 ρé a Cé o κ rep Qé a 	y) é a temperatura do chip na posição x e no instante t. densidade do material do chip calor específico do material resenta a condutividade térmica do material soma do calor gerado pelo chip com o calor retirado pelo resfriador do Estacionário
Para simpl	do Estacionário ificar, nós assumimos que o resfriador extraia a mesma quantidade de calor gerado pelo chip. Ou seja: $\frac{\partial T(t,x)}{\partial t} = 0$ do este resultado na equação anterior, obtemos $-\frac{\partial}{\partial x} \left(k(x) \frac{\partial T(x)}{\partial x} \right) = Q(x)$
O espaço espaçame Cada splin Da definiç contidos e dado por $x \notin [x_{i-1} \langle \phi_i, \phi_j \rangle_L$ 3.2 M Para monti $\langle u, v \rangle_L =$ Programa	odo de Elementos Finitos colha do Espaço U_n e sua base: elementos finitos sobre o qual iremos realizar as operações acima é U_n , definido por Splines Lineares uniformemente espalhados em $[0,1]$ nto entre dois nós consecutivos é constante e igual a $h=1/(n+1)$, e os nós são definidos como $x_i=ih$ com $0\leq i\leq e$ é definido como uma função contínua em $[0,1]$ reta que liga dois nós consecutivos e que se anula nos extremos, ou se $S_{2,n}^0[0,1]=\{s(x)\in C[0,1]:s(0)=s(1)=0\ e\ s _{x_i,x_{i+1}}\in P_1\}$ ão acima, sabemos que cada spline ligará dois nós consecutivos com uma reta. Assim, tanto o nó x_0 quanto o x_{n+1} estar m um spline, enquanto que os nós $x_i,\ i\neq 0,\ n+1$ estarão contidos em dois splines diferentes. Logo, o número de spline $2\times (n+1)-2=n$. Percebemos, então, que $S_{2,n}^0[0,1]$ é um espaço vetorial de dimensão n . Podemos definir uma b le splines dado por funções ϕ_i tais que $\phi_i=(x-x_{i-1})/h$ se $x\in [x_{i-1},x_i],\ \phi_i=(x_{i+1}-x)/h$ se $x\in [x_i,x_{i+1}]$ e ϕ_i : $x_{i+1}]$. Facilmente podemos perceber que a intersecção entre ϕ_i e ϕ_j será vazia se, e somente se, $ i-j >1$. Ou seja, $ i-j >1$. Decorre que a matriz do sistema linear seja tridiagonal. Contagem do sistema e solução da matriz ar o sistema, primeiro nós devemos calcular $\langle \phi_i,\phi_j\rangle_L$, para $ i-j \leq 1, \langle \phi_i,\phi_i\rangle_L$, e $\langle f,\phi_i\rangle$, onde $\int_0^1 k(x)u'(x)v'(x)+q(x)u(x)v(x) dx$ e $\langle u,v\rangle=\int_0^1 u(x)v(x)$. Para isso, nós usaremos o código desenvolvido no Exe 2, para aproximar integrais através da fórmula de Gauss. Após montar os vetores das diagonais, nós usaremos as funções das no Exercício Programa 1 para resolver sistemas tridiagonais.
Após concequação o	blução do método de elementos finitos luir o passo 3.2, nós teremos obtido as constantes α_i , tais que $\overline{u}_n(x) = \sum_{i=1}^n \alpha_i \phi_i(x)$ que melhor aproxima a solução α_i o calor para o regime permanente. Pondições de fronteira não homogêneas α_i em que α_i 0 en que α_i 0 em que α_i 0
Demonstro $v(x)$	da equação do calor com condições de contorno $u(0)=a$ e $u(1)=b$ é $u(x)=v(x)+a+(b-a)x$. $e_{\tilde{q}\tilde{o}\tilde{o}\tilde{o}\tilde{o}\tilde{o}\tilde{o}\tilde{o}\tilde{o}\tilde{o}o$
Além disso 0.5 In Para os ca $0 \le i \le n$ Além disso Para o cas para o qua podemos	de-se ver, chegamos à equação cuja solução nos dará $u(x)$. by, quando $k(x)'=0$ e $q(x)=0$, ficamos com $L(u(x))=f(x)=f(x)$ e $u(x)=v(x)+a+(b-a)x$. tervalo [0,L] sos em que o intervalo da equação diferencial for $[0,L]$, o espaçamento dos splines lineares será $h=L/(n+1)$ e $x_i=x+1$. Além disso, a definição do Espaço de Splines será $S_{2,n}^0[0,L]=\{s(x)\in C[0,L]: s(0)=s(L)=0 \ e \ s _{x_i,x_{i+1}}\in P_1\}$ by, $\langle u,v\rangle_L=\int_0^L[k(x)u'(x)v'(x)+q(x)u(x)v(x)]dx$ e $\langle u,v\rangle=\int_0^Lu(x)v(x)$. The em que temos condições de fronteira não homogêneas, basta resolvermos o caso: $L(v(x))=f(x)+(b-a)k'(x)-q(x)(a+(b-a)x)=\tilde{f}(x),\ v(0)=v(1)=0 \qquad (4)$ Al solução da equação do calor com condições de contorno $u(0)=a$ e $u(L)=b$ é $u(x)=v(x)+a+(b-a)x/L$. Co conferir, ao usar a expressão de $u(x)$ nos extremos do intervalo, temos: $u(0)=v(0)+a+(b-a)0/L=a$ e $u(L)=a$ e $u(L)=b$.
4.1 Có Abaixo, va	io vamos começar a implementar os códigos para resolver as tarefas.
import import import Configura sns.set plt.rc plt.rc	goes dos gráficos style('darkgrid') # darkgrid, white grid, dark, white and ticksaxes', titlesize=18) # fontsize of the axes titleaxes', labelsize=15) # fontsize of the x and y labelsxtick', labelsize=15) # fontsize of the tick labelsytick', labelsize=15) # fontsize of the tick labelsytick', labelsize=15) # fontsize of the tick labels
Funçõe geraVer A função g tamanho l	
$h = \frac{x_{-1}}{x_{-1}}$ ret	
i: índih: espx_veto Saída : theta_ def gen	or de x para o qual se deseja calcular a função ce i da função ϕ_i açamento entre dois nós consecutivos or: array com os nós
montave A função a phi_i_phi_i será dada phi_i_phi_j igual. Com Perceba qu Finalmente função ϕ_i $\int_{x_{i-1}}^{x_{i+1}} f(x)$ código e a No código de x_i com	baixo irá montar os vetores da matriz tridiagonal do sistema linear e o vetor do lado direito da equação. representa $\langle \phi_i, \phi_i \rangle = \int_{x_{i-1}}^{x_{i+1}} [k(x)\phi_i(x)'\phi_i(x)' + q(x)\phi_i(x)\phi_i(x)] dx$. Como $ \phi_i(x)' = 1/(x_i - x_{i-1}) = 1/h$, a integra por $\int_{x_{i-1}}^{x_{i+1}} [k(x)/h^2 + q(x)\phi_i(x)^2] dx$ representa $\langle \phi_i, \phi_j \rangle = \int_{x_{i-1}}^{x_{i+1}} [k(x)\phi_i(x)'\phi_j(x)' + q(x)\phi_i(x)\phi_j(x)] dx$. Vamos assumir $j = i+1$, pois o caso $i = j+1$ so $\phi_i(x) = 0, x \notin [x_{i-1}, x_{i+1}] = \phi_j(x) = 0, x \notin [x_i, x_{i+2}]$, a integral se resume a $\int_{x_i}^{x_{i+1}} [-k(x)/h^2 + q(x)\phi_i(x)\phi_j(x)] dx$. Use, neste intervalo, $\phi_i(x)' = -1/(x_{i+1} - x_i) = -1/h$ e $\phi_j(x)' = 1/(x_{i+1} - x_i) = 1/h$. Let $\phi_i(x) = \int_{x_{i-1}}^{x_{i+1}} f(x)\phi_i(x)$. Aqui, nós separamos a integral em dois intervalo e resolvemos cada integral separadament $\phi_i(x) = \int_{x_{i-1}}^{x_{i+1}} f(x)\phi_i(x)$. Aqui, nós separamos a integral em dois intervalo e resolvemos cada integral separadament $\phi_i(x) = \int_{x_{i-1}}^{x_{i+1}} f(x)\phi_i(x)$. Aqui, nós separamos a integral em dois intervalo e resolvemos cada integral separadament $\phi_i(x) = \int_{x_{i-1}}^{x_{i+1}} f(x)\phi_i(x)$. Aqui, nós separamos a integral em dois intervalo e resolvemos cada integral separadament $\phi_i(x) = \int_{x_{i-1}}^{x_{i+1}} f(x)\phi_i(x)$. Aqui, nós separamos a integral em dois intervalo e resolvemos cada integral separadament $\phi_i(x) = \int_{x_{i-1}}^{x_{i+1}} f(x)\phi_i(x)$. Aqui, nós separamos a integral em dois intervalo e resolvemos cada integral separadament $\phi_i(x) = \int_{x_{i-1}}^{x_{i+1}} f(x)\phi_i(x)$. Aqui, nós separamos a integral em dois intervalo e resolvemos cada integral separadament $\phi_i(x) = \int_{x_{i-1}}^{x_{i+1}} f(x)\phi_i(x)$. Aqui, nós separamos $\phi_i(x) = \int_{x_{i-1}}^{x_{i-1}} f(x)\phi_i(x) + \int_{x_{i-1}}^{x_{i-1}} f(x)\phi_i(x)$. Ou seja, $\phi_i(x) = \int_{x_{i-1}}^{x_{i-$
$\langle \phi_i, \phi_{i+1} \rangle$ Entrada • nos_c • nos_ii • k: con • f: calc • q: for • x_veto	vetores a e c serão simétricos a descontar o primeiro e o último elementos. Isso acontece por que $=\langle\phi_{i+1},\phi_i\rangle=\int_{x_i}^{x_{i+1}}[k(x)\phi_i(x)'\phi_{i+1}(x)'+q(x)\phi_i(x)\phi_{i+1}(x)]dx.$ ${\bf s}$: hip: quantidade de nós em que calcularemos a temperatura do chip ategral: quantidade de nós sobre em que aproximaremos a integral pelo método de Gauss dutividade térmica do material r fornecido ou retirado do chip quantidade de sistema, ou, lado direito da equação por array com os nós açamento entre dois nós consecutivos
• d: vet def mor	vetores da matriz tridiagonal or do lado direito da equação taVetores (nos_chip, nos_integral, k, q, f, h, x_vetor): ** np.zeros (nos_chip)
#mo for #o #po a [1] ret encontra	intando as funções que serão usadas nas integrais i in range(1,nos_chip+1): #montando a função de <phi_i, phi_i="">1 phi_i_phi_i = lambda x: k(x)/(h**2) + q(x)*geraPhi(x, i, h, x_vetor)**2 #montando a função de <phi_i, phi_j="">1 j-1 =1 phi_i_phi_j = lambda x: -k(x)/(h**2) + q(x)*geraPhi(x, i, h, x_vetor)*geraPhi(x, i+1, h, x_vetor) #montando a função de <f, phi_i=""> f_phi_i_0 = lambda x: f(x)*(x-x_vetor[i-1])/h f_phi_i = lambda x: f(x)*(x-x_vetor[i+1]-x)/h #criando vetores a,b,c #não calculamos a para i=n, pois usamos o intervalo inferior x_vetor[i+1] e o superior x_vetor if i!=nos_chip: c[i-1] = calcula_integral(nos_integral, x_vetor[i], x_vetor[i+1], phi_i_phi_j) #a condição anterior não é usada para b e d, pois usamos o intervalo inferior x_vetor[i-1] e #o superior x_vetor[i+1] b[i-1] = calcula_integral(nos_integral, x_vetor[i-1], x_vetor[i+1], phi_i_phi_i) d[i-1] = (calcula_integral(nos_integral, x_vetor[i-1], x_vetor[i], f_phi_i_0) +</f,></phi_i,></phi_i,>
 nos_ii k: con q: cale f: forç x_vete h: esp 	hip: quantidade de nós em que calcularemos a temperatura do chip ntegral: quantidade de nós sobre em que aproximaremos a integral pelo método de Gauss dutividade térmica do material or fornecido ou retirado do chip ante do sistema, ou, lado direito da equação or: array com os nós açamento entre dois nós consecutivos solução do sistema tridiagonal
calculas A função a solução u $x = iL/(x)$ Entrada nos_c nos_ii k: cor f: calc	abaixo irá utilizar os valores de gerados na função função $alpha()$ para calcular $\overline{u}_n(x)=\sum_{i=1}^n \alpha_i\phi_i(x)$ que melhor apro (x) da equação do calor. A função irá lidar com os casos em que $L\neq 1$, uma vez que os nós serão expressos pela fórmu $(x+1), i=0,1,\ldots n$ e para o caso com condições de fronteira não homogêneas ao utilizar a expressão $(x)+a+(b-a)x/l$, conforme explicado na seção 3.5.
 b: cor L: con Saída : u_: arr def cal #ge h, #po 	dição de fronteira u(L) aprimento do chip
x = #sc alr #1:	<pre>enp.arange(0,L,L/1000) clução do sistema tridiagonal cha = encontraAlpha(nos_chip, nos_integral, k, q, f, h, x_vetor) ssta com valores encontrados ucao = [] c j in range(len(x)): #percorrer x_vetor xj = x[j] v = 0 for i in range(1,nos_chip+1): #percorrer phi v += alpha[i-1]*geraPhi(xj, i, h, x_vetor) #caso as condições de fronteira não sejam homogêneas if a != 0 or b != 0: u = v + a + (b - a)*xj/L else:</pre>
calculaE Essa funçã calculaSe temperatu	
complemedetermina Entrada nos_c nos_in exem Saída:	nto para a seção 4.2, e temos $u(x)=(x-1)(e^{-x}-1)$, $f(x)=e^x+1$ e $k(x)=e^x$. Como as condições foram prédas pelo enunciado, as únicas entradas serão referentes à quantidade de nós e ao exemplo.
<pre>def cal #cc L = a = #gc x = if</pre>	culaErroMaximo (nos_chip, nos_integral, exemplo): ondições iniciais 1
u_ #ca err ret plotaErro Essa funçã número do de n. Com	e calculaSolucao (nos_chip, nos_integral, k, q, f, a, b, L) calculando o erro máximo co_max = np.max (np.abs (u u)) curn erro_max DS() o será usada para visualizar os erros para os exemplos da seção 4.2, o inicial e o complementar. Seu único parâmetro é o exemplo, pois as condições já foram determinadas no enunciado. Além disso, o algoritmo será calculado para diversos o podemos perceber, é criado um vetor com os valores para testar a solução chamado nos_chip. A função
majorado m á $x u^{\prime\prime}(x)=(x)$ curva $3/8$.	
nos nos lis	<pre>ptaErros(exemplo): chip = np.arange(10,100,10) integral = 6 tta_erros = [] tta_h = [] nos in nos_chip: h = geraVetor(nos,1)[0] erro_max = calculaErroMaximo(nos, nos_integral, exemplo) if exemplo==1: lista_h.append(1/4 * h**2) elif exemplo==2: lista_h.append(3/8 * h**2) lista_erros.append(erro_max)</pre>
plt plt plt plt if eli plt	<pre>figure(figsize=(10,5.33), tight_layout=True)plot(nos_chip, lista_erros ,linewidth=2)plot(nos_chip, lista_h ,linewidth=2)xlabel('\$n (nós)\$')title('Erro vs nós') exemplo==1: plt.legend(labels = ['\$1/4 h^2\$','erro']) f exemplo==2: plt.legend(labels = ['\$3/8 h^2\$','erro'])show() ucaoExemplo() o será usada para visualizar a temperatura do chip em diferentes pontos para os exemplos da seção 4.2.</pre>
nos_irexemSaída :gráfic	hip: quantidade de nós em que calcularemos a temperatura do chip ntegral: quantidade de nós sobre em que aproximaremos a integral pelo método de Gauss plo: 1 para o exemplo da seção 4.2 e 2 para o complemento da seção 4.2
n = #cc L = a = #ge x = if	nos_chip ondições iniciais
#te u_ #ge plt	<pre>k = lambda x: (math.e) **x q = lambda x: 0 f = lambda x: 1 + (math.e) **(x) #calculando os valores reais da temperatura u = (x-1) *(-1+(math.e) **(-x)) mperaturas encontradas pelo método = calculaSolucao(nos_chip, nos_integral, k, q, f, a, b, L) mando o gráficofigure (figsize=(10,5.33), tight_layout=True)plot(x, u, linewidth=2)plot(x, u, linewidth=2)xlabel('\$x\$')ylabel('\$Temperatura\$')title(f'Temperatura do chip com {nos_chip} nós no exemplo {exemplo}')legend(labels = ['\$ \overline{u}_{n}(x) \$','\$u(x)\$'])show()</pre> ucao() o é similar à anterior, mas ela será usada quando não sabemos a solução exata.
 q: force f: calce a: core b: core L: core Saída : gráfice 	çante do sistema, ou, lado direito da equação r fornecido ou retirado do chip dição de fronteira u(0) ndição de fronteira u(L) nprimento do chip
#ge x = #sc u_ #ge plt plt plt plt	<pre>staSolucao(nos_chip, nos_integral, k, q, f, a, b, L): strando pontos para calcular a solução s np.arange(0, L, L/1000) solução aproximada pelo método = calculaSolucao(nos_chip, nos_integral, k, q, f, a, b, L) strando o gráficofigure(figsize=(9,5), tight_layout=True)plot(x, u, linewidth=2)xlabel('\$x\$')ylabel('\$Temperatura\$')title(f'Temperatura do chip com {nos_chip} nós')legend(labels = ['\$ \overline{u}_{n}(x)\$'])show()</pre>
def cri	es dos Exercícios Programas antigos a_nos_pesos(n): Cria os nós e os pesos que serão utilizados para calcular as integrais s: n: quantidade de pontos urn: x: nós w: pesos""" n == 6: x = np.array([-0.2386191860831969086305017, -0.6612093864662645136613996, -0.932469514203152027810.2386191860831969086305017, 0.6612093864662645136613996, 0.932469514203152027810.2386191860831969086305017, 0.6612093864662645136613996, 0.932469514203152027810.2386191860831969086305017, 0.6612093864662645136613996, 0.932469514203152027810.2386191860831969086305017, 0.6612093864662645136613996, 0.932469514203152027810.2386191860831969086305017, 0.6612093864662645136613996, 0.932469514203152027810.2386191860831969086305017, 0.6612093864662645136613996, 0.932469514203152027810.2386191860831969086305017, 0.6612093864662645136613996, 0.932469514203152027810.2386191860831969086305017, 0.6612093864662645136613996, 0.932469514203152027810.2386191860831969086305017, 0.6612093864662645136613996, 0.932469514203152027810.2386191860831969086305017, 0.6612093864662645136613996, 0.932469514203152027810.2386191860831969086305017, 0.6612093864662645136613996, 0.932469514203152027810.2386191860831969086305017, 0.6612093864662645136613996, 0.932469514203152027810.2386191860831969086305017, 0.6612093864662645136613996, 0.932469514203152027810.2386191860831969086305017, 0.6612093864662645136613996, 0.932469514203152027810.2386191860831969086305017, 0.6612093864662645136613996, 0.932469514203152027810000000000000000000000000000000000
eli ret def cal """ Arg	<pre>w = np.array([0.4679139345726910473898703,0.3607615730481386075698335,0.1713244923791703450402</pre>
f_\ f_\ F = I = ret def dec	a, b, c: diagonais não nulas da matriz tridiagonal A urn: l: multiplicadores da matriz L u: diagonal principal de U
n = u = l = u[(for ret def res	<pre>e len(a) e np.zeros(n) e np.zeros(n) = b[0] e i in range(1,n,1):</pre>
#ge 1, n = y = x =	urn: x: solução do sistema linear
#U2 x [r for ret	y[i] = d[i] - l[i]*y[i-1] x = y x-1] = y[n-1]/u[n-1] x i in range(n-2,-1,-1): x[i] = (y[i] - c[i]*x[i+1])/u[i] xurn x
Devíamos $q(x)=0,$ função ca Condiçõ nos_chinos_intexemplo	implementar o método de elementos finitos para resolver a equação com $k(x)=1, f(x)=12x(1-x)-2, u(x)=x^2(1-x)^2, u(0)=0, u(L)=0, L=1.$ Essas condições já foram inseridade $culaErroMaximo()$ es
for nos erropri	erros = [] in nos_chip: co_max = calculaErroMaximo(nos, nos_integral, exemplo=1) nt(f"O maior erro cometido com {nos} nós foi: {erro_max} \n") erro cometido com 7 nós foi: 0.002565908124000001 erro cometido com 15 nós foi: 0.0008011392187500005 erro cometido com 31 nós foi: 0.00022161026367187092
O maior Visualiza Para facilit	erro cometido com 63 nós foi: 5.814417157811694e-05 oção ar, vamos visualizar os erros em um gráfico. ros (exemplo=1) Erro vs nós — 1/4h²
0.00175 0.00150 0.00125 0.00100 0.00075 0.00050 0.00025	— 1/4h² — erro
O.00000 Resulta Como pod a maior di método de exata, mas	lemos ver no gráfico acima, o erro cometido fica muito próximo à $1/4h^2$. Apesar de o erro não ter sido menor, podemos ferença entre o erro e $1/4h^2$ foi 0.0005. Há duas razões para isso acontecer: a primeira é que o número de nós usados no e elementos finitos era pequeno quando houve essa diferença, n=10 nós. Somado à isso, a integral não foi calculada de foi aproximada pelo método de Gauss, o que propagou o erro na geração da matriz tridiagonal e, consequentemente, g
plotaExplotaExplotaExplotaEx	proximação nos valores de α. po, podemos visualizar qual a temperatura encontrada para o chip nos diferentes pontos considerados. premplo (7, 10, exemplo=1) premplo (15, 10, exemplo=1) premplo (31, 10, exemplo=1) premplo (63, 10, exemplo=1) premplo (63, 10, exemplo=1) premplo (63, 10, exemplo=1)
0.06 0.05 0.04 0.03 0.02	$\frac{\overline{u}_n(x)}{u(x)}$
0.01 0.00 0.06 0.05	0.0 0.2 0.4 0.6 0.8 1.0 Temperatura do chip com 15 nós no exemplo 1
0.05 Lemberatura 0.03 0.02 0.01 0.00	
0.06	0.0 0.2 0.4 0.6 0.8 1.0 Temperatura do chip com 31 nós no exemplo 1
0.04 London D.00 London D.00	0.0 0.2 0.4 0.6 0.8 1.0 x
0.06	Temperatura do chip com 63 nós no exemplo 1
emperatura 0.03	0.0 0.2 0.4 0.6 0.8 1.0 x
atu	
0.01 0.00 Resulta Dos gráfic 4.2 Vali Devíamos $q(x) = 0$, função ca Condiçõ	os acima, podemos visualizar que a solução aproximada converge para a solução exata conforme aumentamos o número dação no exemplo complementar implementar o método de elementos finitos para resolver a equação com $k(x)=e^x, f(x)=e^x+1, u(x)=(x-1)(e^{-x}-1), u(0)=0, u(L)=0, L=1$. Essas condições já foram inseridas recula $ErroMaximo()$

