Synthese alkaloid-analoger Verbindungen 1)

Im Verlaufe unserer Untersuchungen zur Synthese alkaloid-analoger Verbindungen wurde die Darstellung von 2-Methyl-8-methoxychinolin sowie dessen Hydrierung nach dem von Heller [1] beschriebenen Verfahren im System Zn/HCl bearbeitet.

Aus dem Reaktionsgemisch konnte durch Kristallisation aus Ethanol/Wasser ein Hauptprodukt abgetrennt werden, dessen Struktur (II) durch Kombination verschiedener spektroskopischer Verfahren ermittelt wurde. Für die farblose, mikrokristalline Verbindung mit dem Schmp. 215–220°C erhält man im Massenspektrum einen Molekülpeak $\mathbf{M}^+=350.$ Die im Spektrum erscheinende Basisspitze m/e 174 entspricht einem Bruchstück der Struktur III und ist zugleich das erste im Spektrum nachweisbare Fragment (Bild 1). Die nächsten im Spektrum auftretenden Schlüsselbruchstücke m/e 159, 119, 134 sind charakteristisch für das 2-Methyl-8-methoxychinolin, so daß für II folgender Fragmentierungsmechanismus angenommen werden kann:

Im 60-MHz-¹H-NMR-Spektrum findet man bei II Signale für aromatische Protonen ($\delta=6,2-6,8$ ppm, Multiplett) sowie für NH ($\delta=4,17$ ppm, Sing.), OCH₃ ($\delta=3,76$ ppm, Sing.) und CH₃-Gruppen ($\delta=1,2$ ppm, Sing.).

Weitere fünf breite Singuletts ($\delta=2,85,\ 2,05,\ 1,8,\ 1,12$ und 0,09 ppm) sind den in dem Strukturvorschlag erkennbaren Sechs-Spin-Systemen zuzuschreiben. Das für diesen Molekülteil simulierte Spektrum zeigt 5 komplexe Multiplettstrukturen, die in ihren mittleren Signallagen eindeutig mit dem Originalspektrum übereinstimmen. Das 13 C-NMR-Spektrum weist, wie für die vorgeschlagene symmetrische Struktur zu erwarten, fünf Signale

 ^{1) 138.} Mitteilung über Alkaloide, 137. Mitteilung s. Döpke, W.; Trimiño, Z.: Z. Chem. 19 (1979) 377

Bild 1 Massenspektrum

Bild 2 13C-NMR-Spektrum

für aliphatisch gebundene und weitere sechs für aromatisch gebundene C-Atome aus. Das ¹³C-,,off resonance"-Spektrum der Verbindung erlaubt die eindeutige Zuordnung der Signale. Aus dem ¹³-C-,,gated decoupling"-Spektrum wurden die in der Tab. 1 ausgewiesenen ¹³C-H-Kopplungskonstanten bestimmt²).

Tabelle 1

C-Atom Nr.	δ in ppm	Multiplizität "off resonance"	J (G. D.) in Hz
1 .	144,79	1	
2	135,18	1	_
3	125,22	1	
4	120,79	2	156,6; 7,2; 2,9
5	114,59	2	161,1
6	107,94	2	156,6; 8,2; 2
7	57,35	1	-
8	55,39	4	144,0
9	42,90	2	133,8
10	30,15	3	131,4
11	22,74	4	126,3

Die für C-9 ermittelte Kopplungskonstante liegt mit $J=133,8~{\rm Hz}$ oberhalb des für normale $^{13}{\rm C}\cdot({\rm sp^3}){\rm C}\cdot{\rm H}\cdot{\rm Kopplungen}$ ermittelten Wertes von $J=123,5~{\rm Hz}$ [2] und entspricht damit dem beobachteten Wert der für Cyclobutanderivate experimentell ermittelten Kopplungskonstanten [2].

Modellbetrachtungen am Dreiding-Modell zeigen, daß die bisäquatoriale Verknüpfung der beiden Chinolin-Teile bevorzugt sein sollte, da bei axial-äquatorialer Verknüpfung eine Überlappung der van-der-Waals-Radien der Methylgruppe mit dem axial angeordneten Proton am C-4 auftreten würde.

Literatur

- [1] Heller, G.: Ber. dtsch. chem. Ges. 44 (1911) 2106
- [2] Buske, I. J.; Lauterber, P. C.: J. Amer. chem. Soc. 80 (1964) 1870
- ²) Die Zahlen entsprechen nicht der üblichen Chinolin-Nomenklatur

Peter Fuchs und Werner Döpke, Sektion Chemie der Humboldt-Universität zu Berlin, DDR

eingegangen am 4. Januar 1979

ZCM 6268

Übergangszustand und Lösungsmittelabhängigkeit der thermischen eis-trans-Isomerisierung des Azobenzens¹)

Der Mechanismus der thermischen cis-trans-Isomerisierung des Azobenzens und seiner Substitutionsprodukte ist vielfach untersucht worden [1]–[5]. Dabei wurde sowohl die Existenz eines Über-

¹) 16. Mitteilung über quantenchemische Berechnungen zur Molekülstruktur konjugierter Verbindungen; 15. Mitteilung s. Hofmann, H.-J.; Kuthan, J.: Collect. ezechoslov. chem. Commun. 44 (1979) 2633