命名实体识别

NAMED ENTITY RECOGNITION

胡伟龙 huweilong@whu.edu.cn 2018年6月15日

Contents

- 1. INTRODUCTION
- 2. BiLSTM+CRF
- 3. IDCNN+CRF
- 4. CONCLUSION

INTRODUCTION

实体识别

- 早期工作主要针对专有名词:
 - 1. 人名(PERSON)——政治家、演员等
 - 2. 地名(LOCATION)——城市、州、国家等
 - 3. 机构名称(ORGANIZATION)
- 近年实体类型针对领域发生变化:
 - 1. 蛋白质、DNA、RNA和细胞类型等
 - 2. 药品和化学名称
 - 3. 产品和事件、物质、动物 ……

例子

国务院(机构名)总理<mark>李克强(人名</mark>)调研上海外高桥(地名)时提出, 支持上海(地名)积极探索新机制。

命名实体识别方法

早期的研究大多采用基于人工构造规则的方法,而现在大多使用监督的机器学习方法。

- 1. 监督学习
 - 。 隐马尔科夫模型、决策树、最大熵模型、支持向量机、条件随机场
- 2. 半监督学习
 - 。 "bootstrapping"方法,提供少量标注数据,搜索上下文信息
- 3. 无监督学习
 - 。 根据上下文的相似性从聚类组中收集命名实体

命名实体识别与序列标注

实体识别可以简单理解为<u>序列标注</u>问题:给定一个句子,为每一个字做标注。

序列标注实例

标注时使用IOB标注集:

习 近 平 视 察 了 湖 北 武 汉 。 B-PER I-PER I-PER O O O B-LOC I-LOC I-LOC O

标注时使用IOBES标注集:

习 近 平 来 汉 视 察 。 B-PER I-PER E-PER O S-LOC O O C

BILSTM+CRF

BiLSTM+CRF

Interesting

There has been a running joke in the NLP community that an LSTM with attention will yield state-of-the-art performance on any task.

—Ruder. 《Deep Learning for NLP Best Practices》

Neural Architectures for Named Entity Recognition

—arXiv2016

Neural Architectures ... Recognition Introduction

Motivation

- Language-specific resources and features are costly to develop in new languages and new domains.
- Previous work have used unsupervised features to augment, rather than replace, hand-engineered features.

○ Two models

- A bidirectional LSTM with a sequential conditional random layer above it.
- A new model that constructs and labels chunks of input sentences using an algorithm inspired by transition-based parsing.

Neural Architectures ... Recognition LSTM

LSTM

For a given sentence $(x_1, x_2, ..., x_n)$, the representation of word t is obtained by concatenating its left and right context representations, $h_t = [\overrightarrow{h_t}; \overleftarrow{h_t}]$

Neural Architectures ... Recognition CRF Tagging

Sentences and predictions:

$$X = (x_1, x_2, \dots, x_n)$$

$$y=(y_1,y_2,\ldots,y_n)$$

The score is defined as follows:

$$s(X, y) = \sum_{i=0}^{n} A_{y_i, y_{i+1}} + \sum_{i=1}^{n} P_{i, y_i}$$

CRF TAGGING MODELS

- $\bigcirc P_{i,j} \in \mathbb{R}^{n \times k}$: the score of the j^{th} tag of the i^{th} word.
- \bigcirc $A_{i,j} \in \mathbb{R}^{k+2\times k+2}$: the score of a transition from the tag i to tag j.

Neural Architectures ... Recognition CRF Tagging

Probability for the prediction y:

$$p(y|X) = \frac{e^{s(X,y)}}{\sum_{\widetilde{y} \in Y_X} e^{s(X,\widetilde{y})}}$$

Traning and decoding objective:

$$\log(p(y|X)) = s(X, y) - \log(\sum_{\widetilde{y} \in Y_X} e^{s(X, \widetilde{y})})$$
$$y^* = \arg\max_{\widetilde{y} \in Y_X} s(X, \widetilde{y})$$

 Y_X represents all possible tag sequences for a sentence X.

Neural Architectures ... Recognition Experiments

Model	F ₁
Collobert et al. (2011)*	89.59
Lin and Wu (2009)	83.78
Lin and Wu (2009)*	90.90
Huang et al. (2015)*	90.10
Passos et al. (2014)	90.05
Passos et al. (2014)*	90.90
Luo et al. (2015)* + gaz	89.9
Luo et al. (2015)* + gaz + linking	91.2
Chiu and Nichols (2015)	90.69
Chiu and Nichols (2015)*	90.77
LSTM-CRF (no char)	90.20
LSTM-CRF	90.94
S-LSTM (no char)	87.96
S-LSTM	90.33

Table 1: English NER results (CoNLL-2003 test set). * indicates models trained with the use of external labeled data

Model	F ₁
Carreras et al. (2002)	77.05
Nothman et al. (2013)	78.6
Gillick et al. (2015)	78.08
Gillick et al. (2015)*	82.84
LSTM-CRF - no char	73.14
LSTM-CRF	81.74
S-LSTM – no char	69.90
S-LSTM	79.88

Table 3: Dutch NER (CoNLL-2002 test set). * indicates models trained with the use of external labeled data

Model	$\mathbf{F_1}$
Florian et al. (2003)*	72.41
Ando and Zhang (2005a)	75.27
Qi et al. (2009)	75.72
Gillick et al. (2015)	72.08
Gillick et al. (2015)*	76.22
LSTM-CRF - no char	75.06
LSTM-CRF	78.76
S-LSTM – no char	65.87
S-LSTM	75.66

 $\begin{tabular}{ll} \textbf{Table 2:} German NER results (CoNLL-2003 test set). * indicates models trained with the use of external labeled data \\ \end{tabular}$

Model	F_1
Carreras et al. (2002)*	81.39
Santos and Guimarães (2015)	82.21
Gillick et al. (2015)	81.83
Gillick et al. (2015)*	82.95
LSTM-CRF - no char	83.44
LSTM-CRF	85.75
S-LSTM – no char	79.46
S-LSTM	83.93

 $\begin{tabular}{ll} \textbf{Table 4: Spanish NER (CoNLL-2002 test set).} * indicates models trained with the use of external labeled data \end{tabular}$

IDCNN+CRF

IDCNN+CRF

While previous models are expressive and accurate, they fail to fully exploit the parallelism opportunaties of a GPU.

Fast and Accurate Entity Recognition with Iterated Dilated Convolutions

—EMNLP2017

Fast and Dilated Convolutions Introduction

Problems

- LSTMs requires O(N) time when performing sequential processing on sentences of length N.
- CNN's computational cost grows with the number of layers, while its representation is limited by the effective input width.
- Pooling on sequence is not appropriate for sequence labeling.

○ This paper

- The effective input width can grow exponentially with the depth, with no loss in resolution at each layer and with modest number of parameters.
- The size of the effective input width for a token at layer l: $l(w-1)+1 \rightarrow 2^{l+1}-1$.

Fast and Dilated Convolutions Introduction

Figure 1: A dilated CNN block with maximum dilation width 4 and filter width 3. Neurons contributing to a single highlighted neuron in the last layer are also highlighted.

3 stacked dilated convolutions of width 3 produces token representations with a effective input width of 15 tokens.

Fast and Dilated Convolutions Dilated Convolutions

- (a)1-dilated conv, like normal convolution.
- (b)2-dilated conv, with effective input width of 7.
- (c)4-dilated conv, with effective input width of 15.

Fast and Dilated Convolutions Dilated Convolutions

The convolutional operator has changed:

$$c_t = W_c \bigoplus_{k=0}^r x_{t\pm k} \to c_t = W_c \bigoplus_{k=0}^r x_{t\pm k\delta}$$

where δ is the dilation width.

input text:
$$x = [x_1, x_2, ..., x_T]$$
, output tags: $y = [y_1, y_2, ..., y_T]$

1. Conditionally independent model:

$$P(y|x) = \prod_{t=1}^{I} P(y_t|F(x))$$

2. Linear-chain CRF model:

$$P(y|x) = \frac{1}{Z_x} \prod_{t=1}^{T} \varphi_t(y_t|F(x)) \varphi_p(y_t, y_{t-1})$$

CRF imposes more prior knowledge about the structure of the interactions among the tags, while accompaning worse computational complexity than independent prediction.

Fast and Dilated Convolutions Iterated Dilated CNNs

- Stacked dilated CNNs can easily incorporate global informatin from a whole sentence or document.
- Simply increasing the depth of stacked dilated CNNs causes considerable overfitting.

This paper presents Iterated Dilated CNNs(ID-CNNs), which instead apply the same small of dilated convolutions multiple times, each itetate taking as input the result of the last application.

Fast and Dilated Convolutions Iterated Dilated CNNs

Model Architecture:

- \bigcirc In a block B
 - 1. The first layer transforms the input to i_t :

$$i_t = D_1^{(0)} x_t$$

2. The stack of layers with the following recurrence:

$$c_t^{(j)} = ReLU(D_{2^L c^{-1}}^{(j-1)} c_t^{(j-1)})$$

3. Add a final dilation-1 layer to the stack:

$$c_t^{(L_C+1)} = ReLU(D_1^{(L_C)}c_t^{(L_C)})$$

 \bigcirc Apply $B L_b$ times

$$b_t^{(1)} = B(i_t)$$
 $b_t^{(k)} = B(b_t^{(k-1)})$ $h_t^{(L_b)} = W_o b_t^{(L_b)}$

Fast and Dilated Convolutions Iterated Dilated CNNs

Training:

O Tags are conditioanlly independent:

$$\frac{1}{T} \sum_{t=1}^{T} \log P(y_t | h_t^{(L_b)})$$

To let subsequent blocks learn to correct dependency violarions of their predecessors:

$$\frac{1}{L_b} \sum_{k=1}^{L_b} \frac{1}{T} \sum_{t=1}^{T} \log P(y_t | h_t^{(k)})$$

First invectigation of *dropout with expectation-linear regular- ization* for NLP (Ma et al.,2017).

Fast and Dilated Convolutions Experimental Results

Model	F1
Ratinov and Roth (2009)	86.82
Collobert et al. (2011)	86.96
Lample et al. (2016)	90.33
Bi-LSTM	89.34 ± 0.28
4-layer CNN	89.97 ± 0.20
5-layer CNN	90.23 ± 0.16
ID-CNN	90.32 ± 0.26
Collobert et al. (2011)	88.67
Passos et al. (2014)	90.05
Lample et al. (2016)	90.20
Bi-LSTM-CRF (re-impl)	90.43 ± 0.12
ID-CNN-CRF	$\textbf{90.54} \pm \textbf{0.18}$

Table 1: F1 score of models observing sentencelevel context. No models use character embeddings or lexicons. Top models are greedy, bottom models use Viterbi inference.

Model	Speed
Bi-LSTM-CRF	$1 \times$
Bi-LSTM	$9.92 \times$
ID-CNN-CRF	$1.28 \times$
5-layer CNN	$12.38 \times$
ID-CNN	$14.10 \times$

Table 2: Relative test-time speed of sentence models, using the fastest batch size for each model.⁵

Fast and Dilated Convolutions Experimental Results

Mode1	w/o DR	w/ DR
Bi-LSTM	88.89 ± 0.30	89.34 ± 0.28
4-layer CNN	89.74 ± 0.23	89.97 ± 0.20
5-layer CNN	89.93 ± 0.32	90.23 ± 0.16
Bi-LSTM-CRF	90.01 ± 0.23	90.43 ± 0.12
4-layer ID-CNN	89.65 ± 0.30	90.32 ± 0.26

Table 3: Comparison of models trained with and without expectation-linear dropout regularization (DR). DR improves all models.

Model	F1
4-layer ID-CNN (sent)	90.32 ± 0.26
Bi-LSTM-CRF (sent)	90.43 ± 0.12
4-layer CNN × 3	90.32 ± 0.32
5-layer CNN × 3	90.45 ± 0.21
Bi-LSTM	89.09 ± 0.19
Bi-LSTM-CRF	90.60 ± 0.19
ID-CNN	90.65 ± 0.15

Table 4: F1 score of models trained to predict document-at-a-time. Our greedy ID-CNN model performs as well as the Bi-LSTM-CRF.

CONCLUSION

Conclusion

- 1. 使用IDCNN-CRF在保证性能的情况下提升训练速度
- 2. 根据领域制定更细粒度的实体类型
 - o Person(人物、职位等)
 - Location(地点)
 - o Organization(机构)
 - o Works(作品)
 - o Date(日期、时间)
 - o Style(艺术风格)
 - Faction(流派)
 - o Misc(其他类型)