Math 449: Numerical Applied Mathematics Lecture 28

11/08/2017 Wenzhen

Today's topic: Newton-Cotes Quadrature Rules

Newton-Cotes quadroture rules

$$n=1$$
 Trapzoid rule $\int_a^b f(x) dx$

$$n=0$$

$$\int_a^b f(x) dx \approx (b-a) f(c) \text{ any } c \in [a,b]$$

If f is constant, then
$$\int_a^b f(x)dx = f(c)(b-a)$$
 $c = \frac{a+b}{2}$

For linear f

equality holds if we choose $c = \frac{a+b}{2}$

Note: trapezoid rule is only exact for degree 1 (linear) polys.

Simpson's rule is exact for degree a polynomials.

but is also exact (because we use the midpt, too)

Ex show that
$$f$$
 is cubic polynomial, then $\int_a^b f(x)dx = (b-a)x$
Hint: It suffices to prove this for $f(x) = x^3$ $\left(\frac{1}{b}f(a) + \frac{2}{3}f\left(\frac{a+b}{2}\right) + \frac{1}{b}f(b)\right)$
then use linearity of the integral.