Departamento de Análisis Matemático y Matemática Aplicada

Ecuaciones Diferenciales Ordinarias (EDIF) - Doble Grado Ing Inf y Mat - Curso 2021-22 Teoría Fundamental. Hoja 1.

1 Analizar si las siguientes funciones son lipschitzianas (local o globalmente) y calcular la constante de Lipschitz (si existe) en los intervalos [0, R] y $[\delta, R]$ donde $0 < \delta < R$.

i)
$$f(x) = x^2$$

ii)
$$f(x) = |x|^a \text{ con } a > 0$$

iii)
$$f(x) = sen(x)$$

Proceder igualmente con las funciones de dos variables

iv)
$$f(x_1, x_2) = (x_1 + x_2^2, -x^2)$$

ii)
$$f(x_1, x_2) = |x_1 x_2|^{1/2}$$
 definidas en los rectangulos $[A_1, B_1] \times [A_2, B_2]$.

2 Obtener las iterantes de Picard y su limite (si existe) para los siguientes PVI:

i)
$$x' = 2tx$$
, $x(0) = 1$

i)
$$x' = x + t$$
, $x(0) = x_0$

ii)
$$x' = y$$
, $y' = -x$ con $x(0) = 1$, $y(0) = 0$.

iii)
$$x' = Ax$$
, $x(t_0) = x_0$, donde $A = (a_{ij})_{ij=1}^n$, matriz constante y $x_0 \in \mathbb{R}^n$.

iv)
$$x' = f(x) = \begin{cases} 0 & x < 0 \\ -1 & x \ge 0 \end{cases}$$
; $x(0) = 0$

3 Sea $f: \mathbb{R}^2 \to R$ una función de clase C^1 verificando que existen $c, d \in \mathbb{R}$ con c < d tal que f(t, x) > 0 si $x \le c$ y f(t, x) < 0 si $x \ge d$. Probar que todas las soluciones maximales de x' = f(t, x) están definidas hasta $+\infty$.

4 Probar que para cada $(t_0, x_0) \in \mathbb{R}^2$ la ecuación $x' = x^3/(1+x^2)$ tiene una única solución que satisface $x(t_0) = x_0$ y la solución maximal está definida en todo \mathbb{R} .

5 Sean $x, y : [t_0, t_1] \to \mathbb{R}$ soluciones de x' = f(t, x), y' = g(t, y) respectivamente, en un abierto $\mathcal{D} \subset \mathbb{R}^{\setminus +\infty}$. Supongamos que los conjuntos $\Gamma_x \equiv \{(t, x(t)) : t \in [t_0, t_1]\}$, $\Gamma_y \equiv \{(t, y(t)) : t \in [t_0, t_1]\}$ estan contenidos en un subconjunto $K \subset \mathcal{D}$. Si L es una constante de Lipschitz de f en K entonces se tiene:

$$|x(t) - y(t)| \le (|x(t_0) - y(t_0)| + M(t_1 - t_0))e^{L(t_1 - t_0)}, \quad t \in [t_0, t_1]$$

donde $M = \max\{|f(t,z) - g(t,z)| : (t,z) \in K\}.$

Aplicar este resultado al caso x' = ax, y' = ay + b(t) con $a \in \mathbb{R}$.

6 Sea
$$f(x) = \begin{cases} x \ln|x| & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- i) Probar que f es continua pero no localmente Lipschitz en ningún entorno de 0.
- ii) Resolver la ecuación x' = f(x) y comprobar que el PVI con $x(t_0) = 0$ tiene solución única.

7 Denotamos por $\Phi(t; x_0, a)$ la solución del (PVI) $\begin{cases} x' = a(x - x^2) \\ x(0) = x_0 \end{cases}$ con $a \neq 0$. Se pide:

i) Probar que Φ viene dado por:

$$\Phi = \frac{x_0 e^{at}}{1 - x_0 + x_0 e^{at}} = \frac{x_0}{x_0 + (1 - x_0)e^{-at}}.$$

ii) Obtener y resolver las ecuaciones variacionales lineales asociadas a las derivadas parciaes de Φ respecto de x_0 y a. Comparar los resultados con los obtenidos derivando directamente en la fórmula de Φ .

8 El sistema de Ecuaciones Diferenciales Ordinarias

$$\begin{cases} x' = -\sigma x + \sigma y \\ y' = rx - y - xz \\ z' = xy - bz \end{cases}$$

se conoce como el sistema de Lorenz y describe de forma simplificada ciertos movimientos de fluidos en los que hay un gradiente de temperatura. Cuando los parámetros toman los valores $\sigma = 10$, r = 28 y b = 8/3 el sistema se comporta de forma caótica. No obstante, probar que se verifica la continuidad con respecto a las condiciones iniciales y respecto a parámetros.

9 Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua y localmente Lipschitz y sea $g: \mathbb{R} \to \mathbb{R}$ una función continua. Probar que la EDO

$$\begin{cases} x' = f(x) \\ y' = g(x)y \end{cases}$$

tiene una única solución local para cualquier condición inicial.

Calcular la solución máximal de forma explicita del sistema:

$$\begin{cases} x' = x^2, \\ y' = \sqrt{|x|}y \end{cases}$$

con los datos iniciales (x(0), y(0)) = (1, 2)

10 Probar que el problema de valor inicial $\begin{cases} x' = t\sqrt{1-x} \\ x(0) = 1/2 \end{cases}$ tiene solución única en un entorno de t = 0. Calcular la solución.

11 Sea $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ una función continua, localmente Lipschitz en la segunda variable y tal que existe un T > 0 con f(t+T,x) = f(t,x) para todo $(t,x) \in \mathbb{R} \times \mathbb{R}^n$. Consideremos la EDO periódica

$$x' = f(t, x) \qquad (*)$$

- i) Demostrar que x(t) es solución de (*) si y sólo si x(t+T) es solución de (*)
- ii) Demostrar que una solución x(t) es periódica (es decir x(t+T)=x(t) para todo $t\in\mathbb{R}$) si y sólo si x(T)=x(0).
- iii) Si llamamos $\Phi(t; t_0, x_0)$ la solución maximal de (*) que satisface $\Phi(t_0; t_0, x_0) = x_0$, demostrar que $\Phi(t; 0, x_0)$ es periódica si y solo si $\Phi(T; 0, x_0) = x_0$ y por tanto, las soluciones T periódicas de (*) están en correspondencia biúnivoca con los puntos fijos de la aplicación $x_0 \to \Phi(T; 0, x_0)$.
- iv) Sea b(t) una función continua tal que b(t+T)=b(t). Probar que la ecuación x'=ax+b(t) tiene una única solución periódica si $a \neq 0$. En cambio, si a=0, la ecuación puede no tener ninguna o tener infinitas soluciones T-periódicas. Obtener todas las soluciones 2π -periódicas de $x'=ax+\sin(t)$
- v) Hallar las soluciones periódicas de $x' = 2x (\operatorname{sen}(t))x^2$. Para ello, resolver esta ecuación, que es de tipo Ricatti, transformándola en una lineal mediante el cambio de variable x = 1/y.
- **12** Probar que x(t) es solución del (PVI)

$$\begin{cases} x' = A(t)x + f(t, x(t)) \\ x(t_0) = x_0 \end{cases}$$

si y solo si x(t) verifica la ecuación integral

$$x(t) = X(t, t_0)x_0 + \int_{t_0}^{t} X(t, s)f(s, x(s))ds$$
 (FVC)

donde $X(t,s) \in \mathcal{M}_{n \times n}$ es la solución principal de la ecuación lineal x' = A(t)x. En caso de que $A(t) \equiv A$, entonces $X(t,s) = e^{A(t-s)}$ y la (FVC) se escribe como

$$x(t) = e^{A(t-t_0)}x_0 + \int_{t_0}^t e^{A(t-s)}f(s, x(s))ds$$
 (FVC)

13 Sea $A \in \mathcal{M}_{n \times n}$ una matriz real que verifica $Re(\sigma(A)) \le c$. Entonces, para todo $\varepsilon > 0$, pequeño, existe $M_{\varepsilon} > 0$ tal que

$$||e^{At}v|| \le M_{\varepsilon}e^{(c+\varepsilon)t}||v||$$

En particular, si c < 0, tenemos que para todo c < d < 0 existe un M > 0 tal que

$$||e^{At}v|| \le M_{\varepsilon}e^{dt}||v||$$