

From: JEFFREY RUSSEL [jeffrey.russel@uspto.gov]
Sent: Monday, February 27, 2006 4:38 PM
To: STIC-Biotech/ChemLib
Subject: Database Search Request, Serial Number: 10/649,378

Requester:
 JEFFREY RUSSEL (P/1654)

Art Unit:
 GROUP ART UNIT 1654

Employee Number:
 62785

Office Location:
 REM 03D19

Phone Number:
 (571)272-0969

Mailbox Number:
 REM 3C18

Case serial number:
 10/649,378

Class / Subclass(es):
 NA

Earliest Priority Filing Date:
 NA

Format preferred for results:
 Diskette

Search Topic Information:

Please do an interference search of SEQ ID NO:250 in the U.S. patent application sequence database (pending, published, and issued). Please require any hits to have ten or fewer residues. Thank you.

Special Instructions and Other Comments:

RECEIVED
 FEB 27 2006
 USPTO
 (SIC)...

***** Point of Contact.
Searcher: Alexandra Waclawiw
Searcher Phone: Technical Info Special
Date Searcher Picked up: 2-24-06 8:02 AM
Date completed: 3-2-06
Searcher Prep Time: 8
Online Time: 6

Type of Search 1
NA#: **AA#:**
S/L: **Oligomer:**
Encode/Transl:
Structure #: **Text:**
Inventor: **Litigation:**

Vendors and cost where applicable
STN:
DIALOG:
QUESTEL/ORBIT:
LEXIS/NEXIS:
SEQUENCE SYSTEM:
WWW/Internet:
Other (Specify):

GenCore version 5.1.7
Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: March 2, 2006, 12:36:46 ; Search time 36 Seconds
(without alignments)
8.578 Million cell updates/sec

Title: US-10-649-378B-250

Perfect score: 20

Sequence: 1 FREL 4

Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5

Searched: 322452 seqs, 77201678 residues

Total number of hits satisfying chosen parameters: 38129

Minimum DB seq length: 0

Maximum DB seq length: 11

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 150 summaries

Database : Pending_Patents_AA_New:
1: /cgn2_6/ptodata/2/paa/PCT_NEW_COMB.pep: *
2: /cgn2_6/ptodata/2/paa/US06_NEW_COMB.pep: *
3: /cgn2_6/ptodata/2/paa/US07_NEW_COMB.pep: *
4: /cgn2_6/ptodata/2/paa/US08_NEW_COMB.pep: *
5: /cgn2_6/ptodata/2/paa/US09_NEW_COMB.pep: *
6: /cgn2_6/ptodata/2/paa/US10_NEW_COMB.pep: *
7: /cgn2_6/ptodata/2/paa/US11_NEW_COMB.pep: *
8: /cgn2_6/ptodata/2/paa/US60_NEW_COMB.pep: *

Search completed: March 2, 2006, 12:46:38

Job time : 37 secs

GenCore version 5.1.7
Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: March 2, 2006, 12:36:36 ; Search time 552 Seconds
(without alignments)
10.014 Million cell updates/sec

Title: US-10-649-378B-250

Perfect score: 20

Sequence: 1 FREL 4

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 7861189 seqs, 1381955077 residues

Total number of hits satisfying chosen parameters: 941471

Minimum DB seq length: 0

Maximum DB seq length: 11

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 150 summaries

Database : Pending_Patents_AA_Main:*

1: /cgn2_6/ptodata/1/paa/PCTUS_COMB.pep:*

2: /cgn2_6/ptodata/1/paa/US066_COMB.pep:*

3: /cgn2_6/ptodata/1/paa/US073_COMB.pep:*

4: /cgn2_6/ptodata/1/paa/US074_COMB.pep:*

5: /cgn2_6/ptodata/1/paa/US075_COMB.pep:*

6: /cgn2_6/ptodata/1/paa/US076_COMB.pep:*

7: /cgn2_6/ptodata/1/paa/US077_COMB.pep:*

8: /cgn2_6/ptodata/1/paa/US078_COMB.pep:*

9: /cgn2_6/ptodata/1/paa/US079_COMB.pep:*

10: /cgn2_6/ptodata/1/paa/US080_COMB.pep:*

11: /cgn2_6/ptodata/1/paa/US081_COMB.pep:*

12: /cgn2_6/ptodata/1/paa/US082_COMB.pep:*

13: /cgn2_6/ptodata/1/paa/US083_COMB.pep:*

14: /cgn2_6/ptodata/1/paa/US084_COMB.pep:*

15: /cgn2_6/ptodata/1/paa/US085_COMB.pep:*

16: /cgn2_6/ptodata/1/paa/US086_COMB.pep:*

17: /cgn2_6/ptodata/1/paa/US087_COMB.pep:*

18: /cgn2_6/ptodata/1/paa/US088_COMB.pep:*

19: /cgn2_6/ptodata/1/paa/US089_COMB.pep:*

20: /cgn2_6/ptodata/1/paa/US090_COMB.pep:*

21: /cgn2_6/ptodata/1/paa/US091_COMB.pep:*

22: /cgn2_6/ptodata/1/paa/US092_COMB.pep:*

23: /cgn2_6/ptodata/1/paa/US093_COMB.pep:*

24: /cgn2_6/ptodata/1/paa/US094_COMB.pep:*

25: /cgn2_6/ptodata/1/paa/US095_COMB.pep:*

26: /cgn2_6/ptodata/1/paa/US096_COMB.pep:*

27: /cgn2_6/ptodata/1/paa/US097_COMB.pep:*

```
28: /cgn2_6/ptodata/1/paa/US098_COMB.pep:*
29: /cgn2_6/ptodata/1/paa/US099_COMB.pep:*
30: /cgn2_6/ptodata/1/paa/US100_COMB.pep:*
31: /cgn2_6/ptodata/1/paa/US101_COMB.pep:*
32: /cgn2_6/ptodata/1/paa/US102_COMB.pep:*
33: /cgn2_6/ptodata/1/paa/US103_COMB.pep:*
34: /cgn2_6/ptodata/1/paa/US104_COMB.pep:*
35: /cgn2_6/ptodata/1/paa/US105_COMB.pep:*
36: /cgn2_6/ptodata/1/paa/US106_COMB.pep:*
37: /cgn2_6/ptodata/1/paa/US107_COMB.pep:*
38: /cgn2_6/ptodata/1/paa/US108_COMB.pep:*
39: /cgn2_6/ptodata/1/paa/US109_COMB.pep:*
40: /cgn2_6/ptodata/1/paa/US110_COMB.pep:*
41: /cgn2_6/ptodata/1/paa/US111_COMB.pep:*
42: /cgn2_6/ptodata/1/paa/US112_COMB.pep:*
43: /cgn2_6/ptodata/1/paa/US114_COMB.pep:*
44: /cgn2_6/ptodata/1/paa/US600_COMB.pep:*
45: /cgn2_6/ptodata/1/paa/US601_COMB.pep:*
46: /cgn2_6/ptodata/1/paa/US602_COMB.pep:*
47: /cgn2_6/ptodata/1/paa/US603_COMB.pep:*
48: /cgn2_6/ptodata/1/paa/US604_COMB.pep:*
49: /cgn2_6/ptodata/1/paa/US605_COMB.pep:*
50: /cgn2_6/ptodata/1/paa/US606_COMB.pep:*
51: /cgn2_6/ptodata/1/paa/US607_COMB.pep:*
```

Search completed: March 2, 2006, 12:45:58

Job time : 554 secs

GenCore version 5.1.7
Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: March 2, 2006, 12:46:51 ; Search time 20 Seconds
(without alignments)
4.000 Million cell updates/sec

Title: US-10-649-378B-250
Perfect score: 20
Sequence: 1 FREL 4

Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5

Searched: 135339 seqs, 20000136 residues

Total number of hits satisfying chosen parameters: 49350

Minimum DB seq length: 0

Maximum DB seq length: 11

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 150 summaries

Database : Published_Applications_AA_New:*

1: /cgn2_6/ptodata/2/pubpaa/US08_NEW_PUB.pep:*

2: /cgn2_6/ptodata/2/pubpaa/US06_NEW_PUB.pep:*

3: /cgn2_6/ptodata/2/pubpaa/US07_NEW_PUB.pep:*

4: /cgn2_6/ptodata/2/pubpaa/PCT_NEW_PUB.pep:*

5: /cgn2_6/ptodata/2/pubpaa/US09_NEW_PUB.pep:*

6: /cgn2_6/ptodata/2/pubpaa/US10_NEW_PUB.pep:*

7: /cgn2_6/ptodata/2/pubpaa/US11_NEW_PUB.pep:*

8: /cgn2_6/ptodata/2/pubpaa/US60_NEW_PUB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Match	Length	DB	ID	%	Description
						Query	
1	20	100.0	8	7	US-11-045-024-1624		Sequence 1624, Ap
2	20	100.0	8	7	US-11-045-024-4338		Sequence 4338, Ap
3	20	100.0	8	7	US-11-045-024-10299		Sequence 10299, A
4	20	100.0	8	7	US-11-045-024-10329		Sequence 10329, A
5	20	100.0	8	7	US-11-045-024-12138		Sequence 12138, A
6	20	100.0	8	7	US-11-045-024-12157		Sequence 12157, A
7	20	100.0	9	7	US-11-045-024-3221		Sequence 3221, Ap
8	20	100.0	9	7	US-11-045-024-5832		Sequence 5832, Ap
9	20	100.0	9	7	US-11-045-024-10302		Sequence 10302, A

10	20	100.0	9	7	US-11-045-024-10338	Sequence 10338, A
11	20	100.0	9	7	US-11-045-024-12141	Sequence 12141, A
12	20	100.0	9	7	US-11-045-024-12164	Sequence 12164, A
13	20	100.0	9	7	US-11-045-024-13786	Sequence 13786, A
14	20	100.0	10	7	US-11-045-024-3292	Sequence 3292, Ap
15	20	100.0	10	7	US-11-045-024-3293	Sequence 3293, Ap
16	20	100.0	10	7	US-11-045-024-5877	Sequence 5877, Ap
17	20	100.0	10	7	US-11-045-024-10310	Sequence 10310, A
18	20	100.0	10	7	US-11-045-024-10341	Sequence 10341, A
19	20	100.0	10	7	US-11-045-024-12146	Sequence 12146, A
20	20	100.0	10	7	US-11-045-024-12168	Sequence 12168, A
21	20	100.0	11	7	US-11-045-024-2286	Sequence 2286, Ap
22	20	100.0	11	7	US-11-045-024-3374	Sequence 3374, Ap
23	20	100.0	11	7	US-11-045-024-4753	Sequence 4753, Ap
24	20	100.0	11	7	US-11-045-024-5946	Sequence 5946, Ap
25	20	100.0	11	7	US-11-045-024-10314	Sequence 10314, A
26	20	100.0	11	7	US-11-045-024-12150	Sequence 12150, A
27	20	100.0	11	7	US-11-045-024-12799	Sequence 12799, A
28	17	85.0	9	6	US-10-510-101-123	Sequence 123, App
29	16	80.0	5	6	US-10-516-083-8	Sequence 8, Appli
30	16	80.0	6	6	US-10-485-788A-233	Sequence 233, App
31	16	80.0	7	6	US-10-485-788A-234	Sequence 234, App
32	16	80.0	8	6	US-10-485-788A-235	Sequence 235, App
33	16	80.0	8	7	US-11-058-735-21	Sequence 21, Appl
34	16	80.0	8	7	US-11-045-024-4306	Sequence 4306, Ap
35	16	80.0	8	7	US-11-045-024-4307	Sequence 4307, Ap
36	16	80.0	8	7	US-11-045-024-9685	Sequence 9685, Ap
37	16	80.0	8	7	US-11-045-024-10058	Sequence 10058, A
38	16	80.0	8	7	US-11-045-024-12706	Sequence 12706, A
39	16	80.0	8	7	US-11-045-024-12764	Sequence 12764, A
40	15	75.0	4	6	US-10-895-064-963	Sequence 963, App
41	15	75.0	4	7	US-11-129-741-963	Sequence 963, App
42	15	75.0	5	6	US-10-925-366A-61	Sequence 61, Appl
43	15	75.0	8	6	US-10-895-064-1143	Sequence 1143, Ap
44	15	75.0	8	7	US-11-123-290-6	Sequence 6, Appli
45	15	75.0	8	7	US-11-123-290-46	Sequence 46, Appl
46	15	75.0	8	7	US-11-123-290-55	Sequence 55, Appl
47	15	75.0	8	7	US-11-066-967-2	Sequence 2, Appli
48	15	75.0	8	7	US-11-066-967-19	Sequence 19, Appl
49	15	75.0	8	7	US-11-129-741-1143	Sequence 1143, Ap
50	15	75.0	9	7	US-11-123-290-67	Sequence 67, Appl
51	15	75.0	9	7	US-11-123-290-72	Sequence 72, Appl
52	15	75.0	9	7	US-11-129-741-4218	Sequence 4218, Ap
53	15	75.0	10	7	US-11-058-727-111	Sequence 111, App
54	15	75.0	10	7	US-11-108-389-111	Sequence 111, App
55	15	75.0	10	7	US-11-123-290-62	Sequence 62, Appl
56	15	75.0	10	7	US-11-123-290-68	Sequence 68, Appl
57	15	75.0	10	7	US-11-123-290-73	Sequence 73, Appl
58	15	75.0	10	7	US-11-224-624-111	Sequence 111, App
59	15	75.0	11	6	US-10-537-002-124	Sequence 124, App
60	15	75.0	11	7	US-11-123-290-69	Sequence 69, Appl
61	15	75.0	11	7	US-11-123-290-74	Sequence 74, Appl
62	14	70.0	7	6	US-10-895-064-1431	Sequence 1431, Ap
63	14	70.0	7	7	US-11-129-741-1431	Sequence 1431, Ap
64	14	70.0	8	7	US-11-045-024-114	Sequence 114, App
65	14	70.0	8	7	US-11-045-024-1022	Sequence 1022, Ap
66	14	70.0	8	7	US-11-045-024-1023	Sequence 1023, Ap

67	14	70.0	8	7	US-11-045-024-1575	Sequence 1575, Ap
68	14	70.0	8	7	US-11-045-024-1577	Sequence 1577, Ap
69	14	70.0	8	7	US-11-045-024-2927	Sequence 2927, Ap
70	14	70.0	8	7	US-11-045-024-4004	Sequence 4004, Ap
71	14	70.0	8	7	US-11-045-024-4005	Sequence 4005, Ap
72	14	70.0	8	7	US-11-045-024-5288	Sequence 5288, Ap
73	14	70.0	8	7	US-11-045-024-5718	Sequence 5718, Ap
74	14	70.0	8	7	US-11-045-024-5719	Sequence 5719, Ap
75	14	70.0	8	7	US-11-045-024-5752	Sequence 5752, Ap
76	14	70.0	8	7	US-11-045-024-6430	Sequence 6430, Ap
77	14	70.0	8	7	US-11-045-024-6493	Sequence 6493, Ap
78	14	70.0	8	7	US-11-045-024-6494	Sequence 6494, Ap
79	14	70.0	8	7	US-11-045-024-6505	Sequence 6505, Ap
80	14	70.0	8	7	US-11-045-024-6506	Sequence 6506, Ap
81	14	70.0	8	7	US-11-045-024-6507	Sequence 6507, Ap
82	14	70.0	8	7	US-11-045-024-6566	Sequence 6566, Ap
83	14	70.0	8	7	US-11-045-024-6567	Sequence 6567, Ap
84	14	70.0	8	7	US-11-045-024-6607	Sequence 6607, Ap
85	14	70.0	8	7	US-11-045-024-8227	Sequence 8227, Ap
86	14	70.0	8	7	US-11-045-024-9287	Sequence 9287, Ap
87	14	70.0	8	7	US-11-045-024-9298	Sequence 9298, Ap
88	14	70.0	8	7	US-11-045-024-11408	Sequence 11408, A
89	14	70.0	8	7	US-11-033-039-387	Sequence 387, App
90	14	70.0	8	7	US-11-041-893-156	Sequence 156, App
91	14	70.0	8	7	US-11-131-425A-84	Sequence 84, Appl
92	14	70.0	9	6	US-10-981-873-17	Sequence 17, Appl
93	14	70.0	9	6	US-10-859-643-372	Sequence 372, App
94	14	70.0	9	6	US-10-859-643-380	Sequence 380, App
95	14	70.0	9	6	US-10-895-064-1363	Sequence 1363, Ap
96	14	70.0	9	6	US-10-989-767A-145	Sequence 145, App
97	14	70.0	9	7	US-11-097-864-372	Sequence 372, App
98	14	70.0	9	7	US-11-097-864-380	Sequence 380, App
99	14	70.0	9	7	US-11-097-912-372	Sequence 372, App
100	14	70.0	9	7	US-11-097-912-380	Sequence 380, App
101	14	70.0	9	7	US-11-045-024-245	Sequence 245, App
102	14	70.0	9	7	US-11-045-024-1135	Sequence 1135, Ap
103	14	70.0	9	7	US-11-045-024-1136	Sequence 1136, Ap
104	14	70.0	9	7	US-11-045-024-3206	Sequence 3206, Ap
105	14	70.0	9	7	US-11-045-024-3207	Sequence 3207, Ap
106	14	70.0	9	7	US-11-045-024-4058	Sequence 4058, Ap
107	14	70.0	9	7	US-11-045-024-4059	Sequence 4059, Ap
108	14	70.0	9	7	US-11-045-024-4419	Sequence 4419, Ap
109	14	70.0	9	7	US-11-045-024-5315	Sequence 5315, Ap
110	14	70.0	9	7	US-11-045-024-5316	Sequence 5316, Ap
111	14	70.0	9	7	US-11-045-024-5317	Sequence 5317, Ap
112	14	70.0	9	7	US-11-045-024-5637	Sequence 5637, Ap
113	14	70.0	9	7	US-11-045-024-5730	Sequence 5730, Ap
114	14	70.0	9	7	US-11-045-024-5731	Sequence 5731, Ap
115	14	70.0	9	7	US-11-045-024-6431	Sequence 6431, Ap
116	14	70.0	9	7	US-11-045-024-6459	Sequence 6459, Ap
117	14	70.0	9	7	US-11-045-024-6559	Sequence 6559, Ap
118	14	70.0	9	7	US-11-045-024-7480	Sequence 7480, Ap
119	14	70.0	9	7	US-11-045-024-7482	Sequence 7482, Ap
120	14	70.0	9	7	US-11-045-024-7579	Sequence 7579, Ap
121	14	70.0	9	7	US-11-045-024-8223	Sequence 8223, Ap
122	14	70.0	9	7	US-11-045-024-8226	Sequence 8226, Ap
123	14	70.0	9	7	US-11-045-024-9276	Sequence 9276, Ap

124	14	70.0	9	7	US-11-045-024-9290	Sequence 9290, Ap
125	14	70.0	9	7	US-11-045-024-9359	Sequence 9359, Ap
126	14	70.0	9	7	US-11-045-024-9494	Sequence 9494, Ap
127	14	70.0	9	7	US-11-045-024-9499	Sequence 9499, Ap
128	14	70.0	9	7	US-11-045-024-11449	Sequence 11449, A
129	14	70.0	9	7	US-11-045-024-11547	Sequence 11547, A
130	14	70.0	9	7	US-11-045-024-11552	Sequence 11552, A
131	14	70.0	9	7	US-11-045-024-13670	Sequence 13670, A
132	14	70.0	9	7	US-11-045-024-14150	Sequence 14150, A
133	14	70.0	9	7	US-11-033-039-827	Sequence 827, App
134	14	70.0	9	7	US-11-233-796-3	Sequence 3, Appl
135	14	70.0	9	7	US-11-116-203-61	Sequence 61, Appl
136	14	70.0	9	7	US-11-116-203-62	Sequence 62, Appl
137	14	70.0	9	7	US-11-018-868-98	Sequence 98, Appl
138	14	70.0	9	7	US-11-018-868-109	Sequence 109, App
139	14	70.0	9	7	US-11-129-741-1363	Sequence 1363, Ap
140	14	70.0	9	7	US-11-222-745-19	Sequence 19, Appl
141	14	70.0	10	6	US-10-859-643-73	Sequence 73, Appl
142	14	70.0	10	6	US-10-859-643-506	Sequence 506, App
143	14	70.0	10	6	US-10-859-643-603	Sequence 603, App
144	14	70.0	10	6	US-10-989-767A-414	Sequence 414, App
145	14	70.0	10	6	US-10-989-767A-543	Sequence 543, App
146	14	70.0	10	7	US-11-097-864-73	Sequence 73, Appl
147	14	70.0	10	7	US-11-097-864-506	Sequence 506, App
148	14	70.0	10	7	US-11-097-864-603	Sequence 603, App
149	14	70.0	10	7	US-11-097-912-73	Sequence 73, Appl
150	14	70.0	10	7	US-11-097-912-506	Sequence 506, App

ALIGNMENTS

RESULT 1

US-11-045-024-1624

; Sequence 1624, Application US/11045024

; Publication No. US20050271676A1

; GENERAL INFORMATION:

; APPLICANT: Sette, Alessandro
 ; APPLICANT: Sidney, John
 ; APPLICANT: Southwood, Scott
 ; APPLICANT: Livingston, Brian
 ; APPLICANT: Chesnut, Robert
 ; APPLICANT: Baker, Denise Marie
 ; APPLICANT: Celis, Esteban
 ; APPLICANT: Kubo, Ralph
 ; APPLICANT: Grey, Howard M.
 ; APPLICANT: Epimmune Inc.

; TITLE OF INVENTION: Inducing Cellular Responses to Human Immunodeficiency

; TITLE OF INVENTION: Virus-1 Using Peptide and Nucleic Acid Compositions

; FILE REFERENCE: 2060.0040007

; CURRENT APPLICATION NUMBER: US/11/045,024

; CURRENT FILING DATE: 2005-01-28

; PRIOR APPLICATION NUMBER: US 09/412,863

; PRIOR FILING DATE: 1999-10-05

; PRIOR APPLICATION NUMBER: US 08/027,146

; PRIOR FILING DATE: 1993-03-05

; PRIOR APPLICATION NUMBER: US 08/073,205

; PRIOR FILING DATE: 1993-06-04
; PRIOR APPLICATION NUMBER: US 08/103,396
; PRIOR FILING DATE: 1993-08-06
; PRIOR APPLICATION NUMBER: US 08/159,184
; PRIOR FILING DATE: 1993-11-29
; PRIOR APPLICATION NUMBER: US 08/159,339
; PRIOR FILING DATE: 1993-11-29
; PRIOR APPLICATION NUMBER: US 08/205,713
; PRIOR FILING DATE: 1994-03-04
; PRIOR APPLICATION NUMBER: US 08/347,610
; PRIOR FILING DATE: 1994-12-01
; NUMBER OF SEQ ID NOS: 14528
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 1624
; LENGTH: 8
; TYPE: PRT
; ORGANISM: HUMAN IMMUNODEFICIENCY VIRUS
US-11-045-024-1624

Query Match 100.0%; Score 20; DB 7; Length 8;
Best Local Similarity 100.0%; Pred. No. 9.9e+04;
Matches 4; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 FREL 4
|||
Db 5 FREL 8

RESULT 28
US-10-510-101-123
; Sequence 123, Application US/10510101
; Publication No. US20060018915A1
; GENERAL INFORMATION:
; APPLICANT: Epimmune Inc.
; APPLICANT: Ishioka, Glenn
; APPLICANT: Fikes, John
; APPLICANT: Tangri, Shabnam
; APPLICANT: Sette, Alessandro
; TITLE OF INVENTION: Heteroclitic Analogs and Related Methods
; FILE REFERENCE: 2060.009PC05
; CURRENT APPLICATION NUMBER: US/10/510,101
; CURRENT FILING DATE: 2004-10-05
; PRIOR APPLICATION NUMBER: US 60/413,471
; PRIOR FILING DATE: 2002-09-26
; PRIOR APPLICATION NUMBER: US 10/116,118
; PRIOR FILING DATE: 2002-04-05
; NUMBER OF SEQ ID NOS: 196
; SOFTWARE: PatentIn version 3.2
; SEQ ID NO 123
; LENGTH: 9
; TYPE: PRT
; ORGANISM: Artificial Sequence
; FEATURE:
; OTHER INFORMATION: Synthetic peptide derived from Homo sapiens Her2/neu
US-10-510-101-123

Query Match 85.0%; Score 17; DB 6; Length 9;
Best Local Similarity 75.0%; Pred. No. 9.9e+04;
Matches 3; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

Qy 1 FREL 4
: |||
Db 2 YREL 5

Search completed: March 2, 2006, 12:49:52
Job time : 21 secs

GenCore version 5.1.7
Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: March 2, 2006, 12:46:16 ; Search time 161 Seconds
(without alignments)
10.381 Million cell updates/sec

Title: US-10-649-378B-250

Perfect score: 20

Sequence: 1 FREL 4

Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5

Searched: 1867569 seqs, 417829326 residues

Total number of hits satisfying chosen parameters: 251271

Minimum DB seq length: 0

Maximum DB seq length: 11

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 150 summaries

Database : Published_Applications_AA_Main:
1: /cgn2_6/ptodata/1/pubpaa/US07_PUBCOMB.pep:
2: /cgn2_6/ptodata/1/pubpaa/US08_PUBCOMB.pep:
3: /cgn2_6/ptodata/1/pubpaa/US09_PUBCOMB.pep:
4: /cgn2_6/ptodata/1/pubpaa/US10A_PUBCOMB.pep:
5: /cgn2_6/ptodata/1/pubpaa/US10B_PUBCOMB.pep:
6: /cgn2_6/ptodata/1/pubpaa/US11_PUBCOMB.pep:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query				Description
		Match	Length	DB	ID	
1	20	100.0	4	5	US-10-649-378A-250	Sequence 250, App
2	20	100.0	4	5	US-10-649-378A-337	Sequence 337, App
3	20	100.0	7	4	US-10-001-546-43	Sequence 43, Appl
4	20	100.0	8	3	US-09-797-410-5	Sequence 5, Appli
5	20	100.0	8	3	US-09-017-743C-98	Sequence 98, Appl
6	20	100.0	8	4	US-10-117-937-349	Sequence 349, App
7	20	100.0	8	4	US-10-149-138-1566	Sequence 1566, Ap
8	20	100.0	8	4	US-10-149-138-1616	Sequence 1616, Ap
9	20	100.0	8	4	US-10-149-138-1627	Sequence 1627, Ap
10	20	100.0	8	4	US-10-149-138-2282	Sequence 2282, Ap
11	20	100.0	8	4	US-10-182-252A-1315	Sequence 1315, Ap

12	20	100.0	8	4	US-10-182-252A-1347	Sequence 1347, Appl
13	20	100.0	8	4	US-10-362-263-5	Sequence 5, Appl
14	20	100.0	8	4	US-10-149-138-1566	Sequence 1566, Appl
15	20	100.0	8	4	US-10-149-138-1616	Sequence 1616, Appl
16	20	100.0	8	4	US-10-149-138-1627	Sequence 1627, Appl
17	20	100.0	8	4	US-10-149-138-2282	Sequence 2282, Appl
18	20	100.0	8	6	US-11-067-064-349	Sequence 349, App
19	20	100.0	8	6	US-11-051-411-331	Sequence 331, App
20	20	100.0	8	6	US-11-051-411-430	Sequence 430, App
21	20	100.0	8	6	US-11-051-411-748	Sequence 748, App
22	20	100.0	8	6	US-11-051-411-1049	Sequence 1049, App
23	20	100.0	8	6	US-11-067-159-349	Sequence 349, App
24	20	100.0	9	3	US-09-277-074-35	Sequence 35, Appl
25	20	100.0	9	3	US-09-277-064-35	Sequence 35, Appl
26	20	100.0	9	4	US-10-001-546-42	Sequence 42, Appl
27	20	100.0	9	4	US-10-133-210-48	Sequence 48, Appl
28	20	100.0	9	4	US-10-133-210-82	Sequence 82, Appl
29	20	100.0	9	4	US-10-133-210-122	Sequence 122, App
30	20	100.0	9	4	US-10-239-313A-116	Sequence 116, App
31	20	100.0	9	4	US-10-200-708-667	Sequence 667, App
32	20	100.0	9	4	US-10-117-937-350	Sequence 350, App
33	20	100.0	9	4	US-10-117-937-351	Sequence 351, App
34	20	100.0	9	4	US-10-117-937-353	Sequence 353, App
35	20	100.0	9	4	US-10-442-909-58	Sequence 58, Appl
36	20	100.0	9	4	US-10-442-909-59	Sequence 59, Appl
37	20	100.0	9	4	US-10-149-138-1324	Sequence 1324, App
38	20	100.0	9	4	US-10-149-138-2999	Sequence 2999, App
39	20	100.0	9	4	US-10-149-138-3693	Sequence 3693, App
40	20	100.0	9	4	US-10-149-138-4102	Sequence 4102, App
41	20	100.0	9	4	US-10-149-138-1324	Sequence 1324, App
42	20	100.0	9	4	US-10-149-138-2999	Sequence 2999, App
43	20	100.0	9	4	US-10-149-138-3693	Sequence 3693, App
44	20	100.0	9	4	US-10-149-138-4102	Sequence 4102, App
45	20	100.0	9	6	US-11-067-064-350	Sequence 350, App
46	20	100.0	9	6	US-11-067-064-351	Sequence 351, App
47	20	100.0	9	6	US-11-067-064-353	Sequence 353, App
48	20	100.0	9	6	US-11-051-411-71	Sequence 71, Appl
49	20	100.0	9	6	US-11-051-411-311	Sequence 311, App
50	20	100.0	9	6	US-11-051-411-429	Sequence 429, App
51	20	100.0	9	6	US-11-051-411-689	Sequence 689, App
52	20	100.0	9	6	US-11-051-411-1047	Sequence 1047, App
53	20	100.0	9	6	US-11-051-411-1183	Sequence 1183, App
54	20	100.0	9	6	US-11-067-159-350	Sequence 350, App
55	20	100.0	9	6	US-11-067-159-351	Sequence 351, App
56	20	100.0	9	6	US-11-067-159-353	Sequence 353, App
57	20	100.0	10	3	US-09-229-173-43	Sequence 43, Appl
58	20	100.0	10	4	US-10-001-546-41	Sequence 41, Appl
59	20	100.0	10	4	US-10-200-708-48	Sequence 48, Appl
60	20	100.0	10	4	US-10-200-708-91	Sequence 91, Appl
61	20	100.0	10	4	US-10-200-708-98	Sequence 98, Appl
62	20	100.0	10	4	US-10-200-708-148	Sequence 148, App
63	20	100.0	10	4	US-10-200-708-149	Sequence 149, App
64	20	100.0	10	4	US-10-200-708-173	Sequence 173, App
65	20	100.0	10	4	US-10-200-708-198	Sequence 198, App
66	20	100.0	10	4	US-10-200-708-668	Sequence 668, App
67	20	100.0	10	4	US-10-117-937-352	Sequence 352, App
68	20	100.0	10	4	US-10-442-909-3	Sequence 3, Appl

69	20	100.0	10	4	US-10-149-138-1684	Sequence 1684, Ap
70	20	100.0	10	4	US-10-149-138-1684	Sequence 1684, Ap
71	20	100.0	10	5	US-10-947-352-35	Sequence 35, Appl
72	20	100.0	10	6	US-11-067-064-352	Sequence 352, App
73	20	100.0	10	6	US-11-051-411-72	Sequence 72, Appl
74	20	100.0	10	6	US-11-051-411-280	Sequence 280, App
75	20	100.0	10	6	US-11-051-411-431	Sequence 431, App
76	20	100.0	10	6	US-11-051-411-1039	Sequence 1039, Ap
77	20	100.0	10	6	US-11-067-159-352	Sequence 352, App
78	20	100.0	11	4	US-10-442-909-60	Sequence 60, Appl
79	20	100.0	11	4	US-10-442-909-61	Sequence 61, Appl
80	20	100.0	11	4	US-10-149-138-1567	Sequence 1567, Ap
81	20	100.0	11	4	US-10-149-138-1628	Sequence 1628, Ap
82	20	100.0	11	4	US-10-149-138-1770	Sequence 1770, Ap
83	20	100.0	11	4	US-10-149-138-2283	Sequence 2283, Ap
84	20	100.0	11	4	US-10-149-138-3000	Sequence 3000, Ap
85	20	100.0	11	4	US-10-149-138-3532	Sequence 3532, Ap
86	20	100.0	11	4	US-10-149-138-4620	Sequence 4620, Ap
87	20	100.0	11	4	US-10-149-138-1567	Sequence 1567, Ap
88	20	100.0	11	4	US-10-149-138-1628	Sequence 1628, Ap
89	20	100.0	11	4	US-10-149-138-1770	Sequence 1770, Ap
90	20	100.0	11	4	US-10-149-138-2283	Sequence 2283, Ap
91	20	100.0	11	4	US-10-149-138-3000	Sequence 3000, Ap
92	20	100.0	11	4	US-10-149-138-3532	Sequence 3532, Ap
93	20	100.0	11	4	US-10-149-138-4620	Sequence 4620, Ap
94	20	100.0	11	6	US-11-051-411-312	Sequence 312, App
95	20	100.0	11	6	US-11-051-411-435	Sequence 435, App
96	20	100.0	11	6	US-11-051-411-796	Sequence 796, App
97	20	100.0	11	6	US-11-051-411-1048	Sequence 1048, Ap
98	18	90.0	4	5	US-10-649-378A-246	Sequence 246, App
99	18	90.0	4	5	US-10-649-378A-334	Sequence 334, App
100	18	90.0	9	3	US-09-981-876-273	Sequence 273, App
101	18	90.0	9	3	US-09-148-545-273	Sequence 273, App
102	18	90.0	9	5	US-10-979-111-273	Sequence 273, App
103	17	85.0	4	5	US-10-649-378A-242	Sequence 242, App
104	17	85.0	4	5	US-10-649-378A-277	Sequence 277, App
105	17	85.0	4	5	US-10-649-378A-353	Sequence 353, App
106	17	85.0	8	2	US-08-817-832B-27	Sequence 27, Appl
107	17	85.0	8	3	US-09-756-500-3	Sequence 3, Appli
108	17	85.0	8	3	US-09-071-838-104	Sequence 104, App
109	17	85.0	8	4	US-10-213-512-104	Sequence 104, App
110	17	85.0	8	4	US-10-440-435-27	Sequence 27, Appl
111	17	85.0	8	4	US-10-777-053-192	Sequence 192, App
112	17	85.0	8	4	US-10-777-053-783	Sequence 783, App
113	17	85.0	8	4	US-10-837-217-192	Sequence 192, App
114	17	85.0	8	4	US-10-837-217-783	Sequence 783, App
115	17	85.0	9	3	US-09-909-460-103	Sequence 103, App
116	17	85.0	9	3	US-09-872-836-103	Sequence 103, App
117	17	85.0	9	4	US-10-015-535-37	Sequence 37, Appl
118	17	85.0	9	4	US-10-128-711-67	Sequence 67, Appl
119	17	85.0	9	4	US-10-133-210-281	Sequence 281, App
120	17	85.0	9	4	US-10-057-475B-10963	Sequence 10963, A
121	17	85.0	9	4	US-10-154-884B-10963	Sequence 10963, A
122	17	85.0	9	4	US-10-149-138-4323	Sequence 4323, Ap
123	17	85.0	9	4	US-10-398-104-4	Sequence 4, Appli
124	17	85.0	9	4	US-10-367-580-122	Sequence 122, App
125	17	85.0	9	4	US-10-367-593-122	Sequence 122, App

126	17	85.0	9	4	US-10-367-594-122	Sequence 122, App
127	17	85.0	9	4	US-10-367-654-122	Sequence 122, App
128	17	85.0	9	4	US-10-367-658-122	Sequence 122, App
129	17	85.0	9	4	US-10-367-668-122	Sequence 122, App
130	17	85.0	9	4	US-10-149-138-4323	Sequence 4323, Ap
131	17	85.0	9	4	US-10-367-674-122	Sequence 122, App
132	17	85.0	9	4	US-10-777-053-397	Sequence 397, App
133	17	85.0	9	4	US-10-837-217-397	Sequence 397, App
134	17	85.0	9	4	US-10-764-390-236	Sequence 236, App
135	17	85.0	9	5	US-10-758-970-103	Sequence 103, App
136	17	85.0	9	5	US-10-705-459-262	Sequence 262, App
137	17	85.0	9	5	US-10-888-348-47	Sequence 47, Appl
138	17	85.0	9	5	US-10-888-348-48	Sequence 48, Appl
139	17	85.0	9	5	US-10-888-348-87	Sequence 87, Appl
140	17	85.0	9	5	US-10-888-348-161	Sequence 161, App
141	17	85.0	9	5	US-10-888-348-164	Sequence 164, App
142	17	85.0	9	5	US-10-888-348-165	Sequence 165, App
143	17	85.0	9	5	US-10-751-845-57	Sequence 57, Appl
144	17	85.0	9	5	US-10-751-845-84	Sequence 84, Appl
145	17	85.0	9	5	US-10-751-845-89	Sequence 89, Appl
146	17	85.0	9	5	US-10-776-521B-101	Sequence 101, App
147	17	85.0	9	5	US-10-820-067A-101	Sequence 101, App
148	17	85.0	10	4	US-10-239-313A-291	Sequence 291, App
149	17	85.0	10	4	US-10-794-899-87	Sequence 87, Appl
150	17	85.0	10	5	US-10-478-451-9	Sequence 9, Appli

ALIGNMENTS

RESULT 1

US-10-649-378A-250
; Sequence 250, Application US/10649378A
; Publication No. US20040254120A1
; GENERAL INFORMATION:
; APPLICANT: FOGELMAN, ALAN M.
; APPLICANT: ANANTHARAMAIAH, GATTADAHALLI M.
; APPLICANT: NAVAB, MOHAMAD
; TITLE OF INVENTION: ORALLY ADMINISTERED SMALL PEPTIDES SYNERGIZE STATIN
ACTIVITY
; FILE REFERENCE: 407T-911270US
; CURRENT APPLICATION NUMBER: US/10/649,378A
; CURRENT FILING DATE: 2003-08-26
; PRIOR APPLICATION NUMBER: US10/423,830
; PRIOR FILING DATE: 2003-04-25
; PRIOR APPLICATION NUMBER: US10/273,386
; PRIOR FILING DATE: 2002-10-16
; PRIOR APPLICATION NUMBER: US10/187,215
; PRIOR FILING DATE: 2002-06-28
; PRIOR APPLICATION NUMBER: US09/896,841
; PRIOR FILING DATE: 2001-06-29
; PRIOR APPLICATION NUMBER: US09/645,454
; PRIOR FILING DATE: 2000-08-24
; PRIOR APPLICATION NUMBER: US60/494,449
; PRIOR FILING DATE: 2003-08-11
; NUMBER OF SEQ ID NOS: 464
; SOFTWARE: PatentIn version 3.3

; SEQ ID NO 250
; LENGTH: 4
; TYPE: PRT
; ORGANISM: Artificial Sequence
; FEATURE:
; OTHER INFORMATION: Chemically synthesized peptide. Amino acids can be
protected or
; OTHER INFORMATION: unprotected D or L form.
US-10-649-378A-250

Query Match 100.0%; Score 20; DB 5; Length 4;
Best Local Similarity 100.0%; Pred. No. 1.7e+06;
Matches 4; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 FREL 4
|||
Db 1 FREL 4

RESULT 3

US-10-001-546-43

; Sequence 43, Application US/10001546
; Publication No. US20030027766A1
; GENERAL INFORMATION:
; APPLICANT: IOANNIDES, CONSTANTIN G.
; APPLICANT: FISK, BRYAN A.
; APPLICANT: IOANNIDES, MARIA G.
; TITLE OF INVENTION: METHODS AND COMPOSITIONS FOR STIMULATING
; TITLE OF INVENTION: T-LYMPHOCYTES
; FILE REFERENCE: UTSC:390USC2
; CURRENT APPLICATION NUMBER: US/10/001,546
; CURRENT FILING DATE: 2001-10-31
; PRIOR APPLICATION NUMBER: 08/403,459
; PRIOR FILING DATE: 1995-03-14
; NUMBER OF SEQ ID NOS: 68
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 43
; LENGTH: 7
; TYPE: PRT
; ORGANISM: Artificial Sequence
; FEATURE:
; OTHER INFORMATION: Description of Artificial Sequence: Synthetic
; OTHER INFORMATION: Peptide
US-10-001-546-43

Query Match 100.0%; Score 20; DB 4; Length 7;
Best Local Similarity 100.0%; Pred. No. 1.7e+06;
Matches 4; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 FREL 4
|||
Db 2 FREL 5 .

Search completed: March 2, 2006, 12:49:26
Job time : 163 secs

GenCore version 5.1.7
Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: March 2, 2006, 12:35:11 ; Search time 23 Seconds
(without alignments)
14.378 Million cell updates/sec

Title: US-10-649-378B-250
Perfect score: 20
Sequence: 1 FREL 4

Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5

Searched: 572060 seqs, 82675679 residues

Total number of hits satisfying chosen parameters: 143663

Minimum DB seq length: 0
Maximum DB seq length: 11

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 150 summaries

Database : Issued_Patents_AA:*

1: /cgn2_6/ptodata/1/iaa/5_COMB.pep:*

2: /cgn2_6/ptodata/1/iaa/6_COMB.pep:*

3: /cgn2_6/ptodata/1/iaa/H_COMB.pep:*

4: /cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:*

5: /cgn2_6/ptodata/1/iaa/RE_COMB.pep:*

6: /cgn2_6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result	Query					Description
	No.	Score	Match	Length	DB	
ID						
1	20	100.0	7	2	US-08-403-459-43	Sequence 43, Appl
2	20	100.0	8	1	US-08-173-510B-21	Sequence 21, Appl
3	20	100.0	8	1	US-08-458-218-21	Sequence 21, Appl
4	20	100.0	8	1	US-08-450-497-21	Sequence 21, Appl
5	20	100.0	8	2	US-08-450-482B-21	Sequence 21, Appl
6	20	100.0	8	2	US-08-151-064D-21	Sequence 21, Appl
7	20	100.0	9	1	US-08-338-634-25	Sequence 25, Appl
8	20	100.0	9	2	US-08-159-339A-540	Sequence 540, App
9	20	100.0	9	2	US-08-403-459-42	Sequence 42, Appl
10	20	100.0	9	4	PCT-US95-16415-35	Sequence 35, Appl
11	20	100.0	10	1	US-08-537-400-33	Sequence 33, Appl

12	20	100.0	10	2	US-08-159-339A-547	Sequence 547, App
13	20	100.0	10	2	US-08-403-459-41	Sequence 41, Appl
14	18	90.0	7	1	US-08-962-284-11	Sequence 11, Appl
15	18	90.0	9	2	US-09-148-545-273	Sequence 273, App
16	18	90.0	9	2	US-09-621-011-273	Sequence 273, App
17	18	90.0	10	2	US-09-211-715-197	Sequence 197, App
18	17	85.0	7	1	US-08-719-758-19	Sequence 19, Appl
19	17	85.0	7	2	US-09-119-827-19	Sequence 19, Appl
20	17	85.0	8	2	US-09-177-249-104	Sequence 104, App
21	17	85.0	8	2	US-08-817-832B-27	Sequence 27, Appl
22	17	85.0	8	2	US-09-812-283-104	Sequence 104, App
23	17	85.0	9	1	US-08-787-547-103	Sequence 103, App
24	17	85.0	9	2	US-08-159-339A-246	Sequence 246, App
25	17	85.0	9	2	US-08-159-339A-564	Sequence 564, App
26	17	85.0	9	2	US-08-464-496-9	Sequence 9, Appl
27	17	85.0	9	2	US-08-197-484-67	Sequence 67, Appl
28	17	85.0	9	2	US-09-743-467-1	Sequence 1, Appl
29	17	85.0	9	4	PCT-US92-07218-9	Sequence 9, Appl
30	17	85.0	9	4	PCT-US95-02121-67	Sequence 67, Appl
31	17	85.0	10	2	US-08-840-006-3	Sequence 3, Appl
32	17	85.0	10	2	US-08-464-496-6	Sequence 6, Appl
33	17	85.0	10	2	US-09-239-043D-2481	Sequence 2481, Ap
34	17	85.0	10	4	PCT-US92-07218-5	Sequence 5, Appl
35	17	85.0	10	4	PCT-US92-07218-6	Sequence 6, Appl
36	16	80.0	4	1	US-08-685-589A-2	Sequence 2, Appl
37	16	80.0	5	1	US-08-122-792-2	Sequence 2, Appl
38	16	80.0	5	1	US-08-121-713D-14	Sequence 14, Appl
39	16	80.0	5	1	US-08-835-268-14	Sequence 14, Appl
40	16	80.0	5	1	US-09-060-692-14	Sequence 14, Appl
41	16	80.0	5	2	US-08-833-391-14	Sequence 14, Appl
42	16	80.0	5	2	US-09-060-610-14	Sequence 14, Appl
43	16	80.0	5	4	PCT-US94-10151A-14	Sequence 14, Appl
44	16	80.0	6	1	US-08-121-713D-16	Sequence 16, Appl
45	16	80.0	6	1	US-08-835-268-16	Sequence 16, Appl
46	16	80.0	6	1	US-09-060-692-16	Sequence 16, Appl
47	16	80.0	6	2	US-08-833-391-16	Sequence 16, Appl
48	16	80.0	6	2	US-09-060-610-16	Sequence 16, Appl
49	16	80.0	6	4	PCT-US94-10151A-16	Sequence 16, Appl
50	16	80.0	7	2	US-09-298-924-20	Sequence 20, Appl
51	16	80.0	7	2	US-09-007-288E-49	Sequence 49, Appl
52	16	80.0	7	2	US-10-045-170A-3	Sequence 3, Appl
53	16	80.0	8	1	US-08-173-510B-79	Sequence 79, Appl
54	16	80.0	8	1	US-08-458-218-77	Sequence 77, Appl
55	16	80.0	8	1	US-08-450-497-79	Sequence 79, Appl
56	16	80.0	8	1	US-08-669-284B-29	Sequence 29, Appl
57	16	80.0	8	2	US-09-239-043D-759	Sequence 759, App
58	16	80.0	8	2	US-09-239-043D-999	Sequence 999, App
59	16	80.0	8	2	US-09-239-043D-1217	Sequence 1217, Ap
60	16	80.0	8	2	US-08-060-433C-29	Sequence 29, Appl
61	16	80.0	8	2	US-09-435-945-9	Sequence 9, Appl
62	16	80.0	8	2	US-09-435-945-10	Sequence 10, Appl
63	16	80.0	8	2	US-08-450-482B-79	Sequence 79, Appl
64	16	80.0	8	2	US-08-151-064D-77	Sequence 77, Appl
65	16	80.0	9	1	US-08-361-708-24	Sequence 24, Appl
66	16	80.0	9	1	US-08-536-277-24	Sequence 24, Appl
67	16	80.0	9	2	US-09-101-167-5	Sequence 5, Appl
68	16	80.0	9	2	US-09-258-754-57	Sequence 57, Appl

69	16	80.0	9	2	US-09-042-107-57	Sequence 57, Appl
70	16	80.0	9	2	US-09-510-738A-31	Sequence 31, Appl
71	16	80.0	9	2	US-09-510-738A-50	Sequence 50, Appl
72	16	80.0	9	2	US-09-510-738A-70	Sequence 70, Appl
73	16	80.0	9	2	US-09-510-738A-156	Sequence 156, App
74	16	80.0	9	2	US-09-518-046-93	Sequence 93, Appl
75	16	80.0	9	2	US-09-518-046-137	Sequence 137, App
76	16	80.0	9	2	US-09-861-966-31	Sequence 31, Appl
77	16	80.0	9	2	US-09-861-966-50	Sequence 50, Appl
78	16	80.0	9	2	US-09-861-966-70	Sequence 70, Appl
79	16	80.0	9	2	US-09-861-966-156	Sequence 156, App
80	16	80.0	9	2	US-09-722-250D-57	Sequence 57, Appl
81	16	80.0	9	2	US-09-239-043D-1000	Sequence 1000, Ap
82	16	80.0	9	2	US-09-239-043D-1218	Sequence 1218, Ap
83	16	80.0	9	2	US-09-239-043D-1414	Sequence 1414, Ap
84	16	80.0	9	2	US-09-239-043D-1784	Sequence 1784, Ap
85	16	80.0	9	2	US-09-239-043D-2053	Sequence 2053, Ap
86	16	80.0	9	2	US-09-239-043D-2379	Sequence 2379, Ap
87	16	80.0	9	2	US-09-676-475A-57	Sequence 57, Appl
88	16	80.0	9	2	US-09-919-048-31	Sequence 31, Appl
89	16	80.0	9	2	US-09-919-048-50	Sequence 50, Appl
90	16	80.0	9	2	US-09-919-048-70	Sequence 70, Appl
91	16	80.0	9	2	US-09-919-048-156	Sequence 156, App
92	16	80.0	9	2	US-10-102-283-31	Sequence 31, Appl
93	16	80.0	9	2	US-10-102-283-50	Sequence 50, Appl
94	16	80.0	9	2	US-10-102-283-70	Sequence 70, Appl
95	16	80.0	9	2	US-10-102-283-156	Sequence 156, App
96	16	80.0	9	2	US-10-607-595-57	Sequence 57, Appl
97	16	80.0	9	2	US-09-650-371-93	Sequence 93, Appl
98	16	80.0	9	2	US-09-650-371-137	Sequence 137, App
99	16	80.0	10	1	US-08-468-543-21	Sequence 21, Appl
100	16	80.0	10	1	US-08-764-640-76	Sequence 76, Appl
101	16	80.0	10	1	US-08-469-692-21	Sequence 21, Appl
102	16	80.0	10	1	US-08-398-046-21	Sequence 21, Appl
103	16	80.0	10	2	US-08-159-339A-400	Sequence 400, App
104	16	80.0	10	2	US-08-973-225-76	Sequence 76, Appl
105	16	80.0	10	2	US-09-244-298A-76	Sequence 76, Appl
106	16	80.0	10	2	US-09-516-704-76	Sequence 76, Appl
107	16	80.0	10	2	US-09-549-090-76	Sequence 76, Appl
108	16	80.0	10	2	US-09-832-230A-76	Sequence 76, Appl
109	16	80.0	10	2	US-09-311-784A-221	Sequence 221, App
110	16	80.0	10	2	US-08-591-502B-12	Sequence 12, Appl
111	16	80.0	10	2	US-09-239-043D-417	Sequence 417, App
112	16	80.0	10	2	US-09-239-043D-925	Sequence 925, App
113	16	80.0	10	2	US-09-239-043D-1001	Sequence 1001, Ap
114	16	80.0	10	2	US-09-239-043D-1173	Sequence 1173, Ap
115	16	80.0	10	2	US-09-239-043D-1415	Sequence 1415, Ap
116	16	80.0	10	2	US-09-239-043D-2054	Sequence 2054, Ap
117	16	80.0	11	1	US-08-538-711A-3	Sequence 3, Appli
118	16	80.0	11	2	US-08-725-027-3	Sequence 3, Appli
119	16	80.0	11	2	US-09-542-552-3	Sequence 3, Appli
120	16	80.0	11	2	US-09-239-043D-418	Sequence 418, App
121	16	80.0	11	2	US-09-239-043D-674	Sequence 674, App
122	16	80.0	11	2	US-09-239-043D-926	Sequence 926, App
123	16	80.0	11	2	US-09-239-043D-1002	Sequence 1002, Ap
124	16	80.0	11	2	US-09-239-043D-1121	Sequence 1121, Ap
125	16	80.0	11	2	US-09-239-043D-1416	Sequence 1416, Ap

126	15	75.0	5	1	US-08-637-759B-303	Sequence 303, App
127	15	75.0	5	2	US-08-871-355A-303	Sequence 303, App
128	15	75.0	5	2	US-09-201-945-303	Sequence 303, App
129	15	75.0	6	2	US-09-360-237-13	Sequence 13, Appl
130	15	75.0	6	2	US-09-680-571A-90	Sequence 90, Appl
131	15	75.0	6	2	US-10-394-980-335	Sequence 335, App
132	15	75.0	7	2	US-09-701-080C-13	Sequence 13, Appl
133	15	75.0	8	1	US-08-702-970-3	Sequence 3, Appli
134	15	75.0	8	2	US-09-360-237-14	Sequence 14, Appl
135	15	75.0	8	2	US-08-477-778-1	Sequence 1, Appli
136	15	75.0	8	2	US-07-145-002B-63	Sequence 63, Appl
137	15	75.0	8	2	US-06-256-204C-63	Sequence 63, Appl
138	15	75.0	8	2	US-09-680-571A-84	Sequence 84, Appl
139	15	75.0	8	2	US-09-680-571A-86	Sequence 86, Appl
140	15	75.0	9	1	US-08-178-570-18	Sequence 18, Appl
141	15	75.0	9	1	US-08-215-805A-41	Sequence 41, Appl
142	15	75.0	9	1	US-08-486-057B-32	Sequence 32, Appl
143	15	75.0	9	1	US-08-615-181-43	Sequence 43, Appl
144	15	75.0	9	1	US-08-789-588-32	Sequence 32, Appl
145	15	75.0	9	2	US-08-369-643-18	Sequence 18, Appl
146	15	75.0	9	2	US-08-159-339A-395	Sequence 395, App
147	15	75.0	9	2	US-08-842-079-12	Sequence 12, Appl.
148	15	75.0	9	2	US-09-518-046-41	Sequence 41, Appl
149	15	75.0	9	2	US-09-518-046-94	Sequence 94, Appl
150	15	75.0	9	2	US-09-638-857-12	Sequence 12, Appl

ALIGNMENTS

RESULT 1

US-08-403-459-43

; Sequence 43, Application US/08403459

; Patent No. 6514942

; GENERAL INFORMATION:

; APPLICANT: Ioannides, Constantin G.

; APPLICANT: Fisk, Bryan A.

; APPLICANT: Ioannides, Maria G.

; TITLE OF INVENTION: METHODS AND COMPOSITIONS FOR STIMULATING

; TITLE OF INVENTION: T-LYMPHOCYTES

; NUMBER OF SEQUENCES: 68

; CORRESPONDENCE ADDRESS:

; ADDRESSEE: Arnold, White & Durkee

; STREET: P.O. Box 4433

; CITY: Houston

; STATE: Texas

; COUNTRY: United States of America

; ZIP: 77210

; COMPUTER READABLE FORM:

; MEDIUM TYPE: Floppy disk

; COMPUTER: IBM PC compatible

; OPERATING SYSTEM: PC-DOS/MS-DOS/ASCII

; SOFTWARE: PatentIn Release #1.0, Version #1.30

; CURRENT APPLICATION DATA:

; APPLICATION NUMBER: US/08/403,459

; FILING DATE: Concurrently Herewith

; CLASSIFICATION: 514

; ATTORNEY/AGENT INFORMATION:
; NAME: Kitchell, Barbara S.
; REGISTRATION NUMBER: 33,928
; REFERENCE/DOCKET NUMBER: UTSC:390/KIT
; TELECOMMUNICATION INFORMATION:
; TELEPHONE: (512) 418-3000
; TELEFAX: (713) 789-2679
; TELEX: 79-0924
; INFORMATION FOR SEQ ID NO: 43:
; SEQUENCE CHARACTERISTICS:
; LENGTH: 7 amino acids
; TYPE: amino acid
; STRANDEDNESS: single
; TOPOLOGY: linear
; MOLECULE TYPE: peptide

US-08-403-459-43

Query Match 100.0%; Score 20; DB 2; Length 7;
Best Local Similarity 100.0%; Pred. No. 4.6e+05;
Matches 4; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 FREL 4
| || |
Db 2 FREL 5

RESULT 36

US-08-685-589A-2

; Sequence 2, Application US/08685589A
; Patent No. 5916872
; GENERAL INFORMATION:
; APPLICANT: Chang, Conway
; APPLICANT: Gu, Leo
; APPLICANT: Chen, Jie
; TITLE OF INVENTION: CYCLIC PEPTIDES HAVING BROAD
; TITLE OF INVENTION: SPECTRUM ANTIMICROBIAL ACTIVITY
; NUMBER OF SEQUENCES: 222
; CORRESPONDENCE ADDRESS:

; ADDRESSEE: Pennie & Edmonds LLP
; STREET: 1155 Avenue of the Americas
; CITY: New York
; STATE: New York
; COUNTRY: USA
; ZIP: 10036

; COMPUTER READABLE FORM:
; MEDIUM TYPE: Floppy disk
; COMPUTER: IBM PC compatible
; OPERATING SYSTEM: PC-DOS/MS-DOS
; SOFTWARE: PatentIn Release #1.0, Version #1.30

; CURRENT APPLICATION DATA:
; APPLICATION NUMBER: US/08/685,589A
; FILING DATE: 24-JUL-1996
; CLASSIFICATION: 530

; PRIOR APPLICATION DATA:
; APPLICATION NUMBER:
; FILING DATE:

; ATTORNEY/AGENT INFORMATION:
; NAME: Coruzzi, Laura A.
; REGISTRATION NUMBER: 30,742
; REFERENCE/DOCKET NUMBER: 8067-026-999
; TELECOMMUNICATION INFORMATION:
; TELEPHONE: 212-790-9090
; TELEFAX: 212-869-9741
; TELEX: 66141
; INFORMATION FOR SEQ ID NO: 2:
; SEQUENCE CHARACTERISTICS:
; LENGTH: 4 amino acids
; TYPE: amino acid
; STRANDEDNESS: unknown
; TOPOLOGY: No. 5916872 Relevant
; MOLECULE TYPE: peptide
; FEATURE:
; NAME/KEY: Peptide
; LOCATION: 1..4
; OTHER INFORMATION: /product= "Beta-turn"

US-08-685-589A-2

Query Match 80.0%; Score 16; DB 1; Length 4;
Best Local Similarity 100.0%; Pred. No. 4.6e+05;
Matches 3; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 FRE 3
|||
Db 2 FRE 4

Search completed: March 2, 2006, 12:36:31
Job time : 25 secs