慶應義塾大学試験問題用紙(日吉)

			訪	人験時	間	90 分				分						
平成 29 4		学	部	学科			年		組		採	点	欄	*		
担当者名	坂川 博宣、勝良 健史	学籍番号							-							
科目名	数学3A (- 春)	氏 名					•									

次の1から7に答えよ.

問6は答えのみを、それ以外は途中の過程も適宜答案用紙の所定の欄に記入すること.

- 1. (a) 数列 $\{a_n\}_{n\geq 1}$ が $\alpha\in\mathbb{R}$ に収束することの定義を論理記号を用いて書け.
 - (b)関数 $f: \mathbb{R} \to \mathbb{R}$ が $x = \alpha \in \mathbb{R}$ で連続であることの定義を論理記号を用いて書け.
 - (c) 数列 $\{a_n\}_{n\geq 1}$ が $\alpha\in\mathbb{R}$ に収束し、関数 $f:\mathbb{R}\to\mathbb{R}$ は $x=\alpha$ で連続かつ $f(\alpha)>0$ を満たすとする. このとき、ある $N\in\mathbb{N}$ が存在して任意の $n\geq N$ に対し $f(a_n)>0$ が成り立つことを問 (a), (b) の定義に従って証明せよ.
- $\left(egin{array}{c} 2. \end{array}
 ight)$ 次の関数 f(x,y) が点 (0,0) で連続かどうか判定せよ.

$$f(x,y) = egin{cases} rac{\sin(xy)}{x^2 + 2y^2} & (x,y)
eq (0,0) のとき \ rac{1}{3} & (x,y) = (0,0) のとき \end{cases}$$

 $a \in \mathbb{R}$ とする. 次の極限が0以外の有限の値を取るように自然数nを定め、そのときの極限値を求めよ.

$$\lim_{x \to 0} \frac{e^{2x} - \sqrt{1 + x^2} - 2x - ax^2 - \frac{4}{3}x^3}{x^n}$$

- (4.) $f(x) = \cos(\sin(2x))$ のマクローリン近似を 4 次まで求めよ.
- 5. テイラーの定理を用いて任意の $x \in [0,1]$ に対し次の不等式が成り立つことを証明せよ.

$$2x - 2x^2 + \frac{8}{81}x^3 \le \log(1 + 2x) \le 2x - 2x^2 + \frac{8}{3}x^3$$

- 例数 $f(x,y) = \operatorname{Tan}^{-1} \frac{y}{x} (x \neq 0)$ の 2 階までの偏導関数 f_x , f_y , f_{xx} , f_{xy} , f_{yx} , f_{yy} をそれぞれ求めよ.

 (答えのみを書くこと)
- 7. 2変数関数 f(x,y) は C^2 -級とし、関数 z=g(u,v) を $g(u,v)=f(u\sin v,u^2+2v)$ で定める. このとき $\frac{\partial z}{\partial v}$, $\frac{\partial^2 z}{\partial u \partial v}$ をそれぞれ u,v および f の 2 階までの偏導関数を用いて表せ.