

206 Discrete Structures II

Konstantinos P. Michmizos

Computational Brain Lab
Computer Science | Rutgers University | NJ, USA

Extra Problems – Set 1

What we will cover today

Combinatorics

- Recap
 - Counting (Partition, Difference, Product)
- Today
 - Counting
 - Product Rule
 - Bijection Rule
- Next
 - Permutations/Combinations
 - Pigeonhole Principle

Course Outline

• Part I

- Recap of basics sets, function, proofs, induction
- Basic counting techniques
 - Pigeonhole principle
 - Generating functions

• Part II

- Sample spaces and events
- Basics of probability
- Independence, conditional probability
- Random variables, expectation, variance
- Moment generating functions

• Part III

- Graph Theory
- Machine learning and statistical inference

Counting

- In the next few lectures
 - Fundamental tools and techniques for counting
 - Sum Rule
 - Product Rule
 - Difference Method
 - Bijection Method
 - Permutations/Combinations
 - Inclusion Exclusion
 - Binomial/Multinomial coefficients

-> Intermediate

-> Advanced

Partition Method

• If I roll a white and black die, how many possible outcomes do I see?

$$A6 = all out(ome)$$
 $A6 = with black die = 6$
 $|S| = |A| + |A| + - + |A6|$
 $= 6.6 = 36$

Difference Method

- To find the size of a set A,
 - Find a larger set *S* such that $S = A \cup B$ and
 - *A* and *B* are disjoint.
 - |A| = |S| |B|
- Possible outcomes where white and black die have different values?
 - Find S with all possible outcomes |S| = 36
 - Subtract B with the same values |B|=6
 - |A| = |S| |B| = 36 6 = 30

Partition Method

• Possible outcomes where white and black die have different values?

$$A_1 = all \text{ out (omes with black die=1)}$$
 $A_2 = black die=2$
 $A_3 = black die=6$
 $A_4 = black die=6$
 $A_4 = 5$
 $A_4 = 5$
 $A_4 = 5$
 $A_5 = 5+5+5+5+5=36$

...or we can use the Difference Method

• Possible outcomes where white and black die have different values?

Product Rule:

$$|A \times B| = |A| \cdot |B|$$

Insight: The Product Rule gives us how many different elements are possible Insight #2: The multiplication finds all the possible "matches" across sets

Product Method

• If I roll a white and black die, how many possible outcomes do I see?

Question: Can you make the above question not solvable with the product rule?

Remember: Now we are leaving behind us our ability to count elements and start developing skills that help us count sets without explicitly counting their elements

Product Rule:

$$|A_1 \times A_2 \times \cdots A_n| = |A_1| \cdot |A_2| \dots |A_n|$$

- A restaurant has a menu with 5 Appetizers, 6 Entrees, 3 Salads, and 7 Desserts.
 - How many ways to choose a complete meal?

• A restaurant has a menu with 5 Appetizers, 6 Entrees, 3 Salads, and 7 Desserts.

• How many ways to choose a meal if I'm allowed to skip some (or all) the

courses?

Exercise: Counting Passwords...

- You are signing up for an account on FlixBiz.com. The password has the following requirements
 - The password must be 6 to 8 characters long.
 - Each password is an uppercase letter or digit.
 - Each password must contain at least one digit.

Partition Method

Hint (or ...When to think of Partition Method)

• When you are asked to count something that exists in easy-to-count ways (e.g., between 2 and 4), consider dividing the problem to the enumerable cases and then use the Partition Method

• Note that if the different cases are too many (e.g., 100), then most probably the intention of the exercise is not to stress your patience mechanisms...

Exercise: Counting Passwords...

- You are signing up for an account on FlixBiz.com. The password has the following requirements
 - The password must be 6 to 8 characters long.
 - Each password is an uppercase letter or digit.
 - Each password must contain at least one digit.

Partition Method

Exercise: Counting Passwords...

Difference Method

Find Contrapositive

(see Hint on next slide)

$$|A_1| = 36' - 26'$$

 $|A_8| = 36'' - 26''$

Hint: When to use Difference Method

When you are asked to count something that exists in

"at least" one place, consider counting the opposite

(that is "nowhere")

Which means: You need to be able to find the

"contrapositive argument".

Generalized

Product Rule

• How many ways to assign 100 passengers to 100 seats?

Generalized Product Rule – Order is important

• Suppose every object of a set S, can be constructed by a sequence of n choices with P_1 possibilities for the first choice, P_2 possibilities for the second choice, and so on

• IF

- Each sequence of choices constructs an object in *S*.
- No two different sequences create the same object

THEN

•
$$|S| = P_1 \times P_2 \times \cdots P_n$$