Figurative Language Processing: A Linguistically Informed Feature Analysis of the Behavior of Language Models and Humans

Hyewon Jang[†], Qi Yu[†] and Diego Frassinelli, University of Konstanz

Research Questions

How do Transform-based Language Models (TLMs) process figurative language?

- RQ 1: Do TLMs attend to explicit cues that help identify certain figurative meaning?
- RQ 2: How does the feature attention behavior of TLMs compare to that of white-box models?

Dataset

FLUTE

4 figurative language classes with varying opacity.

Obvious cues

[Sarcasm] I love_[positive sentiment] how my house got so trashed_[negative event].

[Simile] The cancer made her like_[comparison] a dried flower.

No obvious cues

[Idiom] Rule of thumb is escape while you're on the move.

[Metaphor] He felt a wave of excitement.

Experimental Setup

1 Figurative Language Classification (4-way classification)

- TLMs: BERT, RoBERTa, XLNet.
- White-box: Logistic Regression, Random Forest with tf-idf.

2 Feature Importance Analysis Using SHAP

• Extract most important tokens per class with SHAP.

3 Feature Importance Analysis Using Online Experiments

- Classification experiment on a subset of dataset.
- 56 sub-samples: 7 hard instances + 7 easy instances (per class).
- 15 annotators classified each instance and provided 1-3 most important words.

Results

Classification results by models (F1)

20 Top Features Mapped to Linguistically Motivated Categories (LIWC)

Discussion

Models vs. Models

5 most important features from SHAP			
	BERT	RoBERTa	XLNet
Sarcasm	refreshing, thankful,	increase, donated, videos,	safest, refreshing, annoyed,
	proud, praised, thrilled	saving, boost	scary, love
Simile	resemble, resembled, like,	mor, herd, slightest, move-	like, resembled, resemble,
	Arnold, predatory	ment, indicating	similar, resembling

- BERT and XLNet show higher interpretability than RoBERTa for sarcasm and simile.
- White-box models focus on high-frequency function words (still opaque behavior).

Cross-class comparison (Models)

- Sarcasm: positive emotion words.
- Similes: comparison words.
- Metaphors: verbs.
- Idioms: sporadic patterns.

Models vs. Humans

- Difficult sentences for models are also difficult for humans.
- · Confusions are rare for sarcasm or similes.
- Wrong judgments are always classified as idioms (highly conventionalized metaphors).
- Humans make choices based on the semantic information available.

Cross-class comparison (Humans)

- Sarcasm: positive emotion words and adjectives.
- Similes: comparison words and adjectives.
- Metaphors: verbs.
- Idioms: sporadic patterns.