
В	2		С
С	3,6,7	D	Е
D	4	F	
E	6,7,8		Е
F	5		С

Очевидно, что в задачах 2 и 3 получились одинаковые ДКА.

(4) Очевидно, что такой язык не является регулярным. $L = \{xy : |x| = |y|, y \text{ содержит букву } \mathbf{a} \subseteq \{a, b\}^*$ Если бы язык был регулярным, то выполнялась бы лемма о накачке:

 $\exists \ n \in N: \ \forall \ w \in L: |w|\geqslant n \ \exists \ x,y,z \in \sum^*: |xy|\leqslant n,y \neq \epsilon \hookrightarrow w = xyz$ и $\forall k \in N \cup \{0\} \ xy^kz \in L$ Построим отридание леммы о накачке:

 $\forall n \in N \ \exists \ w \in L, |w| \geqslant n: \ \forall \ x,y,z \in \sum^*: |xy| \leqslant n, y \neq \epsilon \hookrightarrow w = xyz \ \text{if} \ \exists k \in N \cup \{0\} \ xy^kz \not\in L$

То есть надо для любого натурального числа найти слово из языка, длина которого равна этому натуральному числу, причем, чтобы выполнялись выше описанные требования.

Тогда возьмем слово $a^(n+2)b^n$. Данное слово лежит в языке: $a^{n+1}=u, ab^n=t$, причем $a\in t, w=ut$. Так как по требованиям леммы $xy\leqslant n\Rightarrow xy=a^ia^j, (i+j)\leqslant n$. По лемме о накачке, если бы язык был регулярным, то $a^ia^{n+2-i-j}b^n\in L$, но данное слово лежит в языке тогда и только тогда, когда j<2 (чтобы а присутствовала во второй половине слова). Но $j\neq 0$, так как $y\neq \epsilon$ и $j\neq 1$, иначе слово $a^{n+1}b^n$ - нечетной длины и не лежит в L. Следовательно, лемма не выполняется для слова $a^{n+2}b^n$ \forall $n\in L$. Доказано, язык не является регулярным.