```
Eigenvalue problems
 Goal: Given a matrix AC ["x".
                                                                           Find \lambda \in \mathbb{C}, V \in \mathbb{C}^n (V \neq 0) such that
                                                                                                                                         Av = \lambda v (*)
                                                                         1: eigenvalue, V: eigenvector
                                                        Along direction V, matrix A acts like scalar.
                                                        When A has n linearly independent eigenvectors.
                                                          we can rewrite (x) for all at once
                                                                                                    Applications: Control system, economic models, power grids,
                                                                                                        biostatistics, machine bearning ...
                 ex. Decoupling odEs
                                                                           A = V \Lambda V^{-1} 'n wupled ODEs with
                                                  Solution: Change to eigenvector coordinates u.1+), ..., un(t) "
                                                                                                 Let \begin{bmatrix} u_n(t) \\ \vdots \\ u_n(t) \end{bmatrix} = \begin{bmatrix} v_1 & \cdots & v_n \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\
```

same then $\frac{d}{dt}\begin{bmatrix} u, lt \end{bmatrix} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} \begin{bmatrix} c_1(t) \\ \vdots \\ c_n(t) \end{bmatrix}$

 $\dot{c}_i(t) = \frac{d}{dt} c_i(t)$

The system is diagonalized (decoupled)

$$\frac{d}{dt}\begin{bmatrix} c_i(t) \\ \vdots \\ c_n(t) \end{bmatrix} = \begin{bmatrix} \lambda_i \\ \vdots \\ \lambda_n \end{bmatrix}\begin{bmatrix} c_i(t) \\ \vdots \\ c_n + i \end{bmatrix}$$

$$(=)$$
 $\frac{dc_i}{dt}(t) = \lambda_i c_i t_i$, $i=1,...,n$

$$\Leftrightarrow$$
 $C_i(t) = e^{\lambda_i t} C_i(0)$, $i = 1....$

Suppose initially
$$u(0) = C_1(0) v_1 + \cdots + C_n(0) v_n$$

then $u(t) = e^{\lambda_1 t} C_1(0) v_1 + \cdots + e^{\lambda_n t} C_n(0) v_n$
If $Re(\lambda_i) > 0$, then $e^{\lambda_1 t} C_1(0) v_i$ persists
If $Re(\lambda_i) < 0$, then $e^{\lambda_1 t} C_1(0) v_i \rightarrow 0$ as $t \rightarrow +\infty$

W

· Eigenvalue solvers must be iterative

$$Av = \lambda v \implies (A - \lambda I)v = 0 \implies det(A - \lambda I) = 0$$

- Characteristic polynomial
$$p_A(\lambda) = det(A - \lambda I)$$

Eigenvalues of $A \iff roots$ of $p_A(\lambda)$

- Implication: Algorithms to find eigenvalues is very different from solving linear system Ax = b

* For
$$Ax=b$$
, the solution $x=A^{-1}b$ is a rational function of aij and bi

* For $Ax = \lambda x$, since λ is the root of $p_A(\lambda) = dot(A - \lambda I)$,

$$\Leftrightarrow$$
 A has eigen decomposition $A = V \Lambda V^{-1}$

(diagonalizable)

where $V \in C^{n \times n}$ nonsingular

and $\Lambda = diag(\lambda_1, \dots, \lambda_n)$. $\lambda_i \in C$, $i=1,\dots, n$

ex. Defective matrices do exist in many problems

ex. $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ (not singular)

 $p_A(\lambda) = \det(A - \lambda I) = (\lambda - 1)^2$ $\lambda = 1$, alg. mult. = 2

A triangular matrix \Rightarrow eigenvalues = diagonal entries $A-1.I = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, rank (A) = 1

Null(A-1.I) = 2-rank(A) = 1 $\lambda=1$ geo. mult. = 1 A is defective

In practice, almost no matrices are exactly defective.

(Actually, the set of nxn diagonalizable matrice is dense in CMTM, that is, if A is defective, there exists arbitrorily small perturbation DA & CMTM such that A + DA is diagonalizable, which is usually the case when we take into account the rounding error in real implementation)

However, working with almost defective mostrix is still dangerous in finding eig. decomposition.

ex.
$$A = \begin{pmatrix} 1+\xi & 1 \\ 0 & 1-\xi \end{pmatrix}$$
 $\lambda_1 = 1+\xi$, $\lambda_2 = 1-\xi$

$$A v_1 = \lambda_1 v_1 \Rightarrow v_1 = (1, 0)^T$$

$$A \nu_{2} = \lambda_{2} \nu_{2} = (1 + \xi) \nu_{2}^{(1)} + \nu_{2}^{(2)} = (1 - \xi) \nu_{2}^{(1)}$$

$$\Rightarrow$$
 $V_2 = (1, -25)^T / \sqrt{1+45^2}$

$$V = \begin{pmatrix} 1 & \sqrt{1+4\epsilon^2} \\ 0 & -2\sqrt[4]{1+4\epsilon^2} \end{pmatrix} \implies V^{-1} = \begin{pmatrix} 1 & * \\ 0 & -\sqrt{1+4\epsilon^2}/2 \end{pmatrix}$$

$$\implies ||V^{-1}||_2 = O(\frac{1}{\xi})$$

These ill-conditioned similarity transformation could lead to lurge rounding error:

floating $\longrightarrow fl(V^-|AV) = V^-|AV + E$ point matrix multiplication where $||E||_2 \approx K_2(Y) ||A||_2$ Smach

We want to work with unitary similarity for numerical stability

· Schur factorization

For the purpose of finding eigenvalues, we can relax the restriction on diagonality. That is, consider a factorization of the form

$$A = QTQ^*$$
.

the diagonal entries of T are eig. val. of A.

Thm: For all $A \in \mathbb{C}^{n \times n}$, I uniformy $Q \in \mathbb{C}^{n \times n}$ such that $Q^*AQ = T$, where T is upper triangular.

Pf: induction. n=1 obvious.

Suppose true for n-1.

let Av= Av , 11 1/2=1,

We can find a unitary \hat{Q} with 1^{st} col = \mathcal{V}

$$\Rightarrow \hat{Q}^* A \hat{Q} = \begin{pmatrix} \lambda & \omega^T \end{pmatrix} \begin{pmatrix} 1 \\ 0 & B \end{pmatrix} \begin{pmatrix} 1 \\ n-1 \end{pmatrix}$$

By induction, Q*BQ, = T,

$$\Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & Q_1 \end{pmatrix}^{*} \hat{Q}^{*} A \hat{Q} \begin{pmatrix} 1 & 0 \\ 0 & Q_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & Q_1^{*} \end{pmatrix} \begin{pmatrix} \lambda & \omega^{\mathsf{T}} \\ 0 & \mathsf{B} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Q_1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & o \\ o & Q_1^* \end{pmatrix} \begin{pmatrix} \lambda & \omega^T Q_1 \\ o & B Q_1 \end{pmatrix}$$

$$= \begin{pmatrix} \lambda & \omega^{\mathsf{T}} \mathcal{Q}_{1} \\ \sigma & \alpha_{1}^{\mathsf{T}} \beta \mathcal{Q}_{1} \end{pmatrix} = \begin{pmatrix} \lambda & \omega^{\mathsf{T}} \mathcal{Q}_{1} \\ \sigma & \mathsf{T}_{1} \end{pmatrix} = :\mathsf{T}$$

· Special case: A*A = AA* ← normal mastrix

Thm A is normal

$$A = Q \Lambda Q^*$$

where QEQuXn is antary R*Q=I

and $\Delta = diag(\lambda_i, \dots, \lambda_n), \lambda_i + C, i = 1, \dots, n$

Pf: Let A = QTQ* be schur factorization of A

Lamma: If T is upper Hiangular and T*T=TT*

then T is diagonal. (Hint: Cheek off-diagonal entries)

Special case: A is Harmitian => A is normal
Eigenvalue sensitivity:
Many eigenvalue solvers: V k A V k → D
Question: how well do diagonal elements of a matrix
approximate its eig. vals? = perturbation of cliagonal matrices
Thm (Gershgorin Circle theorem)
If $A = D + N$ with $Nii = 0$, $i = 1, \dots, n$
then $\{\lambda: \lambda \text{ is an eig. val of } A\} \subseteq \bigcup_{i=1}^{N} D_i$
$D_{i}:=\left\{ z\in C: z-D_{ii} \leq \sum_{j=1}^{n} N_{ij} \right\}$ or $\sum_{j=1}^{n} N_{ji} $
Pf: Let 2 be an eig. val. of A.
We can assume 2 = Dii Vi=1, N
We know that (D-)II) + N is singular
\Rightarrow 1 + $(D-\lambda I)^{-1}N$ is singular
$\Rightarrow 1 \le (D-\lambda I)^{-1} N _{\infty} = \sum_{j=1}^{n} \frac{ N_{i,j} }{ D_{i,j} } \text{ for some } 0$
⇒ λ ∈ D;.
Remark: It can also be shown that

if some $Din \bigcup D_j = \phi$, then D_i has exactly $d = eig \cdot val$.

Remark: This theorem is also useful in estimating eig. rakes.

$$ex.$$
 $A = \begin{bmatrix} 0.9 & 0.01 & 0.12 \\ 0.01 & 0.8 & 0.13 \\ 0.01 & 0.02 & 0.4 \end{bmatrix}$

We can do better by similarity

transformation

Let B= cliag (1.1, 0.1)

$$B^{-1}AB = \begin{bmatrix} 0.9 & 0.01 & 0.012 \\ 0.01 & 0.8 & 0.013 \\ 0.1 & 0.2 & 0.4 \end{bmatrix}$$

Im λ | $\lambda_2 - 0.8 \leq 0.023$ | $\lambda_2 - 0.8 \leq 0.023$ | $\lambda_3 - 0.9 \leq 0.022$ | $\lambda_4 - 0.9 \leq 0.022$ | $\lambda_4 - 0.9 \leq 0.022$

In some methods, it is possible to show that the computed eig. vals are the exact eig. vals of A + E, $\|E\| \ll 1$ perturbation

We are thus interested in the following perforbation result

(for diagonal matrices)

If μ is an eig. val of A+E and $V^{-1}AV = D = \text{diag}(\lambda_1, \dots, \lambda_n)$

then $\min |\lambda; -\mu| \leq Kp(V) \|E\|_p \quad \forall p \in [1, +\infty)$ $|\sin n| \quad |\lambda| = \mu$

(all-1/4 - 1/4 - 1/4 - 1/4)

```
Pf: It suffices to assume u € {\langle \langle \langl
                             V-(A+E-MI)Y = D-MI+Y-EY
                                                                                                              = (D-\mu I) (I+(D-\mu I)^{-1}V^{-1}EV)
                            Since A+E-NI is singular
                                       => I+(D-uI)-1V-1EV is singular
                                                        1 < 1(D- LI) V-1EY | > < 11(D-LI) - 11 | P | 1E | | P | IV | |
                                                                                                                                                                              11 (D-uI) -1/1p = max 1
15151 1/1; M
  Note: If A is normal, K_2(V) = 1 (b.c. V is anifony)
An analogous result can be obtained via the Schur factorization (for general matrices)
\frac{7hm}{L} Let Q*AQ = D+N be Schur fact.
                Let u be an eig. val of A+E, and p is the smallest
                 integer such that INIP=0, then
                                                                 min / /i - ul < max { 0, 0 }
                          where 0= 11 Ellz \( \sum_{1} \text{IIV ||}_{k}^{k}
     Remark: The eigenvalues of a nonnormal matrix may be
```

sensitive to perturbation!