

Charles
Hammell,
Nelson Turbo
CEO

Our approach

Load CMAPSS engine data Data exploration and cleansing

Feature engineering

C3

Partition data

Define training job and hyperparameter tuning job

Create endpoint with winning model

Score data via endpoint

Data

Data set overview

Four data sets

	1 Operating Condition	6 Operating Conditions
HPC Degradation Failure	FD001	FD002
HPC Degradation and Fan Degradation	FD003	FD004

We chose to focus on HPC Degradation only, so we used data sets FD001 and FD002.

Training data format

Sensor readings per engine/cycle

Engine	Time in Cycles	Sensor 1 Reading	 Sensor 26 Reading
1	1	34.99	 1.02
1	2	41.67	 1.02
	•••		
1	143	63.12	 1.26

In Train, there is one record per cycle until failure.

Test set is same format, except data for each unit truncates at a mystery point in time before failure.

Target definition

In Train data, we calculated for engine *i* in time period *t*:

Cycles until Failure_{it} = (Max cycle_i) - (Current cycle)_{it} Can be used for regression-type prediction

Not much needed for data prep – doesn't need standardizing, and our data was already all numeric

Robust to outliers

Speedy

Why XGBoost?

Data exploration

- Sensor readings gradually increase or decrease over time as they approach failure
- The readings are very noisy

Feature engineering

- Rolling averages of sensor readings
- Standard deviations from an initial baseline, specific to each engine
- Rolling averages of standard deviations from initial baseline

XGBoost 1st training evaluation

Iterative improvement through feature engineering + hyperparameter tuning

Model Version	Model Description	Validation RMSE for Dataset FD001
1	Limited feature engineering, No hyperparameter tuning	36.5
2	Limited feature engineering, With hyperparameter tuning	36.2
3	Feature engineering round 1 (std deviation from baseline)	32.9
4	Feature engineering round 2 (rolling avg sensor readings)	28.5
5	Feature engineering round 3 (rolling avg of std deviation from baseline)	27.0
6	With hyperparameter tuning	16.5

"If we had time..."

Additional feature engineering	There are papers with some cool feature engineering to identify signals in each engine's sensor data over time	
Clustering of similarly behaving engine units	Can be used to further segment population	
	Or as an input in predictive model	
Try alternate populations	Can we successfully combine our models for the "one condition" and "six condition" data sets?	
Try alternate target definitions	We completely ignored Fan Degradation failure type.	
	Try separate models for each failure type, compare to a combined model.	
Try alternate modeling algorithms	Linear Learner, etc.	
Try alternate evaluation metric	· · · · · · · · · · · · · · · · · · ·	
Further evaluation of our residuals (errors)	To diagnose where we perform well/poorly	

