Examiner: ? C. Mouhot

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight and each question accounts for 40% of the total marks.

- 1 This question is bookwork about real and functional analysis concepts introduced and used in the lectures.
 - 1. Give two definitions of real analyticity of a function defined on the real line, first in terms of the convergence of the Taylor series, second in terms of the growth on the derivatives, and prove their equivalence.
 - 2. Give an example of a function which is smooth but not real analytic on \mathbb{R} (justify entirely the answer).
 - 3. State the Liouville theorem for analytic functions in the complex plane. Is a similar statement satisfied for real analytic functions on \mathbb{R} ?
 - 4. Give the definition of being separable for a Hilbert space, and show that the space $L^2_{loc}(\mathbb{R})$ (functions square integrable on any compact interval) endowed with the inner product $\langle f, g \rangle = \lim_{R \to \infty} \frac{1}{R} \int_{-R}^{R} f(x)g(x) dx$ defines a non-separable Hilbert space.
 - 5. State and prove the existence and uniqueness of a projection on a closed non-empty convex subset of a Hilbert space.
 - 6. State and prove Riesz representation theorem.
 - 7. State and prove Lax-Milgram theorem.
- 2 This question is bookwork about heat, Laplace and wave equations.
 - 1. Consider the heat equation $\partial_t u = \partial_x^2 u$ in $\mathbb{R} \times \mathbb{R}$. Show that the line $\{t = 0\}$ is characteristic and that there does not exist an analytic solution u in a neighborhood of (0,0) with $u = (1+x^2)^{-1}$ on $\{t = 0\}$.
 - 2. Give the formula for the wave and Schrödinger and Laplace equations and their characteristic hypersurfaces.
 - 3. Prove the elliptic regularity principle for the Laplace equation in a smooth bounded connected domain $\mathcal{U} \subset \mathbb{R}^{\ell}$, $\ell \geqslant 2$.
 - 4. Formulate the Cauchy problem for the Laplace equation. Assuming that the Cauchy data are real analytic on some real analytic Cauchy hypersurface $\Gamma \subset \mathcal{U}$, can we apply the Cauchy-Kowelevskaia theorem?
 - 5. Assuming that the Cauchy data are C^2 but not C^3 on Γ , can we apply Cauchy-Kowalevskaia's theorem? Is there any C^2 solution locally around Γ ?

6. Consider the wave equation with smooth Cauchy data on the hypersurface $\{t=0\} \times \mathbb{R}^n$. State and prove the key "a priori estimate" seen in the lectures in the whole space domain \mathbb{R}^n .

- 7. State and prove the stronger *local* version of the previous a priori estimate, and prove as a consequence that if the Cauchy data has compact support, then the solution has compact support on each time slice. How fast can the support spread out in time?
- **3** This question deals with solving elliptic equations. We consider in this whole question a domain $\mathcal{U} \in \mathbb{R}^{\ell}$, $\ell \geqslant 1$, smooth, bounded and connected.
 - 1. Consider the Neumann problem of the Poisson equation

$$-\Delta u = f \quad \text{in } \mathcal{U}$$
$$\nabla_x u \cdot \mathbf{n}(x) = 0 \quad \text{in } \partial \mathcal{U}$$

with f a smooth function on \mathcal{U} and where $\mathbf{n}(x)$ is the outgoing normal vector. We say that u is a weak solution to this problem if $u \in H^1(\mathcal{U})$ and

$$\forall v \in H^1(\mathcal{U}), \quad \int_{\mathcal{U}} \nabla u \cdot \nabla v \, \mathrm{d}x = \int_{\mathcal{U}} f v \, \mathrm{d}x.$$

- (a) Prove that (1) if u is a weak solution and u is smooth on $\bar{\mathcal{U}}$ then u is a classical solution, and (2) that a classical C^2 solution is a weak solution.
- (b) Prove that the weak solution is unique up to the choice of a constant.
- (c) Prove the Neumann-Poincaré inequality

$$\forall v \in H^1(\mathcal{U}), \quad \int_{\mathcal{U}} (v - m[v])^2 \, \mathrm{d}x \leqslant C_P \int_{\mathcal{U}} |\nabla_x v|^2 \, \mathrm{d}x, \quad m[v] := \int_{\mathcal{U}} v \, \mathrm{d}x$$

for some constant $C_P > 0$.

Hint. Argue by contradiction and use the Rellich-Kondrachov theorem in the form that a sequence bounded in $H^1(\mathcal{U})$ is compact in $L^2(\mathcal{U})$.

- (d) Prove the existence of a weak solution as soon as $\int_{\mathcal{U}} f \, dx = 0$ by following the Hilbert analysis strategy we have used for the Dirichlet problem.
- (e) Prove that the previous condition on f is necessary for the existence of a weak solution.

2. Consider the following boundary-value problem

$$\Delta^2 u = f \quad \text{in } \mathcal{U}$$

$$u = \nabla_x u \cdot \mathbf{n}(x) = 0 \quad \text{on } \partial \mathcal{U}$$

with f a smooth function on \mathcal{U} and where $\mathbf{n}(x)$ is the outgoing normal vector. We say that u is a weak H_0^2 solution to this problem if $u \in H_0^2(\mathcal{U})$ and

$$\forall v \in H_0^2(\mathcal{U}), \quad \int_{\mathcal{U}} \Delta u \Delta v \, \mathrm{d}x = \int_{\mathcal{U}} f v \, \mathrm{d}x.$$

- (a) Prove that (1) if u is a weak solution and u is smooth on $\overline{\mathcal{U}}$ then u is a classical solution, and (2) that a classical C^4 solution is a weak solution.
- (b) Prove that the weak solution is unique.
- (c) Prove the existence of a weak solution by following the Hilbert analysis strategy we have used for the Dirichlet problem.

 Hint. Use both the Dirichlet-Poincaré inequality proved in lectures and the Neumann-Poincaré inequality proved above.
- 4 This question deals with the vanishing viscosity approximation of the nonlinear transport equation.
 - 1. Consider the equation

$$\partial_t u + \partial_x F(u) = \epsilon \partial_{xx}^2 u, \quad x \in \mathbb{R}, \ t \in (0, +\infty)$$
 (1)

with $\epsilon > 0$ and F a C^2 function on \mathbb{R} with F' bounded.

(a) Arguing a priori, i.e. assuming the existence of a global smooth solution u_{ϵ} decaying at infinity faster than any polynomials, perform energy estimates to establish the following estimate on the L^2 norm

$$\forall t \geqslant 0, \quad \int_{\mathbb{R}} u_{\epsilon}(t, x)^2 dx \leqslant e^{C_0 t} \left(\int_{\mathbb{R}} u_{\epsilon}(0, x)^2 dx \right)$$

and provide a formula for bounding above the constant C_0 in terms of F and ϵ .

(b) Arguing a priori as in the previous question, perform energy estimates to establish the following estimate on the L^2 norm of the first derivative

$$\forall t \geqslant 0, \quad \int_{\mathbb{R}} (\partial_x u_{\epsilon}(t, x))^2 dx \leqslant e^{C_1 t} \left(\int_{\mathbb{R}} (\partial_x u_{\epsilon}(0, x))^2 dx \right)$$

and provide a formula for bounding above the constant C_1 in terms of F and ϵ .

Examiner: ? C. Mouhot

(c) How does these constants C_0 and C_1 behave as $\epsilon \to 0$? Can you relate it to the behavior of the solution when $\epsilon = 0$.

2. Consider again the equation

$$\partial_t u + \partial_x F(u) = \epsilon \partial_{xx}^2 u, \quad x \in \mathbb{R}, \ t \in (0, +\infty)$$
 (2)

with $\epsilon > 0$, but now with F a C^2 uniformly convex function on \mathbb{R} .

(a) Prove that if $u_{\epsilon}(t,x) = v(x - \sigma t)$ is a travelling wave solution for some C^2 function v on \mathbb{R} and $\sigma \in \mathbb{R}$, then v satisfies the implicit formula

$$\forall s \in \mathbb{R}, \quad s = \int_{c}^{v(s)} \frac{\epsilon}{F(z) - \sigma z + b} \, \mathrm{d}z$$

for some constants $b, c \in \mathbb{R}$.

(b) Assuming that v converges to u_l (resp. u_r) at $z \to -\infty$ (resp. $z \to +\infty$), prove that the travelling wave speed σ satisfies

$$\sigma = \frac{F(u_l) - F(u_r)}{u_l - u_r}.$$

(c) Assuming $u_l > u_r$ and the existence of the solution $u_{\epsilon}(t,x) = v(x - \sigma t)$ described in parts (a)-(b) of this question, describe the limit $\lim_{\epsilon \to 0} u_{\epsilon}$ and explain your answer.