BUNIESREPUBLIK DEUTSCHLAND

PRIORITY

PRIORITY

DOCUMENT

SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D **0 7 DEC 1999**WIPO PCT

EP99/882/

Bescheinigung

Die Merck Patent GmbH in Darmstadt/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Anschlußträger für plattenförmige Mikrokomponenten"

am 24. November 1998 beim Deutschen Patent- und Markenamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole B 01 L und G 12 B der Internationalen Patentklassifikation erhalten.

München, den 1. Oktober 1999

Deutsches Patent- und Markenamt

Der/Präsident

Im Auftrag

Aktenzeichen: 198 54 096.5

Miebilis

A 9161 06.90 11/98

98 156

Merck Patent GmbH

Anschlußträger für plattenförmige Mikrokomponenten

Die Erfindung betrifft einen Anschlußträger für plattenförmige Mikrokomponenten.

Plattenförmige Mikrokomponenten, wie Mikromischer, Mikropumpen, Mikroventile od. dgl., dienen zur Durchführung von chemischen Reaktionen mit geringsten Massenströmen. Der Einsatz von Mikrokomponenten ermöglicht eine exakte Temperaturkontrolle und gute Durchmischung, so daß eine wesentlich genauere Prozeßkontrolle bei erhöhter Sicherheit ermöglicht wird.

Üblicherweise bestehen die Mikrokomponenten aus mehreren aufeinanderliegenden planparallelen Platten, die in ihren aufeinanderliegenden Oberflächen die für die erforderliche Funktion benötigten Strukturen enthalten. Wegen der guten thermischen Leitfähigkeit und der Strukturierbarkeit bestehen diese Platten üblicherweise aus Silizium (sog. Siliziumwafer), die im Inneren eine der Funktion der Mikrokomponente angepaßten Geometrie enthalten. Daneben ist aber auch der Einsatz anderer, chemisch beständiger und den Einsatzbedingungen angepaßter Werkstoffe möglich.

Bisher wurden in erster Linie einzelne Mikrokomponenten, üblicherweise in plattenförmiger Ausführung, eingesetzt und jeweils einzeln mit den Zufuhr- und Abfuhrleitungen für flüssige und gasförmige Stoffkomponenten sowie – soweit

erforderlich - mit elektrischen Anschlüssen versehen. Ein wesentlicher Aspekt des Einsatzes solcher Mikrokomponenten ist jedoch der Anschluß an laborübliche Geräte, damit die Vorteile der Mikrosysteme in labortechnischen Maßstäben eingesetzt werden können.

Aufgabe der Erfindung ist es daher, eine Schnittstelle zwischen Mikrotechnik und Labortechnik zu schaffen, über die die Mikrosysteme in sicherer und einfacher Weise an laborübliche Geräte adaptiert werden können.

Diese Aufgabe wird erfindungsgemäß gelöst durch einen Anschlußträger für plattenförmige Mikrokomponenten mit mindestens einer auf einer Trägerplatte befestigten Trägerschiene, die einen Einsteckschlitz zur Aufnahme eines Einsteckrandes einer plattenförmigen Mikrokomponente aufweist, wobei in mindestens einer der beiden Seitenwände des Einsteckschlitzes der Trägerschiene Leitungsanschlüsse vorgesehen sind, die mit zugeordneten Anschlüssen in mindestens einer Außenseite der plattenförmigen Mikrokomponente verbindbar sind.

Mit diesem Anschlußträger wird neben einem Anschlußsystem gleichzeitig auch eine mechanisch stabile Halterung geschaffen. Das Anschlußsystem ermöglicht die Versorgung mit Reagenzien und die Realisierung eines elektrischen Anschlusses, beispielsweise für die Meßtechnik, Heizung, Kühlung usw. Die Mikrokomponenten können in einfacher Weise angeschlossen und leicht ausgewechselt werden. Durch die Verwendung mehrerer Trägerschienen auf einer gemeinsamen Trägerplatten lässt sich eine räumlich kompakte Unterbringung mehrerer

plattenförmiger Mikrokomponenten erreichen. Mit einer solchen universellen Anschlußtechnik wird auf engstem Raum ein mechanisch stabiler Aufbau von Mikrosystemen mit standardisierter Versorgungstechnik möglich.

Gemäß einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, daß mindestens eine der Seitenwände des Einsteckschlitzes mindestens eine Gewindebohrung zur Aufnahme einer Anschlußverschraubung aufweist, die gegen die zugeordnete Außenseite der plattenförmigen Mikrokomponente schraubbar ist. Damit wird gleichzeitig ein dichter Anschluß der Mikrokomponente an die Anschlußverschraubung und zugleich eine sichere Festlegung der plattenförmigen Mikrokomponente in der Trägerschiene erreicht.

Um eine exakte und zuverlässige Ausrichtung der plattenförmigen Mikrokomponente in der Trägerschiene zu gewährleisten, ist in weiterer Ausgestaltung des Erfindungsgedankens vorgesehen, daß an einem Ende des Einsteckschlitzes eine in Schlitzlängsrichtung wirkende Feder angeordnet ist, durch die die plattenförmige Mikrokomponente gegen einen Zentrieranschlag am anderen Ende des Einsteckschlitzes drückbar ist.

Zwischen den Gewindebohrungen oder in der gegenüberliegenden Seitenwand des Einsteckschlitzes können elektrische Kontaktflächen angeordnet sein, die mit zugeordneten elektrischen Kontakten der plattenförmigen Mikrokomponente in Berührung bringbar sind. Damit wird zugleich ein elektrischer Anschluß hergestellt, wie er in vielen Fällen für Meßfühler in der Mikrokomponente, für Heizung, Kühlung oder ähnliche Zwecke erforderlich ist.

In weiterer Ausbildung des Erfindungsgedankens kann vorgesehen werden, daß die Trägerschiene mit einer sich senkrecht zur Trägerplatte erstreckenden Anschlußschiene verbunden ist, die einen Einsteckschlitz zur Aufnahme eines weiteren Einsteckrandes der plattenförmigen Mikrokomponente aufweist, wobei in mindestens einer der beiden Seitenwände des Einsteckschlitzes der Anschlußschiene Leitungsanschlüsse vorgesehen sind, die mit zugeordneten Anschlüssen in mindestens einer Außenseite der plattenförmigen Mikrokomponente verbindbar sind.

Die von der Trägerschiene senkrecht hochstehende Anschlußschiene bietet einerseits die Möglichkeit, dort weitere
Leitungsanschlüsse vorzusehen; andererseits bildet diese
Anschlußschiene eine stabile Halterung für die eingesteckte
plattenförmige Mikrokomponente, so daß auf sonstige
Halterungen und Festlegungen verzichtet werden kann.

Weitere vorteilhafte Ausgestaltungen des Erfindungsgedankens sind Gegenstand weiterer Unteransprüche.

Nachfolgend werden Ausführungsbeispiele der Erfindung näher erläutert, die in der Zeichnung dargestellt sind. Es zeigt, jeweils in räumlicher Darstellungsweise:

Fig. 1 einen Anschlußträger für plattenförmige Mikrokomponenten mit einer auf einer Trägerplatte befestigten Trägerschiene,

Fig. 2 einen Anschlußträger mit zusätzlicher Anschlußschiene und

Fig. 3 einen Anschlußträger mit einem von der Trägerschiene getrennten Anschlußhalter.

Der in Fig. 1 dargestellte Anschlußträger dient zur Aufnahme einer plattenförmigen Mikrokomponente 1. Eine beispielsweise aus Kunststoff bestehende Trägerschiene 2 ist auf einer Trägerplatte 3 befestigt. Die Trägerschiene 2 weist einen längsverlaufenden Einsteckschlitz 4 auf, in den die plattenförmige Mikrokomponente 1 mit einer Sockelleiste 5 einsteckbar ist. Die Sockelleiste 5 ist von seitlichen Ausnehmungen 6 begrenzt, die an den Enden des Einsteckschlitzes 4 zur Anlage kommen und damit eine exakte Festlegung der Einstecktiefe gewährleisten.

An dem einen Ende 4a des Einsteckschlitzes 4 ist eine in Schlitzlängsrichtung wirkende Feder 7, beispielsweise eine Blattfeder, angeordnet, die den Sockel 5 der plattenförmigen Mikrokomponente 1 gegen einen Zentrieranschlag 8 am anderen Ende 4b des Einsteckschlitzes 4 drückt.

In der einen Seitenwand 9 des Einsteckschlitzes 4 sind mehrere Gewindebohrungen 10 vorgesehen, die sich quer zur Ebene der plattenförmigen Mikrokomponente 1 erstrecken und zur Aufnahme jeweils einer Anschlußverschraubung 10a vorgesehen sind, durch die flüssige oder gasförmige Stoffe der Mikrokomponente 1 zugeführt oder von dieser abgeführt werden. Nach dem Einstecken der Mikrokomponente 1 in den Einsteckschlitz 4 werden die Anschlußverschraubungen gegen

die Mikrokomponente 1 verschraubt und dadurch dicht an Anschlüsse 11 in der Außenseite 1a der plattenförmigen Mikrokomponente gedrückt.

In der der Seitenwand 9 gegenüberliegenden Seitenwand 12 des Einsteckschlitzes 4 sind elektrische Kontaktflächen 13, beispielsweise Kontaktfedern, angeordnet, die nach dem Einstecken der Mikrokomponente 1 mit zugeordneten elektrischen Kontakten 14 auf der zugekehrten Außenfläche 1b in Berührung kommen und zum elektrischen Anschluß dienen.

Das Ausführungsbeispiel nach Fig. 2 unterscheidet sich nach dem Ausführungsbeispiel nach Fig. 1 im wesentlichen dadurch, daß die Trägerschiene 2 mit einer Anschlußschiene 15 verbunden ist, die sich senkrecht zur Trägerplatte 3 erstreckt und ebenfalls einen Einsteckschlitz 16 zur Aufnahme eines weiteren Einsteckrandes 17 der plattenförmigen Mikrokomponente 1 aufweist.

Bei dem Ausführungsbeispiel nach Fig. 2 sind in der mit der Trägerplatte 3 verbundenen Trägerschiene 2 nur die Gewindebohrungen 10 zur Aufnahme der Anschlußverschraubungen 10a vorgesehen. Die beschriebenen elektrischen Kontaktflächen 13 sind nur in der Anschlußschiene 15 angeordnet und dienen zum Anschluß elektrischer Leitungen 18.

Das Ausführungsbeispiel nach Fig. 3 unterscheidet sich von den vorher beschriebenen Ausführungsbeispielen im wesentlichen dadurch, daß ein von der Trägerschiene 2, die auch hier nur die Gewindebohrungen 10 aufweist, getrennter Anschlußhalter 19 einen Aufnahmeschlitz 20 für einen Rand 21 der

plattenförmigen Mikrokomponente 1 aufweist. In der einen Seitenwand 20a des Aufnahmeschlitzes 20 sind die elektrischen Kontaktflächen 13 angeordnet, die mit den zugeordneten Kontakten 14 der plattenförmigen Mikrokomponente 1 in Berührung stehen.

Der Anschlußhalter 19, der auch in geeigneter Weise mit der Trägerplatte 3 verbunden bzw. an dieser befestigt sein kann, fixiert die aufgenommene Mikrokomponente 1 bzw. mehrere solcher aufgenommenen Mikrokomponenten 1 zusätzlich.

Bei allen gezeigten Ausführungsbeispielen können durch Anordnung mehrerer Trägerschienen 2 auf einer gemeinsamen Trägerplatte 3 mehrere Mikrokomponenten 1 aufgenommen werden. So lassen sich durch Hintereinanderschalten mehrerer Mikrokomponenten 1 mehrstufige oder auch parallele Reaktionen auf kleinstem Raum durchführen.

Merck Patent GmbH

Anschlußträger für plattenförmige Mikrokomponenten

Patentansprüche:

- 1. Anschlußträger für plattenförmige Mikrokomponenten mit mindestens einer auf einer Trägerplatte (3) befestigten Trägerschiene (2), die einen Einsteckschlitz (4) zur Aufnahme eines Einsteckrandes (5) einer plattenförmigen Mikrokomponente (1) aufweist, wobei in mindestens einer der beiden Seitenwände (9, 12) des Einsteckschlitzes (4) der Trägerschiene (2) Leitungsanschlüsse (10, 10a, 13) vorgesehen sind, die mit zugeordneten Anschlüssen (11 14) in mindestens einer Außenseite (1a, 1b) der plattenförmigen Mikrokomponente (1) verbindbar sind.
- 2. Anschlußträger nach Anspruch 1, dadurch gekennzeichnet, daß mindestens eine der Seitenwände (9) des Einsteckschlitzes (4) mindestens eine Gewindebohrung (10) zur Aufnahme einer Anschlußverschraubung (10a) aufweist, die gegen die zugeordnete Außenseite (1a) der plattenförmigen Mikrokomponente (1) schraubbar ist.
- 3. Anschlußträger nach Anspruch 1, dadurch gekennzeichnet, daß an einem Ende (4a) des Einsteckschlitzes (4) eine in Schlitzlängsrichtung wirkende Feder (7) angeordnet ist, durch die die plattenförmige Mikrokomponente (1) gegen einen

Zentrieranschlag (8) am anderen Ende (4b) des Einsteckschlitzes (4) drückbar ist.

- 4. Anschlußträger nach Anspruch 2, dadurch gekennzeichnet, daß zwischen den Gewindebohrungen (10) oder in der gegenüberliegenden Seitenwand (12) des Einsteckschlitzes (4) elektrische Kontaktflächen (13) angeordnet sind, die mit zugeordneten elektrischen Kontakten (14) der plattenförmigen Mikrokomponente (1) in Berührung bringbar sind.
- 5. Anschlußträger nach Anspruch 1, dadurch gekennzeichnet, daß die Trägerschiene (2) mit einer sich senkrecht zur Trägerplatte (3) erstreckenden Anschlußschiene (15) verbunden ist, die einen Einsteckschlitz (16) zur Aufnahme eines weiteren Einsteckrandes (17) der plattenförmigen Mikrokomponente (1) aufweist, wobei in mindestens einer der beiden Seitenwände des Einsteckschlitzes (16) der Anschlußschiene (15) Leitungsanschlüsse (13) vorgesehen sind, die mit zugeordneten Anschlüssen in mindestens einer Außenseite der plattenförmigen Mikrokomponente (1) verbindbar sind.
- 6. Anschlußträger nach Anspruch 5, dadurch gekennzeichnet, daß die Trägerschiene (2) die Gewindebohrungen (10) zur Aufnahme der Anschlußverschraubungen (10a) und die Anschlußschiene (15) elektrische Kontaktflächen (13) aufweist.
- 7. Anschlußträger nach Anspruch 1, dadurch gekennzeichnet, daß ein von der Trägerschiene (2) getrennter Anschlußhalter (19) einen Aufnahmeschlitz (20) für einen Rand (21) der plattenförmigen Mikrokomponente (1) aufweist und daß in mindestens einer Seitenwand (20a) des Aufnahmeschlitzes (20)

elektrische Kontaktflächen (13) angeordnet sind, die mit zugeordneten Kontakten der plattenförmigen Mikrokomponente in Berührung bringbar sind. Merck Patent GmbH

Anschlußträger für plattenförmige Mikrokomponenten

Zusammenfassung:

Ein Anschlußträger für plattenförmige Mikrokomponenten (1) weist eine auf einer Trägerplatte (3) befestigte Trägerschiene (2) auf. Ein Einsteckschlitz (4) der Trägerschiene (2)
nimmt einen Einsteckrand (5) einer plattenförmigen Mikrokomponente (1) auf. In mindestens einer Seitenwand (9) des
Einsteckschlitzes (4) der Trägerschiene (2) sind Leitungsanschlüsse (10, 10a) vorgesehen, die mit zugeordneten
Anschlüssen (11) in einer Außenseite (1a) der plattenförmigen
Mikrokomponente (1) verbindbar sind.

(Fig. 1).

S PAGE BLANK (USPTO)